Механизмы безопасной работы с файлами

Стандартные права доступа к файлам

В данной главе содержится подробная информация о системе разграничения доступа к файлам на основе механизма владения файлами и прав доступа к файлам.

Механизм владения файлами

Пользователь и группа, владеющие файлом

Пользователи и группы пользователей в рамках системы могут быть описаны в локальных файлах /etc/passwd и /etc/group или объявлены на уровне сервера NIS, LDAP или домена Samba. Эти пользователи и группы пользователей могут владеть файлами. На самом деле каждым файлом владеет как пользователь, так и группа пользователей, что можно увидеть в следующем примере.

```
paul@rhel65:~/owners$ ls -lh
```

```
итого 636K
-rw-r--r--. 1 paul snooker 1.1K апр 8 18:47 data.odt
-rw-r--r--. 1 paul paul 626K апр 8 18:46 file1
-rw-r--r--. 1 paul tennis 185 апр 8 18:46 file2
-rw-rw-r--. 1 root root 0 апр 8 18:47 stuff.txt
paul@rhel65:~/owners$
```

Пользователь paul владеет тремя файлами; файлом file1 владеет пользователь paul и группа пользователей paul, файлом data.odt владеет группа пользователей snooker, а файлом file2 - группа пользователей tennis.

Последний файл носит имя stuff.txt и его владельцами является пользователь root и группа пользователей root.

Вывод списка учетных записей пользователей

Вы можете воспользоваться следующей командой для вывода списка всех локальных учетных записей пользователей.

daemon matthias2	mysql	tom	rino
bin bram	paul	wouter	antonio
sys fabrice	maarten	robrecht	simon
sync chimene	kevin	bilal	sven
games messagebus	yuri	dimitri	wouter2
man roger	william	ahmed	tarik
lp frank	yves	dylan	jan
mail toon	kris	robin	ian
news rinus	hamid	matthias	ivan
uucp eddy	vladimir	ben	azeddine
proxy bram2	abiy	mike	eric
www-data keith	david	kevin2	kamel
backup jesse	chahid	kenzo	ischa
list frederick	stef	aaron	bart
irc hans	joeri	lorenzo	omer
gnats dries	glenn	jens	kurt
nobody steve2	yannick	ruben	steve
libuuid constantin	christof tomas	jelle	
Debian-exim johan	george	stefaan	sam2

statd tom2	joost	marc	bjorn
sshd	arno	thomas	ronald
chgrp			

Утилита chgrp

Вы можете изменить имя группы пользователей, владеющей файлом, с помощью утилиты **chgrp**.

```
root@rhel65:/home/paul/owners# ls -l file2
-rw-r--r-. 1 root tennis 185 aπp 8 18:46 file2
root@rhel65:/home/paul/owners# chgrp snooker file2
root@rhel65:/home/paul/owners# ls -l file2
-rw-r--r-. 1 root snooker 185 aπp 8 18:46 file2
root@rhel65:/home/paul/owners#
```

Утилита chown

Имя пользователя, владеющего файлом, может быть изменено с помощью утилиты **chown**.

```
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root paul 0 2008-08-06 14:11 FileForPaul
root@laika:/home/paul# chown paul FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 paul paul 0 2008-08-06 14:11 FileForPaul
```

Вы также можете использовать утилиту **chown** для одновременного изменения имен пользователя и группы пользователей, владеющих файлом.

```
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 paul paul 0 2008-08-06 14:11 FileForPaul
root@laika:/home/paul# chown root:project42 FileForPaul
root@laika:/home/paul# ls -l FileForPaul
-rw-r--r-- 1 root project42 0 2008-08-06 14:11
FileForPaul
```

Список специальных типов файлов

При использовании команды **ls -l** в строке с информацией о каждом из файлов вы можете обнаружить десять символов перед именами владеющих файлом пользователя и группы пользователей. Первый символ сообщает нам о типе файла. Для обычных файлов ис-

пользуется символ -, для директорий - символ \mathbf{d} , символьные ссылки обозначаются с помощью символа \mathbf{l} , именованные каналы - с помощью символа \mathbf{p} , символьные устройства - с помощью символа \mathbf{c} , блочные устройства - с помощью символа \mathbf{b} , а сокеты - с помощью символа \mathbf{s} .

Таблица 30.1	- Специальные	типы	файлов	Unix
			Q 00110101	

Первый символ	Тип файла
-	Обычный файл
d	Директория
1	Символьная ссылка
р	Именованный канал
b	Блочное устройство
С	Символьное устройство
S	Сокет

В примере ниже выводится информация о файле символьного устройства (консоли) и блочного устройства (жесткого диска).

```
paul@debian6lt~$ ls -ld /dev/console /dev/sda
crw----- 1 root root 5, 1 map 15 12:45 /dev/console
brw-rw---- 1 root disk 8, 0 map 15 12:45 /dev/sda
```

А в следующем примере вы можете увидеть информацию о директории, обычном файле и символьной ссылке.

```
paul@debian6lt~$ ls -ld /etc /etc/hosts /etc/motd
drwxr-xr-x 128 root root 12288 мар 15 18:34 /etc
-rw-r--r-- 1 root root 372 дек 10 17:36 /etc/hosts
lrwxrwxrwx 1 root root 13 дек 5 10:36 /etc/motd
-> /var/run/motd
```

Права доступа

Символы гwx

Девять символов, следующих после символа типа файла, отображают права доступа к файлу, разделенные на три триплета. Символом права доступа может быть символ **r**, обозначающий возможность чтения данных из файла, символ **w**, обозначающий возможность записи данных в файл, и символ **x**, обозначающий возможность исполнения файла. Вам понадобится право на чтение директории (обозначаемое с помощью символа **r**) для вывода списка содержимого этой директории (например, с помощью команды ls). Для входа в ди-

ректорию (например, с помощью команды Cd) вам понадобится право на исполнение (обозначаемое с помощью символа **x**). А для создания новых файлов в директории и удаления существующих файлов из нее вам понадобится право на запись в эту директорию (обозначаемое с помощью символа **w**).

Таблица 30.2. Стандартные права доступа к файлам Unix

Право доступа	К файлу	К директории
г (чтение)	Чтение содержимого файла (cat)	Чтение содержимого директории (ls)
w (запись)	Изменение содержимого файла (vi)	Создание файлов в директории (touch)
х (исполнение)	Исполнение файла	Вход в директорию (сd)

30.2.2. Три набора символов гwx

Мы уже знаем о том, что вывод команды **ls** -**l** начинается с десяти символов для каждого из файлов. В примере ниже показан вывод в случае нахождения в директории обычного файла (так как первым символом является символ -).

paul@RHELv4u4:~/test\$ ls -l proc42.bash

-rwxr-xr-- 1 paul proj 984 фев 6 12:01 proc42.bash

В таблице ниже описано назначение всех десяти символов.

Таблица 30.3. Права доступа к файлам в Unix

Позиция	Символы	Назначение
1	-	Указание на то, что это обычный файл.
2-4	rwx	Права доступа для пользователя, владеющего файлом.
5-7	r-x	Права доступа для пользователей из группы, владеющей файлом.
8-10	r	Права доступа для остальных пользователей.

В том случае, если вы являетесь владельцем файла, ваш доступ к содержимому этого файла будет регламентироваться правами доступа для пользователя, владеющего файлом. Остальные права доступа не будут оказывать ровным счетом никакого влияния на вашу возможность доступа к содержимому этого файла.

В том случае, если вы состоите в **группе пользователей**, владеющей данным файлом, ваш доступ к содержимому этого файла будет регламентироваться **правами доступа для пользователей из группы, владеющей файлом**. По аналогии, остальные права доступа не будут оказывать никакого влияния на вашу возможность доступа к содержимому этого файла.

В том же случае, если вы не являетесь владельцем этого файла, а также не состоите в группе пользователей, владеющей этим файлом, ваш доступ к содержимому файла будет регламентироваться правами доступа для остальных пользователей. Как и раньше, остальные права доступа не будут оказывать никакого влияния на вашу возможность доступа к содержимому этого файла.

Примеры прав доступа к файлам

В примере ниже показаны некоторые комбинации прав доступа к фалам и директориям. Имена файлов и директорий описывают права доступа к ним.

```
paul@laika:~/perms$ ls -lh
итого 12К
drwxr-xr-x 2 paul paul 4.0K 2007-02-07 22:26 Все пользо-
ватели могут осуществлять вход Владелец -
создавать и удалять файлы
-rwxrwxrwx 1 paul paul
                         0 2007-02-07 22:21 Все пользо-
ватели_имеют_полный_контроль над файлом.txt
-r--r---- 1 paul paul
                          0 2007-02-07 22:21 Только вла-
дельцы могут осуществлять чтение.txt
-rwxrwx--- 1 paul paul
                          0 2007-02-07 22:21
Владельцы могут делать все Остальные - ничего.txt
dr-xr-x--- 2 paul paul 4.0K 2007-02-07 22:25
Владелец и участники группы могут осуществлять вход
dr-x---- 2 paul paul 4.0K 2007-02-07 22:25 Исключитель-
но владелец может осуществлять вход
paul@laika:~/perms$
```

Подводя итог, можно сказать, что первый триплет **гwx** представляет права доступа **владельца файла**. Второй триплет соответствует правам доступа **пользователей из группы, владеющей файлом**; он указывает права доступа каждого пользователя из этой группы. Третий триплет описывает права доступа **всех остальных пользователей**, не являющихся владельцами файла или директории и не состоящих в группе пользователей, владеющей файлом или директорией.

Установка прав доступа (chmod)

Права доступа могут быть изменены с помощью утилиты **chmod**. В первом примере владельцу файла permissions.txt дается право на его исполнение.

paul@laika:~/perms\$ ls -l permissions.txt
-rw-r--r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt
paul@laika:~/perms\$ chmod u+x permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt
-rwxr--r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

В следующем примере у группы пользователей, владеющей файлом, изымается право на чтение этого файла.

paul@laika:~/perms\$ chmod g-r permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt
-rwx---r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

А в следующем примере право на чтение файла изымается у всех пользователей, не являющихся владельцами этого файла и не

входящих в группу, владеющую этим файлом.

paul@laika:~/perms\$ chmod o-r permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rwx----- 1 paul paul 0 2007-02-07 22:34 permissions.txt

В примере ниже всем пользователям дается право модификации содержимого файла.

paul@laika:~/perms\$ chmod a+w permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rwx-w--w- 1 paul paul 0 2007-02-07 22:34 permissions.txt

В подобных случаях от вас даже не требуется использовать символ а.

paul@laika:~/perms\$ chmod +x permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rwx-wx-wx 1 paul paul 0 2007-02-07 22:34 permissions.txt

Кроме того, вы можете задавать права доступа явным образом.

paul@laika:~/perms\$ chmod u=rw permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rw--wx-wx 1 paul paul 0 2007-02-07 22:34 permissions.txt

He стесняйтесь использовать любые комбинации прав доступа. paul@laika:~/perms\$ chmod u=rw,g=rw,o=r permissions.txt paul@laika:~/perms\$ ls -l permissions.txt

-rw-rw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt

Утилита chmod будет принимать даже сомнительные комбинации прав доступа.

paul@laika:~/perms\$ chmod u=rwx,ug+rw,o=r permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rwxrw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt Установка прав доступа в восьмеричном представлении

Большинство администраторов систем Unix наверняка предпочтет использовать **классическое** восьмеричное представление при просмотре и установке прав доступа. Рассмотрим триплет на битовом уровне, причем символу r будет соответствовать значение 4, символу w - 2, а символу x - 1.

Таблица 30.4. Права доступа в восьмеричном представлении

Двоичное представление	Восьмеричное представление	Права доступа
000	0	
001	1	X
010	2	-W-
011	3	-WX
100	4	r
101	5	r-x
110	6	rw-
111	7	rwx

Исходя из вышеописанного, значение 777 является эквивалентным правам доступа гwxгwxгwx и, по той же логике, значение 654 соответствует правам доступа гw-г-хг--. Утилита **chmod** будет принимать и эти числовые значения.

paul@laika:~/perms\$ chmod 777 permissions.txt
paul@laika:~/perms\$ ls -l permissions.txt

-rwxrwxrwx 1 paul paul 0 2007-02-07 22:34 permissions.txt

paul@laika:~/perms\$ chmod 664 permissions.txt

paul@laika:~/perms\$ ls -l permissions.txt

```
-rw-rw-r-- 1 paul paul 0 2007-02-07 22:34 permissions.txt paul@laika:~/perms$ chmod 750 permissions.txt paul@laika:~/perms$ ls -l permissions.txt -rwxr-x--- 1 paul paul 0 2007-02-07 22:34 permissions.txt Значение umask
```

При создании файла или директории используется набор стандартных прав доступа. Эти стандартные права доступа устанавливаются на основе значения **umask**. Значение **umask** позволяет задать права доступа, которые вы не хотите устанавливать по умолчанию. Вы можете вывести информацию о наборе стандартных прав доступа, выполнив команду **umask**.

```
[Harry@RHEL4b ~]$ umask 0002
[Harry@RHEL4b ~]$ touch test
[Harry@RHEL4b ~]$ ls -l test
-rw-rw-r-- 1 Harry Harry 0 июл 24 06:03 test
[Harry@RHEL4b ~]$
```

Как вы можете увидеть, по умолчанию файл также не делается исполняемым. Это стандартная функция, предназначенная для повышения безопасности систем Unix; создаваемые файлы никогда не делаются исполняемыми по умолчанию. Вам придется самостоятельно выполнить команду **chmod** +x для того, чтобы сделать файл исполняемым. Это также означает, что 1 бит значения **umask** не оказывает какого-либо влияния на права доступа к создаваемым файлам значение **umask** 0022 эквивалентно значению **umask** 0033.

Команда mkdir -m

При создании директорий с помощью команды **mkdir** вы можете использовать параметр **-m** для задания **прав доступа**. Методика использования данного параметра освещена в примере ниже.

```
paul@debian5~$ mkdir -m 700 MyDir
paul@debian5~$ mkdir -m 777 Public
paul@debian5~$ ls -dl MyDir/ Public/
drwx----- 2 paul paul 4096 2011-10-16 19:16 MyDir/
drwxrwxrwx 2 paul paul 4096 2011-10-16 19:16 Public/
```

Команда ср -р

Для сохранения прав доступа и меток времени файлов при их копировании следует использовать команду **ср -р**.

-rwxr-x--- 1 paul paul 0 2008-08-25 13:26 file42