Stat 184

Brandon Montez

```
library(laeken)
library(sdcMicro)

require("laeken")
```

(a)

data("eusilc", package = "laeken")

```
sdc <- createSdcObj(dat = eusilc,
  keyVars = c("age", "pb220a", "pl030", "rb090", "hsize"),
  weightVar = "rb050",
  hhId = "db030")</pre>
```

(b)

```
risk <- get.sdcMicroObj(sdc, type="risk")$individual
hist(risk[, "risk"], main="Individual Risk", xlab="Individual Risk", col="blue")</pre>
```

Individual Risk

It appears that most people have an individual risk that is small, but there is a cluster around 0.01 risk which is worth investigating. As there may be a high risk of re-identification.

 \mathbf{c}

```
hh_risk <- risk[, "hier_risk"]
hist(hh_risk, main="Household Risk", xlab="Household Risk", col="red")</pre>
```

Household Risk

If we consider 0.05 the threshold for too high of risk then the household risk evidently does exceed 0.05 for some observations. The household risk is generally below 20% but but there are some edge cases possibly suggesting non-uniformity in the distribution of key variables.

 \mathbf{d}

```
print(sdc, "risk")

## Risk measures:
##

## Number of observations with higher risk than the main part of the data: 0

## Expected number of re-identifications: 20.94 (0.14 %)
##

## Information on hierarchical risk:
## Expected number of re-identifications: 78.59 (0.53 %)
##
```

The household risk is higher in general. We can see this from the histograms or from the information above. Given the hierarchical information, the expected number of re-identification is much higher.

 \mathbf{e}

```
global_risk <- sum(risk[, "risk"])
global_risk</pre>
```

[1] 20.93697

The estimated global risk using the simple summation of individual risk method says that we have around 20.94 expected individual re-identifications.

```
set.seed(123)
subset_indices <- sample(nrow(eusilc), size = 0.1 * nrow(eusilc), replace = FALSE)
eusilc_subset <- eusilc[subset_indices, ]

sdc_subset <- createSdcObj(dat = eusilc_subset,
    keyVars = c("age", "pb220a", "pl030", "rb090", "hsize"),
    weightVar = "rb050",
    hhId = "db030")

risk_subset <- get.sdcMicroObj(sdc_subset, type="risk")$individual
global_risk_subset <- sum(risk_subset[, "risk"])</pre>
```

[1] 20.93697

```
global_risk_subset
```

```
## [1] 8.066208
```

It does appear that smaller and smaller subsets reduce the global risk. That is to be expected, as the global risk is a proportion of the number of individuals in the dataset. If we only have 1 individual, then our expected number of identifications could be at most 1.

This confirms our observation that the reduced subset has a lower global risk. The subset has reduced risk in both individual and household risk.