מבוא למתמטיקה שמושית -תרגיל 1 - אביב תשס"ד

 Ω לאורם דחיס בתחום סופי Navier Stokes נתונה משוואת.

$$\rho^* v_{t^*}^* + \rho^* \left(\nabla^* v^* \right) v^* = -\nabla^* p^* + \mu \Delta^* v^*$$
$$\rho_{t^*}^* + \nabla^* \cdot (\rho^* v^*) = 0$$

פונקציות פונקציה ו ρ^* ו- p^* ו- $\Omega \times [0,T]$ ת בונקציה פונקציה $v^*(x_1^*,x_2^*,x_3^*,t^*)$ סקלריות של אותם המשתנים.

- $L_1, L_2, L_3, au, ar p, ar
 ho, V_1, V_2, V_3$ העבר את המשוואה הנ"ל לצורה חסרת מימד בעזרת כלשהם.
- בעזרת המימדים של p^* ושל ושל p^* של המשתנים (ב) האחרים במשוואה.
- ויר הגעונית $ho^*=
 ho_0$ הצע דרך הגיונית $ho^*=p_0$ ו- $ho^*=p_0$ הצע דרך הגיונית (ג) בהנחה כי ב- $L_1,L_2,L_3, au,ar{p},ar{
 ho},V_1,V_2,V_3$ לבחור את
- $R^*(t^*,E,\rho,p_0)$ י"ג מקומה של פצצה אטומית גל ההדף של פצצה אטומית נתון ע"י .2 מקומה של חזית גל ההדף של פצצה אטומית י"ג ראיר P_0 צפיפות האויר ו- P_0 הלחץ האטמוספרי.
 - R^* את המשתנים חסרי המימד של הבעיה והבע בעזרתם את
 - $E \to \infty$ עד כדי קבוע) R^* את (ב)
 - 3. תנועה של זורם צמיג בשכבת גבול מתוארת ע"י הבעיה הבאה

$$\psi_y \psi_{xy} - \psi_x \psi_{yy} = \nu \psi_{yyy} \qquad 0 < x < \infty \qquad 0 < y < \infty$$

$$\psi_y (x, 0) = \psi(x, 0) = 0 \quad \lim_{y \to \infty} \psi_y (x, y) = U \quad \psi_y (0, y) = U$$

 $v = \nabla_\perp \psi$ מציינת את פונקצית הזרם שיינת ע

- ψ את המשתנים חסרי המימד של הבעיה ורשום את ψ בעזרתם.
- (ב) מצא משוואה ותנאי שפה שמקיים פתרון דמיות עצמית לבעיה בשתי שיטות שונות:
 - i. אנליזת מימדים
 - ii. טרנספומציות אפיניות