

2.4. Криптоанализ шифра Виженера

В этом разделе будут описаны некоторые методы криптоанализа шифра Виженера.

В случае рассматриваемого шифра, прежде всего, нужно найти длину ключевого слова, которую мы обозначим через l. Приведем два метода, которые могут быть использованы для этого. Первый из них — это *тест Казиски*, а второй — метод *индексов совпадения*.

Тест Казиски был предложен Ф. Казиски в 1863 году. Он основан на следующих соображениях: если два одинаковых отрезка открытого текста получаются один из другого сдвигом на величину, кратную длине ключевого слова, то они при шифровании перейдут в одинаковые отрезки шифритекста. Эти аргументы используются следующим образом: если в шифритексте имеются два фрагмента длины три или больше, то весьма вероятно, что они соответствуют одинаковым отрезкам открытого текста.

Тест Казиски применяется так. Ищем в шифртексте пары одинаковых отрезков длины три или больше. Находим расстояние между стартовыми позициями этих отрезков. Если мы найдем несколько таких расстояний $d_1,\ d_2,\ldots$, то можно предположить, что искомое число l является делителем каждого из этих чисел и, следовательно, делителем их наибольшего общего делителя.

Дальнейшие аргументы для нахождения числа l могут быть получены с помощью *индексов совпадения*. Это понятие было введено В. Фридманом в 1920 году.

Определение. Пусть ${\bf x}$ — строка, составленная из букв некоторого алфавита. Индексом совпадения строки ${\bf x}$ называется вероятность того,

что две случайно выбранных из этой строки буквы являются одинаковыми.

Индекс совпадения строки **x** будем обозначать через $I(\mathbf{x})$.

Будем предполагать, что рассматриваемый алфавит содержит m букв, пронумерованных числами 0, 1, ..., m-1. Рассмотрим строку \mathbf{x} , содержащую n букв. Мы можем выбрать две буквы из этой строки,

$$C_n^2 = \frac{n(n-1)}{2}$$

способами. Предположим, что буква с номером i $(0 \le i \le m-1)$ встречается в этой строке f_i раз (напомним, что значение f_i называется частотой или, точнее, абсолютной частотой рассматриваемой буквы). Для произвольного $i(=0,1,\ldots,m-1)$ имеется $C_{f_i}^2$ способов выбрать одинаковые буквы с номером i. Отсюда получаем, что

$$I(\mathbf{x}) = \frac{\sum_{i=0}^{m-1} f_i(f_i - 1)}{n(n-1)}.$$

Обозначим через $p_0, p_1, ..., p_{m-1}$ вероятности появления букв алфавита в этой строке, то есть относительные частоты $f_0/n, f_1/n, ..., f_{m-1}/n$. Тогда при достаточно большом значении n, имеет место приближенная формула

$$I_c(\mathbf{x}) \approx \sum_{i=0}^{m-1} p_i^2,$$

так как вероятность дважды выбрать букву с номером 0 *приблизительно* равна p_0^2 , букву с номером 1 — p_1^2 , и так далее.

Предположим теперь, что строка составлена из букв естественного языка, например, русского или английского. Пользуясь таблицами, приведенными выше, получаем следующие значения индекса совпадения для

строки большой длины, являющейся: русский алфавит —0.0553, английский алфавит —0.0644. Те же значения будут получены и для любого шифртекста, полученного с помощью произвольного моноалфавитного шифра. Действительно, в этом случае вероятности отдельных букв поменяются местами, но сумма этих вероятностей останется неизменной.

Предположим, что дан шифртекст $\mathbf{y} = y_1 y_2 \dots y_n$, полученный с помощью шифра Виженера. Сделаем предположение, что длина ключевого слова равна l. Введем в рассмотрение буквенный массив, состоящий из l строк и n/l столбцов. Запишем символы данного шифртекста по столбцам в этот массив. Строки этого массива обозначим через $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_l$. Если мы правильно нашли значение l, то каждая из строк $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_l$ получена из соответствующих подстрок исходного открытого текста с помощью шифра сдвига. Тогда значения $I(\mathbf{y}_i)$ ($1 \le i \le l$) должны быть приближенно равны значению индекса совпадения для соответствующего языка (то есть $\mathbf{0.0553}$ для русского языка и $\mathbf{0.0644}$ для английского). Если мы неверно нашли значение l (точнее, если настоящее значение длины ключевого слова не является делителем числа l), то найденные подстроки уже будут иметь более случайную структуру, поскольку они получаются с помощью шифра сдвига с разными ключами. Заметим, что для полностью случайной строки в случае алфавита из m символов

$$I(\mathbf{x}) \approx m \left(\frac{1}{m}\right)^2 = \frac{1}{m}.$$

В случае русского языка это дает 0.03125, в случае английского языка — 0.03856. Для двух рассматриваемых языков это существенно отличается от приведенных выше значений и может позволить определить правильную длину ключевого слова (или подтвердить догадку, сделанную с помощью теста Казиски).

После определения длины ключевого слова нужно, разумеется, найти само это слово.

Определение. Пусть **x**, **y** — строка, составленные из букв некоторого алфавита. Взаимным индексом совпадения этих строк называется вероятность того, что буква, случайно выбранная из первой строки, совпадает с буквой, случайно выбранной из второй строки.

Взаимный индекс совпадения двух строк \mathbf{x} , \mathbf{y} будем обозначать через $MI(\mathbf{x},\mathbf{y})$ (" $Mutual\ Index$ "). Рассмотрим алфавит, состоящий из m букв. Пусть

$$\mathbf{x} = x_1 x_2 \dots x_n, \quad \mathbf{y} = y_1 y_2 \dots y_{n'},$$

 $p_0,\ p_1,...,p_{m-1}$ — вероятности того, что случайно выбранная из первой строки буква является соответственно первой, второй, ..., m-й буквой алфавита, $q_0,\ q_1,...,q_{m-1}$ — аналогичные характеристики для второй строки. Тогда, очевидно,

$$MI(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{m-1} p_i q_i.$$

Обозначим через f_0 , f_1 , ..., f_{m-1} частоты соответствующих букв алфавита в первой строке, а через f_0' , f_1' , ..., f_{m-1}' — соответствующие характеристики для второй строки. Тогда

$$MI(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=0}^{m-1} f_i f_i'}{nn'}.$$

Возьмем произвольный шифр подстановки. Это означает, что выбрана произвольная подстановка $\varphi \in \mathfrak{S}_m$, рассматриваемая на множестве \mathbb{Z}_m , и буква алфавита с номером i заменяется буквой с номером $\varphi(i)$. Предположим, что строки \mathbf{x} и \mathbf{y} зашифрованы с помощью этого шифра. Пусть $\tilde{\mathbf{x}}$, $\tilde{\mathbf{y}}$ — соответствующие строки шифртекста. Если, как и выше, p_0, p_1, \ldots ,

 p_{m-1} — вероятности выбора соответствующих букв алфавита из строки \mathbf{x} , $q_0,\ q_1,\dots,q_{m-1}$ — аналогичные характеристики для строки \mathbf{y} . Для строки $\tilde{\mathbf{x}}$ эти вероятности равны $p_{\varphi^{-1}(0)},\ p_{\varphi^{-1}(1)},\dots,p_{\varphi^{-1}(m-1)}$. Тогда

$$MI(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \sum_{i=0}^{m-1} p_{\varphi^{-1}(i)} q_{\varphi^{-1}(i)} = \sum_{i=0}^{m-1} p_i q_i = MI(\mathbf{x}, \mathbf{y}),$$

поскольку выписанные суммы отличаются только порядком следования слагаемых. Аналогично доказывается, что $I(\tilde{\mathbf{x}}) = I(\mathbf{x})$.

Мы получили важный факт: *индекс совпадения строки и взаимный* индекс совпадения двух строк не меняются после шифровании этих строк произвольным шифром подстановки.

Вернемся к анализу шифра Виженера. Пусть $K = (k_1, k_2, ..., k_l)$ — ключевое слово. Попробуем оценить величину $MI(\mathbf{y}_i, \mathbf{y}_j)$. Выберем случайным образом букву из строки \mathbf{y}_i и букву из строки \mathbf{y}_j . Учтем, что каждая рассматриваемых строк шифруется с помощью шифра сдвига, первая — с ключом k_i , вторая — с ключом k_j . Вероятность того, что первая (вторая) из этих букв совпадает с первой буквой алфавита (нулем в \mathbb{Z}_m), равна p_{-k_i} (p_{-k_j}). Следовательно, вероятность того, что обе буквы совпадают с первой буквой алфавита, равна p_{-k_i} p_{-k_i} .

Замечание. Здесь и далее в индексах операции выполняются в кольце \mathbb{Z}_m . Все равенства являются приближенными, поскольку вероятности появления букв в данных строках лишь приближенно равны среднестатистическим величинам.

Аналогично получаем: вероятность того, что обе буквы совпадают с второй буквой алфавита (элементом 1 в \mathbb{Z}_m), равна $p_{1-k_i}p_{1-k_j}$. Следовательно,

$$MI(\mathbf{y}_i, \mathbf{y}_j) \approx \sum_{h=0}^{m-1} p_{h-k_i} p_{h-k_j} = \sum_{h=0}^{m-1} p_h p_{r+k_i-k_j}.$$

Заметим, что правая часть этого выражения зависит только от *разностии* $k_i - k_j$, которую будем называть *относительным сдвигом* строк \mathbf{y}_i и \mathbf{y}_i .

Учтем следующую очевидную формулу:

$$\sum_{h=0}^{m-1} p_h p_{h+\alpha} = \sum_{h=0}^{m-1} p_h p_{h-\alpha}, \quad \alpha \in \mathbb{Z}_m,$$

то есть относительный сдвиг на величину α дает то же значение величины MI, что и сдвиг на величину $m-\alpha$. Это означает, что в случае алфавита из m букв, достаточно найти значения MI для значений $\alpha=0,\ 1,\ ...,\ [m/2]$. Приведем эти значения для русского и английского языков.

Относительный с;	двиг Взаимный индекс
0	0.0553
1	0.0366
2	0.0345
3	0.0400
4	0.0340
5	0.0360
6	0.0326
7	0.0241
8	0.0287
9	0.0317
10	0.0265
11	0.0251
12	0.0244
13	0.0291
13	0.0291

Относительный сдвиг	Взаимный индекс
14	0.0322
15	0.0244
16	0.0249

 Таблица 10.

 Взаимный индекс совпадения (русский язык)

Относительный сдвиг	Взаимный индекс
0	0.0644
1	0.0394
2	0.0319
3	0.0345
4	0.0436
5	0.0332
6	0.0363
7	0.0389
8	0.0338
9	0.0342
10	0.0378
11	0.0440
12	0.0387
13	0.0428

 Таблица 11.

 Взаимный индекс совпадения (английский язык)

Отметим следующее. Если относительный сдвиг в случае русского (английского) языка ненулевой, то значения взаимного индекса варьируются от 0.0241 до 0.0400 (от 0.0319 до 0.0440), в то время как относи-

тельный индекс для нулевого относительного сдвига равен **0.0553** (соответственно **0.0644**). Это наблюдение позволяет делать правдоподобные предположения относительно разностей $\beta = K_i - K_j$.

Зафиксируем числа i, j, $1 \le i, j \le l$, $i \ne j$. Возьмем строки \mathbf{y}_i и \mathbf{y}_j . Рассмотрим строки, получающиеся путем применения шифров сдвига со всеми возможными значениями ключа (то есть 0, 1, ..., m-1) к строке \mathbf{y}_j . Обозначим получаемые строки через \mathbf{y}_j^0 , \mathbf{y}_j^1 , ..., \mathbf{y}_j^{m-1} (m=32 в случае русского алфавита и m=26 в случае английского алфавита). Теперь найдем соответствующие значения взаимного индекса совпадения $Ml_c(\mathbf{y}_i, \mathbf{y}_j^\beta)$, $\beta=0$, 1, ..., m-1. При $\beta=\alpha$ взаимный индекс совпадения должен быть близким к наибольшему значению для данного языка, поскольку относительный сдвиг между \mathbf{y}_i и \mathbf{y}_j^α равен нулю. При $\beta \ne \alpha$ рассматриваемая величина должна принимать существенно меньшие значения.

ПРИМЕР. Рассмотрим шифртекст, полученный с использованием шифра Виженера:

СЮРСЕЫПЛУИДЮПЖДЭТВЙЛЧЯЭХИЬШЭРОСШЕПКЭЭЕБТФЫКОО ЮЮЩФЧЧЫХГАЬШУВОХХЯУВПЯУТСБРЫПВЧЫЯАНПЧОЕНЧХЩБП КШФЖВПЫЭЙДХРШРЕАШХФЧЧЫХГОЬЮШХИЬШЭРАГШЩЙПЮЮРЙЧ ПФРВПЭЫЫПЗСГЕОЫДЮАСЫСШЯУЫДЕЬИЯШБШЙХВФОСАЧТЙМЕ БРЩТЛПХЪГСБАУШАБМУДОСЯУСЕУЭУКХЭЧНЙНСТОМИСРЩТЯ СЗУСНЭСБСОШЫЦТЕАТУСКППЪЙЛЪШЬООЫБЫЖЖЬЛГВЛФБАПК ЮРГОУИШЧНАЬФОСИЬРЪЙСЧУОСАЬШТФХПЬЦМИЬЮЫБМЧСУОЗ ЧЭЬНОУХШПЛЭЭЬНСВЪЫПМЧУЬМОАХСПКПЪШПМПЭТОАОВЮФБ ПАОИНЭБЦМСОЯЬГСФЬБЗИЪШЗФ

Прежде всего, воспользуемся тестом Казиски. Триграмма "**иъш**" появляется в тексте три раза, начинаясь с букв с номерами **25**, **120** и **380**

(подчеркнуто в шифртексте). Разности между этими числами равны **95** и **260**. Наибольший общий делитель двух последних чисел равен пяти. Поэтому правдоподобной является гипотеза, что l = 5.

Посмотрим, дает ли подсчет индексов совпадения такой же вывод. При l=1 индекс совпадения (всей строки шифртекста) равен **0.0360**.

При l = 2 текст разбивается на две строки

СРЕПУДПДТЙЧЭИШРСЕКЭБФКОЮФЧХАШВХЯВЯТБЫВЫАПОНХЕ КФВЫЙХШЕШФЧХОЮХЪЭАШЙЮРЧФБЭЫЗГОДАЬШУДЬЯБЙВОАТМ БЩЛХГБУАМДСУЕЭКЭННТМСЩЯЗСЭБОЫТАУКПЙЪЬОБЖЬГЛБП ЮГУШНЬОИРЙЧОАШФПЦИЮБЧУЗЭНУШЛЭНВЫМУМАСКЪППТАВФ ПОНЕМОЬСЬЗЪЗ

И

ЮСЫЛИЮЖЭВЛЯХЪЭОШПЭЕТЫОЮЩЧЫГЬУОХУПУСРПЧЯНЧЕЧЩП ШЖПЭДРРАХЧЫГЬШИШРГЩПЮЙПРПЫПСЕЫЮССЯЫЕИШШХФСЧЙЕ РТПЪСАШБУОЯСУУХЧЙСОИРТСУНССШЦЕТСПЪЛШОЫЬЖЛВФАК РОИЧАФСЬЪСУСЫТХЬМЫЫМСОЧЬОХПЭЬСЪПЧЬОХППШМЭООЮБ АИЭЦСЯГФБИШФ

с индексами совпадения соответственно 0.0323 и 0.0417. При l=3 индексы совпадения равны соответственно 0.0389, 0.0337 и 0.0359, при l=4 — 0.0309, 0.0425, 0.0340 и 0.0373, при l=5 —0.0635, 0.0561, 0.0435, 0.0547 и 0.0526, при l=6 — 0.0332, 0.0382, 0.0283, 0.0397, 0.0322 и 0.0486. Заметное увеличение индексов совпадения при l=5 также говорит в пользу нашей гипотезы.

Теперь попробуем найти величины относительных сдвигов. Приведем таблицу 320 значений величин $MI_c(\mathbf{y}_i,\mathbf{y}_j^\beta)$, $1 \le i < j \le 5$, $0 \le \beta \le 31$. В ней значения индекса указаны в порядке возрастания величины β от нуля до 31. В этих значениях отброшены начальные символы **0.0**. Для каждой

пары (i,j) выберем наибольшее значение индекса. Это значение подчеркнуто.

i	j	Значение $M_c(\mathbf{y}_i,\mathbf{y}_j^{eta})$											
		391	306	405	398	313	402	313	279	294	277	232	216
1	2	296	220	218	178	289	279	284	241	305	184	317	362
		211	414	346	255	455	395	294	<u>630</u>				
		322	495	358	339	436	362	268	319	298	348	325	211
1	3	263	232	300	255	220	189	305	260	284	268	312	293
		294	280	272	355	462	267	419	390				
		383	260	312	350	206	298	429	263	435	409	315	438
1	4	431	362	<u>563</u>	403	338	341	301	293	338	258	213	220
		185	185	216	263	220	239	289	246				
		336	289	325	306	284	255	362	331	211	447	372	270
1	5	391	390	267	604	370	320	367	376	293	324	313	303
		296	216	263	173	336	232	248	130				
		405	351	<u>525</u>	374	343	499	332	301	353	249	341	305
2	3	225	268	237	237	244	192	189	268	220	249	248	261
		310	317	272	312	398	400	345	429				
		239	267	242	305	334	229	355	438	289	469	443	374
2	4	532	412	417	<u>587</u>	370	336	421	249	268	319	216	234
		235	161	189	197	204	209	227	232				
		190	263	235	294	272	234	308	381	268	291	474	322
2	5	348	464	355	325	616	364	332	466	319	306	345	249
		303	296	211	249	189	272	230	227				
		255	277	360	220	370	376	300	424	358	376	<u>506</u>	424
3	4	424	459	357	369	391	306	348	306	275	218	251	227
		204	223	229	204	237	229	204	293				

i	j	Значение $M_c(\mathbf{y}_i, \mathbf{y}_j^{\beta})$											
		268	272	291	244	284	362	332	293	353	319	351	443
3	5	343	339	<u>547</u>	348	358	376	315	407	353	280	251	298
		301	261	215	256	244	282	206	206				
		384	521	409	452	485	353	388	433	277	383	327	201
4	5	303	251	249	265	206	239	251	222	258	235	209	222
		296	235	265	360	310	282	400	329				

Таблица 12.

Значения взаимных индексов совпадения

Выпишем уравнения (в кольце \mathbb{Z}_{32}), связывающие неизвестные значения $K_1,\ K_2,\ K_3,\ K_4,\ K_5,$ отвечающие наибольшим из шести подчеркнутых значений:

$$K_1 - K_2 = 31$$
, $K_2 - K_5 = 16$, $K_1 - K_5 = 15$, $K_2 - K_4 = 15$, $K_1 - K_4 = 14$, $K_3 - K_5 = 14$.

Эти уравнения позволяют выразить все значения K_i через K_1 :

$$K_2 = K_1 + 1$$
, $K_3 = K_1 + 31$, $K_4 = K_1 + 18$, $K_5 = K_1 + 17$.

Таким образом, предполагается, что ключ имеет следующий вид

$$(K_1, K_1 + 1, K_1 + 31, K_1 + 18, K_1 + 17)$$

для некоторого значения $K_1 \in \mathbb{Z}_{32}$. Теперь число вариантов для ключа равно 32, в отличие от первоначальных $32^5 = 33554432$. Перебирая возможные значения K_1 , находим то, при котором получается осмысленный текст: $K_1 = 15$, ключ имеет в терминах \mathbb{Z}_{32} вид (15,16,14,1,0), или слово "ПРО-БА" в терминах алфавита. Окончательный вид открытого текста следующий:

Во время этих обедов Филипп Филиппович окончательно получил звание божества. Пес

становился на задние лапы и жевал пиджак, пес изучил звонок филиппа филипповича — два полнозвучных отрывистых хозяйских удара, и вылетал с лаем встречать его в передней. Хозяин вваливался в чернобурой лисе, сверкая миллионом снежных блесток, пахнущий мандаринами, сигарами, духами, лимонами, бензином, одеколоном, сукном, и голос его, как командная труба, разносился по всему жилищу. 1

В заключение заметим, что не все уравнения, получаемые указанным способом, являются верными. Например, одно из уравнений имеет вид

$$K_3 - K_4 = 10$$
.

В действительности уравнение должно иметь вид

$$K_3 - K_4 = 13$$
.

Оно определяется вторым по величине значением индекса, подчеркнутым в таблице волнистой чертой.

¹ М.А.Булгаков. *Собачье сердце*.