Homework 5

MATH 543 — Linear Algebra

Name: Ali Zafari Spring 2023

5.B Eigenvectors and Upper-Triangular Matrices -

Exercise 1

(a) For I - T to be invertible, its composition (both right and left) with its inverse must be identity.

$$(I-T)(I+T+\dots+T^{n-1})v = (I-T)(v+Tv+\dots+T^{n-1}v)$$

= $v-Tv+Tv-T^2v+T^2v-\dots-T^{n-1}v+T^nv$
= v

and

$$(I + T + \dots + T^{n-1})(I - T)v = (I + T + \dots + T^{n-1})(v - Tv)$$

$$= v - Tv + Tv - T^{2}v + T^{2}v - \dots + T^{n-1}v - T^{n}v$$

$$= v$$

so (I-T) is invertible with inverse $(I-T)^{-1}=(I+T+\cdots+T^{n-1})$.

(b) Sum of a geometric sequence $1, r, r^2, \ldots, r^{n-1}$ is:

$$1 + r + r^{2} + \dots + r^{n-1} = \frac{1 - r^{n}}{1 - r}$$
$$1 + r + r^{2} + \dots + r^{n-1} = (1 - r)^{-1} \qquad (r^{n} = 0)$$

replacing r with T and having $T^n = 0$ resembles what we show in part (a).

Exercise 3

 $T^2=I$ implies either +1 or -1 is an eigenvalue for T (Exercise 5.A.22). Thus +1 is an eigenvalue for T (hypothesis). Thus $\forall v \in V, v \neq 0$:

$$Tv = v$$
$$T = I$$

Exercise 5

 $p \in \mathcal{P}(\mathbb{F})$ can be written as

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

where $a_0, \ldots, a_m, z \in \mathbb{F}$, so

$$p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m$$

Then

$$Sp(T)S^{-1} = a_0SIS^{-1} + a_1STS^{-1} + a_2ST^2S^{-1} + \dots + a_mST^mS^{-1}$$

$$= a_0I + a_1STS^{-1} + a_2ST^2S^{-1} + \dots + a_mST^mS^{-1}$$

$$= a_0I + a_1STS^{-1} + a_2(STS^{-1})^2 + \dots + a_m(STS^{-1})^m$$

$$= p(STS^{-1})$$

where for the third equality we used $(STS^{-1})^m = ST^mS^{-1}$.

Exercise 13

Consider 2 cases separately:

If $U \subset W$ is a zero subspace of W, there exists no eigenvalues for T and the condition holds. If $U \subset W$ is a non-zero finite-dimensional subspace, then $T_{|U} \in \mathcal{L}(U)$ has at least one eigenvalue (Theorem 5.21) which is a contradiction. Thus U is infinite-dimensional.

Exercise 20

By theorem 5.27, there exists basis $v_1, \ldots, v_{\dim V}$ such that T has an upper-triangular matrix with respect to it.

By theorem 5.26, $\operatorname{span}(v_1, \ldots, v_k)$ of dimension k is invariant under T for each $k \in \{1, \ldots, \dim V\}$.

5.C Eigenspaces and Diagonal Matrices -

Exercise 1

Since V is diagonalizable, there exists a diagonal matrix $\mathcal{M}(T)$ defined on a basis v_1, \ldots, v_n . Thus V is finite-dimensional.

Then for each v_i exists a λ_i such that $Tv_i = \lambda_i v_i$. Now we separate λ_i 's indices into two disjoint sets: $\lambda_i = 0 \quad \forall i \in \{1, ..., m\}$ and $\lambda_i \neq 0 \quad \forall i \in \{m+1, ..., n\}$.

Thus

$$V = \operatorname{span}(v_1, \dots, v_n) = \operatorname{span}(v_1, \dots, v_m) \oplus \operatorname{span}(v_{m+1}, \dots, v_n)$$

since $v_1, \ldots, v_m, v_{m+1}, \ldots, v_n$ is a basis.

- $\operatorname{span}(v_1, \dots, v_m) = \operatorname{null} T$? $\operatorname{span}(v_1, \dots, v_m) = E(0, T) = \operatorname{null}(T)$
- $\operatorname{span}(v_{m+1}, \dots, v_n) = \operatorname{range} T$? For arbitrary $v \in V$ we have $v = a_1 v_1 + \dots + a_n v_n \ (a_i \in \mathbb{F})$ then

$$Tv = a_1 T v_1 + \dots + a_n T v_n$$

$$= \underbrace{a_1 T v_1 + \dots + a_m T v_m}_{=0} + \underbrace{a_{m+1} T v_{m+1} + \dots + a_n T v_n}_{\in \operatorname{span}(v_{m+1}, \dots, v_n)}$$

thus range $T \subset \operatorname{span}(v_{m+1}, \ldots, v_n)$.

On the other hand, for every v_i where $i \in \{m+1, \ldots, n\}$ we have $v_i = T(\frac{1}{\lambda_i}v_i) \in \text{range } T$ thus $\text{span}(v_{m+1}, \ldots, v_n) \subset \text{range } T$.

Exercise 2

Aside:

For any invertible $T \in \mathcal{L}(V)$, we have $V = \text{null } T \oplus \text{range } T$.

(proof. invertible $T \in \mathcal{L}(V)$ implies $\operatorname{null} T = \{0\}$ and range T = V and obviously $\operatorname{null} T \cap \operatorname{range} T = \{0\}$.)

Counterexample. Matrix of invertible $S \in \mathcal{L}(\mathbb{R}^2)$

$$\mathcal{M}(S) = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

is non-diagonal, although $\mathbb{R}^2 = \text{null } S \oplus \text{range } S$.

Exercise 3

- (a) $V = \text{null } T \oplus \text{range } T$
- (b) V = null T + range T
- (c) $\operatorname{null} T \cap \operatorname{range} T = \{0\}$
- 1. $\mathbf{a} \Rightarrow \mathbf{b}$ Trivial by definition of direct sum.
- 2. $\mathbf{b} \Rightarrow \mathbf{c}$ Sum of two subspaces of finite-dimensional V has dimension

$$\dim V = \dim(\operatorname{null} T) + \dim(\operatorname{range} T) - \dim(\operatorname{null} T \cap \operatorname{range} T)$$
$$= \dim V - \dim(\operatorname{null} T \cap \operatorname{range} T)$$

where Fundamental Theorem of Linear Maps is used for last equality. Thus dim(null $T \cap \text{range } T) = 0$ so null $T \cap \text{range } T = \{0\}$.

3. $\mathbf{c} \Rightarrow \mathbf{a}$ For null $T + \operatorname{range} T$ we have

$$\dim(\operatorname{null} T + \operatorname{range} T) = \dim(\operatorname{null} T) + \dim(\operatorname{range} T) - \dim(\operatorname{null} T \cap \operatorname{range} T)$$
$$= \dim V - 0$$

thus null $T + \operatorname{range} T = V$ and since null $T \cap \operatorname{range} T = \{0\}$ the sum is direct.

Exercise 5

 \Longrightarrow

T is diagonalizable. So there is a basis on which $\mathcal{M}(T)$ is diagonal. For $\lambda \in \mathbb{C}$:

$$\mathcal{M}(T - \lambda I) = \mathcal{M}(T) - \lambda \mathcal{M}(I)$$

since both $\mathcal{M}(T)$ and $\mathcal{M}(I)$ are diagonal, then $\mathcal{M}(T - \lambda I)$ is diagonal.

By using the result of Exercise 5.C.1 we have

$$V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I).$$

 \Leftarrow

?

Exercise 8

Suppose 2 and 6 are also eigenvalues of T,

$$\dim E(8,T) + \dim E(6,T) + \dim E(2,T) \le \dim \mathbb{F}^5$$
$$\dim E(6,T) + \dim E(2,T) \le 1$$

then either dim E(6,T) = 0 or dim E(2,T) = 0. Thus either 6 or 2 is an NOT an eigenvalue of T, so either T - 6I or T - 2I is invertible, respectively, by theorem 5.6.

Exercise 10

Let $0, \lambda_1, \ldots, \lambda_m$ denote the full set of the distinct eigenvalues. Then

$$\underbrace{\dim E(0,T)}_{=\dim \operatorname{null} T} + \dim E(\lambda_1,T) + \cdots + \dim E(\lambda_m,T) \leq \dim V$$

$$\dim \operatorname{null} T + \dim E(\lambda_1,T) + \cdots + \dim E(\lambda_m,T) \leq \dim \operatorname{null} T + \dim \operatorname{range} T$$

$$\dim E(\lambda_1,T) + \cdots + \dim E(\lambda_m,T) \leq \dim \operatorname{range} T$$

where the RHS of 2nd inequality comes from Fundamental Theorem of Linear Maps.

Exercise 15

Since T is not diagonalizable, 8 cannot be an eigenvalue of it (Theorem 5.44). Thus T-8I is invertible/injective/surjective (Theorem 5.6). By surjectivity for $v=(17,\sqrt{5},2\pi)$ there exists $(x,y,z)\in\mathbb{C}^3$ such that

$$(T - 8I)(x, y, z) = (17, \sqrt{5}, 2\pi)$$
$$T(x, y, z) = (17 + 8x, \sqrt{5} + 8y, 2\pi + 8z)$$

Exercise 16

(a) proof by induction.

$$\mathbf{n} = \mathbf{1}$$
: $T^1(0,1) = (1,1) = (F_1, F_2)$

Assume it holds for $n \le m - 1$.

$$\mathbf{n} = \mathbf{m}: \ T^m(0,1) = TT^{m-1}(0,1) = T(F_{m-1}, F_m) = (F_m, F_{m-1} + F_m) = (F_m, F_{m+1}).$$

$$T(x,y) = (\lambda x, \lambda y)$$
$$(y, x + y) = (\lambda x, \lambda y)$$
$$x + \lambda x = \lambda(\lambda x)$$
$$\lambda^2 - \lambda - 1 = 0 \quad (x \neq 0, y \neq 0)$$
$$\lambda = \frac{1 \pm \sqrt{5}}{2}$$

(c)

$$\begin{split} E(\frac{1+\sqrt{5}}{2},T) &= \text{null}(T-(\frac{1+\sqrt{5}}{2})I) \\ &= \{(x,y)|(y-\frac{1+\sqrt{5}}{2}x,x+\frac{1-\sqrt{5}}{2}y)=0\} \\ &= \{(x,y)|y=x(\frac{1+\sqrt{5}}{2})\} \end{split}$$

then we choose $v_1 = (1, \frac{1+\sqrt{5}}{2})$.

$$\begin{split} E(\frac{1-\sqrt{5}}{2},T) &= \text{null}(T-(\frac{1-\sqrt{5}}{2})I) \\ &= \{(x,y)|(y-\frac{1-\sqrt{5}}{2}x,x+\frac{1+\sqrt{5}}{2}y) = 0\} \\ &= \{(x,y)|y=x(\frac{1-\sqrt{5}}{2})\} \end{split}$$

then we choose $v_2 = (1, \frac{1-\sqrt{5}}{2})$.

(d) $(0,1) = \frac{1}{\sqrt{5}}v_1 - \frac{1}{\sqrt{5}}v_2$ in terms of the new basis. Thus

$$T^{n}(0,1) = (F_{n}, F_{n+1})$$

$$= T^{n}(\frac{1}{\sqrt{5}}v_{1} - \frac{1}{\sqrt{5}}v_{2})$$

$$= \frac{1}{\sqrt{5}}(T^{n}v_{1} - T^{n}v_{2})$$

$$= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}v_{1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}v_{2}\right]$$

$$= \frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}, \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]$$

thus
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

(e) It suffices to show the magnitude of distance from F_n to $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$ is less than $\frac{1}{2}$. Let

$$d := \left| \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \right|$$

$$= \left| \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \right|$$

$$= \frac{1}{\sqrt{5}} \left| \frac{1-\sqrt{5}}{2} \right|^n$$

$$= \frac{1}{\sqrt{5}} \left| \frac{2}{1+\sqrt{5}} \right|^n$$

be the distance.

Since $\sqrt{5} > 2$ then $\frac{1}{\sqrt{5}} < \frac{1}{2}$ and $\frac{2}{1+\sqrt{5}} < \frac{2}{3}$, thus

$$\frac{1}{\sqrt{5}} \left| \frac{2}{1+\sqrt{5}} \right|^n < \frac{1}{2} (\frac{2}{3})^n < \frac{1}{2} \frac{2}{3} < \frac{1}{2}$$