21-120: Differential and Integral Calculus Lecture #9 Outline

Read: Section 3.3 of the textbook

Objectives and Concepts:

- The derivative of a constant function is 0.
- The derivative of x^n is nx^{n-1} for any real number $n \neq 0$.
- The derivative of a constant multiple of a function cf(x) is cf'(x).
- The derivative of a sum or difference of functions is the sum or difference of the derivatives.
- The derivative of the product f(x)g(x) is f(x)g'(x) + g(x)f'(x).
- The derivative of the quotient f(x)/g(x) is $\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$.

Suggested Textbook Exercises:

• 3.3: 107-117 odd, 123-133 odd, 137-143 odd.

Differentiation Rules

We begin our discussion of differentiation rules by examining the four basic rules:

Theorem: Let c and n be (real) constants, and let f and g be differentiable functions. Then the following rules hold:

- The Constant Rule: $\frac{d}{dx}(k) = 0$.
- The Constant Multiple Rule: $\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$.
- The Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$.
- The Sum and Difference Rule: $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$

All of these rules can be proved fairly easily by using the limit definition of the derivative (with the exception of the Power Rule, which requires a result known as the Binomial Theorem). As an example, let's prove the Sum Rule.

Proof: Let f and g be differentiable functions and let S(x) = f(x) + g(x). Then

You can combine these rules when taking derivatives.

Example 1: Differentiate each function.

(a)
$$y = \sqrt{x} - 3x$$

(b)
$$g(x) = \frac{3}{x^{3/4}} - 6x^{-2} + 10$$

Example 2: Find all points on the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal.

The Product and Quotient Rules

The Product Rule: If f and g are both differentiable functions, then

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)].$$

$$(fg)' = fg' + gf'$$

The product rule can also be proved from the limit definition of the derivative. The trick is to "add the right form of 0 in the right place."

Proof: Let F(x) = f(x)g(x) where f and g are differentiable functions. Then

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} =$$

Example 3: Differentiate $g(z) = (2z^2 - 5z + 1)(z^{-4/3} + \sqrt{z})$

The Quotient Rule: If f and g are both differentiable functions, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} \left[f(x) \right] - f(x) \frac{d}{dx} \left[g(x) \right]}{\left[g(x) \right]^2}$$

Example 4: Find the derivative of each of the given functions.

(a)
$$y = \frac{2x}{7 - 4x^3 + x}$$

(b)
$$h(x) = \frac{2x^2 - 3x}{5\sqrt[3]{x} + 1}$$

Note: Don't automatically use the Quotient Rule *every* time you see a quotient. Sometimes there's an easier way to do it!

Example 5: Find the derivative of $F(x) = \frac{3x^2 + 2\sqrt{x}}{x}$

Example: The graphs of two functions f(x) and g(x) are shown below.

Let p(x) = f(x)g(x), $q(x) = \frac{f(x)}{g(x)}$, and r(x) = f(x)(g(x) - 1).

- (a) Where is f'(x) undefined?
- (b) Where is g'(x) undefined?
- (c) Compute p'(1).
- (d) Compute q'(5).

(e) Compute r'(-1).

Example 6: Suppose f and g are differentiable functions about which we know very little. In fact, all we know about these functions is in the following table of data:

x	f(x)	f'(x)	g(x)	g'(x)
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	?

This isn't a lot of information. For example, we can't compute f'(3) with any accuracy. But we are still able to figure some things out using the rules of differentiation.

(a) Let $h(x) = (\sqrt[3]{x})^4$. Find h'(0).

(b) Let p(x) = -4f(x)g(x). Find p'(1).

(c) Let $k(x) = \frac{3x^2 + 1}{g(x)}$. Find k'(-2).

(d) Let $r(x) = x^3 g(x)$. If r'(2) = -48, find g'(2).

(e) Let $m(x) = \frac{1}{f(x)}$. Find m'(1).