

#### **Preet Kanwal**

Department of Computer Science & Engineering



# Unit 3

#### **Preet Kanwal**

Department of Computer Science & Engineering

#### **Unit 3 - Context Free Grammars**



# Example 1:

# Find out whether the given grammar is ambiguous or not?

- 1.  $S \rightarrow aS |Sa|\lambda$
- 2.  $S \rightarrow aSbS | bSaS | \lambda$
- 3.  $R \rightarrow R+R|RR|R^*|a|b|c$
- 4.  $S \rightarrow 1S | 11S | \lambda$
- 5.  $S \rightarrow AB \mid aaB$ 
  - A→ a | Aa
  - $B \rightarrow b$

#### **Solution:**

- 1. aa
- 2. abab
- 3. a+bc
- 4. 111
- 5. aab

#### **Unit 3 - Context Free Grammars**



### **Example 2:**

Show that union of  $\{a^nb^nc^m|n>=0,m>=1\}$   $\{a^nb^mc^m|n>=1,m>=0\}$  is inherently ambiguous.

#### **Solution:**

```
L={a^nb^nc^m} U {a^nb^mc^m}
S1\rightarrow Ac S2\rightarrow aB
A\rightarrow aAb|\lambda B\rightarrow bBc|\lambda
S\rightarrow S1|S2
```

- Strings that belong to both the languages are L1∩L2={a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>}
- For every string in a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> there exists two parse trees(either using LMD or RMD).
- No other grammar can generate L.Hence, the language L is ambiguous or we can say that the given language L is inherently ambiguous.

#### **Unit 3 - Context Free Grammars**



### **Example 3:**

Find out whether the given grammar is inherently ambiguous or not.  $S \rightarrow SaS \mid b$ 

#### **Solution:**

→ First we prove the grammar is ambiguous by showing that a string has more than one parse tree

Consider the string "babab", to prove the grammar is ambiguous.



Two parse trees for the string "babab" indicates the grammar is ambiguous.

#### **Unit 3 - Context Free Grammars**



Try constructing another grammar which is unambiguous.

The language is regular, we can write the regular expression b(ab)+

 $S \rightarrow bA$ 

A→ abA ab

Now, the grammar is unambiguous.

#### **Unit 3 - Context Free Grammars**



### **Example 4:**

Find out whether the given grammar is inherently ambiguous or not.  $S \rightarrow aaS | aaaS | \lambda$ 

#### **Solution:**

→ First we prove the grammar is ambiguous by showing that a string has more than one parse tree. .

Parse tree for the string "aaaaa".



Two parse trees for the string "aaaaa" indicates the grammar is ambiguous.

#### **Unit 3 - Context Free Grammars**



→ Try constructing another grammar which is unambiguous.

```
L=(aa+aaa)* S\rightarrow aaA|\lambda A\rightarrow aA|\lambda This grammar is unambiguous.
```

#### **Unit 3 - Context Free Grammars**



### **Example 5:**

Find out whether the given grammar is inherently ambiguous or not.

S→ AB | aaB

A→ a | Aa

 $B \rightarrow b$ 

#### **Solution:**

First we prove the grammar is ambiguous by showing that a string has more than one parse tree.

Parse tree for the string "aab"





Two parse trees for the string "aab" indicates the grammar is ambiguous.

#### **Unit 3 - Context Free Grammars**



→ Try constructing another grammar which is unambiguous

```
L={ab,aab,aaaaaaaab,.....}
```

$$S \rightarrow aAb$$

$$A \rightarrow aA | \lambda$$

This grammar is unambiguous.

#### **Unit 3 - Context Free Grammars**



# **Example 6:**

Eliminate ambiguity in following grammar:

B→ B or B | B and B | not B | True | False

#### **Solution:**

Unambiguous grammar,

 $B \rightarrow B \text{ or } F \mid F$ 

F→ F and G | G

G→ not G | True | False

#### **Unit 3 - Context Free Grammars**



# Example 7:

Eliminate ambiguity in following grammar:

$$R \rightarrow R+R|RR|R^*|a|b|c$$

#### **Solution:**

Unambiguous grammar,

$$R \rightarrow R+S \mid S$$

$$U \rightarrow U^*|a|b|c$$



# **THANK YOU**

#### **Preet Kanwal**

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724