Test 1 - Solutions

Intermediate Statistics - 36-705

September 9, 2016

Problem 1. [35 points]

Let X_1, X_2 be iid Uniform(0,3). Find the density of $Y = X_1/X_2$.

First we calculate the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(X_1/X_2 \le y)$$

$$= \mathbb{P}(X_1 \le yX_2). \tag{1}$$

Notice $Y \in (0, \infty)$ and consider first the case that $y \in (0, 1)$. (1) now becomes

$$\int_{0}^{3} \int_{0}^{yx_{2}} f_{X_{1},X_{2}}(x_{1},x_{2}) dx_{1} dx_{2} \stackrel{iid}{=} \int_{0}^{3} \int_{0}^{yx_{2}} f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2}$$

$$= \frac{1}{9} \int_{0}^{3} \int_{0}^{yx_{2}} 1 dx_{1} dx_{2}$$

$$= \frac{1}{9} \int_{0}^{3} yx_{2} dx_{2}$$

$$= \frac{1}{9} \left[\frac{yx_{2}^{2}}{2} \right]_{0}^{3}$$

$$= \frac{y}{2}.$$

And when $y \in (1, \infty)$, we can write (1) as

$$1 - \mathbb{P}(X_1 > yX_2) = 1 - \int_0^3 \int_0^{x_1/y} f_{X_1, X_2}(x_1, x_2) dx_2 dx_1$$

$$\stackrel{iid}{=} 1 - \int_0^3 \int_0^{x_1/y} f_{X_1}(x_1) f_{X_2}(x_2) dx_2 dx_1$$

$$= 1 - \frac{1}{9} \int_0^3 \int_0^{x_1/y} 1 dx_2 dx_1$$

$$= 1 - \frac{1}{9} \int_0^3 \frac{x_1}{y} dx_1$$

$$= 1 - \frac{1}{9} \left[\frac{x_1^2}{2y} \right]_0^3$$

$$= 1 - \frac{1}{2y}.$$

Thus,

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ \frac{y}{2} & 0 < y < 1 \\ 1 - \frac{1}{2y} & 1 < y < \infty \end{cases}$$

and

$$f_Y(y) = \begin{cases} 0 & y < 0 \\ \frac{1}{2} & 0 < y < 1 \\ \frac{1}{2y^2} & 1 < y < \infty \end{cases}$$

Problem 2. [30 points]

Let $X_1, ..., X_n \sim \text{Uniform}(a, b)$ where a < b. Let

$$Y_n = \max\{X_1, ..., X_n\}.$$

Find the density of Y_n .

Solution

First we calculate the CDF of Y_n :

$$F_{Y_n}(y) = \mathbb{P}(Y_n \le y)$$

$$= \mathbb{P}(\max\{X_1, ..., X_n\} \le y)$$

$$= \mathbb{P}(X_1 \le y, ..., X_n \le y)$$

$$= \mathbb{P}(X_1 \le y) \times ... \times \mathbb{P}(X_n \le y)$$

$$= \mathbb{P}(X_1 \le y)^n$$

$$= \begin{cases} 0 & y < a \\ \left(\frac{y-a}{b-a}\right)^n & a < y < b \\ 1 & y > b. \end{cases}$$

Now $\frac{d}{dy}F_{Y_n}(y) = f_{Y_n}(y)$:

$$f_{Y_n}(y) = \begin{cases} n \frac{(y-a)^{n-1}}{(b-a)^n} & a < y < b \\ 0 & \text{otherwise.} \end{cases}$$

Problem 3. [35 points]

Let $A_1, A_2, ...$ be an arbitrary sequence of events. Show that

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i).$$

Solution

First we prove

$$P\bigg(\bigcup_{i=1}^{N} A_i\bigg) \le \sum_{i=1}^{N} P(A_i)$$

using mathematical induction.

1. If N = 1, then
$$P\left(\bigcup_{i=1}^{N} A_i\right) = P(A_1) \le P(A_1) = \sum_{i=1}^{N} P(A_i)$$
.

2. Now suppose $P\left(\bigcup_{i=1}^{N} A_i\right) \leq \sum_{i=1}^{N} P(A_i)$ for some arbitrary $N \in \mathbb{N}$. Then:

$$P\left(\bigcup_{i=1}^{N+1} A_i\right) = P\left(A_{N+1} \cup \left(\bigcup_{i=1}^{N} A_i\right)\right)$$

$$= P\left(A_{N+1}\right) + P\left(\bigcup_{i=1}^{N} A_i\right) - P\left(A_{N+1} \cap \left(\bigcup_{i=1}^{N} A_i\right)\right)$$

$$\leq P\left(A_{N+1}\right) + P\left(\bigcup_{i=1}^{N} A_i\right) \quad \left(\because P\left(A_{N+1} \cap \left(\bigcup_{i=1}^{N} A_i\right)\right) \geq 0\right)$$

$$\leq P\left(A_{N+1}\right) + \sum_{i=1}^{N} P(A_i) \quad \text{(by induction hypothesis)}$$

$$= \sum_{i=1}^{N+1} P(A_i).$$

Therefore by mathematical induction, $P\left(\bigcup_{i=1}^{N} A_i\right) \leq \sum_{i=1}^{N} P(A_i)$ for all integers N and so,

$$\lim_{N \to \infty} P\left(\bigcup_{i=1}^{N} A_i\right) \le \lim_{N \to \infty} \sum_{i=1}^{N} P(A_i) = \sum_{i=1}^{\infty} P(A_i).$$

By continuity of probability, $\lim_{N\to\infty} P\left(\bigcup_{i=1}^N A_i\right) = P\left(\lim_{N\to\infty} \bigcup_{i=1}^N A_i\right) = P\left(\bigcup_{i=1}^\infty A_i\right)$. Therefore,

$$P\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) \le \sum_{i=1}^{\infty} P(A_i).$$

Alternate proof 1: We want to construct a sequence of events $B_1, B_2, ...$ such that:

1.
$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

2.
$$B_i \cap B_k = \emptyset, \forall j \neq k$$

3.
$$B_i \subseteq A_i, \forall i$$

Conditions 1), 2), and 3) will imply $P(\bigcup_{i=1}^{\infty} A_i) = P(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} P(B_i) \le \sum_{i=1}^{\infty} P(A_i)$.

Let $B_n = A_n - \bigcup_{i=1}^{n-1} A_i = A_n \cap (\bigcup_{i=1}^{n-1} A_i)^C$. We now show that conditions 1), 2), and 3) are satisfied by sequence $B_1, B_2, ...$

1. $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$. We use induction to show that $\bigcup_{i=1}^{N} B_i = \bigcup_{i=1}^{N} A_i$ for all $N \in \mathbb{N}$.

(a) If
$$N = 1$$
, then $\bigcup_{i=1}^{N} B_i = B_1 = A_1 = \bigcup_{i=1}^{N} A_i$.

(b) Now suppose $\bigcup_{i=1}^{N} B_i = \bigcup_{i=1}^{N} A_i$ for some arbitrary $N \in \mathbb{N}$. Then:

$$\begin{split} & \bigcup_{i=1}^{N+1} B_i &= \left[\bigcup_{i=1}^N B_i\right] \cup B_{N+1} = \left[\bigcup_{i=1}^N A_i\right] \cup B_{N+1} = \\ &= \left[\bigcup_{i=1}^N A_i\right] \cup \left[A_{N+1} \cap \left(\bigcup_{i=1}^N A_i\right)^C\right] \\ &= \left[\left(\bigcup_{i=1}^N A_i\right) \cup \left(\bigcup_{i=1}^N A_i\right)^C\right] \cap \left[\left(\bigcup_{i=1}^N A_i\right) \cup A_{N+1}\right] \\ &= \Omega \cap \left[\bigcup_{i=1}^{N+1} A_i\right] = \bigcup_{i=1}^{N+1} A_i \end{split}$$

Then note that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{N=1}^{\infty} \bigcup_{i=1}^{N} A_i$ and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{N=1}^{\infty} \bigcup_{i=1}^{N} B_i$, so $\forall N \bigcup_{i=1}^{N} A_i = \bigcup_{i=1}^{N} B_i$ implies

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{N=1}^{\infty} \bigcup_{i=1}^{N} A_i = \bigcup_{N=1}^{\infty} \bigcup_{i=1}^{N} B_i = \bigcup_{i=1}^{\infty} B_i.$$

Alternate proof 2: Let $S_0 = \emptyset$, $S_n = \bigcup_{i=1}^n A_n$ and $B_n = A_n - S_{n-1}$. Since $B_i \subseteq A_i$ for all i (as shown below at point 3.), clearly $\bigcup_{i=1}^{\infty} B_i \subset \bigcup_{i=1}^{\infty} A_i$. To prove the reverse inclusion, let $x \in \bigcup_{i=1}^{\infty} A_i$ be given. Let k be the smallest number such that $x \in A_k$. Then $x \notin S_{k-1}$ and hence $x \in A_k - S_{k-1} = B_k$. Therefore $\bigcup_{i=1}^{\infty} B_i \supseteq \bigcup_{i=1}^{\infty} A_i$.

- 2. $B_j \cap B_k = \emptyset, \forall j \neq k$. Consider any arbitrary B_j and B_k . Without loss of generality, assume k > j. Then $B_j \cap B_k = [A_j \cap (\bigcup_{i=1}^{j-1} A_i)^C] \cap [A_k \cap (\bigcup_{i=1}^{k-1} A_i)^C]$. But since j < k, $A_j \cap (\bigcup_{i=1}^{k-1} A_i)^C = \emptyset$. Thus, $B_j \cap B_k = \emptyset$.
- 3. $B_i \subseteq A_i, \forall i$. It is easy to see that $B_i = A_i \cap (\bigcup_{j=1}^{i-1} A_j)^C \subseteq A_i, \forall i$.