

Curves in Surfaces and Mapping Class Group

Anthony Morales, Zijian Rong, Wendy Wang, Bradley Zykoski, Jun Li, Becca Winarski

LOG(M)

Laboratory of Geometry at Michigan

Introduction

Goal

To understand constructions of psuedo-Anosov maps and possibly produce a novel construction.

Pseudo-Anosov maps are a particular type of homeomorphisms of topological spaces known as *surfaces*. Homeomorphisms are of utmost interest to topologists, and pseudo-Anosov maps are some of the more complicated ones.

Definition. A surface is a 2-manifold, i.e. a topological space S with the following properties:

(a) S is locally Euclidean, i.e. for all $p \in S$ there exist an open neighborhood $U \subset S$ of p and an open subset $V \subset \mathbb{R}^2$ such that U and V are homeomorphic.

(b) S is Hausdorff

(c) S is second-countable.

Figure 1: A sphere

Figure 1: A torus

Figure 1: A genus two

Figure 1: Examples of surfaces

Preliminary and Background

Given a compact orientable surface S, the set of all homeomorphisms from S to itself that preserves the orientation of S forms a group, which is denoted as $\mathrm{Homeo}^+(S)$. We introduce the homotopy relation as an equivalence relation on this group. Specifically, if $h \in \mathrm{Homeo}^+(S)$, we let [h] denote the set of all homeomorphisms homotopic to h, and we call [h] the mapping class of h. Then, the collection of all mapping classes of S still forms a group, which we call the *mapping class group* of S, denoted by $\mathrm{Mod}(S)$.

Theorem 1: (Classification of Mapping Class Group)

Given a compact, orientable surface S, let h be a homeomorphism from S to itself. Then, exactly one of the following is true:

- h is periodic, i.e. some power of h is the identity.
- h preserves some finite union of disjoint simple closed curves on S. (If this is the case, we call h *reducible*).
- \bullet h is pseudo-Anosov, i.e. no power of h fixes any curve on S.

All constructions of pseudo-Anosov maps that we have studied are constructed as a composition of Dehn twists.

Figure 2: Demonstration of Dehn Twist

It is widely known in the literature that there is a standard construction of pseudo-Anosov maps called Penner's construction.

Theorem 2: (Penner's Construction)

Let $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_n\}$ be a pair of multicurves on a surface S. Suppose that A and B are in minimal position and the complement of $A \cup B$ is a union of disks and once punctured disks. Then any product of positive Dehn twists about a_j and negative Dehn twists about b_k is pseudo-Anosov, provided that all n + m Dehn twists appear in the product at least once.

This construction is fairly general, so Penner made the following conjecture.

Conjecture (Penner, 1988). Every pseudo-Anosov mapping class has a power that arises from Penner's construction.

However, this conjecture has been disproved and it has been shown that there exist pseudo-Anosov maps such that no power of them come from Penner's construction for most surfaces (Shin & Strenner, 2015).

Methods and Results

Construction of a pseudo-Anosov Map

Verberne (2019) proposes an method to construct pseudo-Anosov maps, some of which not coming from Penner's Construction.

Theorem (Verberne, 2019). On $S_{0,6}$, the composition of Dehn twists around the curves $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$

 $\phi = D_5^2 D_2^2 D_4^2 D_1^2 D_2^2 D_0^2$

is a pseudo-Anosov map.

A pseudo-Anosov Map Visualized in Polygonal Representation [[2]]

Figure 3: A curve on Figure 3: The image of the Figure 3: The image of the the eight-times-punctured curve under ϕ . curve under ϕ^2 .

In fact, no curve on the surface is preserved under $\phi^n \ \forall n \in \mathbb{N}$. This is a characterization of pseudo-Anosov maps.

Future Directions

These constructions using curves on surfaces contain gaps, i.e. they do not give some power of every pseudo-Anosov map for an arbitrary surface. In particular, there are two questions our team would like answered.

Question 1 Do there exist constructions of pseudo-Anosov maps which are different from current constructions?

Question 2 Using train track methods, does there exist a construction such that every pseudo-Anosov map has a power coming from it?

Answering Question 1. Flipper can guide our intuition. For example, a combination of half-twists gave examples of pseudo-Anosov maps, but we still need to answer if this is different from the other constructions.

Answering Question 2. This will not easily be answered. Answering Question 1 will guide the direction of this question. In particular, if the current constructions are exhaustive, then Question 1, and thus Question 2, will be false.

References

[1] Bestvina, Mladen, and Michael Handel. *Train-tracks for surface homeomorphisms*. Topology 34.1 (1995): 109-140.

[2] Mark Bell: flipper (Computer Software), pypi.python.org/pypi/flipper, (2013–2018), Version ¡¡version number¿¿.

[3] Hitchin, Nigel. Geometry of Surfaces. Course notes. 2013.

[4] Clay, Matt, and Dan Margalit, editors. Office Hours with a Geometric Group Theorist. Princeton University Press, 2017.

[5] Shin, Hyunshik, and Balázs Strenner. *Pseudo-Anosov mapping classes not arising from Pennerâs construction.* Geometry & Topology 19.6 (2016): 3645-3656.

[6] Verberne, Yvon. A construction of pseudo-Anosov homeomorphisms using positive twists. arXiv:1907.05467 (2019).