DIGITAL ELECTRONICS

Modern Digital Electronics by RP Jain (3rd Edition)

Sheikh Sohel Moon

Previous Year's Questions Analysis

Topics	Chapter
1. Fan Out (4.2.4), Noise Margin	
2. 3-input DTL NAND Gate (4.6.1, Fig: 4.12)	
3. Fan-out of an RTL Logic Circuit (4.3.2)	
4.V(0) and $V(1)$ for TTL Logic Gate with Totem-pull up (4.8.2)	
5. Advantage of I^2T Logic and Design it for functions (4.5, 4.5.2)	4
6. ECL OR-NOT Gate Explain with Circuit with Diagram (4.11, Fig: 4.18)	
9. Bipolar and Unipolar (4.1.1, 4.1.2)	
10. Characteristics of Digital IC to Compare the performances (4.2)	
11. Current Source Logic (4.3.5), Current Sinking Logic	
12. Practice to Implement functions using diode logic gates.	
13. Example: 4.1, 4.2***	
14. Disadvantages of DCTL (4.4)	
1 CD El El IIV El EL TEL EL DEL EL	
1. SR Flip Flop, JK Flip Flop, T Flip Flop, D Flip Flop	
2. Problem with SR Flip Flop when $S = R = 1$ and how to solve it	
3. JK using NAND Gate. What is Race Around Condition and how to eliminate? (Fig: 7.9, 7.4.1)	7 & 8
4. Classify Register. Design a 5 bit Serial Input Serial Output (SISO) Register and Input "11111" (8.2, 8.2.1, Fig: 8.2, 8.3 (Serial Input))	
5. Design SR flip flop with preset and clear option and explain. (7.3.1)	
6. 3-bit Binary Up-Down Ripple Counter	
1. PLD and PLA with Their Application and Advantages/ Disadvantages (12.1)	12
2. Implement $x = A'B + C'D' + E$ using PLA	

Topics Chapter

- 1. Define Multi-vibrator and Duty Circle (9.1, page: 347)
- 2. Draw a Schmitt Trigger and draw the output waveform of input voltage of 10 sin (wt). (9.3.2, Example: 9.3)
- 3. Astable multi-vibrator using op-amp of frequency 0.5Hz.
- 4. Explain Different types of multi-vibrator briefly with necessary waveforms. (9.1)
- 5. A 555 timer is connected as an astable multi-vibrator having R_a = $1k\Omega$, R_b = $1k\Omega$, C = $10\mu F$. Draw the circuit and determine the frequency and duty circle of output signal. (9.3.3)
- 6. Design a mono-stable multi-vibrator using 555 timer for T = 100 ms (9.6.1, Fig: 9.35)
- 7. Frictional Block of 555 Timer (Fig 9.33)
- 8. Problems: 9.1
- 9. A 555 timer is connected as an astable multi-vibrator having an output frequency of 10KHz with a duty circle of 75%. Design the circuit diagram and determine the charging and discharging Time. (9.6.2, Fig. 9.37)
- 10. Free running multi-vibrator using inverters and explain its output waveform. (9.2.1)
- 11. For Free-Running multi-vibrator draw the voltage across the capacitor and show that
- T = $2R_f C \ln \left(1 + \frac{2R_2}{R_1}\right) (9.3.3)$
- 12. Find Out the Duty Circle of Astable Multi-vibrator Using IC 555 (9.6.2)

- 1. Design a 4-bit Weighted-resister D/A converter. Determine output voltage for straight binary input '1101' (Mixed of 10.2.1 and Example: 10.2 (b))
- 2. 10.2.1
- 3. Example: 10.2
- 4. 10.2.2

9