Devoir surveillé n°9 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Le damné gardien du phare.

Le gardien d'un phare doit ouvrir une porte avec un trousseau de n clefs, dont une seule convient.

Malheureusement, il a oublié quelle était la bonne clef, et essaye les clefs les unes après les autres.

On cherche la probabilité p_k que la porte s'ouvre au bout du k^e essai.

Lorsque le gardien est ivre, il oublie, après chaque tentative, quelle clef il a essayé. Sinon, il n'essaie pas d'ouvrir la porte avec une clef déjà utilisée.

- 1) Calculer p_1 .
- 2) Calculer p_2 dans chacun des cas (gardien ivre, ou non)
- 3) Exprimer p_k en fonction des A_i , et en déduire p_k dans chacun des cas.

Le gardien est ivre en moyenne trois jours par semaine.

4) Un jour, le gardien utilise 9 clefs : quelle est la probabilité qu'il soit ivre?

II. Endomorphismes cycliques d'un espace vectoriel.

Soit E un espace-vectoriel réel et $f \in \mathcal{L}(E)$.

On dit que f est cyclique s'il existe $a \in E$ tel que la famille $(f^k(a))_{k \in \mathbb{N}}$ engendre E. Dans cette situation, on dit que a est $associ\'{e}$ à f.

On note $\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$ l'ensemble des endomorphismes commutant avec f.

On note $\mathscr{P}(f) = \{ \alpha_0 \mathrm{Id}_E + \alpha_1 f + \dots + \alpha_k f^k \mid k \in \mathbb{N}, \ (\alpha_0, \dots, \alpha_k) \in \mathbb{R}^{k+1} \}$ l'ensemble des polynômes en f.

Partie I: Questions préliminaires.

- 1) Démontrer que $\mathscr{C}(f)$ est un sous-espace vectoriel de $(\mathscr{L}(E),+,\cdot)$, contenant Id_E et stable par composition.
- 2) Soit $g \in \mathscr{C}(f)$, montrer que $\mathscr{P}(g) \subset \mathscr{C}(f)$.

Partie II: Étude en dimension finie.

On suppose dans cette partie que E est de dimension finie, égale à n, que f est cyclique et l'on considère $a \in E$ associé à f.

- 3) Justifier l'existence d'un plus grand entier naturel p tel que $(a, f(a), \ldots, f^{p-1}(a))$ soit une famille libre.
- 4) Démontrer que $(a, f(a), \dots, f^{p-1}(a))$ est une base de E. Que vaut donc p?
- 5) Soit $g \in \mathcal{C}(f)$, soit $\alpha_0, \ldots, \alpha_{n-1}$ tels que $g(a) = \alpha_0 a + \alpha_1 f(a) + \cdots + \alpha_{n-1} f^{n-1}(a)$. On note $h = \alpha_0 \mathrm{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$. Démontrer que g = h.
- **6)** En déduire que $\mathscr{C}(f) = \mathscr{P}(f)$.
- 7) Démontrer que $(\mathrm{Id}_E, f, \ldots, f^{n-1})$ est une base de $\mathscr{P}(f)$.

Partie III : Dérivations discrète et formelle en dimension finie.

On suppose que $E = \mathbb{R}_n[X]$, soit a un réel non nul. On considère les endomorphismes D et Δ de $\mathbb{R}_n[X]$ définis par

$$D: P \to P'$$
 et $\Delta: P \to P(X+a) - P(X)$.

- 8) Montrer que si $P \in \mathbb{R}_n[X]$ n'est pas constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- 9) En déduire que Δ est cyclique. Quels sont les polynômes associés à Δ ?
- **10)** Montrer que $D \in \mathscr{P}(\Delta)$.
- 11) Démontrer que D est cyclique.
- 12) Montrer que $\mathscr{C}(D) = \mathscr{C}(\Delta)$.

Partie IV : Étude de ces dérivations en dimension infinie.

On considère maintenant les endomorphismes D et Δ étendus à $\mathbb{R}[X]$. Soit $\varphi \in \mathscr{C}(\Delta)$.

- **13)** Soit $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$. Démontrer que $P \in \mathbb{R}_n[X] \Leftrightarrow \Delta^{n+1}(P) = 0$.
- **14)** En déduire que, pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par φ .
- **15)** Démontrer alors que, pour tout $P \in \mathbb{R}[X]$, $\varphi(P') = [\varphi(P)]'$.
- **16)** Démontrer que $\mathscr{C}(\Delta) = \mathscr{C}(D)$.
- 17) Montrer que Δ n'appartient pas à $\mathcal{P}(D)$.

III. Nombre de dérangements.

Soit E un ensemble, on appelle dérangement de E une permutation E sans aucun point fixe, i.e. une application $\sigma: E \to E$ bijective vérifiant $\forall x \in E, \ \sigma(x) \neq x$.

Pour chaque $n \in \mathbb{N}^*$, on note d_n le nombre de dérangements d'un ensemble à n éléments, et on pose $d_0 = 1$.

- 1) Question préliminaire
 - a) Montrer que, pour tout $n, \ell \in \mathbb{N}$ vérifiant $\ell \leqslant n$, on a

$$\sum_{k=0}^{n-\ell} (-1)^k \binom{n+1-\ell}{k} = (-1)^{n-\ell}.$$

b) En déduire que, pour tout $n, \ell \in \mathbb{N}$ vérifiant $\ell \leqslant n$, on a

$$\sum_{k=\ell}^{n} \binom{n+1}{k} (-1)^{k-\ell} \binom{k}{\ell} = (-1)^{n-\ell} \binom{n+1}{\ell}.$$

c) Montrer la formule d'inversion de Pascal : pour tout $u, v \in \mathbb{C}^{\mathbb{N}}$, si

$$\forall n \in \mathbb{N}, \ v_n = \sum_{k=0}^n \binom{n}{k} u_k,$$

alors

$$\forall n \in \mathbb{N}, \ u_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} v_k.$$

Indication : on pourra mettre en œuvre un raisonnement par récurrence.

- 2) Soit $1 \le k \le n$ et $A \subset E$ de cardinal k. Combien y a-t-il de permutations de E ayant exactement pour ensemble de points fixes A?
- 3) En déduire que, pour tout $n \in \mathbb{N}$,

$$n! = \sum_{k=0}^{n} \binom{n}{k} d_k.$$

4) En déduire que pour tout $n \in \mathbb{N}$,

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

5) Montrer que

$$d_n \sim \frac{n!}{e}$$
.

— FIN —