

Astro-Photo Planétaire

TRAITEMENT DE LA LUNEGAD – MEYLAN - 02 / 2023

Sébastien Valat

Disclamer

- Mon expérience se limite à quelques jeux de lune avec mon Reflex sur un trepied et avec la lunette du club!
- On peut pour sur faire mieux!
- Je présente avec une lunette, monture et camera
- On peut appliquer avec un simple Reflex + Objectif + trepied!

Fichiers utilisés

http://progranet.ovh/shares/gad/2022-05-11-lune/

▶ Login: gad

▶ Pass : **2022**

Prise : 7 mai 2022

► Fichiers:

Fichier	Images
22_33_42	500
22_41_59	500
22_45_55	1000

Matériel

► Telescope: <u>SkyWatcher Black Diamond 120 ED</u>

► Mount: SkyWatcher NEQ6

► Camera: Atik Infinity (1392 x 1040)

▶ Capture: <u>SharpCap</u>

Le but en planétaire

- On veux compenser les mouvements atmosphériques
- On va prendre les images
 le plus rapidement possible
- ► Configuration de la prise :

#Format de sortie
Output Format=SER file (*.ser)(Auto)
#Exposition
Exposure=1,6412ms

Traitement logiciels

(sous windows)

► PIPP (Planetary Imaging PreProcessor)
https://sites.google.com/site/astropipp/

Autostakkert (stacking avec correction des mouvements atmosphériques) https://www.autostakkert.com/

Astro Surface (post traitement / déconvolution) http://astrosurface.com/

Full pipeline

Pre-Processing: PIPP

FUSION & ALIGNEMENT & CROP

Fusion des .ser

Etape 1 : Source Files

Etape 2: Input Option

Pas de changement!

Eventuellement **Debayer HQ Linear** ou **Smooth Hue**

Etape 3: Processing Options

Etape 4: Processing Options

Etape 5: Output Options

Etape 6: Processing

Processing: Autostakkert

TURBULENCES ATMOSPHÉRIQUES

Stacking et correction atosmphère

Image unique

Post Autostakkert

Un mot sur la dé-convolution Un peu de théorie

- Un très bon tuto bien pédagogique (mais en anglais): https://youtu.be/f-IINpceX6k De Sheer Nayar (Columbia University)
- Les slides qui suivent sont extrait directement de cette vidéo

La tranformé de Fourier

La tranformé de Fourier

- La transformée de Fourier :
 - ➤ On passe dans l'espace des fréquences.
- Transformée de Fourier inverse
 - ▶ Retrouver le signal depuis le spectrogramme.
- Très utilize en traitement du signal!

$$F(u,v) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy$$
$$f(x,y) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

Fréquence

La tranformé de Fourier

Filtrage: exemple filtre passe bas Coupe à 2.5 KHz

Filtrage: exemple filtre passe haut Coupe à 2.5 KHz

Sur une image

Motion Blur

Scene f(x, y)

PSF h(x,y) (Camera Shake)

Image g(x,y)

Point Spread Function (Fonction d'étalement)

$$f(x,y) * h(x,y) = g(x,y)$$

Motion Blur

$$f(x,y) * h(x,y) = g(x,y)$$

Given captured image g(x,y) and PSF h(x,y), can we estimate actual scene f(x,y)?

Let f' be the recovered scene.

$$f'(x,y) * h(x,y) = g(x,y)$$

$$F'(u,v)H(u,v) = G(u,v)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)}$$
 IFT $f'(x,y)$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Step 1: Recover F'(u, v) in Fourier Domain

$$F'(u,v) = \frac{G(u,v)}{H(u,v)}$$
 IFT $f'(x,y)$

Step 2: Compute IFT of F'(u, v) to recover scene

Adding Noise to the Problem

Scene f(x, y)

PSF h(x, y) (Camera Shake)

Noise $\eta(x, y)$

Image g(x,y)

$$f(x,y) * h(x,y) + \eta(x,y) = g(x,y)$$

Can we afford to ignore noise?

If we ignore the noise $(\eta(x,y))$:

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Higher frequencies in F'(u, v) are amplified

Motion Deblur: Deconvolution

If we ignore the noise $(\eta(x,y))$:

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

Noise is significantly amplified

(with noise)

Deconvolution: Issues

$$\frac{G(u,v)}{H(u,v)} = F'(u,v) \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$

- 1. Where H(u,v)=0, $F'(u,v)=\infty \to \text{Not recoverable}$
- 2. Motion blur filter H(u, v) is a low pass filter.

For high frequencies (u, v):

- Noise N(u,v) in G(u,v) is high
- Filter $H(u, v) \approx 0$

Noise in G(u, v) is amplified

Noise Suppression: Weiner Deconvolution

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$$

 Determining NSR requires us to have prior knowledge of the noise "pattern" and the scene (or of a similar scene).

$$NSR(u, v) = \frac{|N(u, v)|^2}{|F(u, v)|^2}$$

Often NSR is set to a single suitable constant λ.

$$NSR(u, v) = \lambda$$

Noise Suppression: Weiner Deconvolution

Noisy, Blurred Image g(x, y)

PSF h(x, y)

Recovered f'(x, y)

 $NSR(u, v) = \lambda = 0.002$ was used to recover image

Allez plus loin

- « Analyse d'images IMN 259 » (slides en français) https://info.usherbrooke.ca/pmjodoin/cours/IMN259/notes/Filtrage_I MN259_2018_2pages.pdf
- Par Pierre-Marc Jodoin Université Usherbrook (CA)
- Traite la question du flou gaussien
 - Explication de : Lucy-Richardson
 - Explication auto-estimation de la PSF (déconvolution aveugle)

Vraiement plus loin

Papier sur la dé-convolition RL aveugle (1995) [EN] Blind deconvolution by means of the Richardson-Lucy algorithm http://prancer.physics.louisville.edu/classes/650/deconvolution/fish blind lucy richardson deconvolution josa1995.pdf

Autour du sujet

- Sheer Nayar a plusieurs vidéos très intéressantes
 - ► CCD versus CMOS (comment ça marche)
 https://www.youtube.com/watch?v=nsPvcX-4KU
 - Perception des couleurs https://www.youtube.com/watch?v=V4y3K6zoUQs

Post-Processing: AstroSurface

DE-CONVOLUTION

Deconvolution RLucy

Image unique

Post Autostakkert

AS2 dé-convolution RLucy

Les couleurs (contrast & HDR)

Si on avait une unique image....

Image unique + RL (pas AS2)

AS2 Stacked + RL

Full AstroSurface

▶ On peut aussi stacker avec AstroSurface

▶ Je trouve moins intuitif.....

- AstroSurface ne permet de pas de Drizzle 1.5x pour le mode multipoint
 - On perds en capacité de post-traitement (deconvolution)

A vous de jouer

Backup

Noise Suppression: Weiner Deconvolution

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$$

Where:

Weiner Filter
$$\stackrel{\text{def}}{=}$$
 $W(u,v) = \frac{1}{H(u,v)} \left[\frac{1}{1 + \frac{NSR(u,v)}{|H(u,v)|^2}} \right]$

Noise-to-Signal Ratio, NSR(u, v):

$$NSR(u,v) = \frac{\text{Power of Noise at } (u,v)}{\text{Power of Signal (Scene) at } (u,v)} = \frac{|N(u,v)|^2}{|F(u,v)|^2}$$

