Vrtilna količina

Vpeljemo operator vrtilne količine kot

$$\vec{L} = \vec{r} \times \vec{p}; \vec{L} = (L_x, L_y, L_z)$$

Operator vrtilne količine je hermitski (kar zgleda trivialno ampak ni)

$$\vec{L} = \vec{r} \times \vec{p} = -\vec{p} \times \vec{r} = \vec{L}^{\dagger}$$

Koristen je tudi kvadrat operatorja vrtilne količine

$$\vec{L}^2 = \vec{L} \cdot \vec{L} = (\vec{r} \times \vec{p})(\vec{r} \times \vec{p}) = L_x^2 + L_y^2 + L_z^2 = L^2$$

Lastnosti

i.
$$\left[L_{\alpha}, L_{\beta}\right] = i\hbar\epsilon_{\alpha\beta\gamma}L_{\gamma}$$
 npr. $\left[L_{x}, L_{y}\right]$

ii.
$$\left[L_{\alpha}, A_{\beta}\right] = i\hbar\epsilon_{-}\alpha\beta\gamma A_{\gamma}$$
 kjer je $\vec{A} = \vec{r}, \vec{p}, \vec{L},...$

iii.
$$[\vec{L}, \hat{A}] = 0$$
 če je $\hat{A} = konst., r^2, p^2, L^2$

iv. Lestvični operatorji (ladder operator)

So analog kreacijskemu in anhilacijskemu operatorju pri LHO. Definiramo ju kot

$$L_{\pm} = L_x \pm iL_y = (L_{\mp})^{\dagger}$$

 $[L^2, L_{\pm}] = 0$

Velja pa še

$$[L_z, L_{\pm}] = \pm \hbar L_{\pm}$$

in pa

$$[L_+, L_-] = 2\hbar L_Z$$

Kar dobimo preprosto iz

$$L_{+}L_{-} = (L_{x} + iL_{y})(L_{x} - iL_{y}) = L_{x}^{2} + L_{y}^{2} + iL_{y}L_{x} - iL_{x}L_{y} = | + L_{z}^{2} - L_{z}^{2}$$
$$= L^{2} + \hbar L_{z} - L_{z}^{2} \implies L_{+}L_{\mp} = L^{2} \pm L_{z} - L_{z}^{2}$$

Lastne vrednosti L_z , L^2

To bi lahko rešili čisto običajno ampak raje naredimo to kot smo pri LHO samo tukaj z lestvičnimi operatorji.

Velja

$$L_z L_+ |m\rangle = (L_+ L_z \pm \hbar L_+) |m\rangle = (m \pm 1) \hbar L_+ |m\rangle \propto |(m \pm 1)\rangle$$

Torej L_+, L_- zvišujeta/znižujeta lastno vrednost. Vemo še

$$[L^2, L_z] = 0$$

$$L^2|m\rangle = \lambda |m\rangle$$
; $\lambda \in \mathbb{R}$ ker je L^2 hermitski

$$\langle m|L^2|m\rangle = \left\langle m\left|\sum_{\alpha}L_{\alpha}^2\right|m\right\rangle = \sum_{\alpha}\langle L_{\alpha}m|L_{\alpha}m\rangle \geq 0 \text{ ker je to } norma \text{ vektorja}$$

Torej je

$$\lambda \langle m | m \rangle \ge 0 \Rightarrow \lambda \ge 0$$

Operator L^2 je semipozitivno definiten. $L^2L_\pm|m\rangle=L_\pm L^2|m\rangle=\lambda L_\pm|m\rangle$. Lastne vrednosti so

$$L^2|lm\rangle = \hbar^2 l(l+1)|lm\rangle$$

$$L_z|lm\rangle = \hbar m|lm\rangle$$

Omejitev za m in lastne vrednosti L_+

Poglejmo si

$$\langle L_+ \psi_{lm} | L_+ \psi_{lm} \rangle = \langle \psi_{lm} | (L_+)^{\dagger} L_+ | \psi_{lm} \rangle = \langle \psi_{lm} | L_- L_+ | \psi_{lm} \rangle \ge 0$$

$$\langle lm|L_{\mp}L_{+}|lm\rangle = \langle lm|L^{2} - L_{z}^{2} \mp \hbar L_{z}|lm\rangle = (l(l+1)\hbar^{2} - m(m\pm 1)\hbar^{2})\langle lm|lm\rangle \ge 0$$

Torej mora biti $(l(l+1)\hbar^2 - m(m\pm 1)\hbar^2) \ge 0$.

Če je
$$m \ge 0$$
; $l \ge 0$: $m(m+1) \le l(l+1) \Rightarrow m \le l$
Če je $m \le$; $l \ge 0 \Rightarrow -m \ge -l$

$$\Rightarrow |m| \leq l$$

Hkrati smo pa tudi ugotovili

$$L_{\pm}|lm\rangle = \hbar\sqrt{l(l+1) - m(m\pm 1)}|l,m\pm 1\rangle$$

Kakšni so I?

Vzemimo največji možen m

$$L_{-}|ll\rangle = C_{l,l-1}|l,l-1\rangle$$

$$L_{-}L_{-}|ll\rangle = C_{l,l-2}|l,l-2\rangle$$

$$L_{-}^{k}|ll\rangle = C_{l,l-k}|l,,l-k\rangle$$

Naredimo to tolikokrat da je projekcija l-k=-l. Torej je 2l=k in smo ugotovili

$$l = \frac{k}{2} = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$$

Zakaj ima pa vodik le celoštevilske l?

Naj bo $\psi_{lm}=\mathcal{C}e^{im\varphi}$ in $\psi(\vec{r})$ vodikova valovna funkcija. Radi bi zahtevali zveznost ψ_{lm} torej mora veljati

$$e^{im(\varphi+2\pi)}=e^{im\varphi}\Rightarrow e^{im2\pi}=1\Rightarrow m\in\mathbb{Z}$$

Kakšne pa so rešitve ψ_{lm} ?

Rešitve so sferični harmoniki $Y_l^m(\theta, \phi)$.

Zapis operatorja L z matriko

Razvijemo $|\psi\rangle$ po sferičnih harmonikih

$$|\psi\rangle = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} |lm\rangle$$

na njo lahko delujemo z operatorjem, ki je prav tako zapisan v isti bazi. Operator lahko zapišemo kot

$$L_{+} = \sum_{ll',mm'} |l'm'\rangle (L_{+})_{l'l,m'm} \langle lm|$$

kjer je $(L_+)_{l'l,m'm}=\langle l'm'|L_+|lm\rangle$ matrika matričnih elementov. Za operator L_+ je

$$(L_+)_{l'l,m'm} = \left\langle l'm' \left| \hbar \sqrt{l(l+1) - m(m+1)} \right| l, m+1 \right\rangle \delta_{l'l} \delta_{m'm}$$

Torej je

$$L_{+}|\psi\rangle = \begin{bmatrix} 0 & & & & & & & \\ & 0 & \sqrt{2} & 0 & & & & & \\ & 0 & 0 & \sqrt{2} & & & & & \\ & & 0 & 0 & \sqrt{2} & & & & \\ & & & 0 & \sqrt{4} & 0 & 0 & 0 \\ & & & 0 & \sqrt{6} & 0 & 0 \\ & & & 0 & 0 & \sqrt{6} & 0 & 0 \\ & & & 0 & 0 & 0 & \sqrt{6} & 0 \\ & & & 0 & 0 & 0 & 0 & \sqrt{4} \end{bmatrix} \begin{pmatrix} c_{00} \\ c_{11} \\ c_{10} \\ c_{1-1} \\ c_{22} \\ c_{21} \\ c_{20} \\ c_{2,-1} \\ c_{2,-2} \\ \vdots \end{pmatrix}$$

Centralni potencial V(r)

Imamo hamiltonian

$$H = \frac{p^2}{2m} + V(r)$$

in je invarianten na rotacije v prostoru.

$$[H, \vec{L}] = 0 \qquad \vec{r} \cdot \vec{L} = 0$$

$$[H, L^2] = 0 \qquad \vec{p} \cdot \vec{L} = 0$$

Laplace v sferičnih koordinatah je

$$\nabla^2 = \Delta = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + (\theta, \varphi) = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} - \frac{L^2}{\hbar^2 r^2}$$

$$\Rightarrow H = -\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \right) + \frac{\vec{L}^2}{2mr^2} + V(r)$$

Ker se H razstavi na vsoto radialnega in kotnega dela lahko vzamemo nastavek

$$\Psi(r,\theta,\varphi) = \psi(r)Y_l^m(\theta,\varphi)$$

Rešujemo kot vedno $H\Psi = E\Psi$ oz.

$$-\frac{\hbar^2}{2m}\left(\frac{1}{r^2}\frac{\partial}{\partial r}\,r^2\frac{\partial}{\partial r}\right)\psi(r) + \left(V(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right)\psi(r) = E\psi(r)$$

kjer definiramo

$$V_{eff}(r) = \frac{l(l+1)\hbar^2}{2mr^2} + V(r) = V_{cfg}(r) + V(r)$$

Vzamemo splošen nastavek

$$\psi(r) = \frac{u(r)}{r}$$

To vstavimo in poračunamo in se nam SE poenostavi na enačbo za u(r)

$$-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}u(r)+V_{eff}(r)u(r)=Eu(r)$$

Rešitev za $r \rightarrow 0$

Omejimo se na limito $\lim_{r\to 0} r^2 V(r)=0$. Dodatno zanemarimo energijo E, ki je končna in v primerjavi s centrifugalnim delom zanemarljiva. Dobimo

$$\frac{d^2u(r)}{dt^2} = \frac{l(l+1)}{r^2}u(r)$$

Za l > 0 nam jo reši nastavek $u(r) = Cr^{\lambda}$

$$\lambda(\lambda - 1) = l(l+1) \rightarrow \lambda_{1,2} = l+1, -l$$

$$\Rightarrow u(r) = C_l r^{l+1} + \frac{D_l}{r^l}$$

Takoj lahko postavimo $D_l=0$ da lahko funkcijo sploh normiramo. To ne velja pri l=0 sicer. Takrat je

$$\lim_{r \to 0} u(r) = D_0 \Rightarrow \psi(r) = C_0 + \frac{D_0}{r}$$

Iz analogije Poissonove enačbe za potencial točkastega naboja v elektrostatiki vemo, da je ψ rešitev enačbe

$$\nabla^2 \psi(\vec{r}) = -4\pi D_0 \delta^3(\vec{r})$$

Torej funkcija 1/r ni rešitev SE, saj v izhodišču ni potenciala $\propto \delta^3(\vec{r})$. Zato je $D_l=0$ za vsak 0 in je rešitev le

$$\psi(r) = C_l r^l$$

Rešitev za $r \to \infty$

Za kontinuumska stanja E>0

Predpostavimo spet $V(r) \to 0$. Privzemimo, da je potencial povsem zanemarljiv za neke $r > r_0$ in iščemo asimptotske rešitve, v katerih je tudi centrifugalni odboj zanemarljiv.

$$-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}u(r) = Eu(r)$$

Rešitev je prosti val

$$u(r) = C_{+}e^{ikr} + C_{-}e^{-ikr}; \quad k = \sqrt{\frac{2mE}{\hbar^{2}}}$$

Za vezana sanja E < 0

Z pogojem $\lim_{r \to \infty} rV(r) = 0$ je rešitev poznana

$$u(r) = D_{-}e^{-\kappa r} + D_{+}e^{\kappa r}; \quad \kappa = \sqrt{\frac{2m|E|}{\hbar^2}}$$

Da to lahko normiramo postavimo $D_+ = 0$.

Povzetek

Tako se rešitev centralnega potenciala vede kot

$$u(r) = r^{l+1}v(r)e^{-\kappa r}$$

kjer je r^{l+1} za majhne razdalje, $e^{-\kappa r}$ za velike razdalje in v(r) za vse vmes.

Coulombski potencial

Iščemo lastne energije E < 0 in lastne funkcije u(r) enačbe

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2mr^2} - \frac{e_0^2}{4\pi\varepsilon_0 r}\right)u(r) = Eu(r)$$

Vpeljemo brezdimenzijsko koordinato $ho=\kappa r$ in $|E|=rac{\kappa^2\hbar^2}{2m}$ in tako prepišemo v

$$\left(-\frac{d^2}{d\rho^2} + \frac{l(l+1)}{\rho^2} - \frac{me_0^2}{2\pi\varepsilon_0\hbar^2\kappa} \frac{1}{\rho}\right) u(\rho) = -u(\rho)$$

in nato v

$$u'' - \frac{l(l+1)}{\rho^2}u + \frac{\rho_0}{\rho}u - u = 0; \ \rho_0 = \frac{me_0^2}{2\pi\varepsilon_0\hbar^2\kappa}$$

Valovno funkcijo zapišemo z nastavkom za vezana stanja, ki smo ga izpeljali prej

$$u(\rho)=\rho^{l+1}v(\rho)e^{-\rho}$$

Z odvodi nastavka izrazimo u' in u'' in jih vstavimo v enačbo in ven pride

$$\rho v'' + 2(l+1-\rho)v' + (\rho_0 - 2(l+1))v = 0$$

To rešimo z Frobeniusovo metodo (MAT4)

$$v(\rho) = \sum_{k=0}^{\infty} c_k \rho_0$$

izrazimo še odvoda z vrsto in vstavimo vse skupaj, da dobimo.

$$\sum_{k=0}^{\infty} \rho^{k} \left[\left(k(k+1) + 2(l+1)(k+1) \right) c_{k+1} + \left(-2k + \left(\rho_{0} - 2(l+1) \right) \right) c_{k} \right] = 0$$

Tako dobimo rekurzivno zvezo

$$c_{k+1} = \frac{2(k+l+1)}{(k+1)(k+2l+2)}c_k$$

Poglejmo si limito za $k\gg 1$. Takrat se rekurzivna zveza spremeni v rekurzivno zvezo eksponentne funkcije.

$$c_{k+1} = \frac{2}{k} c_k$$

Kar smo ugotovili je torej

$$u(\rho) \to e^{2\rho} \ (\rho \to \infty, k \to \infty)$$

Da stvar lahko normaliziramo se mora vrsta ustaviti pri nekem k_{maks} . Vzamemo

$$2(k_{maks} + l + 1) - \rho_0 = 0 \Rightarrow c_k = 0; k > k_{maks}$$

kjer je $k_{maks}+l+1=n$ glavno kvantno število. Tako tudi vidimo, da je $\rho_0=2n=2,4,6,...$ Iz κ izrazimo energijo in dobimo

$$E = -\frac{\hbar^2 \kappa^2}{2m} = -\frac{me_0^4}{8\pi^2 \varepsilon_0^2 \hbar^2 \rho_0^2}$$

Rezultat je torej **Bohrova formula** za energijske nivoje v vodikovem atomu. Lastne energije so odvisne od n in ne tudi od l.

$$E_n = -\frac{m}{2\hbar^2} \left(\frac{e_0^2}{4\pi\varepsilon_0}\right)^2 \frac{1}{n^2}; n = 1,2,3,...$$

Degeneracija

Imamo degeneracijo zaradi različnih načinov, kako lahko pridemo do celotne vrednosti tirne vrtilne količine. To nam da n-kratno degeneracijo. Dodatna degeneracija pa pride od projekcije vrtilne količine. Torej vsaki energiji ustreza n^2 stanj.

Kvantni Laplace-Runge-Lenzov vektor

Visoka stopnja degeneracije E_n kaže na obstoj dodatne ohranjene količine, ki je v tem primeru ravno \vec{A} . Izraz je enak kot za klasični LRL vektor

$$\vec{A} = \frac{1}{2} \left(\vec{p} \times \vec{L} + \left(\vec{p} \times \vec{L} \right)^{\dagger} \right) - \frac{me_0^2}{4\pi\varepsilon_0} \frac{\vec{r}}{r}$$

ki je sicer hermitiziran ker velja

$$\vec{p} \times \vec{L} \neq (\vec{p} \times \vec{L})^{\dagger} = -\vec{L} \times \vec{p}$$

V vodikovem atomu torej obstajajo naslednje ohranitvene zveze

$$[\vec{L}, H] = 0 \quad [L^2, H] = 0 \quad [\vec{A}, H] = 0$$

in $\vec{A} \cdot \vec{L} = \vec{L} \cdot \vec{A}$ ki pomeni, da leži LRL vektor v ravnini elipse. Logično, ker je sorazmeren s polosjo elipse.

Nabit delec v magnetnem polju

Newtonova enačba za nabit delec v EM polju je

$$m\ddot{\vec{r}} = e\vec{E} + e\vec{v} \times \vec{B}$$

To je tudi ustrezna enačba gibanja Hamiltonove funkcije

$$H = \frac{\left(\vec{p} - e\vec{A}\right)^2}{2m} + e\phi(\vec{r})$$

Pri čemer sta A in ϕ vektorski in skalarni potencial, ki določata polji.

$$\vec{B} = \nabla \times \vec{A}$$

$$\vec{E} = -\nabla \phi - \frac{\partial}{\partial t} \vec{A}$$

Ustrezna SE je

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m} \left(-i\hbar \nabla - e\vec{A} \right)^2 \Psi + e\phi \Psi$$

Pri izvrednotenju kvadrata upoštevamo da členi delujejo na funkcijo

$$(\nabla \cdot \vec{A} + \vec{A} \cdot \nabla)\Psi = \nabla \cdot (\psi \vec{A}) + \vec{A} \cdot \nabla \Psi = \Psi(\nabla \cdot \vec{A}) + 2\vec{A} \cdot \nabla \Psi$$

Torej imamo SE

$$i\hbar\frac{\partial}{\partial t}\Psi=-\frac{\hbar^2\nabla^2}{2m}\Psi+i\frac{\hbar e}{m}\vec{A}\cdot\nabla\Psi+\left(i\frac{\hbar}{2m}\big(\nabla\cdot\vec{A}\big)+\frac{e^2}{2m}A^2+e\phi\right)\Psi$$

Običajno delamo v Coulombovi umeritvi brezizvornega vektorskega potenciala $\nabla \cdot A = 0$.

Zeemanova sklopitev

V SE so prisotni tudi prvi krajevni odvodi valovne funkcije, ki predstavljajo bistven del sklopitve delca z magnetnim poljem. Imejmo $\vec{B}=konst.$. Vektorski potencial ki ustreza je

$$\vec{A} = \frac{1}{2}\vec{r} \times \vec{B}$$
 $\nabla \cdot \vec{A} = 0$ $\nabla \times \vec{A} = \vec{B} = (0,0,B)$

Z uporabo vektorskih zvez in identitet izpeljemo

$$i\frac{\hbar e}{m}\vec{A}\cdot\nabla\Psi=-i\frac{\hbar e}{2m}(\vec{r}\times\vec{B})\cdot\nabla\Psi=i\frac{\hbar e}{2m}(\vec{r}\times\nabla)\cdot\vec{B}\Psi=-\frac{e}{2m}\vec{B}\cdot\vec{L}\Psi$$

Skladno s klasičnim izrazom vpeljemo operator magnetnega dipolnega momenta

$$\vec{\mu} = \frac{e}{2m}\vec{L}$$

in **Bohrov magneton** $\mu_B = |e_0|\hbar/2m_e$. Linearna sklopitev tirnega gibanja delca z magnetnim poljem je znana kot **normalna Zeemanova sklopitev**

$$H_{Zeeman} = -\vec{\mu} \cdot \vec{B}$$

Kvadratna sklopitev delca s poljem predstavlja samo dodaten potencial odvisen od izbire umeritve \vec{A} . V našem primeru predstavlja osno simetričen harmonski oscilator

$$\frac{e^2}{2m}\vec{A} \cdot \vec{A} = \frac{e^2}{8m} \left(B^2 r^2 - \left(\vec{B} \cdot \vec{r} \right)^2 \right) = \frac{e^2 B^2}{8m} (x^2 + y^2)$$

in
$$H = \frac{p^2}{2m} - \vec{\mu} \cdot \vec{B} + e\phi + \frac{e^2B^2}{8m}(x^2 + y^2)$$

Kvadratna sklopitev je v atomu zanemarljiva, ampak je pa pomembna v obravnavi delca v homogenem magnetnem polju.

Landauovi nivoji

Kljub temu, da je $\vec{B}=B\hat{e}_z$ invarianten na translacije v xy ravnini in na rotacije je nenavadno to, da ne obstaja vektorski potencial \vec{A} , ki bi bil hkrati invarianten na obe ti transformaciji. Zato tudi Hamiltonov operator ni translacijsko invarianten in ustrezne rešitve so odvisne od umeritve vektorskega potenciala.

Zapišimo vektorski potencial \vec{A} , ki je translacijsko invarianten glede na smer x, kar imenujemo **Landauova umeritev**

$$\vec{A} = B(-y, 0, 0) \Rightarrow \nabla \times \vec{A} = (0, 0, B)$$

Prednost je, da se dvodimenzionalni problem poenostavi na enodimenzionalnega. SE

$$\frac{1}{2m} \left[\left(-i\hbar \frac{\partial}{\partial x} + eBy \right)^2 - \hbar^2 \frac{\partial^2}{\partial y^2} - \hbar^2 \frac{\partial^2}{\partial z^2} \right] \Psi + e\phi \Psi = E\Psi$$

je Landau reševal z nastavkom

$$\Psi(\vec{r}) = \exp\left(i\left(\frac{p_x}{\hbar}x + \frac{p_z}{\hbar}z\right)\right)\chi(y)$$

Naj bo električen potencial odvisen samo od koordinate y: $\phi(\vec{r}) = \phi(y)$. Upoštevamo dejstvo, da je delovanje funkcije operatorja na lastni vektor kar množenje s funkcijo lastne vrednosti

$$f\left(-i\hbar\frac{\partial}{\partial x}\right)e^{\frac{ip_x}{\hbar}x} = f(p_x)e^{\frac{ip_x}{\hbar}x}$$

Od tod sledi 1D SE s potencialom $V(y) = e\phi(y) + p_z^2/2m$

$$\frac{1}{2m}\left[(p_{\chi}+eBy)^{2}-\hbar^{2}\frac{d^{2}}{dy^{2}}\right]\chi(y)+V(y)\chi(y)=E\chi(y)$$

Vpeljemo **ciklotronsko frekvenco** $\omega = |e|B/m$ in **magnetno dolžino** $\xi = \sqrt{\hbar/(|e|B)}$, $p_x = \hbar k$ in od k odvisen premik $y_k = -\xi^2 k$. Sedaj lahko prepišemo H v obliko harmonskega oscilatorja z dodatnim potencialom

$$-\frac{\hbar^2}{2m}\frac{d^2\chi(y)}{dy^2} + \frac{1}{2}m\omega^2(y - y_k)^2\chi(y) + V(y)\chi(y) = E\chi(y)$$

Če je V=0 so rešitve kar premaknenja stanja harmonskega oscilatorja in $\chi_{nk}(y)=\varphi_n(y-y_k)$ in je celotna rešitev podana s

$$\Psi_{nk}(x,y) = \frac{1}{\sqrt{2\pi}} e^{ikx} \varphi_n(y - y_k)$$

Tako so lastne energije ali Landauovi nivoji

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right)$$

Ti imajo zelo visoko stopnjo degeneracije, saj vsakemu n ustreza kar kontinuum stanj s $k \in \mathbb{R}$. Ker energija E_n ni odvisna od k je časovni razvoj valovne funkcije, ki jo za dani n razvijemo po k v bazi $\{\Psi_{nk}\}$ trivialna, saj je vsaka linearna kombinacija degeneriranih stacionarnih stanj še vedno stacionarno stanje. Poenostavljen primer je funkcija, razvita po ravnih valovih

$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int \tilde{\psi}(k) e^{ikx} dk$$

ki ob t > 0 ne spremeni svoje oblike

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int \tilde{\psi}(k) e^{ikx - iE/\hbar t} dk \to \psi(x,0) e^{-i\frac{E}{\hbar}t}$$

Lokalne umeritvene transformacije

Klasično je rešitev neodvisna od umeritve, tukaj pa ni tako. Radi bi pokazali, da je v glavnem tako tudi v kvantni mehaniki, ampak da pa obstajajo zanimive izjeme. Imejmo še

$$\vec{A}' = \vec{A} + \nabla \Lambda \quad \phi' = \phi - \frac{\partial}{\partial t} \Lambda$$

Vemo že, da valovnim funkcijam lahko naredimo globalno transformacijo

$$\psi_l \to e^{i\delta_l}\psi_l; \ \delta_l \in \mathbb{R}$$

in da ta ne vpliva na merljive količine. Naredimo sedaj **lokalno umeritveno transformacijo** (na vsakem \vec{r} je lahko δ drugačen)

$$\Psi'(\vec{r},t) = e^{i\delta(\vec{r},t)}\Psi(\vec{r},t); \ \delta \in \mathbb{R}$$

Vstavimo to v SE

$$i\hbar \frac{\partial}{\partial t} \Psi' = \frac{1}{2m} \left(-i\hbar \nabla - e\vec{A}' \right)^2 \Psi' + e\phi' \Psi'$$

Stranski račun

Posamezne člene izrazimo z uporabo splošnega pravila

$$\left(i\frac{\partial}{\partial x} + f\right)e^{i\delta}\psi = -\left(\frac{\partial\delta}{\partial x}\right)e^{i\delta}\psi + e^{i\delta}i\left(\frac{\partial\psi}{\partial x}\right) + fe^{i\delta}\psi = e^{i\delta}\left(i\frac{\partial}{\partial x} + \left(f - \frac{\partial\delta}{\partial x}\right)\right)\psi$$

$$\left(i\frac{\partial}{\partial x} + f\right)^{2} e^{i\delta} \psi = \left(i\frac{\partial}{\partial f} + f\right) e^{i\delta} \left(i\frac{\partial}{\partial x} + \left(f - \frac{\partial\delta}{\partial x}\right)\right) \psi = e^{i\delta} \left(i\frac{\partial}{\partial x} + \left(f - \frac{\partial\delta}{\partial x}\right)\right)^{2} \psi$$

Iz tega dobimo SE za Ψ

$$i\hbar\frac{\partial}{\partial t}\Psi = \frac{1}{2m}\sum_{\alpha}\left(-i\hbar\frac{\partial}{\partial x_{\alpha}} - eA'_{\alpha} + \hbar\frac{\partial\delta}{\partial x_{\alpha}}\right)^{2}\Psi + \left(e\phi' + \hbar\frac{\partial\delta}{\partial t}\right)\Psi$$

Izberemo tako $\Lambda=rac{\hbar}{e\delta}$. Torej se Ψ' po transformaciji $\vec{A} o \vec{A}'$ izrazi kot

$$\Psi'(\vec{r},t) = e^{\frac{ie}{\hbar}\Lambda(\vec{r},t)}\Psi(\vec{r},t)$$

S tem smo pokazali, da lahko v okviru teh transformacij poljubno izberemo umeritev EM polja. Matrični elementi opazljivk so še vedo invariantni na umeritev

$$\rho' = |\Psi'|^2 = |\Psi|^2 = \rho$$

Aharonov-Bohmov pojav

Predpostavimo, da v nekem delu prostora ni polja, torej daje tam vektorski potencial brezvrtinčen

$$\vec{B} = \nabla \times \vec{A} = 0$$

Zato lahko $ec{A}$ izrazimo kot gradient skalarnega polja $ec{A}=
abla \Lambda$ in velja

$$\Lambda(\vec{r}) = \Lambda(\vec{r}_0) + \int_{\vec{r}_0}^{\vec{r}} A(\vec{r}') \cdot d\vec{r}'$$

Konstanta $\Lambda(\vec{r}_0)$ predstavlja globalno fazo in jo lahko postavimo na 0. Izhodiščna točka leži nekje v območju, kjer ni magnetnega polja. Valovno funkcijo za to območje izračunamo iz enačbe

$$i\hbar \frac{\partial \Psi_A}{\partial t} = \frac{\left(\vec{p} - e\vec{A}\right)^2}{2m} \Psi_A + V\Psi_A; \quad \vec{B} = 0$$

Lahko pa računamo kar po enačbi pri kateri vektorski potencial ni prisoten, saj v obravnavanem delu prostora ni magnetnega polja.

$$i\hbar \frac{\partial}{\partial t} \Psi_0 = \frac{\vec{p}^2}{2m} \Psi_0 + V \Psi_0$$

Obe rešitvi opišeta torej delec za primer, ko ni magnetnega polja. Velja

$$\vec{A}' = \vec{A} + \nabla(-\Lambda) = 0$$

in zato je

$$\Psi_{4}(\vec{r},t) = e^{-i\frac{e}{\hbar}\Lambda(\vec{r},t)}\Psi_{0} = e^{-i\frac{e}{\hbar}\int_{\vec{r}_{0}}^{\vec{r}}A(\vec{r}')\cdot d\vec{r}'}\Psi_{0}$$

Naj se po žici ob odsotnosti magnetnega polja $\vec{B}=0$, $\vec{A}=0$ giblje valovni paket, ki se razcepi na dva enaka dela

$$\Psi_I = \Psi_1 + \Psi_2$$

Obe amplitudi $\Psi_{1,2}$ se razvijata skozi čas in se na koncu združita nazaj v valovno funkcijo Ψ_{II} . Sedaj pa si zamislimo eksperiment, ko to pot prebada magnetno polje \vec{B} , ki je omejeno na notranjost navpičnega valja. Elektroni se gibljejo samo po območju kjer je $\vec{B}=0$ ampak $A\neq 0$, zato lahko izrazimo verjetnostno amplitudo v točki II

$$\Psi_{II,B} = e^{i\delta_1} \Psi_1 + e^{i\delta_2} \Psi_2$$

$$\delta_1 = \frac{e}{\hbar} = \int_{\text{pot } 1} \vec{A}(\vec{r}) \cdot d\vec{r}$$

$$\delta_2 = \frac{e}{\hbar} = \int_{\text{pot } 2} \vec{A}(\vec{r}) \cdot d\vec{r}$$

Valovni funkciji sta v najboljšem primeru enaki ko velja

$$\Psi_{II,B} = e^{i\delta_2} (1 + e^{i(\delta_1 - \delta_2)}) \Psi_1$$

Razlika integralov po obeh poteh poteka po zaključeni zanki in zaradi Stokesovega izreka sledi

$$\delta_1 - \delta_2 = \frac{e}{\hbar} \oint \vec{A}(\vec{r}) \cdot d\vec{r} = \frac{e}{\hbar} \iint_S \nabla \times \vec{A} \cdot d\vec{S} = \frac{e}{\hbar} \iint_S \vec{B} \cdot d\vec{S} = \frac{e}{\hbar} \Phi_B$$

Fazna razlika je torej sorazmerna z magnetnim pretokom v valju. Izračunajmo razmerje med električnim tokom ko je polje I_B in ko ga ni I

$$\frac{I_B}{I} = \frac{\left|\Psi_{II,B}\right|^2}{\left|\Psi_{II}\right|^2} = \frac{1}{4}\left|1 + e^{i\frac{e}{\hbar}\Phi_B}\right|^2 = \cos^2\frac{e}{2\hbar}\Phi_B$$

To je Aharonov-Bohmov pojav (odvisnost toka od magnetnega pretoka)

Pogoj za maksimum je

$$\frac{e}{2\hbar}\Phi_B = \pi n \Rightarrow \Phi_B = \frac{nh}{e}$$

Iz tega se lahko naredijo zelo natančne sonde za merjenje magnetnega polja.

Spin

Vse osnovne zveze poznamo že iz obravnave vrtilne količine razen da bomo tu puščali polovične spine in bomo videli, kam pridemo. **Operator spina** vpeljemo kot

$$\vec{S} = (S_x, S_y, S_z)$$

Velja tudi

$$[S_{\alpha}, S_{\beta}] = i\hbar \epsilon_{\alpha\beta\gamma} S_{\gamma}$$

Tako kot prej sta pomembna tudi lestvična operatorja

$$S_{\pm} = S_{x} \pm iS_{y} = S_{\mp}^{\dagger}$$

ki dvigata ali znižujeta stanja po pravilu

$$S_{+}|sm\rangle = \hbar\sqrt{s(s+1) - m(m\pm 1)}|s, m\pm 1\rangle$$

V primeru vrtilne količine s polovičnimi vrednostmi ne obstajajo lastni vektorji v koordinatni reprezentaciji. Kvantna stanja so **spinorji**, (2s + 1)-terice v \mathbb{C}^{2s+1} in so v uporabi zelo različne oznake.

$$|sm_s\rangle = |sm\rangle = \left|\frac{1}{2}m\right\rangle = |m\rangle = \left\{\begin{vmatrix}\uparrow\uparrow\rangle\\\downarrow\downarrow\rangle\end{aligned}\right\}$$

Stanja $|sm\rangle$ so lastna projekcije S_z in S^2 . Velja tako kot prej

$$S^2|sm\rangle = \hbar^2 s(s+1)|sm\rangle$$

$$S_z|sm\rangle=\hbar m|sm\rangle$$

Podrobneje si bomo pogledali s=1/2 zato **od tu dalje to velja**. Torej imamo bazo $|\uparrow\rangle$, $|\downarrow\rangle$. Bazna vektorja sta povezana z S_{\pm} saj velja

$$S_{+}|\downarrow\rangle = \hbar|\uparrow\rangle$$
 $S_{-}|\uparrow\rangle = \hbar|\downarrow\rangle$

Poglejmo kako lahko posamezne operatorje zapišemo z matrikami. Potrebujemo matrične elemente

$$\langle \uparrow | S_{+} | \uparrow \rangle = 0 \qquad \langle \uparrow | S_{+} | \downarrow \rangle = \hbar$$

$$\langle \downarrow | S_{+} | \uparrow \rangle = 0 \qquad \langle \downarrow | S_{+} | \downarrow \rangle = 0$$

$$\Rightarrow S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = S_{-}^{\dagger}$$

$$S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Tako lahko izrazimo

$$S_{x} = \frac{1}{2}(S_{+} + S_{-}) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S_{y} = \frac{1}{2i}(S_{+} - S_{-}) = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$S_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Hitro lahko pokažemo, da velja

$$S_{\alpha}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{\hbar^{2}}{4} I$$

Velja tudi

$$\left[S_{\alpha}, S_{\beta}^{2}\right] = 0 \quad \left[S_{\alpha}^{2}, S_{\beta}^{2}\right] = 0$$

V splošnem če ne bi gledali samo $s=\frac{1}{2}$ bi pa matrika lestvičnega operatorja zgledala takšna kot pri vrtilni količini

$$S_{+}|\psi\rangle\rightarrow\hbar\begin{bmatrix}0&1\\0&0\\&&0&\sqrt{3}&0&0\\&&0&\sqrt{3}&0&0\\&&0&0&2&0\\&&&0&0&\sqrt{3}&\\&&&&&0&0&0\\&&&&&&0&\sqrt{5}&\cdots\\&&&&&&0&0&\cdots\\\vdots&\vdots&\vdots&\ddots\end{bmatrix}\begin{bmatrix}\frac{c_{11}}{22}\\c_{1}\\\frac{1}{2}\\\frac{2}{2}\\c_{31}\\\frac{2}{2}\\c_{31}\\\frac{2}{2}\\c_{31}\\\frac{2}{2}\\c_{55}\\\frac{2}{22}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_{55}\\\frac{2}{2}\\c_{53}\\\frac{2}{2}\\c_$$

Paulijeve matrike

Najpomembnejši primer je spin 1/2 in se ga običajno obravnava v okviru Paulijevih matrik σ

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma}; \quad \vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$$

Paulijeve matrike

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

predstavljajo prikladno bazo za razvoj poljubne hermitske matrike 2×2 .

Lastnosti Paulijevih matrik

- $\det \sigma_{\alpha} = -1$
- $\operatorname{tr} \sigma_{\alpha} = 0$ $\sigma_{x}^{2} = \sigma_{y}^{2} = \sigma_{z}^{2} = I = 1$
- $\sigma_x \sigma_v \sigma_z = iI$
- $\sigma_{\alpha}\sigma_{\beta} = \delta_{\alpha\beta}I + i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$
- $\left[\sigma_{\alpha}, \sigma_{\beta}\right] = 2i \, \epsilon_{\alpha\beta\gamma} \sigma_{\gamma}$
- $\{\sigma_{\alpha}, \sigma_{\beta}\} = \sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta}I$
- Povezava običajnega vektorja \vec{a} z vektorjem Paulijevih matrik

$$\vec{a} \cdot \vec{\sigma} = \sum_{\alpha} a_{\alpha} \sigma_{\alpha} = (\vec{\alpha} \cdot \vec{\sigma})^{\dagger}; \quad a_{\alpha} \in \mathbb{R}$$

$$(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) = \sum_{\alpha\beta} a_{\alpha} \sigma_{\alpha} b_{\beta} \sigma_{\beta} = \vec{a} \cdot \vec{b} I + i \sum_{\alpha\beta} \epsilon_{\alpha\beta\gamma} a_{\alpha} b_{\beta} \sigma_{\gamma}$$

Če velja
$$\vec{a} = \vec{b} = \vec{n}; |\vec{n}| = 1 \implies (\vec{n} \cdot \vec{\sigma})(\vec{n} \cdot \vec{\sigma}) = I$$

Seštevanje vrtilnih količin

Zanimivi so tudi sistemi, ki jih sestavlja več podsistemov, od katerih ima vsak svojo vrtilno količino. Obravnavajmo vodikov atom. Imamo elektron v orbitalnem stanju z l=0 in drugi delec je proton.

$$|\Psi\rangle = \left|\frac{1}{2}m_e\right\rangle \left|\frac{1}{2}m_p\right\rangle$$

Naj bo spin elektrona \vec{S}_1 in spin protona \vec{S}_2 . Oba operatorja se na običajen način izražata z Paulijevimi matrikami

$$\vec{S}_n = \frac{\hbar}{2}\vec{\sigma}_n; \quad n = 1,2$$

Vpeljimo še tenzorski produkt. Ta nam omogoča nedvoumni zapis celotne vrtilne količine in ustreznih baznih vektorjev

$$\vec{S} = \vec{S}_1 \otimes I_2 + I_1 \otimes \vec{S}$$

$$|\Psi\rangle = |s_1 m_1\rangle \otimes |s_2 m_2\rangle$$

ker je $s_1 = \frac{1}{2} = s_2$ lahko poenostavimo bazo na $|m_1 m_2\rangle$, ki je

$$\left|\frac{1}{2}\frac{1}{2}\right\rangle = \left|\uparrow\uparrow\right\rangle = \left|\uparrow\right\rangle \otimes \left|\uparrow\right\rangle$$

$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle = \left|\uparrow\downarrow\right\rangle = \left|\uparrow\right\rangle \otimes \left|\downarrow\right\rangle$$

$$\left|-\frac{1}{2},\frac{1}{2}\right\rangle = \left|\downarrow\uparrow\right\rangle = \left|\downarrow\right\rangle \otimes \left|\uparrow\right\rangle$$

$$\left|-\frac{1}{2}, -\frac{1}{2}\right\rangle = \left|\downarrow\downarrow\right\rangle = \left|\downarrow\right\rangle \otimes \left|\downarrow\right\rangle$$

Ta ima lastnosti, kot bi jih pričakovali. Definiramo projekcijo vrtilne količine v smer z kot

$$S_z = S_{1z} \otimes I_2 + I_1 \otimes S_{2z}$$

kjer identiteta nič ne naredi z tistim delom, kateremu pripada.

$$\begin{split} S_z | m_1 m_2 \rangle &= (S_{1z} \otimes I_2) | m_1 \rangle \otimes | m_2 \rangle + (I_1 \otimes S_{2z}) | m_1 \rangle \otimes | m_2 \rangle = \\ &= (m_1 + m_2) | m_1 \rangle \otimes | m_2 \rangle \end{split}$$

Za operator skupne vrtilne količine veljajo običajne komutacijske zveze (**operatorja komutirata če delata** v čisto drugih prostorih)

$$\begin{split} \left[S_{\alpha}, S_{\beta}\right] &= \left[S_{1\alpha} \otimes I_{2} + I_{1} \otimes S_{2\alpha}, S_{1\beta} \otimes I_{2} + I_{1} \otimes S_{2\beta}\right] = \\ &= \left[S_{1\alpha}, S_{1\beta}\right] \otimes I_{2} + I_{1} \otimes \left[S_{2\alpha}, S_{2\beta}\right] + 0 + 0 = \\ &= i\hbar\epsilon_{\alpha\beta\gamma}S_{1\gamma} \otimes I_{2} + I_{1} \otimes i\hbar\epsilon_{\alpha\beta\gamma}S_{2\gamma} = i\hbar\epsilon_{\alpha\beta\gamma}S_{\gamma} \end{split}$$

To pomeni, da lahko tudi kot posameznih vrtilnih količinah vpeljemo lestvične operatorje

$$S_{\pm} = S_x \pm iS_y = S_{1\pm} \otimes I_2 + I_1 \otimes S_{2\pm}$$

Bazni vektorji $\{|m_1m_2\rangle\}$ napenjajo prostor celotne vrtilne količine. So lastna stanja S_z , posameznih projekcij in posameznih kvadratov vrtilnih količin. Niso pa lastna za celotno vrtilno količino. Lahko pa uvedemo ustrezna stanja

$$\vec{S}^{2}|sm\rangle = \hbar s(s+1)|sm\rangle$$

$$S_{z}|sm\rangle = \hbar m|sm\rangle$$

$$m = m_{1} + m_{2} = \{-1, 0, 1\} \Rightarrow s = \{0, 1\}$$

Ta stanja dobimo z razvojem

$$|sm\rangle = \sum_{m_1m_2} c_{m_1m_2} |m_1\rangle \otimes |m_2\rangle$$

Zanimajo nas koeficienti $c_{m_1m_2}$.

s = 1

a) m = 1

$$S^{2}|11\rangle = 1(1+1)\hbar^{2}|11\rangle = 2\hbar^{2}|11\rangle$$

$$S_{z}|11\rangle = \hbar|11\rangle$$

b) m = 0

Stanje z m=0 zgeneriramo z operatorjem S_{-}

$$S_{-}|11\rangle = \hbar\sqrt{1(1+1) - 1(1-1)}|10\rangle = \sqrt{2}\hbar|01\rangle$$

Naredimo to isto operacijo če na drug način

$$(S_{1-} \otimes I_2 + I_1 \otimes S_{2-})|\uparrow\rangle \otimes |\uparrow\rangle = \hbar|\downarrow\rangle \otimes |\uparrow\rangle + \hbar|\uparrow\rangle \otimes |\downarrow\rangle$$

Torej mora veljati:

$$\hbar(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle) = \sqrt{2}\hbar|10\rangle$$

oz.

$$|10\rangle = \frac{1}{\sqrt{2}}(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)$$

c) m = -1

Postopek ponovimo oz. kar uganimo

$$|1,-1\rangle = |\downarrow\downarrow\rangle$$

S tem smo določili **tripletna stanja** s s=1. Singletno stanje določimo tako, da ga razvijemo po bazi in upoštevamo, da ima projekcijo vrtilne količine $m_1+m_2=0$.

$$|00\rangle = c_{\frac{1}{2'} - \frac{1}{2}} |\uparrow\downarrow\rangle + c_{-\frac{1}{2'\frac{1}{2}}} |\downarrow\uparrow\rangle$$

Ker imata stanji $|10\rangle$ in $|00\rangle$ razlicen s velja ortogonalnost $\langle 10|00\rangle = 0$. Iz tega velja

$$c_{-\frac{1}{2},\frac{1}{2}} = -c_{\frac{1}{2},-\frac{1}{2}}$$

Po normalizaciji lahko tako dobimo še **singletno stanje** s s=0

$$|00\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Heisenbergova sklopitev

Medsebojna energija dveh delcev z magnetnim momentom je v klasični fiziki znana kot dipolna sklopitev. Najenostavnejši kvantni primer sklopitve dveh delcev s spinom 1/2 je **Heisenbergova sklopitev**

$$H = J_0 \vec{S}_1 \cdot \vec{S}_2$$

kjer je J_0 izmenjalna sklopitvena konstanta. Znova nas zanimajo lastne energije in lastna stanja. Uporabimo zvezo, da izrazimo skalarni produkt

$$\vec{S} \cdot \vec{S} = (\vec{S}_1 + \vec{S}_2) \cdot (\vec{S}_1 + \vec{S}_2) = S_1^2 + S_2^2 + 2\vec{S}_1 \cdot \vec{S}_2$$

kjer velja $S_1^2=rac{1}{2}\Big(rac{1}{2}+1\Big)\,\hbar^2=rac{3}{4}\,\hbar^2.$ Tako lahko operator H zapišemo kot

$$H = \frac{J_0}{2} \left(S^2 - \frac{3}{2} \hbar^2 \right)$$

$$H|sm\rangle = \frac{J_0\hbar^2}{2} \left(s(s+1) - \frac{3}{2} \right) |sm\rangle$$

Tako sta lastni energiji (pri vodiku je to tisti hiperfin razcep, kjer prehod iz tripletnega v singletno stanje da 21 cm črto, ki je ključna za astronomska opazovanja)

$$E_s = J_0 \hbar^2 \begin{cases} \frac{1}{4}; s = 1 \text{ (triplet)} \\ \frac{3}{4}; s = 0 \text{ (singlet)} \end{cases}$$

Clebsch-Gordanovi koeficienti

Seštevamo lahko tudi poljubna operatorja vrtilne količine $\vec{J}_{1,2}$, za katerega veljajo običajne komutacijske lastnosti

$$[J_{n\alpha},J_{\tilde{n}\beta}]=i\hbar\delta_{n\tilde{n}}\epsilon_{\alpha\beta\gamma}J_{n\gamma}$$

Bazo in skupno vrtilno količino zapišemo kot

$$|j_1m_1\rangle \otimes |j_2m_2\rangle = |j_1m_1j_2m_2\rangle$$

$$\vec{J} = \vec{J_1} \otimes I_2 + I_1 \otimes \vec{J_2} = \vec{J_1} + \vec{J_2}$$

Bazo skupne vrtilne količine lahko zapišemo tudi kot

$$|jm\rangle = |j_1j_2j|m\rangle$$

Recimo za s=1, m=0 stanje vodika je to $\left|\frac{1}{2},\frac$

$$|j_{1}j_{2}jm\rangle = \sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}} |j_{1}m_{1}\rangle |j_{2}m_{2}\rangle \langle j_{1}m_{1}, j_{2}m_{2}|jm\rangle$$

kjer je

$$\langle j_1m_1,j_2m_2|jm\rangle=C^{jm}_{j_1m_1,j_2m_2}\in\mathbb{C}$$

Clebsch-Gordanov koeficient. Dodatno velja $m=m_1+m_2$ zato so koeficienti neničelni samo pri izpolnjeni trikotniški neenakosti

$$|j_1 - j_2| \le j \le j_1 + j_2$$

Teorija motenj (perturbacij)

Rayleigh-Schrödingerjeva metoda za nedegeneriran spekter

Hamiltonov operator naj bo sestavljen iz dveh delov

$$H = H_0 + H_1$$

kjer je H_0 ničti približek, H_1 pa popravek/motnja. Predpostavimo, da so stanja nedegenerirana in ortonormirana

$$H_0|n^0\rangle = E_n^{(0)}|n^0\rangle \quad \langle m^0|n^0\rangle = \delta_{mn}$$

Motnjo parametriziramo kot

$$H_1 = \lambda V$$

kjer je λ pomožen brezdimenzijski parameter, po katerem razvijamo V pa poljubni operator. Obravnavamo

$$H|n\rangle = E_n|n\rangle$$

in želimo lastna stanja in lastne energije razbite po λ

$$|n\rangle = |n^0\rangle + \lambda |n^1\rangle + \lambda^2 |n^2\rangle + \cdots$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots$$

Pomnožimo to prvo zvezo za lastno stanje z $\langle n^0 |$

$$\langle n^0|n\rangle = 1 + \lambda \langle n^0|n^1\rangle + \lambda^2 \langle n^0|n^2\rangle + \cdots$$

Zahtevamo pa normalizacijo $\langle n^0|n\rangle=1$ oz. to lahko kasneje renormiramo v $\langle n|n\rangle=1$. Iz tega sledi, da so **vsi popravki ortogonalni na** $|n^0\rangle$. Nastavka za lastno energijo in lastno stanje vstavimo v SE

$$(H_0 + \lambda V)(|n^0\rangle + \lambda |n^1\rangle + \cdots) = \left(E_n^{(0)} + \lambda E_n^{(1)} + \cdots\right)(|n^0\rangle + \lambda |n^1\rangle + \cdots)$$

Ker ta enačba velja za vsak λ pogledamo člene pri istih potencah

$$\lambda^0$$
: $H_0|n^0\rangle = E_n^{(0)}|n^0\rangle$

$$\lambda^{1}$$
: $H_{0}|n^{1}\rangle + V|n^{0}\rangle = E_{n}^{(0)}|n^{1}\rangle + E_{n}^{(1)}|n^{0}\rangle$

$$\lambda^{1}: H_{0}|n^{1}\rangle + V|n^{0}\rangle = E_{n}^{(0)}|n^{1}\rangle + E_{n}^{(1)}|n^{0}\rangle$$

$$\lambda^{2}: H_{0}|n^{2}\rangle + V|n^{1}\rangle = E_{n}^{(0)}|n^{2}\rangle + E_{n}^{(1)}|n^{1}\rangle + E_{n}^{(2)}|n^{0}\rangle$$

$$\vdots \vdots$$

Prva enačba je trivialna, drugo (in vse nadaljnje) pa pomnožimo z $\langle n^0|$. Upoštevamo $\langle n^0|H_0=E_n^{(0)}\langle n^0|$

$$\Rightarrow E_n^{(0)}\langle n^0|n^1\rangle + \langle n^0|V|n^0\rangle = E_n^{(0)}\langle n^0|n^1\rangle + E_n^{(1)}\langle n^0|n^0\rangle$$

Iz tega sledi, da je popravek energije v prvem redu kar pričakovana vrednost motnje

$$E_n^{(1)} = \langle n^0 | V | n^0 \rangle = V_{nn}$$

Enak postopek lahko ponavljamo še z naslednjimi členi in s tem povežemo popravke energije s popravki stanja.

$$E_n^{(j)} = \left\langle n^0 | V | n^{j-1} \right\rangle$$

Lastna stanja H_0 so bazni vektorji torej lahko vsako popravek razvijemo po njih. Spomnimo se I= $\sum_{m} |m^{0}\rangle\langle m^{0}|$

$$|n^j\rangle = \sum_{m \neq n} |m^0\rangle \langle m^0|n^j\rangle$$

Enačbo pri λ^1 pomnožimo z $\langle m_0 |$ in dobimo

$$\left(E_n^{(0)}-E_m^{(0)}\right)\langle m^0|n^1\rangle=\langle m^0|V|n^0\rangle=V_{mn}$$

iz česar sledi rezultat za koeficiente v razvoju. To je popravek 1. reda

$$|n^{1}\rangle = \sum_{m \neq n} \frac{V_{mn}}{E_{n}^{(0)} - E_{m}^{(0)}} |m^{0}\rangle$$

S tem je dololčen tudi popravek energije v drugem redu

$$E_n^{(2)} = \sum_{m \neq n} \frac{|V_{mn}|^2}{E_n^{(0)} - E_m^{(0)}}$$

Torej imamo potenčno vrsto

$$E_n = E_n^{(0)} + \lambda V_{nn} + \lambda^2 \sum_{m \neq n} \frac{|V_{mn}|^2}{E_n^{(0)} - E_m^{(0)}} + \mathcal{O}(\lambda^3)$$

$$|n\rangle = |n^0\rangle + \lambda \sum_{m \neq n} \frac{V_{mn}}{E_n^{(0)} - E_m^{(0)}} |m^0\rangle + \mathcal{O}(\lambda^2)$$

Popravljeno stanje je že normirano do drugega reda. V drugem redu perturbacij se vedno zniža energija osnovnega stanja.

Degeneriran spekter

Predpostavimo, da so lastna stanja H_0 dvakrat degenerirana. Iskana stanja in energije razvijemo tako kot prej

$$H = H_0 + \lambda V$$

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \cdots$$

$$|n\rangle = c_1 |n_1^0\rangle + c_2 |n_2^0\rangle + \lambda |n_1^1\rangle + \cdots$$

pri čemer upoštevamo, da je obstajata dve stanji za osnovno energijo. Zopet vstavimo vrsti v SE in pogledamo enačbe pri enakih potencah

$$\lambda^{0}$$
: $H_{0}|n_{1}^{0}\rangle = E_{n}^{(0)}|n_{1}^{0}\rangle$
 $H_{0}|n_{2}^{0}\rangle = E_{n}^{(0)}|n_{2}^{0}\rangle$

$$\lambda^{1}: \qquad H_{0}|n^{1}\rangle + c_{1}V|n_{1}^{0}\rangle + c_{2}V|n_{2}^{0}\rangle = E_{n}^{(0)}|n^{1}\rangle + E_{n}^{(1)}(c_{1}|n_{1}^{0}\rangle + c_{2}|n_{2}^{0}\rangle)$$

Sedaj pomnožimo z $\langle n_1^0 |$ in dobimo prvo enačbo za koeficienta $c_{1,2}$

$$E_n^{(1)}c_1 = V_{11}c_1 + V_{12}c_2$$

Ponovimo še z $\langle n_2^0 |$ in dobimo še

$$E_n^{(1)}c_2 = V_{21}c_1 + V_{22}c_2$$

Dobimo problem lastnih vrednosti

$$\begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = E_n^{(1)} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

tako imamo dve možni rešitvi za prvi red popravka energije.

Od časa odvisna motnja

V primeru časovno odvisne motnje ne iščemo lastnih vektorjev in energij saj ti ne obstajajo. Zanima nas časovni razvoj celotnega kvantnega stanja $|\psi(t)\rangle$. Obravnavamo torej sistem, ki je sestavljen iz od časa neodvisnega in znanega dela H_0 in časovno odvisne motnje V(t)

$$H(t) = H_0 + \lambda V(t)$$

$$H_0|n\rangle = E_n|n\rangle \quad \langle m|n\rangle = \delta_{mn}$$

Začetno stanje razvijemo po bazi znanega dela

$$|\psi(0)\rangle = \sum_{n} c_n(0)|n\rangle$$

V isti bazi lahko razvijemo tudi stanje ob kasnejšem času

$$|\psi(t)\rangle = \sum_{n} c_n(t) e^{-i\frac{E_n}{\hbar}t} |n\rangle$$

Te nastavke vstavimo v SE iz katere dobimo

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$$

$$i\hbar\sum_{n}\left(\frac{\partial c_{n}(t)}{\partial t}e^{-i\frac{E_{n}}{\hbar}t} - i\frac{E_{n}}{\hbar}c_{n}(t)e^{-i\frac{E_{n}}{\hbar}t}\right)|n\rangle = \sum_{n}\left(E_{n} + \lambda V(t)\right)c_{n}e^{-i\frac{E_{n}}{\hbar}t}|n\rangle$$

Pomnožimo to enačbo z baznimi vektorji $\langle m |$ iz katerega dobimo

$$\begin{split} i\hbar\frac{\partial c_m(t)}{\partial t}e^{-i\frac{E_m}{\hbar}t} + E_mc_m(t)e^{-i\frac{E_m}{\hbar}t} &= E_mc_m(t)e^{-i\frac{E_m}{\hbar}t} + \lambda\sum_n\langle m|V(t)|n\rangle e^{-i\frac{E_n}{\hbar}t} \\ \Rightarrow i\hbar\frac{\partial c_m(t)}{\partial t} &= \lambda\sum_n V_{mn}(t)c_n(t) \end{split}$$

kjer so časovno odvisni matrični elementi

$$V_{mn}(t) = \langle m|V(t)|n\rangle \exp\left[-i\frac{E_n - E_m}{\hbar}t\right]$$

Zapišimo rezultate v matrično enačbo

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix} c_{1}(t) \\ c_{2}(t) \\ \vdots \\ c_{m}(t) \\ \vdots \end{pmatrix} = \lambda \begin{pmatrix} V_{11}(t) & V_{12}(t) & \cdots & V_{1n}(t) & \cdots \\ V_{21}(t) & V_{22}(t) & \cdots & V_{2n}(t) & \cdots \\ \vdots & \vdots & \ddots & & \cdots \\ V_{m1}(t) & V_{m2}(t) & \cdots & V_{mn}(t) & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_{1}(t) \\ c_{2}(t) \\ \vdots \\ c_{m}(t) \\ \vdots \end{pmatrix}$$

Stanja predstavljajo stolpci $\vec{c}(t)$ in dinamika je določena z

$$i\hbar \frac{\partial}{\partial t}\vec{c} = \lambda \underline{\underline{V}}(t)\vec{c}(t)$$

Temu se reče interakcijska ali Diracova slika.

Šibka motnja

Do sedaj smo obravnavali sistem točno. Obravnavajmo sedaj šibko motnjo, ki se začne ob času t=0

$$V(t) = \begin{cases} 0; & t < 0 \\ V(t); & t \ge 0 \end{cases}$$

Predpostavimo, da je začetno stanje sistema eno od lastnih stanj $|\psi(0)\rangle = |m\rangle$ oziroma

$$c_k^{(0)} = \delta_{km}$$

To vstavimo v enačbo kjer potem v vsoti ostane samo en člen

$$i\hbar \frac{\partial c_k^{(1)}}{\partial t} = \sum_n V_{kn}(t)c_n^{(0)}(t) = V_{km}(t)c_m^{(0)}$$

vzamemo $c_m^{(0)} pprox 1$ in koeficienti so tako podani z

$$c_k^{(1)}(t) = \frac{1}{i\hbar} \int_0^t V_{km}(t')dt$$

Rezultat velja če je motnja šibka $\left|c_k^{(1)}\right|\ll 1$. S tem je stanje $|\psi(t)\rangle$ določeno v prvem redu razvoja po λ kot

$$|\psi(t)\rangle = \sum_{k} \left(c_k^{(0)}(t) + \lambda c_k^{(1)}(t) + \mathcal{O}(\lambda^2) \right) e^{-i\frac{E_k}{\hbar}t} |k\rangle$$

Fermijevo zlato pravilo

Imejmo motnjo, ki je od časa neodvisen operator V, ki se vključi ob času t=0

$$V(t) = \begin{cases} 0; & t < 0 \\ V; & t \ge 0 \end{cases}$$

Začetno stanje sistema je $|m\rangle$ in zanima nas verjetnost, da bo sistem po času t v končnem stanju $|k\rangle$. Matrični element $V_{km}=\langle k|V|m\rangle$ je konstanta in velja

$$c_k^{(1)}(t) = \frac{1}{i\hbar} \int_0^t V_{km} e^{-i\frac{E_k - E_m}{\hbar}t'} dt' = \frac{V_{km}}{i\hbar} \frac{e^{-i\omega_{km}t} - 1}{-i\omega_{km}}$$

kjer je $\hbar\omega_{km}=E_k-E_m$. Verjetnost za prehod |m
angle
ightarrow|k
angle je podana z

$$P_{km} = \frac{|V_{km}|^2}{\hbar^2} \frac{\left|e^{-i\omega_{km}t} - 1\right|^2}{\omega_{km}^2} = \frac{|V_{km}|^2}{\hbar^2} \frac{\sin^2\left(\frac{1}{2}\omega_{km}t\right)}{\left(\frac{1}{2}\omega_{km}\right)^2}$$

Ena parametrizacija delta funkcije je

$$\delta_t(x) = \frac{\frac{1}{\pi} \sin^2 xt}{x^2 t}; \qquad \lim_{t \to \infty} \delta_t(x) = \delta(x)$$

Tako imamo torej

$$P_{km} = \frac{2\pi}{\hbar^2} |V_{km}|^2 \delta_t (E_k - E_m) t$$

Da velja razvoj v prvem redu mora veljati $P_{km}\ll 1$. Po dolgem času se δ_t zoži in preide v δ torej je v $t\to\infty$

$$P_{km} = \frac{2\pi}{\hbar} |V_{km}|^2 \delta(E_k - E_m) t$$

Pomemben je primer, ko je sistem v začetnem stanju v enem od lastnih stanj nezmotenega hamiltoniana in opazujemo prehod v končno stanje. Naj bo v bližini končnega stanje E_k možnih veliko drugih energij. V energijskem intervalu dE naj bo na voljo dN_{stanj} energijskih stanj, kar lahko opišemo z gostoto stanj

$$\rho(E_k) = \frac{dN_{stanj}}{dE_k}$$

Kadar nas ne zanima, v katero končno stanje sistem preide, seštejemo vse možnosti

$$P(t) = \int P_{km}(t)\rho(E_k)dE_k$$

iz česar sledi verjetnost P(t), ki po dolgem času linearno narašča s časom. To pomeni, da je hitrost naraščanja konstantna, kar predstavlja **Fermijevo zlato pravilo**

$$\frac{dP}{dt} = w_{k \leftarrow m} = \frac{2\pi}{\hbar^2} |V_{km}|^2 \rho(E_m)$$

Adiabatne spremembe in kvantne faze

Zamislimo si, da imamo sistem, pri katerem se s časom spreminja nek modelski parameter λ in se s tem spreminja tudi Hamiltonov operator $H=H(\lambda(t))$. Obravajmo praktičen primer, kjer imamo delec v osnovnem stanju neskončne potencialne jame z časovno odvisno širino L(t), ki po zelo dolgem času doseže dvojno širino. Časovna sprememba, ki je dovolj počasna, da stanje ves čas ostane v istem kvantnem stanju spremenjenega se imenuje **adiabatna**. Težko je postaviti zahtevo za nek parameter, da bo sprememba adiabatna. Vzemimo

$$\frac{d\lambda(t)}{dt} \ll \frac{|E_m - E_k|}{\hbar} \lambda(t)$$

kar nam zagotavlja, da je verjetnost za zasedbo vzbujenih stanj med adiabatno spremembo. Obravnavajmo sedaj splošnejši primer, kjer imamo podano N-terico parametrov sistema, ki so časovno odvisni

$$\vec{Q} = (q_1, q_2, \dots, q_N), \qquad H = H\left(\vec{Q}(t)\right)$$

Naj bo $|\psi_n(ec{Q})\rangle$ nedegenerirano lastno stanje za dani $ec{Q}$

$$H(\vec{Q})|\psi_n(\vec{Q})\rangle = E_n(\vec{Q})|\psi_n(\vec{Q})\rangle$$

Preverimo če je $\Psi_n^0(\vec{r},t) = \langle \vec{r} | \psi_n(\vec{Q}) \rangle$ rešitev SE

$$i\hbar \frac{\partial}{\partial t} |\Psi_n^0(\vec{r}, t)\rangle \neq H(\vec{Q}(t)) |\Psi_n^0(\vec{r}, t)\rangle$$

<u>Ni</u> rešitev. Obravnavajmo zdaj adiabatno spremembo parametrov. Po definicije adiabatne spremembe sistem ves čas ostaja v n-tem lastnem stanju $H(\vec{Q})$, vendar je pri lastnem vektorju $|\psi_n(\vec{Q})\rangle$ dopuščena sprememba od časa neodvisne in še neznane faze $\phi_n(t)$. Uporabimo nastavek

$$|\psi_n\rangle = e^{i\phi_n(t)}|\Psi_n^0\rangle$$

To vstavimo v SE iz česar sledi

$$i\hbar\left(i\frac{d\phi_n}{dt}e^{i\phi_n}|\Psi_n^0\rangle + e^{i\phi_n}\frac{\partial}{\partial t}|\Psi_n^0\rangle\right) = He^{i\phi_n}|\Psi_n^0\rangle = E_ne^{i\phi_n}|\Psi_n^0\rangle$$

Pomnožimo to sedaj s $\langle \Psi_n^0 |$ da dobimo

$$i\hbar\left(i\frac{d\phi_n}{dt}\langle\Psi_n^0|\Psi_n^0\rangle + \left\langle\Psi_n^0\left|\frac{\partial}{\partial t}\right|\Psi_n^0\rangle\right) = E_n\langle\Psi_n^0|\Psi_n^0\rangle$$

Ločimo sedaj na dva dela $\phi_n= heta_n+\gamma_n$ in sicer tako, da velja

$$i\hbar\left(i\frac{d\gamma_n}{dt} + \left\langle \Psi_n^0 \left| \frac{\partial}{\partial t} \right| \Psi_n^0 \right\rangle\right) = \left(E_n + \hbar\frac{d\theta_n}{dt}\right) = 0$$

Torej velja

$$\theta_n = -\frac{1}{\hbar} \int_0^t E_n(t') dt'$$

in enačba za drugi del faze je podana kot

$$\frac{d\gamma_n}{dt} = i \left\langle \Psi_n^0 \left| \frac{\partial}{\partial t} \right| \Psi_n^0 \right\rangle = i \left\langle \Psi_n^0 \left| \frac{\partial \Psi_n^0}{\partial t} \right\rangle$$

Parametri ki definirajo stanje so odvisni od časa zato lahko odvod zapišemo posredno še na drug način

$$\frac{\partial \Psi_n^0}{\partial t} = \sum_{k=1}^N \frac{\partial \Psi_n^0}{\partial q_k} \frac{dq_k}{dt} = \left(\nabla_{\vec{Q}} \psi_n \right) \cdot \dot{\vec{Q}}$$

in fazo kot

$$\gamma_n(t) = \int_0^t i \left\langle \psi_n \middle| \nabla_{\vec{Q}} \psi_n \right\rangle \cdot \dot{\vec{Q}} \, dt = \int_{\vec{Q}(0)}^{\vec{Q}(t)} i \left\langle \psi_n \middle| \nabla_{\vec{Q}} \psi_n \right\rangle \cdot d\vec{Q}$$

Ta v adiabatni limiti ni odvisna od časa, ampak samo od poti, ki jo vektor \vec{Q} izriše v prostoru parametrov, zato imenuje **geometrijska ali Berryjeva faza**. θ_n pa se imenuje **dinamična faza**.

$$\gamma_{\text{Berry}} = i \oint \langle \psi_n | \nabla_{\vec{Q}} \psi_n \rangle \cdot d\vec{Q}$$

$$\phi_n(t) = -\frac{1}{\hbar} \int_0^t E_n(t') dt' + \int_{\vec{Q}(0)}^{\vec{Q}(t)} i \left\langle \psi_n \middle| \nabla_{\vec{Q}} \psi_n \right\rangle \cdot d\vec{Q}$$