Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

PATIENT	
Name: 陳義發	Patient ID: 27292280
Date of Birth: Oct 23, 1944	Gender: Male
Diagnosis: Lung adenocarcinoma	
ORDERING PHYSICIAN	
Name: 趙恒勝醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S10739271C Collection site: L	ung Type: FFPE tissue
Date received: Aug 15, 2022 Lab ID: AA-22-04737 D/ID: NA	

ABOUT ACTORCO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
EGFR H773_V774delinsLM	Amivantamab-vmjw,	Afatinib, Dacomitinib,	
(Exon 20 insertion)	Mobocertinib	Erlotinib, Gefitinib	-

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
EGFR H773_V774delinsLM (Exon 20 insertion)	Osimertinib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
EGFR	H773_V774delinsLM (Exon 20 insertion)	30.0%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr9	CDKN2A	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	2.6 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 30% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **21**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 1		
EGFR H773_V774delinsLM (Exon 20 insertion)	Amivantamab-vmjw, Mobocertinib	sensitive
Level 2		
EGFR H773_V774delinsLM (Exon 20 insertion)	Afatinib, Dacomitinib, Erlotinib, Gefitinib	resistant
Level 3B		
EGFR H773_V774delinsLM (Exon 20 insertion)	Osimertinib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **21**

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
EGFR aberration	Likely associated with WORSE response to ICIs

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing guidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **4** of **21**

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

EGFR H773_V774delinsLM (Exon 20 insertion)

Biological Impact

The EGFR gene encodes for the Epidermal Growth Factor Receptor, a receptor tyrosine kinase which binds to its ligands, including Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-alpha), activates downstream signaling pathways, including the canonical oncogenic MAPK and PI3K/AKT/mTOR signaling cascades^[1]. Increased EGFR activity by mutations and/or amplification of the EGFR gene has been described in a wide range of cancers, such as lung, brain, colorectal and head and neck cancer^[2]. Mutations in the kinase domain of EGFR are commonly observed in non-small cell lung cancer (NSCLC), resulting in a constitutively activated form of the receptor^[3]. On the other hand, in the brain and colorectal cancers, the most prevalent EGFR alteration is copy number amplification that results in receptor overexpression^[4].

EGFR H773_V774delinsLM results in a deletion of two amino acids in the protein kinase domain of the EGFR protein from aa 773 to aa 774, combined with the insertion of a leucine and a methionine at the same site (UniProtKB). H773_V774delinsLM has not been characterized; therefore, its effect on EGFR protein function is unknown. This mutation has been identified in lung adenocarcinoma^[5].

Therapeutic and prognostic relevance

There is accumulated clinical evidence suggested that patients with MDM2/MDM4 amplification or EGFR aberrations exhibited poor clinical outcome and demonstrated a significantly increased rate of tumor growth (hyper-progression) after receiving immune checkpoint (PD-1/PD-L1) inhibitors therapies^[6](Annals of Oncology (2017) 28 (suppl_5): v403-v427. 10.1093/annonc/mdx376).

In a case report, a lung adenocarcinoma patient harboring EGFR H773_V774delinsLM was irresponsive to gefitinib, but responded to osimertinib in combination with bevacizumab treatment for 12 months^[7].

In May 2021, the U. S. FDA approved RYBREVANT (amivantamab-vmjw, a bispecific antibody targeting to EGFR and MET receptor) to treat adult patients with locally advanced or metastatic NSCLC harboring EGFR exon 20 insertion mutations based on CHRYSALIS trial (NCT02609776). In the CHRYSALIS trial, the ORR of 81 NSCLC patients who had progressive disease on or after platinum-based chemotherapy was 40%, the median duration of response (DOR) was 11.1 months, the mPFS was 8.3 months, and the mOS was 22.8 months (this endpoint remains immature)^[8]. In September 2021, the U. S. FDA also approved Exkivity (mobocertinib, a selective TKI specifically target EGFR exon 20 insertion mutations) to treat adult patients with locally advanced or metastatic NSCLC harboring EGFR exon 20 insertion mutations based on Study 101 trial (NCT02716116). In the Study 101 trial, the ORR of 114 NSCLC patients who had progressive disease on or after platinum-based chemotherapy was 28%, and the median response duration was 17.5 months^[9].

NCCN guidelines for non-small cell lung cancer (NSCLC) has suggested that EGFR exon 20 alternations are generally associated with lack of sensitivity to TKI therapy, except for A763_Y764insFQEA. Clinical data has reported that NSCLC patients harboring EGFR exon 20 insertion, outside of A763_Y764insFQEA, had a poor response to gefitinib and erlotinib^{[10][11][12][13]}. In other clinical studies, afatinib showed lower clinical benefit in patients with EGFR exon 20 insertion mutations^{[10][14][15]}. A case study showed that a combination therapy with afatinib plus cetuximab could overcome primary EGFR TKI resistance in EGFR exon 20 insertion positive NSCLC patient^[16].

Tumor inhibitory effect of osimertinib was observed in cells harboring EGFR exon 20 insertion in vitro and in vivo[17].

EGFR exon 20 insertion has been selected as an inclusion criteria for the trial examining osimertinib efficacy in NSCLC (NCT03414814).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **5** of **21**

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[18][19][20]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[21]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[22][23]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[24][25]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[26][27][28]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[29][30][31]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[25][32][33]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[27]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[34].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[35].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 6 of 21

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
monarchE	HR-positive, HER2-negative
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36
	months(%): 86.1 vs. 79.0]
MONADOU 0[36]	Breast cancer (Approved on 2018/02/26)
MONARCH 3 ^[36]	HR-positive, HER2-negative
NCT02246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.
MONADOU 0[33]	Breast cancer (Approved on 2017/09/28)
MONARCH 2 ^[33]	HR-positive, HER2-negative
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONARCH 1 ^[37] NCT02102490	Breast cancer (Approved on 2017/09/28)
	HR-positive, HER2-negative
	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Amivantamab-vmjw (RYBREVANT)

Amivantamab-vmjw is a bispecific antibody directed against epidermal growth factor (EGF) and MET receptors. Amivantamab-vmjw is developed and marketed by Janssen Biotech, Inc. under the trade name RYBREVANT.

- FDA Approval Summary of Amivantamab-vmjw (RYBREVANT)

CURVEALIC	Non-small cell lung carcinoma (Approved on 2021/05/21)
CHRYSALIS	EGFR exon 20 insertion mutations
NCT02609776	Amivantamab-vmjw [ORR(%): 40, DOR(M): 11.1]

Mobocertinib (EXKIVITY)

Mobocertinib is a first-in-class, oral tyrosine kinase inhibitor (TKI) specifically designed to selectively target epidermal growth factor receptor (EGFR) Exon 20 insertion mutations. Mobocertinib is developed and marketed by Takeda under the trade name EXKIVITY.

- FDA Approval Summary of Mobocertinib (EXKIVITY)

C4d404[9]	Non-small cell lung carcinoma (Approved on 2021/09/15)
Study 101 ^[9] NCT02716116	EGFR Exon 20 insertion mutations
NC102716116	Mobocertinib [ORR(%): 28.0, DOR(M): 17.5]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **21**

ACTOnco® + Report

Osimertinib (TAGRISSO)

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) for patients with tumors harboring EGFR T790M mutation. Osimertinib is developed and marketed by AstraZeneca under the trade name TAGRISSO.

- FDA Approval Summary of Osimertinib (TAGRISSO)

ADAURA NCT02511106	Non-small cell lung carcinoma (Approved on 2020/12/18)
	EGFR exon 19 deletions or exon 21 L858R mutations
NC102511100	Osimertinib vs. Placebo + adjuvant chemotherapy [DFS(M): NR vs. 19.6]
EL ALID A[38]	Non-small cell lung carcinoma (Approved on 2018/04/18)
FLAURA ^[38]	EGFR Del19/L858R
NCT02296125	Osimertinib vs. Gefitinib or erlotinib [PFS(M): 18.9 vs. 10.2]
ALID 4 0[30]	Non-small cell lung carcinoma (Approved on 2017/03/30)
AURA3 ^[39]	EGFR T790M+
NCT02151981	Osimertinib vs. Chemotherapy [PFS(M): 10.1 vs. 4.4]
[40]	Non-small cell lung carcinoma (Approved on 2015/11/13)
AURA ^[40]	EGFR T790M+
NCT01802632	Osimertinib [ORR(%): 59.0]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[41]	Breast cancer (Approved on 2017/03/31)
NCT01740427	ER+, HER2-
NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
PALOMA-3 ^[42]	Breast cancer (Approved on 2016/02/19)
NCT01942135	ER+, HER2-
NC101942133	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

1101141 = 10 4 6[32]	Breast cancer (Approved on 2017/03/13)	
MONALEESA-2 ^[32]	HR+, HER2-	
NCT01958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]	

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

Mobocertinib

(NCT04129502, Phase 3)

The purpose of this study is to compare the effectiveness of TAK-788 as first-line treatment with that of platinum-based chemotherapy in participants with locally advanced or metastatic non-small cell lung cancer (NSCLC) whose tumors has epidermal growth factor receptor (EGFR) exon 20 insertion mutations.

Participants will be randomly assigned to one of the two treatment groups- TAK-788 group or Platinum-based chemotherapy group.

Participants will receive TAK-788 orally and pemetrexed/cisplatin or pemetrexed/carboplatin via vein until the participants experience worsening disease (PD) as assessed by blinded independent review committee (IRC), intolerable harmful effects or another discontinuation criteria.

- Contact

Name: Takeda Contact
Phone: +1-877-825-3327
Email: medinfoUS@takeda.com

- Location

Status: Recruiting Country: Taiwan City: Dalin Name: Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation	Status: Recruiting Country: Taiwan City: Douliu Name: National Taiwan University Hospital - YunLin Branch
Status: Active, not recruiting Country: Taiwan City: Kaohsiung Name: Kaohsiung Medical University - Chung-Ho Memorial Hospital	Status: Recruiting Country: Taiwan City: Kaohsiung Name: E-DA hospital
Status: Recruiting Country: Taiwan City: Taichung City Name: Taichung Veterans General Hospital	Status: Recruiting Country: Taiwan City: Tainan City Name: Chi Mei Medical Center, Liouying

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **9** of **21**

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

Status: Recruiting
Country: Taiwan
City: Tainan
Name: National Cheng Kung University Hospital

Status: Recruiting
Country: Taiwan
City: Taipei
Name: National Taiwan University Hospital

Status: Recruiting
Country: Taiwan
City: Taipei
Name: Taipei Veterans General Hospital

Amivantamab-vmjw

(NCT04538664, Phase 3)

The purpose of this study is to compare the efficacy, as demonstrated by progression-free survival (PFS), in participants treated with amivantamab in combination with chemotherapy, versus chemotherapy alone in participants with locally advanced or metastatic non-small cell lung cancer (NSCLC) characterized by EGFR Exon 20ins mutations.

- Contact

Name: Study Contact Phone: 844-434-4210

Email: Participate-In-This-Study@its.jnj.com

- Location

Status: Recruiting Country: Taiwan City: Kaohsiung Name: Kaohsiung Medical University Chung-Ho Memorial Hospital	Status: Recruiting Country: Taiwan City: Kaohsiung Name: Chang Gung Medical Foundation
Status: Recruiting Country: Taiwan City: New Taipei Name: Taipei Medical University Shuang Ho Hospital	Status: Recruiting Country: Taiwan City: Taichung Name: Chung Shan Medical University Hospital
Status: Recruiting Country: Taiwan City: Taichung Name: China Medical University Hospital	Status: Recruiting Country: Taiwan City: Taipei City Name: National Taiwan University Hospital

行動基因僅提供技術檢測服務及檢測報告,檢測結果之隨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 10 of 21

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
EGFR	H773_V774delinsLM (Exon 20 insertion)	20	c.2318_2320delinsTCA	NM_005228	COSM6978402	30.0%	1808

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-22-04737

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page **11** of **21**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADGRA2	R255H	7	c.764G>A	NM_032777	-	36.7%	477
CARD11	Splice region	-	c.3260+3A>G	NM_032415	-	46.5%	1246
CEBPA	K298R	1	c.893A>G	NM_001285829	-	20.9%	868
ESR2	Splice region	-	c.1406+6C>T	NM_001437	-	55.9%	1155
ETV1	P170S	8	c.508C>T	NM_004956	-	5.4%	1224
HIST1H1C	A24V	1	c.71C>T	NM_005319	-	51.8%	1041
IGF1R	Splice region	-	c.3723-4G>A	NM_000875	-	53.5%	499
MUC16	L3252V	3	c.9754C>G	NM_024690	-	48.5%	538
MUC16	P7406T	3	c.22216C>A	NM_024690	-	6.2%	1263
PARP1	Splice region	-	c.2406+6del	NM_001618	-	49.3%	1353
PARP1	S5W	1	c.14C>G	NM_001618	-	50.2%	1186
PMS2	P484T	11	c.1450C>A	NM_000535	-	40.9%	706
PRKDC	R3991P	85	c.11972G>C	NM_006904	-	22.9%	1071
PSME1	Splice region	-	c.246+3A>G	NM_006263	-	48.7%	1081
RAD51B	R307G	9	c.919C>G	NM_133509	-	49.5%	1560
SYNE1	K2769N	54	c.8307G>T	NM_182961	-	23.2%	1267
TNFAIP3	S466R	7	c.1398C>G	NM_006290	-	53.9%	982
U2AF1	S34F	2	c.101C>T	NM_006758	COSM166866	17.2%	116

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section). The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **21**

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Oct 2018Facility retrieved: 臺北榮總

H&E-stained section No.: S10739271C

Collection site: Lung

- Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 10%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 30%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 892x
- Target Base Coverage at 100x: 95%

RNA test

- Average unique RNA Start Sites per control GSP2: 55

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-503

AG4-QP4001-02(06) page 13 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737 ONC

Date Reported: Aug 26, 2022

ACTOnco® + Report

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 14 of 21

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 15 of 21

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	ЕРНВ1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митүн	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	TCTD.	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
ALK	DKAL	EGFK	FGFKI	rurk2	rurk3	IVICI	IVKGI	INIKKI	INTRAZ	INTRAS	KEI	KUSI

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **16** of **21**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Abemaciclib, Palbociclib, Ribociclib

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Osimertinib, Mobocertinib; 2: Amivantamab-vmjw; 3: Amivantamab-vmjw

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 18 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

REFERENCE

- PMID: 18045542; 2007, Cell;131(5):1018
 SnapShot: EGFR signaling pathway.
- PMID: 10880430; 2000, EMBO J;19(13):3159-67
 The ErbB signaling network: receptor heterodimerization in development and cancer.
- 3. PMID: 15329413; 2004, Proc Natl Acad Sci U S A;101(36):13306-11
 EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.
- 4. PMID: 11426640; 2000, Oncogene;19(56):6550-65
 The EGF receptor family as targets for cancer therapy.
- PMID: 31175009; 2019, Clin Lung Cancer;20(5):350-362.e4
 Clinical Impact of Rare and Compound Mutations of Epidermal Growth Factor Receptor in Patients With Non-Small-Cell Lung Cancer.
- PMID: 28351930; 2017, Clin Cancer Res;23(15):4242-4250
 Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate.
- PMID: 29858019; 2018, Lung Cancer;121():1-4
 Case Report: Osimertinib achieved remarkable and sustained disease control in an advanced non-small-cell lung cancer harboring EGFR H773L/V774M mutation complex.
- PMID: 34339292; 2021, J Clin Oncol;39(30):3391-3402
 Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study.
- PMID: 33632775; 2021, Cancer Discov;11(7):1688-1699
 Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial.
- 10. PMID: 21531810; 2011, Clin Cancer Res;17(11):3812-21
 Effectiveness of tyrosine kinase inhibitors on "uncommon" epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer.
- PMID: 21764376; 2012, Lancet Oncol;13(1):e23-31
 EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications.
- 12. PMID: 24353160; 2013, Sci Transl Med;5(216):216ra177
 Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer.
- PMID: 28652772; 2017, Onco Targets Ther;10():2903-2908
 Epidermal growth factor receptor exon 20 mutation in lung cancer: types, incidence, clinical features and impact on treatment.
- 14. PMID: 26354527; 2015, Oncologist;20(10):1167-74
 Afatinib in Non-Small Cell Lung Cancer Harboring Uncommon EGFR Mutations Pretreated With Reversible EGFR Inhibitors.
- PMID: 29508940; 2018, Asia Pac J Clin Oncol;14 Suppl 1():7-9
 Afatinib for an EGFR exon 20 insertion mutation: A case report of progressive stage IV metastatic lung adenocarcinoma with 54 months' survival.
- PMID: 29702285; 2018, J Thorac Oncol;13(8):1222-1226
 Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC.
- PMID: 29483211; 2018, Mol Cancer Ther;17(5):885-896
 Antitumor Activity of Osimertinib, an Irreversible Mutant-Selective EGFR Tyrosine Kinase Inhibitor, in NSCLC Harboring EGFR Exon 20 Insertions.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 19 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

- PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- PMID: 8521522; 1995, Cell;83(6):993-1000
 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 21. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 24. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 25. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 26. PMID: 28283584; 2017, Oncologist;22(4):416-421 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 28. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 31. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 33. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 34. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33
 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 35. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 21

Project ID: C22-M001-02386 Report No.: AA-22-04737_ONC Date Reported: Aug 26, 2022

ACTOnco® + Report

- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 37. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224
 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- PMID: 29151359; 2018, N Engl J Med;378(2):113-125
 Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer.
- PMID: 27959700; 2017, N Engl J Med;376(7):629-640
 Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer.
- PMID: 25923549; 2015, N Engl J Med;372(18):1689-99
 AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 21