Projetos e APIs

Aula Teórica nº3

2020/2021

OpenStack

- Open source cloud computing platform for all types of clouds
- Aims to be simple to implement, massively scalable, and feature rich
- Developers and cloud computing technologists from around the world create the OpenStack project
- OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a set of interrelated services
- Each service offers an application programming interface (API) that facilitates this integration
- It's possible to install some or all services

Compute			Orch	nestration		
						OpenStack
**	NOVA	Compute Service	4	HEAT	Orchestration	Services
	ZUN	Containers Service		SENLIN	Clustering service	
•	QINLING	Functions Service	*_	MISTRAL	Workflow service	
Paro	Metal		₽	ZAQAR	Messaging Service	
Dare			\$	BLAZAR	Resource reservation	on service
₩.	IRONIC	Bare Metal Provisioning Service	A	AODH	Alarming Service	
~	CYBORG	Accelerators resource management	Worl	Workload Provisioning		
Storage						
			5	MAGNUM Container Orchestration		ation Engine Provisioning
***	SWIFT	Object store		SAHARA	Big Data Processing	g Framework Provisioning
₹	CINDER	Block Storage		TROVE	Database as a Servi	ice
*	MANILA	Shared filesystems	Annl	ication Lifecycle		
Nota	rorking		ДР	action Energete 3		
MELW	orking			MASAKARI	Instances High Avai	lability Service
	NEUTRON	Networking		MURANO	Application Catalog	
	OCTAVIA	Load balancer		SOLUM	Software Developm	nent Lifecycle Automation
<u> </u>	DESIGNATE	DNS service		FREEZER	Backup, Restore, ar	nd Disaster Recovery

Monitoring Tools			Containers			
Å	CEILOMETER	Metering & Data Collection Service		KURYR	OpenStack Networking integration for containers	
Å	PANKO	Event, Metadata Indexing Service	NFV			
7	MONASCA	Monitoring				
Optii	mization/policy tools		API I	TACKER Proxies	NFV Orchestration	
	WATCHER	Optimization Service	-	EC2API	EC2 API proxy	
A.	VITRAGE	Root Cause Analysis service				
	CONGRESS	Governance	Web Frontend			
	RALLY	Benchmark service		HORIZON	Dashboard	
Billin	ng / Business Logic		Swif	t add-ons		
	CLOUDKITTY	Billing and chargebacks	\$	STORLETS	Computable object storage	
Mult	i-Region Tools				OpenStack	
(2)	TRICIRCLE	Networking Automation for Multi-Reg	gion Depl	oyments	Services	

Openstack Landscape

9 Core Services

a openstack.

OpenStack Services

- OpenStack consists of several independent parts, named the OpenStack services
- Those services work together and include the Compute, Identity, Networking, Image, Block Storage, Object Storage, Telemetry, Orchestration, and Database services
- It's possible to install any of these projects separately and configure them stand-alone or as connected entities
- Individual services interact with each other through public APIs, except where privileged administrator commands are necessary
- OpenStack services are composed of several processes
- For communication between the processes of one service, an AMQP message broker is used
- The service's state is stored in a database

OpenStack Conceptual Architecture

8

Inside Nova: the processes (1/2)

- **1.** After getting the response from keystone, then novaapi checks for conflicts with nova-database and then it creates initial database entry for new instance or VM.
- **2.** nova-api sends the rpc.call request to nova-scheduler expecting to get updated instance entry with host ID specified
- 3. nova-scheduler picks the request from the queue
- **4.** nova-scheduler talks to nova-database to locate an appropriate host ID using filtering and weighing mechanism
- **5.** nova-scheduler sends the rpc.cast request to nova-compute for launching an instance on the appropriate host

Inside Nova: the processes (2/2)

- 6. nova-compute picks the request from the queue and it sends the rpc.call request to nova-conductor to get the VM or instance info such as host ID and flavor (RAM,CPU and Disk)
- 7. nova-conductor takes the request from queue and communicate with nova-database, to get the instance information and sends the information to the queue
- **8.** nova-compute picks the instance information from the queue
- 9. Through API nova-compute gets the image, networking and block storage information needed for the instance:

Glance

Neutron

Cinder

10. nova-compute generates data for the hypervisor driver and executes the request on the hypervisor using libvirt or API and then finally a VM is created on the hypervisor.

OpenStack Logical Architecture

Orchestration Service (Heat)

- Heat provides a template based orchestration for describing a cloud application
- A Heat template describes the infrastructure for a cloud application in text files which are readable and writable by humans (YAML)
- Templates specify the relationships between resources (e.g. this volume is connected to this server)
- The templates allow creation of most OpenStack resource types (such as instances, floating ips, volumes, security groups, users, etc)
- Heat primarily manages infrastructure, but the templates integrate well with SW configuration management tools such as Puppet and Ansible

```
heat_template_version: 2015-10-15
description: Launch a basic instance with CirrOS image using the
             ``m1.tiny`` flavor, ``mykey`` key, and one network.
parameters:
  NetID:
    type: string
    description: Network ID to use for the instance.
resources:
  server:
    type: OS::Nova::Server
    properties:
      image: cirros
      flavor: m1.tiny
      key_name: mykey
      networks:
      - network: { get_param: NetID }
outputs:
  instance name:
    description: Name of the instance.
    value: { get_attr: [ server, name ] }
  instance_ip:
    description: IP address of the instance.
    value: { get attr: [ server, first_address ] }
```

Heat – Launch an instance

1. Create the demotemplate.yml file with the content in this slide

2. Determine available networks:

3. Set the NET_ID environment variable to reflect the ID of a network. For example, using the provider network:

```
$ export NET_ID=$(openstack network list | awk '/ provider / { print $2 }')
```

4. Create a stack of one CirrOS instance on the provider network:

5. After a short time, verify successful creation of the stack:

6. Show the name and IP address of the instance...

```
$ openstack stack output show --all stack
[
    "output_value": "stack-server-3nzfyfofu6d4",
    "description": "Name of the instance.",
    "output_key": "instance_name"
    },
    {
        "output_value": "10.4.31.106",
        "description": "IP address of the instance.",
        "output_key": "instance_ip"
    }
]
```

7. ... and compare with the output of the OpenStack client:

Methods to send API requests

cURL

A command-line tool that lets you send HTTP requests and receive responses.

OpenStack command-line client

The OpenStack project provides a command-line client that enables you to access APIs through easy-to-use commands

REST clients

Browser-based graphical interfaces for REST in Firefox and Chrome, AdvancedRestClient, Postman, etc.

OpenStack Python Software Development Kit (SDK)

Use this SDK to write Python automation scripts that create and manage resources in your OpenStack cloud. The SDK implements Python bindings to the OpenStack API, which enables you to perform automation tasks in Python by making calls on Python objects rather than making REST calls directly

Openstack Toolkits 1/2

• **Go**

Gophercloud provides a Go binding to OpenStack cloud APIs.

Java

- OpenStack4j A fluent Java OpenStack API.
- OpenStack Java SDK is a Java binding for the OpenStack APIs.
- Apache jclouds is a Multi-cloud SDK for Java with OpenStack support

JavaScript

- <u>pkgcloud</u> is a Multi-cloud library for Node.js that supports OpenStack
- jstack is a JavaScript client library for the OpenStack API.
- <u>is-openclient</u> is a very opinionated core client which can be used in either Node.js or in the browser (browser support not yet complete) to communicate with a RESTful APIs, including but not limited to any OpenStack-compatible API. (last updated 2015)
- <u>node-openstack-wrapper</u> is a convenience wrapper for many of Openstack's common features with a focus on projects/tenants.

.NET

OpenStack.NET is a .NET SDK for OpenStack.

Openstack Toolkits 2/2

• PHP

- php-opencloud/openstack is a PHP SDK for OpenStack. It is actively maintained and supports latest OpenStack identity api (Keystone v3).
- SDK covers following api: BlockStorage v2, Compute v2, Identity Keystone v2 and v3, Images v2, Networking v2 including Layer3 extension and Security Groups extension, Object Storage v1, Gnocchi v1

Python

- OpenStack Shade is a simple client library for operating OpenStack clouds that abstracts deployer differences
- The <u>SDK-Development/PythonOpenStackSDK</u> project is a proposed solution to offering an SDK that provides a single point of entry for consumers, and a base from which other tools can be built upon, such as commandline interfaces.
- The OpenStackClients are the native Python bindings for the OpenStack APIs. They are used to implement the command-line interfaces (which ship with the library).
- Apache libcloud is a Python library that abstracts away differences among multiple cloud provider APIs.

Ruby

- <u>fog</u> is a Multi-cloud Ruby library with support for OpenStack
- Misty is a dedicated HTTP client for OpenStack APIs
- Aviator An elegantly designed OpenStack SDK for Ruby (hasn't been updated since 2015)

Keystone Tokens

- Tokens are used to authenticate and authorize interactions with the various OpenStack APIs
- Tokens can express your authorization in different scopes
- A user may have different sets of roles, in different projects, and in different domains
- While tokens always express one identity, they may only ever express one set of roles in one authorization scope at a time

Unscoped Tokens

- An unscoped token contains neither roles, a project scope, nor a domain scope
- Their primary use case is simply to prove your identity to keystone at a later time, usually to generate scoped tokens, without repeatedly presenting your original credentials

The following conditions must be met to receive an unscoped token:

- You must not specify an authorization scope in your authentication request (for example, on the command line with arguments such as --os-project-name or --os-domain-id),
- Your identity must not have a "default project" associated with it that you also have role assignments, and thus authorization, upon.

Scoped Tokens

Project-scoped

• they express the authorization to operate in a specific tenancy (project) of the cloud and are useful to authenticate when working with most other services

Domain-scoped

- they express the authorization to operate a domain-level, above that of the user and projects contained therein (domain-level administrator)
- They contain a limited-service catalog
- They can also be used to work with domain-level concerns in other services, such as to configure domain-wide quotas that apply to all users or projects in a specific domain

Identity Concepts

- **Authentication.** The process of confirming the identity of a user. To confirm an incoming request, OpenStack Identity validates a set of credentials that users supply. Initially, these credentials are a username and password, or a username and API key. When OpenStack Identity validates user credentials, it issues an authentication token. Users provide the token in subsequent requests.
- Endpoint. A network-accessible address, usually a URL, through which you can access a service.
- Regions, Domains and Groups. Identity services API v3 entities. A region represents a general division in an
 OpenStack deployment. Domains are a collection of projects and users that define administrative
 boundaries for managing Identity entities. Groups are a collection of users owned by a domain.
- **Project.** A container that groups or isolates resources or identity objects. Depending on the service operator, a project might map to a customer, account, organization, or tenant.
- Service. An OpenStack service, such as Compute (nova), Object Storage (swift), or Image service (glance), that provides one or more endpoints through which users can access resources and perform operations.
- **Token.** An alpha-numeric text string that enables access to OpenStack APIs and resources. A token may be revoked at any time and is valid for a finite duration.
- User. A digital representation of a person, system, or service that uses OpenStack cloud services.

Using the OpenStack APIs

 Issue an authentication request with a payload of credentials to OpenStack Identity to get an authentication token

Credentials are usually a combination of your username and password, and optionally, the name or ID of the project of your cloud.

 When you send API requests, you include the token in the X-Auth-Token header.

A token is valid for a limited time before it expires. A token can also become invalid for other reasons. For example, if the roles for a user change, existing tokens for that user are no longer valid.

Request

Scoped Token – Example

```
POST /identity/v3/auth/tokens HTTP/1.1
HOST: 127.0.0.1:8080
content-type: application/json
content-length: 402
  "auth": {
    "identity": {
      "methods": [
        "password"
      "password": {
        "user": {
          "name": "demo",
          "domain": {
                        "name": "Default"
          "password": "devstack"
    "scope": {
      "project": {
        "id": "9176c2c2a1144a97bcf0de413d7a3cd9"
                                               Project demo
```

Response

```
date: Tue, 01 May 2018 09:50:53 GMT
server: Apache/2.4.29 (Ubuntu)
x-subject-token: gAAAAABa6Dh-eyy0aHgVnbTXAu48Y3mPA6c6pMuhuX4HhEqhYkD6jEm1YIA28kYD
RebozMgYWRzchfKVWVOpv8AA_UoAh2BfVV2THGgW3MmDiVesVS9oAZ6_HCWueMI11rlWZeEZ8pbL40Seu
HbwrSM8xekyM6xOwuw1ZA_k5QDB5JiqXv-UdzA
vary: X-Auth-Token
content-type: application/json
content-length: 3397
x-openstack-request-id: req-02d627b9-2a6b-44f8-8d04-66671ad0a35d
connection: close
{
body
}
Catalog that includes endpoints to access services, e.g.:
```

http://10.0.2.15/compute/v2.1

Catalog received in the response to the Token request

9176c2c2a1144a9 7bcf0de413d7a3c d9 = **Project_ID**

devstack@openstack:~/devstack\$ openstack catalog list

+ Name	+ Туре	++ Endpoints
+	 identity 	+
] [public: http://10.0.2.15/identity
cinderv2 	volumev2	RegionOne RegionOne public: http://10.0.2.15/volume/v2/9176c2c2a1144a97bcf0de413d7a3cd9
cinderv3	volumev3	RegionOne
 placement 	 placement 	RegionOne public: http://10.0.2.15/placement
 nova 	 compute 	RegionOne public: http://10.0.2.15/compute/v2.1
 cinder 	 volume 	RegionOne
 nova_legacy 	 compute_legacy 	RegionOne
neutron 	 network 	RegionOne
glance 	 image 	RegionOne public: http://10.0.2.15/image
 cinder 	 block-storage 	RegionOne

Request

Scoped Token – Example

GET /compute/v2.1/servers HTTP/1.1

HOST: 127.0.0.1:8080

x-auth-token: gAAAAABa6Dh-eyy0aHgVnbTXAu48Y3mPA6c6pMuhuX4HhEqhYkD6jEm1YIA28kYDRebozMgYWRzchfKVWVOpv8AA_UoAh2BfVV2THGgW3MmDiVesVS9oAZ6_HCWueMI11rlWZeEZ8pbL40Se uHbwrSM8xekyM6xOwuw1ZA k5QDB5JiqXv-UdzA

Response

date: Tue, 01 May 2018 09:55:50 GMT

server: Apache/2.4.29 (Ubuntu)

content-length: 919

content-type: application/json
openstack-api-version: compute 2.1
x-openstack-nova-api-version: 2.1

vary: OpenStack-API-Version,X-OpenStack-Nova-API-Version

x-openstack-request-id: req-c6ec4efe-619a-4eaf-af4c-125ba93db35f x-compute-request-id: req-c6ec4efe-619a-4eaf-af4c-125ba93db35f

connection: close

- A **self** link contains a versioned link to the resource. Use these links when the link is followed immediately.
- A **bookmark** link provides a permanent link to a resource that is appropriate for long term storage.

```
"servers": [
"id": "5622e010-538e-49f4-85e2-560727253b21",
"links": [
"href": "http://127.0.0.1:8080/compute/v2.1/servers/5622e010-538e-49f4-85e2-
560727253b21",
"rel": "self"
},
"href": "http://127.0.0.1:8080/compute/servers/5622e010-538e-49f4-85e2-
560727253b21",
"rel": "bookmark"
"name": "test_instance_2"
```

Cinder and Nova APIs Usage Examples

GET /volume/v3/9176c2c2a1144a97bcf0de413d7a3cd9/volumes HTTP/1.1

HOST: 127.0.0.1:8080

x-auth-token: gAAAAABa6Cu5x90_6YWjPW9DYthkMFYVU7lfnLDkERcLnzq UZ7a3PJ8-TzxH5GtLhzJHSI9m_u5X6JL41sRwhaF27wTSRH9pwu3T8f-wZTNn 2mhdvBSva0lJ_7ISIAE8mPorDNEO4SzxvIMGhZtIzVIYKKn9EVNXhT3QmpsZR sIB6YE95dL5Ox4 Create a new instance in Nova

Response: 202 Accepted

Volumes associated to **user** demo, **project** demo in Cinder

```
POST /compute/v2.1/servers HTTP/1.1

HOST: 127.0.0.1:8080

x-auth-token: gAAAAABa6Cu5x90_6YWjPW9DYthkMFYVU7lfnLDkERcLnzqUZ7a3PJ8-TzxH5GtLhzJH
SI9m_u5X6JL41sRwhaF27wTSRH9pwu3T8f-wZTNn2mhdvBSva0lJ_7ISIAE8mPorDNEO4SzxvIMGhZtIzV
IYKKn9EVNXhT3QmpsZRsIB6YE95dL50x4
content-type: application/json
content-length: 191
{
    "server": {
        "name": "test_instance_auto",
        "imageRef": "6eda4305-d711-4686-85bc-c47856c2e2c8",
        "flavorRef": http://openstack.example.com/flavors/1
    }
}
```