Anhang Für Dokument Studienphase, System Engineering

Studienphase

Inhaltsverzeichnis

1.	. Abbildungsverzeichnis	1
2.	. Projektplan	2
3.	. Aufgabenstellung	4
4.	Brainstorming:	4
	Funktion des Motors ersichtlich machen	4
	Funktionen den Motor zu Steuern	4
5.	. Skizzen	5
	Zur Problemstellung: Darstellung der Motorenfunktion	5
6.	. Technische Beispiele	8
	Beispiele für Sensoranordung:	8
	Beispiele Wicklungslagerung:	
	Beispiele	
7.	. Eigene Modelle	
	CAD Modell des BLDC Motors	
	3D gedruckte Modelle	
8.	-	
o. 9.		
	1 Abbildungsvorzeichnis	
٨١	1. Abbildungsverzeichnis bbildung 1/ Projektplan (Eigene Darstellung)	2
	bbildung 2/ Art der Kommutierung (Maxon Motor Ag 2010)	
	bbildung 3/ Magnetfelddarstellung durch Display (Eigene Darstellung)	
	bbildung 5/ Magnetfelddarstellung durch Magnetpulver 2 (Eigene Darstellung)	
	bbildung 4/ Magnetfelddarstellung durch Magnetpulver 1 (Eigene Darstellung)	
	bbildung 6/ Magnetfelddarstellung durch Magnetpulver 1 (Eigene Darstellung)	
Αŀ	bbildung 7/ Bestromte Spule durch Zeiger anzeigen (Eigene Darstellung)	7
Αŀ	bbildung 8/ LEDs auf Rotor, um Text darzustellen (Eigene Darstellung)	7
Αŀ	bbildung 9/ Bestromte Spule durch LED anzeigen (Eigene Darstellung)	7
	bbildung 10/ Verschiedene Sensoranordnungen (Maxon Motor Ag 2010)	
	bbildung 11/ Verschiedene Wicklungslager (Bavaria 2016)	
	bbildung 12/ Verschiedene Motorlagerungen (Makesea/ Christoph Laimer 2021	
	bbildung 13/ CAD Modell des BLDC Motors (Eigene Darstellung)	
	bbildung 14/ Explosionsansicht des Aufbaus (Eigene Darstellung)	
Αŀ	bbildung 15/3D Gedrucktes Modell mit Wicklung (Eigene Darstellung)	10

2. Projektplan

System Engineering Studienphase

Abbildung 1/ Projektplan (Eigene Darstellung)

Das MS-Project Dokument kann in der immer aktualisierten Form unter folgendem Link aufgerufen werden: Projektplan Elektromotor

3. Aufgabenstellung

Das Dokument wurde nach folgender Aufgabenstellung erstellt:

https://moodle.hftm.ch/pluginfile.php/120103/mod resource/content/10/Auftrag und Bewertung Projektarbeit E-Motor-20-22.pdf

Es stand folgendes Beispielkonzept zur Verfügung:

https://moodle.hftm.ch/pluginfile.php/106534/mod resource/content/5/Beispielkonzept.pdf

4. Brainstorming:

Funktion des Motors ersichtlich machen

- Erregte Magnete mit LED verbinden (möglich nur bei niedriger Drehzahl)
- Magnetfeld mit Pulver zeigen lassen (möglich nur bei niedriger Drehzahl)
- Sicht nach innen mit Plexiglas
- Mit Display PWM Signal oder Sinus welle darstellen
- Einfache Demontierbarkeit
- Wenige Einzelteile
- Leichtes Gewicht
- Brauchen noch mehr Funktionen betreffend Schulungszwecke
- Evtl. demontierbare Magnete um direkt darzustellen wie sich der Motor mit halb soviel Magneten verhält, bzw. ¼ soviel Magneten, usw.
- Demontierbare Spulen bzw. Anker
- Einfache Austauschbarkeit ermöglichen zwischen Encoder und Hall-Sensoren
- Motor wie eine Art Bausatz erstellen, sodass man immer einen Motor erstellen kann mit vers. Leistungen

Funktionen den Motor zu Steuern

- Per Touch Screen
- Schalter, Taster, Schieberegler, Potenziometer usw.
- Fernbedienung
- Infrarot Sender eines Smartphones benutzen
- App auf Smartphone
- Per Webapplikation Internes Netz
- Per Webserver Externes Netz
- Per Kommandozeile von PC oder SPS ansteuern
- Block oder Sinus Kommutierung

- Motorbremse (mechanisch, Elektrisch)
- Motorbremse mit Energierückgewinnung, Motor als Generator nutzen
- Motor mit Bestimmten Drehzahlen laufen lassen (Block Sinus Kommutierung)
- Motor mit Konstantem Strom anlaufen lassen (Block Sinus Kommutierung)
- Mit Hallsensoren Drehzahl des Motors auslesen
- Mit Encoder Motor auslesen und Steuern
- Bestimmt Positionen anfahren wie Schrittmotor (evtl. Sinus Kommutierung)

Abbildung 2/ Art der Kommutierung (Maxon Motor Ag 2010)

5. Skizzen

Zur Problemstellung: Darstellung der Motorenfunktion

Abbildung 3/ Magnetfelddarstellung durch Display (Eigene Darstellung)

Abbildung 5/ Magnetfelddarstellung durch Magnetpulver 1 (Eigene Darstellung)

Abbildung 4/ Magnetfelddarstellung durch Magnetpulver 2 (Eigene Darstellung)

Abbildung 6/ Magnetfelddarstellung durch Magnetpulver 1 (Eigene Darstellung)

peodynament of the service of the se

Abbildung 7/ Bestromte Spule durch Zeiger anzeigen (Eigene Darstellung)

Abbildung 9/ Bestromte Spule durch LED anzeigen (Eigene Darstellung)

Abbildung 8/ LEDs auf Rotor, um Text darzustellen (Eigene Darstellung)

6. Technische Beispiele

Beispiele für Sensoranordung:

Abbildung 10/ Verschiedene Sensoranordnungen (Maxon Motor Ag 2010)

Beispiele Wicklungslagerung:

Abbildung 11/ Verschiedene Wicklungslager (Bavaria 2016)

Beispiele Lagerung des Motors:

Abbildung 12/ Verschiedene Motorlagerungen (Makesea/ Christoph Laimer 2021)

Studienphase

7. Eigene Modelle

CAD Modell des BLDC Motors

Es wurde bereits ein CAD Modell erstellt, um Versuche durchzuführen.

Abbildung 13/ CAD Modell des BLDC Motors (Eigene Darstellung)

Abbildung 14/ Explosionsansicht des Aufbaus (Eigene Darstellung)

3D gedruckte Modelle

Abbildung 15/3D Gedrucktes Modell mit Wicklung (Eigene Darstellung)

System Engineering Studienphase

8. Tool zur Wicklungsberechnung

Eine erstellte Exceltabelle zu Wicklungsberechnung mit Einrechnung der mit dem CAD und 3D Druck gewonnenen Erfahrungen:

https://hftm.sharepoint.com/:x:/s/ProjectElektromotor/EcAVRGQF4yJNrvIdUOXeKwABvgYH17Tg8dGkJZktruitvQ?e=A7LkYk

9. Quellen

Maxongroup (2010): Maxon EC Motor. In: [https://www.maxongroup.de/medias/sys_master/root/8797783982110/maxonECmotor-Notizen.pdf?attachment=true]

Makesea (2021): 3d-printed, Halbach Array, Brushless Motor. In: [https://www.makesea.com/web/cla/~/50612/profile/-/asset_publisher/Rl6cqGtVw4Vb/content/660-watt-3d-printed-halbach-array-brushless-motor?inheritRedirect=false&redirect=https%3A%2F%2Fwww.makesea.com%2Fweb%2Fcla%2F%7E%2F50612%2Fprofile%3Fp_p_id%3D101_INSTANCE_Rl6cqGtVw4Vb%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-1%26p_p_col_count%3D4]

Bavaria (2016): Homebuilt Electric Motors. In: [http://www.bavaria-direct.co.za/#]