## Extra Analyses

#### 2025-03-14

```
## Thank you for using fastDummies!
## To acknowledge our work, please cite the package:
## Kaplan, J. & Schlegel, B. (2023). fastDummies: Fast Creation of Dummy (Binary) Columns and Rows from
## Loading required package: Matrix
##
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
##
##
       col_factor
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
       combine
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
## v forcats 1.0.0
                        v stringr
                                     1.5.1
## v lubridate 1.9.3
                         v tibble
                                     3.2.1
## v purrr
              1.0.2
                         v tidyr
                                     1.3.1
## -- Conflicts ------ tidyverse_conflicts() --
## x readr::col_factor() masks scales::col_factor()
## x gridExtra::combine() masks dplyr::combine()
## x purrr::discard()
                         masks scales::discard()
## x tidyr::expand()
                          masks Matrix::expand()
## x dplyr::filter()
                         masks stats::filter()
## x dplyr::lag()
                         masks stats::lag()
## x tidyr::pack()
                         masks Matrix::pack()
## x tidyr::unpack()
                         masks Matrix::unpack()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

#### 1. Load data, preprocess

Implementation for DiD, SC, Synth. DiD, Generate plots for different outcome variables

```
# Get vector of cohort years
cohorts <- sort(unique(dat$treatment year))</pre>
cohorts <- cohorts[!is.infinite(cohorts)]</pre>
# Initialize a list to store results
results <- list()
#' Function that implements DiD, SC, and Synth. DiD and plots outcomes
#' Oparam data panel data with state-year as units
#' @param outcome_var dependent variable we want to measure
#' @param cohorts vector of treatment years present throughout the data
run_synthdid <- function(data, outcome_var, cohorts) {</pre>
  outcome labels <- c(
   pct_in_comp_mco = "Percent in Comp. MCO",
   total_medicaid = "Total Medicaid Spending",
   log_total_spend = "Log(Total Medicaid Spending)",
   all_medicaid_spending_per_cap = "Total Medicaid Spending per Capita",
   log all medicaid spending per cap = "Log(Total Medicaid Spending per Capita)"
  outcome_label <- outcome_labels[[outcome_var]]</pre>
  # Loop through each cohort
  for (cohort_year in cohorts) {
   tryCatch({
      # Subset data for the current cohort
      cohort_data <- data %>%
        filter(treatment_year == cohort_year | is.infinite(treatment_year))
      # Reshape the cohort data to wide format
      Y <- cohort data %>%
        select(state, year, !!sym(outcome_var)) %>%
        pivot_wider(names_from = year,
                    values_from = !!sym(outcome_var)) %>%
        column to rownames("state") %>%
        as.matrix()
      # Extract treatment timing for the cohort
      treatment_timing <- cohort_data %>%
        group_by(state) %>%
        summarize(treatment_year = unique(treatment_year)) %>%
       pull(treatment_year)
      # Number of control units (NO)
      NO <- sum(treatment_timing == Inf)
      # Number of pre-treatment periods (TO)
```

```
TO <- cohort_year - min(cohort_data$year)
    # Check if Y has valid dimensions
    if (nrow(Y) == 0 \mid \mid ncol(Y) == 0) {
      stop("Y has invalid dimensions. Skipping cohort year ", cohort_year)
    # Estimate the treatment effect using synthdid
    tau.hat <- synthdid_estimate(Y, NO, TO)</pre>
    # Define estimators
    estimators <- list(did = did_estimate,</pre>
                       sc = sc_estimate,
                       sdid = synthdid_estimate)
    # Apply estimators
    estimates <- lapply(estimators, function(estimator) {estimator(Y, NO, TO)})</pre>
    # Generate the plot
    plot <- synthdid_plot(estimates[1:3],</pre>
                           control.name = 'control',
                           treated.name = "treated", # Use the treated unit's name
                           facet.vertical = FALSE,
                           lambda.comparable = TRUE,
                           se.method = 'none',
                           trajectory.linetype = 1,
                           line.width = .75,
                           effect.curvature = -.4,
                           trajectory.alpha = .7,
                           effect.alpha = .7,
                           diagram.alpha = 1,
                           onset.alpha = .7) +
      labs(title = paste0("Estimators - ", outcome_label),
           subtitle = paste0("Treatment Year = ", cohort_year),
           x = "Year",
           y = outcome_var)
    print(plot)
    # Print a success message
    message("Plot saved for cohort year ", cohort_year)
  }, error = function(e) {
    # Print an error message and skip the cohort year
    message("Error in cohort year ", cohort_year, ": ", e$message)
  })
}
```

}

#### Percent in Comprehensive Managed Care

run\_synthdid(data, "pct\_in\_comp\_mco", cohorts)

## Error in cohort year 1992: dim(X) must have a positive length

## Plot saved for cohort year 1994

# Estimators – Percent in Comp. MCO

Treatment Year = 1994





## Plot saved for cohort year 1995





## Plot saved for cohort year 1996





## Plot saved for cohort year 1997

# Estimators – Percent in Comp. MCO





## Plot saved for cohort year 1998





## Plot saved for cohort year 2006





## Plot saved for cohort year 2007





## Plot saved for cohort year 2011





## Plot saved for cohort year 2012





## Plot saved for cohort year 2014





## Plot saved for cohort year 2016





## Plot saved for cohort year 2021

# Estimators – Percent in Comp. MCO

Treatment Year = 2021





#### **Total Medicaid Spending**

```
run_synthdid(data, "total_medicaid", cohorts)
```

- ## Error in cohort year 1992:  $\dim(X)$  must have a positive length
- ## Plot saved for cohort year 1994





## Plot saved for cohort year 1995





## Plot saved for cohort year 1996

→ control → treated



## Plot saved for cohort year 1997



## Plot saved for cohort year 1998





## Plot saved for cohort year 2006





## Plot saved for cohort year 2007





## Plot saved for cohort year 2011





## Plot saved for cohort year 2012





## Plot saved for cohort year 2014





## Plot saved for cohort year 2016





## Plot saved for cohort year 2021





#### Log(Total Medicaid Spending)

```
run_synthdid(data, "log_total_spend", cohorts)
```

- ## Error in cohort year 1992: dim(X) must have a positive length
- ## Plot saved for cohort year 1994





## Plot saved for cohort year 1995





## Plot saved for cohort year 1996



## Plot saved for cohort year 1997





## Plot saved for cohort year 1998





## Plot saved for cohort year 2006





## Plot saved for cohort year 2007





## Plot saved for cohort year 2011





## Plot saved for cohort year 2012





## Plot saved for cohort year 2014

# Estimators – Log(Total Medicaid Spending)



## Plot saved for cohort year 2016

# Estimators – Log(Total Medicaid Spending)





## Plot saved for cohort year 2021

## Estimators – Log(Total Medicaid Spending)

Treatment Year = 2021





### Total Medicaid Spending per Capita

```
run_synthdid(data, "all_medicaid_spending_per_cap", cohorts)
```

- ## Error in cohort year 1992:  $\dim(X)$  must have a positive length
- ## Plot saved for cohort year 1994





## Plot saved for cohort year 1995





## Plot saved for cohort year 1996



## Plot saved for cohort year 1997





## Plot saved for cohort year 1998





## Plot saved for cohort year 2006





## Plot saved for cohort year 2007





## Plot saved for cohort year 2011



Year

2020 1990

## Plot saved for cohort year 2012

2020 1990



2000

2010

Year

2020 1990

2000

2010

2020

## Plot saved for cohort year 2014

2000

2010

2020 1990

1990





## Plot saved for cohort year 2016



## Plot saved for cohort year 2021





### Log(Total Medicaid Spending per Capita)

```
run_synthdid(data, "log_all_medicaid_spending_per_cap", cohorts)
```

- ## Error in cohort year 1992: dim(X) must have a positive length
- ## Plot saved for cohort year 1994

Treatment Year = 1994



## Plot saved for cohort year 1995





## Plot saved for cohort year 1996





## Plot saved for cohort year 1997





## Plot saved for cohort year 1998





## Plot saved for cohort year 2006





## Plot saved for cohort year 2007

Treatment Year = 2007



2000

2010

Year

2020 1990

2000

2010

2020

## Plot saved for cohort year 2011

2000

2010

2020 1990

1990

Treatment Year = 2011



Year

## Plot saved for cohort year 2012

Treatment Year = 2012



2000

2010

Year

2020 1990

2000

2010

2020

## Plot saved for cohort year 2014

2000

2010

2020 1990

1990



## Plot saved for cohort year 2016



## Plot saved for cohort year 2021

Treatment Year = 2021





#### TWFE Treatment Effect by Cohort (cohorts based off 5-10 year intervals)

```
# Define 5 and 10 year interval cohorts based on treatment years
data_cohorts <- data %>%
  mutate(cohort_5_interval = case_when(
    treatment_year >= 1991 & treatment_year <= 1995 ~ "1991-1995",</pre>
    treatment_year >= 1996 & treatment_year <= 2000 ~ "1996-2000",</pre>
    treatment_year >= 2001 & treatment_year <= 2005 ~ "2001-2005",
    treatment_year >= 2006 & treatment_year <= 2010 ~ "2006-2010",</pre>
    treatment_year >= 2011 & treatment_year <= 2015 ~ "2011-2015",</pre>
    treatment_year >= 2016 & treatment_year <= 2022 ~ "2016-2022",</pre>
    TRUE ~ "never-treated"
  )) %>%
  mutate(cohort_10_interval = case_when(
    treatment_year >= 1991 & treatment_year <= 2000 ~ "1991-2000",</pre>
    treatment_year >= 2001 & treatment_year <= 2010 ~ "2001-2010",</pre>
    treatment_year >= 2011 & treatment_year <= 2022 ~ "2011-2022",</pre>
    TRUE ~ "never-treated"
  ))
```

```
prep_es_10 <- function(mod){</pre>
 mod_2 <- tibble(</pre>
    estimate = mod$coefficients,
    term1 = rownames(mod$coefficients),
    se = mod$se,
    pval = mod$pval
  )
  # Filter coefficients for relative time leads and lags
  es <- mod 2 %>%
   filter(term1 %in% keepvars) %>%
    mutate(t = c(-10:-2, 0:10)) \%
    select(t, estimate, se, pval)
  # Add a row for t = -1 (reference period)
  es \leftarrow rbind(es, c(-1, 0, 0, 0))
  # Add confidence intervals
  es <- es %>%
    mutate(lower = estimate - 1.96 * se,
           upper = estimate + 1.96 * se)
 return(es)
}
prep_es_trend_10 <- function(mod){</pre>
 mod 2 <- tibble(</pre>
    estimate = mod$coefficients,
   term1 = rownames(mod$coefficients),
   se = mod$se,
    pval = mod$pval
  es <- mod_2 %>%
   filter(term1 %in% keepvars) %>%
    mutate(t = c(0:10)) \%
    select(t, estimate, se, pval)
  es \leftarrow rbind(es, c(-1, 0, 0, 0))
  es <- es %>%
    mutate(lower = estimate - 1.96 * se,
           upper = estimate + 1.96 * se,
           star = ifelse(pval <= 0.001, "***",
                          ifelse(pval<=0.01,"**",
                                 ifelse(pval<=0.05, "*", ""))),
           coef_star = paste0(round(estimate,2), star, sep =""))
 return(es)
}
#' Plot 10-year event study plot with data filtered by interval cohort
#' @param data panel data
#' @param outcome outcome variable (numeric)
#' @param outcome_name name of the outcome variable (character)
#' @param cohort_var name of the interval variable (character)
```

```
#' @param cohort_interval range of years (cohort) we want to filter for (character)
did_graph_trend_10 <- function(data, outcome, outcome_name, cohort_var, cohort_interval){</pre>
  p <- list()</pre>
  cohort_data <- data %>%
    filter(!!sym(cohort_var) == cohort_interval)
  # Normal event study
  formula_str1 <- paste0(</pre>
    outcome, " ~ ",
    "`center_time_-10` + `center_time_-9` + ",
    "`center_time_-8` + `center_time_-7` + `center_time_-6` + `center_time_-5` + ",
    "`center_time_-4` + `center_time_-3` + `center_time_-2` + `center_time_0` + ",
    "`center_time_1` + `center_time_2` + `center_time_3` + `center_time_4` + ",
    "`center_time_5` + `center_time_6` + `center_time_7` + `center_time_8` + ",
    "`center_time_9` + `center_time_10` | ",
    "as.factor(state) + as.character(year) ",
    sep = ""
  formula1 <- as.formula(formula_str1)</pre>
  mod_d <- lfe::felm(formula1,</pre>
                      data = subset(cohort_data, center_time >= -10 & center_time <= 10),</pre>
                      exactDOF = TRUE)
  es_d <- prep_es_10(mod_d)
  es d <- es d %>%
    mutate(sig = ifelse((lower > 0 | upper < 0), 1, 0))</pre>
  # Pre-trend line
  pre_trend <- es_d %>% filter(t < 0)</pre>
  pre_trend_fit <- lm(estimate ~ t, data = pre_trend)</pre>
  predicted_df <- data.frame(</pre>
   t = seq(-10, 10, by = 0.1),
    estimate = predict(pre_trend_fit, newdata = data.frame(t = seq(-10, 10, by = 0.1)))
  )
  ## estimate difference
  formula_str2 <- paste0(</pre>
    outcome, " ~ ",
    "center time 0 + ",
    "`center_time_1` + `center_time_2` + `center_time_3` + `center_time_4` + ",
    "`center_time_5` + `center_time_6` + `center_time_7` + `center_time_8` + ",
    "`center_time_9` + `center_time_10` + ",
    "center_time | ",
    "as.factor(state) + as.character(year) ",
  formula2 <- as.formula(formula_str2)</pre>
  mod_d <- lfe::felm(formula2,</pre>
                      data = subset(cohort_data, center_time >= -10 & center_time <= 10),</pre>
                      exactDOF = TRUE)
  es_d2 <- prep_es_trend_10(mod_d)
```

```
es_d2 <- es_d2 %>%
    mutate(sig = ifelse((lower > 0 | upper < 0), 1, 0))</pre>
  # Event study plot
  p1 <- ggplot(data = es_d, aes(x = t, y = estimate, group = 1))+
   geom_point(size= 3, color = "gray26")+
    geom_errorbar(aes(ymin = lower, ymax = upper),
                  width=.1,
                  linewidth = 0.8,
                  color = "gray26") +
    geom_hline(yintercept = 0,
               linetype = "dashed",
               linewidth = 1,
               color = "firebrick4")+
    scale_x_continuous(breaks = round(seq(-10, 10, by = 1), 1),
                       limits = c(-10.5, 10.5))+
    \# scale_y_continuous(breaks = round(seq(-0.2, 0.2, by = 0.1), 1),
                       limits = c(-0.2, 0.2))+
   labs(x = "Relative Time", y = "Estimate",
         title = paste0(outcome_name, " - ", cohort_interval))+
    theme(plot.title = element_text(hjust = 0.5, size = 15),
          legend.position = "none")+
    geom_text(data = es_d2 %>% filter(t >= 0 & t <= 10),</pre>
              aes(x = t, y = 0.5*max(es_d2$upper), label = coef_star, angle = 45),
              color = "blue", size = 4, vjust = -0.3)+
    geom_line(data = predicted_df, aes(x = t, y = estimate),
              color = "blue", linetype = "dashed", linewidth = 1.2)
  \# annotate("text", x = 8, y = text_pos, label = comb_est, size = 5)
  p2 \leftarrow ggplot(data = es_d2, aes(x = t, y = estimate)) +
    geom_point(size = 3, color = "black") + # Black dots for estimates
    geom_errorbar(aes(ymin = lower, ymax = upper),
                  width = 0.2,
                  linewidth = 0.8,
                  color = "black") + # Error bars
    geom_line(color = "black", linewidth = 1) + # Line connecting estimates
   geom_hline(yintercept = 0, linetype = "dashed", color = "firebrick4", linewidth = 1) + # Reference
   scale x continuous(breaks = seq(-20, 20, by = 1)) +
    \# scale_y_continuous(breaks = seq(-0.5,1,0.1),
                         limits = c(-0.5, 1.1)) +
   labs(x = "Relative Time",
         y = "Estimate",
         title = paste0(outcome_name, " - ", cohort_interval)) +
    theme(plot.title = element_text(hjust = 0.5, size = 15),
          legend.position="none")
  p2
 p[[1]] <- p1
 p[[2]] \leftarrow p2
 return(p)
}
```

```
# Define treatment cohorts
assign_cohort_5 <- function(treatment_year) {</pre>
  case when(
    is.na(treatment_year) ~ "never-treated",
    treatment year >= 1996 & treatment year <= 2000 ~ "1996-2000",
    treatment_year >= 1991 & treatment_year <= 1995 ~ "1991-1995",</pre>
    treatment_year >= 2006 & treatment_year <= 2010 ~ "2006-2010",</pre>
    treatment_year >= 2016 & treatment_year <= 2022 ~ "2016-2022",</pre>
    treatment year >= 2011 & treatment year <= 2015 ~ "2011-2015",
    TRUE ~ "never-treated" \# Default fallback if none of the above match
  )
}
# Construct stacked data
# For each treatment year, construct control without treatment within 10/20 years
collect 10 <- list()</pre>
collect_20 <- list()</pre>
for(i in unique(data_cohorts$treatment_year[data_cohorts$treatment_year != Inf])){
  # Get treated state
  treated state <- data cohorts %>%
    filter(treatment_year == i) %>%
    mutate(treatment_year_group = i) %>%
    mutate(cohort_5_interval = assign_cohort_5(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_5_interval)
  max_year <- max(treated_state$year)</pre>
  # Get control states within a 10 year (pre and post) from treatment year
  control_state_10 <- data_cohorts %>%
    filter(treatment_year > i + 10,
           year \le i + 10, year \ge i - 10) \%
    mutate(treatment_year_group = i,
           center_time = 0,
           treated = 0,
           cohort_5_interval = assign_cohort_5(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_5_interval)
  control_state_20 <- data_cohorts %>%
    filter(treatment_year > i + 20,
           year \le i + 20, year \ge i - 20) \%\%
    mutate(treatment_year_group = i,
           center_time = 0,
           treated = 0,
           cohort_5_interval = assign_cohort_5(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_5_interval)
```

```
collect_10[[length(collect_10)+1]] <- rbind(treated_state, control_state_10)
  collect_20[[length(collect_20)+1]] <- rbind(treated_state, control_state_20)
}

# Collapse into one dataframe
dat_10 <- do.call(rbind, collect_10)
dat_20 <- do.call(rbind, collect_20)

dat_10 <- dat_10 %>% dummy_cols(select_columns = "center_time")
dat_20 <- dat_20 %>% dummy_cols(select_columns = "center_time")

# DID - 10 period
dat <- dat_10
dat <- dat_10
dat <- dat_10
mutate(log_total_spend = log(total_medicaid))</pre>
```

#### Plots for 5 year interval cohorts

```
cohorts <- c("1991-1995", "1996-2000", "2006-2010", "2011-2015", "2016-2022")
outcomes <- list(</pre>
 pct in comp mco = "Prop. Comp MCO Enroll",
 log_total_spend = "Log(Total Medicaid Spending)",
 log_all_medicaid_spending_per_cap = "Log(Total Medicaid Spending per Capita)"
)
# Initialize an empty list to store the plots
plot_list <- list()</pre>
# Loop through each outcome
for (outcome_name in names(outcomes)) {
  outcome_label <- outcomes[[outcome_name]]</pre>
  # Loop through each cohort
 for (cohort in cohorts) {
    # Generate the plot
    p <- did_graph_trend_10(dat, outcome_name, outcome_label, "cohort_5_interval", cohort)</pre>
    # Store the plot in the list
    plot_list[[paste(outcome_name, cohort, sep = "_")]] <- p</pre>
  outcome_plots <- plot_list[grep(outcome_name, names(plot_list))]</pre>
  print(outcome_plots)
```

```
## $'pct_in_comp_mco_1991-1995'
## $'pct_in_comp_mco_1991-1995'[[1]]
```

Prop. Comp MCO Enroll – 1991–1995



## ## \$'pct\_in\_comp\_mco\_1991-1995'[[2]]





```
##
##
## $'pct_in_comp_mco_1996-2000'
## $'pct_in_comp_mco_1996-2000'[[1]]
```

Prop. Comp MCO Enroll – 1996–2000



##
## \$'pct\_in\_comp\_mco\_1996-2000'[[2]]

Prop. Comp MCO Enroll – 1996–2000



```
##
##
## $'pct_in_comp_mco_2006-2010'
## $'pct_in_comp_mco_2006-2010'[[1]]
```

Prop. Comp MCO Enroll – 2006–2010



## ## \$'pct\_in\_comp\_mco\_2006-2010'[[2]]





```
##
##
## $'pct_in_comp_mco_2011-2015'
## $'pct_in_comp_mco_2011-2015'[[1]]
```

Prop. Comp MCO Enroll – 2011–2015



##
## \$'pct\_in\_comp\_mco\_2011-2015'[[2]]





```
##
##
## $'pct_in_comp_mco_2016-2022'
## $'pct_in_comp_mco_2016-2022'[[1]]
```

Prop. Comp MCO Enroll – 2016–2022



##
## \$'pct\_in\_comp\_mco\_2016-2022'[[2]]

Prop. Comp MCO Enroll – 2016–2022



```
##
##
## $'log_total_spend_1991-1995'
## $'log_total_spend_1991-1995'[[1]]
```





## ## \$'log\_total\_spend\_1991-1995'[[2]]

## Log(Total Medicaid Spending) - 1991-1995



```
##
##
## $'log_total_spend_1996-2000'
## $'log_total_spend_1996-2000'[[1]]
```





##
## \$'log\_total\_spend\_1996-2000'[[2]]

## Log(Total Medicaid Spending) - 1996-2000



```
##
##
## $'log_total_spend_2006-2010'
## $'log_total_spend_2006-2010'[[1]]
```





## ## \$'log\_total\_spend\_2006-2010'[[2]]

## Log(Total Medicaid Spending) - 2006-2010



```
##
##
## $'log_total_spend_2011-2015'
## $'log_total_spend_2011-2015'[[1]]
```





## \$'log\_total\_spend\_2011-2015'[[2]]

## Log(Total Medicaid Spending) - 2011-2015



```
##
##
## $'log_total_spend_2016-2022'
## $'log_total_spend_2016-2022'[[1]]
```

Log(Total Medicaid Spending) – 2016–2022



## ## \$'log\_total\_spend\_2016-2022'[[2]]

## Log(Total Medicaid Spending) - 2016-2022



```
##
##
## $'log_all_medicaid_spending_per_cap_1991-1995'
## $'log_all_medicaid_spending_per_cap_1991-1995'[[1]]
```





##
## \$'log\_all\_medicaid\_spending\_per\_cap\_1991-1995'[[2]]





```
##
##
## $'log_all_medicaid_spending_per_cap_1996-2000'
## $'log_all_medicaid_spending_per_cap_1996-2000'[[1]]
```





##
## \$'log\_all\_medicaid\_spending\_per\_cap\_1996-2000'[[2]]

## Log(Total Medicaid Spending per Capita) – 1996–2000



```
##
##
## $'log_all_medicaid_spending_per_cap_2006-2010'
## $'log_all_medicaid_spending_per_cap_2006-2010'[[1]]
```

Log(Total Medicaid Spending per Capita) – 2006–2010



##
## \$'log\_all\_medicaid\_spending\_per\_cap\_2006-2010'[[2]]

## Log(Total Medicaid Spending per Capita) – 2006–2010



```
##
##
## $'log_all_medicaid_spending_per_cap_2011-2015'
## $'log_all_medicaid_spending_per_cap_2011-2015'[[1]]
```

Log(Total Medicaid Spending per Capita) – 2011–2015



##
## \$'log\_all\_medicaid\_spending\_per\_cap\_2011-2015'[[2]]





```
##
##
## $'log_all_medicaid_spending_per_cap_2016-2022'
## $'log_all_medicaid_spending_per_cap_2016-2022'[[1]]
```





##
## \$'log\_all\_medicaid\_spending\_per\_cap\_2016-2022'[[2]]

#### Log(Total Medicaid Spending per Capita) – 2016–2022



```
# Define treatment cohorts
assign_cohort_10 <- function(treatment_year) {</pre>
  case_when(
    treatment_year >= 1991 & treatment_year <= 2000 ~ "1991-2000",</pre>
    treatment_year >= 2001 & treatment_year <= 2010 ~ "2001-2010",</pre>
    treatment year >= 2011 & treatment year <= 2022 ~ "2011-2022",
    TRUE ~ "never-treated" # Default fallback if none of the above match
}
# Construct stacked data
# For each treatment year, construct control without treatment within 10/20 years
collect 10 <- list()</pre>
collect_20 <- list()</pre>
for(i in unique(data_cohorts$treatment_year[data_cohorts$treatment_year != Inf])){
  # Get treated state
  treated_state <- data_cohorts %>%
    filter(treatment_year == i) %>%
    mutate(treatment_year_group = i) %>%
    mutate(cohort_10_interval = assign_cohort_10(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_10_interval)
```

```
max_year <- max(treated_state$year)</pre>
  # Get control states within a 10 year (pre and post) from treatment year
  control_state_10 <- data_cohorts %>%
    filter(treatment_year > i + 10,
           year <= i + 10, year >= i - 10) %>%
    mutate(treatment_year_group = i,
           center time = 0,
           treated = 0,
           cohort_10_interval = assign_cohort_10(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_10_interval)
  control_state_20 <- data_cohorts %>%
    filter(treatment_year > i + 20,
           year <= i + 20, year >= i - 20) %>%
    mutate(treatment_year_group = i,
           center_time = 0,
           treated = 0,
           cohort_10_interval = assign_cohort_10(treatment_year_group)) %>%
    select(state, year, center_time, treated, total_medicaid,
           log_all_medicaid_spending_per_cap, all_medicaid_spending_per_cap,
           pct_in_comp_mco, treatment_year, treatment_year_group, cohort_10_interval)
  collect_10[[length(collect_10)+1]] <- rbind(treated_state, control_state_10)</pre>
  collect_20[[length(collect_20)+1]] <- rbind(treated_state, control_state_20)</pre>
}
dat_10 <- do.call(rbind, collect_10)</pre>
dat_20 <- do.call(rbind, collect_20)</pre>
dat_10 <- dat_10 %>% dummy_cols(select_columns = "center_time")
dat_20 <- dat_20 %>% dummy_cols(select_columns = "center_time")
# DID - 10 period
dat <- dat_10
dat <- dat %>%
 mutate(log_total_spend = log(total_medicaid))
```

#### Plots for 10 year interval cohorts

```
cohorts2 <- c("1991-2000", "2001-2010", "2011-2022")

outcomes <- list(
   pct_in_comp_mco = "Prop. Comp MCO Enroll",
   log_total_spend = "Log(Total Medicaid Spending)",
   log_all_medicaid_spending_per_cap = "Log(Total Medicaid Spending per Capita)"
)</pre>
```

```
# Initialize an empty list to store the plots
plot_list <- list()

# Loop through each outcome
for (outcome_name in names(outcomes)) {
  outcome_label <- outcomes[[outcome_name]]

# Loop through each cohort
for (cohort in cohorts2) {
    # Generate the plot
    p <- did_graph_trend_10(dat, outcome_name, outcome_label, "cohort_10_interval", cohort)

# Store the plot in the list
    plot_list[[paste(outcome_name, cohort, sep = "_")]] <- p
}

outcome_plots <- plot_list[grep(outcome_name, names(plot_list))]
print(outcome_plots)
}

## $'pct_in_comp_mco_1991-2000'</pre>
```

Prop. Comp MCO Enroll - 1991-2000



```
##
## $'pct_in_comp_mco_1991-2000'[[2]]
```

## \$'pct\_in\_comp\_mco\_1991-2000'[[1]]



```
##
##
## $'pct_in_comp_mco_2001-2010'
## $'pct_in_comp_mco_2001-2010'[[1]]
```

Prop. Comp MCO Enroll – 2001–2010



## ## \$'pct\_in\_comp\_mco\_2001-2010'[[2]]





```
##
##
## $'pct_in_comp_mco_2011-2022'
## $'pct_in_comp_mco_2011-2022'[[1]]
```

Prop. Comp MCO Enroll – 2011–2022



## ## \$'pct\_in\_comp\_mco\_2011-2022'[[2]]

Prop. Comp MCO Enroll – 2011–2022



```
##
##
## $'log_total_spend_1991-2000'
## $'log_total_spend_1991-2000'[[1]]
```





## ## \$'log\_total\_spend\_1991-2000'[[2]]

# Log(Total Medicaid Spending) – 1991–2000



```
##
##
## $'log_total_spend_2001-2010'
## $'log_total_spend_2001-2010'[[1]]
```





## ## \$'log\_total\_spend\_2001-2010'[[2]]

# Log(Total Medicaid Spending) - 2001-2010



```
##
##
## $'log_total_spend_2011-2022'
## $'log_total_spend_2011-2022'[[1]]
```





## ## \$'log\_total\_spend\_2011-2022'[[2]]



```
##
##
## $'log_all_medicaid_spending_per_cap_1991-2000'
## $'log_all_medicaid_spending_per_cap_1991-2000'[[1]]
```

Relative Time





##
## \$'log\_all\_medicaid\_spending\_per\_cap\_1991-2000'[[2]]

# Log(Total Medicaid Spending per Capita) – 1991–2000



```
##
##
## $'log_all_medicaid_spending_per_cap_2001-2010'
## $'log_all_medicaid_spending_per_cap_2001-2010'[[1]]
```

Log(Total Medicaid Spending per Capita) – 2001–2010



##
## \$'log\_all\_medicaid\_spending\_per\_cap\_2001-2010'[[2]]

# Log(Total Medicaid Spending per Capita) – 2001–2010



```
##
##
## $'log_all_medicaid_spending_per_cap_2011-2022'
## $'log_all_medicaid_spending_per_cap_2011-2022'[[1]]
```

Log(Total Medicaid Spending per Capita) – 2011–2022



##
## \$'log\_all\_medicaid\_spending\_per\_cap\_2011-2022'[[2]]





De Chaisemartin and D'Haultfoeuille (2020) (Callaway-Sant'anna)

Percent in Comprehensive MCO

**Total Medicaid Enrollment** 



## Total Medicaid Spending



## Log(Total Medicaid Spending)



## Total Medicaid Spending per Capita



## Log(Total Medicaid Spending per Capita)

