Open Geospatial Machine Learning

Kevin Stofan

Agenda

- Intro
- Spatial Data Models and Formats
- Spatial Data I/O
- Spatial Autocorrelation
- Spatial Weights Matrix
- Exploratory Spatial Data Analysis (ESDA)
- Rest of the Geospatial ML Workflow
- Related Studies and Competitions
- Discussion

Goals

- Introduce geospatial machine learning workflow
- Exposure to Python spatial tools
- Spatially-explicit modeling
- External resources and further reading

About Me

- Customer Facing Data Scientist at DataRobot
 - Pre- and Post- sales support for customers
 - Assist product and engineering teams with geospatial features
 - Consult customers with geospatial use cases
- Adjunct Professor at Penn State
 - Graduate level Geographic Information Systems (GEOG884)
 - Raster and vector data analysis
 - o FOSS4G
- Applied Spatial Analysis
 - Point Pattern Analysis
 - Spatial Econometrics and geostatistics

Repos and Contact

https://github.com/TankofVines/data_intel

https://github.com/TankofVines/odsc

kevin.stofan@gmail.com

@tankofvines

Geospatial ML Workflow

Geospatial ML Techniques

Geospatial Data Ingestion

KUN SHP SON GPY MKY WET GIVE

Spatial Feature Engineering/Enrichment

Feature Enrichment and Dasymetric Mapping

Derived features and transformations (e.g. area, centroid, contiguity, etc.)

Spatially-explicit Models

Spatial econometric, geostatistical, geographically weighted regression models

Geospatial Visualization

Heatmaps, kernel density estimates, and hexagonal binning

Two-way partial dependence plots using coordinates

A Note on Terminology

Tool: QuantumGIS

- Geographic Information Systems (GIS)
 - Collection Maintenance Storage Analysis Output Distribution
 - Handles vector and raster data models
 - Historically dominated by ESRI and ArcGIS

Vector Data Types

Vector Data Formats

- File-based
 - ESRI Shapefiles
 - GeoJSON
 - File Geodatabase
- Database
 - PostGIS Table
 - SpatialLite
 - Various proprietary DBs (Oracle, Mongo, MS SWL Server)
- Binary/Text
 - o WKT/WKB

Tool: OGR/GDAL

https://www.manning.com/books/geoprocessing-with-python#downloads

Tool: Geopandas

- Python Geospatial Library
 - o I/0
 - Feature Engineering
 - Visualization

Spatial Autocorrelation

"...everything is related to everything else, but near things are more related than distant things."

- Waldo Tobler

Global Spatial Autocorrelation

Local Spatial Autocorrelation

Spatial Weights Matrix

Tool: GeoDa

- Exploratory Spatial Data Analysis (ESDA)
 - Desktop
 - Spatial Autocorrelation
 - Spatial Regression

Spatial Lag

Higher Order Weights

Tool: PySAL

- Python Library for ESDA
 - GeoDa Equivalent
 - Spatial weights
 - Spatial lag, smoothing, regionalization, and more

Geospatial ML Workflow

Further Reading: Urban Spatial

Further Reading: Kaggle Zillow Zestimate

Discussion