Organic Computing 2

Lösungsvorschlag Blatt02

Lukas Huhn Qiang Chang Victor Gerling Daniel Bossert 19. Mai 2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gliederung

1. Aufgabe 01

2. Evaluation

Aufgabe 01

- β: determines importance between pheromones and distance when selecting next city (float)
- q_0 : tradeoff between exploration and exploitation (float)
- \cdot α : pheromone-decay during global update step (float)
- ρ: pheromone-decay during local update step (float)
- τ_0 : determines starting values of 'pheromone-paths', is also used during local update (float)
- m: number of ants (int)

• γ : discount value \in [0,1], is also used in reinforcement learning

- τ_0 : the authors recommend $(n * L_{nn})^{-1}$, where L_{nn} is produced by a nearest neighbour heuristic and n is the number of cities
- we used a very rough approximation with $(n * 500)^{-1}$
- complexity: $O(n^2)$

Evaluation

Evaluation

- Intel® Core™ i5-5257U CPU @ 2.70GHz × 4, 8GB Ram
- n=10: 1.82 seconds, ants=10, iter=400 ⇒ Routes=4000
- n=20: 6.6 seconds, ants=15, iter=400 ⇒ Routes=6000
- n=30: 20 seconds, ants=20, iter=500 ⇒ Routes=10000

Evaluation Seed \in [1, 10], n = 10 in seconds

Evaluation Seed \in [1, 10], n = 20 in seconds

Evaluation Seed \in [1, 10], n = 30 in seconds

seed	1	2	3 20.28	4	5
sec	20.51	19.58	20.28	20.21	19.12
		'		,	,
seed	6 19.15	7	8	9	10