Introdução a Ciências de Dados

Aula 4: Técnicas de Agrupamento de dados

Francisco A. Rodrigues ICMC/USP francisco@icmc.usp.br

Aula 4 - Agrupamento de dados

- K-means,
- Agrupamento Hierárquico,
- Avaliando Agrupamentos

Dado um conjunto de objetos, agrupar os objetos em grupos (clusters) baseados na similaridade entre eles.

Exemplo: Como agrupar esses animais?

Dado um conjunto de objetos, agrupar os objetos em grupos (clusters) baseados na similaridade entre eles.

Exemplo: Como agrupar esses animais?

Dado um conjunto de objetos, agrupar os objetos em grupos (clusters) baseados na similaridade entre eles.

Exemplo: Como agrupar esses animais?

Limitação: Não há uma definição clara sobre o significado de "cluster" e como encontrá-los.

Encontrar os grupos de objetos tal que objetos no mesmo grupo serão similares (ou relacionados) um ao outro e diferentes (ou não relacionados) a objetos nos outros grupos.

- Como definir a similaridade entre os objetos?
- Precisamos definir uma medida de proximidade.
- Medida de similaridade: d(Xi, Xi) é máxima.
 - o Exemplo: Número de amigos compartilhados em uma rede social.
- Medida de dissimilaridade: d(Xi,Xi) = 0.
 - Exemplo: distância entre cidades (distância Euclidiana).

Medida de dissimilaridade:

- $d(p, q) \ge 0$ para todo p e q, e d(p, q) = 0 se, e somente se, p = q,
- d(p, q) = d(q, p) para todo p e q,
- d(p, r) ≤ d(p, q) + d(q, r) para todo p, q e r, onde d(p, q) é a distância de dissimilaridade entre os pontos (objetos) p e q.

Medida de similaridade:

- s(p, q) = 1 (ou máximo de similaridade) se p = q,
- s(p, q) = s(q, p) para todo p e q, onde s(p, q) é a similaridade entre os objetos p e q.

Métricas de distância:

• Euclidiana
$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 $[0,\infty)$

• Minkowski
$$D(X,Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$
 $[0,\infty)$

• Cosseno
$$D(X,Y) = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} (x_i)^2} \sqrt{\sum_{i=1}^{n} (y_i)^2}}$$
 [0,1]

• Pearson
$$D(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
 [-1,1]

Métricas de distância:

Similaridade

Dissimilaridade

Dados nominais

$$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$$

$$s = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases} \qquad d = \begin{cases} 0 & \text{if } p = q \\ 1 & \text{if } p \neq q \end{cases}$$

Dados ordinais

Similaridade

$$s = 1 - \frac{\|p - q\|}{n - 1}$$

Dissimilaridade

$$d = \frac{\|p - q\|}{n - 1}$$

Tipos:

Representação dos grupos:

(c)		1	2	3
	а	0.4	0.1	0.5
	b	0.1	8.0	0.1
	С	0.3	0.3	0.4

Matriz de probabilidades

Dendograma

Estágios:

- Seleção de atributos: Os atributos devem ser selecionados de modo que ocorra o mínimo de redundância entre eles.
- Medida de proximidade: Esta medida deve quantificar o quão similar o dissimilar são os objetos.
- Critério de clusterização: Consiste de uma função custo ou algum tipo de regra.
- Algoritmo de clusterização: Consiste de um conjunto de passos para revelar a estrutura dos dados, baseados na medida de similaridade e no critério adotado.
- 5. Validação dos resultados.
- 6. Interpretação dos resultados.

Passos:

Copyright © 2019. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização

- Amplamente usado na prática:
 - Simplicidade;
 - Interpretabilidade;
 - Eficiência computacional.

Algoritmo:

- 1. Selecione k pontos como centróides iniciais.
- 2. Repita até que os centróides não mudem.
 - a. Forme k grupos associado todos os pontos aos centróide mais próximos,
 - b. Calcule o centróide de cada grupo obtido.

Exemplo:

Inicialização:

- O algoritmo é sensível à posição inicial das sementes.
- Importante rodar o algoritmo diversas vezes para obter resultados significativos.

Inicialização:

Qual o número de clusters?

Elbow method (método do cotovelo):

 Usado para encontrar o melhor valor de k, podemos usar a distância média dos pontos dentro de um cluster até o seu centróide (within-cluster sum of squares) para diferentes valores de k.

$$WSS = \sum_{i=1}^{N_c} \sum_{\mathbf{X} \in C_i} d(\mathbf{x}, \bar{x}_{C_i})$$

onde Ci é um grupo e Nc é o número de grupos.

WSS pode ser entendida como uma medida de compactação.

Elbow method (método do cotovelo):

Limitações:

 É bastante susceptível a problemas quando clusters são de diferentes tamanhos.

Limitações:

 É bastante susceptível a problemas quando clusters são de diferentes densidades.

Limitações:

 É bastante susceptível a problemas quando clusters são de diferentes formatos (em geral não globulares).

- Um algoritmo de agrupamento hierárquico gera uma estrutura aninhada (árvore) de X, H={H1, H2, ..., HQ} (K ≤ N), tal que:
 - o Ci ∈ Hm e Cj ∈ Hl (m > l), implica que
 - Ci ⊆ Cj ou
 - Ci \cap Cj = \emptyset (i,j,m,l=1,...,Q e i \neq j)

- Suponha que um biólogo queira identificar subtipos de um determinado câncer (tumor) com base na expressão gênica do tecido extraído do tumor
- Uma pequena amostra de sete pacientes é selecionada
- A expressão gênica de dois genes (V1 e V2) foi medida para o tumor de cada paciente

Paciente	V1	V2
Α	3	2
B C	4	5
С	4	7
D	2	7
D E	6	6
F	7	7
G	6	4

Introduction to Data Mining, Tan, Steinbach, Kumar, 2004

Paciente	V1	V2
Α	3	2
В	4	5
B C	4	7
	2	7
D E F	6	6
F	7	7
G	6	4

$$d(A,B) = \sqrt{(3-4)^2 + (2-5)^2} = 3{,}162$$

$$d(A,B) = \sqrt{(3-4)^2 + (2-5)^2} = 3{,}162$$
$$d(C,F) = \sqrt{(4-7)^2 + (7-7)^2} = 3{,}00$$

	Α	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

- Como já temos a medida de similaridade, devemos desenvolver um procedimento para formar grupos.
- Para nosso propósito, usaremos uma regra simples:
 - Identifique as duas observações mais semelhantes (mais próximas) que ainda não estão no mesmo grupo e combine seus grupos.
 - Aplicamos essa regra repetidamente, começando com cada observação em seu próprio grupo e combinando dois grupos por vez, até que todas as observações estejam em um único grupo.
- Este é um procedimento Hierárquico e Aglomerativo.

	Α	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	Α	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000	/	
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	Α	В	С	D	E	F	G
A	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	A	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	A	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403			5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	A	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2 ,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403	3,606	3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

	A	В	С	D	E	F	G
Α	0,000						
В	3,162	0,000					
С	5,099	2,000	0,000				
D	5,099	2,828	2,000	0,000			
E	5,000	2,236	2,236	4,123	0,000		
F	6,403		3,000	5,000	1,414	0,000	
G	3,606	2,236	3,606	5,000	2,000	3,162	0,000

Iniciando com clusters individuais, definimos a matriz de proximidades.

Depois de alguns passos, temos alguns clusters.

	C1	C2	C3	C4	C5
C1					
C2					
C3					
<u>C4</u>					
C5					

Nós queremos agrupar os clusters mais próximos (C2 e C5) e atualizar a

matriz de proximidades.

Uma questão fundamental é: Como realizar a atualização da matriz?

		C2 U	J	
	C1		C3	C4
C1		?		
C2 ∪ C5	?	?	?	?
C3		?		
C4		?		

- MIN (single linkage)
- MAX (complete linkage)
- Média dos grupos
- Distância entre centróides
- Outros métodos que usam uma função objetivo.
- Método de Weard's usa erro quadrático médio.

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
р4						
p4 p5						

- MIN (single linkage).
- MAX (complete linkage).
- Média dos grupos.
- Distância entre centróides.
- Outros métodos que usam uma função objetivo.
- Método de Weard's usa erro quadrático médio.

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
р4						
p4 p5						

- MIN (single linkage).
- MAX (complete linkage).
- Média dos grupos.
- Distância entre centróides.
- Outros métodos que usam uma função objetivo.
- Método de Weard's usa erro quadrático médio.

	p1	p2	р3	p4	p 5	<u>.</u>
p1						
p2						
рЗ						
р4						
p4 p5						
_						

- MIN (single linkage).
- MAX (complete linkage).
- Média dos grupos.
- Distância entre centróides.
- Outros métodos que usam uma função objetivo.
- Método de Weard's usa erro quadrático médio.

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
р4						
p4 p5						

- MIN (single linkage)
- MAX (complete linkage)
- Média dos grupos
- Distância entre centróides.
- Outros métodos que usam uma função objetivo.
- Método de Weard's usa erro quadrático médio.

	p 1	p2	р3	p4	р5	<u>.</u> .
p1						
p2						
р3						
p4						
p4 p5						

Método de Ward: Minimizar a perda de informação ao juntar 2 grupos.

- Quando encontramos os clusters, uma questão básica é:
- Quão significativo é o agrupamento?
- A avaliação de agrupamentos pode ser usada:
 - o Para evitar encontrar padrões em ruídos.
 - Para comparar diferentes métodos de agrupamento.
 - Para comparar clusters.

 Podemos encontrar partições em dados aleatórios.

- Medidas para avaliar agrupamentos são usadas em três casos:
 - Índice externo: Usado quando os rótulos dos objetos são conhecidos e queremos avaliar se os clusters correspondem aos grupos originais.
 - a. Exemplo: Medidas de entropia.
 - 2. **Índice interno**: Usado para avaliar um agrupamento sem usar informações externas.
 - a. Exemplo: Soma do erro quadrático
 - 3. **Indice relativo**: Usado para comprar agrupamentos ou grupos.
 - a. Exemplo: Índices internos ou externos são usados para esse fim.

 Matriz de similaridade: ordena-se os objetos de acordo com os grupos e inspeciona-se visualmente. Cada elemento da matriz define a similaridade entre dois objetos (por exemplo, distância euclidiana entre dois vetores de atributos):

 Limitação: nem sempre essa estrutura é clara.

Índice interno: Usado para avaliar um agrupamento sem usar informações externas.

Coesão

 a distância média dos pontos dentro de um cluster até o seu centróide (within-cluster sum of squares) (SSE):

$$WSS = \sum_{i=1}^{N_c} \sum_{\mathbf{X} \in C_i} d(\mathbf{x}, \bar{x}_{C_i})$$

Separação

 Soma dos quadrados das distâncias entre os pontos em diferentes clusters:

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

Exemplo: BSS + WSS = constante

$$WSS = \sum_{i=1}^{N_c} \sum_{\mathbf{X} \in C_i} d(\mathbf{x}, \bar{x}_{C_i})$$

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

$$WSS = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$

$$BSS = 4 \times (3-3)^2 = 0$$

$$Total = 10 + 0 = 10$$

$$WSS = (1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$$

$$BSS = 2 \times (3 - 1.5)^2 + 2 \times (4.5 - 3)^2 = 9$$

$$Total = 1 + 9 = 10$$

Índice externo: Usado para avaliar um agrupamento quando se tem um ground truth (conhecemos as classes).

Dados da flor Iris projetados usando PCA

Purity (Pureza): mede o quão "puro" é cada cluster:

$$Purity(i) = \frac{1}{n_i} \max_{j=1}^k (|C_i \cap T_j|)$$

onde Ci representa a classe obtida e Tj é a partição esperada.

	iris-setosa T_1	$\begin{array}{c} \texttt{iris-versicolor} \\ T_2 \end{array}$	iris-virginica T_3	n_i	Ta co
C_1 (squares)	0	47	14	61	
C_2 (circles)	50	0	0	50	
C_3 (triangles)	0	3	36	39	
m_j	50	50	50	n = 100	

Tabela de contigência

$$Purity(i) = \frac{1}{150}(47 + 50 + 36) = 0,887$$

Índice externo: Outras medidas:

- Maximum matching,
- f-Measure
- Normalized mutual information (NMI).
- ..

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Sumário

- K-means,
- Agrupamento Hierárquico,
- Avaliando Agrupamentos

Leitura complementar

- Capítulos 11 e 12:
 Inteligência Artificial: Uma abordagem por aprendizado de máquina, Facelli, Lorena, Gamma e Carvalho, LTC.
- Capítulo 8: Introduction to Data Mining, Tan, Steinbach, Kumar, 2004