Sistemas de Apoyo a la Ingeniería Legal

Tesina de grado

Luciano Francisco Perezzini

Lic. en Cs. de la Computación

Octubre de 2019

Directora: Dra. Ana Casali

Co-directora: Dra. Claudia Deco.

1

Contenido

1. Introducción

La recuperación de información El problema: la matricería legal

Sistemas de información de texto Preprocesamiento y representación de texto

Descubrimiento de información

3. Propuesta de asistente a la matricería legal Sistema de soporte a la ingeniería legal (SiSIL) Análisis: clasificación de normativas La matricería legal como aplicación de usuario

- 4. Experimentación
- 5. Conclusiones y trabajo futuro

1. Introducción

La recuperación de información (IR)

► Área sumamente importante en la Era de la Información

La IR es la tarea de encontrar, dentro de grandes conjuntos, material que satisfaga (potencialmente) una necesidad de información

La información de texto

Nuestra forma preferida para expresar información

- Rico en contenido semántico (información valiosa: opiniones y preferencias)
- ► Por lo general, **no estructurado** (*texto libre*)
- ▶ Protagonista principal de la web actual

Necesidad de **agentes artificiales** para:

- Procesar y
- descubrir información relevante

La información de texto

Procesamiento del lenguaje natural (NLP)

► Área de estudio dentro de la lingüística y las ciencias de la computación

El problema – Introducción

Documentos normativos:

- Dictan el comportamiento que toda persona u organización debe atender para el ordenamiento de una comunidad
- Publicados
 electrónicamente mediante
 distintos boletines oficiales
 (nacional, provinciales,
 municipales)

Figura: Gazeta de Buenos Ayres (Primera Junta de Gobierno – 1810)

7

El problema – Introducción

Boletines oficiales

Figura: Portal web del Boletín Oficial de la República Argentina (BORA). El BORA publica alrededor de 60 normativas diarias.

8

El problema – Introducción

Acerca de la ingeniería legal

Ingeniería legal

Rama de las ingenierías que aplica ciencias de la información a documentos legales con la finalidad de asistir en tareas de toma de decisión legal

 Técnicas de NLP: atractivas de aplicar para (semi) automatizar tareas de la ingeniería legal

El problema: la matricería legal

Matricería legal (ML)

Actividad que se encarga de la compilación de normativas exigibles a una entidad acorde a su actividad productiva

- ▶ ▲ Diaria. Normativas nuevas y potencialmente relevantes se publican diariamente.
- Trabajosa. Se debe analizar cada normativa para evaluar su relevancia con respecto a la actividad productiva de la empresa.
- ► ▲ Cautelosa. Un error puede causar desde penalizaciones del Estado hasta malas decisiones industriales.

También conocido como Tecnología Regulatoria (RegTech)

El problema: la matricería legal

Carecer de una matriz legal puede ocasionar problemas...

ANMAT prohibió comercializar una serie de alfajores, galletitas, budines y turrones Nevares

Figura: Noticia 27/09/19

 No cumplía con una normativa publicada en el año 2010

El problema: la matricería legal

Poblado diario de matriz legal en la actualidad

- Se recuperan todas las normativas del día de la fecha
- Se escogen las pertenecientes a determinadas ramas del Derecho de interés.
- Expertos en distintas áreas de la empresa realizan una evaluación más refinada.
- 4. Las normativas seleccionadas son almacenadas en la matriz legal.

Figura: La ML en la actualidad.

Resumen

Problema:

 $\uparrow\uparrow$ magnitud de la empresa $\implies \uparrow\uparrow$ costo de la ML

Propuesta: semi-automatización de la ML

- Sistema en línea de recuperación y sugerencia de normativas potencialmente relevantes para el poblado continuo de una matriz legal
 - ► Revisión experta final

2. Sistemas de información de texto

Procesar y analizar grandes conjuntos de datos de lenguaje natural

Sistemas de información de texto (SITs)

3 etapas principales

1. Preprocesamiento de texto

Objetivo: determinar el vocabulario de términos (palabras) de la colección

► Composición de operaciones lingüísticas

- 1. **Tokenización** (*tok*). Cortar cadenas de caracteres en pedazos, llamados *tokens* o términos.
- Normalización (norm). Transformación de cada término a una forma canónica
- 3. **Supresión de palabras vacías** (*rem*). Remoción de términos extremadamente frecuentes del lenguaje.
- 4. **Stemming** (*stem*). Reducción de términos a una forma base.

 $preproc = stem \circ rem \circ norm \circ tok$

1. Preprocesamiento de texto

Ejemplo

d = «A veces sentimos que lo que estamos haciendo es sólo una gota en el océano. Pero si esa gota no estuviera en el océano, el océano sería menos por no tenerla»

$$preproc(d) = [$$
'sent', 'got', 'ocean', 'got', 'ocean', 'ocean', 'ten']

$$preproc(d) \ \forall \ d \in \mathscr{C} \underset{crearVocab()}{\longrightarrow} V = \{t_1, t_2, \dots, t_n\}$$

2. Representación de texto

El Modelo Espacio-Vectorial (VSM)

 $ightharpoonup d \mapsto \vec{v}_d = (w_{t_1,d}, w_{t_2,d}, \dots, w_{t_{|V|},d}) \in \mathbb{X}^{|V|}$, donde:

$$w_{t,d} = w_{t,d}^{local} \times w_t^{global}$$

Esquema de pesaje time frequency – inverse document frequency (tf.idf):

$$egin{aligned} w_{t,d}^{local} &= \mathbf{tf}(t,d) = \mathit{num}(t,d) \ w_t^{global} &= \mathbf{idf}(t) = \log rac{|\mathscr{C}|}{|\{d \in \mathscr{C} \mid t \in d\}|} \end{aligned}$$

$$\therefore \vec{v}_d = (tf.idf_{t_1,d}, tf.idf_{t_2,d}, \dots, tf.idf_{t_{|V|},d}) \in \mathbb{R}_0^{+|V|}$$

 \vec{v}_d es de alta dimensionalidad y ralo

El problema de la clasificación de texto

Actividad de **etiquetar** documentos con **clases** temáticas pertenecientes a un conjunto **predefinido**

El problema de la clasificación de texto

Naturaleza de alta dimensionalidad del texto

⇒ ↑↑ probabilidad de separar linealmente ambas clases ⇒ clases cuasi-linealmente separables

∴ Aprender frontera de decisión lineal

- Clasificador de vectores soporte (SVC)
 - Gran desempeño en la clasificación de texto

Figura: Los modelos más flexibles no suelen brindar mejores resultados en la clasificación de texto.

Clasificación lineal: clasificador de vectores soporte (SVC)

► Hiperplano separador de margen máximo

Clasificación lineal: clasificador de vectores soporte (SVC)

- Se permiten **violaciones** del margen (ξ_i)
 - penalizadas por un hiperparámetro C
- ► C controla el **tradeoff** entre la **maximización del margen** y la **minimización del error** $(\sum_i \xi_i)$

Clasificación lineal: clasificador de vectores soporte (SVC)

- ▶ Hiperparámetro C
 - Valor típicamente configurado vía validación cruzada
 - Controlar overfitting

Clasificación binaria de texto: aprendizaje y predicción

Figura: Aprendizaje de modelo clasificador binario de texto γ .

Figura: Predicción de clase del documento d.

Clasificación de texto multi-valor

▶ Por lo general, $|\mathbb{C}| > 2$ y sus clases no son mutuamente excluyentes

Problema de clasificación multi-valor:

- ▶ *d* puede pertenecer a varias clases, a una sola, o a ninguna Solución:
 - ▶ Aprender $J = |\mathbb{C}|$ clasificadores binarios de texto $\gamma_j \mid \gamma_j(d) \in \{c_j, \bar{c}_j\}$
 - ▶ Dado un documento de prueba, se **aplica** cada γ_j de **forma separada**

3. Propuesta de asistente a la matricería legal

Sistema de soporte a la ingeniería legal (SiSIL)

Arquitectura de asistente en línea para tareas de la ingeniería legal

Problemática: matricería legal en una empresa e

► *I* = «Obtener, de determinados boletines, normativas relevantes a la **actividad productiva** de *e*»

Tarea de SiSIL: satisfacer parcialmente *I* mediante la sugerencia de normativas

Actividad productiva

Recopilación de información: exploración del Derecho

- ▶ Q Dialogo entre el sistema y el usuario experto
 - El sistema asiste al usuario mediante una fuente de conocimiento externa: el Tesauro del Derecho Argentino (TDA)

Figura: 1er. etapa del dialogo. Selección de principales ramas.

Actividad productiva

Recopilación de información: exploración del Derecho

► El experto escoge **tópicos** más **específicos**

Figura: 2da. etapa del dialogo. Exploración de ramas seleccionadas.

Antes de continuar: ¡necesitamos normativas etiquetadas!

Figura: Sistema Argentino de Información Jurídica (SAIJ).

Antes de continuar: ¡necesitamos normativas etiquetadas!

Flujo propuesto de clasificación: dos etapas

d es considerada potencialmente relevante si:

- es clasificada como perteneciente a alguna rama de interés r y además
 - trata sobre algún tópico específico del dominio de r

▶ 1er. etapa: clasificación en ramas del Derecho

1er. etapa: clasificación en ramas del Derecho

- ▶ \mathbb{D} : conj. de las **principales ramas del Derecho** (TDA: $|\mathbb{D}| = 16$)
- Clasificación multi-valor
- Problema de clases desbalanceadas
 - Submuestreo aleatorio
 - Construcción de conj. de obs. aproximadamente balanceado

Figura: Construcción de conj. de observaciones. N_r : conj. de las normativas recuperadas con clase $r \in \mathbb{D}$.

2da. etapa: detección de tópicos específicos de ramas predichas

Análisis de SiSIL: clasificación de normativas

2da. etapa: detección de tópicos específicos

- Evaluación de contenido textual refinada
 - Se aprende un clasificador binario de texto por cada tópico
- Problema de clases desbalanceadas
 - Submuestreo aleatorio
 - Construcción de conjunto de obs. balanceado

Figura: N_r^t : conj. de normativas con clase $r \in \mathbb{D}$ etiquetadas con algún $t \in dom(r)$.

Figura: Construcción de conj. de obs.

Aplicación de usuario

 SiSIL sugiere al experto aquellas normativas recuperadas y clasificadas como potencialmente relevantes con respecto a la actividad productiva de e

Figura: Interacción de usuario experto con normativas sugeridas. Experto descarta o acepta.

4. Experimentación

Experimentación

Caso de estudio

Industria aceitera localizada en la ciudad de San Lorenzo, Santa Fe

- Ramas del Derecho de interés:
 - ▶ Derecho Ambiental → desechos peligrosos
 - $lackbox{ }$ Derecho Laboral \longrightarrow accidentes de trabajo
- ▶ Boletines oficiales (implementación de web crawlers):
 - ▶ Boletín Oficial de la República Argentina
 - Boletín Oficial de la Provincia de Santa Fe
 - Boletín Oficial de la Ciudad de San Lorenzo, Santa Fe

Normativas recuperadas del SAIJ

Recuperación mediante crawler

Figura: Conjuntos de normativas recuperadas. 26520 normativas totales.

Experimentación

Aprendizaje y validación de clasificadores

Metodología aplicada:

- 1. Construcción de un conjunto total de observaciones \mathscr{D}
- 2. Partición aleatoria y estratificada de \mathscr{D} en conjuntos de observaciones de entrenamiento (\mathscr{T}) y validación (\mathscr{V})
- 3. Ajuste del hiperparámetro ${\cal C}$ aplicando validación cruzada en el conjunto ${\mathscr T}$
- 4. Aprendizaje de modelo clasificador binario de texto: $SVC(\mathcal{T}) = \gamma$
- 5. Validación de γ mediante las observaciones del conjunto $\mathscr V$

Dominio: Derecho Ambiental

Clasificador del **Derecho Ambiental** (*DA*)

	# pos.	# neg.	# total
2	1814	1797	3611

- $ightharpoonup |\mathscr{V}| \sim 30 \, \%$ de obs. totales
- ► Se estima **ACCURACY** = **0.91**

Figura: Matriz de confusión.

Dominio: Derecho Ambiental

Clasificador de desechos peligrosos (dp)

	# pos.	# neg.	# total
2	241	241	482

- $ightharpoonup |\mathscr{V}| \sim 25\,\%$ de obs. totales
- ► Se estima ACCURACY = 0.87

Figura: Matriz de confusión.

Dominio: Derecho Laboral

Clasificador del **Derecho Laboral** (DL)

	# pos.	# neg.	# total
2	2358	2315	4673

- $ightharpoonup |\mathscr{V}| \sim$ 30 % de obs. totales
- ► Se estima ACCURACY = 0.88

Figura: Matriz de confusión.

Dominio: Derecho Laboral

Clasificador de accidentes de trabajo (at)

	# pos.	# neg.	# total
2	228	228	456

- $ightharpoonup |\mathcal{Y}| = 25 \%$ de obs. totales
- ► Se estima ACCURACY = 0.88

Figura: Matriz de confusión.

5. Conclusiones y trabajo futuro

Conclusiones

- SiSIL + matricería legal --→ aproximación de semi-automatización del monitoreo regulatorio en empresas
 - ¡Resultados preliminares alentadores!
- SiSIL: arquitectura conceptual de soporte para tareas de la ingeniería legal
 - Posibilidad de incluir distintas formas de análisis de normativas ⇒ nuevas aplicaciones □ ⇒ Justicia más abierta, inclusiva y moderna
 - ▶ ¡Tecnólogos y profesionales de la Ley invitados! 📽

Trabajo futuro

Otras técnicas a aplicar

- Clasificación de texto basado en reglas
 - ► Construcción de conjunto de reglas $\mathcal{R}_i: (t_a \in d) \land (t_b \in d) \land (\ldots) \implies c$
- Filtrado por organismos del Estado (Admin. Pública Nacional)
 - $ightharpoonup \sim 200$ organismos
 - Detección de normativas emitidas por organismos relevantes
- ► **Aprendizaje en línea** (ejemplo: algoritmo de aprendizaje *Passive-Agressive*)

¡Gracias!