Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

All input is consumed

Second Choice

a a

Second Choice

Input cannot be consumed

An NFA accepts a string: if there is a computation of the NFA

that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

Second Choice

a

Second Choice

Another Rejection example

Input cannot be consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

input tape head does not move

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L = \{aa\}$

$$- q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

 $\begin{bmatrix} a & b & a & b \end{bmatrix}$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0,q_1,q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$ $\lambda \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Definition

Given an alphabet Σ , we define

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\},\$$

which is the set of all strings over Σ of length 0 or 1.

Definition

A nondeterministic finite automaton with ε -transitions (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set (the set of states),
- Σ is a finite set (the alphabet),
- ▶ $\delta: Q \times \Sigma_{\varepsilon} \to 2^Q$ is the transition function,
- ▶ $q_0 \in Q$ is the start state, and
- ▶ $F \subseteq Q$ is the set of accepting states.

Transition Function δ

$$\delta(q,x) = \{q_1,q_2,\ldots,q_k\}$$

resulting states with following one transition with symbol x

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

 δ^*

Same with δ but applied on strings

$$\delta^*(q_0,a) = \{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

Special case:

for any state q

$$q \in \delta^*(q,\lambda)$$

In general

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_j$$

The Language of an NFA M

The language accepted by M is:

$$L(M) = \{w_1, w_2, ..., w_n\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some $q_k \in F$ (accepting state)

 $w_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,aa) = \{q_4,q_5\} \qquad aa \in L(M)$$

$$\in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\} \Longrightarrow ab \in L(M)$$

$$\in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \Longrightarrow aaba \in L(M)$$

$$= F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, aba) = \{q_1\}$$
 $aba \notin L(M)$

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\}$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition:

Machine M_1 is equivalent to machine M_2

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

Theorem:

```
Languages
accepted
by NFAs

Regular
Languages

Languages
accepted
by DFAs
```

NFAs and DFAs have the same computation power, accept the same set of languages

Proof: we only need to show

Languages accepted by NFAs AND Languages accepted by NFAs

Proof-Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Every DFA is trivially an NFA

For any DFA D, we build an equivalent NFA N with the same transition diagram, i.e., each $\delta_N(q,a)$ is a singleton for $a \in \Sigma$, and $\delta_N(q,\epsilon) = \emptyset$. More formally, if $D = (Q, \Sigma, \delta_D, q_0, F)$ is a DFA, we define the NFA $N = (Q, \Sigma, \delta_N, q_0, F)$, where

$$\delta_N(q, a) = \begin{cases} \{\delta_D(q, a)\} & \text{if } a \in \Sigma, \\ \emptyset & \text{if } a = \epsilon. \end{cases}$$

It is easy to see that L(N) = L(D), i.e., that N is equivalent to D.

Proof-Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Conversion NFA to DFA

DFA M'

$$\delta^*(q_0,a) = \{q_1,q_2\}$$

$$\delta^*(q_0,b)=\emptyset$$
 empty set

END OF CONSTRUCTION

General Conversion Procedure

Input: an NFA M

Output: an equivalent DFA M' with L(M) = L(M')

The NFA has states q_0, q_1, q_2, \dots

The DFA has states from the power set

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Conversion Procedure Steps

step

1. Initial state of NFA: q_0

Initial state of DFA (lambda-closure): $\{q_0\}$

Example

step

2. For every DFA's state $\{q_i, q_j, ..., q_m\}$

$$\{q_i, q_j, ..., q_m\}$$

compute in the NFA

$$\begin{array}{c}
\delta * (q_{i}, a) \\
0 \delta * (q_{j}, a)
\end{array}$$

$$\begin{array}{c}
\text{Union} \\
q'_{k}, q'_{l}, \dots, q'_{n}
\end{array}$$

$$0 \delta * (q_{m}, a)$$

add transition to DFA

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_k, q'_1, ..., q'_n\}$$

Example
$$\delta * (q_0, a) = \{q_1, q_2\}$$

NFA M

DFA M'

$$\delta(\{q_0\},a) = \{q_1,q_2\}$$

step

3. Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

Example

step

4. For any DFA state $\{q_i, q_j, ..., q_m\}$

if some q_j is accepting state in NFA

Then, $\{q_i, q_j, ..., q_m\}$ is accepting state in DFA

Example

Keyword search: example

The following NFA recognizes occurrences of the keywords WEB and EBAY:

Corresponding DFA for keywords search

Lemma:

If we convert NFA $\,M\,$ to DFA $\,M\,'$ then the two automata are equivalent:

$$L(M) = L(M')$$

Proof:

We only need to show: $L(M) \subseteq L(M')$ AND $L(M) \supseteq L(M')$

First we show:
$$L(M) \subseteq L(M')$$

We only need to prove:

$$w \in L(M)$$
 $w \in L(M')$

NFA Consider $w \in L(M)$

symbol

denotes a possible sub-path like

symbol

We will show that if $w \in L(M)$

state

label

 $w \in L(M')$

state

label

More generally, we will show that if in M:

(arbitrary string) $v = a_1 a_2 \cdots a_n$

Proof by induction on |v|

Induction Basis:
$$|v|=1$$
 $v=a_1$

NFA
$$M: -q_0 q_i$$

$$\mathsf{DFA}\ M' : \longrightarrow \underbrace{ a_1 }_{\{q_0\}} \underbrace{ \{q_i, \ldots\}}_{\{q_i, \ldots\}}$$

is true by construction of M'

Induction hypothesis:
$$1 \le |v| \le k$$

 $v = a_1 a_2 \cdots a_k$

Suppose that the following hold

NFA
$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_2}{\longrightarrow} q_d$$

Induction Step: |v| = k + 1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

Then this is true by construction of M'

NFA
$$M: q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_k} q_d^{a_{k+1}} q_e$$

Therefore if $w \in L(M)$

We have shown: $L(M) \subseteq L(M')$

With a similar proof we can show: $L(M) \supseteq L(M')$

Therefore:
$$L(M) = L(M')$$

Clean NFA

The notion of a clean NFA pops up on several occasions.

Definition

Let M be an NFA. We say that M is *clean* iff

- M has exactly one final state, which is distinct from the start state,
- ▶ M has no transitions into its start state (even self-loops), and
- M has no transitions out of its final state (even self-loops).

Existence of a Clean NFA

Proposition

For any NFA M, there is an equivalent clean NFA N.

Proof.

If M is not clean, then we can "clean it up" by adding two additional states:

- ▶ a new start state with a single ε -transition to M's original start state (which is no longer the start state), and
- ▶ a new final state with ε -transitions from all of M's original final states (which are no longer final states) to the new final state.

The new NFA is obviously clean, and a simple, informal argument shows that it is equivalent to the original M.

Q: Give clean NFAs for concatenation and union (series and parallel connections, respectively) as well as for the Kleene closure.