МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет

Булинский А.В. Случайные процессы

6 семестр, втрой поток

Оглавление

1 (элучаиные олуждания	4
1.1	Понятие случайного блуждания	4
1.2	Случайные блуждания	5
1.3	Исследование случайного блуждания с помощью характеристической функции	7
2 E	Ветвящиеся процессы и процессы восстановления	9
2.1	Модель Гальтона – Ватсона	9
2.2	Процессы восстановления	12
3 I	Іуассоновские процессы	13
3.1	Процессы восстановления (продолжение)	13
3.2	Сопоставление исходного процесса восстановления со вспомогательным	13
3.3	Элементарная теория восстановления	14
3.4	Пуассоновский процесс как процесс восстановления	16

Предметный указатель

```
Вырождение, 9
Измеримое
   отображение, 4
   пространство, 4
Множество
   возвратности, 8
   достижимости, 8
Модель Гальтона-Ватсона, 9
Парадокс времени ожидания, 17
Производящая функция, 9
Процесс
   восстановления, 12
   пуассоновский, 16
Пуассоновский процесс, 16
Распределение
   геометрическое, 13
   случайного элемента, 4
Случайное блуждание, 5
   простое, 5
     возвратное, 5
Случайный
   процесс, 4
   элемент, 4
Теорема
   Де ла Валле Пуссена, 15
   Ломницкого-Улама, 4
   Чжуна-Фукса, 8
```

Лекция 1

Случайные блуждания

1.1 Понятие случайного блуждания

Определение. Пусть V — множество, а \mathscr{A} — σ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение. Пусть есть (V, \mathscr{A}) и (S, \mathscr{B}) — два измеримых пространства, $f: V \to S$ — отображение. f называется $\mathscr{A} \mid \mathscr{B}$ -измеримым, если $\forall B \in \mathscr{B} \ f^{-1}(B) \in \mathscr{A}$.

Обозначение. $f \in \mathscr{A} \mid \mathscr{B}$.

Определение. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F} \mid \mathscr{B}$, то Y называется *случайным* элементом.

Пример 1.1.1. $S = \mathbb{R}^m$, $\mathcal{B} = \mathcal{B}(\mathbb{R})$ — борелевские множества. Тогда при m > 1 случайный элемент Y — случайный вектор; если m = 1, то Y — случайная величина. $\mathsf{P}_Y(B) = \mathsf{P}[Y^{-1}(B)]$ — мера на \mathcal{B} .

Легко видеть, что

$$\mathsf{P}_Y(B) = \mathsf{P}\left\{\omega \in \Omega \mid Y(\omega) \in B\right\}$$

Определение. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — случайный элемент. Pacnpedenenue вероятностей, индуцированное случайным элементом Y, — это функция на множествах из \mathscr{B} , задаваемая равенством

$$\mathsf{P}_Y(B) \coloneqq \mathsf{P}(Y^{-1}(B)), \quad B \in \mathscr{B}.$$

Определение. Пусть $(S_t, \mathscr{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством, — это семейство случайных элементов $X = \{X(t) \mid t \in T\}$, где $X(t) \colon \Omega \to S_t$, $X(t) \in \mathscr{F} \mid \mathscr{B}_t \; \forall \; t \in T$. Здесь T — это произвольное параметрическое множество, (S_t, \mathscr{B}_t) — произвольные измеримые пространства.

Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение. Случайные элементы X_1, \dots, X_n называются *независимыми*, если

$$\mathsf{P}\left(\bigcap_{k=1}^n \left\{X_k \in B_k\right\}\right) = \prod_{k=1}^n \mathsf{P}(X_k \in B_k), \quad \forall \ B_1 \in \mathscr{B}_1, \dots, B_n \in \mathscr{B}_n.$$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathscr{B}_t, \mathbb{Q}_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathscr{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathscr{F} \mid \mathscr{B}_t \ makux, \ umo \ \mathsf{P}_{X_t} = \mathbb{Q}_t, \ t \in T.$

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathbb{Q})_{t \in T}$ — произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности для любого конечного поднабора.

1.2 Случайные блуждания

Определение. Пусть X, X_1, X_2, \ldots — независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужсданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \geqslant 0\}$, $n \in \mathbb{Z}_+$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка); $S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

Определение. Простое случайное блуждание в \mathbb{Z}^d — это такое случайное блуждание, что

$$P(X = e_k) = P(X = -e_k) = \frac{1}{2d},$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_k, 0, \dots, 0), k = 1, \dots, d.$$

Определение. Введем $N := \sum_{n=0}^{\infty} \mathbb{I} \{S_n = 0\} \leqslant \infty$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S = \{S_n, n \ge 0\}$ называется возвратным, если $\mathsf{P}(N = \infty) = 1$; невозвратным, если $\mathsf{P}(N < \infty) = 1$.

Замечание. Следует понимать, что хотя определение подразумевает, что $\mathsf{P}(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

Определение. Число $\tau \coloneqq \inf \{ n \in \mathbb{N} : S_n = 0 \} \ (\tau \coloneqq \infty, \text{ если } S_n \neq 0 \ \forall n \in N)$ называется моментом первого возвращения в θ .

Лемма 2.1. Для
$$\forall n \in \mathbb{N} \ \mathsf{P}(N=n) = \mathsf{P}(\tau=\infty)\mathsf{P}(\tau<\infty)^{n-1}$$
.

 \square При n=1 формула верна: $\{N=1\}=\{ au=\infty\}$. Докажем по индукции.

$$P(N = n + 1, \tau < \infty) = \sum_{k=1}^{n} P(N = n + 1, \tau = k) = \sum_{k=1}^{n} P\left(\sum_{m=0}^{\infty} \mathbb{I}\left\{S_{m+k} - S_k = 0\right\} = n, \tau = k\right) = \sum_{k=1}^{n} P\left(\sum_{m=0}^{\infty} \mathbb{I}\left\{S_m = 0\right\} = n\right) P(\tau = k) = \sum_{k=1}^{n} P(N' = n)P(\tau = k),$$

где N' определяется по последовательности $X'_1 = X_{k+1}, X'_2 = X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$\mathsf{P}(N=n+1,\tau<\infty)=\mathsf{P}(N=n)\mathsf{P}(\tau<\infty).$$

Заметим теперь, что

$$\mathsf{P}(N=n+1) = \mathsf{P}(N=n+1,\tau<\infty) + \mathsf{P}(N=n+1,\tau=\infty),$$

¹ от наборщика: Судя по всему, в лемме подразумевается, что начальная точка нашего случайного блуждания — это 0.

где второе слагаемое обнуляется из-за того, что $n+1 \ge 2$. Из этого следует, что

$$P(N = n + 1) = P(N = n)P(\tau < \infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty)P(\tau < \infty)^{n},$$

что и завершает доказательство леммы.

Следствие 2.1. $P(N=\infty)$ равно 0 или 1. $P(N<\infty)=1\Leftrightarrow P(\tau<\infty)<1$.

 \square Пусть $P(\tau < \infty) < 1$. Тогда

$$\mathsf{P}(N<\infty) = \sum_{n=1}^{\infty} \mathsf{P}(N=n) = \sum_{n=1}^{\infty} \mathsf{P}(\tau=\infty) \mathsf{P}(\tau<\infty)^{n-1} = \frac{\mathsf{P}(\tau=\infty)}{1-\mathsf{P}(\tau<\infty)} = \frac{\mathsf{P}(\tau=\infty)}{\mathsf{P}(\tau=\infty)} = 1.$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$P(\tau < \infty) = 1 \Rightarrow P(\tau = \infty) = 0 \Rightarrow P(N = n) = 0 \quad \forall n \in \mathbb{N} \Rightarrow P(N < \infty) = 0.$$

Следствие доказано. ■

Теорема 2.2. Простое случайное блуждание в \mathbb{Z}^d возвратно $\Leftrightarrow \mathsf{E} N = \infty$ (соответственно, невозвратно $\Leftrightarrow \mathsf{E} N < \infty$).

 \square Если $\mathsf{E} N < \infty$, то $\mathsf{P}(N < \infty) = 1$. Пусть теперь $\mathsf{P}(N < \infty) = 1$. Это равносильно тому, что $\mathsf{P}(\tau < \infty) < 1$.

$$\mathsf{E} N = \sum_{n=1}^\infty n \mathsf{P}(N=n) = \sum_{n=1}^\infty n \mathsf{P}(\tau=\infty) \mathsf{P}(\tau<\infty)^{n-1} = \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \mathsf{P}(\tau<\infty)^{n-1}.$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = \left(\sum_{n=1}^{\infty} p^n\right)' = \left(\frac{1}{1-p}\right)' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$P(\tau = \infty) \sum_{n=1}^{\infty} n P(\tau < \infty)^{n-1} = \frac{P(\tau = \infty)}{(1 - P(\tau < \infty))^2} = \frac{1}{1 - P(\tau < \infty)},$$

что завершает доказательство теоремы.

Замечание. Заметим, что поскольку $N = \sum_{n=1}^{\infty} \mathbb{I} \{ S_n = 0 \}$, то

$$EN = \sum_{n=0}^{\infty} EI \{S_n = 0\} = \sum_{n=0}^{\infty} P(S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

S возвратно
$$\Leftrightarrow \sum_{n=0}^{\infty} \mathsf{P}(S_n = 0) = \infty.$$

Следствие 2.2. S возвратно $npu \ d = 1 \ u \ d = 2.$

$$\mathsf{P}(S_{2n}=0) = (\frac{1}{2d})^{2n} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{(2n)!}{(n_1!)^2 \dots (n_d!)^2}.$$

Cлучай d=1: $\mathsf{P}(S_{2n}=0)=\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}$. Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$\mathsf{P}(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

ряд $\sum_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается *случай* d=2:

$$\mathsf{P}(S_{2n} = 0) = \ldots = \left\{ \frac{(2n)!}{(n!)^2} (\frac{1}{2})^{2n} \right\}^2 \sim \frac{1}{\pi n} \Rightarrow$$

ряд тоже разойдется \Rightarrow блуждание возвратно. Теорема доказана.

1.3 Исследование случайного блуждания с помощью характеристической функции

 ${f Teopema~3.1.}~{\it Для}~npocmoго~cлучайного~блуждания в <math>{\Bbb Z}^d$

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \, dt,$$

 $arepsilon \partial e \ arphi(t) \ - \ xapakmepucmuческая функция <math>X, \ t \in \mathbb{R}^d.$

 $\int_{-\pi}^{\pi} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}$

Следовательно,

$$\mathbb{I}\left\{S_n = 0\right\} = \prod_{k=1}^d \mathbb{I}\left\{S_n^{(k)} = 0\right\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{EI}\{S_n = 0\} = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \, dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \, dt.$$

Заметим, что

$$\mathsf{E}e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{EI}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} (\varphi(t))^n \ dt.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, dt, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leq c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \mathsf{P}(S_n = 0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n = 0) = \mathsf{E}N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие 3.1. При $d \geqslant 3$ простое случайное блуждание невозвратно.

Замечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i : \Omega \to \mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *множество возвратности* случайного блуждания S — это множество

$$R(S) = \left\{ x \in \mathbb{R}^d :$$
блуждание возвратно в окрестности точки $x \right\}.$

Определение. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда точки, достижимые случайным блужданием S, — это множество P(S) такое, что

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n : \ \mathsf{P}(|S_n - z| < \varepsilon) > 0.$$

Теорема 3.2 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие 3.2. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \varnothing$.

Лекция 2

Ветвящиеся процессы и процессы восстановления

2.1 Модель Гальтона – Ватсона

Описание модели. Пусть $\{\xi, \xi_{n,k} \mid n,k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \ge 0, \ m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega)\coloneqq 1,$$
 $Z_n(\omega)\coloneqq \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega)$ для $n\in\mathbb{N}.$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\mid\exists\ n=n(\omega):Z_n(\omega)=0\}$ — событие вырожедения популяции. Заметим, что если $Z_n(\omega)=0$, то $Z_{n+1}(\omega)=0$. Таким образом, $\{Z_n=0\}\subset\{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^{\infty}\{Z_n=0\}$.

По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum_{n=0}^{\infty} a_n = 1$. Производящая функция для этой последовательности — это

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \leqslant 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = \mathsf{P}(Y=k), k=0,1,\ldots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k \mathsf{P}(Y = k) = \mathsf{E}s^Y, \quad s \in [0, 1].$$

Лемма 1.1. Вероятность P(A) является корнем уравнения $\psi(p) = p$, где $\psi = f_{\xi}$ и $p \in [0,1]$.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \left\{ Z_{n-1} = j \right\} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \left\{ Z_{n-1} = j \right\} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\} \subset \sigma\{\xi_{m,k}, m=1,\ldots,r, k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k}, k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left\{ s^{\sum_{k=1}^{j} \xi_{n,k}} \right\} \mathbb{I} \left\{ Z_{n-1} = j \right\} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \left\{ Z_{n-1} = j \right\} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P}(Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \mathsf{P}(Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \mathsf{P}(Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi}(s) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\varepsilon}(s)), \quad s \in [0, 1].$$

Подставим s = 0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}(\psi_{\xi}(0))$$

Заметим, что

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)) = f_{Z_{n-2}}(\psi_{\xi}(\psi_{\xi}(s))) = \dots = \underbrace{\psi_{\xi}(\psi_{\xi}\dots(\psi_{\xi}(s))\dots)}_{n \text{ hereally if }} = \psi_{\xi}(f_{Z_{n-1}}(s)).$$

Тогда при s=0 имеем, что

$$\mathsf{P}(Z_n=0)=\psi_{\xi}\left(\mathsf{P}\left(Z_{n-1}=0\right)\right).$$

Но $P(Z_n=0) \nearrow P(A)$ при $n \to \infty$ и ψ_{ξ} непрерывна на [0,1]. Переходим к пределу при $n \to \infty$. Тогда

$$\mathsf{P}(A) = \psi_{\xi}(\mathsf{P}(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\xi}(p), p \in [0, 1]$.

Теорема 1.2. Вероятность р вырождения процесса Гальтона – Ватсона есть **наимень**ший корень уравнения

$$\psi(p) = p, \quad p \in [0, 1], \tag{2.1.1}$$

 $r\partial e \ \psi = \psi_{\xi}.$

 \square Пусть $p_0 := \mathsf{P}(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi \geqslant 1) = 1, \quad \mathsf{P}\left(\bigcap_{n,k} \{\xi_{n,k} \geqslant 1\}\right) = 1.$$

Поэтому $Z_n\geqslant 1$ при $\forall n$, то есть $\mathsf{P}(A)$ — наименьший корень уравнения (2.1.1).

Пусть теперь $p_0=1$. Тогда $\mathsf{P}(\xi=0)=1\Rightarrow\mathsf{P}(A)$ — наименьший корень уравнения (2.1.1). Пусть, наконец, $0< p_0<1$. Из этого следует, что $\exists \ m\in\mathbb{N}:\ p_m>0$, а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), \quad n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n .

Пусть $s \in \Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (2.1.1) нет корней на $\Delta_n \, \forall \, n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, \mathsf{P}(A)), \quad \psi_n(0) \nearrow \mathsf{P}(A).$$

По лемме 1.1 P(A) является корнем уравнения (2.1.1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 1.3.

- $\mathbf{1}^{\circ}$ Вероятность вырожедения $\mathsf{P}(A)$ есть нуль $\Leftrightarrow p_0=0.$
- 2° Пусть $p_0 > 0$. Тогда при $\mathsf{E}\xi \leqslant 1$ имеем $\mathsf{P}(A) = 1$, при $\mathsf{E}\xi > 1$ имеем $\mathsf{P}(A) < 1$.
- \square Докажем п. **1**°. Пусть $\mathsf{P}(A)=0$. Тогда $p_0=0$, потому что иначе была бы ненулевая вероятность вымирания $\mathsf{P}(A)>\mathsf{P}(Z_1=0)=p_0$. В другую сторону, если $p_0=0$, то вымирания не происходит (почти наверное) из-за того, что у каждой частицы есть как минимум один потомок (почти наверное).

Докажем п. **2**°. Пусть $\mu = \mathsf{E}\xi \leqslant 1$. Покажем, что в таком случае у уравнения (2.1.1) будет единственный корень, равный 1.

$$\psi'_{\xi}(z) = \sum_{k=1}^{\infty} k z^{k-1} \mathsf{P}(\xi = k) \Rightarrow \psi'_{\xi}(z) > 0, \quad \text{при } z > 0,$$

если только ξ не тождественно равна нулю (в противном случае утверждение теоремы выполнено). Заметим также, что $\psi_{\xi}'(z)$ возрастает на z>0. Воспользуемся формулой Лагранжа:

$$1 - \psi_{\xi}(z) = \psi_{\xi}(1) - \psi_{\xi}(z) = \psi'_{\xi}(\theta)(1 - z) < \psi'_{\xi}(1)(1 - z) \leqslant 1 - z,$$

где $z \in (0,1)$, в силу монотонности $\psi'_{\varepsilon}(z)$. Следовательно, если z < 1, то

$$1 - \psi_{\xi}(z) < 1 - z,$$

то есть z=1 — это единственный корень уравнения (2.1.1). Значит, P(A)=1.

Пусть $\mu = \mathsf{E}\xi > 1$. Покажем, что в таком случае у уравнения (2.1.1) есть два корня, один из которых строго меньше единицы.

$$\psi_{\xi}''(z) = \sum_{k=2}^{\infty} k(k-1)z^{k-2} \mathsf{P}(\xi = k),$$

следовательно, $\psi_\xi''(z)$ монотонно возрастает и больше нуля при z>0. Из этого следует, что $1-\psi_\xi'(z)$ строго убывает, причем

$$1 - \psi'_{\xi}(0) = 1 - P(\xi = 1) > 0,$$

$$1 - \psi'_{\xi}(1) = 1 - \mu < 0.$$

Рассмотрим теперь $z - \psi_{\xi}(z)$ при z = 0. Поскольку $1 - \psi_{\xi}(1) = 0$, производная этой функции монотонно убывает, а $0 - \psi_{\xi}(0) = -\mathsf{P}(\xi = 0) < 0$, то график функции $z - \psi_{\xi}(z)$ пересечет ось абсцисс в двух точках, одна из которых будет лежать в интервале (0,1). Так как вероятность вырождения $\mathsf{P}(A)$ равна наименьшему корню уравнения (2.1.1), то $\mathsf{P}(A) < 1$, что и требовалось доказать.

Следствие 1.1. Пусть $\mathsf{E}\xi < \infty$. Тогда $\mathsf{E}Z_n = (\mathsf{E}\xi)^n, \ n \in \mathbb{N}$.

□ Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \mathsf{E} \xi \mathsf{P}(Z_{n-1} = j) = \mathsf{E} \xi \mathsf{E} Z_{n-1} = (\mathsf{E} \xi)^n \,.$$

Определение.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi=1$ процесс называется $\mathit{критическим}.$

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение. Пусть $S_n = X_1 + \ldots + X_n$, где $n \in \mathbb{N}, X, X_1, X_2, \ldots$ — независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

 $Z(t) := \sup \{ n \in \mathbb{N} \mid S_n \leqslant t \}, \quad t > 0.$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{n \in \mathbb{N} \mid S_n(\omega) \leqslant t\}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется $npoyeccom\ восстановления.$

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\left\{S_n \leqslant t\right\}, \quad t > 0.$$

Определение. Рассмотрим *процесс восстановления* $\{Z^*(t), t \ge 0\}$, который строится по Y, Y_1, Y_2, \ldots — независимым одинаково распределенным случайным величинам, где $\mathsf{P}(Y = \alpha) = p \in (0,1), \, \mathsf{P}(Y = 0) = 1 - p$. Исключаем из рассмотрения случай, когда $Y = C = \mathrm{const}$: если C = 0, то $Z(t) = \infty \ \forall \ t > 0$; если же C > 0, то $Z(t) = \left[\frac{t}{c}\right]$.

Лемма 2.1. Для $l = 0, 1, 2, \dots$

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j p^{\left[\frac{t}{\alpha}\right] + 1} q^{m - \left[\frac{t}{\alpha}\right]}, & \textit{ecau } m \geqslant j; \\ 0, & \textit{ecau } m < j. \end{cases}$$

Лекция 3

Пуассоновские процессы

3.1 Процессы восстановления (продолжение)

Определение. Будем говорить, что дискретная случайная величина U имеет reomempu-ueckoe pacnpedenenue с параметром $p \in (0,1)$, если для $k = 0,1,2,\ldots$ $P(U=k) = (1-p)^k p$.

Лемма 1.1. Рассмотрим независимые геометрические величины U_0, \ldots, U_j с параметром $p \in (0,1)$, где $j = \left[\frac{t}{\alpha}\right]$. Тогда

$$P(j + U_0 + ... + U_j = m) = P(Z^*(t) = m).$$

$$\square$$
 Обозначим $M = \left\{ (k_0, \dots, k_j) \mid k_j \in \mathbb{Z}_+, \sum\limits_{i=0}^j k_j = m-j \right\}.$

$$P(U_0 + \ldots + U_j = m - j) = \sum_{(k_0, \ldots, k_j) \in M} P(U_0 = k_0, \ldots, U_j = k_j) =$$

$$= \sum_{(k_0, \ldots, k_j) \in M} P(U_0 = k_0) \cdot \ldots \cdot P(U_j = k_j) = \sum_{(k_0, \ldots, k_j) \in M} p(1 - p)^{k_0} \cdot \ldots \cdot p(1 - p)^{k_j} =$$

$$= \sum_{(k_0, \ldots, k_j) \in M} p^{j+1} (1 - p)^{k_0 + \ldots + k_j} = p^{j+1} (1 - p)^{m-j} \# M = C_m^j p^{j+1} (1 - p)^{m-j}.$$

3.2 Сопоставление исходного процесса восстановления со вспомогательным

Лемма 2.1. Пусть $t\geqslant \alpha$. Тогда $\mathsf{E} Z^\star(t)\leqslant At$ и $\mathsf{E} Z^\star(t)^2\leqslant Bt^2$, где $A\coloneqq A(p,\alpha)>0$, $B\coloneqq B(p,\alpha)>0$.

 \square По лемме 1.1 $\mathsf{E} Z^\star(t) = \mathsf{E} (j + U_0 + \ldots + U_j) = j + (j+1) \mathsf{E} U$, где $\mathsf{E} U \eqqcolon a(p) < \infty$ математическое ожидание геометрического распределения.

Тогда

$$\mathsf{E} Z^*(t) = j + (j+1)a(p) \leqslant (j+1)(a(p)+1) \leqslant \frac{t+\alpha}{\alpha}(a(p)+1) \leqslant \frac{2t}{\alpha}(a(p)+1) = At,$$

где
$$A := \frac{2(a(p)+1)}{\alpha}$$
.

Далее,

$$\begin{split} \mathsf{E} Z^\star(t)^2 &= \mathsf{D} Z^\star(t) + \left(\mathsf{E} Z^\star(t)\right)^2 \leqslant (j+1)\underbrace{\mathsf{D} U}_{\sigma^2(p)} + (j+1)^2 \left(a(p)+1\right)^2 \leqslant \\ &\leqslant (j+1)^2 \left(\sigma^2(p) + \left(a(p)+1\right)^2\right) \leqslant \frac{4}{\alpha^2} \left(\sigma^2(p) + \left(a(p)+1\right)^2\right) t^2 = Bt^2, \end{split}$$

где
$$B := \frac{4}{\alpha^2} \left(\sigma^2(p) + (a(p) + 1)^2 \right)$$
.

Заметим, что для любой невырожденной (не равной константе почти наверное) случайной величины $X\geqslant 0$ найдется такое $\alpha>0$, что $\mathsf{P}(X>\alpha)=p\in(0,1)$. Тогда построим процесс Z^\star , как в определении определении из прошлой лекции, по независимым одинаково распределенным случайным величинам

$$Y_n = \begin{cases} \alpha, \text{если } X_n > \alpha, \\ 0, \text{если } X_n \leqslant \alpha. \end{cases}$$

По построению $Y_n \leqslant X_n$, откуда $Z(t) \leqslant Z^*(t), t \geqslant 0$.

Следствие 2.1. $\mathsf{E} Z(t) \leqslant At \ u \ \mathsf{E} Z(t)^2 \leqslant Bt^2 \ \mathit{dля} \ \mathit{любого} \ t \geqslant \alpha. \ B \ \mathit{частности}, \ Z(t) < \infty \ \mathit{n. n. npu \ } \mathit{ecex} \ t \geqslant 0.$

Следствие 2.2. $P(\forall t \ge 0 \ Z(t) < \infty) = 1.$

 \square Поскольку Z(t) является неубывающим процессом, т.е. $\forall s\leqslant t\ Z(s)\leqslant Z(t)$, то достаточно доказать, что $\mathsf{P}\,(\forall\,n\in\mathbb{N}\ Z(n)<\infty)=1.$ Но

$$\{\forall n \in \mathbb{N} \ Z(n) < \infty\} = \bigcap_{n \in \mathbb{N}} \{Z(n) < \infty\} \ -$$

счетное пересечение событий вероятности 1 (см. предыдущее следствие). Оно тоже имеет вероятность 1. \blacksquare

3.3 Элементарная теория восстановления

Лемма 3.1. Пусть $X, X_1, X_2, \ldots - n$. о. р. случайные величины, $X \geqslant 0$. Тогда $\frac{S_n}{n} \xrightarrow{\text{п.н.}} \mu \in [0, \infty]$ при $n \to \infty$, где $\mu = \mathsf{E} X$ (конечное или бесконечное).

□ Если $\mu < \infty$, то утверждение леммы представляет собой усиленный закон больших чисел А. Н. Колмогорова.

Пусть $\mu = \infty$. Положим для c > 0

$$V_n(c) := X_n \mathbb{I}(X_n \leqslant c)$$
.

Тогда снова по УЗБЧ А. Н. Колмогорова $\frac{1}{n}\sum_{k=1}^n V_k \xrightarrow{\text{п.н.}} \mathsf{E} X \mathbb{I}\text{-}X_n \leqslant c.$

Возьмем $c=m\in\mathbb{N}$. Тогда с вероятностью 1

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\geqslant \lim_{m\to\infty}\mathsf{E}X\mathbb{I}\left\{X\leqslant m\right\}=\mathsf{E}X.$$

В последнем равенстве использовалась теорема о монотонной сходимости (для бесконечного предельного интеграла).

Введем определение, которое понадобится нам в дальнейшем.

Определение. Семейство случайных величин $\{\xi_{\alpha}, t \in \Lambda\}$ называется равномерно интегрируемым, если

$$\lim_{c \to \infty} \sup_{\alpha \in \Lambda} \int_{\{|\xi_{\alpha}| \ge c\}} |\xi_{\alpha}| d\mathsf{P} = 0.$$

Известно, что если семейство $\{\xi_n, n \geqslant 1\}$ равномерно интегрируемо и $\xi_n \to \xi$ почти наверное, то ξ тоже интегрируема и $\mathsf{E}\xi_n \to \mathsf{E}\xi$. Для неотрицательных случайных величин $\xi_n, n \geqslant 1$, таких, что $\xi_n \to \xi$ п.н., где $\mathsf{E}\xi < \infty$, имеет место и обратная импликация

$$\mathsf{E}\xi_n \to \mathsf{E}\xi \Rightarrow$$
 семейство $\{\xi_n, n \geqslant 1\}$ равномерно интегрируемо.

Следующая теорема принимается без доказательства

Теорема 3.2 (Де ла Валле Пуссен). Семейство случайных величин $\{\xi_{\alpha}, \alpha \in \Lambda\}$ является равномерно интегрируемым тогда и только тогда, когда найдется измеримая функция $g \colon \mathbb{R}_+ \to \mathbb{R}_+$, т. е. $g \in \mathscr{B}(\mathbb{R}_+) \mid \mathscr{B}(\mathbb{R}_+)$, т. ч. $\lim_{t \to \infty} \frac{g(t)}{t} = \infty$ и $\sup \mathsf{E} g(|\xi_{\alpha}|) < \infty$.

Теорема 3.3. Пусть $Z = \{Z(t), t \geqslant 0\}$ — процесс восстановления, построенный по последовательности н. о. р случайных величин X, X_1, X_2, \ldots Тогда

$$\mathbf{1}^{\circ} \xrightarrow{Z(t)} \xrightarrow{\pi.H.} \frac{1}{\mu} npu \ t \to \infty;$$

$$\mathbf{2}^{\circ} \ \frac{\mathsf{E}Z(t)}{t} \to \frac{1}{\mu} \ npu \ t \to \infty,$$

$$e \partial e \stackrel{1}{=} := \infty, \stackrel{1}{=} := 0.$$

 \square Если $\mu=0$, то $X_n=0$ п.н., поэтому $\forall\ t>0$ $Z(t)=\infty$ и утверждение теоремы очевидно.

Далее $\mu > 0$. Заметим, что

$$S_{Z(t)} \leqslant t < S_{Z(t)+1}$$
 (3.3.1)

Для фиксированного ω рассмотрим последовательность $t_n := S_n(\omega)$. Поскольку $Z(t_n, \omega) = n$ и траектория $Z(t, \omega)$ монотонна, $Z(t, \omega) \to \infty$. Будем рассматривать те (t, ω) , для которых $0 < Z(t, \omega) < \infty$ (при всех t_n , а значит, вообще при всех t это выполнено почти наверное). Для этих (t, ω) разделим обе части 3.3.1 на Z(t). Получим

$$\frac{S_{Z(t)}}{Z(t)} \leqslant \frac{t}{Z(t)} < \frac{S_{Z(t)+1}}{Z(t)+1} \frac{Z(t)+1}{Z(t)}.$$

Но поскольку $Z(t) \to \infty$, то $\frac{S_{Z(t)}}{Z(t)} \xrightarrow{\text{п.н.}} \mu$, $\frac{S_{Z(t)+1}}{Z(t)+1} \xrightarrow{\text{п.н.}} \mu$ и $\frac{Z(t)+1}{Z(t)} \to 1$. Следовательно, $\frac{t}{Z(t)} \xrightarrow{\text{п.н.}} \mu$ при $t \to \infty$, т. е. $\frac{Z(t)}{t} \xrightarrow{\text{п.н.}} \frac{1}{\mu}$, что завершает доказательство утверждения п. $\mathbf{1}^{\circ}$.

Для доказательства утверждения п. **2**° используем теорему Валле-Пуссена. А именно, рассмотрим семейство $\{\xi_t, t \geqslant \alpha\}$ и функцию $g(t) = t^2$, где $\xi_t = \frac{Z(t)}{t}$. По лемме 2.1

$$\mathsf{E}\xi_t^2 = \frac{\mathsf{E}Z(t)^2}{t^2} \leqslant \frac{Bt^2}{t^2} = B < \infty.$$

Все условия теоремы Валле-Пуссена выполнены.

Поэтому из нее вытекает, что семейство $\{\xi_t, t \geqslant \alpha\}$ равномерно интегрируемо. Тогда можно совершить предельный переход под знаком математического ожидания, и из утверждения п. 1° получаем, что

$$\mathsf{E} \frac{Z(t)}{t} \to \mathsf{E} \frac{1}{\mu} = \frac{1}{\mu}, \quad t \to \infty.$$

3.4 Пуассоновский процесс как процесс восстановления

Определение. Пусть X, X_1, X_2, \ldots н. о. р. случайные величины с экспоненциальным распределением $X \sim \text{Exp}(\lambda)$, т. е.

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{если } x \geqslant 0, \\ 0, & \text{если } x < 0. \end{cases}$$

Пуассоновским процессом $N = \{N(t), t \ge 0\}$ называется процесс восстановления, построенный по X_1, X_2, \dots

Для t>0 введем случайные величины

$$X_1^t \coloneqq S_{N(t)+1} - t;$$

 $X_k^t \coloneqq S_{N(t)+k}, \quad k \geqslant 2.$

Лемма 4.1. Для любого t>0 случайные величины $N(t), X_1^t, X_2^t, \dots$ являются независимыми, причем $N(t) \sim \operatorname{Pois}(\lambda t), \ X_k^t \sim \operatorname{Exp}(\lambda)$ для $k=1,2,\dots$

Чтобы доказать независимость указанных случайных величин, достаточно проверить, что для $\forall n \in \mathbb{Z}_+ \ \forall u_1, \dots, u_k \geqslant 0$ выполнено

$$P\{N(t) = n, X_1^t > u_1, \dots, X_k^t > u_k\} = P(N(t) = n) \cdot P(X_1^t > u_1) \cdot \dots \cdot P(X_k^t > u_k).$$

Доказываем это индукцией по k.

База индукции: k=1. Напомним (было в курсе теории вероятностей), что случайная величина S_n имеет плотность

$$p_{S_n}(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x}, & \text{если } x \geqslant 0; \\ 0, & \text{если } x < 0. \end{cases}$$

Итак,

$$\begin{split} \mathsf{P}(N(t) = n, X_1^t > u_1) &= \mathsf{P}(S_n \leqslant t, S_{n+1} > t, S_{N(t)+1} - t > u_1) = \mathsf{P}(S_n \leqslant t, S_{n+1} > t + u_1) = \\ &= \mathsf{P}(S_n \leqslant t, S_n + X_{n+1} > t + u_1) = \mathsf{P}\left((S_n, X_{n+1}) \in \{(x, y) \mid x \leqslant t, x + y > t + u_1\}\right) = \\ &= \int\limits_{\substack{x \leqslant t \\ x + y > t + u_1}} p_{(S_n, X_{n+1})}(x, y) \, dx \, dy = (S_n \perp X_{n+1}) = \int\limits_{\substack{x \leqslant t \\ x + y > t + u_1}} p_{S_n}(x) p_{X_{n+1}}(y) \, dx \, dy = \\ &= \int\limits_{\substack{x \leqslant t \\ x + y > t + u_1}} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda e^{-\lambda y} \, dx \, dy = (\mathsf{T}. \ \Phi \mathsf{y} \mathsf{б} \mathsf{u} \mathsf{H} \mathsf{u}) = \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \, dx \int\limits_{t + u_1 - x}^{+\infty} \lambda e^{-\lambda y} \, dy = \\ &= \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda (t + u_1 - x)} \, dx = e^{-\lambda (t + u_1)} \int\limits_{0}^{t} \frac{\lambda(\lambda x)^{n-1}}{(n-1)!} \, dx = \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1}. \end{split}$$

Положим $u_1 = 0$, получим

$$P(N(t) = n, X_1^t > 0) = P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad n \in \mathbb{Z}_+,$$

т. е. $N(t) \sim \text{Pois}(\lambda t)$. Далее,

$$\mathsf{P}(X_1^t > u_1) = \sum_{n=0}^{\infty} \mathsf{P}(N(t) = n, X_1^t > u_1) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} \cdot e^{-\lambda u_1} = 1 \cdot e^{-\lambda u_1},$$

т. е. $X_1^t \sim \mathrm{Exp}(\lambda)$ и база установлена. Индукционный переход: пусть $k \geqslant 2$.

$$\begin{split} \mathsf{P}\left\{N(t) = n, X_1^t > u_1, \dots, X_k^t > u_k\right\} = \\ &= \mathsf{P}\left\{S_n \leqslant t, S_{n+1} > t, S_{n+1} > t + u_1, X_{n+2} > u_2, \dots, X_{n+k} > u_k\right\} = (\text{см. выше}) = \\ &= \mathsf{P}\left\{N(t) = n\right\} \mathsf{P}\left\{X_1^t > u_1\right\} \cdot e^{-\lambda u_2} \cdot \dots \cdot e^{-\lambda u_k} = \mathsf{P}\left\{N(t) = n\right\} \cdot e^{-\lambda u_1} \cdot \dots \cdot e^{-\lambda u_k}. \end{split}$$

Снова положим $u_1 = \ldots = u_{k-1} = 0$ и просуммируем по всем $n \in \mathbb{Z}_+$. Получим $\mathsf{P}(X_k^t > u_k) = e^{-\lambda u_k}$, откуда $X_k^t \sim \mathsf{Exp}(\lambda)$, индукционный переход завершен. \blacksquare

Пусть $X_j \sim \operatorname{Exp}(\lambda)$ — интервалы между временами прихода автобусов на данную остановку. Тогда случайная величина $X_1^t = S_{N(t)+1} - t$ соответствует времени ожидания прибытия ближайшего автобуса. Мы только что доказали, что она распределена так же, как и интервалы: $X_1^t \sim \operatorname{Exp}(\lambda)$. Мы будем в среднем ждать автобуса столько же времени, сколько в среднем проходит времени между двумя автобусами. В этом состоит парадокс времени ожидания. Никакого противоречия здесь на самом деле нет, так как сами моменты прихода автобусов также случайные.

Литература

[1] Булинский, Ширяев, Теория случайных процессов