Additional exercise 1.

Let X be the set $\{-1, 0, 1\}$ with the following topology:

$$\mathrm{Open}(X) = \{\emptyset, \{0\}, \{-1, 0\}, \{0, 1\}, X\}.$$

a) Show that a presheaf on X naturally corresponds to a commutative diagram

of abelian groups.

- **b**) Determine the stalks of \mathcal{F} at all the points of X in terms of the diagram (1).
- c) Let \mathcal{F} be a presheaf on X. Which properties should the diagram (1) associated to \mathcal{F} satisfy in order that \mathcal{F} be a sheaf? Determine also the sheafification \mathcal{F}^+ of \mathcal{F} in terms of (1).
- **d)** Consider the subpace $Y = \{-1, 1\}$ of X, with the natural inclusion $\iota : Y \hookrightarrow X$. Give a surjective morphism

$$\phi: \mathbb{Z}_X \to \iota_* \mathbb{Z}_Y$$

such that there is an open $U \subset X$ with $\phi(U)$ not surjective. Here, for X a topological space, \mathbb{Z}_X denotes the constant sheaf with values in \mathbb{Z} on X.