SVMs

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid

CONTENTS	2.
CONTENTS	2

Contents

1	Support Vector Classification 1.1 Classification and Margins	
2	Non Linear SV Classification 2.1 Linear SVMs for Non Linear Problems	
3	Support Vector Regression	

1 Support Vector Classification

1.1 Classification and Margins

Revisiting the Classification Problem

• Basic problem: binary classification of a sample

$$S = \{(x^p, y^p), 1 \le p \le N\}$$

with d-dimensional x^p patterns and $y^p = \pm 1$

• We assume that S is linearly separable: for some w, b

$$w \cdot x^p + b > 0 \text{ if } y^p = 1;$$

 $w \cdot x^p + b < 0 \text{ if } y^p = -1$

- More concisely, we want $y^p(w \cdot x^p + b) > 0$
- Q: How can we find a pair w, b so that the model generalizes well?

Margins and Generalization

• A: Intuitively, we want (w, b) to have a large **margin**

• Q: How can we ensure a maximum margin?

Distance to a Line

- Recall basic analytic geometry
- This extends to the multidimensional case

Distance to a Hyperplane

- Recall that given the hyperplane $\pi: w \cdot x + b = 0$, w is orthogonal to the surface defined by π
- If $x_0 \in \pi$, we compute the distance $d(x,\pi)$ of a point x to π projecting on w the vector $\overrightarrow{x_0x}$, i.e.

$$d(x,\pi) = \frac{|w \cdot \overrightarrow{x_0x}|}{\|w\|} = \frac{|w \cdot x - w \cdot x_0|}{\|w\|} = \frac{|w \cdot x + b|}{\|w\|}$$

for
$$w \cdot x_0 + b = 0$$
; i.e. $w \cdot x_0 = -b$

- The absolute values compensate for the orientation of w
- When the origin is in π (homogeneous π), the distance is

$$d(x,\pi) = \frac{|w \cdot x|}{\|w\|}$$

Learning and Margins

- If we assume w "points" to the positive patterns, we have $y^p(w \cdot x^p + b) = |w \cdot x^p + b|$
- The margin $\gamma = \gamma(w)$ is precisely the minimum distance between the sample S and π , i.e.,

$$\gamma = m(w, b, S) = \min_{p} d(x^{p}, \pi) = \min_{p} \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|}$$

- Notice that $(\lambda w, \lambda b)$ give the same margin than (w, b); we can thus normalize (w, b) as we see fit
- \bullet For instance, taking ||w|| = 1 we have

$$\gamma(w) = \min_{p} \frac{y^p(w \cdot x^p + b)}{\|w\|} = \min_{p} y^p(w \cdot x^p + b)$$

Renormalizing the Hyperplane

• But we will work with the following normalization of w, b

$$\min_{p} y^{p}(w \cdot x^{p} + b) = 1$$

- Since S is finite, we will have $y^{p_0}(w \cdot x^{p_0} + b) = 1$ for some p_0
- For a pair w, b so normalized we then have

$$m(w,b) = \min_{p} \left\{ \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|} \right\} = \frac{y^{p_{0}}(w \cdot x^{p_{0}} + b)}{\|w\|} = \frac{1}{\|w\|}$$

• Thus, we maximize the overall margin working with these w and maximizing $1/\|w\|$, i.e., **minimizing** $\|w\|$ or, simply, minimizing $\frac{1}{2}\|w\|^2$

The Primal Problem

• We therefore rewrite the problem of finding a maximum margin separating hyperplane as

$$\min_{w,b} f(w,b) = \frac{1}{2} ||w||^2$$

s.t.
$$y^p(w \cdot x^p + b) \ge 1$$

- This is the **SVM Primal Problem**: a quadratic programming problem with linear restrictions (actually affine)
- The function to minimize is very simple and also the constraints but there are too many of them for a direct attempt to minimization
- Solution within general theory of convex minimization

1.2 Constrained Convex Optimization

The Lagrangian

• For $\alpha_p \geq 0$, the Lagrangian of the primal problem is

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{p} \alpha_p (y^p (w \cdot x^p + b) - 1),$$

- Clearly, $L(w, b, \alpha) \leq f(w, b)$ and L(w, b, 0) = f(w, b)
- Thus, for feasible w, b, α ,

$$\min_{w,b \text{ feasible}} f(w,b) = \min_{w,b \text{ feasible}} \max_{\alpha \text{ feasible}} L(w,b,\alpha)$$

• Q: perhaps it holds that

$$\min_{w,b} \max_{\text{feasible } \alpha} L(w,b,\alpha) = \max_{\alpha} \min_{\text{feasible } w,b} L(w,b,\alpha)$$

1 SUPPORT VECTOR CLASSIFICATION

6

- To explore this we will define the **dual** function $\Theta(\alpha) = \min_{w,b} L(w,b,\alpha)$
 - Notice that we drop the requirement that w, b be feasible

The Dual Function

• The **dual problem** *D* is now

$$\max \Theta(\alpha)$$
 s. t. $\alpha_p \ge 0$

• Now we have for any feasible w, b, α

$$\Theta(\alpha) = \min_{w',b'} L(w',b',\alpha) \le L(w,b,\alpha) \le f(w,b)$$

• Weak duality: for primal optimal w^*, b^* , dual optimal α^* and any feasible w, b, α ,

$$\Theta(\alpha) \le \Theta(\alpha^*) \le L(w^*, b^*, \alpha^*) \le f(w^*, b^*) \le f(w, b)$$

• **Dual gap** at feasible w, b, α : $f(w, b) - \Theta(\alpha) \ge 0$

Strong Duality

• We achieve **strong duality** if the dual gap at optima w^*, b^*, α^* is 0, that is,

$$f(w^*, b^*) = \Theta(\alpha^*)$$

- Moreover $\Theta(\alpha^*) = L(w^*, b^*, \alpha^*) = f(w^*, b^*)$
- Theorem: The SVM problem has strong duality
- Thus, to solve the SVM problem, we can try the following:
 - Write an explicit dual problem with easier constraints
 - Solve the dual problem
 - Get the optimal primals w^*, b^* from the optimal dual α^*

Computing the Dual Function

- We follow the previous program and try first to write down $\Theta(\alpha) = \min_{w,b} L(w,b,\alpha)$
- We first reorganize the (convex) Lagrangian as

$$L(w, b, \alpha) = w \cdot \left(\frac{1}{2}w - \sum_{p} \alpha_{p} y^{p} x^{p}\right) - b \sum_{p} \alpha_{p} y^{p} + \sum_{p} \alpha_{p}$$

- $\bullet \;$ To minimize $L(w,b,\alpha)$ w.r. w and b, we just solve $\nabla_w L=0, \, \frac{\partial L}{\partial b}=0$
- From $\nabla_w L = 0$ we derive $w = \sum_p \alpha_p y^p x^p$
- $\bullet \ \ {\rm From} \ \frac{\partial L}{\partial b} = 0$ we derive $\sum_p \alpha_p y^p = 0$

Computing the Dual Function II

• Substituting both into L we arrive at

$$\Theta(\alpha) = \sum_{p} \alpha_{p} - \frac{1}{2} w \cdot \sum_{p} \alpha_{p} y^{p} x^{p}$$

$$= \sum_{p} \alpha_{p} - \frac{1}{2} \sum_{p,q} \alpha_{p} \alpha_{q} y^{p} y^{q} x^{p} \cdot x^{q} = \sum_{p} \alpha_{p} - \frac{1}{2} \alpha^{\tau} Q \alpha$$

with $Q_{p,q} = y^p y^q \ x^p \cdot x^q$

• The dual problem becomes

$$\max_{\alpha} \Theta(\alpha) = \max_{\alpha} \left\{ \sum_{p} \alpha_{p} - \frac{1}{2} \alpha^{\tau} Q \alpha \right\}$$

subject to the constraints $\alpha_p \geq 0, \sum_p \alpha_p y^p = 0$

• As usual, we will minimize $-\Theta(\alpha)$ (and drop the – from the notation)

Solving the Dual Problem

- We arrive again at a quadratic programming problem but with much simpler restrictions that we can try to simplify further
- ullet The more difficult constraint $\sum_p \alpha_p y^p = 0$ comes from $rac{\partial L}{\partial b} = 0$ and we could avoid it dropping b
- Thus, we try first to solve the homogeneous primal problem

$$\min \frac{1}{2} \|w\|^2 \quad \text{s.t.} \quad y^p \ w \cdot x^p \ge 1$$

and its dual one

$$\min \frac{1}{2} \alpha^{\tau} Q \alpha - \sum_{p} \alpha_{p} \quad \text{s.t.} \quad \alpha_{p} \ge 0$$

Projected Gradient Descent

- We can solve the homogeneous dual by projected gradient descent
- The gradient of Θ is just

$$\nabla\Theta = Q\alpha - \mathbf{1}$$

with 1 the all ones vector and we can solve it by projected gradient descent

• Projected (i.e., clipped) descent:

- 8
- At step t update first α^t to α' as $\alpha'_p=\alpha^t_p-\rho\left((Q\alpha^t)_p-1\right)$ for an appropriate step ρ
- And then clip α' as $\alpha_p^{t+1} = \max\{\alpha_p', 0\}$
- Nice and fine, but notice that $\dim(\alpha) = N$:
 - Computations have a cost of $O(N^2)$ per iteration
 - We need to keep Q in memory, which has dimension $N \times N$
 - Both too costly for large N

The SMO Algorithm

- Usually homogeneous SVMs give poorer results
- The simplest way to handle the equality constraint is
 - Start with an α^0 that verifies it
 - Update α^t to $\alpha^{t+1} = \alpha^t + \rho_t d^t$ with a direction d^t that also verifies it
 - Then $\sum_p \alpha_p^{t+1} y^p = \sum_p \alpha_p^t y^p + \rho_t \sum_p d_p^t y^p = 0$
- Simplest choice: select L_t, U_t so that $d^t = y^{L_t} e_{L_t} y^{U_t} e_{U_t}$ is a maximal **descent direction**
- Since $\nabla_{\alpha}\Theta(\alpha^t)\cdot d^t=y^{L_t}\nabla\Theta(\alpha^t)_{L_t}-y^{U_t}\nabla\Theta(\alpha^t)_{U_t}$, the straightforward choice is

$$L_t = \arg\min_p y^p \nabla \Theta(\alpha^t)_p, \quad U_t = \arg\min_q y^q \nabla \Theta(\alpha^t)_q$$

• This is the basis of the **Sequential Minimal Optimization** (SMO) algorithm

Optimality Conditions

• Since L is convex in w, b and we have

$$\Theta(\alpha^*) = \min_{w,b} L(w,b,\alpha^*)$$

stationarity is necessary:

$$\nabla_w L(w^*, b^*, \alpha^*) = 0, \ \frac{\partial L}{\partial b}(w^*, b^*, \alpha^*) = 0$$

• By strong duality, $L(w^*, b^*, \alpha^*) = f(w^*, b^*)$ and, for all p, **complementary slackness** follows

$$\alpha_n^* (y^p (w^* \cdot x^p + b^*) - 1) = 0$$

• These two plus feasibility are together known as the **Karush–Kuhn–Tucker** (**KKT**) conditions, that are necessary and sufficient for w^*, b^*, α^* to be optimal

From Dual Solutions to Primal Solutions I

• We will use some of the KKT conditions to derive the optimal w^*, b^* after we obtain a dual optimal α^*

- Obvioulsy $w^* = \sum_p \alpha_p^* y^p x^p = \sum_{\alpha_p^* > 0} \alpha_p^* y^p x^p$
- What about b^* ? Recall that the optimal α^* , w^* , b^* must satisfy the KKT conditions, that now are

$$\alpha_p^* \left(y^p (w^* \cdot w^p + b^*) - 1 \right) = 0$$

 $\bullet \ \ \mbox{Thus, if } \alpha_p^*>0, \mbox{then } w^*\cdot x^p+b^*=y^p \mbox{ and, hence}$

$$b^* = y^p - w^* \cdot x^p$$

From Dual Solutions to Primal Solutions II

• In practice is better to average this formula over all $\alpha_p^* > 0$:

$$b^* = \frac{1}{N_S} \sum_{\{\alpha_q^* > 0\}} (y^q - w^* \cdot x^q)$$

with
$$N_S = |\{q : \alpha_q^* > 0\}|$$

- We have now completely solved the linear SVM problem for classification
- But there are more insights to be gained from the convex optimization perspective
- In particular, the KKT conditions have more information

Support Vectors I

- Again, if $\alpha_p^* > 0$, then $y^p(w^* \cdot x^p + b^*) = 1$
 - Thus if $\alpha_p^* > 0$, x^p lies in one of the two support hyperplanes $w^* \cdot x^p + b^* = \pm 1$
- Vectors for which $\alpha_p^* > 0$ are thus called **support vectors** and the optimal w^* is a **linear combination** of them

$$w^* = \sum_{\{x^p \mid SV\}} \alpha_p^* y^p x^p$$

- On the other hand, if x^p is not in a support hyperplane, then $y^p(w^*\cdot x^p+b^*)>1$ and the KKT conditions imply $\alpha_p^*=0$
- Notice that there may be x^p in the support hyperplanes that do not contribute to w^*

Support Vectors II

- In fact, while the optimal w^* is unique, the optimal α^* may be not
- In any case, the support vectors completely determine the SVM classifier

Takeaways on Linear SVMs I

- Maximum margins (MM) improve the generalization of linear classifiers
- To get a MM classifier we solve the primal problem

$$\min_{w,b} \frac{1}{2} ||w||^2 \text{ s.t. } y^p (w \cdot x^p + b) \ge 1, 1 \le p \le N$$

 $\bullet\,$ This is convex quadratic programming problem whose Lagrangian for $\alpha_p \geq 0$ is

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{p} \alpha_p (y^p (w \cdot x^p + b) - 1),$$

• If $\mathcal{C}=\{\alpha:\alpha_p\geq 0,\sum \alpha_p y^p=0\}$, the dual problem is

$$\min_{\alpha_p \in \mathcal{C}} \ \Theta(\alpha) = \frac{1}{2} \alpha^{\tau} Q \alpha - \sum_p \alpha_p$$

Takeaways on Linear SVMs II

- $\bullet \,$ The dual gap $f(w^*,b^*)-\Theta(\alpha^*)$ at optima is 0 and so we can
 - Obtain the optimal dual α^* and then
 - Derive from α^* the optimal primal w^*, b^*
- We solve the dual problem using the **SMO algorithm**, with a cost at least $\Omega(N^2)$
- The KKT conditions are used to obtain w^* and b^*
- $\bullet \,$ For the optimal w^* we have $w^* = \sum_{SV} \alpha_p^* y^p x^p$
- $\bullet \ \mbox{ For the optimal } b^* \mbox{ we have } b^* = y^p w^* \cdot x^p \mbox{ if } \alpha^* > 0$
- If $\alpha^*>0$, $w^*\cdot x^p+b^*=y^p$, i.e., x^p is in one of the **support hyperplanes** $w^*\cdot x+b^*=\pm 1$

2 Non Linear SV Classification

2.1 Linear SVMs for Non Linear Problems

Cover's Theorem

- SVMs are simple and elegant, but also linear
- Q: Will linear SVM classifiers powerful enough?
- Alternative Q: Are linearly solvable classification problems frequent enough?
- A: No, because of Cover's Theorem
- The patterns in a size N sample S with dimension d are said to be in **general position** if no d+1 points are in a (d-1)-dimensional hyperplane
- Then, if $N \le d+1$, all 2-class problems on S are linearly separable and if N > d+1, the number of linearly separable problems is

$$2\sum_{i=0}^{d} \binom{N-1}{i}$$

Points in General Position

• Consider d = 2, 3 = d + 1 points and a 1 = d - 1-dimensional hyperplane

Points Not in General Position

• Consider now d=2 and 3=d+1 points on a 1=d-1-dimensional hyperplane (i.e., a line)

Are Linearly Separable Problems Frequent?

- Our current SVM classifiers will be useful if linearly separable 2-class problems are frequent enough
- It is relatively easy to show that for $N \gg d+1$

$$2\sum_{i=0}^{d} \binom{N-1}{i} \le 2(d+1) \binom{N-1}{d} \le 2\frac{d+1}{d!} N^{d} \lesssim N^{d}$$

- ullet On the other hand, the **total number of two-class problems** over a sample of size N is 2^N
- $\bullet \ \ {\rm And} \ \frac{N^d}{2^N} \to 0 \ {\rm very \ fast \ when} \ N \to \infty$
- \bullet Since in many practical problems we will have $N\gg d,$ essentially all such 2–class problems won't be linearly separable
- And our current SVMs will be useless on them

Linear SVMs for Non Linear Probems

- Q: What can we do?
- First step: make room for non linearly separable problems
- We no longer require perfect classification but allow for error (slacks) in some patterns
- We relax the previous requirement $y^p(w \cdot x^p + b) \ge 1$ to

$$y^p(w \cdot x^p + b) \ge 1 - \xi_p$$

where we impose a new constraint $\xi_p \geq 0$

- Notice that if $\xi_p \geq 1$, x^p will not be correctly classfied
- Thus, we allow for defective clasification but we also **penalize** it

L_k Penalty SVMs

ullet New primal problem: for $K \geq 1$ consider the cost function

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + \frac{C}{K} \sum \xi_p^K$$

now subject to $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \xi_p \ge 0$

- Simplest choice K = 2: L_2 (i.e., square penalty) SVMs, that reduce to the previous set up
- Usual (and best) choice K = 1
 - We will concentrate on it
- Notice that if $C \to \infty$ we recover the previous slack-free approach

L_1 SVMs

• Primal problem

$$\min_{w,b,\mathcal{E}} \frac{1}{2} ||w||^2 + C \sum \xi_p$$

subject to $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \xi_p \ge 0$

• The L_1 Lagrangian is then

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} ||w||^2 + C \sum_{p} \xi_p - \sum_{p} \alpha_p \left[y^p (w \cdot x^p + b) - 1 + \xi_p \right] - \sum_{p} \beta_p \xi_p$$

with $\alpha_p, \beta_p \geq 0$

L_1 SVM Lagrangian

ullet Again we reorganize the L_1 Lagrangian as

$$\begin{array}{rcl} L(w,b,\xi,\alpha,\beta) & = & w \cdot \left(\frac{1}{2}w - \sum \alpha_p y^p \ x^p\right) + \\ & & \sum \xi_p (C - \alpha_p - \beta_p) - b \sum \alpha_p y^p + \\ & & \sum \alpha_p \end{array}$$

• The w and b partials yield as before $w=\sum \alpha_p y^p x^p, \sum \alpha_p y^p=0$

The L_1 SVM Dual I

• From $\frac{\partial L}{\partial \xi_p} = C - \alpha_p - \beta_p = 0$ we see that

$$C = \alpha_p + \beta_p$$

ullet Substituting things back into the Lagrangian we arrive at the L_1 dual function

$$\Theta(\alpha, \beta) = \sum_{p} \alpha_{p} - \frac{1}{2} w \cdot \sum_{p} \alpha_{p} y^{p} x^{p}$$
$$= \sum_{p} \alpha_{p} - \frac{1}{2} \alpha^{\tau} Q \alpha$$

subject to $\sum_{p} \alpha_{p} y^{p} = 0$, $\alpha_{p} + \beta_{p} = C$, plus $\alpha_{p} \geq 0$, $\beta_{p} \geq 0$

The L_1 SVM Dual II

- In fact, we can drop β
 - Notice that we already have that $\Theta(\alpha, \beta) = \Theta(\alpha)$
 - It is also clear that the constraints on α, β can be reduced to $0 \le \alpha_p \le C$
- Thus, we get essentially the same dual problem as before

$$\min_{\alpha} \ \frac{1}{2} \alpha^{\tau} Q \alpha - \sum_{p} \alpha_{p}$$

subject to
$$\sum \alpha_p y^p = 0, 0 \le \alpha^p \le C, 1 \le p \le N$$

- Notice again that if $C \to \infty$ we recover the penalty free SVM
- We can solve it by SMO
- $\bullet \ \ {\rm And\ here\ also}\ w^* = \sum \alpha_p^* y^p x^p \ {\rm for\ the\ optimal}\ w^*$

KKT Conditions for L_1 SVMs

• The complementary slackness conditions are now

$$\begin{array}{rcl} \alpha_p^* \left[y^p (w^* \cdot x^p + b^*) - 1 + \xi_p^* \right] & = & 0 \\ \beta_p^* \xi_p^* & = & 0 \end{array}$$

- Now, if $\xi_p^* > 0$, then $\beta_p^* = 0$ and, therefore, $\alpha_p^* = C$
 - We say that such an x^p is **at bound**
- Also, if $0 < \alpha_p^* < C$, then $\beta_p^* > 0$ and $\xi_p^* = 0$
 - Thus, if $0 < \alpha_p^* < C$, $y^p(w^* \cdot x^p + b^*) = 1$ and x^p lies in one of the support hyperplanes

- We can obtain $b^* = y^p w^* \cdot x^p$ just as before
- If needed, we can then derive $\xi_p^*>0$, since $\alpha_p^*=C$ and

$$\xi_p^* = 1 - y^p (w^* \cdot x^p + b^*)$$

The Cost of SMO

- SMO can be applied to L_1 SVMs straightforwardly
 - We start with $\alpha^0=0$ for which trivially $\sum y^p \alpha_p^0=0$
 - At step t select $L_t = \arg\min_p y^p \nabla \Theta(\alpha^t)_p, \quad U_t = \arg\min_q y^q \nabla \Theta(\alpha^t)_q$
 - Update $\alpha^{t+1} = \alpha^t + \rho_t d^t$ with $d^t = y^{L_t} e_{L_t} y^{U_t} e_{U_t}$ and clip it if needed to have $0 \le \alpha^{t+1}_{L_t}, \alpha^{t+1}_{U_t} \le C$
 - And iterate until a KKT-related stopping condition is met
- The cost of SMO is costly: at least $\Omega(N^2)$, for
 - Each iteration has a O(N) cost of selecting L, U and updating $\nabla\Theta(\alpha)$
 - The number of SVs is usually $\Theta(N)$ and at least $\Omega(N)$ iterations are needed to find them
 - Also, the final number of iterations grows usually with C and the cost may be $\Theta(N^{2+\delta}), \delta > 0$

Good Option, But ...

- L_1 SVMs are (relatively) **sparse**, i.e., the number of non–zero multipliers is $\ll N$
- The bound $\alpha_p^* = C$ for $\xi_p^* > 0$ limits the effect of not correctly classified patterns
- And usually L_1 SVMs are much better than, say, L_2 SVMs
- But still they are linear ...
- We must thus somehow introduce some kind of non-linear processing for SVMs to be truly
 effective

2.2 The Kernel Trick

Back to Cover

• Recall that the number L(N, d) of linearly separable dichotomies is

$$L\left(N,d\right) = \left\{ \begin{array}{cc} 2^{N} & \text{if } N \leq d+1 \\ \\ 2\sum_{i=0}^{d} \binom{N-1}{i} & \text{if } N \geq d+1 \end{array} \right\}$$

- $\bullet \; \text{Recall that for} \; d \; \text{fixed}, \; \frac{L(N,d)}{2^N} \to 0 \; \text{as} \; N \to 0$
- In practice $N \gg d$ and the fraction of separable dichotomies will be very small

• But if we transform the initial patterns into new ones with dimension $D \gg N$, all dichotomies will be linearly separable

The Kernel Trick

- Idea: (non linearly) augment pattern dimension going from $x \in \mathbf{R}^d$ to $\Phi(x) \in \mathbf{R}^D$ with $D \gg d$
- First option: do it explicitly as, for instance, in $\Phi(x) = (x_1, \dots, x_i, \dots, x_i x_j, \dots, x_i x_j x_k, \dots)$
- Too cumbersome, so try to do it **implicitly**
- Observation: in SVMs we only need to compute dot products $x \cdot x'$
 - And the same is true for the SMO algorithm
- Thus, we can work **implicitly** with extensions $\Phi(x)$ provided it is easy to compute $\Phi(x) \cdot \Phi(x')$
- Simplest case: $\Phi(x) \cdot \Phi(x') = k(x, x')$ for an appropriate **kernel** k

Polynomial Kernels

- A simple option is to work with **polynomial** kernels $k(x,x') = (1+x\cdot x')^m$
- Assume m = 2, $x = (x_1, x_2)$, $x' = (x'_1, x'_2)$; then

$$k(x, x') = (1 + x_1 x'_1 + x_2 x'_2)^2$$

$$= 1 + 2x_1 x'_1 + 2x_2 x'_2 + x_1^2 (x'_1)^2 + x_2^2 (x'_2)^2 + 2x_1 x_2 x'_1 x'_2$$

$$= \Phi(x) \cdot \Phi(x')$$

with

$$\Phi(x) = \Phi(x_1, x_2) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Positive Definite Kernels

• In fact, if the kernel is **positive definite** we can diagonalize it as

$$k(x, x') = \sum_{0}^{\infty} \lambda_k \varphi_k(x) \varphi_k(x')$$

with $\lambda_k > 0$ and the (possibly infinitely many) $\{\varphi_k(x)\}$ orthonormal

• Defining then

$$\Phi(x) = (\sqrt{\lambda_0}\varphi_0(x), \sqrt{\lambda_1}\varphi_1(x), \dots)$$

we have $k(x, x') = \Phi(x) \cdot \Phi(x')$

 $\bullet \,$ The dot product matrix Q is now the **kernel matrix** $Q_{p,q}=k(x^p,x^q)$

The Gaussian Kernel

- If we use the Gaussian kernel $k(x,x')=e^{-\gamma\|x-x'\|^2}$, $\Phi(x)$ has infinite dimension
 - So Cover's theorem ensures that all samples will be linearly separable
 - And practical SVMs are (almost) always built using Gaussian kernels
 - Thus, overfitting is guaranteed unless we **renounce to perfect separability**
- Thus, we have to build effective SVMs using a powerful kernel but, also, avoiding overfit, by
 - Adequately adjusting the penalty constant C
 - And also the Gaussian kernel's width γ

Selecting the C Hyperparameter for SVMs

- C is actually a **regularization** parameter as it limits where we can find the optimal α
- Notice also that we can write the primal cost function as

$$\frac{1}{N} \sum \xi_p + \frac{1}{2} \frac{1}{CN} ||w||^2$$

- Thus $\frac{1}{CN}$ behaves similarly to α in Ridge or Logistic Regression
- From another point of view,
 - Small C allow large slacks and a possible underfit
 - But large C imply very small slacks and possible overfit
- One usually explores values 10^k , $-K_L \le k \le K_R$
 - Typical values are $K_L=-1,0,$ i.e., $C_L=0.1$ or 1, and $K_R=3$ or 4, i.e., $C_R=1,000$ or 10,000

Selecting the γ Hyperparameters for Gaussian SVMs

- When working with Gaussian kernels, the features x_i are usually scaled to a [0, 1] range
- Then $|x_i x_i'| \le 1$ and if d is pattern dimension

$$||x - x'||^2 = \sum_{i=1}^{d} (x_i - x_i')^2 \lesssim d \implies \frac{||x - x'||^2}{d} \lesssim 1$$

• This suggests to explore γ values of the form

$$\frac{2^k}{d}$$
, $-K \le k \le K$

- Large k values result in very sharp Gaussians
 - We may end up with a Gaussian for each sample x^p and, hence, overfit

- Small k values result in flat, nearly constant Gaussians
 - No x^p is relevant and, hence, underfit is quite likely

Linear Kernels?

- Recall that we use kernels to enlarge pattern dimension
 - We get better models but costlier training
 - And working with large datasets may become impractical
- We may try to avoid them if pattern dimension is already large and just use linear SVMs
- This is the approach followed by the LIBLINEAR package, which offers
 - Dual-based solvers using coordinate descent methods
 - Primal-based solvers using Newton-type methods
- The constant term b is usually not considered, so data should be centered before training
- Only C has to be hyperparameterized

Other Things

- SVMs do not have an underlying probability model
 - Label prediction is the primary output
- The LIBSVM and its Scikit-learn wrapper can give probability predictions using an ad-hoc model
- SVM classification is intrinsically two-class
 - Multiclass problems are usually handled using a one-versus-rest (OVR) approach
- \bullet ν -SVMs (available in LIBSVM) can also be used for classification (and regression) usually with very similar results

Takeaways on Non Linear SVMs I

• The L_1 primal problem is

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum \xi_p$$

s.t.
$$y^p(w \cdot x^p + b) \ge 1 - \xi_p, \xi_p \ge 0, 1 \le p \le N$$

• For $\alpha_p, \beta_p \geq 0$ the new Lagrangian is

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} ||w||^2 + C \sum_{p} \xi_p - \sum_{p} \alpha_p (y^p (w \cdot x^p + b) - 1 + \xi_p) - \sum_{p} \beta_p \xi_p$$

• And for $C = \{\alpha : 0 \le \alpha_p \le C, \sum \alpha_p y^p = 0\}$, the L_1 dual problem is

$$\max_{\alpha_p \in \mathcal{C}} \ \Theta(\alpha) = \sum_p \alpha_p - \frac{1}{2} \alpha^{\tau} Q \alpha$$

Takeaways on Non Linear SVMs II

- The new dual coincides essentially with the linear dual and can also be solved by the SMO algorithm, with a cost $\Omega(N^2)$
- ullet The KKT conditions are again used to obtain w^* and b^*
- $\bullet \,$ For the optimal w^* we have $w^* = \sum_{x^p \in SV} \alpha_p^* y^p x^p$
- $\bullet \ \ \mbox{If} \ 0 < \alpha_p^* < C \ \mbox{we have} \ b^* = y^p w^* \cdot x^p$
- And if $\xi_p^* > 0$, $\alpha_p^* = C$
- All the dot products can be replaced by kernel operations $k(x^p, x^q)$
- ullet Two hyperparameters appear: the penalty C and (if used) the Gaussian kernel width γ

3 Support Vector Regression

Back to the Primal Problem

• The slack ξ of a pattern x, y can be written as

$$\xi = \max\{0, 1 - y(w \cdot x + b) - 1\} = h(y(w \cdot x + b) - 1)$$

where $h(z) = \max\{0, -z\}$ is the **hinge loss**

• We can write the linear SVC primal problem

$$\arg \min_{w,b} = \frac{1}{2} \|w\|^2 + C \sum_{p} h(y(w \cdot x + b) - 1) =$$

$$\arg \min_{w,b} \sum_{p} h(y(w \cdot x + b) - 1) + \frac{1}{2C} \|w\|^2$$
(1)

- The hinge loss is not differentiable only at z = 0
 - This is also the case of the ReLUs
- We cannot use the kernel trick for the primal problem
 - But we could put the hinge loss at the end of a DNN

Support Vector Regression

• In SV regression (SVR) we try to solve another regularized problem

$$\min_{w,b} f(w,b) = \sum_{p} [y^{p} - (w \cdot x^{p} + b)]_{\epsilon} + \frac{\lambda}{2} ||w||^{2}$$

or, equivalently,

$$\min_{w,b} \frac{1}{N} \sum_{p} [y^{p} - (w \cdot x^{p} + b)]_{\epsilon} + \frac{1}{2} \frac{\lambda}{N} ||w||^{2}$$

using the ϵ -insensitive loss

$$[z]_{\epsilon} = \max(0, |z| - \epsilon)$$

 • Notice we penalize an error $|y^p-f(x^p,w,b)|$ only if it is $>\epsilon$

The ϵ Error Tube

ullet Therefore, we do not penalize errors of predictions that fall inside an ϵ -wide tube around the true function

SVR as a Constrained Problem

- We have $f(w,b) = \ell_{\epsilon}(w,b) + \frac{1}{2}||w||^2$
 - f is convex but $\ell_{\epsilon} = \sum_{p} \left[y^{p} (w \cdot x^{p} + b) \right]_{\epsilon}$ is not smooth
 - Direct minimization of f(w, b) is difficult
 - Thus, we rewrite the unconstrained SVR problem as a constrained one
- If $C = 1/\lambda$, we rewrite f as

$$f(w, b, \xi, \eta) = \frac{1}{2} ||w||^2 + C \sum_{p} (\xi_p + \eta_p)$$

with the following constraints on the errors $w \cdot x^p + b - y^p$:

$$-\xi_p - \epsilon \le w \cdot x^p + b - y^p,$$

$$\eta_p + \epsilon \ge w \cdot x^p + b - y^p,$$

$$\xi_p, \eta_p \ge 0$$

The SVR Lagrangian

• This leads to the Lagrangian

$$L(w, b, \xi, \eta, \alpha, \beta, \gamma, \delta) = \frac{1}{2} ||w||^2 + C \sum_p (\xi_p + \eta_p)$$
$$- \sum_p \alpha_p (w \cdot x^p + b - y^p + \xi_p + \epsilon)$$
$$+ \sum_q \beta_q (w \cdot x^q + b - y^q - \eta_q - \epsilon) - \sum_p \gamma_p \xi_p - \sum_q \delta_q \eta_q$$

with $\alpha_p, \beta_q, \gamma_r, \delta_s$ all ≥ 0

• Setting $\Theta(\alpha, \beta, \gamma, \delta) = \min_{w, b, \xi, \eta} L(w, b, \xi, \eta, \alpha, \beta, \gamma, \delta)$, we have by construction

$$\Theta(\alpha, \beta, \gamma, \delta) \le L(w, b, \xi, \eta, \alpha, \beta, \gamma, \delta) \le f(w, b, \xi, \eta)$$

SVR's Dual Function

• We derive the dual function solving the equations

$$\frac{\partial L}{\partial w_i} = 0, \ \frac{\partial L}{\partial b} = 0, \ \frac{\partial L}{\partial \xi_p} = 0, \ \frac{\partial L}{\partial \eta_p} = 0$$

ullet Plugging the results back in L and working things out, the minus dual function that we write again as Θ becomes

$$\Theta(\alpha, \beta, \gamma, \delta) = \frac{1}{2} \sum_{p,q} (\alpha_p - \beta_p)(\alpha_q - \beta_q) x^p \cdot x^q + \epsilon \sum_p (\alpha_p + \beta_p) - \sum_p y^p (\alpha_p - \beta_p)$$

• γ and δ drop out of Θ

SVR's Dual Problem

• From $\nabla_w L = 0$ we derive

$$w = \sum_{p} \alpha_{p} x_{p} - \sum_{q} \beta_{q} x_{q}$$

• From $\frac{\partial L}{\partial b} = 0$ we obtain

$$\sum \alpha_p = \sum \beta_q$$

• And from $\frac{\partial L}{\partial \xi_p} = 0$, $\frac{\partial L}{\partial \eta_q} = 0$ we derive

$$C = \alpha_n + \xi_n, \quad C = \beta_a + \eta_a$$

• Since $\xi_p \ge 0, \eta_q \ge 0$, the previous constraints become

$$0 \le \alpha_n \le C$$
, $0 \le \beta_a \le C$

• Thus, the dual problem becomes

$$\min_{\alpha,\beta}\Theta(\alpha,\beta) \text{ subject to } 0 \leq \alpha_p, \beta_q \leq C, \ \sum \alpha_p = \sum \beta_q$$

Solving the SVR Dual Problem

- It can be shown that if $(w^*, b^*, \xi^*, \eta^*)$ and (α^*, β^*) are primal and dual optima respectively, then the dual gap is 0, i.e., $f(w^*, b^*, \xi^*, \eta^*) = \Theta(\alpha^*, \beta^*)$
- Things are a little bit easier if we remove the (trickier) constraint $\sum \alpha_p = \sum \beta_q$ by dropping b, i.e., assuming a homogeneous model $w \cdot x$
 - Then we only have box constraints and we can simply apply projected gradient descent
 - But risk ending in a worse model (unless we center everything)
- But the dual problem is also easy to solve, for which a simple variant of the SMO algorithm is
 used

KKT Conditions

• We deduce the complementary slackness KKT conditions from

$$f(w^*, b^*, \xi^*, \eta^*) = L(w^*, b^*, \xi^*, \eta^*, \alpha^*, \beta^*, \gamma^*, \delta^*) = \Theta(\alpha^*, \beta^*)$$

namely

$$0 = \alpha_p^*(w^* \cdot x^p + b^* - y^p + \xi_p^* + \epsilon);$$

$$0 = \beta_q^*(w^* \cdot x^q + b^* - y^q - \eta_q^* - \epsilon);$$

$$0 = (C - \alpha_p^*)\xi_p^*; \quad 0 = (C - \beta_q^*)\eta_q^*$$

- Thus, if $0 < \alpha_p^* < C$, we have $\xi_p^* = 0$ and $w^* \cdot x^p + b^* y^p = -\epsilon$
- Similarly, if $0 < \beta_q^* < C$, we have $\eta_q^* = 0$ and $w^* \cdot x^q + b^* y^q = \epsilon$
- Either one can be used to derive b^* once w^* is known

Support Vectors

- The corresponding x^p , x^q are called **support vectors**
 - Now they define the ϵ -tube envelope around the true model
- Also $\xi_p^* > 0$ implies $\alpha_p^* = C$ and $\eta_q^* > 0$ implies $\beta_q^* = C$
- The optimal w^* is $w^* = \sum (\alpha_p^* \beta_p^*) x^p$, with

$$\alpha_p^* \beta_p^* = 0$$

for notice that a given x^p can only verify one of the conditions

$$w^* \cdot x^q + b^* - y^q = \epsilon, \quad w^* \cdot x^q + b^* - y^q = -\epsilon$$

The Kernel Trick for SVR I

- Again, stating and solving the the dual problem only requires computing dot products
- Also, the model applied to a new x is

$$f(x) = b^* + \sum (\alpha_p^* - \beta_p^*) x^p \cdot x$$

 \bullet Thus, the kernel trick can be used again to project the original patterns x into larger dimensional patterns $\Phi(x)$

The Kernel Trick for SVR II

- Again, we do not deal with the $\Phi(x)$ but just work with $\Phi(x) \cdot \Phi(x') = k(x, x')$
- The model is applied as

$$b^* + w^* \cdot \Phi(x) = b^* + \sum_{p} (\alpha_p^* - \beta_p^*) \Phi(x^p) \cdot \Phi(x)$$
$$= b^* + \sum_{p} (\alpha_p^* - \beta_p^*) k(x^p, x)$$

• If we use a Gaussian kernel, the model becomes

$$f(x; w^*, b^*) = b^* + \sum (\alpha_p^* - \beta_p^*) e^{-\gamma ||x^p - x||^2}$$

i.e., a sum of Gaussians centered at the x^p

Hyperparameterizing C, γ and ϵ

- C and γ are explored as in SV classification
- $\bullet~$ In a reasonable model ϵ shouldn't be larger than σ_y
- We can try ϵ values of the form

$$2^k \sigma_u$$
, $-K \le k \le -1$

- But we have to explore three parameters which is going to be quite costly
- The stopping tolerance is also somewhat tricky as it depends on gradient properties
 - The default 10^{-3} should be OK on medium size problems
- Some guidelines can be found on LIBSVM home pages

Overfitting and Underfitting

- $\bullet \,$ As in SVC, large C and γ will result in overfit unless ϵ is large
- A large C forces slacks to be near 0 and thus perfect training fit

- This is parallel to what happened in Ridge regression, since $\frac{1}{CN}$ behaves as α
- Large γ result in sharp Gaussians
- ullet On the other hand, models with small C and γ will likely underfit
- Large ϵ models will usually underfit
 - At the extreme there will be no slacks and we are likely to end in a near constant model
 - On the other hand, a very small ϵ will force 0 slacks and possible overfit
- But the joint effects of C, γ and ϵ may change the preceding observations

Takeaways on SVR I

• The primal SVR problem can be written as a regularized loss function

$$\min_{w,b} f(w,b) = \sum_{p} [y^{p} - (w \cdot x^{p} + b)]_{\epsilon} + \frac{\lambda}{2} ||w||^{2}$$

• If $C = \{\alpha, \beta : 0 \le \alpha_p, \beta_p \le C, \sum \alpha_p = \sum \beta_p \}$, the dual problem is now

$$\min_{\mathcal{C}} \Theta(\alpha, \beta) = \frac{1}{2} \sum_{p,q} (\alpha_p - \beta_p) (\alpha_q - \beta_q) x^p \cdot x^q + \epsilon \sum_{p} (\alpha_p + \beta_p) - \sum_{p} y^p (\alpha_p - \beta_p)$$

Takeaways on SVR II

- A variant of SMO can again be used, with a cost $\Omega(N^2)$
- KKT conditions are again used to obtain w^* and b^* from α^*, β^*
- $\bullet \;$ And again SVs, i.e., vectors x^p for which $\alpha_p^*>0$ or $\beta_p^*>0$ define the SVR model
- Using a Gaussian kernel we arrive at a final model

$$f(x; w^*, b^*) = b^* + \sum_{p} (\alpha_p^* - \beta_p^*) e^{-\gamma ||x^p - x||^2}$$

- Two hyperparameters appear: the penalty C and the ϵ tube width
- Plus the width γ if we use a Gaussian kernel