Dynamic Programming

Chapter 3



# **Objectives**

- Describe the Dynamic Programming Technique
- Contrast the Divide and Conquer and Dynamic Programming approaches to solving problems
- Identify when dynamic programming should be used to solve a problem
- Define the Principle of Optimality
- Apply the Principle of Optimality to solve Optimization Problems

# Divide and Conquer

- Top-down approach to problem solving
- Blindly divide problem into smaller instances and solve the smaller instances
- Technique works efficiently for problems where smaller instances are unrelated
- Inefficient solution to problems where smaller instances are related
- Recursive solution to the Fibonacci sequence

# Dynamic Programming

- Bottom-up approach to problem solving
- Instance of problem divided into smaller instances
- Smaller instances solved first and stored for later use by solution to solve larger instances
- Look it up instead of re-compute
- Iterative solution to the Fibonacci Sequence

# Steps to develop a dynamic programming algorithm

- Establish a recursive property that gives the solution to an instance of the problem
- Compute the value of an optimal solution in a bottom-up fashion by solving smaller instances first

#### The Binomial Coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

# The Recursive Property

$$\binom{n}{k} \binom{n-1}{k-1} + \binom{n-1}{k} 0 < k < n$$

$$_{k}^{n}$$
 = 1 k = 0 or k = n

### Algorithm 3.1 Binomial Coefficient

- Divide-and-Conquer
- Recursive
- Very inefficient like recursive Fibonocci

# Number of terms computed by recursive bin

$$2\binom{n}{k}-1$$

### Dynamic Programming Solution to 10 the Binomial Coefficient Problem

 Using the recursive property, construct an array B containing solutions to smaller instances

# Construct Array B such that:

$$B[i,j] = \binom{i}{j}$$

# Establish a recursive property and 12 solve bottom-up

- B[i , j] = B[i 1, j 1] + B [i 1,j] where 0 < j < I
- B[i , j] = 1 where j = 0 or j = I
- Solve an instance of the problem bottom up compute rows in B in sequence starting with row 1
- At each iteration, the values needed for that iteration have already been computed

# Algorithm 3.2 Binomial Coefficient 13 using Dynamic Progra,ing

- bin2
- The work done by bin2 as a function of n and k
- •bin2 ε θ(nk)

# Optimization Problem

- Multiple candidate solutions
- Candidate solution has a value associated with it
- Solution to the instance is a candidate solution with an optimal value
- Minimum/Maximum

#### Shortest Path Problem

- Optimization Problem
- Candidate Solution: path from oe vertex to another
- Value of candidate solution: length of the path
- Optimal value minimum length
- Possible multiple shortest paths

# Weighted Directed Graph



#### **Brute Force**

- For every vertex, determine lengths of all paths from that vertex to every other vertex and compute minimum lengths
- Complete Graph G
  - -(n-2)!

# Adjacency Matrix M

- •W[i,j] = weight of the path from vi->vj if there is an edge
- •W[i,j] = ∞ if there is no edge from vi->vj
- •W[i,j] = 0 if i = j

# Figure 3.3

|   | 1 | 2           | 3  | 4  | 5  |   | 1  | 2  | 3 | 4 | 5 |
|---|---|-------------|----|----|----|---|----|----|---|---|---|
| 1 | 0 | 1           | 00 | 1  | 5  | 1 | 0  | 1  | 3 | 1 | 4 |
| 2 | 9 | 0           | 3  | 2  | 00 | 2 | 8  | 0  | 3 | 2 | 5 |
| 3 | ∞ | 00          | 0  | 4  | 00 | 3 | 10 | 11 | 0 | 4 | 7 |
| 4 | ∞ | 0<br>&<br>& | 2  | 0  | 3  | 4 | 6  | 7  | 2 | 0 | 3 |
| 5 | 3 | 00          | 00 | 00 | 0  | 5 | 3  | 4  | 6 | 4 | 0 |
|   |   |             | W  |    |    |   |    |    | D |   |   |

# Dynamic Programming Solution to 20 the all-pairs shortest path

- n vertices in the graph
- Create a sequence of n+1 arrays D<sup>k</sup> where 0 <= k</p> <=n
- D<sup>k</sup> [i,j] = length of a shortest path from v<sub>i</sub> to v<sub>i</sub> using only vertices in the set  $\{v_1, v_2, \dots, v_k\}$
- D<sup>n</sup> [i,j]= length of the shortest path from v<sub>i</sub> to v<sub>i</sub>
- $^{\bullet}$  D<sup>0</sup> = W and D<sup>n</sup> = D

# Dynamic Programming Steps

- Establish a recursive property to compute
  D<sup>k</sup> from D<sup>(k-1)</sup>
- Solve an instance of the problem in bottomup fashion by repeating the process for k=1 to n

# Establish a recursive Property

- Two Cases to consider (details next two slides)
- D<sup>k</sup> [i,j] = minimum (case 1, case 2)
  - = minimum ( $D^{(k-1)}$  [i,j],  $D^{(k-1)}$  [i,k] +  $D^{(k-1)}$  [k,j])

#### Case 1

- At least one shortest path from  $v_i$  to  $v_j$  uses only vertices in set  $\{v_1, v_2, \ldots, v_k\}$  as intermediate vertex does not use  $v_k$ 
  - $^{\bullet}$ D<sup>k</sup> [i,j] = D<sup>(k-1)</sup> [i,j]

#### Case 2

All shortest paths from  $v_i$  to  $v_j$  uses only vertices in set  $\{v_1, v_2, \ldots, v_k\}$  as intermediate vertex does use  $v_k$ 

- Path =  $v_i$ , ...,  $v_k$ , ...,  $v_j$  where  $v_i$ , ...,  $v_k$  consists only of vertices in  $\{v_1, v_2, \ldots, v_{k-1}\}$  as intermediates: Cost of path =  $D^{(k-1)}$  [i,k]
- And where  $v_k$ , ...,  $v_j$  consists only of vertices in  $\{v_1, v_2, \ldots, V_{k-1}\}$  as intermediates: Cost of path  $= D^{(k-1)}[k,j]$

# Floyd's Algorithm for Shortest Paths – Algorithm 3.3

- Every-case time complexity
- Basic operation instructions in the for j loop
- Input size : IVI
- $-T(n) = n^3$

# Does Dynamic Programming Apply to all Optimization Problems?

- No
- The Principle of Optimality
  - An optimal solution to an instance of a problem always contains optimal solution to all subinstances
- Shortest Paths Problem
  - If  $v_k$  is a node on an optimal path from  $v_i$  to  $v_j$  then the sub-paths  $v_i$  to  $v_k$  and  $v_k$  to  $v_j$  are also optimal paths

# Chained-Matrix Multiplication

- Optimal order for chained-matrix multiplication dependent on array dimensions
- Consider all possible orders and take the minimum:  $t_n > 2^{n-2}$
- Principle of Optimality applies
- Develop Dynamic Programming Solution
- M[i,j] = minimum number of multiplications needed to multiply A<sub>i</sub> through A<sub>i</sub>

# Traveling Salesperson Problem

- Sales trip n cities
- Each city connects to some of the other cities by a road
- Minimize travel time determine a shortest route that starts at the salesperson's home city, visits each city once, and ends at home city
- Represent instance of the problem with a weighted graph

# Figure 3.16



# Dynamic Programming Algorithm for Traveling Sales Person Problem

- -Θ(n2<sup>n</sup>)
- Inefficient solution using dynamic programming
- Problem NP-Complete