Bài 2: Dùng phương pháp chia đôi tìm nghiệm gần đúng của

$$x^3 + 3x^2 - 3 = 0$$

với độ chính xác 10^{-3} , biết khoảng phân ly nghiệm (-3; -2).

Lời giải :

Ta có: f (x) =
$$x^3 + 3x^2 - 3$$

f' (x) = $3x^2 + 6x <=> f'(x) = 0 => x1 = 0$

Bảng biến thiên:

X	-2	0	+∞
f (x)	0	0	+∞
$f(x)$ - ∞	1	-3	

Ta có:

$$f(-3) = -3 < 0$$
 Khoảng phân ly nghiệm [-3; -2]

$$f(-2) = 1 > 0$$

f (-3) = -3 < 0 Khoảng phân ly nghiệm [-3; -2]
f (-2) = 1 > 0
Áp dụng phương pháp chia đôi ta có:

$$C1 = \frac{a+b}{2} = \frac{(-3)+(-2)}{2} = -2.5 \implies F1(C1) = 0.125 > 0$$

=> Khoảng phân ly nghiệm [-2.75; -2.5]

C3 =
$$\frac{(-2.75) + (-2.5)}{2}$$
 = -2.625 => F3(C3) = -0.416 < 0

=> Khoảng phân ly nghiệm [-2.625; -2.5]
$$C4 = \frac{(-2.625) + (-2.5)}{2} = -2.5625$$
 => F4(C4) = -0.127 < 0

=> Khoảng phân ly nghiệm [-2.5625; -2.5]

$$C5 = \frac{(-2.5625) + (-2.5)}{2} = -2.53125 \implies F5(C5) = 0.004 > 0$$

=> Khoảng phân ly nghiệm [-2.5625; -2.53125]

$$C6 = -2.546875 = F6(C6) = -0.061 < 0$$

=> Khoảng phân ly nghiệm [-2.546875; -2.53125]

$$C7 = -2.5390625 => F7(C7) = -0.029 < 0$$

=> Khoảng phân ly nghiệm [-2.5390625; -2.53125]

$$C8 = -2.53515 => F8(C8) = -0.012 < 0$$

=> Khoảng phân ly nghiệm [-2.53515; -2.5390625]

$$C9 = -2.537106 = F9(C9) = -0.020 < 0$$

=> Khoảng phân ly nghiệm [-2.537106; -2.5390625]

$$C10 = -2.538084 => F10(C10) = -0.024 < 0$$

=> Khoảng phân ly nghiệm [-2.538084; -2.5390625]

Ta lấy nghiệm gần đúng: $\xi = -2.538084$

Đánh giá sai số: $|\alpha - b_n| \le b_n - a_n = |-2.5390625 - (-2.538084)| = 9.785.10^{-4} < 10^{-3}$

$$(-2.538084)$$
 | = 9,785.10⁻⁴ < 10⁻³

Bài 3: Dùng phương pháp lặp, tìm nghiệm đúng với độ chính xác 10-3

a) $x^3 + 3x^2 - 3 = 0$, biết khoảng cách ly nghiệm là (-2.75; -2.5)

b)
$$\sqrt{x+1} = \frac{1}{x}TAI LIỆU SƯU TẬP$$

Lời giải :

a) $x^3 + 3x^2 - 3 = 0$, biết khoảng cách ly nghiệm là [-2.75; -2.5]

$$<=> x^3 = 3 - 3x^2 <=> (3 - 3x^2)^{1/3}$$

Ta nhận thấy $\left| f\right|_{(x)} \left| \le 0.045 < 1 \right|$ nên ta chọn hàm lặp $\phi_{(x)} = (3 - 3x^2)^{1/3}$

Để bắt đầu quá trình lặp ta chọn x_0 là 1 số bất kỳ € [-2.75; -2.5]

Do $f_{(-2.5)} < 0$ nên ta chọn đầu b = -2.5 cố định, chọn xấp xỉ đầu $x_0 = -2.5$ Ta có quá trình lặp.

Đặt
$$\varphi_{(x)} = (3 - 3x^2)^{1/3} <=> \varphi_{(x)} = \frac{1}{3}(3 - 3x)^{-2/3} = \frac{1}{3}. \frac{1}{\sqrt[3]{(3 - 3x^2)^2}}$$

Để bắt đầu quá trình lặp ta chọn x_0 là 1 số bất kỳ € [-2.75; -2.5]

$$x_0 = -2.5$$
; $q = \frac{1}{3}$. Vì $\alpha \in [-2.75; -2.5]$

ta có:
$$|\varphi'(x)| \le \frac{1}{3} \ \forall x \in [-2.75; -2.5]; \ \varphi'(x) < 0 \ \forall x \in [-2.75; -2.5]$$

$$x_{n+1} = (3 - 3x^2)^{1/3}$$

$$x_0 = -2.5$$

$$X_1 = (3 - 3.(-2.5)^2)^{1/3} = -2.5066$$

$$X_2 = (3 - 3.(x_1)^2)^{1/3} = -2.5119$$

$$X_3 = (3 - 3.(x_2)^2)^{1/3} = -2.5161$$

$$X_4 = (3 - 3.(x_3)^2)^{1/3} = -2.5194$$

$$X_5 = (3 - 3.(x_4)^2)^{1/3} = -2.5221$$

$$X_6 = (3 - 3.(x_5)^2)^{1/3} = -2.5242$$

$$X_6 = (3 - 3.(x_5)^2)^{1/3} = -2.5242$$

$$X_7 = (3 - 3.(x_6)^2)^{1/3} = -2.5259$$

$$X_8 = (3 - 3.(x_7)^2)^{1/3} = -2.5272$$

$$X_9 = (3 - 3.(x_9)^2)^{1/3} = -2.5282$$

$$X_8 = (3 - 3.(x_7)^2)^{1/3} = -2.5272$$

$$x_9 = (3 - 3.(x_8)^2)^{1/3} = -2.5282$$

$$X_{10} = (3 - 3.(x_9)^2)^{1/3} = -2.590$$

$$x_{11} = (3 - 3.(x_{10})^2)^{1/3} = 2.5296$$
 SU'U TÂP

$$x_{12} = (3 - 3.(x_{11})^2)^{1/3} = 2.5301 \text{ mut-cncp}$$

Ta lấy nghiệm gần đúng: ξ = -2.5301

Đánh giá sai số:
$$|\alpha - x_{12}| = \frac{q}{1-q} |x_{12} - x_{11}| = 2.5.10^{-4} < 10^{-3}$$

b)
$$\sqrt{x+1} = \frac{1}{x}$$

Đặt
$$f(x) = \sqrt{x+1} - \frac{1}{x}$$

Từ đồ thị ta có:

$$f_{(0.7)} = -0.12473 < 0$$

$$f_{(0.8)} = 0.09164 > 0$$

 $\ \Rightarrow \ f_{\,(0.7)}$. $f_{\,(0.8)}{<}\,0$. Vậy ta có khoảng phân ly nghiệm là [$0.7;\,0.8]$

Ta có:

$$<=> x = {1 \over {\sqrt{x+1}}} = (x+1)^{-1/2}$$

Đặt
$$\varphi_{(x)} = (x+1)^{-1/2} <=> \varphi_{(x)}^{'} = -\frac{1}{2}(x+1)^{-3/2} = -\frac{1}{2} \cdot \frac{1}{\sqrt{(x+1)^3}}$$

Ta nhận thấy $\left| f^{'}_{(x)} \right| \le 0.4141 < 1$ nên ta chọn hàm lặp $\phi_{(x)} = (x+1)^{-1/2}$

Để bắt đầu quá trình lặp ta chọn x_0 là 1 số bất kỳ € [0.7; 0.8]

Do $f_{(0.7)} < 0$ nên ta chọn đầu b = 0.8 cố định, chọn xấp xỉ đầu $x_0 = 0.7$.

Ta có quá trình lặp

$$q = 0.4141$$
 . Vì $\alpha \in [0.7; 0.8]$

ta có:
$$| \phi_{(x)} | \le \frac{1}{2} \quad \forall x \in [0.7; 0.8]; \phi_{(x)} < 0 \ \forall x \in [0.7; 0.8]$$

$$x_{n+1} = (x+1)^{-1/2}$$

$$x_0 = 0.7$$

$$X_1 = (0.7 + 1)^{-1/2} = 0.766964988$$

$$X_2 = (X_1 + 1)^{-1/2} = 0.75229128$$

$$x_2 = (x_1+1)^{-1/2} = 0.75229128$$

 $x_3 = (x_2+1)^{-1/2} = 0.755434561$

$$X_3 = (X_2 + 1)^{-1/2} = 0.755434561$$

 $X_4 = (X_3 + 1)^{-1/2} = 0.754757917$

Ta lấy nghiệm gần đúng: $\xi = 0.754757917$ TÂP

Đánh giá sai số: $|\alpha - x_4| = \frac{q}{1-q} |x_4 - x_3| = 4,7735.10^{-4} < 10^{-3}$

Bài 4: Dùng phương pháp dây cung và tiếp tuyến, tìm nghiệm đúng với độ chính xác 10^{-2}

a)
$$x^3 + 3x^2 + 5 = 0$$

b)
$$x^4 - 3x + 1 = 0$$

Lời giải:

a)
$$x^3 + 3x^2 + 5 = 0$$

Tìm khoảng phân ly nghiệm của phương trình:

$$f(x) = x^3 + 3x^2 + 5$$

$$<=> x^3 = 5 - 3x^2$$

Đặt
$$y1 = x^3$$

y

Từ đồ thị ta có:

$$f(-2) = -9 < 0$$

f(-1) = 1 > 0 Vì f(-2) . f(-1) < 0* Áp dụng phương -1

$$f(-1) = 1 > 0$$

$$Vi f(-2) . f(-1) < 0$$

$$x_1 = x_0 - \frac{f(x_0).(b-a)}{f(b)-f(a)} = -1.1$$

 $f(X_1) = 0.036 > 0 =>$ Khoảng phân ly nghiệm [- 2; -1.1]

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(\mathbf{x}_1).(b-a)}{f(b) - f(a)} = -1.14$$

 $f(X_2) = 0.098 > 0 = Khoảng phân ly nghiệm [-2;-1.14]$

$$x_3 = x_2 - \frac{f(x_2).(b-a)}{f(b) - f(a)} = -1.149$$

 $f(X_3) = 0.0036 > 0 = Khoảng phân ly nghiệm [-2; -1.149]$

$$x_4 = -1.152 \implies f(x_4) = 0.015 > 0$$

=> Khoảng phân ly nghiệm [- 2; -1.152]

$$x_5 = -1.1534 \implies f(x_5) = 0.0054 > 0$$

=> Khoảng phân ly nghiệm [- 2;-1.1534]

$$x_6 = -1.1539 \implies f(x_6) = -1.1539 < 0$$

=> Khoảng phân ly nghiệm [- 2;-1.1539].

Ta chọn nghiệm gần đúng $\xi = -1.53$

Đánh giá sai số: $\left| \xi - x_6 \right| \leq \left| \frac{f(x)}{m} \right|$ với m là số dương : $0 < m \le f(x)$

$$\forall x \in [-2;-1] \quad |\xi - x_6| \le 1.36 \cdot 10^{-3} < 10^{-2}$$

* Áp dụng phương pháp tiếp tuyến (Niwtơn) ta có:

$$f'(-2) = 19 > 0$$

 $f''(-2) = -12 < 0$
=> $f'(-2)$. $f''(-2) < 0$ nên ta chọn $x_0 = -2$
Với $x_0 = -2$ ta có:
 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -1.4$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = -1.181081081$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.154525889_{CNCP}$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = -1.15417557$$

Ta chọn nghiệm gần đúng ξ = -1.154

Đánh giá sai số: $\left|\xi - x_4\right| \leq \left|\frac{f(x)}{m}\right|$ với m là số dương : $\left|f(x)\right| \geq m > 0$

$$\forall x \in [-2;-1] \quad |\xi - x_4| \le 1.99 \cdot 10^{-4} < 10^{-2}$$

b)
$$x^4 - 3x + 1 = 0$$

Tìm khoảng phân ly nghiệm:

$$f(x) = x^4 - 3x + 1$$

$$f'(x) = 4x^3 - 3 \iff f'(x) = 0 \implies x = \sqrt[3]{\frac{3}{4}} = \sqrt[3]{0.75}$$

Bảng biến thiên:

X	-∞	³√0.75	+∞
f (x)	-∞	0	+∞
f(x)		- 1.044	

Ta có :

$$f(0) = 1 > 0$$

$$f(1) = -1 < 0$$
 Khoảng phân ly nghiệm [0; 1]; [1; 2]

$$f(2) = 11 > 0$$

* $\acute{A}p$ dụng phương pháp dây cung trong khoảng $[\ 0\ ;\ 1\]$ ta có:

Do
$$f(1) = -1 < 0 = chon X_0 = 1$$

Oo f (1) = -1 < 0 => chọn
$$X_0 = 1$$

 $X_1 = X_0 - \frac{f(x_0).(b-a)}{f(b) - f(a)} = 0.5$

$$f(X_1) = -0.4375 < 0 = Khoảng phân ly nghiệm [0; 0.5]$$

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(x_1).(b-a)}{f(b) - f(a)} = 0.3478$$

$$f(X_2) = -0.0288 < 0 = Khoảng phân ly nghiệm [0; 0.3478]$$

$$\mathbf{x}_3 = \mathbf{x}_2 - \frac{f(\mathbf{x}_2).(b-a)}{f(b) - f(a)} = 0.3380$$

 $f(X_3) = -0.00095 < 0 = Khoảng phân ly nghiệm [0; 0.3380]$

$$x_4 = 0.3376 \implies f(x_4) = 0.0019 > 0$$

=> Khoảng phân ly nghiệm [0.0019; 0.3380]

Ta chọn nghiệm gần đúng $\xi = 0.3376$

Đánh giá sai số: $\left| \xi - x_4 \right| \leq \left| \frac{f(x)}{m} \right|$ với m là số dương : $0 < m \le f(x)$

$$\forall x \in |\xi - x_4| \le 1.9.10^{-4} < 10^{-2}$$

* \acute{Ap} dụng phương pháp tiếp tuyến (Niwtơn) trong khoảng [0; 1] ta có:

$$f'(1) = 1 > 0$$

$$f''(1) = 12 > 0$$

$$=> f'(1) \cdot f''(1) > 0$$
 nên ta chọn $x_0 = 0$

Với $X_0 = 0$ ta có:

$$\mathbf{x}_1 = \mathbf{x}_0 - \frac{f(x_0)}{f'(x_0)} = 0.3333$$

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(\mathbf{x}_1)}{f'(\mathbf{x}_1)} = 0.33766$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.33766$$

Ta chọn nghiệm gần đúng $\xi = 0.3376$

Đánh giá sai số: $\left|\xi - x_3\right| \le \left|\frac{f(x)}{m}\right|$ với m là số dương : $\left|f(x)\right| \ge m > 0$

$$\forall x \in [0;1] \quad |\xi - x_3| \le 6.10^{-5} < 10^{-2}$$

* Áp dụng phương pháp dây cung trong khoảng [1; 2] ta có:

Do f(1) = -1 < 0 =>
$$\operatorname{chon} X_0 = 1$$

$$\mathbf{X}_1 = \mathbf{X}_0 - \frac{f(x_0).(b-a)}{f(b) - f(a)} = 1.083$$

 $f(X_1) = -0.873 < 0 = Khoảng phân ly nghiệm [1.083; 2]$

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(x_1).(b-a)}{f(b) - f(a)} = 1.150$$

 $f(X_2) = -0.7 < 0 \implies \text{Khoảng phân ly nghiệm } [1.150; 2]$

$$X_3 = X_2 - \frac{f(x_2).(b-a)}{f(b) - f(a)} = 1.2$$

 $f(X_3) = -0.526 < 0 \implies$ Khoảng phân ly nghiệm [1.2; 2]

$$x_4 = 1.237 \implies f(x_4) = -0.369 < 0$$

=> Khoảng phân ly nghiệm [1.237; 2]

$$x_5 = 1.2618 \implies f(x_5) = -0.25 < 0$$

=> Khoảng phân ly nghiệm [1.2618; 2]

$$x_6 = 1.2782 \implies f(x_6) = -0.165 < 0$$

=> Khoảng phân ly nghiệm [1.2782; 2]

$$x_7 = 1.2889 \implies f(x_7) = -0.1069 < 0$$

=> Khoảng phân ly nghiệm [1.2889; 2]

$$x_8 = 1.2957 \implies f(x_8) = -0.068 < 0$$

=> Khoảng phân ly nghiệm [1.2957; 2]

$$x_9 = 1.3000 \implies f(x_9) = -0.0439 < 0$$

=> Khoảng phân ly nghiệm [1.3; 2]

$$x_{10}$$
= 1.3028 => $f(x_{10})$ = -0.027 < 0

=> Knoang p.... $X_{10}=1.3028 \Rightarrow f(X_{10})=-0.027 < 0$ => Khoảng phân ly nghiệm [1.3028; 2] Ta chọn nghiệm gần đúng $\xi = 1.30$

Đánh giá sai số: $|\xi - x_{10}| \le \left| \frac{f(x)}{m} \right|$ với m là số dương : $0 < m \le f(x)$

$$\forall x \in |\xi - x_{10}| \leq -2.8.10^{-3} < 10^{-2}$$

* Áp dụng phương pháp tiếp tuyến (Niwton) trong khoảng [1;2] ta có:

$$f'(1) = 1 > 0$$

$$f''(1) = 12 > 0$$

$$=> f'(1) \cdot f''(1) > 0$$
 nên ta chọn $x_0 = 2$

Với $X_0 = 0$ ta có:

$$\mathbf{x}_1 = \mathbf{x}_0 - \frac{f(x_0)}{f'(x_0)} = 1.6206896$$

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(x_1)}{f'(x_1)} = 1.404181$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.320566$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 1.307772$$

$$X_5 = X_4 - \frac{f(x_4)}{f'(x_4)} = 1.307486$$

Ta chọn nghiệm gần đúng $\xi = 1.30$

Đánh giá sai số: $|\xi - x_5| \le \left| \frac{f(x)}{m} \right|$ với m là số dương : $|f(x)| \ge m > 0$

$$\forall x \in [1;2] \quad |\xi - x_5| \le -7.486.10^{-3} < 10^{-2}$$

Ta chọn nghiệm gần đúng $\xi = 0.3376$

Đánh giá sai số: $|\xi - x_4| \le \left| \frac{f(x)}{m} \right|$ với m là số dương: $0 < m \le f(x)$

$$\forall x \in |\xi - x_4| \le 1.9.10^{-4} < 10^{-2}$$

i tâp 5:

Tìm nghiệm dương nhỏ nhất của phương trình $2^x - 4x = 0$ (1) bằng phương pháp tiếp tuyến với độ chính xác 10⁻⁵

B1:tìm khoảng phân ly Ta tách phương trình (1)thành Ta tách phương trình (1)thành

Dựa vào phương pháp đồ thị ta tìm dược khoảng phân ly là :[0;0,5] vì

$$\begin{array}{ll} f_{(o)} > 0 & \\ f_{(0,5)} < 0 & \text{vậy } f_{(o)} \times f_{(0,5)} < 0 \end{array}$$

B2: tìm nghiệm của phương trình

 $f' < 0; f'' > 0 \rightarrow f' \times f'' < 0$ nên ta chọn $x_0 = a = 0$

$$x_1 = x_0 - \frac{f_{(x_0)}}{f_{(x_0)}} = 0 - \frac{1}{-3,30685} = 0,3024$$

$$x_2 = 0.3024 - \frac{0.02359}{-3.14521} = 0.3099$$

$$x_3 = 0,3099 - \frac{0,00002}{-3,14076} = 0,30991$$

$$x_4 = 0,30991 - \frac{0,00001}{-3,14075} = 0,30991$$

Vậy ta thấy nghiệm dương nhỏ nhất của phương trình là : x=0.30991

Bài tập 6:

Dùng phương pháp Gauss để giải những hệ phương trình Ax=b. Các phép tính lấy đến 5 số lẻ sau dấu phẩy:

a.

$$A = \begin{pmatrix} 1,5 & -0,1 & 0,1 \\ -0,1 & 1,5 & -0,1 \\ -0,3 & 0,2 & -0,5 \end{pmatrix} \qquad b = \begin{pmatrix} 0,4 \\ 0,8 \\ 0,2 \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad B = \begin{pmatrix} 0, 4 \\ 0, 8 \\ 0, 2 \end{pmatrix}$$

Bài giải:

Lập bảng gauss:

Quá trình	a _{i1}	$\mathbf{a_{i2}}$	a _{i3}	a _{i4}	$\sum a_{ij}$ (cột kiểm tra)
Thuận	1,5	-0,2	0,1	0,4	
	0,1	1,5	-0,1	0,8	
	-0,3	0,2	-0,5	0,2	
	1	-0,13333	0,06667	0,26667	
	0	1,48667	0,09333	0,82667	
	0	1,6	-0,48	0,28	
		1	0,06278	0,55605	
		d àiiiê	-1,48448	-0,33326	
		ı Wı rı ë	4 30 0	0,22449	
		1 BỞI F	CMUT-CNC	0,54196	
	1			0,32397	

Vậy nghiệm của phương trình là: (0,32397; 0,54196;0,22449)

b)

$$A = \begin{pmatrix} 2,6 & -4,5 & -2,0 \\ 3,0 & 3,0 & 4,3 \\ -6,0 & 3,5 & 3,0 \end{pmatrix} \qquad b = \begin{pmatrix} 19,07 \\ 3,21 \\ -18,25 \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad B = \begin{pmatrix} 19,07 \\ 3,21 \\ -18,25 \end{pmatrix}$$

Bài giải:

Lập bảng gauss :

Quá trình	a _{i1}	a_{i2}	a _{i3}	a _{i4}	$\sum a_{ij}$ (cột kiểm tra)
	2,6	-4,5	-2,0	19,07	
Thuận	3	3	4,3	3,21	
	-6	3,5	3	-18,25	
	1	-1,73077	-0,76923	7,33462	
		8,9231	6,60769	-18,79386	
		-6,88462	-1,61538	25,75772	
		1	0,80657	-2,29409	
			3,93754	9,96378	
			1	2,53045	
		1		-4,33508	
				1,77810	
	1				

Bài 7:

Bài 7:

Giải hệ phương trình:
$$\begin{cases}
-8x+y+z \\
x_{-}5y+z \\
x+y-4z=7
\end{cases}$$
(I)

Bằng phương pháp lặp đơn, tính lặp 3 lần, lấy $x^{(a)}$ =g và đánh giá sai số của x^3

Giải: Từ phương trình (I)
$$\begin{cases} x = y.1/8 + z.1/8 - 1/8 \\ y = x.1/5 + z.1/5 - 16/5 \\ z = x.1/4 + y.1/4 - 7/4 \end{cases} \Leftrightarrow \begin{cases} x = 0.125y + 0.125z - 0.125 \\ y = 0.2x + 0.2z - 3.2 \\ z = 0.25x + 0.25y - 1.75 \end{cases}$$

$$\Rightarrow B = \begin{pmatrix} 0 & 0.125 & 0.125 \\ 0.2 & 0 & 0.2 \\ 0.25 & 0.25 & 0 \end{pmatrix} ; \qquad g = \begin{pmatrix} -0.125 \\ -3.2 \\ -1.75 \end{pmatrix}$$

$$=>B=\begin{pmatrix} 0 & 0.125 & 0.125 \\ 0.2 & 0 & 0.2 \\ 0.25 & 0.25 & 0 \end{pmatrix} ; \qquad g=\begin{pmatrix} -0.125 \\ -3.2 \\ -1.75 \end{pmatrix}$$

Ta xet r = max_i
$$\sum_{j=1}^{3} |b_{ij}| => \begin{cases} r_1 = 0.25 \\ r_2 = 0.4 \\ r_3 = 0.5 \end{cases}$$

$$\Rightarrow r = \max_{i} \sum_{j=1}^{3} |b_{ij}| = 0.5 < 1$$

 \Rightarrow phương pháp lặp đơn $x^{(m)}$ =b. $x^{(m\text{-}1)}$ +g , hội tụ với mọi x_0 cho trước ta có bảng sau:

	X	Y	Z
В	0	0,135	0,125
	0,2	0	0,125 0,2
	0,2 0,25	0,25	0
$X^{(0)}$	-0,125	-3,2	-1,75

$X^{(1)}$	-0,74375	-3,575	-2,58125
$X^{(2)}$	-0,89453125	-3,865	-2,8296875
$X^{(3)}$	-0,961835937	-3,94484375	-2,939882875

Vậy ta có nghiệm của phương trình là:

 $X = -0.961835937 \pm 0.110195375$

 $Y = -3,94484337 \pm 0,110195375$

 $Z=-2,939882875 \pm 0,110195375$

Bâi 8:

Giải hệ phương trình

$$\begin{cases} 24,21x_1 + 2,42x_2 + 3,85x_3 = 30,24 \\ 2,31x_1 + 31,49x_2 + 1,52x_3 = 40,95 \\ 3,49x_1 + 4,85x_2 + 28,72x_3 = 42,81 \end{cases}$$

$$\leftrightarrow \begin{cases} x_1 = 1,24907 - 0,09995x_2 - 0,15902x_3 \\ x_2 = 1,30041 - 0,07335x_1 - 0,04826x_3 \\ x_3 = 1,49059 - 0,1215x_1 - 0,1689x_2 \end{cases}$$

$$f_{(x)} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & -0,09995 & -0,15902 \\ -0,07335 & 0 & -0,04826 \\ -0,12151 & -0,16887 & 0 \end{pmatrix} + \begin{pmatrix} 1,24907 \\ 1,30041 \\ 1,49059 \end{pmatrix}$$

Ta có:

$$\begin{cases} r_1 = 0,25897 < 1 \\ r_2 = 0,12171 < 1 \rightarrow \text{pt hội tụ} \\ r_3 = 0,29038 < 1 \end{cases}$$

Lập bảng:

	x_1	x_2	<i>x</i> ₃	
	0	-0,09995	-0,15902	
В	-0,07335	0	-0,04826	
	-0,12151	-0,16887	0	
x_0	1,24907	1,30041	1,49059	
x^1	0,98201	1,13685	1,11921	
x^2	0,95747	1,17437	1,17928	
x^3	0,94416	1,17326	1,17773	
x^4	0,94452	1,17431	1,17774	

Ī	x^5	0,94441	1,17429	1,17751	
	x^6	0,94452	1,17431	1,17753	
	x^7	0,94444	1,17429	1,17751	

Nghiệm bằng: (0,94444; 1,17429; 1,17751)

Bài 9

Xây dựng đa thức nôi suy Lagrange của hàm y=f(x) cho dưới dang bảng

X	0	2	3	5
Y	1	3	2	5

Giải:

ở đây ta thấy n=3 nên đa thức nội suy là một đa thức bậc 3 có dạng

$$P3(x) = y_0 + l_0(x) + y_{1L1}(x) + y_2 l_2(x) + y_3 l_3(x)$$

$$\Leftrightarrow p_3(x) = \frac{(x-2)(x-3)(x-5)}{(0-2)(0-3)(0-5)} + 3 \cdot \frac{(x-0)(x-3)(x-5)}{(2-0)(2-3)(2-5)} + 2 \cdot \frac{(x-0)(x-2)(x-5)}{(3-0)(3-2)(3-5)} + 5.$$

$$\frac{(x-0)(x-2)(x-3)}{(5-0)(5-2)(5-3)}$$

$$\Leftrightarrow p_3(x) = \frac{x3 - 10x2 + 31x - 30}{-30} + \frac{x3 - 8x2 + 15x}{6} + \frac{x3 - 5x2 + 6x}{30}$$
$$\Leftrightarrow p_3(x) = \frac{9x3 - 65x2 + 124x + 30}{30}$$

$$\Leftrightarrow p_3(x) = \frac{9x3 - 65x2 + 124x + 30}{30}$$

Vậy đa thức Lagrange cần tìm la: $p_3(x) = \frac{9x3 - 65x2 + 124x + 30}{30}$

Bài 10:

BổI HCMUT-CNCP

Cho bảng giá trị của hàm số y = f(x)

X	321,0	322,0	324,0	325,0
Y	2,50651	2,50893	2,51081	2,51188

Tính gần đúng t (324,5) bằng đa thức nội suy Lagrange?

Giải:

Gọi
$$x^* = 323,5$$

$$\Rightarrow y(x^*) = p_3(x^*) = y_0 l_0(x^*) + y_1 l_1(x^*) + y_2 l_2(x^*) + y_3 l_3(x^*)$$

Ta có

$$l_0(x^*) = \frac{(323.5 - 322.8)(323.5 - 324.2)(323.5 - 325.0)}{(321.0 - 322.8)(321.0 - 324.2)(321.0 - 325.0)} = -0.031901041$$

$$= -0.03190$$

$$L_1(x^*) = \frac{(323.5 - 321.0)(323.5 - 324.2)(323.5 - 325.0)}{(322.8 - 321.0)(322.8 - 324.2)(322.8 - 325.0)} = 0,473484848$$

= 0.43748

$$L_2(x^*) = \frac{(323,5 - 321,0)(323,5 - 322,8)(323,5 - 325,0)}{(324,2 - 321,0)(324,2 - 322,8)(324,2 - 325,0)} = 0,732421875$$

=0,73242

$$L_3(x^*) = \frac{(323,5 - 321,0)(323,5 - 322,8)(323,5 - 324,2)}{(325,0 - 321,0)(325,0 - 322,8)(325,0 - 324,2)} = -0,174005681$$

= -0.17401

$$\Rightarrow$$
 y (323,5)= 2,50651.(-0,03190)+2,50893.0,47348+2,51081.0,73242+2,51188.(-0,17401) =2,50985

Bài 11:

Cho bảng giá trị của hàm số y ≒f(x)

X	-1	0	CH	3	64	7
Y	3	-6		39CP	822	1011

- a. Xây dựng đa thức nội suy Niwton tiến xuất phát từ nút $x_0 = -1$ của y = f(x)
- b. Dùng đa thức nội suy nhận được tính giá trị f(0,25)

Giải: Đa thức vừa lặp là đa thức nội suy Niwton bước không đều

a. Ta có bảng ký hiệu

X	Y	THC ₁	THC ₂	THC ₃	THC ₄
-1	3	>-9			
0	-6	\rangle 15	$\left \begin{array}{c} >6 \\ >41 \end{array} \right $	\right\)5	\rangle_1
3	39	261	\rangle 132	\rightarrow 13	/ 1
6	822				

		89		
7	1611	/		

Da thức nội suy :
$$p_4(x) = 3-9(x+1)+6(x+1)x+5(x+1)x(x-3)+(x+1)x(x-3)(x-6)$$

= $3-9x-9+6x^2+6x+5x^3-10x^2-15x+x^4-8x^3+9x^2+18x$

$$\Leftrightarrow p_4(x) = x^4 - 3x^3 + 5x^2 - 6$$

b. Tính
$$f(-0.25) = (-0.25)^4 - 3(0.25)^3 + 5(0.25)^2 - b = -5.636719$$

Bài 12: Cho bảng giá trị của hàm số y=sinx

X	0,1	0,2	0,3	0,4
Y=f(x)	0,09983	0,19867	0,29552	0,38942

- a. Dùng đa thức nội suy tiến xuất phát từ $x_0 = 0,1$ tính gần đúng $\sin(0,4)$ và đánh giá sai số của giá trị nhận được
- b. Dùng đa thức nội suy lùi xuất phát từ x₃ =0,4 tính gần đúng sin (0,46) và đánh giá sai số

Giải:

a. Đa thức nội suy bước đều với h=0,1 ta có bảng sai phân:

X	Y B	di AY мит-см	9 1 7,1 -	$\Delta^3 Y$
0,1	0,09983	0,09884		
0,2	0,19867	0,09685	\rangle -0,00199	\rangle -0,00096
0,3	0,29552	0,09390	\rangle -0,00295	
0,4	0,38942			

Áp dụng công thức đa thức nội suy Niwton tiến ta tính:

Sai
$$(0,014) = p_n(x) [x=0,1+0,1t] = y_0 + t. \frac{\Delta y_0}{1!} + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0$$

Theo bài ra ta có : $x=0,14 \Leftrightarrow 0,1+0,1t=0,1 \varphi => t=0,4$

Thay vào trên ta có :
$$Sin(0,14) = 0.09983 + 0.4.0.09884 + \frac{0.4(0.4-1)}{2}(0.00199) + \frac{0.4(0.4-1)(0.4-2)}{6}(-0.00096) = 0.13954336$$

Đánh giá sai số:

Ta có :
$$\Pi(x) = (x-0,1)(x-0,2)(x-0,3)(x-0,4)$$

$$|\Pi(0,14)| = |(0,14-0,1)(0,14-0,2)(0,14-0,3)(0,14-0,4)| = 0,00009984$$

$$=> \left|\sin(0.14) - 0.13954336\right| \le \frac{0.00009984}{4!} = 4.16.10^{-6}$$

=> Nghiệm gần đúng $\sin(0.14) = 0.13954 \pm 10^{-5}$

b. Lập bảng sai phân với đa thức nội suy lùi

X	Y	$\Delta_1 Y$	$\Delta_2 Y$	$\Delta_3 Y$
0,4	0,38942	0,0939	λ	
0,3	0,29552	0,09686	\rangle -0,00295 \rangle -0,00199	\rangle -0,00096
0,2	0,19867	0,09884	-0,00199	
0,1	0,09983	IỆU SƯ	J TẬP	

Dựa vào công thức sai phân lùi ta có

Sin(0,46) = p(x); [x=0,4+0,1t = moi người nhập trong tài liệu.]

Sai số tính theo công thức (4.7) ở trênta có:

$$|\sin(0,46) - 0,4439446| \le 3,8.10^{-5}$$

Ta quy tròn số0,4439446 đến 5 chữ số lẻ thập phân:

$$\sin(0,46) = 0,44394 \pm 5.10^{-5}$$

Bài 13Cho bảng giá tri:

0110 0111	8 8 W W W					
X	2	4	6	8	10	12
Y	7,32	8,24	9,20	10,19	11,01	12,05

Hãy tìm công thực nghiệm có dạng y = ax + b

	Xi	Yi	X2i	xi.yi
N = 6	2	7,32	4	14,64
	4	8,24	16	32,96

	6	9,20	32	55,20
	8	10.9	64	81,52
	10	11,01	100	110,1
	12	12,05	144	144,6
Tổng	42	58,01	364	439,02

Giá trị công thức
$$na+b\sum xi = \sum yi$$

 $a\sum xi + b\sum xi^2 = \sum xiyi$

Ta có hệ phương trình :
$$\begin{cases} 6a + 42b = 58,01 \\ 42a + 346b = 439,02 \end{cases}$$
$$= > \begin{cases} a = 6,373333338 \\ b = 0,470714285 \end{cases} = > \begin{cases} a = 6,4 \\ b = 0,5 \end{cases}$$

Vậy công thức nghiệm có dạng: y=6,4x +0,5

Bài 13: Cho bảng giá trị

X	2	4	6	8	10	12
y=f(x)	7,23	8,24	9,20	10,19	11,01	12,05

Hãy tìm công thức thực nghiệm có dạng y = ax + b Ta lập bảng số:

	00			
	x_i	x_i^2	y_i	$x_i y_i$
	2	4	7,32	14,64
	4	16	8,24	32,96
n= 6	6	36	9,20	55,2
	8 TAI	64	10,19	81,52 P
	10	100	11,01	110,1
	12	144 HCM	12,05	144,6
Σ	42	364	58,01	439,02

Áp dụng công thức:

Thay số ta có hệ phương trình:
$$\begin{cases} 6a + 42b = 58,01 \\ 42a + 364b = 439,02 \end{cases} \Rightarrow \begin{cases} a = 6,3733333333 \approx 6,4 \\ b = 0,470714285 \approx 0,5 \end{cases}$$

Vậy công thức thực nghiệm cần tìm là y = 0.5 + 6.4x

Bài 14: Cho bảng giá trị

X	0,78	1,56	2,34	3,12	3,81
y=f(x)	2,50	1,20	1,12	2,25	4,28

Hãy tìm công thức thực nghiệm có dạng $y = a + bx + cx^2$

Ta lập bảng số:

	0000						
	\boldsymbol{x}_{i}	x_i^2	x_i^3	x_i^4	${\cal Y}_i$	$x_i y_i$	$x_i^2 y_i$
	0,78	0,6084	0,474552	0,37015056	2,50	1,95	1,521
n= 5	1,56	2,4336	3,796416	5,92240896	1,20	1,872	2,92032
	2,34	5,4756	12,812904	29,98219536	1,12	2,6208	6,13312
	3,12	9,7344	30,371328	94,75854336	2,25	7,02	21,9024
	3,81	14,5161	55,306341	210,7171592	4,28	16,3068	62,128908
\sum	11,61	32,7681	102,761541	341,7504574	11,35	29,7696	94,605748

Áp dụng công thức:

ng cong thuc:

$$n.a + b. \sum x_i + c. \sum x_i^2 = \sum y_i$$

 $a. \sum x_i + b. \sum x_i^2 + c \sum x_i^3 = \sum x_i y_i$
 $a. \sum x_i^2 + b. \sum x_i^3 + c \sum x_i^4 = \sum x_i^2 y_i$
Ta có hệ phương trình:

$$\begin{cases} 5a + 11,61b + 32,7681c = 11,35 \\ 11,61a + 32,7681b + 102,761541c = 29,7696 \\ 32,7681a + 102,761541b + 341,7504574c = 94,605748 \end{cases}$$

$$\Rightarrow \begin{cases} a = 5,022553658 \approx 5 \\ b = -4,014714129 \approx -4 \\ c = 1,002440262 \approx 1 \end{cases}$$
BOLHCMUT-CNCP

Vậy công thức thực nghiệm cần tìm là : $y = 5 - 4x + x^2$.

CHƯƠNG 5: TÌM NGHIỆM GẦN ĐÚNG ĐẠO HÀM VÀ TÍCH PHÂN

Bài 15: Cho bảng giá trị

X	50	55	60
y=f(x)	1,6990	1,7404	1,7782

Tính gần đúng y'(55) và y'(60) của hàm số y = lgx. So sánh với kết quả đúng tính đạo hàm của hàm số y = lgx.

Bài giải

Ta sử dụng công thức nội suy Niwton tiến bước đều:

$$f'_{(x)} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^{42} y_0 + \cdots \right]$$
 (1)

Để tính gần đúng đạo hàm.

Lập bảng sai phân:

Ī	X	y	∆ y ₀	$\Delta^2 y_0$
	50	1,6990	> 0,0414	> 0.0026
	55	1,7404	0,0414	> - 0,0036

60	1,7782	> 0,0378	

Thay vào công thức (1) ta được:

+)
$$f'_{(55)} = \frac{1}{5} \left[0.0414 - \frac{1}{2} (-0.0036) \right] = 0.00864$$

+) $f'_{(60)} = \frac{1}{5} \left[0.0378 - \frac{1}{2} (-0.0036) \right] = 0.00792$

*) So sánh với kết quả đúng tính đạo hàm của hàm số y = lgx

- Tính đạm hàm đúng:

Ta có:
$$y' = (lgx)' = \frac{1}{x.ln10}$$

$$\Rightarrow y'(55) = (lg55)' = \frac{1}{55.ln10} = 0,007896$$

$$\Rightarrow y'(60) = (lg60)' = \frac{1}{60.ln10} = 0,007238$$

- So sánh:

+)
$$|y'(55) - (lg55)'| = |0.00864 - 0.007896| = 0.000744$$

+)
$$|y'(60) - (lg60)'| = |0,00792 - 0,007238| = 0,000682$$

Bài 16: Cho bảng giá trị

X	0,11	0,13	0,15	0,17	1,18
y=f(x)	81,818182	69,230769	60,000000	52,941176	50,000000

Hãy tính y'(0,11). Kết quả làm tròn đến 6 chữ số lẻ thập phân.

Bài giải:

Lập bảng tỉ hiệu:

x	у	Δу	$\Delta^2 y$	$^{3}\Delta y$	$\Delta^4 y$
0,11	81,818182	- 629,37065			
0,13	69,230769	\ \ \	419,805	24681,22917	125110 1052
0,15	60,000000	- 461,53845	2714,93125	AP	137119,1073
0,17	52,941176	- 352,9412 _H	1960,786667	- 15082,89166	
0,18	50,000000	- 294,1176			

Ta có:

$$\Rightarrow P_4(x) = 81,818182 - 629,37065 (x - 0,11) + 4195,805(x - 0,1)(x - 0,13) - 4681,2291 (x - 0,11)(x - 0,13)(x - 0,15) + 137119,1073 (x - 0,11)(x - 0,13)(x - 0,15) (x - 0,17)$$

$$\Leftrightarrow P_4(x) = 137119,1073x^4 - 101467,9292 x^3 + 29809,57226 x^2 - 4338,14816x + 313,9906839.$$

$$\Rightarrow P'_4(x) = 548476,4292 x^3 - 304403,7876 x^2 + 59619,144452x - 4338,148167$$

$$\text{Vây ta có } y'(0,11) = \text{P'}_4(0,11) = 548476,4292 (0,11)^3 - 304403,7876(0,11)^2 + 59619,144452 (0,11) - 4338,148167 = -733,3059747$$

$$\Rightarrow y'(0,11) = \text{P'}_4(0,11) = -733,3059747$$

Câu 17. Cho bảng giá trị.

х	0,12	0,15	0,17	0,2	0,22
y	8,333333	6,666667	5,882353	5,000000	4,545455

Hãy tính y'(0,12). Kết quả làm tròn tới 6 chữ số thập phân.

Giải:

Lâp bảng tỉ hiệu:

x	у	Δy	$\Delta^2 y$	$^{3}\Delta y$	$\Delta^4 y$
0,12 0,15	8,333333 6,666667	- 55,555533	326,796666	-1633,975075	
0,17 0,2	5,882353 5,000000	- 39,215700 - 29,411767	196,078660 133,690340	- 891,261714	7427,133610
0,22	4,545455	- 22,727250	,		

$$\Rightarrow P_4(x) = 8,333333 - 55,55533 (x - 0,12) +$$

326,796666(x-0,12)(x-0,15)-1633,975075(x-0,12).(x-0,15).(x-0,17)+7427,133610(x-0,12)(x-0,15).(x-0,17)((x-0,2).

$$\Leftrightarrow P_4(x) = 7427,133610 \ x^4 - 6387,340585x^3 + 2173,927294x^2 - 365,847435x + 30,427706$$

$$\Rightarrow P_4'(x) = 29708,53444x^3 - 19162,02176x^2 + 4347,854588x - 365,847435$$

Vậy ta có y'(0,12) =

$$P_4^{\prime}(0,12) = 29708,53444.0,12^3 - 19162,02176x^2 + 4347,854588x - 365,847435$$

= -68,689650.

<u>Câu 18</u>. Tính gần đúng y'(1) của hàm y = y(x) dựa vào bảng giá trị :

x	0,98	1,00	1,02
y = y(x)	0,7739332	0,7651977	0,7563321

Giải:

Theo bài ra ta có h = 0.02

Áp dụng công thức Taylo, ta có:
$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Thay số ta có:
$$y'(1) = f'(1) \approx \frac{f(1,02) - f(1,00)}{0,02} = \frac{0,7563321 - 0,7651977}{0,02} = -0,44328$$

Vậy
$$y'(1) \approx -0.44328$$
.

Câu 19.

Cho tính phân:
$$\int_{0,1}^{1,1} \frac{dx}{(1+4x)^2}$$

- a. Tính gần đúng tích phân trên bằng công thức hình thang tổng quát chia đoạn [0,1;1,1] thành 10 đoạn bằng nhau.
- b. Đánh giá sai số của giá trị gần đúng tìm được.

Giải:

a.

Theo bài ra ta có
$$h = \frac{b-a}{n} = \frac{1,1-0,1}{10} = 0,1$$
.

Lập bảng giá trị:

i	x	y
0	0,1	0,510204081
1	0,2	0,308641975
2	0,3	0,206611570
3	0,4	0,147928994
4	0,5	0,111111111

5	0,6	0,086505190
6	0,7	0,069252077
7	0,8	0,056689342
8	0,9	0,047258979
9	1,0	0,040000000
10	1,1	0,034293552

Áp dụng công thức hình thang $I_T =$

$$\frac{h}{2} [y_0 + y_{10} + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9)].$$

Thay số ta có: $I_T = \frac{0.1}{2} [0.510204081 + 0.034293552 + 2(0.308641975 + 0.206611570]$

 $+\ 0,147928994\ +0,11111111111+\ 0,086505190\ +\ 0,069252077\ +\ 0,056689342\ +$ 0.047258979 + 0.0400000000) = 0.134624805

 $V_{ay} I_T = 0.134624805.$

b. Đánh giá sai số, ta có: $|I - I_T| \le \frac{M \cdot h^2}{12} \cdot (b - a)$; Với M = Max |f''(x)|, với mọi $x \in [a, b]$.

Ta có
$$f(x) = \frac{1}{(1+4x)^2} \Rightarrow f'(x) = \left(\frac{1}{(1+4x)^2}\right)' = \frac{-32x-8}{(1+4x)^4}$$

$$\Rightarrow f''(x) = \left(\frac{-32x - 8}{(1 + 4x)^4}\right)' = \frac{-32(1 + 4x)^4 - 16(1 + 4x)^3(-32x - 8)}{(1 + 4x)^8} = \frac{384x + 96}{(1 + 4x)^5}$$
Ta nhận thấy, Max $|f''(x)| = f''(0,1) = \frac{384.0,1 + 96}{(1 + 4.0,1)^5} = 24,98958767$

Ta nhận thấy,
$$\text{Max}|f''(x)| = f''(0,1) = \frac{384.0,1+96}{(1+4.0,1)^5} = 24,98958767$$

$$\Rightarrow$$
 Sai số $|I - I_T| \le \frac{24,98958767.0,1^2.(1,1-0,1)}{12} = 0,020824656.$

Câu 20. Cho tích phân: $\int_{2}^{3.5} \frac{1+x}{1-x} dx$. MUT-CNCP

- a. Tích gần đúng tích phân bằng công thức Símson tổng quát chia đoạn thành 12 đoạn bằng nhau.
- b. Đánh giá sai số giá trị vừa tìm được. Giải:

a. Theo bài ra ta có
$$h = \frac{b-a}{n} = \frac{3,5-2}{12} = 0,125$$

Lập bảng giá trị:

i	\boldsymbol{x}	y
0	2	-3
1	2,125	-2, 77777778
2	2,25	-2,6
3	2,375	-2,45454545
4	2,5	-2, 333333333
5	2,625	-2,230769231
6	2,75	-2,142857143
7	2,875	-2,066666667
8	3.0	-2

9	3,125	-1,941176471
10	3,25	-1, 888888889
11	3,375	-1,842105263
12	3,5	-1,8

Áp dụng công thức Símson

$$I_{S} = \frac{h}{3} [y_{0} + y_{12} + 4(y_{1} + y_{3} + y_{5} + y_{7} + y_{9} + y_{11}) + 2(y_{2} + y_{4} + y_{6} + y_{8} + y_{10})] =$$

$$= \frac{0,125}{3} \left[-3 - 1,8 + 4.(-2,777777778 - 2,454545455 - 2,230769231 - 2,0666666667 - 1,941176471 - 1,84210526) + 2.(-2,6 -2,3333333333 - 2,142857143 - 2 - 1,888888889) \right] =$$

$$= -3.332596758$$

$$Vav I_s = -3.332596758$$

b. Đánh giá sai số:
$$\left|I - I_{S}\right| \le \frac{M.h^{4}}{180}.(b-a)$$

Trong đó
$$M = \text{Max} |f''''(x)|$$
 với $a \le x \le b$

Ta có:

$$f(x) = \frac{1+x}{1-x} \Rightarrow f'(x) = \frac{2}{1-2x+x^2} \Rightarrow f''(x) = \frac{4x-4}{(1-2x+x^2)^2} \Rightarrow f'''(x) = \frac{-12x^2 + 24x + 20}{(1-2x+x^2)^3}$$

$$\Rightarrow f''''(x) = \frac{64.(1-x)}{(1-2x+x^2)^4}$$
Ta nhận thấy: Max
$$|f''''(x)| = |f''''(2)| = 64 \Rightarrow |I-I_S| \le \frac{64.0,125^4.(3,5-2)}{180} = 0,0001302083333.$$

TÀ LIỆ CHƯƠNG 6: TẬP TÌM NGHIỆM GẦN ĐỨNG CỦA PHƯƠNG TRÌNH VI PHÂN

Bài 21

Dùng công thức Simpson tổng quát để tính gần đúng tích phân: $\int_{0}^{1} \frac{1}{\sqrt{x^3 + 1}} dx$.

Chia [0;1] thành 10 đoạn bằng nhau, suy ra $h = \frac{1-0}{1} = 0,1$ Ta tính ra bảng sau :

Thứ tự	Х	$f(x) = \frac{1}{\sqrt{x^3 + 1}}$
0	0	1,00000
1	0,1	0,99950
2	0,2	0,99602
3	0,3	0,98677
4	0,4	0,96946
5	0,5	0,94281
6	0,6	0,90685
7	0,7	0,86290

8	0,8	0,81325
9	0,9	0,76051
10	1,0	0,70711

Áp dụng công thức Simpson:

$$\begin{split} I_s &= \frac{h}{3} \left[\ y_0 + \ y_{10} + 4(\ y_1 + \ y_3 + \ y_5 + \ y_7 + \ y_9 \) + 2(\ y_2 + \ y_4 + \ y_6 + \ y_8 \) \right. \\ I_s &= \frac{0.1}{3} \left[1 + 0.70711 + 4(0.99950 + 0.98677 + 0.94281 + 0.86290 + 0.76051) + \\ 2(0.99602 + 0.96946 + 0.90685 + 0.81325 \) \\ I_s &= 0.90961 \end{split}$$

Bài 22

Dùng công thức Simpson tổng quát để tính gần đúng tích phân $\int_{-0.8}^{0.8} \frac{\sin^2 x}{\sqrt{1-\cos x}} dx$

Chia [-0,8; 0,8] thành 16 đoạn bằng nhau, suy ra $h = \frac{0.8 - (-0.8)}{16} = 0.1$

Ta tính ra bảng sau :

Thứ tự	X	$f(x) = \frac{\sin^2 x}{\sqrt{1 - \cos x}}$
0 T	\	0.934412
1	- 0,7	0.855826
2	BOI - 0.7 - 0.6	0.762860
3	- 0,5	0.656932
4	-0,4	0.539743
5	-0,3	0.413236
6	-0,2	0.279557
7	-0,1	0.141009
8	0	0.000141
9	0,1	0.141009
10	0,2	0.279557
11	0,3	0.413236
12	0,4	0.539743
13	0,5	0.656932
14	0,6	0.762860
15	0,7	0.855826
16	0,8	0.934412

Áp dụng công thức Simpson:

$$I_{s} = \frac{h}{3} \left[y_{0} + y_{16} + 4(y_{1} + y_{3} + y_{5} + y_{7} + y_{9} + y_{11} + y_{13} + y_{15}) + 2(y_{2} + y_{4} + y_{6} + y_{8} + y_{10} + y_{12} + y_{14}) \right]$$

Thay số và tính toán ta được kết quả $I_s = 0.824459$

Bài 23

Dùng công thức Simpson để tính gần đúng tích phân $\int_{0.5}^{0.5} \frac{\ln(\cos x)}{\ln(1+\cos x)} dx$ Chia [-0.5;0.5] thành 8 đoạn bằng nhau ta có h =0.125

Ta tính ra bảng sau:

Thứ tự	X	$\ln(\cos x)$
		$f(x) = \frac{1}{\ln(1 + \cos x)}$
0	- 0,5	- 0,207281
1	- 0,375	- 0,109497
2	- 0,250	-0,046615
3	- 0,125	- 0,011365
4	0,000	0,000000
5 0	0,125	- 0,011365
6	0,250	0,046615
7	0,375	- 0,109497
8	0,5	- 0,207281

Áp dụng công thức Simpson:

$$I_s = \frac{h}{3} [y_0 + y_8 + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6)]$$

Thay số và tính toán ta được kết quả $I_s = -0.065330$

Bài 24: Cho bài toán Cauchy:

$$y' = y^2 - x^2$$

Hãy tìm nghiệm gần đúng bằng phương pháp Euler trên [1,2], chọn bước h= 0,1. Bài giải:

Theo đầu bài ta có: h= 0,1; $U_0 = y_{(1)} = 1$, $x_0 = 1$

Áp dụng công thức Euler: $U_{i+1} = U_i + hf(x_i; y_i)$

Ta tính được

$$U_1 = U_0 + hf(x_0; y_0) = 1 + 0,1(1^2-1^2) = 1$$

$$U_2 = U_1 + hf(x_1; y_1) = 1 + 0,1(1^2 - 1,1^2) = 0,979$$

$$U_3 = U_2 + hf(x_2; y_2) = 1 + 0.1(0.979^2 - 1.2^2) = 0.9308441$$

$$U_4 = U_3 + hf(x_3; y_3) = 1 + 0,1(0,9308441^2 - 1,3^2) = 0,848491173$$

$$U_5 = U_4 + hf(x_4; y_4) = 1 + 0.1(0.848491173^2 - 1.4^2) = 0.724484901$$

$$U_6 = U_5 + hf(x_5; y_5) = 1 + 0.1(0.724484901^2 - 1.5^2) = 0.551972738$$

$$U_7 = U_6 + hf(x_6; y_6) = 1 + 0,1(0,551972738^2 - 1,6^2) = 0,326440128$$

$$U_8 = U_7 + hf(x_7; y_7) = 1 + 0,1(0,326440128^2 - 1,7^2) = 0,048096444$$

$$U_9 = U_8 + hf(x_8; y_8) = 1 + 0.1(0.048096444^2 - 1.8^2) = -0.275672228$$

$$U_{10} = U_9 + hf(; y_9) = 1 + 0.1[(-0.275672228)^2 - 1.9^2) = -0.629072711$$

$$U_{11} = U_{10} + hf(x_{10}; y_{10}) = 1 + 0.1 - 0.629072711)^2 - 2^2 = -0.989499463$$

Vậy nghiệm gần đúng cần tìm là: $U_{11} = \alpha = -0.989499463$

Câu 25. Cho bài toán Cauchy. $y' = y - \frac{2x}{x}$

$$y(0) = 1, \qquad 0 \le x \le 1.$$

Hãy tìm nghiệm gần đúng bằng phương pháp Euler cải tiến (chỉ lặp 1 lần), chọn bước h = 0,2 và so sánh kết quả với nghiệm đúng.

Theo bài ra ta có $u_0 = y(0) = 1$;

Vì $x_i = x_0 + ih$, ta có bảng giá trị của x:

$$\begin{array}{c|cccc}
x_0 & 0,0 \\
x_1 & 0,2 \\
x_2 & 0,4 \\
x_3 & 0,6 \\
x_4 & 0,8 \\
x_5 & 1,0
\end{array}$$

Theo phương pháp Euler cải tiến (Phương pháp hình thang).

$$u_{i+1}^{(0)} = u_i + hf(x_i, u_i)$$
 (1)

$$u_{i+1}^{(0)} = u_i + hf(x_i, u_i)$$
(1)

$$u_{i+1}^{(m+1)} = u_i + \frac{h}{2} [f(x_i, u_i) + f(x_{i+1}, u^{(m)}_{i+1})].$$
(2)

Từ (1) và (2) ta có $u_1^{(0)} = u_0 + hf(x_0, u_0) = 1 + 0.2(1 - \frac{0}{1}) = 1.2$.

BỞI HCMUT-CNO

$$\begin{split} u_1^{(1)} &= u_0 + \frac{h}{2} \Big[f(x_0, u_0) + f(x_1, u_1^{(0)}) \ \Big] = 1 + 0, \\ I \Big[\Big(1 - \frac{2.0}{1} \Big) + \Big(1, 2 - \frac{2.0, 2}{1, 2} \Big) \Big] = 1,186667. \\ u_2^{(0)} &= u_1^{(1)} + 0, \\ 2 f(x_1, u_1^{(1)}) = 1,186667 + 0, \\ 2 \Big(1,186667 - \frac{2.0, 2}{1,186667} \ \Big) = 1,356585. \\ u_2^{(1)} &= u_1^{(1)} + \frac{h}{2} \Big[f(x_1, u_1^{(1)}) + f(x_2, u_2^{(0)}) \ \Big] = \\ &= 1,186667 + 0, \\ I \Big[\Big(1,186667 - \frac{2.0}{1,186667} \Big) + \Big(1,356585 - \frac{2.0, 4}{1,356585} \Big) \Big] = 1,348325 \\ u_3^{(0)} &= u_2^{(1)} + 0, \\ 2 f(x_2, u_2^{(1)}) = 1,348325 + 0, \\ 2 \Big(1,348325 - \frac{2.0, 4}{1,348325} \Big) = 1,499325. \\ u_3^{(1)} &= u_2^{(1)} + \frac{h}{2} \Big[f(x_2, u_2^{(1)}) + f(x_3, u_3^{(0)}) \ \Big] = \\ &= 1,348325 + 0, \\ I \Big[\Big(1,348325 - \frac{2.0, 4}{1,348325} \Big) + \Big(1,499325 - \frac{2.0, 6}{1,499325} \Big) \Big] = 1,493721 \\ u_4^{(0)} &= u_3^{(1)} + 0, \\ 2 f(x_3, u_3^{(1)}) = 1,493721 + 0, \\ 2 \Big(1,493721 - \frac{2.0, 6}{1,493721} \Big) = 1,631793. \end{split}$$

$$\begin{aligned} u_4^{(1)} &= u_3^{(1)} + \frac{h}{2} \Big[f(x_3, u_3^{(1)}) + f(x_4, u_4^{(0)}) \Big] = \\ &= 1,493721 + 0,1 \Big[\Big(1,493721 - \frac{2.0,6}{1,493721} \Big) + \Big(1,631793 - \frac{2.0,8}{1,631793} \Big) \Big] = 1,627884 \\ u_5^{(0)} &= u_4^{(1)} + h.f(x_4, u_4^{(1)}) = 1,627884 + 0,2 \Big(1,627884 - \frac{2.0,8}{1,627884} \Big) = 1,756887 \,. \\ u_5^{(1)} &= u_4^{(1)} + \frac{h}{2} \Big[f(x_4, u_4^{(1)}) + f(x_5, u_5^{(0)}) \Big] = \\ &= 1,627884 + 0,1 \Big[\Big(1,627884 - \frac{2.0,8}{1,627884} \Big) + \Big(1,756887 - \frac{2.1}{1,756887} \Big) \Big] = 1,754236. \end{aligned}$$

Vậy nghiệm gần đúng cần tính là $u_5^{(1)} = \alpha \approx 1,754236$

Câu 26. Cho bài toán Cauchy y' = x + y.

y(0)=1. Hãy tìm nghiệm gần đúng bằng phương pháp Euler cải tiến với độ chính xác đến 4 chữ số lẻ thập phân trùng nhau, giá trị của y(0,1). chọn bước h = 0.05.

Giải:

Theo bài bước h = 0.05. f(x,y) = x + y Theo công thức Euler cải tiến ta có:

$$u_{i+1}^{(m+1)} = u_i + \frac{h}{2} \Big[f(x_i, u_i) + f(x_{i+1}, u_{i+1}^{(m)}) \Big]$$
(1)

$$u_{i+1}^{(0)} = u_i + h f(x_i, u_i)$$
(2)

$$T\mathring{\mathbf{u}}$$
(1)
$$\mathring{\mathbf{v}}$$
(2)
$$\text{ta c\'o} : u_1^{(0)} = u_0 + h f(x_0, u_0) = 1 + 0.05(0 + 1) = 1.05$$

$$u_1^{(1)} = u_0 + \frac{h}{2} \Big[f(x_0, u_0) + f(x_1, u_1^{(0)}) \Big] = 1 + \frac{0.05}{2} \Big[(0 + 1) + (0.05 + 1.05) \Big] = 1.0525$$

$$u_1^{(2)} = u_0 + \frac{h}{2} \Big[f(x_0, u_0) + f(x_1, u_1^{(1)}) \Big] = 1 + \frac{0.05}{2} \Big[(0 + 1) + (0.05 + 1.0525) \Big] = 1.05256$$

Ta thấy $u_1^{(2)}$ - $u_1^{(1)}$ = 1,05256 - 1,0525 = 0,00006 < 10⁻⁴ đạt yêu cầu chính xác, lấy gần đúng TÀI LIÊU SƯU TẬP

$$u_1 = 1,0526.$$

Tính tiếp cho u_2 , ta có: BỞI HCMUT-CNCP

$$u_2^{(0)} = u_1 + h.f(x_1, u_1) = 1,0526 + 0,05(0,05 + 1,0526) = 1,1077.$$

$$u_2^{(1)} = u_1 + \frac{h}{2} \left[f(x_1, u_1) + f(x_2, u_2^{(0)}) \right] = 1,0526 + \frac{0,05}{2} \left[\left(0,05 + 1,0526 \right) + \left(0,1 + 1,1077 \right) \right] = 1,11036$$

$$u_2^{(2)} = u_1 + \frac{h}{2} \left[f(x_1, u_1) + f(x_2, u_2^{(1)}) \right] = 1,0526 + \frac{0,05}{2} \left[(0,05 + 1,0526) + (0,1 + 1,11036) \right] = 1,11042$$

Cũng như với u_1 ta có $u_2^{(2)} - u_2^{(1)} = 0,00006 < 10^{-4}$. Ta có thể lấy y(0,1) = u(0,1) = $u_2 \approx 1,1104.$

Câu 27. Cho bài toán Cauchy $y' = 1 + y^2$

$$y(0) = 0$$

Hãy tìm nghiệm gần đúng bằng phương pháp Runge – Kutta cấp 4 trên [0,0,6]. Chọn bước h=0,2.

Giải Theo bài ra, ta có $x_0 = 0, b = 0, 6, h = 0, 2$

$$\Rightarrow n = \frac{b - x_0}{h} = \frac{0.6 - 0}{0.2} = 3$$

Ta có bảng:

\mathcal{C}		
x_0	0	
x_1	0,2	
x_2	0,4	
x_3	0,6	

* Tính
$$\mathbf{u}_1$$
 với
$$\begin{cases} u_0 = 0 \\ x_0 = 0 \end{cases}$$

Ta có

Ta co
$$k_1 = h.f(x_0, u_0) = 0.2(1 + 0^2) = 0.2$$

$$k_2 = h.f(x_0 + 0.5h; u_0 + 0.5k_1) = 0.2(1 + 0.1^2) = 0.202$$

$$k_3 = h.f(x_0 + 0.5.h; u_0 + 0.5.k_2) = 0.2(1 + 0.101^2) = 0.2020402$$

$$k_4 = h.f(x_0 + h; u_0 + k_3) = 0.2(1 + 2020402^2) = 0.208164048$$

$$\Rightarrow u_1 = u_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 0 + \frac{1}{6}(0.2 + 2.0.202 + 2.0.2020402 + 0.208164048)$$

*Tính
$$u_2$$
 với
$$\begin{cases} u_1 = 0,202707408 \\ x_1 = 0,2 \end{cases}$$
 Ta có:

=0,202707408

$$k_1 = h.f(x_1, u_1) = 0.2(1 + 0.202707408^2) = 0.208218058$$

$$k_2 = h.f(x_1 + 0.5h; u_1 + 0.5k_1) = 0.2(1 + 0.306816437^2) = 0.218827265$$

$$k_3 = h.f(x_1 + 0.5.h; u_1 + 0.5.k_2) = 0.2(1 + 0.31212104^2) = 0.219483908$$

$$k_4 = h.f(x_1 + h; u_1 + k_3) = 0.2(1 + 0.422191316^2) = 0.235649101$$

$$\Rightarrow u_2 = u_1 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 0.202707408 + \frac{1}{6}(0.208218058 + 2.0.218827265 + 2.0.219483908 + 0.235649101) = 0.422788992.$$

*Tính
$$u_3$$
 với
$$\begin{cases} u_2 = 0,422788992 \\ x_2 = 0,4 \end{cases}$$

Ta có:

$$k_1 = h.f(x_2, u_2) = 0.2(1 + 0.422788992^2) = 0.235750106$$

$$k_2 = h.f(x_2 + 0.5h; u_2 + 0.5k_1) = 0.2(1 + 0.540664045^2) = 0.258463521$$

$$k_3 = h.f(x_2 + 0.5.h; u_2 + 0.5.k_2) = 0.2(1 + 0.552020752^2) = 0.260945382$$

$$k_4 = h.f(x_2 + h; u_2 + k_3) = 0.2(1 + 0.683734374^2) = 0.293498538$$

$$\Rightarrow u_3 = u_2 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 0.422788992 + \frac{1}{6}(0.235750106 + 2.0.258463521 + 2.0.260945382 + 0.293498538) = 0.6841334.$$

*Tính
$$u_4$$
 với
$$\begin{cases} u_3 = 0.6841334 \\ x_3 = 0.6 \end{cases}$$

$$k_1 = h.f(x_3, u_3) = 0.2(1 + 0.6841334^2) = 0.293607701$$

$$k_2 = h.f(x_3 + 0.5h; u_3 + 0.5k_1) = 0.2(1 + 0.83093725^2) = 0.338091342$$

$$k_3 = h.f(x_3 + 0.5.h; u_3 + 0.5.k_2) = 0.2(1 + 0.853179071^2) = 0.345582905$$

$$k_4 = h.f(x_3 + h; u_3 + k_3) = 0.2(1 + 1.029716305^2) = 0.412063133$$

$$\Rightarrow u_4 = u_3 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 0.6841334 + \frac{1}{6}(0.293607701 + 2.0.338091342 + 2.0.345582905 + 0.412063133) = 1.029636621$$

Bài 28: Dùng phương pháp trung điểm giải bài toán sau:

$$y' = y - \frac{\cos x}{y}$$

 $y'=y-\frac{cosx}{y}$ Với $0 \le x \le 1$; $y_{(0)}$ =1, chọn bước h =0,2. Kết quả làm tròn 6 chữ số lẻ thập phân.

Bài giải

Ta có: $U_0 = v_{(0)} = 1$

Áp dụng phương pháp trung điểm ta tính được:

$$+ \overline{U}_{1} = U_{0} + \frac{h}{2} (U_{0} - \frac{\cos x_{0}}{U_{0}}) = 1$$

$$\Rightarrow U_{1} = U_{0} + h(\overline{U}_{1} - \frac{\cos (x_{0} + 0.5h)}{\overline{U}_{1}})) = 1,000999$$

$$+ \overline{U}_{2} = U_{1} + \frac{h}{2} (U_{1} - \frac{\cos x_{1}}{U_{1}}) = 1,003088$$

$$\Rightarrow U_{2} = U_{1} + h(\overline{U}_{2} - \frac{\cos (x_{1} + 0.5h)}{\overline{U}_{2}})) = 1,010495$$

$$+ \overline{U}_{3} = U_{2} + \frac{h}{2} (U_{2} - \frac{\cos x_{2}}{U_{2}}) = 1,019277$$

$$\Rightarrow U_{3} = U_{2} + h(\overline{U}_{3} - \frac{\cos (x_{2} + 0.5h)}{\overline{U}_{3} + C})) = 1,037935$$

$$+ \overline{U}_{4} = U_{3} + \frac{h}{2} (U_{3} - \frac{\cos x_{3}}{U_{3}}) = 1,057977$$

$$\Rightarrow U_{4} = U_{3} + h(\overline{U}_{4} - \frac{\cos (x_{3} + 0.5h)}{\overline{U}_{4}})) = 1,091733$$

$$+ \overline{U}_{5} = U_{4} + \frac{h}{2} (U_{4} - \frac{\cos x_{4}}{U_{4}}) = 1,126575$$

$$\Rightarrow U_{5} = U_{4} + h(\overline{U}_{5} - \frac{\cos (x_{4} + 0.5h)}{\overline{U}_{5}})) = 1,177547$$

$$+ \overline{U}_{6} = U_{5} + \frac{h}{2} (U_{5} - \frac{\cos x_{5}}{U_{5}}) = 1,229245$$

$$\Rightarrow U_{6} = U_{5} + h(\overline{U}_{6} - \frac{\cos (x_{5} + 0.5h)}{\overline{U}_{6}})) = 1,2982670$$

Bài 29: Dùng phương pháp trung điểm giải bài toán sau:

$$y' = y - \frac{e^x cos x}{y}$$

Với $0.3 \le x \le 0.5$; $y_{(0.3)} = 0.943747$, chọn bước h = 0.1. Kết quả làm tròn 6 chữ số lẻ thập phân.

Ta có: $U_0 = y_{(0)} = 0.943747$

Áp dụng phương pháp trung điểm ta tính được:

+)
$$\overline{U}_{1} = U_{0} + \frac{h}{2} (U_{0} - \frac{e^{x_{0}.cosx_{0}}}{U_{0}}) = 0,926822832$$

$$\Rightarrow U_{1} = U_{0} + h(\overline{U}_{1} - \frac{e^{(x_{0}+0.5h)}.cos(x_{0}+0.5h)}{\overline{U}_{1}}) = 0,891524$$
+) $\overline{U}_{2} = U_{1} + \frac{h}{2} (U_{1} - \frac{e^{x_{1}.cosx_{1}}}{U_{1}}) = 0,859038$

$$\Rightarrow U_{2} = U_{1} + h(\overline{U}_{2} - \frac{e^{(x_{1}+0.5h)}.cos(x_{1}+0.5h)}{\overline{U}_{2}}) = 0,813037$$
+) $\overline{U}_{3} = U_{2} + \frac{h}{2} (U_{2} - \frac{e^{x_{2}.cosx_{2}}}{U_{2}}) = 0,764708$

$$\Rightarrow U_{3} = U_{2} + h(\overline{U}_{3} - \frac{e^{(x_{2}+0.5h)}.cos(x_{2}+0.5h)}{\overline{U}_{3}}) = 0,696278$$

Vậy nghiệm gần đúng cần tìm là: $U_3 = \alpha = 0,696278$

