Homework: Fourier Transform

Summability kernel on the real line is a family of continous functions $\{k_{\lambda}\}$ on \mathbb{R} (either discrete or continous parameter) λ doing three things:

- $\int k_{\lambda}(x) dx = 1$
- $||k_{\lambda}||_{L^1(\mathbb{R})} = O(1)$ as $\lambda \to \infty$
- $\lim_{\lambda \to \infty} \int_{|x| > \delta} dx = 0$ for all $\delta > 0$

These are formal ways of writing Dirac's δ function.

Fejér Kernel: $\mathbf{K}_{\lambda}(x) = \lambda \mathbf{K}(\lambda x)$ (rescaling) for $\lambda > 0$. with:

$$\mathbf{K}(x) = \frac{1}{2\pi} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right) = \frac{1}{2\pi} \int_{-1}^{1} (1 - |\xi|) e^{i\xi x} \, d\xi$$

Thm Let $f \in L^1(\mathbb{R})$ and let $\{k_{\lambda}\}$ be a summability kernel of \mathbb{R} then:

$$\lim_{\lambda \to \infty} ||f - k_{\lambda} * f||_{L^{1}(\mathbb{R})} = 0$$

Proof [Repeats the proof of two previous arguments in Chapter I on summability kernels on $L^2(S^1)$ (Fourier analyss on the circle.).]

Thm Let $f \in L^1(\mathbb{R})$ then

$$f = \lim_{\lambda \to \infty} \frac{1}{2\pi} \int_{-\lambda}^{\lambda} \left(1 - \frac{|\xi|}{\lambda} \hat{f}(\xi) e^{i\xi x} d\xi \right)$$

in the $L^1(\mathbb{R})$ norm.

Corollary ("uniqueness" theorem) Let $f\in L^1(\mathbb{R})$ and assume $\hat{f}(\xi)=0$ for all $\xi\in\hat{\mathbb{R}}$ then $f\equiv 0$.

Thm The functions with compactly carried Fourier transform sform a dense subspace of $L^1(\mathbb{R})$.

All of these theorems exist and are correct and yet they are also templates.

Q What were we adding to get the term "summability kernel"?

Functions in $L^1(\mathbb{R})$ contain a lot of information (e.g. all MP3 music files could be modeled by such equations. All TV shows could be modeled by elements of $L^2(\mathbb{R}^2)$. We could have to explain how our model connects to the real world.

References

[1] Yithak Katznelson. Introduction of Harmonic Analysis Dover, 1968.