МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант 4

Студентка гр.1303	 Герасименко Я.Д.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить представление и обработку целых чисел на Ассемблере. Научиться организовывать ветвящиеся процессы для выполнения задания.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

a) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);

программы, а также различные знаки параметров а и b.

b) значения результирующей функции res = f3(i1, i2, k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1, n2, n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения

Вариант 11

f5 = <
-6), при a<=b \ max(-6,-i2), при k>=0
i

Выполнение работы.

- 1. Были созданы три сегмента: сегмент стека (AStack), сегмент данных (DATA) и сегмент кода (CODE). Метки сегментов были записаны в соответствующие регистры с помощью директивы ASSUME (полное определение сегментов). Исходный код программы см. в приложении A.
- 2. В сегменте DATA были объявлены переменные A, B, I, K, I1, I2, RES. В этом сегменте будут меняться некоторые переменные во время тестирования.
- 3. В сегменте CODE была создана процедура Main, в которой написаны инструкции для завершения программы после операции ret. Для выполнения

задания использовались следующие переходы, чтобы избежать обращение к процедурам:

- 1). ЈМР команда безусловного перехода. Выполняет безусловный переход в указанное место. В процедуре Маіп используется в случае, когда А больше В. Также используется в F3_1 и F3_2, чтобы перейти к записи результата вычисления функции.
- 2). JLE команда, выполняющая короткий переход, если первый операнд меньше второго операнда или равен ему при выполнении операции сравнения с помощью команды стр. В процедуре Main используется в самом начале для перехода к метке ALessB, если A не больше В
- 3). JGE команда, выполняющая короткий переход, если первый операнд больше второго операнда или равен ему при выполнении сравнения с помощью команды cmp.

Тестирование.

Корректность работы программы была проверена тремя тестами.

1. Результаты работы программы при a=14; b=-5; i=2; k=0 представлены в табл.1.

i1	i2	res	Корректность	
			результата	
000B (11)	000C(12)	FFF4 (-6)	Верно	

Таблица 1 – Результаты первого теста

2. Результаты работы программы при a=14; b=-5; i=2; k=-2 представлены в табл.2.

i1	i2	res	Корректность
			результата
000B (11)	000C(12)	0002(2)	Верно

Выводы.

В ходе выполнения лабораторной работы было изучена обработка целых чисел, их представление и организация ветвящихся процессов. Для выполнения задания написана программа, которая вычисляет значения функций согласно заданным условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

```
Название файла: lb3.asm
         SEGMENT STACK
AStack
       DW 12 DUP(?)
         ENDS
AStack
DATA
       SEGMENT
        DW 14
Α
        DW -5
В
        DW 2
Ι
K
      DW 0
       DW ?
I1
I2
      DW ?
RES DW ?
DATA
         ENDS
CODE
         SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
         PROC FAR
Main
         push DS
         sub
               AX, AX
         push AX
               AX, DATA
         mov
         mov
               DS, AX
         mov AX, A
         mov CX, I
         cmp AX, B
         jle ALessB
BLessA:
       ;2(i+1)-4
         add CX, 1
         shl CX, 1
```

sub CX, 4
mov I2, CX

```
;-(4i+3)
shl CX, 1
add CX, 7
neg CX
mov I1, CX
jmp ABSI1
```

ALessB:

; 5 - 3*(i+1) add CX, 1 mov BX, CX

shl CX, 1
shl CX, 1
sub CX, BX
neg CX
add CX, 5
mov I2, CX

;6i - 10 shl CX, 1 neg CX sub CX, 6 mov I1, CX

ABSI1:

mov CX, I1 cmp CX, 0 jge F3 neg I1

F3:

mov CX, K cmp CX, 0 jne ABSI2

F3_1:

mov CX, I1
cmp CX, 6
jle MIN
mov AX, 6

jmp F3RES ULT

```
MIN:
           mov AX, I1
           jmp F3RESULT
 ABSI2:
           mov CX, I2
           cmp CX, 0
           jge F3_2
           neg I2
 F3_2:
           mov AX, I1
           add AX, I2
           jmp F3RESULT
 F3RESULT:
           mov RES, AX
           ret
 Main
           ENDP
 CODE
           ENDS
           END Main
      Название файла: lb3.lst
 Microsoft (R) Macro Assembler Version 5.10
 17:15:2
0000
                           AStack SEGMENT STACK
```

				Pa	age	1-1
0000	AStack	SEGMENT	STACK			

10/30/22

0000	000C[????		D	W) 12 DUP(?
		1111]		
0018				AStack	ENDS
0000 0000 0002 0004	000E FFFB 0002		A B I	DATA DW 14 DW -5 DW 2	SEGMENT
0006 0008 000A	0000 0000 0000		K I1 I2	DW 0 DW ? DW ?	
000C	0000		RES	DW ?	8

```
000E
                              DATA
                                        ENDS
  0000
                              CODE
                                        SEGMENT
DS:DATA, SS:AStack
                                   ASSUME CS CODE,
  0000
                              Main
                                        PR0C
                                             FAR
  0000
         1E
                                   push DS
  0001
         2B C0
                                        sub
                                              AX, AX
  0003
         50
                                   push AX
  0004
         B8 ---- R
                                   mov
                                         AX, DATA
  0007
         8E D8
                                        mov
                                              DS,AX
  0009
        A1 0000 R
                                  mov AX, A
        8B 0E 0004 R
  000C
                                        mov CX, I
  0010
         3B 06 0002 R
                                        cmp AX, B
         7E 1A
  0014
                                        ile ALessB
  0016
                              BLessA:
                                      ;2(i+1)-4
  0016
        83 C1 01
                                        add CX, 1
                                        shl CX, 1
        D1 E1
  0019
        83 E9 04
                                        sub CX, 4
  001B
  001E
        89 0E 000A R
                                        mov I2, CX
                                      ;-(4i+3)
                                      shl CX, 1
  0022
        D1 E1
                                      add CX, 7
        83 C1 07
  0024
  0027
        F7 D9
                                     neg CX
        89 0E 0008 R
                                     mov I1, CX
  0029
  002D
        EB 20 90
                                        jmp ABSI1
  0030
                              ALessB:
                                      ; 5 - 3*(i+1)
  0030
         83 C1 01
                                      add CX, 1
         8B D9
                                        mov BX, CX
  0033
  0035
         D1 E1
                                        shl CX, 1
 Microsoft (R) Macro Assembler Version 5.10
                                                                 10/30/22
 17:15:2
                                                                  Page
                                                                           1-2
  0037
        D1 E1
                                        shl CX, 1
        2B CB
                                        sub CX, BX
  0039
         F7 D9
  003B
                                        neg CX
                                        add CX, 5
  003D
         83 C1 05
  0040
         89 0E 000A R
                                        mov I2, CX
                                        ;6i - 10
                                        shl CX, 1
        D1 E1
  0044
        F7 D9
  0046
                                        neg CX
  0048
        83 E9 06
                                        sub CX, 6
  004B
         89 0E 0008 R
                                        mov I1, CX
                              ABSI1:
  004F
         8B 0E 0008 R
  004F
                                        mov CX, I1
```

9

0056	83 F9 00 7D 04 F7 1E 0008 R	cmp CX, 0 jge F3 neg I1
0060	8B 0E 0006 R 83 F9 00 75 15	F3: mov CX, K cmp CX, 0 jne ABSI2
0069 006C 006E	8B 0E 0008 R 83 F9 06 7E 06 B8 0006 EB 1E 90	F3_1 mov CX, I1 cmp CX, 6 jle MIN mov AX, 6 jmp F3RESULT
	A1 0008 R EB 18 90	MIN: mov AX, I1 jmp F3RESULT
007E 0081	8B 0E 000A R 83 F9 00 7D 04 F7 1E 000A R	ABSI2: mov CX, I2 cmp CX, 0 jge F3_2 neg I2
008A	A1 0008 R 03 06 000A R EB 01 90	F3_2: mov AX, I1 add AX, I2 jmp F3RESULT
0091 0091 0094	A3 000C R CB	F3RESULT: mov RES, AX ret
0095 0095		Main ENDP CODE ENDS END Main

Segments and Groups:

N	lame L	ength Alig	n Combine Class
ASTACK		0018 PARA 0095 PARA 000E PARA	NONE
Symbols:			
N	lame T	ype Value	Attr
A		L WORD L NEAR L NEAR L NEAR	0000 DATA 004F CODE 007A CODE 0030 CODE
B BLESSA		L WORD L NEAR	0002 DATA 0016 CODE
F3		L NEAR L NEAR L NEAR L NEAR	005C CODE 0091 CODE 0065 CODE 0087 CODE
I		L WORD L WORD L WORD	0004 DATA 0008 DATA 000A DATA
K		L WORD	0006 DATA
MAIN MIN		F PROC L NEAR	0000 CODE Length = 0095 0074 CODE
RES		L WORD	000C DATA
Ô		TEXT 0101 TEXT lb3 TEXT 510	h

103 Source Lines

103 Total Lines

25 Symbols

48012 + 459248 Bytes symbol space free

0 Warning Errors

O Severe Errors