

Ciência da Computação | Sistemas de Informação | Sistemas para Internet

Lógica Matemática | Profa. Priscilla Almeida

portas lógicas em sistemas digitais [álgebra de Boole]

sistemas digitais

"Um sistema digital é um sistema matemático que define informações como valores numéricos. Dessa forma, é possível definir operações digitais como cálculos matemáticos. Comumente trabalhamos com valores numéricos na base decimal, mas um sistema digital trabalha no sistema binário, onde cada dígito possui apenas 2 valores possíveis. Esses dois valores são definidos como "níveis lógicos" e adota-se o valor de 0 (zero) ou 1 (um) apenas.

Transportando esse sistema para um sistema eletrônico, é necessário apresentar esses dois valores como sinais elétricos. Para tanto, podemos entendê-los como:

- Ligado ou desligado;
- Nível alto ou nível baixo;
- Alimentado ou em zero;
- VCC ou Terra.

sistemas digitais

As operações observáveis para esses níveis lógicos são definidas como **operações lógicas**. Todas as possíveis operações lógicas são baseadas em apenas **3 OPERAÇÕES PRIMÁRIAS**, que são:

- Produto lógico
- Soma lógica
- Inversão

Álgebra de Boole(?)

"É um ramo da matemática e da lógica que trata das operações sobre conjuntos finitos. Foi desenvolvida por George Boole no século XIX como uma formalização matemática da lógica. A álgebra de Boole é fundamental para a teoria dos circuitos digitais e para a computação, pois fornece uma estrutura para representar e manipular sistemas lógicos. Ela opera em variáveis que assumem apenas dois valores, tipicamente "verdadeiro" (1) e "falso" (0), e define operações como AND, OR e NOT, que correspondem às operações lógicas fundamentais. Essas operações podem ser combinadas para criar expressões lógicas complexas e são a base para o projeto e análise de circuitos digitais, bem como para a lógica de programação em computação".

Porta lógica AND (E)

As portas lógicas E (AND) utilizam-se do operador de produto lógico. A saída é igual a 1 se todas as entradas for 1. A saída é igual a zero se ao menos uma entrada for 0, se todas entradas não forem 1.

Porta lógica AND (E)

Para se explicar o funcionamento da porta E (AND) pode-se fazer um paralelo com um circuito com interruptores, como na figura abaixo. Para que a lâmpada acenda é preciso que os dois interruptores estejam ligados.

Porta lógica OR (OU)

A porta lógica OU (OR) utiliza-se do operador de soma lógica. A saída é igual a 1 se pelo menos uma das entradas for 1. A saída é igual a zero se nenhuma entrada for 1, todas forem zero.

Porta lógica OR (OU)

Uma forma simples de se entender o funcionamento da porta OU (OR) é pensar em um circuito com interruptores em paralelo, como na figura abaixo. Para que a lâmpada acenda é preciso que um dos dois interruptores esteja ligado.

$$A = 0$$
 $B = 1$ $C = 1$ $D = 1$

Porta lógica NOT (NÃO)

A porta NÃO ou inversora (NOT) utiliza o operador de inversão. Para um determinado valor na entrada, a saída possui um valor contrário ao da entrada. Se a entrada for 1, a saída será 0. Se a entrada for 0, a saída será 1. Ou seja, para um valor na entrada a saída será seu complemento, ou o inverso do valor na entrada.

$$0+0=0$$

Portas lógicas em sistemas digitais

BLOCOS LÓGICOS BÁSICOS				
Porta	Símbolo usual	Tabela Verdade	Função Lógica	Expressão
E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S = A·B
ou or		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S = A +B
NÃO NOT		A S 0 1 1 0	Função NOT: inverte a variável aplicada a sua entrada.	S = Ā

Portas lógicas em sistemas digitais

Fals<mark>0</mark>

Verdade<mark>1</mark>ro

BLOCOS LÓGICOS BÁSICOS				
Porta	Símbolo usual	Tabela Verdade	Função Lógica	Expressão
E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S = A·B
ou or		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S = A +B
NÃO NOT		A S 0 1 1 0	Função NOT: inverte a variável aplicada a sua entrada.	S = Ā

Porta lógica NAND (NÃO E)

A porta lógica NÃO E (NAND) utiliza-se do operador de produto lógico e o de inversão. A saída é igual a 0 se todas as entradas for 1. A saída é igual a 1 se ao menos uma entrada for 0, se todas entradas não forem 1.

Porta lógica NOR (NÃO OU)

A porta lógica NÃO OU (NOR) utiliza-se do operador de soma lógica e o de inversão. A saída é igual a 0 se pelo menos uma das entradas for 1. A saída é igual a 1 se nenhuma entrada for 1, todas forem zero.

Porta lógica XOR (OU EXCLUSIVO)

As portas lógicas OU EXCLUSIVO (XOR) utilizam-se do operador de soma lógica, com um círculo. A saída é igual a 0 se as entradas forem iguais. A saída é igual a 1 se as entradas não forem iguais, se uma delas diferirem das outras.

PORTA OU EXCLUSIVO (XOR) C=A⊕B

Porta lógica XNOR (NÃO OU EXCLUSIVO)

As portas lógicas NÃO OU EXCLUSIVO (XNOR) utilizam-se do operador de soma lógica, com um círculo e o de inversão. Tem as saídas inversas da operação XOR. A saída é igual a 1 se as entradas forem iguais. A saída é igual a 0 se se as entradas não forem iguais, se uma delas diferirem das outras.

PORTA NÃO OU EXCLUSIVO (XNOR) C=A⊕B

A B C 0 0 1 0 1 0 0 1 1 1 1

	BLOCOS LÓGICOS BÁSICOS				
	PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão
Fals <mark>0</mark>	E AND	A_B_S	A B S 0 0 0 0 1 0 1 0 0 1 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	
Verda- de <mark>1</mark> ro	ou or	A B	A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função E: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B
	NÃO NOT	A—S	A S 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	S=Ā

	PORTA	Símbolo Usual	Tabela da Verdade	Função Lógica	Expressão
	NE NAND	A——S	A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(Ā.B)
	NOU	AS	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)
Iguais =0 Diferentes = 1	OU Exclusivo XOR	A B	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: Assume 1 quando as variáveis assumirem valores diferentes entre si.	S=A⊕B S=Ā.B+A.Ē
Iguais =1 Diferentes = 0	Coincidência XNOR	A B	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: Assume 1 quando houver coincidência entre os valores das variáveis.	S=Ā⊙B S=Ā.B+A.B

Portas lógicas: Teorema de De Morgan

- Uma operação NAND é igual a uma operação OR com todas as entradas invertidas;
- Uma operação NOR é igual a uma operação AND com todas as entradas invertidas.

Com essas duas afirmações podemos fazer diversas simplificações em expressões lógicas, referentes a circuitos digitais.

Portas lógicas: Teorema de De Morgan

- Uma operação NAND é igual a uma operação OR com todas as entradas invertidas;
- Uma operação NOR é igual a uma operação AND com todas as entradas invertidas.

$$C = \overline{A \cdot B} = \overline{A} + \overline{B}$$

$$C = \overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$$

$$C = \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$C = \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$C = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Associação de portas lógicas

Se utilizarmos expressões booleanas, podemos determinar diretamente a expressão lógica de saída de um circuito.

Associação de portas lógicas

Todo circuito lógico, por mais complexo que seja, é formado pela combinação de portas lógicas básicas.

Todo o circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer.

Associação de portas lógicas

é possível desenhar um circuito lógico que executa uma função booleana qualquer, ou seja, pode-se desenhar um circuito a partir de sua expressão característica

Exemplo

expressão S=(A+B).C.(B+D)

Exemplo

expressão S=(A+B).C.(B+D)

Para o primeiro parêntese tem-se uma soma booleana A+B, logo o circuito que o executa será uma porta OU. Para o segundo, tem-se outra soma booleana B+D, logo o circuito será uma porta OU. Posteriormente tem-se a multiplicação booleana de dois parênteses juntamente com a variável C, sendo o circuito que executa esta multiplicação uma porta E. Para finalizar, unem-se as respectivas ligações obtendo o circuito completo.

Primeiro Passo	Segundo Passo	Terceiro Passo
A S1 B (B+D) S2	S1 C S2	A B C D

Exemplos

https://academo.org/demos/logic-gate-simulator/

PRATICANDO...

1- Esboce (à mão) os circuitos obtidos a partir das seguintes expressões:

$$S = A \cdot B + \overline{C} + (\overline{C \cdot D})$$

 $S = (A+B) \cdot (C+D)$

2- Sendo A=1, B=0, C=0, D=1, escreva a expressão referente e represente no https://academo.org/demos/logic-gate-simulator/ o seguinte circuito:

