HairSplitter: separating similar strains in metagenome assembly

Roland Faure^{1,2}, Jean-François Flot¹, Dominique Lavenier²

1. Service Evolution Biologique et Ecologie, ULB, Brussels, Belgium 2. Univ. Rennes, Inria RBA, CNRS UMR 6074, Rennes, France

github.com/RolandFaure/Hairsplitter

Problem: assembling similar sequences

State of the art

Difficulties: Unknown number of strains (potentially high), uneven coverage

Existing software: Strainberry [1], stRainy (under development) [2], hifiasm [3]

But: To be improved for noisy reads and high number of strains

Algorithm

1. Robust variant calling

2. Read clustering

Each read is linked to the k nearest reads (k=2here), computed using robust variants

Graph is clustered by the Chinese Whispers algorithm

3. Reassembly

Results

Mix of 2 to 10 *E. coli* strains, simulated sequencing from RefSeq genomes

Mix of 5 E. coli strains, Zymobiomics gut microbiome standard

	metaFlye	metaFlye + Strainberry	metaFlye + HairSplitter
Nanopore Q9	0.586	0.749	0.957
Nanopore Q20	0.7524	0.9527	0.961
PacBio HiFi	0.9589	0.9793	0.9895

Table: 31-mer completeness of assemblies w.r.t. the reference

Conclusion & Perspectives

- Hairsplitter reconstructs a strain-separated assembly from a draft assemby, improving on the state-of-the-art
- Hairsplitter uses any type of long reads (incl. high-error) reads) on any type of assembly (incl. polyploid genome assemblies)
- Perspective: improve the understanding of true microbiomes

References

- [1] Vicedomini, R., Quince, C., Darling, A.E. et al. Strainberry: automated strain separation in lowcomplexity metagenomes using long reads. Nat Commun 12, 4485 (2021).
- https://doi.org/10.1038/s41467-021-24515-9 [2] Ekaterina Kazantseva, Ataberk Donmez, Mihai Pop, Mikhail Kolmogorov. stRainy: assembly-based
- metagenomic strain phasing using long reads. BioRxiv 2023.01.31.526521 [3] Cheng, H., Concepcion, G.T., Feng, X. et al. Haplotype-resolved de novo assembly using phased
- assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021). doi.org/10.1038/s41592-020-01056-5 [4] Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017 May;27(5):737-746. doi: 10.1101/gr.214270.116. [5] Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191

