Divisibilidad

Así como la multiplicación puede explicarse como *sumas sucesivas*, el concepto de **división** puede explicarse como *restas sucesivas*.

Definición. Decimos que el número entero a es **divisible entre (o por) el número entero b \neq 0** si existe un entero q (q es por cociente) tal que $a - q \cdot b = 0 \leftrightarrow a = q \cdot b$.

De esta última expresión $a = q \cdot b$, también se suele decir que **b** divide a **a**, o bien que **a** es un múltiplo de **b**.

Para dos enteros cualesquiera a y b, este proceso de restas sucesivas (o división) no siempre puede llevarse a cabo un número entero de veces.

Tomemos, por ejemplo, a = 17 y b = 3. Evidentemente, al restar tantas veces como nos sea posible 3 de 17, el proceso queda *inconcluso*:

$$17 - 5 \cdot 3 \neq 0 \leftrightarrow 17 - 5 \cdot 3 = 2$$

Entonces si tenemos que $a - q \cdot b = r$, decimos que a no es divisible entre (o por) $b \neq 0$. El número entero $0 \le r < b$ se conoce como residuo de la dvisión y el número entero q se conoce como cociente de la división.

Teorema (algoritmo de la división de Euclides)

Para cualesquiera $a,b \in \mathbb{Z}$ tales que $b \neq 0$, existen $q, r \in \mathbb{Z}$ únicos que satisfacen:

$$a = q \cdot b + r$$
, con $0 \le r < b$

Definición. Se denomina **factor o divisor propio** de un número entero *a*, a otro número que es un divisor de *a* pero diferente de *a*. Los divisores 1 y *a* son denominados impropios.

Notación: Usamos la notación b | a para indicar que b divide a a; y b | a para indicar que b no divide a a.

Definición. Decimos que un número p que tiene exactamente dos divisores (p y 1) es un **número primo**. Aquellos números que tienen más de dos divisores son conocidos como **números compuestos**. Y por último, está el número 1, el cual tiene solamente un divisor.

Definición. Dados dos enteros a y b, decimos que estos tienen un **común divisor**, si existe otro número entero $c \neq 0$ tal que:

$$c \mid a y c \mid b$$

Calcu	ıle e	l m	cd(60	,48).																					
	Exp	ores	am	os	60	= 1	-48	3 +	12	\rightarrow	mc	d(6	0,4	8) :	= n	ned(48,	12)									1
	Exp	ores	am	os	48	= 4	1 · 12	2 +	0 -	→ n	ncd	(48	,12) =	m	cd(1	2,0)									
! C									_													ıme	nte	e po	or 1	2 у	
En co																											_
Ell CC	onen	usic)11,	ШС	u(t)U,4	10)	— I	ica	(40	,12	.) —	1110	u()	۷,۱)) —	U.										
																											_
																											+
																											+
																											_
																											+
																											_
																											+
																											+
																											+
																											+
																											\perp
																											+
																											+
																											_
																											+