rayshader

W krainie R freaków oraz Jak zrobić najgorszy wykres w karierze

Z czym będziemy się mierzyć?

Plan prezentacji

- Czym jest generowanie powierzchni?
- Od numerycznego modelu terenu do wizualizacji z rayshaderem
- Funkcje poboczne pakietu
- Inne funkcje poboczne
- Jeszcze inne funkcje poboczne aka Ostateczny Przewodnik Po Robieniu Mega Dziwnych Wykresów

Czym jest generowanie powierzchni?

Źródło: https://epodreczniki.pl/a/jaki-ksztalt-moze-miec-powierzchnia-ziemi/D9We4dlYp

Od numerycznego modelu terenu do wizualizacji z rayshaderem

plot map(sphere shade(montereybay))


```
data %>%
  sphere_shade(texture = "desert") %>%
  #add_shadow(ray_shade(elevation_matrix)) %>%
  #add_shadow(ambient_shade(elevation_matrix)) %>%
  plot_3d(data, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800))
render_snapshot()
```



```
data %>%
  sphere_shade(texture = "desert") %>%
  add_shadow(ray_shade(elevation_matrix)) %>%
  add_shadow(ambient_shade(elevation_matrix)) %>%
  plot_3d(data, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800))
render_snapshot()
```



```
data %>%
  sphere_shade(texture = "desert") %>%
  add_water(detect_water(data), color = "desert") %>%
  add_shadow(ray_shade(data, zscale = 3), 0.5) %>%
  add_shadow(ambient_shade(data), 0.5) %>%
  plot_3d(data, zscale = 10, fov = 0, theta = 135, zoom = 0.75, phi = 45, windowsize = c(1000, 800))
```



```
data %>%
  sphere_shade(texture = "desert") %>%
  add_shadow(ray_shade(data)) %>%
  add_shadow(ambient_shade(data)) %>%
  plot_3d(data,zscale = 10, theta = 135,fov=0,waterdepth = 150, zoom = 0.75, phi = 45, water = TRUE,wateralpha = 1, windowsi
ze = c(1000, 800))
```


Funkcje poboczne pakietu

- save_3dprint(...)
- save_obj(...)
- save_png(...)
- render_camera(...)
- render_highquality(...)
- render_movie(...)

Inne funkcje poboczne - głębia ostrości

Inne funkcje poboczne - głębia ostrości

Jeszcze inne funkcje poboczne

mtcars: pojemność silnika vs spalanie vs liczba cylindrów

???

rayshader cheat sheet

R Package for 2D and 3D mapping and data visualization

Cheatsheet

ggplot charts in 3D

gg_plot

Creates 3-D ggplot chart

data

created ggplot chart

<u>width = 3</u>

Width of agplot, in `units`.

<u>scale = 150</u>

affects the height of the 3D transformation.

multicore = FALSE

allow to use multicore

windowsize

Two-dimensional vector of window size

sunangle = 315

If raytracing:the angle of light source. **zoom**

objects size in a window

<u>phi</u>

An angle with Z-axis

theta

An angle with X-axis

plot_gg(mtplot, phi = 30, theta = 45)

Creating Hillshades and Color Mappings

sphere_shade

Creates a 3-D terrain model

heightmap

A 2-D matrix, where each number is the elevation at that point.

sunangle = 315

The direction of the main highlight color texture

sq. matrix of the spherical texture or string indicating built-in palette

normalvectors = NULL

Cache of the normal vectors

colorintensity = 1

The intensity of the color mapping. Higher values increase the intensity.

<u>zscale = 1</u>

The ratio between the x and y spacing progbar = interactive()

activates progress bar

sphere_shade(montereybay, texture='desert')

Shadows/Overlays

rayshader

add_water(hillshade, watermap, color =

'imhof1')

Adds a water layer

hillshade

A three-dimensional RGB array.

watermap

Matrix indicating whether water was detected at that point. 1/0 - water/no water.

color = 'imhof1'

A hexcode, recognized color string or palettes included in sphere_shade add_water(montereybay, where_is_water_matrix)

Get data

load data 'montereybay' in R data <- montereybay

Cheatsheet |

rayshader cheat sheet

R Package for 2D and 3D mapping and data visualization

Plotting and Saving 2D and 3D Visualizations

plot_3d(...)
Plot 3D
plot_map(...)
Plot Map
save_3dprint(...)
Save 3D Print
save_obj(...)
Save OBJ
save_png(...)
Save PNG

Adding Shadows and Overlays to Maps

add_overlay(...)
Add Overlay
add_shadow(...)
Add Shadow
detect_water(...)
Detect water

Creating Hillshades and Color Mappings

ambient_shade(...)
Calculate Ambient Occlusion Map
height_shade(...)
Calculate Terrain Color Map
lamb_shade(...)
Calculate Lambert Shading Map
ray_shade(...)
Calculate Raytraced Shadow Map
calculate_normal(...)
Calculate Normal
create_texture(...)
Create Texture

Capture 3D Maps

rayshader

render_camera(...)
Render Camera
render_depth(...)
Render Depth of Field
render_highquality(...)
Render High Quality
render_label(...)
Render Label
render_movie(...)
Render Movie
render_water(...)
Render Water Laye