Conceitos Matemáticos Aplicados às Finanças

Prof. Ana Isabel C.

June 11, 2025

Introdução

Introdução

Equações de Primeiro Grau

Introdução

Equações de Primeiro Grau

Função de Custo

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Sistemas de Equações Lineares

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Sistemas de Equações Lineares

Programação Linear

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Sistemas de Equações Lineares

Programação Linear

Métodos de Programação Linear

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Sistemas de Equações Lineares

Programação Linear

Métodos de Programação Linear

Conclusão

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Introdução

Objetivo

Apresentar conceitos de funções e equações lineares com aplicações em finanças, como custo, receita, lucro, oferta, consumo e poupança.

Introdução

Objetivo

Apresentar conceitos de funções e equações lineares com aplicações em finanças, como custo, receita, lucro, oferta, consumo e poupança.

Por que estudar?

- Finanças: Modelar lucros e custos de empresas.
- Economia: Analisar oferta e consumo.
- Gestão: Otimizar recursos com programação linear.

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Equações de Primeiro Grau

Definição

Equações na forma ax+b=c, usadas para resolver problemas financeiros simples.

Equações de Primeiro Grau

Definição

Equações na forma ax+b=c, usadas para resolver problemas financeiros simples.

Exemplo 1: Desconto

Uma loja oferece 15% de desconto sobre o preço P. Se o preço final é R\$85, qual o preço original?

$$P - 0.15P = 85 \implies 0.85P = 85 \implies P = \frac{85}{0.85} = 100$$

Resposta: Preço original é R\$100.

Equações de Primeiro Grau

Definição

Equações na forma ax + b = c, usadas para resolver problemas financeiros simples.

Exemplo 1: Desconto

Uma loja oferece 15% de desconto sobre o preço P. Se o preço final é R\$85, qual o preço original?

$$P - 0.15P = 85 \implies 0.85P = 85 \implies P = \frac{85}{0.85} = 100$$

Resposta: Preço original é R\$100.

Exemplo 2: Juros

Um investimento rende J=0,02C. Se o juro é R\$50, qual o capital C?

$$0,02C = 50 \implies C = \frac{50}{2.02} = 2500$$

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

 $C(x) = C_f + C_v \cdot x$, onde C_f é o custo fixo e C_v é o custo variável por unidade.

Definição

 $C(x) = C_f + C_v \cdot x$, onde C_f é o custo fixo e C_v é o custo variável por unidade.

Exemplo 1: Fábrica

Custo fixo de R\$2000, custo variável de R\$30 por unidade. Custo para 50 unidades?

$$C(x) = 2000 + 30x \implies C(50) = 2000 + 30 \cdot 50 = 3500$$

Resposta: Custo total é R\$3500.

Definição

 $C(x) = C_f + C_v \cdot x$, onde C_f é o custo fixo e C_v é o custo variável por unidade.

Exemplo 1: Fábrica

Custo fixo de R\$2000, custo variável de R\$30 por unidade. Custo para 50 unidades?

$$C(x) = 2000 + 30x \implies C(50) = 2000 + 30 \cdot 50 = 3500$$

Resposta: Custo total é R\$3500.

Definição

 $C(x) = C_f + C_v \cdot x$, onde C_f é o custo fixo e C_v é o custo variável por unidade.

Exemplo 1: Fábrica

Custo fixo de R\$2000, custo variável de R\$30 por unidade. Custo para 50 unidades?

$$C(x) = 2000 + 30x \implies C(50) = 2000 + 30 \cdot 50 = 3500$$

Resposta: Custo total é R\$3500.

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

 $R(x) = P \cdot x$, onde P é o preço por unidade e x é a quantidade vendida.

Definição

 $R(x) = P \cdot x$, onde P é o preço por unidade e x é a quantidade vendida.

Exemplo 1: Empresa

Preço de R\$50 por unidade. Receita para 40 unidades?

$$R(x) = 50x \implies R(40) = 50 \cdot 40 = 2000$$

Resposta: Receita é R\$2000.

Definição

 $R(x) = P \cdot x$, onde P é o preço por unidade e x é a quantidade vendida.

Exemplo 1: Empresa

Preço de R\$50 por unidade. Receita para 40 unidades?

$$R(x) = 50x \implies R(40) = 50 \cdot 40 = 2000$$

Resposta: Receita é R\$2000.

Definição

 $R(x) = P \cdot x$, onde P é o preço por unidade e x é a quantidade vendida.

Exemplo 1: Empresa

Preço de R\$50 por unidade. Receita para 40 unidades?

$$R(x) = 50x \implies R(40) = 50 \cdot 40 = 2000$$

Resposta: Receita é R\$2000.

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

L(x)=R(x)-C(x). Lucro é positivo quando a receita supera o custo.

Definição

L(x)=R(x)-C(x). Lucro é positivo quando a receita supera o custo.

Exemplo 1: Fábrica

$$C(x) = 2000 + 30x$$
, $R(x) = 50x$. Lucro para 100 unidades?

$$L(x) = 50x - (2000 + 30x) = 20x - 2000$$

$$L(100) = 20 \cdot 100 - 2000 = 0$$

Resposta: Lucro é R\$0 (ponto de equilíbrio).

Definição

L(x)=R(x)-C(x). Lucro é positivo quando a receita supera o custo.

Exemplo 1: Fábrica

$$C(x) = 2000 + 30x$$
, $R(x) = 50x$. Lucro para 100 unidades?

$$L(x) = 50x - (2000 + 30x) = 20x - 2000$$

$$L(100) = 20 \cdot 100 - 2000 = 0$$

Resposta: Lucro é R\$0 (ponto de equilíbrio).

Função de Lucro: L(x) = 20x - 2000

Definição

L(x)=R(x)-C(x). Lucro é positivo quando a receita supera o custo.

Exemplo 1: Fábrica

$$C(x) = 2000 + 30x$$
, $R(x) = 50x$. Lucro para 100 unidades?

$$L(x) = 50x - (2000 + 30x) = 20x - 2000$$

$$L(100) = 20 \cdot 100 - 2000 = 0$$

Resposta: Lucro é R\$0 (ponto de equilíbrio).

Função de Lucro: L(x) = 20x - 2000

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

P=a+bx, relaciona o preço P à quantidade x oferecida.

Definição

P=a+bx, relaciona o preço P à quantidade x oferecida.

Exemplo 1: Produto

P = 10 + 2x. Preço para 50 unidades?

$$P = 10 + 2 \cdot 50 = 110$$

Resposta: Preço é R\$110.

Definição

P = a + bx, relaciona o preço P à quantidade x oferecida.

Exemplo 1: Produto

P = 10 + 2x. Preço para 50 unidades?

$$P = 10 + 2 \cdot 50 = 110$$

Resposta: Preço é R\$110.

Função de Oferta: P(x) = 10 + 2x

Definição

P = a + bx, relaciona o preço P à quantidade x oferecida.

Exemplo 1: Produto

P = 10 + 2x. Preço para 50 unidades?

$$P = 10 + 2 \cdot 50 = 110$$

Resposta: Preço é R\$110.

Função de Oferta: P(x) = 10 + 2x

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

C=a+bR, onde R é a renda e b é a propensão marginal a consumir.

Definição

C=a+bR, onde R é a renda e b é a propensão marginal a consumir.

Exemplo 1: Consumo

C=200+0,8R. Consumo para renda de R\$1000?

$$C = 200 + 0,8 \cdot 1000 = 1000$$

Resposta: Consumo é R\$1000.

Definição de la constant de la const

C=a+bR, onde R é a renda e b é a propensão marginal a consumir.

Exemplo 1: Consumo

C = 200 + 0.8R. Consumo para renda de R\$1000?

$$C = 200 + 0.8 \cdot 1000 = 1000$$

Resposta: Consumo é R\$1000.

Função de Consumo: C(R) = 200 + 0.8R

Definição de la constant de la const

C=a+bR, onde R é a renda e b é a propensão marginal a consumir.

Exemplo 1: Consumo

C = 200 + 0.8R. Consumo para renda de R\$1000?

$$C = 200 + 0.8 \cdot 1000 = 1000$$

Resposta: Consumo é R\$1000.

Função de Consumo: C(R) = 200 + 0.8R

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

S=R-C, onde R é a renda e C é o consumo.

Definição

S=R-C, onde R é a renda e C é o consumo.

Exemplo 1: Poupança

$$C = 200 + 0.8R$$
, $R = 1000$. Qual a poupança?

$$S = R - (200 + 0, 8R) = 0, 2R - 200$$

$$S = 0, 2 \cdot 1000 - 200 = 0$$

Resposta: Poupança é R\$0.

Definição

S=R-C, onde R é a renda e C é o consumo.

Exemplo 1: Poupança

$$C = 200 + 0,8R$$
, $R = 1000$. Qual a poupança?

$$S = R - (200 + 0.8R) = 0.2R - 200$$

$$S = 0, 2 \cdot 1000 - 200 = 0$$

Resposta: Poupança é R\$0.

Função de Poupança: S(R) = 0.2R - 200

Definição

S=R-C, onde R é a renda e C é o consumo.

Exemplo 1: Poupança

$$C = 200 + 0,8R$$
, $R = 1000$. Qual a poupança?

$$S = R - (200 + 0.8R) = 0.2R - 200$$

$$S = 0, 2 \cdot 1000 - 200 = 0$$

Resposta: Poupança é R\$0.

Função de Poupança: S(R) = 0.2R - 200

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Sistemas de Equações Lineares

Definição

Conjunto de equações lineares resolvidas por escalonamento para encontrar valores que satisfaçam todas.

Sistemas de Equações Lineares

Definição

Conjunto de equações lineares resolvidas por escalonamento para encontrar valores que satisfaçam todas.

Exemplo 1: Produção

Custo: 2A+3B=600, Receita: 5A+4B=1100. Quantos produtos A e B?

$$\begin{cases} 2A + 3B = 600 \\ 5A + 4B = 1100 \end{cases}$$

Multiplique a 1^2 por 5 e a 2^2 por 2:

$$10A + 15B = 3000, \quad 10A + 8B = 2200$$

Subtraia: $7B=800 \implies B\approx 114,29$. Substitua: $2A+3\cdot 114,29=600 \implies A\approx 128,57$. *Resposta*: Aproximadamente 129 de A e 114 de B.

Sistemas de Equações Lineares

Definição

Conjunto de equações lineares resolvidas por escalonamento para encontrar valores que satisfaçam todas.

Exemplo 1: Produção

Custo: 2A+3B=600, Receita: 5A+4B=1100. Quantos produtos A e B?

$$\begin{cases} 2A + 3B = 600 \\ 5A + 4B = 1100 \end{cases}$$

Multiplique a 1^2 por 5 e a 2^2 por 2:

$$10A + 15B = 3000, \quad 10A + 8B = 2200$$

Subtraia: $7B=800 \implies B\approx 114,29$. Substitua: $2A+3\cdot 114,29=600 \implies A\approx 128,57$. *Resposta*: Aproximadamente 129 de A e 114 de B.

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Definição

Otimizar uma função linear sujeita a restrições lineares.

Definição

Otimizar uma função linear sujeita a restrições lineares.

Exemplo 1: Maximizar Lucro

Maximizar L=20x+30y, sujeito a:

$$x+y\leq 100,\quad 2x+y\leq 150,\quad x,y\geq 0$$

Vértices: (0,0), (0,100), (50,50), (75,0).

$$L(0,0) = 0$$
, $L(0,100) = 3000$, $L(50,50) = 2500$, $L(75,0) = 1500$

Resposta: Máximo lucro é R\$3000 com y = 100, x = 0.

Definição

Otimizar uma função linear sujeita a restrições lineares.

Exemplo 1: Maximizar Lucro

Maximizar L = 20x + 30y, sujeito a:

$$x+y \leq 100, \quad 2x+y \leq 150, \quad x,y \geq 0$$

Vértices: (0,0), (0,100), (50,50), (75,0).

$$L(0,0) = 0$$
, $L(0,100) = 3000$, $L(50,50) = 2500$, $L(75,0) = 1500$

Resposta: Máximo lucro é R\$3000 com y = 100, x = 0.

Região Viável

Definição

Otimizar uma função linear sujeita a restrições lineares.

Exemplo 1: Maximizar Lucro

Maximizar L = 20x + 30y, sujeito a:

$$x+y \leq 100, \quad 2x+y \leq 150, \quad x,y \geq 0$$

Vértices: (0,0), (0,100), (50,50), (75,0).

$$L(0,0) = 0$$
, $L(0,100) = 3000$, $L(50,50) = 2500$, $L(75,0) = 1500$

Resposta: Máximo lucro é R\$3000 com y = 100, x = 0.

Região Viável

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Métodos de Programação Linear

Método Gráfico

Para duas variáveis, plota-se a região viável e testa-se a função objetivo nos vértices.

Métodos de Programação Linear

Método Gráfico

Para duas variáveis, plota-se a região viável e testa-se a função objetivo nos vértices.

Exemplo 1: Lucro

Mesmo do slide anterior. Região viável:

Métodos de Programação Linear

Método Gráfico

Para duas variáveis, plota-se a região viável e testa-se a função objetivo nos vértices.

Exemplo 1: Lucro

Mesmo do slide anterior. Região viável:

Sumário

Introdução

Equações de Primeiro Grau

Função de Custo

Função de Receita

Função de Lucro

Função de Oferta

Função de Consumo

Função de Poupança

Conclusão e Recursos

Resumo

- Funções lineares modelam custo, receita, lucro, oferta, consumo e poupança.
- Sistemas lineares e programação linear otimizam decisões financeiras.

Conclusão e Recursos

Resumo

- Funções lineares modelam custo, receita, lucro, oferta, consumo e poupança.
- Sistemas lineares e programação linear otimizam decisões financeiras.

Recursos Adicionais

- Livro: Cálculo James Stewart
- Livro: Princípios de Administração Financeira Gitman
- Voltar ao Sumário

Conclusão e Recursos

Resumo

- Funções lineares modelam custo, receita, lucro, oferta, consumo e poupança.
- Sistemas lineares e programação linear otimizam decisões financeiras.

Recursos Adicionais

- Livro: Cálculo James Stewart
- Livro: Princípios de Administração Financeira Gitman
- Voltar ao Sumário

Para Refletir

Como essas funções podem ajudar na gestão financeira de uma empresa?