

FCC PART 15.249

IC RSS-210, ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

NVIDIA Corporation

2701 San Tomas Expressway, Santa Clara, CA 95050, USA

FCC ID: VOB-P753A IC: 7361A-P753A Model: P753

Report Type: **Product Type:** Wireless Hub for 3D Vision System Original Report Kevon Le **Test Engineer:** Kevin Li **Report Number:** R1009233-249 **Report Date:** 2010-11-16 Victor Zhang Reviewed By: RF Lead Prepared By: Bay Area Compliance Laboratories Corp. (SP) 1274 Anvilwood Avenue. Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	MECHANICAL DESCRIPTION OF EUT	5
	1.3	Objective	5
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	5
	1.5	TEST METHODOLOGY	
	1.6	MEASUREMENT UNCERTAINTY	5
	1.7	TEST FACILITY	
2	SYS	STEM TEST CONFIGURATION	7
	2.1	JUSTIFICATION	
	2.2	EUT Exercise Software	7
	2.3	SPECIAL ACCESSORIES	
	2.4	EQUIPMENT MODIFICATIONS	
	2.5	LOCAL SUPPORT EQUIPMENT	
	2.6	INTERNAL PARTS LIST AND DETAILS	7
	2.7	INTERFACE PORTS AND CABLING	
3	SUN	MMARY OF TEST RESULTS	
4	FCC	C §15.203 & IC RSS-GEN §7.1.4 – ANTENNA REQUIREMENTS	9
•	4.1	APPLICABLE STANDARD	9
	4.2	ANTENNA CONNECTOR CONSTRUCTION	
5		C §15.207 & IC RSS-GEN §7.2.2- AC POWER LINE CONDUCTED EMISSIONS	10
3	5.1	APPLICABLE STANDARD	10
	5.2	TEST SETUP	
	5.3	TEST SOLIOI TEST EQUIPMENT LIST AND DETAILS	
	5.4	TEST PROCEDURE	
	5.5	TEST ENVIRONMENTAL CONDITIONS	
	5.6	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	5.7	SUMMARY OF TEST RESULTS	
	5.8	CONDUCTED EMISSIONS TEST PLOTS AND DATA	
6		C §15.205, §15.209, §15.249 & IC RSS-210 §A2.9 - RADIATED EMISSIONS	12 11
U	6.1	APPLICABLE STANDARD	14
	6.2	TEST SETUP	
	6.3	EUT SETUP	
	6.4	TEST PROCEDURE	
	6.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	6.6	TEST EQUIPMENT LIST AND DETAILS	
	6.7	TEST EQUIPMENT LIST AND DETAILS TEST SETUP BLOCK DIAGRAM	
	6.8	TEST SETUP BLOCK DIAGRAM TEST ENVIRONMENTAL CONDITIONS	
	6.9	SUMMARY OF TEST RESULTS	
	6.10	RADIATED EMISSIONS TEST PLOT & DATA	
7		C §15.249(D) & IC RSS-210 §A 2.9– OUT OF BAND EMISSIONS	10
′	7.1	APPLICABLE STANDARD	
	7.1	MEASUREMENT PROCEDURE	
	7.2	TEST EQUIPMENT LIST AND DETAILS	
	7.3 7.4	TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS	23 25
	7.4 7.5	TEST ENVIRONMENTAL CONDITIONS. TEST RESULTS	
0		TEST RESULTS	
8			
	8.1	APPLICABLE STANDARD	
	8.2		
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST ENVIRONMENTAL CONDITIONS	28

8.5	TEST RESULTS	
9 IC	CRSS-GEN §4.10 & §6 - RECEIVER SPURIOUS EMISSION	31
9.1	APPLICABLE STANDARD	31
9.2	TEST SETUP	31
9.3	TEST EQUIPMENT LIST AND DETAILS	31
9.4	TEST SETUP BLOCK DIAGRAM	32
9.5	TEST ENVIRONMENTAL CONDITIONS	32
9.6	TEST RESULTS	
9.7	RADIATED EMISSIONS TEST PLOT & DATA	
10 EX	XHIBIT A - FCC & IC EQUIPMENT LABELING REQUIREMENTS	34
10.1	FCC ID Label Requirements	34
10.2		
10.3	FCC ID & IC LABEL CONTENTS	
10.4		
11 EX	XHIBIT B – TEST SETUP PHOTOGRAPHS	
11.1	AC LINE CONDUCTED EMISSIONS- FRONT VIEW	
11.2	AC LINE CONDUCTED EMISSIONS- SIDE VIEW	
11.3	RADIATED EMISSIONS (BELOW 1 GHz) – FRONT VIEW	
11.4		
11.5	RADIATED EMISSIONS (ABOVE 1 GHz) – FRONT VIEW	
11.6	RADIATED EMISSIONS (ABOVE 1 GHz) – REAR VIEW	38
12 EX	XHIBIT C - EUT PHOTOGRAPHS	39
12.1	EUT TOP VIEW	39
12.2	EUT BOTTOM VIEW	39
12.3	EUT Front View	40
12.4	2011081 / 12//	
12.5	EUT COVER OFF VIEW	
12.6	EUT PCB BOARD TOP VIEW	
12.7	EUT PCB BOARD BOTTOM VIEW	42

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision Date of Revision	
0	R1009233-249	Original Report	2010-11-16

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of NVIDIA Corporation., *FCC ID: VOB-P753A*, *IC: 7361A-P753A*, *model: P753*, which will be henceforth in this report referred to as the EUT (Equipment under Test). The EUT is wireless hub for 3D vision Pro is part of a system that enables the users to experience 3D images on 3D capable displays.

1.2 Mechanical Description of EUT

The EUT measures approximately 60 mm (L) x 60 mm (W) x 40mm (H) and weighs approximately 73 g.

The data gathered are from a typical production sample provided by the manufacture, serial number R1009233-1 assigned by BACL.

1.3 Objective

This type approval report is prepared on behalf of *NVIDIA Corporation* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules and IC RSS-210 Issue 7, June 2007.

The objective is to determine compliance with FCC rules for section 15.203, 15.205, 15.207, 15.209, 15.249 and IC RSS-210, RSS-Gen.

1.4 Related Submittal(s)/Grant(s)

Wireless 3D Glasses with FCC ID: VOB-P703A.

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2001670.htm

2 System Test Configuration

2.1 Justification

The host system was configured for testing according to ANSI C63.4-2003.

The EUT was tested in the testing mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

N/A

2.3 Special Accessories

There were no special accessories were required, included, or intended for use with EUT during these tests.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
Samsung	Monitor	2233RZ	CM22H1LQB00241V
Dell	Desktop	DCD0	00045-841-663-763
Dell	Keyboard	L100	-
Dell	Mouse	-	-

2.6 Internal Parts List and Details

N/A

2.7 Interface Ports and Cabling

Cable Description	Length (m)	From	То
USB cable	< 10m	EUT	Desktop

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & IC Rules	Description of Test	Result
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirement	Compliant
FCC §15.249 IC RSS-210 §A2.9	Field Strength of Fundamental	Compliant
FCC §15.207(a) IC RSS-Gen §7.2.2	AC Power Line Conduction Emissions	Compliant
FCC §15.205, §15.209 & §15.249 IC RSS-210 §A2.9	Radiated Emissions	Compliant
FCC §15.215 IC RSS-Gen §4.6.1	Occupied Bandwidth (99% &20 dB)	Compliant
IC RSS-Gen §4.10, §6	Receiver Spurious Emission	Compliant
FCC §15.249(d) IC RSS-210 §A2.9	Out of Band Emissions	Compliant

4 FCC §15.203 & IC RSS-Gen §7.1.4 – Antenna Requirements

4.1 Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

4.2 Antenna Connector Construction

The EUT antenna is integrated into the PCB construction, which in accordance to FCC §15.203 and IC RSS-Gen §7.1.4, is considered sufficient to comply with the provisions of this section.

Result: Compliant.

5 FCC §15.207 & IC RSS-Gen §7.2.2- AC Power Line Conducted Emissions

5.1 Applicable Standard

As per FCC §15.207 & RSS-Gen §7.2.2 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)	
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

5.2 Test Setup

The measurement was performed in a shield room. The test setup and measurement procedure was per ANSI C63.4-2003. The Specification limits were in accordance with FCC Part 15.207.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT was connected to a PC via USB cable, and the PC was powered by 120V/60Hz AC power.

5.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24
Solar Electronics	LISN	9252-R-24- BNC	511205	2010-06-25
TTE	Filter, High Pass	H9962-150K- 50-21378	K7133	2010-06-10

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.4 Test Procedure

During the conducted emissions test, the EUT was connected to a PC via USB cable. And the host PC system was connected to LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

5.5 Test Environmental Conditions

Temperature:	18~21 °C
Relative Humidity:	30~35 %
ATM Pressure:	101.2-102.2kPa

^{*}The testing was performed by Kevin Li on 2010-09-29 in 5 meter chamber 3.

5.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

5.7 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC standard's</u> conducted emissions limits, with the margin reading of:

Connection: Desktop Host connected to 120 V/60 Hz, AC					
Margin (dB)	Range (MHz)				
-8.23	0.678012	Neutral	0.15 to 30		

5.8 Conducted Emissions Test Plots and Data

120 V, 60 Hz - Line

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/ Neutral)	Limit (dBµV)	Margin (dB)
21.00767	38.65	Line	60	-21.35
21.12725	37.51	Line	60	-22.49
20.81660	38.84	Line	60	-21.16
21.50632	38.93	Line	60	-21.07
20.12713	37.43	Line	60	-22.57
21.44090	39.33	Line	60	-20.67

Average Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/ Neutral)	Limit (dBµV)	Margin (dB)
21.00767	35.18	Line	50	-14.82
21.12725	34.62	Line	50	-15.38
20.81660	35.39	Line	50	-14.61
21.50632	34.26	Line	50	-15.74
20.12713	33.73	Line	50	-16.27
21.44090	35.87	Line	50	-14.13

120 V, 60 Hz – Neutral

Quasi-Peak Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/ Neutral)	Limit (dBµV)	Margin (dB)
0.166293	43.70	Neutral	65.14	-21.45
15.61321	39.11	Neutral	60.00	-20.89
1.128210	39.04	Neutral	56.00	-16.96
0.678012	38.69	Neutral	56.00	-17.31
16.92515	37.09	Neutral	60.00	-22.91
18.30172	36.69	Neutral	60.00	-23.31

Average Measurements

Frequency (MHz)	Corrected Amplitude (dBµV)	Conductor (Line/ Neutral)	Limit (dBµV)	Margin (dB)
0.166293	31.88	Neutral	55.14	-23.26
15.61321	33.85	Neutral	50.00	-16.15
1.128210	36.72	Neutral	46.00	-9.28
0.678012	37.77	Neutral	46.00	-8.23
16.92515	31.96	Neutral	50.00	-18.04
18.30172	32.28	Neutral	50.00	-17.72

6 FCC §15.205, §15.209, §15.249 & IC RSS-210 §A2.9 - Radiated Emissions

6.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5.35 - 5.46
2.1735 - 2.1905	25.5 - 25.67	1435 - 1626.5	7.25 - 7.75
4.125 – 4.128	37.5 - 38.25	1645.5 - 1646.5	8.025 - 8.5
4.17725 - 4.17775	73 – 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 - 9.5
6.215 - 6.218	108 – 121.94	2200 - 2300	10.6 - 12.7
6.26775 – 6.26825	123 – 138	2310 - 2390	13.25 - 13.4
6.31175 – 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 - 2900	15.35 - 16.2
8.362 – 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 –167.17	3.332 - 3.339	22.01 - 23.12
8.41425 – 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 – 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 – 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 - 614		

As Per 15.249(a), except as provided in paragraph (b) of this section, the field strength of emissions from
intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902–928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725–5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation

6.2 Test Setup

The radiated emissions tests were performed in 5 meter and 10 meter chambers using the setup in accordance with ANSI C63.4-2003. The specification limits were in accordance with FCC 15 subpart C.

6.3 EUT Setup

The radiated emissions tests were performed using the setup accordance with ANSI C63.4-2003.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

6.4 Test Procedure

For the radiated emissions test, the EUT was connected to the desktop host system, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meters or 10 meters away from the testing antenna, which is varied from 1-4 meters, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 120 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.6 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Hewlett Packard	Pre amplifier	8447D	2944A06639	2010-06-18	
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2010-06-16	
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24	
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	
A.R.A Inc	Horn antenna	DRG-1181A	1132	2010-05-28	
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2010-05-09	
НР	Pre Amplifier	8449B	3147A00400	2010-02-01	

^{*} *Statement of Traceability*: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

6.7 Test Setup Block Diagram

6.8 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	31 %
ATM Pressure:	101.1kPa

^{*}The testing was performed by Kevin Li on2010-09-2 in 5 meter chamber #3 and 10 meter chamber #1.

6.9 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the limits presented in FCC Part 15, Subpart C, section 15.205, 15.209 and 15.249 and IC RSS-210, RSS-Gen</u>, please refer to the following table and plots.

6.10 Radiated Emissions Test Plot & Data

30 MHz – 1 GHz, @ 10 meter Distance

Worst Channel: Low Channel

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	
47.2250	14.41	128	V	50	30	-15.59	
30.0000	14.26	145	V	62	30	-15.74	
122.9923	11.65	191	Н	54	30	-18.35	
520.1823	18.86	185	Н	35	37	-18.14	
533.2243	21.25	194	V	6	37	-15.75	
99.9840	17.07	269	V	8	30	-12.93	

Above 1 GHz @ 3 meter Distance

Low Channel: 2401 MHz

Freq.	Freq. S.A. Detector Azimuth	Te	Test Antenna		Cable	Pre- Duty	Cycle Coru.	FCC & IC					
(MHz)	Reading (dBuV)	PK/QP/AV	Degree	_	nt Polar. Factor (dB) Ga	Amp. Gain (dB)	Factor (dB)	Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment		
2401	85.78	Peak	227	100	V	28.23	3.01	27.8	0	89.22	114	-24.78	Fund.
2401	78.34	Peak	5	95	Н	28.23	3.01	27.8	0	81.78	114	-32.22	Fund.
2401	85.78	Ave	168	103	V	28.23	3.01	27.8	-26.75	62.4	94	-31.53	Fund.
2401	78.34	Ave	98	100	Н	28.23	3.01	27.8	-26.75	54.96	94	-38.97	Fund.
-	-	-	-	-	V	-	-	-	-	-	74	-	Harmonics1
-	-	-	-	-	Н	-	-	-	-	-	54	-	Harmonics1
-	-	-	-	-	V	-	-	-	-	-	74	-	Spurious ²
-	-	-	-	-	Н	-	-	-	-	-	54	-	Spurious ²

¹All Harmonics are at noise floor level and/or 20 dB below the limit

Note: • Average Value (*) is calculated based on Peak Reading + Duty Cycle Factor

• Duty Cycle Factor (DCF) = $20 \log_{10}(Ton/Tp) = -26.75 dB$

Please refer to the following plot for the Duty cycle calculation:

Duty Cycle Plots

²All Spurious are at noise floor level and/or 20 dB below the limit

Middla	Channal.	2440 MHz
wildale	Chaimer.	Z44U WITZ

Freg.	Freq. S.A. Detector Azimuth		Te	Test Antenna			Pre- Duty Amp. Cycle		· Cora.	FCC & IC			
(MHz)	Reading (dBuV)	Detector PK/QP/AV	Degree	ee Height Polar Factor I	Loss (dB)	Amp. Gain (dB)	Factor (dB)	Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment		
2440	78.54	Peak	351	295	V	28.63	3.1	27.8	0	82.47	114	-31.53	Fund.
2440	79.14	Peak	124	100	Н	28.63	3.1	27.8	0	83.07	114	-30.93	Fund.
2440	78.54	Ave	351	295	V	28.63	3.1	27.8	-26.75	55.69	94	-38.31	Fund.
2440	79.14	Ave	124	100	Н	28.63	3.1	27.8	-26.75	56.29	94	-37.71	Fund.
-	-	i	ı	-	V	ı	-	-	-	-	74	ı	Harmonics ¹
-	-	-	-	-	Н	-	-	-	-	-	54	-	Harmonics1
-	-	i	-	-	V	ı	-	-	-	-	74	ı	Spurious ²
-	-	-	-	-	Н	-	-	-	-	-	54	-	Spurious ²

¹All Harmonics are at noise floor level and/or 20 dB below the limit

Please refer to the following plot for the Duty cycle calculation:

Duty Cycle Plots

²All Spurious are at noise floor level and/or 20 dB below the limit

Note: • Average Value (*) is calculated based on Peak Reading + Duty Cycle Factor

[•] Duty Cycle Factor (DCF) = $20 \log_{10}(Ton/Tp) = -26.75 dB$

High Channel: 2479 MHz

Freq.	S.A. Detector Azimutl		Azimuth	Test Antenna		Cable	Pre- Amp.	Duty Cycle	Cord.	FCC & IC			
(MHz)	Reading (dBuV)	Detector PK/QP/AV	Degree	Height (cm)	Polar. (H/V)		Loss (dB)	Gain (dB)	Factor (dB)	Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment
2479	87.46	Peak	288	100	V	28.63	3.1	27.8	0	91.39	114	-22.61	Fund.
2479	78.57	Peak	21	95	Н	28.63	3.1	27.8	0	82.5	114	-31.5	Fund.
2479	87.46	Ave	288	100	V	28.63	3.1	27.8	-26.75	64.57	94	-29.36	Fund.
2479	78.57	Ave	21	95	Н	28.63	3.1	27.8	-26.75	55.68	94	-38.25	Fund.
-	-	-	-	-	V	-	-	-	-	-	74	-	Harmonics ¹
-	-	-	-	-	Н	-	-	-	-	-	54	-	Harmonics1
-	-	-	ı	-	V	1	-	-	1	-	74	-	Spurious ²
-	-	-	1	-	Н	-	-	-	-	-	54	-	Spurious ²

¹All Harmonics are at noise floor level and/or 20 dB below the limit

Please refer to the following plot for the Duty cycle calculation:

Duty Cycle Plots

²All Spurious are at noise floor level and/or 20 dB below the limit

Note: • Average Value (*) is calculated based on Peak Reading + Duty Cycle Factor

[•] Duty Cycle Factor (DCF) = $20 \log_{10}(Ton/Tp) = -26.75 dB$

Restricted Band Emissions

Lowest Channel at Horizontal, Peak Lowest Channel at Horizontal, Average

Lowest Channel at Vertical, Peak

Lowest Channel at Vertical, Average

Highest Channel at Horizontal, Peak

Highest Channel at Horizontal, Average

Highest Channel at Vertical, Peak

Highest Channel at Vertical, Average

7 FCC §15.249(d) & IC RSS-210 §A 2.9- Out of Band Emissions

7.1 Applicable Standard

According to FCC §15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT 3 meters away measurement instrument. Turn on the EUT. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2010-05-28
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2010-05-09
HP	Pre Amplifier	8449B	3147A00400	2010-02-01

^{*} *Statement of Traceability:* BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	31%
ATM Pressure:	102kPa

^{*}The testing was performed by Kevin Li on 2010-09-28 in 5 meter chamber 3 & 10 meter chamber 1.

7.5 Test Results

According to the data hereinafter, the out of band emissions of the EUT <u>complied with the limits presented in FCC Part 15, Subpart C, section 15.209 and 15.249 and IC RSS-210, RSS-Gen</u>, please refer to the following table and plots.

30 MHz – 1 GHz @ 10 meter Distance

Worst Channel: Low Channel

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
47.2250	14.41	128	V	50	30	-15.59
30.0000	14.26	145	V	62	30	-15.74
122.9923	11.65	191	Н	54	30	-18.35
520.1823	18.86	185	Н	35	37	-18.14
533.2243	21.25	194	V	6	37	-15.75
99.9840	17.07	269	V	8	30	-12.93

Above 1 GHz @ 3 meter Distance

Low Channel: 2401 MHz

Freq.	S.A.	Detector	Azimuth		est Ante		Cable	Amp.	Duty Cycle Factor (dB)	Cord.	FCC & IC		
(MHz)	Reading (dBuV)	PK/QP/AV	Degree	Height	Polar. (H/V)	Factor (dB/m)	Loss (dB)			Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment
-	-	-	-	-	V	-	-	-	-	-	74	-	Spurious ¹
-	-	-	1	-	Н	ı	-	-	-	1	54	-	Spurious ¹

Middle Channel: 2440 MHz

Freq.	S.A.	Detector	Azimuth			Cable	Pre- Amp.	Duty Cycle	Cord.	FCC & IC			
(MHz)	Reading (dBuV)	PK/QP/AV	Degree	Height	Polar. (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)		Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment
-	-	-	ı	-	V	-	-	-	-	-	74	-	Spurious ¹
-	-	-	-	-	Н	1	-	-	-	-	54	-	Spurious ¹

High Channel: 2479 MHz

Freq.	S.A.	Detector	Azimuth		est Ante		Cable			Cord.	FCC & IC		
(MHz)	Reading (dBuV)	Detector PK/QP/AV	Degree	Height	Polar. (H/V)	Factor (dB/m)	Loss (dB)	Loss Gain (dB)	Cycle Factor (dB)	Amp. (dBμV/m)	Limit (dBuV/m)	Margin (dB)	Comment
-	-	-	-	-	V	-	-	-	-	-	74	-	Spurious ¹
-	-	-	-	-	Н	1	-	-	-	-	54	-	Spurious ¹

¹All Spurious are at noise floor level and/or 20 dB below the limit

8 FCC §15.215 & IC RSS-Gen §4.6.1 – 20 dB & 99% Occupied Bandwidth

8.1 Applicable Standard

FCC §15.215. IC RSS-Gen §4.6.1

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT 3 meters away from measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth. (6 dB bandwidth for DXT)
- 4. Repeat above procedures until all frequencies measured were complete.

8.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2010-05-28
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2010-05-09
HP	Pre Amplifier	8449B	3147A00400	2010-02-01

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	33 %
ATM Pressure:	101.1kPa

^{*}The testing was performed by Kevin Li on2009-09-28 in 5 meter chamber 3.

8.5 Test Results

Channel	Frequency (MHz)	20 dB Occupied Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
Low	2401	889.063	900.7925
Middle	2440	886.418	896.4705
High	2479	884.079	897.1512

Please refer to the following plots for detailed test results

Low Channel

Middle Channel

High Channel

200

500

9 IC RSS-Gen §4.10 & §6 - Receiver Spurious Emission

9.1 Applicable Standard

The following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Spurious Frequency (MHz)	Field Strength (millivolts/m at 3 meters)
30-88	100
88-216	150

Table 1 - Spurious Emission Limits for Receivers

(b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

9.2 Test Setup

The radiated emissions tests were performed using the setup accordance with the ANSI C63.4-2003.

The spacing between the peripherals was 10 centimeters.

216-960

Above 960

External I/O cables were draped along the edge of the test table and bundle when necessary.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Hewlett Packard	Pre amplifier	8447D	2944A06639	2010-06-18	
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2010-06-16	
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24	
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	
A.R.A Inc	Horn antenna	DRG-1181A	1132	2010-05-28	
Agilent	Agilent PSA Series Spectrum Analyzer		MY44303352	2010-05-09	
НР	HP Pre Amplifier		3147A00400	2010-02-01	

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

9.4 Test Setup Block Diagram

9.5 Test Environmental Conditions

Temperature:	22°C			
Relative Humidity:	31 %			
ATM Pressure:	101.2kPa			

^{*}The testing was performed by Kevin Li on 2010-09-28 in 5 meter chamber 3 & 10 meter chamber 1.

9.6 Test Results

According to the recorded data, the EUT complied with RSS-210 Standard, and had the worst margin reading of:

Receiving Mode:

Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range
-12.66	48.915	Vertical	30 MHz to 1 GHz
-	-	-	Above 1 GHz ¹

¹Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

9.7 Radiated Emissions Test Plot & Data

1) 30 MHz – 1 GHz @ 10 meter Distance

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
48.915	17.34	200	V	0	30	-12.66
33.395	16.30	100	V	0	30	-13.70
123.12	13.58	200	V	0	30	-16.42
532.945	15.36	200	Н	0	37	-21.64
993.21	22.93	100	V	0	37	-14.07
520.335	15.09	200	Н	0	37	-21.91

2) Above 1 GHz @ 3 meter Distance

Frequency (MHz) S.A. Reading (dBµV)	S A	'	Test Antenna		Cable	Pre-	Cord.	RSS-Gen			
	Reading		Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss	Amp. Gain (dB)	Amp.	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	1
-	-	-	-	-	-	-	-	-	-	-	1

 $^{^{1}}Note$: All emission levels are at the noise floor and/or more then 20 dB below the limit.