# **Bankruptcy and Liquidation Prediction Model**

Math Capstone PBL (Data Analysis) - Project #2

Jaeseon Lee<sup>1</sup> Junwoo Yang<sup>2</sup>

December 8, 2020

 $^{1}$ Department of Economics & Finance Hanyang University

<sup>2</sup>Department of Finance Hanyang University

## Table of contents

- 1. Introduction
- 2. EDA
- 3. Correlation Analysis
- 4. Modeling
- 5. Conclusion

Introduction

## Topic and objective

#### Bankruptcy and Liquidation Prediction by Logistic Regression

- What are the variables associated with bankruptcy and liquidation?
- Which company does model suggest will go bankrupt or liquidate in the next three years?

#### Data sources

#### WRDS Compustat – Capital IQ <sup>1</sup>

- 226,866 observations × 981 variables
- Fundamentals annual of companies that are actively trading on the NYSE, AMEX, NASDAQ, TSX, or NYSE/Arca exchanges from 2000 to 2020

#### United States Cities Database <sup>2</sup>

- 29.488 observations × 17 variables
- This data include city name, state abbr., state name, county fips, county name, longitude and latitude of city, etc.

 $<sup>^{1}</sup> h ttp://wrds-web.wharton.upenn.edu.ssl.access.hanyang.ac.kr/wrds/ds/compd/funda/index.cfm?navId=83$ 

<sup>&</sup>lt;sup>2</sup>https://simplemaps.com/data/us-cities

## Variable groups

- Identifying Information
- Identifying Information, cont.
- Company Descriptor
- Balance Sheet Items
- Income Statement Items
- Cash Flow Items
- Miscellaneous Items
- Supplemental Data Items
- Map Items

| acctstd   | auop          | costat      | dlc     | ebit    | gind    | ivch   | naics4   | pidom   | reajo      | tfvce       | txtubbegin    |
|-----------|---------------|-------------|---------|---------|---------|--------|----------|---------|------------|-------------|---------------|
| acdo      | auopic        | county_fips | dlcch   | ebitda  | glcea   | ivncf  | naics5   | pifo    | recch      | tfvl        | txtubend      |
| aco       | bkvlps        | county_name | dldte   | ein     | glced   | ivst   | naics6   | pnca    | recco      | tic         | txtubposdec   |
| acodo     | BL            | cshfd       | dlrsn   | emp     | glceeps | ivstch | naicsh   | pncad   | recd       | tlcf        | txtubposinc   |
| acominc   | busdesc       | cshi        | dltis   | epsfi   | glcep   | lat    | ni       | pncaeps | rect       | tstk        | txtubpospde   |
| acox      | caps          | csho        | dlto    | epsfx   | gp      | Ico    | niadj    | pncwia  | recta      | tstkc       | txtubpospino  |
| act       | capx          | cshpri      | dltp    | epspi   | gsector | Icox   | nopi     | pncwip  | rectr      | tstkn       | txtubsettle   |
| add1      | capxv         | cshr        | dltr    | epspx   | gsubind | lcoxdr | nopio    | pnrsho  | reuna      | tstkp       | txtubsoflimit |
| addzip    | census_region | cshtr_c     | dltt    | esopct  | gvkey   | lct    | np       | ppegt   | revt       | txach       | txtubtxtr     |
| adjex_c   | ceoso         | cshtr_f     | dm      | esopdlt | ib      | lifr   | oancf    | ppent   | sale       | txbco       | txtubxintbs   |
| adjex_f   | ceq           | cstk        | dn      | esopnr  | ibadj   | lifrp  | oiadp    | ppeveb  | scf        | txbcof      | txtubxintis   |
| ajex      | ceql          | cstkcv      | do      | esopt   | ibc     | Ino    | oibdp    | prca    | seq        | txc         | txw           |
| ajp       | ceqt          | cstke       | donr    | esub    | ibcom   | lo     | opeps    | prcad   | seqo       | txdb        | upd           |
| aldo      | cfoso         | curcd       | dp      | esubc   | ibmii   | lol2   | oprepsx  | prcaeps | sic        | txdba       | wcap          |
| am        | ch            | curncd      | dpact   | exchg   | icapt   | long   | optca    | prcc_c  | sich       | txdbca      | weburl        |
| ano       | che           | currtr      | dpc     | exre    | idbflag | loxdr  | optdr    | prcc_f  | siv        | txdbcl      | xacc          |
| ao        | chech         | cusip       | dpvieb  | fatb    | idit    | lqpl1  | optex    | prch_c  | spce       | txdc        | xad           |
| aocidergl | ci            | datadate    | drc     | fatc    | incorp  | lse    | optexd   | prch_f  | spced      | txdfed      | xi            |
| aociother | cibegni       | dc          | drlt    | fate    | intan   | lt     | optfvgr  | prcl_c  | spceeps    | txdfo       | xido          |
| aocipen   | cicurr        | dclo        | ds      | fatl    | intano  | lul3   | optgr    | prcl_f  | spcindcd   | txdi        | xidoc         |
| aocisecgl | cidergl       | dcom        | dt      | fatn    | intc    | mib    | optlife  | priusa  | spcseccd   | txditc      | xint          |
| aodo      | cik           | dcpstk      | dudd    | fato    | intpn   | mibn   | optosby  | prsho   | spcsrc     | txds        | xintopt       |
| aol2      | cimii         | dcs         | dv      | fatp    | invch   | mibt   | optosey  | prstkc  | spi        | txfed       | xopr          |
| aoloch    | ciother       | dcvsr       | dvc     | fax     | invfg   | mii    | optprcby | pstk    | sppe       | txfo        | xpp           |
| aox       | cipen         | dcvsub      | dvp     | fca     | invo    | mkvalt | optprcca | pstkc   | sppiv      | txndb       | xpr           |
| ap        | cisecgl       | dcvt        | dvpa    | fdate   | invrm   | mrc1   | optprcex | pstkl   | src        | txndba      | xrd           |
| apalch    | citotal       | dd          | dvpsp_c | fiao    | invt    | mrc2   | optprcey | pstkn   | sstk       | txndbl      | xrdp          |
| apdedate  | city          | dd1         | dvpsp_f | fic     | invwip  | mrc3   | optprcgr | pstkr   | stalt      | txndbr      | xrent         |
| aqc       | cld2          | dd2         | dvpsx_c | fincf   | ipodate | mrc4   | optprcwa | pstkrv  | state      | txo         | xsga          |
| aqi       | cld3          | dd3         | dvpsx_f | fopo    | ismod   | mrc5   | optrfr   | rdip    | state_name | txp         |               |
| aqpl1     | cld4          | dd4         | dvt     | fopox   | itcb    | mrct   | optvol   | rdipa   | stkco      | txpd        |               |
| ags       | cld5          | dd5         | dxd2    | fyr     | itci    | mrcta  | pdate    | rdipd   | stkcpa     | txr         |               |
| at        | cogs          | dfs         | dxd3    | fyrc    | ivaco   | msa    | pddur    | rdipeps | stko       | txs         |               |
| au        | conm          | diladj      | dxd4    | gdwl    | ivaeq   | naics2 | phone    | re      | teq        | txt         |               |
| aul3      | conml         | dilavx      | dxd5    | agroup  | ivao    | naics3 | pi       | rea     | tfva       | txtubadiust |               |

Table 1: Variable names

#### Response variable

The response variable BL is defined as binary as follows:

$$BL = \begin{cases} 1 & \text{if it went bankrupt or liquidated in 2011-13} \\ 0 & \text{otherwise (solvent company)}. \end{cases}$$

| year | All deletion | Bankruptcy | Liquidation | BL |
|------|--------------|------------|-------------|----|
| 2011 | 241          | 1          | 16          | 17 |
| 2012 | 363          | 6          | 29          | 35 |
| 2013 | 348          | 8          | 38          | 46 |
| 2014 | 369          | 3          | 47          | 50 |
| 2015 | 348          | 8          | 36          | 44 |
| 2016 | 356          | 10         | 31          | 41 |
| 2017 | 273          | 6          | 1           | 7  |
| 2018 | 243          | 8          | 1           | 9  |
| 2019 | 266          | 16         | 0           | 16 |
| 2020 | 99           | 4          | 0           | 4  |

Table 2: Number of deleted companies

#### **Explanatory variables: fundamentals of 2010**

- aco: current assets that are not included in cash, cash equivalents, receivables or inventory on the Balance Sheet.
- aqpl1: assets measured at fair value using observable inputs based on unadjusted quoted prices for identical instruments in active markets.
  - caps: a group of capital accounts other than capital stock or retained earnings.
  - csho: net number of all common shares outstanding at year-end, excluding treasury shares and scrip.
  - cstk: total par, carrying, or stated value of all common/ordinary capital.

#### Explanatory variables: fundamentals of 2010

- glcea: after-tax gain or loss on a sale that is excluded from the Standard & Poor's Core Earnings calculation.
- idbflag: source of data for the company.
- optfvgr: weighted average fair value of options granted during the year.
  - spced: Standard & Poor's Core Earnings EPS diluted value.
  - stalt: status alert as to whether the company is in bankruptcy or undergoing a leveraged buyout.
- stkcpa: amount of stock-based compensation expensed on the Income Statement during the current period on an after-tax basis.

#### Logistic regression model

$$y_i (= \mathsf{BL}_i) \sim \mathsf{Bernoulli}(p_i)$$
 
$$\mathsf{logit}(p_i) = \mathsf{log}\, \frac{p_i}{1-p_i} = X_i\beta, \quad p_i = \frac{1}{1+e^{-X_i\beta}}$$
 where  $X_i = (1, x_{i,1}, \cdots, x_{i,m}), \, \beta = (\beta_0, \beta_1, \cdots, \beta_m)^\top.$ 

#### Maximum Likelihood Estimation (MLE)

$$L(\beta|X_1,\dots,X_k,Y) = \prod_{i=1}^n (p_i)^{y_i} (1-p_i)^{1-y_i}$$

$$\log L(\beta|X_1,\dots,X_k,Y) = \sum_{i=1}^n y_i \log p_i + \sum_{i=1}^n (1-y_i) \log(1-p_i)$$

# **EDA**

## Handling missing values

## North American Industrial Classification System <sup>3</sup>

NAICS is a hierarchical structure and can consist of up to six digits/levels. It is a comprehensive system covering all economic activities. There are 20 sectors and 1,057 industries in 2017 NAICS United States.

#### NAICS vs. SIC

The NAICS was developed to eliminate the inconsistent logic utilized in the SIC system and to increase specificity from the 4 digit SIC system by creating a 6 digit NAICS code. The last revision of the SIC was in 1987.

<sup>3</sup>http://www.census.gov/epcd/www/naics.html

# Handling missing values

| Sector | #    | Description                                                              |
|--------|------|--------------------------------------------------------------------------|
| 11     | 18   | Agriculture, Forestry, Fishing and Hunting                               |
| 21     | 426  | Mining, Quarrying, and Oil and Gas Extraction                            |
| 22     | 248  | Utilities                                                                |
| 23     | 78   | Construction                                                             |
| 31-33  | 2193 | Manufacturing                                                            |
| 42     | 169  | Wholesale Trade                                                          |
| 44-45  | 235  | Retail Trade                                                             |
| 48-49  | 148  | Transportation and Warehousing                                           |
| 51     | 652  | Information                                                              |
| 52     | 2122 | Finance and Insurance                                                    |
| 53     | 341  | Real Estate and Rental and Leasing                                       |
| 54     | 233  | Professional, Scientific, and Technical Services                         |
| 55     | 0    | Management of Companies and Enterprises                                  |
| 56     | 111  | Administrative and Support and Waste Management and Remediation Services |
| 61     | 26   | Educational Services                                                     |
| 62     | 117  | Health Care and Social Assistance                                        |
| 71     | 43   | Arts, Entertainment, and Recreation                                      |
| 72     | 106  | Accommodation and Food Services                                          |
| 81     | 17   | Other Services (except Public Administration)                            |
| 92     | 0    | Public Administration                                                    |
| 99     | 105  | Nonclassifiable                                                          |

**Table 3:** Structure of 2017 NAICS

# Handling missing values

|        | Monster Beverage Corp                      | Kellogg Co |                                          |  |  |
|--------|--------------------------------------------|------------|------------------------------------------|--|--|
| 31     | Manufacturing                              | 31         | Manufacturing                            |  |  |
| 312    | Beverage and Tobacco Product Manufacturing | 311        | Food Manufacturing                       |  |  |
| 3121   | Beverage Manufacturing                     | 3112       | Grain and Oilseed Milling                |  |  |
| 31211  | Soft Drink and Ice Manufacturing           | 31123      | Breakfast Cereal Manufacturing           |  |  |
| 312111 | Soft Drink Manufacturing                   | 311230     | Breakfast Cereal Manufacturing           |  |  |
|        | Coca Cola Consolidated Inc                 |            | Nike Inc                                 |  |  |
| 31     | Manufacturing                              | 31         | Manufacturing                            |  |  |
| 312    | Beverage and Tobacco Product Manufacturing | 316        | Leather and Allied Product Manufacturing |  |  |
| 3121   | Beverage Manufacturing                     | 3162       | Footwear Manufacturing                   |  |  |
| 31211  | Soft Drink and Ice Manufacturing           | 31621      | Footwear Manufacturing                   |  |  |
| 312111 | Soft Drink Manufacturing                   | 316210     | Footwear Manufacturing                   |  |  |

Table 4: Replacing order is upward.

# Preselection by t-test

#### F-test

Let  $X_{j,1}, \cdots, X_{j,n_j}$  be i.i.d. random variables with normal density and  $\overline{X}_j$  be sample means for j=1,2. Then

$$F = \frac{s_1^2}{s_2^2} \sim F(n_1 - 1, n_2 - 1)$$
 where  $s_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (X_{j,i} - \overline{X}_j)^2$ .

$$H_{F,0} \colon \frac{\sigma_1^2}{\sigma_2^2} = 1$$
 vs.  $H_{F,1} \colon \frac{\sigma_1^2}{\sigma_2^2} \neq 1$ .

## Preselection by t-test

#### Student's t-test (when $H_{F,0}$ is accepted)

$$t = \frac{\overline{X}_1 - \overline{X}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$
where  $s_p = \sqrt{\frac{(n_1 - 1)s_{X_1}^2 + (n_2 - 1)s_{X_2}^2}{n_1 + n_2 - 2}}$ 

#### Welch's t-test (when $H_{F,1}$ is accepted)

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_1}}} \sim t(\nu) \quad \text{where } \nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

#### Statistical test

$$H_{t,0}$$
:  $\mu_1 - \mu_2 = 0$  vs.  $H_{t,1}$ :  $\mu_1 - \mu_2 \neq 0$ .

| acdo      | capxv   | cshtr_c | dm      | emp     | ibcom   | lifrp  | oiadp    | pncaeps | spced   | txditc        | txtubxintb |
|-----------|---------|---------|---------|---------|---------|--------|----------|---------|---------|---------------|------------|
| aco       | ceq     | cshtr_f | dn      | esopct  | ibmii   | lo     | oibdp    | ppegt   | spceeps | txds          | txw        |
| acodo     | ceql    | cstk    | dp      | esopt   | icapt   | loxdr  | optdr    | ppent   | sppe    | txfed         | wcap       |
| acominc   | ceqt    | cstke   | dpact   | esub    | idit    | Ise    | optex    | ppeveb  | sppiv   | txfo          | xacc       |
| acox      | ch      | dc      | dpc     | esubc   | intan   | It     | optexd   | prsho   | stkco   | txndb         | xad        |
| act       | chech   | dclo    | dpvieb  | fatb    | intano  | lul3   | optfvgr  | prstkc  | stkcpa  | txndba        | xidoc      |
| aldo      | ci      | dcs     | drc     | fatc    | intc    | mibn   | optgr    | pstk    | teq     | txndbl        | xint       |
| am        | cibegni | dcvsub  | drlt    | fate    | intpn   | mibt   | optosby  | pstkn   | tfvce   | txp           | xopr       |
| ao        | cimii   | dd      | ds      | fatn    | invfg   | mii    | optosey  | rdipd   | tlcf    | txpd          | xpp        |
| aocipen   | cipen   | dd1     | dt      | fato    | invo    | mkvalt | optprcby | rdipeps | tstk    | txr           | xpr        |
| aodo      | cisecgl | dd2     | dudd    | fatp    | invrm   | mrc1   | optprcca | re      | tstkc   | txs           | xrd        |
| aox       | citotal | dd3     | dv      | fincf   | invwip  | mrc2   | optprcex | reajo   | tstkn   | txt           | xrdp       |
| ap        | cld2    | dd4     | dvc     | fopo    | itcb    | mrc3   | optprcey | recch   | txbco   | txtubbegin    | xrent      |
| aqc       | cld3    | dd5     | dvpa    | fopox   | itci    | mrc4   | optprcgr | recd    | txbcof  | txtubend      | xsga       |
| aqpl1     | cld4    | dfs     | dvt     | gdwl    | ivaeq   | mrc5   | optprcwa | rect    | txc     | txtubposdec   |            |
| aqs       | cld5    | dilavx  | dxd2    | glcea   | ivstch  | mrct   | optvol   | recta   | txdb    | txtubposinc   |            |
| at        | cogs    | dlcch   | dxd3    | glcep   | Ico     | mrcta  | pi       | rectr   | txdba   | txtubpospdec  |            |
| aul3      | cshfd   | dldte   | dxd4    | gp      | Icox    | ni     | pidom    | reuna   | txdbca  | txtubpospinc  |            |
| bkvlps    | cshi    | dlto    | dxd5    | ib      | lcoxdr  | niadj  | pifo     | revt    | txdbcl  | txtubsettle   |            |
| caps      | csho    | dltp    | ebit    | ibadj   | lct     | nopio  | pnca     | sale    | txdc    | txtubsoflimit |            |
| capx      | cshpri  | dltt    | ebitda  | ibc     | lifr    | oancf  | pncad    | seq     | txdfo   | txtubtxtr     |            |
| adjex_c   | aoloch  | currtr  | do      | epspi   | glceeps | Ino    | oprepsx  | prcaeps | pstkr   | spi           | txo        |
| adjex_f   | apalch  | dcom    | donr    | epspx   | invch   | lol2   | optca    | prcc_c  | pstkrv  | sstk          | txtubadjus |
| ajex      | aqi     | dcpstk  | dvp     | esopdlt | invt    | long   | optlife  | prcc_f  | rdip    | tfva          | txtubxinti |
| ajp       | che     | dcvsr   | dvpsp_c | esopnr  | ivaco   | lqpl1  | optrfr   | prch_c  | rdipa   | tfvl          | xi         |
| ano       | cicurr  | dcvt    | dvpsp_f | exre    | ivao    | mib    | pncwia   | prch_f  | rea     | tstkp         | xido       |
| aocidergl | cidergl | diladj  | dvpsx_c | fatl    | ivch    | msa    | pncwip   | prcl_c  | recco   | txach         | xintopt    |
| aociother | ciother | dlc     | dvpsx_f | fca     | ivncf   | nopi   | pnrsho   | prcl_f  | seqo    | txdfed        |            |
| aocisecgl | cshr    | dltis   | epsfi   | fiao    | ivst    | np     | prca     | pstkc   | siv     | txdi          |            |
| aol2      | cstkcv  | dltr    | epsfx   | glced   | lat     | opeps  | prcad    | pstkl   | spce    | txndbr        |            |

**Table 5:** Selected and removed variables by t-test (245/350)

## Preselection by VIF

How to solve multicollinearity?

#### **Variance Inflation Factor (VIF)**

$$VIF_i = \frac{1}{1 - R_i^2}$$

where  $R_i^2$  is the coefficient of determination of the regression equation

$$X_i = \beta_0 + \beta_1 X_1 + \dots + \beta_{i-1} X_{i-1} + \beta_{i+1} X_{i+1} + \dots + \beta_n X_n + \varepsilon.$$

We eliminate  $X_j$  with the highest VIF. We recalculate the VIF with the rest of the variables except  $X_j$ , and eliminate a variable with the highest VIF again. Repeat this process until max VIF < 10.

## Preselection by VIF

| acdo    | caps    | dclo    | dvc    | fate   | intc   | ivstch  | optgr    | rdipeps | txbco   | txr           | xidoc        |
|---------|---------|---------|--------|--------|--------|---------|----------|---------|---------|---------------|--------------|
| aco     | chech   | dcs     | dvpa   | fatn   | invfg  | mii     | optprcwa | recch   | txbcof  | txs           | xpp          |
| aldo    | cipen   | dcvsub  | emp    | fato   | invo   | mrcta   | optvol   | recta   | txdbca  | txtubposdec   |              |
| aocipen | cld3    | dltp    | esopct | fatp   | invrm  | nopio   | pidom    | spced   | txdbcl  | txtubsettle   |              |
| aqc     | csho    | dm      | esopt  | fincf  | invwip | optdr   | pnca     | sppe    | txdc    | txtubsoflimit |              |
| aqpl1   | cshtr_c | drc     | esubc  | glcea  | itcb   | optex   | pncad    | stkcpa  | txdfo   | txw           |              |
| aqs     | cstk    | drlt    | fatb   | idit   | itci   | optexd  | prsho    | tfvce   | txfed   | wcap          |              |
| bkvlps  | dc      | dudd    | fatc   | intano | ivaeq  | optfvgr | prstkc   | tstkn   | txp     | xad           |              |
| acodo   | ceq     | cshfd   | dlcch  | dxd2   | ibadj  | lo      | mrct     | pi      | rectr   | txdb          | txtubpospdec |
| acominc | ceql    | cshi    | dldte  | dxd3   | ibc    | loxdr   | ni       | pifo    | reuna   | txdba         | txtubpospinc |
| acox    | ceqt    | cshpri  | dlto   | dxd4   | ibcom  | Ise     | niadj    | pncaeps | revt    | txditc        | txtubtxtr    |
| act     | ch      | cshtr_f | dltt   | dxd5   | ibmii  | lt      | oancf    | ppegt   | sale    | txds          | txtubxintbs  |
| am      | ci      | cstke   | dn     | ebit   | icapt  | lul3    | oiadp    | ppent   | seq     | txfo          | xacc         |
| ao      | cibegni | dd      | dp     | ebitda | intan  | mibn    | oibdp    | ppeveb  | spceeps | txndb         | xint         |
| aodo    | cimii   | dd1     | dpact  | esub   | intpn  | mibt    | optosby  | pstk    | sppiv   | txndba        | xopr         |
| aox     | cisecgl | dd2     | dpc    | fopo   | Ico    | mkvalt  | optosey  | pstkn   | stkco   | txndbl        | xpr          |
| ар      | citotal | dd3     | dpvieb | fopox  | lcox   | mrc1    | optprcby | rdipd   | teq     | txpd          | xrd          |
| at      | cld2    | dd4     | ds     | gdwl   | lcoxdr | mrc2    | optprcca | re      | tlcf    | txt           | xrdp         |
| aul3    | cld4    | dd5     | dt     | glcep  | lct    | mrc3    | optprcex | reajo   | tstk    | txtubbegin    | xrent        |
| capx    | cld5    | dfs     | dv     | gp     | lifr   | mrc4    | optprcey | recd    | tstkc   | txtubend      | xsga         |
| capxv   | cogs    | dilavx  | dvt    | ib     | lifrp  | mrc5    | optprcgr | rect    | txc     | txtubposinc   |              |

Table 6: Selected and removed variables by VIF (90/245)

## Data scaling

#### **Standardization**

$$X' = \frac{X - \mu}{\sigma}$$

Standardized regression coefficients can be used to directly compare the effects of independent variables because standardized variables have the effect of eliminating the measurement unit or variation of the original variable.

# Summary statistics

| Statistic | N     | Mean  | St. Dev. | Min     | Pctl(25) | Pctl(75) | Max    |
|-----------|-------|-------|----------|---------|----------|----------|--------|
|           | 7 200 | 0.000 | 1.000    | -0.150  | -0.149   | -0.107   | 42.624 |
| aco       | 7,380 | 0.000 | 1.000    | -0.150  | -0.149   | -0.107   | 42.024 |
| aqpl1     | 7,380 | 0.000 | 1.000    | -0.067  | -0.067   | -0.056   | 55.435 |
| caps      | 7,380 | 0.000 | 1.000    | -0.389  | -0.209   | -0.029   | 34.987 |
| csho      | 7,380 | 0.000 | 1.000    | -0.179  | -0.163   | -0.053   | 44.172 |
| cstk      | 7,380 | 0.000 | 1.000    | -0.138  | -0.138   | -0.119   | 35.533 |
| glcea     | 7,380 | 0.000 | 1.000    | -6.029  | -0.134   | -0.043   | 71.202 |
| optfvgr   | 7,380 | 0.000 | 1.000    | -0.080  | -0.065   | -0.008   | 66.953 |
| spced     | 7,380 | 0.000 | 1.000    | -83.980 | -0.016   | -0.006   | 5.143  |
| stkcpa    | 7,380 | 0.000 | 1.000    | -1.930  | -0.235   | -0.005   | 42.503 |

Table 7: Summary statistics of continuous variables



Figure 1: Histogram of continuous variables (truncated)



Figure 2: Pie chart of categorical variables



Figure 3: Number of companies by state



Figure 4: Number of companies by county



Figure 5: Plotting cities where the company is located

**Correlation Analysis** 

## BL — continuous variable



Figure 6: Box plots by BL (truncated)

# BL — categorical variable



 Table 8: Contingency tables

## BL — categorical variable

#### Pearson's chi-squared test

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - e_{ij})^2}{e_{ij}} \sim \chi^2((r-1)(c-1))$$
 where  $e_{ij} = \frac{n_{i.}n_{.j}}{n}$ 

$$H_0: p_{ij} = p_{i.}p_{.j} \ \forall i,j$$
 vs.  $H_1: \exists i,j \text{ s.t. } p_{ij} \neq p_{i.}p_{.j}$ .

#### Fisher's exact test

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} \sim \text{Hypergeometric}(n, a+b, a+c)$$

$$H_0: OR = 1 \quad \text{vs.} \quad H_1: OR \neq 1$$

where OR is true odds ratio.

# BL — categorical variable

|         | Pearso   | n's cl | hi-squared test         | Fisher's exact test |        |          |                        |  |  |
|---------|----------|--------|-------------------------|---------------------|--------|----------|------------------------|--|--|
|         | $\chi^2$ | df     | <i>p</i> -value         | odds ratio          | 95% CI |          | <i>p</i> -value        |  |  |
| stalt   | 53.376   | 1      | $2.755 \times 10^{-13}$ | 25.238              | 5.994  | 80.874   | $4.441 \times 10^{-5}$ |  |  |
| idbflag | 3.911    | 1      | 0.048                   | $\infty$            | 1.299  | $\infty$ | 0.014                  |  |  |

Table 9: Result of tests

Neither stalt nor idbfalg are independent of BL. That is, the two categorical variables are associated with BL.

#### Between continuous variables



Figure 7: Spearman correlogram with significance test

# Between continuous and categorical variables



Figure 8: Box plots by stalt (truncated)

# Between continuous and categorical variables



Figure 9: Box plots by idbflag (truncated)

# Between categorical variables



Table 10: Contingency table between stalt and idbflag

| Pearson's chi-          | squar | ed test         | F          | isher's e | xact test       |   |
|-------------------------|-------|-----------------|------------|-----------|-----------------|---|
| $\chi^2$ df $p$ -va     |       | <i>p</i> -value | odds ratio | 95        | <i>p</i> -value |   |
| $2.648 \times 10^{-29}$ | 1     | 1               | 1.219      | 0.193     | 50.795          | 1 |

Table 11: Result of tests

Therefore, stalt and idbflag are independent!

# Modeling

#### Imbalanced data

### Method 1: subsampling training data

The first method is to subsample the negative set to reduce it to be the same size as the positive set, then fit the logistic regression model with the reduced data set.

#### Method 2: weighted logistic regression

For a data set containing 5% positives and 95% negatives, we can assign each positive observation a weight of 0.95, and each negative observation a weight of 0.05. The weighted likelihood can be written as

$$L(\beta) = \prod_{i=1}^{n} (p_i)^{(1-w)y_i} (1-p_i)^{w(1-y_i)}$$

where w represents proportion of events in the population.

#### Imbalanced data

#### Type I error vs. Type II error

Both of them predict a fair amount of true positives as positives and true negatives as positives. This means that Type II error decreases, but Type I error increases. However, it is more dangerous for a company that is actually going to go bankrupt to be predicted not to go bankrupt!

## Subsampling – Training set vs. Test set

**Training set:** 60 bankrupt companies and 600 not bankrupt companies

**Test set:** 16 bankrupt companies and 160 not bankrupt companies

# Stepwise backward elimination by AIC

## **Akaike Information Criterion (AIC)**

Let k be the number of estimated parameters in the model and  $\hat{L}$  be the maximum value of the likelihood function for the model.

$$AIC = 2k - 2\log \hat{L}$$

| factor        |         | numeric |         |      |        |        |          |        |        |       |
|---------------|---------|---------|---------|------|--------|--------|----------|--------|--------|-------|
| BL            | idbflag | aco     | chech   | dm   | fincf  | mrcta  | optfvgr  | prstkc | stkcpa | txfed |
| census_region | naics2  | aqpl1   | csho    | dvc  | glcea  | nopio  | optgr    | recch  | tstkn  | txs   |
| exchg         | stalt   | bkvlps  | cshtr_c | emp  | idit   | optex  | optprcwa | recta  | txdbca | wcap  |
| fic           | state   | caps    | cstk    | fate | intano | optexd | optvol   | spced  | txdc   | xad   |

**Table 12:** 44 variables before stepwise selection

#### Final model

Finally, our logistic regression model is

$$\log \frac{p_i}{1 - p_i} = -203.6 - 7.19x_{\text{aco},i} + 8.9x_{\text{aqppl1},i} + 2.12x_{\text{caps},i}$$

$$-7.58x_{\text{csho},i} - 13.51x_{\text{cstk},i} + 1.56x_{\text{glcea},i} + 197.01x_{\text{idbflag}_D,i}$$

$$-19.96x_{\text{optfvgr},i} - 2.42x_{\text{spced},i} + 2.66x_{\text{stalt}_1,i} - 3.31x_{\text{stkcpa},i}$$

solving for  $p_i$ ,

$$p_i = \frac{1}{1 + \exp(203.6 + 7.19x_{\text{aco},i} - 8.9x_{\text{aqppl1},i} + \dots + 3.31x_{\text{stkcpa},i})}.$$

## Final model

|                    | Estimate | Std. Error | z value | P(> z ) |
|--------------------|----------|------------|---------|---------|
| (Intercept)        | -203.596 | 970.743    | -0.210  | 0.834   |
| aco                | -7.190   | 6.036      | -1.191  | 0.234   |
| aqpl1              | 8.901    | 3.520      | 2.529   | 0.011   |
| caps               | 2.117    | 0.961      | 2.204   | 0.028   |
| csho               | -7.575   | 3.088      | -2.453  | 0.014   |
| cstk               | -13.510  | 11.405     | -1.185  | 0.236   |
| glcea              | 1.561    | 0.675      | 2.312   | 0.021   |
| $idbflag_D$        | 197.005  | 970.673    | 0.203   | 0.839   |
| optfvgr            | -19.957  | 6.620      | -3.015  | 0.003   |
| spced              | -2.420   | 1.488      | -1.627  | 0.104   |
| $\mathtt{stalt}_1$ | 2.663    | 1.242      | 2.144   | 0.032   |
| stkcpa             | -3.308   | 1.449      | -2.284  | 0.022   |

Table 13: Coefficients of final model

### Final model

#### Likelihood ratio test

$$LR = 2(ULF - RLF) \sim \chi_{df=q}^2$$
 where  $q$  is  $\#$  of restrictions.  $H_0: \beta_i = 0 \ \forall i$  vs.  $H_1: \exists i \text{ s.t. } \beta_i \neq 0$ .

$$ULF - RLF = 402.12 - 311.41 = 90.71$$
  
 $q = 659 - 648 = 11$   
 $p$ -value = 1.210039 × 10<sup>-14</sup>

Therefore, at least one explanatory variable is significant in predicting the response variable.



Figure 10: ROC curve of final model



Table 14: Confusion matrix with cut-off 0.105

#### **Terminology**

- **TP:** True Positive. These are cases in which we predicted positive (they will go bankrupt or liquidate), and they actually went bankrupt or liquidated.
- **TN:** True Negatives. We predicted negative, and they didn't actually go bankrupt or liquidate.
- **FP:** False Positives. We predicted positive, but they didn't actually go bankrupt or liquidate. Also known as a Type I error.
- **FN:** False Negatives. We predicted negative, but they actually went bankrupt or liquidated. We cared more about this error. Also known as a Type II error.

### **Accuracy**

Overall, how often is the classifier correct?

$$\frac{\text{TP+TN}}{\text{Total}} = \frac{14 + 117}{176} = 0.7443$$

## Misclassification Rate (Error Rate)

Overall, how often is it wrong?

$$\frac{\text{FP+FN}}{\text{Total}} = \frac{43+2}{176} = 0.2557$$

#### True Positive Rate (Sensitivity, Recall)

When it's actually positive, how often does it predict positive?

$$\frac{\text{TP}}{\text{Actual Positive}} = \frac{14}{16} = 0.875$$

#### **False Positive Rate**

When it's actually negative, how often does it predict positive?

$$\frac{\text{FP}}{\text{Actual Negative}} = \frac{43}{160} = 0.26875$$

## True Negative Rate (Specificity)

When it's actually negative, how often does it predict negative?

$$\frac{\text{TN}}{\text{Actual Negative}} = \frac{117}{160} = 0.73125$$

#### **Precision**

When it predicts positive, how often is it correct?

$$\frac{\text{TP}}{\text{Predicted Positive}} = \frac{14}{57} = 0.2456$$

#### **Prevalence**

How often does the positive condition actually occur in test set?

$$\frac{\text{Actual Positive}}{\text{Total}} = \frac{16}{176} = 0.0909$$

## **AUC (Area Under an ROC Curve)**

$$AUC = 0.857$$

# Conclusion

#### Conclusion

#### 11 selected variables

aco, aqpl1, caps, csho, cstk, glcea, idbflag, optfvgr, spced, stalt, stkcpa

#### **Performance**

Accuracy: 74.43%, Sensitivity: 87.5%, Specificity: 73.13%

## **Forecasting**

Due to many missing values in above variables on 2020, we failed in forecasting. If variables are chosen in consideration of the 2020 missing values, the prediction will be successful because of good performance.

Any questions?

#### References i

S. and Hadi, A.S. (2012)

Regression Analysis by Example.

Wiley, New York.

Stock J, Watson M. (2015)

Introduction to Econometrics.

Pearson, Boston.

Kleinbaum, D. G. (2010)

Logistic regression: A self-learning text.

New York: Springer.

Laitinen, E. K., Laitinen, T. (2000)

Bankruptcy prediction: Application of the Taylor's expansion in logistic regression.

International review of financial analysis, 9(4), 327–349.

#### References ii



Kuruppu, N., Laswad, F., and Oyelere, P. (2003)

The efficacy of liquidation and bankruptcy prediction models for assessing going concern.

Managerial auditing journal.



White, M. J. (1989)

The corporate bankruptcy decision.

Journal of Economic Perspectives, 3(2), 129–151.



Maalouf, M., and Siddiqi, M. (2014)

Weighted logistic regression for large-scale imbalanced and rare events data.

Knowledge-Based Systems, 59, 142-148.



Kang H. (2013)

The prevention and handling of the missing data.

Korean journal of anesthesiology, 64(5), 402–406.