TU DRESDEN

FORTGESCHRITTENENPRAKTIKUM PRAKTIKUMSBERICHT

Positron en-Emissions-Tomographie

Autoren:
Toni EHMCKE
Christian SIEGEL

 $\begin{array}{c} \textit{Betreuer:} \\ \textit{Carsten Bittrich} \end{array}$

Dresden, 13. November 2015

Inhaltsverzeichnis

1 Aufgabenstellung		stellung	2	
2	Phy	/sikalis	e Grundlagen	
3	Durchführung			2
	3.1	Theor	etischer Teil	2
	3.2	Kalibi	iermessungen	2
		3.2.1	Messung einer Quelle bekannter Aktivität bei mittiger Quellposition	2
		3.2.2	Messung bei Positionen direkt an den Detektoren	3
	3.3	Tomog	grafische Messungen	4
		3.3.1	Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung	4
		3.3.2	Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung	5
		3.3.3	${\it Messung mit einer Punktquelle, Phantom an-/insotroper\ Dichteverteilung} . .$	7
4	Aus	swertu	$\mathbf{n}\mathbf{g}$	7
5 Literatur			8	

- 1 Aufgabenstellung
- 2 Physikalische Grundlagen
- 3 Durchführung
- 3.1 Theoretischer Teil
- 3.2 Kalibriermessungen

3.2.1 Messung einer Quelle bekannter Aktivität bei mittiger Quellposition

Zunächst haben wir eine Quelle in mittigem Abstand zu den beiden Detektoren vermessen. Die Quelle hatte am 29.10.2015 eine Aktivitiät $A=1,02\,\mathrm{MBq}$.

Abbildung 1: Kalibrationsmessung bei Quelle mittig zwischen den Detektoren A und B

3.2.2 Messung bei Positionen direkt an den Detektoren

Abbildung 2: Gegenüberstellung der Messungen mit der Quelle an Det. A (links) und Det. B (rechts)

3.3 Tomografische Messungen

3.3.1 Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung

Hauptversuch

Untersuchung des Einflusses verschiedener Filter

Abbildung 3: Gefilterte und Ungefilterte Rückprojektion der Aktivitätsverteilung

Quantitative Auswertung

Zunächst werden die Positionen $(x_i,y_i)(i=1,2,3)$ der 3 Quellen im verschlossenen Plastikbehältnis bestimmt. Dafür wird die in Abbildung (3) visualisierte Rückprojektion N(x,y) verwendet, die durch Auslesen der in $\mathtt{Matrix_reco.txt}$ enthaltenen Messwertmatrix entstanden ist. Der erste Eintrag sei als Koordinatenursprung gewählt. 1 BIN des Rekonstruktionsrasters entspricht 3,375 mm. Die Positionen der Quellen werden mit den lokalen Maxima $N(x_i,y_i)$ der Aktivitätsverteilung identifiziert. Anschließend quantifiziert man die Aktivität jeder einzelnen Quelle, indem man die rückprojizierten Verteilung über einen kleinen Bereich um die Peaks mittelt. Bezeichne diesen Mittelwert mit $\bar{N}(x_i,y_i)$. Im Rahmen dieser Auswertung wurde ein quadratischer Bereich gewählt, in welchem Werte anzutreffen waren, die in der Nähe des FWHM (=Full Width Half Maximum) lagen. Dieses Vorgehen wird durch die nebenstehende Abbildung visualisiert.

Mittels einfacher Verhältnisbildung können unter Vorgabe einer Referenzaktivität A_{ref} nun unbe-

kannte Aktivitäten innerhalb der Verteilung berechnet werden. Dabei wurde die stärkste Aktivität mit $A_0 \equiv A(t_0 = 01.02.2010) = (363 \pm 11)$ kBq angegeben. Mit dem Aktivitätsgesetz kann man nun berechnen:

$$A_{ref} \equiv A(t = 29.10.2015) = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t-t_0}{T_1/2}} = (79 \pm 3) \text{ kBq}$$
 (1)

Wobei die Halbwertszeit $T_{1/2}(^{22}\text{Na}) = (2,6027 \pm 0,0010)$ a verwendet wurde, sowie folgende Fehlerformel:

 $\left(\frac{\Delta A_{ref}}{A_{ref}}\right)^2 = \left(\frac{\Delta A_0}{A_0}\right)^2 + \left(\ln(2) \cdot \frac{\Delta T_{1/2}}{T_{1/2}}\right)^2 \tag{2}$

Bezeichnet man $A_{ref} \propto \bar{N}_{ref} \equiv \bar{N}(x_1, y_1)$ als rückprojizierte Aktivität der Referenzquelle, so erhält man für die unbekannten Aktivitäten $A_i \propto \bar{N}(x_i, y_i)$:

$$A_i = A_{ref} \cdot \frac{\bar{N}(x_i, y_i)}{\bar{N}_{ref}} \tag{3}$$

$$\left(\frac{\Delta A_i}{A_i}\right)^2 = \left(\frac{\Delta A_{ref}}{A_{ref}}\right)^2 + \left(\frac{\Delta \bar{N}(x_i, y_i)}{\bar{N}(x_i, y_i)}\right)^2 + \left(\frac{\Delta \bar{N}_{ref}}{\bar{N}_{ref}}\right)^2 \tag{4}$$

Hierbei wurden die Fehler der rückprojizierten Aktivitäten als Standardabweichungen des Mittelwertes gesetzt, die sich beim obigen Mittelvorgang ergab: $\Delta \bar{N}(x_i, y_i) = \sigma(\bar{N})$. Die systematischen Fehler des PET-Scanners waren leider nicht bekannt. Zusammenfassend ergeben sich folgende Resultate:

3.3.2 Messung einer Quellkonfiguration, Phantom isotroper Dichteverteilung Hauptversuch

Als nächsten wurde eine Messung mit unbekannter Quellverteilung gestartet. Die Energiedas Zeitfenster entsprechen den oben bestimmten Intervallen.

Abbildung 4: Screenshots der Bildenstehung der gefilterten (rechts) und ungefilterten (links) Rückprojektion

Untersuchung des Einflusses verschiedener Filter

bildungen drei bis elf zeigen die Anwendung verschiedener Filter auf die ungefilterte Rückprojektion, wobei der Standardwert der Dimension 13 ist

3.3.3 Messung mit einer Punktquelle, Phantom an-/insotroper Dichteverteilung

4 Auswertung

5 Literatur