An Implementation of Sin and Cos Using Gal's Accurate Tables

Pascal Leroy (phl)

2025-02-02

This document describes the implementation of functions Sin and Cos in Principia. The goals of that implementation are to be portable (including to machines that do not have a fused multiply-add instruction), achieve good performance, and ensure correct rounding.

Overview

The implementation follows the ideas described by [GB91] and uses accurate tables produced by the method presented in [SZ05]. It guarantees correct rounding with a high probability. In circumstances where it cannot guarantee correct rounding, it falls back to the (slower but correct) implementation provided by the CORE-MATH project [SZG22] [ZSG+24]. More precisely, the algorithm proceeds through the following steps:

- perform argument reduction using Cody and Waite's algorithm in double precision (see [Mul+10, p. 379]);
- if argument reduction loses too many bits (i.e., the argument is close to a multiple of $\frac{\pi}{2}$), fall back to cr_sin or cr_cos;
- otherwise, uses accurate tables and a polynomial approximation to compute Sin or Cos with extra accuracy;
- if the result has a "dangerous rounding configuration" (as defined by [GB91]), fall back to cr_sin or cr_cos;
- otherwise return the rounded result of the preceding computation.

In this document we assume a base-2 floating-point number system with M significand bits¹ similar to the IEEE formats. We define a real function \mathfrak{m} and an integer function \mathfrak{e} denoting the *significand* and *exponent* of a real number, respectively:

$$x = \pm m(x) \times 2^{e(x)}$$
 with $2^{M-1} \le m(x) \le 2^M - 1$

Note that this representation is unique. Furthermore, if x is a floating-point number, $\mathfrak{m}(x)$ is an integer.

The distance between 1 and the next larger floating-point number is:

$$\epsilon_M \coloneqq 2^{1-M}$$

and the distance between 1 and the next smaller floating-point number is $\frac{\epsilon_M}{2}$. The *unit of the last place* of x is defined as:

$$\mathfrak{u}(x) \coloneqq 2^{\mathfrak{e}(x)}$$

In particular, $\mathfrak{u}(1) = \epsilon_M$.

We ignore the exponent bias, overflow and underflow as they play no role in this discussion.

 $^{^{1}}$ In binary64, M = 53.

Argument Reduction

Given an argument x, the purpose of argument reduction is to compute a pair of floating-point numbers $(\hat{x}, \delta \hat{x})$ such that:

$$\begin{cases} \hat{x} + \delta \hat{x} \cong x \pmod{\frac{\pi}{2}} \\ \hat{x} \text{ is approximately in } \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \\ |\delta \hat{x}| < \mathfrak{u}(\hat{x}) \end{cases}$$

Approximation of π

We approximate $\frac{\pi}{2}$ as the sum of two floating-point numbers:

$$\frac{\pi}{2} \cong C + \delta C$$

where *C* is obtained by truncating $\frac{\pi}{2}$ to κ_1 significand bits:

$$\mathit{C} \coloneqq \left\lfloor 2^{-\kappa_1} \, \mathfrak{m}\!\left(\frac{\pi}{2}\right) \right\rfloor \! 2^{\kappa_1} \, \mathfrak{u}\!\left(\frac{\pi}{2}\right)$$

and δC is defined as $\left[\frac{\pi}{2} - C \right]$. Obviously we have:

$$0<\frac{\pi}{2}-C<2^{\kappa_1}\,\mathfrak{u}\!\left(\frac{\pi}{2}\right)$$

but if κ_1 is chosen to cut the significand of $\frac{\pi}{2}$ at a place where it has zeroes, we can actually have a stricter bound:

$$\frac{\pi}{2} - C < 2^{\kappa_2} \mathfrak{u}\left(\frac{\pi}{2}\right)$$
 with $\kappa_2 \le \kappa_1$

and therefore:

$$\mathfrak{u}\left(\frac{\pi}{2}-C\right) < \frac{2^{\kappa_2}\,\mathfrak{u}\left(\frac{\pi}{2}\right)}{\mathfrak{m}\left(\frac{\pi}{2}-C\right)} \le 2^{\kappa_2-M+1}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

Since the function u is always a power of 2 this implies:

$$\mathfrak{u}\left(\frac{\pi}{2}-C\right)=2^{\kappa_2-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

and:

$$\left|\frac{\pi}{2} - C - \delta C\right| \le \frac{1}{2} \operatorname{u}\left(\frac{\pi}{2} - C\right) = 2^{\kappa_2 - M - 1} \operatorname{u}\left(\frac{\pi}{2}\right)$$

In other words, we have a representation with a significand that has effectively $2M - \kappa_2$ bits and is such that multiplying C by an integer less than or equal to 2^{κ_1} is exact. The representation of $\frac{\pi}{2}$ has three zeroes after the 18th bit of its significand, so by taking $\kappa_1 = 18$ we have $\kappa_2 = 14$.

Argument Reduction for Small Angles

If
$$|x| < \left[\frac{\pi}{4}\right]$$
 then $\hat{x} = x$ and $\delta \hat{x} = 0$.

Argument Reduction for Medium Angles

If $|x| \le 2^{\kappa_1} \left[\left[\frac{\pi}{2} \right] \right]$ then we compute:

$$\begin{cases} n &= \left[\left[x \left[\frac{2}{\pi} \right] \right] \right] \\ y &= x - n \ C \\ \delta y &= \left[n \ \delta C \right] \\ \hat{x} &= \left[y - \delta y \right] \\ \delta \hat{x} &= (y - \hat{x}) - \delta y \end{cases}$$

First, note that $|n| \le 2^{\kappa_1}$. Using the accuracy model of [Higo2], equation (2.4), we have²:

$$\begin{aligned} |x| &\leq 2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1) \\ |n| &\leq \left[2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1) \frac{2}{\pi} (1 + \delta_2) (1 + \delta_3) \right] \\ &\leq \left[2^{\kappa_1} (1 + \gamma_3) \right] \end{aligned}$$

where the notation follows [Higo2], lemma 3.1. Because $2^{\kappa_1}\gamma_3$ is very small (less that 2^{-33}), the rounding cannot cause n to exceed 2^{κ_1} .

The product n C is exact thanks to the κ_1 trailing zeroes of C. The subtraction x-n C is exact by Sterbenz's Lemma. Finally, the last two steps form a compensated summation so that $\hat{x} + \delta \hat{x} = y + \delta y$.

The overall error on $\hat{x} + \delta \hat{x}$ comes from the error on the computation of δy :

$$\delta y = n\delta C(1 + \delta_4)$$

Argument Reduction for Large Angles

Accurate Tables and Their Generation

Computation of the Functions

References

- [GB91] S. Gal and B. Bachelis. "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard". In: *ACM Transactions on Mathematical Software* 17.1 (Mar. 1991), pp. 26–45.
- [Higo2] N. J. Higham. *Accuracy and Stability of Numerical Algorithms*. Society for Industrial and Applied Mathematics, 2002.
- [Mul+10] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. *Handbook of Floating-Point Arithmetic*. Birkhäuser, 2010.
- [SZo5] D. Stehlé and P. Zimmermann. "Gal's accurate tables method revisited". In: 17th IEEE Symposium on Computer Arithmetic (ARITH'05) (Cape Cod, MA, USA, June 27–29, 2005). Ed. by P. Montuschi and E. Schwarz. IEEE Computer Society, June 2005, pp. 257–264. DOI: 10.1109/ARITH.2005.24.
- [SZG22] A. Sibidanov, P. Zimmermann, and S. Glondu. "The CORE-MATH Project". In: 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE, Sept. 2022, pp. 26-34. DOI: 10.1109/ARITH54963.2022.00014. eprint: https://inria.hal.science/hal-03721525v3/file/coremath-final.pdf.
- [ZSG+24] P. Zimmermann, A. Sibidanov, S. Glondu, et al. *The CORE-MATH Project*. Software. Apr. 2024.

²We note that in Higham's notation $u = \epsilon_M/2$, see pages 37 and 38.