

- ◆ 시계열분석의 개요(the nature of time series analysis)
 - 시계열자료(time series data)
 - · 연도별(annual), 분기별(quarterly), 월별(monthly), 일별 (daily) 또는 시간별(hourly) 등 시간의 경과(흐름)에 따라 순 서대로(ordered in time) 관측되는 자료를 시계열자료(time series data)라 함.
 - · 예 : 국내총생산(GDP), 물가지수, 판매량, 종합주가지수(KOSPI), 강우량, 태양 흑점수, 실험 및 관측자료 등
 - · 시계열들은 생성되는 특성에 따라 연속적으로 생성되는 연속시계열(continuous time series)과 이산적 시점에서 생성되는 이산시계열(discrete time series)로 구분할 수 있음.
 - · 그러나 실제로는 많은 시계열들이 연속적으로 생성되고 있지만 일정한 시차를 두고 관측되므로 이산시계열의 형태를 지니는 경우가 많음.

- ♣ 시계열분석의 개요(the nature of time series analysis)
 - 시계열자료(time series data)
 - · 시계열자료(time series data)들은 시간의 경과에 따라 관측 된 자료이므로 시간에 영향을 받음.
 - · 따라서 시계열자료를 분석할 때 관측시점들 간의 시차(time lag)가 중요한 역할을 함.
 - 예를 들어 오늘의 주가가 한달 전, 일주일 전의 주가보다는 어제의 주가에 더 많은 영향을 받는 것과 마찬가지로 가까운 관측시점일수록 관측자료들 간에 상관관계가 커짐.
 - · 시계열은 일반적으로 시간 t를 하첨자로 하여 다음과 같이 표현됨.

 $\{Z_t: t=1, 2, 3, \cdots\}$ **또는** Z_1, Z_2, Z_3, \cdots

- ◆ 시계열분석의 개요(the nature of time series analysis)
 - 시계열분석(time series analysis)의 목적
 - · 과거 시계열자료의 패턴(pattern)이 미래에도 지속적으로 유지된다는 가정하에서 현재까지 수집된 자료들을 분석하여 미래에 대한 예측(forecast)을 하는 것임.
 - · 예를 들어 과거부터 수집되어 온 어떤 상품의 매출액 자료를 분석하면 미래의 매출액을 예측할 수 있음.
 - · 시계열자료가 생성된 시스템 또는 확률과정을 모형화하여 시스템 또는 확률과정을 이해하고 제어(control)할 수 있도 록 하는 것임.
 - · 예를 들어 원료가 투입되어 제품이 생산되는 시스템을 모형화할 수 있으면 제품의 목표값(target value)을 달 성하기 위해 원료를 어떻게 입력시키는 것이 가장 최적 인지를 알아낼 수 있음.

- ◆ 시계열의 형태(the components of time series)
 - 시계열분석시 우선 선행되어야 할 일은 시계열그림(time series plot)을 그려보는 것임.
 - · 시계열그림은 시간의 경과에 따라 시계열자료의 값이 변하는 것을 나타낸 그림으로 시간 t를 가로축, 시계열의 관측값 Z,를 세로축에 나타냄.
 - 이 그림을 도출하는 이유는 시계열의 특징을 쉽게 파악할수 있어 해당 자료에 적합한 분석방법의 선택에 도움이 되기 때문임.
 - · 일반적으로 시계열에서 나타나는 변동으로는 우연적으로 발생하는 불규칙변동(irregular variation)과 체계적 변동 (systematic variation)을 들 수 있음.

- ♣ 시계열의 형태(the components of time series)
 - 불규칙변동(irregular variation 또는 확률적 변동: random variation)은 시계열자료에서 시간에 따른 규칙적인 움직임 과는 달리 어떤 규칙성이 없이 예측이 불가능하게 우연적으로 발생하는 변동을 말함.
 - •예:전쟁, 홍수, 화재, 지진, 파업 등
 - · 체계적 변동에는 장기간에 걸쳐 어떤 추세로 나타나는 추세 변동(trend variation), 추세선을 따라 주기적으로 오르고 내 림을 반복하는 순환변동(cyclical variation), 그리고 계절적 요인이 작용하여 1년 주기로 나타나는 계절변동(seasonal variation)이 있음.

- ♣ 시계열의 형태(the components of time series)
 - 불규칙변동(irregular variation or random variation)

- 시계열의 형태(the components of time series)
 - 추세변동(trend variation)
 - · 추세변동이란 시계열자료가 갖는 장기적인 변화추세임.
 - · 추세란 장기간에 걸쳐 지속적으로 증가 또는 감소하거나 또 는 일정한 상태(stationary)를 유지하려는 성향을 의미함.
 - · 그러므로 시계열자료에서 짧은 기간 동안에는 추세변동을 찾기 어려움.
 - ・따라서 추세변동은 짧은 기간 동안 급격하게 변동하는 것이 아니라 장기적인 추세경향이 나타나는 것으로 직선이나 부 드러운 곡선의 연장선으로 표시함. 이러한 추세는 직선뿐만 아니라 곡선, S자 형태의 추세를 가질 수도 있음.
 - · 예 : 국내총생산(GDP), 인구증가율, 기술변화 등

- ♣ 시계열의 형태(the components of time series)
 - 추세변동(trend variation)

- ♣ 시계열의 형태(the components of time series)
 - 순환변동(cyclical variation)
 - 추세변동은 장기적으로(일반적으로 1년 초과) 나타나는 추세경향이지만, 순환변동은 대체로 2~3년 정도의 일정한 기간을 주기로 순환적으로 나타남.
 - · 즉, 1년 이내의 주기로 곡선을 그리며 추세변동에 따라 변 동하는 것을 말함.
 - · 시간의 경과(흐름)에 따라 상하로 반복되는 변동으로 추세 선을 따라 변화하는 것이 순환변동임.
 - · 경기변동곡선(business cycle curve)은 불황과 경기회복, 호황과 경기후퇴로 인하여 수년을 주기로 나타나고 있는데 순환변동을 나타내는 좋은 예임.
 - · 예 : 경기변동 등

- ♣ 시계열의 형태(the components of time series)
 - 순환변동(cyclical variation)

- ◆ 시계열의 형태(the components of time series)
 - 계절변동(seasonal variation)
 - 시계열자료에서 보통 계절적 영향과 사회적 관습에 따라 1
 년 주기로 발생하는 변동요인을 계절변동이라 하고, 보통 계절에 따라 순환하며 변동하는 특성을 지님.
 - ㆍ예 : 설, 추석 등 명절요인 등
 - · 그런데 계절변동이 순환변동과 다른 점은 순환주기가 짧다 는 점임.
 - > 그러나 대부분의 경제관련 시계열들은 추세와 계절요인을 동시에 포함함.
 - · 이는 경제성장에 따라 백화점의 판매액, 해외여행자수, 청량음료, 전력소비량 등과 같이 계절상품 판매량 자료 들이 시간의 변화에 따라 증가하기 때문임.

- ♣ 시계열의 형태(the components of time series)
 - 계절변동(seasonal variation)

- ♣ 시계열의 형태(the components of time series)
 - 추세와 계절변동요인을 갖는 시계열

- ♣ 시계열의 형태(the components of time series)
 - 시간의 변화에 따라 변동폭이 커지는 시계열

- ♣ 시계열의 형태(the components of time series)
 - 두 개의 추세선을 갖는 시계열

- ♣ 시계열의 형태(the components of time series)
 - 시계열자료가 앞의 변동요인으로 구성된다면 이들 간의 관계는 가법모형(additive model)이나 승법모형(multiplicative model) 으로 나타낼 수 있음.
 - · 가법모형은 관심변수의 관측값인 Z_t가 앞의 네 가지 시계열 변동요인의 합으로 설명될 수 있다는 가정하에 만들어진 모 형을 말함.

$$Z_t = T_t + C_t + S_t + R_t$$

여기서 T_t는 추세변동, C_t는 순환변동, S_t는 계절변동, R_t는 불규칙변동임.

· 이와 같은 가법모형은 변동요인들 간에 서로 독립이라고 가 정하며, 각 변동요인들의 값들은 원래 단위(unit)로 표현함.

- ♣ 시계열의 형태(the components of time series)
 - · 승법모형은 관심변수의 관측값인 Z_t가 앞의 네 가지 시계열 변동요인의 곱으로 설명될 수 있다는 가정하에 만들어진 모 형을 말함.

$$Z_t = T_t \cdot C_t \cdot S_t \cdot R_t$$

여기서 T_t는 추세변동, C_t는 순환변동, S_t는 계절변동, R_t는 불규칙변동임.

· 이와 같은 승법모형은 추세변동의 값만 원래 단위(unit)로 표현하고, 나머지 변동요인들은 백분율(%) 또는 비율로 표현함.

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - 비교적 간단한 시계열분석 기법 중의 하나로 최근 몇 개 관측값의 단순평균값을 다음 기간의 예측값으로 추 정하는 방법임.
 - \cdot 이는 시계열자료에서 계절변동(S_t)과 불규칙변동(R_t)을 제거하여 추세변동(T_t)과 순환변동(C_t)만 가진 시계열 자료로 변환하는 평활법(smoothing method)임.

$$M_t = \frac{Z_t + Z_{t-1} + \cdots + Z_{t-n+1}}{n}$$

- · 최근 n개의 관측값 Z_t, Z_{t-1}, ···, Z_{t-n+1}을 이용하여 계산한 이동평균임(→ 관측값에 동일한 가중치를 부여함).
- · M_t는 다음 시점(t+1)의 예측값(F_{t+1})으로 이용됨.

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - · 단순이동평균법은 예측값을 계산하기 위해 사용하는 과거관측값의 개수로 그 종류가 구분됨.
 - 예를 들어 n=3이면 3기간 단순이동평균(M_3), n=5이면 5기간 단순이동평균(M_5), n=10이면 10기간 단순이동 평균(M_{10})임.
 - · 이동평균법을 이용할 때 해결해야 하는 가장 중요한 문제는 이동평균을 계산하기 위해 사용하는 과거자료의 적정개수, 즉 n의 개수를 결정하는 것임.
 - · 일반적으로 시계열자료에 뚜렷한 추세가 나타나 있거 나 불규칙변동이 심하지 않은 경우에는 작은 n의 개수 를 사용하고, 그렇지 않은 경우에는 n의 개수를 크게 함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 함수마법사를 활용하여 함수 인수 'AVERAGE'를 선택함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - **이동평균법**(moving average method)
 - · C5셀의 수식을 작은 열십자(+)가 나타나게 한 후 드래그함.

1	А	D		
1		A B		D
	건국유업의	· 주간별 매출액		
2				
3		(단위: 10만원)		
4	기간(주간)	매출액	3주 예측값	t
5	1	120		
6	2	110		
7	3	130		
8	4	135	120	0.0
9	5	140	125	0.0
10	6	145	135	.0
11	7	160	140	0.0
12	8	165	148	.3
13	9	160	156	.7
14	10	170	161	.7

- ♣ 시계열분석의 기법(methods of time series analysis)
 - **이동평균법**(moving average method)
 - · D10셀의 수식을 작은 열십자(+)가 나타나게 한 후 드래그함.

	D25	+ (-	f _x	
A		В	С	D
1	건국유업의	주간별 매출액		
2				
3		(단위: 10만원)		
4	기간(주간)	매출액	3주 예측값	5주 예측값
5	1	120		
6	2	110		
7	3	130		
8	4	135	120.0	
9	5	140	125.0	
10	6	145	135.0	127.0
11	7	160	140.0	132.0
12	8	165	148.3	142.0
13	9	160	156.7	149.0
14	10	170	161.7	154.0

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · B4:D14영역을 지정한 후 삽입-차트의 꺾은선형을 클릭함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - **이동평균법**(moving average method)
 - · 이번에는 Excel의 분석도구를 이용하여 보다 쉽게 예측할 수 있음.
 - · 단순이동평균법을 분석하기 위하여 Excel의 데이터-데이터 분석을 선택함.
 - · 그리고 통계 데이터 분석의 팝업창에서 '이동 평균법'을 선택하고 확인을 클릭함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 입력범위에는 관측값을 지정하고, 예를 들어 3기간 이동평 균이면 구간에 '3'을 입력한 후 출력범위를 지정함(차트를 출력하고자 할 경우 차트 출력을 클릭함).

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)

	P35	→ (9	f _x												
1	А	В	С	D	Е		F		G		H	1		I	J
1	건국유업의	l 주간별 매출액													
2															
3		(단위: 10만원)													
4	기간(주간)	매출액	3주 예측값	5주 예측값											
5	1	120													
6	2	110	#N/A	#N/A											
7	3	130	#N/A	#N/A				0	동	평	균	법			
8	4	135	120	#N/A					_		_	_			
9	5	140	125	#N/A	200							-			
10	6	145	135	127	150	-	-	-	-	-	-				
11	7	160	140	132	¥ 100										→ 실제값
12	8	165	148.3333333	142	50										── 예측값
13	9	160	156.6666667	149	U	1	2 3	4	5	6	7	8	9	10	- 에국파
14	10	170	161.6666667	154			X축 값								
15		•	165	160					~7	HA					

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - · 한편, 예측오차를 비교하여 가장 정확한 예측값을 제공 하도록 n의 개수를 결정하기도 함.
 - · 이때 예측오차를 비교하는 기준으로 평균절대편차 (mean absolute deviation : MAD)와 평균제곱오차 (mean squared error : MSE)가 사용됨.
 - · 평균절대편차(MAD)는 t기의 관측값과 t기의 값에 대한 예측값간 차이(=e,) 절대값의 평균을 말함.

$$\mathsf{MAD} = \frac{\Sigma_{\mathsf{t}=\mathsf{1}\to\mathsf{T}} |\mathsf{e}_\mathsf{t}|}{\mathsf{T}} = \frac{\Sigma_{\mathsf{t}=\mathsf{1}\to\mathsf{T}} |\mathsf{t} \mathsf{J}| \; \mathbf{e}_\mathsf{t}^\mathsf{d} \mathsf{L}^\mathsf{d} \mathsf{L}^\mathsf{d}}{\mathsf{T}}$$

여기서 et는 예측오차로 (t기 관측값-t기 예측값)임.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)

$$MSE = \frac{\sum_{t=1 \to T} (e_t)^2}{T} = \frac{\sum_{t=1 \to T} (t \textbf{1} \ \text{만축값-t} \textbf{1} \ \textbf{예측값})^2}{T}$$

여기서 T는 (비교)기간수임.

· 이상의 예측오차인 평균절대편차(MAD)와 평균제곱오 차(MSE)를 비교하여 예측오차가 작은 경우의 n의 개수 로 선택하는 것이 바람직함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 다음은 각각의 예측오차를 구함.

7	AVERAGE	- (×	√ f _x = B8-0	C8		
4	А	В	С	D	E	E
1	건국유업의	구간별 매출액				
2	1 1 1 1 1					
3		(단위 : 10만원)				
4	기간(주간)	매출액	3주 예측값	예측오차	5주 예측값	예측오차
5	1	120				
6	2	110				
7	3	130				
8	4	135	120.0	=B8-C8		
9	5	140	125.0			
10	6	145	135.0		127.0	
11	7	160	140.0		132.0	
12	8	165	148.3		142.0	
13	9	160	156.7		149.0	
14	10	170	161.7		154.0	

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 각각의 예측오차를 구하면 다음과 같음.

	O33	- (6	fx			
4	А	В	С	D	E	F
1	건국유업의	l 주간별 매출액				
2						
3		(단위: 10만원)				
4	기간(주간)	매출액	3주 예측값	예측오차	5주 예측값	예측오차
5	1	120				
6	2	110				
7	3	130				
8	4	135	120.0	15.0		
9	5	140	125.0	15.0		
10	6	145	135.0	10.0	127.0	18.0
11	7	160	140.0	20.0	132.0	28.0
12	8	165	148.3	16.7	142.0	23.0
13	9	160	156.7	3.3	149.0	11.0
14	10	170	161.7	8.3	154.0	16.0
15	11	?	165.0		160.0	

6주부터 10주까지 3주 이동평균에 의한 예측오차의 MAD와 MSE가 5주 이동평균에 의한 MAD와 MSE보다 작음. 따라서 11주차의 매출액의 예측값은 1,650만원을 사용하는 것이 타당함(여기서 T=5임).

- ♣ 시계열분석의 기법(methods of time series analysis)
 - **이동평균법**(moving average method)
 - · 각각의 예측오차를 기준으로 MAD와 MSE는 다음과 같음.

4	기간(주간)	매출액	3주 예측값	예측오차	5추 예측값	예측오차
5	1	120		-111		
6	2	110				
7	3	130				
8	4	135	120.0	15.0		
9	5	140	125.0	15.0		
10	6	145	135.0	10.0	127.0	18.0
11	7	160	140.0	20.0	132.0	28.0
12	8	165	148.3	16.7	142.0	23.0
13	9	160	156.7	3.3	149.0	11.0
14	10	170	161.7	8.3	154.0	16.0
15	11	165 ?	165.0		160.0	
16	$\Sigma_{t=1 \to T} e_t $			88.3		96.0
17	$\Sigma_{t=1\rightarrow T}(e_t)^2$			1308.3		2014.0
18	MAD			17.7		19.2
19	MSE			261.7		402.8

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - · 단순이동평균법의 단점으로는 다음과 같음.
 - · 첫째, 이동평균법은 n개의 최근 자료로 다음 기간의 자료를 예측하는 계산방법상의 특성 때문에 처음의 일부 기간에 대한 예측값을 구할 수 없으며, 또한 구간에 포함되지 않은 이전의 자료는 무시됨.
 - · 둘째, 이동평균의 기간 n이 짝수인 경우 이동평균 법으로 계산하면 이동평균에 대응하는 시기에 문 제가 발생함.
 - · 예를 들어 4기간 이동평균을 계산하면 첫 번째 이동평균뿐만 아니라 다른 이동평균도 실제 시 계열 기간(연, 윌, 일 등)의 중간에 위치하게 됨.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - 따라서 이동평균의 기간이 짝수인 경우 인접한 두 이동평균의 평균을 계산하여 이동평균을 중 심화하는 중심이동평균(centered moving average)을 구함.

$$M_t^* = \frac{Z_{t-0.5}^* + Z_{t+0.5}^*}{2}$$

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · n=짝수인 경우 중심이동평균(centered moving average)

	AVERAGE	+ (◦ X	✓ f _x =(C7-	+C8)/2	
4	А	В	С	D	E
1	건국유업의	l 주간별 매출액			
2					
3		(단위: 10만원)			
4	기간(주간)	매출액	2주 예측값	중심이동평균	
5	1	120			
6	2	110			
7	3	130	115.0		
8	4	135	120.0	=(C7+C8)/2	
9	5	140	132.5		
10	6	145	137.5		
11	7	160	142.5		
12	8	165	152.5		
13	9	160	162.5		
14	10	170	162.5		

- ♣ 시계열분석의 기법(methods of time series analysis)
 - **이동평균법**(moving average method)
 - · n=짝수인 경우 중심이동평균(centered moving average)

	M29	- (9	f_{x}		
4	А	В	С	D	E
1	건국유업의	l 주간별 매출액			
2					
3		(단위: 10만원)			
4	기간(주간)	매출액	2주 예측값	중심이동평균	
5	1	120			
6	2	110			
7	3	130	115.0		
8	4	135	120.0	117.5	
9	5	140	132.5	126.3	
10	6	145	137.5	135.0	
11	7	160	142.5	140.0	
12	8	165	152.5	147.5	
13	9	160	162.5	157.5	
14	10	170	162.5	162.5	

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 단순이동평균법(simple moving average method)
 - · 셋째, 이동평균의 계산에 사용되는 관측값들에 대해 동일한 가중치를 적용하여 최근 자료와 오래된 자료의 중요성을 동일시하고 있다는 점임. 즉, 불규칙변동요인이 나타나는 경우 정확하게 추출하기 어려움.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 이동평균법(moving average method)
 - · 가중이동평균법(weighted moving average method)
 - · 관측값에 따라 가중치를 다르게 한 이동평균법임.
 - · 가중평균이동법의 다른 요소는 단순이동평균법과 동일 하지만 관측값마다 다른 가중치를 적용한다는 것이 차 이임.

$$M_t = W_1 Z_t + W_2 Z_{t-1} + \cdots + W_n Z_{t-n+1}$$

여기서 w_i 는 해당기간 가중치($0 < w_i < 1$), $\Sigma_{i=1 \to n} w_i = 1$ 임.

- · 최근 n개의 관측값 Z_t, Z_{t-1}, ···, Z_{t-n+1}에 각각 다른 가중치를 적용하여 계산한 이동평균임.
- · M_t는 다음 시점(t+1)의 예측값(F_{t+1})으로 이용됨.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 과거의 모든 자료를 사용하여 평균을 구하면서 최근의 자료에 더 높은 가중치를 부여하는 방법임.
 - · 단기간에 발생하는 파동이나 충격을 완화하는 평활법 (smoothing method)임.

$$F_{t} = \alpha Z_{t-1} + (1-\alpha)F_{t-1}$$

여기서 F_t 는 t기간의 예측값, F_{t-1} 는 t-1기간의 예측값, Z_{t-1} 는 t-1기간의 실제값, α 는 지수평활계수 $(0<\alpha<1)$ 임.

- 지수평활법에서의 지수평활계수 α는 가중치 역할을 하는 것으로 불규칙변동이 큰 자료에서는 작은 값의 α를 적용하고, 불규칙변동이 작은 자료에서는 큰 값의 α를 적용함.
- · 일반적으로 α는 0.05와 0.3 사이의 값을 사용함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 지수평활법은 이동평균법과 마찬가지로 예측오차를 비교 하여 예측오차가 작은 α값을 선택하는 것이 바람직함.
 - · 지수평활법에서 가중치는 과거로 갈수록 지수적으로 감소 하게 됨.
 - · 그러므로 지수평활법에서는 최근 과거값(현재시점의 관측 값)에 가장 큰 가중치를 부여하므로 일종의 가중이동평균 법이라 할 수 있음.

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - \cdot 우선, 지수평활법을 분석하기 위하여 여기서는 α =0.1과 α =0.9인 경우의 예측값을 구해보기로 함.
 - · 지수평활법을 분석하기 위하여 Excel의 데이터-데이터 분석을 선택함.
 - · 그리고 통계 데이터 분석의 팝업창에서 '지수 평활법'을 선택하고 확인을 클릭함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 입력범위에는 관측값을 지정하고, 감쇠 인수에는 '1-α'값을 입력한 후 출력범위를 지정함. Excel에서 (1-α)를 '감쇠 인수'라고 부르며, 그 값을 입력해야함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)

	O34	- (e	f _x
	А	В	С
1	건국유업의	· 주간별 매출액	
2			
3		(단위:10만원)	
4	기간(주간)	매출액	예측값(α=0.1)
5	1	120	#N/A
6	2	110	120.0
7	3	130	119.0
8	4	135	120.1
9	5	140	121.6
10	6	145	123.4
11	7	160	125.6
12	8	165	129.0
13	9	160	132.6
14	10	170	135.4
15	11	?	138.8

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 입력범위에는 관측값을 지정하고, 감쇠인수에는 '1-α'값을 입력한 후 출력범위를 지정함. Excel에서 (1-α)를 '감쇠 인수'라고 부르며,

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)

	O35	- (0	fx	
	А	В	С	D
1	건국유업의	l 주간별 매출액		
2				
3		(단위:10만원)		
4	기간(주간)	매출액	예측값(α=0.1)	예측값(α=0.9)
5	1	120	#N/A	#N/A
6	2	110	120.0	120.0
7	3	130	119.0	111.0
8	4	135	120.1	128.1
9	5	140	121.6	134.3
10	6	145	123.4	139.4
11	7	160	125.6	144.4
12	8	165	129.0	158.4
13	9	160	132.6	164.3
14	10	170	135.4	160.4
15	11	?	138.8	169.0

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · B4:D14영역을 지정한 후 삽입-차트의 꺾은선형을 클릭함.

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 다음은 각각의 예측오차를 구함.

	AVERAGE	- (×	✓ f _x = B6-C	6		
4	А	В	С	D	E	F
1	건국유업의	주간별 매출액				
2						
3		(단위:10만원)				
4	기간(주간)	매출액	예측값(α=0.1)	예측오차	예측값(α=0.9)	예측오차
5	1	120	#N/A		#N/A	
6	2	110	120.0	=B6-C6	120.0	
7	3	130	119.0		111.0	
8	4	135	120.1		128.1	
9	5	140	121.6		134.3	
10	6	145	123.4		139.4	
11	7	160	125.6		144.4	
12	8	165	129.0		158.4	
13	9	160	132.6		164.3	
14	10	170	135.4		160.4	
15	11	?	138.8		169.0	

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 각각의 예측오차를 구하면 다음과 같음.

	N34	+ (9	f _x			
A	А	В	С	D	Е	F
1	건국유업의	주간별 매출액				
2						
3		(단위: 10만원)				
4	기간(주간)	매출액	예측값(α=0.1)	예측오차	예측값(α=0.9)	예측오차
5	1	120	#N/A		#N/A	
6	2	110	120.0	-10.0	120.0	-10.0
7	3	130	119.0	11.0	111.0	19.0
8	4	135	120.1	14.9	128.1	6.9
9	5	140	121.6	18.4	134.3	5.7
10	6	145	123.4	21.6	139.4	5.6
11	7	160	125.6	34.4	144.4	15.6
12	8	165	129.0	36.0	158.4	6.6
13	9	160	132.6	27.4	164.3	-4.3
14	10	170	135.4	34.6	160.4	9.6
15	11	?	138.8		169.0	

6주부터 10주까지 α=0.9인 경우 지수평활법에 의한 예측오차의 MAD와 MSE가 α=0.1인 경우 지수평활법에 의한 MAD와 MSE보다 작음. 따라서 11주차의 매출액의 예측값은 1,690만원을 사용하는 것이 타당함(여기서 T=5임).

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 각각의 예측오차를 기준으로 MAD와 MSE는 다음과 같음.

4	기간(주간)	매출액	예측값(α=0.1)	예측오차	예측값(α=0.9)	예측오차
5	1	120	#N/A		#N/A	
6	2	110	120.0	-10.0	120.0	-10.0
7	3	130	119.0	11.0	111.0	19.0
8	4	135	120.1	14.9	128.1	6.9
9	5	140	121.6	18.4	134.3	5.7
10	6	145	123.4	21.6	139.4	5.6
11	7	160	125.6	34.4	144.4	15.6
12	8	165	129.0	36.0	158.4	6.6
13	9	160	132.6	27.4	164.3	-4.3
14	10	170	135.4	34.6	160.4	9.6
15	11	169 ?	138.8		169.0	
16	$\Sigma_{t=1\rightarrow T} e_t $			208.3		83.1
17	$\Sigma_{t=1\rightarrow T}(e_t)^2$			5674.3		967.0
18	MAD			41.7		16.6
19	MSE			1134.9		193.4

- ♣ 시계열분석의 기법(methods of time series analysis)
 - 지수평활법(exponential smoothing method)
 - · 지수평활법은 이동평균법과 마찬가지로 불규칙변동의 영향을 약화시키는 효과가 있지만, 단점으로는 장기추세나 계절변동이 포함된 시계열의 예측에는 적합하지 않음.
 - 앞에서의 분석결과를 보면 장기 증가추세를 별도로 고 려하지 않기 때문에 대부분의 예측값들이 매출액에 못 미치는 것을 알 수 있음.

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 계절변동을 포함한 시계열의 예측
 - 추세선의 예측은 자료의 변동을 하나의 직선으로 간단히 나타내기 때문에 장기추세의 예측에는 장점을 가지지만, 계절 변동이나 순환변동을 포함하는 시계열자료에는 적절하지 않음.
 - · 계절지수는 100을 기준으로 특정 계절과 다른 계절의 변동을 비교하여 차이를 판단하는 척도임.
 - · 예를 들어 1/4분기의 계절지수가 120이라면 1/4분기 매출액이 분기별 평균 매출액의 120%가 됨을 의미함.
 - · 계절지수는 평균 계절지수가 1이 되도록 조정하여 얻어짐.
 - · 즉, 각 분기 평균의 합이 4가 되도록 조정되어야 하기 때문에 계절지수는 평균에 조정요인을 곱하여 계산함.

- ◆ 시계열분석의 기법(methods of time series analysis)
 - 계절변동을 포함한 시계열의 예측
 - · 다음과 같이 분기 수치를 중심이동평균값으로 나누어 계절 성수치(S₁)를 구함.

계절성수치(
$$S_t$$
)= $\frac{4}{S_1+S_2+S_3+S_4}$

- · 계절지수를 이용한 시계열예측은 다음과 같은 과정을 거쳐 수행함.
 - · 이동평균을 이용하여 계절지수를 생성함.
 - · 계절성을 제거한 자료를 이용하여 추세선을 추정함.
 - · 미래에 대한 추세 예측값을 구함.
 - · 추세 예측값에 계절지수를 곱하여 최종 예측값을 구함.