Chapter 44

All About CO_2 Lasers

44.1 \mathbf{CO}_2 Laser Cutter

44.2 CO2 Laser Cutting

- Materials: No chlorines, no fluorines
- Organic Materials
 - Wood, Paper, Cardboard
 - Natural Rubber
 - Some Plastics cut well, others melt
 - Fiberglass
- Metals don't typically work

44.3 Raster vs Vector

http://www.fastprint.co.uk/blog/raster-vs-vector-the-easy-to-understand-guide.html

44.4 Cut, Engrave, Raster

https://lasercuttingsheffield.wordpress.com/engraving-and-cutting/

44.5 Variables

- ullet All about the energy(E) you dump into the material, and the material's ability to be cut by that energy
- E: Energy
- l: length
- \bullet P: Power
- v: velocity
- n: number of passes

$$E/l \propto P$$

$$E/l \propto v^{-1}$$

$$E/l \propto n$$

44.6 Power

44.7 Speed

44.7.1 Energy is Proportional to Power over Speed

$$P = E/t$$

$$v = l/t$$

$$E/l = P/v$$

44.8 Speed vs. Power

44.9 Speed vs. Power

Higher speeds can impact cut quality.

44.10 Obtaining Cut Settings

- 1. Start with the laser cutter at 100% speed and 100% power.
- 2. Perform a small test cut on your material
- 3. Check to see if the box falls out of the material when cut.

44.11 Obtaining Cut Settings

44.11.1 Option 1

- 1. If the material can be fully cut out, divide the power by half and try the cut again,
- 2. Move the square to the right by a small amount so you don't cut over the same spot twice.
- 3. Continue this process of halving the power until you have it consistently cuts through your part, at least amount of power possible.

44.11.2 Option 2

- 1. If at 100% speed and 100% power the material is not fully cut out, lower the speed by half
- 2. Move the square to the right by a small amount so you don't cut over the same spot twice.
- 3. Continue this process of halving the speed until you have it consistently cuts through your part, at least amount of power possible.

44.12 Cut Settings (25W)*

Layer	Speed	Power	Passes
1-mil polyester	20%	100%	1
MHA acrylic adhesive	20%	100%	1
6-Ply Dick Blick Posterboard	15%	100%	2
6-Ply Dick Blick Posterboard	12%	100%	1
Full Laminate	5%	100%	1

^{*} Your results may vary

44.13 Focus & Height

Figure 44.1: caption

44.14 Things to remember

- Test settings on a piece of scrap material. Then record your cut settings as you will need these often
- Laser cutters often have different power settings for raster and vector. Since we are only doing vector cuts, you can turn off the raster setting.
- Some laser cutters have path optimization options.
 - Select the "inside-out" strategy if available, as this will guarantee that your material, when cut, is not first separated from the surrounding material which is holding it.
- Disable "centering" option, it is a good idea to disable it if you have already defined a page size equal to the laser bed size.
- Each laser is different

44.15 Color-based control

Set different cut settings, sometimes different z-depths for each color

44.16 Avoiding Smoke & Fire

- Always watch the work piece, never walk away
- Turn on air assist
- Turn on vacuum to remove vapors
- Focus your workpiece poor focus dumps energy onto the workpiece, heating it up

44.17 Masking

http://www.instructables.com/id/10-Tips-and-Tricks-for-Laser-Engraving-and-Cutting/

44.18 Things you can cut

- Wood, Plywood, MDF, paper, cardstock
- Acrylic sheet
- Many fabrics (including nylon)
- Natural Rubbers
- Polyester(Mylar)
- Polyimide(Kapton)

44.19 Things that may not cut well

- Nylon Sheet (melts)
- Delrin (melts less)
- Foamcore (melting/fires)
- Rubber (smoke, smell, residue)
- Fiberglass
- MDF
- Things that smoke -> requires more cleaning

44.20 Don't cut

- Anything with chlorine or fluorine
 - Many rubbers and plastics
 - PTFE(Teflon)
 - PVC
 - Vinyl
- ABS -> Cyanide gas
- Polycarbonate/Lexan... looks like acrylic, but is NOT

44.21 Advanced Options

- Combine adhesive & rigid, then cut
- Cut, then combine
- Kiss-cut
- Applique
- Masking

44.22 External Resources

- http://www.laseralliance.com/index.php?pg=material_reaction
- http://atxhackerspace.org/wiki/Laser_Cutter_Materials
- http://pythonhosted.org/ezdxf/tutorials/simple_drawings.html
- https://svgwrite.readthedocs.io/en/latest/classes/shapes.html#basic-shapes-examples

- http://startuplabs.schedulething.com/
- http://makezine.com/2011/09/22/identifying-unknown-plastics/
- http://atxhackerspace.org/wiki/Laser_Cutter_Materialshttp://www.laseralliance.com/index.php?pg=material_reaction