EE223 Analog Integrated Circuits Fall 2018

Lecture 17: Frequency Response

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Frequency Response

- For the time being, we are primarily interested in the magnitude of the transfer function.
- The magnitude of a complex number a + jb is given by $\sqrt{a^2 + b^2}$.
- Zeros and poles are respectively defined as the roots of the numerator and denominator of the transfer function.

High Frequency Roll-Off of Amplifier Gain

- As frequency increases, the gain of amplifier decreases.
- Gain drop in high frequency is caused by capacitive effect.

Simple Low Pass Filter Example

➤ In this simple example, as frequency increases the impedance of C₁ decreases and the voltage divider consists of C₁ and R₁ attenuates V_{in} to a greater extent at the output.

Simple Common Source Amplifier

➤ The capacitive load, C_L, is the culprit for gain roll-off since at high frequency, it will "steal" away some signal current and shunt it to ground.

Frequency Response of the CS Amplifier

At low frequency, the capacitor is effectively open and the gain is flat. As frequency increases, the capacitor tends to a short and the gain starts to decrease. A special frequency is $ω=1/(R_DC_L)$, where the gain drops by 3dB.

Relationship Between Frequency Response and Step Response

$$V_{\text{out}}$$
 V_{out}
 (b)

$$\left|H\left(s=j\omega\right)\right| = \frac{1}{\sqrt{R_1^2 C_1^2 \omega^2 + 1}}$$

$$V_{out}(t) = V_0 \left(1 - \exp \frac{-t}{R_1 C_1} \right) u(t)$$

➤ The relationship is such that as R₁C₁ increases, the bandwidth *drops* and the step response becomes *slower*.

Association of Poles with Nodes

$$\frac{V_{out}}{V_{in}}(s) = \frac{A_1}{1 + R_S C_{in} s} \cdot \frac{A_2}{1 + R_1 C_N s} \cdot \frac{1}{1 + R_2 C_P s}$$

Bode Plot

$$H(s) = A_0 \frac{\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)\cdots}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)\cdots}$$

- ightharpoonup When we hit a zero, $ω_{zj}$, the Bode magnitude rises with a slope of +20dB/dec.
- When we hit a pole, ω_{pj} , the Bode magnitude falls with a slope of -20dB/dec

Example Bode Plot

$$\left| |\omega_{p1}| = \frac{1}{R_D C_L} \right|$$

The circuit has one pole (no zero) at 1/(R_DC_L), so the slope drops from 0 to -20dB/dec as we pass ω_{p1}.

Pole Identification Example

$$\left| \frac{V_{out}}{V_{in}} \right| = \frac{g_m R_D}{\sqrt{\left(1 + \omega^2 / \omega_{p1}^2\right) \left(1 + \omega^2 / \omega_{p2}^2\right)}}$$

Pole Identification Example

Circuit with Floating Capacitor

- ➤ The pole of a circuit is computed by finding the effective resistance and capacitance from a node to GROUND.
- The circuit above creates a problem since neither terminal of C_F is grounded.

Miller's Theorem

$$Z_1 = \frac{Z_F}{1 - A_v}$$

$$Z_2 = \frac{Z_F}{1 - 1/A_v}$$

If A_v is the gain from node 1 to 2, then a floating impedance Z_F can be converted to two grounded impedances Z_1 and Z_2 .

Miller Multiplication

➤ With Miller's theorem, we can separate the floating capacitor. However, the input capacitor is larger than the original floating capacitor. We call this Miller multiplication.

CS Frequency Response using Miller's Theorem

The magnitude of the "input" pole

$$\omega_{in} = \frac{1}{R_S[C_{GS} + (1 + g_m R_D)C_{GD}]}$$

At the output node

$$\omega_{out} = \frac{1}{R_D(C_{DB} + C_{GD})}$$

$$\frac{V_{out}}{V_{in}}(s) = \frac{-g_m R_D}{\left(1 + \frac{s}{\omega_{in}}\right) \left(1 + \frac{s}{\omega_{out}}\right)}$$

Exact Analysis of Common Source Frequency Response

$$\frac{V_X - V_{in}}{R_S} + V_X C_{GS} s + (V_X - V_{out}) C_{GD} s = 0$$

$$(V_{out} - V_X)C_{GD}s + g_m V_X + V_{out} \left(\frac{1}{R_D} + C_{DB}s\right) = 0.$$

$$\frac{V_{out}}{V_{in}}(s) = \frac{(C_{GD}s - g_m)R_D}{R_S R_D \xi s^2 + [R_S(1 + g_m R_D)C_{GD} + R_S C_{GS} + R_D(C_{GD} + C_{DB})]s + 1}$$

$$\xi = C_{GS}C_{GD} + C_{GS}C_{DB} + C_{GD}C_{DB}$$

Dominant Pole Approximation

$$\frac{V_{out}}{V_{in}}(s) = \frac{(C_{GD}s - g_m)R_D}{R_S R_D \xi s^2 + [R_S(1 + g_m R_D)C_{GD} + R_S C_{GS} + R_D(C_{GD} + C_{DB})]s + 1}$$

$$D = \left(\frac{s}{\omega_{p1}} + 1\right) \left(\frac{s}{\omega_{p2}} + 1\right)$$
$$= \frac{s^2}{\omega_{p1}\omega_{p2}} + \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) s + 1 = as^2 + bs + 1$$

If we assume
$$|\omega_{p1}| \ll |\omega_{p2}| \rightarrow b = \frac{1}{\omega_{p1}}$$

$$\omega_{p1} = \frac{1}{R_S(1 + g_m R_D)C_{GD} + R_S C_{GS} + R_D(C_{GD} + C_{DB})} \approx \omega_{in} = \frac{1}{R_S[C_{GS} + (1 + g_m R_D)C_{GD}]}$$

Estimation of Second Pole

$$\frac{V_{out}}{V_{in}}(s) = \frac{(C_{GD}s - g_m)R_D}{R_S R_D \xi s^2 + [R_S(1 + g_m R_D)C_{GD} + R_S C_{GS} + R_D(C_{GD} + C_{DB})]s + 1}$$

$$D \approx \frac{s^2}{\omega_{p1}\omega_{p2}} + \frac{1}{\omega_{p1}} s + 1 = as^2 + bs + 1$$

$$\omega_{p2} = \frac{b}{a} = \frac{R_S(1 + g_m R_D)C_{GD} + R_S C_{GS} + R_D(C_{GD} + C_{DB})}{R_S R_D(C_{GS}C_{GD} + C_{GS}C_{DB} + C_{GD}C_{DB})}$$
If $C_{GS} \gg (1 + g_m R_D)C_{GD} + R_D(C_{GD} + C_{DB})/R_S$,
$$\omega_{p2} \approx \frac{R_S C_{GS}}{R_S R_D(C_{GS}C_{GD} + C_{GS}C_{DB})}$$

$$= \frac{1}{R_D(C_{GD} + C_{DB})},$$