MULTIPLE KERNEL LEARNING **CSE902**

Multiple Kernel Learning - keywords

MKL is used when there are heterogeneous sources (representations) of data for the task at hand (we consider classification)

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - 2. Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - MKL Formulation
 - Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- Conclusions

Heterogeneous Information Fusion

Web page categorization

- Data point = web page
- Sources of information about the webpage:
 - Content:
 - Text
 - Images
 - Structure
 - Sound
 - Relation to other web pages: links → network
 - □ Users (log data):
 - click behavior
 - origin

Slide: Lanckriet et al.

Heterogeneous Information Fusion

Feature Selection

Text mining

- Newsgroups data
 - Unstructured text
 - 1.3M Bag-of-Words features
- Log data for suspicious links
 - Structured text
 - 3.2M constant and variable features
- Real Time processing
- Using small number of features for prediction speed

Feature Selection

Image categorization and retrieval

- Hundreds of feature types (SIFT, HOG, GIST)
- Select and combine features for improved prediction accuracy and speed

Image Categorization: A Small Experiment

- First row: Surface graphs (influence of different feature combination weights on MAP)
- Second row: 4 examples from each class

Questions

- How to merge different information sources (images, sounds, click data, user feedback ...)
 - Same format (numerical), different scale
 - Different formats (ordinal, categorical, non-vectorial)
- How to eliminate irrelevant or redundant data
- How to combine the feature vectors (feature weighting)
- How to minimize the number of sources to improve computational efficiency (sparsity)

MKL vs Alternatives

- MKL is proposed as an alternative to:
 - Cross validation
 - Feature Selection
 - Metric learning
 - Ensemble methods

MKL vs Alternatives

- MKL is proposed as an alternative to:
 - Cross validation
 - Feature Selection
 - Metric learning
 - Ensemble methods
- Advantages of MKL
 - A technically sound way of combining features
 - Feature combination and classifier training is done simultaneously
 - Good learning bounds
 - Different data formats can be used in the same formulation
 - Non-linear learning

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - 2. Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- Conclusions

Binary Classification

■ Training data: sample drawn i.i.d. from set $X \subseteq \mathbb{R}^N$ according to some distribution D,

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in X \times \{-1, +1\}.$$

- Problem: find hypothesis $h: X \mapsto \{-1, +1\}$ in H (classifier) with small generalization error $R_D(h)$.
- Linear classification:
 - Hypotheses based on hyperplanes.
 - Linear separation in high-dimensional space.

Linear Separation

• Classifiers: $H = \{\mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b) : \mathbf{w} \in \mathbb{R}^N, b \in \mathbb{R}\}.$

Why is it important to maximize the margin?

Margin Classifier

- Canonical hyperplane: w and b chosen such that for closest points $|\mathbf{w} \cdot \mathbf{x} + b| = 1$.

Computing the Classifier

Constrained optimization:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i \in [1, m].$

- Properties:
 - Convex optimization (strictly convex).
 - Unique solution for linearly separable sample.

Computing the Classifier

Constrained optimization:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i \in [1, m].$

- Properties:
 - Convex optimization (strictly convex).
 - Unique solution for linearly separable sample.

What to do when the data is not linearly separable?

Computing the Classifier: for Linearly Non-separable Data

Constrained optimization:

$$\min_{\mathbf{w},b,\xi} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i^{\text{slack variable}}$$
 subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i \ \land \ \xi_i \ge 0, i \in [1,m].$

Properties:

- $C \ge 0$ trade-off parameter.
- Convex optimization (strictly convex).
- Unique solution.

Primal Optimization Problem

$$\min_{\mathbf{w},b,\xi} \left(\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i \right)$$
subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i \land \xi_i \ge 0, i \in [1, m].$

Obj. Function

Regularizer + error term + constraints

- Regularizer: maximize the margin
- Error term: minimize the number of errors
- C: trade-of between overfitting and underfitting

Dual Optimization Problem

- Use Lagrangian to construct the dual problem
- Constrained optimization:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to:
$$\alpha_i \geq 0 \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Solution:

$$h(x) = \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + b\right),$$
 with $b = y_i - \sum_{j=1}^{m} \alpha_j y_j(\mathbf{x}_j \cdot \mathbf{x}_i)$ for any SV \mathbf{x}_i .

Dual Optimization Problem

- Use Lagrangian to construct the dual problem
- Constrained optimization:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to:
$$\alpha_i \geq 0 \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Solution:

$$h(x) = \operatorname{sgn} \left(\sum_{i=1}^m \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + b \right),$$
 Dual or Primal? with $b = y_i - \sum_{i=1}^m \alpha_j y_j(\mathbf{x}_j \cdot \mathbf{x}_i)$ for any SV \mathbf{x}_i .

Cortes et al.

Which one to use:

Dual Optimization Problem

- Use Lagrangian to construct the dual problem
- Constrained optimization:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to:
$$\alpha_i \geq 0 \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Solution:

$$h(x) = \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + b\right),$$
 with $b = y_i - \sum_{i=1}^{m} \alpha_j y_j(\mathbf{x}_j \cdot \mathbf{x}_i)$ for any SV \mathbf{x}_i .

What to do when linear classifiers do not work?

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - 2. Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- Conclusions

Kernel Classifiers

Idea:

• Define $K: X \times X \to \mathbb{R}$, called kernel, such that:

$$\Phi(x) \cdot \Phi(y) = K(x, y).$$

K often interpreted as a similarity measure.

Benefits:

- Efficiency: K is often more efficient to compute than Φ and the dot product.
- Flexibility: K can be chosen arbitrarily so long as the existence of Φ is guaranteed (Mercer's condition).

Kernel Trick: An Example

Polynomial kernels

Definition:

$$\forall x, y \in \mathbb{R}^N, \ K(x, y) = (x \cdot y + c)^d, \quad c > 0.$$

Example: for N=2 and d=2,

$$K(x,y) = (x_1y_1 + x_2y_2 + c)^2$$

$$= \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2c}x_1 \\ \sqrt{2c}x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1y_2 \\ \sqrt{2c}y_1 \\ \sqrt{2c}y_2 \end{bmatrix}.$$

XOR Problem: An example

• Use second-degree polynomial kernel with c = 1:

Linearly non-separable Linearly separable by

Linearly separable by $x_1x_2 = 0$.

 Data is linearly separable in the transformed feature space (polynomial kernel)

Dual Problem with Kernel Function

Constrained optimization:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

subject to:
$$0 \le \alpha_i \le C \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Solution:

$$h(x) = \operatorname{sgn} \Big(\sum_{i=1}^m \alpha_i y_i K(x_i, x) + b \Big),$$
 with $b = y_i - \sum_{j=1}^m \alpha_j y_j K(x_j, x_i)$ for any x_i with $0 < \alpha_i < C$.

Dual Problem with Kernel Function

Constrained optimization:

Inner product replaced by the kernel function

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \underbrace{K(x_i, x_j)}_{K(x_i, x_j)}$$

subject to:
$$0 \le \alpha_i \le C \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Solution:

Decision function

tion:
$$h(x) = \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i K(x_i, x) + b\right),$$

with
$$b = y_i - \sum_{j=1} \alpha_j y_j K(x_j, x_i)$$
 for any x_i with $0 < \alpha_i < C$.

Kernel-based Learning

- The inner product in the feature space (similarity score) is performed implicitly
- Any linear classification method can be extended to nonlinear feature space
- Non-vectorial data can be utilized (as long as kernel matrix is PSD)
- Which kernel to use? How to set the parameters?
- One kernel for each feature type or for all?

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - 2. Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- Conclusions

Kernel Learning

standard kernel classifier framework

kernel learning framework

Multiple Kernel Learning (MKL)

- Multiple kernel learning is a (parametric) kernel learning method.
- Some related approaches:
 - Feature selection
 - Metric Learning
 - Ensemble methods

Kernel Learning Framework

 Example: Protein classification with using heterogeneous information sources

Multiple Kernel Learning

- The overall MKL framework:
- 1. Extract features from all available sources
- Construct kernel matrices
 - Different features
 - 2. Different kernel types
 - 3. Different kernel parameters
- 3. Find the optimal kernel combination and the kernel classifier

Kernel Learning Framework

 Create individual kernels for each source (string kernel, diffusion kernel)

Multiple Kernel Learning

- The overall MKL framework:
- Extract features from all available sources
- Construct kernel matrices
 - Different features
 - 2. Different kernel types
 - 3. Different kernel parameters
- 3. Find the optimal kernel combination and the kernel classifier

How is the optimal combination computed?

Multiple Kernel Learning

Multiple kernel learning is a parametric kernel learning method:

Our focus is Two-class (binary) MKL

Linear MKL

Dual MKL formulation

• : Hadamard product

$$\min_{\boldsymbol{\beta} \in \Delta} \max_{\alpha \in \mathcal{Q}} \widehat{\mathcal{L}}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{1}{2} (\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \mathbf{K}(\boldsymbol{\beta}) (\boldsymbol{\alpha} \circ \mathbf{y}),$$

$$\mathbf{K}(\boldsymbol{\beta}) = \sum_{j=1}^{s} \beta_j \mathbf{K}_j$$

- Similar to SVM dual problem, BUT:
 - Minimization w.r.t. the kernel coefficient vector β
 - $lue{}$ Constraint on the kernel coefficient eta
 - (Linearly) Combined kernel instead of a single one.

Regularization on Coefficient Vector

- Regularization:
 - Leads to well-posed problem
 - Affects the level of sparsity
 - Can lead to smooth objective function (or not)

$$\Delta_1 = \left\{m{eta} \in \mathbb{R}^s_+ : \|m{eta}\|_1 = \sum_{j=1}^s |eta^j| \leq 1
ight\}.$$
 L1-MKL SPARSE solutions

$$\Delta_p = \left\{ \beta \in \mathbb{R}^s_+ : ||\beta||_p \le 1 \right\}.$$

Lp-MKL **DENSE** solutions

Why Does L1-norm Produces Sparse Solutions?

Feasible solution meets the regularizers at corners

Zien et al.

MKL and Group Lasso

L1-MKL is equivalent to feature selection with
 Group-Lasso (each kernel is a group of features)

1-norm SVM, lasso:

1-norm-constraints on all individual features

standard MKL:

- 1-norm-constraints between groups (ie kernels)
- 2-norm-constraints within feature groups

standard SVM, ridge-regression: 2-norm-constraints on all features

image from M. Yuan, Y. Lin; Journal of the Royal Statistical Society 2006]

Zien et al.

Sparse vs. Dense MKL

- Which one is better?
 - Prediction performance
 - Computational efficiency in training
 - Computational efficiency in prediction

Non-linear MKL

- 2 categories:
 - Stationary: Learn one (and the same) kernel combination for all training samples
 - Non-stationary: Each sample (or group of samples) uses
 a different kernel combination

Non-stationary MKL

(Left) Canonical MKL: one kernel combination for all; (Middle) Group MKL: one kernel combination for each group; (Right) Sample-MKL: one kernel combination for each sample

Yang et al. 2009

Stationary Non-linear MKL

Generalized MKL (Varma & Babu 2009)

Gaussians:
$$\mathbf{K}_{\mu}(x_i, x_j) = \prod_{k=1}^p \exp\left(-\mu_k(x_{ik} - x_{jk})^2\right)$$

Polynomial kernels (Cortes et al. 2009)

Polynomials:
$$\mathbf{K}_{\mu,d}(x_i,x_j) = (1 + \sum_{k=1}^p \mu_k x_{ik} x_{jk})^d$$

- □ Non-linear MKL methods:
 - Have high computational cost due to non-convexity
 - Do NOT have significant accuracy improvement

Binary-MKL Optimization

Dual formulation:

$$\min_{\boldsymbol{\beta} \in \Delta} \max_{\alpha \in \mathcal{Q}} \widehat{\mathcal{L}}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{1}{2} (\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \mathbf{K}(\boldsymbol{\beta}) (\boldsymbol{\alpha} \circ \mathbf{y}),$$

- Wrapper approaches for MKL-L1 and MKL-Lp
- Direct methods for regularizers that make the objective function smooth

Wrapper Methods

- 2 alternating steps:
 - Solve SVM for the fixed combined kernel
 - Update the kernel weights for the fixed dual variables
- Pro: Off-the-shelf SVM methods can be used

Con: Requires high accuracy in intermediate SVM solutions

Wrapper Methods

- Semi-infinite Programming (SIP) (Sonnenberg et al. 2005)
- Subgradient descend (Rakotomamonjy et al. 2007)
- □ Level-Method (Xu et al. 2009)
- Mirror-descend (Aflalo et al .2011)
- Alternating update method (Group Lasso) (Xu et al. 2010)

They all solve the same problem: NO accuracy difference when the same regularizer is used!

Binary-MKL Optimization

They all solve the same problem (for the same regularizers!)

MKL-SMO

- Sequential minimization optimization (SMO) is a very efficient optimization tool that is used for SVM
- \square When $\|\beta\|_p^2$ is used as a regularizer, the optimization problem becomes:

$$\max_{\boldsymbol{\alpha} \in Q} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{1}{8\lambda} \left(\sum_{k=1}^{s} \left[(\boldsymbol{\alpha} \circ \mathbf{y})^{\top} \mathbf{K}_{k} (\boldsymbol{\alpha} \circ \mathbf{y}) \right]^{q} \right)^{\frac{2}{q}}$$

 SMO can be used for this formulation because it is smooth

Discussions

- □ The state-of-the-art is linear MKL
 - Non-linear and online MKL approaches are not mature
- Many alternative optimization methods that solve the same problem.
- Is MKL useful at all?
 - Compared to uniform (average) combination
- Which Regularizer should be used?
 - Sparse vs Dense MKL
- Which optimization method should be selected?

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- 7. Conclusions

Experimental Results

- Let's see the reported results from the literature.
- Since all methods solve the same problem, the evaluation is on:
 - Comparison of accuracy for different norms
 - Comparison of speed for different norms
 - Comparison of speed for different optimization methods

SILP Algorithm- MKL-L1

1M samples, 20 base kernels

1M samples can be processed in less than 28 hours with caching, chunking, and parallelization. Cortes et al. Sonnenburg et al. 2006

SimpleMKL vs SILP for MKL-L1

SimpleMKL Reduced gradient methods

Pima	$\ell = 538$	M = 117
1 111114	c - JJ0	AVA - 11/

Algorithm	# Kernel	Accuracy	Time (s)	# SVM eval	# Gradient eval
SILP	11.6 ± 1.0	76.5 ± 2.3	224 ± 37	95.6 ± 13	95.6 ± 13
SimpleMKL	14.7 ± 1.4	76.5 ± 2.6	79.0 ± 13	314 ± 44	24.3 ± 4.8
Grad. Desc.	14.8 ± 1.4	75.5 ± 2.5	219 ± 24	873 ± 147	118 ± 8.7

Sonar
$$\ell = 146 \ M = 793$$

Algorithm	# Kernel	Accuracy	Time (s)	# SVM eval	# Gradient eval
SILP	33.5 ± 3.8	80.5 ± 5.1	2290± 864	903 ± 187	903 ± 187
SimpleMKL	36.7 ± 5.1	80.6 ± 5.1	163 ± 93	2770 ± 1560	115 ± 66
Grad. Desc.	35.7 ± 3.9	80.2 ± 4.7	469 ± 90	7630 ± 2600	836 ± 99

 SimpleMKL is faster for small number (hundreds) of samples and large number (hundreds) of kernels.

MKL-Lp Optimization

Wrapper method for MKL-Lp: Newton or cutting plane (Kloft 2009)

□ Faster than MKL-L1 (Sonnenburg 2005)

Cortes et al. Kloft et al.

MKL-SMO vs. MKL-SIP (MKL-Lp)

- MKL-SMO is a direct approach
- MKL-SIP is a wrapper method

- MKL-SMO is more efficient
- The value of p does NOT have a big impact on efficiency
 Cortes et al. Wishwangthan et al. 2010

MKL-L1 vs. MKL-L2 (Accuracy)

 Combining kernels on single features – feature selection (Cortes et al. 2009)

 Dense combinations are better when using many kernels (MKL-L2 > Average kernel > MKL-L1)

MKL-L1 vs. Dense Combination

- Oxford Flowers data set
- Noisy kernels are added

■ MKL-L1 is more robust because it can eliminate weak kernels (contradiction???)
Cortes et al. Gehler et al.

Learning Bounds for MKL-L1 & MKL-L2

- We have the following theorem:
- Assume that $K_k(\boldsymbol{x},\boldsymbol{x}) \leq R^2, \forall k$. Then, for any $\delta>0$, with probability at least $1-\delta$, for any $h\in H$
 - L_2 regularization : $R(h) \leq \hat{R}_{\rho}(h) + O(M^{1/4}\sqrt{\frac{R^2/\rho^2}{n}})$
 - L_1 regularization : $R(h) \leq \hat{R}_{\rho}(h) + O(\sqrt{(log M) \frac{R^2/\rho^2}{n}})$
- Meaning that, given a sufficiently large number of samples (n), MKL-L1 has a better bound (more robust) w.r.t. the increased number of kernels.

Theorem from a presentation by Al Lab, University of Geneva et al.

Conclusions So Far

- MKL-L2 is computationally more efficient than MKL-L1
- Dense (smooth) kernel combination performs better than sparse kernel combination
 - Unless there is a large number of noisy kernels
- MKL-L1 does not have advantage over average kernel baseline
- MKL-SMO is the fastest MKL method
 - But NOT available for MKL-L1

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- 6. Our Experiments
- Conclusions

Our Additional Experiments

- Data sets
 - □ Caltech 101: 9,146 images, 101 classes, 48 base kernels
 - □ VOC2007: 9,963 images, 20 classes, 15 base kernels
 - Subset of ImageNet: 81,738 images, 18 classes, 10 base kernels

Which Wrapper method is the Most Efficient

	Caltech 101 dataset				
	10 training instances per class				
baseline	training	#iter	KerComb		
$GMKL-L_1$	34.6 ± 8.6	38.4 ± 2.0	27.9 ± 7.7		
SimpleMKL- L_1	55.7 ± 25.3	17.2 ± 6.8	46.1 ± 22.0		
$\hat{\text{VSKL-}}L_1$	14.1 ± 2.3	38.3 ± 4.3	11.1 ± 1.7		
MKL - GL - L_1	21.9 ± 0.8	40.0 ± 0.0	19.5 ± 0.8		
MKL - GL - L_2	5.3 ± 0.6	8.8 ± 1.0	4.8 ± 0.6		
MKL - GL - L_4	3.5 ± 0.2	5.9 ± 0.4	3.2 ± 0.2		
MKL-Level- L_1	8.0 ± 2.3	33.0 ± 9.5	5.5 ± 1.4		
MKL -SIP- L_1	5.4 ± 0.9	39.4 ± 2.6	2.1 ± 0.3		
MKL -SIP- L_2	3.8 ± 1.2	5.6 ± 0.9	$2.4 {\pm} 1.1$		
MKL-SIP- L_4	3.3±0.6	$4.4 {\pm} 0.5$	$1.8 {\pm} 0.6$		
	30 train	ing instances p	er class		
baseline	training	#iter	KerComb		
$GMKL\text{-}L_1$	256.7 ± 47.7	38.6 ± 1.8	212.5 ± 42.3		
SimpleMKL- L_1	585.6 ± 204.7	19.0 ± 7.5	494.4 ± 174.7		
$ ilde{ ext{VSKL-}}L_1$	121.9 ± 22.4	36.6 ± 5.1	103.5 ± 17.7		
MKL - GL - L_1	197.1 ± 9.1	39.8 ± 1.0	178.3 ± 8.5		
MKL - GL - L_2	50.8 ± 5.6	9.3 ± 1.0	46.3 ± 5.2		
MKL - GL - L_4	32.5 ± 1.6	5.9 ± 0.3	29.6 ± 1.5		
MKL-Level- L_1	63.3 ± 22.1	27.5 ± 11.1	47.9 ± 14.9		
MKL - SIP - L_1	44.3 ± 6.1	39.7 + 2.9	23.2 ± 2.7		
MKL-SIP- L_2	30.4 ± 4.2	6.3 ± 1.0	25.2 ± 3.9		
MKL-SIP- L_4	$22.6{\pm}2.6$	$4.7 {\pm} 0.5$	$18.2 {\pm} 2.1$		

- MKL-Lp is more efficient than MKL-L1
- Kernel combinationconsumes the most time
 - MKL-L1 might have advantage when the number of kernels is very large
- MKL-Lp converges in small number of iterations

Wrapper vs. Direct MKL-Lp

- Performance comparison (training time in sec)
- MKL-SMO (direct MKL-Lp) is faster

		Number of training samples			
Caltech 101		n = 10	n = 20	n = 30	
	MKL-SIP	3.6 ± 0.2	6.5 ± 0.3	11.8 ± 0.7	
	MKL-SMO	0.2 ± 0.1	2.3 ± 0.2	3.8 ± 0.5	
VOC 2007		25%	50%	75%	
	MKL-SIP	15.5 ± 1.6	145.6 ± 3.9	360.7 ± 8.4	
	MKL-SMO	3.5 ± 0.7	14.2 ± 1.8	33.1 ± 3.0	
		Nuı	nber of base k	ernels	
Caltech 101		K = 48	K = 63	K = 108	
	MKL-SIP	6.5 ± 0.3	13.6 ± 2.9	19.8 ± 3.4	
	MKL-SMO	2.3 ± 0.2	3.2 ± 0.8	6.3 ± 1.0	
VOC 2007		K = 15	K = 30	K = 75	
	MKL-SIP	145.6 ± 3.9	542.0 ± 32.8	1412.1 ± 63.4	
	MKL-SMO	14.2 ± 1.8	$\textbf{29.1} \!\pm\!\ \textbf{2.8}$	77.8 ± 10.3	

Classification Performance

Caltech 101

		Number of training instances per class		
Baseline	Norm	10	20	30
Single		45.3 ± 0.9	55.2 ± 0.9	70.6 ± 0.9
Average		59.0 ± 0.7	69.7 ± 0.6	77.2 ± 0.5
MKL-SIP	p=1	53.8 ± 0.6	63.8 ± 0.9	83.9 ± 0.7
MKL-SIP	p=2	60.1 ± 0.6	70.7 ± 1.0	79.1 ± 0.6

VOC 2007

	Percentage of the samples used for training				
baseline	1%	25%	50%	75%	
Single	23.4 ± 0.1	44.7 ± 0.8	48.6 ± 0.8	50.0 ± 0.8	
Average	21.9 ± 0.5	48.2 ± 0.8	54.5 ± 0.8	57.5 ± 0.8	
L_1 -MKL	23.5 ± 0.7	51.9 ± 0.4	57.4 ± 0.4	59.9 ± 0.9	
L_2 -MKL	22.7 ± 0.4	49.8 ± 0.2	57.3 ± 0.2	$60.6\pm~0.5$	

MKL-L1 can perform better when there is a sufficient number of training samples

ImageNet Results

MKL-L1 is superior going from R1 to R2 (better kernel selection with increased number of samples)

- •MKL-L1 has no advantage in R3:
- •All base kernels are stronger with increased number of samples.
- •Kernel selection has no edge.

Adding Weaker Kernels

Fig. 4: The change in MAP score with respect to the number of base kernels for the Caltech 101 dataset.

Fig. 5: The change in MAP score with respect to the number of base kernels for the VOC 2007 dataset.

 MKL-L1 is more robust against addition of weak (in terms of accuracy) base kernels

Outline

- Kernel Combination
 - 1. Heterogeneous Information Fusion
 - Feature Selection
- Linear margin classifiers (SVM)
- 3. Kernel Classifiers
- 4. Kernel Learning / Multiple Kernel Learning
 - 1. MKL Formulation
 - 2. Sparse vs. Smooth MKL
 - 3. MKL Optimization
- 5. Experimental Results from Literature
- Our Experiments
- 7. Conclusions

Conclusions I: Comparison of MKL Methods

- Linear MKL is preferred over non-linear
 - Unless you know the exact formulation you need
- MKL-L1 is preferred when:
 - The number of kernels is high (tens or more)
 - Kernel selection is needed
 - The number of training samples is sufficient (hundreds per class)
 - Prediction time is important (sparseness)
- MKL-SMO is the most efficient method (no MKL-L1)
- ☐ MKL-SIP is the fastest MKL-L1

Conclusions II: Some Practical Advice

- Multiple MKL packages are available
 - MKL-SMO, Shogun etc.
- Kernel normalization is important
- MKL is scalable for thousands of training samples, hundreds of kernels
 - For more you might need to look into linear methods or kernel approximations
- Average kernel is claimed to perform comparable to sparse MKL
 - Even if it is true, sparseness gives advantage in prediction speed.

Open Problems in MKL

- Improve the computational efficiency
 - Millions of training samples
 - Thousands of base kernels
- Prediction speed
 - Kernel methods are in general not very efficient in prediction (storage and use of support vectors)
- Going beyond linear MKL
 - Online MKL, non-linear MKL, multi-label MKL

MKL Software

- □ Shogun (MKL-SIP):
 - http://shogun-toolbox.org/
- MKL-SMO:
 - http://research.microsoft.com/enus/um/people/manik/code/SMO-MKL/download.html
- SimpleMKL (subgradient)
 - http://asi.insarouen.fr/enseignants/~arakoto/code/mklindex.html
- Multi-Label MKL:
 http://www.cse.msu.edu/~bucakser/software.html
- Localized MKL (non-stationary MKL)
 - http://users.ics.aalto.fi/gonen/

References

- S.S. Bucak, R. Jin, A.K. Jain, "Multiple Kernel Learning for Visual Object Recognition: A Review," *IEEE Transactions on Pattern Analysis* and Machine Intelligence
- M. Gnen and E. Alpaydin, "Multiple Kernel Learning Algorithms," Journal of Machine Learning Research, vol. 12, pp. 2211–2268, 2011.
- S. Vishwanathan, Z. Sun, N. Ampornpunt, and M. Varma, "Multiple Kernel Learning and the SMO Algorithm," in *NIPS* 23, 2010, pp. 2361–2369.
- M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, "Lp-norm Multiple Kernel Learning," Journal of Machine Learning Research, vol. 12, pp. 953–997, 2011.
- M. Varma and B. R. Babu, "More generality in efficient multiple kernel learning," in ICML, June 2009, pp. 1065–1072.
- J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao, "Group- Sensitive Multiple Kernel Learning for Object Categorization," in ICCV, 2009

References

- P. V. Gehler and S.Nowozin, "On Feature Combination for Multiclass Object Classification," in ICML, 2009
- C. Cortes, M. Mohri, and A. Rostamizadeh, "Learning Nonlinear Combinations of Kernels," in NIPS 22, 2009, pp. 396–404.
- C. Cortes, M. Mohri, and A. Rostamizadeh, "Generalization Bounds for Learning Kernels," in *ICML*, 2010.
- A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu, "SimpleMKL," Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008.
- S. Sonnenburg, G. R"atsch, C. Sch"afer, and B. Sch"olkopf,
 "Large Scale Multiple Kernel Learning," Journal of Machine Learning Research, vol. 7, pp. 1531–1565, 2006.