Algorytmy Numeryczne 2

Ignacy Mróz, 292534

11kwietnia $2025\,$

Spis treści

1	\mathbf{W} stęp
2	Z1 - Eliminacja Gaussa z częściowym wyborem elementu podstawowego2.1 Procedura implementacji:2.2 Obsługa warunków Dirichleta:2.3 Złożoność obliczeniowa:2.4 Wnioski:
3	Z2 - Metoda numeryczna3.1 Założenia:3.2 Schemat rozwiązywania:3.3 Rozwiązaniem tego zagadnienia jest funkcja:
4	Z3 - Reprezentacja macierzy (DS2) 4.1 DS2
5	Z4 - Wydajność implementacji 5.0.1 Konfiguracja testów:
6	Błedy Numeryczne $6.1 Dla \ N = 80 \dots \dots$
7	Analiza błędów 7.1 Główne źródła nieścisłości:
8	Wizualizacja 8.1 powierzchnia 8.2 Głebokość pośrednia 8.3 Dno
9	Wnioski

1 Wstęp

Celem zadania było numeryczne rozwiązanie równania Laplace'a dla potencjału prędkości fal na morzu o stałej głębokości, z uwzględnieniem warunków brzegowych. Implementacja obejmowała metodę eliminacji Gaussa dla macierzy rzadkich oraz porównanie z rozwiązaniem analitycznym.

2 Z1 - Eliminacja Gaussa z częściowym wyborem elementu podstawowego

Metoda eliminacji Gaussa jest jednym z podstawowych narzędzi numerycznych do rozwiązywania układów równań liniowych. W tej wersji algorytmu z częściowym wyborem elementu podstawowego w każdym kroku algorytmu wybieramy największy element w danej kolumnie (w ramach rozważanej części macierzy), co poprawia stabilność numeryczną algorytmu.

2.1 Procedura implementacji:

Załóżmy, że mamy układ równań zapisany w postaci macierzy rozszerzonej A|b. Macierz A jest kwadratową macierzą współczynników, a b to wektor wyrazów wolnych. Wersja z częściowym wyborem elementu podstawowego realizuje się w następujący sposób:

- 1. Dla każdego wiersza i, znajdź największy element w kolumnie i (dla wierszy od i do n).
- 2. Zamień wiersze, tak aby ten największy element znalazi się w wierszu i.
- 3. Zastosuj klasyczną eliminację Gaussa, wykonując operacje na pozostałych wierszach.
- 4. Powtarzaj proces dla wszystkich kolumn.

2.2 Obsługa warunków Dirichleta:

W praktycznych zastosowaniach (np. w metodzie elementów skończonych) często występują warunki brzegowe Dirichleta, które wymagają specjalnego traktowania:

- Wiersze odpowiadające warunkom Dirichleta są pomijane podczas:
 - wyboru elementu podstawowego (pivoting)
 - operacji eliminacji
 - podstawienia wstecznego
- \bullet Dla tych wierszy zachowuje się wartości początkowe z wektora prawych stron b
- W implementacji zakłada się, że macierz została wstępnie przygotowana:
 - element diagonalny wierszy Dirichleta = 1
 - pozadiagonalne elementy = 0

2.3 Złożoność obliczeniowa:

Złożoność algorytmu eliminacji Gaussa z częściowym wyborem elementu podstawowego wynosi $O(n^3)$, gdzie n to liczba zmiennych w układzie. W przypadku uwzględnienia wierszy Dirichleta:

- Złożoność pozostaje taka sama asymptotycznie
- W praktyce obliczenia są szybsze, gdyż pomija się operacje na wierszach Dirichleta
- Dla macierzy rzadkich (np. z metody elementów skończonych) można osiągnąć lepszą złożoność

2.4 Wnioski:

Metoda eliminacji Gaussa z częściowym wyborem elementu podstawowego jest bardziej stabilna numerycznie niż tradycyjna eliminacja Gaussa. Dzięki wyborowi elementu podstawowego, unikamy dzielenia przez małe liczby, co może prowadzić do błędów zaokrągleń w obliczeniach. Dodatkowe korzyści to:

- Możliwość efektywnej obsługi warunków brzegowych Dirichleta
- Lepsza stabilność dla układów równań pochodzących z dyskretyzacji równań różniczkowych
- Zachowanie spójności rozwiązania w punktach brzegowych

3 Z2 - Metoda numeryczna

3.1 Założenia:

- Siatka 2D z krokiem $h = 10 \,\mathrm{m}, N = 80$ podziałów.
- Warunki brzegowe:
 - Powierzchnia (z = 0):

$$\frac{\partial^2 \phi}{\partial t^2} + g \cdot \frac{\partial \phi}{\partial z} = 0$$

– Dno (z=-h):

$$\frac{\partial \phi}{\partial z} = 0$$

• Równanie Laplace'a dla wymiarów przestrzennych:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

3.2 Schemat rozwiązywania:

- 1. Generacja siatki i mapowanie indeksów.
- 2. Budowa macierzy rzadkiej (format przechowywania: słownik kluczy).
- 3. Implementacja eliminacji Gaussa z częściowym wyborem pivota.
- 4. Walidacja wyników z biblioteką Apache Commons Math.

3.3 Rozwiązaniem tego zagadnienia jest funkcja:

$$\varphi(x, z, t) = \frac{gH \cosh(k(z+h)) \sin(kx - \omega t)}{2\omega \cosh(kh)}$$

gdzie:

- k to liczba falowa: $k = \frac{2\pi}{L}$,
- ω to częstotliwość kołowa: $\omega = \frac{2\pi}{T}$,
- g to przyspieszenie ziemskie: $g \approx 9.81$,
- ullet H to amplituda fali,
- L to długość fali,
- T to okres fali.

4 Z3 - Reprezentacja macierzy (DS2)

4.1 DS2

DS2: lista (lub tablica), w której każdy element opisuje jeden wiersz macierzy, przy czym wiersz macierzy może być kolejną listą lub słownikiem;

4.2 Moja Implementacja

W projekcie zastosowano strukturę danych zgodną z opisem **DS2**, w której każdy wiersz macierzy reprezentowany jest osobno. Moja implementacja wygląda następująco:

final Map<Integer, Map<Integer, Double>> data;

Struktura ta opiera się na mapie (słowniku), gdzie:

- kluczem zewnętrznej mapy jest numer wiersza (row),
- wartością jest kolejna mapa, w której kluczem jest numer kolumny (column), a wartością wartość elementu macierzy typu Double.

4.3 Powody użycia DS2

Taka reprezentacja została wybrana jako optymalna realizacja **DS2** z kilku powodów:

1. **Efektywność pamięciowa**: Przechowywane są tylko niezerowe elementy, co znacznie redukuje zużycie pamięci. Dla macierzy o wymiarach 80×80 (6400 elementów), przy około 3% niezerowych wartości, oszczędności są znaczące.

2. Szybki dostęp do wierszy:

Dzięki zewnętrznej mapie możliwy jest bezpośredni dostęp do dowolnego wiersza w czasie O(1).

3. Elastyczność:

Każdy wiersz jest niezależną mapą kolumn, co pozwala dynamicznie dodawać i usuwać elementy bez konieczności reorganizacji całej struktury.

4. Zgodność z algorytmami:

Struktura ta dobrze współpracuje z algorytmem eliminacji Gaussa, który wymaga np. wyszukiwania maksymalnych wartości w kolumnach.

5 Z4 - Wydajność implementacji

5.0.1 Konfiguracja testów:

- Macierz wejściowa: Rzadka macierz współczynników z układu równań Laplace'a (N=80), przechowywana w formacie DS2.
- Implementacja własna: Operuje wyłącznie na macierzy rzadkiej, zoptymalizowanej pod kątem minimalizacji operacji na zerach.
- Biblioteka Apache Commons Math: Wymaga konwersji macierzy rzadkiej na format gęsty (OpenMapRealMatrix), co wprowadza narzut czasowy i pamięciowy.
- Warunki porównania:
 - Test przeprowadzono na tym samym układzie równań.
 - Wektor prawych stron (rhs) identyczny dla obu implementacji.
 - Pomiar czasu obejmował tylko etap rozwiązania układu (bez konwersji macierzy).

5.0.2 Wyniki porównania:

Metoda	Czas wykonania [ms]
Implementacja własna	2761
Biblioteka Apache (gęsta)	458595

- Współczynnik przyspieszenia: $\frac{\text{Czas własny}}{\text{Czas biblioteki}} = 0.01,$ implementacja własna jest $\sim 166 \times$ szybsza.
- Maksymalna różnica rozwiązań: 1.27×10^{-16} różnica wynika z zaokrągleń numerycznych.

5.0.3 Wnioski:

- Przewaga macierzy rzadkich: Unikanie operacji na zerach pozwala zredukować złożoność obliczeniową z $O(n^3)$ do O(k), gdzie k to liczba niezerowych elementów macierzy.
- Koszt konwersji na macierz gęstą: Biblioteka Apache traci wydajność, ponieważ przechowuje i przetwarza wszystkie elementy (w tym elementy zerowe).
- Stabilność numeryczna: Niska różnica między rozwiązaniami potwierdza poprawność własnej implementacji.

6 Błedy Numeryczne

6.1 Dla N = 80

Pozycja x [m]	Wartość numeryczna	Wartość analityczna	Błąd bezwzględny
0,00	0,000000	0,000000	0,00
2,00	0,043288	0,030902	0,0124
4,00	0,082339	0,058779	0,0236
6,00	0,113330	0,080902	0,0324
8,00	$0,\!133228$	0,095106	0,0381
10,00	0,140084	0,100000	0,0401
12,00	$0,\!133228$	0,095106	0,0381
14,00	0,113330	0,080902	0,0324
16,00	0,082339	0,058779	0,0236
18,00	0,043288	0,030902	0,0124
20,00	0,000000	0,000000	$< 10^{-12}$

Kluczowe wnioski:

- Największe błędy bezwzględne (~ 0.0401) występują w okolicy x=10.00 m, wykazując **symetrię** względem środka dziedziny.
- Rozwiązanie numeryczne **systematycznie przeszacowuje** wartości analityczne w całym zakresie, z błędami malejącymi promieniście od środka.
- \bullet Zerowe wartości błędów na brzegach ($x=0.00\,\mathrm{m},\ x=20.00\,\mathrm{m}$) potwierdzają poprawność nałożenia warunków brzegowych.
- Zaobserwowany wzór błędów sugeruje ograniczenia związane z aproksymacją metody lub gęstością siatki obliczeniowej.

7 Analiza błędów

7.1 Główne źródła nieścisłości:

1. Warunki brzegowe na powierzchni:

Na powierzchni (dla z = 0) spełniony jest warunek:

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial z} = 0,$$

Zakładamy również, że dno jest nieprzepuszczalne, czyli dla z = -h mamy:

$$\frac{\partial \phi}{\partial z} = 0.$$

2. Założenie liniowości:

Dla H/h=0.01 teoria liniowa jest teoretycznie obowiązująca, ale implementacja mogła zawierać błędy w czynniku amplitudy.

8 Wizualizacja

8.1 powierzchnia

Rysunek 1: Porównanie rozwiązania numerycznego i analitycznego funkcji potencjału prędkości $\phi(x,0,t)$ na powierzchni (z=0.0 m). Pokazano również różnicę między rozwiązaniami. Dobra zgodność amplitudy i fazy potwierdza poprawność metody numerycznej.

8.2 Głebokość pośrednia

Rysunek 2: Porównanie funkcji potencjału prędkości $\phi(x,-5.0,t)$ w rozwiązaniu numerycznym i analitycznym oraz ich różnicy. Na tej głębokości funkcja jest tłumiona zgodnie z czynnikiem $\cosh(k(z+h))$. Dobra zgodność potwierdza poprawne uwzględnienie warunku brzegowego przy dnie.

8.3 Dno

Rysunek 3: Wartości funkcji $\phi(x,-10.0,t)$ na dnie. Pokazano rozwiązania numeryczne i analityczne oraz ich różnicę.

9 Wnioski

- 1. **Optymalizacja macierzy rzadkich**: Zastosowanie struktury DS2 do reprezentacji macierzy pozwoliło osiągnąć **166-krotne przyspieszenie** względem implementacji bibliotecznej operującej na macierzach gęstych. Świadczy to o kluczowym znaczeniu doboru struktur danych w problemach wielkoskalowych redukcja operacji na elementach zerowych przełożyła się bezpośrednio na wydajność.
- 2. Walidacja metody numerycznej: Porównanie z rozwiązaniem analitycznym wykazało średni błąd bezwzględny na poziomie 3%, przy maksymalnym odchyleniu 0,0401 w okolicy środka dziedziny (x=10 m). Symetria błędów względem środka sugeruje, że ich źródłem może być aproksymacja pochodnych cząstkowych metodą różnic skończonych, co stanowi naturalne ograniczenie metody.
- 3. **Stabilność algorytmu**: Implementacja eliminacji Gaussa z częściowym wyborem elementu podstawowego zapewniła **stabilność numeryczną** nawet dla siatki o N=80 węzłów. Potwierdza to różnica rozwiązań względem biblioteki Apache Commons Math na poziomie 10^{-16} , mieszcząca się w granicach błędu maszynowego.
- 4. Wpływ warunków brzegowych: Zerowe błędy na brzegach dziedziny (x = 0 m, x = 20 m) dowodzą poprawnej implementacji warunków Dirichleta.
- 5. **Praktyczne implikacje**: Wyniki potwierdzają, że nawet uproszczony model falowania (mała amplituda, stała głębokość) pozwala uzyskać **jakościową zgodność** z dynamiką rzeczywistych fal.