

EQUALITY & RELATIONAL & LOGICAL OPERATORS

zyBook 3.2, zyBook 3.4, zyBook 3.10, zyBook 3.11

EQUALITY AND RELATIONAL OPERATORS

- Compare two expressions
- Result in boolean (true or false)
- Only use with primitive data!

Operator	Meaning	Example	Value
==	Equal to	2 + 2 == 4	true
!=	Not equal to	3.2 != 4.1	true
<	Less than	4 < 3	false
>	Greater than	4 > 3	true
<=	Less than or equal to	2 <= 0	false
>=	Greater than or equal to	2.4 >= 1.6	true

LOGICAL OPERATORS

 Conditions can be combined with logical operators

Operator	Description	Example	Result
&&	AND	(2 == 3) && (-1 < 5) false && true	false
11	OR	(2 == 3) (-1 < 5) false true	true
!	NOT	!(2 == 3) !(false)	true

 We use truth tables to evaluate logical operators.

p	q	!p	р && q	p q
true	true	false	true	true
true	false	false	false	true
false	true	true	false	true
false	false	true	false	false

"EXCLUSIVE OR" VS. "INCLUSIVE OR"

- Or in natural language
 - exclusive or
 - A is true or B is true, not both
- Or in programming language
 - inclusive or
 - A is true or B is true or both A and B are true

Example

true

true

DE MORGAN'S LAW

- Rules used to negate boolean tests.
- Useful when you want the opposite of an existing test.

Original Expression	Negated Expression	Simplified Expression
a && b	!(a && b)	!a∥!b
a b	!(a b)	!a && !b

EXAMPLE - DE MORGAN'S LAW

Q: Negate
$$(x > y) \&\& (y > z)$$

!
$$((x > y) && (y > z))$$

$$x \le y \parallel y \le z$$

Q: Negate
$$(x == y) || (x <= z)$$

$$\| ((x == y) \| (x <= z)) \|$$

$$!(x == y) & !(x <= z)$$

$$x != y & x > z$$

PRECEDENCE REVISITED

If two operations are at the same precedence order, evaluate from left to right with the exception of assignment operators that are evaluated right to left.

- 1. Parentheses: ()
- 2. Unary operators: +, -,!
- 3. Multiplicative operators: *, /, %
- 4. Additive operators: +, -
- 5. Relational operators: <, >, <=, >=
- 6. Equality operators: ==, !=
- 7. Logical AND: &&
- 8. Logical OR: | |
- 9. Assignment operators: =, +=, -=, *=, /=, %=

ONE MORE EXAMPLE

O: Determine the truth value of

```
false | | true && -5 / 2 + (13 + 6) < 19
false | true && -5 / 2 + 19 < 19
false | | true && -2 + 19 < 19
false | | true && 17 < 19
false | | true && true
false | true
true
```

```
1. Parentheses: ()
```

- 2. Unary operators: +, -,!
- 3. Multiplicative operators: *, /, %
- 4. Additive operators: +, -
- 5. Relational operators: <, >, <=, >=
- 6. Equality operators: ==,!=
- 7. Logical AND: &&
- 8. Logical OR: ||
- 9. Assignment operators: =, +=, -=, *=, /=, %=