Metody numeryczne 2023/2024: lista 1

- 1. Znajdź rozwinięcie binarne liczb:
 - (a) 13
 - (b) 175
- 2. Znajdź rozwinięcie binarne następujących liczb:
 - (a) 1/10
 - (b) 1/7
 - (c) 1.5₁₀ (indeks 10 oznacza, że liczba podana jest w systemie dziesiętnym)
- 3. Tymczasowo przyjmijmy następującą (uproszczoną) reprezentację liczb zmiennoprzecinkowych:

$$x = \underbrace{(s_m)}_{\text{znak}} \underbrace{b_{m1}b_{m2}b_{m3}b_{m4}}_{\text{mantysa}} \underbrace{(s_w)b_{w1}b_{w2}}_{\text{wykładnik}} = (-1)^{s_m} \left(\frac{b_{m1}}{2} + \frac{b_{m2}}{4} + \frac{b_{m3}}{8} + \frac{b_{m4}}{16} \right) \times 2^{(-1)^{s_w}(2 \cdot b_{w1} + 1 \cdot b_{w2})}.$$

Ponadto, zastosujmy najprostszą metodę zaokrąglania – przy konwersji liczb i podczas kroków pośrednich obliczeń odrzucamy wszelkie "nadmiarowe" bity (urywanie), np. (0)101011101(1)10 \rightarrow (0)1010(1)10. Używając tego formatu zapisu, oblicz $r=x_1-x_2$, gdzie $x_1=0.50000$ i $x_2=0.46875$. Porównaj rezultat z wynikiem dokładnym.

- 4. Załóżmy, że liczby x i y są obarczone błędami, odpowiednio δx i δy . Omów, jak te błędy wpływają na wielkości (a) x+y, (b) x-y, (c) $x\cdot y$, (d) x/y.
- 5. Przybliżmy pochodną funkcji f w punkcie x przez iloraz $\frac{f(x+h)-f(x)}{h}$. Przyjmij, że względne błędy wynikające z zaokrągleń są rzędu (a) 10^{-16} i (b) 10^{-7} (skąd te wartości?). Jakie są pozostałe źródła niepewności? Dobierz optymalną wartość h dla przypadków (a) i (b).
- 6. (Zadanie numeryczne NUM1) Napisz program wyliczający przybliżenie pochodnej ze wzorów:
 - (a) $D_h f(x) \equiv \frac{f(x+h) f(x)}{h}$,
 - (b) $D_h f(x) \equiv \frac{f(x+h) f(x-h)}{2h}$.

Przeanalizuj, jak zachowuje się błąd $|D_h f(x) - f'(x)|$ dla funkcji $f(x) = \sin(x^2)$ oraz punktu x = 0.2 przy zmianie parametru h dla różnych typów zmiennoprzecinkowych (float, double). Wykreśl $|D_h f(x) - f'(x)|$ w funkcji h w skali logarytmicznej. Poeksperymentuj również używając innych funkcji i punktów.

7. Zadana jest macierz

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1.000001 \end{array} \right).$$

Rozwiąż dwa układy równań $\mathbf{A}\mathbf{x} = \mathbf{y}_1$ i $\mathbf{A}\mathbf{x} = \mathbf{y}_2$ przyjmując $\mathbf{y}_1 \equiv (8, 8)$ oraz $\mathbf{y}_1 \equiv (8, 8.00001)$. Porównaj i przedyskutuj wyniki. W tym celu wyznacz współczynnik uwarunkowania macierzy \mathbf{A} .

- 8. Pokaż, że norma indukowana macierzy $||\mathbf{A}||_{pq} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_q}{||\mathbf{x}||_p}$ jest istotnie normą $(p,q=1,2,\infty)$.
- 9. Znajdź normę (indukowaną przez normę euklidesową) macierzy

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 10 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

10. (trudniejsze zadanie) Znajdź normę (indukowaną przez normę euklidesową) macierzy

$$\mathbf{C} = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

- 11. Pokaż, że współczynnik uwarunkowania $\kappa = ||\mathbf{A}|| \cdot ||\mathbf{A}^{-1}||$ macierzy symetrycznej rzeczywistej \mathbf{A} można wyrazić za pomocą jej wartości własnych λ_i jako $\kappa = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$.
- 12. (Zadanie numeryczne NUM2) Zadane są macierze

$$\mathbf{A}_1 = \begin{pmatrix} 2.554219275 & 0.871733993 & 0.052575899 & 0.240740262 & 0.316022841 \\ 0.871733993 & 0.553460938 & -0.070921727 & 0.255463951 & 0.707334556 \\ 0.052575899 & -0.070921727 & 3.409888776 & 0.293510439 & 0.847758171 \\ 0.240740262 & 0.255463951 & 0.293510439 & 1.108336850 & -0.206925123 \\ 0.316022841 & 0.707334556 & 0.847758171 & -0.206925123 & 2.374094162 \end{pmatrix}$$

oraz

$$\mathbf{A}_2 = \left(\begin{array}{ccccc} 2.645152285 & 0.544589368 & 0.009976745 & 0.327869824 & 0.424193304 \\ 0.544589368 & 1.730410927 & 0.082334875 & -0.057997220 & 0.318175706 \\ 0.009976745 & 0.082334875 & 3.429845092 & 0.252693077 & 0.797083832 \\ 0.327869824 & -0.057997220 & 0.252693077 & 1.191822050 & -0.103279098 \\ 0.424193304 & 0.318175706 & 0.797083832 & -0.103279098 & 2.502769647 \end{array} \right)$$

Zdefiniujmy wektor

$$\mathbf{b} \equiv (-0.642912346, -1.408195475, 4.595622394, -5.073473196, 2.178020609)^T$$

Używając wybranego pakietu algebry komputerowej lub biblioteki numerycznej, rozwiąż równania macierzowe $\mathbf{A}_i \mathbf{y} = \mathbf{b}$ dla i = 1, 2. Ponadto, rozwiąż analogiczne równania z zaburzonym wektorem wyrazów wolnych, $\mathbf{A}_i \mathbf{y} = \mathbf{b} + \Delta \mathbf{b}$. Zaburzenie $\Delta \mathbf{b}$ wygeneruj jako losowy wektor o małej normie euklidesowej (np. $||\Delta \mathbf{b}||_2 \approx 10^{-6}$). Przeanalizuj jak wyniki dla macierzy \mathbf{A}_1 i \mathbf{A}_2 zależą od $\Delta \mathbf{b}$ i zinterpretuj zaobserwowane różnice.