

Activation Energy

The minimum amount of energy which must be supplied to the reactants to enable them to cross over the energy barrier is called activation energy.'

Rate of a reaction depends on activation energy. A reaction which has a lower value of its activation energy will proceed at a faster rate at a given temperature, while a reaction which has higher value of its activation energy proceed at low rate.

The difference between this barrier energy (i.e., threshold energy) E_T and the energy of normal molecules E_B called activation energy, E_a.

$$\therefore E_a = E_T - E_R$$

Arrhenius equation (Temperature dependence of rate constant):

Arrhenius suggested an equation which describes rate constant as a function of temperature i.e.

$$k = Ae^{-Ea/RT}$$

where $A \rightarrow$ frequency factor

 $E_a \rightarrow Energy$ of activation.

 $R \rightarrow$ the gas constant.

 $T \rightarrow$ Temperature in Kelvin.

At two temperatures T_1 and T_2 their rate constant is given by k_1 and k_2 .

Taking log of Arrhenius equation:

$$log_e k_1 = log A - \frac{E_a}{RT_1} \qquad (i)$$

$$log_e k_2 = log A - \frac{E_a}{RT_2} \qquad (ii)$$

$$log_e k_2 = log A - \frac{E_a}{RT_2} \qquad \qquad \dots (ii)$$

Subtracting equation (i) from equation (ii)

$$\log_{e} k_{2} - \log_{e} k_{1} = \frac{E_{a}}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right]$$
 or $\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right]$

Graph (log k vs $\frac{1}{T}$):

Arrhenius Equation: $log k = log A - \frac{E_a}{2.303R} \frac{1}{T}$

From the above equation we can observe, the graph between log k and 1/T gives a straight line with slope equal to $-\frac{E_a}{2.303R}$

 \succ As the value of E_a increases, the value of k decreases and, therefore reaction rate decreases.