浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: 2022-05-24

地点: 教二-125

课程名称: 电力电子技术 指导老师: 王正仕, 俞勇祥 成绩:

实验名称: 磁元件磁滞回线观测及电感测量 实验类型: 验证实验 同组学生姓名: 王斌浩

一、 实验目的

(1) 熟悉 Buck 变换器,掌握输出阻抗的理论公式推导。

- (2) 熟悉示波器 FFT 功能的使用方法。
- (3) 掌握 Buck 变换器输出阻抗的测量方法。

二、 实验内容

- (1) 连接 Buck 电路和测量电路,并配置相关仪器。
- (2) 调节信号发生器的频率,利用示波器测量各频率下的输出阻抗。
- (3) 改变占空比,再次测量个频率下的输出阻抗。

三、 实验设备及仪器

- (1) MPE-I 电力电子探究性实验平台
- (2) NMCL-22H 直流斩波电路
- (3) NMCL-22H-CK 直流斩波电路插卡
- (4) 输出阻抗测量实验电路
- (5) 示波器
- (6) 信号发生器
- (7) 万用表

四、 实验操作与实验数据

- 1. 连接输出阻抗测量实验电路并配置仪器
- 1. 连接并调试 Buck 电路

打开电源,用示波器观察 PWM 发生器的输出波形,并调节占空比至 50%,如下图所示:

图 1: PWM 输出波形

按照图 2-(a) 所示,按照实验指导书所示连接 Buck 电路:

图 2: 实验电路图

打开电源,使用数字万用表观察负载电阻两端电压,调节占空比旋钮,使其电压为6V。

图 3: 数字万用表示数

2. 连接小信号注入电路并配置仪器

为大功率电路接入 ± 15 V 电源,实验仪器上亮双红灯,电路连接正确。按照图 2所示,连接电路图,保持 buck 电路不变,使用 3 条 BNC 线分别连接信号发生器的 CH1 通道与信号发生器注入端 RFs1,示波器的 CH1 通道与测量电路的电压测量端 RF1,示波器的 CH2 通道与电流测量端 RF2。

设置信号发生器与示波器,设置 CH1 和 CH2 通道均为 AC 耦合,并将电流测量通道反向,设置信号发生器的输出通道为 CH1,输出模式为正弦波,峰峰值设置为 300mVpp,频率设置为 1KHz。检查电路无误后,打开 Buck 电路电源和信号发生器输出,观察输出波形如下图所示:

图 4: 示波器波形输出

可以看到,波形正确,接线无误。

2. Buck 电路输出阻抗测量

• 50% 占空比

调节占空比约为 50%,将信号发生器的输出设置为正弦波,峰峰值设置为 300mVpp,调节信号发生器频率为 10Hz-10kHz,记录示波器 CH1 和 CH2 通道的幅值,数据如下表所示:

信号发生器频率 (Hz)	20	60	80	100	110	120	130
后与及王命频率 (IIZ)	30	60	80	100	110	120	130
U1pp (mV)	151	364	394	359	344	330	321
U2pp (mV)	18.6	29.3	24.1	17.2	15	12.9	11.5
$\operatorname{Zout}(\Omega)$	8.11	12.4	16.3	20.8	22.9	25.5	27.9
信号发生器频率 (Hz)	140	150	160	170	180	190	200
U1pp (mV)	314	306	299	295	290	286	286
U2pp (mV)	6.4	6.4	6.52	6.52	6.72	7.36	8.2
$\operatorname{Zout}(\Omega)$	49.1	47.8	45.8	45.2	43.1	38.8	34.8
信号发生器频率 (Hz)	210	220	230	270	300	500	700
U1pp (mV)	282	281	273	269	266	262	253
U2pp (mV)	10.2	10.5	10.8	16	17.4	31.8	44
$\operatorname{Zout}(\Omega)$	27.6	26.7	25.3	16.8	15.3	8.24	5.75
信号发生器频率 (Hz)	1k	2k	3k	5k	7k	9k	10k
U1pp (mV)	242	221	211	193	177	158	136
U2pp (mV)	58.4	79.6	82.8	84.8	78.4	77.2	82
$\operatorname{Zout}(\Omega)$	4.14	2.77	2.54	2.27	2.25	2.04	1.65

表 1: 50% 占空比实验数据

绘制其阻抗的幅频特性曲线如下图所示:

图 5: 幅频阻抗频谱-50% 占空比

• 75% 占空比 绘制其阻抗的幅频特性曲线如下图所示:

信号发生器频率 (Hz)	30	60	80	100	110	120	130
U1pp (mV)	63.2	166	260	352	376	366	364
U2pp (mV)	15.4	28	36	37.2	36	33.8	30.3
$\operatorname{Zout}(\Omega)$	4.1	5.93	7.22	9.46	10.4	10.8	12
信号发生器频率 (Hz)	140	150	160	170	180	190	200
U1pp (mV)	357	346	335	325	322	314	306
U2pp (mV)	27.9	25.1	24.1	20.7	20.3	20.3	19.5
$\operatorname{Zout}(\Omega)$	12.8	13.8	13.9	15.7	15.9	15.5	15.7
信号发生器频率 (Hz)	210	220	230	270	300	500	700
U1pp (mV)	298	296	291	281	271	250	241
U2pp (mV)	18.3	18.8	17.1	17.3	15.9	27.2	46
$\operatorname{Zout}(\Omega)$	16.3	16	17	16	17	9.19	5.24
信号发生器频率 (Hz)	1k	2k	3k	5k	7k	9k	10k
U1pp (mV)	226	211	180	135	82	89.2	77.2
U2pp (mV)	64	119	138	168	163	159	162
$\operatorname{Zout}(\Omega)$	3.53	1.77	1.3	0.803	0.503	0.561	0.47

表 2: 75% 占空比实验数据

图 6: 幅频阻抗频谱-50% 占空比

3. FFT 法测量

使用 FFt 法进行测量,获得幅频特性曲线和相频特性曲线如下图所示:

图 7: 幅频阻抗频谱-50% 占空比

可以看到,测量到的幅频特性曲线与我们实验数据大致相同,同时,我们可以看到,相比与占空比为 50% 时的图像,占空比为 75% 时的图像曲线向高频偏移 (具体分析见下)。

4. Buck 电路输出阻抗计算

根据平均开关网络模型法,将 Buck 电路的开关网络转换成对应的线性端口网络模型:

图 8: Buck 电路模型转换

进一步可以计算出,二次侧上变压器上的电压为 DV_{in} ,利用戴维南等效,计算得到开路电压为:

$$V_o = \frac{DV_{in}}{LCs^2 + sL/R + 1} \tag{1}$$

短路电流为:

$$I_o = \frac{DV_{in}}{sL} \tag{2}$$

因此,我们可以计算出复频域阻抗为:

$$Z_{out} = \frac{LRs}{LCRs^2 + sL + R} \tag{3}$$

绘制得到幅频特性和相频特性曲线如下图所示:

图 9: 幅频和相频特性曲线 5

5. 总结与分析

记录实验数据,计算表中各频率下的输出阻抗幅值,绘制不同占空比下实际的输出阻抗频谱,观察不同占空比下输出阻抗的谐振频率。并回答以下问题:

- (1) 随着占空比的增大,谐振频率如何变化? 随着占空比的增大,谐振频率增大。
- (2) 根据式 (3) 尝试推导谐振频率的表达式,并指出谐振频率与哪几个参数有关。谐振频率:

$$Z_{out} = \frac{1}{1/R + j(\omega C - 1/\omega L)} \tag{4}$$

计算得到谐振频率为:

$$\omega = \frac{1}{\sqrt{LC}} = 982Hz \tag{5}$$

因此, 谐振频率只与电容和电感的大小有关。

(3) 占空比的变化是通过影响哪个参数进而影响谐振频率的? 为什么?

占空比变化,输入到二次侧的谐波分量发生变化,进而导致了电容容值的变化,进而对谐振频率产生了一定的影响。同时,占空比的变化也会导致电流增大,负载变重,进而导致电感变小, 当然,占空比的变化也会导致电路中的寄生参数发生变化,也会对谐振点造成一定的影响。

五、 思考题

1. 输出阻抗的理论值和实际值在高频段和低频段均存在差异,这是由电路中的寄生参数造成的。 下面请根据图 2-6 所示电路重新推导 Buck 电路输出阻抗表达式,并尝试分析各寄生参数对输 出阻抗的影响规律。其中,rg 为电源内阻,rL 为电感的寄生电阻,rc 为电容的寄生电阻。

图 10: 考虑寄生参数的 Buck 电路

利用统一电路模型,可以计算得到:

$$Z_{out} = \frac{1}{\frac{1}{R} + \frac{1}{r_c + \frac{1}{SC}} + \frac{1}{D^2 r_g + s_L + r_L}}$$
 (6)

2. 电感是一种磁元件,根据磁元件的实验可知,其感值受电流密度和频率的影响较大。那么,对于一个在线工作中的 Buck 电路,如何准确的得知其电感的感值?(提示:可根据 Buck 电路中受电感影响的物理量进行分析)

通过计算输出电流的纹波的大小,可以计算得到电感的感值。

六、 心得与体会

在本次实验中,我们进行了直流斩波电路输出阻抗的检测与分析的相关实验,通过这次实验,我了解到了 buck 电路的相关知识,收获颇多。