Introduction to Machine Learning - Challenge 2

Autore: Bredariol Francesco

Data di consegna: April 16, 2025

1 Introduzione

In questa challenge si testeranno come alcuni metodi di regressione e di clustering classici migliorino una volta kernelizzati. I metodi presi in considerazione saranno Ridge Regression e Pca. I dataset sono generati sinteticamente tramite funzioni ad hoc.

2 Kernel Ridge Regression

Questa parte è dedicata alla Ridge Regression ed alla sua controparte kernelizzata.

2.1 Dataset

Il dataset è generato dalla seguente funzione:

$$\epsilon \sim N(0,1) \tag{1}$$

$$y = (x+4)(x+1)(\cos(x) - 1)(x-e) + \epsilon$$
 (2)

Che visualmente risulta essere:

Figure 1: Visualizzazione di 2 nell'intervallo [-5, 5].

2.2 Ridge vs Kernel Ridge

I risultati della semplice Ridge regression lasciano a desiderare, come d'altronde ci si poteva aspettare dal momento in cui il dataset è fortemente non lineare. La Kernel Ridge regression funziona molto bene usando il kernel gaussiano, come pure con il kernel polinomiale di grado sufficientemente alto.

Figure 2: Migliori risultati ottenuti (in termini di RMSE) da vari metodi di Ridge Regression. Panel SX: Ridge Regression; Panel Centrale: Rbf Kernel Ridge Regression gamma = 1; Panel DX: Polynomial Kernel Ridge Regression degree = 9. Nei vari plot in blu è rappresentata la ground truth mentre in rosso la previsione ottenuta usando il relativo metodo di regressione. Si può decisamente notare come i metodi kernelizzati abbiano praticamente approssimato perfettamente la funzione target.

Le esplorazioni in termini di parametri sono state eseguite tramite Grid Search, ed i risultati più rilevanti ottenuti sono i seguenti:

Kernel	Degree	Gamma	Alpha	RMSE	\mathbb{R}^2
None	1	-	1	26.761	0.18
Rbf	_	1	1	0.220	0.99
Poly	9	-	1	0.376	0.99

3 Kernel PCA

3.1 Dataset

Due diversi tipi di dataset sono stati testati. Il primo è generato tramite la funzione "make_circles" di sklearn, il secondo tramite la funzione "make_classification" di sklearn. Queste funzioni permettono di scegliere a priori la dimensionalità dei dati. Per una intuizione geometrica mostreremo dei dati in dimensione 2. Tuttavia nell'esercitazione PCA e Kernel PCA sono state utilizzate su dataset ad alta dimensionalità (d = 10+).

Figure 3: Visualizzazione 2 dimensionale dei dati di training. Panel SX : dati ottenuti dalla funzione make_circles; Panel DX : dati ottenuti dalla funzione make_classification. Si noti bene che questo è solo un esempio utile a comprendere intuitivamente la natura dei dati in alta dimensione su cui sono state successivamente applicate PCA e Kernel PCA.

3.2 PCA vs Kernel PCA

Per valutare l'efficacia di PCA e di Kernel PCA è stata valutata l'accuracy di una SVM lineare (medesimi parametri per entrambe le valutazioni) su i dati trasformati dai metodi di riduzione di dimensionalità.

3.2.1 Make circles

Questa sottosezione è relativa ai dati generati da make_circles. I parametri usati per make circles sono i seguenti :

n samples=1000, noise=0.15, factor=0.2, random state = 0.

Il kernel gaussiano ha portato ai migliori risultati.

Figure 4: Risultati ottenuti dalla classificazione (SVM lineare) effettuata sulle proiezioni 1-dimensionali prodotte da PCA e Kernel PCA. Panel SX: risultati su PCA; Panel DX: risultati su Rbf Kernel PCA. I punti verdi e rossi indicano rispettivamente i punti classificati correttamente ed erroneamente dalla SVM. In base alla luminosità (verde chiaro/rosso chiaro, verde scuro/rosso scuro) si può individuare il tipo di errore effettuato.

Riportiamo in tabella i risultati ottenuti dai metodi PCA / Kernel PCA sotto forma di metriche relative alla SVM lineare che classifica i dati sulle proiezioni.

Dimensione	Kernel	Gamma	Accuracy
1	-	-	0.62
1	Rbf	10	0.99

3.2.2 Make classification

Questa sottosezione è relativa ai dati generati da make_classification. I parametri usati per make classification sono i seguenti :

n_samples = 1000, n_classes=2, n_features=10, n_informative=6, n_redundant=3, n_repeated=1, random_state = 0.

L'assenza di kernel ha portato ai migliori risultati.

Sono state effettuate ricerche in grid search per ottimizzare i risultati e ciò che ne è uscito è che i kernel (sia polinomiali che gaussiani) in questo particolare dataset performano male. Leggendo la documentazione del metodo make_classification si comprende che dovrebbe esserci un'innata linearità nei dati e dunque la semplice PCA per costruzione può catturare meglio questa struttura e ottenere buoni risultati. Riportiamo in tabella il risultato della semplice PCA contro il miglior risultato tra tutti i kernel testati. Poiché i risultati sono stati ottenuti in 3 dimensioni e sono difficilmente visualizzabili riportiamo solo le statistiche tabulari.

Dimensione	Kernel	Degree	Gamma	Alpha	Accuracy
3	-	-	-	-	0.84
3	Poly	1	-	-	0.78