CX2101 Algorithm Design and Analysis

Tutorial 2 (Graphs)

Week 6: Q1-Q3

This Tutorial

• Single-source shortest path algorithm

Apply the Dijkstra's algorithm on the graph represented by the following adjacency matrix to find the shortest distances and the shortest paths from vertex 1 to the other vertices. Show the contents of arrays S, d and pi after each iteration of the while loop.

vertex	1	2	3	4	5
1	$\lceil 0 \rceil$	4	2	6	8
2	∞	0	∞	4	3
3	∞	0 ∞ 1	0	1	∞
4	∞	1	2 ∞ 0 ∞	0	3
5	∞	∞	∞	∞	0

vertex	1	2	3	4	5
1	$\lceil 0$	4	2	6	$\begin{bmatrix} 8 \\ 3 \\ \infty \\ 3 \\ 0 \end{bmatrix}$
2	∞	0	∞	4	3
3	∞	∞	0	1	∞
4	∞	1	∞	0	3
5	$ \infty $	∞	∞	∞	0

After initialization:

	1	2	3	4	5
S	0	0	0	0	0
d	0	∞	∞	∞	∞
pi	null	null	null	null	null

First iteration:

	1	2	3	4	5
S	1	0	0	0	0
d	0	4	2	6	8
pi	null	1	1	1	1

2nd iteration:

	1	2	3	4	5
S	1	0	1	0	0
d	0	4	2	3	8
pi	null	1	1	3	1

3rd iteration:

	1	2	3	4	5
S	1	0	1	1	0
d	0	4	2	3	6
pi	null	1	1	3	4

4th iteration:

	1	2	3	4	5
S	1	1	1	1	0
d	0	4	2	3	6
pi	null	1	1	3	4

5th iteration:

	1	2	3	4	5
S	1	1	1	1	1
d	0	4	2	3	6
pi	null	1	1	3	4

Shortest paths:

• Let G = (V, E, W) be a weighted graph, and let s and z be distinct vertices. In the graph, there may be more than one shortest path from s to z. Explain how to modify Dijkstra's shortest-path algorithm to determine the number of distinct shortest paths from s to z. Assume all edge weights are positive.

```
shortest_paths( Graph g, Node source )
// The array count[] records the number of
// shortest paths from
// source to each of the vertices
     for each vertex v {
            d[v] = infinity;
            pi[v] = null pointer;
            S[v] = 0;
            count[v] = 0;
     d[source] = 0;
     count[source] = 1;
     put all vertices in queue, Q, in d[v]'s order;
```

```
while not Empty(Q) {
   u = ExtractCheapest( Q );
    S[u] = 1; /* Add u to S */
    for each vertex v adjacent to u
       if (S[v] != 1 \&\& d[v] > d[u] + w[u,v]) {
           remove v from Q;
           d[v] = d[u] + w[u,v];
           pi[v] = u;
           // the shortest paths to u extends to v, the
           // previously known shortest path(s) to v is replaced
           count[v] = count[u];
           insert v into Q according to its d[v];
       else if (d[v] == d[u] + w[u, v]) {
           // additional shortest path(s) through u to v is found
           count[v] += count[u];
```

• Dijkstra's algorithm requires that the input graph has all edges being non-negative. Give an example where Dijkstra's algorithm does not work correctly with negative weights.

• Thoughts: Assumption of "non-negative weights" is used in the proof of Theorem D1.

$$W(P) = d[y] + W(y, z)$$

$$W(P') = d[z_{k-1}] + W(z_{k-1}, z_k) + distance from z_k to z$$

Note that:
$$d[z_{k-1}] + W(z_{k-1}, z_k) \ge d[y] + W(y, z)$$

Since distance from z_k to z is non-negative, therefore, $W(P) \leftarrow W(P')$.

- Design of a counter-example:
 - Look at different edges across the border
 - Design a case that violates the proof

What we have exercised

- Single-source shortest path algorithm: Dijkstra's algorithm
 - Running of the algorithm
 - Data structure contents in each iteration
 - Modify it to capture more information
 - Design counter-example for its correctness