2. ОПЕРАЦІЇ З МАТРИЦЯМИ

2.1. Загальні відомості та реалізація вводу/виводу.

Матрицею розміру $m \times n$ називається прямокутна таблиця, що складається з елементів деякої довжини і містить m — рядків та n — стовпців.

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{vmatrix} \quad A = (a_{ij})_{m \times n}$$
(2.1)

Ввід/вивід матриці. Алгоритм вводу і виводу елементів матриці традиційно реалізують за допомогою двох вкладених циклів, перший (зовнішній) визначає порядок вводу за рядками, наступний (внутрішній або вкладений) за стовпцями, рис.2.1.

Рис.2.1. Блок-схеми реалізації а)вводу, б)виводу елементів матриці

Нульова матриця (очищений масив) — таблиця розміру $m \times n$ у якої всі елементи рівні нулю, A(i,j) = 0.

Діагональна матриця (різновид квадратної) - таблиця розміру $n \times n$ у якої всі елементи, крім діагональних рівні нулю, A(i,j) = 0 при $i \neq j$ та $A(i,j) \neq 0$ при i = j.

Одинична матриця (різновид діагональної) - таблиця розміру $n \times n$ у якої всі діагональні елементи рівні одиниці, а усі інші - нулю, A(i, j) = 1 при i = j та A(i, j) = 0 при $i \neq j$.

Алгоритм формування такої матриці подано на рис.2.2.

Рис.2.2. Блок-схеми реалізації формування а)нульової, б)діагональної та в)одиничної матриць

2.2. Операції з константами, транспонування, додавання, віднімання та множення матриць.

Операції з константами зводяться до додавання чи віднімання кожного з елементів матриці A(i,j) з відповідною константою c, аналогічно з операціями множення і ділення.

$$A = \begin{vmatrix} a_{11} + c & a_{12} + c & \dots & a_{1n} + c \\ a_{21} + c & a_{22} + c & \dots & a_{2n} + c \\ \dots & \dots & \dots & \dots \\ a_{n1} + c & a_{n2} + c & \dots & a_{nn} + c \end{vmatrix}$$
(2.4)

Транспонованою матрицею A^T називають квадратну матрицю $n \times n$, у якої елементи стовпців відповідають елементам рядків вихідної матриці A.

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} , \qquad A^{T} = \begin{vmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{vmatrix}$$
 (2.5)

Рис.2.3. Блок-схеми реалізації алгоритмів а)додавання константи до матриці та б) транспонування квадратної матриці

Додавання і віднімання допустимо виконувати над матрицями з однаковою розмірністю.

Наприклад:

Додавання двох матриць A і B розмірністю 2×3 виконується наступним чином:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} + \begin{vmatrix} 7 & 8 & 9 \\ 8 & 7 & 6 \end{vmatrix} = \begin{vmatrix} 1+7 & 2+8 & 3+9 \\ 4+8 & 5+7 & 6+6 \end{vmatrix} = \begin{vmatrix} 8 & 10 & 11 \\ 12 & 12 & 12 \end{vmatrix}$$

Множення матриць допускається виконувати над матрицями різної розмірності.

Рис.2.4. Блок-схеми реалізації алгоритмів а)додавання матриць однакової розмірності та б) множення матриць

Приклад:

Множення двох матриць A розмірністю 2×4 і B розмірністю 4×3 виконується наступним чином:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 0 & 1 & 2 \end{vmatrix} \times \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 + 4 \cdot (-1) & 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 0 & 1 \cdot 3 + 2 \cdot 1 + 3 \cdot 2 + 4 \cdot 1 \\ (-2) \cdot 1 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) & (-2) \cdot 2 + 0 \cdot 1 + 1 \cdot 1 + 2 \cdot 0 & (-2) \cdot 3 + 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 \end{vmatrix} = \begin{vmatrix} -1 & 7 & 15 \\ -4 & -3 & -2 \end{vmatrix}.$$

2.4. Завдання до розділу 2.

Написати програму, що реалізує формування заданої згідно варіанту матриці та форматований вивід результатів на екран.

Варіант	Завдання	
01	Сформувати одиничну матрицю, розмірності 8×8;	
02	Сформувати діагональну матрицю, розмірності 4×4;	
03	Сформувати матрицю з одиничними елементами в парних стовпцях і	
	нульовими в непарних, розмірності 5×7;	
04	Сформувати нульову матрицю, розмірності 3×7;	
05	Сформувати матрицю з одиничними елементами в непарних стовпцях по діагоналях і нульовими в усіх інших, розмірності 9×9;	
06	Сформувати матрицю з одиничними елементами в першому стовпці і нульовими в усіх інших, розмірності 5×5;	
07	Сформувати матрицю з одиничними елементами по обох діагоналях і нульовими в усіх інших, розмірності 8×8;	
08	Сформувати матрицю з одиничними елементами в другому рядку і нульовими в усіх інших, розмірності 7×3;	
09	Сформувати матрицю з нульовими елементами на початку першого та останнього рядків і одиничними в усіх інших, розмірності 4×9;	
10	Сформувати матрицю з одиничними елементами в останньому стовпці, останньому рядку і нульовими в усіх інших, розмірності 5×6;	
11	Сформувати нульову матрицю, розмірності 2×9;	
12	Сформувати матрицю з одиничними елементами в останньому рядку і нульовими в усіх інших, розмірності 4×4;	
13	Сформувати одиничну матрицю, розмірності 7×7;	
14	Сформувати матрицю з одиничними елементами в останньому стовпці і нульовими в усіх інших, розмірності 9х3;	
15	Сформувати матрицю з одиничними елементами в першій та останній позиціях кожного рядка і нульовими в усіх інших, розмірності 4×9;	
16	Сформувати матрицю з нульовими елементами по обох діагоналях і одиничними в усіх інших, розмірності 7×7;	
17	Сформувати матрицю з нульовими елементами в другому рядку і одиничними в усіх інших, розмірності 3×7;	
18	Сформувати матрицю з нульовими елементами в останньому стовпці та останньому рядку і одиничними в усіх інших, розмірності 6×4;	
19	Сформувати матрицю з нульовими елементами в кінці першого та останнього рядків і одиничними в усіх інших, розмірності 8×3;	
20	Сформувати діагональну матрицю, розмірності 5×5;	
21	Сформувати матрицю з нульовими елементами в парних рядках головної діагоналі і одиничними в усіх інших, розмірності 8×8;	
22	Сформувати матрицю з одиничними елементами в парних рядках і нульовими в непарних, розмірності 4×5;	
	Сформувати матрицю з нульовими елементами по головній діагоналі	

і одиничними в усіх інших, розмірності 9×9;	
Сформувати матрицю з одиничними елементами в першій та	
останній позиціях кожного стовпця і нульовими в усіх інших,	
розмірності 9×3;	
Сформувати одиничну матрицю, розмірності 6×6;	
Сформувати матрицю з одиничними елементами в останньому	
стовпці і нульовими в усіх інших, розмірності 5×5;	
Сформувати нульову матрицю, розмірності 3×7;	
Сформувати матрицю з одиничними елементами в другому стовпці,	
другому рядку і нульовими в усіх інших, розмірності 6×8;	
Сформувати матрицю з нульовими елементами на початку другого та	
третього рядків і одиничними в усіх інших, розмірності 5×7;	
Сформувати матрицю з одиничними елементами в чотирьох кутах	
матриці і нульовими в усіх інших, розмірності 5×5;	
Сформувати матрицю з одиничними елементами в першому та	
третьому рядках і нульовими в усіх інших, розмірності 4×8;	

Написати програму, що реалізує обробку матриць згідно варіанту. Забезпечити ввід елементів матриці з клавіатури та форматований вивід результатів на екран.

Варіант	Матриці	Обчислити
01	$A = \begin{vmatrix} 2 & 3 & 1 \\ 4 & 8 & 6 \end{vmatrix}, B = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 1 & 3 \end{vmatrix}, F = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 6 \\ 4 & 3 & 1 \end{vmatrix}$	$C=A+B$ $D=C\times F$ $Ft=F^{T}$
02	$A = \begin{vmatrix} 6 & 8 \\ 7 & 5 \\ 5 & 4 \end{vmatrix}, B = \begin{vmatrix} 2 & 4 \\ 1 & 2 \\ 3 & 1 \end{vmatrix}, F = \begin{vmatrix} 1 & 4 & 5 & 1 \\ 8 & 3 & 6 & 3 \end{vmatrix}, K = \begin{vmatrix} 1 & 2 & 3 \\ 5 & 4 & 6 \\ 7 & 3 & 4 \end{vmatrix}$	$D=A-B$ $C=D\times F$ $Kt=K^{T}$
03	$A = \begin{vmatrix} 1 & 5 & 4 \\ 2 & 1 & 3 \\ 4 & 3 & 2 \end{vmatrix}, B = \begin{vmatrix} 1 & 2 & 1 \\ 3 & 3 & 5 \\ 2 & 4 & 1 \end{vmatrix}$	$D=A+B$ $C=A\times B$ $Bt=B^{T}$
	$A = \begin{vmatrix} 2 & 6 \\ 4 & 8 \end{vmatrix}, B = \begin{vmatrix} 7 & 2 \\ 1 & 1 \end{vmatrix}, D = \begin{vmatrix} 1 & 5 & 3 & 7 \\ 8 & 6 & 4 & 1 \end{vmatrix}, F = \begin{vmatrix} 3 & 5 & 9 \\ 4 & 6 & 6 \\ 3 & 7 & 1 \end{vmatrix}$	$K=B+A$ $C=A\times D$ $Ft=F^{T}$
05	$A = \begin{vmatrix} 2 & 1 & 4 \\ 3 & 8 & 6 \\ 5 & 4 & 1 \end{vmatrix}, B = \begin{vmatrix} 5 & 3 & 1 \\ 4 & 8 & 4 \end{vmatrix}, F = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 3 \end{vmatrix}$	$C=B-F$ $D=B\times A$ $At=A^{T}$

06	$A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{vmatrix}, B = \begin{vmatrix} 3 & 2 & 1 \\ 4 & 0 & 3 \\ 2 & 1 & 1 \end{vmatrix}, F = \begin{vmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 8 \end{vmatrix}$	$C=A+B$ $D=A\times F$ $At=A^{T}$
07	$A = \begin{vmatrix} 1 & 3 \\ 2 & 1 \\ 4 & 6 \\ 8 & 1 \end{vmatrix}, C = \begin{vmatrix} 3 & 4 & 1 \\ 1 & 2 & 5 \end{vmatrix}, D = \begin{vmatrix} 2 & 4 \\ 6 & 7 \\ 2 & 3 \\ 1 & 4 \end{vmatrix}, K = \begin{vmatrix} 7 & 4 & 1 \\ 8 & 5 & 2 \\ 9 & 6 & 3 \end{vmatrix}$	$H=D+A$ $B=A\times C$ $Kt=K^{T}$
08	$A = \begin{vmatrix} 1 & 4 & 5 & 1 \\ 2 & 3 & 7 & 3 \end{vmatrix}, B = \begin{vmatrix} 3 & 4 \\ 2 & 7 \\ 4 & 2 \end{vmatrix}, F = \begin{vmatrix} 2 & 1 \\ 1 & 3 \\ 2 & 1 \end{vmatrix}, K = \begin{vmatrix} 9 & 5 & 1 \\ 8 & 4 & 7 \\ 6 & 2 & 3 \end{vmatrix}$	$C=B+F$ $D=B\times A$ $Kt=K^{T}$
09	$\begin{vmatrix} A = \begin{vmatrix} 6 & 9 \\ 7 & 4 \\ 3 & 8 \end{vmatrix}, B = \begin{vmatrix} 3 & 4 \\ 2 & 1 \\ 1 & 6 \end{vmatrix}, F = \begin{vmatrix} 2 & 6 & 5 \\ 4 & 7 & 6 \end{vmatrix}, K = \begin{vmatrix} 5 & 6 & 9 \\ 4 & 7 & 8 \\ 1 & 3 & 2 \end{vmatrix}$	$C=A-B$ $D=B\times F$ $Kt=K^{T}$
10	$B = \begin{vmatrix} 3 & 5 & 1 \\ 4 & 1 & 2 \\ 3 & 2 & 1 \end{vmatrix}, C = \begin{vmatrix} 8 & 9 & 6 \\ 7 & 2 & 6 \\ 7 & 3 & 5 \end{vmatrix}, K = \begin{vmatrix} 1 & 8 & 6 & 4 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 1 & 2 \end{vmatrix}$	$A = C - B$ $D = C \times K$ $Ct = C^{T}$
11	$A = \begin{vmatrix} 8 & 6 \\ 4 & 9 \end{vmatrix}, B = \begin{vmatrix} 5 & 2 \\ 1 & 3 \end{vmatrix}, D = \begin{vmatrix} 2 & 4 & 3 & 5 \\ 5 & 7 & 6 & 2 \end{vmatrix}, K = \begin{vmatrix} 3 & 5 & 2 \\ 1 & 4 & 5 \\ 8 & 9 & 6 \end{vmatrix}$	$F=A-B$ $C=B\times D$ $Kt=K^{T}$
12	$A = \begin{vmatrix} 2 & 3 \\ 5 & 4 \\ 8 & 2 \\ 6 & 3 \end{vmatrix}, C = \begin{vmatrix} 5 & 1 & 5 \\ 4 & 2 & 7 \end{vmatrix}, K = \begin{vmatrix} 5 & 7 \\ 2 & 4 \\ 6 & 1 \\ 4 & 7 \end{vmatrix}, H = \begin{vmatrix} 1 & 1 & 2 \\ 4 & 5 & 4 \\ 8 & 5 & 7 \end{vmatrix}$	$D=K+A$ $B=D\times C$ $Ht=H^{T}$
13	$A = \begin{vmatrix} 4 & 2 \\ 3 & 5 \\ 1 & 2 \end{vmatrix}, B = \begin{vmatrix} 8 & 5 \\ 7 & 8 \\ 5 & 4 \end{vmatrix}, D = \begin{vmatrix} 4 & 2 & 5 & 3 \\ 4 & 3 & 1 & 8 \end{vmatrix}, K = \begin{vmatrix} 4 & 6 & 5 \\ 1 & 9 & 3 \\ 7 & 2 & 8 \end{vmatrix}$	$C=B-A$ $F=B\times D$ $Kt=K^{T}$
14	$A = \begin{vmatrix} 5 & 3 \\ 7 & 2 \\ 1 & 4 \end{vmatrix}, C = \begin{vmatrix} 4 & 5 & 6 \\ 2 & 3 & 4 \end{vmatrix}, D = \begin{vmatrix} 4 & 2 \\ 5 & 7 \\ 7 & 6 \end{vmatrix}$	$K=D+A$ $B=A\times C$ $Bt=B^{T}$
15	$A = \begin{vmatrix} 5 & 3 & 5 & 7 \\ 1 & 4 & 3 & 4 \end{vmatrix}, D = \begin{vmatrix} 4 & 1 \\ 3 & 5 \\ 7 & 4 \end{vmatrix}, F = \begin{vmatrix} 4 & 2 \\ 5 & 3 \\ 7 & 6 \end{vmatrix}, K = \begin{vmatrix} 8 & 2 & 6 \\ 7 & 5 & 9 \\ 1 & 4 & 3 \end{vmatrix}$	$C=F+D$ $B=D\times A$ $Kt=K^T$

16	$A = \begin{vmatrix} 1 & 2 & 2 \\ 4 & 1 & 4 \\ 5 & 8 & 1 \end{vmatrix}, B = \begin{vmatrix} 2 & 2 & 1 \\ 3 & 1 & 3 \\ 1 & 2 & 2 \end{vmatrix}, F = \begin{vmatrix} 1 & 2 \\ 1 & 3 \\ 2 & 3 \end{vmatrix}$	$C=B-A$ $D=A\times F$ $At=A^{T}$
17	$A = \begin{vmatrix} 1 & 2 & 9 \\ 8 & 7 & 1 \end{vmatrix}, B = \begin{vmatrix} 2 & 2 & 2 \\ 4 & 5 & 1 \end{vmatrix}, H = \begin{vmatrix} 8 & 7 & 6 \\ 7 & 6 & 5 \\ 7 & 6 & 5 \end{vmatrix}$	$C=A+B$ $D=C\times H$ $Ht=H^{T}$
18	$A = \begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix}, B = \begin{vmatrix} 0 & 8 \\ 1 & 5 \end{vmatrix}, C = \begin{vmatrix} 4 & 4 & 3 & 4 \\ 2 & 7 & 4 & 1 \end{vmatrix}, D = \begin{vmatrix} 1 & 5 & 2 \\ 1 & 4 & 2 \\ 1 & 3 & 2 \end{vmatrix}$	$F=A-B$ $K=B\times C$ $Dt=D^{T}$
19	$\begin{vmatrix} A = \begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 5 & 4 & 1 \end{vmatrix}, B = \begin{vmatrix} 3 & 4 & 5 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{vmatrix}$	$C=A^{T}+B$ $D=A\times B$ $Bt=B^{T}$
20	$A = \begin{vmatrix} 3 & 3 \\ 7 & 7 \\ 1 & 2 \end{vmatrix}, C = \begin{vmatrix} 4 & 6 & 8 \\ 2 & 4 & 6 \end{vmatrix}, D = \begin{vmatrix} 3 & 2 \\ 5 & 4 \\ 7 & 3 \end{vmatrix}$	$M=D-A$ $B=A\times C$ $Bt=B^{T}$
21	$A = \begin{vmatrix} 1 & 3 & 1 & 8 \\ 1 & 4 & 1 & 4 \end{vmatrix}, D = \begin{vmatrix} 2 & 1 \\ 3 & 8 \\ 2 & 4 \end{vmatrix}, F = \begin{vmatrix} 4 & 2 \\ 5 & 3 \\ 7 & 6 \end{vmatrix}, H = \begin{vmatrix} 8 & 7 & 6 \\ 7 & 5 & 1 \\ 2 & 3 & 0 \end{vmatrix}$	$C=D-F$ $B=F\times A$ $Ht=H^T$
22	$A = \begin{vmatrix} 2 & 1 \\ 5 & 4 \\ 2 & 1 \\ 6 & 3 \end{vmatrix}, C = \begin{vmatrix} 5 & 1 & 3 \\ 2 & 2 & 7 \end{vmatrix}, K = \begin{vmatrix} 1 & 1 \\ 2 & 4 \\ 1 & 1 \\ 4 & 7 \end{vmatrix}$	$D=A+K$ $B=K\times C$ $Bt=B^{T}$
23	$B = \begin{vmatrix} 3 & 9 & 9 \\ 4 & 2 & 2 \\ 3 & 2 & 7 \end{vmatrix}, C = \begin{vmatrix} 8 & 9 & 9 \\ 7 & 8 & 9 \\ 7 & 7 & 8 \end{vmatrix}, K = \begin{vmatrix} 9 & 4 & 6 & 1 \\ 3 & 2 & 9 & 3 \\ 6 & 8 & 8 & 2 \end{vmatrix}$	$A=B+C$ $D=A\times K$ $Ct=C^{T}$
24	$A = \begin{vmatrix} 1 & 2 \\ 8 & 9 \end{vmatrix}, B = \begin{vmatrix} 9 & 8 & 3 & 8 \\ 2 & 9 & 4 & 1 \end{vmatrix}, C = \begin{vmatrix} 1 & 7 & 3 \\ 2 & 4 & 3 \\ 9 & 3 & 5 \end{vmatrix}$	$F=A\times B$ $K=F+B$ $Ct=C^{T}$
25	$A = \begin{vmatrix} 2 & 4 \\ 2 & 7 \end{vmatrix}, B = \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix}, D = \begin{vmatrix} 1 & 2 & 1 & 3 \\ 7 & 9 & 8 & 2 \end{vmatrix}, K = \begin{vmatrix} 4 & 5 & 3 \\ 2 & 6 & 7 \\ 6 & 7 & 5 \end{vmatrix}$	$F=A-B$ $C=B\times D$ $Kt=K^{T}$

	$A = \begin{vmatrix} 3 & 4 \\ 7 & 6 \\ 9 & 3 \\ 7 & 4 \end{vmatrix}, C = \begin{vmatrix} 6 & 2 & 6 \\ 5 & 3 & 9 \end{vmatrix}, K = \begin{vmatrix} 4 & 5 \\ 3 & 5 \\ 5 & 3 \\ 5 & 9 \end{vmatrix}, H = \begin{vmatrix} 3 & 3 & 4 \\ 6 & 7 & 6 \\ 7 & 4 & 8 \end{vmatrix}$	$D=K+A$ $B=D\times C$ $Ht=H^{T}$
27	$A = \begin{vmatrix} 5 & 4 \\ 2 & 4 \\ 3 & 4 \end{vmatrix}, B = \begin{vmatrix} 9 & 7 \\ 6 & 9 \\ 7 & 6 \end{vmatrix}, D = \begin{vmatrix} 3 & 5 & 6 & 1 \\ 2 & 4 & 2 & 1 \end{vmatrix}, K = \begin{vmatrix} 4 & 7 & 6 \\ 2 & 7 & 4 \\ 1 & 2 & 5 \end{vmatrix}$	$C=B-A$ $F=B\times D$ $Kt=K^T$
28	$A = \begin{vmatrix} 6 & 4 \\ 8 & 3 \\ 2 & 5 \end{vmatrix}, C = \begin{vmatrix} 5 & 7 & 8 \\ 1 & 2 & 3 \end{vmatrix}, D = \begin{vmatrix} 5 & 4 \\ 3 & 5 \\ 5 & 4 \end{vmatrix}$	$K=D+A$ $B=A\times C$ $Bt=B^{T}$
29	$A = \begin{vmatrix} 4 & 2 & 4 & 6 \\ 2 & 3 & 2 & 3 \end{vmatrix}, D = \begin{vmatrix} 3 & 2 \\ 2 & 4 \\ 6 & 1 \end{vmatrix}, F = \begin{vmatrix} 2 & 2 \\ 7 & 2 \\ 6 & 3 \end{vmatrix}, K = \begin{vmatrix} 6 & 1 & 1 \\ 7 & 2 & 2 \\ 8 & 3 & 3 \end{vmatrix}$	$C=F+D$ $B=D\times A$ $Kt=K^{T}$
30	$A = \begin{vmatrix} 5 & 5 \\ 6 & 6 \\ 1 & 1 \end{vmatrix}, C = \begin{vmatrix} 3 & 5 & 7 \\ 3 & 3 & 3 \end{vmatrix}, D = \begin{vmatrix} 4 & 3 \\ 5 & 4 \\ 6 & 5 \end{vmatrix}$	$M=D-A$ $B=A\times C$ $Bt=B^{T}$
31	$A = \begin{vmatrix} 2 & 3 & 4 & 5 \\ 1 & 3 & 1 & 2 \end{vmatrix}, D = \begin{vmatrix} 4 & 2 \\ 1 & 5 \\ 2 & 1 \end{vmatrix}, F = \begin{vmatrix} 1 & 1 \\ 2 & 1 \\ 4 & 3 \end{vmatrix}, H = \begin{vmatrix} 6 & 5 & 6 \\ 4 & 4 & 3 \\ 5 & 3 & 0 \end{vmatrix}$	$C=D-F$ $B=F\times A$ $Ht=H^T$