PROCESS FOR THE PREPARATION OF BINDERS FOR CATHODICALLY DEPOSITABLE PAINTED THE BINDERS PRODUCED NO TO THE USE THEREOF IN PAINTS

Land market and the second					
Patent Number:	<u>US5101000</u>				
Publication date:	1992-03-31				
Inventor(s):	HOENIG HELMUT (AT); PAAR WILLIBALD (AT); PAMPOUCHIDIS GEORG (AT)				
Applicant(s)::	VIANOVA KUNSTHARZ AG (AT)				
Requested Patent:	EP0414199, A3, B1				
Application Number:	US19900570624 19900821				
Priority Number(s):	AT19900001454 19900709; AT19890001992 19890823				
IPC Classification:	C08G59/50				
EC Classification:	C08G59/18B2, C08G59/56, C08G59/58, C09D5/44D4B				
Equivalents:	☐ <u>AT394197B</u> , CA2023827, DE59009199D, ES2074504T, ☐ <u>JP11071540</u> , JP2862976B2, ☐ <u>JP3170567</u>				
Abstract					
wherein 5 to 60 mol	eparation of water-dilutable binders for cathodically depositable electrodeposition paints % of the epoxy groups of a resinous compound having at least two 1,2-epoxy groups per d with disecondary diamines obtained by the reaction of polypropylene glycol				

A process for the preparation of water-dilutable binders for cathodically depositable electrodeposition paints wherein 5 to 60 mol % of the epoxy groups of a resinous compound having at least two 1,2-epoxy groups per molecule are reacted with disecondary diamines obtained by the reaction of polypropylene glycol diglycidylethers or polypropylene glycol diacrylates with compounds containing a primary amino group is described. The binders prepared in accordance with the invention are suitable, in particular, for formulating electrodeposition paints, to provide films having a greater layer thickness under normal deposition conditions.

Data supplied from the esp@cenet database - I2

Europäisches Patentamt **European Patent Office** Office uropé n des br vets

① Veröffentlichungsnummer: 0 414 199 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 90115953.3

(5) Int. Cl.5: C08G 59/50, C09D 5/44

2 Anmeldetag: 21.08.90

(3) Priorität: 23.08.89 AT 1992/89 09.07.90 AT 1454/90

43) Veröffentlichungstag der Anmeldung: 27.02.91 Patentblatt 91/09

Benannte Vertragsstaaten: BE DE ES FR GB IT NL SE 1 Anmelder: Vianova Kunstharz Aktiengesellschaft

A-8402 Werndorf(AT)

2 Erfinder: Paar, Willibald, Dr. Chem. Schanzelgasse 19 A-8010 Graz(AT) Erfinder: Pampouchidis, Georg, Dr. Chem. Obere Teichstrasse 31 A-8010 Graz(AT) Erfinder: Hönig, Helmut, Dr. Phys. Seebachergasse 10 A-8010 Graz(AT)

- Verfahren zur Herstellung von Bindemitteln für kathodisch abscheibare Lacke und deren Verwendung.
- Die Erfindung betrifft ein Verfahren zur Herstellung von wasserverdünnbaren Bindemitteln für kathodisch abscheidbare Elektrotauchlacke, wobei 5 bis 60 Mol % der Epoxidgruppen einer harzartigen Verbindung mit mindestens zwei 1,2-Epoxidgruppen pro Molekül mit disekundären Diaminen, welche durch die Reaktion von Polypropylenglykoldiglycidylethern bzw. Polpropylenglykoldiacrylaten mit eine primäre Aminogruppe aufweisenden Verbindungen erhalten wurden, umgesetzt werden.

Die erfindungsgemäß hergestellten Bindemittel sind insbesonders zur Formulierung von Elektrotauchlakken, mit welchen auch unter normalen Abscheidungsbedingungen Filme mit höherer Schichtstärke erreicht werden können, geeignet.

Xerox Copy Centre

VERFAHREN ZUR HERSTELLUNG VON BINDEMITTELN FÜR KATHODISCH ABSCHEIDBARE LACKE UND . DEREN VERWENDUNG.

Die Erfindung betrifft ein Verfahren zur Herstellung von Bindemitteln für kathodisch abscheidbare Elektrotauchlacke, welche zur Verbesserung der Abscheidungscharakteristik, der Badstabilität und der Filmeigenschaften Umsetzungsprodukte von polyethermodifizierten Diaminen mit Epoxidharzen enthalten. Die erfindungsgemäß hergestellten Bindemittel sind insbesonders zur Formulierung von Elektrotauchlacken, mit welchen auch unter normalen Abscheidungsbedingungen Filme mit höherer Schichtstärke erreicht werden können, geeignet.

Für eine solche Erhöhung der Schichtstärken bei der Elektrotauchlackierung von als Kathode geschalteten Werkstücken besteht ein großes Interesse, insbesondere seitens der Automobilindustrie, da man erwartet, bei Vorliegen geeigneter Materialien auf die bisher zwischen Grundierung und Decklackierung aufgebrachten Füllerschichten verzichten zu können.

Mit den vorhandenen Materialien lassen sich die diesbezüglichen Forderungen der Verbraucher nur in unzureichendem Maße realisieren, da die von der Anlagentechnik gegebenen Möglichkeiten für eine Erhöhung der Schichtstärken nicht zum gewünschten Ergebnis führen. Eine willkürliche Erhöhung der Abscheidungsspannung führt zu Oberflächenstörungen durch sogenannte Durchbrüche, d.h. durch elektrolytische Effekte beim Überschreiten der für das Bindemittel maximal zulässigen Arbeitsspannung. Eine Verlängerung der Beschichtungszeit ist meist aus Gründen des Arbeitsablaufes im Fließbandbetrieb nicht möglich. Diese Methode ist auch deswegen nicht zielführend, da bekanntlich bei der Elektrobeschichtung durch den Aufbau eines Filmwiderstandes eine automatische Begrenzung der Filmstärke eintritt.

Man hat daher versucht, durch Zusätze zum Elektrotauchlack die Schichtstärke zu beeinflussen. Bis zu einem bestimmten Ausmaß ist dies durch Kombination der Bindemittel mit höhermolekularen wasserunlöslichen Komponenten möglich, doch werden damit die für die kathodische Abscheidung charakteristischen niedrigen Schichtstärken von 8 bis 14 μm ohne Verschlechterung der Filmeigenschaften nur auf die bereits als Standard erwünschten 18 bis 22 μm erhöht. Solche Bindemittelkombinationen werden beispielsweise in der EP-B1-00 28 402 beschrieben. Dieser Effekt kann auch durch andere, unter den Bedingungen des K-ETL-Verfahrens praktisch wasserunlösliche Zumischkomponenten, z.B. auf Basis von Oxazolidinverbindungen, erzielt werden, wie es in der AT-PS 377.775 beschrieben wird. Eine Lösung für das anstehende Problem ist auch dadurch nicht gegeben.

In der EP-A1-00 59 468 werden Zusätze zur Erhöhung der Schichtstärken auf Basis von quartären Ammoniumsalzen, z.B. Methyldodecylbenzyltrimethylammoniumchlorid, Methyldodecylxylylen-bis-trimethylammoniumacetat u.ä. beschrieben. Die Wirkung der Zusätze liegt im wesentlichen in einer Erhöhung der Filmleitfähigkeit (oder einer Herabsetzung des Filmwiderstandes). Da jede Änderung des Filmwiderstandes Einfluß auf den Umgriff, d.h. auf die Beschichtung elektrisch abgeschirmter Stellen des Werkstücks hat, bedarf ein Zusatz dieser Art einer besonders sorgfältigen Badüberwachung.

Eine weitere Methode zur Anhebung der erzielbaren Filmstärken besteht in der Zugabe von schwerflüchtigen, wasserunlöslichen, organischen Lösungsmitteln, beispielsweise dem Ethylenglykolmonohexylether. Durch diese Zusätze wird der Dispersionscharakter des Badmaterials verändert, wodurch ebenfalls der
Filmwiderstand beeinflußt wird. Bei der großen Oberfläche der Elektrotauchlackierbecken ist jedoch ein
Verdampfen dieser Zusätze trotz deren hohen Siedepunkten nicht zu vermeiden, wodurch Schwankungen
bei der Beschichtung ohne besonderen Kontrollaufwand kaum vermieden werden können. Überdies werden
durch Zusätze dieser Art die Stabilität der Badmaterialien negativ beeinflußt und die optimale Abscheidungsspannung herabgesetzt.

In der EP 0 070 550 werden Umsetzungsprodukte von Polyepoxidverbindungen mit Polyoxyalkylenpolyaminen zur Erzielung von kathodisch applizierbaren Filmen mit erhöhter Kratersicherheit beschrieben. Diese Produkte sind jedoch aufgrund der Polyfunktionalität der eingesetzten Rohstoffe nicht reproduzierbar herzustellen und neigen bei der Synthese zum Gelieren.

Die EP 0 193 685 beschreibt Additive für kationische Elektrotauchlacke auf Basis von Umsetzungsprodukten von Polyoxyalkylenpolyaminen mit Monoepoxiden. Diese Zusatzkomponenten führen jedoch aufgrund ihres sehr starken hydrophilen Charakters bei der Schwitzwasser- bzw. Salznebelbelastung zur Enthaftung des eingebrannten Filmes auch nicht vorbehandeltem Stahlblech.

Es wurde nun gefunden, daß mit kathodisch abscheidbaren Lacken, die als Bindemittel Polyepoxidharze enthalten, die anteilig mit den anspruchsgemäßen disekundären Diaminen modifiziert sind, die gewünschte Schichtstärkensteigerung erreicht werden kann, ohne daß die beschriebenen Nachteile auftreten. Die erfindungsgemäß eingesetzten Modifikatoren werden durch Umsetzung von Polypropylenglykoldiglycidylverbindungen oder Polypropylenglykoldiacrylaten mit primären Alkylmonoaminen, deren Alkylrest gegebe-

nenfalls eine oder zwei Hydroxylgruppe(n) oder eine tertiäre Aminogruppe aufweist, erhalten.

Die vorliegende Erfindung betrifft demgemäß ein Verfahren zur Herstellung von nach vollständiger oder teilweiser Neutralisation mit anorganischen und/oder organischen Säuren wasserverdünnbaren Bindemitteln auf der Basis von aminmodifizierten Epoxidharzen, welches dadurch gekennzeichnet ist, daß man 5 bis 60 Mol%, vorzugsweise 10 bis 35 Mol%, der Epoxidgruppen einer harzartigen Verbindung mit mindestens zwei 1,2-Epoxidgruppen pro Molekül mit einem disekundären Diamin der allgemeinen Formel

10

15

55

$$R - NH - CH_2 - CH_2 - CH_2 - O - (CH_2 - CH_2 - O)_n - CH_2 - CH_2 - CH_2 - NH - R$$

und/oder

(II)

wobei R eine Alkylgruppe von 4 bis 18 C-Atomen oder eine Monohydroxyalkylgruppe oder eine Dihydroxyalkylgruppe oder eine tert.- Aminoalkylgruppe bedeutet und n für eine Zahl zwischen 2 und 12 steht, und den Rest der Epoxidgruppen in bekannter Weise mit Aminen und/oder Carbonsäuren und/oder substituierten Phenolen bei 60 bis 120°C vollständig umsetzt, wobei die Menge der basischen Komponenten so gewählt wird, daß das Endprodukt eine theoretische Aminzahl von mindestens 30 mg KOH/g, vorzugsweise von 50 bis 110 mg KOH/g, aufweist.

Die Erfindung betrifft weiters die Verwendung der erfindungsgemäß hergestellten Bindemittel zur Formulierung von Elektrotauchlacken, mit welchen auch unter normalen Abscheidungsbedingungen Filme mit höherer Schichtstärke erreicht werden können.

Durch das erfindungsgemäße Verfahren können in einfacher und übersichtlicher Weise Produkte erhalten werden, die sowohl als Bindemittel in Kombination mit Härtungskomponenten oder als Alleinbindemittel bei entsprechender Modifizierung mit härtbaren Gruppen, wie halbblockierten Diisocyanaten, aber auch, aufgrund ihrer guten Pigmentbenetzung, zur Herstellung von Pigmentpasten für eine spätere Abmischung mit anderen kathodisch abscheidbaren Elektrotauchlackbindemitteln eingesetzt werden können.

Als harzartige Verbindungen mit mindestens zwei 1,2-Epoxidgruppen, welche erfindungsgemäß mit den disekundären Diaminen umgesetzt werden, kommen insbesonders die bekannten Epoxidharze, welche durch Umsetzung von Bisphenolen, Novolaken, Glykolen etc. mit Epichlorhydrin oder Methylepichlorhydrin erhalten werden, zum Einsatz. Diese Produkte sind im Handel in einer breiten Palette zugänglich und in vielen Lehrbüchern ausführlich beschrieben. Besonders bevorzugt werden die Produkte auf Basis von Bisphenol A oder Novolaken, welche ein Epoxidäquivalentgewicht zwischen 170 und 1000 aufweisen.

Die erfindungsgemäß eingesetzten disekundären Diamine der allgemeinen Formel (I) werden durch Umsetzung von 1 Mol eines Polypropylenglykoldiglycidylethers mit einem Molekulargewicht zwischen 200 und 800 mit 2 Mol einer eine primäre Aminogruppe aufweisenden Verbindung erhalten.

Amine der allgemeinen Formel (II) erhält man durch Umsetzung von 1 Mol eines Di- oder Polypropylenglykoldiacrylats mit 2 Mol einer eine primäre Aminogruppe aufweisenden Verbindung.

Die für die Synthese der Verbindungen (I) und (II) verwendeten Amine sind primäre Monoalkylamine, wie Butylamin und seine Homologe, primäre Alkanolmonoamine, wie Monoethanolamin und seine Homologe, oder Dihydroxyalkylamine vom Typ des 2-Aminoethylpropandiol, oder primär-tertiäre Alkyldiamine, wie 3-Dimethylamino-1-propylamin und dessen homologe Verbindungen.

Die Herstellung der erfindungsgemäß eingesetzten disekundären Diamine der Gruppe (I) erfolgt durch Vorlegen des primären Amins und langsame Zugabe der Diepoxidverbindung bei 40 - 80 °C. Die Reaktionsmasse wird anschließend bei ca. 80 °C bis zum vollständigen Verbrauch aller Epoxidgruppen gehalten; eventuell nicht umgesetztes Amin wird im Vakuum abdestilliert.

Die für die Herstellung der disekundären Diamine der Gruppe (I) benötigten Polypropylenglykoldiglycidylether enthalten vielfach beträchtliche Mengen an hydrolysierbarem Chlor, das in den Elektrotauchanlagen zu verstärkter Anlagenkorrosion führen kann.

In einer speziellen Ausführungsform werden daher die disekundären Diamine der Gruppe (I) zur

Verringerung des Gehalts an hydrolysierbarem Chlor sofort nach ihrer Herstellung einem Waschprozeß unterworfen.

Bei 60 bis 80°C wird unter starkem Rühren Wasser in einer Menge von 20 bis 40 % des ursprünglichen Volumens des Reaktionsansatzes zugesetzt. Es wird bei 70 bis 80°C eine weitere Stunde gerührt und anschließend ein Schleppmittel, vorzugsweise Xylol, zugegeben. Die Mischung wird ohne Rühren bis zur vollständigen Phasentrennung stehengelassen. Die wäßrige Phase wird abgetrennt, das noch im Ansatz befindliche Wasser wird azeotrop abdestilliert und das Kreislaufmittel wird schließlich im Vakuum entfernt.

Die disekundären Diamine der Gruppe (II) werden durch langsame Zugabe der Diacrylatverbindung zum vorgelegten Amin bei 30 - 35 °C unter Kühlung erhalten. Zur Vervollständigung der Reaktion wird der Ansatz anschließend noch 3 Stunden bei 40 °C gehalten.

Gegebenenfalls werden die Produkte in einem Lösungsmittel gelöst. Geeignete Lösungsmittel sind Glykolmono-oder Glykoldiether; vorzugsweise wird das Methoxy- bzw. Ethoxypropanol eingesetzt.

Die Herstellung der Bindemittel erfolgt durch Umsetzung der Komponenten bei 60 - 120°C, bis keine freien Epoxidgruppen mehr nachweisbar sind.

Die für die Reaktion mit den freigebliebenen Epoxidgruppen der Epoxidharze eingesetzten übrigen Amine, Carbonsäuren oder substituierten Phenole, in den Beispielen "Restmodifikatoren" genannt, sind dem Fachmann in großer Zahl bekannt und bedürfen keiner näheren Erläuterung.

Die nachfolgenden Beispiele sollen die Erfindung erläutern, stellen jedoch keine Beschränkung ihres Umfanges dar. Alle Angaben in Teilen oder Prozenten beziehen sich, soferne nicht anders angegeben, auf Gewichtseinheiten. Alle Angaben in den Tabellen beziehen sich auf Feststoffe.

In den Beispielen werden folgende Abkürzungen verwendet:

	DE 1	Polypropylenglykoldiglycidylether mit einem						
25		Epoxidäquivalent von 200						
	DE 2	Polypropylenglykoldiglycidylether mit einem						
		Epoxidäquivalent von ca. 320						
30	EHA .	2-Ethylhexylamin						
	MIPA	Monoisopropanolamin						
	AEPD	2-Amino-2-ethylpropandiol-1,3						
35	DEAPA	3-Diethylamino-1-propylamin						
	DEHA	Di-2-Ethylhexylamin						
	DPGDA	Dipropylenglykoldiacrylat						
	TPGDA	Tripropylenglykoldiacrylat						
40	EPH I	Epoxidharz auf Basis Bisphenol A						
		Epoxidäquivalent ca. 200						
	EPH II	Epoxidharz auf Basis Bisphenol A						
45		Epoxidäquivalent ca. 500						
	MP	Methoxypropanol						
	EP	Ethoxypropanol						
50	INS	Isononansäure						
	NPH	Nonylphenol						
	SPH	Umsetzungsprodukt eines Mols Phenol mit						
55		2 Mol DEAPA und 2 Mol Formaldehyd sowie						
55		mit 2 Mol eines mit 2-Ethylhexanol halb-						
		blockierten TDI (MG = 986); die Herstellung						

		dieses Produktes ist beispielsweise in der
		AT-PS 382 160 beschrieben.
5	TDI	Toluylendiisocyanat (handelsübliches Iso-
		merengemisch mit 80 % 2,4 TDI)
	н 1	Umsetzungsprodukt eines Mols Trimethylol-
		propan mit 3 Mol eines mit MP halbblockier-
10		ten TDI (Urethanvernetzer)
	Н 2	Umesterungshärter analog Beispiel 2 der
		AT-PS 372.099 (Umesterungsprodukt aus
15		3 Mol Malonsäuredimethylester und 1 Mol
		Trimethylolpropan)
20		(H 1 und H 2 werden eingesetzt, soferne die
•		Bindemittel keine selbstvernetzenden Eigen-
		schaften aufweisen.)
25		(51) 1 7-13:31
	Sń	Zinn-Katalysator (Dibutylzinndilaurat),
		berechnet als Metall
	Pb	Blei-Katalysator (Bleioktoat),
30		berechnet als Metall

In Tabelle 1 sind die Ausgangsmaterialien für die in den Beispielen erfindungsgemäß eingesetzten disekundären Diamine (DISA) zusammengefaßt.

Bei der Herstellung von DISA 1 - 4 wird das primäre Amin in einem geeigneten Reaktionsgefäß vorgelegt und die Epoxidverbindung bei ansteigender Temperatur bei 40 - 80 °C langsam zugegeben. Die Temperatur wird weiter bei 80 °C gehalten, bis die Epoxidgruppen vollständig umgesetzt sind. Anschließend werden unter Vakuum Reste von nicht umgesetztem Amin aus dem Ansatz entfernt.

Im folgenden Waschprozeß zur Verringerung des Gehalts an hydrolysierbarem Chlor wird bei 60 bis 80°C unter starkem Rühren Wasser in einer Menge von 20 bis 40 % des ursprünglichen Volumens des Reaktionsansatzes zugesetzt. Es wird bei 70 bis 80°C eine weitere Stunde gerührt und anschließend ein Schleppmittel, vorzugsweise Xylol, zugegeben. Die Mischung wird ohne Rühren bis zur vollständigen Phasentrennung stehengelassen. Die wäßrige Phase wird abgetrennt, das noch im Ansatz befindliche Wasser wird azeotrop abdestilliert und das Kreislaufmittel wird schließlich im Vakuum entfernt. In der Tabelle 1a sind die Angaben für den Gehalt an hydrolysierbarem Chlor in DISA 1 - 4 vor und nach dem Waschprozeß gegenübergestellt.

Bei DISA 5 und 6 erfolgt die langsame Zugabe der Diacrylat- verbindung unter Kühlung bei 30 - 35 °C. Anschließend wird der Ansatz 3 Stunden bei 40 °C gehalten.

50

Tabelle 1

		Diglycidy	ylverbindung	Diacrylat		primär	es Amin	FKP ⁽¹⁾	MG ⁽²⁾	
5		Menge	.Art	Menge	Art	Menge	Art			
	DISA 1	400	DE 1			258	EHA	100	658	
10	DISA 2	640	DE 2	1		146	MIPA	80 MP	786	
	DISA 3	640	DE 2	1		238	AEPD	90 EP	878	
	DISA 4	400	DE 1	1		260	DEAPA	80 EP	660	
	DISA 5			304	TPGDA	258	EHA	100	358	
	DISA 6			246	DPGDA	238	AEPD	100	338	

⁽¹⁾ Festkörpergehalt %, Lösungsmittel

20

Tabelle 1a

25

30

35

ï	ppm hydrolysierbares Chlor					
	vor dem Waschprozeß	nach dem Waschprozeß				
DISA 1	ca. 8000	ca. 2500				
DISA 2	ca. 4500	ca. 1900				
DISA 3	ca. 4000	ca. 1200				
DISA 4	ca. 8000	ca. 900				

Tabelle 2 faßt den Aufbau der erfindungsgemäß hergestellten Bindemittel zusammen.

In einem geeigneten Reaktionsgefäß werden alle Komponenten bei 60°C gemischt. Die Temperatur wird langsam auf 80°C gesteigert und so lange gehalten, bis keine freien Epoxidgruppen mehr nachweisbar sind.

Die gemäß Tabelle 2 hergestellten Bindemittel werden in den in Tabelle 3 angegebenen Gewichtsverhältnissen mit dem Vernetzungsmittel und dem Katalysator gemischt. Die Menge des Neutralisationsmittels für die Herstellung eines stabilen wäßrigen Klarlackes (in Millimol Ameisensäure / 100 g Festharz) ist in der letzten Spalte angegeben.

Für die Herstellung pigmentierter Lacke werden die Bindemittelkombinationen 1 - 10 nach folgender Rezeptur verarbeitet:

100 Tle Festharz

0,5 Tle Farbruß

3,3 Tle basisches Bleisilikatpigment

35,5 Tie Titandioxid

5 Tle Monoethylenglykolmonohexylether

Die Prüfung der pigmentierten Lacke erfolgt durch elektrische Abscheidung auf nicht phosphatiertes, entfettetes Stahlblech, das als Kathode geschaltet wird. Anschließend werden die Filme bei 180°C 25 Minuten eingebrannt und 360 Stunden auf ihre Beständigkeit im Salzsprühtest nach ASTM getestet.

Tabelle 4 faßt die jeweiligen Daten zusammen. Als Vergleichsbeispiel wurde ein kathodisch abscheidbarer ET-Lack gemäß Beispiel 1 der EP 0 93 685 herangezogen (V).

⁽²⁾ Molekulargewicht (berechnet)

Tabelle 2

	Beispiel	Epoxidharz .			DISA		Restmodifikator		MG ⁽¹⁾	AZ ⁽²⁾		
5		Menge	(val)	Art	Menge	(val)	Art	Menge	(val)	Art		
	1	200	(1,0)	EPH I	263	(0,6)	DISA 3	2366	(2,4)	SPH	3829	79
		1000	(2,0)	EPH II								
10	2	1500	(3,0)	EPH II	393	(1,0)	DISA 2	65	(1.0)	DEAPA	2197	76
10								239	(1,0)	DEHA		
	3	800	(4,0)	EPH I	254	(1,5)	DISA 6	98	(1,5)	DEAPA	1372	122
								220	(1,0)	NPH		
15	4	400	(2,0)	EPH I	660	(2,0)	DISA 4	336	(2,0)	INS	2396	93
		1000	(2,0)	EPH II					_			
	5	2000	(4,0)	EPH II	494	(1,5)	DISA 1	2465	(2,5)	SPH	4959	73
20	6	400	(2,0)	EPH I	329	(1,0)	DISA 1	26	(0,7)	MIPA	1408	105
		500	(1,0)	EPH II	107	(0,6)	DISA 5	46	(0,7)	DEAPA		
	7	200	(1,0)	EPH I	592	(1,8)	DISA 1	52	(8,0)	DEAPA	1911	76
25		1000	(2,0)	EPH II				67	(0,4)	INS		
20	8	800	(4,0)	EPH I	143	(8,0)	DISA 5	119	(2,0)	AEPD	1140	147
	'							78	(1,2)	DEAPA		
	9	2000	(4,0)	EPH II	660	(2,0)	DISA 4	440	(2,0)	NPH	3100	72
30	10	400	(2,0)	EPH I	393	(2,0)	DISA 2	986	(1,0)	SPH	2947	76
		1000	(2,0)	EPH II				168	(1,0)	INS		

⁽¹⁾ Molekulargewicht berechnet (2) Aminzahl mg KOH.g

45

Tabelle 3

•	
5	

_20

Bindemittelkombination (BK)	Teile Fe	estsubstanz	Katalysator	Neutalisation	
(alty	Bindemittel (ex Beispiel)*	Vernetzungsmittel			
1	100(1)/65 EP		1,0 Sn	40	
2	70 (2)/60 EP	√ 30 H 1	1,0 Sn	35	
3	. 75 (3)/70 MP	25 H 2	1,2 Pb	40	
. 4	70 (4)/65 MP	30 H 1	-0,8 Sn	35	
5	100(5)/60 MP	20 H 1	1,0 Sn	30	
, 6	80(6)/65 MP	20 H 1	1,0 Sn	35	
7	70(7)/60 EP	30 H 2	0,8 Pb	40	
8	80(8)/65 MP	20 H 1	1,0 Sn	45	
9	75 (9)/60 EP	25 H 1	1,0 Sn	30	
10	100(10)/60 MP		0,6 Sn	35	

* Die Angaben beziehen sich auf die Prozentigkeit und das Lösungsmittel, in welchem das Bindemittel vorliegt.

Tabelle 4

* Maximal erzielbare Schichtstärke bei 32 C Badtemperatur und 135 Sekunden Beschichtungsdauer.

Ansprüche

15 und/oder

10

wobei R eine Alkylgruppe von 4 bis 18 C-Atomen oder eine Monohydroxyalkylgruppe oder eine Dihydroxyalkylgruppe oder eine tert.-Aminoalkylgruppe bedeutet und n für eine Zahl zwischen 2 und 12 steht, und den Rest der Epoxidgruppen in bekannter Weise mit Aminen und/oder Carbonsäuren und/oder substituierten Phenolen bel 60 bis 120° C vollständig umsetzt, wobei die Menge der basischen Komponenten so gewählt wird, daß das Endprodukt eine theoretische Aminzahl von mindestens 30 mg KOH/g, vorzugsweise von 50 bis 110 mg KOH/g, aufweist.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als disekundäres Diamin der Formel (I) Umsetzungsprodukte aus 1 Mol eines Polypropylenglykoldiglycidylethers mit einem Molekulargewicht zwischen 200 und 800 mit 2 Mol einer eine primäre Aminogruppe aufweisenden Verbindung einsetzt.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß man als disekundäres Diamin der Formel (II)
Umsetzungsprodukte aus 1 Mol eines Dipropylenglykoldiacrylates und/oder Polypropylenglykoldiacrylate
mit 2 Mol einer eine primäre Aminogruppe aufweisenden Verbindung einsetzt.

4. Verfahren nach den Ansprüchen 2 und 3, dadurch gekennzeichnet , daß man als eine primäre Aminogruppe aufweisende Verbindungen primäre Monoalkylamine und/oder primäre Alkanolmonoamine mit einer oder zwei Hydroxylgruppe(n) und/oder primär-tertiäre Alkyldiamine einsetzt.

5. Verfahren nach Anspruch 2, dadurch gekennzelchnet, daß man zur Verringerung des Gehalts an hydrolysierbarem Chlor die disekundären Diamine der Formel (I) sofort nach ihrer Herstellung einem Waschprozeß unterwirft.

6. Verwendung der nach den Ansprüchen 1 bis 5 hergestellten Bindemittel zur Formullerung von Elektrotauchlacken, mit welchen auch unter normalen Abscheidungsbedingungen Filme mit höherer Schichtstärke erreicht werden können.

50