1 The Spectrum and its Topology

Definition 1.1 (Spectrum of a Ring)

Let R be a ring. Define the spectrum of R,

$$Spec(R) = \{ \mathfrak{p} \leq R : \mathfrak{p} \text{ is prime} \}.$$

Definition 1.2

Upon Spec(R) we define a topology by letting our closed sets be of the form:

$$V(I) = \{ \mathfrak{p} \in Spec(R) : I \subseteq \mathfrak{p} \}.$$

For an ideal I.

Proposition 1.1

V(I) induces a topology on Spec(R).

- 1. Ø, Spec(R) are closed.
- 2. $\bigcup_{i=1}^{n} V(I_i)$ is closed for any $n \in \mathbb{N}$.
- 3. $\bigcap_{\alpha} V(I_i)$ for any $\alpha \in \Delta$, some indexing set.

Proof: 1. Take $V(\{0\}) = \{ \mathfrak{p} \leq R \text{ prime} : \{0\} \subseteq \mathfrak{p} \}$. But naturally, the additive identity is contained within every prime ideal (which must be an abelian group w.r.t +), so we have $V(\{0\}) = Spec(R)$, and $Spec(R) \in \mathcal{T}$

Now take $V(R) = \{ \mathfrak{p} \leq R \text{ prime } : R \subseteq \mathfrak{p} \}$. But by definition, no prime ideal can contain R, so $V(R) = \emptyset$ and $\emptyset \in \mathcal{T}$

2. It is sufficient to show that $V(I) \cup V(J) \in \mathcal{T}$ for any $V(I), V(J) \in \mathcal{T}$. Any finite union can be proven inductively using this result. We claim that $V(I) \cup V(J) = V(IJ)$.

Suppose $\mathfrak{p} \in V(I)$ without loss of generality. Then \mathfrak{p} is a prime ideal containing I. But we have $IJ \subseteq I \cap J \subseteq I \subseteq \mathfrak{p}$, so $\mathfrak{p} \in V(IJ)$.

Conversely, suppose $\mathfrak{p} \in V(IJ)$. Then \mathfrak{p} is a prime ideal containing IJ. If $J \subseteq \mathfrak{p}$, we are done, so suppose that $J \not\subseteq \mathfrak{p}$. Then take $i \in I, j \in J \setminus \mathfrak{p}$. We know that $ij \in IJ \subseteq \mathfrak{p}$, and then since \mathfrak{p} is a prime ideal, either i or j must be in \mathfrak{p} . Since we supposed it was not j, we know it must be i. Therefore, $I \subseteq \mathfrak{p}$, and $\mathfrak{p} \in V(I)$.

3. We claim that $\bigcap_{\alpha} V(I_{\alpha}) = V\left(\sum_{\alpha} I_{\alpha}\right)$.

If $\mathfrak{p} \in \bigcap_{\alpha} V(I_{\alpha})$, then $P \supseteq I_{\alpha}$ for all our α . But $\sum_{\alpha} I_{\alpha} \supseteq I_{\alpha}$ for any fixed α , so $P \supseteq \sum_{\alpha} I_{\alpha} \supseteq I_{\alpha}$, and $\mathfrak{p} \in V\left(\sum_{\alpha} I_{\alpha}\right)$.

Conversely, if $\mathfrak{p} \in V\left(\sum_{\alpha} I_{\alpha}\right)$, $\mathfrak{p} \supseteq \sum_{\alpha} I_{\alpha}$. Fix some β arbitrary in Δ , then we know already $\mathfrak{p} \supseteq \sum_{\alpha} I_{\beta} \supseteq I_{\beta}$. So $\mathfrak{p} \in V(I_{\beta})$ for any β , and $\mathfrak{p} \in \bigcap_{\alpha} V(I_{\alpha})$.

Proposition 1.2

If R is a ring, then the closed points of Spec(R) correspond to $V(M) = \{M\}$, for the ideals of R.

Proof: Recall closed points in $\mathfrak{p} \in Spec(R)$ are those for which $\{\mathfrak{p}\}$ is closed.

Suppose M is some such point. Then for some $I \subseteq R$, we have $V(I) = \{M\}$, and $I \subseteq M \subseteq R$. Suppose we have some $J \subseteq R$ so that $M \subseteq J \subseteq R$. Then $I \subseteq J$, and we would have to have $J \in \{M\}$. Therefore M is maximal.

Proposition 1.3

For any $I \leq R$, $V(\sqrt{I}) = V(I)$