# $11n_{48} (K11n_{48})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -1.14153 \times 10^{15} u^{19} - 4.26909 \times 10^{15} u^{18} + \dots + 8.56391 \times 10^{15} b + 1.10053 \times 10^{16},$$

$$6.37825 \times 10^{15} u^{19} + 2.69128 \times 10^{16} u^{18} + \dots + 8.56391 \times 10^{15} a + 3.19918 \times 10^{16}, \ u^{20} + 4u^{19} + \dots + 2u + 1$$

$$I_2^u = \langle b^2 - 2, \ a + u + 1, \ u^2 + u + 1 \rangle$$

$$I_3^u = \langle b, \ a - u - 1, \ u^2 + u + 1 \rangle$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 26 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -1.14 \times 10^{15} u^{19} - 4.27 \times 10^{15} u^{18} + \dots + 8.56 \times 10^{15} b + 1.10 \times 10^{16}, \ 6.38 \times 10^{15} u^{19} + 2.69 \times 10^{16} u^{18} + \dots + 8.56 \times 10^{15} a + 3.20 \times 10^{16}, \ u^{20} + 4u^{19} + \dots + 2u + 1 \rangle$ 

#### (i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.744782u^{19} - 3.14258u^{18} + \dots - 36.0811u - 3.73565 \\ 0.133295u^{19} + 0.498498u^{18} + \dots + 1.29523u - 1.28508 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.744782u^{19} - 3.14258u^{18} + \dots - 36.0811u - 3.73565 \\ 0.169440u^{19} + 0.644676u^{18} + \dots + 2.36692u - 1.12163 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.408694u^{19} + 1.81167u^{18} + \dots + 31.0989u + 4.13465 \\ -0.233980u^{19} - 0.931452u^{18} + \dots - 3.19070u + 0.665806 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.174714u^{19} - 0.880217u^{18} + \dots - 27.9082u - 4.80045 \\ 0.258642u^{19} + 1.02897u^{18} + \dots + 6.32631u - 0.537037 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.878077u^{19} - 3.64108u^{18} + \dots - 37.3764u - 2.45056 \\ 0.133295u^{19} + 0.498498u^{18} + \dots + 1.29523u - 1.28508 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.12163u^{19} + 4.65596u^{18} + \dots + 50.9286u + 4.61018 \\ -0.278931u^{19} - 1.06850u^{18} + \dots - 2.73563u + 1.50344 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.12163u^{19} + 4.65596u^{18} + \dots + 50.9286u + 4.61018 \\ -0.278931u^{19} - 1.06850u^{18} + \dots - 2.73563u + 1.50344 \end{pmatrix}$$

#### (ii) Obstruction class = -1

## (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing           |
|--------------------|------------------------------------------|
| $c_1,c_5$          | $u^{20} - 4u^{19} + \dots - 2u + 1$      |
| $c_2$              | $u^{20} + 28u^{19} + \dots + 74u + 1$    |
| $c_3$              | $u^{20} + 8u^{18} + \dots - 16u + 41$    |
| $c_4$              | $u^{20} - 2u^{19} + \dots + 2204u + 839$ |
| $c_6, c_9$         | $u^{20} + 3u^{19} + \dots - 19u + 7$     |
| $c_7, c_8, c_{11}$ | $u^{20} - u^{19} + \dots - 12u + 4$      |
| $c_{10}$           | $u^{20} + 2u^{19} + \dots - 2u + 1$      |

## (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing              |
|--------------------|-------------------------------------------------|
| $c_1,c_5$          | $y^{20} + 28y^{19} + \dots + 74y + 1$           |
| $c_2$              | $y^{20} - 68y^{19} + \dots - 1654y + 1$         |
| $c_3$              | $y^{20} + 16y^{19} + \dots + 10814y + 1681$     |
| $c_4$              | $y^{20} - 52y^{19} + \dots + 5336234y + 703921$ |
| $c_6, c_9$         | $y^{20} - 29y^{19} + \dots + 297y + 49$         |
| $c_7, c_8, c_{11}$ | $y^{20} - 15y^{19} + \dots - 48y + 16$          |
| $c_{10}$           | $y^{20} + 4y^{19} + \dots + 2y + 1$             |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.729618 + 0.601963I |                                       |                     |
| a = -0.002660 - 0.502436I | 5.16928 - 2.57908I                    | 8.86572 + 4.96809I  |
| b = 1.343650 - 0.072587I  |                                       |                     |
| u = -0.729618 - 0.601963I |                                       |                     |
| a = -0.002660 + 0.502436I | 5.16928 + 2.57908I                    | 8.86572 - 4.96809I  |
| b = 1.343650 + 0.072587I  |                                       |                     |
| u = 0.337333 + 0.681420I  |                                       |                     |
| a = -1.15996 + 1.26131I   | -3.04083 - 0.89466I                   | -2.94359 - 0.44261I |
| b = 0.515876 + 0.585061I  |                                       |                     |
| u = 0.337333 - 0.681420I  |                                       |                     |
| a = -1.15996 - 1.26131I   | -3.04083 + 0.89466I                   | -2.94359 + 0.44261I |
| b =  0.515876 - 0.585061I |                                       |                     |
| u = -0.342865 + 1.301010I |                                       |                     |
| a = -0.567886 - 0.523820I | -1.166150 - 0.686038I                 | 1.05440 - 1.40687I  |
| b = -0.778134 - 0.346045I |                                       |                     |
| u = -0.342865 - 1.301010I |                                       |                     |
| a = -0.567886 + 0.523820I | -1.166150 + 0.686038I                 | 1.05440 + 1.40687I  |
| b = -0.778134 + 0.346045I |                                       |                     |
| u = -0.007874 + 1.394550I |                                       |                     |
| a = 0.585444 - 0.602506I  | -1.53618 - 5.13397I                   | 0.62229 + 5.85487I  |
| b = 1.027390 - 0.480106I  |                                       |                     |
| u = -0.007874 - 1.394550I |                                       |                     |
| a = 0.585444 + 0.602506I  | -1.53618 + 5.13397I                   | 0.62229 - 5.85487I  |
| b = 1.027390 + 0.480106I  |                                       |                     |
| u = -1.10251 + 0.94498I   |                                       |                     |
| a = 0.757275 + 0.607433I  | -0.59440 - 3.60439I                   | 2.12405 + 4.48047I  |
| b = -0.965691 + 0.331710I |                                       |                     |
| u = -1.10251 - 0.94498I   |                                       |                     |
| a = 0.757275 - 0.607433I  | -0.59440 + 3.60439I                   | 2.12405 - 4.48047I  |
| b = -0.965691 - 0.331710I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape            |
|---------------------------|---------------------------------------|-----------------------|
| u = -0.195248 + 0.372946I |                                       |                       |
| a = -0.774007 + 0.603593I | 0.131319 - 1.058260I                  | 2.00315 + 6.24655I    |
| b = -0.277579 + 0.390975I |                                       |                       |
| u = -0.195248 - 0.372946I |                                       |                       |
| a = -0.774007 - 0.603593I | 0.131319 + 1.058260I                  | 2.00315 - 6.24655I    |
| b = -0.277579 - 0.390975I |                                       |                       |
| u = 0.36556 + 1.75156I    |                                       |                       |
| a = -0.101116 + 1.030470I | -11.13930 + 2.93869I                  | -0.922503 - 0.819894I |
| b = 1.39118 + 0.66555I    |                                       |                       |
| u = 0.36556 - 1.75156I    |                                       |                       |
| a = -0.101116 - 1.030470I | -11.13930 - 2.93869I                  | -0.922503 + 0.819894I |
| b = 1.39118 - 0.66555I    |                                       |                       |
| u = 0.030822 + 0.170366I  |                                       |                       |
| a = -0.29189 - 5.45429I   | 3.14870 - 0.11294I                    | 1.81708 - 1.16761I    |
| b = -1.370380 + 0.067940I |                                       |                       |
| u = 0.030822 - 0.170366I  |                                       |                       |
| a = -0.29189 + 5.45429I   | 3.14870 + 0.11294I                    | 1.81708 + 1.16761I    |
| b = -1.370380 - 0.067940I |                                       |                       |
| u = -0.36649 + 1.92873I   |                                       |                       |
| a = 0.003517 + 0.916631I  | -10.3499 - 9.9960I                    | 0.04826 + 5.02986I    |
| b = -1.46300 + 0.57660I   |                                       |                       |
| u = -0.36649 - 1.92873I   |                                       |                       |
| a = 0.003517 - 0.916631I  | -10.3499 + 9.9960I                    | 0.04826 - 5.02986I    |
| b = -1.46300 - 0.57660I   |                                       |                       |
| u = 0.01089 + 1.99331I    |                                       |                       |
| a = 0.051284 - 0.957095I  | -15.1661 - 3.6593I                    | -2.66886 + 2.23636I   |
| b = 0.076693 - 1.208720I  |                                       |                       |
| u = 0.01089 - 1.99331I    | 45 4004 . 0 05007                     | 2 22222               |
| a = 0.051284 + 0.957095I  | -15.1661 + 3.6593I                    | -2.66886 - 2.23636I   |
| b = 0.076693 + 1.208720I  |                                       |                       |

II. 
$$I_2^u = \langle b^2 - 2, \ a + u + 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u-1 \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u-1 \\ b+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u+1 \\ b+u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} b-u-1 \\ -bu+3u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b-u-1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -bu-b-1 \\ 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -bu-b-1 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 4

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1, c_2, c_{10}$    | $(u^2+u+1)^2$                  |
| $c_3$                 | $u^4 - 2u^3 + 5u^2 + 2u + 1$   |
| C4                    | $u^4 + 2u^3 + 5u^2 - 2u + 1$   |
| <i>C</i> <sub>5</sub> | $(u^2 - u + 1)^2$              |
| $c_6$                 | $(u+1)^4$                      |
| $c_7, c_8, c_{11}$    | $(u^2-2)^2$                    |
| <i>c</i> 9            | $(u-1)^4$                      |

## (v) Riley Polynomials at the component

| Crossings                | Riley Polynomials at each crossing |
|--------------------------|------------------------------------|
| $c_1, c_2, c_5$ $c_{10}$ | $(y^2 + y + 1)^2$                  |
| $c_3, c_4$               | $y^4 + 6y^3 + 35y^2 + 6y + 1$      |
| $c_6, c_9$               | $(y-1)^4$                          |
| $c_7, c_8, c_{11}$       | $(y-2)^4$                          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.500000 + 0.866025I |                                       |                    |
| a = -0.500000 - 0.866025I | 3.28987 - 2.02988I                    | 2.00000 + 3.46410I |
| b = 1.41421               |                                       |                    |
| u = -0.500000 + 0.866025I |                                       |                    |
| a = -0.500000 - 0.866025I | 3.28987 - 2.02988I                    | 2.00000 + 3.46410I |
| b = -1.41421              |                                       |                    |
| u = -0.500000 - 0.866025I |                                       |                    |
| a = -0.500000 + 0.866025I | 3.28987 + 2.02988I                    | 2.00000 - 3.46410I |
| b = 1.41421               |                                       |                    |
| u = -0.500000 - 0.866025I |                                       |                    |
| a = -0.500000 + 0.866025I | 3.28987 + 2.02988I                    | 2.00000 - 3.46410I |
| b = -1.41421              |                                       |                    |

III. 
$$I_3^u = \langle b, a-u-1, u^2+u+1 \rangle$$

(i) Arc colorings

a<sub>1</sub> Are colorings
$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u+1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+1 \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u+1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u-1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u+1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 2

### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing |
|--------------------------|--------------------------------|
| $c_1, c_2$               | $u^2 + u + 1$                  |
| $c_3, c_4, c_5$ $c_{10}$ | $u^2 - u + 1$                  |
| $c_6$                    | $(u-1)^2$                      |
| $c_7, c_8, c_{11}$       | $u^2$                          |
| <i>c</i> <sub>9</sub>    | $(u+1)^2$                      |

## (v) Riley Polynomials at the component

| Crossings                             | Riley Polynomials at each crossing |
|---------------------------------------|------------------------------------|
| $c_1, c_2, c_3$<br>$c_4, c_5, c_{10}$ | $y^2 + y + 1$                      |
| $c_6, c_9$                            | $(y-1)^2$                          |
| $c_7, c_8, c_{11}$                    | $y^2$                              |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape    |
|---------------------------|---------------------------------------|---------------|
| u = -0.500000 + 0.866025I |                                       |               |
| a = 0.500000 + 0.866025I  | -1.64493 - 2.02988I                   | 0. + 3.46410I |
| b = 0                     |                                       |               |
| u = -0.500000 - 0.866025I |                                       |               |
| a = 0.500000 - 0.866025I  | -1.64493 + 2.02988I                   | 0 3.46410I    |
| b = 0                     |                                       |               |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                             |
|-----------------------|--------------------------------------------------------------------------------------------|
| $c_1$                 | $((u^2 + u + 1)^3)(u^{20} - 4u^{19} + \dots - 2u + 1)$                                     |
| $c_2$                 | $((u^2+u+1)^3)(u^{20}+28u^{19}+\cdots+74u+1)$                                              |
| <i>c</i> <sub>3</sub> | $(u^{2}-u+1)(u^{4}-2u^{3}+\cdots+2u+1)(u^{20}+8u^{18}+\cdots-16u+41)$                      |
| C4                    | $(u^{2} - u + 1)(u^{4} + 2u^{3} + \dots - 2u + 1)(u^{20} - 2u^{19} + \dots + 2204u + 839)$ |
| C5                    | $((u^2 - u + 1)^3)(u^{20} - 4u^{19} + \dots - 2u + 1)$                                     |
| <i>C</i> <sub>6</sub> | $((u-1)^2)(u+1)^4(u^{20}+3u^{19}+\cdots-19u+7)$                                            |
| $c_7, c_8, c_{11}$    | $u^{2}(u^{2}-2)^{2}(u^{20}-u^{19}+\cdots-12u+4)$                                           |
| <i>c</i> <sub>9</sub> | $((u-1)^4)(u+1)^2(u^{20}+3u^{19}+\cdots-19u+7)$                                            |
| $c_{10}$              | $(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{20} + 2u^{19} + \dots - 2u + 1)$                    |

## V. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing                                                                           |
|--------------------|--------------------------------------------------------------------------------------------------------------|
| $c_1,c_5$          | $((y^2 + y + 1)^3)(y^{20} + 28y^{19} + \dots + 74y + 1)$                                                     |
| $c_2$              | $((y^2+y+1)^3)(y^{20}-68y^{19}+\cdots-1654y+1)$                                                              |
| $c_3$              | $(y^{2} + y + 1)(y^{4} + 6y^{3} + 35y^{2} + 6y + 1)$ $\cdot (y^{20} + 16y^{19} + \dots + 10814y + 1681)$     |
| $c_4$              | $(y^{2} + y + 1)(y^{4} + 6y^{3} + 35y^{2} + 6y + 1)$ $\cdot (y^{20} - 52y^{19} + \dots + 5336234y + 703921)$ |
| $c_6, c_9$         | $((y-1)^6)(y^{20} - 29y^{19} + \dots + 297y + 49)$                                                           |
| $c_7, c_8, c_{11}$ | $y^{2}(y-2)^{4}(y^{20}-15y^{19}+\cdots-48y+16)$                                                              |
| $c_{10}$           | $((y^2 + y + 1)^3)(y^{20} + 4y^{19} + \dots + 2y + 1)$                                                       |