CSE 151: Machine learning

Winter 2019

Homework 3

Submission instructions:

- Please type up your solutions.
- If a problem asks for a numerical answer, you need only provide this answer. There is no need to show your work, unless you would like to.
- Upload the PDF file for your homework to gradescope by 6pm on Tuesday January 29.

Part A: Probability and generative modeling

- 1. The TryMe smartphone company has three factories making its phones. They are all fairly unreliable: 10% of the phones from factory 1 are defective, 20% of the phones from factory 2 are defective, and 24% of the phones from factory 3 are defective. The factories do not produce the same numbers of phones: factory 1 produces 1/2 of TryMe's phones, while factories 2 and 3 each produce 1/4.
 - (a) What is the probability that a TryMe phone chosen at random is defective?
 - (b) Given that a TryMe phone is defective, what is the probability that it came from factory 1? Factory 2? Factory 3?
- 2. Here are some statistics collected by a doctor about patients who walk into her office.
 - 25% of the patients have the flu.
 - Among patients with the flu, 75% have a fever.
 - Among patients who don't have the flu, 50% have a fever.

A new person walks into the doctor's office and turns out to have a fever. What is the probability that he has the flu?

- 3. A fair die is rolled twice. Let X_1 and X_2 denote the outcomes, and define random variable X to be the minimum of X_1 and X_2 .
 - (a) Determine the distribution of X.
 - (b) What is $\mathbb{E}(X)$?
 - (c) What are the variance and standard deviation of X?
- 4. In each of the following cases, say whether X and Y are independent.
 - (a) Randomly pick a card from a pack of 52 cards. Define X to be 1 if the card is a Jack, and 0 otherwise. Define Y to be 1 if the card is a spade, and 0 otherwise.
 - (b) Randomly pick two cards from a pack of 52 cards. X is 1 if the first card is a spade, and 0 otherwise. Y is 1 if the second card is a spade, and 0 otherwise.

- 5. Would you expect the following pairs of random variables to be uncorrelated, positively correlated, or negatively correlated?
 - (a) The amount of rainfall on a given day and the amount of rainfall the following day.
 - (b) The number of people at the beach on a given day and the number of people skiing that day.
 - (c) A person's age and social security number.
- 6. Each of the following scenarios describes a joint distribution (x, y). In each case, give the parameters of the (unique) bivariate Gaussian that satisfies these properties.
 - (a) x has mean 2 and standard deviation 1, y has mean 2 and standard deviation 0.5, and the correlation between x and y is -0.5.
 - (b) x has mean 1 and standard deviation 1, and y is equal to x.
- 7. Roughly sketch the shapes of the following Gaussians $N(\mu, \Sigma)$. You only need to show a representative contour line which is qualitatively accurate (has approximately the right orientation, for instance).

(a)
$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$
(b) $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 1 & -0.75 \\ -0.75 & 1 \end{pmatrix}$

- 8. For each of the two Gaussians in the previous problem, check your answer using Python: draw 100 random samples from that Gaussian and plot them.
- 9. Suppose $\mathcal{X} = [-1, 1]$ and $\mathcal{Y} = \{1, 2, 3\}$, and that the individual classes have weights $\pi_1 = \frac{1}{3}, \pi_2 = \frac{1}{6}, \pi_3 = \frac{1}{2}$ and densities P_1, P_2, P_3 as shown below.

What is the optimal classifier h^* ? Specify it as a function from \mathcal{X} to \mathcal{Y} .

Part B: Linear algebra

- 1. Find the unit vector in the same direction as x = (1, 2, 3).
- 2. Find all unit vectors in \mathbb{R}^2 that are orthogonal to (1,1).
- 3. How would you describe the set of all points $x \in \mathbb{R}^d$ with $x \cdot x = 25$?
- 4. The function $f(x) = 2x_1 x_2 + 6x_3$ can be written as $w \cdot x$ for $x \in \mathbb{R}^3$. What is w?
- 5. For a certain pair of matrices A, B, the product AB has dimension 10×20 . If A has 30 columns, what are the dimensions of A and B?
- 6. We have n data points $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$ and we store them in a matrix X, one point per row.
 - (a) What is the dimension of X?
 - (b) What is the dimension of XX^T ?
 - (c) What is the (i, j) entry of XX^T , simply?
- 8. For x = (1, 3, 5) compute $x^T x$ and xx^T .
- 9. Vectors $x, y \in \mathbb{R}^d$ both have length 2. If $x^T y = 2$, what is the angle between x and y?
- 10. The quadratic function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x) = 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 6x_3^2$$

can be written in the form $x^T M x$ for some **symmetric** matrix M. What is M?

- 11. Which of the following matrices is necessarily symmetric?
 - (a) AA^T for arbitrary matrix A.
 - (b) $A^T A$ for arbitrary matrix A.
 - (c) $A + A^T$ for arbitrary square matrix A.
 - (d) $A A^T$ for arbitrary square matrix A.
- 12. Let A = diag(1, 2, 3, 4, 5, 6, 7, 8).
 - (a) What is |A|?
 - (b) What is A^{-1} ?
- 13. Vectors $u_1, \ldots, u_d \in \mathbb{R}^d$ all have unit length and are orthogonal to each other. Let U be the $d \times d$ matrix whose rows are the u_i .
 - (a) What is UU^T ?
 - (b) What is U^{-1} ?
- 14. Matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & z \end{pmatrix}$ is singular. What is z?