Primeiro caso Suponhamos que $(\vec{u}, \vec{v}, \vec{w})$ seja LI. Se a equação $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ admitisse uma solução não-nula, por exemplo com $\alpha \neq 0$, poderíamos escrever $\vec{u} = -\beta \vec{v} / \alpha - \gamma \vec{w} / \alpha$. Logo, \vec{u} seria gerado por \vec{v} , \vec{w} e, devido à Proposição 6-9, $(\vec{u}, \vec{v}, \vec{w})$ seria LD, contrariando a hipótese (a argumentação é análoga nos casos em que $\beta \neq 0$ ou $\gamma \neq 0$).

Segundo caso Suponhamos que $(\vec{u}, \vec{v}, \vec{w})$ seja LD. Pela Proposição 6-9, um dos vetores é gerado pelos outros dois; por exemplo, $\vec{u} = \beta \vec{v} + \gamma \vec{w}$. Neste caso, podemos escrever $1\vec{u} - \beta \vec{v} - \gamma \vec{w} = \vec{0}$, exibindo assim uma solução não-nula para a equação $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$. O procedimento é análogo no caso em que o vetor gerado pelos outros dois é \vec{v} ou \vec{w} .

Este tema esgota-se aqui, pois quatro ou mais vetores são LD, por definição. A Proposição seguinte sintetiza [6-1], [6-2] e [6-3].

6-10 Proposição

Uma sequência $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_n})$, em que $1 \le n \le 3$, é LI se, e somente se, a equação $\alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \dots + \alpha_n \vec{v_n} = \vec{0}$ admite apenas a solução nula: $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$.

Note que a palavra "apenas" desempenha papel crucial neste enunciado. Sem ela, a segunda sentença seria automaticamente verdadeira, independentemente dos vetores $\vec{v}_1, \vec{v}_2 \dots \vec{v}_n$. Não serviria, portanto, como critério para distinguir seqüências LI de seqüências LD.

Sejam $\vec{a} = \vec{u} + \vec{w}$, $\vec{b} = 2\vec{u} + \vec{v} - \vec{w}$ e $\vec{c} = \vec{v} - 2\vec{w}$. Prove que

 $(\vec{u}, \vec{v}, \vec{w})$ é LI \Leftrightarrow $(\vec{a}, \vec{b}, \vec{c})$ é LI

Resolução

Primeira parte Suponhamos que $(\vec{u}, \vec{v}, \vec{w})$ é LI e provemos que $(\vec{a}, \vec{b}, \vec{c})$ é LI. Vamos aplicar a Proposição 6-10 aos vetores \vec{a} , \vec{b} e \vec{c} , e para isso devemos analisar as soluções da equação $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$. Substituindo \vec{a} , \vec{b} e \vec{c} por suas expressões e agrupando os termos, obtemos

$$(\alpha+2\beta)\vec{u}+(\beta+\gamma)\vec{v}+(\alpha-\beta-2\gamma)\vec{w}=\vec{0}$$

que, pela Proposição 6-10, e por ser $(\vec{u}, \vec{v}, \vec{w})$ LI, equivale a

$$\begin{cases} \alpha + 2\beta = 0 \\ \beta + \gamma = 0 \end{cases}$$

$$\alpha - \beta - 2\gamma = 0$$

Como você pode verificar facilmente, $\alpha = \beta = \gamma = 0$ é a única solução desse sistema. Assim, a equação de partida, $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$, só admite a solução $\alpha = \beta = \gamma = 0$. Novamente pela Proposição 6-10, concluímos que $(\vec{a}, \vec{b}, \vec{c})$ é LI.

Segunda parte Reciprocamente, vamos supor que $(\vec{a}, \vec{b}, \vec{c})$ é LI e provar que $(\vec{u}, \vec{v}, \vec{w})$ é LI. Resolvendo o sistema linear vetorial

$$\begin{cases} \vec{a} = \vec{u} + \vec{w} \\ \vec{b} = 2\vec{u} + \vec{v} - \vec{w} \end{cases}$$
$$\vec{c} = \vec{v} - 2\vec{w}$$

nas incógnitas \vec{u} , \vec{v} e \vec{w} , obtemos $\vec{u} = -\vec{a} + \vec{b} - \vec{c}$, $\vec{v} = 4\vec{a} - 2\vec{b} + 3\vec{c}$, $\vec{w} = 2\vec{a} - \vec{b} + \vec{c}$. Agora, repetimos o procedimento da primeira parte. Substituindo \vec{u} , \vec{v} e \vec{w} por suas expressões e agrupando os termos, vemos que a equação $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ é equivalente a $(-\alpha + 4\beta + 2\gamma)\vec{a} + (\alpha - 2\beta - \gamma)\vec{b} + (-\alpha + 3\beta + \gamma)\vec{c} = \vec{0}$, que por sua vez equivale, devido à Proposição 6-10, a

$$\begin{cases}
-\alpha + 4\beta + 2\gamma = 0 \\
\alpha - 2\beta - \gamma = 0 \\
-\alpha + 3\beta + \gamma = 0
\end{cases}$$

A única solução desse sistema é $\alpha = \beta = \gamma = 0$; logo, $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ admite apenas a solução nula. Pela Proposição 6-10, $(\vec{u}, \vec{v}, \vec{w})$ é LI.

EXERCÍCIOS

Prove: (\vec{u}, \vec{v}) é LI \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} - \vec{v})$ é LI.

(a)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LI \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$ é LI

(a)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LI \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$ é LI (b) $(\vec{u}, \vec{v}, \vec{w})$ é LI \Leftrightarrow $(\vec{u} + \vec{v} + \vec{w}, \vec{u} - \vec{v}, \vec{3}\vec{v})$ é LI

Corolário 6-12

Se $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_n})$ é LI, então, para cada vetor gerado por $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$, os coeficientes são univocamente determinados, isto é,

$$\alpha_1\vec{v_1} + \alpha_2\vec{v_2} + \dots + \alpha_n\vec{v_n} = \beta_1\vec{v_1} + \beta_2\vec{v_2} + \dots + \beta_n\vec{v_n} \Rightarrow \alpha_1 = \beta_1, \ \alpha_2 = \beta_2 \dots \alpha_n = \beta_n$$

Demonstração

Note que $n \le 3$, caso contrário $(\vec{v_1}, \vec{v_2}, ..., \vec{v_n})$ seria LD.

Da igualdade $\alpha_1\vec{v}_1 + \alpha_2\vec{v}_2 + \dots + \alpha_n\vec{v}_n = \beta_1\vec{v}_1 + \beta_2\vec{v}_2 + \dots + \beta_n\vec{v}_n$ resulta

$$(\alpha_1 - \beta_1)\vec{v}_1 + (\alpha_2 - \beta_2)\vec{v}_2 + \dots + (\alpha_n - \beta_n)\vec{v}_n = \vec{0}$$

Como $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$ é LI, concluímos, pela Proposição 6-10, que

$$\alpha_1 - \beta_1 = 0$$
 $\alpha_2 - \beta_2 = 0$... $\alpha_n - \beta_n = 0$

e portanto $\alpha_1 = \beta_1, \alpha_2 = \beta_2 \dots \alpha_n = \beta_n$.

Demonstre: se $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_n})$ é tal que $\alpha_1 \vec{v_1} + \alpha_2 \vec{v_2} + \dots + \alpha_n \vec{v_n} = \beta_1 \vec{v_1} + \beta_2 \vec{v_2} + \dots + \beta_n \vec{v_n}$ vale somente 6-10 se $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$... $\alpha_n = \beta_n$, então $(\vec{v_1}, \vec{v_2}, ..., \vec{v_n})$ é LI (trata-se da recíproca do corolário anterior). O Corolário 6-12 e sua recíproca (Exercício 6-10) mostram que "identificar os coeficientes" (algo análogo ao Princípio de Identidade de Polinômios) só é permitido quando os vetores envolvidos são LI. Como exemplo ilustrativo, tome $\vec{v} = 2 \ \vec{w}$. Neste caso, $(\vec{u}, \vec{v}, \vec{w})$ é LD, vale a igualdade $\vec{u} + 2\vec{v} - 4\vec{w} = \vec{u} + 3\vec{v} - 6\vec{w}$, mas os coeficientes não são respectivamente iguais.

Exercício

6-11 Determine $a \in b$, sabendo que (\vec{u}, \vec{v}) é LI e que $(a-1)\vec{u} + b\vec{v} = b\vec{u} - (a+b)\vec{v}$.

A Proposição 6-10 foi enunciada em termos de seqüências LI. Vejamos um enunciado equivalente, com enfoque em seqüências LD.

6-13 Proposição

Uma sequência de vetores $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$, $1 \le n \le 3$, é LD se, e somente se, a equação

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \dots + \alpha_n \vec{v}_n = \vec{0}$$

admite solução não-nula, isto é, existem escalares α_1 , α_2 ... α_n , não todos nulos, tais que $\alpha_1\vec{v}_1 + \alpha_2\vec{v}_2 + ... + \alpha_n\vec{v}_n = \vec{0}$.

Exercícios

6-12 Explique por que a proposição anterior é válida também para $n \ge 4$.

Em cada caso, é descrita uma alteração efetuada na tripla LI $(\vec{u}, \vec{v}, \vec{w})$. Baseando-se na sua intuição, dê um palpite: a seqüência obtida após a alteração é também LI? Em seguida, tente provar que seu palpite está correto.

- (a) Multiplica-se cada um dos três vetores por um escalar α .
- (b) Substitui-se cada um dos três vetores pela soma dos outros dois.
- (c) Soma-se a cada um dos três vetores um mesmo vetor \vec{t} .
- (d) Somam-se a \vec{u} , \vec{v} e \vec{w} , respectivamente, os vetores LI \vec{a} , \vec{b} e \vec{c} .

Suponha que $(\vec{u}, \vec{v}, \vec{w})$ seja LI. Dado \vec{t} , existem $\alpha, \beta \in \gamma$ tais que $\vec{t} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$ (Proposição 6-8). Prove: $(\vec{u} + \vec{t}, \vec{v} + \vec{t}, \vec{w} + \vec{t})$ é LI $\Leftrightarrow \alpha + \beta + \gamma + 1 \neq 0$.

6-15

Prove:

(a)
$$(2\vec{u} + \vec{w}.\vec{u} - \vec{v}.\vec{v} + \vec{w})$$
 é LI \Leftrightarrow $(\vec{u} - \vec{w}.\vec{u} + \vec{v}.\vec{u} + \vec{w})$ é LI.

(b)
$$(2\vec{u} + \vec{w}, \vec{u} - \vec{v}, \vec{v} + \vec{w})$$
 é LD \Leftrightarrow $(\vec{u} - \vec{w}, \vec{u} + \vec{v}, \vec{u} + \vec{w})$ é LD.

6-14

Exercício Resolvido No tetraedro OABC, determine m para que $X = O + m(\overrightarrow{OA}/3 - \overrightarrow{OB} + \overrightarrow{OC}/2)$ pertença ao plano ABC (Figura 6-6).

Figura 6-6

Resolução

Dizer que X pertence ao plano ABC equivale a dizer que $(\overrightarrow{AX}, \overrightarrow{AB}, \overrightarrow{AC})$ é LD, ou seja, que a equação

$$\alpha \overrightarrow{AX} + \beta \overrightarrow{AB} + \gamma \overrightarrow{AC} = \vec{0}$$
 [6-4]

admite solução não-nula. Para poder aplicar a Proposição 6-10, vamos exprimir os vetores que aparecem na igualdade [6-4] em termos dos vetores LI \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .

$$\overrightarrow{AX} = \overrightarrow{AO} + \overrightarrow{OX} = -\overrightarrow{OA} + m(\frac{1}{3}\overrightarrow{OA} - \overrightarrow{OB} + \frac{1}{2}\overrightarrow{OC})$$
$$= (\frac{m}{3} - 1)\overrightarrow{OA} - m\overrightarrow{OB} + \frac{m}{2}\overrightarrow{OC}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB}$$

$$\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -\overrightarrow{OA} + \overrightarrow{OC}$$

Substituindo em [6-4], obtemos

$$[(\frac{m}{3}-1)\alpha-\beta-\gamma]\overrightarrow{OA}+(-m\alpha+\beta)\overrightarrow{OB}+(\frac{m}{2}\alpha+\gamma)\overrightarrow{OC}=\vec{0}$$

Como os vetores \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} são LI, isso equivale, pela Proposição 6-10, a

$$\begin{cases} (\frac{m}{3} - 1)\alpha - \beta - \gamma = 0\\ -m\alpha + \beta = 0\\ \frac{m}{2}\alpha + \gamma = 0 \end{cases}$$
 [6-5]

O sistema de equações [6-5] é, portanto, equivalente à equação [6-4], isto é, toda solução de [6-4] é solução de [6-5] e vice-versa. Por isso, dizer que X pertence ao plano ABC equivale a dizer que o sistema linear homogêneo [6-5] admite solução nãonula. Pelo Teorema de Cramer, isso ocorre se, e somente se, o determinante do sistema é nulo: