Homework 5. Shortest Path due: 6/7

1. COST MATRIX

	0	1	2	3	4	5	6
0	100	2	4	5	100	100	100
1	100	100	100	2	7	100	100
2	100	100	100	1	100	4	100
3	100	2	1	100	4	3	100
4	100	7	100	4	100	1	5
5	100	100	4	3	1	100	7
6	100	100	100	100	7	5	100

- 2. Shortest Path Algorithm 은 교재 또는 수업시간의 알고리즘을 사용할 것
 - * More informations on the Program
 - 1) main()
 - print adjacency matrix
 - call shortest(vertex 0)
 - 2) Shortest(0) //start vertex '0'
 - 초기화 (visited[7] ← false, dist[0] ← cost[0][I])
 - while (<7)
 - . u <= choose(dist, 7) //find min node
 - . for (I= 0 ~ 7) find shortest //algorithm 참조
 - . print dist[I]
 - 3) choose(dist, 7)

for all vertex, if not visited, find min node

- 3. Correct Output 은 다음과 같다.
 - 1) Adjacency Matrix => Cost matrix 를 출력할 것
 - 2) Shortest path distance

Dist: 0 2 4 4 9 100 100

Dist: 0 2 4 4 9 8 100

Dist: 0 2 4 4 8 7 100

Dist: 0 2 4 4 8 7 14

Dist: 0 2 4 4 8 7 13

Dist: 0 2 4 4 8 7 13