

OCR-D Technische Systemarchitektur: Workflows, Repository, Schnittstellen

Ajinkya Prabhune (KIT) und Clemens Neudecker (SBB)

Institute for Data Processing and Electronics (IPE)

Einleitung: OCR-D

Das Projekt OCR-D unterscheidet 6 grundlegende Themenbereiche, die in die folgenden Module unterteilt sind:

- Bildvorverarbeitung
- Layouterkennung
- Textoptimierung
- Modell-Training
- Qualitätssicherung
- Langzeitarchivierung und Persistenz

OCR und OLR

Daten- und Metadaten Repository

- Jedes dieser Module produziert und verwendet Daten und Metadaten
 - Als Daten betrachten wir sämtliche Dateien (Images, PDF, etc.) die entweder von einem Modul erzeugt oder verwendet werden (vom Bild über die Texterkennung bis hin zur Evaluation)
 - Metadaten sind hier diejenigen Informationen über das Modul und die Eingabebzw. Ausgabedateien, die in bestehenden Metadatenstandards kodiert werden können (z.B. METS, textMD, etc.)

Einleitung: OCR-D

- Jedem der Module ist ein eigenständiges Forschungsthema zugeordnet in dem entweder neue Module entwickelt oder bestehende technische Lösungen auf die besonderen Anforderungen hin angepasst werden
- Die aktuelle Situation hinsichtlich der Verbreitung von Werkzeugen für die OCR ist wie folgt:
 - Bestehende Werkzeuge (e.g. Tesseract, FineReader, OCRopus) werden eingesetzt, oder
 - Spezifische Eigenlösungen werden entwickelt und implementiert, oder
 - Eine Kombination beider Ansätze wird genutzt
- Die von jedem der Module erzeugten Daten (Ground Truth, Digitalisate und Metadaten) sollen zur Weiterverarbeitung für andere Module zur Verfügung stehen

Einschränkungen

- Aktuell werden oft an die lokalen Bedingungen in den Einrichtungen und Forschergemeinschaften spezifisch angepasste OCR-Prozesse eingesetzt, in denen
 - Ad hoc-Techniken für die Speicherung und Bereitstellung von Daten und Metadaten verwendet werden, sowie
 - Workflows nicht in standardisierten Formaten beschrieben werden (sondern typischerweise nur durch Skripte), und
 - Die verwendeten Werkzeuge, Softwarebibliotheken und Dienste nicht hinreichend dokumentiert (und für andere wiederverwendbar) sind

Ziele

- Das Design und die Entwicklung eines umfassenden OCR-D Frameworks sowie eines Repository mit mindestens den folgenden Funktionalitäten:
 - Langzeitarchivierung und Datenbereitstellung
 - Speicherung und Bereitstellung von (Prozess-)Metadaten
 - Service-Registry f
 ür die Veröffentlichung von OCR Diensten (Web Services) zur Erstellung von geeigneten Workflows
 - Integration mit einem Workflow Management System für die systematische Implementierung von modularen und reproduzierbaren Workflows (in-silico experimentation)
 - Web-Portal für die Bereitstellung von Daten und Metadaten sowie das Ausführen von Workflows

OCR-D Systemarchitektur

Ajinkya Prabhune und Clemens Neudecker - OCR-D Technische

Systemarchitektur: Workflows, Repository, Schnittstellen

Warum Workflows?

- Typische OCR-Prozesse entsprechen einem gerichteten Datenfluss
- Knoten sind in einem solchen Datenfluss die einzelnen technischen Module/Arbeitsschritte für z.B. Bildvorverarbeitung, Layoutsegmentierung, Mustererkennung, usw.

Warum Workflows?

- Standardisierte
 Schnittstellen erlauben die
 flexible Kombination von
 einzelnen Knoten zu
 komplexeren Prozessen
 abhängig von kompatiblen
 Eingabe- und
 Ausgabeformaten
 - Workflows sind dokumentierte und wiederverwendbare Interaktionen zwischen einzelnen Knoten

Komplexe Workflows

Workflowausführung (Lokal)

Taverna Workbench ist ein Open Source Werkzeug mit einer GUI für das Design und die lokale Ausführung von Workflows

Ajinkya Prabhune und Clemens Neudecker - OCR-D Technische

Systemarchitektur: Workflows, Repository, Schnittstellen

10

Workflowausführung (Remote)

- Taverna Server ist ein Open Source Werkzeug für das Ausführen von Workflows über das Web
- Es existieren Werkzeuge um aus einer Workflowbeschreibung dynamisch ein entsprechendes Webformular für *Taverna Server* zu erzeugen (und damit z.B. die Integration mit einer Webseite)

 myExperiment ist eine Web-Plattform für das Auffinden, Teilen und Wiederverwenden von Workflows sowie zum Austausch mit Experten

Vorteile

- Modulare, flexible, und dokumentierte Workflows k\u00f6nnen auf einfache Weise von anderen weiterverwendet werden
- Transparenz und Reproduzierbarkeit der Ergebnisse
- Sehr gut geeignet um den Einfluss einzelner Komponenten auf das Ergebnis eines gesamten Workflow evaluieren zu können

Langzeitarchivierung und Datenbereitstellung

- Data Storage and Access Service: Stellt einfache Funktionen für den Dateningest und den Download von Daten zur Verfügung. Daten können sowohl Eingabe- und Ausgabe eines Workflows oder auch Zwischenergebnisse einzelner (Sub-)Module sein. Zwei Varianten sind erforderlich:
 - Command-line client: Für Module, die lokal ausgeführt werden, wie z.B. die Erstellung eines Trainingsmodells, steht eine Kommandozeilenapplikation bereit um die Trainingsdaten und das Modell in das Repository hochzuladen
 - REST client: Ein REST-basierter Client der in einem Workflow zur automatisierten Speicherung in und dem Abruf von Daten aus dem Repository integriert werden kann

Metadatenspeicherung und Bereitstellung

- Metadata Storage and Query Services: Die OCR-D (Sub-)Module erzeugen bei ihrer Ausführung Metadaten
 - Metadaten zu OCR und OLR-Prozessen werden in PAGE XML modelliert und abgelegt während z.B. bibliographische Angaben, Strukturdaten usw. in ein OCR-D METS-Profil eingebettet werden
 - Zusätzliche Metadatenformate wie z.B. TEI und textMD werden auf ihre Relevanz für das OCR-D-Projekt untersucht
 - Um die Suche in Metadaten zu ermöglichen, werden diese für die Volltextsuche indiziert und entsprechende Suchmöglichkeiten implementiert

Bereitstellung von Services für deren Verwendung in Workflows

- Services Registry and Catalog: Für die Auffindbarkeit und Wiederverwendung von OCR-D Services ist ein gemeinsames Verzeichnis (Service Registry) aller Services erforderlich
 - Sobald (Sub-)Module funktionierende Werkzeuge implementieren müssen diese mit ihren REST-Schnittstellen im ServiceCatalographer registriert werden
 - Der ServiceCatalographer stellt ein Verzeichnis für REST-basierte Services bereit und ist mit Taverna kompatibel
- Auxiliary Services: Services, die nicht direkt zu einem Modul gehören aber kleinere, hilfreiche Aufgaben implementieren
 - Von mehreren Modulen benötigte Funktionen und/oder externe Werkzeuge sollten nur einmal als gemeinsame und wiederverwendbare Services mit REST-Schnittstellen implementiert werden
 - Beispiele dafür sind Services für die Bildkonvertierung (beruhend auf ImageMagick/Graphicsmagick) oder XML-Transformation (mittels XSLT)

26.09.2017

- Workflow-Integration: Systematische Beschreibung,
 Wiederverwendung und Automatisierung von OCR-Prozessen
 - Workflows ermöglichen die Reproduzierbarkeit von Ergebnissen inkl. der automatischen Erfassung aller Provenienzinformationen
 - Eine Analyse der generierten Provenienzinformationen ermöglicht die gezielte Optimierung von Workflows und Ergebnissen
- Workflow Registry: Ein Repository zur Bereitstellung von Workflows die von den an OCR-D beteiligten Institutionen und externen Forschungsgruppen geteilt und wiederverwendet werden können
 - myexperiment.org ist ein weitverbreitetes Portal für die Online-Bereitstellung von Workflows in standardisierten Beschreibungssprachen wie bspw. Taverna Workflows in SCUFL

Modul-Schnittstellen

- Für jedes Modul existieren zwei Abstraktionsstufen:
 - Abstrakt: Beschreibung einer REST-Schnittstelle für das gesamte Modul
 - Detailliert: Abhängig von der Granularität eines Moduls kann dieses weitere Sub-Module enthalten die wieder über eigene REST-Schnittstellen verfügen
- REST-Schnittstelle für das Preprocessing Modul

REST-Interface: DocumentImagePreProcessing

HTTP Method: POST

Input Data: [Mandatory] Image file (with accepted formats) + [Optional]

Configuration file

Input Parameter: List of module-specific parameters serialized in XML

Output Data: Preprocessed Image (output data format)

Output Metadata/Log: A minimum level of log information + metadata describing the data, which is modeled in appropriate metadata standard

Response Code: Based on the exit code generated by the module, the

appropriate HTTP response code is propagated

Ajinkya Prabhune und Clemens Neudecker – OCR-D Technische

Systemarchitektur: Workflows, Repository, Schnittstellen

18

Technische Gemeinsamkeiten

- Für jedes Modul müssen folgende Anforderungen erfüllt sein:
 - Minimales Set an Logging (Provenienz)

```
Service version: <module version>
```

Service description: <textual description of the service>

Service URL: <location where the service is deployed>

Service Implementation: <implementation library name and version>

Input data URL: <URLs of the input data>

Input parameters: <list of input parameters>

Output file name and size: <name of the output file and size>

Exit code: <Enumeration of Exit codes, 0 = OK, any value > 0 corresponds to

particular error code>

Service Processing Time: <time in milliseconds>

Service invocation Timestamp: <timestamp>

Mapping zwischen exit codes und HTTP response codes

```
Exit code 0 → HTTP Response 200 Success
Exit code 1 → HTTP Response 500 Error
```

Ajinkya Prabhune und Clemens Neudecker – OCR-D Technische

Systemarchitektur: Workflows, Repository, Schnittstellen

19

Danke für die Aufmerksamkeit! Fragen?

Ajinkya Prabhune (KIT) und Clemens Neudecker (SBB)

Institute for Data Processing and Electronics (IPE)

Was fehlt?

- OCR-D METS-Profil: Ein METS-Profil das eine Definition für die systematische Organisation sämtlicher, im OCR-D-Projekt verwendeter Metadatenformate bereitstellt. Relevante Metadatenformate sind z.B. PAGE XML, PREMIS und weitere.
- Einrichtung eines OCR-D Repository für die Langzeitarchivierung und Bereitstellung von Daten und Metadaten sowie für Trainings- und Referenzdatensets
- Ein abstrakter OCR-D Workflow der den Datenfluss zwischen den einzelnen Modulen sowie die Integration mit dem OCR-D Repository exemplarisch beschreibt