Household Solar Panel Adoption

Victor Besse

December 9, 2024

Introduction

- Increasing focus on renewable energy to combat climate change.
- Residential solar panels are a key component of energy transition.
- Adoption rates vary significantly across regions and households.
- Aim: To understand factors influencing adoption and evaluate policy impacts.

Motivation and Research Questions

- Policymakers need insights on:
 - Effectiveness of subsidies and tariffs.
 - Hetereogeneity in responses to policy.
- Research Questions:
 - How do households decide to adopt solar panels?
 - What policies best incentivize adoption given state of "nature"?

Literature Review

Dynamic Adoption Models:

- Souyris, Duan, et al. (2022): Forward-looking model of solar adoption, accounting for policy incentives and energy demand.
- ▶ De Groote and Verboven (2019): Effects of subsidies on solar panel adoption.

► Policy Analysis:

- ▶ Borenstein (2017): Efficiency and distributional impacts of energy policies.
- These papers integrate dynamic modeling with spatial and heterogeneity considerations to evaluate adoption and policies.

Contribution

- All of these papers estimate ex-post utility as a function of government rebates/bill savings
- Essentially, households get around having to forecast utility bills

Literature:

- Multiple papers, such as Ito (2014), Jessoe & Rapson (2014), Langer & Myers 2021, and other study the topic of expectations on utility prices
- In short: People aren't too fancy, usually form expectations based on the previous period or some moving average of recent periods.
- Risk aversion plays a role
- ➤ **Contribution:** We can incorporate a model of consumer expectations for "on-grid" electricity to DDC.

(Very Rough) Model Specification

Dynamic Discrete Choice Model:

- ▶ Household *i* decides at time *t* to install solar panels ($d_{it} = 1$) or not $(d_{it} = 0)$.
- Value function:

$$V_{it}(d_{it}) = U_{it}(d_{it}) + \beta E[V_{i,t+1}(d_{i,t+1}) \mid \Omega_{it}]$$

where Ω_{it} is the state vector including:

- Household income and demographics.
- Building characteristics (roof size, sunlight exposure).
- Energy prices and policy incentives.
- Utility includes:

$$U_{it}(d_{it}=1) = -C_{it} + \theta_1 S_{it} - \theta_2 P_{it}$$

where:

- C_{it}: Installation cost.
- S_{it}: Savings from reduced energy bills.
- ► P_{it}: Policy incentives (subsidies or tariffs).

Key Data Sources

Publicly Available Data in the U.S.

- Residential Energy Consumption Survey (RECS):
 - Household energy use, building characteristics, demographics.
 - Provider: U.S. Energy Information Administration (EIA).
- Open PV Project:
 - Installation details: size, cost, location, and date.
 - Provider: National Renewable Energy Laboratory (NREL).
- California Distributed Generation Statistics:
 - Data on solar installations under California's NEM program.
 - Provider: California Public Utilities Commission (CPUC).
- Electricity Price Data:
 - State and utility-level electricity prices.
 - Provider: U.S. Energy Information Administration (EIA).

Key Data Sources

- Database of State Incentives for Renewables and Efficiency (DSIRE):
 - Comprehensive database on state-level renewable energy policies and incentives.
- PVWatts Calculator:
 - Estimates solar energy production for specific locations.
 - Provider: National Renewable Energy Laboratory (NREL).
- Census Bureau Data:
 - Demographic and socioeconomic data for integration.

Counterfactual Analysis

- Evaluate policies to achieve renewable energy targets:
 - Increase subsidies for installation.
 - Modify marginal electricity prices.
- Simulate impacts on:
 - Adoption rates.
 - Household welfare.
 - Equity across income groups.

Conclusion

- Proposed a dynamic discrete choice framework for solar panel adoption.
- Model inspired by Souyris, Duan, et al. (2022).
- Future work:
 - Data collection and model estimation.
 - Figure out utility function specification in detail.
 - Expand counterfactual scenarios.