We claim

1. Compounds of the general formula (I)

5

wherein

A represents an aryl or heteroaryl ring,

10

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy or trifluoromethoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C₁-C₄-alkoxy,

15

R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₂-C₆-alkenoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₆-alkylaminocarbonyl, C₃-C₆-cycloalkylaminocarbonyl, N-(heterocyclyl)-aminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₆-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, amino, mono- and di-C₁-C₄-alkylaminocarbonyl, amino, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl,

20

 R^6

C₁-C₄-alkylcarbonylamino, phenyl, heteroaryl and heterocyclyl, and wherein phenyl can be further substituted with halogen and wherein N-(heterocyclyl)-aminocarbonyl can be further substituted with C₁-C₄-alkyl or benzyl,

5

R⁵ represents C₁-C₄-alkyl,

10

15

represents hydrogen, cyano, aminocarbonyl, mono- or di-C1-C6-alkylaminocarbonyl, C3-C8-cycloalkylaminocarbonyl, arylaminocarbonyl, N-aryl-N-C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl, C₃-C₈cycloalkylcarbonyl, arylcarbonyl, hydroxycarbonyl, C1-C6-alkoxycarbonyl, C2-C6-alkenoxycarbonyl or aryloxycarbonyl, wherein monoand di-C1-C6-alkylaminocarbonyl, arylaminocarbonyl, C1-C6-alkylcarbonyl and C1-C6-alkoxycarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C1-C4-alkoxy, benzyloxy, tri-(C1-C6-alkyl)-silyl-C₁-C₄-alkoxyhydroxycarbonyl, C₁-C₄-alkylsulfonyloxy, оху, carbonyl, amino, mono- and di-C1-C4-alkylamino, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₃-C₆-cycloalkylaminocarbonyl, heterocyclylcarbonyl, C1-C4-alkylcarbonylamino, phenyl, heteroaryl and heterocyclyl, and wherein mono- and di-C1-C4alkylaminocarbonyl can be further substituted with hydroxy or C1-C4alkoxy,

20

25 or

 R^6

represents a moiety of the formula

*
$$\bigwedge^{0}$$
 \bigwedge^{0} $\bigwedge^$

wherein R^{6A} is selected from the group consisting of hydrogen, C_1 - C_6 -alkyl and C_1 - C_4 -alkylcarbonyl, Q represents O or S, and n represents an integer of 1 or 2,

or

R⁶ represents a moiety of the formula

10

5

wherein R^{6B} is selected from the group consisting of hydrogen and C_1 - C_6 -alkyl, and R^{6C} is an amino acid side chain,

15

R⁷ represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy or trifluoromethoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C₁-C₄-alkoxy,

20

and

Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

and their salts, hydrates and/or solvates, and their tautomeric forms.

5

- 2. Compounds of general formula (I) according to Claim 1, wherein
 - A represents an aryl or heteroaryl ring,

10

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy or trifluoromethoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of hydroxy and C₁-C₄-alkoxy,

15

20

represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, amino, mono- and di-C₁-C₄-alkylamino, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylamino and heteroaryl,

25

 R^5 represents C_1 - C_4 -alkyl,

30

R⁶ represents hydrogen, cyano, aminocarbonyl, mono- or di-C₁-C₄-alkyl-aminocarbonyl, C₃-C₈-cycloalkylaminocarbonyl, C₁-C₆-alkylcarbonyl, hydroxycarbonyl or C₁-C₆-alkoxycarbonyl, wherein mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl and C₁-C₆-alkoxy-

carbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, amino, mono- and di-C₁-C₄-alkylamino, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, phenyl and heteroaryl,

or

R⁶ represents a moiety of the formula

10

5

wherein R^{6A} is selected from the group consisting of hydrogen and C_1 - C_6 -alkyl, and n represents an integer of 1 or 2,

15

or

R⁶ represents a moiety of the formula

20

wherein R^{6B} is selected from the group consisting of hydrogen and C_1 - C_6 -alkyl, and R^{6C} is an amino acid side chain,

25

R⁷ represents hydrogen, halogen, nitro, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy or trifluoromethoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three

identical or different radicals selected from the group consisting of hydroxy and C_1 - C_4 -alkoxy,

and

5

15

20

- Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.
- 3. Compounds of general formula (I) according to Claim 1 or 2, wherein

10
A represents an aryl ring,

- R¹, R² and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
- R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl and C₁-C₆-alkoxycarbonyl can be substituted with one to two identical or different radicals selected from the group consisting of hydroxy, methoxy, hydroxycarbonyl, methoxycarbonyl, amino, mono- and di-C₁-C₄-alkylamino,
- R⁵ represents methyl or ethyl,
- 25 R⁶ represents hydrogen, cyano, aminocarbonyl, mono- or di-C₁-C₄-alkyl-aminocarbonyl, hydroxycarbonyl or C₁-C₆-alkoxycarbonyl,

or

30

R⁶ represents a moiety of the formula

*
$$\bigwedge^{N}$$
 \bigwedge^{N} $\bigwedge^$

wherein R^{6A} is selected from the group consisting of hydrogen, methyl and ethyl, and n represents an integer of 1 or 2,

or

R⁶ represents a moiety of the formula

10

5

wherein R^{6B} is selected from the group consisting of hydrogen, methyl and ethyl, and R^{6C} is an amino acid side chain,

15

R⁷ represents hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

20

Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.

- 4. Compounds of general formula (I) according to Claim 1, 2 or 3, wherein
 - A represents a phenyl ring,

25

R¹ represents hydrogen or methyl,

- R² represents cyano, bromo or nitro,
- R³ represents hydrogen,
- $R^4 \qquad \text{represents} \quad C_1\text{-}C_4\text{-alkylcarbonyl}, \quad C_1\text{-}C_4\text{-alkoxycarbonyl} \quad \text{or} \quad \text{cyano,} \\ \qquad \qquad \text{wherein} \quad C_1\text{-}C_4\text{-alkylcarbonyl} \quad \text{and} \quad C_1\text{-}C_4\text{-alkoxycarbonyl} \quad \text{can be substituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl or} \quad C_1\text{-}C_4\text{-alkoxycarbonyl,} \\ \qquad \qquad \text{stituted with hydroxycarbonyl} \quad C_1\text{-}C_4\text{-alkoxycarbonyl} \quad C_1\text{-}C_4\text$
 - R⁵ represents methyl,
- 10

 R⁶ represents hydrogen, cyano, aminocarbonyl, mono- or di-C₁-C₄-alkyl-aminocarbonyl, hydroxycarbonyl or C₁-C₆-alkoxycarbonyl,
 - R⁷ represents trifluoromethyl or nitro,
 - and

15

- Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.
- 20 5. Compounds of general formula (I) according to at least one of Claims 1 to 4, wherein A is phenyl.
 - 6. Compounds of general formula (I) according to at least one of Claims 1 to 5, wherein R¹ is hydrogen.
- Compounds of general formula (I) according to at least one of Claims 1 to 6, wherein R² is cyano.
- 8. Compounds of general formula (I) according to at least one of Claims 1 to 7, wherein R³ is hydrogen.

15

- 9. Compounds of general formula (I) according to at least one of Claims 1 to 8, wherein R⁴ is C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl or cyano.
- 10. Compounds of general formula (I) according to at least one of Claims 1 to 9, wherein R⁵ is methyl.
 - 11. Compounds of general formula (I) according to at least one of Claims 1 to 10, wherein R⁶ is hydrogen, cyano, aminocarbonyl, mono- and di-methyl- or -ethylaminocarbonyl, methoxycarbonyl or ethoxycarbonyl.
- 12. Compounds of general formula (I) according to at least one of Claims 1 to 11,
 wherein R⁷ is trifluoromethyl or nitro.
 - 13. Compounds of general formula (IA)

$$R^{1}$$
 R^{4}
 R^{6}
 R^{3}
 CF_{3}
 CF_{3}
 $CIA),$

wherein R¹, R³, R⁴ and R⁶ have the meaning indicated in Claims 1 to 12.

- 20 14. Processes for synthesizing the compounds of general formula (I) or (IA), respectively, as defined in Claims 1 to 13, characterized in that
 - [A] compounds of the general formula (II)

wherein R^1 to R^7 , A and Y^1 to Y^5 have the meaning indicated in Claims 1 to 13,

are hydrolyzed with water,

or

10

5

[B] compounds of the general formula (III)

$$R^4$$
 R^5
 NH
 Y_1^1
 Y_2^5
 Y_3^3
 Y_4^7
 (III)

wherein R^3 , R^4 , R^5 to 13,

wherein R³, R⁴, R⁵, R⁷, and Y¹ to Y⁵ have the meaning indicated in Claims 1

are reacted with compounds of the general formula (IX)

$$R^{1}$$
 A
 R^{2}
 R^{6}
 R^{6}
 (IX)

wherein R¹, R², R⁶ and A have the meaning indicated in Claims 1 to 13,

5 or

[C] compounds of the general formula (III)

$$R^{4}$$
 R^{5}
 NH
 Y_{1}^{1}
 Y_{2}^{5}
 Y_{3}^{2}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{4}^{7}
 Y_{5}^{7}
 Y_{5}^{7}
 Y_{7}^{1}
 $Y_{7}^{$

10

wherein R³, R⁴, R⁵, R⁷, and Y¹ to Y⁵ have the meaning indicated in Claims 1 to 13,

are reacted with compounds of the general formula (VIII)

15

$$R^{1}$$
 A
 R^{2}
 CH_{3}
 $(VIII)$

5

20

wherein R¹ and R² have the meaning indicated in Claims 1 to 13.

- 15. The composition containing at least one compound of general formula (I) or (IA), as defined in Claims 1 to 13, and a pharmacologically acceptable diluent.
- 16. A composition according to Claim 15 for the treatment of acute and chronic inflammatory, ischaemic and/or remodelling processes.
- The process for the preparation of compositions according to Claim 15 and 16 characterized in that the compounds of general formula (I) or (IA), as defined in Claims 1 to 13, together with customary auxiliaries are brought into a suitable application form.
- 18. Use of the compounds of general formula (I) or (IA), as defined in Claims 1 to 13, for the preparation of medicaments.
 - 19. Use according to Claim 18 for the preparation of medicaments for the treatment of acute and chronic inflammatory, ischaemic and/or remodelling processes.
 - 20. Use according to Claim 19, wherein the process is chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure.
- 21. Process for controlling chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure in humans and animals by administration of an neutrophil elastase inhibitory amount of at least one compound according to any of Claims 1 to 13.