Chemical Propulsion Technology Challenges for Exploration

Presenter: La

Larry Leopard ER30

NASA/IIISFG

May 17, 2005

Agenda

- ♦ Introduction
- Assumptions & Scope
- Reference Mission (Notional)
- Propulsion Elements & Opportunities for Technology Insertion
- Issues
- Summary & Conclusions

Introduction

subsystems that involve the chemical reaction of propellants to move or control the space craft Chemical propulsion covers all propulsion

Specific elements include

▼Main Engines

Provides main propulsive forces for Earth to Orbit, Orbit Trans Planetary Trajectories and extra planetary landing / ascent

➤ Reaction Control Systems / Orbital Maneuvering Systems

Orbit maintenance, position control, station keeping and spacecraft attitude control

Pressure-fed RCS propulsion systems, that usually operate somewhere in the range from 200 to 400 psi.

MPS is defined as the vehicle fluid systems that support main ➤ Main Propulsion Systems (MPS) engine operation

It is a means of integration between the engine, vehicle systems and propellant tanks

MSFC ER30/LL - 3

Assumptions

- Solution trade space still open
- Propulsion requirements derived from vehicle and mission requirements
- Commonality in design and technology-base favored where practical
- Technology is broadly defined and includes enhanced design, development, and testing activities, reconstitution of technical skills and capabilities and development of new, more efficient tools and methods.
- technology briefing. Mars mission impacts noted for some key Mission to the lunar surface is the focus of this propulsion technologies.

Scope

For discussion purposes, propulsion elements are grouped as follows:

▼Boost Main Propulsion

➤ Boost-Assist Propulsion

➤ Upper Stage (US) Main Propulsion

Crew and Cargo Launch Vehicle (LV) US Main Engine (ME)

➤In-Space Transfer Propulsion

Crew Exploration Vehicle (CEV) Trans-Earth Injection (TEI) ME

Lunar Earth Departure Stage (EDS) ME

➤ Lander / Ascent (L/A) Stage Propulsion

➤ Crew Safety for Ascent

➤ Reaction Control System (RCS)

➤ Main Propulsion System (MPS)

A SEA

Notional Lunar Reference

Apollo Required Significant New Starts - Ambitious Current Missions Require Additional Enabling Technologies

Number of New Rocket Engines Developed for the Apollo Mission

ì
7
J-2
R4-B
ER.
SE-7
SE-8
UC-1
AJ10-137
LMDE
LMAE
10

Propulsion's Role In Current Missions Opportunities Exists to Improve

Total Number Of Rocket Engines/Motors Per Flight of Each Apollo Mission

	T		T	T		ý.			T	T	_	_	_		_	_		
2	000	ייי	4	4	*	-	2	∞	2	10	2	-	16	-		-	16	86
F-1 Engines LO ₂ /RP-1/1.5 MLB _F / ROCKETDYNE (R/D)	Retrorockets, solid fuel THIOKOL	J-2 engines LO ₂ /LH ₂ / 200KLB _F / R/D	Ullage rockets, S-IC/S-II interstage 100 LB _F / R/D	Retrorockets for two auxiliary propulsion system modules Solid Rockets - THIOKOL	J-2 engine / R/D	Main ullage rockets, jettisonable MAROHADDIT	Rockets for the contract of th	nothers for two auxiliary propulsion systems modules 100 LB _F / TRW	Fwd. compartment reaction control engines (pitch) 100 LB _F MARQUARDT	Aft compartment reaction control engine (pitch) 100 LB _F MARQUARDT	Roll engines 100 LB _F MARQUARDT	Service Module Engine (SME) N ₂ O ₄ /A-50, 20KLB _F AEROJET	RCS engines 100 LB _F MARQUARDT	Decent engine, N ₂ O ₄ /A-50 10,000 to 1,000 LB _F Deep-Throttling TRW	Ascent engine, N ₂ O ₄ 3KLB _F BELL/ROCKETDYNE	RCS engines 100 LB. MAROHARDT		
S-IC Stage			S-II Stage			S-IVB Stage				Command Module		Service Module			Lunar Module		TOTAL	7-0-

Opportunities for Technology Insertion General

Safety and Reliability Improvements

- Safe shutdown and operation
- Improved fault detection, isolation, recovery response times
 - Failure containment
- Physics-based probabilities, consequences, and mitigation assessments
 - ➤Integrate fault diagnostics and prognostics
- ➤Improve reliability on highest risk components
- Improve fault tolerance and redundancies where appropriate
 - Very lamble in the proof of the proof of

Performance Enhancements

- ▼Improvements in thrust/weight
- Replacement of heavier/obsolete materials

Cost Reduction

- ►Improve manufacturing techniques for engines/motors
 - Reconstitute Vendor Capability

NEW FLIGHT ROCKET ENGINE DEVELOPMENTS

IN-SPACE FLIGHT ENGINES DEVELOPED NUMBER OF NEW U.S. BOOSTER, UPPER STAGE AND SPECIALIZED

Boost Propulsion

Background

Existing engines and motors:

Evolved Expendable LV's (EELV): Isp: 340 - 420 sec (vac), propellants: liquid oxygen (LOX), liquid hydrogen (LH2) or RP, thrust: 740-940 klbf (vac)

Shuttle: Isp: 270 (solid) - 455 sec, propellants: LOX, LH2, or solid, thrust: 470k to 2.6M (solid) lbf

Possible Options

➤ Highly reliable, Low Cost EELV Engines

➤ Highly reliable, Low Cost Shuttle Systems – Reusable Solid Rocket Motor (RSRM), Space Shuttle Main Engine (SSME)

MSFC ER30/LL - 11

Opportunities for Technology Insertion **Boost Propulsion**

Safety and Reliability Improvements

➤ Safe shutdown and operation

Fix known problems (e.g., leakage, welds, cracks)

Reduce criticality one failure modes

Failure containment

Integrated fault diagnostics and prognostics

pumps: e.g., knife edge seals / flowliner, main combustion chamber, nozzle: Improve reliability on highest risk components (e.g., SSME high pressure e.g., option of channel wall nozzle)

Accurate risk assessments

Enough data to support assessments

 \Box Service/fatigue life, factors of safety, fracture control, process control, performance &environments, hardware pedigree, as built vs design, cost & maintenance data

Performance Enhancements / Enablers

Control system for RSRM

✓ Improve thrust, Isp

✓ Improvements in thrust/weight

Replacement of heavier/obsolete materials with advanced materials, composites

Cost Reduction

For STS systems, improve turnaround and lower cost of manufacturing of reusable systems that are to be expendable

Boost-Assist Propulsion

Background

>STS & EELV solid boosters

- Isp: 240 - 270 sec, propellants: solid, thrust: 200 - 280 klbf to 2.6 Mlbf (RSRM)

➤ EELV liquid booster

- Isp: 420 sec, propellants: LOX, LH2; thrust: 740 klbf

Possible Options

➤ Highly reliable and Low Cost EELV Boost Engines/Motors

➤ Highly reliable and Low Cost Shuttle-derived System - RSRM and Advanced Segment RSRM

Opportunities for Technology Insertion **Boost-Assist**

Safety and Reliability Improvements

- ▼ Design improvements
- Improve design margins; fix known problems such as leakage paths, nozzle cracks and material separations; replace obsolete materials
 - > Safe operation and shutdown for liquids, safe operation for solids
 - Reduce criticality one failure modes for all, especially solids
 - Failure containment
- Vimprove reliability on highest risk components
- ▼Accurate risk assessments
- Enough data to support assessments
- 🗆 Service/fatigue life, factors of safety, fracture control, process control, performance & environments, hardware pedigree, as built vs design, cost & maintenance data

Performance Enhancements

- ▼Improvements in thrust/weight
- Replacement of heavier/obsolete materials with advanced materials, composites

Cost Reduction

For STS systems, improve turnaround and lower cost of manufacturing of reusable systems that are to be expendable

Upper Stage Propulsion

Background

- ➤ EELV LOX/LH2 upper stages
- Isp: 460 sec, thrust: 22 klbf existing; 60 klbf under development

Possible Options

- ➤ CEV LV US; Cargo Only LV US
- Need is highly reliable, 22 265 klbf thrust level, LOX/LH2 engine(s). Options
- ☐ Highly reliable EELV upper stage
- ☐ Restart and complete of Saturn V J-2S
- ☐ New design of 25 / 90 klbf class engine
- Potentially larger thrust class engine for Moon and Mars missions

Opportunities for Technology Insertion Upper Stage Engine

Safety and Reliability Improvements

▶ Design improvements

- Improve design margins; fix known problems

Safe operation and shutdown

- Reduce criticality one failure modes

Failure containment

Improve reliability on highest risk components

Robust design and development of new engine/restart

Dependent upon option selected; advanced development of highly-reliable turbopumps, injector, igniter, chamber/nozzle and fast-acting valves

New design and analysis models and tools (CFD, thermal, environments, performance), advanced material research and fabrication processes

Performance Enhancements

Robust to propellant inlet conditions

- Improve turbopump tolerances; determine impact on combustion stability and performance

➤ Multistart / Increased restart capability (>2)

Improve turbopump operation, chill-down, and drying

▶ Improve thrust, Isp

➤ Improve throttling capability

- Improve valve, injector and turbopump limits

▶ Improve packaging

In-Space Transfer Propulsion

Background

➤ Current State-of-Art(SOA) is Shuttle Orbital Maneuvering System (OMS) pressure fed hypergolic (NTO/MMH) system, thrust 6 klbf

Possible Options

▶CEV TEI, EDS

- CEV TEI individual engine need is likely between 5 and 10 klbf thrust
 - EDS individual engine need is likely >25 klbf thrust

EDS stage requires higher thrust (pump-fed), higher Isp

If In-Situ Return is enabling for Mars then desire may be to gain experience with propellant choice on Lunar missions (LOX/LCH4 or LOX/LH2)

Opportunities for Technology Insertion In-Space

Safety and Reliability Improvements

- ➤ Built-in fault tolerance and redundancy where appropriate
- Engine out to be traded
- ➤ Robust design and development of new engine
- Depending upon concept selected, develop small turbopumps with appropriately tight tolerances and performance characteristics appropriate to wide throttle ranges
- Depending upon concept selected, develop engine appropriate for operation with alternative fuels - turbopumps, injectors, chamber, igniter, ducts and feedlines

♦ Performance Enhancements

- Support number of restarts (up to 6 CEV TEI, 10+ Mars missions)
- Support longer duration firings (4000+ sec Mars missions)
- ▼Improve packaging
- ➤ Achieve commonality (e.g., CEV TEI w/ Lunar Lander; US w/ EDS)

Ascent / Descent (A/D) Propulsion

Background

- ➤ Designs still exist for Apollo Lunar Excursion Module Descent and Ascent Engines; 10 and 3.5 klbf thrust; storable NTO/Aerozene 50
 - Hypergols low and uncertain supply, high cost
 - Commonality a goal (CEV TEI, A/D)

Possible Options

- ➤New or restarted design Lander/Ascent individual engine need is between 5 and 10 klbf thrust. Lunar descent engine needs throttling capability (< 50%
- ►If In-Situ Return is enabling for Mars then désire may be to gain experience with propellant choice on Lunar missions (LOX/LCH4 or LOX/LH2)

Opportunities for Technology Insertion A/D

Safety and Reliability Improvements

- ➤ Built-in fault tolerance and redundancy where appropriate
 - Engine out to be traded
- >Robust design and development of new engine/restart
- Ignition Systems for Cryogenic Engine Options
- Highly Reliable, Deep Throttle/Low NPSP Cryogenic Turbopumps
 - Deep Throttle Cryogenic Injectors
- Highly Reliable, Low Leakage Valves/Actuators
- Long Life, High Durability Thrust Chambers With Advanced Cooling
 - Engine Health Management Prognostics and Diagnostics
- Improved Turbomachinery and Combustion Device Performance and Reliability Models

Performance Enhancements/Enablers

- ➤ Support deep throttling
- ➤Improve packaging
- > Achieve commonality (w/ CEV TEI, Mars Ascent Vehicle)

Ascent Crew Safety Propulsion

Background

➤ Designs still exist for Apollo Launch Escape System

Possible Options

New or restart crew safety design - appropriately sized with improved packaging and active trajectory control.

Escape System Apollo Launch

Pitch Motor Firing With Escape and Demonstration Pad Abort

Opportunities for Technology Insertion **Crew Safety**

Safety and Reliability Improvements

Robust design and development of crew safety propulsion

Performance Enhancements

Packaging - provide for stability and control

➤ Reduce weight - composite case

>Solid propellant gas generator for pitch and jettison motors (active trajectory control system)

Reaction Control System (RCS)

Background

- RCS for LV, US, CEV TEI, EDS, Lander and Ascent Stages
- RCS Need is 100 to 1000 lbf thrusters, Isp 310-340 sec; thrusters exist in desired
- Current SOA for propellant selection is storable hypergolic propellants
- ☐ However, in general, the desire is for better packaging and performance, lower power draws from heaters, less dependence upon low and uncertain supply of costly hypergols, and a goal of more common systems. Unknown applicability of hypergols to Mars missions.

Possible Options

- Basic performance requirements for notional Lunar mission could be met with current SOA (storable hypergols).
- performance gains are required as concepts mature and whether in-situ precursor Trade space is open for other options depending on whether reliability and demonstrations are required

Opportunities for Technology Insertion RCS

Safety and Reliability Improvements

- > Improved fault detection, isolation, recovery response times
- ➤ Built-in fault tolerance and redundancy

Performance Enhancements / Enablers

- ➤ Cryogenic reaction control engine (RCE)
- Cryogenic RCE may be needed for commonality goals and to maximize RCS performance
- unreliable propellant quality and density variations due to heat leak; temperature varies widely However, no cryogenic RCS systems have flown or engines developed; also, ignition systems
- ➤ Thermally efficient cryogenic feed systems
- Low heat-leak feed systems at a low TRL for RCS; efficient methods of chilling in distributed RCS feed systems do not exist
- ➤ Propellant gasification systems
- Gas RCS systems lower risk and allow liquid storage; may be heavy and complex
- Common or Combined propulsion/power systems to save weight but have only been studied
- ➤ Fast-acting, EMA valves for RCS
- EMA valves should reduce heat leak issues and support efficient throttling; current SOA solenoid valves generate substantial heat
- >RCS systems with other propellant options CH4, EtOH, Hypergols

MPS

Background

- ▼ EELV's & Shuttle
- > MPS Valves/Actuators and Pressurization Systems
- lunar missions may require an in-space operational life of 4 to 12 months. Mars missions may - Maximum on-orbit lifetime of a cryogenic propulsion system is approximately 10 hours. Some require several years operation.
- Chill-in of the MPS and Main Engine has occurred on the ground. Limited data on chill-in of the MPS/Engine in a 0-g on-orbit environment. Short duration data only.
 - Current SOA has been severely diminished by erosion in industry and government design capabilities

Possible Options

- ➤ Derivation of EELV & Shuttle MPS (scavenge STS MPS as available)
- New MPS development, especially valves/actuators and to support CFM and in-situ propellant management
- > Cryogenic Fluid Management (CFM) Capabilities Needed
- Advanced development of cryogenic propellant acquisition device (surface tension)
 - Advanced development of cryogenic storage capabilities
- ☐ Low heat leak storage and feed system for multi-start, long duration missions is low TRL
- Advanced development of cryogenic propellant management devices such as thermodynamic vent systems and cryo-coolers
- Controls propellant residuals and supports zero boil-off

Opportunities for Technology Insertion MPS

Safety and Reliability Improvements

- >Long life, highly reliable / safe operation valves and actuators subject to wide temperature ranges
- Integrated fault diagnostics and prognostics

Performance Enhancements / Enablers

- reduce/remove the need for on-board pneumatic systems and large solenoid >Light-weight, more efficient valves and actuators are needed to valves.
- The ability to support on-orbit refueling
- ➤ Development needed for:
- Deep throttle valves
- CFM systems
- In-Situ MPS systems
- MPS components to support alternative propellants

Issues - Summary

General

the loads, environments and margins to ensure that life, operations, reliability available to provide thorough assessment of ability to meet life, operations, reliability and cost targets. Analytical tools / models that adequately define ➤Detailed information on existing engine options or derivative options is not and cost targets are met are lacking.

Reliability

No clear solutions available to provide required improvements

Functional Characteristics (Isp, Thrust Level, T/W, etc)

- Several gaps exist with existing engine candidates.
- ►Limited experience with alternative propellants.
- propulsion, no candidate cryogenic pressure or pump fed exists. There is no ➤No developed engine systems for key missions. No candidates in 90 klbf thrust class. J-2S 265 klbf engine requires redevelopment. For CEV TEI throttling cryogenic descent engine for the L/A.
- ➤ Needed valves/actuators do not exist
- ➤CFM techniques and systems lacking
- Integrated health management and crew safety systems lacking

Options for Improving Reliability on Existing Assets

- Need for orders of magnitude reliability improvement from current SOA
- New design & development
- ➤ Design for robustness design for requirements and design in redundancy where benefit clear
- ➤ Physics-based reliability modeling
- Verification tests at element, subsystem and system level to overstress conditions
- Redesign
- ➤ Eliminate known design deficiencies
- Vincorporate improved design solutions where applicable
- VIncrease design margins
- Implement increased level of parts and process controls
- Perform a series of qualification tests to establish readiness of propulsion system and controlled processes and parts to support crewed flight
- Perform tests to verify physics-based reliability and the removal of failure
- Perform fleet leader testing?

Issues - Propellants

Candidate Propellants (new engines, RCS)

▶LOX/LH2 & GOX/GH2

- Traditional, highest Isp, low toxicity risk, potentially common (propulsion, power)

- For gases, storage systems evaluated for complexity, weight impacts

►LOX/LCH4/CH4 & GOX/GCH4

Support volume efficiency and T/W, in-situ appropriate, higher Isp than hypergols, low toxicity risk

- For gases, storage systems evaluated for complexity, weight impacts

▶LOX/GOX & Ethanol

- Low toxicity risk, comparable Isp to Hypergols, higher TRL than CH4

➤NTO & MMH/Aerozene 50

Traditional, high toxicity

VNTO/LOX & N2H4

- Less toxic than NTO/MMH, increases Isp over NTO/MMH, power draw for heaters, higher TRL than CH4

➤Other - Tridyne, Gels, Monopropellants, Cold Gas

- Improve performance and safety, impacts TBD

Summary and Conclusions

- Chemical Propulsion will play an enabling role in the new Vision for Exploration
- Existing propulsion systems and components can likely be utilized to satisfy some requirements
- Existing technologies can be incorporated into both existing and new systems to improve mission reliability, crew safety, lower cost, and system performance
- Key propulsion technology challenges remain