Lovak

Lótenyésztők sok generációra visszamenőleg tartják nyilván lovaik leszármazását. A lovakat sorszámukkal azonosítjuk, és vagy mindkét szülőjüket ismerjük, vagy csak az egyiket, vagy pedig egyiket sem. Így ismerhetjük a lovak nagyon régi őseit is. Előfordulhat, hogy egy ló egyes ősei többféle leszármazási ágon is ősök.

Készíts programot, amely egy adott ló esetén megadja, hogy

- 1.) hány olyan őse van, amelyik több leszármazási ágon is ős;
- 2.) melyik az a ló, ami a legtöbb leszármazási úton szerepel! (Leszármazási út mindig olyan lótól indul, amelynek nem ismerjük a szüleit és olyan lónál ér véget, amelynek nem ismerjük az utódait.)

Bemenet

A standard bemenet első sorában a nyilvántartott lovak és a leszármazási kapcsolatok száma van ($1 \le N$, $M \le 1000$). A következő M sor mindegyike két egész számot tartalmaz egy szóközzel elválasztva: az első szám egy ló sorszáma ($1 \le L \le N$), a második pedig az egyik szülőjének sorszáma ($1 \le Szülőj \le N$). Az utolsó sorban egy ló sorszáma van ($1 \le L \le N$). Minden ló legfeljebb 100 leszármazási úton szerepel.

Kimenet

A standard kimenet első sorába azon lovak számát kell írni, ahányan többszörös ősei az L lónak, a második sorba pedig azon ló sorszámát, amely a legtöbb leszármazási úton szerepel! Ha több ilyen ló is van, akkor a legkisebb sorszámút kell kiírni!

Példa

Memórialimit: 32 MiB

Bemenet	Kimenet
10 11 10 3 1 2 1 3 2 4 2 5	3 3 8 9
3 5 3 6 5 7 4 8 6 8	4 6
6 9	
1 Korlátok Időlimit: 0.1 mp.	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Pontozás: A tesztek 40%-ában a lovak és a leszármazási kapcsolatok száma N, M≤20