MDI0002 – Matemática Discreta Videoaula 10 Relação de Ordem

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Relação de Ordem

- tipo especial e importante de relação
- reflete a noção intuitiva de ordem
- exemplos de relações de ordem já estudadas
 - "está contido" sobre conjuntos
 - implicação em proposições
 - menor ou igual em números

Definição

Definição (Relação de Ordem)

 $R \subseteq A^2$ é uma Relação de Ordem Parcial se, e somente se, R é uma endorrelação reflexiva, antissimétrica e transitiva.

Para $\langle A, R \rangle$ relação de ordem, o conjunto A é dito **conjunto** parcialmente ordenado.

- $\langle \mathbb{N}, \leq \rangle$
- $\langle 2^A, \subseteq \rangle$
- $\langle \mathbb{Q}, = \rangle$
- $\{\langle x, y \rangle \in (\mathbb{N} \{0\})^2 \mid x \text{ divide } y\}$
- $\{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle d, e \rangle, \langle e, e \rangle\}$ sobre o conjunto $X = \{a, b, c, d, e\}$

Diagramas de Hasse

Relação de ordem pode ser representada como grafo

Jamais ocorrerá um ciclo (por quê?)

- excetuando-se endoarcos
- arcos com origem e destino em um mesmo nodo

Diagramas de Hasse

Para relação de ordem

- transitividade e reflexividade ocasiona "poluição visual"
- usual omitir as arestas que podem ser deduzidas

Esse tipo de representação é denominada Diagrama de Hasse

Semântica de Sistemas Concorrentes

Conjuntos ordenados são usados para dar semântica para sistemas concorrentes

- geralmente usa-se ordem parcial *estrita*: relação transitiva, antissimétrica e **irreflexiva**
- importante exemplo
- clara e simples visão de concorrência
- concorrência verdadeira

Programa sequencial

• o símbolo ; representa dependência causal

$$c_1; c_2; c_3$$

- ordem parcial $\langle \{c_1, c_2, c_3\}, \leq_c \rangle$ como semântica, onde $c_1 \leq_c c_2$, $c_2 \leq_c c_3$ e portanto, $c_1 \leq_c c_3$
- mais precisamente, $\leq_c = \{\langle c_1, c_2 \rangle, \langle c_1, c_3 \rangle, \langle c_2, c_3 \rangle\}$

De forma análoga, considere

Semânticas:

$$\begin{array}{ll} \langle \{p_1,p_2\},\leq_p\rangle & \text{onde } p_1\leq_p p_2\\ \langle \{q_1,q_2,q_3\},\leq_q\rangle & \text{onde } q_1\leq_q q_2 \text{ e } q_2\leq_q q_3 \end{array}$$

Suponha os 3 programas concorrentes sem qualquer sincronização

Semântica induzida pela união disjunta de conjuntos

$$\langle \{c_1, c_2, c_3\} \uplus \{p_1, p_2\} \uplus \{q_1, q_2, q_3\}, \leq_c \uplus \leq_p \uplus \leq_q \rangle$$

Todas as componentes são independentes (concorrentes)

- excetuando-se quando especificado o contrário
- quando definido um par da relação de ordem
- determinando uma restrição de sequencialidade

Suponha que

- ocorrência de p₂ depende de c₂
- ocorrência de c3 depende de q3

Sincronização: suficiente incluir os pares $c_2 \le p_2$ e $q_3 \le c_3$

Suponha que

- ocorrência de p₂ depende de c₂
- ocorrência de c3 depende de q3

Sincronização: suficiente incluir os pares $c_2 \le p_2$ e $q_3 \le c_3$

$$\langle \{c_1, c_2, c_3, p_1, p_2, q_1, q_2, q_3\}, \leq_c \uplus \leq_p \uplus \leq_q \uplus \{\langle c_2, p_2 \rangle, \langle q_3, c_3 \rangle\} \rangle$$

Observe que

- união disjunta = composição paralela de sistemas
- inclusão de pares = sincronizações

operações simples e de fácil entendimento para especificar sistemas concorrentes e comunicantes

