Practice Problems 2b

1. Consider an ANCOVA (analysis of covariance) problem of comparing the means of three populations. Let $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, and $\vec{\mathbf{v}}_3$ be the population indicators.

Samp	Sample 1 Sample 2		ple 2	Sam	ple 3
y	$\boldsymbol{\mathcal{X}}$	У	X	У	Х
35	12	31	7	37	9
34	13	33	11	37	12
35	11	35	13	39	11
35	14	34	13	40	14
36	16	35	16	39	17
38	15	36	15	42	16
39	17	36	16	41	17
40	18	37	17	42	18
41	19	38	18	43	21

Consider the model $\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \beta_4 \vec{\mathbf{x}} + \vec{\mathbf{e}}$.

Test $H_0: \mu_1 = \mu_2 = \mu_3$ at a 5% level of significance.

```
> sum(lm(y ~ 1)$residuals^2)
[1] 240
> sum(lm(y ~ x + 0)$residuals^2)
[1] 1047.374
> sum(lm(y ~ x)$residuals^2)
[1] 117.3333
> sum(lm(y ~ v1 + v2 + v3 + 0)$residuals^2)
[1] 126
> sum(lm(y ~ v1 + v2 + v3 + x + 0)$residuals^2)
[1] 27.59630
```

2. Consider an ANCOVA (analysis of covariance) problem of comparing the means of four populations.

Sar	Sample 1 Sample 2 Sample 3		mple 3	Sample 4			
X	У	$\boldsymbol{\mathcal{X}}$	y	X	y	X	y
2	17.3	3	17.7	2	16.1	4	17.6
3	21.1	4	18.5	3	20.9	3	9.8
2	19.3	5	18.3	5	20.5	4	18.6
4	23.9	3	14.7	3	18.9	2	13.0
5	21.7	4	20.5	2	13.1	5	18.4

Consider the model

$$\vec{Y} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2 + \mu_3 \vec{v}_3 + \mu_4 \vec{v}_4 + \beta_5 \vec{x} + \vec{\epsilon},$$

where \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , and \vec{v}_4 are the population indicators, and $\epsilon_i \sim N(0, \sigma^2)$.

The following results were obtained: $\hat{\mu}_1 = 14.62$ $\hat{\mu}_2 = 10.77$

$$\hat{\mu}_1 = 14.62$$
 $\hat{\mu}_2 = 10.77$

$$\hat{\mu}_3 = 12.24$$

$$\hat{\mu}_4 = 8.69$$

$$\hat{\beta}_5 = 1.89$$

$$\hat{\mu}_3 = 12.24$$
 $\hat{\mu}_4 = 8.69$ $\hat{\beta}_5 = 1.89$ $\sum (y - \hat{y})^2 = 72.644$

$$\sum (x - \overline{x})^2 = 22.8$$

$$\sum (y - \overline{y})^2 = 213.87$$

$$\sum (x - \overline{x})^2 = 22.8$$
 $\sum (y - \overline{y})^2 = 213.87$ $\sum (x - \overline{x})(y - \overline{y}) = 34.14$

Test $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ at a 5% level of significance.

Consider an ANCOVA (analysis of covariance) problem of comparing five groups with two covariates, n = 25. Let $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$, $\vec{\mathbf{v}}_4$, and $\vec{\mathbf{v}}_5$ be the population indicators. Consider the model $\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \beta_1 \vec{\mathbf{x}}_1 + \beta_2 \vec{\mathbf{x}}_2 + \vec{\mathbf{\epsilon}}$.

```
> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x1 + x2 + 0)$residuals^2)
[1] 144
> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x1 + 0) residuals^2)
[1] 164
> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x2 + 0) residuals^2)
[1] 180
> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + 0)$residuals^2)
[1] 184
> sum(lm(y \sim x1 + x2 + 0) residuals^2)
[1] 324
> sum(lm(y \sim x1 + x2))sesiduals^2)
[1] 240
> sum(lm(y \sim x1 + 0)\$residuals^2)
[1] 400
> sum(lm(y \sim x2 + 0)\$residuals^2)
[1] 450
> sum(lm(y ~ x1)$residuals^2)
[1] 280
> sum(lm(y ~ x2)$residuals^2)
[1] 300
> sum(lm(y ~ 1)$residuals^2)
[1] 360
```

- a) Test $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ at a 5% level of significance.
- b) Test $H_0: \beta_2 = 0$ vs. $H_1: \beta_2 \neq 0$ at a 10% level of significance.
- c) Find the C_p value for the model

$$\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \vec{\mathbf{\epsilon}}$$
.

d) Compute the AIC values for the full model and the model from part (c). Which model is preferred?

Answers:

1. Full model:
$$\vec{Y} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2 + \mu_3 \vec{v}_3 + \beta_4 \vec{x} + \vec{e}$$

$$n = 27 \qquad \text{dim}(V) = 4$$

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Null model:
$$\vec{Y} = \mu \vec{1} + \beta_4 \vec{x} + \vec{e}$$
$$\dim(V_0) = 2$$

[1] 240

> $sum(lm(y \sim x + 0)\$residuals^2)$

[1] 1047.374

<- null model

Decision: Reject H₀.

[1] 117.3333

$$> sum(lm(y \sim v1 + v2 + v3 + 0) residuals^2)$$

[1] 126

	SS	DF	MS	F
Diff.	RSS _{null} – RSS _{full}	$\dim(V) - \dim(V_0)$		
Full	RSS _{full}	$n - \dim(V)$		
Null	RSS _{null}	$n - \dim(V_0)$		

	SS	DF	MS	F	
Diff.	89.7370	2	44.8685	37.3954	← Test Statistic
Full	27.5963	23	1.19984		
Null	117.3333	25			

Critical Value: $F_{0.05}(2, 23) = 3.42$.

2. Full model:
$$\vec{Y} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2 + \mu_3 \vec{v}_3 + \mu_4 \vec{v}_4 + \beta_5 \vec{x} + \vec{\epsilon}$$
.

Since $\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2 + \vec{\mathbf{v}}_3 + \vec{\mathbf{v}}_4 = \vec{\mathbf{1}}$, under \mathbf{H}_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 (= \mu)$ the full model becomes

Null model:
$$\vec{Y} = \mu \vec{1} + \beta \vec{x} + \vec{\epsilon}$$
 - simple linear regression.

$$\mathbf{V} = \{ \ a_1 \ \mathbf{v_1} + a_2 \ \mathbf{v_2} + a_3 \ \mathbf{v_3} + a_4 \ \mathbf{v_4} + a_5 \ \mathbf{x}, \quad a_1, a_2, a_3, a_4, a_5 \in \mathbf{R} \ \},$$

$$\dim(\mathbf{V}) = 5.$$

$$\mathbf{V}_0 = \{ \, \boldsymbol{a}_0 \, \mathbf{1} + \boldsymbol{a}_1 \, \mathbf{X}, \quad \boldsymbol{a}_0, \boldsymbol{a}_1 \in \mathbf{R} \, \}, \qquad \qquad \dim(\mathbf{V}_0) = 2.$$

Numerator d.f. =
$$\dim(V) - \dim(V_0) = 5 - 2 = 3$$
.

Denominator d.f. = $n - \dim(V) = 20 - 5 = 15$.

	SS	DF	MS	F
Diff.	SSResid _{null} – SSResid _{full}	$\operatorname{dim}(V) - \operatorname{dim}(V_0)$		
Full	SSResid full	$n - \dim(V)$	•••	
Null	SSResid _{null}	$n - \dim(V_0)$		

SSResid $_{\text{full}}$ = 72.644.

 $SSResid_{null}$:

$$\hat{\beta} = \frac{SXY}{SXX} = \frac{34.14}{22.8}$$

$$SSRegr_{null} = \hat{\beta}^2 SXX = \left(\frac{34.14}{22.8}\right)^2 \cdot 22.8 \approx 51.12$$

 $SSResid_{null} = SYY - SSRegr_{null} \approx 213.87 - 51.12 = 162.75.$

	SS	DF	MS	F	
Diff.	90.106	3	30.035	6.2	← Test Statistic
Full	72.644	15	4.843		
Null	162.75	18			

Critical Value: $F_{0.05}(3, 15) = 3.29$.

Decision: $Reject H_0$.

3. Consider an ANCOVA (analysis of covariance) problem of comparing five groups with two covariates, n = 25. Let $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$, $\vec{\mathbf{v}}_4$, and $\vec{\mathbf{v}}_5$ be the population indicators. Consider the model $\vec{Y} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2 + \mu_3 \vec{v}_3 + \mu_4 \vec{v}_4 + \mu_5 \vec{v}_5 + \beta_1 \vec{x}_1 + \beta_2 \vec{x}_2 + \vec{\epsilon}$. $> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x1 + x2 + 0)$ \$residuals^2) [1] 144 $> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x1 + 0)\$residuals^2)$ $> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + x2 + 0)\$residuals^2)$ [1] 180 $> sum(lm(y \sim v1 + v2 + v3 + v4 + v5 + 0)\$residuals^2)$ [1] 184 > sum(lm(y \sim x1 + x2 + 0)\$residuals^2) [1] 324 $> sum(lm(y \sim x1 + x2) residuals^2)$ [1] 240 $> sum(lm(y \sim x1 + 0)\$residuals^2)$ [1] 400 $> sum(lm(y \sim x2 + 0)\$residuals^2)$ [1] 450 > sum(lm(y ~ x1)\$residuals^2) [1] 280 > sum(lm(y ~ x2)\$residuals^2)

a) Test $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ at a 5% level of significance.

Full model:
$$\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \beta_1 \vec{\mathbf{x}}_1 + \beta_2 \vec{\mathbf{x}}_2 + \vec{\boldsymbol{\epsilon}}.$$

$$\dim(\mathbf{V}) = 7. \qquad \text{SSResid}_{\text{full}} = 144.$$

Since
$$\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2 + \vec{\mathbf{v}}_3 + \vec{\mathbf{v}}_4 + \vec{\mathbf{v}}_5 = \vec{\mathbf{1}}$$
,

> sum(lm(y ~ 1)\$residuals^2)

[1] 300

[1] 360

Null model:
$$\vec{\mathbf{Y}} = \mu \vec{\mathbf{1}} + \beta_1 \vec{\mathbf{x}}_1 + \beta_2 \vec{\mathbf{x}}_2 + \vec{\boldsymbol{\varepsilon}}.$$

$$\dim(\mathbf{V}_0) = 3. \qquad \text{SSResid}_{\text{full}} = 240.$$

	SS	DF	MS	F
Diff.	SSResid _{null} – SSResid _{full}	$\operatorname{dim}(V) - \operatorname{dim}(V_0)$		
Full	SSResid full	$n - \dim(V)$		
Null	SSResid _{null}	$n - \dim(V_0)$		

	SS	DF	MS	F	
Diff.	96	4	24	3	← Test Statistic
Full	144	18	8		
Null	240	22			

Critical Value: $F_{0.05}(4, 18) = 2.93$. Decision: **Reject H**₀.

b) Test $H_0: \beta_2 = 0$ vs. $H_1: \beta_2 \neq 0$ at a 10% level of significance.

Full model:
$$\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \beta_1 \vec{\mathbf{x}}_1 + \beta_2 \vec{\mathbf{x}}_2 + \vec{\boldsymbol{\epsilon}}$$
.

$$\dim(\mathbf{V}) = 7. \qquad \text{SSResid}_{\text{full}} = 144.$$

Null model:
$$\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \beta_1 \vec{\mathbf{x}}_1 + \vec{\boldsymbol{\epsilon}}$$
.

$$\dim(\mathbf{V}_0) = 6. \qquad \text{SSResid}_{\text{full}} = 164.$$

	SS	DF	MS	F	
Diff.	20	1	20	2.5	← Test Statistic
Full	144	18	8		
Null	164	19			

Critical Value: $F_{0.10}(1, 18) = 3.01$. Decision: **Do NOT Reject H**₀.

c) Find the C_p value for the model

$$\vec{\mathbf{Y}} = \mu_1 \vec{\mathbf{v}}_1 + \mu_2 \vec{\mathbf{v}}_2 + \mu_3 \vec{\mathbf{v}}_3 + \mu_4 \vec{\mathbf{v}}_4 + \mu_5 \vec{\mathbf{v}}_5 + \vec{\mathbf{\epsilon}}$$
.

$$C_p = \frac{\text{SSResid}_{\text{Null}}}{\text{MSResid}_{\text{Full}}} - n + 2 \cdot (\text{# of parameters in Null}) = \frac{184}{8} - 25 + 2 \cdot (5) = 8.$$

[Want models with $\,C_p\,$ close to or less than (#of parameters in Null).]

d) Compute the AIC values for the full model and the model from part (c). Which model is preferred?

Full: AIC =
$$25 \ln \left(\frac{144}{25} \right) + 2 \times 7 \approx 57.77$$
.

Part (c): AIC =
$$25 \ln \left(\frac{184}{25} \right) + 2 \times 5 \approx 59.90$$
.

OR

Full: AIC =
$$25 + 25 \ln(2\pi) + 25 \ln(\frac{144}{25}) + 2 \times 7 \approx 111.39$$
.

Part (c): AIC =
$$25 + 25 \ln(2\pi) + 25 \ln(\frac{184}{25}) + 2 \times 5 \approx 113.52$$
.

The **full mode**l is preferred since the full model has lower AIC value.