

Week 10: Logical Agents

Dr Ammar Masood

Department of Cyber Security,

Air University Islamabad

Table of Contents

- Knowledge-based agents
- Wumpus world
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Logical Agents

- Humans can know "things" and "reason"
 - Representation: How are the things stored?
 - Reasoning: How is the knowledge used?
 - To solve a problem...
 - To generate more knowledge...
- Knowledge and reasoning are important to artificial agents because they enable successful behaviors difficult to achieve otherwise
 - Useful in partially observable environments
- Can benefit from knowledge in very general forms, combining and recombining information

Knowledge-Based Agents

- Central component of a Knowledge-Based Agent is a <u>Knowledge-Base</u>
 - A set of sentences in a formal language
 - Sentences are expressed using a knowledge representation language
- Two generic functions:
 - TELL add new sentences (facts) to the KB
 - "Tell it what it needs to know"
 - ASK query what is known from the KB
 - "Ask what to do next"

Knowledge-Based Agents

- The agent must be able to:
 - Represent states and actions
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Knowledge-Based Agents

function KB-AGENT(*percept*) **returns** an *action* **persistent**: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))$ TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

- MAKE-PERCEPT-SENTENCE constructs a sentence asserting that the agent perceived the given percept at the given time.
- MAKE-ACTION-QUERY constructs a sentence that asks what action should be done at the current time.
- Finally, MAKE-ACTION-SENTENCE constructs a sentence asserting that the chosen action was executed.

Wumpus World

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- · Shooting kills wumpus if you are facing it
- · Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

AIR UNIVERSITY

Wumpus World

- Characterization of Wumpus World
 - Observable
 - partial, only local perception
 - Deterministic
 - · Yes, outcomes are specified
 - Episodic
 - No, sequential at the level of actions
 - Static
 - Yes, Wumpus and pits do not move
 - Discrete
 - Yes
 - Single Agent
 - Yes

Wumpus World continued

- Main difficulty: Agent doesn't know the configuration
- Reason about configuration
- Knowledge evolves as new percepts arrive and actions are taken.

- The agent's initial knowledge base contains the rules of the environment; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote that with an "A" and "OK," respectively, in square [1,1].
- The first percept is [None, None, None, None], from which the agent can conclude that its neighboring squares, [1,2] and [2,1], are free of dangers—they are OK

- The agent perceives a breeze (denoted by "B") in [2,1], so there must be a pit in a neighboring square. The pit cannot be in [1,1], by the rules of the game, so there must be a pit in [2,2] or [3,1] or both.
- The notation "P?" indicates a possible pit in those squares. At this point, there is only one known square that is OK and that has not yet been visited.
- So the prudent agent will turn around, go back to [1,1], and then proceed to [1,2].

Acont
= Agent
= Breeze
= Glitter, Gold
= Safe square
= Pit
= Stench
= Visited
= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- The agent perceives a stench in [1,2], resulting in the shown state of knowledge.
- The stench in [1,2] means that there must be a wumpus nearby. But the Wumpus cannot be in [1,1], by the rules of the game, and it cannot be in [2,2] (or the agent would have detected a stench when it was in [2,1]).
- Therefore, the agent can infer that the Wumpus is in [1,3]. The notation W! indicates this inference.
- Moreover, the lack of a breeze in [1,2] implies that there
 is no pit in [2,2]. Yet the agent has already inferred that
 there must be a pit in either [2,2] or [3,1], so this means
 it must be in [3,1].

- The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so it is OK to move there.
- Then the agent turns and moves to [2,3],
- In [2,3], the agent detects a glitter, so it should grab the gold and then return home.

= Agent

= Breeze

= Stench = Visited W = Wumpus

- Knowledge bases consist of sentences in a formal language
 - Syntax
 - · Sentences are well formed
 - Semantics
 - The "meaning" of the sentence
 - The truth of each sentence with respect to each possible world (model)

• Example:

$$x + 2 \ge y$$
 is a sentence

$$x2 + y > is not a sentence$$

$$x + 2 \ge y$$
 is true iff $x + 2$ is no less than y

$$x + 2 \ge y$$
 is true in a world where $x = 7$, $y=1$

$$x + 2 \ge y$$
 is false in world where $x = 0$, $y = 6$

- **Entailment** means that one thing follows logically from another $\alpha \models \beta$
- $\alpha \models \beta$ if in every model in which α is true, β is also true
- if α is true, then β must be true
- the truth of β is "contained" in the truth of α

- Example:
 - α: "It is raining."
 - β: "The ground is getting wet."
 - In this case, $\alpha \models \beta$. If it is raining, then it *must* be true that the ground is getting wet. There's no scenario where it's raining, and the ground remains completely dry.
- Example:

$$x + y = 4$$
 entails $4 = x + y$

- A model is a formally structured world with respect to which truth can be evaluated
 - M is a model of sentence α if α is true in m
 - model is a truth assignment in which the sentence α evaluates to true.

• Then KB $\mid = \alpha$ if M(KB) \subseteq M(α)

Α	В	С	A∧B	A ^ C	B∧C
F	F	F	F	F	F
F	F	Т	F	F	F
F	Т	F	F	F	F
F	Т	Т	F	F	Т
Т	F	F	F	F	F
Т	F	Т	F	Т	F
Т	Т	F	Т	F	F
Т	Т	Т	Т	Т	Т

A^C, C does not entail B∧C

A,B, Entails A∧B

- Entailment in Wumpus World
- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for ? assuming only pits
- 3 Boolean choices => 8 possible models

- KB = wumpus world rules + observations
- $a_1 = "[1,2]$ is safe", KB |= a_1 , proved by model checking

- KB = wumpus world rules + observations
- a₂ = "[2,2] is safe", KB ¬|= a₂ proved by model checking

- <u>Inference</u> is the process of deriving a specific sentence from a KB (where the sentence must be entailed by the KB)
 - KB |-i a = sentence a can be derived from KB by procedure i
- "KB's are a haystack"
 - Entailment = needle in haystack
 - Inference = finding it

AIR UNIVERSITY

- Soundness
 - i is sound if...
 - whenever KB $|-\alpha|$ is true, KB $|-\alpha|$ is true
- Completeness
 - i is complete if
 - whenever KB |= α is true, KB |- α is true
- If KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world
- We will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

Propositional Logic

- · AKA Boolean Logic
- · False and True
- Proposition symbols P1, P2, etc are sentences
- NOT: If S1 is a sentence, then ¬S1 is a sentence (negation)
- AND: If S1, S2 are sentences, then S1 \(\Lambda \) S2 is a sentence (conjunction)
- OR: If S1, S2 are sentences, then S1 v S2 is a sentence (disjunction)
- IMPLIES: If S1, S2 are sentences, then S1 ⇒ S2 is a sentence (implication)
- IFF: If S1, S2 are sentences, then S1 ⇔ S2 is a sentence (biconditional)

Propositional Logic

Р	Q	¬P	P∧Q	P\Q	P⇒Q ¬P∨Q	P⇔Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Wumpus World Sentences

- Let P_{i,j} be True if there is a pit in [i,j]
- Let B_{i,j} be True if there is a breeze in [i,j]
- ¬P_{1,1}
- ¬ B_{1,1}
- B_{2,1}

"Pits cause breezes in adjacent squares"

$$\mathsf{B}_{1,1} \Leftrightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})$$

$$\mathsf{B}_{2,1} \Leftrightarrow (\mathsf{P}_{1,1} \vee \mathsf{P}_{2,2} \vee \mathsf{P}_{3,1})$$

 A square is breezy if and only if there is an adjacent pit

A Simple Knowledge Base Sentences

 $P_{x,y}$ is true if there is a pit in [x,y].

 $W_{x,y}$ is true if there is a wumpus in [x,y], dead or alive.

 $B_{x,y}$ is true if there is a breeze in [x,y].

 $S_{x,y}$ is true if there is a stench in [x,y].

 $L_{x,y}$ is true if the agent is in location [x,y].

 $R_1: \neg P_{1,1}$.

 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$

 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$

 $R_4: \neg B_{1,1}$.

 $R_5: B_{2,1}$.

Truth Table Approach

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if R_1 through R_5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the right-hand column). In all 3 rows, $P_{1,2}$ is false, so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

- KB consists of sentences R₁ thru R₅
- $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$

Truth Table Approach

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
                             // when KB is false, always return true
      else return true
  else
      P \leftarrow FIRST(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = true})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \})
```

- Depth-first enumeration of all models is sound and complete
- For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Inference Approach

- To prove that **KB** $= \alpha$ Start from KB
- Infer new sentences that are true from existing KB sentences
- Repeat till alpha is proved (inferred true) or no more sentences can be proved

Equivalence, Validity, Satisfiability

A sentence is valid if it is true in all models. For example, the sentence PV¬P is valid.

Two sentences are logically equivalent iff true in same models:

```
\alpha \equiv \beta \quad \text{if and only if} \quad \alpha \models \beta \text{ and } \beta \models \alpha (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
```


Equivalence, Validity, Satisfiability

- A sentence is valid if it is true in all models
 - e.g. True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem
 - KB \mid α iff (KB $\Rightarrow \alpha$) is valid
- A sentence is satisfiable if it is True in some model
 - e.g. A ∨ B,
- A sentence is unstatisfiable if it is True in no models
 - e.g. A ∧ ¬A
- Satisfiability is connected to inference via the following
 - KB |= α iff (KB $\wedge \neg \alpha$) is unsatisfiable
 - proof by contradiction

Reasoning Patterns

- Inference Rules
 - Patterns of inference that can be applied to derive chains of conclusions that lead to the desired goal.
- Modus Ponens
 - Given: S1 ⇒ S2 and S1, derive S2
- And-Elimination
 - Given: S1 ∧ S2, derive S1
 Given: S1 ∧ S2, derive S2
- DeMorgan's Law
 - Given: \neg (A \vee B) derive \neg A $\wedge \neg$ B
 - Given: \neg (A \land B) derive \neg A $\lor \neg$ B

Reasoning Patterns

And Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

- From a conjunction, any of the conjuncts can be inferred
- (WumpusAhead \(\times \) WumpusAlive),
 WumpusAlive can be inferred

Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

- Whenever sentences of the form $\alpha \Rightarrow \beta$ and α are given, then sentence β can be inferred
- (WumpusAhead ∧ WumpusAlive) ⇒ Shoot and (WumpusAhead ∧ WumpusAlive), Shoot can be inferred

Example Proof By Deduction

Knowledge

S1:
$$B_{22} \Leftrightarrow (P_{21} \vee P_{23} \vee P_{12} \vee P_{32})$$

S2: ¬B₂₂

Inferences

S3:
$$(B_{22} \Rightarrow (P_{21} \lor P_{23} \lor P_{12} \lor P_{32})) \land ((P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \Rightarrow B_{22})$$

S4: $((P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \Rightarrow B_{22})$

S5:
$$(\neg B_{22} \Rightarrow \neg (P_{21} \lor P_{23} \lor P_{12} \lor P_{32}))$$

S6:
$$\neg (P_{21} \lor P_{23} \lor P_{12} \lor P_{32})$$

S7:
$$\neg P_{21} \land \neg P_{23} \land \neg P_{12} \land \neg P_{32}$$

rule observation


```
Two sentences are logically equivalent iff true in same models: \alpha \equiv \beta if and only if \alpha \models \beta and \beta \models \alpha (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land
```

```
\begin{array}{ll} (\alpha\vee\beta)\equiv(\beta\vee\alpha) & \text{commutativity of }\vee\\ ((\alpha\wedge\beta)\wedge\gamma)\equiv(\alpha\wedge(\beta\wedge\gamma)) & \text{associativity of }\wedge\\ ((\alpha\vee\beta)\vee\gamma)\equiv(\alpha\vee(\beta\vee\gamma)) & \text{associativity of }\vee\\ & \neg(\neg\alpha)\equiv\alpha & \text{double-negation elimination}\\ (\alpha\Rightarrow\beta)\equiv(\neg\beta\Rightarrow\neg\alpha) & \text{contraposition}\\ (\alpha\Rightarrow\beta)\equiv(\neg\alpha\vee\beta) & \text{implication elimination}\\ (\alpha\Leftrightarrow\beta)\equiv((\alpha\Rightarrow\beta)\wedge(\beta\Rightarrow\alpha)) & \text{biconditional elimination}\\ & \neg(\alpha\wedge\beta)\equiv(\neg\alpha\vee\neg\beta) & \text{de Morgan}\\ & \neg(\alpha\vee\beta)\equiv(\neg\alpha\wedge\neg\beta) & \text{de Morgan}\\ & \neg(\alpha\vee\beta)\equiv(\neg\alpha\wedge\neg\beta) & \text{de Morgan} \\ & \neg(\alpha\wedge\beta)\equiv(\neg\alpha\wedge\neg\beta) & \text{de Morgan} \\ & \neg(\alpha\wedge\beta)\equiv(\neg\alpha\wedge\beta) & \text{de Morgan} \\ & \neg(\alpha\wedge\beta)=(\neg\alpha\wedge\beta) & \text{de Morgan} \\ & \neg(\alpha\wedge\beta)=(\neg\alpha\wedge\beta)
```

 $\begin{array}{l} (\alpha \wedge (\beta \vee \gamma)) \, \equiv \, ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) & \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \, \equiv \, ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & \text{distributivity of } \vee \text{ over } \wedge \end{array}$

Evaluation of Deductive Inference

Sound

• Yes, because the inference rules themselves are sound. (This can be proven using a truth table argument).

Complete

- If we allow all possible inference rules, we're searching in an infinite space, hence not complete
- If we limit inference rules, we run the risk of leaving out the necessary one...

Monotonic

 If we have a proof, adding information to the DB will not invalidate the proof

Resolution Approach

- Resolution allows a complete inference mechanism (search-based) using only one rule of inference
- Resolution rule:
 - Given: $P_1 \vee P_2 \vee P_3 \dots \vee P_{n,}$ and $\neg P_1 \vee Q_1 \dots \vee Q_m$
 - Conclude: P₂ ∨ P₃ ... ∨ P_n ∨ Q₁ ... ∨ Q_m
 Complementary literals P₁ and ¬P₁ "cancel out"
- Resolution inference rule (for CNF, conjunction of disjunctions):

$$l_i \vee \ldots \vee l_k, \qquad m_1 \vee \ldots \vee m_n$$

$$l_i \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$$

Resolution in Wumpus World

- There is a pit at 2,1 or 2,3 or 1,2 or 3,2
 - $P_{21} \vee P_{23} \vee P_{12} \vee P_{32}$
- There is no pit at 2,1
 - ¬P₂₁
- Therefore (by resolution) the pit must be at 2,3 or 1,2 or 3,2
 - $P_{23} \vee P_{12} \vee P_{32}$

Proof using Resolution

- To prove a fact α , That is, to show that KB $\mid=\alpha$, we show that (KB \wedge $\neg \alpha$) is unsatisfiable. We do this by proving a contradiction.
- First, (KB $\land \neg \alpha$) is converted into Conjunctive Normal Form (CNF). Then, the resolution rule is applied to the resulting clauses.
 - conjunction of clauses (clauses include disjunctions of literals)

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

Disjunctive normal form (DNF)

• Disjunction of terms (terms include conjunction of literals)

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

- Each pair that contains complementary literals is resolved to produce a new clause, which is added to the set if it is not already present.
- The process continues until one of two things happens:
 - There are no new clauses that can be added, in which case KB does not entail α; or,
 - Two clauses resolve to yield the empty clause, in which case KB entails α.

CNF Example

- 1. $B_{22} \Leftrightarrow (P_{21} \vee P_{23} \vee P_{12} \vee P_{32})$
- 2. Eliminate \Leftrightarrow , replacing with two implications $(B_{22} \Rightarrow (P_{21} \lor P_{23} \lor P_{12} \lor P_{32})) \land ((P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \Rightarrow B_{22})$
- 3. Replace implication (A \Rightarrow B) by $\neg A \lor B$ $(\neg B_{22} \lor (P_{21} \lor P_{23} \lor P_{12} \lor P_{32})) \land (\neg (P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \lor B_{22})$
- 4. Move \neg "inwards" (unnecessary parens removed) $(\neg B_{22} \lor P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \land ((\neg P_{21} \land \neg P_{23} \land \neg P_{12} \land \neg P_{32}) \lor B_{22})$
- 5. Distributive Law $(\neg B_{22} \lor P_{21} \lor P_{23} \lor P_{12} \lor P_{32}) \land (\neg P_{21} \lor B_{22}) \land (\neg P_{23} \lor B_{22}) \land (\neg P_{12} \lor B_{22}) \land (\neg P_{32} \lor B_{22})$

(Final result has 5 clauses)

Simple Resolution Example

 When the agent is in 1,1, there is no breeze, so there can be no pits in neighboring squares

Percept: ¬B11

• Prove: ¬P12

SS SS SS SS START

Breeze

3

Resolution example

•
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

•
$$\alpha = \neg P_{1,2}$$

55 555 Signal Signal		Breeze	PIT
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Breeze 55555 Stench >	PIT	Breeze
SS SSSS Stench S		Breeze	
START	Breeze	PIT	Breeze

3

2

1

You can resolve only one pair of complementary literals at a time. For example, we can resolve P and $\neg P$ to deduce

$$\frac{P\vee \neg Q\vee R, \quad \neg P\vee Q}{\neg Q\vee Q\vee R},$$

Resolution example

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $CNF = (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg B_{1,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$
- $\alpha = \neg P_{1,2}$ We show that (KB $\land \neg \alpha$) is unsatisfiable

- Each pair that contains complementary literals is resolved to produce a new clause, which
 is added to the set if it is not already present.
- The process continues until one of two things happens:
 - There are no new clauses that can be added, in which case KB does not entail α; or,
 - Two clauses resolve to yield the empty clause, in which case KB entails α.

Evaluation of Resolution

- Resolution is sound
 - Because the resolution rule is true in all cases
- Resolution is complete
 - Provided a complete search method is used to find the proof, if a proof can be found it will
 - Note: you must know what you're trying to prove in order to prove it!
- Resolution is exponential
 - The number of clauses that we must search grows exponentially...

Horn Clauses

- A Horn Clause is a CNF clause with exactly one positive literal
 - The positive literal is called the head
 - The negative literals are called the body
 - $(\neg L_{1,1} \lor \neg Breeze \lor B_{1,1})$ can be written as the implication $(L1,1 \land Breeze) \Rightarrow B_{1,1}$.
- Horn Clauses form the basis of forward and backward chaining
- The Prolog language is based on Horn Clauses
- Deciding entailment with Horn Clauses is linear in the size of the knowledge base

Reasoning with Horn Clauses

- Forward Chaining
 - For each new piece of data, generate all new facts, until the desired fact is generated
 - Data-directed reasoning
- Backward Chaining
 - To prove the goal, find a clause that contains the goal as its head, and prove the body recursively
 - (Backtrack when you chose the wrong clause)
 - Goal-directed reasoning

- AND-OR Graph
 - multiple links joined by an arc indicate conjunction every link must be proved
 - multiple links without an arc indicate disjunction any link can be proved

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Count the number of facts in the antecedent of the rule

Inferred facts decrease the count

Inferred facts decrease the count

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power