Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Дисциплина «СММИФ» Отчёт по лабораторным работам

Вариант 11

Студент: Велютич Д. И. ФИТ 2 курс 1 группа

.

Вариант 10. 1e = $\{1, 4, 8, 2\}$, 2e = $\{4, 7, 4, 1\}$, 3e= $\{8, 4, 1, 1\}$.

1. Дополните систему этих векторов вектором $\overline{e_4}$, чтобы система векторов $\{\overline{e_1}; \overline{e_2}; \overline{e_3}; \overline{e_4}\}$, образовала базис в \mathbb{R}^4 .

		i					
e1	e2	e3	e4	1. det	-729		
1	-4	-8	0	2. x	1	Вектор х1	-0,00823
-4	7	-4	0		2	x2	-0,01646
-8	-4	1	0		3	х3	-0,02469
2	1	-1	1		4	x4	3,67E-16

Базисом векторного пространства называется упорядоченная максимальная линейно независимая система векторов из этого пространства.

2. Найдите координаты вектора $\bar{x} = (1; 2; 3; 4) \in \mathbb{R}^4$ в полученном базисе.

2. x	1	Вектор х1	-0,00823
	2	x2	-0,01646
	3	х3	-0,02469
	4	x4	3,67E-16

3. Используя процесс ортогонализации Грама — Шмидта, постройте ортонормированный базис $\{\overline{h_1}; \overline{h_2}; \overline{h_3}; \overline{h_4}\}$ на основании базиса $\{\overline{e_1}; \overline{e_2}; \overline{e_3}; \overline{e_4}\}$.

Два ненулевых вектора называются ортогональными, если их скалярное произведение равно нулю.

Процесс ортогонализации позволяет построить из произвольной линейно независимой системы векторов $\{e\vec{1}, ..., e\vec{n}\}$ ортонормированную систему ненулевых векторов $\{h\vec{j}, ..., h\vec{j}, n\}$ и состоит в следующем.

$$\vec{h}_1 = \frac{\vec{f}_1}{|\vec{f}_1|},$$

3. Ортога	нализация						
e1	9,219544	h1	0,108465229	(e2,h1)	0,21693	g2	-4,02353
e2	9,055385		-0,43386092				7,094118
e3	7,81025		-0,86772183				-3,81176
e4	1		0,216930458				0,952941
g2	9,052786	h2	-0,44445204	(e3,h1)	-13,0158	g3	-0,30233
			0,783639131	(e3,h2)	0,643286		-0,15116
			-0,42105983				0,976744
			0,105264958				3,755814
g3	3,895436	h3	-0,07761021	(e4,h1)	0,21693	g4	0,098084
			-0,03880511	(e4,h2)	0,105265		0,049042
			0,250740683	(e4,h3)	0,964158		-0,0092
			0,964157626				0,012261
g4	0,110727	h4	0,885818452				
			0,442909226				
			-0,08304548				
			0,110727306				

4. Контроль. Докажите, что векторы $\left\{\overline{h_1}; \overline{h_2}; \overline{h_3}; \overline{h_4}\right\}$ образуют ортонормированный базис в \mathbb{R}^4 .

4. Контроль					
h1	1	(h1,h2)	0,00	(h2,h4)	0,00
h2	1	(h1,h3)	0,00	(h3,h4)	0,00
h3	1	(h1,h4)	0,00		
h4	1	(h2,h3)	0,00		

Евклидово пространство является линейным пространством. Поэтому правомерно говорить о его размерности и его базисах. Как и произвольные линейные пространства, евклидовы пространства можно разделить на бесконечномерные и конечномерные.

Если базис евклидова пространства представляет собой *ортогональную* систему векторов, то этот базис называют **ортогональным**.

Ортогональный базис называют *ортонормированным*, если каждый вектор этого базиса имеет *норму* (*длину*), равную единице.

5. Найдите координаты вектора
$$\bar{x} = (1; 2; 3; 4) \in \mathbb{R}^4$$
 в базисе $\{\overline{h_1}; \overline{h_2}; \overline{h_3}; \overline{h_4}\}$.

2,4947			
2,4947			
		X1	-2,4947
		X2	0,280707
		Х3	4,453632
		X4	1,96541
-0,28071	DET H	-1	
-4,45363			
1.06541			
-1,96541			
	2,350 12	2,550 12	2,530.12

6. Составьте матрицу, столбцами которой являются базисные векторы $\overline{h_1}; \overline{h_2}; \overline{h_3}; \overline{h_4}$ Докажите, что эта матрица является ортогональной.

А транспони	рованная						
0,108465229	-0,43386	-0,86772	0,216930458				
-0,44445204	0,783639	-0,42106	0,105264958				
-0,07761021	-0,03881	0,250741	0,964157626				
0,885818452	0,442909	-0,08305	0,110727306				
6. А *А транс	п			i	1.0	1.0	
1,00	0,00	0,00	0,00	h1	h2	h3	_
0,00	1,00	0,00	0,00	0,108465229		-0,077610211	
0,00	0,00	1,00	0,00		0,783639131		0,4
0,00	0,00			-0,867721831	-0,421059831	0,250740683	-0,
0,00		0,00	1,00			0.964157626	

Квадратная матрица Q ортогональная тогда и только тогда, когда сумма квадратов всех элементов любого ее столбца (строки) равна единице, а сумма попарных произведений элементов двух любых столбцов (строк) равна нулю. Действительно, диагональные элементы матрицы Q^T Q равны сумме квадратов элементов соответствующих столбцов матрицы Q, а недиагональные элементы равны сумме попарных произведений элементов двух столбцов. Поэтому сформулированное утверждение означает, что Q^T Q = E. Утверждение для строк вытекает из рассмотрения произведения QQ^T .

7. Проверьте свойство ортогональной матрицы: $A^{-1} = A^{T}$.

А транспони	оованная		
0,108465229	-0,43386	-0,86772	0,216930458
-0,44445204	0,783639	-0,42106	0,105264958
-0,07761021	-0,03881	0,250741	0,964157626
0,885818452	0,442909	-0,08305	0,110727306
7. A -1			
0,108465229	-0,43386	-0,86772	0,216930458
-0,44445204	0,783639	-0,42106	0,105264958
-0,07761021	-0,03881	0,250741	0,964157626
0,885818452	0,442909	-0,08305	0,110727306

8. Проверьте свойство ортогональной матрицы: $\det A = \pm 1$.

8. DET A-1	-1