

AXI RAM

Version 1.0

Copyright

Copyright © 2021 Rapid Silicon. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Rapid Silicon ("Rapid Silicon").

Trademarks

All Rapid Silicon trademarks are as listed at www.rapidsilicon.com. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. Modelsim and Questa are trademarks or registered trademarks of Siemens Industry Software Inc. or its subsidiaries in the United States or other countries. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL RAPID SILICON OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF RAPID SILICON HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Rapid Silicon may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Rapid Silicon makes no commitment to update this documentation. Rapid Silicon reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. Rapid Silicon recommends its customers obtain the latest version of the relevant information to establish that the information being relied upon is current and before ordering any products.

Contents

IP Summary Introduction	3
Overview AXI RAM	4
IP Specification Overview IP Support Details Resource Utilization Port List Parameters	6
Design Flow IP Customization and Generation	9
Test Bench Test for AXI RAM	10
Revision History	11

IP Summary

Introduction

The AXI RAM IP Core is a configurable IP block designed for use in FPGA and SoC designs. It provides a simple, high-performance memory interface that supports the AMBA AXI4 protocol, making it easy to integrate with other AXI-compliant IP cores. It can be configured to support a range of memory sizes and data widths. It provides a flexible and efficient solution for integrating memory into FPGA and SoC designs, with a simple and standardized interface that facilitates system-level integration.

Features

- · AXI4 (memory mapped) slave interface
- · Configurable data width 8, 16, 32, 64 bits
- Supports memory size up to 512 MBytes.
- Compatible with AXI4 Interconnect

Overview

AXI RAM

The AXI RAM IP Core provides a simple and efficient memory interface that supports the widely used AMBA AXI4 protocol. This allows for easy integration with other AXI4-compliant IP cores, simplifying system-level design and verification. It can be customized to support a range of memory sizes and data widths, making it flexible and adaptable to different design requirements. This allows designers to optimize the use of FPGA resources and minimize the cost and complexity of the overall system.

Figure 1: AXI RAM Block Diagram

IP Specification

Overview

The AXI RAM IP Core is a simple memory component that supports the ARM Advanced eXtensible Interface (AXI) protocol. It provides a configurable memory block with read and write interfaces that support multiple outstanding transactions. It has configurable memory size and width. This IP Core supports both read and write operations. Read transaction return the data stored in the memory at specific address while write transaction store the data provided at the specific address. It provides a configuration interface to allow user to configure memory size, width and address range. It has a single clock domain and reset signal to initialize the memory to a known state.

Figure 2: Top Module

IP Support Details

The Table 1 gives the support details for AXI RAM.

	Com	pliance	IP Resources			Tool Flow			
[Device	Interface	Source Files	Constraint File	Testbench	Simulation Model	Analyze and Elaboration	Simulation	Synthesis
(SEMINI	AXI4	Verilog	-	CocoTB	-	Raptor	Raptor	Raptor

Table 1: Support Details

Resource Utilization

The parameters for computing the maximum and the minimum resource utilization are given in Table 2.

Tool	Raptor Design Suite					
FPGA Device	GEMINI					
	Configuration	Resource Utilization				
Minimum	Options	Configuration	Resources	Utilized		
Resource		3				
	DATA_WIDTH	8	RAM36K	1		
	ADDR_WIDTH	8	REGISTERS	94		
	ID_WIDTH	8	-	-		
	PIP_OUT	False	-	-		
Maximum Resource	Options	Configuration	Resources	Utilized		
	DATA_WIDTH	64	RAM36K	16		
	ADDR_WIDTH	16	REGISTERS	256		
	ID_WIDTH	8	-	-		
	PIP_OUT	True	-	-		

Table 2: Resource Utilization

Ports

Table 3 lists the top interface ports of the AXI RAM.

Signal Name	Input/Output	Description				
clk	Input	Clock Signal for synchronization				
rst Input		Active Low Reset Signal				
	Write Address Channel					
awid Input		Write address ID				
awaddr	Input	Write address				
awlen	Input	Burst length				
awsize	Input	Burst size				
awburst	Input	Burst type				
awlock	Input	Lock type				
awcache	Input	Memory type				
awprot	Input	Protection type				
awvalid	Input	Write address valid				
awready	Output	Write address ready				
	Write D	ata Channel				
wdata	Input	Write data				
wstrb	Input	Write strobe				
wlast	Input	Write last				
wvalid	Input	Write valid				
wready	Output	Write ready				
	Write Resp	oonse Channel				
bid	Output	Response ID tag				
bresp	Output	Write response				
bvalid	Output	Write response valid				
bready	Input	Write response ready				
	Read Address Channel					
arid	Input	Read address ID				
araddr	Input	Read address				

Signal Name	Input/Output	Description		
arlen	Input	Burst length		
arsize	Input	Burst size		
arburst	Input	Burst type		
arlock	Input	Lock type		
arcache	Input	Memory type		
arprot	Input	Protection type		
arvalid Input		Read address valid		
arready Output		Read address ready		
Read Data Channel				
rid	Output	Read ID tag		
rdata	Output	Read data		
rresp	Output	Read response		
rlast	Output	Read last		
rvalid	Output	Read valid		
rready	Input	Read ready		

Table 3: Port List

Parameters

Table 4 lists the parameters of the AXI RAM.

Parameter	Values	Default Value	Description
DATA_WIDTH	8, 16, 32, 64	32	Data Width of RAM
ADDR_WIDTH	8,16	16	Address Width of RAM
ID_WIDTH	1-8	8	ID field of RAM
PIP_OUT	True/False	False	Piplelined Output

Table 4: Parameters

Design Flow

IP Customization and Generation

AXI RAM IP core is a part of the Raptor Design Suite Software. A customized memory can be generated from the Raptor's IP configuration window as shown in figure 3.

Figure 3: IP List

Parameters Customization

From the IP configuration window, the parameters of the AXI RAM can be configured and it's features can be enabled for generating a customized IP core that suits the user application requirements. All parameters are shown in figure 4.

Figure 4: IP Configuration

Test Bench

Test for AXI RAM

The testbench attached with AXI RAM is CocoTB based verification environment. In this test, multiple read/ write tractions are performed by a master IP. The stimulus is generated by environment and test vectors are applied to the design. The dump file is generated to view the output of the test. In the end, there is status for passing or failure of the test.

Revision History

Date	Version	Revisions
April 27, 2023	1.0	Initial version AXI RAM User Guide