### Computação Evolutiva

Aula 09 – Estratégias Evolutivas Prof. Paulo Salgado

### Roteiro

- · Visão Geral
- Definições dos parâmetros da Estratégia Evolutiva (EE)
- · Exemplos e Definição da Técnica



### Visão sobre Estratégias Evolutivas (EE)

- Desenvolvida: Na Alemanha na década de 60
- Pioieiros: I. Recheiberg, H.-P. Schwefel na Technical
   University of Berlim para otimização em mecânica de fluidos
- Aplicações típicas:
  - Otimização Numérica
- Características
  - · Velocidade de convergência
  - · Bom otimizador para problemas de valores reais
  - · Há muita teoria associada
- Especialidade
  - Auto-adaptação de parâmetros padrões (mutação)

# Tabela Técnica para EE

| Representação            | Vetores de Valor Real              |
|--------------------------|------------------------------------|
| Recombinação             | Discreta ou Intermediária          |
| Mutação                  | Perturbação Gaussiana              |
| Seleção dos Pais         | Aleatória e Uniforme               |
| Seleção de Sobrevivêicia | $(\mu,\lambda)$ ou $(\mu+\lambda)$ |
| Especialidade            | Auto-Adaptação                     |

### 1

#### Exemplo Introdutório

- Tarefa: Minimizar a função F
  - $\cdot F: R^i \rightarrow R$
- Algoritmo: EE de dois Membros ((1+1)-EE)
  - Vetores do R<sup>i</sup> são utilizados diretamente como cromossomos
  - Tamanho da População: 1
  - Apenas a mutação criando um filho
  - · Seleção gulosa

# Exemplo Introdutório: Pseudo-código

- Ajuste  $\mathbf{t} = \mathbf{0}$
- · Crie o ponto inicial  $X^t = (X^t_{1}, X^t_{2}, ..., X^t_{n})$
- Repita Até (Condição de Parada)
  - Associe Z<sub>i</sub> a uma distribuição normal para todo i =
    1, ..., n independentemente
  - $\cdot Y_i^t = X_i^t + Z_i$
  - · Se  $f(X_i^t) \le f(Y_i^t)$  Então  $X^{t+1} = X^t$ 
    - Else  $X^{t+1} = Y^t$
  - Faça  $\mathbf{t} = \mathbf{t} + \mathbf{1}$



# Exemplo: Mecanismo de Mutação

- Os valores de  ${\bf Z}$  sao guiados por uma distribuição normal  ${\bf N}(\xi, {\bf \sigma})$ 
  - A média  $\xi$  é ajustada para 0
  - O Desvio Padrão σ é chamado tamanho do passo de mutação
- σ é variado durante o processo por "1/5 da regra de sucesso"
- Onde  $p_s$  é a % de mutações com sucesso, e  $0.8 \le c \le 1$



### Distribuição Normal

$$p(x_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x_i - \xi)^2}{2\sigma^2}}$$

σ → desvio padrão

 $\xi \rightarrow m\acute{e}dia\ da\ distribuição$ 

$$\frac{1}{\sigma\sqrt{2\pi}} \to const.\ de\ normalização$$

Na prática, N(0, σ)



### Ilustração da Distribuição Normal





# Exemplos de Geração de Formas

Tarefa: Otimizar a forma de uma haste de um móvel Abordagem: Mutação aleatória da forma + seleção











### Aplicações Reais

#### · N.A.S.A.

 O laboratório de Jato Propulsão utiliza um sistema equivalente a uma EE para o desenvolvimento de carenagens de foguetes

#### • Esportes: **F1**

 Algumas equipes de F1 tem sistemas baseados em EE para o desenvolvimento de aerofólios para seus carros



#### Resumo de características

- Estratégia Evolutiva é tipicamente usada para otimização de parâmetros contínuos
- Existe forte ênfase na criação de filhos através da mutação
- A mutação é implementada pela adição de um número aleatório a partir de uma distribuição Gaussiana
- Os parâmetros da mutação também são modificados durante a execução do algoritmo