

SEQUENCE LISTING


```
<110> Edinger et al.
<120> Novel Polypeptides and Nucleic Acids Encoding Same
<130> 21402-175CIP1
<140> 09/997,425
<141> 2001-11-29
<150> 60/242,485
<151> 2000-10-23
<150> 60/263.339
<151> 2001-01-22
<150> 60/264.850
<151> 2001-01-29
<150> 10/035,568
<151> 2001-10-22
<160> 92
<170> PatentIn Ver. 2.1
<210> 1
<211> 1747
<212> DNA
<213> Homo sapiens
<400> 1
teteettttg gggeatgttg ateegegget gegeteeatg tteeagttte atgeaggete 60
ttgggaaagc tggtgctgct gctgcctgat tcccgccgac agaccttggg accggggcca 120
acactggcag ctggagatgg cggacacgag atccgtgcac gagactaggt ttgaggcggc 180
cgtgaaggtg atccagagtt tgccgaagaa tggttcattc cagccaacaa atgaaatgat 240
gcttaaattt tatagcttct ataagcaggc aactgaagga ccctgtaaac tttcaaggcc 300
tggattttgg gatcctattg gaagatataa atgggatgct tggagttcac tgggtgatat 360
gaccaaagag gaagccatga ttgcatatgt tgaagaaatg aaaaagatta ttgaaactat 420
gccaatgact gagaaagttg aagaattgct gcgtgtcata ggtccatttt atgaaattgt 480
cgaggacaaa aagagtggca ggagttctga tataacctca gatcttggta atgttctcac 540
ttctgctccg aacgccaaaa ccgttaatgg taaagctgaa agcagtgaca gtggagccga 600
gtctgaggaa gaagaggccc aagaagaagt gaaaggagca gaacaaagtg ataatgataa 660
gaaaatgatg aagaagtcag cagaccataa gaatttggaa gtcattgtca ctaatggcta 720
tgataaagat ggctttgttc aggatataca gaatgacatt catgccagtt cttccctgaa 780
tggcagaagc actgaagaag taaagcccat tgatgaaaac ttggggcaaa ctggaaaatc 840
tgctgtttgc attcaccaag atataaatga tgatcatgtt gaagatgtta caggaattca 900
gcatttgaca agcgattcag acagtgaagt ttactgtgat tctatggaac aatttggaca 960
agaagagtct ttagacagct ttacgtccaa caatggacca tttcagtatt acttgggtgg 1020
tcattccagt caacccatgg aaaattctgg atttcgtgaa gatattcaag tacctcctgg 1080
aaatggcaac attgggaata tgcaggtggt tgcagttgaa ggaaaaggtg aagtcaagca 1140
tggaggagaa gatggcagga ataacagcgg agcaccacac cgggagaagc gaggcggaga 1200
aactgacgaa ttctctaatg ttagaagagg aagaggacat aggatacaac acttgagcga 1260
aggaaccaag ggccggcagg tgggaagtgg aggtgatggg gagcgctggg gctccgacag 1320
agggtcccga ggcagcctca atgagcagat cgccctcgtg ctgatgagac tgcaggagga 1380
catgcagaat gtccttcaga gactgcagaa actggaaacg ctgactgctt tgcaggcaaa 1440
```

atcatcaaca tcaacattgc agactgctc tcagcccacc tcacagagac catcttggtg 1500 gcccttcgag atgtctcctg gtgtgctaac gtttgccatc atatggcctt ttattgcaca 1560 gtggttggtg tatttatact atcaaagaag gagaagaaaa ctgaactgag gaaaatggtg 1620 ttttcctcaa gaagactact ggaactggat gacctcagaa tgaactggat tgtggtgttc 1680 acaagaaaat cttagtttgt gatgattaca ttgctttttg ttgtccagta gtttagtttg 1740 tgtacat

<210> 2

<211> 523

<212> PRT

<213> Homo sapiens

<400> 2

Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys Cys Cys 1 5 10 15

Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu 20 25 30

Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu Ala Ala

Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln Pro Thr 50 55 60

Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala Thr Glu 65 70 75 80

Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile Gly Arg 85 90 95

Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys Glu Glu
100 105 110

Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met 115 120 125

Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe 130 135 140

Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr 145 150 155 160

Ser Asp Leu Gly Asn Val Leu Thr Ser Ala Pro Asn Ala Lys Thr Val 165 170 175

Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu 180 185 190

Glu Ala Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys 195 200 205

Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val 210 215 220

Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp

225	230		235	240
Ile His Ala Ser	Ser Ser Leu 245	Asn Gly Arg 250	Ser Thr Glu	Glu Val Lys 255
Pro Ile Asp Glu 260	_	Gln Thr Gly 265	Lys Ser Ala	Val Cys Ile 270
His Gln Asp Ile 275	Asn Asp Asp	His Val Glu 280	Asp Val Thr 285	Gly Ile Gln
His Leu Thr Ser 290	Asp Ser Asp 295		Tyr Cys Asp 300	Ser Met Glu
Gln Phe Gly Glr 305	Glu Glu Ser 310	Leu Asp Ser	Phe Thr Ser	Asn Asn Gly 320
Pro Phe Gln Tyr	Tyr Leu Gly 325	Gly His Ser 330	Ser Gln Pro	Met Glu Asn 335
Ser Gly Phe Arg		Gln Val Pro 345	Pro Gly Asn	Gly Asn Ile 350
Gly Asn Met Glr 355	Val Val Ala	Val Glu Gly 360	Lys Gly Glu 365	Val Lys His
Gly Gly Glu Asp 370	Gly Arg Asn 375	_	Ala Pro His 380	Arg Glu Lys
Arg Gly Gly Glu 385	Thr Asp Glu 390	Phe Ser Asn	Val Arg Arg 395	Gly Arg Gly 400
His Arg Ile Glm	His Leu Ser	Glu Gly Thr 410	Lys Gly Arg	Gln Val Gly 415
Ser Gly Gly Asp 420	-	Trp Gly Ser 425	Asp Arg Gly	Ser Arg Gly 430
Ser Leu Asn Glu 435		Leu Val Leu 440	Met Arg Leu 445	
Met Gln Asn Val 450	Leu Gln Arg 455		Leu Glu Thr 460	Leu Thr Ala
Leu Gln Ala Lys 465	Ser Ser Thr 470	Ser Thr Leu	Gln Thr Ala 475	Pro Gln Pro 480
Thr Ser Gln Arg	Pro Ser Trp 485	Trp Pro Phe 490	Glu Met Ser	Pro Gly Val 495
Leu Thr Phe Ala		Pro Phe Ile 505	Ala Gln Trp	Leu Val Tyr 510
Leu Tyr Tyr Gln 515	Arg Arg Arg	Arg Lys Leu 520	Asn	

```
<210> 3
```

<211> 534

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (3)

<223> Wherein Xaa is any amino acid as defined in the specification

<400> 3

Met Tyr Xaa Phe His Ala Gly Ser Trp Glu Ser Trp Cys Cys Cys 1 5 10 15

Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu 20 25 30

Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu Ala Ala 35 40 45

Val Lys Val Ile Gln Ser Leu Pro Lys Asn Asp Ser Phe Gln Pro Thr
50 55 60

Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala Thr Glu 65 70 75 80

Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile Gly Arg 85 90 95

Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys Glu Glu
100 105 110

Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met 115 120 125

Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe 130 135 140

Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr 145 150 155 160

Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu Gly Asn 165 170 175

Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys Ala Glu 180 185 190

Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln Glu Glu
195 200 205

Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys 210 215 220

Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly Tyr Asp 225 230 235 240

Lys	Asp	Gly	Phe	Val 245	Gln	Asp	Ile	Gln	Asn 250	Asp	Ile	His	Ala	Ser 255	Ser
Ser	Leu	Asn	Gly 260	Arg	Ser	Thr	Glu	Glu 265	Val	Lys	Pro	Ile	Asp 270	Glu	Asn
Leu	Gly	Gln 275	Thr	Gly	Lys	Ser	Ala 280	Val	Cys	Ile	His	Gln 285	Asp	Ile	Asn
Asp	Asp 290	His	Val	Glu	Asp	Val 295	Thr	Gly	Ile	Gln	His 300	Leu	Thr	Ser	Asp
Ser 305	Asp	Ser	Glu	Val	Туг 310	Cys	Asp	Ser	Met	Glu 315	Gln	Phe	Gly	Gln	Glu 320
Glu	Ser	Leu	Asp	Ser 325	Phe	Thr	Ser	Asn	Asn 330	Gly	Pro	Phe	Gln	Tyr 335	Tyr
Leu	Gly	Gly	His 340	Ser	Ser	Gln	Pro	Met 345	Glu	Asn	Ser	Gly	Phe 350	Arg	Glu
Asp	Ile	Gln 355	Val	Pro	Pro	Gly	Asn 360	Gly	Asn	Ile	Gly	Asn 365	Met	Gln	Val
Val	Ala 370	Val	Glu	Gly	Lys	Gly 375	Glu	Val	Lys	His	Gly 380	Gly	Glu	Asp	Gly
Arg 385	Asn	Asn	Ser	Gly	Ala 390	Pro	His	Arg	Glu	Lys 395	Arg	Gly	Gly	Glu	Thr 400
Asp	Glu	Phe	Ser	Asn 405	Val	Arg	Arg	Gly	Arg 410	Gly	His	Arg	Met	Gln 415	His
Leu	Ser	Glu	Gly 420	Thr	Lys	Gly	Arg	Gln 425	Val	Gly	Ser	Gly	Gly 430	Asp	Gly
Glu	Arg	Trp 435	Gly	Ser	Asp	Arg	Gly 440	Ser	Arg	Gly	Ser	Leu 445	Asn	Glu	Gln
Ile	Ala 450	Leu	Val	Leu	Met	Arg 455	Leu	Gln	Glu	Asp	Met 460	Gln	Asn	Val	Leu
Gln 465	Arg	Leu	Gln	Lys	Leu 470	Glu	Thr	Leu	Thr	Ala 475	Leu	Gln	Ala	Lys	Ser 480
Ser	Thr	Ser	Thr	Leu 485	Gln	Thr	Ala	Pro	Gln 490	Pro	Thr	Ser	Gln	Arg 495	Pro
Ser	Trp	Trp	Pro 500	Phe	Glu	Met	Ser	Pro 505	Gly	Val	Leu	Thr	Phe 510	Ala	Ile
Ile	Trp	Pro 515	Phe	Ile	Ala	Gln	Trp 520	Leu	Val	Tyr	Leu	Tyr. 525	Tyr	Gln	Arg

Arg Arg Lys Leu Asn 530

```
<210> 4
<211> 536
<212> PRT
<213> Homo sapiens
Met Leu Phe Leu Ser Phe His Ala Gly Ser Trp Glu Ser Trp Cys Cys
Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp
                                 25
Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu
Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln
                         55
Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala
Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile
                 85
Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys
                                105
Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu
                            120
                                                 125
Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly
    130
Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp
Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu
                165
                                                         175
Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys
            180
                                185
Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln
                            200
Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met
    210
                        215
Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly
                    230
                                        235
Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His Ala
                245
                                    250
Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile Asp
```

265

260

Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp 275 280 285

Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr 290 295 300

Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly 305 310 315 320

Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe Gln 325 330 335

Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe 340 345 350

Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met 355 360 365

Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Glu Glu 370 375 380

Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Gly 385 390 395 400

Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg Met 405 410 415

Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly
420 425 430

Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn 435 440 445

Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn 450 455 460

Val Leu Gln Arg Leu Gln Lys Leu Glu Met Leu Thr Ala Leu Gln Ala 465 470 475 480

Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser Gln 485 490 495

Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr Phe 500 505 510

Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr Tyr 515 520 525

Gln Arg Arg Arg Lys Leu Asn 530 535

<210> 5

<211> 533

<212> PRT

<213> Bos taurus

<400)> 5														
	-	Gln	Phe	His 5	Ala	Gly	Ser	Trp	Glu 10	Ser	Trp	Суѕ	Cys	Cys 15	Cys
Cys	Leu	Ile	Pro 20	Gly	Asp	Arg	Pro	Trp 25	Asp	Arg	Gly	Arg	Arg 30	Trp	Arg
Leu	Glu	Met 35	Arg	His	Thr	Arg	Ser 40	Val	His	Glu	Thr	Arg 45	Phe	Glu	Ala
Ala	Val 50	Lys	Val	Ile	Gln	Ser 55	Leu	Pro	Lys	Asn	Gly 60	Ser	Phe	Gln	Pro
Thr 65	Asn	Glu	Met	Met	Leu 70	Lys	Phe	Tyr	Ser	Phe 75	Tyr	Lys	Gln	Ala	Thr 80
Glu	Gly	Pro	Cys	Lys 85	Leu	Ser	Lys	Pro	Gly 90	Phe	Trp	Asp	Pro	Val 95	Gly
Arg	Tyr	Lys	Trp 100	Asp	Ala	Trp	Ser	Ser 105	Leu	Gly	Asp	Met	Thr 110	Lys	Glu
Glu	Ala	Met 115	Ile	Ala	Tyr	Val	Glu 120	Glu	Met	Lys	Lys	Ile 125	Leu	Glu	Thr
Met	Pro 130	Met	Thr	Glu	Lys	Val 135	Glu	Glu	Leu	Leu	His 140	Val	Ile	Gly	Pro
Phe 145	Tyr	Glu	Ile	Val	Glu 150	Asp	Lys	Lys	Ser	Gly 155	Arg	Ser	Ser	Asp	Leu 160
Thr	Ser	Val	Arg	Leu 165	Glu	Lys	Ile	Ser	Lys 170	Cys	Leu	Glu	Asp	Leu 175	Gly
Asn	Val	Leu	Ala 180	Ser	Thr	Pro	Asn	Ala 185	Lys	Thr	Val	Asn	Gly 190	Lys	Ala
Glu	Ser	Ser 195	Asp	Ser	Gly	Ala	Glu 200	Ser	Glu	Glu	Glu	Ala 205	Ala	Gln	Glu
Asp	Pro 210	Lys	Arg	Pro	Glu	Pro 215	Arg	Asp	Ser	Asp	Lys 220	Lys	Met	Met	Lys
Lys 225	Ser	Ala	Asp	His	Lys 230	Asn	Leu	Glu	Ile	Ile 235	Val	Thr	Asn	Gly	Туг 240
Asp	Lys	Asp	Ser	Phe 245	Val	Gln	Gly	Val	Gln 250	Asn	Ser	Ile	His	Thr 255	Ser
Pro	Ser	Leu	Asn 260	Gly	Arg	Cys	Thr	Glu 265	Glu	Val	Lys	Ser	Val 270	Asp	Glu
Asn	Leu	Glu 275	Gln	Thr	Gly	Lys	Thr 280	Val	Val	Phe	Val	His 285	Gln	Asp	Val

Asn Ser Asp His Val Glu Asp Ile Ser Gly Ile Gln His Leu Thr Ser

290 295 300

Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln 305

Glu Glu Ser Leu Asp Gly Phe Ile Ser Asn Asn Gly Pro Phe Ser Tyr 325

Tyr Leu Gly Gly Asn Pro Ser Gln Pro Leu Glu Ser Ser Gly Phe Pro 340

Glu Ala Val Gln Gly Leu Pro Gly Asn Gly Ser Pro Glu Asp Met Gln
355 360 365

Gly Ala Val Val Glu Gly Lys Gly Glu Val Lys Arg Gly Gly Glu Asp 370 375 380

Gly Gly Ser Asn Ser Gly Ala Pro His Arg Glu Lys Arg Ala Gly Glu 385 390 395 400

Ser Glu Glu Phe Ser Asn Ile Arg Arg Gly Arg Gly His Arg Met Gln
405
410
415

His Leu Ser Glu Gly Ser Lys Gly Arg Gln Val Gly Ser Gly Gly Asp
420 425 430

Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn Glu 435 440 445

Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn Val 450 455 460

Leu Gln Arg Leu His Lys Leu Glu Met Leu Ala Ala Ser Gln Ala Lys 465 470 475 480

Ser Ser Ala Leu Gln Thr Ser Asn Gln Pro Thr Ser Pro Arg Pro Ser 485 490 495

Trp Trp Pro Phe Glu Met Ser Pro Gly Ala Leu Thr Phe Ala Ile Ile 500 505 510

Trp Pro Phe Ile Ala Gln Trp Leu Val His Leu Tyr Tyr Gln Arg Arg 515 520 525

Arg Arg Lys Leu Asn 530

<210> 6

<211> 504

<212> PRT

<213> Mus musculus

<400> 6

Phe His Ala Gly Ser Trp Gly Ser Trp Cys Cys Cys Cys Cys Val Ile

1 5 10 15

Thr	Ala	Asp	Arg 20	Pro	Trp	Asp	Arg	Gly 25	Arg	Arg	Trp	Gln	Leu 30	Glu	Met
Ala	Asp	Thr 35	Pro	Ser	Val	Tyr	Glu 40	Thr	Arg	Phe	Glu	Ala 45	Ala	Val	Lys
Val	Ile 50	Gln	Ser	Leu	Pro	Lys 55	Asn	Gly	Ser	Phe	Gln 60	Pro	Thr	Asn	Glu
Met 65	Met	Leu	Lys	Phe	Туr 70	Ser	Phe	Tyr	Lys	Gln 75	Ala	Thr	Glu	Gly	Pro 80
Cys	Lys	Leu	Ser	Arg 85	Pro	Gly	Phe	Trp	Asp 90	Pro	Ile	Gly	Arg	Tyr 95	Lys
Trp	Asp	Ala	Trp 100	Ser	Ser	Leu	Gly	Asp 105	Met	Thr	Lys	Glu	Glu 110	Ala	Met
Ile	Ala	Tyr 115	Val	Glu	Glu	Met	Lys 120	Lys	Ile	Ile	Glu	Thr 125	Met	Pro	Met
Thr	Glu 130	Lys	Val	Glu	Glu	Leu 135	Leu	His	Val	Ile	Gly 140	Pro	Phe	Tyr	Glu
Ile 145	Val	Glu	Asp	Lys	Lys 150	Ser	Ser	Lys	Ser	Ser 155	Asp	Leu	Thr	Ser	Asp 160
Leu	Gly	Asn	Val	Leu 165	Thr	Ser	Ser	Asn	Ala 170	Lys	Ala	Val	Asn	Gly 175	Lys
Ala	Glu	Ser	Ser 180	Asp	Ser	Gly	Ala	Glu 185	Ser	Glu	Glu	Glu	Glu 190	Alà	Gln
Glu	Glu	Leu 195	Lys	Gly	Ala	Glu	Gln 200	Ser	Gly	Ser	Asp	Asp 205	Lys	Lys	Thr
	210					215					220				Gly
Туг 225	Lys	Gly	Ser	Phe	Val 230	Gln	Asp	Ile	Gln	Ser 235	Asp	Ile	His	Thr	Asp 240
Ser	Ser	Arg	Ser	Thr 245	Arg	Ser	Ser	Glu	Asp 250	Glu	Lys	Pro	Gly	Asp 255	Glu
Ser	Ser	Gln	Gln 260	Thr	Gly	His	Thr	Ile 265	Val	Cys	Ala	His	Gln 270	Asp	Arg
Asn	Glu	Asp 275	Pro	Ser	Glu	Asp	Ala 280	Ser	Gly	Ile	His	His 285	Leu	Thr	Ser
Asp	Ser 290	Asp	Ser	Glu	Val	Tyr 295	Cys	Asp	Ser	Met	Glu 300	Gln	Phe	Gly	Gln
Glu 305		Tyr	Tyr		Gly 310	_	Asp	Pro		Gln 315		Leu	Glu	Ser	Ser 320

Gly Phe Cys Glu Asp Ala Gln Gln Ser Pro Gly Asn Gly Ser Ile Gly 325 Lys Met Trp Met Val Ala Val Lys Gly Lys Gly Glu Val Lys His Gly 345 Gly Glu Asp Gly Arg Ser Ser Gly Ala Pro His Arg Glu Thr Arg 360 Gly Glu Ser Glu Asp Phe Ser Ser Val Arg Arg Gly Arg Val Gly 375 Asn Arg Ile Pro His Leu Ser Glu Gly Pro Lys Gly Arg Gln Val Gly 395 390 Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly 405 410 Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Ile Arg Leu Gln Glu Asp 425 420 Met Gln Asn Val Leu Gln Arg Leu His Lys Leu Glu Thr Leu Thr Ala 440 Ser Gln Ala Lys Leu Ser Leu Gln Thr Ser Asn Gln Pro Ser Ser Gln 450 455 Arg Pro Ala Trp Trp Pro Phe Glu Met Ser Pro Gly Ala Leu Ala Phe 470 Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Ala His Leu Tyr Tyr 490 Gln Arg Arg Arg Lys Leu Asn 500 <210> 7 <211> 283 <212> PRT <213> Homo sapiens <400> 7 Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys 5 10 Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile 20 25 His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu 50 55 60

75

Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly

65

Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys 135 Arg Gly Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly 145 150 155 160 His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly 165 170 Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly 185 Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp 195 200 Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala 220 Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro 225 230 240

Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val

Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr 260 265 270

Leu Tyr Tyr Gln Arg Arg Arg Lys Leu Asn 275 280

<210> 8

<211> 85

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:consensus
 sequence

<400> 8

Leu Gln Glu Gln Phe Glu Ala Ala Glu Lys Val Lys Lys Leu Lys

1 5 10 15

Lys Asn Pro Ser Asn Asp Glu Leu Leu Gln Leu Tyr Ser Leu Tyr Lys
20 25 30

Gln	Ala	Thr 35	Val	Gly	Asp	Cys	Asn 40	Thr	Glu	Lys	Pro	Gly 45	Met	Phe	Asp	
Leu	Lys 50	Gly	Arg	Ala	Lys	Trp 55	Asp	Ala	Trp	Asn	Glu 60	Leu	Lys	Gly	Met	
Ser 65	Lys	Glu	Glu	Ala	Met 70	Lys	Ala	Tyr	Ile	Ala 75	Lys	Val	Glu	Glu	Leu 80	
Ile	Ala	Lys	Tyr	Ala 85												
<212	.> 23 !> DN	IA.	icial	l Sed	quenc	ce										
<220 <223	> De	escri		on of	E Art	cific	cial	Sequ	ience	e:oli	igoni	ıcled	otide	e		
<400																2.2
ctcc	יננננ	gg g	ggcat	tgttg	ga to	CC										23
<211 <212)> 10 .> 27 !> DN i> Ar	7 NA	icial	l Sec	quenc	e										
<220																
<223		escri		on of	E Art	cific	cial	Sequ	ience	e:oli	.gonu	ıcled	otide	•		
	> 10															0.5
gatt	ttct	tg t	gaad	cacca	ac aa	itcca	ag									27
<211 <212	> 11 > 22 > DN > Ar	? IA	lcial	L Sec	quenc	e										
<220 <223	> De	escri rimer	_	on of	E Art	ific	cial	Sequ	ience	e:oli	.gonu	cled	otide	è		
	> 11															22
catt	actt	.gg g	gtggt	catt	.c ca	ı									•	22
<211	> 12 .> 26	5														

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 12
                                                                    26
caacccatgg aaaattctgg atttcg
<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 13
                                                                    22
atattcccaa tgttgccatt tc
<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 14
                                                                    22
aggcaaaatc atcaacatca ac
<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 15
                                                                    26
ctcagcccac ctcacagaga ccatct
<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 16
```

ttagcacacc aggagacatc tc										
<210> 17 <211> 22 <212> DNA <213> Artificial Sequence										
<220> <223> Description of Artificial Sequence:oligonucleotide primer										
<400> 17 aatcatcaac atcaacattg ca	22									
<210> 18 <211> 26 <212> DNA <213> Artificial Sequence										
<220> <223> Description of Artificial Sequence:oligonucleotide primer										
<400> 18 ctcagcccac ctcacagaga ccatct	26									
<210> 19 <211> 22 <212> DNA <213> Artificial Sequence										
<220> <223> Description of Artificial Sequence:oligonucleotide primer										
<400> 19 gttagcacac caggagacat ct	22									
<210> 20 <211> 89 <212> PRT <213> Artificial Sequence										
<220> <223> Description of Artificial Sequence:consensus sequence										
<pre><400> 20 Leu Gln Glu Asp Phe Glu Ala Ala Ala Glu Lys Val Lys Lys Leu Lys 1 5 10 15</pre>										
Lys Asn Gly Pro Val Lys Pro Ser Asn Glu Glu Lys Leu Lys Leu Tyr 20 25 30										

```
Ser Leu Tyr Lys Gln Ala Thr Val Gly Asp Val Asn Thr Glu Arg Pro
Gly Met Phe Asp Leu Lys Gly Arg Ala Lys Trp Asp Ala Trp Asn Glu
                         55
                                             60
Leu Lys Gly Met Ser Lys Glu Glu Ala Met Lys Ala Tyr Ile Ala Lys
Val Glu Glu Leu Ile Ala Lys Tyr Ala
                 85
<210> 21
<211> 1747
<212> DNA
<213> Homo sapiens
<400> 21
atgtacacaa actaaactac tggacaacaa aaagcaatgt aatcatcaca aactaagatt 60
ttcttgtgaa caccacaatc cagttcattc tgaggtcatc cagttccagt agtcttcttg 120
aggaaaacac cattttcctc agttcagttt tcttctcctt ctttgatagt ataaatacac 180
caaccactgt gcaataaaag gccatatgat ggcaaacgtt agcacaccag gagacatctc 240
gaagggccac caagatggtc tctgtgaggt gggctgagga gcagtctgca atgttgatgt 300
tgatgatttt gcctgcaaag cagtcagcgt ttccagtttc tgcagtctct gaaggacatt 360
ctgcatgtcc tcctgcagtc tcatcagcac gagggcgatc tgctcattga ggctgcctcg 420
ggaccetetg teggageece agegeteece ateaceteca etteceacet geeggeeett 480
ggttccttcg ctcaagtgtt gtatcctatg tcctcttcct cttctaacat tagagaattc 540
gtcagtttct ccgcctcgct tctcccggtg tggtgctccg ctgttattcc tgccatcttc 600
tectecatge ttgactteae etttteette aactgeaace acetgeatat teceaatgtt 660
gccatttcca ggaggtactt gaatatcttc acgaaatcca gaattttcca tgggttgact 720
ggaatgacca cccaagtaat actgaaatgg tccattgttg gacgtaaagc tgtctaaaga 780
ctcttcttgt ccaaattgtt ccatagaatc acagtaaact tcactgtctg aatcgcttgt 840
caaatgctga attcctgtaa catcttcaac atgatcatca tttatatctt ggtgaatgca 900
aacagcagat tttccagttt gccccaagtt ttcatcaatg ggctttactt cttcagtgct 960
tctgccattc agggaagaac tggcatgaat gtcattctgt atatcctgaa caaagccatc 1020
tttatcatag ccattagtga caatgacttc caaattctta tggtctgctg acttcttcat 1080
cattttctta tcattatcac tttgttctgc tcctttcact tcttcttggg cctcttcttc 1140
ctcagactcg gctccactgt cactgctttc agctttacca ttaacggttt tggcgttcgg 1200
agcagaagtg agaacattac caagatctga ggttatatca gaactcctgc cactcttttt 1260
gtcctcgaca atttcataaa atggacctat gacacgcagc aattcttcaa ctttctcagt 1320
cattggcata gtttcaataa tctttttcat ttcttcaaca tatgcaatca tggcttcctc 1380
tttggtcata tcacccagtg aactccaagc atcccattta tatcttccaa taggatccca 1440
aaatccaggc cttgaaagtt tacagggtcc ttcagttgcc tgcttataga agctataaaa 1500
tttaagcatc atttcatttg ttggctggaa tgaaccattc ttcggcaaac tctggatcac 1560
cttcacggcc gcctcaaacc tagtctcgtg cacggatctc gtgtccgcca tctccagctg 1620
ccagtgttgg ccccggtccc aaggtctgtc ggcgggaatc aggcagcagc agcaccagct 1680
ttcccaagag cctgcatgaa actggaacat ggagcgcagc cgcggatcaa catgccccaa 1740
aaggaga
                                                                  1747
<210> 22
<211> 523
<212> PRT
```

<213> Homo sapiens

- <400> 22
- Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys Cys Cys 1 5 10 15
- Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu 20 25 30
- Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu Ala Ala 35 40 45
- Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln Pro Thr
 50 55 60
- Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala Thr Glu 65 70 75 80
- Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile Gly Arg
 85 90 95
- Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys Glu Glu
 100 105 110
- Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met 115 120 125
- Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe 130 135 140
- Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr 145 150 155 160
- Ser Asp Leu Gly Asn Val Leu Thr Ser Ala Pro Asn Ala Lys Thr Val 165 170 175
- Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu 180 185 190
- Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys 195 200 205
- Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val 210 215 220
- Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp 225 230 235 240
- Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys 245 250 255
- Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile 260 265 270
- His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln 275 280 285
- His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu 290 295 300

Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly 305 315 310 Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn 325 330 Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile 345 Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His 360 Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys 375 380 Arg Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly 390 395 His Arg Ile Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly 410 Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly 420 425 Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp 435 440 Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala 455 460 Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro 465 470 475 480 Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val 490 Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr 500 505 510 Leu Tyr Tyr Gln Arg Arg Arg Lys Leu Asn 515 520 <210> 23 <211> 1432 <212> DNA <213> Homo sapiens <400> 23 aagcttgaca gaccttggga ccggggccaa cactggcagc tggagatggc ggacacgaga 60 tccgtgcacg agactaggtt tgaggcggcc gtgaaggtga tccagagttt gccgaagaat 120

ggttcattcc agccaacaaa tgaaatgatg cttaaatttt atagcttcta taagcaggca 180 actgaaggac cctgtaaact ttcaaggcct ggattttggg atcctattgg aagatataaa 240 tgggatgctt ggagttcact gggtgatatg accaaagagg aagccatgat tgcatatgtt 300 gaagaaatga aaaagattat tgaaactatg ccaatgactg agaaagttga agaattgctg 360 cgtgtcatag gtccatttta tgaaattgtc gaggacaaaa agagtggcag gagttctgat 420

ataacctcag atcttggtaa tgttctcact tctactccga acgccaaaac cgttaatggt 480 aaagctgaaa gcagtgacag tggagccgag tctgaggaag aagaggccca agaagaagtg 540 aaaggagcag aacaaagtga taatgataag aaaatgatga agaagtcagc agaccataag 600 aatttggaag tcattgtcac taatggctat gataaagatg gctttgttca ggatatacag 660 aatgacattc atgccagttc ttccctgaat ggcagaagca ctgaagaagt aaagcccatt 720 gatgaaaact tggggcaaac tggaaaatct gctgtttgca ttcaccaaga tataaatgat 780 gatcatgttg aagatgttac aggaattcag catttgacaa gcgattcaga cagtgaagtt 840 tactgtgatt ctatggaaca atttggacaa gaagagtctt tagacagctt tacgtccaac 900 aatggaccat ttcagtatta cttgggtggt cattccagtc aacccatgga aaattctgga 960 tttcgtgaag atattcaagt acctcctgga aatggcaaca ttgggaatat gcaggtggtt 1020 gcagttgaag gaaaaggtga agtcaagcat ggaggagaag atggcgggaa taacagcgga 1080 gcaccacacc gggagaagcg aggcggagaa actgacgaat tctctaatgt tagaagagga 1140 agaggacata ggatgcaaca cttgagcgaa ggaaccaagg gccggcaggt gggaagtgga 1200 ggtgatgggg agcgctgggg ctccgacaga gggtcccgag gcagcctcaa cgagcagatc 1260 gccctcgtgc tgatgagact gcaggaggac atgcagaatg tccttcagag actgcagaaa 1320 ctggaaacgc tgactgcttt gcaggcaaaa tcatcaacat caacattgca gactgctcct 1380 cageceacet caeagagace atettggtgg ceettegaga tgeeeteteg ag

<210> 24

<211> 477

<212> PRT

<213> Homo sapiens

<400> 24

Lys Leu Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu Glu Met

1 5 10 15

Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu Ala Ala Val Lys
20 25 30

Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu 35 40 45

Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala Thr Glu Gly Pro 50 60

Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys 65 70 75 80

Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys Glu Glu Ala Met 85 90 95

Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met Pro Met 100 105 110

Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu 115 120 125

Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Asp 130 135 140

Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly
145 150 155 160

Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala 165 170 175

Gln	Glu	Glu	Val 180	Lys	Gly	Ala	Glu	Gln 185	Ser	Asp	Asn	Asp	Lys 190	Lys	Met
Met	Lys	Lys 195	Ser	Ala	Asp	His	Lys 200	Asn	Leu	Glu	Val	Ile 205	Val	Thr	Asn
Gly	Tyr 210	Asp	Lys	Asp	Gly	Phe 215	Val	Gln	Asp	Ile	Gln 220	Asn	Asp	Ile	His
Ala 225	Ser	Ser	Ser	Leu	Asn 230	Gly	Arg	Ser	Thr	Glu 235	Glu	Val	Lys	Pro	Ile 240
Asp	Glu	Asn	Leu	Gly 245	Gln	Thr	Gly	Lys	Ser 250	Ala	Val	Суз	Ile	His 255	Gln
Asp	Ile	Asn	Asp 260	Asp	His	Val	Glu	Asp 265	Val	Thr	Gly	Ile	Gln 270	His	Leu
Thr	Ser	Asp 275	Ser	Asp	Ser	Glu	Val 280	Tyr	Cys	Asp	Ser	Met 285	Glu	Gln	Phe
Gly	Gln 290	Glu	Glu	Ser	Leu	Asp 295	Ser	Phe	Thr	Ser	Asn 300	Asn	Gly	Pro	Phe
Gln 305	Tyr	Tyr	Leu	Gly	Gly 310	His	Ser	Ser	Gln	Pro 315	Met	Glu	Asn	Ser	Gly 320
Phe	Arg	Glu	Asp	Ile 325	Gln	Val	Pro	Pro	Gly 330	Asn	Gly	Asn	Ile	Gly 335	Asn
Met	Gln	Val	Val 340	Ala	Val	Glu	Gly	Lys 345	Gly	Glu	Val	Lys	His 350	Gly	Gly
Glu	Asp	Gly 355	Gly	Asn	Asn	Ser	Gly 360	Ala	Pro	His	Arg	Glu 365	Lys	Arg	Gly
Gly	Glu 370	Thr	Asp	Glu	Phe	Ser 375	Asn	Val	Arg	Arg	Gly 380	Arg	Gly	His	Arg
Met 385	Gln	His	Leu	Ser	Glu 390	Gly	Thr	Lys	Gly	Arg 395	Gln	Val	Gly	Ser	Gly 400
Gly	Asp	Gly	Glu	Arg 405	Trp	Gly	Ser	Asp	Arg 410	Gly	Ser	Arg	Gly	Ser 415	Leu
Asn	Glu	Gln	Ile 420	Ala	Leu	Val	Leu	Met 425	Arg	Leu	Gln	Glu	Asp 430	Met	Gln
Asn	Val	Leu 435	Gln	Arg	Leu	Gln	Lys 440	Leu	Glu	Thr	Leu	Thr 445	Ala	Leu	Gln
Ala	Lys 450	Ser	Ser	Thr	Ser	Thr 455	Leu	Gln	Thr	Ala	Pro 460	Gln	Pro	Thr	Ser
Gln 465	Arg	Pro	Ser	Trp	Trp 470	Pro	Phe	Glu	Met	Pro 475	Ser	Arg			

```
<211> 1401
<212> DNA
<213> Homo sapiens
<400> 25
aagcttacta ggtttgaggc ggccgtgaag gtgatccaga gtttgccgaa gaatggttca 60
ttccagccaa caaatgaaat gatgcttaaa ttttatagct tctataagca ggcaactgaa 120
ggaccctgta aactttcaag gcctggattt tgggatccta ttggaagata taaatgggat 180
gcttggagtt cactgggtga tatgaccaaa ggggaagcca tgattgcata tgttgaagaa 240
atgaaaaaga ttattgaaac tatgccaatg actgagaaag ttgaagaatt gctgcgtgtc 300
ataggtccat tttatgaaat tgtcgaggac aaaaagagtg gcaggagttc tgatataacc 360
tcagtccgac tggagaaaat ctctaaatgt ttagaagatc ttggtaatgt tctcacttct 420
actccgaacg ccaaaaccgt taatggtaaa gctgaaagca gtgacagtgg agccgagtct 480
gaggaagaag aggcccaaga agaagtgaaa ggagcagaac aaagtgataa tgataagaaa 540
atgatgaaga agtcagcaga ccataagaat ttggaagtca ttgtcactaa tggctatgat 600
aaagatggct ttgttcagga tatacagaat gacattcatg ccagttcttc cctgaatggc 660
agaagcactg aagaagtaaa gcccattgat gaaaacttgg ggcaaactgg aaaatctgct 720
gtttgcattc accaagatat aaatgatgat catgttgaag atgttacagg aattcagcat 780
ttgacaagcg attcagacag tgaagtttac tgtgattcta tggaacaatt tggacaagaa 840
gagtetttag acagetttac gtecaacaat ggaccattte agtattactt gggtggteat 900
tccagtcaac ccatggaaaa ttctggattt cgtgaatata ttcaagtacc tcctggaaat 960
ggcaacattg ggaatatgca ggtggttgca gttgaaggaa aaggtgaagt caagcatgga 1020
ggagaagatg gcaggaataa cagcggagca ccacaccggg agaagcgagg cggagaaact 1080
gacgaattct ctaatgttag aagaggaaga ggacatagga tgcaacactt gagcgaagga 1140
accaagggcc ggcaggtggg aagtggaggt gatggggagc gctggggctc cgacagaggg 1200
tcccgaggca gcctcaatga gcagatcgcc ctcgtgctga tgagactgca ggaggacatg 1260
cagaatgtcc ttcagagact gcagaaactg gaaacgctga ctgctttgca ggcaaaatca 1320
tcaacatcaa cattgcagac tgctcctcag cccacctcac agagaccatc ttggtggccc 1380
ttcgagatgt ctcctctcga g
                                                                   1401
<210> 26
<211> 466
<212> PRT
<213> Homo sapiens
<400> 26
Lys Leu Thr Arg Phe Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro
                                     10
Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr
             20
                                 25
Ser Phe Tyr Lys Gln Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro
         35
                             40
Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser
Leu Gly Asp Met Thr Lys Gly Glu Ala Met Ile Ala Tyr Val Glu Glu
 65
                     70
                                         75
Met Lys Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu
                 85
                                     90
```

<210> 25

Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser 155 Glu Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp 170 Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu 185 Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile 200. Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu 210 215 Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala 230 235 Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr 250 Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser 280 Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro 290 295 Met Glu Asn Ser Gly Phe Arg Glu Tyr Ile Gln Val Pro Pro Gly Asn 305 315 Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val 335 325 330 Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg 340 345 350 Glu Lys Arg Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly 360 Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln 370 380 Val Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser 385 390 395

```
Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln
                405
                                    410
Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu
                                425
Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro
        435
Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro
                                            460
                        455
Leu Glu
465
<210> 27
<211> 1401
<212> DNA
<213> Homo sapiens
<400> 27
aagcttacta ggtttgaggc ggccgtgaag gtgatccaga gtttgccgaa gaatggttca 60
ttccagccaa caaatgaaat gatgcttaaa ttttatagct tctataagca ggcaactgaa 120
ggaccctgta aactttcaag gcctggattt tgggatccta ttggaagata taaatgggat 180
gcttggagtt cactgggtga tatgaccaaa gaggaagcca tgattgcata tgttgaagaa 240
atgaaaaaga ttattgaaac tatgccaatg actgagaaag ttgaagaatt gctgcgtgtc 300
ataggtccat tttatgaaat tgtcgaggac aaaaagagtg gcaggagttc tgatataacc 360
tcagtccgac tggagaaaat ctctaaatgt ttagaagatc ttggtaatgt tctcacttct 420
actccaaacg ccaaaaccgt taatggtaaa gctgaaagca gtgacagtgg agccgagtct 480
gaggaagaag aggcccaaga agaagtgaaa ggagcagaac aaagtgataa tgataagaaa 540
atgatgaaga agtcagcaga ccataagaat ttggaagtca ttgtcactaa tggctatgat 600
aaagatggct ttgttcagga tatacagaat gacattcatg ccagttcttc cctgaatggc 660
agaagcactg aagaagtaaa gcctattgat gaaaacttgg ggcaaactgg aaaatctgct 720
gtttgcattc accaagatat aaatgatgat catgttgaag atgttacagg aattcagcat 780
ttgacaagcg attcagacag tgaagtttac tgtgattcta tggaacaatt tggacaagaa 840
gagtetttag acagetttac gtecaacaat ggacaattte agtattactt gggtggteat 900
tccagtcaac ccatggaaaa ttctggattt cgtgaagata ttcaagtacc tcctggaaat 960
ggcaacattg ggaatatgca ggtggttgca gttgaaggaa aaggtgaagt caagcatgga 1020
ggagaagatg gcaggaataa cagcggagcg ccacaccggg agaagcgagg cggagaaact 1080
gatgaattct ctaatgttag aagaggaaga ggacatagga tgcaacactt gagcgaagga 1140
accaagggcc ggcaggtggg aagtggaggt gatggggagc gctggggctc cgacagaggg 1200
tcccgaggca gcctcaatga gcagatcgcc ctcgtgctga tgagactgca ggaggacatg 1260
cagaatgtcc ttcagagact gcagaaactg gaaacgctga ctgctttgca ggcaaaatca 1320
tcaacatcaa cattgcagac tgctcctcag cccacctcac agagaccatc ttggtggccc 1380
ttcgagatgt ctcctctcga g
                                                                  1401
<210> 28
<211> 465
<212> PRT
<213> Homo sapiens
<400> 28
Lys Leu Thr Arg Phe Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro
 1
                                     10
```

Lys	Asn	Gly	Ser 20	Phe	Gln	Pro	Thr	Asn 25	Glu	Met	Met	Leu	Lys 30	Phe	Tyr
Ser	Phe	Tyr 35	Lys	Gln	Ala	Thr	Glu 40	Gly	Pro	Cys	Lys	Leu 45	Ser	Arg	Pro
Gly	Phe 50	Trp	Asp	Pro	Ile	Gly 55	Arg	Tyr	Lys	Trp	Asp 60	Ala	Trp	Ser	Ser
Leu 65	Gly	Asp	Met	Thr	Lys 70	Glu	Glu	Ala	Met	Ile 75	Ala	Tyr	Val	Glu	Glu 80
Met	Lys	Lys	Ile	Ile 85	Glu	Thr	Met	Pro	Met 90	Thr	Glu	Lys	Val	Glu 95	Glu
Leu	Leu	Arg	Val 100	Ile	Gly	Pro	Phe	Туг 105	Glu	Ile	Val	Glu	Asp 110	Lys	Lys
Ser	Gly	Arg 115	Ser	Ser	Asp	Ile	Thr 120	Ser	Val	Arg	Leu	Glu 125	Lys	Ile	Ser
Lys	Cys 130	Leu	Glu	Asp	Leu	Gly 135	Asn	Val	Leu	Thr	Ser 140	Thr	Pro	Asn	Ala
Lys 145	Thr	Val	Asn	Gly	Lys 150	Ala	Glu	Ser	Ser	Asp 155	Ser	Gly	Ala	Glu	Ser 160
Glu	Glu	Glu	Ala	Gln 165	Glu	Glu	Val	Lys	Gly 170	Ala	Glu	Gln	Ser	Asp 175	Asn
Asp	Lys	Lys	Met 180	Met	Lys	Lys	Ser	Ala 185	Asp	His	Lys	Asn	Leu 190	Glu	Val
Ile	Val	Thr 195	Asn	Gly	Tyr	Asp	Lys 200	Asp	Gly	Phe	Val	Gln 205	Asp	Ile	Gln
Asn	Asp 210	Ile	His	Ala	Ser	Ser 215	Ser	Leu	Asn	Gly	Arg 220	Ser	Thr	Glu	Glu
Val 225	Lys	Pro	Ile	qaA	Glu 230	Asn	Leu	Gly	Gln	Thr 235	Gly	Lys	Ser	Ala	Val 240
Сув	Ile	His	Gln	Asp 245	Ile	Asn	Asp	Asp	His 250	Val	Glu	Asp	Val	Thr 255	Gly
Ile	Gln	His	Leu 260	Thr	Ser	Asp	Ser	Asp 265	Ser	Glu	Val	Tyr	Cys 270	Asp	Ser
Met	Glu	Gln 275	Phe	Gly	Gln	Glu	Glu 280	Ser	Leu	Asp	Ser	Phe 285	Thr	Ser	Asn
Asn	Gly 290	Gln	Phe	Gln	Tyr	Tyr 295	Leu	Gly	Gly	His	Ser 300	Ser	Gln	Pro	Met
Glu 305		Ser	Gly		Arg		Asp	Ile		Val	Pro	Pro	Gly	Asn	Asn

```
Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys
                325
                                    330
His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu
                                345
Lys Arg Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg
        355
                            360
Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val
                        375
                                             380
Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg
385
                    390
                                         395
                                                             400
Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu
                405
                                    410
Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr
Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln
        435
                            440
                                                 445
Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Leu
    450
                        455
                                            460
Glu
465
<210> 29
<211> 1401
<212> DNA
<213> Homo sapiens
<400> 29
aagettaeta ggtttgagge ggeegtgaag gtgateeaga gtttgeegaa gaatggttea 60
ttccagccaa caaatgaaat gatgcttaaa ttttatagct tctataagca ggcaactgaa 120
ggaccctgta aactttcaag gcctggattt tgggatccta ttggaagata taaatgggat 180
gcttggagtt cactgggtga tatgaccaaa gaggaagcca tgattgcata tgttgaagaa 240
atgaaaaaga ttattgaaac tatgccaatg actgagaaag ttgaagaatt gctgcgtgtc 300
ataggtccat tttatgaaat tgtcgaggac aaaaagagtg gcaggagttc tgatataacc 360
tcagtccgac tggagaaaat ctctaaatgt ttagaagatc ttggtaatgt tctcacttct 420
actccaaacg ccaaaaccgt taatggtaaa gctgaaagca gtgacagtgg agccgagtct 480
gaggaagaag aggcccaaga agaagtgaaa ggagcagaac aaagtgataa tgataagaaa 540
atgatgaaga agtcagcaga ccataagaat ttggaagtca ttgtcactaa tggctatgat 600
aaagatggct ttgttcagga tatacagaat gacattcatg ccagttcttc cctgaatggc 660
agaagcactg aagaagtaaa gcccattgat gaaaacttgg ggcaaactgg aaaatctgct 720
gtttgcattc accaagatat aaatgatgat catgttgaag atgttacagg aattcagcat 780
ttgacaagcg attcagacag tgaagtttac tgtgattcta tggaacaatt tggacaagaa 840
gagtetttag acagetttae gtecaacaat ggaccattte agtattaett gggtggteat 900
tccagtcaac ccatggaaaa ttctggattt cgtgaagata ttcaagtacc tcctggaaat 960
ggcaacattg ggaatatgca ggtggttgca gttgaaggaa aaggtgaagt caagcatgga 1020
ggagaagatg gcaggaataa cagcggagca ccacaccggg agaagcgagg cggagaaact 1080
gacgaattct ctaatgttag aagaggaaga ggacatagga tgcaacactt gagcgaagga 1140
```

accaagggcc ggcaggtggg aagtggaggt gatggggagc gctggggctc cgacagaggg 1200 tcccgaggca gcctcaatga gcagatcgcc ctcgtgctga tgagactgca ggaggacatg 1260 cagaatgtcc ttcagagact gcagaaactg gaaacgctga ctgctttgca ggcaaaatca 1320 tcaacatcaa cattgcagac tgctcctcag cccacctcac agagaccatc ttggtggccc 1380 ttcgagatgt ctcctctcga g 1401

<210> 30

<211> 440

<212> PRT

<213> Homo sapiens

<400> 30

Lys Leu Thr Arg Phe Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro 1 5 10 15

Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr
20 25 30

Ser Phe Tyr Lys Gln Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro 35 40 45

Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser 50 55 60

Leu Gly Asp Met Thr Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu 65 70 75 80

Met Lys Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu 85 90 95

Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys 100 105 110

Ser Gly Arg Ser Ser Asp Ile Thr Ser Val Arg Leu Glu Lys Ile Ser 115 120 125

Lys Cys Leu Glu Asp Leu Glu Glu Glu Glu Glu Glu Glu Glu Val Lys 130 135 140

Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys Ser Ala 145 150 155 160

Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly Tyr Asp Lys Asp 165 170 175

Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His Ala Ser Ser Leu 180 185 190

Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile Asp Glu Asn Leu Gly
195 200 205

Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp Ile Asn Asp Asp 210 215 220

His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr Ser Asp Ser Asp 225 230 235 240

Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln Glu Glu Ser 250 Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly 265 Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile 275 Gln Val Pro Pro Gly Asn Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn 305 315 Ser Gly Ala Pro His Arg Glu Lys Arg Gly Gly Glu Thr Asp Glu Phe 330 Ser Asn Val Arg Arg Gly Arg Gly His Arg Met Gln His Leu Ser Glu 345 Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly Asp Gly Glu Arg Trp 355 360 Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu 380 Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu 385 390 400 395 Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser 405 410 Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp 425 Pro Phe Glu Met Ser Pro Leu Glu 435 440 <210> 31 <211> 1368 <212> DNA <213> Homo sapiens <400> 31 aagcttacta ggtttgaggc ggccgtgaag gtgatccaga gtttgccgaa gaatggttca 60 ttccagccaa caaatgaaat gatgcttaaa ttttatagct tctataagca ggcaactgaa 120 ggaccctgta aactttcaag gcctggattt tgggatccta ttggaagata taaatgggat 180 gcttggagtt cactgggtga tatgaccaaa gaggaagcca tgattgcata tgttgaagaa 240 atgaaaaaga ttattgaaac tatgccaatg actgagaaag ttgaagaatt gctgcgtgtc 300 ataggtccat tttatgaaat tgtcgaggac aaaaagagtg gcaggagttc tgatataacc 360 tcagatcttg gtaatgttct cacttctact ccgaacgcca aaaccgttaa tggtaaagct 420 gaaagcagtg acagtggagc cgagtctgag gaagaagagg cccaagaaga agtgaaagga 480 gcagaacaaa gtgataatga taagaaaatg atgaagaagt cagcagacca taagaatttg 540 gaagtcattg tcactaatgg ctatgataaa gatggctttg ttcaggatat acagaatgac 600

```
attcatgcca gttcttccct gaatggcaga agcactgaag aagtaaagcc cattgatgaa 660
aacttggggc aaactggaaa atctgctgtt tgcattcacc aagatataaa tgatgatcat 720
gttgaagatg ttacaggaat tcagcatttg acgagcgatt cagacagtga agtttactgt 780
gattctatgg aacaatttgg acaagaagag tctttagaca gctttacgtc caacaatgga 840
ccatttcagt attacttggg tggtcattcc agtcaaccca tggaaaattc tggatttcgt 900
gaagatattc aagtacctcc tggaaatggc aacattggga atatgcaggt ggttgcagtt 960
gaaggaaaag gcgaagtcaa gcatggagga gaagatggca ggaataacag cggagcacca 1020
caccgggaga agcgaggcgg agaaactgac gaattctcta atgttagaag aggaagagga 1080
cataggatgc aacacttgag cgaaggaacc aagggccggc aggtgggaag tggaggtgat 1140
ggggagcgct ggggctccga cagagggtcc cgaggcagcc tcaatgagca gatcgccctc 1200
gtgctgatga gactgcagga ggacatacag aatgtccttc agagactgca gaaactggaa 1260
acgctgactg ctttgcaggc aaaatcatca acatcaacat tgcagactgc tcctcagccc 1320
acctcacaga gatcatcttg gtggcccttc gagatgtctc ctctcgag
<210> 32
<211> 453
<212> PRT
<213> Homo sapiens
<400> 32
Lys Leu Thr Arg Phe Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro
Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr
             20 -
                                 25
                                                     30
Ser Phe Tyr Lys Gln Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro
Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser
                         55
Leu Gly Asp Met Thr Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu
                     70
                                         75
Met Lys Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu
                 85
                                     90
Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys
            100
                                105
                                                    110
Ser Gly Arg Ser Ser Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr
        115
                            120
Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp
                        135
                                            140
Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln Glu Val Lys Gly
145
                    150
Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His
                                    170
Lys Asn Leu Glu Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe
```

1368

190

185

Val Gln Asp Ile Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly
195 200 205

Arg Ser Thr Glu Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr 210 215 220

Gly Lys Ser Ala Val Cys Ile His Gln Asp Ile Asn Asp Asp His Glu 225 230 235 240

Asp Val Thr Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val 245 250 255

Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser 260 265 270

Phe Thr Ser Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser 275 280 285

Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro 290 295 300

Pro Gly Asn Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Gly Lys 305 310 315 320

Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala 325 330 335

Pro His Arg Glu Lys Arg Gly Gly Glu Thr Asp Glu Phe Ser Asn Val 340 345 350

Arg Arg Gly Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys 355 360 365

Gly Arg Gln Val Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp 370 375 380

Arg Gly Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met 385 390 395 400

Arg Leu Gln Glu Asp Ile Gln Asn Val Leu Gln Arg Leu Gln Lys Leu 405 410 415

Glu Thr Leu Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln 420 425 430

Thr Ala Pro Gln Pro Thr Ser Gln Arg Ser Ser Trp Trp Pro Phe Glu
435 440 445

Met Ser Pro Leu Glu 450

<210> 33

<211> 1586

<212> DNA

<213> Homo sapiens

```
<400> 33
aagettecae catgttecag ttteatgeag getettggga aagetggtge tgetgetgee 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagatctt ggtaatgttc tcacttctac tccgaacgcc aaaaccgtta 540
atggtaaagc tgaaagcagt gacagtggag ccgagtctga ggaagaagag gcccaagaag 600
aagtgaaagg agcagaacaa agtgataatg ataagaaaat gatgaagaag tcagcagacc 660
ataagaattt ggaagtcatt gtcactaatg gctatgataa agatggcttt gttcaggata 720
tacagaatga cattcatgcc agttcttccc tgaatggcag aagcactgaa gaagtaaagc 780
ccattgatga aaacttgggg caaactggaa aatctgctgt ttgcattcac caagatataa 840
atgatgatca tgttgaagat gttacaggaa ttcagcattt gacaagcgat tcagacagtg 900
aagtttactg tgattctatg gaacaatttg gacaagaaga gtctttagac agctttacgt 960
ccaacaatgg accatttcag tattacttgg gtggtcattc cagtcaaccc atggaaaatt 1020
ctggatttcg tgaagatatt caagtacctc ctggaaatgg caacattggg aatatgcagg 1080
tggttgcagt tgaaggaaaa ggtgaagtca agcatggagg agaagatggc aggaataaca 1140
gcggagcacc acaccgggag aagcgaggcg gagaaactga cgaattctct aatgttagaa 1200
gaggaagagg acataggatg caacacttga gcgaaggaac caagggccgg caggtgggaa 1260
gtggaggtga tggggagcgc tggggctccg acagagggtc ccgaggcagc ctcaatgagc 1320
agategeect egtgetgatg agactgeagg aggacatgea gaatgteett eagagactge 1380
agaaactgga aacgctgact gctttgcagg caaaatcatc aacatcaaca ttgcagactg 1440
ctcctcagcc cacctcacag agaccatctt ggtggccctt cgagatgtct cctggtgtgc 1500
taacgtttgc catcatatgg ccttttattg cacagtggtt ggtgtattta tactatcaaa 1560
gaaggagaag aaaactgaac ctcgag
                                                                  1586
<210> 34
<211> 528
<212> PRT
<213> Homo sapiens
<400> 34
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
                                     10
Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His
             20
                                 25
                                                     30
Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe
         35
Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe
                         55
Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln
 65
Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro
Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr
            100
                                105
                                                    110
```

Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg

Gln Val Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly 420 425 430 Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu 435 440 Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr 455 Leu Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala 470 465 475 480 Pro Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser 485 490 Pro Gly Val Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp 500 505 Leu Val Tyr Leu Tyr Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu 515 520 525

<210> 35 <211> 1618 <212> DNA <213> Homo sapiens

<400> 35

aagettecae catgttecag ttteatgeag getettggga aagetggtge tgetgetgee 60 tgattccgcc gacagacctt gggaccgggg ccaacactgg cagctggaga tggcggacac 120 gagatccgtg cacgagacta ggtttgaggc ggccgtgaag gtgatccaga gtttgccgaa 180 gaatggttca ttccagccaa caaatgaaat gatgcttaaa ttttatagct tctataagca 240 ggcaactgaa ggaccctgta aactttcaag gcctggattt tgggatccta ttggaagata 300 taaatgggat gcttggagtt cactgggtga tatgaccaaa gaggaagcca tgattgcata 360 tgttgaagaa atgaaaaaga ttattgaaac tatgccaatg actgagaaag ttgaagaatt 420 gctgcgtgtc ataggtccat tttatgaaat tgtcgaggac aaaaagagtg gcaggagttc 480 tgatataacc tcagtccgac tggagaaaat ctctaaatgt ttagaagatc ttggtaatgt 540 tctcacttct actccaaacg ccaaaaccgt taatggtaaa gctgaaggca gtgacagtgg 600 agccgagtct gaggaagaag aggcccaaga agaagtgaaa ggagcagaac aaagtgataa 660 tgataagaaa atgatgaaga agtcagcaga ccataagaat ttggaagtca ttgtcactaa 720 tggctatgat aaagatggct ttgttcagga tatacagaat gacattcatg ccagttcttc 780 cctgaatggc agaagcactg aagaagtaaa gcccattgat gaaaacttgg ggcaaactgg 840 aaaatctgct gtttgcattc accaagatat aaatgatgat catgttgaag atgttacagg 900 aattcagcat ttgacaagcg attcagacag tgaagtttac tgtgattcta tggaacaatt 960 tggacaagaa gagtetttag acagetttae gtecaacaat ggaceattte agtattaett 1020 gggtggtcat tccagtcaac ccatggaaaa ttctggattt cgtgaagata ttcaagtacc 1080 tcctggaaat ggcaacattg ggaatatgca ggtggttgca gttgaaggaa aaggtgaagt 1140 caagcatgga ggagaagatg gcaggaataa cagcggagca ccacaccggg agaagcgagg 1200 cggagaaact gacgaattct ctaatgttag aagaggaaga ggacatagga tgcaacactt 1260 gagcgaagga accaagggcc ggcaggtggg aagtggaggt gatggggagc gctggggctc 1320 cgacagaggg tcccgaggca gcctcaatga gcagatcgcc ctcgtgctga tgagactgca 1380 ggaggacatg cagaatgtcc ttcagagact gcagaaactg gaaacgctga ctgctttgca 1440 ggcaaaatca tcaacatcaa cattgcagac tgctcctcag cccacctcac agagaccatc 1500 ttggtggccc ttcgagatgt ctcctggtgt gctaacgttt gccatcatat ggccttttat 1560

- <210> 36
- <211> 539
- <212> PRT
- <213> Homo sapiens
- <400> 36
- Ser Phe His His Val Pro Val Ser Cys Arg Leu Leu Gly Lys Leu Val
 1 5 10 15
- Leu Leu Pro Asp Ser Ala Asp Arg Pro Trp Asp Arg Gly Gln His
 20 25 30
- Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe 35 40 45
- Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe 50 55 60
- Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln 65 70 75 80
- Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 85 90 95
- Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 100 105 110
- Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 115 120 125
- Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 135 140
- Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser 145 150 155 160
- Asp Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp 165 170 175
- Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly
 180 185 190
- Lys Ala Glu Gly Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala 195 200 205
- Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met 210 215 220
- Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn 225 230 235 240
- Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His 245 250 255

Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile
260 265 270

Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln 275 280 285

Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu 290 295 300

Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe 305 310 315 320

Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe 325 330 335

Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly 340 345 350

Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn 355 360 365

Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly 370 375 380

Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly 385 390 395 400

Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg 405 410 415

Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly
420 425 430

Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu 435 440 445

Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln 450 455 460

Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln 465 470 475 480

Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser 485 490 495

Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr 500 505 510

Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr 515 520 525

Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu 530 535

<210> 37 <211> 1586

```
<400> 37
aagetteeac catqtteeaq ttteatqeaq qetettqqqa aagetqqtqc tqetqetqcc 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagatctt ggtaatgttc tcacttctac tccgaacgcc aaaaccgtta 540
atggtaaagc tgaaagcagt gacagtggag ccgagtctga ggaagaagag gcccaagaag 600
aagtgaaagg agcagaacaa agtgataatg ataagaaaat gatgaagaag tcagcagacc 660
ataagaattt ggaagtcatt gtcactaatg gctatgataa agatggcttt gttcaggata 720
tacagaatga cattcatgcc agttcttccc tgaatggcag aagcactgaa gaagtaaagc 780
ccattgatga aaacttgggg caaactggaa aatctgctgt ttgcattcac caagatataa 840
atgatgatca tgttgaagat gttacaggaa ttcagcattt gacaagcgat tcagacagtg 900
aagtttactg tgattctatg gaacaatttg gacaagaaga gtctttagac agctttacgt 960
ccaacaatgg accatttcag tattacttgg gtggtcattc cagtcaaccc atggaaaatt 1020
ctggatttcg tgaagatatt caagtacctc ctggaaatgg caacattggg aatatgcagg 1080
tggttgcagt tgaaggaaaa ggtgaagtca agcatggagg agaagatggc aggaataaca 1140
gcggagcacc acaccgggag aagcgaggcg gagaaactga cgaattctct aatgttagaa 1200
gaggaagagg acataggatg caacacttga gcgaaggaac caagggccgg caggtgggaa 1260
gtggaggtga tggggggcgc tggggctccg acagagggtc ccgaggcagc ctcaatgagc 1320
agategeect egtgetgatg agactgeagg aggacatgea gaatgteett eagagaetge 1380
agaaactgga aacgctgact gctttgcggg caaaatcatc aacatcaaca ttgcagactg 1440
ctcctcagcc cacctcacag agaccatctt ggtggccctt cgagatgtct cctggtgtgc 1500
taacgtttgc catcatatgg ccttttattg cacagtggtt ggtgtattta tactatcaaa 1560
gaaggagaag aaaactgaac ctcgag
                                                                   1586
<210> 38
<211> 528
<212> PRT
<213> Homo sapiens
<400> 38
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
  1
                  5
                                     10
                                                         15
Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His
Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe
                             40
Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe
     50
Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln
Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro
                 85
                                     90
```

<212> DNA

<213> Homo sapiens

Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 100 105 Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 120 Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 135 Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala 165 170 Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser 185 Glu Glu Glu Glu Glu Glu Glu Val Lys Gly Ala Glu Gln Ser Asp 200 195 Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu 215 220 Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile 225 230 235 240 Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala 265 Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr 275 280 Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp 295 300 Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser 305 310 315 320 Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn 345 Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu 355 Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg 385 390 395

Ł

Gly Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg 405 410 415 Gln Val Gly Ser Gly Gly Asp Gly Gly Arg Trp Gly Ser Asp Arg Gly 425 Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu 440 Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr 450 455 460 Leu Thr Ala Leu Arg Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala 470 475 465 Pro Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser 485 490 Pro Gly Val Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp 500 505 Leu Val Tyr Leu Tyr Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu 520 525

<210> 39 <211> 1517 <212> DNA <213> Homo sapiens

<400> 39

aagetteeae eatgtteeag ttteatgeag getettggga aagetggtge tgetgetgee 60 tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggtggaca 120 cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180 agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240 aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300 ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360 atgttgaaga agtgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420 tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480 ctgatataac ctcagatctt ggtaatgttc tcacttctac gccaaacgcc aaaaccgtta 540 atggtaaagc tgaaagcagt gacagtggag ccgagtctga ggaagaagag gcccaagaag 600 aagtgaaagg agcagaacaa agtgataatg ataagaaaat gatgaagaag tcagcagacc 660 ataagaattt ggaagtcatt gtcactaatg gctatgataa agatggcttt gttcaggata 720 tacagaatga cattcatgcc agttcttccc tgaatggcag aagcactgaa gaagtaaagc 780 ccattgatga aaacttgggg caaactggaa aatctgctgt ttgcattcac caagatataa 840 atgatgatca tgttgaagat gttacaggaa ttcagcattt gacaagcgat tcagacagtg 900 aagtttactg tgattctatg gaacaatttg gacaagaaga gtctttagac agctttacgt 960 ccaacaatgg accatttcag tattacttgg gtggtcattc cagtcaaccc atggaaaatt 1020 ctggatttcg tgaagatatt caagtacctc ctggaaatgg caggaataac agcggagcac 1080 cacaccggga gaagcgaggc ggagaaactg acgaattctc taatgttaga agaggaagag 1140 gacataggat gcaacacttg agcgaaggaa ccaagggccg gcaggtggga agtggaggtg 1200 atggggagcg ctggggctcc gacagagggt cccgaggcag cctcaatgag cagatcgccc 1260 tegtgetgat gagactgeag gaggacatge agaatgteet teagagactg cagaaactgg 1320 aaacgctgac tgctttgcag gcaaaatcat caacatcaac attgcagact gctcctcagc 1380 ccacctcaca gagaccatct tggtggccct tcgagatgtc tcctggtgtg ctaacgtttg 1440 ccatcatatg gccttttatt gcacagtggt tggtgtattt atactatcaa agaaggagaa 1500 gaaaactgaa cctcgag 1517

<210> 40 <211> 505 <212> PRT <213> Homo sapiens <400> 40 Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys 5 10 15 Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu Glu Met Val Asp Thr Arg Ser Val His Glu Thr Arg Phe 40 Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln 70 Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 90 95 85 Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 105 Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Val Lys Lys Ile Ile 120 Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala 165 170 175 Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser 180 185 Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp 200 205 Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu 210 Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile 235 225 230 Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu

- Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala 260 265 270
- Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr 275 280 285
- Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp 290 295 300
- Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser 305 310 315 320
- Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro 325 330 335
- Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn 340 345 350
- Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Glu Glu 355 360 365
- Thr Asp Glu Phe Ser Asn Val Arg Gly Arg Gly His Arg Met Gln 370 375 380
- His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly Asp 385 390 395 400
- Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn Glu
 405 410 415
- Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn Val 420 425 430
- Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln Ala Lys
 435 440 445
- Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser Gln Arg 450 455 460
- Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr Phe Ala 465 470 475 480
- Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr Tyr Gln
 485 490 495

Arg Arg Arg Lys Leu Asn Leu Glu 500 505

<210> 41

<211> 1361

<212> DNA

<213> Homo sapiens

<400> 41

```
aagetteeae eatgiteeag titeatgeag getetiggga aagetggige igeigeigee 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagct gaaagcagtg 540
acagtggagc cgagtctgag gaagaagagg cccaagaaga agtgaaagga gcagaacaaa 600
gtgataatga tataaatgat gatcatgttg aagatgttac aggaattcag catttgacaa 660
gcgattcaga cagtgaagtt tactgtgatt ctatggaaca atttggacaa gaagagtctt 720
tagacagett taegteeaac aatggaceat tteagtatta ettgggtggt catteeagte 780
aacccatgga aaattctgga tttcgtgaag atattcaagt acctcctgga aatggcaaca 840
ttgggaatat gcaggtggtt gcagttgaag gaaaaggtga agtcaagcat ggaggagaag 900
atggcaggaa taacagcgga gcgccacacc gggagaagcg aggcggagaa actgatgaat 960
tctctaatgt tagaagagga agaggacata ggatgcaaca cttgagcgaa ggaaccaagg 1020
gccggcaggt gggaagtgga ggtgatgggg agcgctgggg ctccgacaga gggtcccgag 1080
gcagcctcaa tgagcagatc gccctcgtgc tgatgagact gcaggaggac atgcagaatg 1140
tccttcagag actgcagaaa ctggaaacgc tgactgcttt gcaggcaaaa tcatcaacat 1200
caacattgca gactgctcct cagcccacct cacagagacc atcttggtgg cccttcgaga 1260
tgtctcctgg tgtgctaacg tttgccatca tatggccttt tattgcacag tggttggcgt 1320
atttatacta tcaaagaagg agaagaaaac tgaacctcga g
<210> 42
<211> 454
<212> PRT
<213> Homo sapiens
```

<400> 42

Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys

Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His 25

Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe 35 40 45

Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe 55

Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln 75 70

Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 85

Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 105

Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 115 120 125

Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 135 140

Gly 145	Pro	Phe	Tyr	Glu	Ile 150	Val	Glu	Asp	Lys	Lys 155	Ser	Gly	Arg	Ser	Ser 160
Asp	Ile	Thr	Ser	Val 165	Arg	Leu	Glu	Lys	Ile 170	Ser	Lys	Cys	Leu	Glu 175	Ala
Glu	Ser	Ser	Asp 180	Ser	Gly	Ala	Glu	Ser 185	Glu	Glu	Glu	Glu	Ala 190	Gln	Glu
Glu	Val	Lys 195	Gly	Ala	Glu	Gln	Ser 200	Asp	Asn	Asp	Ile	Asn 205	Asp	Asp	His
Val	Glu 210	Asp	Val	Thr	Gly	Ile 215	Gln	His	Leu	Thr	Ser 220	Asp	Ser	Asp	Ser
Glu 225	Val	Tyr	Cys	Asp	Ser 230	Met	Glu	Gln	Phe	Gly 235	Gln	Glu	Glu	Ser	Leu 240
Asp	Ser	Phe	Thr	Ser 245	Asn	Asn	Gly	Pro	Phe 250	Gln	Tyr	Tyr	Leu	Gly 255	Gly
His	Ser	Ser	Gln 260	Pro	Met	Glu	Asn	Ser 265	Gly	Phe	Arg	Glu	Asp 270	Ile	Gln
Val	Pro	Pro 275	Gly	Asn	Gly	Asn	Ile 280	Gly	Asn	Met	Gln	Val 285	Val	Ala	Val
Glu	Gly 290	Lys	Gly	Glu	Val	Lys 295	His	Gly	Gly	Glu	Asp 300	Gly	Arg	Asn	Asn
Ser 305	Gly	Ala	Pro	His	Arg 310	Glu	Lys	Arg	Gly	Gly 315	Glu	Thr	Asp	Glu	Phe 320
Ser	Asn	Val	Arg	Arg 325	Gly	Arg	Gly	His	Arg 330	Met	Gln	His	Leu	Ser 335	Glu
Gly	Thr	Lys	Gly 340	Arg	Gln	Val	Gly	Ser 345	Gly	Gly	Asp	Gly	Glu 350	Arg	Trp
Gly	Ser	Asp 355	Arg	Gly	Ser	Arg	Gly 360	Ser	Leu	Asn	Glu	Gln 365	Ile	Ala	Leu
Val	Leu 370	Met	Arg	Leu	Gln	Glu 375	Asp	Met	Gln	Asn	Val 380	Leu	Gln	Arg	Leu
Gln 385	Lys	Leu	Glu	Thr	Leu 390	Thr	Ala	Leu	Gln	Ala 395	Lys	Ser	Ser	Thr	Ser 400
Thr	Leu	Gln	Thr	Ala 405	Pro	Gln	Pro	Thr	Ser 410	Gln	Arg	Pro	Ser	Trp 415	Trp
Pro	Phe	Glu	Met 420	Ser	Pro	Gly	Val	Leu 425	Thr	Phe	Ala	Ile	Ile 430	Trp	Pro
Phe	Ile	Ala 435	Gln	Trp	Leu	Ala	Tyr 440	Leu	Tyr	Tyr	Gln	Arg 445	Arg	Arg	Arg

```
<210> 43
<211> 1619
<212> DNA
<213> Homo sapiens
<400> 43
aagettecae catgttecag ttteatgeag getettggga aagetggtge tgetgetgee 60
tgattcccgc cgacaggcct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc ataattgcat 360
atqttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagat cttggtaatg 540
ttctcacttc tactccgaac gccaaaaccg ttaatggtaa agctgaaagc agtgacagtg 600
gagccgagtc tgaggaagaa gaggcccaag aagaagtgaa aggagcagaa caaagtgata 660
atgataagaa aatgatgaag aagtcagcag accataagaa tttggaagtc attgtcacta 720
atggctatga taaagatggc tttgttcagg atatacagaa tgacattcat gccagttctt 780
ccctgaatgg cagaagcact gaagaagtaa agcccattga tgaaaacttg gggcaaactg 840
gaaaatctgc tgtttgcatt caccaagata taaatgatga tcatgttgaa gatgttacag 900
gaattcagca tttgacaagc gattcagaca gtgaagttta ctgtgattct atggaacaat 960
ttggacaaga agagtettta gacagettta egtecaacaa tggaccattt cagtattact 1020
tgggtggtca ttccagtcaa cccatggaaa attctggatt tcgtgaagat attcaagtac 1080
ctcctggaaa tggcaacatt gggaatatgc aggttgttgc agttgaagga aaaggcgaag 1140
tcaagcatgg aggagaagat ggcaggaata acagcggagc accacaccgg gaggagcgag 1200
gcggagaaac tgacgaattc tctaatgtta gaagaggaag aggacatagg atgcaacact 1260
tgagcgaagg aaccaagggc cggcaggtgg gaagtggagg tgatggggag cgctggggct 1320
ccgacagagg gtcccgaggc agcctcaatg agcatatcgc cctcgtgctg atgagactgc 1380
aggaggacat gcagaatgtc cttcagagac tgcagaaact ggaaacgctg actgctttgc 1440
aggcaaaatc atcaacatca acattgcaga ctgctcctca gcccacctca cagagaccat 1500
cttggtggcc cttcgagatg tctcctggtg tgctaacgtt tgccatcata tggcctttta 1560
ttgcacagtg gttggtgtat ttatactatc aaagaaggag aagaaaactg aacctcgag 1619
<210> 44
<211> 537
<212> PRT
<213> Homo sapiens
<400> 44
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
                  5
                                     10
  1
Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His
                                 25
Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe
        35
                                                 45
Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe
     50
                         55
```

Lys Leu Asn Leu Glu Gly

Gln 65	Pro	Thr	Asn	Glu	Met 70	Met	Leu	Lys	Phe	Tyr 75	Ser	Phe	Tyr	Lys	Gln 80
Ala	Thr	Glu	Gly	Pro 85	Cys	Lys	Leu	Ser	Arg 90	Pro	Gly	Phe	Trp	Asp 95	Pro
Ile	Gly	Arg	Tyr 100	Lys	Trp	Asp	Ala	Trp 105	Ser	Ser	Leu	Gly	Asp 110	Met	Thr
Lys	Glu	Glu 115	Ala	Ile	Ile	Ala	Tyr 120	Val	Glu	Glu	Met	Lys 125	Lys	Ile	Ile
Glu	Thr 130	Met	Pro	Met	Thr	Glu 135	Lys	Val	Glu	Glu	Leu 140	Leu	Arg	Val	Ile
Gly 145	Pro	Phe	Tyr	Glu	Ile 150	Val	Glu	Asp	Lys	Lys 155	Ser	Gly	Arg	Ser	Ser 160
Asp	Ile	Thr	Ser	Val 165	Arg	Leu	Glu	Lys	Ile 170	Ser	Lys	Cys	Leu	Glu 175	Asp
Leu	Gly	Asn	Val 180	Leu	Thr	Ser	Thr	Pro 185	Asn	Lys	Thr	Val	Asn 190	Gly	Lys
Ala	Glu	Ser 195	Ser	Asp	Ser	Gly	Ala 200	Glu	Ser	Glu	Glu	Glu 205	Glu	Ala	Gln
Glu	Glu 210	Val	Lys	Gly	Ala	Glu 215	Gln	Ser	Asp	Asn	Asp 220	Lys	Lys	Met	Met
Lys 225	Lys	Ser	Ala	Asp	His 230	Lys	Asn	Leu	Glu	Val 235	Ile	Val	Thr	Asn	Gly 240
				245	Phe				250					255	
			260		Gly			265					270		
		275			Thr		280					285			_
	290				Val	295					300				
Ser 305	Asp	Ser	Asp	Ser	Glu 310	Val	Tyr	Cys	Asp	Ser 315	Met	Glu	Gln	Phe	Gly 320
Gln	Glu	Glu	Ser	Leu 325	Asp	Ser	Phe	Thr	Ser 330	Asn	Asn	Gly	Pro	Phe 335	Gln
			340		His			345					350		
Glu	Asp	Ile 355	Gln	Val	Pro	Pro	Gly 360	Asn	Gly	Asn	Ile	Gly 365	Asn	Met	Gln

Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp 375 Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Glu Arg Gly Glu 390 395 Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg Met Gln 405 410 His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly Asp 420 425 Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn Glu 440 His Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln Ala Lys 470 475 Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser Gln Arg 485 490 Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr Phe Ala 500 505 Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr Tyr Gln 520 515 525 Arg Arg Arg Lys Leu Asn Leu Glu 530 535 <210> 45 <211> 1619 <212> DNA <213> Homo sapiens <400> 45 aagettecae catgitecag titeatgeag getettggga aagetggtge tgetgetgee 60 tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120 cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180 agaatggttc attccagcca acaaatgaag tgatgcttaa attttatagc ttctataagc 240 aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300 ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360 atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420 tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480 ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagat cttggtaatg 540 ttctcacttc tactccaaac gccaaaaccg ttaatggtaa agctgaaagc agtgacagtg 600 gagccgagtc tgaggaagaa gaggcccaag aagaagtgaa aggagcagaa caaagtgata 660 atgataagaa aatgatgaag aagtcagcag accataagaa tttggaagtc attgtcacta 720 atggctatga taaagatggc tttgttcagg atatacagaa tgacattcat gccagttctt 780 ccctgaatgg cagaagcact gaagaagtaa agcctattga tgaaaacttg gggcaaactg 840 gaaaatctgc tgtttgcatt caccaagata taaatgatga tcatgttgaa gatgttacag 900

gaattcagca tttgacaagc gattcagaca gtgaagttta ctgtgattct atggaacaat 960

ttggacaaga agagtettta gacagettta egtecaacaa tggaceattt cagtattaet 1020 tgggtggtea tteeagteaa eccatggaaa attetggatt tegtgaagat atteaagtae 1080 eteetggaaa tggcaacatt gggaatatge aggtggttge agttgaagga aaaggtgaag 1140 teaageatgg aggagaagat ggcaggaata acageggage gecacacegg gagaagegag 1200 geggagaaac tgatgaatte tetaatgtta gaagaggaag aggacatagg atgeaacact 1260 tgagegaagg aaceaaggge eggeaggtgg gaagtggaga tgatggggag egetgggget 1320 eegacagagg gteeegagge ageeteaatg ageagatege eetegggget 1320 eegacagagg gecagaatgte etteaaggae tgeagaacet ggaaacgetg atgagactge 1380 aggaggacat geagaatgte etteagagae tgeagaacet ggaaacgetg actgetttge 1440 aggeaaaate ateaacatea acattgeaga etgeteetea geecacetea eagagaceat 1500 ettggtggee ettegagatg teteetggtg tgetaacgtt tgecateata tggeetttta 1560 ttgeacagtg gttggtgtat ttatactate aaagaaggag aagaaaactg aacetegag 1619

<210> 46

<211> 538

<212> PRT

<213> Homo sapiens

<400> 46

Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys

1 10 15

Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Asp Arg Gly Gln His Trp
20 25 30

Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu 35 40 45

Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln 50 55 60

Pro Thr Asn Glu Val Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala 65 70 75 80

Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile 85 90 95

Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys
100 105 110

Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu 115 120 125

Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly 130 135 140

Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp 145 150 155 160

Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu 165 170 · 175

Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys
180 185 190

Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln 195 200 205

Glu	Glu 210	Val	Lys	Gly	Ala	Glu 215	Gln	Ser	Asp	Asn	Asp 220	Lys	Lys	Met	Met
Lys 225	Lys	Ser	Ala	Asp	His 230	Lys	Asn	Leu	Glu	Val 235	Ile	Val	Thr	Asn	Gly 240
Tyr	Asp	Lys	Asp	Gly 245	Phe	Val	Gln	Asp	Ile 250	Gln	Asn	Asp	Ile	His 255	Ala
Ser	Ser	Ser	Leu 260	Asn	Gly	Arg	Ser	Thr 265	Glu	Glu	Val	Lys	Pro 270	Ile	Asp
Glu	Asn	Leu 275	Gly	Gln	Thr	Gly	Lys 280	Ser	Ala	Val	Суз	Ile 285	His	Gln	Asp
Ile	Asn 290	Asp	Asp	His	Val	Glu 295	Asp	Val	Thr	Gly	Ile 300	Gln	His	Leu	Thr
Ser 305	Asp	Ser	Asp	Ser	Glu 310	Val	Tyr	Cys	Asp	Ser 315	Met	Glu	Gln	Phe	Gly 320
Gln	Glu	Glu	Ser	Leu 325	Asp	Ser	Phe	Thr	Ser 330	Asn	Asn	Gly	Pro	Phe 335	Gln
Tyr	Tyr	Leu	Gly 340	Gly	His	Ser	Ser	Gln 345	Pro	Met	Glu	Asn	Ser 350	Gly	Phe
Arg	Glu	Asp 355	Ile	Gln	Val	Pro	Pro 360	Gly	Asn	Gly	Asn	Ile 365	Gly	Asn	Met
Gln	Val 370	Val	Ala	Val	Glu	Gly 375	Lys	Gly	Glu	Val	Lys 380	His	Gly	Gly	Glu
Asp 385	Gly	Arg	Asn	Asn	Ser 390	Gly	Ala	Pro	His	Arg 395	Glu	Lys	Arg	Gly	Gly 400
Glu	Thr	Asp	Glu	Phe 405	Ser	Asn	Val	Arg	Arg 410	Gly	Arg	Gly	His	Arg 415	Met
Gln	His	Leu	Ser 420	Glu	Gly	Thr	Lys	Gly 425	Arg	Gln	Val	Gly	Ser 430	Gly	Asp
Asp	Gly	Glu 435	Arg	Trp	Gly	Ser	Asp 440	Arg	Gly	Ser	Arg	Gly 445	Ser	Leu	Asn
Glu	Gln 450	Ile	Ala	Leu	Val	Leu 455	Met	Arg	Leu	Gln	Glu 460	Asp	Met	Gln	Asn
Val 465	Leu	Gln	Arg	Leu	Gln 470	Lys	Leu	Glu	Thr	Leu 475	Thr	Ala	Leu	Gln	Ala 480
Lys	Ser	Ser	Thr	Ser 485	Thr	Leu	Gln	Thr	Ala 490	Pro	Gln	Pro	Thr	Ser 495	Gln
Arg	Pro	Ser	Trp 500	Trp	Pro	Phe	Glu	Met 505	Ser	Pro	Gly	Val	Leu 510	Thr	Phe

```
Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr Tyr
        515
                            520
                                                525
Gln Arg Arg Arg Lys Leu Asn Leu Glu
                        535
<210> 47
<211> 1619
<212> DNA
<213> Homo sapiens
<400> 47
aagcttccac catgttccag tttcatgcag gctcttggga aagctggtgc tgctgctgcc 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagat cttggtaatg 540
ttctcacttc tactccaaac gccaaaaccg ttaatggtaa agctgaaagc agtgacagtg 600
gagccgagtc tgaggaagaa gaggcccaag aagaagtgaa aggagcagaa caaagtgata 660
atgataagaa aatgatgaag aagtcagcag accataagaa tttggaagtc attgtcacta 720
atggctatga taaagatggc tttgttcagg atatgcagaa tgacattcat gccagttctt 780
ccctgaatgg cagaagcact gaagaagtaa ggcctattga tgaaaacttg gggcaaactg 840
gaaaatctgc tgtttgcatt caccaagata taaatgacga tcatgttgaa gatgttacag 900
gaattcagca tttgacaagc gattcagaca gtgaagttta ctgtgattct atggaacaat 960
ttggacaaga agagtettta gacagettta egtecaacaa tggaccattt cagtattact 1020
tgggtggtca ttccagtcaa cccatggaaa attctggatt tcgtgaagat attcaagtac 1080
ctcctggaaa tggcaacatt gggaatatgc aggtggttgc agttgaagga aaaggtgaag 1140
tcaagcatgg aggagaagat ggcaggaata acagcggagc gccacaccgg gagaagcgag 1200
gcggagaaac tgatgaattc tctaatgtta gaagaggaag aggacatagg atgcaacact 1260
tgagcgaagg aaccaagggc cggcaggtgg gaagtggagg tgatggggag cgctggggct 1320
ccgacagagg gtcccgaggc agcctcaatg agcagatcgc cctcgtgctg atgagactgc 1380
aggaggacat gcagaatgtc cttcagagac tgcagaaact ggaaacgctg actgctttgc 1440
aggcaaaatc atcaacatca acattgcaga ctgctcctca gcccacctca cagagaccat 1500
cttggtggcc cttcgagatg tctcctggtg tgctaacgtt tgccatcata tggcctttta 1560
ttgcacagtg gttggtgtat ttatactatc aaagaaggag aagaaaactg aacctcgag 1619
<210> 48
<211> 538
<212> PRT
<213> Homo sapiens
<400> 48
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Asp Arg Gly Gln His Trp
             20
                                 25
```

45

Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe Glu

40

Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln 55 Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala 75 Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys 105 Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser Asp 150 155 Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp Leu 165 170 Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly Lys 185 Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly 230 235 Tyr Asp Lys Asp Gly Phe Val Gln Asp Met Gln Asn Asp Ile His Ala 245 250 Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Arg Pro Ile Asp 260 265 Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp 280 285 Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr 290 295 300 Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly 310 315 Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe Gln 325 330 335 Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe 340 345 350

Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu 370 375 380 Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Gly 385 390 395 400 Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg Met 410 Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly 420 425 430 Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn 440 Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn 455 460 Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln Ala 465 470 475 480 Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser Gln 485 490 Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr Phe 500 505 510 Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr Tyr 515 520 525 Gln Arg Arg Arg Lys Leu Asn Leu Glu 530 535 <210> 49 <211> 1619 <212> DNA <213> Homo sapiens <400> 49 aagcttccac catgttccag tttcatgcag gctcttggga aagctggtgc tgctgctgcc 60 tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120 cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180 agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240 aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300 ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360 atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420 tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480 ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagat cttggtaatg 540 ttctcacttc tactccgaac gccaaaaccg ttaatggtaa agctgaaagc agtgacagtg 600 gagccgagtc tgaggaagaa gaggcccaag aagaagtgaa aggagcagaa caaagtgata 660 atgataagaa aatgatgaag aagtcagcag accataagaa tttggaagtc attgtcacta 720 atggctatga taaagatggc tttgttcagg atatacagaa tgacattcat gccagttctt 780

Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met
355 360 365

```
ccctgaatgg cagaagcact gaagaagtaa agcccattga tgaaaacttg gggcaaactg 840
gaaaatctgc tgtttgcatt caccaagata taaatgatga tcatgttgaa gatgttacag 900
gaattcagca tttgacaagc gattcagaca gtgaagttta ctgtgattct atggaacaat 960
ttggacaaga agagtettta gacagettta egtecaacaa tggaceattt cagtattact 1020
tgggtggtca ttccagtcaa cccatggaaa attctggatt tcgtgaagat attcaagtac 1080
ctcctggaaa tggcaacatt gggaatatgc aggtggttgc agttgaagga aaaggtgaag 1140
tcaagcatgg aggagaagag ggcaggaata acagcggagc accacaccgg gagaagcgag 1200
gcggagaaac tgacgaattc tctaatgtta gaagaggaag aggacatagg atgcaacacc 1260
tgagcgaagg aaccaagggc cggcaggtgg gaagtggagg tgatggggag cgctggggct 1320
ccgacagagg gtcccgaggc agcctcaatg agcagatcgc cctcgtgctg atgagactgc 1380
aggaggacat gcagaatgtc cttcagagac tgcagaaact ggaaacgctg actgctttgc 1440
aggcaaaatc atcaacatca acattgcaga ctgctcctca gcccacctca cagagaccat 1500
cttggtggcc cttcgagatg tctcctggtg tgctaacgtt tgccatcata tggcctttta 1560
ttgcacagtg gttggtgtat ttatactatc aaagaaggag aagaaaactg aacctcgag 1619
<210> 50
<211> 539
<212> PRT
```

<213> Homo sapiens

<400> 50

Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys 5 1 10

Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His 25

Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe 40 45

Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe 55

Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln 75

Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 85 90 95

Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 100 105

Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 120 125

Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 135

Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser 150 155

Asp Ile Thr Ser Val Arg Leu Glu Lys Ile Ser Lys Cys Leu Glu Asp 170 175 165

Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala Lys Thr Val Asn Gly 180 185 190

Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Ala 200 Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met 215 Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn 240 Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His 250 Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile 270 Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu 295 Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe 305 315 320 Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe 330 Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly 345 Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Glu Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly 385 390 400 Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg 410 Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly 425 Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu 435 440 445 Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln 455 Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln 465 470 475 480 Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser 485 490

```
Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr
            500
                                505
Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr
                            520
                                                 525
Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu
    530
                        535
<210> 51
<211> 1619
<212> DNA
<213> Homo sapiens
<400> 51
aagettecae catgttecag ttteatgeag getettggga aagetggtge tgetgetgee 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480
ctgatataac ctcagtccga ctggagaaaa tctctaaatg tttagaagat cttggtaatg 540
ttctcacttc tactccgaac gccaaaaccg ttaatggtaa agctgaaagc agtgacagtg 600
gagccgagtc tgaggaagaa gaggcccaag aagaagtgaa aggagcagaa caaagtgata 660
atgataagaa aatgatgaag aagtcagcag accataagaa tttggaagtc attgtcacta 720
atggctatga taaagatggc tttgttcagg atatacagaa tgacattcat gccagttctt 780
ccctgaatgg cagaagcact gaagaagtaa agcccattga tgaaaacttg gggcaaactg 840
gaaaatctgc tgtttgcatt caccaagata taaatgatga tcatgttgaa gatgttacag 900
gaattcagca tttgacaagc gattcagaca gtgaagttta ctgtgattct atggaacaat 960
ttggacaaga agagtettta gacagettta egtecaacaa tggaccattt cagtattact 1020
tgggtggtca ttccagtcaa cccatggaaa attctggatt tcgtgaagat attcaagtac 1080
ctcctggaaa tggcaacatt gggaatatgc aggtggttgc agttgaagga aaaggtgaag 1140
tcaagcatgg aggagaagat ggcaggaata acagcggagc accacaccgg gagaagcgag 1200
gcggagaaac tgacgaattc tctaatgtta gaagaggaag aggacatagg atgcaacact 1260
tgagcgaagg aaccaagggc cggcaggtgg gaagtggagg tgatggggag cgctggggct 1320
ccgacagagg gtcccgaggc agcctcaatg agcagatcgc cctcgtgctg atgagactgc 1380
aggaggacat gcagaatgtc cttcagagac tgcagaaact ggaaacgctg actgctttgc 1440
aggcaaaatc atcaacatca acattgcaga ctgctcctca gcccacctca cagagaccat 1500
cttggtggcc cttcgagatg tctcctggtg tgctaacgtt tgccatcata tggcctttta 1560
ttgcacagtg gttggtgtat ttatactatc aaagaaggag aagaaaactg aacctcgag 1619
<210> 52
<211> 539
<212> PRT
<213> Homo sapiens
<400> 52
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
                  5
  1
                                     10
                                                         15
Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His
```

25

Trp	Gln	Leu 35	Glu	Met	Ala	Asp	Thr 40	Arg	Ser	Val	His	Glu 45	Thr	Arg	Phe
Glu	Ala 50	Ala	Val	Lys	Val	Ile 55	Gln	Ser	Leu	Pro	Lys 60	Asn	Gly	Ser	Phe
Gln 65	Pro	Thr	Asn	Glu	Met 70	Met	Leu	Lys	Phe	Tyr 75	Ser	Phe	Tyr	Lys	Gln 80
Ala	Thr	Glu	Gly	Pro 85	Cys	Lys	Leu	Ser	Arg 90	Pro	Gly	Phe	Trp	Asp 95	Pro
Ile	Gly	Arg	Tyr 100	Lys	Trp	Asp	Ala	Trp 105	Ser	Ser	Leu	Gly	Asp 110	Met	Thr
Lys	Glu	Glu 115	Ala	Met	Ile	Ala	Туг 120	Val	Glu	Glu	Met	Lys 125	Lys	Ile	Ile
Glu	Thr 130	Met	Pro	Met	Thr	Glu 135	Lys	Val	Glu	Glu	Leu 140	Leu	Arg	Val	Ile
Gly 145	Pro	Phe	Tyr	Glu	Ile 150	Val	Glu	Asp	Lys	Lys 155	Ser	Gly	Arg	Ser	Ser 160
Asp	Ile	Thr	Ser	Val 165	Arg	Leu	Glu	Lys	Ile 170	Ser	Lys	Cys	Leu	Glu 175	Asp
Leu	Gly	Asn	Val 180	Leu	Thr	Ser	Thr	Pro 185	Asn	Ala	Lys	Thr	Val 190	Asn	Gly
Lys	Ala	Glu 195	Ser	Ser	Asp	Ser	Gly 200	Ala	Glu	Ser	Glu	Glu 205	Glu	Glu	Ala
Gln	Glu 210	Glu	Val	Lys	Gly	Ala 215	Glu	Gln	Ser	Asp	Asn 220	Asp	Lys	Lys	Met
Met 225	Lys	Lys	Ser	Ala	Asp 230	His	Lys	Asn	Leu	Glu 235	Val	Ile	Val	Thr	Asn 240
Gly	Tyr	Asp	Lys	Asp 245	Gly	Phe	Val	Gln	Asp 250	Ile	Gln	Asn	Asp	Ile 255	His
Ala	Ser	Ser	Ser 260	Leu	Asn ·	Gly	Arg	Ser 265	Thr	Glu	Glu	Val	Lys 270	Pro	Ile
Asp	Glu	Asn 275	Leu	Gly	Gln	Thr	Gly 280	Lys	Ser	Ala	Val	Cys 285	Ile	His	Gln
Asp	Ile 290	Asn	Asp	Asp	His	Val 295	Glu	Asp	Val	Thr	Gly 300	Ile	Gln	His	Leu
Thr 305	Ser	Asp	Ser	Asp	Ser 310	Glu	Val	Tyr	Cys	Asp 315	Ser	Met	Glu	Gln	Phe 320
Gly	Gln	Glu	Glu	Ser	Leu	Asp	Ser		Thr	Ser	Asn	Asn	Gly	Pro	Phe

Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn 360 Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly 395 Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg 405 410 Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly 420 425 Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu 440 Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln 450 455 Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln 475 465 Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala Pro Gln Pro Thr Ser 485 490 495 Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser Pro Gly Val Leu Thr 505 Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp Leu Val Tyr Leu Tyr 520 525 Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu 530 535 <210> 53 <211> 1586 <212> DNA <213> Homo sapiens <400> 53 aagcttccac catgttccag tttcatgcag gctcttggga aagctggtgc tgctgctgcc 60 tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120 cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180 agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240 aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300 ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360 atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420 tgctgcgtgt cataggtcca ttttatgaaa ttgtcgagga caaaaagagt ggcaggagtt 480 ctgatataac ctcagatctt ggtaatgttc tcacttctac tccaaacgcc aaaaccgtta 540 atggtaaagc tgaaagcagt gacagtggag ccgagtctga ggaagaagag gcccaagaag 600

Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly

```
aagtgaaagg agcagaacaa agtgataatg ataagaaaat gatgaagaag tcagcagacc 660
ataagaattt ggaagtcatt gtcactaatg gctatgataa aaatggcttt gttcaggata 720.
tacagaatga cattcatgcc agttcttccc tgaatggcag aagcactgaa gaagtaaagc 780
ccattgatga aaacttgggg caaactggaa aatctgctgt ttgcattcac caagatataa 840
atgatgatca tgttgaagat gttacaggaa ttcagcattt gacaagcgat tcagacagtg 900
aagtttactg tgattctatg gaacaatttg gacaagaaga gtctttagac agctttacgt 960
ccaacaatgg accatttcag tattacttgg gtggtcattc cagtcaaccc atggaaaatt 1020
ctggatttcg tgaagatatt caagtacctc ctggaaatgg caacattggg aatatgcagg 1080
tggttgcagt tgaaggaaaa ggtgaagtca agcatggagg agaagatggc aggaataaca 1140
gcggagcacc acaccgggag aagcgaggcg gagaaactga cgaattctct aatgttagaa 1200
gaggaagagg acataggatg caacacttga gcgaaggaac caagggccgg caggtgggaa 1260
gtggaggtga tggggagcgc tggggctccg acagagggtc ccgaggcagc ctcaatgagc 1320
agatcgccct cgtgctgatg agactgcagg aggacatgca gaatgtcctt cagagactgc 1380
agaaactgga aacgctgact gctttgcagg caaaatcatc aacatcaaca ttgcagactg 1440
ctcctcagcc cacctcacag agaccatctt ggtggccctt cgagatgtct cctggtgtgc 1500
taacgtttgc catcatatgg ccttttattg cacagtggtt ggtgtattta tactatcaaa 1560
                                                                  1586
gaaggagaag aaaactgaac ctcgag
```

<210> 54

<211> 528

<212> PRT

<213> Homo sapiens

<400> 54

Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys

1 10 15

Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His
20 25 30

Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe 35 40 45

Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe 50 55 60

Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln 65 70 75 80

Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 85 90 95

Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr 100 105 110

Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 115 120 125

Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 135 140

Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser 145 150 155 160

Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala 165 170 175 Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu Val Ile Val Thr Asn Gly Tyr Asp Lys Asn Gly Phe Val Gln Asp Ile Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro Met Glu Asn Ser Gly Phe Arg Glu Asp Ile Gln Val Pro Pro Gly Asn Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His Arg Glu Lys Arg Gly Gly Glu Thr Asp Glu Phe Ser Asn Val Arg Arg Gly Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg Gln Val Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr Leu Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala

```
Pro Gly Val Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp
                                505
Leu Val Tyr Leu Tyr Tyr Gln Arg Arg Arg Lys Leu Asn Leu Glu
        515
                            520
                                                525
<210> 55
<211> 1586
<212> DNA
<213> Homo sapiens
<400> 55
aagettecae catgttecag ttteatgeag getettggga aagetggtge tgetgetgee 60
tgattcccgc cgacagacct tgggaccggg gccaacactg gcagctggag atggcggaca 120
cgagatccgt gcacgagact aggtttgagg cggccgtgaa ggtgatccag agtttgccga 180
agaatggttc attccagcca acaaatgaaa tgatgcttaa attttatagc ttctataagc 240
aggcaactga aggaccctgt aaactttcaa ggcctggatt ttgggatcct attggaagat 300
ataaatggga tgcttggagt tcactgggtg atatgaccaa agaggaagcc atgattgcat 360
atgttgaaga aatgaaaaag attattgaaa ctatgccaat gactgagaaa gttgaagaat 420
tgctgcgtgt cataggtcca ttttatgaaa ttgtcgaaga caaaaagagt ggcaggagtt 480
ctgatataac ctcagatctt ggtaatgttc tcacttctac tccgaacgcc aaaaccgtta 540
atggtaaagc tgaaagcagt gacagtggag ccgagtctga ggaagaagag gcccaagaag 600
aagtgaaagg agcagaacaa agtgataatg ataagaaaat gatgaagaag tcagcagacc 660
ataagaattt ggaagtcatt gtcactaatg gctatgataa agatggcttt gttcaggata 720
tacagaatga cattcatgcc agttcttccc tgaatggcag aagcactgaa gaagtaaagc 780
ccattgatga aaacttgggg caaactggaa aatctgctgt ttgcattcac caagatataa 840
atgatgatca tgttgaagat gttacaggaa ttcagcattt gacaagcgat tcagacagtg 900
aagtttactg tgattctatg gaacaatttg gacaagaaga gtctttagac agctttacgt 960
ccaacaatgg accatttcag tattacttgg gtggtcattc cagtcaaccc atggaaaatt 1020
ctggatttcg tgaatatatt caagtacctc ctggaaatgg caacattggg aatatgcagg 1080
tggttgcagt tgaaggaaaa ggtgaagtca agcatggagg agaagatggc aggaataaca 1140
gcggagcacc acaccgggag aagcgaggcg gagaaactga cgaattctct aatgttggaa 1200
gaggaagagg acataggatg caacacttga gcgaaggaac caagggccgg caggtgggaa 1260
gtggaggtga tggggagcgc tggggctccg acagagggtc ccgaggcagc ctcaatgagc 1320
agategeect egtgetgatg agactgeagg aggacatgea gaatgteett eagagactge 1380
agaaactgga aacgccgact gctttgcagg caaaatcatc aacatcaaca ttgcagactg 1440
ctcctcagcc cacctcacag agaccatctt ggtggccctt cgagatgtct cctggtgtgc 1500
taacgtttgc catcatatgg ccttttattg cacagtggtt ggtgtattta tactatcaaa 1560
gaaggagaag aaaactgaac ctcgag
                                                                  1586
<210> 56
<211> 528
<212> PRT
<213> Homo sapiens
<400> 56
Ala Ser Thr Met Phe Gln Phe His Ala Gly Ser Trp Glu Ser Trp Cys
  1
                                     10
```

Pro Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser

490

Cys Cys Cys Leu Ile Pro Ala Asp Arg Pro Trp Asp Arg Gly Gln His Trp Gln Leu Glu Met Ala Asp Thr Arg Ser Val His Glu Thr Arg Phe 40 Glu Ala Ala Val Lys Val Ile Gln Ser Leu Pro Lys Asn Gly Ser Phe Gln Pro Thr Asn Glu Met Met Leu Lys Phe Tyr Ser Phe Tyr Lys Gln Ala Thr Glu Gly Pro Cys Lys Leu Ser Arg Pro Gly Phe Trp Asp Pro 95 Ile Gly Arg Tyr Lys Trp Asp Ala Trp Ser Ser Leu Gly Asp Met Thr Lys Glu Glu Ala Met Ile Ala Tyr Val Glu Glu Met Lys Lys Ile Ile 120 Glu Thr Met Pro Met Thr Glu Lys Val Glu Glu Leu Leu Arg Val Ile 130 135 Gly Pro Phe Tyr Glu Ile Val Glu Asp Lys Lys Ser Gly Arg Ser Ser 150 155 Asp Ile Thr Ser Asp Leu Gly Asn Val Leu Thr Ser Thr Pro Asn Ala 170 Lys Thr Val Asn Gly Lys Ala Glu Ser Ser Asp Ser Gly Ala Glu Ser Glu Glu Glu Glu Ala Gln Glu Glu Val Lys Gly Ala Glu Gln Ser Asp 200 Asn Asp Lys Lys Met Met Lys Lys Ser Ala Asp His Lys Asn Leu Glu 210 215 Val Ile Val Thr Asn Gly Tyr Asp Lys Asp Gly Phe Val Gln Asp Ile . 225 235 Gln Asn Asp Ile His Ala Ser Ser Ser Leu Asn Gly Arg Ser Thr Glu 250 Glu Val Lys Pro Ile Asp Glu Asn Leu Gly Gln Thr Gly Lys Ser Ala 260 265 270 Val Cys Ile His Gln Asp Ile Asn Asp Asp His Val Glu Asp Val Thr 280 Gly Ile Gln His Leu Thr Ser Asp Ser Asp Ser Glu Val Tyr Cys Asp 290 295 300 Ser Met Glu Gln Phe Gly Gln Glu Glu Ser Leu Asp Ser Phe Thr Ser 305 310 315 320

Asn Asn Gly Pro Phe Gln Tyr Tyr Leu Gly Gly His Ser Ser Gln Pro 325 330 335

Met Glu Asn Ser Gly Phe Arg Glu Tyr Ile Gln Val Pro Pro Gly Asn

340 345 350

Gly Asn Ile Gly Asn Met Gln Val Val Ala Val Glu Gly Lys Gly Glu 355 360 365

Val Lys His Gly Gly Glu Asp Gly Arg Asn Asn Ser Gly Ala Pro His 370 375 380

Arg Glu Lys Arg Gly Glu Thr Asp Glu Phe Ser Asn Val Gly Arg 385 390 395 400

Gly Arg Gly His Arg Met Gln His Leu Ser Glu Gly Thr Lys Gly Arg 405 410 415

Gln Val Gly Ser Gly Gly Asp Gly Glu Arg Trp Gly Ser Asp Arg Gly
420 425 430

Ser Arg Gly Ser Leu Asn Glu Gln Ile Ala Leu Val Leu Met Arg Leu 435 440 445

Gln Glu Asp Met Gln Asn Val Leu Gln Arg Leu Gln Lys Leu Glu Thr 450 455 460

Pro Thr Ala Leu Gln Ala Lys Ser Ser Thr Ser Thr Leu Gln Thr Ala 465 470 475 480

Pro Gln Pro Thr Ser Gln Arg Pro Ser Trp Trp Pro Phe Glu Met Ser 485 490 495

Pro Gly Val Leu Thr Phe Ala Ile Ile Trp Pro Phe Ile Ala Gln Trp 500 505 510

Leu Val Tyr Leu Tyr Tyr Gln Arg Arg Arg Arg Lys Leu Asn Leu Glu 515 520 525

<210> 57

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:oligonucleotide
 primer

<400> 57

tgaaaaagat tattgaaact atgccaa

```
<210> 58
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 58
                                                                    36
aagcttgaca gaccttggga ccggggccaa cactgg
<210> 59
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 59
                                                                    36
ctcgagagga gacatctcga agggccacca agatgg
<210> 60
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 60
                                                                    31
aagcttacta ggtttgaggc ggccgtgaag g
<210> 61
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 61
ctcgagagga gacatctcga agggccacca agatgg
                                                                    36
<210> 62
<211> 38
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 62
                                                                    38
aagcttccac catgttccag tttcatgcag gctcttgg
<210> 63
<211> 34
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 63
                                                                    34
ctcgaggttc agttttcttc tccttctttg atag
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 64
                                                                    25
gcagtctctg aaggacattc tgcat
<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 65
                                                                   25
tgttattcct gccatcttct cctcc
<210> 66
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:oligonucleotide
      primer
<400> 66
```

acttcactgt ctgaatc	gct tgtca		25
<210> 67 <211> 27 <212> DNA <213> Artificial S	equence		
<220> <223> Description primer	of Artificial	Sequence:oligonucleotide	
<400> 67 ttcttatggt ctgctga	ctt cttcatc		27
<210> 68 <211> 25 <212> DNA <213> Artificial S	equence		
<220> <223> Description primer	of Artificial	Sequence:oligonucleotide	
<400> 68 tgacacgcag caattet	tca acttt		25
<210> 69 <211> 25 <212> DNA <213> Artificial S	equence		
<220> <223> Description primer	of Artificial	Sequence:oligonucleotide	
<400> 69 actgcagaaa ctggaaa	cgc tgact		25
<210> 70 <211> 24 <212> DNA <213> Artificial S	equence		
<220> <223> Description primer	of Artificial :	Sequence:oligonucleotide	?
<400> 70 gagaagatgg caggaat	aac agcg		24
<210> 71 <211> 29			

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence primer	ence:oligonucleotide
<400> gttta	71 ctgtg attctatgga acaatttgg	29
<210><211><211><212><213>	30	
<220> <223>	Description of Artificial Seque	ence:oligonucleotide
<400> ccata	72 agaat ttggaagtca ttgtcactaa	30
<210><211><211><212><213>	29	
<220> <223>	Description of Artificial Seque	ence:oligonucleotide
<400> tcata	73 ggtcc attttatgaa attgtcgag	29
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Seque	ence:oligonucleotide
<400> catgto	74 cctcc tgcagtctca tca	23
	27 DNA Artificial Sequence	
<220> <223>	Description of Artificial Seque	nce:oligonucleotide

	primer	
<400> cttcaa	75 actgc aaccacctgc atattcc	27
<210><211><212><212><213>	26	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> gctgaa	76 attcc tgtaacatct tcaaca	26
<210><211><212><212><213>	31	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> ttttct	77 Etate attateaett tgttetgete e _j	31
<210><211><211><212><213>	26	
	Description of Artificial Sequence:oligonucleotide primer	
<400> attctt	78 caac tttctcagtc attggc	26
<210><211><211><212><213>	24	
	Description of Artificial Sequence:oligonucleotide primer	
<400> gctgat	79 gaga ctgcaggagg acat	24

<210><211><211><212><213>	25	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> gaaaag	80 ggtga agtcaagcat ggagg	25
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> tcagca	81 atttg acaagcgatt cag	23
<210> <211> <212> <213>	27	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> aagaag	82 gtcag cagaccataa gaatttg	27
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence:oligonucleotide primer	
<400> gctgcg	83 gtgtc ataggtccat ttt	23
<210><211><211><212><213>	26	

<220> <223>	Description of Artificial primer	Sequence:oligonucleotide	
<400> caaag	84 cagtc agcgtttcca gtttct		26
<210><211><211><212><213>	24		
<220> <223>	Description of Artificial primer	Sequence:oligonucleotide	
<400> cgctg	85 ttatt cctgccatct tctc		24
<210><211><212><213>	24		
<220> <223>	Description of Artificial primer	Sequence:oligonucleotide	
<400> tcgct	86 tgtca aatgetgaat teet		24
<210><211><212><213>	27		
<220> <223>	Description of Artificial primer	Sequence:oligonucleotide	
<400> tatca	87 ctttg ttctgctcct ttcactt		27
<210><211><212><213>	24		
<220> <223>	Description of Artificial primer	Sequence:oligonucleotide	

tcaacatatg caatcatggc ttcc		24
caacacacy caaccacyyc cocc		24
<210> 89		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
1213 Attititiat bequence		
<220>		
<223> Description of Artificial	Sequence oligonucleotide	
primer	bequence. orragonation trace	
primer		
<400> 89		
gcaaaatcat caacatcaac attgcag		27
geadaceae caacaceaac accycay		2,
<210> 90		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
V213> Arcificial Sequence		
<220>		
<pre><220> <223> Description of Artificial</pre>	Somiongovoligonuglootido	
	sequence:orrgonucreotrae	
primer		
1100- 00		
<400> 90		27
aggcggagaa actgacgaat tctctaa		21
<210> 91		
<211> 26		
<211> 26 <212> DNA		
<213> Artificial Sequence		
.220.		
<220>	0	
<223> Description of Artificial	Sequence:oligonucleotide	
primer		
.400: 01		
<400> 91		20
acaagcgatt cagacagtga agttta		26
-010- 00		
<210> 92		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial	Sequence:oligonucleotide	
primer		
<400> 92		
tgataagaaa atgatgaaga agtcagc		27