計量経済 II: 宿題 11

村澤 康友

提出期限: 2024年1月15日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl で CI(1,1) 過程を生成する手順は以下の通り.
 - (a) 正規乱数 *u*, *v* を生成.
 - (b) u からランダム・ウォーク x を生成 (宿題 10 を参照).

観測数 100 の時系列データセットを作成し、 $\mathrm{CI}(1,1)$ 過程 $\{x_t,y_t\}$ を生成して以下の分析を行いなさい.

- (a) $\{x_t, y_t\}$ と $\{\Delta x_t, \Delta y_t\}$ の時系列グラフを並べて比較しなさい.
- (b) $\{x_t, y_t\}$ と $\{\Delta x_t, \Delta y_t\}$ の散布図を並べて比較しなさい.
- (c) 以下の 4 つの単回帰の回帰係数の OLS 推定値を比較しなさい.
 - i. y_t の x_t 上への単回帰
 - ii. x_t の y_t 上への単回帰
 - iii. Δy_t の Δx_t 上への単回帰
 - iv. Δx_t の Δy_t 上への単回帰
- 2. gretl で Engle-Granger の共和分検定を実行する手順は以下の通り.
 - (a) メニューから「モデル」→「多変量時系列」→「共和分検定(Engle-Granger)」を選択.
 - (b)「ラグ次数」を入力.
 - (c)「検定する変数」を選択.
 - (d) 定数項・トレンドの扱いを選択.
 - (e) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (f)「OK」をクリック.

gretl のサンプル・データ greene11_3 は, $1960\sim1982$ 年のアメリカのマクロの所得と消費の年次データである.この 2 変数の対数系列について,以下の 2 つの Engle-Granger の共和分検定の結果を比較しなさい.

- (a) 消費を所得に共和分回帰(定数項・トレンドあり)
- (b) 所得を消費に共和分回帰(定数項・トレンドあり)

解答例

1. (a) $\{x_t, y_t\}$ の時系列グラフ

$\{\Delta x_t, \Delta y_t\}$ の時系列グラフ

(b) $\{x_t, y_t\}$ の散布図

 $\{\Delta x_t, \Delta y_t\}$ の散布図

d_y 対 d_x (最小二乗フィット付)

(c) i. y_t の x_t 上への回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–100 従属変数: y

		係数		標準誤差		t-ratio	p 値	
	const	0.041	1920	0.1049	947	0.3925	0.695	5
	X	0.984	016	0.0309	9388	31.81	0.000	0
Mean	depender	nt var	-0.9	63050	S.D.	dependen	ıt var	3.350637
Sum se	quared re	esid	98.	16566	S.E.	of regress	ion	1.000845
\mathbb{R}^2			0.9	11678	Adjı	usted \mathbb{R}^2		0.910777
F(1, 98)	3)		101	1.574	P-va	due(F)		1.92e-53
Log-lik	elihood		-140	0.9682	Aka	ike criterio	n	285.9363
Schwar	z criterio	on	291	1.1467	Han	nan–Quin	n	288.0450
$\hat{ ho}$			-0.0	45315	Dur	bin-Watso	n	2.072412
への回帰	計							

ii. x_t の y_t 上への回帰

モデル 2: 最小二乗法 (OLS), 観測: 1–100 従属変数: x

	係数	標準誤差	t-ratio	p 値	
const -0	0.128301	0.101086	-1.269	0.2074	
у (0.926487	0.0291300	31.81	0.0000	
Mean dependent va	-1.020	554 S.D.	dependent	t var	3.251216
Sum squared resid	92.42	648 S.E.	of regressi	on	0.971147
R^2	0.911	678 Adjı	usted \mathbb{R}^2		0.910777
F(1,98)	1011.	574 P-va	due(F)		1.92e–53
Log-likelihood	-137.9	560 Aka	ike criterio	n	279.9120
Schwarz criterion	285.1	224 Han	nan–Quinr	1	282.0208
$\hat{ ho}$	0.048	273 Dur	bin-Watso:	n	1.892261

iii. Δy_t の Δx_t 上への回帰

モデル 3: 最小二乗法 (OLS), 観測: 2–100 (T=99) 従属変数: d_-y

	係数	標準誤差	t-ratio	p 値
const	0.00365426	0.145585	0.02510	0.9800
d_x	1.01732	0.135365	7.515	0.0000

Mean dependent var	0.040074	S.D. dependent var	1.811794
Sum squared resid	203.3105	S.E. of regression	1.447751
R^2	0.368002	Adjusted \mathbb{R}^2	0.361486
F(1,97)	56.48141	P-value (F)	$2.83e{-11}$
Log-likelihood	-176.0958	Akaike criterion	356.1916
Schwarz criterion	361.3819	Hannan-Quinn	358.2916
$\hat{ ho}$	-0.447264	Durbin-Watson	2.851917

iv. Δx_t の Δy_t 上への回帰

モデル 4: 最小二乗法 (OLS), 観測: 2–100 (T=99) 従属変数: d_x

	係数	標準誤差	$t ext{-ratio}$	p 値
const	0.0213033	0.0867861	0.2455	0.8066
$d_{-}v$	0.361736	0.0481325	7.515	0.0000

Mean dependent var	0.035799	S.D. dependent var	1.080377
Sum squared resid	72.29234	S.E. of regression	0.863297
R^2	0.368002	Adjusted \mathbb{R}^2	0.361486
F(1,97)	56.48141	P-value (F)	$2.83e\!-\!11$
Log-likelihood	-124.9120	Akaike criterion	253.8241
Schwarz criterion	259.0143	Hannan-Quinn	255.9240
$\hat{ ho}$	-0.174921	Durbin-Watson	2.348638

2. (a) Engle-Granger の共和分検定(消費を所得に共和分回帰)

ステップ 1: 1_C の単位根検定

Augmented Dickey-Fuller 検定: 1_C 但し、1個の (1-L)1_C のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項及びトレンド項付きの検定

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

(a-1) **の**推定値 (estimated value): -0.177797

検定統計量: tau_ct(1) = -1.80733

漸近的 p 値 0.7015

e **の1次の自己相関係数**: 0.032

ステップ 2: 1_Y の単位根検定

Augmented Dickey-Fuller 検定: 1_Y 但し、1個の (1-L)1_Y のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項及びトレンド項付きの検定

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

(a-1) **の推定値** (estimated value): -0.0820542

検定統計量: tau_ct(1) = -0.898131

漸近的 p 値 0.9548

e **の1次の自己相関係数**: -0.005

ステップ 3: 共和分回帰

共和分回帰 -

最小二乗法 (OLS), 観測: 1950-1985 (T = 36)

従属変数: 1_C

	係数		標準調	呉差	t 値	p1	値	
const	1.44213		0.249	031	5.791	1.79	9e-06	***
1_Y	0.76979	6	0.037	4528	20.55	2.22	2e-020	***
time	0.00745	973	0.001	29954	5.740	2.07	7e-06	***
Mean depende	ent var	7.18	9945	S.D.	dependent	var	0.359	9778
Sum squared	resid	0.00	2220	S.E.	of regress	sion	0.008	3203
R-squared		0.99	9510	Adjus	sted R-squa	ared	0.999	9480
Log-likeliho	ood	123.	4036	Akail	ke criterio	on	-240.8	3072
Schwarz crit	erion	-236.	0566	Hanna	an-Quinn		-239.1	1491
rho		0.20	5512	Durb	in-Watson		1.518	3837

ステップ 4: uhat **の単位根検定**

Augmented Dickey-Fuller 検定: uhat 但し、1個の (1-L)uhat のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項を付けずに検定

モデル: (1-L)y = (a-1)*y(-1) + ... + e (a-1) の推定値 (estimated value): -1.06614

検定統計量: tau_ct(2) = -5.17588

漸近的 p 値 0.0004058

e **の1次の自己相関係数**: -0.018

共和分関係の証拠 (evidence) が存在するのは次の条件が満たされた場合である:

- (a) 個々の変数に対しては、単位根仮説は棄却されない
- (b) 共和分回帰からの残差 (uhat) に対しては、単位根仮説は棄却される

(b) Engle-Granger の共和分検定(所得を消費に共和分回帰)

ステップ 1: 1_Y の単位根検定

Augmented Dickey-Fuller 検定: 1_Y 但し、1個の (1-L)1_Y のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項及びトレンド項付きの検定

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

(a-1) **の推定値** (estimated value): -0.0820542

検定統計量: tau_ct(1) = -0.898131

漸近的 p 値 0.9548

e **の1次の自己相関係数**: -0.005

ステップ 2: 1_C の単位根検定

Augmented Dickey-Fuller 検定: 1_C 但し、1個の (1-L)1_C のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項及びトレンド項付きの検定

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

(a-1) **の推定値** (estimated value): -0.177797

検定統計量: tau_ct(1) = -1.80733

漸近的 p 値 0.7015

e **の1次の自己相関係数**: 0.032

ステップ 3: 共和分回帰

共和分回帰 -

最小二乗法 (OLS), 観測: 1950-1985 (T = 36)

従属変数: 1_Y

	係数		標準	誤差		t 値]	p 値	
const	-1.2559	2	0.38	4602		-3.265	0.	0025	***
1_C	1.2049	2	0.05	86230		20.55	2.	22e-020	***
time	-0.0064	8730	0.00	200189	9	-3.241	0.	0027	***
Mean depend	lent var	7.287	405	S.D.	dej	pendent	var	0.365	568
Sum squared	l resid	0.003	475	S.E.	of	regress	sion	0.0102	262
R-squared		0.999	257	Adjus	ste	d R-squa	ared	0.9992	212
Log-likelih	lood	115.3	387	Akail	ce o	criterio	on	-224.6	775
Schwarz cri	terion	-219.9	269	Hanna	an-(Quinn		-223.0	194
rho		0.232	661	Durb	in-V	Vatson		1.447	101

ステップ 4: uhat **の単位根検定**

Augmented Dickey-Fuller 検定: uhat 但し、1個の (1-L)uhat のラグを含む

標本のサイズ: 34 帰無仮説: a = 1

定数項を付けずに検定

モデル: (1-L)y = (a-1)*y(-1) + ... + e

(a-1) **の**推定値 (estimated value): -0.965207

検定統計量: tau_ct(2) = -4.48665

漸近的 p 値 0.005834

e **の1次の自己相関係数**: 0.018

共和分関係の証拠(evidence)が存在するのは次の条件が満たされた場合である:

- (a) 個々の変数に対しては、単位根仮説は棄却されない
- (b) 共和分回帰からの残差 (uhat) に対しては、単位根仮説は棄却される