INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CURSO TÉCNICO SUBSEQUENTE EM ELETRÔNICA TRABALHO DE CONCLUSÃO DE CURSO

PROJETO

por

Harlen Araújo de Senae Henrique Cirilo Costa

orientado pelo

Prof. Dr. Cícero Alisson dos Santos

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CURSO TÉCNICO SUBSEQUENTE EM ELETRÔNICA TRABALHO DE CONCLUSÃO DE CURSO

PROJETO

por

Harllen Araújo de Senae Henrique Cirilo Costa

orientado pelo

Prof. Dr. Cícero Alisson dos Santos

Trabalho de conclusão de curso apresentado ao IFPB.

SUMÁRIO

Ι	Preliminares	4
	I.1 Amplificadores Operacionais	4
II	Resumo do projeto	5
	II.1 Sobre o projeto	5

INTRODUÇÃO

Capítulo I

PRELIMINARES

I.1 Amplificadores Operacionais

Capítulo II

RESUMO DO PROJETO

II.1 Sobre o projeto

A proposta do projeto é inovadora, no sentido de criar um amplificador de áudio com baixa distorção¹ e de baixo custo. Para este fim, usou-se vários NE5532. Cada um consiste dum dual OpAmp (amplificador operacional dual), precisamente um dual in-line package (DIP) com dois amplificadores operacionais embutidos. O autor do projeto justifica a escolha deste CI devido à sua baixa distorção, à sua baixa impedância² de saída e à uma notável performance de ruído. A fim de suplantar o desafio técnico de se alimentar um alto-falante de 8Ω com uma boa potência, faz-se o uso duma ponte (bridge). Conectam-se dois amplificadores em cascata (série), resultando num aumento de duas vezes a tensão e, consequentemente quadruplicando a potência do sinal, sobrepujando o limiar de potência dum único amplificador. Um outro fator prepoderante é o limite da corrente de saída de cada OpAmp, estipulado para evitar sua sobrecarga interna. Segundo o próprio autor do projeto o NE5532 acionará uma carga de $500\,\Omega^3$ até o limiar da tensão de saída do OpAmp, embora seja recomendável usar cargas mais "leves", isto é, cargas com resistências maiores. O projeto foi dimensionado para alimentar um alto-falante de 8Ω , caso 4Ω seja requerido, serão necessários duas vezes mais OpAmps, para fornecer o dobro de corrente demandada pela carga de 4Ω e, o mesmo se aplica ao modo de operação bridged⁴. O sistema foi desenvolvido para que os modos single-ended⁵ e bridged. Ademais, devido à sua modularidade é possível construir um amplificador estéreo $^{\mathbf{6}}$ apenas com três PCIs. É sabido que inerentemente os OpAmps possuem proteção contra sobrecarga. Não obstante, relés de saída são usados para evitar o on-off muting causador dos efeitos indesejados ao se ligar um sistema de áudio, e.g. os estalos (pops), e para evitar falhas DC, i.e., evitar que o sistema forneça DC ao alto-falante evitando assim, sua sobrecarga.

II.2 Um tour pelos estágios

 $[{]f 1}$ Embora intuitivo é necessário precisar tecnicamente o que é distorção em áudio.

²Outro conceito a ser precisado.

³Creio que este parâmetro é dependente do fabricante.

⁴Neste modo, a carga, a saber, o alto-falante, receberá duas tensões invertidas em fase, isto por sua vez resultará na duplicação da tensão de saída e na quadruplicação da potência.

⁵A carga será conectada ao GND e a tensão de saída.

 $^{^{\}mathbf{6}}$ Precipuamente, a configuração estéreo é constituida de dois canais um esquerdo (\mathbf{L} eft) e um direito (\mathbf{R} ight).

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] MALVINO, Albert Paul; BATES, David J. *Eletrônica*: Volume 1. 2. ed. São Paulo: McGraw-Hill Education, 1986.
- [2] HOROWITZ, Paul; HILL, Winfield; *The Art of Electronics*. 7. ed. New York: Cambridge University Press, 2016.