Algoritmos e Estrutura de Dados

Fabrício Olivetti de França

02 de Fevereiro de 2019

Topics

1. Algoritmos de Ordenação Eficientes

Algoritmos de Ordenação

Eficientes

Na primeira aula de ordenação aprendemos sobre o Selection Sort. A limitação desse algoritmo estava justamente na busca pelo menor valor, que sempre demandava n comparações, levando a uma complexidade $O(n^2)$.

E se pudessemos encontrar o menor ou maior valor de uma lista de forma eficiente?

Isso é possível utilizando a árvore Max-Heap!

Uma Max-Heap é uma árvore binária completa, ou seja, todos os seus níves, exceto o último, possuem todos os nós. Além disso, no último nível os nós estão sempre a esquerda.

Um outro pré-requisito é que:

para todos os nós i.

Com isso garantimos que a raiz da árvore **sempre** conterá o maior elemento.

Essa não é uma max-heap!

Essa não é uma max-heap!

Por ser uma árvore binária completa, podemos representá-la em forma de array de tal forma que:

- \cdot right(i) = 2 * i + 1
- $\cdot \ left(i) = 2 * i + 2$

Para transformar uma lista em uma Max-Heap, devemos aplicar um algoritmo de *reparação* da metade até o começo.

Esse algoritmo verificar se um certo nó está na posição correta, caso não esteja, move ele para baixo até atingir uma posição que satisfaça as condições do Max-Heap.


```
void max heapify(registro *base, int node, int n) {
    int left = 2*node + 1, right = 2*node + 2;
    int largest = node;
    if (left<n && base[left].key > base[largest].key])
        largest = left;
    if (right <n && base[right].key > base[largest].key])
        largest = right;
    if (largest != node)
        swap(base+node, base+largest);
        max heapify(base, largest, n);
```


	node							left right		
(9	1	2	3	4	5	6	7	8	
8	88	56	100	2	25	32	1	99	21	

node								
0	1	2	3	4	5	6	7	8
88	56	100	99	25	32	1	2	21

	node							left right		
0	1	2	3	4	5	6	7	8		
88	99	100	56	25	32	1	2	21		

	node				left right			
0	1	2	3	4	5	6	7	8
100	99	88	56	25	32	1	2	21

Com isso, basta repetir *n* vezes o procedimento:

- Troca o primeiro elemento pelo último (o último está na posição correta)
- · Reduz n em 1
- · Aplica **heapify** na raiz


```
void heapSort(registro *base, int n) {
    for (int i=n/2-1; i>=0; i--)
        max_heapify(base, i, n);
    for (int i=n-1; i>0; i--)
        swap(base, base+i);
        --n;
        max_heapify(base, 0, n);
```


n 								
0	1	2	3	4	5	6	7	8
1	2	21	25	32	56	88	99	100

	Insert	Bubble	Select	Quick	Merge	Неар
estável	✓	✓			✓	
in-place	✓	✓	✓	✓		✓
online	✓					
adaptivo	✓	✓				

Complexidade Assintótica

Cada chamada de **heapify** tem complexidade $O(\log n)$, esse procedimento é chamado n vezes, sendo assim temos complexidade $O(n \log n)$ em todos os casos.

Complexidade Assintótica

	Insert	Bubble	Select	Quick	Merge	Неар
melhor pior médio	$O(n)$ $O(n^2)$ $O(n^2)$	$O(n)$ $O(n^2)$ $O(n^2)$	$O(n^2)$ $O(n^2)$ $O(n^2)$	$O(n \log n)$ $O(n^2)$ $O(n \log n)$	O(n log n) O(n log n) O(n log n)	O(n log n) O(n log n) O(n log n)

Até então os melhores algoritmos tem um melhor caso de $O(n \log n)$, podemos fazer melhor?

Em casos específicos em que:

- · Os dados estão bem distribuídos
- · Sabemos a faixa de valores

Podemos construir um algoritmo com complexidade O(n).

Um desses algoritmos é chamado **Bucket Sort**. A ideia geral é criar k baldes sendo que cada balde representa uma faixa de valores.

Para cada registro da lista, insere ele no balde correspondente.

Figura 1: FONTE: https://en.wikipedia.org/wiki/Bucket_sort

No caso de cada balde conter apenas um registro, basta retirá-los na ordem dos baldes e eles estarão ordenados.

Caso contrário, basta ordenar os registros dentro de cada balde e depois desempacotá-los.

Figura 2: FONTE: https://en.wikipedia.org/wiki/Bucket_sort

A quantidade de operações para colocar cada registro dentro do balde é na ordem de O(n).

Para retirá-los, também O(n).

A ordenação, podemos utilizar Insertion Sort que, para poucos elementos e quase ordenados, tem custo $O(k \cdot n)$.


```
void bucketSort(registro *base, int n, int n_buckets) {
   info ** buckets = malloc(sizeof(info *)*n_buckets);
   registro * x = malloc(sizeof(registro)*n);
   int k, j, M=base[0].key;

for (int i=1; i<n; i++) M = MAX(base[i].key, M);</pre>
```



```
/* remove do balde e ordena */
k=0: j=0:
for (int i=0; i<n buckets; i++)</pre>
    while (buckets[i]!=NULL)
        x[k] = base[buckets[i]->x]:
        buckets[i] = buckets[i]->prox;
        ++k;
    insertionSort(x + j, k - j);
    j = k;
```


	Insert	Bubble	Select	Quick	Merge	Неар	Bucket
estável in-place online adaptivo	\ \ \ \	✓ ✓ ✓	✓	✓	✓	✓	

Complexidade Assintótica

Apesar de o melhor caso e caso médio a complexidade ser da ordem de O(n), no pior caso temos que todos os elementos são alocados para um único balde e, nesse caso, a complexidade é a mesma do Insertion Sort, $O(n^2)$.

Uma análise cuidadosa dos dados pode evitar o pior caso.

Complexidade Assintótica

	Insert	Bubble	Select	Quick	Merge	Неар	Bucket
melhor pior médio	$O(n)$ $O(n^2)$ $O(n^2)$	$O(n^2)$	(/	$O(n \log n)$ $O(n^2)$ $O(n \log n)$	()	$O(n \log n)$	$O(n)$ $O(n^2)$ $O(n)$

Considere o algoritmo que determine o maior valor entre dois números:

```
int maior(int x, int y) {
    if (x>y) return x;
    return y;
}
```


E se quisermos adaptar para três números?

```
int maior(int x, int y, int z) {
    if (x>y)
       if (x>z) return x;
       return z;
    } else {
       if (y>z) return y;
       return z;
```


Quantas comparações precisamos fazer para n elementos?

Podemos representar isso como uma árvore de comparações (vamos alterar nosso problema para ordenação):

Cada nó externo dessa árvore representa uma permutação dos elementos de uma lista, e cada nó interno uma comparação feita para ganhar informação.

Com isso segue que temos n! nós externos em uma árvore que ordena n elementos sem redundância. Sendo essa uma árvore binária, temos então um limitante em $O(\log n!)$ comparações.

Sabemos que:

$$n! = 1 \cdot 2 \cdot \ldots \cdot n$$

е

$$\log 1 \cdot 2 \cdot \ldots \cdot n = \log 1 + \log 2 + \ldots + \log n$$

Como estamos fazendo uma análise assintótica, podemos dizer que $O(\log n!) = O(n \log n)$.

Ou seja, os algoritmos de comparação estão limitados nessa ordem de complexidade.