MOFs NMR DFT

Calculation of nmr parameters in paramagnetic metal-organic materials

Jure Lapajne

10. februar 2019

■ MOFs = Metal—organic frameworks

- MOFs = Metal—organic frameworks
- NMR what and why

- MOFs = Metal—organic frameworks
- NMR what and why
- NMR parameter calculation

- MOFs = Metal—organic frameworks
- NMR what and why
- 3 NMR parameter calculation
- O DFT

- MOFs = Metal—organic frameworks
- NMR what and why
- NMR parameter calculation
- O DFT
- Opening in the second of th

 crystal structure: central metallic ions + organic ligands

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations

NMR

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts

DFT

NMR

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts
- metallic ions commonly feature unpaired electrons

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts
- metallic ions commonly feature unpaired electrons
- NMR spectra feature large shifts caused by unpaired electrons

NMR spectra of MOFs

- usual organic molecules display shifts in range [-200, 200] ppm
- MOF spectra display large shifts rarely seen in purely organic molecules

strong external magnetic field: several T

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- two new states ΔE apart

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- two new states ΔE apart
- radio frequency spectrum: excitations from low to high energy states

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- two new states ΔE apart
- radio frequency spectrum: excitations from low to high energy states
- absorption peak at $\Delta E = \hbar \omega_{res}$
- ω_{res} depends on $B_{eff}(observed nucleus)$

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

• electronic structure - shielding of external magnetic field

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

MOFs: metal-organic frameworks

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

- MOFs: metal-organic frameworks
- transition metal atoms: unpaired electrons

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

- MOFs: metal-organic frameworks
- transition metal atoms: unpaired electrons

Chemical and hyperfine shifts

Chemical and hyperfine shifts

Definition

Total shift tensor $\underline{\sigma}$ is defined by:

$$ec{B}_{ ext{eff}} = ec{B}_0 \left(\underline{\underline{\mathbf{I}}} - \underline{\underline{\sigma}}
ight).$$

Two sources of chemical shifts:

Chemical and hyperfine shifts

Definition

Total shift tensor $\underline{\sigma}$ is defined by:

$$ec{B}_{ extit{eff}} = ec{B}_0 \left(\underline{\underline{I}} - \underline{\underline{\sigma}}
ight).$$

Two sources of chemical shifts:

- electron density change caused by applied external magnetic field
- depends on electron density $n(\vec{r})$

- coupling between unpaired electron and observed nuclei
- depends on spin density $n_{\uparrow}(\vec{r}_{nuclei}) n_{\downarrow}(\vec{r}_{nuclei})$

Calculation of NMR parameters: accurate electronic wave function needed!

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

Born-Oppenheimer approximation

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

most widely used

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

- most widely used
- good tradeoff between accuracy and speed

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

- most widely used
- good tradeoff between accuracy and speed
- highly customizable suitable for various molecules

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

Alternatives

- most widely used
- good tradeoff between accuracy and speed
- highly customizable suitable for various molecules

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

Alternatives

most widely used

- * Hartree—Fock
- good tradeoff between accuracy and speed
- highly customizable suitable for various molecules

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

DFT

Alternatives

most widely used

- * Hartree—Fock
- good tradeoff between accuracy * Quantum Monte Carlo and speed
- highly customizable suitable for various molecules

$$\hat{H} = T_n + T_e + W_{n-n} + W_{e-n} + W_{e-e} + V_{ext}$$

- Born-Oppenheimer approximation
- direct solution of coupled pde not feasible
- given accuracy level: time grows exponentially as a function of number of particles

Approximations

	DFT		Alternatives
•	most widely used	*	Hartree—Fock
•	good tradeoff between accuracy	*	Quantum Monte Carlo
	and speed	*	Coupled-Cluster methods
•	highly customizable - suitable for $% \left(1\right) =\left(1\right) \left(1$		
	various molecules		:

density functional theory — DFT

N-particle problem:

- DFT effectively reduces N-particle problem to 1-particle problem
- Kohn-Sham theorems: transition from 3N to 3 coordinates.

System of *N*–particles:

- bijection between the set of external potentials and corresponding non-degenerate ground states
- bijection between the set of ground states and the set of ground states electron densities

Ground state $|\psi_0\rangle$:

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Using bijection from previous slide, one can write:

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Using bijection from previous slide, one can write:

$$|\psi_0\rangle = |\Psi_0[n_0(\vec{r})]\rangle$$
,

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Using bijection from previous slide, one can write:

$$|\psi_0\rangle = |\Psi_0[n_0(\vec{r})]\rangle$$
,

and

$$E_0[n_0(\vec{r})] = \langle \Psi[n_0(\vec{r})] | \hat{H} | \Psi[n_0(\vec{r})] \rangle$$
.

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Using bijection from previous slide, one can write:

$$|\psi_0\rangle = |\Psi_0[n_0(\vec{r})]\rangle$$
,

and

$$E_0[n_0(\vec{r})] = \langle \Psi[n_0(\vec{r})] | \hat{H} | \Psi[n_0(\vec{r})] \rangle$$
.

Unfortunately the functional $\Psi[n_0(\vec{r})]$ not known!

Ground state $|\psi_0\rangle$:

$$\hat{H} |\psi_0\rangle = E_0 |\psi_0\rangle$$
, with $\langle \psi_0 | \psi_0 \rangle = 1$.

Using bijection from previous slide, one can write:

$$|\psi_0\rangle = |\Psi_0[n_0(\vec{r})]\rangle$$
,

and

$$E_0[n_0(\vec{r})] = \langle \Psi[n_0(\vec{r})] | \hat{H} | \Psi[n_0(\vec{r})] \rangle$$
.

Unfortunately the functional $\Psi[n_0(\vec{r})]$ not known! $E[n(\vec{r})]$ is modelled emperically.

Energy functional

$E[n(\vec{r})]$ should contain:

- kinetic energy $T[n(\vec{r})]$
- coulomb interaction

$$E_{H}[n] = \frac{1}{2} \int \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r}' \qquad V_{ext}[n] = \frac{1}{2} \int n(\vec{r})v_{ext}(\vec{r}) d\vec{r}$$

- * exchange correlation term $E_{xc}[n(\vec{r})]$
- * external potential

$$V_{ext}[n] = \frac{1}{2} \int n(\vec{r}) v_{ext}(\vec{r}) d\vec{r}$$

Issues:

- kinetic energy term
- Calculation on exchange-correlation part

Solution:

- use of Slater determinant
- various approaches, no general rule/solution

MOFs NMR DFT

MOFs NMR

Calculation procedure

Construct potential of nuclei and include it in $V_{ext}(\vec{r})$.

Construct potential of nuclei and include it in $V_{ext}(\vec{r})$.

Compute $E_H[n(\vec{r})]$, $E_{xc}[n(\vec{r})]$ and $E_{ext}[n(\vec{r})]$

(DFT)

DFT flexibility

Large number of various exchangecorrelation functionals:

- hybrid: GGA + hartree-fock exchange $-\frac{1}{2}\sum_{k,l}\int\frac{\phi_{k}^{*}(\vec{r},\sigma)\phi_{l}(\vec{r},\sigma)\phi_{l}^{*}(\vec{r'},\sigma')\phi_{k}(\vec{r'},\sigma')}{|\vec{r}-\vec{r'}|}\mathrm{d}\vec{r}\mathrm{d}\vec{r'}$
- meta–GGA: higher order derivatives
- GGA: $E_{xc}^{gga} = \int n(\vec{r})^{4/3} F(|\nabla n(\vec{r})|/n(\vec{r})^{4/3})$
- LDA: uniform gas $E_{\text{vc}}^{Ida}[n] = -C \int n(\vec{r})^{4/3} d\vec{r}$

NMR

various functionals,

- various functionals,
- various basis sets,

- various functionals,
- various basis sets,
- boundary conditions: periodic vs single molecule,

- various functionals,
- various basis sets,
- boundary conditions: periodic vs single molecule,
- full electron dft vs frozen core dft

Conclusion

investigation of nmr