#### Modelagem de Dados

# Modelagem de dados através do modelo entidaderelacionamento

Eduardo Furlan Miranda

Adaptado de: WERLICH, C. *Modelagem de Dados*. Londrina: EDE SA. 2018. ISBN 978-85-522-1154-9.

### Modelo de Entidade-Relacionamentos (MER)

- Desenvolvido para aperfeiçoar o projeto do banco de dados, permitindo a especificação do modelo conceitual
- Modelo mais utilizado pelos Sistemas Gerenciadores de Banco de Dados (SGBDs)
- O modelo lógico é criado a partir do levantamento de requisitos e do modelo conceitual



## Abordagem Relacional

- Princípio: informações em uma base de dados podem ser consideradas como relações matemáticas
- Devem ser representadas em formas de tabelas
- Principais vantagens
  - Independência total dos dados
  - Melhor comunicação entre analistas e usuários comuns
  - Maior agilidade no gerenciamento da informação

## Representação Gráfica na Modelagem Relacional

- É a forma de representação dos componentes do modelo lógico de um banco de dados
- Fundamental para o entendimento e comunicação do esquema do banco de dados
- Notações mais utilizadas: Peter Chen, IDEF1X, James Martin (com o famoso Pé de Galinha), e UML
- Existem diversos softwares para a modelagem da representação gráfica

## Representação Gráfica

MODELO Peter Chen



MODELO James Martin Pé de Galinha

| Cliente |                  |  |
|---------|------------------|--|
| FK      | K Código         |  |
|         | Nome<br>Endereço |  |

## Representação gráfica da tabela Aluno



## Conceitos Fundamentais: Entidade, Tabela e Atributos

- Fundamento do modelo relacional: um conceito matemático conhecido como relação
- No modelo conceitual, um conjunto é chamado de entidade; no modelo lógico, é chamado de tabela
- Cada tabela é definida com um conjunto de atributos, também conhecidos como campos
- Campos: definidos na fase de projeto, possuem uma classificação conforme seu tipo (inteiro, texto, decimal, monetário, lógico, autoincremento)

#### CLIENTE

| CODIGO | NOME   |  |
|--------|--------|--|
| 1234   | CARLOS |  |
| 5678   | JOÃO   |  |
| 9101   | PEDRO  |  |
| 1213   | MARIA  |  |

#### VENDEDOR

| CODIGO | NOME    |
|--------|---------|
| 11     | CARMEM  |
| 12     | DJANIRA |
| 13     | ZECA    |
| 14     | MARIO   |

#### PRODUTO

| cooleo | DESCRICAC |
|--------|-----------|
| 123    | LAPIS     |
| 456    | CANETA    |
| 789    | PAPEL A4  |
| 101    | TESOURA   |
| 123    | BORRACHA  |
| 141    | LIVRO     |

#### CONTÉM

| PEDIDO | PRODUTO | QUANTIDADE |
|--------|---------|------------|
| 100/05 | 123     | 10         |
| 100/05 | 789     | 20         |
| 101/05 | 456     | 30         |
| 102/05 | 456     | 40         |
| 103/05 | 101     | 50         |
| 103/05 | 121     | 60         |
| 103/05 | 141     | 70         |
| 104/05 | 456     | 80         |

#### **PEDIDO**

| NUMERO | DATA     | VENDEDOR | CLIENTE |
|--------|----------|----------|---------|
| 100/05 | 01/01/05 | 12       | 5678    |
| 101/05 | 01/02/05 | 11       | 9101    |
| 102/05 | 01/03/05 | 13       | 1213    |
| 103/05 | 01/04/05 | 14       | 1234    |
| 104/05 | 01/05/05 | 12       | 1213    |

#### Estrutura do Banco de Dados

- Registros: cada linha de uma tabela representa um conjunto de campos
- Uma tabela pode ter milhares de registros, limitados pelo SGBD
- BLOB: tipo de dado que pode armazenar arquivos como fotos, sons, vídeos ou PDF
- Banco de dados: formado por um conjunto de tabelas relacionadas entre si

#### Características das Tabelas

- Estrutura composta de linhas e colunas (bidimensional)
- Cada linha ou registro representa uma única ocorrência da entidade
- Cada coluna da tabela representa um atributo e possui nome diferente dos demais
- Cada intersecção entre linha e coluna representa um único valor
- Todos os valores em uma coluna devem possuir o mesmo formato
- A ordem das colunas e das linhas é insignificante para um SGBD
- Cada tabela deve ter uma chave ou combinação de atributos que identifique exclusivamente cada linha

## Classificação e Relacionamento de Entidades

- Entidade forte: tabela autônoma que não depende de outra para sua existência (ex: Aluno, Cliente)
- Entidade fraca ou dependente: tabela que necessita de outra para existir (ex: Dependente só existe por Funcionário)
- Entidades agregadas: criadas quando campos se repetem em mais de uma entidade (ex: Endereço)
- Entidades subordinadas: representam especializações de uma entidade supertipo (ex: Pessoa Física, Pessoa Jurídica de Cliente)

#### Relacionamentos e Entidades Associativas

- Relacionamento: conexão entre entidades, descreve uma associação entre elas
- Relacionamentos envolvendo tabelas fracas resultam em uma tabela associativa
- Entidades associativas existem somente em razão do tipo de relacionamento entre tabelas
- Nos requisitos, denotam um verbo ou tempo verbal (ex: atender, contratar, prescrever)

#### Grau de Relacionamento ou Cardinalidade

- O número de ocorrências de uma entidade associada a outra determina o grau de relacionamento ou de cardinalidade
- A cardinalidade expressa a faixa de ocorrências permitidas (mínimas e máximas) entre as tabelas
- Graus de relacionamento:
  - Unário (grau 1): uma entidade se relaciona com ela mesma
  - Binário (grau 2): liga dois tipos diferentes de entidades (o mais comum)
  - Ternário (grau 3): três entidades conectadas
  - Quaternário (grau 4): quatro tabelas conectadas
  - N-ário: mais de quatro tabelas envolvidas (menos aconselhável devido à redundância)

## Tipos de Cardinalidade: Auto Relacionamento

Figura 2.13 | Auto relacionamento



| TB_FUNCIONARIO |         |            |         |
|----------------|---------|------------|---------|
| COD_FUN        | NOME    | FUNCAO     | COD_SUP |
| 1              | ADRIANO | SUPERVISOR | null    |
| 2              | TANIA   | VIGILANTE  | 1       |
| 3              | ROBERTO | SUPERVISOR | null    |
| 4              | ANA     | VIGILANTE  | 3       |
| 5              | Rodrigo | VIGILANTE  | 1       |

## Um-para-Um



Figura 2.14 | Um-para-Um



mín. e máx. de ocorrências



Figura 2.15 | Um-para-Muitos



### Tipos de Cardinalidade: Muitos para Muitos (N:N)

## **Relational Database**



#### Relacionamento Ternário

Figura 2.18 | Relacionamento Ternário





## Relacionamento Quaternário



## Relacionamento Errado entre Tabelas Associativas



## Relacionamento de Agregação



## Agregação em Modelos Relacionais

- Entidades e relacionamentos, em alguns casos, podem ser agregados para facilitar a compreensão
- Torna mais claros os graus de relacionamentos ternários ou de maior número