ONDERZOEKSVOORSTEL

Scholieren met dyslexie van het derde graad middelbaar onderwijs ondersteunen bij het lezen van wetenschappelijke papers via tekstvereenvoudiging.

Bachelorproef, 2022-2023

Dylan Cluyse

E-mail: dylan.cluyse@student.hogent.be Co-promotors:

- · J. Decorte (Hogeschool Gent, johan.decorte@hogent.be)
- · J. Van Damme (Hogeschool Gent, jana.vandamme@hogent.be)
- · M. Dhondt (Gelukstraat marloes.dhondt@gelukstraat.be)

Samenvatting

Tekstvereenvoudiging helpt scholieren met dyslexie in het derde graad middelbaar onderwijs bij hun lees- en verwerkingssnelheid. Artificiële intelligentie kan dit proces automatiseren. Ingewikkelde woordenschat en lange zinsbouw hinderen scholieren met dyslexie van een derde graad middelbaar onderwijs bij het lezen van wetenschappelijke artikelen. Vlaamse middelbare scholen ontbreken de toepassingen om deze op hun maat te vereenvoudigen. Dit onderzoek haalt aan hoe de inhoud van wetenschappelijke artikelen automatisch met kunstmatige intelligentie kan worden vereenvoudigd en specifiek gericht op de noden van een scholier met dyslexie in het derde graad middelbaar onderwijs. Een technische analyse van de technologische en logopedische vakgebieden wordt uitgevoerd, gevolgd door een veldonderzoek bij Belgische informaticabedrijven en de ontwikkeling van een Al-gestuurde pipeline voor tekstvereenvoudiging. De huidige toepassingen voor tekstvereenvoudiging in het onderwijs ontbreken aandachtspunten om de unieke noden van een scholier met dyslexie in de derde graad van het middelbaar te kunnen helpen. Internationale Al-toepassingen omvatten een extra vertaalfase, maar software-ontwikkelaars moeten rekening houden met mogelijke afwijkingen op de kern van een wetenschappelijk artikel. De ontwikkeling van een pipeline voor tekstvereenvoudiging met kant-en-klare modellen staat nog in de kinderschoenen. Al-ontwikkelaars moeten gebruik maken van *custom transformers*.

Keuzerichting: Al & Data Engineering

Sleutelwoorden: Machineleertechnieken en kunstmatige intelligentie, tekstvereenvoudiging, dyslexie

vinden.

Inhoudsopgave

1	Introductie
2	State-of-the-art
3	Methodologie
4	Verwacht resultaat, conclusie 4
	Referenties

1. Introductie

België is een koploper in het gebruik van kunstmatige intelligentie (AI) op de werkvloer. Jaarlijks investeert de Vlaamse overheid 32 miljoen in het vakgebied (Crevits, 2022). Zo zijn er verschillende projecten, om taalgerelateerde AI-ontwikkelingen op te starten, uit de grond gestampt. Het amailproject verenigt AI-softwarebedrijven uit verschillende domeinen en door hun inzet werden twee taaltoepassingen ontwikkeld voor het middelbaar onderwijs: *real-time* ondertiteling en een taalassistent voor leerkrachten in meertalige klasgroepen.

¹https://amai.vlaanderen/

Het STEM-agenda² van de Vlaamse Overheid omvat aandachtspunten om het STEM-onderwijs tegen 2030 aantrekkelijker te maken. De werkdruk bij leraren en scholieren in het middelbaar onderwijs ligt hoog en het STEM-agenda achterhaalt hoe de ondersteuning voor leerkrachten en leerlingen binnen STEM-vakken kan verbeteren. STEM heeft althans een prominente rol binnen het onderwijs en de derde graad is een cruciale stap voor de verdere loopbaan van scholieren. Het overbruggen van wetenschappelijke jargon is

Dit onderzoek toont aan hoe de inhoud van wetenschappelijke artikelen door middel van kunstmatige intelligentie automatisch vereenvoudigd kan worden, specifiek gericht op de noden van scholieren met dyslexie in het derde leerjaar middelbaar onderwijs. Eerst vat het onderzoek samen wat tekstvereenvoudiging inhoudt en uit

echter nergens in de aandachtspunten terug te

²https://www.vlaanderen.be/publicaties/stem-agenda-2030-stem-competenties-voor-een-toekomst-enmissiegericht-beleid

welke theoretische concepten dit bestaat. Vervolgens bespreekt het onderzoek hoe tekstvereenvoudiging en taalverwerking met Al scholieren met dyslexie van het derde graad middelbaar onderwijs kan helpen. Nadien staat het onderzoek stil bij de struikelblokken op taalvlak waarmee een tekstvereenvoudigingstoepassing rekening mee moet houden. Als volgt haalt het onderzoek aan welke tekstvereenvoudigingstoepassingen er nu in het onderwijs worden ingezet, welke internationale toepassingen teksten kunnen vereenvoudigen en hoe ontwikkelaars zelf een zelfgemaakte pipeline kunnen opbouwen. Ten menselijke interpretatie, maar zit nog in de kinslotte haalt het onderzoek de verschillende evaluatietechnieken aan die nodig zijn om de tekstinhoud na tekstvereenvoudiging te beoordelen, alsook aan welke ethische aspecten ontwikkelaars moeten denken bij het opzetten van een dergelijke. Het onderzoek eindigt met een vergelijkende studie van de aangehaalde toepassingen, waarbij de vereenvoudigde tekstinhoud subjectief en objectief wordt beoordeeld.

2. State-of-the-art

De voorbije tien jaar is artificiële intelligentie sterk verder ontwikkeld. De toename in kennis zorgde voor nieuwe toepassingen. Tekstvereenvoudiging vloeide hier uit voort. Momenteel bestaan er al robuuste applicaties voor tekstvereenvoudiging. Toch houdt de meerderheid niet genoeg rekening met het menselijk aspect van taalverwerking. Binnen het kader van tekstvereenvoudiging is er bestaande documentatie beschikbaar waar onderzoekers het voordeel van toegankelijkheid aanhalen, maar deze toepassingen ontbreken de extra noden die scholieren met dyslexie in het derde graad middelbaar onderwijs vereisen.

Het algemene doel van tekstvereenvoudiging is om ingewikkelde bronnen toegankelijker te maken. Het zorgt voor verkorte teksten zonder de kernboodschap te verliezen. Tekstvereenvoudi-

gebeurt doorgaans op één van drie manieren. Er is conceptuele vereenvoudiging waarbij documenten naar een compacter formaat worden getransformeerd. Daarnaast is er uitgebreide modificatie die kernwoorden aanduidt door gebruik van redundantie. Als laatste is er samenvatting die documenten verandert in kortere teksten met alleen de topische zinnen. Met deze concepten zijn ontwikkelaars in staat om ingewikkelde woorden te vervangen door eenvoudigere synoniemen of zinnen te verkorten zodat ze sneller leesbaar zijn (Siddharthan, 2014).

Tekstvereenvoudiging behoort tot de zijtak van natuurlijke taalverwerking (NLP) in artificiële intelligentie. NLP omvat methodes om, door machinaal leren, menselijke teksten om te zetten in

tekst voor machines. Documenten vereenvoudigen met NLP kan op twee manieren: extract of abstract. Bij extractieve simplificatie worden zinnen gelezen zoals ze zijn neergeschreven. Vervolgens bewaart een document de belangrijkste taalelementen om de tekst te kunnen hervormen. Deze vorm van tekstvereenvoudiging komt het meeste voor (Sciforce, 2020). Daarnaast is er abstracte simplificatie die de kernboodschap van de zin bewaart en daarmee een nieuwe zin opbouwt. Volgens het onderzoek van Chowdhary (2020) heeft deze vorm potentieel dankzij de derschoenen.

Voor kinderen met dyslexie bestaan digitale hulpmiddelen die voor een betere visuele presentatie zorgen van teksten. Zo haalt het onderzoek van Rello e.a. (2012) tips aan waarmee teksten en documenten rekening moeten houden bij scholieren met dyslexie in het derde graad middelbaar onderwijs. Het gaat over speciale lettertypes, spreiding tussen woorden en het gebruik van inzoomen op aparte zinnen. Het onderzoek haalt aan dat teksten voor deze unieke noden aanpassen tijdrovend is, dus tekstvereenvoudiging door artificiële intelligentie kan een revolutionaire oplossing bieden.

Het onderzoek van Franse wetenschappers Gala en Ziegler (2016) illustreert dat manuele tekstvereenvoudiging schoolteksten toegankelijker maakt voor kinderen met dyslexie. Dit deden ze door simpelere synoniemen en zinsstructuren te gebruiken. Verwijswoorden werden vermeden en woorden kort gehouden. De resultaten waren veelbelovend. Het leestempo lag hoger en de kinderen maakten minder leesfouten. Ook bleek er geen verlies van begrip in de tekst bij geteste kinderen. Resultaten van de studie werden gebundeld voor de mogelijke ontwikkeling van een Alhulpmiddel.

De Universiteit van Kopenhagen is met bovenstaande idee aan de slag gegaan. Onderzoekers Bingel e.a. (2018) hebben gratis software ontwikkeld, genaamd Hero⁵, om tekstvereenvoudiging voor scholieren in het middelbaar onderwijs met dyslexie te automatiseren. De software bestudeert met welke woorden de gebruiker moeite heeft, en vervangt die door simpelere alternatieven. Hero bevindt zich in beta-vorm en wordt enkel in het Engels en het Deens ondersteund.

Plavén-Sigray e.a. (2017) halen aan hoe onderzoekers in hun taalbubbel blijven, wat gevolgen voor de lezers met zich meebrengt. Daarnaast brengt de stijging aan het gebruik van acroniemen volgens Barnett en Doubleday (2020) een extra obstakel met zich mee. Het onderzoek van Donato e.a. (2022) wijst erop dat ondoorgrondelijke teksten te wijten zijn aan scholieren met dyslexie in het middelbaar onderwijs die uit hun richting

³https://beta.heroapp.ai/

vallen, wat voornamelijk bij STEM-richtingen het geval is.

NLP is de laatste decennia volop in ontwikkeling, maar ontwikkelaars botsen nog op uitdagingen. Het gaat om zowel interpretatie- als dataproblemen bij Al-machines. Allereerst is het voor een machine moeilijk om de context van homoniemen te achterhalen. Bijvoorbeeld bij het woord 'bank' is het niet duidelijk voor de machine of het gaat over de geldinstelling of het meubel. Daarnaast zijn synoniemen geen probleem voor tekstverwerking (Roldós, 2020).

Het merendeel van NLP-toepassingen maakt gebruik van Engelstalige invoer. Niet-Engelstalige toepassingen zijn zeldzaam. De opkomst van Altechnologieën die twee datasets gebruiken, biedt een oplossing voor dit probleem. De software vertaalt eerst de oorspronkelijke tekst naar de gewenste taal, voordat de tekst wordt herwerkt (Sciforce, 2020). Hetzelfde onderzoek bewijst dat het vertalen van gelijkaardige talen, zoals Duits en Nederlands, een minimaal verschil opleverd.

De Vlaamse overheid leent gratis abonnementen uit voor voorlees- en schrijfsoftware, zoals SprintPlus⁴, Alinea⁵, Kurzweil3000⁶, TextAid⁷ en Intowords⁸. Middelbare scholieren met dyslexie in het middelbaar onderwijs in België kunnen voor deze software een gratis abonnement of licentie aanvragen. Al bieden de vijf softwarepaketten elk een eigen samenvattingsfunctie, de focus ligt echter op spreek- en luistersoftware waar- dig. De studie van Swayamdipta (2019) haalt aan bij het samenvatten en markeren van tekst als extra wordt gehouden.

De sprong in Al gaf wereldwijd de aanzet om taalgerelateerde Al-toepassingen te ontwikkelen. ChatGPT⁹ van OpenAl is een chatbot met onder andere een simplificatiefunctie dat nu werkt op GPT-3, een API tegen aanbetaling. Nadelig moet de chatbot expliciet gevraagd worden om een bepaalde actie mogelijk te maken. Readable¹⁰ is een online Engelstalige tool dat zinnen beoordeeld op basis van leesbaarheidsformules. Bij beide tools is het enkel mogelijk om tekst op de webpagina te plakken, dus er kunnen geen PDF-documenten of scans worden geüpload en eenzelfde werking verwachten. Op Nederlands vlak zijn er online verschillende samenvattingstools beschikbaar. Enkele voorbeelden zijn: Resoomer¹¹, Paraphraser¹² en Prepostseo¹³.

Vlaanderen heeft weinig zicht op de geïmplementeerde Al-software in scholen. Dit werd ge-

constateerd door (Martens e.a., 2021a), een samenwerking tussen de Vlaamse universiteiten en overheid voor artificiële intelligentie. Vergeleken met andere Europese landen, maakt België het minst gebruik van leerling-georiënteerde hulpmiddelen. Degenen die wel gebruikt worden, zijn voornamelijk online leerplatformen voor zelfstandig werken. Ook maakt België amper gebruik van beschikbare software die de leermethoden en -noden van leerlingen evalueert (Martens e.a., 2021b).

Om de transformatie van tekstvereenvoudiging te beoordelen, is er een tactvolle aanpak nodat er extra nood is aan NLP-modellen waarbij de tekst zijn kernboodschap behoudt. Samen met Microsoft Research bouwden ze NLP-modellen die gericht waren op de bewaring van zinsstructuur en -context door scaffolded learning. Hiervoor maakten de onderzoekers gebruik van een voorspellingsmethode die de positie van woorden en zinnen in een document beoordeelde.

Daarnaast wijst het onderzoek van Readable (2021) uit dat de Flesch-Kincaid leesbaarheidstest een objectieve manier aanbiedt om getransformeerde teksten te beoordelen. De leesbaarheidstest neemt drie factoren, namelijk zinlengte, woordfrequentie en complexiteit van het taalgebruik, en bepaalt hierop de moeilijkheidsgraad van een tekst. Deze score op Nederlandse teksten berekenen gebeurt eenvoudig met de Python-library textstat 14.

3. Methodologie

Het onderzoek houdt zeven fases in. De eerste fase is het proces van tekstvereenvoudiging beschrijven, waaronder een omschrijving van het begrip en de verschillende soorten van technologische tekstvereenvoudiging. Dit gebeurt via een grondige studie van vakliteratuur en wetenschappelijke teksten. Ook blogs van experten ko-

⁴https://www.sprintplus.be/

⁵https://sensotec.be/product/alinea-suite/

⁶https://sensotec.be/product/kurzweil-3000/

⁷https://www.textaid-dyslexiesoftware.nl/textaid/

⁸https://intowords.nl/

⁹https://chat.openai.com/chat

¹⁰ https://readable.com/

¹¹ https://resoomer.com/nl/

¹² https://www.paraphraser.io/nl/tekst-samenvatting

¹³https://www.prepostseo.com/tool/nl/text-summarizer

¹⁴https://pypi.org/project/textstat/

men hier aan bod. Na het verwerven van de nodige inzichten wordt er een verklarende tekst opgesteld.

De tweede fase bestaat uit het analyseren van wetenschappelijke werken over de bewezen voordelen van tekstvereenvoudiging bij scholieren met doet aan de noden van een scholier met dyslexie dyslexie van het derde graad middelbaar onderwijs. Hiervoor zijn geringe thesissen beschikbaar, die zorgvuldigheid vragen tijdens interpretatie. De resulterende tekst bevat de voordelen samen met hun wetenschappelijke onderbouwing.

De derde fase is het verzamelen van alle nodige transformaties om een wetenschappelijke paper beter leesbaar te maken voor een scholier met dyslexie in het derde graad middelbaar onderwijs. Het resultaat is een shortlist van alle evaluatiecriteria waaraan de uitvoertekst van een tekstvereenvoudigingstoepassing moet voldoen.

De vierde fase is opnieuw een beschrijving. Hier worden de valkuilen bij taalverwerking met Al-software nagegaan. Deze fase van het onderzoek brengt mogelijke nadelen en tekortkomingen van Al-software bij tekstvereenvoudiging aan het licht. Dit gebeurt aan de hand van een technische uitleg.

De vijfde fase omvat een toelichting en advies over de beschikbare Nederlandstalige Al-tools voor tekstvereenvoudiging. Aan de hand van een veldonderzoek op het internet en bij bedrijven wordt er op zoek gegaan naar dergelijke software. Er wordt niet gezocht naar vertaalsoftware of toepassingen die de inhoud van een afbeelding of tekstbestand omzet naar tekstinhoud.

De zesde fase omschrijft een technisch uitwerking van een tekstvereenvoudigingspipeline, alsook een shortlist van metrieken om de tekstvereenvoudiging te evalueren. Er zal een tekstvereenvoudigingspipeline worden ontwikkeld met beschikbare kant-en-klare bibliotheken, transformers en algoritmes. Het resultaat van deze fase is een pipeline opgebouwd in de programmeertaal Python.

De zevende en laatste fase omvat een vergelijkende studie van de gevonden tekstvereenvoudigingstoepassingen, alsook de tekstvereenvoudigingspipeline. Wetenschappelijke papers, die in een derde graad middelbaar onderwijs worden gebruikt, dienen hier als invoertekst voor de evaluatie. De transformatie wordt met zowel objectieve als subjectieve metrieken beoordeeld. De subjectieve test gebeurt aan de hand van een survey en een think-aloudtest. De objectieve testen gebeuren op basis van de shortlist uit de derde fase en de shortlist van metrieken uit de zesde fase. Ten slotte volgt er een persoonlijk advies over de nodige ontwikkelingen in het vak op vlak van Nederlandstalige tekstvereenvoudiging.

4. Verwacht resultaat, conclu-

Er wordt verwacht dat de software, die momenteel in het onderwijs wordt ingezet, niet volin het derde graad middelbaar onderwijs. Dit is omdat er onvoldoende rekening wordt gehouden met hun unieke uitdagingen. Het vertalen van de outputtekst bij een internationale Al-tool zal mogelijk afwijken van de oorspronkelijke context.

Er zijn onvoldoende kant-en-klare algoritmen en modellen beschikbaar om een tekstsimplificatiepipeline, waarvan de output verzorgd is aan de unieke noden van een scholier met dyslexie in het derde graad middelbaar onderwijs, te bouwen. De pipeline vergt custom transformers om nauwkeurige resultaten te bekomen, zodat de kerninhoud niet verloren raakt. Het vertalen van de zinnen verlaagt de nauwkeurigheid van het model, maar is een acceptabel alternatief. Er is nood aan Nederlandstalige word embeddings die de complexiteit per woord bijhouden, alsook meer kanten-klare modellen die tekstsimplificatiefuncties aanbieden.

Referenties

Barnett, A., & Doubleday, Z. (2020). Meta-Research: The growth of acronyms in the scientific literature (P. Rodgers, Red.). eLife, 9, e60080.

Bingel, J., Paetzold, G., & Søgaard, A. (2018). Lexi: A tool for adaptive, personalized text simplification. Proceedings of the 27th International Conference on Computational Linquistics, 245-258.

Chowdhary, K. (2020). Fundamentals of Artificial Intelligence. Springer, New Delhi.

Crevits, H. (2022, maart 13). Kwart van bedrijven gebruikt artificiële intelligentie: Vlaanderen bij beste leerlingen van de klas (Persbericht). Vlaamse Overheid Departement Economie, Wetenschap en Innovatie.

Donato, A., Muscolo, M., Arias Romero, M., Caprì, T., Calarese, T., & Olmedo Moreno, E. M. (2022). Students with dyslexia between school and university: Post-diploma choices and the reasons that determine them. An Italian study. Dyslexia, 28(1), 110-127.

Gala, N., & Ziegler, J. (2016). Reducing lexical complexity as a tool to increase text accessibility for children with dyslexia. Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC), 59-66.

Martens, M., De Wolf, R., & Evens, T. (2021a). Algoritmes en AI in de onderwijscontext: Een studie naar de perceptie, mening en houding van leerlingen en ouders in Vlaande-

- ren. Kenniscentrum Data en Maatschappij. Verkregen maart 30, 2022, van https://data-en-maatschappij.ai/publicaties/survey-onderwijs-2021
- Martens, M., De Wolf, R., & Evens, T. (2021b, juni 28). School innovation forum 2021. Kenniscentrum Data en Maatschappij. Verkregen april 1, 2022, van https://data-en-maatschappij.ai/nieuws/school-innovation-forum-2021
- Plavén-Sigray, P., Matheson, G. J., Schiffler, B. C., & Thompson, W. H. (2017). Research: The readability of scientific texts is decreasing over time (S. King, Red.). *eLife*, 6, e27725.
- Readable. (2021). Flesch Reading Ease and the Flesch Kincaid Grade Level. https://readable.com/readability/flesch-reading-ease-flesch-kincaid-grade-level/
- Rello, L., Kanvinde, G., & Baeza-Yates, R. (2012). Layout Guidelines for Web Text and a Web Service to Improve Accessibility for Dyslexics. Proceedings of the International Cross-Disciplinary Conference on Web Accessibility.
- Roldós, I. (2020, december 22). Major Challenges of Natural Language Processing (NLP). MonkeyLearn. Verkregen april 1, 2022, van https: //monkeylearn.com/blog/natural-languageprocessing-challenges/
- Sciforce. (2020, februari 4). Biggest Open Problems in Natural Language Processing. Verkregen april 1, 2022, van https://medium.com/sciforce/biggest-open-problems-in-natural-language-processing-7eb101ccfc9
- Siddharthan, A. (2014). A survey of research on text simplification. *ITL International Journal of Applied Linguistics*, 165, 259–298.
- Swayamdipta, S. (2019, januari 22). Learning Challenges in Natural Language Processing. Verkregen april 1, 2022, van https://www.microsoft.com/en-us/research/video/learning-challenges-in-natural-language-processing/

