Perceptrons

Erhard Hinrichs

Seminar für Sprachwissenschaft Eberhard-Karls Universität Tübingen

Classification Task for Handwritten Digits

Representation of Handwritten Digits

The MNIST Dataset

- MNIST short for: Modified National Institute of Standards and technology database
- ► A collection of handwritten digits (0-9) that are normalized in size and centered
- contains 60,000 training images and 10,000 testing images
- ▶ Representation of each digit as a 28x28 pixel grayscale image
- MNIST dataset is widely used for image recognition in machine vision
- a good use case for perceptron and regressions models in machine learning

Perceptron: Underlying Idea due to McCulloch-Pitts (1943)

Binary Classification with Linear Decision Boundary

Example of a linear decision boundary for binary classification.

Perceptron Architecture

Schematic of Rosenblatt's perceptron.

Net Input Function and Activation Function

$$z = w \cdot x + b \tag{1}$$

$$g(\mathbf{z}) = \begin{cases} 1 & \text{if } \mathbf{z} \ge \theta \\ -1 & \text{otherwise} \end{cases} \tag{2}$$

Unit Step Function

Rosenblatt's Perceptron Rule

- 1. Initialize the weights w to 0 or small random numbers
- 2. For each training sample $x^{(i)}$:
 - 2.1 calculate the output value: g(z)
 - 2.2 update the weights: $w_j = w_j + \Delta w_j$

where $\Delta w_j = \alpha (\text{targetlabel}^i - \text{predictedlabel}^i) x_j^{(i)}$ and α is the learning rate.

Perceptron Update Rule

For each training sample x_i :

$$w:=w+\Delta\;w$$

$$\Delta w := \alpha * (y_i - \hat{y_i}) * x_i$$

Vectors and Matrices

- Vectors as a special case of matrices:
 - matrices have m by n "shape": m rows and n columns.
 - vectors have m by 1 "shape": m rows and exactly one column.
 - vectors can be transposed into a 1 by m column matrix by the transpose operation.
 - ▶ Notation: v^T
 - Example:
- ► Two types of multiplication
 - for vectors: dot product (aka: scalar product)
 - for matrices: matrix multiplication
- ➤ You will encounter both types of multiplication in feature weighting

Transpose of a Matrix

Given a matrix $A \in \mathbb{R}^{m \times n}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

the transpose of A, denoted as $A^T \in \mathbb{R}^{n \times m}$:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

Input and Output Representations

▶ Input: A widely used formula for input specification of a training or test instance : $\mathbf{wx} + b$, or written as a function: $f(\mathbf{w}, b) = \mathbf{w}^T \mathbf{x} + b$

where the bias b is a scalar and where \mathbf{w}^T is transpose of vector \mathbf{w} of weights and \mathbf{x} is a vector of feature values and where \mathbf{w} and \mathbf{x} have the same number of dimensions.

ightharpoonup Output: a scalar y or \hat{y}

representing the predicted (\hat{y}) or gold class (y) membership of a training or test instance x^i

Matrix multiplication

Given:

$$u = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$v = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$u \times v = \begin{bmatrix} 1*5+2*7 & 1*6+2*8 \\ 3*5+4*7 & 3*6+4*8 \end{bmatrix}$$

Main Keywords

- Supervised learning algorithm
- Input and output representations
 - Features, weights, and bias
 - Class assignment: binary or multi-class
- Training phase (also known as: learning phase) and test phase
- Weight and bias optimization
- Loss function (also known as: objective function, cost function)
- Decision boundary
- Activation function with threshold