# House Price Prediction

By,
Jofia Joe
Vandana Vijayan
Gana Shankarappa
Sanjo Antony M

## INTRODUCTION

- Demonstrates the usage of machine learning algorithms in the prediction of Real estate/House prices in Bangalore.
- Literature about research on machine learning prediction of house prices in India is extremely limited.
- Use machine learning algorithms to implement this prediction engine for real-life usage by users.
- Findings:
  - Different algorithms can drastically change accuracy.
  - A poor dataset can negatively affect the predictions.
  - Sufficient proof of what algorithm is best suitable for this task.

## PROBLEM STATEMENT

- People and real estate agencies buy or sell houses, people buy to live in or as an investment and the agencies buy to run a business.
- Everyone should get exactly what they pay for.
- Over-valuation/Under-valuation in housing markets has always been an issue
- Lack of proper detection measures.
- Primary aim use Machine Learning Techniques and curate them into ML models which can then serve the users.



## **GAPS IN EXISTING SYSTEM**

- The present method is that the customer approaches a real estate agent to manage his/her investments and suggest suitable estates for his investments.
  - agents need to be paid a fraction of the amount just for searching a house and setting a price tag for you.
  - agents and sellers may have a secret dealing and the customer might be sold an overpriced house without his/her knowledge.
- When people first think of buying a house/Real estate they tend to go online and try to study trends and other related stuff.
  - doesn't have detailed knowledge & accurate information about what the actual price should be.
  - misinformation about the prices in the internet.
  - comparing it with multiple estates is highly time-consuming and has a potential risk of incorrect pricing.

## GOAL

- The main aim of this project is to foresee house costs in Bengaluru city in view of certain elements like area, size/region, number of rooms, and number of washrooms.
- □ Bengaluru house price dataset is utilized to create the model.
- ☐ We have tried using a few machine learning algorithms in order to find out the best one which can give us the most accurate results .



# **TOOLS AND TECHNOLOGIES USED**

- Python
- Numpy and Pandas for Data Cleaning
- Matplotlib for Data Visualization
- Sklearn for Model Building
- Jupyter Notebook as IDE

# **STEPS**

- Data Collection
- Data Cleaning
- Feature Engineering
- Dimensionality Reduction
- Outlier Detection and Removal
- Model Building
- Model Testing

# 1. IMPORTING DATASET

The dataset was downloaded from here: : <a href="https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data">https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data</a>

| Bengaluru_Hou                                                | se_Data.csv (938.0                             | 02 kB)                                           |                                            |                                        |                                         |          |             | 주 # <            |
|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------|----------|-------------|------------------|
| Detail Compact C                                             | Column                                         |                                                  |                                            |                                        |                                         |          |             | 9 of 9 columns 🗸 |
| ▲ area_type =                                                | ▲ availability =                               | ▲ location =                                     | ▲ size =                                   | ▲ society =                            | ▲ total_sqft =                          | # bath = | # balcony = | # price =        |
| Super built-up Area 66%  Built-up Area 18%  Other (2112) 16% | Ready To Move 79%  18-Dec 2%  Other (2432) 18% | Whitefield 4% Sarjapur Road 3% Other (12381) 93% | 2 BHK 39%<br>3 BHK 32%<br>Other (3811) 29% | [null] 41% GrrvaGr 1% Other (7738) 58% | 1200 6%<br>1100 2%<br>Other (12256) 92% | 1 40     | 0 3         | 8 3.6k           |
| Super built-up Area                                          | 19-Dec                                         | Electronic City<br>Phase II                      | 2 BHK                                      | Coomee                                 | 1056                                    | 2        | 1           | 39.07            |
| Plot Area                                                    | Ready To Move                                  | Chikka Tirupathi                                 | 4 Bedroom                                  | Theanmp                                | 2600                                    | 5        | 3           | 120              |
| Built-up Area                                                | Ready To Move                                  | Uttarahalli                                      | 3 ВНК                                      |                                        | 1440                                    | 2        | 3           | 62               |
| Super built-up Area                                          | Ready To Move                                  | Lingadheeranahalli                               | 3 ВНК                                      | Soiewre                                | 1521                                    | 3        | i           | 95               |
| Super built-up Area                                          | Ready To Move                                  | Kothanur                                         | 2 BHK                                      |                                        | 1200                                    | 2        | 1           | 51               |
| Super built-up Area                                          | Ready To Move                                  | Whitefield                                       | 2 BHK                                      | DuenaTa                                | 1170                                    | 2        | i           | 38               |
| Super built-up Area                                          | 18-May                                         | Old Airport Road                                 | 4 BHK                                      | Jaades                                 | 2732                                    | 4        |             | 204              |
| Super built-up Area                                          | Ready To Move                                  | Rajaji Nagar                                     | 4 BHK                                      | Brway G                                | 3300                                    | 4        |             | 600              |
| Super built-up Area                                          | Ready To Move                                  | Marathahalli                                     | 3 BHK                                      |                                        | 1310                                    | 3        | 1           | 63.25            |
| Plot Area                                                    | Ready To Move                                  | Gandhi Bazar                                     | 6 Bedroom                                  |                                        | 1020                                    | 6        |             | 370              |
| Super built-up Area                                          | 18-Feb                                         | Whitefield                                       | 3 BHK                                      |                                        | 1800                                    | 2        | 2           | 70               |
| Plot Area                                                    | Ready To Move                                  | Whitefield                                       | 4 Bedroom                                  | Prrry M                                | 2785                                    | 5        | 3           | 295              |
| Super built-up Area                                          | Ready To Move                                  | 7th Phase JP Nagar                               | 2 BHK                                      | Shncyes                                | 1000                                    | 2        | 1           | 38               |
|                                                              |                                                |                                                  |                                            |                                        |                                         |          |             |                  |

# **ATTRIBUTES IN DATASET**

- 1. Area\_type
- 2. Availability
- 3. Location
- 4. Size
- 5. Society
- 6. Total\_sqft
- 7. Bath
- 8. Balcony
- 9. Price

## 2. DATA CLEANING

- a) Drop features that are not required to build our model.
  - Area\_type
  - Society
  - Balcony
  - Availability
- b) Handle NA values.

```
In [13]: df2 = df1.drop(['area_type','society','balcony','availability'],axis='columns')
          df2.shape
Out[13]: (13320, 5)
In [14]: df2.isna().sum()
Out[14]: location
                          1
          size
                         16
          total sqft
                          0
          bath
                         73
          price
          dtype: int64
 In [9]: df2.head(3)
 Out[9]:
                        location
                                      size total_sqft bath
                                                          price
           0 Electronic City Phase II
                                    2 BHK
                                               1056
                                                     2.0
                                                          39.07
                   Chikka Tirupathi 4 Bedroom
                                                     5.0 120.00
                                              2600
                       Uttarahalli
                                    3 BHK
                                                     2.0
                                                          62.00
```

## 3. FEATURE ENGINEERING

a) Add new feature (integer) for bhk (bedroom hall kitchen)

```
In [11]: df3['size'].unique()
Out[11]: array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroom',
                 '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
                 '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK',
                 '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
                 '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
                 '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)
In [13]: df3.head()
Out[13]:
                        location
                                     size total sqft bath
           0 Electronic City Phase II
                                   2 BHK
                                                         39.07
                  Chikka Tirupathi 4 Bedroom
                                              2600
                                                    5.0 120.00
                       Uttarahalli
                                   3 BHK
                                              1440
                                                    2.0 62.00
                 Lingadheeranahalli
                                   3 BHK
                                                         95.00
                                   2 BHK
                                              1200 2.0 51.00
                        Kothanur
```

### b) Explore and transform total\_sqft feature

In [18]: df3[~df3.total\_sqft.apply(is\_float)].head(5)

Out[18]:

|     | location           | size  | total_sqft  | bath | price   | bhk |
|-----|--------------------|-------|-------------|------|---------|-----|
| 30  | Yelahanka          | 4 BHK | 2100 - 2850 | 4.0  | 186.000 | 4   |
| 122 | Hebbal             | 4 BHK | 3067 - 8156 | 4.0  | 477.000 | 4   |
| 137 | 8th Phase JP Nagar | 2 BHK | 1042 - 1105 | 2.0  | 54.005  | 2   |
| 165 | Sarjapur           | 2 BHK | 1145 - 1340 | 2.0  | 43.490  | 2   |
| 188 | KR Puram           | 2 BHK | 1015 - 1540 | 2.0  | 56.800  | 2   |

| Out[78]: |   |                          |           |            |      |        |     |
|----------|---|--------------------------|-----------|------------|------|--------|-----|
|          |   | location                 | size      | total_sqft | bath | price  | bhk |
|          | 0 | Electronic City Phase II | 2 BHK     | 1056.0     | 2.0  | 39.07  | 2   |
|          | 1 | Chikka Tirupathi         | 4 Bedroom | 2600.0     | 5.0  | 120.00 | 4   |
|          | 2 | Uttarahalli              | 3 BHK     | 1440.0     | 2.0  | 62.00  | 3   |
|          | 3 | Lingadheeranahalli       | 3 BHK     | 1521.0     | 3.0  | 95.00  | 3   |
|          | 4 | Kothanur                 | 2 BHK     | 1200.0     | 2.0  | 51.00  | 2   |
|          | 5 | Whitefield               | 2 BHK     | 1170.0     | 2.0  | 38.00  | 2   |
|          | 6 | Old Airport Road         | 4 BHK     | 2732.0     | 4.0  | 204.00 | 4   |

#### c) Add new feature price\_per\_sqft

df5['price per sqft'] = df5['price'] \*100000/df5['total sqft'] # price in Lakhs df5.head(10) Out[80]: size total sqft bath price bhk price\_per\_sqft location 0 Electronic City Phase II 2 BHK 1056.0 2.0 39.07 3699.810606 Chikka Tirupathi 4 Bedroom 5.0 120.00 2600.0 4615.384615 4305.555556 2 Uttarahalli 3 BHK 1440.0 2.0 62.00 Lingadheeranahalli 3 3 BHK 1521.0 3.0 95.00 6245.890861 4 Kothanur 2 BHK 1200.0 2.0 51.00 4250.000000 5 Whitefield 2 BHK 1170.0 2.0 38.00 3247.863248 6 Old Airport Road 4 BHK 2732.0 4.0 204.00 7467.057101 7 Rajaji Nagar 4 BHK 3300.0 4.0 600.00 18181.818182 8 Marathahalli 3 BHK 1310.0 3.0 63.25 4828.244275 9 Gandhi Bazar 6 Bedroom 6.0 370.00 1020.0 36274.509804

# 4. DIMENSIONALITY REDUCTION

Dimensionality reduction is a machine learning (ML) or statistical technique of reducing the amount of random variables in a problem by obtaining a set of principal variables.

Changed the name of the locations having less than 10 apartments in that area into "other" category.

| [94]:   | df5. | loc[9:20]             |           |            |      |       |     |                |
|---------|------|-----------------------|-----------|------------|------|-------|-----|----------------|
| ut[94]: |      | location              | size      | total_sqft | bath | price | bhk | price_per_sqft |
|         | 9    | other                 | 6 Bedroom | 1020.0     | 6.0  | 370.0 | 6   | 36274.509804   |
|         | 10   | Whitefield            | 3 ВНК     | 1800.0     | 2.0  | 70.0  | 3   | 3888.888889    |
|         | 11   | Whitefield            | 4 Bedroom | 2785.0     | 5.0  | 295.0 | 4   | 10592.459605   |
|         | 12   | 7th Phase JP Nagar    | 2 BHK     | 1000.0     | 2.0  | 38.0  | 2   | 3800.000000    |
|         | 13   | Gottigere             | 2 BHK     | 1100.0     | 2.0  | 40.0  | 2   | 3636.363636    |
|         | 14   | Sarjapur              | 3 Bedroom | 2250.0     | 3.0  | 148.0 | 3   | 6577.777778    |
|         | 15   | Mysore Road           | 2 BHK     | 1175.0     | 2.0  | 73.5  | 2   | 6255.319149    |
|         | 16   | Bisuvanahalli         | 3 BHK     | 1180.0     | 3.0  | 48.0  | 3   | 4067.796610    |
|         | 17   | Raja Rajeshwari Nagar | 3 ВНК     | 1540.0     | 3.0  | 60.0  | 3   | 3896.103896    |
|         | 18   | other                 | 3 BHK     | 2770.0     | 4.0  | 290.0 | 3   | 10469.314079   |
|         | 19   | other                 | 2 BHK     | 1100.0     | 2.0  | 48.0  | 2   | 4363.636364    |
|         | 20   | Kengeri               | 1 BHK     | 600.0      | 1.0  | 15.0  | 1   | 2500.000000    |

## 5. OUTLIER REMOVAL

- ❖ An outlier is an value that lies far away from all other values in a given dataset.
- Presence of outliers can lead to inconsistencies and further errors in results obtained so it is necessary to remove outliers
  - By keeping minimum threshold per bhk to be 300 sqft.

| [53]: | location            | size      | total_sqft | bath | price | bhk | price_per_sqft |
|-------|---------------------|-----------|------------|------|-------|-----|----------------|
| 9     | other               | 6 Bedroom | 1020.0     | 6.0  | 370.0 | 6   | 36274.509804   |
| 45    | HSR Layout          | 8 Bedroom | 600.0      | 9.0  | 200.0 | 8   | 33333.333333   |
| 58    | Murugeshpalya       | 6 Bedroom | 1407.0     | 4.0  | 150.0 | 6   | 10660.980810   |
| 68    | Devarachikkanahalli | 8 Bedroom | 1350.0     | 7.0  | 85.0  | 8   | 6296.296296    |
| 70    | other               | 3 Bedroom | 500.0      | 3.0  | 100.0 | 3   | 20000.000000   |
|       |                     |           |            |      |       |     |                |
| 13277 | other               | 7 Bedroom | 1400.0     | 7.0  | 218.0 | 7   | 15571.428571   |
| 13279 | other               | 6 Bedroom | 1200.0     | 5.0  | 130.0 | 6   | 10833.333333   |
| 13281 | Margondanahalli     | 5 Bedroom | 1375.0     | 5.0  | 125.0 | 5   | 9090.909091    |
| 13303 | Vidyaranyapura      | 5 Bedroom | 774.0      | 5.0  | 70.0  | 5   | 9043.927649    |
| 13311 | Ramamurthy Nagar    | 7 Bedroom | 1500.0     | 9.0  | 250.0 | 7   | 16666.666667   |

# 5. OUTLIER REMOVAL

- Based on price per sqft.
  - Removed properties where for same location, the price of (for example) 3 bedroom apartment is less than 2 bedroom apartment (with same square ft area).





# 5. OUTLIER REMOVAL

- Using bathroom feature.
  - Here I am considering, if you have 4 bedroom home and even if you have bathroom in all 4 rooms plus one guest bathroom, you will have total bath = total bed + 1 max.
     Anything above that is an outlier or a data error and can be removed.

| Out[155]: |         | location             | size      | total_sqft | bath | price | bhk | price_per_sqft |
|-----------|---------|----------------------|-----------|------------|------|-------|-----|----------------|
|           | 36      | 2nd Stage Nagarbhavi | 6 Bedroom | 3000.0     | 8.0  | 451.0 | 6   | 15033.333333   |
|           | 37      | 2nd Stage Nagarbhavi | 6 Bedroom | 2400.0     | 8.0  | 450.0 | 6   | 18750.000000   |
|           | 530     | Arekere              | 4 BHK     | 2710.0     | 6.0  | 142.0 | 4   | 5239.852399    |
|           | 580     | BTM 2nd Stage        | 3 Bedroom | 1260.0     | 5.0  | 185.0 | 3   | 14682.539683   |
|           | 813     | Bannerghatta         | 4 BHK     | 3012.0     | 6.0  | 250.0 | 4   | 8300.132802    |
|           |         |                      |           |            |      |       |     |                |
|           | 9915    | other                | 4 BHK     | 6652.0     | 6.0  | 510.0 | 4   | 7666.867108    |
|           | 10036   | other                | 2 BHK     | 600.0      | 4.0  | 70.0  | 2   | 11666.666667   |
|           | 10089   | other                | 3 Bedroom | 5656.0     | 5.0  | 499.0 | 3   | 8822.489392    |
|           | 10202   | other                | 4 BHK     | 6652.0     | 6.0  | 660.0 | 4   | 9921.828022    |
|           | 10209   | other                | 4 Bedroom | 6688.0     | 6.0  | 700.0 | 4   | 10466.507177   |
|           | 78 rows | x 7 columns          |           |            |      |       |     |                |

Columns - "size" and "price\_per\_sqft" are dropped and the dataset is ready to be trained.

After removing all outlier dataset has 7251 rows and 5 columns.

|        | df10 | .head(10)           |            |      |       |     |
|--------|------|---------------------|------------|------|-------|-----|
| t[96]: |      | location            | total_sqft | bath | price | bhk |
|        | 0    | 1st Block Jayanagar | 2850.0     | 4.0  | 428.0 | 4   |
|        | 1    | 1st Block Jayanagar | 1630.0     | 3.0  | 194.0 | 3   |
|        | 2    | 1st Block Jayanagar | 1875.0     | 2.0  | 235.0 | 3   |
|        | 3    | 1st Block Jayanagar | 1200.0     | 2.0  | 130.0 | 3   |
|        | 4    | 1st Block Jayanagar | 1235.0     | 2.0  | 148.0 | 2   |
|        | 5    | 1st Block Jayanagar | 2750.0     | 4.0  | 413.0 | 4   |
|        | 6    | 1st Block Jayanagar | 2450.0     | 4.0  | 368.0 | 4   |
|        | 8    | 1st Phase JP Nagar  | 1875.0     | 3.0  | 167.0 | 3   |
|        | 9    | 1st Phase JP Nagar  | 1500.0     | 5.0  | 85.0  | 5   |
|        | 10   | 1st Phase JP Nagar  | 2065.0     | 4.0  | 210.0 | 3   |

# 6. ONE HOT ENCODING FOR LOCATION

| 9/]: |    |                        |            |      |       |     |                        |                             |                                    |                         |                               |                 |                         |                       |             |           |
|------|----|------------------------|------------|------|-------|-----|------------------------|-----------------------------|------------------------------------|-------------------------|-------------------------------|-----------------|-------------------------|-----------------------|-------------|-----------|
|      |    | location               | total_sqft | bath | price | bhk | 1st Block<br>Jayanagar | 1st<br>Phase<br>JP<br>Nagar | 2nd<br>Phase<br>Judicial<br>Layout | 2nd Stage<br>Nagarbhavi | 5th<br>Block<br>Hbr<br>Layout | <br>Vijayanagar | Vishveshwarya<br>Layout | Vishwapriya<br>Layout | Vittasandra | Whitefiel |
|      | 0  | 1st Block<br>Jayanagar | 2850.0     | 4.0  | 428.0 | 4   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 1  | 1st Block<br>Jayanagar | 1630.0     | 3.0  | 194.0 | 3   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 2  | 1st Block<br>Jayanagar | 1875.0     | 2.0  | 235.0 | 3   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 3  | 1st Block<br>Jayanagar | 1200.0     | 2.0  | 130.0 | 3   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 4  | 1st Block<br>Jayanagar | 1235.0     | 2.0  | 148.0 | 2   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 5  | 1st Block<br>Jayanagar | 2750.0     | 4.0  | 413.0 | 4   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 6  | 1st Block<br>Jayanagar | 2450.0     | 4.0  | 368.0 | 4   | 1                      | 0                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 8  | 1st Phase<br>JP Nagar  | 1875.0     | 3.0  | 167.0 | 3   | 0                      | 1                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 9  | 1st Phase<br>JP Nagar  | 1500.0     | 5.0  | 85.0  | 5   | 0                      | 1                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |
|      | 10 | 1st Phase<br>JP Nagar  | 2065.0     | 4.0  | 210.0 | 3   | 0                      | 1                           | 0                                  | 0                       | 0                             | <br>0           | 0                       | 0                     | 0           |           |

### 7. MODEL BUILDING

- We used 3 machine learning algorithms to predict the prices of houses namely Linear Regression, Decision Tree and Lasso
- However Linear Regression gave the best results. Hence it is used.

```
In [68]: from sklearn.linear model import LinearRegression
         lr model= LinearRegression()
         lr_model.fit(X_train,y_train)
         lr model.score(X test,y test)
Out[68]: 0.8452277697874389
In [70]: from sklearn.tree import DecisionTreeRegressor
         dt model = DecisionTreeRegressor()
         dt_model.fit(X_train,y_train)
         dt model.score(X_test,y_test)
Out[70]: 0.7258540996078431
In [71]: from sklearn.linear_model import Lasso
         1 model = Lasso()
         l model.fit(X train,y train)
         1 model.score(X test,y test)
Out[71]: 0.7237775279429011
```

## 8. TEST THE MODEL

The model is used to predict prices for few properties. predict\_price(location, sqft, bath, bhk)

```
In [181]: predict_price('1st Phase JP Nagar',1000, 2, 2)
Out[181]: 83,49904677209898
In [182]: predict_price('1st Phase JP Nagar',1000, 3, 3)
Out[182]: 86.80519395236702
In [183]: predict_price('Indira Nagar',1000, 2, 2)
Out[183]: 181.27815484006317
In [184]: predict_price('Indira Nagar',1000, 3, 3)
Out[184]: 184.5843020203312
In [185]: predict_price('Whitefield',1000,2,2)
Out[185]: 53.358388097755665
In [186]: predict_price('Whitefield',1000,3,3)
Out[186]: 56.664535278023706
```

# RESULTS

Although we used different algorithms for house price prediction Linear Regression was found to be the best algorithm as linear regression was able to give the best model score of 84.5%.

| Linear Regression        | 84.5% |
|--------------------------|-------|
| Decision Tree Classifier | 71.7% |
| Lasso                    | 72.3% |

## **APPLICATIONS**

- Using this proposed model, we want people to buy houses and real estate at their rightful prices.
- Ensure that they don't get tricked by sketchy agents who just are after their money.
- Help Big companies by giving accurate predictions for them to set the pricing.
- Save them from a lot of hassle and save a lot of precious time and money.
- Correct real estate prices are the essence of the market and we want to ensure that by using this model.
- Likewise, house price predictions are also beneficial for property investors to know the pattern of lodging costs in a specific area.

# THANK YOU