Learned versus Hand-Designed Feature Representations for 3d Agglomeration

John A. Bogovic, Gary B. Huang & Viren Jain As presented by Mary Yen

Terms

- Machine learning is a set of algorithms that classify data input.
 - o eg: We want to know whether a set of facial images are male or female.
- Algorithms train classifiers on a training set to identify data input. Classifiers need quantifiable data to work. Can test classifier's effectiveness on testing set.
 - eg: Assign numerical values to facial shape by edge curvature. Classifiers can ident facial image is male or female depending on whether the image's edge values are of female edge values.

Opportunity

- Automatic machine learning methods may be more efficient than manually specified methods.
 - Doesn't require domain expertise
 - o potentially yields a much larger set of features for a classifier.
 - May find algorithms or features that are more finely tuned for the particular proble and thus lead to improved accuracy.
 - o can be easily adapted to new types of data
- Is purely automatic or hand designed better? Is there a balance between the two?

Challenge

- Specifying 3D features seems easier than using hand-designed representations for more low-level data (such as raw image patches).
- describing a neuron fragment in terms of quantities such as curvature, volume, and orientation seems natural.
- Can easily use this data in learning algorithms whereas hand-designed data takes longer to collect & needs to be quantified.

Challenge

• Is this intuitive appeal is a good justification for feature representation in specific tasks such as neuron fragment agglomeration?

Intuitively makes sense, but is it effective in practice?

Action

Compared the performance of the following:

- 1. A large set of diverse hand-designed 3d shape descriptors.
- 2. An end-to-end supervised learning approach for deriving 3d feature descriptors.
- 3. An unsupervised learning approach for deriving 3d feature descriptors.

Supervised vs. Unsupervised Learning

- supervised: examples must be labeled
 - You tell the algorithm which faces are female or male
- unsupervised: examples are unlabeled
 - You hand algorithm faces but don't tel which faces are male or female
 - Algorithm will plot features about inpu and look at what features cluster toge to classify data

Supervised Learning

- End-to-End Learning
- Algorithm derives its own features from the labeled data
- Requires no hand-designed features
- provide the raw input signal values to the classifier
- Used convolutional neural network

convolutional neural network

- · Each layer of convolutions extract progressively higher level features
 - Subsampling / max pooling to "zoom out" and detect bigger objects with smaller convolutions
 - Non-linear function on each neuron to activate it

Unsupervised Learning

- Similar CNN technique as supervised learning
- **dynamic pooling:** the region to pool over is dependent on the segments themselves.
 - we can restrict the average
 pooling to be over only features
 corresponding to locations in
 either of the two segments
 - improves accuracy by eliminating unneeded data

Resolution

- unsupervised learning, when combined with a novel dynamic pooling scheme, yields performance comparable to an ensemble set of all hand-designed features.
- To our knowledge, this is the first time purely learned features have been shown to provide competitive performance on a task involving analysis or classification of 3d shapes
- Substantial improvement in performance results as the feature set increases from a simple set of 6 features derived from boundary map values to the combined set of all hand-designed features

Future

- Found methods that can act as starting points for future feature learning methods
- a more sophisticated end-to-end strategy
- dynamic pooling
 - o optimize pool sampling