Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F**) $\alpha_{k-1} \alpha_{k-2}$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2B
- \mathbf{C}) B
- **D)** non esiste tale frequenza

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ non è mai nulla.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- $\mathbf{A)} \ \ \frac{1}{a+j2\pi f}$
- B) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- C) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- D) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$
- E) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

B)
$$\frac{1 - e^{-2\pi}}{1 - 2e^{-\pi}\cos(2\pi f) + e^{-2\pi}}$$

C)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

D)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

$$\mathbf{E)} \ \ \frac{1}{\pi + j2\pi f}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

1

- **A)** $f_0 + a$
- **B**) a
- C) non esiste tale frequenza

D) $2f_0$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}$
- F) nessuno dei valori proposti

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

B) a

C) $f_0 + a$

D) $2f_0$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

A) Nessuna delle altre risposte è corretta.

B) $E[\theta] > 0$ per ogni valore di σ^2 e T.

C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

D) $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.

E) $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

1

A) $\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$

B) $\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$

C) $\frac{1}{\pi + i2\pi f}$

D) $\frac{1}{1 - e^{-\pi(1 + j2f)}}$

E)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

$$\mathbf{B)} \ \ \tfrac{1}{1+j2\pi f}$$

C)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

D)
$$\frac{1}{1 - e^{-T(1+j2\pi f)}}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} - \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) $3f_0$
- **D)** f_0

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$$

- B) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- C) $\frac{1}{1+j2\pi f}$
- D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$
- **E**) $\frac{1}{1 e^{-T(1+j2\pi f)}}$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- A) nessuno dei valori proposti
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}$

- **E)** $\alpha_{k-1} \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 2B
- **C**) 4B
- **D**) *B*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1}{\pi + j2\pi f}$$

B)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

C)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

D)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

E)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2}$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

D) nessuno dei valori proposti

E)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

F)
$$\alpha_{k-1} - \alpha_{k-2}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.

- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B**) *a*
- **C**) $f_0 + a$
- D) non esiste tale frequenza

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **C)** $\alpha_{k-1} \alpha_{k-2}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 2B

- B) non esiste tale frequenza
- **C**) 4B
- **D**) *B*

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

B)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

C)
$$\frac{1}{1 - e^{-T(1 - j2\pi f)}}$$

D)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

E)
$$\frac{1}{1-j2\pi f}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) a

B) $f_0 + a$

C) $2f_0$

D) non esiste tale frequenza

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A) $\frac{1}{1-e^{-T(1-j2\pi f)}}$

B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

C) $\frac{1}{1-j2\pi f}$

D) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

E) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A) $\alpha_{k-1} + \alpha_{k-2}/2$

B) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$

C) $\alpha_{k-1} - \alpha_{k-2}/2$

D) nessuno dei valori proposti

E) $\alpha_{k-1} - \alpha_{k-2}$

F) $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **E)** $E[\theta]$ non è mai nulla.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

B)
$$\alpha_{k-1} - \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E) nessuno dei valori proposti

F)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

B)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

C)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

$$\mathbf{D)} \ \ \frac{1}{\pi + j2\pi f}$$

E)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a medianulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

A)
$$E[\theta] = 0$$
 solo se $\sigma = 1/\sqrt{2}$ per ogni $T = 1$.

B)
$$E[\theta] = 0$$
 per ogni valore di σ^2 e T .

- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **E)** $E[\theta] < 0$ per ogni valore di σ^2 e T.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B**) *a*
- C) non esiste tale frequenza
- **D)** $f_0 + a$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

B) 6B

 \mathbf{C}) 3B

D) 2B

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2}$

B) $\alpha_{k-1} + \alpha_{k-2}/2$

C) $\alpha_{k-1} - \alpha_{k-2}$

D) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$

E) nessuno dei valori proposti

F) $\alpha_{k-1} - \alpha_{k-2}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

A) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

B) $\frac{1}{1-i2\pi f}$

C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

D) $\frac{1}{1-e^{-T(1-j2\pi f)}}$

E)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **C)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

C)
$$\frac{1}{a+i2\pi f}$$

D)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

E)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t + 2k/B)} \sin [3\pi (tB + 2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 3B

- C) non esiste tale frequenza
- **D**) 2*B*

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- F) nessuno dei valori proposti

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E**) $\alpha_{k-1} \alpha_{k-2}$
- F) nessuno dei valori proposti

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- **A)** $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- B) $\frac{1}{a+j2\pi f}$
- C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$
- D) $\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$
- **E**) $\frac{1}{1 e^{-T(a+j2\pi f)}}$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) $E[\theta] > 0$ per ogni valore di σ^2 e T.

- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3B
- **C**) 6*B*
- **D**) 2*B*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

- **A)** $\frac{1}{1-e^{-T(1+j2\pi f)}}$
- B) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$
- C) $\frac{1}{1+j2\pi f}$
- **D)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- E) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- $\mathbf{B)} \ f_0$
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.

- **D)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- A) nessuno dei valori proposti
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- **C)** $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) f_0

B) non esiste tale frequenza

C) $2f_0$

D) $3f_0$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

B) nessuno dei valori proposti

C) $\alpha_{k-1} - \alpha_{k-2}/2$

D) $\alpha_{k-1} + \alpha_{k-2}/2$

E) $\alpha_{k-1} - \alpha_{k-2}$

F) $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

A) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

B) $\frac{1}{a+j2\pi f}$

C) $\frac{1}{1 - e^{-T(a+j2\pi f)}}$

D) $\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$

E) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ non è mai nulla.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 2B
- **C**) 3B
- **D)** non esiste tale frequenza

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- E) nessuno dei valori proposti
- **F**) $\alpha_{k-1} \alpha_{k-2}$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1 - e^{-2\pi}}{1 - 2e^{-\pi}\cos(2\pi f) + e^{-2\pi}}$$

$$\mathbf{B)} \ \frac{1}{\pi + j2\pi f}$$

C)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

D)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- **B**) 2B
- C) non esiste tale frequenza
- **D)** 4B

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **D)** $E[\theta]$ non è mai nulla.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) nessuno dei valori proposti

- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

- **A**) $\frac{1}{1-e^{-\pi(1+j2f)}}$
- B) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$
- C) $\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1 e^{-n(\pi + j2\pi f)}}$
- $\mathbf{D)} \ \frac{1}{\pi + j2\pi f}$
- E) $\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

B)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

C)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

$$\mathbf{D)} \ \ \frac{1}{\pi + j2\pi f}$$

E)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D**) a

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

- **D)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\frac{1}{1-j2\pi f}$$

C)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

D) nessuno dei valori proposti

E)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) $E[\theta]$ è nulla per ogni valore di σ^2 e T.

B) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.

C) $E[\theta]$ non è mai nulla.

- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 3B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- B) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- **C**) a
- **D)** $f_0 + a$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

A)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

B)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

C)
$$\frac{1}{a+j2\pi f}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

1

- A) $\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$
- B) $\frac{1}{\pi + j2\pi f}$
- C) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$

D)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) f_0
- **C)** $2f_0$
- **D)** $3f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- \mathbf{B}) f_0
- **C**) $3f_0$
- **D)** non esiste tale frequenza

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t)=x(t)x_{\delta}(t)$, dove $x(t)=\mathrm{e}^{-a|t|}(a>0)$ e $x_{\delta}(t)=\sum_{n=0}^{+\infty}\delta(t-nT)$ vale:

1

- **A)** $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- **B**) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- C) $\frac{1}{a+j2\pi f}$
- **D)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

E)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ non è mai nulla.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1}{1+j2\pi f}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

C)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

D)
$$\frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E) $\alpha_{k-1} - \alpha_{k-2}/2$

F) $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $f_0 + a$

B) *a*

C) non esiste tale frequenza

D) $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] > 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

C)
$$\frac{1}{\pi + j2\pi f}$$

D)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

E)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) a
- **C**) $2f_0$

D) non esiste tale frequenza

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **C)** $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1 - e^{-nT(a+j2\pi f)}}$$

B)
$$\frac{1}{1-e^{-T(a+j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

D)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

$$\mathbf{E)} \ \ \tfrac{1}{a+j2\pi f}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- B) non esiste tale frequenza
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- E) nessuno dei valori proposti
- **F**) $\alpha_{k-1} \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 2B

B) 4B

C) non esiste tale frequenza

D) *B*

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2}$

B) $\alpha_{k-1} + \alpha_{k-2}/2$

C) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$

D) $\alpha_{k-1} - \alpha_{k-2}/2$

E) $\alpha_{k-1} - \alpha_{k-2}$

F) nessuno dei valori proposti

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

A) $\frac{1}{1-j2\pi f}$

B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$

D) $\frac{1}{1 - e^{-T(1 - j2\pi f)}}$

E) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ non è mai nulla.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}$
- F) nessuno dei valori proposti

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

B)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos{(2\pi fT)}+e^{-2T}}$$

C)
$$\frac{1}{1+j2\pi f}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 3B
- **D)** 6B

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

A) Nessuna delle altre risposte è corretta.

- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- **A**) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- B) $\frac{1}{a+j2\pi f}$
- C) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$
- D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- **E)** $\sum_{n=0}^{+\infty} \frac{1}{1 e^{-nT(a+j2\pi f)}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ non è mai nulla.
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

C)
$$\frac{1}{1+j2\pi f}$$

D)
$$\frac{1}{1 - e^{-T(1 + j2\pi f)}}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

1

A) non esiste tale frequenza

- **B**) 4B
- **C**) B
- **D)** 2B

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 2B
- **C**) 3B
- **D)** 6B

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

- A) $\frac{1}{a+j2\pi f}$
- B) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

$$\mathbf{D)} \ \frac{1 - e^{-2aT}}{1 - 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$$

E)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

C)
$$\alpha_{k-1} - \alpha_{k-2}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

B)
$$\frac{1}{1 - e^{-T(1-j2\pi f)}}$$

C)
$$\frac{1}{1-i2\pi f}$$

D)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

E)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) f_0
- **B)** $3f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- **F)** $\alpha_{k-1} \alpha_{k-2}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ non è mai nulla.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

B)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

D)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

E)
$$\frac{1}{1+i2\pi f}$$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

A) Nessuna delle altre risposte è corretta.

B) $E[\theta] > 0$ per ogni valore di σ^2 e T.

C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.

D) $E[\theta] = 0$ per ogni valore di σ^2 e T.

E) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2}$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E) nessuno dei valori proposti

F)
$$\alpha_{k-1} - \alpha_{k-2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- B) non esiste tale frequenza
- **C**) 6B
- **D)** 2B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- C) $\alpha_{k-1} \alpha_{k-2}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

- **A**) $\frac{1}{1 e^{-T(1 + j2\pi f)}}$
- B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- $\mathbf{D)} \ \ \frac{1}{1+j2\pi f}$
- **E**) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $3f_0$
- \mathbf{C}) f_0
- **D)** non esiste tale frequenza

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ non è mai nulla.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

D)
$$\frac{1}{1+j2\pi f}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) *B*
- **C**) 4B
- **D)** non esiste tale frequenza

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F**) $\alpha_{k-1} \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a medianulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- $\mathbf{C})$ B
- **D**) 2B

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}$$

F)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

C)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

D)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

$$\mathbf{E)} \ \ \frac{1}{1+j2\pi f}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\frac{1}{1 - e^{-T(1 - j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

D)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

E)
$$\frac{1}{1-j2\pi f}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

- C) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] < 0$ per ogni valore di σ^2 e T.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B**) f_0
- C) non esiste tale frequenza
- **D)** $3f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) 3B

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{a+j2\pi f}$$

B)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

E)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}$$

F)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

C)
$$\frac{1}{a+j2\pi f}$$

D)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

E)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

A)
$$E[\theta] = 0$$
 solo se $\sigma = 1/\sqrt{2}$ per ogni $T = 1$.

B)
$$E[\theta] < 0$$
 per ogni valore di σ^2 e T .

C)
$$E[\theta] = 0$$
 per ogni valore di σ^2 e T.

- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 4B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- A) nessuno dei valori proposti
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

- **A)** $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- **B**) $\frac{1}{1-i2\pi f}$
- C) $\frac{1}{1-e^{-T(1-j2\pi f)}}$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 2B
- **C**) 6B
- **D)** 3B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1}{\pi + j2\pi f}$$

B)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

C)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

D)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B) nessuno dei valori proposti

C)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) Nessuna delle altre risposte è corretta.

B)
$$E[\theta]$$
 è nulla solo se $\sigma^2 = 1/2$ e $T = 4/3$.

C) $E[\theta]$ non è mai nulla.

- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *a*
- **C**) 2f₀
- **D)** $f_0 + a$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

- **A)** $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$
- **B**) $\frac{1}{1-e^{-T(1-j2\pi f)}}$
- C) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

D) $\frac{1}{1-j2\pi f}$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $2f_0$
- C) non esiste tale frequenza
- **D)** $f_0 + a$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

B) 2B

 \mathbf{C}) B

D) 4B

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A) $\frac{1}{1-j2\pi f}$

B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

C) $\frac{1}{1-e^{-T(1-j2\pi f)}}$

D) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

E) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} - \alpha_{k-2}$

B) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$

C) $\alpha_{k-1} + \alpha_{k-2}/2$

D) nessuno dei valori proposti

E) $\alpha_{k-1} + \alpha_{k-2}$

F) $\alpha_{k-1} - \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \left\{ \begin{array}{ll} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{array} \right.$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- ${\bf A)}\,$ Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2B
- **C**) B
- **D)** non esiste tale frequenza

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} \alpha_{k-2}$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

F)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{1-j2\pi f}$$

B)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

C)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

B)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

D)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

E)
$$\frac{1}{1+j2\pi f}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B)** $2f_0$
- \mathbf{C}) a
- **D)** non esiste tale frequenza

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.

- **D)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F**) $\alpha_{k-1} + \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

B)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

C)
$$\frac{1}{\pi + j2\pi f}$$

D)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B) nessuno dei valori proposti

C)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.

- **D)** $E[\theta]$ non è mai nulla.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3B
- **C**) 2B
- **D)** 6*B*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **E)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

B)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

C)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1}{1+j2\pi f}$$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2}$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$

F) $\alpha_{k-1} - \alpha_{k-2}$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $2f_0$

B) non esiste tale frequenza

C) $f_0 + a$

D) *a*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.
- D) Nessuna delle altre risposte è corretta.
- E) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

- A) $\frac{1}{1 e^{-\pi(1+j2f)}}$
- B) $\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$
- C) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$
- **D)** $\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$
- $\mathbf{E)} \ \ \tfrac{1}{\pi + j2\pi f}$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$

- **E)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- F) nessuno dei valori proposti

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) B
- **D)** 4B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- **C)** $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

1

- **A)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- C) $\frac{1}{1-e^{-T(1+j2\pi f)}}$

 $\mathbf{D)} \ \ \frac{1}{1+j2\pi f}$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 3B
- **C**) 2B
- D) non esiste tale frequenza

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

D)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

E)
$$\frac{1}{a+j2\pi f}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) Nessuna delle altre risposte è corretta.

- **D)** $E[\theta]$ non è mai nulla.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $f_0 + a$
- **C**) a
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1}{\pi + j2\pi f}$$

B)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

D)
$$\frac{1}{1 - e^{-\pi(1 + j2f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 2B

- **B**) *B*
- C) non esiste tale frequenza
- **D)** 4B

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F**) $\alpha_{k-1} \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 6B
- \mathbf{C}) 3B
- **D)** non esiste tale frequenza

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$

- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

- **A)** $\frac{1}{1 e^{-T(1 j2\pi f)}}$
- **B**) $\frac{1}{1-j2\pi f}$
- C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$
- D) $\frac{1 e^{-2T}}{1 2e^{-T}\cos(2\pi fT) + e^{-2T}}$
- **E)** $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

B) $3f_0$

C) f_0

D) $2f_0$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2}/2$

B) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

C) $\alpha_{k-1} + \alpha_{k-2}$

D) nessuno dei valori proposti

E) $\alpha_{k-1} - \alpha_{k-2}/2$

F) $\alpha_{k-1} - \alpha_{k-2}$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) $E[\theta]$ è nulla per ogni valore di σ^2 e T.

B) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

C)
$$\frac{1}{1+j2\pi f}$$

D)
$$\frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $3f_0$

B) non esiste tale frequenza

C) $2f_0$

 $\mathbf{D}) f_0$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A) $\frac{1}{1-j2\pi f}$

B) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

C) $\frac{1}{1-e^{-T(1-j2\pi f)}}$

D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

E) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} - \alpha_{k-2}$

B) $\alpha_{k-1} + \alpha_{k-2}/2$

C) $\alpha_{k-1} + \alpha_{k-2}$

D) nessuno dei valori proposti

E) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$

F) $\alpha_{k-1} - \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 2B

B) non esiste tale frequenza

C) 6B

D) 3B

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

B)
$$\frac{1}{1 - e^{-T(1 + j2\pi f)}}$$

C)
$$\frac{1}{1+i2\pi f}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) Nessuna delle altre risposte è corretta.

B) $E[\theta]$ non è mai nulla.

C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.

- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- **F**) $\alpha_{k-1} + \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) f_0

B) $2f_0$

C) $3f_0$

D) non esiste tale frequenza

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B) $\alpha_{k-1} - \alpha_{k-2}$

C) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$

D) $\alpha_{k-1} + \alpha_{k-2}$

E) $\alpha_{k-1} - \alpha_{k-2}/2$

F) $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

A) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

C) $\frac{1}{1-j2\pi f}$

D) $\frac{1}{1 - e^{-T(1 - j2\pi f)}}$

E) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t)=x(t)x_{\delta}(t)$, dove $x(t)=\mathrm{e}^{-a|t|}(a>0)$ e $x_{\delta}(t)=\sum_{n=0}^{+\infty}\delta(t-nT)$ vale:

- **A)** $\frac{1}{1-e^{-T(a+j2\pi f)}}$
- B) $\frac{1}{a+j2\pi f}$
- C) $\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$
- D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- **E)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B**) $3f_0$

- C) f_0
- D) non esiste tale frequenza

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- A) nessuno dei valori proposti
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **F**) $\alpha_{k-1} + \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- F) nessuno dei valori proposti

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 2B
- **C**) 3B
- **D)** non esiste tale frequenza

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

A)
$$\frac{1}{1-j2\pi f}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

C)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

D)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

E)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] < 0$ per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

- A) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- **B**) $\frac{1}{1-j2\pi f}$
- C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

D)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

E)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- C) f_0
- **D)** $3f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

1

- A) $\frac{1}{1-e^{-\pi(1+j2f)}}$
- B) $\frac{1}{\pi + j2\pi f}$
- C) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$

D)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3B
- **C**) 6B
- **D)** 2B

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- E) nessuno dei valori proposti
- **F**) $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- A) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- B) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$
- C) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- $\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$
- E) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{1-j2\pi f}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

C)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

D)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

E)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- **B)** $2f_0$
- \mathbf{C}) f_0
- **D)** non esiste tale frequenza

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$

F)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

B)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

$$\mathbf{D)} \ \ \frac{1}{\pi + j2\pi f}$$

E)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} + \alpha_{k-2}$$

F)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

D) non esiste tale frequenza

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

B)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

C)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1}{1-j2\pi f}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} + \alpha_{k-2}$$

F) nessuno dei valori proposti

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A)
$$f_0$$

B)
$$2f_0$$

C) non esiste tale frequenza

D)
$$3f_0$$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ non è mai nulla.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

C)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

D)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

E)
$$\frac{1}{1-j2\pi f}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}$$

B) nessuno dei valori proposti

C)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t + 2k/B)} \sin[3\pi (tB + 2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 6B

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $3f_0$

 $\mathbf{B}) f_0$

C) non esiste tale frequenza

D) $2f_0$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2}/2$

B) $\alpha_{k-1} - \alpha_{k-2}$

C) $\alpha_{k-1} - \alpha_{k-2}/2$

D) $\alpha_{k-1} + \alpha_{k-2}$

E) nessuno dei valori proposti

F) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

1

A) $\frac{1}{1-j2\pi f}$

B) $\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$

C) $\frac{1}{1-e^{-T(1-i2\pi f)}}$

D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

E) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ non è mai nulla.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} - \alpha_{k-2}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} + \alpha_{k-2}$$

F) nessuno dei valori proposti

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) f_0

B) $3f_0$

C) non esiste tale frequenza

D) $2f_0$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

1

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

B)
$$\frac{1}{\pi + j2\pi f}$$

C)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

D)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

E)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) *B*

B) 2B

C) 4B

D) non esiste tale frequenza

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B) $\alpha_{k-1} + \alpha_{k-2}$

C) $\alpha_{k-1} + \alpha_{k-2}/2$

D) $\alpha_{k-1} - \alpha_{k-2}/2$

E) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$

F) $\alpha_{k-1} - \alpha_{k-2}$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t)=x(t)x_{\delta}(t)$, dove $x(t)=\mathrm{e}^{-a|t|}(a>0)$ e $x_{\delta}(t)=\sum_{n=0}^{+\infty}\delta(t-nT)$ vale:

1

A) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$

B) $\frac{1}{a+j2\pi f}$

C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$

 $\mathbf{D)} \ \frac{1 - e^{-2aT}}{1 - 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$

E) $\frac{1}{1 - e^{-T(a+j2\pi f)}}$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{a+j2\pi f}$$

B)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

C)
$$\frac{1}{1-e^{-T(a+j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

D) nessuno dei valori proposti

E)
$$\alpha_{k-1} + \alpha_{k-2}$$

F)
$$\alpha_{k-1} - \alpha_{k-2}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3f₀
- C) f_0
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

C)
$$\frac{1}{1-e^{-T(1+j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1}{1+j2\pi f}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- **B)** 4B
- C) non esiste tale frequenza
- **D)** 2B

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$

F)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **C)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} \alpha_{k-2}$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $3f_0$

- B) non esiste tale frequenza
- **C)** $2f_0$
- **D)** f_0

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- **A**) $\frac{1}{1 e^{-T(1 + j2\pi f)}}$
- **B**) $\frac{1}{1+j2\pi f}$
- C) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- D) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$
- E) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- F) nessuno dei valori proposti

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

- A) $\frac{1}{a+j2\pi f}$
- **B)** $\sum_{n=0}^{+\infty} \frac{1}{1 e^{-nT(a+j2\pi f)}}$
- C) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$

D)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2B
- ${f C}$) non esiste tale frequenza
- **D**) *B*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

B)
$$\frac{1}{1 - e^{-T(1+j2\pi f)}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

$$\mathbf{D)} \ \ \frac{1}{1+j2\pi f}$$

E)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

B)
$$\alpha_{k-1} - \alpha_{k-2}$$

C)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

D) nessuno dei valori proposti

E)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A)
$$E[\theta] = 0$$
 per ogni valore di σ^2 e T .

B)
$$E[\theta] = 0$$
 solo se $\sigma^2 = 1$ per ogni T .

C)
$$E[\theta] = 0$$
 solo se $\sigma^2 = 1$ e $N = 3/2$.

- **D)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

C)
$$\frac{1}{\pi + j2\pi f}$$

$$\mathbf{D}) \ \frac{1 - e^{-2\pi}}{1 - 2e^{-\pi}\cos(2\pi f) + e^{-2\pi}}$$

E)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} - \alpha_{k-2}$$

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E) nessuno dei valori proposti

F)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A)
$$2f_0$$

B) non esiste tale frequenza

C)
$$3f_0$$

 $\mathbf{D}) f_0$

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **C)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **B)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ non è mai nulla.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 3B

- B) non esiste tale frequenza
- **C**) 2B
- **D)** 6*B*

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

B)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1 - e^{-n(\pi + j2\pi f)}}$$

$$\mathbf{D)} \ \frac{1}{\pi + j2\pi f}$$

E)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- A) nessuno dei valori proposti
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F**) $\alpha_{k-1} \alpha_{k-2}$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 4B

- **B**) *B*
- **C**) 2B
- D) non esiste tale frequenza

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- A) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- B) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- C) $\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$
- D) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$
- $\mathbf{E)} \ \ \frac{1}{a+j2\pi f}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} \alpha_{k-2}/2$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

1

A) non esiste tale frequenza

- **B**) 3B
- **C**) 2B
- **D)** 6B

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- **A)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- B) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$
- C) $\frac{1}{1+j2\pi f}$
- D) $\frac{1 e^{-2T}}{1 2e^{-T}\cos(2\pi fT) + e^{-2T}}$
- **E**) $\frac{1}{1 e^{-T(1+j2\pi f)}}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

- **A)** $\sum_{n=0}^{+\infty} \frac{1}{1 e^{-nT(a+j2\pi f)}}$
- **B**) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- C) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$

 $\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- B) non esiste tale frequenza
- **C**) 6*B*
- **D)** 2B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $3f_0$
- \mathbf{C}) f_0
- D) non esiste tale frequenza

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t)=x(t)x_{\delta}(t)$, dove $x(t)=\mathrm{e}^{-a|t|}(a>0)$ e $x_{\delta}(t)=\sum_{n=0}^{+\infty}\delta(t-nT)$ vale:

1

- A) $\frac{1}{a+i2\pi f}$
- **B**) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- C) $\frac{1 e^{-2aT}}{1 2e^{-aT}\cos(2\pi fT) + e^{-2aT}}$

D)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

- B) nessuno dei valori proposti
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- **C**) $2f_0$
- **D)** non esiste tale frequenza

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1 - e^{-nT(a+j2\pi f)}}$$

B)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

C)
$$\frac{1}{1-e^{-T(a+j2\pi f)}}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- C) $E[\theta]$ non è mai nulla.
- **D)** Nessuna delle altre risposte è corretta.

E) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}/2$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} \alpha_{k-2}$
- **F)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

B)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] > 0$ per ogni valore di σ^2 e T.

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2}$

D)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

- **E)** $\alpha_{k-1} \alpha_{k-2}$
- **F**) $\alpha_{k-1} \alpha_{k-2}/2$

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- B) non esiste tale frequenza
- **C**) $3f_0$
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

C)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} - \alpha_{k-2}$$

D) nessuno dei valori proposti

E)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

F)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A)
$$2f_0$$

$$\mathbf{B}) f_0$$

C)
$$3f_0$$

D) non esiste tale frequenza

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- B) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

B)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

C)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

E)
$$\frac{1}{a+i2\pi f}$$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) Nessuna delle altre risposte è corretta.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 2B

- **C**) B
- **D)** 4B

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- **C)** $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- F) nessuno dei valori proposti

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **B)** $E[\theta] > 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

C)
$$\frac{1}{1-\mathrm{e}^{-T(a+j2\pi f)}}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- F) nessuno dei valori proposti

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $f_0 + a$
- **C**) a
- D) non esiste tale frequenza

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $f_0 + a$

B) non esiste tale frequenza

C) $2f_0$

D) a

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) $\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$

B) $\alpha_{k-1} - \alpha_{k-2}/2$

C) $\alpha_{k-1} + \alpha_{k-2}/2$

D) $\alpha_{k-1} + \alpha_{k-2}$

E) nessuno dei valori proposti

F) $\alpha_{k-1} - \alpha_{k-2}$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

1

A) $\frac{1}{1 - e^{-T(1 + j2\pi f)}}$

B) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$

C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$

 $\mathbf{D)} \ \frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$

E) $\frac{1}{1+j2\pi f}$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ non è mai nulla.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$$

D)
$$\frac{1}{1 - e^{-T(1+j2\pi f)}}$$

E)
$$\frac{1}{1+j2\pi f}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} - \alpha_{k-2}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

1

B)
$$f_0 + a$$

C) non esiste tale frequenza

D)
$$2f_0$$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **C)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] > 0$ per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

B)
$$\frac{1}{1-e^{-T(a+j2\pi f)}}$$

C)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2} - \alpha_{k-3}$$

D)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

E)
$$\alpha_{k-1} - \alpha_{k-2}$$

F)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.

- C) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **D)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual \grave{e} la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- **C**) 6B
- D) non esiste tale frequenza

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$
- **F)** $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- A) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$
- B) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- **D**) $\frac{1}{1 e^{-T(1+j2\pi f)}}$
- **E**) $\frac{1}{1+j2\pi f}$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- C) Nessuna delle altre risposte è corretta.

- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- **E)** $E[\theta] > 0$ per ogni valore di σ^2 e T.

Esercizio 4. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** 6*B*
- **C**) 3B
- **D)** 2B

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- C) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **D)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- B) non esiste tale frequenza
- **C)** $2f_0$
- **D**) *a*

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

- **A)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- C) nessuno dei valori proposti

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1 - e^{-2T}}{1 - 2e^{-T}\cos(2\pi fT) + e^{-2T}}$$

B)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

C)
$$\frac{1}{1-j2\pi f}$$

D)
$$\frac{1}{1 - e^{-T(1 - j2\pi f)}}$$

E)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **C)** $\alpha_{k-1} + \alpha_{k-2}$
- **D)** $\alpha_{k-1} \alpha_{k-2}/2$
- **E**) $\alpha_{k-1} \alpha_{k-2}$
- F) nessuno dei valori proposti

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

- **A)** $\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$
- B) $\frac{1}{1-e^{-\pi(1+j2f)}}$
- C) $\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$
- D) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$
- E) $\frac{1}{\pi + i2\pi f}$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 4B
- **D**) B

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $2f_0$

B) $f_0 + a$

C) a

D) non esiste tale frequenza

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

B)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

C)
$$\frac{1}{1-j2\pi f}$$

D)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

E)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) $E[\theta] > 0$ per ogni valore di σ^2 e T.

B)
$$E[\theta] = 0$$
 solo se $\sigma^2 = 1$ e $N = 3/2$.

C) Nessuna delle altre risposte è corretta.

D) $E[\theta] = 0$ per ogni valore di σ^2 e T.

E) $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}/2$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- **C)** $\alpha_{k-1} \alpha_{k-2}$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- E) nessuno dei valori proposti
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

B) 6*B*

C) 2B

D) 3B

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t)=x(t)x_{\delta}(t)$, dove $x(t)=\mathrm{e}^{-a|t|}(a>0)$ e $x_{\delta}(t)=\sum_{n=0}^{+\infty}\delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1 - e^{-nT(a+j2\pi f)}}$$

C)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

$$\mathbf{D)} \ \ \frac{1}{a+j2\pi f}$$

E)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

1

A) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.

B) $E[\theta]$ non è mai nulla.

C) Nessuna delle altre risposte è corretta.

- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} \alpha_{k-2}/2$
- C) $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- F) nessuno dei valori proposti

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} + \alpha_{k-2}$$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

B)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

C)
$$\frac{1}{1 - e^{-T(1 - j2\pi f)}}$$

D)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

E)
$$\frac{1}{1-j2\pi f}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) 3B

B) 2B

C) 6B

D) non esiste tale frequenza

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **B)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta] > 0$ per ogni valore di σ^2 e T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- **A)** $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- **B**) $\frac{1}{1-e^{-T(1+j2\pi f)}}$
- C) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$
- **D**) $\frac{1}{1+j2\pi f}$
- E) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2}/2$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}$
- **F)** $\alpha_{k-1} \alpha_{k-2}/2$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T/2] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- A) Nessuna delle altre risposte è corretta.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1$ per ogni T.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1$ e T = 2.

- **D)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **E)** $E[\theta]$ non è mai nulla.

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

- **A)** $3f_0$
- B) non esiste tale frequenza
- C) f_0
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- B) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **D)** Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F**) $\alpha_{k-1} + \alpha_{k-2}$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) a

- B) non esiste tale frequenza
- **C**) $f_0 + a$
- **D)** $2f_0$

Esercizio 4. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

- A) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f n/T)^2}$
- B) $\frac{1}{1 e^{-T(a+j2\pi f)}}$
- C) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$
- D) $\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$
- $\mathbf{E)} \ \frac{1}{a+j2\pi f}$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{1-j2\pi f}$$

B)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2 (f-n/T)^2}$$

D)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

E)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

Esercizio 2. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

A) Nessuna delle altre risposte è corretta.

B)
$$E[\theta] = 0$$
 solo se $\sigma^2 = 1$ e $N = 3/2$.

C)
$$E[\theta] = 0$$
 solo se $\sigma^2 = 1$ per ogni T .

D)
$$E[\theta] = 0$$
 per ogni valore di σ^2 e T .

E)
$$E[\theta] > 0$$
 per ogni valore di σ^2 e T .

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

B)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

C) nessuno dei valori proposti

D)
$$\alpha_{k-1} + \alpha_{k-2}$$

- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F**) $\alpha_{k-1} \alpha_{k-2}$

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

- **A)** $3f_0$
- B) non esiste tale frequenza
- C) f_0
- **D)** $2f_0$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$
- **B)** $\alpha_{k-1} \alpha_{k-2}$
- C) $\alpha_{k-1} + \alpha_{k-2}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-nT)$ vale:

- **A)** $\frac{1}{1-e^{-T(1+j2\pi f)}}$
- B) $\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(1+j2\pi f)}}$
- C) $\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$
- **D**) $\frac{1}{1+j2\pi f}$
- E) $\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$

Esercizio 3. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

1

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **B)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- C) $E[\theta] < 0$ per ogni valore di σ^2 e T.

- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta] = 0$ per ogni valore di σ^2 e T.

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

- **A)** 2B
- **B)** 4B
- C) non esiste tale frequenza
- **D**) *B*

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,2T/3] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ per ogni T.
- B) Nessuna delle altre risposte è corretta.
- C) $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **D)** $E[\theta] = 0$ solo se $\sigma^2 = 1$ e N = 3/2.
- **E)** $E[\theta] > 0$ per ogni valore di σ^2 e T.

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2 (f-n)^2}$$

B)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

C)
$$\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$$

D)
$$\frac{1}{1 - e^{-\pi(1+j2f)}}$$

$$\mathbf{E)} \ \frac{1}{\pi + j2\pi f}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

- A) non esiste tale frequenza
- **B**) 3B

- **C**) 2B
- **D)** 6*B*

Esercizio 4. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **C)** $\alpha_{k-1} + \alpha_{k-2}$
- D) nessuno dei valori proposti
- **E)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **F**) $\alpha_{k-1} \alpha_{k-2}/2$

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0, T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0, 3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

A) nessuno dei valori proposti

B)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

C)
$$\alpha_{k-1} + \alpha_{k-2}$$

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

F)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

Esercizio 2. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{t}$ e $x_{\delta}(t) = \sum_{n=-\infty}^{0} \delta(t-nT)$ vale:

A)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2}{1+4\pi^2(f-n/T)^2}$$

B)
$$\sum_{n=-\infty}^{0} \frac{1}{1-e^{-nT(1-j2\pi f)}}$$

C)
$$\frac{1-e^{-2T}}{1-2e^{-T}\cos(2\pi fT)+e^{-2T}}$$

$$\mathbf{D)} \ \ \frac{1}{1-j2\pi f}$$

E)
$$\frac{1}{1-e^{-T(1-j2\pi f)}}$$

Esercizio 3. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $2f_0$

B) non esiste tale frequenza

C) $3f_0$

 $\mathbf{D}) f_0$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ non è mai nulla.
- B) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- D) Nessuna delle altre risposte è corretta.
- **E)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} \alpha_{k-2}$
- B) nessuno dei valori proposti
- C) $\alpha_{k-1} \alpha_{k-2}/2$
- **D)** $\alpha_{k-1} + \alpha_{k-2}$
- **E)** $\alpha_{k-1} + \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}/2$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) a
- **C)** $2f_0$
- **D)** $f_0 + a$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-a|t|}(a > 0)$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$ vale:

1

A)
$$\frac{1}{1 - e^{-T(a+j2\pi f)}}$$

B)
$$\sum_{n=0}^{+\infty} \frac{1}{1-e^{-nT(a+j2\pi f)}}$$

C)
$$\frac{1}{T} \sum_{n=-\infty}^{+\infty} \frac{2a}{a^2 + 4\pi^2 (f - n/T)^2}$$

D)
$$\frac{1-e^{-2aT}}{1-2e^{-aT}\cos(2\pi fT)+e^{-2aT}}$$

E)
$$\frac{1}{a+i2\pi f}$$

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,3T/4] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t). Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta]$ è nulla per ogni valore di σ^2 e T.
- **B)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ e T = 4/3.
- C) $E[\theta]$ non è mai nulla.
- **D)** $E[\theta]$ è nulla solo se $\sigma^2 = 1/2$ per ogni T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

A)
$$\frac{1}{1-e^{-\pi(1+j2f)}}$$

B)
$$\frac{1}{\pi + i2\pi f}$$

C)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

$$\mathbf{D)} \ \frac{1 - e^{-2\pi}}{1 - 2e^{-\pi} \cos(2\pi f) + e^{-2\pi}}$$

E)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

Esercizio 2. (Punti 2) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

- **B)** $2f_0$
- **C**) $3f_0$
- $\mathbf{D}) f_0$

Esercizio 3. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,3T/2]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

1

A)
$$\alpha_{k-1} - \alpha_{k-2}/2$$

B)
$$\alpha_{k-1} + \alpha_{k-2}$$

C)
$$\alpha_{k-1} + \alpha_{k-2} + \alpha_{k-3}/2$$

D)
$$\alpha_{k-1} - \alpha_{k-2}$$

E)
$$\alpha_{k-1} + \alpha_{k-2}/2$$

F) nessuno dei valori proposti

Esercizio 4. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a media nulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **B)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- **D)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- E) Nessuna delle altre risposte è corretta.

Compito solo TDS (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia n(t) un processo casuale gaussiano bianco WSS a media nulla. Si consideri la variabile casuale binaria θ ottenuta mediante il seguente processo di decisione:

$$\theta = \begin{cases} -1 & \text{se } \alpha > \beta \\ 1 & \text{se } \alpha \le \beta \end{cases}$$

dove α è ottenuta mediante integrazione sull' intervallo [0,T] di n(t) e β è una variabile causuale gaussiana a medianulla e varianza σ^2 indipendente da n(t).

Dire quale delle affermazioni che seguono è corretta.

- **A)** $E[\theta] = 0$ per ogni valore di σ^2 e T.
- **B)** $E[\theta] < 0$ per ogni valore di σ^2 e T.
- C) $E[\theta] = 0$ solo se $\sigma^2 = 1/\sqrt{2}$ per ogni T.
- **D)** $E[\theta] = 0$ solo se $\sigma = 1/\sqrt{2}$ per ogni T = 1.
- E) Nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 1.5) Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} \alpha_i r(t-iT)$, con α_i costanti note, r(t) segnale che vale 1/T per $t \in [0,T]$ e 0 altrove, viene posto all'ingresso di un sistema LTI con risposta all'inpulso h(t) che vale 1 per $t \in [0,T]$, -1 per $t \in [T,2T]$ e 0 altrove. Sia y(t) il segnale in uscita. y(kT) vale:

- **A)** $\alpha_{k-1} + \alpha_{k-2} \alpha_{k-3}$
- **B)** $\alpha_{k-1} + \alpha_{k-2}$
- C) nessuno dei valori proposti
- **D)** $\alpha_{k-1} \alpha_{k-2}$
- **E)** $\alpha_{k-1} \alpha_{k-2}/2$
- **F)** $\alpha_{k-1} + \alpha_{k-2}/2$

Esercizio 3. (Punti 2) La trasformata di Fourier del segnale $y(t) = x(t)x_{\delta}(t)$, dove $x(t) = e^{-\pi t}$ e $x_{\delta}(t) = \sum_{n=0}^{+\infty} \delta(t-n)$ vale:

1

- **A**) $\frac{1}{1 e^{-\pi(1 + j2f)}}$
- B) $\frac{1-e^{-2\pi}}{1-2e^{-\pi}\cos(2\pi f)+e^{-2\pi}}$
- C) $\frac{1}{\pi + j2\pi f}$

D)
$$\sum_{n=-\infty}^{+\infty} \frac{2\pi}{\pi^2 + 4\pi^2(f-n)^2}$$

E)
$$\sum_{n=0}^{+\infty} \frac{\delta(f-n)}{1-e^{-n(\pi+j2\pi f)}}$$

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

- A) non esiste tale frequenza
- **B**) *a*
- **C**) $f_0 + a$
- **D)** $2f_0$