- Probabilidade condicional:
 - P(a|b) = x, pode ser interpretada como: "Dado o evento b, a probabilidade do evento a é x".
- Regra fundamental:
 - P(a|b) = P(a,b)/P(b), ou P(a|b)P(b) = P(a,b). Onde P(a,b) é a probabilidade do evento conjunto do evento $a \wedge b$.
- Por exemplo:
 - $P(C\acute{a}rie|Dor) = 0.8$, indica que caso um paciente esteja com dor (de dente) e nenhuma outra informação esteja disponível, então, a probabilidade do paciente ter uma cárie é de 0.8.

- Exemplo:
 - um médico sabe que a meningite causa torcicolo em 50% dos casos. Porém, o médico também conhece algumas probabilidades incondicionais que dizem que, um caso de meningite atinge 1/50000 pessoas e, a probabilidade de alguém ter torcicolo é de 1/20."
- T e M, é probabilidade incondicional de um paciente ter torcicolo e a probabilidade incondicional de um paciente ter meningite.
 - P(T|M) = 0.5 (probabilidade de ter torcicolo tendo meningite)
 - P(M) = 1/50000
 - P(T) = 1/20
- Aplicando a rede de *Bayes*:
 - $P(M|T) = (P(T|M)P(M))/P(T) = (0.5 \times 1/50000)/(1/20) = 0.0002$

• Uma vez que outra variável C é conhecida, deve-se reconsiderar para $P(A|B \land C)$.

```
• P(a,b)=P(b,c),

então chegamos em

P(a|b)P(b) = P(b|a)P(a),

que resulta em:

P(b|a) = P(a|b)P(b)/P(a),

chamada Regra de Bayes.
```

	a_1	a_2
B_1	0.4	0.4
B_2	0.3	0.47
B_3	0.3	0.13

Tabela3. P(Y|X)

- Uma Rede *Bayesiana* consiste do seguinte:
 - Um conjunto de variáveis e um conjunto de arcos ligando as variáveis.
 - Cada variável possui um conjunto limitado de estados mutuamente exclusivos.
 - Para cada variável A que possui como pais B^1 , ..., B^n , existe uma tabela $P(A|B^1, ..., B^n)$.

Problema do Alarme:

• "Você possui um novo alarme contra ladrões em casa. Este alarme é muito confiável na detecção de ladrões, entretanto, ele também pode disparar caso ocorra um terremoto. Você tem dois vizinhos, João e Maria, os quais prometeram telefonar-lhe no trabalho caso o alarme dispare. João sempre liga quando ouve o alarme, entretanto, algumas vezes confunde o alarme com o telefone e também liga nestes casos. Maria, por outro lado, gosta de ouvir música alta e às vezes não escuta o alarme."

Problema do Alarme:

É necessário definir as probabilidades condicionais:

Ladrão	Terremoto	P(Alarme Ladrão,Terremoto)	
		Verdadeiro	Falso
Verdadeiro	Verdadeiro	0.95	0.050
Verdadeiro	Falso	0.95	0.050
Falso	Verdadeiro	0.29	0.71
Falso	Falso	0.001	0.999

Problema do Alarme:

Rede Bayesiana e suas probabilidades condicionais.

Redes Bayesianas – Conjunção de probabilidades

- Considere que se deseja calcular a probabilidade do alarme ter tocado, mas, nem um ladrão nem um terremoto aconteceram, e ambos, João em Maria ligaram, ou $P(J \land M \land A \land \leftarrow L \land \leftarrow T)$.
- $P(J \land M \land A \land \leftarrow L \land \leftarrow T) = P(J|A)P(M|A)P(A| \leftarrow L \land \leftarrow T)P(\leftarrow L)P(\leftarrow T)$
- \bullet = 0.9 x 0.7 x 0.001 x 0.999 x 0.998
- \bullet = 0.00062