2022——2023 学年第 1 学期

课程名称:模拟电子技术 A 使用班级:电子工程、通信工程、自动化学院 21 级

试卷形式: 开卷□ 闭卷☑

试题	_	 11.	四	五	六	七	八	九	+	十 一	总分
得分											

敬告考生:请在答题纸指定答题区域作答,在试卷上的答题无效;试卷的空白区域可以作草稿,严禁损毁试卷;试卷和答题纸均需要填写清楚考生个人信息,试卷和答题纸必须一同提交。

一、单项选择题(每题2分,共30分)

- 1、半导体材料硅和锗的最外层价电子均为())个。
 - A, 2
- B、4
- C₂ 8
- D_v 16
- 2、半导体稳压二极管正常稳压时,应当工作于()。
 - A、反向偏置击穿状态
- B、反向偏置未击穿状态
- C、正向偏置导通状态
- D、正向偏置未导通状态
- 3、 用示波器观测 NPN 管单极共射放大器的输出电压,分别得到如图 1 所示的 a 和 b 两种失真波形,波形 a 和 b 对应的失真类型是 ()。
 - A、饱和失真、饱和失真
- B、截止失真、饱和失真
- C、饱和失真、截止失真
- D、截止失真、截止失真

- 4、在处于放大状态的晶体三极管电路中,测得晶体管三个电极的对地电位如图 2 所示, 试判断管子的①、②、③脚分别对应的电极、管子材料和结构类型为()。
 - A、ECB、锗、PNP
- B、CEB、锗、NPN
- C、ECB、硅、PNP
- D、CEB、硅、NPN
- 5、集成运算放大电路的第一级一般采用()。
 - A、分压偏置式放大电路
- B、差分放大电路
- C、共射极放大电路
- D、功率放大电路

竺

 \mathbb{Z}

倒

6、负反馈放大电路是以降低电路的()来提高电路的其它性能指标。 A、带宽 B、稳定性 C、增益 D、输入电阻 7、欲使放大器的输出电流基本稳定,并能减少输入电阻,该放大器采用()。 A、电流串联负反馈 B、电压并联负反馈 C、电流并联负反馈 D、电压串联负反馈 8、随着输入信号频率的升高,电路的电压放大倍数下降到最大值的()倍所对的应 频率, 称为上限截止频率。 A, 0.632 B, 0.707 C, 0.368 D, 0.618 9、以下具有单门限的比较器是 ()。 A、窗口电压比较器 B、同相迟滞比较器 C、反相迟滞比较器 D、同相过零比较器 10、消除低频寄生振荡的一般方法是在电路的电源电路中添加()。 A、去耦电容 B、电容超前补偿电路 C、RC 相位滞后补偿电路 D、密勒效应补偿电路 11、RC 振荡电路适合产生()频率范围的正弦波。 A、1MHz~5MHz B、500kHz~2MHz C、1Hz~1MHz D、任意频率 12、乙类互补对称功率放大电路会产生交越失真的原因是()。 A、晶体管输入特性的非线性 B、三极管电流放大倍数太大 C、三极管电流放大倍数太小 D、输入电压信号过大 13、图 3 所示电路为带自举的单电源互补对称功放电路,其中自举电路由 C4 和 () 组成。 A, R1 B, R3 C, R5 D, R1, R3, R5 C_3 $R_{\rm L}$ 图 3 14、三端集成稳压器 78XX 系列输出电流最大为 ()。

A, 1.5A B, 0.5A C, 0.1A D, 3A

A、比较放大电路

B、调整管

C、基准电压电路

D、输出取样电路

二、二极管分析与计算题(6分)

电路如图 4 所示, $U_S=12V$, D_1 是理想二极管, D_2 为稳压二极管,其稳压值 $U_Z=3V$ 。

- (1) 试判断 D₁和 D₂在电路中的偏置状态(正偏还是反偏), 写出分析过程;
- (2) 求解电流 Io。

三、场效应管电路分析(4分)

自给偏压式电路如图 5 所示, 试分析:

- (1) 该电路中场效应管 T 的类型;
- (2)若该电路能放大正弦信号,场效应管 T的栅源电压 U_{GS} 是正电压还是负电压?

四、三极管电路分析(9分)

图 6 所示电路中,电源电压 V_{CC} =10V,晶体三极管的 $r_{bb'}$ =100 Ω , β =50, U_{BE} =0.7V。

- (1) 试画出放大电路的直流通路;
- (2) 试求静态参数 *Ico* (单位: mA) 和 *Uceo*;
- (3) 画出放大电路的微变等效电路:
- (4) 试计算电压放大倍数 A_u 、输入电阻 R_i 和输出电阻 R_o (单位: $k\Omega$)。
- (注: 计算题中计算结果保留小数点后1位小数)

学品

阵久

竺

不

继

禁

W.

光弧

五、差分放大电路分析(6分)

图 7 所示差分放大电路, T1 和 T2 的特性完全相同, 试分析:

- (1) 当 \mathbf{u}_{i1} = 30 mV, \mathbf{u}_{i2} = 20 mV 时,差模信号 \mathbf{u}_{id} 和共模信号 \mathbf{u}_{ic} 为多少?
- (2) 当输入电压为 \mathbf{u}_{id} 时, \mathbf{u}_{o} 与 \mathbf{u}_{id} 的相位关系是同相还是反相?
- (3) 已知 β 、 r_{be} ,电路差模放大倍数为多少?

卧

六、负反馈电路分析(8分)

反馈放大电路如图 8 所示,请回答下列问题:

- (1)判断所示电路中引入的反馈,是正反馈还是负反馈,电压还是电流反馈,串联还是并联反馈。并指出引入该反馈对电路输出电阻的影响;
 - (2) 若电路满足深度负反馈,求其电压放大倍数 Auf 的表达式。

七、集成运算放大电路分析计算(15分)

- 1、集成运算放大电路如图 9 所示, 试回答下列问题: (8分)
- (1) 指出集成运放工作于线性区还是非线性区? 是否具备"虚短"的特点?
- (2) 分析并推导输出电压 u。的表达式;
- (3) 在满足平衡条件的前提下,求出电阻 R_2 的取值。

- 2、由集成运放构成的两级放大电路如图 10 所示, u_{i1} =0.1V, u_{i2} =0.4V, 试回答下列问题: $(7\,\%)$
 - (1) 指出由集成运放 A₂ 及外围元件构成的放大电路名称;
 - (2) 分析并推导 uol 和 uo的表达式及电压值。

八、振荡电路分析(6分)

试利用图 11 的元件连接组成一个文氏桥正弦波振荡电路(注意,自行补充"地"), 并完成下列问题:

- (1) 计算该电路正弦波振荡频率 f;
- (2) 该正弦波振荡电路起振时 R_{wl} 的阻值应该为多大? (D_1 、 D_2 阻值可不计入)

九、功率放大电路分析(6分)

某功放电路如图 12 所示,晶体管饱和压降 $|U_{CES}|=2V$,电源电压 $V_{CC}=12V$, $R_L=8\,\Omega$ 。 试分析:

- (1) 该电路是否存在交越失真?静态时,流过负载 RL的电流为多少?
- (2) 当输出电压幅度为多大时,每只管子的管耗最大?此时管耗为多少?
- (3) 该功放电路的最高效率 η_m 为多少?

题

竺

 \mathbb{Z}

线

1

倒

十、电源电路分析与计算(6分)

直流线性稳压电路如图 13 所示, 试分析:

- (1) 该直流稳压电路的取样电路由哪些元器件组成?
- (2) 计算 Uo 输出可调电压的最大值?

十一 、工程分析与设计题(4分)

某一电气设备需要外部提供直流电源供电,为防止外接直流供电电源 U_i 接反而烧坏设备,试设计一个电源反接保护电路,使得无论怎么连接电源 U_i 的极性,都不会烧坏设备,请在图 14 的虚线框中画出保护电路图。

