RSA*Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: CRYP-T10

Modeling Memory Faults in Signature and Authenticated **Encryption Schemes**

Felix Günther

Postdoctoral Researcher Department of Computer Science, ETH Zurich, Switzerland

ETH zürich UC San Diego

joint work with Marc Fischlin (TU Darmstadt)

The Cryptographic Perspective

Deterministic ECDSA

$\underline{\text{Sign}_{\text{det-ECDSA}}(\text{sk, m})}$

$$r \leftarrow Hash(sk, m)$$

$$R \leftarrow f(rG) \mod q$$

$$s \leftarrow (H(m) + sk R)/r \mod q$$

Signature security (EUF-CMA)

$\mathsf{Expt}^{\mathsf{EUF\text{-}CMA}}_{\mathcal{S},\mathcal{A}}(1^{\lambda})$:

- $(sk, pk) \stackrel{\$}{\leftarrow} \mathsf{KGen}(1^{\lambda})$
- $_{2} Q \leftarrow \emptyset$
- з $(m^*, \sigma^*) \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}_{\mathsf{Sign}}}(1^{\lambda}, pk)$
- 4 return 1 iff $(m^*, *) \notin Q$ and $\mathsf{Verify}(pk, m^*, \sigma^*) = 1$

$\mathcal{O}_{\mathsf{Sign}}(m)$:

- $\overline{\sigma} \overset{\$}{\leftarrow} \mathsf{Sign}(sk,m)$
- 6 $Q \leftarrow Q \cup \{(m, \sigma)\}$
- 7 return σ

Models Matter

Deterministic ECDSA (& co.) succumb to rowhammer-style faults
 [PSSLR @ IEEE EuroS&P 2018]

```
(R_0, s_0): H(m) + sk R_0 = Hash(sk, m) s_0

(R!, s!): H(m) + sk R! = Hash(sk, m) s!

sk = H(m) / ((R_0-R!) s_0 / (s_0-s!) - R_0)
```

- We know for long that faults can have devastating effects on crypto operations at software level [BDL @ Eurocrypt 1997]
- But how to assess fault resilience in provable-security manner?

Prior Work

- Faults in circuits [IPSW06]
- Tailored provable-security models (e.g., for RSA) [CM09, BDFGTZ14, FGLTZ12]
- Related-key attack (RKA) security [BK04, GLMMR04]
- Hedged randomness in Fiat-Shamir-type signatures under faults [AOTZ19]

RSA*Conference2020

A Generic Framework for Fault Resilience in Security Models

Modeling Fault Resilience

```
\frac{\text{Sign}_{dr}(sk, m)}{\text{r} \leftarrow \text{Hash}(sk, m)}
s \leftarrow \text{Sign}_{r}(sk, m)
\text{return s}
```

- augmented code, indicating faultable memory variables
- callbacks to adversary: may change values of variable readings

Generic Fault Types

Flexible callbacks

- Full faults
 adversary controls variable completely
- Differential faults
 adversary can flip w selected bits
- Random faults
 adversary can flip N random bits
- No fault (baseline)

Forming a hierarchy

RSA*Conference2020

Fault Resilience for Signatures

Augmenting Signature Security

frEUF-CMA: Fault-resilience unforgeability

$$\frac{\text{Sign}_{dr}(\text{sk, m})}{\text{r} \leftarrow \text{Hash}(\text{sk, })}$$

$$\text{s} \leftarrow \text{Sign}_{r}(\text{sk, }; r)$$

$$\text{return s}$$

Essential question:

Which message did the signer sign? = Which (m,s) is trivially learned?

- Answer: the message m (among all appearing in Sign) verifying with s
- If there's two such m → confusion
 → adversary declared successful

De-Randomized Signatures Are Not Fault-Resilient

Sign_{dr}(sk, m)
r ← Hash(sk,
$$<$$
m $>$)
s ← Sign_r(sk, $<$ m $>$; r)
return s

- 1. Query O_{Sign} on m
 - no faults
 - obtain signature s on m
- 2. Query O_{Sign} on m
 - first <m>: do nothing
 - second <m>: flip bit (to m')
 - obtain signature s on m'
- 3. Create new forgery due to re-used randomness r for signatures on m and m'

Combining Randomization & De-Randomization

$$\frac{\text{Sign}_{c}(\text{sk, m})}{\mathbf{r}' \leftarrow_{\$} \{0,1\}^{\lambda}}$$

$$\mathbf{r} \leftarrow \text{Hash}(\text{sk, ,)}$$

$$\mathbf{s} \leftarrow \text{Sign}_{r}(\text{sk, ;)}$$

$$\text{return s}$$

Combining security (provably)

- de-randomization for regular EUF-CMA security under bad randomness
- randomization for fault-resilient EUF-CMA security under differential faults on m, r, r'

RSA Conference 2020

Fault Resilience for Authenticated Encryption

A Similar Setting

- good randomness isn't always available
- nonce-based authenticated encryption (AE) to avoid randomness
- nonce-misuse resistance hedging against repeated nonces

• but what about faults?

SIV Mode of Operation: Synthetic IV [RS06]

Nonce-misue resistance ...

$$\frac{\text{Enc}_{\text{SIV}}((K_{1}, K_{2}), N, A, m)}{\text{IV} \leftarrow \text{PRF}(K_{1}, \langle N \rangle | \langle A \rangle | \langle m \rangle)}$$

$$c \leftarrow \text{Enc}(K_{2}, \langle m \rangle; \langle \text{IV} \rangle)$$

$$\text{return} (\text{IV}, c)$$

... but vulnerable to faults

- 1. Query O_{Enc} on (N=00..0,A,m)
 - no faults, obtain $c_1 = c$ or \$
- 2. Query O_{Enc} on (N=10..0,A,m)
 - <N> callback: flip 1st bit
 - obtain $c_2 = c$ or *different* \$
- 3. Distinguish by checking if $c_1 = c_2$

SIV\$: Combining Randomization & De-Randomization

$$\frac{\operatorname{Enc}_{\operatorname{SIV\$}}((K_{1},K_{2}), N, A, m)}{r \leftarrow_{\$} \{0,1\}^{\lambda}}$$

$$\mathbf{IV} \leftarrow \operatorname{PRF}(K_{1}, \langle N \rangle | \langle A \rangle | \langle m \rangle | \langle r \rangle)$$

$$c \leftarrow \operatorname{Enc}(K_{2}, \langle r \rangle | \langle m \rangle; \langle IV \rangle)$$

$$\operatorname{return}(IV, c)$$

Combining security (provably)

- synthetic IV approach for nonce-misuse res. AE security under bad randomness
- augmented randomness for fault-resilient nm-res. AE security under diff. faults on N, A, m, r, IV

Fault-resilient AE mode translating signature concepts

Summary

- Introduced generic model for understanding fault resilience in computational security proofs
- Signatures
 - confirm fault attacks on de-randomized signatures
 - provable security of combined randomization + de-randomization

- Authenticated encryption
 - fault-attack treatment of SIV mode of operation
 - propose combined SIV\$ mode achieving fault resilience

Applying the Generic Fault Resilience Model

- Select your favorite crypto primitive
 - fault resilience model is generic
- Revise security definitions towards fault-resilient variant
 - What has to be taken care of when faults might happen in schemes?
- Augment scheme with faulting profile
 - different memory variables / algorithms may be differently vulnerable
- Assess provable fault-resilient security of augmented scheme

Summary

- Introduced generic model for understanding fault resilience in computational security proofs
- Signatures
 - confirm fault attacks on de-randomized signatures
 - provable security of combined randomization + de-randomization
- Authenticated encryption
 - fault-attack treatment of SIV mode of operation
 - propose combined SIV\$ mode achieving fault resilience

