

Análise Matemática II C 26 de Abril de 2023

26 de Abril de 2023 - Teste 1 - Versão A (2h)

1. Seja $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, y \le -1\}$ e r, θ as coordenadas polares. Tem-se:

A.
$$\mathcal{D} = \{(x,y) = (r\cos\theta, r\sin\theta) : \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}, -\frac{1}{\sin\theta} \le r \le \sqrt{2}\}.$$

B.
$$\mathcal{D} = \{(x,y) = (r\cos\theta, r\sin\theta) : \frac{3\pi}{4} \le \theta \le \frac{5\pi}{4}, \frac{1}{\sin\theta} \le r \le \sqrt{2}\}.$$

C.
$$\mathcal{D} = \{(x, y) = (r \cos \theta, r \sin \theta) : \frac{5\pi}{4} \le \theta \le \frac{7\pi}{4}, -\frac{1}{\sin \theta} \le r \le \sqrt{2}\}.$$

D.
$$\mathcal{D} = \{(x,y) = (r\cos\theta, r\sin\theta) : \frac{5\pi}{4} \le \theta \le \frac{7\pi}{4}, \frac{1}{\sin\theta} \le r \le \sqrt{2}\}.$$

- E. Nenhum dos casos anteriores.
- 2. O plano tangente ao gráfico da função $f(x,y)=e^{-y^2}+\mathrm{sen}\,(2x-y)$ no ponto (0,0,1) é:

A.
$$2x - y - z = 0$$
, B. $y + z = 1$, C. $-2x + y - z = 1$,

- D. 2x y z = 1, E. Nenhum dos casos anteriores.
- 3. Considere a função $f(x,y) = \frac{y^2}{1-x^2}$. A curva de nível de valor -4 de f é:

A.
$$\{(x,y) \in \mathbb{R}^2 \setminus \{(0,1),(0,-1)\} : \frac{x^2}{4} + y^2 = 1 \}$$
.

B.
$$\{(x,y) \in \mathbb{R}^2 \setminus \{(0,1),(0,-1)\} : x^2 - \frac{y^2}{4} = 1\}.$$

C.
$$\{(x,y) \in \mathbb{R}^2 \setminus \{(1,0), (-1,0)\} : \frac{x^2}{4} + y^2 = 1\}.$$

D.
$$\{(x,y) \in \mathbb{R}^2 \setminus \{(1,0),(-1,0)\} : x^2 - \frac{y^2}{4} = 1\}.$$

E.
$$\{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{4} = 1\}$$
.

4. Seja $T(\rho, \theta, \phi) = (\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$, onde ρ , θ , ϕ são as coordenadas esféricas. A região do espaço limitada pelas superfícies

$$z = \sqrt{3 - x^2 - y^2}, \qquad z^2 = 3(x^2 + y^2)$$
 és

A.
$$\left\{(x,y,z)=T(\rho,\theta,\phi):\rho\in[0,\sqrt{3}],\theta\in[0,2\pi]\,,\phi\in\left[0,\frac{\pi}{6}\right]\right\}.$$

B.
$$\{(x, y, z) = T(\rho, \theta, \phi) : \rho \in [0, \sqrt{3}], \theta \in [0, 2\pi], \phi \in [0, \frac{\pi}{3}] \}$$
.

C.
$$\{(x, y, z) = T(\rho, \theta, \phi) : \rho \in [0, \sqrt{3}], \theta \in [0, 2\pi], \phi \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \}$$
.

D.
$$\{(x, y, z) = T(\rho, \theta, \phi) : \rho \in [0, \sqrt{3}], \theta \in [0, \pi], \phi \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \}$$
.

E. Nenhum dos casos anteriores.

- 5. Seja C a curva em \mathbb{R}^3 definida pelas equações: $z=8-4x^2-y^2,\ z=4.$ Tem-se:
 - A. $\vec{v} = \left(-\frac{\sqrt{3}}{2}, 1, 0\right)$ é um vetor tangente à curva no ponto $\left(\frac{1}{2}, \sqrt{3}, 4\right)$.
 - B. $\vec{v} = \left(1, -\frac{\sqrt{3}}{2}, 0\right)$ é um vetor tangente à curva no ponto $\left(\frac{1}{2}, \sqrt{3}, 4\right)$.
 - C. $\vec{r}(t) = (2\cos t,\, \sin t, 4)\,,\ t\in [0,2\pi],$ é uma parametrização regular de C.
 - D. $\vec{r}(t) = (4t^2, t^2, 8 4t^2 t^2)$, $t \in [0, 4]$, é uma parametrização regular de C.
 - E. Nenhum dos casos anteriores.
- 6. Seja $\mathcal C$ a curva indicada na figura abaixo. O comprimento da curva $\mathcal C$ é:

A.
$$\int_0^1 \sqrt{1+4t^2} dt + \int_{\frac{3\pi}{3}}^{\frac{4\pi}{3}} \sqrt{2} dt$$
, B. $\int_{-1}^0 \sqrt{1+4t^2} dt + \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \sqrt{2} dt$,

C.
$$\int_0^1 \sqrt{1+t^4} dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sqrt{2} dt$$
, D. $\int_{-1}^0 \sqrt{1+4t^2} dt + \int_{\frac{3\pi}{4}}^{\frac{4\pi}{3}} \sqrt{2} dt$,

E.
$$\int_0^1 \sqrt{1+4t^2} dt + \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \sqrt{2} dt$$
.

7. Considere

$$\lim_{(x,y)\to(0,0)}\frac{-x^2-y^2-2x^4}{x^2+y^2}.$$

Tem-se:

A. O limite não existe, B. O limite existe e é igual a -1,

C. O limite existe e é igual a -2, D. O limite existe e é igual a 1,

E. Nenhum dos casos anteriores.

8. A equação do plano tangente à superfície definida pela equação

$$y^3 + (x+1)e^z = 2 - x^3$$

no ponto (1, -1, 0) é:

A. -4x + 3y + 2z = -1, B. 4x - 3y - 2z = 1, C. -4x - 3y + 2z = -1, D. 4x + 3y + 2z = 1, E. -4x - 3y - 2z = 1.

9. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{x^3 - y^5}{x^2 + 2y^4}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0), \end{cases}$$

e $\vec{u} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Sabendo que $\nabla f(0,0) = (1, -\frac{1}{2})$, tem-se.

A. $D_{\vec{u}}f(0,0) = -\frac{1}{\sqrt{2}}$ e f não é diferenciável em (0,0).

B. $D_{\vec{u}}f(0,0) = \frac{1}{\sqrt{2}}$ e f é diferenciável em (0,0).

C. $D_{\vec{u}}f(0,0)$ não existe e f não é diferenciável em (0,0).

D. $D_{\vec{u}}f(0,0) = -\frac{1}{\sqrt{2}}$ e f é diferenciável em (0,0).

E. $D_{\vec{u}}f(0,0) = \frac{1}{\sqrt{2}}$ e f não é diferenciável em (0,0).

10. Considere a função

$$f(x,y) = \begin{cases} \frac{5x^3 + 3y^4}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Tem-se:

A.
$$\frac{\partial f}{\partial x}(0,0) = 0$$
, $\frac{\partial f}{\partial y}(0,1) = 0$,

B.
$$\frac{\partial f}{\partial x}(0,0) = 5$$
, $\frac{\partial f}{\partial y}(0,1) = 6$,

C.
$$\frac{\partial f}{\partial x}(0,0) = 5$$
, $\frac{\partial f}{\partial y}(0,1) = 0$,

D.
$$\frac{\partial f}{\partial x}(0,0) = 5$$
, $\frac{\partial f}{\partial y}(0,1) = 3$,

E. Nenhum dos casos anteriores.

11. Seja $g:\mathbb{R}^2\mapsto\mathbb{R}$ uma função de classe C^1 em \mathbb{R}^2 tal que $\nabla g\left(1,0\right)=(2,1)$. Considere a função

$$H(x,y) = g(x + y^2, x \log(y^4 + 1)).$$

Tem-se:

- A. $\frac{\partial H}{\partial x}(0,1) = 4 + \log(2)$, B. $\frac{\partial H}{\partial x}(0,1) = 2 + \log(2)$, C. $\frac{\partial H}{\partial x}(0,1) = 4$,
- D. $\frac{\partial H}{\partial x}(0,1) = 0$, E. Nenhum dos casos anteriores.
- 12. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^2 com $\nabla f(1,2) = (1,7)$ e matriz Hessiana no ponto (1,2) dada por $H_f(1,2) = \begin{bmatrix} 3 & -5 \\ -5 & 0 \end{bmatrix}$. Considerando $h(s,t) = f(t-s^2,t)$, tem-se:
 - A. $\frac{\partial^2 h}{\partial s^2}(1,2) = 10$, B. $\frac{\partial^2 h}{\partial s^2}(1,2) = 5$, C. $\frac{\partial^2 h}{\partial s^2}(1,2) = 12$,
 - D. $\frac{\partial^2 h}{\partial s^2}(1,2) = 2$, E. Nenhum dos casos anteriores.
- 13. Seja $\varphi: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 em \mathbb{R} . Considere $g(x,y) = \varphi(2x^2 y^4)$. Para todo o $(x,y) \in \mathbb{R}^2$, tem-se:
 - A. $3y \frac{\partial g}{\partial x}(x,y) + 2x^2 \frac{\partial g}{\partial y}(x,y) = 0$, B. $2y \frac{\partial g}{\partial x}(x,y) + 3x^2 \frac{\partial g}{\partial y}(x,y) = 0$,
 - C. $x^3 \frac{\partial g}{\partial x}(x,y) + y \frac{\partial g}{\partial y}(x,y) = 0$, D. $y^3 \frac{\partial g}{\partial x}(x,y) + x \frac{\partial g}{\partial y}(x,y) = 0$,
 - E. $y^2 \frac{\partial g}{\partial x}(x,y) x^2 \frac{\partial g}{\partial y}(x,y) = 0$.
- 14. Seja $g: \mathbb{R}^3 \to \mathbb{R}$ uma função de classe C^1 em \mathbb{R}^3 tal que $\nabla g(1,2,1) = (2,1,1)$. Seja $f: \mathbb{R}^2 \to \mathbb{R}^3$ uma função diferenciável em \mathbb{R}^2 tal que f(0,1) = (1,2,1) e cuja matriz Jacobiana num ponto arbitrário (s,t) é

$$Jf(s,t) = \left[\begin{array}{cc} s & t \\ 2 & 2t \\ 3s & 3t \end{array} \right].$$

A matriz Jacobiana da função $h = g \circ f$ no ponto (0,1) é:

A.
$$\begin{bmatrix} 2 & 5 \end{bmatrix}$$
, B. $\begin{bmatrix} 2 & 7 \end{bmatrix}$, C. $\begin{bmatrix} 0 & 1 \end{bmatrix}$, D. $\begin{bmatrix} 0 & 1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix}$.

E. Nenhum dos casos anteriores.

- 15. Considere a função $F(x,y,z) = \frac{y}{z} \frac{3x}{y} \frac{2z}{x}$ e o ponto P = (1,-1,1). Sabendo que a equação F(x,y,z)=0 define implicitamente z como função de x e y (z=z(x,y)) numa vizinhança do ponto (1, -1, 1), tem-se: A. $\frac{\partial z}{\partial x}(1, -1) = 5$, B. $\frac{\partial z}{\partial x}(1, -1) = -5$, C. $\frac{\partial z}{\partial x}(1, -1) = 4$,

 - D. $\frac{\partial z}{\partial x}(1,-1) = -4$, E. Nenhum dos casos anteriores.
- 16. Considere a função $f(x,y,z)=f(x,y)=xy+y^3+x^2$. Escolha a afirmação correta.
 - A. A função f admite um ponto de sela em (0,0) e tem um máximo local em
 - B. A função f admite um ponto de sela em (0,0) e tem um mínimo local em $\left(-\frac{1}{12},\frac{1}{6}\right)$.
 - C. A função f admite um ponto de sela em (0,0) e tem um mínimo local em
 - D. A função f não tem pontos de sela mas tem um mínimo local em $\left(-\frac{1}{12}, \frac{1}{6}\right)$.
 - E. A função f admite um ponto de sela em (0,0) e tem um máximo local em $(\frac{1}{6}, \frac{1}{12}).$