Rating prediction Model

Road Map

- Objective
- Exploratory Data Analysis
 - Univariate Analysis
 - Bivariate analysis
- Social Network Analysis
 - Customer Network
 - Network Central tendency: Graph
- Are People liking Speedy Rides?
- Model Development
 - Feature Engineering
 - Feature generation
 - Feature transformation
 - Log/Linear Transformation based on chi square test
 - Feature selection
 - Sign Reversal
 - L1 Regularization (Ridge Regression)
 - Model development
 - Train/Test Split
 - ML algorithm selection (ensemble of LR,RF & GBM)
 - K-fold cross validation
 - Parameter optimization
 - GridsearchCV
 - Model fit
 - Model Validation
 - Decile analysis
 - Validation chart: ROC Curve
 - Confusion Matrix: Threshold Calculation
 - Variable importance
 - Recommendations

Section

Model Saving & Loading

Objective

- Develop a predictive model that will calculate the likelihood of rating the trip by the customer.
- Need to find out if customer are liking the speedy rides.

Exploratory Data Analysis - Univariate Analysis

Exploratory Data Analysis - Bivariate Analysis

Exploratory Data Analysis - Bivariate Analysis

Rating Vs Cartype

	Rating								
car_type	0	1	2	3	4	5			
1	15079	647	193	533	2887	28592			
2	159	11	4	12	29	428			
3	954	48	14	31	170	1268			
4	14					8			
5						1			
6						1			

Car Type	Average of rating	Count of customer_id
1	3.28	47931
2	3.59	643
3	2.89	2485
4	1.82	22
5	5.00	1
6	5.00	1
Grand Total	3.263120803	51083

Pair plot

Are Customers Liking Speedy Rides?

Yes! People are liking speedy rides.

Rating	High_speed	Low_speed	Grand Total	PctOfTotal
1	514	192	706	72.8%
2	164	47	211	77.7%
3	433	143	576	75.2%
4	2429	657	3086	78.7%
5	23672	6626	30298	78.1%
Grand Total	27212	7665	34877	

- Speedy ride was calculated as percentage of moving distance of total distance
- High-speed & Low speed were calculated based on their Mean.
- And as per analysis people are giving rating 5 having around 79% speedy rides.

SNA Centrality Measure

□ Degree :

- The number of edges connected to a node
- Exposure to the network, opportunity to directly influence.

Betweenness :

- Extent to which a particular node lies on the shortest path between other nodes
- Informal power, gate keeping, control flow of info.

☐ Closeness:

 The average of the shortest distances to all other nodes in the graph. Estimates time to hear info, indirect influence, point of rapid diffusion

☐ Eigenvector :

A message of the extent to which a node is connected to influential other nodes.
 connected to influential nodes of high degree. "not what you know but who you know

SNA Outcome

customer_id	driver_id [‡]	rating [‡]	Degree [‡]	Closeness [‡]	Betweenness [‡]
3414552	520340	5	86	53286.98	3274913
3414552	556648	2	86	53286.98	3274913
3414552	565796	4	86	53286.98	3274913
3414552	592568	5	86	53286.98	3274913
3414552	603300	5	86	53286.98	3274913
3414552	605352	1	86	53286.98	3274913

Sub Network with Betweenness

Top 20 customer having high betweenness

Model Development

- Feature Engineering
 - Outlier Treatment
 - Derived Variables
 - Transformation
 - Feature Reduction
 - Correlation Analysis
 - Sign check
 - L1 regularization (ridge regression)
 - P-value

Feature Engineering -Outlier Treatment

- Outlier Treatment was performed using 95th percentile ceiling & 5th percentile flooring method
- variables treated for outlier.
- Below is the boxplot after the outlier treatment

estimated_distance
distance_travelled
distance_travelled_while_moving
estimated_duration
duration_time
wait_time_initial
wait_time_in_journey
estimated_price
price

FeatureEngineering - Correlation Analysis

Correlation Graph after outlier treatment

Feature Engineering - Derived Feature

Feature Generation

- Below are the new derived features
 - time_hour: booking time broken into hour of booking
 - dayofmonth: booing day was extracted from creation day.
 - trafic_distance : difference between distance travelled & distance_travelled_while_moving
 - 4. speedpct: distance_travelled_while_moving/ distance travelled
 - 5. Totwaittm: wait_time_initial/ wait_time_in_journey

```
### time hour = hour of (creation date)
train['time_hour'] = train.creation_date.dt.hour

## dayofmonth = dayofmonth of creation date
train['dayofmonth'] = train.creation_date.dt.day
test['dayofmonth'] = test.creation_date.dt.day

### trafic_distance = (distance_travelled - distance_travelled_while_moving)
train['trafic_distance'] = train["distance_travelled"] - train["distance_travelled_while_moving"]
test['trafic_distance'] = test["distance_travelled"] - test["distance_travelled_while_moving"]

### speedpct = distance_travelled_while_moving/distance_travelled
train['speedpct'] = train["distance_travelled_while_moving"]/train["distance_travelled"]
test['speedpct'] = train["distance_travelled_while_moving"]/test["distance_travelled"]

#### totwaittm = wait_time_initial + wait_time_in_journey
train['totwaittm'] = train["wait_time_initial"] + train["wait_time_in_journey"]
test['totwaittm'] = test["wait_time_initial"] + test["wait_time_in_journey"]
```

Feature Engineering — Transformation & Reduction

- Feature Transformation
 - Log / Linear Transformation done based on best chi-square value.
- Feature Reduction
 - Based on Sign check
 - L1 regularization (Ridge regression)
 - P value
- Final Feature Selected

Variables						
car_type						
booking_source						
dayofmonth						
estimated_distance						
time_hour						
price						
<pre>wait_time_initial</pre>						
distance_travelled						

Algorithm Selection

- ML Parameter optimization was done using GridSearchCV method.
- Algorithm is selected based on model accuracy using K-fold cross validation.
- □ Random Forest algorithm is selected as it is giving highest

 accuracyndom Forest

```
Mean accuracy score is 0.7240058067247418

Model # Logistic Regression

Mean accuracy score is 0.6816097220745957
```

```
paramgrid = {'max_depth': list(range(1, 10, 2)), 'n_estimators': list(range(1, 200, 30))}
grid_search=GridSearchCV(RandomForestClassifier(random_state=1),paramgrid)

x_train_cv, x_test_cv, y_train_cv, y_test_cv = train_test_split(x,y, test_size =0.3, random_state=1)
# Fit the grid search model
grid_search.fit(x_train_cv,y_train_cv)
# Estimating the optimized value
grid_search.best_estimator_
```

Random Forest Outcome - 1

Variable Importance

RF Accuracy Score 0.7274239962414111
######## RF AUC ############
Area under the ROC curve RF: 0.677126
[0.7037486]
######## RF Confusion_Matrix ############
[[9952 6254]
[13461 21416]]

 As per ML model distance travelled, wait time & price are the measure factor for giving rating to the trip.

Random Forest Outcome -2

Decile	was_rated	pred_proba	SumOfActuals	TotalCount	SumOfActualsCUM	SumOfActualsPCT	Default
0	0.88	0.80	4492	5109	4492	0.00	0.00
1	0.79	0.76	4039	5108	8531	12.88	10.00
2	0.76	0.74	3907	5108	12438	24.46	20.00
3	0.73	0.73	3740	5109	16178	35.66	30.00
4	0.73	0.71	3714	5108	19892	46.39	40.00
5	0.71	0.70	3602	5108	23494	57.03	50.00
6	0.69	0.69	3523	5109	27017	67.36	60.00
7	0.66	0.68	3395	5108	30412	77.46	70.00
8	0.62	0.66	3164	5108	33576	87.20	80.00
9	0.25	0.36	1301	5108	34877	96.27	90.00
						100.00	100.00

Actual vs Predicted

1.00 0.50 1 2 3 4 5 6 7 8 9 10 was_rated pred_proba

Decile Capture Rate

Logistic Regression outcome -1

Logit Regression Results

=======================================						=
Dep. Variable:	was_rated Logit		No. Observation	ons:	38312 38303	
Model:			Df Residuals:			
Method:		MLE	Df Model:			8
Date:	Tue, 25 Se	p 2018	Pseudo R-squ.:	:	0.0787	'9
Time:	17	:55:28	Log-Likelihood	d:	-22052. -23938.	
converged:		True	LL-Null:			
			LLR p-value:		0.00	0
=======================================	coef	std er	r z	P> z	[0.025	0.975]
intercept	2.2404	0.08	0 28.069	0.000	2.084	2.397
distance travelled	0.3544	0.01	0 34.708	0.000	0.334	0.374
estimated distance	0.0344	0.00	4 9.579	0.000	0.027	0.041
price _	-0.0797	0.00	3 -24.359	0.000	-0.086	-0.073
wait time initial	-0.0494	0.00	5 -10.384	0.000	-0.059	-0.040
car type	-0.1066	0.02	7 -4.008	0.000	-0.159	-0.054
time hour	-0.0108	0.00		0.000	-0.015	-0.006
booking source	-0.0783	0.02		0.001	-0.123	-0.033
dayofmonth	-0.0039	0.00		0.002	-0.006	-0.001

As per LR model distance travelled is one of the measure factor for rating the trip.

Logistic Regression outcome -2

Decile	was_rated	pred_proba	SumOfActuals	TotalCount	SumOfActualsCUM	SumOfActualsPCT	Default
0	0.79	0.80	1014	1278	1014	0.00	0.00
1	0.75	0.76	956	1277	1970	11.63	10.00
2	0.75	0.75	963	1277	2933	22.59	20.00
3	0.74	0.73	949	1277	3882	33.63	30.00
4	0.71	0.72	903	1277	4785	44.51	40.00
5	0.69	0.71	885	1277	5670	54.86	50.00
6	0.69	0.69	877	1277	6547	65.01	60.00
7	0.67	0.67	850	1277	7397	75.06	70.00
8	0.67	0.64	857	1277	8254	84.81	80.00
9	0.37	0.33	468	1277	8722	94.63	90.00
						100.00	100.00

Decile capture Rate

120.00 100.00 80.00 60.00 40.00 20.00 0.00 1 2 3 4 5 6 7 8 9 10 11 SumOfActuae. T Default

Actual vs Predicted

Thanks