1	2	3	\sum
/10	/5	/5	/20

Korrigiert am:

Aufgabe 7.1 (Punkte: /10)

1. Bestimme die kanonische Überdeckung zu F:

(a) Linksreduktion:

 $A \to D$ nicht linksreduzierbar, da $D \notin \emptyset^+$. $ABC \to E$ ist linksreduzierbar: Zunächst ist $\{B,C\}^+ = \{B,C\}$, also darf man A nicht weglassen. Da aber $E \in \{A,C\}^+ = \{A,C,D,G,B,E\}$ und $E \in \{A\}^+ = \{A,D,E,B\}$ (mit $A \to D$ und $D \to BE$), lässt sich $ABC \to E$ reduzieren auf $A \to E$. $AC \to G$ lässt sich nicht reduzieren, da $G \notin \{A\}^+$ und $G \notin \{C\}^+ = \{C\}$. Die restlichen FDs ebenfalls nicht, da nur ein Attribut auf der linken Seite und die Attributhülle der leeren Menge leer ist.

Es ergibt sich als Zwischenergebnis die Menge $F'=\{A\to D, A\to E, AC\to G, D\to BE, E\to B, G\to CE\}$ von FDs.

(b) Rechtsreduktion:

 $A \to D$ ist nicht rechtsreduzierbar, da D nur in dieser FD auf der rechten Seite auftritt und somit nicht in der Attributhülle von A liegt mit der reduzierten FD. $A \to E$ ist rechtsreduzierbar, da $\{A\}^+ = \{A, D, B, E\}$ mittels $A \to D \to BE$, ersetze also durch $A \to \emptyset$. $AC \to G$ nicht reduzierbar, da G nur in dieser FD auf der rechten Seite. $D \to BE$ ist reduzierbar: Ersetze durch $D \to E$, da mit $D \to E$ und $E \to B$ das Attribut B in der Hülle von D liegt. Nicht weiter reduzierbar, da die Attributhülle von D sonst nur aus D bestünde, insbesondere E nicht drin. $E \to B$ nicht reduzierbar, da sonst B nicht in der Attributhülle von E ist, weil diese leer wäre. $G \to CE$ ist auch nicht reduzierbar, da sonst das entfernte Attribut auf der rechten Seite jeweils nicht mit in der Hülle von G läge.

Neues Zwischenergebnis: $F'' = \{A \to D, A \to \emptyset, AC \to G, D \to E, E \to B, G \to CE\}.$

(c) Entferne FDs der Form $\alpha \to \emptyset$, Anwendung der Vereinigungsregel für FDs: Es ergibt sich die kanonische Überdeckung $F_c = \{A \to D, AC \to G, D \to E, E \to B, G \to CE\}$.

2. Erstelle Relationenschemata (für jede FD in F_c):

- $R_1 = (\{A, D\}, \{A \to D\})$
- $R_2 = (\{A, C, G\}, \{AC \to G\})$
- $R_3 = (\{D, E\}, \{D \to E\})$
- $R_4 = (\{E, B\}, \{E \to B\})$
- $R_5 = (\{G, C, E\}, \{G \to CE\})$

Nun enthält bereits das Relationenschema R_2 den Schlüsselkandidaten $\{A,C\}$, weshalb keine Schemata mehr hinzuzufügen sind. (Der andere Schlüsselkandidat wäre $\{A,G\}$). Da keine Attributmenge eines Schemas Teilmenge eines anderen Schemas ist, muss keines eliminiert werden. Somit liegt die gewünschte 3NF-Zerlegung vor.

Aufgabe 7.2 (Punkte: /5)

(a)

SELECT DISTINCT arzt.name
FROM arzt, patient, behandlung, medikament
WHERE patient.name = 'Peter Parker'
 AND patient.patient_id = behandlung.patient
 AND arzt.arzt_id = behandlung.arzt
 AND behandlung.medikament = medikament.medikament_id
 AND medikament.name = 'Palladium'

(b)

(o[medicament.name = 'Palladium'])

(o[medicament_id = behandling.medicament])

(o[ort_id = behandling.ord])

(o[patient_id = behandling.pehient])

(o[patient_name = 'Peter Parher'])

medicament &

behandling &

and patient

(c)

[T[ort. name])

(M[ont.id = aret ~ poliet.id = poliet])

(M[ont.id = aret ~ poliet.id = poliet])

(T[weoklowert.id]) (T[ort.poliet.redly)

(ort. (T[polient_id])

(orne = 'Pallachim']) belondly

mechiament

palient

359109, Michelle Milde 356148, Philipp Hochmann 356092, Daniel Schleiz

Aufgabe 7.3 (B-Baum)

3. Löschen 20

359109, Michelle Milde 356148, Philipp Hochmann 356092, Daniel Schleiz

4. Löschen 9

< M/2 Schlüssel

Endgültiger Baum

