The Machine Learning Pipeline (workflow)

Marc Berghouse and Lazaro Perez

The Machine Learning Pipeline

- The pipeline is composed of all of the computation and analysis required to get from the beginning to the end of a machine learning project
- Gather data
- Clean and preprocess data
- Exploratory data analysis
- Split data into training, validation and testing sets (holdout vs cross-validation)
- Develop/import model
- Train model
- Test model
- Hyperparameter tuning
- Report and visualize results

Gather Data

- We need data
- Good data is hard to find
 - No cure all method to easily finding and extracting data
 - Be persistent
- Data almost always needs to be cleaned and preprocessed
 - Think about, how can I make this data look like an Excel spreadsheet/Pandas dataframe
- Generally try to read in data with pd.read_csv()

Clean and Preprocess data

- Read data and parse into a pandas dataframe or numpy array
- Take care of NAN values and outliers
 - Imputation or dropping
 - NaN values propagate through calculations
 - Outlier detection (kNN, support vector machine, covariance)
- Use sklearn's StandardScalar() to scale your data to mean of 0 with a standard deviation of 1
- Make necessary data transformations
 - For dates, pd.to_datetime() should work, but I've had issues with it
 - You can also count number of days or hours from the beginning of the dataset and use this as the date/time variable
 - Units should be in the same system (kg, m, s; lb, ft, s)
 - Encode string-type variables
 - Transformations should be done before using StandardScalar()

Encoding

Convert
 categorical
 variables
 (strings) to
 numbers

Fill Missing or NaN Values (sklearn)

sklearn.impute.lterativelmputer

Multivariate imputer that estimates each feature from all the others.

```
>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_iterative_imputer # noqa
>>> # now you can import normally from sklearn.impute
>>> from sklearn.impute import IterativeImputer
```

6.4.7. Estimators that handle NaN values

Some estimators are designed to handle NaN values without prepr type (cluster, regressor, classifier, transform):

- Estimators that allow NaN values for type regressor:
 - HistGradientBoostingRegressor
- Estimators that allow NaN values for type classifier:
 - HistGradientBoostingClassifier
- Estimators that allow NaN values for type transformer:
 - IterativeImputer
 - KNNImputer
 - MaxAbsScaler
 - MinMaxScaler
 - MissingIndicator
 - PowerTransformer
 - QuantileTransformer
 - RobustScaler
 - SimpleImputer
 - StandardScaler
 - VarianceThreshold

Fill Missing or NaN Values (Pandas)

```
In [54]: dff.fillna(dff.mean())
Out[54]:
  0.271860 - 0.424972
                       0.567020
   0.276232 -1.087401 -0.673690
  0.113648 -1.478427
                       0.524988
3 -0.140857 0.577046 -1.715002
4 -0.140857 -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050 1.643563 -0.293543
 0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
  0.276662 - 0.472035 - 0.013960
In [55]: dff.fillna(dff.mean()["B":"C"])
Out[55]:
  0.271860 - 0.424972 0.567020
  0.276232 -1.087401 -0.673690
  0.113648 -1.478427
                       0.524988
        NaN 0.577046 -1.715002
        NaN -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
 -0.109050
            1.643563 -0.293543
  0.357021 - 0.674600 - 0.293543
8 -0.968914 -1.294524
                       0.413738
9 0.276662 -0.472035 -0.013960
```

Fill gaps forward or backward

Using the same filling arguments as reindexing, backward:

```
In [45]: df
Out[45]:
                           three
        one
                   two
        NaN -0.282863 -1.509059
             1.212112 -0.173215
   0.119209 - 1.044236 - 0.861849
f -2.104569 -0.494929
                       1.071804
        NaN -0.706771 -1.039575
In [46]: df.fillna(method="pad")
Out[46]:
                           three
                   two
        one
        NaN -0.282863 -1.509059
a
            1.212112 -0.173215
        NaN
   0.119209 -1.044236 -0.861849
f -2.104569 -0.494929
                       1.071804
h - 2.104569 - 0.706771 - 1.039575
```

Filling missing values: fillna

fillna() can "fill in" NA values with non-NA data in a

Replace NA with a scalar value

```
In [42]: df2
Out[42]:
                  two
                          three four
        NaN -0.282863 -1.509059
        NaN 1.212112 -0.173215
  0.119209 - 1.044236 - 0.861849
                                       True 20
f -2.104569 -0.494929 1.071804
        NaN -0.706771 -1.039575 bar
In [43]: df2.fillna(0)
Out[431:
                          three four
                  two
  0.000000 -0.282863 -1.509059
   0.000000 1.212112 -0.173215
   0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
h 0.000000 -0.706771 -1.039575
In [44]: df2["one"].fillna("missing")
Out[44]:
     missina
     missing
    0.119209
    -2.104569
```

Exploratory Data Analysis

- Understand and communicate what is going on with your data at a general level
- Pandas profiler
 - Basic stats for whole dataframe and individual variables.
 - Scatter plots and correlation heatmap of all variables
 - If you can't install for whatever reason, you can use matplotlib to generate the same plots
- Feature Analysis
 - Unsupervised methods
 - Principal Component Analysis (PCA)
 - Outlier detection
 - Supervised methods
 - Linear Discriminant Analysis (LDA)
 - Random Forest
 - PCA, LDA, and factor analysis all look for linear combinations of variables that best explain the data

Principal Component Analysis (PCA)

- "Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space"
- Separates data into new dimensions based on the combinations of attributes that account for most of the variance in the data (explanatory power)
- LDA is like PCA but it looks for attributes that explain the most variance between classes


```
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators = 500, max_depth=12)
rf_clf.fit(X_train, y_train)
rf y pred = rf clf.predict(X val)
```

Random Forest Feature Engineering

Titanic Dataset

Name	Variable explanation	
pclass	Passenger Class (1 = 1st;2 = 2nd;3 = 3rd)	
Survived	Survival (0 = no, 1 = yes)	
Name	Passenger name	
Sex	Gender of passenger	
Age	Age of passenger	
Sibsp	(number of siblings/spouses aboard)	
Parch	(number of parents/children aboard)	
Ticket	Ticket number	
Fare	Passenger fare (£)	
Cabin	Cabin	
Embarked	Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)	
Boat	Lifeboat	
Body	Body Identification Number	
Home.dest	Home/Destination	

 $\underline{\text{https://towardsdatascience.com/a-starter-pack-to-exploratory-data-analysis-with-python-pandas-seaborn-and-scikit-learn-a77889485baf}$

Training and testing splits

- We use training data to fit the model
- We use testing data (unseen during training) to test the model
 - Data leakage happens when the model somehow has access to testing samples during training
- Holdout
 - Only one train-test split
- Cross-Validation (CV)
 - Divide dataset into 6 parts
 - Train on five parts, test on 6th
 - Switch training/testing parts until all pairs are complete

```
>>> from sklearn.svm import SVC
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_classification
>>> from sklearn.model selection import train test split
>>> from sklearn.pipeline import Pipeline
>>> X, y = make_classification(random_state=0)
>>> X train, X test, y train, y test = train test split(X, y,
                                                        random state=0)
>>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
>>> # The pipeline can be used as any other estimator
>>> # and avoids leaking the test set into the train set
>>> pipe.fit(X train, y train)
Pipeline(steps=[('scaler', StandardScaler()), ('svc', SVC())])
>>> pipe.score(X test, y test)
0.88
```


Model Development

- Choose the appropriate model to solve the problem
- Whole lecture on this later
- Classification or Regression?
- Supervised, unsupervised or reinforcement learning?
 - https://scikit-learn.org/stable/supervised_learning.html
 - https://scikit-learn.org/stable/unsupervised_learning.html
- Read the Sklearn documentation for the model you pick to make sure you are using it in the right situation and passing the correct arguments to the model function
- Hyperparameter tuning (more on this later)
 - https://scikit-learn.org/stable/modules/grid-search.html

Model Training

We use the .fit() method for all training

- We use **fit()** method only on the training data. Why? Because we don't know what our testing data (unseen data) is, hence using the **fit()** method on the test data would not give us a good estimate of how our model is performing.
- We use **transform()** method on train data as well as test data as we need to perform transformation in both cases.

In Case Of Transformers

Transformers are for pre-processing the data before modelling.

- fit () This method goes through the training data, calculates the parameters (like mean (μ) and standard deviation (σ) in StandardScaler class) and saves them as internal objects.
- transform() The parameters generated using the fit() method are now used and applied to the training data to update them.
- **fit _Transform()** This method may be more convenient and efficient for modelling and transforming the training data simultaneously.

https://medium.com/nerd-for-tech/difference-fit-transform-and-fit-transform-method-in-scikit-learn-b0a4efcab804

- lin_reg.fit(X_train_diab, y_train_diab)
 y_pred=lin_reg.predict(X_test_diab)
 print ('R2: ',lin_reg.score(X_test_diab,y_test_diab))
 print ('RMSE: ',mean squared error(y pred,y test_diab,squared=False))
- R2: 0.4526066021617382 RMSE: 53.85325698491439
- knn_class=skn.KNeighborsClassifier(n_neighbors=i)
 knn_class.fit(X_train_iris, y_train_iris)
 y pred=knn class.predict(X test iris)

Model Testing/Scoring

- We use the .predict() method to generate predictions of our testing data
- If we use .predict(), we then have to generate a score by comparing the predicted data ("y_pred") with the true data ("y_test")
- If we use .score(), Sklearn does the prediction and score generation together
- The .score() method uses the arguments (x_test,y_test), but if you call one of the specific scoring functions on the right, the arguments are (y_pred,y_test)

```
lin_reg.fit(X_train_diab, y_train_diab)
y_pred=lin_reg.predict(X_test_diab)
print ('R2: ',lin_reg.score(X_test_diab,y_test_diab))
print ('RMSE: ',mean_squared_error(y_pred,y_test_diab,squared=False))
```

Scoring	Function
Classification	
'accuracy'	metrics.accuracy_score
'balanced_accuracy'	<pre>metrics.balanced_accuracy_score</pre>
'top_k_accuracy'	<pre>metrics.top_k_accuracy_score</pre>
'average_precision'	<pre>metrics.average_precision_score</pre>
'neg_brier_score'	metrics.brier_score_loss
'f1'	metrics.fl_score
'f1_micro'	metrics.fl_score
'f1_macro'	metrics.fl_score
'f1_weighted'	metrics.fl_score
'f1_samples'	metrics.fl_score
'neg_log_loss'	metrics.log_loss
'precision' etc.	metrics.precision_score
'recall' etc.	metrics.recall_score
'jaccard' etc.	metrics.jaccard_score
'roc_auc'	metrics.roc_auc_score
Regression	
'explained_variance'	metrics.explained_variance_score
'max_error'	metrics.max_error
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_root_mean_squared_error'	metrics.mean_squared_error
'neg_mean_squared_log_error'	metrics.mean_squared_log_error
'neg_median_absolute_error'	metrics.median_absolute_error
ʻr2'	metrics.r2_score
'neg_mean_poisson_deviance'	metrics.mean_poisson_deviance
'neg_mean_gamma_deviance'	metrics.mean_gamma_deviance
'neg_mean_absolute_percentage_error'	metrics.mean_absolute_percentage_error

Report and Visualize Results (Regression)

Regression

- Scatter plots with line of best fit
- For multiple linear regression, you can use 3D plots (x,y, and z coordinates), color, and scatter point size to add extra dimensions to the plot
- Correlation matrix/heatmap (already done with Pandas profiler)
- Box or violin plots of scores for different models/experiments/runs
 - Test different models under a range of changing variables/parameters (range of scores for each model)
 - Test the range of results for probabilistic models (different result after each run, like with neural nets)

Report and Visualize Results (Classification)

- Confusion Matrix
- **ROC-AUC** curve
 - False positive rate (FPR) vs true positive rate (TPR)

```
from sklearn.metrics import roc curve
from sklearn.metrics import RocCurveDisplay
y_score = clf.decision_function(X_test)
fpr, tpr, _ = roc curve(y_test, y_score, pos_label=clf.classes_[1])
roc display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()
```


The predicted value is

Example Walkthrough of Iris dataset confusion matrix and best nearest neighbors searcher

```
import sklearn.metrics as skm
best i=0
equal list=[]
for i in range(1,100):
    knn class=skn.KNeighborsClassifier(n neighbors=i)
    knn class.fit(X train iris, y train iris)
    y pred=knn class.predict(X test iris)
    if i==1:
        best mat=skm.confusion matrix(y pred,y test iris)
        best_score=(best_mat[0,0]+best_mat[1,1]+best_mat[2,2])/30
        best i=1
    else:
        new mat=skm.confusion matrix(y pred,y test iris)
        if (new mat[0,0]+new mat[1,1]+new mat[2,2])/30>best score:
            best mat=skm.confusion matrix(y pred,y test iris)
            best score=(new mat[0,0]+new mat[1,1]+new mat[2,2])/30
            best i=i
        elif new mat[0,0]+new mat[1,1]+new mat[2,2]==best score:
            equal list.append(i)
print ('Classification Performance: ',best score,' NN = ',str(best i))
```

Classification Performance: 1.0 NN = 1

Help for Hw1 Q2

```
In [16]: from sklearn.datasets import load iris, load diabetes
         iris = load iris()
         diab = load diabetes()
         from sklearn.model selection import train test split
         X train iris, X test iris, y train iris, y test iris = train test split(iris.data, iris.target, test size=0.2)
         X train diab, X test diab, y train diab, y test diab = train test split(diab.data, diab.target, test size=0.2)
In [17]: import sklearn
         import sklearn.linear model
         log reg=sklearn.linear model.LogisticRegression(max iter=200)
         log reg.fit(X train iris, y train iris)
         y pred=log reg.predict(X test iris)
         print ('accuracy: ',log reg.score(X test iris,y test iris))
         accuracy: 0.966666666666667
In [18]: import sklearn.metrics as skm
         mat=skm.confusion matrix(y pred,y test iris)
         disp=skm.ConfusionMatrixDisplay(mat)
         disp.plot()
Out[18]: <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x7fe43913adf0>
            0 -
```