Insertion Sort

It builds the sorted array one element at a time by picking an element and inserting it into its correct position in the sorted part of the array.

How it Works:

Let's take an example:

Input: [5, 3, 4, 1, 2]

- 1. Start from index $1 \rightarrow \text{pick } 3 \rightarrow \text{compare with } 5 \rightarrow \text{insert before} \rightarrow [3, 5, 4, 1, 2]$
- 2. Next $4 \rightarrow$ insert between 3 and $5 \rightarrow [3, 4, 5, 1, 2]$
- 3. Next $1 \rightarrow \text{insert}$ at the beginning $\rightarrow [1, 3, 4, 5, 2]$
- 4. Last $2 \rightarrow$ insert between 1 and $3 \rightarrow [1, 2, 3, 4, 5]$

Key Points:

- Time Complexity:
 - Worst: O(n²) (reverse sorted)
 - o Best: **O(n)** (already sorted)
 - o Average: O(n²)
- Space Complexity: O(1)
- Stable Sort
- **In-place** sorting algorithm
- Good for small or nearly sorted datasets