COST-EFFECTIVE CHART REVIEW SAMPLING DESIGN TO ACCOUNT FOR PHENOTYPING ERROR IN ELECTRONIC HEALTH RECORDS (EHR) DATA

Xinyang Feng, Hyung Eun Shin

Dec 06, 2022

CONTENTS

- 1. INTRO
- 2. METHODS
- 3. RESULTS
- 4. CONCLUSION

INTRO

Introduction and Motivation

- Electronic health record (EHR) data
 - A digital data system that contains medical history of patients
 - Investigates the association between risk factors and EHR-derived phenotype (binary)
- Problems:
 - EHR-derived phenotypes are likely to be misclassified; a manual chart review is required
 - Chart review can only be conducted for a validation subcohort due to limited resources
 - For rare diseases, positive phenotype patients in full cohort is even fewer
 - chart review may loss efficiency
- Research goal:

investigate an efficient sampling procedure for association study when there is a small number of positive phenotype subjects in the full cohort

EHR Data

The original full cohort with unknown Y

Relationship between Y and X: $logit{P(Y_i = 1 | X_i)} = X_i\beta$

Previous Works

- 1. Original uniform (Ori-Unif) sampling
 - Cannot guarantee a balanced number of positive and negative phenotype patients in the subcohort
- 2. Original biased (Ori-Bias) sampling
 - Only explores the relationship between true phenotype and covariates but fails to take information in surrogate phenotype into account.
- 3. Augmented uniform (Aug-Unif) sampling
 - Introduces information in surrogate phenotype into the estimator
 - But uses a uniform sampling procedure

METHODS

Proposed Method

UNIVERSITY OF

 Outcome-dependent sampling design for cost-effective chart review with augmented estimation procedure (OSCA)

OSCA

- Assumption: surrogate phenotype and the true phenotype are non-differentially associated
 - Fixed probabilities of making a correct chart review conditional on the observed phenotype

$$p_1 = P(S_i = 1|Y_i = 1)$$
 and $p_0 = P(S_i = 0|Y_i = 0)$.

- Improvement of OSCA
 - Fewer subjects are required for chart review to achieve the same statistical power
 - Smaller estimated standard error; higher statistical efficiency

RESULTS

RESULTS

- 3 Simulations
 - →Own synthetic data sets
- 1 real data set
 - Real data: Colon cancer recurrence EHR data set in the KPW healthcare system
 - Proved closer estimates to the golden standard

SIMULATION1: DATA GENERATION

EMPIRICAL COVERAGE PROBABILITIES AND CONFIDENCE INTERVALS

- logit{ $P(Y_i = 1 | X_1, X_2, X_3)$ } = $b_0 + X_1 + X_2 + X_3$
- Prevalence: {~1%, ~3%, ~5%, ~10%, ~30%, ~50%}
 - ∘ For ~5%, ~10%, ~30%, ~50%: N=2000, n=600
 - For ~1%, ~3%: N=8000, n=2000

SIMULATION 1: RESULTS

SIMULATION 2:

POWER ANALYSIS

• $logit{P(Y_i = 1|X)} = b_0 + \beta_1 X$

Power

• H_0 : $\beta_1 = 0$

• H_1 : $\beta_1 = 0.3$ or 0.5

Alternative Hypothesis

Total Validation Sample Size

600

300

1100 900

0.4 0.3 -0.2 -0.6 -0.4 MSE 0.2 -0.9 0.6 0.3 -Ori-Unit Ori-Bias Ori-Bias Ori-Unit Ori-Bias Ori-Unit Ori-Bias Ori-Unit Aug-Unif OSCA Oracle Aug-Unif OSCA Oracle Aug-Unif OSCA Oracle Aug-Unif

SIMULATION 3:

EFFECT OF IMBALANCED SAMPLING

Prevalence

CONCLUSION

PROBLEMS?

- EHR data: an electronic medical records of patients
- phenotyping error in EHR-derived outcomes
 - Systematic bias
- a manual chart review is required
 - Time-consuming

OSCA

the outcome-dependent sampling design for cost-effective chart review with augmented estimation procedure

CONCLUSION

- Simulation 1: concentrated MSE box especially when disease is rare
- Simulation 2: Need smaller sub-cohort to reach the same level power
- Simulation 3: validated effectiveness of biased sampling
- In conclusion
 - reduces estimation bias while maintaining low variance
 - Is cost-effective in chart review.

Thank You!

