CS 229 Lecture Thirteen Unsupervised Learning: Gaussian Mixture Models as EM

Chris Ré

May 14, 2023

EM for GMM and Factor Analysis

- EM recovers our ad hoc algorithm GMM.
- Factor Analysis: What happens when many fewer points than dimension " $n \ll d$ ", need even more structure (but also EM).

Recall: GMM from Last Time

- ▶ We saw an iterative method for GMM:
 - We estimate the distribution of the latent variable $z^{(i)}$ i.e., a $P(z^{(i)} = j)$, which is a probabilistic assignment of each point $x^{(i)}$ to a source j.
 - We then refit parameters (the mean and shape of each source (μ_j, σ_j^2) , and the fraction of points each sees, ϕ_j) for $j = 1, \ldots, k$.
 - We repeat.

Jensen's Inequality and Concave Functions

The canonical concave function is $g(x) = \log x$ on $(0, \infty)$.

For any $z \in [a, b]$ we can write $z = \lambda a + (1 - \lambda)b$. Then, the "chord is below" picture means

$$g(z) \ge \lambda g(a) + (1 - \lambda)g(b).$$

Last time we saw, "a with prob λ and b with prob $1-\lambda$ " which leads to Jensen's Inequality for concave g

$$g(\mathbb{E}[z]) \geq \mathbb{E}[g(z)]$$
 specifically $\log \mathbb{E}[z] \geq \mathbb{E}[\log z]$

Hopefully, drawing this picture helps you remember!

Picture of EM Algorithm

- **E-Step** Given $\theta^{(t)}$ find a curve L_t
- ▶ **M-Step** Given L_t , set $\theta^{(t+1)} = \operatorname{argmax}_{\theta} L_t(\theta)$.

We examine a single data point (and drop scripts). First a trick,

$$\log \sum_{z} P(x, z; \theta) = \log \sum_{z} \frac{Q(z)P(x, z; \theta)}{Q(z)}. \text{ for any } Q(z)$$

We pick Q(z) s.t. $\sum_{z} Q(z) = 1$ and $Q(z) \ge 0$ then,

$$=\log \mathbb{E}_{z \sim Q(z)} \left[rac{P(x,z; heta)}{Q(z)}
ight]$$
 Def of \mathbb{E}

We examine a single data point (and drop scripts). First a trick,

$$\log \sum_{z} P(x, z; \theta) = \log \sum_{z} \frac{Q(z)P(x, z; \theta)}{Q(z)}. \text{ for any } Q(z)$$

We pick Q(z) s.t. $\sum_{z} Q(z) = 1$ and $Q(z) \ge 0$ then,

$$= \log \mathbb{E}_{z \sim Q(z)} \left[\frac{P(x, z; \theta)}{Q(z)} \right]$$
 Def of $\mathbb{E}_{z \sim Q(z)} \left[\log \frac{P(x, z; \theta)}{Q(z)} \right]$ Jensen, since log is concave.

Def of \mathbb{E}

We examine a single data point (and drop scripts). First a trick,

$$\log \sum_{z} P(x, z; \theta) = \log \sum_{z} \frac{Q(z)P(x, z; \theta)}{Q(z)}. \text{ for any } Q(z)$$

We pick Q(z) s.t. $\sum_{z} Q(z) = 1$ and $Q(z) \ge 0$ then,

$$= \log \mathbb{E}_{z \sim Q(z)} \left[\frac{P(x, z; \theta)}{Q(z)} \right]$$
 Def of $\mathbb{E}_{z \sim Q(z)} \left[\log \frac{P(x, z; \theta)}{Q(z)} \right]$ Jensen, since log is concave.
$$= \sum_{z} Q(z) \log \frac{P(x, z; \theta)}{Q(z)}$$
 Def of \mathbb{E}

Def of \mathbb{E}

Def of \mathbb{E}

We examine a single data point (and drop scripts). First a trick,

$$\log \sum_{z} P(x, z; \theta) = \log \sum_{z} \frac{Q(z)P(x, z; \theta)}{Q(z)}. \text{ for any } Q(z)$$

We pick Q(z) s.t. $\sum_{z} Q(z) = 1$ and $Q(z) \ge 0$ then,

$$\begin{split} &= \log \mathbb{E}_{z \sim Q(z)} \left[\frac{P(x,z;\theta)}{Q(z)} \right] & \text{Def of } \mathbb{E} \\ &\geq & \mathbb{E}_{z \sim Q(z)} \left[\log \frac{P(x,z;\theta)}{Q(z)} \right] & \text{Jensen, since log is concave.} \\ &= & \sum Q(z) \log \frac{P(x,z;\theta)}{Q(z)} & \text{Def of } \mathbb{E} \end{split}$$

This lower bound holds for *any* such choice of Q-a family of lower bounds. We can select Q per point.

How do we make it tight?

Select each Q to make tight for its term...

$$\frac{P(x,z;\theta)}{Q(z)}=c$$
 is constant wrt z, then Jensen is an equality.

That is, if the random variable's distribution doesn't depend on z.

$$\mathbb{E}_{z \sim Q} \left[\log \frac{P(x, z; \theta)}{Q(z)} \right] = \log c$$

$$\log \mathbb{E}_{z \sim Q} \left[\frac{P(x, z; \theta)}{Q(z)} \right] = \log c$$

They are equal, that is, Jensen's inequality is tight.

How do we make it tight?

Select each Q to make tight for its term...

$$\log \frac{P(x,z;\theta)}{Q(z)} = c$$
 is constant wrt z , then Jensen is an equality.

How do we make it tight?

Select each Q to make tight for its term...

$$\log \frac{P(x,z;\theta)}{Q(z)} = c$$
 is constant wrt z, then Jensen is an equality.

So what if $Q(z) = P(z \mid x; \theta)$ then

$$\log \frac{P(x, z; \theta)}{P(z \mid x; \theta)} = \log P(x; \theta)$$

If we examine the argument above, the only inequality is now equality so with this choice of Q we are tight!

Note: Q(z) depends on θ and x-but not z-so we will select a $Q^{(i)}(z)$ for each point $x^{(i)}$ for $i=1,\ldots,n$.

ELBO!

We define the Evidence Lower Bound (ELBO) as:

ELBO
$$(x, Q, \theta) = \sum_{z} Q(z) \log \frac{P(x, z; \theta)}{Q(z)}.$$

So now, we've shown:

$$\ell(\theta) \ge \sum_{i=1}^{n} \text{ELBO}(x^{(i)}, Q^{(i)}, \theta)$$

for any $Q^{(i)}$ and θ

ELBO!

We define the Evidence Lower Bound (ELBO) as:

$$ELBO(x, Q, \theta) = \sum_{z} Q(z) \log \frac{P(x, z; \theta)}{Q(z)}.$$

So now, we've shown:

$$\ell(\theta) \ge \sum_{i=1}^{n} \mathrm{ELBO}(x^{(i)}, Q^{(i)}, \theta)$$
 for any $Q^{(i)}$ and θ

$$\ell(\theta^{(t)}) = \sum_{i=1}^n \text{ELBO}(x^{(i)}, Q^{(i)}, \theta^{(t)})$$
 for the choice of $Q^{(i)}$ above.

ELBO!

We define the Evidence Lower Bound (ELBO) as:

ELBO(x, Q,
$$\theta$$
) = $\sum_{z} Q(z) \log \frac{P(x, z; \theta)}{Q(z)}$.

So now, we've shown:

$$\ell(\theta) \ge \sum_{i=1}^n \mathrm{ELBO}(x^{(i)}, Q^{(i)}, \theta)$$
 for any $Q^{(i)}$ and θ

$$\ell(\theta^{(t)}) = \sum_{i=1}^n \text{ELBO}(x^{(i)}, Q^{(i)}, \theta^{(t)})$$
 for the choice of $Q^{(i)}$ above.

We've shown lower bound and tight, deriving the picture!

Wrap-up of EM!

- ► **E-Step** $Q^{(i)}(z) = P(z^{(i)} | x^{(i)}; \theta)$ for i = 1, ..., n.
- ▶ M-Step $\theta^{(t+1)} = \operatorname{argmax}_{\theta} L_t(\theta)$ in which

$$L_t(\theta) = \sum_{i=1}^n \text{ELBO}(x^{(i)}, Q^{(i)}, \theta).$$

Some comments:

- ▶ Why does this terminate? $\ell(\theta^{(t+1)}) \ge \ell(\theta^{(t)})$
- ▶ Is it globally optimal? Nope! See the picture.

Generic EM algorithm.

E-Step. for i = 1, ..., n, estimate the latent variable $z^{(i)}$. Set

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

Generic EM algorithm.

E-Step. for i = 1, ..., n, estimate the latent variable $z^{(i)}$. Set

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

▶ **M-Step** Update the parameters, given our estimate of $z^{(i)}$

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} L_t(\theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^n \operatorname{ELBO}(x^{(i)}, Q^{(i)}, \theta).$$

Generic EM algorithm.

E-Step. for i = 1, ..., n, estimate the latent variable $z^{(i)}$. Set

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

▶ **M-Step** Update the parameters, given our estimate of $z^{(i)}$

$$\theta^{(t+1)} = \operatorname*{argmax}_{\theta} L_t(\theta) = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \mathrm{ELBO}(x^{(i)}, Q^{(i)}, \theta).$$

Mixture of Gaussians P s.t. for each data point (i = 1, ..., n) and each source (j = 1, ..., k) we find a *soft assignment* $P(z^{(i)} = j)$

$$P(x^{(i)}, z^{(i)}) = P(x^{(i)}|z^{(i)})P(z^{(i)})$$
 Bayes' Rule

Generic EM algorithm.

E-Step. for i = 1, ..., n, estimate the latent variable $z^{(i)}$. Set

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

▶ **M-Step** Update the parameters, given our estimate of $z^{(i)}$

$$\theta^{(t+1)} = \operatorname*{argmax}_{\theta} L_t(\theta) = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \mathrm{ELBO}(x^{(i)}, Q^{(i)}, \theta).$$

Mixture of Gaussians P s.t. for each data point (i = 1, ..., n) and each source (j = 1, ..., k) we find a *soft assignment* $P(z^{(i)} = j)$

$$P(x^{(i)}, z^{(i)}) = P(x^{(i)}|z^{(i)})P(z^{(i)})$$
 Bayes' Rule $z^{(i)} \sim \text{Multinomial}(\phi)$ Mixture of sources

Generic EM algorithm.

E-Step. for i = 1, ..., n, estimate the latent variable $z^{(i)}$. Set

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

▶ **M-Step** Update the parameters, given our estimate of $z^{(i)}$

$$\theta^{(t+1)} = \operatorname*{argmax}_{\theta} L_t(\theta) = \operatorname*{argmax}_{\theta} \sum_{i=1}^n \mathrm{ELBO}(x^{(i)}, Q^{(i)}, \theta).$$

Mixture of Gaussians P s.t. for each data point (i = 1, ..., n) and each source (j = 1, ..., k) we find a *soft assignment* $P(z^{(i)} = j)$

$$P(x^{(i)}, z^{(i)}) = P(x^{(i)}|z^{(i)})P(z^{(i)})$$
 Bayes' Rule $z^{(i)} \sim \text{Multinomial}(\phi)$ Mixture of sources $x^{(i)} \mid z^{(i)} = j \sim \mathcal{N}(\mu_i, \sigma_i^2)$ Gaussian in each source

The E-Step for Mixture of Gaussians

Given $\theta^{(t)}$ and the data $x^{(1)}, \dots, x^{(n)}$ estimate:

$$Q^{(i)}(z) = P(z^{(i)} \mid x^{(i)}; \theta^{(t)}).$$

Recall. We did this in detail. Bayes Rule to automate reasoning two factors in source of a point?

- ▶ Did more points come from source 1 or 2? (i.e. ϕ_1 v. ϕ_2).
- How likely is this to be generated by that source? (i.e., likelihood of $\mathcal{N}(\mu_1, \sigma_1^2)$ v. $\mathcal{N}(\mu_2, \sigma_2^2)$.

M-Step for Mixture of Gaussians

Given
$$P(z^{(i)}=j)$$
 for $i=1,\ldots,n$ estimate
$$\theta=(\phi,\mu_1,\Sigma_1,\ldots,\mu_n,\Sigma_j).$$

Note: Here, the dimension is greater than 1, i.e., $d \ge 1$ so:

$$\mu_j \in \mathbb{R}^d$$
 and $\Sigma_j \in \mathbb{R}^{d \times d}$

Perhaps, confusingly but conventionally, if d=1, $\Sigma_1=\sigma_1^2$. Σ_j is called the covariance matrix, and it's symmetric positive definite, i.e., $\Sigma_j \succeq 0$ and $\Sigma_j^T = \Sigma_j$.

M-Step for Mixture of Gaussians

Given
$$P(z^{(i)} = j)$$
 for $i = 1, ..., n$ estimate θ

$$\max_{\theta} \sum_{i=1}^{n} \underbrace{\sum_{z} Q^{(i)}(z) \log \frac{P(x^{(i)}, z; \theta)}{Q^{(i)}(z)}}_{f_{i}(\theta)}$$

It's all computing derivatives, first recall the model and Bayes rule:

$$P(x^{(i)}, z^{(i)}; \theta) = P(x^{(i)}|z^{(i)})P(z^{(i)})$$
 in which $P(x^{(i)} | z^{(i)} = j) \sim \mathcal{N}(\mu_j, \Sigma_j)$ and $\phi_j = P(z^{(i)} = j)$

M-Step for Mixture of Gaussians

Given
$$P(z^{(i)} = j)$$
 for $i = 1, ..., n$ estimate θ

$$\max_{\theta} \sum_{i=1}^{n} \underbrace{\sum_{z} Q^{(i)}(z) \log \frac{P(x^{(i)}, z; \theta)}{Q^{(i)}(z)}}_{f_{i}(\theta)}$$

It's all computing derivatives, first recall the model and Bayes rule:

$$P(x^{(i)}, z^{(i)}; \theta) = P(x^{(i)}|z^{(i)})P(z^{(i)})$$
 in which $P(x^{(i)} | z^{(i)} = j) \sim \mathcal{N}(\mu_j, \Sigma_j)$ and $\phi_j = P(z^{(i)} = j)$

In previous lecture, we wrote $w_j^{(i)} = Q^{(i)}(z_i = j)$. Then, says:

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}}{w_j^{(i)}} \right).$$

Let's find the parameters!

So we have:

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}}{w_j^{(i)}} \right).$$

▶ To find the value of $\operatorname{argmax}_{\theta}$ we look for critical points of some parameter, say μ_j . That is, we look for solutions of

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = 0.$$

For μ_i we expect it has a really nice form from lecture:

$$\mu_j = \frac{\sum_{i=1}^n w_j^{(i)} x^{(i)}}{\sum_{i=1}^n w_i^{(i)}}.$$

Let's derive it formally!

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}\}}{w_j^{(i)}} \right).$$

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}\}}{w_j^{(i)}} \right).$$

Sum over all i = 1, ..., n and let's take the derivative wrt μ_i :

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = -\sum_{i=1}^n w_j^{(i)} \frac{1}{2} \nabla_{\mu_j} \left((x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right)$$

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}\}}{w_j^{(i)}} \right).$$

Sum over all i = 1, ..., n and let's take the derivative wrt μ_i :

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = -\sum_{i=1}^n w_j^{(i)} \frac{1}{2} \nabla_{\mu_j} \left((x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right)$$
$$= -\sum_{i=1}^n w_j^{(i)} \Sigma_j^{-1} (x^{(i)} - \mu_j) = -\Sigma_j^{-1} \sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j)$$

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}\}}{w_j^{(i)}} \right).$$

Sum over all i = 1, ..., n and let's take the derivative wrt μ_i :

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = -\sum_{i=1}^n w_j^{(i)} \frac{1}{2} \nabla_{\mu_j} \left((x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right)$$
$$= -\sum_{i=1}^n w_j^{(i)} \Sigma_j^{-1} (x^{(i)} - \mu_j) = -\Sigma_j^{-1} \sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j)$$

$$f_i(\theta) = \sum_j w_j^{(i)} \log \left(\frac{\frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\{-\frac{1}{2} (x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j)\}\}}{w_j^{(i)}} \right).$$

Sum over all i = 1, ..., n and let's take the derivative wrt μ_i :

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = -\sum_{i=1}^n w_j^{(i)} \frac{1}{2} \nabla_{\mu_j} \left((x^{(i)} - \mu_j)^T \Sigma_j^{-1} (x^{(i)} - \mu_j) \right)$$
$$= -\sum_{i=1}^n w_j^{(i)} \Sigma_j^{-1} (x^{(i)} - \mu_j) = -\Sigma_j^{-1} \sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j)$$

Since we want a critical point, we set to 0.

$$\nabla_{\mu_j} \sum_{i=1}^n f_i(\theta) = 0 \iff \Sigma_j^{-1} \sum_{i=1}^n w_j^{(i)} (x^{(i)} - \mu_j) = 0$$

Now, Σ_i is full rank so it must be that the inner term is 0 and,

$$\sum_{i=1}^{n} w_j^{(i)}(x^{(i)} - \mu_j) = 0 \implies \mu_j = \frac{\sum_{i=1}^{n} w_j^{(i)} x^{(i)}}{w_j^{(i)}}.$$

A few comments

- ▶ Reminder for what's next: We used that Σ_i was full rank.
- ▶ Same process for each of the parameters: μ_j , σ_i^2 , ϕ_j .
- ▶ **Detail:** If a parameter has *constraints*, e.g. ϕ we have $\sum_j \phi_j = 1$, need to use *Lagrange multipliers*.

$$abla_{\phi_j} \sum_{i=1}^n f_i(heta) + \lambda \left(\sum_j \phi_j - 1
ight).$$

If this is not familiar, please check in the TA notes (and I prepped some notes for this!)

Message: EM recovers our ad hoc algorithm!

Factor Analysis

So far more data n than parameters, what happens when it's the other way? In symbols, $d \gg n$?

Factor Analysis

Suppose we place 1000 temperature sensors all over campus, each gives us a reading hourly reading for a day. We have n=24 readings and the sensors are a value d=1000.

Factor Analysis

Suppose we place 1000 temperature sensors all over campus, each gives us a reading hourly reading for a day. We have n=24 readings and the sensors are a value d=1000.

We want to fit a density to $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$ with $d \gg n$, but it seems *hopeless*. Let's examine why that is...

Factor Analysis: Technical Motivation

Suppose we want to fit a Gaussian to

$$x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$$
 with $d\gg n$.

Let's see where we get stuck with $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$.

Factor Analysis: Technical Motivation

Suppose we want to fit a Gaussian to

$$x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$$
 with $d \gg n$.

Let's see where we get stuck with $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$. Let's examine the covariance:

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Well $Rank(\Sigma) \le n < d$ – not full rank. Recall

$$P(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}.$$

Factor Analysis: Technical Motivation

Suppose we want to fit a Gaussian to

$$x^{(1)}, \dots, x^{(n)} \in \mathbb{R}^d$$
 with $d \gg n$.

Let's see where we get stuck with $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$. Let's examine the covariance:

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Well Rank(Σ) $\leq n < d$ – not full rank. Recall

$$P(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}.$$

Divide by 0 in the first occurrence of Σ , and an inverse of a rank deficient matrix.

The main technical idea is to *restrict* the model in some way. To build that model, we'll examine building blocks (Gaussians) where we *can* estimate the parameters.

Spoiler: We use these building blocks in our final model.

The Key Property

The key property we use is to estimate MLE for Gaussian $\mathcal{N}(\mu, \Sigma)$.

$$\max_{\mu, \Sigma} \sum_{i=1}^n \log \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x^{(i)} - \mu)^T \Sigma^{-1} (x^{(i)} - \mu). \right\}$$

Throughout, we will use the equivalent min form taking a log.

$$\min_{\mu, \Sigma} \sum_{i=1}^{n} (x^{(i)} - \mu)^{T} \Sigma^{-1} (x^{(i)} - \mu) + \log |\Sigma|$$

The Key Property

The key property we use is to estimate MLE for Gaussian $\mathcal{N}(\mu, \Sigma)$.

$$\max_{\mu, \Sigma} \sum_{i=1}^n \log \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x^{(i)} - \mu)^T \Sigma^{-1} (x^{(i)} - \mu). \right\}$$

Throughout, we will use the equivalent min form taking a log.

$$\min_{\mu, \Sigma} \sum_{i=1}^{n} (x^{(i)} - \mu)^{T} \Sigma^{-1} (x^{(i)} - \mu) + \log |\Sigma|$$

We use this property repeatedly. If Σ is full rank, we can find the mean μ by averaging. That is, take ∇_{μ} and set equal to 0:

$$\sum_{i=1}^{n} \Sigma^{-1}(x^{(i)} - \mu) = 0 \implies \mu = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}.$$

Suppose components are *independent* with *identical* covariance.

$$\Sigma = \sigma^2 I$$
 where $\sigma \in \mathbb{R}$ and $\Sigma^{d imes d}$

Visualize these Gaussians as *circles* centered at different points. Each has a center, $\mu \in \mathbb{R}^d$, and a single scalar standard deviation, $\sigma \in \mathbb{R}$.

Suppose components are independent with identical covariance.

$$\Sigma = \sigma^2 I$$
 where $\sigma \in \mathbb{R}$ and $\Sigma^{d \times d}$

Our MLE equation *simplifies* since $\Sigma = \sigma^2 I$

$$\min_{\sigma \in R} \sigma^{-2} \underbrace{\sum_{i=1}^{n} (x^{(i)} - \mu)^{T} (x^{(i)} - \mu)}_{C} + d \log \sigma^{2}.$$

Let $z = \sigma^2$ for notation, we have an equation:

$$\nabla_z \frac{C}{z} + d \log z = 0 \implies -z^{-2}C + n\frac{d}{z} = 0.$$

Thus, we have $z = \frac{C}{nd}$ or in original notation:

$$\sigma^2 = \frac{1}{nd} \sum_{i=1}^n (x^{(i)} - \mu)^T (x^{(i)} - \mu).$$

Suppose components are *independent* with *identical* covariance.

$$\Sigma = \sigma^2 I$$
 where $\sigma \in \mathbb{R}$ and $\Sigma^{d \times d}$

Visualize these Gaussians as *circles* centered at different points. Each has a center, $\mu \in \mathbb{R}^d$, and a scalar standard deviation, $\sigma \in \mathbb{R}$.

$$\sigma^2 = \frac{1}{nd} \sum_{i=1}^n (x^{(i)} - \mu)^T (x^{(i)} - \mu).$$

Not surprisingly, the variance is the sum of the variance of each individual component.

Suppose components are independent but with possibly *different* covariances:

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3^2 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & \sigma_d^2 \end{pmatrix} \text{ for } \sigma_i^2 \in \mathbb{R}_+.$$

Diagonal Matrix. Axis-aligned isoclines with each principal axis can be different. There are d different numbers here (still less than roughly d^2) possible.

MLE for data

set $z_i = \sigma_i^2$ for i = 1, ..., d and plug in, we get the equation:

$$\min_{z_1,\dots,z_d} \sum_{i=1}^n \sum_{j=1}^d z_j^{-1} (x^{(i)} - \mu_j)^2 + \log z_j.$$

Notice this is d one dimensional problems (not surprising, since independent)—and so,

$$\min_{z_j} \sum_{i=1}^n z_j^{-1} (x_j^{(i)} - \mu_j)^2 + \log z_j \implies \sigma_j^2 = \frac{1}{n} \sum_{i=1}^n (x_j^{(i)} - \mu_j)^2.$$

we average over each of the d components independently.

Building Block Wrap-up

- ► We saw two forms of estimation with a single free parameter and *d* free parameters.
 - We reduced dramatically from the nearly d^2 free parameters in a general covariance matrix.
- We assumed we were given μ . If we have to estimate μ too at the same time, only minor changes.

Our Factor Model

Our Factor Model

Let d the "big dimension" and s the "small dimension" i.e. s < d

$$\mu \in \mathbb{R}^d$$
 and $\Lambda \in \mathbb{R}^{d \times s}$ and a diagonal matrix $\Phi \in \mathbb{R}^{d \times d}$.

The model is given as a latent model with variable $z \in \mathbb{R}^s$.

$$P(x,z) = P(x|z)P(z)$$
 with $z \in \mathcal{N}(0,I_s)$ and $\varepsilon \sim \mathcal{N}(0,\Phi)$

Then,

$$x = \mu + \Lambda z + \varepsilon \text{ or } x \sim \mathcal{N}(\mu + \Lambda z, \Phi).$$

The latent is in the small dimension and the observed dimension is the larger dimension

Let's unpack this!

Understanding the Factor as a Sampling procedure

$$x = \mu + \Lambda z + \varepsilon$$

Example: Let the big dimension, d = 2, small dimension s = 1, and number of points n = 5. Let's draw some pictures!

1. We first generate $z^{(1)}, \ldots, z^{(n)}$ with $\mathcal{N}(0,1)$

Understanding the Factor as a Sampling procedure: Step 2

$$x = \mu + \Lambda z + \varepsilon$$

Example: Let the big dimension, d = 2, small dimension s = 1, and number of points n = 5. Let's draw some pictures!

- 1. We first generate $z^{(1)}, \ldots, z^{(n)}$ with $\mathcal{N}(0,1)$
- 2. Suppose $\Lambda = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ then, construct $\Lambda z^{(i)}$ for $i = 1, \ldots, n$.

Understanding the Factor as a Sampling procedure: Step 2

$$x = \mu + \Lambda z + \varepsilon$$

Example: Let the big dimension, d = 2, small dimension s = 1, and number of points n = 5. Let's draw some pictures!

- 1. We first generate $z^{(1)}, \ldots, z^{(n)}$ with $\mathcal{N}(0,1)$
- 2. Suppose $\Lambda = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ then, construct $\Lambda z^{(i)}$ for $i = 1, \ldots, n$.
- 3. Add the mean μ .
- 4. Generate $\varepsilon^{(i)} \in \mathbb{R}^d$ to give full dimensional noise

Our Learning Goal

- We observe the end result of the process, here the purple dots.
- We estimate the likelihood using this model, and the smaller latent space (For example, s < n < d).
- ► Key point: Even though the data is in a high dimensional space, we can fit it.

Detour for Useful Tool Block Gaussians

Given $d_1 + d_2 = d$, we break vectors into blocks

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 for $x \in \mathbb{R}^{d_1 + d_2}, x_1 \in \mathbb{R}^{d_1}$, and $x_2 \in \mathbb{R}^{d_2}$

Detour for Useful Tool Block Gaussians

Given $d_1 + d_2 = d$, we break vectors into blocks

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 for $x \in \mathbb{R}^{d_1 + d_2}, x_1 \in \mathbb{R}^{d_1}, \text{ and } x_2 \in \mathbb{R}^{d_2}$

and matrices into blocks:

$$\Sigma = \begin{pmatrix} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{2,1} & \Sigma_{2,2} \end{pmatrix} \text{ for } \Sigma \in \mathbb{R}^{d \times d}, \Sigma_{i,j} \in \mathbb{R}^{d_i \times d_j} \text{ for } i,j \in \{1,2\}.$$

This notation is widely used and helpful. Note that they are *compatible* so that we can write:

$$\Sigma x = \begin{pmatrix} \Sigma_{1,1} x_1 + \Sigma_{1,2} x_2 \\ \Sigma_{2,1} x_1 + \Sigma_{2,2} x_2 \end{pmatrix}$$

Facts about Gaussians

Suppose
$$x = (x_1, x_2) \sim \mathcal{N}(\mu, \Sigma)$$
.

Marginalization is Gaussian:

$$P(x_1) = \int_{x_2} P(x_1, x_2) \ dx_2$$
 for Gaussians $p(x_1) = \mathcal{N}(\mu_1, \Sigma_{1,1})$

Facts about Gaussians

Suppose $x = (x_1, x_2) \sim \mathcal{N}(\mu, \Sigma)$.

Marginalization is Gaussian:

$$P(x_1) = \int_{x_2} P(x_1, x_2) \ dx_2$$
 for Gaussians $p(x_1) = \mathcal{N}(\mu_1, \Sigma_{1,1})$

Conditioning is also Gaussian:

$$\begin{split} p(x_1 \mid x_2) \sim & \mathcal{N}(\mu_{1|2}, \Sigma_{1|2}) \text{ in which} \\ \mu_{1|2} = & \mu_1 + \Sigma_{1,2} \Sigma_{2,2}^{-1} (x_2 - \mu_2). \\ \Sigma_{1|2} = & \Sigma_{1,1} - \Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1} \end{split}$$

Key point: there are explicit formulas and they are still Gaussians. Gaussians are special!

Proofs online (happy to add!) this uses Matrix Inversion Lemma.

Back to Factor Analysis with Our Tools

$$x = \mu + \Lambda z + \varepsilon$$

Our model can be written (since $\mathbb{E}[z] = 0$ and $\mathbb{E}[x] = \mu$)

$$\begin{pmatrix} z \\ x \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ \mu \end{pmatrix}, \Sigma\right)$$

We have to compute Σ , but we can solve with EM. Since:

- ► **E-Step** $Q^{(i)}(z) = P(z^{(i)} | x^{(i)}; \theta)$ use the conditional!
- ► M-Step We have closed forms and can solve!

Now, just an application of EM to learn Factor Analysis.

Time Permitting: Deriving Σ

The model is $x = \mu + \Lambda z + \varepsilon$ and we derive:

$$\begin{pmatrix} z \\ x \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \mu \end{pmatrix}, \Sigma \right) \text{ with } \Sigma = \begin{pmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Phi \end{pmatrix}$$

Time Permitting: Deriving Σ

The model is $x = \mu + \Lambda z + \varepsilon$ and we derive:

$$\begin{pmatrix} z \\ x \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \mu \end{pmatrix}, \Sigma \right) \text{ with } \Sigma = \begin{pmatrix} I & \Lambda^T \\ \Lambda & \Lambda\Lambda^T + \Phi \end{pmatrix}$$

Recall $z \sim N(0, I_d)$ and $\varepsilon \sim \mathcal{N}(0, \Phi)$ so $\mathbb{E}[x] = \mu$.

$$\begin{split} \Sigma_{1,1} = & \mathbb{E}[zz^T] = I. \\ \Sigma_{1,2} = & \mathbb{E}[z(x - \mu)^T] = \mathbb{E}[z(\Lambda z + \varepsilon)^T] \\ = & \mathbb{E}[zz^T \Lambda^T] + \mathbb{E}[z\varepsilon^T] = \Lambda^T \\ \Sigma_{2,1} = & \Sigma_{1,2}^T = \Lambda \\ \Sigma_{2,2} = & \mathbb{E}[(x - \mu)(x - \mu)^T] = \mathbb{E}[(\Lambda z + \varepsilon)(\Lambda z + \varepsilon)^T] \\ = & \mathbb{E}[\Lambda zz^T \Lambda^T] + \mathbb{E}[\varepsilon\varepsilon^T] \\ = & \Lambda \Lambda^T + \Phi \end{split}$$

Summary of Today

- EM can used to derive our algorithm for GMM
- Factor Analysis (latent low dimensional space).
- ▶ How to estimate the parameters of FA using EM.
- Introduced useful notation for your homework and ML!