

官方公众号: 蜂考 学习交流 QQ 群: 978080722

模拟试卷二

一、选择题

1.在空间直角坐标系中,点(6,2,-1)关于ovz坐标面的对称点的坐标是()

A.(-6,-2,-1) B.(6,-2,-1) C.(-6,2,-1) D.(-6,-2,1)

2.极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{x-y}{x+y}$ ()

A.等于0 B.等于1 C.等于2 D.不存在

3.设积分区域D: $(x-1)^2 + y^2 ≤ 1$, 二重积分 $\iint_D f(x^2 + y^2) d\sigma$ 化为极坐标下的二次积分

为()

$$A. \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r^2) r dr \qquad B. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r^2) r dr$$

$$C. \int_0^{\frac{\pi}{2}} d\theta \int_0^1 f(r^2) r dr \qquad D. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^1 f(r^2) r dr$$

4. 幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} (x+1)^n$$
 的收敛域是(_____)

A.[-5,5] B.(-5,5) C.(-6,4] D.[-6,4)

二、填空题

5.已知向量 $\alpha = \{3, 1, 5\}, \beta = \{2, 0, -2\}, 则 \alpha + 3\beta =$ _____

6.已知函数
$$z = x^2 e^y$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______

7.二次积分 $\int_{-1}^{1} dx \int_{0}^{2} (x+3) dy$ 的值是 ______

8.无穷级数
$$\sum_{n=1}^{\infty} \frac{2^n}{3^{n+1}}$$
 的和 $S =$ ______

三、计算题

蜂考速成课 官方公众号:蜂考 学习交流 QQ 群: 978080722

9.求直线 $\begin{cases} x - y + z - 7 = 0 \\ 2x + y - 3z + 6 = 0 \end{cases}$ 的方向向量v.

- 10.已知函数 $z = f(x^2 + y^3)$,其中f为可导函数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.
- 11.求曲线 $x = \frac{1}{t}, y = \frac{1}{t^2}, z = \frac{1}{t^3}$ 在对应于t = 1的点处的法平面方程.
- 12.问在空间的哪些点上,函数 $u = x^2 + y^2 + z^2 2xyz$ 的梯度平行于z轴.
- 13.计算二重积分 $\iint_D y^2 dx dy$,其中积分区域 $D: x^2 + y^2 \leq 2$.
- 14.计算三重积分 $\iint_{\Omega} (|x|+y+|z|) dv$, 其中积分区域 $\Omega: x^2+z^2 \leq 1$, $|y| \leq 2$.
- 15.计算对弧长的曲线积分 $\int_c \frac{1}{x+y} ds$,共中 C 是从点A(1,1)到点B(3,3)的直线段.
- 16.计算对面积的曲面积分 $\iint_{\Sigma} \sqrt{a^2-x^2-y^2} \, ds$,其中 Σ 是以O(0,0,0)为球心,a为半径的上半球面.
- 17.判断无穷级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 是否收敛,如果收敛,是绝对收敛还是条件收敛?

四、综合题

20.将函数 $f(x) = \frac{1}{2+x}$ 展开为(x-4)的幂级数。

蜂考速成课 官方公众号:蜂考 学习交流 QQ 群: 978080722

试题答案

一、单项选择题:

1.C 2.D 3.B 4.C

二、填空題:

 $5.{9,1,-1}$

 $6.2xe^y$

7.12

 $8.\frac{2}{3}$

三、计算題:

9. \mathbb{M} : :: $n_1 = \{1, -1, 1\}, n_2 = \{2, 1, -3\}$

∴ 可取
$$v = n_1 \times n_2 = \begin{vmatrix} i & j & k \\ 1 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix} = 2i + 5j + 3k$$

$$10.解: \frac{\partial z}{\partial x} = 2xf'(x^2 + y^3)$$

$$\frac{\partial z}{\partial y} = 3y^2 f'(x^2 + y^3)$$

11.解:因为
$$x' = -\frac{1}{t^2}, y' = -\frac{2}{t^3}, z' = -\frac{3}{t^4}$$

所以在t=1对应点处法平面的法向量为 $\{-1,-2,-3\}$

又t=1对应点的坐标为(1,1,1),所以所求法平面方程为

$$-(x-1)-2(y-1)-3(z-1)=0$$

$$\mathbb{P} x + 2y + 3z - 6 = 0$$

官方公众号: 蜂考 学习交流 QQ 群: 978080722

12.解: z轴单位向量是(0,0,1)

函数u在(x,y,z)点的梯度为

$$gradu = (2x - 2yz, 2y - 2xz, 2z - 2xy)$$

由题意grad
$$u$$
与(0,0,1)平行,满足 $\begin{cases} 2x - 2yz = 0 \\ 2y - 2xz = 0 \end{cases}$

即曲线
$$\begin{cases} x = yz \\ y = xz \end{cases}$$
 上的点均是所求点

$$13.解: \iint\limits_{D} y^{2} d\sigma = \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} r^{2} \sin^{2}\theta \cdot r dr$$

$$= \int_{0}^{2\pi} \sin^{2}\theta d\theta \int_{0}^{\sqrt{2}} r^{3} dr$$

$$= \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right)\Big|_{0}^{2\pi} \cdot \frac{1}{4}r^{4}\Big|_{0}^{\sqrt{2}}$$

$$= \pi$$

14. 解: ∵Ω 关于三个坐标面分别对称

$$\therefore \iiint_{\Omega} (|x| + y + |z|) dv = \iiint_{\Omega} (|x| + |z|) dv$$

$$\vdots \exists \Omega_{1} : x^{2} + z^{2} \leq 1, x \geq 0, z \geq 0, 0 \leq y \leq 2, \text{ } \exists \text{ } \bigcup \text{ } \bigcup \text{ } (|x| + y + |z|) dv = 8 \iiint_{\Omega_{1}} (x + z) dv$$

$$= 8 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} r dr \int_{0}^{2} (r \cos \theta + r \sin \theta) dy$$

$$= \frac{32}{3}$$

15. 解: $C:y = x, 1 \le x \le 3$

$$\int_C \frac{1}{x+y} ds = \int_1^3 \frac{1}{2x} \cdot \sqrt{1+1^2} dx$$
$$= \int_1^3 \frac{\sqrt{2}}{2} \cdot \frac{1}{x} dx$$
$$= \frac{\sqrt{2} \ln 3}{2}$$

16. 解: Σ 在oxy平面的投影区域为 D_{xy} : $x^2 + y^2 \le a^2$

官方公众号:蜂考

学习交流 QQ 群: 978080722

$$\iint_{\Sigma} \sqrt{a^2 - x^2 - y^2} \, dS = \iint_{D_{xy}} \sqrt{a^2 - x^2 - y^2} \cdot \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dx \, dy$$
$$= \iint_{D_{xy}} a \, dx \, dy = \pi a^3$$

四、综合题:

18.解:设长方体的长、宽、高分别为x,y,z(单位:m),

则容积
$$V = xyz = 64m^3$$
,用料即为面积 $S = 2xy + 2yz + 2xz$.

设
$$F(x,y,z,\lambda) = xy + yz + xz + \lambda(xyz - 64)$$

$$\Rightarrow \begin{cases} y + z + \lambda yz = 0 \\ x + z + \lambda xz = 0 \\ x + y + \lambda xy = 0 \\ xyz = 64 \end{cases}$$

解得x = y = z = 4,由于(4,4,4)是唯一驻点,所以当长、宽、高均为4m时,容器用料最省.

19.
$$\Re P(x,y) = x + 3y, Q(x,y) = 3x + y$$

$$\frac{\partial P}{\partial y} = 3, \frac{\partial Q}{\partial x} = 3$$

$$\therefore$$
 在整个oxy平面内, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$\therefore$$
 $(x+3y)dx+(3x+y)dy$ 在整个 oxy 平面内是某个二元函数 $u(x,y)$ 的全微分

可取
$$u(x,y) = \int_0^x P(x,0) dx + \int_0^y Q(x,y) dy$$

= $\int_0^x x dx + \int_0^y (3x+y) dy$
= $\frac{1}{2}(x^2+y^2) + 3xy$

20.
$$mathref{m}$$
: $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \quad (-1 < x < 1)$

$$\therefore f(x) = \frac{1}{6+(x-4)}$$

$$= \frac{1}{6} \cdot \frac{1}{1+\frac{x-4}{6}}$$

$$= \frac{1}{6} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-4}{6}\right)^n \quad \left(-1 < \frac{x-4}{6} < 1\right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{6^{n+1}} (x-4)^n \quad (-2 < x < 10)$$