Семинар 17

Пример инвариантных подпространств

Пусть оператор $\phi \colon F^3 \to F^3$ задан матрицей A, где

$$A = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$$

Давайте опишем все инвариантные подпространства ϕ . Пусть $U \subseteq F^3$ – инвариантное. И пусть нам дан произвольный вектор $v=(a,b,c)^t \in U$. Давайте покажем, что в этом случае векторы ae_1 , be_2 и ce_3 тоже лежат в U. Действительно, введем следующие обозначения

$$v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, v_1 = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ b \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$$

Тогда заметим, что векторы v_i являются собственными, а именно

$$Av_1 = v_1, Av_2 = 2v_2, Av_3 = 3v_3$$

Рассмотрим векторы v, Av, A^2v заметим, что

$$v = v_1 + v_2 + v_3$$

$$Av = v_1 + 2v_2 + 3v_3$$
 то есть $(v, Av, A^2v) = (v_1, v_2, v_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{pmatrix}$

$$A^2v = v_1 + 2^2v_2 + 3^2v_3$$

Но матрица справа обратима, так как ее определитель – это определитель Вандермонда. А значит, можно разделить на эту матрицу и получим

$$(v_1, v_2, v_3) = (v, Av, A^2v) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{pmatrix}^{-1}$$

А это значит, что векторы v_1, v_2, v_3 выражаются через v, Av, A^2v . А в частности это значит, что v_1, v_2, v_3 лежат в U. Теперь мы можем описать все инвариантные подпространства. Это будет следующий набор подпространств

$$\langle e_1 \rangle \ \langle e_2, e_3 \rangle$$

 $0, \ \langle e_2 \rangle, \ \langle e_1, e_3 \rangle, \ F^3$
 $\langle e_3 \rangle \ \langle e_1, e_2 \rangle$

Это сразу следует из факта доказанного выше. С каждым вектором мы получим в U все e_i , для которых i-ая координата вектора не ноль.