lab5

2024/5/16-5/19

PB22111702 李岱峰

一.实验准备

阅读文档:

任务一:

write a small C program (about 200-300 lines) that simulates the behavior of a cache memory.

任务二:

optimize a small matrix transpose function, with the goal of minimizing the number of cache misses.

根据我在计算机组成原理学到的知识,建立cache模拟器。

根据实验要求,使用LRU最近最少策略,替换最后一次访问时间最久远的那一行,使用构建时间戳的方法。

二.实验过程

1.PartA cache模拟器

参数S:高速缓存组数,E:高速缓存行数,B:每个行是由多少个字节组成的数据块数。

1) 定义cache:

```
typedef struct {
    int valid;//有效位
    int tag;//tag
    int lru;//LRU算法时间戳
} Line;
typedef struct cache_{
    Line **lines;//多路组相连
    int S,E,B;//组数,每组行数,块大小
} Cache;
```

如图定义。

2) LRU实现

```
void update_lru(int s,int index,int tag){//
    cache->lines[s][index].tag = tag;
```

如上,每次更新时,将LRU的时间更新,时间越大说明很长时间没用这个单元,更新的时候就挑这个最大LRU 单元更新。

3) hit与miss

```
for(int i = 0; i < cache->E; i++){
    if(cache->lines[s][i].valid && cache->lines[s][i].tag == tag){
        return 1;
    }
}
```

如上遍历整个cache,在标记为1,tag对应的情况下,说明一次命中,否则没有命中。由于该实验没有考察hit or miss后的运行,故不写。

4) get trace

获取测试内容,统计测试结果

5)测试结果

			V	1	D - C -		1						
				mulator	Reference simulator								
Points	(s,E,b)	Hits	Misses	Evicts	Hits	Misses	Evicts						
2	(1,1,1)	8	8	6	9	8	6	traces/yi2.trace					
2	(4,2,4)	2	5	2	4	5	2	traces/yi.trace					
3	(2,1,4)	2	3	1	2	3	1	traces/dave.trace					
2	(2,1,3)	147	71	67	167	71	67	traces/trans.trace					
0	(2,2,3)	176	42	34	201	37	29	traces/trans.trace					
0	(2,4,3)	188	30	14	212	26	10	traces/trans.trace					
2	(5,1,5)	211	7	0	231	7	0	traces/trans.trace					
4	(5,1,5)	246213	21775	21743	265189	21775	21743	traces/long.trace					
15													
TEST_CSIM_RESULTS=15													
	W0270 C		/	/1 - L F / -		h							

如上,出问题了,不是满分。

ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout\$./test-csim												
	Your simulator		Reference simulator									
Points (s,E,b) Hits	Misses	Evicts	Hits	Misses	Evicts						
3 (1,1,1) 9	8	6	9	8	6	traces/yi2.trace					
3 (4,2,4) 4	5	2	4	5	2	traces/yi.trace					
3 (2,1,4) 2	3	1	2	3	1	traces/dave.trace					
3 (2,1,3) 167	71	67	167	71	67	traces/trans.trace					
0 (2,2,3) 196	42	34	201	37	29	traces/trans.trace					
0 (2,4,3) 208	30	14	212	26	10	traces/trans.trace					
3 (5,1,5) 231	7	0	231	7	0	traces/trans.trace					
6 (5,1,5) 265189	21775	21743	265189	21775	21743	traces/long.trace					
21												
TEST CSIM RESULTS=21												

修复一部分问题,M型读取应该是两次access

//if(cache->lines[s][i].lru < cache->lines[s][index].lru)这行替换策略错误,该测试认为LRU中,除被访问结点外的所有有效结点的lru_time都应加1,而不是只有最新访问点后的部分结点时间加一。实测miss数确实变小了,说明所有结点都加1更有效。我考虑是由于防止时间混乱,保持整体性设计的。

```
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-csim
                        Your simulator
                                          Reference simulator
 Points (s,E,b)
                  Hits Misses Evicts
                                         Hits Misses Evicts
     3 (1,1,1)
                    9
                             8
                                    6
                                            9
                                                   8
                                                            6 traces/yi2.trace
                             5
                                                   5
                                                           2 traces/yi.trace
     3(4,2,4)
                    4
                                    2
                                            4
                                            2
                     2
                            3
                                                   3
     3(2,1,4)
                                    1
                                                            1
                                                              traces/dave.trace
     3(2,1,3)
                   167
                            71
                                   67
                                          167
                                                   71
                                                           67
                                                               traces/trans.trace
     3(2,2,3)
                   201
                            37
                                    29
                                          201
                                                   37
                                                           29 traces/trans.trace
                   212
                                   10
                                          212
     3(2,4,3)
                            26
                                                   26
                                                           10 traces/trans.trace
     3 (5,1,5)
                   231
                                    0
                                          231
                                                            0 traces/trans.trace
     6 (5,1,5)
                265189
                        21775
                                 21743 265189 21775 21743 traces/long.trace
     27
 TEST CSIM RESULTS=27
○ ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ||
```

2.PartB 矩阵乘法

要求:在trans.c中编写矩阵转置函数,根据书中内容,我们要编写"对于cache友好"的程序。

```
32×32: 8points if m < 300, 0 points if m > 600 64×64: 8points if m < 1,300, 0 points if m > 2,000 61×67: 10points if m < 2,000, 0 points if m > 3,000
```

1)32*32

根据空间局部性和数组存储规则,数组同一行的数据是相邻的,按行读后如果按列赋值,那么就会是一整个列的miss。所以我们要尽可能避免按列操作。同时,我们的cache规定为(5,1,5),意味着32路直接映射,每行32字节,一个int为4字节,所以每行8个int。

```
void trans(int M, int N, int A[N][M], int B[M][N])
{
  int i, j, tmp;
```

```
for (i = 0; i < N; i++) {
    for (j = 0; j < M; j++) {
        tmp = A[i][j];
        B[j][i] = tmp;
    }
}</pre>
```

这是提供的朴素的写法,可以见到B每次写都对应大量miss。

由于对全局变量有限制,写操作也没有办法绕过高速缓存限制,所以考虑分块转置。将大矩阵分成与cache大小接近的块,一块一块转置。比如,将A矩阵第一行读进来,32*32的矩阵一行32个元素,占用cache4行,cache还剩28行,用这28行来写B,其中B的第一列第一个元素miss后,他的右侧相邻元素应该也进入cache,每次miss进入8个元素,为B的0-8列,这些对应A的0-8行,且B的miss能保证miss有28次而不会覆盖有效信息,这意味着B的第一例无法完全读进来,只能分块读取。

也就是说,对于32*32位矩阵,我们对矩阵进行分块,8*8元素进行分块,我们获得a[0][0]-a[0][7],然后将这些元素存入b[0][0]-b[7][0],然后获得a[1][0]-a[1][7],存入b[0][1]-b[7][1],依次类推,可以减少大量的miss,只有第一行一列出现miss,剩下的元素都能在cache中找到。

```
Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1765, misses:288, evictions:256

Function 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (Simple row-wise scan transpose): hits:869, misses:1184, evictions:1152

Summary for official submission (func 0): correctness=1 misses=288

TEST_TRANS_RESULTS=1:288
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$
```

miss 288次 满分

然而测试64*64, miss 4612次

2)64*64

根据32*32解法显然是失败的。由于61*67,分块只能进一步精细,否则8*8分块后没有起到优化效果,每4行就会出现大量miss。

将每个8*8分块再次细分为4个小块处理。这样就保证了最高的利用率。

```
trans.c
• ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-trans -M 64 -N 64

Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:9017, misses:1228, evictions:1196

Function 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (Simple row-wise scan transpose): hits:3473, misses:4724, evictions:4692

Summary for official submission (func 0): correctness=1 misses=1228

TEST_TRANS_RESULTS=1:1228
• ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ []
```

3)61*67

```
使用第一部分代码即可
```

```
trans.c

ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-trans -M 61 -N 67

Function 0 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

func 0 (Transpose submission): hits:6386, misses:1793, evictions:1761

Function 1 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

func 1 (Simple row-wise scan transpose): hits:3755, misses:4424, evictions:4392

Summary for official submission (func 0): correctness=1 misses=1793

TEST TRANS RESULTS=1:1793
```

实验结果

缺少python2环境,无法运行driver.py,故每一部分截图如下:

```
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$
• ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-csim
                        Your simulator
                                         Reference simulator
 Points (s,E,b)
                  Hits Misses Evicts
                                         Hits Misses Evicts
     3 (1,1,1)
                            8
                                    6
                                            9
                                                   8
                                                           6 traces/yi2.trace
                     9
                             5
                                                           2 traces/yi.trace
      3(4,2,4)
                                    2
                                            4
                                                    5
      3(2,1,4)
                     2
                            3
                                    1
                                            2
                                                   3
                                                           1 traces/dave.trace
     3(2,1,3)
                   167
                            71
                                   67
                                          167
                                                   71
                                                          67 traces/trans.trace
     3(2,2,3)
                   201
                            37
                                   29
                                          201
                                                   37
                                                           29 traces/trans.trace
     3(2,4,3)
                   212
                            26
                                   10
                                          212
                                                   26
                                                          10 traces/trans.trace
     3 (5,1,5)
                   231
                            7
                                    0
                                          231
                                                   7
                                                            0 traces/trans.trace
     6 (5,1,5) 265189 21775
                                21743 265189 21775 21743 traces/long.trace
     27
 TEST_CSIM_RESULTS=27
oubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ☐
```

```
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-trans -M 32 -N 32
Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1765, misses:288, evictions:256
Function 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (Simple row-wise scan transpose): hits:869, misses:1184, evictions:1152
Summary for official submission (func 0): correctness=1 misses=288
TEST TRANS RESULTS=1:288
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-trans -M 64 -N 64
 Function 0 (2 total)
 Step 1: Validating and generating memory traces
 Step 2: Evaluating performance (s=5, E=1, b=5)
 func 0 (Transpose submission): hits:9017, misses:1228, evictions:1196
 Function 1 (2 total)
 Step 1: Validating and generating memory traces
 Step 2: Evaluating performance (s=5, E=1, b=5)
 func 1 (Simple row-wise scan transpose): hits:3473, misses:4724, evictions:4692
 Summary for official submission (func 0): correctness=1 misses=1228
 TEST TRANS RESULTS=1:1228
oubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ☐
CSIIII.C
ubuntu@VM8378-fengli-ics:~/csapp/lab5/cachelab-handout$ ./test-trans -M 61 -N 67
Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:6386, misses:1793, evictions:1761
Function 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (Simple row-wise scan transpose): hits:3755, misses:4424, evictions:4392
Summary for official submission (func 0): correctness=1 misses=1793
TECT TOANS DESILITS-1.1702
```