A 01 N 9/26

Document FP1 Appl. No. 10/581,346

Offenlegungsschrift

2

1

Aktenzeichen:

P 26 41 343.4

2

Anmeldetag:

14. 9.76

43 Offenlegungstag: 7. 4.77

30 Unionspriorität:

33 33 33

15. 9.75 USA 613553 29. 4.76 USA 681594 29. 3.76 USA 671044

(3) Bezeichnung:

Akarizid und aphizid wirksame

2-Höheralkyl-3-hydroxy-1,4-naphthochinoncarbonsäureester

1

Anmelder:

E.I. du Pont de Nemours and Co., Wilmington, Del. (V.St.A.)

➂

Vertreter:

Schiff, K.L.; Füner, A.v., Dr.; Strehl, P., Dipl.-Ing.; Schübel-Hopf, U., Dr.;

Ebbinghaus, D., Dipl.-Ing.; Pat.-Anwälte, 8000 München

7

Erfinder:

Bellina, Russell Frank, Charleston, W.Va.; Fost, Dennis Lynn, Newark,

Del. (V.St.A.)

Patentans prüche

1. Verbindung der Formel I

worin

 R_1 = gerade, verzweigtes oder cyclisches $C_8-C_{1L}-Alkyl;$

 R_2 = gerades oder verzweigtes C_1 - C_{17} -Alkyl, C_2 - C_{17} -Alkenyl, C_2 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy,
-CH₂OCH₃, -CH₂OCH₂CH₃ oder -CH=CH-COOH; mit
Ausnahme, daß Alkyl nicht C_1 - C_6 und Cycloalkyl
nicht C_3 - C_6 sein darf, wenn X und Y H bedeuten,

X und Y = H, F, Cl, Br, Methyl oder Methoxy sind, wobei, wenn R_1 C_8 - C_{11} -Alkyl ist, mindestens eines der Symbole X und Y eine andere Bedeutung als H hat.

2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß R_2 C_1 - C_6 -Alkyl, C_2 - C_3 -Alkenyl, Methoxy oder Äthoxy bedeuten.

- 3. Verbindung nach Anspruch 1, dadurch gekennzeich net, daß R, Methyl oder Äthyl bedeuten.
- 4. 3-Acetoxy-2-n-tridecyl-1,4-naphthochinon.
- 5. 3-Acetoxy-2-n-tetradecyl-1,4-naphthochinon.
- 6. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eines der Symbole X und Y eine analoge Bedeutung als H hat.
- 7. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß R₁ gerades oder verzweigtes C₁₁-C₁₄-Alkyl bedeutet.
- 8. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß R₂ Alkyl mit 1-6 C-Atomen, Alkenyl mit 2 oder
 3 C-Atomen, Methoxy oder Äthoxy bedeutet.
- 9. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß X oder Y H bedeutet.
- 10. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß R_1 gerades $C_{11}-C_{14}-Alkyl$ bedeutet.
- 11. Verbindung nach Anspruch 6, dadurch gekennzeich net, daß R2 Methyl oder Äthyl ist.

709814/1085

- 12. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß R₁ gerades oder verzweigtes Alkyl mit 11-14
 C-Atomen, R₂ Alkyl mit 1-6 C-Atomen, Alkenyl mit 2-3 C-Atomen,
- Methoxy oder Äthoxy ist.
- 13. Verbindung nach Anspruch 12, dadurch gekennzeichnet, daß R₁ gerades Alkyl mit 11-14 C-Atomen ist.
- 14. Verbindung nach Anspruch 12, dadurch gekennzeichnet, daß R2 Methyl oder Äthyl bedeutet.
- 15. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß R₁ gerades C₁₁-C₁₄-Alkyl, R₂ Methyl
 oder Äthyl und Y H bedeuten.
- 16. 3-Acetoxy-5-chlor-2-n-dodecyl-1,4-naphtochinon.
- 17. Verfahren zum Schutz von Pflanzen vor Akarinen und Aphiden, dadurch gekennzeichnet, daß man erstere mit einer wirksamen Menge einer Verbindung nach den Ansprüchen 6-16 behandelt.
- 18. Akarizide und aphizide Mittel, bestehend aus mindestens einem Tensid (a), einem festen oder flüssigen Verdünnungsmittel und einer Verbindung nach Ansprüchen 6 bis 16.
- 19 Verfahren zum Schutz von Pflanzen vor Akarinen und Aphiden, dadurch gekennzeichnet, daß man erstere mit einer wirksamen Menge einer Verbindung der Formel

709814/1085

worin R₁ = gerades, verzweigtes oder cyclisches
C₈-C₁₄-Alkyl;

R = gerades oder verzweigtes C₁-C₁₇-Alkyl, C₂-C₁₇-Alkyl, C₁-C₄-Alkoxy,

-CH₂OCH₃, -CH₂OCH₂CH₃ oder -CH=CH-COOH

bedeuten, behandelt.

20. Verfahren zur Herstellung einer Verbindung der Formel I

worin

R₁ = gerade, verzweigtes oder cyclisches C₈-C₁₄-Alkyl;

 R_2 = gerades oder verzweigtes C_1 - C_{17} -Alkyl, C_2 - C_{17} -Alkenyl, C_2 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy,
- CH_2 OCH₃, - CH_2 OCH₂CH₃ oder -CH=CH-COOH; mit
Ausnahme, daß Alkyl nicht C_1 - C_6 und Cycloalkyl
nicht C_3 - C_6 sein darf, wenn X und Y H bedeuten,

X und Y = H, F, Cl, Br, Methyl oder Methoxy sind, wobei, wenn R_1 C_8 - C_{11} -Alkyl ist, mindestens eines der Symbole X und Y eine andere Bedeutung als H hat,

dadurch gekennzeichnet, daß man von einem substituierten Naphtol ausgehend

wobei X und Y die oben genannte Bedeutung besitzen in bekannter Weise alkyliert zu einer Verbindung der Formel

$$\longrightarrow \bigvee_{\mathbf{X}} \bigcap_{\mathbf{X}} \bigcap_{\mathbf{X}}$$

wobei Y, X und R₁ die oben genannte Bedeutung besitzen, die se Verbindung oxydiert zu einer Verbindung der Formel

wobei X, Y und R_1 die oben genannte Bedeutung besitzen und diese Verbindung dann in bekannter Weise verester wird oder zu einer Verbindung χ

von einem 4-Phenyl-3-oxobuttersäureester der Formel 709814/1085

in bekannter Weise zu einer Verbindung der Formel

umsetzt und dann in bekannter Weise den Ring schließt.

SCHIFF V. FÜNER STREHL SCHÜBEL-HOPF EBBINGHAUS 2641343

MARIAHILFPLATZ 2 & 3, MUNCHEN 90
POSTADRESSE: POSTFACH 95 01 50, D-8000 MUNCHEN 95

E.I. DU PONT DE NEMOURS AND COMPANY DIPL. CHEM. DR. OTMAR DITTMANN (†1975)

KARL LUDWIG SCHIFF
DIPL CHEM. DR. ALEXANDER V. FÜNER
DIPL ING. PETER STREHL
DIPL CHEM. DR. URSULA SCHÜBEL-HOPF
DIPL ING. DIETER EBBINGHAUS

TELEFON (089) 48 2054 TELEX 5-29 565 AURO D TELEGRAMME AUROMARCPAT MÜNCHEN

DA-17162 14. September 1976

Prioritäten: 15. September 1975, USA, 613 553

29. März 1976, USA, 671 044 29. April 1976, USA, 681 594

Akarizid und aphizid wirksame

2-Höheralkyl-3-hydroxy-1,4-naphthochinon-carbonsäureester

Die Erfindung bezieht sich auf akarizid und aphizid wirksame 2-Höheralkyl-3-hydroxy-1,4-naphthochinon-carbonsäureester.

In den US-PS 2 553 647 und 2 553 648 werden die 2-Alkyl-3-hydroxy-1,4-naphthochinoncarbonsäure und ihre entsprechenden Esterabkömmlinge beschrieben. Diese Verbindungen sollen eine antagonistische Wirkung gegen Organismen besitzen, die Malariainfektionen verursachen.

Die US-PS 2 572 946 behandelt die Verwendung von nichtacylierten Verbindungen als Akarizide.

Nakanishi et al. JACS 1952, 3910-3915 beschreibt das n-Undecyl-Analogon des 2-Alkyl-3-hydroxy-1,4-naphthochinons. In dieser Veröffentlichung wird über die Verwendung dieser Verbindung nichts gesagt.

Die vorliegende Erfindung betrifft akarizid und aphizid wirksame Verbindungen, Verfahren zu deren Herstellung, Kompositionen, welche diese Verbindungen enthalten, und Verfahren zur Verwendung derselben zum Schutz von Pflanzen und Tieren vor Milben und Blattläusen, der Formel I

worin

R₁ = gerades, verzweigtes oder **cy**clisches C₈₋₁₄ Alkyl;

R₂ = gerades oder verzweigtes C₁-C₁₇-Alkyl, C₂-C₁₇
Alkenyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy,
-CH₂OCH₃, -CH₂OCH₂CH₃ oder -CH=CH-COOH;

X und Y = H, F, Cl, Br, Methyl oder Methoxy.

Die Verbindungen, in denen mindestens eines der Symbole X und Y eine andere Bedeutung als Wasserstoff haben, sind neu.

Verbindungen mit R_1 = Alkyl mit 12-14 Kohlenstoffatomen sind ebenfalls neu.

Kombinationen der erfindungsgemäßen Verbindungen mit anderen Akariziden, insbesondere mit Chlordimeform ("Galecron"), Formetanat ("Carzol"), Propargit ("Omite"), Tetradifon ("Tedion") und Benomyl zeigen eine bessere Gesamtwirkung als die Verbindungen allein genommen. Derartige Gemische sind ebenfalls neu.

Die Verbindungen der Formel I sind Akarizide und Aphizide.
Bringt man eine wirksame Menge dieser Verbindungen in Berührung mit Milben oder Blattläusen, so werden diese Schädlinge getötet. Die erfindungsgemäß vorgeschlagenen Verbindungen können also zum Schutz von Pflanzen und Tieren gegen
die Einwirkung von Milben oder Blattläusen verwendet werden.

Bevorzugt wegen der einfachen Herstellung sind Verbindungen mit R_1 in der Bedeutung von gerades $C_8-C_{14}-Alkyl$.

Wegen ihrer bioziden Wirkung besonders bevorzugt sind Verbindungen mit R_1 in der Bedeutung von gerades C_{12} - C_{14} -Alkyl. Mit diesen Verbindungen besprühte Milbeneier sterben ab. Etwas höhere Wirkungsdosen als sie zur Bekämpfung der beweglichen Formen verwendet werden, zeigen nämlich gute ovizide Wirkung.

Bevorzugt wird R₂ in der Bedeutung von C₁-C₆-Alkyl insbesondere bevorzugt geradkettiges C₁-C₆-Alkyl, C₂-C₃-Alkenyl, Methoxy oder Äthoxy, insbesondere Äthyl oder Methyl. Aufgrund ihrer überaus hohen akariziden und aphiziden Wirksamkeit werden folgende Verbindungen bevorzugt:

3-Acetoxy-2-n-tetradecyl-1,4-naphtochinon;
3-Acetoxy-2-n-dodecyl-1,4-naphthochinon;
3-Propionyloxy-2-n-tetradecyl-1,4-naphthochinon;
2-n-Dodecyl-3-propionyloxy-1,4-naphthochinon;
3-Butyryloxy-2-n-tetradecyl-1,4-naphthochinon;
2-n-Dodecyl-3-methoxycarbonyloxy-1,4-naphthochinon;
2-n-Dodecyl-3-äthoxycarbonyloxy-1,4-naphthochinon;
3-Butyryloxy-2-n-dodecyl-1,4-naphthochinon;
2-n-Dodecyl-3-isobutyryloxy-1,4-naphthochinon;
3-Acetoxy-5-chlor-2-dodecyl-1,4-naphthochinon.

Nach einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die erfindungsgemäßen Verbindungen in Mischung mit einem Superior oil, vorzugsweise mit einer geringeren Menge an Superior oil, z.B. weniger als 5 Gew.-%, aufgebracht. Die dabei erhaltene akarizide Wirkung ist größer als dem Summeneffekt entspricht. Superior oils werden in Chapman et al. Selection of a Plant Spray Oil Combining Full Pesticidal Efficiency with Minimum Plant Injury Hazards, Jour. Econ.Ent., 1962, 55:737-43 beschrieben. Die erhaltene Mischung der Verbindung mit dem Superior oil ist neu.

Die Verbindungen der Formel I können nach den Verfahrensweisen hergestellt werden, wie sie in dem eingangs zitierten Artikel aus J.Am.Chem.Soc. und den US-PS 2 553 647 und
2 553 648 beschrieben sind. Die letzte Stufe der Synthese
kann auch durchgeführt werden, indem man das entsprechende
2-Alkyl-3-hydroxy-1,4-naphthochinon (III) mit einem geeigneten Säurechlorid oder-anhydrid in Gegenwart von mindestens einem Äquivalent an Amin, wie Pyridin oder Triäthylamin oder das Salz des 2-Alkyl-3-hydroxy-1,4-naphthochinons
mit einem geeigneten Säurechlorid oder-anhydrid in einem
inerten Lösungsmittel behandelt.

Die Verbindungen können entweder (a) aus entsprechend substituiertem Naphthol nach DT-OS 2 520 739, (11/9/75), oder (b) aus 4-Phenyl-3-oxobuttersäureester nach Fieser, et al., US-PS 2 553 647 hergestellt werden:

(a)
$$V OH V OH R_1$$
 $V OH V OH R_2$
 $V OH V OH R_3$
 $V OH CHARACTER STATE STATE$

Die folgenden Beispiele illustrieren das Herstellungsverfahren.

Beispiel 1

Herstellung von 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon

Eine Mischung von 2 Teilen 2-n-Dodecyl-3-hydroxy-1,4-naphthochinon, 0,81 Teilen Triäthylamin und 0,63 Teilen Acetylchlorid und 50 Teilen Methylenchlorid werden bei Raumtemperatur 30 Stunden gerührt. Die erhaltene Mischung wird zwischen Methylenchlorid und Wasser verteilt. Die Methylenchloridschicht wird abgetrennt, über Magnesiumsulfat getrocknet, dann filtriert und unter vermindertem Druck eingedampft. Der Rückstand wird aus Petroläther (Siedepunkt 30 bis 60°C) kristallisiert und ergibt 1,2 Teile 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon mit einem Schmelzpunkt von 57 bis 58°C.

Herstellung von 2-n-Dodecyl-3-propionyloxy-1,4-naphthochinon

Eine Mischung von 4 Teilen 2-n-Dodecyl-3-hydroxy-1,4-naphthochinon, 4,4 Teilen Propionsäureanhydrid und 50 Teilen Pyridin wird bei Raumtemperatur 16 Stunden gerührt. Die erhaltene
Mischung wird dann unter vermindertem Druck zur Entfernung des
Pyridins eingedampft. Der Rückstand wird aus Methanol umkristallisiert, so daß man 2,9 Teile 2-n-Dodecyl-3-propionyloxy-1,4-naphthochinon mit einem Schmelzpunkt von 42 bis 44°C
erhält.

Beispiel 3

Herstellung von 2-n-Dodecyl-3-hydroxy-1,4-naphthochinon-Na

Eine Dispersion aus 1,9 Teilen NaOH in 250 Teilen Tetrahydrofuran wird einer Lösung aus 26 Teilen 2-n-Dodecyl-3hydroxy-1,4-naphthochinon in 450 Teilen Tetrahydrofuran bei Raumtemperatur zugesetzt, danach wird 1 Stunde gerührt und schließlich filtriert, wodurch man die weinrote Lösung des Na-Salzes erhält.

Beispiel 4

Herstellung von $2-\underline{n}$ -Dodecyl-3-methoxycarbonyloxy-1,4-naphthochinon

T = Teile.

60 T. der nach Bsp. 3 erhaltenen Salzlösung werden mit 0,59 T. Methylchlorformiat in 10 T. Tetrahydrofuran 1 St. bei Raumtemperatur gerührt. Nach Stehenlassen über Nacht wird die Suspension filtriert und das Filtrat bis zur Trockene eingedampft. Nach Umkristallisieren des Rückstandes aus Acetonitril erhält man 2.0 T. 2-n-Dodecyl-3-methoxycarbonyloxy-1,4-naphthochinon, Sp. 70-72°C.

Mit einem geeigneten 2-Alkyl-3-hydroxy-1,4-naphthochinon sowie Säurechlorid bzw. -anhydrid können entsprechend Bsp.1-4 die nachfolgend aufgeführten Verbindungen hergestellt werden.

Tabelle 1

R ₁	R ₂	Sp.(°C)
- <u>n</u> -C ₈ H ₁₇	- <u>n</u> -c ₃ H ₇	
- <u>n</u> -C ₉ H ₁₉	-c ₂ H ₅	·
- <u>n</u> -C ₁₁ H ₂₃	-CH ₃	51-53
- <u>n</u> -C ₁₁ H ₂₃	-CH ₂ CH ₃	$N_{\rm D}^{25}$ 1.5209
- <u>n</u> -C ₁₁ H ₂₃	-cH ₂ CH ₂ CH ₃	$N_{\rm D}^{25}$ 1.5131
- <u>n</u> -C ₁₁ H ₂₃	-ch(ch ₃) ₂	$N_{\rm D}^{25}$ 1.5155

Tabelle 1 (Fortsetzung)

R ₁	R ₂	Sp.(°C)
- <u>n</u> -C ₁₂ H ₂₅	-CH ₃	57-58
- <u>n</u> -C ₁₂ H ₂₅	-CH ₂ CH ₃	42-44
- <u>n</u> -C ₁₂ H ₂₅	-ch ₂ ch ₂ ch ₃	$N_{\rm D}^{25}$ 1.5120
- <u>n</u> -C ₁₃ H ₂₇	-CH ₃	58-60
-CH-CH ₂ -C ₉ H ₁₉	-сн ₃	$N_{\rm D}^{25}$ 1.5332
CH ₃	CH ₃	
-(CH ₂) ₉ -CH(CH ₃) ₂	-CH-CH ₃	
-(CH ₂) ₃ -(S)	-сн ₃	72-74
-(s)-(s)	-CH ₃	
- <u>n</u> -C ₁₄ H ₂₉	-CH ₃	62-63
- <u>n</u> -C ₁₂ H ₂₅	-CH(CH ₃) ₂	$N_{\rm D}^{25}$ 1.5157
- <u>n</u> -C ₁₀ H ₂₁	-CH ₃	

Tabelle 1 (Fortsetzung)

2641343

	•	•
Ŕ	R ₂ .	Sp. (°C)
-n-C ₁₄ H ₂₉	сн ₂ сн ₃	52- 53°
-n-C ₁₄ H ₂₉	сн ₂ сн ₂ сн ₃ .	40-42°
-n-C ₁₄ H ₂₉	- CH CH2	65-67°
	CH ₂	
- <u>n</u> -C ₁₂ H ₂₅	-сн	59-61
-1225	CH ₂	
- <u>n</u> -c ₁₂ H ₂₅	S	50– 52
- <u>n</u> -C ₁₂ H ₂₅	S	•
- <u>n</u> -c ₁₂ H ₂₅	-(сн ₂) ₄ сн ₃	N _D ²⁵ 1.5133
- <u>n</u> -c ₁₂ H ₂₅	-c(cн ₃) ₃	N_D^{25} 1.5133
- <u>n</u> -C ₁₂ ^H ₂₅	-och ₃	70-72
-n-C ₁₂ H ₂₅	-och ₂ ch ₃	42-47
- <u>n</u> -C ₁₂ H ₂₅	сн ₃ -о-снсн ₂ сн ₃	[IR>=o 1753 cm
709814	/1085	

 \underline{R}_1

2641343 Sp:

-n-C ₁₂ H ₂₅	-cH ₂ OCH ₃	69-71
- <u>n</u> -C ₁₂ H ₂₅	-CH ₂ OCH ₂ CH ₃	
- <u>n</u> -c ₁₂ H ₂₅	$-(cH^5)^{4}_{CH^3}$. [IK >=0	1791 cm ⁻¹]
-n-C ₁₂ H ₂₅	-(CH ₂) ₁₂ CH ₃	51-53
- <u>n</u> -C ₁₂ H ₂₅	-(cH ₂) ₁₆ cH ₃	
- <u>n</u> -c ₁₂ H ₂₅	-CH=CH ₂	
- <u>n</u> -C ₁₂ H ₂₅	-CH=CHCH ₃	43.5-44.5
	CII ₃	
- <u>n</u> -c ₁₂ H ₂₅	-C=CH ₂	N _D ²⁵ 1.5202
- <u>n</u> -c ₁₂ H ₂₅	-ch-co ⁵ H	25 N _D 1.5162
- <u>n</u> -c ₁₂ H ₂₅	-CH=CH-CH=CH-CH ₃	68-74
- <u>n</u> -c ₁₂ H ₂₅	-(cH ₂) ₇ CH=CHCH ₂ CH=CH(CH ₂) ₄ CH ₃	•
-CH ₂ CH ₂ -S	-CH ₃	68-69
<u>n</u> -c ₁₂ H ₂₅	-(CH ₂) ₅ CH ₃	N _D ²⁵ 1.5141

-CH

91-93

54-57

-(CH₂)6CH₃

-⊡-℃12^H25

<u>n</u>-c₁₂H₂₅

-(CH₂)₇-CH=CH-(CH₂)₇CH₃

Herstellung von 2-Acetyl-4-(2-methylphenyl)-3-oxobuttersäureäthylester

Nach M. Viscontini und N. Merckling, Helvetica Chimica Acta, 35, 2280 (1952) werden 2.65 T. Magnesiumspäne mit 15 T. abs. Äthanol bei Raumtemperatur und 0,5 T. Tetrachlorkohlenstoff versetzt. Nach Abklingen der Reaktion werden 100 T. trockener Äther zugegeben. Das Gemisch wird dann ohne Kühlung bis zum Aufhören der Reaktion gerührt und dann mit 19.6 T. Äthyl-3-oxobuttersäureester in 20 T. trockenem Äther unter Eiskühlung versetzt und gut gerührt. Der erhaltene Niederschlag wird gelöst, die Lösung wird dann in einem Eis-Salz-Bad gekühlt und langsam mit 16 T. 2-Methylphenylacetylchlorid versetzt, wonach man über Nacht bei Raumtemperatur stehenläßt und schließlich mit Eis und H₂SO₄ vereinigt. Die Ätherschicht wird abgetrennt, mit H₂O gewaschen, mit Na₂SO₄ getrocknet und schließlich destilliert, wodurch man die Titelverbindung als rohes Öl erhält.

Beispiel 6

Herstellung von 4-(2-Methylphenyl)-3-oxobuttersäureäthylester.

Nach Hunsdiecher Berichte, 75, 454 (1942) wurden 26 Teile 2-Acetyl-4-(2-methylphenyl)-3-oxobuttersäureäthylester 10 Stunden bei Raumtemperatur mit 100 T. Äthanol und 6,8 T. Na-Äthoxid gerührt. Das Gemisch wird mit H₂0 verdünnt und mit Äther extrahiert. Das Lösungsmittel wird schließlich abgedampft, wodurch man die Titelverbindung erhält.

709814/1085

Herstellung von 2-/(2-Methylphenyl)acetyl/tetradecansäureäthylester.

3 Teile 4-(2-Methylphenyl)-3-oxobuttersäureäthylester, 1 T. Na-Methoxid, 4,6 T. 1-Brom-dodecan, 0,5 T. NaJ und 50 T. abs. Äthanol werden 4 St. unter Rückflußbedingungen erhitzt und dann 18 St. bei Raumtemperatur gerührt. Danach wird das Gemisch stark eingeengt, mit 100 T. Wasser verdünnt und mit Äther extrahiert. Der Ätherextrakt wird mit gesättigter NaHCO3- und gesättigter NaCl-Lösung gewaschen und mit MgSO4 getrocknet. Durch Abdampfen des Äthers erhält man 6 T. rohen Äthyl-2/(2-methylphenyl)-acetyl/tetradecansäureäthylester als Öl, das nicht weiter gereinigt wird.

Beispiel 8

Herstellung von 2-Dodecyl-3-hydroxy-5-methyl-1,4-naphthochinon.

4 T. roher 2-/(2-Methylphenyl)-acetyl/tetradecansäureäthylester nach Bsp. 7 werden mit 12 T. kalte konz. H₂SO₄ vereinigt und bei Raumtemperatur 66 St. gerührt. Danach wird in Eiswässer gegossen und mit 50 %-iger wässriger Natronlauge leicht alkalisch gestellt. Danach wird zur Lösung der organischen Substanz mit ausreichend Äthanol versetzt und die Lösung 3 St. belüftet. Dann wird zweimal mit 100 T. Petroläther extrahiert, mit Salzsäure angesäuert und erneut

mit Äther extrahiert. Der Ätherextrakt wird mit gesättigter NaCl-Lösung gewaschen, mit Magnesiumsulfat getrocknet und eingedampft. Der Rückstand wird aufgenommen in Acetonitril und filtriert. Das Filtrat wird bis zur Trockene eingedampft. Dieser Rückstand wird mit Petroläther trituriert, wodurch man 0,2 g der Titelverbindung, Sp. 92-93°C erhält.

Beispiel 9

Herstellung von 3-Acetoxy-2-dodecyl-5-methyl-1,4-naphthochinon.

3,8 T. 2-Dodecyl-3-hydroxy-5-methyl-1,4-naphthochinon, 8 T. Essigsäureanhydrid und 32 T. Pyridin werden bei Raumtemperatur 16 St. gerührt. Zur Entfernung des Pyridins wird das Gemisch unter vermindertem Druck eingedampft. Der Rückstand wird umkristallisiert (aus Methanol), was 2,5 T. der Titelverbindung. Sp. 69-75°C ergibt.

Beispiel 10

Herstellung von 1-(5-Chlor-1-hydroxynaphthalin-2-yl)-1-dodecanon.

16,6 T. 5-Chlor-1-naphthalenol (Erdmann und Kirchoff, Liebig's Ann., 247, 372 (1888), 19,2 T. Dodecansäure und 132 T. BF₃- Ather-Komplex (48 % BF₃) werden unter Stickstoff im Dampfbad 6 St. gerührt. Danach werden 114 T. H₂O zugesetzt, und der Äther durch weiteres Erwärmen abgetrieben. Das Gemisch wird in Eis gekühlt, und der erhaltene gelbbraune Feststoff filtriert und umkristallisiert (aus Äthanol), der 18 T. der gelben Titelverbindung, Sp. 86-87, ergibt.

Beispiel 11

Herstellung von 5-Chlor-2-dodecyl-1-naphthalenol

Eine Lösung aus 17,4 T. 1-(5-Chlor-1-hydroxynaphthalen-2-yl)1-dedecanon und 107 T. 37 % HCl in 2,5 T. Äthanol wird während 26 St. unter Rückflußbedingungen mit 40 T. Zinkpulver
gerührt, das durch Behandlung mit 3 T. HgCl₂ und 53 T.
2,1 % Salzsäure unter nachfolgendem Waschen mit Äthanol
amalgamiert wurde. Das Zinkamalgam wird während der gesamten
Reaktionsdauer in kleinen Portionen zugesetzt. Nach Kühlen
wird der Feststoff abgetrennt. Dann wird in Äthanol gelöst,
das Zinkamalgam filtriert, und nach Abkühlen erhält man dann
0,5 T. Ausgangsmaterial, das filtriert wird. Einengen des
Filtrats, Reinigung durch Umkristallisation aus Äthanol
und Säulenchromatographie auf Silicagel mit 1-Chlorbutan
als Eluens ergeben 12 T. der Titelverbindung, Sp. 68-70°C.

Beispiel 12

Herstellung von 5-Chlor-2-dodecyl-1,4-naphthochinon.

5,4 T. 5-Chlor-2-dodecyl-1-naphthalenol, 18 T. 96 % Schwefelsäure, 71,5 T. Eisessig und 29 T. Wasser wurden bei 70° gerührt und tropfenweise mit 8,85 T. kaltes 30 % H₂O₂ während 8 St. versetzt. Danach wird bei 70° noch 17 St. weiter gerührt, gekühlt, der orangefarbene Feststoff in Methylenchlorid aufgenommen, und der Extrakt mit Wasser gewaschen, getrocknet und destilliert. Der gelbbraune Feststoff wird säulenchromatographisch aus 1-Chlorbutan auf Silicagel gereinigt, was 2 T. der Titelverbindung, Sp. 57,5-58,5°C, ergibt.

Beispiel 13

Herstellung von 5-Chlor-2-dodecyl-3-hydroxy-1,4-naphthochinon.

1,7 T. 5-Chlor-2-dodecyl-1,4-naphthochinon, 25 T. Äthanol, 0,626 T. wasserfreies Na₂CO₃ und 6,3 T. Wasser wurden mit 1,13 T. 30 % Wasserstoffperoxidbei 32°C in Kontakt gebracht und 10 Min. unter Rückflußbedingungen behandelt. Das erhaltene Gemisch wird dann auf 50° abgekühlt, wonach man mit einer Lösung aus 1,56 T. KOH in 49,5 T. Äthanol versetzt. Das tiefrote Gemisch wird während 25 Min. auf 50°C erwärmt, wonach man 45 Min. bei dieser Temperatur hält. Nach Abkühlen auf 10°C wird das Gemisch mit 251 T. 2,72 % HCl kontaktiert. Die gelben Kristalle werden filtriert, getrocknet und säulenchromatographisch auf Silicagel unter Verwendung von 1-Chlorbutan als Eluens gereinigt. Nach Entfernung des Lösungsmittels erhält man 1,4 T. der Titelverbindung, Sp. 102-104°C.

Herstellung von 3-Acetoxy-5-chlor-2-dodecyl-1,4-naphthochinon.

0,95 T. 5-Chlor-2-dodecyl-3-hydroxy-1,4-naphthochinon in 20 T. wasserfreies Tetrahydrofuran werden unter N₂ einer Mischung aus 0,0635 T. NaH in 40 T. Tetrahydrofuran unter Rühren während 45 Min. bei Raumtemperatur zugesetzt. Danach versetzt man mit einer Lösung aus 0,275 T. Acetylchlorid in 30 T. Tetrahydrofuran und rührt während 5 St. Das Tetrahydrofuran wird unter vermindertem Druck abdestilliert, und der Rückstand in Methylenchlorid aufgenommen und dann mit Wasser, 10 % HCl, viermal mit Wasser gewaschen, mit Na₂SO₄ getrocknet und destilliert. Der erhaltene gelbe Feststoff wird säulenchromatographisch auf Silicagel unter Verwendung von 1-Chlorbutan als Eluens gereinigt. Nach Entfernung des Lösungsmittels erhält man 0,9 T. der Titelverbindung, Sp. 57-59°C.

Mit einem geeigneten 2-Alkyl-3-hydroxy-1,4-naphthochinon sowie Säurechlorid bzw. -anhydrid können entsprechend Bsp. 5 bis 14 die in Tabelle 2 aufgeführten Verbindungen hergestellt werden.

$$\frac{R_1}{-n}$$
 $\frac{-n}{c_8H_17}$
 $\frac{-n}{c_8H_17}$
 $\frac{-n}{c_8H_17}$
 $\frac{-n}{c_{11}H_23}$
 $\frac{-n}{-n}$
 $\frac{-n}{c_{11}H_23}$
 $\frac{-n}{-c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$
 $\frac{-n}{c_{12}H_25}$

-c(cH₃)₃
-ocH₂CH₃
-ocH₂CH₃
-cH₂CH₃
-cH=CH₂
-cH=CH₂
-cH=CH₃
-cH=CH₂
-cH=CH₃
-cH=CH₃
-cH=CH₃
-cH=CHCM₃
-cH₃

-n-c₁₂ H₂ s
-n-c₁₃ H₂ s
-n-c₁₂ H₂ s

Die Verbindungen der Formel I werden als Akarizide eingesetzt und dienen zum Schutz von Pflanzen und Tieren gegen die schädliche Wirkung dieser Schädlinge. Insbesondere können somit Obst, Feldfrüchte, Gemüse, Zierpflanzen, Vögel und andere Warmblüter einschließlich der Menschen geschützt werden.

Die Akarinen kommen in Berührung mit dem erfindungsgemäß zu verwendenden Verbindungen entweder in Form von Besprühungen oder durch Laufen über Oberflächen, die mit einer Verbindung der Formel I behandelt wurden, wobei sie gereizt werden und diesen Bereich verlassen, oder getötet werden, wenn sie einer wirksamen Dosis ausgesetzt wurden. Die meisten Pflanzen oder Tiere können zwar die Anwesenheit einer sehr geringen Anzahl von Akarinen ohne einen offensichtlich schädlichen Effekt vertragen, die Fortpflanzungsrate dieser Schädlinge ist jedoch enorm. Im allgemeinen vermehren sich die Akarinenpopulationen sehr rasch, so daß sie oft nicht mehr mit den üblichen Methoden zur Bekämpfung von Parasiten unter Kontrolle gebracht werden können. Wird eine rasche Vermehrung von Akarinen festgestellt, so müssen sofort Maßnahmen ergriffen werden, um Schäden für wirtschaftlich wichtige Kulturen zu vermeiden. Es besteht also ein Bedürfnis nach einem Verfahren zur sofortigen Verminderung der Vermehrung von Akarinen und damit zur Verhütung von Schäden bei wichtigen Kulturen.

Auch Milbeneier können mit diesen Verbindungen in Form von Sprays abgetötet werden, wobei etwas stärkere Dosen zu verwenden sind als für die Bekämpfung der beweglichen Formen erforderlich ist.

Bereits sehr kleine Mengen an Verbindungen der Formel I sind akarizid wirksam. Außerdem werden die erfindungsgemäß anzuwendenden Verbindungen nicht allzu schnell vom Blattwerk durch Regen abgewaschen. Zudem besitzen sie keine schädliche Wirkung auf Marienkäfer, die für Milben wichtige natürliche Feinde sind. Ferner werden die Verbindungen im umgebenden Bereich rasch abgebaut. Die Verbindungen sind auch wirksam gegen phosphorresistente Akarinenstämme.

Die akarizid wirksame Menge hängt von der spezifischen Situation ab. Zu den Variablen, die berücksichtigt werden müssen bei der Auswahl der Menge des Stoffes, gehört die jeweilige Verbindung selbst, dann die jeweilige zu bekämpfende Milbe, die Witterungsbedingungen, die Art der Nutzpflanze, ihr Entwicklungsstadium, das Volumen des aufzubringenden Sprays, der Populationsdruck und die Intervalle zwischen den einzelnen Anwendungsschritten. Für den Pflanzenschutz können unter gewissen Umständen bereits Lösungen oder Suspensionen mit 5 ppm Wirkstoff in einer Spraylösung wirksam sein. Beim Freilandeinsatz sind im allgemeinen jedoch höhere Volumina, d.h. wässrige Sprayzubereitungen mit 40 bis 4.000 ppm Wirkstoff vorteilhaft. Bevorzugt sind Suspensionen mit 80 bis 1.000 ppm und insbesondere solche mit 150 bis 500 ppm. Auf die Fläche bezogen, sind im allgemeinen 0,03 bis 15 kg/ha ausreichend, insbesondere 0,06 bis 8 kg, vorzugsweise 0,1 bis 4 kg. Im Obstanbau wird bis zur Tropfenbildung gesprüht.

Es kann erwünscht oder auch zweckmäßig sein, die erfindungsgemäß vorgeschlagenen Verbindungen mit anderen landwirtschaftlichen Pestiziden oder Zusätzen zu mischen. Solche Mischungen erhöhen oft die Wirksamkeit der Anwendung auf Akarinen
und erweitern den Bekämpfungsbereich durch Einschluß anderer
Schädlinge, wie Insekten, Fungi, Nematoden oder Bakterien.
Eine Mischung mit Pestizidöl (raffiniertes Erdöl) oder Superior
oilzeigt eine größere Wirkung auf Akarinen als dem reinen
Summeneffekt entspricht. Andere Pestizide, die mit den erfindungsgemäß vorgeschlagenen Verbindungen zur Verbreiterung
des Wirkungsspektrums gemischt werden können, sind folgende:

Diazinon - 0,0-Diäthyl-0-(2-isopropyl-4-methyl-6-pyrimidyl)phosphorthioat 709814/1085

- 0.0-Diäthyl-S-2-(äthylthio)äthylphosphor-Disulfoton **dit**hioat - 0.0-Diäthyl-S-(äthylthio)methylphosphor-Phorat dithioat - S-Methyl-1-(dimethylcarbamoyl)-N-/(methyl-Oxamyl carbamoyl)oxy/thioformimidat - S-Methyl-N-(methylcarbamoyloxy)thioacet-Methomyl **imidat** - 1-Butylcarbamoyl-2-benzimidazolcarbamin-Benomyl säure-methylester - N-Trichlormethylthiophthalimid Captan - Äthylenbisdithiocarbaminsäure-Mangansalz Maneb - 5,6-Dihydro-2-methyl-1,4-oxathiin-3-carb-Carboxin oxanilid - 2.4-Diguanidino-3.5.6-trihydroxycyclo-Streptomycin hexyl-5-deoxy-2-o-(2-deoxy-2-methylamino- α -glycopyranosyl)-3-formylpentofuranosid. Azinphosmethyl - 0,0-Dimethyl-5-[4-0x0-1,2,3-benzotriazin-3-(4H)ylmethyl/phosphordithioat.

Die Verbindungen sind besonders geeignet zum Schutz von lebenden Pflanzen, wie Früchte tragenden Bäumen, Nüsse tragenden Bäumen, Zierbäumen, Waldbäumen, Gemüseanpflanzungen, Gartenkulturen (einschließlich Ziergärten, kleine Früchte und Beeren), Kornfrüchten und Samen. Apfelbäume, Pfirsichbäume, Baumwolle, Zitrusbäume, Bohnen und Erdnüsse sind besonders empfindlich gegen Milbenbefall und können durch Anwendung der erfindungsgemäßen Verbindungen geschützt werden. Um einen Schutz während der Wachstumsperiode zu sichern (z.B. von Juni bis August in der nördlichen Hemisphäre) sollte eine Mehrfachanwendung in den gewünschten Intervallen erfolgen.

Viele Milbenarten können durch die erfindungsgemäßen Verbindungen bekämpft werden. Im folgenden wird eine Liste an repräsentativen bekämpfbaren Milben mit der Art der Schädigung, die sie verursachen, gegeben:

Panonychus ulmi und Tetranychus urticae, die im allgemeinen als "Obstgartenmilben" benannt werden und die sehr viele Laubbäume befallen, wie Apfel-, Birnen-, Kirsch-, Zwetschgen- und Pfirsichbäume; Tetranychus atlanticus, T. cinnabarinus und T. pacificus, die Baumwolle und zahlreiche andere Pflanzen befallen; Paratetranychus citri und andere, die Zitrusfrüchte befallen; Phyllocoptruta oleivora, welche Zitrusrost bewirkt; Bryobia praetiosa, die Klee, Luzerne und andere Pflanzen befällt, und Aceria neocynodomis, die Gräser und andere Pflanzen befällt. Tetranychus medanieli, die im Nordwesten der USA abfallende Früchte befällt, und Oligonychus pratensis, die Sorghum und andere Gräser befällt.

Brauchbare Mittel, enthaltend die Verbindungen der Formel I, können in üblicher Weise hergestellt werden. Dies sind Dusts, Granulate, Tabletten, Lösungen, Suspensionen, Emulsionen, Netzpulver, Emulsionskonzentrate und dgl. Viele dieser Anwendungsarten können direkt verwendet werden. Sprühmittel können durch geeignete Medien gestreckt werden und in Sprühvolumina von einigen bis mehreren hundert Litern pro Hektar appliziert werden. Konzentrierte Mittel werden in erster Linie als Halbfabrikate für weitere Formulierungen eingesetzt. Derartige Halbkonzentrate enthalten im allgemeinen ungefähr 1 bis 99 Gew.-% Wirkstoff(e) und mindestens einen Zusatzstoff a) mit ungefähr 0,1 bis 20 Gew.-% Tensid(e) und b) mit ungefähr 5 bis 99% feste(s) oder flüssige(s) Verdünnungsmittel(n). Insbesondere enthalten diese Mittel die Bestandteile

in den folgenden angenäherten Verhältnissen:

Tabelle 3

	Wirkstoff	Verdünnungs- mittel	Tensid(e)
Netzpulver	20- 90	0-74	1–10
Ölsuspensionen, Emul- sionen, Lösungen (ein- schließlich Emulsions- konzentrate)	5 - 50	40- 95	0-15
Wässerige Suspensionen	10-50	40- 84	1-20
Dusts	1-25	70- 99	0- 5
Granulate oder Tabletten	1-95	5- 99	0-15
Hochprozentige Kon- zentrate	90- 99	0-10	0- 2

Höhere oder niedrigere Gehalte an Wirkstoff können selbstverständlich je nach der beabsichtigten Verwendung und den physikalischen Eigenschaften der Verbindung vorhanden sein.
Höhere Verhältnisse von Tensid zu Wirkstoff sind manchmal erwünscht und werden erhalten durch Einarbeiten in das Mittel oder durch Mischen im Tank.

Typische feste Verdünnungsmittel werden von Watkins et al. im "Handbook of Insecticide Dust Diluents an Carriers", 2nd Ed., Dorland Books, Caldwell, N.J. beschrieben. Absorptionsfähigere Verdünnungsmittel sind für Netzpulver bevorzugt, dichtere für Dusts. Typische flüssige Verdünnungsmittel und Lösungsmittel werden in Marsden, "Solvents Guide", 2nd. Edn., Interscience, New York, 1950 beschrieben. Eine Löslichkeit unter 0,1% ist

bevorzugt für Suspensionskonzentrate, wobei Lösungskonzentrate vorzugsweise stabil gegen Phasentrennung bei 0°C sein sollen.

"McCutcheon's Detergents and Emulsifiers Annual", Allured Publ. Corp., Ridgewood, New Jersey, ebenso wie Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publ. Co., Inc., New York, 1964, zählen Tenside auf und die empfohlenen Verwendungsarten. Alle diese Mittel können geringere Mengen an Zusätzen enthalten, um Schäumen, Zusammenbacken, Korrosion, mikrobiologisches Wachstum etc. zu verhindern. Vorzugsweise sollten die Bestandteile der Mischungen durch das U.S. Environmental Protection Agency für die Verwendung freigegeben sein.

Die Herstellungsverfahren für die Mischungen sind bekannt.

Lösungen werden hergestellt durch einfaches Mischen der Bestandteile. Feine feste Mittel werden hergestellt durch Mischen und üblicherweise Mahlen in einer Hammermühle oder Strahlenmühle. Suspensionen können durch Feuchtmahlen (siehe z.B. US-PS 3 060 084) hergestellt werden. Granulate und Tabletten können hergestellt werden durch Versprühen des Wirkstoffes auf vorgeformte granulierte Träger oder durch Agglomeration. Siehe J.E. Browning, "Agglomeration", Chemical Engineering, 4. Dezember 1967, S. 147 ff und Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, N.Y., 1963, S. 8-59 ff.

Als weitere Informationsquelle für die Herstellung der erfindungsgemäßen Mittel sei auf folgende Literaturstellen Verwiesen:

J.B. Buchanan, US-PS 3 576 834, 27. April 1971, Spalte 5, Zeile 36 bis Spalte 7, Zeile 70 und Beispiele 1-4, 17, 106, 123-140.

R.R. Shaffer, US-PS 3 560 616, 2. Feb. 1971, Spalte 3, Zeile48 bis Spalte 7, Zeile 26 und Beispiele 3-9, 11-18.

E. Somers, "Formulation", Kapitel 6 in Torgenson, "Fungicides", Band I, Academic Press, New York, 1967.

Eine weitere flüssige Anwendungsart, die besonders für Kleinverbrauch geeignet ist, ist die Aerosol-Form, die unter Druck in einem geeigneten Behälter abgepackt wird. Der Wirkstoff kann in einer Suspension, Emulsion oder Lösung vorliegen. Der Einfachheit der Herstellung und Verwendung wegen werden Lösungen bevorzugt. Der Druck kann durch niedersiedende Flüssigkeiten, wie Propan oder Chlorfluorkohlenstoffe oder durch relativ lösliche Gase, wie Kohlendioxid oder Stickstoffdioxid, erzeugt werden. Die Chlorfluorkohlenstoffe sind bevorzugt, da bei ihnen gute Lösungsfähigkeit und geringe Entflammbarkeit kombiniert sind.

Die akarizide Wirkung der Verbindung der Formel I wird durch folgende Beispiele erläutert.

Beispiel 15

Man verwendet für diesen Versuch Testeinheiten aus Töpfen mit zwei Roten Gartenbohnen im Zweiblatt-Stadium pro Topf. Die Pflanzen werden mit Milben der Art Tetranychus urticae infiziert und mit Lösungen der erfindungsgemäßen Verbindungen bis zur Tropfenbildung besprüht. Die Lösungen werden hergestellt durch Auflösen von abgewogenen Wirkstoffmengen in 10 ml Aceton und Verdünnen mit Wasser auf ein Volumen, enthaltend 1:3.000 eines Tensids und zwar TREM 014*. Der Grad der Abtötung wurde zwei Tage nach dem Aufsprühen bestimmt.

^{*}TREM 014 ist ein Warenzeichen der Nopco Chemical Company für einen mehrwertigen Ester.

4
ø
긔
ø
륍
₽Ì

									•	
		0.00025	09	56			77		41	
	% ration	<u>a 0005</u>	100	06			98	65	93	70
	Abtötung in % pray-Konzentr	0 001	100	66	66	66	100	ı	66	i
	Abtötung in % % Spray-Konzentration	0.002	100	100	100	100	100	100	100	100
		0.005		100	100	100	100	100	100	100
ngen 0 0 - C-R2	H.	R2	-c _H 2	-ch ₂ ch ₃	-CH2CH2CH3	-CH(CH ₃) ₂	∇	$-c(cH_3)_3$	$-(cH_2)_4cH_3$	-(сн ₂) ₅ сн ₃
Verbindu		R	n-C ₁₂ H ₂₅	<u>n-</u> C ₁₂ H ₂₅	n-C ₁₂ H ₂₅	n-C ₁₂ H ₂₅	n-C12H25	n-C ₁₂ H ₂₅	n-C ₁₂ H ₂₅	$n-C_{12}H_{25}$

Bohnenpflanzen wurden bis zur Tropfenbildung mit den angegebenen Konzentrationen an 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon in TREM 014: Wasser wie 1:3.000 besprüht. Die besprühten Pflanzen wurden 3 Tage stehengelassen und dann mit Milben der Art Tetranychus urticae infiziert.

33

Die Beurteilung wurde am Tage nach der Infizierung und 11 Tage danach vorgenommen.

Spray-Konzen- tration, %	Abtötung nach dem ersten Tag, %	Abtötung nach elf Tagen, %
0.01	99	100
0,005	90	100
0,002	58	Milben vermehren sich

Beispiel 17

Bohnenpflanzen wurden bis zur Tropfenbildung mit den angegebenen Konzentrationen von 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon in TREM 014: Wasser wie 1:3.000 besprüht. Die besprühten Pflanzen wurden 3 Tage stehengelassen und dann mit 7 mm Regen beregnet. Nach dem Trocknen wurden die Pflanzen mit Milben der Art Tetranychus urticae infiziert. Die Bewertung wurde am Tage nach der Infizierung und 11 Tage danach vorgenommen.

Spray-Konzen- tration, %	Abtötung nach einem Tag, %	Abtötung nach 11 Tagen, %
0,01	- 97	100
0,005	. 94	99
0,002	42	keine Abtötung

Apfelsetzlinge von ungefähr 13 cm Höhe werden mit Milben der Art Panonychus ulmi infiziert und dann bis zur Tropfenbildung mit den angegebenen Konzentrationen von 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon in TREM 014: Wasser wie 1:3.000 besprüht. Die Bewertung wurde zwei Tage nach dem Besprühen vorgenommen.

Sprüh-Konzentra- tion, %	Abtötungsgrad %		
0,005	100		
0,002	100		
0,001	100		
0,0005	95		

Beispiel 19

Rote Gartenbohnen werden mit Milben der Art Tetranychus urticae infiziert und mit 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon allein und in Kombination mit 1% UNICO*-Pestizidöl besprüht. Die Bewertungen sind Durchschnittswerte aus 3 Wiederholungen und werden zwei Tage nach dem Sprühen vorgenommen. Die Ergebnisse zeigen, daß die Werte größer sind als die Summenwerte bei der Verwendung von erfindungsgemäßen Verbindungen in Kombination mit einem Sprühöl.

Verbindung	Konzentration	Abtötung, %
2-Acetoxy-3-dodecyl-1,4-	0,002	100
naphthochinon	0,001	99
	0,0005	· 86
	0,00025	23
•	0,0001	2

^{*}UNICO ist ein Warenzeichen der United Co-operatives, Inc. Alliance, Ohio. Es ist ein raffiniertes Erdöldestillat mit ungefähr 3% inerten Bestandteilen und als oberes Öl eingestuft.

Verbindung	Konzentration	Abtötung, %	
2-Acetoxy-3-dodecyl-1,4-	0,002	100	
2-Acetoxy-3-dodecyl-1,4- naphthochinon + 1% UNICO- Öl in der Spray-Lösung	0,001 .	100	
	0,0005	100	
	0,00025	97	
	0,0001	60	
1% UNICO-Pestizidöl		0	

Rote Gartenbohnen im Zweiblatt-Stadium wurden bis zur Tropfenbildung mit Lösungen von 2-Dodecyl-3-acetoxy-1,4-naphthochinon bei Konzentrationen von 10, 5 und 2,5 ppm behandelt. Die Pflanzen wurden trocknen gelassen. Es wurden zwei Reihen von jeder Konzentration mit zwei Wiederholungen gebildet. Eine Reihe wurde mit normalen Milben der Art Tetranychus urticae infiziert und der andere mit einem Methylparathion-resistenten Stamm. Die Ergebnisse sind unten angeführt und zeigen, daß die resistenten Milbenstämme bei Behandlung mit den erfindungsgemäßen Verbindungen in gleicher Weise empfindlich waren, wie die normalen Milben.

Konzentration an Wirkstoff, %	Abtötungsgrad in Normale Milben	48 Stunden, % Resistente Mil- ben
0,001	100	100
0,0005	80	81

Beispiel 21

Man verwendet für diesen Versuch Testeinheiten aus Töpfen mit zwei roten Gartenbohnen im Zweiblatt-Stadium pro Topf. Die Pflanzen werden mit Milben der Art Tetranychus urticae infiziert und mit Lösungen/Suspensionen der erfindungsgemäßen Verbindungen bis zur Tropfenbildung besprüht. Die Lösungen/ Suspensionen werden hergestellt durch Auflösen von abgewogenen Wirkstoffmengen in 10 ml Aceton und Verdünnen mit Wasser auf ein Volumen, enthaltend 1:3.000 eines Tensids und zwar TREM 014. Der Grad der Abtötung wurde zwei Tage nach dem Aufsprühen bestimmt.

Tabelle 5

Verbindungen

Abtötung in % bei 0.002 % Spray-Konzentration R₂ R₁ -(CH₂)₇CH₃ 96 <u>n</u>-C₁₂H₂₅ -(CH₂)₁₂CH₃ 99 <u>n</u>-C₁₂H₂₅ -CH=-CHCH₃ <u>n</u>-C₁₂H₂₅ 100 -CH=CHCH=CHCH₃ <u>n</u>-C₁₂H₂₅ 98 -OCH₃ 100 n-C₁₂H₂₅ -0C2H5 99 n-C₁₂H₂₅ -CH₂-0-CH₃ 97 <u>n</u>-C₁₂H₂₅ -CH=CHCOOH 100 <u>n</u>-C₁₂H₂₅ 99 -CH₃ <u>n</u>-C₁₃H₂₇ 93 n-C₁₂H₂₅ -оснсн₂сн₃ 60 n-C₁₂H₂₅

Apfelbäume in einem Obstgarten in der Nähe von Newark im Staate Delaware wurden bei einem Befall mit Panonychus ulmi von über fünf Exemplaren pro Blatt mit einer erfindungs-gemäßen Verbindung besprüht, und zwar je vier Gruppen mit 3-Acetoxy-2-n-dodecyl-1,4-naphthochinon bei einer Konzentration von 14, 28 und 112 g/400 l. Jeweils nach 6 Tagen wurde nochmals besprüht. Die Zahl der Milben fiel sehr rasch unter das wirtschaftlich schädliche Maß von 5 Milben pro Blatt. Alle behandelten Bäume waren gesund und kräftig und frei von Milbenschäden. Die Milben im übrigen Teil des Obstgartens gingen schließlich 2 Wochen später an natürlichen Ursachen ein. Während die Blätter der behandelten Bäume dunkelgrün waren, waren die der Kontrolle stark rostbraun.

Beispiel 23

Mit Eiern von Tetranychus urticae besetzte Blätter der Roten Gartenbohne wurden mit wässrigen Dispersionen von 2-Acetoxy-3-dodecyl-1,4-naphthochinon, (100, 50, 25 und 12,5 ppm), mit TREM 014 im Verhältnis 1:3000 als Netzmittel besprüht. Nach 5 Tagen bei konstanten Umweltbedingungen wurde folgender Abtötungsgrad festgestellt:

Konz. v. Verbindung I in ppm	Abtötung der Eier in %
100	100
50	100
25	99
12.5	7 9
<pre>0 (Kontrolle)</pre>	0

Beispiel 24

Zum Nachweis der überraschenden Verbesserung der Wirkung durch Verwendung von Verbindungen mit $R_1 = C_{12}-C_{14}$ wurden 7-9 Tage alte Pflanzen der Roten Gartenbohne mit adulten

Milben (50-100/Blatt) so infiziert, daß man Blattstücke von mit Milben infizierten Bohnenpflanzen, die bereits vertrocknet waren, aufbrachte.

Die erforderlichen Naphthochinone wurden durch Lösung von 20 mg jeder Verbindung in 10 ml Aceton und Dispergieren der Acetonlösung in H₂0 bis zur erwünschten Konzentration mit TREM 014 bei einer Konzentration von 1:3.000 als Netzmittel hergestellt.

Nach Besprühen der Testpflanzen bis zum Abtropfen unter Verwendung einer rotierenden Sprayanlage unter konstanten Umweltbedingungen während ca. 48 St. wird folgender Abtötungsgrad festgestellt:

Abtötung in % / Konzentration von (in %)

R ₁	0.002	0.001	0.0005	0.00025
C ₈ H ₁₇	6	-	•	-
с ₁₁ н ₂₃	95	7 9	19	O
^C 12 ^H 25	100	100	56	9
C ₁₃ H ₂₇	-	100	47	28
C ₁₄ H ₂₉		99	68	19

Kapuzinerkresse in Töpfen wird mit Blattläusen der Art Aphis fabae infiziert und auf einem rotierenden Tisch mit 2-Acetoxy-3-dodecyl-1,4-naphthochinon bei Konzentrationen von 100, 50 und 25 ppm besprüht. Der Abtötungsgrad wird 72 Stunden nach dem Besprühen durchgeführt. Die Ergebnisse sind unten aufgeführt.

Spray-Konzentration %	Abtötung %		
0,01	100		
0,005	100		
0,0025	89		

Beispiel 26

Lösungen der erfindungsgemäßen Verbindungen werden in Konzentrationen von 150 ppm auf Kapuzinerkresse-Pflanzen in Töpfen aufgesprüht, die mit Blattläusen der Art Aphis fabae infiziert waren. Die Sprühlösungen werden mit einem Hand-"Son-ofa Gun" Sprüher aufgebracht. Du Pont L-144-WDG war in einem Verhältnis 1:2.000 in dem Sprühmittel als Netzmittel vorhanden. Der Abtötungsgrad wird nach 24 Stunden bestimmt.

R₁ R₂ Abtötungsgrad, %

 $c_{12}H_{25}$ -CH₃ 100

R ₁	R ₂ .	Abtötungsgrad, %
C ₁₄ H ₂₉	-сн ₃	9 9
C ₁₂ H ₂₅	-сн ₂ сн ₃	98
C ₁₄ H ₂₉	сн ₂ сн ₃	99
C ₁₂ H ₂₅	-CH CH ₂	: ▶ 97
C ₁₄ H ₂₉	-CH CH ₂	93
C ₁₂ H ₂₅	-CH ₂ CH ₂ CH ₃	98
C ₁₄ H ₂₉	-CH ₂ CH ₂ CH ₃	87

Blattläuse der Art Myzus persicae auf Scheiben, herausgeschnitten aus Chinakohlblättern, werden auf einem rotierenden Tisch mit Acetonlösungen der erfindungsgemäßen Verbindungen besprüht. Die Blattscheiben werden unter konstanten Umweltbedingungen 24 Stunden gehalten, wonach dann der Abtötungsgrad ermittelt wird. Die angewandten Konzentrationen und die prozentuale Blattlausvermichtung sind unten aufgeführt.

Tabelle 6

- % Abtötung bei
- % Spray-Konzentration

R ₁	R ₂	0.1	0.05	0.01	0.005
C ₁₂ H ₂₅	-CH ₃	1.00 .	100	90	86
C ₁₄ H ₂₉	-CH ₃	100	89:	85	69
C ₁₂ H ₂₅	-CH ₂ CH ₃	100	100	94	84
C ₁₄ H ₂₉	-CH ₂ CH ₃	100	100	98	. 83
C ₁₂ H ₂₅	-CHCH ₂	100	100	88	71
с ₁₄ н ₂₉	-CH CH ₂	97	66	80	25
C ₁₂ H ₂₅	-CH ₂ CH ₂ CH ₃	100	100	83	75
C ₁₄ H ₂₉	-ch ₂ ch ₂ ch ₃	100	100	93	79

Beispiel 28

Man verwendet für diesen Versuch Testeinheiten aus Töpfen mit zwei Roten Gartenbohnen im Zweiblatt-Stadium pro Topf. Die Pflanzen werden mit Milben der Art Tetranychus urticae infiziert und mit verschiedenen Mengen von Dispersionen von 3-Acetoxy-5-chlor-2-dodecyl-1,4-naphthochinon bis zur Tropfenbildung besprüht. Die Dispersion werden hergestellt durch Auflösen von abgewogenen Wirkstoffmengen in 10 ml Aceton und Verdünnen mit Wasser auf ein Volumen, enthaltend 1:3.000 eines Tensids und zwar TREM 014. Der Grad der Abtötung wurde zwei Tage nach dem Aufsprühen bestimmt. Die Ergebnisse sind nachfolgend aufgeführt:

Konzentration der Aktivsubstanz	(ppm)	% Abtötung (24 St.)
500		100
50		100
20		10 0
10		100
5 .		100
2.5		88

Beispiel 29

Pflanzen der Roten Gartenbohne im Zweiblatt-Stadium wurden mit Milben zwecks Eiablage infiziert. Nach ca. 24 St. wurden die Blätter in eine Tetraäthylpyrophosphatlösung zum Abtöten der Milben getaucht. Nach dem Trocknen wurden die Pflanzen mit verschiedenen Mengen von Dispersionen von 3-Acetoxy-5-chlor-2-dodecyl-1,4-naphthochinon bis zur Tropfenbildung besprüht. Die Dispersionen werden hergestellt durch Auflösen von abgewogenen Wirkstoffmengen in 10 ml Aceton und Verdünnen mit Wasser auf ein Volumen, enthaltend 1:3.000 eines Tensids, und zwar TREM 014. Nach 5 Tagen wurde der Abtötungsgrad der Eier festgestellt:

Konzentration der Aktivsubstanz (ppm)	% Abtötung der Eier
100	100
50	100
25	98
12.5	7 9
O (Kontrolle)	1

Milbeninfizierte Bohnenpflanzen wurden bis zur Tropfenbildung mit einer 25 %-igen emulgierbaren Komposition von 2-Acetoxy-3-dodecyl-1,4-naphthochinon (I), mit einer 50 %-igen emulgierbaren Komposition von Chlordimeform (II) bzw. mit einer Kombination beider Stoffe besprüht. Nach 48 St. bzw. 8 und 14 Tagen wurde der Abtötungsgrad festgestellt, wobei sich ein überraschender synergistischer Effekt zwischen I und II herausstellte (nachfolgende Tabelle). 0,0005 % I allein und 0,01 % Chlordimeform ergaben nach 1 bis 2 Wochen keinen praktischen Effekt,während durch die kombinierten Sprays die Milben fast vollständig vernichtet wurden. Bei Pflanzen, die mit I und II jeweils allein besprüht wurden, zeigte sich ein starker Milbenbefall, während umgekehrt bei den kombinierten Sprays kein oder nur ein verschwindender Milbenbefall festzustellen war.

Verbindung	% Wirkstoff-konzentr.	% Abtötung (48 St.)	Lebende 8 Tagen	Milben/Blatt nach 14 Tagen
2-Acetoxy-3- dodecyl-1,4- naphthochinon	0.005	85	210	> 500
Chlordimeform (II)	0.01	1	>500	> 500
I und II	0.005) 0.01	99	7	· 1

Milbeninfizierte Bohnenpflanzen wurden im Primärblattstadium bis zur Tropfenbildung mit einer 25 %-igen emulgierbaren Komposition von 2-Acetoxy-3-dodecyl-1,4-naphthochinon (I), mit dem 50 %-igen im Handel erhältlichen Netzpulver Benomyl (II) bzw. mit einer Kombination beider Stoffe besprüht. Nach 8 bis 14 Tagen wurde der Abtötungsgrad festgestellt, wobei sich ein überraschender synergistischer Effekt zwischen I und II herausstellte (nachfolgende Tabelle). Bei Pflanzen, die mit I und II jeweils allein besprüht wurden, zeigte sich ein starker Milbenbefall, während umgekehrt bei den kombinierten Sprays nur ein verschwindender Milbenbefall festzustellen war.

Verbindung	% Wirkstoff- konzentr.	% Abtötung (48 St)	Lebende 8 Tagen	Milben/Blatt nach 14 Tagen
			<u> </u>	<u> </u>
2-Acetoxy-3- dodecyl 1,4- naphthochinon	0,0005	94	272	135
Benomyl (II)	0,03	2	324	>500
I und II	0.005 _}	93	3	3

Beispiel 32

Milbeninfizierte Bohnenpflanzen wurden bis zur Tropfenbildung mit einer 25 %-igen emulgierbaren Komposition von 2-Acetoxy-3-dodecyl-1,4-naphthochinon (I), mit dem 12,2 %-igen im Handel erhältlichen Tetradifon (II) bzw. mit einer Kombination beider Stoffe besprüht. Nach 8 Tagen wurde der Abtötungsgrad festgestellt, wobei sich ein hoher synergistischer Effekt zwischen I und II herausstellte (nachfolgende Tabelle).

Verbindung	% Wirk- stoffkonz.	% Abtötung (48 St.)	8-Tage-Werte Lebende Milben/Blatt	Befall*
2-Acetoxy- 3-dodecyl-1 naphthochin		80	261	3
Tetradifon (II)	0.002 0.001	4 0	99 117	9.8 9.7
I und II	0.0005) 0.002	85	6	3
I und II	0.0005 0.001	85	4	1.5

^{* 0 =} kein Befall

^{10 =} Pflanze abgestorben