Übungsblatt 11

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei M eine glatte Mannigfaltigkeit, $\xi \in \Omega^k(M)$ geschlossen, $d\xi = 0$ und sei $X \in \Gamma(TM)$ ein vollständiges Vektorfeld mit Fluss $\Phi^X : \mathbb{R} \times M \to M$. Zeigen Sie, dass für alle $t \in \mathbb{R}$ eine Differentialform $\eta_t \in \Omega^{k-1}(M)$ existiert, sodass

$$(\Phi_t^X)^* \xi = \xi + d\eta_t$$

gilt.

- **Aufgabe 2.** a) Sei $M = S^n$ mit dem stereographischen Atlas $\mathcal{A} = \{(U_N, \phi_N), (U_S, \phi_S)\}$. Zeigen Sie, dass \mathcal{A} nicht orientiert ist.
- b) Konstruieren Sie einen orientierten Atlas auf S^n , indem Sie die stereographischen Karten geeignet modifizieren.
- c) Zeigen Sie, dass jede glatte Mannigfaltigkeit M, die einen Atlas $\mathcal{A} = \{(U_1, \phi_1), (U_2, \phi_2)\}$ besitzt, der aus zwei Karten besteht, sodass $U_1 \cap U_2$ zusammenhängend ist, orientierbar ist
- **Aufgabe 3.** a) Zeigen Sie, dass die Abbildung $F: S^n \to \mathbb{RP}^n, p \mapsto [p]$ (siehe Blatt 3) ein lokaler Diffeomorphismus ist.
- b) Sei $\nu \in \Omega^n(\mathbb{RP}^n)$ eine Volumenform. Zeigen Sie, dass dann $F^*\nu$ eine Volumenform auf S^n ist. Folgern Sie, dass $F^*\nu = f\omega$ für eine glatte Funktion $f \in C^{\infty}(S^n)$ mit $f \in C^{\infty}(S^n)$ mit $f(p) \neq 0$ für alle $p \in S^n$, wobei ω die Volumenform auf S^n aus der Vorlesung bezeichnet.
- c) Zeigen Sie, dass \mathbb{RP}^n nicht orientierbar ist, wenn n gerade ist.

Aufgabe 4. Sei G eine Lie-Gruppe. Eine k-Form $\xi \in \Omega^k(G)$ heißt links-invariant, falls $L_g^*\xi = \xi$ gilt für alle $g \in G$.

- a) Sei $X_1, \ldots, X_n \in \mathfrak{g}$ eine Basis für den Raum der links-invarianten Vektorfelder und sei $\omega^1, \ldots, \omega^n \in \Omega^1(G)$ die zugehörige duale Basis. Zeigen Sie, dass $\omega^1, \ldots, \omega^n$ links-invariant sind
- b) Sei $\Omega_G(G) = \{ \xi \in \Omega^*(G) \mid \xi \text{ ist links-invariant} \}$ der Raum der links-invarianten Differentialformen auf G. Zeigen Sie, dass die Abbildung

$$\Omega_G(G) \to \Lambda^* \mathfrak{g}^*, \quad \xi \mapsto \xi(1_G)$$

ein linearer Isomorphismus ist.

c) Konstruieren Sie eine links-invariante Volumenform auf G und folgern Sie, dass G orientierbar ist.

Aufgabe 5. (Bonusaufgabe) Sei M^{2n} eine Mannigfaltigkeit und sei $\omega \in \Omega^2(M)$ geschlossen.

- a) Zeigen Sie, dass $\nu = \omega^n = \omega \wedge \cdots \wedge \omega$ (n-mal) genau dann eine Volumenform auf M ist wenn ω eine symplektische Form ist. Folgern Sie, dass symplektische Mannigfaltigkeiten orientierbar sind.
- b) Sei nun (M, ω) symplektisch, $f \in C^{\infty}(M)$ eine glatte Funktion und sei $X_f \in \Gamma(TM)$ das zugeörige Hamiltonsche Vektorfeld, also $df = i_{X_f}\omega$. Sei $X_f \in \Gamma(TM)$ vollständig und sei weiter Φ^f der Fluss zu X_f . Zeigen Sie, dass

$$(\Phi_t^f)^*\omega = \omega \quad \text{und} \quad (\Phi_t^f)^*\nu = \nu$$

für alle $t \in \mathbb{R}$ gilt.

c) Folgern Sie, dass Φ^f volumenerhaltend ist, in dem Sinne, dass

$$\int_{U} \nu = \int_{\Phi_{\star}^{f}(U)} \nu$$

gilt für alle offenen Mengen $U \subset M$ mit $\int_{U} \nu < \infty$.

Aufgabe 6. (Bonusaufgabe) Sei N^n eine glatte Mannigfaltigkeit und sei $M = T^*N$ das Kotangentialbündel. (Wäre N der Konfigurationsraum eines mechanischen Systems, dann wäre M der zugehörige Phasenraum).

a) Sei $(U, \phi = (q^1, \dots, q^n))$ ein Karte für N mit zugehöriger Karte $(\pi^{-1}(U), \phi^{T^*N})$ für M. Wir schreiben $\phi^{T^*N} = (q^1, \dots, q^n, p^1, \dots, p^n)$. Wir definieren eine 1-Form λ auf M durch die lokale Darstellung

$$\lambda = \sum_{i=1}^{n} p^{i} dq^{i}$$

in einer beliebigen Karte $(\pi^{-1}(U), \phi^{T^*N})$. Zeigen Sie, dass λ eine wohldefinierte 1-Form auf M ist.

- b) Zeigen Sie, dass $\omega = d\lambda$ eine symplektische Form auf $M = T^*N$ ist.
- c) Sei $F: N \to N$ ein Diffeomorphismus. Zeigen Sie, dass die induzierte Abbildung

$$\tilde{F}: M \to M \quad \tilde{F}(p,\xi) = (F(p), \xi \circ dF_{F(p)}^{-1})$$

ebenfalls ein Diffeomorphismus ist und $\tilde{F}^*\omega = \omega$ erfüllt (Hinweis: Zeigen Sie $\tilde{F}^*\lambda = \lambda$)

Abgabe Donnerstag, 30.06.2016 in der Vorlesung.