

УЧЕБЕН ПРОЕКТ

ПО

"Диференциални уравнения и приложения"

спец. Информатика, 2 курс, зимен семестър, учебна година 2023/2024

Тема № ИНФ2023-УП-3.8.

София	Ф. No. 9МІ0400132	
	Група III	
	Опепка :	

Изготвил: Стоян Стоянов Иванов

04.02.2024 г.

Съдържание

1. Тема на проекта	2
2. Задача 1	
2.1. Код на MATLAB за подточка (A)	3
2.2. Графика на получено приближение за y(t) за подточка (B)	3
2.3. Описание метода на Ойлер за подточка (Б)	4
3. Задача 2	
3.1. Равновесни точки и устойчивост – подточка (А)	5
3.2. Линейно приближение за равновесна точка $(0,0)$ – подточка (\overline{b})	5
3.3. Фазов портрет и код на MATLAB за подточка (B)	7
4. Използвана литература	

1. Тема на проекта:

Учебен проект по ДУПрил спец. ИНФОРМАТИКА, 2 курс, зимен семестър, уч. год. 2023/2024

Тема ИНФ2023-УП-3.8.

Задача 1.

Дадена е задачата на Коши

$$\begin{vmatrix} \dot{x} = x + y + z + \sin t, \\ \dot{y} = x + y - 2z + \sin t, \\ \dot{z} = x - y - z, \\ x(0) = 1, y(0) = 1, z(0) = 1. \end{vmatrix}$$

- а) Решете символно дадената задача на Коши и начертайте графиката на y(t) в подходящ интервал.
- б) Опишете метода на Ойлер за намиране на решение на дадената задача на Коппи.
- в) Решете числено дадената задача на Коши с метода на Ойлер със стъпки $h_1=0.6, h_2=0.03, h_3=0.02$. Начертайте графиките на полученото приближение на y(t) в същия интервал.

Задача 2.

Дадена е системата

$$\begin{vmatrix} \dot{x} = y(y-2) \\ \dot{y} = -x - 2y. \end{vmatrix}$$

- а) Намерете нейните равновесни точки и ги изследвайте относно устойчивост.
- б) Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- в) Начертайте (с MATLAB) фазов портрет на написанта линейна система в подточка (б). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

2.1. Код на MATLAB за подточка (A):

```
function [sol_x, sol_y, sol_z] = task_1
                   t = 0 : 0.05 : 5;
h = [0.6, 0.03, 0.02];
                   [sol\_x, sol\_y, sol\_z] = dsolve \ ('Dx = x + y + z + sin(t)', 'Dy = x + y - 2*z + sin(t)', 'Dz = x - y - z', 'x(\theta) = 1', 'y(\theta) = 1', 'z(\theta) = 1'); 
                  plot(t, eval(sol_y), 'k');
hold on
axis([0, 1.5, 0, 15])
                                                                                                                                                                                                                                        sol x =
                                                                                                                                                                                                                                                                      (13*exp(2*t))/15
                                                                                                                                                                                                                                                               (13*exp(2*t))/15
+1/(6*exp(13^(1/2)*t)^(1/2)*exp(t)^(1/2))
+ exp(13^(1/2)*t)^(1/2)/(6*exp(t)^(1/2))
- (5^(1/2)*cos(t - atan(2)))/5
- (11*13^(1/2))/(78*exp(13^(1/2)*t)^(1/2)*exp(t)^(1/2))
+ (11*13^(1/2)*exp(13^(1/2)*t)^(1/2))/(78*exp(t)^(1/2));
                   for k = 1 : length(h)
                                      t_range = 0 : h(k) : 5;
                  x = ones(size(t_range));
y = ones(size(t_range));
z = ones(size(t_range));
                                                                                                                                                                                                                                                               \begin{array}{l} (13^* exp(2^*t))/15 \\ + 1/(6^* exp(13^*(1/2)^*t)^*(1/2)^* exp(t)^*(1/2)) \\ + exp(13^*(1/2)^*t)^*(1/2)/(6^* exp(t)^*(1/2)) \\ - (5^*(1/2)^* cos(t - atan(2)))/5 \\ + (7^*13^*(1/2))/(78^* exp(13^*(1/2)^*t)^*(1/2)^* exp(t)^*(1/2)) \\ - (7^*13^*(1/2)^* exp(13^*(1/2)^*t)^*(1/2))/(78^* exp(t)^*(1/2)); \end{array} 
                            for n = 1 : length(t_range) - 1 
	x(n + 1) = x(n) + h(k) * (x(n) + y(n) + z(n) + sin(t_range(n)));
	y(n + 1) = y(n) + h(k) * (x(n) + y(n) - 2 * z(n) + sin(t_range(n)));
	z(n + 1) = z(n) + h(k) * (x(n) - y(n) - z(n));
                                                                                                                                                                                                                                                                \begin{array}{l} 1/(2^* \exp(13^{\wedge}(1/2)^*t)^{\wedge}(1/2)^* \exp(t)^{\wedge}(1/2)) \\ + \exp(13^{\wedge}(1/2)^*t)^{\wedge}(1/2)/(2^* \exp(t)^{\wedge}(1/2)) \\ + 13^{\wedge}(1/2)/(26^* \exp(13^{\wedge}(1/2)^*t)^{\wedge}(1/2)^* \exp(t)^{\wedge}(1/2)) \\ - (13^{\wedge}(1/2)^* \exp(13^{\wedge}(1/2)^*t)^{\wedge}(1/2))/(26^* \exp(t)^{\wedge}(1/2)); \end{array} 
                                                                                                                                                                                                                                        sol_z =
                            __ ^ == 1
plot(t_range, y, 'g');
end
                            plot(t_range, y, 'r');
end
                                     plot(t_range, y, 'b');
                             end
        legend({'y(t)', 'h_1 = 0.6', 'h_2 = 0.03', 'h_3 = 0.02'}, 'Location', 'northwest') xlabel('t') ylabel('y(t)')
```

2.2. Графика на получено приближение за y(t) за подточка (B):

2.3. Описание метода на Ойлер за подточка (Б):

(1) S) Memog no Orinep: B unterbaia [xo, A] ce uzoupam N moinu: $X_0, X_1... X_N = A$. Toba cracia pabuanepro, kamo ce uzuaneba cracima $h = \frac{A-x_0}{N} u$ mornime ce nanyram no popuynama: $X_i = X_0 + ih$ i = 0,1,2...N. Toraba $X_1 - X_0 = h$, $X_2 - X_3 = h$ u 7.4.

Pazbubane frynkrywema y(x) b $x_1=x_0+h$ no despuyioma no Temosporacio moirama x_0 . Unique $y(x_1)=y(x_0+h)=y(x_0)+h$ $y'(x_0)+\frac{h^2}{2!}$ y''(x), $x \in (x_0, x_1)$. Tou hamo mepani opykhyuk, haemo ygobiem bezeba $\frac{1}{2!}$ ypabuennemo $y'(x_0)=f(x_0,y_0)$ u noranno ynobie $y(x_0)=y_0$, ce noryzoba $y(x_1)=y(x_0)+h$ $f(x_0,y_0)+\frac{h^2}{2!}$ y''(x), $x \in (x_0,x_1)$. Tyk naneguono cedupaeno pazvenigane homo noranno ynoma zo mornoma xo. Hompane nyminumena dopunja za $y_1(x)$ y_2 y_3 y_4 y_4 y

=> Odyama dopuyua zo wemaya wo Owep e: $y(x_{i+1}) = y_i + h f(x_i, y_i) za i = 0,1$. N-1

Npuravane ropume pazcanczenie za $\begin{vmatrix} x = x + y + z + sin(t) \\ y = x + y - 2z + sin(t) \end{vmatrix}$ u Topoun za y(t). z = x - y - z x(0) = 1; y(0) = 1; z(0) = 1

Hexa $t \in [0,5]$. Om $h = \frac{A-x_0}{N} = N = \frac{A-x_0}{h}$. 3a $h_1 = 0.6$ energies, ze $N = \frac{5-0}{0.6} = 8\frac{1}{3}$ utepayum. 3a $h_2 = 0.03$ energies, ze $N = \frac{5-0}{0.03} = 166\frac{2}{3}$ utepayum. 3a $h_3 = 0.02$ energies, ze $N = \frac{5-0}{0.02} = 250$ utepayum

$$\begin{array}{ccccc}
h & h \\
\hline
 & X_0 & X_1 & X_2 & X_n \equiv A
\end{array}$$

 $Nh^2 = (A - x_0)h$

3a $h_1 = 0.6$ Unave $8\frac{1}{3} \cdot 0.6^2 = (5-0) \cdot 0.6^2 \Longrightarrow \frac{25}{3} \cdot \frac{9}{25} = 3 \Longleftrightarrow 3 = 3$ ① e expextubuamma us suemaga

 $3a h_2 = 0.03 \text{ und } 166\frac{2}{3}.0.03^2 = (5-0).0.03^{\text{Q}} \iff \frac{500}{3}.(\frac{3}{100})^2 \iff 0.15=0.15$ $3a h_3 = 0.02 \text{ und } 250.0.02^2 = (5-0).0.02^{\text{Q}} \iff 250.\frac{1}{2500} = 0.1 \iff 0.1 = 0.1$

3.1. Равновесни точки и устойчивост – подточка (А):

3.2. Линейно приближение за равновесна точка (0,0) – подточка (5):

(i) a)
$$u \delta$$
)

 $\begin{vmatrix} \dot{x} = y(y-x) = y^2 - 2y \\ \dot{y} = -x - 2y \end{vmatrix}$
 $\begin{vmatrix} \dot{y} = y - 2y - 2y \\ \dot{y} = -x - 2y \end{vmatrix}$

1) Havinpane pobuobenii toenii:

 $\begin{vmatrix} \dot{y} (y-x) = 0 \\ -x^2 = 0 \end{vmatrix} x_1 = 0 \begin{vmatrix} \dot{y}_1 = 2 \\ -x^2 - 4 = 0 \end{vmatrix} x_2 = -4$

=> Pabiobeniume toenii (a $(x_1, y_1) = (0, 0)$ $u(x_2, y_2) = (-4, 2)$

Defruinquii: $Ax + By + C = 0$
 $f(x, y) \sim f(a, 6) + f'_{x}(a, 6)(x - a) + f'_{y}(a, 6)(y - 6)$

Repatric inneciae (nopo) neputarimenie:

 $\begin{vmatrix} \dot{x} = f'_{x}(a, 6)(x - a) + f'_{y}(a, 6)(y - 6) \\ \dot{y} = g'_{x}(a, 6)(x - a) + f'_{y}(a, 6)(y - 6) \end{vmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix}$

=> $\int (a, 6) = \begin{pmatrix} f'_{x}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) \\ g'_{x}(a, 6) & g'_{x}(a, 6) & g'_{x}(a, 6) & g'_{x}(a, 6) & f'_{y}(a, 6) \end{pmatrix} = \begin{pmatrix} 0 & 2y - 2 \\ -1 & -2 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix}$

=> $\int (a, 6) = \begin{pmatrix} f'_{x}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) \\ g'_{x}(a, 6) & g'_{x}(a, 6) & g'_{x}(a, 6) & f'_{y}(a, 6) \end{pmatrix} = \begin{pmatrix} 0 & 2y - 2 \\ -1 & -2 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix}$

=> $\int (a, 6) = \begin{pmatrix} f'_{x}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) & f'_{y}(a, 6) \\ g'_{x}(a, 6) & g'_{x}(a, 6) & g'_{x}(a, 6) & f'_{y}(a, 6) \end{pmatrix} = \begin{pmatrix} 0 & 2y - 2 \\ -1 & -2 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y - 6 \end{pmatrix} = \int_{-1}^{1} (a, 6) \begin{pmatrix} x - a \\ y$

4) Papuxa ua xpubume: $Le_{1}c_{2}$ $\begin{cases}
x_{c}(t) = C_{1}e^{(-1+J_{2})t} \\
y_{c}(t) = C_{2}e^{(-1-J_{c})t} \\
telR
\end{cases}$

Cepmaen noplo 6 genoptolo nogro.
Cucmena u aneg 1960 6 dejuca (2) u (x 2)

pajobuem nopmpem uje soge 6 dejuca
Conjuem, no geopopunipan, kina c, u c
>0, zo go une 6 I-bu nbogpenm.

>0, zo go ane 6] -00 Designations.

4.1)
$$C_1 = C_2 = 0 \Rightarrow (x_0, y_0) = (0, 0) = (x_1, y_1)$$
 - probablection to the 4.2.) $C_1 \neq 0$, $C_2 = 0 \Rightarrow (x_0, y_0) = (C_1 e^{(-1+s_2)t}, 0)$ - narrow $C_x \neq 0$ >0 ($x_0 \neq 0$) = $(x_0 \neq 0) = (0, c_2 e^{(-1-s_2)t})$ - narrow $C_x \neq 0$ >0 ($x_0 \neq 0$) + $x_0 \neq 0$ + $x_$

$$\chi\ell \xrightarrow{t\to +\infty} 0$$
 $\chi\ell \xrightarrow{t\to -\infty} +\infty$ $\chi\ell \xrightarrow{t\to +\infty} 0$ $\chi\ell \xrightarrow{t\to +\infty} 0$ $\chi\ell \xrightarrow{t\to +\infty} 0$ $\chi\ell \xrightarrow{t\to +\infty} 0$ $\chi\ell \xrightarrow{t\to +\infty} 0$

5) Kon Lagura &, (**)

3.3. Фазов портрет и код на MATLAB за подточка (В):


```
function task_2
           A = [0, -2; -1, -2];
     plot(eq_point(1), eq_point(2), 'r*', 'MarkerSize', 10, 'LineWidth', 2); hold on
     eq_point = A \setminus [0;0];
           axis([eq\_point(1) - 5, eq\_point(1) + 5, eq\_point(2) - 5, eq\_point(2) + 5])
           grid on
     [T, D] = eig(A);
range = -10 : 1 : 10;
           if imag(D(1,1)) == 0
                plot(eq_point(1) + T(1,1) * range, eq_point(2) + T(2,1) * range, 'k');
plot(eq_point(1) + T(1,2) * range, eq_point(2) + T(2,2) * range, 'k');
     x = eq_{point}(1) - 4 : 2 : eq_{point}(1) + 4;
           y = eq_point(2) - 4 : 2 : eq_point(2) + 4;
     [X, Y] = meshgrid(x,y);
           t_max = 50;
           function z = rhs(\sim, y)
 z = A * y;
           end
           for i = 1 : length(x)
                for j = 1 : length(y)
[~, Z_1] = ode45(@rhs, [0, t_max], [X(i,j), Y(i,j)]);
                      [~, Z_1] = ode45(@rhs, [0, -t_max], [X(i,j), Y(i,j)]);

[~, Z_2] = ode45(@rhs, [0, -t_max], [X(i,j), Y(i,j)]);

plot(Z_1(:,1), Z_1(:,2), 'b');

plot(Z_2(:,1), Z_2(:,2), 'b');
     Dx = A(1,1) * x + A(1,2) * Y;

Dy = A(2,1) * x + A(2,2) * Y;
           d = sqrt(Dx.^2 + Dy.^2);
           quiver(X, Y, Dx./d, Dy./d, 'r');
end
```

4. Използвана литература:

- 1. "Диференциални уравнения и приложения " ЛЕКЦИЯ 2 и 3 доц. д-р Тодор Павлов Попов;
- 2. "Компютърни числени методи" ЛЕКЦИЯ 9 проф. д-р Снежана Гочева Илиева;
- 3. "Диференциални уравнения и приложения летен 2022 (за спец. софтуерно инженерство)" изследовател R1 д-р Матей Константинов.