Hierarchical Video Generation from Orthogonal Information: Optical flow and Texture

Katsunori Ohnishi*§1, Shohei Yamamoto*1, Yoshitaka Ushiku1, and Tatsuya Harada12

¹ The University of Tokyo ² RIKEN

* indicates equal contribution. § currently belongs to DeNA Co., Ltd.

Paper&Slides: http://katsunoriohnishi.github.io/

Goal

- Video generation
 - Applications)
 Human AI collaboration, dataset extension

Generative Adversarial Network

Generative Adversarial Network (GAN)
 [I. Goodfellow+, NIPS14]

Generative Adversarial Networks

Application

[JY Zhu, et al., ICCV17]

[H. Zhang, et al., ICCV17]

[A. Shrivastava, et al., CVPR17]

Y. Ganin, et al., ICML15]

GANs for Video

- Previous works
 - Video GAN (VGAN) [C. Vondrick, et al., NIPS16]

Temporal GAN (TGAN) [M. Saito, et al., ICCV17]*

^{*} We refer their first arXiv version in the paper because ICCV17 papers were not published yet at our submission time.

Challenges in video generation

- Important factors for realistic video generation:
 - 1. Realistic frame
 - 2. Scene consistency
 - 3. Reasonable motion

GANs for Video

Video GAN (VGAN) [C. Vondrick, et al., NIPS16]

- 1. Realistic frame
- 2. Scene consistency
- 3. Reasonable motion

GANs for Video

Temporal GAN (TGAN) [M. Saito, et al., ICCV17]*

- 1. Realistic frame
- 2. Scene consistency
- 3. Reasonable motion

^{*} We refer their first arXiv version in the paper because ICCV17 papers were not published yet at our submission time.

Challenges in video generation

- Important factors for realistic video generation:
 - 1. Realistic frame
 - 2. Scene consistency
 - 3. Reasonable motion

It is important to consider structure of video and to make a video generation pipeline that can express the structure.

Hierarchical Video Generation

- Generating video via optical flow
 - 1. Generate optical flow as motion information
 - 2. Give texture to generated optical flow

Features of Optical flow

- Extractable unsupervisedly
- Holding the contour of a moving object
- Continuity in the time direction
- No texture information

Generating optical flow first makes it ...

- possible to generate a video with reasonable motion
- easier to generate a realistic video than without optical flow

Proposed Method

Overview of generator

Proposed Method

Optical flow generator

Optical flow generator

Optical flow generator is constructed based on the pipeline of VGAN [C. Vondrick+, NIPS16].

Optical flow generator

- Background optical flow should be zero
 - If the camera is fixed.

Proposed Method

Texture generator

Generate RGB video from random noise and optical flow.

Auto-encoder that converts optical flow to RGB video

- Add background stream as VGAN
 - to obtain scene consistency

In order to keep the contour of input, we add U-net architecture [O. Ronneberger+, MICCAI15].

The whole pipeline of our texture generator

Overview of Proposed Method

Hierarchical video generation via optical flow

- Experiment 1:
 - Examples of generated results
 - Qualitative comparison with baseline
 - Human evaluation
- Experiment 2:
 - Walk in dual z
- Experiment 3:
 - Unsupervised action classification

- Experiment 1:
 - Examples of generated results
 - Qualitative comparison with baseline
 - Human evaluation
- Experiment 2:
 - Walk in dual z
- Experiment 3:
 - Unsupervised action classification

Dataset

Resolution: 64x64

Time: 32frames (≒1~2 seconds)

bounding box

Penn Action [W. Zhang+, ICCV13]

Penn Action
Cropped

SURREAL [G. Varol+, CVPR17]

- Examples of generated results
 - Various videos

Penn Action

Penn Action Cropped

SURREAL

- Qualitative comparison with VGAN
 - FTGAN generates a video with reasonable motion

VGAN

 A person is walking without moving his legs. FTGAN (ours)

 A person is walking by moving their left and right feet in turn. Result on SURREAL

- Qualitative comparison with VGAN
 - FTGAN generates a video with reasonable motion

Result on PennAction cropped

VGAN

 The outline and the axis of rotation are unclear. FTGAN (ours)

Pull-up

 The outline and the axis of rotation are clear.

- AB test on Amazon Mechanical Turk
 - Q: In which video is it easier to figure out what action is being performed?
 - 200videos
 - 9 votes on each video

Number of videos with better evaluation

	Penn Action	Penn Action Cropped	SURREAL
VGAN	76	91	95
FTGAN (ours)	124	109	105

As the complexity of the dataset increases, the proposed method becomes effective

- Experiment 1:
 - Examples of generated results
 - Qualitative comparison with baseline
 - Human evaluation
- Experiment 2:
 - Walk in dual z
- Experiment 3:
 - Unsupervised action classification

Overview of generator

- Walk in z
 - Conforming mode-collapse avoiding
 - Mixing two images at any ratio

- Dataset
 - SURREAL [G. Varol+, CVPR17] cropped

- Walk in z_flow
 - The same motion
 - The appearance changes gradually
- Walk in z_tex
 - The same appearance
 - Walk in z tex The motion changes gradually

Walk in z_{flow}

- Walk in z_flow
 - The same motion
 - The appearance changes gradually
- Walk in z_tex
 - The same appearance
 - Walk in z tex The motion changes gradually

Walk in z_{flow}

- Walk in z_flow
 - The same motion
 - The appearance changes gradually
- Walk in z_tex
 - The same appearance
 - Walk in *z tex* The motion changes gradually

Walk in z_{flow}

- Walk in z_flow
 - The same motion
 - The appearance changes gradually
- Walk in z_tex
 - The same appearance
 - Walk in *z tex* The motion changes gradually

Our method can generate videos by independently controlling motion and appearance

Walk in z_{flow}

- Experiment 1:
 - Examples of generated results
 - Qualitative comparison with baseline
 - Human evaluation
- Experiment 2:
 - Walk in dual z
- Experiment 3:
 - Unsupervised action classification

Purpose

Investigate the unsupervised feature expression
 learning capability as the same way with previous works

Method

Extract the last layer in discriminator as feature

Setting

- Dataset: UCF101 [K. Soomro, et al., arXiv 2012]
 - 101 classes
 - 13320 videos
- Classifier: SVM

All of these settings are following previous works (VGAN and TGAN).

 $z_{tex}^{-} \sim \mathcal{N}(0,1)$

(Repost) Overview of our networks. **Optical Flow Optical Flow Generator Discriminator** real/fake Generated $z_{flow} \sim \mathcal{N}(0,1)$ **Optical Flow Texture Texture Discriminator** Generator Generated real/fake Video

Extract the last layer of discriminator as feature vector

- Late fusion of flow-discriminator and texturediscriminator improves recognition accuracy.
 - Features learned by each network is complementary, which means...
 - Flow-discriminator learns motion information
 - Texture-discriminator learns appearance information

Method	Accuracy	
Chance	0.9%	
(a) Flow-discriminator + Linear SVM (ours)	48.0%	
(b) Texture-discriminator + Linear SVM (ours)	50.3%	
(a) + (b) FTGAN (fusion by Linear SVM) (ours)	59.7% ←	

- FTGAN outperforms VGAN and TGAN
 - Separating information ensures the capture of much richer video characteristics

Method	Accuracy
Chance	0.9%
VGAN + Random Init [C. Vondrick+, NIPS16]	36.7%
TGAN: Image-discriminator + Linear SVM [M. Saito et al, arXiv]	38.6%
TGAN: Temporal-discriminator + Linear SVM [M. Saito et al, arXiv]	23.3%
(a) Flow-discriminator + Linear SVM (ours)	48.0%
(b) Texture-discriminator + Linear SVM (ours)	50.3%
(a) + (b) FTGAN (fusion by Linear SVM) (ours)	59.7%

- We propose a hierarchical video generative model via optical flow: FTGAN.
- Experiments:

VGAN

UCF101

Method	Accuracy	
VGAN	36.7%	
TGAN	38.6%	
FTGAN	59.7%	

FTGAN

It is important to consider structure of video and to make a video generation pipeline that can express the structure.

- Fin終

- Does z_flow generates motion and z_tex generates appearance independently?
 - vertical: generated from the same z_flow
 - Horizontal: generated from the same z_tex

- Does z_flow generates motion and z_tex generates appearance independently?
 - vertical: generated from the same z_flow
 - Horizontal: generated from the same z_tex

The same movements and different appearance

- Does z_flow generates motion and z_tex generates appearance independently?
 - vertical: generated from the same z_flow
 - Horizontal: generated from the same z_tex

Different movements and the same appearance

動画生成の難しさ

- 生成された動画が本物らしくあるためには、 以下の3つの条件を満たしている必要がある
 - a. 各フレームがきれいな画像になっている
 - b. 動画内でのシーンの一貫性が保たれている
 - c. 動きが妥当なものになっている
- GANを動画生成に拡張した手法

Video GAN (VGAN)
[C. Vondrick, et al., NIPS16]

Temporal GAN (TGAN)
[M. Saito et al, arxiv]

関連研究-動画生成-

- 生成された動画が本物らしくあるためには、 以下の3つの条件を満たしている必要がある
 - a. 各フレームがきれいな画像になっている
 - b. 動画内でのシーンの一貫性が保たれている
 - c. 動きが妥当なものになって 生成結果
- 手法: VGAN [C. Vondrick, et al., NIPS16]
- 動くものを前景、動かないもの を背景として生成
 - 動画内で同じシーンが現れる
- 3D convolutionを使用
 - 見た目と動きを同時に学習

関連研究-動画生成-

- 生成された動画が本物らしくあるためには、 以下の3つの条件を満たしている必要がある
 - a. 各フレームがきれいな画像になっている
 - b. 動画内でのシーンの一貫性が保たれている

手法: TGAN [M. Saito et al, arxiv]

- 2D convolutionをXY方向にかけた後、1D convolutionをT方向に
 - 動き情報が見た目情報を抽象 化された状態でしか取れてい

□ 生成結果: TextureGAN (Optical flowを与えた場合)

□ 生成結果: FTGAN (Optical flowも生成)

Penn Action

Generated optical flow

Generated video

SURREAL

Generated optical flow

Generated video

■ VGANとの比較

Penn Action

VGAN

TextureGAN

FTGAN

■ VGANとの比較

SURREAL

VGAN

TextureGAN

FTGAN

