Predicting Flight Delays to Improve Airport Operations

Team 4-1 | April 2, 2025

Mohamed Bakr

Shruti Gupta

Erica Landreth

Danielle Yoseloff

Outline

- Problem statement
- Data preparation
 - Input sources
 - Joining and cleaning
- Feature development
 - Seasonality
 - Recency and frequency
- Modeling
 - Baseline pipeline
 - Preliminary results
- Next steps

Problem Statement

- Efficient airport operations require effective resource management
 - Personnel
 - Space
 - Scheduling
- Balancing resources heavily dependent on flight schedules
 - Unanticipated delays lead to inefficiencies-often costly
- Modeling objective: predict whether a flight's departure will be delayed, two hours before its scheduled departure
 - Delayed: 15+ minutes delayed OR cancelled

Data Preparation

Delay EDA

Airports

Data Preparation Result

Cleaned data: Outcome variable

Delayed	Not Delayed		
1,494,498	5,927,539		

Feature Engineering

Delay Seasonality: Prophet Modeling

Recency and Frequency Features

American Airlines

Tail Number N98TW

Prior Flight Definition:

- ◆Prior Destination = Origin
- →Within 24 hrs

ABC ORIGIN	ABC DEST	🛱 sched_depart_utc	priorflight_deptime_final	📌 priorflight_isdelayed	🚓 priorflight_arrived	+c priorflght_est_arr_time_final	#2 est_tail_turnaround_window_min
PIT	DFW	2019-01-01T12:15:00.000+00:00	null	null	0	null	null
DFW	RDU	+ 2019-01-01T16:55:00.000+00:00	2019-01-01T12:15:00.000+00:00	0	0	2019-01-01 15:50:00	65
RDU	DFW	2019-01-01T20:33:00.000+00:00	2019-01-01T16:55:00.000+00:00	0	0	2019-01-01 19:34:00	59
DFW	PNS	2019-01-02T12:55:00.000+00:00	2019-01-01T20:33:00.000+00:00	0	1	2019-01-01 23:55:00	780

* Using actual arrival if available

Notes:

- Assume tail number is known
- + Time based prior flight features could be known 2 hrs before expected departure

Modeling

Baseline Model Pipeline

Model Evaluation

Error	Meaning	Consequences	Cost	
Type I Predict delay, depart on time		Confusion, unnecessary changes	Acceptable: we prioritize caution	
Type II	Predict on time, depart delayed	Missed connections, poor customer satisfaction, operational disruptions	Costly: Major disruptions can have immense monetary cost	

$$F_2=rac{5}{rac{4}{Precision}+rac{1}{Recall}}=rac{5}{rac{4TP+4FN}{TP}+rac{TP+FP}{TP}}$$
 Emphasis on recall!

Preliminary Baseline Results: F2 Score

Next Steps

Phase II

- Feature engineering and processing
 - Delay frequency features
 - Non-numeric weather features
 - Interaction terms
- Feature selection
 - Lasso
 - Explore PCA
- Baseline model hyperparameter tuning

Phase III

- Explore more sophisticated models
 - Tree ensembles
 - Multi-layer perceptron
- Additional feature engineering
 - Graph features
 - Additional seasonality components
- Select and tune a final model

Questions?