Population Growth

Reading: Molles & Cahill 2008, Chapter 12

Note to Students:

• Some examples in this lecture are drawn from two texts. Note that the form of the equations (and related examples) can vary, but the concepts are the same.

Molles & Cahill 2008, Chapter 12 Krebs*, Chapters 9-11

*Krebs CJ (2001) *Ecology, Fifth Edition*, Benjamin Cummings, San Francisco.

Population Growth

- Two idealized patterns of population growth:
 - 1) Exponential (or "geometric" for discrete version)
 - 2) Logistic (s-shaped)
- Today, we will explore these population growth models.
- Both models imply certain key assumptions.
- Are these realistic? Where do they work and where do they fail?

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

1) Exponential Growth

(note that a log transformation linearizes the plot, as illustrated on the left).

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Exponential Growth – *Instantaneous* form

In this case, the intrinsic rate of increase " r_{max} " is assumed to be constant

at time t...

Expresses rate of change:

This form of the equation for exponential population growth expresses the rate of population change as the product of r and N.

Calculates population size:

The integrated form of the equation for exponential population growth calculates population size. The number ...equals the initial number times e raised to the power $r_{max}t$.

 $N_t = N_0 e^r max^t$ in hours, days, years, etc. Base of Intrinsic rate of increase, in the natural offspring per time interval logarithms

Fig. 12.4 Molles & Cahill 2008, p. 313

Number of time intervals

These examples represent *continuous* growth

What about species that exhibit *discrete* growth patterns – e.g. annual plants populations that reproduce once each year?

In *discrete* cases, we call exponential growth "geometric growth" (see pp. 295-296, Molles & Cahill 2008)

Graphical representation of population growth for an organism with discrete reproduction (e.g. annual plants)

Molles & Cahill, 2008

Estimating net reproductive rate (Ro) for *Phlox drummondii* from survivorship and seed production data.

Note that Ro (net reproductive rate) can also be called λ (geometric rate of increase)

Fig. 11.12, Molles & Cahill, 2008

Exponential growth - *Discrete* Form (called "geometric" growth in Molles & Cahill, 2008, p 312)

Note that $Ro = \lambda$ (Lambda) in Molles (2008)

Exponential vs. Geometric Growth Explained:

- The *exponential* form is used when populations reproduce continually (e.g. humans). In this case, we use a small "r" (intrinsic rate of increase).
- The *discrete* (geometric) form of the equation is applied when populations have discrete generations (no overlap in reproduction) e.g. *Phlox drummondii* (see Molles 2008 & Cahill, chapters 11&12). In this case we use a capital "R" (net reproductive rate).
- Both models have the same shape when plotted as population (N) versus time (t) i.e. both have an "exponential" (or "geometric") form.

Variations on the Geometric model

• Vary the reproductive rate (R):

A higher R leads to a more rapid population increase.

$$N_{t+1} = R_0 N_t$$

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

(Note that we get similar effects if we vary "r" in the exponential model)

Krebs 2001 – Fig. 11.1

Examples of populations in nature exhibiting exponential (or geometric) increases

Many populations exhibit an initial exponential phase followed by slowed growth

What about humans?

Actually, the human population has shown faster-than-exponential growth, but is now exhibiting a gradual slowing of the growth rate (analogous to the collared dove in Great Britain)

What causes growth to slow?

- Environmental limitations (captured in the term "carrying capacity," K)
- How do we represent environmental limitations to growth?
 - Logistic growth model (a simple modification of our exponential model)
- The *Demographic Transition Model* (see last lecture) has also been invoked to explain why the growth rates of human populations slow

Idealized Logistic Model of Population Growth

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The logistic equation gives the rate of population change as a function of r_{max} , N, and K.

Molles 2008 (page 261) cf. Molles & Cahill, 2008, p. 316

Constants (parameters) in these equations:

```
r<sub>max</sub> = intrinsic rate of increase* = b - d
(= birth minus death rate)
equals the realized, instantaneous rate of population growth only under idealized conditions of exponential increase
```

K = carrying capacity

- the maximum population that a habitat can sustain)
- reflects environmental limitations to growth due to competition (space, resources, etc.), predation, disease, etc.

In reality, r is density-dependent (declines from r_{max} as density increases).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In the logistic model, *r*, the realized per capita rate of increase, decreases as *N* increases.

Molles & Cahill 2008, fig. 12.15

Experimental evidence for the density-dependent behavior of r:

Molles & Cahill, 2008, fig. 12.17

Variations on the Logistic Model:

(allowing B to vary causes varying degrees in oscillation of the asymptotic region)

Krebs 2001 – Fig. 11.3

(c)

Do real populations actually behave like this?

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Experimental populations of yeast (poisoned by their own production of alchohol)

Gause (1934), cited in Molles 2008, fig. 11.9

Experimental populations of *Paramecium caudatum*

Gause (1934), cited in Molles (2008) fig. 11.10

Laboratory studies of *Drosphila melanogaster*

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Studies of barnacle larvae settlement in the intertidal.

Connell (1961), cited in Molles (2008), fig. 11.11

But ... some populations don't behave!

Daphnia rosea in Canadian lakes

1982

1983

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

1981

1980

Krebs 2001 – Figure 11.11

In nature, carrying capacity (K) varies with environmental conditions, leading to dynamic population patterns.

Gibbs & Grant (1987), cited in Molles (2008), fig. 11.17

Molles (2008) fig 11.19

Conclusions

- Exponential (geometric) models work well under certain limited conditions (e.g. population released from environmental constraints, K)
- Logistic model works well for many idealized (e.g. laboratory) populations, and less well in nature.
- Complicating factors include varying K, r, immigration, emigration, biotic interactions (e.g. predator-prey interactions) other models (not discussed here) include these factors.
- We will consider biotic interactions later.

Estimates of K for human population

Fig. 3. Estimates of how many people Earth can support, by the date at which the estimate was made. When an author gave a range of estimates or indicated only an upper bound, the highest number stated is plotted here (55).

Various scenarios for future human population growth

Fig. 1. Recent world population history A.D. 1 to 1990 (solid line) (53) and 1992 population projections of the UN (11) from 1990 to 2150: high (solid line with asterisks); medium (dashed line); and low (dotted line). Population growth was faster than exponential from about 1400 to 1970.