高雄中學 109 年度第一學期 期末考 二年級 自然組

數 學 科 班別: 姓名: 座號:

- 一、 是非題:(30%)
- 甲. 在空間中,試判斷下列各敘述正確與否?(正確劃 O,錯誤劃 X)
 - (1) 相異三直線 L_1, L_2, L_3 。若 L_1 , L_2 歪斜且 L_2 , L_3 歪斜,則 L_1 , L_3 歪斜
 - (2) 相異三直線 L_1, L_2, L_3 交於一點。若 L_1 , L_2 垂直且 L_2 , L_3 垂直,則 L_1 , L_3 垂直
 - (3) 相異二平面 E_1, E_2 均與直線L垂直,則 E_1, E_2 平行
 - (4) 相異二直線 L_1, L_2 均與平面E垂直,則 L_1, L_2 平行
 - (5) 相異二直線 L_1, L_2 ,均與平面E平行,則 L_1, L_2 平行
- Z . 空間中相異四點 $\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}$,其中任三點均不共線,試問滿足下列哪個條件,可使 $\mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}$ 四點共平面?

(正確劃 O,錯誤劃 X)

- (1) 存在實數 α , β ,使得 $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$
- (2) $\left(\overrightarrow{AB} \times \overrightarrow{AC}\right) \cdot \overrightarrow{AD} = 0$
- (3) $\left(\overrightarrow{AB} \times \overrightarrow{AC}\right) \times \overrightarrow{AD} = \overrightarrow{O}$
- $(4) \ \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) \times \left(\overrightarrow{AB} \times \overrightarrow{AD}\right) = \overrightarrow{O}$
- (5) $\left(\overrightarrow{AB} \times \overrightarrow{AC}\right) \cdot \left(\overrightarrow{AB} \times \overrightarrow{AD}\right) = 0$
- 丙. 下列何圖形正射影在一平面上可能為正方形?(可能劃O,不可能劃X)
 - (1) 正方形
 - (2) 非正方形之矩形
 - (3) 非矩形之平行四邊形
 - (4) 梯形
 - (5) 兩組對邊均不平行的四邊形

二、 填充題:(54%)

- 2. 有一凸n面體,共有m個頂點,k條稜邊,若已知其每面均為三角形且每一頂點均與5個面相接,試問n-m+k之值。
- 3. 如圖所示,正立方體 ABCD-EFGH 的稜長等於 $2(即\overline{AB}=2)$, K 為正方形 ABCD 的中心,M 、N 分別為線段BF 、EF 的中點。 試求 $\overrightarrow{KM} \cdot \overrightarrow{KN}$ 之值。

- **4.** 空間直角坐標系上有一三角形,其正射影在xy平面、yz平面、zx平面上的圖形面積分別為3,4,5平方單位,試問此三角形的面積為何?
- 5. 已知一四面體 A-BCD 的體積 100 立方單位。若點 P,Q,R 分別為稜 $\overline{AB},\overline{AC},\overline{AD}$ 的中點,試求四面體 B-PQR 的體積。
- 6. 設 $a \cdot b \cdot c$ 均為實數, $a^2 + b^2 + c^2 = 54$,試問:當數對(a,b,c)為何時?行列式 $\begin{vmatrix} a & b & c \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{vmatrix}$ 有最小值。
- 7. 空間中三射線 \overrightarrow{OX} 、 \overrightarrow{OY} 、 \overrightarrow{OZ} 互成 60° ,若平面 $OXY_{\rm 與平面}$ $OYZ_{\rm 的}$ 銳夾角 α ;射線 \overrightarrow{OX} 與平面 $OYZ_{\rm 的}$ 夾角 β 。試求(1) $\cos \alpha$ (2) $\sin \beta$

2

8. 有一三角形紙板 ABC, $\overline{AB}=6$, $\overline{BC}=10$, $\overline{CA}=8$,D 是邊 \overline{BC} 的中點。若以 \overline{AD} 摺線,將 ΔABD 往上摺,使 其所在平面與 ΔACD 所在平面互相垂直,試求此時 B,C 兩點間的距離?

0

三、 計算證明題:(16%)

- 1. 空間直角坐標系上一正立方體,其中四個頂點為 $(\sqrt{2},2,0)$, $(\sqrt{2},-2,0)$, $(-\sqrt{2},0,2)$, $(-\sqrt{2},0,-2)$, 試求此正立方體的另四個頂點坐標。 (8%)
- 2. 空間中三向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 。 試證 : $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$ 。 (8%)

高雄中學 109 年度第一學期 期末考 二年級 自然組

班別: 姓名:

座號:

數學科

	一、 是非題:(30%)																
甲						Z						丙					
	(1)	(2)	(3)	(4)	(5)		(1)	(2)	(3)	(4)	(5)		(1)	(2)	(3)	(4)	(5)
<u> </u>	、填	充題	: (54%	%)													
	1					2	2					3					
	4					5	5				6	6					
	7(1)					7	7(2)				8	8					
<u>=</u>	1.(8 ⁹)	//o)	: (169	%)													

高雄中學 109 年度第一學期 期末考 二年級 自然組

數學科

班別: 姓名:

座號:

四、 是非題:(30%)

甲

I	(4)	(0)	(2)	(4)	(-)
	(1)	(2)	(3)	(4)	(5)
	\mathbf{X}	X	O	O	X

Z

(1)	(2)	(3)	(4)	(5)
O	O	X	O	X

丙

(1)	(2)	(3)	(4)	(5)
O	O	O	X	X

五、 填充題:(54%)

1 0	2 38	3	3
4 $5\sqrt{2}$		6	(-3,3,-6)
7(1) $\frac{1}{3}$	7(2) $\frac{\sqrt{6}}{3}$	8	$\frac{2\sqrt{337}}{5}$

六、 計算題:(16%)

1.(8%) ANS:
$$(\sqrt{2},0,\pm 2)$$
, $(-\sqrt{2},\pm 2,0)$

2.(8%) 證明:設 $\overrightarrow{a} = (a_1, a_2, a_3) \cdot \overrightarrow{b} = (b_1, b_2, b_3) \cdot \overrightarrow{c} = (c_1, c_2, c_3)$

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \cdots = \cdots$$

$$\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \cdots = \cdots$$

$$\therefore (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$$