ISMT S-136 Time Series Analysis with Python

Harvard Summer School

Dmitry Kurochkin

Summer 2021 Lecture 10

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- 2 Model Selection
- Time Series Forecasting as Supervised Learning
- Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Unit Root Testing: Dickey-Fuller Test

Consider a univariate process of type

$$x_t = \phi x_{t-1} + w_t,$$

where w_t is Gaussian white noise.

How can one test whether the process is causal, i.e.

$$H_0$$
: $\phi = 1$ versus H_1 : $|\phi| < 1$?

Let's rewrite the difference equation as follows:

$$\underbrace{x_t - x_{t-1}}_{\nabla x_t} = \underbrace{(\phi - 1)}_{\rho} x_{t-1} + w_t$$

and test

$$H_0$$
: $\rho = 0$ versus H_1 : $\rho \neq 0$

by regressing ∇x_t on x_{t-1} - namely *Dickey-Fuller* test.

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Unit Root Testing: Augmented Dickey-Fuller Test

Consider a univariate process of type

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \ldots + \phi_p x_{t-p} + w_t,$$

where w_t is Gaussian white noise.

Let's rewrite the difference equation as follows:

$$\underbrace{x_{t} - x_{t-1}}_{\nabla x_{t}} = \underbrace{\left(\sum_{j=1}^{p} \phi_{j} - 1\right)}_{\rho} x_{t-1} + \sum_{j=1}^{p-1} \underbrace{\left(-\sum_{i=j+1}^{p} \phi_{i}\right)}_{\psi_{j}} \nabla x_{t-j} + w_{t}$$

and test

$$H_0$$
: $\rho = 0$ versus H_1 : $\rho \neq 0$

by regressing ∇x_t on $x_{t-1}, \nabla x_{t-1}, \dots, \nabla x_{t-p+1}$

- namely augmented Dickey-Fuller test.

Note: Unit root z=1, i.e. $\phi(1)=0$, means $\phi(1)=1-\sum_{j=1}^p\phi_p=0$, i.e. $\rho=0$.

Model Selection

Given observations x_1, x_2, \ldots, x_n , the criteria for model selection are:

1 Akaike information criterion (AIC):

$$AIC = -2\ln\hat{L} + \frac{2k}{n},$$

where \hat{L} is the estimated maximum value of the Likelihood and k is the number of parameters of the model (for example, ARMA(p,q) has k=p+q).

Bayesian information criterion (BIC):

$$BIC = -2\ln\hat{L} + \frac{\ln k}{n},$$

where \hat{L} and k are as above.

Use the Mean Squared Error (MSE) computed for newly predicted observations, that is:

for some 1 < m < n, train on x_1, \ldots, x_m and then test on x_{m+1}, \ldots, x_n as follows:

$$MSE = \frac{1}{n-m} \sum_{i=m+1}^{n} (x_i - \hat{x}_i)^2,$$

where \hat{x}_i denotes one-step ahead forecast of x_i .

Time Series Forecasting as Supervised Learning

Let's recall how we define a time series model:

Def.

Time series model is a specification of the joint distribution of x_1, x_2, \ldots, x_n .

For example, AR(m)-GARCH(p,q) medel defines the joint distribution as follows:

$$\begin{split} \phi(B)x_t &= r_t \\ r_t &= \sigma_t \varepsilon_t, \quad \text{where} \quad \varepsilon_t \overset{\text{iid}}{\sim} \mathcal{N}(0,1), \\ \sigma_t^2 &= \alpha_0 + \sum_{j=1}^p \alpha_j r_{t-j}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2. \end{split}$$

Given a time series model, one then can estimate the parameters (by maximizing Likelihood, for example) and forecast new observations of x_{n+1} as follows:

$$x_{n+1}^n = \mathbf{E}[x_{n+1} | x_n, x_{n-1}, \dots, x_{n-m}]$$

Time Series Forecasting as Supervised Learning

Can we model the dependence

$$x_{n+1}^n = \mathbf{E}[x_{n+1} | x_n, x_{n-1}, \dots, x_{n-m}],$$

which is a function of $x_n, x_{n-1}, \dots, x_{n-m}$, directly without an explicit time series model?

Answer: Supervised Learning algorithms.

Time Series Forecasting as Supervised Learning

The goal is to model the dependence

$$\hat{x}_{t+1} = \mathbb{E}[x_{t+1} | x_t, x_{t-1}, \dots, x_{t-m}]$$

using data

inputs $oldsymbol{x}$					output y	
x_1	x_2	x_3	x_4		x_m	x_{m+1}
x_2	x_3	x_4	x_5		x_{m+1}	x_{m+2}
x_3	x_4	x_5	x_6		x_{m+2}	x_{m+3}
x_4	x_5	x_6	x_7		x_{m+3}	x_{m+4}
x_5	x_6	x_7	x_8		x_{m+4}	x_{m+5}
x_6	x_7	x_8	x_9		x_{m+5}	x_{m+6}
:	:	:	:		:	:
			-			

Notice, however, that the assumptions of linear regression are likely violated.

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Biological Neurons

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- 6 Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Example: Artificial NN with 2 inputs and 1 output

Let's consider a *Deep Neural Network* which has two real-valued inputs (denoted by x_1 and x_2), one hidden layer that consists of two neurons $(u_1$ and $u_2)$ with ReLU activation functions, and one output \hat{y} with the ReLU activation function.

The explicit representation of this network is

input layer	hidden layer	output layer
$egin{array}{c} x_1 \ x_2 \end{array}$	$u_1 = f(w_{01}^{(1)} + w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2)$ $u_2 = f(w_{02}^{(1)} + w_{12}^{(1)} x_1 + w_{22}^{(1)} x_2)$	$\hat{y} = f(w_0^{(2)} + w_1^{(2)}u_1 + w_2^{(2)}u_2)$

Here, f(x) denotes the rectified linear unit (ReLU) defined as follows:

$$f(x) = \begin{cases} x, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Example: Artificial NN with 2 inputs and 1 output (cont.)

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- 2 Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Artificial Neural Network

Neural Network (NN) with

n inputs,

M outputs and

1 hidden layer with H neurons is defined as:

$$\hat{y} = f^{(2)}(f^{(1)}(x)),$$

where

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$$
 are inputs,

$$\hat{m{y}} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M)^T \in \mathbb{R}^M$$
 are outputs,

$$f^{(1)}: \mathbb{R}^n \mapsto \mathbb{R}^{\textcolor{red}{H}} \text{ and } f^{(2)}: \mathbb{R}^{\textcolor{red}{H}} \mapsto \mathbb{R}^M$$
 ,

where H is the number of *neurons* in the hidden layer.

Regression with NNs

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

with

• $f^{(2)}: \mathbb{R}^H \to \mathbb{R}$, i.e. M=1, is used for *regression*.

Regression with NNs

Keras:

```
import keras import models
from keras import layers

# number of inputs
n = 900

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(n,)))
model.add(layers.Dense(1, activation='relu'))
model.summary()
```

Layer (type)	Output	Shape	Param #
dense_3 (Dense)	(None,	16)	14416
dense_4 (Dense)	(None,	1)	17
Total params: 14,433 Trainable params: 14,433 Non-trainable params: 0			

Classification with NNs

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

with

• $f_m^{(2)}(\boldsymbol{u}) \geq 0$ for all $m \in \{1, 2, \dots, M\}$ and $\boldsymbol{u} \in \mathbb{R}^H$ and $\sum_{m=1}^M f_m^{(2)}(\boldsymbol{u}) = 1$ for all $\boldsymbol{u} \in \mathbb{R}^H$ is used for classification.

Classification with NNs

Keras:

```
import keras
from keras import models
from keras import layers

# number of inputs
n = 900
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(n,)))
model.add(layers.Dense(2, activation='softmax'))
model.summary()
```

Layer (type)	Output	Shape	Param #
dense_5 (Dense)	(None,	16)	14416
dense_6 (Dense) Total params: 14,450	(None,	2)	34
Trainable params: 14,450 Non-trainable params: 0			

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

What $f^{(1)}$ and $f^{(2)}$ should use?

NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}}).$$

What $f^{(1)}$ and $f^{(2)}$ should use?

Let

- $u_h \doteq f_h^{(1)}(x) = \sigma_h^{(1)}\left(\sum_{j=0}^n w_{jh}^{(1)} x_j\right)$, where we define $x_0 \doteq 1$.
- $\hat{y}_m \doteq f_m^{(2)}(\mathbf{u}) = \sigma_m^{(2)} \left(\sum_{h=0}^H w_{hm}^{(2)} \mathbf{u}_h \right)$, where we define $\mathbf{u}_0 \doteq 1$.

The NN

$$\hat{\boldsymbol{y}} = f^{(2)}(\underbrace{f^{(1)}(\boldsymbol{x})}_{\doteq \boldsymbol{u}})$$

becomes

$$\hat{y}_{m} = \sigma_{m}^{(2)} \left(\sum_{h=0}^{H} w_{hm}^{(2)} \underbrace{\sigma_{h}^{(1)} \left(\sum_{j=0}^{n} w_{jh}^{(1)} x_{j} \right)}_{\doteq u_{h}} \right).$$

What $\sigma_h^{(1)}$ and $\sigma_m^{(2)}$ should use?

Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- 6 Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

If we wish to discourage overfitting we can add a regularization penalty, $R({m w})$, to the loss function:

$$J_{\mathsf{reg}}(\boldsymbol{w}) = J(\boldsymbol{w}) + \lambda R(\boldsymbol{w}).$$

If we wish to discourage overfitting we can add a regularization penalty, $R({m w})$, to the loss function:

$$J_{\text{reg}}(\boldsymbol{w}) = J(\boldsymbol{w}) + \lambda R(\boldsymbol{w}).$$

The most common regularization terms are:

• L1-norm (similar to Lasso regression):

$$R(\boldsymbol{w}) \doteq \sum_{\ell} \sum_{i,j} |w_{ij}^{(\ell)}|$$

• L2-norm (similar to Ridge regression):

$$R(\boldsymbol{w}) \doteq \sum_{\ell} \sum_{i,j} \left(w_{ij}^{(\ell)} \right)^2$$

Keras:

L1 Regularization

Keras:

L2 Regularization

Keras:

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Dropouts

Dropout is another regularization tool which literally means "dropping out" a random number of neurons during every training step. After training, each neuron's input connection weight needs to be adjusted by a factor of (1-dropout rate).

Effectively, all we need to do is to set to zero a random number of outputs from a given layer:

Dropouts

Keras:

Dropout Regularization

```
dropout_rate = 0.3
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(X_train.shape(1],)))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dropout(dropout_rate))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(2, activation='softmax'))
model.summary()
```

Dropouts

Keras:

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- 6 Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

RNN: Recurrent Neuron

Recurrent Neuron:

RNN: Layer of Recurrent Neurons

Layer of Recurrent Neurons:

Layer of Recurrent Neurons: Keras

Simple RNN in Keras:

```
n features = 2
n timesteps = 200
model = models.Sequential()
model.add(layers.SimpleRNN(3, activation='relu', input shape=(n timesteps,n features)))
model.add(layers.Dense(1, activation='linear'))
model.summary()
```

Model: "sequential 6"

Layer (type)	Output Shape	Param #
simple_rnn_6 (SimpleRNN)	(None, 3)	18
dense_6 (Dense)	(None, 1)	4
Total params: 22 Trainable params: 22		

Non-trainable params: 0

Contents

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- 6 Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

RNN: Memory Cells

Layer of Recurrent Neurons:

Contents

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Long Short-Term Memory (LSTM) Cell

LSTM Cell:

Long Short-Term Memory (LSTM) Cell

LSTM Cell Model:

$$\begin{aligned} &\mathbf{i}_{(t)} = \sigma \left(\mathbf{W}_{xt}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ht}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{t} \right) \\ &\mathbf{f}_{(t)} = \sigma \left(\mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{f} \right) \\ &\mathbf{o}_{(t)} = \sigma \left(\mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{o} \right) \\ &\mathbf{g}_{(t)} = \tanh \left(\mathbf{W}_{xg}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{g} \right) \\ &\mathbf{c}_{(t)} = \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)} \\ &\mathbf{y}_{(t)} = \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh \left(\mathbf{c}_{(t)} \right) \end{aligned}$$

- W_{xt}, W_{xp}, W_{xp} are the weight matrices of each of the four layers for their connection to the input vector x_(t).
- W_{hb}, W_{ho}, and W_{hg} are the weight matrices of each of the four layers for their connection to the previous short-term state h_(t-1).
- b_p b_p b_o, and b_g are the bias terms for each of the four layers. Note that Tensor-Flow initializes b_f to a vector full of 1s instead of 0s. This prevents forgetting everything at the beginning of training.

Applications of LSTM Cells

- greatly improved speech recognition on over 4 billion Android phones (since mid 2015)
- greatly improved machine translation through Google Translate (since Nov 2016)
- greatly improved machine translation through Facebook (over 4 billion LSTMbased translations per day as of 2017)
- Siri and Quicktype on almost 2 billion iPhones (since 2016)
- generating answers by Amazon's Alexa and numerous other similar applications.

Long Short-Term Memory (LSTM) Cell: Keras

LSTM in Keras:

```
n features = 2
n timesteps = 200
model = models.Sequential()
model.add(LSTM(16, activation='relu', input shape=(n timesteps, n features)))
model.add(lavers.Dense(1, activation='linear'))
model.summarv()
Model: "sequential 7"
Laver (type)
                              Output Shape
                                                         Param #
1stm 1 (LSTM)
                              (None, 16)
                                                         1216
dense 7 (Dense)
                                                         17
                              (None, 1)
Total params: 1,233
Trainable params: 1,233
Non-trainable params: 0
```

Contents

- Unit Root Testing
 - Dickey-Fuller Test
 - Augmented Dickey-Fuller Test
- Model Selection
- Time Series Forecasting as Supervised Learning
- 4 Deep Learning
 - Biological Neurons
 - Artificial Neural Network (NN): Example
 - Definition of an Artificial NN
- Regularization
 - Regularization Penalty
 - Dropouts
- 6 Recurrent Neural Networks (RNN)
 - Recurrent Neuron and Layer of Recurrent Neurons
 - Memory Cells
 - Long Short-Term Memory (LSTM) Cell
 - Gated Recurrent Unit (GRU) Cell

Gated Recurrent Unit (GRU) Cell

GRU Cell:

Gated Recurrent Unit (GRU) Cell

GRU Cell Model:

$$\begin{split} \mathbf{z}_{(t)} &= \sigma \left(\mathbf{W}_{xz}^T \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hz}^T \cdot \mathbf{h}_{(t-1)} \right) \\ \mathbf{r}_{(t)} &= \sigma \left(\mathbf{W}_{xr}^T \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hr}^T \cdot \mathbf{h}_{(t-1)} \right) \\ \mathbf{g}_{(t)} &= \tanh \left(\mathbf{W}_{xg}^T \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^T \cdot \left(\mathbf{r}_{(t)} \otimes \mathbf{h}_{(t-1)} \right) \right) \\ \mathbf{h}_{(t)} &= \left(1 - \mathbf{z}_{(t)} \right) \otimes \tanh \left(\mathbf{W}_{xg}^T \cdot \mathbf{h}_{(t-1)} + \mathbf{z}_{(t)} \otimes \mathbf{g}_t \right) \end{split}$$