A. FLOWER STRUCTURE

- Anther produces pollen grains, which contain the male sex cell
- Petals attract insects for pollination
- Stigmas are where the pollen grain lands
- Ovaries contain ovules (egg cells) for fertilisation
- · Sepals protect the flower bud from wind and the cold

Haploid sex cells are therefore produced in the anthers and ovaries.

B. DRAWING A HALF-VIEW OF AN ANIMAL-POLLINATED FLOWER

C. DIFFERENCES BETWEEN PLANT GROWTH AND ANIMAL GROWTH

- Animals show determinate growth growth stops when a certain size is reached.
- Plants show indeterminate growth cells continue to divide indefinitely.

PLANTS have UNDIFFERENTIATED cells in their MERISTEMS

It is THESE that allow INTEDERMINATE GROWTH

D. THE SHOOT APEX OF A PLANT

Growth in the shoot apex

- growth is indeterminate (unlimited)
- stem and leaves are produced
- growth is affected by auxin
- contains undifferentiated (stem) cells
- new cells are produced by mitosis
- production of new cells causes others to be displaced to the edge of the meristem
- cells at the edge stop dividing and rapid growth and differentiation occurs
- leaves start as small bumps at the side of the shoot apex
- shoot apex grows towards light (positively phototropic)
- more auxin diffuses to the shaded side (if incoming light is unidirectional)

E. HOW DO SOME CELLS FORM LEAVES WHILE OTHERS FORM SHOOTS OR FLOWERS?

- Different genes expressed ("switched on");
- · By cells in apical meristem;
- Different genes expressed for making leaves/stem/flowers;
- Triggered by a stimulus;
- e.g. long nights in short-day plants / short nights in long-day plants;

F. SHORT-DAY & LONG-DAY PLANTS

- The shoot apex produces more stem and leaves until it receives a stimulus that makes it produce flowers.
- This 'switch' to flowering involves expressing different genes in cells of the shoot apex.
- The 'switch' to flowering is a response to the length of light and dark periods in many plants.

Only flower when a period of darkness EXCEEDS a critical night length

Only flower when a period of darkness IS BELOW a critical night length

(NEEDS LONG NIGHTS)

(NEEDS **SHORT NIGHTS**)

- For both types of plant, it is the length of <u>darkness</u> that matters, rather than the length of the light period.
- Short-day plants, such as chrysanthemums, can be made to flower out-of-season by keeping them in greenhouses with the blinds closed to extend the nights artificially.

G. SOME DEFINITIONS

POLLINATION is the TRANSFER of POLLEN GRAINS from the ANTHER to the STIGMA

FERTILISATION occurs when the **NUCLEI** of a pollen grain and an ovule **JOIN**

SEED DISPERSAL is the TRANSPORT of SEEDS AWAY from the PARENT PLANT to sites where they can GERMINATE = LESS COMPETITION with the PARENT PLANT

- Most flowering plant have a mutualistic relationship with insects.
 - The plant benefits by its flowers being pollinated;
 - The insect benefits as it feeds on the nectar (a source of energy) and pollen (a source of protein).

H. POLLINATION / FERTILISATION / SEED & FRUIT FORMATION

- Pollen grain lands on stigma
- Pollen tube forms and grows down
- Through style to the ovary
- Pollen grain <u>nucleus</u> joins with an ovule nucleus (= fertilisation)
- Fertilised ovule inside develops into an embryo plant
- Water leaves = becomes dehydrated
- The ovule develops into a seed
- The ovary develops into a fruit
- Water leaves the seed (it dehydrates) and becomes dormant so metabolic reactions stop.
- This saves energy if environmental conditions are not favourable for growth.
- A seed contains an embryo plant and food stores for germination.

I. DRAWING AND LABELLING A SEED

J. GERMINATION

• If environmental conditions are favourable, the seed coat will break open and the young plant starts to grow.

CONDITION	WHY IT IS NEEDED
WATER	To activate enzymes in the seed for metabolism
OXYGEN	For respiration so that energy can be released
WARMTH	To allow enzymes to work close to optimum temperature

- Water enters the seed through the micropyle and activates enzymes.
- The water also softens the testa, causing it to split.
- The activated enzymes break down starch stores:

- Glucose is used in aerobic respiration to release energy for growth.
- The radicle grows into the root and the plumule grows into the shoot.

K. MICROPROPAGATION

- This is a fast way of cloning plants by asexual reproduction, so only one parent plant is needed.
- Involves using three different plant hormones: auxin, cytokinin and gibberellin.

- Large numbers of rare plants can be produced, reducing the cost and need to take them from their natural habitat.
- Virus-free strains of existing plants can be produced because cells in the shoot apex do not contain viruses that reduce growth, even if other cells in the plant do.
- New varieties with desirable features can be produced quicker than by previous methods.