Mini Quizzes

Week 5 — Chapter 17	2	
Week 3/4 — Chapter 16	4	
Week 2 — Chapter 15	6	
Week 1 — Chapter 14	8	

Week 5 — Chapter 17

- 1. Which of the following molecules has a characteristic broad stretch at 3300 cm⁻¹?
 - (CH₃)₂CHCH₂OH
 - (CH₃)₂CHCCCH₃
 - (CH₃)₂CHCO₂CH₃
 - (CH₃)₂CHCH=CH₂
 - C-H (sp-s; alkyne C-H), O-H, and N-H cave be found in $\tilde{\nu}$ of approximately 3300.
 - The key point here is the broad stretch, which very characteristic of O−H.
- 2. Which of the following structures is consistent with the IR spectra shown below?

- The large and sharp peaks at around 1700 indicate some kind of carbonyl, and there is no large broad shape indicating OH, so either first or third option.
- The peak around 3000–3100 indicates that some kind of C-H bond is present, specifically an sp^2 hybridized carbon.
- 3. The two most abundant isotopes of boron are 10B and 11B, with 11B being about 4 times more abundant. In the mass spectrum of trimethylborate $(CH_3O)_3B$.
 - the peaks at m/z 103 and m/z 104 have equivalent intensities
 - \circ the peak at m/z 103 has an intensity which is 4 times that of the m/z 104 peak
 - the peak at m/z 103 has an intensity which is 1/4 the intensity of the peak at m/z
 104
 - none of the above
 - \circ ¹¹B would have a peak that is one mass unit higher than ¹⁰B, so that makes the peaks 104 and 103 respectively.

- The more abundant peak would have a higher relative intensity.
- 4. The mass spectrum of which compound has M+ and M+2 peaks of approximately equal intensity?
 - 3-boromopentane
 - 3-pentano
 - pentane
 - 3-chloropentane
 - M + 2 peaks help determine any halides that are present.
 - Chlorine has 3:1 ratio due to natural occurrence of isotopes.
 - Bromine has 1:1 ratio due to natural occurrence of isotopes.

Week 3/4 — Chapter 16

1. What is the major product for the following reaction.

- CrO₃ is an oxidizing agent, which means electron density will be pulled away from the carbon to form a double bonded oxygen.
- Oxygen does not insert itself into the chain.
- Give the major product for the following oxidation.

- PCC is a mild oxidizing agent that is commonly used for selective oxidation of alcohols to aldehydes or ketones.
- In this case we started with a terminal enol, which would produce an aldehyde.
- The carbonyl group is not affected, it should not change.

3. What is the major product from the following reaction?

$$\begin{array}{c} \operatorname{Br} \\ \\ \operatorname{Br} \\ \\ \circ \\ \\ \operatorname{Br} \\ \\ \circ \\ \\ \end{array}$$

- This looks like dihaloalkane elimination. I took this quiz a week early, so this explanation might not be the best, but looks like NH₂⁻ is acting as a reducing agent(?); causing the elimination of bromine, leaving the carbon to form a triple bond.
- 4. The major product of a hydroboration oxidation reaction on a terminal alkyne is
 - a carboxylic acic

alkane

ketone

- aldehyde
- Example of an alkyne undergiong a hydroboration-oxidation reaction:

Week 2 — Chapter 15

- 1. The reagent needed to convert 2-butyne to cis-2-butene is
 - ∘ H₂/Pd−C
 - o Li/NH₃
 - o Na/NH₃
 - H₂/LindlarCatalyst
 - Complete hydrogenation of an alkyne:

$$R \longrightarrow R' \xrightarrow{H_2} R \xrightarrow{H} H$$

$$R \longrightarrow R'$$

$$H \rightarrow H$$

$$H \rightarrow H$$

 Alkyne → cis-alkene; use of lindlar catalyst (Pd-c poisoned with lead) limits further reduction by controlling hydrogens available:

$$R \longrightarrow R' \xrightarrow{H_2} \xrightarrow{H} \xrightarrow{R'}$$

Alkyne → trans-alkene; using generation of free radicals (•, single electron) that
pair up with another electron generated by the dissociation of Na → Na⁺+ e⁻ to
create a free pair of electrons that then receive a hydrogen from NH₃:

$$\longrightarrow \begin{array}{c} H-NH_2 \\ R \end{array} \xrightarrow{H} \begin{array}{c} R' \\ R \end{array}$$

- 2. A mixture of 1-heptyne, 2-heptyne, and 3-heptyne was hydrogenated in the presence of a palladium catalyst until hydrogen uptake stopped. If one assumes that the hydrogenation went to completion for all the reactants present in the mixture, how many distinct seven-carbon isomers were produced?

 - 0 2
 - 0 4
 - 0 6
 - H₂/Pd-c (palladium catalyst) generates completely saturated alkenes, thus the location of the double bond in a heptyne will make no difference overall.

3. Give the best reagents for the reaction

$$(CH_3)_2CHCH_2C \Longrightarrow CH \longrightarrow (CH_3)_2CHCH_2CH_2CH$$

- H₂O, H₂OSO₄, HgSO₄
- BH₃, H₂O₂, NaOH
- K₂Cr₂O₇
- H₂, Lindlar Catalyst
- First, this is a hydration reaction, so that limits just the first two options.
- Hydration using H₂O and H₂OSO₄ or HgSO₄ does have difference, but both follow Markovnikov's rule and end produce internal enols and thus internal ketones.
- Hydroboration-oxidation reaction follows anti-Markovnikov rule and produces a terminal enol and thus an aldehyde, which is the desired product.
- 4. Which of the alkyne addition reactions below involves an enol intermediate?
 - Hydroboration/oxidation
 - dil. H₂SO₄ in HgSO₄
 - Hydrogenation
 - Both hydroboration/oxidation and dil. H₂SO₄ in HgSO₄
 - \circ See question three, both hydroboration/oxidation and dil. H₂SO₄ in HgSO₄ are used in hydration, which have enol intermediates.
 - Hydrogenation only has to do with adding hydrogens to saturate the alkyne through elimination reactions, which question one covers.

Week 1 - Chapter 14

Name the structure

- 1-chloro-3-cycloheptene
- 4-chloro-1-cycloheptene
- 4-chloro-1-cyclohexene
- 6-chloro-1-cycloheptene
 - When numbering the parent chain, the double bond should receive the lowest number possible; k=1
 - Note: define the location *k* of the double bond as being the number of its first carbon, not at the end.
 - The locant (k) of the double bond should be placed right before the suffix of "ene," though, it was previously recommended before the parent (both are acceptable), e.g., 2-pentene = pent-2-ene; 1-cycloheptene
 - Name and the side groups (other than hydrogen) according to the appropriate rules; chloro
 - Define the position of each side group as the number of the chain carbon it is attached to; 4-
- 2. Name the structure:

$$CICH_2CH_2$$
 H
 C
 CH_3
 H
 C
 CH_3

- 。 (2E,4E)-7-chloro-2,4-heptadiene
- (2Z,4Z)-7-chloro-2,4-heptadiene
- 。 (2Z,4E)-7-chloro-2,4-heptadiene
- 。(2E,4Z)-7-chloro-2,4-heptadiene
 - **E-Z notation**: recommended instead of *cis* and *trans* in order to account for cases that has more than two different groups attached to the double bond by first determining the priority using the Cahn-Ingold-Prelog System.
 - E, entgegen, "opposite"
 - Z, zusammen, "together"; "on ze zame zide."

- When numbering the parent chain, the double bond should receive the lowest number possible; k=2
 - The two highest priority groups are on opposite sides; 2E
- There is more than one double bond; $k_2 = 4$
 - The two highest priority groups are on zame side; 4Z
- 3. How many stereoisomeric product(s) do you get in the reaction below

- o Oxymercuration-demercuration reactions follow Markovnikov's rule, i.e., H^+ is added to the carbon with the greatest number of hydrogen atoms while the X^- component is added to the carbon with the fewest hydrogen atoms.
- Drawing the intermediate is not necessary, and no chiral centers are found in the products:

$$\frac{\text{Hg}(\text{OAc})_2, \text{H}_2\text{O}, \text{THF}}{\text{NaBH}_4} \left[\begin{array}{c} \text{OH} \\ \text{H} \end{array} \right]$$

4. Which reaction intermediate is formed when Br2/CCI4 reacts with cyclohexene?

- **Halogenation**: a reaction that involves the addition of one or more halogens to a compound or material.
 - The addition of halogens to alkenes proceeds via intermediate halonium ions.

- **Halonium ion**: any onium ion containing a halogen atom carrying a positive charge. This cation has the general structure: R·+X·R′
- **Onium ion**: a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen (group 15 of the periodic table), chalcogen (group 16), or halogen (group 17); Br^{\oplus} in our case.