•	You	have	N	dice.
---	-----	------	---	-------

- \bullet Of these N dice, $N_{\{\!\!\{ \!\!\!\} \!\!\!\}}$ are currently showing $\{\!\!\!\{ \!\!\!\} \!\!\!\}.$
- The probability of a dice coming up as \blacksquare is p = 1/6.
- For each turn, you randomly pick up one dice and roll it.
- 1. What is the probability—in terms of N, N_{\blacksquare} , and p—of a non- \blacksquare dice becoming a \blacksquare over one turn?
- 2. What is the probability—in terms of N, N_{\blacksquare} , and p—of a \blacksquare dice becoming a non- \blacksquare over one turn?
- 3. What is the predicted overall change in N_{\blacksquare} —in terms of N, N_{\blacksquare} , and p—over a turn?
- 4. Under what conditions will the predicted change in $N_{[]}$ will be zero?

You have a collection of four dice. You randomly pick up one dice and roll it. Assuming the dice are fair (p = 1/6 for all faces), fill out the contingency trees below and calculate the probability of each possible outcome.

Based on this calculation, why does a dice reaction equilibrate away from configurations like the top configuration?

1.	You roll a dice 4 times and write down the observed sequence of faces
	you see (for example, \odot , \odot , \odot , \odot). How many different sequences of are
	possible?

2. What is the probability of seeing the following four rolls, in this order?

• :: • ::

3. What is the probability of seeing the following four rolls, in this order?

 $\{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \} \ \boxplus \ \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \} \ \boxplus \$

 $\{\boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot\}$ indicates that any of these faces come up. Hint: Try to come up with an approach that does not equire you to make all possible combinations of $\{\boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot\}$.

4. How many different ways are there to roll four dice and see the following come up in *any order*?

5. What is the probability of seeing the following four rolls, in *any order*? (Put another way, what is the probability of observing exactly two II in four rolls?)

 $\boxplus, \boxplus, \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxtimes \}, \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$

$$P(n,k) = \binom{n}{k} p^k (1-p)^{n-k}$$

where n is the number of dice, k is the number of dice showing 6, p is the probability of obtaining 6 on a roll, and $\binom{n}{k}$ is the number of ways you can draw k dice out of n total.

1. You have four dice. Enumerate all possible combinations of \blacksquare vs. not- \blacksquare you can obtain for $k \in \{0, 1, 2, 3, 4\}$.

2. You have n=600 fair dice (p=1/6). In a plotting program of your choice, graph each of the following as a function of k:

$$\binom{n}{k}$$
$$p^{k}(1-p)^{n-k}$$
$$P(n,k) = \binom{n}{k}p^{k}(1-p)^{n-k}$$

You might want to put the y-axis on a log scale. (In Excel, the $\binom{n}{k}$ function is 'COMBIN'; in python it is 'scipy.special.comb'; in R it is 'choose').

3. Explain why each graph looks like it does. (Why does it have the overall shape it does? Why are it's minima/maxima/etc. where they are?)