Dynamic Learning-based Mechanism Design for Dependent Valued Exchange Economies

Swaprava Nath PhD Student Supervisor: Prof. Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore 560012, India

PhD Symposium Talk International World Wide Web Conference, 2011

April 1, 2011

Main Results

- Motivation
 - Image Annotating: An Example
- The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem
- Summary and Future Work

- Motivation
 - Image Annotating: An Example
- - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

Outline of Talk

Motivation

- Motivation
 - Image Annotating: An Example
- - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

Image Annotating: An Example

Image Annotating with Strategic Annotators

Image Owner

Ann. 1 Ann. 2

•••

Ann. n

Image Annotating with Strategic Annotators

Image Owner

Workload

Private Information

Known: Optimal control problem

Known only to the agents: Mechanism design problem

Efficiency

Efficiency

Efficiency

Ann. 1

Ann. 2

•••

Ann. n

Image Annotating with Strategic Annotators

Image Annotating: An Example

Image Annotating with Strategic Annotators

Image Owner

Mechanism Design Problem

Decisions Guarantees

Allocation Rule Truthfulness

2

Payment Rule Voluntary Participation

Ann. 1

Ann.

•••

Ann. n

Image Annotating: An Example

00

Image Annotating with Strategic Annotators

Image Owner

Problem Category:

Dynamic Mechanism Design

Dependent Values

Exchange Economy

Ann. 1

Ann.

Ann. n

Dynamic MD in Dependent-valued Exchange Economies: This talk

Main Results

- Motivation
 - Image Annotating: An Example
- 2 The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem
- Summary and Future Work

- - Image Annotating: An Example
- The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

The Model

- Set of agents, $N = \{0, 1, ..., n\}$, 0 denotes the image owner
- At each time *t*,
 - Agent i observes type (workload or efficiency) $\theta_{i,t} \in \Theta_i$
 - Agent *i* reports $\hat{\theta}_{i,t}$
- Value function of agent $i, v_i : A \times \Theta \to \mathbb{R}$ (dependent values)
 - contrast with independent values: $v_i : A \times \Theta_i \to \mathbb{R}$
- Allocation function a_t selects agents given the reports
- Payment p_i transferred to agent i
- Discount factor δ for infinite horizon
- *Quasi-linear* utilities: $u_i = v_i + p_i$
- Assumptions
 - Dynamic types and fixed population
 - Types evolve in a Markov process
 - Type transitions independent across agents, i.e.,

$$F(\theta_{t+1}|a_t,\theta_t) = \prod_{i \in N} F_i(\theta_{i,t+1}|a_t,\theta_{i,t}) \ \forall \ t.$$

- Motivation
 - Image Annotating: An Example
- 2 The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem
- 4 Summary and Future Work

Mechanism Design: A Quick Review

- Game Theory: Analysis of strategic interaction between decision making agents (players)
- Mechanism Design: Reverse question of Game Theory
 - Method of designing the rules of a game
 - Goal is to achieve a certain outcome in the game
 - Does so in the presence of multiple *self-interested* agents
 - Agents have private information which is not available to the game designer
- For quasi-linear setting, outcome splits into allocation and payment
- Desirable properties: Truthfulness, Voluntary Participation, Efficiency, Budget Balance

Main Results

Motivation

Outline

Mechanism Design: Some Definitions

• The social welfare is defined as.

$$\begin{split} &W(\theta_t) \\ &= \max_{\pi_t} \mathbb{E}_{\pi_t, \theta_t} \left[\sum_{s=t}^{\infty} \delta^{s-t} \sum_{i \in N} v_i(a_s, \theta_s) \right] \\ &= \max_{a_t} \mathbb{E}_{a_t, \theta_t} \left[\sum_{i \in N} v_i(a_t, \theta_t) + \delta \mathbb{E}_{\theta_{t+1} | a_t, \theta_t} W(\theta_{t+1}) \right] \end{split}$$

- Efficient Allocation (EFF): maximizes the social welfare
- Within Period Ex-post Incentive Compatibility (EPIC): Given the current type of an agent, reporting true type maximizes utility if all other agents report their types truthfully in all stages of the game
- Within Period Ex-post Individual Rationality (EPIR): Under same conditions as above, truthful report of an agent guarantees non-negative payoff at each stage of the game

- - Image Annotating: An Example
- The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

Valuations	STATIC	DYNAMIC		
Independent	VCG Mechanism	Dynamic Pivot Mechanism		
_	(Vickery, 1961;	(Bergemann and		
	Clarke, 1971;	Välimäki, 2010)		
	Groves, 1973)	(Cavallo et al., 2006)		
Dependent	Generalized VCG			
	(Mezzetti, 2004)			

- VCG guarantees
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- GVCG guarantees
 - EPIC, EFF, under certain conditions EPIR
- DPM guarantees
 - EPIC, EFF, EPIR, in non-exchange economies, budget balanced

Where does this work fit in?

Valuations	STATIC	DYNAMIC	
Independent	VCG Mechanism	Dynamic Pivot Mechanism	
_	(Vickery, 1961;	(Bergemann and	
	Clarke, 1971; Välimäki, 2010)		
	Groves, 1973)	(Cavallo et al., 2006)	
Dependent	Generalized VCG	Generalized	
	(Mezzetti, 2004)	Dynamic Pivot Mechanism	

- VCG guarantees
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- GVCG guarantees
 - EPIC, EFF, under certain conditions EPIR
- DPM guarantees
 - EPIC, EFF, EPIR, in non-exchange economies, budget balanced
- GDPM guarantees
 - EPIC, EFF, EPIR, but requires more reports from agents than DPM

- - Image Annotating: An Example
- - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

Outline of Talk

Outline

- - Image Annotating: An Example
- - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem

Setting: Dependent-valued Exchange Economies

• If values are dependent, Efficiency and Truthfulness cannot be guaranteed with single stage mechanisms1

Main Results

00000

- Without imposing any voluntary participation constraint
- Need to split the decisions of allocation and payment ²

 $^{^1\}mathrm{P}\!.$ Jehiel and B. Moldovanu. Efficient Design with Interdependent Valuations. Econometrica, (69):1237-1259, 2001.

²Claudio Mezzetti. Mechanism Design with Interdependent Valuations: Efficiency. Econometrica, 2004.

Setting: Dependent-valued Exchange Economies

• If values are dependent, *Efficiency* and *Truthfulness* cannot be guaranteed with single stage mechanisms¹

Main Results

00000

- Without imposing any voluntary participation constraint
- Need to split the decisions of allocation and payment ²

¹P. Jehiel and B. Moldovanu. Efficient Design with Interdependent Valuations. Econometrica, (69):1237-1259, 2001.

²Claudio Mezzetti. Mechanism Design with Interdependent Valuations: Efficiency. Econometrica, 2004.

The Generalized Dynamic Pivot Mechanism (GDPM)

Main Results 00000

- The task is to design the allocation and payments on the reported types and values
- The allocation maximizes the social welfare given true reports,

$$a^*(\hat{\theta}_t) \in \arg\max_{a_t} \mathbb{E}_{a_t, \hat{\theta}_t} \left[\sum_{i \in N} v_i(a_t, \hat{\theta}_t) + \delta \mathbb{E}_{\theta_{t+1}|a_t, \hat{\theta}_t} W(\theta_{t+1}) \right]$$

• The payment to agent i at t is given by,

$$p_{i}^{*}(\hat{\theta}_{t}, \hat{v}_{t}) = \sum_{i \neq i} \hat{v}_{j,t} + \delta \mathbb{E}_{\theta_{t+1}|a^{*}(\hat{\theta}_{t}), \hat{\theta}_{t}} W_{-i}(\theta_{t+1}) - W_{-i}(\hat{\theta}_{t})$$

- Motivation
 - Image Annotating: An Example
- 2 The Problem Formulation
 - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- Main Results
 - The Generalized Dynamic Pivot Mechanism
 - Main Theorem
- Summary and Future Work

Main Theorem

Theorem

GDPM is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.

Proof ingredients:

- Utility of each agent is maximized at their true types (EPIC)
- At the true types, allocation is EFF by design
- Utility of each agent is non-negative at their true types (EPIR)

- - Image Annotating: An Example
- - The Model and Notation
 - Mechanism Design: A Quick Review
 - Related Work
- - The Generalized Dynamic Pivot Mechanism
 - Main Theorem
- Summary and Future Work

Summary and Future Work

Summary:

Outline

- Looked into the setting of exchange economies with dependent values
- Identified the key differences with the existing mechanisms
- Proposed a mechanism for this new paradigm

Future work:

- Design of mechanisms which also satisfy budget balance in this setting
- Insist on consistent payments, i.e., buyers pay and sellers get paid in each round
- Agents learn their types over time
- Study revenue properties of these mechanisms
- Study the dynamic population model with the dependent value structure
- Study the (im)possibility results for this setting

Thanks for your attention!!

Simulation Setting

- 3 players: 1 Center (Image owner), 2 Annotators
- $\theta_{i,t} \in \{1, 0.75, 0.5\}$ corresponding to the levels $\{H, M, L\}$, for all agents
- Value structure:

$$v_{0}(a_{t}, \theta_{t}) = \left(\frac{k_{1}}{\theta_{0,t}} \sum_{i \in a_{t}, i \neq 0} \theta_{i,t} - k_{2}\right) \mathbf{1}_{0 \in a_{t}};$$

$$v_{j}(a_{t}, \theta_{t}) = -k_{3}\theta_{j,t}^{2} \mathbf{1}_{j \in a_{t}}, \quad j = 1, 2;$$

$$k_{i} > 0, i = 1, 2, 3.$$

Simulation Results

Truthfulness:

Simulation Results (Contd.)

Payment Consistency and Budget Properties:

Comparison with a Naïve Mechanism (CONST):

Simulation Summary

	EFF	EPIC	EPIR	PC	BB
GDPM	✓	\checkmark	\checkmark	×	×
CONST	×	×	×	√	√

• All of these properties may not be simultaneously satisfiable

Complexity of GDPM

- For non-strategic setting, the types are completely or partially observable
- The problem: finding an optimal policy for a Markov decision process (MDP)
- Complexity: polynomial in the size of state-space³
- For GDPM: We need to solve |N| + 1 MDPs.
 - 1 for computing the allocation
 - |N| for computing payment of each agent
- Complexity: polynomial in the number of agents and state-space
- This complexity is the same as dynamic pivot mechanism (Bergemann and Välimäki, 2010)

³Yinyu Ye. A New Complexity Result on Solving the Markov Decision Problem. Math. Oper. Res., 30:733-749, August 2005