Nirma University

Institute of Technology
Semester End Examination (IR), May - 2014
B. Tech. in Computer Engineering, Semester-VI
2CE339 Analysis and Design of Algorithms

Roll / Exam No.	Supervisor's initial with date	
Time: 3 Hours Max Marks: 100		
Instruction	ons: 1. Attempt all questions. 2. Figures to right indicate full marks. 3. Use section-wise separate answer book. 4. Draw neat sketches wherever necessary.	
Q-1 [A]	Answer the following: Give an optimized algorithm to find out kth smallest element from a given array. (For example, if your array is 8, 5, 13,-9, 20, 16 and k is 3 then your algorithm should display 8.)	[18] [5]
[B]	What value is returned by the following function? Express your answer as a function of n. Give the worst-case running time using the Big Oh notation. function mystery(n) r:= 0 for i:= 1 to n-1 do for j:= i+1 to n do for k:= 1 to j do r:= r+1	[5]
[C] [D]	return(r) Derive the time complexity for an algorithm to find nth Fibonacci number. "Worst Case Analysis is better than best case analysis". Do you agree with this statement? Justify your answer.	[5] [3]
Q-2 [A]	Answer the following: For a given problem P, two algorithms A and B have respective complexities $T_1(n)$ and $T_2(n)$ in terms of size n, where	[16] [5]
	$T_1(n) = 4n^5+3n$ $T_2(n) = 2500n^3+4n$	
	Find the range of n, the size of an instance of the given problem, for which A is more efficient than B. OR	
[A]	Compare the algorithms indicated by following recurrences and state your conclusion with respect to time complexity.	[5]

[B]	 (a) T(n)=4T(n/2)+n (b) T(n)=4T(n/2)+n² (c) T(n)=4T(n/2)+n³ Guess the solution to the recurrence (Use intelligent guesswork): 	[5]
[-]	$t_n = 0$ if $n = 0$	[0]
[C]	= 3t _{n-1} + 15 otherwise Explain following terms with appropriate example: a) Limit rule b) Maximum rule c) Smoothness rule	[6]
Q-3 [A] [B]	Answer the following: Calculate minimum number of scalar multiplications required for computing M ⁶ where dimensions of matrix M are 4x4. A bottleneck spanning tree T of an undirected graph G is a spanning tree of G whose largest edge weight is minimum over all spanning trees of G. We say that the value of the bottleneck spanning tree is the weight of the maximum-weight edge in T.	[16] [3] [6]
	(a)Argue that a minimum spanning tree is a bottleneck spanning tree. (b)Give a linear-time algorithm that given a graph G and an integer b, determines whether the value of the bottleneck spanning tree is at most b.	
[B]	Solve the following: The input to the problem is a sequence S of integers (not necessarily positive). The problem is to find the consecutive subsequence of S with maximum sum. "Consecutive" means that you are not allowed to skip numbers. For example if the input was 12, -14, 1, 23, -6, 22, -31, 13 the output would be 1, 23, -6, 22. Give a linear time algorithm for this problem.	[6]
[C]	Compare the greedy and dynamic programming solution for the 0/1 knapsack problem with following parameters:	[7]
	W = 38, $n=4$, $v = (11,20,15,31)$ and $w=(2,9,18,15)$	
	Section II	110
Q-4 [A]	Answer the following: Describe the principle of optimality in Dynamic Programming with suitable example.	[16]
[B]	Explain the concept of binomial trees and operations on them with appropriate example.	[6]
[C]	Distinguish between divide and conquer and Dynamic Programming approach for algorithm design.	[6]
[0]	OR Vour took is to entimize a code Will you go only for sequential	[6]
[C]	Your task is to optimize a code. Will you go only for sequential optimization? Do you think parallelizing the code can further optimize it? Give your thoughts and discuss some of the issues which may be faced	[6]

during such enhancement.

O-5 Answer the following: [16] [A] Discuss benefits and shortcomings of greedy algorithms. [5] Show the construction of Min Heap for the following set of data: 56, 50, [5] 57, 55, 44, -52, 54, 66, 34 Solve the following recurrence: [C] [6] T(n) = 2T(n/2) + nlgn, where n is power of 2 and $n \ge 2$. O-6 Answer the following: [18] Consider the following set of activities (I), their starting times (Si) and [8] [A] finishing times (Fi) are: $I = \langle i1, i2, i3, i4, i5, i6, i7, i8, i9 \rangle$ $Si = \langle 1, 3, 0, 5, 3, 5, 6, 8, 8 \rangle$ Fi = <4,5,6,7,8,9,10,11,12> (For example, in the above set, the activity i2 starts at time 3 and finishes at time 5). Moreover, the activities are arranged in the monotonically increasing order of finishing times. Assuming that only one activity can be scheduled at a time (i.e., no activity can start before the finishing time of current activity), find the set of activities that will be selected or scheduled by a greedy activity selector whereas the job of a greedy activity selector is to schedule several computing activities that require exclusive use of a common resource i.e., it selects the maximum number of mutually exclusive activities. [A] Compute the time complexity to calculate an, where n>0 and a is a [8] positive integer with m digits.

[B] Write a program which accepts a string as input and returns 1 if the number of characters in the string is even else returns 0. Design an algorithm to solve the above problem and analyze it in terms of the resource required.

[C] Distinguish between apriori and posteriori approach for analysis of algorithms.