NB-IoT外场测试注意事项及案例分析

李杰 jie.14.li@Nokia.com

中国联通NB-IoT网络功能需求及诺基亚支持情况

序号	联通功能需求	诺基亚支持情况
1	MIB,SIB新扰码	ОК
2	覆盖增强功能	目前inband不支持,standalone支持
3	小区重选	目前inband不支持,standalone E5-2.3支持
4	Inband模式下LTE小区RB闭锁	ОК
5	下行OTA升级功能	目前不支持需要模组及核心网共同支持
6	e-DRX	目前inband不支持,standalone支持
6	NON-IP	目前不支持需要模组及核心网共同支持
7	上行子载波(3.75K,15KST,15KMT)	目前15K ST
8	三种工作模式	目前不支持Guard band
9	循环前缀	standalone支持常规CP及扩展CP,inband扩展CP

中国联通NB-IoT外场测试功能支持情况

根据《中国联通NB-IoT测试规范精简版》,外场试点场景测试包含如下三类测试。

- Standalone模式下覆盖拉远和室外覆盖室内测试
- inband模式下覆盖拉远和室外覆盖室内测试
- 小区重选(2个)

拉远和定点测试项部分完成是由于现有软件版本不支持如下的功能: inband不支持, standalone E5-2.2 支持 NPUSCH, NPDCCH, NPDSCH的重复次数配置为自适应模式。即三 个覆盖等级能自适应调整。 inband不支持, standalone E5-2.3 无法测试的是小区重选用例。现有软件版本不支持此功能。 支持 上行子载波15kHz和3.75KHz配置为自适应模式。 Standalone与inband均存在问题 NPUSCH, NPDCCH, NPDSCH的重复次数不是越大越好, 当设置过大时, 测 Standalone与inband均存在问题 试终端不能接入网络。

NB-IoT基础性能(实验室)

上下行UDP速率

				RLC Troug	ghput (kbps)	
BBU	Mode	DL/UL	MCL110	MCL144	MCL154	MCL164
		DL	20.7461	20.6831	9.42997	1.25
FSMF	SA	UL	13.1543	13.0866	2.41426	0.133105
	Inband	DL	20.7216	10.7118	4.46333	N/A
	6.4	DL	20.2766	20.338	8.71164	1.15
Airscale	SA	UL	12.8389	12.5556	1.874	0.124161
	Inband	DL	20.7175	10.1525	2.76293	N/A
CMCCS	CMCC Spec(L1)		21.15	19.13	8.5	1.2
CIVICO	ppec(L1)	UL	15.625	14.625	2.44	0.15

Ping时延

包大小	测试点	制式	RSRP	平均时延
	极好	NB-IoT	-81dbm	0.259
20 Pudo	好	NB-IoT	-111dbm	0.272
20 Byte	中	NB-IoT	-121dbm	0.915
	差	NB-IoT	-131dbm	28.273
	极好	NB-IoT	-81dbm	0.811
200 Puto	好	NB-IoT	-111dbm	1.072
200 Byte	中	NB-IoT	-121dbm	1.304
	差	NB-IoT	-131dbm	50.73

PING时延理论计算方法

PING的过程相当于传送一个上行NAS/RRC包+一个下行NAS/RRC包

现场配置下连接态时延计算:

T_{PING} = TRACH + 2*TUL + TDL

T=1430+2*48+32=1558ms

现场配置下IDLE态时延计算:

 $T_{PING} = TRACH + 3*TUL+ 2*TDL$

T=1430+3*48+2*32=1638ms

初始MCS设置为9,则一个 TBS只能携带616bit,为 77B,ping上行包为20B, 加上28B包头共48B,1次能 传输完,下行reply为48B, 1次传输完成。

■ $I_{\text{TBS}^{\phi}}$	$I_{ extsf{RU}}$									
155	0₽	1₽	2₽	℃	4₽	5₽	6₽	7₽	₽	
0↔	16₽	32₽	56₽	98₽	120₽	152₽	208₽	256₽	ą,	
1₽	24₽	56₽	88₽	144₽	176₽	208₽	256₽	344₽	₽	
2₽	32₽	72₽	144₽	176₽	208₽	256₽	328₽	424₽	₽	
3₽	40₽	104↩	176₽	208₽	256↩	328₽	440₽	568↩	₽	
4₽	56₽	120₽	208₽	256₽	328₽	408₽	552₽	680₽	÷	
5₊□	72₽	144₽	224₽	328₽	424₽	504₽	680₽	872₽	₽	
6₽	88₽	176₽	256₽	392₽	504₽	600₽	908₽	10004	ą.	
7₽	104↩	224₽	328₽	472₽	5844	712₽	1000₽	42	₽	
8₽	120₽	256₽	392₽	536₽	680₽	908₽	÷,	٠	47	
9₽	136₽	296₽	456₽	616₽	776↩	936₽	٠	42	ø	
10₽	144₽	328₽	504₽	680₽	872₽	1000₽	÷,	¢	₽	
11₽	176↩	376₽	584₽	776₽	1000₽	47	٠	٦	₽	
12↩	208₽	440₽	680₽	1000₽	47	47	₽	÷	₽	

Table 16.4.1.5.1-1: Transport block size (TBS) table.

$I_{\mathtt{TBS}^{\leftarrow}}$	$I_{\mathtt{SF}}$ $^{\wp}$										
- 185	0₽	1₽	2₽	3₽	4 4	5₽	6₽	7₽			
0↔	16₽	32₊□	56↩	88₽	120↩	152₽	208↩	256∉			
1₽	24₽	56↩	98₽	144₽	176↩	208₽	256↩	344⊹			
2₽	32₽	72↩	1444	176↩	208₽	256₽	328₽	424∻			
3₽	40₽	104↩	176↩	208↩	256↩	328₽	440↩	568∉			
4.₽	56₊□	120↩	208₽	256↩	328₽	408₽	552↩	680∉			
5₊∍	72₽	144₽	224↩	328₽	424₽	504₽	680₽	47			
64□	88₽	176↩	256↩	392₽	504↩	600₽	42	47			
7₽	104₽	224↩	328₽	472₽	584₽	680₽	47	47			
8₽	120₽	256↩	392₽	536↩	680₽	47	42	47			
9₽	136₽	296₽	456₽	616₽	÷	÷	÷	÷2			
10₽	1444	328₽	504↩	680₽	42	47	42	47			
11₽	176₽	376₽	584↩	47	47	÷	47	47			
12₽	208₽	440₽	680₽	42	٩	٦	÷2	ته			

原理介绍——随机接入过程

随机接入过程如右图所示,其耗时:

 $T_{RACH} = t_{SR} + t_{NPRACH} + t_{RAR} + t_{Msg3} + t_{Msg4}$

- 其中:
 - t_{sR} 为 SR 等 待 上 行 调 度 的 时 间 , 由 参 数 logicalChanSrProhibitTimerNB 设 定 , 取 值 为 {2.8.32.128.512.1024.2048}个NPDCCH周期
 - 当参数设置为8个NPDCCH周期、NPDCCH周期为16ms时 该时长为128ms
 - t_{NPRACH}为等待NPRACH机会的时间,平均来说等于NPRACH周期的一半
 - 当NPRACH周期为320ms时,平均时长为160ms
 - t_{RAR}为RAR下行调度的时长,至少为32ms,有时为48或64ms
 - t_{Msg}3为Msg3上行传送的时长, Msg3由RAR消息直接调度, 而不需要NPDCCH提供,根据规范,该时长至少13ms
 - t_{Msg4}为Msg4下行调度的时长,至少为32ms,通常为64ms
- 在没有重复的情况下, T_{RACH} = t_{SR} + t_{NPRACH} + (100~140ms)

举例:假设SR等待时间为32ms、NPRACH周期为32ms,没有重复的情况下,RACH过程平均时延T_{RACH}=32+320/2+120=470ms,

NOKIA ŁÄĄ K

上海电信PING时延优化

调整MCS及重复次数,NPRACH周期,对时延改善较大。平均时延从1.62s下降到0.74s

RRC IDLE态下的PING小包时延T_{PING} = TRACH + 3*TUL + 2*TDL

举例: 470 + 3*48 + 2*32 = 680ms

RRC 连接态下的PING小包时延T_{PING} = TRACH + 2*TUL + 1*TDL

举例: 470 + 2*48 + 32 = 600ms

· 以现网CEL0参数为基础,将上下行MCS调整到10,将所有重复次数调整到1,将NPRACH周期调整到320ms

参数类型	MO Class	ParentStructure	Prameter Name	初始值	目标值
PRACH	MRBTS/LNBTS/NBIOTPR	nprachProfNBNorCov	nprachPeriod	1280ms	320ms
PRACH	MRBTS/LNBTS/NBIOTPR	nprachProfNBNorCov	nprachNumRepPreamble	n1	n1
搜索空间	MRBTS/LNBTS/NBIOTPR	cssProfNBNorCov	npdcchMaxNumRepRa	r2	r1
搜索空间	MRBTS/LNBTS/NBIOTPR	cssProfNBNorCov	npdcchStartSfRa	v16	v16
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniNpdcchNumRepRa	r2	r1
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	ackNACKNumRep	r1	r1
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	ackNACKNumRepMsg4	r4	r1
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniNpdschNumRep	r1	r1
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniNpuschNumRep	r1	r1
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniMcsDl	9	10
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniMcsUl	9	10

PING 20Byte测试结果

备注	PING序号	PING时延 (ms)
	1	1975
	2	1730
]	3	1389
]	4	868
实验1_参数修改前	5	1384
	6	1376
IDLE志起PING 20Byte平均时	7	1878
延1.62秒	8	1807
	9	1847
]	10	1930
	11	1734
	12	1511
	1	623
	2	687
	3	782
实验1 MCS和重复等参数修	4	870
改后	5	596
	6	658
IDLE志起PING 20Byte平均时	7	719
延0.74秒	8	617
	9	715
	10	1325
	11	571

UDP灌包测试方法

发送端灌包为登录到服务器侧,执行iperf命令执行灌包操作,操作命令如下: iperf -u -c 172.16.105.37 -b 20k -i 1 -p 5001 -1 1000 -t 4000其中:

- -u 为使用UDP;
- -c 172.16.105.37为终端的IP地址;
- -t 4000为灌包数量
- -b 20K 为以20K带宽发送
- -p 5001 为使用5001端口
- -1 1000 是MTU大小为1000 B

接收端执行iperf命令执行灌包操作,操作命令如下: iperf -u -s -i 1 -p 5001 其中:

- -u 为使用UDP;
- -s 作为接收端(服务端);
- -p 监听5001端口

对于终端测,使用Windows系统可以使用图形化工具,作为接收端选择DL,作为发送端选择UL

上海电信UDP速率优化-下行

参数类型	MO Class	ParentStructure	Prameter Name	初始值	目标值
调度参数	MRBTS/LNBTS/NBIOTPR	schedProfNBNorCov	iniMcsDl	9	10

- UDP下载速率提升(14.6kbps→15.3kbps)
 - NPDSCH的MCS从9提升到10以后,TBS大小从77Byte提升到85Byte,原来1513Byte的RRC消息需要用21次下行调度,参数调整后只要19次下行调度即可,时间缩短将近10%
 - USS用户搜索空间从32ms降到16ms,但实际的单次下行调度的周期在32ms左右未变

备注	测试信息			无线指标		RLC层速率			N	PDSCH					NPUS	СН	
苗注	统计时长(s)	PCI	RSRP	NRS Power	MCL	DL RLC Tput (kbps)	DL BLER	DL MCS	DL SF	DL TBS	DL Repetition	DL Retr	UL MCS	UL RU	UL TBS	UL Repetition	UL Retr
实验1_参数修改前(仅取了没有受到上 行重传影响的测试段)	45	30	-57.20	29	86.20	14.60	0.00%	9.00	4.00	616.00	1.00	0.00%	9.00	4.00	616.00	1.00	8.96%
实验1_MCS和重复等参数修改后 (上行重传30%,影响了速率)	190	30	-48.27	29	77.27	15.29	0.00%	10.00	4.00	680.00	1.00	3.33%	9.94	4.00	676.37	1.00	24.85%
实验 1_logicalChanSrProhibitTimerNB参 数修改后	160	30	-46.96	29	75.96	14.19	0.00%	10.00	4.00	680.00	1.00	2.71%	10.00	4.00	680.00	1.00	13.27%

上海电信UDP速率优化-上行

参数类 型	MO Class	ParentStructure	Prameter Name	初始值	目标值
PRACH	MRBTS/LNBTS/NBIO TPR	nprachProfNBNorC ov	nprachPeriod	1280m s	320ms
搜索空 间	MRBTS/LNBTS/NBIO TPR	cssProfNBNorCov	npdcchMaxNumRe pRa	r2	r1
搜索空 间	MRBTS/LNBTS/NBIO TPR	cssProfNBNorCov	npdcchStartSfRa	v16	v16
调度参 数	MRBTS/LNBTS/NBIO TPR	schedProfNBNorC ov	iniMcsUl	9	10

- UDP上传速率提升 (4.35kbps→8.19kbps)
 - NPRACH周期从1280ms降到320ms以后,Msg1的等待时间从1秒下降到0.4秒,UDP/IP包传送时间缩短0.6秒
 - NPUSCH的MCS从9提升到10以后,TBS大小从77Byte提升到85Byte,原来1513Byte的RRC消息需要用21次上行调度(外加一次Msg3),参数调整后只要19次上行调度(外加一次Msg3)即可, UDP/IP包传送时间缩短0.1秒
 - USS从32ms降到16ms,实际的单次上行调度的周期从64ms下降到48ms,UDP/IP包传送时间缩短0.3秒

Ø>+	测试信息 无:		无线指标 RLC层速率		NPDSCH				NPUSCH								
备注 	统计时长(s)	PCI	RSRP	NRS Power	MCL	UL RLC Tput (kbps)	DL BLER	DL MCS	DL SF	DL TBS	DL Repetition	DL Retr	UL MCS	UL RU	UL TBS	UL Repetition	UL Retr
实验1_参数修改前	180	30	-52.57	29	81.57	4.35	0.00%	9.00	4.00	616.00	1.00	0.00%	8.99	4.00	615.26	1.00	7.38%
实验1_MCS和重复等参数修改后	180	30	-46.77	29	75.77	8.18	0.00%	10.00	4.00	680.00	1.00	3.88%	10.00	4.00	680.00	1.00	12.72%
实验1_logicalChanSrProhibitTimerNB 参数修改后	180	30	-46.68	29	75.68	10.04	0.00%	10.00	4.00	680.00	1.00	5.66%	10.00	4.00	680.00	1.00	11.87%

常见无法接入问题-只有搜网无MIB

使用终端无法搜到合适小区,LOG跟踪发现,UE一直处于搜网状态,无法读取MIB消息。

解决方案:

- 1.检查基站状态是否正常
- 2.检查SIM卡是否异常
- 3.查询终端CRs与基站是否一致
- 4.查询终端频点配置是否正常

常见无法接入问题-读取MIB和SIB1, 无SIB2

问题:

终端SIB1消息提示 barred,无法进行接入

解决方案:

- 1.检查小区参数cell barred flag是否正常
- 2.检查MME是否存在配置NB核心网list

常见无法接入问题-attach reject

解决方案:

数据业务测试注意事项一垃圾数据问题1

由于NBIOT SA/ST模式下上行峰值速率约在15kbps下行峰值速率在20kbps左右,且为单双工模式。一旦在测试过程中发起其他业 务,将极大的影响测试效果。

以QXDM+高通芯片为例:

终端此时在做PING大小32byte的业务。正常 情况下PING的包头为28byte,所以用户长度数 据为60byte。检查QXDM中消息ID=0XB0E3 ESM Data Transport Msg 中 user date container len字段有不等于60字段 (本次截图为161),确认次包为垃圾数据。

解决方案一: 防火墙设置禁止程序访问

TCP/UDP端口

防火墙禁用垃圾数 据

解决方案二(推荐):通过修改缺省路由方

式使PC仅能访问目标网络

数据业务测试注意事项一垃圾数据问题2

拨号后通过修改缺省路由方式使PC仅能访问目标网络,测试PC在无缺省路由情况下,会大量减少非指定数据。

第一步:

输入 route print, 查看路由信息。测试PC IP地址172.30.255.34, 缺省路由到次地址。

第二步:

删除缺省路由信息, route delete 0.0.0.0

第三步:

增加到服务器的路由,图中2.2.2.2为服务器地址。上行UDP业务无需服务器,可以任意设置地址,与UDP软件地址保持一致即可。

第四步:

输入 route print , 确认路由添加完毕。

C:\Users\wangxiaotao>route delete 0.0.0.0 操作完成! <mark>第一步</mark>

C:\Users\wangxiaotao>route add 2.2.2.2 172.30.255.24 操作完成! <mark>笛二北</mark>

数据业务测试注意事项一上行UDP注意事项1

eNB版本: E5-2 Stand-alone(170421_214683)

高通UE版本: MDM9206.TX.2.0-00115-STD.PROD-1

注意1: 首先完成垃圾数据规避

注意2: 9206 把nb1_pdcp_option_masks文件放入

/nv/item_files/modem/nb1/L2/pdcp/目录(<mark>仅上行测试用</mark>)

注意3: 速率设置为17kpbs, MTU大小为1330byte;

同时host address上行可以为任意地址与垃圾处理处理中的业务目的地址一致即可。

注意4: 关键参数配置如图

Number of Coverage Levels:	覆盖等级1	1	[13]	
MAC profile for NB-IoT first cov Logical channel SR prohibit time Retransmit BSR timer for NB-Io	er for NB-IoT: pp2	-		
RACH profile for NB-IoT first co Contention resolution timer for I RA response window size for N	NB-IoT: pp1			
Maximum number of repetitions	for NPDCCH common search s	pace for RA:	1 .	•
Offset for NPDCCH Common S	earch Space: PCCCH <mark>搜</mark> 劾	<mark>索空间</mark>	ero ·	•
Starting subframes of the NPDO	CCH Common Search Space for I	RA: v	16	-)

数据业务测试注意事项一下行UDP注意事项1

eNB版本: E5-2 Stand-alone(170421_214683)

高通UE版本: MDM9206.TX.2.0-00115-STD.PROD-1

注意1: 首先完成垃圾数据规避

注意2: 增加下面两个flag到swconfig.txt文件

####### DL T-Put 0x00130086 = 0

###NPRACH detection threshold

0x16004F = 1

注意3: 速率设置为24kpbs, MTU大小为1330byte;

注意4:接收端UPD软件与灌包测保持一致,且接收端要监听对应端口。

注意5: 关键参数配置如图

NOKIALAGE