TC2-DS- Experiment 3

- SIA VASHIST
- PRN: 20190802107

Dataset - Haberman Cancer Survival Dataset.

LIBRARIES USED:

PANDAS | MATPLOTLIB | NUMPY | STATSMODELS | NORM SciPy

• Question 1:

- 1. Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to download data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)
- 2. Find if dataset is having null values, then drop those values.
- 3. Check operation attribute is following normal distribution or not by drawing histogram and Q-Q plot.
- 4. Perform Transformation on attribute to better fit data into normal distribution. Draw histogram and Q-Q plot.
- 5. Write observations in English words.

```
In [2]: import pandas as pd
       import matplotlib.pyplot as plt
       import numpy as np
       import statsmodels.api as sm
       from scipy.stats import norm
       import pylab
      haberman_df = pd.read_csv(r'C:\sia\haberman.csv')
       haberman_df.columns=['Age','Operation_Year','axil_nodes','Surv_Status']
       print("The Dataset is as Follows:")
       print(haberman_df.dropna(), '\n')
       The Dataset is as Follows:
            Age Operation_Year axil_nodes Surv_Status
                                     3 1
0
       0
            30
                          62
                          65
       1
            30
                                                  1
                          59
                                     2
       2
            31
                                    4
                          65
       3
            31
       4
            33
                          58
                                     10
                                  1
       300
           75
                          62
       301
                          67
            76
                          65
       302
            77
                          65
       303
            78
```

[305 rows x 4 columns]

In [8]: #Descriptive Statistics
haberman_df.describe()

304

Out[8]: Age Operation_Year axil_nodes Surv_Status count 305.000000 305.000000 305.000000 305.000000 0.070075 52.531148 4.036066 1.265574 mean 10.744024 0.924473 7.199370 0.442364 std min 30.000000 -3.191165 0.000000 1.000000 0.000000 44.000000 1.000000 25% -0.467956 **50**% 52.000000 0.073508 1.000000 1.000000 4.000000 61.000000 0.692573 2.000000 **75%** 83.000000 52.000000 2.000000 2.625563 max

In [9]: #2. Checking for Null Values
haberman_df.isnull()

Out[9]:		Age	Operation_Year	axil_nodes	Surv_Status
	0	False	False	False	False
	1	False	False	False	False
	_				

0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
•••				
300	False	False	False	False
301	False	False	False	False
302	False	False	False	False
303	False	False	False	False
304	False	False	False	False

305 rows × 4 columns

• The dataframe does not have any null values.

```
In [22]: # 3. Check operation attribute is following normal distribution or not by drawing histogram and Q-Q plot.
#Histogram
haberman_df.Operation_Year.hist()

#QQ Plot
haberman_df.Operation_Year = norm.rvs(size=305)
sm.qqplot(haberman_df.Operation_Year ,line='45')
pylab.show()
```


Observation:

We can see that the plot's points are closer to the 45-degree line because it is following the normal distribution, hence there is no need to transform the given plot.

• Question 2:

Imagine you have a machine learning model deployed in the cloud and receiving requests from your customers in real-time. How much cloud resources do you need to pay for in order to be 99% sure you can serve all the traffic that arrives at the model in any one-minute period? (Note: 3.3 requests on average based on your traffic data). Draw the distribution using python.

```
In [17]: from scipy.stats import poisson
    rate = 3.3
    probs =[poisson.pmf(i,rate) for i in range(15)]
    plt.stem(list(range(15)),probs)
```

Out[17]. <StemContainer object of 3 artists>

• Question 3:

What is the probability of observing different numbers of heads in 10 tosses with a fair coin? Find which distribution will get apply and plot it. Write a python script to draw the distribution. Hints: Binomial Distribution.

```
In [20]: from scipy.stats import binom

number = 10
head = .5
prob = [binom.pmf(i,number,head) for i in range(11)]
plt.plot(list(range(11)),prob)
```

Out[20]: [<matplotlib.lines.Line2D at 0x238ac743610>]

Conclusion:

So, using Python, we learned about several distributions including normal, poisson, and binomial. As a result, we successfully displayed the normal distribution and used histogram & QQ plots to analyse the distribution of the haberman dataset.