Mathematical Stastics Assignment 2

BY YUEJIAN MO 11510511

1 Part I

2.1 Calculate the expectation and variance of the $T \sim t(n)$ via the stochastic representation (SR):

$$T \stackrel{d}{=\!\!\!=\!\!\!=} \frac{Z}{\sqrt{Y/n}},$$

Where $Z \sim N(0,1), Y \sim \chi^2(n)$ and Z and Y are indepented. **2.7** Let x_1, x_2 be a random sample form the $N(o, \sigma^2)$ population.

Solve:

2.2 Let $X_1,...,X_n$ are iid obey Beta(3,2). Find the sampling distributions of $X_{(1)} = \min\{X_1,...,X_n\}$ and $X_d = \max\{X_1,...,X_n\}$.

2.3 Let

2.4 Let $X_i \sim \text{Gamma}(a_i, 1), i = 1, \dots, n$, and X_1, \dots, X_n are mutually independent. Diffine

$$Y_i = \frac{X_i}{m}$$

(a) Derive the distribution of the statistic

X

(b) Find the constant k, such that

$$P_r \left\{ \frac{(X_1 + X_2)^2}{(X_1 + X_2)^2 + (X_1 - X_2)^2} < k \right\} = 00.01$$

Solve:

2.8 Show that if X and Y are independent exponential random variables with $\lambda = 1$, then X/Y follows an F distribution. Also, identify the degrees of freedom.

Prove: