Data Modeling and Least Squares Fitting

Data Modeling

- Given: data points, functional form, find constants in function
- Example: given (x_i, y_i) , find line through them; i.e., find a and b in y = ax + b

Data Modeling

- You might do this because you actually care about those numbers...
 - Example: measure position of falling object, fit parabola

$$p = -1/_2 gt^2$$

⇒ Estimate g from fit

Data Modeling

- ... or because some aspect of behavior is unknown and you want to ignore it
 - Example: measuring relative resonant frequency of two ions, want to ignore magnetic field drift

Least Squares

- Nearly universal formulation of fitting: minimize squares of differences between data and function
 - Example: for fitting a line, minimize

$$\chi^2 = \sum_{i} \left(y_i - (ax_i + b) \right)^2$$

with respect to a and b

Most general solution technique: take derivatives w.r.t.
 unknown variables, set equal to zero

Least Squares

- Computational approaches:
 - General numerical algorithms for function minimization
 - Take partial derivatives; general numerical algorithms for root finding
 - Specialized numerical algorithms that take advantage of form of function
 - Important special case: linear least squares

General pattern:

$$y_i = a f(\vec{x}_i) + b g(\vec{x}_i) + c h(\vec{x}_i) + \cdots$$

Given (\vec{x}_i, y_i) , solve for a, b, c, \dots

 Note that dependence on unknowns is linear, not necessarily function!

Solving Linear Least Squares Problem

• Take partial derivatives:

$$\chi^2 = \sum_{i} (y_i - a f(x_i) - b g(x_i) - \cdots)^2$$

$$\frac{\partial}{\partial a} = \sum_{i} -2f(x_i) \left(y_i - a f(x_i) - b g(x_i) - \dots \right) = 0$$

$$a \sum_{i} f(x_i) f(x_i) + b \sum_{i} f(x_i) g(x_i) + \dots = \sum_{i} f(x_i) y_i$$

$$\frac{\partial}{\partial b} = \sum_{i} -2g(x_i) \left(y_i - a f(x_i) - b g(x_i) - \dots \right) = 0$$

$$a \sum_{i} g(x_i) f(x_i) + b \sum_{i} g(x_i) g(x_i) + \dots = \sum_{i} g(x_i) y_i$$

Solving Linear Least Squares Problem

For convenience, rewrite as matrix:

$$\begin{bmatrix} \sum_{i} f(x_i) f(x_i) & \sum_{i} f(x_i) g(x_i) & \cdots \\ \sum_{i} g(x_i) f(x_i) & \sum_{i} g(x_i) g(x_i) & \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} f(x_i) y_i \\ \sum_{i} g(x_i) y_i \\ \vdots & \vdots \end{bmatrix}$$

Factor:

$$\sum_{i} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}$$

 There's a different derivation of this: overconstrained linear system

$$\mathbf{A}x = b$$

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{A} \end{pmatrix} = \begin{pmatrix} b \\ \end{pmatrix}$$

 A has n rows and m<n columns: more equations than unknowns

- Interpretation: find x that comes "closest" to satisfying Ax=b
 - i.e., minimize b-Ax
 - i.e., minimize | b–Ax |
 - Equivalently, minimize | b−Ax | ² or (b−Ax)·(b−Ax)

$$\min (b - \mathbf{A}x)^{\mathrm{T}} (b - \mathbf{A}x)$$

$$\nabla ((b - \mathbf{A}x)^{\mathrm{T}} (b - \mathbf{A}x)) = -2\mathbf{A}^{\mathrm{T}} (b - \mathbf{A}x) = \vec{0}$$

$$\mathbf{A}^{\mathrm{T}} \mathbf{A}x = \mathbf{A}^{\mathrm{T}}b$$

- If fitting data to linear function:
 - Rows of A are functions of x_i
 - Entries in b are y_i
 - Minimizing sum of squared differences!

$$\mathbf{A} = \begin{bmatrix} f(x_1) & g(x_1) & \cdots \\ f(x_2) & g(x_2) & \cdots \\ \vdots & \vdots & \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \sum_{i} f(x_i) f(x_i) & \sum_{i} f(x_i) g(x_i) & \cdots \\ \sum_{i} g(x_i) f(x_i) & \sum_{i} g(x_i) g(x_i) & \cdots \end{bmatrix}, \quad \mathbf{A}^{\mathrm{T}}b = \begin{bmatrix} \sum_{i} y_i f(x_i) \\ \sum_{i} y_i g(x_i) \\ \vdots & \vdots \end{bmatrix}$$

Compare two expressions we've derived – equal!

$$\begin{bmatrix} \sum_{i} f(x_i) f(x_i) & \sum_{i} f(x_i) g(x_i) & \cdots \\ \sum_{i} g(x_i) f(x_i) & \sum_{i} g(x_i) g(x_i) & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} y_i f(x_i) \\ \sum_{i} y_i g(x_i) \\ \vdots \end{bmatrix}$$

$$\sum_{i} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_{i} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix}$$

Ways of Solving Linear Least Squares

```
    Option 1:

            for each x<sub>i</sub>,y<sub>i</sub>
            compute f(x<sub>i</sub>), g(x<sub>i</sub>), etc.
            store in row i of A
            store y<sub>i</sub> in b
            compute (A<sup>T</sup>A)<sup>-1</sup> A<sup>T</sup>b
```

(A^TA)⁻¹ A^T is known as "pseudoinverse" of A

Ways of Solving Linear Least Squares

• Option 2: for each x_i, y_i compute $f(x_i)$, $g(x_i)$, etc. store in row i of A store y_i in b compute A^TA_i , A^Tb solve $A^TA_i = A^Tb$

 These are known as the "normal equations" of the least squares problem

Ways of Solving Linear Least Squares

- These can be inefficient, since A typically much larger than A^TA and A^Tb
- Option 3:

```
for each x_i, y_i

compute f(x_i), g(x_i), etc.

accumulate outer product in U

accumulate product with y_i in v

solve Ux=v
```

Special Case: Constant

Let's try to model a function of the form

$$y = a$$

• In this case, $f(x_i)=1$ and we are solving

$$\sum_{i} [1] \quad [a] = \sum_{i} [y_{i}]$$

$$\therefore \quad a = \frac{\sum_{i} y_{i}}{n}$$

 Punchline: mean is least-squares estimator for best constant fit

Special Case: Line

• Fit to y=a+bx

$$\sum_{i} \begin{bmatrix} 1 \\ x_{i} \end{bmatrix} \begin{bmatrix} 1 \\ x_{i} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \sum_{i} y_{i} \begin{bmatrix} 1 \\ x_{i} \end{bmatrix}$$

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1} = \begin{bmatrix} n & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{bmatrix}^{-1} = \frac{\begin{bmatrix} \Sigma x_i^2 & -\Sigma x_i \\ -\Sigma x_i & n \end{bmatrix}}{n\Sigma x_i^2 - (\Sigma x_i)^2}, \quad \mathbf{A}^{\mathrm{T}}b = \begin{bmatrix} \Sigma y_i \\ \Sigma x_i y_i \end{bmatrix}$$

$$a = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i^2)^2}, \quad b = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i^2)^2}$$

х	1	3	4	7	9	12
y	0	2	5	10	12	16

	x_{i}	y_i	x_i^2	$x_i y_i$
	1	0	1	0
	3	2	9	6
	4	5	16	20
	7	10	49	70
	9	12	81	108
	12	16	144	192
Σ	36	45	300	396

$$A = \begin{bmatrix} 6 & 36 \\ 36 & 300 \end{bmatrix}; B = \begin{bmatrix} 45 \\ 396 \end{bmatrix}$$

$$y = \frac{2}{3}x - 3/2$$

Example: Use least-squares regression to fit a straight line to

x	1	3	5	7	10	12	13	16	18	20
у	4	5	6	5	8	7	6	9	12	11

Use least-squares regression to fit a straight line to

Х	у
5	16
10	25
15	32
20	33
25	38
30	36
35	39
40	40
45	42
50	42

Fit to $y = a_0 + a_1 x + a_2 x^2$

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

EXAMPLE:

Fit a second order polynomial to the following data

i	1	2	3	4	5	6
x	0	0.5	1.0	1.5	2.0	2.5
у	0	0.25	1.0	2.25	4.0	6.25

EXAMPLE: Find the least-squares parabola that fits to the following data set.

X	0	1	2	3	4	5
У	2.1	7.7	13.6	27.2	40.9	61.1

$$n = 6$$

 $\sum x_i = 15$ $\sum y_i = 152.6$
 $\sum x_i^2 = 55$ $\sum x_i y_i = 585.6$
 $\sum x_i^3 = 225$ $\sum x_i^2 y_i = 2488.6$
 $\sum x_i^4 = 979$

$$a_0 = 2.479$$
, $a_1 = 2.359$, $a_2 = 1.861$
y = 2.479 + 2.359 x + 1.861 x²

x	1	2	4	8	11	13
y	0	1	11	13	30	50

Fit to $y=ae^{bx}$

x	1,1	3,2	5,1	7,7	9,6	12,2
у	3,1	29,9	65,7	100,4	195,7	300,4