Практические занятия по теории вероятностей 3 курс «Математика» МКН V семестр, осень 2020

Содержание

1	Материалы занятий	2
	Занятие 1, 03.09.2020. Геометрическая вероятность. Случайные величины. Функции распреде-	
	ления	2
	Занятие 2, 10.09.2020. Функции распределения. Совместные распределения	4
	Занятие 3, 17.09.2020. Совместные распределения. Матожидание	5
	Занятие 4, 24.09.2020. Функции распределения. Матожидание. Разные задачи.	6
	Занятие 5, 01.10.2020. Моменты с.в. Характеристические функции.	
	Занятие 6, 08.10.2020. Характеристические функции.	
	Занятие 7, 15.10.2020. Характеристические функции. Сходимости с.в	
	Занятие 8, 22.10.2020. Сходимости с.в	
	Занятие 9, 12.11.2020. Сходимости с.в	
	Занятие 10, 12.11.2020. Условные матожидания (примеры для дискретных и непрерывных с.в.)	
	Занятие 11, 19.11.2020. Условные матожидания (общий случай)	
	Занятие 12, 26.11.2020. Условные матожидания (свойства)	15
	Занятие 13, 10.12.2020. Игра «Абака»	
2	Листочки	18
	Листочек 1 по теории вероятностей. Дедлайн: 09.10.2020, 23:59	18
	Листочек 2 по теории вероятностей. Дедлайн: 29.11.2020, 23:59	19
3	Контрольные работы	20
	Контрольная работа 1 по теории вероятностей, 29.10.2020	
	Контрольная работа 2 по теории вероятностей, 17.12.2020	20

Лектор: М.А. Лифшиц. Преподаватели практики: Ю.А. Давыдов, М.В. Платонова, Ю.П. Петрова.

1 Материалы занятий

Занятие 1, 03.09.2020. Геометрическая вероятность. Случайные величины. Функции распределения.

- 1. Внутри правильного n-угольника случайным образом выбрана точка. Какое событие более вероятно: точка ближе к центру, чем к какой-либо другой вершине, или наоборот?
- 2. **Парадокс Бертрана.** В окружности радиуса R случайным образом проводится хорда. Найдите вероятность того, что длина хорды больше R.

Hint: ответ зависит от точной формализации понятия "случайный выбор". Возможны, например, такие варианты:

- А) два конца хорды выбираются равномерно на окружности
- Б) середина хорды распределена равномерно в круге
- В) середина хорды равномерна распределена на диаметре, перпендикулярном ее направлению
- Γ^*) прямая, на которой лежит хорда, определяется среди прямых, пересекающих окружность, в соответствии с инвариантной мерой пространства прямых на плоскости.
- 3. Из отрезка [0,1] случайным образом выбирают число. Какова вероятность того, что в десятичной записи этого числа будет хотя бы один нуль?
- 4. В куб $[0,1]^n$ случайно брошена точка $x=(x_1,x_2,\ldots,x_n)$. Вероятность того, что точка x принадлежит измеримому подмножеству куба, равна лебеговой мере этого подмножества. Найдите вероятности того, что
 - A) $\max_j x_j < z$,
 - $B) \min_{i} x_i < z.$
 - В) Найдите предельное значение величины $P(n \cdot \min_i x_i < z)$ при $n \to \infty$.
- 5. А) На окружности в \mathbb{R}^2 случайно выбраны 3 точки. Какова вероятность, что образованный ими треугольник содержит центр окружности?
 - Б) На сфере в \mathbb{R}^3 выбираем случайно 4 точки. Какова вероятность, что симплекс, натянутый на эти точки, содержит центр сферы?

Случайные величины. Функции распределения.

 $Onpedenenue: Пусть X — случайная величина. Функция <math>F: \mathbb{R} \to \mathbb{R}$, определенная равенством:

$$F(x) = \mathbb{P}\{X \leqslant x\}, \qquad x \in \mathbb{R}$$

называется ϕ ункцией распределения случайной величины X.

- 1. Пусть F функция распределения случайной величины X.
 - A) Выразите $\mathbb{P}\{X=a\}$ через значения функции F.
 - Б) Выразите $\mathbb{P}\{X \in [a,b)\}$ через значения функции F.
- 2. Пусть F функция распределения для с.в. X, а F_Y функция распределения для с.в. Y = aX + b (a, b константы). Выразите F_Y через F.
- 3. Предположим, что $\mathbb{P}\{X=0\}=0$, а $Y=\frac{1}{Y}$. выразите F_Y через F.
- 4. Случайная величина X такова, что $aX \stackrel{\mathcal{D}}{=} bX$ (по распределению) для некоторых констант a,b, причем $a \neq b$. Докажите, что X = 0 п.н.
- 5. Случайная величина X имеет функцию распределения F, которая непрерывна. Что можно сказать о распределении случайной величины Y = F(X)?
- 6. Доказать, что для любой функции распределения F и для любой константы $a\in\mathbb{R}$ выполнено

$$\int_{\mathbb{D}} \left[F(x+a) - F(x) \right] dx = a.$$

Доп задачи на геометрическую вероятность.

- 1. Пусть 3 точки независимо выбраны на окружности.
 - А) Независимы ли события "угол $\angle ABC$ острый" и "угол $\angle ACB$ острый"?
 - B) С какой вероятностью треугольник ABC будет остроугольным? А прямоугольным?
- 2. **Неравенство Бонферрони.** Пусть E_1, E_2, \dots, E_n события. Докажите неравенство

$$P(E_1 \cup E_2 \cup \ldots \cup E_n) \ge \sum_{i=1}^n P(E_i) - \sum_{1 \le i < j \le n} P(E_i \cap E_j).$$

- 3. **Игла Бюффона.** Иглу длины l бросают на лист бумаги.
 - А) С какой вероятностью она пересечет сетку параллельных прямых, расположенных на расстоянии a друг от друга?
 - Б) Как этот результат можно использовать для оценивания числа π ?
 - B^*) С какой вероятностью игла не пересечет квадратную сетку со стороной квадрата a?
- 4. Составляем треугольник.
 - А) На отрезок [0,1] наудачу брошены три точки a,b,c. Найдите вероятность того, что их отрезков [0,a],[0,b],[0,c] можно составить треугольник.
 - Б) Стержень сломан в двух случайно выбранных точках. Какова вероятность того, что из трех образованных отрезков можно сложить треугольник?
 - В*) Стержень сломан в случайной точке, а затем больший из полученных отрезков снова сломан в случайной точке. Найдите вероятность того, что из трех образованных отрезков можно сложить треугольник.
- 5. Пусть точка x выбрана случайно на единичной сфере в пространстве \mathbb{R}^3 . Какова вероятность того, что $|x_1|>z$?

Занятие 2, 10.09.2020. Функции распределения. Совместные распределения.

- 1. Случайная величина ξ имеет равномерное распределение на [0,1]. Найти плотность распределения случайной величины ξ^2 .
- 2. Плотность распределения случайной величины ξ имеет вид

$$p(x) = \begin{cases} ce^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0, \end{cases}$$

где $\lambda > 0$ фиксировано, а c – некоторая константа.

- A) Найти c.
- Б) Найти $P\{1 \le \xi \le 2\}$.
- 3. Найти плотность случайной величины e^{Y} , где
 - А) Y стандартная гауссовская случайная величина.
 - B) Y имеет экспоненциальное распределение с параметром 1.
- 4. Совместное распределение величин X и Y имеет плотность

$$p(x,y) = \begin{cases} \frac{2}{\pi(x^2 + y^2)^3}, & x^2 + y^2 \geqslant 1, \\ 0, & x^2 + y^2 < 1. \end{cases}$$

- A) Независимы ли X и Y?
- Б) Найти плотность случайной величины $Z = \sqrt{X^2 + Y^2}$.
- 5. X и Y независимые случайные величины с одинаковым экспоненциальным распределением. Доказать, что случайные величины $U = \min(X,Y)$ и V = X Y независимы.
- 6. Х и У две ограниченные случайные величины такие, что

$$\mathbf{E}\left(X^{m}Y^{n}\right) = \mathbf{E}X^{m}\,\mathbf{E}Y^{n}$$

для любых натуральных m и n. Доказать, то X и Y – независимы.

Для желающих

7. Пусть X_1, X_2, X_3 — независимые случайные величины, распределенные экспоненциально с интенсивностью 1. Докажите, что случайные величины

$$Y_1 = \frac{X_1}{X_1 + X_2}, \quad Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}, \quad Y_3 = X_1 + X_2 + X_3$$

независимы.

Занятие 3, 17.09.2020. Совместные распределения. Матожидание.

- 0. Pазминка: Пусть X и Y случайные величины на одном вероятностном пространстве и распределения случайных величин X+Y и X совпадают.
 - А) Следует ли отсюда, что Y = 0 п.н. в общем случае?
 - Б) Следует ли отсюда, что Y = 0 п.н., если предположить, что $Y \geqslant 0$ п.н.?
- 1. Две ограниченные с.в. X и Y таковы, что $\forall n \in \mathbb{N}$ выполнено равенство $\mathbb{E}(X^n) = \mathbb{E}(Y^n)$. Доказать, что X и Y одинаково распределены.
- 2. С.в. X и Y независимы и имеют стандартное гауссовское распределение. Пусть $K = \{(x,y) \in \mathbb{R}^2 : 2 < \sqrt{x^2 + 1}\}$ Найдите $\mathbb{P}\{(X,Y) \in K\}$.
- 3. С.в. X и Y независимы и имеют стандартное гауссовское распределение. Найдите распределение вектора (X Y, X + Y).
- 4. Случайный вектор (X,Y) имеет равномерное распределение на границе квадрата $[0,1]^2$. Найдите распределение с.в. X.
- 5. С.в. X с вероятностью 1 принимает значения из \mathbb{R}_+ . F ее функция распределения.
 - А) Доказать, что $\mathbb{E} X = \int_0^\infty (1 F(x)) \, dx$
 - Б) Найти аналог предыдущей формулы для произвольной интегрируемой с.в.
- 6. Автобус приезжает на остановку в случайное время, распределенное экспоненциально с интенсивностью один, начиная с 12 часов ночи. Вася пришел на остановку к 12 ночи. Каково распределение времени ожидания автобуса Васей при условии, что Вася ждет автобуса уже час?
- 7. Какова мощность множества всех функций распределения?
- 8. С.в. X и Y имеют одинаковое распределение и $X \geqslant 0$ с вероятностью 1. Верно ли, что

$$\mathbb{E}\left(\frac{X}{X+Y}\right) = \mathbb{E}\left(\frac{Y}{X+Y}\right)?$$

Замечание: с.в. — случайная величина.

Занятие 4, 24.09.2020. Функции распределения. Матожидание. Разные задачи.

- 1. Доказать, что если $\mathbb{E}|X|^{\alpha} < \infty$ для некоторого $\alpha > 0$, то $\mathbb{E}|X|^{\beta} < \infty$ для любого $\beta \in (0, \alpha]$.
- 2. Случайные величины $\xi_k, \quad k=1,2,\ldots$, независимы и одинаково распределены: $\xi_k=0$ или 1 с равными вероятностями. Пусть

$$S_n = \sum_{k=1}^n \frac{\xi_k}{2^k}.$$

- A) Найти распределение случайной величины S_n .
- Б) Найти предел $\lim_{n\to\infty} \mathbb{P}\left\{a\leqslant S_n\leqslant b\right\}$.
- 3. Доказать, что $\mathbb{E} X$ существует тогда и только тогда, когда существует $\mathbb{E} [X]$, где [x] целая часть числа x.
- 4. X и Y независимы и принимают целые неотрицательные значения и $\mathbb{E}\left|X\right|<\infty$. Докажите, что

$$\mathbb{E} \min(X, Y) = \sum_{k=1}^{\infty} \mathbb{P}\{X \geqslant k\} \mathbb{P}\{Y \geqslant k\}.$$

- 5. Пусть случайная величина X, имеющая непрерывную плотность распределения, принимает только значения из $[0,\pi]$, причем распределения случайных величин $\cos X$ и $\cos(2X)$ совпадают. Доказать, что распределение X равномерное на $[0,\pi]$.
- 6. Найти коэффициент корреляции между числом выпавших единиц и числом выпавших шестерок при n независимых бросаниях правильной игральной кости.
- 7. Случайная величина X интегрируема, а ее функция распределения F(x) такова, что F(0)=0. Доказать, что функция

$$G(x) = \prod_{n=1}^{\infty} F(x+n)$$

является функцией распределения.

- 8. На окружности радиуса a случайным образом и независимо друг от друга точки X_1 и X_2 . Найдите среднюю длину полученного отрезка, т.е. $\mathbb{E}|X_1-X_2|^2$.
- 9. На двух смежных гранях куба со стороной a выбраны случайным образом и независимо друг от друга точки X_1 и X_2 . Найдите среднюю длину полученного отрезка, т.е. $\mathbb{E}|X_1-X_2|^2$.
- 10. Пусть X, Y, Z независимые с.в. с распределением U[a, b].
 - A) Найдите распределение с.в. X + Y.
 - Б) Как будет выглядеть плотность с.в. X + Y + Z?

Занятие 5, 01.10.2020. Моменты с.в. Характеристические функции.

- 1. Постройте пример, показывающий, что из равенства нулю коэффициента корреляции не следует независимость.
- 2. Случайные величины $\xi_1, \xi_2, \dots, \xi_n$ независимы, $\mathbb{E}\xi_i = 0$, $\mathbb{E}|\xi_i|^3 < \infty$.
 - А) Докажите, что

$$\mathbb{E}(\xi_1 + \xi_2 + \ldots + \xi_n)^3 = \sum_{i=1}^n \mathbb{E}(\xi_i^3).$$

Б) Предположим, что $\mathbb{E}|\xi_i|^4 < \infty$. Верно ли, что

$$\mathbb{E}(\xi_1 + \xi_2 + \ldots + \xi_n)^4 = \sum_{i=1}^n \mathbb{E}(\xi_i^4).$$

3. Случайные величины независимы и равномерно распределены на [0,1]. Пусть

$$\tau := \inf\{k|\xi_1 + \ldots + \xi_k \geqslant 1\}.$$

Найти $\mathbb{E}\tau$.

- 4. Элементы матрицы $A=(\xi_{ij}$ независимые случайные величины, при этом $\mathbb{E}\xi_{ij}=0,\,\mathbb{D}\xi_{ij}=\sigma^2$ для всех i, j. Найдите $\mathbb{E} \det(A)$ и $\mathbb{D} \det(A)$.
- 5. Являются ли характеристическими следующие функции? Если да, то укажите соответствующее распределение, если нет, то объясните, почему.
 - A) $\sin(t)$
- B) $\cos^5(t)$
- Д) $\frac{1+e^{-it}}{2}$ E) e^{-t^2}
- Ж) e^{-t^4}

- $\mathbf{B}) \ 1 + \sin(t)$
- Γ) e^{-t}

- 6. Докажите, что если φ характеристическая функция, то следующие функции также являются характеристическими:
 - A) φ^2
- $|\varphi|^2$
- B) $Re\varphi$
- Γ) $\frac{2}{2-\varphi}-1$ Д) $e^{\varphi-1}$
- 7. Случайная величина ξ имеет плотность, f характеристическая функция случайной величины ξ . Докажите, что |f(t)| < 1 при $t \neq 0$.

Занятие 6, 08.10.2020. Характеристические функции.

- 1. Привести пример такой негауссовской случайной величины, для которой плотность p(x) пропорциональна характеристической функции φ , то есть $p(x) = C\varphi(x)$.
- 2. Случайные величины $\xi_0, \xi_1, \xi_2, \dots, \xi_n$ независимы и имеют равномерное распределение на [0,1]. Найти плотность распределения случайной величины

$$Y = \prod_{k=0}^{n} \xi_k.$$

3. Случайные величины X и Y имеют функции распределения F и G соответственно. Докажите, что

$$\sup_{x} |F(x) - G(x)| \leqslant \mathbf{P}\{X \neq Y\}.$$

4. Случайный вектор $\bar{X}=(X_1,\ldots,X_d)$ имеет математическое ожидание $\mathbf{E}\bar{X}=(\mathbf{E}X_1,\ldots,\mathbf{E}X_d)$. Докажите, что

$$\|\mathbf{E}\bar{X}\| \leqslant \mathbf{E}\|X\|.$$

- 5. Известно, что X=U(Y+Z), причем U равномерно распределена на [0,1], величины U,Y,Z независимы, а X,Y,Z одинаково распределены. Найти распределение X.
- 6. Пусть X случайная величина с характеристической функцией $\varphi(t)$ и с конечным математическим ожиданием. Докажите, что

$$\mathbf{E}|X| = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1 - \operatorname{Re} \varphi(t)}{t^2} dt.$$

Занятие 7, 15.10.2020. Характеристические функции. Сходимости с.в.

1. А) Пусть $X_1 \sim N(a_1, \sigma_1^2)$ и $X_2 \sim N(a_2, \sigma_2^2)$ — гауссовские независимые с.в. Тогда

$$X_1 + X_2 \sim N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$$

Б) Пусть $X_1 \sim \mathcal{P}(a_1)$ и $X_2 \sim \mathcal{P}(a_2)$ — пуассоновские независимые с.в. Тогда

$$X_1 + X_2 \sim \mathcal{P}(a_1 + a_2)$$

2. Пусть случайные величины $N, X_1, X_2, \ldots, X_n, \ldots$ независимы, причем N принимает лишь натуральные значения, а величины X_j одинаково распределены. Выразите характеристическую функцию суммы случайного числа слагаемых

$$S = \sum_{j=1}^{N} X_j$$

через характеристическую функцию X и производящую функцию N.

- 3. Пусть f характеристическая функция. Верно ли, что |f| характеристическая функция?
- 4. Является ли характеристической функцией:

A)
$$\varphi(x) = -2\frac{\cos(t) - 1}{t^2}$$
 B) $\varphi(x) = (-1)^{n+1}(2n+2)!\frac{\cos(t) - P_n(t)}{t^{2n+2}}$,

где $P_n(t) = \sum_{k=0}^n (-1)^k t^{2k}/(2k)!$ — многочлен Тейлора для косинуса.

- 5. Любопытный факт: есть достаточное условие условие того, что функция характеристическая. Пусть функция $\varphi \colon \mathbb{R} \to \mathbb{R}$ удовлетворяет следующим свойствам:
 - А) Функция φ четна и непрерывна;
 - B) $\varphi(0) = 1$, $\varphi(\infty) = 0$;
 - В) Функция φ выпукла на $(0, \infty)$.

Докажите, что φ — характеристическая функция некоторого распределения.

- 6. Пусть $X_n \stackrel{\mathbb{P}}{\to} X$, а $f: \mathbb{R}^1 \to \mathbb{R}^1$ непрерывная функция. Доказать, что $f(X_n) \stackrel{\mathbb{P}}{\to} f(X)$.
- 7. Для каких видом сходимости (почти наверно, по вероятности, в среднем и по распределению) сходимость по Чезаро следует из обычной сходимости?
- 8. Пусть X_j последовательность независимых величин Бернулли с параметрами p_j . При каких условиях на p_j эта последовательность почти наверно сходится?

Занятие 8, 22.10.2020. Сходимости с.в.

- 1. Привести пример последовательности с.в., сходящейся с вероятностью 1 и такой что никакая ее подпоследовательность не сходится в среднем порядка p>0. Рассмотреть 2 случая: последовательность не сходится в среднем
 - A) для некоторого p > 0.

- Б) для всех p > 0.
- 2. Одним из эквивалентных определений слабой сходимости распределений $\mathcal{P}_k \Rightarrow Q$ является

$$\lim_{n\to\infty}\int_{\mathbb{R}}fd\mathcal{P}_n=\int_{\mathbb{R}}fdQ$$

для любой непрерывной ограниченной функции $f: \mathbb{R} \to \mathbb{R}$.

А) Приведите пример вероятностных распределений \mathcal{P}_k и Q и ограниченной функции f, таких что $\mathcal{P}_k \Rightarrow Q$, но не выполняется соотношение

$$\lim_{n \to \infty} \int_{\mathbb{R}} f d\mathcal{P}_n = \int_{\mathbb{R}} f dQ$$

Б) Приведите пример вероятностных распределений \mathcal{P}_k и Q и непрерывной функции f, таких что $\mathcal{P}_k \Rightarrow Q$, но не выполняется соотношение

$$\lim_{n \to \infty} \int_{\mathbb{R}} f d\mathcal{P}_n = \int_{\mathbb{R}} f dQ$$

3. Известно, что $X_n \Rightarrow X$ и $Y_n \stackrel{\mathbb{P}}{\to} 0$. Доказать, что

A)
$$X_n + Y_n \Rightarrow X$$

$$\mathbf{E}) \ X_n \cdot Y_n \stackrel{\mathbb{P}}{\to} 0$$

4. С.в. $\{\xi_n\}$ таковы, что для некоторого p>0 $\sum_n \mathbb{E}|\xi_n|^p<\infty$. Доказать, что $\xi_n\to 0$ п.н.

Занятие 9, 12.11.2020. Сходимости с.в.

- 1. Доказать, что существует квадратная матрица A порядка 11, у которой все элементы равны 1, либо -1 и $\det(A) > 4000$.
- 2. Случайная величина X имеет плотность $p(x) = |x| \cdot 1_{[-1,1]}(x)$. Доказать, что X нельзя представить в виде суммы двух независимых одинаково распределенных случайных величин.
- 3. Расстояние Леви $\rho_L(F,G)$ между двумя функциями распределения F и G определяется как точная нижняя грань тех $h\geqslant 0$, для которых при всех $x\in\mathbb{R}^1$

$$F(x-h) - h \leqslant G(x) \leqslant F(x+h) + h,$$

$$G(x-h) - h \leqslant F(x) \leqslant G(x+h) + h$$

Доказать, что $F_n \Rightarrow F$ тогда и только тогда, когда $\rho_L(F_n,F) \to 0$.

4. Докажите, что $X_n \stackrel{\mathbb{P}}{\to} X$ b $Y_n \stackrel{\mathbb{P}}{\to} Y$, а $f: \mathbb{R}^2 \to \mathbb{R}^2$ — непрерывная функция. Доказать, что

$$f(X_n, Y_n) \stackrel{\mathbb{P}}{\to} f(X, Y).$$

- 5. Случайные величины X_k независимы, $\mathbb{P}\{X_k=1\}=p$ и $\mathbb{P}\{X_k=-1\}=1-p$. Найдите все значения параметра $\alpha>0$, при которых ряд $\sum\limits_{k=1}^{\infty}k^{-\alpha}X_k$ сходится п.н.
- 6. Случайные величины X_k независимы, $\mathbb{P}\{X_k=1\}=p$ и $\mathbb{P}\{X_k=-1\}=1-p$. Пусть

$$Y_k = egin{cases} 1, & ext{ если } X_k = 1 \text{ и } X_{k+1} = 1 \ 0, & ext{ иначе} \end{cases}$$

Верно ли, что $\frac{1}{n}\sum_{k=1}^n Y_k \to \mathbb{E} Y_1$ по вероятности? А п.н.?

Занятие 10, 12.11.2020. Условные матожидания (примеры для дискретных и непрерывных с.в.)

Дискретные с.в.

Давайте сначала рассмотрим случай дискретных с.в. Пусть A и B — события, причем $\mathbb{P}(B) > 0, X, Y$ — дискретные с.в., причем $\mathbb{P}(Y = y) > 0$. Будем использовать такие обозначения:

$$\begin{split} \mathbb{P}(A|B), \qquad p_{X|B}(k) &= \mathbb{P}(X=k|B), \\ p_{X|Y}(x|y) &= \mathbb{P}(X=x|Y=y) \end{split} \qquad \qquad \mathbb{E}[X|B], \\ \mathbb{E}[X|Y=y] \end{split}$$

Очень полезен следующий факт (докажите!):

пусть вероятностное пространство $\Omega = \bigsqcup_{i=1}^n B_i$, причем $\mathbb{P}(B_i) > 0$. Тогда

$$p_X(k) = \sum_{i=1}^n p_{X|B_i}(k) \mathbb{P}(B_i)$$

$$\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X|B_i] \mathbb{P}(B_i)$$

Аналогичный факт в терминах с.в. X и Y:

$$p_X(x) = \sum_y p_{X|Y}(x|y)p_Y(y) \qquad \qquad \mathbb{E}[X] = \sum_y \mathbb{E}[X|Y = y]p_Y(y)$$

1. Пусть X — с.в. принимающая значения 0 или 1, Y — принимает значения 0, 1 или 2. Исходно у нас есть частичная информация о совместном распределении:

X , Y	0	1	2
0			
1	$\frac{1}{8}$		$\frac{1}{8}$

Также нам известно:

- При условии, что X=1 с.в. Y равномерно распределена
- $p_{X|Y}(0|0) = \frac{2}{3}$
- $\mathbb{E}[Y|X=0] = \frac{4}{5}$

Используя эту информацию, заполните пустые клеточки.

Непрерывные с.в.

Пусть теперь X, Y — абс. непр. с.в. У нас проблема, т.к. $\mathbb{P}(Y = y) = 0!$ Как же определить условные вероятности?

Определение: пусть $p_{X,Y}(x,y)$ — плотность совместного распределения с.в. X и Y. Условной плотностью X при условии Y=y будем называть

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}, \qquad p_Y(y) > 0$$

Проверьте, что это действительно плотность. Естественным образом определяются условные вероятности и условные матожидания:

$$\mathbb{P}(X \in A|Y = y) = \int_A p_{X|Y}(x|y) \, dx \qquad \qquad \mathbb{E}[g(X)|Y = y] = \int_{\mathbb{R}} g(x) p_{X|Y}(x|y) \, dx$$

2. Пусть X, Y имеют совместное непрерывное распределение. Докажите, что

$$p_X(x) = \int_{\mathbb{R}} p_{X|Y}(x, y) p_Y(y) \, dy \qquad \qquad \mathbb{E}[g(X)] = \int_{\mathbb{R}} \mathbb{E}[g(X)|Y = y] p_Y(y) \, dy$$

- 3. Пусть (X,Y) равномерно распределен на треугольнике D с вершинами в точках (1,0), (2,0) и (0,1). Найдите условную плотность $p_{X|Y}(x|y)$ и условное матожидание $\mathbb{E}[X|Y=y]$.
- 4. Пусть Y стандартная нормальная с.в. И пусть X другая нормальная с.в. с дисперсией 1 и матожиданием, равным Y, который только что пронаблюдали.
 - A) Найдите совместную функцию распределения вектора (X, Y).
 - Б) Пусть мы пронаблюдали X = x. Как теперь распределен Y?

Условные матожидания как случайные величины

Для любого фиксированного y мы уже научились определять число $\mathbb{E}[X|Y=y]$. А давайте теперь посмотрим на это как на функцию от y, т.е. $v(y)=\mathbb{E}[X|Y=y]$. Тогда функция v(Y) и есть условное матожидание от X при данном Y есть уже сама по себе случайная величина!

Определение: пусть X и Y дискретные или совместно непрерывные с.в. Условным матожиданием от X при условии Y будем называть с.в. v(Y), где $v(y) = \mathbb{E}[X|Y=y]$, и обозначать $\mathbb{E}[X|Y]$.

5. Совместное распределение X и Y задано табличкой ниже. Найдите с.в. $\mathbb{E}[X|Y]$.

X , Y	0	1
0	3/10	2/10
1	1/10	4/10

- 6. У условных МО есть ряд интересных свойств. Давайте их докажем:
 - A) $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.
 - Б) $\mathbb{E}[aX + b|Y] = a\mathbb{E}[X|Y] + b$
 - B) $\mathbb{E}[g_1(X_1) + \ldots + g_n(X_n)|Y] = \mathbb{E}[g_1(X_1)|Y] + \ldots + \mathbb{E}[g_n(X_n)|Y].$

В следующих задачах применение условного матожидания может упростить расчет:

- 7. Вы держите в руках палочку длины 1. К вам подходит друг и отламывает кусочек палочки в случайном месте ($\sim U[0,1]$). Теперь у вас в руке остался кусочек палочки длины Y. Ваша подруга подходит и ломает кусок палочки в случайном месте (равномерно распределенном по оставшейся длине палочки). И у вас осталась палочка длины X. Найдите плотность X, матожидание $\mathbb{E} X$ и дисперсию $\mathbb{D} X$.
- 8. Пусть X_1, X_2, \ldots iid Bernoulli с вероятность. успеха p, и $S_k = X_1 + \ldots + X_k$. Найдите условное МО $\mathbb{E}[S_m|S_n], \ m < n$.

А вот и еще замечательный факт: С.в. X и Y независимы iff $p_{X|Y}(x|y) = p_X(x)$.

- 9. А) Покажите, что если X,Y независимые, то $\mathbb{E}(g(X)|Y) = \mathbb{E}[g(X)]$. Заметим, что это уже постоянная величина.
 - Б) В противоположность пункту А покажите, что $\mathbb{E}[g(X)|X] = g(X)$. В частности, верно такое равенство: $\mathbb{E}[X|X] = X$.
- 10. Пусть X и Y независимые с.в., $Y \sim U[0,1]$, а X имеет плотность $f_X(x)$.

Покажите, что дробная часть $\{X + Y\} \sim U[0, 1]$.

Замечание: здесь $\{x\} = z - |z|$, где |z| — наибольшее целое число, не меньшее z.

Занятие 11, 19.11.2020. Условные матожидания (общий случай)

Пусть у нас определено вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. В прошлый раз мы с Вами определяли условные МО отдельно для дискретных, отдельно для непрерывных с.в. Но все-таки хочется иметь единое определение. Поэтому

Определение 1. Будем называть условным матожиданием с.в. X относительно сигма-алгебры \mathcal{M} (и обозначать $\mathbb{E}(X|\mathcal{M})$ или $\mathbb{E}_{\mathcal{M}}X$) такую с.в., которая:

- М-измерима
- 2. для любого $A \in \mathcal{M}$ выполнено:

$$\int_{A} \mathbb{E}(X|\mathcal{M}) \, d\mathbb{P} = \int_{A} X \, d\mathbb{P}$$

Определение 2. Будем называть условным матожиданием с.в. X относительно с.в. Y (u обозначать $\mathbb{E}(X|Y)$) с.в. $\mathbb{E}(X|\sigma(Y))$, где $\sigma(Y) \subset \mathcal{F}$ — сигма-алгебра, порожденная с.в. Y.

На лекциях вам докажут, что с.в. $\mathbb{E}(X|\mathcal{M})$ существует и единственна с точностью до п.н.

- 1. Чему равно $\mathbb{E}(X|\mathcal{M})$, если $\mathcal{M} = \{\emptyset, \Omega\}$?
- 2. Поймите, что верны следующие свойства:
 - A) $\mathbb{E}(\mathbb{E}(X|\mathcal{M})) = \mathbb{E}X$
 - B) $\mathbb{E}_{\mathcal{M}}(aX + bY) = a\mathbb{E}_{\mathcal{M}}(X) + b\mathbb{E}_{\mathcal{M}}(Y)$
 - В) (телескопическое свойство или свойство проекции): если $\mathcal{M}_1 \subset \mathcal{M}_2$, то

$$\mathbb{E}_{\mathcal{M}_1}(\mathbb{E}_{\mathcal{M}_2}(X)) = \mathbb{E}_{\mathcal{M}_1}X \qquad \qquad \mathbb{E}_{\mathcal{M}_2}(\mathbb{E}_{\mathcal{M}_1}(X)) = \mathbb{E}_{\mathcal{M}_1}X$$

3. А) Пусть (X,Y) — случайный вектор с плотностью совместного распределения равной p(x,y). Тогда $\mathbb{E}(X|Y)=f(Y)$, где

$$f(y) = \int_{\mathbb{R}} x \frac{p(x,y)}{\int_{\mathbb{R}} p(z,x) dz} dx = \int_{\mathbb{R}} x p_{X|Y}(x|y) dx$$

и $p_{X|Y}(x|y)$ — плотность условного распределения с.в. X при условии Y=y (определяли в прошлый раз)

- Б) В терминах п.А найдите $\mathbb{E}(h(X)|Y)$, т.е. выразите через плотность p(x,y). Также найдите $\mathbb{E}(h(X,Y)|Y)$.
- 4. Пусть $\Omega=[0,1],\,\mathcal{F}=\mathcal{B}_{[0,1]},\,\mathbb{P}=\lambda$ мера Лебега. Найдите $\mathbb{E}_{\mathcal{M}}X,$ если
 - А) $\mathcal{M} \sigma$ -алгебра всех множеств, симметричных относительно точки 1/2.
 - Б) $\mathcal{M} \sigma$ -алгебра, порожденная множествами [0, 1/3], [2/3, 1].
 - B) $\mathcal{M} = \sigma(Y)$, где $Y(\omega) = \min\{2\omega, 1\}$
- 5. С.в. X принимает не более n значений. Верно ли, что $\mathbb{E}_{\mathcal{M}}X$ тоже принимает не более n значений?
- 6. Если $X_n \to X$ в L_p при $p \geqslant 1$, то и $\mathbb{E}_{\mathcal{M}}(X_n) \to \mathbb{E}_{\mathcal{M}}(X)$ в L_p .
- 7. С.в. (X,Y) имеет гауссовское распределение с $\mathbb{E} X = \mathbb{E} Y = 0$ и с матрицей ковариации

$$\begin{pmatrix} \sigma_1^2 & \rho \\ \rho & \sigma_2^2 \end{pmatrix}$$

Найдите $\mathbb{E}(X|Y)$.

Занятие 12, 26.11.2020. Условные матожидания (свойства)

Пусть у нас определено вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Буква \mathcal{M} всегда обозначает подсигмаалгебру.

1. (УМО как ортогональный проектор) Рассмотрим $L_2(\Omega, \mathcal{F}, \mathbb{P})$. Пусть $\mathcal{M} \subset \mathcal{F}$ — подсигма-алгебра, $L_2(\Omega, \mathcal{M}, \mathbb{P}) \subset L_2(\Omega, \mathcal{F}, \mathbb{P})$. Тогда

$$\mathbb{E}_{\mathcal{M}}X = \sqcap_{\mathcal{M}}X,$$

где $\sqcap_{\mathcal{M}}: L_2(\Omega, \mathcal{F}, \mathbb{P}) \to L_2(\Omega, \mathcal{M}, \mathbb{P})$ — оператор ортогонального проектирования. Т.е. осознайте (!!!) 2 свойства

- A) $\mathbb{E}_{\mathcal{M}}X \in L_2(\Omega, \mathcal{M}, \mathbb{P})$
- Б) $(X \mathbb{E}_{\mathcal{M}} X)$ ортогонально индикатору любого множества $B \in \mathcal{M}$ (а значит и любой функции, измеримой относительно \mathcal{M}).
- 2. (УМО как лучшее предсказание)

Пусть мы хотим узнать с.в. X, но не умеем ее наблюдать напрямую. Все, что мы знаем, это другая с.в. Y (скажем, неточное измерение X из-за случайного шума). Как лучше всего оценить X в терминах Y? Оценка X через Y — это всегда некоторая функция h(Y). Будем оценивать эффективность оценки через среднее квадратичное отклонение $\mathbb{E}\left[(X-h(Y))^2\right]$. Тогда

$$\mathbb{E}\left[(X - h(Y))^2\right] \geqslant \mathbb{E}\left[(X - \mathbb{E}[X|Y])^2\right]$$

3. А) Пусть X_1, X_2, X_3, \ldots — iid, $\mathbb{E}|X_1| < \infty$. Пусть N — неотрицательная целочисленная с.в., независимая с $X, \mathbb{E}[N] < \infty$. Определим случайную сумму $S_N = X_1 + \ldots + X_N$. Тогда

$$\mathbb{E}[S_N] = \mathbb{E}[N] \cdot \mathbb{E}[X_1]$$

[тождество Вальда]

N.B.: заметим, что если N- с.в., то

$$\mathbb{E}\left[\sum_{k=1}^{N} X_k\right] \neq \sum_{k=1}^{N} \mathbb{E}[X_k]$$

- Б) Придумайте контрпример к тождеству Вальда в случае, если N и X_i зависимые.
- 4. С.в. X и Y таковы, что X, $X \cdot Y \in L_1$. Если $Y \mathcal{M}$ измерима, то $\mathbb{E}_{\mathcal{M}}(X \cdot Y) = Y \cdot \mathbb{E}_{\mathcal{M}}X$. N.B.: в более общем виде можно написать так (для таких функций a и b, для которых равенство определено)

$$\mathbb{E}[a(X)b(Y)|Y] = b(Y) \cdot \mathbb{E}[a(X)|Y]$$

Благодаря УМО по Y, мы смогли вытащить b(Y) из-под МО. Т.е. беря УМО по Y, мы обращаемся с b(Y), как будто это константа.

5. С.в. X_n независимы, а Y такова, что $\mathbb{E}Y=a, \mathbb{E}Y^2<\infty$. Докажите, что

$$\frac{1}{n} \sum_{k=1}^{\infty} \mathbb{E}(Y|X_k) \stackrel{\mathbb{P}}{\to} a$$

Занятие 13, 10.12.2020. Игра «Абака»

Тема 1: сходимости

1. **[10]** Найдите предел:

$$\lim_{n \to \infty} \int_{[0,1]^n} \frac{x_1^5 + \ldots + x_n^5}{x_1^4 + \ldots + x_n^4} \, dx.$$

2. **[20]** Пусть X_n случайный вектор в \mathbb{R}^n , имеющий стандартное гауссовское распределение. Обозначим через B(r) замкнутый шар радиуса r с центром в нуле. Доказать, что для любого $\varepsilon > 0$ при $n \to \infty$

$$\mathbf{P}\Big\{\frac{X_n}{\sqrt{n}}\in B(1+\varepsilon)\setminus B(1-\varepsilon)\Big\}\to 1.$$

Р.S. Фактически задача говорит, что при больших n гауссовский вектор сосредоточен на сфере радиуса \sqrt{n} (и на самом деле, хорошо приближает равномерное распределение на сфере). Это сильно помогает в решении задачи 8 из Листочка 2!

Тема 2: Ветвящиеся процессы

В популяции первоначально имеется одна частица: Z(0) = 1. Эта частица имеет единичную продолжительность жизни. В конце жизни частица производит случайное число потомков ξ в соответствии с производящей функцией числа потомков

$$f(s) = r + (1 - r)\frac{q}{1 - ps}, \quad r \in [0, 1), \quad p + q = 1.$$

Каждая из новорожденных частиц также имеет единичную продолжительность жизни и в конце ее производит (независимо от остальных частиц) случайное число потомков в соответствии с производящей функцией f(s). Таким образом, при n>0

$$Z(n+1) = \xi_1^{(n)} + \ldots + \xi_{Z(n)}^{(n)},$$

где $\xi_i^{(n)}$ — число потомков i-й частицы n-го поколения (i=1,2,...,Z(n)), причем $\xi_i^{(n)}\stackrel{d}{=}\xi$ при всех i=1,2,... и n=0,1,2,... и независимы.

Предположим, что f'(1) = 1, это означает, что процесс является критическим.

1. **[10]** Докажите, что при $n \to \infty$

$$\mathbf{P}\{Z_n > 0\} = \frac{q}{np}(1 + o(1)).$$

2. **[20]** Для любого x > 0

$$\lim_{n \to \infty} \mathbf{P} \left\{ \frac{q Z_n}{np} \leqslant x \middle| Z_n > 0 \right\} = 1 - e^{-x}.$$

Тема 3: вероятностный подход

1. **[10]** Пусть $a_{ij}=\pm 1,\, 1\leqslant i,j\leqslant n.$ Докажите, что существуют такие $x_i,y_i=\pm 1,$ что

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j \geqslant \left(\sqrt{\frac{2}{\pi}} + o(1)\right) \cdot n^{3/2}.$$

Интересна интерпретация этого утверждения: пусть у нас есть $n \times n$ фонарей, и каждый из них может быть либо «включен» $(a_{ij}=+1)$, либо «выключен» $(a_{ij}=-1)$. Пусть для каждого ряда по горизонтали или по вертикали есть свой переключатель такой, что если переключатель включен $(x_i=-1$ для ряда i или $y_j=-1$ для столбца j), то все фонари в этом ряду или столбце меняют свое состояние: «включен» \Rightarrow «выключен» и наоборот. Тогда для любой начальной конфигурации включенных фонарей можно поставить переключатели так, что количество включенных фонарей минус количество выключенных хотя бы $\left(\sqrt{\frac{2}{\pi}}+o(1)\right)\cdot n^{3/2}$.

2. **[20]** Пусть $C \subset \mathbb{R}^d$ и $B(x) = [0, x]^d$. Упаковкой C в B(x) будем называть совокупность непересекающихся копий C, лежащих внутри B(x). Пусть f(x) наибольшее количество элементов упаковки для данного x. Определим $\delta(C)$ — максимальную долю пространства, которую можно занять копиями C, а именно:

$$\delta(C) = \mu(C) \lim_{x \to \infty} f(x) x^{-d},$$

где $\mu(C)$ — мера Лебега C. Пусть C — ограниченное, выпуклое, центрально-симметричное тело. Докажите, что

$$\delta(C) \geqslant 2^{-d-1}.$$

Общая схема Абаки

	тема 1	тема 2	тема 3
простая задача	10 баллов	10 баллов	10 баллов
сложная задача	20 баллов	20 баллов	20 баллов

- \bullet Если решите все задачи из одной темы, то получаете дополнительно +15 баллов
- Если решите все простые задачи, то получаете дополнительно +15 баллов
- \bullet Если решите все сложные задачи, то получаете дополнительно +30 баллов
- \bullet За любую дополнительную задачу можно получить +30 баллов

Дополнительные задачи (для тех, кому и так все понятно)

Тема 1: сходимости

3. **[30]** Пусть $\{X_n\}$ такая последовательность некоррелированных случайных величин с нулевым средним, что $\sum_{n} \mathbb{E} X_n^2 < \infty$. Докажите что ряд $\sum_{n} X_n$ сходится почти наверное.

Тема 2: Ветвящиеся процессы

3. **[30]** Рассмотрим критический процесс Гальтона-Ватсона с произвольной производящей функцией $\varphi(s)$, удовлетворяющей следующим условиям

$$\varphi'(1) = 1, \quad \varphi''(1) < \infty.$$

Докажите, что при $n \to \infty$

$$\mathbf{P}\{Z_n > 0\} = \frac{2}{n\varphi''(1)}(1 + o(1)).$$

и для любого x > 0

$$\lim_{n \to \infty} \mathbf{P} \left\{ \frac{2Z_n}{n\varphi''(1)} \leqslant x \Big| Z_n > 0 \right\} = 1 - e^{-x}.$$

Тема 3: вероятностный подход

3. [30] Докажите, что любое множество целых ненулевых чисел B, |B| = n, содержит свободное от сумм подмножество A такое, что |A| > n/3.

Определение: множество A называется свободным от сумм, если $(A+A)\cap A=\emptyset$, т.е. ни для каких трех элементов a_1,a_2,a_3 не выполнено, что $a_1+a_2=a_3$.

Листочек 1 по теории вероятностей. Дедлайн: 09.10.2020, 23:59

(В квадратных скобках указаны баллы за задачи)

- 1. [2] Случайная величина X имеет равномерное распределение на [0,10]. Найдите распределение случайной величины Y = ||X-1|-2|.
- 2. **[2]** Пусть случайный вектор $X = (X_1, X_2, \dots, X_n)$ имеет сферически симметричное распределение. Докажите, что случайные величины X_1, X_2, \dots, X_n попарно некоррелированы.

Hanomunanue: вероятностное распределение в \mathbb{R}^n называется сферически симметричным, если оно инвариантно относительно поворотов вокруг нуля.

3. [2] Случайные величины X,Y,Z независимы в совокупности, причем X и Y имеют стандартное гауссовское распределение, а случайная величина Z принимает целочисленные значения, $Z \in \mathbb{Z}$. Найдите плотность распределения случайной величины

$$\frac{X + ZY}{\sqrt{1 + Z^2}}.$$

4. **[2]** Случайные величины X_1, X_2, \dots, X_n независимы и имеют одинаковое экспоненциальное распределение. Докажите, что случайные величины

$$\max(X_1, X_2, \dots, X_n)$$
 u $X_1 + \frac{X_2}{2} + \dots + \frac{X_n}{n}$

одинаковы распределены.

5. **[4]** Пусть f — липшицева функция на прямой с нормой не более единицы (т.е. $|f(x) - f(y)| \leq |x - y|$). Докажите неравенство

$$\mathbb{D}f(\xi) \leqslant \mathbb{D}\xi$$

Hanomuhahue: здесь $\mathbb{D}X$ — это дисперсия случайной величины X, т.е. $\mathbb{D}X = \mathbb{E}(X - \mathbb{E}X)^2$.

6. **[4]** Пусть X — неотрицательная случайная величина. Докажите неравенство:

$$\mathbb{E}X^4\mathbb{E}X^8 \le \mathbb{E}X^3\mathbb{E}X^9$$

7. **[4]** Случайные величины X,Y независимы, причем Y имеет симметричное распределение. Доказать, что для любого $p \in [1,2]$ выполнено неравенство

$$\mathbb{E}|X+Y|^p \leqslant \mathbb{E}|X|^p + \mathbb{E}|Y|^p$$

Организационные моменты:

- Решение задач нужно оформлять письменно с подробным объяснением всех переходов.
- Можно писать от руки (главное, чтобы было читабельно!), на планшете или в LATEX. Оформление в LATEX будет поощряться дополнительными баллами.
- Решение задач присылается один раз на почту mariyaplat@gmail.com.
- Важно: все решения нужно присылать единым файлом PDF. Для удобства стандартизируем название файла: MKN-list1-N-Surname.pdf, где N номер группы (1,2 или 3), Surname Ваша фамилия. Например, MKN-list1-3-Filippov.pdf.
- Дедлайн: 9 октября 2020, 23:59.

Листочек 2 по теории вероятностей. Дедлайн: 29.11.2020, 23:59

- 1) **[2]** Случайные величины X_1, X_2, \ldots центрированы, $\mathbb{E} X_k^2 \leqslant B$ для любого k, $\mathbb{E} X_k X_j \to 0$ равномерно при $|k-j| \to \infty$. Пусть $S_n = \sum\limits_{k=1}^n X_k$. Доказать, что $\frac{S_n}{n} \stackrel{\mathbb{P}}{\to} 0$. $(X_n \stackrel{\mathbb{P}}{\to} X)$ означает, что случайные величины X_n сходятся к X по вероятности.)
- 2) **[2]** Вычислите

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \underbrace{\int_{0}^{1} \dots \int_{0}^{1} (x_1^2 + \dots + x_n^2)^{1/2} dx_1 \dots dx_n}_{n \text{ pas}}.$$

3) [2] Случайные величины X_1, X_2, \ldots независимы, одинаково распределены и имеют конечную дисперсию, $S_n = \sum_{k=1}^n X_k$. Доказать, что для любого $b \in \mathbb{R}$

$$\lim_{n\to\infty} \mathbb{P}\{S_n \leqslant b\}$$

существует и равен или 0, или 1, или $\frac{1}{2}$.

- 4) **[2]** Пусть (X,Y) равномерно распределен в квадрате $[0,1]^2$. Найти $\mathbb{E}(X+Y|X-Y)$.
- 5) [4] Пусть X, Y независимые случайные величины с экспоненциальным распределением с параметром 1, а функция $f: \mathbb{R}^2 \to \mathbb{R}^1$. Найти формулу для условного математического ожидания $\mathbb{E}\left(f(X,Y)|X+Y\right)$.
- 6) [4] Найти $\mathbb{E}(X|X|)$, в предположении, что X имеет плотность p(x).
- 7) [4] Известно, что $X_n \Rightarrow X$ и $\mathbb{E}|X_n| \to \mathbb{E}|X|$. Доказать, что для любого $a \in \mathbb{R}$

$$\mathbb{E}|X_n + a| \to \mathbb{E}|X + a|.$$

 $(X_n \Rightarrow X$ означает, что распределения \mathcal{P}_{X_n} слабо сходятся к \mathcal{P}_{X} .)

Бонусные задачи:

8) **[5]** Пусть $X^n = (X_1^n, X_2^n, \dots, X_{n+1}^n)$ случайный вектор в \mathbb{R}^{n+1} , равномерно распределенный на единичной сфере. Докажите, что

$$\lim_{n \to \infty} P\{\sqrt{n} X_{n+1}^n \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{u^2}{2}} du.$$

9) **[5]** Докажите, что если $\mathbb{E}\left(X\big|\,Y\right)\geqslant Y$ и $\mathbb{E}\left(Y\big|\,X\right)\geqslant X$, то X=Y почти наверное.

3 Контрольные работы

Контрольная работа 1 по теории вероятностей, 29.10.2020

1. Плотность совместного распределения $p_{\xi,n}(x,y)$ величин ξ и η равна

$$p_{\xi,\eta}(x,y) = \begin{cases} C(x+y), & 0 \leqslant x \leqslant 1, \ 0 \leqslant y \leqslant 1, \\ 0, & \text{иначе.} \end{cases}$$

Найти константу C, одномерные плотности распределения $p_{\xi}(x)$, $p_{\eta}(y)$ величин ξ и η , плотность распределения величины $\zeta = \max{(\xi, \eta)}$.

- 2. Две точки брошены на прямую независимо, координата каждой из них распределена как $\mathcal{N}(0,1)$. Найдите математическое ожидание и дисперсию расстояния между ними.
- 3. Функция $\varphi(t)$ определена равенством

$$\varphi(t) = \sum_{k=1}^{n} a_k \cos(kt) + \sum_{k=1}^{n} b_k \sin(kt), \quad a_k, b_k \in \mathbb{R},$$

причем не все константы b_k нулевые. Может ли φ быть характеристической функцией?

4. Случайная величина X такова, что $\mathbb{E}|X|^{2n+1} < \infty$ для некоторого $n \geqslant 0$. Доказать, что существует a, такое что $\mathbb{E}(X-a)^{2n+1} = 0$; при этом такое a единственно.

Контрольная работа 2 по теории вероятностей, 17.12.2020

- 1. Пусть $f(t) 2\pi$ -периодическая функция, причем на отрезке $[0, 2\pi]$ она совпадает с графиком квадратного трехчлена и f(0) = 1. Определите, при каких $f(\pi)$ функция f является характеристической функцией некоторого распределения и найдите это распределение.
- 2. Пусть случайные величины (X_n) совместно гауссовские и $X_n \to X$ п.н. Доказать, что $X_n \stackrel{L_2}{\to} X$.
- 3. Пусть (X_n) последовательность случайных величин. Вероятностное свойство Коши заключается в том, что

$$\forall \varepsilon > 0 \quad \exists n : \quad \forall m_1, m_2 > n \qquad \mathbb{P}(|X_{m_1} - X_{m_2}| > \varepsilon) < \varepsilon.$$

Докажите, что если $X_n \stackrel{\mathbb{P}}{\to} X$, то (X_n) имеет свойство Коши.

Верно ли обратное, т.е. если (X_n) имеет свойство Коши, то $\exists X: X_n \stackrel{\mathbb{P}}{\to} X$?

4. Пусть случайный вектор (X,Y) распределен равномерно на круге $(x-1)^2+(y-2)^2=1$. Найдите $\mathbb{E}(Y^2|X)$.