TEMAS RELATIVOS A LA DUALIDAD

El tema que trataremos a continuación nos permite calcular las posibles variaciones de los recursos, dentro de las cuales no altera la *estructura de la solución óptima obtenida*. Diremos que la estructura de una solución no altera si no hay intercambio de variables, ingreso de una y egreso de otra variable.

Más adelante precisaremos el tema.

Volvamos sobre nuestro problema modelo y la solución óptima obtenida.

$$6 x_1 + 16 x_2 \le 48000$$

 $12 x_1 + 6 x_2 \le 42000$
 $9 x_1 + 9 x_2 \le 36000$
 $x_1 \ge 0 ; x_2 \ge 0$
 $Z = 4 x_1 + 3 x_2 \text{ (máx)}$
cuya solución óptima es:

TABLA 1 [Volver]

			4	3	0	0	0
C_k	X_k	$\mathbf{B}_{\mathbf{k}}$	X_1	X_2	S_1	S_2	S_3
0	S_1	14000	0	0	1	5/3	- 26/9
4	X_1	3000	1	0	0	1/6	- 1/9
3	X_2	1000	0	1	0	- 1/6	2/9
$Z_{\rm j}$		15000	4	3	0	1/6	2/9
	Z_j - C_j		0	0	0	1/6	2/9

La dualidad del problema lineal consiste en trasponer la matriz de los coeficientes tecnológicos para proponer un nuevo problema lineal donde las filas se convierten en columnas y viceversa.

Para nuestro problema será:

6, 12 y 9 para la primera ecuación y 16, 6 y 9 para la segunda. Cambiamos los signos < por > y el objetivo de maximización por minimización.

Así resulta:

$$6 y_1 + 12 y_2 + 9 y_3 \ge 4$$

 $16 y_1 + 6 y_2 + 9 y_3 \ge 3$

Condiciones de no negatividad: $y_i \ge 0$ para i = 1,2, 3.

$$W=48000 y_1 + 42000 y_2 + 36000 y_3 (min)$$

El problema dual puede interpretarse económicamente con el problema del comprador que, pretende minimizar sus costos, en tanto que el anterior o primitivo, es el problema del vendedor que pretende maximizar sus beneficios.

Más allá de la interpretación, la idea es que la solución del problema dual nos permite el estudio de las variaciones de los recursos del problema.

Vamos a convertir la última tabla (óptima) del problema primitivo, en la última tabla del problema dual.

TABLA 2			48000	42000	36000	0	0
B_k	Y_k	C_k	\mathbf{Y}_1	Y_2	Y_3	T_1	T_2
42000	Y_2	1/6	-5/3	1	0	-1/6	1/6
36000	Y_3	2/9	26/9	0	1	1/9	-2/9
$W_{\rm j}$		15000	34000	42000	36000	-3000	-1000
	W_j - B_j		-14000	0	0	-3000	-1000

Daremos algunos detalles para la obtención de la última tabla, a partir de la tabla óptima del problema anterior, que denominaremos, desde ahora, problema primitivo.

Las variables del problema primitivo y su correspondencia con las variables del dual:

 X_1 se corresponde con T_1 X_2 se corresponde con T_2 S_1 se corresponde con Y_1 S_2 se corresponde con Y_2

 S_3 se corresponde con Y_3

Podemos decir que las variables reales del problema dual son las slacks del problema primitivo, o sea que el nuevo enfoque es el de los recursos y las variables básicas son los valores marginales y costos de oportunidad, si los hubiera.

TABLA 2 (con resaltado)

			48000	42000	36000	0	0
$\mathbf{B}_{\mathbf{k}}$	Y_k	C_k	\mathbf{Y}_1	Y_2	Y_3	T_1	T_2
42000	Y_2	1/6	-5/3	1	0	-1/6	1/6
36000	Y_3	2/9	26/9	0	1	1/9	-2/9
$W_{\rm j}$	•	15000	34000	42000	36000	-3000	-1000
	W_j - B_j		-14000	0	0	-3000	-1000

Si comparamos la <u>TABLA 1</u> (problema primitivo) con la TABLA 2 con resaltado, es fácil ver que, salvo signo, los valores en rojo corresponden al plan productivo y el valor en azul es el sobrante de horas en el sector estampado.

Los valores en verde son los valores marginales del problema primitivo.

Los valores de la matriz inversa han cambiado de signo, y su fila con su columna.

El elemento a_{ii} aparecerá como: - a_{ii}

Análisis de sensibilidad de los recursos:

Nos interesa saber cuál es la variación de los recursos dentro de la cual no altera la estructura de la solución óptima obtenida, para ello vamos a efectuar un cálculo similar al que realizamos al estudiar posibles variaciones en las utilidades o beneficios, pero ahora sobre la última tabla del problema dual.

En primer lugar, estudiaremos las posibles variaciones del recurso "soldadura" cuyo valor inicial es de 42000 min por semana, recurso agotado cuyo precio sombra es de 1/6 pesos/min = 0,16 pesos/min.

TABLA 3

			48000	B_2	36000	0	0
B_k	Y_k	C_k	\mathbf{Y}_1	Y_2	Y_3	T_1	T_2
B_2	Y_2	1/6	-5/3	1	0	-1/6	1/6
36000	Y_3	2/9	26/9	0	1	1/9	-2/9
W_i		15000	34000	42000	36000	-3000	-1000
	W_j - B_j		-14000	0	0	-3000	-1000

Calcularemos sobre las columnas de Y_1 , T_1 , T_2 , o sea, sobre aquellas cuyo (W_j-B_j) es distinto de cero.

Sobre Y1:

$$B_2$$
. $(-5/3) + 36000.(26/9) - 48000 \le 0$

Si $B_2 = 42000$, este cálculo tiene por resultado: -14000, nos interesa saber qué valores menor y mayor que B_2 llevan las columnas de (W_i-B_i) a cero.

Despejando de la anterior, obtenemos $B_2 \ge [36000.26/9 - 48000]. (3/5) = 33600$

TABLA 4

			48000	33600	36000	0	0
B_k	Y_k	C_k	\mathbf{Y}_1	Y_2	Y_3	T_1	T_2
33600	Y_2	1/6	-5/3	1	0	-1/6	1/6
36000	Y_3	2/9	26/9	0	1	1/9	-2/9
$W_{\rm j}$		15000	48000	33600	36000	-1600	-2400
	W_j - B_j		0*	0	0	-1600	-2400

Se han resaltado en color rojo las modificaciones habidas a partir del cambio de la cantidad de recurso B_2 sin que se modifique la estructura de la solución.

Los cálculos posteriores sobre el mismo recurso nos permiten obtener:

$$B_2 \le 48000$$

TABLA 5

			48000	48000	36000	0	0
B_k	Y_k	C_k	\mathbf{Y}_1	Y_2	Y_3	T_1	T_2
48000	Y_2	1/6	-5/3	1	0	-1/6	1/6
36000	Y_3	2/9	26/9	0	1	1/9	-2/9
$W_{\rm j}$		15000	24000	48000	36000	-4000	0
	W_j - B_j		-24000	0	0	-4000	0*

Tanto en la tabla 4 como en la tabla 5 es posible apreciar ceros "alternativos" (0*). Podemos ingresar la variable marcada (*) a la base y obtener una solución alternativa.