Федеральное агентство по образованию МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(Национальный исследовательский университет)

Кафедра 106

КУРСОВАЯ РАБОТА

по дисциплине «Динамика полета»

Выполнил Москвитин Андрей Студент гр. М1О-403Б-18

Подпись:

Москва

РЕФЕРАТ

Курсовая работа по дисциплине «Динамика полета» 10 с., 0 рис., 0 источн., 1 табл. РАСЧЕТ ЛЁТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК.

Объектами исследования является расчет лётно-технических, взлётно-посадочных характеристик, траектории полета, диаграммы транспортных возможностей, характеристик продольной и статической устойчивости и управляемости самолета ИЛ-76

Цель работы – закрепление и систематизация знаний по динамике полета, а также овладение навыками инженерной работы в части расчета летных и пилотажных характеристик самолета.

содержание

1.	Ис	кодные данные	4
2.	Pac	счет лётно – технических характеристик самолета	,
3.	Pac	счет траектории полета	8
	3.1.	Расчет характеристик набора высоты	8
	3.2.	Расчет характеристик крейсерского полета	(
	3.3.	Расчет характеристик участка снижения	(
	3.4.	Расчет диаграммы транспортных возможностей	1(

1. Исходные данные

Таблица 1.1 — Исходные данные для самолета ИЛ-76

Ограничение режима полета	$M \le 0.8; V_i \le 650 \frac{\text{km}}{\text{q}}$
m_0 , тонн	140
$ar{m}_{ ext{ iny ILH}}$	0.26
$ar{m}_{\scriptscriptstyle m T}$	0.39
$ar{m}_{ ext{ch}}$	0.46
$ar{P}_0$	0.315
$Ce_0, rac{\kappa r}{\pi^{ m ah*y}}$	0.54
$rac{n_{\mathtt{AB}}}{n_{\mathtt{PeB}}}$	4/2
$P_s, \frac{\mathrm{Aah}}{\mathrm{M}^2}$	535
b_a , м	140
$ar{L}_{ ext{ro}}$	3.90

2. Расчет лётно - технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 2.1-2.7:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива

3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.20.30.40.50.60.70.80.90.95]$$

$$V = Ma_H, (2.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{2.2}$$

где ρ_H — плотность воздуха на высоте H.

$$C_{y_n} = \frac{\bar{m}p_s 10}{q},\tag{2.3}$$

где $\bar{m} = 0.95$ — относительная масса самолета, p_s — удельная нагрузка на крыло.

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2$$
(2.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}$, C_{x_m} — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}} \tag{2.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{2.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{2.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 q} \tag{2.8}$$

$$V_u^* = \Delta \bar{P}V \tag{2.9}$$

$$\bar{R} = \frac{P_n}{P_n} \tag{2.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(2.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6V},$$
 (2.12)

где $q_{\scriptscriptstyle \rm H}$ — часовой расход топлива, $q_{\scriptscriptstyle \rm KM}$ — километровый расход топлива.

Для построение таблицы (TODO: стр 40 в курсовой)

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M,H_i)$ и $P_p(M,H_i)$ рисунки @@@
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ рисунки @@@
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\rm max_{\rm доп}} = \min\left\{M_{\rm пред}, M(V_{i_{\rm max}}\right\},$$
 где $M(V_{i_{\rm max}}) = \frac{V_{i_{\rm max}}\sqrt{\Delta^{-1}}}{3.6a_H},\, \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}}$

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\text{gon}}}, M_{\min_{P}} \right\},$$

$$M_{\text{max}} = \min \left\{ M_{\text{max}_{\text{доп}}}, M_{\text{max}_{P}}, M_{\text{пред}} \right\},\,$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M)$$

 Число М₂ полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i)$$

7. Минимальные значения часового $q_{\mathbf{q}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{m}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на графике 2.4.1-7 и 2.5.1-7 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i)$$

$$q_{\mathrm{km}_{min}} = \min_{V} q_{\mathrm{km}}(V, H_i), \ V_4 = V(q_{\mathrm{km}_{min}}) = \arg\min_{V} q_{\mathrm{km}}(V, H_i)$$

3. Расчет траектории полета

3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\pi o \pi}} (V_0 = 1.2 V_{min_{\pi o \pi}})$$

Конечные условия:

$$(H_{\mathsf{k}}, M_{\mathsf{k}}) = \arg\min_{H, M} q_{\mathsf{k}\mathsf{m}}(M, H)$$

Конечная высота принимается равная $H_{\rm k}=11$, км Соотношения для расчета :

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{3.1}$$

$$\kappa = \frac{1}{1 + \frac{V}{g} \frac{dV}{dH}} \tag{3.2}$$

$$\theta_{\text{Haf}} = n_x \kappa 57.3 \tag{3.3}$$

$$V_{y_{\text{Haf}}} = V_{y_{max}}^* \kappa \tag{3.4}$$

$$H_{s}^{i} = H^{i} + \frac{(V^{i})^{2}}{2q} \tag{3.5}$$

$$\Delta H_{9} = H_{9}(V_{\text{Ha6}}^{i+1}, H^{i+1}) - H_{9}(V_{\text{Ha6}}^{i}, H^{i})$$
(3.6)

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_{\mathfrak{g}}^i)} + \frac{1}{n_x(H_{\mathfrak{g}}^{i+1})}\right]$$
 (3.7)

$$\left(\frac{1}{V_y^*}\right)_{\text{cd}} = 0.5 \left[\frac{1}{V_y^*(H_{\text{g}}^i)} + \frac{1}{V_y^*(H_{\text{g}}^{i+1})}\right] \tag{3.8}$$

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right]$$
(3.9)

$$L_{\text{\tiny HA6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000} \tag{3.10}$$

$$t_{\text{\tiny Ha6}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_{\text{\tiny 9}}}{60} \tag{3.11}$$

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_9}{3600} \tag{3.12}$$

3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\kappa p}$ и дальности $L_{\kappa p}$ крейсерского полета:

$$T_{\rm kp} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm Hp}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm Hp}}}$$
(3.13)

$$L_{\rm kp} = \frac{36V K_{\rm \Gamma II}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm np}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm na}} - \bar{m}_{T_{\rm np}}}$$
(3.14)

где $\bar{m}_{\mathrm{T_{KD}}} = 1 - \bar{m}_{\mathrm{CH}} - \bar{m}_{\mathrm{I}}$ Н $- \bar{m}_{\mathrm{T_{Ha6}}} - \bar{m}_{\mathrm{T_{chf}}} - \bar{m}_{\mathrm{T_{ah3}}} - \bar{m}_{\mathrm{T_{np}}} = 0.1827$

Принимаем: $m_{\rm цн}=0,26$ – относительная масса пустого снаряженного самолета; $m_{\rm ch}=0,46$ – относительная масса целевой нагрузки;

 $m_{T_{\rm chi}}=0.015$ - относительная масса топлива, расходуемая при снижении и посадке; $\bar{m}_{T_{\rm hab}}\frac{m_{T_{\rm hab}}}{m_0}=$ - относительная масса топлива, расходуемая при наборе; высоты $m_{{\rm T}_{\rm ah3}}=0.05$ - аэронавигационный запас топлива; $m_{{\rm T}_{\rm np}}=0.01$ - запас топлива для маневрирования по аэродрому, опробования двигателей, взлета; $K_{{\rm \Gamma}{\rm II}}=13.51~V=206\,{\rm Mpc}^2$ $Ce=0.0617\,{\rm Kr\over Hq}$ - удельный расход топлива на высоте крейсерского полета

Высота в конце крейсерского полета $H_{\text{к кр}}$ определяется как:

$$\rho_{H \, \text{\tiny KP}} = \frac{2\bar{m}_{\text{\tiny K \, KP}} P s 10}{C_{y_{\Gamma\Pi}} V_{\text{\tiny K}}^2} \tag{3.15}$$

где $\bar{m}_{\text{к кр}} = 1 - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{пр}}} - \bar{m}_{T_{\text{кр}}}$

3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты раздел 3.1. Только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги. Определяется по графику $M(P_{n \text{ min}}) = f(H)$ (Рисунок 2.2).

$$M_0 = 0.6; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при $H=0.~M_{\kappa}=0.30;$ $H_{\kappa}=0$ Результаты расчетов приведены на таблице №3.3.2, по этим данным построили

3.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 3.4.1) Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\rm пн}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 3.1, 3.2,3.3

$$m_{\mathrm{ijh}} = \frac{m_{\mathrm{ijh}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny Kp}} + L_{\text{\tiny CH}}$$

Для упрощения для дальности полета и расход топлива при наб