Verification : Homework 8

Marius Belly - Le Guilloux

November 2021

Exercice 1

a)

b)

Exercice 2

a)
$$B(f) = 1$$

Un tel BDD est de la forme

Il y a 2n choix pour x_i et b_1 donc 2n fonctions f telle que B(f)=1

b)
$$B(f) = 2$$

Un tel BDD est de la forme

Il existe $\binom{n}{2}$ manières de choisir les étiquettes du BDD, 8 manières de choisir b_1 et b_2 et l'existence de l'arête étiquetée Il y a donc en tout 4n(n-1) fonctions possibles.

c)
$$B(f) = 3$$

Les BDDs de taille 3 se divise en deux catégories : les arbres et les non arbres • Comptons d'abord les premiers. Ceux-ci se divisent à nouveau en deux sous-catégories : les arbres de profondeur 2 et ceux de profondeur 3.

 $\bullet \bullet$ Les arbres de profondeur 2 sont de la forme

Si i, j et k sont distinct alors il existe $2\binom{n}{3}$ manières de choisir puis répartir les étiquettes du BDD et 4 manières de choisir b_1 et b_2 .

Sinon, j = k. Il existe alors $\binom{n}{2}$ manières de choisir les étiquettes du BDD et $b_1 = 1 - b_2$, d'où deux manières de choisir b_1 et b_2 .

Finalement, il existe $8\binom{n}{3} + n(n-1)$ fonctions dont le BDD est un arbre de taille 3 et de profondeur 2.

•• Les arbres de profondeur 3 sont de la forme

i, j et k sont nécessairement distincts donc il existe $\binom{n}{3}$ manières de choisir les étiquettes du BDD, 8 manières de choisir b_1, b_2 et b_3 et 4 manière de choisir l'existence des arètes étiquetées $1 - b_1$ et $1 - b_2$.

Il y a donc en tout $32\binom{n}{3}$ fonctions dont le BDD est un arbre de taille 3 et de profondeur 2.

 \bullet Comptons maintenant les BDD qui ne sont pas des arbres, c'est à dire les BDD de la forme

i, j et k sont nécessairement distincts donc il existe $\binom{n}{3}$ manières de choisir les étiquettes du BDD, 8 manières de choisir b_1, b_2 et b_3 et 2 manière de choisir l'existence de l'arête étiquetée $1 - b_2$.

Il y a donc en tout $16\binom{n}{3}$ fonctions dont le BDD est de taille 3 mais n'est pas un arbre.

Finalement, il existe $n(n-1)+56\binom{n}{3}$ fonctions f telle que B(f)=3