Classi	cal to	Quantum	Logic			
	Clanica				Quartu	<u>M</u>
						Toffoli
AND						Gote
	(
:	6 .	• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		XOR
XOK	· · · · · · · · · · · · · · · · · · ·					
					 () . () .	

Grover's Algorithm (Search Agorithm) - Size of Search space = queries on overage - Classical search takes - Grover's algorithm does it in IN queries quantum oracle. Mathematically representing a search function: of not what we're searching for gotchal This is the logic we'll have to

What is an orade?

- Oracle is a blackbox that does some specific unitary operation.

Q) Create an oracle that outputs the state (1) on the third qubit when the input on the first two qubits is (10)

Phase flipping:
$$|x| = |x| =$$

(a) (onvert state
$$|00\rangle + |01\rangle + |10\rangle + |11\rangle$$

$$\frac{2}{1} |00\rangle + |01\rangle - |10\rangle + |11\rangle$$

Idea and steps of the algorithm: Step 1: Initialize in 10) Step 2: Put the state in a quantum superposition (equal superposition) of the search space Step 3. Apply the oracle and the state you are looking for Apply the diffusion operator mean operation. flip about phase flip Understanding Step 4 are searching for

Classical	exan	iple:							
(10	10	10	(0 1	, T		equal	Sabo	erposition	
		j i ph	ase flip	 	· · · · · · · · · · · · · · · · · · ·				
		1 6	10	107					
for	the.	10 e	entries :	· · · · ·	+ 20	 . 	10+	12 - 2	
									2 ·
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2					
									 . (/
			ن د د د د	howe	. ma	nagla	10	increase	. Tu
				nagnitu	de .				

How do we implement - 1+20 on a quantum computer?

$$(-I + 2A) V = for all$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

Essentially we have to implement
$$(-I + 2A)$$
 as an operator.

operator.

$$-I + 2A = H^{6n} \left(-I + 2|\sigma\rangle \cdot |\sigma|\right) + 1^{6n}$$

Implementing (-I+2(0°)(0°/): To look at the effect of any operator to look at its effect on the basis set Basis set in our case: {(0°) $\left(-\mathbb{Z}+2\mid 0^{n}\right)\left(0^{n}\mid 0^{n}\right)$ (-J+2/0°X 0°/) -/4)+ 14) ET where 14) = (0) any other 14) will be orthogonal Implementing $(-I + 2/0^{\circ})(0^{\circ})$ is the same as implementing $(2/0^{\circ})(0^{\circ}) - I$

																					٠											٠				٠		
		٠			٠			٠	٠	٠		٠		٠	٠			٠									٠	٠	٠			٠				٠	٠	
٠	•	٠			٠	•	•	٠	٠	٠	•	٠	•	٠	٠			٠	•					•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	•	٠	•	٠	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	•	٠	•
•	•	٠	•	•	٠	•	•	٠	•	٠	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	•	•		•	•	•	•
٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	•	•		•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•				•		•
		٠			٠			٠	٠	٠		٠		٠	٠	٠	٠	٠		٠		٠	٠				٠	٠	٠		٠	٠				٠	٠	
								٠		٠		٠			٠												٠	٠						٠				
•	•	٠	٠	٠	٠	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	•	٠		٠	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
•	•	٠	•	•	٠	•	•	٠		٠	•	٠	•	•	٠	•	•	•	•	•		•	•	•	•	•	٠	٠	٠	•	•						•	•
		٠	٠	٠	٠			٠	٠	٠		٠		٠	۰	٠	٠	٠						•			٠	٠			٠						٠	•
		٠			٠			٠	٠	٠		٠		٠	٠			٠									٠	٠	٠			٠				٠	٠	
٠	•	٠			٠	•	•	٠	٠	٠	•	٠	•	٠	٠			٠	•					•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		•	•	٠	•		•	٠	•	•
								٠		٠		٠			٠												٠	٠						•				
																																					٠	
•									٠														٠		٠					•			•	•			٠	
•									•																						•			•				
•					•				٠																						•	•		•				
٠									٠																									•				