PRACA DOMOWA I

imię i nazwisko

Zadanie 1 Wyznacz pochodne cząstkowe drugiego rzędu
$$z''_{xx}$$
, z''_{xy} oraz z''_{yy} jeśli: (a) $z = x \ln \frac{x}{y}$, (b) $z = \frac{x-y}{2x+3y}$, (c) $z = \arcsin\left(\frac{x}{y}\right)$, (d) $z = (2x+3y) \arctan\left(xy\right)$

odpowiedzi:

(a)
$$z'_x = 1 + \ln \frac{x}{y}, \ z'_y = -\frac{x}{y}, \ z''_{xx} = \frac{1}{x}, \ z''_{xy} = -\frac{1}{y}, \ z''_{yy} = \frac{x}{y^2}$$

(b) $z'_x = \frac{5y}{(2x+3y)^2}, \ z'_y = -\frac{5x}{(2x+3y)^2}, \ z''_{xx} = -\frac{20y}{(2x+3y)^3}, \ z''_{xy} = \frac{5(2x-3y)}{(2x+3y)^3}, \ z''_{yy} = \frac{30x}{(2x+3y)^3}$
(c) $z'_x = \frac{1}{\sqrt{y^2-x^2}}, \ z'_y = -\frac{x}{y\sqrt{y^2-x^2}}, \ z''_{xx} = \frac{x}{y^3\left(1-\frac{x^2}{y^2}\right)^{3/2}}, \ z''_{xy} = -\frac{1}{\sqrt{1-\frac{x^2}{y^2}}(y^2-x^2)}, \ z''_{yy} = \frac{2xy^2-x^3}{y^3\sqrt{1-\frac{x^2}{y^2}}(y^2-x^2)}, \ (d) \ z'_x = \frac{y(2x+3y)}{x^2y^2+1} + 2 \arctan(xy), \ z'_y = \frac{x(2x+3y)}{x^2y^2+1} + 3 \arctan(xy), \ z''_{xx} = \frac{4y-6xy^4}{(x^2y^2+1)^2}, \ z''_{xy} = \frac{4x+6y}{(x^2y^2+1)^2}, \ z''_{xy} = \frac{6x-4x^4y}{(x^2y^2+1)^2}, \ z''_{xy} = \frac{4x+6y}{(x^2y^2+1)^2}, \ z''_{xy} = \frac{4x+6$

(d)
$$z'_x = \frac{y(2x+3y)}{x^2y^2+1} + 2 \arctan(xy), \ z'_y = \frac{x(2x+3y)}{x^2y^2+1} + 3 \arctan(xy), \ z''_{xx} = \frac{4y-6xy^4}{(x^2y^2+1)^2}, \ z''_{xy} = \frac{4x+6y}{(x^2y^2+1)^2}, \ z''_{yy} = \frac{6x-4x^4y}{(x^2y^2+1)^2}$$

Zadanie 2 Wyznacz ekstrema lokalne funkcji:

(a)
$$z = -x^2 + 4xy + 10x - 8y^2 - 4y + 3$$
, (b) $z = -3x^3 - 8x^2 - 2xy + 9x + y^2 - 2y + 6$, (c) $z = -4x^2y + x^2 - 4y^3 + 3y$, (d) $z = \frac{1}{x^2} + \frac{1}{y^2} + 2xy$

(c)
$$z = -4x^2y + x^2 - 4y^3 + 3y$$
, (d) $z = \frac{1}{x^2} + \frac{1}{y^2} + 2xy$

odpowiedzi:

- (a) punkty krytyczne: P(9,2), H(P)=16, $z''_{xx}(P)=-2$
- (b) punkty krytyczne: $P_1\left(-\frac{7}{3}, -\frac{4}{3}\right)$, $P_2\left(\frac{1}{3}, \frac{4}{3}\right)$, $H(P_1) = 48$, $z''_{xx}(P_1) = 26$, $H(P_2) = -48$
- (c) punkty krytyczne: $P_1\left(0, -\frac{1}{2}\right)$, $P_2\left(0, \frac{1}{2}\right)$, $P_3\left(-\frac{3}{4}, \frac{1}{4}\right)$, $P_4\left(\frac{3}{4}, \frac{1}{4}\right)$, $H(P_1) = 72$, $z''_{xx}(P_1) = 6$, $H(P_2) = 24$, $z''_{xx}(P_2) = -2$, $H(P_3) = -36$, $H(P_4) = -36$ (d) punkty krytyczne: $P_1(-1, -1)$, $P_2(1, 1)$, $H(P_1) = 32$, $z''_{xx}(P_1) = 6$, $H(P_2) = 32$, $z''_{xx}(P_2) = 6$

Zadanie 2

- (a) W oparciu o rachunek różniczkowy wyznacz odległość punktu P(0,0,8) od płaszczyzny 2x y + 2z + 2.
- (b) Pudełko ozdobne o pojemności 20 litrów zostało pomalowane dwoma różnymi rodzajami farb : dno farbą pierwszego rodzaju, pozostałe ściany farbą drugiego rodzaju. Wiedząc, że cena farby pierwszego rodzaju wynosi 1 zł za pomalowanie $1 \, \mathrm{dm}^2$, a cena farby drugiego drugiego rodzaju wynosi 4 zł za pomalowanie $1 \, \mathrm{dm}^2$ wyznacz wymiary pudełka o minimalnej cenie.
- (c) Układ do odcinkowego pomiaru prędkości oblicza jej średnią wartość w oparciu o wzór $v=\frac{s}{t}$, gdzie s przebyta droga, t czas, w którym została ona została pokonana. Pewien samochód odcinek s=2 km przebył w czasie 1,5 min, dokładność pomiaru drogi, to $\Delta s=5$ m, dokładność pomiaru czasu to $\Delta t=10$ s. Oblicz prędkość samochodu na tym odcinku oraz dokładność z jaką została wyznaczona, wynik podaj w km/h.
- (d) Należy wyznaczyć długość przekątnej prostopadłościennej kostki $a \times b \times c = 2 \, \mathrm{cm} \times 2 \, \mathrm{cm} 1 \, \mathrm{cm}$, wzór $d = \sqrt{a^2 + b^2 + c^2}$. Wyznacz także błąd, z jaką tą przekątną wyznaczono, jeśli pomiarów długości krawędzi prostopadłościanu dokonano z dokładnością 0,1 cm.

odpowiedzi:

- (a) odległość: 2, (b) wymiary pudełka (w decymetrach): $a = 2\sqrt[3]{4}$, $b = 2\sqrt[3]{4}$, $c = \frac{5}{4}\sqrt[3]{4}$,
- (c) $v = 80 \frac{\text{km}}{\text{h}}$, $\Delta v \approx 9.09 \frac{\text{km}}{\text{h}}$, (d) d = 3 cm, $\Delta d \approx 0.17 \text{ cm}$.

Zadanie 4 Oblicz całki podwójne po podanych obszarach:

- (a) ∫∫ xydxdy, gdzie D: trójkąt ABC, A(0,0), B(1,-2), C(1,4),
 (b) ∫∫ (x + y)dxdy, gdzie D: obszar ograniczony liniami x + y = 1, x y = 1, y = 1,
 (c) ∫∫ xe^ydxdy, gdzie D: obszar ograniczony liniami y = x, y = x²,
 (d) ∫∫ xdxdy, gdzie D: obszar ograniczony okręgiem x² + y² = 1, przy czym x ≥ 0.

odpowiedzi:

(a) $\frac{3}{2}$, (b) $\frac{5}{3}$, (c) $\frac{3}{2} - \frac{e}{2}$, (d) $\frac{2}{3}$,

