Physics 5573, Spring 2022 Hw 3

1) Consider a sphere of radius R and total charge Q that has been embedded with an r-dependent charge density:

$$\rho(\vec{r}) = C r$$

- a) Write and solve an integral to determine C in terms of the properties of the sphere, Q and R. For the rest of the problem, use this result for C in $\rho(\vec{r})$.
- b) Explain why and how you can use Gauss' Law to solve for the electric field of the charged sphere.
- c) Set up your solution and determine $\vec{E}(\vec{r})$ for all r. You will have somewhat different results for $0 \le r \le R$ and for $r \ge R$. These results should agree for r = R.
- d) Solve for $\phi(\vec{r})$ for all r. As usual, define $\phi(\infty) = 0$.
- e) Solve for the total electric potential energy of the charged sphere. This can be considered the total energy (work) necessary to bring all the charges together in the sphere.
- f) Consider a similar sphere with the charge density $\rho(\vec{r}) = C \, r \cos^2 \theta$. Set up a multipole expansion to solve for $\phi(\vec{r})$ and show (explain) that there will only be two terms in the expansion. If you wish, you can solve this.
- 2) The Magnetic analog to the problem above is a long, current-carrying wire with a current density that varies across the radius of the wire.

Use polar coordinates: \hat{z} along the wire, \hat{r} the radial direction perpendicular to \hat{z} , and $\hat{\phi}$ the azimuthal angle around \hat{z} .

The wire has a radius R and total current I in the \hat{z} direction. The current density is:

$$\vec{I}(\vec{r}) = C r \hat{z}$$

- a) Write an equation relating the total current in the wire, I, to the current density, $\vec{J}(\vec{r})$ for the wire. Use this to Derive an expression for the constant C in terms of properties of the wire, I and R.
- b) Use the symmetry of the problem and the relation between the current (density) and the magnetic field to determine the general form for the magnetic field, $\vec{B}(\vec{r})$. Specifically, what direction is the field and how does it depend on r, ϕ , and z?
- c) Explain why you can use Ampere's Law to solve for $\vec{B}(\vec{r})$.
- d) Calculate $\vec{B}(\vec{r})$ everywhere. Be sure to explain your approach.
- e) Show that the magnetic potential energy of the wire is infinite. This shouldn't be surprising, as it is an infinitely long wire.

3) Consider a uniform charged rod of charge Q and length L, $\lambda = Q/L$, on the z-axis, centered at the origin, extending from $z = -\frac{L}{2}$ to $z = +\frac{L}{2}$.

- a) Write an integral over the charged rod for the electric potential on the z-axis. Calculate the electric potential due to the rod on the z-axis for all $z>\frac{L}{2}$.
- b) Expand your result for $\phi(z)$ in powers of L/(2z). It will be useful to know that: (If both expressions don't help you, you'll probably want to redo your integral from part (a).)

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n} , \ \ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

c) Using this expansion, you can determine a sum for the potential $\phi(r,\theta)$ everywhere. Note that for points along the z axis:

$$\phi(z) = \phi(r, \theta = 0)$$

The potential everywhere is given by:

$$\phi(r,\theta) = \sum_{l=0}^{\infty} \frac{a_l}{r^{l+1}} P_l(\cos \theta)$$

Using the result from part (b), determine an expression for all the coefficients a_l . Note: $P_l(\cos(0)) = P_l(1) = 1$ for all l.

- d) Using the multipole expansion for the electric potential, calculate the monopole, dipole, and quadrupole potential terms due to the line charge. Show that these terms agree with part (c).
- 4) A square current-carrying loop with sides of length l and counterclockwise current I is in the x-y plane and centered at the origin. Calculate the magnetic field at the point $\vec{r}=d~\hat{x}$.

- a) What is the magnetic field at the point $\vec{r}=d~\hat{x}$ if you approximate the loop by a magnetic dipole?
- b) Use cross products to determine the direction of the magnetic field due to each side of the loop at \vec{r} .
- c) Write down integrals for the magnetic field at \vec{r} due to each side of the current loop.
- d) Solve for the magnetic field due to the loop at \vec{r} . It might be useful to know that:

$$\int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}} = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$

Note: The results are somewhat messy.

e) Expand your result above for $d\gg l\left(\frac{l}{d}\ll 1\right)$ to the lowest non-zero power in 1/d. Show that this gives the dipole approximation from part (a). Hint: It's a good idea to expand the fields from the right and left wires together, and the top and bottom wires together.