Student: Derek Boase Std Num: 300043860 e-mail: dboas065@uottawa.ca assignment GitHub: git@github.com:derekboase/Adaptive_Control_Code.git In [1]: import matplotlib.pyplot as plt import control as co import numpy as np import sympy as sp from numpy import transpose as trans from numpy import cos, sin, pi from numpy.linalg import inv **Question 1** Question declarations: In [2]: r1, s0, s1, a01 = sp.symbols('r 1, s 0, s 1, a 0 1')ao, a1, a2, b0 = $sp.symbols('a o, hat{a} 1, hat{a} 2, hat{b} 0')$ a, b, c, d, q, s, Ts = sp.symbols('a, b, c, d, q, s, T')yddot, ydot = sp.symbols('\ddot{y},\dot{y}') y, u, uc = sp.symbols('y, u, u c')a true, b true, c true, d true = (1, 1, 2, 1/2)G1 = (b/(s + a)).subs(a, 1).subs(b, 1)G2 = c/(s + d)G sym = b0/(s**2 + a1*s + a2)G = sp.Mul(G1, G2)Bm = 1Am = s ** 2 + 2*s + 1G = sp.collect(sp.expand(G), s) B, A = sp.fraction(G)B plus = 1B minus = c Part 1 Using the compatability conditions: $\deg A_m = \deg A = 2$ $\mathrm{degB}_m=\mathrm{degB}=0$ $\deg A_0 = \deg A - \deg B^+ - 1 = 1$ The causality condition gives, $\deg \mathbf{A}_m - \deg \mathbf{B}_m' \geq \deg \mathbf{A} - \deg \mathbf{B}^+$ Given that $\mathrm{degA}_m = \mathrm{degA} = 2$ and $\deg \mathrm{B}_m' = 0$ then $degB^+ = 0$ With this we can find, $\deg \mathbf{A}_c = \deg \mathbf{A}_o + \deg \mathbf{A}_m + \deg \mathbf{B}^+ = 3$ It is then found that, $\mathrm{degR} = \mathrm{degA}_c - \mathrm{degA} = 3 - 2 = 1$ Using the minimum phase relationship, degR = degT = degS = 1The control parameters may then be found using the Diophantine equation, $AR' + B^-S = A_0A_m$ $(s^2 + (a+d)s + ad)(s+r_1) + bc(s_0s + s_1) = (s+a_{o_1})(s^2 + 2s + 1)$ In [3]: R = s + r1 $R_{prime} = R$ S = s0*s + s1Ao = (s + ao)T = Ao*Bm/B minus $A_m = s^2 + 2s + 1$ $B_{m} = 1$ $R = r_1 + s$ $S = ss_0 + s_1$ $T = \frac{a_o + s}{c}$ In [4]: dio LHS = sp.collect(sp.expand(A*R_prime + B_minus*S), s) dio_RHS = sp.collect(sp.expand(Ao*Am), s) dio_poly = sp.Poly(sp.collect(sp.expand(dio_LHS - dio_RHS), s), s) var = [r1, s0, s1]control vars = [] for idx in range(len(dio_poly.coeffs())): control_vars.append(sp.solve(dio_poly.coeffs()[idx], var[idx])[0]) r1c_sym = control_vars[0] s0c_sym = control_vars[1] s1c_sym = control_vars[2] The above equation is described in the estimators by, $r_1 = a_o - d + 1$ $s_0=\frac{2a_o-dr_1-d-r_1+1}{c}$ $s_1=rac{a_o-dr_1}{c}$ Part 2 The process is described by, $p^2y(t) + (d+1)py(t) + dy(t) = cu(t)$ Then we can define, $y_f(s) = H_f(s) Y(s)$ $u_f(s) = H_f(s)U(s)$ where $H_f(s) = rac{1}{Am(s)} = rac{1}{s^2 + 2s + 1}$ The model then becomes, $rac{p^2}{A_m(s)} y_f(t) = -(d+1) rac{p}{A_m(s)} y_f(t) - rac{d}{A_m(s)} y_f(t) + rac{c}{A_m(s)} u_f(t)$ The RLS can be used on this model by defining, $y_i(t)=rac{p^i}{Am(p)}y(t)$ $u_i(t)=rac{p^i}{Am(p)}u(t)$ With this choice of definition, we can reparameterize the model as, $y_n(t) = \phi(t)^T \theta$ where, $\phi(t) = egin{bmatrix} -y_{f1}(t) & -y_{f0}(t) \ u_{f0}(t) \end{bmatrix}^T$ $heta = \left[(d+1) \ d \ c
ight]^T$ To begin to evaluate these parameters, the continuous time variables are estimated with the bilinear transformation. That is to say the following mapping is used, $s=rac{2(1-q^{-1})}{T_{
m c}(1+q^{-1})}$ where T_s is the sampling time In [5]: bilinear = 2*(1-q**(-1))/(Ts*(1+q**(-1)))Hf1 = (s/Am).subs(s, bilinear)Hf1 = sp.collect(sp.simplify(sp.expand(Hf1)), q) Hf0 = (1/Am).subs(s, bilinear)Hf0 = sp.collect(sp.simplify(sp.expand(Hf0)), q) bilinear = 2*(1-q**(-1))/(Ts*(1+q**(-1)))bf1, af1 = sp.fraction(Hf1) $af1_poly = sp.Poly(af1, q)$ $bf1_poly = sp.Poly(bf1, q)$ af1 coeffs = [] bf1 coeffs = []for n in range(len(af1 poly.coeffs())): afl coeffs.append(sp.simplify(afl poly.coeffs()[n]/afl poly.coeffs()[0])) for n in range(len(bf1 poly.coeffs())): bf1 coeffs.append(sp.simplify(bf1 poly.coeffs()[n]/af1 poly.coeffs()[0])) bf1 coeffs.insert(1, 0) Hf1 = (s/Am).subs(s, bilinear)Hf1 = sp.collect(sp.simplify(sp.expand(Hf1)), q) Hf0 = (1/Am).subs(s, bilinear)Hf0 = sp.collect(sp.simplify(sp.expand(Hf0)), q) bf0, af0 = sp.fraction(Hf0) $af0_poly = sp.Poly(af0, q)$ $bf0_poly = sp.Poly(bf0, q)$ af0 coeffs = [] bf0 coeffs = []for n in range(len(af0 poly.coeffs())): af0_coeffs.append(sp.simplify(af0_poly.coeffs()[n]/af0_poly.coeffs()[0])) for n in range(len(bf0 poly.coeffs())): bf0 coeffs.append(sp.simplify(bf0 poly.coeffs()[n]/af0 poly.coeffs()[0])) The coefficients for the denominator of the sampled filter H_{f1} are given as, $\operatorname{den}\{H_{f1}\}\left[1, \frac{2(T-2)}{T+2}, \frac{T^2-4T+4}{T^2+4T+4}\right]$ The coefficients for the numerator of the sampled filter H_{f1} are given as, $\operatorname{num}\{H_{f1}\}\Big[rac{2T}{T^2+4T+4}$, 0, $-rac{2T}{T^2+4T+4}\Big]$ The coefficients for the denominator of the sampled filtered H_{f0} are given as, $\operatorname{den}\{H_{f0}\}\Big[1, rac{2\left(T-2
ight)}{T+2}, rac{T^2-4T+4}{T^2+4T+4}\Big]$ The coefficients for the denominator of the sampled filtered H_{f0} are given as, $\operatorname{num}\{H_{f0}\}\Big[rac{T^2}{T^2+4T+4},rac{2T^2}{T^2+4T+4},rac{T^2}{T^2+4T+4}\Big]$ Attention is taken to two results: 1. The denominators are both the same, as they come from the reference model parameters 2. The order of the coefficients goes from $0 \rightarrow 2$ The following difference equations are then found for y_{f_i} and u_{f_i} . $y_{f1}(k) = rac{2T}{T^2 + 4T + 4}y(k) - rac{2T}{T^2 + 4T + 4}y(k - 2) - rac{2(T - 2)}{T + 2}y_{f1}(k - 1) - rac{T^2 - 4T + 4}{T^2 + 4T + 4}y_{f1}(k)$ $y_{f0}(k) = rac{T^2}{T^2 + 4T + 4} y(k) + rac{2T^2}{T^2 + 4T + 4} y(k-1) + rac{T^2}{T^2 + 4T + 4} y(k-2) - rac{2(T-2)}{T+2} y_{f0}(k-1) - rac{T^2 - 4T + 4}{T^2 + 4T + 4} y_0(k-2)$ $u_{f0}(k) = rac{T^2}{T^2 + 4T + 4} u(k) + rac{2T^2}{T^2 + 4T + 4} u(k-1) + rac{T^2}{T^2 + 4T + 4} u(k-2) - rac{2(T-2)}{T+2} u_{f0}(k-1) - rac{T^2 - 4T + 4}{T^2 + 4T + 4} u_0(k-2)$ Furthermore, rearranging the equation for $y_{f2}(k)$ we find, $y(k) = rac{T^2 + 4T + 4}{4} y_{f2}(k) + rac{T^2 - 4}{2} y_{f2}(k-1) + rac{T^2 - 4T + 4}{4} y_{f2}(k-2) + 2y(k-1) - y(k-2)$ To find the control action, u(k), we look to the equation, $u(t)=rac{T}{R}u_c(t)-rac{S}{R}y(t)$ The approach to find the discretized equation is the same as in the previous question so the details are neglected for readability, $u(k) = -rac{r_1T-2}{r_1T+2}u(k-1) - rac{s_1T+2s_0}{r_1T+2}y(k) - rac{s_1T-2s_0}{r_1T+2}y(k-1) + rac{a_0T+2}{c(r_1T+2)}u_c(k) + rac{a_0-2)}{c(r_1T+2)}u_c(k-1)$ Part 3 def reference signal(time=np.linspace(0, 1000, 1001)): sig = [] rat = 2.0/40.0*pirat = 1.0/25.0*pifor t_lop in time: if sin(10*rat*t lop) >= 0: sig.append(1) else: sig.append(0) return np.array(sig, dtype=float) In [7]: uc = reference signal() lam = 0.01Ts = 0.1end = 1000# Assignmnent, works am1 = -2*np.exp(-2)am2 = np.exp(-4)z true, d true, c true = 1.5, 0.5, 2 # # In class example, works perfectly! # am1 = -1.3205# am2 = 0.4966 # a1 true, a2 true, b0 true, b1 true = -1.6065, 0.6065, 0.1065, 0.0902 theta = np.array([z true, d true, c true]).reshape(3,1) # a1[0], a2[1], b0[2], b1[3] In [8]: theta hat = np.array([0.1, 0.1, 0.1]).reshape(theta.shape) # z d ctheta lst = np.concatenate((theta hat, (theta_hat).reshape(3,1)), axis=1) y = np.zeros(2)u = np.zeros(2)y2 = np.zeros(2)y1 = np.zeros(2)y0 = np.zeros(2)u0 = np.zeros(2)P = 10*np.eye(3)for t in range(2, end): phi = np.array([-y1[t-1], -y0[t-1], u0[t-1]]).reshape(3,1)theta hat = (theta hat + Ts*(P @ phi)*(trans(phi) @ theta - trans(phi) @ theta hat)) theta_lst = np.concatenate((theta_lst, theta_hat), axis=1) P = inv(inv(P) + phi@trans(phi)) K = P@phi $r1 = (2-theta_hat[1])$ $s0 = (3 - theta_hat[1] * r1 - theta_hat[1] - r1)$ $s1 = (1 - theta_hat[1]*r1)/theta_hat[2]$ y2 = np.concatenate((y2,(trans(phi) @ theta).reshape(-1,)), axis=0) y = np.concatenate((y, (1.1025*y2[t] - 1.995*y2[t-1] + 0.9025*y2[t-2] + 2*y[t-1] - y[t-2]).reshape(-1)), axis=u = np.concatenate((u, (1/(Ts*r1 + 2)*(-(Ts*r1 - 2)*u[t-1] - (Ts*s1 + 2*s0)*y[t]) - (Ts*s1 - 2*s0)*y[t-1] + (Ts*s1 - 2*s0)*y1 = np.concatenate((y1, (0.04535*y[t] - 0.0435*y[t-2] + 1.8095*y1[t-1] - 0.8186*y1[t-2]).reshape(-1)), axis=0)y0 = np.concatenate((y0,(0.00227*y[t] + 0.00454*y[t-1] + 0.00227*y[t-2] + 1.8095*y0[t-1] - 0.8186*y0[t-2]).restu0 = np.concatenate((u0,(0.00227*u[t] + 0.00454*u[t-1] + 0.00227*u[t-2] + 1.80952*u0[t-1] - 0.8186 * u0[t-2]).rIn [9]: a, b = theta lst.shapecolours = ['blue', 'orange', 'green'] for idx, th in enumerate(theta lst): plt.hlines(theta[idx], 0, b, colours[idx], '--') plt.legend(['\$\hat{d+1}_0\$', '\$\hat{d}_1\$', '\$\hat{c}_0\$']) plt.title('Parameters') plt.show() **Parameters** 2.5 2.0 1.5 1.0 0.5 $d + 1_0$ \hat{d}_1 200 400 600 1000 **Question 2** In [10]: import matplotlib.pyplot as plt import control as co import numpy as np import sympy as sp from numpy import transpose as trans from numpy import cos, sin, pi from numpy.linalg import inv **Question Parameters** In [11]: a1, a2, b0, b1 = $sp.symbols('\hat{a}_1, \hat{a}_2, \hat{b}_0, \hat{b}_1')$ r1, s0, s1, a0 = sp.symbols('r_1, s_0, s_1, a_0') am1, am2 = $sp.symbols('a_{m1}, a_{m2}')$ y, u, uc = sp.symbols('y, u, u c')q = sp.symbols('q')In [12]: $\# A = (q^{**2} - 0.503215*q + 0.0497871)$ #B = (1.59831*q + 0.587984)A = (q**2 + a1*q + a2)B = (b0*q + b1) $B_poly = sp.Poly(B, q)$ $B_plus = (q + B_poly.coeffs()[1]/B_poly.coeffs()[0])$ B_minus = B_poly.coeffs()[0] Out[12]: In [13]: # Am test = co.sample system(co.tf([1.], [1., 2., 1.]), Ts=2, method='zoh') $\# Am = q^{**2} - 0.2707*q + 0.01832$ Am = q**2 + am1*q + am2Out[13]: $a_{m1}q + a_{m2} + q^2$ 2.1 Sampler (Bonus) The original equations for the plany is given by $G=rac{ au}{s^2+1.5s+0.5}$ In [14]: co.sample system(co.tf([2.], [1., 1.5, 0.5]), Ts=2, method='zoh') Out[14]: 2.2 Indirect Linear Controller Design Using MDPP We begin by factorizing B as follows, $B = B(q)^{+}B(q)^{-} = (q + 0.36788)(1.59831)$ To cancel the zeros, we require that they are stable and well-damped. In this case the zero is q = -0.36788 and is thus stable (inside the unit circle) and well-damped (sufficiently far from the unit circle). It is then clear that we may cancel the zeros. Using the compatability conditions: $\deg A_m = \deg A = 2$ $\mathrm{deg}B_m=\mathrm{deg}B=\mathrm{degB}^+=1$ $\mathrm{deg}A_0=\mathrm{deg}A-\mathrm{deg}B^+-1=0$ With this we can find, $\deg A_c = \deg A_o + \deg A_m + \deg B^+ = 3$ From the minimum phase conditions we then get that, $\deg R = \deg S = \deg T = \deg A_c - \deg A = 1$ Noting that $\mathrm{deg}R=1$ and $\mathrm{deg}B^+=1$ then it follows that $\deg R'=0$ Let R'=1, then the left hand side (LHS) of the Diophatine equation becomes, $LHS = AR' + B^{-}S$ In [15]: LHS = A + B minus*(s0*q + s1) From the compatability conditions, we get the $\deg A_o=0$, thus we choose it to be, $A_o = 1$ The right hand side (RHS) of the Diophantine equation becomes, $RHS = A_o A_m$ In [16]: RHS = AmIn [17]: $dio_poly = sp.Poly(sp.collect(LHS - RHS, q), q)$ To find s_0 we consider the first degree terms, In [18]: s0 sym = sp.solve(dio poly.coeffs()[0], s0)[0] Out[18]: In [19]: s1 sym = sp.solve(dio poly.coeffs()[1], s1)[0] S = (s0 sym*q + s1 sym)R = B plus Out[19]: $\displaystyle \frac{-\hat{a}_2 + a_{m2}}{\hat{b}_0}$ With this the S polynomial is, $S = rac{q\left(-\hat{a}_1 + a_{m1}
ight)}{\hat{b}_0} + rac{-\hat{a}_2 + a_{m2}}{\hat{b}_0}$ $r1_sym = b1/b0$ In [20]: r1 sym Out[20]: Additionally, we know that, $R = R'B^+$ and that R' = 1 thus, $R = B^+ = q + \frac{b_1}{\hat{h}_0}$ The R polynomial is given as, $R = q + \frac{b_1}{\hat{i}}$ The T polynomial is found using, $T = A_o B'_m$ where $B_m=B^-B_m^\prime=A_m(1)q^{n-d_0}$ In [21]: Bm = Am.subs(q, 1)*qt0 sym = Bm/B minus T = t0 symThen T is, $T=rac{q\left(a_{m1}+a_{m2}+1
ight)}{\hat{b}_0}$ As a summary, the control polynomials are given by, $R=q+r_1=q+rac{b_1}{\hat{h}_2}$ $S = s_0 q + s_1 = rac{q \left(-\hat{a}_1 + a_{m1}
ight)}{\hat{h}_0} + rac{-\hat{a}_2 + a_{m2}}{\hat{h}_0}$ $T=t_0q=rac{q\left(a_{m1}+a_{m2}+1
ight)}{\hat{h}_0}$ These values are then used in the linear controller algorithm, $Ru(t) = Tu_c(t) - Sy(t)$ $u(t) = -r_1 u(t-1) + t_0 u_c(t) - s_0 y(t) - s_1 y(t-1)$ The output equation is given by, $y(t) = \phi(t-1)^T \theta$ where, $\phi(t-1)^T = \begin{bmatrix} -y(t-1) & -y(t-2) & u(t-1) & u(t-2) \end{bmatrix}$ $\hat{ heta} = \left[\hat{a}_1 \ \hat{a}_2 \ \hat{b}_0 \ \hat{b}_1
ight]^T$ 2.3-4 Minimal Degree Pole Placement Algorithm for Indirect Controller and Simulation In [22]: def reference signal(time=np.linspace(0, 100, 101)): rat = 2.0/40.0*pirat = 1.0/25.0*pifor t lop in time: if sin(rat*t lop) >= 0: sig.append(1) sig.append(0) return np.array(sig, dtype=float) def noise generator(time=np.linspace(0, 100, 101)): noise = [] for t lop in time: **if** t lop < 35: noise.append(0) noise.append(0.25) return np.array(noise) We start by initializing the values of the variables, In [23]: uc = reference signal() lam = 1# Assignmnent, works am1 = -2*np.exp(-2)am2 = np.exp(-4)al_true, a2_true, b0_true, b1_true = -0.503215, 0.0497871, 1.59831, 0.587984 # # In class example, works perfectly! # am1 = -1.3205 # am2 = 0.4966 # a1 true, a2 true, b0 true, b1 true = -1.6065, 0.6065, 0.1065, 0.0902 theta = np.array([a1_true, a2_true, b0_true, b1_true]).reshape(4,1) # a1[0], a2[1], b0[2], b1[3] In [24]: # Initializing the coefficients for A, B for t=0theta hat = np.array([0., 0., 0.5, 0.2]).reshape(4,1) # a1[0], a2[1], b0[2], b1[3] ** SET b0 TO 0.01 FOR CONT a1_est, a2_est, b0_est, b1_est = theta_hat[0], theta_hat[1], theta_hat[2], theta_hat[3] P = np.diag([10, 1, 100, 10]) # WORKS# P = np.diag([100, 100, 100, 100]) # WORKS # Calculating the control parameters for t = 0y = np.array([0])y hat = y t0 = (am1 + am2 + 1)/theta hat[2]s0 = (am1 - theta hat[0])/theta hat[2]u = t0*uc[0] - s0*y[0]# Calculating the coefficients for A, B for t=1# phi = np.array([-y[0], 0, u[0], 0]).reshape(4,1)phi = np.array([0., 0., 0.]).reshape(4,1)y = np.concatenate((y, (trans(phi) @ theta).reshape(-1)), axis=0) K = P @ phi @ inv(lam + trans(phi) @ P @ phi)theta hat = theta hat + K @ (y[1] - trans(phi) @ theta hat) P = (np.eye(len(phi)) - K @ trans(phi)) @ P /lam al est = np.concatenate((al est, theta hat[0]), axis=0) a2 est = np.concatenate((a2 est, theta hat[1]), axis=0) b0 est = np.concatenate((b0 est, theta hat[2]), axis=0) b1 est = np.concatenate((b1 est, theta hat[3]), axis=0) # Calculating the control parameters for t = 1r1 = theta hat[3]/theta hat[2] t0 = (am1 + am2 + 1)/theta hat[2]s0 = (am1 - theta hat[0])/theta hat[2]s1 = (am2 - theta hat[1])/theta hat[2]u = np.concatenate((u,-r1*u[0] + t0*uc[1] - s0*y[1] - s1*y[0]))for t in np.arange(2, 101): # Calculating the coefficients for A, B for t phi = np.array([-y[t-1], -y[t-2], u[t-1], u[t-2]]).reshape(4,1)y = np.concatenate((y,(trans(phi) @ theta).reshape(-1)), axis=0) K = P @ phi @ inv(lam + trans(phi) @ P @ phi) theta hat += K @ (y[t] - trans(phi) @ theta hat) P = (np.eye(len(phi)) - K @ trans(phi)) @ P /lam a1 est = np.concatenate((a1 est, theta hat[0]), axis=0) a2 est = np.concatenate((a2 est, theta hat[1]), axis=0) b0 est = np.concatenate((b0 est, theta hat[2]), axis=0) b1 est = np.concatenate((b1 est, theta hat[3]), axis=0) # Calculating the control parameters for t r1 = theta hat[3]/theta hat[2] t0 = (am1 + am2 + 1)/theta hat[2]s0 = (am1 - theta hat[0])/theta hat[2] $s1 = (am2 - theta_hat[1])/theta_hat[2]$ u = np.concatenate((u, -r1*u[t-1] + t0*uc[t] - s0*y[t] - s1*y[t-1]))In [25]: plt.plot(np.linspace(0, 100, 101), y) plt.plot(np.linspace(0, 100, 101), uc) # plt.plot(y[45:60]) # plt.plot(uc[45:60]) plt.legend(['y', 'u c']) plt.title('System Output and Reference') System Output and Reference 2.5 u_c 2.0 1.5 1.0 0.5 0.0 60 80 100 In [26]: plt.step(np.linspace(0, 100, 101), u, 'g') # plt.step(u[5:], 'g') plt.legend(['u']) plt.title('Control Action vs. Time') plt.show() Control Action vs. Time 1.50 1.25 1.00 0.75 0.50 0.25 0.00 -0.25100 In [27]: plt.plot(a1 est) plt.hlines(a1 true, 0, 100, 'blue', '--') plt.plot(a2 est) plt.hlines(a2 true, 0, 100, 'orange', '--') plt.plot(b0 est) plt.hlines(b0 true, 0, 100, 'green', '--') plt.plot(b1 est) plt.hlines(b1 true, 0, 100, 'red', '--') plt.title('Parameters') plt.legend(['\$\hat{a} 1\$', '\$\hat{a} 2\$', '\$\hat{b} 0\$', '\$\hat{b} 1\$']) plt.show() **Parameters** ä₂ 1.5 1.0 0.5 0.0 -0.520 40 100 2.5 Disturbance Rejection In [28]: R0 = RS0 = Srol, so0, so1 = sp.symbols('r_{01}, s_{00}, s_{01})') x0, y0 = sp.symbols('x 0, y 0')In [29]: Y = -sp.simplify(R0.subs(q, 1)/B.subs(q, 1))Placing the integrator pole at the origin gives, $X = q + x_0 = q$ and we define Y to be, $Y=y_0=-rac{R^0(1)}{B(1)}=-rac{1}{\hat{b}_0}$ We find the new polynomial $R = XR^0 + YB$ In [30]: Rdist = sp.simplify(X*(q + ro1) + y0*B) Rdist = sp.collect(sp.expand(Rdist.subs(ro1, r1_sym).subs(y0, Y)), q) $R=q^2+q\left(-1+rac{\hat{b}_1}{\hat{b}_0}
ight)-rac{\hat{b}_1}{\hat{b}_0}$ Following the same method, we find $S = XS^0 - YA$ In [31]: Sdist = sp.simplify(X*(so0*q + so1) - y0*A) $Sdist = sp.collect(sp.expand(Sdist).subs(so0, s0_sym).subs(so1, s1_sym).subs(y0, Y), q)$ Sdist poly = sp.Poly(Sdist, q) $S = rac{\hat{a}_2}{\hat{b}_0} + q^2 \left(rac{-\hat{a}_1 + a_{m1}}{\hat{b}_0} + rac{1}{\hat{b}_0}
ight) + q \left(rac{\hat{a}_1}{\hat{b}_0} + rac{-\hat{a}_2 + a_{m2}}{\hat{b}_0}
ight)$ $T=rac{q\left(a_{m1}+a_{m2}+1
ight)}{\hat{h}_{0}}$ In []: Noting that the T polynomial doesn't change we get the control signal as, $u(t) = -r_{11}u(t-1) - r_{12}u(t-2) + t_0u_c(t-1) - s_{10}y(t) - s_{11}y(t-1) - s_{12}y(t-2)$ We now model the system as, $A_dAy(t) = A_dBig(u_lt) + v(t)ig)$ we define $A_d=(q-1)$ Factoring and cancelling a q term on each side, $(1-q^{-1})Ay(t) = (1-q^{-1})Big(u_{\ell}t) + v(t)ig)$ Note that the addition of the A_d term to compensate for the noise changes the estimator, and thus changes the regressor. The RLS is now learning the filtered output, $y_f(t) = A_d y(t)$, but the paramters stay the same. To fix the model, we note that, $y_f(t) = (1 - q^{-1})y(t)$ $y(t) = y_f(t) + y(t-1)$ The same argument is made for $u_f(t) = u(t) - u(t-1)$ 2.6 Plotting **Uncompensated Noise** The following blocks find the uncompensated response with disturbance In [32]: uc = reference_signal() v = noise_generator() # Assignmnent, works am1 = -2*np.exp(-2)am2 = np.exp(-4)al_true, a2_true, b0_true, b1_true = -0.503215, 0.0497871, 1.59831, 0.587984 # # In class example, works perfectly! # am1 = -1.3205# a1 true, a2 true, b0 true, b1 true = -1.6065, 0.6065, 0.1065, 0.0902 theta = np.array([a1_true, a2_true, b0_true, b1_true]).reshape(4,1) # a1[0], a2[1], b0[2], b1[3]

ELG7113 Machine Learning for Adaptive and Intelligent Control

Systems

	<pre>P = np.diag([10, 1, 100, 10]) # WORKS # P = np.diag([100, 100, 100]) # WORKS # Calculating the control parameters for t = 0 y = np.array([0]) y_hat = y t0 = (am1 + am2 + 1)/theta_hat[2] s0 = (am1 - theta_hat[0])/theta_hat[2] u = t0*uc[0] - s0*y[0]</pre> e_uncomp = np.array([y[0] - uc[0]])
	<pre>e_uncomp = np.array([y[0] - uc[0]]) # Calculating the coefficients for A, B for t = 1 # phi = np.array([-y[0], 0, u[0], 0]).reshape(4,1) phi = np.array([0., 0., 0.]).reshape(4,1) y = np.concatenate((y,</pre>
	<pre>bl_est = np.concatenate((bl_est, theta_hat[3]), axis=0) # Calculating the control parameters for t = 1 r1 = theta_hat[3]/theta_hat[2] t0 = (am1 + am2 + 1)/theta_hat[2] s0 = (am1 - theta_hat[0])/theta_hat[2] s1 = (am2 - theta_hat[1])/theta_hat[2] u = np.concatenate((u,</pre>
	<pre>e_uncomp = np.concatenate((e_uncomp, np.array([y[t] - uc[t]]))) K = P @ phi @ inv(lam + trans(phi) @ P @ phi) theta_hat += K @ (y[t] - trans(phi) @ theta_hat) P = (np.eye(len(phi)) - K @ trans(phi)) @ P /lam a1_est = np.concatenate((a1_est, theta_hat[0]), axis=0) a2_est = np.concatenate((a2_est, theta_hat[1]), axis=0) b0_est = np.concatenate((b0_est, theta_hat[2]), axis=0) b1_est = np.concatenate((b1_est, theta_hat[3]), axis=0) # Calculating the control parameters for t r1 = theta_hat[3]/theta_hat[2] t0 = (am1 + am2 + 1)/theta_hat[2] s0 = (am1 - theta_hat[0])/theta_hat[2] s1 = (am2 - theta_hat[1])/theta_hat[2] u = np.concatenate((u,</pre>
n [34]:	-r1*u[t-1] + t0*uc[t] - s0*y[t] - s1*y[t-1] + v[t])) y_uncomp = y
n [35]:	<pre>return np.array([rdist1, rdist2, sdist0, sdist1, sdist2, tdist0]).reshape(1,-1)</pre>
n [36]:	<pre># Initializing the coefficients for A, B for t = 0 theta_hat = np.array([0., 0., 1., 0.2]).reshape(4,1) # a1[0], a2[1], b0[2], b1[3] ** SET b0 TO 0.01 FOR CON theta_lst = theta_hat a1_est, a2_est, b0_est, b1_est = theta_hat[0], theta_hat[1], theta_hat[2], theta_hat[3] P = np.diag([10, 10, 100, 10]) # WORKS # P = 100*np.eye(4) # Calculating the control parameters for t = 0 yf = np.array([0] + v[0]) y = np.array([0]) vec = np.array([0], 0., -y[0], 0., 0., 0.]).reshape(-1,1) u = (params()@vec).reshape(-1)</pre>
	<pre>uf = np.array([u[0]]) e_comp = np.array([y[0] - uc[0]]) # Calculating the coefficients for A, B for t = 1 phi = np.array([0., 0., 0., 0.]).reshape(4,1) yf = np.concatenate((yf,</pre>
	<pre>(params()@vec).reshape(-1)), axis=0) uf = np.concatenate((uf,</pre>
	<pre>e_comp = np.concatenate((e_comp, np.array([y[2] - uc[2]]))) vec = np.array([-u[1], -u[0], -y[2], -y[1], -y[0], uc[1]]).reshape(-1,1) u = np.concatenate((u,</pre>
	<pre>yf = np.concatenate((yf,</pre>
[37]:	<pre>plt.plot(y_comp) plt.plot(y_uncomp) plt.plot(uc) plt.legend(['\$y_{comp}\$', '\$y_{uncomp}\$', '\$u_c\$']) plt.title('Response vs. Time') plt.show()</pre> Response vs. Time
	2.0
[38]:	plt.plot(e_uncomp) plt.legend(['\$e_{comp}\$', '\$e_{uncomp}\$']) plt.title('Errors vs. Time') plt.show() Errors vs. Time 15 10 ecomp euncomp
39]:	colours = ['blue', 'orange', 'green', 'red']
	<pre>for idx, th in enumerate(theta_lst): plt.plot(th) plt.hlines(theta[idx], 0, b, colours[idx], '') plt.title('Parameters') plt.legend(['\$\hat{a}_1\$', '\$\hat{a}_2\$', '\$\hat{b}_0\$', '\$\hat{b}_1\$']) plt.show()</pre> Parameters 20 \$\begin{align*} Parameters \hat{\hat{a}_0} \hat{\hat{\hat{b}_0} \hat{\hat{\hat{b}_0} \hat{\hat{\hat{b}_0} \hat{\hat{h}_0} \hat{\hat{h}
40]:	0.5 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	0.25 -
	Question 3 Q3.1 Derivation of Control Parameters Direct Self-Tuning Regulator Given that the system is the same as in the previous question, the control parameters for the direct self-tuning regulator will also be the same. To find the reparameterized model, we look into the equation,
	From the previous example, we know the following, $A_0=1$ $A_m=a_{m1}q+a_{m2}+q^2$ $B^-=\hat{b}_0$ $R=q+r_1=q+\frac{\hat{b}_1}{\hat{b}_0}$
	$S=s_0q+s_1=rac{q\left(-\hat{a}_1+a_{m1} ight)}{\hat{b}_0}+rac{-\hat{a}_2+a_{m2}}{\hat{b}_0}$ $T=t_0q=rac{q\left(a_{m1}+a_{m2}+1 ight)}{\hat{b}_0}$ Then the equation above becomes, $y(t)=rac{1}{q^2+a_{m_1}q+a_{m_2}}\hat{b}_0\Big(ig(q+r_1ig)u(t)+ig(s_0q+s_1ig)y(t)\Big)$
	Commented out vv ^^ To ensure that we are working in the backwords shift operator, we multiply the top and bottom of the equation by q^{-2} . Then, $y(t)=\frac{1}{1+a_{m_1}q^{-1}+a_{m_2}q^{-2}}\Big(\big(\hat{b}_0q^{-1}+\hat{b}_0r_1q^{-2}\big)u(t)+\big(\hat{b}_0s_0q^{-1}+\hat{b}_0s_1q^{-2}\big)y(t)\Big)$ Then by distributing the outermost bracket into the inputs and outputs, $u(t)$ and $y(t)$ respectively, the output may be written as, $y(t)=\Big(\big(\hat{b}_0q^{-1}+\hat{b}_0r_1q^{-2}\big)u_f(t)+\big(\hat{b}_0s_0q^{-1}+\hat{b}_0s_1q^{-2}\big)y_f(t)\Big)$ where,
	$u_f(t)=\frac{1}{1+a_{m_1}q^{-1}+a_{m_2}q^{-2}}u(t)$ $y_f(t)=\frac{1}{1+a_{m_1}q^{-1}+a_{m_2}q^{-2}}y(t)$ Expanding these equations we get, $u_f(t)=u(t)-a_{m_1}u_f(t-1)-a_{m_2}u_f(t-2)$ and $y_f(t)=u(t)-a_{m_1}y_f(t-1)-a_{m_2}y_f(t-2)$
	$y_f(t)=u(t)-a_{m_1}y_f(t-1)-a_{m_2}y_f(t-2)$ Recalling the output of the system we can redefine it to be, $y(t)=\hat{b}_0u_f(t-1)+\hat{b}_0r_1u_f(t-2)+\hat{b}_0s_0y_f(t-1)+\hat{b}_0s_1y_f(t-2)=\phi(t-1)^T\theta$ with, $\phi(t)=\left[u_f(t)\;u_f(t-1)\;y_f(t)\;y_f(t-1)\right]^T$ and $\theta=\left[\hat{r}_0\;\hat{r}_1\;\hat{s}_0\;\hat{s}_1\right]^T$
	$ heta=\left[\hat{r}_0~\hat{r}_1~\hat{s}_0~\hat{s}_1 ight]^T$ With these known, we can use the recursive linear regressor to approximate the parameters for $ heta$ Noting that R is no longer monic due to the factorization of B^- we get, $S=\hat{s}_0s+\hat{s}_1$ $R=\hat{r}_0s+\hat{r}_1$ $T=t_0q$ The control action is then found using,
	$Ru(t) = Tu_c(t) - Sy(t)$ $u(t) = \frac{1}{\hat{r}_0} \left[-\hat{r}_1 u(t-1) + t_0 u_c(t) - s_0 y(t) - s_1 y(t-1) \right]$ Q3.2 Implementation of Direct Self-Tuning Regulator $uc = reference_signal()$ $lam = 1$ # Assignment, works $am1 = -2*np.exp(-2)$
12]:	<pre>am2 = np.exp(-4) r0_true, r1_true, s0_true, s1_true = 1.59831, 0.587984, 0.23254443, -0.03147146 t0_true = 1 + am1 + am2 t0 = t0_true theta = np.array([r0_true, r1_true, s0_true, s1_true]).reshape(4,-1) # Initializing the coefficients for R, S for t = 0 y = np.array([0]) theta_hat = np.array([1., 0.25, 0.25, 0.25]).reshape(4,-1) theta_lst = np.array(theta_hat) # P = np.diag([1000, 100, 1000, 1000]) # WORKS P = 100*np.eye(4)</pre>
	<pre># Calculating the control parameters for t = 0 u = 1/theta_hat[0]*(t0*uc[0] - theta_hat[2]*y[0]) uf = np.array([u[0]]) yf = np.array([y[0]]) # Initializing the coefficients for A, B for t = 1 phi = np.array([0., 0., 0., 0.]).reshape(4,-1) y = np.concatenate((y,</pre>
	<pre>theta_lst = np.concatenate((theta_lst, theta_hat), axis=1) P = (np.eye(len(phi)) - K @ trans(phi)) @ P /lam # Calculating the control parameters for t = 1 u = np.concatenate((u,</pre>
	<pre>for t in np.arange(2, 101): # Initializing the coefficients for A, B for t = t y = np.concatenate((y,</pre>
3]:	<pre>(u[t] - aml*uf[t-1] - am2*uf[t-2]).reshape(-1,)), axis=0) yf = np.concatenate((yf,</pre>
	1.50 - u_C 1.50 - v 1.00 - v 0.75 - v 0.50 - v 0.25 - v
]:	0 20 40 60 80 100 plt.step(np.linspace(0, 100, 101), u, 'g') plt.title('Control Action') plt.show() Control Action
5]:	a, b = theta_lst.shape colours = ['blue', 'orange', 'green', 'red'] for idx, th in enumerate(theta_lst):
	plt.plot(th) plt.hlines(theta[idx], 0, b, colours[idx], '') plt.legend(['\$\hat{r}_0\$', '\$\hat{r}_1\$', '\$\hat{s}_0\$', '\$\hat{s}_1\$']) plt.show() 16 14 12 10 08 06
]:	0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0