EML 2018 - Voie scientifique

Problème 1

On définit la fonction I d'une variable réelle x par : $I(x) = \int_0^1 \frac{e^{xt} + e^{-xt}}{\sqrt{1 - t^2}} dt$.

Partie I: Étude d'une suite d'intégrales

On pose, pour tout k de \mathbb{N} , $W_k = \int_0^{\frac{\pi}{2}} (\sin(u))^k du$.

- 1. Calculer les intégrales W_0 et W_1
- 2. a) Soit $k \in \mathbb{N}$. À l'aide d'une intégration par parties, montrer: $W_k W_{k+2} = \frac{1}{k+1} W_{k+2}$.
 - b) En déduire: $\forall k \in \mathbb{N}, W_{2k} = \frac{(2k)!}{2^{2k}(k!)^2} \frac{\pi}{2}$

Partie II: Une autre expression de I(x)

- 3. Montrer que, pour tout k de \mathbb{N} , l'intégrale $\int_0^1 \frac{t^k}{\sqrt{1-t^2}} dt$ converge et que $\int_0^1 \frac{t^k}{\sqrt{1-t^2}} dt = W_k$. Pour cela, on pourra utiliser le changement de variable $t = \sin(u)$ après avoir justifié sa validité.
- 4. a) Montrer que la fonction I est définie sur \mathbb{R} et préciser sa parité.
 - b) Donner la valeur de I(0).
- 5. Soit $x \in \mathbb{R}_+$.
 - a) Soient $t \in [0;1]$ et $n \in \mathbb{N}$. En utilisant l'inégalité de Taylor-Lagrange à l'ordre 2n appliquée à la fonction $u \longmapsto e^u + e^{-u}$ entre 0 et xt, montrer :

$$\left| e^{xt} + e^{-xt} - \sum_{k=0}^{n} \frac{2(xt)^{2k}}{(2k)!} \right| \le \frac{x^{2n+1}}{(2n+1)!} e^{x}.$$

- b) En déduire, pour tout n de \mathbb{N} : $\left| I(x) \sum_{k=0}^{n} \frac{2x^{2k}}{(2k)!} W_{2k} \right| \leqslant \frac{x^{2n+1}\pi}{2(2n+1)!} e^{x}$.
- c) En déduire que la série $\sum_{k\geqslant 0}\frac{x^{2k}}{2^{2k}(k!)^2} \text{ converge et que l'on a: } \sum_{k=0}^{+\infty}\frac{x^{2k}}{2^{2k}(k!)^2}=\frac{1}{\pi}I(x).$

Partie III: Équivalent de I(x) lorsque x tend vers $+\infty$

- 6. Montrer, pour tout x de \mathbb{R}_+ : $0 \leqslant \int_0^1 \frac{e^{-xt}}{\sqrt{1-t^2}} dt \leqslant \frac{\pi}{2}$.
- 7. a) Montrer, pour tout v de $\left[0,\frac{1}{2}\right]$: $1 \leqslant \frac{1}{1-v} \leqslant (1+v)^2$.
 - b) Soit $x \in \mathbb{R}_+$. Montrer, à l'aide du changement de variable u = 1 t:

$$\int_0^1 \frac{e^{xt}}{\sqrt{1-t^2}} dt = \frac{e^x}{\sqrt{2}} \int_0^1 \frac{e^{-xu}}{\sqrt{u}\sqrt{1-\frac{u}{2}}} du.$$

c) En déduire, pour tout x de \mathbb{R}_+ :

$$\frac{e^{x}}{\sqrt{2}} \int_{0}^{1} \frac{e^{-xu}}{\sqrt{u}} du \leqslant \int_{0}^{1} \frac{e^{xt}}{\sqrt{1-t^{2}}} dt \leqslant \frac{e^{x}}{\sqrt{2}} \int_{0}^{1} \frac{e^{-xu}}{\sqrt{u}} du + \frac{e^{x}}{2\sqrt{2}} \int_{0}^{1} e^{-xu} \sqrt{u} du.$$

8. a) Rappeler l'expression d'une densité de la loi normale d'espérance nulle et de variance $\frac{1}{2}$. En déduire les convergences et les valeurs des intégrales suivantes:

$$\int_0^{+\infty} e^{-t^2} dt \qquad \text{et} \qquad \int_0^{+\infty} t^2 e^{-t^2} dt.$$

b) Soit $x \in \mathbb{R}_+^*$. À l'aide du changement de variable $t = \sqrt{xu}$, montrer :

$$\int_0^1 \frac{\mathrm{e}^{-xu}}{\sqrt{u}} \mathrm{d}u \underset{x \to +\infty}{\sim} \frac{\sqrt{\pi}}{\sqrt{x}} \qquad \text{et} \qquad \int_0^1 \mathrm{e}^{-xu} \sqrt{u} \mathrm{d}u \underset{x \to +\infty}{\sim} \frac{\sqrt{\pi}}{2x\sqrt{x}}.$$

9. En déduire: $I(x) \underset{x \to +\infty}{\sim} \frac{e^x \sqrt{\pi}}{\sqrt{2x}}$.

Partie IV: Une application en probabilités

Dans cette partie, λ désigne un réel strictement positif.

On considère deux variables aléatoires indépendantes X et Y définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , suivant toutes les deux la loi de Poisson de paramètre λ .

On s'intéresse à la probabilité de l'événement [X = Y].

10. a) Écrire une fonction Scilab d'en-tête function r = estime(lambda) qui, prenant en argument un réel lambda strictement positif, simule un grand nombre de fois les variables aléatoires X et Y, et renvoie une estimation de P([X = Y]).

On rappelle que l'instruction grand(1,1,'poi',lambda) simule la loi de Poisson de paramètre lambda.

b) Grâce à la fonction précédente, on trace, en fonction de λ , une estimation de $\sqrt{\pi\lambda}P([X=Y])$ pour $\lambda\in]0;20]$ et on obtient le graphe suivant :

À la vue de ce graphe, proposer un équivalent de P([X = Y]) lorsque λ tend vers $+\infty$.

- 11. Montrer: $P([X = Y]) = e^{-2\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(k!)^2}$.
- 12. a) Exprimer P([X = Y]) en fonction de λ et de la fonction I.
 - b) En déduire un équivalent de P([X = Y]) lorsque λ tend vers $+\infty$.

Problème 2

Soit n un entier naturel supérieur ou égal à 2.

On note $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n, et $\mathcal{B} = (1, X, \dots, X^n)$ la base canonique de E.

On note, pour tout polynôme P de E:

$$\varphi(P) = \frac{1}{n}X(1-X)P' + XP'$$

Partie I: Étude d'un endomorphisme de polynômes

- 1. a) Montrer que φ est une application linéaire.
 - b) Calculer $\varphi(X^n)$.
 - c) Montrer que φ est un endomorphisme de E.
- 2. Déterminer la matrice A de φ dans la base \mathcal{B} . Préciser le rang de cette matrice.
- 3. a) L'endomorphisme φ est-il injectif? Justifier votre réponse.
 - b) Soit P un polynôme non nul de $\ker(\varphi)$. Montrer que P admet 1 comme unique racine (dans \mathbb{C}), et que P est de degré n.
 - c) En déduire une base de $\ker(\varphi)$.
- 4. Montrer que φ est diagonalisable.

- 5. On pose, pour tout k de $[0,n]: P_k = X^k(1-X)^{n-k}$.
 - a) Pour tout k de [0,n], calculer $\varphi(P_k)$.
 - b) Montrer que la famille (P_0, P_1, \dots, P_n) est une base de E et expliciter la matrice de φ dans cette base.
 - c) Déterminer les sous-espaces propres de φ .

Partie II: Étude d'une suite de variables aléatoires

On considère une urne contenant n boules numérotées de 1 à n, indiscernables au toucher. On effectue dans cette urne une suite de tirages avec remise, et on suppose que l'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) . On note alors, pour tout k de \mathbb{N}^* , Y_k la variable aléatoire prenant pour valeur le nombre de numéros distincts qui ont été tirés lors des k premiers tirages.

Par convention, on pose: $Y_0 = 0$.

6. On note, pour tout k de \mathbb{N}^* , Z_k la variable aléatoire prenant la valeur 1 si le k-ième tirage amène un numéro qui n'a pas été tiré lors des tirages précédents, et prenant la valeur 0 sinon.

On pourra remarquer que, en particulier, $Z_1 = 1$.

- a) Déterminer la loi de \mathbb{Z}_2 .
- b) Soit $k \in \mathbb{N}^*$. Calculer, pour tout j de [1,k], la valeur de $P_{[Y_k=j]}([Z_{k+1}=1])$. En déduire: $P([Z_{k+1}=1]) = 1 - \frac{1}{n}E(Y_k)$.
- c) Soit $k \in \mathbb{N}^*$. En remarquant que $Y_k = \sum_{j=1}^k Z_j$, montrer:

$$P([Z_{k+1} = 1]) = 1 - \frac{1}{n} \sum_{i=1}^{k} P([Z_j = 1]).$$

- d) En déduire, pour tout k de $\mathbb{N}^* \colon \mathrm{P}([Z_k = 1]) = \left(1 \frac{1}{n}\right)^{k-1}.$
- e) Déterminer alors, pour tout k de \mathbb{N} , l'espérance de Y_k .
- 7. On note, pour tout k de \mathbb{N} , G_k le polynôme de $\mathbb{R}_n[X]$ défini par :

$$G_k = \sum_{i=0}^n P([Y_k = i])X^i.$$

- a) Déterminer les polynômes G_0 , G_1 et G_2 .
- b) Montrer, pour tout k de \mathbb{N} et tout i de [0,n]:

$$P([Y_{k+1} = i]) = \frac{i}{n}P([Y_k = i]) + \left(1 - \frac{i-1}{n}\right)P([Y_k = i-1]).$$

c) Montrer, pour tout $k ext{ de } \mathbb{N}$:

$$G_{k+1} = \frac{1}{n}X(1-X)G'_k + XG_k.$$

d) En déduire, pour tout k de \mathbb{N} :

$$G_k = \varphi^k(G_0).$$

- 8. a) Pour tout k de \mathbb{N} , calculer $G_k(1)$ et $G'_k(1)$.
 - b) En déduire, pour tout k de \mathbb{N} :

$$E(Y_{k+1}) = \left(1 - \frac{1}{n}\right)E(Y_k) + 1.$$

- c) Retrouver alors, pour tout k de \mathbb{N} , l'expression de $\mathrm{E}(Y_k)$ obtenue en question 6.e).
- 9. On rappelle que les polynômes P_0, \ldots, P_n sont définis à la question 5. par :

pour tout j de
$$[0,n]$$
, $P_i = X^j (1-X)^{n-j}$.

a) Calculer
$$\sum_{j=0}^{n} \binom{n}{j} P_j$$
.

b) Montrer, pour tout j de [0,n]:

$$P_j = \sum_{i=j}^{n} \binom{n-j}{i-j} (-1)^{i-j} X^i.$$

c) En déduire, pour tout k de \mathbb{N} :

$$\varphi^k(G_0) = \sum_{i=0}^n \left(\sum_{j=0}^i \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n} \right)^k (-1)^{i-j} \right) X^i.$$

d) Montrer finalement, pour tout k de \mathbb{N} et pour tout i de $[\![0,n]\!]$:

$$P([Y_k = i]) = \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} (-1)^{i-j} \left(\frac{j}{n}\right)^k.$$