

Linear Regression, Logistic Regression & Naïve Bayes

04 - ML MODELS

Agenda Today

- > Linear Regression
 - > Gradient Descent
- > Logistic Regression
- > Naïve Bayes

Recap: Bias - Variance tradeoff

- > What is the difference between Bias and Variance?
- > What is the difference between under- and over-fitting?
- > How can we overcome these issues?

Recap: Canonical Types // output size // un/supervised?

How would you tackle the following tasks? What canonical problem type are they? What is their output space size?

- > Assign one of 36 POS tags to each word of a given sentence.
- > Decide if an email is a spam.
- > Determine if a comment is hateful, toxic, threat, insult, or a combination.
- > Automatically extract and assign a set of 10 topics from 1000 documents.
- > Given a comment about a product, predict the score the user gave.

Linear Regression

- > A **Supervised Learning** method
- > Predicting a value $\hat{y} \in \mathbb{R}$ from m features $x \in \mathbb{R}^m$ by learning a linear function: f(x) = y
- > f is of the form: $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 ... = \beta_0 + x^T \beta$

We can estimate the best parameters $\langle \beta_0, \beta_1 \rangle$ by minimizing a loss function.

A possible *loss*: the average of squared errors (MSE) between the true values and the predictions with these parameters:

Simplified case with 2 parameters:

$$\hat{y} = \beta_0 + \beta_1 x_1$$

How to find the best parameters $\langle \beta_0, \beta_1 \rangle$?

- 1. Initialize with random values
- 2. Calculate the Loss: e.g., $\sum_{i=1}^{n} (y_{true} y_{pred})^2$
- 3. Calculate the necessary parameters change.
- 4. Repeat, until the average loss is very small, or the parameter change is minimal.

Simplified case with 2 parameters:

$$\hat{y} = \beta_0 + \beta_1 x_1$$

How to find the best parameters $\langle \beta_0, \beta_1 \rangle$?

- 1. Initialize with random values
- 2. Calculate the Loss: e.g., $\sum_{i=1}^{n} (y_{true} y_{pred})^2$
- 3. Calculate the necessary parameters change.
- 4. Repeat, until the average loss is very small, or the parameter change is minimal.

Linear Regression: Least Mean Squares (LMS)

Parameter Estimation is done through calculating the cost(=loss) function partial derivatives with respect to each β and finding its global minima with a method called:

Gradient Descent

$$\hat{\theta} = \arg\min_{\theta = \langle \beta_0, \beta_1 \rangle} \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - (\beta_0 + x_i^T \beta) \right)^2$$

Optimizing Linear Regression with Gradient Descent

$$> \hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots$$

- > Calculating partial derivatives (gradient)
- > Finding the slope which direction minimizes (descent) the gradients?

And by how much?

(Multiplied by some fraction - Learning Rate)

Gradient Descent

FH Campus Wien

- > Minimizing the partial derivatives (like in high school) to find the global minimum
- > Often is multiplied by some learning-rate if too big – jumps too far if too small – takes too long

12

Learning Rate – too small

Learning Rate – too large

Learning Rate – just right

Two-dimensional

- $> \hat{y} = \beta_0 + \beta_1 x$
- > Minimizing both $\beta_0 \& \beta_1$

cost function

Gradient Descent

Minimizes the cost function by finding the global minima of the derivatives

FH Campus Wien |

Gradient Descent: Recommended Video

✓ FH Campus Wien |

Back to Linear Regression

- > Calculates the best linear fit of the given features
- > Assumes the features are independent (!)
- > Requires numerical features
 - > Which features would you craft for the following problem: Given an essay, predict the student's score (0-100)

Linear Regression - Regularization

- > ML training can cause overfitting.
 - > Q: What would overfitting look like for **Linear** regression?
- > How can we prevent it? Regularization!

$$\widehat{\theta} = \arg\min_{\theta = \langle \beta_0, \beta_1 \rangle} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \left(\beta_0 + x_i^T \beta \right) \right)^2$$

Linear Regression - Regularization

- > ML training can cause overfitting.
 - > What would overfitting look like for **Linear** regression?
- > How can we prevent it?
- L₂ Regularization: Euclidean Distance

$$\widehat{\theta} = \arg\min_{\theta = \langle \beta_0, \beta_1 \rangle} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \left(\beta_0 + x_i^T \beta \right) \right)^2 + \frac{\lambda}{2} \sqrt{\sum_{j=1}^m \beta_j^2}$$

Linear Regression - Regularization

- > ML training can cause overfitting.
 - > What would overfitting look like for **Linear** regression?
- > How can we prevent it?
- L₁ Regularization: Manhattan (Taxicab) Distance

$$\widehat{\theta} = \arg\min_{\theta = \langle \beta_0, \beta_1 \rangle} \frac{1}{2n} \sum_{i=1}^n \left(y_i - \left(\beta_0 + x_i^T \beta \right) \right)^2 + \lambda \sum_{j=1}^m |\beta_j|$$

Binary Logistic Regression

- > Linear Regression: Predict an essay's **score** (e.g., readability)
- > Logistic Regression: Predict a **probability** (Readable or not)

Linear Logistic Regression

- > Gives a **probability** estimation
- > By wrapping the linear function in a non-linear function.

E.g., sigmoid function:

$$y' = \frac{1}{1 + e^{-(w^T x + b)}}$$

> Squishing the linear output through sigmoid

LogOdds (Sum of wX+b)

Linear Logistic Regression – Sigmoid Function

- > Probability vs Odds.
- > Probability: 0...1
- > Odds: $\frac{P}{1-P}$
- > Logistic Function:

Y	1	0
Pr(Y=1)	P	1- P
*D C 1 D E		

*P= Success, 1-P = Failure

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x$$

$$\frac{P}{1-P} = e^{\beta_0 + \beta_1 x}$$

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Linear Logistic Regression - Loss Function

- > In Linear Regression we used Mean Squared Error (MSE).
- > In Logistic Regression we need a different *loss*:

$$Log Loss = \sum_{(x,y)\in D} -ylog(\hat{y}) - (1-y)log(1-\hat{y})$$

> As we reach closer to the side of the bars, the probability gets high quickly.

 $(x,y) \in D$ – data and its labels y – the true label (between 0 and 1) y' – the predicted label (between 0 and 1)

Regularization

- > Regularization is very important in logistic regression modeling.
- > Without it, the loss would go towards 0 in high dimensions (due to the asymptotic nature of logistic regression)
- > Strategies to dampen model complexity:
 - 1. L₂ regularization.
 - 2. Early stopping

- > Problem definition: Estimate if a review is positive or not.
- > Features:
 - 1. count(positive lexicon words ∈ doc)
 - count(negative lexicon words ∈ doc)
 - 3. { 1 "no" found; 0 Otherwise }
 - 4. count(1st and 2nd pronouns ∈ doc)
 - 5. { 1 "!" found; 0 Otherwise }
 - 6. log(word count of doc)

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

```
    count(positive lexicon words ∈ doc)
    count(negative lexicon words ∈ doc)
    {1 - "no" found; 0 - Otherwise }
    count(1st and 2nd pronouns ∈ doc)
    {1 - "!" found; 0 - Otherwise }
    log(word count of doc)
    log(word count of doc)
```


Assuming we have a trained model with the following weights:

$$\sigma = \frac{1}{1 + e^{-(\beta_0 + \beta x)}} \qquad P(y = 1 | x) = \sigma(\beta \cdot x + \beta_0) = \sigma(.833) = 0.70$$

Demo

> A Neural Network Playground (tensorflow.org)

What about multiclass?

- > For k classes, we need k models
- > y will be a 1-hot vector: [0 0 0 1 0 0 0 0 0]
- > Multinomial Logistic Regression

Softmax instead of sigmoid:

$$softmax(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)} = \frac{\exp(w_k \cdot x + b_k)}{\sum_{j=1}^k \exp(w_j \cdot x + b_j)}$$

What about multiclass?

Cross entropy loss:

$$-y \cdot log(p) + (1-y)\log(1-p)$$

Which generalizes to:

$$-\sum_{c=1}^{K} y_c \log(p_c)$$

Softmax instead of sigmoid:

$$softmax(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)} = \frac{\exp(w_k \cdot x + b_k)}{\sum_{j=1}^k \exp(w_j \cdot x + b_j)}$$

Understand the math

> Demo

Linear Logistic Regression – Final Notes

- > Logistic Regression:
 Linear regression wrapped with a non-linear function:
 - > Sigmoid for binary classification
 - > Softmax for multiclass classification

- > Very fast to train
- > Efficient in RAM consumption
- > The basis of Neural Networks

Recommended Read & Watch for Deeper Dive

- > <u>Speech and Language Processing. Daniel Jurafsky & James H.</u> <u>Martin. Chapter 5 – Logistic Regression.pdf</u>
- > Logistic Regression -- Why sigmoid function? (sebastianraschka.com)
- > (17) Softmax Function Explained In Depth with 3D Visuals YouTube
- > https://mlcheatsheet.readthedocs.io/en/latest/logistic_regression.html
- Loss Functions ML Glossary documentation (ml-cheatsheet.readthedocs.io)

Recap: Maximum Likelihood Estimation (MLE)

> Recall your MLE with Christian

Naïve Bayes – an Introduction

- > Similar ideas to MLE
- > A probabilistic classifier
 - > (a generative one)
- > Makes a naïve assumption about the features
- > Assumes feature independence
- > Uses the **Bayes Rule:**

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Bayesian vs Frequentists

Bayesians:

- Conditional Probability
- Belief-based
- A parameter is a random variable
- Handle uncertainty with opinions
- Goal: Update opinions

Frequentists:

- Based on data
- Parameters are static
- Probability =How many times am I right?
- Uncertainty requires data collection (null hypothesis)
- Goal: decide which action to take

FH Campus Wien |

Bayesian vs Frequentists

✓ FH Campus Wien |

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

$$\hat{c} = \arg \max P(c|d) = \arg \max \frac{P(d|c)P(c)}{P(d)}$$

Since our document is the same for all classes, it can be simplified to:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

$$\hat{c} = \arg \max P(c|d) = \arg \max \frac{P(d|c)P(c)}{P(d)}$$

Since our document is the same for all classes, it can be simplified to:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$

Likelihood Prior

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

$$\hat{c} = \arg \max P(c|d) = \arg \max P(\underbrace{sentence}) P(Mary Shelly)$$

Since our document is the same for all classes, it can be simplified to:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$
Likelihood Prior

How are these probabilities obtained?

Classification using Naïve Bayes

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

Since our document is the same for all classes, it can be simplified to:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$
Likelihood Prior

Language data properties

- > Word frequencies follow a "power-law distribution":
 - > Long tail
 - > Most events rarely occur

50 Most Frequent Words in English Writing

Based on Google books data

Zipf Law

frequency of a word is inversely proportional to its rank in the frequency table

$$n(r) \propto \frac{1}{r^z}$$
 $z \approx 1$

Frequency Count

Zipf Law

In a 43M words text, there are:

- 316,710 unique words (types)
- 144,999 words occur only once
- 42,525 words occur 2 times
- 21,618 words occur 3 times
- 13,306 words occur 4 times
- 9,488 words occur 5 times
- 26,024 words appear >50 times

Zipf Law

No matter how large the training corpus is:

- > It's likely to contain previously unseen word forms
- > There will be many previously unseen word-pairs
- > There will be even more previously unseen word-triplets
- > There will be even more previously unseen *sentences*

Representing text as Features

"to be or not to be"

```
Bag of Words (BoW) - word counts:

{ "be": 2, "to": 2, "not": 1, "or": 1, "something": 0, "else": 0 }

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ..., 1, 0, 1, 0, ..., 0)

('a', 'the', 'there', 'to', ..., 'be', 'if', 'an' ..., 'or', 'as', 'not'..., 'zebra' )
```

FH Campus Wien | 53

Representing text as Features

"to be or not to be"

```
Bag of Words (BoW) - word counts:
{ "be": 2, "to": 2, "not": 1, "or": 1, "something": 0, "else": 0 }
```

Reweighting:

```
TF/IDF or Pointwise Mutual Information – PMI { "be": 1.2, "to": 0.1, "not": 0.9, "or": 0.3 }
```

FH Campus Wien

TF / IDF + PMI

{ "be": 2, "to": 2, "not": 1, "or": 1 }

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

$$PMI(a,b) = \log(\frac{P(a,b)}{P(a)P(b)})$$

✓ FH Campus Wien |

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

 $P(sentence \uparrow)P(Mary Shelly)$

(Naively) Assuming feature independence:

```
P(sentence) =
P(The) \times P("fallen") \times
P("angel") \times P("becomes") \times P("a") \times
P("malignant") \times P("devil")
```


> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

 $P(sentence \uparrow)P(Mary Shelly)$

(Naively) Assuming feature independence:

```
P(sentence|Mary Shelly) = P("The"|Mary Shelly) \times P("fallen"|Mary Shelly) \times P("angel"|Mary Shelly) \times P("aesignant"|Mary Shelly) \times P("aesignant"|Mary Shelly) \times P("devil"|Mary Shelly) = <math display="block">\prod_{w \in sentence} P(w|Mary Shelly)
```


What happens if a word doesn't appear in the text at all?

Classification using Naïve Bayes

> Given a document, classify its author:

 $p(Mary\ Shelly\ |\ "The\ fallen\ angel\ becomes\ a\ malignant\ devil")$

 $P(sentence \uparrow)P(Mary Shelly)$

(Naively) Assuming feature independence:

Obtaining an *a-priori* by counting word occurrences per class.

$$P("devil" | Mary Shelly) = \frac{5}{1000} \text{ ``devil'' occurrences}$$
Total words in Mary Shelly documents

Classification using Naïve Bayes - Unseen Words

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

 $P(sentence \uparrow)P(Mary Shelly)$

(Naively) Assuming feature independence:

```
P(sentence|Mary Shelly) = P("The"|Mary Shelly) \times P("fallen"|Mary Shelly) \times P("angel"|Mary Shelly) \times P("becomes"|Mary Shelly) \times P("a"|Mary Shelly) \times P("malignant"|Mary Shelly) \times P("devil"|Mary Shelly) \Rightarrow 0
```


Classification using Naïve Bayes - OoV Solution

> Given a document, classify its author:

p(Mary Shelly | "The fallen angel becomes a malignant devil")

 $P(sentence \uparrow)P(Mary Shelly)$

(Naively) Assuming feature independence:

Obtaining an **a-priori** with Laplace smoothing: Counting word occurrences + 1 per class, divided by all class words + sentence-words.

$$P("devil" | \textit{Mary Shelly}) = \frac{5+1}{1000+7} \text{"devil" occurrences} + \frac{1}{1000+7}$$
Total words in Mary Shell documents + sentence's tokens

Classification using Naïve Bayes - Log Probability

> Working with log probability:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$

For all classes and all words:

$$argmax_{c \in Classes} P(c) \prod_{w \in sentence} P(w_i | c)$$

To ease calculation and speed, we can take logs from both sides:

$$argmax_{c \in Classes} \log P(c) + \sum_{w \in sentence} \log P(w_i | c)$$

Math Recap: Log rules

$$\log_b(MN) = \log_b(M) + \log_b(N)$$

$$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$$

$$\log_b(M^p) = p \log_b(M)$$

Log rules: Justifying the logarithm properties (article) | Khan Academy

FH Campus Wien | 62

Naïve Bayes - Generative

> The bayes formula:

$$\hat{c} = \arg \max P(c|d) = \arg \max P(d|c)P(c)$$

Likelihood Prior

If the prior is known (category/class is given - P(c) = 1), we can generate words based on the Likelihood: P(d|c)

Reminder:

Discriminative $\rightarrow P(class|document)$ or

Generative $\rightarrow P(document|class)$

Naïve Bayes - Generative

On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes

Andrew Y. Ng Computer Science Division University of California, Berkeley University of California, Berkeley Berkeley, CA 94720

Michael I. Jordan C.S. Div. & Dept. of Stat. Berkeley, CA 94720

Naïve Bayes – Final Notes

- > A linear & probabilistic classifier
- > Implementation exists in NLTK & Scikit-Learn (SKL)
- > On SKL one can choose the distribution. The best performance is normally the *Multinomial* Naive Bayes

A Comparison of Event Models for Naive Bayes Text Classification: binomial.dvi (washington.edu)

A Comparison of Event Models for Naive Bayes Text Classification

Andrew McCallum^{‡†}
mccallum@justresearch.com

[‡]Just Research
4616 Henry Street
Pittsburgh, PA 15213

Kamal Nigam[†] knigam@cs.cmu.edu

[†]School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

Naïve Bayes – Final Notes

- > Can act as a discriminative or generative model
- > Still widely used in Linguistics for classification

Sood summary/deeper dive: The Optimality of Naive Bayes – sections: Abstract & Naive Bayes and Augmented Naive Bayes (you can safely ignore the augmented Naïve Bayes)

The Optimality of Naive Bayes

Harry Zhang

Faculty of Computer Science University of New Brunswick Fredericton, New Brunswick, Canada email: hzhang@unb.ca

Dive deeper

- > Bayes theorem, the geometry of changing beliefs YouTube
- > 1.9. Naive Bayes scikit-learn 1.1.3 documentation
- > 6. Learning to Classify Text (nltk.org)
- > <u>Dan Jourafsky's book Chapter 4:</u> https://web.stanford.edu/~jurafsky/slp3/4.pdf