

Compilers

i is an integer literal

so, E,
$$S \vdash i$$
: Int(i), S

so, E,
$$S \vdash \underline{s} : \underline{String}(\underline{n},\underline{s}), S$$

$$E(\underline{id}) = I_{\underline{id}}$$

$$S(I_{\underline{id}}) = \underline{v}$$
so, E, S \(\text{id} : \text{v, S} \)

so, E, $S \vdash self : so, S$

so, E, S
$$\vdash$$
 e : v, S₁
E(id) = I_{id}
 $S_2 = S_1[v/I_{id}]$
so, E, S \vdash id \leftarrow e : v, S₂

so, E,
$$S \vdash e_1 : V_1 \setminus S_1$$

so, E, $S_1 \vdash e_2 : V_2 \setminus S_2$
...

so, E, $S_{n-1} \vdash e_n : V_n$, S_n
so, E, $S \vdash \{e_1; ... e_n; \} : V_n$, S_n

Consider the expression

$$= \{X \leftarrow 7 + 5; 4; \}$$

$$\leq \alpha[x:1], [1 \leftarrow 0] \leftarrow 7: Int(?), [1 \leftarrow 0]$$

$$\leq \alpha[x:1], [1 \leftarrow 0] \leftarrow 7 + 5: Int(!2), [1 \leftarrow 0]$$

$$\leq \alpha[x:1], [1 \leftarrow 0] \leftarrow 7 + 5: Int(!2), [1 \leftarrow 0]$$

$$= [1 \leftarrow o](!2/!) = [1 \leftarrow !2]$$

$$\leq \alpha[x:1], [1 \leftarrow 0] \leftarrow x \leftarrow 7 + 5: |2|[l \leftarrow !2] = 0, [x:1], [1 \leftarrow !2] \leftarrow 4: Int(4), [l \leftarrow !2]$$

$$\leq \alpha[x:1], [1 \leftarrow 0] \leftarrow x \leftarrow 7 + 5: |2|[l \leftarrow !2] = 0, [x:1], [1 \leftarrow !2] \leftarrow 4: Int(4), [1 \leftarrow !2]$$

```
so, E, S \vdash e_1: Bool(true), S_1

\rightarrow so, E, S_1 \vdash e_2: V, S_2

so, E, S \vdash if e_1 then e_2 else e_3: V, S_2
```

so, E,
$$S \vdash e_1$$
: Bool(false), S_1
so, E, $S \vdash$ while e_1 loop e_2 pool: void, S_1

```
so, E, S \vdash e<sub>1</sub>: Bool(true), S<sub>1</sub>

so, E, S<sub>1</sub> \vdash e<sub>2</sub>: v, S<sub>2</sub>

so, E, S<sub>2</sub> \vdash while e<sub>1</sub> loop e<sub>2</sub> pool: void, S<sub>3</sub>

so, E, S \vdash while e<sub>1</sub> loop e<sub>2</sub> pool: void, S<sub>3</sub>
```

```
so, E, S \vdash e_1 : v_1, S_1
so, ?, ? \vdash e_2 : v, S_2
so, E, S \vdash \text{let id} : T \leftarrow e_1 \text{ in } e_2 : v_2, S_2
```

- In what context should e₂ be evaluated?
 - Environment like E but with a new binding of id to a fresh location I_{new}
 - Store like $\underline{S_1}$ but with $\underline{I_{new}}$ mapped to $\underline{v_1}$

- We write I_{new} = newloc(S) to say that I_{new} is a location not already used in S
 - newloc is like the memory allocation function

```
⇒ so, E, S ⊢ e_1: v_1, S_1
I_{new} = newloc(S_1)
so, E[I_{new}/id], S_1[v_1/I_{new}] ⊢ e_2: v_2, S_2
so, E, S ⊢ let id: T ← e_1 in e_2: v_2, S_2
```

Fill in the missing store value for the derivation of $(x \leftarrow 6) < x + 1$.

```
      so, [x:I], S_1 \vdash 6 : Int(6), S_2
      so, [x:I], S_3 \vdash 1 : Int(1), S_4

      S_3 = S_2[6/I]
      so, [x:I], S_4 \vdash x : 6, S_5

      so, [x:I], S_1 \vdash x \leftarrow 6 : 6, S_3
      so, [x:I], S_3 \vdash x + 1 : 7, S_5

      so, [x:I], [I \leftarrow 3] \vdash (x \leftarrow 6) < x + 1 : Bool(true), S_5
```

	<u>S</u> ₂	<u>S</u> ₃	<u>S</u> ₄	<u>S₅</u>	
	_	<u>=</u> [l←3]	_	_	
\bigcirc	[l←6]	[l←6]	[l←7]	[l←7]	
\bigcirc	[l←3]	[l←3]	[l←6]	[l←6]	
\bigcirc	[l←3]	[l←6]	[l←6]	[l←6]	