#### Coalescent inference of HIV transmission history

Raymond Heil
T-6: Theoretical Biology and Biophysics
Emma Goldberg, Thomas Leitner

20 July 2022



## Why this project?



- \* Prevalence of HIV
- \* Transmission pairs
- \* Using genetics to find transmission time



## What can we expect to see?







- \* Tips represent individual viral sequences
- \* Shows the evolutionary distance between individuals
- \* What can we infer about a single transmission time?















# **Coalescent modeling**

Node times as a function of population size



## Relationship between population and samples

Large N causes node times to be further apart, stretching the tree





## Effect of changing population size





# Predicting transmission time on a changing population





### **Results**

What I did. . . In this, I could show what's going on for my



## **Next steps**

In the coming weeks...

- \* Getting linear population to...um, work.
- \* What else was I even thinking about lol



# **Next steps**

Next year (and later)...

