Prova P2[100%]

NOME:

RA:

1. O circuito abaixo com um capacitor de 5uF entre x e y, se encontra em regime permanente para t < 0. São dados: $E_A = 54V$ e $I_B = 100 \text{mA}$. Em t = 0, o capacitor de 5 uF é trocado por um resistor de 10Ω . Determine para $t = 0^-$ e $t = 0^+$, $\mathbf{v_{xy}}$, $\mathbf{v_x}$ e a corrente da esquerda para a direita no resistor de 12Ω .

$[t=0^{-}]$	$[t=0^+]$
$V_x = 4$	$V_x = 16,52$
$V_{xy} = 24$	$V_{xy} = 3,13$
$I_{12}=2$	$I_{12} = 2,17$

2. Para o circuito abaixo são dados: $R_1=2k\Omega$, $R_2=R_3=4k\Omega$, $R_4=3k\Omega$, $E_A=85V$, $I_B=10.2mA$, I_C =17mA e I_D =34mA. Determine I_4 em R_4 e o valor da potência na fonte E_A dizendo se fornecida ou recebida.

$$I_4 = 3,4mA$$
 $P(E_A) = 903mW$ (F)

3. Ainda para o mesmo circuito se o valor de \mathbf{R}_4 mudar de $3k\Omega$ para $6k\Omega$, use o circuito das variações de correntes causadas pela fonte determinada pelo teorema de compensação, para determinar as variações [Δ_i , i = 1,4] de corrente nos 4 resistores e o valor da nova corrente em R₄.

$$\Delta_1 = -1,275 \text{mA}$$

$$\Delta_2 = 0$$

$$\Delta_3=$$

$$\Delta_4 = 1,275 \text{mA}$$
 $I_{4d} = 2,125 \text{mA}$

$$I_{4d}=2,125mA$$

4. No circuito abaixo depois de um longo tempo aberta, a chave é fechada em t=0, aberta em t=5 seg e fechada novamente em t=7 seg , determine $i_L(5\text{seg})$, $i_L(7\text{seg})$ e $i_L(15\text{seg})$ para $R_1=R_2=R_3=1\Omega$, L=2,5H e E=14V.

$$i_L(5seg) = 12,1A$$

$$i_L(7seg)=1,098A$$

$$i_L(15seg)=13,474A$$

5. Para o circuito acima e, considerando o regime periódico(fechada por 5 seg e aberta por 2 seg), determine o valor mínimo **Z**₀ e máximo **Z**₁ da corrente i_L

$$Z_0 = 1,112$$

$$Z_1 = 12,256$$

6. Para o circuito abaixo $E_A=50u(t)[V]$, $R_1=2\Omega$, $R_2=20\Omega$, $C_1=(1/36)F$ e a=0.1. Supondo \mathbf{v} (0) =25 \mathbf{V} , determine a tensão no capacitor \mathbf{v} ; t>0.

$$v(t) = [50-25exp(-2t)]$$

Para o mesmo circuito, agora com E_A =50 [u(t)-u(t-1)] [V] e v(0) =25V determine e esboce a tensão no capacitor para t>0.

$$v(t)=[50-25\exp(-2t)][u(t)-u(t-1)]+46,62\exp(-2(t-1))u(t-1)$$

8. Ainda para o mesmo circuito, agora com E_A=100e^{-2t} u(t) [V] e v(0) = 25V determine a tensão no capacitor para t>0.

$$v(t) = 25 \exp(-2t) + 200 t \exp(-2t)$$

9. Para o circuito abaixo o AmpOp é ideal e, $R_1=2\Omega$, $R_2=0.5\Omega$, C=1F. Determine a tensão v(t); t>0, com v(0)=6V e $i_A(t)=[10t^2+5t+1]u(t)$ [A].

$$v(t) = -\exp(-2t) + 20t^2 - 10t + 7$$

 $\underline{10.}$ Para o circuito acima, determine a tensão v(t) ; t>0 , agora com v(0)=6V e $i_A(t)=[10t^2+5t+1+\ 5sent]u(t)$

$$v(t)=3\exp(-2t)+20t^2-10t+7+8$$
sent-4cost