Question Answering with BiDAF

LORENZO MARIO AMOROSA

ANDREA ESPIS

MATTIA ORLANDI

GIACOMO PINARDI

Contents

- Brief description of the problem
- Pre-processing
- BiDAF structure:
 - Character Embedding Layer
 - Word Embedding Layer
 - Contextual Embedding Layer
 - Attention Flow Layer
 - Modelling Layer
 - Output Layers
- Baseline and variants
- Analysis of results
- Discussion and possible improvements

Brief description of the problem

- Predict the answer span given a context and a question
- SQuAD dataset
- BiDAF model:
 - Close-domain (works with query + context, no access to external KB)
 - Extractive
 - > It answers to factoid questions

Pre-processing

- Tokenization using NLTK's TreebankWordTokenizer
- Conversion of answer span indexes from character-level to token-level
- Dataset split in the following way:
 - > 64% reserved for training (57K samples)
 - > 16% reserved for validation (13K samples)
 - 20% reserved for test (17K samples)

Training Validation Test 20%

BiDAF structure: Overview

Character Embedding Layer – Baseline

- Each character of the sentences is encoded using a trainable 8-dim embedding layer. The output has shape: batch size, sequence length, word length, char embedding dim (8); 2D slices in picture
- The embedding of each word is obtained by summing on the word length dimension (BS x SL x 8)
- Apply a convolution with kernel 1x5 and 100 output channels
- Sum on char embedding dimension obtaining a 3D tensor (BS x SL x 100)

Character Embedding Layer – Our improvements

- 101-dimensional one-hot vector to each character using a non-trainable one-hot encoder
- > 1100 distinct characters in the corpus -> 99 most frequent + padding + unknown:
 - > <a> = [1, 0, 0, ..., 0]
 - > = [0, 1, 0, ..., 0]
 - \rightarrow <PAD> = [0, 0, ..., 0]
 - \rightarrow <UNK> = [0, ..., 0, 1]
- > The output of the one-hot encoder is a 4D tensor: batch size, sequence length, word length and 101-dim character embedding.

Character Embedding Layer – Our improvements

- We consider 2D slices of the 4D tensor having shape word length x char embedding dim (n x d)
- Each slice is processed through a 2D convolution with m output channels and with kernel width equal to d, so the filter is slid only vertically

Character Embedding Layer – Our improvements

- From each of the m channels the max value is extracted using maxpooling
- The obtained vector is processed by a dense 2-layer neural network
- Output: 3D tensor (batch size, sequence length, out emb dim)
- Advantage: every word has fixed representation

Word Embedding Layer

- Embedding at the word level
- Implemented as PyTorch Embedding layer
- Weights initialized using GloVe with same embedding dimension as Char Embedding Layer to give them same importance
- The output 3D tensor has shape: batch size, sequence length, output embedding dim

Contextual Embedding Layer – Highway Network

- Generalization of the residual block
- Highway Network input: Char and Word Embeddings concatenation along the embedding dimension
- $y = H(x) \cdot t + x \cdot (1-t)$
- \succ t is computed by the Transform gate T
- Two branches:
 - \triangleright First branch: the input x is transformed using the transform function H and reweighted according to t
 - > Second branch: the input x is carried out as it is and re-weighted according to 1-t

Contextual Embedding Layer – Baseline

> Baseline:

- Two Dense Highway Network blocks
- Transform gate T and transform function H are both fully connected neural networks
- Weighting value t is distinct for each element of the activation tensor

Contextual Embedding Layer – Our improvements

Our improvements:

- Two Convolutional Highway Network blocks
- Transform gate T uses a 2D convolution (vertical slid) and mean operation to obtain t
- Weighting value t is shared among all the elements of the same batch
- Transform function H processes input x using 2D convolution with 5x5 kernel

Contextual Embedding Layer - RNN

- The activations from the two branches are added together
- The Highway Network output is processed by a by a bidirectional Recurrent Neural Network (LSTM or GRU)

Attention Flow Layer

- It merges information between context and query through the bidirectional attention flow mechanism.
- Attention is computed both from context to query and vice versa by using a **shared** similarity matrix $S \in \mathbb{R}^{c \times q}$.
 - Given the contextual embeddings of the context $\mathbf{H} \in \mathbb{R}^{2d \times c}$ and the query $\mathbf{U} \in \mathbb{R}^{2d \times q}$, each element of \mathbf{S} is computed as: $\mathbf{S}_{ij} = \mathbf{w}_{(\mathbf{S})}^T \cdot \operatorname{concat}(\mathbf{H}_{:i}, \mathbf{U}_{:j}, \mathbf{H}_{:i} \odot \mathbf{U}_{:j})$ where $\mathbf{w}_{(\mathbf{S})} \in \mathbb{R}^{6d}$ is a **learnable** weight vector.

Attention Flow Layer – C2Q

- It determines which query words are more relevant w.r.t. each context word.
- For each *i*-th context word, a vector of attention weights $\mathbf{a}_i \in \mathbb{R}^q$ is computed by applying a softmax on the *i*-th row of \mathbf{S} .
- Each column i of the attended query matrix $\widetilde{\mathbf{U}} \in \mathbb{R}^{2d \times c}$ is computed as:

$$\widetilde{\mathbf{U}} = \sum_{j} \mathbf{a}_{ij} \cdot \mathbf{U}_{:j}$$

Vectors for the entire context.

Attention Flow Layer – Q2C

- It determines the context words which are most similar to the query words, and thus more likely to contain the answer.
- For each context word, we compute the maximum similarity w.r.t. all query words and apply a softmax to obtain the vector of attention weights $\mathbf{b} \in \mathbb{R}^c$.
- The vector $\tilde{\mathbf{h}} \in \mathbb{R}^{2d}$ is computed as:

$$\tilde{\mathbf{h}} = \sum_{i} \mathbf{b}_{i} \cdot \mathbf{H}_{:i}$$

and it indicates the weighted sum of the most important words in the context w.r.t. the query.

 $\tilde{\mathbf{h}}$ is then replicated c times across the columns to obtain the matrix $\tilde{\mathbf{H}} \in \mathbb{R}^{2d \times c}$.

Attention Flow Layer – Q2C

- The contextual embeddings and the attention vectors are combined to yield the matrix $G \in \mathbb{R}^{8d \times c}$, where each column is the query-aware representation of each context word.
- Each column of **G** is computed as: $\mathbf{G}_{:i} = \operatorname{concat}(\mathbf{H}_{:i}, \widetilde{\mathbf{U}}_{:i}, \mathbf{H}_{:i} \odot \widetilde{\mathbf{U}}_{:i}, \mathbf{H}_{:i} \odot \widetilde{\mathbf{H}}_{:i})$

Modelling Layer

- The input to the modelling layer is G, which encodes the query-aware representations of context words.
- The output of the modelling layer captures the interaction among the context words conditioned on the query.
- We use a 2-layer bi-directional RNN, with output size d for each direction.
- > Hence we obtain a matrix $\mathbf{M} \in \mathbb{R}^{2d \times c}$, which is passed onto the output layer.

Output Layers

The probability distribution for the **START** of the answer span is obtained as follows:

$$\mathbf{p}^1 = \operatorname{softmax}\left(\mathbf{w}_{(\mathbf{p}^1)}^{\mathrm{T}} \cdot \operatorname{concat}(\mathbf{G}, \mathbf{M})\right)$$

 $\mathbf{w}_{(\mathbf{p}^1)}^{\mathrm{T}} \in \mathbb{R}^{10d}$ is a **learnable** weight vector.

Output Layers

- The probability distribution for the END of the answer span is obtained in two steps:
 - > the matrix **M** is fed into an additional bi-directional RNN which produces the matrix $\mathbf{M}^2 \in \mathbb{R}^{2d \times c}$;
 - $\mathbf{p}^2 = \operatorname{softmax}\left(\mathbf{w}_{(\mathbf{p}^2)}^{\mathrm{T}} \cdot \operatorname{concat}(\mathbf{G}, \mathbf{M}^2)\right)$
- $\mathbf{w}_{(\mathbf{p}^2)}^{\mathrm{T}} \in \mathbb{R}^{10d}$ is a **learnable** weight vector.

Loss and optimizer

The loss function sums the negative log probabilities of the true start and end indices:

$$L(\theta) = -\frac{1}{N} \sum_{i}^{N} \log \left(\mathbf{p}_{y_{i}^{1}}^{1} \right) + \log \left(\mathbf{p}_{y_{i}^{2}}^{2} \right)$$

where:

- \triangleright θ is the set of trainable parameters;
- N is the number of samples;
- > y_i^1 and y_i^2 are the true start and end indices of the answer span for the *i*-th sample;
- \mathbf{p}_{k}^{1} and \mathbf{p}_{l}^{2} are the probability that the k-th token is the start and that the l-th token is the end of the answer span.
- We trained the model using Adam optimizer with a learning rate of $5 \cdot 10^{-3}$ and minibatches of size 8.

Baseline and variants

- > Baseline: dense highway network, learnable character embedding layer and dropout
- ightharpoonup Variant 1: convolutional highway network and concatenation of p^{start} when computing p^{end}
- Variant 2: as the variant 1, but with a non-trainable character embedding layer based on the one-hot encoding of the most frequent characters
- Variant 3: as the variant 2, but with no dropout
- **Variant 4**: as the variant 3, but with the additional constraint $p^{end} > p^{start}$ (which acts only at inference)

Performance on test set					
Model	Baseline	Variant 1	Variant 2	Variant 3	Variant 4
Loss	5.07	4.73	3.64	3.67	3.65
Exact score	0.266	0.288	0.402	0.412	0.421
f1 score	0.432	0.443	0.587	0.599	0.603

Analysis of results

Error type 1

- Context: Beyoncè Giselle Knowles-Carted (born September 4, 1981) is an American singer, [...] rose to fame in the late 1990s [...] Dangerously in Love (2003), which established her [...] featured the Billboard Hot 100 number-one [...].
- Query: When did Beyoncè start becoming popular?
- Correct answer: in the late 1990s.
- Our answer: 2003).

Analysis of results

Error type 2

Example 1

- Query: In what city did Beyoncè grow up?
- Correct answer: Houston.
- Our answer: Houston, Texas.

Example 2

- Query: Which three countries did Beyonce's song "Work It Out" achieve top ten status?
- Correct answer: UK, Norway, and Belgium.
- Our answer: Belgium.

Analysis of results

Error type 3

Example 1

- Context: The latest study using magnetic resonance imaging (MRI) to humans and dogs together proved that [...].
- Query: What technology was used to show that dogs respond to voices in the same brain parts as people?
- Correct answer: MRI.
- Our answer: magnetic resonance imaging.

Example 2

- Context: In Islam dogs are viewed as unclean because they are viewed as scavenger. In 2015 [...].
- Query: How are dogs viewed in Islam?
- Correct answer: as unclean.
- Our answer: as scavengers.

Discussion and possible improvements

- Evidence shows that exploiting high-level constraints (like start span index < end span index) can lead to improvements
- The output layer can learn to constraint the value of p^{end} based on the value of p^{start}
- Possible improvement: merge matrices (eg. word and char embedding) with other approaches instead of concatenation, such as sum or weighted sum
- The models could be improved by better exploring the hyperparameters' space

Discussion and possible improvements

- Major weakness: models not suited for parallelized training due to RNN
- Baseline model slowed down by Dense Highway Network in the Contextual Embedding Layer

We introduced the more efficient Convolutional Highway Network

Discussion and possible improvements

> Other architectures:

- Transformers which do not employ recurrent modules would be trained more efficiently
- XLNet seems the most suited solution because it does not have the limitations of BERT regarding the maximum input length, it matters since in SQuAD sometimes (context + query) > 512

Thank you for your bidirectional attention