CONTENTS

Contents

	Unbiased Implicit Variational Inference 1.1 Analysis	2 3
2	Semi-implicit variational inference	4
3	Hierarchical variational inference	4
4	Other references	5

1 Unbiased Implicit Variational Inference

Based on Titsias and Ruiz [5].

- Authors introduce unbiased implicit variational inference (UIVI) that defines a flexible variational family. Like semi-implicit variational inference (SIVI), UIVI uses an implicit variational distribution $q_{\theta}(z) = \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon$ where $q_{\theta}(z|\varepsilon)$ is a reparameterizable distribution whose parameters can be outputs of some neural network g, i.e., $q_{\theta}(z|\varepsilon) = h(u; g(\varepsilon;\theta))$ with $u \sim q(u)$. Under two assumptions on the conditional $q_{\theta}(z|\varepsilon)$, the ELBO can be approximated via Monte Carlo sampling. In particular, the entropy component of the ELBO can be rewritten as an expectation w.r.t. the reverse conditional $q_{\theta}(\varepsilon|z)$. Efficient approximation of this expectation w.r.t. the reverse conditional is done by reusing samples from approximating the main expectation to initialize a MCMC sampler.
- Questions: TODO
 - 1. Can the gradient be pushed into the expectation? (Section 2.2)
- In SIVI, the variational distribution $q_{\theta}(z)$ is defined as

$$q_{\theta}(z) = \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon$$

where $\varepsilon \sim q(\varepsilon)$.

- UIVI:
 - Like SIVI, UIVI uses an implicit variational distribution $q_{\theta}(z)$ whose density cannot be evaluated but from which samples can be drawn. Unlike SIVI, UIVI directly maximizes the ELBO rather than a lower bound.
 - The dependence of $q_{\theta}(z|\varepsilon)$ on ε can be arbitrarily complex. Titsias and Ruiz [5] take the parameters of a reparameterizable distribution (Assumption 1) as the output of a neural network with parameters θ that takes ε as input, i.e.,

$$z = h(u; g_{\theta}(\varepsilon)) = h_{\theta}(u; \varepsilon)$$

where $u \sim q(u)$ and g_{θ} is some neural network. It is also assumed that $\nabla_z \log q_{\theta}(z|\varepsilon)$ can be evaluated (Assumption 2).

- The gradient of the ELBO is given by

$$\begin{split} \nabla_{\theta} \mathcal{L}(\theta) &= \nabla_{\theta} \mathbb{E}_{q_{\theta}(z)} \left[\log p(x,z) - \log q_{\theta}(z) \right] \\ &= \nabla_{\theta} \int \left(\log p(x,z) - \log q_{\theta}(z) \right) q_{\theta}(z) dz \\ &= \int \nabla_{\theta} \left(\left(\log p(x,z) - \log q_{\theta}(z) \right) q_{\theta}(z) \right) dz \\ &= \int \nabla_{\theta} \left(\left(\log p(x,z) - \log q_{\theta}(z) \right) \int q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon \right) dz \\ &= \int \int \nabla_{\theta} \left(\left(\log p(x,z) - \log q_{\theta}(z) \right) \Big|_{z=h_{\theta}(u;\varepsilon)} \right) q(u) q(\varepsilon) d\varepsilon du \\ &= \mathbb{E}_{q(\varepsilon)q(u)} \left[\nabla_{z} \log p(x,z) \Big|_{z=h_{\theta}(u;\varepsilon)} \nabla_{\theta} h_{\theta}(u;\varepsilon) \right] - \mathbb{E}_{q(\varepsilon)q(u)} \left[\nabla_{z} \log q_{\theta}(z) \Big|_{z=h_{\theta}(u;\varepsilon)} \nabla_{\theta} h_{\theta}(u;\varepsilon) \right] \; . \end{split}$$

(TODO: where is $\mathbb{E}_{q_{\theta}(z)}[\nabla_{\theta} \log q_{\theta}(z)] = 0$ applied?) (Gradient can be pushed into expectation using DCT.) As $\nabla_z \log q_{\theta}(z)$ cannot be evaluated, this gradient is rewritten as an expectation

using the log-deritative identity: $\nabla_x \log f(x) = \frac{1}{f(x)} \nabla_x f(x)$:

$$\begin{split} \nabla_z \log q_\theta(z) &= \frac{1}{q_\theta(z)} \nabla_z q_\theta(z) \\ &= \frac{1}{q_\theta(z)} \nabla_z \int q_\theta(z|\varepsilon) q(\varepsilon) d\varepsilon \\ &= \frac{1}{q_\theta(z)} \int \nabla_z q_\theta(z|\varepsilon) q(\varepsilon) d\varepsilon \\ &= \frac{1}{q_\theta(z)} \int q_\theta(z|\varepsilon) q(\varepsilon) \nabla_z \log q_\theta(z|\varepsilon) d\varepsilon \\ &= \int q_\theta(\varepsilon|z) \nabla_z \log q_\theta(z|\varepsilon) d\varepsilon \\ &= \mathbb{E}_{q_\theta(\varepsilon|z)} \left[\nabla_z \log q_\theta(z|\varepsilon) \right] \;. \end{split}$$

 $\nabla_z \log q_\theta(z|\varepsilon)$ can be evaluated by assumption.

• UIVI estimates the gradient of the ELBO by drawing S samples from $q(\varepsilon)$ and q(u) (in practice, S=1):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \left(\nabla_{z} \log p(x,z) \big|_{z=h_{\theta}(u_{s},\varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s};\varepsilon_{s}) - \mathbb{E}_{q_{\theta}(\varepsilon|z)} \left[\nabla_{z} \log q_{\theta}(z|\varepsilon) \right] \big|_{z=h_{\theta}(u_{s};\varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s};\varepsilon_{s}) \right) .$$

To estimate the inner expectation, samples are drawn from the reverse conditional $q_{\theta}(\varepsilon|z) \propto q_{\theta}(z|\varepsilon)q(\varepsilon)$ using MCMC. Exploiting the fact that (z_s, ε_s) comes from the joint $q_{\theta}(z, \varepsilon)$, UIVI initializes the MCMC at ε_s so no burn-in is required. A number of iterations are run to break the dependency between ε_s and the ε_s' that is used to estimate the inner expectation.

1.1 Analysis

TODO: analyze the (best-case) approximation of UIVI. Questions:

- 1. Approach? Probabilistic bound on KL as function of ELBO optimization iteration?
- 2. How to deal with implicit mixing component? Do surrogate families simpler than neural networks help? What assumptions would be needed?

2 Semi-implicit variational inference

Based on Yin and Zhou [6].

SIVI is addresses the issues of classical VI attributed to the requirement of a conditionally conjugate variational family by relaxing this requirement to allow for implicit distributional families from which samples can be drawn. This implicit family consists of hierarchical distributions with a mixing parameter. While the distribution conditioned on the mixing parameter is required to be analytical and reparameterizable, the mixing distribution can be arbitrarily complex. The use of such a variational family also addresses the problems of conventional mean-field families as dependencies between the latent variables can be introduced through the mixing distribution.

The objective in SIVI is a surrogate ELBO that is only exact asymptotically and otherwise a lower bound of the ELBO [2]. Like in black box VI, the gradients are rewritten as expectations and estimated via Monte Carlo samples.

Molchanov et al. [2] extends SIVI to doubly SIVI for variational inference and variational learning in which both the variational posterior and the prior are semi-implicit distributions. They also show that the SIVI objective is a lower bound of the ELBO.

Molchanova et al. [3] and Moens et al. [1] comment that SIVI and UIVI struggle in high-dimensional regimes. MCMC methods also have high variance [1].

Moens et al. [1] introduce compositional implicit variational inference (CI-VI), which rewrites the SIVI ELBO as a compositional nested form $\mathbb{E}_{\nu} \left[f_{\nu} \left(\mathbb{E}_{\omega} \left[g_{\omega}(\theta) \right] \right) \right]$. The gradient involves estimated the nested expectations, for which a simple Monte-Carlo estimator would be biased. CI-VI uses an extrapolation-smoothing scheme for which the bias converges to zero with iterations. In practice, the gradient involves matrix-vector products that are expensive but can be approximated via sketching techniques. Under certain assumptions, convergence of the CI-VI algorithm is proved in terms of the number of oracle calls needed to convergence (TODO).

3 Hierarchical variational inference

Based on Ranganath et al. [4].

Predating SIVI and UIVI, HVM first(?) addressed the restricted variational family issue of classical VI by using a hierarchical variational distribution which is enabled by BBVI. HVM considers a mean-field variational likelihood and a variational prior that is differentiable (e.g., a mixture or a normalizing flow). HVM also optimizes a lower bound of the ELBO that is constructed using a recursive variational distribution that approximates the variational prior.

4 Other references

VI review:

- Advances in Variational Inference (2019)
- Variational Inference: A Review for Statisticians (2017)
- Black Box Variational Inference (2013): dominated convergence theorem used to push gradient into expectation

Possibly related VI approaches/of interest

• Semi-Implicit Variational Inference (2018)

Doubly Semi-Implicit Variational Inference (2019)

Structured Semi-Implicit Variational Inference (2019): mentions that previous methods scale exponentially with dimension of the latent variables. Imposes that the high-dimensional semi-implicit distribution factorizes into a product of low-dimensional conditional semi-implicit distributions and shows that the resulting entropy bound is tighter than that of SIVI's and consequently a tighter ELBO objective.

Efficient Semi-Implicit Variational Inference (2021)

- Variational Inference using Implicit Distributions (2017): implicit with density ratio estimation?
- Importance Weighted Hierarchical Variational Inference (2019)
- Stochastic Normalizing Flows (2020)

Theory/analysis

• Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference (2021)

Statistical and Computational Properties of Variational Inference (2021; thesis)

- Theoretical Guarantees of Variational Inference and Its Applications (2020; thesis)
- Contributions to the theoretical study of variational inference and robustness (2020; thesis)
- On Statistical Optimality of Variational Bayes (2018)
 Statistical guarantees for variational Bayes (2021; slides)
- Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting (2020)
- Robust, Accurate Stochastic Optimization for Variational Inference (2020) iterates as MCMC?
- Convergence Rates of Variational Inference in Sparse Deep Learning (2019)
 On the Convergence of Extended Variational Inference for Non-Gaussian Statistical Models (2020)

REFERENCES REFERENCES

References

[1] Vincent Moens, Hang Ren, Alexandre Maraval, Rasul Tutunov, Jun Wang, and Haitham Ammar. Efficient semi-implicit variational inference. arXiv preprint arXiv:2101.06070, 2021.

- [2] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and Dmitry Vetrov. Doubly semi-implicit variational inference. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 2593–2602. PMLR, 2019.
- [3] Iuliia Molchanova, Dmitry Molchanov, Novi Quadrianto, and Dmitry Vetrov. Structured semi-implicit variational inference. 2019.
- [4] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In *International conference on machine learning*, pages 324–333. PMLR, 2016.
- [5] Michalis K Titsias and Francisco Ruiz. Unbiased implicit variational inference. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 167–176. PMLR, 2019.
- [6] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In *International Conference on Machine Learning*, pages 5660–5669. PMLR, 2018.