Church's argument against the verification principle

M. Steenhagen (ms2416@cam.ac.uk) – Part II, Theory of Meaning, Easter 2018 (revision session)

Definitions

- **VERIFICATION PRINCIPLE:** A non-analytic, non-contradictory sentence S is empirically meaningful iff S expresses a statement that is either directly or indirectly verifiable.
- **D1**: S is directly verifiable iff (a) S is an observation statement; or (b) S by itself, or in conjunction with one or more observation statements P, Q, R, . . . , logically entails an observation statement that is not entailed by P, Q, R, . . . alone.
- **D2:** S is indirectly verifiable iff (a) S by itself, or in conjunction with other premises P, Q, R, ..., logically entails a directly verifiable statement D that is not entailed by P, Q, R, ... alone; and (b) the other premises P, Q, R, ..., are all either analytic, directly verifiable, or can be shown independently to be indirectly verifiable.

Instrumental proofs:

We are going to prove that the negation of a directly verifiable statement is always indirectly verifiable. This will be useful later on. The proof has two steps.

Step One

We will show that where O is any observation statement and Q is any directly verifiable statement, $O \rightarrow Q$ is always meaningful.

- 1. Let O be an observation statement and Q be any directly verifiable statement
- 2. $O \rightarrow Q + O$ entails Q
- 3. O either by itself entails Q, or O doesn't by itself entail Q
- 4. If O does entail Q by itself, then $O \rightarrow Q$ is analytic, and so meaningful
- 5. If O doesn't by itself entail Q, then O→Q is directly verifiable (by D1), and so meaningful

Step Two

We will show that the negation of any directly verifiable statement is meaningful.

- 1. Let O and \neg O be observation statements, where \neg O is not entailed by directly verifiable statement Q
- 2. In Step One we proved that O→Q is either directly verifiable or analytic
- 3. $\neg Q$ together with $O \rightarrow Q$ entails $\neg O$
- 4. By hypothesis, ¬O is not entailed by Q alone
- 5. So $\neg O$ is not entailed by $\neg O$ v Q alone ($\neg O$ v Q entails $\neg O$ iff $\neg O$ entails $\neg O$ and Q entails $\neg O$)
- 6. But $\neg O \lor O \equiv O \rightarrow O$
- 7. So $\neg O$ is not entailed by $O \rightarrow Q$ alone
- 8. So $\neg Q$ is indirectly verifiable (by D2)

Hence, if Q is directly verifiable, then $\neg Q$ is indirectly verifiable.

Now, on to a reconstruction of Church's argument.

It would seem, however, that the amended definition of verifiability is open to nearly the same objection as the original definition. For let O_1 , O_2 , O_3 be three "observation-statements" (or "experiential propositions") such that no one of the three taken alone entails any of the others. Then using these we may show of any statement S whatever that either it or its negation is verifiable, as follows. Let \bar{O}_1 and \bar{S} be the negations of O_1 and \bar{S} respectively. Then (under Ayer's definition) $\bar{O}_1O_2 \vee O_2\bar{S}$ is directly verifiable, because with O_1 it entails O_2 . Moreover S and $\bar{O}_1O_2 \vee O_2\bar{S}$ together entail O_2 . Therefore (under Ayer's definition) S is indirectly verifiable—unless it happens that $\bar{O}_1O_2 \vee O_2\bar{S}$ alone entails O_3 , in which case \bar{S} and O_4 together entail O_2 , so that \bar{S} is directly verifiable.

From: Alonzo Church (1949) 'Review of Ayer's Language, Truth and Logic'

Church's argument spelled out1

- 1. Let P, Q, R be observation sentences that are logically independent
- 2. Let S be any sentence you like ('Time is a vortex channelling the Absolute')
- 3. Let X be the sentence $(\neg P \& Q) \lor (R \& \neg S)$
- 4. X is directly verifiable, because X together with P entails R, where R is not entailed by P alone (cf. D1)

Now, clearly either X does not entail Q or X does entail Q. We will now show that S comes out as meaningful in either of there two conditions:

Condition one

- 1. Assume X does not entail Q
- 2. Note, X together with S do entail Q
- 3. X is directly verifiable (see above)
- 4. So, S is indirectly verifiable, according to Ayer's definition (D1)

Condition two

- 1. Assume X entails Q
- 2. This means that $\neg P \& Q$ entails Q, and that R & $\neg S$ entails Q
- 3. But this means that R together with $\neg S$ entail Q, while R alone does not entail Q
- 4. So, $\neg S$ is directly verifiable (by D2)

Church ends his argument here, but it seems that we need more to show that the verification principle is trivial. (Or don't we? Consider, should a verificationist be happy to accept that either S or $\neg S$ is meaningful, but that we just don't know which?)

To go beyond Church's disjunctive conclusion, we can add the following lines:

- 5. The negation of a directly verifiable statement is always indirectly verifiable (Step Two)
- 6. So, $\neg \neg S$ is indirectly verifiable
- 7. But $\neg \neg S = S$
- 8. So, S is indirectly verifiable

And so we have shown that for any sentence S, S is indirectly verifiable. (In the end, how different is this argument from Hempel's objection?)

¹ I'm not going to copy Church's notation; I'll get rid of the subscripts, so that ' O_1 , O_2 , O_3 ' becomes 'P, Q, R'. And I'll use standard notation for negation, so that ' \bar{O} ' becomes ' $\neg O$ '. The reconstruction here is based on Soames' (2003) presentation (pp. 289ff).