

PROJET PYTETRE

Promotion Mai 2021 Continue / Data Analyst

NOTRE TEAM ET LE SUJET

Corine

Thierry

Vivien

Xiyuan

ANALYSE DE LA LOGISTIQUE DE LIVRAISON E-COMMERCE

OI. PRESENTATION DU PROBLEME

PRESENTATION DU PROBLEME

- □ Une entreprise spécialisée dans le e-commerce de produits électroniques recherche des solutions afin de pouvoir livrer à temps ses clients
- Une équipe de Data Analyst a été sollicitée pour utiliser sa base de données clients/commandes et mobiliser les outils de Machine Learning afin de résoudre cette problématique
- □ Notre objectif final est de proposer des outils d'aide à la décision mais également de prédiction grâce à un algorithme qui pourra être déployé au sein de cette structure par la suite

O2. LES DONNEES

LES DONNEES - PRESENTATION

□ Notre jeu de données mis à disposition pour ce projet comporte 12 variables et 10999 enregistrements dont voici un extrait :

ID	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Product_importance	Gender	Discount_offered	Weight_in_gms	Reached.on.Time_Y.N
	D	Flight	4	2	177	3	low	F	44	1233	1
	F	Flight	4	5	216	2	low	M	59	3088	1
	B A	Flight	2	2	183	4	low	M	48	3374	1
	В	Flight	3	3	176	4	medium	M	10	1177	1
	C	Flight	2	2	184	. 3	medium	F	46	2484	1
	5 F	Flight	3	1	162	3	medium	F	12	1417	1
	7 D	Flight	3	4	250	3	low	F	3	2371	. 1
	F	Flight	4	1	233	2	low	F	48	2804	1
- 1	A	Flight	3	4	150	3	low	F	11	1861	. 1
1	В	Flight	3	2	164	. 3	medium	F	29	1187	1

- □ La variable cible est Reached.on.Time Y.N prenant pour valeur 1 si la livraison a été effectuée en retard et 0 dans le cas contraire
- □ La première variable ID est inutile dans nos analyses est sera supprimée
- □ Aucune donnée n'est manquante et/ou nécessite transformation
- □ Aucune indication d'autres sources de données disponibles pour analyse complémentaire

LES DONNEES — EXPLORATION 1/2

□ Durant la première phase du projet nous avons réalisé un grand nombre de visualisations dont nous n'avons conservé que les 6 les plus marquantes, présentées à la fois dans notre rapport technique et dans cette présentation

LES DONNEES — EXPLORATION 2/2

- □ Ces visualisations ont permis d'identifier que les 3 variables à priori les plus impactantes sur notre variable cible sont :
- le coût du produit
- le discount offert
- le poids de l'expédition

O3.
MODELES DE
MACHINE
LEARNING

MODELES ML- CLASSIFICATION DU PROBLEME

- □ Notre projet s'apparente à un problème de classification (classification nominale binaire).
- □ La variable cible (Reached.on.Time Y.N) est qualitative.
- □ Le modèle de ML nous aide à prédire à quelle classe chaque commande appartient.

MODELES ML- MISE EN OEUVRE

- Avant d'appliquer les modèles de machine learning, nous avons suivi toutes les étapes de pré-processing.
- Nous avons préparé les données en utilisant les pipelines afin d'optimiser le code et de minimiser les bugs.
- Nous avons utilisé 5 modèles différents : Régression Logistique, K-Nearest Neighbors, Gradient Boosting, Decision Tree et Random Forest.

MODELES ML-DEFINITIONS

OI REGRESSION LOGISTIQUE

La régression logistique est une méthode qui consiste à prédire une valeur de données d'après les observations réelles d'un jeu de données.

03 & 04 Decision tree & random forest

Des méthodes permettant de construire des arbres de décision qui serviront de modèle de classification / prédiction.

02 K-NEAREST NEIGHBORS

La méthode KNN a pour but de classifier des points cibles en fonction de leurs distances par rapport à des points constituant un échantillon d'apprentissage.

05 GRADIENT BOOSTING

Gradient Boosting est une méthode s'appuyant sur des arbres de décision, elle permet de transformer les "apprenants faibles" en "apprenants forts". Chaque arbre s'adapte à la version modifiée du premier ensemble de données.

DEMO MACHINE LEARNING STREAMLIT

O4. CONCLUSIONS

CONCLUSIONS — REGARD CRITIQUE

Durant ce projet nous nous sommes rendus compte qu'un certain nombre de données supplémentaires auraient pu nous aider à compléter, affiner nos analyses et modèles.

Par exemple :

- la date de la commande aurait pu nous aider à identifier une éventuelle saisonnalité à la fois de la disponibilité du matériel commandé que des difficultés d'expédition
- La localisation géographique à la fois des entrepôts de stockage que des clients pour valider des hypothèses liées à la distance entre point de stockage et livraison (y compris la notion de continents)

Ces données n'étaient malheureusement ni disponibles dans le jeu ni « inventables ».

CONCLUSIONS

Avec peu de données, il est parfois difficile d'être conclusifs. Avoir la possibilité d'accéder à des données complémentaires nous aurait aidé Le meilleur modèle mis en oeuvre (Gradient Boosting) amène à un résultat de maximum 70% de prédictabilité

Merci à Jérémy de son support durant ce projet. Guidage, méthodologie et surtour disponibilité ont été les maîtres mots

MERCI DE VOTRE ATTENTION

Session de Questions/Réponses

