Computational Geometry

Convex Hull

Announcements

- No Lecture on Thursday 2/28
- Midterm will be after Spring Break, around first or second week of April, depending on how we get through the materials

ab Does Not Cross A

Complexity

• O(n) to find the tangent lines

•
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) = 2T\left(\frac{n}{2}\right) + cn$$

• =
$$2\left(2\left(\frac{T}{4}\right) + \frac{cn}{2}\right) + cn$$

• =
$$2\left(2\left(2\left(\frac{t}{8}\right) + \frac{cn}{4}\right) + \frac{cn}{2}\right) + cn$$

• ...

$$\bullet \ = 2^{lgn} + \left(\frac{2^{lgn-1}}{2^{lgn-1}} + \frac{2^{lgn-2}}{2^{lgn-2}} + \cdots + 2^{0}\right) cn$$

• =
$$O(nlgn)$$

Observation

- Given a hull edge \overrightarrow{ab} , we can find the point c furthest away from ab in linear time
 - the point c is on the hull
 - the triangle \triangle abc partitions the input into three regions
 - points inside \triangle abc
 - points to the right of \overrightarrow{bc}
 - points to the right of \overrightarrow{ca}

Algorithm

- Recursively
 - Discard points inside \triangle abc
 - Compute half hull to the right of \overrightarrow{bc}
 - Compute half hull to the right of \overrightarrow{ca}
 - merge
- ab doesn't need to be a hull edge, a hull diagonal will do (an edge btw two extrema points)

Quick Hull

- Compute extreme points in x and y
- Discard points that lie within the quadrilateral
- Divide the rest into groups and repeat

Quick Hull

- Find extreme x points
- Use the line segment to divide points into 2 groups
- Recurse on each side:
 - Find point with max distance to the line and form triangle
 - discard interior points

Bounds • Convex hull of n points in d dimension has a lower bound of $\Omega(n^{\lfloor d/2 \rfloor})$ O(n2) O(n2) Incremental Gift wrapping O(nh) O(nf) Divide-and-Conquer O(nlogn) O(nlogn) Graham scan O(n log n)Qhull O(nlogh)/O(nf) O(nlogh)/O(nf)

