Skript: Gruppentheorie 1.

1 Gruppen

Definition 1.1. Eine *Gruppe* ist eine Menge G zusammen mit einer Verknüpfung $\circ: G \times G \to G$ so dass

- a) $\forall x, y, z \in G : (x \circ y) \circ z = x \circ (y \circ z);$
- b) $\exists e \in G : e \circ x = x = x \circ e \quad \forall x \in G;$ (e heißt neutrale Element)
- c) $\forall x \in G, \exists y \in G : x \circ y = e = y \circ x.$ (y ist das inverse Element x^{-1})

Eine Gruppe heißt abelsch falls $x \circ y = y \circ x$ für alle $x, y \in G$.

Definition 1.2. Eine Teilmenge $U \subseteq G$ heißt eine *Untergruppe* von G falls U selbst eine Gruppe bezüglich der Verknupfung \circ_G ist. Man schreibt $U \leq G$.

Äquivalent: $\emptyset \neq U \subseteq G$ und $\forall h_1, h_2 \in U : h_1 \circ h_2^{-1} \in U$.

Definition 1.3. Die Anzahl |G| der Elemente einer Gruppe G heißt die Ordnung von G. Die Ordnung ord(g) des Elements $g \in G$ ist die kleinste $n \in \mathbb{N}$ so dass $g^n = e$, falls n existiert. Falls es keine solche n gibt, ist $\operatorname{ord}(g) = \infty$.

- Seien G eine Gruppe und $g \in G$ ein Element. Dann ist g = e genau dann wenn $\operatorname{ord}(g) = 1$.
- Sei nun G endlich. Die Ordnung ord(g) teilt |G|.

Definition 1.4. Sei $H \leq G$ und $g \in G$. Die *Linksnebenklasse* von g ist $gH = \{g \circ h \mid h \in H\}$. Die *Rechtsnebenklasse* von g ist $Hg = \{h \circ g \mid h \in H\}$.

- Seien $g_1, g_2 \in G$. Ist $g_1 H = g_2 H$ genau dann wenn $g_2^{-1} \circ g_1 \in H$. Analog $Hg_1 = Hg_2 \iff g_2 \circ g_1^{-1} \in H$.
- Die Gruppe lässt sich als disjunkter Vereinigung von Links- (bzw. Rechts-) nebenklassen schreiben.

Definition 1.5. Sei $G/H := \{gH \mid g \in G\}$ die Menge aller Linksnebenklassen von $H \leq G$. Der Index [G:H] von $H \leq G$ ist die Kardinalität von G/H.

Satz 1.6 (Lagrange). Sei H eine Untergruppe der endlichen Gruppe G. Dann gilt: $|G| = [G:H] \cdot |H|$.

Definition 1.7. Eine Untergruppe $H \leq G$ heißt Normalteiler, falls $g \circ h \circ g^{-1} \in H$ gilt für alle $g \in G$, $h \in H$. Äquivalent: gH = Hg für alle $g \in G$. Man schreibt $H \subseteq G$.

• Eine Untergruppe vom Index 2 ist ein Normalteiler.

Satz 1.8. Sei $H \subseteq G$. Die Menge G/H ist eine Gruppe bezüglich der Verknupfung

$$(gH) \circ (g'H) = (g \circ g')H.$$

Die Gruppe G/H heißt Faktorgruppe oder Quotientengruppe.

Satz 1.9 (Korrespondenzsatz). Sei G eine Gruppe und N ein Normalteiler von G. Die Untergruppen (bzw. Normalteiler) von G/N entsprechen bijektiv den Untergruppen (bzw. Normalteilern) von G, die N enthalten.

Definition 1.10.

- Eine Gruppe G heißt einfach, falls sie keine Normalteiler außer G und $\{e\}$ hat.
- Sei G eine Gruppe und X eine nichtleere Teilmenge von G. Die Menge $N_G(X) := \{g \in G \mid gXg^{-1} = X\}$ heißt Normalisator von X in G.
- Die Menge $Z(G) := \{g \in G \mid g \circ h = h \circ g, \forall h \in G\}$ heißt Zentrum von G.
- Normalisator und Zentrum sind Untergruppen.

2 Besondere Gruppen

- a) Eine Gruppe G ist zyklisch falls es ein $g \in G$ gibt, so dass $G = \{g^n \mid n \in \mathbb{Z}\}$. Die Ordnung einer zyklischen Gruppe ist die Ordnung des Erzeugers g.
- b) Die Permutationsgruppe oder symmetrische Gruppe von n Ziffern S_n ist die Gruppe aller bijektiven Abbildungen $\{1,\ldots,n\} \to \{1,\ldots,n\} \ (n \geq 1)$ bezüglich der Verknüpfung Komposition von Abbildungen. Die Gruppe hat Ordnung $|S_n| = n!$ und ist nicht abelsch für $n \geq 3$.
 - Jede Permutation kann als Produkt disjunkter Zyklen dargestellt werden.
 - Die Ordnung eines Produkts disjunkter Zyklen ist das kleinste gemeinsame Vielfache der Ordnungen der Faktoren.
 - Ein Zyklus z ist selbst eine Permutation der Ordnung ord(z) = Länge(z).
 - Seien σ , $(a_1 \ldots a_k) \in S_n$, dann $\sigma(a_1 \ldots a_k) \sigma^{-1} = (\sigma(a_1) \ldots \sigma(a_k))$.
- c) Eine Permutation, die genau zwei Elemente vertauscht, heißt Transposition. Sei $\sigma \in S_n$. Dann ist $\sigma = \tau_1 \cdots \tau_k$ für ein $k \in \mathbb{N}$ und Transpositionen $\tau_i \in S_n$. Die Zahl $sgn(\sigma) = (-1)^k$ heißt Signum von σ . Die Permutation σ heißt gerade, falls $sgn(\sigma) = 1$. Andernfalls heißt σ ungerade.

Für ein Zyklus $z \in S_n$ der Länge l gilt $sgn(z) = (-1)^{l-1}$, und die Signum-Funktion ist multiplikativ, d.h. für alle $\sigma_1, \sigma_2 \in S_n$ gilt $sgn(\sigma_1, \sigma_2) = sgn(\sigma_1)sgn(\sigma_2)$.

Die alternierende Gruppe A_n ist die Gruppe aller geraden Permutationen in S_n . Die Gruppe $A_n \leq S_n$ hat Index 2 und Ordnung $\frac{n!}{2}$. Für $n \geq 5$ ist A_n einfach.

d) Die n-te Diedergruppe $D_n \leq S_n$ ($n \geq 3$) ist die Symmetriegruppe eines regelmäßigen n-Ecks im \mathbb{R}^2 (für n=3 gilt $S_3=D_3$). Die Gruppe

$$D_n = \langle \sigma, \tau \mid \sigma^n = \tau^2 = id, \ \tau \sigma = \sigma^{-1} \tau \rangle$$

besteht aus n Drehungen: σ^i , $i \in \{0, \dots, n-1\}$, die eine zyklische Untergruppe der Ordnung n bilden, und n Spiegelungen: $\sigma^i \tau$, $i \in \{0, \dots, n-1\}$, ord $(\sigma^i \tau) = 2$;

Die Gruppe hat damit Ordnung $|D_n|=2n$, und jedes Element von D_n lässt sich eindeutig in der Form $\sigma^i \tau^k$ schreiben, mit $i \in \{0, \ldots, n-1\}$ und $k \in \{0, 1\}$.

Skript: Gruppentheorie 2.

1 Untergruppen und Faktorgruppen von zyklischen Gruppen

Satz 1.1. Alle Untergruppen und Faktorgruppen von zyklischen Gruppen sind zyklisch.

Satz 1.2. Sei $G = \langle g \rangle$ eine endliche zyklische Gruppe der Ordnung |G| = n, und sei $k \in \mathbb{N}$ ein Teiler von n.

Dann gibt es genau eine Untergruppe $H \leq G$ mit |H| = k, und zwar $H = \langle g^{n/k} \rangle$.

2 Klassifikation endlicher abelscher Gruppen

Sei G eine endliche abelsche Gruppe. Dann ist

$$G \cong (\mathbb{Z}/p_1^{n_1}\mathbb{Z})^{s_1} \times (\mathbb{Z}/p_2^{n_2}\mathbb{Z})^{s_2} \times \cdots \times (\mathbb{Z}/p_k^{n_k}\mathbb{Z})^{s_k},$$

wobei p_i Primzahlen (nicht unbedingt verschieden!) und n_i, s_i nicht-negative ganze Zahlen sind. Die Primzahlpotenzen $p_i^{n_i}$ sind bis auf Reihenfolge eindeutig und $|G| = p_1^{n_1 s_1} \cdot p_2^{n_2 s_2} \dots p_k^{n_k s_k}$.

Alternativ, kann man G als Produkt

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_l\mathbb{Z},$$

darstellen, wobei $d_1 > 1$, d_i teilt d_{i+1} für alle $1 \le i \le l-1$ und $|G| = d_1 \cdot d_2 \dots d_l$.

Beispiel 1. Sei G die abelsche Gruppe $\mathbb{Z}/30\mathbb{Z} \times (\mathbb{Z}/12\mathbb{Z})^2$, dann ist

$$G \cong \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2^2\mathbb{Z})^2 \times (\mathbb{Z}/3\mathbb{Z})^3 \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}.$$

3 Homomorphismen

Definition 3.1. Seien G, H Gruppen. Eine Abbildung $\phi: G \to H$ heißt *Gruppenhomomorphismus* falls $\phi(g_1) \circ \phi(g_2) = \phi(g_1 \circ g_2)$ für alle $g_1, g_2 \in G$.

Das Bild von ϕ ist eine Untergruppe von H und der Kern ker $\phi := \{g \in G \mid \phi(g) = e\}$ ist ein Normalteiler von G.

Falls ϕ bijektiv ist, heißt ϕ Isomorphismus und man schreibt $G \cong H$.

Satz 3.2 (Homomorphiesatz). Seien $\phi: G \to H$ ein Gruppenhomomorphismus und $K := \ker \phi$. Dann ist

$$\tilde{\phi} \colon G/K \to \operatorname{Im} \phi$$

ein Isomorphismus, wobei $\tilde{\phi}(gK) := \phi(g)$.

Definition 3.3. Seien G eine Gruppe, H eine Untergruppe und N ein Normalteiler von G. Die Menge $N \cdot H := \{nh \mid n \in N, h \in H\}$ heißt Komplexprodukt, und ist eine Untergruppe von G.

Satz 3.4 (Isomorphiesatz). Seien G eine Gruppe, $H \leq G$ und $N \subseteq G$.

- 1. Dann ist ein Normalteiler von $N \cdot H < G$ und $H \cap N$ ein Normalteiler von H, und es gilt $H/(H \cap N) \cong (N \cdot H)/N$.
- 2. Falls $N \subset H \triangleleft G$ dann ist N ein Normalteiler von H, H/N ein Normalteiler von G/N und es gilt $(G/N)/(H/N) \cong G/H$.

4 Gruppenoperationen

Definition 4.1. Seien X eine Menge und G eine Gruppe. Eine Gruppenoperation G auf X ist eine Abbildung

$$\phi \colon G \times X \to X, \quad \phi(g, x) = g \cdot x$$

mit den folgenden Eigenschaften:

- a) $\phi(g \circ h, x) = \phi(g) \cdot (\phi(h) \cdot x)$ für alle $g, h \in G, x \in X$;
- b) $\phi(e, x) = x$ für alle $x \in X$.

Eine Gruppenoperation ist ein Gruppenhomomorphismus

$$G \to \operatorname{Sym}(X), g \mapsto (x \mapsto g \cdot x),$$

wobei $\operatorname{Sym}(X)$ die Gruppe aller bijektiven Abbildungen $X \to X$ ist.

Definition 4.2. Sei $x \in X$. Die Bahn von x ist die Menge

$$G \cdot x := \{q \cdot x \mid q \in G\} \subseteq X$$

und der Stabilisator von x ist die Untergruppe

$$G_x = \{ g \in G \mid g \cdot x = x \} < G.$$

- Seien $x, y \in X$. Entweder $G \cdot x = G \cdot y$ oder $G \cdot x \cap G \cdot y = \emptyset$.
- Eine Gruppenoperation heißt transitiv, falls $G \cdot x = X$ für eine (alle) $x \in X$.
- Eine Gruppenoperation heißt frei, falls $G_x = \{e_G\}$ für alle $x \in X$.
- \bullet Operiere die Gruppe G auf der endlichen Menge X, dann gilt

$$|G \cdot x| = [G : G_x]$$
 (Bahnformel).

Satz 4.3 (Bahnengleichung). Sei G eine Gruppe, die auf der endlichen Menge X operiere. Die Menge $\{G \cdot x_1, \ldots, G \cdot x_r\}$ der Bahnen ist eine Partition von X und es gilt

$$|X| = \sum_{j=1}^{r} |G \cdot x_j|.$$

Skript: Gruppentheorie 3.

1 Auflösbare Gruppen

Definition 1.1. Eine endliche Gruppe G heißt auflösbar falls es eine Reihe von Untergruppen

$$G =: U_0 \ge U_1 \ge U_2 \ge \cdots \ge U_n := \{e_G\}$$

gibt, so dass für alle i = 0, ..., n - 1 es gilt $U_i \ge U_{i+1}$ und U_i/U_{i+1} abelsch.

- Eine abelsche Gruppe ist auflösbar.
- Die symmetrische Gruppe S_n ist genau dann auflösbar, wenn $n \leq 4$ ist.
- Eine Gruppe der Ordnung 2^k ist auflösbar (eine Untergruppe vom Index 2 ist Normalteiler); i.A. ist jede endliche p-Gruppe auflösbar.
- ullet Ist eine Gruppe G auflösbar, so ist jede Untergruppe und jede Faktorgruppe von G auflösbar.

Satz 1.2. Sei G eine Gruppe und $H \subseteq G$ ein Normalteiler. Dann ist G genau dann auflösbar, wenn G/H und H auflösbar sind.

Satz 1.3 (Satz von Burnside). Eine endliche Gruppe der Ordnung $p^a q^b$, wobei p und q Primzahlen und $a, b \in \mathbb{Z}_{\geq 0}$ sind, ist auflösbar.

2 Sylowsätze

Definition 2.1. Sei G eine endliche Gruppe der Ordnung $|G| = m \cdot p^k$ wobei p eine Primzahl ist und $p \not\mid m$.

- a) Eine Untergruppe $U \leq G$ der Ordnung p^r , $r \geq 1$ heißt p-Untergruppe von G.
- b) Eine Untergruppe $U \leq G$ der Ordnung p^k heißt p-Sylowgruppe von G.

Satz 2.2 (Sylowsätze). Sei G eine Gruppe der Ordnung $|G| = m \cdot p^k$, wobei m und p teilerfremd sind, und sei n_p die Anzahl der p-Sylowgruppen von G. Dann gelten:

- **1.** Es existiert eine p-Untergruppe der Ordnung p^l für alle $1 \le l \le k$.
- **2.** Jede p-Untergruppe liegt in einer p-Sylowgruppe, und je zwei p-Sylowgruppen von G sind konjugiert, d.h. für jede U p-Untegruppe und P p-Sylowgruppe von G existiert ein $g \in G$ mit $gUg^{-1} \leq P$.
- **3.** Es gilt $n_p \equiv 1 \mod p$ und $n_p \mid m$. Dazu ist $n_p = [G : N_G(P)]$, wobei P eine p-Sylowgruppe von G ist.

Satz 2.3 (Satz von Cauchy). Sei G eine endliche Gruppe und p eine Primzahl, die |G| teilt. Dann existiert ein $g \in G$ der Ordnung p.

Bemerkung 2.4. a) Sei X die Menge aller p-Sylowgruppen in G. Aus dem 2. Satz folgt es, dass G auf X durch konjugation transitiv operiert.

b) Eine p-Sylowgruppe ist genau dann ein Normalteiler von G, wenn $n_p=1$ gilt.

3 (Semi-)direkte Produkte

Definition 3.1. Seien N und H Gruppen und sei $\psi \colon H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus, wobei $\operatorname{Aut}(N)$ die Gruppe aller Automorphismenvon N bezeichnet. Das kartesische Produkt $N \times H$ mit der Verknüpfung

$$(n_1, h_1) * (n_2, h_2) = (n_1 \cdot \psi(h_1)(n_2), h_1 \cdot h_2)$$

bildet eine Gruppe, die das (äußere) semidirekte Produkte $N \rtimes_{\psi} H$ genannt wird. Es gilt: $(n,h)^{-1} = (\psi(h^{-1})(n^{-1}), h^{-1})$ für $n \in N$ und $h \in H$.

Bemerkung 3.2.

- Ist $N \rtimes_{\psi} H \cong N \times H$ genau dann, wenn ψ trivial ist $(\psi(h) = id_N, \forall h \in H)$.
- Ist $N \rtimes_{\psi} H$ genau dann abelsch, wenn ψ trivial ist und N und H abelsch sind.
- Die Gruppe $G := N \rtimes_{\psi} H$ hat einen zu N isomorphen Normalteiler $N' := \{(n, e_H) \mid n \in N\}$ und eine zu H isomorphe Untergruppe $H' := \{(e_N, h) \mid h \in H\}$, mit $N' \cap H' = \{e_G\}$ und $N' \cdot H' = G$.

Seien G eine Gruppe, $H \leq G$ und $N \leq G$ mit $N \cap H = \{e\}$.

- Die Elemente der Untegruppe $N \cdot H$ lassen sich eindeutig als nh mit $n \in N$ und $h \in H$ schreiben, insbesondere ist $|N \cdot H| = |N| \cdot |H|$.
- Falls $G = N \cdot H$ ist, ist die Abbildung $\phi \colon N \cdot H \to N \times H$, $nh \mapsto (n,h)$ bijektiv, und G ist das (innere) semidirekte Produkte $N \rtimes H$.
 - Es gilt tatsächlich $N \rtimes H = N \rtimes_{\psi} H$, wobei der Gruppenhomomorphismus $\psi \colon H \to \operatorname{Aut}(N)$ durch konjugation gegeben ist: $\psi(h) = (n \mapsto hnh^{-1})$.
- Falls $G = N \cdot H$ und $H \subseteq G$ ist, ist $N \cdot H \cong N \times H$ (ϕ ist ein Gruppenisomorphismus).

Dr. Davide Frapporti

Skript: Ringtheorie 1.

1 Ringe

Definition 1.1. Ein Ring (mit Eins) ist eine Menge R zusammen mit zwei Verknüpfungen $+, : R \times R \to R$ so dass

- a) (R, +) ist eine abelsche Gruppe,
- b) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ für alle $a, b, c \in R$,
- c) es existiert $1 \in R$ so dass $1 \cdot a = a = a \cdot 1$ für alle $a \in R$,
- d) $a \cdot (b+c) = a \cdot b + a \cdot c$ für alle $a, b, c \in R$,
- e) $(a+b) \cdot c = a \cdot c + b \cdot c$ für alle $a, b, c \in R$.
- Der Ring R heißt kommutativ falls $a \cdot b = b \cdot a$ für alle $a, b \in R$.
- R heißt Nullring falls 0 = 1 in R. In dem Fall ist $R = \{0\}$.

Beispiel 1. a) $(\mathbb{Z}, +, \times)$; Für $p \in \mathbb{N}$, $(\mathbb{Z}/p\mathbb{Z}, +, \times)$.

- b) Sei R ein Ring. Der Polynomring mit Koeffizienten in R ist $R[X] = \{\sum_{i=0}^{n} a_i X^i \mid a_i \in R, n \in \mathbb{N}_0\}$
- c) $Mat(R, n \times n)$, der Ring der $n \times n$ -Matrizen mit Einträgen in R.
- d) Seien R, S Ringe. Dann ist $R \times S = \{(r, s) \mid r \in R, s \in S\}$ das direkte Produkt von R und S, wobei (r, s) + (r', s') = (r + r', s + s') und $(r, s) \cdot (r', s') = (r \cdot r', s \cdot s')$.

Definition 1.2. Die Menge $U \subset R$ heißt *Unterring* von R falls $(U, +, \cdot)$ wieder ein Ring ist.

2 Ideale

Sei R ein kommutativer Ring.

Definition 2.1. Die Menge $I \subset R$ heißt *Ideal* falls es gilt:

- a) (I, +) ist eine Gruppe,
- b) für alle $a \in R$, $x \in I$ gilt $a \cdot x \in I$.
- Seien $I, J \subseteq R$ Ideale, dann sind ihre Summe $I+J := \{a+b \mid a \in I, b \in J\}$ und ihre Schnitt $I \cap J$ noch Ideale.

Definition 2.2. Sei $I \subseteq R$ ein Ideal. Die Menge aller Nebenklassen von I

$$R/I = \{a + I \mid a \in R\}$$

ist der Quotientenring mit Verknüpfungen

$$(a+I) + (b+I) = (a+b) + I$$
 und $(a+I) \cdot (b+I) = (a \cdot b) + I$.

Der Index von I in R ist [R:I] := |R/I|.

3 Ringhomomorphismen

Definition 3.1. Seien R, S kommutative Ringe. Die Abbildung $\phi: R \to S$ heißt Ringhomomorphismus falls es gilt:

- a) $\phi(a) + \phi(b) = \phi(a+b)$ für alle $a, b \in R$,
- b) $\phi(a) \cdot \phi(b) = \phi(a \cdot b)$ für alle $a, b \in R$,
- c) $\phi(1_R) = 1_S$.

Der Kern von $\phi: R \to S$ ist das Ideal $\ker(\phi) = \{a \in R \mid \phi(a) = 0\} \subseteq R$ und das Bild von ϕ ist der Unterring $\operatorname{Im}(\phi) = \{\phi(a) \mid a \in R\} \subseteq S$.

Falls ϕ bijektiv ist, heißt ϕ Ringisomorphismus und man schreibt $R \cong S$.

Satz 3.2 (Homomorphiesatz). Sei $\phi: R \to S$ ein Ringhomomorphismus. Dann ist $\ker(\phi)$ ein Ideal von R und der Faktorring $R/\ker(\phi)$ ist isomorph zum Bild $\operatorname{Im}(\phi)$.

Korollar 3.3 (Isomorphiesatz). Seien R ein kommutativer Ring und $J \subseteq I$ Ideale von R. Dann ist I/J ein Ideal von R/J und es gilt $R/I \cong (R/J)/(I/J)$.

4 Eigenschaften von Elementen

Definition 4.1. Sei R ein kommutativer Ring.

- -) Ein element $a \in R$ heißt eine Einheit falls es $b \in R$ existiert, sodass $a \cdot b = 1 = b \cdot a$. Die Menge R^* aller Einheiten in R ist eine Gruppe bezüglich \cdot , die Einheitengruppe.
- -) Ein Element $a \in R$ heißt nilpotent, falls es ein $n \in \mathbb{N}$ mit $a^n = 0$ gibt.
- -) Ein Element $a \in R$ ist ein Nullteiler, falls es ein $b \in R \setminus \{0\}$ mit $a \cdot b = 0$ gibt.
- -) Der Ring $R \neq \{0\}$ heißt *Integritätsbereich*, falls 0 der einzige Nullteiler in R ist; und heißt $K\"{o}rper$, falls $R^* = R \setminus \{0\}$.
 - Seien $a,b \in R$ nilpotente Elemente, $c \in R$ und $e \in R^*$. Dann sind $a \pm b$ und ac nilpotent und $e \pm a$ Einheiten.
 - Ein Element $a \in R \neq \{0\}$ kann nicht sowohl eine Einheit als auch ein Nullteiler sein.

Satz 4.2. Seien $R \neq \{0\}$ ein endlicher kommutativer Ring und $a \in R$. Dann ist a entweder eine Einheit oder ein Nullteiler.

Satz 4.3. Jeder endlicher Integritätsbereich ist ein Körper.

Definition 4.4. Sei R ein Integritätsbereich.

- a) Ein Element $x \in R$ heißt irreduzibel falls es gilt: $x \neq 0, x \notin R^*$ und für alle $a, b \in R$ mit $a \cdot b = x$, es folgt dass $a \in R^*$ oder $b \in R^*$.
- b) Ein Element $x \in R$ heißt *Primelement* falls es gilt: $x \neq 0$, $x \notin R^*$ und für alle $a, b \in R$ mit $x \mid a \cdot b$, es folgt dass $x \mid a$ oder $x \mid b$.
- Sei R ein Integritätsbereich, dann gilt: Primelemente sind irreduzibel.

Skript: Ringtheorie 2.

1 Faktorielle Ringe

Definition 1.1. Ein euklidischer Ring R ist ein Integritätsbereich mit einer Abbildung

$$N: R \setminus \{0\} \to \mathbb{N}_0$$
,

sodass für alle $a,b\in R$ mit $b\neq 0$ es existieren $q,r\in R$ mit

$$a = qb + r$$
, $N(r) < N(b)$ oder $r = 0$.

Definition 1.2. Ein Ideal $I \subseteq R$ heißt Hauptideal, falls es ein Element $x \in R$ gibt, so dass I = xR. Ein Integritätsbereich R heißt Hauptidealring, falls jedes Ideal in R ein Hauptideal ist.

Definition 1.3. Ein Integritätsbereich R heißt faktoriell, falls sich jedes Element $x \in R$, $x \neq 0$ bis auf Assoziierte und Reihenfolge eindeutig als Produkt von irreduziblen Elementen schreiben lässt.

- Ein euklidischer Ring ist ein Hauptidealring. Ein Hauptidealring ist ein faktorieller Ring.
- Sei R ein faktorieller Ring. Ein Element $x \in R$ ist genau dann irreduzibel, wenn x ein Primelement ist.

2 Körper

Definition 2.1. Ein Integritätsbereich heißt $K\ddot{o}rper$, wenn alle Elemente in $R \setminus \{0\}$ Einheiten sind.

Definition 2.2. a) Ein Ideal $I \subsetneq R$ heißt *Primideal*, falls für alle $x, y \in R$ es gilt: $xy \in I \Rightarrow x \in I$ oder $y \in I$.

b) Ein Ideal $I \subsetneq R$ heißt maximales Ideal, falls für alle Ideale J mit $I \subseteq J \subseteq R$ es gilt: J = I oder J = R.

Satz 2.3. Seien R ein kommutativer Ring und $I \subseteq R$ ein Ideal.

- a) Das Ideal I ist genau dann ein Primideal, wenn R/I ein Integritätsbereich ist.
- b) Das Ideal I ist genau dann ein maximales Ideal, wenn R/I ein Körper ist.

Korollar 2.4. Jedes maximales Ideal ist ein Primideal.

Definition 2.5. Sei R ein Integritätsbereich. Der $Quotientenk\"{o}rper$ Quot(R) von R ist der Körper aller Brüche in R. Das heißt,

$$\operatorname{Quot}(R) = \left\{ \frac{a}{b} \mid a \in R, \ b \in R \setminus \{0\} \right\} / \sim$$

wobei $\frac{a}{b} \sim \frac{c}{d}$ genau dann wenn ad = bc.

 \bullet Falls K ein Körper ist, ist K[X] ein Hauptidealring. Insbesondere, falls $f \in K[X]$ irreduzibel ist, ist das Ideal $(f) \subseteq K[X]$ maximal.

3 Irreduzibilitätskriterien für Polynome

Satz 3.1. Sei R ein Integritätsbereich. Es qilt $R[X]^* = R^*$.

Beweis: Sei deg : $R[X] \to \mathbb{N} \cup \{-\infty\}$, $f \mapsto \deg(f)$ die Gradabbildung. Für $a, b \in R[X]$ gilt $\deg(a \cdot b) = \deg(a) + \deg(b)$, weil R ein Integritätsbereich ist (damit kann das Produkt der Leitkoeffizienten nicht 0 werden).

Sei $u \in R[X]^*$: so existiert $v \in R[X]$ mit $1 = u \cdot v$, und so $0 = \deg(1) = \deg(u) + \deg(v)$. Falls u nicht konstant wäre, wäre $\deg(v) = -\deg(u) < 0$, unmöglich!

Sei R ein faktorieller Ring und sei $f = \sum_{j=0}^{n} a_j x^j \neq 0$ ein Polynom mit Koeffiziente in R.

Definition 3.2. Das Polynom $f \in R[X]$ heißt *irreduzibel*, wenn $f \neq 0$ nicht invertierbar in R[X] ist und für $g, h \in R[X]$ mit f = gh entweder g oder h invertierbar ist.

Definition 3.3. Das Polynom f heißt primitiv, falls seine Koeffizienten teilerfremden sind, d.h. $ggT(a_0, \ldots, a_n) \in R^*$.

Nunmehr sei f dazu nicht konstant.

Satz 3.4 (Lemma von Gauß). Das Polynom f ist genau dann irreduzibel in R[x], wenn f primitiv und irreduzibel in Quot(R)[x] ist.

Satz 3.5 (Eisensteinkriterium). Falls ein Primelement $p \in R$ existiert mit $p \nmid a_n, p \mid a_j$ für alle $j \in \{0, ..., n-1\}$ und $p^2 \nmid a_0$ existiert, dann ist f irreduzibel in Quot(R)[x].

Satz 3.6. Sei R ein Körper. Dann:

- i) ist jedes Polynom vom Grad 1 irreduzibel.
- ii) ist jedes Polynom vom Grad 2 oder 3 genau dann irreduzibel, wenn es keine Nullstelle in R besitzt.

3.1 Polynome mit ganzzahlige Koeffizienten

Satz 3.7 (Satz über rationale Nullstellen). Sei $R = \mathbb{Z}$, also sei $\in \mathbb{Z}[X]$ ein Polynom vom Grad n. Ist $x_0 = \frac{p}{q}$ (wobei $p, q \in \mathbb{Z}$ teilerfremd sind) eine rationale Nullstelle von f, dann ist a_0 durch p teilbar und a_n durch q teilbar.

Satz 3.8 (Koeffizientenreduktion). Sei $R = \mathbb{Z}$ und sei $p \in \mathbb{N}$ eine Primzahl mit $a_n \not\equiv 0$ mod p. Ist

$$\overline{f} = \sum_{j=0}^{n} \overline{a_j} X^j$$

irreduzibel in $\mathbb{F}_p[X]$, so ist f irreduzibel in $\mathbb{Q}[X]$.

Beispiel 1. \diamond Das Polynom $2X^2+6$ ist irreduzibel in $\mathbb{Q}[X]$ nach dem Eisentsteinskriterium mit Primzahl p=3, aber es ist nicht irreduzibel in $\mathbb{Z}[X]$: $2X^2+6=2\cdot(X^2+3)$ und $2, X^2+3 \notin \mathbb{Z}[X]^*=\mathbb{Z}^*=\{\pm 1\}.$

 \diamond Das Polynom $f(X) = 4X^2 + 4$ ist irreduzibel in $\mathbb{Q}[X]$ nach dem Reduktionskriterium mit p = 3: $\bar{f}(X) = X^2 + 1$ ist irreduzibel in $\mathbb{F}_3[X]$; aber f ist nicht irreduzibel in $\mathbb{Z}[X]$: $4X^2 + 4 = 4 \cdot (X^2 + 1)$ und $4, X^2 + 1 \notin \mathbb{Z}[X]^*$.

Skript: Zahlentheorie.

1 Größte gemeinsame Teiler

Definition 1.1. Ein $gr\"{o}\beta ter$ gemeinsame Teiler (ggT) zweier ganzer Zahlen m und n ist eine natürliche Zahl $d \in \mathbb{N}_0$ mit der Eigenschaft, dass sie Teiler sowohl von m als auch von n ist und dass jede ganze Zahl, die ebenfalls die Zahlen m und n teilt, ihrerseits Teiler von d ist.

Bemerkung 1.2. Es ist ggT(0,0) = 0, also ggT(a,0) = |a| für alle $a \in \mathbb{Z}$.

Satz 1.3 (Lemma von Bézout). Seien $m, n \in \mathbb{Z}$, dann existieren $s, t \in \mathbb{Z}$ mit

$$ggT(m, n) = s \cdot m + t \cdot n$$
.

2 Die Euler'sche φ -Funktion

Definition 2.1. Für $n \in \mathbb{N}$ ist $\varphi(n)$ als die Anzahl der zu n teilerfremden natürlichen Zahlen, die nicht größer als n sind:

$$\varphi(n) := |\{1 \le l \le n \mid ggT(l, n) = 1\}|.$$

Die Abbildung $\varphi: \mathbb{N} \to \mathbb{N}$ heißt Euler'sche φ -Funktion.

- \diamond Falls ggT(m, n) = 1 ist, gilt $\varphi(mn) = \varphi(m)\varphi(n)$.
- \diamond Falls p eine Primzahl ist, gilt $\varphi(p^k) = p^{k-1}(p-1)$ für alle $k \in \mathbb{N}$.

Satz 2.2 (Satz von Euler). Seien a, n teilerfremde natürliche Zahlen, dann

$$a^{\varphi(n)} \equiv 1 \mod n$$
,

wobei $\varphi(n)$ die eulersche φ -Funktion bezeichnet.

Satz 2.3 (Der kleine Fermat). Seien $a \in \mathbb{N}$ und p eine Primzahl, dann

$$a^p \equiv a \mod p$$
.

3 Einheiten von $\mathbb{Z}/n\mathbb{Z}$

• Sei $n \in \mathbb{N}$. Die Einheitengruppe $(\mathbb{Z}/n\mathbb{Z})^*$ hat Ordnung $\varphi(n)$:

$$\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^* \iff \exists b \in \mathbb{Z} : a \cdot b \equiv 1 \mod n \iff \operatorname{ggT}(a,n) = 1.$$

Bemerkung 3.1. Der Satz von Euler lautet einfach, dass die Ordnung von $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^*$ die Ordnung der Gruppe $(\mathbb{Z}/n\mathbb{Z})^*$ teilt.

Satz 3.2 (Einheiten von $\mathbb{Z}/n\mathbb{Z}$). Sei $p_1^{e_1}\cdots p_k^{e_k}$ die Primfaktorzerlegung von n. Es gilt:

- $(\mathbb{Z}/n\mathbb{Z})^* \cong (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^* \times \cdots \times (\mathbb{Z}/p_k^{e_k}\mathbb{Z})^*;$
- $(\mathbb{Z}/2^e\mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z}$ für $e \geq 2$;
- $(\mathbb{Z}/p^e\mathbb{Z})^* \cong \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{e-1}\mathbb{Z}$ für $e \geq 1$ und p ungerade Primzahl.

4 Chinesischer Restsatz

Satz 4.1 (Chinesischer Restsatz). Sei R ein kommutativer Ring, und seien I_1, \ldots, I_k paarweise teilerfremde Ideale von R, d.h. $I_i + I_j = R$, $i \neq j$. Dann ist die Abbildung

$$\pi \colon R/(I_1 \cap \ldots \cap I_k) \longrightarrow R/I_1 \times \ldots \times R/I_k$$
$$x + (I_1 \cap \ldots \cap I_k) \longmapsto (x + I_1, \ldots, x + I_k)$$

ein Isomorphismus.

Korollar 4.2. Seien p, q teilerfremde natürliche Zahlen. Dann ist die Abbildung

$$f: \mathbb{Z}/pq\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}, \quad f(u+pq\mathbb{Z}) = (u+p\mathbb{Z}, u+q\mathbb{Z}).$$

 $ein\ Ringisomorphismus.$

Dr. Davide Frapporti

Skript: Körpertheorie 1.

1 Körpererweiterungen

Definition 1.1. Seien K, L Körpern. Eine Körpererweiterung ist eine inklusion $K \subseteq L$; L ist ein Vektorraum über K, und der Grad der Erweiterung ist $[L:K] := \dim_K L$.

Definition 1.2. $K \subseteq L$ heißt endlich falls $[L:K] < \infty$. Sonst heißt $K \subseteq L$ unendlich.

Satz 1.3 (Gradformel). Sei $K \subseteq L \subseteq M$ eine Kette von endlichen Körpererweiterungen. Dann gilt:

$$[M:L] \cdot [L:K] = [M:K].$$

Definition 1.4. Ein Element $\alpha \in L$ heißt algebraisch über K, falls es ein Polynom $f(X) \in K[X]$ gibt, mit $f(\alpha) = 0$. Falls es kein solches Polynom gibt, heißt α tranzendent über K.

Eine Körpererweiterung $K \subseteq L$ heißt algebraisch, falls α algebraisch über K ist, für alle $\alpha \in L$.

2 Einsetzungshomomorphismus

Sei $K \subseteq L$ eine Körpererweiterung und sei $\alpha \in L$. Der Einsetzungshomomorphismus ist

$$\phi_{\alpha} \colon K[X] \to L, \ g(X) \mapsto g(\alpha).$$

- Der Kern ist das Ideal aller Polynomen $f(X) \in K[X]$ mit $f(\alpha) = 0$.
- Das Bild ist der Ring aller Polynomen in α und ist mit $K[\alpha] \subseteq L$ bezeichnet.

2.1 Fall 1: α algebraisch

Definition 2.1. Sei $\alpha \in L$ algebraisch über K. Das Minimal polynom von α in K[X] ist ein normiertes irreduzibles Polynom $\mu(X) \in K[X]$ mit $\mu(\alpha) = 0$.

- Das Minimalpolynom $\mu(X)$ erzeugt den Kern von ϕ_{α} (K[X] ist ein Hauptidealring und L ist ein Integritätsbereich).
- Das Bild $K[\alpha]$ ist isomorph zu $K[X]/(\mu(X))$ (Homomorphiesatz) und daher ist $K[\alpha]$ ein Körper.

Es folgt, dass $K(\alpha) = \text{Quot}(K[\alpha]) = K[\alpha]$.

2.2 Fall 2: α tranzendent

Falls α tranzendent ist, ist ker $\phi_{\alpha} = \{0\}$. Daher ist $K[\alpha] \cong K[X]$ und der Quotientenkörper $K(\alpha)$ ist nicht isomorph zu $K[\alpha]$.

Definition 2.2. Eine Körpererweiterung $K \subseteq K(\alpha)$ heißt *einfach*. Falls α algebraisch ist, ist $[K(\alpha):K] = \deg \mu(X)$. Falls α tranzendent ist, ist $[K(\alpha):K] = \infty$.

3 Endliche Körper

Sei R ein Ring mit 1 und betrachte den Ringhomomorphismus $\psi \colon \mathbb{Z} \to R$, $1 \mapsto 1_R$. Dann ist $\ker \psi$ ein Ideal in \mathbb{Z} und existiert $n \in \mathbb{N}_0$ mit $\ker \psi = (n)$: n heißt die Charakteristik von R: $n = \operatorname{char} R$.

Falls K ein Körper ist (insbesonders ein Integritätsbereich), ist die Charakteristik char K entweder 0 oder eine Primzahl p > 0.

Definition 3.1. Sei $p \in \mathbb{Z}$ eine Primzahl. Der *endliche Körper* \mathbb{F}_p mit p Elementen ist isomorph zu $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ und hat Charakteristik p.

Satz 3.2. Die Ordnung eines endlichen Körpers ist eine Primzahlpotenz.

Umgekehrt, sei p eine Primzahl und $q = p^k$ mit $k \in \mathbb{N}_{>0}$. Sei \mathbb{F}_q die Menge aller Nullstellen von $X^q - X \in \mathbb{F}_p[X]$. Dann ist \mathbb{F}_q ein Körper mit q Elementen, char $\mathbb{F}_q = p$ und \mathbb{F}_q ist eindeutig bis auf Isomorphie.

Bemerkung 3.3. Für n > 1 ist der Ring $\mathbb{Z}/p^n\mathbb{Z}$ kein Körper. Insbesondere ist der Körper \mathbb{F}_{p^n} nicht isomorph zu $\mathbb{Z}/p^n\mathbb{Z}$.

Satz 3.4. Sei p eine Primzahl und $m, n \in \mathbb{N}_{>0}$. Dann gilt

$$\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n} \iff m \mid n$$
.

Satz 3.5. Die Einheitsgruppe \mathbb{F}_q^* des endlichen Körpers \mathbb{F}_q ist eine zyklische Gruppe mit q-1 Elementen: $\mathbb{F}_q^* \cong \mathbb{Z}/(q-1)\mathbb{Z}$.

4 Zerfällungskörper

Definition 4.1. Sei K ein Körper und sei $P(X) \in K[X]$ ein nichtkonstantes Polynom mit Koeffizienten in K. Der $Zerf\"{a}llungsk\"{o}rper$ von P über K ist die kleinste Körpererweiterung $K \subset L$, über der P in Linearfaktoren zerf\"{a}llt, d.h. P lässt sich schreiben als

$$P(X) = \lambda \cdot (X - \alpha_1) \cdots (X - \alpha_n), \text{ mit } \lambda \in K, \alpha_i \in L.$$

• Der Zerfällungskörper von P(X) über K ist $L = K(\alpha_1, \ldots, \alpha_n)$, wobei α_i die Nullstellen von P(X) sind; d.h. L wird durch Adjunktion der Nullstellen erzeugt.

Skript: Körpertheorie 2.

1 Algebraischer Abschluss

Definition 1.1. Ein Körper K heißt algebraisch abgeschlossen, falls jedes nichtkonstante Polynom mit Koeffizienten in K eine Nullstelle in K besitzt.

Satz 1.2 (Fundamentalsatz der Algebra). Der Körper \mathbb{C} der komplexen Zahlen ist algebraisch abgeschlossen.

Definition 1.3. Eine algebraische Körpererweiterung $K \subseteq L$ ist ein algebraischer Abschluss, falls L algebraisch abgeschlossen ist.

2 Automorphismen

Definition 2.1. Sei $K \subset L$ eine Körpererweiterung. Ein K-Automorphismus $\phi \colon L \to L$ ist ein Körperisomorphismus sodass $\phi(\beta) = \beta$ für alle β in K gilt.

Definition 2.2. Die Gruppe $\operatorname{Aut}(L/K)$ aller K-Automorphismen $L \to L$ heißt die $\operatorname{Automorphismengruppe}$ von L über K (oder auch $\operatorname{Gal}(L/K)$ bzw. $\operatorname{Galoisgruppe}$).

Satz 2.3 (Fortsetzungsatz). Sei $K \subset L$ eine algebraische Körpererweiterung, $\alpha \in L$ und $\mu \in K[X]$ das Minimalpolynom von α über K. Dann:

- Für alle $\phi \in \operatorname{Aut}(L/K)$ ist $\phi(\alpha)$ eine Nullstelle von μ .
- Umgekehrt, falls $\alpha' \in L$ eine Nullstelle von μ ist, existiert ein $\phi \in \operatorname{Aut}(L/K)$ mit $\phi(\alpha) = \alpha'$.

3 Einheitswurzeln

Definition 3.1. Eine *n*-te *Einheitswurzel* ζ ist eine komplexe Nullstelle des Polynoms $X^n - 1 \in \mathbb{Q}[X]$.

- Es gibt genau *n* verschiedene *n*-te Einheitswurzeln: $\zeta_k = \exp(\frac{2\pi i k}{n}), k = 1, \dots, n$.
- Die Menge \mathbb{E}_n aller n-te Einheitswurzeln ist eine zyklische Gruppe bezüglich \times .

Definition 3.2. ζ heißt *primitiv*, falls $\zeta^m \neq 1$ für $m \in \{1, \ldots, n-1\}$ gilt.

• Die primitive Einheitswurzeln sind $\zeta_k = \exp(\frac{2\pi i k}{n})$, wobei ggT(k, n) = 1.

Definition 3.3. Das *n*-te Kreisteilungspolynom ist

$$\Phi_n := \prod_{\substack{1 \le k \le n \\ \text{ggT}(k,n)=1}} (X - \zeta_k)$$

und hat Grad $\varphi(n)$.

Beispiel 1. $\Phi_1(X) = X - 1$, $\Phi_2(X) = X + 1$, $\Phi_3(X) = X^2 + X + 1$. Für p Primzahl ist $\Phi_p(X) = X^{p-1} + \ldots + X + 1$.

• Es gilt $X^n - 1 = \prod_{d|n} \Phi_d(X)$.

4 Elementarsymmetrische Polynome

Die elementarsymmetrische Polynome in Unbekannten z_1, \ldots, z_n sind

$$\sigma_{0} = 1$$

$$\sigma_{1} = z_{1} + \dots + z_{n}$$

$$\sigma_{2} = z_{1}z_{2} + z_{1}z_{3} + \dots + z_{n-1}z_{n}$$

$$\sigma_{3} = z_{1}z_{2}z_{3} + z_{1}z_{2}z_{4} + \dots + z_{n-2}z_{n-1}z_{n}$$

$$\vdots$$

$$\sigma_{n} = z_{1}z_{2} \cdot \dots \cdot z_{n}$$

Ein Polynom $P(z_1, \ldots, z_n)$ heißt symmetrisch falls es gilt $P(z_{\rho(1)}, \ldots, z_{\rho(n)}) = P(z_1, \ldots, z_n)$ für alle $\rho \in S_n$.

Satz 4.1. Jedes symmetrische Polynom $P(z_1, \ldots, z_n)$ in $k[z_1, \ldots, z_n]$ lässt sich als Polynom in $\sigma_0, \ldots, \sigma_n$ schreiben.

Satz 4.2 (Wurzelsatz von Vieta). Es seien R ein Intrgritätsbereich,

$$p(X) = X^{n} + a_1 X^{n-1} + a_2 X^{n-2} + \dots + a_n$$

ein Polynom mit Koeffizienten in R und x_1, \ldots, x_n die (mit Vielfachheit gezählten) Nullstellen von p in einem algebraischen Abschluss von dem Quotientkörper Quot(R). Dann gilt

$$a_k = (-1)^k \sigma_k(x_1, \dots, x_n) \qquad \forall k = 1, \dots, n.$$

Insbesondere, $a_1 = -(x_1 + \cdots + x_n)$, und $a_n = (-1)^n x_1 \cdots x_n$.

Dr. Davide Frapporti

Skript: Galoistheorie.

1 Normal und separabel Körpererweiterungen

Definition 1.1. Die algebraische Körpererweiterung $k \subset L$ heißt *normal*, falls die folgende Bedingung erfüllt ist: sei $f \in k[X]$ ein irreduzibles Polynom mit einer Nullstelle in L, dann zerfällt f in Linearfaktoren über L.

Definition 1.2. Ein Polynom $f \in k[X]$ heißt *separabel*, wenn f in einem algebraischen Abschluss von k nur einfache Nullstellen hat.

Sei $k \subset L$ eine Körpererweiterung. Ein Element $\alpha \in L$ heißt separabel über k, falls α algebraisch ist und sein Minimalpolynom über k separabel ist.

Die Körpererweiterung heißt separabel falls jedes Element $\alpha \in L$ separabel über k ist.

- Ein nicht konstantes Polynom $\in k[X]$ ist genau dann separabel, wenn f und f' teilerfremd sind.
- Falls char k=0 ist, ist jedes irreduzibles Polynom f separabel, da f und f' teilerfremd sind.
- Jede algebraische Erweiterung des endlichen Körpers \mathbb{F}_q ist separabel (\mathbb{F}_q ist perfekt oder vollkommen).

2 Galoissche Körpererweiterungen

Definition 2.1. Die Körpererweiterung $k \subset L$ heißt galoissch, falls L normal und separabel über k ist.

- Sei k ein Körper. Der Zerfällungskörper L eines separablen Polynoms $f \in k[X]$ ist galoissch über k.
- Insbesonders falls char k=0 ist, ist der Zerfällungskörper eines Polynoms galoissch.

Definition 2.2. Sei k ein Körper.

- i) Sei L/k eine galoissche Erweiterung. Die Menge aller k-Automorphismen Gal(L/k) ist eine Gruppe, und heißt die Galoisgruppe der Erweiterung.
- ii) Sei $f \in K[X]$ ein nicht konstantes separables Polynom. Die Galoisgruppe $\operatorname{Gal}(f)$ von f ist die Galoisgruppe $\operatorname{Gal}(\operatorname{Zerf}_k(f)/k)$ des Zerfällungskörpers $\operatorname{Zerf}_k(f)$ von f über k.
- Sei $k \subset L$ endlich und galoissch. Dann ist $|\operatorname{Gal}(L/k)| = [L:k]$.
- Für ein nicht konstantes separables Polynom $f \in K[X]$ gilt: $Gal(f) \leq S_{deg(f)}$. Insbesondere gilt: |Gal(f)| teilt deg(f)!.
- Sei Φ_n das *n*-te Kreisteilungspolynom, dann $Gal(\Phi_n) \cong (\mathbb{Z}/n\mathbb{Z})^*$.

3 Hauptsatz der Galoistheorie

Definition 3.1. Seien $k \subset L$ eine endliche Galoiserweiterung und $H \leq \operatorname{Gal}(L/k)$ eine Untergruppe. Der Fixkörper L^H (oder $\operatorname{Fix}(H)$) von H ist

$$L^{H} := \{ \alpha \in L \mid \phi(\alpha) = \alpha \ \forall \phi \in H \}.$$

Satz 3.2 (Hauptsatz der Galoistheorie). Sei $k \subset L$ eine endliche Galoiserweiterung. Die Abbildung

 $\{Untergruppen\ von\ \mathrm{Gal}(L/k)\} \xrightarrow{\sim} \{Zwischenk\"{o}rper\ von\ L/k\}, H \mapsto L^H$ ist eine Bijektion mit Umkehrfunktion $M \mapsto \mathrm{Gal}(L/M)$. Weiterhin:

- a) Die Abbildung ist inklusionsumkehrende: $H_1 > H_2 \Leftrightarrow L^{H_1} \subset L^{H_2}$;
- b) Indexe und Grade sind gleich: $[H_1: H_2] = [L^{H_2}: L^{H_1}];$
- c) Für $\sigma \in \operatorname{Gal}(L/k)$ gilt $L^{\sigma H \sigma^{-1}} = \sigma(L^H)$ und $\operatorname{Gal}(L/\sigma M) = \sigma \operatorname{Gal}(L/M) \sigma^{-1}$;
- d) $\operatorname{Gal}(L/M) \leq \operatorname{Gal}(L/k)$ ist genau dann ein Normalteiler, wenn die Erweiterung M/k normal (daher galoissch) ist. In diesem Fall gilt $\operatorname{Gal}(M/k) \cong \operatorname{Gal}(L/k)/\operatorname{Gal}(L/M)$.

Satz 3.3 (Translationssatz-Produktsatz). Seien L/k eine Körpererweiterungen von k, und seien E_1/k und E_2/k Zwischenkörper.

- a) Ist E_1/k eine endliche Galoiserweiterung, so sind auch $E_1 \cdot E_2/E_2$ und $E_1/E_1 \cap E_2$ galoissch mit $Gal(E_1 \cdot E_2/E_2) \cong Gal(E_1/E_1 \cap E_2)$.
- b) Sind E_1/k und E_2/k endliche Galoserweiterungen, dann ist $E_1 \cdot E_2/k$ eine endliche Galoiserweiterung, und ist der Homomorphismus

$$\operatorname{Gal}(E_1 \cdot E_2/k) \to \operatorname{Gal}(E_1/k) \times \operatorname{Gal}(E_2/k), \sigma \mapsto (\sigma_{|E_1}, \sigma_{|E_2})$$

injektiv, und für $E_1 \cap E_2 = k$ sogar bijektiv.

4 Satz vom primitiven Element

Satz 4.1 (Satz vom primitiven Element). Seien $\gamma_1, \ldots, \gamma_{n-1}$ separabel über den Körper k und ist γ_n algebraisch über k, dann ist $k(\gamma_1, \ldots, \gamma_n)$ eine einfache Körpererweiterung von k; d.h. es gibt ein $\gamma \in k(\gamma_1, \ldots, \gamma_n)$ mit $k(\gamma_1, \ldots, \gamma_n) = k(\gamma)$.

Korollar 4.2. Jede endliche separable Körpererweiterung ist einfach.

Satz 4.3 (Konstruktive Version des Satzes vom primitiven Element).

Sei k ein unendlicher Körper und sei $L = k(\alpha, \beta)$, wobei α algebraisch und β separabel über k ist. Sei A die Menge der Nullstellen des Minimalpolynoms $M_{\alpha,k}$ von α über k und B die Menge der Nullstellen des Minimalpolynoms $M_{\beta,k}$ von β über k (im Zerfällungskörper Z von $M_{\alpha,k} \cdot M_{\beta,k}$). Wähle

$$\gamma \in k \setminus \left\{ \frac{a - \alpha}{b - \beta} \mid a \in A, \quad b \in B \setminus \{\beta\} \right\},$$

so ist $L = k(\alpha + \gamma \beta)$.