3 conjuntos

- 71. Considere o conjunto $A=\{1,-1,\frac{1}{4},2,0,-\frac{1}{2}\}$. Indique os elementos de cada um dos conjuntos seguintes.
 - (a) $\{a \in A : a^2 \in \mathbb{Z}\};$
- (d) $\{\sqrt{a} \in \mathbb{R} : a \in A \wedge a^2 \in A\};$ (e) $\{b \in \mathbb{Z} : \exists a \in A \ b = a^2\}.$
- (b) $\{a \in A : \sqrt{a} \in \mathbb{R}\};$
- (c) $\{a^2 \in \mathbb{R} : a \in A \land a^2 \in A\};$
- (f) $\{b \in \mathbb{R} : \exists a \in A \ b^2 = a\}.$
- 72. Descreva em compreensão cada um dos seguintes conjuntos:
 - (a) $\{-1,1\}$;

- (c) $\{3, 6, 9, 12, 15, \ldots\};$
- (b) {2, 3, 5, 7, 11, 13, 17};
- (d) $\{4, 9, 16, 25, \ldots\}$.
- 73. Justifique que os seguintes conjuntos são iguais:

$$A = \{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}; \qquad B = \{1, 2\}; \qquad C = \{n \in \mathbb{N}_0 \mid 0 < n^2 \le 4\}.$$

- 74. Sejam $A, B \in C$ conjuntos tais que A é um subconjunto de $B \in B$ é um subconjunto de C. Suponha ainda que $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ e $f \notin C$. Quais das afirmações seguintes são necessariamente verdadeiras?

- (a) $a \in C$; (b) $b \in A$; (c) $c \notin A$; (d) $d \in B$; (e) $e \notin A$; (f) $f \notin A$.

Resolução

As afirmações necessariamente verdadeiras são as afirmações (a), (e) e (f).

Justificações:

- (a) Como $A \subseteq B$ e $B \subseteq C$, temos que $A \subseteq C$. Assim, qualquer elemento de A é também elemento de C. Como $a \in A$, podemos concluir que $a \in C$.
- (e) Como $A \subseteq B$, qualquer elemento de A é também elemento de B. Assim, pelo contrarrecíproco, se um dado objeto não é elemento de B, então também não é elemento de A. Como $e \notin B$, podemos concluir que $e \notin A$.
- (f) A justificação é análoga à justificação de (e), mas considerando que $A \subseteq C$ e que $f \notin C$.

Para as restantes afirmações, há exemplos onde são verdadeiras e há exemplos onde são falsas, pelo que afirmamos que, no geral, não são verdadeiras. Como justificação apresentamos contraexemplos:

- (b) Se considerarmos $A = \{a\}$, $B = \{a,b\}$ e $C = \{a,b,c\}$, temos que $A \subseteq B$, $B \subseteq C$, $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ e $f \notin C$. No entanto, $b \notin A$.
- (c) Se considerarmos $A = \{a, c\}$, $B = \{a, b, c\}$ e $C = \{a, b, c, d, e\}$, temos que $A \subseteq B$, $B \subseteq C$, $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ e $f \notin C$. No entanto, $c \in A$.
- (d) Se considerarmos $A = \{a, c\}$, $B = \{a, b, c\}$ e $C = \{a, b, c, d, e\}$, temos que $A \subseteq B$, $B \subseteq C$, $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$ e $f \notin C$. No entanto, $d \notin B$.
- 75. Diga se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $1 \in \{1\}$;
- (d) $\{1\} \in \{\{1\}\};$
- (g) $\{1\} \in \{1, \{1\}\};$

- (b) $1 \in \{\{1\}\};$
- (e) $\{1\} \subseteq \{1\}$;
- (h) $\{1,\{1\}\}\subseteq\{\{1\}\};$

- (c) $\{1\} \in \{1\}$;
- (f) $\{1\} \subseteq \{\{1\}\};$
- (i) $\{1\} \subseteq \{1, \{1\}\}.$

- (a) Verdadeira. O número 1 é o único elemento do conjunto $\{1\}$, pelo que podemos afirmar que $1 \in \{1\}$;
- (b) Falsa. O único elemento que o conjunto à direita do símbolo \in tem é o elemento $\{1\}$. Assim, 1 não é elemento do conjunto. Logo, temos que $1 \notin \{\{1\}\}$;
- (c) Falsa. O único elemento que o conjunto à direita do símbolo \in tem é o elemento 1. Assim, $\{1\}$ não é elemento do conjunto. Logo, temos que $\{1\} \not\in \{1\}$;
- (d) Verdadeira. O conjunto $\{1\}$ é o único elemento do conjunto $\{\{1\}\}$, pelo que podemos afirmar que $\{1\} \in \{\{1\}\}$;
- (e) Verdadeira. Qualquer conjunto é subconjunto dele próprio. Por isso, podemos afirmar que $\{1\}\subseteq\{1\};$
- (f) Falsa. O único elemento do conjunto à esquerda do símbolo ⊆, o elemento 1, não é elemento do conjunto à direita do mesmo símbolo, uma vez que o único elemento desse conjunto é {1}. Logo, temos que o primeiro conjunto não é subconjunto do segundo conjunto;
- (g) Verdadeira. O conjunto à direita do símbolo \in tem dois elementos: o elemento 1 e o elemento $\{1\}$. Assim, por causa deste último, podemos afirmar que $\{1\} \in \{1, \{1\}\}$;
- (h) Falsa. O conjunto à esquerda do símbolo ⊆ tem dois elementos e o conjunto à direita tem um elemento. logo, o primeiro conjunto nunca pode ser subconjunto do segundo;
- (i) Verdadeira. O conjunto à esquerda do símbolo \subseteq tem um único elemento, o elemento 1. O conjunto à direita do símbolo \in tem dois elementos: o elemento 1 e o elemento $\{1\}$. Assim, todos os elementos do primeiro conjunto são elementos do segundo conjunto e, por isso, o primeiro conjunto é subconjunto do segundo conjunto. Logo, temos que $\{1\} \subseteq \{1,\{1\}\}$.
- 76. Investigue a veracidade de cada uma das seguintes proposições.
 - (a) $\emptyset \in \{\emptyset\}$, (b) $\emptyset \subseteq \{\emptyset\}$; (c) $\emptyset \notin \emptyset$; (d) $\emptyset \in \{\{\emptyset\}\}$.
- 77. Mostre que os conjuntos \emptyset , $\{\emptyset\}$ e $\{\{\emptyset\}\}$ são distintos dois a dois.
- 78. Dê exemplos de conjuntos A e B tais que se tenha simultaneamente
 - (a) $A \in B$ e $A \subseteq B$;
- (b) $A \in B$ e $A \not\subseteq B$;
- (c) $A \notin B$ e $A \subseteq B$.
- 79. Sejam A, B e C conjuntos. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$;
- (d) Se $A \in B$ e $B \subseteq C$, então $A \subseteq C$;
- (b) Se $A \in B$ e $B \in C$, então $A \in C$;
- (e) Se $A \subseteq B$ e $B \in C$, então $A \in C$;
- (c) Se $A \in B$ e $B \subseteq C$, então $A \in C$;
- (f) Se $A \subseteq B$ e $B \in C$, então $A \subseteq C$.
- 80. Sejam A e B conjuntos. Simbolize convenientemente:
 - (a) $A \in B$ têm um elemento em comum;
 - (b) Nenhum elemento de A é elemento de B;
 - (c) A tem um único elemento;
 - (d) A tem exatamente dois elementos.

Resolução

(a) Dizer que "A e B têm um elemento em comum" é o mesmo que dizer que

$$A \cap B \neq \emptyset$$

ou que

$$(\exists x) \ x \in A \land x \in B.$$

(b) Dizer que "Nenhum elemento de A é elemento de B" é o mesmo que dizer que

$$A \cap B = \emptyset$$

ou que

$$(\forall x \in A) \ x \notin B.$$

(c) Dizer que "A tem um único elemento" é o mesmo que dizer que

$$(\exists^1 x) \ x \in A$$

ou que

$$(\exists x) \ x \in A \land [(\exists y : y \in A) \Rightarrow x = y].$$

(d) Dizer que "A tem exatamente dois elementos" é o mesmo que dizer que

$$(\exists x, y \in A) \ x \neq y \land [(\exists z : z \in A) \Rightarrow z = x \lor z = y].$$

- 81. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{2, 4, 6, 8, 10\}$. Identifique os seguintes conjuntos:
 - (a) $A \cap B$;
- (c) $A \setminus B$;
- (e) $(A \cup B) \setminus (A \cap B)$;

- (b) $A \cup B$;
- (d) $(A \setminus B) \cap B$;
- (f) $(A \setminus B) \cup (B \setminus A)$.
- 82. Seja $X = \{x \in \mathbb{R} : -11 < x < 11\}$. Considere os seguintes subconjuntos de X:

$$A = \{x \in X : 0 < x < 3\}, \quad B = \{x \in X : 2 < x < 6\} \text{ e } C = \{x \in X : -1 < x < 1\}.$$

Determine:

- (a) $A \cup B$;
- (c) A';
- (e) B';
- (g) $(A \cap B) \cup (A \cup C)$;

- (b) $A \cap B$;
- (d) $B \setminus A$;
- (f) $A \cap (B \cup C)$;
 - (h) $(A \cap B) \cup (A \cap C)$.
- 83. Sejam $A = \{2, 4, 6, 8\}$, $B = \{x \in \mathbb{N} : (\exists y \in \mathbb{N}) x = 2y\}$ e $C = \{x^2 : x \in A\}$. Determine
 - (a) $A \cup C$;
- (c) $A \cup B$:
- (e) $B \cup C$;
- (g) $A \backslash B$;
- i) $B \backslash B$.

- (b) $A \cup A$;
- (d) $A \cap B$;
- (f) $B \cap B$;
- (h) $C \setminus A$;

Resolução

Começamos por observar que B é o conjunto de todos os números pares e que $C=\{2^2,4^2,6^2,8^2\}=\{4,16,36,64\}$, pelo que tanto A como C são subconjuntos de B. Estamos agora em condições de determinar cada um dos conjuntos pedidos.

- (a) $A \cup C = \{x : x \in A \lor x \in C\} = \{2, 4, 6, 8, 16, 36, 64\};$
- (b) $A \cup A = \{x : x \in A \lor x \in A\} = \{x : x \in A\} = A;$
- (c) $A \cup B = \{x : x \in A \lor x \in B\} = B$, uma vez que $A \subseteq B$;
- (d) $A \cap B = \{x : x \in A \land x \in B\} = A$, uma vez que $A \subseteq B$;
- (e) $B \cup C = \{x : x \in B \lor x \in C\} = B$, uma vez que $C \subseteq B$;
- (f) $B \cap B = \{x : x \in B \land x \in B\} = B$;

- (g) $A \setminus B = \{x : x \in A \land x \notin B\} = \emptyset;$
- (h) $C \setminus A = \{x : x \in C \land x \notin A\} = \{16, 36, 64\};$
- (i) $B \setminus B = \{x; x \in B \land x \notin B\} = \emptyset$, pois a condição que define o conjunto $(x \in B \land x \notin B)$ é uma condição impossível.
- 84. Sejam A e B conjuntos.
 - (a) Mostre que $(A \cup B) \setminus B \subseteq A$;
 - (b) Dê exemplo de dois conjuntos A e B tais que $(A \cup B) \setminus B \neq A$;
 - (c) Mostre que $(A \cup B) \setminus B = A \setminus (A \cap B)$.
- 85. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.
 - (a) Se $C \subseteq A \cup B$, então $C \subseteq A$ e $C \subseteq B$;
 - (b) Se $C \subseteq A$ ou $C \subseteq B$, então $C \subseteq A \cup B$;
 - (c) Se $A \subseteq C$ e $B \subseteq C$, então $A \cup B \subseteq C$;
 - (d) Se $A \cup B \subseteq C$, então $A \subseteq C$ e $B \subseteq C$;
 - (e) Se $A \subseteq C$ ou $B \subseteq C$, então $A \cup B \subseteq C$.

- (a) Falsa. Considere-se o seguinte contraexemplo: Se $A = \{1, 2\}$, $B = \{3, 4\}$ e $C = \{2, 3\}$, temos que $C \subseteq A \cup B = \{1, 2, 3, 4\}$ e, no entanto, $C \not\subseteq A$ e $C \not\subseteq B$;
- (b) Verdadeira. Como $A \subseteq A \cup B$ e $B \subseteq A \cup B$, temos, pela transitividade da inclusão de conjuntos, que:

$$C \subseteq A \in A \subseteq A \cup B \Rightarrow C \subseteq A \cup B$$

e

$$C \subseteq B \in B \subseteq A \cup B \Rightarrow C \subseteq A \cup B$$
;

- (c) Verdadeira. Sabemos que $A \cup B$ é o menor conjunto que contém simultaneamente A e B. Logo, Se C é tal que $A \subseteq C$ e $B \subseteq C$ temos que $A \cup B \subseteq C$.
- (d) Verdadeira. Como $A \subseteq A \cup B$ e $B \subseteq A \cup B$, temos, pela transitividade da inclusão de conjuntos, que:

$$A \subseteq A \cup B \in A \cup B \subseteq C \Rightarrow A \subseteq C$$

е

$$B \subseteq A \cup B$$
 e $A \cup B \subseteq C \Rightarrow B \subseteq C$;

- (e) Falsa. Considere-se o seguinte contraexemplo: Se $A=\{1,2,3\}$, $B=\{4,5\}$ e $C=\{3,4,5\}$, temos que $B\subseteq C$, pelo que se verifica que " $A\subseteq C$ ou $B\subseteq C$ " e $A\cup B\notin C$.
- 86. Sejam X um conjunto e $A,B,C\subseteq X$ tais que $A\cap B=A\cap C$ e $(X\setminus A)\cap B=(X\setminus A)\cap C$. Mostre que B=C.
- 87. Usando as propriedades das operações entre conjuntos, determine:
 - (a) $(\emptyset \cup A) \cap (B \cup A)$;
- (b) $(A \cup B) \cap (A \cup B')$;
- (c) $A \cap (A \cup B)$.

- 88. Dê exemplos de conjuntos A, B, C, para os quais se tenha, respetivamente:
 - (a) $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$;
- (c) $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C)$.
- (b) $A \setminus (B \cup C) \neq (A \setminus B) \cup (A \setminus C)$;

- (a) Sejam $A=\{1\},\ B=\{2,3\}$ e $C=\{3,4\}.$ Então, $A\cup (B\backslash C)=\{1,2\} \qquad \text{e} \qquad (A\cup B)\backslash (A\cup C)=\{1,2,3\}\backslash \{2,3,4\}=\{1\}.$
- (b) Sejam $A=\{1,2,3\},\ B=\{2,3,4,5\}$ e $C=\{3,5,6\}.$ Então, $A\backslash (B\cup C)=\{1\}\qquad \text{e}\qquad (A\backslash B)\cup (A\backslash C)=\{1\}\cup \{1,2\}=\{1,2\}.$
- (c) Sejam $A=\{1,2,3\},\ B=\{2,3,4,5\}$ e $C=\{3,5,6\}.$ Então, $A\backslash (B\cap C)=\{1,2\} \qquad \text{e} \qquad (A\backslash B)\cap (A\backslash C)=\{1\}\cap \{1,2\}=\{1\}.$
- 89. Para cada um dos conjuntos seguintes, escreva (usando símbolos lógicos) o que significa um objeto x ser um elemento desse conjunto. Depois, determine os conjuntos que são iguais entre si, determinando as proposições que são logicamente equivalentes.
 - (a) $(A \setminus B) \setminus C$;
- (c) $(A \setminus B) \cup (A \cap C)$;
- (e) $A \setminus (B \cup C)$.

- (b) $A \setminus (B \setminus C)$;
- (d) $(A \setminus B) \cap (A \setminus C)$;
- 90. Sejam A e B conjuntos. Prove que
 - (a) se $A \cup B = \emptyset$, então $A = \emptyset$ e $B = \emptyset$;
 - (b) $A \backslash B \subseteq A$;
 - (c) $A \setminus \emptyset = A$;
 - (d) $(A \backslash B) \cap B = \emptyset$;
 - (e) $A \cap (B \setminus C) = (A \cap B) \setminus C$;
 - (f) $A = (A \cap B) \cup (A \setminus B)$;
 - (g) se $A \subseteq B$, então $A \cup (B \setminus A) = B$.

Resolução

- (a) Sabendo que $A \cup B = \emptyset$, queremos provar que $A = \emptyset$ e que $B = \emptyset$. Como $A \subseteq A \cup B$ e $B \subseteq A \cup B$, podemos concluir que $A \subseteq \emptyset$ e que $B \subseteq \emptyset$. Como o único subconjunto do vazio é o próprio vazio, temos que $A = \emptyset$ e que $B = \emptyset$.
- (b) Como

$$x \in A \backslash B \Leftrightarrow x \in A \text{ e } x \notin B \Rightarrow x \in A,$$

temos que $A \backslash B \subseteq A$.

(c) Como

$$x \in A \setminus \emptyset \Leftrightarrow x \in A \text{ e } x \notin \emptyset \Leftrightarrow x \in A,$$

uma vez que " $x \notin \emptyset$ " é uma condição universal e qualquer condição universal é elemento neutro da conjunção de condições, temos que $A \setminus \emptyset = A$.

(d) Como

$$x \in (A \backslash B) \cap B \Leftrightarrow x \in A \backslash B \text{ e } x \in B \Leftrightarrow x \in A \text{ e } x \notin B \text{ e } x \in B \Leftrightarrow x \in \emptyset,$$

uma vez que a condição " $x \notin B$ e $x \in B$ " é uma condição impossível e uma condição impossível é elemento absorvente para a conjunção e define o conjunto vazio, temos que $(A \setminus B) \cap B = \emptyset$.

(e) Como

$$x \in A \cap (B \backslash C) \quad \Leftrightarrow x \in A \text{ e } x \in B \backslash C$$

$$\Leftrightarrow x \in A \text{ e } x \in B \text{ e } x \notin C$$

$$\Leftrightarrow x \in A \cap B \text{ e } x \notin C$$

$$\Leftrightarrow x \in (A \cap B) \backslash C,$$

temos que $A \cap (B \setminus C) = (A \cap B) \setminus C$.

(f) Como

```
x \in (A \cap B) \cup A \backslash B \quad \Leftrightarrow x \in A \cap B \text{ ou } x \in A \backslash B \Leftrightarrow (x \in A \text{ e } x \in B) \text{ ou } (x \in A \text{ e } x \notin B) \Leftrightarrow x \in A \text{ e } (x \in B \text{ ou } x \notin B) \Leftrightarrow x \in A,
```

uma vez que a condição " $x \notin B$ ou $x \in B$ " é uma condição universal e uma condição universal é elemento neutro para a conjunção, temos que $A = (A \cap B) \cup (A \setminus B)$.

(g) Sabendo que $A\subseteq B$, queremos provar que $A\cup (B\backslash A)=B$. De facto, sabemos que $B=A\cup B$ e, por isso,

```
\begin{aligned} x \in A \cup (B \backslash A) &\iff x \in A \text{ ou } x \in B \backslash A \\ &\iff x \in A \text{ ou } (x \in B \text{ e } x \notin A) \\ &\iff (x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \notin A) \\ &\iff x \in A \cup B \\ &\iff x \in B. \end{aligned}
```

Assim, estamos em condições de concluir que $A \cup (B \setminus A) = B$.

91. Sejam $A, B \in C$ conjuntos. Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$, então B = C.

Resolução

Sabendo que $A \cup B = A \cup C$ e que $A \cap B = A \cap C$, queremos provar que B = C.

Como $B\subseteq A\cup B$ temos que $B=B\cap (A\cup B)$. Analogamente, como $C\subseteq A\cup C$, podemos concluir que $C=C\cap (A\cup C)$. Assim,

$$\begin{array}{ll} B &= B \cap (A \cup B) \\ &= B \cap (A \cup C) \\ &= (B \cap A) \cup (B \cap C) \\ &= (C \cap A) \cup (C \cap B) \\ &= C \cap (A \cup B) \\ &= C \cap (A \cup C) \\ &= C. \end{array} \qquad \begin{array}{ll} \text{(por hipótese)} \\ \text{(por distributividade de } \cap \text{ em relação a } \cup) \\ \text{(por distributividade de } \cap \text{ em relação a } \cup) \\ \text{(por hipótese)} \\ &= C. \end{array}$$

92. Seja E o conjunto $\{1, \{1\}, 2, \{1, 2\}\}$. Determine:

(a)
$$\mathcal{P}(E)$$
; (b) $E \cap \mathcal{P}(E)$.

Resolução

(a) O conjunto E tem quatro elementos, pelo que a sua potência é um conjunto com dezasseis elementos, que são os dezasseis subconjuntos de E. Assim,

$$\mathcal{P}(E) = \{\emptyset, \{1\}, \{\{1\}\}, \{2\}, \{\{1,2\}\}, \{1,\{1\}\}, \{1,2\}, \{1,\{1,2\}\}, \{\{1\},2\}, \{\{1\},\{1,2\}\}, \{1,\{1\},2\}, \{1,\{1\},\{1,2\}\}, \{1,2,\{1,2\}\}, \{1\}, 2, \{1,2\}\}, E\}.$$

- (b) $E \cap \mathcal{P}(E) = \{\{1\}, \{1, 2\}\}.$
- 93. Sejam $A = \{1, 2, 3\}$ e $B = \{\emptyset, \{1, 2, 3\}\}$.
 - (a) Indique $\mathcal{P}(A)$.
 - (b) Diga, justificando, se:

(i) $A \in \mathcal{P}(B)$;

- (ii) $A \in \mathcal{P}(\mathbb{N})$; (iii) $\mathcal{P}(A) \subseteq \mathcal{P}(\mathbb{N})$.
- 94. Determine todos os elementos de:
 - (a) $\mathcal{P}(\mathcal{P}(\emptyset))$;
 - (b) $\mathcal{P}(\mathcal{P}(\{\emptyset\}))$.
- 95. Sejam $A \in B$ conjuntos. Mostre que $A \subseteq B$ se e só se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Resolução

Vamos provar esta equivalência provando uma dupla implicação.

 $[\Rightarrow]$ Sabendo que $A\subseteq B$, queremos provar que $\mathcal{P}(A)\subseteq\mathcal{P}(B)$.

Se $A \subseteq B$, sabemos que qualquer subconjunto de A é também subconjunto de B. Assim, qualquer elemento de $\mathcal{P}(A)$ é elemento de $\mathcal{P}(B)$. Logo, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

 $[\Leftarrow]$ Sabendo que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, queremos provar que $A \subseteq B$.

Da hipótese temos que qualquer subconjunto de A é um subconjunto de B. Mas, A é subconjunto de si próprio. Então, A é subconjunto de B, o que prova o pretendido.

- 96. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $\{\emptyset\} \subseteq A$, para qualquer conjunto A;
- (f) $\emptyset \in \mathcal{P}(A)$, para qualquer conjunto A;
- (b) $\emptyset \subseteq A$, para qualquer conjunto A;
- (g) $\{\{\emptyset\}\}\subseteq \mathcal{P}(\emptyset)$;
- (c) $\emptyset \subseteq \mathcal{P}(A)$, para qualquer conjunto A;
- (h) $\{\emptyset\} \subseteq \{\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}\};$
- (d) $\{\emptyset\} \subseteq \mathcal{P}(A)$, para qualquer conjunto A;
- (i) $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$
- (e) $\emptyset \in A$, para qualquer conjunto A;
- 97. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$;
 - (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$;
 - (c) Se $(A \cup B) \in \mathcal{P}(A \cap B)$ então A = B.

Resolução

(a) A afirmação é verdadeira. De facto, temos

$$X \in \mathcal{P}(A \cap B) \Leftrightarrow X \subseteq A \cap B \Leftrightarrow X \subseteq A \in X \subseteq B$$

 $\Leftrightarrow X \in \mathcal{P}(A) \in X \in \mathcal{P}(B) \Leftrightarrow X \in \mathcal{P}(A) \cap \mathcal{P}(B).$

- (b) A afirmação é falsa. Considere-se o seguinte contraexemplo: se $A=\{1\}$ e $B=\{2,3\}$, então $A\cup B=\{1,2,3\}$ e, por isso, $\{1,2\}\in \mathcal{P}(A\cup B)$ e $\{1,2\}\notin \mathcal{P}(A)$ e $\{1,2\}\notin \mathcal{P}(B)$. Assim, os dois conjuntos não são necessariamente iguais.
- (c) A afirmação é verdadeira. Se $(A \cup B) \in \mathcal{P}(A \cap B)$, então $A \cup B \subseteq A \cap B$ e como, em geral, $A \cap B \subseteq A \cup B$, temos que $A \cup B = A \cap B$. Como a união de dois conjuntos é o menor conjunto que os contém e a interseção de conjunto é o maior conjunto neles contido, concluímos que $A \cap B = A = B = A \cup B$.
- 98. Sejam A e B dois conjuntos. Dados $a \in A$ e $b \in B$, definimos o par ordenado (a,b) como sendo o conjunto $\{\{a\},\{a,b\}\}$. Prove que, para quaisquer $a,x \in A$ e quaisquer $b,y \in B$, se tem (a,b)=(x,y) se e só se a=x e b=y.
- 99. Considere os conjuntos $A = \{a, b, c, d\}, B = \{e, f\}$ e $C = \{g\}$.
 - (a) Determine:
 - (b) Verifique que os conjuntos $B^3 \times C$ e $C \times B^3$ não são iguais.
 - (c) Indique o número de elementos dos conjuntos $A^3 \times B \times C$ e $C^3 \times B \times A^4$.
- 100. Sejam A, B e C conjuntos. Prove que:
 - (a) se $A \subseteq B$, então $A \times C \subseteq B \times C$;
 - (b) se $A \subseteq B$, então $C \times A \subseteq C \times B$;
 - (c) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
 - (d) $(A \cap B) \times C = (A \times C) \cap (B \times C)$;
 - (e) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

(a) Sabendo que $A \subseteq B$, queremos provar que $A \times C \subseteq B \times C$. De facto, temos que

```
(x,y) \in A \times C \quad \Leftrightarrow x \in A \text{ e } y \in C \qquad \qquad \text{(por definição de prod. cartesiano)} \\ \Rightarrow x \in B \text{ e } y \in C \qquad \qquad \text{(por hipótese)} \\ \Leftrightarrow (x,y) \in B \times C. \qquad \qquad \text{(por definição de prod. cartesiano)}
```

Assim, concluímos que $A \times C \subseteq B \times C$.

- (b) Análogo ao anterior.
- (c) Temos que

```
(x,y) \in (A \cup B) \times C \quad \Leftrightarrow x \in A \cup B \text{ e } y \in C \qquad \qquad \text{(def. de prod. cartes.)} \\ \Leftrightarrow (x \in A \text{ ou } x \in B) \text{ e } y \in C \qquad \qquad \text{(definição de } \cup) \\ \Leftrightarrow (x \in A \text{ e } y \in C) \text{ ou } (x \in B \text{ e } y \in C) \qquad \text{(dist. de } \wedge \text{ em relação a} \vee) \\ \Leftrightarrow (x,y) \in A \times C \text{ ou } (x,y) \in B \times C \qquad \text{(def. de prod. cartesiano)} \\ \Leftrightarrow (x,y) \in A \times C \cup B \times C \qquad \text{(definição de } \cup)
```

- 101. Sejam $A \in B$ dois conjuntos. Prove que $(A \times A) \setminus (B \times B) = [(A \setminus B) \times A] \cup [A \times (A \setminus B)]$.
- 102. Sejam A e B conjuntos tais que $A \neq B$. Suponha que C é um conjunto tal que $A \times C = B \times C$. Mostre que $C = \emptyset$.

Demonstração por redução ao absurdo.

Suponhamos que A, B e C são conjuntos tais que $A \neq B, A \times C = B \times C$ e $C \neq \emptyset$. Então,

- de $A \neq B$ sabemos que existe $a \in A$ tal que $a \notin B$ ou que existe $b \in B$ tal que $b \notin A$ (uma das afirmações desta disjunção pode ser falsa, pois um (e apenas um) dos conjuntos A e B pode ser o conjunto vazio). Suponhamos, sem perdas de generalidade, que existe $a \in A$ tal que $a \notin B$.
- de $C \neq \emptyset$ podemos concluir que existe $c \in C$.

Assim, estamos em condições de concluir que existe o elemento $(a,c) \in A \times C$. Mas, $A \times C = B \times C$, pelo que $(a,c) \in B \times C$ e, por isso, temos que $a \in B$. Logo, temos $a \notin B$ e $a \in B$, uma contradição. A contradição resulta de termos suposto que os três conjuntos são tais que $A \neq B$, $A \times C = B \times C$ e $C \neq \emptyset$. Logo, se os três conjuntos são tais que $A \neq B$ e $A \times C = B \times C$, temos que ter $C = \emptyset$.

- 103. Seja A um conjunto finito. Qual dos conjuntos $\mathcal{P}(A \times A)$ e $\mathcal{P}(A) \times \mathcal{P}(A)$ tem mais elementos?
- 104. Considere o conjunto de índices $I=\{1,2,3,4,5\}$. Calcule a união e a intersecção das seguintes famílias de conjuntos:
 - (a) $\{A_k\}_{k\in I}$ em que, para cada $k\in I$, $A_k=\{z\in\mathbb{Z}:|z|\leq 2k\}$;
 - (b) $\{B_k\}_{k\in I}$ em que, para cada $k\in I$, $B_k=[-k/2,k+2[$;
 - (c) $\{C_k\}_{k\in I}$ em que, para cada $k\in I$, $C_k=\left[-\frac{1}{k+1},\frac{1}{k+1}\right]$.
- 105. Calcule a união e a intersecção das seguintes famílias de conjuntos:
 - (a) $\{A_n\}_{n\in\mathbb{N}}$ em que, para cada $n\in\mathbb{N}$, $A_n=\{z\in\mathbb{Z}:\ |z|\leq 2n\}$;
 - (b) $\{B_x\}_{x\in\mathbb{R}^+_0}$ em que, para cada $x\in\mathbb{R}^+_0$, $B_x=[-x/2,x+2[x]]$
 - (c) $\{C_i\}_{i\in\mathbb{N}_0}$ em que, para cada $i\in\mathbb{N}_0$, $C_i=[-\frac{1}{i+1},\frac{1}{i+1}].$
- 106. Dê exemplo de uma família de conjuntos todos diferentes entre si, indexada pelo conjunto ℕ, tal que
 - (a) a união dos conjuntos da família é igual a \mathbb{Z} e a intersecção é igual a $\{0\}$;
 - (b) a união dos conjuntos da família é igual a \mathbb{R}^+_0 e a intersecção é o conjunto vazio;
 - (c) a união dos conjuntos da família é igual a [2,8] e a intersecção é igual a [3,6].

Resolução

- (a) Para cada $i\in\mathbb{N}$, seja, por exemplo, $A_i=\{-i,0,i\}$. Então, $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{Z}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{0\}$.
- (b) Sejam, por exemplo, $A_1=\{0\}$ e $A_i=]0,i[$, para $i\geq 2.$ Então, $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{R}_0^+$ e $\bigcap_{i\in\mathbb{N}}A_i=\emptyset.$
- (c) Para cada $i\in\mathbb{N}$, seja, por exemplo, $A_i=[2+\frac{1}{i},8-\frac{2}{i}]$. Então, $\bigcup_{i\in\mathbb{N}}A_i=[2,8]$ e $\bigcap_{i\in\mathbb{N}}A_i=[3,6]$.