

#### Reduções: COB-VERT, CAM-HAM e SOMA-SUBC Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

20 de junho de 2022

## Problemas NP-Completos adicionais

- O fenômeno da NP-Completude está se espalhando
- Problemas NP-Completos aparecem em muitas áreas

### Problemas NP-Completos adicionais

- Quando construímos uma redução de tempo polinomial a partir do 3SAT para uma linguagem, procuramos por estruturas naquela linguagem que possam simular as variáveis e cláusulas nas fórmulas booleanas
- Essas estruturas são às vezes chamadas engrenagens
- Por exemplo, na redução de 3SAT para CLIQUE, os nós individuais simulam variáveis e as triplas simulas as cláusulas
- CLIQUE é NP-Completa

### O problema da cobertura de vértices

- Se G é um grafo não-direcionado, uma cobertura de vértices de G é um subconjunto dos nós onde toda aresta de G toca um dos nós
- O problema da cobertura de vértices pergunta se um grafo contém uma cobertura de vértices de um tamanho especificado:
- COB-VERT =  $\{< G, k > | G \text{ \'e um grafo n\~ao-directionado que tem uma cobertura de v\'ertices de k-n\'os}\}$

- Prova:
- ullet A redução mapeia uma fórmula booleana  $\phi$  para um grafo  ${\sf G}$  e um valor  ${\sf k}$
- ullet Para cada variável x em  $\phi$ , produzimos uma aresta conectando dois nós
- Rotulamos os dois nós nessa engrenagem  $x \in \overline{X}$
- Fazer x VERDADEIRO corresponde a selecionar o nó esquerdo para a cobertura de vértices, enquanto que FALSO corresponde ao nó direito

- As engrenagens para cláusulas são um pouco mais complexas
- Cada engrenagem de cláusulas é uma tripla de três nós que são rotulados com três literais da cláusulas
- Esses três nós são conectados um ao outro e as nós nas engrenagens de variáveis que têm os rótulos idênticos
- Por conseguinte, o número total de nós que aparecem em G é 2m+3l, onde  $\phi$  tem m variáveis e l cláusulas
- Faça k igual a m+2l

### Teorema: COB-VERT é NP-Completo

• Por exemplo, se  $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$ , a redução produz < G, k > a partir de  $\phi$ , onde k=8 e G toma a forma mostrada na figura no quadro

- Para provar que essa redução funciona, precisamos mostrar que  $\phi$  é satisfazível se e somente se G tem uma cobertura de vértices com k nós
- Começamos com uma atribuição que satisfaz a fórmula
- Primeiro colocamos os nós das engrenagens das variáveis que correspondem aos literais verdadeiros na atribuição na cobertura de vértices
- Então selecionamos um literal verdadeiro em toda cláusula e colocamos os dois nós remanescentes de toda engrenagem de cláusulas na cobertura de vértices
- Agora temos um total de k nós

- Eles cobrem todas as arestas porque toda engrenagem de cláusulas são cobertas, e todas as arestas entre as engrenagens de variáveis e de cláusulas são cobertas
- Logo, G tem uma cobertura de vértices com k nós

- ullet Segundo, se G tem uma cobertura de vértices com k nós, mostramos que  $\phi$  é satisfazível construindo a atribuição que a satisfaz
- A cobertura de vértices tem que conter um nó em cada engrenagem de variáveis e dois em toda engrenagem de cláusulas de forma a cobrir as arestas das engrenagens de variáveis e as três arestas dentro das engrenagens de cláusulas
- Isso dá conta de todos os nós, portanto, não sobra nenhum

- Tomamos os nós das engrenagens de variáveis e atribuímos verdadeiro aos literais correspondentes
- ullet Essa atribuição satisfaz  $\phi$  porque cada uma das três cláusulas é coberta e somente dois nós da engrenagem de cláusulas estão na cobertura de vértices
- Consequentemente, uma das arestas tem que ser coberta por um nó de uma engrenagem de variáveis e, portanto, essa atribuição satisfaz a cláusula correspondente

## O problema do caminho hamiltoniano

O problema do caminho hamiltoniano pergunta se o grafo de entrada contém um caminho de s para t que passa por todo nó exatamente uma vez.

### CAMHAM é NP-Completo

- Anteriormente, demonstramos que CAMHAM está em NP, portanto tudo o que resta a ser feito é mostrar que 3SAT  $\leq_P$  CAMHAM
- Para cada 3fnc-fórmula  $\phi$ , mostramos como construir um grafo direcionado G com dois nós, s e t, tal que existe um caminho hamiltoniano entre s e t sse  $\phi$  é satisfazível
- Começamos a construção com uma 3fnc-fórmula contendo k cláusulas:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge ... \wedge (a_k \vee b_k \vee c_k)$$

onde cada a,b e c é um literal  $x_i$  ou  $\overline{x_i}$ 

• Sejam  $x_1, ..., x_l$  as I variáveis de  $\phi$ 

- ullet Agora mostramos como converter  $\phi$  em um grafo G
- $\bullet$  O grafo G que construímos tem várias partes para representar as variáveis e cláusulas que aparecem em  $\phi$
- Represente cada variável  $x_i$  como uma estrutura em formato de diamante que contém uma linha horizontal de nós
- Adiante, especificamos o número de nós que aparecem na linha horizontal
- ullet Representamos cada cláusula de  $\phi$  como um único nó, como vemos no grafo

- A seguir, mostramos como conectar os diamantes representando as variáveis aos nós que representam as cláusulas
- Cada estrutura de diamante contém uma linha horizontal de nós conectados por arestas correndo em ambas as direções
- A linha horizontal contém 3k+1 nós, além dos dois nós nas extremidades pertencentes ao diamante
- Esses nós são agrupados em pares adjacentes, um para cada cláusula, com nós separadores extras em seguida aos pares, como mostrado no quadro

- Se a variável  $x_i$  aparece na cláusula  $c_j$ , adicionamos as duas arestas mostradas no quadro, do j-ésimo par no i-ésimo diamante ao j-ésimo nó cláusula
- Se  $\overline{x_i}$  aparece na cláusula  $c_j$ , adicionamos as duas arestas como mostrado no quadro, do j-ésimo par no i-ésimo diamante ao j-ésimo nó cláusula
- Depois que adicionamos todas as arestas correspondentes a cada ocorrência de  $x_i$  ou  $\overline{x_i}$  em cada cláusula, a construção de G está completa
- Para mostrar que essa construção funciona, argumentamos que, se  $\phi$  é satisfazível, existe um caminho hamiltoniano de s para t e, reciprocamente, se tal caminho existe,  $\phi$  é satisfazível

- ullet Suponha que  $\phi$  seja satisfazível
- Para exibir um caminho hamiltoniano de s para t, primeiro ignoramos os nós cláusulas
- O caminho começa em s, passa por cada diamante por sua vez e termina em t
- ullet Para atingir os nós horizontais em um diamante, o caminho ou ziguezagueia da esquerda para a direita ou zaguezigueia da direita para a esquerda, a atribuição que satisfaz  $\phi$  determina um dos caminhos
- ullet Se for atribuído VERDADEIRO a  $x_i$ , o caminho ziguezagueia através do diamante correspondente
- Se for atribuído FALSO a  $x_i$ , o caminho zaguezigueia
- Vemos no quadro as possibilidades

- Até agora esse caminho cobre todos os nós em G, exceto os nós cláusula
- Podemos facilmente incluí-los adicionando desvios nos nós horizontais
- Em cada cláusula, selecionamos um dos literais a que foi atribuído VERDADEIRO
- $\bullet$  Se selecionamos  $x_i$  na cláusula  $c_i$ , podemos desviar no j-ésimo par no i-ésimo diamante
- Isso é possível porque  $x_i$  deve ser VERDADEIRO e, portanto, o caminho ziguezagueia da esquerda para a direita pelo diamante correspondente
- ullet Logo, as arestas para o nó  $c_j$  estão na ordem correta para permitir um desvio e retorno

- Similarmente, se selecionarmos  $\overline{x_i}$  na cláusula  $c_j$ , podemos desviar no j-ésimo par no i-ésimo diamante porque  $x_i$  deve ser FALSO e, portanto, o caminho zaguezigueia da direita para a esquerda pelo diamante correspondente
- ullet Logo as arestas para o nó  $c_j$  novamente estão na ordem correta para permitir um desvio e retorno
- Por conseguinte, construímos o caminho hamiltoniano desejado

- ullet Para a direção reversa, se G tem um caminho hamiltoniano de s para t, exibimos uma atribuição que satisfaz  $\phi$
- $\bullet$  Se o caminho hamiltoniano é normal passa pelos diamantes na ordem do superior para o inferior, exceto pelos desvios para os nós cláusula podemos facilmente obter a atribuição que satisfaz  $\phi$
- Se o caminho ziguezagueia pelo diamante, atribuímos à variável correspondente VERDADEIRO, e ele zaguezigueia, atribuímos FALSO
- Visto que cada nó cláusula aparece no caminho, observando como o desvio para ele é tomado, podemos determinar qual dos literais na cláusula correspondente é verdadeiro

- Tudo o que resta para ser mostrado é que um caminho hamiltoniano deve ser normal
- Normalidade pode falhar somente se o caminho entra em uma cláusula a partir de um diamante, mas retorna para um outro, como podemos ver no quadro

- O caminho vai do nó  $a_1$  para c, mas em vez de retornar para  $a_2$  no mesmo diamante, ele retorna para  $b_2$  em um diamante diferente
- Se isso ocorre, ou  $a_2$  ou  $a_3$  tem de ser um nó separador
- Se  $a_2$  fosse um nó separador, as únicas arestas entrando em  $a_2$  seriam de  $a_1$  e  $a_3$
- Se  $a_3$  fosse um nó separador,  $a_1$  e  $a_2$  estariam no mesmo par de cláusulas e, portanto, as únicas arestas entrando em  $a_2$  seriam de  $a_1, a_3$  e c
- Em qualquer dos casos, o caminho não poderia conter o nó a2

- O caminho não pode entrar em  $a_2$  de c ou  $a_1$ , porque o caminho vai para outros lugares a partir desses nós
- O caminho não pode entrar em  $a_2$  a partir de  $a_3$ , porque  $a_3$  é o único nó disponível para o qual  $a_2$  aponta, assim, o caminho deve deixar  $a_2$  via  $a_3$
- Logo, um caminho hamiltoniano tem de ser normal
- Essa redução obviamente opera em tempo polinomial

## O problema da soma de subconjuntos

- Dada uma coleção de números  $x_1, ..., x_k$  juntamente com um número alvo t, e tínhamos que determinar se a coleção contém uma subcoleção cuja soma é t
- Iremos mostrar que esse problema é NP-Completo

- Já sabemos que SOMA-SUBC  $\in$  NP, portanto, agora mostramos que 3SAT $\leq_P$  SOMA-SUBC
- Seja  $\phi$  uma fórmula booleana com as variáveis  $x_1, ..., x_l$  e as cláusulas  $c_1, ..., c_k$
- A redução converte  $\phi$  para uma instância do problema SOMA-SUBC < S, t>, na qual os elementos de S e o número t são as linhas na tabela a seguir, expressos na notação decimal
- As linhas acima da linha dupla são rotuladas  $y_1, z_1, y_2, z_2, ..., y_l, z_l \in g_1, h_1, g_2, h_2, ..., g_k, h_k$  e compreende os elementos de S
- A linha abaixo da linha dupla é t

|                       | 1 | 2 | 3 | 4 |  |   | $c_1$ | <i>c</i> <sub>2</sub> |  | $c_k$ |
|-----------------------|---|---|---|---|--|---|-------|-----------------------|--|-------|
| <i>y</i> <sub>1</sub> | 1 | 0 | 0 | 0 |  | 0 | 1     | 0                     |  | 0     |
| $z_1$                 | 1 | 0 | 0 | 0 |  | 0 | 0     | 0                     |  | 0     |
| <i>y</i> <sub>2</sub> |   | 1 | 0 | 0 |  | 0 | 0     | 1                     |  | 0     |
| $z_2$                 |   | 1 | 0 | 0 |  | 0 | 1     | 0                     |  | 0     |
| <i>y</i> 3            |   |   | 1 | 0 |  | 0 | 1     | 1                     |  | 0     |
| $z_3$                 |   |   | 1 | 0 |  | 0 | 0     | 0                     |  | 1     |
|                       |   |   |   |   |  |   |       |                       |  |       |
| УІ                    |   |   |   |   |  | 1 | 0     | 0                     |  | 0     |
| $Z_{I}$               |   |   |   |   |  | 1 | 0     | 0                     |  | 0     |
| $g_1$                 |   |   |   |   |  |   | 1     | 0                     |  | 0     |
| $h_1$                 |   |   |   |   |  |   | 1     | 0                     |  | 0     |
| $g_2$                 |   |   |   |   |  |   |       | 1                     |  | 0     |
| $h_2$                 |   |   |   |   |  |   |       | 1                     |  | 0     |
|                       |   |   |   |   |  |   |       |                       |  |       |
| $g_k$                 |   |   |   |   |  |   |       |                       |  | 1     |
| $h_k$                 |   |   |   |   |  |   |       |                       |  | 1     |
| t                     | 1 | 1 | 1 | 1 |  | 1 | 3     | 3                     |  | 3     |

- Assim, S contém um par de números,  $y_i, z_i$ , para cada variável  $x_i$  em  $\phi$
- A representação decimal desses números está dada em duas partes, como indicado na tabela
- A parte da esquerda compreende um 1 seguido de l-i 0s
- A parte da direita contém um dígito para cada cláusula, onde o j-ésimo dígito de  $y_i$  é 1 se a cláusula  $c_j$  contém o literal  $x_i$  e o j-ésimo dígito de  $z_i$  é 1 se a cláusula  $c_j$  contém o literal  $\overline{x_i}$
- Os dígitos não especificados como sendo 1 são 0

#### SOMA-SUBC é NP-Completo

• A tabela está parcialmente preenchida para ilustrar as cláusulas amostra,  $c_1$ ,  $c_2$  e  $c_k$ :

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_2 \vee ...) \wedge ... \wedge (\overline{x_3} \vee ... \vee ...)$$

- Adicionalmente, S contém um par de números,  $g_j$ ,  $h_j$ , para cada cláusula  $c_j$
- ullet Esses dois números são iguais e consistem de um 1 seguido por k-j 0s
- Finalmente, o número alvo t, na linha inferior da tabela, consiste de l 1s seguidos por k 3s

- Agora mostramos porque essa construção funciona
- ullet Demonstramos que  $\phi$  é satisfazível sse algum subconjunto de S soma t
- Suponha que  $\phi$  seja satisfazível
- Construímos um subconjunto de S da seguinte forma
- Selecionamos  $y_i$  se a  $x_i$  é atribuído VERDADEIRO na atribuição que satisfaz a fórmula ou  $z_i$  se a  $x_i$  é atribuído FALSO

- Se somarmos o que selecionamos até então, obtemos um 1 em cada um dos primeiros l dígitos, porque selecionamos ou  $y_i$  ou  $z_i$  para cada i
- Além disso, cada um dos últimos k dígitos é um número entre 1 e 3, porque cada cláusula é satisfeita e, portanto, contém entre 1 e 3 literais verdadeiros
- Agora selecionamos ainda uma quantidade suficiente dos números g e h para trazer cada um dos últimos k dígitos para 3, portanto, atingindo o alvo

- Suponha que um subconjunto de S tenha t como soma
- ullet Construímos uma atribuição que satisfaz  $\phi$  após fazer várias observações
- Primeiro, todos os dígitos de membros de S são 0 ou 1
- Além disso, cada coluna da tabela que descreve S contém no máximo cinco 1s
- Logo, nunca ocorre um "vai-um" para a próxima coluna quando um subconjunto de S é somado
- Para obter um 1 em cada uma das l primeiras colunas, o subconjunto deve ter  $y_i$  ou  $z_i$  para cada i, mas não ambos

- Agora, construímos a atribuição que satisfaz a fórmula
- Se o subconjunto contém  $y_i$ , atribuímos verdadeiro a  $x_i$ ; caso contrário, atribuímos FALSO
- $\bullet$  Essa atribuição deve satisfazer  $\phi$ , porque em cada uma das k colunas finais a soma é sempre 3
- Na coluna  $c_j$ , pode vir no máximo 2 de  $g_j$  e  $h_j$ ; logo, pelo menos 1 nesta coluna deve vir de algum  $y_i$  ou  $z_i$  do subconjunto
- Se for  $y_i$ , então aparece  $x_i$  em  $c_j$  e é atribuído o valor VERDADEIRO, de forma que  $c_j$  é satisfeita
- Se for  $z_i$ , então  $\overline{x_i}$  ocorre em  $c_j$  e é atribuído FALSO a  $x_i$ , e assim  $c_j$  é satisfeita
- ullet Portanto,  $\phi$  é satisfeita

## Próxima Aula

# O que vem por aí?

- Exercícios
- Teste 3
- Revisão
- Prova 3



#### Reduções: COB-VERT, CAM-HAM e SOMA-SUBC Teoria da Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

20 de junho de 2022