

Model No.: N141I1 - L01 **Preliminary**

TFT LCD Preliminary Specification

MODEL NO.: N141I1 - L01

Customer:		
Approved by:		
Note:		
	,	

Liquid Crysta	l Display Division
QRA Division.	OA Head Division.
Approval	Approval
94.7.19	84. 7. 19 添仁

Preliminary

- CONTENTS -

REVISION HISTORY	 4
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	12
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 EDID DATA STRUCTURE	13
6. INVERTER SPECIFICATION 6.1 TYPE OF INVERTER CONNECTOR 6.2 BUILT-IN INVERTER INPUT PIN ASSIGNMENT 6.2 BUILT-IN INVERTER OUTPUT PIN ASSIGNMENT 6.4 GENERAL ELECTRICAL SPECIFICATION	 19
7. INTERFACE TIMING 7.1 INPUT SIGNAL TIMING SPECIFICATIONS 7.2 POWER ON/OFF SEQUENCE	 23
8. OPTICAL CHARACTERISTICS 8.1 TEST CONDITIONS 8.2 OPTICAL SPECIFICATIONS	 25
9. PRECAUTIONS 9.1 HANDLING PRECAUTIONS 9.2 STORAGE PRECAUTIONS 9.3 OPERATION PRECAUTIONS	 29
10. PACKING 10.1 CARTON 10.2 PALLET	 30

Preliminary

11. DEFINITION OF LABELS 32 11.1 CMO MODULE LABEL

11.2 CMO CARTON LABE

11.3 CARTON LABEL

11.4 PALLET LABEL

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

REVISION HISTORY

Version	Date	Page (New)	Section	Description
0.0	Feb, 01,'05	All	All	Tentative specification was first issued.
1.0	Jul, 15, '05	All	All	Preliminary specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N141I1 - L01 is a 14.1" TFT Liquid Crystal Display module with single CCFL Backlight unit and 30 pins LVDS interface. This module supports 1280 x 800 XGA mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction. The inverter module for Backlight is built in.

1.2 FEATURES

- Thin and Light Weight
- WXGA (1280 x 800 pixels) resolution
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	303.36(H) X 189.6(V)	mm	(1)
Bezel Opening Area	306.76 (H) x 193 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.237 (H) x 0.237 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Anti-glare , Haze 26,3H	-	-

1.5 MECHANICAL SPECIFICATIONS

ļ	tem	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	319	319.5	320	mm	
Module Size	Vertical(V)	205	205.5	206	mm	(1)
	Depth(D)		5.2	5.5	mm	
Weight			425	440	g	(2)
			435	450	g	(3)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Weight without inverter.

Note (3) Weight with inverter.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	200	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	2.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The ambient temperature means the temperature of panel surface.
- Note (3) 2ms, half sine wave, 1 times for \pm X, \pm Y, \pm Z.

Note (4) 10 ~ 500 Hz, Sweep rate 10min, 30min for X, Y, Z. The fixing condition is shown as below:

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

6/34

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	V _{cc}	-0.3	+4.0	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Value		Unit	Note
item	Symbol	Min.	Max.	Onn	Note
Lamp Voltage	V_L	-	2.5K	V_{RMS}	(1) , (2) , $I_L = 6.0 \text{ mA}$
Lamp Current	ΙL	-	6.5	mA _{RMS}	(1) (2)
Lamp Frequency	F_L	-	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value	Unit	Note	
		Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RP}	-	-	100	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Power Supply Current	White	lcc	-	335	375	mA	(3)a
l ower Supply Current	Black	100	-	400	450	mA	(3)b
Logical Input Voltage	"H" Level	V_{IL}	-	-	+100	mV	-
"L" Level		V_{IH}	-100	-	-	mV	-
Terminating Resistor		R _⊤	-	100	-	Ohm	-
Power per EBL WG		P _{EBL}	-	3.17	-	W	(4)

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}$ Hz, whereas a power dissipation check pattern below is displayed.

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

b. Black Pattern

Active Area

- Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.
 - (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$,
 - (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
 - (c) Luminance: 60 nits.
 - (d) The inverter used is provided from O2Micro (www.o2micro.com). Please contact O2Mirco for detail information. CMO provides the inverter in this product.

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01

Preliminary

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
raiametei	Syllibol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	603	670	737	V_{RMS}	$I_{L} = 6.0 \text{ mA}$
Lamp Current	ΙL	2.0	6.0	6.5	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs			1360 (25 °C)	V_{RMS}	(2)
Lamp rum on voltage	VS			1500 (0 °C)	V_{RMS}	(2)
Operating Frequency	F_L	50		80	KHz	(3)
Lamp Life Time	L_BL	15,000			Hrs	(5)
Power Consumption	P_L		4.02		W	(4) , $I_L = 6.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 6 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 5%) Please do not use the inverter

which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 5% below.
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

- * Asymmetry rate: $| I_p I_{-p} | / \text{Max} (I_p, I_{-p}) * 100\%$
- * Distortion rate

 $I_p (or I_{-p}) / I_{rms}$

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	Vss	Ground		
2	Vcc	Power Supply +3.3 V (typical)		
3	Vcc	Power Supply +3.3 V (typical)		
4	V_{EDID}	DDC 3.3V Power		DDC 3.3V Power
5	BIST	Panel BIST enable		
6	CLK _{EDID}	DDC Clock		DDC Clock
7	DATA _{EDID}	DDC Data		DDC Data
8	Rxin0-	LVDS Differential Data Input	Negative	R0~R5,G0
9	Rxin0+	LVDS Differential Data Input	Positive	
10	Vss	Ground		
11	Rxin1-	LVDS Differential Data Input	Negative	G1~G5, B0, B1
12	Rxin1+	LVDS Differential Data Input	Positive	
13	Vss	Ground	4	
14	Rxin2-	LVDS Differential Data Input	Negative	B2~B5, DE, Hsync, Vsync
15	Rxin2+	LVDS Differential Data Input	Positive	
16	Vss	Ground		
17	CLK-	LVDS Clock Data Input	Negative	LVDS Level Clock
18	CLK+	LVDS Clock Data Input	Positive	LVDS Level Clock
19	Vss	Ground		
20	NC	Non-Connection		
21	NC	Non-Connection		
22	NC	Non-Connection		
23	NC	Non-Connection		
24	NC	Non-Connection		
25	NC	Non-Connection		
26	NC	Non-Connection		
	NC	Non-Connection Non-Connection		
26 27 28	NC NC			
26 27	NC	Non-Connection		

Note (1) Connector Part No.: JAE-FI-XB30SL-HF10 or equivalent

Non-Connection

Note (2) User's connector Part No: FI-X30C2L or equivalent

Note (3) The first pixel is even.

NC

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Ground	White

Note (1) Connector Part No.: JST- BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: SM02B-BHSS-1-TB or equivalent

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color			Re							een						ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	Ö	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:			:	• :	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:		•	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	1			:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0 <	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	\ :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:		:/	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

5.5 EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte #	Byte	Field Name and Comments	Value	Value
(decimal)	#(hex)	III. II. Final	(hex)	(binary)
0	0	Header, Fixed	00	00000000
1	1	Header, Fixed	FF	11111111
2	2	Header, Fixed	FF	11111111
3	3	Header, Fixed	FF	11111111
4	4	Header, Fixed	FF	11111111
5	5	Header, Fixed	FF	111111111
6	6	Header , Fixed	FF	11111111
7	7	Header, Fixed	00	00000000
8	8	EISA ID manufacturer name ("CMO")	0D	00001101
9	9	EISA ID manufacturer name (Compressed ASCII)	AF	10101111
10	0A	Product code 1406, (hex, LSB first)	06	00000110
11	0B	Product code 1406, (hex, LSB first)	14	00010100
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed)	00	00000000
17	11	Year of manufacture (fixed)	00	00000000
18	12	EDID structure version # ("1")	01	00000001
19	13	EDID revision # ("3")	03	00000011
20	14	Video I/P definition ("digital")	80	10000000
21	15	Active area horizontal 30.336cm	1E	00011110
22	16	Active area vertical 18.96cm	13	00010011
23	17	gamma * 100-100 = 2.2*100-100=120	78	01111000
24	18	Feature support ("Active off, RGB Color")	0A	00001010
25	19	Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1 Gy0	04	00000100
26	1A	Bx1 Bx0 By1 By0 Wx1 Wx0 Wy1 Wy0	8E	10001110
27	1B	Rx=0.590	97	10010111
28	1C	Ry=0.340	57	01010111
29	1D	Gx=0.317	51	01010001
30	1E	Gy=0.535	89	10001001
31	1F	Bx=0.150	26	00100110
32	20	By=0.121	1F	00011111
33	21	Wx=0.315	50	01010000
34	22	Wy=0.330	54	01010100
35	23	Not supported	00	00000000
36	24	Not supported	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000000
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41	29	Standard timing ID # 2	01	00000001

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01

Preliminary

40	0.4	10(115)	0.4	100000004
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	00000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	00000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	0000001
52	34	Standard timing ID # 8	01	0000001
53	35	Standard timing ID # 8	01	0000001
54	36	Detailed timing description # 1 Pixel clock ("71 MHz")	ВС	10111100
55	37	# 1 71MHz/10000 = 7100 = 1BBCh	1B	00011011
56	38	# 1 HActive(D7-D0) = 1280 mod 256	00	00000000
57	39	# 1 HBlank(D7-D0) = 160 mod 256	A0	10100000
58	3A	# 1 HActive(D11-D8) : HBlank(D11-D8) = 1280/256 : 160/256	50	01010000
59	3B	# 1 VActive(D7-D0) = 800 mod 256	20	00100000
60	3C	# 1 VBlank(D7-D0) = 23 mod 256	17	00010111
61	3D	# 1 VActive(D11-D8) : VBlank(D11-D8) = 800/256 : 23/256	30	00110000
62	3E	# 1 HSyncOffset(D7-D0) = HBorder+HFrontPorch = 48	30	00110000
63	3F	# 1 HSyncWidth(D7-D0) = 32	20	00100000
64	40	# 1 VSyncOffset(D3-D0) : VSyncWidth(D3-D0)	26	00100110
04	40	# 1 HSyncOffset(D9-D8) : HSyncWidth(D9-D8) :	20	00100110
65	41	VSyncOffset(D5-D4): VSyncWidth(D5-D4)	00	00000000
66	42	# 1 HImageSize(mm, D7-D0) = 303 mod 256	2F	00101111
67	43	# 1 VImageSize(mm, D7-D0) = 190 mod 256	BE	10111110
		# 1 HImageSize(D11-D8) : VImageSize(D11-D8) = 305/256 :		
68	44	183/256	10	00010000
69	45	# 1 Hborder=0	00	00000000
70	46	# 1 Vborder=0	00	00000000
71	47	# 1 Flags ("Non-Interlace, Non-Stereo, Digital Separate")	18	00011000
72	48	Detailed timing description # 2	00	00000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N141I1", ASCII)	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 2 1st character of string ("N")	4E	01001110
78	4E	# 2 2 nd character of string ("1")	31	00110001
79	4F	# 2 3 rd character of string ("4")	34	00110100
80	50	# 2 4 th character of string ("1")	31	00110001
81	51	# 2 5 th character of string ("I")	49	01001001
82	52	# 2 6 th character of string ("1")	31	00110001
83	53	# 2 New line character # 2 indicates end of ASCII string	0A	00001010
84	54	# 2 Padding with "Blank" character	20	00100000
85	55	# 2 Padding with "Blank" character	20	00100000
86	56	# 2 Padding with "Blank" character	20	00100000
	1. 10	III = I GOUING WILL DIGHT CHAIGCE	ZU	

Preliminary

88	58	# 2 Padding with "Blank" character	20	00100000
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 FE (hex) defines ASCII string (Vendor "CMO", ASCII)	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 1 st character of string ("N")	4E	01001110
96	60	# 3 2 nd character of string ("1")	31	00110001
97	61	# 3 3 rd character of string ("4")	34	00110100
98	62	# 3 4 th character of string ("1")	31	00110001
99	63	# 3 5 th character of string ("I")	49	01001001
100	64	# 3 6 th character of string ("1")	31	00110001
101	65	# 3 New line character # 3 indicates end of ASCII string	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 FE (hex) defines Monitor name ("Color LCD", ASCII)	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	SMBUS value @ 10nits = 247d	F7	11110111
114	72	SMBUS value @ 17nits = 222d	DE	11011110
115	73	SMBUS value @ 24nits = 206d	CE	11001110
116	74	SMBUS value @ 30nits = 192d	C0	11000000
117	75	SMBUS value @ 60nits = 163d	A3	10100011
118	76	SMBUS value @ 110nits = 109d	6D	01101101
119	77	SMBUS value @ 150nits = 71d	47	01000111
120	78	SMBUS value @ 185nits = 0d	00	00000000
121	79	Numbers of LVDS Receiver chip = 1	01	00000001
122	7A	BIST Enable: Yes = '01' No = '00' ("Yes")	01	00000001
123	7B	# 4 Padding with "Blank" character	0A	00001010
124	7C	# 4 Padding with "Blank" character	20	00100000
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	One-byte checksum of entire 128 bytes EDID equals 00h.	87	10000111

6. INVERTER SPECIFICATION

6.1 TYPE OF INVERTER CONNECTOR

Input connector: LVC-D20SFYG (HONDA)

Output connector: JST SM02B-BHSS-1-TB (JST)

6.2 BUILT-IN INVERTER INPUT PIN ASSIGNMENT

Inpu	ut connector	Comments
HONDA	LVC-D20SFYG	
Pin	Function	
1	INV_SRC	This power rail should be used as a power rail to drive the backlight DC-AC converter
2	INV_SRC	This power rail should be used as a power rail to drive the backlight DC-AC converter
3	INV_SRC	This power rail should be used as a power rail to drive the backlight DC-AC converter
4	INV_SRC	This power rail should be used as a power rail to drive the backlight DC-AC converter
5	GND	Ground
6	NC	No Connection
7	5VALW	This should be used as power source that stores the brightness/contrast values & the circuit that interfaces with SMB_CLK & SMB_DAT
8	GND	Ground
9	SMB_DAT	SMBus interface for sending brightness & contrast information to the inverter/panel
10	SMB_CLK	SMBus interface for sending brightness & contrast information to the inverter/panel
11	GND	Ground
12	FPBACK	Control signal input into the inverter to turn the backlight ON & OFF (1 - ON, 0 - OFF)
13	GND	Ground
14	LAMP_STAT	Lamp status (Feedback, Lamp On = 5v, Lamp Off 0v), from control chip
15 ~ 20	NC	No Connection

6.3 BUILT-IN INVERTER OUTPUT PIN ASSIGNMENT

O DOIL! II	OLE IN INVERTER COTT OF FINANCIAL INTERPRETATION							
	Output connector	Comments						
JST	SM02B-BHSS-1-TB	Comments						
Pin	Function							
1	CFL-High	High-voltage output to the CCFL						
2	CFL-Low	Low-voltage output to the CCFL						

Preliminary

6.4 GENERAL ELECTRICAL SPECIFICATION

6.4.1 Absolute Maximum Ratings

Items	Absolute max. ratings	Note
INV_SRC(V)	-1.0~23.5	
FPBACK/SMB_CLK/SMB_DAT(V)	-1.0~5.5	

6.4.2 Electrical Characteristics

No.	6.4.2 Electrical Characte		Condition	Min.	Tun	Mov	Uint
NO.	Item	Symbol	Condition	wiin.	Тур.	Max.	Uint
1	Input Voltage	INV_SRC		7.5	14.4	21	V
2	Input Signal Level for 5VSUS	5VSUS		4.85	5	5.2	V
3	Input Signal Level for 5VALW	5VALW		4.85	5	5.2	V
4	Input Power	Pin(Max)	Vin=7.5V~21V SMB_DAT=00H	TBD	TBD	TBD	W
5	Lamp Power	Ро	Vin=7.5V~21V SMB_DAT=00H	TBD	4.02	4.6	W
	Backlight	FPBACK=O N	Enable the inverter	2.0	-	5.25	V
6	ON/OFF Control	FPBACK=O FF	Disable the inverter	-0.3	-	0.8	V
7	Brightness Adjust (Lamp Current Control)	SMB_DAT	Control by SMBus(256 steps dimming control)	FFH	-	00H	-
8	Output Voltage	Vout	IL = 6.0mA(typ)	(603)	(670)	(737)	Vrms
	Output Current	lout (Min)	Vin=7.5V~21V SMB_DAT=FFH Ta=25°ℂ, after running 30 min.	2.0	2.3	2.6	mArms
9	Output Current	lout (Max)	Vin=7.5V~21V SMB_DAT=00H Ta=25℃, after running 30 min.	5.7	6.0	6.3	mArms
10	Operation Frequency	Freq	Vin=7.5V~21V	(45)	-	(65)	KHz
11	Burst mode frequency	f _B	Vin=7.5V~21V	200	-	220	Hz
12	Open Lamp Voltage	Vopen	No Load	(1500)	TBD	(1800)	Vrms
13	Striking Time	Ts	No Load	0.6	1	1.4	Sec
14	Efficiency	η	Vin=7.5V, SMB_DAT=00H	(80)	-	-	%

20 /34

Preliminary

		(RES LOAD=100K ohm)				
15	Start and Delay Time	Vin=14.4V,	-	130	200	uS
		SMB_DAT=FFH				
16	Start –up time	Vin=14.4V,	-	-	0.1	Sec
	(Turn on delay time)	SMB_DAT=00H				

Remarks:

(1) Input Voltage

The operating input voltage of inverter shall be defined.

The inverter shall be igniting the CCFL lamp at minimum input voltage at any environment conditions.

(2) On/Off control

Enable: At "ON" condition (FPBACK=Hi), enable the inverter.

Disable: At "OFF" condition (FPB ACK=Lo), disable the inverter.

(3) Quiescent current

At the inverter "OFF" condition, input quiescent should be less than 0.1mA.

(4) Open lamp voltage

The inverter start-up output voltage will be above "Vopen" for "Ts" minimum at any condition under specify until lamp to be ignited. The inverter should be shutdown if lamp ignition was failed in "Ts" maximum. The inverter shall be capable of withstanding the output connections open without component over-stress / fire / smoke /arc.

(5) Burst mode frequency

The burst mode frequency should be in specification in any environment condition and electrical condition.

(6) Power up Overshoot & Undershoot

Overshoot & Undershoot at power up should not exceed the following limits.

Vin	Output current	lo (dl)	Settling time	
VIII	lo(rms)	Overshoot/Undershoot	(dT)	
0→Vin(min.)	lout(max.)	150% / 50%	5 ms max.	
0 - viii(iiiiii.)	lout(min.)	130 /0 / 30 /0	Jilis Illax.	
0→Vin(typ.)	lout(max.)	150% / 50%	5 ms max.	
0→ viii(typ.)	lout(min.)	150% / 50%	o mo max.	
0→Vin(max.)	lout(max.)	150% / 50%	5 ms max.	
0 × viii(iiiax.)	lout(min.)	130 /6 / 30 /6	J III3 IIIax.	

dl=lmax.-lo or dl=(lo-lmin.)/lo

(7) Output connections short protection

The inverter shall be capable of withstanding the output connections short without damage or

over-stress. And the inverter maximum input power shall be limited within 1W.

7. INTERFACE TIMING

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

The specifications of input signal timing are as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	50	71.1	80	MHz	-
	Vertical Total Time	TV	810	823	2000	Ξ	-
DE	Vertical Addressing Time	TVD	800	800	800	Ξ	-
	Horizontal Total Time	TH	1360	1440	1900	Tc	-
	Horizontal Addressing Time	THD	1280	1280	1280	Tc	-

INPUT SIGNAL TIMING DIAGRAM

7.2 POWER ON/OFF SEQUENCE

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \text{ msec}$

 $t5 \ge 200 \text{ msec}$

 $t6 \ge 200 \text{ msec}$

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time had better to follow

t7 5 msec

Preliminary

8. OPTICAL CHARACTERISTICS

8.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	°C					
Ambient Humidity	На	50±10	%RH					
Supply Voltage	V _{CC}	3.3	V					
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"							
Inverter Current	IL	6	mA					
Inverter Driving Frequency	FL	61	KHz					
Inverter	H05-4915							

The relative measurement methods of optical characteristics are shown in 6.2. The following items should be measured under the test conditions described in 6.1 and stable environment shown in Note (6).

8.2 OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR	CR		400		-	(2), (5)
Response Time		T_R		_	5	10	ms	(3)
		T_{F}		-	11	16	ms	
Average Luminance of White		L_{AVE}		150	185		cd/m ²	(4), (5)
White Variation		δW				1.4	-	(5), (6)
Color Chromaticity	Red	Rx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.588	TYP +0.03	-	(1)
		Ry	Viewing Normal		0.337		-	
	Green	Gx	Angle	TYP -0.03	0.315		-	
		Gy			0.534		-	
	Blue	Bx			0.152		-	
		Ву			0.130		-	
	White	Wx			0.313		-	
		Wy			0.329		-	
Viewing Angle -	Horizontal	θ_{x} +	CR≥10	40	45			
		θ_{x} -		40	45		Deg. 	
	Vertical	θ_{Y} +		15	20			
		θ_{Y} -		40	45			

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

Note (4) Definition of Average Luminance of White (LAVE):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

9.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Issued Date: Jul 15, 2005 Model No.: N141I1 - L01 **Preliminary**

10. PACKAGING 10.1 CARTON

Figure. 9-1 Packing method

10.2 PALLET

Figure. 9-2 Packing method

11. DEFINITION OF LABELS

11.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N141I1 L01
- (b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

11.2 CMO CARTON LABEL

11.3 CARTON LABEL

Type J Label

- -Verdana font or equivalent,bold
- -20pt.-all fields
- -203 DPI printer minimum
- -Code 128B
- -10-15 mil minimum narrow bar
- -.75"minimum barcode height
- -.10" or greater quiet zone
- -4.0" x 6.0" label size
- -Brady THT -25-402-1 or equivalent
- -Brady R6107 series ribbon or equivalent

11.4 PALLET LABEL

Type K Label

- -Verdana font or equivalent, bold
- -12pt.-all descript fields
- -10pt.-all data fields
- -203 DPI printer minimum
- -Code 128B
- -10 mil minimum narrow bar
- -.30-,50"minimum barcode height
- -.10" or greater quiet zone
- -4.0" x 6.5" label size
- -Brady THT -78-402-.9 or equivalent
- -Brady R6107 series ribbon or equivalent

