

Uniform Circular Motion

- 61. Find the maximum velocity for skidding for a car moved on a circular track of radius 100 *m*. The coefficient of friction between the road and tyre is 0.2
 - (a) 0.14 *m*/s
- (b) 140 *m/*s
- (c) 1.4 km/s
- (d) 14 m/s
- **62.** A car when passes through a convex bridge exerts a force on it which is equal to
 - (a) $Mg + \frac{Mv^2}{r}$
 - (b) $\frac{Mv^2}{r}$
 - (c) *Mg*
 - (d) None of these
- 63. The angular speed of seconds needle in a mechanical watch is
 - (a) $\frac{\pi}{30}$ rad/s
- (b) 2π rad/s
- (c) πrad/s
- (d) $\frac{60}{\pi}$ rad/s
- 64. The angular velocity of a particle rotating in a circular orbit 100 times per minute is
 - (a) 1.66 rad/s
- (b) 10.47 rad/s
- (c) 10.47 deg/s
- (d) 60 deg/s

- **65.** A body of mass 100 *g* is rotating in a circular path of radius *r* with constant velocity. The work done in one complete revolution is
 - (a) 100 rJ
- (b) (r/100)J
- (c) (100/r)J
- (d) Zero
- 66. A particle comes round a circle of radius 1 m once. The time taken by it is 10 sec. The average velocity of motion is
 - (a) $0.2 \ \pi m/s$
- (b) $2\pi m/s$
- (c) 2 m/s
- (d) Zero
- 67. An unbanked curve has a radius of 60m. The maximum speed at which a car can make a turn if the coefficient of static friction is 0.75, is
 - (a) $2.1 \, m/s$
- (b) $14 \, m/s$
- (c) 21 m/s
- (d) 7 m/s
- **68.** A wheel completes 2000 revolutions to cover the 9.5 *km*. distance. then the diameter of the wheel is
 - (a) 1.5 m
- (b) 1.5 cm
- (c) 7.5 cm
- (d) 7.5 *m*

IIT-JEE PHYSICS

- **69.** A cycle wheel of radius $0.4 \, m$ completes one revolution in one second then the acceleration of a point on the cycle wheel will be
 - (a) $0.8 \ m/s^2$
- (b) $0.4 \, m/s^2$
- (c) $1.6\pi^2 m/s^2$
- (d) $0.4\pi^2 m/s^2$
- 70. The centripetal acceleration is given by
 - (a) v^2/r
- (c) vr^2
- A cylindrical vessel partially filled with water is rotated about its vertical central axis. It's surface will
 - (a) Rise equally
 - (b) Rise from the sides
 - (c) Rise from the middle
 - (d) Lowered equally
- 72. If a particle covers half the circle of (c) $4\hat{i} 13\hat{j} + 6\hat{k}$ radius R with constant speed then
 - (a) Momentum change is mvr
 - (b) Change in K.E. is $1/2 \text{ mv}^2$
 - (c) Change in K.E. is mv²
 - (d) Change in K.E. is zero

- An aeroplane is flying with a uniform 73. speed of 100 m/s along a circular path of radius 100 m. the angular speed of the aeroplane will be
 - (a) 1 rad/sec
- (b) 2 rad/sec
- (c) 3 rad/sec
- (d) 4 rad/sec
- 74. A body moves with constant angular velocity on a circle. Magnitude of angular acceleration
 - (a) $r\omega^2$
 - (b) Constant
 - (c) Zero
 - (d) None of these
- What is the value of linear velocity, if $\vec{\omega} = 3\hat{\imath} - 4\hat{\jmath} + \hat{k}$ and $\vec{r} = 5\hat{\imath} - 6\hat{\jmath} +$ 6ĥ
 - (a) $6\hat{i} + 2\hat{j} 3\hat{k}$
 - (b) $-18\hat{i} 13\hat{j} + 2\hat{k}$

 - (d) $6\hat{i} 2\hat{j} + 8\hat{k}$
- 76. A stone is tied to one end of a string 50 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 10 revolutions in 20 s, magnitude what is the of acceleration of the stone
 - (a) 493 cm/s^2
- (b) 720 cm/s^2

IIT-JEE PHYSICS

- (c) 860 cm/s^2
- (d) 990 cm/s^2
- 77. A 100 kg car is moving with a maximum velocity of 9 m/s across a circular track of radius 30 m. The maximum force of friction between the road and the car is
 - (a) 1000 N
- (b) 706 N
- (c) 270 N
- (d) 200 N
- 78. The maximum speed of a car on a road–turn of radius 30 m, if the coefficient of friction between the tyres and the road is 0.4, will be
 - (a) 10.84 m/sec
- (b) 9.84 m/sec
- (c) 8.84 m/sec
- (d) 6.84 m/sec
- 79. The angular velocity of a wheel is 70
 rad/sec. If the radius of the wheel is
 0.5 m, then linear velocity of the wheel is
 - (a) $70 \, m/s$
- (b) $35 \, m/s$
- (c) $30 \, m/s$
- (d) 20 m/s
- **80.** A cyclist goes round a circular path of circumference 34.3 m in $\sqrt{22}$ sec. the angle made by him, with the vertical, will be
 - (a) 45°
- (b) 40°
- (c) 42°
- (d) 48°

