ECEN 689: RL: Reinforcement Learning Exam 1

- 1. (2 point) Consider an MDP $M_1 = (\mathcal{X}, \mathcal{A}, P, R_1, \gamma)$ and let π_1^* be the optimal policy of M_1 . Let M_2 be another MDP, exactly the same as M_1 except in its reward function R_2 , which is given as $R_2(x, a) = cR_1(x, a), \forall (x, a) \in \mathcal{X} \times \mathcal{A}, c > 0$. Show that the optimal policy of M_2 is also π_1^* .
- 2. (2 points) Define the mapping $F: \mathbb{R}^{|\mathcal{X}||\mathcal{A}|} \to \mathbb{R}^{|\mathcal{X}||\mathcal{A}|}$ as

$$(FQ)(x,a) = R(x,a) + \gamma \sum_{y} P(y|x,a) \max_{b} Q(y,b)$$

Show that F is contraction w.r.t. $\|\cdot\|_{\infty}$

- 3. (4 points) Consider the value iteration algorithm, $V_{k+1} = TV_k$, with $V_0 = 0$. Let k_0 be a given integer. Show that, for any $\epsilon > 0$, we can find an integer n_0 (that will depend on ϵ) such that $||V_{n_0+k_0} V_{n_0}||_{\infty} < \epsilon$. Give a sufficient condition for selecting such an n_0 .
- 4. (8 points) Prof. K has an umbrella that he takes from his home to office and back. If it rains, and if the umbrella is in the place where he is, Prof. K takes the umbrella and goes to the other place, and this involves no cost. However, if he doesn't have the umbrella and it rains, there is a cost C_w for getting wet. If he takes the umbrella with him when it is not raining, he suffers an inconvenience cost C_i . If he does not take the umbrella with him when it is not raining, that incurs no additional cost. Assume that the probability of rain is p and costs are discounted at a factor γ . What is the optimal policy that will minimize the expected cumulative discounted cost?
 - (a) (1 point) Formulate this as an MDP with three states.
 - (b) (1 point) How many control policies should we consider?
 - (c) (3 points) Write down the Bellman optimality equation for all states.
 - (d) (3 points) What is the optimal policy? Note that this will depend on the value of p (similar to the Homework problem)
- 5. (4 points) Let $(V_k^i)_{k\geq 1}$ be the sequence of value functions generated by value iteration. Also, let $(V_k^p)_{k\geq 1}$ be the sequence of value functions generated by policy iteration, where $V_k^p = V_{\pi_k}$, and π_k is the policy at iterate k. Assume that $V_0^p = V_0^i$. Then, show that $V_k^i \leq V_k^p \leq V^*$, for all $k \geq 0$, where V^* is the optimal value function.