Assignment 1 STA457H1: Time Series Analysis Due data September 30, 2022

Student Name......ID number.....

Instructions: Show your answers in details.

Q1 (2 points): Consider the autoregression model

$$x_t = -.9x_{t-2} + w_t, \quad w_t \text{ iid } \mathcal{N}(0,1)$$

- 1. Generate n = 200 observations from this process.
- 2. Apply the moving average filter $\nu_t = (x_t + x_{t-1} + x_{t-2} + x_{t-3})/4$ to the data you generated.
- 3. Plot x_t as a line and superimpose ν_t as a dashed line. Comment!

Q2 (2 points): Consider the random walk with drift model

$$x_t = \delta + x_{t-1} + w_t$$

for $t = 1, 2, \dots$, with $x_0 = 0$, where w_t is white noise with variance σ_w^2 .

- 1. Show that the model can be written as $x_t = \delta t + \sum_{j=1}^t w_j$.
- 2. Find the mean function and the autocovariance function of x_t .
- 3. Show that x_t is not stationary.
- 4. Show that $\rho_x(t-1,t) = \sqrt{(t-1)/t}$ as $t \to \infty$. What is the implication of this result?
- 5. Suggest a transformation to make the series stationary, and prove that the transformed series is stationary.

Q3 (2 points): For the following yearly time series (10 years).

$$(t, x_t): (1, 24), (2, 20), (3, 25), (4, 31), (5, 30), (6, 32), (7, 37), (8, 33), (9, 40), (10, 38)$$

- 1. Compute the sample autocorrelation function, $\hat{\rho}(h)$, at lags h = 0, 1, 2, and 3.
- 2. Test the null hypothesis that the theoretical autocorrelation at lag h=1 equals zero.
- 3. Use R and redo parts (1) and (2).

Q4 (2 points):

- 1. Simulate a series of n=500 observations from the process $x_t=\frac{1}{3}(w_{t-1}+w_t+w_{t+1})$, where w_t is Gaussian white noise series and compute the sample ACF, $\hat{\rho}(h)$, to lag 20. Compare the sample ACF you obtain to the actual ACF, $\rho(h)$.
- 2. Repeat part (1) using only n = 50. How does changing n affect the results?

Q5 (2 points): Consider the process: $x_t = \cos\left[2\pi\left(\frac{t}{12} + \phi\right)\right]$, where ϕ is a random variable with a Uniform distribution (0,1), and $t=0,\pm 1,\pm 2$. Show that this process is weak stationary and find its autocorrelation function.