Backpropagation을 위한 수학적 배경 지식

수업 목표

이번 수업의 핵심:

- 편미분의 개념
- Gradient descent를 통한 딥러닝 모델의 학습
- 합성 함수 미분을 위한 Chain rule 이해
- 편미분과 Chain rule을 활용한 Backpropagation 기본 개념

핵심 개념

- 편미분
- Gradient descent
- Chain rule
- Upstream gradient, Downstream gradient, Local gradient

다변수 함수의 편미분

다변수 함수 f(x,y)를 x로 편미분: $\frac{\partial f}{\partial x}$

- x 이외에 모든 변수를 상수 취급
 → 단변수 함수 g(x) = f(x, y = a)
- g(x)를 x에 대해서 미분한 함수

$$\frac{d}{dx}g(x) = \frac{\partial}{\partial x}f(x,y)$$

다음의 선형회귀 모델과 문제를 생각해보자:

• 모델:

$$y = ax + b$$

• Loss function: $\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$

Training Data:

$$egin{array}{c|cccc} x_i & y_i & & & & & \\ -2 & -1 & & & & \\ 0 & 1 & & & & \\ 1 & 2 & & & & \\ \end{array}$$

e.g.,
$$a = 2, b = 1$$

$ax_i + b$	$y_i - (ax_i + b)$	$\left(y_i - (ax_i + b)\right)^2$
-3	2	4
1	0	0
3	-1	1
	+	
$\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$		5

a,b를 랜덤한 초기값으로 정해주고, 아래 수식을 통해 조금씩 갱신해서, 최종적으로 Loss function $\mathcal{L}(a,b)$ 가 최소값이 되는 최적의 a,b 값을 도출하는 알고리즘

$$a \coloneqq a - \alpha \frac{\partial \mathcal{L}(a, b)}{\partial a}$$
$$b \coloneqq b - \alpha \frac{\partial \mathcal{L}(a, b)}{\partial b}$$

5

- 1. 먼저 a, b를 임의의 값으로 초기화: a = 2, b = 1
- 2. Loss function에 대한 a, b의 편미분 함수:

$$\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2, \qquad \frac{\partial \mathcal{L}(a,b)}{\partial a} = \sum_{i=1}^{n} -2x_i (y_i - (ax_i + b))$$

x_{i}	y_i	$ax_i + b$	$y_i - (ax_i + b)$	$\left(y_i - (ax_i + b)\right)^2$	$-2x_i\big(y-(ax_i+b)\big)$
-2	-1	-3	2	4	8
0	1	1	0	0	0
1	2	3	-1	1	2
				+	+
				$\mathcal{L}(a,b)$	$\frac{\partial \mathcal{L}(a,b)}{\partial a}$
				5	10

- 1. 먼저 a, b를 임의의 값으로 초기화: a = 2, b = 1
- 2. Loss function에 대한 a, b의 편미분 함수:

$$\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2, \qquad \frac{\partial \mathcal{L}(a,b)}{\partial b} = \sum_{i=1}^{n} -2(y_i - (ax_i + b))$$

x_{i}	y_i	$ax_i + b$	$y_i - (ax_i + b)$	$\left(y_i - (ax_i + b)\right)^2$	$-2\big(y-(ax_i+b)\big)$
-2	-1	-3	2	4	-4
0	1	1	0	0	0
1	2	3	-1	1	2
				+	+
				$\mathcal{L}(a,b)$	$\frac{\partial \mathcal{L}(a,b)}{\partial b}$
				5	-2

3. 편미분 값과 사전에 정한 Learning rate $\alpha=0.1$ 를 사용하여 a,b를 갱신

$$a \coloneqq a - \alpha \frac{\partial \mathcal{L}(a, b)}{\partial a} = 2 - 0.1 \times 10 = 1.0$$

$$b \coloneqq b - \alpha \frac{\partial \mathcal{L}(a, b)}{\partial b} = 1 - 0.1 \times (-2) = 1.2$$

• 한번 이동을 **step**이라 표현 →

• 갱신 이전의 값: a = 2, b = 1

x_{i}	y_i
-2	-1
0	1
1	2

$ax_i + b$	$y_i - (ax_i + b)$	$\left(y_i - (ax_i + b)\right)^2$
-3	2	4
1	0	0
3	-1	1
		+
$\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$		5

• 갱신 이후의 값: a = 1.0, b = 1.2

x_{i}	y_i
-2	-1
0	1
1	2

$ax_i + b$	$y_i - (ax_i + b)$	$\left(y_i - (ax_i + b)\right)^2$
-0.8	-0.2	0.04
1.2	-0.2	0.04
2.2	-0.2	0.04
	2	+
$\mathcal{L}(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$		0.12

Chain Rule (연쇄 법칙): 합성 함수의 미분

• 합성 함수 z = h(x) = g(f(x))에 대해서 x에 대한 미분 $\frac{d}{dx}h(x)$ 은 다음과 같음: $\frac{dh}{dx} = \frac{dh}{df}\frac{df}{dx} = g'(f(x))f'(x)$

→ 합성 함수의 미분은 각각의 함수 미분의 곱

• 만약
$$y = f(x) = \frac{1}{3}x + \frac{2}{3}, \frac{dy}{dx} = \frac{1}{3}$$
 그리고 $z = g(y) = \log y, \frac{dz}{dy} = \frac{1}{y}$ 이라면:

$$\frac{dz}{dx} = \frac{1}{3} \times \frac{1}{y}$$

다변수 함수의 Chain Rule

• 최종 Loss \mathcal{L} 이 z = f(x,y)에 종속적인 상황 가정 $\rightarrow \mathcal{L}(z) = \mathcal{L}(f(x,y))$

• Loss 값을 낮추기 위해 x, y에 대해 Gradient Descent를 사용 $\rightarrow \frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}$ 필요

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial x}, \qquad \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial y}$$

요약

- 최적화 과정에서의 Gradient descent의 필요성
- 편미분과 Chain rule의 이해
- 편미분과 Chain rule을 통한 Backpropagation의 수학적 배경

