Modelos de Larga Memoria

Ruido fraccionario

Felipe Elorrieta López

Universidad de Santiago de Chile Facultad de Ciencia Depto. de Matemática y Computación

10 de septiembre de 2025

Motivación

Motivación

 La dependencia de largo plazo se ha convertido en un aspecto clave para modelar series de tiempo en disciplinas como:

Ruido fraccionario

- Econometría
- Hidrología
- Climatología
- Física
- entre otros

Definición de Memoria Larga

Sea $\gamma(h)$ la función de autocovarianza en el rezago h de un proceso estacionario $\{y_t\}$.

Una definición usual de memoria larga es:

$$\sum_{h=-\infty}^{\infty} |\gamma(h)| = \infty$$

Ruido fraccionario

Otra definición: la autocovarianza decae de forma hiperbólica:

$$\gamma(h) \sim h^{2d-1} \ell_1(h), \quad h \to \infty$$

- d: parámetro de memoria larga.
- $\ell_1(\cdot)$: función lentamente variante (ej.: $\log(x)$, constante b > 0).

Otras Definiciones de Memoria Larga

Desde la expansión de Wold:

$$\psi_j \sim j^{d-1} \, \ell_2(j), \quad j > 0$$

Ruido fraccionario

Funciones lentamente variantes

 $\ell_1(\cdot)$ y $\ell_2(\cdot)$ son todas funciones lentamente variantes, pero aplicadas en contextos distintos (autocovarianza y coeficientes de Wold).

Teorema de Equivalencias

Sea $\{y_t\}$ un proceso estacionario con expansión de Wold

$$y_t = \sum_{i=0}^{\infty} \psi_j arepsilon_{t-j}, \quad arepsilon_t \sim \mathsf{ruido} \; \mathsf{blanco}$$

 $y \ 0 < d < \frac{1}{2}$.

Entonces:

(a) Si $\psi_j \sim j^{d-1}\ell_2(j)$, entonces $\gamma(h) \sim h^{2d-1}\ell_1(h)$.

(b) Si $\gamma(h) \sim h^{2d-1}\ell_1(h)$, entonces $\sum_{k} |\gamma(h)| = \infty$.

Procesos de Larga memoria

Memoria en series de tiempo

 Modelos ARMA/AR: autocorrelación decae exponencialmente a cero ⇒ memoria corta.

Ruido fraccionario

- Se dice que una serie tiene memoria larga cuando la autocorrelación decrece lentamente y permanece significativa incluso en rezagos grandes
- En estos casos, observaciones pasadas muy antiguas siguen influyendo en el presente.

Procesos de Larga memoria

Proceso ARFIMA

Definición

Un proceso ARFIMA(p, d, q) { y_t } se define como:

$$\phi(B)y_t = \theta(B)(1-B)^{-d} \varepsilon_t, \qquad d < 0.5$$

Ruido fraccionario

donde:

- $\phi(B) = 1 \phi_1 B \cdots \phi_p B^p$ es el polinomio AR.
- $\theta(B) = 1 + \theta_1 B + \cdots + \theta_q B^q$ es el polinomio MA.
- $(1-B)^{-d}$ es el operador de diferenciación fraccional.
- $\{\varepsilon_t\}$ es un ruido blanco con varianza finita.

Proceso ARFIMA

Operador Fraccional

$$(1-B)^{-d} = \sum_{j=0}^{\infty} \eta_j B^j, \qquad \eta_j = \frac{\Gamma(j+d)}{\Gamma(j+1)\Gamma(d)}.$$

- El parámetro $d \in (-0,5,0,5), d \neq 0,-1,-2,...$
- La función de autocorrelación presenta un decaimiento hiperbólico:

$$\rho(k) \sim k^{2d-1}, \quad k \to \infty$$

• Introducidos por Granger y Joyeux (1980) y Hosking (1981).

• Al proceso ARFIMA(0, d, 0) se le denomina *Ruido Fraccionario*:

$$(1-B)^d y_t = \varepsilon_t, \qquad \varepsilon_t \sim \mathsf{RB}(0, \sigma^2)$$

Ruido fraccionario

•000000

- En general, este tipo de procesos aparentemente corresponden a series NO estacionarias, y suele ser difícil distinguir entre:
 - Series no estacionarias con tendencia más una componente de corta memoria (ARMA),
 - Series de larga memoria.

0000000

Ruido fraccionario

Propiedades

•
$$\psi(k) = \sigma^2 \frac{\Gamma(1-2d)}{\Gamma(1-d)\Gamma(d)} \frac{\Gamma(k+d)}{\Gamma(1+k-d)}$$

•
$$\rho(k) = \frac{\Gamma(1-d)}{\Gamma(d)} \frac{\Gamma(k+d)}{\Gamma(1+k-d)}$$

•
$$\phi_{n,j} = -\binom{n}{j} \frac{\Gamma(j-d) \Gamma(n-d-j+1)}{\Gamma(-d) \Gamma(n-d+1)}$$

•
$$\phi_{n,n} = \frac{d}{n-d}$$

Modelo ARFIMA

ARFIMA como modelo general

El modelo ARFIMA(p, d, q) generaliza varios modelos clásicos:

$$\phi(B)(1-B)^d y_t = \theta(B)\varepsilon_t, \quad \varepsilon_t$$

Estacionariedad. Causalidad e Invertibilidad en **ARFIMA**

Ruido fraccionario

Teorema

Considere el proceso ARFIMA definido por:

$$\phi(B)y_t = \theta(B)(1-B)^{-d}\varepsilon_t, \qquad d \in (-1, \frac{1}{2})$$

asumiendo que los polinomios $\phi(\cdot)$ y $\theta(\cdot)$ no tienen raíces comunes.

(a) Si las raíces de $\phi(\cdot)$ están fuera del círculo unitario $\{z : |z| = 1\}$, entonces existe una solución estacionaria única:

$$y_t = \sum_{i=-\infty}^{\infty} \psi_i \varepsilon_{t-j}, \quad \psi(z) = (1-z)^{-d} \frac{\theta(z)}{\phi(z)}.$$

- (b) Si las raíces de $\phi(\cdot)$ están fuera del disco unitario cerrado $\{z : |z| \le 1\}$, entonces el proceso $\{y_t\}$ es causal.
- (c) Si las raíces de $\theta(\cdot)$ están fuera del disco unitario cerrado $\{z:|z|<1\}$, entonces el proceso $\{y_t\}$ es **invertible**.

Modelo ARFIMA

La representación de Wold de un proceso ARFIMA

$$y_t = (1 - B)^{-d} \varepsilon_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}, \quad \psi_j = \frac{\Gamma(j+d)}{\Gamma(j+1)\Gamma(d)}.$$

Ruido fraccionario

0000000

- Propiedades útiles
 - Asintótica: $\psi_j \sim \frac{1}{\Gamma(d)} j^{d-1} \quad (j \to \infty).$
 - Para $0 < d < \frac{1}{2}$: $\sum_{i=0}^{\infty} \psi_i^2 < \infty$ pero $\sum_{j=0}^{\infty} |\psi_j| = \infty$ (memoria larga).
 - Para $-\frac{1}{2} < d <$ 0: $\sum_{i=0}^{\infty} |\psi_j| < \infty$ (antipersistencia / memoria corta).

Caracterización del proceso ARFIMA en el dominio del tiempo

Rol del parámetro d (Hosking, 1981)

• $0 < d < \frac{1}{2}$: memoria larga: Existe una constante positiva C tal que, para k grande,

$$\rho_k \approx C k^{2d-1}.$$

Ruido fraccionario

La ACF decae hiperbólicamente hacia cero y no es absolutamente sumable:

$$\sum_{k=-\infty}^{\infty} \rho_k \quad \text{no converge.}$$

- $-\frac{1}{2} < d < 0$: memoria intermedia (antipersistencia): El proceso y_t es estacionario, dominado por autocorrelaciones negativas y absolutamente sumables
- d = 0: memoria corta \Rightarrow proceso ARMA.

Procesos de Larga memoria

Implementación de un modelo ARFIMA en R

Ruido fraccionario

Paquetes utilizados

- fracdiff: simulación y estimación de modelos fraccionarios.
- forecast: selección automática de ARIMA/ARFIMA.
- arfima: funciones adicionales para estimar procesos de larga memoria.

Ejemplo: Ruido Fraccionario

• Simulación de un proceso ARFIMA(0, d, 0) con d = 0.4:

$$(1-B)^d X_t = Z_t$$

- Comparación con modelos ARMA ajustados vía auto.arima.
- Estimación del parámetro d con fracdiff().
- Evaluación mediante ACF y PACF: decaimiento hiperbólico en la autocorrelación.

Modelos de Larga Memoria Econometría

Ruido fraccionario

Felipe Elorrieta López

Universidad de Santiago de Chile Facultad de Ciencia Depto. de Matemática y Computación

10 de septiembre de 2025

