MATH 425b ASSIGNMENT 6 SPRING 2016 Prof. Alexander Due Wednesday March 23.

Chapter 9 # 7, 8 and:

- (I) Show that $Tx = \sin x$ is not a contraction on [-1, 1].
- (II)(a) Give an example of a differentiable map $f: \mathbb{R} \to \mathbb{R}$ whose fixed points are exactly the integers.
 - (b) Show that such a map must have points x where |f'(x)| > 1.
- (III) Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$, f is differentiable at a point $x \in \mathbb{R}^n$, $h_n \to 0$ and $k_n \to 0$. Show that

$$f(x + h_n + k_n) - f(x) = [f(x + h_n) - f(x)] + [f(x + k_n) - f(x)] + o(|h_n| + |k_n|).$$

(IV) Let us associate a 2×2 matrix to each $\operatorname{vector}(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ by putting the coordinates in the arrangement $\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$. For example, (1, 0, 0, 1) corresponds to the identity matrix.

We can then define a function $f: \mathbb{R}^4 \to \mathbb{R}^4$ by specifying that the coordinates of $f(\mathbf{x})$ are the entries of the matrix $\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}^2$, for i = 1, 2, 3, 4, in the order shown above. (Don't overlook the square on the matrix here!) For example, the first coordinate of f(x) is $x_1^2 + x_2x_3$.

Use this f to show that there are neighborhoods U, V of the identity matrix I such that for each matrix $B \in V$ there is a unique matrix $C \in U$ which is a square root of B, that is, $C^2 = B$, and this C is a continuously differentiable function of B.

- (V) Let $E \subset \mathbb{R}^n$ be open and suppose $f: E \to \mathbb{R}^n$ is \mathbb{C}' and $f'(\mathbf{a})$ is invertible.
- (a) Show that there is a neighborhood W of \mathbf{a} and $M < \infty$ such that $||f'(\mathbf{x})|| \le M$ for all $\mathbf{x} \in W$.
 - (b) Show that there exists a linear transformation T such that

$$|\mathbf{h} - T(f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}))| = o(|\mathbf{h}|)$$
 as $\mathbf{h} \to 0$.

(VI) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(0,0) = 0 and

$$f(x,y) = \frac{4xy(x^2 - y^2)}{(x^2 + y^2)^2}, \quad (x,y) \neq (0,0).$$

Show that the partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist, but f is not continuous at (0,0).

HINTS:

- (7) Note the relevant idea in Theorem 9.21 is that you can decompose an increment in the plane, from \mathbf{x} to $\mathbf{x} + \mathbf{h}$, as the sum of a horizontal increment and a vertical increment; similarly, in n dimensions you get a sum of n increments, one in the direction of each coordinate axis. To bound an increment of f when you want to show continuity, you can bound each of these n increments separately.
- (8) If f has a local maximum at x, what does that say about the function $g(t) = f(x + te_i)$ for a given coordinate i? What does this tell you about one of the entries of the $1 \times n$ matrix f'(x)?
- (I) Use the fact that T'(0) = 1. What does this say about the increment of T from 0 to x?
- (II)(a) Think graphically—a fixed point is where the graph of f crosses what line?
 - (b) Apply the Mean Value Theorem to g(x) = f(x) x.
- (III) f(x+h) f(x) can be approximated—by what? Also, any quantity expressed as $o(|h_n + k_n|)$ can also be expressed as $o(|h_n| + |k_n|)$ —why?
- (V)(a) You can assume the fact that ||A|| is a continuous function of A.
- (b) Differentiability means, informally, that $f(\mathbf{a} + \mathbf{h}) f(\mathbf{a}) \approx A\mathbf{h}$, where $A = f'(\mathbf{a})$. Turn this into a statement that $\mathbf{h} \approx \text{(something)}$. This tells you what T needs to be. What major theorem can you now use? Also, use $\mathbf{h} = (\mathbf{x} + \mathbf{h}) \mathbf{x}$ and (a).
- (VI) To show the lack of continuity, consider what happens when $(x, y) \to (0, 0)$ along different lines y = cx.