Реконструкция трёхмерных пористых сред с использованием искусственных нейронных сетей

Будакян Я. С.

Научный руководитель: к.т.н., доцент Грачёв Е. А.

Москва, 2019 г.

Введение

- При моделировании геофизических процессов существует проблема недостаточности знаний о среде, в которой эти процессы протекают. Точные данные доступны из небольшой области (керна - небольшого куска породы, забранного из скважины), а данные компьютерной томографии - из ещё меньшей области (кусочков, вырезанных из керна);
- ▶ Получение дополнительных данных (например, новых кернов, компьютерной томографии) связано с большими затратами. При этом, многие эксперименты по установлению различных характеристик среды в реальности можно провести только один раз для одного керна, поскольку они необратимым образом влияют на него.

Задача реконструкции

Разработка алгоритма реконструкции синтетических образцов пористой среды на основе данных с реального образца. Новые образцы должны сохранять некоторые топологические и статистические свойства реального образца:

$$ightharpoonup V = rac{1}{V_{\it all}} \int_{V_{\it pore}} dV = rac{V_{\it pore}}{V_{\it all}}$$
 - пористость

$$lacktriangleright S = rac{1}{V_{all}} \int_{\delta V_{note}} dS$$
 - удельная площадь поверхности

Задача реконструкции

$$m{ ilde{P}} B = rac{1}{V_{all}} \int_{\delta V_{pore}} \left(rac{1}{R_1} + rac{1}{R_2}
ight) dS$$
 - удельная кривизна поверхности

$$lacktriangledown$$
 $\xi=rac{1}{V_{\it all}}\int_{\delta V_{\it pore}}rac{1}{R_1R_2}dS$ - число Эйлера

$$m{\mathcal{S}}_2(r) = m{P}(x \in P, x + r \in P), \quad x, r \in \mathbb{R}^d$$
 - двухточечная функция вероятности,

где δV_{pore} - граница двух фаз (среды и пор), P - это вероятность того, что две точки, отстоящие друг от друга на вектор r, принадлежат одной фазе (обе являются порами).

Модельные ограничения

Рассматриваются данные компьютерной томографии керна, состоящего из двух фаз - среды и пор, т. е. томограмма это бинарно-сегментированное трёхмерное изображение.

Образец томограммы керна

Математическая формализация

Задачу реконструкции можно формализовать с помощью вероятностной постановки задачи обучения:

- Рассматривается многомерное пространство X, содержащее множество всех трёхмерных изображений x: $X = \{x\}$
- ightharpoonup Есть обучающая выборка, состоящая из реальных томограмм $D = \{x_i\}, D \subset X$
- ightharpoonup Считается, что D задаёт в X вероятностное распределение $P_X: X \longrightarrow [0,1]$

Математическая формализация

Задача реконструкции трёхмерной пористой среды сводится к синтезу случайного изображения x' из распределения, близкого к задаваемому обучающей выборкой:

$$P_{X'} \approx P_X, \quad x' \sim X'$$

Для моделирования вероятностного распределения P_X предлагается использовать генеративную состязательную нейронную сеть.

GAN

Генеративные состязательные сети (GAN - Generative Adversarial Networks) были придуманы в 2014 году и достигли больших успехов в задачах моделирования сложных распределений.

- $P_{X'} \approx P_X \Leftrightarrow \rho(P_{X'}, P_X) \longrightarrow \min_{P_{X'}}$
- ightharpoonup В качестве ho можно использовать функцию потерь обученного классификатора

GAN

Используются две нейросети:

- $ightharpoonup d_{\zeta}(x)$ классификатор, дискриминатор
- $partial g_{ heta}(x)$ сеть, трансформирующая входящий шум в элементы множества X', генератор

Суть использования двух сетей состоит в том, что они обучаются совместно, конкурируя друг с другом.

$$\theta^* = \arg\max_{\theta} \left[\min_{\zeta} L(\zeta, \theta) \right]$$

GAN

Процесс обучения сети GAN принимает следующий вид:

- Обучается дискриминатор при фиксированном генераторе
- Обучается генератор при фиксированном дискриминаторе
- Повторяется до сходимости параметров обеих моделей

Модификация

Использование GAN для реконструкции пористых сред уже исследовалось 1 . Однако, главный недостаток предыдущих экспериментов состоит в ручном контроле процесса обучения сетей.

Целью данной работы было:

- Повторить ранее описанный работоспособный подход
- Провести модификацию процедуры обучения сетей для устранения необходимости ручного контроля
- ▶ Провести сравнительный анализ результатов с точки зрения сохранения топологических и статистических характеристик реконструированных образцов

¹Lukas Mosser, Olivier Dubrule μ Martin J. Blunt. "Reconstruction of three-dimensional porous media using generative adversarial neural networks". B: *CoRR* abs/1704.03225 (2017). arXiv: 1704.03225. URL: http://arxiv.org/abs/1704.03225.

Обучающая выборка

Обучающая выборка для сети была сформирована путём разрезания компьютерной томограммы песчаника размером 400^3 вокселей на кубики размером 64^3 вокселей с перекрытием в 16 вокселей.

Таблица: Примеры из сформированной обучающей выборки

Результаты

Были проведены вычислительные эксперименты по обучению сетей с модификацией для устранения ручного контроля. Анализ реконструкций был произведён на размерах 64^3 , 216^3 и 360^3 . Для каждого из размеров было получено $>\!500$ реконструкций, что позволило построить распределения их характеристик.

Реконструкции 64³

Таблица: Примеры реконструкций размера 64³

Реконструкции 64³

Реконструкции 2163

Таблица: Примеры реконструкций размера 216^3

Реконструкции 216³

Реконструкции 2163, ручной контроль

Заключение

- Воспроизведён подход по реконструкции пористой среды с помощью GAN
- Реализована модификация процесса обучения сети для устранения ручного контроля
- Получены результаты реконструкций для разных размеров
- Проведён сравнительный анализ характеристик реконструкций

Полученные результаты показывают, что сеть без ручного контроля обучения успешно обучается и способна реконструировать пористую среду, однако качество реконструкций на размерах больших, чем размер обучающих примеров, получилось хуже, чем для сети с ручным контролем обучения.

Спасибо за внимание!

Задача минимизации

Обучение нейронной сети является задачей многопараметрической минимизации функционала потерь. Для используемых в этой работе сетей данная задача ставится так:

$$egin{aligned} \mathcal{L}(heta,\zeta) &= \mathbb{E}_{x\sim p_{data}} \log D_{\zeta}(x) + \mathbb{E}_{z\sim p_{z}} \log(1-D_{\zeta}(G_{ heta}(z))) \ & heta^{*},\zeta^{*} = \operatorname*{arg\,min}_{ heta} \operatorname*{arg\,max}_{\zeta} \mathcal{L}(heta,\zeta) \end{aligned}$$

Архитектуры G и D

Слой	Размер ядра	Размерность выхода	Кол-во параметров
0 ConvTranspose3d	[256, 512, 4, 4, 4]	[1, 256, 4, 4, 4]	8 388 610
1 BatchNorm3d	[256]	[1, 256, 4, 4, 4]	512
2_ReLU	=	[1, 256, 4, 4, 4]	=
3_ConvTranspose3d	[128, 256, 4, 4, 4]	[1, 128, 8, 8, 8]	2 097 150
4_BatchNorm3d	[128]	[1, 128, 8, 8, 8]	256
5_ReLU	-	[1, 128, 8, 8, 8]	-
6_ConvTranspose3d	[64, 128, 4, 4, 4]	[1, 64, 16, 16, 16]	524 290
7_BatchNorm3d	[64]	[1, 64, 16, 16, 16]	128
8_ReLU	-	[1, 64, 16, 16, 16]	-
9_ConvTranspose3d	[32, 64, 4, 4, 4]	[1, 32, 32, 32, 32]	131 070
10_BatchNorm3d	[32]	[1, 32, 32, 32, 32]	64
11_ReLU	=	[1, 32, 32, 32, 32]	=
12 _ ConvTranspose3d	[1, 32, 4, 4, 4]	[1, 1, 64, 64, 64]	2 050
13_Tanh	-	[1, 1, 64, 64, 64]	-

Таблица: Архитектура генератора

Архитектуры G и D

	-	Б.	17
Слой	Размер ядра	Размерность выхода	Кол-во параметров
0_Conv3d	[1, 32, 4, 4, 4]	[1, 32, 32, 32, 32]	2 050
1_LeakyReLU	-	[1, 32, 32, 32, 32]	-
2_Conv3d	[32, 64, 4, 4, 4]	[1, 64, 16, 16, 16]	131 070
3 BatchNorm3d	[64]	[1, 64, 16, 16, 16]	128
4_LeakyReLU	=	[1, 64, 16, 16, 16]	=
5_Conv3d	[64, 128, 4, 4, 4]	[1, 128, 8, 8, 8]	524 290
6_BatchNorm3d	[128]	[1, 128, 8, 8, 8]	256
7_LeakyReLU	=	[1, 64, 16, 16, 16]	=
8_Conv3d	[128, 256, 4, 4, 4]	[1, 256, 4, 4, 4]	2 097 150
9_BatchNorm3d	[256]	[1, 256, 4, 4, 4]	512
10 Leaky ReLU	=	[1, 256, 4, 4, 4]	=
11_Conv3d	[256, 1, 4, 4, 4]	[1, 1, 1, 1, 1]	16 380
12_Sigmoid	-	[1, 1, 1, 1, 1]	-

Таблица: Архитектура дискриминатора