Procedimiento:

Al conectar el circuito en el medio interpuesto entre los electrodos (agua potable) se estaciona dos campos, uno de carácter escalar el <u>potencial eléctrico</u> y otro de carácter vectorial el <u>campo</u> <u>eléctrico</u>

Entre los electrodos existirá una diferencia de potencial V, igual a la de la fuente (14v), medida con el voltímetro.

A. Trazado de equipotenciales:

Para lo cual se realiza un relevamiento de los potenciales pares, confeccionados en una tabla. En la hoja milimetrada se agregan las trazas de los electrodos que corresponden a las equipotenciales de 0 V y 14 V.

Con la punta de prueba se selecciona puntos de igual potencial entre los electrodos y se anota las coordenadas X e Y identificados con el auxilio del papel milimetrado, y el potencial indicado por el voltímetro.

Tomamos 7 puntos con igual potencial, para poder graficar cada línea equipotencial.

Volt	Lectura N°	1	2	3	4	5	6	7
	Coordenada	cm	cm	cm	cm	cm	cm	cm
2	X	15	15	14,8	13,5	11,4	8,4	7
	Y	2	4	6	9	12	15,5	18
4	X	17	16,8	16,4	15,4	13,8	12,2	11,3
	Y	2	4	6	9	12	15,5	18
6	X	19,2	18,9	18,3	17,2	15,9	14,9	14,3
	Y	2	4	6	9	12	15,5	18
8	X	22	21,3	20,4	19,1	18	17,1	16,8
	Y	2	4	6	9	12	15,5	18
10	X	25,9	24,8	23,2	20,8	19,7	19,2	19
	Y	2	4	6	9	12	15,5	18
12	X Y	2	4	6	23,6 9	12	21,2 15,5	21,1 18

B. Calculo de \vec{E} en un punto

La determinación del campo eléctrico lo hicimos en una zona donde el campo es aproximadamente uniforme, por lo que tomamos un punto perteneciente a una equipotencial (a la de 6 V)

La fórmula establece que: