2

Cours

# Addition nucléophile sur les cétones-aldéhydes

| II- | <b>ADDITION N</b> | <b>UCLEOPHILE</b> | SUR C | ETONES-A | LDEHYDES |
|-----|-------------------|-------------------|-------|----------|----------|

| 1- Assistance électrophile                                      | 2  |
|-----------------------------------------------------------------|----|
| 2- Réduction des cétones-aldéhydes en alcools                   | 2  |
| a- Par des hydrures métalliques                                 | 2  |
| b- Réduction par le dihydrogène en présence de catalyseur       | 4  |
| 3- Réaction de cétalisation ou d'acétalisation                  | 5  |
| a- Conditions opératoires                                       | 5  |
| b- Mécanisme                                                    | 6  |
| c- Intérêt de la réaction : protection des fonctions carbonyles | 7  |
| 4- Réaction de Wittig                                           | 8  |
| a- Conditions expérimentales                                    | 8  |
| b- Formation de l'ylure                                         | 9  |
| 5- Réaction avec des amines primaires ou secondaires            | 10 |
| a- Conditions expérimentales                                    | 10 |
| h- Mécanisme                                                    | 11 |

Page 1 Claude ANI ES © EduKlub S.A.

Cours

# II- Addition nucléophile sur cétones-aldéhydes

### 1- Assistance électrophile

Les cétones et aldéhydes sont de très bons électrophiles. L'écriture de formes mésomères moins probables montrent l'électrophilie du carbone lié doublement à l'oxygène :

site électrophile

### Ecriture de formes mésomères

La réactivité des cétones-aldéhydes est donc liée à la présence de ce carbone électrophile. L'électrophilie peut être renforcée par la présence d'acide de Lewis (protons H<sup>+</sup> ou cations métalliques M<sup>+</sup>):

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + M$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + M$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + M$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R_1 \\
C = O
\end{bmatrix} + C$$

$$\begin{bmatrix}
R$$

Cétones-aldéhydes en présence d'acide de Lewis

Le cation métallique peut être Li<sup>+</sup> de LiAlH<sub>4</sub>, Na<sup>+</sup> de NaBH<sub>4</sub>, ou bien Mg<sup>2+</sup> d'un organomagnésien, R-MgX.

## 2- Réduction des cétones-aldéhydes en alcools

### a- Par des hydrures métalliques

Les hydrures métalliques couramment utilisés pour transformer respectivement une cétone ou un aldéhyde en alcool secondaire ou primaire sont le térathydrurod'aluminium et de lithium, LiAlH<sub>4</sub>, ou le tétraborohydrure de sodium, NaBH<sub>4</sub>. On observe cependant une différence de comportement de ces hydrures :

• LiAlH<sub>4</sub> est un hydrure extrêmement réactif (fortes nucléophilie et basicité); il ne peut être utilisé que dans un solvant anhydre et aprotique, tel qu'un étheroxyde comme l'éthoxyéthane ou diéthyléther, Et<sub>2</sub>O, ou le TétraHydrofurane ou THF (officiellement

Page 2 Claude ANI ES © EduKlub S.A.



Cours

oxacyclpentane). En présence d'eau, on observe un dégagement gazeux de dihydrogène et la précipitation selon le pH de la solution de Al<sup>3+</sup>:

LiAlH<sub>4</sub> + 4 H<sup>+</sup> 
$$\longrightarrow$$
 Li<sup>+</sup> + 4 H<sub>2</sub> + Al<sup>3+</sup>

LiAlH<sub>4</sub> + 4 H<sub>2</sub>O  $\longrightarrow$  LiOH + 4 H<sub>2</sub> + Al(OH)<sub>3</sub>

LiAlH<sub>4</sub> + 4 H<sub>2</sub>O + HO  $\longrightarrow$  LiOH + 4 H<sub>2</sub> + Al(OH)<sub>4</sub>

Hydrolyse de LiAlH<sub>4</sub>

• NaBH<sub>4</sub> est un hydrure beaucoup moins réactif (nucléophile mais faiblement basique) ; il peut être utilisé à la diférence de LiAlH<sub>4</sub> dans un solvant protique, tel que l'éthanol.

Ces deux hydrures peut transférer théoriquement 4 ions hydrures. Un équivalent de cétone ou d'aldéhyde est donc théoriquement réduit par 0,25 équivalent d'hydrure. En pratique, ces proportions sont généralement respectées pour LiAlH<sub>4</sub> dont la réactivité est grande alors que NaBH<sub>4</sub> est toujours utilisé en très large excès.

Les mécanismes pour ces hydrures sont les suivants :

Mécanisme de la réduction par LiAlH<sub>4</sub>

La réaction nécessite ensuite une étape d'hydrolyse afin d'obtenir l'alcool. En fonction du pH de la solution, on observera la formation d'ions Al<sup>3+</sup> (en milieu acide), soluble dans l'eau, une précipitation de Al(OH)<sub>3</sub> (en milieu neutre) ou bien la formation du complexe Al(OH)<sub>4</sub>, soluble dans l'eau, en milieu basique :

Page 3 Claude ANI ES © EduKlub S.A.



Cours

$$\begin{pmatrix} R_{1} \\ CH-O \\ R_{2} \end{pmatrix}_{4} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} + 4 \text{ H}^{+} \longrightarrow \begin{pmatrix} R_{1} \\ CH-OH \\ R_{2} \end{pmatrix}_{4} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} + 4 \text{ H}_{2}O \longrightarrow \begin{pmatrix} R_{1} \\ CH-OH \\ R_{2} \end{pmatrix}_{4} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} + 4 \text{ H}_{2}O + HO^{-} \longrightarrow \begin{pmatrix} R_{1} \\ CH-OH \\ R_{2} \end{pmatrix}_{4} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} \stackrel{\bigoplus}{\text{Li}} + 4 \text{ H}_{2}O + HO^{-} \longrightarrow \begin{pmatrix} R_{1} \\ CH-OH \\ R_{2} \end{pmatrix} \stackrel{\bigoplus}{\text{CH-OH}} + AI(OH)_{4}^{-} + LIOH \\ R_{2} \end{pmatrix}$$

Etape d'hydrolyse

Le mécanisme de réduction d'une cétone ou d'un aldéhyde par NaBH<sub>4</sub> dans l'éthanol est le suivant :

Mécanisme de la réduction par NaBH<sub>4</sub>

L'assistance électrophilie est mise en jeu soit par le cation  $Na^+$  ou par liaison hydrogène avec l'éthanol, solvant protique. A la différence de LiAlH<sub>4</sub>, l'éthanolate de bore, EtOBH<sub>3</sub> est beaucoup moins réactif que  $(RO)_{4-x}BH_x$  avec 0 < x < 4.

Comme précédemment, cette réaction nécessite une étape d'hydrolyse afin d'éliminer en phase aqueuse les sels de bore.

### b- Réduction par le dihydrogène en présence de catalyseur

Les cétones ou aldéhydes sont hydrogénés de manière similaire aux alcènes en présence de catalyseurs solides tels que le nickel de Raney ou du palladium déposé sur charbon. La réaction peut se faire en présence d'une fonction aromatique. A noter que les alcènes sont beaucoup plus réactifs que les cétones ou aldéhydes vis-à-vis du dihydrogène :

Page 4 Claude ANI ES © EduKlub S.A.