Howe work 2

(a)
$$yux - xuy = 0$$
 $y = 0$

(b) $yux - xuy = 0$ $y = 0$

(c) $yux - xuy = 0$ $yux - xuy = 0$

(d) $yux - xuy = 0$ $yux - xuy = 0$

(e) $yux - xuy = x$

Howeverk 2

By 2
$$2u_{+} + 3u_{x} = 0$$
 with A.C. $u(x, 0) = 8\pi u(x)$
 $\frac{du}{dv} = 0$ for $v = (2,3)$ or $u = c$ along $y = \frac{5}{2}x + c$
 $\Rightarrow u(x,y) = f(2y - 8\pi u(y)) = f(w) = 8\pi u\left(\frac{w}{2}\right)$
 $\Rightarrow u(x,y) = 8\pi u\left(\frac{2y - 3x}{2}\right) = 8\pi u\left(\frac{x - 3}{2}\right)$

By Solve $au_{x} + bu_{y} + cu = 0$ via $f = 8\pi x + by$, $f = bx - ay$
 $\frac{du}{dx} = \frac{du}{dx} \frac{dx}{dx} + \frac{dy}{dx} \frac{dx}{dx} = au_{x} + bu_{x}$
 $\frac{du}{dx} = bu_{x} - au_{x}$
 $\Rightarrow au_{x} + bu_{y} + cu = 0 \Leftrightarrow a^{2}u_{x} + abu_{x} + b^{2}u_{x} - abu_{x}$
 $\Rightarrow au_{x} + bu_{y} + cu = 0 \Leftrightarrow a^{2}u_{x} + abu_{x} + b^{2}u_{x} - abu_{x}$
 $\Rightarrow au_{x} + bu_{y} + cu = 0 \Rightarrow u = C(f) e^{-\frac{c}{a^{2} + b^{2}}}$
 $\Rightarrow u(x,y) = f(bx - ay) e^{-\frac{c}{a^{2} + b^{2}}}$
 $u(x,y) = f(bx - ay) e^{-\frac{c}{a^{2} + b^{2}}}$

Chas. equations (now with indep. vas. called "s") $\begin{cases}
t_{s=1} = t_{s} + f_{s}(\tau) \\
x_{s} = x = t_{s}(\tau)e^{s}
\end{cases}$ $\begin{cases}
u_{s} = u^{3} = t_{s}(\tau)e^{s}
\end{cases}$ $u_{s} = u^{3} = t_{s}(\tau)e^{s}$ and the initial curve $\Gamma(\tau) = d \times_{o} = \overline{\iota}, t_{o} = 0, u_{o} = \sin(\tau)$ We observe: when $t = \frac{1}{2} \cdot \frac{1}{\sin^2(xe^+)}$ => 81/2 (xe+) = 1 our polution blows up.