Corso di Studio in Fisica

Tutorato di Analisi III

Serie di funzioni, serie di potenze, sviluppi in serie di potenze

Esercizio 1. Per ciascuna delle seguenti serie di funzioni di variabile reale si determinino gli insiemi di convergenza semplice e assoluta e si studi la convergenza uniforme (ovvero si determinino gli insiemi su cui la serie converge uniformemente):

(a)
$$\sum_{n=0}^{\infty} (x^2 + x + 1)^n$$

(f)
$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n^3x+n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{e^{-x}}{2 + n|x|}$$

(g)
$$\sum_{n=1}^{\infty} \left(\frac{1+x^2}{1+nx^2} \right)^n$$

(c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^x + (\log n)^x}$$
 (i)

(h)
$$\sum_{n=0}^{\infty} \left(e^{(2|\sin x|)^n} - 1 \right)$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^{nx}}{n}$$
 (ii)

(i)
$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{nx^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{x}{x^4 + 3n^4}$$

(j)
$$\sum_{n=1}^{\infty} n^x x^n$$
 (iii)

Esercizio 2. Delle seguenti serie di potenze in campo complesso, si determini quanto specificato:

- (a) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$ disco aperto di convergenza
- (b) $\sum_{n=1}^{\infty} \frac{(1-2i)^{n^2}}{n(n^2+1)} (z-1)^n$ raggio di convergenza e insieme di convergenza semplice
- (c) $\sum_{n=1}^{\infty} \frac{n}{n!+i} z^n$ insiemi di convergenza semplice e assoluta, dischi su cui si ha convergenza uniforme
- (d) $\sum_{n=0}^{\infty} \left(\sqrt{4n^2 + \sqrt{n}} 2n \right) (z-i)^n$ disco aperto di convergenza, dischi su cui si ha convergenza uniforme
- (e) $\sum_{n=0}^{\infty} (\sqrt{e^{2n} + n} e^n) z^n$ insiemi di convergenza semplice e assoluta, dischi su cui si ha convergenza uniforme.

⁽ⁱ⁾Ci si può limitare a studiare la convergenza uniforme su insiemi della forma $[\delta, \infty)$ con $\delta > 0$. Lo studio della convergenza uniforme in sottinsiemi della forma $(-\delta, \infty)$ con $\delta > 0$ utilizza la stima del resto per serie a termini di segno alterno, non richiamata a lezione.

⁽ii) Ci si può limitare a studiare la convergenza uniforme su insiemi della forma $(-\infty, -\delta]$ con $\delta > 0$. Lo studio della convergenza uniforme in $(-\infty, 0]$ utilizza la stima del resto per serie a termini di segno alterno, non richiamata a lezione

⁽iii) Ci si può limitare a studiare la convergenza uniforme su insiemi della forma $(-\delta, \delta]$ con $\delta \in (0, 1)$. Lo studio della convergenza uniforme in $[-1, \delta]$ utilizza la stima del resto per serie a termini di segno alterno, non richiamata a lezione.

Esercizio 3. Si determinino gli insiemi di convergenza semplice e assoluta delle seguenti serie di potenze in campo reale. Si studi inoltre la convergenza uniforme.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n!} - 1\right) x^n$$

(c)
$$\sum_{n=1}^{\infty} (2^{3n} + 3^{2n})(x-2)^n$$

(b)
$$\sum_{n=2}^{\infty} \frac{(x-1)^n}{(\log n)^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{ne^{-n}}{n^2 + 1} x^n$$

Esercizio 4. Ricordando che $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x)$ per $x \in [-1,1)$, si determini l'insieme di convergenza semplice e la funzione somma delle seguenti serie e se ne discuta l'uniforme convergenza:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{nx^n}$$
 (Suggerimento: porre $t = x^{-1}$).

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (3x-2)^n$$
 (Suggerimento: porre $t=3x-2$).

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$
 (Suggerimento: integrare la serie logaritmica).

Esercizio 5. Per ciascuna delle seguenti funzioni di variabile reale si scriva lo sviluppo in serie di potenze centrato nel punto x_0 indicato e si determini l'intervallo di convergenza della serie trovata:

(a)
$$f(x) = \frac{1+x}{1-x}$$
, $x_0 = 0$;

(b)
$$f(x) = \frac{2x}{3x^2 + 6x - 24}$$
, $x_0 = 0$;

(c)
$$f(x) = \frac{x+1}{(x+2)(x-3)}$$
, $x_0 = 0$;

(d)
$$f(x) = \frac{1}{2x^2 + 7x}$$
, $x_0 = -3$ (Suggerimento: porre $t = x + 3$).

Esercizio 6. (i) Data la serie di potenze $\sum_{n=0}^{\infty} nx^n$ in campo reale, se ne determini l'intervallo di convergenza semplice e si calcoli la funzione somma. (Suggerimento: $nx^n = x\frac{d}{dx}(x^n)$).

- (ii) Si deduca lo sviluppo in serie di potenze centrato in 0 della funzione $f(x) = \frac{1}{(1-x)^2}$ per |x| < 1.
- (iii) Si determini lo stesso sviluppo in serie di potenze usando la serie prodotto secondo Cauchy.

Esercizio 7. (iv) Scrivere le funzioni di variabile complessa $\cosh z$, $\sinh z$, $\cos z$, $\sin z$ in serie di potenze complesse (con centro in 0). Inoltre verificare le seguenti identità in campo complesso:

(a)
$$(e^z)^n = e^{nz} \ (n \in \mathbb{Z})$$

(b)
$$\cosh^2 z - \sinh^2 z = 1$$

(c)
$$\cos^2 z + \sin^2 z = 1$$

⁽iv) Non essenziale ai fini della preparazione dell'esame.

- (d) $\cos z = \cosh iz$
- (e) $\sin z = -i \sinh iz$.

Esercizio 8. (v) Verificare che se z=x+iy con $x,y\in\mathbb{R}$ allora $e^z=e^x(\cos y+i\sin y)$. Dedurre che, dato un numero complesso w, l'equazione $e^z=w$ non ha soluzioni (in campo complesso) se w=0 mentre ha infinite soluzioni in \mathbb{C} se $w\neq 0$. In quest'ultimo caso trovarle esplicitamente.

⁽v)Non essenziale ai fini della preparazione dell'esame.