Tarefa3,2 e 4.0.- Análise dos ARP nun escenario con Packet Tracer. Configuración básica de Debian Server

Proposta de solución.PARTE A

Neste escenario temos 4 equipos conectados con un router, que sirve de gateway a cada unha das redes. As IP's da rede da esquerda pertencen á rede 192.168.1.0/24, tendo o router 192.168.1.254. As IP's da rede da dereita pertencen á rede 192.168.2.0/24, tendo o router a 192.168.2.254.

As IP's son:

PC1: 192.168.1.1/24
PC2: 192.168.1.2/24
PC3: 192.168.2.1/24
PC4: 192.168.2.2/24

Trátase de **indicar** e **explicar** TODOS os paquetes ARP: o seu **tipo**, e o a **orixe** e **destino**, que se intercambian no escenario cando (xusto antes do envío dos ping)

OLLO: Hai que ter en conta que cando un equipo envía un paquete IP poden suceder 2 casos:

- O destino está na propia rede: envíase directamente, polo que precisa obter a MAC destino
- O destino está en outra rede: envíase á porta de enlace ou gateway para que se reenvíe: precisa obter a MAC da porta de enlace (o router)

OLLO: As tramas broadcast envíanse en cada subrede ou dominio de difusión, e NUNCA "atravesan" os routers

PC1 fai un ping a PC3 (192.168.1.1 a 192.168.2.1). Paquetes ARP previos e explicación detallada

Cando PC1 fai un ping a PC3, compón unha trama na que precisa poñer a MAC destino. Antes de nada comprobará se a IP destino está na súa rede: fará un AND da IP destino coa propia máscara, e comprobará se coincide coa súa rede. Como non é así precisa poñer a MAC do seu gateway (o router R). A trama do ping será pois así:

MAC orixe MAC Pc1 **IP orixe** PC1: 192.168.1

IP destino IP PC3: 192.168.2.1

Outros campos

Como no sabe a MAC R precisa empregar ARP. Para "descubrir" a MAC de R teremos os seguintes paquetes ARP:

- 1. Trama ARP Request con orixe PC1, destino broadcast, preguntando pola MAC de R (o equipo con IP 192.168.1.211)
 - a) O switch reenvía a todos por ser broadcast, e garda na súa táboa o porto do PC1, coa súa MAC.
 - b) A trama chega a PC2, que a descarta, e tamén a R, que a procesa e entende que debe contestar.
- 2. Trama ARP reply con orixe R, destino unicast a MAC-PC1, indicando a MAC de R pola que preguntaba PC1
 - a) O switch recibe a trama, garda o porto de R na súa táboa, e envía só a PC1, pois xa sabe en que porto está PC1

PC1 xa pode enviar a o ping ao router, que se encargará de encamiñalo. Lembra que a trama do ping de PC1 envía a R será así:

MAC destino	MAC orixe	IP orixe	IP destino	Outros campos
MAC R	MAC PC1	PC1: 192.168.1	IP PC3: 192.168.2.1	

R ten que reenviar o ping a PC2, de forma que ten que modificar as MAC's da trama, de forma que quede así. Fíxate que as IP's non cambian, pero as MAC's si

MAC destino	MAC orixe	IP orixe	IP destino	Outros campos
MAC PC3?	MAC R	PC1: 192.168.1	IP PC3: 192.168.2.1	

Como R aínda non sabe a MAC de PC2 te que enviar un ARP Request.:

- 3. Trama ARP Request BROADCAST con **orixe R**, destino **broadcast**, preguntando pola MAC de **PC2** (o equipo con IP 192.168.2.1)
 - a) O switch S2 reenvía a todos por ser broadcast, e garda na súa táboa o porto do R, coa MAC-R.
 - b) A trama chega a PC4, que a descarta
 - c) Tamén chega a PC3, que a procesa por ser o destinatario, actualiza caché ARP e contesta.
- 4. Trama ARP reply con orixe PC3, destino unicast a R, indicando a MAC de R pola que preguntaba PC3
 - a) O switch S2 recibe a trama, garda o porto de PC3 na súa táboa, e envía só a R, pois xa sabe en que porto está R
- 5. R xa pode construír a trama, e envía o ping a PC3. A trama do ping é así:

MAC destino	MAC orixe	IP orixe	IP destino	Outros campos
MAC PC3	MAC R	PC1: 192.168.1	IP PC3: 192.168.2.1	

6. PC3 recibe o ping, e contesta. Todos os elementos intermedios reenvían as tramas porque xa coñecen as MAC's involucradas. PC1 recibe a resposta do ping

É importante entender que as MAC's van cambiando nas tramas en cada dominio de difusión (en cada subrede, en), e as IP's non, de modo que o destino sabe cal foi o equipo que enviou o ping.

PC2 fai un ping a PC3, xusto despois de PC1.

Na parte da dereita do escenario as MAC's xa están gardadas, só teremos as peticións ARP da esquerda:

- Trama ARP Request con orixe PC2 destino broadcast, preguntando pola MAC de R (o destino está noutro subrede)
 - a) O switch reenvía a todos por ser broadcast, e garda na súa táboa o porto do PC2, coa súa MAC.

- b) A trama chega a PC1, que a descarta, e tamén a R, que a procesa e entende que debe contestar.
- 2. Trama ARP reply con orixe R, destino unicast a MAC-PC2, indicando a MAC de R pola que preguntaba PC2
- 3. O switch S2 recibe a trama, e envía só a PC2, pois xa sabe en que porto está PC2
- 4. PC2 envía o ping. Todos os dispositivos intermedios coñecen as MAC's involucradas, non habendo máis peticións ARP.

PC3 fai o ping a PC1.

Non hai ningún paquete ARP, pois todos os dispositivos coñecen as MAC's involucradas, se pasou pouco tempo desde os pings anteriores.