# MILP Optimization Data-Driven Decision-Making

## DANIEL ESCOBAR RUIZ

## Contents

| 1. Nurse planning        |    |
|--------------------------|----|
| 1.1 Model                | 3  |
| 1.2 R - lpSolving        | 3  |
| 1.3 Decision             | 4  |
| 2. Chipset Logistics     | 5  |
| 2.1 Model                | ε  |
| 2.2 R-lpSolving          |    |
| 2.3 Decision             |    |
| 3. Ocean Internet Cables | 10 |
| 3.1 Model                | 12 |
| 3.2 R – lpSolve          | 14 |
| 3.3 Decision             |    |
| Appendix 1               | 19 |
| Appendix 2               | 20 |
| Appendix 3.              | 22 |

## 1. Nurse planning

- Two types of nurses:
  - o Full-time: work five consecutive days followed by two days off.
  - o Part-time: work three consecutive days followed by four days off.
- Minimum number of nurses required per day:

| Mon | Tue | Wed | Thu | Fri | Sat | Sun |
|-----|-----|-----|-----|-----|-----|-----|
| 17  | 13  | 15  | 19  | 14  | 16  | 11  |

• Wages:

| Weekdays    | Saturdays   | Sundays     |  |
|-------------|-------------|-------------|--|
| € 250 / day | € 315 / day | € 375 / day |  |
| € 150 / day | € 185 / day | € 225 / day |  |

• Part-time nurses can cover at most 25% of total shifts.

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} & x_{12} & x_{13} & x_{14} \end{bmatrix}$$

 $x_i$ : Number of each kind of nurse that start working on each day of the week (Monday to Sunday).

 $i = 1, \dots, 7$ : Full time nurses.

i = 8, ..., 14: Part time nurses.

Calculating cost per nurse:  $c_i$  per  $x_i$ 

|                        | <br>Mon | Tus | Wen | Thu | Fri | Sat | Sun | Mon | Tus | Wen | Thu | <br>$\sum_{i} w_{i}$ | $c_i = c_i$     |
|------------------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------|-----------------|
| $x_1$                  | 250     | 250 | 250 | 250 | 250 |     |     |     |     |     |     | 1250                 | $c_1$           |
| $x_2$                  |         | 250 | 250 | 250 | 250 | 315 |     |     |     |     |     | 1315                 | $c_2$           |
| $x_3$                  |         |     | 250 | 250 | 250 | 315 | 375 |     |     |     |     | 1440                 | $c_3$           |
| $x_4$                  |         |     |     | 250 | 250 | 315 | 375 | 250 |     |     |     | 1440                 | $c_4$           |
| $x_5$                  |         |     |     |     | 250 | 315 | 375 | 250 | 250 |     |     | 1440                 | $c_5$           |
| <i>x</i> <sub>6</sub>  |         |     |     |     |     | 315 | 375 | 250 | 250 | 250 |     | 1440                 | c <sub>6</sub>  |
| $x_7$                  |         |     |     |     |     |     | 375 | 250 | 250 | 250 | 250 | 1375                 | c <sub>7</sub>  |
| <i>x</i> <sub>8</sub>  | 150     | 150 | 150 |     |     |     |     |     |     |     |     | 450                  | c <sub>8</sub>  |
| $x_9$                  |         | 150 | 150 | 150 |     |     |     |     |     |     |     | 450                  | C <sub>9</sub>  |
| <i>x</i> <sub>10</sub> |         |     | 150 | 150 | 150 |     |     |     |     |     |     | 450                  | c <sub>10</sub> |
| <i>x</i> <sub>11</sub> |         |     |     | 150 | 150 | 185 |     |     |     |     |     | 485                  | $c_{11}$        |
| x <sub>12</sub>        |         |     |     |     | 150 | 185 | 225 |     |     |     |     | 560                  | c <sub>12</sub> |
| x <sub>13</sub>        |         |     |     |     |     | 185 | 225 | 150 |     |     |     | 560                  | c <sub>13</sub> |
| x <sub>14</sub>        |         |     |     |     |     |     | 225 | 150 | 150 |     |     | 525                  | c <sub>14</sub> |

$$C = \begin{bmatrix} 1250 & 1315 & 1440 & 1440 & 1440 & 1375 \\ 450 & 450 & 450 & 485 & 560 & 560 & 525 \end{bmatrix}$$

#### 1.1 Model

Objective function:

$$Min\left(\sum_{i}c_{i}x_{i}\right)$$

$$Min\left(\frac{1250x_{1} + 1315x_{2} + 1440x_{3} + 1440x_{4} + 1440x_{5} + 1440x_{6} + 1375x_{7}}{+450x_{8} + 450x_{9} + 450x_{10} + 485x_{11} + 560x_{12} + 560x_{13} + 525x_{14}}\right)$$

#### Subject to:

- $x_1 + x_4 + x_5 + x_6 + x_7 + x_8 + x_{13} + x_{14} \ge 17$ , for Monday
- $x_1 + x_2 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{14} \ge 13$ , for Tuesday
- $x_1 + x_2 + x_3 + x_6 + x_7 + x_8 + x_9 + x_{10} \ge 15$ , for Wednesday
- $x_1 + x_2 + x_3 + x_4 + x_7 + x_9 + x_{10} + x_{11} \ge 19$ , for Thursday
- $x_1 + x_2 + x_3 + x_4 + x_5 + x_{10} + x_{11} + x_{12} \ge 14$ , for Friday
- $x_2 + x_3 + x_4 + x_5 + x_6 + x_{11} + x_{12} + x_{13} \ge 16$ , for Saturday
- $x_3 + x_4 + x_5 + x_6 + x_7 + x_{12} + x_{13} + x_{14} \ge 11$ , for Sunday
- $\sum_{i=1}^{7} x_i 3 \sum_{i=1}^{14} x_i \ge 0$ , Part-time nurses at most 25% of total
- $x_i \in \mathbb{Z}^+, i = (1, ..., 14)$

The problem has 8 restrictions

## 1.2 R-lpSolving



I build the coefficient matrix for restrictions using a excel sheet by transforming the table of costs. (see Appendix 1).

```
0 ×
File Edit Code View Plots Session Build Debug Profile Tools Help
○ • 🔯 🚰 • 🔒 🖨 | 🌦 Go to file/function
                                             Addins •

■ MILP problems — D3 - DATA DRIVEN DECISION •
  1 - DANIEL_ESCOBAR_RUIZ_40345774_... * × 2 - DANIEL_ESCOBAR_RUIZ_40345774_... × 2 - IpSolve - Example-MILP-Warehous... * ×
       Run 🕩 🗘 🕒 Source 🗸 🗏
    19 - #-----
    20 # The Constraints:
        # first five constraints
    22
    23
        const.mat \leftarrow matrix(c(1,0,0,1,1,1,1,1,0,0,0,0,1,1, # Monday
    24
25
                                1,1,0,0,1,1,1,1,1,0,0,0,0,1, # Tuesday
                                1,1,1,0,0,1,1,1,1,1,0,0,0,0, # Wednesday 1,1,1,1,0,0,1,0,1,1,1,1,0,0,0, # Thursday
    26
27
28
                                1,1,1,1,1,0,0,0,0,1,1,1,0,0, # Friday 0,1,1,1,1,1,0,0,0,0,1,1,1,0, # Saturday
                                0,0,1,1,1,1,1,0,0,0,0,1,1,1, # Sunday
1,1,1,1,1,1,1,-3,-3,-3,-3,-3,-3,-3 # Par-time <= 0.25 Total
    29
    30
                                ), nrow=8,byrow=TRUE)
    32
    33 + #-
       # The Equality/inequality Signs:
    35
    36 const.dir <- c(rep(">=",8))
    38 + #-
       # The Right Hand Side Parameters (Constants):
    40
    41 const.rhs <- c(17, 13, 15, 19, 14, 16, 11, 0)
    43 - #-----
  Console
                                                                                                                                80

    MILP problems - RStudi

■ MILP problems — D3 - DATA DRIVEN DECISION ▼
  1 - DANIEL_ESCOBAR_RUIZ_40345774_... * × 0 2 - DANIEL_ESCOBAR_RUIZ_40345774_... × 0 29 - IpSolve - Example-MILP-Warehous... * ×
    38 • #
                                                                                                       → Run | → ↑ 🕘 | → Source 🗸 🗏
    39 # The Right Hand Side Parameters (Constants):
    41 const.rhs <- c(17, 13, 15, 19, 14, 16, 11, 0)
    43 - #-----
    44
       # Mathematical Programming Setting:
    46 model <- lp(direction="min",
                     objective.in = objective.in,
    48
                     const.mat = const.mat,
const.dir = const.dir,
    49
    50
                     const.rhs = const.rhs,
    51
52
                    all.int = TRUE)
        model
    53
        model$solution
    54
    55
  Console Terminal × Background Jobs ×
  R 4.2.1 · C:/Users/DANIEL/OneDrive - Queen's University Belfast/D3 - DATA DRIVEN DECISION/MILP problems/
  Success: the objective function is 28015
   [1] 6 7 0 4 0 0 2 0 0 0 0 0 5 0
  >|
```

#### 1.3 Decision

The hospital gets the minimum cost of €28015 when they hire:

- $x_1 = 6$ , full-time starting Mondays
- $x_2 = 7$ , full time starting Tuesdays
- $x_4 = 4$ , full time starting Thursdays
- $x_7 = 2$ , full time starting Sundays
- $x_{13} = 5$ , part time starting Saturdays

## 2. Chipset Logistics

Fabrics = 
$$(F1, F2, F3)$$

Distribution centres = (D1, D2)

Plants = 
$$(P1, P2)$$

26 relations as the next figure shows.



Table of costs: Per pack cost of shipment via the links (in €).

|    | F1  | F2  | F3  | D1  | D2  | P1  | P2  |
|----|-----|-----|-----|-----|-----|-----|-----|
| F1 |     | 100 | 60  | 100 | 100 | 400 | 400 |
| F2 | 180 |     | 180 | 20  | 20  | 160 | 300 |
| F3 | 8   | 160 |     | 20  | 10  | 200 | 240 |
| D1 |     |     |     |     | 24  | 40  | 240 |
| D2 |     |     |     | 16  |     | 40  | 240 |
| P1 |     |     |     |     |     |     | 20  |
| P2 |     |     |     |     |     | 140 |     |

Since each link is a decision variable, the model has 26 decision variables. I keep double notation of letter and numbers for practical reasons.

Decision variables

|    | F1                  | F2                                                  | F3                                               | D1                                               | D2                                                  | P1                                               | P2                                                  |
|----|---------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| F1 |                     | $x_{F1F2} = x_1$                                    | $\begin{array}{c} x_{F1F3} \\ = x_2 \end{array}$ | $\begin{array}{c} x_{F1D1} \\ = x_3 \end{array}$ | $\begin{array}{c} x_{F1D2} \\ = x_4 \end{array}$    | $\begin{array}{c} x_{F1P1} \\ = x_5 \end{array}$ | $\begin{array}{c} x_{F1P2} \\ = x_6 \end{array}$    |
| F2 | $x_{F2F1} = x_7$    |                                                     | $\begin{array}{c} x_{F2F3} \\ = x_8 \end{array}$ | $x_{F2D1} = x_9$                                 | $x_{F2D2} = x_{10}$                                 | $x_{F2P1} = x_{11}$                              | $x_{F2P2} = x_{12}$                                 |
| F3 | $x_{F3F1} = x_{13}$ | $\begin{array}{c} x_{F3F2} \\ = x_{14} \end{array}$ |                                                  | $x_{F3D1} = x_{15}$                              | $\begin{array}{c} x_{F3D2} \\ = x_{16} \end{array}$ | $x_{F3P1} = x_{17}$                              | $\begin{array}{c} x_{F3P2} \\ = x_{18} \end{array}$ |
| D1 |                     |                                                     |                                                  |                                                  | $x_{D1D2} = x_{19}$                                 | $x_{D1P1} = x_{20}$                              | $x_{D1P2} = x_{21}$                                 |
| D2 |                     |                                                     |                                                  | $x_{D2D1} = x_{22}$                              |                                                     | $x_{D2P1} = x_{23}$                              | $x_{D2P2} = x_{24}$                                 |
| P1 |                     |                                                     |                                                  |                                                  |                                                     |                                                  | $\begin{array}{c} x_{P1P2} \\ = x_{25} \end{array}$ |
| P2 |                     |                                                     |                                                  |                                                  |                                                     | $x_{P2P1} = x_{26}$                              |                                                     |

From the previous tables, we get the following vectors:

$$C = [\ 100\,, \quad 60\,\,, \quad 100\,, \quad 100\,, \quad 400\,, \quad 400\,, \quad 180\,, \quad 180\,, \quad 20\,\,, \quad 20\,, \\ 300\,, \quad 8\,\,, \quad 160\,, \quad 20\,\,, \quad 10\,\,, \quad 200\,, 240\,, \quad 24\,\,, \quad 40\,\,, \\ 240\,, \quad 16\,\,, \quad 40\,\,, \quad 240\,, \quad 20\,\,, \quad 140\,\,]$$

$$X = [x_{F1F2}, \dots, x_{P2P1}] = [x_1, \dots, x_{26}]$$

#### 2.1 Model

Objective function:

$$Min\left(\sum_{i}c_{i}x_{i}\right)$$

$$\begin{array}{l} \mathit{Min}(100x_{F1F2} + 60x_{F1F3} + 100x_{F1D1} + 100x_{F1D2} + 400x_{F1P1} + 400x_{F1P2} + 180x_{F2F1} \\ &\quad + 180x_{F2F3} + 20x_{F2D1} + 20x_{F2D2} + 160x_{F2P1} + 300x_{F2P2} + 8x_{F3F1} \\ &\quad + 160x_{F3F2} + 20x_{F3D1} + 10x_{F3D2} + 200x_{F3P1} + 240x_{F3P2} + 24x_{D1D2} \\ &\quad + 40x_{D1P1} + 240x_{D1P2} + 16x_{D2D1} + 40x_{D2P1} + 240x_{D2P2} + 20x_{P1P2} \\ &\quad + 140x_{P2P1}) \end{array}$$

$$Min(100x_1 + 60x_2 + 100x_3 + 100x_4 + 400x_5 + 400x_6 + 180x_7 + 180x_8 + 20x_9 + 20x_{10} + 160x_{11} + 300x_{12} + 8x_{13} + 160x_{14} + 20x_{15} + 10x_{16} + 200x_{17} + 240x_{18} + 24x_{19} + 40x_{20} + 240x_{21} + 16x_{22} + 40x_{23} + 240x_{24} + 20x_{25} + 140x_{26})$$

Subject to:

- $x_{F1F2} + x_{F1F3} + x_{F1D1} + x_{F1D2} + x_{F1P1} + x_{F1P2} x_{F2F1} \le 400$ , Fabric 1 produce at most 400k
- $-x_{F1F2} + x_{F2F1} + x_{F2F3} + x_{F2D1} + x_{F2D2} + x_{F2P1} + x_{F2P2} x_{F3F2} \le 600$ , Fabric 2 produce at most 600K
- $-x_{F1F3} x_{F2F3} + x_{F3F1} + x_{F3F2} + x_{F3D1} + x_{F3D2} + x_{F3P1} + x_{F3P2} \le 200$ , Fabric 2 produce at most 200K
- $-x_{F1P1} x_{F2P1} x_{F3P1} x_{D1P1} x_{D2P1} + x_{P1P2} x_{P2P1} = 400$ , Plant 1 demand exactly 400K
- $-x_{F1P2} x_{F2P2} x_{F3P2} x_{D1P2} x_{D2P2} x_{P1P2} + x_{P2P1} = 180$ , Plant 1 demand exactly 180K
- $x_i \le 400$ , i = (1, ..., 26), each link can transport at most 400k
- $x_i \in \mathbb{Z}^+, i = (1, ..., 26)$

We have in total 31 restrictions, in addition positive integers limitation constrain.

## 2.2 R-lpSolving

```
### The Constraints:

| **Ray | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ***
```

I created m1 and m2, then merged them to define the coefficient matrix for restrictions. Where m1 contains coefficients for the first five restrictions, and m2 contains the coefficients of restrictions regarding link capacities. Furthermore, m1 was created in excel table and simple copied and pasted on the R script (see Appendix 2).

Solution is unfeasible, even if I relax the model by accepting all positives rational numbers as follows.



Then, I relaxed production capacity constraints. However, the solution still unfeasible.



Then I **relaxed demand constrains**. Despite plants decreasing plant demands by 10% of original, solution still unfeasible.

```
- o ×
O - O Go to file/function
                                                                                                                                          Addins •
                                                                                                                                                                                                                                                                                                                                                                                                                      ■ MILP problems — D3 - DATA DRIVEN DECISION •
         DANIEL_ESCOBAR_RUIZ_40345774_pro... * ×
                  Source on Save Q / - 5
                                                                                                                                                                                                                                                                                                                                                                                                                               Run | 🍑 🕜 👃 | 🕪 Source 🕶
                             # try again by RELAXING DEMAND CONSTRAINS. Plants now demand only 10% of original demands:
                           The state of the s
                                                                                                                                                                                                                                                                                                                                                                                                #Fabric 1 produce at most 400k
#Fabric 2 produce at most 600k
#Fabric 2 produce at most 200K
#Plant 1 demand exactly least 4
                             m2 <- diag(26) # each link can transport at most 400k
                            const.mat <- rbind(m1,m2) # join previous arrays of constrains
                           const.dir <- c("<=","<=","<=",
"=","=", rep("<=", 26))
               110 const.rhs <- c( 400, 600, 200, 111 400/10, 180/10, 122 rep(400, 26))
                           118
              119
           124:1 [ (Untitled) :
         Console Terminal × Background Jobs ×
         R 4.2.1 · C:/Users/DANIEL/OneDrive - Queen's University Belfast/D3 - DATA DRIVEN DECISION/MILP problems/
         Error: no feasible solution found
```

When relaxing transport capacity constrains solution is still unfeasible.



#### 2.3 Decision

The company need to change the cost structure. As it is currently, the logistic model is nonviable, and the solution is unfeasible even when there are no limitations regarding production or transport capacity.

#### 3. Ocean Internet Cables

Cables i = (A, B)

Plants j = (1,2)

Months t = (1,2,3) = (Jan, Feb, Mar)

The problem request to devise a production schedule for each cable at each plant for each month.

 $P_{ijt}$ : production (in km) of cable i from plant j in month t.

| month | cable | Α             | Α             | В             | В             |
|-------|-------|---------------|---------------|---------------|---------------|
| month | plant | 1             | 2             | 1             | 2             |
| 1     |       | $P_{A11} = ?$ | $P_{A21} = ?$ | $P_{B11} = ?$ | $P_{B21} = ?$ |
| 2     |       | $P_{A12} = ?$ | $P_{A22} = ?$ | $P_{B12} = ?$ | $P_{B22} = ?$ |
| 3     |       | $P_{A12} = ?$ | $P_{A22} = ?$ | $P_{P12} = ?$ | $P_{P22} = ?$ |

We are provided with a demand that must be fulfilled by each month for each cable.  $D_{it}$ : deman (in km) of cable i in month t.

| month\cable | Α                         | В                         |
|-------------|---------------------------|---------------------------|
| 1           | $D_{A1} = 8000$           | $D_{B1} = 2000$           |
| 2           | $D_{A2} = 16000$          | $D_{B2} = 10000$          |
| 3           | $D_{A3} = 6000$           | $D_{B3} = 10000$          |
|             | $\sum_{t} D_{At} = 30000$ | $\sum_{t} D_{Bt} = 22000$ |

As the plants can produce more than demand required, at the end of the month we may have an excess of production for each cable for each plant.

 $E_{ijt}$ : excess of production for cable i in plant j for month t.

The excess production of the month enters inventory at the end of that month. Thus, production of February depends on excess of January, and so on for March. Furthermore, there are no holding inventory by the beginning and ending of the analysis.

$$E_{it} = \sum_{i} P_{ijt} - D_{it}$$

| month\cable | Α            | В            |
|-------------|--------------|--------------|
| 0           | $E_{A0} = 0$ | $E_{B0} = 0$ |
| 1           | $E_{A1} = ?$ | $E_{B1} = ?$ |
| 2           | $E_{A2} = ?$ | $E_{B2} = ?$ |
| 3           | $E_{A3} = 0$ | $E_{B3} = 0$ |

The cost of holding inventory is 20.20

Each plant has different production rates per cable.

 $R_{ij}$ : production rate per hour per km for cable i in plant t.

| Plant\cable | Α               | В               |
|-------------|-----------------|-----------------|
| 1           | $R_{A1} = 0.3$  | $R_{B1} = 0.24$ |
| 2           | $R_{A2} = 0.32$ | $R_{B2} = 0.28$ |

The cost per hour per plant for either cable or plant is  $\mathcal{Z}$  10. Then,  $10R_{ij}$  is the cost per hour required to produced one km of cable i in plant j for every month.

The production requires hours of work and raw material.

 $W_i$ : cost of raw material for cable i.

| cable | Α           | В           |
|-------|-------------|-------------|
|       | $W_A = 6.2$ | $W_B = 7.8$ |

Packing cost per km of either cable = 20.46. I assume that each km of cable produced is immediately packed whether is to deliver or keep it as holding inventory.

From the info above, the value of production per km depends on cost of hours required, cost of raw material, and packing cost.

 $V_{ij}$ : value (in  $\mathcal{Z}$ ) per km produced of cable i from plant j for every month. These values are constant in time. (Matrix calculations in appendix 3)

$$\frac{V_{ij}}{V_{ij}} = 10R_{ij} + W_i + 0.46$$

| Plant\cable | A               | В                |
|-------------|-----------------|------------------|
| 1           | $V_{A1} = 9.66$ | $V_{B1}=10.66$   |
| 2           | $V_{A2} = 9.86$ | $V_{B2} = 11.06$ |

Production is limited by hours availability for plants each month.

 $A_{it}$ : availability (in hours) of plant j in month t.

| Month\Plant | 1               | 2               |
|-------------|-----------------|-----------------|
| 1           | $A_{11} = 1400$ | $A_{21} = 3000$ |
| 2           | $A_{12} = 600$  | $A_{22} = 800$  |
| 3           | $A_{13} = 2000$ | $A_{23} = 600$  |

Since hour resources are limited and the entire demand must be fulfilled, we have the following constrains:

• The sum of hours used to produce both cables must be at most the available hours for each plant in each month.

$$\sum_{i} R_{ij} P_{ijt} \le A_{jt}$$

• The sum of production and difference of excess in current and following period of both plants must be equal to the demand for each cable and each month.

$$\sum_{i} (P_{ijt} + E_{ij(t-1)} - E_{ijt}) = D_{it}$$

• There should be no inventory at the end of March.

$$E_{ii(3)} = 0$$

equivalent to

$$\sum_{i} \left( P_{ij3} + E_{ij2} \right) = D_{i3}$$

Thus, the total production is equal to the total demand for each cable.

$$\sum_{t} \sum_{j} P_{ijt} = \sum_{t} D_{it}$$

 $S_i$ : selling price for cable i.

| cable | Α          | В                |
|-------|------------|------------------|
|       | $S_4 = 14$ | $S_{\rm P} = 18$ |

The profit is equal to the difference of the selling price and the value (cost) of all productions. The matrixial expression:

$$Profit = SP - VP$$

Equivalent to:

$$Profit = \sum_{i} \sum_{i} \sum_{t} \left( S_{i} P_{ijt} - V_{ij} P_{ijt} - 0.2 E_{i(t-1)} \right)$$

#### 3.1 Model

The problem requires to devise a production schedule for the maximum possible total profit. As the selling prices are fixed, the only way to maximize profit is by minimizing production costs.

#### The Generalized Model

#### Objective function:

$$\min\left(\sum_{i}\sum_{j}\sum_{t}\left(V_{ijt}P_{ijt}+0.2E_{i(t-1)}\right)\right)$$

#### Subject to:

•  $\sum_{i} R_{ii} P_{iit} \le A_{it}$  Available hours

•  $\sum_{j} P_{ijt} + E_{i(t-1)} - E_{it} = D_{it}$  Fulfil demands

•  $E_{i0} = E_{i3} = 0$  No excesses by the beginning and ending

•  $P_{i,it}$ ,  $E_{it} \in \mathbb{Z}^+$  Problem delimitation

## Specified model

#### Objective function:

$$\min \begin{pmatrix} 9.66P_{A11} + 9.86P_{A21} + 10.66P_{B11} + 11.06P_{B21} + \\ 9.66P_{A12} + 9.86P_{A22} + 10.66P_{B12} + 11.06P_{B22} + \\ 9.66P_{A13} + 9.86P_{A23} + 10.66P_{B13} + 11.06P_{B23} + \\ 0.2E_{A0} + 0.2E_{B0} + \\ 0.2E_{A1} + 0.2E_{B1} + \\ 0.2E_{A2} + 0.2E_{B2} + \\ 0.2E_{A3} + 0.2E_{B3} \end{pmatrix}$$

The model has 20 decision variables

#### Subject to:

- Available hours of production A<sub>jt</sub>
  - $0.3P_{A11} + 0.24P_{B11} \le 1400$  plant 1, month 1
  - $0.32P_{A21} + 0.28P_{B21} \le 3000$  plant 2, month 1
  - $0.3P_{A12} + 0.24P_{B12} \le 600$  plant 1, month 2
  - $0.32P_{A22} + 0.28P_{B22} \le 800$  plant 2, month 2
  - $0.3P_{A13} + 0.24P_{B13} \le 2000$  plant 1, month 3
  - $0.32P_{A23} + 0.28P_{B23} \le 600$  plant 2, month 3
- Demands *D\_it* 
  - $P_{A11} + P_{A21} + E_{A0} E_{A1} = 8000$  cable A, month 1
  - o  $P_{B11} + P_{B21} + E_{B0} E_{B1} = 2000$  cable B, month 1
  - o  $P_{A12} + P_{A22} + E_{A1} E_{A2} = 16000$  cable A, month 2
  - $\circ P_{B12} + P_{B22} + E_{B1} E_{B2} = 10000$  cable B, month 2
  - o  $P_{A13} + P_{A23} + E_{A2} E_{A3} = 6000$  cable A, month 3
  - o  $P_{B13} + P_{B23} + E_{B2} E_{B3} = 10000$  cable B, month 3
- No excesses by the beginning and ending
  - $\circ$   $E_{A0}=0$
  - o  $E_{B0} = 0$
  - $\circ$   $E_{A3}=0$

$$\circ$$
  $E_{B3}=0$ 

• Problem delimitation

o 
$$P_{iit}$$
,  $E_{it} \in \mathbb{Z}^+$ ,  $i = (A, B)$ ,  $j = (1,2)$ ,  $t = (1,2,3)$ 

The model has 16 constrains.

#### 3.2 R - lpSolve

```
MILP problems — D3 - DATA DRIVEN DECISION *
             DANIEL_ESCOBAR_RUIZ_40345774_pro... ×
                            6 # Import the lpSolve package.
                               8 library(lpSolve)
                         15 # 26 variables, one for each link

tobjective.in <- c( 9,66,  9.86, 10.66,  11.06,  9.66,  9.86, 10.66,  11.06,  19  9.66,  9.86, 10.66,  11.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  10.06,  1
                                       # The Constraints:
                                           # the coefficient matrix for constrains
                                      0, 0, # available hours plant 1, month 1
0, 0, # available hours plant 2, month 1
0, 0, # available hours plant 1, month 2
0, 0, # available hours plant 1, month 2
0, 0, # available hours plant 1, month 3
0, 0, # available hours plant 2, month 3
0. # Demand to be fulfill cable A. month 1
             Console

MIR Pyroblems - Ribudio
File Edit Code View Plots Session Build Debug Profile Tools Help

V V Code View Plots Session Build Debug Profile Tools Help

A Go to file/function

A Addins •
               # The Constraints:

# The Constraints:

# the coefficiate const.m.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      III MILP problems — D3 - DATA DRIVEN DECISION •
              O DANIEL_ESCOBAR_RUIZ_40345774_pro... ×
                                      0, 0, 0, 0, 0, 0, 0, # available hours plant 1, month 1
0, 0, 0, 0, 0, 0, 0, # available hours plant 2, month 1
0, 0, 0, 0, 0, 0, 0, # available hours plant 1, month 2
0, 0, 0, 0, 0, 0, 0, # available hours plant 1, month 2
0, 0, 0, 0, 0, 0, 0, # available hours plant 1, month 3
0, 0, 0, 0, 0, 0, 0, # available hours plant 1, month 3
-1, 0, 0, 0, 0, # available hours plant 1, month 1
-1, 0, 0, 0, 0, # Bemand to be fulfill cable A, month 1
1, 0, -1, 0, 0, 0, # Demand to be fulfill cable B, month 1
1, 0, -1, 0, 0, 0, # Demand to be fulfill cable B, month 2
0, 1, 0, -1, 0, # Demand to be fulfill cable B, month 2
0, 1, 0, -1, 0, # Demand to be fulfill cable B, month 2
0, 0, 1, 0, -1, # Demand to be fulfill cable B, month 3
0, 0, 0, 1, 0, -1, # Demand to be fulfill cable B, month 3
0, 0, 0, 1, 0, -1, # Demand to be fulfill cable B, month 3
0, 0, 0, 0, 1, 0, -1, # Excess is 0 by beginning of January for cable A
0, 0, 0, 0, 0, 0, # Excess is 0 by beginning of January for cable B, 0, 0, 0, 0, 0, 1, 0, # Excess is 0 by beginning of January for cable A
0, 0, 0, 0, 0, 1, 0, # Excess is 0 by end of March for cable A
0, 0, 0, 0, 0, 1, 0, # Excess is 0 by end of March for cable A
                          29
31
32
33
34
35
36
37
38
40
41
42
43
44
45
46
47
48
50
51
52
                                                                                                              (1400,3000,600,800,2000,600,  # available hours

8000,2000,16000,10000,6000,10000,  # Demand to be fulfill

0, 0, 0,  # Excess is 0 by beginning of January

0, 0  # Excess is 0 by end of March
                          53 const.rhs <- c(1400.3000.600.800.2000.600.
                                     (Untitled) :
```



No feasible solution. Then tried with all positive real numbers. However, solution is still unfeasible.



Then I relaxed constrains regarding excess of production at the end of march. So now

$$E_{i3} \ge 0$$



Solution is still unfeasible. Then Try again by relaxing constrain regarding available hours for production. This time, we get a solution.

```
O - O Go to file/function
                                                                                                         Addins •
                                                                                                                                                                                                                                                                                                                     ■ MILP problems — D3 - DATA DRIVEN DECISION •
       DANIEL_ESCOBAR_RUIZ_40345774_pro... ×
          2 Source on Save Q ✓ • □
          124 * #------
125 # Try again with relaxing hour availability constrains
           127 const.mat <- matrix(c(
                        # available hours
# Demand to be fulfill
# Excess is 0 by beginning of January
# Excess is 0 by end of March
           149
150
                      )
         166:1 (Untitled) $
      Console
O - O Go to file/function
                                                                                                       - Addins -

■ MILP problems — D3 - DATA DRIVEN DECISION •
      2 - DANIEL_ESCOBAR_RUIZ_40345774_... * 9 3 - DANIEL_ESCOBAR_RUIZ_40345774_... * *
          161 cor
162 cor
163 al'
164 model
165 model$solution
          167
         166:1 (Untitled) :
       Console Terminal × Background Jobs ×
        R 4.2.1 · C:/Users/DANIEL/OneDrive - Queen's University Belfast/D3 - DATA DRIVEN DECISION/MILP problems/
           model <- local property of the control of the contr
       > model
Success: the objective function is 524320
```

#### 3.3 Decision

The company must increase the hours available for production for each cable if they pretend to fulfil the demand each month.

When the available hours are not restrictions. All the production is assigned to Plant 1, which make sense since the rate of required hours is lower for both cables.

The production plan goes as follows:

- $\circ \quad P_{A11} = 8000$
- o  $P_{B11} = 2000$
- o  $P_{A12} = 16000$
- $\circ \quad P_{B12}=10000$
- $\circ \quad P_{A13}=6000$
- o  $P_{B13} = 10000$

## This production plan ensures:

- o the demands each month,
- o no excess of production and the end of march,
- o Minimum cost of production ₹524,320, and
- o Maximum profit  $\sum_i \sum_j \sum_t (S_i P_{ijt} V_{ij} P_{ijt} 0.2 E_{i(t-1)}) = 2379,680$

The company must increase production capacity (available hours), mainly in plant 1 where productivity if higher.



: 4

1 - nurses 2-chip-set Sheet2 🕦

## Appendix 2.



|                                                    |              |           |         |          |           | AN        |        | AM   |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           | w              | V         |          |          |             |        |
|----------------------------------------------------|--------------|-----------|---------|----------|-----------|-----------|--------|------|-----------|-----------|------|----------|-----------|---------|------|-----------------|------|----------|-----------|----------|--------|---------|-----------|----------------|-----------|----------|----------|-------------|--------|
|                                                    |              |           |         |          |           |           | П      |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          |          | e.in        | bjeti  |
|                                                    |              |           | 140     | 20       | 240       | 40        |        | 16   | 240       | 40        | 24   | 240      | 200       | 10      | 20   | 160             | 8    | 300      | 160       | 20       | 20     | 180     | 180       | 400            | 400       | 100      | 100      | 60          | 00     |
|                                                    |              |           | 140,    |          |           |           | 40     | 16,  | 240,      | 40,       | 24,  | 240,     | 200,      | 10,     |      |                 | 8,   | 300,     | 160,      | 20,      | 20,    | 180,    | 180,      | 400,           | 400,      | 100,     | 100,     | 60,         | 00,    |
|                                                    |              |           | x_26    |          |           |           |        | x_22 | x_21      |           |      |          |           |         |      | x_14<br>160x 14 | x_13 |          |           | x_10     | x_9    | x_8     | x_7       | x_6            | x_5       | x_4      | x_3      | x_2         | 1      |
|                                                    |              |           |         |          |           |           |        |      |           |           |      |          |           |         |      | x_F3F2          |      |          |           |          |        |         |           |                |           |          |          |             |        |
|                                                    |              | 1+        |         |          |           |           |        |      |           |           |      |          |           |         |      | 160x_F31        |      |          |           |          |        |         |           |                |           |          |          |             |        |
|                                                    | const.rhs    | const.dir |         |          |           |           |        |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          |          | nat         | onst.  |
|                                                    | Amount given |           | x 26    | x 25     | 24        | 23        | x      | x 22 | x 21      | x 20      | x 19 | x 18     | x 17      | x 16    | x 15 | x 14            | × 13 | x 12     | × 11      | × 10     | x 9    | x 8     | x 7       | x 6            | x 5       | x 4      | x 3      | x 2         | 1      |
|                                                    |              |           |         |          |           |           |        |      |           |           |      |          |           |         |      | x_F3F2          |      |          |           |          |        |         |           |                |           | x_F1D2   |          |             |        |
| 1 produce at most 400k                             | 400          | <11       |         |          |           |           | Т      |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         | -1        | 1              | 1         | 1        | 1        | 1           | 1      |
| 2 produce at most 600k                             |              | <=        |         |          |           |           |        |      |           |           |      |          |           |         |      | -1              |      | 1        | 1         | 1        | 1      | 1       | 1         |                |           |          |          |             | -1     |
| 3 produce at most 200k                             |              | <=        |         |          |           |           |        |      |           |           |      | 1        | 1         | 1       | 1    | 1               | 1    |          |           |          |        | -1      |           |                |           |          |          | -1          |        |
| 1 demand exactly 400k                              |              | =         | -1      | 1        |           | -1        |        |      |           | -1        |      |          | -1        |         |      |                 |      |          | -1        |          |        |         |           |                | -1        |          |          |             |        |
| 2 demand exactly 180k<br>each link can sent at mos |              | =<br><=   | 1       | -1       | -1        |           |        |      | -1        |           |      | -1       |           |         |      |                 |      | -1       |           |          |        |         |           | -1             |           |          | 0.76     | natrix siz  | ndov   |
| activities carried at the                          | 400          |           |         |          |           |           | -      | _    |           |           |      |          |           |         |      | _               |      |          |           |          |        |         |           |                |           | _        | - 20     | III III III | IGCA   |
|                                                    |              |           |         |          |           |           |        |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          |          | olve        | or lps |
|                                                    | 400          | <=        | 0       | 0        | 0         | 0         |        | 0    | 0         | 0         | 0    | 0        | 0         | 0       | 0    | 0               | 0    | 0        | 0         | 0        | 0      | 0       | -1        | 1              | 1         | 1        | 1        | 1           | 1      |
|                                                    | 600          | <=        | 0       | 0        | 0         | 0         |        | 0    | 0         | 0         | 0    | 0        | 0         | 0       | 0    | -1              | 0    | 1        | 1         | 1        | 1      | 1       | 1         | 0              | 0         | 0        | 0        | 0           | -1     |
|                                                    | 200          | <=        | 0       | 0        | 0         | 0         |        | 0    | 0         | 0         | 0    | 1        | 1         | 1       | 1    | 1               | 1    | 0        | 0         | 0        | 0      | -1      | 0         | 0              | 0         | 0        | 0        | -1          | 0      |
|                                                    | 400          | =         | -1      | 1        | 0         | -1        |        | 0    | 0         | -1        | 0    | 0        | -1        | 0       | 0    | 0               | 0    | 0        | -1        | 0        | 0      | 0       | 0         | 0              | -1        | 0        | 0        | 0           | 0      |
|                                                    | 180          |           | 1       | -1       | -1        | 0         |        | 0    | -1        | 0         | 0    | -1       | 0         | 0       | 0    | 0               | 0    | -1       | 0         | 0        | 0      | 0       | 0         | -1             | 0         | 0        | 0        | 0           | 0      |
|                                                    | 400          | <=        |         |          |           |           | $\pm$  |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          | e 26     | natrix siz  | ndex   |
|                                                    | 400          | <=        | 0,      | 0,       | 0,        | 0,        |        | 0,   | 0,        | 0,        | 0,   | 0,       | 0,        | 0,      | 0,   | 0,              | 0,   | 0,       | 0,        | 0,       | 0,     | 0,      | -1,       | 1,             | 1,        | 1,       | 1,       | 1,          | 1,     |
|                                                    | 600          | <=        | 0,      | 0,       | 0,        | 0,        |        | 0,   | 0,        | 0,        | 0,   | 0,       | 0,        | 0,      | 0,   | -1,             | 0,   | 1,       | 1,        | 1,       | 1,     | 1,      | 1,        | 0,             | 0,        | 0,       | 0,       | 0,          | -1,    |
|                                                    | 200          | <=        | 0,      | 0,       | 0,        | 0,        |        | 0,   | 0,        | 0,        | 0,   | 1,       | 1,        | 1,      | 1,   | 1,              | 1,   | 0,       | 0,        | 0,       | 0,     | -1,     | 0,        | 0,             | 0,        | 0,       | 0,       | -1,         | 0,     |
|                                                    | 400<br>180   | - :       | -1,     | 1,       | 0,<br>-1. | -1,<br>0. |        | 0,   | 0,<br>-1, | -1,<br>0, | 0,   | 0,       | -1,<br>0. | 0,      | 0,   | 0,              | 0,   | 0,       | -1,<br>0. | 0,       | 0,     | 0,      | 0,        | 0,             | -1,<br>0, | 0,       | 0,       | 0,          | 0,     |
|                                                    | 400          | <u></u>   | 1,      | -1,      | -1,       | 0,        | -      | 0,   | -1,       | J,        | J,   | -1,      | u,        | 0,      | J,   | J,              | 0,   | -1,      | 0,        | 0,       | 0,     | 0,      | 0,        | -1,            | 0,        | 0,       | e 26     | natrix siz  |        |
|                                                    |              |           |         |          |           |           | $\mp$  |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          |          | ument       |        |
|                                                    | 400          | <=        |         |          |           |           | $\neg$ |      |           |           |      |          |           |         |      |                 |      |          |           |          |        | 1       | 2 -1x_F2F | 1-1x F1P       | 2 1x F1P  | 1 1x F1D | 3-1x F1D |             |        |
|                                                    | 600          | <=        |         |          |           |           |        |      |           |           |      |          |           |         | į.   | -1x_F3F2        |      | 1x_F2P2  | 1x F2P1   | 1 1x F2D | 1x F2D |         |           | 7              | 1         |          |          |             | 1x F1  |
|                                                    | 200          | <=        |         |          |           |           |        |      |           |           |      | 1x_F3P2  | 1x F3P1   | 1x_F3D2 |      | 1x F3F2         |      |          |           |          |        | -1x_F2F |           |                |           |          | FB       | -1x_F1      |        |
|                                                    | 400          |           | -1x_P2P | 1x_P1P2- |           | _D2P1     | -1     |      |           | -1x_D1P   |      |          | -1x_F3P   |         |      |                 |      |          | -1x_F2P   |          |        |         |           | p <sub>1</sub> | -1x_F18   |          |          |             |        |
|                                                    | 180<br>400   | -         | 1x_P2P1 | -1x_P1P2 | 1x_D2P2-  |           |        | ig . | -1x_D1P   |           |      | -1x_F3P2 |           |         |      |                 | 2    | -1x_F2P2 |           |          |        |         | P2        | -1x_F16        |           |          |          |             |        |
|                                                    |              |           |         |          |           |           |        |      |           |           |      |          |           |         |      |                 |      |          |           |          |        |         |           |                |           |          |          | natrix siz  |        |

# Appendix 3.

| Hon      | ne Insert   | Page Layout                 | Formulas Dat    | a Review | View Automa | ate Develope          | r Help        |      |
|----------|-------------|-----------------------------|-----------------|----------|-------------|-----------------------|---------------|------|
| ,        | : × v       | <i>f</i> <sub>x</sub> =+"A_ | "&G\$37&\$F39&" | ="&C39   |             |                       |               |      |
| Α        | В           | С                           | D               | Е        | F           | G                     | н             |      |
|          |             |                             |                 |          |             |                       |               |      |
|          |             |                             | P_ijt           |          |             |                       |               |      |
| month    | cable       | A                           | Α               | В        | В           |                       |               |      |
| month    | plant       | 1                           | 2               | 1        | 2           |                       |               |      |
|          | 1           | P_A11=?                     | P_A21=?         | P_B11=?  | P_B21=?     |                       |               |      |
|          | 2           | P_A12=?                     | P_A22=?         | P_B12=?  | P_B22=?     |                       |               |      |
|          | 3           | P_A13=?                     | P_A23=?         | P_B13=?  | P_B23=?     |                       |               |      |
|          |             |                             |                 |          |             |                       |               |      |
|          |             |                             |                 |          |             |                       |               |      |
|          |             |                             |                 |          |             |                       |               |      |
|          |             | D_it                        |                 |          |             | D_it                  |               |      |
|          | month\cable |                             | В               |          | month\cable |                       | В             |      |
|          |             |                             |                 |          |             | D_A1=8000             |               |      |
|          | 1           | 8,000                       | 2,000           |          |             |                       | D_B1=2000     |      |
|          | 2           | 16,000                      | 10,000          |          |             | D_A2=16000            |               |      |
|          | 3           | 6,000                       | 10,000          |          | 3           | D_A3=6000             | D_B3=10000    |      |
|          | Total       | 30,000                      | 22,000          |          |             | SUM(D_At)=3           | (SUM(D_Bt)=22 | 2000 |
|          |             |                             |                 |          |             |                       |               |      |
|          |             | R_ji                        |                 |          |             | A_ij                  |               |      |
|          | Plant\cable | Α                           | В               |          | Plant\cable | Α                     | В             |      |
|          | 1           | 0.30                        | 0.24            |          | 1           | R_A1=0.3              | R_B1=0.24     |      |
|          | 2           | 0.32                        | 0.28            |          | 2           | R_A2=0.32             | R_B2=0.28     |      |
|          |             |                             |                 |          |             |                       |               |      |
|          |             | W_i                         |                 |          |             | W_i                   |               |      |
|          | plant       | Α                           | В               |          | cable       | Α                     | В             |      |
|          |             | 6.2                         | 7.8             |          |             | W_A=6.2               | W_B=7.8       |      |
|          |             |                             |                 |          |             | _                     | _             |      |
|          | V_ij =      | = 10R_ji + W_i +            | + <b>0.4</b> 6  |          | V_ij =      | -<br>= 10R_ji + W_i - | + 0.46        |      |
|          | Plant\cable | A                           | В               |          | Plant\cable | A                     | В             |      |
|          | 1           | 9.66                        | 10.66           |          |             | V_A1=9.66             | V_B1=10.66    |      |
|          | 2           | 9.86                        |                 |          |             | V_A2=9.86             | V_B2=11.06    |      |
| <b>→</b> | 1 - nurses  | 2-chip-set 3-c              | ables Sheet2    |          |             |                       |               |      |





