# Indice

| 1 | Introduzione                               |                                               |    |  |  |
|---|--------------------------------------------|-----------------------------------------------|----|--|--|
|   | 1.1                                        | Intro                                         | 2  |  |  |
| 2 | Formule di Logica modale e significato     |                                               |    |  |  |
|   | 2.1                                        | Relazione seriale                             | 3  |  |  |
|   | 2.2                                        | Relazione riflessiva                          | 4  |  |  |
|   | 2.3                                        | Relazione simmetrica                          | 4  |  |  |
|   | 2.4                                        | Relazione Transitiva                          | 5  |  |  |
|   | 2.5                                        | Funzione parziale                             | 6  |  |  |
|   | 2.6                                        | Funzione totale                               | 7  |  |  |
|   | 2.7                                        | Relazione euclidea                            | 7  |  |  |
|   | 2.8                                        | Relazione Debolmente Densa                    | 8  |  |  |
|   | 2.9                                        | Relazione Diretta                             | 9  |  |  |
| 3 | Semantica                                  |                                               |    |  |  |
|   | 3.1                                        | Simboli secessari                             | 12 |  |  |
|   | 3.2                                        | Logiche                                       | 12 |  |  |
| 4 | Verso la decidibilità - Logica determinata |                                               |    |  |  |
|   | 4.1                                        | Insieme $\Lambda$ consistente e sue proprietà | 14 |  |  |
|   | 4.2                                        | Insieme $\Lambda$ consistente massimale       | 15 |  |  |
|   |                                            | 4.2.1 Teorema                                 | 16 |  |  |
|   | 4.3                                        | Lemma di Verità                               | 16 |  |  |
|   | 4.4                                        | Correttezza e completezza della logica K      | 18 |  |  |

## Introduzione

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

# Formule di Logica modale e significato

aè vera nel mondo  $\alpha,$ e scriviamo  $\mu \models_{\alpha} a$  se

- a è una lettera enunciativa allora deve valere  $a \in V(\alpha)$
- a è del tipo:  $a \vee b$  .... allora....  $\mu \models_{\alpha} a$  oppure  $\mu \models_{\alpha} b$

## 2.1 Relazione seriale

Ip) Frame F con relazione R seriale

Ts) 
$$\Box a \implies \diamond a$$

Dimostrazione:

Se non vale:  $\mu \models_{\alpha} \Box a$  allora immediatemente si ha la tesi in quanto l'antecedente è falso.

Se inv<br/>ce:  $\mu \models_{\alpha} \Box a$  allora

 $\forall \beta : \alpha R \beta \implies \mu \models_{\beta} a \text{ per definizione di box,}$ 

inoltre dato che R seriale per Ip si ha anche che  $\exists \beta : (\alpha, \beta) \in R$ 

da cui:  $\mu \models_{\alpha} \diamond a$  per definizione di diamond (esiste  $\beta$  in relazione con  $\alpha$  per la serialità e in  $\alpha$  vale a dato che  $\mu \models_{\alpha} \Box a$ )

- Ip)  $\Box a \implies \diamond a$
- Ts) Frame F con relazione R seriale



Per assurdo:

Suppongo di trovarmi in un mondo come quello in figura (wow) in cui  $\mu \models_{\alpha} \Box a$ , e suppongo che la relazione R del frame NON sia seriale cioè  $\sim \exists \beta : (\alpha R \beta)$ , se è così vale sicuramente  $\mu \models_{a} \Box a$  (dato che  $\alpha$  non ha successori), d'altra parte per come è il mondo considerato, cioè si nega la tesi, assurdo-

## 2.2 Relazione riflessiva

Ip) R riflessiva

Ts) 
$$\Box a \implies a$$

se l'antecedente è falso il teorema è dimostrato, consideriamo il caso in cui l'antecedente è vero:

$$\mu \models_{\alpha} \Box a$$

poichè il frame è riflessivo, abbiamo  $\alpha R\alpha$ , e quindi varrà:

$$\mu \models_{\alpha} a$$

e la tesi è dimostrata.



Ip) 
$$\Box a \implies a$$

Ts) R è riflessiva

Supponiamo per assurdo che R non sia riflessiva, allora prendiamo uno stato  $\alpha$  tale che  $\nexists \beta$ :  $\alpha R \beta$ . Allora si avrà che:

$$\mu \models_{\alpha} \Box a \land \mu \nvDash_{\alpha} a$$

che è assurdo perchè contraddice la tesi. La tesi allora è valida.



## 2.3 Relazione simmetrica

Ip) R simmetrica

Ts) 
$$a \Longrightarrow \Box \diamond a$$

Suppongo che  $\mu \models_{\alpha} a$  (se no avrei già la tesi), due casi:

Caso 1: Da  $\alpha$  non parte nessun arco, allora sicuramente  $\mu \models_{\alpha} \Box x$  con x qualsiasi e in particolare  $\mu \models_{\alpha} \Box \diamond a$ 

 $\alpha$ 

Caso 2: Esiste almeno un  $\beta$  tale che  $\alpha R\beta$ .



Dato che la relazione è simmetrica se  $\alpha R\beta$  allora  $\beta R\alpha$ . Dato che  $\mu \models_{\alpha} a$ , in ognuno di questi  $\beta$ ,  $\beta'$ , $\beta''$  ecc. vale  $\diamond a$  perché ognuno di loro è in relazione con  $\alpha$ .

Allora per ognuno di questi  $\beta$  si ha  $\mu \models_{\beta} \diamond a$ , (esiste infatti un mondo,  $\alpha$ , in cui vale a) da cui:  $\mu \models_{\alpha} \Box \diamond a$ 

Ip) 
$$a \implies \Box \diamond a$$

Ts) R simmetrica

Per assurdo:

suppongo R non sia simmetrica e considero un frame con soli  $\alpha$  e  $\beta$  e in cui  $R = \{(\alpha, \beta)\}$ . In questo frame considero un modello con funzione di verità tale che:  $V(A) = \{\alpha\}$ . In  $\beta$  non vale  $\diamond a$  perché  $\beta$  non è in relazione con nessun mondo, per questo:  $\mu \nvDash_{\alpha} \Box \diamond a$ 



## 2.4 Relazione Transitiva

Ip) R relazione transitiva

Ts) 
$$\Box a \implies \Box \Box a$$

Se  $\mu \nvDash_{\alpha} \Box a$  la tesi è dimostrata, consideriamo allora il caso in cui  $\mu \models_{\alpha} \Box a$  per ipotesi:

$$\exists \beta \,:\, (\alpha,\beta) \,\in R\, (\beta,\gamma) \,\in R$$

allora abbiamo che:

$$(\alpha, \gamma) \in R$$

$$\mu \models_{\gamma} a$$

e quindi varrà ovviamente che:

$$\mu \models_{\beta} a$$

da cui segue:

$$\mu\models_{\alpha}\Box\Box a$$

e la tesi è dimostrata.



Ip) 
$$\Box a \implies \Box \Box a$$

Ts) R relazione transitiva

supponiamo per assurdo che esista uno stato $\alpha$  per cui non vale la proprietà transitiva consideriamo il caso in cui valga la seguente funzione di valutazione:

$$V(a) = \{ S \, | \, (\alpha, \delta) \in R \}$$

Allora a sarà vera in  $\beta$ , ma non in  $\gamma$ . per cui in  $\alpha$  sarà vera  $\Box a$  ma non  $\Box \Box a$ 



## 2.5 Funzione parziale

Funzione parziale, dimostrazione

Ip) funzione parziale

Ts) 
$$\diamond a \implies \Box a$$

.

| $\diamond a$ falsa allora dato che l'antecedente è falso di ha $\diamond a \implies \Box a$                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| $\diamond a$ vera allora $\exists \beta : \alpha R \beta$ e $\in V(\beta)$ , ma dato che la funzione è parziale questo $\beta$ è unico! |
| da cui $\mu \models \diamond a \implies \Box a$                                                                                         |
|                                                                                                                                         |
|                                                                                                                                         |
| $Ip) \diamond a \implies \Box a$                                                                                                        |
| Ts) funzione parziale                                                                                                                   |
|                                                                                                                                         |
|                                                                                                                                         |
| Per assurdo: suppongo non che la funzione non sia parziale. Se è così $\exists \alpha : \alpha R\beta, \alpha R\gamma$ ,                |
| considero un modello in cui $V(A) = \{\beta\}$ , $\Box A$ non vale in $\alpha$ dato che A è falsa in $\gamma$ , il                      |
| che contraddice l'ipotesi (BAM!)                                                                                                        |

## 2.6 Funzione totale



## 2.7 Relazione euclidea

Ts)  $\diamond a \implies \Box \diamond a$ 



Suppongo sia vero l'antecedente (se falso ho finito), quindi vale:  $\diamond a$  da cui:  $\mu \models \diamond a$  dato che  $\diamond a$  si ha che esiste almeno un  $\beta$  tale che in beta vale a solo un beta: autoanello perché euclidea e quindi  $\Box \diamond a$  diversi beta: ognuno dei vari  $\beta'$ ,  $\beta''$ , ecc. sono in relazione con  $\beta$ , dato che la relazione è euclidea, pertanto dato che in  $\beta$  vale a, in ognuno di loro vale  $\diamond a$ 



 $\operatorname{Ip}) \diamond a \implies \Box \diamond a$ 

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui:  $\alpha R\beta$ ,  $\alpha R\gamma$ ,  $\beta R\gamma$  ma NON  $\beta R\gamma$  cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che  $V(A) = \{\gamma\}$ 

In queste ipotesi vale  $\diamond a$  dato che in  $\gamma$  vale a. In  $\beta$  non vale a e neppure  $\diamond a$  perché non ha "uscite", da cui in a non vale  $\square \diamond a$  contraddicendo così l'ipotesi (BAM!)

## 2.8 Relazione Debolmente Densa

| $\diamond a \implies \diamond \diamond a$ relazione debo | olmente densa $\forall \alpha, \beta$ | $: (\alpha R\beta) \implies$ | $\exists \gamma:$ | $(\alpha R \gamma \wedge \gamma)$ | $R\beta$ |
|----------------------------------------------------------|---------------------------------------|------------------------------|-------------------|-----------------------------------|----------|
|----------------------------------------------------------|---------------------------------------|------------------------------|-------------------|-----------------------------------|----------|

Ip) R debolmente densa

Ts) 
$$\diamond a \implies \diamond \diamond a$$

supponiamo che sia vero l'antecedente (se è falso la tesi è dimostrata) avremo quindi:

$$\mu \models_{\alpha} \diamond a$$

allora segue che:

$$\exists \beta : \mu \models_{\beta} a$$

ma poichè la relazione è debolmente densa, si avrà che:

$$\exists \gamma : (\alpha R \gamma \wedge \gamma R \beta)$$

poichè in  $\beta$  è vera a, allora segue:

$$\mu \models_{\gamma} \diamond a$$

da cui segue:

$$\mu \models_{\alpha} \diamond \diamond a$$

e la tesi è dimostrata.



$$Ip) \diamond a \implies \diamond \diamond a$$

### Ts) R debolmente densa

Supponiamo per assurdo che R non sia debolmente densa.

Supponiamo allora che esista uno stato  $\beta$ pozzo e  $\alpha R\beta$  in cui sia vera a segue che:

$$\mu \models_{\alpha} \diamond a$$

ma avremo anche che:

$$\mu \nvDash_{\beta} \diamond a$$

e allora otteniamo:

$$\mu \nvDash_{\alpha} \diamond \diamond a$$

che è assurdo perchè contraddice l'ipotesi, e quindi la tesi è dimostrata.



## 2.9 Relazione Diretta

$$\diamond \Box a \implies \Box \diamond a \mid \text{relazione diretta} \mid \forall \alpha, \beta, \gamma : (\alpha R \beta \land \alpha R \gamma) \implies \exists \delta : (\beta R \delta \land \gamma R \delta)$$

Ip) R è diretta

Ts) 
$$\Diamond \Box a \implies \Box \Diamond a$$

Se l'antecedente è falso, il teorema è dimostrato. poniamoci quindi nel caso:

$$\mu \models_{\alpha} \diamond \Box a$$

avremo allora che:

$$\exists \beta : \alpha R \beta \wedge \mu \models_{\beta} \Box a$$

allora necessariamente si avrà che:

 $\exists \delta : \beta R \delta \wedge \mu \models_{\delta} a$  allora si avrà che:

 $\mu \models_{\beta} \diamond a$ 

prendiamo ora un qualsiasi mondo $\gamma$  tale che  $\alpha R \gamma$ , poichè la relazione è diretta si avrà  $\gamma R \delta$ , e quindi:

$$\mu \models_{\gamma} \diamond a$$

e allora possiamo osservare che vale:

$$\mu \models_{\alpha} \Box \diamond a$$

e la tesi è dimostrata



$$Ip) \diamond \Box a \implies \Box \diamond a$$

Ts) R è diretta

Supponiamo per assurdo R non diretta.

Consideriamo la funzione di valutazione:

$$V(a) = \{\delta | \beta R \delta\}$$

supponiamo che:

$$\exists \alpha: \, \alpha R\beta \wedge \mu \models_{\alpha} \diamond \Box a$$

allora si avrà:

$$\mu \models_{\beta} \Box a$$

Prendiamo ora un qualsiasi mondo  $\gamma$  tale che  $\alpha R \gamma$ , e supponiamo che:

$$\nexists \eta : \gamma R \eta$$

Si avrà dunque che

$$\mu \nvDash_{\gamma} \diamond a$$

allora avremo che:

$$\mu \nvDash_{\alpha} \Box \diamond a$$

che è assurdo, perchè contraddice la tesi. La tesi è allora valida.



## Semantica

#### 3.1 Simboli secessari

 $a \vdash b$ cioè a è conseguenza semantica di b<br/>, se in ogni Frame, Modello e Mondo in cui  $\mu \models b$ si ha anche<br/>  $\mu \models a$ 

Vale anche da destra a sinistra, dimostrazione simile.

## 3.2 Logiche

Una logica  $\Lambda$  su L è un insieme di fbf su L che:

- contiene tutte le tautologie
- è chiusa rispetto al Modus Ponens

Ad esempio;  $PL(\phi)$  cioè i teoremi della logica proposizionale Altro esempio  $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$  infatti:

• contiene tutte le tautologie perché sono vere mondo per mondo dappertutto

• MP : suppongo che in un mondo  $\alpha$  accada che:  $\mu \nvDash_{\alpha} b$ ,  $\mu \models_{\alpha} a$ . Se vale anche  $\mu \models_{\alpha} a \implies b$  ... l'antecedente è vero, quindi dato che l'implicazione è vera, deve essere vero anche il conseguente da cui non può che essere  $\mu \models_{\alpha} b$ 

Una logica si dice **uniforme** se è chiusa rispetto a sostituzioni uniformi cioè se sostituendo a una lettere uguali formule uguali in una tautologia, ottengo una tautologia.

Es.  $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$  NON è uniforme infatti se considero V(A) = S, dove S sono tutti gli stati possibili (mondi), vale anche  $\mu \models_{\alpha} A$ , e cioè A è una tautologia, se al posto di A sostituisco  $B \land \neg B$  (falsa in ogni modello e mondo) non ottengo una tautologia.

### Teorema

Sono equivalenti:

- 1.  $\Lambda$  è normale
- 2. per ogni intero  $n \ge 0$ ,  $\vdash_{\Lambda} a1 \land a2 \land ... \land an \implies a \text{ implica} \vdash_{\Lambda} \Box a1 \land \Box a2 \land ... \land \Box an \implies \Box a$
- 3. valgono:
  - (a)  $\vdash_{\Lambda} \Box T$
  - (b)  $\vdash_{\Lambda} \Box a \land \Box b \implies \Box (a \land b)$
  - (c)  $\vdash_{\Lambda} a \implies b \text{ implica} \vdash_{\Lambda} \Box a \implies \Box b$

Dimostrazione

$$1 \implies 2$$

per induzione.

se n = 0 allora  $\vdash_{\Lambda} a$  allora  $\vdash_{\Lambda} \Box a$  per la regola RN che vale in  $\Lambda$  per ipotesi se n > 0 (passo induttivo) suppongo valga l'antecedente, altrimenti 2 vale senz'altro; si può dimostrare quindi nel seguente modo:

$$\vdash_{\Lambda} a_1 \land a_2 \land ... \land a_n n \implies a$$

$$\vdash_{\Lambda} a_1 \land a_2 \land ... \land a_{n-1} \implies (a_n \implies a)$$

$$\vdash_{\Lambda} \Box a_1 \land \Box a_2 \land ... \land \Box a_{n-1} \implies \Box (a_n \implies a)$$
 – per ipotesi di induzione

$$\vdash_{\Lambda} \Box a_1 \land \Box a_2 \land ... \land \Box a_{n-1} \implies (\Box a_n \implies \Box a) - \text{per K}$$

$$\vdash_{\Lambda} \Box a_1 \wedge \Box a_2 \wedge \dots \wedge \Box a_{n-1} \wedge \Box a_n \implies \Box a$$

E la tesi è dimostrata.

$$2 \Longrightarrow 1$$

$$\vdash_{\Lambda} (a \land (a \implies b)) \implies b - \text{per MP}$$

$$\vdash_{\Lambda} (\Box a \land \Box (a \implies b)) \implies \Box b$$
 – per enunciato 2

$$\vdash_{\Lambda} \Box (a \implies b) \implies \Box a \implies \Box b$$
 – che è K

Abbiamo ricavato usando solo il modus ponens e l'enunciato 2, l'assioma K. segue quindi la tesi.

$$1 \Longrightarrow 3$$

```
\vdash_{\Lambda} \top
\vdash_{\Lambda} \Box \top- per RN
\vdash_{\Lambda} a \land b \implies a \land b – per tautologia (a \implies a)
\vdash_{\Lambda} \Box a \land \Box b \implies \Box (a \land b) – per proposizione 2
\vdash_{\Lambda} a \implies b – per ipotesi
\vdash_{\Lambda} \Box (a \implies b) - \text{per RN}
\vdash_{\Lambda} \Box (a \implies b) \implies (\Box a \implies \Box b) - \operatorname{per} K
\vdash_{\Lambda} \Box a \implies \Box b - \text{per MP}
La tesi allora è verificata.
3 \Longrightarrow 1
dimostriamo due tesi: che la 3 è chiusa rispetto alla necessitazione e che implica l'assioma
\vdash_{\Lambda} a
\vdash_{\Lambda} a \implies (\top \implies a) - \text{per A1}
\vdash_{\Lambda} \top \implies a - \text{per MP}
\vdash_{\Lambda} \Box \top \implies \Box a - \text{per } 3.c
\vdash_{\Lambda} \Box a – per 3.a e MP
abbiamo così dimostrato la chiusura secondo la necessitazione.
\vdash_{\Lambda} a \land b \implies c
\vdash_{\Lambda} \Box (a \land b) \implies \Box c - \text{per } 3.c
\vdash_{\Lambda} \Box a \wedge \Box b \implies \Box (a \wedge b) - \text{per } 3.b
\vdash_{\Lambda} \Box a \land \Box b \implies \Box c – per la combinazione delle due implicazioni precedenti
\vdash_{\Lambda} a \land (a \implies b) \implies b – per tautologia
\vdash_{\Lambda} \Box a \land \Box (a \implies b) \implies \Box b – per applicazione dello schema \Box a \land \Box b \implies \Box c
dimostrato precedentemente
\vdash_{\Lambda} \Box (a \implies b) \implies (\Box a \implies \Box b)
e così è dimostrato che K è implicato da 3. Il teorema dunque è dimostrato.
```

# Verso la decidibilità - Logica determinata

## 4.1 Insieme $\Lambda$ consistente e sue proprietà

Sia  $\Lambda$  una logica (cioè ha tutte le tautologie ed è chiusa rispetto al Modus Ponens)  $\Gamma$  si dice  $\Lambda$ -consistente se:  $\Gamma \nvdash_{\Lambda} \bot$ , dove  $\bot = A \land \neg A$   $\Delta$  si dice  $\Lambda$ -consistente massimale se per ogni fbf  $a \ a \in \Delta$  oppure  $\neg a \in \Delta$ 

### Proprietà:

- 1. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Gamma \subseteq \Delta$  allora  $\Delta \vdash_{\Lambda} a$ . Ovvero se alcune premesse non mi servono posso comunque metterle per dedurre una formula
- 2. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Lambda \subseteq \Lambda'$  allora  $\Gamma \vdash_{\Lambda'} a$ . Ovvero quello che posso dedurre in una logica più scarna (es. PL) lo posso dedurre anche in una più ricca che la contien (es. Modale)
- 3. se  $a\in\Gamma$  allora  $\Gamma\vdash_\Lambda a$  . Infatti  $\vdash_\Lambda a\implies a$  è un teorema dato che  $a\implies a$  è una tautologia
- 4.  $\{a|\Gamma \vdash_{\Lambda} a\}$  è la minima logica che contiene  $\Gamma \cup \Lambda$ . Infatti posso dedurre tutte le tautologie da  $\Gamma$ , anche se non userò nessuna formula di  $\Gamma$  ma solo quelle che già sono nella logica  $\Lambda$
- 5. Se  $\Gamma \vdash_{\Lambda} a$  e  $\{a\} \vdash_{\Lambda} b$  allora  $\Gamma \vdash_{\Lambda} b$ Infatti: per dedurre a uso regole di inferenza, formule di  $\Gamma$ , assiomi di  $\Lambda$ . Per arrivare in b uso assiomi di  $\Lambda$  e regole di inferenza, quindi posso arrivare da  $\Gamma$  direttamente in b usando formule di  $\Gamma$ , regole di inf. e assiomi di  $\Lambda$
- 6. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Gamma \vdash_{\Lambda} a \implies b$  allora  $\Gamma \vdash_{\Lambda} b$ , dato che  $\Lambda$  è chiusa rispetto al MP
- 7.  $\Gamma \cup \{a\} \vdash_{\Lambda} b$  se e solo se  $\Gamma \vdash_{\Lambda} a \Longrightarrow b$ **Andata**:  $\vdash_{\Lambda} a_1 \land ... \land a \land ... \land a_n \Longrightarrow b$  (per definizione di teorema), si può portare

a alla destra dell'implicazione  $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$ **Ritorno**:  $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$ , basta portare a tra le and.

8.  $\Gamma \vdash_{\Lambda} a$  se e solo se  $\Gamma \cup \{\neg a\}$  non è  $\Lambda$ -consistente

**Andata**:  $\Gamma \vdash_{\Lambda} a$ ,  $\Gamma \vdash_{\Lambda} \neg a$ , posso dedure  $\bot$  che è contro la definizione di  $\Lambda$ -consistenza

**Ritorno**: Se $\Gamma \cup \{ \neg a \}$  non è  $\Lambda$ -consistente, allora  $\Gamma \cup \{ \neg a \} \vdash_{\Lambda} \bot$  da cui per 7.  $\Gamma \vdash_{\Lambda} \neg a \implies \bot$  (sposto  $\neg a$  a destra e metto l'implica), Dato che  $(\neg a \implies \bot) \implies a$  è una tatutologica, per MP ottengo

9.  $\Gamma \stackrel{.}{e} \Lambda - consistente$  se e solo se  $\exists \beta : \Gamma \nvdash_{\Lambda} \beta$ 

**Andata**: Basta prendere  $\neg a \land a$ 

**Ritorno**: Se deducessi tutte le formule  $(\neg \exists \beta : \Gamma \nvdash_{\Lambda} \beta \text{ significa } \forall \beta : \Gamma \vdash_{\Lambda} \beta)$ , potrei dedurre anche  $\bot$ , da cui la non consistenza

10.  $\Gamma$  è  $\Lambda$  – consistente se per ogni a

 $\Gamma \cup \{a\} \circ \Gamma \cup \{\neg a\} \ \text{è } \Lambda - consistente$ 

se  $\Gamma \vdash_{\Lambda} a$  allora  $\Gamma \cup \{ \neg a \}$  non è consistente perché con a e  $\neg a$  posso dedurre  $\bot$ , ma  $\Gamma \cup \{ a \}$  lo è

se  $\Gamma \vdash_{\Lambda} \neg a$  allora  $\Gamma \cup \{\neg a\}$  è consistente ma non  $\Gamma \cup \{a\}$ 

- 11.  $\perp \notin \Gamma$  se  $\Gamma$  è  $\Lambda$  consistente (altrimenti potrei dedurlo per il 3.)
- 12. Se  $\Delta \grave{e} \Lambda consistente massimale e \Delta \vdash_{\Lambda} a$  allora  $a \in \Delta$  se  $a \notin \Delta$  allora  $\neg a \in \Delta$  (dato che  $\Delta \grave{e}$  massimale) ma se  $\Delta$  contiene  $\neg a$  allora per il 2.)  $\Delta \vdash_{\Lambda} \neg a$ , che insieme a  $\Delta \vdash_{\Lambda} a$  mi da  $\Delta \vdash_{\Lambda} \bot$
- 13. Se  $\Delta$  è  $\Lambda$  consistente massimale e  $a \in \Delta$ .  $a \implies b \in \Delta$  allora  $b \in \Delta$ . Lo si vede subito usando 2.) se tutti e tre, e poi 6.) (deduco  $a, a \implies b$ , allora deduco anche b)

## 4.2 Insieme $\Lambda$ consistente massimale

Lemma di Lindelman - Esistenza dell'insieme  $\Lambda$  - consistente massimale in una logica  $\Lambda$  consistente

Considero tutte le formule  $b1, b2, b3, \ldots$  della logica  $\Lambda$  (posso farlo perché sono un'infinità numerabile)

Chiamo  $\Gamma_0$  un insieme che contiene una sola formula (ad esempio una tautologia) Dopodichè iterativamente, per ogni formula mi chiedo

$$\Gamma_0 \vdash_{\Lambda} b1 ? \begin{cases} si: & \Gamma_1 = \Gamma_0 \cup b1 \\ no: & \Gamma_1 = \Gamma_0 \cup \neg b1 \end{cases}$$
$$\Gamma_1 \vdash_{\Lambda} b2 ? \begin{cases} si: & \Gamma_2 = \Gamma_1 \cup b2 \\ no: & \Gamma_2 = \Gamma_1 \cup \neg b2 \end{cases}$$

 $\Delta = \bigcup_{n \geq 0} \Gamma_i \ \ (\text{nota, questa unione è infinita})$ 

 $\Delta$  è consistente massimale infatti:

- 1. Massimale in quanto contiene a oppure  $\neg a$  per costruzione
- 2. Consistente. Per assurdo se non lo fosse avrei:  $\Delta \vdash_{\Lambda} \bot$  cioè esiste un numero finito di formule di  $\Delta$  da cui deduco il falso, dato che è un numero finito di formule, sta in  $\Gamma_i$ , cioè esiste un  $\Gamma_i$  non consistente, assurdo perché lo sono tutti per costruzione 4

Nota:

- $\bullet$  Non sappiamo costruire  $\Delta$  perché nasce da unione infinita
- Non è unico, infatti se considero formule in ordine diverse potrei "dire" si o no in modo diverso

```
es. a, a \implies b, b \text{ (allora } \Delta \text{ contiene } b)
es. b, c \text{ (allora } \Delta \text{ contiene } \neg b)
```

#### 4.2.1 Teorema

 $\Gamma \vdash_{\Lambda} a$  se e solo se  $a \in a$  tutti i quei  $\Delta \Lambda - consistenti massimali tali che: <math>\Gamma \subseteq \Delta$ 

#### Andata:

 $\Gamma \vdash_{\Lambda} a$ , anche  $\Delta \vdash_{\Lambda} a$  per la 1.)

### Ritorno:

Per assurdo, se  $\Gamma \nvdash_{\Lambda} a$  allora  $\Gamma \cup \{\neg a\}$  è  $\Lambda - consistente$  (per la 8.) da cui per Lindellman esiste  $\Delta'$  che contiene  $\Gamma \cup \{\neg a\}$  consistente massimale data la consistenza  $\Delta'$  non contiene a, il che è contro l'ipotesi a

## 4.3 Lemma di Verità

Sia  $M^{\Lambda}(S^{\Lambda}, R^{\Lambda}, V^{\Lambda})$  il modello canonico di  $\Lambda$   $M^{\Lambda} \models_{\alpha} a$  se e solo se  $a \in \alpha$ 

Ip) 
$$M^{\Lambda} \models_{\alpha} a$$
  
TS)  $a \in \alpha$ 

Dimostrazione per **induzione** sul numero n dei connettivi della formula a

 $\boxed{\mathbf{n}=0}$  cioè a è del tipo A (lettera enunciativa) da cui  $M^{\Lambda}\models_{\alpha} a$  se e solo se  $\alpha\in V^{\Lambda}(A)$  se e solo se  $A\in\alpha$ 

[Ipotesi di Induzione] a con n connettivi, può essere dei seguenti tipi:

- $1. \neg b$
- $2. b \implies c$
- 3.  $\Box b$

Caso 1:  $M^{\Lambda} \models_{\alpha} a$  se e solo se  $M^{\Lambda} \models_{\alpha} \neg b$  se e solo se  $M^{\Lambda} \nvDash_{\alpha} b$ 

b ha n-1 connettivi (dato che b) ne ha n, quindi vale l'ipotesi di induzione da cui:  $b \notin \alpha$ , d'altra parte  $\alpha$  è  $\Lambda$  – consistente massimale (per come è definito  $S^{\Lambda}$ ) da cui:  $b \notin \alpha$  se e solo se  $\neg b \in \alpha$  cioè se:

 $a \in \alpha$ 

Caso2:  $M^{\Lambda} \models_{\alpha} a$  se e solo se

Caso 21:  $M^{\Lambda} \nvDash_{\alpha} b$ Caso 22:  $M^{\Lambda} \models_{\alpha} c$ 

Caso 21:  $M^{\Lambda} \nvDash_{\alpha} b$ 

Il numero di connettivi di b e di c sommati dà n-1 quindi per ipotesi induttiva  $M^{\Lambda} \nvDash_{\alpha} b$  se e solo se  $b \notin \alpha$  se e solo se  $\neg b \in \alpha$  (per la compattezza max di  $\Lambda$ ) (\*)

D'altra parte  $\neg b \implies (b \implies c)$  è una tautologi della PL e quindi è un teorema di  $\Lambda$  (perché un logica contiene tutte le tautologie)

e quindi  $\neg b \implies (b \implies c) \in \alpha$  (\*\*)

da cui per MP con (\*) e (\*\*) si ha che  $b \implies c$  appartiene ad  $\alpha$ 

Caso 22:  $M^{\Lambda} \models_{\alpha} c$ 

Vale l'ipotesi di induzione da cui:

quindi per ipotesi induttiva  $M^{\Lambda} \models_{\alpha} c$  se e solo se  $c \in \alpha$  (\*)

D'altra parte  $c \implies (b \implies c)$  è una tautologi della PL e quindi è un teorema di  $\Lambda$  (perché un logica contiene tutte le tautologie)

e quindi  $c \implies (b \implies c) \in \alpha$  (\*\*)

MP (\*) e (\*\*) ci dà  $b \implies c$  appartiene ad  $\alpha$ 

Caso 3:  $a \in del tipo \square b$ 

 $\operatorname{Ip})M^{\Lambda} \models_{\alpha} \Box b$ 

 $Ts)\Box b \in \alpha$ 

Dall'ipotesi segue che  $\forall \beta : (\alpha, \beta) \in R^{\Lambda}$  si ha:  $M^{\Lambda} \models_{\beta} b$  (questo per la definizione di  $\Box a$ )

b ha n-1 connettivi quindi vale per lei l'ipotesi di induzione:  $b \in \beta$ 

$$(\alpha, \beta) \in R^{\Lambda} \text{ se e solo se: } \{a \mid \Box a \in \alpha\} \subseteq \beta$$
$$\alpha \in V^{\Lambda}(A) \text{ se e solo se: } A \in \alpha$$

Ognuno dei  $\beta$  con cui  $\alpha$  è in relazione è  $\Lambda$  – consistente massimale e ognuno contiene l'insieme  $\{a \mid \Box a \in \alpha\}$ 

 $\Gamma \vdash_{\Lambda} a$  se e solo se a appartiene a tutti i  $\Delta_i \Lambda - consistente massimale$  con  $\Gamma \subseteq \Delta_i$   $\beta \vdash_{\Lambda} b$  se e solo se b appartiene a tutti i  $\Delta_i \Lambda - consistente massimale$  con  $\beta \subseteq \Delta_i$ 

 $\{a \mid \Box a \in \alpha\}$  è consistente massimale (davvero??) e quindi  $\{a \mid \Box a \in \alpha\} \vdash_{\Lambda} b$ , per la 2. definizione equivalente di Logica Normale "aggiungo  $\Box$  ad entrambi i lati" da cui:

 $\{\Box a \mid \Box a \in \alpha\} \vdash_{\Lambda} b$ 

Ma  $\{\Box a \mid \Box a \in \alpha\}$  è un sottoinsieme di formule di  $\alpha$  quindi a maggior ragione ricavo b da tutto  $\alpha$  da cui:

 $\alpha \vdash_{\Lambda} b$ 

Ip)  $\Box b \in \alpha$ 

TS)  $M^{\Lambda} \models_{\alpha} \Box b$ 

Se  $\Box b \in \alpha$  per definizione di  $R^{\Lambda}$  per ogni mondo  $\beta$  con  $(\alpha, \beta) \in R^{\Lambda}$  si ha  $b \in \beta$ 

Notiamo che b ha n-1 connettivi, quindi vale l'ipotesi di induzione e quindi:

 $b \in \beta$  se e solo se  $M^{\Lambda} \models_{\beta} b$ 

Dato che questo vale per ogni  $\beta$  in relazione con  $\alpha$ , si ha:  $M^{\Lambda} \models_{\alpha} \Box b$ 

## 4.4 Correttezza e completezza della logica K

Dimostriamo che la logica K (minima logica modale normale) è corretta e completa

Ip)  $\Gamma \vdash_{\Lambda} a$ 

 $Ts)F \models a$ 

Nella logica K, dato che è una logica, valgono A1, A2, A3