

<u>Help</u> dougsweetser ▼

Course

Progress

<u>Dates</u>

Discussion

<u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Dedicated problems

Previous			ď	Next >
Problem 3.9 ☐ Bookmark this page				
Dockmark tris	page			
Homework due Nov 11, 2020 19:00 EST				
Problem 3.9 1 point possible (graded)				
Evaluate the integral (use pi for π and exp for exponential function): $\int_{-\infty}^{\infty} \frac{\cos\left(x-\frac{1}{x}\right)}{1+x^2} dx$				
$J_{-\infty}$ ${1+a}$	$\frac{1}{2}ax$			
Submit	You have used 0 of 6 attempts			
	< Previous	Next >		

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>