

XIV Международный научный студенческий конгресс

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Егор Лича ПМ21-5

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Автор: Егор Личак ПМ21-5 Научный руководитель: д.ф.-м.н, профессор, П. Е. Рябов

Финансовый университет при Правительстве Российской Федерации

20 марта 2023 г.

Цели

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

- 1. Вывести аналитическое выражение для мощности F-критерия однофакторного дисперсионного анализа.
- 2. Разработать функционал для проведения однофакторного дисперсионного анализа в $Jupyter\ Notebook$.
- 3. Сформулировать предположение о состоятельности и несмещенности критерия.

Модель

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Егор Личан ПМ21-5

Случайные выборки

Олучанные выобрын					
$\overrightarrow{X_1}$	$\overrightarrow{X_2}$	•••	$\overrightarrow{X_j}$	•••	$\overrightarrow{X_k}$
1	2	•••	j	•••	k
X_{11}	X_{12}	•••	X_{1j}	•••	X_{1k}
X_{21}	X_{22}	•••	X_{2j}	•••	X_{2k}
		•		•	
		•	X_{ij}	•	
•	•	•	•	•	•
•••	•••	••	$X_{n_j j}$	•	X_{n_jk}
•		•		•	
			X_{ij}		
•	•	•		•	•
•••	•••	•••	•••	•••	$X_{n_k k}$

Гипотеза однородности:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k = \mu$$

 $H_1: \exists i, j: \mu_i \neq \mu_j$

минансовый **Критерий**

К вопросу вычисления мощности **F**-критерия олнофакторного лисперсионного анализа.

Обозначения

$$SSE = \sum\limits_{j=1}^k \sum\limits_{i=1}^{n_j} (X_{ij} - \overline{X_j})^2$$
 – внутригрупповая сумма квадратов;

$$SSTR = \sum\limits_{i=1}^k (\overline{X_i} - \overline{X})^2 \cdot n_j$$
 – межгрупповая сумма квадратов;

$$\mathbb{F}=rac{SSTR/(k-1)}{MSE/(n-k)}$$
 — статистика критерия с правосторонней критической областью

$$K_{\alpha} = \{x_{ij} : \mathbb{F} > f_{\alpha}(k-1, n-k)\}.$$

финансовый Доказательство

К вопросу **F**-критерия олнофакторного лисперсионного анализа.

Лемма 1: Вне зависимости от верности гипотез H_0 или H_1 случайная величина $\frac{SSE}{r^2} \sim \chi^2(n-k)$.

Лемма 2: Вне зависимости от верности гипотез H_0 или H_1 статистика $\frac{SSTR}{\sigma^2} \sim \chi'^2(l,\lambda)$ — **нецентральное** распределение хи-квадрат с l степенями свободы и параметром нецентральности λ .

Лемма 3:
$$SSTR = \sum\limits_{j=1}^k (\overline{X_j} - \mu_w)^2 \cdot n_j - n \cdot (\overline{X} - \mu_w)^2$$
, где через $\mu_w = \frac{1}{n} \sum\limits_j^k n_j \cdot \mu_j$ обозначено взвешенное среднее по всем выборкам.

$$extstyle extstyle ex$$

Основные теоремы

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Егор Лича: ПМ21-5

Аналитическое выражение для мощности критерия

 ${
m \underline{Teopema~2:}}$ Если верна гипотеза H_1 , то $\mathbb{F}=MSTR/MSE\sim F'(k-1,n-k,\lambda)$ —

нецентральное распределение Фишера, где $\lambda = \frac{\sum\limits_{j=1}^{\infty}(\mu_j - \mu_w)^2 \cdot n_j}{\sigma^2}$ — параметр нецентральности. При этом, мощность критерия определяется следующей формулой:

$$W=1-F_{\mathbb{F}}'(f_{\alpha}(k-1,n-k))$$
.

Здесь через $F_{\mathbb{F}}'(\cdot)$ обозначена функция нецентрального распределения Фишера статистики критерия \mathbb{F} .

Имплементация на Python

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Имплементация на Python

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Имплементация на Python

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

Список Литературы

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

- 1. $Keh\partial aлл M., Cmью apm A.$ "Том 2. Статистические выводы и связи" 1973.
- $2.\Gamma$. Ше $\phi \phi e$ "Дисперсионный анализ", 1980.
- $3. Douglas\ C.\ Montgomery, George\ C.\ Runger\ "Applied\ Statistics\ and\ Probability\ for\ Engineers",\ 2002$
- 4.Интернет источник:
- https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
- $5.\Pi.\,E.\,$ Рябов "Лекции по теории вероятностей и математической статистике", 2022.

К вопросу аналитического вычисления мощности F-критерия однофакторного дисперсионного анализа.

> Егор Личан ПМ21-5

Спасибо за внимание