Problema n° 818

Una recta paralela al lado AC de un triángulo equilátero ABC interseca a AB en M y a BC en P, construyendo el triángulo equilátero BMP. Sea D el centro de BMP(incentro, ortocentro,...) y E el punto medio de AP. Determina los ángulos del triángulo CDE. Honsberger, R. (1997): In Pólya's Footsteps (Dolciani Mathematical Expositions Number 19)(MAA)(p. 125)

Solution proposée par Philippe Fondanaiche

Dans son ouvrage R.Honsberger donne une solution analytique. On trouvera ci-après une solution géométrique simple.

Soit F le point symétrique de D par rapport à E.Le quadrilatère ADPF est donc un parallélogramme dont les diagonales AP et DF se coupent en leurs milieux. Il en résulte 1) AF = DP = BD

2) les droites AF et DP sont parallèles. Comme par construction les droites AC et MP sont parallèles, on a \angle CAF = \angle DPM = 30°.

Les triangles BDC et AFC sont alors isométriques avec un même angle de 30° entre des côtés deux à deux égaux (AF = BD et AC = BC).

D'où \angle BCD = \angle ACF et CD = CF, ce qui entraine \angle DCF = 60° ==> CDF est équilatéral et \angle CDE = 60° , \angle CED = 90° , \angle DCE = 30° .