

UNIVERSITE ABDELMALEK ESSAADI ECOLE NATIONALE DES SCIENCES APPLIQUÉES AL HOCEIMA

Cours de l'Electrocinétique

Présenté par: HADDAD ABDERRAHIM

Haddad.a@ucd.ac.ma

Programme du cours Electrocinétique

Introduction

Chapitre 1: Généralités – Loi d'Ohm

- I- Courant électrique
- II-Vecteur densité de courant
- III-Intensité du courant électrique
- **IV-Potentiel et tension**
- V-Lois d'Ohm
 - VI-Loi d'Ohm microscopique
 - IV.2-Loi d'Ohm macroscopique

Chapitre 2: Théorèmes généraux de l'électrocinétique-Régime continu

- I-Éléments d'un circuit électrique
 - I.1- Circuit électrique
 - I.2- Dipôle électrique
 - I.3-Générateur et récepteur
- II- Etude des circuits électriques
 - II.1- Définition
 - II.2- Lois de Kirchhoff

Programme du cours Electrocinétique

III- Méthodes d'analyse des circuits électriques

- III.1-Diviseur de tension
- III.2-Diviseur de courant
- III.3- Loi de pouillet
- III.4-Méthode de superposition
- III.5-Théorème de Thévenin
- III.6-Théorème de Norton
- **III.7-Conversion Thévenin-Norton**
- III.8-Théorème de Millman
- III.9-Théorème de Kennelly

Chapitre 3: Étude des régimes transitoires des circuits

- I. Condensateur
 - I.1-Relation tension-intensité
 - I.2-Comportement du condensateur sous différents régimes
 - I.3-Énergie emmagasinée par le condensateur
 - I.4-Association de condensateur

Programme du cours Electrocinétique

II. Bobine

- **II.1-Constitution et symbole**
- II.2-Relation tension-intensité
- II.3-Comportement de la bobine sous différents régimes
- II.4- Énergie emmagasinée par la bobine

Chapitre 4: Régimes sinusoïdaux forcés

- I- Notation complexe en électrocinétique
- II-Circuit R,L,C série en régime sinusoïdal forcé
- **III- Construction de Fresnel**
- IV-Aspect énergétique

Introduction

L'électrocinétique est l'étude du mouvement d'ensemble des porteurs de charge dans un circuit que l'on appelle courant électrique. Les charges se déplacent sous l'effet d'un champ électrique extérieur.

André-Marie Ampère (1775–1836): est un mathématicien et physicien français. Son nom a été donné à l'unité internationale de l'intensité du courant électrique : l'ampère.

Georg Ohm (1789 - 1854): physicien allemand. Il a découvert en 1827 les lois fondamentales des courants électriques et introduit les notions de quantité d'électricité et de différence de potentiel.

James Prescott Joule (1818 -1889): physicien britannique. Il a également énoncé une relation entre le courant électrique traversant une résistance et la chaleur dissipée par celle-ci, appelée au XXème siècle la loi de Joule (1860).

Alessandro Volta (1745-1827): physicien italien. Il a inventé la pile électrique en 1800. L'unité de tension ou potentiel électrique porte son nom: volt

Introduction

James Watt (1736 - 1819): est un ingénieur écossais dont les améliorations sur la machine à vapeur furent une étape clé dans la révolution industrielle.

Gustav Robert Kirchhoff (1824 - 1887): Physicien allemand. Il a établi en 1845 deux lois qui fondent tous les calculs sur les circuits électriques.

Le théorème de Thévenin a été initialement découvert par le scientifique allemand *Hermann von Helmholtz* en 1853, puis publié en 1883 par l'ingénieur télégraphe français *Léon Charles Thévenin*.

Le théorème de Norton a été publié en 1926 par l'ingénieur américain en électricité des laboratoires Bell, *Edward Lawry Norton* (1898-1983).

Chapitre 1:

Généralités – Loi d'Ohm

I. Courant électrique

Définition:

Courant électrique I = déplacement de charges, dans un milieu quelconque, sous l'action d'un champ électrique

I=f(t): le courant est dit temporaire

I=cte: le courant est dit permanant

Sens du courant:

Par convention, le sens du courant électrique est celui de déplacement des charges positives.

Dr. A. HADDAD

II. Vecteur densité de courant

Soit : un volume (V) d'un conducteur de surface (S) traversé par un courant électrique l

La quantité de charge dQ qui traverse dS, pendant dt, est contenue dans le cylindre de base dS de longueur dl

On a:

Le volume dV du cylindre est:

$$dV = \overrightarrow{dS}.\overrightarrow{dl}$$

II. Vecteur densité de courant

La charge mobile à l'intérieur du volume dV est:

$$dQ = \rho_m.dV = \rho_m.\overrightarrow{dl}.\overrightarrow{ds} = \rho_m.(\overrightarrow{v}.dt).\overrightarrow{ds} = (\rho_m.\overrightarrow{v}).dt.\overrightarrow{ds}$$

 $\rho_{\rm m}$: densité volumique des charges mobiles

On pose:

$$\vec{j} = \rho_m \vec{v}$$

II. Vecteur densité de courant

$$\vec{j} = \rho_m \vec{v}$$
 Vecteur densité de courant

Soient:

q: charge élémentaire

n: nombre de charge élémentaire par unité de volume

Unité $(S.I): (A/m^2)$

III. Intensité du courant électrique

On a:

$$dQ = \vec{j}.\vec{ds}.dt$$

$$dI = \frac{dQ}{dt} = \vec{j}.\vec{ds}$$

L'intensité du courant à travers une surface S = flux de j à travers cette surface

L'unité dans le S.I., elle s'exprime en ampère (A) : 1A = 1c / 1s

IV. Différence de potentiel-tension électrique

le passage du courant électrique, entre deux points d'un circuit électrique n'est possible que si on applique une tension électrique

- > on note VA et VB les potentiels des points A et B par rapport à la masse (0V)
- $\succ U_{AB} = V_A V_B$ correspond à la différence de potentiel ou la tension électrique qui apparait entre les points A et B

V. Loi d'Ohm

V.1. Loi d'Ohm microscopique V.2. Loi d'Ohm macroscopique

Conductivité électrique

coefficient de proportionnalité

La conductivité est une grandeur locale positive, dépendant uniquement des propriétés du matériau.

Conductivité électrique:

$$\vec{j}$$
= $\gamma \vec{E}$

- Une telle loi implique que les lignes de champ électrostatique sont également des lignes de courant, indiquant donc le chemin pris par les charges électriques.

- comme γ est positif

le courant s'écoule dans la direction des potentiels décroissants.

$$\vec{j} = \gamma \vec{E} ??$$

Prenons le cas simple d'une charge électrique q soumise à la force de Coulomb mais aussi à des collisions.

Collisions peuvent se décrire Force de frottement

La loi fondamentale de la dynamique s'écrit:

$$m\frac{d\vec{v}}{dt} = q \vec{E} - \frac{m}{\tau}\vec{v}$$

dont la solution en régime permanent :

$$\vec{v} = \frac{q\tau}{m} \cdot \vec{E}$$

$$\vec{v} = \frac{q\tau}{m} \cdot \vec{E}$$

 τ : appelé temps de relaxation.

On définit le libre parcours moyen de la charge q comme

étant la distance parcourue entre deux collisions, telle que :

$$l=v\tau=\frac{q\tau^2}{m}.E$$

On en déduit :

$$\vec{j} = \rho \vec{v} = \frac{nq^2 \tau}{m} \vec{E}$$

Avec:
$$v = \frac{q\tau}{m} \cdot \vec{E}$$

$$\rho = n q$$

où *n* est le nombre de charges par unité de volume.

La relation cherchée s'écrit :

$$\vec{j} = \gamma \vec{E}$$

Avec:

$$\gamma = \frac{nq^2\tau}{m}$$

y: conductivité du conducteur

ENSAH

> La mobilité des porteurs :

$$\vec{v} = \frac{q\tau}{m} \cdot \vec{E}$$

La mobilité μ est définie par la relation :

$$\vec{v} = \mu \vec{E}$$

et comme:

$$\gamma = \frac{nq^2\tau}{m}$$

On a:

$$\mu = \frac{q \tau}{m} = \frac{\gamma}{nq} \implies \gamma = nq\mu$$

La mobilité est une grandeur algébrique, qui a le même signe que la charge q. Elle s'exprime en $m^2 \cdot V^{-1} \cdot s^{-1}$.

Résistance électrique:

Soit un conducteur AB, de section S, de longueur L

AB est parcouru par le courant I = cte

Le champ E est constant sur AB

$$C = V_A - V_B = \int_A^B \overrightarrow{E} . \overrightarrow{dl} = E.L$$

Or:
$$I = \iint_{S} \vec{j} \cdot d\vec{s} = \vec{j} \cdot \vec{S} = j.S$$
 $j = \frac{I}{S}$

$$j = \frac{I}{S}$$

$$j = \frac{I}{S}$$

$$E = \frac{j}{v} = \frac{I}{v \cdot S}$$

Ce qui entraîne :

$$V_{A} - V_{B} = E.L = \frac{I.L}{\gamma.S}$$

En introduisant la résistance R du conducteur donnée par :

Représentation dans un circuit

longueur L et de section S

$$A \xrightarrow{I} B$$
 ou

γ

> Conventions de signes:

Si l'on adopte la convention récepteur, les flèches représentant la tension et le courant sont de sens opposés.

La loi d'Ohm s'écrit:

R est une grandeur positive, caractérisant le résistor linéaire ; c'est la résistance électrique du dipôle,

V.2- Loi d'Ohm macroscopique

Rq : La loi d'Ohm peut s'écrire aussi :

$$I = G U_{A B}$$

En posant

$$\mathbf{G} = \frac{1}{\mathbf{R}}$$

- G est la conductance du résistor
- ${\bf G}$ s'exprime en siemens (S)
- R s'exprime en ohms (Ω)

V.2-Loi d'Ohm macroscopique

Attention!

Si les flèches représentant le courant et la tension électrique sont dans le même sens (convention générateur), on a :

$$\mathbf{U}_{\mathbf{A}\mathbf{B}} = -\mathbf{R}\mathbf{I}$$

$$I = -G U_{AB}$$

V.2-Loi d'Ohm macroscopique

> Association de résistances:

> Resistances en série:

$$V_{A} \stackrel{I}{\longrightarrow} V_{1} \qquad V_{2} \qquad V_{2} \qquad V_{B}$$

$$V_{A} \stackrel{I}{\longrightarrow} V_{B} \qquad V_{B}$$

$$V = V_{A} - V_{B} = (V_{A} - V_{1}) + (V_{1} - V_{2}) + (V_{2} - V_{B})$$

$$V = R_{1}I + R_{2}I + R_{3}I = (R_{1} + R_{2} + R_{3})I = R_{eq}.I$$

$$R_{eq} = R_{1} + R_{2} + R_{3}$$

V.2- Loi d'Ohm macroscopique

En général:

$$\begin{cases} V = \sum_{i=1}^{i=n} V_i \\ R_{eq} = \sum_{i=1}^{i=n} R_i \end{cases}$$

I est le même pour toutes les résistances

V.2-Loi d'Ohm macroscopique

> Résistance en parallèle:

$$\frac{1}{R_{eq}} = \sum_{k=1}^{N} \frac{1}{R_k}$$