OAC PRÁTICA 3

Memória CACHE

Vinicius de Oliveira Silva

Objetivo

 Demonstrar os efeitos da memória cache no acesso aos dados de um programa, através de um algoritmo que multiplica duas matrizes, A e B.

O Programa

- Implementado em linguagem C;
- Possui 4 modos de multiplicação:
 - I Modo original (o): não faz alterações nas matrizes antes de multiplicar;
 - II Modo transposta (t): transpõe a matriz B antes da multiplicação;
 - III Modo "vetor" original (vo): aloca a matriz B de maneira contígua na memória;
 - IV Modo "vetor" transposta (vt): aloca a matriz transposta de B de maneira contígua.
- A saída do programa é o tempo de execução da multiplicação.

Algoritmos de Alocação das Matrizes

• Vetor de ponteiros de linhas separadas:


```
double** newMatriz(int l, int c)
{
    double **M;
    M = malloc (l * sizeof (double*));
    int i;
    for (i=0; i < l; i++)
    M[i] = malloc (c * sizeof (double));
    return M;
}</pre>
```

Algoritmos de Alocação das Matrizes

Vetor de ponteiros de linhas contíguas:

Algoritmo de Transposição

• Aloca a matriz transposta de acordo com o modo.

```
double** matrizT(double **M, int l, int c, char *mode)
   int i, j;
   double **Mt;
    if (!strcmp(mode, "vt"))
       Mt = newVetor(c,l);
   else
       Mt = newMatriz(c, l);
    for(i = 0; i < c; i++)
        for(j = 0; j < l; j++)
           Mt[i][j] = M[j][i];
    return Mt;
```


Testes

Configurações da máquina:

- Intel Core i7-7500U @ 2.7GHz;
- 2 núcleos 4 threads;
- Intel Smart Cache: L1 128 kB, L2 512 kB, L3 4 MB;
- 8GB DDR4;
- 240GB SSD 500MB/s;

Testes

- Foram utilizadas duas compilações do código para os testes, com otimização do compilador e sem otimização do compilador:
 - I gcc -O3 multmat.c -o multmat.x
 - II gcc multmat.c -o multmat.x
- Para cada um dos executáveis gerados pelas compilações, foram seguidos os seguintes passos:
 - 1 O programa foi executado com matrizes quadradas;
 - 2 O tamanho das matrizes foi variado entre 200 e 2000, com incremento de 200;
- **3 -** Para cada tamanho de matriz foram realizadas 10 execuções em cada modo de multiplicação.
 - Um shell script foi utilizado para executar os passos acima.

Script de Execução

```
#!/bin/bash
#gcc -03 multmat.c -o multmat.x
gcc multmat.c -o multmat.x
DIRETORIO="Notebook"
for ((j = 200; j \le 2000; j = 2000))
    do
    for ((i=0; i < 10; i++))
        do
        ./multmat.x $j $j $j $j o out >> $DIRETORIO/o$j.csv
        ./multmat.x $j $j $j $j t out >> $DIRETORIO/t$j.csv
        ./multmat.x $j $j $j $j vo out >> $DIRETORIO/vo$j.csv
        ./multmat.x $j $j $j $j vt out >> $DIRETORIO/vt$j.csv
        done
    done
```

• Para calcular o tempo médio de execução de todos os tamanhos de matriz, o código "media.c" e o shell script a seguir foram utilizados:

```
#!/bin/bash
gcc media.c -o media.x
DIRETORIO="Notebook"

echo "Tam Matriz,Mode o,Mode t,Mode vo, Mode vt" >> $DIRETORIO/medias.csv
for ((i = 200; i <= 2000; i+=200))
    do
    echo -n "$i," >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/o$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/t$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/t$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/vo$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/vo$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/vo$i.csv >> $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/medias.csv
    ./media.x $DIRETORIO/medias.csv
```

	Tempo médio de execução (seg)				
Tamanho da matriz	Modo o	Modo vt			
200	0,03637	0,03386	0,03512	0,03397	
400	0,31679	0,27061	0,31738	0,27121	
600	1,22797	0,91033	1,14607	0,90799	
800	3,57023	2,18586	3,36757	2,17287	
1000	8,51347	4,29998	7,05905	4,27194	
1200	16,88843	7,42735	11,87615	7,41014	
1400	27,10006	11,79696	21,14709	11,73450	
1600	42,95819	17,63377	38,73014	17,52437	
1800	63,01296	25,10047	51,37159	24,95320	
2000	88,36005	34,43184	67,92963	34,39872	

	Speedup's			
Tamanho da matriz	Speedup t/o Speedup vo / o Speedup			
200	93,10%	96,56%	100,32%	
400	85,42%	100,19%	100,22%	
600	74,13%	93,33%	99,74%	
800	61,22%	94,32%	99,41%	
1000	50,51%	82,92%	99,35%	
1200	43,98% 70,32% 9		99,77%	
1400	400 43,53% 78,03%		99,47%	
1600	41,05%	90,16%	99,38%	
1800	1800 39,83%		99,41%	
2000	38,97%	76,88%	99,90%	

Tamanho da matriz	Tempo médio de transposição (seg)		
200	0,00013		
400	0,00058		
600	0,00195		
800	0,00368		
1000	0,00646		
1200	0,01081		
1400	0,01421		
1600	0,01929		
1800	0,02571		
2000	0,03322		

	Tempo médio de execução (seg)				
Tamanho da matriz	Modo o	Modo vt			
200	0,00914	0,00870	0,00904	0,00883	
400	0,07479	0,07141	0,07813	0,07306	
600	0,29920	0,24954	0,28396	0,25024	
800	0,96219	0,62180	0,81871	0,63211	
1000	2,21586	1,24264	2,04718	1,26251	
1200	4,19774	2,15882	3,32147	2,18459	
1400	6,60480	3,44205	5,42833	3,48093	
1600	12,98341	5,15988	13,25395	5,22891	
1800	23,88930	7,36359	23,43156	7,32813	
2000	34,37358	10,12024	34,83607	10,06633	

	Speedup's			
Tamanho da matriz	Speedup t / o	Speedup vo / o	Speedup vt / t	
200	95,19%	98,91%	101,49%	
400	95,48%	104,47%	102,31%	
600	83,40%	94,91%	100,28%	
800	64,62%	85,09%	101,66%	
1000	56,08%	92,39%	101,60%	
1200	51,43%	79,13%	101,19%	
1400	52,11%	82,19%	101,13%	
1600	39,74% 102,08%		101,34%	
1800	30,82%	0,82% 98,08% 99,52%		
2000	29,44%	101,35%	99,47%	

Tamanho da matriz	Tempo médio de transposição (seg)
200	0,00005
400	0,00016
600	0,00052
800	0,00101
1000	0,00183
1200	0,00279
1400	0,00375
1600	0,00802
1800	0,01375
2000	0,01739

Speedup entre os compiladores

	Speedup gcc -O3 / gcc				
Tamanho da matriz	Modo o	Modo t	Modo vo	Modo vt	
200	25,13%	25,69%	25,74%	25,99%	
400	23,61%	26,39%	24,62%	26,94%	
600	24,37%	27,41%	24,78%	27,56%	
800	26,95%	28,45%	24,31%	29,09%	
1000	26,03%	28,90%	29,00%	29,55%	
1200	24,86%	29,07%	27,97%	29,48%	
1400	24,37%	29,18%	25,67%	29,66%	
1600	30,22%	29,26%	34,22%	29,84%	
1800	37,91%	29,34%	45,61%	29,37%	
2000	38,90%	29,39%	51,28%	29,26%	

Resultados Valgrind

	Modo o	Modo t	Modo vo	Modo vt	Compilador
D1 Miss Rate	5,40%	0,60%	5,40%	0,60%	
D Refs	2.895.547.901	2.898.878.037	2.895.476.227	2.898.806.314	Sem otimização
D1 Misses	155.237.180	16.163.033	155.321.302	16.099.686	
D1 Miss Rate	30,20%	4,10%	30,20%	4,10%	
D Refs	515.273.478	391.346.045	515.202.515	391.274.590	Com otimização
D1 Misses	155.439.202	16.164.397	155.527.198	16.101.046	

Referências

- https://www.inf.ufpr.br/roberto/ci067/14_alocmat.html
- https://matrixcalc.org/pt/