

- 1. $(R,+) \rightarrow abelian group$
- 2. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. a(b+c) = ab+ac, $(a+b) \cdot c = ac+bc$.
- ② commutative ring : ring oldert ENOI addition subtailed.
- field: (R.+.,) out Ring or (R-507,.) > abelian group.
- A ID: commutative ring with no zero divisor अधिवा वर्धन इस

(Mity ; 翻書記)

내내 : 음네에난 가시는 모든 건수들 .

- (G,+)→ abelian group.
 - (D) 6가 됐네대해 달라!! ...
 - @ 건화법과이 성입.
 - ③ 항学知 产州.
 - 田 号知多兴
 - B DELHAON BY

(R-90), is abelian group.

- ⊕ a.b∈ R-903, Va,b∈ R-907.
- ② 智制 (dy) (a b) (= a · (b· c),
- (3) 彭岩树 科, CER-18, ate=C+a=Q, tae R-513.
- @ લેસવા સ્મી. ate R-107., a.a. = a+a = e
- β $a \cdot b = b \cdot a$.
- ① ② ③ ⑤ 돌 자명하므로 ④ 반 충덩.

(*) sub ring , sub field -

윗배의 ring의 변경함은 增於(대) 그 정황이 ring 이번 Sub ring .

- " field = " " If field old sub field.
- R zero divisor zi-

a,b = 0 일째 a b = 0 이 되게하는 a,b 를 2cco-divisor 각 캔니-.

 $2 \cdot \alpha = 0$ $\alpha \neq 0$ $\alpha = 3$

: 1,32 zero divisor.

Rol Ring with unity.

If n.1 = 0 for all n \(Z^+ \) then char(k)=0

If $n \cdot 1 = 0$ for all $n \in \mathbb{Z}^+$ then

char(R) is smallest n

 \mathcal{C} Char(\mathbb{Z}) = 0 Char(\mathbb{Q}) = 0 . Char(\mathbb{R}) = 0 .

 $chor(R_1 \times R_2) = G(D + f |R_1|, |R_2|)$

[RI] 은 Ral 위다가 하고 됐는데 바다는 의외한다.

 $^{ar{b}}$ ex) \mathbb{Z}_5 , $\mathbb{Z}_{|2}$ char ($\mathbb{Z}_5 imes \mathbb{Z}_{|2}$)

 $Cha+(Z_{-}X Z_{12}) = (|Z_{5}|, |Z_{12}|) = (|f|, |2) = 60.$

Little theorem of Fermat

a^{p→} = 1 (mod p) for a≠0 (mod p) : 0+p2++4여 떨어지지 않는 여 a^{p→} + p=1 4++4+ 101=+.

ex) $4^6 \equiv 1 \pmod{7}$ $4^6 = 4^{n-1}$

 $\mathbb{Z}_{n}^{*} = \{1,2,3,\dots,n-1\}$

ex) in $\mathbb{Z}_{\eta}^* = \{1, 2, 3, 4, 5, 6\}$

(2) = 12,4,13

(3) = 13,6,51

