```
In [1]: import pandas as pd
          from chembl webresource client.new client import new client
 In [3]: target = new client.target
          target query = target.search('CHEMBL288')
          targets = pd.DataFrame.from dict(target query)
          targets
Out[3]:
             cross_references organism
                                                 pref_name score species_group_flag target_chembl_id
                                                                                                              target_components
                                                                                                                                  target_type tax_id
                                           Phosphodiesterase
                                                                                                             [{'accession': 'Q08499',
                                                                                                                                       SINGLE
                                  Homo
                                                               11.0
                                                                                             CHEMBL288
                                                                                                                                                9606
          0
                           []
                                                                                  False
                                                                                                           'component descriptio...
                                                                                                                                      PROTEIN
                                 sapiens
                                                         4D
                                           Phosphodiesterase
                                                                                                                                      PROTEIN
                                  Homo
                                                                                                             [{'accession': 'P27815',
                                                                5.0
                                                                                         CHEMBL2093863
                                                                                                                                                9606
                           False
                                                                                                                                       FAMILY
                                 sapiens
                                                                                                           'component descriptio...
                                           Phosphodiesterase;
                                                                                                             [{'accession': 'P27815',
                                                                                                                                  SELECTIVITY
                                  Homo
          2
                           []
                                                                4.0
                                                                                         CHEMBL2095153
                                                                                                                                                 9606
                                                                                  False
                                 sapiens
                                                PDE3 & PDE4
                                                                                                           'component descriptio...
                                                                                                                                       GROUP
                                           Phosphodiesterase
                                  Homo
                                                                                                             [{'accession': 'O76074',
                                                                                                                                  SELECTIVITY
          3
                           []
                                           4 and 5 (PDE4 and
                                                               4.0
                                                                                         CHEMBL2111340
                                                                                                                                                9606
                                                                                  False
                                 sapiens
                                                                                                           'component_descriptio...
                                                                                                                                       GROUP
                                                      PDE5)
                                                  3',5'-cyclic
                                                                                                             [{'accession': 'O76074',
                                  Homo
                                                                                                                                      PROTEIN
                                                                1.0
          4
                           []
                                                                                  False
                                                                                         CHEMBL2363066
                                                                                                                                                 9606
                                           phosphodiesterase
                                                                                                           'component descriptio...
                                 sapiens
                                                                                                                                       FAMILY
 In [6]: selected target = targets.target chembl id[0]
          selected target
          'CHEMBL288'
 Out[6]:
         activity = new client.activity
 In [9]:
          res = activity.filter(target chembl id=selected target).filter(standard type="IC50")
         df = pd.DataFrame.from dict(res)
In [12]:
In [15]:
         print(len(res))
```

|     | action type   | activity comment | activity id | activity properties | assay chembl id | assay description                                      | assay tyng | assay_variant_accession  | assav |
|-----|---------------|------------------|-------------|---------------------|-----------------|--------------------------------------------------------|------------|--------------------------|-------|
| _   | uction_type   | detivity_comment | uctivity_iu | detivity_properties | ussay_cnembi_ia |                                                        | ussuy_type | ussay_variante_accession | ussay |
| 0   | None          | None             | 311417      | 0                   | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from | В          | None                     |       |
| 1   | None          | None             | 315297      | О                   | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from | В          | None                     |       |
| 2   | None          | None             | 316479      |                     | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from | В          | None                     |       |
| 3   | None          | None             | 904630      | 0                   | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.            | В          | None                     |       |
| 4   | None          | None             | 904635      |                     | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.            | В          | None                     |       |
| 5 r | ows × 46 colu | mns              |             |                     |                 |                                                        |            |                          |       |

In [42]: df.tail()

| Out[42]: |        | action_type                                    | activity_comment | activity_id | activity_properties                                  | assay_chembl_id | assay_description                                       | assay_type | assay_variant_accession | ě |
|----------|--------|------------------------------------------------|------------------|-------------|------------------------------------------------------|-----------------|---------------------------------------------------------|------------|-------------------------|---|
|          | 1703   | {'action_type': 'INHIBITOR', 'description': 'N | None             | 25627038    |                                                      | CHEMBL5364574   | Inhibition of<br>human<br>recombinant<br>PDE4D3 express | В          | None                    |   |
|          | 1704   | {'action_type': 'INHIBITOR', 'description': 'N | None             | 25710748    |                                                      | CHEMBL5388187   | Inhibition of<br>PDE4D (unknown<br>origin)              | В          | None                    |   |
|          | 1705   | {'action_type': 'INHIBITOR', 'description': 'N | None             | 25710749    |                                                      | CHEMBL5388187   | Inhibition of<br>PDE4D (unknown<br>origin)              | В          | None                    |   |
|          | 1706   | {'action_type': 'INHIBITOR', 'description': 'N | None             | 25710752    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5388190   | Inhibition of<br>human full length<br>PDE4D2 assesse    | В          | None                    |   |
|          | 1707   | None                                           | None             | 25787617    | [{'comments':<br>None, 'relation':<br>None, 'result  | CHEMBL5474457   | Selectivity<br>interaction<br>(Phosphodiesterase<br>4D, | В          | None                    |   |
|          | 5 rows | × 46 columns                                   |                  |             |                                                      |                 |                                                         |            |                         |   |
|          | 4      |                                                |                  |             |                                                      |                 |                                                         |            | •                       |   |

In [44]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1708 entries, 0 to 1707
Data columns (total 46 columns):

| Data | columns (total 46 columns)           | :              |        |
|------|--------------------------------------|----------------|--------|
| #    | Column                               | Non-Null Count | Dtype  |
|      |                                      |                |        |
| 0    | action_type                          | 334 non-null   | object |
| 1    | activity_comment                     | 163 non-null   | object |
| 2    | activity_id                          | 1708 non-null  | int64  |
| 3    | activity_properties                  | 1708 non-null  | object |
| 4    | assay_chembl_id                      | 1708 non-null  | object |
| 5    | assay_description                    | 1708 non-null  | object |
| 6    | assay_type                           | 1708 non-null  | object |
| 7    | assay_variant_accession              | 0 non-null     | object |
| 8    | assay_variant_mutation               | 0 non-null     | object |
| 9    | bao_endpoint                         | 1708 non-null  | object |
| 10   | bao_format                           | 1708 non-null  | object |
| 11   | bao_label                            | 1708 non-null  | object |
| 12   | canonical_smiles                     | 1708 non-null  | object |
| 13   | data_validity_comment                | 30 non-null    | object |
| 14   | data_validity_description            | 30 non-null    | object |
| 15   | document_chembl_id                   | 1708 non-null  | object |
| 16   | document_journal                     | 1660 non-null  | object |
| 17   | document_year                        | 1708 non-null  | int64  |
| 18   | ligand_efficiency                    | 1325 non-null  | object |
| 19   | molecule_chembl_id                   | 1708 non-null  | object |
| 20   | molecule_pref_name                   | 172 non-null   | object |
| 21   | <pre>parent_molecule_chembl_id</pre> | 1708 non-null  | object |
| 22   | pchembl_value                        | 1395 non-null  | object |
| 23   | <pre>potential_duplicate</pre>       | 1708 non-null  | int64  |
| 24   | qudt_units                           | 1575 non-null  | object |
| 25   | record_id                            | 1708 non-null  | int64  |
| 26   | relation                             | 1575 non-null  | object |
| 27   | src_id                               | 1708 non-null  | int64  |
| 28   | standard_flag                        | 1708 non-null  | int64  |
| 29   | standard_relation                    | 1575 non-null  | object |
| 30   | standard_text_value                  | 0 non-null     | object |
| 31   | standard_type                        | 1708 non-null  | object |
| 32   | standard_units                       | 1575 non-null  | object |
| 33   | standard_upper_value                 | 0 non-null     | object |
| 34   | standard_value                       | 1575 non-null  | object |
| 35   | target_chembl_id                     | 1708 non-null  | object |
| 36   | target_organism                      | 1708 non-null  | object |
|      |                                      |                |        |

```
1708 non-null
         37 target pref name
                                                       object
         38 target tax id
                                        1708 non-null
                                                       object
         39 text value
                                        0 non-null
                                                       object
                                        0 non-null
                                                       object
         40 toid
         41 type
                                        1708 non-null object
                                        1508 non-null
                                                      object
         42 units
         43 uo units
                                       1575 non-null object
         44 upper value
                                        3 non-null
                                                       obiect
         45 value
                                       1575 non-null object
        dtypes: int64(6), object(40)
        memory usage: 613.9+ KB
In [47]: df.columns
Out[47]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay variant mutation', 'bao endpoint',
                 'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                'document year', 'ligand efficiency', 'molecule chembl id',
                 'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                 'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                'standard_value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtype='object')
In [50]: df2 = df.dropna(subset=["standard value", "canonical smiles"])
         df2
In [52]:
```

| ٦ |   | + | Г |           | $\gamma$ | ٦  |  |
|---|---|---|---|-----------|----------|----|--|
| J | u | L | П | $\supset$ | Z        | -1 |  |
|   |   |   |   |           |          |    |  |

|      | action_type                                             | activity_comment | activity_id | activity_properties | assay_chembl_id | assay_description                                       | assay_type | assay_variant_accession a |
|------|---------------------------------------------------------|------------------|-------------|---------------------|-----------------|---------------------------------------------------------|------------|---------------------------|
| 0    | None                                                    | None             | 311417      |                     | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                      |
| 1    | None                                                    | None             | 315297      | D                   | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                      |
| 2    | None                                                    | None             | 316479      |                     | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                      |
| 3    | None                                                    | None             | 904630      |                     | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.             | В          | None                      |
| 4    | None                                                    | None             | 904635      | П                   | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.             | В          | None                      |
| •••  |                                                         |                  |             |                     |                 |                                                         |            |                           |
| 1703 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25627038    |                     | CHEMBL5364574   | Inhibition of<br>human<br>recombinant<br>PDE4D3 express | В          | None                      |
| 1704 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25710748    |                     | CHEMBL5388187   | Inhibition of<br>PDE4D (unknown<br>origin)              | В          | None                      |
| 1705 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25710749    | 0                   | CHEMBL5388187   | Inhibition of<br>PDE4D (unknown<br>origin)              | В          | None                      |

|      | action_type                                             | activity_comment | activity_id | activity_properties                                  | assay_chembl_id | assay_description                                       | assay_type | assay_variant_accession | í |
|------|---------------------------------------------------------|------------------|-------------|------------------------------------------------------|-----------------|---------------------------------------------------------|------------|-------------------------|---|
| 1706 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25710752    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5388190   | Inhibition of<br>human full length<br>PDE4D2 assesse    | В          | None                    |   |
| 1707 | None                                                    | None             | 25787617    | [{'comments':<br>None, 'relation':<br>None, 'result  | CHEMBL5474457   | Selectivity<br>interaction<br>(Phosphodiesterase<br>4D, | В          | None                    |   |

In [56]: len(df2.canonical\_smiles.unique())

Out[56]: 1287

In [60]: df2\_nr = df2.drop\_duplicates(subset="canonical\_smiles", keep="first").reset\_index(drop=True)

In [63]: df2\_nr

| $\neg$ |   | 4  | г | -      | $\neg$ | п.  |   |  |
|--------|---|----|---|--------|--------|-----|---|--|
| -)     | ш | т. |   | h      | ~      | - 1 | ۰ |  |
| ~      | u |    |   | $\cup$ | $\sim$ | - 1 |   |  |
|        |   |    |   |        |        |     |   |  |

| : |      | action_type                                             | activity_comment | activity_id | activity_properties                                  | assay_chembl_id | assay_description                                       | assay_type | assay_variant_accession | ı a |
|---|------|---------------------------------------------------------|------------------|-------------|------------------------------------------------------|-----------------|---------------------------------------------------------|------------|-------------------------|-----|
|   | 0    | None                                                    | None             | 311417      | []                                                   | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                    | 9   |
|   | 1    | None                                                    | None             | 315297      | []                                                   | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                    | Э   |
|   | 2    | None                                                    | None             | 316479      |                                                      | CHEMBL761828    | Inhibition of<br>human<br>Phosphodiesterase<br>4D from  | В          | None                    | 9   |
|   | 3    | None                                                    | None             | 904630      | 0                                                    | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.             | В          | None                    | 3   |
|   | 4    | None                                                    | None             | 904635      | 0                                                    | CHEMBL761825    | Evaluated for its ability to inhibit PDE4D.             | В          | None                    | 9   |
|   | •••  |                                                         |                  |             |                                                      |                 |                                                         |            |                         |     |
|   | 1282 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25527403    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5339428   | Inhibition of<br>recombinant<br>PDE4D2 (86 to 413<br>re | В          | None                    | 9   |
| , | 1283 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25527404    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5339428   | Inhibition of<br>recombinant<br>PDE4D2 (86 to 413<br>re | В          | None                    | Э   |
| , | 1284 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25527405    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5339428   | Inhibition of<br>recombinant<br>PDE4D2 (86 to 413<br>re | В          | None                    | 9   |

|      | action_type                                             | activity_comment | activity_id | activity_properties                                  | assay_chembl_id | assay_description                                       | assay_type | assay_variant_accession |  |
|------|---------------------------------------------------------|------------------|-------------|------------------------------------------------------|-----------------|---------------------------------------------------------|------------|-------------------------|--|
| 1285 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25527406    | [{'comments':<br>None, 'relation': '=',<br>'result_f | CHEMBL5339428   | Inhibition of<br>recombinant<br>PDE4D2 (86 to 413<br>re | В          | None                    |  |
| 1286 | {'action_type':<br>'INHIBITOR',<br>'description':<br>'N | None             | 25627038    |                                                      | CHEMBL5364574   | Inhibition of<br>human<br>recombinant<br>PDE4D3 express | В          | None                    |  |

In [67]: df2\_nr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1287 entries, 0 to 1286
Data columns (total 46 columns):

| Data | columns (total 46 columns)           | :              |        |
|------|--------------------------------------|----------------|--------|
| #    | Column                               | Non-Null Count | Dtype  |
|      |                                      |                |        |
| 0    | action_type                          | 232 non-null   | object |
| 1    | activity_comment                     | 17 non-null    | object |
| 2    | activity_id                          | 1287 non-null  | int64  |
| 3    | activity_properties                  | 1287 non-null  | object |
| 4    | assay_chembl_id                      | 1287 non-null  | object |
| 5    | assay_description                    | 1287 non-null  | object |
| 6    | assay_type                           | 1287 non-null  | object |
| 7    | assay_variant_accession              | 0 non-null     | object |
| 8    | assay_variant_mutation               | 0 non-null     | object |
| 9    | bao_endpoint                         | 1287 non-null  | object |
| 10   | bao_format                           | 1287 non-null  | object |
| 11   | bao_label                            | 1287 non-null  | object |
| 12   | canonical_smiles                     | 1287 non-null  | object |
| 13   | data_validity_comment                | 25 non-null    | object |
| 14   | data_validity_description            | 25 non-null    | object |
| 15   | document_chembl_id                   | 1287 non-null  | object |
| 16   | document_journal                     | 1257 non-null  | object |
| 17   | document_year                        | 1287 non-null  | int64  |
| 18   | ligand_efficiency                    | 1065 non-null  | object |
| 19   | molecule_chembl_id                   | 1287 non-null  | object |
| 20   | molecule_pref_name                   | 51 non-null    | object |
| 21   | <pre>parent_molecule_chembl_id</pre> | 1287 non-null  | object |
| 22   | pchembl_value                        | 1118 non-null  | object |
| 23   | potential_duplicate                  | 1287 non-null  | int64  |
| 24   | qudt_units                           | 1287 non-null  | object |
| 25   | record_id                            | 1287 non-null  | int64  |
| 26   | relation                             | 1287 non-null  | object |
| 27   | src_id                               | 1287 non-null  | int64  |
| 28   | standard_flag                        | 1287 non-null  | int64  |
| 29   | standard_relation                    | 1287 non-null  | object |
| 30   | standard_text_value                  | 0 non-null     | object |
| 31   | standard_type                        | 1287 non-null  | object |
| 32   | standard_units                       | 1287 non-null  | object |
| 33   | standard_upper_value                 | 0 non-null     | object |
| 34   | standard_value                       | 1287 non-null  | object |
| 35   | target_chembl_id                     | 1287 non-null  | object |
| 36   | target_organism                      | 1287 non-null  | object |

```
37 target pref name
                                        1287 non-null
                                                       object
         38 target tax id
                                        1287 non-null
                                                       object
         39 text value
                                        0 non-null
                                                       object
         40 toid
                                        0 non-null
                                                       object
         41 type
                                        1287 non-null object
                                                       object
         42 units
                                        1260 non-null
                                       1287 non-null object
         43 uo units
         44 upper value
                                        2 non-null
                                                       object
         45 value
                                        1287 non-null object
        dtypes: int64(6), object(40)
        memory usage: 462.6+ KB
In [71]: df2_nr .columns
Out[71]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay_variant_mutation', 'bao_endpoint',
                 'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                'document year', 'ligand efficiency', 'molecule chembl id',
                 'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                 'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                 'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                 'standard_value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtype='object')
```

## Data pre-processing of the bioactivity data

Combine the 3 columns (molecule\_chembl\_id,canonical\_smiles,standard\_value) and bioactivity\_class into

```
In [76]: selection = ['molecule_chembl_id','canonical_smiles','standard_value']
    df3 = df2_nr[selection]
    df3
```

|      | molecule_chembl_id | canonical_smiles                                  | standard_value |
|------|--------------------|---------------------------------------------------|----------------|
| 0    | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H](C(=O)O)CC2)cc1OC1CCCC1 | 63.0           |
| 1    | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]    | 1.0            |
| 2    | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1   | 1.5            |
| 3    | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O    | 22.0           |
| 4    | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCCO)c    | 100000.0       |
| •••  |                    |                                                   |                |
| 1282 | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 20.2           |
| 1283 | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 9.3            |
| 1284 | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=    | 6.5            |
| 1285 | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3    | 8.2            |
| 1286 | CHEMBL5417689      | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c    | 0.3981         |

Out[76]:

# Labeling compounds as either being active, inactive or intermediate

The bioactivity data is in the IC50 unit. Compounds having values of less than 1000 nM will be considered to be active while those greater than 10,000 nM will be considered to be inactive. As for those values in between 1,000 and 10,000 nM will be referred to as intermediate.

```
In [81]: bioactivity_threshold = []
for i in df3.standard_value:
    if float(i) >= 10000:
        bioactivity_threshold.append("inactive")
    elif float(i) <= 1000:
        bioactivity_threshold.append("active")
    else:
        bioactivity_threshold.append("intermediate")</pre>
```

```
In [84]: bioactivity_class = pd.Series(bioactivity_threshold, name='class')
    df5 = pd.concat([df3, bioactivity_class], axis=1)
    df5
```

| Out[84]: | n    | nolecule_chembl_id | canonical_smiles                                  | standard_value | class    |
|----------|------|--------------------|---------------------------------------------------|----------------|----------|
|          | 0    | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H](C(=O)O)CC2)cc1OC1CCCC1 | 63.0           | active   |
|          | 1    | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]    | 1.0            | active   |
|          | 2    | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1   | 1.5            | active   |
|          | 3    | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O    | 22.0           | active   |
|          | 4    | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCCO)c    | 100000.0       | inactive |
|          | •••  |                    |                                                   |                | •••      |
|          | 1282 | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 20.2           | active   |
|          | 1283 | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 9.3            | active   |
|          | 1284 | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=    | 6.5            | active   |
|          | 1285 | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3    | 8.2            | active   |
|          | 1286 | CHEMBL5417689      | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c    | 0.3981         | active   |

df

```
In [93]: df5.to_csv('Phosphodiesterase 4D_03_bioactivity_data_curated.csv', index=False)
In [96]: df = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\Phosphodiesterase 4D\Phosphodiesterase 4D_03_bioactivity_data_curated.csv")
```

|      | molecule_chembl_id | canonical_smiles                                  | standard_value | class    |
|------|--------------------|---------------------------------------------------|----------------|----------|
| 0    | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H](C(=O)O)CC2)cc1OC1CCCC1 | 63.0000        | active   |
| 1    | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]    | 1.0000         | active   |
| 2    | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1   | 1.5000         | active   |
| 3    | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O    | 22.0000        | active   |
| 4    | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCCO)c    | 100000.0000    | inactive |
| •••  |                    |                                                   |                |          |
| 1282 | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 20.2000        | active   |
| 1283 | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 9.3000         | active   |
| 1284 | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=    | 6.5000         | active   |
| 1285 | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3    | 8.2000         | active   |
| 1286 | CHEMBL5417689      | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c    | 0.3981         | active   |

Out[96]:

|      | molecule_chembl_id | standard_value | class    | canonical_smiles                                  |
|------|--------------------|----------------|----------|---------------------------------------------------|
| 0    | CHEMBL511115       | 63.0000        | active   | COc1ccc([C@]2(C#N)CC[C@@H](C(=O)O)CC2)cc1OC1CCCC1 |
| 1    | CHEMBL74078        | 1.0000         | active   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]    |
| 2    | CHEMBL77826        | 1.5000         | active   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1   |
| 3    | CHEMBL97817        | 22.0000        | active   | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O    |
| 4    | CHEMBL319809       | 100000.0000    | inactive | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCCO)c    |
| •••  |                    |                |          |                                                   |
| 1282 | CHEMBL5405731      | 20.2000        | active   | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3    |
| 1283 | CHEMBL5435764      | 9.3000         | active   | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3    |
| 1284 | CHEMBL5421333      | 6.5000         | active   | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=    |
| 1285 | CHEMBL5440771      | 8.2000         | active   | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3    |
| 1286 | CHEMBL5417689      | 0.3981         | active   | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c    |

## **Calculate Lipinski descriptors**

Christopher Lipinski, a scientist at Pfizer, came up with a set of rule-of-thumb for evaluating the druglikeness of compounds. Such druglikeness is based on the Absorption, Distribution, Metabolism and Excretion (ADME) that is also known as the pharmacokinetic profile. Lipinski analyzed all orally active FDA-approved drugs in the formulation of what is to be known as the Rule-of-Five or Lipinski's Rule.

The Lipinski's Rule stated the following:

Molecular weight < 500 Dalton Octanol-water partition coefficient (LogP) < 5 Hydrogen bond donors < 5 Hydrogen bond acceptors < 10

In [ ]:

In [112...

import numpy as np
from rdkit import Chem

```
\textbf{from} \ \text{rdkit.Chem} \ \textbf{import} \ \text{Descriptors, Lipinski}
```

## **Calculate descriptors**

```
# Inspired by: https://codeocean.com/explore/capsules?query=tag:data-curation
In [118...
          def lipinski(smiles, verbose=False):
              moldata= []
              for elem in smiles:
                  mol=Chem.MolFromSmiles(elem)
                  moldata.append(mol)
              baseData= np.arange(1,1)
              i=0
              for mol in moldata:
                  desc_MolWt = Descriptors.MolWt(mol)
                  desc_MolLogP = Descriptors.MolLogP(mol)
                  desc_NumHDonors = Lipinski.NumHDonors(mol)
                  desc_NumHAcceptors = Lipinski.NumHAcceptors(mol)
                  row = np.array([desc_MolWt,
                                  desc_MolLogP,
                                  desc_NumHDonors,
                                  desc_NumHAcceptors])
                  if(i==0):
                      baseData=row
                  else:
                      baseData=np.vstack([baseData, row])
                  i=i+1
              columnNames=["MW","LogP","NumHDonors","NumHAcceptors"]
              descriptors = pd.DataFrame(data=baseData,columns=columnNames)
              return descriptors
```

In [121...

df\_lipinski = lipinski(df\_clean\_smiles.canonical\_smiles)
df\_lipinski

Out[121...

|      | MW      | LogP    | NumHDonors | NumHAcceptors |
|------|---------|---------|------------|---------------|
| 0    | 343.423 | 4.05278 | 1.0        | 4.0           |
| 1    | 371.352 | 4.57020 | 1.0        | 5.0           |
| 2    | 368.352 | 4.19820 | 1.0        | 6.0           |
| 3    | 464.562 | 4.81650 | 1.0        | 7.0           |
| 4    | 494.588 | 4.17900 | 2.0        | 8.0           |
| •••  |         |         |            | <b></b>       |
| 1282 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1283 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1284 | 590.676 | 7.59570 | 0.0        | 8.0           |
| 1285 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1286 | 770.732 | 5.85120 | 2.0        | 11.0          |

1287 rows × 4 columns

## **Combine DataFrames**

In [127...

df\_lipinski

|      | MW      | LogP    | NumHDonors | NumHAcceptors |
|------|---------|---------|------------|---------------|
| 0    | 343.423 | 4.05278 | 1.0        | 4.0           |
| 1    | 371.352 | 4.57020 | 1.0        | 5.0           |
| 2    | 368.352 | 4.19820 | 1.0        | 6.0           |
| 3    | 464.562 | 4.81650 | 1.0        | 7.0           |
| 4    | 494.588 | 4.17900 | 2.0        | 8.0           |
| •••  |         |         |            |               |
| 1282 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1283 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1284 | 590.676 | 7.59570 | 0.0        | 8.0           |
| 1285 | 607.678 | 8.33980 | 0.0        | 7.0           |
| 1286 | 770.732 | 5.85120 | 2.0        | 11.0          |

### In [129...

### df\_lipinski.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1287 entries, 0 to 1286
Data columns (total 4 columns):

| # | Column        | Non-Null Count | Dtype   |
|---|---------------|----------------|---------|
|   |               |                |         |
| 0 | MW            | 1287 non-null  | float64 |
| 1 | LogP          | 1287 non-null  | float64 |
| 2 | NumHDonors    | 1287 non-null  | float64 |
| 3 | NumHAcceptors | 1287 non-null  | float64 |
|   |               |                |         |

dtypes: float64(4)
memory usage: 40.3 KB

### In [131...

df\_lipinski.describe()

|             | MW          | LogP        | NumHDonors  | NumHAcceptors |
|-------------|-------------|-------------|-------------|---------------|
| count       | 1287.000000 | 1287.000000 | 1287.000000 | 1287.000000   |
| mean        | 409.690984  | 4.243414    | 1.129759    | 5.567988      |
| std         | 89.449040   | 1.439778    | 1.120060    | 1.757411      |
| min         | 164.595000  | -0.074800   | 0.000000    | 1.000000      |
| 25%         | 345.606500  | 3.235800    | 0.000000    | 4.000000      |
| 50%         | 400.508000  | 4.097500    | 1.000000    | 5.000000      |
| <b>75</b> % | 463.504000  | 5.010950    | 2.000000    | 7.000000      |
| max         | 900.903000  | 12.544800   | 9.000000    | 14.000000     |

In [134... **df** 

| $\cap$ |   | + | Γ | 1 | 2 | /   |   |
|--------|---|---|---|---|---|-----|---|
| U      | и | L | L | _ | 0 | 4., | ۰ |

|      | molecule_chembl_id | canonical_smiles                                  | standard_value | class    |
|------|--------------------|---------------------------------------------------|----------------|----------|
| 0    | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H](C(=O)O)CC2)cc1OC1CCCC1 | 63.0000        | active   |
| 1    | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]    | 1.0000         | active   |
| 2    | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1   | 1.5000         | active   |
| 3    | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O    | 22.0000        | active   |
| 4    | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCCO)c    | 100000.0000    | inactive |
| •••  |                    |                                                   |                |          |
| 1282 | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 20.2000        | active   |
| 1283 | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3    | 9.3000         | active   |
| 1284 | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=    | 6.5000         | active   |
| 1285 | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3    | 8.2000         | active   |
| 1286 | CHEMBL5417689      | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c    | 0.3981         | active   |

In [136... df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1287 entries, 0 to 1286 Data columns (total 4 columns):

| # | Column                        | Non-Null Count | Dtype   |
|---|-------------------------------|----------------|---------|
|   |                               |                |         |
| 0 | <pre>molecule_chembl_id</pre> | 1287 non-null  | object  |
| 1 | canonical_smiles              | 1287 non-null  | object  |
| 2 | standard_value                | 1287 non-null  | float64 |
| 3 | class                         | 1287 non-null  | object  |
|   |                               |                |         |

dtypes: float64(1), object(3)

memory usage: 40.3+ KB

| ut[138 |       | standard_value |
|--------|-------|----------------|
|        | count | 1287.000000    |
|        | mean  | 11005.779253   |
|        | std   | 29937.136744   |
|        | min   | 0.019950       |
|        | 25%   | 45.000000      |
|        | 50%   | 1000.000000    |
|        | 75%   | 10000.000000   |

## combine the 2 DataFrame

**max** 602800.000000

```
In [143... df_combined = pd.concat([df,df_lipinski], axis=1)
```

In [147... df\_combined

| $\cap$ | [1/17           |  |
|--------|-----------------|--|
| ou t   | <del>1</del> 4/ |  |

|      | molecule_chembl_id | canonical_smiles                                      | standard_value | class    | MW      | LogP    | NumHDonors | NumHAcc |
|------|--------------------|-------------------------------------------------------|----------------|----------|---------|---------|------------|---------|
| 0    | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H]<br>(C(=O)O)CC2)cc1OC1CCCC1 | 63.0000        | active   | 343.423 | 4.05278 | 1.0        |         |
| 1    | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]        | 1.0000         | active   | 371.352 | 4.57020 | 1.0        |         |
| 2    | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1       | 1.5000         | active   | 368.352 | 4.19820 | 1.0        |         |
| 3    | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OC)c(O                   | 22.0000        | active   | 464.562 | 4.81650 | 1.0        |         |
| 4    | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c                   | 100000.0000    | inactive | 494.588 | 4.17900 | 2.0        |         |
| •••  |                    |                                                       |                |          |         |         |            |         |
| 1282 | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3        | 20.2000        | active   | 607.678 | 8.33980 | 0.0        |         |
| 1283 | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3        | 9.3000         | active   | 607.678 | 8.33980 | 0.0        |         |
| 1284 | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=        | 6.5000         | active   | 590.676 | 7.59570 | 0.0        |         |
| 1285 | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3        | 8.2000         | active   | 607.678 | 8.33980 | 0.0        |         |
| 1286 | CHEMBL5417689      | CCOc1cc([C@H](Cc2c(CI)c[n+]([O-])cc2CI)OC(=O)c        | 0.3981         | active   | 770.732 | 5.85120 | 2.0        |         |

4

1287 rows × 8 columns

In [149...

df\_combined.head()

| Ou | t[  | 1 | 4 | 9 |  |
|----|-----|---|---|---|--|
|    | - 1 |   |   |   |  |

|   | molecule_chembl_id | canonical_smiles                                      | standard_value | class    | MW      | LogP    | NumHDonors | NumHAcceptors |
|---|--------------------|-------------------------------------------------------|----------------|----------|---------|---------|------------|---------------|
| 0 | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H]<br>(C(=O)O)CC2)cc1OC1CCCC1 | 63.0           | active   | 343.423 | 4.05278 | 1.0        | 4.0           |
| 1 | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+] (=O)[O-]       | 1.0            | active   | 371.352 | 4.57020 | 1.0        | 5.0           |
| 2 | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1       | 1.5            | active   | 368.352 | 4.19820 | 1.0        | 6.0           |
| 3 | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O        | 22.0           | active   | 464.562 | 4.81650 | 1.0        | 7.0           |
| 4 | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c                   | 100000.0       | inactive | 494.588 | 4.17900 | 2.0        | 8.0           |

### In [151...

df\_combined.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1287 entries, 0 to 1286
Data columns (total 8 columns):

| #  | Column                        | Non-Null Count | Dtype   |
|----|-------------------------------|----------------|---------|
|    |                               |                |         |
| 0  | <pre>molecule_chembl_id</pre> | 1287 non-null  | object  |
| 1  | canonical_smiles              | 1287 non-null  | object  |
| 2  | standard_value                | 1287 non-null  | float64 |
| 3  | class                         | 1287 non-null  | object  |
| 4  | MW                            | 1287 non-null  | float64 |
| 5  | LogP                          | 1287 non-null  | float64 |
| 6  | NumHDonors                    | 1287 non-null  | float64 |
| 7  | NumHAcceptors                 | 1287 non-null  | float64 |
| 44 | C1+C4/E\ -                    | -+ (2)         |         |

dtypes: float64(5), object(3)

memory usage: 80.6+ KB

In [153...

df\_combined.describe()

Out[153...

|       | standard_value | MW          | LogP        | NumHDonors  | NumHAcceptors |
|-------|----------------|-------------|-------------|-------------|---------------|
| count | 1287.000000    | 1287.000000 | 1287.000000 | 1287.000000 | 1287.000000   |
| mean  | 11005.779253   | 409.690984  | 4.243414    | 1.129759    | 5.567988      |
| std   | 29937.136744   | 89.449040   | 1.439778    | 1.120060    | 1.757411      |
| min   | 0.019950       | 164.595000  | -0.074800   | 0.000000    | 1.000000      |
| 25%   | 45.000000      | 345.606500  | 3.235800    | 0.000000    | 4.000000      |
| 50%   | 1000.000000    | 400.508000  | 4.097500    | 1.000000    | 5.000000      |
| 75%   | 10000.000000   | 463.504000  | 5.010950    | 2.000000    | 7.000000      |
| max   | 602800.000000  | 900.903000  | 12.544800   | 9.000000    | 14.000000     |

# Convert IC50 to pIC50

To allow IC50 data to be more uniformly distributed, we will convert IC50 to the negative logarithmic scale which is essentially -log10(IC50).

This custom function pIC50() will accept a DataFrame as input and will:

Take the IC50 values from the standard\_value column and converts it from nM to M by multiplying the value by 10 Take the molar value and apply - log10 Delete the standard\_value column and create a new pIC50 column

```
In [161... # https://github.com/chaninlab/estrogen-receptor-alpha-qsar/blob/master/02_ER_alpha_R05.ipynb

import numpy as np

def pIC50(input):
    pIC50 = []

    for i in input['standard_value_norm']:
        molar = i*(10**-9) # Converts nM to M
        pIC50.append(-np.log10(molar))

    input['pIC50'] = pIC50
    x = input.drop('standard_value_norm', 1)
```

```
return x
          df combined.standard value.describe()
In [164...
Out[164...
           count
                      1287.000000
                     11005.779253
           mean
                     29937.136744
           std
                         0.019950
           min
                        45.000000
           25%
           50%
                      1000.000000
           75%
                     10000.000000
                    602800.000000
           max
           Name: standard_value, dtype: float64
In [167...
          -np.log10( (10**-9)* 100000000 )
Out[167...
          1.0
           -np.log10( (10**-9)* 10000000000 )
In [169...
Out[169...
           -1.0
          def norm_value(input):
In [180...
              norm = []
              for i in input['standard_value']:
                   if i > 100000000:
                     i = 100000000
                   norm.append(i)
              input['standard_value_norm'] = norm
              x = input.drop('standard_value', axis=1)
               return x
```

We will first apply the norm\_value() function so that the values in the standard\_value column is normalized.

In [183...

df\_norm = norm\_value(df\_combined)
df\_norm

Out[183...

|   | molecule_chembl_id |               | canonical_smiles                                      | class    | MW      | LogP    | NumHDonors | NumHAcceptors | standard |
|---|--------------------|---------------|-------------------------------------------------------|----------|---------|---------|------------|---------------|----------|
|   | <b>0</b> CHEMBL5   |               | COc1ccc([C@]2(C#N)CC[C@@H]<br>(C(=O)O)CC2)cc1OC1CCCC1 | active   | 343.423 | 4.05278 | 1.0        | 4.0           |          |
|   | 1                  | CHEMBL74078   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]        | active   | 371.352 | 4.57020 | 1.0        | 5.0           |          |
|   | 2                  | CHEMBL77826   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1       | active   | 368.352 | 4.19820 | 1.0        | 6.0           |          |
|   | 3                  | CHEMBL97817   | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OC)c(O                   | active   | 464.562 | 4.81650 | 1.0        | 7.0           |          |
|   | 4                  | CHEMBL319809  | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c                   | inactive | 494.588 | 4.17900 | 2.0        | 8.0           |          |
|   | •••                |               |                                                       |          |         |         |            |               |          |
| • | 1282               | CHEMBL5405731 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3        | active   | 607.678 | 8.33980 | 0.0        | 7.0           |          |
| • | 1283               | CHEMBL5435764 | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3        | active   | 607.678 | 8.33980 | 0.0        | 7.0           |          |
| • | 1284               | CHEMBL5421333 | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=        | active   | 590.676 | 7.59570 | 0.0        | 8.0           |          |
| • | 1285               | CHEMBL5440771 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3        | active   | 607.678 | 8.33980 | 0.0        | 7.0           |          |
| • | 1286               | CHEMBL5417689 | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c        | active   | 770.732 | 5.85120 | 2.0        | 11.0          |          |

1287 rows × 8 columns



df\_norm.standard\_value\_norm

In [186...

```
Out[186...
                       63.0000
                        1.0000
           1
           2
                        1.5000
           3
                       22.0000
           4
                   100000.0000
           1282
                       20.2000
           1283
                        9.3000
           1284
                        6.5000
           1285
                        8.2000
           1286
                        0.3981
           Name: standard_value_norm, Length: 1287, dtype: float64
          df_norm.standard_value_norm.describe()
In [188...
Out[188...
          count
                      1287.000000
                     11005.779253
           mean
           std
                     29937.136744
           min
                         0.019950
           25%
                        45.000000
           50%
                      1000.000000
           75%
                     10000.000000
           max
                    602800.000000
           Name: standard_value_norm, dtype: float64
          df_final = df_norm.drop('standard_value_norm', axis=1)
In [201...
```

df\_final

| ٦ |   | + | г | 7 | 0 | 1 |     |  |
|---|---|---|---|---|---|---|-----|--|
| J | u | L | L | _ | U | _ | • • |  |

|   | molecule_chembl_id                                                |               | canonical_smiles                                | class    | MW      | LogP    | NumHDonors | NumHAcceptors | pIC50    |
|---|-------------------------------------------------------------------|---------------|-------------------------------------------------|----------|---------|---------|------------|---------------|----------|
|   | O CHEMBL511115 COc1ccc([C@]2(C#N)CC[C@@H] (C(=O)O)CC2)cc1OC1CCCC1 |               | active                                          | 343.423  | 4.05278 | 1.0     | 4.0        | 7.200659      |          |
|   | 1                                                                 | CHEMBL74078   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]  | active   | 371.352 | 4.57020 | 1.0        | 5.0           | 9.000000 |
|   | 2                                                                 | CHEMBL77826   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1 | active   | 368.352 | 4.19820 | 1.0        | 6.0           | 8.823909 |
|   | 3                                                                 | CHEMBL97817   | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OC)c(O             | active   | 464.562 | 4.81650 | 1.0        | 7.0           | 7.657577 |
|   | 4                                                                 | CHEMBL319809  | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c             | inactive | 494.588 | 4.17900 | 2.0        | 8.0           | 4.000000 |
|   | •••                                                               |               |                                                 | •••      | •••     | •••     |            |               |          |
|   | 1282                                                              | CHEMBL5405731 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 7.694649 |
|   | 1283                                                              | CHEMBL5435764 | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 8.031517 |
|   | 1284                                                              | CHEMBL5421333 | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=  | active   | 590.676 | 7.59570 | 0.0        | 8.0           | 8.187087 |
| , | 1285                                                              | CHEMBL5440771 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 8.086186 |
| , | 1286                                                              | CHEMBL5417689 | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c  | active   | 770.732 | 5.85120 | 2.0        | 11.0          | 9.400008 |

4

In [206...

df\_final.pIC50.describe()

Out[206...

1287.000000 count 6.233700 mean std 1.444116 min 3.219827 25% 5.000000 50% 6.000000 75% 7.346787 10.700057 max

Name: pIC50, dtype: float64

# Removing the 'intermediate' bioactivity class

Here, we will be removing the intermediate class from our data set.

Out[212...

|    | molecule_chembl_id                                                |               | canonical_smiles                                | class    | MW      | LogP    | NumHDonors | NumHAcceptors | pIC50    |
|----|-------------------------------------------------------------------|---------------|-------------------------------------------------|----------|---------|---------|------------|---------------|----------|
|    | O CHEMBL511115 COc1ccc([C@]2(C#N)CC[C@@H] (C(=O)O)CC2)cc1OC1CCCC1 |               | active                                          | 343.423  | 4.05278 | 1.0     | 4.0        | 7.200659      |          |
|    | 1                                                                 | CHEMBL74078   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]  | active   | 371.352 | 4.57020 | 1.0        | 5.0           | 9.000000 |
|    | 2                                                                 | CHEMBL77826   | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1 | active   | 368.352 | 4.19820 | 1.0        | 6.0           | 8.823909 |
|    | 3                                                                 | CHEMBL97817   | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OC)c(O             | active   | 464.562 | 4.81650 | 1.0        | 7.0           | 7.657577 |
|    | 4                                                                 | CHEMBL319809  | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c             | inactive | 494.588 | 4.17900 | 2.0        | 8.0           | 4.000000 |
|    | •••                                                               |               |                                                 |          |         |         |            |               |          |
| 12 | 82                                                                | CHEMBL5405731 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 7.694649 |
| 12 | 83                                                                | CHEMBL5435764 | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 8.031517 |
| 12 | 84                                                                | CHEMBL5421333 | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=  | active   | 590.676 | 7.59570 | 0.0        | 8.0           | 8.187087 |
| 12 | 85                                                                | CHEMBL5440771 | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3  | active   | 607.678 | 8.33980 | 0.0        | 7.0           | 8.086186 |
| 12 | 86                                                                | CHEMBL5417689 | CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c  | active   | 770.732 | 5.85120 | 2.0        | 11.0          | 9.400008 |

983 rows × 8 columns



df\_2class.to\_csv('Phosphodiesterase 4D\_04\_bioactivity\_data\_3class\_pIC50.csv')

# Exploratory Data Analysis (Chemical Space Analysis) via Lipinski descriptors

```
In [224...
    import seaborn as sns
    sns.set(style='ticks')
    import matplotlib.pyplot as plt

In [226...
    plt.figure(figsize=(12, 10))
    numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors', 'pIC50']
    for i, column in enumerate(numeric_columns, 1):
        plt.subplot(2, 3, i) # 2 rows and 3 columns for better layout
        sns.boxplot(df2class[column],color='red') # kde=True for kernel density estimate
        plt.title(f'boxplot of {column}')
        plt.xlabel(column)
        plt.ylabel('Frequency')
        plt.tight_layout()
        plt.show()
```





## Frequency of Bioactivity Classes

```
In [231... # Set figure size
    plt.figure(figsize=(8, 6))
    # Count plot with hue
    sns.countplot(x='class', hue='class', data=df_2class, palette='viridis')
# Add Labels and title
    plt.xlabel('Bioactivity Class')
    plt.ylabel('Frequency')
    plt.title('Frequency of Bioactivity Classes')
# Show plot
    plt.show()
```

## Frequency of Bioactivity Classes



```
In [242...
sns.pairplot(df_2class, vars=['NumHDonors', 'NumHAcceptors'], hue='class', palette='muted')
# Show plot
plt.show()
```



```
In [247... sns.pairplot(df_2class, hue='class', palette='cividis')
# Show plot
plt.show()
```





```
In [253...
    numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors']
    # Set figure size
    plt.figure(figsize=(12, 10))
    # Loop through numeric columns and create scatter plots
    for i, column in enumerate(numeric_columns, 1):
        plt.subplot(2, 2, i) # 2 rows, 2 columns layout
        sns.scatterplot(x=df_2class[column], y=df_2class['pIC50'], hue=df_2class['class'], palette='magma')
        plt.title(f'Scatter Plot: pIC50 vs {column}')
        plt.ylabel(column)
        plt.ylabel('pIC50')
    # Adjust Layout
    plt.tight_layout()
    plt.show()
```







```
In [257... plt.figure(figsize=(8, 5))
    sns.countplot(x="class", data=df, )
    plt.xlabel("Bioactivity Class")
    plt.ylabel("Count")
    plt.title("y Class Distribution")
    plt.show()
```



```
In [261... plt.figure(figsize=(6.6, 5.6))
sns.scatterplot(x='MW', y='LogP', data=df_2class, hue='class', size='pIC50',palette='dark', edgecolor='black', alpha=0.7)
plt.xlabel('MW', fontsize=14, fontweight='bold')
plt.ylabel('LogP', fontsize=14, fontweight='bold')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0)
plt.show()

class
active
inactive
plC50
```



```
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'pIC50', data = df_2class, hue = 'class', palette = 'plasma')
plt.xlabel('class', fontsize=14, fontweight='bold')
```

Out[266... Text(0.5, 0, 'class')



### Statistical analysis | Mann-Whitney U Test

```
In [274... # https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/
from numpy.random import seed
from scipy.stats import mannwhitneyu

def mannwhitney(descriptor, verbose=False):
    # Seed the random number generator for reproducibility
    seed(1)
```

```
# Select relevant columns
selection = [descriptor, 'class']
df = df 2class[selection]
# Split active and inactive classes
active = df[df['class'] == 'active'][descriptor]
inactive = df[df['class'] == 'inactive'][descriptor]
# Perform Mann-Whitney U test
stat, p = mannwhitneyu(active, inactive)
# Interpret the result
alpha = 0.05
interpretation = 'Same distribution (fail to reject H0)' if p > alpha else 'Different distribution (reject H0)'
# Store results in a DataFrame
results = pd.DataFrame({
    'Descriptor': [descriptor],
    'Statistics': [stat],
    'p': [p],
    'alpha': [alpha],
    'Interpretation': [interpretation]
})
# Save results to CSV
filename = f'mannwhitneyu {descriptor}.csv'
results.to_csv(filename, index=False)
return results
```

In [277... mannwhitney('pIC50')

Out [ 277... Descriptor Statistics p alpha Interpretation

O pIC50 213180.0 2.036349e-143 0.05 Different distribution (reject H0)

MW

```
plt.figure(figsize=(5.5, 5.5))
In [292...
          sns.boxplot(x = 'class', y = 'MW', data = df_2class, hue = 'class', palette = 'magma')
          plt.xlabel('class', fontsize=14, fontweight='bold')
          plt.ylabel('MW', fontsize=14, fontweight='bold')
```

Out[292... Text(0, 0.5, 'MW')



Statistical analysis | Mann-Whitney U Test

#### LogP

```
In [303... plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'LogP', data = df_2class,hue = 'class' , palette = 'dark')
plt.xlabel(' class', fontsize=14, fontweight='bold')
plt.ylabel('LogP', fontsize=14, fontweight='bold')
```

Out[303... Text(0, 0.5, 'LogP')



Statistical analysis | Mann-Whitney U Test

In [307...

mannwhitney('LogP')

Out[307...

|   | Descriptor | Statistics | р            | alpha | Interpretation                     |
|---|------------|------------|--------------|-------|------------------------------------|
| 0 | LogP       | 141711.0   | 4.463653e-17 | 0.05  | Different distribution (reject H0) |

### **NumHDonors**



Statistical analysis | Mann-Whitney U Test

In [323... I

mannwhitney('NumHDonors')

Out[323...

|   | Descriptor | Statistics | р        | alpha | Interpretation                        |
|---|------------|------------|----------|-------|---------------------------------------|
| 0 | NumHDonors | 111706.5   | 0.196062 | 0.05  | Same distribution (fail to reject H0) |

## **NumHAcceptors**



Statistical analysis | Mann-Whitney U Test

In [332... mannwhitney('NumHAcceptors')

Out[332...

Descriptor Statistics p alpha Interpretation

NumHAcceptors 124596.0 0.000012 0.05 Different distribution (reject H0)

Box Plots pIC50 values Taking a look at pIC50 values, the actives and inactives displayed statistically significant difference, which is to be expected since threshold values (IC50 < 1,000 nM = Actives while IC50 > 10,000 nM = Inactives, corresponding to pIC50 > 6 = Actives and pIC50 < 5 =

Inactives) were used to define actives and inactives.

Lipinski's descriptors Of the 4 Lipinski's descriptors (MW, LogP, NumHDonors and NumHAcceptors), only MW, LogP, and NumHAcceptors exhibited difference between the actives and inactives while the other descriptors (only NumHDonors) shows statistically significant same difference between actives and inactives.

In [345...

df3 = pd.read\_csv(r"C:\Users\manoj\OneDrive\Desktop\Phosphodiesterase 4D\Phosphodiesterase 4D\_04\_bioactivity\_data\_3class\_pIC50.csv'

In [347...

df3

Out[347...

|     | Unnamed: | molecule_chembl_id | canonical_smiles                                                    | class    | MW      | LogP    | NumHDonors | NumHAcceptors |
|-----|----------|--------------------|---------------------------------------------------------------------|----------|---------|---------|------------|---------------|
| 0   | 0        | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H]<br>(C(=O)O)CC2)cc1OC1CCCC1               | active   | 343.423 | 4.05278 | 1.0        | 4.(           |
| 1   | 1        | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=O)[O-]                      | active   | 371.352 | 4.57020 | 1.0        | 5.0           |
| 2   | 2        | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1                     | active   | 368.352 | 4.19820 | 1.0        | 6.0           |
| 3   | 3        | CHEMBL97817        | CCc1nc(-<br>c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OC)c(O                  | active   | 464.562 | 4.81650 | 1.0        | 7.0           |
| 4   | 4        | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OCCO)c                                 | inactive | 494.588 | 4.17900 | 2.0        | 8.0           |
| ••• |          |                    |                                                                     |          |         |         |            |               |
| 978 | 1282     | CHEMBL5405731      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5ccccn5)c3                      | active   | 607.678 | 8.33980 | 0.0        | 7.0           |
| 979 | 1283     | CHEMBL5435764      | COc1c(OCc2cccc(F)c2)cc2oc3cc4c(c(OCc5ccccn5)c3                      | active   | 607.678 | 8.33980 | 0.0        | 7.0           |
| 980 | 1284     | CHEMBL5421333      | COc1c(OCc2ccccn2)cc2oc3cc4c(c(OCc5ccccn5)c3c(=                      | active   | 590.676 | 7.59570 | 0.0        | 8.0           |
| 981 | 1285     | CHEMBL5440771      | COc1c(OCc2ccc(F)cc2)cc2oc3cc4c(c(OCc5cccnc5)c3                      | active   | 607.678 | 8.33980 | 0.0        | 7.0           |
| 982 | 1286     | CHEMBL5417689      | $\label{eq:ccocloc} CCOc1cc([C@H](Cc2c(Cl)c[n+]([O-])cc2Cl)OC(=O)c$ | active   | 770.732 | 5.85120 | 2.0        | 11.(          |

983 rows × 9 columns

In [350...

df3.head()

Out[350...

|   | Unnamed:<br>0 | molecule_chembl_id | canonical_smiles                                      | class    | MW      | LogP    | NumHDonors | NumHAcceptors | pIC     |
|---|---------------|--------------------|-------------------------------------------------------|----------|---------|---------|------------|---------------|---------|
| 0 | 0             | CHEMBL511115       | COc1ccc([C@]2(C#N)CC[C@@H]<br>(C(=O)O)CC2)cc1OC1CCCC1 | active   | 343.423 | 4.05278 | 1.0        | 4.0           | 7.20065 |
| 1 | 1             | CHEMBL74078        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3cccc([N+] (=O)[O-]       | active   | 371.352 | 4.57020 | 1.0        | 5.0           | 9.00000 |
| 2 | 2             | CHEMBL77826        | O=C(O)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1       | active   | 368.352 | 4.19820 | 1.0        | 6.0           | 8.82390 |
| 3 | 3             | CHEMBL97817        | CCc1nc(-c2cc(OCC3CC3)cc)c2cc(OC)c(O                   | active   | 464.562 | 4.81650 | 1.0        | 7.0           | 7.65757 |
| 4 | 4             | CHEMBL319809       | CCc1nc(-c2cc(OCC3CC3)c2)c2cc(OCCO)c                   | inactive | 494.588 | 4.17900 | 2.0        | 8.0           | 4.00000 |

In [352...

df3.describe()

Out[352...

|       | Unnamed: 0  | MW         | LogP       | NumHDonors | NumHAcceptors | pIC50      |
|-------|-------------|------------|------------|------------|---------------|------------|
| count | 983.000000  | 983.000000 | 983.000000 | 983.000000 | 983.000000    | 983.000000 |
| mean  | 636.004069  | 416.104192 | 4.320447   | 1.073245   | 5.595117      | 6.459856   |
| std   | 376.959983  | 90.827516  | 1.502245   | 1.117682   | 1.768374      | 1.577922   |
| min   | 0.000000    | 164.595000 | -0.074800  | 0.000000   | 2.000000      | 3.219827   |
| 25%   | 302.500000  | 350.075000 | 3.280450   | 0.000000   | 4.000000      | 4.958607   |
| 50%   | 639.000000  | 410.436000 | 4.173500   | 1.000000   | 6.000000      | 6.514279   |
| 75%   | 961.500000  | 475.372500 | 5.190250   | 2.000000   | 7.000000      | 7.657577   |
| max   | 1286.000000 | 813.302000 | 12.544800  | 9.000000   | 14.000000     | 10.700057  |

```
selection = ['canonical smiles', 'molecule chembl id']
In [368...
          df3 selection = df3[selection]
          df3 selection.to csv('molecule.smi', sep='\t', index=False, header=False)
          with open('molecule.smi', 'r') as file:
In [370...
           for in range(5):
               print(file.readline().strip())
         COc1ccc([C@]2(C\#N)CC[C@@H](C(=0)0)CC2)cc10C1CCCC1
                                                                  CHEMBL511115
         0=C(0)c1ccc(-c2cc3cccnc3c(-c3cccc([N+](=0)[0-])c3)n2)cc1
                                                                          CHEMBL74078
         O=C(0)c1ccc(-c2cc3cccnc3c(-c3ccc4nonc4c3)n2)cc1 CHEMBL77826
         CCc1nc(-c2cc(0CC3CC3)cc(0CC3CC3)c2)c2cc(0C)c(0CC0)cc2n1 CHEMBL97817
         CCc1nc(-c2cc(OCC3CC3)cc(OCC3CC3)c2)c2cc(OCC0)c(OCC0)cc2n1
                                                                          CHEMBL319809
          with open('molecule.smi', 'r') as file:
In [371...
           line count = sum(1 for line in file)
          print("Total number of lines:", line count)
```

Total number of lines: 983

### **Preparing the X and Y Data Matrices**

```
In [431... X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [432... X
```

| $\cap$ | 14- | Γл  | 2   | 7  |  |
|--------|-----|-----|-----|----|--|
| Uι     | 1 L | L 4 | - > | ۷. |  |

|      | Name          | PubchemFP0 | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | Pubche |
|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
| 0    | CHEMBL130478  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |
| 1    | CHEMBL336538  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 2    | CHEMBL339995  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 3    | CHEMBL341437  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 4    | CHEMBL130098  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |
| •••  |               |            |            |            |            |            |            |            |            |        |
| 6941 | CHEMBL253998  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6942 | CHEMBL502     | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6943 | CHEMBL3085398 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6944 | CHEMBL13045   | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6945 | CHEMBL417799  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |

6946 rows × 882 columns



In [434... X.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6946 entries, 0 to 6945

Columns: 882 entries, Name to PubchemFP880

dtypes: int64(881), object(1)

memory usage: 46.7+ MB

In [436... X.head()

| Out[436 |      | Name                         | PubchemFP0               | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | PubchemFP |
|---------|------|------------------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|-----------|
|         | 0    | CHEMBL130478                 | 1                        | 1          | 0          | 0          | 0          | 0          | 0          | 0          |           |
|         | 1    | CHEMBL336538                 | 1                        | 1          | 1          | 0          | 0          | 0          | 0          | 0          |           |
|         | 2    | CHEMBL339995                 | 1                        | 1          | 1          | 0          | 0          | 0          | 0          | 0          |           |
|         | 3    | CHEMBL341437                 | 1                        | 1          | 1          | 0          | 0          | 0          | 0          | 0          |           |
|         | 4    | CHEMBL130098                 | 1                        | 1          | 0          | 0          | 0          | 0          | 0          | 0          |           |
|         | 5 rc | ows × 882 colum              | ns                       |            |            |            |            |            |            |            |           |
|         | 4    |                              |                          |            |            |            |            |            |            |            | •         |
| In [438 | X.0  | dtypes                       |                          |            |            |            |            |            |            |            |           |
| Out[438 |      | me o<br>bchemFP0<br>bchemFP1 | object<br>int64<br>int64 |            |            |            |            |            |            |            |           |

PubchemFP1 int64 PubchemFP2 int64 PubchemFP3 int64 . . . PubchemFP876 int64 PubchemFP877 int64 PubchemFP878 int64 PubchemFP879 int64 PubchemFP880 int64

In [440... X = X.drop(columns=['Name'])
X

Length: 882, dtype: object

| $\cap$ | ı+I | 1/1 | 10 |  |
|--------|-----|-----|----|--|
| Vι     | オレエ | 44  | +6 |  |

|      | PubchemFP0 | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | PubchemFP8 | Pubcheml |
|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
| 0    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 1    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 2    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 3    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 4    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| •••  |            | •••        | •••        |            |            |            | •••        |            |            |          |
| 6941 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6942 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6943 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6944 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6945 | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |

6946 rows × 881 columns



## Y variable

```
In [444... y = df3['class']
In [445... y = y.map({'active': 1, 'inactive': 0})
```

# Split dataset

```
In [449... print("Shape of X:", X.shape)
print("Shape of y:", y.shape)
```

```
Shape of v: (983,)
In [454... X = X.iloc[:y.shape[0], :] # Trim X to match y
In [457... print("Shape of X:", X.shape)
          print("Shape of y:", y.shape)
         Shape of X: (983, 881)
         Shape of y: (983,)
         from sklearn.model selection import train test split
In [461...
          X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         from sklearn.preprocessing import StandardScaler
In [464...
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.svm import SVC
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         scaler = StandardScaler()
In [467...
          X_train_scaled = scaler.fit_transform(X train)
          X test scaled = scaler.transform(X test)
          Logistic Regression Model
In [470...
         lr = LogisticRegression(max iter=600)
         lr.fit(X train, y train)
In [473...
Out[473...
                LogisticRegression
          LogisticRegression(max iter=600)
         y_pred_lr = lr.predict(X_test)
In [476...
```

Shape of X: (6946, 881)

y\_pred\_lr

```
Out[476... array([0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
                0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
                1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,
                0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 0, 1], dtype=int64)
        print(classification report(y test,y pred lr))
In [479...
                     precision
                                 recall f1-score
                                                  support
                  0
                          0.63
                                   0.48
                                            0.55
                                                       93
                          0.79
                  1
                                   0.87
                                            0.83
                                                      202
            accuracy
                                            0.75
                                                      295
           macro avg
                          0.71
                                            0.69
                                                      295
                                   0.68
        weighted avg
                          0.74
                                   0.75
                                            0.74
                                                      295
         accuracy = accuracy score(y test, y pred lr)
In [484...
         print(f"Logistic Regression Model Accuracy: {accuracy * 100:.2f}%")
        Logistic Regression Model Accuracy: 74.92%
        cm = confusion matrix(y test, y pred lr)
In [491...
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Blues")
         ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2' ])
         ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
Out[491...
         [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
```



## **Logistic Regression Model Accuracy: 74.92%**

```
Out[501... array([1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
                 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0,
                 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0,
                 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1,
                 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,
                 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0,
                 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,
                 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0,
                 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,
                 0, 1, 1, 1, 1, 1, 0, 1], dtype=int64)
         print(classification report(y test,y pred DT))
In [504...
                       precision
                                    recall f1-score
                                                       support
                    0
                            0.56
                                      0.61
                                                0.59
                                                            93
                    1
                            0.81
                                      0.78
                                                0.80
                                                           202
             accuracy
                                                0.73
                                                           295
            macro avg
                            0.69
                                      0.70
                                                0.69
                                                           295
         weighted avg
                            0.74
                                                0.73
                                      0.73
                                                           295
          accuracy = accuracy score(y test, y pred rnf)
In [539...
          print(f"RandomForestClassifier Model Accuracy: {accuracy * 100:.2f}%")
         RandomForestClassifier Model Accuracy: 74.24%
         cm = confusion matrix(y test, y pred DT)
In [510...
          ax = sns.heatmap(cm, annot=True, fmt='d', cmap="cividis")
          ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2' ])
          ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
Out[510... [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
```



DecisionTreeClassifier Model Accuracy: 72.88%

### RandomForestClassifier

```
In [524... rnf = RandomForestClassifier()
rnf.fit(X_train,y_train)

Out[524... RandomForestClassifier  RandomForestClassifier()

In [525... y_pred_rnf = rnf.predict(X_test)
```

```
y pred rnf
Out[525...
          array([0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                  1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
                 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
                 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,
                 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0,
                 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
                 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
                 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
                 1, 1, 1, 1, 1, 1, 0, 1], dtype=int64)
         print(classification report(y test,y pred rnf))
In [527...
                       precision
                                    recall f1-score
                                                       support
                    0
                            0.60
                                      0.54
                                                0.57
                                                            93
                    1
                            0.80
                                      0.84
                                                0.82
                                                           202
             accuracy
                                                0.74
                                                           295
                                                0.69
            macro avg
                            0.70
                                                           295
                                      0.69
                            0.74
                                                0.74
         weighted avg
                                      0.74
                                                           295
         accuracy = accuracy score(y test, y pred rnf)
In [534...
          print(f"DecisionTreeClassifier Model Accuracy: {accuracy * 100:.2f}%")
         DecisionTreeClassifier Model Accuracy: 74.24%
         cm = confusion matrix(y test, y pred rnf)
In [531...
          ax = sns.heatmap(cm, annot=True, fmt='d', cmap="magma")
          ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2' ])
          ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
          [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
Out[531...
```



## DecisionTreeClassifier Model Accuracy: 74.24%

## K-Nearest Neighbors (KNN)

KNeighborsClassifier()

```
In [549... | from sklearn.neighbors import KNeighborsClassifier | knn = KNeighborsClassifier(n_neighbors=5) | knn.fit(X_train,y_train) |

Out[549... | KNeighborsClassifier | Company | Co
```

```
y pred knn = knn.predict(X test)
In [551...
         y pred knn
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
                1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
                1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
                0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1,
                1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
                0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                0, 1, 1, 1, 1, 1, 1, 1], dtype=int64)
         print(classification report(y test,y pred knn))
In [552...
                      precision
                                  recall f1-score support
                   0
                           0.64
                                    0.46
                                             0.54
                                                         93
                          0.78
                                    0.88
                                              0.83
                                                        202
                   1
                                             0.75
                                                        295
            accuracy
                                              0.68
           macro avg
                           0.71
                                    0.67
                                                        295
        weighted avg
                          0.74
                                    0.75
                                              0.74
                                                        295
         accuracy = accuracy score(y test, y pred knn)
In [556...
         print(f"KNeighborsClassifier Model Accuracy: {accuracy * 100:.2f}%")
        KNeighborsClassifier Model Accuracy: 74.92%
         cm = confusion matrix(y test, y pred knn)
In [573...
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="RdBu")
         ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2' ])
         ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
         [Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]
Out[573...
```



# KNeighborsClassifier Model Accuracy: 74.92%

```
In [581... df3_X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [585... df3_X
```

| $\cap$ u+ | LEOE |
|-----------|------|
| Uul       | >0>  |

|      | Name          | PubchemFP0 | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | Pubche |
|------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
| 0    | CHEMBL130478  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |
| 1    | CHEMBL336538  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 2    | CHEMBL339995  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 3    | CHEMBL341437  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 4    | CHEMBL130098  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |
| •••  |               |            |            |            |            |            |            |            |            |        |
| 6941 | CHEMBL253998  | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6942 | CHEMBL502     | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6943 | CHEMBL3085398 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6944 | CHEMBL13045   | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          |        |
| 6945 | CHEMBL417799  | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |        |

6946 rows × 882 columns

In [588...

df3\_X = df3\_X.drop(columns=['Name'])
df3\_X

| $\cap$ |   | + | Γ | 5             | 0       | 0 |  |
|--------|---|---|---|---------------|---------|---|--|
| U      | и | L | ш | $\mathcal{L}$ | $\circ$ | O |  |

|      | PubchemFP0 | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | PubchemFP8 | Pubcheml |
|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
| 0    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 1    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 2    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 3    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 4    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| •••  |            |            |            |            |            |            | •••        |            |            |          |
| 6941 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6942 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6943 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6944 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6945 | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |

6946 rows × 881 columns

In [615... Y = df3['pIC50']
Y

```
Out[615...
                 7.200659
                 9.000000
           2
                 8.823909
           3
                 7.657577
           4
                 4.000000
                   . . .
          978
                 7.694649
          979
                 8.031517
          980
                 8.187087
          981
                 8.086186
          982
                 9.400008
          Name: pIC50, Length: 983, dtype: float64
```

In [617... dataset3 = pd.concat([df3\_X,df3\_Y], axis=1)
 dataset3

| $\cap \cdot \cdot + \mid$ | [ (17 |
|---------------------------|-------|
| Uul                       | DT/   |

|      | PubchemFP0 | PubchemFP1 | PubchemFP2 | PubchemFP3 | PubchemFP4 | PubchemFP5 | PubchemFP6 | PubchemFP7 | PubchemFP8 | Pubcheml |
|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
| 0    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 1    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 2    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 3    | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 4    | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| •••  |            |            |            |            |            |            |            |            |            |          |
| 6941 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6942 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6943 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6944 | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |          |
| 6945 | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |          |

6946 rows × 882 columns

```
In [619...
          from sklearn.model selection import train test split
          import lazypredict
          from lazypredict.Supervised import LazyRegressor
In [620...
         X.shape
Out[620...
          (983, 133)
         # Remove low variance features
In [621...
          from sklearn.feature_selection import VarianceThreshold
          selection = VarianceThreshold(threshold=(.8 * (1 - .8)))
          X = selection.fit_transform(X)
          X.shape
Out[621...
          (983, 133)
In [623...
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
In [626...
         clf = LazyRegressor(verbose=0,ignore warnings=True, custom metric=None)
          models train, predictions train = clf.fit(X train, X train, Y train, Y train)
          models test,predictions test = clf.fit(X train, X test, Y train, Y test)
```

41/42 [00:37<00:00, 1.72it/s]

```
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.002744 seconds.
You can set `force col wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 399
[LightGBM] [Info] Number of data points in the train set: 786, number of used features: 133
[LightGBM] [Info] Start training from score 6.463467
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
100% 42/42 [00:37<00:00, 1.11it/s]
'tuple' object has no attribute ' name '
Invalid Regressor(s)
```

41/42 [00:33<00:00, 2.82it/s]

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001508 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 399
[LightGBM] [Info] Number of data points in the train set: 786, number of used features: 133
[LightGBM] [Info] Start training from score 6.463467
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
100%
      42/42 [00:34<00:00, 1.23it/s]
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

In [631...

predictions\_train

|               |        | 4 | г | -      | $\neg$ | 4   |       |
|---------------|--------|---|---|--------|--------|-----|-------|
| - )           | 11     | т |   | h      | -5     | - 1 |       |
| $\overline{}$ | $\sim$ |   |   | $\sim$ | $\sim$ | _   | <br>à |

|                               | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
|-------------------------------|--------------------|-----------|------|------------|
| Model                         |                    |           |      |            |
| DecisionTreeRegressor         | 0.52               | 0.60      | 0.99 | 0.07       |
| ExtraTreeRegressor            | 0.52               | 0.60      | 0.99 | 0.07       |
| ExtraTreesRegressor           | 0.52               | 0.60      | 0.99 | 2.82       |
| Gaussian Process Regressor    | 0.52               | 0.60      | 0.99 | 0.39       |
| XGBRegressor                  | 0.52               | 0.60      | 0.99 | 1.43       |
| RandomForestRegressor         | 0.46               | 0.55      | 1.04 | 2.37       |
| BaggingRegressor              | 0.44               | 0.53      | 1.06 | 0.28       |
| MLPRegressor                  | 0.37               | 0.47      | 1.13 | 4.48       |
| HistGradientBoostingRegressor | 0.36               | 0.47      | 1.13 | 1.98       |
| LGBMRegressor                 | 0.34               | 0.45      | 1.16 | 0.28       |
| GradientBoostingRegressor     | 0.23               | 0.36      | 1.25 | 0.93       |
| KNeighborsRegressor           | 0.19               | 0.33      | 1.28 | 0.12       |
| SVR                           | 0.13               | 0.28      | 1.32 | 0.43       |
| TransformedTargetRegressor    | 0.12               | 0.27      | 1.33 | 0.22       |
| LinearRegression              | 0.12               | 0.27      | 1.33 | 0.27       |
| Ridge                         | 0.12               | 0.27      | 1.33 | 0.05       |
| NuSVR                         | 0.11               | 0.26      | 1.34 | 0.32       |
| RidgeCV                       | 0.10               | 0.25      | 1.34 | 0.36       |
| HuberRegressor                | 0.09               | 0.24      | 1.36 | 0.32       |
| SGDRegressor                  | 0.06               | 0.22      | 1.38 | 0.07       |
| PoissonRegressor              | 0.04               | 0.20      | 1.39 | 0.11       |

|                              | Adjusted R-Squared          | R-Squared                   | RMSE            | Time Taken |
|------------------------------|-----------------------------|-----------------------------|-----------------|------------|
| Model                        |                             |                             |                 |            |
| LinearSVR                    | 0.03                        | 0.19                        | 1.40            | 0.26       |
| LassoCV                      | 0.02                        | 0.19                        | 1.41            | 7.09       |
| ElasticNetCV                 | 0.02                        | 0.18                        | 1.41            | 9.28       |
| Bayesian Ridge               | 0.01                        | 0.17                        | 1.42            | 0.11       |
| OrthogonalMatchingPursuit    | -0.02                       | 0.16                        | 1.43            | 0.05       |
| AdaBoostRegressor            | -0.03                       | 0.14                        | 1.44            | 0.18       |
| TweedieRegressor             | -0.03                       | 0.14                        | 1.44            | 0.07       |
| GammaRegressor               | -0.03                       | 0.14                        | 1.44            | 0.22       |
| LassoLarsCV                  | -0.04                       | 0.14                        | 1.45            | 0.18       |
| OrthogonalMatchingPursuitCV  | -0.04                       | 0.13                        | 1.45            | 0.10       |
| LassoLarsIC                  | -0.05                       | 0.13                        | 1.45            | 0.27       |
| LarsCV                       | -0.14                       | 0.06                        | 1.51            | 0.57       |
| LassoLars                    | -0.20                       | 0.00                        | 1.56            | 0.05       |
| Lasso                        | -0.20                       | 0.00                        | 1.56            | 0.04       |
| ElasticNet                   | -0.20                       | 0.00                        | 1.56            | 0.04       |
| DummyRegressor               | -0.20                       | 0.00                        | 1.56            | 0.03       |
| QuantileRegressor            | -0.21                       | -0.00                       | 1.56            | 0.37       |
| Passive Aggressive Regressor | -0.68                       | -0.39                       | 1.84            | 0.05       |
| KernelRidge                  | -20.62                      | -16.95                      | 6.60            | 0.09       |
| Lars                         | -14764.51                   | -12262.84                   | 172.46          | 0.14       |
| RANSACRegressor              | -25959928824684513067008.00 | -21561622412349428203520.00 | 228674996968.28 | 1.29       |
|                              |                             |                             |                 |            |

In [634... predictions\_test

| $\sim$   |   | 4 | -      | -      | 4 |  |
|----------|---|---|--------|--------|---|--|
| - )      |   | т | h      | -<     | 4 |  |
| $\smile$ | u |   | $\cup$ | $\sim$ | T |  |

|                               | <b>Adjusted R-Squared</b> | R-Squared | RMSE | Time Taken |
|-------------------------------|---------------------------|-----------|------|------------|
| Model                         |                           |           |      |            |
| PoissonRegressor              | -1.64                     | 0.15      | 1.52 | 0.10       |
| OrthogonalMatchingPursuit     | -1.64                     | 0.15      | 1.52 | 0.04       |
| RidgeCV                       | -1.64                     | 0.15      | 1.52 | 0.26       |
| SGDRegressor                  | -1.65                     | 0.15      | 1.53 | 0.06       |
| Gradient Boosting Regressor   | -1.65                     | 0.15      | 1.53 | 0.86       |
| LassoLarsCV                   | -1.67                     | 0.14      | 1.53 | 0.18       |
| OrthogonalMatchingPursuitCV   | -1.67                     | 0.14      | 1.53 | 0.10       |
| ElasticNetCV                  | -1.68                     | 0.14      | 1.53 | 7.87       |
| LassoCV                       | -1.68                     | 0.14      | 1.53 | 6.76       |
| LassoLarsIC                   | -1.68                     | 0.14      | 1.54 | 0.25       |
| BayesianRidge                 | -1.69                     | 0.13      | 1.54 | 0.12       |
| NuSVR                         | -1.72                     | 0.12      | 1.55 | 0.20       |
| AdaBoostRegressor             | -1.77                     | 0.11      | 1.56 | 0.18       |
| Ridge                         | -1.77                     | 0.11      | 1.56 | 0.04       |
| TweedieRegressor              | -1.77                     | 0.11      | 1.56 | 0.06       |
| GammaRegressor                | -1.77                     | 0.11      | 1.56 | 0.07       |
| SVR                           | -1.78                     | 0.11      | 1.56 | 0.23       |
| TransformedTargetRegressor    | -1.83                     | 0.09      | 1.58 | 0.23       |
| LinearRegression              | -1.83                     | 0.09      | 1.58 | 0.26       |
| HistGradientBoostingRegressor | -1.85                     | 0.08      | 1.58 | 1.82       |
| LGBMRegressor                 | -1.89                     | 0.07      | 1.59 | 0.56       |

|                            | Adjusted R-Squared          | R-Squared                   | RMSE            | Time Taken |
|----------------------------|-----------------------------|-----------------------------|-----------------|------------|
| Model                      |                             |                             |                 |            |
| LarsCV                     | -1.93                       | 0.06                        | 1.61            | 0.59       |
| MLPRegressor               | -2.01                       | 0.03                        | 1.63            | 4.36       |
| KNeighborsRegressor        | -2.02                       | 0.03                        | 1.63            | 0.06       |
| HuberRegressor             | -2.06                       | 0.02                        | 1.64            | 0.31       |
| LassoLars                  | -2.11                       | -0.00                       | 1.65            | 0.04       |
| Lasso                      | -2.11                       | -0.00                       | 1.65            | 0.04       |
| DummyRegressor             | -2.11                       | -0.00                       | 1.65            | 0.03       |
| ElasticNet                 | -2.11                       | -0.00                       | 1.65            | 0.03       |
| QuantileRegressor          | -2.12                       | -0.00                       | 1.66            | 0.33       |
| BaggingRegressor           | -2.17                       | -0.02                       | 1.67            | 0.27       |
| RandomForestRegressor      | -2.21                       | -0.03                       | 1.68            | 2.29       |
| LinearSVR                  | -2.29                       | -0.06                       | 1.70            | 0.25       |
| XGBRegressor               | -2.54                       | -0.14                       | 1.76            | 0.39       |
| ExtraTreeRegressor         | -2.67                       | -0.18                       | 1.80            | 0.06       |
| ExtraTreesRegressor        | -2.73                       | -0.20                       | 1.81            | 2.76       |
| DecisionTreeRegressor      | -2.77                       | -0.21                       | 1.82            | 0.05       |
| PassiveAggressiveRegressor | -3.18                       | -0.34                       | 1.92            | 0.05       |
| GaussianProcessRegressor   | -15.80                      | -4.40                       | 3.84            | 0.28       |
| KernelRidge                | -49.44                      | -15.21                      | 6.66            | 0.07       |
| Lars                       | -47726.75                   | -15340.06                   | 204.82          | 0.13       |
| RANSACRegressor            | -92727316574507265687552.00 | -29805208898948762173440.00 | 285493992712.45 | 1.35       |
|                            |                             |                             |                 |            |

## Bar plot of R-squared values

```
In [639... #train["R-Squared"] = [0 if i < 0 else i for i in train.iloc[:,0] ]

plt.figure(figsize=(5, 10))
    sns.set_theme(style="whitegrid")
    ax = sns.barplot(y=predictions_train.index, x="R-Squared", data=predictions_train,palette=sns.color_palette("Spectral", len(predictions_train.index) ax set(xlim=(0, 1))</pre>
Out[639... [(0.0, 1.0)]
```





## Bar plot of RMSE values

```
In [645... plt.figure(figsize=(9, 12))
    sns.set_theme(style="whitegrid")
    ax = sns.barplot(y=predictions_train.index, x="RMSE", data=predictions_train,palette=sns.color_palette("seismic", len(predictions_train.index, x="RMSE")
    out[645... [(0.0, 10.0)]
Out[645... [(0.0, 10.0)]
```





## Bar plot of calculation time





In [ ]: