Simplifying Digital Logic Functions Introduction to Combinatorial Logic

CS 64: Computer Organization and Design Logic
Lecture #13

Ziad Matni Dept. of Computer Science, UCSB

Administrative

- Lab# 6 is due tomorrow
- Remaining on the calendar... This supersedes anything on the syllabus

DATE	TOPIC	ASSIGNMENTS
Thu. 3/1	Simplifying Digital Logic Functions	Lab 6 (due Fri. 3/2)
Tue. 3/6	Combinatorial Logic	
Thu. 3/8	Sequential Logic	Lab 7 (due Fri. 3/9)
Tue. 3/13	Finite State Machines	
Thu. 3/15	Ethics	Labs 8 and 9 (due Fri. 3/16)

Lecture Outline

Logic Functions and their Simplifications:

Truth Table Use vs. Karnaugh Maps

Digital Circuit Design Process

CAN THIS PROCESS BE REVERSED?

Boolean Logic Laws

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form	
Identity law	1A = A	0 + A = A	
Null law	0A = 0	1 + A = 1	
Idempotent law	AA = A	A + A = A	
Inverse law	$A\overline{A} = 0$	A + A = 1	
Commutative law	AB = BA	A + B = B + A	
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC	
Absorption law	A(A + B) = A	A + AB = A	
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$	

More Simplification Examples

Simplify the Boolean expression:

(A+B+C)(D+E)' + (A+B+C)(D+E)

Simplify the Boolean expression and write it out on a truth table as proof

• XZ + Z(X' + XY)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

NOT(X + YZ)

Scaling Up Simplification

• When we get to *more* than 3 variables, it becomes challenging to use truth tables

 We can instead use *Karnaugh Maps* to make it immediately apparent as to what can be simplified

Example of a K-Map

	A	В	f(A,B)
0	0	0	а
1	0	1	b
2	1	0	С
3	1	1	d

B	A 0	1
0	a	c
1	b	đ

B^A	0	11
0	0	2
1	1	3

A	В	f(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

K-Maps with 3 or 4 Variables

Note the adjacent placement of: 00 01 11 10

It's NOT: **00 01 10 11**

- 1. Group together adjacent cells containing "1"
- 2. Groups should **not include** anything containing "0"

3. Groups may be horizontal or vertical, but not diagonal

4. Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells.

5. Each group must be as large as possible

(Otherwise we're not being as minimal as we can be, even though we're not breaking any Boolean rules)

6. Each cell containing a "1" must be at least in one group

7. Groups may overlap esp. to maximize group size

8. Groups may wrap around the table.

The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

3/1/18

Example 1 2 vars

$$F(X,Y) = Y$$

Example 2 3 vars

$$F(X,Y,Z)$$

= $XZ + Z(X'+ XY)$
= $XZ + ZX' + ZXY$
= $Z(X + X' + XY)$
= $Z(1 + XY)$

= Z

Example 3 3 vars

!A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C

 $F(X,Y,Z) = !C + !A \leftarrow$

Example 4 4 vars

Example 4 *4 vars*

K-Map Rules Summary

- Groups can contain only 1s
- Only 1s in adjacent groups are allowed (no diagonals)
- The number of 1s in a group must be a power of two (1, 2, 4, 8...)
- Groups must be as large AND as few in no.s as "legally" possible
- All 1s must belong to a group, even if it's a group of one element
- Overlapping groups are permitted
- Wrapping around the map is permitted

Exploiting "Don't Cares"

- An output variable that's designated "don't care" (symbol = X) means that it could be a 0 or a 1 (i.e. we "don't care" which)
 - That is, it is unspecified,
 usually because of invalid inputs

Example of a Don't Care Situation

 Consider coding all decimal digits (say, for a digital clock app):

- 0 thru 9 --- requires how many bits?
 - 4 bits
- But! 4 bits convey more numbers than that!
 - Don't forget A thru F!

Not all binary values map to decimal

Example Continued...

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Decimal
1000	8
1001	9
1010	X
1011	X
1100	X
1101	X
1110	X
1111	Х

Don't Care: So What?

Recall that in a K-map, we can only group 1s

 Because the value of a don't care is irrelevant, we can treat it as a 1 if it is convenient to do so (or a 0 if that would be more convenient)

Example

 A circuit that calculates if the 4-bit binary coded single digit decimal input % 2 == 0

 So, although 4-bits will give me numbers from 0 to 15, I don't care about the ones that yield 10 to 15.

13	12	l1	10	R
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	X
1	1	1	1	Х

Example as a K-Map

I_1	Ιo				
I_3I_2	00	01	11	10	
00	1	0	1	0	
01	1	0	1	0	
11	X	X	X	X	
10	1	0	X	X	

3/1/18

Matni, CS64, Wi18

27

If We Don't Exploit "Don't Cares"

3/1/18

Matni, CS64, Wi18

28

If We DO Exploit "Don't Cares"

3/1/18

IVIALIII, CSD4, VVIIO

29

Combinatorial Logic Designs

 When you combine multiple logic blocks together to form a more complex logic function/circuit

What is its truth table?

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3/1/18

Matni, CS64, Wi17

- Given the following truth table, draw the resulting logic circuit
 - STEP 1: Draw the K-Map and simplify the function
 - STEP 2: Construct the circuit from the now simplified function

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Exercise 1 – Step 1

Get the simplified function

F(A,B,C) = B.C'.D' + A.C

Exercise 1 – Step 2

Draw the logic circuit diagram

$$F(A,B,C) = B.C'.D' + A.C$$

 Given the following truth table, draw the resulting logic circuit

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Given the following schematic of a circuit, (a)
 write the function and (b) fill out the truth

table:

$$X = A.B + (A.C)'$$

(note that also means: X = A.B + A' + C')

Α	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Given the following schematic of a circuit, (a)
 write the function and (b) fill out the truth

table:

$$X = A.B + (A.C)'$$

(note that also means: X = A.B + A' + C')

Α	В	С	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Your To Dos

• Lab #6 is due end of day Friday

