Universidade Federal do Ceará Departamento de Computação

Métodos de Euler

Métodos Numéricos II

Ricardo Bustamante de Queiroz

Apresentação

- Ricardo Bustamante de Queiroz
- Doutorado CRAb UFC
- ricardobqueiroz+mn2@gmail.com
- http://www.busta.com.br/mn2/

Agenda

Agenda

- Observações Aula Anterior
- Métodos de Euler
 - Forward Euler
 - Backward Euler
 - Euler Modificado

Figura: Esfera caindo com resistência do ar.

Desenvolvendo o problema citado, chegamos no seguinte sistema:

$$\begin{cases} \frac{\mathrm{d}v}{\mathrm{d}t} = f(v,t) & E.D.O. \\ v(0) = v_0 & C.I. \end{cases}$$

Um problema de valor inicial é dado exatamente quando possuímos uma Equação Diferencial Ordinária e um valor qualquer no domínio da função f, ou Condição Inicial. De forma mais genérica:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

E como vimos na aula anterior, a solução analítica varia de caso a caso.

- Podemos resolver esses problemas utilizando métodos numéricos.
- Dada uma condição inicial, podemos caminhar sobre a função em passos discretos de tamanho Δt e encontrar valores aproximados, de modo que $y_n \approx y(n\Delta t)$
- O erro é dado por $e = |y_n y(n\Delta t)|$

Convergência - Um esquema numérico para resolver o sistema u' = f(u, t), com $u(0) = u_0$ e $0 < t \le T$ é convergente se:

$$\max_{n \in \{0,1,\cdots,T/\Delta t\}} |u(n\Delta t) - u_n| \to 0 \ com \ \Delta t \to 0.$$

Ordem da acurácia global - Assuma que f(u,t) é suficientemente suave. Em particular, f(u,t) possui p derivadas contínuas, ou seja, existem todas as derivadas até, e incluindo $\frac{\partial^p f}{\partial t^p}$ e $\frac{\partial^p f}{\partial u^p}$. Um método numérico possui ordem de acurácia global p se:

$$\max_{n \in \{0,1,\cdots,T/\Delta t\}} |u(n\Delta t) - u_n| \le \mathcal{O}(\Delta t^p) \ com \ \Delta t \to 0.$$

http://web.mit.edu/16.90/BackUp/www/pdfs/Chapter2.pdf

Figura: Analogia da pontaria. Em inglês há a diferenciação entre accuracy e precision. Em português os dois podem ser traduzidos como precisão. O erro depende desses dois fatores.

Figura: Mesmo conceito aplicado em uma função constante. Poderia ser qualquer outra função.

Métodos de Euler

Dado o problema:

$$\begin{cases} u'(t) = f(u,t) \\ u(t_0) = u_0 \end{cases}$$

Substituindo-se a derivada u' pelo operador diferencial Δ :

$$\frac{\mathrm{d}u}{\mathrm{d}t}\approx\frac{u_{n+1}-u_n}{\Delta t}$$

Assim:

$$\frac{u_{n+1}-u_n}{\Delta t}=f(u_n,t_n)$$

Então:

$$u_{n+1} = u_n + \Delta t \ f(u_n, t_n)$$

Começando da condição inicial u_0 , a qual já temos, podemos descobrir u_1 :

$$u_1 = u_0 + \Delta t \ f(u_0, t_0)$$

E podemos repetir o processo para encontrar os demais valores:

$$u_2 = u_1 + \Delta t \ f(u_1, t_1)$$
 $u_3 = u_2 + \Delta t \ f(u_2, t_2)$
 \vdots
 \vdots
 $u_{n+1} = u_n + \Delta t \ f(u_n, t_n)$

Observações

- Também conhecido como "Standard Euler".
- Estima o valor de u' como sendo aproximadamente a tangente sobre o ponto conhecido u_n .
- Ou seja, estima a curvatura no começo do intervalo.
- Erro diminui para Δt pequeno.
- Mas Δt muito pequeno pode causar erros de arredondamento ou truncamento.
- Instabilidade pode ocorrer.

Figura: Visualização do passo 1 do método *Forward* Euler. Dado um valor conhecido $u_0=u(0)$, tentamos aproximar o valor de $u(\Delta t)$ por u_1 . Isso é feito usando a aproximação de u'(0) que nos dá a tangente do ângulo de inclinação da curva em u_0 .

Exercício!

Resolva o seguinte sistema usando o método Forward Euler:

$$\begin{cases} y' = -2,3y \\ y(0) = 1 \end{cases}$$

- Para os valores de $0 < t \le 3$ (se terminar rápido faz até 5 :P)
- Plote duas funções: Usando $\Delta t = 1$ e $\Delta t = 0.7$

Sugestão: Resolver literal até onde der antes de começar a substituir.

Sugestão 2: Usem calculadora.;)

Solução:

$$y_{n+1} = y_n - 2.3y_n \Delta t$$

Colocando y_n em evidência, e usando $\Delta t = 1$ temos:

$$y_{n+1} = y_n(1-2.3\Delta t) = y_n - 1.3$$

$$(t = 1)$$
 $y_1 = 1(-1,3)$
 $(t = 2)$ $y_2 = -1,3(-1,3) = 1,69$
 $(t = 3)$ $y_3 = 1.69(-1,3) = -2,197$
 $(t = 4)$ $y_4 = -2.197(-1,3) = 2,8561$
 $(t = 5)$ $y_5 = 2.8561(-1,3) = -3,71293$

Solução:

$$y_{n+1} = y_n - 2.3y_n \Delta t = y_n (1 - 2.3\Delta t)$$

Usando $\Delta t = 0.7$, temos:

$$y_{n+1} = y_n(1-1.61) = y_n(-0.61)$$

Para simplificar as contas: $y_{n+1} = y_0(-0.61)^{n+1}$

$$(t = 0.7) y_1 = (-0.61)^1 = -0.61$$

$$(t = 1.4) y_2 = (-0.61)^2 = 0.37209$$

$$(t = 2.1) y_3 = (-0.61)^3 = -0.22696$$

$$(t = 2.8) y_4 = (-0.61)^4 = 0.13844$$

$$(t = 3.5) y_5 = (-0.61)^5 = -0.08444$$

$$(t = 4.2) y_6 = (-0.61)^6 = 0.0515$$

$$(t = 4.9) y_7 = (-0.61)^7 = -0.03142$$

Figura: Plot do problema do exercício. Em azul, usando $\Delta t=1$ e em vermelho usando $\Delta t=0.7$

https://en.wikipedia.org/wiki/Euler_method

Esse exemplo mostra como o método de Euler padrão tem problemas de convergência, principalmente em equações "rígidas" (stiff equations).

Na prática, raramente é utilizado, a não ser como um exemplo simples de integração numérica.

Para solucionar isso, versões adaptadas do método foram criadas.

Backward Euler

Backward Euler

Em vez de aproximar u' usando os valores já descobertos de modo explícito, tenta utilizar valores de u_{n+1} de modo implícito.

$$\begin{cases} u'(t) = f(u,t) \\ u(t_0) = u_0 \end{cases}$$

Substituindo-se a derivada u' pelo operador diferencial Δ :

$$\frac{\mathrm{d}u}{\mathrm{d}t} \approx \frac{u_{n+1} - u_n}{\Delta t}$$

Assim:

$$\frac{u_{n+1}-u_n}{\Delta t}=f(u_{n+1},t_{n+1})$$

Então:

$$u_{n+1} = u_n + \Delta t \ f(u_{n+1}, t_{n+1})$$

Backward Euler

- Você tenta estimar a curvatura do final do intervalo.
- Problema: Você tem u_{n+1} dos dois lados da equação.
- Resolver a equação dá ao método um custo computacional adicional.
- Algumas vezes, pode ser utilizado o Método da Iteração de Ponto Fixo
- Muito mais estável que o método de Euler padrão.
- Adequado para ser usado stiff equations.

Euler Modificado

Euler Modificado

Também conhecido como **Método de Heun**, a ideia desse método é estimar melhor a curvatura entre os pontos u_n e u_{n+1} .

- Para isso, são usadas duas derivadas, uma no começo, e uma no final do intervalo considerado.
- Uma média das duas derivadas dá uma boa aproximação da inclinação do intervalo inteiro.

Então...

$$y'_{n} = f(y_{n}, t_{n}) \Rightarrow y^{0}_{n+1} = y_{n} + f(y_{n}, t_{n}) \Delta t$$

Como vimos no Método de Euler padrão.

Porém, no Método Modificado, y_{n+1}^0 não é a resposta final. Por isso ele está marcado com o 0 no topo.

Fuler Modificado

O valor de y_{n+1}^0 é apenas uma predição intermediária. Ele é conhecido como *equação preditora*. Ele nos dá uma predição que nos permite calcular a curvatura no final do intervalo:

$$y'_{n+1} = f(t_{n+1}, y_{n+1}^0)$$

Desse modo, podemos combinar as duas curvaturas em uma média, para definir a curvatura do intervalo:

$$\bar{y}' = \frac{f(t_n, y_n) + f(t_{n+1}, y_{n+1}^0)}{2}$$

Euler Modificado

Da mesma forma que foi feito no Método de Euler padrão, é feita uma extrapolação linear usando a curvatura e um Δt :

$$y_{n+1} = y_n + \bar{y}' \Delta t$$

Ou seja,

$$y_{n+1} = y_n + \frac{\Delta t}{2} \left(f(t_n, y_n) + f(t_{n+1}, y_{n+1}^0) \right)$$

PS: na apostila isso tá bem resumido. As informações foram tiradas do livro "Applied Numerical Methods With Matlab" do Steven C. Chapra.

Euler Modificado

Figura: Ilustrando o método Euler Modificado. A primeira predição de curvatura y'_n é usada para gerar uma predição y'_{n+1} . No fim, a média aritmética entre as duas é utilizada.

Fim! :)

Questões de Prova

AP2 2006

<u>Questão 2</u> (5,0) Desenvolva um método preditor-corretor que possa ser iniciado com apenas um passo de um método de passo-simples. Aplique seu método para determinar a posição θ do pêndulo simples no instante t=0.5 seg, cujo movimento é definido pelo problema de valor inicial abaixo.

$$\begin{cases} \frac{d^2\theta}{dt^2} + \frac{g}{L}sen(\theta) = 0\\ \text{onde} \end{cases}$$

$$\theta(0) = \frac{\pi}{4}rad$$

$$\theta(0) = 0 \text{ rad/s}$$

Considere $g = 10 \text{ m/s}^2 \text{ e L} = 5 \text{ m}$

AP2 2008

Questão 3 (2,5) Faça o que se pede.

- a) (1,00) Desenvolva um método preditor-corretor que possa ser iniciado com apenas um passo de um método de passo-simples.
- b) (1,50) Aplique seu método para determinar a posição θ do pêndulo simples no instante t = 0.25 s, cujo movimento é definido pelo problema de valor inicial abaixo.

Considere $g = 10 \text{ m/s}^2 \text{ e L} = 1 \text{m}$

(sim, tem um pedaço faltando).