Examen

105000119 - Programación para Sistemas 10MI-Grado en Matemáticas e Informática

Lenguajes y Sistemas Informáticos e Ingeniería de Software ETSI Informáticos Universidad Politécnica de Madrid

Curso 2018/2019 - Enero 2019

Normas

- El examen puntúa sobre 15 puntos.
- La duración total del mismo es de 45 minutos.
- Se deberá tener el DNI o el carnet de la UPM en lugar visible.
- No olvidar rellenar apellidos, nombre y número de matrícula en cada hoja.
- La solución al examen se proporcionará antes de la revisión.
- No se permite tener otro material que las tres hojas proporcionadas (se puede usar como borrador la última de las proporcionadas)
- En las preguntas en las que se ofrecen varias alternativas como posibles respuestas correctas, señalar una errónea no conlleva penalización

Cuestionario

(1 punto) 1. En un script en Bash, indique las instrucciones de un condicional if-then-else necesarias para que, si el número de argumentos es distinto de 1, se acabe el script devolviendo un valor (exit status) de 1.

```
Solución:
  if test $# -ne 1; then
   exit 1
  fi
```

(1 punto) 2. Suponiendo que se disponen los permisos para que la instrucción mkdir tenga éxito, indique la salida correspondiente a ejecutar las siguientes instrucciones en Bash:

mkdir NuevoDir && echo "A"

En pantalla aparece la salida: A

No se produce ninguna salida en pantalla

Ninguna de las anteriores

Solución: En pantalla aparece la salida: A

(1 punto) 3. Cuál debe ser la primera línea de un script ejecutable bash.

Solución:

#! /bin/bash

(1 punto) 4. Escriba un comando bash que, independientemente del directorio actual, le lleve a su directorio HOME

Solución: cd

(1 punto) 5. En Unix, indique la instrucción correspondiente (solamente una) para establecer el permiso de lectura, para todos los usuarios, de los ficheros uno.txt ejecutable.sh fichero.pdf del directorio actual

Solución: chmod a+r uno.txt ejecutable.sh fichero.pdf

Apellidos: Nombre: Matrícula:

(1 punto) 6. En C indicar la forma de averiguar el tamaño de una cadena de caracteres (string) almacenada en char c[2048]

```
Solución: strlen(c)
```

(1 punto) 7. Una aplicación en C se compone de dos ficheros fuente miprog.c (donde se encuentra el main) y funciones.c. Escriba la llamada al compilador gcc que compile los ficheros fuente y genere el ejecutable miprog.

```
Solución: gcc -o miprog miprog.c funciones.c
```

(1 punto) 8. Un programa en C desea utilizar los argumentos proporcionados en línea de comandos. Indique la declaración de la función main de forma que se pueda acceder y utilizar el número de dichos argumentos y sus cadenas de caracteres (strings) correspondientes.

```
Solución:
int main(int argc, char *argv[])
```

(1 punto) 9. Supóngase la siguiente declaración

```
int a[N];
```

Señala la expresión de C equivalente a a[5]¹

*a+5 &a+5 *(a+5) &(a+5)

Solución:

```
*(a+5)
```

(1 punto) 10. Dado el siguiente código C

```
char str1[] = "Hola";
char str2[] = "Hola";
if(str1 == str2)
  printf("Iguales\n");
else
  printf("Distintos\n");
```

¹el operador de suma + tiene menos prioridad que el operador de dereferencia *

Qué mostraría por la salida estándar?

- A. Iquales
- B. Distintos
- C. Nada (daría un error).
- (1 punto) 11. Dado el siguiente código C

```
int i = -1;
if (i) printf("Hola\n"); else printf("Adios\n");
```

Qué mostraría por la salida estándar?

- A. Hola
- B. Adios
- C. Nada (daría un error).
- (1 punto) 12. Dada la declaración de un vector n

```
int n[10], i, suma;
/* posteriormente se le asignan diversos valores a n[] */
```

Escribir el código necesario para calcular la suma de lo elementos del vector n

```
Solución:
suma = 0;
for(i = 0; i < 10; i++) suma += n[i];</pre>
```

(1 punto) 13. Escriba las sentencias necesarias para declarar y reservar memoria dinámica para un vector de 325 números enteros, inicializando dicho vector con todas sus componentes a cero.

```
Solución:
int *vector;
vector = calloc( 325 , sizeof(int) );
```

(1 punto) 14. Escriba las sentencias necesarias para abrir y poder leer en un fichero llamado prueba.txt y posteriormente cerrar dicho fichero.

```
Solución:
file *fp;
fp=fopen ("prueba.txt" , "r");
fclose(fp);
```

(1 punto) 15. Se va a utilizar la siguiente declaración de doble puntero en lenguaje C:

```
char **ppchar;
```

la cual creará una variable tipo puntero:

```
ppchar
-----
| |-->
```

Se desea llegar a obtener el siguiente diagrama:

```
ppchar ----- ----- | |-->|'A'|
```

donde ppchar apunta a un puntero que a su vez apunta a un carácter al que se ha asignado el valor 'A'.

Complete el código siguiente para conseguirlo, debiéndose después liberar la memoria dinámica que se haya asignado antes de finalizar el programa.

```
#include <stdio.h>
#include <stdlib.h>

int main(void) {
   char **ppchar;
   /* Inicio del c\'odigo a completar */
   /* Fin del c\'odigo a completar */
   return 0;
}
```

```
Solución:
#include <stdio.h>
#include <stdlib.h>

int main( void ) {
   char **ppchar;

   ppchar = ( char ** ) malloc( sizeof( char * ) );
   if ( ppchar == NULL) { exit( 1 ); }

*ppchar = ( char * ) malloc( sizeof( char ) );
```

```
if ( *ppchar == NULL) { exit( 1 ); }
**ppchar = 'A';
/* liberar la memoria din\'amica asignada */
free( *ppchar );
free( ppchar );
return 0;
```