Progettazione, Valutazione e Comparazione di sistemi biometrici

Parte XI

Indice

1	Val	utazione di un sistema biometrico	2
	1.1	Technology, Scenario, Operational	2
	1.2	Quale valutazione usare?	
	1.3	Intervallo di confidenza dei parametri	3
2	Cor	nparazione di sistemi biometrici	4
	2.1	Indici aggiuntivi: security, convenience	5
3	Standard per la biometria		7
	3.1	Standard ISO	7
	3.2	Standard BioAPI	7
4	Progettazione di un sistema monomodale		8
	4.1	8 domande per scegliere il tratto	9
	4.2	Classificazione dei sistemi biometrici rispetto alla privacy	
	4.3	Livelli di accuratezza da impostare	11
	4.4	Utenti	11
	4.5	Sistema di backup	
	4.6	Costi del sistema	12
	4.7	Passi successivi	
5	Bio	metria nel cloud - BaaS	13

Valutazione di un sistema biometrico

1.1 Technology, Scenario, Operational

Un sistema biometrico può essere valutato secondo tre aspetti:

• Technology

- vengono fatti test algoritmici su DB di sample

• Scenario

 viene controllato il sistema biometrico in un ambiente che simula l'applicazione; si testano diverse combinazioni di sensori e algoritmi, con l'obiettivo di trovare quella migliore per il sistema finale

• Operational

simile a quella precedente, ma con uno specifico algoritmo o applicazione, sul luogo esatto e con gli utenti finali; si ottengono i risultati più vicini a quelli che compariranno nella applicazione finale

Ogni valutazione ha le sue regole e i suoi parametri da seguire; quando si compara un sistema biometrico è bene avere informazioni da tutte e 3 i tipi di valutazioni.

1.2 Quale valutazione usare?

- Durante le fasi di sviluppo di algoritmi/sistemi, di solito si impiegano i test **tecnologici**
- in fase di valutazione su **scenario** la popolazione è chiusa e limitata, quindi la veridicità statistica dei dati può essere compromessa

1.3 Intervallo di confidenza dei parametri

- I tassi di errore non significano quasi nulla se non è possibile associare ad ogni misura il suo intervallo di confidenza
- Gli intervalli di confidenza solitamente vengono costruiti da un modello statistico che descrive al meglio possibile l'esperimento

Comparazione di sistemi biometrici

L'ideale è avere, oltre ai numeri puri come EER, FTE, FTM, ..., i tre grafici di

• Distribuzioni

• DET/ROC

• CMC

2.1 Indici aggiuntivi: security, convenience

Le zone della curva DET:

- $\bullet\,$ basso FMR \to zona di security
- $\bullet\,$ basso FNMR \to zona di convenience

- Nelle zone di **sicurezza** c'è una bassa probabilità che un utente non abilitato possa entrare in un area riservata; potremo avere un più alto tasso di utenti abilitati che non entrano al primo tentativo, ma che dovranno mostrare il loro tratto biometrico al sensore più volte per entrare
 - $-\ accesso\ a\ struttura\ critica$
- Nelle zone di **convenienza** il sistema tende a non far perdere tempo agli utenti abilitati, in quanto con bassa probabilità un utente abilitato non passerà al primo tentativo; avremo un tasso leggermente più alto di utenti non abilitati che entreranno nell'area controllata
 - $-\ tornello\ della\ metropolitana$

Standard per la biometria

3.1 Standard ISO

Si occupa dell'interscambio dei dati biometrici fra istituzioni e aziende.

3.2 Standard BioAPI

È uno standard *informale* che già dal 2000 contiene le **specifiche di interazione dei moduli componenti il sistema biometrico**.

Fornisce un modello di autenticazione ad alto livello per ogni tecnologia biometrica disponibile sul mercato.

Inlcude le specifiche di funzionalità di:

- Enrollment
- Verification
- Identification

e delle interfacce con i DB in modo tale da permettere al *Biometric Service Provider (BSP)* di gestire template nel DB in modo ottimale.

Fornisce anche primitive per permettere alla applicazione di gestire l'acquisizione dei campioni anche su **sistemi distribuiti**, con l'acquisizione su un modulo *client* ed invece enrollment, verification e identification su un modulo *server*.

Progettazione di un sistema monomodale

È un problema molto complesso, ci sono molti parametri di giudizio difficilmente stimabili.

4.1 8 domande per scegliere il tratto

- 1. È una applicazione di autenticazione o identificazione?
 - se identificazione, occorre controllare le proprietà di:
 - scalabilità
 - unicità del tratto
- 2. È un sistema semiautomatico o automatico?
 - se semiautomatico:
 - occorre prevedere una persona sempre al fianco del sensore
- 3. Gli **utenti sono abituati**? Possono essere convinti ad abituarsi?
 - le evidenze mostrano che le performance migliorano notevolmente se gli utenti imparano a farsi acquisire e sono collaborativi
- 4. È un sistema aperto o coperto/nascosto?
 - alcuni tratti biometrici non possono essere acquisiti senza mettere a conoscenza il soggetto, per privacy o per le caratteristiche del tratto biometrico stesso
- 5. I soggetti sono collaborativi?
 - se i soggetti sono non collaborativi (criminali), è necessario usare tratti che non possono essere cambiati
 - evitare tratti biometrici comportamentali
- 6. Quali sono i requisiti sulla capacità di memorizzazione del sistema?
 - i template hanno dimensione che può variare moltissimo (pochi byte per le impronte a molto kbyte per la voce)
- 7. Quanto sono stringenti le **richieste sulle performance** (accuratezza, velocità, distanze di acquisizione, ...) ?
 - è possibile unire 2 tratti veloci in un sistema multimodale per ottenere l'accuratezza richiesta, che singolarmente i tratti non riuscirebbero a garantire
- 8. Quali tipi di tratti biometrici sono **accettati dalla popolazione** degli utenti?
 - l'accettazione varia molto in base al livello culturale, etico, sociale religioso ed igienico

4.2 Classificazione dei sistemi biometrici rispetto alla privacy

- Applicazioni a protezione della privacy
 - La biometria protegge informazioni personali che potrebbero altrimenti essere compromesse
- Applicazioni compatibili con la privacy
 - Progettate tenendo conto di tecniche di protezione della privacy (la maggior parte delle applicazioni attuali)
- Applicazioni neutrali rispetto alla privacy
 - Sistemi di autenticazione per dispositivi elettronici
- Applicazioni invasive rispetto alla privacy
 - Applicazioni di sorveglianza e alcuni servizi di identificazione nazionale

4.3 Livelli di accuratezza da impostare

Alcuni ordini di grandezza considerati come necessari:

- Autenticazione
 - -FNMR = 0.1%
 - -FMR = 0.1%
- Identificazione su larga scala (1 milione di ID)
 - -FNMR = 10%
 - -FMR < 0,0001% (meno di 1 errore su 1M match)
- Screening (500 ID)
 - -FNMR = 1%
 - -FMR = 0,001%

4.4 Utenti

Nella stesura del progetto occorre:

- definire la struttura/servizio da proteggere con il sistema biometrico
- definire le procedure di
 - system training (messa a punto dei parametri)
 - enrollment
- definire la classe degli utenti operatori sul sistema, e che operazioni possono eseguire
- prevedere la figura di impostore che potrebbe avere interesse a forzare il sistema

4.5 Sistema di backup

Nella stesura del progetto occorre definire:

- quale strategie sono da attuare se il sistema non dovesse funzionare (backup system)
- quali sono i costi del fermo del sistema biometrico

4.6 Costi del sistema

Nella stesura del progetto occorre definire e quantificare i seguenti costi:

- violazione del sistema
- strutture di sicurezza prima e dopo l'introduzione del sistema
- fermo del sistema biometrico
- costo medio dei failure to enroll
- $\bullet\,$ costo medio per la $user\ education$
- costo medio supervisory labor
- costo medio maintenance labor

4.7 Passi successivi

- Come acquisire i dati biometrici?
- Quale rappresentazione interna (sample) è migliore per gli algoritmi di estrazione delle feature?
- Quale tipo di feature estrarre dai sample?
- Con quali algoritmi le estraiamo?
- Dati due template, quale funzione e quale algoritmo di matching usiamo?
- Come organizziamo il DB dei template?
 - Numero di template per individuo? Occorre trovare un equilibrio tra accuratezza del matching e tempo di ricerca
 - Come organizziamo la divisione dei template del DB per aumentare efficienza delle ricerche (binning)?

Biometria nel cloud - BaaS

Come estensione dei BSP si hanno anche le Biometric Services Platform:

- Nuove soluzioni per fare riconoscimento biometrico basate sul cloud
- Vanno a semplificare installazione, uso, gestione e manutenzione del sistema biometrico
- Abbassano i costi e i tempi per iniziare ad usare un sistema biometrico, specialmente per grandi organizzazioni
- Necessitano di connessioni affidabili

• Vantaggi

- scalabilità
- costi
- affidabilità
- indipendenza dall'hardware
- accesso costante a dati privati e servizi

• Svantaggi

- dipendenza dal fornitore per prezzi e contratti
- privacy, usi non concordati, liste di proscrizione, ...