

Agent de résolution de problèmes Recherche loclale

Aziz KHAMJANE

Plan

- Introduction
- Principe des algorithmes de recherche locale
- Hill-climbing
- Variants de hill-climbing
- Recuit simulé (simulated annealing)
- Recherche locale par faisceau
- Algorithmes génétiques

Introduction

- Dans de nombreux problèmes d'optimisation, le chemin qui mène vers une solution n'est pas important.
- L'état lui-même est la solution.
- Idée : Modifier l'état en l'améliorant au fur et à mesure.
- Espace d'états : ensemble des configurations possible des états.
- Besoin de définir une fonction qui mesure l'utilité d'un état.

Exemple: les n reines

- \square Placer n reines sur un échiquier de taille $n \times n$, sans que deux reines se trouvent sur la même ligne, colonne ou diagonale.
- □ Déplacer une reine pour réduire le nombre de conflits.

- Avec N=4 : 256 configurations.
- N=8:16777216
- N= 16: 18,446,744,073,709,551,616 configurations

Algorithmes de recherche locale

On cherche un maximum global

Principe d'une recherche locale

- Une recherche locale garde juste certains états visités en mémoire:
 - Le cas le plus simple est hill-climbing qui garde juste un état (l'état courant) et l'améliore itérativement jusqu'à converger à une solution.
 - Le cas le plus élaboré est celui des algorithmes génétiques qui gardent un ensemble d'états (appelé population) et le font évoluer jusqu'à obtenir une solution.
- En général, il y a une fonction objective à optimiser (maximiser ou minimiser)
 - Dans le cas de hill-climbing, elle permet de choisir l'état successeur.
 - Dans le cas des algorithmes génétiques, on l'appelle la fonction de fitness.

Méthode Hill-Climbing

- Entrée:
 - État initial.
 - Fonction à optimiser:
 - ✓ noté VALUE dans l'algorithme;
 - ✓ parfois noté *h* aussi.
- Méthode
 - Le nœud courant est initialisé à l'état initial.
 - Itérativement, le nœud courant est comparé à ses successeurs immédiats.
 - Le meilleur voisin immédiat et ayant la plus grande valeur (selon VALUE) que le nœud courant, devient le nœud courant.
 - Si un tel voisin n'existe pas, on arrête et on retourne le nœud courant comme solution.

Hill-Climbing avec 8 reines

9

Hill-Climbing avec 8 reines

h = 2

Hill-Climbing avec 8 reines

- h (VALUE): nombre de paires de reines qui s'attaquent mutuellement directement ou indirectement.
- On veut le minimiser.

- □ pour l'état affiché: h=17
- Encadrés: les meilleurs successeurs.

Hill-Climbing avec 8 reines

Un exemple de minimum local avec h(n)=1

À partir d'un état généré aléatoirement, hill climbing est bloquée dans 86% des cas. Elle réussit dans 14% des cas. Elle fonctionne rapidement, en prenant juste 4 pas en moyenne quand il réussit et 3 quand il est bloqué —

- pas mal pour un espace d'états avec $N=8^8 \approx 17 \ millions \ d'états$.
- Solution 1 : autoriser les mouvements latéraux
 - Il faut fixer le nombre de mouvements possibles
 - Pour le problème de 8-reines, l'autorisation des mouvements latéraux permet d'améliorer le taux de réussite de hill climbing de 14% à 94%

Variants de hill-climbing

Hill-climbing stochastique :

- Choisir aléatoirement parmi les états successeurs qui améliore la situation. la probabilité de sélection peut varier en fonction de l'amélioration.
- Cette version converge généralement plus lentement, mais dans certains espaces d'états, elle trouve de meilleures solutions.

■ First-choice hill climbing:

- Générer des successeurs de manière aléatoire jusqu'à ce qu'un soit généré soit meilleur que l'état actuel.
- C'est une bonne stratégie lorsqu'un état a plusieurs (par exemple, des milliers) successeurs.

Random-restart hill climbing :

- Répéter plusieurs hill-climbing avec plusieurs états initiaux générés aléatoirement
- Si la probabilité de réussite de l'algorithme Hill-climbing est de 1/q, il faut répéter l'algorithme au moins q fois.

Méthode simulated annealing (recuit simulé)

- C'est une amélioration de l'algorithme hill-climbing pour minimiser le risque d'être piégé dans des maxima/minima locaux.
 - au lieu de regarder le meilleur voisin immédiat du nœud courant, on va regarder, avec une certaine probabilité, un moins bon voisin immédiat.
 - on espère ainsi s'échapper des optima locaux
 - au début de la recherche, la probabilité de prendre un moins bon voisin est plus élevée et diminue graduellement.
- Le nombre d'itérations et la diminution des probabilités sont définis à l'aide d'un schéma de « températures », en ordre décroissant
 - ex.: schéma [2⁻⁰, 2⁻¹, 2⁻², 2⁻³, ..., 2⁻⁹⁹], pour un total de 100 itérations
 - la meilleure définition du schéma va varier d'un problème à l'autre

Méthode simulated annealing (recuit simulé)

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                    next, a node
                    T, a "temperature" controlling the probability of downward steps
  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
      T \leftarrow schedule[t]
      if T = 0 then return current
      next ← a randomly selected successor of current
      \Delta E \leftarrow Value[next] - Value[current]
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Exploration locale par faisceau (local beam search)

- □ Conserver k états au lieu d'un seul état.
 Commencer par k états générés de manière aléatoire
 - □ A chaque étape, tous les successeurs des k états sont générés
 - ☐Si l'un d'eux est un but, l'algorithme s'arrête.
 - □ Sinon, il sélectionne les k meilleurs successeurs parmi la liste complète des successeurs et recommence.

Algorithmes génétiques

- •Un algorithme génétique est une variante de la recherche de faisceau stochastique dans laquelle les états successeurs sont générés en combinant deux états parents,
- Les algorithmes génétiques utilisent la théorie de Darwin sur l'évolution des espèces.
- •Elle repose sur trois principes : le principe de *variation*, le principe *d'adaptation* et le principe *d'héritage*.

Algorithmes génétiques

- On représente l'espace des solutions d'un problème à résoudre par une population (ensemble de chromosomes).
 - Un chromosome est une chaîne de gènes de taille fixe.
 - Par exemple : 101101001
- Une population génère des enfants par un ensemble de procédures simples qui manipulent les chromosomes
 - La sélection : Choix des individus les mieux adaptés.
 - Le croisement : Mélange par la reproduction des particularités des individus choisis.
 - La mutation : Altération aléatoire des particularités d'un individu.
- Les enfants sont conservés en fonction de leur adaptabilité (fitness)
 déterminée par une fonction d'adaptabilité donnée, f(x).

Algorithmes génétiques : Sélection

- Sélection
- La sélection consiste à choisir les individus les mieux adaptés.
- Il existe plusieurs techniques de sélection:
 - Sélection par rang: Cette technique de sélection choisit toujours les individus possédant les meilleurs scores d'adaptation.
 - Probabilité de sélection proportionnelle à l'adaptation : pour chaque individu, la probabilité d'être sélectionné est proportionnelle à son adaptation au problème.
 - Sélection uniforme : La sélection se fait aléatoirement, uniformément et sans intervention de la valeur d'adaptation.

Algorithmes génétiques : Croisement

- Croisement
- Le croisement, crossing-over, est le résultat obtenu lorsque deux chromosomes partagent leurs particularités.

Algorithmes génétiques : Mutation

- Mutation
- La mutation consiste à altérer un gène dans un chromosome selon un facteur de mutation. Ce facteur est la probabilité qu'une mutation soit effectuée sur un individu.

Algorithmes génétiques

- 1. Générer aléatoirement la population initiale P(t)
- 2. Evaluer P(t)
- 3. TantQue (Critère d'arrêt non atteint) Faire
- 4. $P(t+1) \leftarrow \text{S\'election des parents dans } P(t)$
- 5. $P(t+1) \leftarrow$ Appliquer Croissement et Mutation sur P(t+1)
- 6. $P(t+1) \leftarrow \text{Remplacer } P(t) \text{ par } P(t+1)$
- 7. Evaluer P(t)
- 8. FinTantQue

Algorithmes génétiques

Exemple 1

- Trouver l'entier x qui maximise la fonction : $f(x) = 15x x^2$
- Supposons que $x \in [0, 15]$:
 - on a besoin de seulement 4 bits pour représenter les individus de la population.

Integer	Binary code	Integer	Binary code	Integer	Binary code
1	0001	6	0110	11	1011
2	0010	7	0111	12	1100
3	0011	8	1000	13	1101
4	0100	9	1001	14	1110
5	0101	10	1010	15	1111

Exemple 1 (suite)

- Fixons la taille de la population à 6.
- La probabilité de mutation à 0.001.
- La fonction d'adaptabilité à $f(x) = 15x x^2$.
- L'algorithme génétique initialise les 6 chromosomes de la population en les choisissant au hasard.

Chromosome label	Chromosome string	Decoded integer	Chromosome fitness	Fitness ratio, %
X1	1100	12	36	16.5
X2	0100	4	44	20.2
Х3	0001	1	14	6.4
X4	1110	14	14	6.4
X5	0111	7	56	25.7
X6	1001	9	54	24.8

Exemple 1

Exemple 2: problème de 8-reines

On peut représenter le chromosome par un nombre de 8 chiffres, chacun allant de 1 à 8, indiquant la ligne occupée par la reine dans chaque colonne.

Fonction de fitness: nombre de pairs de reines qui ne s'attaquent pas (min = 0, $\max = (8 \times 7)/2 = 28$)

Exemple: 8 reines

Croisement

67247588 752**51448** = **67251448**

Exemple avec 8 reines

- Pourcentage de fitness (c-à-d., probabilité de sélection du chromosome):
 - 4/(24+23+20+11) = 31%
 - 3/(24+23+20+11) = 29%
 - 0/(24+23+20+11) = 26%
 - /(24+23+20+11) = 14%

Recherche local vs Recherche global

