No computable function of the marrage should be nevealed by looking at the ciphertext. Plaintact: { 01,00} Enc(15.) = C Looking at the ciphertext of can predict the following! " the first but of the plaintent is o". Textbook: Introduction to Modern Cryptography: Kalz & Lindell CRC Prew. 10 Jan 25 Recap: What is a secret encryption? P= set of plaintents = { m1, m2, me} C = Get of ciphertexts = {C1, C2, Cen (obviously: 1 > e) fr set of togs = & k, kz, ... k+3

non-trivial

Functions:
(1) Key Gen: every time the function is run,
il producer a random rearet key
K e K
initial part of this course
f = {coe {0,1}
Key Gen in this case Binary Strings of length in bit
Key Gon in this case length in bits = produce a k & K
with prob = Im
in proactice. n 2/128 bits, for higher level of security
(paranoid/quantum compi
一 856 6位
iot devicer - 64 bits
(ii) Enc (k e fk, m e f)
\rightarrow c ϵ c
passibility:
$\operatorname{Snc}(k, m_1) \longrightarrow C = C = 2. P $
Sinc (K, MI) -> C'
Enc(y) can be determinishe or randomized
(Mi) Dec (KE SK, LEC)
\rightarrow m \in f
deterministic
Valid Encryption. + me P, + ke K
Dec (k, Enc(k, m)) = m

Secure Encyption ? Tovial attack 2 Trivial attack 1 Given a challege ciphetat Baturfore the keys c, aim is to find m effort = 2ⁿ - guess the key k decopption calls then Dec(k,c)-Success poop = 1 Arob of success of the adv. $(\xi x) = \sqrt{2}n$ attack cost = 1 -> m should be sufficiently large Given a cipherlest of an ottober should not get some mon third info about The plaintext information Claude Shannon : rinformation of prob. Event -> toutcomes Pt -3 information contained P1, P2, ---=-2 p.28 p Z p (5 / p)

Is it possible to achieve this strong security notion? Vernam Cipher / OTP (one time pad) P= ~= {0,137 Key Gen: -> randomly produce a key $k \in \{6,1\}^{n}$ Pr (k = k*) = /2" XOR $Enc(k, m) = k \oplus m$ Dec (k,c) = K+C note: XPX= 000,... 0 For all x To prove: for this encyption also. Pr (P= m C c c) tc, tm = Pr (P = m) Notice: - determines the RHS

Project Venona _ wikipedéa

14 Jan 2025

	Information theoretic security		
		Perfect.	
	Shannon Secenity	Perfect Indictinguishi bility	
VI.		_ m, m2 bicked	
+m,c:	Pr (P= m (C = c) = Pr (P= m)	by Adv.	
	, i	- one of them	
	Equivalent	randomly encrypted	
	Equivaled	by the challegen	
		- Adv 3 advantage in	
		The two mersiper	
	distriguising odlich of the two messiges + m, m, + c odlich of the dear messiges		
		(P=m, C=c)=P. (P=nf=c)	
	D Shannon Security => Perfect indistinguishability		
	Pr (D= m, C=c) = Pr (3)= 10,) for any on, c	
		·/ · · · · · · · · · · · · · · · · · ·	
(,de	for of conditional ports		
צ	D (D=m) () Fre (K, m)=c)		
	Gefor of conditional pools $P_r\left(\mathcal{D}=m_1\right) \text{fix}\left(k, m_1\right)=c\right) = P_r\left(\mathcal{D}=m_1\right)$		
	Pr (C=C)		
	Pr (32/m), Pr (50c (k, m))2c) = Pr (32/m)		
	Pr (C-c)		
	7. (2.5)		
	0 (6 6 7) 5	Por (Cec)	
R, c (Enc (K, om) = Pr (Crc)			
	K, C	//	
	= Po (Gr(k, m)=0)		
	03 (CVIC (K, "12)=1)		