CHƯƠNG 6 DAO ĐỘNG VÀ SỐNG CƠ

6.1. Dao động cơ

- 6.1.1 Các điều kiện để hệ có thể dao động (Tự đọc)
- 6.1.2. Dao động cơ điều hòa. Con lắc Vật lý
- 6.1.3. Dao động cơ tắt dần
- 6.1.4. Dao động cơ cưỡng bức. Hiện tượng cộng hưởng
- 6.1.5. Tổng hợp dao động (Tự đọc)
- 6.1.6. Tổng hợp DĐĐH cùng tần số, có cùng phương, có phương vuông góc (Tự đọc)

6.2. Sóng cơ

- 6.2.1. Hàm sóng (phẳng, cầu)
- 6.2.2. Năng lượng và năng thông sóng

I. Các điều kiện để một hệ có thể dao động (Tự đọc)

1. Định nghĩa: Dao động là một chuyển động được lặp lại nhiều lần theo thời gian.

2. Điều kiện:

- Tồn tại vị trí cân bằng (VTCB), hệ dao động qua lại hai bên vị trí đó.
- Khi hệ rời khỏi VTCB có lực kéo hệ về VTCB (lực kéo về hay lực hồi phục) $F = -kx \ (F: tổng hợp các lực tác dụng vào hệ)$
- Hệ có quán tính (khi chuyển dời đến VTCB, do có quán tính hệ tiếp tục chuyển động vượt qua VTCB).

II. Dao động cơ điều hòa. Con lắc vật lý

1. Dao động cơ điều hòa

+ Lực hồi phục (tổng hợp các lực tác dụng) F = -kx

$$\Rightarrow$$
 PT vi phân : $-kx = mx'' \Rightarrow x'' + \frac{k}{m}x = 0 \rightarrow x'' + \omega_0^2 x = 0$ (1)

(1) có nghiệm là:
$$x = A\cos(\omega_0 t + \varphi)$$
 (2) (phương trình dao động)

$$\Rightarrow$$
 Hệ dao động điều hòa với tần số góc $\omega_0 = \sqrt{\frac{k}{m}} \Rightarrow T_0 = 2\pi \sqrt{\frac{m}{k}}$

* Co năng:
$$W = W_d + W_t = \frac{mv^2}{2} + \frac{kx^2}{2} = \frac{kA^2}{2} = \frac{m}{2}(A^2\omega^2) = const$$

II. Dao động cơ điều hòa. Con lắc vật lý

2. Con lắc vật lý

a. Định nghĩa. Con lắc vật lý là một vật rắn khối lượng M có thể quay xung quanh một trục cố định O nằm ngang.

b. Phương trình

- + Xét con lắc vật lý có khối tâm G cách trục quay O là một khoảng d
- + Giả sử con lắc lệch khỏi VTCB, sao cho OG hợp với phương thẳng đứng góc θ , θ nhỏ ($\leq 10^{o}$) bỏ qua ma sát.

+ Phương trình cơ bản của chuyển động quay của VR:

$$\begin{split} I\vec{\beta} &= \overrightarrow{M}_{/_{O(\vec{P})}} \\ m\grave{a}\,M_{/O_{(\vec{P})}} &= M_{/O_{(P_1)}} = -P_1 d = -mg(sin\theta)d = -mgd\theta \\ \beta &= \frac{d^2\theta}{dt^2} = \theta'' \end{split}$$

2. Con lắc Vật lý

$$\Rightarrow I\theta'' = -mgd\theta hay \theta'' + \frac{mgd}{I}\theta = 0$$

Đặt
$$\omega_0 = \sqrt{\frac{mgd}{I}} \rightarrow \theta'' + \omega_0^2 \theta = 0$$
 (Phương trình vi phân của dao động của con lắc vật lý)

 \rightarrow Phương trình dao động $\theta = \theta_0 \cos(\omega t + \varphi)$

$$\theta = \theta_0 \cos(\omega t + \varphi)$$

Với tần số góc
$$\omega_0=\sqrt{\frac{mgd}{I}}$$
, chu kỳ dao động $T_0=2\pi\sqrt{\frac{I}{mgd}}$

c. Trường hợp đặc biệt: Con lắc đơn (có $I = ml^2$, d = l)

$$\Rightarrow \quad \omega_0 = \sqrt{\frac{mgl}{ml^2}} = \sqrt{\frac{g}{l}} \ \Rightarrow \ T_0 = 2\pi\sqrt{\frac{l}{g}}$$

III. Dao động cơ tắt dần

- 1. Định nghĩa: Dao động cơ tắt dần là dao động có năng lượng và biên độ giảm dần theo thời gian
- + Lực cản $F_c = -rv$ (r là hệ số cản)
- 2. Phương trình dao động
- + Lực tác dụng vào vật: Lực hồi phục F = -kx, lực cản $F_c = -rv$
- + PT cơ bản : -rv kx = mx'' hay $x'' + \frac{r}{m}x' + \frac{k}{m}x = 0$

Đặt
$$\omega_0^2 = \frac{k}{m}$$
 , $2\beta = \frac{r}{m}$

 \rightarrow Phương trình vi phân của dao động tắt dần $x'' + 2\beta x' + \omega_0^2 x = 0$ (*)

$$x'' + 2\beta x' + \omega_0^2 x = 0 \ (*)$$

III. Dao động cơ tắt dần

+) Nếu $\beta < \omega_0$: Nghiệm của (*) là: $x = A_0 e^{-\beta t} \cos(\omega t + \varphi) \qquad \textit{(Phương trình dao động tắt dần)}$ với $\omega = \sqrt{\omega_0^2 - \beta^2}$: tần số góc của dao động tắt dần $T = 2\pi \sqrt{\frac{1}{\omega_0^2 - \beta^2}}$: chu kì của dao động tắt dần

<u>Nhận xét</u>: Li độ x biến thiên tuần hoàn theo thời gian với biên độ $A = A_0 e^{-\beta t}$ giảm dần theo thời gian

- +) Nếu $\beta \geq \omega_0$ Lực cản lớn \rightarrow hệ không dao động. Hệ chuyển động tiến về VTCB.
- ightarrow Điều kiện có dao động tắt dần là $eta < \omega_0$

III. Dao động cơ tắt dần

c. Khảo sát đồ thị dao động cơ tắt dần

+ Đồ thị x = x(t) là đường cong nội tiếp giữa hai đường cong $-A_0 e^{-\beta t}$ và $A_0 e^{\beta t}$ + $t \to \infty$ thì $A \to 0$. Thực tế sau thời gian đủ lớn A giảm đến giá trị không đáng kể coi bằng 0.

* Giảm lượng loga: Đặc trưng cho mức độ tắt dần của dao động.

+ Giảm lượng loga bằng logarit tự nhiên của tỷ số giữa 2 trị số liên tiếp của biên độ dao động cách nhau một chu kỳ dao động

$$\delta = \ln\left[\frac{A(t)}{A(t+T)}\right] = \ln e^{\beta T} = \beta T$$

IV. Dao động cơ cưỡng bức. Hiện tượng cộng hưởng

- 1. Phương trình dao động cưỡng bức
- + Để dao động không tắt dần \rightarrow Cung cấp năng lượng cho hệ \rightarrow Tác dụng lên hệ ngoại lực biến thiên tuần hoàn: $F = Hcos(\Omega t)$
 - + Phương trình cơ bản : -kx rv + F = mx'' $x'' + \frac{r}{m}x' + \frac{k}{m}x = \frac{F}{m} = \frac{H}{m}cos(\Omega t)$

Đặt
$$\omega_0 = \sqrt{\frac{k}{m}}$$
 ; $2\beta = \frac{r}{m}$ ta có

→ Phương trình vi phân của dao động cưỡng bức:

$$x'' + 2\beta x' + \omega_0^2 x = \frac{H}{m} \cos(\Omega t)$$

IV. Dao động cơ cưỡng bức. Hiện tượng cộng hưởng

→ Phương trình dao động cưỡng bức

$$x = A\cos(\Omega t + \phi)$$

$$A = \frac{H_{/m}}{\sqrt{(\Omega^2 - \omega_0^2)^2 + 4\beta^2 \Omega^2}}; tg\phi = \frac{-2\beta\Omega}{\Omega^2 - \omega_0^2}$$

Điều kiện
$$\omega_0^2 - 2\beta^2 > 0$$

st Khảo sát sự phụ thuộc của biên độ vào tần số góc Ω

$$ightharpoonup$$
 Cộng hưởng xảy ra
$$\Omega = \Omega_{ch} = \sqrt{\omega_0^2 - 2\beta^2}; A_{max} = \frac{H}{2m\beta\sqrt{\omega_0^2 - \beta^2}}$$

+ Ma sát nhỏ $\beta \ll \omega_0$ thì $\Omega_{ch} = \omega_0$

 $\rightarrow A_{max}$ rất lớn \rightarrow Cộng hưởng nhọn

- 6.1.5. Tổng hợp dao động
- 6.1.6. Tổng hợp 2 dao động điều hòa cùng tần số, có cùng phương, có phương vuông góc

1. Sự hình thành sóng cơ trong môi trường vật chất đàn hồi. Các đặc trưng của sóng

* Sóng cơ là những dao động đàn hồi lan truyền trong môi trường vật chất theo thời gian.

+ Vận tốc sóng dọc
$$v = \sqrt{\frac{1}{\alpha \rho}} = \sqrt{\frac{E}{\rho}}$$
 + Vận tốc sóng ngang $v = \sqrt{\frac{G}{\rho}}$

Trong đó: α : Hệ số đàn hồi; E: Modul đàn hồi, G là Modul trượt; ρ khối lượng riêng của môi trường

+ Tần số, chu kỳ, bước sóng.

Các tia sóng song với nhau Mặt sóng là mặt phẳng

2. Hàm sóng

a. Hàm sóng phẳng

+ Phương trình sóng tại O:

$$x = a\cos(\omega t)$$

→ * Phương trình sóng tại M:

$$x_M(t) = x_O(t - T) = acos\omega(t - \frac{d}{v}) = acos(\omega t - \frac{2\pi}{T} \cdot \frac{d}{v})$$

$$x_M(t) = a\cos(\omega t - \frac{2\pi d}{\lambda})$$

* Phương trình sóng tại N:

$$x_N(t) = a\cos(\omega t + \frac{2\pi d_N}{\lambda})$$

b. Hàm sóng cầu

$$x = k \frac{A}{x} \cos(\omega t - 2\pi \frac{y}{\lambda})$$

3. Năng lượng và năng thông sóng

- * Năng lượng sóng là tổng năng lượng của các phần tử vật chất khi có sóng truyền qua.
- \rightarrow Năng lượng sóng chứa trong phần tử thể tích ΔV của môi trường truyền sóng là:

$$\Delta W = (\Delta V)\rho a^2 \omega^2 \sin^2(\omega t - \frac{2\pi y}{\lambda})$$

→ Mật độ năng lượng sóng w là phần năng lượng có trong một đơn vị thể tích của môi trường có sóng truyền qua

$$w = \frac{\Delta W}{\Delta V} = \rho a^2 \omega^2 sin^2 (\omega t - \frac{2\pi y}{\lambda})$$

3. Năng lượng và năng thông sóng

→ Mật độ năng lượng trung bình

$$\overline{w_{TB}} = \frac{1}{2}\rho a^2 \omega^2$$

- * Năng thông sóng cơ qua một diện tích S nào đó trong môi trường bằng năng lượng sóng truyền qua mặt đó trong một đơn vị thời gian.
- + Năng thông sóng cơ: P = w. S. v
- + Mật độ năng thông sóng cơ : $\mathcal{P} = \frac{P}{S} = \mathbf{w} \cdot \mathbf{v}$

3. Năng lượng và năng thông sóng

- + Giá trị trung bình của năng thông sóng cơ: $\overline{P} = \overline{w_{TB}}$. S. $v = \frac{1}{2} \rho a^2 \omega^2 Sv$
- + Mật độ năng thông sóng cơ trung bình: $\overline{\mathcal{P}} = \frac{\overline{P}}{S} = \overline{w_{TB}}. v = \frac{1}{2} \rho a^2 \omega^2 v$
- + Véc tơ Umop-Pointing (Đặc trưng cho khả năng truyền sóng trong môi trường đàn hồi)

$$\overrightarrow{P} = \overline{w_{TB}}.\overrightarrow{v}$$