PTC 3360

I. Redes de comunicação - Parte II

(Kurose, Seções I.2 e I.3)

Agosto 2025

Conteúdo do Capítulo I

A. O que é a Internet?

B. A borda da rede

Sistemas finais, redes de acesso, enlaces

C. Núcleo da rede

 Comutação de pacotes, comutação de circuitos, estrutura da rede

D. Camadas de protocolos, modelos de serviços

Meio físico

- Os bits são transportados por ondas eletromagnéticas que se propagam do transmissor ao receptor
- Meio físico (enlace): por onde as ondas se propagam
 - Meio guiado:
 - Ondas confinadas no espaço por meio sólido: cobre, fibra, cabo coaxial
 - Meio não guiado:
 - Ondas não confinadas, propagando-se no ar

Exemplos de meios guiados

1. Par trançado

- dois fios de cobre isolados
 - Categoria 5: I00 Mbps, I Gpbs Ethernet
 - Categoria 6: 10 Gbps
- LANs, DSL

Meio físico: coaxial, fibra

2. Cabo coaxial

- Dois condutores de cobre concêntricos
- Banda larga:
 - Multiplos canais no mesmo cabo
 - HFC TV a Cabo

3. Cabo de fibra ótica:

- fibra de vidro carregando pulsos de luz, cada pulso transmite um símbolo
- ❖ operação de alta velocidade ☺
 - Taxas de transmissão de até centenas de Gb/s
- ❖ baixas taxas de erro ☺
 - repetidores podem estar bem afastados; imunidade a ruido
- Equipamentos são (ainda) mais caros
 - usados principalmente no núcleo da rede

Meio físico não guiado

 Ondas eletromagnéticas não confinadas

Exemplos de enlace não guiado

- * Redes locais (LAN) (WiFi, Bluetooth)
 - IIMb/s, 54 Mb/s, etc.

- Sujeitas aos efeitos do ambiente na propagação:
 - reflexão
 - obstrução por objetos
 - interferência

- Área ampla (WAN) (e.g., celular)
 - Celular 3G, 4G, 5G: ~ alguns Mbps
- Satélite
 - Canais de kb/s até dezenas de Mb/s (ou múltiplos canais menores)
 - 270 ms de atraso fim a fim
 - Geossíncronos versus baixa altitude

Conteúdo

A. O que é a Internet?

B. A borda da rede

Sistemas finais, redes de acesso, enlaces

C. Núcleo da rede

 Comutação de pacotes, estrutura da rede, comutação de pacotes vs. de circuitos

D. Camadas de protocolos, modelos de serviços

O núcleo da rede

- Malha de trocadores de pacotes (roteadores) interconectados
- Conceito importante: Comutação de pacotes
 - Conjuntos de bits (pacotes) enviados a partir de um host com destino a outro host
 - Os pacotes são enviados de um roteador ao próximo, através de enlaces no caminho entre fonte e destino
 - Cada pacote é sempre transmitido usando a capacidade total do enlace

Duas funções chaves do núcleo da rede

Roteamento: determina a rota fonte-destino tomada pelos pacotes

Repasse: move pacotes de entrada do roteador para a saída apropriada

Conteúdo

A. O que é a Internet?

B. A borda da rede

Sistemas finais, redes de acesso, enlaces

C. Núcleo da rede

 Comutação de pacotes, estrutura da rede, comutação de pacotes vs. de circuitos

D. Camadas de protocolos, modelos de serviços

- Sistemas finais conectam-se à Internet via ISP (Internet Service Provider) de acesso, também conhecidas como Redes de Acesso.
 - ISPs residenciais, de empresas e universidades.
- ISPs de acesso por sua vez precisam ser interconectados.
 - Assim, quaisquer dois hosts podem enviar pacotes entre si.
- Rede de redes resultante é bem complicada!
 - Estrutura atual é resultado não só de decisões tecnológicas, mas também econômicas e políticas.
- Vamos usar uma abordagem passo-a-passo para descrever de forma bastante simplificada a estrutura atual da Internet

Questão: dados milhões de redes de acesso, como conectá-las?

Ideia 1: Conectar cada rede de accesso a todos as outras redes de acesso

Ideia 2: Conectar cada rede de acesso a um único ISP de alcance global. Redes de acesso são clientes do ISP global (ou Nível 1).

Mas se um ISP global é um negócio viável, existirão competidores....

Mas se um ISP global é um negócio viável, existirão competidores...... que precisam estar interconectados

Redes regionais e IXPs (Internet Exchange Points) podem surgir para conectar redes de acesso entre si e a ISPs globais

Exemplo de IXP: <u>ix.br</u>

IX.br é o nome dado ao projeto do Comitê Gestor da Internet no Brasil (CGIbr) que promove e cria a infra-estrutura necessária (Ponto de Intercambio de Internet - IXP) para a interconexão direta entre as redes ("Autonomous Systems" - ASs) que compõem a Internet Brasileira. A atuação do IX.br volta-se às regiões metropolitanas no País que apresentam grande interesse de troca de tráfego Internet.

Uma das principais vantagens deste modelo, é a racionalização dos custos, uma vez que os balanços de tráfego são resolvidos direta e localmente e não através de redes de terceiros, muitas vezes fisicamente distantes.

Outra grande vantagem é o maior controle que uma rede pode ter com relação a entrega de seu tráfego o mais próximo possível do seu destino, o que em geral resulta em melhor desempenho e qualidade para seus clientes e operação mais eficiente da Internet como um todo.

Um IX.br é, assim, uma interligação em área metropolitana de pontos de interconexão de redes (PIXes), comerciais e acadêmicos, sob uma gerência centralizada.

Abaixo temos um gráfico que representa o tráfego agregado de todos os IX.br que estão em operação atualmente.

Exemplo de IXP: <u>ix.br</u> – Consultado em 02/08/25 – 17h

Exemplo de IXP: <u>ix.br</u> - Consultado em 02/08/25 - 17h

Exemplo de interconexão por IXP

Conexão de virtua.com.br com usp.br através de sp.ix.br

```
PING www.lcs.poli.usp.br (143.107.162.233) 56(124) bytes of data.
64 bytes from zeus.lcs.poli.usp.br (143.107.162.233): icmp seq=1 ttl=55 time=40.8 ms
       192.168.3.104
RR:
       192.168.2.103
       badcf281.virtua.com.br (186.220.242.129)
       c9062912.virtua.com.br (201.6.41.18)
       as28573.saopaulo.sp.ix.br (187.16.216.14)
       border1.uspnet.usp.br (143.107.151.161)
       pix.uspnet.usp.br (143.107.251.29)
       core-cce.uspnet.usp.br (143.107.255.5)
       143.107.110.45
64 bytes from zeus.lcs.poli.usp.br (143.107.162.233): icmp seq=2 ttl=55 time=31.5 ms
RR:
       192.168.3.104
       192.168.2.103
       c9062912.virtua.com.br (201.6.41.18)
        as28573.saopaulo.sp.ix.br (187.16.216.14)
        border1.uspnet.usp.br (143.107.151.161)
        pix.uspnet.usp.br (143.107.251.29)
       core-cce.uspnet.usp.br (143.107.255.5)
`C
       143.107.110.45
       143.107.162.193
```

Redes de provedores de conteúdo (por exemplo, Google, Microsoft, Amazon, Netflix) podem administar sua própria rede, trazendo serviços e conteúdo para próximo do usuário final.

- No centro: Pequeno número de grandes redes bem conectadas.
 - ISPs comerciais "nível-I" ou "tier-I" (AT&T, Lumen Technologies, NTT, Orange, Verizon e mais algumas apenas), cobertura global.
 - Rede de provedor de conteúdo (Google, por exemplo): rede privada que conecta seus data centers entre si e à Internet, muitas vezes evitando ISPs nível-I e regionais

Exemplo de ISP Nível-1: T-Mobile (antiga Sprint)

Exemplo de ISP Nível-I: T-Mobile (antiga Sprint)

Sprint Global IP Map | Latin America

Sprint Global IP Network

Exemplo de ISP Nível-1: <u>Lumen Technologies</u>

