FREEDOM INTERNATIONAL SCHOOL

WORKSHEET- MCQ

PHYSICS

CLASS XI

MOTION IN A PLANE

1.	The square of resultant of two equal forces is three times their product. Angle between the forces is			
	(a) π	(b) $\frac{\pi}{2}$	$(c)\frac{\pi}{4}$	$(d)\frac{\pi}{3}$
2.	A bird flies from (-3m,	, 4m, -3m) to (7 m, -2	m, -3 m) in the xyz o	coordinates. The bird's displacement in
	unit vectors is given by			
	(a) $\left(4\hat{\imath}+2\hat{\jmath}-6\hat{k}\right)$	(b) $(10\hat{i} - 6\hat{j})$	(c) $(4\hat{\imath}-2\hat{\jmath})$	$(\mathrm{d})\left(10\hat{\imath}+6\hat{\jmath}-6\hat{k}\right)$
3.	The angle between the two vectors $\vec{A} = (5\hat{\imath} + 5\hat{\jmath})$ and $\vec{B} = (5\hat{\imath} - 5\hat{\jmath})$ will be			
	(a) zero	(b) 90°	(c) 45°	(d) 0°
4.	A cyclist moves in such a way that he takes 60° turn after every 100 metres. What is the displacement			
	when he takes the seve	nth turn?		_
	(a) 100 m	(b) 200 m	(c) $100\sqrt{3} \text{ m}$	(d) $100/\sqrt{3}$ m
5.	Which of the following is true regarding projectile motion? (a) horizontal velocity of projectile is constant (b) vertical velocity of projectile is constant			
_	(c) acceleration is not of		(d) momentum	
6.	A bomb is fired from a canon with a velocity of 1000 m/s making an angle of 30° with the horizontal (g= 9.8 m/s^2). Time taken by the bomb to reach the highest point is			
	(a) 40 s	(b) 30 s	(c) 51 s	(d) 25 s
7	` /		` '	conds, then the acceleration of the
, .	cycle is	ius i in compreses one	To volution in two sec	contas, then the acceleration of the
	(a) $\pi \text{ m/s}^2$	(b) $2 \pi^2 \text{ m/s}^2$	(c) π^2 m/s ²	(d) $4 \pi^2 \text{ m/s}^2$
8.	If a body moving in a	pircular path maintains	s constant speed of 10	m/s, then which of the following
	correctly describes rela	tion between accelera	tion and radius?	
	(a) 1 r	(b) a	_	
	(c) 1 d	(d) ^a		

9. \vec{A} and \vec{B} are two vectors and θ is the angle between them, if $|\vec{A} \times \vec{B}| = \sqrt{3} \ (\vec{A} \cdot \vec{B})$, the value of θ is

(b) 30°

(a) 45°

(c) 90°

(d) 60°

- 10. The figure shows a body of mass m moving with a uniform speed v along a circle of radius r. The change in velocity in going from A to B is
 - (a) $v\sqrt{2}$

(b) $v/\sqrt{2}$

(c) v

(d) zero

For questions 11 to 15, two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the options as given below.

- A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- C. Assertion is true but Reason is false.
- D. Both Assertion and Reason are false.
- 11. **Assertion:** For a projectile the time of flight of a body becomes n times the original value if its speed is made n times.

Reason: This is due to the range of the projectile which becomes n times.

- 12. **Assertion:** Magnitude of the resultant of two vectors may be less than the magnitude of either vector. **Reason:** The resultant of two vectors is obtained by means of law of parallelogram of vectors.
- 13. **Assertion:** If \hat{i} and \hat{j} are unit vectors along x-axis and y-axis respectively, the magnitude of vector $\hat{i} + \hat{j}$ will be $\sqrt{2}$.

Reason: Unit vectors are used to indicate a direction only.

14. **Assertion:** Two particles of different masses are projected with same velocity at the same angles. The maximum height attained by both the particles will be same.

Reason: The maximum height of the projectile is independent of particle mass.

15. **Assertion:** If dot product and cross product \vec{A} and \vec{B} are zero, it implies that one of the vectors \vec{A} or \vec{B} must be a null vector.

Reason: Null vector is a vector with zero magnitude.