Algoritmi in podatkovne strukture 1

Visokošolski strokovni študij Računalništvo in informatika

Jurij Mihelič, UniLj, FRI

- Kapaciteta polja
 - fizična velikost polja (java: a.length)
 - največje št. elementov v polju
- Velikost polja
 - logična velikost polja
 - dejansko št. elementov v polju
- Izkoriščenost polja
 - velikost / kapaciteta
 - učinkovito hranjenje podatkov v pomnilniku

- Zaporedno hranjenje elementov
 - elementi v pomnilniku zasedajo zaporedne lokacije
 - naključni dostop
 - dostop do poljubnega elementa je hitra operacija
 - vstavljanje in brisanje elementov
 - na koncu polja hitro
 - na poljubno lokacijo počasno
 - izkoriščenost predpomnilnika
 - če hranimo vrednosti
 - če hranimo reference potem manjša lokalnost

- Statično polje
 - kapaciteta se ne spreminja
 - lahko dinamično alocirano
- Dinamično polje
 - kapaciteto je moč spreminjati
 - v ozadju delovanja je statično polje
 - operacija resize(new_capacity)
 - rezervira nov prostor in
 - vanj skopira ustrezne stare podatke

- Polje kot sklad
 - pozicija top
 - statično ali dinamično
 - podliv / preliv (underflow / overflow)
 - preprečevanje postopanja (loitering)

- Polje kot vrsta (in vrsta z dvema koncema)
 - poziciji front in back
 - statično ali dinamično
 - podliv / preliv
 - detekcija prazne in polne vrste
 - preprečevanje postopanja

- Polje kot zaporedje
 - pozicija last
 - statično ali dinamično
 - podliv / preliv
 - preprečevanje postopanja

- Polje kot vreča in množica (1. način)
 - pozicija last
 - statično ali dinamično
 - podliv / preliv
 - preprečevanje postopanja

- Polje kot množica in vreča (2. način)
 - karakteristični (bitni) vektor
 - omejitev
 - elementi množice so števila
 - števila so v omejenem intervalu

Dinamično polje

- Dinamična zbirka
 - vrsta, dvrsta, množica, zaporedje, ...
 - dodajanje elementa
 - push(x), enqueue(x), add(x), insert(i, x), ...
 - lahko zmanjka prostora
 - torej povečamo kapaciteto
 - odstranjevanje elementa
 - pop(), dequeue(), remove(x), delete(i), ...
 - velikost zbirke postane majhna v primerjavi z njeno kapaciteto
 - torej zmanjšamo kapaciteto

Dinamično polje

- Sprememba kapacitete kdaj?
 - različne strategije
 - push(x)
 - **if** velikost == kapaciteta **then** resize()
 - dodajanje elementa
 - pop()
 - odstranjevanje elementa
 - if velikost <= kapaciteta / 3 then resize()

Dinamično polje

- Sprememba kapacitete kako?
 - resize()
 - ustvarimo novo polje
 - kopiramo elemente iz starega polja v novo
 - velikost novega polja
 - različne strategije
 - nova kapaciteta = 2 * velikost
 - zahtevnost
 - resize(): O(n)
 - torej tudi push(x) in pop(): O(n)
 - čeprav brez resize() le O(1)

Amortizirana zahtevnost

- Zaporedje operacij
 - operaciji push(x) in pop()
 - -m = št. teh operacij

- resize() upoštevamo posebej
 - -r = št. operacij resize()
 - -r = O(m)

Amortizirana zahtevnost

- Izhodišče
 - večina operacij stane malo
 - manjšina pa je zelo dragih
- Zahtevnost zaporedja operacij
 - analiza najslabšega primera upošteva manjšino
- Amortizacija
 - porazdelitev velikih stroškov skozi daljše obdobje
 - skupno zahtevnost celotnega zaporedja operacij porazdelimo na (amortiziramo) posamezno operacijo
 - povprečna zahtevnost brez uporabe verjetnosti

Amortizirana zahtevnost

- Dinamični sklad
 - zaporedje m operacij od tega r resize()

- skupna zahtevnost vseh r klicev resize()
- -O(m)

zaporedje *m* operacij *add/remove* in od tega *r* operacij *resize*

Povzetek

	operacija	polje
sklad vrsta dvrsta	enqueue(x), push(x)	O(1)
	dequeue(), pop()	O(1)
	enqueueFront(x), push(x)	O(1)
	dequeueBack(), pop()	O(1)
zaporedje -	get(i)	O(1)
	set(i, x)	O(1)
	find(x)	O(n)
	insert(i, x)	O(n)
vreča množica	delete(i)	O(n)
	remove(x)	O(n)
	add(x) – vreča	O(1)
	addUnique(x) – množica	O(n)