Архив заданий

ОТБОРОЧНОГО ТУРА МАТЕМАТИЧЕСКОЙ ОЛИМПИАДЫ «ИНЖЕНЕРНАЯ АКАДЕМИЯ-2022», 9 класс

Задача 1. Среди школьников, побывавших на каникулах в Москве, 71% с восторгом вспоминают посещение Кремля, 68% — посещение ВДНХ. Сколько школьников с восторгом вспоминают посещение и Кремля, и ВДНХ?

Решение. Все школьники. побывавшие на каникулах в Москве, составляют 100%. Тогда искомое множество, которое при сложении было учтено дважды, будет составлять

$$(71\% + 68\%) - 100\% = 39\%$$
.

Ответ: 39.

Задача 2. Поезд движется со скоростью 50 км/ч и имеет длину 1500 м. За сколько минут он пройдёт тоннель длиной 1 км?

Решение. Начало поезда должно пройти путь, равный длине тоннеля и поезда.

1500 м=1,5 км,
$$1+1,5=2,5$$
 км, $2,5:50=0,05$ $u=\frac{5}{100}$ $u=\frac{1}{20}$ $u=3$ мин.

Ответ: 3.

Задача 3. Записать угловой коэффициент k прямой y = kx + 4, проходящей через точку с ординатой, равной -11, и абсциссой, являющейся наибольшим решением уравнения |x-1|-2|x-2|+3|x-3|=4.

Решение. Решив уравнение с модулями, получаем, что наибольшим его корнем является x = 5. Учитывая, что значение ординаты точки, через которую проходит прямая y = kx + 4, равно -11, а значение абсциссы этой же точки равно 5, запишем: -11 = 5k + 4. Откуда получаем, что k = -3.

Ответ: -3.

Задача 4. Дан параллелограмм со сторонами 5 м и 10 м. Известно, что длины его диагоналей относятся как 1:3. Определить длины диагоналей параллелограмма.

Решение. Пусть стороны параллелограмма a=5 и b=10. Обозначим его диагонали через m и n. Известно, что $m=\frac{1}{3}n$. По свойству параллелограмма:

$$m^2 + n^2 = 2 \cdot (a^2 + b^2)$$
. Поэтому $\left(\frac{1}{3}n\right)^2 + n^2 = 2 \cdot (5^2 + 10^2)$
 $\frac{10}{9}n^2 = 2 \cdot 125$, $n = 15$, $m = \frac{1}{3} \cdot 15 = 5$.

Ответ: 5, 15.

Задача 5. Саша и Наташа одновременно вышли из школы; длина шага Наташи равна 0,5 м, а длина шага Саши составляет 0,69 м. В первый раз их шаги совпали через 15 секунд после начала движения, а после 5 минут движения их шаги совпали первый раз в парке. Определите расстояние (в метрах) от школы до парка.

Решение. Разложим значение длин шагов Наташи и Саши на множители и найдем их наименьшее общее кратное (НОК). Так как 50 = 2.5.5, 69 = 3.23, то $HOK(50,69) = 5^2.3.2.23 = 3450$.

Наташа сделала за 15 секунд 3450:50=69 шагов, Саша за 15 секунд сделал 3450:69=50 шагов.

Каждые 15 секунд Наташа и Саша проходят 3450 см = 34,5 м.

Переведём минуты в секунды: 5 минут = 300 секунд.

В этот промежуток времени совпадение шагов происходит ровно 20 раз. За 20 совпадений Наташа и Саша прошли $34,5\cdot20=690$ метров. Это расстояние и будет искомым между школой и парком.

Ответ: 690.

Задача 6. Вычислите $5^{22} \cdot 4^{13}$. В ответе укажите сумму цифр результата.

Решение.
$$5^{22} \cdot 4^{13} = 5^{22} \cdot \left(2^2\right)^{13} = 5^{22} \cdot 2^{26} = 5^{22} \cdot 2^{22} \cdot 2^4 = 10^{22} \cdot 2^4 = 10^{22} \cdot 16$$
. $1 + 6 + 0 + \dots + 0 = 7$.

Ответ: 7.

Задача 7.

На рисунке изображен график функции y = f(x). На одном из рисунков ниже изображен график функции y = xf(x). На каком (из а, б, в, г, д)?

Решение. Рассматривая графики функций $y = -ax, \ y = -ax^2, \ a \in R, \ a > 0$ на промежутке $(-\infty;0];$ $y = bx, \ y = bx^2, \ b \in R, \ b > 0$ на промежутке $\left(0; \frac{c}{b+d}\right];$ $y = c - dx, \ y = cx - dx^2, \ c \in R, \ d \in R, \ c > 0, \ d > 0$ на промежутке $\left(\frac{c}{b+d}; +\infty\right)$, получим график рисунка б.

Ответ: б.

Задача 8. Лаборант для опыта использовал 1 мл 12% раствора щёлочи, после чего долил вместо него столько же воды в ёмкость. Затем ещё раз отлил 1 мл полученного раствора, вместо которого снова долил 1 мл воды. В ёмкости оказался 3% щелочной раствор. Определить объём используемой для опыта ёмкости (в мл).

Решение. Пусть объём ёмкости — x мл. Концентрация в ней щёлочи составляла 0.12x и воды 0.88x.

Отлили 1 мл, и щёлочи стало 0,12x - 0,12. Долили воды, и содержание щёлочи в 1 мл нового раствора стало $\frac{0,12x$ - $0,12}{x}$.

После следующей процедуры щёлочи останется

$$\frac{(0,12x-0,12)-(0,12x-0,12)}{x},$$
 что составит 3%.
Тогда $(0,12x-0,12)-\frac{(0,12x-0,12)}{x}=0,03x$.

Получим уравнение $3x^2-8x+4=0$, решая которое найдём два корня $x=\frac{2}{3}$ и x=2. Первый корень не удовлетворяет смыслу задачи, так как объём ёмкости больше 1 мл. Поэтому объём ёмкости составляет 2 мл.

Ответ: 2.

Задача 9. Найти сумму

$$\frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{600}$$

$$Peшение. \ \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \dots + \frac{1}{600} = \frac{1}{4 \cdot 5} + \frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \dots + \frac{1}{24 \cdot 25} =$$

$$= \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{7}\right) + \dots + \left(\frac{1}{24} - \frac{1}{25}\right) = \frac{1}{4} - \frac{1}{25} = \frac{21}{100} = 0,21.$$

Ответ: 0,21. **Задача 10.** Решите уравнение $(x^2 + 5x - 3)^2 = 10x^3 + 29x^2 - 30x$.

Решение. Запишем данное уравнение в виде

$$(x^2 + 5x - 3)^2 = 10x(x^2 + 5x - 3) - 21x^2$$

Пусть $x^2 + 5x - 3 = y$, тогда получим $y^2 - 10xy - 21x^2 = 0$.

Решим данное уравнение второй степени относительно переменной y, получим $y_1 = 3x$, $y_2 = 7x$.

Учитывая подстановку $x^2 + 5x - 3 = y$ и значения $y_1 = 3x$, $y_2 = 7x$, приходим к двум квадратным уравнениям: $x^2 + 2x - 3 = 0$, $x^2 - 2x - 3 = 0$.

Решая их, находим корни исходного уравнения:

$$x_1 = -3$$
, $x_2 = 1$, $x_3 = 3$, $x_4 = -1$.

Ответ: -3,-1,1,3.

ЗАКЛЮЧИТЕЛЬНОГО ТУРА МАТЕМАТИЧЕСКОЙ ОЛИМПИАДЫ «ИНЖЕНЕРНАЯ АКАДЕМИЯ-2022», 9 класс

Задача 1. Укажите последнюю цифру числа 2023^{2022} .

Решение 1. Последняя цифра числа 2023^{2022} совпадает с последней цифрой числа 3^{2022} :

$$2023^{1} = 2023, 3^{1} = 3, 2023^{2} = 2023 \cdot 2023, 3^{2} = 9,$$

 $2023^{3} = 2023^{2} \cdot 2023, 3^{3} = 27, 2023^{4} = 2023^{3} \cdot 2023, 3^{4} = 81, \dots$

Запишем последние цифры начальных степеней 3: 3, 9, 7, 1, 3, 9, Как видно, через четыре цифры идет повторение.

2022:4=505 (остаток 2).

Поэтому последней цифрой числа 2023^{2022} будет 9.

Решение 2. Пусть 2023²⁰²² – число.

Посмотрим на последние цифры степеней числа 3:

$$3^{1} = 3$$
 $3^{2} = 9$
 $3^{3} = 27$
 $3^{4} = 81$
 $3^{5} = 243$
 $3^{6} = 729$
 $3^{7} = 2187$
 $3^{8} = 6561$

Наблюдается закономерность: через каждые 4 степени тройки последние цифры получаемых чисел совпадают. Если степень чётная, то число будет оканчиваться на 9 или 1.

2022 — чётное число. Чтобы число оканчивалось на 1, показатель степени должен нацело делиться на 4.

2022:4=505,5. Следовательно, число не может оканчиваться на 1.

Поэтому оно оканчивается на 9.

Ответ: 9.

Задача 2. В саду растут маргаритки и примулы, причём маргариток вдвое больше, чем примул. Других цветов в саду нет. Трое школьников сосчитали количество цветов. У первого получилось 38, у второго - 42, у

третьего - 40 цветов. Известно, что одному из детей удалось сосчитать правильно. Сколько в саду маргариток?

Решение 1. Так как маргариток вдвое больше, чем примул, то маргаритки составляют две одинаковые части, а примулы - одну часть от общего количества цветов. Следовательно, все цветы в саду условно можно разбить на 3 одинаковые части. Поэтому количество цветов должно делиться на 3. Среди итогов подсчёта цветов школьниками число, делящееся на 3, только одно - 42. Это результат второго школьника. Разделим это количество на три (т.к. всего имеем 3 условные части): 42:3=14. Маргаритки составляют две такие части, поэтому $14\cdot 2=28$. Таким образом, в саду 28 маргариток.

Решение 2. Пусть m — количество маргариток, p — количество примул, n — количество цветов в саду.

m + p = n, так как других цветов в саду больше нет.

$$m = 2p$$
 - по условию. $2p + p = n$, $3p = n$, $p \in N$, $n \in N$.

Следовательно, n делится на 3. Тогда, по условию, подходит лишь один из предложенных вариантов — 42.

Так как
$$m = 2p$$
, то $n = m + p = m + \frac{m}{2} = \frac{3m}{2}$.

Так как
$$n = 42$$
, то $42 = \frac{3m}{2}$, $m = 28$.

Итак, количество маргариток в саду равно 28.

Ответ: 28.

Задача 3. Решить уравнение
$$7\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}\right)=9$$
.

Решение 1. ОД3: x ≠ 0.

Пусть
$$x + \frac{1}{x} = t$$
. Тогда $\left(x + \frac{1}{x}\right)^2 = t^2$, $x^2 + 2 + \frac{1}{x^2} = t^2$, $x^2 + \frac{1}{x^2} = t^2 - 2$.

С учётом замены имеем: $7t - 2(t^2 - 2) = 9$. Решая полученное уравнение, находим корни, равные 1 и 2,5.

Уравнение $x + \frac{1}{x} = 1$ не имеет действительных корней. Решениями уравнения $x + \frac{1}{x} = 2,5$ являются числа 0,5 и 2.

Решение 2. ОД3: x ≠ 0.

$$7x + \frac{7}{x} - 2x^2 - \frac{2}{x^2} - 9 = 0, \ \frac{7x^3 + 7x - 2x^4 - 2 - 9x^2}{x^2} = 0.$$

Умножая обе части уравнения на $x^2 \neq 0$, получим

$$7x^{3} + 7x - 2x^{4} - 2 - 9x^{2} = 0.$$

$$-2x^{4} + x^{3} + 6x^{3} - 3x^{2} - 6x^{2} + 3x + 4x - 2 = 0,$$

$$\begin{aligned} \left(-2x^4+x^3\right) + \left(6x^3-3x^2\right) + \left(-6x^2+3x\right) + \left(4x-2\right) &= 0\,,\\ -x^3(2x-1) + 3x^2(2x-1) - 3x(2x-1) + 2(2x-1) &= 0\,,\\ -(2x-1)\left(x^3-3x^2+3x-2\right) &= 0\,,\\ -(2x-1)\left((x-1)^3-1\right) &= 0\,.\\ 2x-1 &= 0\,,\ x = 0,5 \text{ или } (x-1)^3-1 &= 0\,,\ (x-1)^3 = 1\,,\ x-1 = 1\,,\ x = 2\,. \end{aligned}$$
 Ответ: 0,5; 2.