

Topics to be covered

- Revision of Last Class
- Law of Equivalence
- Concentration of Mixtures
- Triek
 - Magarmach Practice Questions (MPQ) & Home work from modules

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Z. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your Magarmach Practice Questions.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

- 7. Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- 6. Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.

Revision of Last class

Eq. mars = Gr.M.M.

Acid Bore ion element ionic Compa

no.4t root [Charge] | Valency | Charge

cation

or

enion

Gram Equivalent

Exactly. Equal grams can't neutralize equal moles unles they're equivalent.

Gram Equivalent = Mass/Eq.Mass

 Equivalents react in equal numbers, not grams

how much you bring, it's about how much you react.

Normality (N)

N= M x nfactur

ORMAL

IM on Im

IM On Im > more Conc aq. solⁿ IM > I mole > 1000ml soll 1000g solution Im 3 I male > 1000g solution Non-ag. sol dx 1g Iml M more Conc.

2 Cares

IM mone conc.

1 m more Conc.

All formulas of Gram Equivalents

Law of Equivalence

gegreacted = geg peroduced each reactant of each peroduct

2) L.R. -> 9. eq. deaxt

13 L.R. -> 9. eq. deaxt

14 9eq.

19 + 19. eq.

gegaf Hessearct = gegaf Clessearct = gegaf Hill
produce

1106(d) + 346(d) -> 51043(d)

gengly reacted = genagth, reacted = genagling produce

LAW OF EQUIVALENCE

INau = INat + I ci geq Nacu = geq grat = geq g ci

1H2SOM -> 8Ht + 1500 geog of H2SON = geog Ht = geog SON

1 Boy + 1 Gird -> 1 Morrariage.

Boys	Girls	Marriages
50	80	50
60	40	но
100	100	100

If metal oxide has 60 % oxygen. Find equivalent mass of metal?

mars of metal = 100-60 = 409

of of metal is put in ain 2 it's mass inc. by 241/ find eq mass of metal? Metal + oxygen > metal oxide. Em = 100 = 33.337

If metal chloride has 29 % Metal. find equivalent mass of metal?

If 80 g of Calcium reacts with excess of oxygen. Find mass of CaO formed.

$$\underbrace{(a + 0) \rightarrow (a)}_{\text{Ca}} = \underbrace{(a)}_{\text{Ca}} = \underbrace{($$

If 40 g of CaCO₃ is treated with 40 g of HCl, which of the reactants will act as limiting reagent?

2 HCI

- Both (A) and (B)
- 4 None of these

Question (NCERT: PL-23 | NV, JEE Main Jan. 29, 2024 (II))

If 50 mL of 0.5 M oxalic acid is required to neutralize 25 mL of NaOH solution, the amount of NaOH in 50 mL of given NaOH solution is _____ g.

Question (NCERT: PL-20 | NV, JEE Main April 06, 2023 (I))

If 5 moles of BaCl₂ is mixed with 2 moles of Na₃PO₄, the maximum number of moles of Ba₃(PO₄)₂ formed is _____ (Nearest integer)

108 Ag 355 23 Na, MN, 6

The weight of AgCl precipitated when a solution containing 5.85 g of NaCl is added to a solution containing 3.4 g of AgNO₃ is:

Concentration of Mixtures

Concentration of Mixtures If Nature is not Same i.e. They React with Each Other

Find M of H⁺ in resulting mixture If 5 L of 2 M H₂SO₄ is mixed with 10 L of 1 M NaOH?

$$N_{H}^{+} = M_{H}^{+} = \frac{10}{5+10} = \frac{10}{15} = \frac{2}{3} = 0.66 \text{ M}$$

Find M of OH in resulting solution If 2 L of 5 M NaOH is mixed with 2 L of 1 N H₂SO₄?

$$4!$$
 $90r$ Left = $|2x| - 2x5x1 = 8$

QUESTION

1 9 eq acid > 9 eq base = acidic solh.

Pind nature of resulting solution and also normality of resulting solution if

2 L of 1 M KOH is mixed with 1 L of 1M HCl.

geg left(OH)= | 1x1x1-2x1x1 | Sell-> bosic

WE in Vall with VomeN2 Mell

Concentration of Mixtures If Nature is Same i.e. They do not React with Each Other

Find M of mixture is 2 L of 1 M HCl is mixed with 4 L of 2 N H₂SO₄.

$$qeqH^{\dagger} = 2x1x1 + 4x2 = 10$$

 $N_{H}^{\dagger} = M_{H}^{\dagger} - \frac{10}{2+4} = \frac{10}{6} = \frac{5}{3} = 1.66M$

Find molarity of mixturs when 1 L of 2 M NaOH and 2 L of 1 M Sr(OH)₂ are mixed together.

$$M_{OH} = \frac{1\times2\times1+2\times1\times2}{1+2} = \frac{6}{3} = 2M$$

(a) Find M of Cl⁻ if 1 L of 2 M NaCl is mixed with 2 L of 1 M CaCl₂?

$$M_{u} = \frac{1\times 2\times 1 + 2\times 1\times 2}{1+2} = \frac{6}{3} = 2M$$

(b)
$$M_{Na}^{+} = \frac{1 \times 2 \times 1 + 0}{1 + 2} = \frac{2}{3} M$$

$$\bigcirc M_{Cq}^{2+} = \frac{0 + 2 \times 1 \times 2}{1 + 2} = \frac{U}{3}M$$

QUESTION JEE ADVANCE 2011

Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water gave a solution of density 1.15 g/mL. The molarity of the solution is $M = Ne^{-\frac{1}{2}} = \frac{2 \times 1/15 \times 1/600}{2 \times 1/15 \times 1/600}$

$$\frac{2}{2.00 \, \text{M}} \, \omega_{A} = \frac{10009}{4 \, \text{GeV}} \, \frac{2.00 \, \text{M}}{4 \, \text{GeV}} \, \frac{159 \, \text{m}}{4 \, \text{M}} \, \frac{10009}{4 \, \text{M}} \, \frac{1000$$

4) 2.22 M 1120 =
$$V(ml) \times 1.15$$

 $V(ml) = 1120 ml$
 1.15

QUESTION JEE Advance 2016

The mole fraction of a solute in a solution is 0.1. At 298 K, molarity of this solution is the same as its molality. Density of this solution at 298 K is 2.0 g cm⁻³.

The ratio of the molecular weights of the solute and solvent, $(\frac{MW_{solute}}{MW})$, is $\frac{MB}{MW}$

$$\frac{\chi_{OR} = 0117}{\chi_{AR} = 019} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{\chi_{R}}{\chi_{CL}} = \frac{\chi_{R}}{\chi_{CL}}$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{\chi_{R}}{\chi_{CL}}$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{R}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$\frac{\chi_{OR} = 0197}{\chi_{CL}} \frac{\eta_{A}}{\eta_{A}} = \frac{1}{9} M = m$$

$$M_{Na} + = \frac{0.1 \times 1 \times 1 + 0}{0.2}$$

Magarmach Practice Questions (MPQ)

The density of NaOH solution is 1.2 g cm⁻³. The molality of this solution is m. (Round off to the nearest integer)

[Use : Atomic masses : Na = 23.0 u, O = 16.0 u, H = 1.0 u. Density of $H_2O = 1.0$ gem⁻³)

An aqueous solution of ethanol (C_2H_5OH) has density 1.025 g/mL and it is 2 M. What is the molality of this solution? (Molar mass of ethanol = 46 g)

- 1.79
- 2.143
- 3 1.951
- 4 None of these

A solution of sugar is obtained by mixing 200 g of its 25% solution and 500 g of its 40% solution (both by mass). The mass percentage of the resulting sugar solution is _____. (Nearest integer) [JEE MAINS 11 Apr. 2023 (Shift-I)]

The density of 3 M solution of NaCl is 1.0 g mL⁻¹. Molality of the solution is $\times 10^{-2}$ m. (Nearest integer).

Given: Molar mass of Na and Cl is 23 and 35.5 gmol⁻¹ respectively.

[JEE MAINS 1 Feb. 2023 (Shift-I)]

If 80 g of copper sulphate $CuSO_4 \cdot 5H_2O$ is dissolved in deionised water to make 5 L solution, the concentration of the copper sulphate solution is ____x × 10^{-3} mol L⁻¹. The value of x is ____.

[Atomic masses: Cu: 63.54 u, S: 32 u, O:16 u, H: 1 u]

[JEE MAINS 1 Sept. 2021 (Shift-II)]

An aqueous KCl solution of density 1.20 g mL⁻¹ has a molality of 3.30 mol kg⁻¹. The molarity of the solution in mol L⁻¹ is ______. [Molar mass of KCl = 74.5]

[JEE MAINS 26 Aug. 2021 (Shift-I)]

Question (NCERT: PL-20 | NV, JEE Main April 08, 2025 (II))

20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol⁻¹)

