第18章 电磁波

18.1 电磁波的波动方程

$$\iint_{S} \vec{D} \cdot d\vec{S} = \iiint_{V} \rho dV$$

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0$$

$$\iint_{C} \vec{E} \cdot d\vec{l} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$\iint_{R} \vec{H} \cdot d\vec{l} = \iint_{S} \vec{J}_{c} \cdot d\vec{S} + \iint_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

积分形式

电、磁分量都具有波动 特征——电磁波!

当电磁波沿x 方向传播时

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \varepsilon \frac{\partial^2 E_y}{\partial t^2}$$

$$\frac{\partial^2 H_z}{\partial x^2} = \mu \varepsilon \frac{\partial^2 H_z}{\partial t^2}$$

结合 $\vec{D} = \varepsilon \vec{E}$ $\vec{B} = \mu \vec{H}$

经过复杂的推导得:

$$\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

和

$$\nabla^2 \vec{H} = \mu \varepsilon \frac{\partial^2 H}{\partial t^2}$$

其中
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

拉普拉斯算符

电、磁分量都具有波动特征——电磁波!

当电磁波沿x 方向传播时

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \varepsilon \frac{\partial^2 E_y}{\partial t^2}$$

$$\frac{\partial^2 H_z}{\partial x^2} = \mu \varepsilon \frac{\partial^2 H_z}{\partial t^2}$$

电磁波波速为:

$$u = \frac{1}{\sqrt{\mu \varepsilon}}$$

即: 若设电场方向沿y方向, 磁场必为z方向!

比较波动方程

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

电磁波波速与光矢量

$$u = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \text{ m/s} \qquad \text{ \times c}$$

推测: 光也是电磁波!

$$u = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}} = \frac{c}{n}$$

$$n = \sqrt{\varepsilon_{r}}$$

$$n = \sqrt{\mu_{r} \varepsilon_{r}} - \text{Hhr}$$

在光波段 $\mu_{r}=1$,与物质作用的主要是 E矢量 \vec{E} ——通常被称为光矢量!

注意: 在BEC(Bose-Einstein Condensation)介质中,光的传播速度可以慢到大约为~0m/s。

18.2 电磁波的性质

一、 性质

$$\vec{E} = \vec{E}_0 \cos \omega t$$

$$\Rightarrow E = E_0 \cos \omega t$$

$$E = E_0 \cos \omega (t - \frac{x}{c})$$

沿x轴正向传播的平面简谐波

曲:
$$\frac{\partial E}{\partial x} = -\mu_0 \frac{\partial H}{\partial t}$$

$$\frac{\partial E}{\partial x} = -\mu_0 \frac{\partial H}{\partial t} \qquad E = E_0 \cos \omega (t - \frac{x}{c})$$

$$\Rightarrow H = -\frac{1}{\mu_0} \int \frac{\partial E}{\partial x} dt = \frac{E_0}{\mu_0 c} \cos \omega (t - \frac{x}{c}) = H_0 \cos \omega (t - \frac{x}{c})$$

$$H_0 = \frac{E_0}{\mu_0 c} = \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0 \quad c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

沿
$$x$$
轴负向传播: $E = E_0 \cos \omega (t + \frac{x}{c})$

$$H = -H_0 \cos \omega (t + \frac{x}{c})$$

$$E = E_0 \cos \omega (t - \frac{x}{c})$$

$$H = H_0 \cos \omega (t - \frac{x}{2})$$

性质: 1. 横波性
$$\vec{E}$$
, $\vec{H} \perp \vec{u}$

2. 偏振性
$$\vec{E} \perp \vec{H}$$
, $\vec{u} / / \vec{E} \times \vec{H}$

3.
$$\vec{E}$$
, \vec{H} 同周相 $|H| = \sqrt{\frac{\varepsilon_0}{\mu_0}} |E|$ $|B| = \frac{1}{c} |E|$

Example (Standing wave) An important example is the superposition of two similar plane waves traveling in opposite directions. Consider a wave traveling in the x direction, described by

$$\vec{E}_1 = E_0 \cos \left[\omega (t - \frac{x}{c}) + \frac{\pi}{2} \right] \vec{j}$$

$$\vec{E}_1 = E_0 \cos \left[\omega (t - \frac{x}{c}) + \frac{\pi}{2} \right] \vec{j} \qquad \vec{B}_1 = \frac{E_0}{c} \cos \left[\omega (t - \frac{x}{c}) + \frac{\pi}{2} \right] \vec{k}$$
ow consider another wave:

Now consider another wave:

$$\vec{E}_2 = -E_0 \cos \left[\omega (t + \frac{x}{c}) + \frac{\pi}{2} \right] \vec{j} \qquad \vec{B}_1 = \frac{E_0}{c} \cos \left[\omega (t + \frac{x}{c}) + \frac{\pi}{2} \right] \vec{k}$$

$$\vec{B}_1 = \frac{E_0}{c} \cos \left[\omega (t + \frac{x}{c}) + \frac{\pi}{2} \right] \vec{k}$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = 2E_0 \sin \omega \frac{x}{c} \cos \omega t \vec{j}$$

standing wave.

$$\vec{B} = \vec{B}_1 + \vec{B}_2 = -2\frac{E_0}{c}\cos\omega\frac{x}{c}\sin\omega t\vec{k}$$

$$\frac{\omega}{c} = \frac{2\pi}{\lambda}$$

has its electric and magnetic fields "out of step" in both space and time.

棉花糖+微波炉

二、坡因廷矢量

电磁波的能流密度:

$$S = wu$$
 $w = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2$ 利用: $u = \frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\varepsilon} E = \sqrt{\mu} H$
$$\frac{1}{2} \varepsilon E^2 = \frac{1}{2} \sqrt{\varepsilon} E \sqrt{\mu} H$$

$$\frac{1}{2} \mu H^2 = \frac{1}{2} \sqrt{\mu} H \sqrt{\varepsilon} E$$
 $\Rightarrow S = EH$

$$\vec{S} / \vec{u} / \vec{E} \times \vec{H}$$

$$\Rightarrow \vec{S} = \vec{E} \times \vec{H}$$

电磁波强度:

$$I = \overline{S} = \sqrt{\frac{\varepsilon}{\mu}} \overline{E^2}$$

$$= \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} E_0^2 = \frac{1}{2} E_0 H_0 = \overline{w} u$$

$$\Rightarrow S = EH$$

坡因廷矢量举例

•电容器充、放电

电容器充电过程中,通过坡因廷矢量输入能量!

电容器放电过程中, 通过坡因廷矢量输出能 量!

三、 辐射压强

质量密度:
$$m = \frac{w}{c^2} (:: E = mc^2)$$

动量密度:
$$p = \frac{E}{c} = \frac{w}{c} (:: E^2 = p^2 c^2 + m_0^2 c^2)$$

 $\vec{p} = \frac{\vec{S}}{c^2} = \frac{1}{c^2} \vec{E} \times \vec{H} = \frac{1}{\mu_0 c^2} \vec{E} \times \vec{B} \ (w = \frac{S}{c})$

辐射压强:
$$\frac{F}{\Delta S} = \frac{pc\Delta S}{\Delta S} = pc = w$$

$$\overline{\left(\frac{F}{\Delta S}\right)} = \overline{w} = \frac{\overline{S}}{c}$$

•完全反射时:
$$2(\frac{F}{\Delta S}) = 2\overline{w} = 2\frac{\overline{S}}{c}$$

辐射压强:
$$\frac{F}{\Delta S} = \frac{pc\Delta S}{\Delta S} = pc = w$$

辐射压强:

18.4 振荡电偶极子的辐射 赫兹实验

一、电磁波的产生

电磁辐射总是和电荷的加速运动相联系。

振荡电偶极子

$$+q$$
 \vec{l}
 \vec{p}

电矩:

$$\vec{p} = |q|\vec{l}$$

振荡电偶极子:
$$p = p_0 \cos \omega t$$

 $= ql\cos\omega t$

不同时刻振荡电偶极子附近的电场线

$$p = p_0 \cos \omega t$$

振荡电偶极子附近的电磁场线

$$E = -\frac{\omega^2 p_0 \sin \theta}{4\pi \varepsilon_0 c^2 r} \cos \omega (t - \frac{r}{c})$$

$$H = -\frac{\omega^2 p_0 \sin \theta}{4\pi \varepsilon_0 cr} \cos \omega (t - \frac{r}{c})$$

$$S = E \cdot H = \frac{\omega^4 p_0^2 \sin^2 \theta}{16\pi^2 \varepsilon_0 c^3 r^2} \cos^2 \omega (t - \frac{r}{c})$$

总辐射功率:
$$p = \int Sr^2 \sin \theta d\theta d\phi$$

$$\bar{p} = \frac{\omega^4 p_0^2}{12\pi\varepsilon_0 c^3}$$

二、赫兹实验

三、电磁波谱

无线电波 3×10^4 m ~ 0.1cm 紫外光 400 nm ~ 5 nm 400 1m 400 1m

【例】某广播电台的平均辐射功率 P 。假定辐射出来的能流均匀地分布在以电台为中心的半个球面上,在离电台为r 处的平均能流密度= $\frac{\overline{P}}{2\pi r^2}$;

(2)在r处一个小的空间范围内电磁波可看作平面波,该处电场强度的振幅=_____和磁场强度的振幅

$$E_0 = \sqrt{\frac{\overline{P}}{\pi r^2 \varepsilon_0 c}}$$

$$H_0 = \sqrt{\frac{\overline{P}}{\pi r^2 \mu_0 c}}$$

$$\overline{S} = \varepsilon_0 c E_0^2 / 2$$
 $\overline{S} = \mu_0 c H_0^2 / 2$ $\sqrt{\varepsilon_0} E = \sqrt{\mu_0} H$,

[例]如图所示,同轴电缆内外半径分别为a 和b ,用来作为电源ε和电阻R的传输线,电缆本身的电阻忽略不计。

- (1)试求电缆中任一点(a<r<b)处的坡印廷矢量S;
- (2)试求通过电缆横截面的能流,该结果说明什么物理图象?

$$\frac{\lambda}{2\pi\varepsilon_0} = \frac{\varepsilon}{\ln\frac{b}{a}}$$

电场强度

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

接定义:
$$\varepsilon = \int_a^b \vec{E} \cdot d\vec{l} = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{a}$$

$$\frac{\lambda}{2\pi\varepsilon_0} = \frac{\varepsilon}{\ln\frac{b}{-b}}$$

磁场强度:

$$E = \frac{b}{r \ln \frac{b}{a}}$$

$$H = \frac{I}{2\pi r}$$

$$= \frac{\mathcal{E}}{2\pi r \cdot R}$$

S = EH = $2\pi r^2 R \ln$

(2)通过电缆横截面的能流

$$P = \int S \cdot dA = \int_{a}^{b} \frac{\varepsilon^{2}}{2\pi r^{2} R \ln \frac{b}{a}} \cdot 2\pi r \cdot dr = \frac{\varepsilon^{2}}{R}$$

电源通过电缆 以坡因廷矢量 的形式传输能 量到负载。

$$S = EH = \frac{\mathcal{E}}{2\pi r^2 R \ln \frac{b}{a}}$$