第二章 半导体器件

- 二极管和稳压管特性及应用(钳位/限幅电路、直流电源电路)
- 三极管的符号含义、特性曲线、工作状态,为后续应用打基础

三极管(BJT)	场效应管(FET)		
Bipolar Junction Transistor	Field-Effect Transistor		
发射极(E)、基极(B)和集电极(C)	源极(S)、栅极(G)和漏极(D)		
通过基极电流i _B 来控制集电极电流i _C 和发	利用电场效应形成导电沟道来控制多子		
射极电流i _E ,属于电流控制型器件	的运动,即通过栅极电压 u_{GS} 控制漏极电		
$i_{\text{C}} = \beta i_{\text{B}} + I_{\text{CEO}} \approx \beta i_{\text{B}}$ $i_{\text{E}} = i_{\text{B}} + i_{\text{C}} \approx (1 + \beta)i_{\text{B}}$	流i _D ,属于电压控制型器件		
双极型晶体管	单极性晶体管		
性能受温度影响,热稳定性差	仅多子运动,热稳定性好		
C 分为 NPN 型和 PNP 型 C	按导电沟道分为N型和P型;按原理结构		
R	分为结型场效应管(JFET)和绝缘栅场		
	效应管(MOSFET)		

由于三极管具有电流放大(控制)作用,所以常利用

- 三极管作为放大电路的核心元件。本书以NPN硅管为主。
 - :三极管具有三个电极:基极B、集电极C、发射极E
 - :: 在构成放大电路时,可以有三种接法:

※ 中低频 {① 共发射极接法 → 以E为公共端,交流信号B入C出 ② 共集电极接法 → 以C为公共端,交流信号B入E出 高频 ←③ 共基极接法 → 不做要求

- ① 阻容耦合→电容连接 → 只能放大交流信号 → 常用于分立电路
- ② 直接耦合→电阻和导线连接 → 可放大直流或交流 → 集成电路

§ 1 基本共射放大电路

P120 图5-1

一、电路的组成

问题:如何选择 R_B 、 R_C 使得 $V_C>V_B>V_E$?

- ::三极管具有放大能力的前提条件:发射结正偏、集电结反偏。
- :需要在输入小信号之前,首先加上直流电源,使得 $V_C>V_B>V_E$ 保证三极管工作在放大状态。

基本共射放大电路

一、电路的组成

直流电压>>交流电压

加入交流信号的方式: 先讲阻容耦合

共射接法:交流B入C出,以E为公共端

注意点: C_1 、 C_2 采用大容量的电解电容

$$X_C^{\checkmark} = \frac{1}{2\pi fC^{\uparrow}}$$
 极好地隔直导交 R_s

遇直流断开, 遇交流变成导线

电解电容的特点:存在极性

"+"端应接高电位点→靠近直流 阻容耦合基本共射放大电路 电源的点 与P140电路的区别:

① 电容画法不同 ② 交流符号不同 $\dot{U}_s \leftrightarrow u_s$ $\dot{U}_o \leftrightarrow u_o$

§ 1 基本共射放大电路

二、元件的作用 1、核心器件: 半导体三极管 \longrightarrow 实现 u_i 对 u_o 的控制

- 2、直流电源 V_{CC} : ① 保证T处于放大状态
 - ② 为信号放大提供能量

3、交流电源 u_s 和 R_s : 提供微变的输入信号

思考: u_i的大小和什么有关?

$$u_i' = \frac{r_i'}{R_s + r_i} \times u_s$$

$$u_{oL} = \frac{R_L}{R_L + r_o^{\bullet}} \times u_{oo}$$

 u_i 的大小与输入电阻的大小有关

r₀: 衡量放大电路输出信号

利用 $i_{\rm C}=\beta i_{\rm B}$

 r_i : 衡量放大电路采集信号的能力

(带负载)的能力

§ 1 基本共射放大电路

- 二、元件的作用 1、核心器件:半导体三极管 \longrightarrow 实现 u_i 对 u_o 的控制
- 2、直流电源 V_{CC} : ① 保证T处于放大状态
 - ②为信号放大提供能量
- 3、交流电源 u_s 和 R_s : 提供微变的输入信号
- 4、耦合电容 C_1 和 C_2 : 隔直导交,方便分析
- 5、基极偏置电阻 $R_{\rm B}$: $0 < i_{\rm B} \le I_{\rm BS}$
- 为了提供合适的基极偏置电流IR

→I_B不能太大也不能太小

利用 $i_{\rm C}=\beta i_{\rm B}$

思考:没有 R_{C} 的后果?

6、集电极电阻R_C:将输出端的集电极电流变化转换为电压变化

四、符号的说明 放大电路是在直流信号的基础上叠加交流;

- i_{R} (小写字母、大写下标)——直流量与交流量之和;
- I_{R} (大写字母、大写下标) ——基极电流的直流分量;
- i_{b} (小写字母、小写下标)——基极电流的交流瞬时值;
- I_b ——交流分量 i_h 的相量表示(无需计算时建议不使用)

			交流分量			
电量名称	总电量	直流分量	瞬时值	向量值	最大值	关系式
基极电流	$i_{ m B}$	$I_{\mathtt{B}}$	$i_{\rm b}$	$\dot{I}_{\mathfrak{b}}$	$I_{ m bm}$	$i_{\mathrm{B}} = I_{\mathrm{B}} + i_{\mathrm{b}}$
发射结电压	$u_{\scriptscriptstyle m BE}$	$U_{\scriptscriptstyle m BE}$	$u_{ m be}$	$\dot{U}_{ exttt{be}}$	$U_{ m bem}$	$u_{\mathrm{BE}} = U_{\mathrm{BE}} + u_{\mathrm{be}}$
集电极电流	$i_{ m C}$	$I_{\mathtt{C}}$	$i_{\rm c}$	$\dot{I}_{ extsf{c}}$	$I_{ m cm}$	$i_{\rm C} = I_{\rm C} + i_{\rm c}$
集-射极电压	u_{CE}	$U_{\scriptscriptstyle{ exttt{CE}}}$	$u_{\rm ce}$	\dot{U}_{ce}	$U_{ m cem}$	$u_{\text{CE}} = U_{\text{CE}} + u_{\text{ce}}$

五、性能指标的计算 → 静态指标和动态指标 : 任何一个放大电路都是先 通直流电源再加交流信号

分析电路应 先静态分析 后动态分析

静态分析: ---> 只有直流电源作用的电路图(直流通路)

阻容耦合电路画直流通路的方法: 断开电容即可 电容隔断直流

1、求解静态工作点 $Q \longrightarrow 由 U_{BE}; I_B; I_C; U_{CE}$ 共同确定 P125

