B. Wróblewski

Transformata Laplace'a

Zadanie 1. Niech $f(t) = t^a e^{-bt}$ dla pewnych dodatnich stałych a i b. Udowodnij, że funkcja f jest podwykładnicza z wykładnikiem $-b < \alpha < 0$.

Zadanie 2. Załóżmy, że f(t) ma wzrost podwykładniczy. Udowodnij, że $\lim_{s \to \infty} \mathcal{L}\{f\}(s) = 0$.

Zadanie 3. Stosując równość $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ oblicz $\mathcal{L}\{t^{-1/2}\}$.

Zadanie 4. Udowodnij Fakt 2 i Fakt 3.

Zadanie 5. Załóżmy, że $F(s)=\mathcal{L}\{f(t)\}$ oraz że granica $\lim_{t\to 0^+} \frac{f(t)}{t}$ istnieje. Udowodnij wzór

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s) = \int_{s}^{\infty} F(u) \, du.$$

Zadanie 6. Oblicz transformaty Laplace'a funkcji:

a) t^n ,

d) $t^2 \cos at$,

g) $\frac{\sin t}{t}$

b) $t^n e^{at}$,

- e) $t^k e^{at} \cos bt$,
- h) $\frac{\cos at-1}{t}$,

c) $t \sin at$,

- f) $t^k e^{at} \sin bt$,
- i) $\frac{e^{at}-e^{bt}}{t}$.

Zadanie 7. Pokaż, że zachodzi wzór Borela:

$$\mathcal{L}\left\{ \int_0^t f(t-v)g(v) \, dv \right\}(s) = \mathcal{L}\{f\}(s)\mathcal{L}\{g\}(s).$$

Z jego pomocą wyznacz transformatę odwrotną funkcji $\frac{1}{s^2(s^2+1)}$.

Zadanie 8. Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

a) $y' - y = te^t$, y(0) = 0;

- c) $y'' + y = t \sin t$, y(0) = 1, y'(0) = 2;
- b) $y'' + y = \sin t$, y(0) = 1, y'(0) = 2;
- d) $y'' 5y' + 4y = e^{2t}$, y(0) = 1, y'(0) = -1.

Zadanie 9. Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

a)
$$\begin{cases} x' = 12x + 5y, & x(0) = 0, \\ y' = -6x + y, & y(0) = 1; \end{cases}$$

b)
$$\begin{cases} x' = x - y - e^{-t}, & x(0) = 0, \\ y' = 2x + 3y + e^{-t}, & y(0) = 0. \end{cases}$$

Niech $f:[0,\infty)\to\mathbb{R}$ będzie funkcją kawałkami ciągłą, o wzroście podwykładniczym z wykładni*kiem* α , tzn. istnieją stałe M i α takie, że dla wszystkich t>0 mamy

$$|f(t)| \le Me^{\alpha t}$$
.

Definicja 1. Transformatę Laplace'a funkcji f oznaczamy przez $\mathcal{L}\{f\}(s)$ i definiujemy wzorem

$$\mathcal{L}{f(t)}(s) = \int_0^\infty f(t)e^{-st}dt.$$

Fakt 2. Własności transformaty Laplace'a:

a)
$$\mathcal{L}\lbrace af + bg \rbrace(s) = a\mathcal{L}\lbrace f \rbrace(s) + b\mathcal{L}\lbrace g \rbrace(s)$$
, c) $\mathcal{L}\lbrace tf(t) \rbrace = -\frac{d}{ds}\mathcal{L}\lbrace f \rbrace(s)$,

c)
$$\mathcal{L}\lbrace tf(t)\rbrace = -\frac{d}{ds}\mathcal{L}\lbrace f\rbrace(s),$$

b)
$$\mathcal{L}{f'} = s\mathcal{L}{f}(s) - f(0),$$

d)
$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = \mathcal{L}\lbrace f\rbrace (s-a).$$

Fakt 3.

a)
$$\mathcal{L}{1} = \begin{cases} \frac{1}{s}, & s > 0\\ \text{nie istnieje}, & s \leq 0 \end{cases}$$

c)
$$\mathcal{L}\{\sin \omega t\} = \begin{cases} \frac{\omega}{s^2 + \omega^2}, & s > 0 \\ \text{nie istnieje}, & s \leq 0 \end{cases}$$

b)
$$\mathcal{L}\lbrace e^{at}\rbrace = \begin{cases} \frac{1}{s-a}, & s>a\\ \text{nie istnieje}, & s\leq a \end{cases}$$

d)
$$\mathcal{L}\{\cos \omega t\} = \begin{cases} \frac{s}{s^2 + \omega^2}, & s > 0\\ \text{nie istnieje}, & s \leq 0 \end{cases}$$

Fakt 4. Jeżeli funkcje ciągłe f, g mają takie same transformaty Laplace'a to są one równe.

Przykład 5. Rozważmy zagadnienie

$$y'' + y = \sin t$$
, $y(0) = 0$, $y'(0) = 0$.

Kładąc $\mathcal{L}{y}(s) = F(s)$ wyznaczamy transformatę Laplace'a lewej strony równania:

$$\mathcal{L}\{y'' + y\}(s) = s\mathcal{L}\{y'\}(s) - y'(0) + F(s) = s\left(s\mathcal{L}\{y\}(s) - y(0)\right) - y'(0) + F(s) = s^2F(s) + F(s).$$

Z kolei transformata prawej strony to:

$$\mathcal{L}\{\sin t\}(s) = \frac{1}{s^2 + 1}.$$

Otrzymujemy równanie algebraiczne

$$s^{2}F(s) + F(s) = F(s)(s^{2} + 1) = \frac{1}{s^{2} + 1}.$$

Szukamy zatem funkcji y(t) takiej, że $\mathcal{L}\{y(t)\}=\frac{1}{(s^2+1)^2}$. Zauważmy, że

$$\mathcal{L}\{t\cos t\}(s) = -\mathcal{L}\{-t\cos t\}(s) = -\frac{d}{ds}\mathcal{L}\{\cos t\}(s) = -\frac{d}{ds}\frac{s}{s^2 + 1} = \frac{s^2 - 1}{(s^2 + 1)^2}.$$

Korzystając z tożsamości

$$\frac{2}{(s^2+1)^2} = \frac{1}{s^2+1} - \frac{s^2-1}{(s^2+1)^2}$$

dostajemy

$$\frac{2}{(s^2+1)^2} = \mathcal{L}\{\sin t\} - \mathcal{L}\{t\cos t\} = \mathcal{L}\{\sin t - t\cos t\}.$$

Zatem rozwiązaniem zagadnienia jest funkcja $y(t) = \frac{1}{2}(\sin t - t\cos t)$.