ЭЛЕКТРОЛИЗ

Это окислительно-восстановительная реакция, протекающая в электролизёре на поверхности электродов при прохождении электрического тока через раствор или расплав электролита.

Расшифруем непонятное:

- * OBP = окислительно-восстановительная реакция это реакция с изменением степеней окисления.
- * Электролизёр или электролитическая ванна прибор для проведения реакций электролиза.
- * Электроды специальные пластинки или стержни (чаще всего из неактивных металлов, например, Pt), опущённые в раствор или расплав электролита, на поверхности которых протекают реакции электролиза.
- * Раствор = вещество + вода (водный раствор), расплав = вещество нагрели настолько сильно, что оно перешло в жидкое агрегатное состояние (т.е. воды нет!)

КТО ТАКИЕ "ЭЛЕКТРОЛИТЫ"?

Электролит - это вещество, раствор или расплав которого проводит электрический ток.

Хорошими электролитами являются:

- растворимые соли (см. таблицу растворимости);
- растворимые основания = щёлочи (см. таблицу растворимости);
- сильные кислоты (УЧИ!!!)

ЛАЙФХАК ПО ОПРЕДЕЛЕНИЮ СИЛЫ КИСЛОТЫ:

из числа атомов кислорода вычитаем число атомов водорода, если получается значение, большее 1, то кислота сильная (равно 1 или меньше 1 - слабая). p.s. не работает для бескислородных кислот: H_2S и HF - слабые кислоты!!!

! Все органические кислоты - также слабые.

Теория электролитической диссоциации (ТЭД):

при растворении в воде (или при расплавлении) все электролиты распадаются на ионы (т.е. подвергаются диссоциации).

электролит катион анион

Типичный пример электролиза - электролиз раствора соли CuCl, :

- 1) $CuCl_2$ растворимая соль хороший электролит значит, в растворе диссоциирует: $CuCl_3$ = Cu^{2+} + $2Cl^{-}$
- 2) Тем временем в электролизёре:

НА КАТОДЕ:

Cu2+ + 2e = Cu°

НА АНОДЕ:

2Cl - 2e = Cl₂°

1. ЭЛЕКТРОЛИЗ РАСПЛАВОВ: "из чего образовалось, на тои распалось".

Электролизом расплавов солей (хлоридов и бромидов, в частности) получают активные металлы.

2. ЭЛЕКТРОЛИЗ РАСТВОРОВ.

Если соль образована активным металлом (до Al включительно!), то на катоде выделяется водород; если неактивным металлом (после H_2) - выделяется сам металл; если металлом средней активности - образуется и то, и другое.

Электролиз растворов кислот на катоде даёт также водород.

А что он-то там забыл??

бескислородный анион

2Cl⁻, 2Br⁻, 2l⁻, S²⁻ → Cl₂, Br₂, l₂, S 2Cl⁻ - 2e = Cl₂°

ОРГАНИКА - ОТДЕЛЬНАЯ ВСЕЛЕННАЯ: 2R-COO = R-R + CO, PO₂³⁻, NO₃⁻, SO₂²⁻, NO₂⁻, 2F⁻ → O₂ 2H,O - 4e = O, + 4H⁻

кислородсодержащи

анион

* Если на аноде ОН⁻, то: 40H⁻ - 4e = 0, + 2H,0

Если анион соли **бескислород**ный - выделяется простое вещество-неметалл; если анион кислород-содержащий (или F⁻) - выделяется кислород.

При электролизе растворов солей карбоновых кислот образуется ${\rm CO_2}$ и углеводород с удлинённым вдвое углеродным скелетом.

! Самое главное здесь - не забывать про F.

ПРАКТИКА 🦻

Полные уравнения электролиза растворов солей:

KCl: 2KCl + 2H,O (эл.ток) = Cl, + H, + 2KOH

CuSO,: 2CuSO4 + 2H,O (эл.ток) = 2Cu + O, + 2H,SO,

NaF: 2H,O (эл.ток) = 2H, + O,

H,S: H,S (эл.ток) = H, + S

 $Al_{,}(SO_{,})$; 2H,O (эл.ток) = 2H, + O,

 $2CH_{1}CH_{2}COONa + 2H_{2}O (эл.ток) = C_{2}H_{10} + 2CO_{2} + H_{2} + 2NaOH$

NaOH: $2H_2O$ (эл.ток) = $2H_2 + O_2$

Установите соответствие между формулой соли и продуктом, образующимся на катоде при электролизе её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) CuCl₂
- Б) AgNÕ₃
- B) K,S
- Γ) NaBr

- 1) водород
- 2) кислород
- 3) металл
- 4) галоген
- 5) cepa
- Ответ: 3311 6) азот

Установите соответствие между формулой соли и продуктом, который образуется на инертном аноде в результате электролиза её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) Na,SO,
- Б) Ca(NO₃)₂
- B) ZnBr₂
- F) CuCl₂

- 1) SO₂
- 2) 0,
- 3) NO₂
- 4) Br,
- 5) Cl,
- Ответ: 2245
- 6) H,

Установите соответствие между формулой вещества и продуктом, который образуется на инертном катоде в результате электролиза его водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) HNO,
- Б) Cu(NO₃),
- B) Na,CO,

- 1) H,
- 2) 0,
- 3) Cu
- 4) Na

F) NaOH

- 5) Cu + H,
- 6) N,

Ответ: 1311

Установите соответствие между формулой вещества и продуктом, который образуется на инертном аноде в результате электролиза его водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) CaCl,
- Б) AgNO,
- B) Ba(OH),
- r) CuSO,
- Ответ: 3222

- 1) H,
- 2) 0,
- 3) Cl,
- 4) SO,
- 5) Cu
- 6) NO,

Установите соответствие между веществом и продуктами его электролиза в растворе или расплаве: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) КОН (раствор)
- Б) КОН (расплав)
- B) H_2SO_4 (раствор)
- Г) CuSO, (раствор)

Ответ: 5254

- 1) K, H,O,
 - 2) K, O,, H,O
 - 3) Cu, SO₂, O₂
 - 4) Cu, O,, H,SO,
 - 5) H,, O,
 - 6) H,, S, O,

Установите соответствие между веществом и продуктами его электролиза в растворе или расплаве: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) KCl (раствор)
- 1) Na, Cl,
- 2) K, NO₂, O₂

- Б) NaCl (расплав)
- В) КНО, (раствор)
- Γ) Cu(NO₃)₂ (pactbop)
- 3) H,, Cl,, KOH
- 4) Cu, O, HNO,
- 5) H₂, O₂
- 6) Cu, NO₂, H₂

Ответ: 3154

Установите соответствие между формулой вещества и уравнением полуреакции, протекающей на катоде при электролизе водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Установите соответствие между формулой вещества и уравнением полуреакции, протекающей на аноде при электролизе водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

3)
$$2SO_4^2 - 4e = 2SO_3 + O_2$$

4)
$$2H_2O - 4e = O_2 + 4H^+$$

ГИДРОЛИЗ

Существует три основных типа среды:

И если абсолютно точно понятно, что кислую среду в растворе создают кислоты, а щелочную - <u>щёлочи</u>, то логично предположить, что растворы солей имеют нейтральную среду. Но это не так.

Итак, чтобы понять, почему это неправда, для начала нам нужно обратиться к такому понятию, как ЭЛЕКТРОЛИТЫ.

Электролиты - это вещества, которые в растворе или в расплаве проводят электрический ток.

Хорошими электролитами в свою очередь являются:

- 1) растворимые основания, кроме гидроксида аммония NH₂OH (см. таблицу растворимости)
- 2) <u>растворимые</u> соли (см. таблицу растворимости)
- 3) сильные кислоты (ПРОЧТО ВЫУЧИ И ВСЁ!!!)

ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ (ТЭД):

при растворении в воде (или при расплавлении) все электролиты распадаются на ионы/диссоциируют (т.е. подвергаются электролитической диссоциации)

Соответственно, чем сильнее электролит, тем легче он диссоциирует, т.е. распадается на ионы.

*КРАТКАЯ ТЕОРИЯ ПО ТОМУ, КТО И КАК ДИССОЦИИРУЕТ

Запомнить просто, ступенчато диссоциируют:

- МНОГОкислотные основания
- КИСЛЫЕ соли
- МНОГОосновные кислоты
- ОСНОВНЫЕ соли

ВСЕ ОСТАЛЬНЫЕ- СРАЗУ!

А теперь обратимся конкретно к солям и к их гидролизу, что и рассматривается в задании №23.

КАЖДАЯ СОЛЬ ОБРАЗОВАНА ОСНОВАНИЕМ И КИСЛОТОЙ NaOH + HCl = NaCl + H₂O

СИЛЬНЫЕ ОСНОВАНИЯ (ЭЛЕКТРОЛИТЫ)

растворимые основания (кроме NH₂OH)

см. таблицу растворимости

СИЛЬНЫЕ КИСЛОТЫ (ЭЛЕКТРОЛИТЫ)

просто выучи! ЛАЙФХАК: " N_0 - N_H > 1" кислота сильная, также сильные HCl, HBr, HI

 $Al_2(SO_4)_3$ - соль образована слабым основанием и сильной кислотой K_2CO_3 - соль образована сильным основанием и слабой кислотой $Cr_2(CO_3)_3$ - соль образована слабым основанием и слабой кислотой

А ТЕПЕРЬ ВПЕРЁД, К ГИДРОЛИЗУ!

HYDRO - «<u>вода</u>» LYSIS - «разрушение»

ГИДРОЛИЗ = «РАЗРУШЕНИЕ ПОД ДЕЙСТВИЕМ ВОДЫ», взаимодействие ионов соли с водой

Н,0 + ионь

причём взаимодействуют с водой (то бишь разрушатся ей) только «слабые» ионы!

Рассмотрим четыре возможных случая.

1) СИЛЬНОЕ ОСНОВАНИЕ + СЛАБАЯ КИСЛОТА

Бросаем карбонат натрия Na_2CO_3 в воду. Так как эта соль растворима в воде, значит, она является сильным электролитом, а значит, в водном растворе распадается на иончики : $Na_2CO_3 \rightleftharpoons 2Na^4 + CO_3^2$

! Не забываем про наличие в водном растворе частиц H* и OH.

Далее плюс притягивается к минусу: Na⁺ + OH⁻
$$\rightleftharpoons$$
NaOH CO₃²⁻ + H⁺ \rightleftharpoons HCO₃⁻

Уравнение гидролиза соли: Na₂CO₃ + H₂O ⇌ NaHCO₃ + NaOH

Итог: 1) гидролиз по аниону; 2) среда щелочная.

2) СЛАБОЕ ОСНОВАНИЕ + СИЛЬНАЯ КИСЛОТА

Бросаем сульфат алюминия $Al_2(SO_4)_3$ в воду. Так как эта соль растворима в воде, значит, она является сильным электролитом, а значит, в растворе распадается на иончики: $Al_2(SO_4)_3 \rightleftharpoons 2Al^{3+} + 3SO_4^{2-}$

! Не забываем про наличие в водном растворе частиц H⁺ и OH⁻.

Далее плюс притягивается к минусу:
$$SO_4^{2-} + 2H^+ \rightleftharpoons H_2SO_4$$
 $Al^{3+} + OH^- \rightleftharpoons AlOH^{2+}$

Уравнение гидролиза соли: $Al_2(SO_4)_3 + 2H_2O \rightleftharpoons 2AlOHSO_4 + H_2SO_4$

Итог: 1) гидролиз по катиону; 2) среда кислая.

3) СИЛЬНОЕ ОСНОВАНИЕ + СИЛЬНАЯ КИСЛОТА

Бросаем хлорид натрия NaCl в воду. Так как эта соль растворима в воде, значит, она является сильным электролитом, а значит, в водном растворе подвергается диссоциации: NaCl \rightleftharpoons Na $^{\circ}$ + Cl $^{\circ}$

! Не забываем про наличие в водном растворе частиц Н° и ОН.

Далее плюс притягивается к минусу: Na⁺ + OH⁻
$$\rightleftarrows$$
 NaOH Cl⁻ + H⁺ \rightleftarrows HCl

В итоге мы получили два вещества, которые ОБА являются СИЛЬНЫМИ электролитами, а значит, в растворе они оба диссоциируют.

Уравнение гидролиза соли: СОЛЬ НЕ ПОДВЕРГАЕТСЯ ГИДРОЛИЗУ

Итог: 1) гидролизу не подвергается; 2) среда нейтральная.

4) СЛАБОЕ ОСНОВАНИЕ + СЛАБАЯ КИСЛОТА

Бросаем сульфид алюминия Al_2S_3 в воду. В принципе мы, конечно, не имеем права сказать, что эта соль растворима в воде, так как это не совсем так: она разлагается в водной среде (помечена "-" в таблице растворимости). Для большего понимания процесса распишем её на ионы: $Al_2S_3 \rightleftharpoons 2Al^{3*} + 3S^{2-}$

! Не забываем про наличие в водном растворе частиц Н° и ОН.

Далее плюс притягивается к минусу: $Al^{3+} + 3OH^{-} = Al(OH)_{3}$ $S^{2-} + 2H^{+} = H_{3}S^{-}$

В итоге на выходе мы получаем ОСАДОК И ГАЗ.

Уравнение гидролиза соли: $Al_2S_3 + 6H_2O = 2Al(OH)_3 + 3H_2S$ Итог: 1) гидролиз и по катиону, и по аниону; 2) среда нейтральная.

Такие реакции называют РЕАКЦИЯМИ НЕОБРАТИМОГО ГИДРОЛИЗА.

ДЕЛАЕМ ВЫВОД: ГИДРОЛИЗ ПО СЛАБОЙ ЧАСТИ СРЕДА ПО СИЛЬНОЙ

р.s. это логично, что гидролизуется ("разрушается" то бишь) слабая часть, а среду даёт оставшаяся в растворе сильная. р.р.s. и не забывайте о том, что HEPACTBOPUMЫЕ соли не гидролизуются, т.к. не диссоциируют; а также о том, что соли с катионом Ag⁺ по катиону

КАКАЯ СРЕДА В РАСТВОРЕ МОЖНО ОПРЕДЕЛИТЬ С ПОМОЩЬЮ ИНДИКАТОРА

OH. OH.

не гидролизуются.

Вычисление водородного показателя pH: pH = -lg [H⁺]

Чем меньше значение pH, тем более кислая среда; чем больше - тем более щелочная; pH = 7 нейтральная среда.

Please Notice This

Группа воды	Значение рН
Сильнокислая	до 3,0
Кислая	от 3,0 до 5,0
Слабокислая	от 5,0 до 6,5
Нейтральная	от 6,5 до 7,5
Слабощелочная	от 7,5 до 8,5
Щелочная	от 8,5 до 9,5
Сильнощелочная	более 9,5

ПРАКТИКА!

Установите соответствие между названием соли и её отношением к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) хлорид аммония
- Б) сульфат калия
- В) карбонат натрия
- Г) сульфид алюминия Ответ: 1324
- 1) гидролиз по катиону
- 2) гидролиз по аниону
- 3) гидролизу не подвергается
- 4) гидролиз и по катиону, и по аниону

Установите соответствие между названием соли и средой её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) сульфит натрия
- Б) нитрат бария
- В) сульфат цинка
- Г) хлорид аммония

Ответ: 3211

- 1) кислая
- 2) нейтральная
- 3) щелочная

Установите соответствие между солью и окраской лакмуса в её растворе: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) нитрат аммония
- Б) сульфат калия
- В) ацетат кальция
- Г) иодид бария
- Ответ: 2313

- 1) синяя
- 2) красная
- 3) фиолетовая

Установите соответствие между формулой соли и характером среды её разбавленного водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) AlCI,
- Б) Na,S
- B) Ca(NO,),
- F) K₂CO₃
- Ответ: 3414

- 1) нейтральная
- 2) сильнокислая
- 3) слабокислая
- 4) слабощелочная

Установите соответствие между формулой соли и характером среды её разбавленного водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) Nal
- Б) ZnSO
- B) NH, NO,
- T) K,PO,
- Ответ: 1334

- 1) нейтральная
- 2) сильнокислая
- 3) слабокислая
- 4) слабощелочная

Установите соответствие между формулой соли и характером среды её разбавленного водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) ZnSO,
- **Б) КNO**,
- B) Li,S
- Γ) Na₂CO₃

Ответ: 3144

- 1) нейтральная
- 2) сильнокислая
- 3) слабокислая
- 4) слабощелочная

Установите соответствие между формулой соли и характером среды её разбавленного водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) Ca(NO₃)₂
- Б) Na,SO,
- B) K₃PO₄
- Γ) (NH₄)₂SO₄

Ответ: 1443

- 1) нейтральная
- 2) сильнокислая
- 3) слабокислая
- 4) слабощелочная