'Sensibilité d'une rente viagère à l'extrapolation de la courbe des taux dans un contexte LTGA', IIRF 2015

Thierry Moudiki (ISFA, Université Lyon 1)

May 21st, 2015

Solvency II economic balance sheet, technical provisions

- Solvency II? QIS5? LTGA?
- Simplified balance sheet

Assets	Liabilities
Assets	- Available capital
at	- Solvency Capital Requirement (SCR)
market	- Risk Margin
value	- Best Estimate Liabilities

- ► 'Fair' valuation ~ **Assets** marked to market + **Liabilities** marked to model
- ► Technical provisions = Best Estimate Liabilities + Risk Margin

Best Estimate Liabilities (BEL) explained

$$BEL_t = \sum_{T} \mathbb{E}[D(t, T)CF_T | \mathcal{F}_t \otimes \mathcal{T}_t]$$

- ▶ D(t, T): stochastic discount factor
- ► *CF_T*: future cash-flows
- ▶ $\mathcal{F}_t \otimes \mathcal{T}_t$: **financial** and **technical** information at t
- ▶ **Simple case**: *CF*_T deterministic/highly predictable
- ▶ **Difficult case**: *CF*_T depending on financial **and** technical information

In the article:

- ► CF_T: deterministic, mortality risk mutualized
- ullet $d(t,T):=\mathbb{E}[D(t,T)|\mathcal{F}_t]=\mathbf{?}=$ critical input

How to derive d(t, T) within Solvency II?

Liquid part

- Par swap rates
- Parallel shift for credit risk deduction (10 bps)
- + Volatility adjustment (optional)
- + Matching adjustment (optional)

Extrapolated part

- Last Liquid Point (LLP)
- Ultimate Forward Rate (UFR)
- ▶ Convergence speed (α) ~ convergence period (years)
- ▶ Bootstrap, interpolation, extrapolation: Smith-Wilson

Solvency II interpolation/extrapolation explained

UFR?

- ▶ Endogeneous UFR = $f_{\infty} = f_{\infty}(t)$
 - ▶ Vasicek-Fong (1982): French Institute of Actuaries

$$d(t,s) = \sum_{m} \beta_{m,s} e^{-mf_{\infty}(s-t)}$$

▶ Nelson & Siegel (1987) or Svensson (1994): **Central Banks**

$$d(t,s) = \exp\left(-(s-t)\left(\mathbf{f}_{\infty} + \beta_1 K_1(t,s) + \beta_2 K_2(t,s)\right)\right)$$

- **Exogeneous** UFR = f_{∞} = constant
 - Smith-Wilson (2001): Solvency II

$$d(t,s) = e^{-\mathbf{f}_{\infty}(s-t)} + \sum_{m} \beta_{m} K_{m}(t,s)$$

- Problem with an endogeneous UFR: potential volatility induced in liabilities
- ► ECB data; calibration with Svensson method (*Blue* = AAA Bonds, *Red* = All Bonds)

The case for a **fixed exogeneous** UFR for insurance

- ► High demand on long-term swaps from pension funds, artificially driving long rates down?
- More stable liabilities valuation
- ► UFR = Expected inflation + Expected real interest rates
- ▶ UFR = fixed since 5 years = 4.2% = 2% + 2.2%

Results from the article

Based on a fixed annuity valuation

- Fixed cash-flows depending on a mortality table (mutualized mortality risk)
- Additional benefits cash-flows depending of implied forward
- Aggregated cash-flows discounted, using Smith-Wilson for, interpolation and extrapolation (swap curve at 12/31/2011)

Results on the valuation

- 1. On **interpolation** with a 'complicated' (realistic, but not so common) benchmark curve
- 2. On the dependence with UFR and convergence speed
- 3. On the dependence with LLP and convergence speed

Results from the article (cont'd)

On interpolation

Implied forwards on "A Curve where all cubic splines produce negative rates" (Hagan & West (2006))

Results from the article (cont'd) On interpolation (cont'd)

Maturité	BE Smith-Wilson	BE Svensson	Ecart relatif		
0 à 5 ans	9 912,8	9 847,5	0,7%		
5 à 10 ans	6 342,1	6 309,7	0,5%		
10 à 15 ans	4 048,2	4 384,5	-7,7%		
15 à 21 ans	5 668,9	5 580,9	1,6%		
21 à 26 ans	3 949,1	3 679,4	7,3%		
26 à 30 ans	3 329,4	3 218,0	3,5%		
Total					
	33 250,6	33 020,0	0,7%		

Table 3: Evaluations du Best Estimate par les méthodes de Smith-Wilson et de Svensson

Maturité	Reval. Smith-Wilson	Reval. Svensson	Ecart relatif
0 à 5 ans	218,8	256,9	-14,8%
5 à 10 ans	291,7	213,9	36,4%
10 à 15 ans	56,8	75,0	-24,3%
15 à 21 ans	-18,7	32,9	-156,8%
21 à 26 ans	11,7	5,9	98,3%
26 à 30 ans	27,8	1,8	1444,1%
Total			
	588,1	586,4	0,3%

Table 4: Evaluations des revalorisations de la rente par les méthodes de Smith-Wilson et de Svensson

Results from the article (cont'd)

Extrapolation: UFR/convergence speed dependence (fixed LLP = 20)

Results from the article (cont'd)

Extrapolation: Cv. speed/LLP dependence (UFR = 4.2%)

Results from the article

A 'Shiny App' showing the impact of LLP, UFR and α on a annuity

▶ Just run the following commands in R (internet connexion required, tested on Safari and Chrome)

```
# Loading Shiny package
library(shiny)
# Run the app in your browser; execs code from my Gist
runGist("ee4e7b9506a09e5d7cb8")
```

"Problem" with an exogeneous UFR

- Hedging current UFR (increasing basis with low rates)?
- ► Reasonable macroeconomic assumptions (2%+2.2%) ?

Future work

- ▶ About the inclusion of insurer's assets returns in a framework
- On interpolation/extrapolation for valuation
- On forecasting for the ORSA (Own Risk Solvency Assessment, Solvency II pillar 2)
- On low interest rates impacts