Gov 50: 3. Data Visualization

Matthew Blackwell

Harvard University

Roadmap

- 1. Building plots by layers
- 2. Histograms and boxplots
- 3. Grouped data

1/ Building plots by layers

Midwest data

midwest

```
# A tibble: 437 x 28
##
       PID county
                     state
                            area poptotal popde~1 popwh~2
##
     <int> <chr>
                     <chr> <dbl>
                                   <int>
                                           <dbl>
                                                   <int>
##
       561 ADAMS
                     TI
                           0.052
                                   66090
                                           1271.
                                                   63917
   1
##
       562 ALEXANDER IL
                           0.014
                                   10626
                                            759
                                                    7054
##
   3
       563 BOND
                     ΙL
                           0.022
                                   14991
                                            681.
                                                   14477
                                   30806
##
   4
       564 BOONE
                     TI
                           0.017
                                           1812.
                                                   29344
##
       565 BROWN
                     ΙL
                           0.018
                                    5836
                                            324.
                                                    5264
   5
##
       566 BURFAU
                     ΙL
                           0.05
                                   35688
                                            714.
                                                   35157
   6
##
       567 CALHOUN
                    ΙL
                           0.017
                                    5322
                                            313.
                                                    5298
       568 CARROLL
                                   16805
                                                   16519
##
   8
                    ΙL
                           0.027
                                            622.
##
   9
       569 CASS
                     TI
                           0.024 13437
                                            560.
                                                   13384
##
  10
       570 CHAMPAIGN IL
                           0.058
                                  173025
                                           2983.
                                                  146506
##
    ... with 427 more rows, 21 more variables:
## #
      popblack <int>, popamerindian <int>,
## #
      popasian <int>, popother <int>, percwhite <dbl>,
## #
      percblack <dbl>, percamerindan <dbl>,
## #
      percasian <dbl>, percother <dbl>, popadults <int>,
      perchsd <dbl>, percollege <dbl>, percprof <dbl>,
## #
##
  #
      poppovertyknown <int>, percpovertyknown <dbl>, ...
```

Building up a graph in pieces

Create ggplot object and direct it to the correct data:

```
p <- ggplot(data = midwest)
```

Mapping: tell ggplot what visual aesthetics correspond to which variables

Other aesthetic mappings: color, shape, size, etc.

Adding a geom layer

Trying a new geom

Layering geoms is additive

Geoms are functions

Geoms can take arguments:

Tells geom_smooth to do a linear fit with no error region

Adding informative labels

Mapping vs setting aesthetics

Wait what?

Mapping always refers to variables

If passed a value other than a variable name, ggplot will implicitly create a variable with that value (in this case "purple" that is constant)

Setting aesthetics

Set the color outside the mapping = aes() format.

Mapping more aesthetics

Mappings can be done on a per geom basis

2/ Histograms and boxplots

Histograms

Histograms show where there are more or fewer observations of a numeric variable.

Split up range of variable into bins, count how many are in each bin.

y aesthetic calculated automatically.

Creating small multiples with facets

Small multiples: a series of similar graphs with the same scale/axes to help with comparing different partitions of a dataset.

We'll see more of the ~ variable syntax (called a formula).

Density as alternative to histograms

A **kernel density** plot is a smoothed version of a histogram and slightly easier to overlay.

Boxplots

Boxplots are another way to compare distributions across discrete groups.

Boxplots in R

• "Box" represents middle 50% of the data.

Boxplots in R

- "Box" represents middle 50% of the data.
 - 25% of the data above the box, 25% below

Boxplots in R

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)
- · Horizontal line in the box is the median

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)
- · Horizontal line in the box is the median
 - · 50% of the data above the median, 50% below

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)
- Horizontal line in the box is the median
 - 50% of the data above the median, 50% below
- "Whiskers" represents either:

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)
- Horizontal line in the box is the median
 - 50% of the data above the median, 50% below
- "Whiskers" represents either:
 - 1.5 imes IQR or max/min of the data, whichever is smaller.

- "Box" represents middle 50% of the data.
 - · 25% of the data above the box, 25% below
 - Width of the box is called the inter quartile range (IQR)
- Horizontal line in the box is the median
 - · 50% of the data above the median, 50% below
- · "Whiskers" represents either:
 - 1.5 \times IQR or max/min of the data, whichever is smaller.
 - Points beyond whiskers are outliers.

3/ Grouped data

Back to the gapminder data

glimpse(gapminder)

Let's plot the trend in income

geom_line connects points from different countries in the same year.

Tell geom_line how to group the lines

Scales

