Skill Mastery Quiz 2
Communicating in Math (MTH 210-01)
Winter 2020

Nam	e:
L1-2	Consider the following (true) conditional statement:
	If the function f is continuous at a, then $\lim_{x\to a} f(x)$ exists.
	Identify the hypothesis and conclusion of this conditional statement.
	Assume the above conditional statement is true. Assuming $only$ the conditional statement and that a function f is not continuous at 7, what can you conclude (if anything)? Explain your answer.
L2-1	State the definition of odd integer precisely: An integer n is odd provided that
	Then outline a proof that if x is odd and y is even then xy is even. (Make sure to include key details - like what things are integers.)

L3-1 Construct a truth table for $(\neg P \lor Q) \to R$.

L4-1 Write the set $\left\{\sqrt{2}, \left(\sqrt{2}\right)^3, \left(\sqrt{2}\right)^5, \dots\right\}$ in set builder notation.