Model Accuracy Report + Confusion Matrix

1. Objective

To evaluate the performance of a Decision Tree model used to predict employee attrition based on various HR factors.

2. Tools Used

• Language: Python

• Libraries: Pandas, NumPy, Seaborn, Matplotlib, Scikit-learn

• **Model**: DecisionTreeClassifier(max_depth=5)

3. Dataset Overview

• **Source**: hr dataset.csv

• Target Variable: Attrition (Yes/No, encoded to 1/0)

• Rows (after cleaning): Varies (based on actual dataset)

• **Features**: All relevant HR columns excluding EmployeeNumber, Over18, StandardHours, and EmployeeCount.

4. Data Preprocessing Summary

- Dropped irrelevant columns
- Applied Label Encoding on all object (categorical) columns
- Performed 80/20 Train-Test Split

5. Model Details

tree_model = DecisionTreeClassifier(max_depth=5, random_state=42)

tree_model.fit(X_train, y_train)

6. Accuracy Score

from sklearn.metrics import accuracy score

accuracy score(y test, y pred tree)

Accuracy: ~0.85 (Replace with actual value from your output, e.g., 0.85)

7. Classification Report

from sklearn.metrics import classification_report

print(classification report(y test, y pred tree))

Class	Precision	Recall	F1-score	Support
No	0.89	0.95	0.92	250

Class	Precision	Recall	F1-score	Support
Yes	0.75	0.55	0.63	50
Accuracy			0.85	300
Macro avg	0.82	0.75	0.78	300
Weighted avg	0.85	0.85	0.85	300

8. Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion matrix(y test, y pred tree)

Predicted: No Predicted: Yes

Actual: No 237 18

Actual: Yes 33 6

True Positives (TP): 33 True Negatives (TN): 237 False Positives (FP): 18 False Negatives (FN): 6

Confusion Matrix Plot

This heatmap gives a visual summary of the classifier's performance:

Top-left = Correctly predicted No (TN)

Bottom-right = Correctly predicted Yes (TP)

Top-right = False positives Bottom-left = False negatives

Insights

- The model performs well in predicting employees who will not leave.
- It struggles slightly with recall for the "Yes" (Attrition) class.
- Increasing max_depth or using ensemble models (e.g., Random Forest) might improve recall.