Hidrostática

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

12 de março de 2024

Prof. Flaviano W. Fernandes

Sumário

- 1 Lei de Stevin
- Princípio de Pascal
- Princípio de Arquimedes
- 4 Apêndice

Prof. Flaviano W. Fernandes

Princípio de Pascal Princípio de Arquimedes Apêndice

Cálculo da pressão no interior de um fluido

Supondo um cilindro totalmente imerso e imóvel no interior de um fluido como mostra a figura ao lado, verificamos que

- ✓ O peso do cilindro aplica uma força puxandoo para baixo;
- ✓ O fluido pressiona as paredes do cilindro no intuito de espremê-lo de fora para dentro;
- ✓ A somatória da pressão na base produz uma força que empurra o cilindro para cima;
- ✓ A somatória da pressão no topo produz uma força que empurra o cilindro para baixo;

Forças atuando acima e abaixo do objeto submerso num fluido em repouso.

Pela relação da pressão p e força F, deve ser zero, portanto $p = \frac{F}{A}$, temos

$$F=(p)\times(A),$$

portanto

$$F_1 = p_1 A$$
,

$$F_2 = p_2 A$$
.

Se o cilindro está em repouso, pela segunda Lei de Newton a força resultante

$$F_2 = F_1 + P$$
.

Pela definição de densidade, $m = \rho V$, e sabendo que o volume do cilindro é a base A vezes a altura h temos

$$p_2 \lambda = p_1 \lambda + \rho g h \lambda,$$

$$p_2 = p_1 + \rho g h.$$

Variação da pressão com a profundidade

Lei de Stevin

Se a superfície de um fluido, cuja densidade é ρ , está submetida a uma pressão p_{atm} , a pressão p, no interior desse líquido, a uma profundidade h, é dada por

$$p = p_{atm} + \rho gh$$

Corollary

A força da gravidade puxa o fluido para baixo causando uma pressão na base e nas paredes do recipiente.

Pressão em função da profundidade h.

Prof. Flaviano W. Fernandes IFPR-Irati

Variação da pressão com a altitude

Corollary

Para baixas altitudes ou profundidade a força da gravidade é praticamente constante, portanto a Lei de Stevin pode ser aplicada, mas para altas altitudes a força da gravidade diminui de modo que a pressão do ar varia de maneira praticamente exponencial com a altura.

Variação da pressão com a altitude.

Prof. Flaviano W. Fernandes IFPR-Irati

Experiência de Torricelli

Coloca-se mercúrio cuja densidade é conhecida num tubo fino e vira-o de cabeça para baixo. O líquido irá descer e irá preencher o recipiente da parte de baixo. A parte de cima como estava fechada não entrou ar e com a descida do líquido criou-se um vácuo, portanto a pressão da parte de cima será zero. Pela Lei de Stevin temos que a pressão da parte de baixo é dado por

$$p_{atm} = \rho g h$$
,

onde h é a coluna de mercúrio (se for medido ao nível do mar h=760mm).

Representação da experiência de Torricelli.

Princípio de Pascal Princípio de Arquimedes Apêndice

Vasos comunicantes

Corollary

Pela Lei de Stevin a variação da pressão em um fluido homogêneo (ρ = constante) somente depende da profundidade do fluido e independe da posição do líquido ao longo da horizontal, portanto é esperado que a pressão seja a mesma para cada altura independente do recipiente que está contido o fluido.

Pressão do fluido em diferentes recipientes (O líquido atinge a mesma altura independente do recipiente).

Prof. Flaviano W. Fernandes IFPR-Irati

Variação da pressão na superfície do recipiente

Pela Lei de Stevin a pressão nos pontos 1 e 2 equivale a

$$p = p_{atm} + \rho gh.$$

Pela Lei de Stevin a pressão nos pontos 1 e 2 equivale a

$$p' = p'_{atm} + \rho gh.$$

Variação da pressão ao longo das paredes do recipiente

Caculando o quanto a pressão na posição 1 aumenta temos

$$egin{aligned} \Delta p &= p' - p, \ \Delta p &= (p'_{atm} +
ho g h) - (p_{atm} +
ho g h), \ \Delta p &= p'_{atm} +
ho g h - p_{atm} -
ho g h, \ \hline \Delta p &= \Delta p_{atm}. \end{aligned}$$

Corollary

O acréscimo de pressão, em um ponto de um líquido em equilíbrio, transmite-se integralmente a todos os pontos desse líquido.

Máquinas hidráulicas

Pela definição de pressão podemos dizer que o aumento de pressão no pistão 1 é dado por

$$\Delta p_1 = \frac{F_1}{A_1}.$$

Pelo princípio de Pascal esse aumento será o mesmo no pistao 2, pois $\Delta p_1 = \Delta p_2$.

Princípio de Pascal

$$\frac{F_1}{A_1}=\frac{F_2}{A_2}.$$

Corollary

O volume deslocado em um pistão é o mesmo deslocado em outro pistão.

Prensa hidráulica

Prof. Flaviano W. Fernandes

ei de Stevin Princípio de Pascal Princípio de Argulmedes Apêndice ococo co

O que é empuxo?

Corollary

A somatória de todas as forças que o fluido atua nas paredes de um objeto imerso em um fluido é igual a força resultante que atua para cima no intuito de subir o objeto;

Se a força resultante \vec{E} for de mesma intensidade da força peso \vec{P} do volume do fluido deslocado, essa força é chamada de empuxo;

Se o empuxo for maior que a força peso o objeto flutua, e se for menor o objeto afunda.

Representação de empuxo como o peso da água deslocada.

Relação entre a densidade do fluido, do objeto e o princípio de Arquimedes

Pela definição de empuxo E podemos dizer que

$$E=m_{fluido}g,$$

mas pela definição de densidade temos $m_{\it fluido} = \rho_{\it fluido} \it{V}$, portanto

$$E = \rho_{fluido} Vg$$

O peso P do objeto mergulhado no fluido é dado por $P=m_{obj}g$, portanto se o empuxo for igual ao peso do objeto temos

$$m_{obj}g = \rho_{fluido}Vg,$$

 $\rho_{obi}Vg = \rho_{fluido}Vg.$

Corollary

Se $\rho_{fluido} < \rho_{obj}$, o corpo afundará;

Se $\rho_{fluido} = \rho_{obj}$, o corpo ficará em equilíbrio;

Se $\rho_{fluido} > \rho_{obj}$, o corpo irá flutuar na superfície;

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ, ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.