R language and data analysis:plot basics

Qiang Shen

Oct.8,2016

Visualization

▶ A picture is worth a thousand words

Visualization

"The adage 'A picture is worth a thousand words' refers to the notion that a complex idea can be conveyed with just a single still image, or that an image of a subject conveys its meaning/essence more effectively than a description does. It also aptly characterizes one of the main goals of visualization namely making it possible to absorb large amounts of data quickly." –Wikipedia

R packages

- graphics: built-in packages
- lattice
- ▶ ggplot2: R's famous package for making beautiful graphics.
- ggvis: Interactive, web based graphics built with the grammar of graphics.
- rgl: Interactive 3D visualizations with R

► create and save graphs

- create and save graphs
- customize plot: symbols,lines,colour

- create and save graphs
- customize plot: symbols,lines,colour
- annotate with text and titles

- create and save graphs
- customize plot: symbols,lines,colour
- annotate with text and titles
- combined graphs

demo

demo(graphics)

create and save graphs

basic plot continued

Regression of MPG on Weight

Export the figure

```
pdf("mtcars_demo.pdf")
with(mtcars,plot(wt,mpg))
abline(lm(mpg~wt,data=mtcars))
title("Regression of MPG on Weight")
dev.off()
```

Export the figure

- ▶ vector (矢量图): pdf
- ▶ bitmap (位图): png,jpg,bmp,tiff

Function	Output
bmp("filename.bmp")	BMP file
<pre>jpeg("filename.jpg")</pre>	JPEG file
pdf("filename.pdf")	PDF file
png("filename.png")	PNG file
postscript("filename.ps")	PostScript file

- create and save graphs
- customize plot: symbols, lines, colour

plot: default type:point

```
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
plot(dose, drugA) #default type:point (type='p')</pre>
```


plot:point

```
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
plot(dose, drugA, type='p')</pre>
```


plot:line

```
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
plot(dose, drugA, type = "1")</pre>
```


plot: point and line

```
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
plot(dose, drugA, type = "b")</pre>
```


type parameter

[[1]]

plot:line type and point type

- ▶ line type (type='l'): lty
- point type (type='p'): pch

```
opar <- par(no.readonly = TRUE)## get the default parameter
plot(dose, drugA, type = "b", lty = 2, pch = 17)</pre>
```


Parameters for symbols and lines

Parameter	Description
pch	Specifies the symbol to use when plotting points (see figure 3.4).
cex	Specifies the symbol size. cex is a number indicating the amount by which plotting symbols should be scaled relative to the default. $1 =$ default, 1.5 is 50% larger, 0.5 is 50% smaller, and so forth.
lty	Specifies the line type (see figure 3.5).
lwd	Specifies the line width. 1wd is expressed relative to the default (1 = default). For example, 1wd=2 generates a line twice as wide as the default.

line parameter

▶ line parameter lty given type='l' in plot function
Line type:'2'
Line type:'2'

[[1]]

line parameter:line type

symbol parameter:point symbol

▶ ponit symbol parameter given type='p' in plot function

symbol parameter:point symbol

plot symbols: pch=

- □ 0 ♦ 5 ⊕ 10 15 20 ▽ 25
- 1 ▽ 6 ☎11 16 21
- △ 2 ⋈ 7 ⊞ 12▲17 □ 22
- + 3 * 8 ≥ 13 18 ◊ 23
- × 4 ♦ 9 🗅 14 19△24

plot:line type and point type

- ▶ line type (type='l'): lty
- point type (type='p'): pch

```
plot(dose, drugA, type = "b", lty = 2, pch = 17)
  9
  20
  4
drugA
  20
```

plot:colour

```
opar <- par(no.readonly = TRUE)</pre>
plot(dose, drugA, type = "b", lty = 1,cex = 1.3,col='red')
  9
  20
  30
  20
```

dose

plot: colour

```
▶ colors()
```

```
length(colors())
```

```
## [1] 657
```

```
colors()[1:5]
```

```
## [1] "white" "aliceblue" "antiquewhite" "antiquewh
## [5] "antiquewhite2"
```

Palette: Aesthetics.

Palette: Aesthetics.

Palette: Aesthetics

图 7:

▶ what can we do in R?

grDevices:gray

grDevices: rainbow

colorspace:rainbow_hcl

colour example

```
library(colorspace)
plot(Sepal.Length ~ Sepal.Width, col=
  rainbow_hcl(3)[c(Species)], data=iris, pch=16)
legend("topleft", pch=16, col=
  rainbow_hcl(3), legend=unique(iris$Species))
```

content

- create and save graphs
- customize plot: symbols,lines,colour
- annotate with text and titles

text and titles

- axis texts:axis
- axis labels:lab
- ▶ titles:main
- subtitles: sub

title and axis main title 50

Colour Parameter

▶ axis + title

Parameter	Description		
col	Default plotting color. Some functions (such as lines and pie) accept a vector of values that are recycled. For example, if col=c("red", "blue") and three lines are plotted, the first line will be red, the second blue, and the third red.		
col.axis	Color for axis text.		
col.lab	Color for axis labels.		
col.main	Color for titles.		
col.sub	Color for subtitles.		
fg	Color for the plot's foreground.		
bg	Color for the plot's background.		

Size parameter

▶ axis + title

Parameter	Description			
cex	Number indicating the amount by which plotted text should be scaled relative to the default. 1 = default, 1.5 is 50% larger, 0.5 is 50% smaller, and so on.			
cex.axis	Magnification of axis text relative to cex.			
cex.lab	Magnification of axis labels relative to cex.			
cex.main	Magnification of titles relative to cex.			
cex.sub	Magnification of subtitles relative to cex.			

Font parameter

▶ axis + title

Parameter	Description
font	Integer specifying the font to use for plotted text. 1 = plain, 2 = bold, 3 = italic, 4 = bold italic, and 5=symbol (in Adobe symbol encoding).
font.axis	Font for axis text.
font.lab	Font for axis labels.
font.main	Font for titles.
font.sub	Font for subtitles.
ps	Font point size (roughly 1/72 inch). The text size = ps*cex.
family	Font family for drawing text. Standard values are serif, sans, and mono.

parameters for colour, size and font

common parameter

	main	sub	lab	axis
col	col.main	col.sub	col.lab	axis.lab
cex	cex.main	cex.sub	cex.lab	cex.axis
font	font.main	font.sub	font.lab	font.axis

figure demo

```
dose \leftarrow c(20, 30, 40, 45, 60)
drugA \leftarrow c(16, 20, 27, 40, 60)
par(ann=F) ##inhibit x y axis labels but not text.
plot(dose, drugA, type = "b",
     col = "red".col.axis='blue')
# plot(dose, drugA, type = "b",
#col = "red", col.axis='blue', xaxt='n', yaxt='n')
##inhibit axis tick and text
title(main='main title',col.main='red',cex.main=2,
sub='sub-title',col.sub='blue'.
xlab='x-axis label'.
```

ylab='y-axis label',col.lab='green',cex.lab=1)

Example

```
dose \leftarrow c(20, 30, 40, 45, 60)
drugA \leftarrow c(16, 20, 27, 40, 60)
par(font.lab=3, cex.lab=1,
    font.main=4, cex.main=2)
opar <- par(no.readonly = TRUE)</pre>
par(pin = c(3, 2))
##The current plot dimensions,
par(1wd = 2, cex = 1)
##magnified index of plotted text and symbols
par(cex.axis = 0.75, font.axis = 1)
plot(dose, drugA, type = "b", pch = 19,
     lty = 2, col = "red") ##pch plot symbols
```

Foreground and background

```
par(bg='black',fg='white')
with(mtcars,plot(wt,mpg,col='green',pch=13))
```


PRACTICE!

Margin and outer margin

Margin and outer margin


```
par(opar)
par('pin')
## [1] 8.76 5.16
par('mar')
## [1] 5.1 4.1 4.1 2.1
par('oma')
```

[1] 0 0 0 0

An Example of two y Axes

An Example of two y Axes

```
x \leftarrow c(1:10); y \leftarrow x; z \leftarrow 10/x
par(mar = c(5, 4, 4, 8) + 0.1)
plot(x, y, type = "b", lty = 3, pch = 21, col = "red",
     yaxt = "n",ann = FALSE)
lines(x, z, type = "b", pch = 22, col = "blue", lty = 2)
axis(side=2, at = x, labels = x, col.axis = "red",
     las = 1)
axis(side=4, at = z, labels = round(z, digits = 2),
     col.axis = "blue", las = 2, cex.axis = 0.7, tck = -0.01
mtext("y=1/x", side = 4, line = 3, cex.lab = 1, las = 2,
col = "blue")
title("An Example of Creative Axes", xlab = "X values",
ylab = "Y=X")
abline(h=sqrt(10),lty=1,col='blue')
abline(v=sqrt(10),lty=1,col='blue')
```

Example of labeling points

Milage vs. Car Weight

Example of labeling points

col = "red")

cex = 0.6, pos = 2,

View font families

serif text")

par(opar)

```
opar <- par(no.readonly = TRUE)
par(cex = 1.5)
plot(1:7, 1:7, type = "n")
text(3, 3, "Example of default text")
text(4, 4, family = "mono", "Example of
    mono-spaced text")</pre>
```

text(5, 5, family = "serif", "Example of

Legend

Legend

```
dose \leftarrow c(20, 30, 40, 45, 60)
drugA \leftarrow c(16, 20, 27, 40, 60)
drugB \leftarrow c(15, 18, 25, 31, 40)
opar <- par(no.readonly = TRUE)</pre>
par(lwd = 2, cex = 1, font.lab = 2)
plot(dose, drugA, type = "b", pch = 15, lty = 1,
     col = "red".
vlim = c(0, 60), main = "Drug A vs. Drug B",
xlab = "Drug Dosage",
ylab = "Drug Response")
lines(dose, drugB, type = "b", pch = 17, lty = 2,
col = "blue")
# abline(h = c(30), lwd = 3, lty = 2, col = "green")
legend("topleft", inset = 0.05, title = "Drug Type",
c("A", "B"), lty = c(1, 2), pch = c(15, 17),
col = c("red","blue"),cex=1)
par(opar)
```

Legend position

Equation notation

▶ demo(plotmath)

Arithmetic Operators		Lists		
x + y	x + y	list(x, y, z)	x, y, z	
x - y	x – y	Relations		
x * y	ху	x == y	x = y	
x/y	x/y	x != y	x ≠ y	
x %+-% y	х±у	x < y	x < y	
x%/%y	x ÷ y	x <= y	x≤y	
x %*% y	x×y	x > y	x > y	
x %.% y	x · y	x >= y	x ≥ y	
-X	-x	x %~~% y	$x \approx y$	
+x	+ X	x %=~% y	$x \equiv y$	
Sub/Superscripts		x %==% y	$x \equiv y$	
x[i]	Xi	x %prop% y	x ∝ y	
x^2	x ²	x %~% y	x ~ y	
Juxtaposition		Typeface		
x * y	ху	plain(x)	х	
paste(x, y, z)	xyz	italic(x)	Х	
Radicals		bold(x)	х	
sqrt(x)	√x	bolditalic(x)	x	
sqrt(x, y)	∛x	underline(x)	X	

Equation notation

Equation notation

```
with(mtcars,plot(wt, mpg))
abline(lm(mpg~wt,data=mtcars))
result <- summary (lm (mpg~wt, data=mtcars))
text(4, 30, expression(y[i] == beta[0] + beta[1]*x[i]))
text(4.25.
substitute(
    paste(Y[i], "=", beta0, beta1,X[i]),
    list(beta0 = round(result$coe[1,1],2),
         beta1 = round(result$coe[2,1],2),2)))
```

content

- create and save graphs
- customize plot: symbols,lines,colour
- annotate with text and titles
- combined graphs

Margin and outer margin

图 11:

Combine graphs

Combine graphs

```
opar <- par(no.readonly = TRUE)
attach(mtcars)
par(mfrow = c(2,2))
plot(wt, mpg, main = "Scatterplot of wt vs. mpg")
plot(wt, disp,main = "Scatterplot of wt vs disp")
hist(wt, main = "Histogram of wt")
boxplot(wt, main = "Boxplot of wt")
detach(mtcars)
par(opar)</pre>
```

Combine

Histogram of mpg

Histogram of disp

Combine

```
opar <- par(no.readonly = TRUE)
attach(mtcars)
par(mfrow = c(3, 1))
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)</pre>
```

Layout

Layout

detach(mtcars)

```
attach(mtcars)
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
```

Proportion of figures

Proportion of figures

hist(mpg)
hist(disp)
detach(mtcars)

```
par(mar=c(5.1,4.1,4.1,2))
par(oma=c(0,0,0,2))
attach(mtcars)
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE),
widths = c(3, 1), heights = c(1, 2))
#3:1 for heights 1:2 for widths
hist(wt)
```

Fine placement of figures

Enhanced Scatterplot

Fine placement of figures

```
opar <- par(no.readonly = TRUE)</pre>
par(fig = c(0, 0.8, 0, 0.8))
plot(mtcars$wt, mtcars$mpg, xlab = "Miles Per Gallon",
ylab = "Car Weight")
par(fig = c(0, 0.8, 0.55, 1), new = TRUE)
boxplot(mtcars$wt, horizontal = TRUE, axes = FALSE)
par(fig = c(0.6, 1, 0, 0.8), new = TRUE)
boxplot(mtcars$mpg, axes = FALSE)
mtext("Enhanced Scatterplot", side = 3, outer = TRUE,
line = -2) ##side=3 top
par(opar)
```

content

- create and save graphs
- customize plot: symbols,lines,colour
- annotate with text and titles
- combined graphs