Section 4

Linear Regression and Randomized Experiments

Sooahn Shin

GOV 2003

Sept 30, 2021

Overview

- Logistics:
 - Pset 4 released! Due at 11:59 pm (ET) on Oct 6
 - Research project memo: Due at 11:59 pm (ET) on Oct 1
 - OH: Mondays 3-5pm
- Today's topics:
 - 1. Linear regression and robust variance estimator
 - 2. Linear regression with covariates
 - 3. Block randomized trials
 - 4. Cluster randomized trials

Recap: Linear Regression

- Using OLS to estimate ATEs
 - $\widehat{\tau}_{ols} = \arg\min_{\tau} \sum_{i=1}^{n} (Y_i \alpha \tau D_i)^2 = \widehat{\tau}_{diff} \Rightarrow unbiased$
 - Linearity? → justified by consistency assumption

$$Y_{i} = D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0)$$

$$= \mathbb{E}[Y_{i}(0)] + D_{i}\tau + \{Y_{i}(0) - \mathbb{E}[Y_{i}(0)]\} + D_{i}(\tau_{i} - \tau)$$

$$= \alpha + D_{i}\tau + \epsilon_{i}$$

• Mean independent errors: $\mathbb{E}[\epsilon_i \mid D_i] = 0? \Rightarrow$ under randomization

Linear regression and robust variance estimator

- Can we use "standard" variance estimator: $\mathbb{V}[\varepsilon_i \mid \mathbf{D}] = \sigma^2, \forall i$?
 - Inconsistent: $\widehat{\mathbb{V}}_{const} \mathbb{V}[\widehat{\tau}] \stackrel{p}{\to} c \neq 0$ unless ...
 - Bias:

$$\begin{split} &\mathbb{E}\left(\widehat{\mathbb{V}}_{const}\right) - \mathbb{V}\left[\widehat{\tau}\right] \\ &= \mathbb{E}\left(\frac{\frac{1}{n-2}\sum_{i=1}^{n}\widehat{\varepsilon}_{i}^{2}}{\sum_{i=1}^{n}(D_{i} - \overline{D})^{2}}\right) - \left(\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{0}^{2}}{n_{0}}\right) \\ &= \frac{(n_{1} - n_{0})(n - 1)}{n_{1}n_{0}(n - 2)}(\sigma_{1}^{2} - \sigma_{0}^{2}) \end{split}$$

- Unless
 - Homoskedasticity holds: $\sigma_1^2 = \sigma_0^2$
 - Design is balanced: $n_1 = n_0$

Linear regression and robust variance estimator

- Use robust variance estimator! [Pset4 Q1 (b)]
 - Eicker-Huber-White (EHW) estimator: consistent for $\mathbb{V}(\widehat{ au}_{\mathsf{diff}})$

$$\widehat{\mathbb{V}}_{\mathsf{EHW}} = \frac{\widetilde{\sigma}_1^2}{n_1} + \frac{\widetilde{\sigma}_0^2}{n_0}, \quad \mathsf{where} \quad \widetilde{\sigma}_d^2 = \frac{1}{n_d} \sum_{i: D_i = d} \left(Y_i - \overline{Y}_d \right)^2$$

HC2 estimator: exactly the Neyman variance estimator → unbiased

$$\widehat{\mathbb{V}}_{HC2} = \frac{\widehat{\sigma}_0^2}{n_0} + \frac{\widehat{\sigma}_1^2}{n_1}$$

```
# In R:
your_fitted_model <- lm(your_formula, data = your_data)
sandwich::vcovHC(your_fitted_model, type = 'HC2')
# Or
estimatr::lm_robust(your_formula, your_data, se_type = 'HC2')</pre>
```

Linear regression with covariates

- What if we add covariates to increase precision of our estimates?
 - Intuition: less residual variation in Y_i after accounting for X_i
 - Use **centered** covariates: $\widetilde{\mathbf{X}}_i = \mathbf{X}_i \overline{\mathbf{X}}$

$$(\widehat{\tau}_{\mathsf{adj}}, \widehat{\alpha}_{\mathsf{adj}}, \widehat{\beta}_{\mathsf{adj}}) = \operatorname*{arg\,min}_{\tau, \alpha, \beta} \sum_{i=1}^{n} \left(Y_{i} - \alpha - \tau D_{i} - \widetilde{\mathbf{X}}_{i}' \beta \right)^{2}$$

• $\widehat{\tau}_{adj}$ now **biased** but **consistent** for τ .

Linear regression with covariates

- Variance of adjustment estimator
 - Usually will help precision, but can hurt (Freedman 2008):

$$\mathbb{V}\left[\widehat{\tau}_{\mathsf{diff}}\right] - \mathbb{V}\left[\widehat{\tau}_{\mathsf{adj}}\right] = \frac{\sigma_{0x}\left\{\sigma_{0x} + 2(1-2p)\sigma_{1x}\right\}}{np(1-p)}$$

• If fully interacted, will never hurt precision (Lin 2013) [Pset4 Q1 (c)]

$$Y_i = \alpha + \tau D_i + \widetilde{\mathbf{X}}_i' \beta + D_i \widetilde{\mathbf{X}}_i' \gamma + \varepsilon_i$$

• Estimation: EHW robust variance estimators are consistent or asymptotically conservative for $\mathbb{V}[\widehat{\tau}_{\mathrm{adj}}]$

Linear regression with covariates

```
# Step 1: Compute centered covariates
your_data$Xtilde <- NULL</pre>
# Step 2: Write down your formula
your_formula <- NULL</pre>
# Step 3: Fit the model using lm() or estimatr::lm_robust()
your_fitted_model <- lm(your_formula, data = your_data)</pre>
# Step 4: Compute robust standard errors (skip if you used lm_robust)
your_vcov <- sandwich::vcovHC(your_fitted_model, type = 'HC2')</pre>
# Step 5: Check the point and se estimate of your coefficients
          (look for tau hat!)
est <- cbind("coef" = your_fitted_model$coef,
               "se" = sqrt(diag(vour_vcov)))
```

Block randomized trials

- Setup: block randomized experiment with block indicators W_{ij} .
 - Block "fixed effects" $W_{ij} = 1$ if i is in block j, 0 otherwise.
 - Blocks $j \in \{1, ..., J\}$ with sizes $w_j = n_j/n$ and propensity scores $p_j = n_{1,j}/n_j$
- Recall STAR project: within each school (block), classes were randomized.
- Naive approach: just include the block FEs in OLS [Pset4 Q2 (a)]

$$(\widehat{\tau}_{b,fe},\widehat{\alpha}_1,\ldots,\widehat{\alpha}_J) = \underset{(\tau,\alpha_1,\ldots,\alpha_J)}{\arg\min} \sum_{i=1}^n \left(Y_i - \tau D_i - \sum_{j=1}^J \alpha_j W_{ij} \right)^2$$

• $\widehat{\tau}_{b,fe}$ **not consistent** for the PATE unless ...

$$\widehat{\tau}_{\text{b,fe}} \stackrel{p}{\rightarrow} \frac{\sum_{j=1}^{J} \omega_{j} \tau_{j}}{\sum_{j=1}^{J} \omega_{j}} \quad \text{where} \quad \omega_{j} = w_{j} p_{j} (1 - p_{j})$$

- Propensity scores are equal across blocks: $p_i = p$ for all j.
- ATEs are equal across strata τ_j = τ for all j.

Block randomized trials: Correct analysis

- 1. Just use original Neyman analysis aggregating within-strata analyses. [Pset3 Q5]
- 2. Weight OLS by inverse of the propensity score. [Pset4 Q2 (b)]
- 3. Fully interact block FEs with treatment. [Pset4 Q2 (c)]
 - Check Imbens and Rubin (2015) Ch.9.6.1, second model
 - See this simulation study using DeclareDesign: https://declaredesign.org/blog/biased-fixed-effects.html

Block randomized trials: Correct analysis

2. Weight OLS by inverse of the propensity score.

In R

$$(\widehat{\tau}_{b,w}, \widehat{\alpha}_1, \dots, \widehat{\alpha}_J) = \underset{(\tau,\alpha_1,\dots,\alpha_J)}{\arg\min} \sum_{i=1}^n s_i \left(Y_i - \tau D_i - \sum_{j=1}^J \alpha_j W_{ij} \right)^2$$
 where $s_i = \sum_{j=1}^J \left\{ \left(\frac{1}{p_j} \right) D_i + \left(\frac{1}{1-p_j} \right) (1-D_i) \right\} W_{ij}$ and $p_j = n_{1,j}/n_j$. # In R your_formula <- as.formula("outcome ~ treat + x_tilde1 + x_tilde2") your_data <- data.frame(outcome, treat, x_tilde1, x_tilde2, weights, block) your_fitted_model <- estimatr::lm_robust(your_formula, data = your_data, weights = weights, # s se_type = "HC2", fixed_effects = block)

Cluster randomized trials

- Treatment allocated at a higher level than the data.
 - Suppose schools are randomized and all the classes in same school receives same treatment
 - Now school is not a block, but cluster!
- Setup:
 - Clusters: $k \in \{1, \dots, K\}$
 - Randomly choose K_1 treatment clusters, K_0 control.
 - Each cluster has units $i \in \{1, ..., m_k\}$ with $\sum_{k=1}^K m_k = n$
 - Treatment assignment at cluster level: $D_{ik} = D_k$
 - Potential outcomes $Y_{ik}(d)$
- Cost of clustering
 - More similarity → each unit provides redundant information → less efficiency under clustering

Cluster randomized trials

Use cluster-robust variance estimator

```
# In R
your_formula <- as.formula("outcome ~ treat + x_tilde1 + x_tilde2")</pre>
your_data <- data.frame(outcome, treat,</pre>
                         x_tilde1, x_tilde2,
                          cluster)
your_fitted_model <- estimatr::lm_robust(your_formula, data = your_data,</pre>
                                            clusters = cluster.
                                            se_tvpe = "CR2")
??estimatr::lm_robust # Check more options for se_type
# 0r
your_model <- lm(your_formula, data = your_data)</pre>
your_vcov <- clubSandwich::vcovCR(your_model, cluster = your_data$cluster,</pre>
                                    type = "CR2")
```

You may have block and cluster design at the same time! [Pset4 Q3]