MATRICES DIAGONALISABLES

Rappelons que

Théorème 1. (Polycopié, Proposition 3.1.6) Soient V un k-espace vectoriel de dimension finie et $u \in \operatorname{End}_k(V)$. Alors u est diagonalisable si et seulement si son polynôme caractéristique $P_u(t) \in k[t]$ est scindé sur k et que pour toute valeur propre λ , la dimension $\dim(\operatorname{Ker}(u - \lambda \operatorname{id}_V))$ du sous-espace propre $\operatorname{Ker}(u - \lambda \operatorname{id}_V)$ est égale à la multiplicité $m_{\lambda}(u)$ de λ en tant que racine du polynôme caractéristique $P_{\lambda}(t)$.

Remarque 2. Pour toute valeur propre λ d'un endomorphisme u, la dimension dim $(\text{Ker}(u - \lambda \text{id}_V))$ est appelée la multiplicité géométrique et la multiplicité $m_{\lambda}(u)$ est appelée la multiplicité algébrique. On remarque que l'inégalité dim $(\text{Ker}(u - \lambda \text{id}_V)) \leq m_{\lambda}(u)$ est toujours valide.

Exercice 1.

- 1. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \operatorname{Mat}_{n \times n}(k)$ une matrice triangulaire supérieure. Montrer que A est diagonalisable ssi pour tout $1 \leq i < j \leq n$, $a_{i,i} = a_{j,j} \Rightarrow a_{i,j} = 0$. [Indication: pour toute valeur propre λ de A, on a dim $(\operatorname{Ker}(u \lambda \operatorname{id}_V)) = n \operatorname{dim}(\operatorname{Im}(u \lambda \operatorname{id}_V))$. Essayer d'évaluer dim $(\operatorname{Im}(u \lambda \operatorname{id}_V))$ par la méthode du pivot de Gauß.]
- 2. Soit

$$A = \begin{pmatrix} A_{1,1} & * & * & \dots & * \\ & A_{2,2} & * & \dots & * \\ & & A_{3,3} & \dots & * \\ & & & \ddots & \vdots \\ & & & & A_{m,m} \end{pmatrix} \in \operatorname{Mat}_{n \times n}(\mathbb{C})$$

une matrice bloquée où $A_{1,1}, \ldots, A_{m,m}$ sont des matrices carrées. Montrer que si A est diagonalisable, alors les matrices $A_{1,1}, \ldots, A_{m,m}$ sont diagonalisables.

3. Soit E un k-espace vectoriel. Un endomorphisme $u: E \to E$ est appelé « semi-simple » si pour tout sous-espace $F \subseteq E$ stable par u, il existe un sous-espace supplémentaire G de $F \subseteq E$ stable par u. Montrer que si le polynôme caractéristique de u est scindé, alors l'endomorphisme u est semi-simple ssi u est diagonalisable.