CMP418: Data Structures and Algorithms Analysis (3 units)

Lecture 2: Fundamentals of the Analysis of Algorithm Efficiency

Chapter 2 Outline

- ► The Efficiency Analysis Framework
- ► Asymptotic Notations and Basic Efficiency Classes
- ► Mathematical Analysis of Nonrecursive Algorithms
- ► Mathematical Analysis of Recursive Algorithms
- Example: Computing the nth Fibonacci Number
- ► Empirical Analysis of Algorithms
- ► Algorithm Visualization

Chapter 2 Outline

- ► The Efficiency Analysis Framework
- Asymptotic Notations and Basic Efficiency Classes
- ► General Plan for Analysis of Nonrecursive Algorithms
 Mathematical Analysis of Recursive Algorithms
- Example: Computing the nth Fibonacci Number
- Empirical Analysis of Algorithms
- ► Algorithm Visualization

The Efficiency Analysis Framework

- Analysis of algorithm is theoretical study of computer program performance (processing speed) and resource usage (communication, primary and secondary memory).
- Analysis of algorithm's efficiency can be achieve in two resources
 - ► Time efficiency, also called time complexity, indicates how fast an algorithm in question runs ~ performance
 - ▶ **Space efficiency, also called space complexity,** refers to the amount of memory units required by the algorithm in addition to the space needed for its input and output ~ resource usage.
- Other evaluable criteria of algorithm other than performance includes; Correctness (Accuracy and precision), Simplicity (Ease), Maintainability (Continuity), Cost of programming time, Robustness, Stability, Features, Security and Scalability.

The Efficiency Analysis Framework...

- ► The efficiency analysis framework is not complete until the following questions are answered.
 - ► How to measure an Input's Size
 - ▶ How to state **Units for Measuring** Running Time
 - ► How to Compute Orders of Growth
 - ▶ How to derive Worst, Best and Average Cases Efficiencies

Measuring an Input's Size

- We can investigate an algorithm's efficiency as a function of some parameter n indicating the algorithm's input size.
- ▶ The choice of Input size depends on the problem as shown in the examples;
 - ▶ Example 1: what is the **input size** for sorting *n* numbers say in a polynomial?
 - ▶ it will be the polynomial's degree or the number of its coefficients
 - \blacktriangleright Example 2: what is the **input size** for multiplying two $n \times n$ matrices?
 - ▶ The first and more frequently used is the matrix order n
 - Example 3: What is the input's size for a spell-checking algorithm?
 - ▶ If the algorithm examines individual characters of its input
 - ▶ we should measure the size by the number of characters
 - ▶ if it works by processing words
 - we should count their number in the input

7

How to State Units for Measuring Running Time

- When we measure the running time of a program implementing the algorithm in milliseconds, seconds, etc.
 - Drawbacks so much dependence on extraneous factors like;
 - ▶ Speed of particular computer.
 - Quality of the program implementation of the algorithm.
 - ▶ Compiler used in generating the machine code.
 - ▶ Difficulty of clocking the actual running time of the program.
- Since we are after a measure of an algorithm's efficiency,
 - we would like to have a metric that does not depend on these extraneous factors.
- ▶ Soln 1: Count the number of times each algorithm's operation is executed
 - ▶ Difficult and unnecessary
- ▶ Soln 2: Count the number of times an algorithm's "basic operation" is executed

Measuring Running Time base Basic Operation

- ▶ Basic operation (Bop): is the operation contributing the most to the total running time, and compute the number of times the basic operation is executed.
- Usually the most time-consuming operation in the algorithm's innermost loop.

Problem	Input size Measure	Basic operation
Search for a key in a list of n items	# of items in the list	Key comparison
Multiplication of two n×n matrices	Matrix dimensions or # of elements	Multiplication of two numbers
Typical graph problem	# of vertices and/or edges	Visiting a vertex or traversing an edge

Theoretical Analysis of Time Efficiency

- ▶ Let Cop = execution time of an algorithm's Bop on a particular computer,
- let **C(n)** be the number of times this operation needs to be executed for this algorithm.
- ▶ The we can estimate running time efficiency **T(n)** of a program implementing this algorithm on that computer by;

▶ Where **n** is the input size

10

What is the Orders of Growth

S/N	n	log_2n	n	$n log_2 n$	n^2	n^3	n^2	n!
1	10	3.3	10	3.3×10	10 ²	103	103	3.6×10 ⁶
2	10 ²	6.6	10 ²	6.6×10 ²	104	106	1.3×10 ³⁰	9.3×10 ¹⁵⁷
3	103	10	10 ³	10×10 ³	106	109		
4	104	13	104	13×10 ⁴	108	1012		
5	105	17	10 ⁵	17×10 ⁵	1010	10 ¹⁵		
6	106	20	106	20×10 ⁶	1012	1018		

$$log_2 n = log_2 b log_b n$$

$$log_2 2n = log_2 2 + log_2 n = 1 + log_2 n$$

How to Derive Worst, Best and Average-Cases Efficiencies

- \blacktriangleright Worst-case (usually): $C_{worst}(n)$ Maximum over input of size of size n
- ▶ Best-case (Bogus): $C_{best}(n)$ Minimum over input of size of size n
 - ► We don't worry about this since some slower algorithm works faster on some inputs
- ightharpoonup Average-case (Sometimes): $C_{avg}(n)$ expected time over input of size n
 - ▶But we don't know the statistical distribution of the inputs
 - So we make assumption of the statistical distribution
 - like all inputs are equally likely possibly uniform inputs
 - ▶NOT the average of worst and best cases

Sequential Search Algorithm

```
ALGORITHM SequentialSearch(A[0..n-1], K)
    //Searches for a given value in a given array by sequential search
    //Input: An array A[0..n-1] and a search key K
    //Output: The index of the first element in A that matches K
              or -1 if there are no matching elements
    i \leftarrow 0
    while i < n and A[i] \neq K do
        i \leftarrow i + 1
    if i < n return i
    else return -1
```

How to Derive Average-Cases Efficiencies of Seq. Search

- ▶ Two assumptions:
 - ▶ Probability of successful search is p $(0 \le p \le 1)$
 - ▶ Search key can be at any index with equal prob. (uniform distribution)

 $C_{avg}(n)$ = Expected # of comparisons for success + Expected # of comparisons if k is not in the list

$$C_{avg}(n) = \left[1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right] + n \cdot (1 - p)$$

$$= \frac{p}{n} \left[1 + 2 + \dots + i + \dots + n\right] + n(1 - p)$$

$$= \frac{p}{n} \frac{n(n+1)}{2} + n(1 - p) = \frac{p(n+1)}{2} + n(1 - p).$$

Recapitulation of the Analysis Framework

- ▶ **Time** and **space** efficiencies are measured as functions of the algorithm's input size.
- ► Time efficiency is measured by counting the number of times the algorithm's basic operation is executed.
- Space efficiency is measured by counting the number of extra memory units consumed by the algorithm.
- Efficiencies of some algorithms may differ significantly for inputs of the same size.
- For such algorithms, we need to distinguish between the worst-case, average-case, and best-case efficiencies.
- The framework's primary interest lies in the **order of growth** of the algorithm's **running time** (extra memory units consumed) as its input size goes to infinity.

What next?

- The Efficiency Analysis Framework
- ► Asymptotic Notations and Basic Efficiency Classes
- ► General Plan for Analysis of Nonrecursive Algorithms
- Mathematical Analysis of Recursive Algorithms
- Example: Computing the nth Fibonacci Number
- ► Empirical Analysis of Algorithms
- ► Algorithm Visualization

Asymptotic Notations and Basic Efficiency Classes

- ► Asymptotic other of growth is a way of comparing functions that **ignores**
- constant factors and small input sizes
- ▶ It is a way of comparing size and functionality of a function
- Its is a way of describing the characteristics of a function in the limit

$$\mathbf{0} \approx \leq$$
, $\Omega \approx \geq$, $\Theta \approx =$, $\Omega \approx =$, $\Omega \approx >$,

$$\Omega \approx \geq$$
,

$$\Theta \approx =$$
,

$$0 \approx =$$

$$\omega \approx >$$
,

- We can define asymptotic Order of growth in two methods:
- Method 1: Using Theorem
- ▶ Method 2: Using definitions of O-, Ω -, and Θ -notations.

Asymptotic Notations and Basic Efficiency Classes

Asymptotic O(big oh)-Notation

- ▶ **Definition:** A function t(n) is said to be in O(g(n)), denoted $f(n) \in O(g(n))$, if f(n) is bounded above by some positive **constant** multiple of g(n) for sufficiently large n. If we can find +ve constants c and n_0 such that: $f(n) \le c \times g(n)$ for all $n \ge n_0$
- \triangleright O(g(n)): Set of functions that grow <u>no faster</u> than g(n).
 - f(n) ∈ O(g(n))

Example:

10n+5 is $O(n^2)$

5n+20 is O(n)

Try this 😊

- ▶ Is $100n+5 \in O(n^2)$?
- ▶ Is $2^{n+1} \in O(2^n)$?
- ▶ Is $2^{2n} \in O(2^n)$?
- ► Is $\frac{1}{2}$ n(n-1) \in O(n²) ?

Asymptotic Ω (big Omega)-Notation

- ▶ **Definition:** A function t(n) is said to be in $\Omega(g(n))$, denoted $f(n) \in \Omega(g(n))$, if f(n) is bounded below by some positive **constant** multiple of g(n) for sufficiently large n. If we can find +ve constants c and n_0 such that: $f(n) \ge c \times g(n)$ for all $n \ge n_0$
- \triangleright $\Omega(g(n))$: Set of functions that grow <u>no faster</u> than f(n).
 - ▶ $f(n) \in \Omega(g(n))$

Try this 😊

- ▶ Is $n^3 \in \Omega(n^2)$?
- ▶ Is $100n+5 \in \Omega(n^2)$?
- ► Is $\frac{1}{2}$ n(n-1) $\in \Omega(n^2)$?
- ► Is $\frac{1}{4}$ n(n+1) $\in \Omega(n^3)$?

Asymptotic Θ (big theta)-Notation

Definition: A function f(n) is said to be in $\Theta(g(n))$ denoted $f(n) \in \Theta(g(n))$, if f(n) is bounded both above and below by some positive constant multiples of g(n) for all sufficiently large n. If we can find +ve constants c_1 , c_2 , and n_0 such that $c_2 \times g(n) \le f(n) \le c_1 \times g(n) \ \forall \ n \ge n_0$

 \triangleright $\Theta(g(n))$: Set of functions that grow <u>at the same rate</u> as g(n)

▶ $f(n) \in \Theta(g(n))$

Try this 😊

- ► Is $\frac{1}{2}$ n(n-1) $\in \Theta(n^2)$?
- ▶ Is $n^2 + \sin(n) \in \Theta(n^2)$?
- ▶ Is $an^2+bn+c \in \Theta(n^2)$ for a > 0?
- ▶ Is $(n+a)^b \Theta(n^b)$ for b > 0?

Asymptotic Notations and Basic Efficiency Classes

- ▶ If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in (\max\{g_1(n), g_2(n)\})$
- \blacktriangleright Analogous assertions are true for Ω and Θ notations.
- ▶ **Implication:** if sorting makes no more than n^2 comparisons and then binary search makes no more than log_2n comparisons, then efficiency is given by $O(max\{n^2, log_2n\}) = O(n^2)$
- ► $f_1(n) \le c_1g_1(n)$ for $n \ge n_{01}$ and $f_2(n) \le c_2g_2(n)$ for $n \ge n_{02}$
 - ► $f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n)$ for $n \ge \max\{n_{01}, n_{02}\}$
 - ► $f_1(n) + f_2(n) \le \max\{c1, c2\}g_1(n) + \max\{c1, c2\}g_2(n) \text{ for } n \ge \max\{n_{01}, n_{02}\}$
 - ► $f_1(n) + f_2(n) \le 2max\{c_1, c_2\} max\{g_1(n), g_2(n)\}$, for $n \ge max\{n_{01}, n_{02}\}$
 - $ightharpoonup f_k(n) \le c_k \times g_k(n)$ for $n \ge n_k$

Basic Asymptotic Efficiency Classes

Class	Notation	Example	
constant	⊝(1)	May be in best cases, (hashing (on average)	
logarithmic	$\Theta(\log_2 n)$	Binary search (worst and average cases)	
linear	⊖(n)	Sequential search (worst and average cases)	
linearithmic	$\Theta(n \times log_2 n)$	Divide and conquer algorithms, e.g., merge sort	
quadratic	$\Theta(n^2)$	Two embedded loops, e.g., selection sort	
cubic	$\Theta(n^3)$	Three embedded loops, e.g., matrix multiplication	
exponential	⊖(2 ⁿ)	All subsets of n-elements set Gaussian elimination	
factorial	⊖(n!)	All permutations of an n-elements set, combinatorial problems	

Properties of Logarithms

1.
$$\log_a 1 = 0$$

2.
$$\log_a a = 1$$

$$3. \quad \log_a x^y = y \log_a x$$

$$4. \quad \log_a xy = \log_a x + \log_a y$$

$$5. \quad \log_a \frac{x}{y} = \log_a x - \log_a y$$

6.
$$a^{\log_b x} = x^{\log_b a}$$

7.
$$\log_a x = \frac{\log_b x}{\log_b a} = \log_a b \log_b x$$

Important Summation Formulae

1.
$$\sum_{i=l}^{u} 1 = \underbrace{1 + 1 + \dots + 1}_{u-l+1 \text{ times}} = u - l + 1 \ (l, u \text{ are integer limits}, l \le u); \sum_{i=1}^{n} 1 = n$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3}n^3$$

4.
$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

Important Summation Formulae...

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i 2^{i} = 1 \cdot 2 + 2 \cdot 2^{2} + \dots + n 2^{n} = (n-1)2^{n+1} + 2$$

7.
$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma$$
, where $\gamma \approx 0.5772 \dots$ (Euler's constant)

8.
$$\sum_{i=1}^{n} \lg i \approx n \lg n$$

Sum Manipulation Rules

$$1. \quad \sum_{i=l}^{u} ca_i = c \sum_{i=l}^{u} a_i$$

2.
$$\sum_{i=l}^{u} (a_i \pm b_i) = \sum_{i=l}^{u} a_i \pm \sum_{i=l}^{u} b_i$$

3.
$$\sum_{i=l}^{u} a_i = \sum_{i=l}^{m} a_i + \sum_{i=m+1}^{u} a_i$$
, where $l \le m < u$

4.
$$\sum_{i=l}^{u} (a_i - a_{i-1}) = a_u - a_{l-1}$$

What next?

- The Efficiency Analysis Framework
- ► Asymptotic Notations and Basic Efficiency Classes
- ► Mathematical Analysis of Nonrecursive Algorithms
- Mathematical Analysis of Recursive Algorithms
- Example: Computing the nth Fibonacci Number
- ► Empirical Analysis of Algorithms
- ► Algorithm Visualization

General Plan for Analysis of Nonrecursive Algorithms

- 1. Decide on parameter n indicating input size
- 2. Identify algorithm's basic operation
- 3. Determine worst, average, and best cases for input of size n
- Set up a sum for the number of times the basic operation is executed
- 5. Simplify the sum using **standard formulas** and rules to establish its order of growth

Analysis of Unique Elements Algorithms

```
ALGORITHM Unique Elements (A[0..n-1])
    //Determines whether all the elements in a given array are distinct
    //Input: An array A[0..n-1]
    //Output: Returns "true" if all the elements in A are distinct
              and "false" otherwise
    for i \leftarrow 0 to n-2 do
        for j \leftarrow i + 1 to n - 1 do
            if A[i] = A[j] return false
    return true
```

Solution for Analysis of Unique Elements Algorithms

- **1.** Input size: Array A[0,..., n-1]
- **2.** basic operation: if A[i] = A[j]
- 3. Worst case: $\sum_{j=i+1}^{n-1} 1$
- 4. Set up a sum: $C_{\text{worst}}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$
- 5. Establish order of growth

$$C_{\text{worst}}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \frac{(n-1)n}{2} \approx \frac{1}{2} n^2 \in \Theta(n^2)$$

Solution for Analysis of Unique Elements Algorithms

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2}n^2 \in \Theta(n^2).$$

We also could have computed the sum $\sum_{i=0}^{n-2} (n-1-i)$ faster as follows:

$$\sum_{i=0}^{n-2} (n-1-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2},$$

Analysis of Maximum Element Algorithms

```
ALGORITHM MaxElement(A[0..n-1])
    //Determines the value of the largest element in a given array
    //Input: An array A[0..n-1] of real numbers
    //Output: The value of the largest element in A
    maxval \leftarrow A[0]
    for i \leftarrow 1 to n-1 do
        if A[i] > maxval
            maxval \leftarrow A[i]
    return maxval
```

Solution for Analysis of Maximum Element Algorithms

if
$$A[i] > maxval$$

 $maxval \leftarrow A[i]$

$$C(n) = \sum_{i=1}^{n-1} 1.$$

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

Analysis of Matrix Multiplication Algorithms

```
MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])
ALGORITHM
    //Multiplies two square matrices of order n by the definition-based algorithm
    //Input: Two n \times n matrices A and B
    //Output: Matrix C = AB
    for i \leftarrow 0 to n-1 do
         for j \leftarrow 0 to n-1 do
             C[i, j] \leftarrow 0.0
             for k \leftarrow 0 to n-1 do
                  C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]
    return C
```

Solution for Analysis of Matrix Multiplication Algorithms...

where $C[i, j] = A[i, 0]B[0, j] + \cdots + A[i, k]B[k, j] + \cdots + A[i, n - 1]B[n - 1, j]$ for every pair of indices $0 \le i, j \le n - 1$.

Solution for Analysis of Matrix Multiplication Algorithms

$$\sum_{k=0}^{n-1} 1,$$

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$$

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.$$

$$T(n) \approx c_m M(n) = c_m n^3,$$

Analysis of Binary Algorithms

```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor

return count
```

Thank You