SEAN C. LEWIS

Ph.D. Candidate \diamond Deptartment of Physics \diamond Drexel University Disque Hall, Office No. 808 \diamond 32 S. 32nd St. \diamond Philadelphia, PA 19104, USA $+1\cdot(408)\cdot470\cdot0668$ \diamond sean.christian.lewis@drexel.edu

RESEARCH INTERESTS

Computational astrophysics, including general relativity, gravitational lensing, modified gravity, large-scale structure, 21 cm cosmology, dark energy, inflation, dark matter, radio astronomy, and gravitational waves.

EDUCATION

Drexel University Ph.D. Student/Candidate of Physics M.S. in Physics California Polytechnic State University B.S. in Physics Cum Laude

POSITIONS HELD

Drexel University Doctoral Teaching Fellow; Research Fellow Department of Physics	2017 – Present
California Polytechnic State University Research Assistant Department of Physics	2015 - 2016

AWARDS AND HONORS

Chambliss Astronomy Achievement Honorable Mention, American Astronomical Society	2020
Department of Physics Teaching Excellence Award, Drexel University	2019
CoAS Dean Honors List, California Polytechnic State University	2012 – 2016

RESEARCH HISTORY

2021-Present	Hydrodynamical Simulation Data Structure Conversion Developed a novel software technique for transferring simulation data from a Voronoi Mesh data structure to a block-based adaptively refined grid structure.
2018-Present	Early Forming Massive Stars Developed a controlled experiment using the high performance coupled magnetoydrodynamic, radiation, and N-body software suite Torch to determine the effects of the formation time of very massive stars, an under-tested parameter space. Time series data analysis and cluster identification techniques revealed that early forming massive stars had significant effect on star cluster development and evolution.

REFEREED PUBLICATIONS

Lewis, S. C., McMillan, S. L. W., Mac Low, M-M., Cournoyer-Cloutier, C., Polak, B., Wilhelm, M. J. C., Tran, A., Sills, A., Portegies Zwart, S., Klessen R., and Wall, J. E., "Early Forming Massive Stars Suppress Star Formation and Hierarchical Cluster Assembly," Submitted to ApJ (2022)

- Cournoyer-Cloutier, C., Tran, A., Lewis, S. C., Wall, J. E., Harris, W. E., Mac Low, M-M., McMillan, S. L. W., Portegies Zwart, S., and Sills, A., "Implementing primordial binaries in simulations of star cluster formation with a hybrid MHD and direct N-body method", MNRAS 501, 4464–4478 (2021) [arXiv:2011.06105]
- 1. Bennert, V., N., Loveland, D., Donohue, E., Cosens, M., **Lewis, S. C.**, Komossa, S., Treu, T., Malkan, M. A., Milgram, N., and Flatland, K., "Studying the O III $\lambda 5007$ emission-line width in a sample of ~ 80 local active galaxies: a surrogate for σ ", MNRAS. **481**, 138–152 (2018) [arXiv:1808.04821]

CONFERENCES AND TALKS

Contributed Talks		

"Hybrid analytic image modeling and image moments approach to gravitational lensing"
Public talk for my Phyics Ph.D. Candidacy Exam, Drexel University

4 Jun. 2020
"Quantifying the Effects of O-type Star Formation in Embedded Stellar Clusters"

Modest 21a Virtual Conference Jul. 2021

Poster Presentations

"The Effects of Early Massive Star Formation: Gas Expulsion and Cluster Dynamics"
 American Astronomical Society – 238th Conference
 "The effects of O-type star formation in embedded stellar clusters."

American Astronomical Society – 236th Conference

Jun. 2020

- "Was the first observed hypervelocity globular cluster,
HVGC-1, accelerated by a supermassive binary black hole?"
American Astronomical Society – 233rd Conference

Jan. 2019

- "The mystery of a hypervelocity globular cluster: is a binary black hole to blame?"

Drexel Emerging Graduate Scholars, Drexel University

Sept. 2018

SOFTWARE DEVELOPED

Authored	
F-SHARP	Code for computing weak gravitational lensing correlations. <i>Publicly available code written in Python</i> . https://github.com/evanjarena/F-SHARP
Lenser	A tool for measuring weak gravitational flexion. Publicly available code written in Python. https://github.com/DrexelLenser/Lenser
21cmMG	A suite for probing modified gravity with 21 cm cosmology. <i>Publicly available code written in Python</i> . https://github.com/evanjarena/21cmMG
Fisher21cm	Fisher forecast for a general 21 cm experiment. Publicly available code written in Python. https://github.com/evanjarena/Fisher21cm
Contributed	
LensTools	Useful computing tools for weak lensing analyses. Publicly available code written in Python. https://github.com/apetri/LensTools

Winter: 2021, 2020, 2019

Spring: 2022, 2021, 2020, 2019

TEACHING

Drexel University

Teaching Assistant (Recitation and Lab Instructor) PHYS 100, Preparation for Engineering Studies PHYS 152, Introductory Physics I PHYS 154, Introductory Physics III Fall: 2021, 2020, 2019, 2018

Grader

PHYS 131, Survey of the Universe
PHYS 231, Introductory Astrophysics
Winter 2022

 $Guest\ Lecturer$

PHYS 231, Introductory Astrophysics Winter 2022

Stony Brook University

Lecturer

Della Pietra High School Applied Math Program

Spring 2017

PROFESSIONAL ACTIVITIES AND SERVICE

Collaborations External Collaborator, Dark Energy Survey (DES)

Member, Packed Ultra-wideband Mapping Array (PUMA) [Inactive]

Member, Baryon Mapping experiment (BMX) [Inactive]

Working Groups Member, DOE Cosmic Visions Dark Energy 21 cm Working Group [Inactive]

Outreach Activities

Invited to appear on the Drexel University Teaching Assistant Orientation Panel, as part of the Teaching Assistant Orientation and Preparation Course GRAD T580 (17 Sep. 2020).

Gave a physics demonstration at the Kaczmarczik Lecture Series Open House, hosted by the Drexel University Department of Physics (14 Nov. 2018).

Committee Work

Treasurer of the Drexel University Physics Graduate Student Association (2020 – 2021).