Atividade Prática

AUTHOR

Leonardo Prior Migliorini

Análise descritiva dos dados

Nosso banco de dados tem 107 observações e 8 variáveis, sendo uma delas a variável de interesse e as demais, covariáveis para incluirmos nos ajustes dos modelos. Primeiramente, vamos verificar quais os tipos de covariáveis temos em nosso banco de dados.

```
x1
                                          x2
                                                            x3
                                           : 24.32
Min.
      : 43.90
                  Min.
                         :0.0000
                                    Min.
                                                      Min.
                                                             :0.0860
                                    1st Qu.: 44.51
1st Qu.: 85.96
                  1st Qu.:0.0000
                                                      1st Qu.:0.3090
Median :105.88
                                    Median : 55.05
                                                      Median :0.4270
                 Median :1.0000
                                           : 52.80
       :111.00
                                    Mean
                                                      Mean
                                                             :0.4466
Mean
                 Mean
                         :0.6168
3rd Qu.:127.98
                  3rd Qu.:1.0000
                                    3rd Qu.: 59.79
                                                      3rd Qu.:0.5615
       :259.91
                         :1.0000
                                   Max.
                                           :102.59
                                                      Max.
                                                             :0.9240
Max.
                 Max.
      x4
                       x5
                                        x6
                                                          x7
Min.
       :0.822
                Min.
                        : 3.00
                                 Min.
                                         : 0.000
                                                   Min.
                                                           : 74.92
1st Qu.:3.163
                                 1st Qu.: 0.840
                                                    1st Qu.: 93.78
                 1st Qu.: 8.00
Median :4.422
                Median :11.00
                                 Median : 2.490
                                                   Median :100.89
Mean
       :4.517
                Mean
                        :10.47
                                 Mean
                                         : 3.613
                                                   Mean
                                                           :100.44
3rd Qu.:5.495
                 3rd Qu.:13.00
                                 3rd Qu.: 5.415
                                                    3rd Qu.:106.93
Max.
       :9.068
                Max.
                        :21.00
                                 Max.
                                         :18.767
                                                   Max.
                                                           :146.85
```

Podemos observar que a covariável x_1 é do tipo dummy, enquanto que as demais são todas contínuas positivas.

localhost:6720 1/18

Através do *corrplot* acima, nota-se que a covariável x_6 é a que apresenta a maior correlação com a variável de interesse. Percebe-se também um provável problema de mutlicolinearidade aproximada entre as covariáveis x_3 e x_4 pela sua alta correlação de 0,96.

Modelo incialmente ajustado

Inicialmente consideraremos um modelo ajustado com todas as covariáveis disponíveis em nosso banco de dados. O ajuste é dado abaixo:

Call:

```
lm(formula = y \sim x1 + x2 + x3 + x4 + x5 + x6 + x7, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -21.076 -6.026 -0.214 7.436 21.794
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	74.46224	10.18764	7.309	7.02e-11	***
x1	18.99352	2.03183	9.348	2.89e-15	***
x2	-0.15909	0.08117	-1.960	0.0528	
x 3	16.22563	20.72954	0.783	0.4357	
x4	1.12853	1.99299	0.566	0.5725	
x5	0.06316	0.28217	0.224	0.8233	
x6	10.02365	0.30531	32.831	< 2e-16	***

localhost:6720 2/18

x7 -0.15932 0.10050 -1.585 0.1161

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.08 on 99 degrees of freedom Multiple R-squared: 0.928, Adjusted R-squared: 0.9229 F-statistic: 182.3 on 7 and 99 DF, p-value: < 2.2e-16

Podemos observar que algumas das covariáveis consideradas não foram significativas no modelo inicial, portanto, utilizaremos a função step para nos indicar um modelo melhor. A saída da função, assim como o modelo sugerido são dados abaixo:

Start: AIC=502.08

$$y \sim x1 + x2 + x3 + x4 + x5 + x6 + x7$$

	Df	Sum	of Sq	RSS	AIC
- x5	1		5	10058	500.13
- x4	1		33	10086	500.43
- x3	1		62	10115	500.74
<none></none>				10053	502.08
- x7	1		255	10308	502.76
- x2	1		390	10443	504.15
- x1	1		8874	18927	567.78
- x6	1	1	09454	119507	764.96

Step: AIC=500.13

$$y \sim x1 + x2 + x3 + x4 + x6 + x7$$

	Df	Sum	of Sq	RSS	AIC
- x4	1		32	10090	498.47
- x3	1		62	10121	498.80
<none></none>				10058	500.13
- x7	1		252	10310	500.78
- x2	1		385	10444	502.16
- x1	1		8925	18983	566.10
- x6	1		L14481	124539	767.37

Step: AIC=498.47

$$y \sim x1 + x2 + x3 + x6 + x7$$

	Df	Sum of Sq	RSS	AIC
<none></none>			10090	498.47
- x7	1	309	10399	499.70
- x2	1	391	10481	500.54
- x3	1	2230	12320	517.84
- x1	1	9005	19095	564.73
- x6	1	115653	125743	766.40

Call:

 $lm(formula = y \sim x1 + x2 + x3 + x6 + x7, data = dados)$

Coefficients:

(Intercept)	x1	x2	x3	x6	x7
75 7074	19 0782	-0 1575	27 3825	10 0518	-0 1664

localhost:6720 3/18

Podemos ver que as covariáveis x_4 e x_5 foram desconsideradas no novo ajuste. Seguimos então, ajustando esse novo modelo e posteriormente realizando a análise de diagnósticos para verificar a adequação do ajuste.

Modelo reajustado

```
Call:
lm(formula = y \sim x1 + x2 + x3 + x6 + x7, data = dados)
Residuals:
    Min
               10
                    Median
                                 30
                                         Max
-21.8872 -6.3075 -0.2461
                             7.7121 21.9382
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                 7.680 1.05e-11 ***
(Intercept) 75.70742
                       9.85719
                                  9.494 1.17e-15 ***
            19.07824
                        2.00942
x1
x2
            -0.15752
                        0.07966 -1.977
                                          0.0507 .
                                 4.725 7.46e-06 ***
х3
            27.38254
                        5.79553
                        0.29543 34.025 < 2e-16 ***
х6
            10.05183
x7
            -0.16636
                        0.09461 -1.758
                                          0.0817 .
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 9.995 on 101 degrees of freedom
Multiple R-squared: 0.9277,
                                Adjusted R-squared: 0.9241
F-statistic: 259.3 on 5 and 101 DF, p-value: < 2.2e-16
```

Note que algumas covariáveis não são muito significativas para o modelo, entretanto, prosseguiremos para a análise de diagnósticos a fim de verificar se as suposições do modelo foram satisfeitas e, consequentemente, se os resultados dos testes de hipóteses não sofreram nenhuma distorção devido a desvios de normalidade. Além disso, iremos verificar se não há pontos possivelmente influentes no modelo.

Análise de diagnóstico

Suposições do modelo

Vamos começar testando as suposições do modelo para verificar se os resultados dos testes de hipóteses são confiáveis.

Testanto [S0]:

Testanto [S1]:

```
RESET test

data: fit2

RESET = 0.20546, df1 = 2, df2 = 99, p-value = 0.8146
```

localhost:6720 4/18

```
One Sample t-test
data: resid(fit2)
t = -5.7785e-16, df = 106, p-value = 1
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -1.869971 1.869971
sample estimates:
    mean of x
-5.450274e-16
Testanto [S2]:
    studentized Breusch-Pagan test
data: fit2
BP = 9.9212, df = 5, p-value = 0.0775
Testanto [S3]:
    Durbin-Watson test
data: fit2
DW = 2.1593, p-value = 0.7949
alternative hypothesis: true autocorrelation is greater than 0
Testanto [S4]:
                                  x6
      x1
               x2
                         x3
                                            x7
1.022151 1.061339 1.055285 1.019242 1.045772
Testanto [S5]:
    Jarque Bera Test
```

```
data: resid(fit2)
X-squared = 0.79299, df = 2, p-value = 0.6727
```

Note que todos os testes de hipóstese obtiveram um P-valor maior que $\alpha=0,05$. Logo, todos os testes não rejeitaram H_0 , ou seja, as suposições do modelo foram satisfeitas. Em relação aos VIFs, como todos se encontram muito próximos de 1, conclui-se que o modelo não tem problemas de multicolinearidade aproximada, ou seja, $[S_4]$ também é satisfeita.

Alavancagem

localhost:6720 5/18

No gráfico acima, podemos notar alguns pontos de alavanca, sendo a obrservação $23\,\mathrm{a}$ mais discrepante das demais.

DFFITS

localhost:6720 6/18

Podemos ver que a observação 23 também tem alta influência sobre seu próprio valor ajustado, nesse caso, também se encontrando bem dispersa das demais observações.

DFBETAS

localhost:6720 7/18

Podemos notar que a observação 23 também é muito influente sobre $\beta1$, $\beta3$, $\beta5$ e $\beta6$. Para os demais parâmetros de regressão, não observamos pontos com comportamento muito influente.

Distância de Cook

localhost:6720 8/18

Mais uma vez, a observação 23 se destaca como um ponto de influência sobre o ajuste geral do modelo.

Resíduos

Gaussian model (lm object)

localhost:6720 9/18

Histogram of residuo

Nos resíduos, não notamos nenhuma medida muito discrepante, mas podemos notar que a observação 23 é a mais discrepante no primeiro gráfico, quase ultrapassando o intervalo de -3 a 3.

Novo Ajuste

Nesse caso, devido à alta influência da observação 23 em diversos aspectos do modelo, vamos optar por removê-la de nosso conjunto de dados e, então, reajustar os modelos do início utilizando a função step. O modelo recomendado é dado abaixo:

Start: AIC=490.87

$$y \sim x1 + x2 + x3 + x4 + x5 + x6 + x7$$

	Df	Sum of Sq	RSS	AIC
- x4	1	6	9358	488.93
- x7	1	22	9374	489.12
- x5	1	23	9375	489.13
- x2	1	98	9450	489.98
- x3	1	126	9478	490.29
<none></none>			9352	490.87
- x1	1	9112	18464	560.97
- x6	1	105043	114395	754.30

Step: AIC=488.93 y ~ x1 + x2 + x3 + x5 + x6 + x7

RSS

AIC

Df Sum of Sq

localhost:6720 10/18

```
- x5
        1
                      9380 487.19
                 23
- x7
        1
                 26
                      9384 487.23
- x2
        1
                 97
                      9455 488.03
<none>
                      9358 488.93
- x3
        1
               2328 11685 510.48
- x1
        1
               9172 18530 559.35
             106811 116168 753.93
- x6
        1
```

Step: AIC=487.19

 $y \sim x1 + x2 + x3 + x6 + x7$

	Df	Sum of Sq	RSS	AIC
- x7	1	19	9399	485.40
- x2	1	89	9469	486.19
<none></none>			9380	487.19
- x3	1	2305	11685	508.48
- x1	1	9240	18620	557.87
- x6	1	110278	119658	755.07

Step: AIC=485.4

 $y \sim x1 + x2 + x3 + x6$

	Df	Sum of Sq	RSS	AIC
- x2	1	86	9485	484.36
<none></none>			9399	485.40
- x3	1	2287	11686	506.49
- x1	1	9229	18628	555.91
- x6	1	114445	123844	756.71

Step: AIC=484.36y ~ x1 + x3 + x6

	Df	Sum	of	Sq	RSS	AIC
<none></none>					9485	484.36
- x3	1		22	209	11694	504.56
- x1	1		93	359	18844	555.14
- x6	1		1144	188	123973	754.82

Call:

 $lm(formula = y \sim x1 + x3 + x6, data = dados_new)$

Coefficients:

(Intercept) x1 x3 x6 50.06 19.39 26.94 10.33

O modelo selecionado considerou apenas as covariáveis x_1 , x_3 e x_6 . O ajuste deste modelo é dado abaixo:

Call:

 $lm(formula = y \sim x1 + x3 + x6, data = dados_new)$

Residuals:

Min 10 Median 30 Max -23.3746 -5.0895 -0.1982 7.0186 22.5797

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.0609
                        2.9751 16.827 < 2e-16 ***
            19.3892
                        1.9326 10.033 < 2e-16 ***
x1
х3
                        5.5266
                                4.874 4.03e-06 ***
            26.9352
х6
            10.3288
                        0.2944 35.089 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.643 on 102 degrees of freedom
                              Adjusted R-squared: 0.9273
Multiple R-squared: 0.9294,
F-statistic: 447.7 on 3 and 102 DF, p-value: < 2.2e-16
```

Análise de diagnóstico

Suposições do modelo

Começaremos novamente testando as suposições do modelo.

Partimos agora para a análise de diagnóstico desse novo ajuste.

Testanto [S0]:

Testanto [S3]:

```
RESET test
data: fit4
RESET = 0.0086259, df1 = 2, df2 = 100, p-value = 0.9914
Testanto [S1]:
    One Sample t-test
data: resid(fit4)
t = 2.5885e-17, df = 105, p-value = 1
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -1.83041 1.83041
sample estimates:
   mean of x
2.389541e-17
Testanto [S2]:
    studentized Breusch-Pagan test
data: fit4
BP = 2.9632, df = 3, p-value = 0.3973
```

localhost:6720 12/18

Durbin-Watson test

data: fit4

DW = 1.997, p-value = 0.4747

alternative hypothesis: true autocorrelation is greater than 0

Testanto [S4]:

x1 x3 x6 1.009861 1.007971 1.004456

Testanto [S5]:

Jarque Bera Test

data: resid(fit4)
X-squared = 0.90357, df = 2, p-value = 0.6365

Mais uma vez, todos os testes de hipóstese obtiveram um P-valor maior que $\alpha=0,05$. Portanto, as suposições do modelo foram satisfeitas. Novamente os VIFs se encontram extremamente próximos de $1\log o$, $[S_4]$ também é satisfeita.

Alavancagem

Novamente, temos a presença de alguns pontos de alavanca, sendo a observação 63 a mais discrepante e única preocupante até o momento.

localhost:6720 13/18

DFFITS

Aqui, não temos nenhum indício significativo de observações influentes sobre seu próprio valor ajustado.

DFBETAS

localhost:6720 14/18

Também não temos nenhuma observação muito influente em relação aos parâmetros de regressão.

Distância de Cook

localhost:6720 15/18

Não há pontos de muita influência sobre o ajuste em geral do modelo.

Resíduos

Gaussian model (lm object)

localhost:6720 16/18

Histogram of residuo

No primeiro gráfico não observamos nenhum valor fora do esperado, ou seja, nenhum valor discrepante. Podemos ver que os resíduos aparentam apresentar normalidade pelo histograma, e a maioria dos pontos se encontram dentro das bandas de confiança do invelope simulado.

Assim, podemos concluir que o modelo atual está bem ajustado e não necessita de mais reajustes. Logo, este será o nosso modelo final.

Predição de alguns valores

Por fim, faremos a predição para alguns valores hipotéticos gerados aleatoriamente ao fixarmos uma seed. Os valores gerados são mostrados abaixo:

A tibble: 10×3 x3 x6 x1 <dbl> <dbl> <dbl> 0 0.382 6.63 1 2 0 0.734 2.29 3 0 0.590 3.48 4 2.42 1 0.523 5 1 0.901 5.72 6 0 0.767 10.4 7 2.76 0 0.444 8 0 0.548 11.2 9 0 0.229 4.19 10 0 0.382 1.45

localhost:6720 17/18

Os valores preditos pelo modelo ajustado são dados abaixo:

1 2 3 4 5 6 7 8 128.84526 93.46131 101.86487 108.51321 152.84406 178.42344 90.51140 180.54182 9 10 99.53992 75.37362

localhost:6720 18/18