1 The Regular Operations (Continued)

We will review some of the regular operations.

1.1 Concatenation

Recall that concatenation is defined by:

$$A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$$

How would this works for $A = \{a^n \mid n \ge 0\}$ and $B = \{b^m \mid m \ge 0\}$?

$$A \circ B = \{a^n b^m \mid n, m \ge 0\}$$

We can use NFAs to show that this is the case.

2 Nondeterministic Finite Automata (1.2)

In a deterministic finite automata, when the machine was in a given state and reads the next input symbol, we knew that the next state is; that's why it's called *determinstic*, because it was already determined. **However**, in a *nondeterministic* machine, several choices may exist for the next state at any point. In general, nondeterminism is a *generalization* of determinism; that is, every deterministic finite automaton is automatically a nondeterminism finite automaton.

2.1 The Differences Between DFA and NFA

Figure: The nondeterministic finite automaton N_1 .

DFA

- Every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet.
- There is a unique computation path for each input.
- Labels on the transition arrows are symbols from the alphabet.

NFA

- Not every state in an NFA needs exactly one transition arrow for each symbol. In an NFA, a state may have zero, one, or many exiting arrows for each alphabet symbol.
- We may allow several (or zero) alternative computations on the same input.
- NFAs may have arrows labeled with members of the alphabet or ϵ . Zero, one, or many arrows may exit from each state with the label ϵ . For example, the above figure has one transition arrow with ϵ as a label.

2.2 NFA Computation

How does an NFA compute? Suppose that we are running an NFA on an input string and come to a state with multiple ways to proceed. Suppose, in fact, that we use the NFA above: N_1 . Additionally, suppose that we are at state q_1 , and the next input symbol is 1.

- After reading this symbol, the machine **splits into multiple copies of itself** and follows *all* the possibilities in *parallel*. In other words, each copy of the machine takes one of the possible ways to proceed and continues as before.
- If there are subsequent choices, the machine splits again.
- If the next input symbol doesn't appear on any of the arrows exiting the stae occupied by a copy of the machine, that copy of the machine dies.
- If any one of these copies of the machine is in an accept state at the <u>end of the input</u>, the NFA accepts the input string.

What happens when we come across a state with an ϵ symbol on an exiting arrow? Well, without reading any input, the machine splits into *multiple* copies, one following each of the exiting ϵ -labeled arrows and one staying at the current state. The machine, then, proceeds nondeterministically as before. So, really, ϵ transitions allow the machine to **transition betweenstates spontaneously** without consuming any input symbols.

2.3 Formal Definition of NFA

Definition 2.1: Nondeterministic Finite Automaton

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- 1. Q is a finite set called the **states**.
- 2. Σ is a finite set called the **alphabet**.
- 3. $\delta: Q \times \Sigma \cup \{\epsilon\} \mapsto \mathcal{P}(Q)$ is the **transition function**.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accept states (sometimes also called *final states*).

Remarks:

- $\Sigma \cup \{\epsilon\}$ is sometimes written as Σ_{ϵ} .
- We say that $\delta(q,c)$ returns a **set** of states; more precisely, a subset of Q. Here, $c \in \Sigma$ or ϵ and $q \in Q$.

2.4 Acceptance in an NFA

We say that an NFA $(Q, \Sigma, \delta, q_0, F)$ accepts a string w in Σ^* if and only if we can write $w = y_1 y_2 \dots y_m$ where each $y_i \in \Sigma_{\epsilon}$ and **there is** a sequence of states $r_0, \dots, r_m \in Q$ such that:

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for each i = 0, 1, ..., m-1
- 3. $r_m \in F$.