

UAVSAR G-III Precision Autopilot Overview and Results

Victor Lin, Brian Strovers, Dr. James Lee NASA Dryden Flight Research Center, Edwards, CA

Dr. Roger Beck Analytical Mechanics Associates, Inc., Hampton, VA

UAVSAR Primary Objectives

- Develop a miniaturized, polarimetric, L-band SAR for use on a UAV.
- For accurate measurements of earth deformation due to
 - Earthquakes
 - Volcanic activity
 - Polar ice cap changes
- Measured using repeat pass interferometry which requires
 - Accurate knowledge of SAR position
 - Two SAR images from nearly the same position (PPA task)
 - Complex data processing to compare phase shift between images

San Jose, CA

UAVSAR Enabling Components

- JPL developed a global dGPS for accurate SAR position
 - Inmarsat and Iridium are used for differential corrections with pole to pole coverage
 - 1 σ accuracy is estimated at 10 cm horizontally and 20 cm vertically
 - Position is updated every second with 100 to 280 ms of latency
- The GIII is a transitional platform
 - Aids researchers in SAR development
 - Has unlimited access to national airspace system (NAS), unlike a UAV
- Platform Precision Autopilot (PPA) was developed to enable repeat pass precision in support of UAVSAR for the GIII

NASA Dryden's G-III (502)

Aircraft Dimensions

- Wing
 - Span 77 ft 10 in
 - Area 934.6 ft²
- Length 83 ft 1 in
- Height 24 ft 4.5 in
- Large Internal Volume (1500 cu. Ft.)
- Max of 12 seats

Aircraft Performance

- Max Mach 0.85
- Max Operating altitude 45Kft
- Typical Cruise 400 to 500 kts
- Range ~3000 nautical miles
- Climb Rate up to 4,000 fpm

Aircraft Instrumentation

- Control surface positions
- Flight Director (FD)
- Air Data Computer
- INS
- Aircraft GPS
- On-board experiments
- Data capture and processing system (DCAPS)

The PPA Requirement

- The PPA shall fly within a 5 meter radius of the course for at least 90 percent of the time in conditions of calm to light turbulence
 - In one second, the GIII travels the distance of 2.5 football fields (230 m) and would be outside this 5 m radius with a course misalignment greater than 1¼ deg
 - The factory installed GIII autopilot at best tracks within
 - ± 8 m in altitude
 - ± 40 m in cross track
- JPL desired
 - Angles
 - Roll and pitch < 5 deg
 - Yaw < 15 deg
 - Rates
 - Roll less < 1 deg/sec
 - Pitch and yaw < 0.45 deg/sec

PPA Software

- The PPA software was coded in Simulink and consists of three major routines
 - Navigation
 - Kalman filter combining accurate 1 Hz dGPS position with 16 Hz INS attitudes
 - Necessary to project position between dGPS updates and correct for latency
 - Guidance
 - Defines courses between two waypoints
 - Outputs error signals for altitude and cross track
 - Controller
 - Altitude
 - PID with Nz
 - Proportional and integral use altitude error feedback
 - Derivative uses inertial vertical velocity feedback
 - Nz uses inertial vertical acceleration feedback
 - Cross track
 - PID using only cross track error feedback

The PPA Hardware

- The three major hardware components in the PPA are
 - Autopilot Interface Computer (AIC) is a Phytec mpc565
 - With autocoded PPA control software
 - Two ILS Interface System (I2S) units which convert AIC command voltages to modulated radio frequency (RF) signals
 - Laptop computer which performs the operator station functions

Aircraft Interface

- The AIC interfaces with the GIII through RF switches between the navigation receiver and ILS antennas
 - Disadvantages of the AIC interface
 - Approach mode initiates a 3 deg pitch down with close to zero input
 - Requires extra hardware to convert commands to RF
 - Requires non-zero AIC output for zero navigation receiver output
 - The non-zero bias required changes with time
 - · Noise makes determination of zero navigation receiver output difficult

 Downstream hardware (Navigation Receiver, FD, and GIII autopilot)

- · Amplifies command
- Have additional inputs that affect output
- Advantages of the AIC interface
 - Retains factory safety limits
 - Quickly returned to baseline with the flip of a switch

Instrument Landing System

- ILS consists of two radio transmitters each with a signal at 90 Hz and 150 Hz
 - VHF transmitter for Localizer
 - UHF transmitter for Glideslope
- Localizer and Glideslope receivers on aircraft measure Difference in Depth Modulation (DDM) of the 90Hz and 150 Hz signals.
 - DDM of localizer signal indicates if aircraft is left or right of centerline
 - DDM of glideslope signal indicates if aircraft is above or below glideslope
 - DDM of zero indicates aircraft is along centerline or glideslope

First Flights

- The first three flights were open loop
 - The first flight consisted of step commands from the PPA with increasing magnitude
 - The FD commanded and unexpected pre-programmed pitch down maneuver
 - The rest of the flight was flown in altitude hold mode to continue with roll control authority testing
 - The second flight was a continuation of the first
 - A mitigation for the pitch down was successfully tested
 - The step commands were tested in both pitch and roll channels
 - Pitch response was incredibly small
 - The third flight was flown using the factory installed GIII autopilot while the PPA was engaged but not coupled
 - This data was used to determine that the polarity was correct for all the feedback loops

Lessons Learned

- FD pitch down mitigation
 - It was determined that the copilot could hand fly the aircraft with touch control steering (TCS) button depressed to bypass the initial 3 degree pitch down
 - The TCS disconnects the actuators from the autopilot while depressed
 - The FD cue on the copilot display shows the pitch down intent (~15 sec)
- Softer autopilot gains
 - The standard factory GIII autopilot pitch gains were approximately 1/10th the values in the vendor supplied simulation model
 - This required the use of higher PPA gains
- FD
 - Amplification was initially determined in ground testing prior to flights
 - Gains were found to be three times greater in flight (60 pitch and 150 roll axes)
 - Modeling the additional feedback loops with flight data was ambiguous
- The derivative of the navigation routine position had 1 Hz spikes at every dGPS update which limited lateral damping
- I2S and navigation receiver drift and noise are shown in the next two slides

I2S and Navigation Receiver Drift

- Navigation receiver output with constant input
 - Low frequency drift
- At engagement the non-zero output results in an initial vertical velocity and roll transient
 - Increasing the time required to intercept the course

I2S and Navigation Receiver Noise

- Same data from the last slide with smaller time scale
- PPA operator inputs bias in both channels to zero navigation receiver output
 - · Manually difficult with noise and drift
 - An algorithm was developed to automate this at the operator station
- PPA controller
 - Has plenty of authority to quickly remove the drift with the integral loop
 - Commands at this point are ~ ±2 mV
- The FD effectively filters this noise from the system

First Success

- Simulation models were updated with flight data
 - New gains were developed and evaluated
- The PPA was initially flown at 35Kft and Mach 0.75
 - A test matrix of gains were evaluated in flight
 - The PPA was successful 3 flights later at this flight condition

Euler Angles

- Angles were within desired values
- Roll exhibited wing rocking with a 14 second period
 - Result of derivative of cross track error with 1 Hz dGPS updates
 - Ride quality suffered

Body Rates

- Roll rate was greater than desired value
- Pitch and yaw rates were within the desired values
 - The yaw rate was controlled by the yaw damper

Second Flight Condition

 Gains were evaluated at a second flight condition 30Kft and Mach 0.8 with similar results

5 m Radius
90 Percentile
70 Percentile
50 Percentile

Will the PPA Fly Slower?

- Initial testing of the UAVSAR pod required substantially lower ground speeds
- The PPA was tested at these lower speeds
 - The pitch rate was dramatically higher
 - Because FD pitch rate limits increased at lower speeds (found through more ground testing)
 - And the PPA command was continuously against the FD pitch rate limits
 - Increased pitching resulted in normal acceleration of ± 0.1 g's with a 5 second period
 - Ride quality really suffered

PPA Final Updates

- Improved command resolution
 - Reduced reference voltage in digital to analog converter
 - Reduced I2S amplification
- Replaced Nz with pitch rate feedback for increased damping
 - Reduced pitch rate especially at low speed
 - Slowed the pitch response to external disturbances (power changes or atmospheric)
- Track angle error used in place of derivative of cross track error
 - Reduced roll activity from derivative spikes
 - Gain is reduced by 30 percent outside 1000 feet increase intercept angle with larger initial offsets

Southeast Corner of the Salton Sea

Performance Throughout Cruise Envelope

- Gains were
 - Re-optimized
 - Evaluated throughout the cruise envelope
- Variations in performance are attributed to
 - Pilot throttle inputs
 - Atmospheric instability

Angular Rates

- Rates were summarized with 90 percentile by Mach
- Pitch and yaw are below desired values
- Roll is a little higher than desired
- Rates are lower at higher Mach numbers

High Alt (41-45 Kft)

ryden Flight Research Center

UAVSAR Mission Performance

- Since PPA development has ended there have been 25 UAVSAR missions
- The results are summarized here representing
 - 224 course legs
 - 29 hours of tracking
 - Within 5 meters for 99.88 percent of the time

Conclusions

- The PPA system has:
 - Demonstrated success in meeting its requirement of flying the GIII within 5
 meters of a course for at least 90 percent of the time in the presence of light
 turbulence while meeting most of the desired body rates and angles
 - Successfully been used in the field for science missions since December 2007
- The customer, JPL, has noted the PPA performance most often exceeds the requirements

Questions?

