Activité 8.3 - Principe de fonctionnement d'un alcootest

Objectifs:

- ▶ Comprendre le principe d'un alcootest
- Revoir les réaction d'oxydoréduction

Document 1 - Principe de l'alcootest

L'alcootest est constitué d'un tube en verre dans lequel on fait circuler l'air préalablement expiré dans un ballon en plastique de 1 litre.

L'air expiré traverse une zone constituée de grains jaune-orangé de dichromate de potassium.

Si l'haleine contient de l'alcool, le solide jaune-orangé devient vert.

Un repère situé à peu près au premier tiers de la zone de détection indique la limite à ne pas dépasser.

Pas de consommation d'alcool

Consommation d'alcool modérée (tolérée)

Consommation d'alcool importante

Document 2 - Dichromate de potassium

Le dichromate de potassium $K_2Cr_2O_7$ est un solide ionique constitué de cations potassium K^+ incolores et d'anions dichromate responsables de la couleur jaune-orangé.

Le dichromate est un oxydant et les ions K⁺ n'interviennent pas : ils sont spectateurs.

L'anion dichromate est très toxique, cancérigène et nuit à l'environnement.

Document 3 - Réaction d'oxydo-réduction dans un alcootest

L'alcootest exploite une réaction chimique d'oxydoréduction. L'éthanol C_2H_6O contenu dans l'air expiré par une personne alcoolisée constitue le réducteur destiné à être oxydé en acide éthanoïque $C_2H_4O_2$ par l'ion dichromate $Cr_2O_7^{2-}$ contenu dans le tube de test.

Couple Ox/Red	${ m Cr_2O_7^{2-}/Cr^{3+}}$	$\mathrm{C_2H_4O_2/C_2H_6O}$
Couleurs	orange/vert	incolore/incolore
Demi-équation	$\mathrm{Cr_2O_7^{2-}\ 14H^+ + 6e^{}}$	$C_2H_4O_2 + 4H^+ + 4e^{-}$
	$= 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$	$=\mathrm{C_2H_6O}+\mathrm{H_2O}$

	1	_	Q	ui	est	1'	OX	yd	an	t c	lar	1S	le	co	up	ole	fc	orr	né	pa	ar	l'i	on	di	ch	ro	ma	ate	e et	1'	ior	ı c	hr	om	iiq	ue	C	r_2	$_{7}^{2}$	-/	Cr	3+ 4
Μê	me	qı	ies	tio	n j	pot	ur	ľé	th	an	ol	et	1'	ac	ide	eέ	éth	aı	noi	iqı	ue	\mathbf{C}	$_2$ H	40	$)_{2}$	$^{\prime}\mathrm{C}$	$_2$ H	60).													
		• •		• •				• •			• •	• •	• •	• •		٠.	• •	• •	• •	• •	• • •		• •	• •	• •			• •			• •		• •	• •			• •	• •	• •	• •		• •
				• • •			• •	• •	• • •		• •	• •	• •	• •		• •	• •	• •	• •	• •	• • •		• •	• •	• •		• •	• •		• •	• •		• •	• •			• •		• • •	• •		• •

Document 4 - Démarche pour établir l'équation d'une réaction redox

Pour établir l'équation d'une réaction d'oxydoréduction il faut

- Identifier les deux réactifs Ox_1 et Red_2 .
- Écrire, l'une sous l'autre, les deux demi-équations en mettant les réactifs à gauche.
- Ajuster les coefficients des deux demi-équations pour obtenir le même nombre d'électrons.
- Additionner côté par côté les deux demi-équations.
- Vérifier que les charges et les éléments sont conservés, puis supprimer les électrons.

$Red_2 \longrightarrow$	Établir l'équation de la réaction d'oxydoréduction entre l'éthanol et sous la forme Ox_1 $Red_1 + Ox_2$.
	Interpréter les changements de couleurs observés lorsque l'alcootest est positif.