Thesis Skeleton

John Waczak May 7, 2019

Contents

1.1 Cellular Processes	
1.1.1 The Cytoskeleton	
1.1.2 Mitosis	2
1.2 Motor Proteins	2
1.3 Dynein	2
1.3.1 Directed Motion	2
1.3.2 Drunken Walking	
1.3.3 Transporting Cargo	
1.3.4 Experimental Stepping Statistics	
2 The Model	2
2.1 Brownian Motion	2
2.2 A Simplified Model for Dynein	
2.3 Equations of Motion	
2.3.1 The one bound state	
2.3.2 The both bound state	
2.3.3 Calculating Forces and Torques	
2.4 The Code	
3 Results	2
3.1 Model Tests	
3.1.1 Determining an Appropriate dt	
3.1.2 Conservation of Energy	
3.2 Parameter Fitting	
3.3 Model Stepping Statistics	
3.4 Simulating External Forces	
4 Discussion	2
4.1 Comparison to Experimental Results	2
4.2 Consequences of the Simple Model	2
4.2.1 Do we need a Two State Model?	
5 Conclusions	2
5.1 Summary	
5.2 Future Work	
5.2.1 Multiple Dynein	
5.2.2 Forces on the Binding Domain	

1 Introduction

- 1.1 Cellular Processes
- 1.1.1 The Cytoskeleton
- 1.1.2 Mitosis
- 1.2 Motor Proteins
- 1.3 Dynein
- 1.3.1 Directed Motion
- 1.3.2 Drunken Walking
- 1.3.3 Transporting Cargo
- 1.3.4 Experimental Stepping Statistics

2 The Model

- 2.1 Brownian Motion
- 2.2 A Simplified Model for Dynein
- 2.3 Equations of Motion
- 2.3.1 The one bound state
- 2.3.2 The both bound state
- 2.3.3 Calculating Forces and Torques
- 2.4 The Code

3 Results

- 3.1 Model Tests
- 3.1.1 Determining an Appropriate dt
- 3.1.2 Conservation of Energy
- 3.2 Parameter Fitting
- 3.3 Model Stepping Statistics
- 3.4 Simulating External Forces

4 Discussion

- 4.1 Comparison to Experimental Results
- 4.2 Consequences of the Simple Model
- 4.2.1 Do we need a Two State $\stackrel{?}{\text{Model}}$?

5 Conclusions

- 5.1 Summary
- 5.2 Future Work
- 5.2.1 Multiple Dynein