

4 Unit

Functions

4.1 What is a function?

If you are given a set of *x*-values, you can work out the set of *y*-values or answers that came from using a given rule on each *x*-value.

So there is a **relationship** between the *x*-values and the *y*-values that is described by the rule.

So for every *x*-value, we multiply it by 2 and subtract 1 to find the corresponding *y*-value.

The input values or *x*-values are the elements of the **domain** of this set and the output values or *y*-values are the elements of the **range** of this set.

We can plot these values on the Cartesian plane.

If we extend the domain so that $x \in \mathbb{R}$, we get the graph for y = 2x - 1.

Look at the graph. For every x-value on this graph, there is only one y-value. If a rule or a formula produces only one y-value for each x-value, then we have a function.

A function is a relationship between x and y, where for every x-value there is only one y-value.

One way to decide whether or not a graph represents a function is to use the vertical line test.

If any line drawn parallel to the y-axis cuts the graph only once, then the graph represents a function.

Graph A and Graph B are functions.

Graph C is not a function because the vertical cuts the graph twice. So for an x-value on the graph, there are two y-values.

4.2 Function notation

We use function notation f(x) to show that each y-value is a function of an x-value.

We can also use other letters too, such as g(x), h(x), etc.

So y = 2x - 1 can be written as f(x) = 2x - 1.

The value of f(x) for any x-value can be worked out by substitution:

For example, at x = -3 we can find f(-3) = 2(-3) - 1 = -7

So the point (-3, -7) lies on the graph of f(x) = 2x - 1

Activity 1

1. If
$$h(x) = \left(\frac{1}{2}\right)^x$$
 determine the value of $h(-4)$. (3)

2. If the function
$$g(x) = -x^2 - 3x$$
, find $g(x + h)$ (2)

3. If f(x) = 4x + 1, determine the value of:

3.1
$$f(x + a)$$

3.2
$$f(x) + a$$

$$3.3 \ af(x) \tag{3}$$

4. If $g(x) = 2x^2$, determine the value of:

4.1
$$g(-x)$$

$$4.2 -g(x) \tag{2}$$

[10]

Solutions

1.
$$h(x) = \left(\frac{1}{2}\right)^x$$

 $\therefore h(-4) = \left(\frac{1}{2}\right)^{-4} \checkmark (2^{-1})^{-4} = 2^4 = 16 \checkmark$

So when x = -4, y = 16 and the point (-4; 16) lies on the graph of the function \sqrt{h} .

(3)

2.
$$g(x) = -x^2 - 3x$$

$$\therefore g(x+h) = -(x+h)^2 - 3(x+h) \checkmark \text{ wherever there is an } x, \text{ replace it }$$
 with $(x+h)$

$$= -(x^2 + 2xh + h^2) - 3x - 3h$$

= -x^2 - 2xh - h^2 - 3x - 3h \(\sqrt{}

This means that when x = x + h, $y = -x^2 - 2xh - h^2 - 3x - 3h$ (2)

3.1
$$f(x) = 4x + 1$$
 3.2 $f(x) = 4x + 1$ 3.3 $f(x) = 4x + 1$ $f(x + a) = 4(x + a) + 1$ $f(x) + a = 4x + 1 + a$ $f(x) = a(4x + 1)$ $f(x) = 4ax + a \checkmark$ (3)

4.1 $g(x) = 2x^2$ **4.2** $g(x) = 2x^2$ $-g(x) = -2x^2 \checkmark$ $g(-x) = 2(-x)^2$ (2)

[10]

In each example, there is only one possible y-value for each x-value, so f(x); h(x) and g(x)are functions.

4.3 The basic functions, formulas and graphs

Important terms to remember:

Domain: the set of possible x-values

Range: the set of possible y-values

Axis of symmetry: an imaginary line that divides a graph into two mirror

images of each other.

Maximum: the highest possible y-value of a function.

Minimum: the lowest possible y-value of a function.

Asymptote: an imaginary line that a graph approaches but never

touches.

Turning point: The point at which a graph reaches its maximum or

minimum value and changes direction.

4.3.1 The linear function (straight line)

Linear functions have the form

f(x) = ax + q where a represents the gradient of a straight-line graph and q represents the y-intercept when x = 0.

The graph of y is a straight line with a = 1 and q = 0

Domain: $x \in \mathbb{R}$ Range: $y \in \mathbb{R}$

Also note the shape of the following linear functions

- a < 0a < 0
- a = 0y = q
- a > 0q < 0
- a is undefined there is no q-value

SKETCHING THE LINEAR FUNCTION

To sketch the linear function using the dual intercept method.

- Determine the x-intercept (let y = 0)
- Determine the *y*-intercept (let x = 0)
- Plot these two points and draw a straight line through them.

DETERMINING THE EQUATION OF A LINEAR FUNCTION

To determine the equation of the linear function follow the following steps:

- Determine the gradient of the function.
- Substitute the value of the gradient into the general formula for the linear function.
- Solve for q.
- Write the equation in the form f(x) = ax + q

2.

Solutions

1.

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-1 - 0}{1 - 2}$$

$$a = 1$$

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{2 - 0}{-1 - 0}$$

$$a = -2$$

$$\therefore y = 1x + c$$

f(x) = x - 2

$$0 = 1(2) + c$$

$$c = 0$$

 $\therefore y = -2x + c$

$$f(x) = x - 2x$$

0 = -2(0) + c

[5]

4.3.2 The quadratic functions (parabola)

A quadratic function is a parabola and can be represented with a general formula $y = ax^2 + bx + c$ or $y = a(x + p)^2 + q$

[PROPERTIES OF A PARABOLA]

1. Shape

The function has one turning point given by $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$. 3.

The function may have either a maximum or a minimum value but never both.

5. Domain: $x \in \mathbb{R}$

Range: $y \ge f\left(-\frac{b}{2a}\right)$ or $y \le f\left(-\frac{b}{2a}\right)$

SKETCHING THE QUADRATIC FUNCTION

To sketch any quadratic function, follow the following steps:

Write down the *y*-intercept (let x = 0)

To calculate the x-intercepts,

Write the equation in the form $ax^2 + bx + c = 0$

Factorise the left hand side of the equation.

Use the fact that if (x-p)(x-q) = 0, then x = p or x = q, to calculate the x-intercepts.

Determine the axis of symmetry.

Substitute the x-value of the axis of symmetry into the original equation of the function to calculate the co-ordinates of the turning point.

Plot the points and then draw the function using free hand.

Sketch the graph of $f(x) = x^2 - 5x - 6$

1. y-intercept

$$f(0) = -6$$

Therefore the co-ordinates of the y-intercept are (0, -6)

2. x-intercept

$$x2 - 5x - 6 = 0$$

 $(x - 6)(x + 1) = 0$
 $x = 6 \text{ or } x = -1$
 $(6; 0) \text{ and } (-1; 0)$

3. Axis of symmetry

$$x = \frac{-b}{2a} \qquad \checkmark$$

$$= \frac{-(-5)}{2(1)} \qquad \checkmark$$

$$= \frac{5}{2} \qquad \checkmark$$

4. Turning point

$$f\left(\frac{5}{2}\right) = \left(\frac{5}{2}\right)^2 - 5\left(\frac{5}{2}\right) - 6$$

$$= -12\frac{1}{4}$$

$$\therefore TP\left(\frac{5}{2}; -12\frac{1}{4}\right)$$

Mind the Gap Mathematics

5. Sketch graph

Determining the equation of a quadratic function

Given the x-intercept and one point	Given the turning point and one point
 Use the formula: y = a(x - x₁)(x - x₂). Substitute the values of the x-intercepts. Substitute the given point which is not the x-intercept. Solve for a. Write the equation in the form f(x) = ax² + bx + c. 	 Use the formula: y = a(x + p)² + q. Substitute the co-ordinates of the turning point (p; q). Substitute the given point. Solve for a. Write the equation in the form y = a(x + p)² + q or f(x) = ax² + bx + c depending on the instruction in the question.

Given the co-ordinates of three points on the parabola

- Use the formula: $y = ax^2 + bx + c$.
- One of the given point is the y-intercept, therefore c is given, so substitute its value.
- Substitute the co-ordinates of the other two points into $y = ax^2 + bx + c$.
- Solve the two equations simultaneously for a and b.

Nature of the roots and the quadratic function

Nature of roots	Quadratic function
Real roots Δ > 0	NOTE: there are two x -intercepts.

Activity 2

The sketch represents the graph of the parabola given by $f(x) = 2 - x - x^2$.

Points A, B and C are the intercepts on the axes and D is the turning point of the graph.

1.1 Determine the co-ordinates of A, B and C.

- (4)
- 1.2 Determine the co-ordinates of the turning point D.
- (3)
- **1.3** Write down the equation of the axes of symmetry of f(x-5).
- (1)
- **1.4** Determine the values of x for which $-f(x) \ge 0$.
- (2)[10]

Unit

Solutions

1.1 B(0; 2)

$$2 - x - x^{2} = 0
x^{2} + x - 2 = 0
(x - 1)(x + 2) = 0
x = 1 \text{ or } x = -2$$

$$A(-2; 0) \text{ and } C(1; 0)$$
(4)

1.2
$$x = \frac{-b}{2a}$$
$$= \frac{-(-1)}{2(-1)} \checkmark$$
$$= -\frac{1}{2} \checkmark$$
$$f\left(-\frac{1}{2}\right) = 2 - \left(-\frac{1}{2}\right) - \left(-\frac{1}{2}\right)^2$$

$$\begin{aligned}
& = \frac{9}{4} = 2\frac{1}{4} \\
& D\left(-\frac{1}{2}; \frac{9}{4}\right)
\end{aligned}$$

1.3
$$x = \frac{9}{2} \text{ or } x = 4\frac{1}{2} \checkmark$$
 (1)

$$1.4 \quad x \le -2 \checkmark \text{ or } x \ge 1 \checkmark \tag{2}$$

[10]

(3)

The sketch represents the graph of the parabola given by $f(x) = ax^2 + bx + c$ and the straight line defined by g(x) = mx + c

Points A, B, C and D are the intercepts on the axes. E is the point of intersection of the two graphs.

- 2.1 Write down the co-ordinates of point D if D is the image of B after B has been translated two units to the right.
- **2.2** Determine the equation of g. (3)
- 2.3 Determine the equation of the function f in the form $f(x) = ax^2 + bx + c$. (4)

(1)

- 2.4 Determine the coordinates of E.
- **2.5** Write down the values of x for which $f(x) \ge g(x)$.
- (2)[14]

(3)

(4)

Solutions

2.1
$$D(5;0)$$
 \checkmark (1)

2.2
$$g(x) = mx + 3$$

 $0 = m(5) + 3$ or $m_g = \frac{3 - 0}{0 - 5} = -\frac{3}{5} \checkmark$
 $m = -\frac{3}{5} \checkmark$
 $g(x) = -\frac{3}{5}x + 3 \checkmark$

2.3
$$f(x) = a(x+1)(x-3) \checkmark$$

 $3 = a(0+1)(0-3) \checkmark$
 $a = 1 \checkmark$
 $f(x) = -(x+1)(x-3)$
 $f(x) = -x^2 + 2x + 3 \checkmark$ (4)

2.4
$$-\frac{3}{5}x + 3 = -x^{2} + 2x + 3 \checkmark$$

$$x^{2} - \frac{13}{5}x = 0$$

$$x\left(x - \frac{13}{5}\right) = 0 \checkmark$$

$$x = 0 \quad or \quad x = \frac{13}{5} = 2,60 \checkmark$$

$$g\left(\frac{13}{5}\right) = -\frac{3}{5}\left(\frac{13}{5}\right) + 3$$

$$= \frac{36}{25}$$

$$= 1,44 \checkmark$$

$$\therefore E\left(\frac{13}{5},\frac{36}{25}\right) \quad or \quad E\left(2\frac{3}{5}; 1\frac{11}{25}\right) \quad or \quad E\left(2,60; 1,44\right)$$

$$(4)$$

2.5
$$0 \le x \le \frac{13}{5} \checkmark \checkmark$$
 (2)

4.3.3 The hyperbolic function

Hyperbola of the form $y = \frac{a}{x}$ or xy = a where $a \ne 0$; $x \ne 0$; $y \ne 0$.

Properties

Shape

- **2.** (i) Domain: $x \in \mathbb{R}$; $x \neq 0$
- (i) Range: $y \in \mathbb{R}$; $y \neq 0$
- 3. The horizontal asymptote is the x-axis
- 4. The vertical asymptote is the y-axis
- 5. If a < 0, the graph lies in the 2nd and 4th quadrant
- **6.** If a > 0, the graph lies in the 1st and 3rd quadrant
- 7. The lines of symmetry are: y = x and y = -x.

SKETCHING THE HYPERBOLA OF THE FORM:

$$y = \frac{a}{x}$$
 or $xy = a$

- The graph does not cut the x-axis and the y-axis (asymptotes)
- Use the table and consider both the negative and positive x-values
- · a determine two quadrants where the graph will be drawn

Activity 4

1. Sketch the graph of $y = \frac{1}{x}$ by plotting points. Describe the main features of the graph. (4) 2. Sketch the graph of $y = \frac{-4}{x}$ by plotting the points. Describe the main features of the graphs. (4)

Solution

a = 1

a > 0, the graph lies in the 1st and 3rd quadrant

-3	-2	-1	$-\frac{1}{2}$	0	1/2	1	2	3
<u>1</u>	$\frac{1}{2}$	-1	-2	undefined	2	1	1/2	1/3
	7	7	-	1041004	1	10	-	

graphs.
Solution

a = -4

a < 0, the graph lies in the 2nd and 4th quadrant

-4	-2	-1	0	1	2	4
1	2	4	undefined	- 4	-2	-1

- Domain: $x \in \mathbb{R}$; $x \neq 0$
- Range: $y \in \mathbb{R}$; $y \neq 0$
- Asymptotes: x = 0 and y = 0
- Lines of symmetry y = x and y = -x
- Domain: $x \in \mathbb{R}$; $x \neq 0$
- Range: $y \in \mathbb{R}$; $y \neq 0$

(4)

- Asymptotes: x = 0 and y = 0
- Lines of symmetry y = x and y = -x

(4) [8]

4.3.4 The hyperbola

Hyperbola of the form $y = \frac{a}{x} + q$ is the translation of the graph of $y = \frac{a}{x}$ vertically by q units.

The Horizontal asymptote (x-axis) will also shift q units vertically (up or down).

Activity 5

- 1. Consider the function $y = \frac{1}{x} 2$
 - 1.1 Determine:
 - a) the equations of the asymptotes
 - b) the coordinates of the x-intercepts
 - 1.2Sketch the graph
 - 1.3 Write down:
 - a) the domain and range
 - **b)** the lines of symmetry y = x + c and y = -x + c

(10)

Solutions

1.1

- a) The horizontal asymptote is y = -2 since the graph moved 2 units down and the vertical asymptote is x = 0 \checkmark denominator cannot equal to zero.
- b) For x intercepts let y = 0 $0 = \frac{1}{x} - 2$ 0 = 1 - 2x (multiplying by LCD)which is x)

$$2x = 1 \checkmark$$
$$x = \frac{1}{2} \checkmark$$

 $\left(\frac{1}{2};0\right)$

- 2. Consider the function $f(x) = \frac{-4}{x} + 1$
 - 2.1 Determine:
 - a) the equations of the asymptotes
 - **b)** the coordinates of the *x*-intercepts
 - 2.2Sketch the graph
 - 2.3 Write down the domain and range
 - **2.4** If the graph of f is reflected by the line having the equation y = -x + c, the new graph coincides with the graph of f(x). Determine the value of c.

(9)

Solutions

2.1

- a) The horizontal asymptote is y = 1 \checkmark since the graph moved 1 units up and the vertical asymptote is x = 0 denominator cannot equal to zero.
- b) For x-intercepts let y = 0 $0 = \frac{-4}{x} + 1 \checkmark$ 0 = -4 + x (multiplying by LCD)which is x $x = 4 \checkmark$ (4: 0)

4 Unit

1.2

х	-4	-2	-1	0	1	2	4
y	$-2\frac{1}{4}$	$-2\frac{1}{2}$	-3	undefined	-1	$-1\frac{1}{2}$	$-1\frac{3}{4}$

2.2

х	-4	-2	-1	0	1	2	4
у	2	2	5	undefined	-3	-1	0

1.3

- a) Domain: $x \in \mathbb{R}$; $x \neq 0$ Range: $y \in \mathbb{R}$; $y \neq 2$
- **b)** y = x and y = -xtranslation 2 units down therefore y = x - 2 and y = -x - 2 \checkmark $\therefore c = -2$

Or substitute (0; 2) point of intersection of the two asymptotes in y = x + c or y = -x + c

And calculate the value of c

2.3 Domain: $x \in \mathbb{R}$; $y \neq 0$

Range: $y \in \mathbb{R}$; $y \neq 1$

2.4 The asymptotes are

$$x = 0 \text{ and } y = 1$$
$$y = -x + c$$

$$1 = -(0) + c$$

$$1 = c$$

lines are y = -x + 1 and y = x + 1

[9]

Compare this graph with the one in activity 4 (a)

[10]

Compare this graph with the one in activity 4 (b)

4.3.5 Hyperbola of the form

$$y = \frac{a}{x+p} + q$$
 where $a \neq 0$, $x \neq 0$, $y \neq 0$

1. Shape

The dotted lines are the asymptotes

- **2.** Domain: $x \in \mathbb{R}$; $x \neq -p$. Range: $y \in \mathbb{R}$; $y \neq q$
- 3. The horizontal asymptote is y = q
- 4. The vertical asymptote is x + p = 0 $\therefore x = -p$
- 5. The lines of symmetry are y = x + c and y = x + c

Consider $g(x) = \frac{8}{x-2} - 3$ has the horizontal asymptote at y = -3 and $x-2 \neq 0$ $\therefore x \neq 2$ because if x = 2 the denominator of the expression $\frac{8}{x-2}$ would be $\frac{8}{2-2} = \frac{8}{0}$ which is undefined because the denominator is zero.

Thus the graph is undefined for x - 2 = 0 $\therefore x = 2$ is the **vertical asymptote** The graph $y = \frac{8}{x}$ shift 2 units to the right and 3 units down to form the graph $g(x) = \frac{8}{x-2} - 3$

SKETCHING THE HYPERBOLA OF THE FORM

$$y = \frac{a}{x+p} + q$$

- Write down the asymptotes
- Draw the asymptotes on the set of axes as dotted lines
- Use a to determine the two quadrants where the graph will be drawn
- Determine the x intercept(s) let y = 0
- Determine the y intercept(s) let x = 0
- Plot the points and then draw the graph using free hand

Activity 6

- 1. Consider the function $f(x) = \frac{2}{x-3} + 1$
 - a) Write down the equations of the asymptotes of f(2)
 - b) Calculate the coordinates of the x and y-intercepts of f
 - c) Write the domain and range
 - d) Sketch the graph of f clearly showing ALL asymptotes and intercepts with the axes.
- 2. Consider the function $f(x) = \frac{3}{x-1} 2$
 - a) Write down the equation of the asymptotes. (2)
 - b) Calculate the coordinates of the intercepts of the graph of f with the axes. (3)
 - c) Sketch the graph of f clearly showing the intercepts with the axes and the asymptotes. (3)
 - **d)** Write down the range of y = -f(x). (1)
 - e) Describe, in words, the transformation of f to g if $g(x) = \frac{-3}{x+1} 2$ (2)[22]

Solution

- **1.** a) x = 3 and y = 1
 - **b)** $f(x) = \frac{2}{x-3} + 1$ $y - \text{intercept } y = \frac{2}{0-3} + 1 = \frac{1}{3} \checkmark$

$$x - \mathbf{intercept} \ 0 = \frac{2}{x - 3} + 1 \ \checkmark$$

$$0 = 2 + 1(x - 3)$$
$$0 = 2 + x - 3$$

$$\sqrt{x} = 1$$
 : (1; 0)

- c) Domain: $x \in \mathbb{R}$; $x \neq 3$ Range: $y \in \mathbb{R}$; $y \neq 1$ (2)
- **d)** a > 0

Solution

(2)

(4)

(4)

(2)

(3)

- 2. a) $\sqrt{x} = -1$ y = -2(2)
 - **b)** y intercept $y = \frac{3}{0-1} 2 = -5$

$$2(x-1) = 3$$
$$2x-2 = 3$$

$$2x = 5$$

$$\checkmark x = \frac{5}{2}$$

√ intercepts (3) √ asymptotes √ shape

In the graph 1 (d) the points (4; 3), x = 4 was chosen because it has x-coordinate greater than x = 3 the vertical asymptote. The point (2; -1), was chosen because has x-coordinate x = 2 is less than x = 3 the vertical asymptote. These points can also be used to help determining in which quadrants the graph must be drawn. The points (2; 1) and (-2; -3) on graph 2 (iii) were chosen similarly.

d) $f(x) = \frac{3}{x-1} - 2$	
$-f(x) = -\left(\frac{3}{x-1} - 2\right)$	
$-f(x) = \frac{-3}{x-1} + 2$	
Range: $y \in \mathbb{R}$; $y \neq 2$	(1)

e)
$$g(x) = \frac{-3}{x+1} - 2$$

 $g(x) = \frac{3}{-x-1} - 2$

Since
$$x$$
 is negative this is the reflection \checkmark of f about the y -axis \checkmark (2)

[11]

Activity 7

The diagram below represents the graph of $f(x) = \frac{a}{x+p} + q$. T(5; 3) is a point on f.

4.1 Determine the values of a, p and q

- (4)
- **4.2** If the graph of f is reflected across the line having the equation y = -x + c, the new graph coincides with the graph of y = f(x). Determine the value of c.
- (3)

[7]

Solutions

4.1 $\sqrt{p} = 4$ and q = 2 \sqrt{q} using the asymptotes Substitute T(5; 3) into $y = \frac{a}{x-4} + 2$

$$3 = \frac{a}{5-4} + 2$$
 \checkmark $3 = a + 2$

$$3 = a + 2$$

$$a = 1 \checkmark$$

$$a = 1 \checkmark \tag{4}$$

4.2 Substitute (4; 2) $\sqrt{\text{into } y} = -x + c$

$$\sqrt{2} = -(4) + c$$
 : $c = 6$

Activity 8

Sketched below are the graphs of $f(x) = (x + p)^2 + q$ and $g(x) = \frac{a}{x+b} + c$

A $\left(2\frac{1}{2}; 0\right)$ is a point on the graph of f. P is the turning point of f. The asymptotes of g are represented by the dotted lines. The graph of g passes through the origin

- **5.1** Determine the equation of g. (4)
- **5.2** Determine the coordinates of P, the turning point of f. (4)
- **5.3** Write down the equation of the asymptotes of g(x-1). (2)
- **5.4** Write down the equation of h, if h is the image of f reflected about the x-axis.

(1)[11]

Solutions

5.1 Using the asymptotes $\checkmark b = 1$ and $c = 2 \checkmark$

Substitute (0; 0) into
$$y = \frac{a}{x-1} + 2$$

 $\sqrt{0} = \frac{a}{0-1} + 2$ $\Rightarrow 0 = -a + 2$ $\therefore a = 2$

$$y = \frac{2}{x-1} + 2$$
 (4)

5.2 Axis of symmetry p = 1

$$f(x) = (x-1)^2 + q$$

$$\left(\frac{5}{2};0\right)$$

$$\sqrt{0} = \left(\frac{5}{2} - 1\right)^2 + q$$

$$0 = \frac{9}{4} + q$$

$$\frac{5}{2};0) \checkmark$$

$$\checkmark 0 = \left(\frac{5}{2} - 1\right)^2 + q$$

$$0 = \frac{9}{4} + q$$

$$q = -\frac{9}{4} \quad \therefore P\left(1; -\frac{9}{4}\right) \checkmark$$
(4)

5.3
$$g(x) = \frac{2}{x-1} + 2$$

$$g(x-1) = \frac{2}{(x-1)-1} + 2$$

substitute x with (x-1)

$$g(x-1) = \frac{2}{x-2} + 2$$

$$\checkmark x = 2 \text{ and } y = 2 \checkmark \tag{2}$$

5.4
$$f(x) = (x-1)^2 - \frac{9}{4}$$

Reflection about the x – axis y changes the sign

$$-y = (x-1)^2 - \frac{9}{4}$$

$$y = -\left[(x-1)^2 - \frac{9}{4} \right]$$

$$y = -(x-1)^2 + \frac{9}{4}$$

(1) [11]

4.3.6 The exponential function

An exponential function can be represented with a general formula $y = ab^{x+p} + q; b > 0$

Shape and properties of an exponential function

- · The graph passes through the point (0; 1).
- Domain: $x \in \mathbb{R}$
- Range: y > 0 but for $y + b^x + q$, the range will be at y > q.
- · The graph is smooth, continuous and an increasing function.
- Asymptote is at y = 0 but for $y = b^x + q$, the horizontal asymptote will be at y = q.
- · The graph passes through the point (0; 1).
- Domain: $x \in \mathbb{R}$
- Range: y > 0 but for $y = b^x + q$, the range will be at y > q.
- · The graph is smooth, continuous and a decreasing function.
- Asymptote is at y = 0 but for $y = b^x + q$, the horizontal asymptote will be at y = q.

NOTE: The two functions are a reflection of each other about the y-axis.

Given: $f(x) = 2^x$

- **1.1** Draw the graph of $f(x) = 2^x$, show at least three points on the sketch.
- **1.2** Draw, on the same system of axes the graph of f^{-1} , the inverse of f.
- 1.3 Write down the equation of f^{-1} in the form y = ...

Solutions

1.1 Start by drawing the table:

х	-1	0	1
f(x)	0,5	1	2

Then plot the graph using the points

1.2 The sketch of f^{-1} is obtained by interchanging the x and y co-ordinates of f.

1.3
$$y = 2^x$$

$$x = 2^y$$

$$y = \log_2 x \checkmark$$

[2]

The sketch represents the graph given by $f(x) = a^x$.

2.1 Write down the coordinates of point A. (1)

2.2 How can we tell that 0 < a < 1? (1)

2.3 Determine a if B is the point $(3; \frac{1}{27})$. (2)

2.4 Determine the equation of the graph obtained if f is reflected about the y-axis. (2)

2.5 What are the coordinates of the point of intersection of the two graphs? (1)

[7]

Solutions

2.1 A(0; 1) ✓

2.2 Because the graph is a decreasing function. ✓

2.3 $f(x) = a^x$ $\frac{1}{27} = a^3$

 $a = \frac{1}{3}$

2.4 $f(x) = \left(\frac{1}{3}\right)^x$

 $y = \left(\frac{1}{3}\right)^x$ becomes $y = \left(\frac{1}{3}\right)^{-x} \checkmark$

 $y = 3^x$

2.5 (0; 1) 🗸

[7]

Mind the Gap Mathematics

The curve of an exponential function is given by $f(x) = k^x$ and cuts the y-axis at A (0; 1) while B $\left(2:\frac{9}{4}\right)$ lies on the curve.

Determine

1.1 the equation of the function
$$f$$
. (3)

1.2 the equation of the asymptote of h if
$$h(x) = -f(x)$$
. (2)

1.3 the range of
$$h$$
. (1)

1.4 The equation of the function
$$g$$
 of which the curve is the reflection of the curve of f in the line $y = x$. (2)

Solutions

1.1
$$f(x) = k^x$$

$$\frac{9}{4} = a^2$$

$$\left(\frac{3}{2}\right)^2 = a^2$$

$$\left(\frac{3}{2}\right)^2 = a^2 \checkmark$$

$$a = \frac{3}{2} \checkmark \qquad \therefore f(x) = \left(\frac{3}{2}\right)^x \tag{3}$$

1.2
$$y = 0$$
 (2)

$$1.3 \ y \le 0 \ \checkmark \tag{1}$$

[8]

4.4 Inverse functions

- The inverse of a function takes the *v*-values (range) of the function to the corresponding x-values (domain) and vice versa. Therefore the x and y values are interchanged.
- The function is reflected along the line y = x to form the inverse.
- The notation for the inverse of a function is f^{-1} .

Given f(x) = 2x + 6.

- 1. Determine $f^{-1}(x)$
- 2. Sketch the graphs of f(x), $f^{-1}(x)$ and y = x on the same set of axis

Solutions

1. In order to find the inverse of a function, there are two steps:

STEP 1: Swap the x and y

$$v = 2x + 6$$

becomes
$$x = 2y + 6$$

We then rewrite the equation to make y the subject of the formula.

Therefore.

STEP 2: make y the subject of the formula

$$x = 2y + 6$$

$$x - 6 = 2y$$

So
$$y = \frac{1}{2}x - 3$$

We can say that the inverse function $f^{-1}(x) = \frac{1}{2}x - 3$

2.

- · Every point on the function has the same coordinates as the corresponding point on the inverse function, except that they are swapped around.
- Example: (-3, 0) on the function is reflected to become (0, -3) on the inverse function.
- Any point (a; b) on the function becomes the point (b; a) on the inverse.
- To find the equation of an inverse function algebraically, we interchange x and y and then solve for y.
- To draw the graph of the inverse function, we reflect the original graph about the line
 - y = x, the axis of symmetry of the two graphs.

Mind the Gap Mathematics

- **1. a)** Sketch $f(x) = 2x^2$
 - b) Determine the inverse of f(x)
 - Sketch $f^{-1}(x)$ and y = x on the same axes as f(x)

Solution

- · This is not a function.
- Check it with a vertical line test.
 There are two y-values for one x-value.
- Not all inverses of functions are also functions. Some inverses of functions are relations.
- If an inverse is not a function, then
 we can restrict the <u>domain</u> of the
 <u>function</u> in order for the inverse to be
 a function.

- To make the inverse a function, we need to choose a set of x-values in the function and work only with those. We call this 'restricting the domain'.
- · A one to one function has an inverse that is a function

Example: y = 3x + 4 is a one to one function. For every x value there is one and only one y value

The inverse of is a function.

 A many to one function has an inverse that is not a function. However, we can restrict the domain of the function to make its inverse a function.

Example: $y = 2x^2$ is a many to one function. For two or many x values there is one y value. (if x = 2, then y = 8.

If x = -2, then y = 8). Therefore, its inversey $= \pm \sqrt{\frac{x}{2}}$, is not a function.

• To check for a function, draw a vertical line. If any vertical line cuts the graph in only one place, the graph is a function.

If any vertical line cuts the graph in more than one place, then the graph is not a function.

To check for a one-to-one function, draw a horizontal line. If any horizontal line cuts the
graph in only one place, the graph is a one-to-one function. If any horizontal line cuts the
graph in more than one place, then the graph is a many-to-one function.

Activity 10

- 1. a) If $f(x) = -3x^2$, write down the equation for the inverse function in the form $y = \dots$
 - **b)** Determine the domain and range of f(x) and $f^{-1}(x)$ (4)
 - c) Determine the points of intersection of f(x) and $f^{-1}(x)$ (4)
- **2.** a) If g(x) = 3x + 2, find $g^{-1}(x)$ (2)
 - **b)** Sketch g, g^{-1} and the line y = x on the same set of axes. (3)

[15]

(2)

(4)

(4)

(4)[15]

Solutions

1. a) For
$$f(x) = -3x^2$$
.

$$f^{-1}(x): x = -3y^{2}$$

$$-\frac{x}{3} = y^{2}$$

$$y = \pm \sqrt{-\frac{x}{3}}$$
(2)

b)

	f(x)	$f^{-1}(x)$	
Domain	$x \in \mathbb{R}$	<i>x</i> ≥ 0 ✓	
Range	y ≥ 0 ✓	$y \in \mathbb{R}$	

c) To determine the points of intersection, we equate the two equations.

The line y = x, the axis of symmetry of f(x) and $f^{-1}(x)$, can also be used to determine the points of intersection of f(x) and $f^{-1}(x)$.

$$y = x \text{ and } f(x) = -3x^2$$

$$\therefore x = -3x^2$$

$$\therefore 3x^2 + x = 0 \checkmark$$

$$\therefore x(3x + 1) = 0$$

$$\therefore x = 0 \text{ or } x = -\frac{1}{3} \checkmark$$

Substitute x = 0 in y = x : y = 0 : (0, 0)

Substitute
$$x = -\frac{1}{3}$$
 in $y = x$: $y = -\frac{1}{3}$: $\left(-\frac{1}{3}; -\frac{1}{3}\right)$

For
$$g^{-1}(x)$$
, $x = 3y + 2$

$$x - 2 = 3v$$

$$y = \frac{x-2}{3}$$

$$y = \frac{x}{3} - \frac{2}{3}$$

Given: $g(x) = -x^2$ where $x \le 0$ and $y \le 0$

(a) Write down the inverse of
$$g$$
, g^{-1} in the form $h(x) = \dots$ (3)

(b) Sketch the graphs of
$$g$$
, h and $y = x$ on the same set of axis. (4)

Solutions

(a)
$$y = -x^2$$

$$x = -y^2$$

$$-x = y^2 \checkmark$$

$$\pm \sqrt{-x} = v \checkmark$$

$$-\sqrt{-x} = y$$
 where $x \le 0$ and $y \le 0$

$$\therefore h(x) = -\sqrt{-x} \checkmark$$

(3)

4.5 The logarithmic function

- $y = \log_x a$ is a logarithmic function with $a = \log$ number, $x = \log$ base
- $y = \log_x a$ Reads "y is equal to log a base x"
- The logarithmic function is only defined if a > 0, $a \ne 1$ and x > 0
- An exponential equation can be written as a logarithmic equation and vice versa

Write each of the following exponential equations as logarithmic equations:

- 2⁶ = 64
- $5^3 = 125$

Solutions

- 1. $2^6 = 64$
 - $\therefore 6 = \log_2 64$
- 2. $5^3 = 125$
 - $\therefore 3 = \log_5 125$

The inverse of the exponential function $y = a^x$ is $x = a^y$

In order to make y the subject of the formula, $x = a^y$, we use the **log function**.

 $y = \log_{a} x$ is the inverse of $y = a^{x}$.

Given: $f(x) = 2^x$

- a) Determine f^{-1} in the form $y = \dots$
- **b)** Sketch the graphs of f(x), $f^{-1}(x)$ and y = x on the same set of axes.
- c) Write the domain and range of f(x) and $f^{-1}(x)$

- a) The inverse of the exponential function $y = 2^x$ is $x = 2^y$ which can be written as $y = \log_{1} x$.
- b) To plot the graph, use a table of values:

First make a table for y =

X	-2	-1	0	1	2	3
$y = 2^x$	1/4	1/2	1	2	4	8

Make a table for $y = \log_2 x$

X	1/4	1/2	1	2	4	8
$y = \log_2 x$	-2	-1	0	1	2	3

Let's compare the two graphs on the Cartesian plane.

The graph of $y = \log_2 x$ is a **reflection** about the y = x axis of the exponential graph of $y = 2^x$.

[3]

Activity 11

The graph of $h(x) = a^x$ is sketched below. A(-1; $\frac{1}{2}$) is a point on the graph of h.

- 1. Explain why the coordinates of Q are (0; 1).
- 2. Calculate the value of a. 3. Write down the equation for

the inverse function, h^{-1} in the form $y = \dots$

5. Read off from your graph the values of x for which $\log_2 x > -1$.

(1)[8]

Solutions

1.
$$h(0) = a^0 = 1$$
. \checkmark Any base raised to the power of 0 is 1. \checkmark (2)

2. $h(x) = a^x$ and $A(-1; \frac{1}{2})$ so $a^{-1} = \frac{1}{2} \checkmark$

$$a^{-1} = 2^{-1}$$
 so $a = 2\sqrt{and y} = 2^{x}$ (2)

3. Interchange x and y, so $x = 2^y$ and $y = \log_2 x$ (1)

4.

(2)

5. $x > 0.5 \checkmark$

(1) [8]