基礎数学I

1

区間 [0,1] 上の C^1 級関数 $\varphi(t)$ で $\varphi(0)=0, \varphi(1)=1$ を満たすもの全体の集合を Γ とする. $\varphi\in\Gamma$ に対して,

$$I(\varphi) = \int_0^1 (\dot{\varphi}(t))^2 dt, \qquad J(\varphi) = \int_0^1 (t\dot{\varphi}(t))^2 dt$$

とおく. ここで, $\dot{\varphi}(t)$ は $\varphi(t)$ の導関数 $\frac{d\varphi}{dt}(t)$ である. また,

$$A = \inf_{\varphi \in \Gamma} I(\varphi), \qquad B = \inf_{\varphi \in \Gamma} J(\varphi)$$

とおく. 以下の問いに答えよ.

- (i) A を求めよ、また、 $I(\varphi) = A$ となる $\varphi \in \Gamma$ を求めよ、
- (ii) 正の整数 n に対して、 $\varphi_n(t) = 1 (1-t)^n$ とおく、 $J(\varphi_n)$ を求めよ、
- (iii) *B*を求めよ.
- (iv) $J(\varphi) = B$ となる $\varphi \in \Gamma$ は存在しないことを示せ.

Basic Mathematics I

1

Let Γ be the set of C^1 functions $\varphi(t)$ on the interval [0,1] satisfying $\varphi(0)=0$ and $\varphi(1)=1$. For $\varphi\in\Gamma$, define

$$I(\varphi) = \int_0^1 (\dot{\varphi}(t))^2 dt, \qquad J(\varphi) = \int_0^1 (t\dot{\varphi}(t))^2 dt,$$

where $\dot{\varphi}(t)$ is the derivative $\frac{d\varphi}{dt}(t)$ of $\varphi(t)$. Let

$$A = \inf_{\varphi \in \Gamma} I(\varphi), \qquad B = \inf_{\varphi \in \Gamma} J(\varphi).$$

Answer the following questions.

- (i) Find A. Moreover, find $\varphi \in \Gamma$ satisfying $I(\varphi) = A$.
- (ii) For a positive integer n, define $\varphi_n(t) = 1 (1-t)^n$. Find $J(\varphi_n)$.
- (iii) Find B.
- (iv) Show that there does not exist $\varphi \in \Gamma$ satisfying $J(\varphi) = B$.

アルゴリズム基礎

2

 $k \ge 4$ 個の配列 A_1, A_2, \ldots, A_k があり、各配列 A_i に $n_i \ge 1$ 個の整数が小さい順に貯えられている。ここで、 $n = n_1 + n_2 + \cdots + n_k$ とし、k 個の配列全体の中で貯えられている n 個の整数は全て異なるとする。以下の問いに答えよ。

- (i) 配列 A_1, A_2 内の $n_1 + n_2$ 個の整数を $O(n_1 + n_2)$ 時間で小さい順に整列できることを示せ.
- (ii) 配列 A_1, A_2, A_3, A_4 に対し、各配列 A_i から要素 a_i を選んだ組 (a_1, a_2, a_3, a_4) のうち 二要素の差の総和 $\sum_{1 \le h < j \le 4} |a_h a_j|$ を最小にするものが $O(n_1 + n_2 + n_3 + n_4)$ 時間 で見つけられることを示せ、
- (iii) k 個の配列 A_1, A_2, \ldots, A_k 内の n 個の整数を $O(n \log k)$ 時間で小さい順に整列できることを示せ.
- (iv) k個の配列 A_1, A_2, \ldots, A_k 内のn個の整数の中で小さいものからk個の整数を $O(k \log k)$ 時間で選び出せることを示せ.

Data Structures and Algorithms

2

For a given integer $k \ge 4$, let A_1, A_2, \ldots, A_k be given arrays, where each array A_i contains $n_i \ge 1$ integers sorted in an ascending order. Let $n = n_1 + n_2 + \cdots + n_k$, and assume that all n integers contained in the k arrays are distinct. Answer the following questions.

- (i) Prove that sorting in an ascending order the $n_1 + n_2$ integers in the arrays A_1 and A_2 can be executed in $O(n_1 + n_2)$ time.
- (ii) For the arrays A_1, A_2, A_3 and A_4 , prove that it takes $O(n_1+n_2+n_3+n_4)$ time to find a tuple that minimizes the sum of differences of every two elements $\sum_{1 \le h < j \le 4} |a_h a_j|$ among all tuples (a_1, a_2, a_3, a_4) such that a_i is selected from A_i .
- (iii) Prove that sorting in an ascending order the n integers in the arrays A_1, A_2, \ldots, A_k can be executed in $O(n \log k)$ time.
- (iv) Prove that selecting the k smallest integers out of the n integers in the arrays A_1 , A_2, \ldots, A_k can be executed in $O(k \log k)$ time.

線形計画

3

パラメータ $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top} \in \mathbb{R}^n$ をもつ次の線形計画問題 $P(\mathbf{y})$ を考える.

$$\begin{aligned} \mathbf{P}(\boldsymbol{y}) &: \quad \text{Maximize} \quad \quad \boldsymbol{y}^{\top} \boldsymbol{x} \\ &\text{subject to} \quad \quad \sum_{i=1}^{n} i x_i = 1 \\ & \quad \boldsymbol{x} \geqq \mathbf{0} \end{aligned}$$

ただし、P(y) の決定変数は $x = (x_1, x_2, \dots, x_n)^\top \in \mathbb{R}^n$ であり、 $^\top$ は転置記号を表す、以下の問 (i) と (ii) に答えよ、

- (i) 問題 P(y) の双対問題を書け.
- (ii) 任意の $y \in \mathbb{R}^n$ に対して、問題 P(y) が最適解をもつことを示せ、

与えられた $\mathbf{y} \in \mathbb{R}^n$ に対して、問題 $P(\mathbf{y})$ の最適値 (最大値) を $f(\mathbf{y})$ とする. 以下の問 (iii) と (iv) に答えよ.

(iii) 任意の $\alpha \in [0,1]$ と $\mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ に対して、次の不等式が成り立つことを示せ、

$$f(\alpha \mathbf{y} + (1 - \alpha)\mathbf{z}) \le \alpha f(\mathbf{y}) + (1 - \alpha)f(\mathbf{z})$$

(iv) 次の最適化問題 Q を考える.

Q: Minimize
$$f(y)$$

subject to $\sum_{i=1}^{n} \frac{y_i}{i} = 1$

ただし,Qの決定変数は $\mathbf{y} \in \mathbb{R}^n$ である.問題Qの最適値(最小値)は $\frac{1}{n}$ であることを示せ.

Linear Programming

3

Consider the following linear programming problem $P(\boldsymbol{y})$ with a vector of parameters $\boldsymbol{y} = (y_1, y_2, \dots, y_n)^{\top} \in \mathbb{R}^n$.

$$P(y): Maximize y_n^{\top} x$$

subject to $\sum_{i=1}^{n} ix_i = 1$
 $x \ge 0$,

where the decision variables of $P(\boldsymbol{y})$ are $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n$, and the superscript denotes transposition.

Answer the following questions (i) and (ii).

- (i) Write out a dual problem of problem P(y).
- (ii) Show that problem P(y) has an optimal solution for any $y \in \mathbb{R}^n$.

For a given $\mathbf{y} \in \mathbb{R}^n$, let $f(\mathbf{y})$ be the optimal value (maximum value) of problem $P(\mathbf{y})$. Answer the following questions (iii) and (iv).

(iii) Show that the following inequality holds for any $\alpha \in [0, 1]$ and $\boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n$.

$$f(\alpha \mathbf{y} + (1 - \alpha)\mathbf{z}) \leq \alpha f(\mathbf{y}) + (1 - \alpha)f(\mathbf{z}).$$

(iv) Consider the following optimization problem Q.

Q: Minimize
$$f(y)$$

subject to $\sum_{i=1}^{n} \frac{y_i}{i} = 1$,

where the decision variables of Q are $\mathbf{y} \in \mathbb{R}^n$. Show that the optimal value (minimum value) of Q is $\frac{1}{n}$.

線形制御理論

4

図 1 はフィードバック制御系を示す.ここで P(s) は制御対象,k>0 はフィードバックゲイン,r は参照入力,e は偏差,y は出力である.制御対象 P(s) は

$$P(s) = \frac{1}{s^2 + s + 1}$$

で与えられるとする. 感度関数 S(s) は r から e への伝達関数であり、閉ループ伝達関数 T(s) は r から y への伝達関数である. 以下の問いに答えよ.

- (i) 感度関数 S(s) は $\lim_{k\to\infty} S(0)=0$ を満たすことを示せ.
- (ii) $\lim_{\omega \to \infty} \angle T(j\omega)$ を求めよ.
- (iii) $\lim_{k \to \infty} \max_{\omega \geqq 0} |T(j\omega)| = \infty$ であることを示せ.
- (iv) r を単位階段関数とするとき,出力 y のピーク値の定常値に対する割合を A(k) とする. $\lim_{k \to \infty} A(k)$ を求めよ.

図1フィードバック制御系

Linear Control Theory

4

A feedback control system is shown in Figure 1, where P(s) is a plant, k > 0 is a feedback gain, r is a reference input, e is an error, and y is an output. The plant P(s) is given by

$$P(s) = \frac{1}{s^2 + s + 1}.$$

The sensitivity function S(s) is the transfer function from r to e, and the closed loop transfer function T(s) is the transfer function from r to y. Answer the following questions.

- (i) Show that the sensitivity function S(s) satisfies $\lim_{k\to\infty} S(0) = 0$.
- (ii) Calculate $\lim_{\omega \to \infty} \angle T(j\omega)$.
- (iii) Show that $\lim_{k\to\infty} \max_{\omega\geq 0} |T(j\omega)| = \infty$ holds.
- (iv) Let A(k) be the ratio of the peak value to the final value of the output y when r is the unit step function. Calculate $\lim_{k\to\infty} A(k)$.

Figure 1 Feedback control system

基礎力学

5

質量 m の質点が平面内で中心力を受けて運動している. ここで (r,ϕ) を極座標とし、軌道 の位置は $(x,y)=(r\cos\phi,r\sin\phi)$ であらわす. 力の中心を座標原点として、以下の問いに 答えよ.

(i) $r^2 \frac{d\phi}{dt}$ が時刻 t に依らず、一定値であることを示せ.

以下では, $r^2 \frac{d\phi}{dt} = h$ とおく.

- (ii) 軌道が極座標 (r,ϕ) によって, $r=\frac{l}{1+\epsilon\cos\phi}$ と表される時, 中心力 f(r) を距離 r および h の関数として求めよ. ただし, l,ϵ は, 正の定数とする.
- (iii) 軌道が極座標 (r,ϕ) によって, $r=\frac{A}{\cosh(\alpha\phi)}$ と表される時, 中心力 f(r) を距離 r および h の関数として求めよ. ただし, A,α は, 正の定数とする.

Basic Mechanics

5

Consider the planer motion of a particle with the mass m subject to a central force, where the center of force is the origin in the coordinate system. Let (r, ϕ) be the polar coordinates and the position of the particle be given by $(x, y) = (r \cos \phi, r \sin \phi)$. Answer the following questions.

(i) Show that $r^2 \frac{d\phi}{dt}$ is a constant of motion.

Let
$$r^2 \frac{d\phi}{dt} = h$$
.

- (ii) Suppose that the orbit is given by $r = \frac{l}{1 + \epsilon \cos \phi}$ with the polar coordinates (r, ϕ) where ϵ and l are positive constants. Obtain the central force f(r) as a function of r and h.
- (iii) Suppose that the orbit is given by $r = \frac{A}{\cosh(\alpha\phi)}$ with the polar coordinates (r, ϕ) , where A and α are positive constants. Obtain the central force f(r) as a function of r and h.

基礎数学 II

6

Aを零行列Oではない $n \times n$ 実行列 $(A \neq O)$ とし, $\operatorname{rank} A$ を A のランク(階数)とし, $r = \operatorname{rank} A$ とおく.以下の問いに答えよ.ただし,同次連立 1 次方程式 Ax = 0 は n - r 個の 1 次独立な解 $x_1, x_2, \ldots, x_{n-r}$ をもち,n - r 個を超える数の 1 次独立な解をもたないことは証明なしで使ってよい.

(i) $n \times n$ 実行列 B が AB = O を満たすとする. このとき

$$\operatorname{rank} A + \operatorname{rank} B \leqq n$$

を示せ.

(ii) 行列 A に対して、AB = O かつ

$$rankA + rankB = n$$

なる $n \times n$ 実行列 B が存在することを示せ.

(iii) $n \times n$ 実行列 B に対して

$$rank(A + B) \le rankA + rankB$$

を示せ.

(iv) $n \times n$ 実行列 B に対して

$$\operatorname{rank} A + \operatorname{rank} B \leqq \operatorname{rank} AB + n$$

を示せ.

Basic Mathematics II

6

Let A be an $n \times n$ nonzero real matrix $(A \neq O)$ and rank A be the rank of A. Let r = rankA. Answer the following questions. Use the fact without proof that the homogeneous linear equations $A\mathbf{x} = \mathbf{0}$ have n - r linearly independent solutions $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}$ and do not have linearly independent solutions more than n - r, if necessary.

(i) Let B be an $n \times n$ real matrix B such that AB = O. Show that

$$\operatorname{rank} A + \operatorname{rank} B \le n.$$

(ii) Show that there is an $n \times n$ real matrix B such that AB = O and

$$\operatorname{rank} A + \operatorname{rank} B = n.$$

(iii) Show that

$$rank(A + B) \le rankA + rankB$$

for any $n \times n$ real matrix B.

(iv) Show that

$$\mathrm{rank} A + \mathrm{rank} B \leqq \mathrm{rank} AB + n$$

for any $n \times n$ real matrix B.