The Demography of Kinship (2) The formal demography of kinship

Diego Alburez Gutiérrez†

[†]Kinship Inequalities Research Group, Max Planck Institute for Demographic Research

European Doctoral School of Demography 2023-24 21 May 2024

MAX PLANCK INSTITUTE
FOR DEMOGRAPHIC
RESEARCH
FORSCHUNG

Agenda

1. The Goodman-Keyfitz-Pullum kinship equations

2. The Caswell kinship universe

3. Implementations

What are kinship models?

- 1 Kinship is an emergent property of demographic systems
- 2 Simplified representation of interaction between reproduction and death
- 3 Not restricted to humans¹
- → What are emergent properties?
- \rightarrow Can you think of other emergent properties in nature, society, or demography?

Formal models of kinship

Given a set of:

- age-specific fertility rates
- survival probabilities
- simplifying assumptions

The models produce:

- 1 Number of (living/dead) kin
- 2 Age distribution of relatives
- From the point of view of an average member of the population ('Focal')

Focal: an average member of the population

Typology of kinship models

No	time	sex	state	reference
1	invariant	female	age	2
2	variant	female	age	3
3	invariant	two	age	4
4	invariant	female	multiple	5

²Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679–712

³Caswell, H., & Song, X. (2021). The formal demography of kinship. III. kinship dynamics with time-varying demographic rates. *Demographic Research*, 45, 517–546

⁴Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. *Demographic Research*, 47, 359–396

Model characteristics

Define the following model characteristics:

- 1 Time-(in)variance
- One/two-sex models
- 3 (Multi)state models

The Goodman-Keyfitz-Pullum kinship equations

The tree of life

Expected number of kin

Daughters

 $B_1(a)$ is the expected number of living daughters in a time-invariant female-only population⁶:

$$B_1(a) = \int_{\alpha}^{a} m(x) I(a - x) dx \tag{1}$$

where:

- ightharpoonup m(x) are fertility rates of mothers
- I(a-x) are survival probabilities of daughters

Daughters

If a = 20 and $\alpha = 15$; then:

$$B_1(20) \approx \sum_{15}^{20} m(x) I(20-x)$$

So...

$$B_1(20) \approx m(15)I(0) + m(16)I(1) + m(17)I(2) \dots$$

Granddaughters

 $B_1(a)$ is the expected number of living granddaughters in a time-invariant female-only population⁷:

$$B_2(a) = \int_{\alpha}^{a} m(x) \int_{\alpha}^{a-x} l(y)m(y)l(a-x-y) dy dx \qquad (2)$$

⁷Goodman, L. A. (1974). Family Formation and the Frequency of Various Kinship Relationships. *Theoretical Population Biology*, 27 → ⊕ → → ≥ → → ≥

Mothers

 $M_1(a)$ is the probability of having a living mother in a time-invariant female-only population⁸:

$$M_{1}(a) = \int_{\alpha}^{\beta} \underbrace{\frac{I(x+a)}{I(x)}}_{\text{prob of surviving from } x \text{ to } a+x} \times \underbrace{\frac{W(x)}{\text{age distribution of mothers}}}_{\text{mothers}} dx.$$
 (3)

where:

- $W(x) = e^{-rx}I(x)m(x)$ is the age distribution of mothers
- \triangleright I(x) are survival probabilities
- ightharpoonup m(x) are fertility rates
- r is the population growth rate
- ightharpoonup α - β is the reproductive period

⁸Goodman, L. A. (1974). Family Formation and the Frequency of Various Kinship Relationships. *Theoretical Population Biology*, 27. 4 (27) 15/37

Grandmothers

 $M_2(a)$ is the expected number of living grandmothers in a time-invariant female-only population⁹:

$$M_2(a) = \int_{\alpha}^{\beta} \underbrace{M_1(a)}_{\text{prob of having living mother}} \times \underbrace{W(x)}_{\text{age distribution of mothers}} dx. \tag{4}$$

Great-grandmothers

 $M_3(a)$ is the expected number of living great-grandmothers in a time-invariant female-only population¹⁰:

$$M_3(a) = \int_{\alpha}^{\beta} \underbrace{M_2(a)}_{\substack{\text{number of grandmother}}} \times \underbrace{W(x)}_{\substack{\text{age distribution of mothers}}} dx.$$
 (5)

¹⁰ Goodman, L. A. (1974). Family Formation and the Frequency of Various Kinship Relationships. *Theoretical Population Biology*, 27 4 (27) 12 (27)

Sisters

 $B_1(a)$ is the expected number of living older sisters in a time-invariant female-only population¹¹:

$$S^{old}(a) = \int_{\alpha}^{\beta} \int_{\alpha}^{x} m(y) I(a + x - y) W(x) \, dy \, dx \tag{6}$$

$$S^{young}(a) = \int_{\alpha}^{\beta} \int_{0}^{a} \left[\frac{I(x+u)}{I(x)} \right] m(x+u)I(a-u) du W(x) dx$$
(7)

Why do we model younger and older sisters/kin separately?

Demographic subsidy

"New members of the population arise not from reproduction of current members, but from elsewhere" 12

► Can you think of other instances of 'subsidy' in demography?

 $^{^{12}}$ Caswell, H. (2019). The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679–712

Break

The Caswell kinship universe

From recursive equations to matrix operations

- 1 The relatives of Focal constitute a population
- 2 They can be modelled using traditional projection methods
- Matrix operations provide an efficient implementation

The tree of life (2)

Implementation: time-invariant, one-sex models¹³

The models are of the general form:

$$\underbrace{\mathbf{k}(x+1)}_{\text{age structure of kin at Focal's age } x+1} = \underbrace{\mathbf{U} \mathbf{k}(x)}_{\text{ageing and survival of existing kin}} + \underbrace{\left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{F} \mathbf{k}^*(x) \end{array} \right.}_{\text{new kin members added to the population}}.$$

where:

- U a matrix with survival probabilities in the subdiagonal
- ▶ **F** a matrix with fertility rates in the first row

¹³Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679–712

Age distributions of kin

Expected number of kin

Daughters

Daughters (a) are the result of the reproduction of Focal:

$$\underbrace{\mathbf{a}(x+1)}_{\text{age structure of daughters at Focal's age }x+1} = \underbrace{\mathbf{U}\,\mathbf{a}(x)}_{\text{ageing and survival of existing daughters}} + \underbrace{\mathbf{F}\,\mathbf{e}_x}_{\text{new daughters (subsidy)}}$$
(8)
$$a(0) = \mathbf{0}.$$

where:

- ▶ **U** is a matrix with survival probabilities in the subdiagonal
- F is a matrix with fertility rates in the first row
- ightharpoonup **F** \mathbf{e}_x is the subsidy vector
- e_x is the unit vector for age x
- ightharpoonup a(0) is the distribution of daughters at Focal's birth

Mothers

The population of mothers (d) of Focal consists of at most a single individual:

$$\underbrace{\mathbf{d}(x+1)}_{\text{age structure of mothers at Focal's age } x+1} = \underbrace{\mathbf{U}\,\mathbf{d}(x)}_{\text{ageing and survival of existing mothers}} + \underbrace{\mathbf{0}.}_{\text{new mothers (subsidy)}}$$
(9)

$$d(0) = \pi$$
.

where:

- \blacktriangleright b(0) is the distribution of mothers at Focal's birth
- \blacktriangleright π is the distribution of ages of mothers in the population

All models¹⁴

Table 1: Summary of the components of the kin model given in equations (4) and (5)

Symbol	Kin	Initial condition	Subsidy $oldsymbol{eta}(x)$
a	daughters	0	\mathbf{Fe}_x
b	granddaughters	0	Fa(x)
c	great-granddaughters	0	$\mathbf{Fb}(x)$
d	mothers	π	0
g	grandmothers	$\sum_{i} \pi_{i} \mathbf{d}(i)$	0
h	great-grandmothers	$\sum_{i} \pi_{i} \mathbf{g}(i)$	0
m	older sisters	$\sum_{i} \pi_{i} \mathbf{a}(i)$	0
n	younger sisters	0	Fd(x)
p	nieces via older sisters	$\sum_{i} \pi_{i} \mathbf{b}(i)$	Fm(x)
q	nieces via younger sisters	0	$\mathbf{Fn}(x)$
r	aunts older than mother	$\sum_{i} \pi_{i} \mathbf{m}(i)$	0
S	aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{n}(i)$	Fg(x)
t	cousins from aunts older than mother	$\sum_{i} \pi_{i} \mathbf{p}(i)$	$\mathbf{Fr}(x)$
v	cousins from aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{q}(i)$	Fs(x)

 $^{^{14}}$ Caswell, H. (2019). The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679–712

Consider a baby born in Spain in 1950...

- 1 How old were her grandparents when she was born, on average?
- 2 How many living children did she have on her 70th birthday?
- 3 How many grandchildren?

Break

Implementations

Total number of kin (all kin combined) for a 5yo woman¹⁵

¹⁵Alburez-Gutierrez, D., Williams, I., & Caswell, H. (2023). Projections of human kinship for all countries. *Proceedings of the National Academy of*

Number of living kin for a 65yo in China

Models vs reality

Discuss:

- What is the relationship between demographic models and reality?
- Would we expect kinship models to agree with 'empirical' observations of kinship?
- 3 Where can we find empirical data on kinship availability?