<u>Curs</u> 10

Cuprins

- Sisteme de rescriere
 - Terminare
 - Confluență. Perechi critice.
 - Algoritmul Knuth-Bendix

Sisteme de rescriere abstracte

□ Terminarea unui sistem de rescriere este nedecidabilă.
 □ echivalentă cu oprirea maşinilor Turing
 □ Pentru sisteme de rescriere particulare putem decide asupra terminării.
 □ diverse metode
 □ Pentru sisteme de rescriere care se termină, confluența este decidabilă.
 □ algoritmul Knuth-Bendix

Sisteme de rescriere

Fie (S, Σ) signatură și Y mulțime de variabile.

- \square O regulă de rescriere (peste Y) este formată din $I, r \in T_{\Sigma}(Y)_s$ a. î.:
 - / nu este variabilă,

Fie (S, Σ) signatură și Y mulțime de variabile.

- \square O regulă de rescriere (peste Y) este formată din $I, r \in T_{\Sigma}(Y)_s$ a. î.:
 - / nu este variabilă,
 - $2 Var(r) \subseteq Var(I) = Y.$
- ☐ Un sistem de rescriere (TRS) este o mulțime finită de reguli de rescriere.

Fie (S, Σ) signatură și Y mulțime de variabile.

- \square O regulă de rescriere (peste Y) este formată din $I, r \in T_{\Sigma}(Y)_s$ a. î.:
 - I / nu este variabilă,
- Un sistem de rescriere (TRS) este o mulţime finită de reguli de rescriere.
- □ Un TRS este noetherian (se termină) dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$

Fie (S, Σ) signatură și Y mulțime de variabile.

- \square O regulă de rescriere (peste Y) este formată din $I, r \in T_{\Sigma}(Y)_s$ a. î.:
 - / nu este variabilă,
 - $2 Var(r) \subseteq Var(I) = Y.$
- Un sistem de rescriere (TRS) este o mulţime finită de reguli de rescriere.
- □ Un TRS este noetherian (se termină) dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$

Exemplu

- $\ \square \ S = \{\textit{Nat}\} \ \mathsf{si} \ \Sigma = \{0 : \rightarrow \textit{Nat}, \ s : \textit{Nat} \rightarrow \textit{Nat}, \ + : \textit{Nat} \ \textit{Nat} \rightarrow \textit{Nat}\}$
- \square $Y = \{x, y\}$
- □ Sistemul de rescriere: $R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}$

Rescrierea termenilor

```
t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(I)] \text{ și}
t' \text{ este } c[z \leftarrow \theta_s(r)], \text{ unde}
c \in T_{\Sigma}(X \cup \{z\}) \text{ context},
I \to_s r \in R \text{ cu } Var(I) = Y,
\theta : Y \to T_{\Sigma}(X) \text{ substituție}
```

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (1)

Dacă fiecărui termen t îi poate fi asociat un număr natural $t\mapsto \mu(t)\in\mathbb{N}$ astfel încât

$$t \rightarrow_{R} t' \Rightarrow \mu(t) > \mu(t')$$

oricare t și t', atunci R este noetherian.

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (1)

Dacă fiecărui termen t îi poate fi asociat un număr natural $t\mapsto \mu(t)\in\mathbb{N}$ astfel încât

$$t \to_R t' \Rightarrow \mu(t) > \mu(t')$$

oricare t și t', atunci R este noetherian.

Demonstratie

 \mathbb{N} nu conține lanțuri infinite $n_1 > n_2 > \cdots > n_k > \cdots$.

Exemplu

- \square $R = \{x 0 \rightarrow x, s(x) s(y) \rightarrow x y\}$ este noetherian
 - \square $\mu(t) :=$ lungimea lui t
 - Prin lungimea unui termen t vom înțelege numărul de simboluri din scrierea lui t în forma prefixă.

Exempli

- \square $R = \{x 0 \rightarrow x, s(x) s(y) \rightarrow x y\}$ este noetherian
 - \square $\mu(t) :=$ lungimea lui t
 - Prin lungimea unui termen t vom înțelege numărul de simboluri din scrierea lui t în forma prefixă.
- \square $R = \{f(g(x), y) \rightarrow f(y, y)\}$ nu este noetherian

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

- \square Arborele de reducere al termenului t este definit astfel:
 - rădăcina arborelui are eticheta t.
 - descendenții nodului cu eticheta u sunt etichetați cu termenii u' care verifică $u \rightarrow_R u'$.

Exemplu

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square Arborele de reducere al termenului s(0) + s(0+0):

□ Orice nod al unui arbore de reducere are un număr finit de descendenți deoarece *R* este o mulțime finită.

- □ Orice nod al unui arbore de reducere are un număr finit de descendenți deoarece *R* este o mulțime finită.
- □ Dacă R se termină atunci

$$\mu(t) := \hat{\text{n}}$$
 alţimea arborelui de reducere asociat lui t . $t \to_R t' \Rightarrow \mu(t) > \mu(t')$

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (2*)

Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Demonstrație

- $(2 \Rightarrow 1)$ Rezultă din Propoziția 1.
- $(1\Rightarrow 2)$ Într-un sistem de rescriere noetherian orice termen are un arbore de reducere finit și definim

$$\mu(t) = adâncimea arborelui asociat lui t.$$

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (3*)

Fie \mathcal{A} o (S, Σ) -algebră astfel încât:

- \square $A_s = \mathbb{N}$ or. $s \in S$,
- \square or. $\sigma: s_1 \dots s_n o s$, dacă $k_i > k_i'$ atunci

$$A_{\sigma}(k_1,\ldots,k_i,\ldots k_n) > A_{\sigma}(k_1,\ldots,k_i',\ldots k_n),$$

 \square $\tilde{\mathbf{e}}(I) > \tilde{\mathbf{e}}(r)$, or. $I \to r \in R$ și or. $\mathbf{e} : Var(I) \to A$.

Atunci *R* este noetherian.

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (3*)

Fie \mathcal{A} o (S, Σ) -algebră astfel încât:

- \square $A_s = \mathbb{N}$ or. $s \in S$,
- \square or. $\sigma: s_1 \dots s_n \to s$, dacă $k_i > k'_i$ atunci

$$A_{\sigma}(k_1,\ldots,k_i,\ldots k_n) > A_{\sigma}(k_1,\ldots,k_i',\ldots k_n),$$

 \square $\tilde{\mathbf{e}}(I) > \tilde{\mathbf{e}}(r)$, or. $I \to r \in R$ și or. $\mathbf{e} : Var(I) \to A$.

Atunci R este noetherian.

Demonstratie

- □ Pentru orice termen t definim $\mu(t) = \tilde{\mathbf{e}_0}(t)$, unde $\mathbf{e}_0(x) = 0$, or. $x \in Var(t)$.
- \square Se demonstrează că $t \to_R t'$ implică $\mu(t) > \mu(t')$.

Exempli

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square $A_0 := 1$, $A_s(k) := k + 1$, $A_+(k, m) := k + 2 * m$, or. $k, m \in \mathbb{N}$

Exemplu

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square $A_0 := 1$, $A_s(k) := k + 1$, $A_+(k, m) := k + 2 * m$, or. $k, m \in \mathbb{N}$
- \square $\mathbf{e}(x) := n, \ \mathbf{e}(y) := m$

Exemplu

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square $A_0 := 1$, $A_s(k) := k + 1$, $A_+(k, m) := k + 2 * m$, or. $k, m \in \mathbb{N}$
- \square $\mathbf{e}(x) := n, \ \mathbf{e}(y) := m$
- \square $\tilde{\mathbf{e}}(x+0) = A_{+}(n, A_{0}) = n+2 * A_{0} = n+2 > n = \tilde{\mathbf{e}}(x)$

Exempli

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square $A_0 := 1$, $A_s(k) := k + 1$, $A_+(k, m) := k + 2 * m$, or. $k, m \in \mathbb{N}$
- \Box **e**(*x*) := *n*, **e**(*y*) := *m*
- \square $\tilde{\mathbf{e}}(x+0) = A_+(n, A_0) = n + 2 * A_0 = n + 2 > n = \tilde{\mathbf{e}}(x)$
- $\Box \tilde{\mathbf{e}}(x+s(y)) = A_{+}(n, A_{s}(m)) = n+2*(m+1) = n+2*m+2 > n+2*m+1 = A_{s}(A_{+}(n, m)) = \tilde{\mathbf{e}}(succ(x+y))$

Exempli

- $\square R = \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}\$
- \square $A_0 := 1$, $A_s(k) := k + 1$, $A_+(k, m) := k + 2 * m$, or. $k, m \in \mathbb{N}$
- \Box **e**(*x*) := *n*, **e**(*y*) := *m*
- \square $\tilde{\mathbf{e}}(x+0) = A_+(n, A_0) = n + 2 * A_0 = n + 2 > n = \tilde{\mathbf{e}}(x)$
- $\Box \tilde{\mathbf{e}}(x+s(y)) = A_{+}(n, A_{s}(m)) = n+2*(m+1) = n+2*m+2 > n+2*m+1 = A_{s}(A_{+}(n, m)) = \tilde{\mathbf{e}}(succ(x+y))$
- \square În concluzie, R este noetherian.

Confluență. Perechi critice

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Definitie

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Definitie

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Definitie

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Definitie

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t]$, unde $nr_z(c) = 1$, t nu este variabilă)
- 3 există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Definitie

Fie $l_1 \rightarrow r_1$, $l_2 \rightarrow r_2 \in R$ astfel încât:

- 2 există un subtermen t al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$
- 3 există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Perechea $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$ se numește pereche critică.

Exemple

$$R = \{ f(f(x, y), u) \to f(x, f(y, u)), \ f(i(x_1), x_1) \to e \}$$

Cele două reguli dau naștere unei perechi critice:

$$Var(f(f(x,y),u)) = \{x,y,u\} \text{ si } Var(f(i(x_1),x_1)) = \{x_1\}$$

2 Luăm subtermenul
$$t = f(x, y)$$
 al lui $I_1 = f(f(x, y), u)$

3
$$\theta = \{x \mapsto i(x_1), y \mapsto x_1\}$$
 c.g.u. pt. $t \neq i_2 = f(i(x_1), x_1)$.

$$f(f(i(x_1), x_1), u)$$

 $f(i(x_1), f(x_1^R, u))$ $f(e, u)$

Pereche critică: $(f(i(x_1), f(x_1, u)), f(e, u))$

Confluență și perechi critice

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Teorema (Teorema Perechilor Critice *)

Dacă R este noetherian, atunci sunt echivalente:

- R este confluent,
- 2 $t_1 \downarrow_R t_2$ pentru orice pereche critică (t_1, t_2) .

Consecință

Corolar

Confluența unui TRS noetherian este decidabilă.

Algoritm:

- \cdot pt. or. pereche de reguli de rescriere $\emph{l}_1 \rightarrow \emph{r}_1$ și $\emph{l}_2 \rightarrow \emph{r}_2$
- · se încearcă generarea perechilor critice (t_1, t_2)
- · pt. or. pereche critica (t_1,t_2) , se arată că $t_1\downarrow_R t_2$

Exemplu

$$R = \{f(f(x)) \to x\}$$
 este confluent.

Exemplu

$$R = \{f(f(x)) \to x\}$$
 este confluent.

 \square R este noetherian.

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- ☐ *R* este noetherian.
- □ Determinăm perechile critice:

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- \square R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $l_1 = f(f(x)) \rightarrow x = r_1$ și $l_2 = f(f(y)) \rightarrow y = r_2$.

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- \square R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- □ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- \square Perechile critice sunt (y, y) și (f(y), f(y)).

$$R = \{f(f(x)) \rightarrow x\}$$
 este confluent.

- R este noetherian.
- ☐ Determinăm perechile critice:
 - Regulile $I_1 = f(f(x)) \to x = r_1$ și $I_2 = f(f(y)) \to y = r_2$. Subtermenii lui I_1 care nu sunt variabile sunt f(f(x)) și f(x).
 - $t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$ Perechea critică: $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$
 - $t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$ Perechea critică: $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$
- \square Perechile critice sunt (y, y) și (f(y), f(y)).
- \square Deoarece $y \downarrow y$ și $f(y) \downarrow f(y)$, sistemul de rescriere R este confluent.

- □ Procedură pentru a completa un TRS noetherian.
- □ Intrare: R un sistem de rescriere (TRS) noetherian.
- ☐ leşire:
 - \square T un sistem de rescriere (TRS) = completarea lui R.
 - eşec

Terminare

Fie (S, Σ) o signatură, Y mulțime de variabile și R un TRS.

Propoziție (2*)

Sunt echivalente:

- R este noetherian,
- 2 oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$.
- \square Ordine de reducere: t > t' dacă $\mu(t) > \mu(t')$
- \square Relația > se numește ordine de reducere pentru R.

□ INTRARE: R un sistem de rescriere (TRS) noetherian.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:
 - $\blacksquare \mathsf{CP} := \mathsf{CP}(\mathsf{T}) = \{(t_1, t_2) \mid (t_1, t_2) \mathsf{ pereche critică } \mathsf{\hat{n}} \mathsf{ T} \}$

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- Se execută următorii pași, cât timp este posibil:

 - **2** Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - lacktriangle Dacă $t_1\downarrow t_2$, oricare $(t_1,t_2)\in \mathit{CP}$, atunci STOP (T completarea lui R).
 - 3 Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\},$
 - dacă $fn(t_2) > fn(t_1)$ atunci $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$,
 - altfel, STOP (completare eșuată).

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - **2** Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - 3 Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$,
 - dacă $fn(t_2) > fn(t_1)$ atunci $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$,
 - altfel, STOP (completare eșuată).
- ☐ IEŞIRE: T completarea lui R sau eşec.

- □ INTRARE: R un sistem de rescriere (TRS) noetherian.
- \square INIȚIALIZARE: T := R și > ordine de reducere pentru T
- ☐ Se execută următorii pași, cât timp este posibil:

 - 2 Dacă $t_1 \downarrow t_2$, oricare $(t_1, t_2) \in CP$, atunci STOP (*T completarea lui R*).
 - 3 Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$ atunci:
 - dacă $fn(t_1) > fn(t_2)$ atunci $T := T \cup \{fn(t_1) \rightarrow fn(t_2)\}$,
 - dacă $fn(t_2) > fn(t_1)$ atunci $T := T \cup \{fn(t_2) \rightarrow fn(t_1)\}$,
 - altfel, STOP (completare eșuată).
- □ IEŞIRE: T completarea lui R sau eşec.

Atenție! Succesul completării depinde de relația <.

- $\square \ S := \{s\}, \ \Sigma := \{*: ss \to s\}, \ E := \{\forall \{x, y, v\}(x*y)*(y*v) \stackrel{.}{=} y\}$
- □ INIŢIALIZARE:

 - \square $\mu(t) :=$ lungimea termenului t,
 - Ordine de reducere: t > t' ddacă $\mu(t) > \mu(t')$.

Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Exemplu

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v)$$
.

Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x * y), (y * v), (x * y) * (y * v).$$

□ $t := x * y, c = z * (y * v), \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\}$ $\theta(r_1) = y' * v', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v)$ Perechea critică: (y' * v', y' * ((y' * v') * v)).

Exemplu

□ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x*y), (y*v), (x*y)*(y*v).$$

- □ $t := x * y, c = z * (y * v), \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\}$ $\theta(r_1) = y' * v', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v)$ Perechea critică: (y' * v', y' * ((y' * v') * v)).

Exemplı

☐ Determinăm perechile critice pentru

$$l_1 := (x * y) * (y * v), r_1 := y, l_2 := (x' * y') * (y' * v'), r_2 := y'$$

Subtermenii lui l_1 care nu sunt variabile:

$$(x*y), (y*v), (x*y)*(y*v).$$

- □ $t := x * y, c = z * (y * v), \theta := \{x \leftarrow x' * y', y \leftarrow y' * v'\}$ $\theta(r_1) = y' * v', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * v') * v)$ Perechea critică: (y' * v', y' * ((y' * v') * v)).
- $t := (x * y) * (y * v), c = z, \theta := \{x \leftarrow x', y \leftarrow y', v \leftarrow v'\}$ $\theta(r_1) = y', \theta(c)[z \leftarrow \theta(r_2)] = y'$ Perechea critică: (y', y').

Exemplu

☐ Perechile critice:

1
$$(y'*v', y'*((y'*v')*v)),$$

$$(x'*y',(x*(x'*y'))*y'),$$

(y', y').

- □ Perechile critice:

 - (x'*y',(x*(x'*y'))*y'),
 - (y', y').
- □ Avem

 - $\square (x*(v*y))*y>v*y$

Exemplu

- □ Perechile critice:
 - 1 (y' * v', y' * ((y' * v') * v)),2 (x' * y', (x * (x' * y')) * y'),
 - (x * y, (x * (x * y)))
 - (y', y').
- □ Avem

 - $\Box (x*(v*y))*y>v*y$
- Considerăm

$$T := T \cup \{y * ((y * x) * v) \rightarrow y * x, (x * (v * y)) * y \rightarrow v * y\}$$

 \square T este complet si este completarea lui R_E .

Pe săptămâna viitoare!