Дискретная математика. Лекция 22.04.

С. В. Ткаченко

22.04.2022

Минимизация булевых функций

Непосредственная минимизация

Метод непосредственной минимизации основан на применении равносильностей алгебры логики. Функция может быть задана в ДНФ, КНФ, СДНФ, СКНФ.

 Πp имеp.

a)
$$f(x,y) = x \to (y \land x)$$

x	У	$y \wedge x$	$x \to (y \land x)$
0	0	0	1
0	1	0	1
1	0	0	0
1	1	1	1

ДНФ:

$$\begin{split} f(x,y) &= \left[(\bar{x} \wedge \bar{y}) \vee (\bar{x} \wedge y) \right] \vee (x \wedge y) = \\ &= \left[\bar{x} \wedge (\bar{y} \vee y) \right] \vee (x \wedge y) = \\ &= \left[\bar{x} \wedge 1 \right] \vee (x \wedge y) = \bar{x} \vee xy; \end{split}$$

КНФ:

$$f(x,y) = \bar{x} \vee y.$$

б)
$$f(x,y) = x \downarrow y$$

X	у	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

ДНФ:

$$f(x,y) = \bar{x} \wedge \bar{y};$$

КНФ:

$$\begin{split} f(x,y) &= (x \vee \bar{y}) \wedge [(\bar{x} \vee y) \wedge (\bar{x} \vee \bar{y})] = \\ &= (x \vee \bar{y}) \wedge [\bar{x} \vee (y \wedge \bar{y})] = (x \vee \bar{y}) \wedge [\bar{x} \vee 0] = \\ &= (x \vee \bar{y}) \wedge \bar{x} = (\bar{x} \wedge x) \vee (\bar{x} \wedge \bar{y}) = \\ &= 0 \vee (\bar{x} \wedge \bar{y}) = \bar{x} \wedge \bar{y}. \end{split}$$

Карты Карно

Карты Карно были изобретены в 1952 американским ученым Эдвардом В. Вейчем (8 сентября 1924 - 23 декабря 2013) и усовершенствованы в 1953 американским физиком Морисом Карно (род. 4 октября 1924 года, Нью-Йорк); использовались для упрощения цифровых электронных схем.

Карта Карно имеет вид

x yz	00	01	11	10
0				
1				

значения уz подчиняются **двоичному коду Грея:** любые два соседних кода различаются ровно в одном разряде.

Правильная конфигурация - это прямоугольник, который состоит только из 1 или только из 0.

Этот прямоугольник может быть расположен горизонтально или вертикально.

Этот прямоугольник может быть квадратом.

Площадь прямоугольника: $2^{n-i}, i=0,\dots,n,$ где n - число переменных в функции.

Правила определения правильной конфигурации

- 1. В правильной конфигурации возможно объединение крайних полей, распложенных на противоположных сторонах карты.
- 2. Число правильных конфигураций должно быть минимально, а площадь каждой конфигурации максимальна.

- 3. При объединении полей, в которых стоят единицы, булева функция записывается в ДН Φ значений переменных, не меняющихся в пределах правильной конфигурации.
- 4. При объединении полей, в которых стоят нули, булева функция записывается в ${\rm KH}\Phi$ инверсных значений переменных, не меняющихся в пределах правильной конфигурации.

Πp имеp.

X	У	\mathbf{z}	$(x \land (y \lor \bar{z})) \oplus (\bar{x} z)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

СДНФ: $f(x,y,z) = (\bar{x} \wedge \bar{y} \wedge \bar{z}) \vee (\bar{x} \wedge y \wedge \bar{z}) \vee (x \wedge \bar{y} \wedge z);$ СКНФ: $f(x,y,z) = (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee y \vee z) \wedge (\bar{x} \vee \bar{y} \vee z) \wedge (\bar{x} \vee \bar{y} \vee z).$

X	У	\mathbf{z}	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Карта Карно

yz x	00	01	11	10
0	1	0	0	1
1	0	1	0	0

ДНФ: $f(x, y, z) = (\overline{xz}) \lor (x\overline{y}z)$

Карта Карно

x yz	00	01	11	10
0	1	0	0	1
1	0	1	0	0

		1)			
xyz	00	01	11	10	
0	1	0	0	1	
1	0	1	0	0	
$x \vee \bar{z}$					

		3)				
xyz	00	01	11	10		
0	1	0	0	1		
1	0	1	0	0		
$\bar{x} \lor z$						

KHΦ: $f(x, y, z) = (x \lor \bar{z}) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z).$