Iterative Methods

Jayadev Naram

October 5, 2019

1 General Projection Methods

Let $A \in \mathbb{R}^{n \times n}$ and \mathcal{K} and \mathcal{L} be two m-dimensional subspaces of \mathbb{R}^n . A projection technique onto the subspace \mathcal{K} and orthogonal to \mathcal{L} with an initial guess x_0 is a process which finds an approximate solution \tilde{x} by imposing the conditions that \tilde{x} belong to $x_0 + \mathcal{K}$ and that the new residual vector be orthogonal to \mathcal{L} , i.e,

find $\tilde{x} \in x_0 + \mathcal{K}$, such that $b - A\tilde{x} \perp \mathcal{L}$.

$$\tilde{x} = x_0 + \delta, \ \delta \in \mathcal{K}$$

$$(r_0 - A\delta, w) = 0, \ \forall w \in \mathcal{L}, \ where \ r_0 = b - Ax_0.$$

Let $V = [v_1, \dots, v_m]_{n \times m}$ and $W = [w_1, \dots, w_m]_{n \times m}$ whose column-vectors form a basis of \mathcal{K} and \mathcal{L} , respectively. Then approximate solution can be written as:

$$\tilde{x} = x_0 + Vy,$$

where y can found from the orthogonality constraint:

$$W^T A V y = W^T r_0.$$

If W^TAV is non-singular, then $\tilde{x} = x_0 + V(W^TAV)^{-1}W^Tr_0$.

Algorithm 1 Prototype Projection Method

- 1: repeat
- 2: Select a pair of subspaces K and L
- 3: Choose basis $V=[v_1, \cdots, v_m], W=[w_1, \cdots, w_m]$ for K and L
- 4: $r \leftarrow b Ax$
- 5: $y \leftarrow (W^T A V)^{-1} W^T r$
- 6: $x \leftarrow x + Vy$
- 7: until Convergence

Non-singularity of A is not sufficient condition for non-singularity of W^TAV .

Proposition. Let A, \mathcal{L} and \mathcal{K} satisfy either one of the two following conditions:

- i. A is SPD and $\mathcal{L} = \mathcal{K}$, or
- ii. A is non-singular and $\mathcal{L} = A\mathcal{K}$.

Then $B = W^T AV$ is non-singular for any bases V and W of K and L.

Proof. Consider case(i). Since $\mathcal{L} = \mathcal{K}$, then W = VG, where G is a non-singular $m \times m$ matrix. Then $B = W^T A V = G^T V^T A V$. Since A is SPD, so is $V^T A V$ and since G is non-singular, B is non-singular.

Now, consider case(ii). Since $\mathcal{L} = A\mathcal{K}$, then W = AVG, where G is a non-singular $m \times m$ matrix. Then $B = W^T AV = G^T (AV)^T AV$. Since A is non-singular, then $(AV)_{n \times m}$ full rank matrix and so is $(AV)^T AV$ and therefore, B is non-singular.

Theorem 1. Assume that A is SPD and $\mathcal{L} = \mathcal{K}$. Then a vector \tilde{x} is the result of an (orthogonal) projection method onto \mathcal{K} with the starting vector x_0 iff it minimizes the A-norm if the error over $x_0 + \mathcal{K}$, i.e, iff

$$\tilde{x} = \underset{x \in x_0 + \mathcal{K}}{\operatorname{arg \, min}} \|x_* - x\|_A = \underset{x \in x_0 + \mathcal{K}}{\operatorname{arg \, min}} (A(x_* - x), x_* - x)^{\frac{1}{2}}$$

Proof. First we prove that if \tilde{x} minimizes A-norm of the error, then it is the result of orthogonal projection method with x_0 onto \mathcal{K} . Assume columns of V to be basis vectors of \mathcal{K} , then the objective function can be written as:

$$E(x) = (A(x_* - x), x_* - x)^{\frac{1}{2}}, \qquad (x \in x_0 + \mathcal{K})$$

$$\Longrightarrow E(y) = (A(x_* - x_0 - Vy), x_* - x_0 - Vy)^{\frac{1}{2}}, \quad (y \in \mathbb{R}^m)$$

$$\Longrightarrow E^2(y) = (A(x_* - x_0 - Vy), x_* - x_0 - Vy),$$

$$= (x_* - x_0 - Vy)^T A(x_* - x_0 - Vy),$$

$$= c + 2y^T V^T (Ax_0 - Ax_*) + y^T V^T A V y,$$

$$= c - 2y^T V^T (b - Ax_0) + y^T V^T A V y = f(y),$$

$$\frac{\partial f(y)}{\partial y} = 0 \implies V^T (b - A(x_0 + Vy)) = 0$$

$$\implies V^T (b - A\tilde{x}) = 0$$

$$\implies b - A\tilde{x} \perp \mathcal{K}.$$

Therefore the residue of vector which minimizes A-norm of error over $x_0 + \mathcal{K}$ is orthogonal to \mathcal{K} , therefore it is the result of orthogonal projection method onto \mathcal{K} starting with x_0 . Now we prove the converse, i.e, the result of orthogonal projection method onto \mathcal{K} starting with x_0 minimizes A-norm of error over $x_0 + \mathcal{K}$. We know $V^T(b - A\tilde{x}) = 0$, i.e, $(x_* - \tilde{x}, v)_A = 0 \ \forall \ v \in \mathcal{K}$.

$$\implies \|x_* - x\|_A = \|x_* - \tilde{x} + \tilde{x} - x\|_A, \qquad (\tilde{x}, x \in x_0 + \mathcal{K})$$

$$= \|x_* - \tilde{x}\|_A + \|\tilde{x} - x\|_A, \text{ (since } x_* - \tilde{x} \text{ is A-orthogonal to } \mathcal{K})$$

$$\implies \|x_* - \tilde{x}\|_A \le \|x_* - x\|_A, \ \forall \ x \in x_0 + \mathcal{K}.$$

Therefore \tilde{x} minimizes the A-norm of the error.

Corollary 1.1. Let A be an arbitrary square matrix and assume that $\mathcal{L} = A\mathcal{K}$. Then a vector \tilde{x} is the result of an (oblique) projection method onto \mathcal{K} orthogonally to \mathcal{L} with the starting vector x_0 iff it minimizes the 2-norm of the residual vector b - Ax over $x \in x_0 + \mathcal{K}$, i.e, iff

$$\tilde{x} = \underset{x \in x_0 + \mathcal{K}}{\arg \min} \|b - Ax\|_2$$

Proposition. Let \tilde{x} be the approximate solution obtained from a projection process onto K orthogonally to $\mathcal{L} = AK$, and let $\tilde{r} = b - A\tilde{x}$. Then,

$$\tilde{r} = (I - P)r_0,$$

where P denotes the orthogonal projector onto K.

Proof. Let $r_0 = b - Ax_0$, then

$$\tilde{r} = b - A\tilde{x}$$

= $b - A(x_0 + \delta)$, $(\delta \in \mathcal{K})$
= $r_0 - A\delta$.

By orthogonality condition we have $\tilde{r} \perp A\mathcal{K}$, i.e, $A\delta$ is the projection of r_0 onto $A\mathcal{K}$. Therefore, if P is the orthogonal projector onto $A\mathcal{K}$, then

$$Pr_0 = A\delta \implies \tilde{r} = (I - P)r_0$$

It follows from the above that $\|\tilde{r}\|_2 \leq \|r_0\|_2$. Therefore, this class of methods can be termed as **Residual Projection Methods**.

Proposition. Let \tilde{x} be the approximate solution obtained from an orthogonal projection process onto K, and let $\tilde{d} = x_* - \tilde{x}$. Then,

$$\tilde{d} = (I - P_A)d_0,$$

where P_A denotes the projector onto K, which is orthogonal with respect to A-inner product.

Proof. Let $d_0 = x_* - x_0$ be the initial error, and let $\tilde{d} = x_* - \tilde{x}$, where $\tilde{x} = x_0 + \delta$ is the approximate solution resulting from the projection step. We know that residual of the approximate solution is orthogonal to \mathcal{K} , i.e, $\tilde{r} = A\tilde{d} = A(d_0 - \delta)$, $\tilde{r} \perp \mathcal{K}$.

$$\implies (A(d_0 - \delta), w) = 0 \ \forall \ w \in \mathcal{K}$$
$$\implies (d_0 - \delta, w)_A = 0 \ \forall \ w \in \mathcal{K}$$

Therefore, if P_A is the projector onto $A\mathcal{K}$, which is orthogonal with respect to A-inner product, then δ is the A-orthogonal projection of d_0 , i.e,

$$P_A d_0 = \delta \implies \tilde{d} = (I - P_A) d_0.$$

It follows from the above that $\|\tilde{d}\|_A \leq \|d_0\|_A$. Therefore, this class of methods can be termed as **Error Projection Methods**.

Define $\mathcal{P}_{\mathcal{K}}$ to be the orthogonal projector onto \mathcal{K} and let $\mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}$ be the (oblique) projector onto \mathcal{K} and orthogonally to \mathcal{L} . Then

$$\mathcal{P}_{\mathcal{K}}x \in \mathcal{K} \ and \ x - \mathcal{P}_{\mathcal{K}}x \perp \mathcal{K},$$

$$Q_{\mathcal{K}}^{\mathcal{L}}x \in \mathcal{K} \ and \ x - Q_{\mathcal{K}}^{\mathcal{L}}x \perp \mathcal{L}$$

Theorem 2. Assume that K is invariant under A and the initial residue, i.e, $r_0 = b - Ax_0$ belongs to K. Then the approximate solution obtained from any (oblique or orthogonal) projection method onto K is exact.

Proof. An approximate solution \tilde{x} is defined by

$$\mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}(b - A\tilde{x}) = 0, \text{ where } \tilde{x} = x_0 + \delta, \ \delta \in \mathcal{K}.$$

$$\Longrightarrow \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}(b - Ax_0 - A\delta) = 0$$

$$\Longrightarrow \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}r_0 = \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}A\delta$$
But \mathcal{K} is invariant under A , then $A\delta \in \mathcal{K}.$

$$\Longrightarrow r_0 = A\delta, \text{ (since } r_0 \in \mathcal{K} \text{ and } \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}A\delta = A\delta)$$

$$\Longrightarrow A\tilde{x} = b$$

Theorem 3 (General Error Bound). Let $\gamma = \|\mathcal{Q}_{\mathcal{K}}^{\mathcal{L}}A(I - \mathcal{P}_{\mathcal{K}})\|_2$ and assume that b is a member of \mathcal{K} and $x_0 = 0$. Then the exact solution x_* of the problem is such that

$$||b - \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A \mathcal{P}_{\mathcal{K}} x_*||_2 \le \gamma ||(I - \mathcal{P}_{\mathcal{K}}) x_*||_2.$$

Proof. Since $b \in \mathcal{K}$,

$$b - \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A \mathcal{P}_{\mathcal{K}} x_* = \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} b - \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A \mathcal{P}_{\mathcal{K}} x_*$$

$$= \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} (b - A \mathcal{P}_{\mathcal{K}} x_*)$$

$$= \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A (I - \mathcal{P}_{\mathcal{K}}) x_*$$

$$= \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A (I - \mathcal{P}_{\mathcal{K}}) (I - \mathcal{P}_{\mathcal{K}}) x_*$$

$$\implies \|b - \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A \mathcal{P}_{\mathcal{K}} x_*\|_2 = \|\mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A (I - \mathcal{P}_{\mathcal{K}}) (I - \mathcal{P}_{\mathcal{K}}) x_*\|_2$$

$$\leq \|\mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A (I - \mathcal{P}_{\mathcal{K}})\|_2 \|(I - \mathcal{P}_{\mathcal{K}}) x_*\|_2$$

$$\implies \|b - \mathcal{Q}_{\mathcal{K}}^{\mathcal{L}} A \mathcal{P}_{\mathcal{K}} x_*\|_2 \leq \gamma \|(I - \mathcal{P}_{\mathcal{K}}) x_*\|_2$$

2 One-Dimensional Projection Methods

One-dimensional projection processes are defined when $\mathcal{K} = span\{v\}$ and $\mathcal{L} = span\{w\}$. In this case, the new approximation takes the form $x \leftarrow x + \alpha v$, where the orthogonality condition $r - A\delta \perp w$ yields,

$$\alpha = \frac{(r, w)}{(Av, w)}, where r = b - Ax_0.$$

2.1 Steepest Descent

The steepest descent algorithm is defined when A is SPD and v=w=r.

Lemma 4 (Kantorovich inequality). Let B be any real SPD matrix and λ_1 , λ_n its largest and smallest eigenvalues. Then,

$$\frac{(Bx,x)(B^{-1}x,x)}{(x,x)} \le \frac{(\lambda_1 + \lambda_n)^2}{4\lambda_1\lambda_n}, \ \forall \ x \ne 0$$

Proof. It is equvivalent to prove the statement for any unit vector x. Since B is SPD, it can be diagonalized by similarity transformation with an orthogonal matrix Q, $B = Q^T DQ$.

$$(Bx,x)(B^{-1}x,x) = (Q^T D Q x, x)(Q^T D^{-1} Q x, x) = (D Q x, Q x)(D^{-1} Q x, Q x).$$

Define $y = Qx = (y_1, y_2, \dots, y_n)^T$, and $\beta_i = y_i^2$. Then,

$$\lambda \equiv (Dy, y) = \sum_{i=1}^{n} \beta_i \lambda_i, \ \sum_{i=1}^{n} \beta_i = 1$$

$$\psi(y) = (D^{-1}y, y) = \sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i}.$$

Note that λ is a convex combinations of eigenvalues of B. Then,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y).$$

Noting that $f(\lambda) = 1/\lambda$ is a convex function for $x \in \mathbb{R}_{++}$, $\psi(y)$ contains all the convex combinations of $1/\lambda_i$ s which is bounded above by line passing through $(\lambda_1, 1/\lambda_1)$ and $(\lambda_n, 1/\lambda_n)$, i.e,

$$\psi(y) \le \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}.$$

$$\implies (Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right).$$

The right-hand side is maximum when $\lambda = \frac{\lambda_1 + \lambda_n}{2}$ yielding,

$$(Bx,x)(B^{-1}x,x) \le \frac{(\lambda_1 + \lambda_n)^2}{4\lambda_1\lambda_n}$$

Algorithm 2 Steepest Descent Algorithm

1: Compute r = b - Ax and p = Ar

2: repeat

3: $\alpha \leftarrow (r,r)/(p,r)$

4: $x \leftarrow x + \alpha r$

5: $r \leftarrow r - \alpha p$

6: Compute p = Ar

7: until Convergence

Theorem 5. Let A be a SPD. Then, A-norms of the error vectors $d_k = x_* - x_k$ generated by the above algorithm satisfy the following relation:

$$||d_{k+1}||_A \le \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right) ||d_k||_A,$$

and the algorithm converges for any initial guess x_0 .

Proof. We know that $d_{k+1} = x_* - x_{k+1}$, but $x_{k+1} = x_k + \alpha_k r_k$.

$$\implies d_{k+1} = x_* - (x_k + \alpha_k r_k) = d_k - \alpha_k r_k.$$

Now consider,

$$\begin{aligned} \|d_{k+1}\|_A^2 &= (d_{k+1}, d_k - \alpha_k r_k)_A \\ &= (d_{k+1}, d_k)_A - (d_{k+1}, \alpha_k r_k)_A \\ (d_{k+1}, \alpha_k r_k)_A &= (Ad_{k+1}, \alpha_k r_k) = (r_{k+1}, \alpha_k r_k), \\ &= (r_k - \alpha_k A r_k, r_k), \text{ where } \alpha_k = \frac{(r_k, r_k)}{(Ar_k, r_k)}, \\ &= (r_k, r_k) - \frac{(r_k, r_k)}{(Ar_k, r_k)} (Ar_k, r_k) = 0 = (r_{k+1}, r_k). \\ \Longrightarrow (d_{k+1}, \alpha_k r_k)_A &= 0, \\ \Longrightarrow \|d_{k+1}\|_A^2 &= (d_{k+1}, d_k)_A \\ &= (d_{k+1}, Ad_k) \quad \text{(since A is SPD)}, \\ &= (d_k - \alpha_k r_k, r_k) \\ &= (A^{-1}r_k, r_k) - \alpha_k (r_k, r_k) \\ \text{But, } \|d_k\|_A^2 &= (Ad_k, d_k) = (r_k, d_k) = (A^{-1}r_k, r_k), \\ \Longrightarrow \|d_{k+1}\|_A^2 &= (A^{-1}r_k, r_k) \left(1 - \frac{(r_k, r_k)^2}{(Ar_k, r_k)(A^{-1}r_k, r_k)}\right), \end{aligned}$$

From Kantorovich inequality,

$$\leq \|d_k\|_A^2 \Big(1 - \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2}\Big),$$

$$\implies \|d_{k+1}\|_A \leq \Big(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\Big) \|d_k\|_A.$$

3 Krylov Subspace Methods

We define Krylov Subspace to be

$$\mathcal{K}_m(A, v) = span\{v, Av, A^2v, \cdots, A^{m-1}v\}.$$

Then, x = p(A)v, $\forall x \in \mathcal{K}_m$, where deg(p) < m.

Definition 1 (Minimal Polynomial of a vector). Monic polynomial of least degree such that p(A)v = 0 is called minimal polynomial of v and degree of such polynomial is called $grade(\mu)$.

Theorem 6. Let μ be the grade of v. Then \mathcal{K}_{μ} is invariant under A and $\mathcal{K}_{\mu} = \mathcal{K}_m \ \forall \ m \geq \mu$.

Proof. Since, grade of v is μ there exists a polynomial p of degree μ , such that p(A)v=0, where $p(A)=p_0I+p_1A+\cdots+p_{\mu-1}A^{\mu-1}+A^{\mu}$.

$$\implies A^{\mu}v = -(p_0I + p_1A + \dots + p_{\mu-1}A^{\mu-1})v \tag{1}$$

But,
$$\forall x \in \mathcal{K}_{\mu}$$
, $x = q(A)v$, $deg(q) < \mu$, i.e,
$$x = q_0v + q_1Av + \dots + q_{\mu-1}A^{\mu-1}v, \ \forall \ x \in \mathcal{K}_{\mu},$$

$$\Longrightarrow Ax = q_0Av + q_1A^2v + \dots + q_{\mu-1}A^{\mu}v,$$
 Case 1: $q_{\mu-1} = 0$, then $Ax \in \mathcal{K}_{\mu}$.
Case 2: $q_{\mu-1} \neq 0$, then replace $A^{\mu}v$ by (1), $Ax \in \mathcal{K}_{\mu}$.

Therefore, \mathcal{K}_{μ} is invariant under A. Similarly it can be seen that $\mathcal{K}_{\mu} = \mathcal{K}_{m}$ $\forall m \geq \mu$.

Corollary 6.1. $dim(\mathcal{K}_m) = min\{m, grade(v)\}.$

4 Arnoldi's Method for Linear Systems (FOM)

Arnoldi's procedure is an algorithm for building an orthogonal basis of the Krylov subspace \mathcal{K}_m .

Algorithm 3 Arnoldi-Modified Gram-Schmidt

```
1: Choose a vector v_1 of norm 1

2: for j = 1, 2, \dots, m do

3: Compute w_j = Av_j

4: for i = 1, 2, \dots, j do

5: h_{ij} = (w_j, v_i)

6: w_j = w_j - h_{ij}v_i

7: EndDo

8: h_{j+1,j} = ||w_j||_2. If h_{j+1,j} = 0 Stop

9: v_{j+1} = w_j/h_{j+1,j}

10: EndDo
```

Proposition. Denote by $V_m = [v_1, v_2, \dots, v_m]_{n \times m}$ and \bar{H}_m , the $(m+1) \times m$ Hessenberg matrix whose non-zero entries h_{ij} are defined by the above algorithm and by H_m the matrix obtained from \bar{H}_m by removing the last row. Then,

$$AV_m = V_m H_m + w_m e_m^T = V_{m+1} \bar{H}_m,$$
$$V_m^T A V_m = H_m.$$

Proof. From lines 6,8 we have, $w_j = Av_j - h_{ij}v_i$ and $w_j = v_{j+1}h_{j+1,j}$.

$$\implies Av_j = \sum_{i=1}^{j+1} h_{ij} v_i \implies AV_m = V_m H_m + w_m e_m^T = V_{m+1} \bar{H}_m.$$

Since V_m^T is orthogonal, we get $V_m^T A V_m = H_m$.

Given an initial guess x_0 to the original linear system Ax = b, we now consider an orthogonal projection method which takes $\mathcal{L} = \mathcal{K} = \mathcal{K}_m(A, r_0)$, with

$$\mathcal{K}_m(A, r_0) = span\{r_0, Ar_0, A^2r_0, \cdots, A^{m-1}r_0\},\$$

7

in which $r_0 = b - Ax_0$. This method seeks an approximate solution x_m from the affine subspace $x_0 + \mathcal{K}_m$ of dimension m by imposing the following orthogonality constraint:

$$b - Ax_m \perp \mathcal{K}_m$$
.

If $v_1 = r_0/\|r_0\|_2$ in Arnoldi's method, and we set $\beta = \|r_0\|_2$, then

$$V_m^T A V_m = H_m,$$

$$V_m^T r_0 = V_m^T(\beta v_1) = \beta e_1.$$

As a result, the approximate solution using the above m-dimensional subspaces is given by:

$$x_m = x_0 + V_m y_m,$$

where y_m can be found by imposing orthogonality constraint that

$$V_m^T(b - Ax_m) = 0 \implies y_m = H_m^{-1}(\beta e_1).$$

Algorithm 4 Full Orthogonalization Method (FOM)

- 1: Compute $r_0 = b Ax_0$, $\beta = ||r_0||_2$, and $v_1 = r_0/\beta$
- 2: Define the $m \times m$ matrix $H_m = \{h_{ij}\}_{i,j=1,2,\cdots,m}; Set\ H_m = 0$
- for $j = 1, 2, \dots, m$ do
- 4: Compute $w_i = Av_i$
- for $i=1,2,\cdots,j$ do 5:
- 6:
- $h_{ij} = (w_j, v_i)$ $w_j = w_j h_{ij}v_i$
- 8:
- $h_{j+1,j} = ||w_j||_2$. If $h_{j+1,j} = 0$ Stop 9:
- 10: $v_{i+1} = w_i/h_{i+1,i}$
- 11: EndDo
- 12: Compute $y_m = H_m^{-1}\beta e_1$ and $x_m = x_0 + V_m y_m$

Proposition. The residual vector of the approximate solution x_m computed by the FOM Algorithm is such that

$$b - Ax_m = -h_{m+1,m}e_m^T y_m v_{m+1}$$

and, therefore,

$$||b - Ax_m||_2 = h_{m+1,m}|e_m^T y_m|.$$

Proof.

$$b - Ax_m = b - Ax_0 - AV_m y_m$$

$$= r_0 - (V_m H_m + w_m e_m^T) y_m$$

$$= r_0 - V_m H_m (H_m^{-1} \beta e_1) - w_m e_m^T y_m$$

$$= r_0 - V_m V_m^T r_0 - h_{m+1,m} e_m^T y_m v_{m+1}$$

$$\implies b - Ax_m = -h_{m+1,m} e_m^T y_m v_{m+1}.$$

4.1 Variation 1: Restarted FOM

Algorithm 5 Restarted FOM (FOM(m))

- 1: Compute $r_0 = b Ax_0$, $\beta = ||r_0||_2$, and $v_1 = r_0/\beta$
- 2: Generate V_m and H_m using Arnoldi algorithm starting with v_1 .
- 3: Compute $y_m = H_m^{-1}\beta e_1$ and $x_m = x_0 + V_m y_m$. If satisfied then Stop.
- 4: Set $x_0 = x_m$ and go to 1.

4.2 Variation 1: IOM and DIOM

Algorithm 6 Incomplete Orthogonalization Method (IOM)

```
1: Compute r_0 = b - Ax_0, \beta = ||r_0||_2, and v_1 = r_0/\beta
 2: Define the m \times m matrix H_m = \{h_{ij}\}_{i,j=1,2,\cdots,m}; Set H_m = 0
 3: for j = 1, 2, \dots, m do
         Compute w_j = Av_j
         for i = max\{1, j - (k-1)\}, 2, \cdots, j do
 5:
            h_{ij} = (w_j, v_i)
w_j = w_j - h_{ij}v_i
 6:
 7:
 8:
         h_{j+1,j} = ||w_j||_2. If h_{j+1,j} = 0 Stop
 9:
         v_{i+1} = w_i / h_{i+1,i}
10:
11: EndDo
12: Compute y_m = H_m^{-1}\beta e_1 and x_m = x_0 + V_m y_m
```

A formula can be developed whereby the current approximate solution x_m can be computed from the previous approximation x_{m-1} and a small number vectors are updated at each step. This progressive formulation of the solution leads to an algorithm termed as Direct IOM (DIOM).

The Hessenberg matrix obtained from IOM has a band structure with bandwidth k + 1, i.e,

$$H_{m} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ & h_{32} & h_{33} & h_{34} & h_{35} \\ & & h_{43} & h_{44} & h_{45} \\ & & & h_{54} & h_{55} \end{pmatrix} = L_{m}U_{m}$$

$$= \begin{pmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ & & l_{32} & 1 & & \\ & & & l_{43} & 1 \\ & & & & l_{54} & 1 \end{pmatrix} \times \begin{pmatrix} u_{11} & u_{12} & u_{13} & & \\ & u_{22} & u_{23} & u_{24} & & \\ & & & u_{33} & u_{34} & u_{35} \\ & & & & u_{44} & u_{45} \\ & & & & & u_{55} \end{pmatrix}$$

The approximate solution then is given by

$$x_m = x_0 + V_m U_m^{-1} L_m^{-1} (\beta e_1).$$

Define $P_m \equiv V_m U_m^{-1}$ and $z_m = L_m^{-1}(\beta e_1)$, we have $x_m = x_0 + P_m z_m$. Because of the structure of U_m , P_m can be updated easily. Indeed, equating the last columns of the matrix relation $P_m U_m = V_m$ yields,

$$\sum_{i=m-k+1}^{m} u_{im} p_i = v_m \implies p_m = \frac{1}{u_{mm}} \left(v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i \right).$$

Therefore, p_m can be computed using previous $p'_i s$ and v_m . In addition, due to the structure of L_m , we have compute z_m by,

$$z_m = \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix}$$
, where $\zeta_m = -l_{m,m-1}\zeta_{m-1}$.

Now, the approximate solution is,

$$x_m = x_0 + [P_{m-1} \quad p_m] \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix} = x_0 + P_{m-1} z_{m-1} + p_m \zeta_m.$$

Noting that $x_{m-1} = P_{m-1}z_{m-1}$, x_m can be updated as follows:

$$x_m = x_{m-1} + \zeta_m p_m.$$

This gives the following algorithm, called **Incomplete Orthogonalization Method**(DIOM).

Algorithm 7 Direct Incomplete Orthogonalization Method (DIOM)

```
1: Choose x_0 and compute r_0 = b - Ax_0, \beta = ||r_0||_2, and v_1 = r_0/\beta
 2: for m = 1, 2, \dots, until convergence do
         Compute w_m = Av_m
         for i = max\{1, m - k + 1\}, 2, \dots, m do
 4:
             h_{im} = (w_m, v_i)
 5:
             w_m = w_m - h_{im}v_i
 6:
         h_{m+1,m} = ||w_m||_2. If h_{m+1,m} = 0 Stop
 7:
         v_{m+1} = w_m / h_{m+1,m}
 8:
         Update the LU factorization of H_m, i.e, obtain the last column
 9:
               U_m using the previous k pivots. If u_{mm} = 0 Stop.
10:
        \zeta_m = \beta if m = 1 else -l_{m,m-1}\zeta_{m-1}

p_m = u_{mm}^{-1} \left(v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i\right) (for i \leq 0 set u_{im} p_i \equiv 0)
11:
12:
13:
14: EndDo
```

Remark. Observe that $V_m^T A V_m = H_m$ is still valid because the orthogonality properties were not used to derive this relation. As a consequence the following result is also valid,

$$b - Ax_m = -h_{m+1,m} e_m^T y_m v_{m+1}$$

$$\implies ||b - Ax_m||_2 = h_{m+1,m} |e_m^T y_m|$$

$$But, y_m = H_m^{-1}(\beta e_1) = U_m^{-1} z_m \implies e_m^T y_m = \zeta_m / u_{mm}$$

$$\implies ||b - Ax_m||_2 = h_{m+1,m} \left| \frac{\zeta_m}{u_{mm}} \right|$$

Since the residual vectors is a scalar multiple of v_{m+1} and since the v_i 's are no longer orthogonal, IOM and DIOM are not orthogonal projection techniques. They can however be viewed as oblique projection techniques onto \mathcal{K}_m orthogonally to an artificially constructed subspace.

Proposition. IOM and DIOM are mathematically equivalent to projection process onto K_m and orthogonally to

$$\mathcal{L}_m = span\{z_1, z_2, \cdots, z_m\},$$
where $z_i = v_i - (v_i, v_{m+1})v_{m+1}, \ i = 1, 2, \cdots, m.$

Proof. From the construction of \mathcal{L}_m , v_{m+1} is orthogonal to \mathcal{L}_m and we know the final residue r_m is a scalar multiple of v_{m+1} , hence the approximate solution $x_m \in \mathcal{K}_m$ and residue vector $r_m \perp \mathcal{L}_m$.

5 Symmetric Lanczos Algorithm