13/14(一)浙江工业大学高等数学 A 考试试卷 A

学院: 班级: 姓名:

题 号	_	Ш	四	五	总 分
得 分					

·、填空选择题(每小题3分)

2. 设 $f(x) = \frac{1}{x} \sin \frac{\pi x}{6}$, 要使 f(x) 处处连续,则应该补充定义 $f(0) = \frac{\pi}{6}$

5. 曲线 $y = x^3 + 2x^2 - 5$ 上的切线斜率最小的点是_____。 $\left(-\frac{2}{3}, -\frac{119}{27}\right)$

7. 设 $\int_{1}^{x} f(t)dt = a^{2x} - a^{2}$, f(x) 为连续函数,则 $f(x) = ____$ 。 $2a^{2x} \ln a$

8. 微分方程 $\frac{dy}{dx} = \frac{1}{x+y}$ 的通解是 ______。 $x+y+1=ce^{y}$

9. 在微积分的众多公式中被认为最重要的一个是____。牛顿一莱布尼兹公式

10. f(x) 在 $x = x_0$ 附近可导,且 $\lim_{x \to x_0} \frac{f'(x)}{x - x_0} = \frac{1}{2}$,则 $f(x_0)$ 是 f(x) 的(

A) 拐点 B) 极大值

C) 极小值 D) 不能确定

11. 对于微分方程 $y'' + 3y' + 2y = e^{-x}$, 利用待定系数法求其特解 y^* 时,下面特解 设法正确的是(B.C)

A) $y^* = ae^{-x}$ B) $y^* = (ax + b)e^{-x}$ C) $y^* = axe^{-x}$ D) $y^* = ax^2e^{-x}$

二、试解下列各题(每小题5分)

1. $\mathfrak{P}(5y+2)^3 = (2x+1)^5$, $\mathfrak{P}(2x+1)^5$

$$y' = \frac{2(2x+1)^4}{3(5y+2)^2}$$
, 3% $\frac{dy}{dx}\Big|_{x=0} = \frac{2}{3}$

2. 摆线的参数方程为
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
, 求: $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$
$$\frac{dy}{dx} = \frac{\sin t}{1 - \cos t}$$
 2 分
$$\frac{d^2y}{dx^2} = -\frac{1}{a(1 - \cos t)^2}$$

3.
$$\int \frac{1}{1 + \cos x} dx$$

$$\int \frac{1}{1 + \cos x} dx = \int \frac{1}{2\cos^2 \frac{x}{2}} dx = \tan \frac{x}{2} + c$$

$$\int \frac{1}{1 + \cos x} dx = \int \frac{1 - \cos x}{\sin^2 x} dx = -\cot x + \csc x + c$$

5. 解微分方程
$$2x(ye^{x^2}-1)dx + e^{x^2}dy = 0$$
, $y(0) = -4$
$$\frac{dy}{dx} + 2xy = e^{-x^2} \cdot 2x$$

$$y = (x^2 + c)e^{-x^2}$$

$$y = (x^2 - 4)e^{-x^2}$$

三、试解下列各题(每小题6分)

1. 当
$$0 < x_1 < x_2 < \frac{\pi}{2}$$
 时,证明不等式: $\frac{\tan x_2}{\tan x_1} > \frac{x_2}{x_1}$ 令 $f(x) = \frac{\tan x}{x}$, 2分
$$f'(x) = \frac{x \sec^2 x - \tan x}{x^2} = \frac{x - \sin x \cos x}{x^2 \cos^2 x} = \frac{x - \frac{1}{2} \sin 2x}{x^2 \cos^2 x} > 0$$
 $f(x) \div (0, \frac{\pi}{2})$ 内单调增加,所以 $\frac{\tan x_1}{x_1} < \frac{\tan x_2}{x_2}$ $0 < x_1 < x_2 < \frac{\pi}{2}$ 即: $\frac{\tan x_2}{\tan x} > \frac{x_2}{x_2}$

2. 已知
$$\lim_{x \to +\infty} \left(\frac{x+c}{x-c} \right)^x = \int_{-\infty}^c t e^{2t} dt$$
, 求常数 c

$$\lim_{x \to +\infty} \left(\frac{x+c}{x-c} \right)^x = e^{2c} \qquad 2 \text{ 分} \qquad \int_{-\infty}^c t e^{2t} dt = \frac{1}{4} (2c-1)e^{2c}$$

$$e^{2c} = \frac{1}{4} (2c-1)e^{2c} \qquad c = \frac{5}{2}$$

3. 设
$$f(x)$$
 为连续函数,证明 $\int_0^x \left(\int_0^t f(u)du\right)dt = \int_0^x (x-t)f(t)dt$

$$\int_0^x \left(\int_0^t f(u)du\right)dt = \left(t\int_0^t f(u)du\right)_0^x - \int_0^x tf(t)dt$$

$$= x\int_0^x f(u)du - \int_0^x tf(t)dt = \int_0^x (x-t)f(t)dt$$
另解: 记 $F(x) = \int_0^x \left(\int_0^t f(u)du\right)dt - \int_0^x (x-t)f(t)dt$, 求导可得 $F'(x) = 0$,所以 $F(x) = F(0) = 0$
所以 $\int_0^x \left(\int_0^t f(u)du\right)dt = \int_0^x (x-t)f(t)dt$

4. 计算曲线 $y = \sin x$ $(0 \le x \le \pi)$ 与 x 轴所围图形分别绕 x 轴旋转及绕 y 轴旋转一周所成立体的体积

$$V_{x} = \int_{0}^{\pi} \pi \sin^{2} x dx = \frac{\pi^{2}}{2}$$

$$V_{y} = \int_{0}^{\pi} 2\pi x \sin x dx = 2\pi^{2}$$

$$\vec{x} \quad V_{y} = \int_{0}^{1} \pi (\pi - \arcsin y)^{2} dy - \int_{0}^{1} \pi (\arcsin y)^{2} dy = 2\pi^{2}$$

5. 设 F(x) 是 f(x) 的原函数, F(1) = 1, F(x) > 0, 且 $f(x) \cdot F(x) = \frac{1}{2} x e^x \ (x \ge 1)$, 试求: f(x) $(x \ge 1)$

记
$$y = F(x)$$
,则 $y' = f(x)$,从而有初值问题
$$\begin{cases} y'y = \frac{1}{2}xe^x \\ y|_{x=1} = 1 \end{cases}$$
 分离变量,解方程得通解 $y^2 = (x-1)e^x + c$,特解 $y^2 = (x-1)e^x + 1$ 5分

从而
$$f(x) = y' = \frac{xe^x}{2\sqrt{(x-1)e^x + 1}}$$

四、(8分) 设 $S_1(t)$ 是曲线 $y = x^3$ 与直线 x = 0 及 y = t (0 < t < 1) 所围的图形的面积, $S_2(t)$ 是曲线 $y = x^3$ 与直线 x = 1 及 y = t (0 < t < 1) 所围的图形的面积,试求 t 为何值时 $S_1(t) + S_2(t)$ 最小? 最小值是多少?

五、(4分) 设函数 f(x) 在[a,b]上可导,f(a) = f(b),证明: 至少有一点 $\xi(a < \xi < b)$,使 $f(\xi) + \xi f'(\xi) - f(a) = 0$ 。

$$\diamondsuit \colon \ F(x) = xf(x) - xf(a)$$

利用罗尔定理可得结论