Московский государственный технический университет имени Н.Э.Баумана Кафедра «Системы обработки информации и управления»

ОТЧЕТ

Лабораторная работа №1 по курсу «Методы машинного обучения» «Разведочный анализ данных. Исследование и визуализация данных.»

Исполнитель: Соболева Е.Д.

группа ИУ5-11М

Проверил: Гапанюк Ю.Е.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

In [2]:

```
data = pd.read_csv('african_crises.csv', sep=",")
```

In [3]:

```
data.head()
```

Out[3]:

	case	cc3	country	year	systemic_crisis	exch_usd	domestic_debt_in_default	SO\
0	1	DZA	Algeria	1870	1	0.052264	0	
1	1	DZA	Algeria	1871	0	0.052798	0	
2	1	DZA	Algeria	1872	0	0.052274	0	
3	1	DZA	Algeria	1873	0	0.051680	0	
4	1	DZA	Algeria	1874	0	0.051308	0	
4								•

In [5]:

```
data.shape
```

Out[5]:

(1059, 14)

In [8]:

```
total_count = data.shape[0]
```

In [10]:

```
print('Всего строк: {}'.format(total_count))
```

Всего строк: 1059

```
In [11]:
```

```
data.columns
Out[11]:
Index(['case', 'cc3', 'country', 'year', 'systemic_crisis', 'exch_us
       'domestic debt in default', 'sovereign external debt defaul
t',
       'gdp weighted default', 'inflation annual cpi', 'independenc
е',
       'currency crises', 'inflation crises', 'banking crisis'],
      dtype='object')
In [12]:
data.dtypes
Out[12]:
                                      int64
case
                                     object
cc3
country
                                     object
year
                                      int64
systemic crisis
                                      int64
exch usd
                                    float64
domestic debt in default
                                      int64
sovereign external debt default
                                      int64
gdp weighted default
                                    float64
inflation annual cpi
                                    float64
                                      int64
independence
                                      int64
currency crises
inflation crises
                                      int64
banking crisis
                                     object
dtype: object
In [14]:
#Пустые значения
for col in data.columns:
    temp null count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp null count))
case - 0
cc3 - 0
country - 0
year - 0
systemic_crisis - 0
exch usd - 0
domestic debt in default - 0
sovereign external debt default - 0
gdp weighted default - 0
inflation_annual_cpi - 0
independence - 0
currency crises - 0
inflation crises - 0
banking crisis - 0
```

In [15]:

data.describe()

Out[15]:

	case	year	systemic_crisis	exch_usd	domestic_debt_in_defau
count	1059.000000	1059.000000	1059.000000	1059.000000	1059.00000
mean	35.613787	1967.767705	0.077432	43.140831	0.03966
std	23.692402	33.530632	0.267401	111.475380	0.19525
min	1.000000	1860.000000	0.000000	0.000000	0.00000
25%	15.000000	1951.000000	0.000000	0.195350	0.00000
50%	38.000000	1973.000000	0.000000	0.868400	0.00000
75%	56.000000	1994.000000	0.000000	8.462750	0.00000
max	70.000000	2014.000000	1.000000	744.306139	1.00000
4					>

caseA - number which denotes a specific country

cc3A three letter country code

countryThe name of the country

yearThe year of the observation

systemic_crisis"0" means that no systemic crisis occurred in the year and "1" means that a systemic crisis occurred in the year.

exch_usdThe exchange rate of the country vis-a-vis the USD

domestic_debt_in_default"0" means that no sovereign domestic debt default occurred in the year and "1" means that a sovereign domestic debt default occurred in the year

sovereign_external_debt_default"0" means that no sovereign external debt default occurred in the year and "1" means that a sovereign external debt default occurred in the year

gdp_weighted_defaultThe total debt in default vis-a-vis the GDP

inflation_annual_cpiThe annual CPI Inflation rate

independence"0" means "no independence" and "1" means "independence"

currency_crises"0" means that no currency crisis occurred in the year and "1" means that a currency crisis occurred in the year

inflation_crises"0" means that no inflation crisis occurred in the year and "1" means that an inflation crisis occurred in the year

banking_crisis"no_crisis" means that no banking crisis occurred in the year and "crisis" means that a banking crisis occurred in the year

```
In [46]:
```

```
data['sovereign_external_debt_default'].unique()
```

Out[46]:

array([0, 1])

In [34]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='year', y='exch_usd', data=data)
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51f7de5ed0>

In [45]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='year', y='exch_usd', data=data, hue='sovereign_externa
l_debt_default')
```

Out[45]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51f7818a10>

In [38]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['exch_usd'])
```

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51f7b13410>

In [49]:

sns.jointplot(x='year', y='exch_usd', data=data)

Out[49]:

<seaborn.axisgrid.JointGrid at 0x7f51f7686b50>

In [51]:

sns.jointplot(x='year', y='exch_usd', data=data, kind="hex")

Out[51]:

<seaborn.axisgrid.JointGrid at 0x7f51f72b1890>

In [52]:

sns.jointplot(x='year', y='exch_usd', data=data, kind="kde")

Out[52]:

<seaborn.axisgrid.JointGrid at 0x7f51f7a41b10>

In [54]:

sns.pairplot(data)

Out[54]:

<seaborn.axisgrid.PairGrid at 0x7f51f3385c90>

l n		
T11	LJ	١.

In [55]:

sns.pairplot(data, hue="sovereign_external_debt_default")

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/seaborn/distributions.py:288: UserWarning: Data must have varianc e to compute a kernel density estimate.

warnings.warn(msg, UserWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag
es/seaborn/distributions.py:288: UserWarning: Data must have varianc
e to compute a kernel density estimate.
 warnings.warn(msg, UserWarning)

Out[55]:

<seaborn.axisgrid.PairGrid at 0x7f51e928cfd0>

In [57]:

sns.boxplot(y=data['exch_usd'])

Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51e4321e50>

In [58]:

sns.boxplot(y=data['sovereign_external_debt_default'])

Out[58]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51e42d9550>

In [59]:

sns.boxplot(x='exch_usd', y='sovereign_external_debt_default', data=data)

Out[59]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51e34e75d0>

In [60]:

sns.violinplot(x=data['exch_usd'])

Out[60]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51df1c9a10>

In [61]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['exch_usd'])
sns.distplot(data['exch_usd'], ax=ax[1])
```

Out[61]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51deb8e150>

In [62]:

Распределение параметра exch_usd сгруппированные по sovereign_external_debt_de fault.
sns.violinplot(x='sovereign_external_debt_default', y='exch_usd', data=data)

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51e34b5290>

In [63]:

sns.catplot(y='exch_usd', x='sovereign_external_debt_default', data=data, kind=
"violin", split=True)

Out[63]:

<seaborn.axisgrid.FacetGrid at 0x7f51dead7890>

In [64]:

data.corr()

Out[64]:

	case	year	systemic_crisis	exch_usd	dome
case	1.000000	0.115574	0.010991	-0.231976	
year	0.115574	1.000000	0.197450	0.248757	
systemic_crisis	0.010991	0.197450	1.000000	0.202687	
exch_usd	-0.231976	0.248757	0.202687	1.000000	
domestic_debt_in_default	0.128358	0.136828	0.122158	0.005253	
sovereign_external_debt_default	-0.039262	0.271890	0.249850	0.422890	
gdp_weighted_default	-0.032981	-0.054670	0.005274	-0.040726	
inflation_annual_cpi	0.044762	0.037035	0.106452	-0.011947	
independence	0.021858	0.407360	0.147083	0.126034	
currency_crises	0.095339	0.189390	0.112751	-0.056472	
inflation_crises	0.006405	0.098630	0.172562	-0.063783	

In [65]:

data.corr(method='pearson')

Out[65]:

	case	year	systemic_crisis	exch_usd	dome
case	1.000000	0.115574	0.010991	-0.231976	
year	0.115574	1.000000	0.197450	0.248757	
systemic_crisis	0.010991	0.197450	1.000000	0.202687	
exch_usd	-0.231976	0.248757	0.202687	1.000000	
domestic_debt_in_default	0.128358	0.136828	0.122158	0.005253	
sovereign_external_debt_default	-0.039262	0.271890	0.249850	0.422890	
gdp_weighted_default	-0.032981	-0.054670	0.005274	-0.040726	
inflation_annual_cpi	0.044762	0.037035	0.106452	-0.011947	
independence	0.021858	0.407360	0.147083	0.126034	
currency_crises	0.095339	0.189390	0.112751	-0.056472	
inflation_crises	0.006405	0.098630	0.172562	-0.063783	
4					•

In [66]:

data.corr(method='kendall')

Out[66]:

	case	year	systemic_crisis	exch_usd	domes
case	1.000000	0.026923	0.009063	-0.187706	
year	0.026923	1.000000	0.186655	0.368117	
systemic_crisis	0.009063	0.186655	1.000000	0.142943	
exch_usd	-0.187706	0.368117	0.142943	1.000000	
domestic_debt_in_default	0.130510	0.121203	0.122158	-0.114600	
sovereign_external_debt_default	-0.030077	0.260867	0.249850	0.098473	
gdp_weighted_default	-0.000727	0.017020	0.014215	0.038681	
inflation_annual_cpi	0.019151	0.217394	0.126022	0.101890	
independence	0.021411	0.416064	0.147083	0.247936	
currency_crises	0.087497	0.158605	0.119988	0.013929	
inflation_crises	0.012142	0.072022	0.172562	-0.023109	
4					•

In [67]:

data.corr(method='spearman')

Out[67]:

	case	year	systemic_crisis	exch_usd	domes
case	1.000000	0.039273	0.010663	-0.250869	
year	0.039273	1.000000	0.227475	0.512162	
systemic_crisis	0.010663	0.227475	1.000000	0.174649	
exch_usd	-0.250869	0.512162	0.174649	1.000000	
domestic_debt_in_default	0.153555	0.147710	0.122158	-0.140019	
sovereign_external_debt_default	-0.035389	0.317916	0.249850	0.120315	
gdp_weighted_default	-0.000585	0.019954	0.014295	0.047506	
inflation_annual_cpi	0.026830	0.309844	0.154250	0.154363	
independence	0.025191	0.507054	0.147083	0.302930	
currency_crises	0.103034	0.193589	0.120208	0.017115	
inflation_crises	0.014286	0.087773	0.172562	-0.028235	
4					•

In [68]:

sns.heatmap(data.corr())

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51dea2f050>

In [69]:

```
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

Out[69]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f51fbb5ae50>

In [70]:

```
sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

Out[70]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f51de6a9a10>

In [73]:

```
# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

Out[73]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f51de3a63d0>

In [74]:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```


In []: