Calculus III

UT Knoxville, Spring 2023, MATH 341

Stella Thistlethwaite, Alex Zhang

February 1, 2023

Contents

1	Intr	roduction	2
2	Thr	ee-Dimensional Space	3
	2.1	Points	3
	2.2	Vectors	4
In	dex		7

1

Introduction

Much of our focus will be on Stoke's Theorem.

Three-Dimensional Space

In past math classes, we have been used to dealing in \mathbb{R}^2 where we work with two degrees of freedom: x and y. Now, we will be working in \mathbb{R}^3 with three degrees of freedom: x, y, and z.

2.1 Points

Definition 2.1.1 ▶ Point

A *point* in \mathbb{R}^n space is an *n*-tuple that specifies a location in that space.

$$p=(p_1,\ldots,p_n)\in\mathbb{R}^n$$

Definition 2.1.2 ▶ **Distance**

Given two points $a, b \in \mathbb{R}^n$, the *distance* between the two points is defined as:

$$d(a,b) := \sqrt{(b_1 - a_1)^2 + \dots + (b_n - a_n)^2}$$

Example 2.1.1 ▶ **Distance Between Points**

Find the distance between $p_1 = (-1, -1, 4)$ and $p_2 = (-1, 4, -1)$.

$$\begin{split} d(p_1, p_2) &= \sqrt{(-1 - (-1))^2 + (4 - (-1))^2 + (-1 - 1)^2} \\ &= \sqrt{0^2 + 5^2 + (-5)^2} \\ &= \sqrt{50} \end{split}$$

Definition 2.1.3 ▶ Sphere

Given a point $c = (h, k, l) \in \mathbb{R}^3$, a *sphere* is the set of all points $(x, y, z) \in \mathbb{R}^3$ that are a distance r from the point c = (h, k, l).

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

Note that all the points of the sphere are equidistant to the center of the sphere. This means

the sphere is really a hollow shell.

Example 2.1.2 ► Circle

Show that the following quadratic equation represents a circle by rewriting it in standard form. Find the center c = (h, k) and the radius r.

$$x^2 + y^2 + x = 0$$

To solve this, we will have to complete the square:

$$x^{2} + x + y^{2} = 0$$

$$\implies x^{2} + x + \frac{1}{4} + y^{2} = \frac{1}{4}$$

$$\implies \left(x + \frac{1}{2}\right)^{2} + y^{2} = \frac{1}{4}$$

Definition 2.1.4 ► Cylinder

Given a planar curve c, the surface in \mathbb{R}^3 defined by all parallel lines crossing the curve c is called a *cylinder*.

Similarly, the set of all points (x, y, z) such that x and y satisfy $(x - h)^2 + (y - k)^2 = r^2$ forms a circular cylinder. Note that our broad definition of cylinder does not require the cylinder to be circular.

Regarding the quadrants:

$$Q1 = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$$
$$Q4 = \{(x, y) \in \mathbb{R}^2 : x > 0, y < 0\}$$

2.2 Vectors

Definition 2.2.1 ▶ **Vector**

A *vector* is a mathematical object that contains multiple objects of the same type.

$$\vec{v} = \langle v_1, \dots, v_n \rangle \in \mathbb{R}^n$$

As customary in most mathematics textbooks, we will always denote vectors using the little

arrow thing. In the context of three-dimensional space, we will only be working with vectors with three components. In addition, we will think of vectors as having a magnitude and direction.

Definition 2.2.2 ▶ Scalar Multiplication

Given a vector \vec{v} and scalar k, we define *scalar multiplication* as:

$$k \cdot \vec{v} := \langle kv_1, \dots, kv_n \rangle$$

Note that scalar multiplication is associative, commutative, and distributive.

- $a(b\vec{v}) = b(a(\vec{v})) = (ab)\vec{v}$
- $(k_1 + k_2)\vec{v} = k_1\vec{v} + k_2\vec{v}$
- $k(\vec{v} + \vec{w}) = kv + k\vec{w}$

Definition 2.2.3 ► **Norm**

A vector's *norm* is its magnitude or length.

$$||v|| \coloneqq \sqrt{v_1^2 + \dots + v_n^2}$$

Definition 2.2.4 ▶ **Unit Vector**

A unit vector is a vector whose magnitude is 1.

We will introduce shorthand notation for the three standard unit vectors:

- $\hat{i} := \langle 1, 0, 0 \rangle$
- $\hat{j} := \langle 0, 1, 0 \rangle$
- $\hat{k} := \langle 0, 0, 1 \rangle$

These three vectors form the *standard basis* for \mathbb{R}^3 . That is, we can express any vector in \mathbb{R}^3 as a linear combination of \hat{i} , \hat{j} , \hat{k} .

Technique 2.2.1 ▶ Finding a Unit Vector from a Given Vector

Given a vector $\vec{v} = \langle x, y, z \rangle \in \mathbb{R}^3$, we can find the *unit vector* \vec{u} with the same direction

by:

$$\vec{u} = \frac{\vec{v}}{\|v\|} = \left\langle \frac{x}{\|v\|}, \frac{y}{\|v\|}, \frac{z}{\|v\|} \right\rangle$$

Definition 2.2.5 ▶ **Dot Product**

Given two vectors \vec{a} and \vec{b} whose cardinality are both n, we define the **dot product** of \vec{a} and \vec{b} as:

$$\vec{a} \cdot \vec{b} \coloneqq a_1 b_1 + \dots + a_n b_n$$

Like scalar multiplication, dot product is also associative, commutative, and distributive.

Theorem 2.2.1 ▶ Angle Between Vectors

If \vec{a} and \vec{b} are vectors and θ is the angle between \vec{a} and \vec{b} , then:

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \cdot \cos(\theta)$$

Proof. TODO: finish proof

Definition 2.2.6 ▶ Parallel, Perpendicular

- Two vectors are *parallel* if the angle between the vectors is 0 deg.
- Two vectors are *perpendicular* if the angle between the vectors is 90 deg.

Definition 2.2.7 ▶ Orthogonal

 \vec{a} and \vec{b} are **orthogonal** if $\vec{a} \cdot \vec{b} = 0$.

Given a vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$, we have:

$$\frac{\vec{a}}{\|a\|} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

where:

- $\alpha = \cos^{-1}\left(\frac{a_1}{\|\vec{a}\|}\right)$ (angle between \vec{a} and the *x*-axis)
- $\beta = \cos^{-1}\left(\frac{a_2}{\|\vec{a}\|}\right)$ (angle between \vec{a} and the *y*-axis)
- $\beta = \cos^{-1}\left(\frac{a_3}{\|\vec{a}\|}\right)$ (angle between \vec{a} and the z-axis)

Definition 2.2.8 ► Work

If *F* is a force moving a particle from a point *p* to a point *q*, the *work* performed by the force is given by:

$$W = \vec{F} \cdot \overrightarrow{PQ}$$

Example 2.2.1 ▶ Finding Work

Find the work done by a force $\vec{F} = \langle 3, 4, 5 \rangle$ in moving an object from p = (2, 1, 0) to q = (4, 6, 2).

First, we find \overrightarrow{pq} as such:

$$\overrightarrow{pq} = \langle 4 - 2, 6 - 1, 2 - 0 \rangle$$
$$= \langle 2, 5, 2 \rangle$$

Then, we can find work:

$$W = \overrightarrow{F} \cdot \overrightarrow{PQ}$$

$$= \langle 3, 4, 5 \rangle \cdot \langle 2, 5, 2 \rangle$$

$$= 6 + 20 + 10$$

$$= 36$$

Index

Theorems

Definitions					
2.1.1 Point					
2.1.2 Distance					
2.1.3 Sphere					
2.1.4 Cylinder					
2.2.1 Vector					
2.2.2 Scalar Multiplication					
2.2.3 Norm					
2.2.4 Unit Vector					
2.2.5 Dot Product	ļ				
2.2.6 Parallel, Perpendicular	į				
2.2.7 Orthogonal	j				
2.2.8 Work					
Examples					
2.1.1 Distance Between Points					
2.1.2 Circle					
2.2.1 Finding Work					
Techniques					
2.2.1 Finding a Unit Vector from a Given Vector					