A sample paper

Simone Secchi*

Dipartimento di Matematica e Applicazioni Università degli Studi di Milano-Bicocca, via Roberto Cozzi 55, I-20125, Milano, Italy

May 16, 2019

In this paper we

1 Introduction

We consider the equation

$$(I - \Delta)^s u = a(x)|u|^{p-2}u \quad \text{in } \mathbb{R}^N, \tag{1.1}$$

where $a \in L^{\infty}(\mathbb{R}^N)$ and $2 if <math>N \ge 3$, and p > 2 if N = 1 or N = 2.

2 The variational setting

Lemma 2.1. Let $u \in L^{\infty}(\mathbb{R}^N)$. There results

ess sup
$$u = \sup \left\{ \int_{\mathbb{R}^N} u\varphi \mid \varphi \in L^1(\mathbb{R}^N), \ \varphi \ge 0, \ \int_{\mathbb{R}^N} \varphi = 1 \right\}.$$
 (2.1)

Proof. Whenever $\varphi \in L^1(\mathbb{R}^N)$, $\varphi \geq 0$, $\int_{\mathbb{R}^N} \varphi = 1$, we compute

$$\int_{\mathbb{R}^N} u\varphi \le \operatorname{ess\,sup} u \int_{\mathbb{R}^N} \varphi = \operatorname{ess\,sup} u.$$

Hence

ess sup
$$u \ge \sup \left\{ \int_{\mathbb{R}^N} u\varphi \mid \varphi \in L^1(\mathbb{R}^N), \ \varphi \ge 0, \ \int_{\mathbb{R}^N} \varphi = 1 \right\}.$$
 (2.2)

On the other hand, if we set

$$\sup \left\{ \int_{\mathbb{R}^N} u\varphi \mid \varphi \in L^1(\mathbb{R}^N), \ \varphi \geq 0, \ \int_{\mathbb{R}^N} \varphi = 1 \right\} = b$$

and we assume that $\operatorname{ess\,sup} u > b$, then for some $\delta > 0$ we can say that the set $\Omega = \{x \in \mathbb{R}^N \mid u(x) \geq b + \delta\}$ has positive measure. Let us define $\varphi = \chi_\Omega/\mathcal{L}^N(\Omega)$, so that

$$\int_{\mathbb{R}^N} u\varphi = \frac{1}{\mathcal{L}^N(\Omega)} \int_{\Omega} u \ge b + \delta,$$

contrary to (2.2). This completes the proof.

^{*}Email address: Simone.Secchi@unimib.it

References

- [1] B. RICCERI, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410.
- [2] M. Struwe, Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, *Ergebnisse der Mathematik und ihrer Grenzgebiete*, 3, *Springer Verlag*, Berlin–Heidelberg (1990).
- [3] M. WILLEM, Minimax Theorems, Birkhäuser, Basel (1999).
- [4] L. S. Yu, Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc. 115 (1992), 1037–1045.