

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Laboratório de Redes e SO

Máquinas Virtuais - Continuação

O objetivo da aula de hoje é ambientá-lo com o iptables do Linux na distribuição do Debian. Apesar de existirem outras distribuições com interfaces mais amigáveis como a PFSense e a Endian o Debian é uma distribuição mais consolidada para servidores e versátil no que diz respeito a atualizações de pacotes.

O iptables é o aplicativo, assim como o ipfw, que assume a função de habilitar regras/políticas de controle de acesso à própria estação e o que trafega por ela, ou seja, é um software de firewall classificado como firewall de camada 4 já que suas políticas de acesso são definidas baseadas em portas ou ips de origem e destino. É possível recompilar o kernel e fazê-lo operar como firewall de camada 7, onde protocolos de aplicação podem ser validados, mas particularmente fiz testes que não se mostraram 100% eficazes. Quer saber mais sobre isto veja o link https://www.vivaolinux.com.br/artigo/lptables-+-Layer7, mas este não é o objetivo de nossa aula.

São três canais que devem ser controlados no iptables. O de INPUT que determina o que pode ou não entrar pelas interfaces de rede naquela estação, o de OUTPUT que determina o que pode sair pelas interfaces de rede daquela estação e por fim a de FORWARD que define o que pode passar de uma interface de rede para outra.

Para quem quiser se aprofundar nos conceitos de firewall com iptables recomendo o estudo das tabelas que são mantidas por este aplicativo e os conceitos de PRE e POST Routing.

O nosso laboratório terá por objetivo configurar uma imagem Debian 9 disponível nas estações para servir de firewall para estação Windows 7 e o Windows 2012 utilizadas em outras aulas. Visualmente enxergando nosso laboratório ficará com a estrutura conforme a figura 1.

Figura 1. Topologia proposta para aula de configuração de Firewall

Vamos efetuar algumas alterações nas máquinas virtuais para não sobrecarregar a máquina física.

- 1. Altere a Memória alocada para o Windows 2012 para 2048 MB
- 2. Desabilite a placa de rede em modo NAT do Windows 2012 que ficará apenas com a placa em modo Rede Interna com o ip 192.168.5.1 (na verdade vc já deve ter feito isto na última aula quando habilitou o DHCP), aproveite para colocar como default gateway o ip que iremos colocar no Linux que é 192.168.5.254. Sua configuração deverá ficar da seguinte forma:

Figura 2. Configuração da Placa de Rede interna do Windows Server 2012

- 3. Deixe o Windows 7 com uma placa de rede em modo Rede Interna e certifique-se que ela esteja com ip na faixa 192.168.5.* obtido por DHCP ou configurado à mão.
 - a. Se o seu Windows 7 estiver com ip na mão basta vc fazer a alteração como foi feita no Windows Server 2012.
 - b. Se o seu Windows 7 estiver configurado para obter endereço automaticamente, você deverá alterar o servidor de DHCP no Windows Server. Vá em Ferramentas Administrativas e selecione o Serviço de DHCP. Em seguida escolha o escopo criado em seu laboratório, no exemplo abaixo a rede 192.168.5.0 em seguida o atributo Opções de Escopo, à direita algumas opções estarão à disposição entre elas a opção Roteador que uma vez selecionada vc deverá deixar com o valor 192.168.5.254.

Figura 3. Alteração do Windows 2012 caso seu Windows 7 esteja cofigurado para obter endereço automaticamente.

Em seguida volte no Windows 7 para atualizar as configurações de Rede dando o comando no prompt do DOS ipconfig /release e depois ipconfig /renew.

- 4. Agora vamos configurar a Máquina Virtual do Linux. No menu Arquivo do Virtual Box, vamos importar o Debian.ova da pasta C:\VMs\.
- 5. Se ao invés do *.ova eu tiver disponibilizado o Debian.vdi siga os seguintes passo.
 - a. Crie uma nova máquina virtual Debian de 64 bits com 768 MB usando o Debian8.vdi copiado para usa pasta pessoal, conforme a sequência de imagens.

Figura 4. Seleção do Sistema Operacional do Linux debian

Figura 5. Determinando Quantidade de Memória para o servidor Linux

Figura 6. Selecionando o Arquivo de Imagem com a instalação da disitribuição do Debian 8.

 Coloque duas placas de rede nesta máquina Linux, uma em modo Bridge (a primeira) e outra em modo Rede Interna. Não deixe de gerar novos endereços de MAC.

Figura 7. Configuração do Primeiro Adaptador de Rede do Servidor Linux.

Figura 8. Configuração do segundo adaptador de rede do servidor Linux

- 7. Inicialize o Linux e vamos configurar as placas de rede em /etc/network/interfaces, use o editor de sua preferência. A senha do root é **p@ssword**.
- 8. Edite o arquivo /etc/network/interfaces (OBS.: até a versão 8 do Debian as interfaces tinham nome de eth0, eth1, etc. Nesta nova distribuição mudaram para enp..., para saber quais foram carregadas em seu linux dê o comando "ip a") auto lo

iface lo inet loopback

a interface enp0s3 ficará com ip automático allow-hotplug enp0s3 auto enp0s3 iface enp0s3 inet dhcp

```
# a interface eth1 ficará com a rede interna allow-hotplug enp0s8 auto enp0s8 iface enp0s8 inet static address 192.168.5.254 network 192.168.5.0 broadcast 192.168.5.255 netmask 255.255.255.0 dns-nameservers 192.168.5.1 dns-nameservers 8.8.8.8
```

- Depois de editado o arquivo /etc/network/interfaces reinicialize as interfaces de rede com o comando /etc/init.d/networking restart.
- 10. Dê o comando ipconfig enp0s3 e ifconfig enp0s8 você deverá ver algo parecido com o seguinte, perceba que a enp0s3 estará em uma faixa de ip de seu laboratório e a enp0s8 estará na faia de sua rede interna (192.168.5.254):

```
enpOs3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>
       inet 10.2.200.37 netmask 255.255.0.0 broadcast 10.2.255.255
       inet6 fe80::a00:27ff:fe4d:e7a3
                                      prefixlen 64 scopeid 0x20<link>
       ether 08:00:27:4d:e7:a3 txqueuelen 1000
                                                (Ethernet)
       RX packets 53429 bytes 3379677 (3.2 MiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 73 bytes 8292 (8.0 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
root@debian:/etc# ifconfig enp0s8
enpOs8: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>
                                                  mtu 1500
       inet 192.168.5.254
                          netmask 255.255.255.0 broadcast 192.168.5.255
       inet6 fe80::a00:27ff:fe72:3c90 prefixlen 64
                                                    scopeid 0x20<link>
       ether 08:00:27:72:3c:90 txqueuelen 1000
                                                (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 87 bytes 10532 (10.2 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Figura 9. Informações da interfaces de rede do Linux depois de configurado as placas de rede.

- 11. Confira o funcionamento das placas pingando o 8.8.8.8 (funcionando significa que a interface enp0s3 está ok) e o ip 192.168.5.1 (funcionado significa que sua interface enp0s8 está ok)
- 12. Vamos agora configurar o Firewall propriamente dito.
- 13. Vamos configurar o iptables. Neste momento são milhares de composições possíveis que são aceitas, vamos configurar algumas mais triviais. Criei um arquivo que vc vai transferir para seu Linux, ele está todo comentado, estude-o antes de passar para o próximo passo. As últimas 10 linhas são as mais interessantes.

```
#!/bin/bash
echo "=====
                 _____"
echo "| :: SETANDO A CONFIGURACAO DO IPTABLES :: |"
### Passo 1: Limpando as regras ###
/sbin/iptables -F INPUT
/sbin/iptables -F OUTPUT
/sbin/iptables -F FORWARD
echo "Limpando todas as regras ......[ OK ]"
# Definindo a Politica Default das Cadeias
/sbin/iptables -P INPUT ACCEPT
/sbin/iptables -P FORWARD DROP
/sbin/iptables -P OUTPUT ACCEPT
echo "Setando as regras padrao ......[ OK ]"
### Passo 2: Habilitando o trafego IP entre as placas de rede ###
echo "1" > /proc/sys/net/ipv4/ip forward
echo "Setando ip foward ......[ OK ]"
# Protecao contra ataques de syn flood (inicio da conexao TCP). Tenta conter
ataques de DoS.
echo 1 > /proc/sys/net/ipv4/tcp syncookies
echo "Setando protecao anti synflood ...... [ OK ]"
# Protecao contra port scanners ocultos
/sbin/iptables -A INPUT -p tcp --tcp-flags SYN, ACK, FIN, RST RST -m limit --limit 1/s
-j ACCEPT
# Bloqueio de ping vindos de quaisquer outros destinhos
#/sbin/iptables -A INPUT -s 0.0.0.0/0 -p icmp -j DROP
### Passo 3: Carregando os modulos do iptables ###
modprobe ip tables
modprobe iptable filter
modprobe iptable mangle
modprobe iptable nat
modprobe ipt MASQUERADE
modprobe ip_nat_ftp
modprobe ip_conntrack_ftp
modprobe ip conntrack irc
echo "Carregando modulos do iptables ...... [ OK ]"
### Passo 4: Agora, vamos definir o que pode passar e o que nao ###
######################################
# Cadeia de Reenvio (FORWARD).
# Primeiro, ativar o mascaramento (nat).
/sbin/iptables -t nat -F POSTROUTING
/sbin/iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE
echo "Ativando mascaramento de IP ...... [ OK ]"
/sbin/iptables -A FORWARD -i enp0s3 -o enp0s8 -m state --state ESTABLISHED, RELATED
-j ACCEPT
   libero as portas 22, 53, 80 e 443 que veja do ip 192.168.5.*
/sbin/iptables -A FORWARD -S 192.168.5.0/24 -p tcp --dport 80 -j ACCEPT
#/sbin/iptables -A FORWARD -s 192.168.5.0/24 -d 0.0.0.0/0:22 -j ACCEPT
#/sbin/iptables -A FORWARD -s 192.168.5.0/24 -d 0.0.0.0/0:53 -j ACCEPT
#/sbin/iptables -A FORWARD -s 192.168.5.0/24 --dport 80 -j ACCEPT
#/sbin/iptables -A FORWARD -s 192.168.5.0/24 --dport 443 -j ACCEPT
#libero icmp para fora
/sbin/iptables -A FORWARD -p icmp -s 192.168.5.0/24 -d 0.0.0.0/0 -j ACCEPT
echo "Setando regras para FORWARD ...... [ OK ]"
```

- 14. Para evitar a digitação completa de todo este texto nós vamos transferi-lo via ssh (obs.: tentei fazer com copy and paste, mas não funcionou). Primeiro vamos ter que habilitar o ssh para aceitar conexão via root.
- 15. Edite o arquivo /etc/ssh/sshd_config e procure a linha PermitRootLogin. Ela deve estar com o valor without-password troque para yes, ou seja, a linha deve ficar:

PermitRootLogin yes

- 16. Em seguida precisamos reiniciar o servidor de ssh com o comando /etc/init.d/ssh restart.
- 17. Vamos agora obter o Winscp Portable para conseguir transferir o arquivo. Você pode obtêlo de https://winscp.net/eng/download.php.
- 18. Ao executar o WinSCP você deverá informar o IP da interface enp0s3 do seu Linux, ou seja, aquela que está em modo Bridge. No meu exemplo 10.254.254.111.

Figura 10. Tela de configuração do Aplicativo WINSCP.

19. Uma vez Conectado à esquerda você tem o explorer de sua estação de trabalho física e à direita as pastas de trabalho do Linux.

Figura 11. Interface de transferência do Winscp

20. Selecione a pasta em seu computador onde está localizado o arquivo **regras** disponibilizado junto com este roteiro. No lado do Linux navegue até a pasta /etc. Clique no arquivo **regras** e em seguida Upload. Irá aparecer a tela seguinte. É MUITO IMPORTANTE QUE VOCÊ CLIQUE EM TRANSFER SETTINGS E ESCOLHA A OPÇÃO TEXT!

Figura 12. Alterando o modo de transferência do arquivo de bináio para texto.

- 21. Pronto o arquivo está agora no Linux. Mude as permissões do arquivo para 755 com o comando chmod 755 /etc/regras
- 22. Deixe um ping <u>8.8.8.8</u> –t rodando no Windows 7, ele não deverá funcionar enquanto nossas regras de firewall estiverem habilitadas.
- 23. Execute o arquivo script com o comado /etc/regras. Mágica seu ping deve ter começado a funcionar e suas estações Windows devem navegar também.
- 24. Vamos incrementar a funcionalidade de nosso firewall. O objetivo agora é fazer o que chamamos de redirecionamento de Portas da Rede Externa para Interna, conforme o

ilustrado na figura 13. No exemplo sua máquina física vai tentar acessar o Linux que deverá reencaminhar a consulta para o servidor Windows dentro da rede. É claro que outra máquina da rede também poderá fazer o acesso.

Figura 13. COnceito de redirecionamento de Porta

25. Primeiro vamos reconfigurar o servidor WEB de nosso Windows Server 2012. Parando o site <u>www.pucminas.net</u> que havíamos criado e deixando apenas o Default Site no ar. O aspecto da configuração deve ser parecido com a imagem a seguir.

Figura 14. Aspectos do gerenciador do IIS após a reconfiguração dos sites.

26. Pelo navegador de seu Windows 7 acesse o endereço 192.168.5.1, este procedimento é apenas para confirmarmos que seu servidor web está funcionado. De aparecer uma página padrão da Microsoft.

- 27. De sua estação física abra o navegador e coloque o ip da interface enp0s3 do Linux que já usamos antes para o Winscp, no meu exemplo, 10.254.254.111. Você não deverá acessar nada.
- 28. Vamos configurar o iptables para redirecionar a porta 80 do Linux para o Servidor WEB que configuramos no Windows 2012 com as regras a seguir. Pode dar o comando no prompt mesmo.

```
iptables -t nat -A PREROUTING -p tcp --dport 80 -i enp0s3 -j DNAT --to 192.168.5.1:80 iptables -A FORWARD -d 192.168.5.1/32 -j ACCEPT
```

A primeira linha pode ser lida da seguinte forma. Antes de se processar o roteamento (PREROUTING) pegue os pacotes que chegarem a porta 80 da placa de rede enp0s3 (nossa placa de bridge com a rede física) e redirecione (DNAT) para a máquinas interna 192.168.5.1 (nosso Windows Server). Isto que estamos fazendo é o chamado Redirecionamento de porta, que pode também ser feito nos modens de nossas bandas largas domésticas. A segunda linha indica que tudo que será encaminhado para a máquina 192.168.5.1 está sendo autorizado.

29. Tente acessar novamente de sua estação física o endereço de seu Linux, no meu exemplo 10.254.254.111. Se não funcionou vc grita "Ô Fessor!!!!", mas antes teste algumas coisas. Vc colocou default gateway no Windows Server 192.168.5.254? Vc pinga o 192.168.5.254 do Windows, vc pinga 8.8.8.8 do Server? Restart o serviço de IIS, vai se virando que vc não deve ser quadrado...... até o professor chegar.

Psicodélico!!!! Agora vc já pode sair vendendo esta solução por aí.