Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Chebakov Vitalii Гр. 320207

Вариант 21

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:5669:7461:6c00:0/102 |

Задание 1.2: разбить сеть из п.1.1 на 40 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\acute{\Gamma}C,}$	2001:db8:0:4eef:5669:7461:6c00:0/108
Префикс $N_{\text{C,,PëPS}}$	2001:db8:0:4eef:5669:7461:6e70:0/108

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (21*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (21*16)/256=80

Дано: Сеть 11.80.0.0/12

Задание 2.1.1: разбить сеть на 2048 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	80	U	U
Адрес сети	00001011	01010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета.

3. Итого, получается, что сеть 11.80.0.0/12 мы разбили на 2048 подсети, в каждой из которых по 510 узлов, указываем первые 5 подсетей:

	11	80	0	0
Адрес сети дв.с	00001011	01010000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

200	200 20
Адрес сети $N_1/$ Префикс N_1	11.80.0.0/23
Адрес первого узла N_1	11.80.0.1
Адрес последнего узла N_1	11.80.1.254
Широковещательный адрес N_1	11.80.1.255
Адрес сети $N_2/$ Префикс N_2	11.80.2.0/23
Адрес первого узла N_2	11.80.2.1
Адрес последнего узла N_2	11.80.3.254
Широковещательный адрес N_2	11.80.3.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.80.4.0/23
Адрес первого узла N_3	11.80.4.1
Адрес последнего узла N_3	11.80.5.254
Широковещательный адрес N_3	11.80.5.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.80.6.0/23
Адрес первого узла N_4	11.80.6.1
Адрес последнего узла N_4	11.80.7.254
Широковещательный адрес N_4	11.80.7.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.80.8.0/23
Адрес первого узла N_5	11.80.8.1
Адрес последнего узла N_5	11.80.9.254
Широковещательный адрес N_5	11.80.9.255

Дано: Сеть 11.80.0.0/12

Задание 2.1.2: разбить сеть на 400 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(400 \leqslant 2^9 = 512)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета (получается, что сеть можно разбить на 512 подсетей: $2^9 = 512$; оставшиеся 11 бит идут под узлы: $2^{11} - 2 = 2046$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.80.0.0/21
Адрес первого узла N_1	11.80.0.1
Адрес последнего узла N_1	11.80.7.254
Широковещательный адрес N_1	11.80.7.255

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	$\fbox{11.92.120.0/21}$
Адрес первого узла N_2	11.92.120.1
Адрес последнего узла N_2	11.92.127.254
Широковещательный адрес N_2	11.92.127.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 1024 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	80	0	0
Адрес сети	00001011	01010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022$. Т.е. нужно выбрать такую маску, которря выделит ровно 10 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{10}=512$ подсетей по 1022 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.95.236.0/22
Λ дрес первого узла N_1	11.95.236.1
Адрес последнего узла N_1	11.95.239.254
Широковещательный адрес N_1	11.95.239.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.95.240.0/22
Адрес первого узла N_2	11.95.240.1
Адрес последнего узла N_2	11.95.243.254
Широковещательный адрес N_2	11.95.243.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	11.95.244.0/22
Λ дрес первого узла N_3	11.95.244.1
Адрес последнего узла N_3	11.95.247.254
Широковещательный адрес N_3	11.95.247.255

Адрес сети $N_4/$ Префикс N_4	11.95.248.0/22
Адрес первого узла N_4	11.95.248.1
Адрес последнего узла N_4	11.95.251.254
Широковещательный адрес N_4	11.95.251.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.95.252.0/22
Адрес первого узла N_5	11.95.252.1
Адрес последнего узла N_5	11.95.255.254
Широковещательный адрес N_5	11.95.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 2048 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	80	0	0
Адрес сети	00001011	01010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=12, т.к. $2^{12}-2=4094 \geqslant 2048$.

	11	80	U	Ü
Адрес сети дв.с	00001011	01010000	00000000	00000000
Маска дв.с	11111111	11111111	11110000	00000000
	255	255	240	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.80.0.0/20
Адрес первого узла N_1	11.80.0.1
Адрес последнего узла N_1	11.80.15.254
Широковещательный адрес N_1	11.80.15.255

Адрес сети $N_2/$ Префикс N_2	11.95.240.0/20
Адрес первого узла N_2	11.95.240.1
Адрес последнего узла N_2	11.95.255.254
Широковещательный адрес N_2	11.95.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 200 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	80	0	0
Адрес сети	00001011	01010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$.

	11	80	0	0
Адрес сети дв.с	00001011	01010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

3. Указываем последние 5 подсетей:

$oxed{A}$ дрес сети $N_1/$ Префикс N_1	11.95.251.0/24
Λ дрес первого узла N_1	11.95.251.1
Адрес последнего узла N_1	11.95.251.254
Широковещательный адрес N_1	11.95.251.255
Λ дрес сети $N_2/$ Префикс N_2	11.95.252.0/24
${ m A}$ дрес первого узла N_2	11.95.252.1
${ m A}$ дрес последнего узла N_2	11.95.252.254
Широковещательный адрес N_2	11.95.252.255

11.95.253.0/24
11.95.253.1
11.95.253.254
11.95.253.255
11.95.254.0/24
11.95.254.1
11.95.254.254
11.95.254.255
11.95.255.0/24
11.95.255.1
11.95.255.254
11.95.255.255