where the units of H are in bits. A feature X is a discrete random variable defined on Ω . Assume that X has a finite number of values x_1, x_2, \ldots, x_k . Set $q_i = \mathbb{P}(X = x_i)$. The Shannon entropy H(X) of the feature X is given by

$$H(X) = -\sum_{i} q_i \log_2 q_i.$$

In particular, the values of X define a partition of S into disjoint subsets $S_i = \{s \in S : X(s) = x_i\}$, for $1 \le i \le k$. This further induces k spaces $\Omega_i = (S_i, \mathcal{P}(S_i), p_i)$, where the induced distribution is given by

$$p_i(s) = \frac{p(s)}{q_i}$$
 for $s \in \mathcal{S}_i$,

and q_i denotes the probability of X having value x_i and is given by

$$q_i = \mathbb{P}(X = x_i) = \sum_{s \in \mathcal{S}_i} p(s).$$

Let $H(\Omega|X)$ denote the *conditional entropy* of Ω given the value of feature X. The entropy $H(\Omega|X)$ gives the expected value of the entropies of the conditional distributions on Ω , averaged over the conditioning feature X and can be computed by

$$H(\Omega|X) = \sum_{i} q_i H(\Omega_i).$$

Then the entropy reduction $R(\Omega, X)$ of Ω for feature X is the difference between the a priori Shannon entropy $H(\Omega)$ and the conditional entropy $H(\Omega|X)$, i.e.

$$R(\Omega, X) = H(\Omega) - H(\Omega|X).$$

The entropy reduction indicates the change on average in information entropy from a prior state to a state that takes some information as given. Now we prove Propositions and. Given two features X_1 and X_2 , we can partition Ω either first by X_1 and subsequently by X_2 , or first by X_2 and then by X_1 , or just by a pair of features (X_1, X_2) . In the following, we will show that all three approaches provide the same entropy reduction of Ω . Before the proof, we define some notations. The joint probability distribution of a pair of features (X_1, X_2) is given by $q_{i_1,i_2} = \mathbb{P}(X_1 = x_{i_1}^{(1)}, X_2 = x_{i_2}^{(2)})$, and the marginal probability distributions are given by $q_{i_1}^{(1)} = \mathbb{P}(X_1 = x_{i_1}^{(1)})$ and $q_{i_2}^{(2)} = \mathbb{P}(X_2 = x_{i_2}^{(2)})$. Clearly, $\sum_{i_1} q_{i_1,i_2} = q_{i_2}^{(2)}$ and $\sum_{i_2} q_{i_1,i_2} = q_{i_1}^{(1)}$. The joint entropy $H(X_1, X_2)$ of a pair (X_1, X_2) is defined as

$$H(X_1, X_2) = -\sum_{i_1} \sum_{i_2} q_{i_1, i_2} \log_2 q_{i_1, i_2}.$$

The conditional entropy $H(X_2|X_1)$ of a feature X_2 given X_1 is defined as the expected value of the entropies of the conditional distributions X_2 , averaged