AM1 - Zestaw 9

wojciech185sz

April 2020

Zadanie 1, (f) 1

$$r(x) = \frac{\sin^2 x}{x^3}$$

Dziedzina tejże funkcji sa wszystkie liczby rzeczywiste poza zerem.
$$\lim_{x\to -\infty} \frac{\sin^2 x}{x^3} = 0 = \lim_{x\to +\infty} \frac{\sin^2 x}{x^3}$$

$$\lim_{x\to 0^-} \frac{\sin^2 x}{x^3} = -\infty$$

$$\lim_{x\to 0^+} \frac{\sin^2 x}{x^3} = +\infty$$

 ${\bf Z}$ powyższego wynika, że prosta ${\bf x}=0$ jest asymptota pionowa obustronna funkcji, a prosta y = 0 jest jej asymptota pozioma w $-\infty$ oraz $+\infty$ (odp.)

2 Zadanie 2, (e)

3 Zadanie 4, (a)

$$e^{\frac{x+y}{2}} \le \frac{e^x + e^y}{2}$$

Rozważmy punkty: $A=(x,e^x),\,B=(y,e^y)$. Połaczmy je prosta, której środek oznaczymy przez $C=(\frac{x+y}{2},\frac{e^x+e^y}{2}.$ Z wypukłości środek (C) jest nad wartościa funkcji $e^{\frac{x+y}{2}}$. Co nakazano dowieść.