POWER GENERATION

Michael D'Argenio – Electrical Engineering – SS 2019 – Duke TIP

Energy 101

- Introduction
- https://www.youtube.com/watch?v=20Vb6hlLQSg

AC GENERATOR

Generator

Converts mechanical energy into electrical energy.

POWER GENERATION

Types of Power Plants

Thermal Power Plants – 90% of plants

Renewable Energy Sources

Storage Power Plants

Thermal Power Plants

- Coal
- Natural Gas
- Nuclear

Alabama Power - Plant Simulation

https://www.youtube.com/watch?v=0ftl-WM6wms

Thermal Power Plants

Renewable Energy Sources

- Hydroelectric
- Solar
- Wind
- Marine
- Osmosis
- Biomass

Storage Power Plants

How can we use a dam to help store power?

Hydroelectric Dam Stations

- Exactly like the water analogy for electricity!
- One of the primary type of storage power plants.

Power Plants by Load

- Base load power plants run continually.
 - Highly optimized for low fuel cost.
 - Don't start or stop quickly during changes in system load.
- Peaking power plants meet the daily peak load (may only be a couple hours a day).
 - Operating cost is always higher than base load plants.
 - They ensure security of the system during load peaks.
- Load following power plants follow the variations in the daily and weekly load.
 - Lower cost than peaking plants and more flexibility than base load plants.

