ÉCOLE D'ACTUARIAT UNIVERSITÉ LAVAL

Travail pratique 1

Guillaume MICHEL Nathanaël PELCHAT Mikael ROBERTSON Olivier TURCOTTE

AUTOMNE 2018

1 Sommaire exécutif

Table des matières

1	Sommaire exécutif	2				
2	Analyse des données					
3	Modèle proposé					
	3.1 Équation	7				
	3.2 Traitement des variables qualitatives	7				
	3.3 Interactions	7				
	3.4 Interprétation	7				
	3.5 Statistiques	8				
4	Analyse des résidus	10				
	4.1 Linéarité	10				
	4.2 Homogénéité	11				
	4.3 Indépendance	11				
	4.4 Normalité	12				
	4.5 Test pour manque d'ajustement	12				
5	Prévisions	13				
6	Recommandations					
Aı	nnexes	14				
A	A Erreurs de données					
В	3 Transformation					
\mathbf{C}	Sélection des variables 1					

2 Analyse des données

Voici les variables disponibles afin d'effectuer un modèle prédictif de la perte économique :

Tableau 1 – Description des variables

Variables	Type	Description			
Casenum	Valeur entière	Numéro d'identification de la			
		réclamation			
ATTORNEY	Variable indicatrice	Indique si le réclamant est représenté			
		par un avocat			
CLMSEX	Variable indicatrice	Indique le sexe du réclamant			
Marital	Variable polytomique	Indique le statut marital du réclamant			
CLMINSUR	Variable polytomique	Indique si le réclamant est assuré			
Seatbelt	Variable polytomique	Indique si le réclamant portait une cein-			
		ture de sécurité			
CLMAGE	Valeur entière	Âge du réclamant			
Loss	Valeur continue	Perte économique totale du réclamant			
		en milliers de dollars			

La majorité de ces variables sont qualitatives. Une analyse de fréquences de celles-ci permet d'avoir un meilleur ressenti quant à leurs interactions avec la variable exogène Loss :

FIGURE 1 – Barplot des fréquences des variables qualitatives

Afin de mieux représenter l'interactions entre chaque varaibles exogènes et la variable endogène, la figure 2 a été créée. Celle-ci représente la variable endogène en fonction de chacune des variable exogènes à considérer, c'est pourquoi CASENUM n'y apparaît pas.

FIGURE 2 – Variable LOSS en fonction de chaque variable explicative

On peut y constater que la seule variable exogène continue, CLMAGE, n'a pas initialement de relation linéaire avec la variable endogène, et donc une transformation risque d'être nécessaire.

De plus, le tableau 2 indique des quantités intéressantes pour les variables continues, telles que la moyenne, écart-type, médiane, minimum et maximum.

Tableau 2 – Analyse des variables continues

	CLMAGE	LOSS
$\min(X)$	0.0	0.005
$F_X^{-1}(0.25)$	21	0.640
$F_X^{-1}(0.5)$	33	2.331
E[X]	32.6	5.965
$F_X^{-1}(0.75)$	41	3.998
$\max(X)$	95	1067.697
σ	15.86119	33.1851

3 Modèle proposé

3.1 Équation

Le modèle choisi est donné par l'équation suivante

$$\ln Y = \beta_0 + \beta_1 x_{i,CLMAGE} + \beta_2 x_{i,ATTORNEY} + \beta_{3,1} x_{i,MARITAL,2} + \beta_{3,2} x_{i,MARITAL,3} + \beta_{3,3} x_{i,MARITAL,4} + \beta_4 x_{i,SEATBELT} + \beta_5 x_{i,CLMAGE} * x_{i,ATTORNEY}$$

3.2 Traitement des variables qualitatives

Les variables qualitatives du modèle, soit ATTORNEY, SEATBELT et MARITAL, ont chacune été converties en factor car c'est le type de données qui est compatible avec R lorsqu'on veut utiliser ce logiciel pour effectuer des régressions linéaires comportant des variables qualitatives.

3.3 Interactions

Suite à la sélection des variables, il nous a été possible de déterminer qu'il n'y avait qu'une seule interaction non-redondante (qui ne cause pas de multico-linéarité) et significative au modèle. Il s'agit de l'interaction entre les variables CLMAGE et ATTORNEY qui représentent respectivement l'âge du réclamant ou de la réclamante et la présence d'un avocat pour la réclamation. Cette interaction est logique car, en effet, l'âge d'un réclamant peut influencer la décision de prendre un avocat.

3.4 Interprétation

 β_0 Représente l'état de base, soit un individu d'âge 0, divorcé, représenté par un avocat et attaché lors de l'accident. Il est à noter que ce profil

d'individu est impossible en réalité.

 β_1 Indique la variation

 β_2 À faire

 $\beta_{3,i}$ À faire

 β_4 À faire

 β_5 À faire

3.5 Statistiques

Voici les intervalles de confiance à 95% pour chacun des paramètres du modèle :

Tableau 3 – Intervalles de confiance des paramètres du modèle

	2.5%	97.5%
β_0	0.28583388	1.262939359
β_1	0.01334127	0.026414523
β_2	-1.32630903	-0.708680308
$\beta_{3,1}$	-0.51501270	0.340256198
$\beta_{3,2}$	-0.72345837	0.148361570
$\beta_{3,3}$	-1.69700396	-0.155725880
β_4	0.46855029	1.528929789
β_5	-0.02025211	-0.003201663

De plus, voici le R_a^2 : 0.2754. Ainsi, une grande variabilité de la variable endogène n'est pas expliquée par le modèle. Ceci est en parti dû au grand nombre de variables qualitatives dans le modèle qui n'ont pas assez de valeurs possibles afin de réfléter l'étendue des valeurs possible de la perte économique. (structure de la phrase à revoir)

Voici la table anova du modèle :

Tableau 4 – Table anova du modèle

Source	Dl	SS	MS	${f F}$
SSR	7	809.4939	115.642	73.48
SSE	1328	2089.85386	1.573685	
SST	1335	2899.348	2.171796	

Selon la statistique F du tableau 4, on peut effectuer un test de validité globale de la régression linéaire. Ce faisant, nous obtenons une p-value inférieur à $2.2*10^{-16}$ et donc nous concluons que la régression est tout à fait valide.

4 Analyse des résidus

4.1 Linéarité

FIGURE 3 – Résidus studentisés en fonction de CLMAGE

4.2 Homogénéité

FIGURE 4 – Résidus studentisés en fonction de Y

4.3 Indépendance

```
##
## Durbin-Watson test
##
## data: modele
## DW = 1.9557, p-value = 0.2091
## alternative hypothesis: true autocorrelation is greater than 0
```

4.4 Normalité

Normal Q-Q Plot

FIGURE 5 – Quantile théorique versus quantile pratique

4.5 Test pour manque d'ajustement

Après avoir effectué un test pour manque d'ajustement, on obtient une p-value de $8.623*10^{-5}$, valeur inférieure au seuil de 5%. Ainsi, on doit rejeter H_0 , ce qui implique que le modèle actuel ne s'ajuste pas bien aux données (sens de la phrase à clarifier).

5 Prévisions

Pour répondre à la question du directeur, un individu répondant aux caractéristiques suivantes : CLMAGE=45, SEATBELT=1, ATTORNEY=1, MARITAL="single" et CLMINSUR = 1, aura selon le modèle actuel une perte économique de : $Y \in [0.3378229, 46.89545]$ à un niveau de 95%.

Avec les mêmes caractéristiques, on obtient : $E[Y] \in [3.369781, 4.701301]$. Ainsi, on constate la grande variabilité de la perte économique en comparant les différentes bornes des deux prévisions.

Tableau 5 – Intervalles de confiance des moyennes de la perte économique totale prévues

CLMAGE	${\bf MARITAL}$	CLMSEX	SEATBELT	CLMINSUR	ATTORNEY	2.5%	97.5%
70	single	M	1	1	1	4.83	8.86
45	married	${ m M}$	1	1	1	4.26	5.54
45	divorced	${ m M}$	1	1	1	3.47	8.10
45	widowed	${ m M}$	1	1	1	1.09	4.05
45	single	\mathbf{F}	1	1	1	3.37	4.70
45	single	${ m M}$	2	1	1	6.26	18.65
45	single	${ m M}$	1	2	1	3.37	4.70
45	single	${ m M}$	1	1	2	0.72	1.00
22	single	\mathbf{F}	2	1	2	1.11	3.28

6 Recommandations

Annexes

A Erreurs de données

La base de données originelles utilisées dans la création du modèle a dû subir quelques modifications afin d'être utilisable. Voici les quelques erreurs répertoriées ainsi que les techniques utilisées pour les rectifier :

1. Fautes d'orthographe

(a) MARITAL

Cette colonne contient à l'origine plusieurs fautes de frappe dans la manière de noter les états maritaux. Afin d'uniformiser le tout, il a fallu substituer les états écrits différemment dans ces quatre variables distinctes : divorced, widowed, married, single.

(b) CLMSEX

Cette colonne supposée contenir les états \mathbf{F} ou \mathbf{M} contient à l'origine quelques états male. Afin d'unifier le tout, ces états répertoriés de façon hétérogène ont été substitués en \mathbf{M} .

2. Données aberrantes

(a) LOSS

Cette colonne contient une valeur très extrême de 1067.697. En analysant la figure 6, on voit bien que la valeur est très énorme comparativement à l'ensemble des autres valeurs prises par cette variable. Néanmoins, comme il s'agit de perte économique aux États-Unis suite à une blessure corporelle, cette valeur est possible donc nous ne l'avons pas retirée de l'étude.

FIGURE 6 – Boxplot de LOSS

(b) CLMAGE

Cette colonne contient une valeur de 610, valeur impossible selon la description de la variable, soit l'âge du réclamant. Afin de ne pas fausser les résultats, cette valeur a été modifiée pour 61.

B Transformation

Dans la section 2, il a été discuté qu'une transformation des variables continues serait possible. En effet, en analysant les résidus studentisé de la variable endogène en fonction de la variable exogène continue, on constate que le postulat d'homogénéité n'est pas validé. Ainsi, afin de trouver une transformation approprié, la méthode box-cox a été appliqué sur la variable endogène.

Figure 7 – Comparaison des distributions post-transformation

C Sélection des variables