Exercise sheet 2

Curves and Surfaces, MTH201

- 1. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$ and $\mathbf{w}:(\alpha,\beta)\to\mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))'=\mathbf{v}'(t).\mathbf{w}(t)+\mathbf{v}(t).\mathbf{w}'(t)$.
- 2. If $\mathbf{n}: (\alpha, \beta) \to \mathbf{R}^2$ is such that $||\mathbf{n}(t)||$ is constant, then prove that $\dot{\mathbf{n}}(t)$ is either 0 or perpendicular to $\mathbf{n}(t)$.
- 3. For $\mathbf{v}:(\alpha,\beta)\to\mathbf{R}^2$ and $\mathbf{w}:(\alpha,\beta)\to\mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))'=\mathbf{v}'(t).\mathbf{w}(t)+\mathbf{v}(t).\mathbf{w}'(t)$ (Assume that all the functions are smooth).
- 4. If we denote,

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

Prove that $s_{\beta}(t) - s_{\alpha}(t)$ is a constant.

- 5. If $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth parametrization, then show that $||\dot{\gamma}(t)||:(\alpha,\beta)\to\mathbb{R}$ is smooth.
- 6. For the parametrization $\gamma: (-\pi/2, \pi/2) \to \mathbb{R}^2$ given by $\gamma(t) = (5\cos(t), 5\sin(t))$,
 - (a) Find the arc-length function s(t) (starting at, say, 0)
 - (b) Find a reparametrization map ϕ so that $\gamma(\phi(t))$ is a unit-speed parametrization.

To be updated...