Riemannian Geometry

for Dummies

Colin Roberts

Section 1

Introduction

Riemannian geometry is the study of a smooth $manifold\ M$ along with a $Riemannian\ metric\ g.$

The point of Riemmannian geometry is to generalize the
differentiable and metric structure of \mathbb{R}^n .

We think of	living on the m	nanifold. We	refer to this	as
intrinsic.	<u> </u>			

We generalize to space	es that have	interesting t	opology and
geometry.			
,			

This will require us to rethink some notions we foun	d "easy"
in \mathbb{R}^n .	

But we will gain a very general framework for working with differentiable objects.

Section 2

Motivation

Example: P	artial differenti	ial equations	(PDEs) on spa	aces
that are not	flat.			

Example: Partial differential equations (PDEs) on spaces that are not flat.

■ Fluid flow on Earth

Example: Partial differential equations (PDEs) on spaces that are not flat.

- Fluid flow on Earth
- Electrical Impedence Tomography (EIT)

Example: Partial differential equations (PDEs) on spaces that are not flat.

- Fluid flow on Earth
- Electrical Impedence Tomography (EIT)
- General relativity

■ Matrix (symmetry) groups

- \blacksquare Matrix (symmetry) groups
- \blacksquare Grassmannians, Flags

- \blacksquare Matrix (symmetry) groups
- \blacksquare Grassmannians, Flags
- \blacksquare Curved spacetime

Example: Rephrasing classical problems.

■ EIT

Example: Rephrasing classical problems.

- EIT
- Polymer growth

Example: Rephrasing classical problems.

- EIT
- Polymer growth
- Electrodynamics

Section 3

Preliminaries

Subsection 1

Smooth Manifolds

- --- -- - - -----

 \blacksquare Start with a topological space M

- \blacksquare Start with a topological space M
- \blacksquare Look at open sets U that cover M

- \blacksquare Start with a topological space M
- \blacksquare Look at open sets U that cover M
- lacktriangle Construct local coordinates φ

- \blacksquare Start with a topological space M
- \blacksquare Look at open sets U that cover M
- \blacksquare Construct local coordinates φ
- Show coordinate transition functions are smooth

 $S^2 \coloneqq \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

Take open sets in \mathbb{R}^m

$$\mathcal{O}_{lpha}$$
 \mathcal{O}_{eta}

Take open sets in \mathbb{R}^m

$$\mathcal{O}_{lpha}$$
 \mathcal{C}

and maps

$$\varphi_{\alpha}: \mathcal{O}_{\alpha} \to U_{\alpha} \subset M \qquad \varphi_{\beta}: \mathcal{O}_{\beta} \to U_{\beta} \subset M.$$

Take open sets in \mathbb{R}^m

$$\mathcal{O}_{lpha}$$
 \mathcal{O}

and maps

$$\varphi_{\alpha} : \mathcal{O}_{\alpha} \to U_{\alpha} \subset M \qquad \varphi_{\beta} : \mathcal{O}_{\beta} \to U_{\beta} \subset M.$$

These are our *local coordinates*.

Our local coordinates must work together on overlaps

$$U_{\alpha} \cap U_{\beta}$$
.

Our local coordinates must work together on overlaps

$$U_{\alpha} \cap U_{\beta}$$
.

We check the transition function

$$\phi_{\alpha\beta} = \varphi_{\alpha}^{-1} \circ \varphi_{\beta}$$

is smooth and invertible as a function on \mathbb{R}^m .

Subsection 2

Vector Fields

Vector fields on \mathbb{R}^m are functions $\vec{f} : \mathbb{R}^m \to \mathbb{R}^m$.

Vector fields on \mathbb{R}^m are functions $\vec{f}: \mathbb{R}^m \to \mathbb{R}^m$.

Intrinsic vector fields on manifolds carry geometric information.

Our To-Do List:

 \blacksquare Construct the tangent space T_pM

Our To-Do List:

- Construct the tangent space T_pM
- Glue together tangent spaces to form the *tangent* bundle TM

Our To-Do List:

- Construct the tangent space T_pM
- Glue together tangent spaces to form the *tangent* bundle TM
- lacktriangle Properly define vector fields X as sections of the tangent bundle

■ Start with a curve $\gamma(-1,1) \to M$ with $\gamma(0) = p$

- Start with a curve $\gamma(-1,1) \to M$ with $\gamma(0) = p$
 - Find the velocity vector $\dot{\gamma} = \frac{d\gamma}{dt}\Big|_{t=0}$

- Start with a curve $\gamma(-1,1) \to M$ with $\gamma(0) = p$
- Find the velocity vector $\dot{\gamma} = \frac{d\gamma}{dt}\Big|_{t=0}$ \blacksquare This defines a tangent vector at p

- Start with a curve $\gamma(-1,1) \to M$ with $\gamma(0) = p$
- Find the velocity vector $\dot{\gamma} = \frac{d\gamma}{dt}\Big|_{t=0}$

■ All possible tangent vectors form the tangent space

- \blacksquare This defines a tangent vector at p

 $T_{p}M$.

We need to understand how tangent vectors on M relate to vectors in our local coordinates φ .

■ The differential $d\varphi$ is a map of tangent vectors

We need to understand how tangent vectors on M relate to vectors in our local coordinates φ .

- The differential $d\varphi$ is a map of tangent vectors
- If $\varphi(x) = p$, then $d\varphi(x)$: $T_x \mathbb{R}^m \to T_p M$

■ We need to understand how different tangent spaces relate

- We need to understand how different tangent spaces
- relate ■ Properly gluing tangent spaces T_pM to the manifold M

allows us to build a larger manifold TM.

- We need to understand how different tangent spaces relate
- Properly gluing tangent spaces T_pM to the manifold M
- allows us to build a larger manifold TM.

the whole manifold.

■ This allows us to see how tangent vectors move around

We briefly drop a dimension to the 1-sphere

 $S^1 \coloneqq \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

■ Points in TM are (p, v) with $p \in M$ and $v \in T_pM$

- Points in TM are (p, v) with $p \in M$ and $v \in T_pM$
- So, a function $X: M \to TM$ selects a tangent vector at every point

■ Points in TM are (p, v) with $p \in M$ and $v \in T_pM$

■ For example, $X_p = v \in T_p M$

- So, a function $X: M \to TM$ selects a tangent vector at
- every point

- Points in TM are (p, v) with $p \in M$ and $v \in T_pM$
- So, a function $X: M \to TM$ selects a tangent vector at
- every point
- For example, $X_p = v \in T_pM$

■ We have the projection π : $TM \to M$ by $\pi(p, v) = p$

- Points in TM are (p, v) with $p \in M$ and $v \in T_pM$
- So, a function $X: M \to TM$ selects a tangent vector at every point
- For example, $X_p = v \in T_pM$
- We have the projection π : $TM \to M$ by $\pi(p, v) = p$

■ X is a section if $\pi \circ X = \mathrm{Id}_{\mathrm{M}}$ (vertical line test)

Subsection 3

Specific Coordinates

We should work with specific coordinates on S^2 .

■ We can take a vector field in \mathbb{R}^m and push it forward onto M

- We can take a vector field in \mathbb{R}^m and push it forward onto M
- onto M• We extend the differential $d\varphi(x): T_xM \to T_pM$ to a

map on bundles

- We can take a vector field in \mathbb{R}^m and push it forward
- onto M
- We extend the differential $d\varphi(x)$: $T_xM \to T_pM$ to a

■ This bundle map $\varphi_*: T\mathbb{R}^m \to TM$ is the *pushforward*

map on bundles

Section 4

Riemannian Geometry

■ Build an inner product on the tangent space T_pM ;

- Build an inner product on the tangent space T_pM ;
- Have the inner product vary smoothly as we vary the point p;

- Build an inner product on the tangent space T_pM ;
- Have the inner product vary smoothly as we vary the point p;
- \blacksquare Define this as our Riemannian metric tensor field g;

- Build an inner product on the tangent space T_pM ;
- Have the inner product vary smoothly as we vary the point p;
- \blacksquare Define this as our Riemannian metric tensor field g;
- Extract geometrical and analytical qualities of the underlying manifold M.

Subsection 1

Riemannian Metric

We use the differential and dot product to form a matrix at

each point

 $g_{ij}(x) = d\varphi(x)e_i \cdot d\varphi(x)e_j$.

We use the differential and dot product to form a matrix at each point

$$g_{ii}(x) = d\varphi(x)e_i \cdot d\varphi(x)e_i.$$

This matrix is the *Riemannian metric*.

Riemannian metric provides an inner product for tangent vectors on M. Thus, we know

- how lengths are distorted;
- how volume is distorted.

This allows us to integrate or differentiate in our coordinates but think of it as intrinsic to the manifold.

■ The Riemannian metric gives us a distance function d(p,q) on M

- The Riemannian metric gives us a distance function d(p,q) on M
 - Compute this by finding the length of the shortest curve

$$\gamma: [0,1] \to M$$
 $\gamma(0) = p, \gamma(1) = q$

- \blacksquare The Riemannian metric gives us a distance function d(p,q) on M
- Compute this by finding the length of the shortest curve

$$\gamma: [0,1] \to M$$
 $\gamma(0) = p, \ \gamma(1) = q$

We need to solve

$$\inf_{\gamma} \ell(\gamma) \coloneqq \int_{0}^{1} \sqrt{g(\dot{\gamma}, \dot{\gamma})} dt$$

■ Reminder: in \mathbb{R}^m , the speed of a curve is $\sqrt{\dot{\gamma},\dot{\gamma}}$

■ Reminder: in \mathbb{R}^m , the speed of a curve is $\sqrt{\dot{\gamma},\dot{\gamma}}$

 $g(\dot{\gamma}, \dot{\gamma})$ is the speed on M

■ Reminder: in \mathbb{R}^m , the speed of a curve is $\sqrt{\dot{\gamma},\dot{\gamma}}$

■ We put $g(\dot{\gamma}, \dot{\gamma})$ to mean $\sum_{i,j=1}^{m} g_{ij} \dot{\gamma}_i \dot{\gamma}_j$.

 $g(\dot{\gamma}, \dot{\gamma})$ is the speed on M

Solving this optimization problem yields the geodesic equation

$$\ddot{x}^l + \dot{x}^j \dot{x}^k \Gamma^l_{ik} = 0$$

where Γ_{jk}^l are the *Christoffel symbols* which are formed by derivatives of the metric.

This defines an intrinsic derivative ∇ called the	
Levi-Civita connection	

- Since we know how vectors are transformed, combining
- those describes transformed volumes.

- Since we know how vectors are transformed, combining those describes transformed volumes.
- The determinant gives us area information.

- Since we know how vectors are transformed, combining those describes transformed volumes.
- The determinant gives us area information.

■ Then $\sqrt{|\det(g(x))|}$ gives us the volume on M

In spherical coordinates, $\sqrt{|\det(g)|} = \sin \varphi$ which gives us the integrand

and $\sin arphi darphi d heta.$

Section 5

Conclusions

 \blacksquare We constructed a smooth manifold M

 \blacksquare We constructed a smooth manifold M

lacktriangle We generalized vector fields X to M

- lacktriangle We constructed a smooth manifold M
- \blacksquare We generalized vector fields X to M

fields

• We created an inner product g on M to measure these

- lacktriangle We constructed a smooth manifold M
- \blacksquare We generalized vector fields X to M
- We created an inner product g on M to measure these fields

■ No measurement depends on the choice of coordinates

lacksquare g allows us to measure vectors and understand the geometry of M in coordinates φ

- \blacksquare g allows us to measure vectors and understand the geometry of M in coordinates φ
- geometry of M in coordinates φ Hence, we can define lengths and volumes

- \blacksquare g allows us to measure vectors and understand the geometry of M in coordinates φ

■ Hence, we can define lengths and volumes

■ Thus, we can integrate

- $\blacksquare \ g$ induces a derivative ∇
- $\blacksquare g$ induces a Laplacian Δ

- \blacksquare g induces a derivative ∇
- $\blacksquare \ g$ induces a Laplacian Δ
- \blacksquare g provides an intrinsic length function on M

