Mit dem Sinus modellieren

Kirill Heitzler

20. März 2021

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Der Sinus

Sinus - Beispiel

Der Kosinus und der Tangens

Einheitskreis

Beispiel

Der Sinus und Kosinus am Einheitskreis

Beziehungen zwischen Sinus, Kosinus und Tangens

Einheitskreis - Definition

Grundlagen

Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

► Gegen den Uhrzeigersinn

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- ▶ B

Abbildung 1: Rechtwinkliges Dreieck

- ► Gegen den Uhrzeigersinn
- ► A
- B
- C

Abbildung 1: Rechtwinkliges Dreieck

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Abbildung 1: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **▶** β

Abbildung 2: Rechtwinkliges Dreieck

- $\triangleright \alpha$
- **>** £
- $ightharpoonup \gamma$

Abbildung 2: Rechtwinkliges Dreieck

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Abbildung 2: Rechtwinkliges Dreieck

Abbildung 3: Rechtwinkliges Dreieck

ightharpoonup "Ankathete von lpha"

Abbildung 3: Rechtwinkliges Dreieck

- ightharpoonup "Ankathete von lpha"
- ightharpoonup "Gegenkathete von α "

Abbildung 3: Rechtwinkliges Dreieck

Die anliegende Kathete zu Winkel α wird "Ankathete von α " genannt und die Kathete gegenüber von α wird "Gegenkathete von α " genannt.

Abbildung 3: Rechtwinkliges Dreieck

Hypotenuse

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

"Hypotenuse"

Abbildung 4: Rechtwinkliges Dreieck

Hypotenuse

Die Hypotenuse liegt gegenüber des rechten Winkels $\gamma.$

Abbildung 4: Rechtwinkliges Dreieck

Der Sinus

Abbildung 5: Rechtwinkliges Dreieck

$$sin(\alpha) =$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{}$$

Abbildung 5: Rechtwinkliges Dreieck

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 5: Rechtwinkliges Dreieck

In einem rechtwinkligen Dreieck (Abbildung 16) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

den Sinus von α .

Abbildung 5: Rechtwinkliges Dreieck

Sinus - Beispiel Gegenkathete von α mithilfe des Sinus berechnen

Aufgabe

Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung 6 besitzt einen rechten Winkel (90°), die Hypotenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namens x.

Abbildung 6: Rechtwinkliges Dreieck am Münster

$$\sim \alpha = 45^{\circ}$$

- $\sim \alpha = 45^{\circ}$
- ▶ Hypotenuse = 164,05m

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ▶ Gegenkathete von $\alpha = x$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} \tag{1}$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$\sin(lpha) = rac{{\sf Gegenkathete\ von\ }lpha}{{\sf Hypotenuse}}$$
 (1) $\sin(45^\circ) =$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- ▶ Gegenkathete von $\alpha = x$

$$sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{Hypotenuse}$$

$$sin(45^{\circ}) = \frac{x}{}$$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 $\sin(45^\circ) = \frac{x}{164,05m}$
(1)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

$$\sin(45^\circ) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
 (2)

$$\sin(45^\circ) = \frac{x}{164.05m} \qquad |\cdot 164,05m \quad (2)$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164,05m
- Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ)\cdot 164,05\,m =$$

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m} \qquad |\cdot 164,05m \quad (2)$$

$$\sin(45^{\circ}) \cdot 164,05m = x$$
 (3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | · 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x$$

$$x \cong$$
(3)

- $\sim \alpha = 45^{\circ}$
- ightharpoonup Hypotenuse = 164, 05 m
- ightharpoonup Gegenkathete von $\alpha = x$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$
 (1)
 $\sin(45^\circ) = \frac{x}{164,05m}$ $|\cdot 164,05m$ (2)

$$\sin(45^\circ) = \frac{x}{164,05m}$$
 | \cdot 164,05m (2)

$$\sin(45^\circ) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort

Abbildung 7: Rechtwinkliges Dreieck am Münster

Antwort

Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

Abbildung 7: Rechtwinkliges Dreieck am Münster

Der Kosinus und der Tangens

Sinus von α

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(lpha) = rac{\mathsf{Gegenkathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 8: Rechtwinkliges Dreieck

Sinus von α

$$\sin(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Hypotenuse}}$$

Abbildung 8: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) =$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(lpha) = rac{\mathsf{Ankathete} \ \mathsf{von} \ lpha}{}$$

Abbildung 9: Rechtwinkliges Dreieck

Cosinus von α

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 9: Rechtwinkliges Dreieck

Tangens von α

$$tan(\alpha) =$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$an(lpha) = rac{\mathsf{Gegenkathete} \; \mathsf{von} \; lpha}{}$$

Abbildung 10: Rechtwinkliges Dreieck

Tangens von α

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{\mathsf{Ankathete\ von\ }\alpha}$$

Abbildung 10: Rechtwinkliges Dreieck

Einheitskreis

Einheitskreis - Beispiel

Aufgaben-Text

Auf einem Koordinatensystem eines Radarschirms (Abbildung 11) wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Abbildung 11: Radar

Aufgaben A

Ein Schiff A ist mit dem Kurs 30° gegenüber der x-Achse einen Kilometer weit gefahren. Welche Koordinaten im x-y-Kooradinatensystem hat es?

Abbildung 12: Radar

Lösung A Schätzungen?

Abbildung 13: Radar Lösung

Lösung A

Das Schiff A mit dem Kurs 30° befindet sich auf der x-Achse: etwa 0,86 Kilometer und y-Achse: 0,5 Kilometer. Also auf dem Punkt A(0,86|0,5)

Abbildung 13: Radar Lösung

Aufgaben B

Welche Koordinaten hat das Schiff B, das mit dem Kurs **75**° einen Kilometer weit gefahren ist?

Abbildung 14: Radar

Lösung B Schätzungen?

Abbildung 15: Radar Lösung

Lösung B

Das Schiff B mit dem Kurs 75° befindet sich auf der x-Achse: etwa 0,25 Kilometer und y-Achse: 0,96 Kilometer. Also auf dem Punkt A(0,25|0,96)

Abbildung 15: Radar Lösung

Der Sinus und Kosinus am Einheitskreis

Dreieck mit Hypotenusenlänge 1

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

Abbildung 16: Dreieck mit Hypotenusenlänge 1

Die Endpunkte der **Hypotenuse** sind der Ursprung O und ein Punkt **P**, der auf einem Kreis um O mit dem **Radius 1** liegt. Diesen Kreis nennt man den **Einheitskreis**.

Abbildung 17: Sinus und Kosinus am Einheitskreis

Die Ecke mit dem rechten Winkel liegt auf der x-Achse senkrecht unter P. Der Punkt P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$

Abbildung 18: Sinus und Kosinus am Einheitskreis

Beziehungen zwischen Sinus, Kosinus und Tangens

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19).

Abbildung 19: $0^{\circ} < \alpha < 90^{\circ}$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung ??),

Abbildung 19: $sin(0^\circ) = 0$, $cos(0^\circ) = 1$

Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(Abbildung 19). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (Abbildung ??), $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 0$ (Abbildung ??).

Abbildung 19: $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 1$

Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an(20), so erhält man den für jede Winkelweite gültigen Zusammenhang $\sin^2(\alpha) + \cos^2(\alpha) = 1$.

Abbildung 20: Einheitskreis Dreieck Satz des Pythagoras

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$(\sin(45))^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(rac{\sqrt{2}}{2}
ight)^2 +$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^{2} + \left(\frac{\sqrt{2}}{2}\right)^{2} = 1$$

$$\frac{\sqrt{2^{2}}}{2^{2}} +$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2}$$
(3)

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1$$
 (2)

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1 \tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1 \tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1 \tag{5}$$

$$\frac{1}{2} + \frac{1}{2} = 1 \tag{6}$$

$$0,5+0,5=1 \tag{7}$$

In Abbildung 21 sieht man: $\sin(90^{\circ} - \alpha) = x = \cos(\alpha)$ und $\cos(90^{\circ} - \alpha) = y = \sin(\alpha)$

Abbildung 21: $\sin(90^{\circ} - \alpha)$; $\cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) =$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2} \qquad =$$

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \tag{1}$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2}$$
 = $\cos(30^{\circ})$ (2)

Abbildung 22: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$tan(\alpha) =$$
 (1)

Abbildung 23: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$tan(\alpha) = \frac{\mathsf{Gegenkathete\ von\ }\alpha}{} =$$
 (1)

Abbildung 23: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \tag{1}$$

Abbildung 23: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{y}{x} = \frac{\sin(\alpha)}{\cos(\alpha)}$$
 (1)

Abbildung 23: $sin(90^{\circ} - \alpha)$; $cos(90^{\circ} - \alpha)$

Einheitskreis - Definition

- ightharpoonup tan(lpha) = $rac{\sin(lpha)}{\cos(lpha)}$, $lpha
 eq 90^\circ$, weil: tan(90) = $rac{\sin(90)}{\cos(90)}$ = $rac{1}{0}$ = extstyle 1