Prioris conjugadas

- Prioris conjugadas
 - ♦ Bernoulli;
 - ♦ Poisson;
 - ♦ Normal;
- Interpretação dos hiperparâmetros.

Teorema 6

Sejam X_1, X_2, \ldots, X_n uma amostra aleatórias de variáveis aleatórias Bernoulli com parâmetro p, $0 , desconhecido. Suponha que a distribuição a priori de p é uma distribuição Beta com parâmetros <math>\alpha > 0$ e $\beta > 0$. Seja $y = \sum_{i=1}^{n} X_i$. Então

$$\xi(p \mid X_1, X_2, \dots, X_n) = \frac{1}{\text{Beta}(\alpha + y, \beta + n - y)} p^{\alpha + y - 1} (1 - p)^{\beta + (n - y) - 1}.$$

Prova: Escrever a conjunta condicional como produto das marginais condicionais e notar que se obtem o núcleo de uma distribuição Beta.

Prioris conjugadas

Definição 13 (Hiperparâmetros)

Seja $\xi(\theta \mid \phi)$ a distribuição a priori para o parâmetro θ , indexada por $\phi \in \Phi$. Dizemos que ϕ é (são) o(s) **hiperparâmetro(s)** da priori de θ .

Definição 14 (**Priori conjugada**)

Suponha que $X_1, X_2, ...$ sejam condicionalmente independentes dado θ , com f.d.p./f.m.p. $f(x \mid \theta)$. Defina

$$\Psi = \left\{ f : \Omega \to (0, \infty), \int_{\Omega} f \, dx = 1 \right\},$$

onde Ω é o espaço de parâmetros. Dizemos que Ψ é uma **família de distribuições conjugadas** para $f(x \mid \theta)$ se para toda $f \in \Psi$ e toda realização x de $X = X_1, X_2, \ldots, X_n$,

$$\frac{f(\mathbf{x}\mid\theta)f(\theta)}{\int_{\Omega}f(\mathbf{x}\mid\theta)f(\theta)\,d\theta}\in\Psi.$$

Isto é, uma família de prioris é conjugada para uma determinada verossimilhança se a posteriori está na mesma família.

Se $X \sim \text{Beta}(a,b)$, $\text{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$. Na situação do Teorema 6, temos

$$V_n := \operatorname{Var}(p \mid x) = \frac{(\alpha + y)(\beta + n - y)}{(\alpha + \beta + n)^2(\alpha + \beta + n + 1)}.$$
 (7)

Podemos usar a expressão em (7) para desenhar um experimento. Por exemplo, podemos coletar dados até que $V_n \le 0.01$ (ver exercício 2, seção 7.3 de De Groot).

Teorema 7

Suponha que $X_1, X_2, ..., X_n$ formam uma amostra aleatória com distribuição Poisson com taxa $\theta > 0$, desconhecida. Suponha que a distribuição a priori para θ é uma distribuição Gama com parâmetros $\alpha > 0$ e $\beta > 0$. Então

$$\xi(\theta \mid \mathbf{x}) = \frac{(\beta + n)^{\alpha + S}}{\Gamma(\alpha + S)} \theta^{\beta + n - 1} e^{-(\alpha + S)\theta}, \tag{8}$$

onde
$$S = \sum_{i=1}^{n} x_i$$
.

Prova: Análoga ao exemplo Bernoulli.

Teorema 8 (Distribuição *a posteriori* da média de uma normal)

Suponha que $X_1, X_2, ..., X_n$ formam uma amostra aleatória com distribuição normal com média desconhecida θ e variância $\sigma^2 > 0$, conhecida e fixa. Suponha que $\theta \sim \text{Normal}(\mu_0, v_0^2)$ a priori. Então

$$\xi(\theta \mid \mathbf{x}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(\theta - \mu_1)^2}{2v_1^2}\right),\tag{9}$$

onde

$$\mu_1 := \frac{\sigma^2 \mu_0 + n v_0^2 \bar{x}_n}{\sigma^2 + n v_0^2} \quad e \quad v_1^2 := \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2} \tag{10}$$

Prova: Escrever as densidades relevantes sem as constantes de proporcionalidade, completar o quadrado (duas vezes) e notar que se obtem o núcleo de uma normal (Gaussiana).

Podemos reescrever μ_1 como

$$\mu_1 = \frac{\sigma^2}{\sigma^2 + nv_0^2} \mu_0 + \frac{nv_0^2}{\sigma^2 + nv_0^2} \bar{x}_n. \tag{11}$$

Observação 1 (Média *a posteriori* como média ponderada)

No caso normal, a média a posteriori pode ser vista como uma **média ponderada** entre a média a priori e a média amostral, sendo os pesos dados pela variância (conhecida) da distribuição dos dados e a variância da priori, v_0^2 .

O que aprendemos?

- Prioris conjugadas;
- Análise conjugada de
 - ♦ Bernoulli;
 - ♦ Poisson;
 - ♦ Normal.

Leitura recomendada

- De Groot seção 7.3;
- Exercícios recomendados
 - De Groot, seção 7.3: exercícios 2, 17, 19, 21.