9.29. Показать, что электрическое поле, образованное заряженной нитью конечной длины, в предельных случаях переходит в электрическое поле: а) бесконечно длинной заряженной нити; 6) точечного заряда.

Решение:

нечной длины.

Напряженность поля нити конечной длины $E = \frac{\tau \sin \alpha}{2\pi\varepsilon\varepsilon_0 a}$ — (1). Из рисунка 1/2 найдем $\sin \alpha = \frac{1/2}{\sqrt{a^2 + (1/2)^2}}$ — (2). Подставляя (2) в (1), получим $E = \frac{\tau \cdot l}{4\pi \varepsilon \varepsilon_0 a \sqrt{a^2 + (l/2)^2}}$ — (3). a) Если a << l, то $\sqrt{a^2 + (l/2)^2} \approx \frac{l}{2}$. В этом случае формула (3) дает $E = \frac{\tau}{2\pi \epsilon s_0 a}$ — напряженность поля бесконечно длинной нити. б) Если a>>l , то $\sqrt{a^2+\left(l/2\right)^2}\approx a$. Т. к. $\tau\cdot l=q$, то формула (3) дает $E = \frac{q}{4\pi\varepsilon\varepsilon_0 a^2}$ — напряженность поля точечного заряда.

9.30. Длина заряженной нити $l=25\,\mathrm{cm}$. При каком предельном расстоянии a от нити по нормали к середине нити электрическое поле можно рассматривать как поле бесконечно длинной заряженной нити? Ошибка при таком допущении не должна превышать $\delta=0.05$. Указание: допускаемая ошибка $\delta=\frac{\left(E_2-E_1\right)}{E_2}$, где E_2 — напряженность электрического поля бесконечно длинной нити, E_1 — напряженность поля нити ко-

Решение:

Бесконечно длинная заряженная нить создает электрическое поле с напря- τ

женностью
$$E_1 = \frac{\tau}{2\pi\varepsilon\varepsilon_0 a}$$
 — (1). На-

пряженность поля нити конечной длины $E_2 = \frac{\tau \sin \theta}{2\pi\varepsilon\varepsilon_0 a}$ — (2). Допус-

каемая ошибка
$$\delta = \frac{E_1 - E_2}{E_1}$$
 — (3). Подставляя (1) и (2) в

(3), получим
$$\delta = 1 - \sin \theta$$
, откуда $\sin \theta = 1 - \delta$. Из рисунка видно, что $\frac{l}{2} = r \sin \theta = r(1 - \delta)$, где $r = \frac{a}{\cos \theta} = \frac{a}{\sqrt{1 - \sin^2 \theta}} = \frac{a}{\sqrt{1 - \sin^2 \theta}}$

$$=\frac{a}{\sqrt{1-\left(1-\delta\right)^2}}$$
. Тогда $\frac{l}{2}=\frac{a\left(1-\delta\right)}{\sqrt{1-\left(1-\delta\right)^2}}$, откуда предельное

расстояние
$$a = \frac{l\sqrt{1-(1-\delta)^2}}{2(1-\delta)} = 4,11 \text{ см.}$$

9.31. В точке A, расположенной на расстоянии a=5 см от бесконечно длинной заряженной нити, напряженность электрического поля E=150 кВ/м. При какой предельной длине l нити найденное значение напряженности будет верным с точностью до 2%, если точка A расположена на нормали к середине нити? Какова напряженность E электрического поля в точке A, если длина нити l=20 см? Линейную плотность заряда на нити конечной длины считать равной линейной плотности заряда на бесконечно длинной нити. Найти линейную плотность заряда τ на нити.

Решение:

Воспользуемся формулой, полученной в предыдущей задаче: $\frac{I}{2} = \frac{a(1-\delta)}{\sqrt{1-(1-\delta)^2}}$. По условию $\delta=0.02$, тогда предель-

ное значение $I = \frac{2a(1-\delta)}{\sqrt{1-(1-\delta)^2}} = 0,49$ м. Напряженность поля

в точке A при l=0,2 м найдем по формуле $E'=\frac{\tau \sin \theta}{2\pi \varepsilon \varepsilon_0 a}$ —

(1). Линейную плотность заряда τ найдем из уравнения $E=\frac{\tau}{2\pi \varepsilon \varepsilon_0 a}$, откуда $\tau=E2\pi \varepsilon \varepsilon_0 a=0,42$ мкКл/м. Значение $\sin \theta$ (см. рисунок к предыдущей задаче) найдем, вычислив $tg\theta=\frac{l}{2a}$, откуда $tg\theta=2$, следовательно, $\theta\approx 63^\circ$; $\sin \theta=0,89$. Подставляя числовые данные в (1), найдем E'=134 кВ/м.

9.32. Кольцо из проволоки радиусом $R=10\,\mathrm{cm}$ имеет отрицательный заряд $q=-5\,\mathrm{HK}$ л. Найти напряженности E электрического поля на оси кольца в точках, расположенных от центра кольца на расстояниях L, равных 0, 5, 8, 10 и 15см. Построить график E=f(L). На каком расстоянии L от центра кольца напряженность E электрического поля будет иметь максимальное значение?

Решение:

Возьмем элемент кольца dl. Этот элемент имеет заряд dq. Напряженность электрического поля, созданная этим элементом в точке

$$A$$
, будет $dE = \frac{dq}{4\pi\varepsilon\varepsilon_0 x^2}$. Вектор

 $\begin{array}{c|cccc}
dl & & & & d\vec{E} \\
R & & & & d\vec{E} & & A
\end{array}$

dE направлен по линии x, соединяющей точку A с элементом кольца dl. Для нахождения напряженности поля всего кольца надо векторно сложить $d\vec{E}$ от всех элементов. Вектор dE можно разложить на две составляющие dE_n и dE_τ . Составляющие dE_n

каждых двух диаметрально расположенных элементов взаимно уничтожаются, поэтому $E = \int dE_{\rm r}$. Но $dE_{\rm r} = dE\cos\alpha = dE\frac{L}{x} = \frac{Ldq}{4\pi\varepsilon\varepsilon_0 x^2}$, что дает $E = \frac{L}{4\pi\varepsilon\varepsilon_0 x^3} \times \int dq = \frac{Lq}{4\pi\varepsilon\varepsilon_0 x^3}$. Учитывая, что $x = \sqrt{R^2 + L^2}$, имеем $E = \frac{Lq}{4\pi\varepsilon\varepsilon_0 (R^2 + L^2)^{3/2}}$ — (1) — папряженность электри-

ческого поля на оси кольца. Если L>>R , то $E=\frac{q}{4\pi\varepsilon\varepsilon_0L^2}$,

т. е. на больших расстояниях заряженное кольцо можно рассматривать как точечный заряд.

Выразим величины x и L через угол α . Имеем $R = x \sin \alpha$, $L = x \cos \alpha$; теперь формула (1) примет вид $E = \frac{q}{4\pi\varepsilon\varepsilon_0 R^2}\cos\alpha\sin^2\alpha$. Для нахождения максимального значения напряженности E возьмем производную $\frac{dE}{d\alpha}$ и приравняем ее к нулю: $\frac{dE}{d\alpha} = \frac{q}{4\pi\varepsilon\varepsilon_0 R^2}(\cos^2\alpha 2\sin\alpha - \sin^3\alpha) = 0$ или $tg^2\alpha = 2$. Тогда напряженность электрического

26

поля имеет максимальное значение в точке A, расположенной на расстоянии $L = \frac{R}{ig\alpha} = \frac{R}{\sqrt{2}} = 7.1 \, \text{см}$ от центра

кольца. Подставляя в (1) числовые данные, составим таблицу и построим график.

<i>L</i> , M	Ú	0,05	0,08	0,1	0,15
Е, В/м	0	1600	1710	1600	1150

9.33. Напряженность электрического поля на оси заряженного кольца имеет максимальное значение на расстоянии L от центра кольца. Во сколько раз напряженность электрического поля в точке, расположенной на расстоянии 0.5L от центра кольца, будет меньше максимального значения напряженности?

Решение:

Воспользуемся результатами задачи 9.32. Напряженность электрического поля на оси кольца $E = \frac{Lq}{4\pi\varepsilon\varepsilon_0 \left(R^2 + L^2\right)^{\frac{3}{2}}}.$

Максимальное значение напряженность поля имеет при

$$L_{max} = rac{R}{\sqrt{2}}$$
 . Отсюда $E_{max} = rac{Rq}{\sqrt{2} \cdot 4\pi arepsilon arepsilon_0 \left(R^2 + R^2 / 2
ight)^{rac{3}{2}}}$. В

точке, расположенной на расстоянии $0.5L_{max}$ от центра

кольца, напряженность
$$E_{max} = \frac{Rq}{2\sqrt{2}\cdot 4\pi\varepsilon\varepsilon_0 \left(R^2 + R^2/2\right)^{\frac{3}{2}}},$$

отсюда
$$\frac{E_{max}}{E} = 1.3$$
.

9.34. Показать, что электрическое поле, образованное заряженным диском, в предельных случаях переходит в электрическое поле: a) бесконечной заряженной плоскости; б) точечного заряда.

Решение:

Напряженность электрического поля заряженного диска

$$E = \frac{\sigma}{2\varepsilon\varepsilon_0} \left(1 - \frac{1}{\sqrt{1 + (R/a)^2}} \right).$$
 а) Если величина $a << R$, то

$$1-\frac{1}{\sqrt{1+\left(R/a\right)^2}}\approx 1$$
. В этом случае $E=\frac{\sigma}{2\varepsilon\varepsilon_0}$, т. е. для точек,

находящихся на близком расстоянии от диска, диск можно уподобить бесконечно протяженной плоскости. б) Если

$$a>>R$$
 , и $\sqrt{1+\left(\frac{R}{a}\right)^2}=1-\frac{R^2}{2a^2}$. В этом случае $E=\frac{\sigma}{2\varepsilon\varepsilon_0}\times$

$$imes rac{R^2}{2a^2}$$
 . Т. к. $\sigma = rac{q}{\pi R^2}$, то $E = rac{q}{4\pi \varepsilon \varepsilon_0 a^2}$, т. е. для точек, нахо-

дящихся на большом расстоянии от диска, диск можно уподобить точечному заряду.

9.35. Диаметр заряженного диска $D=25\,\mathrm{cm}$. При каком предельном расстоянии a от диска по нормали к его центру электрическое поле можно рассматривать как поле бесконечно протяженной плоскости? Ошибка при таком допущении не должна превышать $\delta=0.05$. У казание: допускаемая ошибка $\delta=\left(E_2-E_1\right)/E_2$, где E_1 — напряженность поля бесконечно протяженной плоскости, E_2 — напряженность поля диска.

Решение:

Напряженность поля диска
$$E_1 = \frac{\sigma}{2\varepsilon\varepsilon_0} \left(1 - \frac{a}{\sqrt{R^2 + a^2}}\right)$$
 — (1).

Напряженность поля бесконечной заряженной плоскости

$$E_2 = \frac{\sigma}{2\varepsilon\varepsilon_0}$$
 — (2). Допускаемая ошибка $\delta = \frac{E_2 - E_1}{E_2}$ — (3).

Подставляя (1) и (2) в (3), получим
$$\delta = \frac{a}{\sqrt{R^2 + a^2}}$$
 или

$$\mathcal{S} = \frac{1}{\sqrt{1 + (R/a)^2}}$$
. Откуда $\left(\frac{R}{a}\right)^2 = \frac{1}{\delta^2} - 1; \quad \frac{R}{a} = \frac{\sqrt{1 - \delta^2}}{\delta}$.

 $a = \frac{\delta R}{\sqrt{1 - \delta^2}}$. Подставляя числовые данные, получим пре-

дельное расстояние a = 1.2 см.

9.36. Требуется найти напряженность E электрического поля в точке A, расположенной на расстоянии $a=5\,\mathrm{cm}$ от заряженного диска по нормали к его центру. При каком предельном радиусе R диска поле в точке A не будет отличаться болсе чем на 2% от поля бесконечно протяженной плоскости? Какова напряженность E поля в точке A, если радиус диска R=10a? Во сколько раз найденная напряженность в этой точке меньше напряженности поля бесконечно протяженной плоскости?

Решение:

Напряженность поля, образованного заряженной бесконечно протяженной плоскостью, $E_1 = \frac{\sigma}{2\varepsilon\varepsilon_0}$. Напряженность поля заряженного диска радиусом R в точке A: $E_2 = \frac{\sigma}{2\varepsilon\varepsilon_0} \bigg(1 - \frac{a}{\sqrt{R^2 + a^2}} \bigg).$ По условию $\frac{E_1 - E_2}{E_1} = 0.02$. Под-

ставив выражения E_1 и E_2 , получим $\frac{a}{\sqrt{R^2+a^2}} = 0.02$.

После несложных вычислений найдем $R = 2.5 \,\mathrm{M}$. При R = 10a напряженность поля в точке A

$$E_2 = \frac{\sigma}{2\varepsilon\varepsilon_0} \left(1 - \frac{a}{\sqrt{100a^2 + a^2}} \right) = 0.9 \frac{\sigma}{2\varepsilon\varepsilon_0}$$
. Тогда $\frac{E_1}{E_2} = 1.1$.

^{*} По мнению авторов, в условии задачи не хватает данных для нахождения величины напряженности E поля в точке A при раднусе диска R=10a.

9.37. Два параллельных разноименно заряженных диска с одинаковой поверхностиой плотностью заряда на них расположены на расстоянии $d=1\,\mathrm{cm}$ друг от друга. Какой предельный раднус R могут иметь диски, чтобы между центрами дисков поле отличалось от поля плоского конденсатора не более чем на 5%? Какую ошноку δ мы допускаем, принимая для этих точек напряженность поля равной напряженности поля плоского конденсатора при $\frac{R}{d}=10$?

Решение:

Напряженность поля между центрами двух разноименно заряженных дисков $E_1 = \frac{\sigma}{\varepsilon \mathcal{E}_0} \left(1 - \frac{d}{\sqrt{R^2 + d^2}}\right)$ — (1), где d — расстояние между дисками. Напряженность плоского конденсатора $E_2 = \frac{\sigma}{\varepsilon \mathcal{E}_0}$ — (2). По условию отношение $\frac{E_2 - E_1}{E_2} = 0.05$ — (3). Подставляя уравнения (1) и (2) в (3), получим $\frac{d}{\sqrt{R^2 + d^2}} = 0.05$. Отсюда R = 0.2 м. Теперь определим ошибку δ при $\frac{R}{d} = 10$. Т. к. $\delta = \frac{E_2 - E_1}{E_1} = \frac{d}{\sqrt{R^2 + d^2}}$, то при R = 10d — $\delta = 0.1$ или $\delta = 10$ %.

9.38. Шарик массой $m=40\,\mathrm{mr}$, имеющий положительный заряд $q=1\,\mathrm{uKn}$, движется со скоростью $v=10\,\mathrm{cm/c}$. На какое расстояние r может приблизиться шарик к положительному точечному заряду $q_0=1,33\,\mathrm{nKn}$?

Решение:

Если в поле неподвижного заряда q_1 происходит медленное перемещение заряда q_2 из точки B в точку C , то 30

работа сил поля
$$A = \frac{q_1q_2}{4\pi\varepsilon\varepsilon_0}\left(\frac{1}{r_d} - \frac{1}{r_c}\right)$$
.

Ёсли
$$r_B \rightarrow \infty$$
, то $r_C = r_{12}$ н

Ёсли
$$r_B \to \infty$$
, то $r_C = r_{12}$ и q_1

$$A = -\frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0 r_{12}}$$
 (т. е. ноявился знак r_B

«минус»). Работа консервативных сил электрического поля равна убыли

потенциальной энергии системы заряженных тел, т. е. $A = -(U_{12} - U_{22})$. Поэтому полагая энергию взаимодействия бесконечно удаленных зарядов равной пулю, получим для потенциальной энергии взаимодействия системы двух зарядов $U_{12} = \frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0} \frac{1}{r_1}$. Во время движения шарика его

кинетическая энергия $W_{\kappa l} = \frac{mv^2}{2}$, при приближении к заряду q_2 на предельное расстояние r_i , кинстическая

$$W_{\kappa 2}=0.$$

$$W_{\kappa 2} = 0$$
. Работа $A_{12} = -\frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0 r_{12}}$;

$$A = W_{\kappa_1} - W_{\kappa_2} = -\frac{mv^2}{2}$$
. Таким образом, $\frac{q_1q}{4\pi\varepsilon\varepsilon_0r_{12}} = \frac{mv^2}{2}$, от-

куда
$$r_{12} = \frac{2q_1q_2}{4\pi\varepsilon\varepsilon_0 mv^2}$$
; $r_{12} = r = 6$ см.

9.39. До какого расстояния r могут солнзиться два электрона, если они движутся навстречу друг другу с относительной **с**коростью $v = 10^6 \text{ м/c}$?

Решение:

Т. к. v_0 — относительная скорость движения электронов, то один электрон можно считать подвижным, а другой — дви-

формуле потенциала поля точечного заряда потенциал поля, создаваемого электроном, который мы считаем неподвижным, на расстоянии r от него $\varphi = \frac{e}{4\pi\epsilon r}$. Кинетическая энергия движущегося электрона $W_{\kappa} = m v_0^2 / 2$ тратится на работу против кулоновской силы отталкивания $A=e\, \varphi=rac{e^2}{4\pi arepsilon_0 r}$. Тогда по закону изменения энергин $W_{\kappa}=A$ или $\frac{mv_0^2}{2}=\frac{e^2}{4\pi\varepsilon_0 r}$, откуда $r=\frac{e^2}{2\pi\varepsilon_0 mv_0^2}=$ $= 5 \cdot 10^{-10} \text{ M}.$

жущимся относительно первого со скоростью v_0 . По

9.40. Протон (ядро атома водорода) движется со скоростью $v = 7.7 \cdot 10^6$ м/с. На какое наименьшее расстояние r может приблизиться протон к ядру атома алюминия? Заряд ядра атома алюминия q = Ze, где Z — порядковый номер атома в таблице Менделеева и е — заряд протона, равный по модулю заряду электрона. Массу протона считать равной массе атома водорода. Протон и ядро атома алюминия считать точечными зарядами. Влиянием электронной оболочки атома алюминия пренебречь.

Решение:

Ядро атома алюминия считаем не-V подвижным. Т. к. по условию ядро алюминия — точечный заряд, то потенциал поля ядра алюминия $\varphi = \frac{q}{4\pi \varepsilon_0 r} = \frac{Ze}{4\pi \varepsilon_0 r}$. Тогда по закону

изменения энергии (см. задачу 9.39) $\frac{mv^2}{2} = \frac{Ze^2}{4\pi\varepsilon_0 r}$, откуда

$$r = \frac{Ze^2}{2\pi\varepsilon_0 mv^2} = 6.1 \cdot 10^{-14} \text{ M}.$$

9.41. При бомбардировке неподвижного ядра натрия α -частиней сила отталкивания между ними достигла значения F = 140 H. На какое наименьшее расстояние r приблизилась α-частица к ядру атома натрия? Какую скорость
 и имела а-частица? Влиянием электронной оболочки атома натрия пренебречь.

Решение:

Потенциал поля ядра натрия (см. задачу 9.40) $\varphi = \frac{Z_1 e}{4\pi \varepsilon_0 r}$. По закону Кулона сила α

отталкивания между ядром натрия и

$$lpha$$
 -частицей $F = rac{Z_1 Z_2 e^2}{4\pi arepsilon_0 r^2}$, где $Z_2 = 2$, т. к. $lpha$ -частица

представляет собой ядро атома гелия. Отсюда минимальное расстояние сближения ядра и α -частицы

$$r = \frac{e}{2} \sqrt{\frac{Z_1 Z_2}{\pi \varepsilon_0 F}} = 6.01 \cdot 10^{-15} \,\mathrm{m}$$
. По закону изменения энергии

(см. задачу 9.39)
$$\frac{mv^2}{2} = \frac{Z_1e^2}{4\pi e_0 r}$$
, откуда скорость α -частицы

$$v = \sqrt{\frac{e^2 Z_1}{2\pi\varepsilon_0 rm}} = 1,59 \cdot 10^7 \text{ m/c}.$$

9.42. Два шарика с зарядами $q_1 = 6,66$ иКл и $q_2 = 13,33$ иКл . Находятся на расстоянии $v_i = 40$ см. Какую работу A надо совер**шить**, чтобы сблизить их до расстояния $r_2 = 25$ см?

Решение:

Энергия электростатического взаимодействия шариков $extbf{ extit{W}} = rac{q_1 q_2}{4\pi arepsilon arepsilon_0 r}$. Для сближения шариков нужно совершить

2-3269 33

работу
$$A = \Delta W = W_2 - W_1$$
. Поскольку $W_1 = \frac{q_1 q_2}{4\pi\varepsilon\varepsilon_0 r_1}$, а

$$W_2 = \frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0 r_2}$$
, то $A = \frac{q_1 q_2}{4\pi \varepsilon \varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1}\right) = 1,2$ мкДж.

9.43. Шар радиусом R=1 см, имеющий заряд q=40 нКл, помещен в масло. Построить график зависимости U=f(L) для точек поля, расположенных от поверхности шара на расстояниях L, равных 1, 2, 3, 4 и 5см.

Решение:

Будем считать, что заряд q равномерно распределен по поверхности шара. Разность потенциалов $U=\varphi_0-\varphi_1$, где φ_0 — потенциал шара на его поверхности, φ_1 — потенциал поля в точке, находящейся на расстоянии L от поверхности шара; $\varphi_0=\int\limits_R^\infty E_r dr=\frac{q}{4\pi\varepsilon\varepsilon_0}\int\limits_R^\infty \frac{dr}{r^2}=\frac{q}{4\pi\varepsilon\varepsilon_0R}$. Аналогично $\varphi_1=\frac{q}{4\pi\varepsilon\varepsilon_0(R+L)}$, отсюда $U=\frac{q}{4\pi\varepsilon\varepsilon_0}\left(\frac{1}{R}-\frac{1}{R+L}\right)$.

Характер зависимости U(L) дан на графике.

<i>L</i> , M	0,01	0,02	0,03	0,04	0,05
<i>U</i> , кВ	3,6	4,8	5,4	5,76	6

9.44. Найти потенциал φ точки поля, находящейся на расстоянии r=10 см от центра заряженного шара радиусом R=1 см. Задачу решить, если: а) задана поверхностная плотность заряда на шаре $\sigma=0.1$ мкКл/м²; б) задан потенциал шара $\varphi=300$ В.

Решение:

Имеем
$$\varphi = \frac{q}{4\pi \varepsilon \varepsilon_0 r}$$
 (см. задачу 9.43). a) Поскольку

$$q = \sigma S = \sigma 4\pi R^2$$
, to $\varphi = \frac{4\pi\sigma R^2}{4\pi\varepsilon\varepsilon_0 r} = \frac{\sigma R^2}{\varepsilon\varepsilon_0 r}$; $\varphi = 11.3 \text{ B. 6}$) Потен-

циал шара
$$\varphi_0=rac{q}{4\piarepsilon_0R}$$
, откуда $q=4\piarphi_0arepsilonarepsilon_0R$. Тогда

$$\varphi = \frac{4\pi\varphi_0\varepsilon\varepsilon_0R}{4\pi\varepsilon\varepsilon_0r} = \frac{\varphi_0R}{r}$$
; $\varphi = 30$ B.

9.45. Какая работа A совершается при перенесении точечного заряда q=20 нКл из бесконечности в точку, находящуюся на расстоянии r=1 см от поверхности шара радиусом R=1 см с поверхностной плотностью заряда $\sigma=10$ мкКл/м²?

Решение:

Работа по перемещению точечного заряда q из бесконечности в некоторую точку M есть потенциал точки

$$M$$
, следовательно, $A = \varphi_M = \frac{qq_0}{4\pi\varepsilon\varepsilon_0(R+r)}$. Поскольку

$$q_0 = \sigma 4\pi R^2$$
, то $A = \frac{q \sigma R^2}{\varepsilon \varepsilon_0 (R+r)}$; $A = 113$ мкДж.

9.46. Парик с массой m=1г и зарядом q=10 иКл неремещается из точки 1, потенциал которой $\varphi_1=600$ В, в точку 2, потенциал которой $\varphi_2=0$. Найти его скорость v_1 в точке 1, если в точке 2 она стала равной $v_2=20$ см/с.

Решение:

Работа по перемещению шарика из точки 1 в точку 2 равна $A=q(\varphi_1-\varphi_2)$. С другой стороны, работа A равна приращению сго кинетической энергии: $A=\frac{mv_2^2}{2}-\frac{mv_1^2}{2}$. Следовательно, $q(\varphi_1-\varphi_2)=\frac{mv_2^2}{2}-\frac{mv_1^2}{2}=\frac{m(v_2^2-v_1^2)}{2}$. Отсюда $v_1=\sqrt{v_2^2-\frac{2q(\varphi_1-\varphi_2)}{2}}$; $v_1=16,7$ ем/с.

9.47. Найти скорость v электрона, прошедшего разность потенциалов U, равную: 1, 5, 10, 100, 1000 В.

Решение:

Работа по перемещению электрона из точки 1 в точку 2 равна $A=q(\varphi_1-\varphi_2)=\frac{U}{q}$, с другой стороны, работа A рав-

на приращению его кипетической энергии $A = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$.

Если $v_1=0$, то $A=\frac{mv_2^2}{2}$. Тогда $U=\frac{mv_2^2}{2e}$, где e= заряд электрона, m= его масса (см. таблицу 3), откуда $v_2=\sqrt{\frac{2Ue}{m}}$. Составим таблицу искомых значений.

U.B	1	5	10	100	1000
v. 10 ⁶ m 'c	0.59	1,33	1,88	5,93	18,75

9.48. При радиоактивном распаде из ядра атома полония вылетает α -частица со скоростью $\nu=1.6\cdot 10^7\,\mathrm{m/c}$. Идити кинетическую энергию W_{κ} α -частицы и разность потенциалов U поля, в котором можно разогнать покоящуюся α -частицу до такой же скорости.

Решение:

Кинетическая энергия α -частицы $W_{\kappa} = \frac{m_{\sigma}v^2}{2}$. Учитывая, что $m_{\alpha} = 4 \cdot 1,66 \cdot 10^{-27} = 6,6 \cdot 10^{-27}$ кг, получим $W_{\kappa} = 8,5 \times 10^{-13}$ Дж. Искомая разность потенциалов $U = \frac{W_{\kappa}}{q}$ (см. задачу 9.47). Поскольку заряд α -частицы $q = 2 \cdot 1,6 \cdot 10^{-19} = 3,2 \cdot 10^{-19}$, то, подставляя числовые значения, получим U = 2,66 МВ.

9.49. На расстоянии $r_1 = 4$ см от бесконечно длинной заряженной нити находится точечный заряд q = 0,66 нКл. Под действием поля заряд приближается к нити до расстояния $r_2 = 2$ см; при этом совершается работа A = 50 эрг. Найти линейную плотность заряда τ на нити.

Решение:

Работа по перемещению заряда dA = qdU, где dU =

$$=-Edr=rac{ au dr}{2\piarepsilon_0 r}$$
. Отеюда $A=-\int\limits_0^r rac{q\, au dr}{2\piarepsilon_0 r}=rac{q\, au}{2\piarepsilon_0} lnrac{r_1}{r_2}$, от-

куда $\tau = \frac{2\pi\varepsilon\varepsilon_0 A}{q\ln(r_1/r_2)}$ — (1). Подставляя числовые данные, получим $\tau = 0.6$ мкКл/м.

9.50. Электрическое поле образовано положительно заряженной бесконечно длинной нитью. Двигаясь под действием

этого поля от точки, находящейся на расстоянии $r_1 = 1$ см от нити, до точки $r_2 = 4$ см, α -частица изменила свою скорость от $v_1 = 2 \cdot 10^5$ м/с до $v_2 = 3 \cdot 10^6$ м/с. Найти линейную плотность заряда τ на нити.

Решение:

Имеем $au=\frac{2\pi\varepsilon\varepsilon_0A}{q\ln(r_1/r_2)}$ — (1) (см. задачу 9.49). Здесь работа сил поля A равна приращению кинетической энергин α -частицы, т. е. $A=\frac{mv_2^2}{2}-\frac{mv_1^2}{2}=29,57\cdot 10^{-15}$ Дж. Подставляя числовые данные в (1), найдем $\tau=3.7$ мкКл/м.

9.51. Электрическое поле образовано положительно заряженной бесконечно длинной нитью с линейной плотностью заряда $\tau = 0.2$ мКл/м. Какую скорость ν получит электрон под действием поля, приблизившись к нити с расстояния $r_1 = 1$ см до расстояния $r_2 = 0.5$ см?

Решение:

Если скорость электрона в точке 1 была равна нулю, то работа сил поля по перемещению электрона в точку 2:

$$A = \frac{mv^2}{2}$$
 — (1). Из задачи 9.49 имеем $\tau = \frac{2\pi\varepsilon\varepsilon_0 A}{q \ln(r_1/r_2)}$ — (2).

Подставляя (1) в (2), получим $\tau = \frac{\pi \varepsilon \varepsilon_0 m v^2}{q \ln(r_1/r_2)}$, откуда

$$v = \sqrt{\frac{\tau q \ln(r_1/r_2)}{\pi \varepsilon \varepsilon_0 m}}; \quad v = 2.96 \cdot 10^7 \text{ m/c}.$$

9.52. Около заряженной бесконечно протяженной плоскости находится точечный заряд $q=0,66\,\mathrm{hKn}$. Заряд перемещается по линии напряженности поля на расстояние $\Delta r=2\,\mathrm{cm}$; при этом совершается работа $A=50\,\mathrm{эрr}$. Найти поверхностную плотность заряда σ на плоскости.

Решенне:

Переведем единицы измерения работы A в систему СИ: A=50 эрг = $50\cdot 10^{-7}$ Дж. Напряженность поля бесконечно заряженной плоскости $E=\frac{\sigma}{2\varepsilon\varepsilon_0}$ — (1). Кроме того, напряженность и потенциал однородного поля связаны соотношением $E=\frac{\Delta\varphi}{\Delta r}$ — (2). Приравняв (1) и (2), получим $\frac{\sigma}{2\varepsilon\varepsilon_0}=\frac{\Delta\varphi}{\Delta r}$ — (3). Работа сил поля $A=\frac{q\,\sigma\Delta r}{2\varepsilon\varepsilon_0}$, откуда $\sigma=\frac{2A\varepsilon\varepsilon_0}{q\Delta r}=6.7$ мкКл/м².

9.53. Разность потенциалов между пластинами плоского конденсатора U = 90 В. Площадь каждой пластины S = 60 см², ее заряд q = 1 нКл. На каком расстоянии d друг от друга находятся пластины?

Решенне:

Напряженность поля плоского конденсатора $E = \frac{\sigma}{\varepsilon \varepsilon_0}$ —

(1). С другой стороны,
$$E = \frac{U}{d}$$
 — (2). Приравняв (1) и (2), с

учетом
$$\sigma = \frac{q}{S}$$
, получим $\frac{q}{S\varepsilon\varepsilon_0} = \frac{U}{d}$, откуда $d = \frac{US\varepsilon\varepsilon_0}{q} = 4,78$ мм.

9.54. Плоский конденсатор можно применить в качестве чувствительных микровесов. В илоском горизонтально расположенном конденсаторе, расстояние между пластинами которого $d=3,84\,\mathrm{Mm}$, находится заряженная частица с зарядом $q=1,44\cdot10^{-9}\,\mathrm{CFC}_q$. Для того чтобы частица находилась в равновесии, между пластинами конденсатора, нужно было приложить разность потенциалов $U=40\,\mathrm{B}$. Найти массу m частицы.

Решение:

Со стороны электрического поля на капельку действует сила $\vec{F} = \vec{E}q$, которая уравновешивается силой тяжссти $m\vec{g}$. Т. к. $\vec{E}q + m\vec{g} = 0$ или Eq = mg. Напряженность поля плоского

конденсатора
$$E=\frac{U}{d}$$
. Тогда $\frac{Uq}{d}=mg$, откуда $m=\frac{Uq}{dg}=5.1\cdot 10^{-16}$ кг.

9.55. В плоском горизонтально расположенном конденсаторе, расстояние между пластинами которого $d=1\,\mathrm{cm}$, находится заряженная капелька массой $m=5\cdot 10^{-11}\,\mathrm{r}$. В отсутствие электрического поля капелька вследствие сопротивления воздуха падает с некоторой постоянной скоростью. Если к пластинам конденсатора приложена разность потенциалов $U=600\,\mathrm{B}$, то капелька падает вдвое медлениее. Найти заряд q капельки.

Решение:

В отсутствие электрического поля сила тяжести, действующая на канельку, уравновешивается силой сопротивления воздуха $mg = 6\pi\eta r v_1$ — (1), а при наличии поля $mg - Eq = 6\pi\eta r v_2$ — (2). Из (1) и (2) получим mg - Eq = 40

$$=\frac{v_2}{v_1}mg\;,\qquad \text{откуда}\qquad q=\frac{mg}{E}\bigg(1-\frac{v_2}{v_1}\bigg)=\frac{mgd}{U}\bigg(1-\frac{v_2}{v_1}\bigg)=4.1\times\\ \times 10^{-18}\;\text{Kл}.$$

9.56. Между двумя вертикальными пластинами на одинаковом расстоянии от них падает пылинка. Вследствие сопротивления воздуха пылинка падает с постоянной скоростью $v_i = 2$ см с. **Через** какое время t после подачи на пластины разности потеншиалов U = 3 кB пылинка достигнет одной из пластии? Какое расстояние / по вертикали пылинка пролетит до попадания на пластину? Расстояние между пластинами d = 2 см, масса пы-. линки $m = 2 \cdot 10^{-9}$ г, ее заряд $q = 6.5 \cdot 10^{-17}$ Кл.

Решение:

Решение: В отсутствие электрического поля $mg = 6\pi\eta r v_1$ — (1). При наличии поля на пылинку действует горизонтальная сила $\vec{F} = q\vec{E}$, которая сообщает пылинке усковение, но из-за сопротивления воздании также установится движение с некоторой **постоянной** скоростью v_2 , причем $qE = 6\pi \eta r v_2$ — (2). Из рисунка видно,

что $tg\alpha = \frac{v_1}{v_2} = \frac{qE}{mg}$. Кроме того, отношение $\frac{v_2}{v_2} = 0.5 \frac{d}{I}$, от-

куда
$$I = 0.5v_1 \frac{d}{v_2} = 0.5mg \frac{d}{qE} = 2 \text{ см.}$$
 Тогда $v_2 = \frac{v_1 d}{2I} = 1 \text{ см/c.}$

Искомое время найдем по формуле $t = \frac{l}{v}$. Подставляя числовые данные, получим t = 1 с.

9.57. Решить предыдущую задачу в отсутствие силы сопротивления воздуха (вакуумный конденсатор).

Решение:

В отсутствие электрического поля и силы сопротивления воздуха пылинка движется вертикально вниз со скоростью $v_1=gt$, где $g=9.8\,\mathrm{m/c^2}$ — ускорение свободного падения. После включения электрического поля за счет подачи на пластины конденсатора разности потенциалов U на пылинку будет действовать кулоновская сила F, направленная горизонтально,

сила F, направленная горизонтально, F = qE. Т. к. напряженность поля плоского конденсатора $E = \frac{U}{d}$, то сила $F = \frac{qU}{d}$ — (1). По второму закону Ньютона F = ma — (2). Приравняем правые части уравнений (1) и (2): $\frac{qU}{d} = ma$, отсюда горизонтальное ускорение частицы $a = \frac{qU}{dm}$ — (3), а ее скорость $v_2 = at = \frac{qUt}{dm}$. Перемещение частицы в горизонтальном направлении $\frac{d}{2} = \frac{at^2}{2}$ или $d = at^2$ — (4). Решая совместно уравнения (3) и (4), найдем время движения частицы $t = \sqrt{\frac{d}{a}} = \sqrt{\frac{d^2m}{aU}} = 64$ мс. Расстояние, пройденное частицей по вертикали, $l = \frac{gt^2}{2} = 2 \text{ cm}.$

9.58. В плоском горизонтально расположенном конденсаторе, расстояние между пластинами которого $d=1\,\mathrm{cm}$, находится заряженная капелька масла. В отсутствие электрического поля капелька падает с постоянной скоростью $v_1=0.11\,\mathrm{mm/c}$. Если на пластины подать разность потенциалов $U=150\,\mathrm{B}$, то капелька 42

падает со скоростью $v_2=0.43\,\mathrm{mm/c}$. Найти радиус r капельки и ее заряд q. Динамическая вязкость воздуха $\eta=1.82\cdot10^{-5}\,\mathrm{\Pi a\cdot c}$; плотность масла больше плотности газа, в котором падает капелька, на $\Delta\rho=0.9\cdot10^3\,\mathrm{kr/m}^3$.

Решение:

В отсутствие электрического поля на каплю действует сила тяжести, сила Архимеда и сила внутреннего трения Сток**са.** Т. к. скорость капли постоянна, то $mg - F_A = 6\pi \eta r v_1$ — (1). При наличии поля к указанным силам добавится кулоновская сила, тогда $mg - F_{\Lambda} + qE = 6\pi \eta r v_{\gamma}$ — (2). В первом приближении каплю можно считать шаром, поэтому ее объем $V=\frac{4}{3}\pi r^3$, а следовательно, масса $m=\rho_{\rm M}V=$ $=\frac{4}{3}\pi r^3 \rho_{_{\rm M}}$. По закону Архимеда $F_{_{\rm A}}=\rho_{_{\rm B}} V g=\frac{4}{3}\pi r^3 g \rho_{_{\rm B}}$. Тогда уравнения (1) и (2) можно переписать следующим образом: $\frac{4}{3}\pi r^3 g\Delta \rho = 6\pi \eta r v_1$ — (3); $\frac{4}{3}\pi r^3 g\Delta \rho + \frac{qU}{d} = 6\pi \eta \times$ $imes rv_2$ — (4). Из уравнения (3) найдем радиус капли $r = \sqrt{\frac{9\eta v_1}{2\sigma \Lambda_0}} = 1{,}12 \cdot 10^{-7} \text{ м.}$ Разделив (4) на (3), имеем $1 + \frac{3qU}{4\pi r^3 g\Delta\rho} = \frac{v_2}{v_c}$, отсюда заряд капли $q = \frac{4\pi r^3 g\Delta\rho}{3U} \times$ $\times \left(\frac{v_2}{v_1} - 1\right) = 7.26 \cdot 10^{-18} \text{ Kn.}$

9.59. Между двумя вертикальными пластинами, находящимися на расстоянии d=1 см друг от друга, на нити висит заряженный бузиновый шарик массой m=0,1 г. После подачи на пластины разности потенциалов U=1 кВ нить с шариком отклонилась на угол $\alpha=10^\circ$. Найти заряд q шарика.

Решение:

На шарик действует сила электрического поля $\vec{F} = q\vec{E}_1$ — (1), сила натяжения нити \vec{T} и сила тяжести $m\vec{g}$. Условие равновесия: $\vec{F} = m\vec{g} + \vec{T} = 0$. В проекциях на оси x и y соответственно $F - T \sin \alpha = 0$ — (2) и поля $\vec{F} = q\vec{E}_1$ — (1), сила натяжения нити $T\cos\alpha - mg = 0$ — (3). H3 (3) $T - \frac{mg}{\cos\alpha}$. тогда из (2) $F = mg \cdot tg\alpha$ или, с учетом (1), $qE = mg \cdot tg\alpha$ — (4). Напряженность поля плоского конденевтора $E = \frac{U}{d}$ — (5). Подетавляя (5) в (4), получим

 $\frac{qU}{J}$ = $mg\cdot tg\alpha$, откуда $q - \frac{dng\cdot tg\alpha}{U}$ = 1.73 пКл.

9.60. Мыльный нузырь с зарядом q = 222 пКл находится в равновесии в поле илоского горизоптально расположенного конленсатора. Найти разность потенциалов U между пластинами конденсатора, если масса пузыря m = 0.01 г и расстояние между илає інвами d = 5 см.

Решение:

Со стороны электрического поля на капельку действует сида $\tilde{F}=Eq$, которая уравновещивается силой тяжести $m\tilde{g}$. Т. к. $\vec{F}q + m\vec{g} = 0$ или Eq = mg. Напряженность поля илоского конпенсатора $E = \frac{U}{d}$. Тогда $\frac{Uq}{d} = mg$, откуда $U = \frac{m_X d}{d} = 22 \text{ kB}.$

9.61. Расстояние между пластинами плоского конденсатора $d = 4 \, \text{см.}$ Электрон начишет двигаться от отрицательной пластины в тот момент, когда от положительной инастины начинает двигаться протоп. На каком расстоянии / от положительной пластины встретятся электроп и протон?

Решение:

В поле плоского конденсатора на протон и электрон соответственно действуют кулоновские силы $\vec{F}_1 = e\vec{E}$ и $\vec{F}_2 = -e\vec{E}$ (силой тяжести ввиду ее малости можно пренебречь). Здесь e — элементарный зарял. Отсюда следует, что $\vec{F}_1 = -\vec{F}_2$ или $\vec{F}_1 = F_2$. В результате действия постоянной силы протон и электрон получают ускорения \vec{a}_1 и \vec{a}_2 . По второму

закону Ньютона $\vec{F}_1 = m_i \vec{a}_1$: $\vec{F}_2 = m_i \vec{a}_2$. Поскольку $F_1 = F_2$, то $m_p a_1 = m_e a_2$. Если протон и электрои встретились через время t на расстоянии t от положительной пластины, то $a_1 = \frac{2l}{t^2}$ и $a_2 = \frac{2(d-l)}{t^2}$. Гогда $\frac{m_e 2l}{t^2} = \frac{m_e 2(d-l)}{t^2}$: $m_p l = m_e (d-l)$. откуда $l = \frac{d}{m_p - m_e + 1} = 22$ мкм.

9.62. Расстояние между пластинами плоского комленсатора d = 1 см. От одной из пластии одновременно начинают двигаться протон и α -частина. Какое расстояние / пройдет α -частина за то время, в течение которого протон пройдет весь путь от одной пластины до другой?

Решение:

В поле влоского конденсатора на протон действует кулоновская сила $\vec{F}_1=e\vec{E}$, на α -частицу действует кулоновская сила $\vec{F}_2=2e\vec{E}$, т. к. заряд α -частицы равен двум элементарным зарядам. Здесь e — элементарный за-

9.63. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобретает скорость $v = 10^6$ м/с. Расстояние между пластинами d = 5,3 мм. Найти разность потенциалов U между пластинами, напряженность E электрического поля внутри конденсатора и поверхностную плотность заряда σ на пластинах.

Решение:

Пройдя путь от одной пластины конденсатора до другой, электрон приобрел кинетическую энергию равную $\frac{mv^2}{2}$. Эту энергию он приобрел за счет работы сил электрического поля, которая выражается формулой $A=e\times (\varphi_2-\varphi_1)=eU$. Тогда можно записать, что $mv^2/2=eU$, откуда $U=\frac{mv^2}{2e}=2,8$ В. Напряженность поля конденсатора E=U/d=530 В/м. Кроме того, напряженность выражается соотношением $E=\frac{\sigma}{\varepsilon\varepsilon_0}$, откуда $\sigma=E\varepsilon\varepsilon_0=4,7$ нКл/м².