pKa Values				
		INDEX		
Inorganic	2	Phenazine	24	
Phosphates	3	Pyridine	25	
Carboxylic acids	4, 8	Pyrazine	26	
Aliphatic	4, 8			
Aromatic	7, 8	Quinoline	27	
Phenols	9	Quinazoline	27	
Alcohols and oxygen acids	10, 11	Quinoxaline	27	
Amino Acids	12	Special Nitrogen Compounds	28	
Peptides	13	Hydroxylamines	28	
Nitrogen Compounds	14	Hydrazines	28	
Aliphatic amines	15, 17, 19	Semicarbazones	28	
Cyanoamines	16	Amidoximes	28	
Anilines	17, 18, 20	Thiols	29	
Nucleosides	21	Carbon Acids	30,31	
Special Table Heterocycles	22	Indicators	31	
Acridine	23	References	32-34	
Benzoquinoline	24			
Cinnoline	23			
Hydantoin	24			

For complex chelating agents, see also reference 77.

24

Imidazole

Note. This document was compiled by W.P. Jencks and has been added to by F.H. Westheimer

ACIDS					
Compound	рK	Ref.	H_3PO_2	2.0, 2.23*	28
			$H_2PO_4^-$	7.21*	77
AgOH	3.96	4	HPO ₄ –	12.32*	77
Al(OH) ₃	11.2	28	H ₃ PO ₃	2.0	28
As(OH)3	9.22	28	H ₂ PO ₃ -	6.58*	77
H ₃ AsO ₄	2.22, 7.0, 13.0	28	H ₄ P ₂ O ₇	1.52*	77
H ₂ AsO ₄ -	6.98*	77	H ₃ P ₂ O ₇ ⁻	2.36*	77
HAsO ₄ *	11.53*	77			
As ₂ O ₃	0	4	$H_2P_2O_7=$	6.60*	77 ~~
H ₃ AsO ₃	9.22*	00	$HP_2O_7=$	9.25*	77
H ₃ BO ₃	9.23*	28	HReO ₄	-1.25	30
H ₂ B ₄ O ₇	4.00	34	HSCN	4.00	34 28
HB4O7	9.00	34	H ₂ SeO ₃	2.6, 8.3, 2.62* 8.32	2 0 77
Be(OH) ₂	3.7	4	HSeO3 H2SeO4	Strong, 2.0	28
HBr HOBr	-9.00 8.7	31 28	HSeO4	2.00	34
HOCl	7.53, 7.46	28, 33	H ₃ SiO ₃	10.0	34 34
HClO ₂	2.0	28	H ₂ SO ₃	1.9, 7.0, 1.76*	28, 77
HClO ₃	-1.00	28	H ₂ SO ₃	-3.0, 1.9	28
HClO ₄ (70%)	-10.00	31	HSO ₃	7.21*	77
CH ₃ SO ₃ H	-0.6	31	HSO ₄ -	1.99*	77
HCN	9.40	34	H ₂ S ₂ O ₄	1.99	29
H ₂ CO ₃	6.37, 6.35*, 3.58	34, 32	H ₂ S ₂ O ₄ H ₂ Se	3.89*	29 77
HCO ₃	10.33*				
H ₂ CrO ₄	-0.98	30	HSe ⁻ H ₂ S	11.00* 7.00*	77 77
HCrO ₄	6.50*	2, 30			
HOCN	3.92	34	HS [–] HSbO ₂	12.92* 11.0	77 34
HZ	3.17*, 0.59*	77	HTe	5.00	34 34
H ₂ GeO ₃	8.59, 12.72	34, 78	H2Te	2.64, 11.0	34, 78
Ge(OH)4	8.68, 12.7	28	H ₂ TeO ₃	2.7, 8.0	28
HI	-10.0	31	Te(OH) 6	6.2, 8.8	28
HOI	11.0 0.8	28 28	H ₂ VO ₄ ⁻	8.95	30
HIO3					30 30
H4IO6 ⁻	6.00	34	HVO ₄ =	14.4	
H ₅ IO ₆	1.64, 1.55, 8.27	34, 28	H2CrO4 HOCN	0.74 3.73	77 77
HMnO4	-2.25	30	HSCN	0.85	77 77
NH3OH*	5.98*	77	H ₃ PO ₂	1.07	77
NH ₄ *	9.24* 4.72*	77	H3PO4	2.12*	77
HN3 HNO2	3.29	77 28	H ₂ S ₂ O ₃	0.60*, 1.72*	77
HNO ₂ HNO ₃	-1.3	28	H ₃ AuO ₃	13.3, 16.0	78
-			H3GaO3	10.32, 11.7	78
N ₂ H ₅ +	7.99*	77	H ₅ IO ₆	3.29, 6.70, 15.0	78
H ₂ N ₂ O ₂	7.05	34	00	(see above!)	
$H_2N_2O_2^-$	11.0	34	$H_4V_6O_{17}$	1.96	78
H ₂ OsO ₅	12.1	34	H ₂ NSO ₃ H	1.0	80
H ₂ O	15.7	none			
H ₃ O ⁺	-1.7	none	* Indicates a the	rmodynamic value.	
Pb(OH)2	6.48 (10.92)	4 (78)			

PHOSPHATES AND I	PHOSPHONAT	ES	CF3-		1.16, 3.93	57
Dl l 4			CCl ₃ -		1.63, 4.81	57
Phosphates	T 7	D C	NH ₃ +CH	2-	2.35, 5.9	57
Compound	pK	Ref.	(-OOCCH	I ₂) ₂ NH ⁺ CH ₂ ⁻	, 5.57	57
Phosphate	1.97, 6.82, 12.5	55	CHCl ₂ -		1.14, 5.61	57
Glyceric acid 2-phosphate		53	CH ₂ CI-		1.40, 6.30	57
Enolpyruvic acid	3.5, 6.4	53	CH ₂ Br-		1.14, 6.52	57
Methyl-	1.54, 6.31	55		H22NH+(CH2)2-		57
Ethyl-	1.60, 6.62	55	CH ₂ I-		1.30, 6.72	57
n-Propyl-	1.88,6.67	55	~	CII		
n-Butyl-	1.80, 6.84	55	NH ₃ +CH		2.45, 7.00	57
Dimethyl-	1.29	55	C ₆ H ₅ CH=	=CH-	2.00, 7.1	57
Di-n-propyl	1.59 1.72	55 55	HOCH ₂ -		1.91, 7.15	57
Di-n-butyl- Glucose-3-	0.84, 5.67	56	C_6H_5NH	2+(CH ₂) ₃ -	2.1,	57
Glucose-4-		56	C_6H_5NH	(CH ₂) ₃ -	, 7.17	57
	0.84, 5.67	54	Br(CH2)2) -	2.25, 7.3	57
-glycero- -glycero-	1.40, 6.44 1.37, 6.34	54 54	CH3(CH2	2)5CH(COO ⁻⁾ -	, 7.5	57
3-phosphoglyceric acid	1.42, 3.42	54 54	C ₆ H ₅ CH ₂	-	2.3, 7.55	57
2-phosphoglyceric acid	1.42, 3.55, 7.1	J4		=	2.55, 7.55	57
peroxymonophosphoric ac		69	NH ₃ +(CH		,	
diphosphoglyceric acid	7.40, 7.99	5 4	NH ₃ ⁺ (CH	H ₂) ₅ -	2.6, 7.6	57
glyceraldehyde-	2.10, 6.75	54 54	NH ₃ ⁺ (CH	H ₂) ₁₀ -	, 8.00	57
dioxyacetone-	1.77,6.45	54 54	OOC(CH	H2)10-	, 8.25	57
hexose di-	1.52, 6.31	54 54	(CH ₃) ₃ Si		3.22, 8.70	57
fructose-6-	0.97, 6.11	54 54	C ₆ H ₅ CH ₂		3.3, 8.4	57
glucose-6-	0.94, 6.11	54 54	$(C_6H_5)SC$		3.85, 9.00	57
glucose-1-	1.10, 6.13	54	(06115)30) -	3.63, 3.00	37
adenylic acid	3.8?, 6.2?	54	A seed to be a se	nhania asida		
inosinic acid	2.4?, 6.4?	54		phonic acids		
ADP	2 strong, 6.6	54	2X-RC ₆ H			
ATP	3 strong, 6.6	54	X	R	1 10 0 14	F. 67
pyrophosphoric acid	0.9, 2.0, 6.6, 9.4	54	Cl	4-O ₂ N	1.12, 6.14	57
phosphopyruvic acid	3.5, 6.38	54	Br	5-O ₂ N	(a), 6.14	57
creatine phosphate	2.7, 4.5	54	Cl	5-Cl	(a), 6.63	57
arginine phosphate	2.8, 4.5, 9.6, 11.2	54	Cl	H	1.63, 6.98	57
arginine	2.02, 9.0, 12.5	54	Br	H	1.64, 7.00	57
amino phosphate	(-0.9), 2.8, 8.2	54	Br	5-CH3	1.81, 7.15	57
trimetaphosphate	2.05	77	Cl	4-NH2	, 7.33	57
trimetup neopinute	2.00	• •	CH_3O	4-O ₂ N	1.53, 6.96	57
Phosphonates			СН3О	Н	2.16, 7.77	57
$H_2O_3P(CH_2)_4PO_3H_2 < 2$,	2.75, 7.54, 8.38	57	CH ₃ O	$4-O_2N$, 8.22	57
$H_2O_3P(CH_2)_3PO_3H_2 < 2$,		57	НО	$4-O_2N$	1.22, 5.39	57
H ₂ O ₃ PCH ₂ CH(CH ₃)PO ₃			O_2N	Н	1.45, 6.74	57
H ₂ O ₃ PCH ₂ PO ₃ H ₂ <2, 2.5		57	F	Н	1.64, 6.80	57
Methyl-	2.35	57	I	Н	1.74, 7.06	57
Ethyl-	2.43	57 57	NH ₂ H	, 7.29	57	
n-propyl-	2.45	57	CH ₃ H	2.10, 7.68	57	
isopropyl-	2.43 2.55, 7.75	57	C_6H_5	Н	(a), 8.13	57
n-butyl-	2.59, 8.19	57	HOOC	Н	1.71, 9.17	57
isobutyl-	2.70, 8.43	57	11000	11	1.71, 5.17	37
s-butyl-	2.70, 8.45 2.74, 8.48	57 57	**These v	alues were obtaiı	ned in 50% ethan	ol
t-butyl-	2.74, 8.46 2.79, 8.88	57 57		mpounds were no		
neopentyl-	2.79, 8.66 2.84, 8.65	57 57		nical plots of a		
1,1 Dimethylpropyl-	2.88, 8.96	57 57		us compounds see		วนมงนเนเซน
n-hexyl-	2.66, 7.9	57 57	phosphore	as compounds see		
n-dodecyl-	2.0, 7.9 , 8.25	57 57	triphosph	nate 8	3.90, 6.26, 2.30	77
CH ₃ (CH ₂) ₅ CH(COOH)-	, 6.23 1,	57 57			2.74	77
5113(511 <u>2</u> /3511(65511)-	1,	.				

fluorophosphate		0.55, 4.8		56		Acetic acids, subst		90
Phosphonates (Ref. 2)		TT	NITT -+	- NIII.	+	H-	4.76*	20
	-H 2.35	- H 7.1	-NH ₃ + 1.85	-NH ₃ 5.35		O ₂ N-	1.68*	20
` ~ 0 ~	2.33 2.45		2.45	7.00		$(CH_3)_3N^+$	1.83*	20
	۵.43	7.60	2.45 2.55	7.00 7.55		(CH ₃) ₂ NH ⁺ -	1.95*	20
X(CH ₂) ₄ PO ₃ H ₂ X(CH ₂) ₅ PO ₃ H ₂			2.6	7.65		CH ₃ NH ₂ +-	2.16*	20
	2.6	7.9	۷.0	7.03		NH ₃ +-	2.31*	20
X(CH2)0PO2H2	۵.0	7.5		8.00		CH ₃ SO ₂ -	2.36*	20
Phosphines in acetoni	trile	soorof 8	Q	0.00		NC-	2.43*	20
i nospinnes in accioni	11111	c, see 1e1. o	J.			C ₆ H ₅ SO ₂ -	2.44	20
CARBOXYLIC AC	'ID	S				HO ₂ C	2.83*	20
Aliphatic	,,,,	J				C ₆ H ₅ SO-	2.66	20
Compound		рK		Ref.		F-	2.66	20
Acetoacetic		3.58		6		Cl-	2.86*	20
Acetopyruvic		2.61, 7.85	(enol)	6		Br-	2.86	20
Aconitic, trans-		2.80, 4.46		6		Cl ₂ -	1.29	20
Betaine		1.84		6		F ₂ -	1.24	20
Citric		3.09, 4.75	5.41	6		Br ₃ -	0.66	20
Crotonic		4.69	, 0.11	6				
Dihydroxyfumaric		1.14		6		Cl ₃ -	0.65	20
Dethylenediamine		2.00, 2.67		6		F ₃ -	0.23 (-0.26) (2)	20
tetraacetic		6.16, 10.2		Ū		HONC ₄	3.01	20
Formic		3.77*		2		F ₃ C-	3.07*	20
Fumaric		3.03, 4.54		6		N_3 -	3.03	20
Glyceric		3.55		6		I-	3.12	20
Glycollic		3.82		6		C_6H_5O -	3.12	20
Glyoxylic		3.32		6		$C_2H_5O_2C$ -	3.35	20
Homogentistic		4.40		6		C_6H_5S -	3.52*	20
-ketomethyl v				6		CH ₃ O-	3.53	20
Lactic		3.86		6		NCS-	3.58	20
Maleic		1.93, 6.58		6		CH ₃ CO-	3.58*	20
Malic		3.40, 5.2		6		C ₂ H ₅ O-	3.60	20
Oxaloacetic (trans-				6		n-C ₃ H ₇ O	3.65	20
+(cis-enol)		2.15, 4.06		6		n-C ₄ H ₉ O	3.66	20
Protocatechuic		4.48		6		secC ₄ H ₉ O-	3.67	20
Pyruvic		2.50		6		HS-	3.67*	20
Tartaric +		2.99, 4.40		6		i-C ₃ H ₇ O-	3.69*	20
+ or -		2.89, 4.40		6		CH ₃ S-	3.72*	20
meso		3.22, 4.85		6		i-C ₃ H ₇ S-	3.72*	20
Vinylacetic		4.42		6				
v						C ₆ H ₅ CH ₂ S-	3.73*	20
						C ₂ H ₅ S-	3.74*	20
						n-C ₃ H ₇ S-	3.77*	20
						n-C ₄ H ₉ S-	3.81*	20
						HO-	3.83*	20
						$-O_3S$ -	4.05	20
						$(C_6H_5)_3CS$ -	4.30*	20
						C_6H_5 -	4.31*	20
						CH ₂ -CH-	4.35*	20

 $^{\ ^* \} Indicates \ thermodynamic \ values.$

Unsaturated acids (25°)					
Compound	рK	ref.	Compound	рK	ref.
trans-CH ₃ -CH=CHCO ₂ H	4.69*	20	$H-CH_2CH_2CO_2H$	4.88*	2
cis-CH ₃ -CH=CHCO ₂ H	4.44*	2	H-CH=CHCO ₂ H	4.25*	2
C ₆ H ₅ -CH ₂ CH ₂ CO ₂ H	4.66*	2	C ₆ H ₅ CH ₂ CH ₂ CO ₂ H	4.66*	2
trans-C ₆ H ₅ -CH=CHCO ₂ H	4.44*	2	C ₆ H ₅ CH=CHCO ₂ H**	4.44*	2
m-CH ₃ OC ₆ H ₄ CH ₂ CH ₂ CO ₂ H		4.65^{*}	C ₆ H ₅ CH ₂ CH ₂ CO ₂ H	4.66*	2
	2		C ₆ H ₅ CH=CHCO ₂ H**	4.44	2
m-CH ₃ OC ₆ H ₄ CH=CHCO ₂ H	4.38*	2	m-ClC ₆ H ₄ CH=CHCO ₂ H**	4.29*	2
m-ClC ₆ H ₄ CH ₂ CH ₂ CO ₂ H	4.58*	2	* -		

Unsaturated acids, Cis- and Trans-

Cis	-Acid	Trans-Acid			
H	R_2	R ₁	R_2		
R ₁	CO₂H	,С. Н	CO ₂ H		

R_1	R_2	cis-acid	trans-acid	Ref.		
H-	H-	4.25*	4.25*	2		
CH ₃ -	H-	4.44*	4.69^{*}	2		
Cl-	H-	3.32	3.65	2		
C_6H_5 -	H-	3.88*	4.44*	2		
ClC_6H_4	H-	3.91	4.41	2		
6-BrC ₆ H ₄	H-	4.02	4.41	2		
CH ₃ -	CH ₃ -	4.30	5.02	2		
C_6H_5 -	H-	5.26***	5.58***	2		
2,4,6-(CH ₃) ₃ C ₆ H ₂ -	H-	6.12***	5.70***	2		
C_6H_5 -	CH ₃ -	4.98***	5.98***	2		
Dicarboxylic acids, unsaturated*						
Maleic	1.92, 6.2		Alicyclic Dicarbox	ylic acids		

Maleic	1.92, 6.23	2
Citraconic (Dimethylma	leic acid)	
	2.29, 6.15	2
Acetylenedicarboxylic	1.73, 4.40	2
¹ -tetrahydrophthalic	3.01, 5.34	2
Bromomaleic	1.45, 4.62	2
Bromofumaric	1.46, 3.57	2
Chlorofumaric	1.78, 3.81	2
Fumaric	3.02, 4.38	2
Mesaconic (Dimethylfur	maric acid)	
•	3.09, 4.75	2
Phthalic	2.95, 5.41	2

Itaconic (1-Propene-2-3-dicarboxylic acid)

Chloromaleic

3.85, 5.45

1.72, 3.86

**trans

^{***}in 40% acetone

cis-Caronic (1,1-dimethyl cyclopropane-23-

1,2-trans-cyclopropanedicarboxylic

1,2-cis-cyclopropane-dicarboxylic

2.34*, 8.31*

3.65*, 5.13*

3.82*, 5.32*

3.33*, 6.47*

2

2

2

2

dicarboxylic acid

trans-caronic

^{*}thermodynamic

Aliphatic

Alteration Discontinuority and d	_				
Alicyclic Dicarboxylic acids Compound	s pK	Ref	Compound	рK	Ref
1,2-trans-Cyclopropane-	hiz	Kei	cis-Ethyleneoxide-	hız	IVCI
dicarboxylic	3.65, 5.13	2	dicarboxylic	1.94, 3.92	2
trans-Ethyleneoxide-	0.00, 0.10		s-Cyclobutane-	1.01, 0.02	~
dicarboxylic	1.93, 3.25	2	dicarboxylic	4.03, 5.31	2
1,3-trans -Cyclobutanedi-	,		1,2-cis-Cyclopentane		
carboxylic	3.81, 5.28	2	dicarboxylic	4.37, 6.51	2
1,2-trans-Cyyclopentane-			1,3-cis-Cyclopentane		
dicarboxylic	3.89, 5.91	2	dicarboxylic	4.23, 5.53	2
1,3-trans-Cyclopentane-			1,2-cisCyclohexane-		
dicarboxylic	4.40, 5.45	2	dicarboxylic	4.34, 6.76	2
1,2-trans-Cyclohexane-		•	1,3 -cis-Cyclohexane		
dicarboxylic	4.18, 5.93	2	dicarboxylic	4.10, 5.46	2
1,3-trans-Cyclohexane-	4.04 5.70	0	1,4-cis-Cyclohexane	4 4 4 5 70	0
dicarboxylic	4.31, 5.73	2	di-carboxylic	4.44, 5.79	2
1,4-trans-Cyclohexane-	1 10 5 19	2			
dicarboxylic	4.18, 5.42	۷			
Dicarboxylic acids*					
oxalic	1.23, 4.19	2	Succinic	4.19, 5.48	2
Malonic	2.83, 5.69	2	O-O'-Dimethyl-	3.77, 5.94	2
Methyl-	3.05, 5.76	2	(high melting)	0.77, 0.01	2
Ethyl-	2.99, 5.83	2	O-O -Dimethyl-	3.94, 6.20	2
n-propyl	3.00, 5.84	2	(low melting)	3.34, 0.20	2
i-propyl-	2.94, 5.88	2	O,O -Diethyl-	3.63, 6.46	2
Dimethyl-	3.17, 6.06	2	(high melting)	3.03, 0.40	2
Methylethyl- 2.86,			-Diethyl-	3.51, 6.60 2	
Diethyl-	2.21, 7.29	2	(low melting)	J.J1, 0.00 &	
Ethyl-n-propyl-	2.15, 7.43	2	Tetramethyl-	3.50, 7.28 2	
Di-n-propyl-	2.07, 7.51	2	Tetrametry 1-	5.50, 7.20 2	
Glutaric	4.34, 5.42	2	Adipic	4.42, 5.41	2
B-Methyl	4.25, 6.22	$\tilde{2}$	Pimelic	4.48, 5.42	$\tilde{2}$
B-Ethyl	4.29, 6.33	$\tilde{2}$	Suberic	4.52, 5.40	$\tilde{2}$
B-n-Propyl	4.31, 6.39	2	Azelaic	4.55, 5.41	$\tilde{2}$
B,B-Dimethyl-	3.70, 6.29	2	DL-1:2-Dichlorosucci		20
B,B-Methylethyl-	3.62, 6.70	2	meso-1:2-Dichlorosu	•	20
B,B-Diethyl-	3.62, 7.12	2	DL-1:2-Dibromosucc		20
B,B-Di-n-propyl	3.69, 7.31	2	meso-1:2-Dibromosu	ccinic 1.42, 2.97	20
D-Tartaric	3.03, 4.45	20	DL-1:2-Dimethylsucc	inic 3.93, 6.00	20
DL-Tartaric	3.03,	20	meso-1:2-Dimethylsu	accinic 3.77, 5.36	20
meso-Tartaric	3.29, 4.92	20	•		
*All are thermodynamic value	ne				
7 m are mermouynamic value	L.O				
Aliphatic			НО-	6.33	2
Bicyclo[2.2.2]octane-1-ca	rhovylic acid	s 1_	Br-	6.08	2
substituted	TOONYTIC ACIO	.s, 1 -	DI-	0.00	۵
วนมวนเนเซน			I vecancia acid	d ata	
Ц 67	5	9	Lysergic acid		9
H- 6.7		2	ergometrine		2
$C_2H_5O_2C$ 6.3		2	Dihydroergo		2 2
NC- 5.9	U	2	-dihydrolys	sergol 8.2,	۲

Lysergic acid	7.8, 3.3	2	C ₆ H ₅ O-	3.53*	3.95*	4.52*
-dihydrolysergic	8.3, 3.6	2	CH ₃ -	3.91*	4.24*	4.34*
ergometrinine	7.3,	2	(CH ₃) ₂ CH-			4.35*
-dihydrolysergol	8.3,	2	$(CH_3)_3N^{+}$	1.37	3.45	3.43
6-methylergoline	8.85,	2	NC-	1.01	3.60*	3.55*
isolysergic acid	8.4, 3.4	2 2	HO ₂ C*	2.95*	3.54	3.51
-dihydrolysergic	8.6, 3.6	2	F ₃ C-		3.79	
			HO-	2.98*	4.08*	4.58*
			I-	2.85*	3.86*	
Hydroxycyclohexaneca			Cl-	2.94*	3.83*	3.99*
Cyclohexanecarboxylic		2	(CH ₃) ₃ Si-		4.24*	4.27*
cis-1,2	4.80	2	C ₂ H ₅ O-	4.21*	4.17*	4.45*
cis-1,3	4.60	2 2 2 2 2 2	i-C ₃ H ₇ O-	4.24*	4.15*	4.68*
cis-1,4	4.84	Z 9	n-C ₅ H ₁₁ O-			4.55*
trans-1,2	4.68	ک 9	C_6H_{5}	3.46*		
trans-1,3 trans-1,4	4.82 4.68	د 9	CH ₃ CH ₂ -	3.77		4.35*
uans-1,4	4.00	۵	(CH ₃) ₃ C-	3.46	4.28	4.40*
Aromatic			-HO ₃ P-	3.78	4.03	3.95
benzene-CO ₃ H	4.20*	2	-O ₃ S-		4.15	4.11
Anthracene-1-COOH	3.69	2	H ₂ N-	4.98	4.79	4.92
Anthracene-9-COOH	3.65		(CH ₃) ₂ N-	8.42	5.10	5.03
naphthalene-2-COOH	4.17	2 2 2	-HO ₃ As-	0.12	0.20	4.22
Naphthalene-1-COOH	3.69	2	-O ₂ C-	5.41**	4.60	4.82
			CH ₃ NH-	5.3	5.10	5.04
Substituted benzoic ac	ids (ref. 2)		C1131V11-	J.J	0.10	J.U4

*thermodynamic for complex chelating agents, see also ref. 84. see also page 9a for more carboxylic acids.

Benzoic acid	0	m	p	see also page 9a for more carboxylic acid			
H-	4.20*	4.21*		Ortho-substitut	ed benzoic acids	;	
O ₂ N-	2.17*	3.45*	3.44	Benzoic acid	рK	Ref.	
CH ₃ CO-				2-CH ₃ -	3.91**	2	
CH ₃ SO ₂ -		3.64*	3.52*	2-t-C ₄ H ₉ -	3.46	2	
CH ₃ S-		0.01	0.02	2,6-(CH ₃) ₂ -	3.21	2	
HS-				2,3,4,6-(CH ₃) ₄ -	4.00	2	
Br-	2.85*	3.81*	4.00*	2,3,5,6-(CH ₃) ₄ -	3.52	2	
F-	3.27*	3.87*	4.14*	$2-C_2H_5-$	3.77	2	
CH ₃ O-	4.09*	4.09*	4.47*	$2-C_{6}H_{5}-$	3.46**	2	
n-C ₃ H ₇ O-	4.24*	4.20*	4.46*	2,4,6-(CH ₃) ₃ -	3.43	2	
n-C ₄ H ₉ O-		4.25*	4.53*	2,3,4,5-(CH ₃) ₄ -	4.22	2	
Benzene Polyc	arboxylic	acids	Ref. 2				

Acid	Position of carboxyl	pK ^I	pK ^{II}	pK ^{III}	pK ^{IV}	pKV	pKVI
Benzoic	1	4.17*					
Phthalic	1,2	2.98*	5.28*				
Isophthalic	1,3	3.46*	4.46*				
Terephthalic	1,4	3.51*	4.82*				
Hemimellitic	1,2,3	2.80*	4.20*	5.87*			
Trimellitic	1,2,4	2.52*	3.84*	5.20*			

Trimesic	1,3,5	3.12*	3.89*	4.70*			O .
Mellophanic	1,2,3,4	2.06*	3.25*	4.73*	6.21*		
Prehnitic	1,2,3,5	2.38*	3.51*	4.44*	5.81*		
Pyromellitic	1,2,4,5	1.92*	2.87*	4.49*	5.63^{*}		
Benzenepentacarboxylic	1,2,3,4,5	1.80*	2.73*			6.46*	
Mellitic	1.2,3,4,5,6	1.40*	2.19*	3.31*	4.78*	5.89*	6.96*
*ionic strength 0.03			2-Methoxy				2.2, 8.96
**thermodynamic		2	2-Methylth	ioethylim	inodiace	tic	2.1, 8.91
-			oxalic acid*				1.25, 4.14
]	N-n-propy	laminoac	etic		2.25, 10.03
Carboxylic Acids	Ref. 77]	N-2-sulfoet	hylimino	diacetic	1.92, 2	.28, 8.16
Aminomalonic acid*	3.32, 9.	83	-Bromobu	ityric acio	l		2.97
N-Butylaminoacetic acid	2.29, 10	0.07	N-(carbame	oylmethy	l)-imino-	diacetic	acid
2-carboxyethyliminodiace	tic acid		•	3	•		2.30, 6.60
Ç Ç	2.06, 3.69, 9.	66	Cyanometh	nyliminod	liacetic		3.06, 4.34
-carboxymethylaminopr	opionic 3.61, 9.		, -diamin				1.23, 6.69
, -diaminobutyric	1.85, 8.24, 10	0.44	Diethylami				2.04, 10.47
Di-(carboxymethyl)-amino	omethyl phospho						
acid	2.00, 2.25, 5.57, 10		N-ethylami				2.08, 9.80 2.30, 10.10
, -dimercaptosuccinic	2.40, 3.46, 9.44, 1		Gluconic*				3.86
Ethylenediamine-N,N-dia	cetic 5.58, 1	1.05	-hydroxyl	outyric			4.39
-hydroxybutyric	3.65		-hydroxy	propionic			3.73
N-2-hydroxyethyliminodi		'3	Iminodiace				2.98, 9.89
3-hydroxypropyliminodia			-iodoprop				4.04
Iminodipropionic	4.11, 9.		N-isopropy		etic		2.36, 10.06
Isobutyric*	4.86		-mercapto				3.53
Mandelic acid	3.41	1	N-methyla		ic		2.24, 10.01
2-Mercaptoethyliminodiad	etic		Nitrilotriac			3 (03, 3.07, 10.
1	-2.14, 8.17, 10		2-Phosphor		ninodiace	etic 5.0	,0, 0.01, 10.
Methyliminodiacetic	2.81, 10	-	- 1 1105p1101	io cui y iiii			, 6.54, 10.46

 $^{{\}it *Thermodynamic}$

PHENOLS

Compound Chromotropic acid o-Methoxyphenol o-Hydroxybenz-	pK 5.36, 1, 9.93		Ref. 6 50	Compound Resorcinol p-Methoxyph 3-Hydroxyanthran-		5 (30 ⁰) , 10.1		50
aldehyde 2-Amino-4,5 dimethyl-	7.95		50	ilic acid 2-Aminophenol	10.09,	5.20	51	
phenol hydrochloride 4,5-dihydroxybenzene-	10.4	5.28	51	hydrochloride	9.99, 4	.86	51	
1,3 disulphonic acid 7.66	12.6e							
Kojic acid	9.40		77					
Phenol H-	o 9.95*	m 9.94*	p	Phenol O ₂ N-	o 7.23*	m 8.35*	p 7.14*	
(CH ₃) ₃ N ⁺ -	7.42	8	8	OCH-	6.79	8.00	7.66	
CH ₃ SO ₂ -		9.33	7.83	NC-		8.61**7		
CH ₃ CO-		9.19	8.05	CH ₃ O ₂ C-			8.47*	
C ₂ H ₅ O ₂ C-			8.50*	n-C4H9O2C-			8.47*	
C ₃ H ₅ CH ₂ O ₂ C-			8.41*	I-		9.17*		
Br-	8.42*	9.11*	9.34*	Cl-	8.48*	9.02*	9.38*	
F-	8.81*	9.28*	9.95*	CH ₃ S-		9.53	9.53	
НО-	9.48	9.44	9.96	HOCH ₂ -	9.92*	9.83*	9.82*	
CH ₃ -	10.28*	10.08 1	0.19*	C2H5-	10.2	9.9	10.0	
CH ₃ O-	9.93	9.65	10.20	H ₂ N-	9.71	9.87	10.30	
⁻ O ₂ C-		9.94*	9.39*	-O ₃ S-		9.29	9.03	
O ₃ Р-		10.2	9.9	O3As				8.37
C ₆ H ₅ - 2-Chloro-4-Nitro- 2-Nitro-4-Chloro-	9.93	9.59 5.42 6.46	9.51 79 79	NO-			6.35**	

^{*} Thermodynamic **Reference 52

ALCOHOLS and other OXYGEN ACIDS

Alcohols

Compound Choline Chloral hydrate Trifluoroethanol	pK 13.9 9.66, 11.0	Ref. 6	Compound C ₃ F ₇ •CH(C ₂ F ₅)•OH (C ₃ F ₇) ₂ CH•OH 62 Carbonium ions	pK 10.48 10.52			Ref. 65 65		
CF ₃ CH ₂ OH	11.4, 12.43	63							
CF ₃ CH(OH)CH ₃	11.8	63	Triphenylmethanols in	H ₂ SO ₄	HC1O ₄	HNO_3	ref		
$CF_3CH_2(CH_3)3OH$	12.43	10	4,4,4-Trimethoxy		.82.	.82	.80	66	
C ₃ F ₇ CH ₂ OH	11.4**	63	4,4'-Dimethoxy	-1.24	-1.14	-1.11	66		
(C ₃ F ₇) ₂ CHOH	10.6**	63	4-Methoxy	-3.40	-3.59	-3.41	66		
HCCCH ₂ OH	13.55	64	4-Methyl	-5.41	-5.67		66		
C(CH ₂ OH)) ₄	14.1	64	4-Trideuteriomethyl-	5.43	5.67		66		
HOCH ₂ CHOHCH ₂ OH	4.4	64	3,3',3"-Trimethyl-	6.35	-5.95		66		
HOCH ₂ CH ₂ OH	14.77	64	Unsubstituted triphenyl		0.00	0.00	0.0		
CH3CCH2OH	14.82	64	methanol-	6.63	-6.89	6.60	66		0.0
CH ₃ OH	15.54		64 4,4;,4;-Trichloro-			7.74-	8.01		66
CH ₂ =CHCH ₂ OH	15.52	0.4	64 4_Nitro-	11 0***		9.15-	9.76		66
H ₂ O	15.74	64	CCl ₃ CH ₂ OH	11.8***					
CH ₃ CH ₂ OH	16	64	CF3CH2OH	11.3***					
Substituent effects for i	onization of RCI	1 ₂ OH							
R CCl-3	12.24,11.80	64,65							
CF3-	12.37	64							
CHF ₂ CH ₂ -	12.74	64	Hydroxamic acids						
CHCl ₂ -	12.89	64	Furo-	8.45			72		
CHEĆ-	13.55	64	Glycine	7.40			72		
H ₂ Cl-	14.31	64	Hippuro-	8.80			72		
CH ₃ CCH ₂ -	14.8	64	isoNicotin	7.85			72		
HOCH ₂	15.1		64 p-Methylbenz-		8.90			72	
Н-	15.5	64	Nicotin-		8.30			72	
CH ₂ =CH-	15.5	64	Nicotin-methiodide	6.46			72		
CH ₃ -(extrap)	(15.9)	64	m-Nitrobenz-	8.07			72 72		
CF ₃ C(CH ₃) ₂ OH	11.6	64	Picolin	8.50			72 72		
HOCH ₂ CF ₂ CH ₂ OH	11	64	Pyrimidine-2-carbox-	7.88			72		
Primary alcohols=R•CH ₂			Salicyl-	7.43	0.00		72	70	
Secondary alcohols in 509		65	Tropo-		9.09			72	
C ₂ F ₅ C ₄ F ₉	11.35 11.35	65							
	11.37	65							
C ₅ F ₁₁ C ₇ F ₁₅	11.35	65	Other oxygen acids						
CHF ₂	12.00	65	Trimethylamine-n-oxide	4.6			18		
CF ₂ Cl	11.63	65	Dimethylglyoxime	4.0	12.84		10	77	
CHF2CF9	11.34	65	(50% dioxane)		12.04			,,	
$CHF_2 \bullet (CF_2)_2$	11.35	65	O-methyl ether	12.92			77		
CF3 • CH2	12.7	65	Tropolone	12.02 12a			77		
	12.7	65	-Bromotropolone	6.95 ^a			77		
CF ₃ • (CH ₂) ₂ CF ₃ • CHMe • OH	11.28	65	Acetald hydrate	13.48			91		
C ₃ F ₇ • CHMe • OH	11.38	65	Formald hydrate	13.48			91		
C ₃ F ₇ CHEt • OH	11.37	65	rormaid flydrate	10.20			J1		
C ₃ F ₇ CHPr • OH	11.37	65							
.	10.46	65	^a 50% dioxane						
$C_3F_7 \cdot CH(CF_3) \cdot OH$	10.40	บว	***50 aquaeous ethanol						
			ou aquaeous emanor						

OTHER OXYGEN ACIDS				Hydroxamic acids		
_				Aceto-	9.40	68
Compound	рK	Ref.		n-Butyro-	9.48	68
Pyridine oxides				n-Butyro-	9.00	68
4-Aminopyridine 1-oxide	3.69	67		p-Methoxybenzo-	9.19	68
4-Dimethylaminopyridine 1-o	xide			N-Hydroxyphthalimid	e 7.00, 6.10	71, 72
	3.88	67		Salicylo	7.32	68
4-Dimethylaminopyridine 1-o	xide			Benzo-	8.88	68
	3.88	67		p-Chlorobenzo-	9.59	68
4-Dimethylamino-1-methoxyp	yridiniur	n		-Naphtho-	~7.7	68
perchlorate	[°] >11	67		Propiono-	9.46	68
2-Methylaminopyridine 1-oxid	de 2.61	67		1		
2-Amino-1-methoxypyridiniu		orate				
313	12.4	67		Oximes		
4-Hydroxypyridine 1-oxide	2.45	67		Benzophenone oxime	11.3	18
4-Methoxypyridine 1-oxide	2.05	67		Diethyl ketoxime	12.6	18
1-Methoxypyridi-4-one	2.57	67		Isonitrosoacetylacetone		76
2-Hydroxypyridine 1-oxide	-0.8	67		5-Methyl-1,2,3-cyclohex		
2-Ethoxypyridine 1-oxide	1.18	67		5 Wietily 11,2,5 cyclones	8.3	76
1-Methoxypyrid-2-one	-1.3	0,		Acetophenone oxime	11.48	18
4-Methylaminopyridine 1-oxid		67		Acetoxime	11.42	18
4-Amino-1-methoxypyridiniu				Isonitrosoacetone (INA		76
4-Animo-1-memoxypyriamia	111 percinc >11	67			•	76 76
2 Aminonyridina 1 avida	2.67	67		Salicyclaldoxime (SA)	9.2	
2-Aminopyridine 1-oxide		07		1,2,3-Cyclohexanetrion		76
2-Dimethylaminopyridine 1-o		67		5-Methyl-1,2,3-cyclohex		
0 Madadana - 1	2.27	67			8.0	76
2-Methylamino-1-methoxypy			-			
p-sulphonate	>11	67				
4-Benzyloxypyridine 1-oxide	1.99	67		Oxygen acids		
1-Benzyloxypyrid-4-one	2.58	67		sulfinic acids		
2-Methoxypyridine 1-oxide	1.23	67		p-Toluene-	1.99	73
1-Benzyloxypyrid-2-one	-1.7	67		p-Chlorobenzene-	73	
				p-Nitrobenzene-	73	
Pyridine 1-oxides				p-Bromobenzene-	1.89	73
R pK		Ref.		m-Nitrobenzene-	1.88	73
$4-CH_3$ 1.29		47		Benzene-	1.84, 2.16	73
$3-CH_3$ 1.08		47				
$3,4-(CH)_4$ 1.01		47		Peroxyacids		
$3-COOC_4H_9$ 0.03		47		Peroxymonosulfuric	9.4	69
4-NO ₂ -1.7		47		Acetic	8.2	70
3-NH ₂ 1.47		47		n-Butyric	8.2	70
~				Formic	7.1	70
H 0.79		47		Propionic	8.1	70
3-COOH 0.09	•	47		peroxydiphosphoric	5.18, 7.8	85
4-COOH -0.48	•	47		peroxymonophosphori	•	90
D 11 DOOT (D 0.70)				peroxymonophosphor	1.00	00
Peroxides ROOH (Ref. 70)	~ **		. ~			
H CH_3	C_2H_5		iso-C ₃		iso-C ₄ H ₉	
11.6 11.5	11.8		12.1	12.8	12.8	
				_		
Oximes		ref. 93		Pyridine-2-aldoxime he		8.00
benzoquinoline mon-		6.25		Pyridine-4-aldoxime m		8.50
3-pyridine-1,2-ethanedione-2-	oxime			Pyridine-4-aldoxime pe	entiodide	8.50
methiodide		7.20				

4 Danielia a 1 9 ada an	. d: 0	.		O Matlaultamasina		01	00
4-Pyridine-1,2-ethane	edione-z-oz	xime	7 1	O-Methyltyrosine			22
methiodide	mathiadid	•	7.1 8.0	octopine	13, 1.36)	8.77
Phonylely availed	шешюща	е	8.3		$6\\2.40$		
Phenylglyoxald- Pyridine-4-aldoxime	dodociodic	· la	8.5	Phenylalanine	2.40 1.83	9.13	6
Pyridine-3-alkoxime			9.2	2-Pyrrolidoone-5-ca			
1 yriume-5-aikoxime	memodia	C	3.2	acid)	3.32	u (gruca	ШС
Hydroxamic acids		ref. 9	3	Serine	2.21	9.15	6
D-Lysine-		7.93	O	Threonine	2.63	10.43	6
N-phenylnicotino-		8.00		N-Trimethyl tyrosi		9.75	21
Chloroaceto-		8.40		Tyrosine	10.07, 2.20		~1
Formo-		8.65		Urocanic acid	5.8	3.5	
p-Chlorophenoxyace	eto-	8.75		Valine	2.32	9.62	6
p-Hydroxybenzo-		8.93		-Alanine	3.60	10.19	6
p-Methoxybenzo-		9.00		-Aminobutyric aci		10.43	6
N-Phenylbenzo-		9.15		Arginine 12.48	2.17	9.04	6
o-Aminobenzo-		9.17		Asparagine	2.02	8.8	6
L-Tyrosine		9.20		Azaserine	8.55	0.0	6
L-Lysine		7.9		Canavanine	7.40, 9.25 1	1.50 (?)	6
p-Ňitrobenzo-		8.0		Creatine	2.67	11.02	6
p-Aminobenzo-		9.3		Cysteine 10.78	1.71	8.33	6
L-Lacti-		9.3		3,4-Dihydroxypher	nylalanine		
Propiono-		9.4		, J J1	9.88, 2.36	8.68	6
Phthalo-		9.4			11.68		
Indole-3-aceto-		9.5		Glutamine	2.17	9.13	6
Cyclohexano-		9.7		Histamine 5.0		9.7	6
Hexano-		9.7		-Hydroxyglutami	c 2.09	9.20	6
				acid	4.18		
Amino Acids			- 0	Hydroxyproline	1.92	9.73	6
Compound	pK	_	Ref.	Leucine	2.36	9.60	6
	-COOH		-NH ₃	Methionine	2.28	9.21	
Alanine	2.35	9.69	6	1-Methylhistidine	6.48, 1.69		6
-Aminobutyric acid		9.60	•	Norleucine	2.39	9.76	6
-Aminoisobutyric	2.36	10.21	6	Norvaline	2.36	9.76	6
Argininosuccinic >	12, 1.62	9.58	6	Ornithine	1.71	8.69	6
A1	2.70, 4.2		•	D 11	1.00	10.76	
Aspartic acid	2.09, 3.86		6	Proline	1.99	10.60	6
Canaline	10.3, 9.20	` '	6	Sarcosine	2.23	10.01	6
Creatinine	4.84	9.2	6	Taurine 1.5	11.4	8.74	6
Cystine	1.65	7.85	6	Thiolhistidine <1.5,		0.47	C
Diidatamasina	2.26	9.85	6	Twentonhon	1.84	8.47	6
Diidotyrosine	6.48, 2.12		6	Tryptophan	2.38	9.39	6
Glutamic acid	2.19, 4.25 2.34	9.67	6 6	Tyrosine ethyl este	Г 7.33	9.80	22
Glycine Histidine	6.0, 1.82		9.17	Peptides Anserine 7.0	2.65	9.5	6
rusuume	6	,	9.17	Carnosine 6.83	2.03	9.51	6
Hydroxylsine	2.13	8.62	6	Cystinyldiglycine	3.12	6.36	6
Trydroxyisine	2.13	9.67	U	Cystillyldigiyelle	3.12	6.95	U
Isoleucine	2.36	9.68	6	Glycylglycine	3.12	8.13	
Lysine	2.30	8.95	6	Gly-gly-gly	3.26	7.91	23
Бузинс	ω.1U	10.53	J	Glycylproline	2.84	8.55	6
O-Methyl tyrosine		9.27	21	Aspartyl histi-	2.45	7.98	J
o Michigi tyrosine		J. ~ I	~1	1 Sparty i iisti	₩.TU	1.00	

dine Diglycylcystine Glutathione 9.12	6.82 2.71 2.12 3.53	3.02 7.94 8.66	6 6			gly-gly ine (L,L)	3.05 3.01 10.05	7.75 7.53 11.01	23 6
Compound Gly • Ala (L) or (D) Ala • Gly (L) or (D) Gly • Ala • Ala (LL) Gly • Ala • Ala (LD) Ala • Ala • OH (DD) Ala • Ala • OH (LD) H • Ala • Ala • OH (LD) H • Ala • Ala • Ala • OH (H • Ala • Ala • OH (EH • Ala • Ala • Ala • OH (EH • Ala • Ala • Ala • OH (EH • Ala • Ala • Ala • OH (EH • Ala • Ala • Ala • OH (EH • Ala • Ala • Ala • OH (EH •	3L) LLD) DL) DLL) D) H (4L) H (LDL) H (LDL) H (DLL) LD) A•OH (5] a•OH (L] .DD) pK 3.59 8.23 8.13 7.96 7.96 7.66 8.28 8.22)) DLLL) , 8.75, 9.0	-COOH 3.17 3.16 3.38 3.30 3.30 3.12 3.39 3.37 3.31 3.37 3.39 3.42 3.22 3.42 3.22 3.00 3.15 3.33 3.29 3.58 3.32 3.53 3.01 2.85 3.08 2.91 2.94	I α-N 8.23 8.24 8.10 8.17 8.14 8.30 8.03 8.03 8.06 8.06 7.94 7.93 7.99 7.62 7.74 7.65 7.97 7.84 8.01 8.01 7.75 7.85 7.53 7.34 7.29 7.14			11.01 10.98 10.54 10.38	11.32 11.42 11.09	Ref. 27 27 27 27 27 27 27 27 27 27 27 27 27
Glycyltryptophane	8.04		57 0 54		77 77				
Glutathione, oxidized Alanylalanine (LL)	3.15 3.30	, 4.03, 8 8.	57, 9.54 14		92				
Alanylalanine (LD)	3.12		30		92				
Lysylalanine (LL)	3.12		62	10.70	92				
					92				
Lysylalanine (LD)	3.00		74 04	10.63					
Leucyltyrosine (LL)	3.46		84	10.09	92				
Leucyltyrosine (DL)	3.12	8.3	38	10.35	92				

Lysyllysine NITROGE	e (LD)	D() I	2.85	7.53	9.92	2		
Aliphatic A		rou	рK	ref.				
Ammonia	Ammes		9.21	1	n-Propy	1_	10.53	1
Primary A	minas		3.21	1		ylsilymethyl-	10.96	1
-Alanine			9.13	1	CH ₃ ON		4.60	12
Allylamine			9.69	2	Allyl-	112	9.49	1
Benzyl	, -		9.34	1		o-n-butyric acid e		1
n-Butyl-			10.59		sec-Buty		10.56	1
t-Butyl-			10.55				10.64	1
Cyclohexy	lmathyl_		10.33	1	Cyclohe		7.52	1
Ethanol-	iiictiiyi		9.50	1		roethyl-	10.63	1
Ethylenedi	 _		9.98,		Ethyl Chroine	octon	7.75	
Hydrazine			8.10	1	Glycine	ester 	7.75 5.97	1
Isopropyl-			10.63		Hydroxy		4.60	1 1
Methyl-			10.62	1	Methoxy neo-Pen		10.21	1
Phenylamy	v1-		10.49	$\overset{1}{2}$	-Pheny		10.21	2
-Phenylet			9.83	1			10.20	
1 Helly let	.11.9.1		0.00	-		lpropyl-		1 ?
					Triethyl	eneai-	8.8*	
X	XNH3 ⁺		XCH ₂ NH ₃	+ X(CH ₂) ₂ NH ₃	+ X(CH2)2NH2 ⁺	X(CH ₂) ₄ NH ₃ ⁺	X(CH ₂) ₅ NH ₃ ⁺	ref.
H-	9.25*		10.64*	10.67*	10.58*	10.61*	10.63*	2
HF ₂ C-			7.52					
RO ₂ C-			7.75	9.13	9.71	10.15*	10.37	2
HO-	5.96*			9.50*	··· -	10110	20101	~
C_6H_5 -	4.58*		9.37*	9.83*	10.20*	10.39*	10.49*	2
H ₂ N-	8.12*		0.01	9.98*	10.65*	10.84*	11.05*	2
H ₂ C=CH-	0.12		9.69	0.00	10.00	10.01	11.00	~
CH ₃ -	10.64*		10.67*	10.58*	10.61*	10.63*	10.64*	2
X	10.01	-H	10.07	-NH ₃ +	-CO ₂ -	-SO ₃ -	-PO ₃ -	2
			.	_	-002	•	•	۵
X-NH ₃ +	TT .	9.25*		88	0.77	1	10.25	
$X(CH_2)_2N$		10.64			9.77	5.75	10.8	
$X(CH_2)_2N$		10.67			10.19	9.20	10.8	
$X(CH_2)_4N$	•	10.61		9.31	10.77	10.65	10.9	
$X(CH_2)_5N$	H_{3}^{+}	10.63	3	9.74	10.75	10.95	11.0	
$X(CH_2)_8N$	H_{3}^{+}	10.65	5	10.10				
$X(CH_2)_{10}N$		10.64	1			11.35	11.25	
$X(CH_2)_3N$	•	10.58		8.59	10.43	10.05		
21(0112)3111	113	10.00	,	0.00	10.10	10.00		
Secondary	amines				Di-n-but	tvl-	11.25	1
Dimethyl-	anning		10.64	1	Diisobut		10.50	1
Di-n-propy	/] _		11.00			oyrroline	7.43	2
Diisopropy			11.05			lpyrroline-	7.08	2
t-Butylcycl			11.23			lpiperidine	10.99	2
-Cyclohe		line	7.95	$\overline{2}$		hexylpyrrolidine		2
-(p-Tolyl)			7.59	$\overset{\sim}{2}$		nexyrpyrroname yl)pyrrolidine	10.01	2
-Ethylpyi		-	10.43		-	0 20		
-Ethylpyl -Benzylpy	vrrolidin	Δ	10.45	2	Acetanil	nethylhydroxyla: ido	+0.61	12 4
N-methylh	yiionuni wdrovyl	o mina		12		lynamic value	±0.01	4
Diethyl-	iyuruxyla	111111E	10.98	12	tile111100	ymannic value		
Dietilyi			10.30	1				

Aliphatic Amines			Methyldiethylamino-ethyl-su	ılfide	
1,2-Iminoethane	7.98	7	1,2-Dimethyl- ² -pyrroline	11.94	2
cis-2,3-Iminobutane	8.72	7	1-methyl-2-n-butyl- ² -pyrroline		~
1,2-Imino-2-methylpropane	8.61	7			2
1,2-Iminobutane	8.29	7	1-Ethyl-2-methyl- ² -pyrroline		
trans-2,3-Iminobutane	8.69	7	1-n-Butyl-2-methyl- ² -pyrroline		2
			1,2-Dimethyl- ² -tetrahydropyri		
Secondary Amines			,	11.57	2
Allylmethyl-	10.11	1	N-Ethyl derivative of: 1,2-Imin		
Benzylethyl-	9.68	1		7.93	7
Morpholine	8.36	1	Trans-2,3-Iminobutane	9.47	7
N-Benzoylpiperazine	7.78	1	Trimethylhydroxylamine	3.65	12
Di-sec-butyl-	11.01	1	Dimethylethyl-	9.99	1
N-Methylmethoxyamine	4.75	1	Triethyl-	10.65	1
Pyrolidine	11.27	1	Dimethyl-n-butyl-	10.02	1
1-Tosylpiperazine	7.39		Dimethyl-isopropyl-	10.30	1
Benzylmethyl-	9.58	1	Dimethyl-t-butyl-	10.52	1
Piperidine	11.22	1	Tri-n-butyl-	10.89	1
N-Carbethoxypiperazin	8.28	1	Diallylmethyl-	8.79	1
Dietrimethylsilylmethyl-	11.40	1	1-n-Propylpiperidine	10.48	2
Diallyl-	9.29	1	10.1	10.1	5
N-Methylhydroxyl-	5.96	1	9.8	10.00	5
Trimethyleneimine	11.29	1	1,2-Dimethylpyrrolidine	10.26	2
Cis-2,6-dimethyl-piperidine	10.92	3	1-Methyl-2-n-butylpyrrolidin	10.24	2
			1-Ethyl-2-methylpyrrolidine	10.64	2
			1-n-Butyl-2-methylpyrrolidine 1		2 2
			1-Ethyl-2-methylpyrrolidine	10.70	
Tertiary amines	0.70		1,2-Iminobutane	8.18	7 7
Trimethyl-	9.76	1	cis-2,3-Iminobutane	8.56	12
Dimethyldiethyl-	10.29	1	N-dimethylhydroxylamine Allyldimethyl	5.20 8.78	12
Dimethyl-n-propyl-	9.99	1	1 2 Dimethylpineridine	10.26	2
Dimethyl-isobutyl-	9.91	1	1,2-Dimethylpiperidine		
Dimethyl-sec-butyl-	10.40	1	1-Ethyl-2-methyl- ² -tetrahydro		
Tri-n-propyl-	10.65	1		11.57	2
Triallyl-	8.31	1			
N-Allylpiperidine	9.69	2			
1-Diethylamino-hexane-thio	01-(6)		2 Amina 2 ayananyanana	5 9	0
Cyanoamines N. pipowidino CH-CN	4.55	0	2-Amino-2-cyanopropane	5.3 8.0	9
N-piperidine-CH ₂ CN		8	-Isopropylaminopropionitrile		9
Et ₂ NCN	-2.0	8	-Diethylaminopropionitrile	7.6	9
Et ₂ N(CH ₂) ₂ CN	7.65	8	Et ₂ NCH ₂ CN	4.55	8
Et ₂ N(CH ₂) ₄ CN	10.08	8	Et ₂ N(CH ₂) ₃ CN	9.29	8
$Et_2NC(CH_3)_2CN$	9.13	8	$Et_2N(CH_2)_5CN$	10.46	8
$EtN(CH_2CN)_2$	-0.6	8	$HN(CH_2CN)_2$	0.2	8
$EtN(CH_2CH_2CN)_2$	4.55	8	$HN(CH_2CH_2CN)_2$	5.26	8
H_2NCH_2CN	5.34	8	$N(CH_2CH_2CN)_3$	1.1	8
N-Amphetamine-(CH ₂) ₂ -CN	N 7.23	8	N-piperidine-C(CH ₃) ₂ CN	9.22	8
N-Norcodeine-(CH ₂) ₂ CN	5.68	8	N-Methamphetamine-(CH ₂) ₂ Cl	N 6.95	8
Dimethylcyanimide	1.2	9	Methyl cyanamide	1.2	9
Diethylcyanimide	1.2	9	Ethyl cyanamide	1.2	9
Aminoacetonitrile	5.3	9	Cyanamide	1.1	9
Diethylaminoacetonitrile	4.5	9	Dimethylaminoacetonitrile	4.2	9

-Dimethyl , "-Dicyan For complex see also ref. 7	77. stituted amin I ₂	ne 5.2 ents of aliphati	9 9 9 c amines,	CF ₃ CH ₂ NHCH ₃ Phenylethylamines 2-phenylethylamine N-methyl-2-(3,4-dihydroxy ethylamine N-methyl-2-phenyl Epinephrine Arterenol	9.78 /phenyl)- 8.78 10.31 8.55 8.55	10 11 11 11 11 11
CF3CH2IV(∪H3)2	4.73 R₁	10		0.00	
		R_2	CHCH ₂ NHR ₄	C 11		
			, 13	ref. 11		
R_1	$\mathbf{R_2}$	R_3	$\mathbf{R_4}$	pK		
Н	Н	Н	Н	9.78		
H	H	OH	H	8.90		
H	OH	OH	H	8.81		
OH	Н	OH	Н	8.67		
Н	OH	Н	H	9.22		
OH	OH	Н	H	8.93		
OH	OH	OH	H	8.58		
Н	H	Н	CH_3	10.31		
Н	H	OH	CH_3	9.31		
Н	OH	OH	CH_2	8.62		
OH	H	OH	CH_3	8.89		
H	OH	Н	CH_3	9.36		
OH	OH	Н	CH_3	8.78		
OH	OH	OH	CH_3	8.55		
D' . '	1	/: 000/ J	1 11 1 1 1	(o)		
	-		d cellosolve) (0.00	
Pentamethy Hexamethy		9.99 10.00	1	Cyclotridecyl Cyclotetradecyl	9.63 9.54	
Heptameth		9.77	,	Cyclopentadecyl	9.54	
Octamethyl		9.39		Cycloheptadecyl	9.57	
Nonamethy		9.14		Cyclooctadecyl	9.54	
Decamethy		9.04		25 020 000 000	0.0 -	
Undecamet		9.14		Amines other		
Dodecamet		9.31		Dimeoone	5.23	18
Tridecamet	hylene	9.35		Phthalimide	8.30	18
Tetradecam		9.35		Nitrourea	4.57	18
Hexadecam		9.29		Nitrourethane	3.28	18
Heptadecar	nethylene	9.27		Diphenylthiocarbazone	4.5	6
Cyclohexyl	•	9.82		, , "-Triaminotriethylami		
Cyclohepty	l	9.99		8.4	2, 9.44, 10.13	87
Cyclooctyl		0.05		A		
Cyclodocyl		9.95 9.85		Anilines Ref. 2		
Cyclounder	×71	9.85 9.71		Monosubstituted		
Cyclounded Cyclododed		9.71		Substituent o H- 4.62*	m p 4.64* 4.58	2*
Cyclododec	, y 1	3.02		4.02	1.01 4.30	,

(CH ₃) ₃ N+-		2.26	2.51	p-(CH ₃) ₃ C-	4.65
CH ₃ O ₂ C-	2.16	3.56	2.30	m-Br-	3.08
CH ₃ SO ₂ -	۵.10	2.68*	1.48	m-Cl-	3.09
CH ₃ S-		4.05	4.40	p-F-	4.01
Br-	2.60*	3.51*	3.91*	p-(CH ₃) ₃ Si-	3.99
F-	2.96*	3.38*	4.52*	p-CH ₃ O-	5.14, 5.16
CH ₃ O-	4.49*	4.20*	5.29*	1 0	•
C ₆ H ₅ -	3.78*	4.18	4.27*		
(CH ₃) ₃ C-	3.78	1.10	1.~ 1		
-O ₃ S-	0.70	3.80	3.32		
H ₃ N ⁺	1.3	2.65	3.29		
O ₂ N-	-0.28*	2.45*	0.98*, 1.11*		
HO ₂ C-	2.04	3.05	2.32		
$C_2H_5O_2C$	2.10	0.00	2.38		
F ₃ C-	۵.10	3.49*	2.57*		
HO-	4.72	4.17	5.50		
Cl-	2.62*	3.32*	3.81*		
(CH ₃) ₃ Si-	2.02	4.64*	4.36*		
C ₂ H ₅ O-	4.47*	4.17*	5.25*		
CH ₃ -	4.38*	4.67*	5.07*		
-HO ₃ As	3.77	4.05	4.05		
H ₂ N-	4.47	4.88	6.08		
*Thermodynamic		1.00	0.00		
111011110 uj 11u11110					
Dimethyl					
Н		5.07	52		
$m-NO_2$		2.63	52		
m-CN		2.97	52		
$p-NO_2$		0.61	52		
p-CN		1.78	52		
p-NO		4.54	52		
Dimethyl (in 50	10/ othon	(lou			
Substituent XC			ref. 2		
H-	011411(0	4.21, 4.09			
m-CH ₃		4.66	J		
p-C ₂ H ₅ -		4.69			
o-(CH ₃) ₂ CH-		5.05			
p-CH ₃ CH ₂ CH ₂	CH ₂ -	4.62			
o (CHa)aC	, 2	1.02			

4.62 4.26

3.33

4.41

5.49 5.15, 5.07

4.94 4.43

4.77

4.19

3.43, 2.73 3.52, 2.82

o-(CH₃)₃C-

 $m-(CH_3)_3Si-$

p-CH₃CH₂CH₂-

p-(CH₃)₂CHp-(CH₃)₂CHCH₂-

o-CH₃O-

o-CH₃ p-CH₃

p-I-

p-Br-

p-Cl-

Ortho-substituted anili	nes (in 50% ethanol)	1-NH ₂ -8-NO ₂ -	2.79
H-	4.25	1-NH ₂ -8-SO ₃ -	1.71
2-CH ₃ -	3.98, 4.09	$1-NH_2-3-SO_3-$	3.20*
2,3-(CH ₃) ₂ -	4.42	1-NH ₂ -4-SO ₃ -	2.81*
2,4-(CH ₃) ₂ -	4.61	1-NH ₂ -5-SO ₃ -	3.69*
2,5-(CH ₃) ₂ -	4.17, 4.23	1-NH ₂ -6-SO ₃ -	3.80*
2,6-(CH ₃) ₂ -	3.42, 3.49	1-NH ₂ -7-SO ₃ -	3.66
3,5-(CH ₃) ₂ -	4.48	1-NH ₂ -8-SO ₃ -	5.03*
2-CH ₃ -	4.09	2-NH ₂ -	4.11*
2-(CH ₃) ₂ CH-	4.06	2-NH ₂ -1-NO ₂ -	-1.0
2-(CH ₃) ₂ C-	3.38	$2-NH_2-3-NO_2-$	2.93
2,6-(CH ₃) ₂ -4-(CH ₃) ₃ C-	3.88	$2\text{-NH}_2\text{-}4\text{-NO}_2\text{-}$	2.63
$2,4-(CH_3)_2-6-(CH_3)_3-$	3.43	$2-NH_2-5-NO_2-$	3.16
2-CH ₃ -4,6-(CH ₃) ₃ C-	3.31	$2\text{-NH}_2\text{-}6\text{-NO}_2\text{-}$	2.75
2,4,6-[(CH ₃) ₃ C ₃]-	<2	$2\text{-NH}_2\text{-}7\text{-NO}_2\text{-}$	3.13
		2-NH ₂ -8-NO ₂ -	2.86
Substituted Naphthylan		2-NH ₂ -1-SO ₃ -	2.35
1-NH ₂ -	3.92*	$2\text{-NH}_2\text{-}3\text{-SO}_3\text{-}$	
1-NH ₂ -2-NO ₂ -	-1.6	2-NH ₂ -4-SO ₃ -	3.70
1-NH ₂ -3-NO ₂ -	2.22	2-NH ₂ -5-SO ₃ -	3.96*
1-NH ₂ -4-NO ₂ -	0.54	$2\text{-NH}_2\text{-}6\text{-SO}_3\text{-}$	3.74*
1-NH ₂ -5-NO ₂ -	2.80	2-NH ₂ -7-SO ₃ -	3.95*
$1-NH_2-6-NO_2-$	3.15	2-NH ₂ -8-SO ₃ -	3.89^{*}
$1-NH_2-7-NO_2-$	2.83		

N-substituted	anilines*
_	~

R	C ₆ H ₅ NHR	C ₆ H ₅ N(CH ₃)R	C ₆ H ₅ NR ₂	2-CH ₃ C ₆ H ₄ NHR	2-CH ₃ C ₆ H ₄ NR ₂
H-	4.58	4.85	4.58	4.39	4.39
CH ₃ -	4.85	5.06	5.06	4.59	5.86
C_2H_5 -	5.11	5.98	6.56	4.92	7.18
$n-C_3H_7$ -	5.02		5.59		
n-C ₄ H ₉ -	4.95		~5.7		
$i-C_4H_9$ -		5.20			
sec-C ₄ H ₉ -		6.04			
$t-C_6H_{12}-$	6.30				
Cyclopentyl-	5.30	6.71		5.07	
Cyclohexyl-	5.60	6.35		5.34	
t-C ₄ H ₉ -	6.95	7.52		6.49	
*Thermodynamic					

Primary amines 2-aminoethylsulphonic acid 2-aminoethylsulphonic acid 3.32, 9.83 N-n-butylethylenediamine 7.53, 10.30 Primary amines N-n-butylethylenediamine 8.14, 10.97 Primary amines Primary amines N-N'-di-n-propylethylenediamine N-N'-diacetic acid 6.42, 9.46 Primary amines Primary amines N-n-propylethylenediamine N-N'-diacetic acid 6.42, 9.46 Primary amines N-n-propylethylenediamine N-N'-Dimethylethylenediamine N-N-ethylaminoacetic acid N-n-propylaminoacetic acid N-n-propylamino
2-aminoethylsulphonic acid 9.08 Aminomalonic acid 3.32, 9.83 N-n-butylethylenediamine 7.53, 10.30 2,3-diaminobutane, meso 6.92, 9.97 2,3-diaminobutane, racemic 6.91, 10.00 2,3-diaminodiethyl sulfide 8.84, 9.64 1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 6.79, 10.00 1,2-diamino-2-methylpropane 6.79, 10.00 1,3-Diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 2-(2-hydroxypropylamino)-ethylamine 6.94, 2,2'-dihydroxydiethylamine 9.00 N,N'-di-n-propylethylenediamine 8.14, 10.97 Ethylenediamine-N,N'-diacetic acid 6.42, 9.46 Iminodipropionic acid 4.11, 9.61 Piperazine 5.68, 9.82 -carboxymethylaminopropionic acid 7.40, 10.16 N,N'-Dimethylethylenediamine 7.40, 10.16 N,N'-Dimethylethylenediamine 7.40, 10.16 N-ethylaminoacetic acid 2.30, 10.10 Iminodiacetic acid 2.36, 10.06 N-n-propylaminoacetic acid 2.28, 10.03 Tertiary amines 4.62, 2-dihydroxydiethylamine 9.00 A,N,'-diacetic acid 6.42, 9.46 A,11, 9.61 A,11, 9
Aminomalonic acid 3.32, 9.83 N-n-butylethylenediamine 7.53, 10.30 2,3-diaminobutane, meso 6.92, 9.97 2,3-diaminobutane, racemic 6.91, 10.00 2,2'-diaminodiethyl sulfide 8.84, 9.64 1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 6.79, 10.00 1,2-diamino-2-methylpropane 6.79, 10.00 1,3-Diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 2-(2-hydroxypropylamino)-ethylamine 6.94, N,N'-di-n-propylethylenediamine 8.14, 10.97 Ethylenediamine-N,N'-diacetic acid 6.42, 9.46 Iminodipropionic acid 4.11, 9.61 Piperazine 5.68, 9.82 -carboxymethylaminopropionic acid N,N'-Dimethylethylenediamine 7.40, 10.16 N,N'-Dimethylethylenediamine 7.40, 10.16 N-n-ethylaminoacetic acid 2.36, 10.06 N-n-propylaminoacetic acid 2.36, 10.06 N-n-propylaminoacetic acid 2.28, 10.03 Tertiary amines 4-(2-aminoethyl)morpholine 4.84, 9.45
N-n-butylethylenediamine 7.53, 10.30 2,3-diaminobutane, meso 6.92, 9.97 2,3-diaminobutane, racemic 6.91, 10.00 2,2'-diaminodiethyl sulfide 1,3-diamino-2,2-dimethylpropane 8.18, 10.22 8.84, 9.64 8.84, 9.64 8.84, 9.64 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 6.79, 10.00 1,3-Diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N'-diacetic acid 9.10.00 1,2-diamino-2-methylpropane 8.23, 9.68 N-isopropylaminoacetic acid 9.41, 9.61 Piperazine 9.68, 9.82 -carboxymethylaminopropionic acid 9.740, 10.16 N,N'-Dimethylethylenediamine 9.89 N-ethylaminoacetic acid 9.98, 9.89 N-isopropylaminoacetic acid 9.298, 9.89 N-isopropylaminoacetic acid 9.484, 9.45 Tertiary amines 9.40 1.11, 9.61 1.12, 9.61 1.13, 9.61 1.14, 9
N-n-butylethylenediamine 7.53, 10.30 2,3-diaminobutane, meso 6.92, 9.97 2,3-diaminobutane, racemic 6.91, 10.00 2,2'-diaminodiethyl sulfide 8.84, 9.64 1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 6.79, 10.00 1,2-diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N'-diacetic acid 6.42, 9.46 Iminodipropionic acid 4.11, 9.61 Piperazine 5.68, 9.82 -carboxymethylaminopropionic acid 3.61, 9.46 N,N'-Dimethylethylenediamine 7.40, 10.16 N-ethylaminoacetic acid 2.30, 10.10 Iminodiacetic acid 2.98, 9.89 N-isopropylaminoacetic acid 2.36, 10.06 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 Tertiary amines 2-(2-hydroxypropylamino)-ethylamine 6.94,
2,3-diaminobutane, meso 2,3-diaminobutane, racemic 2,3-diaminobutane, racemic 2,2'-diaminodiethyl sulfide 1,3-diamino-2,2-dimethylpropane 3,32, 6,67, 9,20, 9,92 1,2-diamino-2-methylpropane 1,3-Diaminopropan-2-ol 1,3-Diaminopropan
2,3-diaminobutane, racemic 2,2'-diaminodiethyl sulfide 1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 1,3-Diaminopropan-2-ol 1,3-Diaminopropan
1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 N-ethylaminoacetic acid 1,2-diamino-2-methylpropane 1,3-Diaminopropan-2-ol 1,
1,3-diamino-2,2-dimethylpropane 8.18, 10.22 N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 N-ethylaminoacetic acid 1,2-diamino-2-methylpropane 1,3-Diaminopropan-2-ol 1,
N,N'-Di-(2-aminoethyl)-ethylenediamine 3.32, 6.67, 9.20, 9.92 N-ethylaminoacetic acid 2.30, 10.10 N-ethylaminoacetic acid 2.98, 9.89 1,3-Diaminopropan-2-ol N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N,N'-Diglycyethylenediamine N-isopropylaminoacetic acid N-n-propylaminoacetic acid 2.28, 10.03 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N,N'-Dimethylethylenediamine N-ethylaminoacetic acid N-isopropylaminoacetic acid N-n-propylaminoacetic acid N-n-propylaminoacetic acid N-ethylaminoacetic acid N-isopropylaminoacetic acid N-isopropylaminoaceti
3.32, 6.67, 9.20, 9.92 1,2-diamino-2-methylpropane 6.79, 10.00 1,3-Diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 2-(2-hydroxypropylamino)-ethylamine 6.94, N-ethylaminoacetic acid 2.30, 10.10 Iminodiacetic acid 2.98, 9.89 N-isopropylaminoacetic acid 2.36, 10.06 N-n-propylaminoacetic acid 2.28, 10.03 Tertiary amines 4.84, 9.45
1,2-diamino-2-methylpropane 6.79, 10.00 1,3-Diaminopropan-2-ol 8.23, 9.68 N,N'-Diglycyethylenediamine 7.63, 8.35 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 2-(2-hydroxypropylamino)-ethylamine 6.94, Iminodiacetic acid 2.98, 9.89 N-isopropylaminoacetic acid 2.36, 10.06 N-n-propylaminoacetic acid 2.28, 10.03 Tertiary amines 4.84, 9.45
1,3-Diaminopropan-2-ol 8.23, 9.68 N-isopropylaminoacetic acid 2.36, 10.06 N,N'-Diglycyethylenediamine 7.63, 8.35 N-n-propylaminoacetic acid 2.28, 10.03 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 Tertiary amines 2-(2-hydroxypropylamino)-ethylamine 6.94, 4-(2-aminoethyl)morpholine 4.84, 9.45
N,N'-Diglycyethylenediamine 7.63, 8.35 N-n-propylaminoacetic acid 2.28, 10.03 Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 Tertiary amines 2-(2-hydroxypropylamino)-ethylamine 6.94, 4-(2-aminoethyl)morpholine 4.84, 9.45
Ethylenediamine-N,N-diacetic acid 5.58, 11.05 Furfurylamine 8.89 2-(2-hydroxypropylamino)-ethylamine 6.94, Tertiary amines 4.62-aminoethyl)morpholine 4.84, 9.45
Furfurylamine 8.89 Tertiary amines 2-(2-hydroxypropylamino)-ethylamine 6.94, 4-(2-aminoethyl)morpholine 4.84, 9.45
2-(2-hydroxypropylamino)-ethylamine 6.94, 4-(2-aminoethyl)morpholine 4.84, 9.45
, , , , , , , , , , , , , , , , , , ,
2-(3-hydroxypropylamino)ethylamine Hexamethylenetetramine 5.13
6.78, 9.76 Methyliminodiacetic acid 2.81, 10.18
N-Methylaminoacetic acid 2.24, 10.01 Diethylaminoacetic acid 2.04, 10.47
Methylaminomercaptoproionate 6.56, Dimethylaminoacetic acid 2.08, 9.80
8.99 N-2-hydroxyethyliminodiacetic acid 2.2, 8.73
N-n-propylethylenediamine 7.54, 10.34 Triethylenediamine 4.18, 8.19
1,2,3-triaminopropane 3.72, 7.95, 9.59
`
2.30, 6.60 N-Allylpiperidine 9.68
2,2'-diaminodiethylamine 3.58, 8.86, 9.65 N-Allylmorpholine 7.05
2,3-diamino-2,3-dimethylbutane 6.56, 10.13 Propargyldimethyl 7.05
3,3'-diaminodi-n-propylamine 8.02,9.70, 10.7 Propargylethyldimethyl 8.88
1,2-Di-(2-aminoethylthio)ethane 8.43, 9.32 N-Methylmorpholine 7.41
1,2-diaminopropane 7.13, 10.00 N-Methylpyrrolidine 10.46
N,N-diethylethylenediamine 7.07, 10.02 N,N-Dimethylhydroxylamine 5.20
N,N-dimethylethylenediamine 6.63, 9.53 Allyldimethyl 8.73
N-Ethylethylenediamine 7.63, 10.56 Benzyldiethyl 9.48
N-(2-hydroxyethyl)-ethylenediamine N-Ethylpiperidine 10.40
6.83, 9.82 N-Ethylmorpholine 7.70
N-isopropylethylenediamine 7.70, 10.62 Propargymethyldimethyl 8.33
2-Methoxyethylamine 9.20 N-Methylpiperidine 10.08
Mercaptoethylamine 8.27, 10.53 N-Methyltrimethyleneimine 10.40
N-Methylethylenediamine 7.56, 10.40 Triethanolamine 7.77
2-Methylthioethylamine 9.18 N,N-Dimethylmethoxyamine 3.65
2-thienylmethylamine 8.92
Triaminotriethylamine 8.56, 9.59,
10.29

Ref. 5 N-Dimethyl-cysteamine N-Dipropyl-cysteamine NMercaptoethyl-morpholine 1-Diethylamino-butan- (4)		7.95, 10.7 8.00, 10.8 6.65, 9.8 10.1		Methyl-[-diethylamino-ethyl]su N-Diethyl-cysteamine NMercaptoethyl-piperidine 1-Diethylamino-propan- (3) 1-Diethylamino-hexan- (6)			116de 9.8 7.8, 10.75 7.95, 11.05 8.0, 10.5 10.1
ANILINES (Ref. 88)							
m-Substituted an m-C ₂ H ₅ -C(CH ₃) ₃ 3,5-[C(CH ₃) ₃] ₂ m-CN 3-OCH ₃ .5-NO ₂ 3,5-Br ₂	ilines	4.70 4.97 2.76 2.11 2.34	4.66	m-CH(CH ₃) ₂ 3,5-(CH ₃) ₂ m-COCH ₃ 3-Cl,5-OCH ₃ 3,5-(OCH ₃) ₂	4.67	3.56 3.10 3.82	4.74
NAPHTHALAMIN	ES (refere	ence 88)					
substituted naphtha							
2-naphthalamine 1-NH ₂ ,3-X	X NO2 CN Cl Br I COOCH3 OCH3 OH CH3	4.16 2.07 2.26 2.66 2.67 3.12 3.30 3.96 2.71	2.82	2-naphthalamine 2-NH ₂ ,4-X 1-NH ₂ ,6-X	X NO2 CN Cl Br I COOCH3 OCH3 NO2 Cl OCH3	2.89 3.48 3.90	3.41 4.05
2-NH ₂ ,5-X 1-NH ₂ ,5-X	NO ₂ OH NO ₂ OH Cl	3.01 4.07 2.73 3.96 3.34		2-NH ₂ ,7-X	OH NO ₂ Cl OCH ₃ OH	3.97 3.10 3.71 4.19 4.25	
1-NH ₂ ,7-X	NH ₂ NO ₂ Cl OCH ₃ OH	4.21 2.55 3.48 4.20	4.07	2-NH ₂ ,6-X 2-NH ₂ ,8-X 1-NH ₂ ,4-X	NH ₂ NO ₂ OCH ₃ NO ₂	4.66 2.62 4.64 0.54	2.73
1-NH ₂ ,2-X 1-X,2-NH ₂ 1-NH ₂ ,8-X	NO2 NO2 NO2	-1.74 -0.85 2.79,		2-NH ₂ ,3-X	Br NO2	3.21 1.48	

A 11. (1 700/ .1 1)			51 D 4D	00454004	0
Anilines (in 50% ethanol)	T /	C	5'-IMP	8.9, 1.54, 6.04	6
Unhindered	pK	ref.	5-Methylcytosine	4.6, 12.4	6
Aniline p-Aminodiphenyl	4.19 3.81	40 40	5-Methylcytosine deox		
2-Naphthylamine	3.77	40		4.4	6
3-Phenanthrylamine	3.59	40	3-Methyluracil	9.75	37
m-Aminodiphenyl	3.82	40	3-Methylxanthine	8.5 (8.1), 11.3	38
2-Aminofluorene	4.21	40	Adenosine	3.63	6
2-Phenanthrylamine	3.60	40	"	3.3, 12.5	35
2-Anthrylamine	3.40	40	5'-AMP	3.3, 6.1	36
Hindered				3.74, 6.2-6.4	6
o-Aminodiphenyl	3.03	40	Barbituric acid	3.9, 12.5	37
			Cytidine	4.11	6
peri			"	4.22, 12.5	35
1-Naphthylamine	3.40	40	2'-CMP	4.3-4.4, 6.19*	6
9-Phenanthrylamine	3.19	40	5'-CMP	4.5, 6.3	6
3-Aminopyrene	2.91	40	CTP	4.6, 6.4	6
1-Phenanthrylamine	3.23	40	2,6-Diaminopurine	5.09, 10.77	6
1-Anthrylamine	3.22	40	Isoguanine	4.51, 8.99	6
			Guanosine (deoxy)	1.6-2.2, 9.16-9.5	6
meso			GMP $(2' + 3')$	2.3, 9.36, 0.7, 5.9	6
9-Anthrylamine	2.7	40	5'-GMP (deoxy)	2.9, 9.7, 6.4	6
o-Aminophenols	1 40.00 7.00	¥4	GTP	3.3, 9.3, 6.5	6
3-Hydroxyanthranilic acid		51	Inosine	1.2, 8.9	6
2-Aminophenol hydrochlo		F1	mosme	8.75, 12.5	6
Indicators	9.99, 4.86	51	5 Mothyleytosino doox	· · · · · · · · · · · · · · · · · · ·	U
Indicators	2.82, 2.76	60	5-Methylcytosine deox		6
p-Aminoazobenzene 4-Chloro-2-nitroaniline	-1.02, -1.03	60	1 Mathedres :1	4.5, 13.0	
4,6-Dichloro-2-nitroanilin		60	1-Methyluracil	9.95	37
6-Bromo-2,4-dinitroaniline		00	1-Methylxanthine	7.7, 12.05	38
2-Amino-4,5-dimethylphe		10.40,	7-Methylxanthine	8.5 (8.3)	38
z-Ammo-4,3-amemyipne	5.28	51	9-Methylxanthine	6.3	38
N,N-Dimethyl-2,4-dinitro		60	Purine	2.52, 8.90	37
p-Nitrodiphenylamine	, anninc 1.00,	00	Thymidine	9.8	6
	2.4 to -2.9, -2.50	60	5'-TMP	10.0, 1.6, 6.5	6
4-Methyl-2, dinitroanilin		60	Uracil deoxyriboside	9.3	6
1 1/10011/1 2, 4111101 041111111	0.00, 1.11		5'-UMP	9.5, 6.4	6
Heterocyclics			UTP	9.5, 6.6	6
Nucleosides, etc.			Uridine	9.25	6
Adenine	4.15, 9.80	6	"	9.17, 12.5	35
2'-AMP	3.81, 6.17	6	Xanthosine	0, 5.5, 13.0	6
3'-AMP	3.74, 5.92	6	Orotic acid	2.8, 9.45, 13	6
ADP	3.95, 6.3	36	Pyrimidine	1.30	37
ATP	4.00 (4.1), 6.5	36	Thymine	0, 9.9, 713.0	6
Barbital	7.85, 12.7	37	Uracil	.5, 9.5, 13.0	6
Cytosine	4.45, 12.2	6	UMP(2' + 3')	9.43, 1.02, 5.88	6
Cytosine (deoxy)	4.25	6	UDP	9.4, 6.5	6
3' CMP	4.16-4.31, 6.04	6	Uric acid	5.4, 10.3	6
CDP	4.44	6	Xanthine	0.8, 7.44, 11.12	6
CDP, (deoxy)	4.8, 6.6	6	"	7.2	38
Guanine	3.3, 9.2, 12.3	6		1.6	30
Guanosine	2.2, 9.5	6			
"	1.6, 9.16, 12.5	35			
5'-GMP		6			
GDP	2.4, 9.4, 6.1	6			
	2.9, 9.6, 6.3	-			
Hypoxanthine	1.98, 8.94, 12.10	U			

Heterocyclic Bases (Ref. 2)

Pyridine 5.14* pK (20°)

Quinoline 4.85*

Isoquinoline 5.14*

Benzoquinoline 5.05*

Acridine 5.60

5,6-Benzoquinoline 5.15*

7,8-Benzoquinoline 4.25*

Phenanthridine 3.30^a

2,3-Benzacridine 4.52^a

3,4-Benzacridine 4.70*

1,2-Benzacridine 3.45^a

Pyridazine 2.10*

Pyrimidine 1.10*

Pyrazine 0.37*

Cinnoline 2.64*

Phthalazine 3.39*

Quinazoline 3.31*

Quinoxaline 0.6*

^a 50% EtOH

Heterocyclics 3-Hydroxy 8.81, 5.52 39 5-Hydroxy (acridone) 3.30, 7.44, 9.27 --f, -0.32 39 Aureomycin 77 **Iridine** --, 5.62 5-Methoxy --, 7 39 39

Acridine 1-- 2-- 3-- 4-- 5-- 9-- Ref. 2

H	5.60*	4.11a						
H ₂ N	3.00 4.40*	8.04*	5.88*	6.04*	9.99*			
1121N								
ш	3.59a	7.61a	5.03^{a}	5.50a	9.45a			
НО	4.18a	4.86a	5.52^{39}	4.45a	32^{39}			
	10.7a	9.9a	8.8139	9.4*	>12			
CH ₃	3.95a		4.60a		4.70a			
$H_2K-(1-CH_3)$				4.79a	9.73^{s}	3.22a		
$1,9-(CH_3)_2$	2.88a							
^a 50% ethanol; ref.	39							
8-amino-1,2-benza		6.72	40	, '-dipy	ridyl		4.43	6
2-amino-4-methyl-	5,6-benzo	oquinoline	7.14	4-amino-			8.75a	19
		40		4-amino-	2-methyl-		9.45a	19
3-amino-6,7-benzo			40		2-methyl-8-	chloro-	5.95a	19
8-amino-3,4-benza		7.42	40	8-chloro-			2.5a	19
1'-amino-5,6-benzo			40	3,4-diam			8.15a	19
4'-amino-5,6-benzo	quinolin	e 5.20	40	3-amino-			4.78, 3.73 ^a	19
2-amino-4-methyl-	7,8,benzo		40		quinoline		$4.25, 3.15^{a}$	19
0.71		6.74	40	4-amino-	•		7.68 ^a	19
6,7-benzoquinoline		5.05, 3.84a	19		2-methyl-		7.96 ^a	19
5,6-benzoquinoline	;	5.15, 3.90a	19		4-methyl-		6.74, 6.02a	19
4-amino-		7.99^{a}	19		2-methyl-		5.23a	19
2-methyl-		4.44 ^a	19				4.75 ^a	19
4-amino-2-methyl-		8.45 ^a	19		-2-methyl-			
2-amino-4-methyl-		$7.14, 6.51^{a}$	19	3,4-benza	acridine		4.70, 4.16 ^a	19
4'-amino-		5.20, 4.10 ^a	19	5-amino			8.41a	19
3'-amino-		4.02a	19	7-amino-		,	5.03a	19
1'-amino-		5.03	19	8-amino-			7.42 (6.51) ^a	19
2',4'-diamino-		4.91 ^a	19	8-acetam			4.48a	19
Benziminazole		5.53	19		ylamino-		7.31, 6.99	19
2-amino-		7.54	19	1,2-benza			3.45a	19
Benztriazole		1.6	19	5-amino-			8.13a	19
Benzthiazole		$1.2, 0.1^a$	19	7-amino			4.05a	19
2-amino-		4.51	19	8-amino-			6.72, 5.97a	19
benzoxazole		(decomp.)	19	4',5-diam			8.44a	19
2-amino-		3.73	19	Cinnolin			, 0.21	39
2,3-benzacridine		4.52a	19	3-hydrox			8.64, 0.21	39
5-amino-		9.72a	19	5-hydrox			7.40, 1.92	39
5-acetamido-		4.56 ^a	19	7-hydrox			7.56, 3.31	39
7-amino-		5.38 ^a	19	4-methox	хy		, 3.21	39
5-amino-6:7:8:9-tet	rahydro-	9.66^{a}	19	Uatamaar	rolina			
Caffeine		0.61	4	Heterocy			1 19	G
cinchonine		7.2	4	o,o'-dipy			4.43 9.16	6
Cinnoline		2.70	19	hydantoi			9.10 8.70	42 42
4-amino-		6.84	19		oyl-2-thio- ımethylene2	-thio	8.70 8.79	42 42
Cocaine		7.6	4		nethyl-2-thio		10.80	42 42
Cinnoline 4-hydrox	ку	9.27, 0.35	39		-5,5-pentam			76
6-hydroxy		7.52, 3.65	39	o memyi	o,o pentam	CHIYIC	11.23	42
-hydroxy		8.20, 2.74	39	Imidazo	les		11.20	1~

2-Methylimidazole	7.75	43	Histidine	methyleste	r
N-Acetylhistidine	7.05	43	Tistianic	5.2 (NH ₂ 7.	
2-Methyl-4-hydroxy-amino		43		43	-,
4-Hydroxymethyl-	6.45	43	2-Methyl-4-hydroxy-6-nitro		ole
2-Methylbenz-	6.1	43	2 Wedlyl I nydroxy o mide	3.9	43
Histamine	6.0	43	4-Hydroxy-6-Nitrobenz-	3.05	43
4-Hydroxy-6-aminobenz-	5.9	43	b2-Hydroxymethylnaphth(10
4-Hydroxybenz-	5.3 (OH 9.5		z Trydroxymetnymapitm(4.44, 12.23	86
4-Methoxybenz-	5.1	43	b2-Hydroxymethylnaphth(•	00
4-Bromo-	3.7	43	z Trydroxymethymaphth(4.50, 12.23	86
6-Nitrobenz-	3.05, 10.6	43	4-Hydroxy-	4.80, 8.68	44
4-Nitro-	1.5, 9.1	43	1-Amino-	7.62	40
isoQuinolines	ŕ		4-Amino-	6.28	40
1-Hydroxy-	-1.2	44	6-Amino-	7.17	40
5-Hydroxy	5.40, 8.45	44	8-Amino-	6.06	40
3-Amino-	5.05	40	7-Hydroxy-	5.70	40
5-Amino-	5.59	40	1-Methoxy-	3.05	44
Amino-	6.20	40	4-NO ₂	1.35	88
6-Hydroxy-	5.85, 9.15	44	4-Br	3.31	88
8-Hydroxy-	5.66, 8.40	44	1-Hydroxy-	, 1.44	39
2-Methylisoquinolone	-1.8	44	5-Methyl-1-phenazone	, 4 .9	39
Isoquinoline	5.46, 5.14	44, 19	m-Phenanthroline	3.11^{a}	19
Phenazine	, 1.23	39		ca. 7.3, 7.29a	19
2-Hydroxy-	7.5, 2.6	39	2,2'-Dipyridyl	4.23	19
10-Methyl-2-phenazone	, 3.0			8.79, 4.82	44
6-Aminophenanthridine	6.88	40	2-Hydroxy- 7-Hydroxy-	4.38, 8.68	44
9-Aminophenanthridine	7.31	40	9-Methoxy-	, 2.38	44
o-Phenanthroline	$4.27^{a}, 5.2$	19	· ·	5.66a	19
p-Phenanthroline	3.12a	19	2-Amino-9-methyl-		
1,10-Diamino-3,8-Dimethyl-	8.78a, 6.31a		2,7-Diamino-9-methyl-	6.26 ^a 6.88	19
, ,	•		6-Amino-	1.23	40
Phenanthridine	, 4.65	44	Phenazine		19
6-Hydroxy-	8.43, 5.35	44	1-Amino-	2.6a	19
9-Hydroxy (phenanthridon	e) <-1.5	44	2-Amino-	4.75, 3.46 ^a	19
9-Amino-	7.31, 6.75a	19	1,3-Diamino-	5.64 ^a	19
2,7,9-Triamino-	8.06a	19	2,3-Diamino-	4.74	19
Phthalazine	3.47	19	2,7-Diamino-	4.63, 3.9a	19
1-Amino-	6.60	19	Pteroylglutamic acid	8.26	77
1-Hydroxy-	11.00, -2	39	D 11		
Picolimic acid	5.52	4	Pyridines	0.00	4.4
5,5-dimethyl-2-thio-	8.71	42	2-Amino-	6.86	41
5,5-Diphenyl-2-thio-	7.69	42	4-Amino-	9.17	41
1-Methyl-5,5-pentamethyl-6	ne-2-thio-		2-Methyl-	5.94 ^b	45
<i>y</i> 1	9.25	42	2-Vinyl-	4.98	45
4-Methyl-	7.45	43	2-Chloro-	0.49	45
Imidazole	6.95	43	2,4,6-Trihydroxy-	4,6, 9.0, 13	39
4-(2',4'-Dihydroxyphenyl)-	6.45	43	1-Methyl-4-pyridone	3.33	40
Carbobenzoxy-L-histidyl-L-	tyrosine eth	ıyl	2-(N-Methylacetamido)-	2.01	46
ester	6.25	4 3	2-Benzamido-	3.33	
6-Aminobenz-	6.0 (NH ₂ 3.	0)	2-(N-Methylbenzamido)-	1.44	40
Benzimidazole	5.4	43	3-(N-Methylacetamod)-	3.52	46
			3-(N-Methylbenzamido)-	3.66	46
			4-(N-Methylacetamido)-	4.62	46

4-(N-Methylbenzamido)-	4.68	46
4-Benzamido-	5.32	46
$3-NO_2$	0.81	88
3-COO-	4.77	47
$2,3-Me_2$	6.60	48
$2,5-Me_2$	6.47	48
3,4-Me ₂	6.52	48
2,4,6-Me ₃	7.48	48
4-OEt	6.67	48
3-Cl	2.84	48
3-CO ₂ Et	3.35	48
3-COOH	3.13	88
2-Amyl-	6.00^{b}	45
2-Hexyl-	5.95^{b}	45
2-Benzyl-	5.13	45
2-Bromo-	0.71	45
2,4-Dihydroxy	6.50, 13, 1.37	39
1-Methyl-2-pyridone	0.32	39
2-Acetamido-	4.09	46
1-Methylpyrid-2-one acety	ylimine 7.12	46
3-Acetamido-	4.46	46
3-Benzamido-	3.80	46
1-Methylpyrid-4-one acety	ylimine	
	11.03	46
1-Methylpyrid-4-one benz	ylimine 9.89	46
4-COO-	4.90	47
2,4-Me ₂	6.72	48
2,6-Me ₂	6.77	48
3.5-Me ₂	6.14	48
2-Me,5-Et	6.51	48
3-F	3.10	48
3-Br	2.84	48
4-CO ₂ Et	3.45	48
Pyridine N-oxides (see oxyge	en acids)	
, , ,	•	

(CH₃)₂CH-CH₃CO

CONH₂⁴⁷ NC-⁴⁷

H₂N-

5.83b

6.68b

5.72b

3.18^b

5.80b

3.40

1.45

 6.02^{b}

8.96b

3.61

Substituted Pyridines									
Pyridine	2-	3-	4-						
H-	5.17^{b}								
Cl-	0.72^{b}	2.84^{b}							
I-	1.82 ^b	3.25 ^b							
CH ₃ CH ₂ -	5.97^{b}	5.70^{b}	6.02 ^b						
(CH ₃) ₃ C-	5.76^{b}	5.82 ^b	5.99 ^b						
HO-	0.75	4.86	3.27						
	11.62	8.72	11.09						
SO_3^{-47}		2.9							
CH ₃ O-	3.28	4.88	6.62						
F-	-0.44 ^b	2.97^{b}							
Br-	0.90^{b}	$2.84^{ m b}$							
CH ₃ -	5.97 ^b	5.68 ^b	6.02^{b}						

Ortho-Substituted Pyridine	es (in 50% e	thanol)		Pyridazine	2.33	19
Substituent	ρK	ref.		3-Hydroxy-	10.46, -1.	.8 39
H-	4.38	2		3,6-Dihydroxy-	5,67, -2.2,	13 39
2-C ₂ H ₅ -	4.93	2		4-Methoxy-	3.70	39
2-(CH ₃)	4.68	2		3-Amino-	5.19	19
2,6-[(CH ₃) ₂ CH] ₂	3.58	2		4-Hydroxy-	8.68, 1.07	
2-(CH ₃) ₃ C-	4.68	2		3-Methoxy-	2.52°	39
2-C ₂ H ₅ -6-(CH ₃) ₃ C-	4.36	2		3,6-Dimethoxy-	1.61	39
				, y		
2,6-[(CH ₃) ₃ C] ₂ -	3.58	2		For complex chelating ag	ents, see also ret	f. 77
2-CH ₃ -	5.05	2		b thermodynamic at 25°.		
2-(CH ₃) ₂ CH-	4.82	2		thermoughanne at 20.		
$2.6-(CH_3)_2$	5.77	2				
$2.6 - [(CH_3)_3C]_2$	3.58	2				
2-CH ₃ -6-(CH ₃) ₃ C	5.52	2				
2-(CH ₃) ₂ CH-6-(CH ₃) ₃ C-	5.13	2				
(0,2 (0,0						
			pK _{NH}	35°	pK _{OH}	
Benzimidazole	6.00		5.58	5.36		
2-Methyl	6.96		6.29	6.18		
2-Ethyl	6.90		6.27	6.14		
2-Hydroxymethyl			5.40		11.55	ref. 86
1-Methyl-2-hydroxymethyl			5.55		11.45	
				2,4-Dihydroxy-(Uracil)	9.38, 12	39
				4,6-Dihydroxy-	5.4	39
				2,4,6-Trihydroxy-(Barbi	ituric acid)	
Other (ref. 95)					3.9, 12.5	39
Thiazolidine	6	.31		2-Methoxy-	<1	39
Methyl thiazolidine-4-carbo	xylate 4	.00		4-Methoxy-	2.5	39
Thiazolidine-4-COOH		.51, 6.21		1-Methyl-2-pyrimidone	e 2.50	39
				3-Methyl-4-pyrimidone		39
(ref. 96)				4-Amino-	5.71	19
2-Methyl- ² -oxazoline		5.5		2-Amino-4-methyl-	4.15	19
4-Carbamoyl-2-phenyl- 2-c	xazoline	2.9		2,4-Diamino-	7.26	19
2-Phenyl- ² -oxazoline	Auzomie	4.4		4-Methyl-	1.98	19
2-1 Helly1Oxazonne		7.7		4-Hydroxy-	8.59, 1.85	5 39
Untoposyaling				4,5-Dihydroxy-	7.48, 1.99, 11.0	31 39
Heterocyclics	n V	ref.		2,4,5-Trihydroxy-(isoBa	arbituric acid)	
Pyrazine	pK 1.1, 0.6	49, 39			8.11, 11.4	48 39
Pyrazine 2,5-Dimethyl-	2.1	49, 39 49		4-Hydroxy-5-methoxy	- 8.60	1.75
•	2.1	49 49			39	
2,3,5,6-Tetramethyl-	, 0.75	49 39		1-Methyl-4-pyrimidone	e 1.8	39
2-Methoxy- 2-Methyl-	, 0.73 1.5	39 49		7 7		
	2.5	49 49		Miscellaneous		
2,6-Dimethyl-	8.23, 0.1	49 39		4-Hydroxy-2-methylpy	ridazinium ch	loride
2-Hydroxy-	-0.04	39 39			1.74	44
1-Methyl-2-pyrazine 2-Amino-	3.14	19		8-Hydroxy-6-methyl-1,	,6-naphthyridi	nium
	3.14 1.30			chloride	4.34	44
Pyrimidine 2-Amino-	1.50 3.54	19 19		2-Hydroxyphenazine	2.6	44
5-Amino-	2.83	19 19		4-Hydroxypteridine	-0.17	44
	2.83 4.85	19 19		3-Methyl-4-pteridone	-0.47	44
2-Amino-4,6-dimethyl- 2,4,6-Triamino-	4.83 6.84	19 19		5-Hydroxypyrimidine	1.87, 6.78	3 44
	9.17, 2.24	39		8-Hydroxy-1,6-Naphth	yridine 4.08	44
2-Hydroxy-	3.11, 2.24	วซ		1-Hydroxyphenazine	1.44	44

5-Methyl-1-phe 10-Methyl-2-ph 1-Methyl-4-pte	nenazone	4.9 3.0 1.25		4 4 4						
Quinoline	2	3	4		5	6	7	8	Ref.	
H-	4.85*	4.80	4.69*						2	
H_2N -	7.25*	4.86*	9.08*		5.37*	5.54*	6.56*	3.90*	2	
HO-	36	4.30	2.27		5.20	5.17	5.48	5.13	44	
~~~	11.74	8.06	11.25		8.54	8.88	8.85	9.89	44	
$\mathrm{CH}_3$	5.42	5.14	5.20		4.62	4.92	5.08	4.60	2	
_	5.8		<b>5.6</b>			5.2		5.0	2 2 2 2	
F-		2.36*			3.68*	4.00*	4.04*	3.08*	2	
Cl-						3.73*		~	2	
$HO_2C$	4.96*	4.62*	4.53*	ĸ	4.81*	4.98*	4.97*	7.20*	2	
$NO_2$		1.0388								
0 1 1						5-Hydro	xy-1-met	hylquioxa	linium chlo	
Quinoline		T 00 0	70 0	^		חיו מ	•		5.74	44
2,4-Dihydroxy-	-	5.86, 0.		9		Riboflav			9.93	77 C
4-Methoxy-	nalana	6.65		9		Sulphad			6.48	6
1-Methyl-4-qui	потопе	$2.46 \\ 9.45$	3 1			Sulphap	yriaine othiazole		8.43 5.39	6 41
2,4-Diamino-						2-Ammo 1,3,5-Tri			ว.งย 	39
<b>Quinazoline</b> 2-Amino-		3.51, 3. 4.43		9		2,4-Dihy			6.5	39
						2,4-Dilly	azanapht	halana	2.5	39
6-Amino-		3.2a	1 20 2			4-Hydro	azanapin xv-	Halene	11.05, 0.78	
2-Hydroxy-		10.69,				5-Amino			2.62	19
6-Hydroxy- 3-Methiodide		8.19, 3. 7.26	3			2,3-Dian			4.70	19
2-Methoxy-		1.31	3			5-Hydro			8.65, 0.9	39
2-Methoxy-		3.17	3			6-Hydro			7.92, 1.40	39
1-Methyl-2-qui	nolone	-0.71	3				hthyridin	e	2.91	39
4-Amino-	noione	9.44, 9.		9, 41		4-Hydro			10.01, 2.85	
8-Quinolinol		5.13, 9.					uanidine		11.25	6
3-Cl		, 2.46		8, 44		Sulphath			7.12	6
3-Br		2.61		8		Terramy	cin		3.10, 7.26,	9.11
4-Amino-		5.73		9					77	
8-Amono-		2.4a	1	9			thylenedi		10.7	4
4-Hydroxy-		9.81, 2.	12 3	9			azanapht	halene	1.20	39
8-Hydroxy-		8.65, 3.	41 3	9		8-Hydro	xy-		8.76, 0.60	39
2,4-Dihydroxy-	-	9.78, 2.	5 3	9						
4-Methoxy-		3.13	3	9		~~~~				_
*Thermodynan	nic					SPECIA	L NITRO	GEN CO	MPOUNDS	•
							ylamines		£ 07*	10
Heterocyclics			_			Hydroxy			5.97* 5.06*	12
Quinoxaline		0.8, 0.5		9, 39		N-Methy			5.96* 4.60*	12
2-Amino-		3.96		9		O-Methy			4.60* 3.65*	12 12
6-Amino-		2.95		9		Trimeth			5.20*	12
2-Hydroxy-		9.08, -1		9		N-Dime N,O-Dir			3.20° 4.75*	12
1-Methiodide		5.74		9		ווע־ט,וו	neuryr-		7.1J	12
2,3-Dihydroxy-	•	9.52	3	9						

Hydrazines (30°)			Phenylguanidine	10.88	19
Hydrazine (66 )	8.07	13	Benzamidine	11.6	19
Methyl-	7.87	13	N-Phenyl-O-methylisourea		20
N,N'-Dimethyl-	7.52	13	1 1 1 11011/1 0 1110111/110001100		~~
Tetramethyl-	6.30	13			
N,N-Diethyl-	7.71	13	Nitrogen compounds, misce	ellaneous	
Phenyl-	5.21 (15°)	14	Diguanide	3.07, 13.25	77
Glycylhydrazide	2.38, 7.69	15	Dithiooxamide (rubeanic aci	•	' '
N,N-Dimethyl-	7.21	13	H ₂ NCSCSNH ₂ )	10.62	77
Trimethyl-	6.56	13	~ ~	10.02	<i>''</i>
Ethyl-	7.99	13	Ethylenediguanide	94 11 70	77
N,N'-Diethyl-	7.78	13	1.74, 2.88, 11.		77
Acet-	3.24	15	Phenyldiguanide	2.16, 10.71	77
	, 3.54, 10.77	13			
isomcommydrazide 1.65	, 3.34, 10.77 77		Od		
	11		Other	0.00	00
Hardwaren es Hardwaren e efe			S-Methylisothiourea	9.83	20
<b>Hydrazones</b> Hydrazone of:		1.0	N-Phenyl-S-methylisothiou	rea 7.14	20
Benzophenone	3.85	16			
p,p'-Dimethoxy-	4.38	16			
p-Chloro-	4.38	16	Cinchona Alkaloids (in 80	% aqueous	methyl
p-Methoxyacetophenone	4.94	16	cellosolve)		
p,p'-Dichloro-	3.13	16	Quinine	7.73	2
Phenyl-2-thienyl ketone	3.80	16	Quinidine	7.95	2
			Ephedrine	9.14	2
<b>Semicarbazones</b> of:			N-Methylephedrine	8.50	2 2 2 2 2
Semicarbazide	3.66		Epiquinine	8.44	2
Furfural	1.44	14	Epiquinidine	8.32	2
Benzaldehyde	0.96	14	-Ephedrine	9.22	2
Acetone	1.33	14	N-Methylephedrine	8.81	2
Acetaldehyde	1.10	14			
Pyruvic acid	0.59	14			
v			Acetamide	-0.51	4
			Urea	0.18	4
			Thiourea	-0.96	4
Amidoximes			imourea	0.00	1
Ox-	3.02	17			
Benz-	4.99	17	Thiols		
-Phenylacet-	5.24	17	N-Dimethyl-cysteamine	7.95, 10.7	7
Succin-	3.11, 5.97	17		8.00 10.8	5
o-Tolu-	4.03	17	N-Dipropyl-cysteamine NMercaptoethyl-morpho		-
p-Tolu-	5.14	17			
Malon-	~4.77	17	1-Diethylamino-butan- (4)	10.1	5
Widion	1.11	17	Methyl-[ -diethylamino-eth	yı]-sumae	9.8
Other				5	
Diphenylthiocarbazone	4.5	6	Methyl thioglycolate	7.8	23
Phthalimide	8.30	18	Mercaptoethylamine	8.6, 10.75	23
Nitrourethane	3.28	18	N-trimethyl cysteine	8.6	23
	3.28 8.33			8.75, 9.65	23
Acetylguanidine Acetamidine	8.33 12.52	19 19	N-Diethyl-cysteamine	7.8, 10.75	5
			NMercaptoethyl-piperidi	ne	
O-Methylisourea	9.80	20		7.95, 11.05	5
Dimedone	5.23	18	1-Diethylamino-propan- (3)	8.0, 10.5	5
Nitrourea	4.57	18	1-Diethylamino-hexan- (6)	10.1	5
Guanidine	13.71	19	· · · · · · · · · · · · · · · · · · ·		

p-Nitrobenzenethiol 5.1		58	o-Mercapto-phenylacetic acid				
Thioglycolic acid	3.6	<b>57</b> , <b>10</b> .31	23			4.28, 7.67	<b>59</b>
Mercaptoethanol	9.5	,	23	Ethyl mercaptan		10.50	81
Cysteine	1.8, 8.	3, 10.8	23	I-Thio-D-sorbitol	l	9.35	91
Cysteinylcysteine				2-mercaptoethan	esulfo	nate 7.53 (9.1)	81
2.65, 7.27, 9.35, 10.85		23	o-aminothiopher		6.59	81	
			Thiophenol	8.20a,	7.8, 6.52	59, 81, 82	
				-Mercaptopropionic acid 10.27		81	
<b>X</b> =	-H	-S ⁻	-SH	Methyl cysteine		6.5 (7.5)	
$X(CH_2)_2SH$	12.0	13.96	10.75	3 3		81	
X(CH ₂ ) ₄ SH	12.4	13.25	11.50	p-Cl-thiophenol		7.50	81
X(CH ₂ ) ₃ SH	13.24	11.14					
X(CH ₂ ) ₅ SH		13.27	11.82	Mercaptans, RSI	H		
( - L/3 -				R			
				CH ₃ CCH ₂ -		7.86	32
				C ₆ H ₅ CH ₂ -		9.43	82
				HOCH ₂ CH(OH)	CH ₂ -	9.51	82
				CH ₂ =CHCH ₂ -	~	9.96	82
				n-C ₄ H ₉ -		10.66	82
				t-C ₅ H ₁₁ -		11.21	82
				C ₂ H ₅ OCOCH ₂ -		7.95	82
				C ₂ H ₅ OCH ₂ CH ₂ -	_	9.38	82
				HOCH ₂ CH(OH)		9.66	82
				n-C ₃ H ₇ -		a10.65	82
						11.05	82 82
				t-C ₄ H ₉ -		11.03	02

Acetolone         ~20         24         Benzoylacetone (anol)         8.23         24           Acetylacetone         6         24         Nitroethane         14         24           Diacetylacetone         6         24         Nitroethane         8.6         18           Hydrocyanic acid         9.21         25         2-nitropropane         7.74         18           1-nitropropane         9         18         Tricyanomethane         strong         24           Saccharin         1.6         18         Trinitromethane         strong         24           Tri-methylsulfonyl-methane strong         24         Nitromethane         strong         24           R         R         R         R         R         R         R         R         R         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         K         <	CARBON ACIDS	5		Dicyanometha Acetonitrile	ne	12 c. 25	2 24	
Acetylacetone   8.95   24   Dimethylsulfone   14   24     Diacetylacetone   6   24   Nitroethane   8.6   18     Hydrocyanic acid   9.21   25   2-nitropropane   7.74   18     I-nitropropane   9   18   Tricyanomethane   strong   24     Saccharin   1.6   18   Trinitromethane   strong   24     Tri-methylsulfonyl-methane strong   24   Nitromethane   strong   24     Tri-methylsulfonyl-methane   strong   24     Tri-me	Acatona	20	91		o (anol)			
Diacetylacetone   6								
Hydrocyanic acid					ile			
1-nitropropane         9         18         Tricyanomethane Trinintromethane Trinintromethane Strong         24 strong								
Saccharin         1.6         18         Trimitromethane Nitromethane         strong         24           Tri-methylsulfonyl-methane strong         24         Nitromethane         strong         25           Bis-(β-Diketones): [(RCO)(R'CO)CH] ₂ CHR (in 50% dioxane)         (ref. 28)           R         R'         R'         pK           CH3         CH3         (CH2) ₅ CH3         11.30         12.52           CH3         CH3         CefH5         11.10         12.49           CH3         CH3         2-CH30C6H4         11.04         12.73           CH3         CH3         2-CH30C6H4         11.47         12.44           CH3         CH3         2-CH30C6H4         11.47         12.44           CH3         CH3         3-4-CH2O ₂ C ₆ H3         11.39         12.60           CH3         CH3         3-4-CH2O ₂ C ₆ H3         11.39         12.60           CH3         CH3         3-4-CH2O ₂ C ₆ H3         11.39         12.60           CH3         CH3         3-4-CH2O ₂ C ₆ H3         11.39         12.60           CH3         CH3         4-CH3O ₂ C ₆ H4         11.50         12.45           CH3         CH3         4-CH3O ₂ C ₆ H4         11.50 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Tri-methylsulfonyl-methane strong         24         Nitromethane         strong         25           Bis-(β-Diketones): [(RCO)(R'CO)CH] ₂ CHR (in 50% dioxane)         (ref. 28)           R         R'         R"         pK         pK           CH3         CH3         (CH2) ₅ CH3         11.33         12.52           CH3         CH3         2-Cl-6H4         11.10         12.49           CH3         CH3         2-Cl-6H4         11.10         12.49           CH3         CH3         2-Cl-6H4         11.10         12.49           CH3         CH3         2-Cl-6H4         11.10         12.46           CH3         CH3         2-Cl-3H4N         9.80         12.46           CH3         CH3         3-C-5H4N         9.80         12.49           CH3         CH3         4-CH30C6H4         11.62         12.60           CH3         CH3         4-CH30C6H4         11.62         12.61           CH3         CH3         4-CH30C6H4         11.50         12.45           CH3         CH3         4-CH30C6H4         11.50         12.49           CH3         CH30CH2         4-CH30C6H4								
Ris-(β-Diketones): (RCO)(R'CO)CH] ₂ CHR (in 50% dioxane)   (ref. 28)   R   R'   R'   pK   pK   pK   CH ₃   CH ₃								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						C		
$\begin{array}{c} CH_3 & CH_3 & (CH_2)_5 CH_3 & 11.33 & 12.52 \\ CH_3 & CH_3 & C_6 H_5 & 11.10 & 12.49 \\ CH_3 & CH_3 & 2-ClC_6 H_4 & 11.04 & 12.73 \\ CH_3 & CH_3 & 2-C_5 H_4 N & 9.80 & 12.46 \\ CH_3 & CH_3 & 2-C_5 H_4 N & 9.80 & 12.46 \\ CH_3 & CH_3 & 2-CH_3 OC_6 H_4 & 11.47 & 12.44 \\ CH_3 & CH_3 & 3.4-CH_2 O_2 C_6 H_3 & 11.39 & 12.60 \\ CH_3 & CH_3 & 3-C_5 H_4 N & 10.29 & 12.63 \\ CH_3 & CH_3 & 3-C_5 H_4 N & 10.29 & 12.63 \\ CH_3 & CH_3 & 4-CH_3 OC_6 H_4 & 11.52 & 12.61 \\ CH_3 & CH_3 & 4-CH_3 OC_6 H_4 & 11.52 & 12.61 \\ CH_3 & CH_3 & 4-(CH_3)_2 NC_6 H_4 & 11.50 & 12.45 \\ CH_3 & CH_3 OCH_2 & C_6 H_5 & 11.54 & 12.27 \\ CH_3 & CH_3 OCH_2 & 2-C_5 H_4 N & 10.95 & 12.49 \\ CH_3 & CH_3 OCH_2 & 4-(CH_3)_2 NC_6 H_4 & 11.74 & 12.49 \\ CH_3 & CH_3 OCH_2 & 4-CH_3 OC_6 H_4 & 11.74 & 12.49 \\ CH_3 & CH_3 OCH_2 & 4-CH_3 OC_6 H_4 & 11.74 & 12.49 \\ CH_3 OCH_2 COCH_2 COCH_3 & 9.66 & \\ (CH_3 CO)_2 CH(CH_2)_3 CH_3 & 12.07 \\ \\ \hline \textbf{Bis-($\beta$-Diketones)} & (RCO)-(R'CO)CH-Y-CH(COR)(COR') & (in 50\% dioxane) & (ref. 26) \\ \hline R & R' & Y & pK & pK \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_10 & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_10 & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_5 & 12.72 & 13.46 \\ C_6 H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6 H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6 H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6 H_5 & (CH_2)_7 & 13.1 (est.) \\ C_6 H_5 & (CH_2)_7 & 13.1 (est.) \\ C_6 H_5 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 1.2.9 & 13.00 \\ 1.2.9 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 1.2.9 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 1.2.6 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 1.2.49 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l$	·-		HR (i			•		
$\begin{array}{c} CH_3 & CH_3 & C_6H_5 & 11.10 \\ CH_3 & CH_3 & 2-ClC_6H_4 & 11.04 \\ CH_3 & CH_3 & 2-ClC_6H_4 & 11.04 \\ CH_3 & CH_3 & 2-Cl_6H_4 & 11.04 \\ CH_3 & CH_3 & 2-C_5H_4N & 9.80 \\ CH_3 & CH_3 & 2-CH_3OC_6H_4 & 11.47 \\ CH_3 & CH_3 & 3.4-CH_2O_2C_6H_3 & 11.39 & 12.60 \\ CH_3 & CH_3 & 3-C_5H_4N & 10.29 & 12.63 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.62 & 12.61 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.50 & 12.45 \\ CH_3 & CH_3 & 4-(CH_3)_2NC_6H_4 & 11.50 & 12.45 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 & 12.27 \\ CH_3 & CH_3OCH_2 & 2-C_5H_4N & 10.95 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2COCH_3 & 9.66 & \\ CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-($\beta$-Diketones)} & (RCO)-(R'CO)CH-Y-CH(COR)(COR') & (in 50\% dioxane) \\ \hline \textbf{R} & R' & Y & pK & pK \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.47 & 13.09 \\ CH_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.58 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 12.49 & 13.00 \\ 12.01 & 12.07 & 13.1 & (est.) \\ C_6H_5 & (CH_2)_6 & 12.58 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 12.49 & 13.00 \\ 12.69 & 13.00 & 13.66 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 12.49 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 13.69 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 13.00 & 13.66 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 & 13.00 & 13.66 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.49 $							_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						12.52		
$\begin{array}{c} CH_3 & CH_3 & 2-C_5H_4N & 9.80 \\ CH_3 & CH_3 & 2-CH_3OC_6H_4 & 11.47 & 12.44 \\ CH_3 & CH_3 & 3.4-CH_2O_2C_6H_3 & 11.39 & 12.60 \\ CH_3 & CH_3 & 3-C_5H_4N & 10.29 & 12.63 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.62 & 12.61 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.60 & 12.61 \\ CH_3 & CH_3 & 4-(CH_3)_2NC_6H_4 & 11.50 & 12.45 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 & 12.27 \\ CH_3 & CH_3OCH_2 & 2-C_5H_4N & 10.95 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4-CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 & \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 9.66 & \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-}(\beta-\textbf{Diketones}) & & & & & & & & & & & & & & & & & & &$	_	CH ₃			•			
$\begin{array}{c} CH_3 & CH_3 & 2-CH_3OC_6H_4 & 11.47 \\ CH_3 & CH_3 & 3.4-CH_2O_2C_6H_3 & 11.39 \\ CH_3 & CH_3 & 3-C_5H_4N & 10.29 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.50 \\ CH_3 & CH_3 & 4-(CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 \\ CH_3 & CH_3OCH_2 & 2-C_5H_4N & 10.95 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 12.13 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 12.13 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 11.74 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 9.66 \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline R & R' & Y & pK \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_4 & 11.27 & 12.15 \\ \hline \textbf{Bis-}(\beta\text{-Diketones}) & \textbf{RCOCH}_2\textbf{COCH}_2\textbf{COR} & (\text{in }75\% \text{ dioxane}) & (\text{ref. }26) \\ \textbf{R} & Y & \textbf{pK} & \textbf{pK} \\ C_6H_5 & (CH_2)_4 & 12.47 & 13.09 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_7 & 13.1 \text{ (est.)} \\ \hline C_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ C_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ C_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{array}$	$CH_3$	$CH_3$		$2-ClC_6H_4$ 11.04		12.73		
$\begin{array}{c} CH_3 & CH_3 & 3,4 \cdot CH_2O_2C_6H_3 & 11.39 \\ CH_3 & CH_3 & 3 \cdot C_5H_4N & 10.29 \\ CH_3 & CH_3 & 4 \cdot CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4 \cdot CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4 \cdot CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3 & 4 \cdot CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 \\ CH_3 & CH_3OCH_2 & 2 \cdot C_5H_4N & 10.95 \\ CH_3 & CH_3OCH_2 & 4 \cdot (CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4 \cdot (CH_3)_2NC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4 \cdot CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-($\beta$-Diketones)} & (RCO) \cdot (R'CO)CH-Y-CH(COR) (COR') & (in 50\% dioxane) \\ \hline \textbf{R} & R' & Y & pK \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & 1.4 \cdot (CH_3)_2C_6H_4 & 11.27 & 12.15 \\ \hline \textbf{Bis-($\beta$-Diketones)} & RCOCH_2CO-Y-COCH_2COR & (in 75\% dioxane) & (ref. 26) \\ \hline \textbf{R} & Y & pK & pK \\ C_6H_5 & (CH_2)_4 & 12.47 & 13.09 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_7 & 13.1 & (est.) \\ \hline \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_{H_3} & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular}$	$CH_3$	$CH_3$		$2-C_5H_4N$	9.80	12.46		
$\begin{array}{c} CH_3 & CH_3 & 3,4 \cdot CH_2O_2C_6H_3 & 11.39 \\ CH_3 & CH_3 & 3 \cdot C_5H_4N & 10.29 \\ CH_3 & CH_3 & 4 \cdot CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4 \cdot CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4 \cdot CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3 & 4 \cdot CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 \\ CH_3 & CH_3OCH_2 & 2 \cdot C_5H_4N & 10.95 \\ CH_3 & CH_3OCH_2 & 4 \cdot (CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4 \cdot (CH_3)_2NC_6H_4 & 11.74 & 12.49 \\ CH_3 & CH_3OCH_2 & 4 \cdot CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-($\beta$-Diketones)} & (RCO) \cdot (R'CO)CH-Y-CH(COR) (COR') & (in 50\% dioxane) \\ \hline \textbf{R} & R' & Y & pK \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & 1.4 \cdot (CH_3)_2C_6H_4 & 11.27 & 12.15 \\ \hline \textbf{Bis-($\beta$-Diketones)} & RCOCH_2CO-Y-COCH_2COR & (in 75\% dioxane) & (ref. 26) \\ \hline \textbf{R} & Y & pK & pK \\ C_6H_5 & (CH_2)_4 & 12.47 & 13.09 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_7 & 13.1 & (est.) \\ \hline \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ \textbf{C}_{H_3} & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular}$	$CH_3$	$CH_3$		2-CH ₃ OC ₆ H ₄	11.47	12.44		
$\begin{array}{c} CH_3 & CH_3 & 3-C_5H_4N & 10.29 \\ CH_3 & CH_3 & 4-CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4-(CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3 & 4-(CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 \\ CH_3 & CH_3OCH_2 & 2-C_5H_4N & 10.95 \\ CH_3 & CH_3OCH_2 & 4-(CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4-CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 \\ (CH_3OC)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-($\beta$-Diketones)} & (RCO)-(R'CO)CH-Y-CH(COR)(COR') & (in 50\% dioxane) \\ \hline \textbf{R} & R' & Y & pK \\ CH_3 & CH_3 & 9.43 & 13.54 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & 1.4-(CH_3)_2C_6H_4 & 11.27 & 12.15 \\ \hline \textbf{Bis-($\beta$-Diketones)} & RCOCH_2CO-Y-COCH_2COR & (in 75\% dioxane) & (ref. 26) \\ \hline \textbf{R} & Y & pK & pK \\ C_6H_5 & (CH_2)_4 & 12.47 & 13.09 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_7 & 13.1 & (est.) \\ C_6H_5 & (CH_2)_7 & 13.1 & (est.) \\ C_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.60 & 13.46 \\ \hline \end{tabular} \begin{tabular}{l} 13.169 & 12.58 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.29 & 13.00 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.61 & 12.60 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.60 & 13.46 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.60 & 13.46 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.60 & 13.46 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.60 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l} 12.61 & 12.62 & 13.69 \\ \hline \end{tabular} \begin{tabular}{l}$	_	_			11.39	12.60		
$\begin{array}{c} CH_3 & CH_3 & 4\text{-}CH_3OC_6H_4 & 11.62 \\ CH_3 & CH_3 & 4\text{-}(CH_3)_2NC_6H_4 & 11.50 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 \\ CH_3 & CH_3OCH_2 & 2\text{-}C_5H_4N & 10.95 \\ CH_3 & CH_3OCH_2 & 4\text{-}(CH_3)_2NC_6H_4 & 12.13 \\ CH_3 & CH_3OCH_2 & 4\text{-}(CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4\text{-}CH_3OC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 \\ (CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \\ \textbf{Bis-}(\beta\text{-}\textbf{Diketones}) & & & & & & & & & & & & & & & & & & &$						12.63		
$ \begin{array}{c} CH_3 & CH_3 & 4 - (CH_3)_2NC_6H_4 & 11.50 & 12.45 \\ CH_3 & CH_3OCH_2 & C_6H_5 & 11.54 & 12.27 \\ CH_3 & CH_3OCH_2 & 2 - C_5H_4N & 10.95 & 12.49 \\ CH_3 & CH_3OCH_2 & 4 - (CH_3)_2NC_6H_4 & 12.13 & 12.31 \\ CH_3 & CH_3OCH_2 & 4 - (CH_3)_2NC_6H_4 & 11.74 & 12.49 \\ CH_3OCH_2COCH_2COCH_3 & 9.66 & 0.00 \\ CH_3OCH_2COCH_2COCH_3 & 0.66 & 0.00 \\ CH_3CO)_2CH(CH_2)_3CH_3 & 12.07 \\ \\ \hline \textbf{Bis-}(\beta - \textbf{Diketones}) & (\textbf{RCO)-(\textbf{R'CO)}CH-\textbf{Y-CH(COR)}(\textbf{COR')}) & (in 50\% \ dioxane) & (ref. 26) \\ \hline \textbf{R} & \textbf{R'} & \textbf{Y} & \textbf{pK} & \textbf{pK} \\ CH_3 & CH_3 & 9.43 & 13.54 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_4 & 11.99 & 12.48 \\ CH_3 & CH_3 & (CH_2)_{10} & 12.01 & 12.07 \\ CH_3 & CH_3 & 1,4 - (CH_3)_2C_6H_4 & 11.27 & 12.15 \\ \hline \textbf{Bis-}(\beta - \textbf{Diketones}) & \textbf{RCOCH}_2\textbf{CO-\textbf{Y-COCH}}_2\textbf{COR} & (in 75\% \ dioxane) & (ref. 26) \\ \textbf{R} & \textbf{Y} & \textbf{pK} & \textbf{pK} \\ C_6H_5 & (CH_2)_4 & 12.47 & 13.09 \\ C_6H_5 & (CH_2)_5 & 12.72 & 13.46 \\ C_6H_5 & (CH_2)_6 & 12.60 & 13.46 \\ C_6H_5 & (CH_2)_7 & 13.1 \ (est.) \\ C_6H_5 & (CH_2)_7 & 13.10 \ (est.) \\ C_6H_5 & (CH_2)_3 & 12.58 & 13.69 \\ CH_3 & (CH_2)_5 & 12.29 & 13.00 \\ \hline \end{tabular}$		•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c} CH_3 & CH_3OCH_2 \\ CH_3OCH_2COCCH_2COCH_3 \\ (CH_3CO)_2CH(CH_2)_3CH_3 \\ \end{array} \qquad \begin{array}{c} 9.66 \\ 12.07 \\ \end{array} $	_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0/ <b>2</b>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	СПЗ					12.4	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(CH_3CO)_2CH(CH_2)_3CH_3$ 12.07							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>Bis-(</b> β- <b>Diketones</b>	(ref.	26)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	P'		V	nK	nK		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1			4	
CH ₃ CH ₃ (CH ₂ ) ₁₀ 12.01 12.07 CH ₃ CH ₃ (CH ₃ ) ₂ C ₆ H ₄ 11.27 12.15 <b>Bis-</b> (β- <b>Diketones</b> ) <b>RCOCH₂CO-Y-COCH₂COR</b> (in 75% dioxane) (ref. 26) <b>R Y pK pK</b> C ₆ H ₅ (CH ₂ ) ₄ 12.47 13.09 C ₆ H ₅ (CH ₂ ) ₅ 12.72 13.46 C ₆ H ₅ (CH ₂ ) ₆ 12.60 13.46 C ₆ H ₅ (CH ₂ ) ₇ 13.1 (est.) C ₆ H ₅ (CH ₂ ) ₇ 13.1 (est.) C ₆ H ₅ (CH ₂ ) ₃ 12.58 13.69 CH ₃ (CH ₂ ) ₅ 12.29 13.00				$(CH_0)_4$				
CH ₃ CH ₃ 1,4-(CH ₃ ) ₂ C ₆ H ₄ 11.27 12.15 <b>Bis-</b> (β- <b>Diketones</b> ) <b>RCOCH₂CO-Y-COCH₂COR</b> (in 75% dioxane) (ref. 26) <b>R Y pK pK</b> C ₆ H ₅ (CH ₂ ) ₄ 12.47 13.09 C ₆ H ₅ (CH ₂ ) ₅ 12.72 13.46 C ₆ H ₅ (CH ₂ ) ₆ 12.60 13.46 C ₆ H ₅ (CH ₂ ) ₇ 13.1 (est.) C ₆ H ₅ (CH ₂ ) ₇ 13.1 (est.) C ₆ H ₅ (CH ₂ ) ₃ 12.58 13.69 CH ₃ (CH ₂ ) ₅ 12.29 13.00								
Bis-(β-Diketones) RCOCH2CO-Y-COCH2COR (in 75% dioxane)         R       Y       pK       pK $C_6H_5$ $(CH_2)_4$ 12.47       13.09 $C_6H_5$ $(CH_2)_5$ 12.72       13.46 $C_6H_5$ $(CH_2)_6$ 12.60       13.46 $C_6H_5$ $(CH_2)_7$ 13.1 (est.) $C_6H_5$ $(CH_2)_3$ 12.58       13.69 $CH_3$ $(CH_2)_5$ 12.29       13.00	•	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СП3	СП3		1,4-(СП3)2С6П4	11.27	12.1	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	(ref.	26)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		-	_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					13.46			
$CH_3$ $(CH_2)_5$ 12.29 13.00								
•		(CH ₂ ) ₃		12.58	13.69			
$CH_3=CH(CH_3)_2$ ( $CH_2)_5$ 12.95 13.60	$CH_3$			12.29	13.00			
21-3 21-(21-3)2 (21-2)3	$CH_3=CH(CH_3)_2$	(CH ₂ ) ₅		12.95	13.60			

CH ₃ NO ₂	10.29	74	$\wedge$		
CH ₃ CHClNO ₂	7	74			
CH ₃ COCH _{2 NO2}	5.1	74	CO ₂ Et		
$CH(NO_2)_3$	strong	74	Ö	10.96	74
CH ₃ COCHCl ₂	15	74			
CH ₃ COCHC ₂ H ₅ CO ₂ C ₂ H ₅	12.7	74	$CH_3$		
CH ₃ COCHCH ₃ COCH ₃	11	74		7 00	74
CH ₃ COCH ₂ COC ₆ H ₅	9.4	74	Dinitromethane	7.82 4	74 2
C ₆ H ₅ COCH ₂ COCF ₃	6.82	74	Potassium cyanide	9.21	2
CH ₃ COCH ₂ CHO	5.92	74	CH(CN) ₃	strong	74
CH _{3 COCH2 CO2} CH ₃	10	74	$CH_2(CO_2C_2H_5)_2$	13.3	74
CH ₃ SO ₂ CH ₂ SO ₂ CH ₃	14	74	$CH_2(CO_2C_2H_3)_2$ $CH_3CO_2H$	~ 24	74
CH ₃ SO ₂ CH(COCH ₃ ) ₂	4.3	74		2 L T	71
$C_2H_5NO_2$	8.6	74	OEt		
C ₂ H ₅ O ₂ CCH _{2 NO2}	5.82	74	M I		
$CH_2(NO_2)_2$	3.57	74	ö O	10.5	<b>74</b>
CH ₃ COCH ₂ Cl	c. 16.5	74			
CH ₃ COCH ₂ CO ₂ C ₂ H ₅	10.68	74	CH ₃		
CH ₃ COCH ₂ COCH ₃	9	74	Ī Ī		
CH ₃ COCHBrCOCH ₃	7	<b>74</b>	0 0	10.1	<b>74</b>
CH ₃ COCH ₂ COCF ₃	4.7	<b>74</b>	$CH_2(CHO)_2$	5	<b>74</b>
C ₆ H ₅ COCH ₂ NC ₅ H ₅	10.51	74			
CH(COCH ₃ ) ₃	5.85	<b>74</b>	T 10 .		
CH ₃ SO ₂ CH ₃	c. 23	<b>74</b>	Indicators	0.0	00
CH(SO ₂ CH ₃ ) ₃	strong	<b>74</b>	Tropeoline OO Bromocresol green	$\begin{array}{c} 2.0 \\ 4.9 \end{array}$	28 28
$CH_2(CN)_2$	11.81	<b>74</b>	Thymol blue (1)	4.9 1.65	28
C ₂ H ₅ O ₂ CCH ₂ CN	9	<b>74</b>	Methyl orange	3.45	28
$CH_3CO_2C_2H_5$	$\sim 24.5$	<b>74</b>	Methyl yellow	3.25	28
$CHC_2H_5(CO_2C_2H_5)_2$	15	<b>74</b>	Neutral red 7.4	28	20
$CH_3CONH_2$	~ 25	<b>74</b>	Bromophenol blue	4.1	28
0 0			Bromothymol blue	7.3	28
[			Thymol blue (2)	9.2	28
S' CF ₃	6.10	74	Methyl red (1)	2.3	28
	0.10	17	Methyl red (2)	5.0	28

### References

- 1. Hall, H.K., Jr. J. A.m. Chem. Soc. **1957**, 79, 5441.
- 2. Brown, H.C. et al., in Braude, E.A. and F.C. Nachod Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.
- 3. Hall, H.K., Jr. J. Am. Chem. Soc. **1957**, 79, **5439**.
- 4. Handbook of Chemistry and Physics, Editor in Chief, Charles D. hodgman, M.S.; Chemical Rubber Publishing Company, Cleveland, OH, 1951, p. 1636-7.
- 5. Franzen, V. Chem. Ber. **1957**, 90, **623**.
- 6. Dawson, R.M.C. et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
- 7. Buist, G.J.; Lucas, H.J. J. Am. Chem. Soc. 1957, 79, 6157.
- 8. Stevenson, G.W.; Williamson, D. J. Am. Chem. Soc. 1958, 80, 5943.
- 9. Soloway, S.; Lipschitz, H. J. Org. Chem. **1958**, 23, 613.
- 10. Bissell, E.R.; Finger, M. J. Org. Chem. **1959**, 24, 1256.
- 11. Tuckerman, M.M.; Mayer, J.R.; Nachod, F.C. J. Am. Chem. Soc. 1959, 81, 92.
- 12. Bissot, T.C.; Parry, R.W.; Campbell, D.H. J. Am. Chem. Soc. 1957, 79, 796.
- 13. Hinman, R.L. J. Org. Chem. **1958**, 23, 1587.
- 14. Conant, J.B.; Bartlett, P.D. J. Am. Chem. Soc. 1932, 54, 2881.
- 15. Lindegren, C.R.; Niemann, C. J. Am. Chem. Soc. 1949, 71, 1504.
- 16. Harnsberger, H.F.; Cochran, E.L.; Szmant, H.H. J. Am. Chem. Soc. 1955, 77, 5048.
- 17. Pearse, G.A., Jr.; Pflaum, R.T. J. Am. Chem. Soc. **1959**, 81, 6505.
- 18. Bell, R.P.; Higginson, W.C.E. Pro. Royal Soc. **1949**, 197, 141.
- 19. Albert, A.; Goldacre, R.; Phillips, J. J. Chem. Soc. **1948**, 2240.
- 20. Dippy, J.F.J.; Hughes, S.R.C.; Rozanski, A. J. Chem. Soc. 1959, 2492.
- 21. Edsall, J.T.: Martin, R.B.: Hollingworth, B.R. PN'As **1958**, 44, 505.
- 22. Martin, R.B.; Edsall, J.T.; Wetlaufer, D.B.; Hollingworth, B.R. *JBC* **1958**, 233, 1429.
- 23. Edsall, J.T.; Wyman and Jeffries, Biophysical Chemistry, Academic Press, Inc., New York, 1958.
- 24. Pearson, R.G.; Dillon, R.L. J. Am. Chem. Soc. 1953, 75, 2439.
- 25. Ang, K.P. J. Chem. Soc. 1959, 3822.
- 26. Martin, D.F.; Fernelius, W.C. J. Am. Chem. Soc. 1959, 81, 1509.
- 27. Ellenbogen, E. J. Am. Chem. Soc. **1952**, 74, 5198.
- 28. Kolthoff, Treatise on Analytical Chemistry, New York, Interscience Encyclopedia, Inc., 1959.
- 29. Edwards, J.O. J. Am. Chem. Soc. 1954, 76, 1540.
- 30. Bailey, N.A.; Carrington, K.A.; Lott, K.; Symons, M.C.R. J. Chem. Soc. 1960, 290.
- 31. Brownstein, S.; Stillman, A.E. J.P.C. **1959**, 63, 2061.
- 32. Schwarzenbach Helv. Chem. Acta. **1957**, 40, 907.
- 33. Ingham, J.W.; Morrison, J. J. Chem. Soc. **1933**, 1200.
- 34. Hildebrand, J.H. Principles of Chemistry, New York, The Macmillan Company, 1940.
- 35. Baddiley, in Chargaff, The Nucleic Acids, vol. I, New York, Academic Press, 1955.
- 36. Pabst, OR 1.
- 37. Bendich, in Chargaff, etc.
- 38. Jordan, in Chargaff, etc.
- 39. Albert, A.; Phillips, J.N. J. Chem. Soc. **1956**, 1294.
- **40**. Elliott, J.J.; Mason, S.F. J. Chem. Soc. **1959**, 2352.
- 41. Angyal, S.J.; Angyal, C.L. J. Chem. Soc. **1952**, 1461.
- 42. Edward, J.T.; Nielsen, S. J. Chem. Soc. 1957, 5075.
- 43. Bruice, T.C.; Schmir, G.L. J. Am. Chem. Soc. 1958, 80, 148.
- 44. Mason, S.F. J. Chem. Soc. **1958**, 674.
- **45**. **Linnell, R.H.** *J.* Org. Chem. **1960**, 25, **290**.
- 46. Jones, R.A.; Katritzky, A.R. J. Chem. Soc. **1959**, 1317.
- 47. Jaffe, H.H.; Doak, G.O. J. Am. Chem. Soc. 1955, 77, 4441.
- 48. Clarke, K.; Rothwell, K. J. Chem. Soc. **1960**, 1885.
- **49**. **Keyworth**, **D.A**. *J.* Org. Chem. **1959**, *24*, 1355.

- 50. Gawron, O.; Duggan, M.; Grelechi, C.J. Anal. Chem. 1952, 24, 969.
- 51. Sims, P. J. Chem. Soc. **1959**, 3648.
- 52. Fickling, M.M.; Fischer, A.; Mann, B.R.; Packer, J.; Vaughan, J. J. Am. Chem. Soc. 1959, 81, 4226.
- 53. Wold, F.; Ballou, C.E. *JBC* **1957**, *227*, 301.
- 54. McElroy, W.D.; Glass, B. Phosphorus Metabolism, Vol. I, Baltimore, Johns Hopkins University Press, 1951.
- 55. Kumler, W.D.; Eiler, J.J. J. Am. Chem. Soc. **1943**, 65, **2355**.
- 56. VanWazer, J. Phosphorus and Its Compounds, Vol. I, New York, Interscience Encyclopedias, Inc., 1958.
- 57. Freedman, L.D.; Doak, G.O. Chem. Rev. 1957, 57, 479.
- **58**. **Ellman**, **G.L**. Arch. Biochem. Biophys. **1958**, 74, 443.
- 59. Pascal, I.; Tarbell, D.S. J. Am. Chem. Soc. **1957**, 79, 6015.
- 60. Bascombe, K.N.; Bell, R.P. J. Chem. Soc. 1959, 1096.
- 61. Gawron, O.; Draus, F. J. Am. Chem. Soc. 1958, 80, 5392.
- 62. Mukherjee, L.M.; Grunwald, E. JPC 1958, 62, 1311.
- 63. Ballinger, P.; Long, F.A. J. Am. Chem. Soc. **1959**, 81, 1050.
- 64. Ballinger, P.; Long, F.A. J. Am. Chem. Soc. **1960**, 82, 795.
- 65. Haszeldine, R.N. J. Chem. Soc. **1953**, 1757.
- 66. Deno, N.C.; Berkheimer, H.E.; Evans, W.L.; Peterson, H.J. J. Am. Chem. Soc. 1959, 81, 2344.
- 67. Gardner, J.N.; Katritzky, A.R. J. Chem. Soc. 1957, 4375.
- 68. Wise, W.M.; Brandt, W.W. J. Am. Chem. Soc. 1955, 77, 1058.
- 69. Fortnum, D.H.; Battaglia, C.J.; Cohen, S.R.; Edwards, J.O. J. Am. Chem. Soc. 1960, 82, 778.
- 70. Everett, A.J.; Minkoff, G.J. TFS **1953**, 49, 410.
- 71. Bauer, L.; Miarka, S.V. J. Am. Chem. Soc. **1957**, 79, 1983.
- 72. Green, A.L.; Sainsbury, G.L.; Saville, B.; Stansfield, M. J. Chem. Soc. 1958, 1583.
- 73. Burkhard, R.K.; Sellers, D.E.; DeCou, F.; Lambert, J.L. J. Org. Chem. 1959, 24, 767.
- 74. Bell, R.P., The Proton in Chemistry, Ithica, Cornell University Press, 1959.
- 75. Stewart, T.D.; Maeser, S. J. Am. Chem. Soc. **1924**, 46, 2583.
- 76. Jencks, W.P.; Carriuolo, J. J. Am. Chem. Soc. **1960**, 82, 1778.
- 77. Bjerrum, J., et al. Stability Constants, Chemical Society, London, 1958.
- 78. Parsons, R. Handbook of Electrochemical Constants, London, Butterworths, 1959.
- 79. Bower, V.E.; Robinson, R.A. JPC **1960**, 64, 1078.
- 80. Candlin, J.P. J. Chem. Soc. 1960, 4236.
- 81. Danehy, J.P.; Noel, C.J. J. Am. Chem. Soc. 1960, 82, 2511.
- 82. Kreevoy, M.M. et al. J. Am. Chem. Soc. **1960**, 82, 4899.
- 83. Kabachnik, M.I., et al. Tetrahedron 1960, 9, 10.
- 84. Bjerrum, J., et al. Stability Constants, Chemical Society, London, 1958.
- 85. Crutchfield, M.M.; Edwards, J.O. J. Am. Chem. Soc. 1960, 82, 3533.
- 86. Lane. T.J.: Quinlan. K.P. J. Am. Chem. Soc. **1960**, 2994, 2997.
- 87. Moeller, T.; Ferrus, R. JPC **1960**, 64, 1083.
- 88. Bryson, A. J. Am. Chem. Soc. **1960**, 82, 4558, 4862, 4871.
- 89. Henderson, W.A., Jr.; Streuli, C.A. J. Am. Chem. Soc. 1960, 82, 5791.
- 90. Edwards, J.O. et al. J. Am. Chem. Soc. 1960, 82, 778.
- 91. Bell, R.P.; McTigue, P.T. J. Chem. Soc. **1960**, 2983.
- 92. Li, N.C. et al. J. Am. Chem. Soc. **1960**, 82, 3737.
- 93. Cohen, W.; Erlanger, B.F. J. Am. Chem. Soc. **1960**, 82, 3928.
- 94. Olson, D.C.; Margerum, D.W. J. Am. Chem. Soc. 1960, 82, 5602.
- 95. Ratner, S.; Clarke, H.T. J. Am. Chem. Soc. **1937**, 59, 200.
- 96. Porter, G.R.; Rydon, H.N.; Schofield, J.A. Nature **1958**, 182, 927.