Data Structures & Algorithms (CS-212)

Week 11: Tree Balancing

Outline

- Introduction
- Insertion
- Deletion
- Implementation

Degenerate Binary Search Tree

BST for 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17

Degenerate Binary Search Tree

BST for 3 4 5 7 9 14 15 16 17 18 20

Degenerate Binary Search Tree

BST for 3 4 5 7 9 14 15 16 17 18 20

Balanced BST

- We should keep the tree balanced.
- One idea would be to have the left and right subtrees have the same height

Balanced BST

Does not force the tree to be shallow.

Balanced BST

- We could insist that every node must have left and right subtrees of same height.
- But this requires that the tree be a complete binary tree
- To do this, there must have $(2^{d+1}-1)$ data items, where d is the depth of the tree.
- This is too rigid a condition.

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - > Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

The AVL Tree Data Structure

An **AVL(Adelson-Velskii and Landis) tree** is a *self-balancing* binary search tree.

Structural properties

- 1. Binary tree property (same as BST)
- 2. Order property (same as for BST)

3. Balance condition:

balance of every node is between -1 and 1

where **balance**(node) = height(node.left) – height(node.right)

- The *height* of a binary tree is the maximum level of its leaves (also called the depth).
- The balance of a node in a binary tree is defined as the height of its left subtree minus height of its right subtree.
- Here, for example, is a balanced tree.
 Each node has an indicated balance of 1, 0, or -1.

Example #1: Is this an AVL Tree?

Example #2: Is this an AVL Tree?

Balance Condition:

balance of every node is between -1 and 1

AVL Tree

AVL Tree

- Tree becomes unbalanced only if the newly inserted node
 - is a left descendant of a node that previously had a balance of 1 (U₁ to U₂),
 - or is a descendant of a node that previously had a balance of -1 (U₉ to U₁₂)

Insertions and effect on balance

Consider the case of node that was previously 1

Inorder: $T_1 B T_2 A T_3$ Inorder: $T_1 B T_2 A T_3$

Consider the case of node that was previously 1

INSERTION

- Let us work through an example that inserts numbers in a balanced search tree.
- We will check the balance after each insert and rebalance if necessary using rotations.

Insert(1)

Insert(2)

Insert(3) single left rotation

Insert(3) single left rotation

Insert(3)

Insert(4)

Insert(5)

Insert(5)

Insert(6)

Insert(6)

Insert(7)

Insert(7)

Insert(16)

Insert(15)

Insert(15)

- Single rotation does not seem to restore the balance.
- The problem is the node 15 is in an inner subtree that is too deep.
- Let us revisit the rotations.

- Let us call the node that must be rebalanced X.
- Since any node has at most two children, and a height imbalance requires that X's two subtrees differ by two (or –2), the violation will occur in four cases:

- 1. An insertion into left subtree of the left child of X.
- 2. An insertion into right subtree of the left child of X.
- 3. An insertion into left subtree of the right child of X.
- 4. An insertion into right subtree of the right child of X.

- The insertion occurs on the "outside"
 (i.e., left-left or right-right) in cases 1 and
 4
- Single rotation can fix the balance in cases 1 and 4.
- Insertion occurs on the "inside" in cases
 2 and 3 which single rotation cannot fix.

Single right rotation to fix case 1.

Single left rotation to fix case 4.

Single right rotation fails to fix case 2.

- Exactly one of tree B or C is two levels deeper than D; we are not sure which one.
- Good thing: it does not matter.
- To rebalance, *k*₃ cannot be left as the root.

- A rotation between k_3 and k_1 (k_3 was k_2 then) was shown to not work.
- The only alternative is to place k₂ as the new root.
- This forces k₁ to be k₂'s left child and k₃ to be its right child.

Left-right double rotation to fix case 2.

Left-right double rotation to fix case 2.

new

Right-left double rotation to fix case 3.

• Right-left double rotation to fix case 3.

Insert(15) right-left double rotation

Insert(15) right-left double rotation

Insert(15) right-left double rotation

Insert(14): right-left double rotation

Insert(14): right-left double rotation

Insert(14): right-left double rotation

Insert(13): single rotation

Insert(13): single rotation

DELETION