

Model Predictive Control

2019. 11. 01

김정환

한양대학교 전자공학부

Contents

- 1. Why Use MPC?
- 2. What is MPC?
- 3. MPC Design Parameters
- 4. How to Design an MPC Controller with Simulink

MPC can handle multi-input multi-output (MIMO) systems.

MPC can handle constraints.

MPC has preview capability.

Automative
Aerospace
Energy
Food Processing
Industrial Manufacturing
Metallurgy and Mining
Robotics

MPC requires a powerful, fast processor with a large memory.

Model Predictive Control (MPC)

Input-output interactions

Preview

Constraints

• Has been used in many industries such as process, automotive, and aerospace

MPC Controller

3. MPC Design Parameters

MPC Controller

Recommendation:

 $T_{settling}$: Time it takes for the error $|y(t)-y_{final}|$ to fall to within 2% of y_{final}

$$\frac{T_r}{20} \le T_s \le \frac{T_r}{10}$$
 , T_s : Sample time

$$p.T_s \ge T_{settling}$$

3. MPC Design Parameters [Control horizon]

3. MPC Design Parameters [Control horizon]

3. MPC Design Parameters [Control horizon]

3. MPC Design Parameters [Control horizon]

www.BANDICAM.com

Output constraints

3. MPC Design Parameters [Weights]

$$\frac{W_{\text{sleep}}}{W_{\text{eat}}} = 5 > 1$$

W: Weight

3. MPC Design Parameters [Weights]

3. MPC Design Parameters [Weights]

V_v: Lateral velocity

 V_x : Longitudinal velocity

(X,Y): Vehicle's global position

ψ: Yaw angle

δ: Front steering angle

Y_{ref}: Reference lateral position

Ψ_{ref}: Reference yaw angle

Lateral dynamics:

$$\frac{d}{dt} \begin{bmatrix} \dot{y} \\ \psi \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} -\frac{2C_{\alpha f} + 2C_{\alpha r}}{mV_x} & 0 & -V_x - \frac{2C_{\alpha f}\ell_f - 2C_{\alpha r}\ell_r}{mV_x} \\ 0 & 0 & 1 \\ -\frac{2\ell_f C_{\alpha f} - 2\ell_r C_{\alpha r}}{I_z V_x} & 0 & -\frac{2\ell_f^2 C_{\alpha f} + 2\ell_r^2 C_{\alpha r}}{I_z V_x} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \psi \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} \frac{2C_{\alpha f}}{m} \\ 0 \\ 2\ell_f C_{\alpha f} \end{bmatrix} \delta$$

Global Y position:

$$\dot{Y} = V_x \, \psi + V_y$$

- Vx Longitudinal velocity at center of gravity of vehicle
- m Total mass of vehicle
- I. Yaw moment of inertia of vehicle
- l_f Longitudinal distance from center of gravity to front tires
- l. Longitudinal distance from center of gravity to front tires
- C_{α} Cornering stiffness of tire
- δ Front steering angle
- y Lateral position
- ψ Yaw angle

