Regression

Haoyu Yue

2021/2/28

Continuous Regression

Import all packages and clean the environment

Import the data

```
#
data <- read.csv("https://raw.githubusercontent.com/Group8-GovAnalyticsProject/Merging/main/final_merge</pre>
```

State the hypotheses

```
# Hypothesis 1: Positive rate increases as median age larger.
hypo1=formula(precount_positive~median_age)
# Hypothesis 2: Positive rate increases as median age larger, income decreases.
hypo2=formula(precount_positive~median_age*median_hhold_inc)
```

Build and compute the regression models

Read the result

Result for model/hypotheses 1

pander(summary(model_1))

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	34.46	4.58	7.524	3.713e-13
$median_age$	-0.4703	0.118	-3.985	8.064 e-05

(Dispersion parameter for gaussian family taken to be 159.4836)

Null deviance:	64731 on 391 degrees of freedom
Residual deviance:	62199 on 390 degrees of freedom

Result for model/hypotheses~2

pander(summary(model_2))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	42.1	11.13	3.782	0.00018
${f median_age}$	-0.3418	0.2863	-1.194	0.2332
${f median_hhold_inc}$	-0.0002015	0.0001148	-1.755	0.08011
$median_age:median_hhold_inc$	1.954 e - 06	2.833e-06	0.6898	0.4907

(Dispersion parameter for gaussian family taken to be 141.6419)

Null deviance:	64731 on 391 degrees of freedom
Residual deviance:	54957 on 388 degrees of freedom

 $Compare\ the\ two\ models\ and\ find\ the\ better\ one$

```
anova(model_1,model_2,test="Chisq")
```

Analysis of Deviance Table

```
##
## Model 1: precount_positive ~ median_age
## Model 2: precount_positive ~ median_age * median_hhold_inc
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 390 62199
## 2 388 54957 2 7241.5 7.911e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Due to the p-value = 7.911e-12, these two models has statistical differences. And model 2 is better than model 1 because DF and residential are smaller.

```
RSquare_1 <- rsq::rsq(model_1,adj=T)
RSquare_2 <- rsq::rsq(model_2,adj=T)
```

Summart plots

```
library(dotwhisker)

## Registered S3 method overwritten by 'broom.mixed':

## method from

## tidy.gamlss broom

library(ggplot2)
dwplot(model_2,by_2sd = F)
```


Binary Regression

There is no binary data in our data, so we would like to add a column called high_risk, which means the percent of positive is more than the median of it.

```
data$high_risk <- ifelse(data$precount_positive>median(data$precount_positive),1,0)
data$high_risk<-factor(data$high_risk)</pre>
```

State the hypotheses

```
# Hypothesis 3: High risk or not has relationship with median age.
hypo3=formula(high_risk~median_age)
# Hypothesis 4: High risk or not has relationship with median age and median income.
hypo4=formula(high_risk~median_age*median_hhold_inc)
```

Build and compute the regression models

Read the result

Result for model/hypotheses~3

pander(summary(model_3))

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	3.691	0.8312	4.441	8.96e-06
$median_age$	-0.1016	0.02165	-4.692	2.708e-06

(Dispersion parameter for binomial family taken to be 1)

Null deviance:	539.7 on 391 degrees of freedom
Residual deviance:	514.7 on 390 degrees of freedom

Result for model/hypotheses~4

pander(summary(model_4))

	Estimate	Std. Error	z value	$\Pr(> \mathbf{z})$
(Intercept)	1.772	2.669	0.6639	0.5067
${f median_age}$	0.01805	0.07044	0.2563	0.7978
${f median_hhold_inc}$	1.961e-06	2.884e-05	0.06798	0.9458
median_age:median_hhold_inc	-7.555e-07	7.468e-07	-1.012	0.3117

(Dispersion parameter for binomial family taken to be $1\)$

Null deviance:	539.7 on 391 degrees of freedom
Residual deviance:	455.8 on 388 degrees of freedom

Compare the two models and find the better one

```
lmtest::lrtest(model_3,model_4)
```

```
## Likelihood ratio test
##
## Model 1: high_risk ~ median_age
## Model 2: high_risk ~ median_age * median_hhold_inc
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 2 -257.34
## 2 4 -227.92 2 58.837 1.674e-13 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Model_4 is chosen for this hypotheses.
```

Get marginal effects

```
library(margins)
(marginINFO = margins(model_4))
## Average marginal effects
## glm(formula = hypo4, family = "binomial", data = data)
  median_age median_hhold_inc
     -0.01067
##
                    -5.332e-06
(marginSUMM=summary(marginINFO))
##
                                                p lower
                        AME
                                SE
                                         Z
         median_age -0.0107 0.0055 -1.9410 0.0523 -0.0214 0.0001
##
## median_hhold_inc -0.0000 0.0000 -5.0004 0.0000 -0.0000 -0.0000
```

Get some plots

persp(model_4)

