1. Calculer Det $\begin{pmatrix} 1 & 5 & 2 \\ -1 & 1 & -2 \\ -1 & 2 & 1 \end{pmatrix}$.

Les vecteurs (1, -1, -1), (5, 1, 2) et (2, -2, 1) sont-ils libres?

- 2. Trouver u, v et w tels que $\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} u & 3 & 0 \\ v & -1 & -1 \\ w & 1 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 5 & 3 \\ -2 & 8 & 5 \\ -5 & 6 & 5 \end{pmatrix}$
- 3. Soit a et b 2 vecteurs non nuls de \mathbb{R}^3 . On s'intéresse à l'équation $a \wedge x = b$.
 - (a) Si a = (1, 1, -1) et b = (1, 2, 3), montrer que l'ensemble des $x \in \mathbb{R}^3$ tels que $a \wedge x = b$ est une droite dont on donnera une paramétrisation.
 - (b) Si a=(1,1,-1) et b=(3,2,1), décrire l'ensemble des $x\in\mathbb{R}^3$ tels que $a\wedge x=b.$
 - (c) On suppose jusqu'à la fin de la question a et b quelconques, mais non nuls.
 - i. Montrer que si $a.b \neq 0$, l'équation $a \wedge x = b$ n'a pas de solution. On suppose dorénavant a.b = 0.
 - ii. Montrer que $a \wedge (b \wedge a) = ||a||^2 b$. (On rappelle la formule du double produit vectoriel : $(u \wedge v) \wedge w = (u.w)v (v.w)u$)
 - iii. En déduire un $x_0 \in \mathbb{R}^3$ tel que $a \wedge x_0 = b$.
 - iv. Si $a \wedge x = b$ que peut-on dire de $a \wedge (x x_0)$?
 - v. En déduire une description géométrique de l'ensemble des x tels que $a \wedge x = b$.