ELEC 402

MOS Basics Lecture 4

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Prof. Sudip Shekhar (UBC), Dr. Res Saleh, and Dr. D. Sengupta (AMD)

PN Junction and Diodes

p-type semi-conductor heavily doped with acceptor atoms, e.g. boron

p-type

n-type semi-conductor is heavily doped with donor atoms, e.g. arsenic and phosphorus

PN Junction

Diffusion (Majority Carriers)

- The concentration of different carrier in p, and n-type semi-conductors (also called gradient) causes diffusion of electrons from n to p and holes from p to n leaving immobile ions behind
- The region at junction where majority carriers are removed, is called the *depletion* or *space-charge*region

PN Junction Basics

- The charges in each region create an electric field across the boundary of junction to counteract the diffusion of majority carriers
- -This electric field creates a potential across the junction called *contact* or *barrier potential*

MOS Transistor Basics

The source and drain regions (*n*+) and substrate (*p*) in NMOS transistor create two back-to-back diodes at equilibrium (therefore, requires external stimulus for any conduction)

Definition of Threshold Voltage

Energy-band diagram for doped p-type silicon.

- We need to apply an external voltage to turn the *p*-type substrate into an *n*-type substrate to create a channel for conduction
- As we apply a positive V_{GS} the substrate is first depleted under the gate area (immobile ions)
- Further increase of V_{GS} creates a conducting layer of minority carriers under the gate
- The V_{GS} voltage required to make the surface of the substrate "as much *n*-type as the rest of substrate is *p*" is called Threshold Voltage

Definition of Threshold Voltage

The onset of inversion in NMOS transistor (creation of channel under the gate in (d)

Effect of Body bias on Threshold Voltage

- Application of negative voltage to bulk attracts holes and leaves behind "negatively charged ions"
- As a result, there should be more positive charge on gate plate to mirror the negative ions in the substrate and more positive voltage is required to create the channel, i.e. V_{TH} increases

$$V_{T0}+\gamma \left(\sqrt{V_{SB}+|2\phi_F|}-\sqrt{|2\phi_F|}
ight)$$
 where $\gamma=rac{1}{C_{ox}}\sqrt{2qarepsilon_{si}N_A}$ body-effect coefficient

MOS Current Calculation

MOS Current Calculation

$$Q_d = WQ_n(y)$$

Charge density along direction of current

$$I=Q_d\cdot v.$$

Total charge in the grey box (amount of charge hat passes through the channel in 1 second)

$$v = \mu E$$
 where $E = \frac{dV(y)}{dy}$

Velocity of carriers is a function of the horizontal electric field

$$I_{DS} = C_{ox} [(V_{GS} - V(y)) - V_T] \times \mu_n E \times W$$

MOS Current Calculation

$$I_{DS} = k' \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad k' = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}}$$

$$I_{DS} = k' \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad k' = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}}$$

$$I_{DS} = k' \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad k' = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}}$$

$$I_{DS} = k' \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \qquad Nonphysical positive mobile carriers of the positi$$

This equation predicts roll-off after reaching a peak due to the existence of non-physical positive carriers. Therefore, the equation must be adjusted after V_{DS} reaches V_{GS} - V_{T}

MOS Current in Saturation

If we increase V_{DS} beyond V_{GS} - V_{T} , The local potential difference is not enough to sustain the inverted channel. The channel is "pinched-off "

After the pinch-off is reached, the current stays relatively constant!

Ideal Transistor I-V Characteristics

NMOS	CutOff	Linear	Saturation
l _{ds}	0	$\beta_n \big[(V_{gs} - V_{Tn}) V_{ds} - V_{ds}^2 / 2 \big]$	$\beta_n [(V_{gs} - V_{Tn})^2/2]$
V_{gs}	$V_{gs} < V_{Tn}$	$V_{gs} > V_{Tn}$	$V_{gs} > V_{Tn}$
V_{gd}		$V_{gd} > V_{Tn}$	$V_{gd} < V_{Tn}$

PMOS	CutOff	Linear	Saturation
l _{ds}	0	$\beta_p \big[(V_{sg} - V_{Tp}) V_{sd} - V_{sd}^2/2 \big]$	$\beta_p \big[(V_{sg} - V_{Tp})^2 / 2 \big]$
V_{sg}	$V_{sg} < V_{Tp} $	$V_{sg} > V_{Tp} $	$V_{sg} > V_{Tp} $
V_{dg}		$V_{dg} > V_{Tp} $	$V_{dg} < V_{Tp} $

nMOS I-V (65nm)

L = 50nm W = 100nm

$$\mu_n$$
 = 80 cm²/V-s
Temp = 70°C
 V_{tn} = 0.3V
 t_{ox} = 10.5Å
Calculate β_n

Overestimates current at high voltages

pMOS I-V

- > All dopings and voltages are inverted for pMOS
 - Source is the more positive terminal
- \triangleright Mobility μ_{D} is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 40 cm²/V-s in 65nm process
- > Thus pMOS must be wider to provide same current
 - Assume $\mu_n / \mu_p = 2$

Ideal vs Real Transistor I-V Characteristics (Short-Channel Effects)

Channel-length Modulation (I_{DS} dependence on V_{DS})

Mobility Degradation

- \triangleright Vertical electric field: $E_{vert} = V_{gs}/t_{ox}$
 - Attracts carriers into channel
 - Long channel: $Q_{channel} \propto E_{vert}$
- High E_{vert} effectively reduces mobility
 - Collisions with oxide interface

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left|V_{gs} + 1.5V_t\right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}}$$

Velocity Saturation

- ➤ Lateral electric field: E_{lat} = V_{ds} / L
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{lat}$
- ➤ At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off atoms in silicon lattice
 - Velocity reaches v_{sat} Electrons: 10⁷ cm/s Holes: 8 x cm/s
 - Better model

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

What Happens to MOS current due to SCE?

$$I_{DS} = W \times Q_n \times v$$

General current of short channel MOS

$$= W \times C_{ox}(V_{GS} - V_T - V(y)) \left(\frac{\mu_e E_y}{1 + \frac{E_y}{E_c}}\right)$$

where $E_y = \frac{dV(y)}{dy}$

Plugging in and re-arranging produces

$$I_{DS}dy = W\mu_e \left[C_{ox}(V_{GS} - V_T - V(y)) - \frac{I_{DS}}{W\mu_e E_c} \right] dV(y)$$

After integration, we obtain

$$I_{DS} = rac{W}{L} rac{\mu_e C_{ox}}{\left(1 + rac{V_{DS}}{E_c L}
ight)} \left(V_{GS} - V_T - rac{V_{DS}}{2}
ight) V_{DS}$$

Similar to long channel device except for an extra term in denominator

Short-Channel MOS Current - Derivation

$$I_{DS} = W \times Q_n \times v_{sat}$$

Current of short channel MOS in saturation

Since the current is the same throughout the channel we can set $V(y) = V_{DS}$ and write

$$I_{DS} = W \times C_{ox} (V_{GS} - V_T - V_{DS}) v_{sat}$$

Equating this current and that of previous slide gives the required V_{DS} for saturation

$$V_{Dsat} = rac{(V_{GS} - V_T) E_c L}{(V_{GS} - V_T) + E_c L}$$
 Always smaller than V_{GS} - V_T indicates early saturation

Drain Induced Barrier Lowering (DIBL)

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel
- DIBL
- Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

High drain voltage causes current to increase.