VERSION OF AMENDMENTS SHOWING MARKINGS

I claim:

(currently amended) A post packaging alignable optical coupling comprising:
 a base;

a first optical element for receiving or transmitting an optical signal, said first optical element located in a fixed condition on said base;

a second optical element fixedly mounted to the base for receiving or transmitting an optical signal wherein at least one of the optical elements is an optical fiber or optical waveguide;

a mirror interposed to directly intercept an optical signal from one or the other of said optical elements, said mirror moveable moveably disposed with respect to said base;

a MEMS actuator, said MEMS actuator supporting said mirror to enable repositioning said mirror to thereby direct the optical signal directly intercepted by said mirror from said first optical element into alignment with said second optical element or vice versa; and

a shroud encompassing said optical elements with a free space located between said optical elements to therein enable remotely repositioning the mirror with the MEMS actuator when the shroud extends over the optical elements.

2-3 canceled

- 4. (currently amended) The optical coupling of claim 1 wherein the first optical element and the second optical element are located in a transvere transverse condition from each other.
- 5. (original) The optical coupling of claim 4 wherein the first optical element and the second optical element are located at substantially a right angle to each other.

6. (previously amended) The optical coupling of claim 1 wherein the optical coupling includes at least four optical elements.

7-9 Canceled

10. (currently amended) A method of packaging an optical coupling comprising: fixedly mounting a first optical element to a base wherein the first optical element comprises an optical conductor;

mounting a positionable mirror on said base so that an optical signal from the first optical element directly impinges on the positionable mirror;

mounting a second optical element to the base;
placing a shroud over the optical elements and the mirror and at least a portion of the
optical conductor to form an enclosure; and

repositioning the mirror after the optical coupling is packaged to bring the optical signal directly impinging the positionable mirror from the first optical element into alignment with the second optical element or vice versa.

- 11. (original) The method of claim 10 wherein the repositioning of the mirror to align an optical signal from said first optical element to said second optical element is done through rotation and tilting the mirror.
- 12. (original) The method of claim 10 including mounting a third optical element to said base and mounting a fourth optical element to said base and mounting a further repositionable mirror therebetween to thereby permit alignment of a further optical signal between said third optical element to said fourth optical element by repositioning said further repositionable mirror.

between said third optical element to said fourth optical element by repositioning said further repositionable mirror.

- 13. (Canceled)
- 14. (currently amended) The method of claim 10_wherein mounting the second optical element comprises fixedly mounted mounting said second optical element to said base.
- 15. (original) The method of claim 10 where a MEMS actuator is mounted to said base and to said mirror to enable remote positioning of said mirror to thereby bring an optical signal from said first optical element into alignment with said second optical element or vice versa.
- 16.-20 (canceled)