Machine Learning

Lecture 12 Regularization

Chen-Kuo Chiang (江 振 國) *ckchiang@cs.ccu.edu.tw*

中正大學 資訊工程學系

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5 examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in Z-space +
 Φ = 4th order polynomial
- unique solution passing all examples
 ⇒ E_{in}(g) = 0
- *E*_{out}(*g*) huge

bad generalization: low E_{in} , high E_{out}

Bad Generalization and Overfitting

- take $d_{VC} = 1126$ for learning: bad generalization — $(E_{out} - E_{in})$ large
- switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1126$: **overfitting**

$$-E_{\text{in}}\downarrow$$
, $E_{\text{out}}\uparrow$

• switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1$: underfitting

$$-E_{\text{in}}\uparrow$$
, $E_{\text{out}}\uparrow$

bad generalization: low E_{in} , high E_{out} ; overfitting: lower E_{in} , higher E_{out}

Case Study (1/2)

Case Study (2/2)

overfitting from g_2 to g_{10} ? both yes!

Irony of Two Learners

- learner Overfit: pick $g_{10} \in \mathcal{H}_{10}$
- learner Restrict: pick $g_2 \in \mathcal{H}_2$
- when both know that target = 10th
 —R 'gives up' ability to fit

but *R* wins in *E*_{out} a lot! philosophy: concession for advantage? :-)

Learning Curves Revisited

- \mathcal{H}_{10} : lower $\overline{E_{\text{out}}}$ when $N \to \infty$, but much larger generalization error for small N
- gray area : O overfits! (Ein ↓, Eout ↑)

R always wins in $\overline{E_{\text{out}}}$ if N small!

Regularization: The Magic

• idea: 'step back' from \mathcal{H}_{10} to \mathcal{H}_{2}

name history: function approximation for ill-posed problems

how to step back?

Stepping Back as Constraint

Q-th order polynomial transform for $x \in \mathbb{R}$:

$$\Phi_Q(x) = (1, x, x^2, \dots, x^Q)$$

+ linear regression, denote $\tilde{\mathbf{w}}$ by \mathbf{w}

hypothesis w in \mathcal{H}_{10} : $W_0 + W_1 x + W_2 x^2 + W_3 x^3 + \ldots + W_{10} x^{10}$

hypothesis **w** in \mathcal{H}_2 : $w_0 + w_1 x + w_2 x^2$

that is, $\mathcal{H}_2 = \mathcal{H}_{10}$ AND 'constraint that $w_3 = w_4 = \ldots = w_{10} = 0$ '

step back = constraint

Regression with Constraint

$$\mathcal{H}_{10} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1}
ight\}$$

regression with \mathcal{H}_{10} :

 $\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w})$

```
\mathcal{H}_{10} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right\} \quad \mathcal{H}_{2} \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right\}
                                                                          while w_3 = w_4 = \ldots = w_{10} = 0
                                                   regression with \mathcal{H}_2:
                                                                                  E_{\text{in}}(\mathbf{w})
                                                                    min
                                                                \mathbf{w} \in \mathbb{R}^{10+1}
                                                                    s.t. W_3 = W_4 = \ldots = W_{10} = 0
```

step back = constrained optimization of E_{in} why don't you just use $\mathbf{w} \in \mathbb{R}^{2+1}$? :-)

Regression with Looser Constraint

$$\mathcal{H}_2 \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \ \text{while } w_3 = \ldots = w_{10} = 0 \right\} \ \text{regression with } \mathcal{H}_2 \colon \text{regression with } \mathcal{H}_2' \colon \text{regression with } \mathcal{H}_2' \colon \text{regression with } \mathcal{H}_2' \colon \text{s.t.} \quad w_3 = \ldots = w_{10} = 0 \ \text{s.t.} \quad \sum_{q=0}^{10} \llbracket w_q \rrbracket$$

$$\begin{cases} \mathbf{w} \in \mathbb{R}^{10+1} & \mathcal{H}_2' \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \\ \text{while } w_3 = \ldots = w_{10} = 0 \right\} \end{cases}$$

$$\text{while } w_3 = \ldots = w_{10} = 0$$

$$\text{In with } \mathcal{H}_2:$$

$$\text{regression with } \mathcal{H}_2':$$

$$\text{min}_{\mathbf{w} \in \mathbb{R}^{10+1}} \quad \mathcal{E}_{\text{in}}(\mathbf{w})$$

$$\text{t.} \quad w_3 = \ldots = w_{10} = 0$$

$$\text{s.t.} \quad \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3$$

• more flexible than \mathcal{H}_2 : $\mathcal{H}_2 \subset \mathcal{H}_2'$

$$\mathcal{H}_2 \subset \mathcal{H}_2'$$

• less risky than \mathcal{H}_{10} :

$$\mathcal{H}_2' \subset \mathcal{H}_{10}$$

bad news for sparse hypothesis set \mathcal{H}'_2 : NP-hard to solve :-(

Regression with Softer Constraint

$$\mathcal{H}_2' \equiv \left\{ oldsymbol{w} \in \mathbb{R}^{10+1}
ight.$$
 while ≥ 8 of $w_q = 0
ight\}$

regression with \mathcal{H}'_2 :

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3 \qquad \min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} w_q^2 \leq C$$

$$\mathcal{H}(C) \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right.$$
 while $\|\mathbf{w}\|^2 \leq C$

regression with $\mathcal{H}(C)$:

$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\mathsf{in}}(\mathbf{w})$$
 s.t. $\sum_{q=0}^{10} w_q^2 \leq C$

- $\mathcal{H}(C)$: overlaps but not exactly the same as \mathcal{H}'_2
- soft and smooth structure over C > 0: $\mathcal{H}(0) \subset \mathcal{H}(1.126) \subset \ldots \subset \mathcal{H}(1126) \subset \ldots \subset \mathcal{H}(\infty) = \mathcal{H}_{10}$

regularized hypothesis **w**_{REG}: optimal solution from regularized hypothesis set $\mathcal{H}(C)$

Fun Time

For $Q \ge 1$, which of the following hypothesis (weight vector $\mathbf{w} \in \mathbb{R}^{Q+1}$) is not in the regularized hypothesis set $\mathcal{H}(1)$?

- **1** $\mathbf{w}^T = [0, 0, \dots, 0]$
- **2** $\mathbf{w}^T = [1, 0, \dots, 0]$
- **3** $\mathbf{w}^T = [1, 1, \dots, 1]$
- $\mathbf{\Phi}^T = \left[\sqrt{\frac{1}{Q+1}}, \sqrt{\frac{1}{Q+1}}, \dots, \sqrt{\frac{1}{Q+1}} \right]$

Reference Answer: (3)

The squared length of **w** in \bigcirc is Q + 1, which is not < 1.

Matrix Form of Regularized Regression Problem

$$\min_{\mathbf{w} \in \mathbb{R}^{Q+1}} E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \underbrace{\sum_{n=1}^{N} (\mathbf{w}^T \mathbf{z}_n - y_n)^2}_{(Z\mathbf{w} - \mathbf{y})^T (Z\mathbf{w} - \mathbf{y})}$$

s.t.
$$\sum_{q=0}^{Q} W_q^2 \le C$$

- $\sum_{n \dots = (Z\mathbf{w} \mathbf{y})^T (Z\mathbf{w} \mathbf{y}), \text{ remember? :-)}$
- $\mathbf{w}^T \mathbf{w} \leq C$: feasible \mathbf{w} within a radius- \sqrt{C} hypersphere

how to solve constrained optimization problem?

Augmented Error

• if oracle tells you $\lambda > 0$, then

solving
$$\nabla E_{\text{in}}(\mathbf{w}_{\text{REG}}) + \frac{2\lambda}{N} \mathbf{w}_{\text{REG}} = \mathbf{0}$$

$$\frac{2}{N} \left(\mathbf{Z}^T \mathbf{Z} \mathbf{w}_{REG} - \mathbf{Z}^T \mathbf{y} \right) + \frac{2\lambda}{N} \mathbf{w}_{REG} = \mathbf{0}$$

optimal solution:

$$\mathbf{w}_{\mathsf{REG}} \leftarrow (\mathbf{Z}^T \mathbf{Z} + {\color{red}\lambda} \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$$

—called ridge regression in Statistics

minimizing unconstrained E_{aug} effectively minimizes some C-constrained E_{in}

The Results

philosophy: a little regularization goes a long way!

call ' $+\frac{\lambda}{N}\mathbf{w}^T\mathbf{w}$ ' weight-decay regularization:

 $\begin{array}{l}
\text{larger } \lambda \\
\iff \text{prefer shorter } \mathbf{w} \\
\iff \text{effectively smaller } C
\end{array}$

-go with 'any' transform + linear model

The Optimal λ

- noise unknown—important to make proper choices

how to choose?

stay tuned for the next lecture! :-)

Regularization for Neural Network

basic choice:

old friend weight-decay (L2) regularizer $\Omega(\mathbf{w}) = \sum \left(\mathbf{w}_{ij}^{(\ell)}\right)^2$

- 'shrink' weights:
 large weight → large shrink; small weight → small shrink
- want $w_{ii}^{(\ell)} = 0$ (sparse) to effectively **decrease** d_{VC}
 - L1 regularizer: $\sum |w_{ij}^{(\ell)}|$, but **not differentiable**
 - weight-elimination ('scaled' L2) regularizer:
 large weight → median shrink; small weight → median shrink

weight-elimination regularizer: $\sum \frac{\left(w_{ij}^{(\ell)}\right)^2}{1+\left(w_{ij}^{(\ell)}\right)^2}$