EVALUATION OF HIGH-TEMPERATURE LUBRICANT UNDER CYCLIC OPERATING CONDITIONS

TFLRF No. 301

Ву

E.A. Frame D.M. Yost

TARDEC Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Under Contract to

U.S. Army TARDEC

Mobility Technology Center-Belvoir

Fort Belvoir, Virginia

Contract No. DAAK70-92-C-0059

Approved for public release; distribution unlimited

19950531 066

May 1995

DTIC QUALITY INSPECTED 1

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

Form Approved OMB No. 0704-0188

3. REPORT TYPE AND DATES COVERED

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

		Interim	
	May 1995	April 1993 to September 199	4
4. TITLE AND SUBTITLE		5.	FUNDING NUMBERS
Evaluation of High-Temperature Lubri-	cant Under Cyclic Operating Con	ditions (U)	AAK70-92-C-0059; WD 19
6. AUTHOR(S)			
Frame, Edwin A. and Yost, Douglas M.	I.		
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army TARDEC Fuels and Lubric Southwest Research Institute	ants Research Facility (SwRI)		
P.O. Drawer 28510			
San Antonio, Texas 78228-0510		TI	TLRF No. 301
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(ES) 10	. SPONSORING/MONITORING AGENCY REPORT NUMBER
Department of the Army Mobility Technology Center-Belvoir 10115 Gridley Road, Suite 128 Ft. Belvoir, Virginia 22060-5843			
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT	12	b. DISTRIBUTION CODE
Approved for public release; distribution	on unlimited		
13. ABSTRACT (Maximum 200 words)			
The performance of a candidate idle, maximum torque, and m compared with previous oil perf	aximum power at interme	ediate and high oil temp	eratures. The results were
Operation at the cyclic condition confirmed the need to incluse specification.			
14. SUBJECT TERMS			15. NUMBER OF PAGES
Lubricant			74
Diesel Engine Low-Heat Rejection			16. PRICE CODE

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

High-Temperature Oil

OF REPORT

Unclassified

17. SECURITY CLASSIFICATION

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

20. LIMITATION OF ABSTRACT

EXECUTIVE SUMMARY

<u>Problems</u>: Future engines for powering U.S. Army ground equipment are expected to require improved or even novel lubricants. Engine oil will be exposed to severe high-temperature environments. Current engine lubricant technology (MIL-L-2104F) is inadequate for future low-heat rejection (LHR) engine requirements. A methodology for defining high-temperature lubricant requirements needs to be developed.

<u>Objective</u>: Only high-temperature, steady-state diesel engine operation had been used in the development of new high-temperature lubricants. The objective of this project was to determine if cyclic operation needed to be included in the evaluation of high-temperature diesel engine lubricants.

<u>Importance of Project</u>: A key limiting technology in the development and fielding of future LHR engines for the U.S. Army is the ability of the engine oil to function at elevated temperatures. Requirements for high engine oil temperature exceed the ability of current generation oils in the areas of thermal/oxidative stability and low deposition rates. In addition to the high-temperature capability, the engine oil must function without loss of performance at low and intermediate oil temperatures encountered during cyclic operation.

<u>Technical Approach</u>: The performance of a candidate high-temperature lubricant was determined under cyclic operating conditions of idle, maximum torque, and maximum power at intermediate and high oil temperatures. The results were compared with previous oil performance results obtained during steady-state, high-temperature operation.

<u>Accomplishments</u>: Operation at the cyclic conditions resulted in approximately twice the piston top groove fill deposits. This result confirmed the need to include cyclic operation requirements in any future high-temperature lubricant specification.

<u>Military Impact</u>: Development of acceptable high-temperature lubricants will allow all the benefits of minimum-cooled diesel engines to be realized. The benefits include improved specific fuel consumption, increased vehicle power density, reduced engine size, and reduced cooling maintenance requirements.

FOREWORD/ACKNOWLEDGEMENTS

This work was performed by the U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, TX, during the period April 1993 to September 1994 under Contract No. DAAK70-92-C-0059 with the U.S. Army TARDEC, Mobility Technology Center-Belvoir (MTCB). Mr. T.C. Bowen (AMSTA-RBFF) of MTCB served as the contracting officer's representative, and Mr. M.E. LePera (AMSTA-RBF) served as the project technical monitor. Cooperative funding for this effort was provided by the Propulsion Systems Division, U.S. Army TACOM, with Mr. Ernest Schwarz (AMSTA-RG) serving as the TACOM project technical monitor.

The authors would like to acknowledge the assistance provided by Cummins Engine Company in supplying the candidate lubricant, and Mr. Scott Richards of SwRI in conducting the high-temperature engine tests.

The aid of Mr. J.W. Pryor and Ms. M.M. Clark of the TFLRF editorial group is gratefully appreciated.

TABLE OF CONTENTS

Sectio	<u>on</u>	<u>Page</u>
I.	INTRODUCTION AND BACKGROUND	1
II.	OBJECTIVE AND APPROACH	1
Ш.	MATERIALS	2
	A. Lubricant	2 2
IV.	EVALUATION	2
	A. Engine	2 7 8
V.	CONCLUSIONS	19
VI.	RECOMMENDATIONS	20
VII.	LIST OF REFERENCES	20
APPE	ENDICES	
	A. Cummins L10 High-Temperature Cyclic Test - Test No. 001	21 31 57
	Hardware Review and Measurements	51

LIST OF ILLUSTRATIONS

<u>Page</u>

<u>Figure</u>

Engine Test Cell Installation Oil Consumption, High-Temperature L10 Test for Oil A-59 Kinematic Viscosity Increase for Oil A-59 Wear Metals for Oil A-59 TBN Depletion for Oil A-59 Top Groove Fill for Oil A-59 TWD for Oil A-59 Liner Crosshatch Remaining for Oil A-59 Liner Heavy Polish for Oil A-59	11 11 12 12 13 13
LIST OF TABLES	
	Page
Oil Properties for Oil A-59 Properties for Test Fuel RDF-7 Engine Specifications for the Cummins L10-330E Engine Parameters Operating Modes of the Modified TVTC The Modified TVTC Procedure Test Condition Specifications Summarized Operating Conditions, Test 002 240-Hour High-Temperature Lubricant Evaluation, Engine Component Average Dimensional Changes Used Oil Properties (Oil A-59, Test 002, 240 Hours) Comparison of Cyclic and Steady-State Tests (Oil A-59)	3 3 5 7 7 8
	Oil Consumption, High-Temperature L10 Test for Oil A-59 Kinematic Viscosity Increase for Oil A-59 Wear Metals for Oil A-59 TBN Depletion for Oil A-59 Top Groove Fill for Oil A-59 TWD for Oil A-59 Liner Crosshatch Remaining for Oil A-59 Liner Heavy Polish for Oil A-59 LIST OF TABLES Oil Properties for Oil A-59 Properties for Test Fuel RDF-7 Engine Specifications for the Cummins L10-330E Engine Parameters Operating Modes of the Modified TVTC The Modified TVTC Procedure Test Condition Specifications Summarized Operating Conditions, Test 002 240-Hour High-Temperature Lubricant Evaluation, Engine Component Average Dimensional Changes

I. INTRODUCTION AND BACKGROUND

High-temperature lubricants (HTLs) were developed by Cummins Engine Company, with funding provided by U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC).(1)* The HTLs were developed for use in a future, advanced, high-output diesel engine for heavy combat vehicles. Target oil sump temperature (OST) during lubricant development was 340°F (171°C).(1) During FY93, eight HTLs were evaluated in a 200-hour, steady-state, high-temperature L10 engine test at 340°F (171°C) OST. There is concern that HTL performance requirements must also be investigated under cyclic operating conditions that include transients of low and intermediate temperature. In previous Cummins/TARDEC work, a candidate HTL was found to have unacceptable deposition performance despite having excellent basestock oxidation stability. It was hypothesized that the deposits resulted from not operating this experimental product at a high enough temperature. In addition, it was suspected that cyclic operation may be even more severe for piston deposit formation. While lubricant evaluations at full output, maximum temperature are necessary to provide high-temperature oxidation and deposition protection, Army equipment will be operated at a variety of other conditions. It was essential that HTLs be evaluated at cyclic operating conditions that are representative of Army field operation.

II. OBJECTIVE AND APPROACH

The objective of this program was to determine the performance of a candidate HTL under cyclic operating conditions. A promising candidate HTL developed by Cummins Engine Company (1) was evaluated following a modified, tracked-vehicle test cycle (Federal Test Method 355). This cycle consists of alternating periods of idle, maximum torque, and maximum power and has been correlated to 4,000 miles of proving ground operations.(2)

^{*} Underscored numbers in parentheses refer to the list of references at the end of this report.

III. MATERIALS

A. Lubricant

The candidate HTL, which contained a synthetic basestock, was designated Oil A-59 by Cummins. The summarized properties for Oil A-59 are presented in TABLE 1.

B. Fuel

The test fuel was Howell RDF-7 "Mack" No. 2 diesel fuel. This was a custom-blended,

TABLE 1. Oil Properties for Oil A-59

K. Vis, cSt	
40°C	101.8
100°C	12.9
Viscosity Index	122
Sulfated Ash, wt%	1.1
TAN	3.3
TBN (D 4739)	9.3

controlled, research fuel containing 0.14 wt% sulfur. Typical fuel analyses for RDF-7 are presented in TABLE 2.

IV. EVALUATION

A. Engine

The test engine used was a modified 1991 Cummins L10-330E. A description of a stock L10-330E engine is presented in TABLE 3. The electronic control module (ECM) was modified by Cummins to enable operation at elevated oil and coolant temperatures and modified torque curve. A Cummins-type, dry sump oil system that included a modified oil pan was used. This system allowed continuous engine oil consumption measurements. A separate, isolated oil supply system was used for the turbocharger to eliminate potential turbocharger failure as experienced by Cummins in previous work. The turbocharger supplemental oil system was capable of 1.8 gal/min at 50 psig, and included an oil filter rated at 10 microns and a bypass circuit. Turbocharger oil inlet temperature was controlled to 220 ± 5°F (104 ± 2.8°C). The

TABLE 2. Properties for Test Fuel RDF-7

Property	Specification	Analysis	ASTM Test Method
Total Sulfur, wt%	0.10 to 0.15	0.14	D 2622
Gravity, °API	30 to 34	32.3	D 287
Hydrocarbon Composition			
Aromatics, vol%	42 to 47	45.6	D 5186
Olefins, vol%	Report	2.2	D 1319
Saturates, vol%	Report	52.2	D 1319
Cetane Index	40	40.2	D 4737
Copper Strip Corrosion	3 max	1	D 130
Flash Point, °F (°C)	125.6 (52) max	163 (73)	D 92
Cloud Point, °F (°C)	19.4 (-7) max	16 (-9)	D 2500
Carbon Residue on 10%			
Residium, wt%	0.20 max	0.12	(10% Bottoms)
Water and Sediment, vol%	0.05 max	< 0.05	D 2709
Ash, wt%	0.002 max	0.001	D 482
K. Vis at 40°C, cSt	1.9 to 4.1	2.7	D 445
Distillation, °F (°C)			
Initial Boiling Point		360 (182)	D 86
10%		424 (218)	D 86
50%	475 to 550	491 (255)	
	(246 to 288)		D 86
90%	550 to 601	597 (314)	
	(288 to 316)		D 86
End Point	660 (349) max	642 (339)	D 86

TABLE 3. Engine Specifications for the Cummins L10-330E Engine

Engine Type:	Four-cycle, direct injection, turbocharged, aftercooled, compression ignition
No. of Cylinders:	6, in-line arrangement
Displacement, liters (in. ³):	10 (611)
Bore × Stroke, mm (in.):	$125 \times 136 \ (4.921 \times 5.354)$
Compression Ratio:	16.3 to 1
Rated Power, kW (BHP):	246 (330) at 1,600 rpm
Rated Torque, Nm (ft-lb):	1,695 (1,250) at 1,200 rpm

turbocharger oil system (pressure and temperature) was also tied into the ECM and safety shutdown systems.

Engine coolant was 100-percent propylene glycol and was used to achieve the required elevated 275°F (135°C) coolant temperature. This allowed engine oil sump to be heated to 340°F (171°C) without external heat supply.

The evaluations were conducted in a Southwest Research Institute (SwRI) test cell equipped with a 500-BHP, Midwest magnetic dynamometer. This dynamometer is capable of continuous steady-state operation or cyclic operation, excluding motoring capability, with controlled speed and load ramping. The test cell was equipped with closed loop cooling systems for the engine lube oil, fuel, intake air, coolant, and air-to-water aftercooler. The lube oil cooling system was of stainless steel construction.

The following parameters were controlled with closed loop control systems:

- rpm
- torque
- water outlet temperature
- fuel inlet temperature

- inlet air temperature
- intake manifold temperature
- oil sump temperature
- · inlet air restriction
- turbo oil supply temperature.

The following parameters had electronic safety systems to provide for automatic engine shutdown in the event of a system failure or malfunction:

- speed
- torque
- water outlet temperature
- · water outlet pressure

- · oil temperature
- oil pressure
- turbo oil supply temperature
- turbo oil supply pressure
- oil system volume.

TABLE 4. Parameters

	Parameter	Units
1.	Speed	rpm
	Torque	ft-lb
	Calculated BHP	ft-lb/s
4.	Fuel rate	HP
5.	Calculated BSFC	lb/BHP-hr
6.	Fuel inlet temperature	°F
	Inlet air temperature	°F
	Compressor air outlet temperature	°F
	Aftercooler/intake manifold temperature	°F
	Oil rifle/gallery temperature	°F
	Oil pan/sump temperature	°F
	Coolant pump inlet temperature	°F
	Coolant pump outlet temperature	°F
	Turbo oil supply temperature	°F
	Individual cylinder exhaust temperatures,	
	Cylinder Nos. 1-6	°F
16.	Pre-turbo exhaust temperature – front	°F
17.	Pre-turbo exhaust temperature – rear	°F
	Exhaust stack temperature	°F
19.	Fuel rail pressure	psig
	Oil filter inlet pressure	psig
21.	Oil filter outlet pressure	psig
22.	Turbo oil supply pressure	psig
23.	Oil rifle/gallery pressure	psig
	Coolant pump inlet pressure	psig
	Coolant pump outlet pressure	psig
	Intake air restriction pressure (vacuum)	in. H ₂ O
	Compressor outlet pressure	in. H ₂ O
	Aftercooler/intake manifold pressure	in. H ₂ O
	Pre-turbo exhaust pressure – front	in. H ₂ O
	Pre-turbo exhaust pressure – rear	in. H ₂ O
	Exhaust stack pressure	in. H ₂ O
	Crankcase pressure	in. H ₂ O
	Barometer	in. H ₂ O
	Test cell air wet/dry bulb temperature	°F
	Test cell air dewpoint temperature	°F
36.	Oil consumption – continuous	lb/hr

Figure 1 shows the engine test cell installation.

Figure 1. Engine test cell installation

B. <u>Test Cycle</u>

A modified version of the U.S. Army 240-hour, tracked-vehicle test cycle (TVTC) was used. TABLE 5 lists the three operating modes of the modified TVTC.

TABLE 5. Operating Modes of the Modified TVTC

	Mode I	Mode II	Mode III
	Idle	Rated Power	Peak Torque
Speed, rpm	800	1,600	1,200
Fuel Rate, kg/hr (lb/hr)	0.04 (0.08)	49 (107)	45 (100)
Power, kW (BHP)	0	246 (330)	213 (286)
Torque, Nm (ft-lb)		1,470 (1,083)	1,696 (1,250)

The previous evaluations conducted for Cummins were 200 hours of only Mode III steady-state operation. Oil sump and coolant out temperatures and the modified, cyclic 240-hour test procedure are presented in TABLE 6.

TABLE 6. The Modified TVTC Procedure

	Time,		Oil Sump	Coolant Out	Cumulative
Step	hr	Mode	Temperature	Temperature	Time, hr
1	0.5	I (Idle)	Full cooling*	190°F (88°C)**	0.5
2	2.0	II (Power)	250°F (121°C)	190°F (88°C)	2.5
3	0.5	I (Idle)	Full cooling	190°F (88°C)	3.0
4	2.0	III (Torque)	340°F (171°C)	275°F (135°C)	5.0
5	Repeat	Steps 1-4 four to	imes.		20
6	4.0		Soak engine, shut off		
7	Repeat	Steps 1-6 twelve	times.		240

^{*} Control system placed in maximum cooling position.

^{**} Simulates thermostat operation.

The specifications for actual test conditions are presented in TABLE 7. In addition to the temperature variations from the standard TVTC, the 120-hour oil change was eliminated to further increase test severity.

TABLE 7. Test Condition Specifications

Control Point	Mode I (Idle)	Mode II (Power)	Mode III (Torque)	Tolerance
Speed, rpm	800	1,600	1,200	± 5 (2.8)
Torque, Nm (ft-lb)	0	1,469 (1,083)	1,696 (1,250)	±20 (11.2)
Oil sump, °F (°C)	Full cooling	250 (121)	340 (171)	$\pm 5(2.8)$
Coolant outlet, °F (°C)	190 (88)	190 (88)	275 (135)	$\pm 5(2.8)$
Intake manifold, °F (°C)	95 (35)	150 (66)	110 (43)	$\pm 5 (2.8)$
Intake air, °F (°C)	95 (35)	95 (35)	95 (35)	$\pm 5 (2.8)$
Inlet fuel, °F (°C)	104 (40)	104 (40)	104 (40)	$\pm 5 (2.8)$
Inlet air restriction,	` ,	` '	(")	(,
kPa (in. H ₂ O)	N/A	0.1 (0.5)	2.5 (10)	$\pm 1 (0.6)$
Exhaust back pressure,		, ,	. (= -)	(***)
kPa (in. Hg)	N/A	1.7 (0.5) max	1.7 (0.5) max	N/A
Fuel rate, kg/hr (lb/hr)	N/A	49 (107)	45 (100)	
- , ,		, ,	` ,	

C. Discussion

Test 001 was initiated using Oil A-59, following the modified TVTC described in the previous section (TABLES 6 and 7). At 21 test hours, the engine was shut down due to high crankcase pressure. Improper crankcase thrust washer installation resulted in scuffing on Cylinder No. 3. The test was terminated at this point and the engine was rebuilt. The damaged parts that were replaced included the crankshaft, main and connecting rod bearings, and a cylinder kit. An SwRI test report for Test 001 is included as Appendix A.

Test 002 was conducted using Oil A-59, following the modified TVTC. This evaluation completed the scheduled 240 test hours without the normal 120-hour oil change. Oil filter plugging caused the bypass differential pressure to be reached at 160 hours. The filter was replaced and the test completed without additional filter plugging. This phenomenon occurred at 120 hours during the Cummins 200-hour, steady-state test. Cummins reported that the filter plugging was caused by a sludge-like material believed to be related to the additive package.

The plugging occurred when the lubricant had little soot or oxidation.(1) An SwRI test report for Test 002 is included as Appendix B. Summarized operating conditions for the maximum power and maximum torque modes are presented in TABLE 8, which indicate the test was conducted at the desired conditions. Discreet oil consumption measurements were made at 20-hour intervals throughout the test and are plotted in Fig. 2. Most of the oil consumption points fall between 0.05 and 0.09 kg/hr (0.1 and 0.2 lb/hr), with three points at 0.14 to 0.18 kg/hr (0.3 to 0.4 lb/hr). Overall average oil consumption for the test was 0.093 kg/hr (0.204 lb/hr). A moderate increase (62 percent) in kinematic viscosity at 212°F (100°C) was observed during the test, as shown in Fig. 3. The plots of copper, iron, and lead wear metals accumulated during the test, as determined by X-ray fluorescence, are presented in Fig. 4. The end-of-test wear metal level was indicative of at least moderate engine distress. As shown by Fig. 5, reserve alkalinity depletion was severe. The total base number (TBN) (D 4739) was reduced to less than 1.0 by 60 test hours.

After test completion, the engine was disassembled, inspected, and parts were rated for deposits and distress using standard Coordinating Research Council procedures. Detailed ratings are shown in Appendix B. Figure 6 shows the percent top groove fill for the six pistons and the overall average of 52.5 percent. One top ring was 90-percent hotstuck (Cylinder No. 4). Piston deposits expressed as total weighted demerits (TWD) are presented in Fig. 7. The average TWD for the six pistons was 1,781. Figure 8 shows the percent of liner crosshatch remaining in the ring travel area, while Fig. 9 shows the percent of heavy polish in the ring travel area of the liners. Cylinder No. 3 had the heaviest polish at 18.5 percent, while the overall six-cylinder average was only 6.3 percent.

The summarized six-cylinder average of the wear measurements for the 240-hour evaluation is shown in TABLE 9. Complete wear measurements are given in Appendix C. The wear measurements show small piston ring end gap increases for the test, and as expected, the top ring reveals the greatest ring gap change. The corresponding piston ring ratings revealed some discoloration on the middle ring of Cylinder No. 3 and the top ring of Cylinder No. 5, but overall, no apparent ring face distress was noted.

TABLE 8. Summarized Operating Conditions, Test 002

1 1 1 1 1 2 4 1 1 1 2 2 6	Mode II (Power)	Min Max Avg Min Max Avg	1602 1600 1199 1202 1468 (1082) 1438 (1060)	250 (317) 243 (329) 241 (323) 153 (208) 211 (283) 204 (274) 46.4 (102.2) 49.8 (109.9) 48.6 (107.1) 42.1 (92.8) 44.2 (97.4) 43.2 (95.2)	180 (82) 177 (81) 259 (126) 263 (128)	273 (134) 335 (168) 347 (175)	280 (138) 275 (135) 312 (156) 342 (172)	377 (40) 425 (47) 412 (45) 315 (31) 412 (45) 356 (37)	.8) 3.2 (13.0) 2.5 (10.1) 1.3 (5.2)
1 1 4 4 4 4 4 4 6 6	Mode II (4	(8:

Figure 2. Oil consumption, high-temperature L10 test for Oil A-59

Figure 3. Kinematic viscosity increase for Oil A-59

Figure 4. Wear metals for Oil A-59

Figure 5. TBN depletion for Oil A-59

Figure 6. Top groove fill for Oil A-59

Figure 7. TWD for Oil A-59

Figure 8. Liner crosshatch remaining for Oil A-59

Figure 9. Liner heavy polish for Oil A-59

TABLE 9. 240-Hour High-Temperature Lubricant Evaluation Engine Component Average Dimensional Changes

***	· ·	- 1	\sim	~~1	•
Dicton	Dina.	Hind	(in	('hange	110
LISIOH	NIII	Lillu	Uau.	Change,	ш.
			F	,	

Top Ring	0.003
Intermediate Ring	0.001
Oil Ring	0.002

Piston Pin-to-Bushing Clearance Change, in.

Articulated	d Crown	Articulated Skirt	Connecting Rod
Vertical	0.0013	0.0003	-0.0002
Horizontal	-0.0004	0.0002	-0.0002

Installed Cylinder Liner Diameter Change, in.

Front-to-Back	-0.0005
Left-to-Right	0.0005
Overall	0.0000

Bearing Weight Loss, mg

Connect	ing Rod	Mai	in
Lower	7.2	Lower	58.4
Upper	206.3	Upper	32.1

Bearing Journal and Bearing Shell Clearance Change, in.

Connecting Rod	Main
0.0135	-0.0004

The piston pin-to-bushing clearance variations revealed some interesting results. The measurement for the piston pin to articulated crown bushing revealed an increase in the vertical clearance and a decrease in the horizontal clearance. This would indicate an ellipsoidal shape of the crown bushing, with wear along the cylinder axis, and most likely, deposit buildup on the thrust axis. The piston pin-to-articulated skirt measurement revealed minimal clearance changes for the test. The measurements for the piston pin to connecting rod bushing reveal a slight

decrease in clearance, but the values are most likely within the accuracy of the measurements. However, the visual connecting rod piston pin bushing ratings revealed considerable bushing distress in the vertical direction, with an average of 75-percent exposed copper for the engine. The discrepancy between the dimensional and subjective visual ratings of the connecting rod piston pin bushing (shown in Appendix C) could possibly be attributed to slight lubricant deposition on the bushing.

The average installed cylinder liner diameter changes indicate very little liner wear occurred, corresponding with the visual ratings discussed previously that indicated minimal bore polish and cylinder liner distress.

The bearing weight loss and bearing journal-to-bearing shell clearance changes indicate more wear occurred on the connecting rod bearings than the main bearings. The upper half of the connecting rod bearing revealed substantially greater average weight loss for the engine compared to the other bearing shells. As expected, minimal weight loss occurred for the lower connecting rod bearing shell. Not anticipated, however, was how consistent the main bearing upper and lower shell weight loss appeared; the lower main bearing shells were expected to reveal substantially greater weight loss than the upper shells. The journal-to-shell clearance variations for the test reveal that the connecting rod bearing weight loss is manifested in an increased clearance and indicates a minimal change in the main bearing clearances. The average component dimensional variation results indicate the connecting rod bearing shells are a critical component in the L10 engine.

A hardware review of L10 engine components is included as Appendix C. The hardware review consists of subjective visual evaluations of various engine parts, including overhead and valve train components. Overall, the valve train and overhead revealed some play in the cam roller follower axles, abnormal wear on several injector push rod sockets, substantial wear scars on rocker lever shafts, polished valve lever bushings, severe wear and pitting on injector lever bushings, and abnormal wear on several injector link balls. Several of the bearing shells and bushings throughout the engine displayed evidence of corrosive attack around the oil feed holes.

TABLE 10 contains the 240-hour, end-of-test used oil analyses. The used oil generally had moderate to severe degradation. Viscosity, acid and base numbers, insolubles, and wear metals all indicated that the oil was substantially degraded and that an oil change was needed.

TABLE 10. Used Oil Properties (Oil A-59, Test 002, 240 Hours)

Property	Value	New Oil	Change
K. Vis, cSt			
40°C	191.75	101.8	+89.95
100°C	20.86	12.9	+ 7.96
Viscosity Index	129	122	+ 7
High-Temperature, High-Shear Viscosity,			
150°C, cp (D 4624)	6.08	ND*	
Sulfated Ash, wt%	1.35	1.1	+ 0.25
TAN	6.3	3.3	+ 3
TBN (D 4739)	0.0	9.3	- 9.3
Insolubles, wt%			
Pentane A	4.76		
Toluene A	0.05		
Pentane B	3.50		
Toluene B	1.00		
Soot, wt%, TGA	2.3		
Elements, ppm (ICP)**			
Ca	3335		
Mg	23		
P	5512		
Zn	1037		
Al	5		
В	<1		
Cr	4		
Cu	216		
Fe	145		
Na	4		
Pb	72		
Si	29		
Sn	9		
Elements, ppm (XRF)†			
Cu	150		
Fe	106		
Pb	50		

^{*} ND = Not determined

^{**} ICP = Inductively Coupled Plasma spectroscopy

[†] XRF = X-ray Fluorescence spectroscopy

A comparison of the results of cyclic (240-hour) and steady-state (200-hour) evaluations of Oil A-59 is presented in TABLE 11. The thermal loading on the lubricant was greater in the steady-state test with 200 continuous hours at 340°F (171°C) OST as compared to the cyclic test that operated 96 non-continuous hours at 340°F (171°C) and 96 non-continuous hours at 275°F (135°C) OST. The higher thermal loading in the steady-state test contributed to a lubricant viscosity

TABLE 11. Comparison of Cyclic and Steady-State Tests (Oil A-59)

Parameter	Cyclic Test	Steady-State Test
Total Test Hours	240	200
At 340°F (171°C) oil sump		
at 1,200 rpm	96	200
At 275°F (135°C) oil sump	0.6	_
at 1,600 rpm	96	0
At idle at 800 rpm	48	0
Oil Consumption Rate, lb/hr	0.204	0.198
Deposits		
Average top groove fill, %	52.5	19.8
Average piston TWD	1,781	1,912
Average crownland carbon	2.0	0.8
Wear and Distress		
Push tube tips	Several w/wear	Several w/seizure
Bearing distress	75% Cu rod bush	
Used Oil Properties (EOT)*		
K. vis, % increase		
40°C	88	195
100°C	62	128
Soot, wt%	2.3 (TGA)**	2.8 (IR)†
TAN	6.3	7.3
TBN (D 4739)	0.0	0.3
Elements, ppm (ICP)		
Fe	145	391
Cu	216	217
Pb	72	118
Oil Filter Plugging Test Hours	160	120

^{*} EOT = End of test

^{**} TGA = Thermogravimetric analysis

[†] IR = Infrared spectroscopy

increase that was approximately twice that observed in the cyclic test, at similar used oil soot levels. Oil consumption rates were similar for the two tests.

Average piston deposit TWDs were slightly more severe with the steady-state test. However, much heavier average top groove fill (52.5 percent) was observed with the cyclic procedure compared to the steady-state test (19.8 percent). Excessive top groove fill can lead to top ring sticking and/or wear and resulting performance loss. Also, average crownland carbon was slightly heavier in the cyclic test.

V. CONCLUSIONS

The following conclusions are offered:

- Piston top groove fill was 2.6 times more severe with the cyclic operation. One top ring was 90-percent hotstuck. Better top groove fill deposit control is needed for future HTL candidates.
- Oil viscosity at 100°C increased 62 percent during the cyclic test.
- Reserve alkalinity (TBN) was severely depleted by 60 test hours. Better TBN retention is needed.
- Used oil was substantially degraded as evidenced by high TAN and wear metals.
- Oil filter plugging occurred at 160 hours.
- Substantial wear or distress was observed in the following areas:
 - articulated piston crown piston pin bushings;
 - connecting rod piston pin bushing;
 - connecting rod upper bearing shell;

- cam roller follower axles;
- injector push rod sockets and corresponding injector link balls;
- rocker lever shafts;
- valve and injector lever bushings.
- Corrosive attack was observed on bearings and bushings.

VI. RECOMMENDATIONS

It is recommended that cyclic operation be included in any future HTL specifications. Piston top groove fill, potential ring sticking, and various wear-related distress were demonstrated with the cyclic operation. A new test cycle should be developed as the 240-hour cyclic conditions used may not have sufficient oxidative stress. Candidate HTLs with improved deposition and antiwear characteristics are needed.

VII. LIST OF REFERENCES

- 1. Wang, J.C. and M.G. Sublette, "High-Temperature Liquid Lubricant Development, Part I: Engine Tests," SAE Paper No. 932842, 1993.
- 2. Coordinating Research Council, Inc., "Development of a Military Fuel/Lubricant/Engine Compatibility Test," Final Report, Atlanta, GA, January 1967.

APPENDIX A

Cummins L10 High-Temperature Cyclic Test Test No. 001

SOUTHWEST RESEARCH INSTITUTE San Antonio, Texas

DIVISION OF
AUTOMOTIVE PRODUCTS AND EMISSIONS RESEARCH

Report on

a

CUMMINS L10 HIGH TEMPERATURE TEST

Conducted for

BELVOIR FUELS AND LUBRICANTS RESEARCH FACILITY

A 59

Engine No. 001 Test No. 001

I certify that this evaluation was conducted, to the best of my knowledge, in accordance with the conditions specified in Cummins L10 High Temperature Test Procedure, supplemented by information letters and/or contact with the appropriate test procedure sponsor.

Scott M. Richards

Senior Research Engineer Department of Gasoline

and Diesel Engine

Lubricants

October 22, 1993

CUMMINS L10-HTT (1200 RPM) OPERATIONAL SUMMARY

Sponsor Code: A 59 SwRI Code: LO 68186 Start Date: 10/19/93

Engine Number: 001 Test Number: 001 End Date: 10/22/93

	MINIMUM	MUMIXAM	AVERAGE
SPEED (RPM)	1195	1199	1197
OT BOD	1119.0	1199.0	1177.8
TORQUE	270.8	276.8	274.6
a party)	96.4	98.1	97.4
1 OLD IGHT			and the major of the first
TEMPERATURES (°F)	276	276	276
COOLANT OUT	258	262	260
COOLANT IN		343	342
OIL GALLERY	341	97	94
INTAKE AIR	90	341	340
OIL SUMP	339		122
TURBO OIL SUPPLY	112	143	69
AFTERCOOLER COOLANT INLET	61	83	
AFTERCOOLER COOLANT OUTLET	98	100	99
FUEL	104	105	104
INTAKE MANIFOLD	114	116	115
COMPRESSOR OUTLET	333	340	337
PUMP OUTLET COOLANT	258	260	260
AMBIENT	95	115	101
EXHAUST FRONT MANIFOLD	1287	1295	1292
EXHAUST REAR MANIFOLD	1181	1200	1189
EXHAUST CYLINDER #1	1156	1260	1188
EXHAUST CYLINDER #2	1230	1245	1238
EXHAUST CYLINDER #3	1208	1214	1210
EXHAUST CYLINDER #4	1 21 5	1233	1225
EXHAUST CYLINDER #5	1260	1279	1270
EXHAUST CYLINDER #6	1182	1197	1188
	975	986	981
EXHAUST AFTER TURBO PRESSURES		e projekti.	
(DCIC)	156	156	156
TOLLIGAL	56	57	56
OETIEREN	53	54	53
ORTELECOT	3	4	3
OIL FILTER DELTA (PSIG) OIL CALLERY (PSIG)	36	37	36
OIL GALLER I	12	13	12
WATER PUMP INLET (PSIG)	22	23	23
WATER PUMP OUTLET (PSIG)	73.6	75.8	74.4
COMPRESSOR OUTLET (IN Hg, ABS)	72.3	73.8	73.0
INTAKE MANIFOLD BOOST (IN Hg., ABS)		0.1	0.1
EXHAUST BACK PRESSURE (IN Hg, GAGE)		56.4	56.1
EXHAUST MANIFOLD FRONT (IN Hg, ABS)		57.8	57.4
EXHAUST MANIFOLD REAR (IN Hg, ABS)		6.9	5.9
CRANKCASE (IN H2O, GAGE) INTAKE AIR RESTRICTION (IN H2O, GAGE)		2.3	2.2
INTARCAM REDITATION		1.4	1.3
1		45	43
TURBO OIL SUPPLY (PSIG) COOLANT THERMOSTAT (PSIG)		18	18

CUMMINS L10-HTT (1600 RPM) OPERATIONAL SUMMARY

Sponsor Code: A 59 SwRl Code: LO 68186 Start Date: 10/19/93

Engine Number: 001 Test Number: 001 End Date: 10/22/93

		MINIMUM	MAXIMUM	AVERAGE
SPEED	(RPM)	1594	1600	1596
TORQUE	(FT*LB)	1036.7	1080.3	1060.4
POWER	(BHP)	314.7	328.1	321.7
FUEL RATE	(LB/HR)	102.5	109.5	107.3
TEMPERATURES (
COOLANT OUT	= /	190	192	191
COOLANT IN		176	180	178
OIL GALLERY		280	280	280
INTAKE AIR		81	94	89
OIL SUMP		283	284	283
TURBO OIL SUPPLY		120	198	145
AFTERCOOLER COOLANT INLET		65	80	70
AFTERCOOLER COOLANT OUTLE	Г	107	109	108
FUEL		104	106	105
INTAKE MANIFOLD		114	115	115
COMPRESSOR OUTLET		343	359	352
PUMP OUTLET COOLANT		177	180	179
AMBIENT		81	103	93
EXHAUST FRONT MANIFOLD		1050	1072	1062
EXHAUST REAR MANIFOLD		1045	1077	1068
EXHAUST CYLINDER #1		979	990	984
EXHAUST CYLINDER #2		1012	1031	1024
EXHAUST CYLINDER #3		977	1011	994
EXHAUST CYLINDER #4		1014	1030	1022
EXHAUST CYLINDER #5		1040	1055	1047
EXHAUST CYLINDER #6		1040	1065	1048
		777	785	782
EXHAUST AFTER TURBO PRESSURES	163			
	(PSIG)	160	161	160
FUEL RAIL	(PSIG)	60	62	61
OIL FILTER IN		58	60	58
OIL FILTER OUT	(PSIG)	2	3	2
OIL FILTER DELTA	(PSIG)		43	43
OIL GALLERY	(PSIG)	43	10	10
WATER PUMP INLET	(PSIG)	10	28	28
WATER PUMP OUTLET	(PSIG)	28		83.2
COMPRESSOR OUTLET	(IN Hg, ABS)	81.5	84.6	80.9
INTAKE MANIFOLD BOOST	(IN Hg, ABS)	79.5	82.1	0.3
EXHAUST BACK PRESSURE	(IN Hg, GAGE)	0.2	0.3	·
EXHAUST MANIFOLD FRONT	(IN Hg, ABS)	69.6	71.7	70.9
EXHAUST MANIFOLD REAR	(IN Hg, ABS)	72.1	74.5	73.5
	(IN H2O, GAGE)	7.3	8.0	7.7
	(IN H2O, GAGE)	4.3	4.7	1.9
FUEL INLET	(IN Hg, GAGE)	1.8	2.0 45	42
TURBO OIL SUPPLY COOLANT THERMOSTAT	(PSIG)	37 17	18	17

Sponsor Code: OS 108703

SwRI Code: LO 68186

Start Date: 10/19/93

Engine Number: 001

Test Number: 001

End Date: 10/22/93

Batch Identifiers: 93-07 Supplier: Howell

Measurement	Specs.	Analysis	Test Method
Total Sulfur, wt.%	0.10 - 0.15		D-2622
Gravity, °API	30 – 34		D-287
Hydrocarbon Composition			
Aromatics, vol.%	42 – 47	45.6	D-5186
Olefins, vol.%	Report	2.2	D-1319
Saturates, vol.%	Report	52.2	D-1319
Cetane Index	40	4.02	D-4737
Copper Strip Corrosion	3 Maximum	1	D-130
Flash Point, °C	52 Maximum	73	D-92
Cloud Point, °C	-7 Maximum	- 9	D-2500
Carbon Residue on 10%			D-524
Residium, wt.%	0.20 Maximum	0.12	(10% Bottoms)
Water and Sediment, vol.%	0.05 Maximum	<0.05	D-2709
Ash, wt.%	0.002 Maximum	0.001	D-482
Kin Viscosity @ 40°C, cSt	1.9 - 4.1	2.7	D-445
Distillation, °C			
IBP		182	D-86
10%		218	D-86
50%	246 - 288	255	D-86
90%	288 - 316	314	D-86
EP	349 Maximum	339	D-86

CUMMINS L10—HTT UNSCHEDULED DOWNTIME AND MAINTENANCE SUMMARY

Start Date: 10/19/93 End Date: 10/22/93 SwRl Code: LO 68186 Test Number: 001 Engine Number: 001 Sponsor Code: A 59

Number of Downtime Occurren	ntime Occurre	ınces	4
Test Hours	Date	Downtime	Reasons
2.5	10-19-93	51 MIN	51 MIN Oil temperature problem. Flushed oil cooler auxillary heat
			exchanger.
5.0	10-21-93	40 HR 45 MIN	40 HR 45 MIN Oil temperature problem. The oil cooler was replumbed.
20.0	10-22-93	11 HR 10 MIN	As part of the test procedure, engine was shut down for a
			three hour soak.
21.0	10-22-93		The engine was shutdown due to high crankcase pressure.
			Number 4 cylinder scuffed due to improper installation of
			crankcase thrust washers. Test was terminated.
		52 HR 46 MIN	Total downtime.

APPENDIX B

Cummins L10 High-Temperature Cyclic Test Test No. 002

SOUTHWEST RESEARCH INSTITUTE San Antonio, Texas

DIVISION OF AUTOMOTIVE PRODUCTS AND EMISSIONS RESEARCH

Report on

a

CUMMINS L10 HIGH TEMPERATURE TEST

Conducted for

BELVOIR FUELS AND LUBRICANTS RESEARCH FACILITY

A 59

Engine No. 001 Test No. 002

I certify that this evaluation was conducted, to the best of my knowledge, in accordance with the conditions specified in Cummins L10 High Temperature Test Procedure, supplemented by information letters and/or contact with the appropriate test procedure sponsor.

Scott M. Richards

Senior Research Engineer Department of Gasoline

and Diesel Engine

Lubricants

April 22, 1994

CUMMINS L10-HTT (1200 RPM) OPERATIONAL SUMMARY

Sponsor Code: A 59 SwRl Code: LO 68186 Start Date: 04/07/94

Engine Number: 001 Test Number: 002 End Date: 04/22/94

	MINIMUM	MAXIMUM	AVERAGE
SPEED (RPM	1) 1199	1202	1200
TORQUE (FT*LI	3) 1175.0	1240.5	1204.4
POWER (BH)		283.1	273.9
FUEL RATE (LB/HI		97.4	95.2
TEMPERATURES (°F)	Francisco de la companya della companya della companya de la companya de la companya della compa		
COOLANT OUT	274	279	275
COOLANT IN	259	263	260
OIL GALLERY	335	347	342
OIL OFFICIALITY	78	97	94
INTAKE AIR	312	342	339
OIL SUMP	116	290	204
TURBO OIL SUPPLY		76	
AFTERCOOLER COOLANT INLET	55	· · · · · · · · · · · · · · · · · · ·	68
AFTERCOOLER COOLANT OUTLET	114	116	115
FUEL	103	112	105
INTAKE MANIFOLD	114	116	115
COMPRESSOR OUTLET	321	347	339
PUMP OUTLET COOLANT	257	260	259
AMBIENT	84	115	97
EXHAUST FRONT MANIFOLD	1288	1356	1329
EXHAUST REAR MANIFOLD	1309	1340	1325
EXHAUST CYLINDER #1	1121	1324	1181
EXHAUST CYLINDER #2	1224	1305	1275
EXHAUST CYLINDER #3	1220	1296	1250
EXHAUST CYLINDER #4	1206	1242	1228
EXHAUST CYLINDER #5	1251	1292	1279
EXHAUST CYLINDER #6	1165	1207	1193
EXHAUST AFTER TURBO	730	1002	968
PRESSURES			The Residence of A
FUEL RAIL (PSIC	153	157	155
OIL FILTER IN (PSIC	49	99	57
OIL FILTER OUT (PSIC	42	64	50
OIL FILTER DELTA (PSIC	4	1.8	0.8
OIL GALLERY (PSIC		45	37
WATER PUMP INLET (PSIC		13	11
WATER PUMP OUTLET (PSIC	/ 	23	20
COMPRESSOR OUTLET (IN Hg, ABS	7	86.1	73.2
INTAKE MANIFOLD BOOST (IN Hg, ABS	7	74.5	71.6
EXHAUST BACK PRESSURE (IN Hg, GAGE	· / 	0.5	0.3
EXHAUST MANIFOLD FRONT (IN Hg. ABS		56.5	55.2
EXHAUST MANIFOLD REAR (IN Hg, ABS	7	58.9	56.8
CRANKCASE (IN H2O, GAGE		14.1	8.2
INTAKE AIR RESTRICTION (IN H2O, GAGE		10.4	2.8
FUEL INLET (IN Hg, GAGE		1.8	1.5
TURBO OIL SUPPLY (PSIC	i) 41	45	43
COOLANT THERMOSTAT (PSIC		23	15

CUMMINS L10-HTT (1600 RPM) OPERATIONAL SUMMARY

Sponsor Code: A 59 SwRI Code: LO 68186 Start Date: 04/07/94

Engine Number: 001 Test Number: 002 End Date: 04/22/94

	MINIMUM	MAXIMUM	AVERAGE
SPEED (RPM)	1599	1602	1600
TORQUE (FT*LB)	1041	1082	1060
POWER (BHP)	317	329	323
FUEL RATE (LB/HR)	102.2	109.9	107.1
TEMPERATURES (°F)			ere talker er er i
COOLANT OUT	189	191	190
COOLANT IN	176	180	177
OIL GALLERY	271	281	273
INTAKE AIR	87	99	95
OIL SUMP	274	280	275
TURBO OIL SUPPLY	112	259	204
AFTERCOOLER COOLANT INLET	57	78	69
AFTERCOOLER COOLANT OUTLET	105	119	110
FUEL	104	107	105
INTAKE MANIFOLD	114	122	116
COMPRESSOR OUTLET	353	371	364
PUMP OUTLET COOLANT	176	180	178
AMBIENT	77	102	88
EXHAUST FRONT MANIFOLD	1069	1129	1111
EXHAUST REAR MANIFOLD	1085	1114	1099
EXHAUST CYLINDER #1	1005	1447	1097
EXHAUST CYLINDER #2	1025	1096	1063
EXHAUST CYLINDER #3	1010	1095	1056
EXHAUST CYLINDER #4	1011	1052	1024
EXHAUST CYLINDER #5	1026	1072	1048
EXHAUST CYLINDER #6	1033	1087	1062
EXHAUST AFTER TURBO	1033	1087	1062
PRESSURES			1, 1, 2, 2, 4, 4
FUEL RAIL (PSIG)	160	163	160
OIL FILTER IN (PSIG)	59	100	70
	55	66	61
	33	9	4
	40	47	45
OIL GALLERY (PSIG)	7	12	9
WATER PUMP INLET (PSIG)			
WATER PUMP OUTLET (PSIG)	23	29	26 2.3
COMPRESSOR OUTLET (IN Hg, ABS)	1.9	2.4	
INTAKE MANIFOLD BOOST (IN Hg, ABS)	78.0	81.3	79.4
EXHAUST BACK PRESSURE (IN Hg, GAGE)	0.2	0.4	0.3
EXHAUST MANIFOLD FRONT (IN Hg, ABS)	68.9	71.7	70.9
EXHAUST MANIFOLD REAR (IN Hg, ABS)	71.6	74.7	72.7
CRANKCASE (IN H2O, GAGE)	6.8	13.0	10.1
INTAKE AIR RESTRICTION (IN H2O, GAGE)	1.0	9.9	4.8 2.3
FUEL INLET (IN Hg, GAGE) TURBO OIL SUPPLY (PSIG)	1.9	45	43
TURBO OIL SUPPLY (PSIG)	14	19	16

CUMMINS L10-HTT TEST FUEL ANALYSIS (Last Batch)

Sponsor Code: A-59 SwRl Code: LO 68186 Start Date: 04/07/94

Engine Number: 001 Test Number: 002 End Date: 04/22/94

Batch Identifiers: 94-03 Supplier: Howell

Measurement	Specs.	Analysis	Test Method
Total Sulfur, wt.%	0.10 - 0.15		D-2622
Gravity, °API	30 – 34		D-287
Hydrocarbon Composition			
Aromatics, vol.%	42 – 47		D-5186
Olefins, vol.%	Report		D-1319
Saturates, vol.%	Report		D-1319
Cetane Index	40	40	D-4737
Copper Strip Corrosion	3 Maximum	1	D-130
Flash Point, °C		181	D-92
Cloud Point, °C	20 Maximum	+12	D-2500
Carbon Residue on 10%			D-524
Residium, wt.%			(10% Bottoms)
Water and Sediment, vol.%	0.05 Maximum	<0.05	D-2709
Ash, wt.%	0.002 Maximum	0.002	D-482
Kin Viscosity @ 40°C, cSt			D-445
Distillation, °C			
IBP		382	D-86
10%		409	D-86
50%	475 - 550	481	D-86
90%	550 - 600	587	D-86
EP	660 Maximum	642	D-86

1 HOUR DATA @ HIGH TEMP MODE ONLY

CUMMINS L10-HTT

OIL CONSUMPTION SUMMARY

Sponsor Code: A 59 SwRl Code: LO 68186 Start Date: 04/07/94

Engine Number: 001 Test Number: 002 End Date: 04/22/94

TEST	RATE,
HOURS	LB/HR
20	0.093
40	0.182
60	0.347
80	0.316
100	0.135
120	0.179
140	0.150
160	0.353
180	0.161
200	0.183
220	0.188
240	0.155
Test Avg	0.204

CUMMINS L10-HTT

HEAVY CROWNLAND CARBON

Sponsor Code: A 59 SwRl Code: LO 68186 Start Date: 04/07/94

Engine Number: 001 Test Number: 002 End Date: 04/22/94

Piston No.	Carbon Remaining	Carbon Lost	Total Carbon		
1	2	0	2		
2	2	0	2		
3	1	1	2		
4	3	1	4		
5	1	0	1		
6	1	0	1		
		Average	2		

FTMS 791, Method	l Laboratory		Oil Code		
341 L-10		SwRI			
Stand No.	Stand Run No.	Engine No	•	Fuel (MfrBatch)	
1	01	82-(#1)		Howell Hydrocarbons	
Date Started		Dat	e Completed		Test Hours
//			05/13/94		1

2.0 REFERENCE TESTS

STAND LA	AST REFERENCE	Engine No.	Date Co	ompleted	Oil I.D.		
Stand No.	Stand Run No.	Test Rating			Industry Aver	age	······································
		WTD=	, TGF=	.0%	WTD-	, TGF=	X_
LAB LAST Stand No.	REFERENCE Stand Run No.	Engine No.	Date Co	ompleted	Oil I.D.		
Stand No. Stand Run No.		Test Rating			Industry Aver	age	
		WTD-	, TGF=	.0%	WTD=	,TGF=	Z_

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Γ						Groc	ves							Lands		
D	ep.	Dep.	No	. 1	No	o. 2	No	o. 3	No	No. 4		. 2	No. 3		No	. 4
Туре		Fct.	A,%	Dem.	A, %	Dem.	A, %	Dem.	Α,%	Dem.	Α,%	Dem.	A, %	Dem.	A, %	Dem.
_	нс	1.000	35	35.00	65	65.00										
A	MHC	0.750														
R B	MC	0.500	65	32.50	25	12.50										
o	LC	0.250			10	2.50					85	21.25	80	20.00		
N	VLC	0.150														
	То	tal	100	67.50	100	80.00					85	21.25	80	20.00		
Γ	BL	0.100					95	9.500			10	1.000	15	1.500		
L A	DBRL	0.075					5	0.375					5	0.375	100	7.500
С	AL	0.050														
Q	LAL	0.025									5	0.125				
Ε	VLAL	0.010														
R	RL	0.000														
		tal					100	9.875			15	1.125	20	1.875	100	7.500
	lean								100							
	ating			67.500		80.000		9.875		0.000	<u> </u>	22.375		21.875		7.500
	ocatio			1 500	ļ	10	<u> </u>	35		70		3.5		20		35
	eighte			67.500	لــــــــــــــــــــــــــــــــــــــ	800.000	3	45.625		0.000		78.313		37.500		262,500
	otal W					1991. 60										
4	op Gro	ove II	IIIN	ξ, 6		- 60										

MULTI-CYLINDER ENGINE TEST	MULTI-	CYLINDER	ENGINE	TESTS
----------------------------	--------	----------	--------	-------

L-10

TEST NO. 1-01	OIL CODE	DATE	05/13/94
---------------	----------	------	----------

3.2 S	UPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	&	RINGS)
-------	-------------	--------	----------	---------	-------	---	--------

	DEPOSIT			CARBON				LA	CQUER		
	ТҮРЕ		НC	MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIR	Γ										
UN-C					100						
LINE!	LINER ABOVE RING TRAVEL										
PIST	ON CROWN		2		98						
GTB	1	T									
ROO		В									-
0 P T 0 T	2	T									
VAO		В									
ENM D	3	T									
		В								L VIAL	
	4	T									
ļ		В									
Т		T									
T O O P & F	1	В									
P & F		BK									
B R		Т									
OBI TAN	2	В									
TCG		BK									
o k s M		T									
	3	В									
		BK									
		T									
	4	В									
		BK									

3.	. 3	ADDITIONAL	DEPOSIT	۶.	CONDITTION	RATTNOS

ount and Nature of Deposits on Oil Ring Slots_	Nil
ston Skirt Condition (Not Including Deposits) few fine to coarse vertical lines	Polished areas normal

FTMS 791, Metho	i Laboratory	7	Oil Code		
341 L-10		SwRI			
Stand No.	Stand Run No.	Engine No	•	Fuel (MfrBatch)	
1	02	82-(#2)		Howell Hydrocarbons	
Date Started			e Completed		Test Hours
//			05/13/94		1

2.0 REFERENCE TESTS

STAND LAST REFERENCE	E Engine No.	Date Complete	ed Oil I.D.					
Stand No. Stand Run 1	Test Rating		Industry Av	Industry Average				
	WTD-	,TGF= .0%	WTD-	,TGF=	7			
LAB LAST REFERENCE	Engine No.	Date Complete	ed Oil I.D.					
Stand No. Stand Run 1	Test Rating		Industry Average					
	WTD-	,TGF= .0%	WTD-	, TGF=	7			

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Γ						Groo	ves			Lands						
D	ep.	Dep.	No	. 1	No	o. 2	N	o. 3	No	. 4	No	. 2	No	o. 3	No	. 4
T	уре	Fct.	A, Z	Dem.	A, %	Dem.	A, %	Dem.	A,%	Dem.	A, %	Dem.	A,%	Dem.	A, %	Dem.
c	HC	1.000	15	15.00	35	35.00					10	10.00				
	MHC	0.750														
R B	MC	0.500	85	42.50	45	22.50										
ō	LC	0.250			20	5.00					65	16.25	75	18.75		
N	VLC	0.150														
	Total		100	57.50	100	62.50					75	26.25	75	18.75		
	BL	0.100					70	7.000					10	1.000		
L A	DBRL	0.075					10	0.750					10	0.750	80	6.000
С	AL	0.050					20	1.000		-	5	0.250	5	0.250	20	1.000
Ŋ	LAL	0.025									20	0.500				
E	VLAL	0.010														
R	RL	0.000														
1	То	tal					100	8.750			25	0.750	25	2.000	100	7.000
C	lean								100							
_	ating			57.500		62.500		8.750		0.000		27.000		20.750		7.000
	ocation			1 57 500		10		35		70	ļ	3.5		20		35
	eighte			57.500	(525.000	3	06.250		0.000	<u> </u>	94.500		15.000		245_000
	otal We					1743.										
11	Top Groove Filling, % 55						l									

MULTI-CYLINDER	ENGINE	TESTS
----------------	--------	-------

L-10

TEST NO	1-02	OIL C	ODE	DATE	05/13/94
---------	------	-------	-----	------	----------

3.2	SUPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	&	RINGS)	
-----	--------------	--------	----------	---------	-------	---	--------	--

l	DEPOSIT			CARBON		LACQUER					
	ТҮРЕ			MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIRT	Γ										
UN-CF					100						
LINEF TRAVE	R ABOVE RING EL										
PISTO	N CROWN		2		98						
ств	1	Т									
G T B R O O O P T		В									
OPT OT	2	Т									
VAO		В									
E N M D	3	T									
		В				<u> </u>					
	4	T									
		В	-		-5.49						
T		T									
T O O P & F	1	В									
rær		BK									
B R		T									
OBI TAN	2	В									
TCG		BK									
OKS M		Т									
	3	В									
		BK									
-		T									
l	4	В									
	•	ВК	1								

 נעעה	ITIONAL DEPOSIT & CONDITION RATINGS							
A.	Piston Crown Scuffing (Nature and Quantity)Nil							
	-							
В.	Amount and Nature of Deposits on Oil Ring Slots	Nil						
c.	Piston Skirt Condition (Not Including Deposits)	Poliched ever never						
-	few fine to coarse vertical lines	rollshed aleas normal						

D.	Liner Condition_	Normal
		

FTMS 791, Method	Laboratory		Oil	Code		
341 L-10		SwRI				_
Stand No.	Stand Run No.	Engine	No.		Fuel (MfrBatch)	
1	03	82-(#	3)		Howell Hydrocarbons	
Date Started			ate Cor	pleted		Test Hours
1 1			05/1	3/94		1

2.0 REFERENCE TESTS

STAND LA	ST REFERENCE	Engine No.	Date (Completed	Oil I.D.		
Stand No.	Stand Run No.	Test Rating			Industry Aver	age	
		WTD-	,TGF=	.0%	WID-	, TGF=	Z
LAB LAST	REFERENCE	Engine No.	Date C	Completed	Oil I.D.		
Stand No. Stand Run No.		Test Rating			Industry Aver	age	
		WTD-	, TGF=	. 0%	WTD-	, TGF=	<u> </u>

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Γ				Groo										Lands		
P	ep.	Dep.	No	. 1	No	. 2	N	o. 3	No	. 4	No	. 2	No	. 3	No	. 4
T	уре	Fct.	A,%	Dem.	A,%	Dem.	A, %	Dem.	A,%	Dem.	A, %	Dem.	A,%	Dem.	A, %	Dem.
c	HC	1.000	50	50.00	10	10.00					10	10.00				
Α	MHC	0.750														
R B	MC	0.500	40	20.00	50	25.00										
0	LC	0.250	10	2.50	35	8.75	25	6.25			85	21.25	95	23.75		
N	VLC	0.150														
L	To	tal	100	72.50	95	43.75	25	6.25			95	31.25	95	23.75		
Γ	BL	0.100					75	7.500								
L A	DBRL	0.075											5	0.375	100	7.500
C	AL	0.050			5	0.250					5	0.250				
Ų	LAL	0.025														
E	VLAL	0.010														
R	RL	0.000														
		tal			5	0.250	75	7.500			5	0.250	5	0.375	100	7.500
_	lean			70 500					100							
	ating			72.500		44.000		13.750		0.000		31.500		24.125 20		7.500
	ocation eighted			1 72.500		10 440.000	7	35 81.250	-	70 0.000	7	3.5 10.250		82.500	-	262,500
	otal We				L	1849.		01.230	<u> </u>	0.000		10.230		02.00		.02. 000
	op Gro					70										

TEST NO.	1-03	OIL CODE		DATE	_05/13/94
----------	------	----------	--	------	-----------

	3.2	SUPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	&	RINGS)
--	-----	--------------	--------	----------	---------	-------	---	-------	---

	DEPOSIT			CARBON				LA	CQUER.		
·	TYPE		HC	MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIRT											
UN-CRO	NWC				100						
LINER TRAVE	ABOVE RING										
PISTO	N CROWN		1		99						
ם די	1	T									
TB	*	В									
PT	2	T									
7 A O L	-	В									
E N M	3	T									
" -	.	В									
	4	T									
	***************************************	В									
,		T									
r 0 0 P & F	1	В									
? & F		BK									
3 R		Т									
DBI	2	В									
B R DBI FAN FCG		BK									
K S		T									
•	3	В									
		BK									
		Т									
	4	В									
1		BK									

3.3	ADDITIONAL	DEPOSIT	&	CONDITION	RATINGS
-----	------------	---------	---	-----------	---------

mount and Nature of Deposits on Oil Ring Slots	Nil
iston Skirt Condition (Not Including Deposits) _ few fine to coarse vertical lines	Polished areas normal

FTMS 791, Method	Laboratory	Laboratory		Code	<u> </u>	
341 L-10		SwRI				
Stand No.	Stand Run No.	Engine	No.	Fuel (M	frBatch)	
1	04	82-(#4)		Howell	Hydrocarbons	
Date Started		D	ate Com	pleted		Test Hours
/ /			05/13	/94		1

2.0 REFERENCE TESTS

STAND LAST REFERENCE	Engine No. Date Complete			d Oil I.D.		
Stand No. Stand Run No.	Test Rating	,TGF-	.0%	Industry Av	erage .TGF=	7
LAB LAST REFERENCE Stand No. Stand Run No.	Engine No.	Date Co			, 204	
Stand No. Stand Run No.	Test Rating			Industry Av	erage	
	WTD=	, TGF=	.0%	WTD=	,TGF=	z

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Г						Groo	ves							Lands		
De	ep.	Dep.	No	. 1	No	o. 2	N	o. 3	No	. 4	No	. 2	No	o. 3	No	. 4
T	уре	Fct.	A, 7	Dem.	Α,%	Dem.	A, %	Dem.	Α,%	Dem.	A,%	Dem.	Α,%	Dem.	A, %	Dem.
c	нс	1.000	5	5.00	9	9.00					15	15.00				
	MHC	0.750														
R B	мс	0.500	5	2.50												
0	LC	0.250	90	22.50	10	2.50					60	15.00	75	18.75		
N	VLC	0.150														
	То	tal	100	30.00	19	11.50					75	30.00	75	18.75		
	BL	0.100					100	10.000					10	1.000		
L A	DBRL	0.075											10	0.750	100	7.500
С	AL	0.050									5	0.250	5	0.250		
Q U	LAL	0.025														
Ε	VLAL	0.010									20	0.200				
R	RL	0.000														
	То	tal					100	10.000			25	0.450	25	2.000	100	7.500
	lean				81				100							
_	ating			30.000		11.500		10.000		0.000	-	30.450		20.750		7.500 35
	ocation eighted			30.000	-	10 L15.000		35 50.000		70 0.000	7	3.5 06.575		20 15.000	 ,	262,500
	otal We					1279.		550.000		0.000	!L	00.3/3		13.000		.02.300
	op Gro					25										

TEST NO.	1-04	OIL CODE	DATE	05/13/94

3.2	SUPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	&	RINGS)	
-----	--------------	--------	----------	---------	-------	---	--------	--

3.2 50	JPPLEMENTAL PISTO	N DEPOS	SITS (C			RINGS)					
	DEPOSIT			CARBON	· · · · · · · · · · · · · · · · · · ·	<u> </u>		LA	CQUER		
ļ	TYPE		HC	MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIRT	1										
UN-CE	UN-CROWN				100						
	LINER ABOVE RING TRAVEL										
	PISTON CROWN				97						
G T B	1	T									
ROO	-	В									
OPT OT	2	T									
VAO		В									
ENM D	3	Т									
"		В									
	4	T									
		В		<u> </u>							
T		T									
0 0	1	В									
P & F		вк									
B R OBI		T									
OBI TAN	2	В									
TCG		BK									
OKS M		Т									
"	3	В									
		ВК									
		T									
	4	В									
		вк			-						

3.3 ADDITIONAL DEPOSIT & CONDITION RATIN	3.3	ADDITIONAL	DEPOSIT	Æ	CONDITTION	RATTNO
--	-----	------------	---------	---	------------	--------

Amount and Nature of Deposits on Oil Ring Slots_	Ni1
Piston Skirt Condition (Not Including Deposits) _ few fine to coarse vertical lines	Polished areas normal

FTMS 791, Method	Laboratory		Oil Code		
341 L-10		SwRI			
Stand No.	Stand Run No.	Engine No	•	Fuel (MfrBatch)	
1	05	82-(#5)		Howell Hydrocarbons	
Date Started	······································	Dat	e Completed		Test Hours
//			05/13/94		1

2.0 REFERENCE TESTS

STAND LAS	T REFERENCE	Engine No.	Date	Completed	Oil I	.D.	
Stand No. S	Stand Run No.	Test Rating WTD -	,TGF=	.0%	Industry WTD=	Average	z z
	REFERENCE Stand Run No.	Engine No.	Date	Completed	Oil I	.D.	
Stand No.	stand Run No.	Test Rating	<u> </u>		Industry	Average	
		WTD-	,TGF=	.0%	WTD-	, TGF=	Z

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Γ						Groo	ves							Lands		
D	ep.	Dep.	No	. 1	No	o. 2	No	o. 3	No	. 4	No	. 2	No	. 3	No	. 4
I	уре	Fct.	A, %	Dem.	A, %	Dem.	A, %	Dem.	A, 2	Dem.	A, %	Dem.	A, %	Dem.	A, Z	Dem.
C	HC	1.000	10	10.00	75	75.00										
Ă	MHC	0.750														
R B	MC	0.500	90	45.00	25	12.50		:								
0	LC	0.250									80	20.00	80	20.00		-
N	VLC	0.150														
	То	tal	100	55.00	100	87.50					80	20.00	80	20.00		
Г	BL	0.100					85	8.500			5	0.500	15	1.500		
L A	DBRL	0.075					15	1.125			5	0.375	5	0.375	100	7.500
C	AL	0.050									5	0.250				
D Q	LAL	0.025									5	0.125				
E	VLAL	0.010														
R	RL	0.000														
	То	tal					100	9.625			20	1.250	20	1.875	100	7.500
C.	lean								100							
R.	ating			55.000		87.500		9.625		0.000		21.250		21.875		7.500
	ocation			1		10		35		70		3.5		20		35
	eighte			55.000		375.000	3	36.875		0.000		74.375		37.500	ئــــا	262,500
	otal W					2041.										
T	op Gro	ove Fi	lling	7, %		55	l									

MDCM NO			
TEST NO. 1-05	OIL CODE _	DATE	05/13/94

3.2	SUPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	&	RINGS)	
-----	--------------	--------	----------	---------	-------	---	--------	--

	DEPOSIT			CARBON	ī			LA	CQUER		
	TYPE	······	HC	MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIRT	Γ										
UN-CF					100						
	LINER ABOVE RING TRAVEL										
PISTO	N CROWN		1		99						
G Т В	1	T									
ROO		В									
0 P T 0 T	2	T									
VAO	-	В									
E N M D	3	T									
		В								_	
	4	T									
		В									
т		T									
T O O	1	В									
P & F		ВК									
B R		T									
BROBI TAN	2	В									
TCG		BK									
o k s M		T			į		l				-
	3	В									
	-	ВК									
		Т									
	4	В									
		BK									

3.3	ADDITIONAL	DEPOSIT	ζ	CONDITION	RATINGS	

mount and Nature of Deposits on Oil Ring Slots_	Nil
iston Skirt Condition (Not Including Deposits) few fine to coarse vertical lines	Polished areas normal
ner Condition Normal	

FTMS 791, Method	Laboratory	,	Oil Code		
341 L-10		SwRI			
Stand No.	Stand Run No.	Engine N	ο.	Fuel (MfrBatch)	
1	06	82-(#6)		Howell Hydrocarbons	
Date Started		Dat	e Completed		Test Hours
/ /			05/13/94		1

2.0 REFERENCE TESTS

STAND LAST REFERENCE	Engine No.	Date Comple	eted Oil I.D.		
Stand No. Stand Run No	Test Rating		Industry Av	erage	
	WTD=	,TGF0%	WTD-	, TGF=	
LAB LAST REFERENCE Stand No. Stand Run No	Engine No.	Date Comple	eted Oil I.D.		
Stand No. Stand Run No	Test Rating		Industry Av	erage	
	WTD=	,TGF= .0%	WTD=	, TGF -	Z

3.0 EVALUATION OF ENGINE PARTS

3.1 Piston Deposits (Groove Backs and Lands)

Γ						Groo	ves]	Lands		
D	ep.	Dep.	No	. 1	No	. 2	No	. 3	No	. 4	No	. 2	No	. 3	No	. 4
T	уре	Fct.	A, %	Dem.	A, 2	Dem.	Α,%	Dem.	A,%	Dem.	A,%	Dem.	A, %	Dem.	A, %	Dem.
	HC	1.000	20	20.00	25	25.00										
A	MHC	0.750														
R B	MC	0.500	80	40.00	55	27.50										
0	LC	0.250			20	5.00					70	17.50	95	23.75		
N	VLC	0.150														
	То	tal	100	60.00	100	57.50					70	17.50	95	23.75		
Γ	BL	0.100					90	9.000			5	0.500				
L A	DBRL	0.075					10	0.750			5	0.375			100	7.500
С	AL	0.050									5	0.250	5	0.250		
Q	LAL	0.025									15	0.375				
E	VLAL	0.010														
R	RL	0.000														
	1	tal					100	9.750			30	1.500	5	0.250	100	7.500
_	lean			60.000		53 500			100			10 000		04 000		7 500
_	ating ocation	. F+		60.000 1		57.500 10		9.750 35		0.000 70		19.000 3.5		24.000 20		7.500 35
	eighte			60.000		575.000	3	41.250		0.000	-	66.500	4	80.000		262.500
	otal We					1785.				2,000				~~.~~~		
	op Gro					50										

TEST NO.	1-06	OIL CODE		DATE	05/13/94
----------	------	----------	--	------	----------

3.2	SUPPLEMENTAL	PISTON	DEPOSITS	(GROOVE	SIDES	۶	RINGS)	,

	DEPOSIT			CARBON	I			L	ACQUER		
<u> </u>	TYPE		нс	MC	LC	BL	DBRL	AL	LAL	VLAL	RL
SKIR	T										
UN-C	ROWN R ABOVE RING				100						
TRAV	EL EL										
PIST	ON CROWN		1		99						
GTB	1	Т									
ROO		В									
OPT OT		T									
VAO		В									
E N M D	3	T			<u> </u>						
		В									
	4	T									
ļ		В				<u> </u>					
T		T									
T O O P & F	1	В						***			
P&F		BK									
B R		T									
B R OBI TAN TCG	2	В									
TCG		BK									
o k s M		т									
	3	В									
		BK									
		Т									
	4	В									
		BK									

3.3 ADD	TIONAL DEPOSIT & CONDITION RATINGS	
A.	Piston Crown Scuffing (Nature and Quantity)N	i1
В.	Amount and Nature of Deposits on Oil Ring Slots_	Nil
C.	Piston Skirt Condition (Not Including Deposits)	Polished areas asset

C.	Piston Skirt Condition (Not Including Deposits) _	Polished areas normal
	few fine to coarse vertical lines	

D.	Liner Condition_	Normal	
----	------------------	--------	--

CUMMINS L10-HTT

CYLINDER LINER RATING

 Sponsor Code: A 59
 SwRl Code: LO 68186
 Start Date: 04/07/94

 Engine Number: 001
 Test Number: 002
 End Date: 04/22/94

Cylinder		Ring	Travel Area		Above Top Ri	ng Travel
Number	% Heav	y Polish	% Cross	hatch	% Heavy I	Polish
	Т	A-T	T	A-T	Т	A-T
1	5	5	96	94	0	0
2	2	2	92	93	0	0
3	17	20	70	60	2	2
4	2	4	92	90	0	0
5	5	8	90	88	0	0
6	3	2	92	91	0	0
Averages	5.66	6.83	88.66	86.00	0.33	0.33
Average T and A-T		6.25		87.33		0.33

CUMMINS L10-HTT

PISTON SKIRT RATING

Sponsor Code: A 59	SwRI Code: LO 68186	Start Date: 04/07/94
Engine Number: 001	Test Number: 002	End Date: 04/22/94

Cylinder Number	Thrust	Anti-Thrust
1	Light Scratches	Light Scratches
2	Light Scratches	Light Scratches
3	Very Light Scratches	Very Light Scratches
4	Light Scratches	Light Scratches
5	Light Scratches	Light Scratches
6	Light Scratches	Light Scratches

CUMMINS L10-HTT PISTON RING ASSESSMENTS

Start Date: 04/07/94 SwRl Code: LO 68186 Sponsor Code: A 59 End Date: 04/22/94 Test Number: 002 Engine Number: 001

Ring Face Conditions

Cylinder Number	Ring No. 1	Ring No. 2
1	0% Discolored	0% Discolored
2	0% Discolored	0% Discolored
3	0% Discolored	25% Discolored
4	0% Discolored	0% Discolored
5	60% Discolored	0% Discolored
6	0% Discolored	0% Discolored

Ring Freedom

Cylinder Number	Ring No. 1	Ring No. 2	Ring No. 3
1	F	F	F
2	F	F	F
3	F	F	F
4	Hot Stuck 90	F	F
5	F	F	F
6	F	F	F

CUMMINS L10—HTT UNSCHEDULED DOWNTIME AND MAINTENANCE SUMMARY

Start Date: 04/07/94 End Date: 04/22/94 SwRI Code: LO 68186 Test Number: 002 Sponsor Code: A-59 Engine Number: 001

Number of Downtime Occurrences	untime Occurre	ences	14	
Test Hours	Date	Downtime		Reasons
75	04/07/94	1 Hr. 50 Mins.	Replace	Replaced exhaust elbow which was cracked: Restart.
27	04/08/94	16 Hrs. 50 Mins.	Tightene	Tightened fitting @ water pump: Restart.
42.50	04/10/94	23 Hrs. 50 Mins.	Coolant I	Coolant leak @ steel braided line connecting to water pump
			On hold	On hold as per engineer: Restart.
43.25	04/11/94	1 Hr. 50 Mins.	Replaced	Replaced overflow hose: Restart.
43.50	04/11/94	2 Hrs. 75 Mins.	Replaced	Replaced coolant out thermocouple: Restart.
54.50	04/12/94	6 Hrs. 25 Mins.	Replaced	Replaced turbo drain line and gasket: Restart.
70.00	04/13/94	7 Hrs. 50 Mins.	Remove,	Remove, inspect, reseal auxilllary pump seal: Restart.
73.00	04/13/94	1 Hr.	Replace	Replaced gasket on auxillary oil pump: Restart.
80.00	04/14/94	11 Hrs. 50 Mins.	Soak. H	Soak. Hold as per instructions: Restart.
100.00	04/15/94	13 Hrs. 75 Mins.	Repair a	Repair and replaced pump seal: Restart.
160.00	04/18/94	4 Hrs.	Soak an	Soak and replaced oil filter: Restart.
180.00	04/19/94	4 Hrs.	Soak: Restart.	estart.
221.75	04/21/94	- 子	Cleaned	Cleaned screen on regulator: Restart.
234.75	04/22/94	6 Hrs.	Replace	Replaced hose on oil cooler: Restart.
	M. M			
		63 Hrs. 54 Mins.		Total Downtime

APPENDIX C

Cummins L10 High-Temperature Cyclic Test Engine Hardware Review and Measurements

Engine Hardware Review

Engine Model: 91L-10 330E

Engine Serial Number: 34654546

Test Description: Transient operating condition, 240-hour high-temperature lubricant test

Oil Identification: A-59, 240 hours

Date: 31 August 1994

Camshaft: No abnormal wear. Reinstalled in engine.

Camshaft Bushings: No evidence of corrosion, pitting, or wear. Not removed from engine.

Camshaft Follower Assembly: Ball sockets do not show any wear. Rollers have some play on their axles, some fine circumferential scratches. One roller revealed some pitting.

Connecting Rod Pin Bushing: Severe discoloration, possible deposition, and pitting (fatigue). Pitting is at the twelve o'clock position. Worn through overlay and copper exposed at the six o'clock position. Average 75 percent exposed copper at the six o'clock position of the bushing.

Connecting Rod Bearings: Some circumferential scratches, otherwise normal wear. Overlay still intact.

Crankshaft: No abnormal wear. Reinstalled in engine.

Thrust Bearings: No abnormal wear.

Main Bearings: Uppers show nothing more than normal wear. However, there are signs of corrosion through to the copper around the oil hole. Lowers show discoloration, small amount of pitting, and less than 1-percent exposed copper.

Liners: Crosshatch still shows with light polish; no evidence of scuffing. Heavy polish evident at top of ring travel on Cylinder Nos. 3 and 5. Cylinder No. 3 has approximately 20-percent bore polish. Outside diameter of liners looks good; no evidence of sludge.

Liner Seals: Look good.

Pistons: Reference Piston Rating information for more detail.

Crown: Lands: Grooves:

Skirts: Very-light to light scratches.

Pin Bores: Severely pitted and discolored.

Pistons, Cont'd

Pins: Slightly discolored. No evidence of wear.

Undercrowns: Light-to-medium flaky carbon deposit.

Piston Rings:

Top: No apparent ring face distress. **Middle:** No apparent ring face distress. **Bottom:** No apparent ring face distress.

Push Tubes:

Valve push tubes show no evidence of wear. Several injector push rods reveal wear on socket at lever end. Follower ends look good.

Rocker Lever Assembly:

Shaft: Worn on loaded side, with a wear scar evident to the touch.

Ball and Sockets: Valve levers look good. Several injector levers show abnormal wear.

Injector Levers: Bushing shows severe wear with some pitting.

Valve Levers: Polished bushing shows some discoloration. Oil deposits are evident around the oil feed hole.

Crossheads: Normal wear, slightly polished.

Injectors: Two show abnormal wear on injector link ball. Remaining four appear normal.

Valve Seals: Appear normal.

Valves: Two replaced due to excessive recession. Normal to slightly above normal beat-in.

Valve Collets: Look good. Reinstalled in engine.

Cummins L10-330E Engine Piston Ring End Gaps

	Piston	ning End Ga	•				
cyl#	ring position	<u>Before</u>	<u> After</u>	<u>Change</u>			
	Top Ring	0.029	0.034	0.005			
1	Intermediate Ring	0.045	0.050	0.005			
•		0.032	0.027	-0.005			
	Oil Ring	0.032	0.027	-0.003			
			0.004	0.004			
	Top Ring	0.030	0.034	0.004			
2	Intermediate Ring	0.047	0.049	0.002			
	Oil Ring	0.032	0.035	0.003			
	_						
	Top Ring	0.032	0.032	0.000			
•		0.053	0.051	-0.002			
3	Intermediate Ring						
	Oil Ring	0.028	0.031	0.003			
	Top Ring	0.031	0.034	0.003			
4	Intermediate Ring	0.046	0.048	0.002			
	Oil Ring	0.033	0.035	0.002			
	·	0.000	0.000				
	Top Ring	0.031	0.033	0.002			
-			0.046	-0.001			
5	Intermediate Ring	0.047					
	Oil Ring	0.032	0.035	0.003			
	Top Ring	0.031	0.034	0.003			
6	Intermediate Ring	0.047	0.046	-0.001			
	Oil Ring	0.032	0.036	0.004			

Average Change

Top Ring	0.003
Intermediate Ring	0.001
Oil Ring	0.002

						Cumm Piston Pi	ins l	.10-330E Articula	Cummins L10-330E Engine Piston Pin to Articulated Crown	_					
			Before	ore		' 1	: :			After	-			Change	nge
# 	pin 2 1 260	pin bore	clearence	ia G	pin bore	clearence				clearence	qia (clearence	4	,
	2.1260	2.1279	0.0019	2.1260	2.1279	0.0019	.4 (4	2.1259	2.128/ 2.1275	0.0028 0.0016	2.1259	2.128/ 2.1275	0.0028 0.0016	-0.0003	0.0012 -0.0003
N	2.1261 2.1259	2.1279 2.1277	0.0018 0.0018	2.1260 2.1260	2.1277 2.1278	0.0017 0.0018	~ ~ ~	2.1259 2.1259	2.1295 2.1274	0.0036 0.0015	2.1259 2.1259	2.1295 2.1274	0.0036	0.0018	0.0019
ო	2.1260 2.1260	2.1277 2.1280	0.0017	2.1260 2.1260	2.1277 2.1277	0.0017	C4 C4	2.1259 2.1259	2.1266 2.1268	0.0007	2.1259 2.1259	2.1266 2.1268	0.0007	-0.0010	-0.0010
4	2.1259 2.1260	2.1279 2.1280	0.0020	2.1260 2.1259	2.1277 2.1278	0.0017	~ ~ ~	2.1259 2.1258	2.1296 2.1274	0.0037 0.0016	2.1259 2.1258	2.1296 2.1274	0.0037	0.0017	0.0020
က	2.1259 2.1260	2.1279 2.1280	0.0020	2.1260 2.1259	2.1278 2.1277	0.0018	cu cu	2.1258 2.1259	2.1300 2.1274	0.0042 0.0016	2.1258 2.1258	2.1300 2.1274	0.0042	0.0022	0.0024 -0.0002
ဖ	2.1259 2.1259	2.1279 2.1280	0.0020	2.1259 2.1260	2.1280 2.1278	0.0021 0.0018	~ ~	2.1259 2.1258	2.1295 2.1276	0.0036 0.0018	2.1259 2.1258	2.1295 2.1276	0.0036 0.0018	0.0016	0.0015
Piston Pin O.D. Min Max Crown Pin Bore Min Max Clearence Min Min	Piston Pin O.D. in Min 2. Max 2. Crown Pin Bore I.D. Min 2. Max 2. Clearence Min 0. Max 0.	inches 2.1259 2.1261 I.D. 2.1277 2.1281 0.0016		Pin and pin to the piston	in bore me ton crown I	Pin and pin bore measurements taken at locations corresponding to the piston crown pin boss, and at two perpendicular locations.	take d at t	n at loca wo perpo	itions corre	sponding ocations.				Average Change vertical 0.0013 horizontal -0.0004	Change 0.0013 -0.0004

	Change	clearence 0.0002 0.0003	0.0003	0.0009 0.0004 0.0004 0.0008 0.0003	0.0005 -0.0000 -0.0000 0.0000	0.0010 0.0003 0.0005 0.0008 0.0002 0.0001	0.0007 0.0000 0.0003 0.0005 0.0001 -0.0001	0.0011 0.0006 0.0007 0.0009 0.0005 0.0005	Average Change vertical 0.0003 horizontal 0.0002
		2.1266		59 2.1268 59 2.1267	59 2.1264 59 2.1262	59 2.1269 58 2.1266	.58 2.1265 .58 2.1263	59 2.1270 58 2.1267	
	After	<u>clearence</u> <u>pin</u> 0.0007 2.1259		0.0009 2.1259 0.0008 2.1259	0.0005 2.1259 0.0003 2.1259	0.0010 2.1259 0.0008 2.1258	0.0007 2.1258 0.0005 2.1258	0.0011 2.1259 0.0009 2.1258	onding ons.
Piston Pin to Articulated Skirt		2.1266	2.1266	2.1268 2.1267	2.1264 2.1262	2.1269 2.1266	2.1265 2.1263	2.1270 2.1267	Pin and pin bore measurements taken at locations corresponding to the piston skirt pin boss, and at two perpendicular locations.
Pin to Artic	Pin to Artice	pin 2.1259	2.1259	2.1259	2.1259	2.1259	2.1258	2.1259	s taken at lor at two perpe
Piston		clearence 0.0004		0.0005	0.0005	0.0005	0.0004	0.0004	neasurement oin boss, and
		pin bore 2.1264		2.1265 3 2.1265	2.1265 0 2.1266	2.1265 9 2.1266	2.1264 9 2.1265	9 2.1263 0 2.1264	d pin bore n piston skirt į
	Before		2.1260	2.1260	2.1260 2.1260	2.1260 2.1259	2.1260 2.1259	2.1259 2.1260	Pin an to the
		clearence 0.0005	0.0004	0.0005	0.0005	0.0007	0.0007	0.0005	
		2.1265		2.1266 3 2.1264	2.1265 2.1263	2.1266 3 2.1266	3 2.1266 3 2.1264	3 2.1264 9 2.1263	2.1259 2.1261 1.D. 2.1263 2.1263 2.1266 0.0002
		cyl# pin 1 2.1260	2.1260	2.1261	3 2.1260 2.1260	2.1259	5 2.1259 2.1260	6 2.1259 2.1259	Piston Pin O.D. Min Max Skirt Pin Bore I.D Min Max Clearence Min Min
		76		Ø	W	٧	4/	•	SK. SK.

Cummins L10-330E Engine Piston Pin to Rod Bushing

			LISION LIN	w	nou bus	siiiii y		
		Before		_	_	After		Change
cyl#	<u>pin</u>	bushing	clearence		<u>pin</u>	pin bore	clearence	Δ
1	2.1260	2.1285	0.0025		2.1259	2.1280	0.0021	-0.0004
	2.1260	2.1286	0.0026		2.1259	2.1282	0.0023	-0.0003
2	2.1261	2.1285	0.0024		2.1259	2.1279	0.0020	-0.0004
	2.1259	2.1283	0.0024		2.1259	2.1279	0.0020	-0.0004
3	2.1260	2.1281	0.0021		2.1259	2.1280	0.0021	0.0000
	2.1260	2.1281	0.0021		2.1259	2.1281	0.0022	0.0001
4	2.1259	2.1284	0.0025		2.1259	2.1283	0.0024	-0.0001
	2.1260	2.1283	0.0023		2.1258	2.1281	0.0023	0.0000
5	2.1259	2.1284	0.0025		2.1259	2.1282	0.0023	-0.0002
	2.1260	2.1283	0.0023		2.1259	2.1282	0.0023	0.0000
6	2.1259	2.1284	0.0025		2.1259	2.1283	0.0024	-0.0001
	2.1259	2.1285	0.0026		2.1258	2.1280	0.0022	-0.0004
Piston	Pin O.D.	inches					Average	<u>Change</u>
	Min	2.1259					vertical	-0.0002
	Max	2.1261					horizontal	-0.0002
Skirt P	in Bore I.E).						
	Min	2.1281						
	Max	2.1299						
Cleare	nce							

0.0020

0.0040

Min

Max

		0.0006 0.0007 0.0000	-0.0009 0.0009 -0.0000	-0.0006 0.0002 -0.0002	-0.0006 0.0007 0.0000	-0.0006 0.0007 0.0000	-0.0005 0.0006 0.0001	
		E 0.0004 0.0007 0.0005	-0.0008 0.0009 0.0000	-0.0007 0.0006 -0.0000	-0.0007 0.0008 0.0000	0.0004 0.0005 0.0000	-0.0005 0.0006 0.0000	Ş
	Change	д 0.0004 0.0006 0.0001	-0.0006 0.0008 0.0001	-0.0006 0.0009 0.0001	-0.0004 0.0009 0.0002	-0.0003 0.0006 0.0001	-0.0003 0.0006 0.0001	Average Liner Bore Change F-B -0.0005 L-R 0.0005 Overell 0.0000
		0.0004 0.0005 0.0000	-0.0005 -0.0004 -0.0000	-0.0011 0.0013 0.0001	-0.0006 0.0007 0.0000	-0.0002 0.0004 0.0001	-0.0005 0.0004 -0.0000	rege Liner F-8 L-R Overall
		0.0001 0.0000 0.0000	-0.0002 -0.0025 -0.0013	-0.0015 0.0017 0.0001	0.0005 0.0005 0.0000	0.0002 0.0002 0.0000	0.0001	Axa
		Taper 0.0010 0.0012 0.0011	0.0010 0.0031 0.0020	0.0013 0.0014 0.0014	0.0012 0.0008 0.0010	0.0010	0.0004 0.0007 0.0005	
		4.9209 4.9231 4.9220 0.0022	4.9212 4.9226 4.9219 0.0014	4.9218 4.9223 4.9221 0.0005	4.9211 4.9231 4.9221 0.0020	4.9213 4.9226 4.9220 0.0013	4.9211 4.9230 4.9221 0.0019	
PL	After	E 4.9219 4.9231 4.925 0.0012	4.9211 4.9228 4.9220 0.0017	4.9218 4.9226 4.9222 0.0008	4.9210 4.9233 4.9222 0.0023	4.9214 4.9226 4.9220 0.0012	4.9212 4.9230 4.9221 0.0018	
Engine Dut-of-Rou		E 4.9213 4.9232 4.8223 0.0019	4.9212 4.9231 4.9222 0.0019	4.9217 4.9229 4.9223 0.0012	4.9213 4.9237 4.9225 0.0024	4.9215 4.9231 4.9223 0.0016	4.9215 4.9232 4.9224 0.0017	
Cummins L10-330E Engine Installed Cylinder Liner Out-of-Round		D 4.9217 4.9231 4.9224 0.0014	4.9211 4.9233 4.9222 0.0022	4.9214 4.9236 4.9225 0.0022	4.9211 4.9239 4.9225 0.0028	4.9215 4.9232 4.9224 0.0017	4.9214 4.9232 4.9223 0.0018	8
Cummin balled Cylin		4.9215 4.9220 4.9218 0.0005	4.9202 4.9202 4.9202 0.0000	4.9205 4.9237 4.9221 0.0032	4.9201 4.9233 4.9217 0.0032	4.9205 4.9227 4.9216 0.0022	4.9225 4.9225 4.9218 0.0014	nt to Back direction to Right direction along cylinder axis from TI E is location of press fit
		7 9 7	200	ღ	- g c	N Q O	748	k direction direction of i
		Taper 0.0007 0.0006 0.0007	0.0017 0.0012 0.0015	0.0005 0.0003 0.0004	0.0011 0.0008 0.0010	0.0012 0.0009 0.0010	0.0007 0.0004 0.0006	nt to Back direction to Right direction along cylinder ax E is location of pr
		4.9215 4.9224 4.9220 0.0009	4.9221 4.9217 4.9219 0.0004	4.9224 4.9221 4.9223 0.0003	4.9217 4.9224 4.9221 0.0007	4.9219 4.9219 4.9219 0.0000	4.9216 4.9224 4.9220 0.0008	F-B: diameter in Front to Back direction L-R: diameter in Left to Right direction C,D,E,F,G: locations along cylinder axis from TDC to BDC, E is location of press fit
	Before	E 4.9215 4.9224 4.9220 0.0009	4.9219 4.9219 0.0000	4.9225 4.9220 4.9223 0.0005	4.9217 4.9225 4.9221 0.0008	4.9218 4.9221 4.9220 0.0003	4.9217 4.9224 4.9221 0.0007	F-B: dlam L-R: dlam C,D,E,F,G
	æ	E 4.9217 4.9226 4.9222 0.0009	4.9218 4.9223 4.9221 0.0005	4.9223 4.9220 4.9222 0.0003	4.9217 4.9228 4.9223 0.0011	4.9218 4.9225 4.9222 0.0007	4.9218 4.9226 4.9222 0.0008	
		D. 4.9221 4.9226 4.9226 0.0005	4.9216 4.9229 4.9223 0.0013	4.9225 4.9223 4.9224 0.0002	4.9217 4.9232 4.9225 0.0015	4.9217 4.9228 4.9223 0.0011	4.9219 4.9228 4.9224 0.0009	Inches
		C 4.9214 4.9220 4.9217 0.0006	4.9204 4.9227 4.9216 0.0023	4.9220 4.9220 4.9220 0.0000	4.9206 4.9228 4.9217 0.0022	4.9207 4.9225 4.9216 0.0018	4.9212 4.9224 4.9218 0.0012	of-Round, I 0.004 0.004 i, Inches 4.9213 4.9238
		F-B L-R Avg O-of-R	F-B L-R Avg O-of-R	F-B L-R Avg O-of-R	F-B L-R Avg O-of-R	F-B L-R Avg O-of-R	F-B L-R Avg O-of-R	Cylinder Liner Out-of-Round, Inches Max 0.004 Cylinder Liner I.D., Inches Min 4.9213 Max 4.9238
		##-	N	m	4	ທ	φ	Cylind

Cummins L10-330E Engine Bearing Weights, Grams

Rod Bearings	Before	After	Change, mg	Ava. Lower	Ava. Upper
1 Lower	104.9037		0.7	7.2	206.3
1 Upper	104.9901		255.3	Max. Lower	Max. Upper
2 Lower	104.7412	104.7315	9.7	12.8	340.3
2 Upper	104.9110	104.7910	120.0	Min. Lower	Min. Upper
3 Lower	105.1536	105.1514	2.2	0.7	120.0
3 Upper	104.8454		185.6	•••	
4 Lower	104.9872	104.9767	10.5		
4 Upper	104.8353		167.8		
5 Lower	104.8904	104.8829	7.5		
5 Upper	104.7660	104.4257	340.3		
6 Lower	104.7689	104.7561	12.8		
6 Upper	104.9446	104.7759	168.7		
Adams Barasin and					
Main Bearings	<u>Before</u>	After	Change, mg	Avg. Lower	Avg. Upper
1 Lower	<u>Before</u> 209.2683		Change, mg 69.2	Avg. Lower 58.4	Avg. Upper 32.1
		209.1991 193.2520	69.2 14.1	58.4 Max. Lower	32.1 Max. Upper
1 Lower 1 Upper 2 Lower	209.2683	209.1991 193.2520	69.2	58.4	32.1 <u>Max. Upper</u> 48.8
1 Lower 1 Upper	209.2683 193.2661	209.1991 193.2520	69.2 14.1 43.4 48.8	58.4 Max. Lower	32.1 Max. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower	209.2683 193.2661 209.7136 193.7511 209.9322	209.1991 193.2520 209.6702 193.7023 209.8630	69.2 14.1 43.4 48.8 69.2	58.4 <u>Max. Lower</u> 78.5	32.1 <u>Max. Upper</u> 48.8
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867	69.2 14.1 43.4 48.8 69.2 26.1	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214	69.2 14.1 43.4 48.8 69.2 26.1 22.7	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper 5 Lower	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241 209.8793	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6 65.2	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper 5 Lower 5 Upper	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441 192.9477	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6 65.2 23.0	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper 5 Lower 5 Upper 6 Lower	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441 192.9477 209.9445	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241 209.8793	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6 65.2 23.0 60.9	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper 5 Lower 5 Upper 6 Lower	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441 192.9477 209.9445 193.3678	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241 209.8793 193.3448 209.6615 194.2108	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6 65.2 23.0	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper
1 Lower 1 Upper 2 Lower 2 Upper 3 Lower 3 Upper 4 Lower 4 Upper 5 Lower 5 Upper 6 Lower	209.2683 193.2661 209.7136 193.7511 209.9322 193.1128 209.7441 192.9477 209.9445 193.3678 209.7224	209.1991 193.2520 209.6702 193.7023 209.8630 193.0867 209.7214 192.9241 209.8793 193.3448 209.6615	69.2 14.1 43.4 48.8 69.2 26.1 22.7 23.6 65.2 23.0 60.9	58.4 <u>Max. Lower</u> 78.5 <u>Min. Lower</u>	32.1 Max. Upper 48.8 Min. Upper

	•	ge	Section	Max	0.0004	-0.0001	0.0205	0.0201	0.0201	0.0201
		Change	Clearar	Min	0.0000	-0.0001	0.0204	0.0202	0.0200	0.0201
	;									
			learances	Wax	0.0036	0.0033	0.0233	0.0233	0.0237	0.0239
	rances	ler	Clear	Min	0.0030	0.0033	0.0229	0.0233	0.0236	0.0239
:	Shell Clear	Aff	Shells	BA	3.1132	3.1138	3.1334	3.1337	3.1340	3.1340
ummins L10-330E Engine aring Journal and Bearing (Bearing :		Bearing	Щ	3.1137	3.1138	3.1335	3.1337	3.1339	3.1340
	Ĕ									
	J Journal	ore .	Clearances	Max	0.0032	0.0034	0.0028	0.0032	0.0036	0.0038
Cumu	od Bearing			Min	0.0030	0.0034	0.0025	0.0031	0.0036	0.0038
Connecting Ro	necting Ro		ournals Bearing Shells	₽₽	3.1133	3.1139	3.1130	3.1135	3.1139	3.1139
	Sol	Bef		Щ	3.1132	3.1139	3.1130	3.1136	3.1139	3.1139
				ᅃ	3.1101	3.1105	3.1102	3.1104	3.1103	3.1101
			Bearing	۵	3.1102	3.1105	3.1105	3.1104	3.1103	3.1101
				#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	Q	က	4	ည	9

Dimensions in inches

Average Change 0.0135

A = parallel to counterweights
B = perpendicular to counterweights
F = towards front of engine
BA = towards back of engine

Max 3.1107 3.1166 0.0083

Min 3.1083 3.1113 0.0006

> Rod Bearing Journal O.D. Rod Bearing Shell I.D. Rod Bearing Shell to Journal Clearence

	Change	Clearances	Min Max	02	·		·	•	·		Average Change -0.0004
							•		•		A
		Clearances	Min Max	0.0055 0.00	0.0053 0.0056	0.0056 0.0059		Ŭ			jhts erweights e
ances	After		BA	4.4948 0.0	4.4950 0.0	4.4949 0.0	4.4947 0.0		4.4950 0.0	4.4950 0.0	counterweig lar to count nt of engine
ngine Shell Clear		Bearing Shells	Щ	4.4949 4.4	4.4949 4.4	4.4948 4.4		4.4950 4.4	4.4952 4.4	4.4952 4.4	A = parallel to counterweights B = perpendicular to counterweights F = towards front of engine BA = towards back of engine
Cummins L10-330E Engine Main Bearing Journal and Bearing Shell Clearances	Before	S	Max	0.0058 4	0.0062 4	0.0062 4	0.0056 4	0.0068 4	0.0066 4	0.0060 4	A W IT W
Cummins ng Journal a		Clearances	Min	0.0057 0.0	0.0060 0.0	0.0059 0.0	0.0056 0.0	0.0065 0.0	0.0064 0.0	0.0052 0.0	Max 4.4903 4.4975 0.0087
Main Bearir		re Shells	BA	4.4951 0	4.4956 0	4.4951 0	4.4953 0	4.4955 0	4.4953 0	4.4950 0	Min 4.4888 4 4.4922 4 0.0019 0
_		Bearing She	Щ	4.4950	4.4956	4.4952	4.4953	4.4957	4.4954	4.4951	
		ournals	മി	4.4893	4.4894	4.4892	4.4897	4.4889	4.4888	4.4898	O.D.). Journal Cle
_		Bearing Journals	∢	4.4893	4.4896	4.4890	4.4897	4.4890	4.4889	4.4891	<u>Dimensions in inches</u> Main Bearing Journal O.D. Main Bearing Shell I.D. Main Bearing Shell to Journal Clearence
-			帯る	-	N	က	4	Ŋ	9	_	Dimension Main Bear Main Bear Main Bear

DISTRIBUTION LIST

Department of Defense

DEFENSE TECH INFO CTR CAMERON STATION ALEXANDRIA VA 22314 ODUSD	12	DIR DLA ATTN: DLA MMDI DLA MMSB CAMERON STA ALEXANDRIA VA 22304-6100	1 1
ATTN: (L) MRM	1	TIDDING VII DESCRIPTION	
PETROLEUM STAFF ANALYST		CDR	
PENTAGON		DEFENSE FUEL SUPPLY CTR	
WASHINGTON DC 20301-8000		ATTN: DFSC Q BLDG 8	1
		DFSC S BLDG 8	1
ODUSD		CAMERON STA	
ATTN: (ES) CI	1	ALEXANDRIA VA 22304-6160	
400 ARMY NAVY DR			
STE 206		CDR	
ARLINGTON VA 22202		DEFENSE GEN SUPPLY CTR	
		ATTN: DGSC SSA	1
HQ USEUCOM	_	DGSC STA	1
ATTN: ECJU L1J	1	8000 JEFFERSON DAVIS HWY	
UNIT 30400 BOX 1000		RICHMOND VA 23297-5678	
APO AE 09128-4209		DID ADV DOOL DOOL ACENON	
TIG COLODA C		DIR ADV RSCH PROJ AGENCY ATTN: ARPA/ASTO	1
US CINCPAC ATTN: J422 BOX 64020	1	3701 N FAIRFAX DR	1
CAMP H M SMITH	1	ARLINGTON VA 22203-1714	
HI 96861-4020		AREINGTON VA 22203-1714	
HI 90801-4020			
JOAP TSC	1		
BLDG 780			
NAVAL AIR STA			
PENSACOLA FL 32508-5300			

Department of the Army

HQDA		CDR ARMY TACOM	
ATTN: DALO TSE	1	ATTN: AMSTA IM LMM	1
DALO SM	1	AMSTA IM LMB	1
PENTAGON		AMSTA IM LMT	1
WASHINGTON DC 20310-0103		AMSTA TR NAC	1
		AMSTA TR R	1
SARDA		AMSTA TR M	1
ATTN: SARD TL	1	AMSTA TR M (R MUNT)	1
PENTAGON		AMCPM ATP	1
WASHINGTON DC 20310-0103		AMSTA TR E	1
		AMSTA TR K	1
CDR AMC		AMSTA IM KP	1
ATTN: AMCRD S	1	AMSTA IM MM	1
AMCRD E	1	AMSTA IM MT	1
AMCRD IM	1	AMSTA IM MC	1
AMCRD IT	1	AMSTA GTL	1
AMCEN A	1	AMSTA CL NG	1
AMCLG MS	1	USMC LNO	1
AMCLG MT	1	AMCPM LAV	1
AMCICP ISI	1	AMCPM M113/M60	1
5001 EISENHOWER AVE		AMCPM CCE/SMHE	1
ALEXANDRIA VA 22333-0001		WARREN MI 48397-5000	

DEPARTMENT OF THE ARMY		CDR AMSAA	
MOBILITY TECH CTR BELVOIR		ATTN: AMXSY CM	1
ATTN: AMSTA RBF (M E LEPERA)	10	AMXSY L	1
AMSTA RBXA (R E TOBEY)	1	APG MD 21005-5071	
10115 GRIDLEY RD STE 128			
FT BELVOIR VA 22060-5843		CDR ARO	
		ATTN: AMXRO EN (D MANN)	1
PROG EXEC OFFICER		RSCH TRIANGLE PK	•
ARMORED SYS MODERNIZATION		NC 27709-2211	
ATTN: SFAE ASM S	1	NO 27707-2211	
	. 1	DIR	
	_		
SFAE ASM CV	1	AMC PKG STO CONT CTR	
SFAE ASM AG	1	ATTN: SDSTO TE S	1
CDR TACOM		TOBYHANNA PA 18466-5097	
WARREN MI 48397-5000			
		CDR AEC	
PROG EXEC OFFICER		ATTN: SFIM AEC ECC (T ECCLES)	1
ARMORED SYS MODERNIZATION		APG MD 21010-5401	
ATTN: SFAE ASM FR	1		
SFAE ASM AF	1	CDR ARMY ATCOM	
PICATINNY ARSENAL NJ 07806-5000		ATTN: AMSAT I ME (L HEPLER)	1
		AMSAT I LA (V SALISBURY)	1
PROG EXEC OFFICER		AMSAT R EP (V EDWARD)	1
COMBAT SUPPORT		4300 GOODFELLOW BLVD	
ATTN: SFAE CS TVL	1	ST LOUIS MO 63120-1798	
SFAE CS TVM	1	31 LOUIS WO 03120-1798	
SFAE CS TVH	1	CDD AVIA ADDI TECHI DID	
	1	CDR AVIA APPL TECH DIR	
CDR TACOM		ATTN: AMSAT R TP (H MORROW)	1
WARREN MI 48397-5000		FT EUSTIS VA 23604-5577	
		CDD 4D1W1DDDG	
PROG EXEC OFFICER		CDR ARMY NRDEC	
ARMAMENTS		ATTN: SATNC US (J SIEGEL)	1
ATTN: SFAE AR HIP	1	SATNC UE	1
SFAE AR TMA	1	NATICK MA 01760-5018	
PICATINNY ARSENAL NJ 07806-5000			
		CDR ARMY ARDEC	
PROG MGR		ATTN: SMCAR CC	1
UNMANNED GROUND VEH		SMCAR ESC S	1
ATTN: AMCPM UG	1	PICATINNY ARSENAL NJ 07808-5000	
REDSTONE ARSENAL AL 35898-8060			
		CDR ARMY DESCOM	
DIR		ATTN: AMSDS MN	1
ARMY RSCH LAB		AMSDS EN	1
ATTN: AMSRL CP PW	1	CHAMBERSBURG PA 17201-4170	•
2800 POWDER MILL RD	•	OH MIDDIOD ONG 171 17201 4170	
ADELPHIA MD 20783-1145		CDR ARMY AMCCOM	
ADEE: 111A MID 20703-1143		ATTN: AMSMC MA	1
VEHICLE PROPULSION DIR		ROCK ISLAND IL 61299-6000	1
	1	NOCK ISLAND IL 01299-0000	
ATTN: AMSRL VP (MS 77 12)	1	CDD ADMINISTRATION AND AND AND AND AND AND AND AND AND AN	
NASA LEWIS RSCH CTR		CDR ARMY WATERVLIET ARSN	_
21000 BROOKPARK RD		ATTN: SARWY RDD	1
CLEVELAND OH 44135		WATERVLIET NY 12189	

DIR AMC LOG SPT ACT ATTN: AMXLS LA REDSTONE ARSENAL AL 35890-7466	1	CDR ARMY ARMOR CTR ATTN: ATSB CD ML ATSB TSM T FT KNOX KY 40121-5000	1 1
CDR APC ATTN: SATPC Q SATPC QE (BLDG 85 3) NEW CUMBERLAND PA 17070-5005	1	CDR ARMY QM SCHOOL ATTN: ATSM CD ATSM PWD FT LEE VA 23001-5000	1 1
PETROL TEST FAC WEST BLDG 247 TRACEY LOC DDRW P O BOX 96001 STOCKTON CA 95296-0960	1	ARMY COMBINED ARMS SPT CMD ATTN: ATCL CD ATCL MS FT LEE VA 23801-6000	1
CDR ARMY LEA ATTN: LOEA PL NEW CUMBERLAND PA 17070-5007	1	CDR ARMY FIELD ARTY SCH ATTN: ATSF CD FT SILL OK 73503	1
CDR ARMY TECOM ATTN: AMSTE TA R AMSTE TC D AMSTE EQ	1 1 1	CDR ARMY TRANS SCHOOL ATTN: ATSP CD MS FT EUSTIS VA 23604-5000	1
APG MD 21005-5006 PROG MGR PETROL WATER LOG ATTN: AMCPM PWL	1	CDR ARMY INF SCHOOL ATTN: ATSH CD ATSH AT FT BENNING GA 31905-5000	1 1
4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798 PROG MGM MOBILE ELEC PWR ATTN: AMCPM MEP	1	CDR ARMY AVIA CTR ATTN: ATZQ DOL M ATZQ DI FT RUCKER AL 36362-5115	1 1
7798 CISSNA RD STE 200 SPRINGFIELD VA 22150-3199 CDR	1	CDR ARMY CACDA ATTN: ATZL CD FT LEAVENWORTH KA 66027-5300	1
ARMY COLD REGION TEST CTR ATTN: STECR TM STECR LG APO AP 96508-7850	1 1	CDR ARMY ENGR SCHOOL ATTN: ATSE CD FT LEONARD WOOD	1
CDR ARMY BIOMED RSCH DEV LAB ATTN: SGRD UBZ A FT DETRICK MD 21702-5010	1	MO 65473-5000 CDR ARMY ORDN CTR ATTN: ATSL CD CS APG MD 21005	1
CDR FORSCOM ATTN: AFLG TRS FT MCPHERSON GA 30330-6000	1	CDR ARMY SAFETY CTR ATTN: CSSC PMG CSSC SPS FT RUCKER AL 36362-5363	1 1
CDR TRADOC ATTN: ATCD SL 5 INGALLS RD BLDG 163 FT MONROE VA 23651-5194	1		

CDR ARMY CSTA ATTN: STECS EN STECS LI STECS AE STECS AA	1 1 1	CDR I CORPS AND FT LEWIS ATTN: AFZH CSS FT LEWIS WA 98433-5000 CDR	1
APG MD 21005-5059 CDR ARMY YPG ATTN: STEYP MT TL M YUMA AZ 85365-9130 CDR ARMY CERL ATTN: CECER EN P O BOX 9005 CHAMPAIGN IL 61826-9005 DIR AMC FAST PROGRAM 10101 GRIDLEY RD STE 104 FT BELVOIR VA 22060-5818	1 1	RED RIVER ARMY DEPOT ATTN: SDSRR M SDSRR Q TEXARKANA TX 75501-5000 PS MAGAZINE DIV ATTN: AMXLS PS DIR LOGSA REDSTONE ARSENAL AL 35898-7466 CDR 6TH ID (L) ATTN: APUR LG M 1060 GAFFNEY RD FT WAINWRIGHT AK 99703	1 1
	epartment	of the Navy	
DIR LOGISTICS PLANS & POLICY/ STRATEGIC SEALIFT PROG DIV (N42) ATTN: N420 2000 NAVY PENTAGON WASHINGTON DC 20350-2000	1	CDR NAVAL AIR WARFARE CTR ATTN: CODE PE33 AID P O BOX 7176 TRENTON NJ 08628-0176	1
CDR NAVAL SEA SYSTEMS CMD ATTN: SEA 03M3 2531 JEFFERSON DAVIS HWY ARLINGTON VA 22242-5160	1	CDR NAVAL PETROLEUM OFFICE CAMERON STA T 40 5010 DUKE STREET ALEXANDRIA VA 22304-6180	1
CDR NAVAL SURFACE WARFARE CTR ATTN: CODE 63 CODE 632 CODE 859	1 1 1	OFC ASST SEC NAVY (I & E) CRYSTAL PLAZA 5 2211 JEFFERSON DAVIS HWY ARLINGTON VA 22244-5110	1
3A LEGGETT CIRCLE ANNAPOLIS MD 21402-5067 CDR NAVAL RSCH LABORATORY ATTN: CODE 6181 WASHINGTON DC 20375-5342	1	CDR NAVAL AIR SYSTEMS CMD ATTN: AIR 53623C 1421 JEFFERSON DAVIS HWY ARLINGTON VA 22243-5360	1

Department of the Navy/U.S. Marine Corps

HQ USMC		CDR	
ATTN: LPP	1	BLOUNT ISLAND CMD	
WASHINGTON DC 20380-0001		ATTN: CODE 922/1	1
		5880 CHANNEL VIEW BLVD	
PROG MGR COMBAT SER SPT	1	JACKSONVILLE FL 32226-3404	
MARINE CORPS SYS CMD			
2033 BARNETT AVE STE 315		CDR	
QUANTICO VA 22134-5080		MARINE CORPS LOGISTICS BA	
		ATTN: CODE 837	1
PROG MGR GROUND WEAPONS	1	814 RADFORD BLVD	
MARINE CORPS SYS CMD		ALBANY GA 31704-1128	
2033 BARNETT AVE			
QUANTICO VA 22134-5080		CDR	1
		2ND MARINE DIV	
PROG MGR ENGR SYS	1	PSC BOX 20090	
MARINE CORPS SYS CMD		CAMP LEJEUNNE NC 28542-0090	
2033 BARNETT AVE			
QUANTICO VA 22134-5080		CDR	1
		1ST MARINE DIV	
CDR		CAMP PENDLETON CA 92055-5702	
MARINE CORPS SYS CMD	_	ann.	
ATTN: SSE	1	CDR	1
2030 BARNETT AVE STE 315		FMFPAC G4	
QUANTICO VA 22134-5010		BOX 64118	
		CAMP H M SMITH HI 96861-4118	
	Department of	the Air Force	
HO USAF/LGSSF	Department of	the Air Force AIR FORCE WRIGHT LAB	
HQ USAF/LGSSF ATTN: FUELS POLICY	Department of		1
	·	AIR FORCE WRIGHT LAB	1
ATTN: FUELS POLICY	·	AIR FORCE WRIGHT LAB ATTN: WL/MLSE	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON	·	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON	·	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB	
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030	·	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV	1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP	
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY	1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2	
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030	1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP	
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB	1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS	1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT	
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL	1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT ROBINS AFB	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103 AIR FORCE WRIGHT LAB	1 1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103 AIR FORCE WRIGHT LAB ATTN: WL/MLBT	1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT ROBINS AFB	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103 AIR FORCE WRIGHT LAB ATTN: WL/MLBT 2941 P ST STE 1	1 1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT ROBINS AFB	1
ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030 AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF WL/POSL 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103 AIR FORCE WRIGHT LAB ATTN: WL/MLBT	1 1 1 1 1	AIR FORCE WRIGHT LAB ATTN: WL/MLSE 2179 12TH ST STE 1 WRIGHT PATTERSON AFB OH 45433-7718 AIR FORCE MEEP MGMT OFC 615 SMSQ/LGTV MEEP 201 BISCAYNE DR STE 2 ENGLIN AFB FL 32542-5303 SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603 WR ALC/LVRS 225 OCMULGEE CT ROBINS AFB	1

Other Federal Agencies

NASA LEWIS RESEARCH CENTER CLEVELAND OH 44135	1	DOE CE 151 (MR RUSSELL) 1000 INDEPENDENCE AVE SW WASHINGTON DC 20585	1
NIPER			
PO BOX 2128	1	EPA	
BARTLESVILLE OK 74005		AIR POLLUTION CONTROL 2565 PLYMOUTH RD	1
DOT		ANN ARBOR MI 48105	
FAA			
AWS 110	1		
800 INDEPENDENCE AVE SW			
WASHINGTON DC 20590			