RÉDUCTION GÉOMÉTRIQUE

Rappels et compléments d'algèbre linéaire

Solution 1

Puisque A et B sont semblables, il existe $P \in GL_n(\mathbb{C})$ telle que PA = BP. On peut poser P = Q + iR avec $(Q, R) \in \mathcal{M}_n(\mathbb{R})^2$. Puisque A et B sont réelles, on obtient QA = BQ et RA = BR par passage aux parties réelle et imaginaire.

Posons $D(\lambda) = \det(P + \lambda Q)$ pour tout $\lambda \in \mathbb{C}$. Puisque le déterminant est une fonction polynomiale des coefficients de la matrice, D est une fonction polynomiale. Puisque $D(i) \neq 0$, D n'est pas constamment nulle sur \mathbb{C} . Elle ne peut pas être constamment nulle sur \mathbb{R} car elle serait alors nulle sur \mathbb{C} puisque \mathbb{R} est infini.

Soit donc $\lambda \in \mathbb{R}$ tel que $D(\lambda) \neq 0$. Alors $S = Q + \lambda R$ appartient à $\mathcal{M}_n(\mathbb{R})$ et est inversible et SA = BS, ce qui prouve que A et B sont semblables sur \mathbb{R} .

Solution 2

Remarquons que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} I_p & -A^{-1}B \\ 0 & I_q \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & S \end{pmatrix}$$

Puisque la matrice $\left(\frac{I_p - A^{-1}B}{0 \mid I_q}\right)$ est clairement inversible, les matrices M et $\left(\frac{A \mid 0}{C \mid S}\right)$ ont même rang. Puisque le rang est la dimension du sous-espace vectoriel engendré par les colonnes d'une matrice,

$$\operatorname{rg}\left(\frac{A \mid 0}{C \mid S}\right) = \operatorname{rg}\left(\frac{A}{C}\right) + \operatorname{rg}\left(\frac{0}{S}\right)$$

Puisque A est inversible et de taille p, $\operatorname{rg}\left(\frac{A}{C}\right) \ge p$. Mais comme cette matrice possède p colonnes, $\operatorname{rg}\left(\frac{A}{C}\right) \le p$. Finalement, $\operatorname{rg}\left(\frac{A}{C}\right) = p = \operatorname{rg}(A)$.

Puisque le rang d'une matrice est également la dimension du sous-espace vectoriel engendré par ses lignes, $rg\left(\frac{0}{S}\right) = rg(S)$.

On obtient bien rg(M) = rg(A) + rg(S).

Solution 3

1. Posons L: $g \in \mathcal{L}(E) \mapsto f \circ g$ et R: $g \in \mathcal{L}(E) \mapsto g \circ f$. Alors $\Phi = L - R$. De plus, L et R sont des endomorphismes de E qui commutent. En effet, pour tout $g \in E$, $L \circ R(g) = R \circ L(g) = f \circ g \circ f$. D'après la formule du binôme de Newton,

$$\Phi^p = \sum_{k=0}^p (-1)^k \binom{p}{k} L^{p-k} \circ R^k$$

On en déduit que pour tout $g \in \mathcal{L}(E)$,

$$\Phi^{p}(g) = \sum_{k=0}^{p} (-1)^{k} \binom{p}{k} f^{p-k} \circ g \circ f^{k}$$

Dans la formule écrite au rang p = 2n - 1, pour $0 \le k \le p$, on a soit $k \ge n$, soit $p - k \ge n$ donc tous les termes de la somme précédente sont nuls. Φ est donc nilpotent d'indice inférieur ou égal à 2n - 1.

2. Soit $a \in \mathcal{L}(E)$. Soit S un supplémentaire de Ker a. a induit un isomorphisme \tilde{a} de S sur Im a. Soit T un supplémentaire de Im a. On pose $b(x) = \tilde{a}^{-1}(x)$ pour $x \in \text{Im } a$ et b(y) = 0 pour $y \in T$. Ainsi on a bien $a \circ b \circ a = a$.

Remarque. On peut aussi raisonner matriciellement. Notons A la matrice de a dans une base de E. On sait qu'il existe $(P,Q) \in GL_n(\mathbb{K})^2$ tel que $A = PJ_rQ$ où $n = \dim E$, r = rg(A) et $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$. Comme $J_r^2 = J_r$, on obtient ABA = A en posant $B = Q^{-1}J_rP^{-1}$. Il suffit de prendre pour b l'endomorphisme de E dont la matrice est B dans la base précédente.

1

Montrons que Φ est d'ordre 2n-1 exactement. Pour p=2n-2 et $0 \le k \le p$, on a soit $k \le n$, soit $p-k \le n$ sauf pour k=n-1.

$$\Phi^{2n-2}(g) = (-1)^{n-1} \binom{2n-2}{n-1} f^{n-1} \circ g \circ f^{n-1}$$

D'après ce qui précéde, il existe $g_0 \in \mathcal{L}(E)$ tel que

$$f^{n-1} \circ g_0 \circ f^{n-1} = f^{n-1}$$
.

Par conséquent, $\Phi^{2n-2}(g_0) = f^{n-1} \neq 0$.

Solution 4

Puisque $\operatorname{Im} p_k \subset \operatorname{E} \operatorname{pour} \operatorname{tout} k \in \llbracket 1, n \rrbracket, \sum_{k=1}^n \operatorname{Im} p_k \subset \operatorname{E}. \operatorname{De} \operatorname{plus}, \operatorname{E} = \operatorname{Im} \operatorname{Id}_{\operatorname{E}} = \operatorname{Im} \left(\sum_{k=1}^n p_k \right) \subset \sum_{k=1}^n \operatorname{Im} p_k.$ Par double inclusion, $\sum_{k=1}^{\infty} \operatorname{Im} p_k = \operatorname{E}.$

Montrons maintenant que la somme est directe. Les p_k étant des projecteurs, $\operatorname{rg} p_k = \operatorname{tr}(p_k)$ pour tout $k \in [1, n]$. De plus, $\sum_{k=0}^{\infty} p_k = \operatorname{Id}_E$ donc, par linéarité de la trace $\sum_{k=1}^{n} \operatorname{tr}(p_k) = \operatorname{tr}(\operatorname{Id}_{\mathrm{E}})$ ou encore $\sum_{k=1}^{n} \operatorname{rg}(p_k) = \dim \mathrm{E}$. C'est donc que les sous-espaces vectoriels $\operatorname{Im} p_1, \ldots, \operatorname{Im} p_n$

Solution 5

- 1. On peut prouver facilement que E, F, G, H sont stables par combinaison linéaire mais on peut également déterminer des parties génératrices de E, F, G, H.
 - $E = \text{vect}((1)_{n \in \mathbb{N}})$ donc E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
 - $F = \text{vect}(((-1)^n)_{n \in \mathbb{N}})$ donc F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
 - $G = \operatorname{vect}\left(\left(\cos\left(n\frac{\pi}{2}\right)\right)_{n\in\mathbb{N}}, \left(\sin\left(n\frac{\pi}{2}\right)\right)_{n\in\mathbb{N}}\right) \text{ donc } G \text{ est un sous-espace vectoriel de } \mathbb{R}^{\mathbb{N}}.$
- **2.** Une suite constante est clairement 4-périodique donc $E \subset H$.
 - Soit $(u_n) \in F$. Alors pour tout $n \in \mathbb{N}$, $u_{n+2} = -u_{n+1} = u_n$ donc (u_n) est 2-périodique et a fortiori 4 périodique. Ainsi $F \subset H$.
 - Soit $(u_n) \in G$. Alors pour tout $n \in \mathbb{N}$, $u_{n+4} = -u_{n+2} = u_n$ donc (u_n) est 4-périodique. Ainsi $G \subset H$.
- 3. Soit $((u_n), (v_n), (w_n)) \in E \times F \times G$ tel que $(u_n) + (v_n) + (w_n) = (0)$. On a ainsi
 - $u_n + v_n + w_n = 0$ pour tout $n \in \mathbb{N}$;
 - $u_{n+1} + v_{n+1} + w_{n+1} = 0$ i.e. $u_n v_n + w_{n+1} = 0$ pour tout $n \in \mathbb{N}$;
 - $u_{n+2} + v_{n+2} + w_{n+2} = 0$ i.e. $u_n + v_n w_n = 0$ pour tout $n \in \mathbb{N}$.
 - $u_{n+3} + v_{n+3} + w_{n+3} = 0$ i.e. $u_n v_n w_{n+1} = 0$ pour tout $n \in \mathbb{N}$.

En additionnant d'une part la première et la troisième égalité et d'autre part la seconde et la quatrième égalité, on obtient $u_n + v_n = 0$ et $u_n - v_n = 0$ pour tout $n \in \mathbb{N}$. Il s'ensuit que $u_n = w_n = 0$ pour tout $n \in \mathbb{N}$ puis que $w_n = 0$ pour tout $n \in \mathbb{N}$. E, F, G sont bien en somme directe. On aurait pu utiliser les suites engendrant E, F, G pour arriver au même résultat.

Puisque E, F, G sont inclus dans H, alors E + F + G \subset H. Soit maintenant $(z_n) \in$ H.

Analyse: On suppose qu'il existe $((u_n), (v_n), (w_n)) \in E \times F \times G$ tel que $z_n = u_n + v_n + w_n$. En particulier,

$$\begin{cases} u_0 + v_0 + w_0 = z_0 \\ u_0 - v_0 + w_1 = z_1 \\ u_0 + v_0 - w_0 = z_2 \\ u_0 - v_0 - w_1 = z_3 \end{cases}$$

On trouve aisément

$$\begin{cases} u_0 = \frac{z_0 + z_1 + z_2 + z_3}{4} \\ v_0 = \frac{z_0 - z_1 + z_2 - z_3}{4} \\ w_0 = \frac{z_0 - z_2}{2} \\ w_1 = \frac{z_1 - z_3}{2} \end{cases}$$

Synthèse: Soit

• (u_n) la suite constante égale à $\frac{z_0 + z_1 + z_2 + z_3}{4}$

• (v_n) la suite de premier terme $v_0 = \frac{z_0 - z_1 + z_2 - z_3}{4}$ et vérifiant $v_{n+1} + v_n = 0$ pour tout $n \in \mathbb{N}$;

• (w_n) la suite de premiers termes $w_0 = \frac{z_0 - z_2}{2}$ et $w_1 = \frac{z_1 - z_3}{2}$ vérifiant $w_{n+2} + w_n = 0$ pour tout $n \in \mathbb{N}$.

On vérifie alors que

$$\begin{cases} u_0 + v_0 + w_0 = z_0 \\ u_1 + v_1 + w_1 = z_1 \\ u_2 + v_2 + w_2 = z_2 \\ u_3 + v_3 + w_3 = z_3 \end{cases}$$

Puisque (u_n) , (v_n) , (w_n) et (z_n) sont 4-périodiques, on peut affirmer que $u_n+v_n+w_n=z_n$ pour tout $n\in\mathbb{N}$ i.e. $(z_n)=(u_n)+(v_n)+(w_n)$. Ainsi $H\subset E+F+G$.

Par double inclusion, E + F + G = H et E, F, G étant en somme directe, $E \oplus F \oplus G = H$.

Solution 6

1. On a A
$$\otimes$$
 B = $\left(\begin{array}{c|c} a_{11}B & a_{12}B \\ \hline a_{21}B & a_{22}B \end{array}\right)$ et C \otimes D = $\left(\begin{array}{c|c} c_{11}D & c_{12}D \\ \hline c_{21}D & c_{22}D \end{array}\right)$. Un calcul par blocs donne
$$(A \otimes B).(C \otimes D) = \left(\begin{array}{c|c} (a_{11}c_{11} + a_{12}c_{21})BD & (a_{11}c_{12} + a_{12}c_{22})BD \\ \hline (a_{21}c_{11} + a_{22}c_{21})BD & (a_{21}c_{12} + a_{22}c_{22})BD \\ \hline \end{array}\right) = \left(\begin{array}{c|c} ac_{11}BD & ac_{12}BD \\ \hline ac_{21}BD & ac_{22}BD \\ \hline \end{array}\right) = (AC) \otimes (BD)$$

en notant ac_{ij} le coefficient en position (i, j) de la matrice AC.

2.
$$I_2 \otimes B = \begin{pmatrix} B & O_2 \\ \hline O_2 & B \end{pmatrix}$$
 donc $\det(I_2 \otimes B) = (\det B)^2$.

Soit u l'endomorphisme de \mathbb{C}^4 canoniquement associé à $A \otimes I_2$. Notons (e_1, e_2, e_3, e_4) la base canonique de \mathbb{C}^4 . Alors la matrice de u dans la base (e_1, e_3, e_2, e_4) est $I_2 \otimes A$. On a donc $\det(A \otimes I_2) = \det u = \det(I_2 \otimes A) = (\det A)^2$ d'après ce qui précède. D'après la première question, $A \otimes B = (A \otimes I_2).(I_2 \otimes B)$. Ainsi $\det(A \otimes B) = (\det A)^2(\det B)^2$.

3. Puisqu'une matrice est inversible si et seulement si son déterminant est non nul, d'après la question précédente, A × B est inversible si et seulement si A et B le sont. Dans ce cas, on a d'après la première question

$$(\mathsf{A} \otimes \mathsf{B}).(\mathsf{A}^{-1} \otimes \mathsf{B}^{-1}) = (\mathsf{A}\mathsf{A}^{-1}) \otimes (\mathsf{B}\mathsf{B}^{-1}) = \mathsf{I}_2 \otimes \mathsf{I}_2 = \mathsf{I}_4$$

Solution 7

Remarquons que

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \cdot \left(\begin{array}{c|c} I_p & -A^{-1}B \\ \hline 0 & I_q \end{array} \right) = \left(\begin{array}{c|c} A & 0 \\ \hline C & S \end{array} \right)$$

En passant aux déterminants, on obtient

$$\det(\mathbf{M}) \cdot \begin{vmatrix} \mathbf{I}_p & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I}_q \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{S} \end{vmatrix}$$

Il ne s'agit plus que de déterminants triangulaires par blocs :

$$det(M) det(I_p) det(I_q) = det(A) det(S)$$

et finalement det(M) = det(A) det(S).

Solution 8

- 1. Si $M \in \mathcal{M}_2(\mathbb{R})$, alors $AM \in \mathcal{M}_2(\mathbb{R})$. De plus $A(\lambda M + \mu N) = \lambda AM + \mu AN$.
- **2.** Notons classiquement $(E_{11}, E_{12}, E_{21}, E_{22})$ la base canonique de $\mathcal{M}_2(\mathbb{R})$. On a :

$$m(\mathbf{E}_{11}) = \begin{pmatrix} a_{11} & 0 \\ a_{21} & 0 \end{pmatrix} = a_{11}\mathbf{E}_{11} + a_{21}\mathbf{E}_{21}$$

$$m(\mathbf{E}_{12}) = \begin{pmatrix} 0 & a_{11} \\ 0 & a_{21} \end{pmatrix} = a_{11}\mathbf{E}_{12} + a_{21}\mathbf{E}_{22}$$

$$m(\mathbf{E}_{21}) = \begin{pmatrix} a_{12} & 0 \\ a_{22} & 0 \end{pmatrix} = a_{12}\mathbf{E}_{11} + a_{22}\mathbf{E}_{21}$$

$$m(\mathbf{E}_{22}) = \begin{pmatrix} 0 & a_{12} \\ 0 & a_{22} \end{pmatrix} = a_{12}\mathbf{E}_{12} + a_{22}\mathbf{E}_{22}$$

Ainsi la matrice de m_A dans la base $(E_{11}, E_{21}, E_{12}, E_{22})$ (attention à l'ordre!) est la matrice définie par blocs $\left(\begin{array}{c|c} A & 0_n \\ \hline 0_n & A \end{array}\right)$. On a donct $\det(m_A) = (\det A)^2$.

3. Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note à nouveau m_A : $\begin{cases} M_n(\mathbb{R}) & \longrightarrow & M_n(\mathbb{R}) \\ M & \longmapsto & AM \end{cases}$. m_A est encore un endomorphisme. On note $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Remarquons que $E_{ij}E_{kl} = \delta_{jk}E_{il}$. On a alors

$$m_{\mathbf{A}}(\mathbf{E}_{ij}) = \sum_{1 \le k,l \le n} a_{kl} \mathbf{E}_{kl} \mathbf{E}_{ij} = \sum_{1 \le k,l \le n} a_{kl} \delta_{li} \mathbf{E}_{kj} = \sum_{k=1}^{n} a_{ki} \mathbf{E}_{kj}$$

La matrice de m_A dans la base $(E_{11}, E_{21}, \dots, E_{n1}, E_{12}, E_{22}, \dots, E_{2n}, \dots, E_{n1}, E_{n2}, \dots, E_{nn})$ est la matrice de $\mathcal{M}_{n^2}(\mathbb{R})$ diagonale par blocs dont les blocs diagonaux sont tous égaux à A. On en déduit que $\det(m_A) = (\det A)^n$.

Eléments propres

Solution 9

• Supposons $\lambda = 0$. Alors $Ker(g \circ f) \neq \{0_E\}$ et donc $g \circ f$ est non inversible. Ainsi $det(g \circ f) = 0$. Mais alors

$$\det(f \circ g) = \det(f) \det(g) = \det(g \circ f) = 0$$

Donc $f \circ g$ est non inversible i.e. 0 est valeur propre de $f \circ g$.

• Supposons $\lambda \neq 0$. Alors il existe un vecteur $x \in E$ non nul tel que $g \circ f(x) = \lambda x$. Par conséquent, $f \circ g \circ f(x) = \lambda f(x)$. On ne peut avoir $f(x) = 0_E$ sinon on aurait $g \circ f(x) = \lambda x = 0_E$, ce qui est impossible puisque $\lambda \neq 0$ et $x \neq 0_E$. Ainsi f(x) est un vecteur propre de $f \circ g$ associée à la valeur propre λ .

Solution 10

Rappelons que tout endomorphisme d'un espace vectoriel *complexe* de dimension finie possède au moins une valeur propre (son polynôme caractéristique admet au moins une racine complexe) et donc également un vecteur propre.

1. On propose deux méthodes.

Première méthode.

• Si v possède une valeur propre λ non nulle, notons x un vecteur propre associé. Alors $v(x) = \lambda x$ et $u \circ v(x) = \lambda u(x) = 0_E$ puis $u(x) = 0_E$ car $\lambda \neq 0$. Ainsi x est un vecteur propre de u pour la valeur propre 0. u et v ont bien un vecteur propre commun.

 Si v = 0, alors tout vecteur propre de x est un vecteur propre de v pour la valeur propre 0. A nouveau, u et v ont bien un vecteur propre commun.

Si v ≠ 0 et v possède 0 pour unique valeur propre, alors v est nilpotent. En effet, v est trigonalisable puisque E est un espace vectoriel complexe. De plus, son indice de nilpotence p vérifie p ≥ 2 puisque v ≠ 0. Il existe donc x ∈ E tel que y = v^{p-1}(x) ≠ 0_E. Puisque p ≥ 2, on peut écrire u ∘ v^{p-1} = u ∘ v ∘ v^{p-2} = 0. Alors u(y) = u ∘ v^{p-1}(x) = 0 et v(y) = v^p(y) = 0_E donc y est un vecteur propre commun de u et v pour la valeur propre 0.

Deuxième méthode. Si v = 0, on conclut comme dans la méthode précédente. Sinon, $\operatorname{Im} v \neq 0$ est stable par v. L'endomorphisme de $\operatorname{Im} v$ induit par v possède donc un vecteur propre y associé à une valeur propre λ . Mais comme $u \circ v = 0$, u est nul sur $\operatorname{Im} v$. Ainsi y est un vecteur propre commun de u et v (respectivement associé aux valeurs propres v et v).

- 2. On remarque que $u \circ (v a \operatorname{Id}_{E}) = 0$. D'après la première question, u et $v a \operatorname{Id}_{E}$ ont un vecteur propre commun, qui est également un vecteur propre commun de u et v.
- 3. On remarque que $(u b \operatorname{Id}_{E}) \circ v = 0$. D'après la première question, $u b \operatorname{Id}_{E}$ et v ont un vecteur propre commun, qui est également un vecteur propre commun de u et v.
- **4.** Comme $u \circ v = \mathrm{Id}_{\mathrm{E}}$, u et v sont inversibles. Notons λ une valeur propre de v et x un vecteur propre associé. Alors $v(x) = \lambda x$ puis $x = \lambda v^{-1}(x)$. Notamment $\lambda \neq 0$ car $x \neq 0_{\mathrm{E}}$ (on peut aussi arguer du fait que v est inversible de sorte que $0 \notin \mathrm{Sp}(v)$) puis $f(x) = v^{-1}(x) = \frac{1}{\lambda} x$. Ainsi x est un vecteur propre commun de u et v.
- 5. Si a = 0 ou b = 0, il suffit d'appliquer une des questions précédentes. Supposons $a \ne 0$ et $b \ne 0$. Remarquons alors que

$$(u - b \operatorname{Id}_{E}) \circ (v - a \operatorname{Id}_{E}) = ab \operatorname{Id}_{E}$$

ou encore

$$\frac{1}{a}(u - b\operatorname{Id}_{E}) \circ \frac{1}{b}(v - a\operatorname{Id}_{E}) = \operatorname{Id}_{E}$$

D'après la question précédente, $\frac{1}{a}(u-b\operatorname{Id}_{\operatorname{E}})$ et $\frac{1}{b}(v-a\operatorname{Id}_{\operatorname{E}})$ possèdent un vecteur propre commun. On vérifie sans peine que x est également un vecteur propre commun de u et v.

Solution 11

Soient λ une valeur propre de $u \circ v$ et x un vecteur propre associé à cette valeur propre.

- Si $\lambda \neq 0$, alors $v(x) \neq 0_E$ sinon $u \circ v(x) = 0_E$ et donc $\lambda x = 0_E$, ce qui est impossible puisque $\lambda \neq 0$ et $x \neq 0_E$. De plus, $v \circ u \circ v(x) = \lambda v(x)$ et λ est donc une valeur propre de λ de u.
- Si $\lambda = 0$, alors $u \circ v$ n'est pas inversible, d'où $\det(u \circ v) = 0$. De plus, $\det(v \circ u) = \det(v) \det(u) = \det(u) \det(v) = \det(u) \det(v) = 0$. Ainsi, $v \circ u$ n'est pas inversible i.e. 0 est valeur propre de $v \circ u$.

On a montré que toute valeur propre de $u \circ v$ est une valeur propre de $v \circ u$. La réciproque se montre de manière symétrique.

Solution 12

Soient λ une valeur propre de A et X un vecteur propre associé dont on note x_i les composantes. On a donc pour $1 \le i \le n$:

$$(\lambda - a_{i,i})x_i = \sum_{j \neq i} a_{i,j}x_j$$

Choisissons un indice i pour lequel $|x_i|$ est maximal. En particulier, $x_i \neq 0$ car X est non nul (c'est un vecteur propre). Ainsi

$$\begin{split} |\lambda - a_{i,i}| &= \left| \sum_{j \neq i} a_{i,j} \frac{x_j}{x_i} \right| \\ &\leq \sum_{j \neq i} |a_{i,j}| \frac{|x_j|}{|x_i|} & \text{par inégalité triangulaire} \\ &\leq \sum_{i \neq i} |a_{i,j}| = \mathbf{R}_i & \text{car } |x_j| \leq |x_i| \text{ pour } 1 \leq j \leq n \end{split}$$

Ceci signifie bien que $\lambda \in D_i$.

Solution 13

Soient $\lambda \in \mathbb{K}$ et $P \in \mathbb{K}[X]$ non nul. Posons $P = \sum_{k=0}^{n} a_k X^k$ avec $n = \deg P$, $(a_0, \dots, a_n) \in \mathbb{K}^{n+1}$ et $a_n \neq 0$. Alors $\varphi(P) = \lambda P$ si et seulement si $\lambda a_k = k a_k$ pour tout $k \in [0, n]$. Puisque $a_n \neq 0$, ceci équivaut à $\lambda = n$ et $a_0 = a_1 = \dots = a_{n-1} = 0$. Ainsi les valeurs propres de φ sont les entiers naturels et pour tout $n \in \mathbb{N}$, $E_n(\varphi) = \operatorname{vect}(X^n)$.

Solution 14

1. T est linéaire par linéarité d l'intégrale.

Soit $f \in E$. Alors $x \mapsto \int_0^x f(t)e^t dt$ est \mathcal{C}^{∞} comme primitive de la fonction de classe $\mathcal{C}^{\infty} t \mapsto f(t)e^t$. Enfin, T(f) est \mathcal{C}^{∞} comme produit de fonctions de classe \mathcal{C}^{∞} . Ainsi $T(f) \in E$.

2. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $T(f) = \lambda f$. Alors pour tout $x \in \mathbb{R}$, $\lambda f(x)e^x = \int_0^x f(t)e^t dt$ ou encore $\lambda g(x) = \int_0^x g(t) dt$ en posant $g(x) = f(x)e^x$

Si $\lambda = 0$, alors $\int_0^x g(t)e^t dt = 0$ pour tout $x \in \mathbb{R}$. En dérivant, on obtient g = 0 puis f = 0, ce qui prouve que 0 n'est pas valeur propre de T.

Supposons $\lambda \neq 0$. Alors $g(x) = \frac{1}{\lambda} \int_0^x g(t) dt$ pour tout $x \in \mathbb{R}$, ce qui prouve que g est dérivable. On remarque également que g(0) = 0.

En dérivant, on obtient $g'(x) = \frac{1}{\lambda}g(x)$ pour tout $x \in \mathbb{R}$. Par unicité de la solution du problème de Cauchy $\begin{cases} y' = \frac{1}{\lambda}y, & \text{g est nulle et } \\ y(0) = 0 \end{cases}$

f également de sorte que λ n'est pas valeur propre de f.

Finalement, T n'admet aucune valeur propre.

Solution 15

- 1. La fonction $t\mapsto \frac{f(t)}{t}$ est continue sur \mathbb{R}_+^* et, puisque f est de classe \mathcal{C}^1 et nulle en 0, elle admet une limite finie en 0 à savoir f'(0). Cette fonction est donc prolongeable par continuité en 0 en une fonction continue sur \mathbb{R}_+ , ce qui justifie la définition de l'intégrale $\int_0^x \frac{f(t)}{t} \, \mathrm{d}t \text{ pour tout } x \in \mathbb{R}_+.$
- 2. La linéarité de Φ provient de la linéarité de l'intégrale.

Soit $f \in E$. Il est clair que $\Phi(f)(0) = 0$ et $\Phi(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ en tant que primitive d'une fonction continue, à savoir $t \mapsto \frac{f(t)}{t}$ prolongée par continuité en 0. Ainsi $\Phi(f) \in E$.

3. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $\Phi(f) = \lambda f$. Alors $\Phi(f)' = \lambda f'$ et donc $f(x) = \lambda x f'(x)$ pour tout $x \in \mathbb{R}_+$.

Si $\lambda = 0$, alors f = 0 de sorte que 0 n'est pas une valeur propre de Φ . Supposons donc $\lambda \neq 0$. Ainsi $f'(x) = \frac{f(x)}{\lambda x}$ pour tout $x \in \mathbb{R}_+^*$.

On en déduit qu'il existe $A \in \mathbb{R}$ tel que $f(x) = Ax^{\frac{1}{\lambda}}$ pour tout $x \in \mathbb{R}^*$. De plus, $f'(x) = \frac{A}{\lambda}x^{\frac{1}{\lambda}-1}$ pour tout $x \in \mathbb{R}^*$. Or f est de classe \mathcal{C}^1 donc f' admet une limite finie en 0. Si $\lambda < 0$ ou $\lambda > 1$, alors nécessairement A = 0 de sorte que f = 0. Dans ce cas, λ n'est pas une valeur propre de Φ .

Réciproquement soit $\lambda \in]0,1]$ et posons $f_{\lambda}(x) = x^{\frac{1}{\lambda}}$ pour tout $x \in \mathbb{R}^*$ et f(0) = 0. On vérifie que f_{λ} est de classe \mathcal{C}^1 sur \mathbb{R}_+ . De plus, pour tout $x \in \mathbb{R}_+$,

$$T(f_{\lambda})(x) = \int_0^x \frac{f_{\lambda}(t)}{t} dt = \int_0^x t^{\frac{1}{\lambda} - 1} dt = \left[\lambda t^{\frac{1}{\lambda}}\right]_0^x = \lambda f_{\lambda}(x)$$

Ainsi λ est bien valeur propre de Φ et f_{λ} est un vecteur propre associé.

Finalement, λ est valeur propre de Φ si et seulement si $\lambda \in]0,1]$ et, dans ce cas, $E_{\lambda}(\Phi) = \text{vect}(f_{\lambda})$.

Solution 16

1. Tout d'abord, l'application $x \in \mathbb{R} \mapsto \int_0^x f(t) \, dt$ est continue sur \mathbb{R} en tant que primitive de application continue f. On en déduit que $x \in \mathbb{R}^* \mapsto \frac{1}{x} \int_0^x f(t) \, dt$ est continue sur \mathbb{R}^* .

De plus, l'application $x \in \mathbb{R} \mapsto \int_0^x f(t) dt$ est dérivable en 0 en tant que primitive de application continue f et sa dérivée en 0 vaut donc f(0). On en déduit que

$$\lim_{x \to 0} \mapsto \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t = f(0)$$

ce qui prouve que $x \in \mathbb{R}_+^* \mapsto \frac{1}{x} \int_0^x f(t) dt$ est prolongeable en 0 en une application continue sur \mathbb{R}_+ .

- 2. La linéarité de T provient de la linéarité de l'intégrale. La question précédente montre que si $f \in E$, alors $T(f) \in E$.
- 3. Soient $\lambda \in \mathbb{R}$ et $f \in E$ tels que $T(f) = \lambda f$. Si $\lambda = 0$, alors T(f) = 0 d'où $\int_0^x f(t) dt = 0$ pour tout $x \in \mathbb{R}_+^*$. En dérivant, f est nulle sur \mathbb{R}_+^* . Finalement, f est nulle sur \mathbb{R}_+ car f est continue en 0 ou bien car f(0) = T(f)(0) = 0. Ainsi 0 n'est pas valeur propre de T.

Supposons $\lambda \neq 0$. Alors $f = \frac{1}{\lambda} T(f)$. Puisque T(f) est dérivable sur \mathbb{R}_+^* , f l'est également. De plus, $\lambda x f(x) = \int_0^x f(t) \, \mathrm{d}t$ pour tout $1 - \lambda$

 $x \in \mathbb{R}_+$ donc, en dérivant, $f'(x) = \frac{1-\lambda}{\lambda x} f(x)$ pour tout $x \in \mathbb{R}_+^*$. On en déduit qu'il existe $A \in \mathbb{R}$ tel que $f(x) = Ax^{\frac{1-\lambda}{\lambda}}$ pour tout $x \in \mathbb{R}_+$. Si $\lambda < 0$ ou $\lambda > 1$, f n'admet une limite finie en 0 que si A = 0 de sorte que f est nulle. Dans ce cas, λ n'est pas valeur propre de f.

Réciproquement, soit $\lambda \in]0,1]$ et posons $f_{\lambda}: x \in \mathbb{R}_+ \mapsto \begin{cases} x^{\frac{1-\lambda}{\lambda}} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$. On vérifie que f_{λ} est continue sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+^*$

$$T(f_{\lambda})(x) = \frac{1}{x} \int_0^x f_{\lambda}(t) dt = \frac{1}{x} \int_0^x t^{\frac{1-\lambda}{\lambda}} dt = \frac{1}{x} \left[\lambda t^{\frac{1}{\lambda}} \right]_0^x = \lambda x^{\frac{1-\lambda}{\lambda}} = \lambda f_{\lambda}(x)$$

Cette égalité est encore valable pour x = 0 par continuité de f_{λ} et $T(f_{\lambda})$ en 0 de sorte que $T(f_{\lambda}) = \lambda f_{\lambda}$. Finalement, λ est valeur propre de T si et seulement si $\lambda \in]0,1]$ et, dans ce cas, $E_{\lambda}(T) = \text{vect}(f_{\lambda})$.

Solution 17

- **1.** En posant $U \in \mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1, AU = U de sorte que $1 \in Sp(A)$.
- **2.** Soit $\lambda \in Sp_{\mathbb{C}}(A)$ et V un vecteur propre associé. Alors

$$\forall j \in \llbracket 1, n \rrbracket, \ \sum_{i=1}^{n} \mathbf{A}_{i,j} \mathbf{V}_{j} = \lambda \mathbf{V}_{i}$$

Notons i_0 l'indice d'un coefficient de V de module maximal. Par inégalité triangulaire

$$|\lambda||V_{i_0}| = \left|\sum_{j=1}^n A_{i_0,j}V_j\right| \le \sum_{j=1}^n |A_{i_0,j}V_j|$$

Mais les $A_{i_0,j}$ sont des réels positifs et $|V_j| \le |V_{i_0}|$ pour tout $j \in [1,n]$ de sorte que

$$|\lambda||V_{i_0}| \le |V_{i_0}| \sum_{j=1}^n A_{i_0,j} = |V_{i_0}|$$

Enfin, $|V_{i_0}| = \|V\|_{\infty} > 0$ car, sinon, V serait nul. On en déduit que $|\lambda| < 1$.

Solution 18

1. Φ est linéaire par linéarité de l'intégration. Soit $f \in E$. Par la relation de Chasles

$$\forall x \in [0, 1], \ \Phi(f)(x) = \int_0^x t f(t) \ dt - x \int_1^x f(t) \ dt$$

D'après le théorème fondamental de l'analyse, $\Phi(f)$ est donc dérivable et a fortiori continue. Ainsi $\Phi(f) \in E$. Φ est donc bien un endomorphisme de E.

2. Soit $f \in E$. D'après la question précédente, $\Phi(f)$ est dérivable et on a donc

$$\forall x \in [0, 1], \ \Phi(f)'(x) = xf(x) - \int_{1}^{x} f(t) \ dt - xf(x) = -\int_{1}^{x} f(t) \ dt$$

 $\Phi(f)'$ est à nouveau dérivable et $\Phi(f)'' = -f$.

Soit λ une valeur propre de Φ et f un vecteur propre associé.

Si $\lambda = 0$, on a $\Phi(f) = 0$ et donc $f = -\Phi(f)'' = 0$, ce qui contredit le fait que f est un vecteur propre. Ainsi 0 n'est pas valeur propre de Φ .

Supposons donc $\lambda \neq 0$. Alors $f = \frac{1}{\lambda}\Phi(f)$. Ainsi f est deux fois dérivable et $f'' = \frac{1}{\lambda}\Phi(f)'' = -\frac{1}{\lambda}f$. Par ailleurs, $f(0) = \frac{1}{\lambda}\Phi(f)(0) = 0$ et $f'(1) = \frac{1}{\lambda}\Phi(f)'(1) = 0$.

Supposons $\lambda < 0$. Comme $f'' = -\frac{1}{\lambda}f$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall x \in [0, 1], \ f(x) = \alpha \operatorname{ch}\left(\frac{x}{\sqrt{-\lambda}}\right) + \beta \operatorname{sh}\left(\frac{x}{\sqrt{-\lambda}}\right)$$

Comme f(0) = 0, $\alpha = 0$. Puis comme f'(1) = 0, $\beta = 0$. Ainsi f = 0 et λ ne peut être valeur propre de Φ .

Supposons $\lambda > 0$. Comme $f'' = -\frac{1}{\lambda}f$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall x \in [0, 1], \ f(x) = \alpha \cos\left(\frac{x}{\sqrt{\lambda}}\right) + \beta \sin\left(\frac{x}{\sqrt{\lambda}}\right)$$

Comme f(0) = 0, $\alpha = 0$. Puis comme f'(1) = 0, $\beta \cos(\frac{1}{\sqrt{\lambda}}) = 0$. On ne peut avoir $\beta = 0$ sinon f = 0. Ainsi $\cos(\frac{1}{\sqrt{\lambda}}) = 0$. Il existe

donc
$$n \in \mathbb{N}$$
 tel que $\frac{1}{\sqrt{\lambda}} = \frac{\pi}{2} + n\pi$. Ainsi $\lambda = \frac{1}{\left(\frac{\pi}{2} + n\pi\right)^2}$.

Par conséquent, les valeurs propres de Φ sont les $\lambda_n = \frac{1}{\left(\frac{\pi}{2} + n\pi\right)^2}$ et les sous-espaces propres associés sont les $\text{vect}(f_n)$ où f_n : $x \in$

$$[0,1]\mapsto \sin\left(\left(\frac{\pi}{2}+n\pi\right)x\right)$$
 pour $n\in\mathbb{N}$.

Solution 19

Déterminons dans un premier temps le noyau de ϕ . Comme (a, b) est libre

$$x \in \operatorname{Ker} \varphi$$

 $\iff \langle a \mid x \rangle = \langle b \mid x \rangle = 0$
 $\iff x \in \operatorname{vect}(a, b)^{\perp}$

Ainsi Ker $\phi = \text{vect}(a, b)^{\perp}$.

Par ailleurs, comme a et b sont unitaires,

$$\phi(a+b) = (1 + \langle a \mid b \rangle)(a+b)$$

$$\phi(a-b) = (1 - \langle a \mid b \rangle)(a+b)$$

Ainsi si $\langle a \mid b \rangle = 0$,

$$Ker(\phi - Id_E) = vect(a + b, a - b) = vect(a, b)$$

et sinon

$$\operatorname{Ker} (\varphi - (1 + \langle a \mid b \rangle) \operatorname{Id}_{\mathbf{E}}) = \operatorname{vect}(a + b)$$

$$\operatorname{Ker} (\phi - (1 - \langle a \mid b \rangle) \operatorname{Id}_{\mathbf{E}}) = \operatorname{vect}(a - b)$$

Pour récapituler, 0 est valeur propre et le sous-espace propre associé est $\text{vect}(a, b)^{\perp}$.

Si $\langle a \mid b \rangle = 0$, 1 est valeur propre et le sous-espace propre associé est vect(a, b).

Si $\langle a \mid b \rangle \neq 0$, $1 + \langle a \mid b \rangle$ et $1 - \langle a \mid b \rangle$ sont valeurs propres et leurs sous-espaces propres associés respectifs sont vect(a + b) et vect(a - b). Dans tous les cas, la somme des dimensions de ces sous-espaces propres est égale à la dimension de E donc on a bien trouvé toutes les valeurs propres de ϕ . On peut également en conclure que ϕ est diagonalisable. On aurait aussi pu constater que ϕ est un endomorphisme symétrique pour justifier qu'il était diagonalisable. En effet, pour tout $(x, y) \in E^2$,

$$\langle \varphi(x) \mid y \rangle = \langle x \mid \varphi(y) \rangle = \langle a \mid x \rangle \langle a \mid y \rangle + \langle b \mid x \rangle \langle b \mid y \rangle$$

Solution 20

φ est clairement linéaire. De plus,

$$\forall k \in [0, n], \ \varphi(X^k) = (k - n)X^{k+1} + kX^k \in \mathbb{R}_n[X]$$

Par linéarité, $\varphi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$ de sorte que φ est bien un endomorphisme de $\mathbb{R}_n[X]$. La matrice de φ dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire inférieure et ses coefficients diagonaux sont 0, 1, ..., n. On en déduit que $\mathrm{Sp}(\varphi) = [\![0, n]\!]$ et que tous les sous-espaces propres sont de dimension 1.

Soit $k \in [0, n]$ et P_k le vecteur propre unitaire associé à la valeur propre k. Alors $\varphi(P) = kP$ ou encore

$$\frac{P'_k}{P_k} = \frac{nX + k}{X(X+1)} = \frac{k}{X} + \frac{n-k}{X+1}$$

On en déduit que $P_k = X^k(X+1)^{n-k}$.

Solution 21

Soit $\lambda \in \operatorname{Sp}(u)$ et M un vecteur propre associé. Alors $M + \operatorname{tr}(M)I_n = \lambda M$ puis en considérant la trace des deux membres, $(n+1)\operatorname{tr}(M) = \lambda \operatorname{tr}(M)$. Si $\lambda = n+1$ ou $\operatorname{tr}(M) = 0$. Si $\operatorname{tr}(M) = 0$ alors $M = \lambda M$ et donc $\lambda = 1$. Ainsi $\operatorname{Sp}(u) \subset \{1, n+1\}$.

Déterminons les sous-espaces propres associés à ces potentielles valeurs propres. Clairement, le sous-espace associé à la valeur propre 1 est l'hyperplan des matrices de traces nulles. De plus, I_n est clairement un vecteur propre associé à la valeur propre n+1 donc le sous-espace propre associé à la valeur propre n+1 est $\operatorname{vect}(I_n)$ puisque la somme des dimensions des sous-espaces propres ne peut excéder la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. On constate que u est diagonalisable puisque la somme des dimensions des sous-espaces propres est égale à la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. Si n = 1, 1 n'est en fait pas valeur propre puisqu'alors le sous-espace vectoriel des matrices de trace nulle est le sous-espace nul.

Solution 22

On posera φ : $x \in \mathbb{R} \mapsto px + q$.

- 1. Remarquons que pour $f \in E$, $u(f) = f \circ \varphi$. Ainsi u est clairement linéaire. Comme φ est affine donc \mathcal{C}^{∞} , $u(f) \in E$ pour tout $f \in E$. Ainsi $f \in \mathcal{L}(E)$. Comme $p \neq 0$, φ est bijective. En posant $u(f) = f \circ \varphi^{-1}$ pour $f \in E$, on vérifie aisément que $u \circ v = v \circ u = \operatorname{Id}_E$ donc $u \in \operatorname{GL}(E)$.
- **2.** Comme $u \in GL(E)$, $0 \notin Sp(u)$.

Soit $\lambda \in \operatorname{Sp}(u)$ et f un vecteur propre associé. Alors $f \neq 0$ et il existe $x \in \mathbb{R}$ tel que $f(x) \neq 0$. On montre aisément que pour tout $n \in \mathbb{N}$, $u^n(f)(x) = f(\varphi^n(x)) = \lambda^n f(x)$. La suite de terme général $u_n = \varphi^n(x)$ vérifie la relation de récurrence $u_{n+1} = \varphi(u_n) = pu_n + q$. C'est donc une suite arithmético-géométrique. Comme $p \in]-1,1[$, on montre classiquement que (u_n) converge vers l'unique point fixe de φ , à savoir 1. Par continuité de f, la suite de terme général $f(u_n) = \lambda^n f(x)$ converge (vers f(1)). Ceci n'est possible que si $\lambda \in]-1,1[$.

On a donc montré que $Sp(u) \subset]-1,1] \setminus \{0\}.$

3. Soit f un vecteur propre de u et λ sa valeur propre associée. On a donc $u(f) = \lambda f$. En dérivant n fois, on obtient $p^n u(f^{(n)}) = \lambda f^{(n)}$ i.e. $u(f^{(n)}) = \frac{\lambda}{p^n} f^{(n)}$. Comme $\lambda \neq 0$ et $p \in]-1,1[\setminus \{0\}, \text{ il existe } k \in \mathbb{N}^* \text{ tel que } \left|\frac{\lambda}{p^k}\right| > 1$. Comme $\mathrm{Sp}(u) \subset [-1,1], f^{(k)}$ ne peut être un vecteur propre de u de sorte que $f^{(k)} = 0$.

4. Soit f un vecteur propre de u et λ sa valeur propre associée de sorte que $f \circ \varphi = \lambda f$. La question précédente montre que f est polynomiale. En notant n son degré et α son coefficient dominant, on a $f(x) \underset{x \to +\infty}{\sim} \alpha x^n$. Ainsi $f \circ \varphi(x) \underset{x \to +\infty}{\sim} \alpha p^n x^n$ car $p \neq 0$ et $\lambda f(x) \underset{x \to +\infty}{\sim} \lambda \alpha x^n$. L'égalité $f \circ \varphi = \lambda f$ impose alors p = 0 et $\lambda = 1$. Réciproquement, toute fonction constante non nulle est bien un vecteur propre de u associé à la valeur propre 1. Ainsi $\mathrm{Sp}(u) = \{1\}$ et $\mathrm{Ker}(u - \mathrm{Id}_{\mathrm{E}}) = \mathrm{vect}(x \mapsto 1)$.

Solution 23

Puisque E est un espace vectoriel complexe, v possède au moins une valeur propre λ . Le sous-espace propre $E_{\lambda}(v)$ associé à la valeur propre λ est stable par u car u commute avec v. L'endomorphisme de $E_{\lambda}(v)$ induit par u possède alors un vecteur propre (toujours car $E_{\lambda}(v)$ est un espace vectoriel complexe). Ce vecteur propre est alors évidemment un vecteur propre de u. Mais c'est également un vecteur propre de v (associé à la valeur propre λ) puisqu'il appartient au sous-espace propre $E_{\lambda}(v)$.

Solution 24

- 1. Tout d'abord, f est clairement linéaire. On vérifie ensuite que $f(1) = X^2 \in \mathbb{R}_2[X]$, $f(X) = X \in \mathbb{R}_2[X]$ et $f(X^2) = 1 \in \mathbb{R}_2[X]$. Comme $(1, X, X^2)$ est une base de $\mathbb{R}_2[X]$, $\mathbb{R}_2[X]$ est stable par f et $f \in \mathcal{L}(\mathbb{R}_2[X])$.
- 2. La question précédente montre que $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. On en déduit sans peine que $\chi_A = (X 1)^2(X + 1)$. Ainsi $Sp(A) = \{1, -1\}$. On

$$\text{calcule ensuite } E_1(A) = \text{vect} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) \text{et } E_{-1}(A) = \text{vect} \left(\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right).$$

3. On déduit de la question précédente que $Sp(f) = \{1, -1\}$, $E_1(f) = \text{vect}(X^2 + 1, X)$ et $E_{-1}(f) = \text{vect}(X^2 - 1)$.

Polynôme caractéristique

Solution 25

Tout d'abord,

$$\chi_{A}(X) = \begin{vmatrix} X & \cdots & \cdots & 0 & a_{0} \\ -1 & \ddots & \vdots & a_{1} \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

Première méthode. En numérotant L_0, \dots, L_{n-1} les lignes de ce déterminant et en effectuant l'opération $L_0 \leftarrow \sum_{k=0}^{n-1} X^k L_k$, on obtient

$$\chi_{A}(X) = \begin{vmatrix} 0 & \cdots & \cdots & 0 & P(X) \\ -1 & \ddots & & \vdots & & a_{1} \\ 0 & \ddots & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & 0 & & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

avec $P(X) = X^n + \sum_{k=0}^{n-1} a_k X^k$. En développant par rapport à la première ligne, on obtient $\chi_A(X) = P(X)$.

Deuxième méthode. En développant par le déterminant définissant $\chi_A(X)$ par rapport à sa dernière colonne, on obtient

$$\chi_{\mathbf{A}}(\mathbf{X}) = \sum_{k=0}^{n-2} (-1)^{n+k+1} a_k \mathbf{D}_k(\mathbf{X}) + (\mathbf{X} + a_{n-1}) \det(\mathbf{X} \mathbf{I}_{n-1})$$

avec

où le bloc supérieur gauche est de taille k et le bloc inférieur droit est de taille n-1-k. Comme il s'agit d'un déterminant diagonal par blocs, on obtient $D_k(X) = (-1)^{n-1-k}X^k$ puis

$$\chi_{\mathbf{A}}(\mathbf{X}) = \sum_{k=0}^{n-1} a_k \mathbf{X}^k + \mathbf{X}^{n-1}(\mathbf{X} + a_{n-1}) = \mathbf{X}^n + \sum_{k=0}^{n-1} a_k \mathbf{X}^k$$

Solution 26

1. Pour tout $\lambda \in \mathbb{K}$.

$$\chi_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I}_n - \mathbf{A}) = \det((\lambda \mathbf{I}_n - \mathbf{A})^{\mathsf{T}}) = \det(\lambda \mathbf{I}_n - \mathbf{A}^{\mathsf{T}}) = \chi_{\mathbf{A}^{\mathsf{T}}}(\lambda)$$

Ainsi A et A^T ont même polynôme caractéristique.

- 2. Les valeurs propres d'une matrice sont les racines du polynôme caractéristique donc $Sp(A) = Sp(A^T)$.
- **3.** Soit $\lambda \in Sp(A)$. Alors

$$\operatorname{rg}(A - \lambda I_n) = \operatorname{rg}((A - \lambda I_n)^{\mathsf{T}}) = \operatorname{rg}(A^{\mathsf{T}} - \lambda I_n)$$

D'après le théorème du rang,

$$\dim E_{\lambda}(A) = \dim \operatorname{Ker}(A - \lambda I_n) = \dim \operatorname{Ker}(A^{\mathsf{T}} - \lambda I_n) = \dim E_{\lambda}(A^{\mathsf{T}})$$

Remarque. Ceci prouve également que A et A^T ont même spectre puisque $\lambda \in Sp(A) \iff \dim Ker(A - \lambda I_n) \geq 1$.

Solution 27

1. En développant le déterminant définissant $P_{n+1}(X)$ par rapport à sa dernière colonne, on obtient

$$P_{n+1}(X) = \begin{vmatrix} X - a_1 & -b_1 & 0 & \cdots & 0 \\ -b_1 & X - a_2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & X - a_n & -b_n \\ 0 & \cdots & 0 & -b_n & X - a_{n+1} \end{vmatrix}$$

$$= (X - a_{n+1})P_n(X) + b_n \begin{vmatrix} XI_{n-1} - A_{n-1} & 0 \\ XI_{n-1} - A_{n-1} & 0 \\ -b_{n-1} \\ 0 & \cdots & 0 & -b_n \end{vmatrix}$$

$$= (X - a_{n+1})P_n(X) - b_n^2 P_{n-1}(X)$$

- **2. a.** Il suffit de remarquer que A_n est symétrique réelle.
 - **b.** La matrice extraite de l'énoncé est triangulaire inférieure et ses coefficients diagonaux sont $-b_1, \dots, -b_{n-1}$. Son déterminant est donc $(-1)^{n-1} \prod_{i=1}^{n-1} b_i$. Notamment ce déterminant n'est pas nul.
 - c. La matrice $\lambda I_n A_n$ possède une matrice extraite inversible de taille n-1 donc $\operatorname{rg}(\lambda I_n A_n) \ge n-1$. Mais $\lambda \in \operatorname{Sp}(A_n)$ donc dim $\operatorname{Ker}(\lambda I_n A_n) \ge 1$. D'après le théorème du rang, on en déduit que $\operatorname{rg}(\lambda I_n A_n) \le n-1$. Finalement, $\operatorname{rg}(\lambda I_n A_n) = n-1$.
 - **d.** D'après la question précédente et le théorème du rang, tous les sous-espaces propres de A_n sont de dimension 1. Comme A_n est diagonalisable, P_n est scindé et les multiplicités de ses racines sont égales aux dimensions des sous-espaces propres correspondants. On en déduit que P_n est simplement scindé sur \mathbb{R} .
- **3. a.** Soit $x \in \mathbb{R}$. Alors

$$\Delta_n(x) = P'_{n+1}(x)P_n(x) - P'_n(x)P_{n+1}(x)$$

D'après la question 1,

$$P_{n+1}(X) = (X - a_{n+1})P_n(X) - b_n^2 P_{n-1}(X)$$

donc

$$P'_{n+1}(x) = (x - a_{n+1})P'_n(x) + P_n(x) - b_n^2 P'_{n-1}(x)$$

Ainsi

$$\begin{split} \Delta_n(x) &= (x - a_{n+1}) P_n'(x) P_n(x) + P_n^2(x) - b_n^2 P_{n-1}' P_n(x) - P_n'(x) P_{n+1}(x) \\ &= P_n'(x) \left[(x - a_{n+1}) P_n(x) - P_{n+1}(x) \right] + P_n^2(x) - b_n^2 P_{n-1}'(x) P_n(x) \\ &= b_n^2 P_n'(x) P_{n-1}(x) + P_n^2(x) - b_n^2 P_{n-1}'(x) P_n(x) \\ &= P_n^2(x) + b_n^2 \Delta_{n-1}(x) \end{split}$$

b. Il est clair que $P_1(x) = (x - a_1)$ et que $P_2(x) = (x - a_1)(x - a_2) - b_1^2$. Ainsi

$$\begin{split} \Delta_1(x) &= \mathrm{P}_2'(x)\mathrm{P}_1(x) - \mathrm{P}_1'(x)\mathrm{P}_2(x) \\ &= \left[(x-a_1) + (x-a_2) \right] (x-a_1) - \left[(x-a_1)(x-a_2) - b_1^2 \right] \\ &= (x-a_1)^2 + b_1^2 > 0 \end{split}$$

 $car b_1 \neq 0$.

La question précédente alliée à une récurrence évidente montre que $\Delta_n(x) > 0$ pour tout $n \in \mathbb{N}^*$.

4. Notons $f_n: x \mapsto \frac{P_{n+1}(x)}{P_n(x)}$ ainsi que $\lambda_1 < \dots < \lambda_n$ les zéros de P_n . Soit $i \in [[1, n-1]]$. f_n est dérivable sur $]\lambda_i, \lambda_{i+1}[$ et

$$\forall x \in]\lambda_i, \lambda_{i+1}[, \ f'_n(x) = \frac{\Delta_n(x)}{P_n(x)^2} > 0$$

Ainsi f_n est strictement croissante sur $]\lambda_i, \lambda_{i+1}[$. P_{n+1} ne peut pas s'annuler en λ_i car sinon $\Delta_n(\lambda_i) = 0$ ce qui contredirait la stricte positivité de Δ_n . Ainsi f_n admet une limite infinie en λ_i^+ . Pour les mêmes raisons, f_n admet une limite infinie en λ_{i+1}^- . Par stricte croissance de f_n , $\lim_{\lambda_i^+} f_n = -\infty$ et $\lim_{\lambda_{i+1}^-} f_n = +\infty$. Enfin, f_n est continue sur $]\lambda_i, \lambda_{i+1}[$ donc f_n de même que P_{n+1} s'annule une unique fois sur $]\lambda_i, \lambda_{i+1}[$.

REMARQUE. On a donc prouvé que P_{n+1} possédait n-1 racines comprises entre les racines consécutives de P_n . Comme P_{n+1} possède n+1 racines, ses deux dernières racines appartiennent à $]-\infty,\lambda_1[\cup]\lambda_n,+\infty[$. Mais comme f_n est strictement croissante sur chacun des deux intervalles $]-\infty,\lambda_1[$ et $]\lambda_n,+\infty[$, elle ne peut s'annuler qu'une fois sur chacun de ces deux intervalles. Ainsi P_{n+1} possède encore une racine dans $]-\infty,\lambda_1[$ et une racine dans $]\lambda_n,+\infty[$.

Solution 28

1. Pour tout $\lambda \in \mathbb{K}$:

$$\chi_{u \circ v}(\lambda) = \det(u \circ v - \lambda \operatorname{Id}_{E})$$

$$= \det(u \circ (v - \lambda u^{-1}))$$

$$= \det(u) \det(v - \lambda u^{-1})$$

$$= \det(v - \lambda u^{-1}) \det(u)$$

$$= \det((v - \lambda u^{-1}) \circ u)$$

$$= \det(v \circ u - \lambda \operatorname{Id}_{E}) = \chi_{v \circ u}(\lambda)$$

On en déduit que $\chi_{u \circ v} = \chi_{v \circ u}$ puisque ces deux polynômes coïncident sur l'ensemble infini \mathbb{K} .

2. Soit $\lambda \in \mathbb{K}$. Pour tout $\mu \in \mathbb{K} \setminus \operatorname{Sp}(u)$, $u - \mu \operatorname{Id}_{E}$ est inversible donc d'après la question précédente

$$\det((u - \mu \operatorname{Id}_{E}) \circ v - \lambda \operatorname{Id}_{E}) = \det(v \circ (u - \mu \operatorname{Id}_{E}) - \lambda \operatorname{Id}_{E})$$

Les deux membres de cette égalité définissent des fonctions polynomiales de la variable μ qui coïncident sur l'ensemble infini $\mathbb{K}\setminus \mathrm{Sp}(u)$. Elles coïncident donc en tout point de \mathbb{K} et notamment en 0. Ainsi pour tout $\lambda\in\mathbb{K}$, $\chi_{u\circ v}(\lambda)=\chi_{v\circ u}(\lambda)$ et donc $\chi_{u\circ v}=\chi_{v\circ u}$.

Solution 29

- Les coefficients dans les cofacteurs de A sont du type -A_{ij} ou λ A_{ij}, ce qui explique que chaque cofacteur de A est polynomial en λ. De plus, chaque cofacteur de A possède exactement n 1 coefficients du type λ A_{ii} donc est de degré au plus n 1 en λ. On en déduit le résultat demandé.
- **2.** Notons $C_1(\lambda), \dots, C_n(\lambda)$ les vecteurs colonnes de $\lambda I_n A$, de sorte que

$$P(\lambda) = \det(\lambda I_n - A) = \det(C_1(\lambda), \dots, C_n(\lambda))$$

Par multilinéarité du déterminant, on obtient

$$P'(\lambda) = \sum_{k=1}^{n} \det(C_1(\lambda), \dots, C_{k-1}(\lambda), C'_k(\lambda), C_{k+1}(\lambda), \dots, C_n(\lambda))$$

Or $C'_k(\lambda) = E_k$ où E_k est le k-ème vecteur de la base canonique de \mathbb{K}^n . En développant

$$det(C_1(\lambda), \dots, C_{k-1}(\lambda), C'_{k}(\lambda), C_{k+1}(\lambda), \dots, C_{n}(\lambda))$$

par rapport à la k-ème colonne, on trouve que celui-ci vaut le cofacteur en position (k, k) de la matrice $\lambda I_n - A$, autrement dit B_{kk} . Ainsi $P'(\lambda) = \sum_{k=1}^n B_{kk} = \text{tr}(B)$.

3. Pour tout $\lambda \in \mathbb{K}$, $P'(\lambda) = tr(B(\lambda))$ i.e.

$$n\lambda^{n-1} - p_1(n-1)\lambda^{n-2} \cdots - p_{n-1} = \lambda^{n-1} \operatorname{tr}(\mathbf{I}_n) + \lambda^{n-2} \operatorname{tr}(\mathbf{B}_1) \cdots + \operatorname{tr}(\mathbf{B}_{n-1})$$

En identifiant coefficient par coefficient, on obtient $p_k(n-k) = -\operatorname{tr}(B_k)$. Par ailleurs, $(\lambda I_n - A)B(\lambda) = \det(\lambda I_n - A)I_n = P(\lambda)I_n$ pour tout $\lambda \in \mathbb{K}$, ce qui s'écrit également

$$(\lambda \mathbf{I}_n - \mathbf{A}) \sum_{k=0}^{n-1} \lambda^{n-1-k} \mathbf{B}_k = (\lambda^n - \sum_{k=1}^n p_k \lambda^{n-k}) \mathbf{I}_n$$

Après un changement d'indice et en tirant parti du fait que $B_n = 0$, on trouve pour tout $\lambda \in \mathbb{K}$

$$\lambda^{n} \mathbf{B}_{0} + \sum_{k=1}^{n} \lambda^{k} (\mathbf{B}_{k} - \mathbf{A} \mathbf{B}_{k-1}) = \lambda^{n} \mathbf{I}_{n} - \sum_{k=1}^{n} p_{k} \lambda^{n-k} \mathbf{I}_{n}$$

En identifiant «coefficient» par «coefficient» (les coefficients des puissances de λ sont des matrices, mais on peut raisonner indépendamment sur chaque coefficient des matrices si cela vous choque), on obtient $B_0 = I_n$ et $B_k - AB_{k-1} = -p_kI_n$ i.e. $B_k = AB_{k-1} - p_kI_n$ pour $1 \le k \le n$.

En reportant cette expression de B_k dans la relation $p_k(n-k) = -\operatorname{tr}(B_k)$ trouvée plus haut, on obtient

$$p_k(n-k) = -\operatorname{tr}(AB_{k-1} - p_kI_n) = -\operatorname{tr}(AB_{k-1}) + np_k$$

ce qui s'écrit encore $p_k = \frac{1}{k} \operatorname{tr}(AB_{k-1})$ pour $1 \le k \le n$.

- **4.** On sait que $B_n = AB_{n-1} p_nI_n$ d'après la question précédente et on a posé $B_n = 0$ donc $AB_{n-1} = p_nI_n$. A est donc inversible si $p_n \neq 0$ et dans ce cas, $A^{-1} = \frac{1}{p_n}B_{n-1}$.
- 5. from numpy.polynomial import Polynomial import numpy as np

```
def polycar(A):
 n,p=A.shape
 if n!=p:
    return
 Id=np.eye(n)
 B=Id
 X=Polynomial([0,1])
 P=X**n
  for k in range(1,n+1):
    p=np.trace(A@B)/k
    B=A_{0}B-p*Id
    P=P-p*X**(n-k)
 return P
def inverse(A):
 n,p=A.shape
 if n!=p:
    return
 Id=np.eye(n)
 B=Id
 for k in range(1,n):
    p=np.trace(A@B)/k
    B=A@B-p*Id
 p=np.trace(A@B)/n
 return B/p
```

Solution 30

Remarquons tout d'abord que \mathbf{E}_p est un espace vectoriel de dimension p. On peut par exemple voir que l'application $\left\{ \begin{array}{ll} \mathbf{E}_p & \longrightarrow & \mathbb{C}^p \\ (u_n) & \longmapsto & (u_0,u_1,\dots,u_{p-1}) \end{array} \right.$ est un isomorphisme.

Posons $\omega_k = \exp\left(\frac{2ik\pi}{p}\right)$ pour $k \in [0, p-1]$. On vérifie que $2\omega_k^n - \omega_k^{n+1} - \omega_k^{n-1} = 2\left(1-\cos\frac{2k\pi}{p}\right)\omega_k^n$. Autrement dit la suite (ω_k^n) est un vecteur propre de D_p associée à la valeur propre $2\left(1-\cos\frac{2k\pi}{p}\right)$. La famille formée des suites (ω_k^n) pour $0 \le k \le p-1$ est libre. On peut par exemple voir qu'elle est orthonormale pour le produit hermitien $((u_n),(v_n))\mapsto \frac{1}{p}\sum_{k=0}^{p-1}u_k\overline{v_k}$. C'est donc une base de E_p .

Ainsi les valeurs propres de D_p sont exactement les $\lambda_k = 2\left(1-\cos\frac{2k\pi}{p}\right)$ pour $0 \le k \le p-1$ et elles sont toutes de multiplicité 1 dans le polynôme caractéristique. Or le coefficient de X dans ce polynôme est $(-1)^{p-1}\sigma_{p-1}$ où σ_{p-1} est la $(p-1)^{\text{ème}}$ fonction symétrique des λ_k . Puisque $\lambda_0 = 0$, on a tout simplement $\sigma_{p-1} = \prod^{p-1} \lambda_k$.

Posons $P = \prod_{k=1}^{p-1} \left(X^2 - 2\cos\frac{2k\pi}{p} + 1 \right)$ de sorte que $\sigma_{p-1} = P(1)$. De plus, $X^2 - 2\cos\frac{2k\pi}{p} + 1 = (X - \omega_k)(X - \overline{\omega_k})$ donc $P = \left(\frac{X^n - 1}{X - 1}\right)^2 = \left(\sum_{k=0}^{p-1} X^k\right)^2$. On en déduit que $\sigma_{p-1} = P(1) = p^2$. Le coefficient de X dans le polynôme caractéristique de D_p est donc $(-1)^{p-1}p^2$.

Solution 31

Notons A, B, et C les matrices de f, g et h dans une base de E. On a alors CB = AC. Comme C est de rang r, il existe deux matrices inversibles P et Q telles que $C = PJ_rQ^{-1}$, où J_r désigne traditionnellement la matrice dont tous les coefficients sont nuls hormis les r premiers coefficients diagonaux qui valent 1. On a donc $PJ_RQ^{-1}B = APJ_RQ^{-1}$ ou encore $J_r(Q^{-1}BQ) = (P^{-1}AP)J_r$. Comme deux matrices semblables ont même polynôme caractéristique, on peut supposer pour simplifier que $J_rB = AJ_r$. En effectuant un calcul par blocs, on trouve que A et B sont

respectivements de la forme $\binom{M}{0} *$ et $\binom{M}{*} *$ où M est un bloc carré de taille r. On en déduit que χ_{M} , qui est bien un polynôme de degré

r, divise χ_A et χ_B et donc également χ_f et χ_g .

La réciproque est fausse dès que $n \ge 2$. En effet, on peut encore raisonner matriciellement en considèrant A la matrice nulle et B une matrice non nulle nilpotente. Alors $\chi_A = \chi_B = X^n$ de sorte que χ_A et χ_B ont un facteur commun de degré n (à savoir X^n). Mais il n'existe évidemment pas de matrice C de rang n (i.e. inversible) telle que CB = AC car AC est nulle tandis que CB ne l'est pas (C est inversible et B est non nulle).

Solution 32

Remarquons que

$$\left(\begin{array}{c|c|c} \lambda \mathbf{I}_n & -\mathbf{A} \\ -\mathbf{B} & \mathbf{I}_p \end{array}\right) \cdot \left(\begin{array}{c|c} \mathbf{I}_n & \mathbf{0} \\ \mathbf{B} & \mathbf{I}_p \end{array}\right) = \left(\begin{array}{c|c} \lambda \mathbf{I}_n - \mathbf{A}\mathbf{B} & -\mathbf{A} \\ \hline \mathbf{0} & \mathbf{I}_p \end{array}\right)$$

En considérant les déterminants, on obtient

$$\begin{vmatrix} \lambda I_n & -A \\ -B & I_p \end{vmatrix} = \chi_{AB}(\lambda)$$

Remarquons maintenant que

$$\left(\begin{array}{c|c|c}
I_n & 0 \\
\hline
B & \lambda I_n
\end{array}\right) \cdot \left(\begin{array}{c|c}
\lambda I_n & -A \\
\hline
-B & I_n
\end{array}\right) = \left(\begin{array}{c|c}
\lambda I_n & -A \\
\hline
0 & I_n - BA
\end{array}\right)$$

En considérant les déterminants, on obtient maintenant

$$\lambda^{p} \begin{vmatrix} \lambda \mathbf{I}_{n} & -\mathbf{A} \\ -\mathbf{B} & \mathbf{I}_{p} \end{vmatrix} = \lambda^{n} \chi_{\mathrm{BA}}(\lambda)$$

Finalement, $\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_B A(\lambda)$. Ceci étant vrai pour tout $\lambda \in \mathbb{K}$,

$$X^p \chi_{AB} = X^n \chi_{BA}$$

Si n = p, on obtient bien $\chi_{AB} = \chi_{BA}$ par intégrité de $\mathbb{K}[X]$.

Solution 33

1. La matrice A de u dans la base (e_1, \dots, e_{2n+1}) est

$$A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Ainsi

$$\chi_{u}(X) = \chi_{A}(X) = \begin{vmatrix} X - 1 & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & X - 1 & -1 \\ -1 & 0 & \cdots & 0 & X - 1 \end{vmatrix}$$

En développant par rapport à la première colonne, on obtient

$$\chi_u(X) = (X - 1)^{2n+1} - 1$$

2. $\chi_u(0) = -2 \neq 0$ donc 0 n'est pas valeur propre de u et u est inversible. D'après le théorème de Cayley-Hamilton, $\chi_u(u) = 0$ i.e. $(u - \mathrm{Id}_{\mathrm{E}})^{2n+1} = \mathrm{Id}_{\mathrm{E}}$. Par conséquent

$$\sum_{k=0}^{2n+1} {2n+1 \choose k} (-1)^{2n+1-k} u^k = \mathrm{Id}_{\mathbf{E}}$$

ou encore

$$u \circ \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} u^k = 2 \operatorname{Id}_{\mathbf{E}}$$

Ainsi en posant $P = \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} X^k$, on a bien $u^{-1} = P(u)$.

3. Les valeurs propres de u sont les racines de χ_u . Autrement dit,

$$\operatorname{Sp}(u) = 1 + \bigcup_{2n+1} = \left\{ 1 + e^{\frac{2ik\pi}{2n+1}}, \ k \in \llbracket 0, 2n \rrbracket \right\} = \left\{ 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right), \ k \in \llbracket 0, 2n \rrbracket \right\}$$

4. Comme card $\mathbb{U}_{2n+1} = 2n+1$ et $\deg \chi_u = 2n+1$, toutes les valeurs propres de u sont simples (on en déduit également que u est diagonalisable, ce qui n'est pas demandé). D'après les liens entre les coefficients et les racines d'un polynôme

$$\prod_{k=0}^{2n} 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right) = (-1)^{2n+1} \chi_u(0) = 2$$

En notant P_n le produit à calculer,

$$2^{2n+1} P_n \prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = 2$$

$$Comme \sum_{k=0}^{2n} k = n(2n+1),$$

$$\prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = e^{in\pi} = (-1)^n$$

Finalement,

$$P_n = \frac{(-1)^n}{2^{2n}}$$

Diagonalisation

Solution 34

La matrice de Φ dans une base adaptée à la décomposition en somme directe $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$ est $\left(\begin{array}{c|c} I_{\underline{n(n+1)}} & 0 \\ \hline 0 & -I_{\underline{n(n-1)}} \\ \hline \end{array}\right)$. On en

$$\operatorname{d\'eduit}\operatorname{tr}(\Phi) = \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n.$$

Solution 35

Supposons que u et v commutent et donnons-nous $\lambda \in \operatorname{Sp}(u)$. Pour tout $x \in \operatorname{E}_{\lambda}(u)$, $u(v(x)) = v(u(x)) = \lambda v(x)$ donc $v(x) \in \operatorname{E}_{\lambda}(u)$, ce qui prouve que $\operatorname{E}_{\lambda}(u)$ est stable par v.

Supposons maintenant tout sous-espace propre de u stable par v. Puisque u est diagonalisable, $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}(u)$. Soit $x \in E$. Alors il

existe une famille $(x_{\lambda})_{\lambda \in \operatorname{Sp}(u)} \in \prod_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)$ telle que $x = \sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}$. D'une part,

$$\upsilon(u(x)) = \upsilon\left(u\left(\sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}\right)\right) = \upsilon\left(\sum_{\lambda \in \operatorname{Sp}(u)} \lambda x_{\lambda}\right) = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda \upsilon(x_{\lambda})$$

D'autre part, en notant que $v(x_{\lambda}) \in E_{\lambda}(u)$ pour tout $\lambda \in Sp(u)$

$$u(v(x)) = u\left(v\left(\sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}\right)\right) = u\left(\sum_{\lambda \in \operatorname{Sp}(u)} v(x_{\lambda})\right) = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda v(x_{\lambda})$$

Finalement, v(u(x)) = u(v(x)) donc u et v commutent.

Solution 36

Puisque u est diagonalisable, on sait que $E = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$. Choisissons une base \mathcal{B} adaptée à cette décomposition en somme directe. On montre sans peine qu'un endomorphisme de E commute avec u si et seulement si il stabilise ses sous-espaces propres autrement dit si et

montre sans peine qu'un endomorphisme de E commute avec u si et seulement si il stabilise ses sous-espaces propres autrement dit si et seulement si sa matrice dans la base \mathcal{B} est diagonale par blocs, chaque bloc diagonal étant de la taille du sous-espace propre correspondant. Il est clair que l'ensemble des matrices de cette forme est un sous-espace vectoriel de dimension $\sum_{\lambda \in \operatorname{Sp}(u)} (\dim E_{\lambda}(u))^2$. Puisque l'application qui

à un endomorphisme associe sa matrice dans la base \mathcal{B} est un isomorphisme, on en déduit que la dimension du commutant de u est également $\sum_{\lambda \in \operatorname{Sp}(u)} (\dim \operatorname{E}_{\lambda}(u))^2.$

Solution 37

On montre que A est diagonalisable et plus précisément que $A = PDP^{-1}$ avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}$. Le commutant de D est

l'ensemble des matrices de la forme $\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix}$ où (a,b,c,d,e) décrit \mathbb{K}^5 .

Il suffit alors de remarquer que $M \in \mathcal{M}_3(\mathbb{K})$ commute avec D si et seulement si PMP^{-1} commute avec A. Le commutant de A est donc l'ensemble des matrices de la forme

$$P\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix} P^{-1} = \begin{pmatrix} -2a - c + 4b + 2d + e & 6a + 3c - 8b - 4d - 2e & -2a - c + 2b + d + e \\ -a + 2b + e & 3a - 4b - 2e & -a + b + e \\ c - 2d + 2e & -3c + 4d - 4e & c - d + 2e \end{pmatrix}$$

où (a, b, c, d, e) décrit \mathbb{K}^5 .

Solution 38

- 1. Soit $\lambda \in Sp(u)$. Pour tout $x \in F \cap E_{\lambda}(u)$, $u(x) = \lambda x \in F \cap E_{\lambda}(u)$ donc $F \cap E_{\lambda}(u)$ est stable par u. Par conséquent, G est stable par u.
- 2. On sait que F est stable par u et que u est diagonalisable donc $u_{|F}$ est également diagonalisable. De plus, $Sp(u_{|F}) \subset Sp(u)$ et quitte à poser $E_{\lambda}(u_{|F}) = \{0\}$ si $\lambda \notin Sp(u_{|F})$, on a $F = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u_{|F})$. On conclut en remarquant que pour tout $\lambda \in Sp(u)$

$$E_{\lambda}(u_{|F}) = \operatorname{Ker}(u_{|F} - \lambda \operatorname{Id}_{F}) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E}) \cap F = E_{\lambda}(u) \cap F$$

3. Soit $F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} F_{\lambda}$ où pour tout $\lambda \in \operatorname{Sp}(u)$, F_{λ} est un sous-espace vectoriel de $\operatorname{E}_{\lambda}(u)$. Soit $\lambda \in \operatorname{Sp}(u)$. Alors pour tout $x \in F_{\lambda}$, $u(x) = \lambda x \in F_{\lambda}$ donc F_{λ} est stable par u. Par conséquent, F est stable par u. Réciproquement, soit F un sous-espace stable par u et posons $F_{\lambda} = F \cap \operatorname{E}_{\lambda}(u)$ pour tout $\lambda \in \operatorname{Sp}(u)$. Alors F_{λ} est un sous-espace vectoriel de $\operatorname{E}_{\lambda}$ pour tout $\lambda \in \operatorname{Sp}(u)$ et $F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} F_{\lambda}$ d'après la question précédente.

Solution 39

1. Le polynôme caractéristique de A est

$$\chi_A = (X-2)(X-3) - 2 = X^2 - 5X + 4 = (X-1)(X-4)$$

Ainsi A est diagonalisable et le spectre de A est $Sp(A) = \{1, 4\}$. On vérifie que

$$Ax_1 = x_1$$
 avec $x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

et que

$$Ax_2 = 4x_2$$
 avec $x_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Comme A est de taille 2, les sous-espaces propres associés aux valeurs propres 1 et 4 dont donc de dimension 1. Ce sont respectivement $\text{vect}(x_1)$ et $\text{vect}(x_2)$.

De plus,
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.

2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 = A$. Alors $AM = M^3 = MA$. Alors $AMx_1 = MAx_1 = Mx_1$ donc Mx_1 est un vecteur propre de A. Comme le sous-espace propre associé à la valeur propre 1 est $\text{vect}(x_1)$, il existe $\lambda \in \mathbb{R}$ tel que $Mx_1 = \lambda x_1$. Donc $\lambda^2 x_1 = M^2 x_1 = Ax_1 = x_1$ puis $\lambda^2 = 1$ i.e. $\lambda = \pm 1$ et $Mx_1 = \pm x_1$. De même, $Ax_2 = \pm 2x_2$. On peut alors affirmer que

$$M = P \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 2 \end{pmatrix} P^{-1}$$

Réciproquement ces quatres matrices conviennent.

Remarque. Les quatre matrices en question sont

$$\pm \frac{1}{3} \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$$
 et $\pm \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$

Solution 40

On calcule $\chi_A = (X-2)(X-1)^2$, $E_2(A) = \text{vect} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $E_1(A) = \text{vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$. Ainsi A est diagonalisable. De même, $\chi_B = (X-2)(X-1)^2$.

 $(X-2)(X-1)^2$, $E_2(B) = \text{vect}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ mais $E_1(B) = \text{vect}\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. Donc B n'est pas diagonalisable. Donc A et B ne sont pas semblables

même si elles ont mêmes valeurs propres et même polynôme caractéristique.

Solution 41

- 1. On trouve $\chi_A = X^2 + 7X 8 = (X + 8)(X 1)$. De plus, $E_{-8}(A) = \text{vect}\left(\begin{pmatrix} -1 \\ 1 \end{pmatrix}\right)$ et $E_1(A) = \text{vect}\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$. Ainsi $A = PDP^{-1}$ avec $D = \begin{pmatrix} -8 & 0 \\ 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$.
- 2. Alors en posant Y = P⁻¹XP, l'équation X³ = A équivaut à Y³ = D. Supposons que X³ = A i.e. Y³ = D. Alors Y commute avec Y³ = D. En notant, Y = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, YD = DY donne b = c = 0. Par conséquent, Y est diagonale. L'équation Y³ = D équivaut $a^3 = -8$ et $d^3 = 1$ i.e. a = -2 et d = 1 ou encore Y = $\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$. L'unique solution de l'équation X³ = A est alors

$$P\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} P^{-1} = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$$

Solution 42

- 1. On trouve $A = aI_3 + bJ + cJ^2$.
- 2. On trouve $\chi_I = X^3 1 = (X 1)(X j)(X j^2)$. Comme χ_I est scindé à racines simples, J est diagonalisable.
- 3. Les sous-espaces propres associés à 1, j et j^2 sont respectivement engendrés par $\omega_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\omega_1 = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ et $\omega_1 = \begin{pmatrix} 1 \\ j^2 \\ j \end{pmatrix}$. Remarquons que $(\omega_0, \omega_1, \omega_2)$ est une base de $\mathcal{M}_{3,1}(\mathbb{C})$ car J est diagonalisable. Enfin, $A\omega_0 = (a+b+c)\omega_0$, $A\omega_1 = (a+bj+cj^2)\omega_1$, $A\omega_2 = (a+bj^2+cj^4)\omega_2$ donc $(\omega_0, \omega_1, \omega_2)$ est également une base de vecteurs propres de A. Ainsi A est diagonalisable. En posant $P = a + bX + cX^2$, $D = \begin{pmatrix} P(1) & 0 & 0 \\ 0 & P(j) & 0 \\ 0 & 0 & P(j^2) \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$, $A = QDQ^{-1}$.

Solution 43

On vérifie que pour tout $k \in [0, n]$, $u((X - a)^k) = k(X - a)^k$. Ainsi tout entier $k \in [0, n]$ est valeur propre de u est un vecteur propre associé est $(X - a)^k$. Comme dim $\mathbb{K}_n[X] = n + 1$, u est diagonalisable et ses valeurs propres sont exactement les entiers compris entre 0 et n.

Solution 44

1. La linéarité de Φ est évidente. Pour montrer que $\Phi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$, il suffit de montrer que $\Phi(X^k) \in \mathbb{R}_n[X]$ pour tout $k \in [0, n]$ car $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Soit $k \in [0, n]$. Alors, en convenant qu'une somme indexée sur l'ensemble vide est nulle

$$\Phi(X^k) = (X+1)X^k - X(X+1)^k = (1-k)X^k - \sum_{j=0}^{k-2} {k \choose j} X^j \in \mathbb{R}_n[X]$$

 Φ est donc bien un endomorphisme de $\mathbb{R}_n[X]$.

2. D'après la question précédente, la matrice de Φ dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire supérieure et ses coefficients diagonaux sont les $1-k \in [0,n]$. On peut donc affirmer que les valeurs propres de Φ sont ces mêmes coefficients diagonaux. Φ possède donc n+1 valeurs propres distinctes et dim $\mathbb{R}_n[X] = n+1$ donc Φ est diagonalisable. De plus, on peut préciser que tous les sous-espaces propres de Φ sont de dimension 1.

Recherchons maintenant les éléments propres de Φ . Soit $k \in [0, n]$. Posons $\Gamma_k = \prod_{i=0}^{k-1} X - i$ (en particulier $\Gamma_0 = 1$). On vérifie aisément que $\Phi(\Gamma_k) = (1 - k)\Gamma_k$. Comme les sous-espaces propres de Φ sont de dimension 1, le sous-espace propre associé à la valeur propre 1 - k est la droite vectorielle vect (Γ_k) .

Solution 45

Puisque rg(A) = 1, 0 est valeur propre de A et dim $E_0 = \dim \operatorname{Ker} A = n - 1$. Ainsi X^{n-1} divise χ_A . On a alors $\chi_A = X^{n-1}(X - \lambda)$. Comme la trace est égale à la somme des valeurs propres comptées avec multiplicité, $\lambda = \operatorname{tr}(A)$.

Si $\lambda = 0$, alors A n'est pas diagonalisable puisque la multiplicité de 0 dans χ_A n'est pas égale à la dimension du sous-espace propre associé à la valeur propre 0.

Si $\lambda \neq 0$, alors λ est valeur propre de A. Comme E_0 et E_{λ} sont en somme directe, dim $E_0 + \dim E_{\lambda} \leq n$ i.e. dim $E_{\lambda} \leq 1$. De plus, dim $E_{\lambda} \geq 1$ donc dim $E_{\lambda} = 1$. La somme des dimensions des sous-espaces propres est alors égale à n et A est diagonalisable.

Solution 46

- 1. On a $f = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})} + 2g$ avec $g : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^{\mathsf{T}}$. Comme $\mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$ et g sont des endomorphismes de $\mathcal{M}_n(\mathbb{R})$, f en est un également.
- 2. Notons $\mathcal{S}_n(\mathbb{R})$ le sous-espace vectoriel des matrices symétriques et $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel des matrices antisymétriques.

$$\forall M \in \mathcal{S}_n(\mathbb{R}), \ f(M) = 3M$$

 $\forall M \in \mathcal{A}_n(\mathbb{R}), \ f(M) = -M$

Ainsi

$$S_n(\mathbb{R}) \subset \operatorname{Ker}(f - 3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$$

 $\mathcal{A}_n(\mathbb{R}) \subset \operatorname{Ker}(f + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$

Comme $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$, on peut affirmer (détailler si cela ne semble pas clair) que

$$\begin{split} \operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) &= \mathcal{S}_n(\mathbb{R}) \\ \operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) &= \mathcal{A}_n(\mathbb{R}) \\ \mathcal{M}_n(\mathbb{R}) &= \operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) \oplus \operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) \end{split}$$

On en déduit que f est diagonalisable, que ses valeurs propres sont 3 et 1 et que les sous-espaces propres associés respectifs sont $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$.

- 3. Déjà répondu à la question précédente.
- **4.** Comme la trace et le déterminant d'un endomorphisme sont respectivement la somme et le produit des valeurs propres comptées avec multiplicité et comme *f* est diagonalisable,

$$\operatorname{tr}(f) = 3 \cdot \dim \mathcal{S}_n(\mathbb{R}) + (-1) \cdot \dim \mathcal{A}_n(\mathbb{R}) = 3 \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n(n+2)$$

$$\det(f) = 3^{\dim \mathcal{S}_n(\mathbb{R})} \cdot (-1)^{\dim \mathcal{A}_n(\mathbb{R})} = 3^{\frac{n(n+1)}{2}} \cdot (-1)^{\frac{n(n-1)}{2}}$$

Solution 47

1. Après un calcul sans difficulté, on trouve que

$$\chi_{\mathbf{A}} = (\mathbf{X} - 1)^3.$$

Si la matrice A était diagonalisable sur \mathbb{R} , elle serait semblable à I_3 donc égale à I_3 , ce qui n'est pas le cas : A n'est pas diagonalisable sur \mathbb{R} .

2. Après tout calcul on trouve que :

$$\chi_{\rm B} = (X+1)^2(X-1)^2$$

et

$$\dim(\text{Ker}(B + I_3)) < 2$$

donc B n'est pas diagonalisable sur \mathbb{R} .

3. On trouve sans peine que

$$\gamma_C = (X-3)(X+3)(X-1)(X+1).$$

Comme $C \in \mathcal{M}_4(\mathbb{R})$ admet quatre valeurs propres réelles distinctes, C est diagonalisable sur \mathbb{R} .

4. On trouve sans peine que

$$\chi_{\rm D} = X(X-1)(X-2).$$

D est donc diagonalisable que \mathbb{R} en tant que matrice de taille trois admettant trois valeurs propres réelles dictinctes.

Solution 48

Posons $M = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$. On calcule $\chi_M = X^2 - 3X + 2 = (X - 1)(X + 2)$. Comme χ_M est scindé à racines simples, M est diagonalisable.

 $De \ plus, \ Sp(M) = \{1,2\}, \ E_1(M) = vect \left(\left(\begin{array}{c} 2 \\ 1 \end{array} \right) \right) et \ E_2(M) = vect \left(\left(\begin{array}{c} 1 \\ 1 \end{array} \right) \right). \ On \ en \ d\'eduit \ notamment \ que \ D = P^{-1}MP \ avec \ P = \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_1(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \\ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}{c} 2 \ 1 \ 1 \end{array} \right) et \ P_2(M) = vect \left(\begin{array}$

 $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. On calcule aussi aisément $P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. On propose ensuite plusieurs manières de procéder.

Méthode n°1. A est diagonalisable donc il existe une base $(U_1, ..., U_n)$ de $\mathcal{M}_{n,1}(\mathbb{K})$ formée de vecteurs propres de A. On note $\lambda_1, ..., \lambda_n$ les valeurs propres respectivement associées. En s'inspirant de la réduction de M, on vérifie qu'en posant $X_i = \begin{pmatrix} 2U_i \\ U_i \end{pmatrix}$ et $Y_i = X_i = \begin{pmatrix} U_i \\ U_i \end{pmatrix}$,

 $\mathrm{BX}_i = \lambda_i \mathrm{X}_i$ et $\mathrm{BY}_i = 2\lambda_i \mathrm{Y}_i$. Ainsi les X_i et les Y_i sont des vecteurs propres de B. On vérifie manitenant que $(\mathrm{X}_1, \dots, \mathrm{X}_n, \mathrm{Y}_1, \dots, \mathrm{Y}_n)$ est une base de $\mathcal{M}_{2n,1}(\mathbb{K})$. Puisque cette famille compte 2n éléments, il sufit de montrer sa liberté. Soit $(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n) \in \mathbb{K}^{2n}$ tel que

$$\sum_{i=1}^{n} \alpha_i X_i + \sum_{i=1}^{n} \beta_i Y_i = 0$$

En raisonnant par blocs, on a donc

$$2\sum_{i=1}^{n} \alpha_i U_i + \sum_{i=1}^{n} \beta_i U_i = 0$$
 (L₁)

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{U}_{i} + \sum_{i=1}^{n} \beta_{i} \mathbf{U}_{i} = 0 \tag{L_{2}}$$

En considérant $(L_1)-(L_2)$, on obtient $\sum_{i=1}^n \alpha_i U_i=0$ et en considérant $2(L_2)-(L_1)$, on otient $\sum_{i=1}^n \beta_i U_i=0$. Comme (U_1,\ldots,U_n) est libre, les α_i et les β_i sont nuls. Ainsi $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ est une base de $\mathcal{M}_{2n,1}(\mathbb{K})$ formée de vecteurs propres de B:B est diagonalisable.

Méthode n°2. Comme A est diagonalisable, il existe $Q \in GL_n(\mathbb{K})$ tel que $\Delta = P^{-1}QP$ soit diagonale. En s'inspirant de la réduction de A, on pose $R = \begin{pmatrix} 2Q & Q \\ Q & Q \end{pmatrix}$. On vérifie alors que R est inversible d'inverse $R = \begin{pmatrix} Q^{-1} & -Q^{-1} \\ -Q^{-1} & 2Q^{-1} \end{pmatrix}$. On vérifie ensuite que

$$R^{-1}BR = \begin{pmatrix} Q^{-1}AQ & 0 \\ 0 & 2Q^{-1}AQ \end{pmatrix} = \begin{pmatrix} \Delta & 0 \\ 0 & 2\Delta \end{pmatrix}$$

R⁻¹BR est donc bien une matrice diagonale : B est donc diagonalisable.

Solution 49

1. On calcule le polynôme caractéristique

$$\chi_{A_m}(X) = \begin{vmatrix} X+m+1 & -m & -2 \\ m & X-1 & -m \\ 2 & -m & X+m-3 \end{vmatrix}$$

$$= \begin{vmatrix} X+m-1 & -m & -2 \\ 0 & X-1 & -m \\ X+m-1 & -m & X+m-3 \end{vmatrix} \qquad C_1 \leftarrow C_1 + C_3$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-3 \end{vmatrix} \qquad \text{en factorisant la première colonne}$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-3 \end{vmatrix} \qquad L_3 \leftarrow L_3 - L_1$$

$$= (X+m-1)^2(X-1)$$

On en déduit que $Sp(A_m) = \{1, 1 - m\}.$

Comme la multiplicité de 1 dans A_m vaut 1, on en déduit que dim $E_1(A_m) = 1$ puis

$$E_1(A_m) = \operatorname{Ker}(A_m - I_n) = \operatorname{Ker} \begin{pmatrix} -m - 2 & m & 2 \\ -m & 0 & m \\ -2 & m & 2 - m \end{pmatrix} = \operatorname{vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Si m = 0, Sp(A₀) = {1} et on vient alors de déterminer l'unique sous-espace propre de A₀. Supposons donc $m \neq 0$ et déterminons $E_{1-m}(A_m)$.

$$\begin{split} \mathbf{E}_{1-m}(\mathbf{A}_m) &= \mathrm{Ker}(\mathbf{A}_m + (m-1)\mathbf{I}_n) \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \\ -2 & m & 2 \end{pmatrix} \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{L}_3 \leftarrow \mathbf{L}_3 - \mathbf{L}_1 \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \end{pmatrix} \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ 2 - m & 0 & m - 2 \end{pmatrix} \qquad \mathbf{L}_2 \leftarrow \mathbf{L}_2 - \mathbf{L}_1 \end{split}$$

On en déduit que si $m \neq 2$,

$$E_{1-m}(A_m) = \operatorname{Ker} \begin{pmatrix} -2 & m & 2 \\ 1 & 0 & -1 \end{pmatrix} = \operatorname{vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \operatorname{car} m \neq 0$$

Et si m=2,

$$E_{1-m}(A_m) = E_{-1}(A_2) = Ker(-1 \ 1 \ 1) = vect \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

On récapitule.

Cas
$$m = 0$$
 Sp(A₀) = {1} et E₁(A₀) = vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Cas
$$m = 2$$
 Sp(A₂) = {-1,1}, E₁(A₂) = vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et E₋₁(A₂) = vect $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

$$\mathbf{Cas}\ m \not\in \{0,2\}\ \operatorname{Sp}(\mathbf{A}_m) = \{1,1-m\}, \ \operatorname{E}_1(\mathbf{A}_m) = \operatorname{vect}\left(\left(\begin{array}{c}1\\1\\1\end{array}\right)\right) \operatorname{et} \operatorname{E}_{1-m}(\mathbf{A}_m) = \operatorname{vect}\left(\left(\begin{array}{c}1\\0\\1\end{array}\right)\right).$$

- 2. On peut par exemple utiliser le fait que A_m est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à 3. On en déduit que A_m est diagonalisable si et seulement si m = 2.
 De plus, A_m est inversible si et seulement si 0 ∉ Sp(A_m) i.e. m ≠ 1.
- 3. Dans le cas où A_m est diagonalisable i.e. m = 2, une base de vecteurs propres est vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. On peut donc choisir

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Solution 50

Dans la suite, on posera $n = \dim E$.

Supposons u diagonalisable et donnons-nous un sous-espace vectoriel F de E. Fixons une base (f_1,\ldots,f_p) de F. Puisque u est diagonalisable, il existe une base de E formée de vecteurs propres de u. D'après le théorème de la base incomplète, on peut alors compléter la famille libre (f_1,\ldots,f_p) en une base $(f_1,\ldots,f_p,e_{p+1},\ldots,e_n)$ où e_{p+1},\ldots,e_n sont des vecteurs propres de u. Le sous-espace vectoriel $G = \text{vect}(e_{p+1},\ldots,e_n)$ est alors un supplémentaire de F stable par u.

Supposons maintenant que tout sous-espace vectoriel de E admet un supplémentaire dans E stable par u. Soit H un hyperplan de E. Alors il existe une droite supplémentaire de H dans E stable par u. Alors un vecteur directeur e_1 de cette droite est un vecteur propre de u. Supposons avoir prouvé l'existence d'une famille libre (e_1, \ldots, e_p) $(1 \le p \le n-1)$ formée de vecteurs propres de u. Soit alors H un hyperplan contenant les vecteurs e_1, \ldots, e_p . A nouveau, il existe une droite supplémentaire de H dans E stable par u et un vecteur directeur e_{p+1} de cette droite est un vecteur propre de u. Puisque H et v except v sont en somme directe, la famille v experimentaire.

Par récurrence, il existe une famille libre (e_1, \dots, e_n) formée de vecteurs propres de u. Puisque $n = \dim E$, cette famille est une base et u est donc diagonalisable.

Solution 51

1. a. Comme f est bijectif, A est inversible. Alors

$$\chi_{AB} = \det(XI_n - AB) = \det(A(XA^{-1} - B)) = \det(A)\det(XA^{-1} - B)$$

= $\det(XA^{-1} - B)\det(A) = \det((XA^{-1} - B)A) = \det(XI_n - BA) = \chi_{BA}$

- **b.** Supposons que $f \circ g$ est diagonalisable. Alors AB est diagonalisable et il existe une matrice diagonale D et une matrice inversible P telles que AB = PDP⁻¹. Alors BA = A⁻¹PDP⁻¹A = A⁻¹PD(A⁻¹P)⁻¹. Donc BA est diagonalisable et $g \circ f$ également.
- a. Soit λ ∈ Sp(f ∘ g). Si λ ≠ 0, considérons un vecteur propre x associé à λ. Alors f ∘ g(x) = λx. Remarquons que g(x) ≠ 0_E car λx ≠ 0_E. De plus, g ∘ f(g(x)) = λg(x) donc λ est un vecteur propre de g ∘ f. Si λ = 0, alors f ∘ g n'est pas inversible. Ainsi det(f ∘ g) = 0. Par conséquent det(g ∘ f) = det(g) det(g) = det(f) det(g) = det(f ∘ g) = 0. Donc g ∘ f n'est pas inversible et 0 ∈ Sp(g ∘ f). On a donc montré que Sp(g ∘ f) ⊂ Sp(f ∘ g). En inversant les rôles de f et g, on a l'inclusion réciproque de sorte que Sp(f ∘ g) = Sp(g ∘ f).
 - **b.** Posons $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Alors $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et $BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. AB est diagonale donc diagonalisable mais BA ne l'est pas. En effet, la seule valeur propre de BA est 0, donc, si BA était diagonalisable, elle serait semblable à la matrice nulle donc elle serait nulle, ce qu'elle n'est pas.

Solution 52

Comme AB est diagonalisable, il existe une base $(X_1, ..., X_n)$ de \mathbb{R}^n formée de vecteurs propres de AB. Notons λ_i la valeur propre associée au vecteur propre X_i . Alors pour $i \in [\![1,n]\!]$, $BABX_i = \lambda_i BX_i$ de sorte que $Y_i = BX_i$ est un vecteur propre de BA.

Comme AB est inversible, Ker B \subset Ker AB = $\{0\}$ donc $X \in \mathbb{R}^n \mapsto BX$ est injective. Or (X_1, \dots, X_n) est une base de \mathbb{R}^n donc (Y_1, \dots, Y_n) est une base de Im B.

Remarquons que Im B et Ker A sont tous deux des sous-espaces vectoriels de \mathbb{R}^p . Soit $Y \in \operatorname{Im} B \cap \operatorname{Ker} A$. Ainsi il existe $X \in \mathbb{R}^n$ tel que Y = BX et ABX = AY = 0. Comme AB est inversible, X = 0 puis Y = 0. Ainsi $AB \cap \operatorname{Im} A \cap \operatorname{I$

Donnons nous une base (Y_{n+1}, \dots, Y_p) de Ker A. Comme $BAY_i = 0$ pour tout $i \in [n+1, p], Y_{n+1}, \dots, Y_p$ sont des vecteurs propres de BA. Comme $\mathbb{R}^p = Im B \oplus Ker A$, (Y_1, \dots, Y_p) est une base de \mathbb{R}^p formée de vecteurs propres de BA de sorte que BA est diagonalisable.

Solution 53

1. D'une part, $f = f \circ g - g = (f - \operatorname{Id}_{\operatorname{E}}) \circ g$ donc $\operatorname{Ker} g \subset \operatorname{Ker} f$. D'autre part, $g = f \circ g - f = f \circ (g - \operatorname{Id}_{\operatorname{E}})$ donc $\operatorname{Im} g \subset \operatorname{Im} f$. On en déduit que dim $\operatorname{Ker} g \leq \dim \operatorname{Ker} f$ et que dim $\operatorname{Im} g \leq \dim \operatorname{Im} f$. Mais, d'après le théorème du rang, on a également

$$\dim \operatorname{Im} g = \dim E - \dim \operatorname{Ker} g \ge \dim E - \dim \operatorname{Ker} f = \dim \operatorname{Im} f$$

donc dim Im $f = \dim \operatorname{Im} g$. Or Im $g \subset \operatorname{Im} f$ donc Im $g = \dim \operatorname{Im} f$. D'après le théorème du rang, dim Ker $g = \dim \operatorname{Ker} f$. Or Ker $g \subset \operatorname{Ker} f$ donc Ker $g = \operatorname{Ker} f$.

2. Comme g est diagonalisable, il existe une base (e_1, \dots, e_n) de E formée de vecteurs propres de E. Notons λ_i la valeur propre associée au vecteur propre e_i . Alors $f \circ g(e_i) = f(e_i) + g(e_i)$ i.e. $(\lambda_i - 1)f(e_i) = \lambda_i e_i$. On ne peut avoir $\lambda_i = 1$ sinon on devrait avoir $\lambda_i = 0$ car $e_i \neq 0_E$. Ainsi $f(e_i) = \frac{\lambda_i}{\lambda_i - 1} e_i$. Les e_i sont donc également des vecteurs propres de f et comme (e_1, \dots, e_n) est une base de E, f est diagonalisable.

Ensuite, $f \circ g(e_i) = \lambda_i f(e_i) = \frac{\lambda_i^2}{\lambda_i - 1} e_i$ donc $f \circ g$ est aussi diagonalisable pour les mêmes raisons. On peut également affirmer que $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi$ avec $\varphi \colon t \in \mathbb{R} \setminus \{1\} \mapsto \frac{t^2}{t-1}$. φ est dérivable $\operatorname{Sur} \mathbb{R} \setminus \{1\}$ et $\varphi'(t) = \frac{t(t-2)}{(t-1)^2}$. On en déduit le tableau de variations suivant.

Ainsi $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi = \mathbb{R} \setminus]0, 4[.$

Solution 54

1. Comme f est diagonalisable, il existe une base (e_1, \dots, e_n) de E formée de vecteurs propres de f. Notons λ_i la valeur propre associée au vecteur propre e_i . Soit alors x un vecteur propre de f^k et λ sa valeur propre associé. Comme (e_1, \dots, e_n) est une base de E, il existe $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ tel que $x = \sum_{i=1}^n \alpha_i e_i$. D'une part,

$$f^{k}(x) = \lambda x = \sum_{i=1}^{n} \lambda \alpha_{i} e_{i}$$

et d'autre part,

$$f^{k}(x) = \sum_{i=1}^{n} \alpha_{i} f^{k}(e_{i}) = \sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} e_{i}$$

Comme $(e_1, ..., e_n)$ est libre, $\lambda \alpha_i = \alpha_i \lambda_i^k$ pour tout $i \in [1, n]$. Soit $i \in [1, n]$ pour tout $i \in [1, n]$ puis

$$f(x) = \sum_{i=1}^{n} \alpha_i \lambda_i e_i = \sqrt[k]{\lambda} \sum_{i=1}^{n} \alpha_i e_i = \sqrt[k]{\alpha} x$$

donc x est un vecteur propre de f.

2. Soit (u_1, \ldots, u_n) une base de E formée de vecteur propres de $f^k = g^k$. D'après la question précédente, (u_1, \ldots, u_n) est également une base de vecteurs propres de f et g. Si on note λ_i la valeur propre de f associée à u_i et μ_i la valeur propre de g associée à u_i , alors l'égalité $f^k = g^k$ donne $\lambda_i^k = \mu_i^k$ pour tout $i \in [1, n]$. Comme k est impair, on a donc $\lambda_i = \mu_i$, ce qui donne $f(u_i) = \lambda_i u_i = \mu_i u_i = g(u_i)$. Les endomorphismes f et g coïncident donc sur la base (u_1, \ldots, u_n) de E: ils sont égaux.

Trigonalisation

Solution 55

- 1. Après un calcul sans difficulté, on trouve que $\chi_A = (X 1)^3$ de sorte que $Sp(A) = \{1\}$. Si la matrice A était diagonalisable, elle serait semblable à I_3 donc égale à I_3 , ce qui n'est pas le cas. A n'est donc pas diagonalisable.
- $\textbf{2. On souhaite déterminer un base } (U_1,U_2,U_3) \text{ de } \mathcal{M}_{3,1}(\mathbb{R}) \text{ telle que } \begin{cases} AU_1=U_1\\ AU_2=U_2 \end{cases} \text{. Pour cela, on choisit un vecteur } U_3 \text{ qui n'est pas } AU_3=U_3+U_2 \end{cases}$

dans
$$\operatorname{Ker}(A - I_3)$$
. Par exemple, $U_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. On pose ensuite $U_2 = AU_3 - U_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. On choisit enfin un vecteur U_1 dans $\operatorname{Ker}(A - I_3)$

non colinéaire à
$$U_2$$
. Par exemple, $U_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Ainsi $A = PTP^{-1}$ avec $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

3. On a pour tout $n \in \mathbb{N}$, $A^n = PT^nP^{-1}$. En écrivant $T = I_3 + N$ avec $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, la formule du binôme donne $T^n = I_3 + nN$ puisque

 $N^k = 0$ pour $n \ge 3$. A l'aide de la formule de la comatrice ou de la méthode de Gauss, on montre que $P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$.

REMARQUE. On peut même remarquer que P est une matrice de transvection. On en déduit immédiatement son inverse.

Un calcul sans difficulté montre alors que $A^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1-n & n \\ 0 & -n & n+1 \end{pmatrix}$.

4. On sait que $\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$. Sachant que $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$ et que $\sum_{n=0}^{+\infty} \frac{n}{n!} = \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} = \sum_{n=0}^{+\infty} \frac{1}{n!} = e$, on trouve $\exp(A) = \begin{pmatrix} e & 0 & 0 \\ 0 & 0 & e \\ 0 & -e & 2e \end{pmatrix}$.

Remarque. On aurait aussi pu remarquer que $\exp(A) = P \exp(T)P^{-1}$. On trouve sans difficulté $\exp(T) = \begin{pmatrix} e & 0 & 0 \\ 0 & e & e \\ 0 & 0 & e \end{pmatrix}$ et on aboutit au même résultat.

Solution 56

Soit $A \in GL_3(\mathbb{C})$ une matrice semblable à son inverse. Notons α,β,γ les racines du polynôme caractéristique comptée avec multiplicité. On a donc $(A-\alpha I_3)(A-\beta I_3)(A-\gamma I_3)=0$. En multipliant par $\frac{1}{\alpha\beta\gamma}A^{-3}$, on obtient $(A^{-1}-\frac{1}{\alpha}I_3)(A^{-1}-\frac{1}{\beta}I_3)(A^{-1}-\frac{1}{\gamma}I_3)=0$. Ainsi $(X-\frac{1}{\alpha})(X-\frac{1}{\beta})(X-\frac{1}{\gamma})$ est le polynôme caractéristique de A^{-1} . A et A^{-1} étant semblables, elles ont même polynôme caractéristique. On montre alors par l'absurde qu'au moins un des trois complexes α,β,γ est égal à son inverse et donc égal à ± 1 . Il existe donc $\lambda \in \mathbb{C}^*$ telles que les racines du polynôme caractéristique (comptées avec multiplicité) soient $\pm 1,\lambda,\frac{1}{\lambda}$.

Réciproquement soit $A \in GL_3(\mathbb{C})$ dont le polynôme caractéristique admet pour racines $\pm 1, \lambda, \frac{1}{\lambda}$ avec $\lambda \in \mathbb{C}^*$. Quitte à changer A en -A, on peut supposer que les racines sont $1, \lambda, \frac{1}{\lambda}$.

- Si $\lambda \neq \pm 1$, les complexes $1, \lambda, \frac{1}{\lambda}$ sont distincts : A et A^{-1} sont donc diagonalisables et semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \frac{1}{\lambda} \end{pmatrix}$. A et A^{-1} sont donc semblables entre elles.
- Si $\lambda = -1$ et si dim $E_{-1}(A) = 2$, alors on a également dim $E_{-1}(A^{-1}) = 2$ et A et A^{-1} sont donc toutes deux diagonalisables et semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

- Si $\lambda = -1$ et si dim $E_{-1}(A) = 1$, alors on a également dim $E_{-1}(A^{-1}) = 1$ et A et A^{-1} sont donc toutes semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.
- Si $\lambda = 1$ et si dim $E_1(A) = 3$, alors $A = A^{-1} = I_3$.
- Si $\lambda=1$ et si dim $E_1(A)=2$, alors on a également dim $E_{-1}(A^{-1})=2$ et A et A^{-1} sont donc toutes deux semblables à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- Si $\lambda = 1$ et si dim $E_1(A) = 1$, alors on a également dim $E_{-1}(A^{-1}) = 1$ et A et A^{-1} sont donc toutes deux semblables à $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Solution 57

1. Première méthode. Il existe une matrice $P \in GL_n(\mathbb{C})$ telle que $C = P^{-1}BP$ soit trigonale. Notons $\lambda_1, \dots, \lambda_n$ les coefficients diagonaux de C i.e. les valeurs propres de B. La matrice $\chi_A(C)$ est également triangulaire et a pour coefficients diagonaux $\chi_A(\lambda_1), \dots, \chi_A(\lambda_n)$. Les spectres de A et B étant disjoints, ces coefficients sont non nuls, ce qui prouve que $\chi_A(C)$ est inversible. Or les matrices $\chi_A(B)$ et $\chi_A(C)$ sont semblables puisque $\chi_A(C) = \chi_A(P^{-1}BP) = P^{-1}\chi_A(B)P$. Donc $\chi_A(B)$ est également inversible.

sont semblables puisque $\chi_A(\mathbb{C}) = \chi_A(\mathbb{P}^{-1}B\mathbb{P}) = \mathbb{P}^{-1}\chi_A(\mathbb{B})\mathbb{P}$. Donc $\chi_A(\mathbb{B})$ est également inversible. **Deuxième méthode.** Avec les mêmes notations, $\chi_A = \prod_{i=1}^n (X - \lambda_i)$. Ainsi $\chi_A(\mathbb{B}) = \prod_{i=1}^n (B - \lambda_i I_n)$. Pour tout $i \in [1, n]$, $\lambda_i \notin \mathrm{Sp}(\mathbb{B})$ donc $\mathbb{B} - \lambda_i I_n \in \mathrm{GL}_n(\mathbb{C})$. Comme $\mathrm{GL}_n(\mathbb{C})$ est un groupe, $\chi_A(\mathbb{B}) \in \mathrm{GL}_n(\mathbb{C})$.

- 2. On montre par récurrence que $A^nX = XB^n$ pour tout $n \in \mathbb{N}$. On montre ensuite le résultat voulu par bilinéarité du produit matriciel. On a notamment $\chi_A(A)X = X\chi_A(B)$. Or $\chi_A(A) = A$ d'après Cayley-Hamilton donc $X\chi_A(B) = 0$. Comme $\chi_A(B)$ est inversible, X = 0.
- 3. Considérons l'application $\Phi: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{C}) & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ X & \longmapsto & \mathrm{AX} \mathrm{XB} \end{array} \right.$ Φ est clairement un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ et la question précédente montre que $\mathrm{Ker}(\Phi) = \{0\}$ i.e. que Φ est injectif. Puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, Φ est également surjectif, ce qui prouve le résultat voulu.