Homework #3

Eric Tao Math 123: Homework #3

February 2, 2023

Question 1. Let $x, y \in \mathbb{R}^{d \times 1}$. Prove that $xy^T \in \mathbb{R}^{d \times d}$ has at most rank 1.

Solution. First, assume we're not in the degenerate case x = 0 or y = 0, as if either are true, then $xy^T = 0$, the 0 matrix.

Here, we recall that, by definition:

$$(xy^T)_{ij} = \sum_{k=1}^{1} x_{ik} y_{kj} = x_i y_j$$

where I drop the second index because, of course, these are vectors. Fix some i. Then, looking at the i-th row, we notice that we may factor x_i from every term. In particular, as a vector, the i-th row looks like:

$$\begin{pmatrix} x_i y_1 & x_i y_2 & \dots & x_i y_d \end{pmatrix} = x_i \begin{pmatrix} y_1 & y_2 & \dots & y_d \end{pmatrix}$$

where we notice that the i-th row is a multiple of y, as a row vector. Since the choice of i was completely arbitrary, this process can be done for every row, and thus every row vector is a multiple of y. Thus, the row space has dimension 1, and since we're a square matrix, we have that the dimension of the row space is equal to that of the column space, and the rank is 1.

Question 2. Prove that the Euclidean dot product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i, x, y \in \mathbb{R}^n$ is an inner product, where an inner product is a binary function from a (real-valued) vector space V to a field F, $\langle \cdot, \cdot \rangle : V \times V \to F$ such that the following hold (in the context of a real vector space):

- (a) For all $x, y \in V$, $\langle x, y \rangle = \langle y, x \rangle$
- (b) For all $x, y \in V$, $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- (c) For all $x, y, z \in V$, $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- (d) For all $x \in V$, $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$

Solution. (a)

This should be clear by the commutativity of real numbers:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y, x \rangle$$

(b)

This should be clear by how multiplication distributes over addition:

$$\langle \alpha x, y \rangle = \sum_{i=1}^{n} (\alpha x_i) y_i = \alpha \sum_{i=1}^{n} y_i x_i = \alpha \langle y, x \rangle$$

(c)

Same as (b), follows from distributive property of multiplication:

$$\langle x + y, z \rangle = \sum_{i=1}^{n} (x_i + y_i) z_i = \sum_{i=1}^{n} x_i z_i + y_i z_i = \sum_{i=1}^{n} x_i z_i + \sum_{j=1}^{n} y_j z_j = \langle x, z \rangle + \langle y, z \rangle$$

(d)

First, we consider the expansion of $\langle x, x \rangle$:

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i x_i = \sum_{i=1}^{n} x_i^2$$

Since we have that for all $x_i \in \mathbb{R}$, $x_i^2 \ge 0$, we have that $\sum_{i=1}^n x_i^2$ is a sum of non-negative numbers, and thus must be at least 0. Thus, $\langle x, x \rangle \ge 0$

It is obvious that if x=0, then $\langle x,x\rangle=\sum_{i=1}^n0*0=0$. Now, suppose $\langle x,x\rangle=0$. Then, we have that $\sum_{i=1}^nx_i^2=0$. Since, again, these are non-negative numbers, this can only be 0 if $x_i=0$ for all i. But, if $x_i=0$ for all i, x is the 0 vector.

Question 3. (a) Prove that $\langle x, y \rangle_M = x M y^T$ satisfies the properties of an inner product if M is positive definite.

(b) Show that $\langle x,y\rangle_M$ need not be an inner product if M is positive semi-definite.

Solution. (a)

Suppose M is positive definite. We check each property in turn:

$$\langle x, y \rangle_M = xMy^T = (xMy^T)^T = yM^Tx^T = yMx^T = \langle y, x \rangle_M$$

where we use the fact that since xMy^T is a scalar, and thus may be interpreted as a 1×1 matrix, it must be symmetric, and that M being positive-definite means that M is symmetric.

$$\langle \alpha x, y \rangle_M = (\alpha x) M y^T = \alpha (x M y^T) = \alpha \langle x, y \rangle_M$$

where we use the fact that we can pull scalars out from matrix multiplication.

$$\langle x + y, z \rangle_M = (x + y)Mz^T = xMz^T + yMz^T = \langle \alpha x, z \rangle_M + \langle \alpha y, z \rangle_M$$

where we use the fact that matrix multiplication distributes over matrix addition.

and the last property comes by the definition of positive definite, as by definition, $xMx^T \ge 0$ for all x, and is 0 if and only if x = 0. So we notice that:

$$\langle x, x \rangle_M = x M x^T \ge 0$$

and

$$\langle x,x\rangle = 0 \iff xMx^T = 0 \iff x = 0$$

So, $\langle x, y \rangle_M$ defines an inner product.

(b)

We show a counter example. Consider the matrix:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

It should be clear that this matrix is positive semi-definite because we may compute the characteristic polynomia and eigenvalues as $(1 - \lambda)\lambda = 0 \implies \lambda = 0, 1 \ge 0$, and since A is symmetric, with non-negative eigenvalues, it must be positive semi-definite.

However, this matrix does not define a inner product. Consider the vector v = (0 1). We have that:

$$vAv^T = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

Thus, because we found a non-0 v such that $vAv^T = 0$, we have that $vAv^T = 0 \Rightarrow v = 0$, and thus we do not satisfy the biconditional.

Question 4. Let $x_1, ..., x_n \in \mathbb{R}^d$. Fix some positive integer K. Let $C_1, ..., C_K$ be a partition of the data with centroids $\mu_1, ..., \mu_K$. Let

$$F(C_1, ..., C_k) \sum_{k=1}^{K} \sum_{x_i \in C_K} \|\mu_k - x_i\|_2^2$$

- (a) Prove that, for a fixed K, F achieves a minimum value.
- (b) What is the minimum value if K = n?

Solution. \Box

Question 5. Run the MATLAB script 'Kmeans_Gaussians'.

- (a) Run K-means with K = 2,100 replicates. Show the output visually.
- (b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
 - (c) Do the clusters agree with your intuition?

Solution. \Box

Question 6. Run the MATLAB script 'Kmeans_Ellipses'.

- (a) Run K-means with K = 2,100 replicates. Show the output visually.
- (b) Plot the error of the K-means functional as a function of the number of iterations. Is there convergence?
 - (c) Do the clusters agree with your intuition?

 \Box