Robot Decision Making

CISC1003

- Robot can 'learn' the world using their sensors
- Sensors return data in number format

- The robot can answer 'yes' or 'no' questions
- Example:
 - Is the touch sensor bumped?
 - Is the audio level in the room above 50%?
- This ability is based on a special logic
 - Called 'Boolean logic'

- Programmers can give the robot its decisionmaking capability
 - By combining the numbers provided by the sensor with robot ability to answer questions
- This requires the following:
 - Robot is programmed to ask questions
 - Act one way if the answer is 'yes'
 - and another if the answer is 'no'

 Boolean operators are used when asking the questions, such as:

```
-< 'less then',</pre>
```

- -> 'more than',
- == "equal to"
- etc.

- Example: We want the robot to stop moving before it runs into a wall
 - Use the feedback from an ultrasonic sensor
 - Use 'less than' operator
 - with a certain distance threshold
 - E.g., 10 inch
- This will result in a program that moves the robot until it detects an obstacle
 - Within the distance specified (10 inch)

- How does the program work?
- The robot moves forward
- It repeatedly asks the questions:
 - "Am I 10 inch away from anything?"
- If the answer is no, the robot continues moving forward
 - If the answer is 'yes', it stops

Conditional Statements

- The parts of the program where the robot choose an action
 - Depending on a certain condition

Summary

- We can create conditional statements
 - by combining sensor output and Boolean operators
- This allows the robot to make decisions

How a robot thinks

- What kinds of questions can a robot ask?
 - "yes" or "no" questions
 - Questions that have only two possible answers
- What can a robot do with the answer to the question?
 - Use the answers to choose between two different actions
 - E.g., move forward or stop

