SPARTAN CONTROLS LTD.

USDATA - FISHER ROC DRIVER USER'S MANUAL NT - 32 BITS

SUPPORTS ECS

Version 1.0.1 April 1999

IMPORTANT NOTICE

Spartan Controls Ltd. (SCL) reserves the right to revise and improve the software and documentation at any time and without notice.

SCL makes no warranties, either expressed or implied, regarding the Fisher ROC Driver computer software package or its merchantability or fitness for any particular purpose.

SCL shall not be liable for technical or editorial omissions made herein; nor shall SCL be responsible for incidental or consequential damages resulting from the proper or improper use of these materials nor from the furnishing and performance of this material. The information contained herein does not represent a commitment on the part of SCL.

This manual is copyrighted and all rights are reserved. This document is furnished under a license agreement and may not, in whole or part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from Spartan Controls Ltd.

Copyright © 1994 Spartan Controls Ltd. All Rights Reserved.

Spartan Controls Ltd. 305 - 27 Street S.E. Calgary, Alberta T2A 7V2

Phone: (403) 207-0700 Fax: (403) 207-0874

Spartan Controls Ltd.

DEFINITIONS

"Spartan Controls" and "SCL" mean an Alberta Limited Company with respect to all Programs acquired by Customer. "Program" means the SCL software product (executable program, documentation and/or data). "Customer" means the person or organization in whose name the program was registered during software authorization.

"Single Machine" means the computer upon which the program will be installed and used, as identified in Customer's Purchase Order or as acknowledged during software authorization.

LICENSE

Customer may

- (a) use the Program on a Single Machine at any one time;
- (b) copy the Program only as reasonably necessary to support the authorized use, modification and merger. Each copy of the Program made by Customer must include a reproduction of any copyright notice or restrictive rights legend appearing in or on the copy of the Program as received from SCL.

Customer may not

- (a) use the Program on more than one machine at any one time or in a network environment (except as authorized in a separate supplemental licensing agreement);
- (b) transfer the Program to any person or organization outside of Customer or the corporation of which Customer is a part without the prior written consent of SCL;
- (c) export or re-export, directly or indirectly, the Program, any associated documentation or the direct product thereof, to any country to which such export or re-export is restricted by law or regulation of Canada or any foreign government having jurisdiction without the prior authorization, if required, of the Ministry of External Affairs, Ottawa, Ontario, Canada and the corresponding agency of such foreign government or
- (d) reverse compile or disassemble the Program for any purpose.

The design of SCL software products permits the Program to be downloaded or shared with additional machines for local execution. A separate license shall be required for each such machine with which

the Program may be used or a supplemental agreement granting a network or site license shall be required for the entire configuration or installation within which the Program may be shared.

Title to the Program and all copies thereof, but not the media on which the Program or copies may reside, shall be and remain with SCL or others from whom SCL has obtained a licensing right.

Customer shall pay when due all property taxes that may now or hereafter be imposed, levied or assessed with respect to the possession or use of the Program or this license and shall file all reports required in connection with such taxes.

THE PROGRAM MAY NOT BE USED, COPIED, MODIFIED, MERGED OR TRANSFERRED TO ANOTHER EXCEPT AS EXPRESSLY PERMITTED BY THESE TERMS AND CONDITIONS.

UPON TRANSFER OF ANY COPY, MODIFICATION OR MERGED PORTION OF THE PROGRAM, THE LICENSE GRANTED HEREIN IS AUTOMATICALLY TERMINATED.

TERM

The license granted herein is effective upon delivery of the Product to the Customer and shall remain in effect until terminated as provided herein. The license may be terminated by Customer at any time upon written notice to SCL. The license may be terminated by SCL or any third party from whom SCL may have obtained a respective licensing right if Customer fails to comply with any term or condition, including timely payment of licensing fees and such failure is not remedied within thirty (30) days after notice thereof from SCL or such third party. Upon termination by either party, Customer shall return to SCL the Program and all associated documentation, together with all copies in any form.

LIMITED WARRANTY

SCL warrants that the media on which the Program is furnished and the encoding of the Program on the media will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If any such media or encoding proves defective during the warranty period, SCL will provide a replacement in exchange for the defective medium. Except as to the media on which the Program is furnished, the Program is provided "as is" without warranty of any kind, either express or implied. SCL does

not warrant that the functions contained in the Program will meet Customer's requirements or that operation of the Program will be uninterrupted or error free.

THIS WARRANTY IS GIVEN BY SCL WITH RESPECT TO THE PROGRAM IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. SCL AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE. RESPONSIBILITY TO REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. LIMITATION OF LIABILITY IN NO EVENT SHALL SCL OR OTHERS FROM WHOM SCL HAS OBTAINED A LICENSING RIGHT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL or CONSEQUENTIAL DAMAGES ARISING OUT OF OR CONNECTED WITH CUSTOMER'S POSSESSION OR USE OF THE PROGRAM, EVEN IF SCL OR SUCH OTHERS HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

THIRD PARTY DISCLAIMER

Except as expressly agreed otherwise, third parties from whom SCL may have obtained a license right do not warrant the Program, do not assume any liability with respect to its use and do not undertake to furnish any support or information relating thereto.

U.S. GOVERNMENT RESTRICTED RIGHTS

Use, duplication or disclosure by the Government is subject to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable or in subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013

GENERAL

This agreement contains the entire agreement between the parties with respect to the use, reproduction and transfer of the Program. Neither this Agreement nor the license granted herein is assignable or transferable by Customer without the prior written consent of SCL. This Agreement and the license granted herein shall be governed by the laws of the Province of Alberta, Canada.

Phone: (403) 207-0700 * Fax: (403) 207-0874

Spartan Controls Ltd.

This page intentionally left blank.

TABLE OF CONTENTS

Document revision history	ii
1. Introduction	2
1.1 The I/O Interface Module.	2
2. Installing the ROC Driver	6
2.1 INSTALL	6
2.2 Editing with the Configuration Manager Utility.	6
3. Configuring the ROC Tables	12
3.1 Introduction to ROC Table Configuration	12
3.2 ROC Driver Communication Information Screen	13
3.2	13
3.3 ROC Station Control screen	17
3.3	17
3.4 ROC Station Read/Write Information	22
3.4	22
Glossary	41
Index	44

Document Revision History

Version #	Description	Date
1.0.1	Applies to Versions 1.06, 1.08.1, 1.10.1, 2.30.1	April, 1999

Section 1

INTRODUCTION

1. Introduction

This manual is designed to provide an overview of operations for the USDATA -Fisher ROC Driver. It will act as a *supplement* to other supplied documentation. It is assumed that the operator has at least basic knowledge of PC functions in the WINDOWS and DOS environments.

1.1 The I/O Interface Module.

An Input/Output interface module is the communications link that lets FactoryLink WINDOWS NT talk with any of the Fisher Remote Operations Controllers (306, 312, 364 and the new ROC 407). It links physically and electronically to the ROC. You must know how you want to define your data and how the FactoryLink configuration manager defines data *before* you configure the I/O interface module. Throughout this manual we refer to the ROC protocol in Fisher publication form A4199.

Each ROC has a particular number of *Soft Points*. A Soft Point is a reserved block of memory that stores information from a program. The ROC has up to 32 reserved blocks of memory. Each of these 32 Soft Points has 20 Data Points inside it. Each Data Point is a location for a value. These values helps store the information compiled by the ROC's program. Ultimately, the Host computer accesses the information of the program from the Soft Points.

There are several other terms you should know. A *Parameter* describes the limits of a given field, address or location. For example, an Analog Input has many parameters, including Engineering Units, Low AI, Hi AI. *Implemented* means active. An implemented point is a point currently in use or ready for use. A *Field Point* is a final end device and its characteristics. A Field Point usually monitors and/or generates information in the field.

You must define Data Points in 4 separate locations for everything to work properly.

- **1. You must define the ROC Field Point.** You should know the ROC's configuration or have it on hand. This manual does not include the configuration details. You will find them in the *Fisher GV101 Configuration Software User Manual*, Form A4194.
- 2. You must define your Communications system to receive common driver information. Common driver information includes serial port name, baud rate and response time-outs. Each piece connects to an individual communications channel.
- **3.** You must define the Control Points of the ROC station. Each active station's configuration differs. The fields in this part of the database define the

common points between the individual stations. These points include station name, ROC address, ROC group, communication status flags, etc.

4. You must use the ROC Station Read/Write Information to define the individual Data Points. You must make 1 separate database entry for each point. This entry consists of a tag name, point type, point number, parameter number, etc.

The Spartan Controls Ltd. ROC Driver uses a standard serial asynchronous port (RS232C). The communication channel is always open. The first to "talk" (transmit) is the first to get "heard" (received).

The standard serial asynchronous port attaches to a Personal Computer (PC). The driver does not support smart communication boards like the IBM Arctic Card. The ROC driver assumes a Full Duplex circuit is available, although it may actually use Semi- or Half-duplex circuits. As a result, the driver continuously listens for received data. This discrepancy between Full and Half Duplex circuitry does not affect communication. This manual assumes all communication channel equipment (i.e. modems, radios) works properly.

This page intentionally left blank.

Section 2

INSTALLING THE ROC DRIVER

2. Installing the ROC Driver

2.1 INSTALL

The INSTALL command installs the drivers and associated files in the specified directories. This command installs between 4 and 6 drivers. You can configure whichever driver you want, as they are all the identical. Follow the steps in Sections 2.2 and 2.3 below. Note that the INSTALL command does not configure FactoryLink for you.

Place the driver diskette in the appropriate floppy drive of the PC.

From the prompt, type: <INSTALL><Enter>

Example: If the diskette is in A drive, change directory to A by typing < cd a:\>. Then type: "INSTALL".

You will see a screen similar to the one below. Follow the prompts. You can abort the installation factor at any time by pressing one of these key sequences: **Ctrl-c>** or **Ctrl-Break>**.

ROC 364 driver installation (1.0) for Windows NT FactoryLink. Six drivers will be installed, ROC 1, ROC 2, ROC 3, ROC 4, ROC 5 and ROC 6. Input (control c) or (control break) to abort at any time.

An authorization number will now be requested, with only three tries allowed.

Spartan Controls Installation Authorization No.? xxxxxxxxx Your Company Name (3 to 29 chars.)? xxxxxxxxxxx

File C:\FLNT\ac\r1__.ac exists, overwrite (y,n)? y

For each installation, you need an authorization number from Spartan Controls Ltd. You can get it by telephoning (403) 207-0700. Ask for the SCADA group. To avoid delays in the installation process, you should get the authorization number before starting. As it says on the screen, you have only 3 chances to enter the correct authorization number. If you fail all 3 times, you will return automatically to the Windows NT prompt.

At the bottom of the screen you see a line asking if you want to overwrite an existing file. Type "y" or "n". Overwriting existing files while installing the drivers is normally OK.

2.2 Editing with the Configuration Manager Utility.

You can edit the "System Configuration" table with the Configuration Manager Utility. If you are in Windows NT, open the FactoryLink program group. Click on the FactoryLink

Configuration Manager icon. If you are at a dos prompt, type <set FLAP = c:\flapp> and press <return>. This sets the FL environment variable. Now type <flcm>. This will access to the FactoryLink Configuration Manager. System Configuration is listed in the Main Menu, as indicated below.

Figure 2-1: Main Menu of the Configuration Manager Utility

Type the number of the ROC you want to install (1 to 6). The drivers are listed as **1 ROC**, **2 ROC**, etc.

In the shared domain, copy the last configured row in the System Configuration Table. Paste the row into the blank line directly after it, creating a duplicate. (To copy and paste, use the **Edit** pull-down menu).

Figure 2-2: System Configuration Information screen with Copy function highlighted.

Change the pasted duplicate row according to the following flags:

- Flags **S** Session flag: Provides a separate window for the task to which all information is directed which can then be called up may require.
 - **F** Foreground flag: Allows task to be displayed in the foreground of the Run-Time Manager window.
 - **Run flag:** Automatically starts the driver when the system starts. Set the flag to "R" if you do not want a driver screen.

To get a driver screen, set flags "S" and "F". The driver screen displays the following information:

- polled station,
- responding station,
- system time,

- driver errors and
- communication status.

Fill in tag names as follows:

Task Name	ROC x	
Description	ROC x 364 Driver	
Start Trigger	r TASKSTART_S[1+y]	
Task Status	TASKSTATUS_S[1+y]	
Task Messag	ge TASKMESSAGE_S[1+y]	
Display State	tus TASKDSTATUS_S[1+y]	
Display Nam	me $TASKNAME_S[1+y]$	
Display Desc	scriptor TASKDESC_S[1+y]	

where x = driver number (1 up to 6) where y = current number in tag array

Start Order	N	if installing the first task
	<i>N</i> + <i>1</i>	if installing the second task, etc.

where N = a number larger than any currently installed task that may download data to the ROC

Start Order prioritizes which command lines activate first, starting from 1. This prioritization is very important as some command lines depend on others in order to work well.

Priority	201
Executable File	BIN/ROC
Application Directory	blank
Program Directory	blank
Program Arguments	N or n for No printer spooling of driver information. Any other entry, including a blank entry, will spool driver information to the printer.

You should start typical tasks like Alarm Manager and Batch Manager before starting the ROC driver. Starting these typical tasks first eliminates the chance of downloading

default values from the ROC. If you do download the ROC default values, you must reconfigure the ROC all over again.

Section 3

CONFIGURING THE ROC TABLES

3. Configuring the ROC Tables

3.1 Introduction to ROC Table Configuration

We use 3 tables to configure the ROC driver. You access them by clicking on the ROC Driver you want to configure in the *Main Menu*.

The *ROC Driver Communication Information* screen is a single line display. It configures the general type of information needed by the driver.

The *ROC Station Control* screen consists of one line of information for each implemented station. It contains a specific station's configuration information. You define items such as the communications status tag on this screen.

You define specific point information for a particular station on the *ROC Station Read/Write Information* screen. There is one *Read/Write* screen for each implemented station. Each implemented point for the station needs a separate line on the *Read/Write* screen. Explained below is the configuration information you need.

The TAG NAME entry may have up to 16 characters.

WARNING!!

To store the ROC data correctly, each ROC data type maps to one or more USDATA type points. For example, the USDATA type FLOAT maps to Engineering Units (EU). You must observe this mapping restriction for all points when you build your database. **Section 3.4** lists the matching types.

While initializing, the driver builds internal tables from the screen information. The driver checks each entered tag for adherence to the type restriction. All violations will appear on the driver screen. The driver will not start until you fix each violation. You fix violations by redefining the tag type to the USDATA type. Check that the ROC tag type correctly matches the parameter definition of the type point.

To print out a copy of these errors, remove 'n' from *Program Arguments* in the *System Configuration Information* screen.

3.2 ROC Driver Communication Information Screen

Figure 3-1: ROC Driver Communication Information screen.

This screen defines the driver common information in only one line. See below for more information on each item.

Interleave Poll Tag Name

This tag identifies the requested interleave station number. The driver checks this tag location before each poll. The driver polls the station number stored there when it is between each regular poll request. We know it as *interleave mode*.

Interleave mode continues until it has made a total of 30 interleave poll requests. If you set the station to "**0**" (zero), it returns to "round robin" polling.

You can start interleave polling in one of 2 ways:

- 1. Send a non-data request command to any station, automatically starting interleave on that station; or
- **2.** Use any USDATA function external to the driver by setting the interleave scan tag to the desired station.

Set the interleave tag to "0" to cancel it. If you set a new interleave station while interleaving, you cancel the current interleave station and replace it with the new station. As before, the new station will interleave for 30 polls.

Polled Station Display Tag Name

This tag shows which station the driver polls. The driver updates the tag before each poll request.

All Station Time Update

This tag requests an all-station time update. Before each poll, the driver checks this tag. If it detects a non-zero value, the driver sends the Master Time to all stations simultaneously.

Serial Port Name

This tag names the serial port for communication use. Its name (9 characters maximum) must match the serial port name expected by the system. e.g. If using communications port 2, the entry should be "COM2".

Baud Rate

Enter the value of the desired baud rate here. Use the < ALT-/ > key combination to choose from the table of valid rates. Valid speeds for ROC communication are 300, 600, 1200, 2400 and 9600 baud.

Response Time-out (0.1 seconds)

This tag lists the set time limit in one-tenth second increments for a response. If the driver receives no response after the set limit, it displays "NO". Response time means the time between transmission of the last poll character and the time the station receives the first character. e.g. For a 2 second wait time, enter 20.

Normal Retry Count

This tag shows the number of times the driver can re-poll the station before setting its status to "FAIL".

Fail Retry Count

This tag determines the number of times to poll a station showing a "FAIL" condition. The normal value is "1" to minimize the time spent trying to talk to a known failed station.

Inter (Dial) Station Delay (0.1 seconds)

This *delay time* serves 2 purposes, depending on the station's operation mode.

Polled mode: The driver delays transmission for the length of time you set. You enter the time in one-tenth second increments i.e. enter 20 for a 2 second wait time. The set time limit can differ for each poll.

Dial out mode: The driver waits up to this time limit for Data Carrier Detector (DCD) after dialing the telephone number. Enter 20 to get the typical value for this delay of 2 seconds.

Same Station Delay (0.1 seconds)

The driver delays transmission between multiple polls on the same station. Enter the time in one-tenth second increments to determine the length of the delay. e.g. Enter 20 to produce a 2 second wait time.

Default Configuration

The driver operates in four modes: Polled, Monitor, Unsolicited and Dial Up. Below we describe each mode.

Polled = 1

POLLED mode: The driver makes poll requests in a continuous first-to-last poll called a "round robin". Only the interleave and interstation delay times can change "round robin" polling. The driver sends out commands when it detects that the user has changed a value or asked for an action.

Monitor = 0

MONITOR mode: The driver continuously monitors the received data line and processes the data it gets. You would only set your driver into this mode if you wanted it in a standby or backup configuration.

Unsolicited = 2 (UNSOL)

UNSOL mode: The driver continuously monitors the received data line for a valid station upset request. This mode reports to the driver the exceptions to normal operation. Once the driver receives a message like this, it immediately polls the identified station to get that station's data.

If the Station telephone number is in the ROC station control table, the driver assumes communication is by telephone. In

this case, the ROC calls the host machine via the telephone line, connects, and then allows the ROC to solicit a regular and full poll. The ROC Station Control Table provides the regular poll tag allowing periodic station polls. The driver sends out commands when it detects a changed value.

Dial Out = 3 (DIAL)

Dial Out mode: Dial Out mode replaces the continuous "round robin" polling with a single poll of all active stations. The driver automatically Dials Out to connect with each station before each poll. Once the poll finishes, the driver suspends itself until it detects a change in the regular poll tag. The driver sends out commands when it detects a changed value.

For the Dial Out mode to work well, you must meet these requirements:

- you must use a Hayes compatible modem;
- you must configure the modem to disconnect if it loses Data Terminal Ready (DTR) and supply Data Carrier Detector (DCD) when connected.

You may choose the mode from those available by using the < ALT-/ > key combination.

Transmit Turn On Delay (0.01 seconds)

After Requesting To Send (RTS), the driver delays for the set amount of time before sending character transmissions. Enter the time in one hundredth second increments. e.g. To produce a 0.2 second wait time, enter 20. In the case of the Dial Out configuration, the time delay comes after the driver receives the DCD.

NOTE: The driver has hard coded a number of the more obscure communication channel parameters to minimize the configuration required. However, you must make sure your ROC and FL values match and meet each other's parameters or you will have a breakdown in communication. The hard coded parameters are as follows:

Number of data bits = 8 Number of stop bits = 1

Parity = (none)

Global Regular Tag Name

The Global Regular Tag Name tells the driver it needs to start a regular poll request when it is in the Unsolicited and Dial Out operation modes. The driver checks this tag regularly. If it is set, the driver sets all active regular poll tags. Also, you can use this tag to set individual poll tags.

Global Full Tag Name

This tag performs the same function as the regular poll above except it relates to the full update request.

Global History Tag Name

This tag performs the same function as the regular poll above except it relates to the historical data update request.

Configuration Tag Name (Analog)

When you create a tag a screen pops up and asks you to define the tag (if you want to redefine the tag later press < Ctrl-t >). That pop-up screen also asks you to define the default value. When the Driver starts, the Default Configuration Tag Name value becomes the Configuration Tag Name value. This tag lets you change the driver's mode. Change the mode by inputting a value between 0 and 3 inclusive, into the configuration tag name. If you enter a value less than 0 or greater than 3, nothing happens.

3.3 ROC Station Control screen

Figure 3-2: ROC Station Control screen.

The ROC Station Control screen defines parameters common to all individual stations. The drive polls the stations in numerical order, beginning at station 1. The driver reserves station 0 for future "all station" applications. The interleave and polled station tags use the station number as defined by this list. Do not confuse this Station Number with the station's ROC *Unit* Number. For example, the station number is 2 if it is second on the list. The actual unit number for that station might differ completely, depending on its definition (see Unit Number below). On-screen, the parameters are listed horizontally, spreadsheet style. We discuss each parameter below.

Station Name

This 16 character name identifies the station and its associated table as defined in Section 3.4. You can name it as you wish.

Unit Number

This value identifies the station targeted by the poll. It is part of the transmit message. The Unit Number should match the "*ROC Address*" as shown on the ROC System Variables Display (GV101 Panel).

Group Number

This value identifies the group number of the remote station targeted by the poll. It is part of the transmit message of the poll. The Group number should match the "ROC Group" as shown on the ROC System Variables Display (GV101 Panel).

Communications Status Flag

This tag identifies the storage location for the station's communication status. The driver sets this value to "0" if communications to the targeted station are NORMAL. The driver sets this value to "1" if communications to the targeted station have failed.

Restart Status Tag Name (Digital)

This tag detects an RTU restart. The driver writes "1" to the restart status tag name. The host time automatically writes to the RTU. The Restart tag resets to "0".

Poll Count Tag Name

The driver adds 1 to this tag value each time the driver makes a poll request to the associated station. This count increases incrementally to approximately $2.147 * 10^9$ (4 bytes). If you need this value to keep daily and/or hourly counts, you must use a separate program to reset the values to zero, among other possibilities.

Incomplete Count Tag Name

The driver adds 1 to this tag each time the driver detects an Incomplete Response to a poll message. An incomplete message receives one or more characters but failed to finish the transmission in the allotted time (see response Time Out value). This count increases incrementally to approximately $2.147 * 10^9$ (4 bytes). If you need this value to keep daily and/or hourly counts, you must use a separate program to reset the values to zero, among other possibilities.

No Response Count Tag Name

The driver adds 1 this tag each time the driver gets NO RESPONSE. A NO RESPONSE defines itself as a poll message that received no characters in the allotted time. This count increases incrementally to approximately $2.147 * 10^9$ (4 bytes). If you need this value to keep daily and/or hourly counts, you must use a separate program to reset the values to zero, among other possibilities.

Poll Enable Tag Name

This tag's value lets functions outside the driver start or stop polling individual stations. The driver checks the status of this tag before polling. If the tag value is not zero, the driver will not poll the station. This feature removes stations from the regular poll list for station servicing or other reasons.

Time Update Tag Name

This tag requests a time update for an individual station. The driver checks this tag before it polls the target station. If the driver finds a non-zero value, it sends the Master Time to the station. The driver automatically sets this tag value if it detects a station restart status in the message returned from the station. In addition, functions outside the driver may set this value any time it needs to download the Master Time.

Normally, the driver downloads the Master Time once per day to ensure system-wide time synchronization.

Regular Update Tag Name

Use this tag to request a regular data poll. The driver uses this flag in the unsolicited mode to provide a background data poll. This poll ensures data integrity. In the Dial Out mode, it scans the station.

Normally, the driver polls each station for current data using the ROC function codes, **0** and **167**.

These function codes return the following information:

- system analog inputs
- discrete inputs
- timed inputs
- field analog inputs
- gas (AGA) flow rate
- gas (AGA) energy rate
- gas (AGA) volume
- gas (AGA) accumulated energy
- raw pulse accumulator
- pulse input rate
- accumulated pulse input
- loop (PID) status
- loop (PID) primary setpoint
- loop (PID) secondary setpoint
- tank accumulation
- current analog output value
- current timed output value
- current discrete output value
- soft point values
- current date and time

You must ask specifically for information not in the above list. You do this by requesting a full update and historical and soft point request tags. After a regular data poll, the driver checks the 3 tags. If set, they trigger the appropriate poll and update the corresponding definitions. Once polled, the flag resets to prevent multiple requests.

Full Update Request Tag Name

This tag requests a full station update. A Full Update Request polls the following information:

- all parameters for each implemented DIX type point (Table 22 on page 26 of the ROC manual);
- all parameters for each implemented DOX type point (Table 23 on page 27 of the ROC manual);
- all parameters for each implemented AIX type point (Table 24 on page 27 of the ROC manual);
- all parameters for each implemented AOX type point (Table 25 on page 28 of the ROC manual);
- all parameters for each implemented PIX type point (Table 26 on page 28 of the ROC manual);
- all parameters for each implemented PID type point (Table 27 on page 29 of the ROC manual);
- all parameters for each implemented AGA type point (Table 28 on page 29 of the ROC manual);
- all parameters for each implemented AGAX type point (Table 30 on page 31 of the ROC manual);
- all parameters for each implemented FST type point (Table 26 on page 34 of the ROC manual);
- all the above poll requests made on a per point basis for all parameters.

The received data only updates implemented point parameters.

Historical Update Tag Name

This tag requests an update of all historical type data points defined for the station. In this example, the tag value targets specific data for the poll.

- Use a number between 1 and 31 as the current month's day number.
- Use a number between -1 and -31 as the previous month's day number.

AGA Parameter Change Tag Name

This parameter marks changes to the AGA values. This tag sets to a "1" if the following configured AGA parameters change:

0	14 15	44 45	50 51
4	15 16	43 47	52
7	22	48	53
8	43	49	

Manual Command Tag Name

Normally, the driver checks all incoming commands for all stations after each station poll finishes. In large systems, the checking process may take several seconds. Specify a tag name in this column to reduce the delay. When you type a tag into this column, the driver will process only an incoming station's commands when it is a non-zero tag value. A non-zero tag value setting tells the driver to process the incoming commands for that station. It then re-sets the tag value to zero.

NOTE: When using a tag in this column, you must set the tag you need. Normally you would need a "SEND DATA" button.

Dial Out Character String

This slot defines the station telephone number to use in the Dial Out mode. The telephone number can have 80 characters. The string must begin with the "AT" Hayes compatible command or the modem will ignore it.

3.4 ROC Station Read/Write Information

See Figure 3-3 on following page.

Figure 3-3: ROC Station Read/Write Information

Each implemented station needs one screen. Each implemented point for a specific station has a separate input line on this screen. Below, we describe each input line.

Tag Name

This entry contains the tag name for data storage. The tag may be either an existing tag previously defined or a new tag created to store data. In either case the USDATA tag type must correspond to the ROC type definition described below.

Point Type

You must identify the ROC information as a particular type so the driver can properly process it. Below are the acceptable point types and a definition of each type. Select this list when configuring a point by using the < ALT-/ > key combination.

DI

This type defines a status input point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	<u>Description</u>
DIGITAL	0	current status

ΑI

This type defines an Analog Input point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	Description
FLOAT	0	current value (eng units)

Parameter "0" defines field analog values. Parameters **1 to 5** implement the special system analogs as follows:

USDATA Type	Valid Parameter	Description_
FLOAT FLOAT FLOAT FLOAT FLOAT	1 2 3 4 5	TX voltage (eng units) input voltage (eng units) AUX 2 voltage (eng units) AUX 1 voltage (eng units) board temp (eng units)

NOTE

You can individually implement the above parameters as desired.

TI

This type defines a digital Timed Input point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	Description
FLOAT	0	timed value (eng units)

AGAF

This type defines an AGA Flow type point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	Description
FLOAT FLOAT	0 1	current gas flow (MCF/day) current energy flow (MMBTU/day)

FLOAT	2	total volume since contract
FLOAT	3	hour (MCF) total energy since contract hour (MMBTU)

ACC

This type defines a pulse input type point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	<u>Description</u>
LONGANA	0	raw accumulator counts
FLOAT	1	rate / unit time (eng units)
FLOAT	2	total today (eng units)

PIDF

This type defines an abbreviated PID loop point. Note that you must use this type to define loop information when you want a regular update (as opposed to a full update).

USDATA	Valid	
Type	Parameter	<u>Description</u>
ANALOG	0	loop status
FLOAT	1	primary setpoint
FLOAT	2	secondary setpoint

TANK

This type defines a Tank type point. This data returns as part of a regular poll request.

USDATA Type	Valid Parameter	<u>Description</u>
FLOAT	0	volume since contract hour

DO

This type defines a Digital control point. The driver updates the status value into the tag slot from the poll it received. The driver also uses this table information to send commands.

Tyne	Parameter	Description
DIGITAL	0	current state

AO

This type defines an Analog setpoint Output point. The driver uses this information to send the setpoint to the station. It also updates the current value as received from the station into the tag slot.

USDATA Type	Valid Parameter	Description
FLOAT	0	current value (eng units)

TO

This type defines a Timed discrete Output point. The driver uses this table information to send the value to the station. The driver also updates the tag slot with the current value as received from the station's response to the regular poll request.

USDATA Type	Valid Parameter	<u>Description</u>
FLOAT	0	current value (eng units)

PID

This type defines a PID control block point. The driver uses this table information to download parameters to the station. The driver updates the parameter value sent by the station into the tag slot. Each time a PID downloads the full update is set for that station.

USDATA		Valid Dov	vn
Type	Parameter	Loadable	<u>Description</u>
MESSAGE	0	yes	point tag ID (10)
ANALOG	1	yes	control type
ANALOG	2	no	switch status
LONGANA	3	no	actual scan time
LONGANA	4	yes	PRI input point
LONGANA	5	yes	PRI output point

FLONGANA	6	ves	PRISW setnoint
LONGANA	7	yes	PRI switch PV
MESSAGE	8	yes	PRI switch mode
LONGANA	9	yes	OVR input point
LONGANA	10	yes	OVR output point
FLOAT	11	yes	OVR SW setpoint
LONGANA	12	yes	OVR switch PV
MESSAGE	13	yes	OVR switch mode
FLOAT	14	yes	setpoint
FLOAT	15	yes	setpoint change/min
LONGANA	16	yes	loop period
FLOAT	17	yes	proportional gain
FLOAT	18	yes	integral gain
FLOAT	19	yes	derivative gain
FLOAT	20	yes	scale factor
FLOAT	21	yes	integral deadband
FLOAT	22	no	process variable
FLOAT	23	yes	output
FLOAT	24	no	switch PV
LONGANA	25	yes	min control time
FLOAT	26	yes	setpoint
FLOAT	27	yes	setpoint change/min
LONGANA	28	yes	loop period
FLOAT	29	yes	proportional gain
FLOAT	30	yes	integral gain
FLOAT	31	yes	derivative gain
FLOAT	32	yes	scale factor
FLOAT	33	yes	integral deadband
FLOAT	34	no	process variable
FLOAT	35	yes	output
FLOAT	36	no	switch PV

Please refer to the Fisher ROC 364 documentation for a complete definition of parameters.

AGA

This type defines an AGA control block point. The driver uses this table information to download parameters to the station. The current parameter value sent by the station updates into the tag slot as part of a full update request. For this reason, each time an AGA downloads the full update sets for that station.

USDATA	Valid	Down		
Type	Parameter	Loadable	Description	

MESSAGE	0	yes	point tag ID (10)
FLOAT	1	yes	latitude
FLOAT	2	yes	elevation
ANALOG	3	yes	calculation method
ANALOG	4	yes	options
FLOAT	5	yes	specific gravity
FLOAT	6	yes	heating value
FLOAT	7	yes	grav accel corr
LONGANA	8	yes	scan period
FLOAT	9	yes	pipe diameter
FLOAT	10	yes	orifice diameter
FLOAT	11	yes	orifice MSRD temp
ANALOG	12	yes	orifice material
MESSAGE	13	yes	description (30)
ANALOG	14	yes	alarm code
FLOAT	15	yes	low alarm
FLOAT	16	yes	high alarm
FLOAT	17	yes	viscosity
FLOAT	18	yes	specific heat ratio
FLOAT	19	yes	contract pressure
FLOAT	20	yes	contract temp
FLOAT	21	yes	diff PR low cutoff
FLOAT	22	yes	grav correction
FLOAT	23	yes	nitrogen
FLOAT	24	yes	carbon dioxide
FLOAT	25	yes	hydrogen sulfide
FLOAT	26	yes	water
FLOAT	27	yes	helium
FLOAT	28	yes	methane
FLOAT	29	yes	ethane
FLOAT	30	yes	Propane
FLOAT	31	yes	n-butane
FLOAT	32	yes	i-butane
FLOAT	33	yes	n-pentane
FLOAT	34	yes	i-pentane
FLOAT	35	yes	n-hexane
FLOAT	36	yes	n-heptane
FLOAT	37	yes	n-octane
FLOAT	38	yes	n-nonane
FLOAT	39	yes	n-decane
FLOAT	40	yes	oxygen
FLOAT	41	yes	carbon monoxide
FLOAT	42	yes	hydrogen
ANALOG	43	no	spare
ANALOG	44	yes	enable stacked DP

LONGANA	45	ves	low diff PR number
LONGANA	46	yes	diff PR number
LONGANA	47	yes	static PR number
LONGANA	48	yes	temperature number
FLOAT	49	yes	low diff PR setpoint
FLOAT	50	yes	high DP setpoint
FLOAT	51	yes	HW
FLOAT	52	yes	PF
FLOAT	53	yes	TF

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

DIX

This type defines an auxiliary status input type point. The driver uses this type for status points where it needs more information on the point. It also uses this table information to download parameters to the station. The current parameter value as received from the station also updates into the tag slot. For this reason, each time a DIX downloads, the full update sets for that station.

USDATA	Valid	Down	
Type	Parameter	Loadable	<u>Description</u>
MESSAGE	0	yes	point tag ID (10)
ANALOG	1	yes	filter
ANALOG	2	yes	status
ANALOG	3	yes	modes
ANALOG	4	no	alarm code
LONGANA	5	yes	accum value
LONGANA	6	yes	on counter
LONGANA	7	yes	off counter
LONGANA	8	yes	0% count
LONGANA	9	yes	100% count
LONGANA	10	yes	max count
MESSAGE	11	yes	units
LONGANA	12	yes	scan period
FLOAT	13	yes	zero eng unit
FLOAT	14	yes	span eng unit
FLOAT	15	yes	low alarm
FLOAT	16	yes	high alarm
FLOAT	17	yes	lolo alarm
FLOAT	18	yes	hihi alarm
FLOAT	19	yes	delta alarm
FLOAT	20	yes	alarm deadband

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

DOX

This type defines an auxiliary status output point. The driver uses this type for status output points where it needs more information on the point. It also uses this table information to download parameters to the station. The driver updates the current parameter from the poll request into the tag slot. For this reason, the full update sets each time a DOX downloads.

USDATA Type	Valid Parameter	Down Loadable	Description
MESSAGE LONGANA ANALOG ANALOG ANALOG ANALOG LONGANA MESSAGE	0 1 2 3 4 5 6 7	yes yes no yes yes no yes yes no yes	point tag ID (10) time on spare status mode alarm code accum value units (10)
LONGANA LONGANA LONGANA FLOAT FLOAT FLOAT	8 9 10 11 12 13	yes yes yes yes yes	cycle time 0% count 100% count low reading eng unit hi reading eng unit eng unit value

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

AIX

This type defines an auxiliary Analog Input type point. The driver uses this type when it needs more information on the point. It also uses the table information to download parameters to the station. The driver updates the current parameter values as received from the full poll of the station into the tag slot. For this reason, the full update is set for that station each time it performs an AIX download.

USDATA	Valid	Down	
Type	Parameter	Loadable	Description

MESSAGE	0	yes	point tag ID (10)
MESSAGE	1	yes	units (10)
LONGANA	2	yes	scan period
LONGANA	3	yes	filter
LONGANA	4	yes	adj a/d 0%
LONGANA	5	yes	adj a/d 100%
FLOAT	6	yes	low reading eng unit
FLOAT	7	yes	hi reading eng unit
FLOAT	8	yes	low alarm eng unit
FLOAT	9	yes	hi alarm eng unit
FLOAT	10	yes	lolo alarm eng unit
FLOAT	11	yes	hihi alarm eng unit
FLOAT	12	yes	delta alarm eng unit
FLOAT	13	yes	alarm deadband
FLOAT	14	yes	filtered eng unit
ANALOG	15	yes	mode
ANALOG	16	no	alarm code
LONGANA	17	no	raw A/D input
LONGANA	18	no	actual scan

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

AOX

This type defines an auxiliary Analog Output type point. The driver uses this type when it needs more information on the point. The driver also uses this table information to download parameters to the station. It updates the current parameter values (from the station's full update), into the tag slot. For this reason, the full update is set for that station each time it performs an AOX download.

USDATA Type	Valid Parameter	Down Loadable	Description
MESSAGE	0	yes	point tag id (10)
MESSAGE	1	yes	units (10)
LONGANA	2	yes	adj a/d 0%
LONGANA	3	yes	adj a/d 100%
FLOAT	4	yes	low reading eng unit
FLOAT	5	yes	hi reading eng unit
FLOAT	6	yes	eng unit value
ANALOG	7	yes	mode
ANALOG	8	no	alarm code
LONGANA	9	no	raw a/d output

Please refer to the Fisher ROC 364 documentation for a complete definition of parameters.

PIX

This type defines an auxiliary Pulse Input type point. The driver uses this type for pulse inputs when it needs more information on the point. It also uses the table information to download parameters to the station. The station receives the current parameter from a full update request and uploads it into the tag slot. For this reason, the full update is set for that station each time a PIX downloads.

USDATA	Valid	Down	5
Type	Parameter	Loadable	Description
MESSAGE	0	yes	point tag ID (10)
MESSAGE	1	yes	units (10)
ANALOG	2	yes	rate flag
ANALOG	3	yes	rate period
ANALOG	4	no	type
LONGANA	5	yes	scan period
FLOAT	6	yes	conversion
FLOAT	7	yes	low alarm eng unit
FLOAT	8	yes	hi alarm eng unit
FLOAT	9	yes	lolo alarm eng unit
FLOAT	10	yes	hihi alarm eng unit
FLOAT	11	yes	delta alarm eng unit
FLOAT	12	yes	alarm deadband
FLOAT	13	yes	eng unit value
ANALOG	14	yes	mode
ANALOG	15	no	alarm code
LONGANA	16	yes	accum value
FLOAT	17	no	current rate
FLOAT	18	yes	today's total
FLOAT	19	no	yesterday's total

Please refer to the Fisher ROC 364 documentation for a complete definition of parameters.

FST

This type defines Funnction Sequence Table type points. The driver also uses this table information to download parameters to the station. The current parameter value (received as part of a full update request) updates

the tag slot. For this reason, the full update is set each time an FST downloads.

USDATA	Valid	Down	
Type	Parameter	Loadable Description	
			_
MESSAGE	0	yes	point tag ID (10)
FLOAT	1	yes	result register
FLOAT	2	yes	register # 1
FLOAT	3	yes	register # 2
FLOAT	4	yes	register # 3
FLOAT	5	yes	register # 4
FLOAT	6	yes	register # 5
FLOAT	7	yes	register # 6
FLOAT	8	yes	register # 7
FLOAT	9	yes	register # 8
FLOAT	10	yes	register # 9
FLOAT	11	yes	register # 10
LONGANA	12	yes	timer # 1
LONGANA	13	yes	timer # 2
LONGANA	14	yes	timer # 3
LONGANA	15	yes	timer # 4
MESSAGE	16	yes	message # 1 (30)
MESSAGE	17	yes	message # 2 (30)
MESSAGE	18	no	message data (10)
ANALOG	19	yes	misc
ANALOG	20	yes	misc
ANALOG	21	yes	misc
ANALOG	22	yes	misc
ANALOG	23	yes	compare flag SVD
ANALOG	24	yes	run flag
LONGANA	25	yes	code size
LONGANA	26	yes	inst pointer
LONGANA	27	yes	execution delay

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

AGAX

This type defines more AGA loop parameters. A full update request updates any AGAX type points.

USDATA	Valid	
	Parameter	<u>Description</u>
Type	r ai aiiictei	<u>Description</u>
FLOAT	0	1
FLOAT	0	hw
FLOAT	1	pf
FLOAT	2	Tf
FLOAT	3	MCF/day
FLOAT	4	MMBTU/day
FLOAT	5	MCFs today
FLOAT	6	MMBTUs today
FLOAT	7	MCFs yesterday
FLOAT	8	MMBTUs yesterday
FLOAT	9	Pressure extension
FLOAT	10	C prime
FLOAT	11	sample time
FLOAT	12	expansion factor
FLOAT	13	Fr
FLOAT	14	Ftf
FLOAT	15	Fpv
FLOAT	16	Fgr
FLOAT	17	Fb
FLOAT	18	Fpb
FLOAT	19	Ftb
FLOAT	20	Fa

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

HIST

This type defines historical type points. The parameters match the ROC data returned with an opcode 128 request. They start by setting the historical update request flag for that station.

USDATA Type	Valid Parameter	Description
FLOAT	0	hour 0
FLOAT	1	hour 1
FLOAT	2	hour 2
FLOAT	3	hour 3
FLOAT	4	hour 4
FLOAT	5	hour 5
FLOAT	6	hour 6

FLOAT	7	hour 7	
FLOAT	8	hour 8	
FLOAT	9	hour 9	
FLOAT	10	hour 10	
FLOAT	11	hour 11	
FLOAT	12	hour 12	
FLOAT	13	hour 13	
FLOAT	14	hour 14	
FLOAT	15	hour 15	
FLOAT	16	hour 16	
FLOAT	17	hour 17	
FLOAT	18	hour 18	
FLOAT	19	hour 19	
FLOAT	20	hour 20	
FLOAT	21	hour 21	
FLOAT	22	hour 22	
FLOAT	23	hour 23	
FLOAT	24	daily	
FLOAT	25	min	
FLOAT	26	max	
MESSAGE	27	mm-dd-yy	
ANALOG	28	month (1-12)	
ANALOG	29	day (1-31)	

Please refer to Fisher ROC 364 documentation for a complete definition of parameters.

SOFT

This type defines Soft type points. The parameters correspond to the ROC data returned with an opcode 180 request. They start by setting the Soft Point update request flag for that station. The driver includes any Soft Points found in the read and write tables in the regular poll.

USDATA Type	Valid Parameter	Down Loadable	Description
MESSAGE	0	yes	point tag ID
LONGANA	1	yes	integer flag
FLOAT	2	yes	data #1
FLOAT	3	yes	data #2
FLOAT	4	yes	data #3
FLOAT	5	yes	data #4
FLOAT	6	yes	data #5
FLOAT	7	yes	data #6

FLOAT	8	ves	data #7
FLOAT	9	yes	data #8
FLOAT	10	yes	data #9
FLOAT	11	yes	data #10
FLOAT	12	yes	data #11
FLOAT	13	yes	data #12
FLOAT	14	yes	data #13
FLOAT	15	yes	data #14
FLOAT	16	yes	data #15
FLOAT	17	yes	data #16
FLOAT	18	yes	data #17
FLOAT	19	yes	data #18
FLOAT	20	yes	data #19
FLOAT	21	yes	data #20

DATE

This point type retrieves date and time from the ROC.

NOTE	
This value returns as part of the regular poll.	

USDATA Type	Valid Station	Valid Parameter	<u>Description</u>
MESSAGE	1	0	DATE e.g.: 08-21-95 = Aug. 21,
1995 MESSAGE	1	1	TIME e.g.: 11:43:30

Station Point Number

The Station Point Number is the point number used in the station. This number links the number used by the station and the USDATA tag.

NOTE: When building the database for a particular station, you can define the points in any order.

Station Parameter Number

The Station Parameter Number identifies data associated with the station. It matches the data descriptions provided under the "Point Type" heading. When configuring a station database, you only need to define the parameters from which you will draw data. You can define the parameters in any order. You must match each parameter's USDATA type to the parameter given under "Point Type". Matching the wrong data type or inputting a parameter number greater than its limit causes an error when the driver starts up.

MV

This type is used to define an MVS type point. This data is returned as part of a regular poll.

USDATA	Valid	Down			
Type	Parameter	Loadable	Description	ROC 407	312/364 SI MVS
float	0	yes	Diff. EU	ai16_0/ai20_0/	*softzz_y
				ai24_0/ai28_0	
float	1	yes	Static EU	ai17_0/ai21_0/	*softzz_y+1
				ai25_0/ai29_0	
float	2	yes	Temperature EU	ai18_0/ai22_0/	*softzz_y+2
				ai26_0/ai30_0	
float	3	yes	Reverse Diff. EU		*softzz_y+3
				ai27_0/ai31_0	

*NOTE: zz = softpoint selected y = softpoint parameter

MVX

This type is used to define an MVS type point. This data is currently stored in the host until the new protocol is added.

USDAT	ੌA	Valid	Down		
Type	Parameter	Loadable	Description	ROC 407	312/364 SI MVS
Messag	e	0	No	MVS Point Tag	Host Only Host
Only					·
Analog	1	No	MVS Address	Future Use	Future Use
Analog		2	No	MVS Config	Future Use Future
Use				C	
Analog	3	No	MVS poll Method	Future Use	Future Use
Analog	4	No	MVS Spare	Future Use	Future Use
Analog	5	312/364 only	MVS Status	Future Use	**softzz_y+4
Analog	6	No	MVS Alarms	Future Use	Future Use
float	7	No	MVS Controller voltage	Future Use	Future Use
float	8	No	Diff. EU	Future Use	Future Use
float	9	No	Static EU	Future Use	Future Use
float	10	No	Temperature EU	Future Use	Future Use
float	11	No	Reverse Diff. EU	Future Use	Future Use
float	12	No	Pressure Effect	Future Use	Future Use
float	13	No	DP Cal. Min	Future Use	Future Use
float	14	No	DP Cal. Val Point 1	Future Use	Future Use
float	15	No	DP Cal. Val Point 2	Future Use	Future Use
float	16	No	DP Cal. Val Point 3	Future Use	Future Use
float	17	No	DP Cal. Max	Future Use	Future Use
float	18	No	Static Cal. Min	Future Use	Future Use
float	19	No	Static Cal. Val Point 1	Future Use	Future Use
float	20	No	Static Cal. Val Point 2	Future Use	Future Use
float	21	No	Static Cal. Val Point 3	Future Use	Future Use
float	22	No	Static Cal. Max	Future Use	Future Use
float	23	No	TT Cal. Min	Future Use	Future Use
float	24	No	TT Cal. Val Point 1	Future Use	Future Use
float	25	No	TT Cal. Val Point 2	Future Use	Future Use
float	26	No	TT Cal. Val Point 3	Future Use	Future Use
float	27	No	TT Cal. Max	Future Use	Future Use
Analog	28	No	Cal Command	Future Use	Future Use
Analog	29	No	Cal Type	Future Use	Future Use
float	30	No	Set Valve	Future Use	Future Use
float	31	No	Manual DP Valve	Future Use	Future Use
float	32	No	Manual PRS Valve	Future Use	Future Use
float	33	No	Manual TT Valve	Future Use	Future Use
Analog	34	No	DP Alarm Mode	Future Use	Future Use
Analog	35	No	DP Alarm Alarm	Future Use	Future Use
float	36	No	DP Alarm Low Limit	Host Only	Host Only
float	37	No	DP Alarm High Limit	Host Only	Host Only

CI (20	NT	DD 41 D 11 1	D. II	Г. П	
float float	38 39	No No	DP Alarm Deadband DP Alarm Fault	Future Use Future Use	Future Use Future Use	
Analog		No	Static Alarm Mode	Future Use	Future Use	
Analog		No	Static Alarm Alarm	Host Only	Host Only	
float	42	No	Static Alarm Low Limit	Host Only	Host Only	
float	42	No	Static Alarm High Limit	Host Only	Host Only	
float	44	No	Static Alarm Deadband	Future Use	Future Use	
float	44	No	Static Alarm Fault	Future Use	Future Use	
Analog		No	TT Alarm Mode	Future Use	Future Use	
Analog		No	TT Alarm Alarm	Future Use	Future Use	
float	48	No	TT Alarm Low Limit	Host Only	Host Only	
float	49	No	TT Alarm High Limit	Host Only	Host Only	
float	50	No	TT Alarm Deadband	Future Use	Future Use	
float	51	No	TT Alarm Fault	Future Use	Future Use	
Messag	e	52	No	Diff Point Tag	Host Only	Host
Only				_		
Messag	e	53	No	Diff Units	Host Only	Host
Only						
float	54	No	Diff Low EU Reading	Host Only	Host Only	
float	55	No	Diff High EU Reading	Host Only	Host Only	
Messag	e	56	No	Static Point Tag	Host Only	Host
Only			_	·		
Message		57	No	Static Units	Host Only	Host
Only				·		
float	58	No	Static Low EU Reading	Host Only	Host Only	
float	59	No	Static High EU Reading	Host Only	Host Only	
Messag	e	60	No	Temp Point Tag	Host Only	Host
Only				1 0	J	
Message		61	No	Temp Units	Host Only	Host
Only						
float	62	No	Temp Low EU Reading	Host Only	Host Only	
float	63	No	Temp High EU Reading	Host Only	Host Only	
Messag		64	No	Rev Diff Point Ta		Host
Only	Host Only					
Messag	_	65	No	Rev Diff Units	Host Only	Host
Only						
float	66	No	Rev Diff Low EU Reading	Host Only	Host Only	
float	67	No	Rev Diff High EU Reading	•	Host Only	
float	68	No	Rev Diff Low Alarm	Host Only	Host Only	
float	69	No	Rev Diff High Alarm	Host Only	Host Only	
Hoat	0)	110	Rev Dili Tilgii Alailii	110st Omy	110st Offiny	

*Host Only - refers to points currently defined in the host that will be added to the ROC when the new protocol is written.

**NOTE: zz = softpoint selectedy = softpoint parameter

Parameters 0 to 51 are defined based on information received from Fisher. Parameters 52 to 69 have been added to accommodate Spartan's requirements.

Section 4 Glossary

GLOSSARY

A

ACC: A pulse input point.

AGA: An international equation to determine flow.

AGAF: AGA Flow point.

AGAX: Additional AGA loop parameter point.

AI: Analog Input point.

AIX: Auxiliary analog input point.

Analog: This term describes a device that measures real values.

AO: Analog setpoint Output point.
AOX: Auxiliary Analog Output point.

B

Baud: The communication speed of the modem in bits per second (bps).

D

Data points: Temporary data storage areas for writing and retrieval. **DATE:** Point type that retrieves date and time from the ROC.

DCD: Data Carrier Detector (modem).

Dial Out mode: When the driver tries to communicate with the ROCs.

DI: A status input point.

Discrete: This term describes an "on" or "off" device. It is also known as a

digital device.

DIX: Auxiliary status (digital) input point.

DO: Digital control Output point.

DOX: Auxiliary status (digital) output point.

Driver: Also known as the ROC driver. **DTR:** Data Terminal Ready (modem).

 ${f E}$

EU: Engineering units. Internationally recognized measurements.

F

Flag: An instruction set. Flag types are Foreground, Run and Session. **FloBoss:** The latest step in efficient flow monitoring, listed as the ROC 407.

FST: Function Sequence Table.

Section 4 Glossary

H

Hard Coded: A program fixed in a driver. To change it, you must change the

program itself.

Hayes compatible

modem: A modem that uses a well-defined and well-documented command

set.

HIST: A Historical point.

I

Implement: An item that is active, like a station.

Increment: Increasing a value by a set value, usually by one. **Input:** Gathering information from a device or monitor.

Interleave: Alternately polling one station between the others. e.g. Station 1,

2, 1, 3, 1, 4, etc. Station 1 is the interleave station.

I/O: Input/Output.

I/O interface

module: The device driver that lets FactoryLink WINDOWS NT talk to the

ROC.

M

Master Time: The driver time that synchronizes with the ROC clocks.

N

Non-zero: A number that is anything but a 0 (zero).

0

Opcode: The communication language abbreviation for Operational Code.

Output: Sending instructions and information to a device.

P

Parameters: The rules that configure a system.

PID: A PID control block point.

PIDF: Abbreviated PID loop poin.

PIX: Auxiliary pulse input point.

Polled mode: When polls are made continuously in a "round robin".

Section 4 Glossary

R

RTS: Request to Send by the Host Modem.

ROC: Remote Operator's Control.

Round Robin

polling: The Host polls each station sequentially and then re-polls each

station in the same order.

S

Serial Port: A socket for plugging in peripheral hardware.

Shared Domain: An area where both the User and the Host have access.

Soft point: A temporary memory spot where you write data in the ROC.

SOFT: Soft point.

Spool: The PC's preparation to print a file.

T

Tag: A location for data that triggers a reaction from the driver.

TANK: A tank input point. **TI:** Timed Input point.

TO: Timed discrete Output point.

Section 5 Index

INDEX

\boldsymbol{A}

ACC, 24

Additional AGA, 20, 33

AGA, 19, 20, tc.

AGA Inputs, 19

AGAF, 23

AGAX, 20, 33

AI, 22

AIX, 20, 29, 30

All Station Time Update, 13

ALT /, 13, 15, 16, 22

Analog Input, 22, 29

Analog Inputs, 19

Analog Output, 19, 30

Analog Setpoint Output Point, 25

AO, 25

AOX, 20, 30

Application Directory, 8

authorization, 5

Auxiliary Analog Input, 20, 29, 30

Auxiliary Analog Output, 20, 30

Auxiliary Pulse, 20, 31

Auxiliary Status Input, 20, 28

Auxiliary Status Output, 20, 29

В

Baud Rate, 2, 13

 \boldsymbol{C}

Communications Status, 11, 17

\boldsymbol{D}

DATE, 19, 35

date/time, 19

Default, 14, 16

Delay, 13, 14, 15

Description, 8

DI, 22

dial out mode, 14, 15, 19, 21

Dialout Character String, 21

Digital Control Point, 5, 24

Digital Timed Inputs, 23

Discrete Inputs, 19

Discrete Output, 19, 25

Display Descriptor, 8

Display Name, 8

Display Status, 8

DIX, 20, 28

DOX, 20, 29

Section 5 Index

 $\boldsymbol{\mathit{E}}$ Executable File, 8 F field point, 2 FST Points, 20, 32 full duplex, 3 Full Update Request, 16, 19, etc. Group Number, 17 H **Historical Points**, 16, 19, 20, 33 I IBM Arctic Card., 3 **Incomplete Count**, 18 **INSTALL**, 5 installation, 5 Inter (Dial) Station Delay, 14 Interleave, 12, 14, 15, 17 **Interleave Poll**, 12 Interleave Poll TagXE "Tag" Name, 12 Introduction, 11 L Loop & PID, 19, 24, etc. M Mode, 12, 14, etc. modems, 3 N No Response Count, 18 P PID, 19, 20, etc. PIDF, 24 PIX, 20, 31 Point Type, 3, 22, 35, 36 Poll Count, 18 Poll Enable, 18 polled mode, 14 **Polled Station Display**, 13 Polled Station Display TagXE "Tag" Name, 13 Priority, 8 Program Arguments, 8 Program Directory, 8 Pulse Inputs, 19, 24, 31

R

Regular Update, 19 Response Timeout, 13 Section 5 Index

Restart Status, 17, 18 Retry Count, 13 ROC DriverXE "driver" Communication Information, 11 ROC Station Control, 11 ROC Station Read / WriteXE "Station Read/Write Information" Information, 11

C

Same Station Delay, 14

SCADA, 5

serial asynchronous port, 3

Serial Port, 2, 13

Serial Port Name, 13

Soft Points, 19, 34

Start Order, 8

Start Trigger, 8

Station, 35

Station Control, 3, 11, 15, 16

Station Name, 3, 17

station number, 12, 13, 17

Station Parameter Number, 36

Station Point Number, 35

Station Read/Write Information, 11, 21

T

tables, 11

Tag, 3, 8, etc.

TAG NAME, 11

Tank Inputs, 19, 24

Task Message, 8

Task Name, 8

Task Status, 8

TI, 23

Time Update, 13, 18

Timed Inputs, 19

Timed Output, 19

Transmit Turn On, 15

 \boldsymbol{U}

Unit Number, 14, 17