Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar **Naměřeno:** 26. února 2025

Obor: F **Skupina:** Út 14:00 **Testováno:**

Úloha č. 7:

Optická emisní spektra atomů a molekul

 $T=21,1~^{\circ}\mathrm{C}$

 $p=101,\!35~\mathrm{kPa}$

 $\varphi = 47,7 \%$

1. Úvod

Cílem úlohy je identifikovat spektrální čáry par železa v obloukovém výboji a molekulové spektrum radikálů OH, měřené v nízkoteplotním plazmatu. Z obou spekter potom zjistím příslušnou teplotu plazmatu ze sklonu pyrometrické přímky.

2. Teorie

2.1. Intenzita spektrálních čar

Při přechodu elektronu z m-té hladiny o energii E_m na nižší s energií E_n se vyzáří světlo, které pozorujeme jako spektrální čáru o vlnové délce λ_{mn} a relativní intenzitě

$$I_{mn} = \frac{A_{mn}g_m}{\lambda_{mn}} \exp\left(-\frac{E_m}{kT}\right),\tag{1}$$

kde A_{mn} je pravděpodobnost přechodu z m-té hladiny na n-tou a g_m je statistická váha horního energetického stavu. Experimentálně jsou přímo měřitelné intenzity spektrálních čar a ke každé známe i součin $A_{mn}g_m$ a excitační energie E_m . Úpravou vztahu (1) dostávám

$$\ln\left(\frac{I_{mn}\lambda_{mn}}{A_{mn}q_m}\right) = \left(-\frac{E_m}{kT}\right) = f(E_m). \tag{2}$$

Graf závislosti $f(E_m)$ je známý jako pyrometrická přímka se sklonem $-\frac{1}{kT}$.

2.2. Intenzita rotační čárv

Rotační energie molekuly je na rozdíl od té translační kvantovaná. Můžeme tedy pozorovat i spektrální čáry způsobené změnou stavu rotace molekuly a pro její intenzitu platí vztah

$$I_{n''v'J''}^{n'v'J'} = C_{n''v'J''}^{n'v'J''} \bar{\nu}^4 S_{J'J''} e^{-\frac{B_{v'}N'(N'+1)hc}{kT}}$$
(3)

 $B_{v'}$ je rotační konstanta pro horní vibrační stav, N' je rotační kvantové číslo horního stavu, $\bar{\nu}^4 = \lambda^{-4}$ je vlnočet rotační čáry, $S_{J'J''}$ je Hönl-Londonův intenzitní faktor a J' je kvantové číslo pro celkový moment hybnosti. V případě dat měřených v praktiku platí $N' = J' - \frac{1}{2}$. Rovnici (3) můžeme opět upravit na pyrometrický tvar

$$\ln \frac{I_{n''v''J''}^{n''v''J''}}{\bar{\nu}^4 S_{J'J''}} = -\frac{B_{v'}hc}{kT}N'(N'+1) + konst. = f(N'(N'+1))$$
(4)

3. Výsledky měření

3.1. Atomové spektrum par železa

Spektrální závislost z grafu 1 jsem dostal už naměřenou a data jsem jen zpracovával. Soubor jsem otevřel v programu Span 1.7 a označil vybrané spektrální čáry pro vlnové délky podle tabulky 1, kde ve 4. sloupci jsou i programem odečtené intenzity

Graf 1: Naměřená spektrální závislost par železa měřené v obloukovém výboji. Graf je korektovaný podle známých vlnových délek spektrálních čar a šumu pozadí.

Z tabulky 1 jsem potom sestrojil graf 2 podle rovnice $y=f(E_m)$ ze vztahu 2 a z fitu přímkou určil teplotu plazmatu.

$$a = -1.94015 \pm 0.1613$$

 $k = 8.6173303 \cdot 10^{-5} \ eVK^{-1}$
 $T = 6000 \pm 500 \ K$

Graf 2: Pyrometrická přímka par železa

λ_{mn}	E_m	$A_{mn}g_m$	I
(nm)	(eV)	(s^{-1})	(a.u.)
429.413	4.371	0.71	774
429.924	5.308	5.2	1166
430.791	4.434	5.9	2924
431.509	5.070	1.5	564
432.576	4.473	6.1	2930
433.705	4.415	0.23	416
435.274	5.070	1.0	341
436.977	5.882	2.2	331
437.593	2.832	0.0094	284
438.357	4.312	7.7	3585
440.475	4.371	4.4	2992
441.512	4.415	2.8	1637
442.731	2.851	0.0099	178
444.234	4.988	1.1	597
444.772	5.009	1.1	316
445.912	4.955	1.0	556
446.655	5.606	5.3	705
447.602	5.614	5.4	527
448.217	2.875	0.0053	518
449.457	4.955	1.22	513
452.862	4.913	1.8	1476

Tabulka 1: Parametry spektrálních čar

3.2. Spektrum radikálů OH

Data jsem zase dostal už naměřená a zpracovávání probíhalo podobně jako v předchozím případě. Nejdřív jsem označil spektrální čáry z tabulky 2, které odpovídají rotačním přechodům a pomocí programu Span 1.7 zjistil jejich intenzitu.

Graf 3: Naměřená spektrální závislost radikálů OH. Graf je korektovaný podle známých vlnových délek spektrálních čar a šumu pozadí.

Z tabulky 2 sestrojím graf pyrometrické přímky podle vztahu (4) a ze sklonu $a=-\frac{B_v/hc}{kT}$ zjistím rotační teplotu plazmatu.

$$a = -0.089 \pm 0.003$$

 $h = 6.62607015 \cdot 10^{-34} \text{ Js}$
 $c = 299792458 \text{ ms}^{-1}$
 $k = 1.380649 \cdot 10^{-23} \text{ JK}^{-1}$
 $B_{v'} = 1696 \text{ m}^{-1}$
 $T = 273 \pm 10 \text{ K}$

Graf 4: Pyrometrická přímka radikálů OH

N'	J'	$S_{J'J''}$	λ_{nm}	I (a.u.)
1	1/2	0.563	307.844	6.90
2	5/2	1.065	307.995	8.65
4	9/2	2.100	308.328	4.17
5	11/2	2.640	308.520	2.37
6	13/2	3.160	308.734	1.09

Tabulka 2: Parametry rotačních spektrálních čar

4. Závěr

Pomocí programu Span 1.7 jsem zjistil intenzitu vybraných spektrálních čar par železa a z pyrometrické přímky určil teplotu plazmatu na $T=6000\pm500$ K. Program zároveň umožňuje vyhodnotit teplotu automaticky, odkud mám hodnotu T=6552 K. Rozdíl výsledků je pravděpodobně způsobený sofistikovanějším postupem, použitým v programu.

Při vyhodnocování radikálů OH jsem použil jen 5 čar, ale zato vyšla velmi dobrá přímka a výsledná teplota $T=273\pm10~{\rm K}$ má menší relativní nejistotu. Program znovu vyhodnotil teplotu o něco výš na T=312, pravděpodobně ze stejného důvodu.

Reference

[1] Návod k úloze https://is.muni.cz/auth/el/sci/jaro2025/F4210/um/fp3-7_spektra.pdf.