學號:b03901096 系級: 電機三 姓名:周晁德

表(一)

MF without bias (loss: mse)								
latent dimension	8	16	32	64	128	256	512	1024
training	0.729	0.702	0.661	0.6047	0.504	0.337	0.3482	0.367
validation	0.848	0.886	0.944	1.0292	1.0963	0.978	0.894	0.878
MF with bias (loss: mse)								
latent dimension	8	16	32	64	128	256	512	1024
training	5.273	5.281	5.251	5.243	5.218	5.189	5.201	4.902
validation	5.367	5.342	5.303	5.337	5.332	5.318	5.3201	5.4
MF with bias and normalization								
latent dimension	8	16	32	64	128	256	512	1024
Kaggle	0.9137	0.916893	0.91745	0.91952	0.92342	0.92494	0.93075	0.9304
DNN (loss: mse)								
latent dimension	8	16	32	64	128	256	512	1024
training	0.696	0.758	0.713	0.764	0.753	0.743	0.746	0.758
validation	0.771	0.759	0.774	0.769	0.77	0.766	0.756	0.755

圖 (一)

圖 (二)

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize.
normalization 的方式是把 training data(包含 training set 以及自己切出來的
validation set)的每筆 label 減去平均再除以標準差,由於這個成績比較難自己數
據化表現因此我使用 Kaggle 的分數來討論!

由表(一)我們可以發現 MF 沒有 bias 的情況下,不無論是 training set 或 validation set loss 都非常大,因此我試過很多次都無法通過 simple baseline, MF 有加 bias 的情況下,也只有 latent dimension = 8 ,可以通個握 simple baseline, 分數為 0.92612,然而當我對 label 做 normalization,然後再做 $pred_{test} = pred_{test}^* \times train_{std} + train_{mean}$,得到的結果只要 latent dimension不要太大(<256) 都可以過 simple baseline。

此外有對 label 做 normalization, train 的時候收斂比較快, validation set 的 loss 在 10 個 epochs 以內就到最低點,如果沒做 normalization, train 的時候大概要 20 幾 個 epochs loss 才會到最低點!

2. (1%)比較不同的 latent dimension 的結果。

因為我一開始是用 MF 有 bias 的方式想過 simple base line,但 latent dimension 從 64 以 2 的倍數增加到 1024 都無法過 simple base line,而助較有提示 latent dimension 不用太大!再加上 latent dimension 如果太小 loss 直接 = np.nan,所以 這題我從 latent dimension = 8 開始測試!

由表(一)以及圖(一)我們可以發現,隨著 latent dimension 的增加,training set 的 loss 會漸減,大約在 latent dimension = 256 之後幾乎就不太會有改變,但對於 validation set 來說隨著 latent dimension 的增加 loss 先增後減,但之後隨 latent dimension 增加減少很慢,也因此我一開始助教公布 code 前,我是從 latent dimension = 64,開始增加,因此無法用 MF 加 bias 的方式衝過 simple baseline,但這次寫報告時用 latent dimension = 8 ,就過 simple baseline 了,成績為 rmse = 0.92612。

3. (1%)比較有無 bias 的結果。

由表(一)可以很明顯的發現不論是 training set loss 或 validation set loss,有 bias 的 loss 都比沒 bias 的 loss 低很多,此外由圖(一)我們可以發現在有加 bias 的情況下,隨著 latent dimension 的增加,training set 和 validation set 的 loss 後來都有去進穩定的趨勢,但由圖(二)我們可以發現,在沒加 bias 的情況下,隨著 latent dimension 的增加,training set 的 loss 一直下降,而 validation set 的 loss 一直上升,推測原因可能是在沒加 bias 的情況下,overfitting 當 latent dimension 大的時候 overfitting 比較嚴重吧!

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較

MF和NN的結果,討論結果的差異。

我的做法是將 user embedding 以及 movie embedding concatenate 在一起再過 DNN 得出 rating,而 DNN 有五個 layer 第一層 layer neuron 數目最多,之後以 2 或 4 的倍數漸減,最後一層只有一個 neuron,DNN 中每個 neuron 的 activation function 是 relu,使用 DNN 就可以很輕鬆地通過 strong baseline!

由表(一),以及我在 Kaggle 的分數 DNN 可以輕鬆過 strong baseline,而 MF 只可過 simple baseline,可以發現 DNN 的表現最好,而且不論 latent dimension 變化對於 training set 和 validation set 上 loss 的影響不大,推測可能原因是因為 concatenate 之後的 DNN,可以再把 embedding的 output 再做比較複雜的轉換,而不是單純做 dot。

我也試過把把 DNN 最後一層用 softmax,來決定 output 的分數是 1~5 中的哪一個,但結果並沒有最後一層只有一個 neuron,直接 predict 分數來得好!!

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來 作圖。

我先取每個 movie 的第一個類別,所以總共有 18個類別,在對這 18 個類別分成 五類:

Animation + Children' s+ Comedy $\rightarrow red$

Adventure + Action +war +Crime + Film-noir→ orange

Sci-fi +Mystery +Fantasy→ *yellow*

Thriller + horror \rightarrow *green*

Drama + Musical + Documentary + Romance + Western → blue

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果

好壞不會影響評分。

Latent dim = 32 Age+gend+occupation

Training = 0.689

Validation = 0.764