WORKSHOP ON DATA SCIENCE & MACHINE LEARNING USING

Tue Vu (PhD)

ADVANCED COMPUTING & DATA SCIENCE (ACDS)

CYBER-INFRASTRUCTURE & TECHNOLOGY INTEGRATION (CITI)

CLEMSON COMPUTING & INFORMATION TECHNOLOGY (CCIT)

Fall 2019

INTRODUCTION TO

USING

Tue Vu (PhD)

ADVANCED COMPUTING & DATA SCIENCE (ACDS)

CYBER-INFRASTRUCTURE & TECHNOLOGY INTEGRATION (CITI)

CLEMSON COMPUTING & INFORMATION TECHNOLOGY (CCIT)

Wednesday (09/18)	Friday (09/20)
 Data Science Basic R Vectors/Matrices Inputs/Outputs Control structure (If end, For loop) Function 	 Advanced R Install packages R Profiling Parallel computing R in HPC Plotting system Basic & ggplots

Tuesday (06/18)	Thursday (06/20)
 Data Science Basic R Vectors/Matrices Inputs/Outputs Control structure (If end, For loop) Function 	 Advanced R R Profiling Parallel computing R in HPC Plotting system Basic & ggplots

Tuesday (06/25)	Thursday (06/27)
 Introduction to Machine Learning Why R for Machine Learning? Types of ML Caret Package Supervised Learning (Regression, Decision Tree, Random Forest)	 Supervised Learning (Ensemble prediction, Model based prediction, Regularization & variable selection) Dimension Reduction Neural Network Support Vector Machine K-Nearest Neighbour Unsupervised Learning (K-means clustering, Gap-Statistic)

ML Projects

DATA VISUALIZATION WITH TABLEAU

Friday, October 25

Free workshops for students, faculty, and staff on state-of-the-art technologies in data visualization and spatial analytics. No previous experience required!

MORNING SESSION: TABLEAU BASICS

Discover the power of data analytics and visual design with Tableau. Learn how to make basic charts, create interactive dashboards, and publish them online to Tableau public.

AFTERNOON SESSION: USING R & PYTHON

Learn how to integrate statistical analysis using R. Leverage Tableau and Python to build advanced analytics.

Register: bit.ly/cutableaubasic bit.ly/cutableauadvanced 406A Cooper Library

OUTLINES

- 1. Introduction to Data Science
- 2. What is Data Scientist
- 3. Hands-on R

- The keyword for Data Science?

- Data science is only useful when the data are used to answer a question.
- That is the **Science** part of the equation.

What is Data Science?

- Structure of Data Science Project

There are two common languages for Data Science

- 1. R
- 2. Python

2. Why R?

- R is used by the best data scientists in the world. In surveys on Kaggle (the competitive machine learning platform), R is by far the most used machine learning tool.
- R is powerful because of the breadth of techniques it offers. The platform has more techniques than any
 other that you will come across.
- R is state-of-the-art because it is used by academics/researches. One of the reasons why R has so many techniques is because academics that develop new algorithms are developing them in R and releasing them as R packages. This means that you can get access to state-of-the-art algorithms in R before other platforms.
- R is free because it is open source software. You can download it right now for free and it runs on any
 workstation platform you are likely to use.

3. Data Scientist

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- ☆ Supervised learning: decision trees, random forests, logistic regression

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing package e.g. R
- ☆ Databases SOL and NoSOL
- ☆ Relational algebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- ☆ Strategic, proactive, creative, innovative and collaborative

- Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

HANDS ON TRAINING WITH R

PLOTTING SYSTEM

The ggplot works on the philosophy of adding layers to the visualization to visualize your data effectively.

It has 7-layers grammatical elements as shown below:

- > library(ggplot2)
- > ggplot(data=mtcars)

Data

> ggplot(data=mtcars, aes(x=mpg, y=wt))

