Part 10 Multiway Cut Problem

(**Definition 1**) (**Multiway Cut Problem**, MCP) Given an undirected graph G=(V, E), cost $c_e \ge 0$ associated with each edge $e \in E$ and k distinguished vertices $\{s_1, s_2, \dots, s_k\}$. Our goal is to remove a minimum cost set of edges F such that no pair of distinguished vertices are in the same connected component of (V, E-F).

Notes: We can solve the MCP for k=2 in **polynomial time**. In fact, we can reformulate this problem (with only 2 distinguished vertices $\{s_1, s_2\}$) to a **Minimum Cut Problem**. Concretely, let s_1 and s_2 be the source and sink vertex, respectively and construct a flow network. Note that in MCP, edges don't have the direction, but we can use two directed edges (with 2 different directions) to replace an undirected edge. In this case, MCP is equivalent to finding a **minimum cut** in the converted flow network.

However, for $k \ge 3$, MCP is **NP-Complete**.

(Example 1) (Application in Distributed Computing) Let vertices V represent 'objects' and c_e represent amount of communication between objects. We need to place 'objects' on k different machine with special 'object' s_i residing on the i-th machine.

Our goal is to partition the 'objects' into k machines, so as to minimize the communication between machines.

(Example 2) Consider a feasible solution F of MCP. Let C_i be the connected component containing s_i . Let $F_i = \delta(C_i)$ be the set of edges leaving component C_i . Note that F_i is a **cut** separating s_i from all other **distinguished vertices**. We call F_i an **isolating cut** as it isolate s_i from the other distinguished vertices.

Suppose we <u>compute a **minimum isolating cut** for each distinguish vertices and then take the union of all these isolating cuts</u>. Clearly, <u>this would be a **feasible solution** to the MCP</u>.

In particular, for vertex s_1 , we need to separate it from all other distinguished vertices $\{s_2, s_3, \dots, s_k\}$. We can construct a flow network with s_1 as the source vertex, while $\{s_2, s_3, \dots, s_k\}$ are

connected to an auxiliary sink vertex t with the capacities $c(s_i, t) = \infty$ ($i \ge 2$). To find F_i is equivalent to finding the **minimum** s-t **cut** of the coverted flow network.

(Algorithm 1) (Approximation Algorithm of MCP) Compute an isolating cut with minimum cost for each distinguished vertex and take the union of all these isolating cuts.

(Theorem 1) The approximation ratio of Algorithm 1 is 2.

Proof of **Theorem 1**. Let F^* be the **optimal solution**. Let F_i^* be the **isolating cut** in the optimal solution for distinguished vertex s_i . In the following example, we have $F_1^* = \{e_1, e_2, e_3\}$.

For the cost of F^* , since each edge in F_i^* contributes at most twice to F^* (e.g., e_1 in the above example), we have

$$\sum_{i=1}^{k} cost(F_{i}^{*}) \leq 2cost(F^{*}) \cdot (1)$$

Let F denote the solution output by **Algorithm 1**. Let F_i be the **minimum isolating cut** for s_i as in **Algorithm 1**. Since in **Algorithm 1**, we have $F = F_1 \cup F_2 \cup \cdots \cup F_k$, so we further have

$$cost(F) \le \sum_{i=1}^{k} cost(F_i) \cdot (2)$$

In **Algorithm 1**, F_i is the **minimum isolating cut** for s_i , so we have

$$cost(F_i) \leq cost(F_i^*) \cdot (3)$$

By (1), (2), and (3), we have

$$cost(F) \le \sum_{i=1}^{k} cost(F_i) \le \sum_{i=1}^{k} cost(F_i^*) \le 2cost(F^*)$$

In summary, the approximation ratio of Algorithm 1 is

$$\frac{cost(F)}{cost(F^*)} \le \frac{2cost(F^*)}{cost(F^*)} = 2$$

(**Theorem 2**) We can further improve the analysis of **Theorem 1**, where we only need to find (*k*-1) isolating cuts (w.r.t. (*k*-1) distinguish vertices) in **Algorithm 1**. The remaining single

distinguished vertex must be isolated from other distinguished vertices.

Especially, we can leave the distinguished vertex with **most expensive isolating cut** and find the isolating cuts of the rest distinguished vertices. Then, the **approximation ratio** of **Algorithm 1** can be improved from 2 to 2(1-1/k).

Proof of **Theorem 2**. Without loss of generality, assume that s_k is with the most expensive isolating cut. Namely, we have $cost(F_k) \ge cost(F_i)$ for $1 \le i \le (k-1)$. Then, we have

$$\sum_{i=1}^{k} cost(F_i) \le k \cdot cost(F_k) \Leftrightarrow \frac{1}{k} \sum_{i=1}^{k} cost(F_i) \le cost(F_k)$$

Let F' be the result given by the improved version of **Algorithm 1**. Then, we have

$$\begin{aligned} cost(F') &= \sum_{i=1}^{k-1} cost(F_i) \\ &= \sum_{i=1}^{k} cost(F_i) - cost(F_k) \\ &\leq (1 - \frac{1}{k}) \sum_{i=1}^{k} cost(F_i) \end{aligned}$$

In **Theorem 1**, we have $\sum_{i=1}^{k} cost(F_i) \le 2cost(F^*)$, thus we have

$$cost(F') \le (1 - \frac{1}{k}) \sum_{i=1}^{k} cost(F_i) \le 2(1 - \frac{1}{k}) cost(F^*)$$

In summary, the approximation ratio of the revised Algorithm 1 is

$$\frac{cost(F')}{cost(F^*)} \le \frac{2(1 - 1/k)cost(F^*)}{cost(F^*)} = 2(1 - \frac{1}{k})$$

(**Definition 2**) (**Reformulation of the Multiway Cut Problem**) Let $\delta(C_i)$ be the set of edge leaving the vertex set C_i . Partition the set of vertices V into sets C_i , such that (1) $s_i \in C_i$ for $1 \le i \le k$ and (2) the cost of $F = \bigcup \delta(C_i)$ is minimized.

For each vertex $u \in V$, introduce k different variables $x_u^i \in \{0,1\}$, in which

$$x_u^i = \begin{cases} 1, & \text{if } u \in C_i \\ 0, & \text{otherwise} \end{cases}$$

For each edge $e \in E$, introduce k variables $z_e^i \in \{0,1\}$, in which

$$z_e^i = \begin{cases} 1, & e \in \mathcal{S}(C_i) \\ 0, & \text{otherwise} \end{cases}$$

Consider the following example with k=4.

We have $x_{s_1}^1 = 1$ and $x_{s_1}^2 = x_{s_1}^3 = x_{s_1}^4 = 0$. For edge e = (u, v) across C_1 and C_2 , we have $z_{(u,v)}^1 = z_{(u,v)}^2 = 1$,

w.r.t. $x_u^1 = 1$ and $x_v^2 = 1$. For edge $e^{-1}(u, w)$ within C_1 , we have $z_{(u,w)}^1 = 0$ w.r.t. $x_u^1 = x_w^1 = 1$.

Since each vertex u can be partitioned only into one vertex set C_i , we have the constraint $\sum_{i=1}^k x_u^i = 1$. Since s_i can be partitioned only into set C_i , we have the constraint $x_{s_i}^i = 1$. For each edge e = (u, v), by considering both the cases that (1) end points u and v are in the same set C_i or (2) u and v are in different set C_i and C_i , we have the constraint $z_e^i \ge |x_u^i - x_v^i|$, which can be rewritten as two constraints $z_e^i \ge x_u^i - x_v^i$ and $z_e^i \ge x_v^i - x_u^i$. Note that $z_e^i = 1$ w.r.t. edge e = (u, v) across C_i and C_j contributes twice in $\sum_{i=1}^k z_e^i$. Thus, our goal is to minimize the objective function $\frac{1}{2} \sum_{e \in E} c_e \sum_{i=1}^k z_e^i$.

In summary, we can reformulate the MCP as the following ILP:

$$\min \frac{1}{2} \sum_{e \in E} c_e \sum_{i=1}^k z_e^i$$
s.t. $\sum_{i=1}^k x_u^i = 1, \forall u \in V$

$$x_{s_i}^i = 1, i \in \{1, \dots, k\}$$

$$z_e^i \ge x_u^i - x_v^i, \forall e = (u, v) \in E$$

$$z_e^i \ge x_v^i - x_u^i, \forall e = (u, v) \in E$$

$$x_u^i \in \{0, 1\}, \forall u \in V$$

We can relax the integral constraint $x_u^i \in \{0,1\}$ as $x_u^i \ge 0$, because we already have the constraint that $\sum_{i=1}^k x_u^i = 1$, which indicates that we must have $x_u^i \le 1$, i.e., we only consider $x_u^i \ge 0$ for the original relaxed constraint $0 \le x_u^i \le 1$. Thus, we have the following **LP-Relaxation**:

$$\min \frac{1}{2} \sum_{e \in E} c_e \sum_{i=1}^k z_e^i$$
s.t. $\sum_{i=1}^k x_u^i = 1, \forall u \in V$

$$x_{s_i}^i = 1, i \in \{1, \dots, k\}$$

$$z_e^i \ge x_u^i - x_v^i, \forall e = (u, v) \in E$$

$$z_e^i \ge x_v^i - x_u^i, \forall e = (u, v) \in E$$

$$x_{s_i}^i = 1, i \in \{1, \dots, k\}$$

$$x_u^i \ge 0, \forall u \in V$$

(**Definition 3**) (**Reformulation of LP-Relaxation for MCP**) Think of \mathbf{x}_u as a point in a k-dimensional space with $\mathbf{x}_u = [x_u^1, x_u^2, \cdots, x_u^k]$. Define a k-simplex as $\Delta_k = \{\mathbf{x} \in \Re^k : \sum_{i=1}^k x^i = 1, x^i \geq 0\}$. For the constraint $z_e^i \geq |x_u^i - x_v^i|$ w.r.t. the edge e = (u, v), since we aim to minimize the objective function, we can rewrite such a constrain as $z_e^i = |x_u^i - x_v^i|$. We further have

$$\sum_{i=1}^{k} z_{e}^{i} = \sum_{i=1}^{k} |x_{u}^{i} - x_{v}^{i}| = ||\mathbf{x}_{u} - \mathbf{x}_{v}||,$$

where $\|\mathbf{x}_u - \mathbf{x}_v\|$ denotes the l_1 -distance between \mathbf{x}_u and \mathbf{x}_v . Thus, the **LP-Relaxation** in **Definition**

2 is equivalent to

$$\begin{aligned} & \min \frac{1}{2} \sum_{e = (u, v) \in E} c_e \left\| \mathbf{x}_u - \mathbf{x}_v \right\|_1 \\ & \text{s.t. } \mathbf{x}_u \in \Delta_k, \forall u \in V \\ & \mathbf{x}_{s.} = \mathbf{e}_i, i \in \{1, \cdots, k\} \end{aligned}$$

where e_i is defined as the point with 1 in the *i*-th coordinate and 0 elsewhere.

For k=3, we have the following **3-simplex**:

where the distinguished vertices $\{s_1, s_2, s_3\}$ are mapped to the 3 **corners** (1, 0, 0), (0, 1, 0), and (0, 0, 1) while other vertices are mapped to points on the 3-simplex.

Especially, we can **redraw** the **edges** in G on the 3-simplex, where the **cost** of each edge e=(u, v) is **scaled** by <u>half of the l_1 -distance between its two end points</u>, i.e., $\|\mathbf{x}_u - \mathbf{x}_v\|_1/2$. The goal of the **LP**-

Relaxation is to minimize the sum of reweighted cost of all the edges by properly mapping the vertices to the 3-simplex. Intuitively, when $c_e = c_{(u, v)}$ is costly, u and v should be mapped closed to each other on the 3-simplex.

In contrast, for the original **ILP**, we can only <u>map each vertex to 1 of the 3 corners of the 3-simplex</u>, i.e., (1, 0, 0), (0, 1, 0), and (0, 0, 1). The I_1 -distance between two vertices u and v that are mapped to 2 different corners (e.g., (1, 0, 0) and (0, 0, 1)) is (1+1)/2=1.

(Algorithm 2) (Randomized Rounding Algorithm) Define $B(s_i, r)$ be the <u>set of vertices</u> such that $\|\mathbf{e}_i - \mathbf{x}_u\|/2 \le r$, i.e., with the **ball-distance** at most r. Consider the following example, where we assume $r_1 < r_2 < 1$:

Especially, we have $B(S_i, 1)=V$, i.e., the whose vertex set, since we have $\|\mathbf{e}_i - \mathbf{e}_i\|/2=1$.

- (1) Solve the **optimal solution** to the **LP-Relaxation**.
- (2) Select $r \in (0,1)$ uniformly at random.
- (3) Assign vertices within $B(s_i, r)$ to C_i .

Notes: Algorithm 2 may not output a feasible solution to MCP, where (1) some vertices are not assigned to any set $\{C_1, \dots, C_k\}$ (w.r.t. small r value) or (2) some vertices are assigned to more than one sets.

(Algorithm 3) (Revised Randomized Rounding Algorithm)

- (1) Solve the optimal solution to the **LP-Relaxation**.
- (2) Select $r \in (0,1)$ uniformly at random.
- (3) Generate a **random permutation** Π of $\{1, 2, \dots, k\}$.
- (4) Examine the corners in the order given by the permutation Π , i.e., $s_{\Pi(1)}, s_{\Pi(2)}, \dots, s_{\Pi(k)}$.
- (5) For index $\Pi_{(i)}$, assign all vertices <u>not assigned so far</u> in $B(s_{\Pi(i)}, r)$ to set $C_{\Pi(i)}$.
- (6) At the end of the order, i.e., $s_{\Pi(k)}$, assign all vertices not assigned so far to $C_{\Pi(k)}$.

(**Lemma 1**) Vertex $u \in B(s_i, r)$ iff $1 - x_u^i \le r$.

Proof of Lemma 1. For any vertex $u \in V$, we have $\sum_{i=1}^k x_u^i = 1$. For the ball-distance between \mathbf{x}_u and \mathbf{e}_i , we have

$$\begin{aligned} \frac{1}{2} \| \mathbf{x}_{u} - \mathbf{e}_{i} \| &= \frac{1}{2} \sum_{j=1}^{k} |x_{u}^{j} - e_{i}^{j}| \\ &= \frac{1}{2} [(1 - x_{u}^{i}) + (\sum_{j=1}^{k} x_{u}^{j} - x_{u}^{i})] \\ &= \frac{1}{2} [(1 - x_{u}^{i}) + (1 - x_{u}^{i})] \\ &= 1 - x_{u}^{i} \end{aligned}$$

(**Definition 4**) An index *i* cuts an edge (u, v) if exactly one of end points \mathbf{x}_u and \mathbf{x}_v lies in $B(s_i, r)$.

(Claim 2) If an edge (u, v) belongs to the **multiway cut**, then some index i must **cut** (u, v).

Poor of Claim 2. Suppose that edge (u, v) belongs to the multiway cut, but no index i cut (u, v). Since no index i cut the edge (u, v), it must not contribute the final multiway cut in **Algorithm 3**,

which contradicts with our assumption.

Notes: Note that Claim 2 is the necessary condition, but not the sufficient condition for MCP. Consider the following example, where s_3 cuts the edge (u, v). However, suppose we consider s_1 before s_3 , then u and v are assigned to C_1 even though s_3 cuts (u, v).

(**Definition 5**) An index *i* settles an edge (u, v) if *i* is the **first index** in the random permutation Π such that at least one of the end point *u* and *v* belong to $B(s_i, r)$.

(Claim 3) For each index i and an edge (u, v), consider the quantity

$$\min\{\|\mathbf{e}_{i} - \mathbf{x}_{ij}\|, \|\mathbf{e}_{i} - \mathbf{x}_{ij}\|\}$$
.

Let l be the index that minimize the above quantity, i.e., l is the index that minimizes the distance to the closer of the two end points u and v. Index $i \neq l$ cannot settle edge (u, v) if l is ordered before i in the random permutation.

Proof of Claim 3. Suppose that $i\neq l$ settles edge (u, v) and l is ordered before i in the random permutation. Since l is the index that minimizes the above quantity and it's ordered before i, l should settle edge (u, v) before checking index i. Thus, i must not settle edge (u, v), which contradicts with our assumption.

(Claim 4) For any index $l \in \{1, \dots, k\}$ and an edge (u, v), we have $|x_u^l - x_v^l| \le ||\mathbf{x}_u - \mathbf{x}_v||/2$.

Proof of Claim 4. Since \mathbf{x}_u and \mathbf{x}_v are on the k-simplex, we have

$$\sum_{i=1}^{k} x_{u}^{i} = \sum_{i=1}^{k} x_{v}^{i} = 1$$

Consider $\sum_{i=1}^k x_u^i - \sum_{i=1}^k x_v^i = 0$, which can be rewritten as

$$(x_u^l - x_v^l) + \sum_{i \neq l} (x_u^i - x_v^i) = 0 \Leftrightarrow (x_u^l - x_v^l) = -\sum_{i \neq l} (x_u^i - x_v^i)$$

Consider the absolute value for both sides:

$$|x_{u}^{l}-x_{v}^{l}|=|\sum_{i\neq l}(x_{u}^{i}-x_{v}^{i})|$$

Since $x_u^j \ge 0$ and $x_v^j \ge 0$ for $j \in \{1, \dots, k\}$, we have

$$\begin{aligned} &|x_{u}^{l} - x_{v}^{l}| = &|\sum_{i \neq l} (x_{u}^{i} - x_{v}^{i})| \\ &\leq &\sum_{i \neq l} |x_{u}^{i} - x_{v}^{i}| \end{aligned}.$$

For both sides, we add $|x_u^l - x_v^l|$ and have

$$2 | x_u^l - x_v^l | \le \sum_{i=1}^k | x_u^i - x_v^i | = ||\mathbf{x}_u - \mathbf{x}_v||$$

Namely, we have

$$|x_u^l - x_v^l| \le \frac{1}{2} \|\mathbf{x}_u - \mathbf{x}_v\|.$$

(Theorem 3) The approximation ratio of Algorithm 3 is 1.5.

Proof of **Theorem 3**. Let $OPT_{MCP}(I)$ be the **optimal cost** of **MCP** and $OPT_{LP-R}(I)$ be the **optimal value** of the **LP-Relaxation**. We have

$$OPT_{MCP}(I) \ge OPT_{LP-R}(I) = \frac{1}{2} \sum_{e=(u,v) \in F} c_e \|\mathbf{x}_u - \mathbf{x}_v\|$$

Let F denote the **multiway cut** given by **Algorithm 3**. The expected cost of F is

$$\begin{split} \mathbf{E}[cost(F)] &= \sum_{e=(u,v)\in E} c_e P((u,v)\in F) \\ &= \sum_{e=(u,v)\in E} c_e P(u\in C_i,v\in C_j,i\neq j) \end{split} . \tag{1}$$

If an index i cut an edge (u, v), we have (1) $u \in B(s_i, r)$ and $v \notin B(s_i, r)$, or (2) $u \notin B(s_i, r)$ and

 $v \in B(s_i, r)$. By Claim 1, for the case (1) and (2), we have

$$1 - x_u^i \le r \le 1 - x_v^i$$
 and $1 - x_v^i \le r \le 1 - x_u^i$.

For the probability that index i cut edge (u, v), we have

$$P(\text{index } i \text{ cut } (u, v)) = P(r \in [\min\{1 - x_u^i, 1 - x_v^i\}, \max\{1 - x_u^i, 1 - x_v^i\}])$$

$$= \frac{|(1 - x_u^i) - (1 - x_v^i)|}{1}$$

$$= |x_u^i - x_v^i|$$
(2)

For the probability that end point u and v are in different sets e.g., C_i and C_j ($i\neq j$), we have

$$P(u \in C_i, v \in C_j, i \neq j) = P(\text{some index } i \text{ cuts } (u, v))$$

$$\leq \sum_{i=1}^k (\text{index } i \text{ cuts } (u, v))$$

$$\leq \sum_{i=1}^k |x_u^i - x_v^i|$$

$$= \|\mathbf{x}_u - \mathbf{x}_v\|$$
(3)

By equation (2) and (3), we further have the **expected cost** of F such that

$$\begin{split} \mathbf{E}[cost(F)] &= \sum_{e = (u, v) \in E} c_e P(u \in C_i, v \in C_j, i \neq j) \\ &\leq \sum_{e = (u, v) \in F} c_e \left\| \mathbf{x}_u - \mathbf{x}_v \right\| \end{split}.$$

Combine with (1), we have

$$OPT_{MCP}(I) \ge \frac{1}{2} \sum_{e=(u,v)\in F} c_e \|\mathbf{x}_u - \mathbf{x}_v\| \ge \frac{1}{2} E[cost(F)],$$

namely we have

$$E[cost(F)] \le 2OPT_{MCP}(I)$$
.

In this case, the approximation ratio of Algorithm 3 is

$$\frac{\mathrm{E}[cost(F)]}{OPT_{\mathrm{MCP}}(I)} \le \frac{2OPT_{\mathrm{MCP}}(I)}{OPT_{\mathrm{MCP}}(I)} = 2$$

In fact, we can <u>further improve the analysis</u> by <u>considering the order that the end points of an edges</u> are partitioned.

Let X_i denote the event that index i settles edge (u, v). Let Y_i denote the event that index i cuts edge (u, v). Edge (u, v) is in the multiway cut result only if there's some index i that both settles and cuts edge (u, v), i.e., $X_i \wedge Y_i$.

For any two indices $i\neq l$, suppose l is with the same definition as in Claim 3 (l is the index that minimizes the distance to the closer of the two end points u and v, i.e., l is the index that minimize $\min\{\|\mathbf{e}_i - \mathbf{x}_u\|, \|\mathbf{e}_i - \mathbf{x}_v\|\}$). We have

 $P(i \text{ occurs before } l \text{ in } \Pi) = P(l \text{ occurs before } i \text{ in } \Pi) = 1/2$.

By Claim 3, we further have

$$P(X_i \wedge Y_i | l \text{ occurs before } i) = 0$$
.

For the probability that $X_i \wedge Y_i$, we have

$$\begin{split} &P(X_i \wedge Y_i) = P(i \text{ occurs before } l)P(X_i \wedge Y_i \mid i \text{ occurs before } l) \\ &+ P(l \text{ occurs before } i)P(X_i \wedge Y_i \mid l \text{ occurs before } i) \\ &= \frac{1}{2}P(X_i \wedge Y_i \mid i \text{ occurs before } l) \\ &\leq \frac{1}{2}P(Y_i) \end{split}$$

Further, by equation (2), we have

$$P(X_i \wedge Y_i) \le \frac{1}{2} P(Y_i) = \frac{1}{2} |x_u^i - x_v^i| \cdot (4)$$

In contrast, for index *l*, we have

$$P(X_l \wedge Y_l) \le P(Y_l) = |x_u^l - x_v^l| \cdot (5)$$

By equation (4) and (5), we have

$$\begin{split} P((u,v) \in F) &\leq \sum_{i=1}^{k} P(X_{i} \wedge Y_{i}) \\ &= \sum_{i=1,i\neq l}^{k} P(X_{i} \wedge Y_{i}) + P(X_{l} \wedge Y_{l}) \\ &\leq \frac{1}{2} \sum_{i=1,i\neq l}^{k} |x_{u}^{i} - x_{v}^{i}| + |x_{u}^{l} - x_{v}^{l}| \\ &= \frac{1}{2} \sum_{i=1,i\neq l}^{k} |x_{u}^{i} - x_{v}^{i}| + \frac{1}{2} |x_{u}^{l} - x_{v}^{l}| + \frac{1}{2} |x_{u}^{l} - x_{v}^{l}| \\ &= \frac{1}{2} \sum_{i=1}^{k} |x_{u}^{i} - x_{v}^{i}| + \frac{1}{2} |x_{u}^{l} - x_{v}^{l}| \\ &= \frac{1}{2} ||\mathbf{x}_{u} - \mathbf{x}_{v}|| + \frac{1}{2} |x_{u}^{l} - x_{v}^{l}| \end{split}$$

By Claim 4 and equation (6), we have

$$P((u,v) \in F) \le \frac{1}{2} \|\mathbf{x}_{u} - \mathbf{x}_{v}\| + \frac{1}{2} |x_{u}^{l} - x_{v}^{l}|$$

$$\le \frac{1}{2} \|\mathbf{x}_{u} - \mathbf{x}_{v}\| + \frac{1}{4} \|\mathbf{x}_{u} - \mathbf{x}_{v}\|$$

$$= \frac{3}{4} \|\mathbf{x}_{u} - \mathbf{x}_{v}\|$$
(8)

Thus, the **expected cost** of F is

$$\begin{split} \mathbf{E}[cost(F)] &= \sum_{e=(u,v)\in E} c_e P((u,v) \in F) \\ &\leq \frac{3}{4} \sum_{e=(u,v)\in E} c_e \left\| \mathbf{x}_u - \mathbf{x}_v \right\| \\ &\leq \frac{3}{2} \cdot \frac{1}{2} \sum_{e=(u,v)\in E} c_e \left\| \mathbf{x}_u - \mathbf{x}_v \right\| \\ &\leq \frac{3}{2} OPT_{\mathrm{MCP}}(I) \end{split}$$

In summary, the approximation ratio of Algorithm 3 is

$$\frac{\mathrm{E}[cost(F)]}{OPT_{\mathrm{MCP}}(I)} \le \frac{3}{2} \cdot \frac{OPT_{\mathrm{MCP}}(I)}{OPT_{\mathrm{MCP}}(I)} = 1.5 \cdot$$