Deciding S1S

Down the Rabbit Hole and Through the Looking Glass

Vojta Havlena Ondra Lengál Bára Šmahlíková

Brno University of Technology Czech Republic

NETYS'21

S1S

S1S:

- second-order monadic logic of one successor:
 - ightharpoonup a logic over the structure (\mathbb{N}, S)
 - S is a unary function denoting successor, e.g. S(S(0)) = 2
 - quantification over individual and set variables
- one of the first logics with automata-based decision procedure [Büchi'62]
 - equivalent to Büchi automata (i.e., ω -regular languages)
- NONELEMENTARY complexity lower bound

S₁S

S1S:

- second-order monadic logic of one successor:
 - ightharpoonup a logic over the structure (\mathbb{N}, S)
 - S is a unary function denoting successor, e.g. S(S(0)) = 2
 - quantification over individual and set variables
- one of the first logics with automata-based decision procedure [Büchi'62]
 - equivalent to Büchi automata (i.e., ω -regular languages)
- NONELEMENTARY complexity lower bound

Uses:

- system specification & verification
 - more expressive and concise than LTL
 - ▶ model checking $\mathcal{M} \models \varphi$
- reasoning about natural numbers
- general logic for encoding other logics
 - ▶ WS1S, Presburger arithmetic, first-order theory of ω -automatic structures, . . .
 - first-order theory of Sturmian words over Presburger arithmetic

This paper

This paper:

- implementation of the classical decision procedure of Büchi:
 - ightharpoonup translation of φ to a Büchi automaton \mathcal{A}_{φ}
 - lacktriangle satisfiability testing language emptiness of ${\cal A}_{arphi}$
- evaluating efficiency of various algorithms for handling Büchi automata
- comparison with the loop-DFA (L-DFA) based decision procedure for S1S
 - S. Barth. Deciding Monadic Second Order Logic over ω-Words by Specialized Finite Automata. IFM'16. Springer.
 - based on H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational ω-languages. MFPS'93. Springer.

Deciding S1S

atomic predicates:

Deciding S1S

atomic predicates:

composed predicates:

Implementation

- tool ALICE in Python
- simple LISP-like input format

$$0 \in X \quad \land \quad \forall Y \forall Z (Z = Succ(Y))$$

$$\rightsquigarrow$$
 (and (zeroin X) (forall Y (forall Z (succ Z Y))))

- lacktriangleright intersection, union, projection, emptiness checking \mapsto standard algorithms
- complementation →
 - Schewe's rank-based algorithms [Schewe'09]
 - determinization based algorithm in SPOT
- simulation-based reductions

Experiments

no.	Formula	State count		
		BA - Schewe	BA - Spot	L-DFA ¹
1	$(x \in Y \land x \notin Z) \lor (x \in Z \land x \notin Y)$	2	2	9
3	$after(X,Y) := \forall x.(x \in X \Rightarrow \exists y.(y > x \land y \in Y))$	5	3	9
4	$fair(X, Y) := after(X, Y) \land after(Y, X)$	24	5	9
5	$\forall X.(fair(X,Y) \Rightarrow fair(Y,Z))$	OOM	21	14
6	$suc(x, y) := x < y \land \forall z. (\neg x < z \lor \neg z < y))$	3	3	10
18	$offset(X, Y) := \forall i \forall j. (suc(i, j) \land i \in X \Rightarrow j \in Y)$	2	2	11
19	$offset(X, Y) \land offset(Y, Z) \land offset(Z, X)$	8	8	107
20	$offset(V, W) \land offset(W, X) \land offset(X, Y) \land offset(Y, Z) \land$	32	32	2331
	offset(Z, V)			
21	$\exists Y.(offset(X,Y) \land offset(Y,Z))$	4	4	29
22	$insm(i, j, U, V, W) := (j \in U \Rightarrow i \in V \lor i \in W)$	8	8	15
23	$\forall i \forall j (suc(i,j) \Rightarrow insm(i,j,U,V,Z) \land insm(i,j,V,X,Y) \land$	OOM	TO	198
	$insm(i, j, X, Y, V) \land insm(i, j, Y, Z, X) \land insm(i, j, Z, U, Y))$			
24	$\forall x \forall y. (x < y \land y \in X \land y \in Y)$	3	3	9
26	$\forall x \forall y. (x < y \land y \in X \land y \in Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \notin Y) \land \forall x \forall y. (x < y \land y \in X \land y \in X \land y \in X \land y \in X \land y) \land (x < y \land y \in X \land y \in X \land y) \land (x < y \land y \in X \land y \in X \land y) \land (x < y \land y \in X \land y) \land (x < y \land y \in X \land y) \land (x < y \land $	21	11	18
	$Y) \wedge \forall x \forall y.(x < y \wedge y \notin X \wedge y \in Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \notin Y) \wedge \forall x \forall y.(x < y \wedge y \vee y) \wedge \forall x \forall y.(x < y \wedge y) \wedge \forall x \in Y) \wedge \forall x \in Y \wedge Y$			
	$X \wedge y \notin Y$)			

- SPOT's complementation usually better than basic Schewe
- ALICE: usually less states (but handling Büchi automata is harder)
- #19 & #20: much better scalability

Havlena, Lengál, Šmahlíková Deciding S1S NETYS'21

6/6

¹S. Barth. Deciding Monadic Second Order Logic over ω -Words by Specialized Finite Automata. IFM'16.