Worksheet 7 Solution

March 17, 2020

Question 1

a. Case 1 $(n \ge 1)$:

No more proof required. This is exactly what we want to show.

Case 2 ($\exists d \in \mathbb{N}, d \mid n \wedge d \neq 1 \wedge d \neq n$):

Let a = d and b = k.

Because we know $\forall n \in \mathbb{Z}^+$, and $l \in \mathbb{Z}, l \mid n \Rightarrow l \leq n, a \leq n$.

Then $n \mid a$ is true only when a = n and b = 1, by the fact that any lower value of a results in non-integer value.

Then it follows from the assumption $a \neq 1 \land a \neq n$ that $n \nmid a$.

The same logic holds for $n \nmid b$.

Lastly, since n = ab, and $\forall x \in \mathbb{Z}, x \mid x, n \mid ab$.

Question 2

a. Let $n, m \in \mathbb{N}$. Assume Prime(n), and $n \nmid m$.

Then,

$$gcd(n,m) = 1 (1)$$

by fact 2 (i.e. $\forall n, p \in \mathbb{Z}, Prime(p) \land p \nmid n \Rightarrow gcd(p, n) = 1$).

Then $\exists r, s \in \mathbb{Z}$,

$$1 = \gcd(n, m) = rn + sm \tag{2}$$

by fact 6 (i.e. $\forall n, m \in \mathbb{N}, \exists r, s \in \mathbb{Z}, rn + sm = gcd(n, m)$).

Then, it follows from above that the statement $\forall n, m \in \mathbb{N}$, $Prime(n) \land n \nmid m \Rightarrow (\exists r, s \in \mathbb{Z}, rn + sm = 1)$ is true.

b. Let $n, m \in \mathbb{N}$. Assume Prime(n) and $(\exists r, s \in \mathbb{Z}, rn + sm = 1)$.

Then,

$$gcd(n,m) = 1 (3)$$

by fact 6 (i.e. $\forall n, m \in \mathbb{N}, \exists r, s \in \mathbb{Z}, rn + sm = gcd(n, m)$).

Then, 1 is the maximum number that divides both n and m, by the definition of GCD.

It follows from the above that $n \mid m$ only when n = 1.

Since n is prime and n > 1, the above is not possible, and $n \nmid m$.

Question 3

a. Let $x \in \mathbb{Z}$.

Then,

$$x = x \tag{1}$$

$$x = (1)x \tag{2}$$

Then, it follows from the definition of divisibility that x divides x.

b. Let $x, y \in \mathbb{N}$. Assume $y \ge 1$ and $x \mid y$.

Then $\exists k \in \mathbb{Z}$,

$$y = kx \tag{1}$$

Then, because we know $y \ge 1$, and $x \ge 1$, we can conclude that $k \ge 1$.

Then it follows from the above that

$$1 \le x \le kx = y \tag{2}$$

c. Let $n, p \in \mathbb{Z}$. Assume Prime(p) and $p \nmid n$.

Because we know from the definition of prime number, the common divisors available for p are 1 and p.

Also, because we know $\forall n \in \mathbb{Z}, n \mid n$, we can conclude that $1 \mid n$.

Since $p \nmid n$, but $1 \mid p$ and $1 \mid n$, gcd(p, n) = 1

d. Let $n, m \in \mathbb{N}$.

Case 1 $(n \neq 0, m = 0)$:

Assume $n \neq 0$ and m = 0.

Since $n \mid n$ (by fact 1) and $n \mid m, n$ is a common divisor, and

$$gcd(n,m) = n (1)$$

by the definition of greatest common divisor.

Since, $n \in \mathbb{N}$ and $n \mid gcd(n, m)$ (by fact 1),

$$1 \le \gcd(n, m) \le n \tag{2}$$

by fact 2.

Case 2 $(n = 0, m \neq 0)$:

The inequality $gcd(n, m) \ge 1$ holds using the same logic as case 1.

Case 3 $(n \neq 0, m \neq 0)$:

Let $n, m \in \mathbb{N}$. Assume $n \neq 0$ and $m \neq 0$.

Since 1 is the smallest divisor that exists in both n and m,

$$gcd(n,m) \ge 1 \tag{1}$$

e. Let $n, m \in \mathbb{N}$, and $d, r, s \in \mathbb{Z}$, and assume d = gcd(n, m).

Then, gcd(n, m) divides both n and m, by the definition of greatest common divisor.

Then, it follows from above that gcd(n, m) divides rn + sm.