## addition / ramps

WEEK 2:

OPERATIONS ON SIGNALS

(DEPENDENT VARIABLE)

Dr. Arsla Khan

## Operations on Signals

- Operations with respect to x-axis (Time axis) / Transformations on the independent variable
  - Time Shifting x(t-k), x[n-k]
  - Time Reversal/Folding/Flipping x(-t), x[-n]
  - Time Scaling  $x(\alpha t)$ ,  $x[\alpha n]$
- Operations with respect to y-axis (Amplitude) / Transformations on the dependent variable
  - Amplitude Scaling
  - Addition and Subtraction
  - Multiplication and Division
  - Differentiation and Integration

## Links for Video Lectures

- Addition of CT signals
- https://www.youtube.com/watch?v=TmkTwJT79yc&list=PLBlnK6fEyqRhG6s3jYl U48CqsT5cyiDTO&index=3
- Multiplication of CT signals
- https://www.youtube.com/watch?v=jPCgU4ghB8Q&list=PLBlnK6fEyqRhG6s3jYI U48CqsT5cyiDTO&index=4
- Amplitude Scaling of CT signals
- https://www.youtube.com/watch?v=sTHbXeiAB\_c&list=PLBlnK6fEyqRhG6s3jYl U48CqsT5cyiDTO&index=6
- Amplitude Shifting of CT signals
- https://www.youtube.com/watch?v=sTHbXeiAB\_c&list=PLBlnK6fEyqRhG6s3jYl U48CqsT5cyiDTO&index=6

## 1) Amplitude Scaling

- It either increases or decreases the amplitude of the signal
  - $\mathbf{x}(t) \rightarrow \alpha x(t)$
- If  $\alpha > 1$ , amplitude of the signal increases
- If  $\alpha$  < 1, amplitude of the signal decreases





## 2) Amplitude Flipping

- Amplitude of the signal is flipped along horizontal axis.
  - $x(t) \to -x(t)$





 $\alpha = 2$ 

Prepared by: Dr. Arsla Khan, CUI Lahore Campus

#### 3) Addition and Subtraction

- For CTS
  - $y(t) = x_1(t) + x_2(t)$
- For DTS
  - $y[n] = x_1[n] + x_2[n]$

#### 4) Multiplication and Division

- For CTS
  - $y(t) = x_1(t).x_2(t) \rightarrow Multiplication$
  - $y(t) = x_1(t)/x_2(t) \rightarrow Division$
- For DTS
  - $y[n] = x_1[n]. x_2[n] \rightarrow Multiplication$
  - $y[n] = x_1[n]/x_2[n] \rightarrow Division$

## 5) Differentiation and Integration → Only for CTS

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

### 6) Difference and Accumulation → Only for DTS

| Operations                    | Operations w.r.t Time axis (x-axis)                   | Operations w.r.t Amplitude axis (y-axis) |
|-------------------------------|-------------------------------------------------------|------------------------------------------|
| Shifting                      | Time Shifting $x(t-k) \to Delay$ $x(t+k) \to Advance$ | Amplitude Shifting $x(t) + k$ $x(t) - k$ |
| Flipping/Foldin<br>g/Reversal | Time Folding $x(-t)$                                  | Amplitude Folding $-x(t)$                |
| Scaling                       | Time Scaling $x(\alpha t)$                            | Amplitude Scaling $\alpha x(t)$          |

# Operations w.r.t y-axis (amplitude) for DTS

Operations w.r.t y-axis i.e. amplitude axis for DTS are performed sample by sample basis.

Exp 1: Plot  
(i) 
$$y_1[n] = x_1[n] + x_2[n]$$
  
(ii)  $y_2[n] = 2x_1[n]$   
(iii)  $y_3[n] = x_1[n]x_2[n]$ 

#### ■ How to write DTS ???

$$x_1[n] = \{0,0,1,2,3,0,0,2,2,0\}$$

Position of sample at zeroth place

$$x_2[n] = \{0, -2, -2, 2, 2, 0, -2, 0\}$$

Position of sample at zeroth place









| n        | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4 | 5 | 6 | 7 |
|----------|----|----|----|---|---|---|----|---|---|---|---|
| $x_1[n]$ | 0  | 0  | 0  | 1 | 2 | 3 | 0  | 0 | 2 | 2 | 0 |
| $x_2[n]$ | 0  | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 |
| $y_1[n]$ | 0  | -2 | -2 | 3 | 4 | 3 | -2 | 0 | 2 | 2 | 0 |



(ii) 
$$y_2[n] = 2x_1[n]$$

(ii) 
$$y_2[n] = 2x_1[n]$$

| n        | -2                          | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------|-----------------------------|----|---|---|---|---|---|---|---|---|
| $x_1[n]$ | 0                           | 0  | 1 | 2 | 3 | 0 | 0 | 2 | 2 | 0 |
|          | Multiple each sample with 2 |    |   |   |   |   |   |   |   |   |
| $y_2[n]$ | 0                           | 0  | 2 | 4 | 6 | 0 | 0 | 4 | 4 | 0 |







| n        | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4 | 5 | 6 | 7 |
|----------|----|----|----|---|---|---|----|---|---|---|---|
| $x_1[n]$ | 0  | 0  | 0  | 1 | 2 | 3 | 0  | 0 | 2 | 2 | 0 |
| $x_2[n]$ | 0  | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 |
| $y_3[n]$ | 0  | 0  | 0  | 2 | 4 | 0 | 0  | 0 | 0 | 0 | 0 |



## Operations w.r.t y-axis for CTS

- It is preferable to write mathematical representation of signals before applying operations on CTS w.r.t y-axis.
- Mathematical Definition of Signals
  - CTS are defined in the form of their ranges

$$x(t) = \begin{cases} 1 & 2 \le t \le 4 \\ 0 & Otherwise \end{cases}$$

$$\begin{pmatrix} x(t) \\ 1 \end{pmatrix}$$
  $\begin{pmatrix} z \\ 4 \end{pmatrix}$ 

$$f(t) = \begin{cases} 2 & -3 \le t \le 0 \\ 2e^{-t/4} & 0 < t \le 6 \\ 0 & Otherwise \end{cases}$$



$$f(t) = \begin{cases} ??? & 1 \le t \le 2 \\ 1 & 2 < t \le 4 \\ 0 & Otherwise \end{cases}$$



## How to define ramp signal?

- Define points in which ramp exists
  - Point A  $(x_1, y_1) = (1,0)$
  - Point B  $(x_2, y_2) = (2,1)$
- Write equation for line and put values

■ 
$$y = x - 1$$

Replace x with t and y with f(t)

$$: f(t) = t - 1$$



$$f(t) = \begin{cases} t-1 & 1 < t < 2 \\ 1 & 2 < t < 4 \\ 0 & Otherwise \end{cases}$$

## Exp 2: Find and draw waveform for $y_1(t) = x_1(t) + x_2(t)$







$$x_1(t) = \begin{cases} 1 & 2 < t < 4 \\ 0 & Otherwise \end{cases}$$



$$x_2(t) = \begin{cases} 2 & -3 < t < 0 \\ 2e^{-t/4} & 0 < t < 6 \\ 0 & Otherwise \end{cases}$$

- First, define the signal in mathematical form
- Now check their ranges. Start from  $-\infty$  and goes to  $+\infty$

$$y_1(t) = \begin{cases} 0 + 2 = 2 & -3 < t < 0 \\ 0 + 2e^{-t/4} = 2e^{-t/4} & 0 < t < 2 \\ 1 + 2e^{-t/4} & 2 < t < 4 \\ 0 + 2e^{-t/4} = 2e^{-t/4} & 4 < t < 6 \end{cases}$$

Now you can draw it

# ELEMENTARY SIGNALS + DIFFERENTIATION OPERATION

Dr. Arsla Khan

## Basic / Elementary Signals

- Standard signals are used for the analysis of systems. These signals are;
  - Unit step function
  - Unit impulse or Delta function
  - Unit ramp function
  - Complex exponential function
  - Sinusoidal function

## 1. Unit Step function (u(t) or u[n])

| Parameter                   | CT unit step signal $u(t)$                                                                                                     | DT unit step signal $u[n]$                                                                                     |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Definition                  | The unit step signal has amplitude of '1' for positive values of time and it has amplitude of '0' for negative values of time. |                                                                                                                |  |  |  |  |  |
| Mathematical representation | $u(t) = \begin{cases} 1 & for \ t \ge 0 \\ 0 & for \ t < 0 \end{cases}$                                                        | $u[n] = \begin{cases} 1 & for \ n \ge 0 \\ 0 & for \ n < 0 \end{cases}$ or $u[n] = \{, 0, 0, 0, 1, 1, 1, 1,\}$ |  |  |  |  |  |
| Waveform                    | 0                                                                                                                              | -2 -1 0 1 2 3 n                                                                                                |  |  |  |  |  |
| Significance                | DT unit step signal is sampled version of CT unit step signal                                                                  |                                                                                                                |  |  |  |  |  |

Plot 
$$x(t)=u(t)+u(-t)$$
 ???

Prepared by: Dr. Arsla Khan, CUI Lahore Campus



## 2. Unit Impulse Signal



- Continuous Time Unit Impulse Signal is  $\delta(t)$
- It is also known as dirac delta
- It is defined as "Area under up it impulse is '1' as its width approaches zero. Thus, it has zero value everywhere except t=0"
- Thus, coefficient with  $\delta(t)$  shows its strength or area not amplitude

$$\delta(t) = \begin{cases} \int_{-\infty}^{\infty} \delta(t)dt = 1 & for \ t = 0 \\ 0 & for \ t \neq 0 \end{cases}$$





#### A) Time Shifting

i) 
$$\delta(t-2)$$



B) Amplitude Scaling  $\delta(t)$ 



ii) 
$$\delta(t+3)$$



#### C) Time Scaling

$$\delta(at) = \frac{1}{|a|} \delta(t)$$

## Properties of CT Unit Impulse or Delta function $\delta(t)$

- 1) Integrating a unit impulse function results in '1'
- **2**) The scaled version of  $\delta(at)$  is
  - $\delta(at) = \frac{1}{|a|} \delta(t)$
- lacksquare 3) The flipped version of  $\delta(t)$  is
- $\blacksquare$  4) When an arbitrary function f(t) is multiplied by a shifted important function, the product is given by;





## Exp 4.1: Evaluate i) $\int_{-\infty}^{+\infty} e^{-t} \delta(2t-2) dt$ ii) $\int_{-5}^{-2} e^{-t} \delta(2t-2) dt$

(i) 
$$\int_{-\infty}^{+\infty} e^{-t} \delta(2t-2) dt$$

$$\delta(2t-2) = \delta[2(t-1)] = \frac{1}{2}\delta(t-1)$$

$$= \int_{-\infty}^{+\infty} e^{-t} \frac{1}{2} \delta(t-1) dt$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} e^{-t} \delta(t-1) dt$$

$$=\frac{1}{2}e^{-t}|_{t=1}$$

$$=\frac{1}{2}e^{-1}$$

ii) 
$$\int_{-5}^{-2} e^{-t} \delta(2t - 2) dt$$

$$= 0$$

\*Unit impulse should be present between the limits of integration

#### Exp 4.2: Evaluate the following integrals

(a) 
$$\int_{-1}^{1} (3t^{2} + 1)\delta(t) dt$$
(b) 
$$\int_{1}^{2} (3t^{2} + 1)\delta(t) dt$$
(c) 
$$\int_{-\infty}^{\infty} (t^{2} + \cos \pi t) \delta(t - 1) dt$$
(d) 
$$\int_{-\infty}^{\infty} e^{-t} \delta(2t - 2) dt$$

#### **Solution:**

$$\int_{-\infty}^{\infty} (t^2 + \cos \pi t) \delta(t - 1) dt = (t^2 + \cos \pi t)|_{t=1}$$

$$= 1 + \cos \pi = 1 - 1 = 0$$

(d) 
$$\int_{-\infty}^{\infty} e^{-t} \delta(2t - 2) dt = \int_{-\infty}^{\infty} e^{-t} \delta[2(t - 1)] dt$$
$$= \int_{-\infty}^{\infty} e^{-t} \frac{1}{|2|} \delta(t - 1) dt = \frac{1}{2} e^{-t} \Big|_{t=1} = \frac{1}{2e}$$

## DT Unit Sample Signal/ Unit Impulse Sequence $\delta[n]$

■ Amplitude of unit sample is '1' at n=0 and it has zero value at all other values of n

$$\delta[n] = \begin{cases} 1 & for \ n = 0 \\ 0 & for \ n \neq 0 \end{cases}$$
 or  $\delta[n] = \{..., 0, 0, 0, 1, ...\}$ 



- lacksquare  $\delta[n]$  is not the sampled version of  $\delta(t)$ .
- The main difference is Area under  $\delta(t) = 1$  while Amplitude of  $\delta[n] = 1$





| Parameter                   | CT unit impulse signal $\delta(t)$                                                                                                                                                        | DT unit sample signal $\delta[n]$                                                                                         |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Definition                  | Area under unit impulse approaches '1' as its width approaches zero. Thus, it has zero value everywhere except $t=0$                                                                      | Amplitude of unit sample is '1' at $n=0$ and it has zero value at all other values of $n$ .                               |  |  |  |  |
| Mathematical representation | $\delta(t) = \begin{cases} \infty & for \ t = 0 \\ 0 & for \ t \neq 0 \end{cases}$ $\int_{-\infty}^{\infty} \delta(t) dt = 1  \text{when}  t \to 0$ $\delta(t) = 0 \text{ for } t \neq 0$ | $\delta[n] = \begin{cases} 1 & for \ n = 0 \\ 0 & for \ n \neq 0 \end{cases}$ or $\delta[n] = \{, 0, 0, 0, 1, 0, 0, 0,\}$ |  |  |  |  |
| Waveform                    | δ(t)                                                                                                                                                                                      | -2 -1 0 1 2 3 n                                                                                                           |  |  |  |  |
| Significance                | $\delta[n]$ is not the sampled version of $\delta(t)$ . The main difference is Area under $\delta(t)=1$ while Amplitude of $\delta[n]=1$                                                  |                                                                                                                           |  |  |  |  |

## 3. Unit Ramp function

| Parameter                   | CT unit impulse signal $r(t)$                                           | DT unit sample signal $r[n]$                                                      |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Definition                  | It is linearly growing function for positive values of time.            |                                                                                   |  |  |  |  |  |
| Mathematical representation | $r(t) = \begin{cases} t & for \ t \ge 0 \\ 0 & for \ t < 0 \end{cases}$ | $r[n] = \begin{cases} n & for \ n \ge 0 \\ 0 & for \ n < 0 \end{cases}$           |  |  |  |  |  |
| Waveform                    | 3<br>2<br>1<br>-3 -2 -1 0 1 2 3                                         | $ \begin{array}{c} \operatorname{ramp}[n] \\                                    $ |  |  |  |  |  |
| Significance                | Ramp function indicates linear function                                 |                                                                                   |  |  |  |  |  |

## Relationship between the Signals

- 1. Relationship between Unit step and Unit ramp signal
- The unit ramp function is defined as,

$$\mathbf{r}(t) = \begin{cases} t & for \ t \ge 0 \\ 0 & for \ t < 0 \end{cases}$$

■ Differentiating w.r.t 't' gives

$$\frac{d}{dt}r(t) = \begin{cases} \frac{d}{dt}(t) & for \ t \ge 0 \\ 0 & for \ t < 0 \end{cases} = \begin{cases} 1 & for \ t \ge 0 \\ 0 & for \ t < 0 \end{cases} = u(t)$$

$$\therefore \frac{d}{dt} r(t) = u(t) \quad \text{or} \quad r(t) = \int u(t) dt$$

#### 2. Relationship between Unit step and Unit Impulse signal

or 
$$u(t) = \int \delta(t)dt$$

#### P.P 4.1:

How can we write  $\delta[n]$  in terms of u[n]. Also write u[n] in terms of  $\delta[n]$ 

**Exp 4.3:** Draw waveform for the differentiated signal (\*)



# **Exp 4.4:** Draw waveform for the differentiated version of signals from 1 to 6



0 say shuru hoa o ho ye to pahly hi 2 ha chalo 2 ki impulse laga do ok now agy jao ok jaty jao phir 2 steps upr chalo phir 2 ki impulse lagao upr ki traf phir chalty jao ok again 2 down step chalo 2 ki impulse lagaq nichy ki traf and so on



Signal 1:) 
$$x(t) = \begin{cases} 4 & 2 < t < 4 \\ 2 & 4 < t < 6 \\ 0 & \text{elsewhere} \end{cases}$$



(Signal 5:) 
$$x(t) = \begin{cases} 4 & 0 < t \le 2 \\ -4t + 12 & 2 \le t \le 3 \\ 4t - 12 & 3 \le t \le 4 \\ 4 & 4 \le t < 6 \\ 0 & \text{elsewhere} \end{cases}$$



(Signal 2:) 
$$x(t) = \begin{cases} 2 & 0 < t \le 2 \\ 2t - 2 & 2 \le t \le 3 \\ -2 + 10 & 3 \le t \le 4 \\ 2 & 4 \le t < 6 \\ 0 & \text{elsewhere} \end{cases}$$



(Signal 6:) 
$$x(t) = \begin{cases} -2t + 4 & 0 < t \le 2 \\ 2t - 8 & 4 \le t < 6 \\ 0 & \text{elsewhere} \end{cases}$$



(Signal 3:) 
$$x(t) = \begin{cases} 2t & 0 \le t \le 2\\ 4 & 2 \le t \le 4\\ -2t + 12 & 4 \le t \le 6\\ 0 & \text{elsewhere} \end{cases}$$

(Signal 3:)  $x(t) = \begin{cases} 2t & 0 \le t \le 2 \\ 4 & 2 \le t \le 4 \\ -2t + 12 & 4 \le t \le 6 \\ 0 & \text{elsewhere} \end{cases}$  so first piece ka derivative lia to 2 agly me zero agly me -2



(Signal 4:) 
$$x(t) = \begin{cases} -2t + 4 & 0 < t \le 2\\ 2t - 4 & 2 \le t < 4\\ 0 & \text{elsewhere} \end{cases}$$

remember: majjor differece between 3 and other in 3 there is not a single straight line which give impulse:)



### Exp 4.5: A CTS x(t) is shown in Fig. Sketch and label each of the following signals

(a) 
$$x(t)u(1-t)$$
; (b)  $x(t)[u(t)-u(t-1)]$ ; (c)  $x(t)\delta(t-\frac{3}{2})$ 









## Exp 4.6: A DTS x[n] is shown in Fig. Sketch and label each of the following signals

(a) 
$$x[n]u[1-n]$$
; (b)  $x[n]\{u[n+2]-u[n]\}$ ; (c)  $x[n]\delta[n-1]$ 









#### 4. Real Exponential Signal

| Parameter                   | CT real exponential signals                                                                                 | DT real exponential signals                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Definition                  | It is exponentially growing or decaying signal                                                              |                                                                                    |
| Mathematical representation | $x(t) = be^{\alpha t}$ $b$ and $\alpha$ are real                                                            | $x[n] = br^n$ If $r = e^{\alpha}$ $x[n] = be^{\alpha n}$ $b$ and $\alpha$ are real |
| Waveform                    | $\alpha < 0 \qquad \text{Decaying}$ $t$ $\alpha < 0 \qquad \text{Rising}$ $\alpha > 0 \qquad \text{Rising}$ | $x[n] \qquad 0 < r < 1$ Decayin $x[n] \qquad r > 1$ Rising                         |

#### 5. Complex Exponential Signal

- When exponent is purely imaginary, then signal is said to be complex exponential
- It is given as
  - $\blacksquare \quad \mathsf{CT:} \quad x(t) = e^{j\omega t}$

#### 6. Sinusoidal Signal

- It is given as
  - $\blacksquare \quad \mathsf{CT:} \quad x(t) = \cos(\omega t + \phi)$



#### P.P 4.2: Evaluate the following integrals

(a) 
$$\int_{-1}^{8} [u(t+3) - 2\delta(t)u(t)]dt$$

(b) 
$$\int_{1/2}^{5/2} \delta(3t) dt$$

- Solution:
- (a) Ans: 7

#### P.P 4.3: Draw waveforms of the following

(a) 
$$f_1(t) = 3u(t-1)$$
  
(b)  $f_2(t) = u(2-t)$   
(c)  $f(t) = f_1(t)f_2(t)$ 

(b) 
$$f_2(t) = u(2-t)$$

(c) 
$$f(t) = f_1(t)f_2(t)$$

### Thank You !!!