

NATIONAL UNIVERSITY

OF COMPUTER & EMERGING SCIENCES LAHORE

Course Name & Section Object Oriented Brognamming Date 25-3-24

Student's Name Fahrem Sarwar Roll No. 231-3010 Signature Will

	Quiz B // for Methods defined in thin
	class Complex Numberlinnay & Brivate: double * real: double * imaginary: int size:
0	double * imaginary; int size; statio int total Count;
	Public:
2~	Complex Number Annay () { neal = Osmullptn - imaginary = Osmullptn; Size = Aul ;
	7 Total Count ++;
3)	Complex Number knowy (double * n = multiples, double * = multiples, int s = 0) { int s = 0) { int .
	imaginary = i size = s - total count ++ -
W~	double * getneal () { neturn this-> neal;
	double getinginary () { neturn this -> imagionary;
	neturn this - size;
	static int get totalcount ?

Rough Q / Part No. Work ~ Complex Number Annay () { diffete [] newlo delete [] imaginary; this real men int double [that size];
this simagining = new double [that size];
for (int is o : ic this size; i++) { for (inti-8: ic that size; it+) this - near [i] = the Ponear[i] this - singinam Ei] = that imaginary [i]; } this - size = that - size ; total count ++; Complex Number Annag perator = (Const (outlex Number a that) this - imaginary = that maginary of this - size = that size; total Count ++; Complex Number Annay derates + = (Const conflex Number Brisay & a) 8 the Colplex Dunker Astrony K; if (this - size 1 = \$a-size) {

conticemen, constaded, size not come "xcendly,

Complex Number typing & A; Conflex Number Array A. Size = #cl. size; for (intied; i esige; it) &

for (intied; i esige; it) &

this properties this related to the this > Asimaginary [it = this simaginary [i) + Crimaginary [i] total count ++ > neton A;