Ve216 Introduction to Signals and Systems: Summary April 22, 2018, 10:55 Yong Long, UM-SJTU Joint Institute (Based on Lecture Notes by Prof. Jeffrey A. Fessler)

Signals and Systems: Summary 1

- Circuits: $v(t) = Ri(t), v(t) = L\frac{\mathrm{d}}{\mathrm{d}t}i(t), i(t) = C\frac{\mathrm{d}}{\mathrm{d}t}v(t)$ Notation: $x(t) = \begin{cases} e^{-t}, & t > 2, \\ 0, & \text{otherwise} \end{cases} = e^{-t}u(t-2)$
- Time transformation:
 - $x\left(\frac{t-t_0}{w}\right)$. First scale according to w, then shift according to t_0 . x(at-b). First time-delay by b, then time-scale by a

- Integrator system $y(t) = \int_{-\infty}^t x(\tau) d\tau = x(t) * u(t)$ Even symmetry: x(-t) = x(t), Odd symmetry: x(-t) = -x(t)• Ev $\{x(t)\} = \frac{1}{2}(x(t) + x(-t))$, Od $\{x(t)\} = \frac{1}{2}(x(t) x(-t))$, $x(t) = \text{Ev }\{x(t)\} + \text{Od }\{x(t)\}$.
- Average value: $A \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$
- Energy: $E \stackrel{\triangle}{=} \int_{-\infty}^{\infty} |x(t)|^2 dt$
- Average power: $P \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$ Energy signal: $E < \infty, P = 0$. Power signal: $E = \infty, 0 < P < \infty$. Power of periodic signal: $P = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt$

- Step function: u(t) = 1 for t > 0.
- Rect function: rect(t) = 1 for -1/2 < t < 1/2, rect(t) = u(t+1/2) u(t-1/2) = u(t+1/2)u(1/2-t)
- Impulse functions
 - Sifting property: $\int_{-\infty}^{\infty} x(t)\delta(t-t_0)\,dt = x(t_0)$ if x(t) is continuous at t_0
 - Sampling property: $x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$ if x(t) is continuous at t_0 unit area property: $\int_{-\infty}^{\infty}\delta(t-t_0)\,dt=1$ for any t_0 scaling property: $\delta(at+b)=\frac{1}{|a|}\delta(t+b/a)$ for $a\neq 0$.

 - symmetry property: $\delta(t) = \delta(-t)$
 - support property: $\delta(t-t_0)=0$ for $t\neq t_0$
 - \bullet relationships with unit step function: $\delta(t)=\frac{\mathrm{d}}{\mathrm{d}t}u(t),\,u(t)=\int_{-\infty}^t\delta(\tau)\,d\tau$

Continuous-time system properties

- Stability (BIBO): all bounded input signals produce bounded output signals
- Invertibility: each output signal is the response to only one input signal
- Causal: output signal value y(t) at any time t depends only on present and past input signal values.
- Static (memoryless): output at any time only depends on input signal at the same time. (otherwise dynamic)
- Time invariant:

- $x(t) \xrightarrow{\mathcal{T}} y(t)$ implies that $x(t-t_0) \xrightarrow{\mathcal{T}} y(t-t_0)$
- Recipe for showing time-invariance.
 - Determine output signal y(t) due to a generic input signal x(t).
 - Determine the delayed output signal $y(t-t_0)$, by replacing t with $t-t_0$ in y(t) expression.
 - Determine output signal $y_d(t)$ due to a delayed input signal $x_d(t) = x(t t_0)$.
 - If $y_d(t) = y(t t_0)$, then system is time-invariant.
- Linear systems:

 - superposition property: $\mathcal{T}[\sum_k a_k x_k(t)] = \sum_k a_k \mathcal{T}[x_k(t)]$ additivity property: $\mathcal{T}[x_1(t) + x_2(t)] = \mathcal{T}[x_1(t)] + \mathcal{T}[x_2(t)]$
 - scaling property: $\mathcal{T}[ax(t)] = a\mathcal{T}[x(t)]$

LTI systems

input-output relationship described by convolution integral:

$$y(t) = \int_{-\infty}^{\infty} x(t-\tau)h(\tau) d\tau = \int_{-\infty}^{\infty} h(t-\tau)x(\tau) d\tau$$

Properties:

- Commutative property: x(t) * h(t) = h(t) * x(t)
- Associative property: $[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$
- Distributive property: $x(t) * [h_1(t) + h_2(t)] = [x(t) * h_1(t)] + [x(t) * h_2(t)]$
- The order of serial connection of LTI systems does not affect the overall impulse response.
- $\bullet \ x(t) * \delta(t) = x(t)$
- Delay property: $x(t) * \delta(t t_0) = x(t t_0)$
- $\delta(t-t_0) * \delta(t-t_1) = \delta(t-t_0-t_1)$
- Time-invariance: If y(t) = x(t) * h(t), then $x(t t_0) * h(t t_1) = y(t t_0 t_1)$

LTI system properties

- causal: h(t) = 0 for all t < 0

- static: $h(t) = k\delta(t)$, otherwise dynamic stable: $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ invertible: $h(t) * h_i(t) = \delta(t)$ for some $h_i(t)$ If h(t) * x(t) = 0 for some nonzero signal x(t), then not invertible
- \bullet step response: $h(t) = \frac{\mathrm{d}}{\mathrm{d}t} s(t),$ where $u(t) \stackrel{\mathrm{LTI}}{\longrightarrow} s(t)$

Linear, constant coefficient, differential equation systems

- LTI and causal if initially at rest
- dynamic unless N = M = 0
- homogenous solution, natural response: $y_h(t) = \sum_l C_l e^{s_l t}$, where s_l 's are the N roots of the characteristic polynomial $\sum_{k=0}^N a_k s^k = 0$.

 • particular solution, forced response: $y_p(t) = P_0 x(t) + P_1 \frac{\mathrm{d}}{\mathrm{d}t} x(t) + \cdots$

Signals and Systems: Summary 2

Fourier Series

- Analysis equation: $c_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\omega_0 t} dt, \ k = 0, \pm 1, \pm 2, \dots$
- DC value: $c_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt$.
- Synthesis equation: $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$
- Combined trigonometric form: $x(t) = c_0 + \sum_{k=1}^{\infty} 2 |c_k| \cos(k\omega_0 t + \angle c_k)$, if x(t) is real. Trigonometric form: $x(t) = c_0 + 2 \sum_{k=1}^{\infty} A_k \cos(k\omega_0 t) B_k \sin(k\omega_0 t)$, where $A_k = \operatorname{real}\{c_k\}$ and $B_k = \operatorname{Imag}(c_k)$

Convergence properties

- Error signal $e_N(t) = x(t) x_N(t)$ where $x_N(t) = \sum_{k=-N}^{N} c_k e^{jk\omega_0 t}$ when c_k 's chosen according to above FS analysis
- Error signal energy $E_N = \int_{T_0} |e_N(t)|^2 dt \to 0$ as $N \to \infty$, provided x(t) square integrable: $\int_{T_0} |x(t)|^2 dt < \infty$
- ullet $e_N(t) o 0$ as $N o \infty$ provided Dirichlet conditions hold
- Near the discontinuity there will usually be overshoot and/or undershoot that persists even as N increases, which is called Gibbs phenomenon.

One-signal properties (Fourier series transformations)

- Amplitude transformation: $ax(t) + b \leftrightarrow \begin{cases} b + ac_0, & k = 0 \\ ac_k, & k \neq 0. \end{cases}$ Time transformation: $x(at + b) \leftrightarrow \begin{cases} c_k e^{jk\omega_0 b}, & a > 0 \\ c_{-k} e^{jk\omega_0 b}, & a < 0. \end{cases}$ Time shift: $x(t t_0) \leftrightarrow c_0 e^{-jk\omega_0 t_0}$
- Time shift: $x(t-t_0) \leftrightarrow c_k e^{-jk\omega_0 t_0}$
- Conjugation: $[x(t)]^* \leftrightarrow c_{-k}^*$
- Complex modulation (frequency shift): $x(t)e^{j\omega_0tN} \leftrightarrow c_{k-N}$
- Differentiation: $y(t) = \frac{d}{dt}x(t) \leftrightarrow jk\omega_0 c_k$

Properties

- If x(t) is real, then $c_{-k} = c_k^*$.
- Linearity (add coefficients if same period T_0)
- Multiplication $c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$. (discrete convolution) Parseval's theorem:
- Filtering: see below
- Circular convolution: skip
- Total harmonic distortion: THD = $(1 2|c_1|^2/P) \cdot 100\%$ Magnitude spectrum: $|c_k|$. Phase spectrum: $\angle c_k$
- Power of $ce^{jk\omega_0t}$ is $|c|^2$
- Power of $A\cos(\omega t + \phi)$ is $A^2/2$

P =
$$\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

• Power density spectrum: $|c_k|^2$

Foundations of Filtering

- $x(t) = e^{st} \xrightarrow{\text{LTI}} y(t) = H(s)e^{st}$ Laplace transform of h(t), aka system function: $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} \, dt$
- $x(t) = e^{j\omega t} \xrightarrow{\text{LTI}} y(t) = H(j\omega)e^{j\omega t} = |H(j\omega)|e^{j(\omega t + \angle H(j\omega))}$
- Fourier transform of h(t), aka frequency response: $H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt = H(s)|_{s=j\omega} = |H(j\omega)|e^{j\angle H(j\omega)}$
- $x(t) = \sum_k c_k e^{j\omega_k t} \xrightarrow{\mathrm{LTI}} y(t) = \sum_k c_k H(j\omega_k) e^{j\omega_k t}$ If h(t) is real, then $H^*(s) = H(s^*)$ and $H(-j\omega) = H^*(j\omega)$. (Hermitian symmetry)
- If h(t) is real, $x(t) = \cos(\omega t + \phi) \xrightarrow{\text{LTI}} y(t) = |H(j\omega)| \cos(\omega t + \phi + \angle H(j\omega))$ $x(t) = \sum_k A_k \cos(\omega_k t + \phi_k) \rightarrow \boxed{\text{LTI } h(t)} \rightarrow y(t) = \sum_k A_k |H(j\omega_k)| \cos(\omega_k t + \phi_k + \angle H(j\omega_k))$

Fourier Transform

- Fourier transform (analysis): $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{j\omega t} dt$.
- Inverse Fourier transform (synthesis): $f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}\,d\omega$
- The FT of a signal f(t) exists (converges) if f(t) is absolutely integrable, i.e., $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. (more rigorously, f(t)satisfies the Dirichlet conditions)
- For periodic signals: $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \overset{\mathcal{F}}{\longleftrightarrow} X(\omega) = \sum_{k=-\infty}^{\infty} c_k 2\pi \delta(\omega k\omega_0).$ $x(t) = \sum_{n=-\infty}^{\infty} g(t-nT_0) \overset{\mathcal{F}}{\longleftrightarrow} X(\omega) = \sum_{k=-\infty}^{\infty} \omega_0 G(k\omega_0) \delta(\omega k\omega_0)$ Energy density spectrum: $|X(\omega)|^2$

$$f(t) = f_R^e(t) + jf_I^e(t) + f_R^o(t) + jf_I^o(t)$$

• Energy over a spectral band: $E_B = \frac{1}{2\pi} \int_B |X(\omega)|^2 d\omega$ • Symmetry properties $\uparrow f(t) = f_R^e(t) + jf_I^e(t) + f_R^o(t) + jf_I^o(t)$ • $f(\omega) = f_R^e(\omega) + jf_I^e(\omega) + f_R^o(\omega) + jf_I^o(\omega)$

Filtering

- Convolution property: $x(t) \xrightarrow{\text{LTI}} y(t) = h(t) * x(t) \xleftarrow{\mathcal{F}} Y(\omega) = H(\omega)X(\omega)$ $e^{j\omega_0 t} \rightarrow h(t) \rightarrow y(t) = h(t) * e^{j\omega_0 t} = H(\omega_0)e^{j\omega_0 t}$
- Partial fraction expansion: $X(s) = \frac{1}{(s+a)(s+b)} = \frac{r_1}{s+a} + \frac{r_2}{s+b}$, where $r_1 = (s+a)X(s)|_{s=-a} = \frac{1}{-a+b}$.
- Frequency response of diffeq system $\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t)$, corresponds to $H(\omega) = \frac{\sum_{k=0}^{M} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}$
- MATLAB: freqs, impulse, tf, lsim, residue
- For symmetric spectra, root mean-squared bandwidth or RMS bandwidth is $\omega_{\rm rms} \stackrel{\triangle}{=} \sqrt{\frac{\int_{-\infty}^{\infty} \omega^2 |X(\omega)|^2 d\omega}{\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega}}$
- For symmetric signals, root mean-squared time duration or RMS time duration is $\tau_{\rm rms} \stackrel{\triangle}{=} \sqrt{\frac{\int_{-\infty}^{\infty} t^2 |x(t)|^2 dt}{\int_{-\infty}^{\infty} |x(t)|^2 dt}}$
- A signal cannot be localized in both time and in frequency: $\omega_{\rm rms} \tau_{\rm rms} \geq \frac{1}{2}$.

Signals and Systems: Summary 3

Sampling

- Impulse train sampling: $x_s(t) = x(t) \left[\sum_{n=-\infty}^{\infty} \delta(t nT_s) \right] \stackrel{\mathcal{F}}{\longleftrightarrow} X_s(\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\omega k\omega_s).$ If x(t) is bandlimited to $\pm \omega_{\max}$, then one can recover x(t) from its samples $x(nT_s)$ (or equivalently from $x_s(t)$) if $\omega_s(t)$ exceeds the Nyquist sampling rate $2\omega_{\rm max}$.
- A lowpass filter with cutoff frequency $\omega_{\max} < \omega_c < \omega_s \omega_{\max}$ will recover $X(\omega)$ from $X_s(\omega)$ and hence x(t) from $x_s(t)$.
- In time domain:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\omega_c T_s}{\pi} \operatorname{sinc}\left(\frac{\omega_c (t - nT_s)}{\pi}\right)$$

• More generally, for a periodic signal p(t) with fundamental frequency ω_0 :

$$y(t) = x(t)p(t) = x(t)\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega) = \sum_{k=-\infty}^{\infty} c_k X(\omega - k\omega_0),$$

for which the sampling requirements in general depend on c_k 's

• Non-sinc interpolation:

$$x_s(t) \to h_1(t) \to y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega) = X_s(\omega)H_1(\omega)$$

Modulation

- Double sideband suppressed carrier amplitude modulation or DSB/SC-AM.
 - Modulation property $y(t) = x(t)c(t) = x(t)\cos(\omega_c t + \theta_c) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega) = \frac{1}{2}[e^{j\theta_c}X(\omega \omega_c) + e^{-j\theta_c}X(\omega + \omega_c)]$
 - Synchronous demodulation:

$$y(t) \to \bigotimes_{\uparrow} \to w(t) \to \boxed{H(\omega) = 2 \operatorname{rect}\left(\frac{\omega}{2\omega_{\max}}\right)} \to x(t),$$

 $\cos(\omega_c t + \theta_c)$

where ω_{max} is the maximum frequency of $M(\omega)$.

$$W(\omega) = \frac{1}{4}e^{2j\theta_c}X(\omega - 2\omega_c) + \frac{1}{2}X(\omega) + \frac{1}{4}e^{-2j\theta_c}X(\omega + 2\omega_c)$$

- DSB/WC-AM(with carrier)
 - Modulation property: $y(t) = (A + x(t))\cos(\omega_c t) \overset{\mathcal{F}}{\longleftrightarrow} Y(\omega) = A\pi[\delta(\omega \omega_c) + \delta(\omega + \omega_c)] + \frac{1}{2}[X(\omega \omega_c) + X(\omega + \omega_c)]$ Asynchronous demodulation: $y(t) \to \boxed{\text{Envelop detector}} \to \boxed{\text{DC blocking filter}} \to \hat{x}(t)$ Two basic assumptions are required, so that the envelop is easily tracked.

 - - x(t) be positive. Solution: x(t) + A.
 - x(t) vary slowly compared to ω_c .
- Frequency-division multiplexing
 - Different stations are allocated different carrier frequencies, separated by (at least) the allowed bandwidth of each station.
 - Superheterodyning receiver

$$y(t)
ightarrow egin{aligned} & ext{tunable bandpass at } \omega_c, 900 \text{kHz wide} \end{aligned}
ightarrow egin{aligned} & ext{mix at } \omega_0 = \omega_c + \omega_{\mathrm{IF}} \end{aligned}
ightarrow egin{aligned} & ext{bandpass at } \omega_{\mathrm{IF}}/2\pi = 455 \text{kHz} \pm 5 \text{kHz} \end{aligned}$$
 $ightarrow & ext{asynchronous demodulate} \end{aligned}
ightarrow audio$

Bilateral Laplace transform

- $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt = \mathcal{F}\{x(t)e^{-\sigma t}\}, s = \sigma + j\omega$
- ROC is subset of $\mathbb C$ where $x(t)e^{-\operatorname{real}\{s\}\,t}$ is absolutely integrable
- ROC is "strips" (including RHP or LHP or all of C)
 - ROC never contains poles
 - ROC of bounded finite signal is C
 - ROC of right-sided signal is a RHP
 - ROC of left-sided signal is a LHP
 - ROC of two-sided signal is a strip
 - ROC of rational LT is strip bounded by poles
- $X(\omega) = X(s)|_{s=j\omega}$ if ROC includes $j\omega$ axis
- pole-zero plots + gain + ROC describe rational LT
- For rational H(s):
 - pole locations describe modes of system
 - system is stable if ROC of H(s) includes $j\omega$ axis
 - system is causal if ROC is a RHP
 - a causal system is stable iff all poles within LHP
 - if M > N, then there are M N poles at $s = \infty$, so system is unstable and non-causal.
- PFE for inverse LT when rational
- magnitude, phase response from pole-zero by geometry (draw vectors from pole/zero to $(0, j\omega)$, angle counter-clock wise from real axis)

Methods for finding response y(t) of LTI system due to input x(t)

- Convolution $x(t) \xrightarrow{\text{LTI}} y(t) = x(t) * h(t)$
- LTI/convolution properties, e.g. if $x_1(t) \xrightarrow{\text{LTI}} y_1(t)$, and $x_2(t) \xrightarrow{\text{LTI}} y_2(t)$, then

$$x(t) = a_1 x_1(t - t_1) + a_2 x_2(t - t_2) \xrightarrow{\text{LTI}} y(t) = a_1 y_1(t - t_1) + a_2 y_2(t - t_2).$$

• Impulse properties (for finite set of impulses):

$$x(t) = \sum_{k=1}^{n} a_k \delta(t - t_k) \xrightarrow{\text{LTI}} y(t) = \sum_{k=1}^{n} a_k h(t - t_k)$$

- Eigenfunctions $x(t) = e^{s_0 t} \xrightarrow{\text{LTI}} y(t) = H(s_0)e^{s_0 t}$
- $x(t) = e^{j\omega t} \xrightarrow{\text{LTI}} y(t) = H(j\omega)e^{j\omega t} = |H(j\omega)|e^{j(\omega t + \angle H(j\omega))}$
- $x(t) = \sum_{k} c_k e^{j\omega_k t} \xrightarrow{\text{LTI}} y(t) = \sum_{k} c_k H(j\omega_k) e^{j\omega_k t}$
- If h(t) is real, then $x(t) = \cos(\omega t + \phi) \xrightarrow{\text{LTI}} y(t) = |H(j\omega)| \cos(\omega t + \phi + \angle H(j\omega))$ $x(t) = \sum_{k} A_k \cos(\omega_k t + \phi_k) \rightarrow \boxed{\text{LTI } h(t)} \rightarrow y(t) = \sum_{k} A_k |H(j\omega_k)| \cos(\omega_k t + \phi_k + \angle H(j\omega_k))$
- Fourier series $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \xrightarrow{\text{LTI}} y(t) = \sum_{k=-\infty}^{\infty} c_k H(jk\omega_0) e^{jk\omega_0 t}$
- Fourier transform convolution property $X(\omega) \xrightarrow{\text{LTI}} Y(\omega) = X(\omega)H(\omega)$. (Useful whenever $Y(\omega) = X(\omega)H(\omega)$ easily inverted.)
- Laplace transform convolution property $X(s) \xrightarrow{\text{LTI}} Y(s) = X(s)H(s)$. (Best for rational X(s) and X(s)) and X(s)0.)

LTI system properties

	Time	Fourier	Laplace (rational)
Invertible	$h(t) * h_i(t) = \delta(t)$, for some $h_i(t)$	$\forall \omega, \ H(\omega) \neq 0$	no zeros on $j\omega$ axis
Causal	h(t) = 0 for t < 0	?	ROC is a RHP
Stable	$\int_{-\infty}^{\infty} h(t) dt < \infty$?	ROC includes $j\omega$ axis
Memory	$h(t) \neq \delta(t)$	$H(\omega)$ not constant	H(s) not constant

Table of Laplace transform pairs

f(t)	F(s)	ROC
$\delta(t)$	1	$\forall s$
u(t)	$\frac{1}{s}$	$real\{s\} > 0$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$real\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\} < \operatorname{real}\{-a\}$
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$

f(t)	F(s)	notes
$\sin(\omega_0 t) u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$real\{s\} > 0$
$\cos(\omega_0 t) u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$real\{s\} > 0$
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$u_n(t) = \frac{d^n}{dt^n} \delta(t)$	s^n	$\forall s$
$u_{-n}(t) = \underbrace{u(t) * \dots * u(t)}_{}$	$\frac{1}{s^n}$	$real\{s\} > 0$
n times		

Properties of the Laplace Transform

	Time	Laplace	ROC (of result)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	contains $ROC_1 \cap ROC_2$
Time shift	f(t- au)	$e^{-s\tau}F(s)$	same
Time-scaling	$f(at), a \neq 0$	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	ROC/a
Time reversal	f(-t)	F(-s)	-ROC
Convolution	$f_1(t) * f_2(t)$	$F_1(s) \cdot F_2(s)$	contains $\mathrm{ROC}_1 \cap \mathrm{ROC}_2$
Frequency shift	$f(t)e^{j\omega_0t}$	$F(s-j\omega_0)$	same
Frequency shift	$f(t)e^{s_0t}$	$F(s-s_0)$	$ROC + real\{s_0\}$
Time Differentiation	$\frac{d^n}{dt^n}f(t)$	$s^n F(\omega)$	contains ROC
s-domain Differentiation	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{d^n}{ds^n}F(\omega)$	same
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{s}F(s)$	contains $ROC \cap \{real\{s\} > 0\}$
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$		must contain s = 0

Table of Fourier Series for Common Signals

Table of Fourier Series for Common Signats				
Name	Waveform	c_0	$c_k, k \neq 0$	Comments
Sawtooth	$X(t)$ X_0	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$	
	$\uparrow x(t)$	2	$3 2\pi \kappa$	
Impulse train	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{T_0}$	$rac{X_0}{T_0}$	
Rectangular wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{TX_0}{T_0}$	$\frac{TX_0}{T_0}\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$	$\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$
Square wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$-j\frac{2X_0}{\pi k}$	$c_k = 0, k$ even
Triangular wave sine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$c_k = 0, k$ even

Table of Fourier transform pairs

Table of Fourier transform pairs			
f(t)	$F(\omega)$		
$\delta(t)$	1		
1	$2\pi\delta(\omega) = \delta\!\left(\frac{\omega}{2\pi}\right)$		
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$		
$\operatorname{sgn}(t)$	$rac{2}{j\omega}$		
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
$\cos \omega_0 t$	$\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$		
$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega-\omega_0) - \frac{\pi}{j}\delta(\omega+\omega_0)$		
e^{-bt^2}	$\sqrt{\pi/b} \mathrm{e}^{-\omega^2/(4b)}$		
$\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$	$\sum_{k=-\infty}^{\infty} \omega_0 \delta(\omega - k\omega_0)$		

f(t)	$F(\omega)$
$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$
$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$
$\mathrm{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
$\frac{\omega_0}{2\pi}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$
$\operatorname{sinc}^2(t)$	$\operatorname{tri}\!\left(\frac{\omega}{2\pi}\right)$
$e^{-at} u(t)$	$\frac{1}{i\omega + a}$
$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(j\omega+a)^n}$
$\frac{j}{\pi t}$	$\mathrm{sgn}(\omega)$

b is a real positive number throughout. a is a real or complex number throughout, with positive real part.

Properties of the Continuous-Time Fourier Transform

	Time	Fourier
Synthesis, Analysis	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$ $h(t) * e^{j\omega_0 t} = H(\omega_0) e^{j\omega_0 t}$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$
Eigenfunction	$h(t) * e^{j\omega_0 t} = H(\omega_0)e^{j\omega_0 t}$	$H(\omega)2\pi\delta(\omega-\omega_0)$
		$=H(\omega_0)2\pi\delta(\omega-\omega_0)$
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
Time transformation	$f(at+b), a \neq 0$	$\frac{1}{ a }e^{j\omega b/a}F(\omega/a)$
Time shift	f(t- au)	$F(\omega)e^{-j\omega\tau}$
Time reversal	f(-t)	$F(-\omega)$
Time-scaling	$f(at), a \neq 0$	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
Convolution	$f_1(t) * f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$
Time-domain Multiplication	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
Modulation (cosine)	$f(t)\cos(\omega_0 t)$	$\frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$
Time. Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
Freq. Differentiation	$(-jt)^n f(t)$	$\frac{\frac{d^n}{d\omega^n}F(\omega)}{\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)}$
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{i\omega}F(\omega) + \pi F(0)\delta(\omega)$
Conjugation	$f^*(t)$	$F^*(-\omega)$
Duality	F(t)	$2\pi f(-\omega)$
Relation to Laplace	$F(\omega) = \left. F(s) \right _{s=j\omega}$, if ROC includes $j\omega$ axis	
Parseval's Theorem	$\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$	
Parseval/Rayleigh Theorem	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$	
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$	

A function that satisfies $f(t) = f^*(-t)$ is said to have **Hermitian symmetry**.

Topics

Chap. 1

- signal classes
- signal notation
- * time transformations
- amplitude transformations
- signal operations
- integrator system (running integral operation)
- * even/odd signals
- * energy and power signals
- periodicity
- * unit step / rect signals
- * unit impulse function
- * impulse function properties (sifting, sampling)
- CT systems
- block diagrams
- system classes
- * amplitude properties: linearity, stability, invertibility
- * time properties: causality, memory, time-invariance

Chap. 2

- impulse response h(t)
- convolution for CT LTI systems
- * graphical convolution
- * properties of convolution and LTI systems
- impulse response vs step response
- * properties of convolution and impulse response
- LTI system properties characterized by h(t) (causality, memory, stability, invertibility)
- · diffeq systems
- solutions of diffeq

Ch. 3

- eigenfunctions of LTI systems (complex-exponential signals)
- * Fourier series (3.3)
- Convergence of Fourier series (Gibbs phenomenon)(3.4)
- Properties of Fourier series (3.5)
- trigonometric forms of FS
- system transfer function (Laplace)
- frequency response (Fourier)
- Parsevals Relation for CT Periodic Signals(3.5.7)
- Power density spectrum
- magnitude/phase spectrum
- * Fourier Series and LTI Systems (3.8)
- differentiation/modulation properties
- Filtering (3.9)
- * Filters described by diffeqs (3.10)
- Rational transfer functions for diffeq systems

Ch. 4

- Defined FT and inverse FT by limits of FS
- Existence of FT

- * FT of many important signals
- * FT properties
- FT of periodic signals
- Parsevals relation (Energy density spectrum)
- * convolution property and LTI systems
- * Application of FT to RLC and diffeq systems

Ch. 6

- *Ideal filters (6.3)
- Real filters (6.4)
- Bode Plots (6.2.3)
- Bandwidth
- Tim-bandwidth product

Ch. 7

- DSP, A/D conversion
- * impulse train sampling, sampling theorem
- * Nyquist sampling rate
- * lowpass reconstruction
- * sinc interpolation
- * linear interpolation (first order hold)
- * nearest neighbor interpolation (zero order hold)
- non-impulse sampling

Ch. 8

- * double sideband, suppressed carrier, amplitude modulation (DSB/SC-AM)
- * double sideband, with carrier, amplitude modulation (DSB/WC-AM)
- * synchronous demodulation
- * asynchronous demodulation
- Frequency-division multiplexing (superheterodyning receiver)
- Systems-level analysis of communication system

Ch. 9

- Laplace transform definition / computation by integration
- * ROC of Laplace transform / properties
- relation to Fourier transform
- * rational Laplace transforms / pole-zero plot
- * inverse Laplace transform by PFE
- FT magnitude from pole-zero plot
- properties of LT
- * ROC and causality and stability of LTI systems
- * System functions and block diagram representations
- Feedback Control

The items with a * are virtually guaranteed to be on the exam.

Tips for Exam Preparation

- Review quizzes. Some quiz problems are selected from previous exams. Make sure that you completely understand the answers to all problems on previous quizzes.
- **Study lecture slides.** Read through lecture slides and the summary notes carefully. Make sure that you fully understand all the lecture materials.
- Study homework solutions. Review your HW sets and the posted solutions on SAKAI.
- Attend exam recitation classes. TAs will posted times on SAKAI.