UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Midtveiseksamen i kurs: FYS1120 Elektromagnetisme.

Eksamensdag: Onsdag 12. oktober 2011.

Tid for eksamen: 15:00 - 18:00 Oppgavesettet er på: 2 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Angell (eller Øgrim) og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Godkjent elektronisk kalkulator

Et A4-ark med egne notater, gjerne skrevet på begge sider

Kontrollér at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

To elektriske punktladninger er plassert i xy-planet som vist i figuren. Ladningen $Q_1 = 0.2 \,\mathrm{nC}$ er plassert i origo, mens ladningen $Q_2 = 3.2 \,\mathrm{nC}$ befinner seg i punktet med koordinater (3.0, 4.0) målt i enheter av cm.

a) Beregn størrelsen av det elektriske feltet i punktet P vist i figuren. Det ligger på den negative x-aksen 1.0 cm fra origo. Bruk her verdien $1/4\pi\varepsilon_0 = 9.0 \times 10^9 \,\mathrm{Nm^2/C^2}$ for permittivitetskonstanten i vakuum.

- b) Vis at feltet er null i et punkt P' (som ikke ligger i det uendelige) og finn koordinatene (x', y') til dette punktet.
- c) En ladning $Q_3=1.0\,\mathrm{nC}$ bringes inn til dette punktet P' fra det uendelige. Hvor stort arbeid (målt i eV) må da utføres?

Oppgave 2

En elektrisk krets er koblet sammen som vist i figuren. Batteriet har en EMS på $\mathcal{E} = 6.0 \,\mathrm{V}$ og hver av de tre motstandene har verdien $R = 2.0 \,\Omega$. Kondensatoren

C har kapasiteten $C=2.5\,\mu\mathrm{F}$ og er opprinnelig uladet. Bryteren B slåes på ved tidspunktet t=0.

- a) Hva blir spenningen over kondensatoren like etter at bryteren er slått på?
- b) Beregn strømmen som batteriet da leverer.
- c) Hvor stor er denne strømmen blitt etter at bryteren har stått på veldig lenge?
- d) Hva er da spenningen over kondensatoren?

Oppgave 3

En elektrisk strøm $I=10\,\mathrm{A}$ går i en rett ledningen som ligger langs z-aksen. Utenfor ledningen oppstår det derved et magnetfelt som kan skrives som

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I(x\mathbf{e}_y - y\mathbf{e}_x)}{2\pi r^2}$$

hvor $\mu_0/4\pi = 1.0 \times 10^{-7} \,\mathrm{Tm/A}$ er permeabiliteten til vakuum og $r = (x^2 + y^2)^{1/2}$.

- a) Skissér feltlinjene og vis at divergensen til feltet er null, det vil si at $\nabla \cdot \mathbf{B} = 0$.
- b) En stråle av elektroner med hastighet $v = 5.0 \times 10^6 \,\mathrm{m/s}$ blir skutt inn parallelt til z-aksen. Beskriv hvordan strålen blir avbøydd av den magnetiske kraften.
- c) For å forhindre denne avbøyningen, skal det plasseres en elektrisk overflateladning på ledningen. Vis hvordan det kan fungere og finn størrelsen av den linjeladningen λ som behøves, i enheter av C/m.