A Unified Framework for Pun Generation

with Humor Principles

Yufei Tian¹, Divyanshu Sheth², and Nanyun (Violet) Peng¹ ¹University of California Los Angeles, ²Indian Institute of Technology Kharagpur

1. Introduction

Homographic Pun: words that are written the same I used to be a banker but I lost interest. Homophonic Pun: words that sound alike Pun word: **dyed**, Alternative word: **died**

Yesterday I accidentally swallowed some food coloring. The doctor says I'm OK, but I feel I've dyed a little inside.

Motivation:

- A. Recent success in computational humor theories [1][2] identify three important linguistic traits of puns (ambiguity, distinctiveness, and surprise), and show high correlations with human judgments
- How to incorporate the above attributes to generate better puns is still an open problem
 - [2] integrates surprise, [3] integrates ambiguity only
- There lacks a unified generation framework for both types of puns.

Our proposed method:

Pun pair: Principal-principle

- A theoretically-motivated approach to *incorporate all three linguistic attributes* of puns to pre-trained LMs.
- A *unified framework* to generate both pun types by converting homographic puns to homophonic ones.
- We hypothesize that there is a learnable structure for puns.
- We first compose a context word and a phrase from non-pun corpus, and then use a pun label predictor to steer the GPT-2 model to produce puns at inference time.

	micipai pi									
-	D2	D1	-		Α		Α			
The	head	teacher	exerc	ises	him	oco	casionally,	,		
D2					Α		D1			
as	the guidi	ing <i>princi</i>	oal of		their		school.			
un pair: T								A	\	Ambiguous
-	D2	<u>)</u>	D1	D	1	Α		 -	D1 Distinct to the	
An	unlu	cky	cab		driver		might			first meaning
	D2		Α	-		Α	Α			(pw)
get in a	ll that ta	xi trouble	e by	forget	ting	to	tell)2	Distinct to the
Α	D1	А		_	Α		D1			second meani
his	passeng	ger how	, n	nuch	he	W	vanted.			(aw)

Figure 1: Two random examples generated by our model, and the predicted labels. The context words and the extracted phrases are in boldface.

2. Methodology

As shown in Figure 2, our framework consists of three parts. **Step 1.** Given the pun word pair, we extract from a non-pun corpus a context word that supports the meaning of the pun word, and

- a phrase that is both characteristic to the alternative word (aw) and compatible with the pun word (pw).
- Step 2. Next, we train a discriminator on existing homophonic pun data to learn the structure of a pun – the type of each word in the sentence.

Step 3. At inference time, a label predictor is used re-rank the tokens generated by the base language model, GPT-2.

Obtaining the Context Words

Goal: look for a context word that is distinct to pw.

Method: Retrieve sentences from a non-pun corpus containing pw. Extract keywords using RAKE. Take the words that uniquely co-occur with the target pun word based on the TF-IDF values.

Retrieving the Characteristic Phrase

Goal: look for an ideal phrase that contains aw and replace it with pw to arouse surprise.

Method: To be characteristic of pw and compatible with aw, run

RoBERTa for mask infilling to obtain the probability of words in the masked position. See Table 1 for a more concrete example.

get in all that <mask> trouble</mask>		
8-1-11-11-11-11-11-11-11-11-11-11-11-11-	✓	\checkmark
an export <mask> on agricultural products</mask>	\checkmark	×
a new <mask> was created</mask>	\checkmark	×
made <mask> deductible against income</mask>	\checkmark	\checkmark

Table 1: An example of the retrieved phrases which are characteristic of the alternative word, 'tax'. The pun-pair is 'tax-taxi'. A ' \checkmark ' means the phrase is compatible with the corresponding word according to our mask in-filling model.

Discriminative Decoding

At each step, we get the predicted type of next token, L, and then re-rank the candidate next words by the corresponding label. 7: if our label predictor is less

Algorithm 1 Discriminative Generation (Single Step)

1: **function** DISCRIMINATIVEGEN

2: Parameters: pun word (pw), alter word (aw), predicted next word label L, confidence c and its threshold T3: $cands = gpt2.gen_next_word(num = N)$ if c > T then if L==A then sort(cands, pw+aw)

if L==D1 then sort(cands, pw)if L==D2 then sort(cands, aw) \triangleright Sort according to semantic relevance in Section 3.2 return cands

confident, we do not intervene in the LM's generation.

4. Migrate to Homographic Puns

punishment

Convert the task of generating homographic puns to homophonic puns by leveraging a reverse dictionary (RD) and a word-sensedisambiguation (WSD) model.

Example: Target pun word: *sentence* Meaning 1: a set of words... Ours Meaning 2: the conviction... Human clause -

Pun pair sentence \Longrightarrow clause-punishment Due to the sentence it is in the United States. Pun-GAN The sentence is ungrammatical. The jury didn't AmbiPun hear it. The language on a two-page sentence for fraud is full of guilt. The judge has got a stutter. Looks like I am not getting a sentence.

5 Ablation

Figure 3: The ambiguity (A), distinctiveness (D1/D2), and surprisal (S) scores. Bar chart showing the improvement after adding each component.

Figure 2: An illustration of our approach. The pw-aw pair (e.g., taxi-tax) is the input, and the target output is a pun sentence. After carefully extracting a context word and a phrase, we train a word-level label predictor to steer the LM's generation. A '-' means the label predictor is less confident and thus we do not intervene the generation process.

3. Label Predictor

Challenge One major challenge for Step 2 is that there are no ground truth labels. To this end, we collect a small amount of human annotations and boost from weak, unsupervised models to stronger, supervised models.

Dataset SemEval 2017 Task 7 (Miller et al., 2017) 1500 human written pun sentences

Ground Truth Label Curation

Unsupervised: Use glove embedding for semantic similarity For a predefined threshold T and every word tw in the sentence, if $|\cos(tw, pw) - \cos(tw, aw)| > T$, label tw as D1/D2. Otherwise, label as A. Achieved 72.9% label accuracy.

Supervised: Finetune a BERT model for classification. Provide this BERT classifier with *less noisy data* so that it can learn the task better than the unsupervised approach. Achieved 84.6% label accuracy.

Training

We train another BERT classifier. Recall that we

Category	A	D1	D2
$\overline{\mathbf{Bert_n}}$	0.81	0.68	0.60
- human labeled train data	- 0.02	- 0.06	- 0.05
+ high confidence (T =0.9)	+0.03	+0.02	+0.05

Table 2: The F1 scores of **Bert**_n and its ablations on human need to predict the *next* annotated testset.

token type, different from the label curation classifier.

2.84

3.13

3.32

4.23

2.03

2.51

2.83

3.87

6 Results

+ label predictor*

+ select*

+ both*

Human

Homophonic Pun	Success	Informative	Funny	
LCR SurGen	39% 42%	2.11 2.74	2.14 2.35	
Base GPT-2 + label predictor* + select* + both*	16% 40% 49% 56%	2.52 2.96 3.35 3.60	1.56 2.04 2.57 2.96	
Human	89%	4.56	4.04	
Homographic Pun	Success	Informative	Funny	
Pun-GAN AmbiPun	20% 44%	1.72 2.76	1.54 2.40	
Base GPT-2	14%	2.17	1.55	

29%

43%

47%

85%

Human Evaluation:

- 1. Pun Success Rate
- 2. Informative (or specific, to avoid general outputs)
- **Funniness Level**

