Microwave Circuits and Sub-Systems A2M17MOS

Wide-Band Amplifier Design

Přemysl Hudec CTU Prague, Faculty of Electrical Engineering

hudecp@fel.cvut.cz

version 2014

Contents

- General considerations
- Analytical solutions
- Recommended LC structures
- Recommended distributed MCs
- Wide-band amplifier design
- Gain equalization
- Balanced amplifiers
- Amplifiers with resistive matching
- Feedback amplifiers
- Distributed amplifiers

Narrow-Band Impedance Matching

- Design of narrow-band matching circuits → relatively simple
- Ideal impedance matching at 1 frequency can be reached: $|\Gamma_{in}| \to 0$ $RL \to \infty$
- Solution exists always
- Numerous solutions exist
- Solutions can be calculated using direct design formulas
- Applicable for frequency bands $B \le 10\%.f_0$
- The 10% frequency band comply with many communication applications
- But wider frequency bands are also required

Wide-Band Impedance Matching

- Substantially more complicated
- Ideal matching $|\Gamma_{in}(j\omega)| \to 0$ can never be reached in the whole frequency band
- Ideal matching can be reached only at separate and distanced frequencies

$$\left|\Gamma_{in}(j\omega)\right| \leq const. = \left|\Gamma_{\max}\right|$$

In the frequency band

$$B = \Delta \omega = \omega_b - \omega_a$$

- Γ_{in} passes through 0 at distanced frequencies
- In many cases does not pass through 0 at all

Graph 1: Amplitude of S11 [-] - frequency [GHz]

Graph 2: Polar S11 [-]

Wide-Band Impedance Matching

- Simple and direct solutions exist only rarely
- For the given requirements → **NO solution can exist**
- Solutions are based on approximations and iterations nearly always
- CAD optimization is recommended
- Numerous different approaches exist
- Analytical solutions → based on analog filter design
- Iteration solutions → based on optimization of the recommended wideband structures

Analytical Solutions

- Based on the filter synthesis process
- Filters with different impedances at both ports can be designed
- The filter synthesis process leads to **LC structures**
- The LC structures must be converted to structures practically realizable at microwave frequencies (real LC, microstrip lines, ...) the conversion is never ideal (B drops by 50% usually)
- During the design process, several approximations must be used
- Many different approaches can be found
- Wideband MC synthesizers are available as part of the RF CAD programs usually
- More details e.g. in: "Aktivní mikrovlnné obvody", skriptum ČVUT.

Example of Analytical Design Method

- Wide-band MCs = filters with maximum impedance transformation
- One of possible solutions with very good results
- Based on standard analog filter synthesis:
 - \circ Normalized low-pass filter prototype based on the required Γ_{max} value
 - Thebyschev or Butterworth transfer-function approximations
 - Conversion of the low-pass prototype to the band-pass filter
- Example: Individual task No.5.
- The synthesized filters show different load impedances R₁ and R₂ at both ends
- The filter is able to perform the N=R₂/R₁ impedance transformation

Additional Impedance Transformation

- In order to raise the $N=R_2/R_1$ ratio, an additional impedance transformer can be connected to the filter structure
- The standard transformer can be realized by equivalent L or C circuits

Values of the side L, C elements are negative and can be absorbed in the filter structure

Resulting Wide-Band MC

- The negative equivalent circuit values can be canceled out by the neighboring positive filter elements
- These conditions lead to L and N values (2 equations with 2 unknowns)
- The resulting MC provides the **maximum available impedance transformation**
- Or for the fixed transformation ratio → the maximum frequency band-width

b)

Recommended Structures n=2

- Recommended structures based on the 2-nd order filter
- Structures a) and c) provide the down-transformation $R_2 < R_1$ (e.g. from 50Ω to 15Ω)
- Structures b) and d) provide the up-transformation $R_2 > R_1$ (e.g. from 50Ω to 250Ω)
- Values of the LC elements can be calculated or obtained by the CAD optimization

Recommended Structures n=3

Recommended structures based on the 3-rd order filter

Problems

- Usually, only one of impedances of the wide-band MC is real (e.g. $R_1 = Z_0 = 50\Omega$)
- The latter impedance is generally complex
- RLC approximation can be used for modeling the complex load
- If lucky, the reactance part of the load can be absorbed into the matching filter
- Often used wide-band load equivalent circuits

Example

- The input of the microwave transistor can be modeled as a series combination of the 18Ω resistance and 1,2pF capacitance
- Structure n=2 and down-converting MC can be chosen
- Using design formulas, the C_1 , L_2 , L_3 and C_4 values can be calculated $\rightarrow C_4=1,08pF$
- This capacitance can be realized by the series combination of the $C_L=1,2pF$ load capacitance and $C_{ext}=10,2pF$ external filter capacitance
- Formulas used

$$C_4 = \frac{C_{ext}C_L}{C_{ext} + C_L} \qquad C_{ext} = \frac{C_4C_L}{C_L - C_4}$$

Graph 1: Amplitude of S11 [dB] - frequency [GHz]

Problems

- If $C_4 \ge C_L \rightarrow ideal$ absorption cannot be reached
- It is recommended to neglect the C_{ext} and optimize the circuit using the CAD tool
- Lumped LC matching circuits are applicable at low frequencies (<1GHz) or inside MMICs
- Parasitic properties of real LC elements must be taken into account
- At higher frequencies, distributed (transmission line based) solutions must be used
- The lumped→distributed conversion can be performed
- But any lumped→distributed conversion narrows B substantially (B_{distributed}≈0,5B_{lumped})
- Direct synthesis of wide-band distributed MCs is advantageous

Recommended Distributed MC - Step No.1

- Direct synthesis of a wide-band distributed MC can be performed by an iterative process
- Based on the calculated or measured $\Gamma_L(j\omega)$ frequency plot
- The MC can be synthesized in several relatively simple steps supported by a suitable CAD tool
- Recommended for octave band-width requirements
- Individual task No.5
- Example: RLC load 8-18GHz
- Step No. 1:
- Center of the $\Gamma_L(j\omega)$ plot @13GHz should be transformed to the X=0 axis by using a section of the transmission line

Recommended Distributed MC – Step No. 2

- Add parallel connection of 2 stubs:
 - \circ $\lambda/8$ long open stub
 - \circ $\lambda/8$ long short stub
- Open/short stubs enable to curl ends of the initial Γ_ι(jω) frequency plot
- The area of the $\Gamma_{l}(j\omega)$ gets smaller, but still at a wrong position in the Smith chart

Recommended Distributed MC – Step No. 3

- In order to shift the $\Gamma(j\omega)$ frequency plot closer to the Smith chard center, it is advantageous to use the $\lambda/4$ impedance transformer
- Using the $\lambda/4$ long microstrip line with impedance Z_1 , it is possible to transform the Z_x impedance to the Z_0 impedance:

$$Z_1 = \sqrt{Z_x Z_0} = \sqrt{15.50} = 27,4\Omega$$

• The $\lambda/4$ transformer enables to shift the curled $\Gamma(j\omega)$ frequency plot to the surroundings of the Smith chart center

Recommended Distributed MC - Step No. 4

- Final CAD optimization:
 - Fine tuning of all transmission line sections
 - Add models of discontinuities (MCROSS, MTEE, MSTEP, ...)
- The resulting MC is:
 - Wideband
 - Shows a directly realizable microstrip structure
- Example: RCL load 8-18 GHz $\rightarrow \Gamma_{in}(j\omega) \le 0.3$

Wide-Band Amplifier Design

- Wide-band amplifiers with loss-less MCs (LC, microstrip, coplanar waveguide, ...)
- Typically wideband LNAs or power amplifiers
- In the B-wide frequency band only compromise impedance matching can be reached

$$|\Gamma_{in}(j\omega)| \le const. \le \Gamma_{in\,\text{max}}$$
 $|\Gamma_{out}(j\omega)| \le const. \le \Gamma_{out\,\text{max}}$

- All design procedures are based on numerous approximations, CAD optimization is necessary
- For the given requirements → NO solution can exist
- Besides the MC design → gain equalization must also be treated
- Wideband biasing circuits are necessary
- Substantially more complicated than the narrow-band amplifier design

Wide-Band Amplifier Design

• AWR-MO: $\Gamma_{Gopt} = GM1$ $\Gamma_{Lopt} = GM2$

- Frequency plots of Γ_{Gopt} and Γ_{Lopt} run counter-clockwise
- Frequency plot of ANY matching circuit run clockwise
- Ideal impedance matching can be reached only at 1 frequency, or at several discrete and distant frequencies
- It is NOT possible to design wide-band amplifiers with ideal impedance matching

Wide-Band Amplifier Design

The problem is enhanced by the fact, that both input and output MCs must be designed:

- o The MC_1 transforms Z_0 to $\Gamma_1(j\omega)$ but $\Gamma_1(j\omega) = f(\Gamma_L) = s_{11}(j\omega) + \frac{s_{12}(j\omega)s_{21}(j\omega)\Gamma_L(j\omega)}{1 s_{22}(j\omega)\Gamma_L(j\omega)}$
- o The MC_2 transforms Z_0 to $\Gamma_2(j\omega)$ but $\Gamma_2(j\omega) = f(\Gamma_G) = s_{22}(j\omega) + \frac{s_{12}(j\omega)s_{21}(j\omega)\Gamma_G(j\omega)}{1 s_{11}(j\omega)\Gamma_G(j\omega)}$
- MC₁ and MC₂ must be solved simultaneously → CAD optimization
- Multiple iterations must be performed

Gain Equalization

- Transistor gain (available, power) decreases -6dB/oct
- Wide-band amplifiers → **constant gain** is required usually
- The drop in gain must be equalized → possible solutions:
 - Higher reflections $\Gamma_{in}(j\omega)$ and $\Gamma_{out}(j\omega)$ at lower frequencies
 - Passive equalizing structures (frequency dependent attenuators)
 - Special feedback structures (cannot be used in case of LNAs and PAs)
- Easier in the balanced structures

Balanced Amplifiers

- More complex amplifier structure
- Employs 2 identical amplifying stages operated in parallel
- Input signal is divided 1:1 by the 90° power divider
- Quadrature divider or Wilkinson divider with additional $\lambda/4$ transmission line can be used
- Dividing loss $L_d = 3dB + L_a$
- Amplified signals are summed in-phase with an identical and symetrically connected 90° power splitter/combiner

Balanced Amplifiers

Resulting parameters:

o Gain
$$G_{resdB} = G_{ZdB} - 2L_{adB} \cong G_{zdB}$$

Output power
$$P_{resdBm} = P_{ZdBm} + 3dB - L_{adB}$$

o Input reflections
$$\Gamma_{in} = \frac{1}{2} (\Gamma_{inZ1} e^{2j\pi/2} + \Gamma_{inZ2} e^{2j0}) = \frac{1}{2} (-\Gamma_{inZ1} + \Gamma_{inZ2})$$

Output reflections
$$\Gamma_{out} = \frac{1}{2} (\Gamma_{outZ1} e^{-2j0} + \Gamma_{outZ2} e^{-2j\pi/2}) = \frac{1}{2} (\Gamma_{outZ1} - \Gamma_{outZ2})$$

o If
$$\Gamma_{inZ1} = \Gamma_{inZ2}$$
 and $\Gamma_{outZ1} = \Gamma_{outZ2}$, input and output reflections can be very small

 The structure enable reduction of reflections even in case of LNAs or other highly reflecting amplifiers

Balanced Amplifiers

Advantages:

- Higher output power, low input/output reflections
- Higher reliability
- Wideband stability
- Low sensitivity to parameters of the from outside connected components
- Highly recommended solution

Disadvantages:

- Larger-sized
- Double the DC power consumption
- Higher price

AVM-273HP+

Simplified Schematic and Pad Description

Ultra-Wideband Amplifiers

- Standard wide-band impedance matching provides approx. 1-2 octaves bandwidth
- Even wider amplifiers are required (DC-8GHz, 1 20GHz, DC- 35GHz, ...)
- For these purposes, special matching techniques must be used:
 - Lossy impedance matching
 - Feedback structures
 - Distributed structures
- Available parameters:
 - Wide bandwidth
 - Flat gain, fair input and output reflections, typ. RL≥10dB
 - o But often higher F

Amplifiers with Resistive Matching

- Employ R₁ and R₂ resistors in the input and output matching circuits
- The N_1 and N_2 frequency dependant components (L usually) reduce influences of R_1 and R_2 at higher frequencies \rightarrow contribute to gain equalization
- Additional simple matching circuits P₁ and P₂ improve wide-band impedance matching
- Amplifiers of this type are designed by CAD optimization
- The initial R₁ and R₂ values and gain can be calculated from the LF model:

$$R_1 \cong Z_0 = \frac{1}{G_0}$$
 $R_2 \cong \frac{1}{G_0 - g_D}$ $G \cong \left(\frac{g_m}{2G_0}\right)^2$

Properties - Example

- Properties of amplifiers with resistive matching:
 - Simple structure
 - Low frequency is limited only by the blocking capacitors used
 - But high noise figure, low output power and PAE, strong dependence of G on g_m

• Example:

- Design DC 6 GHz, HEMT, AWR optimization
- o G=6,2dB @ 1GHz, G=8,9dB @ 6GHz
- o RL_{in}≥10dB, RL_{out}≥10dB @DC 6GHz

Feedback Amplifiers

- Employ resistive feedback with additional frequency dependent components
 - Series feedback → BJT
 - Parallel feedback → FET
 - Combination of both → BJT
- Additional frequency dependent components are used for gain equalization
- Feedback structures:
 - Ensure wide-band input and output matching
 - Ensure flat gain
 - Improve stability
 - But raise F
 - MMIC the most frequent amplifier type
- Design → CAD optimization

Feedback Amplifiers - BJT

- BJT → both series and parallel negative resistive feedbacks used
- C_s parallel to R_s reduces influence of the series feedback at higher frequencies
- L_p in series with R_p reduces influence of the parallel feedback at higher frequencies
- P_1 , $P_2 \rightarrow simple$ additional matching circuits optional
- Common values:

$$\circ$$
 R_S=10 Ω

$$\circ$$
 R_p=250 Ω

• Upper frequency → HBT MMIC DC-8GHz

Feedback Amplifiers - FET

- FETs → only parallel feedback used
- Initial values for the CAD optimization can be derived from the LF model

$$R_p \approx \frac{g_m - g_d}{G_0(G_0 + g_d)} \qquad G \approx \left(\frac{G_0 - g_m}{G_0 + g_D}\right)^2$$

• Common values: $g_d = 0.0025$ $g_m = 0.007$ lead to $R_p = 150 \Omega$ G = 6.9 dB

Example 1

Several Mini-Circuits wide-band MMIC amplifiers:

Туре	band B	gain G	$P_{{ ext{-}1}dB}$	F	$V_{\scriptscriptstyle N}$	I_N
	[GHz]	[dB]	[dBm]	[dB]	[V]	[mA]
ERA-1	$DC \div 8$	11,4	11,7	5,3	3,6	40
ERA-2	$DC \div 6$	15,2	12,8	4,7	3,6	40
ERA-3	$DC \div 3$	21,3	12,1	3,8	3,5	35
ERA-4	$DC \div 4$	13,5	17,0	5,5	5,0	65
ERA-5	$DC \div 4$	18,6	18,4	4,5	4,9	65
ERA-6	$DC \div 4$	11,4	18,5	8,4	5,5	70

GAIN vs. TEMPERATURE

GAIN vs. TEMPERATURE

Example 2

- Individual task No.6
- BJT AT-41411, 8V/10mA

Distributed Amplifiers

- Truly wide-band components/structures:
 - Ideal resistors
 - Matched transmission lines
- Distributed amplifiers employ wideband capabilities of the matched transmission lines
- The **input transmission line** distributes the input RF power to FETs
- The rest of the input wave is absorbed in the R₁ termination
- The **output transmission line** collects in phase the amplified RF powers from the FET outputs

Artificial Transmission Lines

- Extremely wide-band amplifiers → can be obtained by realizing artificial transmission lines and by incorporating FET parasitic reactances into them:
 - Artificial transmission lines are formed by the equivalent LC structures
 - \circ The input transmission line is formed by a cascade of external series inductances $L_g/2$ and FET input parasitic capacitances C_{gs}
 - \circ The output transmission line is formed by a cascade of external series inductances $L_d/2$ and FET output parasitic capacitances C_{ds}
- Problem: $C_{gs} >> C_{ds}$, while impedances $Z_{in} = Z_{out} = Z_0 = 50\Omega$ and phase velocities in both transmission lines must be the same
- Solution: Compensating inductance L_{α}

Artificial Transmission Lines

- Artificial transmission lines:
 - Enable realization of the distributed amplifiers (DAs)
 - Are not ideal transmission lines → only equivalent circuits
 - o Behave like low-pass filters and limit the DA upper frequency $f_m = \frac{1}{\pi \sqrt{LC}}$
- DA gain:
 - o Depends upon number of FET sections $G = \frac{n^2 g_m^2 Z_0^2}{4}$
 - o The formula considers the loss-less transmission lines
 - In practice both lines are lossy, input power drops alongside the cascade
- Practical No. of FET sections → 4 5

Practical DA Circuit

- Practical DA circuit:
 - Four FET sections
 - o External inductances L_g , L_d \rightarrow their parasitic capacitances limit the DA upper frequency
 - o Gate biasing (zero current) through the R₀ termination
 - Drain biasing (high current) through the low-pass filter
 - The LP filter limits the lower operating frequency
- Realization → MMIC (with external powering circuits)

Example

- HITTITE (<u>www.hittite.com</u>):
 - Amplifiers Wideband (Distributed)
 - o Tens of models, also LNAs and PAs
 - o Frequency ranges: DC-20GHz, 2-22 GHz, DC-35GHz, 0,5-65 GHz
 - Usually chips but also in the LP5 package (DC-20GHz)

Gain & Return Loss

Gain & Return Loss

