The group G is isomorphic to the group labelled by [24, 2] in the Small Groups library. Ordinary character table of $G\cong C24$:

	1a	8a	4a	8b	2a	8c	4b	8d	3a	24a	12a	24b	6a	24c	12b	24d	3b	24e	12c	24f	6b	24g	12d	24h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ3	1	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_4	1	-1	1	-1	1	-1	1	-1	E(3)	-E(3)	E(3)	-E(3)	E(3)	-E(3)	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$
χ_5	1	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_6	1	-1	1	-1	1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	-E(3)	E(3)	-E(3)	E(3)	-E(3)
χ_7	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)
χ_8	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_9	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	E(3)	$E(12)^{7}$	-E(3)	$-E(12)^{7}$	E(3)	$E(12)^{7}$ _	-E(3)	$-E(12)^{7}$	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^{2}$	$-E(12)^{11}$	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^{2}$	$-E(12)^{11}$
χ_{10}	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	E(3)	$-E(12)^{7}$	-E(3)	$E(12)^{7}$	E(3)	$-E(12)^{7}$	-E(3)	$E(12)^{7}$	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$
χ_{11}	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^{2}$	$-E(12)^{11}$	$E(3)^{2}$	$E(12)^{11}$	$-E(3)^{2}$	$-E(12)^{11}$	E(3)	$E(12)^{7}$ _	-E(3)	$-E(12)^{7}$	E(3)	$E(12)^{7}$ _	-E(3)	$-E(12)^{7}$
χ_{12}	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$	$E(3)^{2}$	$-E(12)^{11}$	$-E(3)^2$	$E(12)^{11}$	E(3)	$-E(12)^7$	-E(3)	$E(12)^{7}$	E(3)	$-E(12)^7$	-E(3)	$E(12)^{7}$
X13	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$
χ_{14}	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	$E(4)_{_}$	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^3$
χ_{15}	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	E(3)	$E(24)^{11}$	$E(12)^{7}$	$E(24)^{17}$	-E(3)	$-E(24)^{11}$	$-E(12)^{7}$	$-E(24)^{17}$	$E(3)^{2}$	$E(24)^{19}$	$E(12)^{11}$	E(24)	$-E(3)^{2}$	$-E(24)^{19}$	$-E(12)^{11}$	-E(24)
X16	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	E(3)	$-E(24)^{11}$	$E(12)^{7}$	$-E(24)^{17}$	-E(3)	$E(24)^{11}$	$-E(12)^{7}$	$E(24)^{17}$	$E(3)^{2}$	$-E(24)^{19}$	$E(12)^{11}$	-E(24)	$-E(3)^2$	$E(24)^{19}$	$-E(12)^{11}$	E(24)
X17	1	E(8)	E(4)	$E(8)^{3}$	-1	-E(8)	-E(4)	$-E(8)^{3}$	$E(3)^{2}$	$E(24)^{19}$	$E(12)^{11}$	E(24)	$-E(3)^{2}$	$-E(24)^{19}$	$-E(12)^{11}$	-E(24)	E(3)	$E(24)^{11}$	$E(12)^{7}$	$E(24)^{17}$	-E(3)	$-E(24)^{11}$	$-E(12)^{7}$	$-E(24)^{17}$
X18	1	-E(8)	E(4)	$-E(8)^{3}$	-1	E(8)	-E(4)	$E(8)^{3}$	$E(3)^{2}$	$-E(24)^{19}$	$E(12)^{11}$	-E(24)	$-E(3)^2$	$E(24)^{19}$	$-E(12)^{11}$	E(24)	E(3)	$-E(24)^{11}$	$E(12)^{7}$	$-E(24)^{17}$	-E(3)	$E(24)^{11}$	$-E(12)^7$	$E(24)^{17}$
X19	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	1	$E(8)^{3}$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)
χ_{20}	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	1	$-E(8)^3$	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)
χ_{21}	1		-E(4)		-1	$-E(8)^{3}$	E(4)	-E(8)	E(3)	$E(24)^{17}$	$-E(12)^{7}$	$E(24)^{11}$	-E(3)	$-E(24)^{17}$	$E(12)^{7}$	$-E(24)^{11}$	$E(3)^{2}$	E(24)	$-E(12)^{11}$	$E(24)^{19}$	$-E(3)^{2}$	-E(24)	$E(12)^{11}$	$-E(24)^{19}$
χ_{22}	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^3$	E(4)	E(8)	E(3)	$-E(24)^{17}$	$-E(12)^7$	$-E(24)^{11}$	-E(3)	$E(24)^{17}$	$E(12)^7$	$E(24)^{11}$	$E(3)^{2}$	-E(24)	$-E(12)^{11}$	$-E(24)^{19}$	$-E(3)^{2}$	E(24)	$E(12)^{11}$	$E(24)^{19}$
χ_{23}	1	$E(8)^3$	-E(4)	E(8)	-1	$-E(8)^{3}$	E(4)	-E(8)	$E(3)^2$	E(24)	$-E(12)^{11}$	$E(24)^{19}$	$-E(3)^{2}$	-E(24)	$E(12)^{11}$	$-E(24)^{19}$	E(3)	$E(24)^{17}$	$-E(12)^{7}$	$E(24)^{11}$	-E(3)	$-E(24)^{17}$	$E(12)^{7}$	$-E(24)^{11}$
χ_{24}	1	$-E(8)^{3}$	-E(4)	-E(8)	-1	$E(8)^{3}$	E(4)	E(8)	$E(3)^{2}$	-E(24)	$-E(12)^{11}$	$-E(24)^{19}$	$-E(3)^{2}$	E(24)	$E(12)^{11}$	$E(24)^{19}$	E(3)	$-E(24)^{17}$	$-E(12)^7$	$-E(24)^{11}$	-E(3)	$E(24)^{17}$	$E(12)^{7}$	$E(24)^{11}$

Trivial source character table of $G \cong C24$ at p = 3:

171 Viai source character table of $G = C24$ at $p = 5$:												
Normalisers N_i			N_2									
p-subgroups of G up to conjugacy in G			P_2									
Representatives $n_j \in N_i$	1a $8a$	4a	8b	2a $8c$	4b	8d	1a 8	3a $4a$	2a	8b	8c	4b $8d$
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	3 3	3	3	3 3	3	3	0 (0	0	0	0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	3 -3	3	-3	3 -3	3	-3	0 () 0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 3 * E(4)	-3	-3 * E(4)	3 3 * E(4)	-3	-3 * E(4)	0 () 0	0	0	0	0 0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	3 -3*E(4)	-3	3 * E(4)	3 -3*E(4)	-3	3 * E(4)	0 () 0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 3 * E(8)	3 * E(4)	$3*E(8)^3$	-3 -3 * E(8)	-3 * E(4)	$-3*E(8)^3$	0 () 0	0	0	0	0 0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	3 -3*E(8)	3 * E(4)	$-3*E(8)^3$	-3 3 * E(8)	-3 * E(4)	$3*E(8)^3$	0 () 0	0	0	0	0 0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24}$	$3 3 * E(8)^3$	-3 * E(4)	3 * E(8)	$-3 -3 * E(8)^3$	3 * E(4)	-3 * E(8)	0 () 0	0	0	0	0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} \end{vmatrix} $	$3 -3*E(8)^3$	-3 * E(4)	-3 * E(8)	$-3 3 * E(8)^3$	3 * E(4)	3 * E(8)	0 () 0	0	0	0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	1 1	1	1	1 1	1	1	1 1	1	1	1	1	1 1
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	1 -1	1	-1	1 -1	1	-1	1 -	.1 1	1	-1	-1	$1 \qquad -1$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	1 $-E(4)$	-1	E(4)	$1 \qquad -E(4)$	-1	E(4)	1 - E	E(4) -1	1	E(4)	-E(4)	-1 $E(4)$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	1 $E(4)$	-1	-E(4)	1 $E(4)$	-1	-E(4)	1 E	(4) -1	1 -	-E(4)	E(4)	-1 -E(4)
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} \end{vmatrix} $	$1 E(8)^3$	-E(4)	E(8)	$-1 -E(8)^3$	E(4)	-E(8)	1 E($(8)^3 - E(4)$	4) -1	E(8)	$-E(8)^3$	E(4) - E(8)
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	$1 - E(8)^3$	-E(4)	-E(8)	$-1 E(8)^3$	E(4)	E(8)	1 -E	$E(8)^3 - E(4)$	4) -1 -	-E(8)	$E(8)^3$	E(4) $E(8)$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	1 $E(8)$	E(4)	$E(8)^{3}$	-1 -E(8)	-E(4)	$-E(8)^{3}$	1 E	(8) $E(4)$	-1 1	$E(8)^{3}$	-E(8) -	$-E(4) - E(8)^3$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	1 $-E(8)$	E(4)	$-E(8)^{3}$	-1 $E(8)$	-E(4)	$E(8)^{3}$	$\begin{vmatrix} 1 & -E \end{vmatrix}$	E(8) $E(4)$	-1 - 1	$-E(8)^{3}$	E(8) -	$-E(4)$ $E(8)^3$

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 2, 3)]) \cong C3$

 $N_1 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11)]) \cong C24$ $N_2 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11)]) \cong C24$