New Compilation Languages Based on Restricted Weak Decomposability

Petr Illner

Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics Charles University, Czech Republic

illner3@gmail.com

Knowledge representation

How to represent propositional theories

Representations (aka languages) are studied from the following perspectives:

- 1) **Universality**: Can the language represent any Boolean function?
- 2) **Succinctness**¹: How compactly can the language represent Boolean functions with respect to other languages?
- 3) **Tractable operations**: What operations (that is, queries and transformations) does the language satisfy?
- 4) **Knowledge compiler**: Is there a knowledge compiler for the language?

AKSHAY, S., et al. Knowledge compilation for Boolean functional synthesis. In: 2019 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2019. p. 161-169.

⁵ ILLNER, Petr; KUČERA, Petr. A Compiler for Weak Decomposable Negation Normal Form. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2024. p. 10562-10570.

² DARWICHE, Adnan. Compiling knowledge into decomposable negation normal form. In: IJCAI. 1999. p. 284-289.

³ PIPATSRISAWAT, Knot; DARWICHE, Adnan. New Compilation Languages Based on Structured Decomposability. In: AAAI. 2008. p. 517-52.

⁴ HUANG, Jinbo; DARWICHE, Adnan. The language of search. Journal of Artificial Intelligence Research, 2007, 29:191-219.

¹ AKSHAY, S., et al. Knowledge compilation for Boolean functional synthesis. In: 2019 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2019. p. 161-169.

² DARWICHE, Adnan. Compiling knowledge into decomposable negation normal form. In: IJCAI. 1999. p. 284-289.

³ PIPATSRISAWAT, Knot; DARWICHE, Adnan. New Compilation Languages Based on Structured Decomposability. In: AAAI. 2008. p. 517-522.

⁴ HUANG, Jinbo; DARWICHE, Adnan. The language of search. Journal of Artificial Intelligence Research, 2007, 29:191-219.

⁵ ILLNER, Petr; KUČERA, Petr. A Compiler for Weak Decomposable Negation Normal Form. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2024. p. 10562-10570.

Standard queries

Query ¹	wDNNF =	pwDNNF =	nwDNNF	= DNNF
Consistency (CO)	✓	√*	√ *	✓
Validity (VA)				
Clausal entailment (CE)				
Implicant (IM)				
Equivalence <i>(EQ)</i>				
Sentential entailment <i>(SE)</i>				
Model counting (CT)				
Model enumeration (ME)	√	√ *	√ *	√

 $[\]checkmark$ polytime \checkmark with polynomial delay X not polytime unless P = NP * new result

Transformations

Transformation ¹	wDNNF =	pwDNNF =	nwDNNF	= DNNF
Conditioning (CD)	√	√*	√ *	✓
Singleton forgetting (SFO)				
Forgetting (FO)				
Conjunction (∧C)				
Bounded conjunction (^ BC)				
Disjunction (v C)				
Bounded disjunction (VBC)				
Negation (¬C)				

[✓] polytime \times not polytime unless P = NP * new result

Minimum and maximum cardinalities

The cardinality of a model is the number of variables that are set to True.

The minimum (resp. maximum) cardinality of a circuit/formula is the minimum (resp. maximum) cardinality of all its models.

For an inconsistent circuit/formula, the minimum (resp. maximum) cardinality is $+\infty$ (resp. $-\infty$).

The minimum	(resp. maximum)) cardinality	problem
-------------	-----------------	---------------	---------

Instance:	Given a circuit/formula.
Task:	Get (a model with) the minimum (resp. maximum) cardinality of the circuit/formula.

$$(X_1 \vee X_2) \wedge (X_2 \vee X_3) \wedge (\neg X_1 \vee \neg X_3)$$

models			cardinality		
¬X ₁ ,	X ₂ ,	$\neg X_3$	1 (min)		
¬X ₁ ,	X ₂ ,	X ₃	2 (max)		
X ₁ ,	X ₂ ,	$\neg X_3$	2 (max)		

Weighted minimum and maximum cardinalities

The weighted minimum (resp. maximum) cardinality problem*

Instance:

Given a circuit and a non-negative weight for each variable.

Task:

Find a model that minimises (resp. maximises) the sum of the weights of the variables that are set to **True**.

variable	weight
X ₁	1
X_2	2
X ₃	3

$(X_1 \vee X_2) \wedge (X_2 \vee X_3) \wedge (\neg X_1 \vee \neg X_3)$					
models		weighted cardinality			
¬X ₁ ,	X ₂ ,	$\neg X_3$	2	(min)	
¬X ₁ ,	X ₂ ,	X_3	2 + 3 = 5	(max)	
X ₁ ,	X ₂ ,	$\neg X_3$	1 + 2 = 3		

^{*} For CNF formulae, it is called the minimum-cost (resp. maximum-cost) satisfiability problem¹

Non-standard queries

Query ¹	wDNNF #	f pwDNNF	≠ nwDNNF	≠ DNNF
Minimum cardinality (MinCard)				
Weighted minimum cardinality (wMinCard)				
Maximum cardinality (MaxCard)				
Weighted maximum cardinality (wMaxCard)				

[✓] polytime \times not polytime unless P = NP * new result

Knowledge compilers

Currently, if we are interested in the (weighted) minimum or maximum cardinality queries, which are essential for many applications, we must use decision-DNNF circuits, which also satisfy harder operations (for example, model counting) and are strictly less succinct.

¹ ILLNER, Petr; KUČERA, Petr. A Compiler for Weak Decomposable Negation Normal Form. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2024. p. 10562-10570.

KIESEL, Rafael; EITER, Thomas. Knowledge compilation and more with Sharp SAT-TD. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. 2023.

² DARWICHE, Adnan, et al. New advances in compiling CNF to decomposable negation normal form. In: Proc. of ECAI. Citeseer, 2004. p. 328-332

³ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. An Improved Decision-DNNF Compiler. In: IJCAI. 2017. p. 667-673.

Open question:

Is there a knowledge compiler for DNNF circuits?

Open question:

Is there a knowledge compiler for DNNF circuits?

can be reformulated as

Is there a knowledge compiler for a circuit type (resp. circuit types) with the same properties as DNNF circuits?

Knowledge compilers

Considering the (weighted) cardinality queries, we can use pwDNNF and nwDNNF circuits.

* our extended variant of Bella¹ for pwDNNF and nwDNNF circuits

¹ ILLNER, Petr; KUČERA, Petr. A Compiler for Weak Decomposable Negation Normal Form. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2024. p. 10562-10570.

² DARWICHE, Adnan, et al. New advances in compiling CNF to decomposable negation normal form. In: Proc. of ECAI. Citeseer, 2004. p. 328-332.

³ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. An Improved Decision-DNNF Compiler. In: IJCAI. 2017. p. 667-673.

KIESEL, Rafael; EITER, Thomas. Knowledge compilation and more with SharpSAT-TD. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. 2023.

Reducing MPE to minimum-cost satisfiability

The most probable explanation (MPE) problem

Instance: Gi

Given a Bayesian network (BN) and some evidence.

Task:

Find a variable instantiation of the remaining variables (that is, an MPE instantiation) with the highest probability given that evidence (that is, the MPE probability).

¹ PARK, James D. Using weighted MAX-SAT engines to solve MPE. In: AAAI/IAAI. 2002. p. 682-687.

² PIPATSRISAWAT, Knot; DARWICHE, Adnan. Clone: Solving weighted Max-SAT in a reduced search space. In: Al 2007: Advances in Artificial Intelligence: 20th Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, December 2-6, 2007. Proceedings 20. Springer Berlin Heidelberg, 2007. p. 223-233.

Applications

Problem: Computing MPEs in two-layer BNs with large domains

Required operations: Conditioning (CD), and weighted minimum cardinality (wMinCard)

Experimental results

#nadas dansity domai		domain	nwDNNF circuits (Bella)			decision-DNNF circuits (D4)		
#Houes	#nodes density size		time (s)	size	#	time (s)	size	#
		7	108	1 909 132	1	590	6 770 407	1
	100%	8	459	4 209 175	1	3 296	15 836 293	1
		9	1 884	8 471 321	1			0
		13	664	19 509 851	10	6 625	34 465 982	1
5:5	80%	14	1 492	32 614 471	10			0
		15	3 255	49 867 671	10			0
		20	856	29 159 870	10	3 255	26 635 851	8
	60%	25	2 027	34 843 482	10			0
		28	3 796	52 154 815	10			0

The compilation times (in seconds), the circuit sizes, and the number of successfully compiled instances - maximum is ten (resp. one) for 60% and 80% densities (resp. 100% density).

Main contributions

The main contributions of this paper are as follows:

- 1) We introduced pwDNNF and nwDNNF circuits and studied them in terms of the knowledge compilation map.
- 2) We related the new circuit types to wDNNF and DNNF circuits with respect to succinctness.
- 3) We showed a new caching scheme that exploits isomorphism and a new compilation method based on that caching scheme. (not covered in this presentation)
- 4) We presented our extended variant of Bella for pwDNNF and nwDNNF circuits.
- 5) We demonstrated that nwDNNF circuits are suitable for computing MPEs in two-layer BNs with large domains.

