CSP-S 模拟赛

竞赛时间: 2019年 11月 11日 8:00-11:30

题目名称	骰子的游戏	购物	随机树
可执行文件名	sides	shopping	rand
输入文件名	sides.in	shopping.in	rand.in
输出文件名	sides.out	shopping.out	rand.out
每个测试点时限	1秒	1秒	1秒
内存限制	128 MB	128 MB	256 MB
题目分值	100	100	100
题目类型	传统	传统	传统

提交源程序须加后缀

对于 C++ 语言	sides.cpp	shopping.cpp	rand.cpp

说明: 1.若无特殊说明, 所有评测均过滤行末空格与文末回车;

- 2.需要建立子目录,不要提交多余文件,**程序名一律使用小写英文** 字母;
- 3. 编译器以评测机配置为准,评测系统为 NOI Linux;

骰子的游戏(sides.cpp)

【题目描述】

在 Alice 和 Bob 面前的是两个骰子,上面分别写了六个数字。

Alice 和 Bob 轮流丢掷骰子, Alice 选择第一个骰子, 而 Bob 选择第二个, 如果谁投掷出的数更大, 谁就可以获胜。

现在给定这两个骰子上的6个数字,你需要回答是Alice 获胜几率更大,还是 Bob 获胜几率更大。(请注意获胜几率相同的情况)

【输入格式】

输入文件名为 sides. in。

第一行一个数 T, 表示数据个数。

接下来的每一组数据一共有2行,每一行有6个正整数,第一行是第一个骰子上的6个数,第二行是第二个骰子上的6个数。

【输出格式】

输出文件名为 sides. out。

T 行,每行一个字符串。

如果 Alice 获胜几率更大, 你需要输出 Alice; 如果 Bob 获胜几率更大, 你需要输出 Bob; 如果获胜几率一样大, 你需要输出 Tie。

【样例输入】

9

3 3 3 3 3 3

1 1 4 4 4 4

1 2 3 4 5 6

6 5 4 3 2 1

【样例输出】

Bob

Tie

【样例解释】

第一个数据中,Alice 有三分之一几率获胜,Bob 有三分之二几率获胜; 第二个数据中,Alice 和 Bob 的骰子完全一致,所以获胜几率一样大。

【数据规模与约定】

对于 30%的数据, $1 \leq T \leq 10$ 。

对于 60%的数据, $1 \leq T \leq 1000$ 。

对于 100%的数据, $1 \leq T \leq 10^5$,所有输入的数均 $\leq 10^7$ 。

购物(shopping.cpp)

【题目描述】

在遥远的东方,有一家糖果专卖店。

这家糖果店将会在每天出售一些糖果,它每天都会生产出 \mathbf{m} 个糖果,第 \mathbf{i} 天的第 \mathbf{j} 个糖果价格为 $\mathbf{C}[\mathbf{i}][\mathbf{j}]$ 元。

现在的你想要在接下来的n天去糖果店进行选购,你每天可以买多个糖果,也可以选择不买糖果,但是最多买 m 个。(因为最多只生产 m 个)买来糖果以后,你可以选择吃掉糖果或者留着之后再吃。糖果不会过期,你需要保证这 n 天中每天你都能吃到至少一个糖果。

这家店的老板看你经常去光顾这家店,感到非常生气。(因为他不能好好睡觉了)于是他会额外的要求你支付点钱。具体来说,你在某一天购买了 k 个糖果,那么你在这一天需要额外支付 k^2 的费用。

那么问题来了,你最少需要多少钱才能达成自己的目的呢?

【输入格式】

输入文件名为 shopping. in。

第一行两个正整数 n 和 m, 分别表示天数以及糖果店每天生产的糖果数量。 接下来 n 行(第 2 行到第 n+1 行),每行 m 个正整数,第 x+1 行的第 y 个正整数表示第 x 天的第 y 个糖果的费用。

【输出格式】

输出文件名为 shopping. out。

输出只有一个正整数,表示你需要支付的最小费用。

【样例输入1】

3 2

1 1

100 100

10000 10000

【样例输出1】

107

【样例输入2】

5 5

1 2 3 4 5

 $2\ 3\ 4\ 5\ 1$

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

【样例输出2】

10

【数据规模与约定】

对于前 20%的数据, $1 \leq n$, $m \leq 3$ 。

对于前 40%的数据, $1 \leq n$, $m \leq 8$ 。

对于前 50%的数据, $1 \leq n$, $m \leq 10$ 。

对于另 10% (不与前 50%相交)的数据, $1 \le n$, $m \le 75$, m 个糖果的价格每天都不变。

对于前 70%的数据, $1 \leq n$, $m \leq 75$ 。

对于 100%的数据,1 \leq n, m \leq 300 ,所有输入的数均 \leq 10 6 。

随机树 (rand. cpp)

【题目描述】

平日里写 hash 的时候,总有某些选手由于脸黑而导致惨遭卡模数,然后一些恶意卡模数的出题人也因此身败名裂。为了防止被卡,我们用一种高级的随机方式来代替原来的线性随机生成,也就是所谓的随机树!

现在有一棵编号为 0^{\sim} n-1的有根树,其中0是树的根。每个节点初始有一个值 Ti。现在要求支持一下两种操作:

- 1. 给出两个正整数 u 和 x, 我们将 Tu 的值乘以 x, 我们将这种操作称为 SEED 操作。
- 2. 给出一个正整数 i, 询问 Si 以及它一共有多少个正约数。其中 Si 表示以 i 为根的子树所有点的权值的乘积, 我们将这种操作称为 RAND 操作。

容易发现,这样得到的答案还是很随机的。(其实不是)

你需要回答每一次的询问,由于一个数的约数个数可能非常多,这个数也可以非常大,你只需要把答案对 1e9+7 取模就可以了。

【输入格式】

输入文件名为 rand. in。

第一行一个正整数 n, 表示节点个数。

接下来 n-1 行,每行两个正整数 u 和 v,表示 u 是 v 的父节点。

接下来一行 n 个正整数,分别表示每个节点的初始权值 Ti。

接下来一行一个正整数 q, 表示操作的个数。

接下来 q 行,每行是以下两种情况之一:

1. SEED u x

表示将u节点的权值乘以x。

2. RAND i

表示询问 Si 以及它一共有多少个正约数。

【输出格式】

输出文件名为 rand. out。

每一行两个整数,对应一个 RAND 操作,你需要输出所求的权值以及它的正约数个数,答案对于 1e9+7 取模即可。

【样例输入】

SEED 1 13 RAND 1

【样例输出】

14400 63 187200 126

【数据规模与约定】

对于 20%的数据, $1 \le n, q \le 10$ 。

对于 40%的数据, $1 \le n, q \le 100$ 。

对于 60%的数据, $1 \le n, q \le 2000$ 。

对于 80%的数据, 1 ≤ n, q ≤ 50000。

对于 100%的数据, 1 ≤ n, q ≤ 100000。

另外请注意,所有读入的数一定满足 $1 \le x \le 10^{9}$

同时,数据保证在任意时刻,每个点的权值不可能拥有超过 13 的素因子,也就是说,每个数的素因子最多只有 2, 3, 5, 7, 11, 13 这六种可能。