Introduction to Analysis

Lecture 2

Haoming Wang

25 June 2019

Abstract

This is the Lecture note for the Introduction to Analysis class in Fall 2019.

1 Cauchy seq.

Given a seq. $a_n(n \in \mathbb{N})$ in \mathbb{R} , can we determine whether a_n converges or not without referring a limit candidate l, but concluding according to the mutual behavior of the terms of $a_n(n \in \mathbb{N})$?

Definition 1 (Cauchy Sequence). A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is a Cauchy seq. if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N \Rightarrow |a_n - a_m| < \epsilon$.

Exercise 1. Show that

- 1. a_n is convergent $\Rightarrow a_n$ is Cauchy seq.
- 2. a_n is Cauchy seq. $\Rightarrow a_n$ is bounded.

Proof. 1. assume that a_n converges to l, then for any $\epsilon > 0$, $\exists N \in \mathbb{N}, \forall n \geq N$ one has $|a_n - l| < \epsilon/2$, then for any $m, n \geq N$ we have

$$|a_m - a_n| \le |a_m - l| - |a_n - l| < \epsilon$$

thus $a_n (n \in \mathbb{N})$ is Cauchy seq.

2. For $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N$ one has $|a_m - a_n| \leq \epsilon$, thus for $\forall m \geq N \Rightarrow |a_N - a_m| \leq \epsilon \Rightarrow a_n - \epsilon \leq a_m \leq a_N + \epsilon$, thus $a_n(n \in N)$ has upper and lower bound

$$\max\{a_1,\cdots,a_N,a_N+\epsilon\}, \quad \min\{a_1,\cdots,a_N,a_N-\epsilon\},$$

thus a_n is bounded.

Theorem 1. Let $a_n (n \in \mathbb{N})$ be a seq. in \mathbb{R} , then a_n is convergent $\Leftrightarrow a_n$ is Cauchy seq.

Proof. \Leftarrow : a_n is Cauchy seq. $\Rightarrow a_n$ is bdd. \Rightarrow the upper/lower seq. u_n, l_n of a_n converges. Thus $\lim_{n\to\infty} u_n - \lim_{n\to\infty} l_n = \lim_{n\to\infty} (u_n - l_n)$. For $\forall \epsilon > 0$, there is some $N \in \mathbb{N}$ s.t. $\forall m, n \geq N, |a_n - a_m| < \epsilon/3$. In particular, $\forall n \geq N \Rightarrow |a_n - a_N| < \epsilon/3$ and hence

$$a_N - \frac{\epsilon}{3} < a_n < a_N + \frac{\epsilon}{3}$$

which means $a_N - \epsilon/3$ is a lower bound of $a_n (n \ge N)$ and is not greater that $\{a_n | n \ge N\}$'s greatest lower bound l_N , and the same to $a_N + \epsilon/3$, thus

$$a_N - \frac{\epsilon}{3} \le l_N \le u_N \le a_N + \frac{\epsilon}{3}$$

and since $l_{n\nearrow}$ and $u_{n\searrow}$, we have that for $\forall n \geq N$

$$0 \le u_n - l_n \le u_N - l_N \le \frac{2\epsilon}{3} < \epsilon$$

thus $\lim_{n\to\infty}(u_n-l_n)=0\Rightarrow \lim_{n\to\infty}u_n=\lim_{n\to\infty}l_n\Rightarrow a_n$ converges.

Exercise 2. Let $S \subseteq \mathbb{R}$, if $|s - s'| \leq 3$ for $\forall s, s' \in S$, show that

- 1. S is bdd.;
- 2. $\sup S \inf S \le 3$;
- 3. and how will $\sup S \inf S$ be if |s s'| < 3?

2 Positive series

Definition 2. Let $a_n(n \in \mathbb{N})$ be a seq. in \mathbb{R} , we say that the series $\sum_{n=0}^{\infty} a_n$ (or $\sum_{n=0}^{\infty} a_n$) converges to a real number s if

$$\lim_{n\to\infty} s_n = s,$$

where $s_n := \sum_{j=1}^n a_j$ is called the n - th partial sum of $\sum_n a_n$.

If such s exists (resp. does not exist), we say that the series $\sum_n a_n$ convergent (resp. divergent). For a series $\sum_n a_n$ and $l, m \in \mathbb{N}, l < m$, we let $s_{l,m} := \sum_{j=l}^m a_j$ the (l, m) - tail of $\sum_n a_n$.

Exercise 3. If a series $\sum_n a_n$ converges, show that $\lim_{n\to\infty} a_n = 0$.

 $\sum_n a_n$ converges $\Leftrightarrow s_n$ converges by definition and $\Leftrightarrow s_n$ is Cauchy seq., i.e. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N$, (assume that n > m)

$$|s_n - s_m| = |a_{m+1} + \dots + a_n|$$

= $|a_{m+1} + a_{m+2} + \dots + a_{m+1+(n-1)}|$
 $< \epsilon$.

In particular, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0$, then $|a_k| + \cdots + |a_{k+l}| < \epsilon \Leftrightarrow \sum_n |a_n|$ convergent $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, s_n = \sum_{j=1}^n a_j \leq M$, since $s_n \nearrow$. Collectively, we have some conclusions:

- 1. series $\sum_{n} a_n$ converges \Leftrightarrow for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0, |a_k + \cdots + a_{k+l}| < \epsilon$;
- 2. series $\sum_{n} b_n$, where $b_n \geq 0$, converges $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, \sum_{j=1}^{n} b_j \leq M$.
- 3. series $\sum_{n} |a_n|$ converges $\Rightarrow \sum_{n} a_n$ converges.

Example 1. Given series $\sum_{n} 1/n$. we have that

$$s_1 = 1$$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2}$$

$$s_8 \ge 1 + \frac{2}{2} + \frac{1}{5} + \dots + \frac{1}{8} \ge 1 + \frac{2}{2} + \frac{4}{8} = 1 + \frac{3}{2}$$

In general, for $\forall m \in \mathbb{N}$, $s_{2^m} \ge 1 + m/2$ which has no upper bound $\Leftrightarrow \sum_n 1/n$ diverges.

Example 2. Given series $\sum_{n} 1/n^2$. we have that $1/n^2 < 1/((n-1)n) = 1/(n-1) - 1/n$. Then

$$s_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$< 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}$$

$$= 2 - \frac{1}{n}$$

$$< 2.$$

thus s_n has upper bound $2 \Leftrightarrow \sum_n 1/n^2$ converges.

Definition 3. Given a seq. $a_n (n \in \mathbb{N})$, we say that

- 1. $\sum_{n} a_n$ converges absolutely if $\sum_{n} |a_n|$ converges;
- 2. $\sum_{n} a_n$ converges conditionally if $\sum_{n} |a_n|$ diverges but $\sum_{n} a_n$ converges.

Theorem 2 (Comparison Test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, then $\exists C > 0$ and $N \in \mathbb{N}$, $n \ge N \Rightarrow a_n \le Cb_n \Rightarrow [\sum_n b_n \ converges \Rightarrow \sum_n a_n \ converges]$.

Proof. If $\sum_{n} b_n$ converges, then for $\forall n \geq N$,

$$a_1 + \dots + a_n = a_1 + \dots + a_N + a_{N+1} + \dots + a_n$$

 $\leq a_1 + \dots + a_N + C \cdot (b_{N+1} + \dots + b_n)$
 $\leq a_1 + \dots + a_N + C \cdot M =: H,$

where M is an upper bound of $\sum_{j=1}^{n} b_j$, thus $\sum_{j=1}^{n} a_j$ as upper bound $H \Leftrightarrow \sum_{j=1}^{n} a_j$ converges.

Theorem 3 (Limit Form of Comparison Test). *If* a_n , $b_n \ge 0 (n \in \mathbb{N})$, and if $\lim_{n\to\infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n \ converges \Rightarrow \sum_n a_n \ converges]$.

Proof. Let $l = \lim_{n \to \infty} a_n/b_n$, then for $\epsilon = 1, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N, a_n/b_m < l+1 \Rightarrow a_n < (l+1)b_n$, which follows the proof by Comparison test. Furthermore if $l \neq 0$, then for $\epsilon = l/2, \exists N_l \in \mathbb{N}$, s.t. $\forall n \geq N_l$, s.t.

$$\frac{l}{2} \leq \frac{a_n}{b_n} \leq \frac{3l}{2},$$

and hence $b_n \le a_n \cdot 2/l$ and $a_n \le b_n \cdot 3l/2$, therefore $\sum_n b_n$ converges $\Leftrightarrow \sum_n a_n$ converges.

Exercise 4. If $a_n, b_n \ge 0 (n \in \mathbb{N})$, show that if $\overline{\lim}_{n\to\infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n \text{ converges}] \Rightarrow \sum_n a_n \text{ converges}]$.

Exercise 5 (Ratio and Root test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, *show that*

- 1. $\lim_{n\to\infty} a_{n+1}/a_n < 1 \Rightarrow \sum_n a_n$ converges; $\lim_{n\to\infty} a_{n+1}/a_n > 1 \Rightarrow \sum_n a_n$ diverges.
- 2. $\lim_{n\to\infty} (a_n)^{1/n} < 1 \Rightarrow \sum_n a_n$ converges; $\lim_{n\to\infty} (a_n)^{1/n} > 1 \Rightarrow \sum_n a_n$ diverges.

3 Alternating series

Definition 4. A series $\sum_n a_n$ is called alternating series, if $\exists b_n > 0 (n \in \mathbb{N})$ s.t. $a_n = (-1)^{n-1}b_n (n \in \mathbb{N})$.

Theorem 4 (Leibniz's Criterion). Let $\sum_n a_n$ be an alternating series, and $b_n = |a_n|_{\searrow 0}$ as $n \to \infty$, then $\sum_n a_n$ converges conditionally.

Proof. Since $b_n = (-1)^{n-1}a_n$, for any $k, l \in \mathbb{N}$ the tail of $\sum_n a_n$ is

$$|a_k + \dots + a_{k+l}| = (-1)^{k-1} |b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$$

= $|b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$

define $\lambda_{k,l} = b_k - b_{k+1} + \cdots + (-1)^l b_{k+l}$. Then if l is even, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \cdots + (b_{k+l-2} - b_{k+l-1}) + b_{k+l} \ge 0,$$

and if *l* is odd, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \dots + (b_{k+l-1} - b_{k+l}) \ge 0,$$

thus $\lambda_{k,l} \geq 0$ for $\forall k, l \in \mathbb{N}$. And hence

$$|a_k + \dots + a_{k+l}| = |\lambda_{k,l}| = \lambda_{k,l}$$

$$= \begin{cases} b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-1} - b_{k+l}), & l \text{ is even} \\ b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-2} - b_{k+k-1}) - b_{k+l}, & l \text{ is odd} \end{cases}$$

$$\leq b_k$$

Since $\lim_{n\to\infty} b_n = 0 \Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $n \geq N \Rightarrow |b_n| < \epsilon \Rightarrow |a_n + \cdots + a_{n+l}| \leq b_n < \epsilon$ for $\forall l \in \mathbb{N}$, thus $\sum_n a_n$ converges.