

Z C I D V

 $\operatorname{\mathsf{coperand}} \leftarrow |\operatorname{\mathsf{coperand}}|$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	01			AAA		D	D			110	010	10 (ca)			ABS.s rd	1	1
1	01			BBB		D	D			100	0100	00 (88)			ABS.s rd	1	1
1	01			XXX		D	D			110	101	10 (d6)			ABS.s addr16, ri	2	4^a
1	01			ZZZ		D	D			110	001	10 (c6)			ABS.s addr16, ri	2	4^a
1	01			XXX		D	D			110	1111	10 (de)			ABS.s addr32, ri	3	5^a
1	01			ZZZ		D	D			110	011	10 (ce)			ABS.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

Add with carry

ADC

Operation

J Z C I D V

rd, C \leftarrow rd + <operand> + C

Encoding

15	14 13	12 11	10	9	8	7	6	5 4	3	2	1	0	Syntax	Words	Cycles
0	AA	SS	S	D	D		(1111	100 ((7c)			ADC.s rd, rs	1	1
0	BB	SS	S	D	D		(1100	011 ((63)			ADC.s rd, rs	1	1
0	CC	SS	S	D	D		(1110	011 ((73)			ADC.s rd, rs	1	1
0	AA	AA	0	D	D		(1101	001 ((69)			ADC.s rd, #imm	2^a	2^b
0	AA	XX	X	D	D		(1110	101 ((75)			ADC.s rd, addr16, ri	2	3^b
0	AA	ZZ	Z	D	D		(1100	101 ((65)			ADC.s rd, addr16, ri	2	3^b
0	AA	XX	X	D	D		(1111	101 ((7d)			ADC.s rd, addr32, ri	3	4^b
0	BB	XX	X	D	D		(1101	111 ((6f)			ADC.s rd, addr32, ri	3	4^b
0	CC	XX	X	D	D		(1111	111 ((7f)			ADC.s rd, addr32, ri	2	4^b
0	AA	YY	Y	D	D		(11110	001 ((79)			ADC.s rd, addr32, ri	3	4^b
0	BB	YY	Y	D	D		(1101	011 ((6b)			ADC.s rd, addr32, ri	3	4^b
0	CC	YY	Y	D	D		(11110	011 ((7b)			ADC.s rd, addr32, ri	2	4^b
0	AA	ZZ	Z	D	D		(1101	101 ((6d)			ADC.s rd, addr32, ri	3	4^b
0	AA	XX	X	D	D		(1100	001 ((61)			ADC.s rd, (addr16, ri)	2	5^b
0	AA	YY	Y	D	D		(1110	001 ((71)			ADC.s rd, (addr16), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: Y1 1000: YΟ 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: A1 110: A2 ΑO 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

^badd 1 cycle for 32 bit (s=2)

ZCIDV

rd, C \leftarrow rd + cperand>

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	AA			SSS		D	D			011	111	00 (7c)			ADD.s rd, rs	1	1
1	ВВ			SSS		D	D			011	.000	11 (63)			ADD.s rd, rs	1	1
1	CC			SSS		D	D			011	100	11 (73)			ADD.s rd, rs	1	1
1		AA	AA		0	D	D			011	010	01 (69)			ADD.s rd, #imm	2^a	2^b
1	AA	.		XXX		D	D			011	101	01 (75)			ADD.s rd, addr16, ri	2	3^b
1	AA			ZZZ		D	D			011	.001	01 (65)			ADD.s rd, addr16, ri	2	3^b
1	AA			XXX		D	D			011	111	01 (7d)			ADD.s rd, addr32, ri	3	4^b
1	BB			XXX		D	D			011	011	11 (6f)			ADD.s rd, addr32, ri	3	4^b
1	CC			XXX		D	D			011	111	11 (7f)			ADD.s rd, addr32, ri	2	4^b
1	AA	.		YYY		D	D			011	110	01 (79)			ADD.s rd, addr32, ri	3	4^b
1	ВВ			YYY		D	D			011	010	11 (6b)			ADD.s rd, addr32, ri	3	4^b
1	CC	.		YYY		D	D			011	110	11 (7b)			ADD.s rd, addr32, ri	2	4^b
1	AA	.		ZZZ		D	D			011	011	01 (6d)			ADD.s rd, addr32, ri	3	4^b
1	AA	.		XXX		D	D			011	.000	01 (61)			ADD.s rd, (addr16, ri)	2	5^b
1	AA			YYY		D	D			011	100	01 (71)			ADD.s rd, (addr16), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: Y1 1000: YΟ 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: 110: A2 ΑO A1 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

 ${\tt ZZZ:}$ Index register ${\tt ri}$

^badd 1 cycle for 32 bit (s=2)

N Z C I D V

 $rd \leftarrow rd \land \langle operand \rangle$

Encoding

15	14 13	12 1	1 10	9	8	7	6 5	4	3	2	1	0	Syntax	Words	Cycles
0	AA	SS	SS	Г	D		00	1111	00 (3c)			AND.s rd, rs	1	1
0	BB	SS	SS		D		00	1000	11 (23)			AND.s rd, rs	1	1
0	CC	SS	SS		D		00	1100	11 (33)			AND.s rd, rs	1	1
0	AA	AA	0		D		00	1010	01 (29)			AND.s rd, #imm	2^a	2^b
0	AA	XX	XX		D		00	1101	01 (35)			AND.s rd, addr16, ri	2	3^b
0	AA	Z	ZZ		D		00	1001	01 (25)			AND.s rd, addr16, ri	2	3^b
0	AA	XX	XX		D		00	1111	01 (3d)			AND.s rd, addr32, ri	3	4^b
0	BB	XX	XX	1	D		00	1011	11 (2f)			AND.s addr32, Ri	3	4^b
0	CC	XX	XX		D		00	1111	11 (3f)			AND.s addr32, Ri	3	4^b
0	AA	Y	ΥY		D		00	1110	01 (39)			AND.s rd, addr32, ri	3	4^b
0	BB	Y	ΥY		D		00	1010	11 (2b)			AND.s addr32, Ri	3	4^b
0	CC	Y	ΥY		D		00	1110	11 (3b)			AND.s addr32, Ri	3	4^b
0	AA	Z	ZZ		D		00	1011	01 (2d)			AND.s rd, addr32, ri	3	4^b
0	AA	XX	XX		D		00	1000	01 (21)			AND.s rd, (addr16, ri)	2	5^b
0	AA	Y	ΥY		D		00	1100	01 (31)			AND.s rd, (addr16), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: Y1 1000: YO 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: A1 110: A2 ΑO 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

000: 0 001: Z 010: SP 011: PC 100: Y0 101: Y1 110: Y2 111: Y3

5

 $[^]b$ add 1 cycle for 32 bit (s=2)

ASL

Operation

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0		RR	RR		D	D			000	010	10	(0a)			ASL.s rd	1	1
0	0		RR	RR		D	D			000	000	10	(02)			ASL.s rd, #imm	2	2
0	1		RR	RR		D	D			000	000	10	(02)			ASL.s rd, rs b	2	2
0	N	N		XXX		D	D			000	101	10	(16)			ASL.s addr16, ri [, #N]	2	4^a
0	N	N		ZZZ		D	D			000	0001	10	(06)			ASL.s addr16, ri [, #N]	2	4^a
0	N	N		XXX		D	D			000	111	10	(1e)			ASL.s addr32, ri [, #N]	3	5^a
0	N	N		ZZZ		D	D			000	011	10	(0e)			ASL.s addr32, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: 8 01: 16 10: 32 11: -

RRRR: Register rd

0000: ΑO 0001: 0010: A2 0011: Α1 AЗ 0100: XΟ 0101: Х1 0110: Х2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: Z 1110: SP 1111:

XXX: Index register ri

000: XΟ 001: Х1 010: Х2 011: ХЗ 100: ΑO 101: A1 110: A2111: АЗ

ZZZ: Index register ri

^bregister **rs** specified by bits 0-3 of the following word

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	0		RR	RR		D	D			010	010	10 (4a)			ASR.s rd, rs	1	1
1	0		RR	RR		D	D			010	000	10 (42)			ASR.s rd, #imm	2	2
1	1		RR	RR		D	D			010	000	10 (42)			ASR.s rd, rs b	2	2
1	NN	1		XXX		D	D			010	101	10 (56)			ASR.s addr16, ri [, #N]	2	4^a
1	NN	1		ZZZ		D	D			010	001	10 (46)			ASR.s addr16, ri [, #N]	2	4^a
1	NN	1		XXX		D	D			010	111:	10 (5e)			ASR.s addr32, ri [, #N]	3	5^a
1	NN	1		ZZZ		D	D			010	011	10 (4e)			ASR.s addr32, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

RRRR: Register rd

0000: A0 0001: A1 0010: A2 0011: 0100: XΟ 0101: X1 0110: Х2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: Z 1110: SP 1111:

 $\mathtt{XXX} \colon \mathbf{Index} \ \mathbf{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

000: 0 001: Z SP PC 010: 011: 100: YΟ 101: Y1 Y2 111: 110: Y3

^bregister **rs** specified by bits 0-3 of the following word

V N Z С Ι D

```
if condition
if link, mem[SP--] \leftarrow PC
\mathtt{addr} \leftarrow \mathtt{rs} + \mathtt{offset}
if indirect, addr \leftarrow mem[addr]
\texttt{PC} \, \leftarrow \, \texttt{addr}
```

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
C	D	0	L		RR	RR				(CCC1	0000)			Bcc[.1] offset, rs	2^a	2^b
C	D	1	L		RR	.RR				(CCC1	0000)			Bcc[.1] (offset, rs)	2^a	4^b

```
^a {\rm add} \ 1 word for 32 bit offset (\mathtt{D} = 1)
```

 b add 2 cycles for link (L = 1)

1111

BRA

true

```
CCCC: Condition
      0000
              BPL
                        \neg N
      0001
                BMI
                        N
      0010
               BVC
                        \neg V
      0011
               BVS
                        V
      0100
               BCC
                        \neg C
      0101
               BCS
                        С
      0110
               BNE
                        \neg Z
      0111
                BEQ
                        Z
      1000
                \mathsf{BGE}
                        (N \lor \Lambda) \land (\neg N \lor \neg \Lambda)
      1001
                BLT
                        (N \lor \neg \land) \lor (\neg \lor \lor \land)
                        Z \vee (N \wedge \neg V) \vee (\neg N \wedge V)
      1010
               BLE
      1011
                        \neg Z \land ((N \land V) \lor (\neg N \land \neg V))
               BGT
      1100
                BLS
                       C \lor Z
      1101
                        \neg \ C \ \land \ \neg \ Z
                \mathtt{BHI}
      1110
                BNV
                        false
```

```
D: Offset size
```

0: 16 bit 1: 32 bit

L: Link

0: no link 1: link

RRRR: Base register rs

0000: PC 0001: SP 0010: Z 0011: 0100: Y3 0101: Y2 0110: Y1 0111: YO 1000: ХЗ 1001: Х2 1010: Х1 1011: XΟ 1100: 1101: A21110: A1 ΑЗ 1111: ΑO

ZCIDV

 $rd \leftarrow rd \land \neg \langle operand \rangle$

Encoding

15	14 13	12 11	10	9	8	7	6	5 4	3	2	1	0	Syntax	Words	Cycles
1	AA	SS	S	D	D		С	0111	100	(3c)			BIC.s rd, rs	1	1
1	BB	SS	S	D	D		C	0100	011	(23)			BIC.s rd, rs	1	1
1	CC	SS	S	D	D		C	0110	011	(33)			BIC.s rd, rs	1	1
1	AA	AA	0	D	D		C	0101	001	(29)			BIC.s rd, #imm	2^a	2^b
1	AA	XX	X	D	D		C	0110	101	(35)			BIC.s rd, addr16, ri	2	3^b
1	AA	ZZ	Z	D	D		C	0100	101	(25)			BIC.s rd, addr16, ri	2	3^b
1	AA	XX	X	D	D		C	0111	101	(3d)			BIC.s rd, addr32, ri	3	4^b
1	BB	XX	X	D	D		C	0101	111	(2f)			BIC.s addr32, Ri	3	4^b
1	CC	XX	X	D	D		C	0111	111	(3f)			BIC.s addr32, Ri	3	4^b
1	AA	YY	Y	D	D		C	0111	001	(39)			BIC.s rd, addr32, ri	3	4^b
1	BB	YY	Y	D	D		C	0101	011	(2b)			BIC.s addr32, Ri	3	4^b
1	CC	YY	Y	D	D		C	0111	011	(3b)			BIC.s addr32, Ri	3	4^b
1	AA	ZZ	Z	D	D		C	0101	101	(2d)			BIC.s rd, addr32, ri	3	4^b
1	AA	XX	XXX DD				C	0100	001	(21)			BIC.s rd, (addr16, ri)	2	5^b
1	AA	YY	D		C	0110	001	(31)			BIC.s rd, (addr16), ri	2	5^b		

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: 1000: YΟ Y1 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: Х2 011: ХЗ 100: ΑO 101: A1 110: A2 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

^badd 1 cycle for 32 bit (s=2)

BIT

Operation

N Z C I D V

 $\begin{array}{l} \texttt{N} \; \leftarrow \; \texttt{<operand>[N-1]} \\ \texttt{V} \; \leftarrow \; \texttt{<operand>[N-2]} \end{array}$

 $Z \leftarrow \langle \text{operand} \rangle \land \text{rd} = 0$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	A	A		SSS		D	D			001	1010	00 (34)			BIT.s rd, rs	1	1
0	Α	Α		ZZZ		D	D			001	0010	00 (24)			BIT.s rd, addr16, ri	2	3^a
0	Α	Α		XXX		D	D			001	0110	00 (2c)			BIT.s rd, addr32, ri	3	4^a
0	Α	Α		ZZZ		D	D			001	110	10 (3a)			BIT.s rd, addr32, ri	3	4^a

 a add 1 cycle for 32 bit (s = 2)

AA: Test register rd

00: A0 01: A1 10: A2 11: A3

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3

100: X0 101: X1 110: X2 111: X3

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

ZZZ: Index register ri

 ${\tt N} \quad {\tt Z} \quad {\tt C} \quad {\tt I} \quad {\tt D} \quad {\tt V}$

```
\begin{array}{ll} \texttt{mem} [\texttt{SP--}] \; \leftarrow \; \texttt{PC} \\ \texttt{mem} [\texttt{SP--}] \; \leftarrow \; \texttt{P} \\ \texttt{PC} \; \leftarrow \; \texttt{mem} [\$\texttt{fffe} \; - \; 2*\texttt{vector}] \end{array}
```

Encoding

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
ſ	W		NNN			VV	VV				000	0000	00 (00)			BRK[.w] #v, #n	2	5

W: Wait for interrupt

000: don't wait 001: wait

NNN: Interrupt number

000: IRQ0 001: IRQ1 010: IRQ2 011: IRQ3 100: IRQ4 101: IRQ5 110: IRQ6 111: IRQ7

VVVV: Vector address

0000: \$fffe 0001: \$fffc 0010: \$fffa 0011: \$fff8 0100: \$fff6 0101: \$fff4 \$fff2 0111: 0110: \$fff0 1000: \$ffee 1001: \$ffec 1010: \$ffea 1011: \$ffe8 1100: \$ffe6 1101: \$ffe4 1110: \$ffe2 1111: \$ffe0

IZCIDV

<operand> \leftarrow ¬ mask

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0		AAA			RR	.RR				000	0110	00 (18)			CBT rd, #imm	1	1
0		$\mathtt{A}\mathtt{A}\mathtt{A}$			XX	XX				000	100	10 (12)			CBT addr32, ri, #imm	3	5
0		BBB			RR	.RR				000)110	00 (58)			CBT rd, #imm	1	1
0		BBB			XX	XX				000	100	10 (52)			CBT addr32, ri, #imm	3	5
0		CCC			RR	.RR				000)110	00 ((d8)			CBT rd, #imm	1	1
0		CCC			XX	XX				000	100	10 (d2)			CBT addr32, ri, #imm	3	5
0		DDD			RR	.RR				000)110	00 (b8)			CBT rd, #imm	1	1
0		DDD			XX	XX				000	100	10 (92)			CBT addr32, ri, #imm	3	5

AAA: Bit number 000: 0 001: 7 010: 8 011: 15 111: 100: 16 101: 23 110: 24 31 BBB: Bit number 001: 000: 2 5 010: 10 011: 13 100: 18 101: 21 26 111: 29 110: **CCC**: Bit number 000: 3 001: 4 010: 11 011: 12 100: 19 101: 20 110: 27 111: 28 DDD: Bit number 000: 6 001: 1 010: 14 011: 110: 100: 22 30 111: 101: 17

RRRR: Operand register rd 0000: P 0001: Z 0010: 0011: SP 0100: YΟ 0101: Y1 0110: Y2 0111: ΥЗ 1000: XΟ 1001: Х1 1010: X2 1011: ХЗ 1100: ΑO 1101: A1 1110: A2 1111: A3 XXXX: Index register ri 0000: ΑO 0001: 0011: A1 0010: A2 AЗ 0100: XΟ 0101: Х1 0110: Х2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: 1100: P 1101: Z 1110: SP 1111:

Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	N.	N		AAA		D	D			110	010	10 (ca)			DEC.s rd	1	1
0	N:	N		BBB		D	D			100	0100	00 (88)			DEC.s rd	1	1
0	N:	N		XXX		D	D			110	101	10 (d6)			DEC.s addr16, ri	2	4^a
0	N:	N		ZZZ		D	D			110	001	10 (c6)			DEC.s addr16, ri	2	4^a
0	N:	N		XXX		D	D			110	111:	10 (de)			DEC.s addr32, ri	3	5^a
0	N:	N		ZZZ		D	D			110	011	10 (ce)			DEC.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

IZCIDV

EOR

 $rd \leftarrow rd \oplus \langle operand \rangle$

Encoding

15	14 13	12 11	10	9	8	7	6	5 4	. 3	2	1	0	Syntax	Words	Cycles
0	AA	SSS		D	D		(01011	100	(5c)			EOR.s rd, rs	1	1
0	BB	SSS		D	D		(01000	011	(43)			EOR.s rd, rs	1	1
0	CC	SSS		D	D		(01010	011	(53)			EOR.s rd, rs	1	1
0	AA	AA	0	D	D		(01001	001	(49)			EOR.s rd, #imm	2^a	2^b
0	AA	XXX		D	D		(01010	101	(55)			EOR.s rd, addr16, ri	2	3^b
0	AA	ZZZ		D	D		(01000	101	(45)			EOR.s rd, addr16, ri	2	3^b
0	AA	XXX		D:	D		(01011	101	(5d)			EOR.s rd, addr32, ri	3	4^b
0	BB	XXX		D	D		(01001	111	(4f)			EOR.s rd, addr32, ri	3	4^b
0	CC	XXX		D	D		(01011	111	(5f)			EOR.s rd, addr32, ri	3	4^b
0	AA	YYY		D	D		(01011	001	(59)			EOR.s rd, addr32, ri	3	4^b
0	BB	YYY		D	D		(01001	011	(4b)			EOR.s rd, addr32, ri	3	4^b
0	CC	YYY		D	D		(01011	011	(5b)			EOR.s rd, addr32, ri	3	4^b
0	AA	ZZZ		D	D		(01001	101	(4d)			EOR.s rd, addr32, ri	3	4^b
0	AA	XXX	•	D:	D		(01000	001	(41)			EOR.s rd, (addr16, ri)	2	5^b
0	AA	YYY		D:	D		(01010	001	(51)			EOR.s rd, (addr16), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: 1000: YΟ Y1 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: 110: A2 ΑO A1 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

 ${\tt ZZZ:}$ Index register ${\tt ri}$

^badd 1 cycle for 32 bit (s=2)

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax Words Cycles
1	0		RR	RR		D	D			000	010	10	(0a)			ESL.s rd 1 1
1	0		RR	RR		D	D			000	0000	10	(02)			ESL.s rd, #imm 2 2
1	1		RR	RR		D	D			000	0000	10	(02)			ESL.s rd, rs b 2 2
1	NN	1		XXX		D	D			000	101	10	(16)			ESL.s addr16, ri [, #N] 2 4 ^a
1	NN	1		ZZZ		D	D			000	0001	10	(06)			ESL.s addr16, ri [, #N] 2 4^a
1	NN	1		XXX		D	D			000	111	10	(1e)			ESL.s addr32, ri [, #N] 3 5^a
1	NN	1		ZZZ		D	D			000	011	10	(0e)			ESL.s addr32, ri [, #N] 3 5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: 8 01: 16 10: 32 11: -

RRRR: Register rd

0000: ΑO 0001: A1 0010: A2 0011: АЗ 0100: Х2 XΟ 0101: Х1 0110: 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: **Y3** 1100: 1101: Z 1110: SP 1111:

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

ZZZ: Index register ri

000: 0 001: Z PC 010: SP 011: 100: YΟ 101: Y1 110: Y2 111: Y3

 $[^]b$ register **rs** specified by bits 0-3 of the following word

Z C I D V

 $\operatorname{<operand>} \leftarrow \operatorname{Extend}(\operatorname{<operand>})$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	10)		AAA		D	D			110	010	10 (ca)			EXT.s rd	1	1
1	10)		BBB		D	D			100	0100	00 (88)			EXT.s rd	1	1
1	10)		XXX		D	D			110	101	10 (d6)			EXT.s addr16, ri	2	4^a
1	10)		ZZZ		D	D			110	001	10 (c6)			EXT.s addr16, ri	2	4^a
1	10)		XXX		D	D			110	1111	10 (de)			EXT.s addr32, ri	3	5^a
1	10)		ZZZ		D	D			110	0111	10 (ce)			EXT.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

000: XΟ 001: Х1 010: X2 011: ХЗ 100: ΑO 101: A1 110: A2 111: АЗ

XXX: Index register ri

 ${\tt ZZZ:}$ Index register ${\tt ri}$

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

000: 0 001: Z 010: SP 011: PC 100: Y0 101: Y1 110: Y2 111: Y3

DD: Size s

00: b 1 \rightarrow 8 01: w 8 \rightarrow 16 10: 16 \rightarrow 32 11: -

Z C I D V

 $\operatorname{\mathsf{coperand}} \leftarrow \operatorname{\mathsf{coperand}} + \operatorname{\mathsf{N}}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	N:	N		AAA		D	D			110	010	10 (e8)			INC.s rd	1	1
0	N:	N		BBB		D	D			100	0100	00 (c8)			INC.s rd	1	1
0	N:	N		XXX		D	D			110	101	10 (f6)			INC.s addr16, ri	2	4^a
0	N:	N		ZZZ		D	D			110	001	10 (e6)			INC.s addr16, ri	2	4^a
0	N:	N		XXX		D	D			110	111:	10 (fe)			INC.s addr32, ri	3	5^a
0	N:	N		ZZZ		D	D			110	011	10 (ee)			INC.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

 $\mathtt{XXX} \colon \mathrm{Index} \ \mathrm{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

ZZZ: Index register ri

 ${\tt N} \quad {\tt Z} \quad {\tt C} \quad {\tt I} \quad {\tt D} \quad {\tt V}$

 $\texttt{PC} \; \leftarrow \; \texttt{<address>}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0			00	0000	00					010	0110	00 (4c)			JMP addr32	3	3
0			00	0000	00					011	0110	00 (6c)			JMP (addr32)	3	5

I Z C I D V

```
\begin{array}{ll} \texttt{mem} \texttt{[SP--]} \; \leftarrow \; \texttt{PC} \\ \texttt{PC} \; \leftarrow \; \texttt{<address>} \end{array}
```

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0	0		SSS		_				010	0000	00 (20)			JSR [(rs),] addr32	3	5

SSS: Stack pointer register rs

000: SP 001: PC 010: 0 011: Z 100: Y2 101: Y3 110: Y0 111: Y1

ZCIDV

 $rd \leftarrow \langle operand \rangle$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax			Words	Cycles
0		AA	AA		0	D	D			101	010	01 (a9)			LDR rd,	#imm		2^a	2^b
0	AA	.		XXX		D	D			101	101	01 (b5)			LDR rd,	addr16,	ri	2	3^b
0	CC			XXX		D	D			101	101	00 (b4)			LDR rd,	addr16,	ri	2	3^b
0	ВВ			YYY		D	D			101	101	10 (b6)			LDR rd,	addr16,	ri	2	3^b
0	AA			ZZZ		D	D			101	001	01 (a5)			LDR rd,	addr16,	ri	2	3^b
0	CC			ZZZ		D	D			101	001	00 (a4)			LDR rd,	addr16,	ri	2	3^b
0	BB			ZZZ		D	D			101	001	10 (a6)			LDR rd,	addr16,	ri	2	3^b
0	AA			XXX		D	D			101	111	01 (bd)			LDR rd,	addr32,	ri	3	4^b
0	BB			XXX		D	D			101	011	11 (af)			LDR rd,	addr32,	ri	3	4^b
0	CC			XXX		D	D			101	111	00 (bc)			LDR rd,	addr32,	ri	3	4^b
0	AA			YYY		D	D			101	110	01 (b9)			LDR rd,	addr32,	ri	3	4^b
0	BB			YYY		D	D			101	111	10 (be)			LDR rd,	addr32,	ri	3	4^b
0	BB			ZZZ		D	D			101	011	10 (ae)			LDR rd,	addr32,	ri	3	4^b
0	CC			ZZZ		D	D			101	011	00 (ac)			LDR rd,	addr32,	ri	3	4^b
0	AA			ZZZ		D	D			101	011	01 (ad)			LDR rd,	addr32,	ri	3	4^b
0	AA			XXX		D	D			101	000	01 (a1)			LDR rd,	(addr16	, ri)	2	5^b
0	AA			YYY		D	D			101	100	01 (b1)			LDR rd,	(addr16)), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

^badd 1 cycle for 32 bit (s=2)

AA: Destination	${\rm register}$	rd
-----------------	------------------	----

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: Α1 0010: A2 0011: 0100: X0 0101: X1 0110: X2 0111: ХЗ 1000: YO 1001: Y1 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

 $\mathtt{XXX} \colon \mathrm{Index} \ \mathrm{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax Words Cycle	s
0	0		RR	RR		D	D			010	010	10	(4a)			LSR.s rd, rs 1 1	
0	0		RR	RR		D	D			010	0000	10	(42)			LSR.s rd, #imm 2 2	
0	1		RR	RR		D	D			010	0000	10	(42)			LSR.s rd, rs b 2 2	
0	NN			XXX		D	D			010	101	10	(56)			LSR.s addr16, ri [, #N] 2 4^a	
0	NN			ZZZ		D	D			010	0001	10	(46)			LSR.s addr16, ri [, #N] 2 4^a	
0	NN			XXX		D	D			010)111	10	(5e)			LSR.s addr32, ri [, #N] 3 5^a	
0	NN			ZZZ		D	D			010	011	10	(4e)			LSR.s addr32, ri [, #N] 3 5^a	

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

RRRR: Register ${\tt rd}$

0000: ΑO 0001: A1 0010: A2 0011: АЗ Х2 0100: XΟ 0101: X1 0110: 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: **Y**3 1100: -1101: Z 1110: SP 1111:

 $\mathtt{XXX} \colon \mathrm{Index} \ \mathrm{register} \ \mathtt{ri}$

000: XΟ 001: X1 010: Х2 011: ХЗ 100: ΑO 101: A1 110: A2 111: АЗ

ZZZ: Index register ri

 $[^]b$ register **rs** specified by bits 0-3 of the following word

N Z C I D V

 $\mathtt{rd} \, \leftarrow \, \mathtt{rs}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
r	d XX	X	r	s AA	A	D	D			101	010:	10 (aa)			MOV rd, rs	1	1
r	d YY	Υ	r	s AA	lΑ	D	D			101	0100	00 (a8)			MOV rd, rs	1	1
r	d XX	X	r	s SS	SS	D	D			101	110	10 (ba)			MOV rd, rs	1	1
r	d AA	A	r	s XX	X	D	D			100	010	10 (8a)			MOV rd, rs	1	1
r	d SS	SS	r	s XX	X	D	D			100	010	10 (8a)			MOV rd, rs	1	1
r	d AA	A	r	s YY	ΥY	D	D			100	1100	00 (98)			MOV rd, rs	1	1

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

AAA: Source/destination register rs/rd

000: A0 001: A1 010: A2 011: A3 100: Y0 101: Y1 110: Y2 111: Y3

XXX: Source/destination register rs/rd

000: X0 001: X1 010: X2 011: X3 100: P 101: Z 110: SP 111: -

YYY: Source/destination register rs/rd

000: Y0 001: Y1 010: Y2 011: Y3 100: A0 101: A1 110: A2 111: A3

SSS: Source/destination register rs/rd

000: SP 001: - 010: P 011: Z 100: X2 101: X3 110: X0 111: X1

Z C I D V

<operand> \leftarrow -<operand>

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	0	0		AAA		D	D			110	010	10 (ca)			NEG.s rd	1	1
1	0	0		BBB		D	D			100	0100	00 (88)			NEG.s rd	1	1
1	0	0		XXX		D	D			110	101	10 (d6)			NEG.s addr16, ri	2	4^a
1	0	0		ZZZ		D	D			110	0011	10 (c6)			NEG.s addr16, ri	2	4^a
1	0	0		XXX		D	D			110	1111	10 (de)			NEG.s addr32, ri	3	5^a
1	0	0		ZZZ		D	D			110	0111	10 (ce)			NEG.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

 ${\tt N} \quad {\tt Z} \quad {\tt C} \quad {\tt I} \quad {\tt D} \quad {\tt V}$

 $PC \leftarrow PC + N$

Encoding

1 1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
					NNNN						111	010	10 (ea)			NOP [#n]	n+1	1

NNNNNNN: Number of program words to skip

I Z C I D V

 $\operatorname{<operand>} \leftarrow \neg \operatorname{<operand>}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	1	1		AAA		D	D			110	010	10 (ca)			NOT.s rd	1	1
1	1	1		BBB		D	D			100	0100	00 (88)			NOT.s rd	1	1
1	1	1		XXX		D	D			110	101	10 (d6)			NOT.s addr16, ri	2	4^a
1	1	1		ZZZ		D	D			110	001	10 (c6)			NOT.s addr16, ri	2	4^a
1	1	1		XXX		D	D			110	1111	10 (de)			NOT.s addr32, ri	3	5^a
1	1	1		ZZZ		D	D			110	011	10 (ce)			NOT.s addr32, ri	3	5^a

 $[^]a$ add 2 cycles for 32 bit (s=2)

AAA: Destination register rd

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

BBB: Destination register rd

000: Y0 001: Y1 010: Y2 011: Y3 100: - 101: Z 110: SP 111: -

DD: Size ${\tt s}$

00: b 8 01: w 16 10: 1 32 11: -

XXX: Index register ri

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

V Z C I D V

 $rd \leftarrow rd \lor < operand >$

Encoding

15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	AA		SSS		D	D			000	111	00 (1c)			ORA.d rd, rs	1	1
0	BB		SSS		D	D			000	000	11 (03)			ORA.d rd, rs	1	1
0	CC		SSS		D	D			000	100	11 (13)			ORA.d rd, rs	1	1
0	A.A	AAA		0	D	D			000	010	01 (09)			ORA.d rd, #imm	2^a	2^b
0	AA		XXX		D	D			000	101	01 (15)			ORA.d rd, addr16, ri	2	3^b
0	AA		ZZZ		D	D			000	001	01 (05)			ORA.d rd, addr16, ri	2	3^b
0	AA		XXX		D	D			000	1110	01 (1d)			ORA.d rd, addr32, ri	3	4^b
0	BB		XXX		D	D			000	011	11 (Of)			ORA.d rd, addr32, ri	3	4^b
0	CC		XXX		D	D			000	111	11 (1f)			ORA.d rd, addr32, ri	3	4^b
0	AA		YYY		D	D			000	110	01 (19)			ORA.d rd, addr32, ri	3	4^b
0	BB		YYY		D	D			000	010	11 (0b)			ORA.d rd, addr32, ri	3	4^b
0	CC		YYY		D	D			000	110	11 (1b)			ORA.d rd, addr32, ri	3	4^b
0	AA		ZZZ		D	D			000	011	01 (0d)			ORA.d rd, addr32, ri	3	4^b
0	AA		XXX		D	D			000	000	01 (01)			ORA.d rd, (addr16, ri)	2	5^b
0	AA		YYY		D	D			000	1000	01 (11)			ORA.d rd, (addr16), ri	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: Y1 1000: YΟ 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: 110: A2 ΑO A1 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

^badd 1 cycle for 32 bit (s=2)

N Z C I D V

 $\texttt{mem[rs--]} \leftarrow \texttt{rd}$

Encoding

:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
	0	A.	A		SSS		D	D			010	0100	00 (4	48)			PSH.s [(rs),] rd	1	2^a
(0	XΣ	ζ.		SSS		D	D			010	0010	00 (4	44)			PSH.s [(rs),] rd	1	2^a
(0	YY	ľ		SSS		D	D			010	1010	00 (!	54)			PSH.s [(rs),] rd	1	2^a
(0	PI	2		SSS		D	D			000	0100	00 ((80			PSH.s [(rs),] rd	1	2^a

 a add 1 cycle for 32 bit (s=2)

AA: Register ${\tt rd}$

00: A0 01: A1 10: A2 11: A3

XX: Register rd

00: X0 01: X1 10: X2 11: X3

YY: Register rd

00: Y0 01: Y1 10: Y2 11: Y3

PP: Register rd

00: P 01: Z 10: SP 11: PC

DD: Size $\mathfrak s$

00: b 8 01: w 16 10: 1 32 11: -

SSS: Stack pointer rs

000: SP 001: PC 010: 0 011: P 100: Y2 101: Y3 110: Y0 111: Y1

N Z C I D V

 $\texttt{rd} \leftarrow \texttt{mem[++rs]}$

Encoding

15	14 13	12 11 10	9 8	7 6 5 4 3 2 1 0	Syntax	Words	Cycles
0	AA	SSS	DD	01101000 (68)	PUL.s [(rs),] rd	1	2^a
0	XX	SSS	DD	01100100 (64)	PUL.s [(rs),] rd	1	2^a
0	YY	SSS	DD	01110100 (74)	PUL.s [(rs),] rd	1	2^a
0	PP	SSS	DD	00101000 (28)	PUL.s [(rs),] rd	1	2^a

 a add 1 cycle for 32 bit (s=2)

AA: Register ${\tt rd}$

00: A0 01: A1 10: A2 11: A3

XX: Register rd

00: X0 01: X1 10: X2 11: X3

YY: Register rd

00: Y0 01: Y1 10: Y2 11: Y3

PP: Register rd

00: P 01: Z 10: SP 11: PC

DD: Size $\mathfrak s$

00: b 8 01: w 16 10: 1 32 11: -

SSS: Stack pointer rs

000: SP 001: PC 010: 0 011: P 100: Y2 101: Y3 110: Y0 111: Y1 RLB Rotate left RLB

Operation N Z C I D

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	0		RR	RR		D	D			001	.010	10	(2a)			RLB.s rd	1	1
1	0		RR	RR		D	D			001	.000	10	(22)			RLB.s rd, #n	2	2
1	1		RR	RR		D	D			001	.000	10	(22)			RLB.s rd, rs b	2	2
1	N	N		XXX		D	D			001	.101	10	(36)			RLB.s addr16, ri [, #N]	2	4^a
1	N	N		ZZZ		D	D			001	.001	10	(26)			RLB.s addr16, ri [, #N]	2	4^a
1	N	N		XXX		D	D			001	111	10	(3e)			RLB.s addr32, ri [, #N]	3	5^a
1	N	N		ZZZ		D:	D			001	.011	10	(2e)			RLB.s addr32, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

RRRR: Register rd

0000: A0 0001: A1 0010: A2 0011: 0100: X0 0101: X1 0110: X2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: 1110: SP 1111: Z

 $\mathtt{XXX} \colon \mathbf{Index} \ \mathbf{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

000: 0 001: Z 010: SP 011: PC 100: Y0 101: Y1 110: Y2 111: Y3

V

^bregister **rs** specified by bits 0-3 of the following word

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0		RR	.RR		D	D			001	010	10 ((2a)			ROL.s rd	1	1
0	0		RR	.RR		D	D			001	.000	10 ((22)			ROL.s rd, #n	2	2
0	1		RR	.RR		D	D			001	.000	10 ((22)			ROL.s rd, rs b	2	2
0	N	N		XXX		D	D			001	101	10 ((36)			ROL.s addr16, ri [, #N]	2	4^a
0	N	N		ZZZ		D	D			001	.001	10 ((26)			ROL.s addr16, ri [, #N]	2	4^a
0	N	N		XXX		D	D			001	111	10 ((3e)			ROL.s addr32, ri [, #N]	3	5^a
0	N	N		ZZZ		D	D			001	011	10 ((2e)			ROL.s addr32, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

RRRR: Register rd

0000: A0 0001: A1 0010: A2 0011: АЗ 0100: X0 0101: X1 0110: X2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: 1110: SP 1111: Z

 $\mathtt{XXX} \colon \mathbf{Index} \ \mathbf{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

000: 0 001: Z PC 010: SP 011: 100: YΟ 101: Y1 Y2 111: 110: Y3

^bregister rs specified by bits 0-3 of the following word

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0		RR	RR		D	D			011	.010	10	(6a)			ROR.s rd	1	1
0	0		RR	RR		D	D			011	.000	10	(62)			ROR.s rd, #n	2	2
0	1		RR	RR		D	D			011	.000	10	(62)			ROR.s rd, rs b	2	2
0	N	N		XXX		D	D			011	101	10	(76)			ROR.s addr16, ri [, #N]	2	4^a
0	N:	N		ZZZ		D	D			011	.001	10	(66)			ROR.s addr16, ri [, #N]	2	4^a
0	N:	N		XXX		D	D			011	.111	10	(7e)			ROR.s addr16, ri [, #N]	3	5^a
0	N.	N		ZZZ		D	D			011	.011	10	(6e)			ROR.s addr16, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: 8 01: 16 10: 32 11: -

RRRR: Register rd

0000: A0 0001: A1 0010: A2 0011: АЗ 0100: XΟ 0101: X1 0110: X2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: Z 1110: SP 1111:

 $\mathtt{XXX} \colon \mathbf{Index} \ \mathbf{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

ZZZ: Index register ri

000: 0 001: Z SP PC 010: 011: 100: YΟ 101: Y1 Y2 111: 110: Y3

^bregister **rs** specified by bits 0-3 of the following word

N Z C I D V

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
1	0		RR	RR		D	D			011	010	10 (6a)			RRB.s rd	1	1
1	0		RR	.RR		D	D			011	000	10 (62)			RRB.s rd, #n	2	2
1	1		RR	.RR		D	D			011	000	10 (62)			RRB.s rd, rs b	2	2
1	N	N		XXX		D	D			011	101	10 (76)			RRB.s addr16, ri [, #N]	2	4^a
1	N	N		ZZZ		D	D			011	001	10 (66)			RRB.s addr16, ri [, #N]	2	4^a
1	N	N		XXX		D	D			011	111	10 (7e)			RRB.s addr16, ri [, #N]	3	5^a
1	N	N		ZZZ		D	D			011	011	10 (6e)			RRB.s addr16, ri [, #N]	3	5^a

^aadd 2 cycles for 32 bit (s = 2)

NN: Shift amount

00: 1 01: 2 10: 3 11: 4

DD: Size

00: 8 01: 16 10: 32 11: -

RRRR: Register rd

0000: A0 0001: A1 0010: A2 0011: 0100: X0 0101: X1 0110: X2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: ΥЗ 1100: 1101: Z 1110: SP 1111:

 $\mathtt{XXX} \colon \mathbf{Index} \ \mathbf{register} \ \mathtt{ri}$

000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3

 ${\tt ZZZ:}$ Index register ${\tt ri}$

000: 0 001: Z PC 010: SP 011: 100: YΟ 101: Y1 Y2 111: 110: Y3

^bregister rs specified by bits 0-3 of the following word

N Z C I D V

```
\begin{array}{ccc} P \leftarrow & \texttt{mem[++SP]} \\ PC \leftarrow & \texttt{mem[++SP]} \end{array}
```

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0	0		SSS		_	-			010	0000	00 (40)			RTI [(rs)]	1	4

SSS: Stack pointer register rs

000: SP 001: PC 010: 0 011: Z 100: Y2 101: Y3 110: Y0 111: Y1

 ${\tt N} \quad {\tt Z} \quad {\tt C} \quad {\tt I} \quad {\tt D} \quad {\tt V}$

 $\texttt{PC} \leftarrow \texttt{mem[++SP]}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	0	0		SSS		_	-			011	0000	00 (60)			RTS [(rs)]	1	4

 ${\tt SSS:}$ Stack pointer register ${\tt rs}$

000: SP 001: PC 010: 0 011: Z 100: Y2 101: Y3 110: Y0 111: Y1

V Z C I D V

rd, C \leftarrow rd - operand> - \neg C

Encoding

15	14 13	12 11	10	9	8	7	6	5 4	1 3	3 2	1	0	Syntax		Words	Cycles
0	AA	SSS		DD	,		1	1111	100	(fc)			SBC.s rd, rs		1	1
0	BB	SSS		DD	١		1	1100	011	(e3)			SBC.s rd, rs		1	1
0	CC	SSS		DD			1	1110	011	(f3)			SBC.s rd, rs		1	1
0	AA	AA	0	DD			1	1101	001	(e9)			SBC.s rd, #imm		2^a	2^b
0	AA	XXX		DD			1	1110	101	(f5)			SBC.s rd, addr1	3, ri	2	2^b
0	AA	ZZZ		DD	١		1	1100	101	(e5)			SBC.s rd, addr1	3, ri	2	2^b
0	AA	XXX		DD	١		1	1111	101	(fd)			SBC.s rd, addr3	2, ri	3	4^b
0	BB	XXX		DD	,		1	1101	111	(ef)			SBC.s rd, addr3	2, ri	3	4^b
0	CC	XXX		DD	١		1	.1111	111	(ff)			SBC.s rd, addr3	2, ri	3	4^b
0	AA	YYY		DD			1	1111	001	(f9)			SBC.s rd, addr3	2, ri	3	4^b
0	BB	YYY		DD			1	1101	011	(eb)			SBC.s rd, addr3	2, ri	3	4^b
0	CC	YYY		DD			1	1111	011	(fb)			SBC.s rd, addr3	2, ri	3	4^b
0	AA	ZZZ		DD			1	1101	101	(ed)			SBC.s rd, addr3	2, ri	3	4^b
0	AA	XXX		DD			1	1100	001	(e1)			SBC.s rd, (addr	16, ri)	2	5^b
0	AA	YYY		DD	١		1	1110	001	(f1)			SBC.s rd, (addr	16, ri)	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: Y1 1000: YΟ 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: 110: A2 ΑO A1 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

ZZZ: Index register ri

^badd 1 cycle for 32 bit (s=2)

SBT

Operation

V Z C I D V

 $\operatorname{\mathsf{coperand}} \leftarrow \operatorname{\mathsf{coperand}} \vee \operatorname{\mathsf{mask}}$

Encoding

15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax	Words	Cycles
0	AAA			RR	RR				001	1100	00 (38)			SBT rd, #imm	1	1
0	AAA			XX	XX				001	100	10 (32)			SBT addr32, ri, #imm	3	5
0	BBB			RR	RR				011	1100	00 (78)			SBT rd, #imm	1	1
0	BBB			XX	XX				011	100	10 (72)			SBT addr32, ri, #imm	3	5
0	CCC			RR	RR				111	1100	00 (f8)			SBT rd, #imm	1	1 1
0	CCC			XX	XX				111	100	10 (f2)			SBT addr32, ri, #imm	3	5
0	DDD			RR	RR				100	111:	11 (9f)			SBT rd, #imm	1	1
0	DDD			XX	XX				101	100	10 (b2)			SBT addr32, ri, #imm	3	5

AAA: Bit number 000: 0 001: 7 010: 8 011: 15 100: 16 101: 23 110: 24 111: 31 BBB: Bit number 000: 2 001: 5 010: 10 011: 13 100: 18 101: 21 26 111: 29 110: **CCC**: Bit number 000: 3 001: 4 010: 11 011: 12 100: 19 101: 20 110: 27 111: 28 DDD: Bit number 000: 6 011: 001: 1 010: 14 110: 100: 22 101: 30 111: 17

RRRR: Operand register rd 0000: P 0001: Z 0010: 0011: SP 0100: YΟ 0101: Y1 0110: Y2 0111: ΥЗ 1000: XΟ 1001: Х1 1010: X2 1011: ХЗ 1100: ΑO 1101: A1 1110: A2 1111: A3 $\tt XXXX:$ Index register ${\tt ri}$ 0000: ΑO 0001: 0011: A1 0010: A2 AЗ 0100: XΟ 0101: Х1 0110: Х2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: 1100: 0 1101: Z 1110: SP 1111:

STR

Operation

 $\texttt{<operand>} \leftarrow \texttt{rd}$

Encoding

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Syntax		Words	Cycles
0	A.	A	XXX		D	D	10010101 (95)								STR.s rd, addr16,	ri	2	3^a	
0	CO	C	XXX		D	D	10010100 (94)								STR.s rd, addr16,	ri	2	3^a	
0	BI	3		YYY		D	D			100	101	10 (96)			STR.s rd, addr16,	ri	2	3^a
0	A.A	A	ZZZ			D	D			100	001	01 ((85)			STR.s rd, addr16,	ri	2	3^a
0	BI	3	ZZZ			D	D			100	001	10 ((86)			STR.s rd, addr16,	ri	2	3^a
0	CO	C		ZZZ DD			10000100 (84)								STR.s rd, addr16,	ri	2	3^a	
0	A.	A		XXX			DD 10011101 (9d)						(9d)			STR.s rd, addr32,	ri	3	4^a
0	BI	3	XXX			D	D	10001111 (8f)								STR.s rd, addr32,	ri	3	4^a
0	CO	C	XXX			D	D	10011100 (9c)					(9c)			STR.s rd, addr32,	ri	3	4^a
0	A.A	A		YYY		D	D	10011001 (99)								STR.s rd, addr32,	ri	3	4^a
0	BI	3		YYY		D	D	10011110 (9e)								STR.s rd, addr32,	ri	3	4^a
0	A.A	A		ZZZ		D	D			100	011	01 ((8d)			STR.s rd, addr32,	ri	3	4^a
0	BI	3		ZZZ		D	D	10001110 (8e)								STR.s rd, addr32,	ri	3	4^a
0	C	2	ZZZ		D	D	10001100 (8c)								STR.s rd, addr32,	ri	3	4^a	
0	AA	4	XXX DD			D	10000001 (81)								STD.s rd, (addr16,		2	5^a	
0	A.A	A	YYY			D	D	10010001 (81)								STD.s rd, (addr16)	, ri	2	5^a

 $[^]a \mathrm{add} \ 1$ cycle for 32 bit $(\mathtt{s}{=}2)$

AA: Destination register rd								XXX: Index register ri
00:	AO	01:	A1	10:	A2	11:	АЗ	000: X0 001: X1 010: X2 011: X3 100: A0 101: A1 110: A2 111: A3
BB: Destir	nation	n regis	ter re	l				100. NO 101. NI 110. NZ 111. NO
00:		01:	X 1	10:	Х2	11:	Х3	YYY: Index register ri
00.	110	01.	21.1	10.	112		no	000: Y0 001: Y1 010: Y2 011: Y3
CC: Destir	nation	regis	ter re	l				100: 0 101: Z 110: SP 111: PC
00:	YO	01:	Y1	10:	Y2	11:	ΥЗ	ZZZ: Index register ri
DD: Size								000: 0 001: Z 010: SP 011: PC
00.	8	01.	16	10.	30	11.	_	100: Y0 101: Y1 110: Y2 111: Y3

rd, C \leftarrow rd - coperand>

Encoding

15	14 13	12	11	10	9	8	7	6	5 4	3	2	1	0	Syntax	Words	Cycles
1	AA	SSS		D	D	11111100 (fc)							SUB.s rd, rs	1	1	
1	BB	SSS			D	D		1	1100	011	(e3)			SUB.s rd, rs	1	1
1	CC	:	SSS D					1	1110	011	(f3)			SUB.s rd, rs	1	1
1	AA	AAAA O			D	DD 11101001 (e9)								SUB.s rd, #imm	2^a	2^b
1	AA	:	XXX DD			D		1	1110	101	(f5)			SUB.s rd, addr16, ri	2	2^b
1	AA		ZZZ		D	D	11100101 (e5)							SUB.s rd, addr16, ri	2	2^b
1	AA		XXX			D	11111101 (fd)							SUB.s rd, addr32, ri	3	4^b
1	BB		XXX		D	DD 11101111 (ef)								SUB.s rd, addr32, ri	3	4^b
1	CC	:	XXX	XXX DD			11111111 (ff)							SUB.s rd, addr32, ri	3	4^b
1	AA		YYY		D	D		1	1111	001	(f9)			SUB.s rd, addr32, ri	3	4^b
1	BB		YYY		D	D	11101011 (eb)							SUB.s rd, addr32, ri	3	4^b
1	CC		YYY		D	D		1	1111	011	(fb)			SUB.s rd, addr32, ri	3	4^b
1	AA		ZZZ		D	D		1	1101	101	(ed)			SUB.s rd, addr32, ri	3	4^b
1	AA		XXX	. DD			11100001 (e1)							SUB.s rd, (addr16, ri)	2	5^b
1	AA	YYY			D	D		1	1110	001	(f1)			SUB.s rd, (addr16, ri)	2	5^b

^aadd 1 word for 32 bit (s=2)

AA: Destination register rd

00: A0 01: A1 10: A2 11: A3

AAAA: Destination register rd

0000: A0 0001: A1 0010: A2 0011: AЗ 0100: X0 0101: X1 0110: Х2 0111: ХЗ 1001: 1000: YΟ Y1 1010: Y2 1011: 1100: -1101: Z 1110: SP 1111:

BB: Destination register rd

00: X0 01: X1 10: X2 11: X3

CC: Destination register rd

00: Y0 01: Y1 10: Y2 11: Y3

DD: Size s

00: b 8 01: w 16 10: 1 32 11: -

SSS: Source register rs

000: A0 001: A1 010: A2 011: A3 100: X0 101: X1 110: X2 111: X3

XXX: Index register ri

000: XΟ 001: X1 010: X2 011: ХЗ 100: 101: 110: A2 ΑO A1 111: АЗ

YYY: Index register ri

000: Y0 001: Y1 010: Y2 011: Y3 100: 0 101: Z 110: SP 111: PC

 ${\tt ZZZ:}$ Index register ${\tt ri}$

^badd 1 cycle for 32 bit (s=2)

TBT Test bit

Operation

V Z C I D V

 $Z \leftarrow \text{operand} \land \text{mask} = 0$

Encoding

15	14 13 13	11	10	9	8	7	6	5	4	3	2	1	0	Synt	tax	Words	Cycles
1	AAA RRRR					00011000 (18)								TBT	rd, #imm	1	1
1	AAA	AAA XXXX			00010010 (12)								TBT	addr32, ri, #imm	3	5	
1	BBB		RRRR			00011000 (58)								TBT	rd, #imm	1	1
1	BBB		XXXX					000	100	10	(52)			TBT	addr32, ri, #imm	3	5
1	CCC		RRRR			00011000 (d8)								TBT	rd, #imm	1	1
1	CCC		XXXX					000	100	10	(d2)			TBT	addr32, ri, #imm	3	5
1	DDD		RRRR			00011000 (ъ8								TBT	rd, #imm	1	1
1	DDD		XXXX			00010010 (92)								TBT	addr32, ri, #imm	3	5

AAA: Bit number 000: 0 001: 7 010: 8 011: 15 100: 16 101: 23 110: 24 111: 31 BBB: Bit number 000: 2 001: 5 010: 10 011: 13 100: 18 101: 21 26 111: 29 110: **CCC**: Bit number 000: 3 001: 4 010: 11 011: 12 100: 19 101: 20 110: 27 111: 28 DDD: Bit number 000: 6 011: 001: 1 010: 14 100: 22 101: 17 110: 30 111:

RRRR: Operand register rd 0000: P 0001: Z 0010: 0011: SP 0100: YΟ 0101: Y1 0110: Y2 0111: ΥЗ 1001: 1000: XΟ X1 1010: X2 1011: ХЗ 1100: AO 1101: A1 1110: A2 1111: A3 $\tt XXXX:$ Index register ${\tt ri}$ 0000: ΑO 0001: 0010: A2 0011: A1 A3 0100: 0101: X1 XΟ 0110: X2 0111: ХЗ 1000: YO 1001: Y1 1010: Y2 1011: 1100: 0 1101: Z 1110: SP 1111:

Z C I D V

 $\operatorname{\mathsf{coperand}} \leftarrow \operatorname{\mathsf{coperand}} \oplus \operatorname{\mathsf{mask}}$

Encoding

15	14 13 12	11 10 9 8	7 6 5 4 3 2 1 0	Syntax	Words	Cycles
1	AAA	RRRR	00111000 (38)	XBT rd, #imm	1	1
1	AAA	XXXX	00110010 (32)	XBT addr32, ri, #imm	3	5
1	BBB	RRRR	01111000 (78)	XBT rd, #imm	1	1
1	BBB	XXXX	01110010 (72)	XBT addr32, ri, #imm	3	5
1	CCC	RRRR	11111000 (f8)	XBT rd, #imm	1	1
1	CCC	XXXX	11110010 (f2)	XBT addr32, ri, #imm	3	5
1	DDD	RRRR	10011111 (9f)	XBT rd, #imm	1	1
1	DDD	XXXX	10110010 (b2)	XBT addr32, ri, #imm	3	5

AAA: Bit number 000: 0 001: 7 010: 8 011: 15 100: 16 101: 23 110: 24 111: 31 BBB: Bit number 000: 2 001: 5 010: 10 011: 13 100: 18 101: 21 26 111: 29 110: **CCC**: Bit number 000: 3 001: 4 010: 11 011: 12 100: 19 101: 20 110: 27 111: 28 DDD: Bit number 000: 6 011: 9 001: 1 010: 14 110: 100: 22 30 111: 101: 17

RRRR: Operand register rd 0000: P 0001: Z 0010: 0011: SP 0100: YΟ 0101: Y1 0110: Y2 0111: ΥЗ 1001: 1000: XΟ Х1 1010: X2 1011: ХЗ 1100: ΑO 1101: A1 1110: A2 1111: A3 $\tt XXXX:$ Index register ${\tt ri}$ 0000: ΑO 0001: 0010: 0011: A1 A2 AЗ 0100: XΟ 0101: Х1 0110: Х2 0111: ХЗ 1000: YΟ 1001: Y1 1010: Y2 1011: 1100: 0 1101: Z 1110: SP 1111: