Prof. Cynthia Bortolotto

Lista 3

- 1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is such that at each point, f is either right continuous or left continuous (or both). Is f necessarily Borel measurable?
- 2. If $f:[a,b]\to\mathbb{R}$ is a continuous function, show that its Riemann integral is equal to its Lebesgue integral.
- 3. Let X be a set and μ^* an outer measure in X. Consider the measure space $(X, \mathcal{M}_{\mu^*}, \mu^*)$ and $(f_n)_{n=1}^{\infty}$ a sequence of real-valued functions defined almost everywhere in X. Suppose that $(\varepsilon_n)_{n=1}^{\infty}$ is a sequence of non-negative real numbers such that

$$\sum_{n=1}^{\infty} \varepsilon_n < \infty$$

$$\sum_{n=1}^{\infty} \mu^{\star}(\{x : |f_{n+1}(x) - f_n(x)| \ge \varepsilon_n\}) < \infty.$$

Show that $\lim_{n\to\infty} f_n$ is defined (as a real-valued function) almost everywhere.

- 4. If f is a Lebesgue measurable complex function on \mathbb{R} , prove that there is a Borel function g on \mathbb{R} such that f=g almost everywhere.
- 5. Construct a sequence of continuous functions f_n on [0,1] such that $0 \leq f_n \leq 1$, such that

$$\lim_{n\to\infty} \int_0^1 f_n(x)dx = 0$$

but such that the sequence $(f_n(x))$ converges for no $x \in [0,1]$.

- 6. Show that there is a function $f: \mathbb{R}^2 \to \{0,1\}$ such that
 - (a) the Lebesgue integral $\int_{\mathbb{R}} f(x,t)dx$ is defined and equal to 1 for every $t \neq 0$;
 - (b) $\liminf_{t\to 0} f(x,t)$ is not Lebesgue measurable.