Champs de Killing et résidus

Abdelhak ABOUQATEB Equipe GTA - Université Cadi-Ayyad de Marrakech

1 Formule de S. Kobayashi

Soit V une variété riemannienne compacte orientée et X un champ de Killing sur V. Il est bien connu ([12]) que chaque composante connexe de l'ensemble des zéros de X est une sous-variété compacte orientable (l'idée étant d'utiliser les coordonnées normales associées à la métrique de V), et que la codimension de telles sous-variétés est paire (la raison étant que la codimension du noyau d'un endomorphisme antisymétrique est paire). En plus, l'invariant d'Euler-Poincaré de V est la somme des invariants d'Euler-Poincaré de chaque composante connexe W:

$$\chi(V) = \sum_{W} \chi(W)$$

Cette formule peut aussi être décrite comme suit : Soit \mathbb{T}^r un tore (groupe de Lie compact, connexe, Abélien) qui opère différentiablement sur une variété différentiable V, alors l'invariant d'Euler-Poincaré de V coïncide avec celui des points fixes V^G :

$$\chi(V) = \chi(V^{\mathbb{T}^r})$$

Les deux formules ci-dessus sont équivalentes et on parlera alors de la formule de S. Kobayashi. En effet, si on désigne par $(\phi_t^X)_t$ le flot du champ de Killing X, alors l'adhérence de $\{\phi_t^X/t \in \mathbb{R}\}$ dans le groupe de Lie Iso(V) des isométries de V est bien un tore \mathbb{T}^r opérant naturellement sur V et que les points fixes de cette action sont les zéros du champ X. Pour la réciproque, on chosit une métrique riemannienne sur V telle que l'action de \mathbb{T}^r soit par des isométries et on prend ensuite un élément h_0 dans l'algèbre de Lie \mathbb{R}^r de \mathbb{T}^r tel que $\{\exp th_0/t \in \mathbb{R}\}$ soit dense dans T^q ; le champ de vecteur fondamental X_{h_0} associé à h_0 est bien un champ de Killing dont les zéros sont les points fixes de l'action de \mathbb{T}^r .

Exercice 1.1. Soit V une variété riemannienne compacte connexe de dimension paire orientée et X un champ de Killing à singularités isolées : $Zeros(X) = \{p_1, \dots, p_k\}$.

- Montrer que pour tout $i=1,\ldots,k$ l'indice du champ X au point p_i est égale à 1.
- En déduire alors que dans ce cas, la formule ci-dessus est une conséquence immédiate du théorème de Poincaré-Hopf (cf. théorème 5.3.2).

- Remarque 1.1. 1. La formule de S. Kobayashi a été démontrée en prenant comme définition pour $\chi(M)$ la somme alternée $\sum_{i=0}^{\dim M} (-1)^i \dim H^i(M,\mathbb{R})$ (la caractéristique d'Euler-Poincaré de M), et le théorème de Gauss-Bonnet affirme que cette somme coïncide avec l'intégrale sur M de la classe d'Euler de TM c'est-à-dire l'invariant d'Euler-Poincaré de M. C'est pour cela que nous avons énoncé la formule ci-dessus an parlant de l'invariant d'Euler-Poincaré.
 - 2. En appliquant la formule de S. Kobayashi au cas où V désigne une surface riemannienne (compacte connexe) orientée, nous obtenons que : les seules surfaces qui possèdent une métrique riemannienne ayant un champ de Killing non trivial (i.e autre que le champ identiquement nul) sont la sphère S^2 et le tore \mathbb{T}^2 . En particulier, pour les surfaces de genre $g \geq 2$ (cf. page 7 Exercice 1.4.4) il n'existe aucune métrique possédant des champs de Killing non triviaux!

Exemple 1.1. La sphère S^{2r} étant munie de la métrique induite canonique de \mathbb{R}^{2r+1} . Le tore $\mathbb{T}^r = S^1 \times \cdots \times S^1$ opère par isométries sur la sphère S^{2r} :

$$(e^{i\theta_1}, \dots, e^{i\theta_r}).(x_1, \dots, x_{2r+1}) = (y_1, \dots, y_{2r}, x_{2r+1})$$

ou: $y_{2k-1} = (\cos \theta_k) x_{2k-1} - (\sin \theta_k) x_{2k}$ et $y_{2k} = (\sin \theta_k) x_{2k-1} + (\cos \theta_k) x_{2k}$, pour tout $k = 1, \ldots, r$. Il est facile de voir que les seules points fixes de cette action sont les deux pôles nord et sud $N^+ = (0, \cdots, 0, 1)$ et $N^- = (0, \cdots, 0, -1)$. On retrouve alors : $\chi(S^{2r}) = 2$.

En dérivant l'action, nous obtenons r-champs de Killing $\{X_1,\ldots,X_r\}$ sur S^{2r} donnés par :

$$X_k = -x_{2k} \frac{\partial}{\partial x_{2k}} + x_{2k+1} \frac{\partial}{\partial x_{2k-1}}$$

 $\frac{Question}{X = \sum_{k=1}^{r} \theta_k X_k \text{ co\"incident avec l'ensemble des points fixes de l'action du tore } \mathbb{T}^r \text{ sur } S^{2r} ?$

Exercice 1.2 (Champs de Killing sur \mathbb{R}^n). Soit $F = \sum_{i=1}^n F_i \frac{\partial}{\partial x_i}$ un champ de vecteurs sur \mathbb{R}^n . on munit \mathbb{R}^n de sa métrique canonique <,>.

1) Montrer que X est de Killing si, et seulement si pour tous $j, k = 1, \dots, n$ on a :

$$\frac{\partial F_i}{\partial x_j} + \frac{\partial F_j}{\partial x_i} = 0$$

- 2) On suppose que X est un champ de Killing.
 - 1. En dérivant les équations 1), montrer que pour tous $i, j, k = 1, \dots, n$ on a :

$$\frac{\partial^2 F_j}{\partial x_k \partial x_i} = 0$$

2. En déduire l'existence d'une matrice antisymétrique $A \in so(n)$ et d'un vecteur $v \in \mathbb{R}^n$ tels que :

$$F(x) = Ax + v$$

où dans cette égalité le champ F est interprété comme une fonction $F: \mathbb{R}^n \to \mathbb{R}^n$.

- 3. En déduire que l'ensemble des champs de Killing sur \mathbb{R}^n est une algèbre de Lie de dimension $\frac{n(n+1)}{2}$; plus précisement c'est le produit semi-direct $so(n) \ltimes \mathbb{R}^n$.
- 3) La métrique de \mathbb{R}^n étant invariante par les translations, ceci permet de munir le tore $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ d'une métrique canonique de façon que le revêtement $\mathbb{R}^n \to \mathbb{T}^n$ soit une isométrie locale. Déterminer les champs de Killing sur \mathbb{T}^n ?
- Remarque 1.2. Il est facile de voir que l'ensemble Kill(M) des champs de Killing sur une variété riemannienne M est une sous-algèbre de Lie de l'algèbre des champs de vecteurs. On montre qu'il est de dimension finie, de dimension maximal $\frac{n(n+1)}{2}$ où $n = \dim M$ ([13]); c'est l'algèbre de Lie du groupe de Lie Iso(M) groupe des isométries de M muni de la topologie compacte-ouverte. Notons aussi que l'action naturelle de Iso(M) est une action propre ([18]); en particulier tous les groupes d'isotropie sont compacts et que lorsque la variété M est compacte alors le groupe en entier est compact.
- **Exercice 1.3** (Applications de la formule de S. Kobayashi). Soit G un groupe de Lie compact connexe et \mathbb{T} un tore maximal de G (i.e s'il existe un tore \mathbb{T}' plongée dans G tel $\mathbb{T} \subset \mathbb{T}'$ alors $\mathbb{T} = \mathbb{T}'$. Désignons par $N_G(\mathbb{T})$ le normalisateur de \mathbb{T} dans G (i.e le plus grand sous-groupe de G dans lequel \mathbb{T} est distingué).
- 1) En utilisant l'action homogène à gauche de \mathbb{T} sur G/\mathbb{T} , montrer que $\chi(G/\mathbb{T}) = Card(N_G(\mathbb{T})/\mathbb{T})$.
- 2) Montrer que si \mathbb{T} et \mathbb{T}' sont deux tores maximaux de G, alors il sont cojugués (i.e il existe $a \in G$ tel que $\mathbb{T}' = a^{-1}\mathbb{T}a$). La dimension du tore maximal est alors un invariant du groupe qu'on appellera rang G.
- 3) Soit K un sous-groupe fermé (donc compact) de G. Montrer que :
 - $Si \ rang \ K < rang \ G \ alors \ \chi(G/K) = 0.$
 - Si rang $K = rang \ G$ alors $\chi(G/K) = n_G/n_k$, où $n_G = Card(N_G(\mathbb{T})/\mathbb{T})$ et n_K l'analogue de n_G en changeant G par K.
 - Indication : considérer l'action homogène de \mathbb{T} sur G/K et montrer que $(G/K)^{\mathbb{T}} = N_G(\mathbb{T})/N_G(\mathbb{T}) \cap K$.

Remarque 1.3. Comme nous l'avons précisé auparavant, la formule de S. kobayashi concerne la classe d'Euler, il serait donc intéressant d'avoir une formule plus générale et qui permettrait aussi d'avoir une description de la localisation de tous les nombres de Pontryagin de V; c'est ce que nous allons voir dans la section qui suit.

2 Formule de Baum-Cheeger

L'objectif principal de cette section est d'illustrer l'utilisation du complexe de $\check{C}ech$ -De Rham pour établir des formules de résidus de classes caractéristiques réelles, et ceci en étudiant une situation intéressante mais particulière d'un problème encore ouvert dans toute sa globalité, à savoir : Etablir des formules de résidus de classes caractéristiques de fibrés vectoriels sur lesquels opère un groupe de Lie compact G.

Décrivons avec un peu plus de détails le problème. Soit $\xi = (E \xrightarrow{\pi} V)$ un fibré vectoriel et soit G un groupe de Lie compact opérant sur $(E \xrightarrow{\pi} V)$. Lorsque l'action de G sur V est quasi-libre

(c'est à dire tous les groupes d'istropie sont discrets donc finis), alors les classes caractéristiques de dimension supérieure ou égale à dim $V-\dim G+1$ de $E\stackrel{\pi}{\to} V$ sont nulles (cf Théorème 4.7.8). Ce théorème d'annulation donne naissance à un problème de résidus : Décrire, quand l'action n'est plus quasi-libre, la localisation des classes caractéristiques de dimension supérieure ou égale à dim $V-\dim G+1$ d'un G-fibré vectoriel, autour du lieu singulier \sum_G qui est l'ensemble des points de V où le groupe d'isotropie n'est pas discret.

Comme contributions à la résolution de ce problème, on peut situer les travaux [5] [8], [2], [1].

Nous allons nous limiter dans notre présentation actuelle au cas étudié dans [5]; c'est-à-dire une formule de résidus pour les classes caractéristiques réelles de dimension maximale pour un fibré vectoriel $E \to V$ sur lesquel opère un champ de Killing X. Une telle situation revient au même de considérer le cas d'un fibré vectoriel $E \to V$ muni d'une action d'un tore \mathbb{T}^q ; en effet, partons d'un vecteur h_0 dans l'algèbre de Lie \mathbb{R}^q de \mathbb{T}^q tel que $\{\exp th_0/t \in \mathbb{R}\}$ soit dense dans \mathbb{T}^q , alors le champ de vecteurs fondamental X_{h_0} est bien un champ de Killing sur V pour une métrique riemannienne \mathbb{T}^q -invariante et opère sur le fibré. La variété V sera aussi supposée compacte orientée de dimension paire.

Le paragraphe 1 est consacrée à des rappels sur les actions differentiables de groupes de Lie sur les fibrés vectoriels; le paragraphe 2 à la démonstration d'un lemme sur l'existence d'une connexion spéciale. Au paragraphe 3 nous énonçons le théorème principal; et au dernier paragraphe, on donnera la démonstration de ce théorème.

3 Actions de groupes de Lie sur les fibrés vectoriels

Soit G un groupe de Lie opérant différentiablement à gauche sur un fibré vectoriel $\xi = (E \xrightarrow{\pi} V)$, cela signifie que G opère sur l'espace total E en envoyant fibre vectorielle sur fibre vectorielle par des isomorphismes linéaires; naturellement une action de G sur V en est alors induite de façon que la projection π soit G-équivariante (i.e. on a une représentation de G dans le groupe des automorphismes Aut(E) du fibré). Un tel fibré sera appelé un G-fibré vectoriel. Notons qu'en partant d'une action différentiable de G sur V, et en dérivant celle-ci nous obtenons que le fibré tangent est ainsi un G-fibré vectoriel; et si maintenant W est une sous-variété de V qui soit G-stable par l'action alors le fibré normal $\nu_V(W) = TV_{|_W}/TW$ est aussi un G-fibré vectoriel.

On notera $\Gamma(\xi)$ le $C^{\infty}(V)$ -module des sections de ξ . De manière naturelle une action de G sur $\Gamma(\xi)$ est décrite comme suit : pour $g \in G$ et $\sigma \in \Gamma(\xi)$, on définit $g.\sigma \in \Gamma(\xi)$ en posant :

$$(g.\sigma)(x) = g\sigma(g^{-1}x) \ pour \ x \in V$$

Pour tout h élément de l'algèbre de Lie $\mathcal G$ de G, on désignera par $\theta_h^\xi:\Gamma(\xi)\to\Gamma(\xi)$, l'opérateur défini par :

$$(\theta_h^{\xi}\sigma)(x) = \frac{d}{dt} \mid_{t=0} ((\exp th).\sigma)(x), \ pour \ x \in V.$$

S'il n'y a pas de confusion possible, cet opérateur sera noté θ_h . Le champ de vecteurs fondamental sur V associé à $h \in \mathcal{G}$ sera désigné par X_h , soit pour tout $x \in V$ on a :

$$(X_h)_x = \frac{d}{dt} \mid_{t=0} (\exp -th)x$$

L'action de G sur V est dite quasi-libre si en tout point $x \in V$, le groupe d'isotropie $G_x = \{g \in G \mid gx = x\}$ est un sous-groupe discret de G.

3.1 Propriétés

- 1. $\theta_h(f\sigma) = (X_h f)\sigma + f(\theta_h \sigma)$, pour tout $h \in \mathcal{G}$, $\sigma \in \Gamma(\xi)$, et $f \in C^{\infty}(V)$.
- 2. Pour tout $h, k \in \mathcal{G}$ on a:

$$i)\theta_{[h,k]} = \theta_h \circ \theta_k - \theta_k \circ \theta_h$$
$$ii)X_{[h,k]} = [X_h, X_k]$$

3. Si \langle , \rangle est une métrique riemannienne G-invariante sur ξ , alors pour tous $\sigma, \tau \in \Gamma(\xi)$ et $h \in \mathcal{G}$ on a :

$$X_h. \langle \sigma, \tau \rangle = \langle \theta_h \sigma, \tau \rangle + \langle \sigma, \theta_h \tau \rangle.$$

4. i) ∇ est une connexion riemanienne si et seulement si

$$X. \langle \sigma, \tau \rangle = \langle \nabla_X \sigma, \tau \rangle + \langle \sigma, \nabla_X \tau \rangle$$

pour tout $\sigma, \tau \in \Gamma(\xi)$, et X champ de vecteurs sur V.

ii) Si ∇ est G-invariante, alors pour tout $Y \in \chi(V)$ on a:

$$\theta_h \circ \nabla_Y - \nabla_Y \circ \theta_h = \nabla_{[X_h, Y]}$$

- 5. Pour tout ∇ connexion linéaire sur ξ , et $h \in \mathcal{G}$, on définit l'opérateur $S_h = \theta_h \nabla_{X_h}$. On a :
 - $-S_h \in \operatorname{Hom}_{C^{\infty}(V)}(\Gamma(\xi))$, et par suite définit une section du fibré des endomorphismes de ξ . Soit $S_h \in \Gamma(\operatorname{End}\xi)$.
 - Si la connexion ∇ préserve une métrique riemannienne G-invariante \langle , \rangle , alors S_h est antisymétrique.
 - Si ∇ est G-invariante, de courbure R, alors

$$\nabla S_h = i(X_h)R.$$

6. Dans le cas particuiler d'un G-fibré vectoriel $\xi: E \to V$ où l'action de G sur la base V est triviale, alors $\theta_h \in \operatorname{Hom}_{C^{\infty}(V)}(\Gamma(\xi))$.

3.2 Voisinages tubulaires G-stables

Soit G un groupe de Lie compact opérant différentiablement sur une variété différentiable V, et soit W une sous-variété fermée de V, qui est G-stable. Alors il existe ([4]) un voisinage tubulaire G-stable de Wdans V, noté (U, π, W) ; on appelle ainsi les données :

- d'un voisinage ouvert G-stable U de W dans V,
- d'une métrique riemannienne G-invariante sur $N(W) = TV_{|W}/TW$ fibré normal de W dans V,

- d'un difféomorphisme G-équivariant de N(W) sur U échangeant la section nulle de N(W) et l'inclusion naturelle de W dans U.

On désignera par $\pi: U \to W$ la rétraction locale correspondant à la projection du fibré $N(W) \to W$ par le difféomorphisme entre N(W) et U.

Remarque 3.1. Désignons par η la restriction à U-W du fibré tangent vertical $Ker(T\pi)$ (Ce dernier étant un). Alors, η est naturellement un G-fibré vectoriel (comme muni sous-fibré du fibré tangent $TU \to U$ qui est en plus stable par l'action dérivée de G sur TU). Le fibré η posséde une section partout non nulle et G-équivariante qu'on appellera champ de vecteurs radial; c'est le champ de vecteurs Z défini par le groupe à un paramètre $(t,z) \mapsto e^t z$ de $\mathbb{R} \times (U-W)$ dans (U-W), (le produit externe provient de la structure vectorielle existante sur les fibres de $U \to W$). La section obtenue est bien G-équivariante, puisque pour tout $g \in G$ et $z \in (U-W)$ on a:

 $Z_{gz} = \frac{d}{dt} \mid_{t=0} (e^t(g.z)) = \frac{d}{dt} \mid_{t=0} (g.(e^tz)) = g.Z_z$

4 Théorème principal

Théorème 4.1. Soit $\xi = (E \xrightarrow{\pi} V)$ un \mathbb{T}^r -fibré vectoriel de base V une variété compacte, orientée, de dimension paire). Soit h_0 un vecteur dans l'algèbre de Lie \mathbb{R}^r de \mathbb{T}^r tel que $\{\exp th_0/t \in \mathbb{R}\}$ soit dense dans \mathbb{T}^r , et notons X_{h_0} le champ de vecteurs fondamental associé. Soit $\varphi(\xi) \in H^{2l}(V)$ une classe caractéristique du fibré vectoriel ξ de dimension maximale 2l = N. Alors:

$$\varphi(\xi) \frown [V] = \sum_{\alpha} Res_{\varphi}(W_{\alpha})$$

La sommation porte sur la famille $(W_{\alpha})_{\alpha}$ des composantes connexes de $Z\acute{e}ro(X_{h_0})$, et le nombre $Res_{\varphi}(W_{\alpha})$ est donnée par :

$$Res_{\varphi}(W_{\alpha}) = \left[\left(\frac{\varphi(R^{\xi_{\alpha}} + \theta_{h_0}^{\xi_{\alpha}})}{\chi(R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}})} \right)_{N-2m_{\alpha}} \right] \frown [W_{\alpha}]$$

où:

- $Z\acute{e}ro(X_{h_0}) = \coprod_{\alpha} W_{\alpha}$, W_{α} composante connexe de $Z\acute{e}ro(X_{h_0})$ de dimension égale à $N-2m_{\alpha}$. - $(\beta)_{N-2m_{\alpha}}$ désigne la composante de degré $N-2m_{\alpha}$ de la forme différentielle fermée hétérogène β , et $[(\beta)_{N-2m_{\alpha}}]$ désigne la classe de cohomologie de ce cocycle.

- $R^{\xi_{\alpha}}$ est la courbure d'une connexion métrique \mathbb{T}^r -invariante $\nabla^{\xi_{\alpha}}$ arbitraire sur le fibré $\xi_{\alpha} = E_{|W_{\alpha}} \to W_{\alpha}$ restriction de $E \to V$ à la sous-variété W_{α} (c'est une forme fermée car $\nabla \theta_{h_0}^{\xi_{\alpha}} = 0$ puisque l'action de \mathbb{T}^r sur la base ce fibré est triviale). De même $R^{N_{\alpha}}$ est la courbure d'une connexion métrique \mathbb{T}^r -invariante $\nabla^{N_{\alpha}}$ arbitraire sur N_{α} fibré vectoriel normal de W_{α} dans V. - $\chi_{m_{\alpha}}$ est le polynôme pfaffien défini sur l'algèbre de Lie des matrices antisymétriques so $(2m_{\alpha})$.

Remarque 4.1. 1. Dans le cas particuler où E=TV, V variété riemannienne compacte, orientée, de dimension paire et W_{α} est un point isolé $\{p\}$, alors le résidu $Res_{\varphi}(W_{\alpha})$ est donné par :

$$Res_{\varphi}(p) = \frac{\varphi(A_X(p))}{\chi(A_X(p))}$$

où $A_X(p)$ est l'endomorphisme antisymétrique de T_pV naturellement définit à partir de la dérivée covariante ($A_X = L_X - \nabla_X = -\nabla X$, ∇ la connexion de Levi-Civita associée à la métrique riemannienne \mathbb{T}^r -invariante).

2. Si E = TV et $\varphi = \chi$, alors on retrouve la formule de S. Kobayashi.

Exemple 4.1. Prenons comme exemple simple la sphère S^4 . Comme nous l'avons vue auparavant, la rotation autour de l'axe verticale est une action de S^1 qui a deux points fixes $\{N^+, N^-\}$. Calculer $Res_{p_1}N^+$ et $Res_{p_1}N^-$, et retrouver alors que $p_1(S^4) = 0$ (résultat qui découle aussi du fait que S^4 est le bord de la boule unité fermée D^5).

5 Démonstration du théorème

Posons $\mathcal{H}_0 = \{th_0/t \in \mathbf{R}\}$, c'est une sous algèbre de Lie de \mathbf{R}^r algèbre de Lie de \mathbb{T}^r , elle engendre donc un groupe de Lie connexe H_0 immergé dans \mathbb{T}^r de dimension égale à 1. Pour tout $x \in V$, on a :

$$\dim(H_0)_x = \begin{cases} 0 & si \ x \in V - Z\acute{e}ro(X_{h_0}) \\ 1 & si \ x \in Z\acute{e}ro(X_{X_{h_0}}) \end{cases}$$

L'action de H_0 sur le fibré ξ étant induite par celle de \mathbb{T}^r , on en déduit l'existence de métriques et connexions invariantes par H_0 sur ξ . Il en découle que les classes caractéristiques de ξ de dimension N se localisent sur $Z\acute{e}ro(X_{h_0})$.

La décomposition de $Z\acute{e}ro(X_{h_0})$ en composantes connexes s'écrit : $Z\acute{e}ro(X_{h_0}) = \coprod_{\alpha} W_{\alpha}$, (chaque W_{α} est une sous variété connexe, orientée, fermée dans V, de codimension $2m_{\alpha}$).

On remarque que $Z\acute{e}ro(X_{h_0})$ est \mathbb{T}^r -stable, et que chaque composante connexe W_{α} l'est aussi puisque \mathbb{T}^r est connexe.

Pour tout α , on désignera par $(U_{\alpha}, \pi_{\alpha}, W_{\alpha})$ un \mathbb{T}^r -voisinage tubulaire de W_{α} dans V. On suppose que les ouverts U_{α} sont disjoints deux à deux (De tels données existent à cause de la compacité de \mathbb{T}^r et puisque W_{α} est \mathbb{T}^r -stable, voir [4]). On a ainsi un recouvrement naturel de V par deux ouverts G-stables :

$$\mathcal{U} = \{U^{\circ}, U^{1}\}$$
 avec

$$U^{\circ} = V - Z\acute{e}ro(X_{h_0})$$

$$U^{1} = \coprod_{\alpha} U_{\alpha}$$

Le complexe de Mayer-Vietoris associé à ce recouvrement ; est donné par :

$$MV(\mathcal{U})^* = \Omega^*(U^\circ) \bigoplus \Omega^*(U^1) \bigoplus \Omega^{*-1}(U^\circ \cap U^1)$$

$$\left[= \Omega^*(V - Z\acute{e}ro(X_{h_0})) \bigoplus (\bigoplus_{i \in I} \Omega^*(U_\alpha)) \bigoplus (\bigoplus_\alpha \Omega^{*-1}(U_\alpha - W_\alpha)) \right]$$

avec la différentielle

$$D(\lambda_0, \lambda_1, \lambda_{\circ 1}) = (d\lambda_{\circ}, d\lambda_1, -d\lambda_{\circ 1} + \lambda_1 - \lambda_0)$$

(d désignant la différentielle de De-Rham).

Ce complexe différentiel permet de réaliser la cohomologie singulière réelle de V. Un élement de $MV(\mathcal{U})^*$ sera appelé "hyperforme de degré *", relativement au recouvrement \mathcal{U} .

Notons $I^*0(q)$ l'algèbre des polynômes sur l'algèbre de Lie des matrices antisymétriques so(q), invariants par la représentation adjointe adO(q), (où $q = rang\xi$), graduée en dimension paire. Pour tout couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}$:

 ∇° connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^{\circ} = (E_{|_{U^{\circ}}} \xrightarrow{\pi} U^{\circ})$$

 ∇^1 connexion riemannienne sur le fibré vectoriel riemannien

$$\xi^1 = (E_{|_{U^1}} \xrightarrow{\pi} U^1),$$

On désignera par

$$\varphi(\nabla^{\circ}, \nabla^{1}) = (\varphi(\nabla^{\circ}), \varphi(\nabla^{1}), \varphi(\nabla^{\circ}, \nabla^{1}))$$

(où $\varphi(\nabla^k)$ désigne l'homomorhisme de Chern-Weil usuel, (k=0,1). $\varphi(\nabla^\circ, \nabla^1)$ est la forme différence de R. Bott associée au couple de connexions $\{\nabla^\circ, \nabla^1\}$ et au polynôme φ ; il satisfait l'egalité $d(\varphi(\nabla^\circ, \nabla^1)) = \varphi(\nabla^1) - \varphi(\nabla^\circ)$. La classe de cohomologie $[\varphi(\nabla^\circ, \nabla^1)] \in H^{2l}(V)$ est indépendante du choix du couple (∇°, ∇^1) , et définit la classe caractéristique $\varphi(\xi) \in H^{2l}(V)$ du fibré vectoriel ξ associée au polynôme φ .

S'il est possible de choisir ∇° comme φ -connexion (c'est-à dire $\varphi(\nabla^{\circ}) = 0$), on aura :

$$\varphi(\xi) \frown [V] = \sum_{\alpha} \left[\left(\oint_{D^{2m_{\alpha}}} (\nabla^{1}) - \oint_{S^{2m_{\alpha}-1}} \varphi(\nabla^{\circ}, \nabla^{1}) \right] \frown [W_{\alpha}] \right]$$

où : $f_{D^{2m_{\alpha}}}$ désigne l'opérateur d'intégration le long de la fibre associé au fibré en disques fermés du fibré vectoriel riemannien $(U_{\alpha} \stackrel{\pi_{\alpha}}{\to} W_{\alpha})$, et $f_{S^{2m_{\alpha}-1}}$ désigne l'opérateur associé au fibré en sphères du fibré vectoriel riemannien $(U_{\alpha} \stackrel{\pi_{\alpha}}{\to} W_{\alpha})$).

Ainsi le problème revient à faire un choix judicieux des connexions ∇° et ∇^{1} de façon que : (*)

$$\varphi(\nabla^\circ) = 0$$

$$\left[\left(\oint_{D^{2m_{\alpha}}} \varphi(\nabla^{1}) - \oint_{S^{2m_{\alpha}-1}} \varphi(\nabla^{\circ}, \nabla^{1}) \right] = \left[\left(\frac{\varphi(R^{\xi_{\alpha}} + \theta_{h_{0}}^{\xi_{\alpha}})}{\chi(R^{N_{\alpha}} + \theta_{h_{0}}^{N_{\alpha}})} \right)_{2l-2m} \right]$$

pour tout α . C'est ce qu'on va établir.

Pour tout α , on se donne désormais un isomorphisme \mathbb{T}^r -équivariant

$$\Phi_{\alpha} = \xi_{U_{\alpha}} \stackrel{\cong}{\to} \pi_{\alpha}^{-1}(\xi_{\alpha})$$

(où $\xi_{U_{\alpha}} = (E_{|_{U_{\alpha}}} \xrightarrow{\pi} U_{\alpha})$ et $\xi_{\alpha} = (E_{|_{W_{\alpha}}} \to W_{\alpha})$, tel que par restriction des deux membres de l'isomorphisme à ξ_{α} on obtienne l'identité.

Munissons ensuite le fibré vectoriel $\xi = (E \xrightarrow{\pi} V)$ d'une métrique riemannienne \mathbb{T}^r -invariante \langle , \rangle , dont la restriction à $\xi_{U_{\alpha}}$ coïncide, via l'isomorphisme Φ_{α} , avec l'image réciroque par π_{α} de sa restriction à ξ_{α} (ce qui est possible : un argument de partition \mathbb{T}^r -invariante de l'unité le montre).

Munissons ξ d'une connexion riemannienne \mathbb{T}^r -invariante ∇^1 , dont la restriction à ξ_{U_α} coïncide, via l'isomorphisme Φ_α avec l'image réciproque par π_α de sa restriction à ξ_α .

Choisissons d'autre part une métrique riemannienne \mathbb{T}^r -invariante sur le fibré tangent à U° , et considérons la 1-forme $a \in \Omega^1(U^\circ)$ définie par : $a(X_{h_0}) = 1$ et a(Y) = 0 pour Y orthogonal à X_{h_0} . Désignons ensuite par ∇° la connexion linéaire sur $\xi^\circ = (E_{|_{U^\circ}} \xrightarrow{\pi} U^\circ)$ définie par :

$$\nabla^{\circ} = \nabla^1 + a \otimes S_{h_0}^1$$

(où $S^1_{h_0}=\theta_{h_0}-\nabla^1_{X_{h_0}})$; c'est-à-dire que pour $X\in\chi(U^\circ)$, et $\sigma\in\Gamma(\xi^\circ)$ on a $\nabla^\circ_X\sigma=\nabla^1_X\sigma+a(X)(\theta_{h_0}\sigma-\nabla^1_{X_{h_0}}\sigma))$.

- la connexion ∇° préserve la métrique $\langle \ \rangle$: pour $X \in \chi(U^{\circ})$ et $\sigma, \tau \in \Gamma(\xi^{\circ})$ on a l'égalité $X. \langle \sigma, \tau \rangle = \langle \nabla_X^{\circ} \sigma, \tau \rangle + \langle \sigma, \nabla_X^{\circ} \tau \rangle$. En effet, si X est orthogonal à X_{h_0} alors $\nabla_X^{\circ} = \nabla_X^1$ et l'égalité est vérifiée puisque ∇^1 est riemannienne. Et pour $X = X_{h_0}$, l'égalité est encore satisfaite puisque $\nabla_{X_{h_0}}^{\circ} = \theta_{h_0}$ et la métrique $\langle \ \rangle$ est \mathbb{T}^r -invariante.

- La connexion ∇° est \mathbb{T}^r -invariante : pour $X \in \chi(U^{\circ})$ on a $[\theta_{h_0}, \nabla_X^{\circ}] = \nabla_{[X_{h_0}, X]}^{\circ}$

En effet, si X est orthogonal à X_{h_0} alors $[X_{h_0}, X]$ l'est aussi puisque la métrique $\langle \rangle$ est \mathbb{T}^r -invariante, d'où $\nabla_{[X_h, X]}^{\circ} = \nabla_{[X_h, X]}^1$ et $\nabla_X^{\circ} = \nabla_X^1$ et par suite (ε) en découle puisque ∇° est \mathbb{T}^r -invariante. Pour $X = X_{h_0}$, l'égalité (ε) est encore satisfaite.

- La connexion ∇° est une φ -connexion. En effet, puisque ∇° est \mathbb{T}^r -invariante, nous avons $\nabla^{\circ}(\theta_{h_0} - \nabla_{X_{h_0}}^{\circ}) = i(X_{h_0})R^{\circ}$ (R° désigne la courbure de ∇°), d'où $i(X_{h_0})R^{\circ} = 0$, ceci implique que $i(X_{h_0})\varphi(\nabla^{\circ}) = 0$. Ainsi, $\varphi(\nabla^{\circ}) = 0$ (puisque dim $\varphi(\nabla^{\circ}) = \dim V$).

D'un autre côté, vue la naturalité de l'homomorphisme de Chern-Weil, la restriction de la forme différentielle $\varphi(\nabla^{\circ})$ à U_{α} , coïncide avec l'image réciproque par π_{α} de sa restriction à W_{α} . On en déduit que $f_{\alpha}\varphi(\nabla^{\circ}) = 0$ pour tout α .

Ainsi le problème revient à démontrer que pour tout α , on a :

$$\left[\oint_{S^{2m_{\alpha}-1}} (-\varphi(\nabla^{\circ}, \nabla^{1}) \right] = \left[\left(\frac{\varphi(R^{\xi_{\alpha}} + \theta_{h_{0}}^{\xi_{\alpha}})}{\chi(R^{N_{\alpha}} + \theta_{h_{0}}^{N_{\alpha}})} \right)_{N-2m_{\alpha}} \right] \frown [W_{\alpha}]$$

La forme différence de R. Bott associée au couple de connexions $\{\nabla^{\circ}, \nabla^{1}\}$ et au polynôme φ est donnée par :

$$-\varphi(\nabla^{\circ}, \nabla^{1}) = \int_{[0,1]} \varphi(\widetilde{R}, \widetilde{R}, \cdots, \widetilde{R})$$

 $\stackrel{\sim}{R}$ désignant la courbure de la connexion $\stackrel{\sim}{\nabla}=t\nabla^\circ+(1-t)\nabla^1$ définie sur le fibré vectoriel

$$\xi_{(U_{\alpha}-W_{\alpha})}\times [0,1] = \left(E_{|_{(U_{\alpha}-W_{\alpha})}}\times [0,1] \stackrel{\pi\times id}{\to} (U_{\alpha}-W_{\alpha})\times [0,1]\right)$$

On a:

$$\stackrel{\sim}{\nabla} = \nabla^1 + t(\nabla^\circ - \nabla^1) = \nabla^1 + ta \otimes S^1_{h_0}$$

Nous obtenons ainsi : $\tilde{R} = R^1 + d(t.a) \otimes S^1_{h_0}$ (car $\nabla^1 S^1_{h_0} = i(X_{h_0})R^1 = i(X_{h_0})\pi_{\alpha}^* \overline{R}^1$, où \overline{R}^1 désignant la courbure de la connexion $\overline{\nabla}^1$ = restriction de ∇^1 à W_{α} , et par suite $\nabla^1 S^1_{h_0} = 0$ puisque X_{h_0} est projetable sur 0).

On en déduit :

$$\begin{split} &f_{[0,1]}\varphi(\tilde{R},\tilde{R},...,\tilde{R}) = f_{[0,1]}\sum_{j=0}^{l}C_{l}^{j}\varphi(\underbrace{R^{1},...,R^{1}},\underbrace{S_{h_{0}}^{1},...,S_{h_{0}}^{1}}) \wedge (dt \wedge a + t.da)^{l-j}) \\ &= f_{[0,1]}\sum_{j=0}^{l}C_{l}^{j}\varphi(\underbrace{R^{1},...,R^{1}},\underbrace{S_{h_{0}}^{1},...,S_{h_{0}}^{1}}) \wedge (l-j)dt \wedge a \wedge (t.da)^{l-j-1}) \\ &= f_{[0,1]}\sum_{j=0}^{l}C_{l}^{j}(l-j)t^{l-j-1}dt \wedge (\varphi(\underbrace{R^{1},...,R^{1}},\underbrace{S_{h_{0}}^{1},...,S_{h_{0}}^{1}})) \wedge a \wedge (da)^{l-j-1}) \\ &= \sum_{j=0}^{l}C_{l}^{j}\varphi(\underbrace{R^{1},...,R^{1}},\underbrace{S_{h_{0}}^{1},...,S_{h_{0}}^{1}}) \wedge a \wedge (da)^{l-j-1}) \end{split}$$

autrement dit, $-\varphi(\nabla^{\circ}, \nabla^{1})$ est la composante de degré (2l-1) de la forme différentielle hétérogène

$$\varphi(R^1 + S_{h_0}^1, ..., R^1 + S_{h_0}^1) \wedge (\frac{a}{1 - da})$$

c'est-à-dire

$$-\varphi(\nabla^{\circ}, \nabla^{1}) = (\varphi(R^{1} + S_{h_{0}}^{1}) \wedge (\frac{a}{1 - da}))_{2l-1}$$

L'opérateur $S_{h_0}^1$ en tant que section du fibré vectoriel des endomorphismes de $\xi_{U_{\alpha}}$ coïncide, via l'isomorphisme Φ_{α} , avec l'image réciproque par π_{α} de sa restriction $\overline{S}_{h_0}^1$ au fibré des endomorphismes de ξ_{α} ; en effet : les deux sections $S_{h_0}^1$ et $\pi^*\overline{S}_{h_0}^1$ coïncident en-dessus de W_{α} , de plus on a

$$\nabla^1 S_{h_0}^1 = i(X_{h_0})R^1 = 0 \quad sur \quad U_\alpha,$$

et $\nabla^1(\pi_i^*\overline{S}_{h_0}^1) = \pi_i^*\overline{\nabla}^1.\pi_i^*\overline{S}_{h_0}^1 = \pi_{\alpha}^*(\overline{\nabla}^1\overline{S}_{h_0}^1) = \pi_{\alpha}^*(0) = 0$ ($\overline{\nabla}^1$ désignant la restriction de ∇^1 à W_{α}). Le transport par parallélisme induit par la connexion ∇^1 implique que les deux sections coı̈ncident partout.

Finalement, on peut écrire:

$$-\varphi(\nabla^{\circ}, \nabla^{1}) = \left(\left(\frac{a}{1 - da} \right) \wedge \pi^{*} \varphi(\overline{R}^{1} + \overline{S}_{h_{0}}^{1}) \right)_{2l-1} \tag{E}$$

Parfois dans ce qui suit nous noterons la sphère $S^{2m_{\alpha}-1}$ tout simplement par S. On peut alors écrire :

$$-\left[\int_{S} \varphi(\nabla^{\circ}, \nabla^{1})\right] = \left[(\varphi(\overline{R}^{1} + \overline{S}^{1}_{h_{0}}) \wedge (\int_{S} \frac{a}{1 - da}))_{2l - 2m_{\alpha}} \right]$$

Et parsuite:

$$-\left[\int_{S} \varphi(\nabla^{\circ}, \nabla^{1})\right] = (\varphi^{h_{0}}(\xi_{i}). \left[\int_{S} \frac{a}{1 - da}\right])_{2l - 2m_{\alpha}}$$

La forme différentielle $f_S \frac{a}{1-da}$ est fermée; en effet $i(X_{h_0})da=0$ car a est \mathbb{T}^r -invariante et $i(X_{h_0})a=1$, d'où $f_S \frac{da}{1-da}=0$ puisque le champ de vecteur X_{h_0} est tangent aux fibres de $(U_{\alpha} \xrightarrow{\pi_{\alpha}} W_{\alpha})$ et partout non nul sur $U_{\alpha} - W_{\alpha}$.

Lemme 5.1.

$$\left[\int_{S^{2m_{\alpha}-1}} \frac{a}{1-da} \right] = \frac{1}{\chi_{m_{\alpha}}(R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}})}$$

 $R^{N_{\alpha}}$ désignant la courbure d'une connexion riemannienne \mathbb{T}^r -invariante sur N_{α} : fibré normale à W_{α} dans V. ($\theta_{h_0}^{N_{\alpha}}$ est section du fibré des endomorphismes antisymétriques de N_{α} , puisque le tore \mathbb{T}^r opère trivialement sur W_{α}).

Démonstration du lemme :

F.Gomez ([8]) avait donné une démonstration de ce lemme en utilisant la partition de l'unité, le théorème de Stokes et la démonstration du théorème de Gauss-Bonnet-Chern. Nous allons montrer, sans partition de l'unité, qu'en utilisant les formes différences de R. Bott, ce lemme découle du théorème de Gauss-Bonnet-Chern.

Il s'agit d'établir l'égalité suivante :

$$\left[\int_{S^{2m_{\alpha}} - 1} \left(\frac{a}{1 - da} \wedge \pi_{\alpha}^* \chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}}) \right) \right] = 1$$

ou encore les 2 identités suivantes : i) $\left[\int_{S^{2m_{\alpha}}} \left(\frac{a}{1-da} \wedge \pi_i^* \chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}}))_{2m_{\alpha}-1} \right] = 1,$

ii)
$$\left[\int_{\varsigma^{2m_{\alpha}}} \frac{a}{1-1da} \wedge \pi_{\alpha}^* \chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}}))_{2j+1} \right] = 0$$
, pour tout $j \geq m_{\alpha}$.

Désignons par η_{α} la restriction à $U_{\alpha} - W_{\alpha}$ du fibré tangent vectical $Ker(d\pi_{\alpha})$. Il s'identifie canoniquement au fibré image réciproque de N_{α} par l'application $\mathring{\pi}_{\alpha} = \pi_{\alpha|_{(U_{\alpha} - W_{\alpha})}}$.

Le \mathbb{T}^r -fibré vectoriel η_{α} posséde (Z_{α} champ de vecteurs transversal) comme section partout non nulle et \mathbb{T}^r -équivariante. Après avoir muni ce \mathbb{T}^r fibré vectoriel de la métrique riemannienne image réciproque de celle existante sur N_{α} , on peut le munir de 3 connexions riemanniennes \mathbb{T}^r -invariante :

 \mathbb{T}^r -invariante : $(*) \nabla^{\alpha} = \overset{\circ}{\pi}_i \nabla^{N_{\alpha}}$, connexion image réciproque d'une connexion riemannienne \mathbb{T}^r -invariante $\nabla^{N_{\alpha}}$ choisie sur N_{α} .

(**)
$$\nabla^{\alpha_0} = \nabla^{\alpha} + a \otimes S_{h_0}^{\alpha}$$
, avec $S_{h_0}^{\alpha} = \theta_{h_0}^{\eta_{\alpha}} - \nabla_{X_{h_0}}^{\alpha}$,

(***) $\nabla^{Z_{\alpha}}$, connexion riemannienne \mathbb{T}^r -invariante préservant le champ de vecteurs radial normalisé $\frac{Z_{\alpha}}{|Z_{\alpha}|}$, telle que $\nabla^{Z_{\alpha}}_{X_{h_0}} = \theta^{\eta_{\alpha}}_{h_0}$, (voir le lemme ci-dessous pou l'existence d'une telle connexion).

En désignant par $\chi_{m_{\alpha}}(\nabla^{\alpha}, \nabla^{\alpha_{\circ}})$ (resp. $\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}})$ et $\chi_{m_{\alpha}}(\nabla^{Z_{\alpha}}, \nabla^{\alpha})$ la forme différence de R. Bott associée au couple de connexions $\{\nabla^{\alpha}, \nabla^{\alpha_{\circ}}\}$ et au polynôme $\chi_{m_{\alpha}}$ (resp. $\{\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}\}$ et $\{\nabla^{Z_{\alpha}}, \nabla^{\alpha}\}$); on a : $\chi_{m_{\alpha}}(\nabla^{\alpha}, \nabla^{\alpha_{\circ}}) + \chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) + \chi_{m_{\alpha}}(\nabla^{Z_{\alpha}}, \nabla^{\alpha})$ est un cobord, d'où

$$\int_{S^{2m_{\alpha}-1}} (\chi_{m_{\alpha}}(\nabla^{\alpha}, \nabla^{\alpha_{\circ}}) + \chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) + \chi_{m_{\alpha}}(\nabla^{Z_{\alpha}}, \nabla^{\alpha})) = 0$$

D'un autre côté, le théorème de Gauss-Bonnet-Chern ([11] page 477) nous permet d'établir :

$$\int_{S^{2m_{\alpha}-1}} \chi_{m_{\alpha}}(\nabla^{\alpha}, \nabla^{Z_{\alpha}}) = 1$$

D'autre part, le même calcul qui nous a permis de déduire la formule (E), nous permet d'affirmer que :

 $\chi_{m_{\alpha}}(\nabla^{\alpha}, \nabla^{\alpha_{\circ}}) = \left(\frac{a}{1 - da} \wedge \pi_{\alpha}^* \chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}})\right)_{2m_{\alpha} - 1}$

Pour établir i), il suffit donc de montrer que :

$$\int_{S^{2m_{\alpha}-1}} \chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) = 0,$$

Nous avons : $\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) = \int_{[0,1]} \chi_{m_{\alpha}}(\underline{\widetilde{R}}, \dots, \underline{\widetilde{R}})$; avec \widetilde{R} désignant la courbure de la connexion $\widetilde{\nabla} = t \nabla^{\alpha_{\circ}} + (1-t) \nabla^{Z_{\alpha}}$ définie sur le fibré vectoriel $p^{-1}(\eta_{\alpha})$ = fibré image réciproque de η_{α} par la projection naturelle $p: (U_{\alpha} - W_{\alpha}) \times [0,1] \to U_{\alpha} - W_{\alpha}$.

En munissant la variété $(U_{\alpha} - W_{\alpha}) \times [0,1]$ de l'action $g \cdot (x,t) = (g \cdot x,t)$ pour $g \in \mathbb{T}^r$, $x \in (U_{\alpha} - W_{\alpha})$, et $t \in [0,1]$, et le fibré $p^{-1}(\eta_{\alpha})$ de l'action image réciproque; on en déduit que la projection p devient \mathbb{T}^r -équivariante et la connexion $\widetilde{\nabla}$ devient \mathbb{T}^r -invariante et préservant la métrique image réciproque. De plus, on a : $\widetilde{\nabla}_{X_{h_0}} = \theta(h_0)$ car $\nabla_{X_{h_0}}^{\alpha_o} = \theta_{h_0}$ et $\nabla_{X_{h_0}}^{Z_{\alpha}} = \theta_{h_0}$, d'où $i(X_{h_0})\widetilde{R} = 0$ et par suite $i(X_{h_0})\chi_{m_{\alpha}}(\widetilde{R}) = 0$ et $i(X_{h_0})\chi_{m_{\alpha}}(\nabla^{\alpha_o}, \nabla^{Z_{\alpha}}) = 0$ (car $i(X_{h_0}) \circ f_{[0,1]} = f_{[0,1]} \circ i(X_{h_0})$).

Le champ de vecteurs X_{h_0} étant tangent aux fibres de la fibration $(U_{\alpha} - W_{\alpha}) \xrightarrow{\pi_{\alpha}} W_{\alpha}$, partout non nul sur $U_{\alpha} - W_{\alpha}$, on en déduit que

$$\int_{s^{2m_{\alpha}-1}} \chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) = 0.$$

Il reste à établir ii). La courbure $R^{\alpha\circ}$ de la connexion $\nabla^{\alpha\circ}$ étant donnée par : $R^{\alpha\circ} = R^{\alpha} + da \otimes S^{\alpha}_{h_0}$, nous obtenons : $\chi_{m_{\alpha}}(R^{\alpha\circ}) = (\chi_{m_{\alpha}}(R^{\alpha} + S^{\alpha}_{h_0}) \wedge \frac{1}{1-da})_{2m_{\alpha}}$, et par suite

$$\chi_{m_{\alpha}}(R^{\alpha_{\circ}}) \wedge \frac{a}{1 - da} = \sum_{j > m_{\alpha}} \left(\frac{a}{1 - da} \wedge \pi_{\alpha}^* \chi_{m_{\alpha}} (R^{N_{\alpha}} + \theta_{h_0}^{N_{\alpha}}) \right)_{2j+1}$$

ainsi ii) est équivalente à

$$\left[\int_{S^{2m_{\alpha}-1}} (\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}) \wedge \frac{a}{1-da}) \right] = 0;$$

Or l'égalité $\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}) = d(\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}))$ donne :

$$\left[\oint_{S^{2m_{\alpha}-1}} (\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}) \wedge \frac{a}{1-da}) \right] = \left[\oint_{S^{2m_{\alpha}-1}} (\chi_{m_{\alpha}}(\nabla^{\alpha_{\circ}}, \nabla^{Z_{\alpha}}) \wedge \frac{da}{1-da}) \right]$$

D'autre part, puisque $i(X_{h_0})\chi_{m_\alpha}(\nabla^{\alpha_0},\nabla^{Z_\alpha})=0$ et $i(X_{h_0})da=0$, on en déduit que le second membre de l'égalité ci-dessus est nul.

Pour que achèver la démonstration, nous aurons besoin de démontrer le lemme qui suit.

RÉFÉRENCES 14

Lemme 5.2. Pour tout α , on peut munir le fibré vectoriel riemannien η_{α} (restriction à U_{α} – W_{α} du fibré tangent vectical $Ker(d\pi_{\alpha})$) d'une connexion $\nabla^{Z_{\alpha}}$, connexion riemannienne \mathbb{T}^{r} -invariante telles que $\nabla^{Z_{\alpha}}(\frac{Z_{\alpha}}{\|Z_{\alpha}\|}) = 0$ et $\nabla^{Z_{\alpha}}_{X_{h_0}} = \theta_{h_0}^{\eta_{\alpha}}$.

Démonstration du lemme. Notons une fois pour toute que à cause de la densité de H_0 dans \mathbb{T}^r , alors la H_0 -invariance est équivaut à la \mathbb{T}^r -invariance.

 η_{α} étant un \mathbb{T}^r -fibré vectoriel admettant une section Z_{α} non nulle et \mathbb{T}^r -équivariante, par suite le sous-fibré en droite engendré par Z_{α} qu'on notera L ainsi que son orthogonal L^{\perp} sont des \mathbb{T}^r -fibrés vectoriels et nous avons : $\eta_{\alpha} = L \oplus L^{\perp}$.

On désignera par par $p: \Gamma(\eta_{\alpha}) \to \Gamma(L^{\perp})$ l'opérateur de projection associé à cette décomposition. D'un autre côté, l'action du groupe H_0 sur le fibré η_{α} étant quasi libre sur sa base $U_{\alpha} - W_{\alpha}$, on peut alors le munir d'une connexion métrique ∇ qui soit H_0 -invariante et telle que $\nabla_{X_{h_0}} = \theta_{h_0}$. Définissions ensuite $\nabla^{Z_{\alpha}}$ connexion sur η_{α} , en posant : $\nabla^{Z_{\alpha}}_{X}\tau = p(\nabla_{X}\tau)$ pour $\tau \in \Gamma(L^{\perp})$, et $\nabla^{Z_{\alpha}}(\frac{Z_{\alpha}}{\|Z_{\alpha}\|}) = 0$.

On vérifie facilement que la connexion $\nabla^{Z_{\alpha}}$ est riemannienne. Montrer ensuite que $\nabla^{Z_{\alpha}}$ est H_0 -invariante revient à vérifier les deux propositions suivantes i)

$$\theta_{h_0}(\nabla^{Z_\alpha}_Y\tau) - \nabla^{Z_\alpha}_Y(\theta_{h_0}\tau) = \nabla^{Z_\alpha}_{\left[X_{h_0},Y\right]}\tau$$

pour tout $\tau \in \Gamma(L^{\perp})$

ii)

$$\theta_{h_0}(\nabla_Y^{Z_\alpha} \frac{Z_\alpha}{\|Z_\alpha\|}) - \nabla_Y^{Z_\alpha}(\theta_{h_0}(\frac{Z_\alpha}{\|Z_\alpha\|})) = \nabla_{[X_{h_0},Y]}^{Z_\alpha}(\frac{Z_\alpha}{\|Z_\alpha\|}),$$

Le i) découle du faite que ∇ est H_0 -invariante et que l'opérateur θ_{h_0} commute avec p (L^{\perp} et L sont H_0 -stables). Pour ii) il suffit de montrer que $\theta_{h_0}(\frac{Z_{\alpha}}{\|Z_{\alpha}\|}) = 0$. Or nous avons

$$\theta_{h_0}(\frac{Z_\alpha}{\|Z_\alpha\|}) = X_{h_0} \cdot (\frac{1}{\|Z_\alpha\|}) Z_\alpha$$

 $(\operatorname{car} \theta_{h_0} Z_{\alpha} = 0)$. D'où

$$\theta_{h_0}(\frac{Z_{\alpha}}{\|Z_{\alpha}\|}) = -\frac{1}{2\|Z_{\alpha}\|^3}((X_h, \langle Z_{\alpha}, Z_{\alpha} \rangle)Z_{\alpha}) = 0$$

(car ∇ préserve la métrique et $\nabla_{X_{h_0}} Z_{\alpha} = \theta_{h_0} Z_{\alpha} = 0$).

Références

- [1] A.Abouqateb : Classes caractéristiques réelles de certains G-fibrés vectoriels et Résidus. Publicaciones Matematiques, Vol 42 (1998), 359-382.
- [2] N. Alamo et F. Gomez: Smooth toral actions on principal bundles and characteristic classes. Lecture Notes in Math. 1410, 1-26. 1989.

RÉFÉRENCES 15

[3] R. Bott: Lectures on caracteristic classes and foliations, Notes by Laurence Conlon, Springer, Lecteure Notes in Math. n°279, 1972.

- [4] G.E. Bredon: Introduction to compact transformation Groups. Academic Press, New York (1972).
- [5] P. Baum et J. Cheeger: Infinitesimal isometries and Pontryagin numbers, Topology (8) (1969), 173-193.
- [6] R. Bott et LW. Tu: Differential forms in algebraic topology. Graduate texts in Mathematics, Springer, 1982.
- [7] B. Cenkl: Zeros of vector fields and characteristic numbers. J. Differential Geometry 8 (1973) 25-46.
- [8] F. Gomez: A residue formula for characteristic classes. Topology 21 (I), (1982), 101-124.
- [9] F. Gomez: Blowing up fixed points. Pub. Mat. UAB, N 25, 1981.
- [10] W. Greub, S. Halperin and R. Vanstone: Connections, curvature, and cohomology. Vol. I. Academic Press 1972.
- [11] W. Greub, S. Halperin and R. Vanstone: Connections, curvature, and cohomology. Vol. II. Academic Press 1973.
- [12] S. Kobayashi: Fixed points of isometries. Nagoya Math. J. 13 (1958), 63-68.
- [13] S. Kobayashi: Transformation groups in differential geometry. Springer (1972).
- [14] D. Lehmann: Classes caractéristiques résiduelles. Differential Geometry and its applications. Proc. Coonf., Aug. 27. sep. 2, 1989, Brno, Czechoslovakia. World Scientific, Singapore, 1990, 85-108.
- [15] D. Lehmann : Variétés stratifiées C^{∞} -Intégration de Cech-De Rham et théorie de Chern-Weil. Geometry and Topology of submanifolds, II. Poc. Conf., 30 May 3June, 1988, Avignon, France World Scientific, 1990.
- [16] C. Lazarov and J. Pasternack: Residues and characteristic classes for foliations. J. Differential Geom. 11 (1976), 599-612.
- [17] J. Pasternack: Foliation and compact Lie group action. Comment. Math. Helv 46 (1971), 467-477.
- [18] S.T. Yau: remarks on the group of isometries of a Riemannian manifold. Topology 16, 239-247 (1977).