ASSIGNMENT V MSO 202 A

RESIDUE FORMULA, REMOVABLE SINGULARITIES, LAURENT SERIES

Exercise 0.1: Show that $z = \pi/2$ is a simple pole of $\frac{\cos(z)}{(z-\pi/2)^2}$.

Exercise 0.2: Locate poles a of f and find residue $\operatorname{res}_a f$ of f(z) = $\frac{1}{1+z^4}$ at a.

Exercise 0.3: The aim of this exercise is to prove that $\int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx =$ $\frac{\pi}{\sin \pi a}$ (0 < a < 1) as an application of Residue Formula. For 0 < a < 1, consider the function $f(z) = \frac{e^{az}}{1+e^z}$ and let γ_R denote the rectangular curve with parametrization

$$\gamma_1(t)=t \text{ for } -R\leqslant t\leqslant R, \quad \gamma_2(t)=R+it \text{ for } 0\leqslant t\leqslant 2\pi,$$
 $\gamma_3(t)=-t+2\pi i \text{ for } -R\leqslant t\leqslant R, \quad \gamma_4(t)=-R-it \text{ for } -2\pi\leqslant t\leqslant 0.$ Verify the following:

- (1) The only simple pole of f inside γ_R is at $a = \pi i$.
- (2) The residue $\operatorname{res}_{\pi i} f$ of f at πi is equal to $-e^{a\pi i}$.
- (3) $\sum_{j=1}^{4} \int_{\gamma_j} f(z) dz = -2\pi i e^{a\pi i}$.

- (4) $\int_{\gamma_1} f(z)dz \to \int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx \text{ as } R \to \infty.$ (5) $\int_{\gamma_3} f(z)dz \to -e^{2\pi i a} \int_{-\infty}^{\infty} \frac{e^{ax}}{1+e^x} dx \text{ as } R \to \infty.$ (6) $\int_{\gamma_2} f(z)dz \to 0 \text{ as } R \to \infty \text{ and } \int_{\gamma_4} f(z)dz \to 0 \text{ as } R \to \infty.$

Exercise 0.4: The aim of this exercise is to evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$ as an application of Residue Formula. Let $f(z) = \frac{1}{1+z^4}$. Let γ_R be union of [-R, R] and semicircle C_R :

$$z_1(t) = t \ (-R \leqslant t \leqslant R), \ z_2(t) = Re^{it} \ (0 \leqslant t \leqslant \pi).$$

Verify the following:

- (1) $e^{i\pi/4}$, $e^{3i\pi/4}$ are the only poles inside γ_R if R > 1.
- (2) Compute $\operatorname{res}_{e^{i\pi/4}} f$ and $\operatorname{res}_{e^{i3\pi/4}} f$.
- (3) $\int_{-R}^{R} \frac{1}{1+x^4} dx + \int_{C_R} f(z) dz = 2\pi i (\operatorname{res}_{e^{i\pi/4}} f + \operatorname{res}_{e^{i3\pi/4}} f).$
- (4) $\lim_{R\to\infty} \int_{C_R} f(z) dz \to 0$ as $R\to\infty$.

RESIDUE FORMULA, REMOVABLE SINGULARITIES, LAURENT SERIES

Exercise 0.5: Show that any polynomial p(z), the function $p(z)\sin(1/z)$ has essential singularity at 0.

Exercise 0.6: Write Laurent series of f around a and determine the type of the singularity at a (removable/pole/essential):

- (1) $\frac{e^z}{(z-1)^3}$, a=1; (2) $(z-1)\cos(1/(z+2))$, a=-2; (3) $(z-\sin z)/z^3$, a=0.