Generated on 2025-04-15 00:13:35 by gEcon version 1.2.1 (2023-01-18) Model name: baseline_NK

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$

$$\tag{1.2}$$

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad (q_t)$$
 (1.3)

1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left((1 - \delta) E_t \left[q_{t+1} \right] + E_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

3 PRICE SETTING PROBLEM

3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

5 PRODUCT AGGREGATION

5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$Dw_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \alpha h h^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

8 GOVERNMENT

8.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{8.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{8.2}$$

9 GOVERNMENT SPENDING SHOCK

9.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{9.1}$$

10 TECHNOLOGY

10.1 Identities

$$Z_t = e^{\epsilon_t^{\mathrm{Z}} + \rho^{\mathrm{a}} \log Z_{t-1}} \tag{10.1}$$

11 Equilibrium relationships (after reduction)

$$-B_t = 0 (11.1)$$

$$-\lambda_t + q_t = 0 \tag{11.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(11.3)

$$-q_t + \beta \left((1 - \delta) \,\mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{11.4}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s}^{1-\alpha} = 0$$
(11.5)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{11.6}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (11.7)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(11.8)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 (11.9)$$

$$Y_t^{j} - Y_t^{s} = 0 (11.10)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (11.11)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{11.12}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{11.13}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(11.14)

$$-1 + \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
(11.15)

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{11.16}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{11.17}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (11.18)

$$-g_t^2 + \beta \xi^{P} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
(11.19)

$$-\nu_t^{\mathbf{P}} + (1 - \xi^{\mathbf{P}}) \pi_t^{\star - \lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} + \xi^{\mathbf{P}} \nu_{t-1}^{\mathbf{P}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{P}} \right)^{-\lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} = 0$$
(11.20)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (11.21)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(11.22)

_

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{alt} r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0$$

$$\left(1 - \rho^{\pi^{\text{bar}}}\right) = 0 \tag{11.23}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{s} r_t - L_t^{s} W_t = 0 (11.24)$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (11.25)$$

$$-\alpha k r^{\pi} + \eta_{t}^{R} - \log(R_{ss}^{-1}R_{t}) + \rho \log(R_{ss}^{-1}R_{t-1}) + (1-\rho)\left(\log \pi_{t}^{obj} + r^{\pi}\left(-\log \pi_{t}^{obj} + \log(\pi_{ss}^{-1}\pi_{t-1})\right) + r^{Y}\log(Y_{ss}^{-1}Y_{t})\right) = 0$$
(11.26)

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(11.27)

12 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{12.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{12.2}$$

$$-\lambda_{ss} + \mu C_{ss}^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} \left(C_{ss}^{\mu} (1 - L_{ss}^{s})^{1-\mu} \right)^{-\eta} = 0$$
(12.3)

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{12.4}$$

$$-r_{ss} + \alpha m c_{ss} Z_{ss} K_{ss}^{s-1+\alpha} L_{ss}^{s-1-\alpha} = 0$$
 (12.5)

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.6}$$

$$-Q_{\rm ss} + \lambda_{\rm ss}^{-1} q_{\rm ss} = 0 ag{12.7}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(12.8)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{l} = 0$$
 (12.9)

$$Y_{cc}^{j} - Y_{cc}^{s} = 0$$
 (12.10)

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0$$
 (12.11)

$$-Z_{\rm ss} + e^{\rho^{\rm a}\log Z_{\rm ss}} = 0 {12.12}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{12.13}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0 \tag{12.14}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
 (12.15)

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0 (12.16)$$

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.17}$$

$$-g_{ss}^{1} + \lambda_{ss}\pi_{ss}^{\star}Y_{ss} + \beta\xi^{p}g_{ss}^{1}\left(\pi_{ss}^{-1}\pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1}} = 0$$
(12.18)

೮

$$-g_{ss}^2 + \lambda_{ss} m c_{ss} Y_{ss} + \beta \xi^p g_{ss}^2 \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^p} \right)^{-\lambda^{p-1} (1+\lambda^p)} = 0$$
(12.19)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{12.20}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{12.21}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{12.22}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \omega \partial r^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}} \right) = 0 \tag{12.23}$$

$$-D\dot{w}_{ss} + Y_{ss} - r_{ss}K_{ss}^{s} - L_{ss}^{s}W_{ss} = 0$$
(12.24)

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0$$
(12.25)

$$-\alpha k b r^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(12.26)$$

$$-C_{\rm ss} + D\dot{w}_{\rm ss} - I_{\rm ss} - T_{\rm ss} + \pi_{\rm ss}^{-1}B_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - B_{\rm ss}R_{\rm ss}^{-1} + L_{\rm ss}^{\rm s}W_{\rm ss} = 0$$
(12.27)

13 Calibrating equations

 $-1 + \pi_{\rm ss}^{\rm obj} = 0 \tag{13.1}$

$$-0.18 + G_{ss}Y_{ss}^{-1} = 0 (13.2)$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{13.3}$$

14 Parameter settings

6

$$\alpha = 0.3 \tag{14.1}$$

$$\beta = 0.99 \tag{14.2}$$

$$\delta = 0.025 \tag{14.3}$$

$$\eta = 2 \tag{14.4}$$

$$\gamma^{\mathbf{p}} = 0.469 \tag{14.5}$$

$$\lambda^{\mathbf{p}} = 0.5 \tag{14.6}$$

$$\mu = 0.3 \tag{14.7}$$

$$r^{\pi} = 1.684 \tag{14.8}$$

$$r^{Y} = 0.099 \tag{14.9}$$

$$\rho = 0.961 \tag{14.10}$$

$$\rho^{\pi^{\text{bar}}} = 0.924 \tag{14.11}$$

$$\rho^{G} = 0.949 \tag{14.12}$$

$$\rho^{\rm a} = 0.823 \tag{14.13}$$

$$\xi^{\rm p} = 0.908 \tag{14.14}$$

15 Steady-state values

	Steady-state value
$\epsilon^{ m G}$	0.9
g^1	0.9
g^2 λ	0.9
λ	0.9
mc	0.9
$ u^{ m p}$	0.9
π	0.9
π^{\star}	0.9
$\pi^{ m obj}$	0.9
q	0.9
r	0.9
B	0.9
C	0.9
Div	0.9
G	0.9
I	0.9
K^{s}	0.9
L^{s}	0.9
Q	0.9
R	0.9
T	0.9
U	0.9
W	0.9
Y	0.9
$Y^{ m j}$	0.9
Y^{s}	0.9
Z	0.9

16 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$ u_{t-1}^{ ext{p}}$	π_{t-1}	$\pi^{ ext{obj}}_{t-1}$	B_{t-1}	K_{t-1}^{s}	R_{t-1}	Z_{t-1}
g_t^1	/ 1.6135	9.347	-4.5292	11.5569	0	-6.7553	-44.3936	-11.2804
g_t^2	1.0757	6.2313	-3.0195	7.7046	0	-4.5035	-29.5957	-7.5203
λ_t	0.191	0.9427	1.1212	-2.8972	0	-0.7142	10.6339	-1.0658
mc_t	1.5643	11.5434	-2.0392	6.665	0	-8.2439	-35.5872	-12.8739
π_t^\star	0.9342	6.9908	-2.4095	6.3709	0	-4.9019	-29.1422	-7.9772
q_t	0.191	0.9427	1.1212	-2.8972	0	-0.7142	10.6339	-1.0658
r_t	0.4224	3.1177	-0.5525	1.8047	0	-2.4154	-9.6296	-3.2505
C_t	-0.0755	-0.3539	-0.4987	1.2955	0	0.2721	-4.81	0.4052
Dw_t	-1.1752	-9.4305	1.4165	-4.7768	0	5.5955	25.9784	9.8026
G_t	0.0821	0	0	0	0	0	0	0
I_t	0.0856	0.2781	0.2545	-0.6491	0	-0.4569	1.8624	-0.3555
L_t^{s}	0.0002	0.0051	-0.01	0.0273	0	-0.003	-0.1115	-0.0047
Q_t	0	0	0	0	0	0	0	0
T_t	-0.0628	-1.087	-0.0747	-1.0149	1.1111	0.7612	5.5851	1.2402
U_t	-0.718	-2.339	-1.8249	5.4146	0	1.4576	-14.154	3.2399
W_t	0.9855	7.2714	-1.2828	4.1938	0	-5.0041	-22.3988	-7.5814
Y_{t}	0.0922	-0.0758	-0.2443	0.6464	0	-0.1848	-2.9476	0.0497
Y_t^{j}	0.0002	0.0032	-0.0063	0.0172	0	0.2681	-0.0703	0.7517
Y_t^{s}	0.0002	0.0032	-0.0063	0.0172	0	0.2681	-0.0703	0.7517

$\mathbf{Matrix}\ S$

	$\epsilon^{ m Z}$	$\eta^{ m p}$	$\eta^{ m R}$	η^{π}	$\eta^{ m G}$
g^1	/-13.7064	-0.0214	-46.1952	12.5074	1.7002
g^2	-9.1376	-0.755	-30.7968	8.3383	1.1335
λ	-1.2951	-0.0022	11.0654	-3.1355	0.2013
mc	-15.6427	-0.9387	-37.0314	7.2132	1.6484
π^{\star}	-9.6928	-0.0147	-30.3249	6.8949	0.9844
q	-1.2951	-0.0022	11.0654	-3.1355	0.2013
r	-3.9495	-0.2536	-10.0204	1.9531	0.4451
C	0.4923	-0.0037	-5.0052	1.4021	-0.0796
Div	11.9109	0.7591	27.0326	-5.1696	-1.2383
G	0	0	0	0	0.0865
I	-0.4319	0.0016	1.938	-0.7025	0.0902
L^{s}	-0.0057	-0.0009	-0.116	0.0295	0.0003
Q	0	0	0	0	0
T	1.5069	0.0023	5.8117	-1.0984	-0.0661
U	3.9367	0.0304	-14.7284	5.86	-0.7566
W	-9.2119	-0.5912	-23.3078	4.5387	1.0384
Y	0.0604	-0.0021	-3.0672	0.6996	0.0971
Y^{j}	0.9133	-0.0006	-0.0731	0.0186	0.0002
Y^{s}	0.9133	-0.0006	-0.0731	0.0186	0.0002 /

17 Model statistics

17.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
ϵ^{G}	0.9	1.3033	1.6986	Y
$g^1 \ g^2$	0.9	48.3192	2334.743	Y
g^2	0.9	32.221	1038.1948	Y
λ	0.9	12.7587	162.7844	Y
mc	0.9	39.7072	1576.6623	Y
$ u^{ m p}$	0.9	4.5824	20.9986	Y
π	0.9	5.1772	26.8039	Y
π^{\star}	0.9	31.7329	1006.9793	Y
$\pi^{ m obj}$	0.9	1.2958	1.6792	Y
q	0.9	12.7587	162.7844	Y
r	0.9	10.6837	114.1408	Y
B	0.9	0	0	Y
C	0.9	5.7162	32.6746	Y
Div	0.9	30.0911	905.4772	Y
G	0.9	0.1127	0.0127	Y
I	0.9	2.2734	5.1681	Y
K^{s}	0.9	4.2598	18.1462	Y
L^{s}	0.9	0.1247	0.0155	Y
Q	0.9	0	0	Y
R	0.9	1.1114	1.2353	Y
T	0.9	6.9169	47.843	Y
U	0.9	18.5085	342.5659	Y
W	0.9	24.9347	621.7387	Y
Y	0.9	3.8656	14.9431	Y
$Y^{ m j}$	0.9	1.5148	2.2946	Y
Y^{s}	0.9	1.5148	2.2946	Y
Z	0.9	1.2625	1.594	Y

17.2 Correlation matrix

	$\epsilon^{ m G}$	g^1	g^2	λ	mc	$ u^{ m p}$	π	π^{\star}	π^{obj}	q	r	C	Div	G
ϵ^{G}	1	0.012	0.012	0.019	0.009	-0.009	0.006	0.004	0	0.019	0.007	-0.018	-0.011	1
g^1		1	1	-0.837	0.99	-0.635	0.873	0.998	0.217	-0.837	0.99	0.848	-0.967	0.012
g^2			1	-0.837	0.991	-0.635	0.873	0.998	0.217	-0.837	0.99	0.848	-0.967	0.012
λ				1	-0.792	0.823	-0.933	-0.838	-0.24	1	-0.82	-1	0.699	0.019
mc					1	-0.625	0.87	0.995	0.139	-0.792	0.996	0.804	-0.98	0.009
$ u^{ m p}$						1	-0.888	-0.642	-0.255	0.823	-0.674	-0.821	0.462	-0.009
π							1	0.884	0.226	-0.933	0.892	0.937	-0.772	0.006
π^{\star}								1	0.171	-0.838	0.994	0.849	-0.971	0.004
$\pi^{ m obj}$									1	-0.24	0.157	0.238	-0.091	0
q										1	-0.82	-1	0.699	0.019
r											1	0.832	-0.962	0.007
C												1	-0.714	-0.018
Div													1	-0.011
G														1
I														
K^{s}														
L^{s}														
R														
T														
U														
W														
Y														
Y^{j}														
Y^{s}														
Z														

17.3 Cross correlations with the reference variable (π)

	$\sigma[\cdot]$ rel. to $\sigma[\pi]$	π_{t-5}	π_{t-4}	π_{t-3}	π_{t-2}	π_{t-1}	π_t	π_{t+1}	π_{t+2}	π_{t+3}	π_{t+4}	π_{t+5}
$\epsilon_t^{ ext{G}}$	0.252	-0.002	-0.005	-0.009	-0.014	-0.015	0.006	0.006	0.005	0.004	0.004	0.003
g_t^1	9.333	-0.095	-0.044	0.054	0.224	0.496	0.873	0.037	-0.06	-0.1	-0.115	-0.118
$g_t^1 \\ g_t^2$	6.224	-0.095	-0.044	0.054	0.224	0.496	0.873	0.037	-0.06	-0.1	-0.115	-0.118
λ_t	2.464	0.159	0.1	-0.017	-0.221	-0.539	-0.933	-0.459	-0.168	0.003	0.098	0.147
mc_t	7.67	-0.088	-0.04	0.051	0.213	0.478	0.87	0.035	-0.07	-0.114	-0.129	-0.128
$\nu_t^{\rm p}$	0.885	0.273	0.239	0.146	-0.042	-0.372	-0.888	-0.72	-0.511	-0.317	-0.155	-0.03
π_t	1	-0.166	-0.114	-0.006	0.19	0.517	1	0.517	0.19	-0.006	-0.114	-0.166
π_t^\star	6.129	-0.093	-0.042	0.055	0.225	0.499	0.884	0.056	-0.061	-0.111	-0.129	-0.131
π_t^{\star} π_t^{obj}	0.25	-0.074	-0.057	-0.02	0.043	0.135	0.226	0.17	0.122	0.082	0.048	0.021
q_t	2.464	0.159	0.1	-0.017	-0.221	-0.539	-0.933	-0.459	-0.168	0.003	0.098	0.147
r_t	2.064	-0.108	-0.06	0.035	0.204	0.483	0.892	0.084	-0.018	-0.071	-0.098	-0.11
C_t	1.104	-0.157	-0.099	0.018	0.223	0.54	0.937	0.446	0.16	-0.007	-0.1	-0.147
$Di\!w_t$	5.812	0.028	-0.017	-0.098	-0.235	-0.454	-0.772	0.129	0.213	0.221	0.198	0.164
G_t	0.022	-0.002	-0.005	-0.009	-0.014	-0.015	0.006	0.006	0.005	0.004	0.004	0.003
I_t	0.439	0.02	-0.041	-0.145	-0.309	-0.538	-0.763	-0.1	0.184	0.285	0.294	0.261
K_t^{s}	0.823	0.287	0.258	0.174	0.005	-0.283	-0.683	-0.719	-0.603	-0.435	-0.267	-0.121
$L_t^{ m s}$	0.024	-0.14	-0.082	0.032	0.232	0.546	0.954	0.335	0.091	-0.046	-0.118	-0.151
R_t	0.215	0.149	0.095	-0.014	-0.208	-0.517	-0.931	-0.453	-0.154	0.021	0.116	0.162
T_t	1.336	0.164	0.112	0.002	-0.196	-0.522	-0.998	-0.511	-0.186	0.009	0.115	0.167
U_t	3.575	-0.172	-0.114	0.002	0.206	0.517	0.882	0.491	0.218	0.048	-0.055	-0.115
W_t	4.816	-0.077	-0.029	0.062	0.222	0.482	0.858	0.009	-0.096	-0.136	-0.144	-0.138
Y_t	0.747	-0.221	-0.17	-0.059	0.147	0.482	0.938	0.602	0.345	0.157	0.025	-0.064
Y_t^{j}	0.293	0.237	0.258	0.261	0.224	0.094	-0.265	-0.578	-0.598	-0.501	-0.365	-0.229
Y_t^{s}	0.293	0.237	0.258	0.261	0.224	0.094	-0.265	-0.578	-0.598	-0.501	-0.365	-0.229
Z_t	0.244	0.039	0.059	0.085	0.107	0.084	-0.133	-0.102	-0.076	-0.055	-0.038	-0.024

17.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
$\epsilon^{ m G}$	0.713	0.471	0.271	0.109	-0.017
g^1	0.081	-0.014	-0.055	-0.072	-0.077
g^2	0.081	-0.014	-0.055	-0.072	-0.077
λ	0.508	0.196	0.009	-0.097	-0.152
mc	0.064	-0.022	-0.061	-0.077	-0.08
$ u^{ m p}$	0.732	0.457	0.219	0.033	-0.103
π	0.517	0.19	-0.006	-0.114	-0.166
π^*	0.098	-0.01	-0.059	-0.079	-0.085
$\pi^{ m obj}$	0.703	0.456	0.253	0.092	-0.032
q	0.508	0.196	0.009	-0.097	-0.152
r	0.09	0.004	-0.041	-0.065	-0.076
C	0.497	0.19	0.006	-0.098	-0.151
Dw	0.018	-0.062	-0.088	-0.091	-0.082
G	0.713	0.471	0.271	0.109	-0.017
I	0.356	0.039	-0.107	-0.162	-0.17
K^{s}	0.854	0.605	0.345	0.116	-0.066
L^{s}	0.389	0.13	-0.018	-0.097	-0.135
R	0.524	0.209	0.015	-0.096	-0.154
T	0.518	0.192	-0.005	-0.113	-0.166
U	0.552	0.245	0.049	-0.071	-0.141
W	0.06	-0.03	-0.069	-0.082	-0.083
Y	0.633	0.339	0.123	-0.028	-0.128
$Y^{ m j}$	0.701	0.423	0.197	0.023	-0.102
Y^{s}	0.701	0.423	0.197	0.023	-0.102
Z	0.654	0.383	0.174	0.019	-0.092

18 Impulse response functions

Figure 1: Impulse responses (π, C) to $\epsilon^{\mathbf{Z}}$ shock

Figure 3: Impulse responses (π, C) to η^{R} shock

Figure 2: Impulse responses (π, C) to η^p shock

Figure 4: Impulse responses (π, C) to η^{π} shock

Figure 5: Impulse responses (π,C) to $\eta^{\rm G}$ shock