Ciencia de Datos

Modelos de Elección Discreta

Roberto Ponce López

Tecnológico de Monterrey rpl@tec.mx

10 de febrero del 2020

Tabla de Contenidos

Modelamiento de Demanda

Marco Teórico de la Elección Discreta

- Tomador de Decisión
 - Individuos, personas o hogares
 - Características Socioeconómicas: edad, educación, ingreso
- Cuando no podemos aleatorizar, tenemos que conducir estudios observacionales con datos del mundo real
- Alternativas (ϵ)
 - El tomador de decisión n elige solamente una alternativa de un set the decisión $C_n = \{1, 2, 3..., i, ... J_n\}$ con J_n alternativas.
- Atributos de las alternativas (precio y calidad)
- Regla de decisión (maximizar utilidad)

• Tomador de Decisión: individuos u hogares

- Tomador de Decisión: individuos u hogares
- Choice set: alternativas de automóviles

- Tomador de Decisión: individuos u hogares
- Choice set: alternativas de automóviles
- Regla de decisión: maximización de utilidad

- Tomador de Decisión: individuos u hogares
- Choice set: alternativas de automóviles
- Regla de decisión: maximización de utilidad
- Función de utilidad: función de los atributos del automóvil, tales como precio y calidad

- Tomador de Decisión: individuos u hogares
- Choice set: alternativas de automóviles
- Regla de decisión: maximización de utilidad
- Función de utilidad: función de los atributos del automóvil, tales como precio y calidad
- Características individuales

Elección del Tomador de Decisión

- Maximización de Utilidad
- El tomador de decisión elige la alternativa que le reporta la mayor utilidad (y que está dentro del set de alternativas)
- Si U(SUV) > U(coche), elige la SUV
- Si U(SUV) < U(coche), elige el coche
- ¿Cómo calculamos estas utilidades?

Construyendo la Función de Utilidad

- $ullet U_{SUV} = U(precio_{SUV}, comfort_{SUV})$
- $U_{coche} = U(precio_{coche}, comfort_{coche})$
- Asumimos linealidad en los parámetros: $U(SUV) = eta_1 \cdot precio_{SUV} + eta_2 \cdot comfort_{SUV} + ...$
- Los parámetros representan gustos, los cuales varían entre personas
 - Incluye características socioeconómicas como tamaño del hogar, edad e ingreso
 - $U_{SUV} = U(precio_{SUV}/ingreso + ...)$

Elección Binaria Determinista

- Si $(U_{SUV} U_{coche}) > 0$, Probabilidad(SUV)=1
- Si $(U_{SUV}-U_{coche})<0$, Probabilidad(SUV)=0

Elección Binaria Probabilística

Modelo de Utilidad Aleatoria (Random Utility Model - RUM)

$$U_i = V(ext{Atributos de } i; parametros) + \epsilon_i$$

- \bullet ¿Qué hay en la ϵ
 - Atributos no observados
 - 2 Cambios en preferencias no observados
 - Errores de medición

$$U(SUV) = eta_1 \cdot (precio_{SUV}/ingreso) + eta_2(comfort_{SUV}) + \epsilon_{SUV}$$

Elección Binaria Probabilística

Modelo de Utilidad Aleatoria

- Regla de decisión: maximización de utilidad
- El individuo n selecciona la alternativa con el pago más alto de utilidad U_{in} , entre aquéllas en el set de decisión C_n
- Utilidad: $U_{in} = V_{in} + \epsilon_{in}$
- Utilidad: V_{in} es el componente sistemático de utilidad, expresado como una función de k variables observables, e.g. $\sum_k \beta_k x_{ink}$
- ullet ϵ_{in} es el componente aleatorio de la utilidad

Modelo de Utilidad Aleatoria

Probabilidad de Elección

$$egin{aligned} P(i|C_n) &= P(\mathit{U}_{in} \geq \mathit{U}_{jn}), orall j \in \mathit{C}_n \ &= P(\mathit{U}_{in} - \mathit{U}_{jn} \geq 0), orall j \in \mathit{C}_n \ &= P(\mathit{U}_{in}) = \mathit{max}_j \mathit{U}_{jn}, orall j \in \mathit{C}_n \end{aligned}$$

En el caso de elección binaria:

$$P_n(1) = P(U_{1n} \ge U_{2n})$$

= $P(U_{1n} - U_{2n} \ge 0)$ (1)

Ejemplo con Atributos

- Utilidades ordinales
- Las decisiones se construyen a partir de diferencias en las utilidades de las alternativas

$$egin{align} U_1 &= (eta_1 \, q_1 - eta_2 p_1 + \epsilon_1 + lpha) \mu \ & \ U_2 &= (eta_1 \, q_2 - eta_2 p_2 + \epsilon_2 + lpha) \mu \ & \ eta_1, \, eta_2, \, \mu > 0 \ & \ \end{pmatrix}$$

Ejemplo con Atributos

Utilidad Sistemática ($V_i n$)

- Atributos: describen a una alternativa
- Los atributos pueden ser genéricos o específicos por alternativa (ejemplos: kilómetros por litro de gasolina, interiores de piel o tela)

Utilidad Sistemática ($V_i n$)

- Atributos: describen a una alternativa
- Los atributos pueden ser genéricos o específicos por alternativa (ejemplos: kilómetros por litro de gasolina, interiores de piel o tela)
- Características: describen al tomador de la decisión o de la elección
- Las características típicamente son variables socioeconómicas

Fuentes de datos sobre comportamiento de usuarios

- Datos de Preferencias Reveladas
 - Base de datos de clientes o usuarios
 - Encuestas
 - Decisiones observadas de casos concretos

Fuentes de datos sobre comportamiento de usuarios

- Datos de Preferencias Reveladas
 - Base de datos de clientes o usuarios
 - Encuestas
 - Decisiones observadas de casos concretos
- Datos de Preferencias Establecidas
 - Basado en encuestas
 - El entrevistado establece valuaciones a alternativas que se le brindan

Recolección de datos

La recolección de datos para cada individuo en la muestra:

- Set de Decisión: alternativas disponibles
- Características Socio-demográficas
- Atributos de las alternativas disponibles
- Decisión del individuo n sobre la alternativa i

n	Edad	precio_coche	precio_suv	Elección
1	35	15.4	58.2	coche
2	45	14.2	31.0	suv
3	37	19.6	43.6	coche
4	42	50.8	59.9	suv
5	32	55.5	33.8	coche
6	15	N/A	48.4	suv

Estimación por Máxima Verosimilitud

La recolección de datos para cada individuo en la muestra:

• Encuentra los valores de β que es más probable que resulten en las elecciones o decisiones observadas en la muestra:

$$y_n = \left\{ egin{array}{ll} 1 & ext{si el individuo } n ext{ elige la alternativa 1;} \ 0 & ext{si el individuo } n ext{ elige la alternativa 2.} \end{array}
ight.$$

• Poteriormente, maximizamos sobre $\{\beta_1, \beta_2, ..., \beta_K\}$, la siguiente expresión (función de verosimilitud):

$$L(oldsymbol{eta}_1,oldsymbol{eta}_2,...,oldsymbol{eta}_k) = \prod_{n=1}^N {P}_n(1)^{y_n}\cdot {P}_n(2)^{(1-y_n)}$$

- Log-Máxima Verosimilitud: $L(\beta_1, \beta_2, ..., \beta_K)$
- ullet Estimador de máxima verosimilitud: $\hat{eta} = argmax_{eta} L(eta_1,eta_2,...,eta_K)$

Máxima Verosimilitud

- Encontramos los estimadores de β que maximizan el logaritmo de la función de verosimilitud
- La función tiene un valor negativo

Goodness of Fit

- \bullet ρ y $\bar{\rho}^2$ son análogos a la R y R^2
- El índice de máxima verosimilitud ρ^2 mide la fracción de la verosimilitud inicial es explicada por el modelo

$$ho^2=1-rac{L(\hat{oldsymbol{eta}})}{L(0)}$$

• El valor de ρ^2 es entre 0 y 1

Modelo de Utilidad Aleatoria

- Regla de decisión: maximización de utilidad
- El individuo n selecciona la alternativa que le reporta la mayor utilidad U_{in} entre las alternativas en el set C_n
- Utilidad: $U_{in} = V_{in} + \epsilon_{in}$
- El componente sistemático V_{in} de la utilidad se expresa como una función de las variables observables:

$$V_{in} = eta' X_{in} = \sum_{k=1}^K B_k X_{ink}$$

 \bullet ϵ_{in} : componente aleatorio de utilidad

Modelo de Utilidad Aleatoria

Probabilidad de Elección

$$egin{aligned} P(i|C_n) &= P(\mathit{U}_{in} \geq \mathit{U}_{jn}), orall j \in \mathit{C}_n \ &= P(\mathit{U}_{in} - \mathit{U}_{jn} \geq 0), orall j \in \mathit{C}_n \ &= P(\mathit{U}_{in}) = \mathit{max}_j \mathit{U}_{jn}, orall j \in \mathit{C}_n \end{aligned}$$

Para elección binaria:

$$egin{aligned} P_n(1) &= P(\,U_{1\,n} \geq \,U_{2\,n}) \ &= P(\,U_{1\,n} - \,U_{2\,n} \geq 0) \ &= P(\,\epsilon_{2\,n} - \epsilon_{1\,n} \leq \,V_{1\,n} - \,V_{2\,n}) \ &= F_{\epsilon_2 - \epsilon_1}(\,V_{1\,n} - \,V_{2\,n}) \end{aligned}$$

(2)

Distribución de los Términos de Utilidad Aleatoria: Valor Extremo

- Distribución de los errores de valor extremo
- Supuesto: los términos del error son el máximo de muchas variables aleatorias que capturan atributos no observados (e.g. habilidad, estatus de la marca) y también errores de medición
- Teorema de Gumbel: el máximo de muchas variables independientes e idénticamente distribuidas siguen una distribución de valor extremo
- \bullet $\epsilon_{in} \sim EV(0,\mu)$

Distribución de los Términos de Utilidad Aleatoria: Valor Extremo

Asumimos que:

$$\epsilon_1 \sim EV(0,\mu)$$

$$\epsilon_2 \sim EV(0,\mu)$$

• ϵ_1 y ϵ_2 son independientes

Distribución de los Términos de Utilidad Aleatoria: Valor Extremo

Asumimos que:

$$\epsilon_1 \sim EV(0,\mu) \ \epsilon_2 \sim EV(0,\mu)$$

- ϵ_1 y ϵ_2 son independientes
- La porción de utilidad no observada de una alternativa no está relacionada con la porción no observada de la utilidad de otra alternativa
- De esta forma, $\epsilon = \epsilon_1 + \epsilon_2 \sim Logistic(0, \mu)$
- Resultando que:

$$P(1|\{1,2\}) = rac{1}{1 + e^{\mu(V_1 - V_2)}}$$

Tenemos una probabilidad con forma cerrada

Extensión a más de Dos Alternativas

Set de alternativas C_n : J_n alternativas, $J_n \geq 2$

$$P(i|C_n) = P[V_{in} + \epsilon_{in} \ge V_{jn} + \epsilon_{jn}, \forall j \in C_n]$$

= $P[\epsilon_{jn} - \epsilon_{in} \le V_{in} - V_{jn}, \forall j \in C_n]$

(3)

Ejemplo: caso con tres alternativas

$$P_{n}(1) = P(1|C_{n}) = P(U_{1n} + \geq U_{2n} \text{ y } U_{1n} \geq U_{3n})$$

$$= P(V_{1n} + \epsilon_{1n} \geq V_{2n} + \epsilon_{2n} \text{ y } V_{1n} + \epsilon_{1n} \geq V_{3n} + \epsilon_{3n})$$

$$= P(\epsilon_{2n} - \epsilon_{1n} \leq V_{1n} - V_{2n} \text{ y } \epsilon_{3n} - \epsilon_{1n} \leq V_{1n} - V_{3n})$$

$$= F_{\epsilon_{2} - \epsilon_{1}, \epsilon_{3} - \epsilon_{1}}(V_{1n} - V_{2n}, V_{1n} - V_{3n})$$
(4)

Propiedades del Logit

- Independencia de Alternativas Irrelevantes
- El modelo

$$P_n(i|C_n) = rac{e^{\mu V_{in}}}{\sum_{j \in C_n \, e^{\mu V_{jn}}}}$$

ullet El parámetro μ de escala de las utilidades

Independencia de Alternativas Irrelevantes

- Paradoja del autobús rojo y azul
- Elección de modo de transporte

Independencia de Alternativas Irrelevantes

- Solución: estructura de decisión anidada
- Nested Logit

Nested Logit

Figura: Modelo de decisión de un autómovil. Fuente: Pinelopi, Koujianou, Goldberg (1995)