MAE 531 Project

-Yash Bhagat

Problem 1:

BFGS

Initial x - position of the masses are taken as given in the problem: at intervals of 10m. All the y - position are taken same and are varied for each run as shown in the table below.

Convergence criteria: norm(grad(F)) <= 0.001

1D	
Algo	Golden Section

y init	0	
y iiiit	X min	F min
-	10.01358	1_'''''
-		
-	20.05313	
-	29.98169	
	40.0118	
_	50.20992	
	60.23966	
	70.57668	
-	79.71003	
	90.68657	
_	100.1118	-14011.5
_	-0.79852	-14011.5
	-1.61697	
	-3.94531	
	-2.39049	
	-0.84948	
-	-1.93888	
-	-2.32573	
-	-10.1396	
	-11.0057	
=	-2.92025	

-5	
X_min	F_min
8.980585	
19.19848	
29.8742	
39.94038	
49.97346	
60.04395	
70.10048	
80.12532	
90.89985	
101.0079	-15080.4
-4.18353	-13060.4
-5.25196	
-5.74782	
-5.45796	
-5.15409	
-5.37905	
-5.25815	
-7.10517	
-7.25665	
-4.37698	

	-10
F_min	X_min
	8.181606
	18.25239
	28.97875
	39.55373
	49.89742
	60.10144
	70.55916
	81.09529
	92.28275
25624.4	101.5582
-25621.1	-6.01869
	-9.72738
	-10.9385
	-10.6076
	-10.2599
	-10.5009
	-10.5128
	-12.8044
	-12.1751
1	-6.28664

-20	
X_min	F_min
7.560437	
16.11279	
27.76328	
39.23416	
49.83796	
60.17503	
70.91265	
82.27505	
94.34324	
102.4229	-34231.9
-8.34669	-34231.9
-15.9312	
-20.1324	
-20.5313	
-20.226	
-20.4971	
-20.4282	
-21.6063	
-17.5198	
-8.80823	

For y_init = 0:

Location of the masses:

Simulated annealing

Starting location:

x0 = [10;20;30;40;50;60;70;80;90;100]

y0 = [0;0;0;0;0;0;0;0;0;0;0]

Init Temp	100000
n	500
С	0.4
Move	
limit	0.5

xmin	Fmin
8.2203622	
18.836992	
29.32589	
40.95031	
52.004794	
62.691398	
73.401477	
86.087085	
93.893406	
102.42345	-31299.3
-6.425394	-31299.3
-13.26809	
-15.85485	
-16.8102	
-16.77121	
-20.78731	
-23.8404	
-23.96339	
-17.00079	
-7.424331	

xmin	Fmin
9.61636	
18.96346	
30.79383	
43.45242	
53.50408	
63.63377	
73.13144	
85.28058	
95.72251	
102.8748	-31201.8
-3.32205	-31201.6
-10.6603	
-12.5876	
-11.4301	
-15.1323	
-17.5107	
-19.2239	
-23.0154	
-18.422	
-8.70819	

xmin	Fmin
10.22713	
20.94831	
31.36427	
41.44388	
52.03584	
61.88273	
74.0164	
85.40964	
95.2755	
102.3024	-30207.4
-0.57194	-30207.4
-4.50141	
-7.1928	
-12.4724	
-13.9536	
-18.5482	
-20.4206	
-23.5808	
-18.7963	
-8.73649	

xmin	Fmin
5.47768	
15.37664	
28.84076	
39.43354	
49.85366	
59.89269	
70.07879	
81.47494	
91.5879	
100.7151	-30716.5
-9.15157	-30/10.3
-14.5254	
-20.229	
-22.8925	
-25.3663	
-24.6778	
-25.5221	
-21.7695	
-16.3228	
-7.12236	

Avg F = -30786.9

Convergence criteria: Temperature < 0.001 AND Objective function value between Temp changes < 0.001

xmin	Fmin
9.204086	
19.79984	
30.32285	
41.59583	
50.96417	
60.77882	
70.47308	
83.67346	
94.72144	
101.8905	-30509.3
-5.38347	-30309.3
-12.4111	
-14.9741	
-16.0782	
-18.6694	
-18.165	
-22.2685	
-24.5603	
-16.562	
-7.76473	

X-Y location of the masses:

• Genetic algorithm

Starting Population:

x – Patterned numbers (Latin Hyper Cube) between 0 and 100 y – Patterned numbers (Latin Hyper Cube) between -30 and 30

T dttermed man	ilocis (Latin 1)
xmin	Fmin
10.37004431	
21.43083024	
33.50830313	
44.72428875	
55.28547477	
61.43414132	
72.08701708	
81.4741801	
92.97082658	
100.9207174	-15460.8732
0.336905393	-13400.8732
-0.85515557	
1.589402305	
-1.03001268	
0.792496574	
-7.17457725	
-7.23645704	
-14.5161122	
-11.2126007	
-5.01381827	

xmin	Fmin
9.580836	
19.74027	
30.66244	
41.45691	
50.95471	
54.49834	
64.79253	
75.47605	
88.20103	
99.72969	-11251.9
-2.2449	-11231.9
-2.25344	
-5.6863	
-4.42556	
-1.37603	
-10.8031	
-7.61482	
-9.04501	
-7.89583	
-3.72047	

xmin	Fmin
9.987563	
20.65464	
31.67193	
42.11186	
52.6021	
57.57094	
67.18099	
76.92741	
89.37615	
100.0118	-9460.98
-1.94709	-9400.96
-1.97058	
-1.69735	
-0.58891	
0.89902	
-7.39219	
-3.76302	
-6.48765	
-9.34181	
-3.96614	

	1
xmin	Fmin
10.21253	
21.99417	
33.75084	
45.22594	
55.23185	
57.02682	
66.42781	
77.07231	
89.42416	
99.27438	-13241.8
-4.35418	-13241.6
-6.42159	
-8.13958	
-9.06498	
-4.89288	
-14.4262	
-10.5842	
-11.4544	
-8.24802	
-1.96835	

xmin	Fmin
10.22545	
21.41667	
34.1876	
44.68309	
52.49158	
56.98535	
67.48367	
78.08217	
89.77583	
99.87639	-10420.9
-3.9315	
-4.34687	
-4.2923	
-2.07977	
4.58754	
-4.95298	
-5.31352	
-9.16855	
-9.47763	
-4.70432	

Avg F = -11967.3

X-Y location of the masses:

Convergence Criteria:

- 2500 Generations
- Average fitness of the entire population over 2 generations

Population size = 60

Parents were selected using tournament selection and children were formed by arithmetic crossover using $\lambda = 0.618$.

Number of children generated = pop_size * cross_rate

The bounds for mutation was set as \pm 2.5. So after mutation, the resulting variable would be within \pm 2.5 of the current value of the bound.

BFGS calculates the local minima, hence the minima value changes with different initial conditions as demonstrated above. Whereas, with SA and GA different starting locations were tried and optimum was found to be close in each case.

In GA, the number of function calls is the highest. The reason is that for each generation, the objective function is evaluated 100 times (population size). The parameters used for GA in this case doesn't result in the most efficient algorithm. The average F doesn't converge after 2500 generations, hence the convergence to global minima will take very high number of generations. For better performance, the parameters like selection, crossover and mutation can be changed like:

- Truncation selection was tried instead of tournament.
- The initial population was set as random between (-1,1) and the mutation was set as 2*current value

Problem 2:

• ALM

rp	100000
ε	0.0001

Start	
Location	
3	
0.75	
20	
8	
8	
3	
5.2	

xmin	fmin
3.506213	
0.700074	
19.64462	
7.982289	3503.546
8.236154	
3.3495	
5.286463	

	λ init
g1	1
g2	1
g3	1
g4	1
g5	-1
g6	1
g7	-1
g8	-1
g9	-1
g10	1
g11	1
g12	1
g13	-1
g14	1
g15	-1
g16	1
g17	-1
g18	1
g19	-1
g20	1
g21	-1
g22	1
g23	-1
g24	1
g25	-1

Convergence Criteria:

- Norm $(x(i+1) x(i)) < \varepsilon$
- $augF(x(i+1) x(i)) < \epsilon$
- All the constraints are satisfied

fminunc was used to find the x in each iteration

Plot without considering funcCount of fminunc:

Plot after considering funcCount of fminunc: (The initial values were extremely large (+/- 10^9), so not shown)

Simulated annealing

Init	
Temp	100000
n	100
С	0.4
Move	
limit	0.001

x0	2.5
	0.65
	15
	7
	7
	2.5
	5

xmin	fmin
3.560404	
0.70006	
17.00596	
7.38496	3037.133
7.770553	
3.374216	
5.301769	

xmin	fmin
3.581022	
0.700773	
17.00433	
7.333398	3049.244
7.737336	
3.416073	
5.288052	

xmin	fmin
3.573229	
0.700905	
17.00122	
7.364103	3053.195
7.74801	
3.372561	
5.315958	

xmin	fmin
3.554931	
0.700006	
17.00105	
7.320409	3034.082
7.748703	
3.362698	
5.308391	

xmin	fmin
3.574812	
0.705931	
17.0008	
7.325117	3121.548
7.740063	
3.583451	
5.295993	

Exterior Penalty function was used. Hence, all the variables starting location had to be outside bounds.

Avg F min = 3059.04

• Genetic algorithm

Starting location of the population: random values within upper and lower bounds of each variable as given in the problem.

Encoding	Real
Selection	Tournament
Crossover	Arithmetic
Crossover rate	0.8
Mutation	Random value reassignment within bounds
Mutation rate	0.03

Population size = 100

Parents were selected using tournament selection and children were formed by arithmetic crossover using $\lambda = 0.618$.

Number of children generated = pop_size * cross_rate

The bounds for mutation was set as +/-0.1. So after mutation, the resulting variable would be within +/-0.1 of the current value of the bound.

To handle constraint violation, a penalty function similar to exterior penalty was used (instead of psi^2, just psi is used).

Reference to the following journal paper:

A COMPARISON OF SEQUENTIAL QUADRATIC PROGRAMMING, GENETIC ALGORITHM, SIMULATED ANNEALING, PARTICLE SWARM OPTIMIZATION AND HYBRID ALGORITHM FOR THE DESIGN AND OPTIMIZATION OF GOLINSKI'S SPEED REDUCER

By, Cenker Aktemur, Islam Gusseinov

Convergence Criteria:

- 500 Generations
- Average fitness value of the population of 2 consecutive generations <= 0.01
- All constraints <= 0

xmin	fmin
3.56678842	
0.7	
17	
7.5656515	3184.910189
8.3	
3.37859024	
5.5	

xmin	fmin
3.6	
0.7	
17.00001	
8.299998	3160.283
8.247306	
3.458755	
5.404919	

xmin	fmin
3.565763	
0.7	
17	
8.118489	3080.819
8.3	
3.363655	
5.344105	

xmin	fmin
3.6	
0.7	
17	
7.996323	3083.793
8.3	
3.397483	
5.316029	

xmin	fmin
3.545923	
0.7	
17	
8.3	3121.16
8.3	
3.596456	
5.315377	

Average F minimum = 3126.193

In this problem the GA parameters resulted in a very efficient performance of the code as compared to ALM and SA.

Apart from exterior penalty, dynamic penalty function was also attempted for SA with similar results.

In ALM, BFGS was attempted instead of fminunc. Different values of the initial Lagrange multipliers may result in a better performance. On application of different convergence criteria on constraints $<= \epsilon$ (varying the value of ϵ), it was seen that the performance decreased considerably as ϵ was decreased. It took more iterations and time for the function to converge.

After enforcing the constraints on convergence, SA showed good repeatability. To improve performance for different starting positions, initial temperature and n values can be increased.

In general, there is lot of flexibility while using the Heuristic based approaches over what all parameters can be changed to obtain the most efficient solution, which is lacking in the analytical approaches. Additionally, the analytical approaches usually do only local search for minima, whereas GA and SA do global search. However, this comes with a caveat: the number of objective function evaluations is generally higher in the Heuristic approaches.