UNIFAI

Lista 1 de Exercícios de Geometria Analítica e Vetores II Curso: Ciência da Computação - 2º termo.

Prof.: José Luís Duarte

Vetores

01. Dados os vetores $\vec{u} = (2, -3), \vec{v} = (1, -1)$ e $\vec{w} = (-2, 1)$, determinar:

a)
$$2\vec{u} - \vec{v}$$

c)
$$^{1}/_{2} \vec{u} - 2\vec{v} - \vec{w}$$

b)
$$\vec{v} - \vec{u} + 2\vec{w}$$

d)
$$3\vec{u} - \frac{1}{2}\vec{v} - \frac{1}{2}\vec{w}$$

02. Dados os vetores $\vec{u} = (3,-1)$ e $\vec{v} = (-1,2)$, determinar o vetor \vec{x} tal que:

a)
$$4(\vec{u} - \vec{v}) + 1/3 \vec{x} = 2\vec{u} - \vec{x}$$

b)
$$3\vec{x} - (2\vec{v} - \vec{u}) = 2(4\vec{x} - 3\vec{u})$$

03. Dados os pontos A = (-1,3), B = (2,5), C = (3,-1) e 0 = (0,0), calcular

a)
$$\overrightarrow{OA} - \overrightarrow{AB}$$

b)
$$\overrightarrow{OC}$$
 - \overrightarrow{BC} c) $\overrightarrow{3BA}$ - $\overrightarrow{4CB}$

c)
$$3\overrightarrow{BA} - 4\overrightarrow{CB}$$

04. Dados os vetores $\vec{u}=(2,-4), \vec{v}=(-5,1)$ e $\vec{w}=(-12,6),$ determinar a e b tais que $\vec{w}=(-12,6)$ $a\vec{u} + b\vec{v}$.

05. Dados os pontos A = (3,-4) e B = (-1,1) e o vetor \vec{v} = (-2,3), calcular:

a)
$$(B - A) + 2\vec{v}$$

c) B +
$$2(B - A)$$

b)
$$(A - B) - \vec{v}$$

d)
$$3\vec{v} - 2(A - B)$$

06. Sejam os pontos A = (-5,1) e B = (1,3). Determinar o vetor \vec{v} = (a,b) tal que:

$$a)B = A + 2\vec{v}$$

a)B = A +
$$2\vec{v}$$
 b) A = B + $3\vec{v}$

07. Qual é o ponto inicial do segmento orientado que representa o vetor $\vec{v} = (-1,3)$, sabendo que sua extremidade está em (3,1)?

08. Se $\vec{u} = (x, y)$ é um vetor no plano, definimos seu módulo (comprimento) como sendo o número real positivo: $|\vec{u}| = \sqrt{x^2 + y^2}$. Dados os vetores $\vec{u} = (1,-1), \vec{v} = (-3,4)$ e $\vec{w} = (8,-6)$, calcular:

- a) $|\vec{u}|$

- b) $|\vec{v}|$

- c) $|\vec{w}|$ e) $|2\vec{u} \vec{w}|$ g) $|\vec{v}| / |\vec{v}|$ d) $|\vec{u} + \vec{v}|$ f) $|\vec{w} 3\vec{u}|$ h) $|\vec{u}| / |\vec{u}| |$

09. Calcular os valores de a para que o vetor $\vec{u} = (a,-2)$ tenha módulo igual a 4.

10. Calcular os valores de a para que o vetor $\vec{u} = (a, \frac{1}{2})$ seja unitário.

11. Observe a figura:

Considerando cada quadradinho do quadriculado acima como 1m, determine qual o tamanho, qual a direção e qual o sentido do vetor $\overline{\mathbb{R}}$, em cada caso:

a)
$$\vec{R} = \vec{a} + \vec{b}$$

b)
$$\overrightarrow{R} = \overrightarrow{d} + \overrightarrow{e}$$
 c) $\overrightarrow{R} = \overrightarrow{a} + \overrightarrow{d}$ d) $\overrightarrow{R} = \overrightarrow{c} + \overrightarrow{d}$

c)
$$\vec{R} = \vec{a} + \vec{d}$$

d)
$$\vec{R} = \vec{c} + \vec{d}$$

e)
$$\vec{R} = \vec{c} + \vec{d} + \vec{e}$$
 f) $\vec{R} = \vec{a} + \vec{c} + \vec{d}$

f)
$$\vec{R} = \vec{a} + \vec{c} + \vec{d}$$

12. Dados os vetores \vec{a} , \vec{b} , \vec{c} , \vec{d} e \vec{e} , abaixo representados, obtenha graficamente os vetores $\overline{\mathbf{x}}$ 'e $\overline{\mathbf{y}}$ '.

- 13. Dados os pontos A = (-1, 3), B = (1,0) e C = (2,-1), determinar D tal que $\overrightarrow{DC} = \overrightarrow{BA}$.
- 14. Dados os pontos A = (2,-3,1) e B = (4,5,-2), determinar o ponto P tal que $\overrightarrow{AP} = \overrightarrow{PB}$
- 15. Determinar o vetor v sabendo que $(3, 7, 1) + 2\vec{v} = (6, 10, 4) \vec{v}$.
- 16. Encontrar *a* e b tais que $\vec{w} = \vec{au} + \vec{bv}$, sendo $\vec{u} = (1, -2, 1)$, $\vec{v} = (2, 0, -4)$ e w = (-4, -4, 14).
- 17. Determinar a e b de modo que os vetores $\vec{u} = (4, 1, -3)$ e $\vec{v} = (6, a, b)$ sejam paralelos.
- 18. Determinar o valor de n para que o vetor $\vec{v} = (n, \frac{2}{5}, \frac{4}{5})$ seja unitário.
- 19. Seja o vetor $\vec{v} = (m+7)\vec{i} + (m+2)\vec{j} + 5\vec{k}$. Calcular m para que $|\vec{v}| = \sqrt{38}$.
- 20. Dados os pontos A = (3, m 1, -4) e B = (8, 2m 1, m), determinar m de modo que $|\overrightarrow{AB}| = \sqrt{35}$.
- 21. Dados os pontos A = (1,0,-1), B = (4,2,1) e C = (1,2,0), determinar o valor de m para que $|\vec{v}| = 7$, sendo $\vec{v} = m \overrightarrow{AC} + \overrightarrow{BC}$.
- 22. Calcule o perímetro do triângulo de vértices A = (0,1,2), B = (-1,0,-1) e C = (2,-1,0).
- 23. Obter um ponto P, no eixo das abscissas, equidistante de A = (2,-3,1) e B = (-2,1,-1).

Respostas:

4.
$$a = -1$$
 e $b = 2$ 5. a) $(-8,11)$ b) $(6,-8)$ c) $(-9,11)$ d) $(-14,19)$

6. a)
$$v = (3,1)$$
 b) $v = (-2, -2/3)$ 7. $(4,-2)$

8. a)
$$\sqrt{2}$$
 b) 5 c) 10 d) $\sqrt{13}$ e) $2\sqrt{13}$ f) $\sqrt{34}$ g) $(-3/5, 4/5)$ h) 1

9.
$$\pm 2\sqrt{3}$$
 10. $\pm \frac{\sqrt{3}}{2}$

11. a) 10 m, horizontal para direita b) 9 m, horizontal para esquerda c) 1 m, horizontal para direita d) 8 m, horizontal para esquerda e) 12 m, horizontal para esquerda f) 2 m, horizontal para esquerda

13.
$$D = (4,-4)$$
 14. $P = (3, 1, -\frac{1}{2})$ 15. $v = (1,1,1)$

16.
$$a = 2 e b = -3$$
 17. $a = 3/2$ $e b = -9/2$ 18. $\pm \frac{\sqrt{5}}{5}$

19. -4 ou -5 20. -3 ou -1 21. 3 ou
$$-\frac{13}{5}$$

22.
$$2(\sqrt{11} + \sqrt{3})$$
 23. $P = (1,0,0)$