University of Groningen A random trienni	al 1 SETUP,	1
1 Setup 1	3.1.7 Suc. shortest path	7 3.6 Strings
1.1 header.h	3.1.8 Bipartite check	7 3.6.1 Z alg
1.2 Bash for c++ compile with header.h 2	3.1.9 Find cycle directed	7 $3.6.2 \text{ KMP} \dots 14$
1.3 Bash for run tests c++	3.1.10 Find cycle directed	8 3.6.3 Aho-Corasick
1.4.1 Aux. helper C++	3.1.11 Tarjan's SCC	8 3.6.4 Long. palin. subs
1.4.2 Aux. helper python	3.1.12 SCC edges	8 3.7 Geometry
2 Python 2	3.1.13 Find Bridges	9 3.7.1 essentials.cpp
2.1 Graphs	3.1.14 Artic. points	9 3.7.2 Two segs. itersec
2.1.1 BFS 2	3.1.15 Topological sort	9 3.7.3 Convex Hull
2.1.2 Dijkstra 2	3.1.16 Bellmann-Ford	3.8.1 2-sat
2.1.3 Topological Sort 3	3.1.17 Ford-Fulkerson	3.8.2 Matrix Solve
2.1.4 Kruskal (UnionFind) 3	3.1.18 Dinic max flow	10 2.9.2 Matrix Erro
2.2 Num. Th. / Comb	3.2 Dynamic Programming	3.8.4 Finite field 17
2.2.1 nCk % prime	3.2.1 Longest Incr. Subseq	3 V b Complex field
2.2.2 Sieve of E	3.2.3 Coin change	3.8.6 FFT
2.3 Strings	3.3 Trees	3.8.7 Polyn. inv. div
2.3.1 LCS	3.3.1 Tree diameter	3.8.8 Linear recurs
2.3.3 Edit distance	3.3.2 Tree Node Count	3.8.9 Convolution
2.4 Other Algorithms	3.4 Numerical	3.8.10 Partitions of n
2.4.1 Rotate matrix 4	3.4.1 Template (for this section)	3.9 Other Data Structures
2.5 Geometry	3.4.2 Polynomial	3.9.1 Disjoint set
2.5.1 Convex Hull 4	3.4.3 Poly Roots	3 0 3 Hommele 2d troe
2.5.2 Geometry 5	3.4.4 Golden Section Search	12 3.0.4 Trio 20
2.6 Other Data Structures 5	3.4.5 Hill Climbing	12 3.9.5 Treap
2.6.1 Segment Tree 5	3.4.6 Integration	3 9 6 Segment tree 20
2.6.2 Trie	3.4.7 Integration Adaptive	12 2.0.7 Lagrangement two
3 C++ 5	3.5 Num. Th. / Comb	2.0.0 Cuffer trace
3.1 Graphs	3.5.1 Basic stuff	3 U U I I DIONEINO 71
3.1.2 DFS 6	3.5.2 Mod. exponentiation	10 4 Other Mathematics 21
3.1.3 Dijkstra 6	3.5.4 Sieve of Eratosthenes	4.1 Helpful fulletions
3.1.4 Floyd-Warshall 6	3.5.5 Fibonacci % prime	4.1.1 Euler's Totalent Fuchtion 21
3.1.5 Kruskal 6	3.5.6 nCk % prime	1.1.2 1 about 5 timage
3.1.6 Hungarian algorithm 6	3.5.7 Chin. rem. th	
onto transmian agonimi		11 1.0 Goomeri, Tormanaci 20
1 Setup	3 using namespace std;	possible/necessary
	4	12 #define vb vector <bool></bool>
1.1 header.h	5 #define ll long long 6 #define ull unsigned ll	<pre>13 #define vvi vector<vi> 14 #define vvl vector<vl></vl></vi></pre>
1.1 Headel.H	7 #define ld long double	<pre>15 #define vpl vector<pl></pl></pre>
	8 #define pl pair<11, 11>	16 #define vpi vector <pi>45 #define vld vector<ld></ld></pi>
#pragma once // Delete this when copying this	<pre>9 #define pi pair<int, int=""> // use pl where possible/necessary</int,></pre>	<pre>17 #define vld vector<ld> 18 #define vvpi vector<vpi></vpi></ld></pre>
file	10 #define vl vector<11>	<pre>19 #define in_fast(el, cont) (cont.find(el) != cont.</pre>
2 #include <bits stdc++.h=""></bits>	11 #define vi vector <int> // change to vl where</int>	end())

```
20 #define in(el, cont) (find(cont.begin(), cont.end
      (), el) != cont.end())
22 constexpr int INF = 200000010;
23 constexpr 11 LLINF = 900000000000000010LL;
25 template <typename T, template <typename ELEM,
      typename ALLOC = std::allocator < ELEM > > class
       Container >
26 std::ostream& operator << (std::ostream& o, const
      Container < T > & container ) {
    typename Container <T>::const_iterator beg =
        container.begin();
    if (beg != container.end()) {
      o << *beg++;
      while (beg != container.end()) {
        o << " " << *beg++;
    return o:
35 }
37 // int main() {
38 // ios::sync_with_stdio(false); // do not use
      cout + printf
      cin.tie(NULL);
40 // cout << fixed << setprecision(12);
41 // return 0:
42 // }
```

1.2 Bash for c++ compile with header.h

1.3 Bash for run tests c++

```
1 g++ $1/$1.cpp -o $1/$1.out
2 for file in $1/*.in; do diff <($1/$1.out < "$file
") "${file%.in}.ans"; done</pre>
```

1.4 Bash for run tests python

```
for file in $1/*.in; do diff <(python3 $1/$1.py < "$file") "${file%.in}.ans"; done
```

1.4.1 Aux. helper C++

```
1 #include "header.h"
3 int main() {
      // Read in a line including white space
      string line;
      getline(cin, line);
      // When doing the above read numbers as
          follows:
      int n:
      getline(cin, line);
      stringstream ss(line):
      // Count the number of 1s in binary
          represnatation of a number
      ull number:
      __builtin_popcountll(number);
16 }
17
18 // int128
19 using 111 = __int128;
20 ostream& operator << ( ostream& o, __int128 n ) {</pre>
    auto t = n < 0 ? -n : n; char b[128], *d = end(b)
    do *--d = '0'+t\%10, t /= 10; while (t);
    if(n<0) *--d = '-';
    o.rdbuf()->sputn(d,end(b)-d);
    return o:
```

1.4.2 Aux. helper python

```
from functools import lru_cache

# Read until EOF

while True:
    try:
    pattern = input()
    except EOFError:
    break

# Clru_cache(maxsize=None)
def smth_memoi(i, j, s):
    # Example in-built cache
```

2 Python

2.1 Graphs

2.1.1 BFS

```
1 from collections import deque
2 def bfs(g, roots, n):
     q = deque(roots)
      explored = set()
      distances = [0 if v in roots else float('inf'
         ) for v in range(n)]
      while len(q) != 0:
          node = q.popleft()
          if node in explored: continue
          explored.add(node)
          for neigh in g[node]:
             if neigh not in explored:
                  q.append(neigh)
                  distances[neigh] = distances[node
                      1 + 1
      return distances
```

2.1.2 Dijkstra

```
1 from heapq import *
2 def dijkstra(n, root, g): # g = {node: (cost, neigh)}
3  dist = [float("inf")]*n
4  dist[root] = 0
5  prev = [-1]*n
6
7  pq = [(0, root)]
8  heapify(pq)
```

27

28

30

31

32

33

36

42

44

45

47

48

53

55

67

70

73

```
visited = set([])
    while len(pq) != 0:
      _, node = heappop(pq)
13
      if node in visited: continue
14
15
      visited.add(node)
16
      # In case of disconnected graphs
17
      if node not in g:
         continue
19
20
      for cost, neigh in g[node]:
21
         alt = dist[node] + cost
22
         if alt < dist[neigh]:</pre>
23
           dist[neigh] = alt
^{24}
           prev[neigh] = node
25
          heappush(pq, (alt, neigh))
    return dist
```

2.1.3 Topological Sort

```
1 #Python program to print topological sorting of a
2 from collections import defaultdict
4 #Class to represent a graph
5 class Graph:
      def __init__(self, vertices):
          self.graph = defaultdict(list) #
              dictionary containing adjacency List
          self.V = vertices #No. of vertices
      # function to add an edge to graph
10
      def addEdge(self,u,v):
11
          self.graph[u].append(v)
12
13
      # A recursive function used by
          topologicalSort
      def topologicalSortUtil(self,v,visited,stack)
15
16
          # Mark the current node as visited.
17
          visited[v] = True
18
19
          # Recur for all the vertices adjacent to
              this vertex
          for i in self.graph[v]:
              if visited[i] == False:
22
                  self.topologicalSortUtil(i,
23
                      visited.stack)
          # Push current vertex to stack which
25
              stores result
```

```
stack.insert(0,v)
# The function to do Topological Sort. It
   uses recursive
# topologicalSortUtil()
def topologicalSort(self):
   # Mark all the vertices as not visited
```

stack =[] # Call the recursive helper function to store Topological # Sort starting from all vertices one by for i in range(self.V): if visited[i] == False: self.topologicalSortUtil(i,

visited, stack)

Print contents of stack return stack

visited = [False]*self.V

def isCyclicUtil(self, v, visited, recStack): # Mark current node as visited and

adds to recursion stack visited[v] = True recStack[v] = True

Recur for all neighbours # if any neighbour is visited and in # recStack then graph is cyclic for neighbour in self.graph[v]: if visited[neighbour] == False: if self.isCvclicUtil(neighbour. visited. recStack) == True:

> return True elif recStack[neighbour] == True: return True

The node needs to be popped from # recursion stack before function ends recStack[v] = False return False

Returns true if graph is cyclic else false def isCyclic(self):

visited = [False] * (self.V + 1) recStack = [False] * (self.V + 1) for node in range(self.V): if visited[node] == False: if self.isCvclicUtil(node.

> visited, recStack) == True: return True

return False

2.1.4 Kruskal (UnionFind)

```
class UnionFind:
      def __init__(self, n):
           self.parent = [-1]*n
      def find(self, x):
           if self.parent[x] < 0:</pre>
               return x
           self.parent[x] = self.find(self.parent[x
           return self.parent[x]
      def connect(self. a. b):
          ra = self.find(a)
           rb = self.find(b)
          if ra == rb:
               return False
           if self.parent[ra] > self.parent[rb]:
               self.parent[rb] += self.parent[ra]
17
               self.parent[ra] = rb
               self.parent[ra] += self.parent[rb]
               self.parent[rb] = ra
           return True
24 # Full MST is len(spanning==n-1)
25 def kruskal(n. edges):
      uf = UnionFind(n)
      spanning = []
      edges.sort(key = lambda d: -d[2])
      while edges and len(spanning) < n-1:
           u, v, w = edges.pop()
           if not uf.connect(u, v):
               continue
32
           spanning.append((u, v, w))
      return spanning
36 # Example
37 \text{ edges} = [(1, 2, 10), (2, 3, 20)]
```

Num. Th. / Comb.

2.2.1 nCk % prime

```
1 # Note: p must be prime and k < p</pre>
2 def fermat_binom(n, k, p):
      if k > n:
          return 0
      # calculate numerator
      n 11 m = 1
      for i in range(n-k+1, n+1):
          num *= i % p
      num %= p
```

```
# calculate denominator
denom = 1
for i in range(1,k+1):
    denom *= i % p
denom %= p
# numerator * denominator^(p-2) (mod p)
return (num * pow(denom, p-2, p)) % p
```

2.2.2 Sieve of E. O(n) so actually faster than C++ version, but more memory

```
1 MAX SIZE = 10**8+1
2 isprime = [True] * MAX_SIZE
3 \text{ prime} = []
4 SPF = [None] * (MAX SIZE)
6 def manipulated_seive(N): # Up to N (not
      included)
    isprime[0] = isprime[1] = False
    for i in range(2, N):
      if isprime[i] == True:
        prime.append(i)
        SPF[i] = i
      while (j < len(prime) and
13
       i * prime[j] < N and</pre>
          prime[j] <= SPF[i]):</pre>
15
        isprime[i * prime[j]] = False
        SPF[i * prime[j]] = prime[j]
        i += 1
```

2.3 Strings

2.3.1 LCS

```
1 def longestCommonSubsequence(text1, text2): # 0(
      m*n) time, O(m) space
      n = len(text1)
      m = len(text2)
      # Initializing two lists of size m
      prev = [0] * (m + 1)
      cur = [0] * (m + 1)
      for idx1 in range(1, n + 1):
          for idx2 in range(1, m + 1):
              # If characters are matching
11
              if text1[idx1 - 1] == text2[idx2 -
12
                  cur[idx2] = 1 + prev[idx2 - 1]
              else:
                  # If characters are not matching
```

2.3.2 KMP

```
1 class KMP:
      def partial(self, pattern):
          """ Calculate partial match table: String
               -> [Int]"""
          ret = [0]
          for i in range(1, len(pattern)):
              j = ret[i - 1]
              while j > 0 and pattern[j] != pattern
                  [i]: j = ret[j - 1]
              ret.append(j + 1 if pattern[j] ==
                  pattern[i] else i)
          return ret
10
      def search(self, T, P):
11
          """KMP search main algorithm: String ->
12
              String -> [Int]
          Return all the matching position of
13
              pattern string P in T"""
          partial, ret, j = self.partial(P), [], 0
          for i in range(len(T)):
              while j > 0 and T[i] != P[j]: j =
16
                   partial[i - 1]
              if T[i] == P[i]: i += 1
17
              if i == len(P):
                  ret.append(i - (j - 1))
                  j = partial[j - 1]
20
          return ret
```

2.3.3 Edit distance

```
# Initialize a variable to store the previous
    value
previous = 0
# Loop through the rows of the dynamic
    programming matrix
for i in range(1, m + 1):
  # Store the current value at the beginning of
  previous = curr[0]
  curr[0] = i
  # Loop through the columns of the dynamic
      programming matrix
  for j in range (1, n + 1):
    # Store the current value in a temporary
        variable
    temp = curr[j]
    # Check if the characters at the current
        positions in str1 and str2 are the same
    if str1[i - 1] == str2[i - 1]:
      curr[j] = previous
    else:
      # Update the current cell with the
          minimum of the three adjacent cells
      curr[j] = 1 + min(previous, curr[j - 1],
          curr[i])
    # Update the previous variable with the
        temporary value
    previous = temp
# The value in the last cell represents the
    minimum number of operations
return curr[n]
```

2.4 Other Algorithms

2.4.1 Rotate matrix

2.5 Geometry

2.5.1 Convex Hull

```
def vec(a,b):
    return (b[0]-a[0],b[1]-a[1])
def det(a,b):
```

```
return a[0]*b[1] - b[0]*a[1]
6 def convexhull(P):
      if (len(P) == 1):
          return [(p[0][0], p[0][1])]
      h = sorted(P)
      lower = []
11
      i = 0
      while i < len(h):
          if len(lower) > 1:
14
              a = vec(lower[-2], lower[-1])
              b = vec(lower[-1], h[i])
16
              if det(a,b) <= 0 and len(lower) > 1:
                  lower.pop()
                   continue
19
          lower.append(h[i])
20
          i += 1
21
22
      upper = []
23
      i = 0
^{24}
      while i < len(h):
25
          if len(upper) > 1:
              a = vec(upper[-2], upper[-1])
27
              b = vec(upper[-1], h[i])
              if det(a,b) >= 0:
29
                   upper.pop()
                   continue
          upper.append(h[i])
32
          i += 1
33
34
      reversedupper = list(reversed(upper[1:-1:]))
35
      reversedupper.extend(lower)
      return reversedupper
```

2.5.2 Geometry

```
2 def vec(a,b):
      return (b[0]-a[0],b[1]-a[1])
5 def det(a,b):
      return a[0]*b[1] - b[0]*a[1]
      lower = []
      i = 0
      while i < len(h):
          if len(lower) > 1:
11
              a = vec(lower[-2], lower[-1])
12
              b = vec(lower[-1], h[i])
13
              if det(a,b) <= 0 and len(lower) > 1:
                  lower.pop()
                  continue
16
          lower.append(h[i])
```

```
i += 1
20
      # find upper hull
      # det <= 0 -> replace
      upper = []
      i = 0
23
      while i < len(h):
          if len(upper) > 1:
25
              a = vec(upper[-2], upper[-1])
26
              b = vec(upper[-1], h[i])
              if det(a,b) >= 0:
                   upper.pop()
                   continue
          upper.append(h[i])
31
          i += 1
```

2.6 Other Data Structures

2.6.1 Segment Tree

```
_{1} N = 100000 # limit for array size
2 tree = [0] * (2 * N) # Max size of tree
4 def build(arr. n): # function to build the tree
      # insert leaf nodes in tree
      for i in range(n):
          tree[n + i] = arr[i]
      # build the tree by calculating parents
      for i in range(n - 1, 0, -1):
          tree[i] = tree[i << 1] + tree[i << 1 | 1]
11
13 def updateTreeNode(p, value, n): # function to
      update a tree node
      # set value at position p
      tree[p + n] = value
      p = p + n
      i = p # move upward and update parents
      while i > 1:
          tree[i >> 1] = tree[i] + tree[i ^ 1]
          i >>= 1
23 def query(1, r, n): # function to get sum on
      interval [1, r)
      # loop to find the sum in the range
      r += n
      while 1 < r:
29
          if 1 & 1:
              res += tree[1]
              1 += 1
31
          if r & 1:
```

2.6.2 Trie

```
class TrieNode:
      def init (self):
          self.children = [None] *26
          self.isEndOfWord = False
6 class Trie:
      def __init__(self):
          self.root = self.getNode()
      def getNode(self):
          return TrieNode()
11
12
      def charToIndex(self.ch):
13
          return ord(ch)-ord('a')
14
16
      def insert(self,key):
          pCrawl = self.root
          length = len(kev)
19
          for level in range(length):
              index = self._charToIndex(key[level])
21
              if not pCrawl.children[index]:
                  pCrawl.children[index] = self.
                      getNode()
              pCrawl = pCrawl.children[index]
          pCrawl.isEndOfWord = True
26
      def search(self, key):
27
          pCrawl = self.root
28
          length = len(key)
          for level in range(length):
              index = self. charToIndex(kev[level])
              if not pCrawl.children[index]:
                  return False
              pCrawl = pCrawl.children[index]
          return pCrawl.isEndOfWord
```

3 C++

3.1 Graphs

3.1.1 BFS

```
1 #include "header.h"
2 #define graph unordered_map<11, unordered_set<11</pre>
3 vi bfs(int n, graph& g, vi& roots) {
      vi parents(n+1, -1); // nodes are 1..n
      unordered_set < int > visited;
      queue < int > q;
      for (auto x: roots) {
          q.emplace(x);
          visited.insert(x);
10
      while (not q.empty()) {
11
          int node = q.front();
          q.pop();
13
14
          for (auto neigh: g[node]) {
               if (not in(neigh, visited)) {
16
                   parents[neigh] = node;
17
                   q.emplace(neigh);
                   visited.insert(neigh);
              }
          7
21
22
      return parents;
23
24 }
25 vi reconstruct_path(vi parents, int start, int
      vi path;
26
      int curr = goal;
      while (curr != start) {
          path.push_back(curr);
29
          if (parents[curr] == -1) return vi(); //
               No path, empty vi
           curr = parents[curr];
32
33
      path.push_back(start);
      reverse(path.begin(), path.end());
34
      return path;
35
36 }
```

3.1.2 DFS Cycle detection / removal

3.1.3 Dijkstra

```
1 #include "header.h"
2 vector < int > dijkstra(int n, int root, map < int,</pre>
      vector<pair<int, int>>>& g) {
    unordered_set <int> visited;
    vector<int> dist(n. INF):
      priority_queue < pair < int , int >> pq;
      dist[root] = 0:
      pq.push({0, root});
      while (!pq.empty()) {
           int node = pq.top().second;
          int d = -pq.top().first;
10
          pq.pop();
11
           if (in(node, visited)) continue;
13
           visited.insert(node):
15
           for (auto e : g[node]) {
16
               int neigh = e.first:
               int cost = e.second;
               if (dist[neigh] > dist[node] + cost)
                   dist[neigh] = dist[node] + cost;
                   pq.push({-dist[neigh], neigh});
21
22
      return dist;
25
26 }
```

3.1.4 Floyd-Warshall

${\bf 3.1.5}$ Kruskal Minimum spanning tree of undirected weighted graph

```
1 #include "header.h"
2 #include "disjoint_set.h"
3 // O(E log E)
4 pair < set < pair < 11, 11 >> , 11 > kruskal (vector < tuple</pre>
       <11, 11, 11>>& edges, 11 n) {
       set < pair < 11 . 11 >> ans:
       11 cost = 0;
       sort(edges.begin(), edges.end());
       DisjointSet <11> fs(n):
10
       ll dist. i. i:
       for (auto edge: edges) {
           dist = get<0>(edge);
14
           i = get <1>(edge);
           j = get < 2 > (edge);
15
           if (fs.find_set(i) != fs.find_set(j)) {
               fs.union_sets(i, j);
                ans.insert({i, j});
19
                cost += dist;
20
21
22
       return pair < set < pair < 11, 11>>, 11> {ans, cost
24 }
```

3.1.6 Hungarian algorithm

```
12 * Oreturn a vector of length J, with the j-th
       entry equaling the minimum cost
* to assign the first (j+1) jobs to distinct
15 template <class T> vector<T> hungarian(const
      vector < vector < T >> &C) {
      const int J = (int)size(C), W = (int)size(C
          [0]);
      assert(J <= W);
17
      // job[w] = job assigned to w-th worker, or
18
          -1 if no job assigned
      // note: a W-th worker was added for
19
          convenience
      vector < int > job(W + 1, -1);
      vector<T> ys(J), yt(W + 1); // potentials
^{21}
      // -yt[W] will equal the sum of all deltas
22
      vector <T> answers;
23
      const T inf = numeric_limits <T>::max();
24
      for (int j_cur = 0; j_cur < J; ++j_cur) { //</pre>
           assign j_cur-th job
26
          int w cur = W:
          job[w_cur] = j_cur;
          // min reduced cost over edges from Z to
              worker w
          vector <T> min_to(W + 1, inf);
          vector<int> prv(W + 1, -1); // previous
              worker on alternating path
          vector < bool > in_Z(W + 1);  // whether
              worker is in Z
          while (job[w_cur] != -1) { // runs at
              most j_cur + 1 times
              in_Z[w_cur] = true;
              const int j = job[w_cur];
              T delta = inf:
35
              int w next:
              for (int w = 0; w < W; ++w) {
                  if (!in Z[w]) {
                      if (ckmin(min_to[w], C[i][w]
                          - ys[j] - yt[w]))
                          prv[w] = w_cur;
                      if (ckmin(delta, min_to[w]))
                          w next = w:
                  }
              }
              // delta will always be non-negative,
              // except possibly during the first
                  time this loop runs
              // if any entries of C[j_cur] are
                  negative
              for (int w = 0; w \le W; ++w) {
                  if (in Z[w]) vs[iob[w]] += delta.
                       vt[w] -= delta;
                  else min_to[w] -= delta;
              }
```

3.1.7 Suc. shortest path Calculates max flow, min cost

1 #include "header.h"

```
2 // map<node, map<node, pair<cost, capacity>>>
3 #define graph unordered_map<int, unordered_map<</pre>
      int, pair<ld, int>>>
5 const ld infty = 1e601; // Change if necessary
6 ld fill(int n, vld& potential) { // Finds max
      flow, min cost
    priority_queue < pair < ld, int >> pq;
    vector < bool > visited(n+2, false);
    vi parent(n+2, 0);
    vld dist(n+2, infty);
    dist[0] = 0.1:
    pq.emplace(make_pair(0.1, 0));
    while (not pq.empty()) {
      int node = pq.top().second;
14
      pq.pop();
      if (visited[node]) continue:
      visited[node] = true;
      for (auto& x : g[node]) {
        int neigh = x.first;
19
        int capacity = x.second.second;
        ld cost = x.second.first:
        if (capacity and not visited[neigh]) {
22
          ld d = dist[node] + cost + potential[node
              1 - potential[neigh]:
          if (d + 1e-101 < dist[neigh]) {</pre>
             dist[neigh] = d;
             pq.emplace(make_pair(-d, neigh));
             parent[neigh] = node;
28
    }}}
    for (int i = 0; i < n+2; i++) {</pre>
      potential[i] = min(infty, potential[i] + dist
    if (not parent[n+1]) return infty;
    1d ans = 0.1;
    for (int x = n+1; x; x=parent[x]) {
      ans += g[parent[x]][x].first;
```

3.1.8 Bipartite check

```
1 #include "header.h"
2 int main() {
      int n:
      vvi adj(n);
      vi side(n. -1):
                        // will have 0's for one
          side 1's for other side
      bool is bipartite = true: // becomes false
          if not bipartite
      queue < int > q;
      for (int st = 0: st < n: ++st) {</pre>
          if (side[st] == -1) {
10
              q.push(st);
               side[st] = 0:
12
               while (!q.empty()) {
                   int v = q.front();
                   q.pop();
15
                   for (int u : adj[v]) {
                       if (side[u] == -1) {
                           side[u] = side[v] ^ 1;
                           q.push(u);
20
                       } else {
                           is_bipartite &= side[u]
                               != side[v]:
                       }
23 }}}}
```

3.1.9 Find cycle directed

```
1 #include "header.h"
2 int n:
3 \text{ const int } mxN = 2e5+5;
4 vvi adj(mxN);
5 vector < char > color;
6 vi parent;
7 int cvcle start. cvcle end:
8 bool dfs(int v) {
       color[v] = 1;
       for (int u : adj[v]) {
           if (color[u] == 0) {
               parent[u] = v;
12
               if (dfs(u)) return true:
          } else if (color[u] == 1) {
               cycle_end = v;
15
               cycle_start = u;
```

```
return true:
          }
      color[v] = 2:
      return false;
22 }
23 void find_cycle() {
      color.assign(n, 0);
      parent.assign(n. -1):
      cycle_start = -1;
      for (int v = 0; v < n; v++) {
27
          if (color[v] == 0 && dfs(v))break:
29
      if (cycle_start == -1) {
30
          cout << "Acvclic" << endl;</pre>
32
          vector < int > cycle;
33
           cycle.push_back(cycle_start);
34
          for (int v = cycle_end; v != cycle_start;
               v = parent[v])
               cycle.push_back(v);
          cvcle.push back(cvcle start):
          reverse(cycle.begin(), cycle.end());
           cout << "Cycle_Found:_";
          for (int v : cycle) cout << v << "";</pre>
41
          cout << endl:
44 }
```

3.1.10 Find cycle directed

```
1 #include "header.h"
2 int n:
3 \text{ const int } mxN = 2e5 + 5;
4 vvi adj(mxN);
5 vector < bool > visited:
6 vi parent:
7 int cycle_start, cycle_end;
8 bool dfs(int v, int par) { // passing vertex and
      its parent vertex
      visited[v] = true;
      for (int u : adi[v]) {
          if(u == par) continue; // skipping edge
              to parent vertex
          if (visited[u]) {
              cvcle_end = v;
              cycle_start = u;
              return true;
16
          parent[u] = v;
17
          if (dfs(u, parent[u]))
18
              return true:
```

```
return false:
22 }
23 void find_cycle() {
       visited.assign(n, false):
       parent.assign(n, -1);
      cycle_start = -1;
      for (int v = 0; v < n; v++) {
          if (!visited[v] && dfs(v, parent[v]))
28
      if (cvcle start == -1) {
30
           cout << "Acvclic" << endl:
           vector<int> cycle;
33
           cycle.push_back(cycle_start);
           for (int v = cycle_end; v != cycle_start;
               v = parent[v])
               cvcle.push_back(v);
           cycle.push_back(cycle_start);
37
           cout << "Cycle_Found: ";
           for (int v : cycle) cout << v << "";</pre>
           cout << endl:</pre>
      }
42 }
```

3.1.11 Tarjan's SCC

```
1 #include "header.h"
3 struct Tarjan {
    vvi &edges;
    int V. counter = 0. C = 0:
    vi n, 1;
    vector < bool > vs;
    stack<int> st:
    Tarjan(vvi &e) : edges(e), V(e.size()), n(V,
        -1), l(V, -1), vs(V, false) {}
    void visit(int u. vi &com) {
     1[u] = n[u] = counter++;
      st.push(u):
      vs[u] = true;
      for (auto &&v : edges[u]) {
        if (n[v] == -1) visit(v, com);
15
        if (vs[v]) 1[u] = min(1[u], 1[v]);
16
17
      if (1[u] == n[u]) {
        while (true) {
          int v = st.top();
20
          st.pop();
          vs[v] = false;
          com[v] = C: // <== ACT HERE
          if (u == v) break;
        }
        C++:
```

```
}
28
    int find_sccs(vi &com) { // component indices
        will be stored in 'com'
      com.assign(V, -1);
      C = 0:
      for (int u = 0; u < V; ++u)
        if (n[u] == -1) visit(u, com);
      return C:
    // scc is a map of the original vertices of the
         graph to the vertices
    // of the SCC graph, scc_graph is its adjacency
    // SCC indices and edges are stored in 'scc'
        and 'scc_graph'.
    void scc_collapse(vi &scc, vvi &scc_graph) {
      find sccs(scc):
      scc_graph.assign(C, vi());
      set <pi>rec; // recorded edges
      for (int u = 0; u < V; ++u) {
       assert(scc[u] != -1):
       for (int v : edges[u]) {
          if (scc[v] == scc[u] ||
           rec.find({scc[u], scc[v]}) != rec.end()
                ) continue;
          scc_graph[scc[u]].push_back(scc[v]);
          rec.insert({scc[u]. scc[v]}):
      }
51
    // Function to find sources and sinks in the
        SCC graph
    // The number of edges needed to be added is
        max(sources.size(), sinks.())
    void findSourcesAndSinks(const vvi &scc_graph,
        vi &sources, vi &sinks) {
      vi in_degree(C, 0), out_degree(C, 0);
      for (int u = 0; u < C; u++) {
        for (auto v : scc_graph[u]) {
          in_degree[v]++;
          out_degree[u]++;
      for (int i = 0; i < C; ++i) {</pre>
        if (in_degree[i] == 0) sources.push_back(i)
        if (out_degree[i] == 0) sinks.push_back(i);
  }
68 }:
```

3.1.12 SCC edges Prints out the missing edges to make the input digraph strongly connected

```
1 #include "header.h"
2 const int N=1e5+10;
3 int n,a[N],cnt[N],vis[N];
4 vector<int> hd,tl;
5 int dfs(int x){
      vis[x]=1:
      if(!vis[a[x]])return vis[x]=dfs(a[x]);
       return vis[x]=x:
9 }
10 int main(){
       scanf("%d",&n);
      for(int i=1;i<=n;i++){</pre>
           scanf("%d",&a[i]);
           cnt[a[i]]++:
14
15
      int k=0;
      for(int i=1:i<=n:i++){</pre>
17
           if(!cnt[i]){
               k++:
19
               hd.push_back(i);
               tl.push_back(dfs(i));
21
           }
22
      }
23
      int tk=k:
      for(int i=1:i<=n:i++){</pre>
25
           if(!vis[i]){
               k++:
27
               hd.push_back(i);
28
               tl.push_back(dfs(i));
          }
30
31
      if(k==1&&!tk)k=0:
32
      printf("%d\n",k);
33
      for (int i=0; i < k; i++) printf ("%du%d\n", tl[i], hd
           [(i+1)%k]);
35
      return 0;
36 }
```

3.1.13 Find Bridges

```
1 #include "header.h"
2 int n; // number of nodes
3 vvi adj; // adjacency list of graph
4 vector < bool > visited;
5 vi tin. low:
6 int timer;
7 void dfs(int v, int p = -1) {
      visited[v] = true:
      tin[v] = low[v] = timer++;
      for (int to : adj[v]) {
          if (to == p) continue;
          if (visited[to]) {
12
              low[v] = min(low[v], tin[to]);
13
          } else {
```

```
dfs(to, v):
               low[v] = min(low[v], low[to]);
               if (low[to] > tin[v])
17
                   IS BRIDGE(v. to):
          }
      7
21 }
22 void find_bridges() {
       timer = 0:
       visited.assign(n, false);
      tin.assign(n, -1);
      low.assign(n, -1);
      for (int i = 0; i < n; ++i) {</pre>
          if (!visited[i]) dfs(i);
28
29
30 }
```

3.1.14 Artic. points (i.e. cut off points)

```
1 #include "header.h"
2 int n: // number of nodes
3 vvi adj; // adjacency list of graph
4 vector < bool > visited;
5 vi tin. low:
6 int timer;
7 void dfs(int v, int p = -1) {
      visited[v] = true:
      tin[v] = low[v] = timer++;
      int children=0:
      for (int to : adj[v]) {
          if (to == p) continue;
          if (visited[to]) {
13
               low[v] = min(low[v], tin[to]);
          } else {
               dfs(to, v);
               low[v] = min(low[v], low[to]);
               if (low[to] >= tin[v] && p!=-1)
                   IS_CUTPOINT(v);
               ++children;
19
          }
20
21
      if(p == -1 && children > 1)
          IS CUTPOINT(v):
24 }
25 void find cutpoints() {
       timer = 0:
       visited.assign(n, false);
27
      tin.assign(n, -1);
28
       low.assign(n, -1);
      for (int i = 0; i < n; ++i) {
          if (!visited[i]) dfs (i):
31
32
33 }
```

3.1.15 Topological sort

```
1 #include "header.h"
2 int n; // number of vertices
3 vvi adj; // adjacency list of graph
4 vector < bool > visited;
5 vi ans:
6 void dfs(int v) {
      visited[v] = true;
      for (int u : adj[v]) {
          if (!visited[u]) dfs(u);
       ans.push_back(v);
12 }
13 void topological sort() {
       visited.assign(n, false);
15
       ans.clear();
       for (int i = 0: i < n: ++i) {</pre>
           if (!visited[i]) dfs(i);
17
18
      reverse(ans.begin(), ans.end());
20 }
```

3.1.16 Bellmann-Ford Same as Dijkstra but allows neg. edges

```
1 #include "header.h"
2 // Switch vi and vvpi to vl and vvpl if necessary
3 void bellmann_ford_extended(vvpi &e, int source,
      vi &dist. vb &cvc) {
    dist.assign(e.size(), INF);
    cyc.assign(e.size(), false); // true when u is
        in a <0 cycle
    dist[source] = 0;
    for (int iter = 0: iter < e.size() - 1: ++iter)</pre>
      bool relax = false:
      for (int u = 0: u < e.size(): ++u)
        if (dist[u] == INF) continue;
        else for (auto &e : e[u])
          if(dist[u]+e.second < dist[e.first])</pre>
            dist[e.first] = dist[u]+e.second, relax
                 = true:
      if(!relax) break;
15
    bool ch = true;
    while (ch) {
                         // keep going untill no
        more changes
      ch = false;
                         // set dist to -INF when in
      for (int u = 0; u < e.size(); ++u)</pre>
        if (dist[u] == INF) continue;
        else for (auto &e : e[u])
          if (dist[e.first] > dist[u] + e.second
```

3.1.17 Ford-Fulkerson Basic Max. flow

```
1 #include "header.h"
2 #define V 6 // Num. of vertices in given graph
4 /* Returns true if there is a path from source 's
5 't' in residual graph. Also fills parent[] to
      store the
6 path */
7 bool bfs(int rGraph[V][V], int s, int t, int
      parent[]) {
  bool visited[V]:
    memset(visited, 0, sizeof(visited));
    queue < int > q;
   q.push(s);
    visited[s] = true;
    parent[s] = -1;
    // Standard BFS Loop
    while (!q.empty()) {
      int u = q.front();
17
      a.pop():
18
      for (int v = 0; v < V; v++) {
        if (visited[v] == false && rGraph[u][v] >
21
            0) {
          if (v == t) {
            parent[v] = u:
            return true;
25
          q.push(v);
          parent[v] = u;
          visited[v] = true;
    return false;
33 }
35 // Returns the maximum flow from s to t in the
      given graph
36 int fordFulkerson(int graph[V][V], int s, int t)
    int u, v;
```

```
int rGraph[V]
        [V];
    for (u = 0: u < V: u++)
     for (v = 0: v < V: v++)
        rGraph[u][v] = graph[u][v];
43
    int parent[V]; // This array is filled by BFS
        and to
          // store path
    int max_flow = 0; // There is no flow initially
    while (bfs(rGraph, s, t, parent)) {
      int path flow = INT MAX:
      for (v = t; v != s; v = parent[v]) {
        u = parent[v]:
        path_flow = min(path_flow, rGraph[u][v]);
52
      for (v = t; v != s; v = parent[v]) {
        u = parent[v]:
55
        rGraph[u][v] -= path_flow;
        rGraph[v][u] += path_flow;
57
      max_flow += path_flow;
    return max flow:
62 }
```

3.1.18 Dinic max flow $O(V^2E)$, O(Ef)

```
2 using F = 11; using W = 11; // types for flow and
       weight/cost
3 struct Sf
      const int v;
                            // neighbour
      const int r;
                      // index of the reverse edge
      F f:
                      // current flow
                      // capacity
      const F cap;
      const W cost; // unit cost
      S(int v. int ri. F c. W cost = 0):
          v(v), r(ri), f(0), cap(c), cost(cost) {}
      inline F res() const { return cap - f; }
11
12 };
13 struct FlowGraph : vector < vector < S >> {
      FlowGraph(size t n) : vector < vector < S >> (n) {}
      void add_edge(int u, int v, F c, W cost = 0){
           auto &t = *this:
          t[u].emplace_back(v, t[v].size(), c, cost
          t[v].emplace_back(u, t[u].size()-1, c, -
17
              cost);
      void add arc(int u, int v, F c, W cost = 0){
19
          auto &t = *this:
          t[u].emplace_back(v, t[v].size(), c, cost
              ):
```

```
t[v].emplace_back(u, t[u].size()-1, 0, -
               cost);
22
      void clear() { for (auto &E : *this) for (
23
          auto &e : E) e.f = OLL; }
24 };
25 struct Dinic{
      FlowGraph & edges; int V,s,t;
      vi 1: vector < vector < S > :: iterator > its: //
          levels and iterators
      Dinic(FlowGraph &edges, int s, int t) :
           edges(edges), V(edges.size()), s(s), t(t)
              , 1(V,-1), its(V) {}
      ll augment(int u. F c) { // we reuse the same
           iterators
          if (u == t) return c; ll r = OLL;
           for(auto &i = its[u]; i != edges[u].end()
               : i++){
               auto &e = *i:
               if (e.res() && l[u] < l[e.v]) {
                   auto d = augment(e.v, min(c, e.
                       res())):
                  if (d > 0) { e.f += d; edges[e.v
                      ][e.r].f -= d; c -= d;
                       r += d: if (!c) break: }
          } }
          return r:
      }
      11 run() {
41
          11 \text{ flow} = 0. \text{ f}:
           while(true) {
               fill(1.begin(), 1.end(),-1); 1[s]=0;
                   // recalculate the lavers
               queue < int > q; q.push(s);
               while(!a.emptv()){
                   auto u = q.front(); q.pop(); its[
                       u] = edges[u].begin();
                   for(auto &&e : edges[u]) if(e.res
                       () && 1[e.v]<0)
                       l[e.v] = l[u]+1, q.push(e.v);
               if (1[t] < 0) return flow;</pre>
               while ((f = augment(s. INF)) > 0)
                   flow += f:
          }
54 }:
```

3.2 Dynamic Programming

3.2.1 Longest Incr. Subseq.

```
#include "header.h"
template < class T>
vector < T > index path lis(vector < T > & nums) f
```

```
int n = nums.size();
    vector <T> sub;
      vector < int > subIndex:
    vector <T > path(n. -1):
    for (int i = 0; i < n; ++i) {</pre>
        if (sub.empty() || sub[sub.size() - 1] <</pre>
            nums[i]) {
      path[i] = sub.empty() ? -1 : subIndex[sub.
          size() - 1]:
      sub.push_back(nums[i]);
      subIndex.push back(i):
       } else {
      int idx = lower_bound(sub.begin(), sub.end(),
           nums[i]) - sub.begin();
      path[i] = idx == 0 ? -1 : subIndex[idx - 1];
      sub[idx] = nums[i];
      subIndex[idx] = i:
    vector <T> ans:
    int t = subIndex[subIndex.size() - 1];
    while (t != -1) {
        ans.push_back(t);
        t = path[t];
    reverse(ans.begin(), ans.end());
    return ans:
29 // Length only
30 template < class T>
31 int length_lis(vector<T> &a) {
    set <T> st:
    tvpename set<T>::iterator it:
    for (int i = 0; i < a.size(); ++i) {</pre>
    it = st.lower bound(a[i]):
      if (it != st.end()) st.erase(it);
      st.insert(a[i]);
   return st.size();
```

3.2.2 0-1 Knapsack

3.2.3 Coin change Number of coins required to achieve a given value

```
1 #include "header.h"
2 // Returns total distinct ways to make sum using
      n coins of
3 // different denominations
4 int count(vi& coins, int n, int sum) {
      // 2d dp array where n is the number of coin
      // denominations and sum is the target sum
      vector < vector < int > > dp(n + 1, vector < int > (
         sum + 1, 0));
      dp[0][0] = 1:
      for (int i = 1; i <= n; i++) {</pre>
         for (int i = 0: i <= sum: i++) {
              // without using the current coin,
              dp[i][j] += dp[i - 1][j];
              // using the current coin
              if ((j - coins[i - 1]) >= 0)
                   dp[i][j] += dp[i][j - coins[i -
                      1]]:
          }
      return dp[n][sum];
21 }
```

3.3 Trees

3.3.1 Tree diameter

```
#include "header.h"
const int mxN = 2e5 + 5;
int n, d[mxN]; // distance array
vi adj[mxN]; // tree adjacency list
void dfs(int s, int e) {
d[s] = 1 + d[e]; // recursively calculate the distance from the starting node to each node
for (auto u : adj[s]) { // for each adjacent node

if (u != e) dfs(u, s); // don't move backwards in the tree
```

3.3.2 Tree Node Count

3.4 Numerical

3.4.1 Template (for this section)

```
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
```

3.4.2 Polynomial

```
#include "template.cpp"

struct Poly {
    vector<double > a;
    double operator()(double x) const {
```

```
double val = 0;
for (int i = sz(a); i--;) (val *= x) += a[i];
return val;

void diff() {
   rep(i,1,sz(a)) a[i-1] = i*a[i];
   a.pop_back();

void divroot(double x0) {
   double b = a.back(), c; a.back() = 0;
   for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i +1]*x0+b, b=c;
   a.pop_back();

a.pop_back();

a.pop_back();
}
```

3.4.3 Poly Roots

```
2 * Description: Finds the real roots to a
       polynomial.
3 * Usage: polyRoots({{2,-3,1}},-1e9,1e9) // solve
        x^2-3x+2 = 0
4 * Time: O(n^2 \log(1/\epsilon))
6 #include "Polynomial.h"
7 #include "template.cpp"
9 vector < double > polyRoots(Poly p, double xmin,
      double xmax) {
    if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
    vector < double > ret;
12 Polv der = p:
    auto dr = polyRoots(der, xmin, xmax);
    dr.push_back(xmin-1);
    dr.push_back(xmax+1);
    sort(all(dr)):
17
    rep(i,0,sz(dr)-1) {
      double 1 = dr[i], h = dr[i+1];
      bool sign = p(1) > 0;
      if (sign ^(p(h) > 0)) {
21
        rep(it,0,60) { // while (h - 1 > 1e-8)
          double m = (1 + h) / 2, f = p(m);
          if ((f <= 0) ^ sign) l = m;</pre>
          else h = m;
25
        ret.push_back((1 + h) / 2);
27
29
    return ret:
```

3.4.4 Golden Section Search

```
1 /**
2 * Description: Finds the argument minimizing the
        function $f$ in the interval $[a,b]$
3 * assuming $f$ is unimodal on the interval, i.e.
        has only one local minimum and no local
* maximum. The maximum error in the result is
       $eps$. Works equally well for maximization
5 * with a small change in the code. See
       TernarySearch.h in the Various chapter for a
6 * discrete version.
7 * Usage:
    double func(double x) { return 4+x+.3*x*x; }
    double xmin = gss(-1000.1000.func):
* Time: O(\log((b-a) / \epsilon))
12 #include "template.cpp"
14 /// It is important for r to be precise,
      otherwise we don't necessarily maintain the
      inequality a < x1 < x2 < b.
15 double gss(double a, double b, double (*f)(double
      )) {
    double r = (sqrt(5)-1)/2, eps = 1e-7;
    double x1 = b - r*(b-a), x2 = a + r*(b-a);
    double f1 = f(x1), f2 = f(x2);
    while (b-a > eps)
     if (f1 < f2) { //change to > to find maximum
        b = x2; x2 = x1; f2 = f1;
        x1 = b - r*(b-a): f1 = f(x1):
      } else {
        a = x1; x1 = x2; f1 = f2;
        x2 = a + r*(b-a); f2 = f(x2);
     }
27
    return a;
```

3.4.5 Hill Climbing

```
p[1] += dy*jmp;
cur = min(cur, make_pair(f(p), p));
}
return cur;
}
```

3.4.6 Integration

```
2 * Description: Simple integration of a function
       over an interval using
3 * Simpson's rule. The error should be
       proportional to $h^4$, although in
4 * practice you will want to verify that the
       result is stable to desired
5 * precision when epsilon changes.
6 */
7 #include "template.cpp"
9 template < class F>
10 double quad(double a, double b, F f, const int n
      = 1000) {
   double h = (b - a) / 2 / n, v = f(a) + f(b);
  rep(i,1,n*2)
     v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3:
```

3.4.7 Integration Adaptive

```
2 * Description: Fast integration using an
       adaptive Simpson's rule.
    double sphereVolume = quad(-1, 1, [](double x)
    return quad(-1, 1, [\&](double y) {
    return quad(-1, 1, [\&](double z) {
    return x*x + y*y + z*z < 1; });});});
   * Status: mostly untested
10 #include "template.cpp"
12 typedef double d;
13 #define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (
      b-a) / 6
15 template <class F>
16 d rec(F& f, d a, d b, d eps, d S) {
d c = (a + b) / 2;
d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
if (abs(T - S) \le 15 * eps | | b - a < 1e-10)
```

3.5 Num. Th. / Comb.

3.5.1 Basic stuff

```
1 #include "header.h"
2 11 gcd(11 a, 11 b) { while (b) { a %= b; swap(a,
      b): } return a: }
3 11 1cm(11 a, 11 b) { return (a / gcd(a, b)) * b;
4 ll mod(ll a. ll b) { return ((a % b) + b) % b: }
5 // \text{ Finds } x, y \text{ s.t. ax + by = d = gcd(a, b)}.
6 void extended_euclid(ll a, ll b, ll &x, ll &y, ll
    11 xx = y = 0;
    11 yy = x = 1;
    while (b) {
     ll q = a / b;
    ll t = b; b = a % b; a = t;
      t = xx; xx = x - q * xx; x = t;
      t = yy; yy = y - q * yy; y = t;
17 //  solves ab = 1 (mod n), -1 on failure
18 ll mod_inverse(ll a, ll n) {
    11 x, y, d;
    extended_euclid(a, n, x, y, d);
    return (d > 1 ? -1 : mod(x, n));
_{23} // All modular inverses of [1..n] mod P in O(n)
24 vi inverses(ll n, ll P) {
    vi I(n+1, 1LL);
    for (11 i = 2; i <= n; ++i)
      I[i] = mod(-(P/i) * I[P\%i], P);
    return I:
29 }
30 // (a*b)%m
31 ll mulmod(ll a, ll b, ll m){
  11 x = 0, y=a%m;
    while(b>0){
     if(b\&1) x = (x+v)\%m:
      y = (2*y)%m, b /= 2;
    return x % m;
```

```
38 }
39 // Finds b^e % m in O(lg n) time, ensure that b <
       m to avoid overflow!
40 ll powmod(ll b. ll e. ll m) {
   11 p = e<2 ? 1 : powmod((b*b)\%m,e/2,m);
   return e&1 ? p*b%m : p;
43 }
44 // Solve ax + by = c, returns false on failure.
45 bool linear_diophantine(ll a, ll b, ll c, ll &x,
      11 &v) {
   11 d = gcd(a, b);
    if (c % d) {
     return false;
    } else {
      x = c / d * mod_inverse(a / d, b / d);
      y = (c - a * x) / b;
     return true:
54 }
56 // Description: Tonelli-Shanks algorithm for
      modular square roots. Finds x s.t. x^2 = a
       \pmod p$ ($-x$ gives the other solution). O
      (\log^2 p) worst case, O(\log p) for most p
57 ll sqrtmod(ll a, ll p) {
    a \% = p; if (a < 0) a += p;
    if (a == 0) return 0;
    assert(powmod(a, (p-1)/2, p) == 1); // else no
        solution
    if (p \% 4 == 3) return powmod(a, (p+1)/4, p);
    // a^{(n+3)/8} or 2^{(n+3)/8} * 2^{(n-1)/4} works if
        p % 8 == 5
    11 s = p - 1, n = 2;
    int r = 0, m;
    while (s % 2 == 0)
     ++r, s /= 2:
    /// find a non-square mod p
    while (powmod(n, (p-1) / 2, p) != p-1) ++n;
    11 x = powmod(a, (s + 1) / 2, p);
    ll b = powmod(a, s, p), g = powmod(n, s, p);
    for (;; r = m) {
     11 t = b;
      for (m = 0; m < r && t != 1; ++m)
      t = t * t % p:
      if (m == 0) return x;
      ll gs = powmod(g, 1LL \ll (r - m - 1), p);
      g = gs * gs % p;
      x = x * gs % p;
      b = b * g % p;
80
81 }
```

3.5.2 Mod. exponentiation Or use pow() in python

```
1 #include "header.h"
2 11 mod_pow(11 base, 11 exp, 11 mod) {
3    if (mod == 1) return 0;
4     if (exp == 0) return 1;
5     if (exp == 1) return base;
6
7    11 res = 1;
8    base %= mod;
9    while (exp) {
10        if (exp % 2 == 1) res = (res * base) % mod;
11        exp >>= 1;
12        base = (base * base) % mod;
13    }
14
15    return res % mod;
16 }
```

3.5.3 GCD Or math.gcd in python, std::gcd in C++

```
1 #include "header.h"
2 ll gcd(ll a, ll b) {
3    if (a == 0) return b;
4    return gcd(b % a, a);
5 }
```

3.5.4 Sieve of Eratosthenes

3.5.5 Fibonacci % prime

3.5.6 nCk % prime

```
1 #include "header.h"
2 ll binom(ll n, ll k) {
      ll ans = 1:
      for(ll i = 1; i \le min(k,n-k); ++i) ans = ans
          *(n+1-i)/i:
      return ans:
6 }
7 ll mod_nCk(ll n, ll k, ll p ){
      ll ans = 1:
      while(n){
          11 np = n\%p, kp = k\%p;
          if(kp > np) return 0:
          ans *= binom(np,kp);
          n /= p; k /= p;
14
15
      return ans;
16 }
```

3.5.7 Chin. rem. th.

```
1 #include "header.h"
2 #include "elementary.cpp"
_3 // Solves x = a1 mod m1, x = a2 mod m2, x is
      unique modulo lcm(m1, m2).
4 // Returns {0, -1} on failure, {x, lcm(m1, m2)}
      otherwise.
5 pair<11, 11> crt(11 a1, 11 m1, 11 a2, 11 m2) {
6 ll s, t, d;
   extended euclid(m1. m2. s. t. d):
    if (a1 % d != a2 % d) return {0, -1};
    return {mod(s*a2 %m2 * m1 + t*a1 %m1 * m2, m1 *
         m2) / d. m1 / d * m2}:
_{12} // Solves x = ai mod mi. x is unique modulo lcm
13 // Returns {0, -1} on failure, {x, lcm mi}
      otherwise.
14 pair<11, 11> crt(vector<11> &a, vector<11> &m) {
    pair<11, 11> res = {a[0], m[0]}:
    for (ull i = 1; i < a.size(); ++i) {</pre>
      res = crt(res.first, res.second, mod(a[i], m[
          i]), m[i]);
      if (res.second == -1) break;
20
    return res;
21 }
```

3.6 Strings

3.6.1 Z alg. KMP alternative

```
#include "../header.h"
void Z_algorithm(const string &s, vi &Z) {
    Z.assign(s.length(), -1);
    int L = 0, R = 0, n = s.length();
    for (int i = 1; i < n; ++i) {
        if (i > R) {
            L = R = i;
            while (R < n && s[R - L] == s[R]) R++;
            Z[i] = R - L; R--;
        } else if (Z[i - L] >= R - i + 1) {
        L = i;
        while (R < n && s[R - L] == s[R]) R++;
        Z[i] = R - L; R--;
        } else Z[i] = Z[i - L];
}</pre>
```

3.6.2 KMP

```
1 #include "header.h"
void compute_prefix_function(string &w, vi &
      prefix) {
   prefix.assign(w.length(), 0);
    int k = prefix[0] = -1:
    for(int i = 1; i < w.length(); ++i) {</pre>
      while (k \ge 0 \&\& w[k + 1] != w[i]) k = prefix[
      if(w[k + 1] == w[i]) k++;
      prefix[i] = k;
   }
12 void knuth_morris_pratt(string &s, string &w) {
    int q = -1;
    vi prefix:
    compute_prefix_function(w, prefix);
    for(int i = 0: i < s.length(): ++i) {</pre>
      while (q \ge 0 \&\& w[q + 1] != s[i]) q = prefix[
      if(w[q + 1] == s[i]) q++;
      if(q + 1 == w.length()) {
        // Match at position (i - w.length() + 1)
        q = prefix[q];
22
   }
23
```

3.6.3 Aho-Corasick Also can be used as Knuth-Morris-Pratt algorithm

```
#include "header.h"
```

```
3 map < char, int > cti;
4 int cti_size;
5 template <int ALPHABET_SIZE, int (*mp)(char)>
6 struct AC FSM {
    struct Node {
      int child[ALPHABET_SIZE], failure = 0,
          match_par = -1;
      vi match:
      Node() { for (int i = 0: i < ALPHABET SIZE:
          ++i) child[i] = -1; }
   }:
    vector < Node > a:
    vector < string > & words;
    AC_FSM(vector<string> &words) : words(words) {
      a.push_back(Node());
      construct_automaton();
17
    void construct_automaton() {
      for (int w = 0, n = 0; w < words.size(); ++w,
           n = 0) {
        for (int i = 0; i < words[w].size(); ++i) {</pre>
          if (a[n].child[mp(words[w][i])] == -1) {
            a[n].child[mp(words[w][i])] = a.size();
            a.push_back(Node());
          n = a[n].child[mp(words[w][i])];
        a[n].match.push_back(w);
      aueue < int > a:
      for (int k = 0; k < ALPHABET_SIZE; ++k) {</pre>
        if (a[0].child[k] == -1) a[0].child[k] = 0;
        else if (a[0].child[k] > 0) {
          a[a[0].child[k]].failure = 0;
          g.push(a[0].child[k]);
      }
36
      while (!q.empty()) {
        int r = q.front(); q.pop();
        for (int k = 0, arck; k < ALPHABET_SIZE; ++</pre>
          if ((arck = a[r].child[k]) != -1) {
            q.push(arck);
            int v = a[r].failure:
            while (a[v].child[k] == -1) v = a[v].
                failure:
            a[arck].failure = a[v].child[k];
            a[arck].match_par = a[v].child[k];
            while (a[arck].match_par != -1
                 && a[a[arck].match_par].match.empty
               a[arck].match par = a[a[arck].
                  match_par].match_par;
          }
        }
```

```
void aho_corasick(string &sentence, vvi &
        matches) {
      matches.assign(words.size(), vi());
      int state = 0, ss = 0;
      for (int i = 0; i < sentence.length(); ++i,</pre>
          ss = state) {
        while (a[ss].child[mp(sentence[i])] == -1)
          ss = a[ss].failure;
        state = a[state].child[mp(sentence[i])]
            = a[ss].child[mp(sentence[i])];
        for (ss = state; ss != -1; ss = a[ss].
            match_par)
          for (int w : a[ss].match)
            matches[w].push_back(i + 1 - words[w].
                length());
67 int char_to_int(char c) {
    return cti[c]:
70 int main() {
    11 n:
    string line;
    while(getline(cin, line)) {
      stringstream ss(line):
      ss >> n:
75
76
      vector < string > patterns(n);
77
      for (auto& p: patterns) getline(cin, p);
78
      string text;
      getline(cin. text):
      cti = {}, cti_size = 0;
      for (auto c: text) {
        if (not in(c, cti)) {
          cti[c] = cti_size++;
      for (auto& p: patterns) {
        for (auto c: p) {
          if (not in(c, cti)) {
            cti[c] = cti size++:
93
94
      vvi matches:
97
      AC FSM <128+1, char to int > ac fms(patterns):
      ac_fms.aho_corasick(text, matches);
      for (auto& x: matches) cout << x << endl;</pre>
```

```
102 }
```

3.6.4 Long. palin. subs Manacher - O(n)

```
1 #include "header.h"
void manacher(string &s, vi &pal) {
  int n = s.length(), i = 1, 1, r;
    pal.assign(2 * n + 1, 0);
    while (i < 2 * n + 1) {
      if ((i&1) && pal[i] == 0) pal[i] = 1;
      1 = i / 2 - pal[i] / 2; r = (i-1) / 2 + pal[i]
      while (1 - 1 >= 0 \&\& r + 1 < n \&\& s[1 - 1] ==
           s[r + 1]
        --1, ++r, pal[i] += 2;
10
11
      for (1 = i - 1, r = i + 1; 1 >= 0 && r < 2 *
          n + 1; --1, ++r) {
        if (1 <= i - pal[i]) break:</pre>
13
        if (1 / 2 - pal[1] / 2 > i / 2 - pal[i] /
          pal[r] = pal[1];
        else { if (1 >= 0)
            pal[r] = min(pal[1], i + pal[i] - r);
          break:
      i = r;
22 } }
```

3.7 Geometry

3.7.1 essentials.cpp

```
C operator (const P &p) const { return x*p.y -
    P perp() const { return P{y, -x}; }
    C lensq() const { return x*x + v*v: }
    ld len() const { return sqrt((ld)lensq()); }
    static ld dist(const P &p1, const P &p2) {
      return (p1-p2).len(); }
    bool operator == (const P &r) const {
      return ((*this)-r).lensq() <= EPS*EPS: }
21 C det(P p1, P p2) { return p1^p2; }
22 C det(P p1, P p2, P o) { return det(p1-o, p2-o);
23 C det(const vector <P> &ps) {
   C sum = 0; P prev = ps.back();
    for(auto &p : ps) sum += det(p, prev), prev = p
    return sum:
_{28} // Careful with division by two and C=ll
29 C area(P p1, P p2, P p3) { return abs(det(p1, p2,
       p3))/C(2); }
30 C area(const vector <P> &poly) { return abs(det(
      poly))/C(2); }
31 int sign(C c) { return (c > C(0)) - (c < C(0)); }
32 int ccw(P p1, P p2, P o) { return sign(det(p1, p2
      . o)): }
_{34} // Only well defined for C = 1d.
35 P unit(const P &p) { return p / p.len(); }
36 P rotate(P p, ld a) { return P{p.x*cos(a)-p.y*sin
      (a), p.x*sin(a)+p.y*cos(a)}; }
```

3.7.2 Two segs. itersec.

3.7.3 Convex Hull

```
1 #include "header.h"
2 #include "essentials.cpp"
3 struct ConvexHull { // O(n lg n) monotone chain.
    vector < size t > h. c: // Indices of the hull
        are in 'h'. ccw.
    const vector <P> &p;
    ConvexHull(const vector <P> &_p) : n(_p.size()),
         c(n), p(_p) {
      std::iota(c.begin(), c.end(), 0);
      std::sort(c.begin(), c.end(), [this](size_t 1
          , size_t r) -> bool { return p[1].x != p[
          r].x ? p[1].x < p[r].x : p[1].y < p[r].y;
      c.erase(std::unique(c.begin(), c.end(), [this
10
          ](size_t 1, size_t r) { return p[1] == p[
          r]; }), c.end());
      for (size_t s = 1, r = 0; r < 2; ++r, s = h.
          size()) {
        for (size_t i : c) {
12
          while (h.size() > s && ccw(p[h.end()
              [-2]], p[h.end()[-1]], p[i]) <= 0)
            h.pop_back():
          h.push_back(i);
15
16
         reverse(c.begin(), c.end());
17
18
      if (h.size() > 1) h.pop_back();
19
    size_t size() const { return h.size(); }
21
    template <class T, void U(const P &, const P &,
         const P & . T &)>
    void rotating_calipers(T &ans) {
      if (size() <= 2)</pre>
        U(p[h[0]], p[h.back()], p[h.back()], ans);
25
26
        for (size_t i = 0, j = 1, s = size(); i < 2</pre>
             * s: ++i) {
          while (det(p[h[(i + 1) % s]] - p[h[i % s
              ]], p[h[(j + 1) \% s]] - p[h[j]]) >=
            j = (j + 1) \% s;
          U(p[h[i % s]], p[h[(i + 1) % s]], p[h[i
              ]], ans);
        }
34 // Example: furthest pair of points. Now set ans
      = OLL and call
35 // ConvexHull(pts).rotating_calipers<11, update>(
36 void update(const P &p1, const P &p2, const P &o,
       11 &ans) {
    ans = max(ans, (11)max((p1 - o).lensq(), (p2 -
```

```
o).lensq()));
38 }
39 int main() {
    ios::svnc with stdio(false): // do not use
        cout + printf
    cin.tie(NULL);
13
    int n;
    cin >> n:
    while (n) {
      vector <P> ps:
          int x, y;
      for (int i = 0; i < n; i++) {</pre>
               cin >> x >> v:
               ps.push_back({x, y});
          }
51
           ConvexHull ch(ps);
           cout << ch.h.size() << endl;</pre>
54
           for(auto& p: ch.h) {
               cout << ps[p].x << "" << ps[p].y <<
                   endl:
      cin >> n;
    return 0;
```

3.8 Other Algorithms

3.8.1 2-sat

```
1 #include "../header.h"
2 #include "../Graphs/tarjan.cpp"
3 struct TwoSAT {
   int n:
   vvi imp; // implication graph
   Tarjan tj;
   TwoSAT(int _n) : n(_n), imp(2 * _n, vi()), tj(
   // Only copy the needed functions:
   void add_implies(int c1, bool v1, int c2, bool
     int u = 2 * c1 + (v1 ? 1 : 0),
       v = 2 * c2 + (v2 ? 1 : 0):
     imp[u].push_back(v); // u => v
     imp[v^1].push_back(u^1); // -v => -u
  }
   void add_equivalence(int c1, bool v1, int c2,
       bool v2) {
     add_implies(c1, v1, c2, v2);
```

```
add_implies(c2, v2, c1, v1);
20
    void add_or(int c1, bool v1, int c2, bool v2) {
      add implies(c1, !v1, c2, v2):
23
    void add_and(int c1, bool v1, int c2, bool v2)
      add_true(c1, v1); add_true(c2, v2);
26
    void add_xor(int c1, bool v1, int c2, bool v2)
      add_or(c1, v1, c2, v2);
      add_or(c1, !v1, c2, !v2);
   }
    void add_true(int c1, bool v1) {
      add_implies(c1, !v1, c1, v1);
33
    // on true: a contains an assignment.
    // on false: no assignment exists.
    bool solve(vb &a) {
      vi com:
      tj.find_sccs(com);
      for (int i = 0; i < n; ++i)</pre>
        if (com[2 * i] == com[2 * i + 1])
42
          return false;
      vvi bvcom(com.size()):
      for (int i = 0; i < 2 * n; ++i)
        bycom[com[i]].push_back(i);
      a.assign(n, false);
      vb vis(n. false):
      for(auto &&component : bycom){
       for (int u : component) {
          if (vis[u / 2]) continue;
          vis[u / 2] = true;
          a[u / 2] = (u \% 2 == 1);
        }
      }
      return true;
```

3.8.2 Matrix Solve

```
8 T ReducedRowEchelonForm(M<R,C> &m, int rows) {
      // return the determinant
    int r = 0: T det = 1:
                                       // MODIFIES
        the input
    for(int c = 0; c < rows && r < rows; <math>c++) {
      int p = r:
      for(int i=r+1; i<rows; i++) if(abs(m[i][c]) >
           abs(m[p][c])) p=i;
      if(abs(m[p][c]) < EPS){ det = 0; continue; }</pre>
      swap(m[p], m[r]); det = -det;
      T s = 1.0 / m[r][c], t; det *= m[r][c];
      REP(j,C) m[r][j] *= s;  // make leading
           term in row 1
      REP(i,rows) if (i!=r)\{t=m[i][c]; REP(j,C)\}
          m[i][j] -= t*m[r][j]; }
      ++r;
    return det;
22 bool error, inconst; // error => multiple or
23 template <int R.int C> // Mx = a: M:R*R. v:R*C =>
24 M<R,C> solve(const M<R,R> &m, const M<R,C> &a,
      int rows){
   M < R, R + C > q;
    REP(r.rows){
      REP(c, rows) q[r][c] = m[r][c];
      REP(c,C) q[r][R+c] = a[r][c];
29
    ReducedRowEchelonForm <R,R+C>(q,rows);
    M<R,C> sol; error = false, inconst = false;
    REP(c,C) for(auto j = rows-1; j >= 0; --j){
     T t=0; bool allzero=true;
      for(auto k = j+1; k < rows; ++k)
       t += q[j][k]*sol[k][c], allzero &= abs(q[j])
            ][k]) < EPS;
      if(abs(q[i][i]) < EPS)
        error = true, inconst |= allzero && abs(q[j
37
            ][R+c]) > EPS;
      else sol[i][c] = (q[i][R+c] - t) / q[i][i];
          // usually q[j][j]=1
    return sol:
```

3.8.3 Matrix Exp.

```
array <array <T,N>,N> m;
    M() \{ ITERATE_MATRIX(N) m[r][c] = 0; \}
    static M id() {
      M I: for (int i = 0; i < N; ++i) I.m[i][i] =
          1; return I;
   }
    M operator*(const M &rhs) const {
      ITERATE MATRIX(N) for (int i = 0: i < N: ++i)
          out.m[r][c] += m[r][i] * rhs.m[i][c];
      return out:
15
   }
16
    M raise(ll n) const {
17
      if(n == 0) return id():
      if(n == 1) return *this;
      auto r = (*this**this).raise(n / 2);
      return (n%2 ? *this*r : r):
23 };
```

3.8.4 Finite field For FFT

```
1 #include "header.h"
2 #include "../Number_Theory/elementary.cpp"
3 template <11 p,11 w> // prime, primitive root
4 struct Field { using T = Field; ll x; Field(ll x
      =0) : x\{x\} \{\}
   T operator+(T r) const { return {(x+r.x)%p}; }
    T operator-(T r) const { return {(x-r.x+p)%p};
    T operator*(T r) const { return {(x*r.x)%p}; }
   T operator/(T r) const { return (*this)*r.inv()
    T inv() const { return {mod_inverse(x,p)}; }
    static T root(ll k) { assert( (p-1)%k==0 );
        // (p-1) \% k == 0?
      auto r = powmod(w,(p-1)/abs(k),p);
                                               // k-
          th root of unity
      return k>=0 ? T{r} : T{r}.inv();
   bool zero() const { return x == OLL; }
15 }:
16 using F1 = Field < 1004535809.3 >:
using F2 = Field<1107296257,10>; // 1<<30 + 1<<25
18 using F3 = Field < 2281701377,3 >; // 1 < < 31 + 1 < < 27
```

3.8.5 Complex field For FFR

```
1 #include "header.h"
2 const double m_pi = M_PIf64x;
3 struct Complex { using T = Complex; double u,v;
```

```
Complex(double u=0, double v=0) : u{u}, v{v} {}}
    T operator+(T r) const { return {u+r.u, v+r.v};
    T operator-(T r) const { return {u-r.u, v-r.v};
    T operator*(T r) const { return {u*r.u - v*r.v,
         u*r.v + v*r.u}: }
    T operator/(T r) const {
      auto norm = r.u*r.u+r.v*r.v;
      return {(u*r.u + v*r.v)/norm, (v*r.u - u*r.v)
          /norml:
11 }
   T operator*(double r) const { return T{u*r, v*r
   T operator/(double r) const { return T{u/r, v/r
   T inv() const { return T{1,0}/ *this; }
    T conj() const { return T{u, -v}; }
    static T root(ll k){ return {cos(2*m_pi/k), sin
        (2*m_pi/k); }
   bool zero() const { return max(abs(u), abs(v))
        < 1e-6: }
18 };
```

3.8.6 FFT

```
1 #include "header.h"
2 #include "complex field.cpp"
3 #include "fin_field.cpp"
4 void brinc(int &x, int k) {
5 int i = k - 1, s = 1 << i;</pre>
6 x ^= s;
7 	 if ((x & s) != s) {
      --i; s >>= 1;
      while (i >= 0 && ((x & s) == s))
      x = x &^{\sim} s, --i, s >>= 1;
      if (i >= 0) x |= s:
11
12 }
using T = Complex; // using T=F1,F2,F3
15 vector<T> roots:
16 void root_cache(int N) {
    if (N == (int)roots.size()) return;
    roots.assign(N, T{0});
    for (int i = 0; i < N; ++i)</pre>
      roots[i] = ((i\&-i) == i)
        ? T{cos(2.0*m_pi*i/N), sin(2.0*m_pi*i/N)}
        : roots[i&-i] * roots[i-(i&-i)];
24 void fft(vector <T > &A, int p, bool inv = false) {
  for(int i = 0, r = 0; i < N; ++i, brinc(r, p))
      if (i < r) swap(A[i], A[r]);</pre>
28 // Uncomment to precompute roots (for T=Complex)
      . Slower but more precise.
```

```
29 // root_cache(N);
                       , --sh
            , sh=p-1
    for (int m = 2; m <= N; m <<= 1) {</pre>
      T w. w m = T::root(inv ? -m : m):
      for (int k = 0; k < N; k += m) {
        w = T\{1\};
        for (int j = 0; j < m/2; ++j) {
            T w = (!inv ? roots[j << sh] : roots[j <<
      shl.coni()):
          T t = w * A[k + j + m/2];
          A[k + j + m/2] = A[k + j] - t;
          A[k + j] = A[k + j] + t;
          w = w * w_m;
    if(inv){ T inverse = T(N).inv(); for(auto &x :
        A) x = x*inverse;
45 }
46 // convolution leaves A and B in frequency domain
47 // C may be equal to A or B for in-place
      convolution
48 void convolution(vector<T> &A, vector<T> &B,
      vector <T> &C) {
    int s = A.size() + B.size() - 1;
    int q = 32 - __builtin_clz(s-1), N=1<<q; //</pre>
        fails if s=1
    A.resize(N,{}); B.resize(N,{}); C.resize(N,{});
    fft(A, q, false); fft(B, q, false);
    for (int i = 0; i < N; ++i) C[i] = A[i] * B[i];
    fft(C, q, true); C.resize(s);
54
56 void square_inplace(vector<T> &A) {
    int s = 2*A.size()-1, q = 32 - _builtin_clz(s
        -1). N=1<<a:
    A.resize(N,{}); fft(A, q, false);
    for (auto &x : A) x = x*x;
    fft(A, q, true); A.resize(s);
61 }
```

3.8.7 Polyn. inv. div.

```
9 vector<T> inverse(const vector<T> &A, int n) {
    vector <T> Ai{A[0].inv()};
    for (int k = 0; (1<<k) < n; ++k) {
      vector<T> As(4 << k, T(0)), Ais(4 << k, T(0));
       copy_into(A, As, 2<<k); copy_into(Ai, Ais, Ai
          .size());
      fft(As, k+2, false); fft(Ais, k+2, false);
      for (int i = 0; i < (4<<k); ++i) As[i] = As[i
          l*Ais[i]*Ais[i]:
      fft(As, k+2, true); Ai.resize(2<<k, {});</pre>
      for (int i = 0; i < (2<<k); ++i) Ai[i] = T(2)
17
            * Ai[i] - As[i]:
18
    Ai.resize(n):
    return Ai;
22 // Polynomial division. Returns {Q, R} such that
      A = QB+R, deg R < deg B.
23 // Requires that the leading term of B is nonzero
24 pair < vector < T > , vector < T >> divmod (const vector < T >
       &A. const vector <T> &B) {
    size_t n = A.size()-1, m = B.size()-1;
    if (n < m) return {vector <T>(1, T(0)), A};
    vector\langle T \rangle X(A), Y(B), Q, R;
    convolution(rev(X), Y = inverse(rev(Y), n-m+1),
    Q.resize(n-m+1); rev(Q);
    X.resize(Q.size()), copy_into(Q, X, Q.size());
    Y.resize(B.size()), copy_into(B, Y, B.size());
    convolution(X, Y, X):
    R.resize(m), copy_into(A, R, m);
    for (size_t i = 0; i < m; ++i) R[i] = R[i] - X[</pre>
        i];
    while (R.size() > 1 && R.back().zero()) R.
        pop_back();
    return {Q, R};
41 vector <T> mod(const vector <T> &A, const vector <T>
    return divmod(A. B).second:
43 }
```

3.8.8 Linear recurs. Given a linear recurrence of the form

$$a_n = \sum_{i=0}^{k-1} c_i a_{n-i-1}$$

this code computes a_n in $O(k \log k \log n)$ time.

```
1 #include "header.h"
2 #include "poly.cpp"
3 // x^k \mod f
4 vector<T> xmod(const vector<T> f. ll k) {
    vectorT> r\{T(1)\};
    for (int b = 62; b >= 0; --b) {
      if (r.size() > 1)
        square_inplace(r), r = mod(r, f);
      if ((k>>b)&1) {
       r.insert(r.begin(), T(0));
        if (r.size() == f.size()) {
          T c = r.back() / f.back();
          for (size_t i = 0; i < f.size(); ++i)</pre>
            r[i] = r[i] - c * f[i];
          r.pop_back();
    return r;
_{21} // Given A[0,k) and C[0, k), computes the n-th
      term of:
_{22} // A[n] = \sum_i C[i] * A[n-i-1]
23 T nth_term(const vector<T> &A, const vector<T> &C
      , 11 n) {
    int k = (int)A.size();
    if (n < k) return A[n]:
    vector <T> f(k+1, T{1});
    for (int i = 0; i < k; ++i)
     f[i] = T\{-1\} * C[k-i-1];
    f = xmod(f, n);
    T r = T\{0\};
    for (int i = 0: i < k: ++i)
      r = r + f[i] * A[i];
    return r;
```

3.8.9 Convolution Precise up to 9e15

```
fft(Ac, q, false); fft(Bc, q, false);
    for (int i = 0, j = 0; i < N; ++i, j = (N-1)&(N
      T as = (Ac[i] + Ac[i].coni()) / 2:
      T = (Ac[i] - Ac[i].coni()) / T{0, 2};
      T bs = (Bc[i] + Bc[j].conj()) / 2;
      T bl = (Bc[i] - Bc[j].conj()) / T{0, 2};
      R1[i] = as*bs + al*bl*T{0,1}, R2[i] = as*bl +
16
    fft(R1, q, true); fft(R2, q, true);
17
    11 p15 = (1LL << 15) \% MOD, p30 = (1LL << 30) \% MOD; C.
        resize(s);
    for (int i = 0; i < s; ++i) {</pre>
      11 1 = llround(R1[i].u), m = llround(R2[i].u)
          , h = llround(R1[i].v);
      C[i] = (1 + m*p15 + h*p30) \% MOD;
22
23 }
```

3.8.10 Partitions of n Finds all possible partitions of a number

```
1 #include "header.h"
void printArray(int p[], int n) {
    for (int i = 0; i < n; i++)</pre>
      cout << p[i] << "":
    cout << endl;</pre>
6 }
8 void printAllUniqueParts(int n) {
    int p[n]; // An array to store a partition
    int k = 0; // Index of last element in a
        partition
    p[k] = n; // Initialize first partition as
        number itself
    // This loop first prints current partition
        then generates next
    // partition. The loop stops when the current
        partition has all 1s
    while (true) {
      printArray(p, k + 1);
16
17
      // Find the rightmost non-one value in p[].
18
          Also, update the
      // rem_val so that we know how much value can
           be accommodated
      int rem_val = 0;
20
      while (k >= 0 \&\& p[k] == 1) {
21
        rem_val += p[k];
        k--;
24
```

```
// if k < 0, all the values are 1 so there
          are no more partitions
27
      if (k < 0) return:
28
      // Decrease the p[k] found above and adjust
          the rem val
      p[k]--:
      rem_val++;
31
      // If rem_val is more, then the sorted order
          is violated. Divide
      // rem_val in different values of size p[k]
          and copy these values at
      // different positions after p[k]
      while (rem_val > p[k]) {
        p[k + 1] = p[k];
        rem_val = rem_val - p[k];
      }
40
41
      // Copy rem_val to next position and
42
          increment position
      p[k + 1] = rem_val;
      k++;
45
46 }
```

3.9 Other Data Structures

3.9.1 Disjoint set (i.e. union-find)

```
1 template <tvpename T>
2 class DisjointSet {
      typedef T * iterator;
      T *parent, n, *rank;
      public:
          // O(n), assumes nodes are [0, n)
          DisjointSet(T n) {
              this->parent = new T[n];
              this -> n = n:
              this->rank = new T[n];
              for (T i = 0: i < n: i++) {
12
                  parent[i] = i;
                  rank[i] = 0:
              }
          }
17
18
          // O(log n)
          T find_set(T x) {
              if (x == parent[x]) return x;
              return parent[x] = find_set(parent[x
                  ]);
          }
```

3.9.2 Fenwick tree (i.e. BIT) eff. update + prefix sum calc.

```
#include "header.h"

#define maxn 200010

int t,n,m,tree[maxn],p[maxn];

void update(int k, int z) {

while (k <= maxn) {

tree[k] += z;

k += k & (-k);

}

}

int sum(int k) {

int ans = 0;

while(k) {

ans += tree[k];

k -= k & (-k);

return ans;

}</pre>
```

3.9.3 Fenwick2d tree

```
return query(x2,y2)+query(x1-1,y1-1)-query(x2
          ,y1-1)-query(x1-1,y2);
    T query(int x, int y) {
      T s = 0:
11
      for (int i = x; i > 0; i -= (i & (-i)))
        for (int j = y; j > 0; j -= (j & (-j)))
          s += tree[i][j];
      return s:
16
    void update(int x, int y, T v) {
17
      for (int i = x: i <= n: i += (i & (-i)))
        for (int j = v; j \le n; j += (j & (-j)))
          tree[i][j] += v;
21 }
22 };
```

3.9.4 Trie

```
1 #include "header.h"
2 const int ALPHABET SIZE = 26:
3 inline int mp(char c) { return c - 'a'; }
5 struct Node {
    Node * ch[ALPHABET_SIZE];
    bool isleaf = false;
   Node() {
     for(int i = 0; i < ALPHABET_SIZE; ++i) ch[i]</pre>
          = nullptr;
    }
10
11
    void insert(string &s, int i = 0) {
      if (i == s.length()) isleaf = true;
       int v = mp(s[i]);
        if (ch[v] == nullptr)
          ch[v] = new Node();
        ch[v]->insert(s, i + 1);
19
    }
20
21
    bool contains(string &s, int i = 0) {
      if (i == s.length()) return isleaf;
23
        int v = mp(s[i]);
        if (ch[v] == nullptr) return false;
        else return ch[v]->contains(s, i + 1);
28
29
    }
    void cleanup() {
      for (int i = 0; i < ALPHABET_SIZE; ++i)</pre>
        if (ch[i] != nullptr) {
33
          ch[i]->cleanup();
```

3.9.5 Treap A binary tree whose nodes contain two values, a key and a priority, such that the key keeps the BST property

```
1 #include "header.h"
  2 struct Node {
  3 11 v:
           int sz, pr;
          Node *1 = nullptr. *r = nullptr:
        Node(ll val) : v(val), sz(1) { pr = rand(); }
  8 int size(Node *p) { return p ? p->sz : 0; }
  9 void update(Node* p) {
         if (!p) return:
p - sz = 1 + size(p - size(p
        // Pull data from children here
14 void propagate(Node *p) {
if (!p) return;
16 // Push data to children here
18 void merge(Node *&t, Node *1, Node *r) {
             propagate(1), propagate(r);
            if (!1)
                                       t = r;
            else if (!r) t = 1;
             else if (1->pr > r->pr)
                        merge(1->r, 1->r, r), t = 1;
            else merge(r\rightarrow 1, 1, r\rightarrow 1), t = r;
            update(t):
26 }
27 void spliti(Node *t, Node *&l, Node *&r, int
                  index) {
            propagate(t):
            if (!t) { l = r = nullptr; return; }
            int id = size(t->1):
            if (index <= id) // id \in [index, \infty), so</pre>
                        move it right
                  spliti(t\rightarrow 1, 1, t\rightarrow 1, index), r = t;
                   spliti(t\rightarrow r, t\rightarrow r, r, index - id), l = t:
            update(t);
37 void splitv(Node *t. Node *&1. Node *&r. 11 val)
            propagate(t);
           if (!t) { l = r = nullptr; return; }
            if (val \le t \rightarrow v) // t \rightarrow v \in [val, \in v], so
                        move it right
                   splitv(t->1, 1, t->1, val), r = t;
```

3.9.6 Segment tree

```
1 #include "../header.h"
2 template <class T, const T&(*op)(const T&, const</pre>
      T&)>
3 struct SegmentTree {
int n; vector<T> tree; T id;
    SegmentTree(int _n, T _id) : n(_n), tree(2 * n,
         _id), id(_id) { }
    void update(int i, T val) {
      for (tree[i+n] = val. i = (i+n)/2; i > 0; i
        tree[i] = op(tree[2*i], tree[2*i+1]);
   T query(int 1, int r) {
      T lhs = T(id), rhs = T(id);
      for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1)
        if ( 1\&1 ) lhs = op(lhs, tree[1++]):
        if (!(r&1)) rhs = op(tree[r--], rhs);
      return op(l == r ? op(lhs, tree[1]) : lhs,
18 }:
```

3.9.7 Lazy segment tree Uptimizes range updates

```
tree.reserve(2*N-1); tree.push_back({0,N});
         build(0, 0, N);
   void build(int i. int l. int r) { auto &n =
       tree[i]:
     if (r > 1+1) \{ int m = (1+r)/2;
       .r}):
       build(n.lc,1,m);
                        build(n.rc,m,r);
       n.t = op(tree[n.lc].t, tree[n.rc].t);
     } else n.t = convert(init[1]);
23
   void push(Node &n, U u){ apply(n.t, u, n.r-n.l)
       ; join(n.u,u); }
   void push(Node &n){push(tree[n.lc],n.u);push(
       tree[n.rc],n.u);n.u=u_id;}
   T query(int 1, int r, int i = 0) { auto &n =
       tree[i]:
     if(r <= n.1 || n.r <= 1) return t id:
     if(1 <= n.1 && n.r <= r) return n.t;</pre>
     return push(n), op(querv(l.r.n.lc),querv(l.r.
         n.rc)):
   void update(int 1, int r, U u, int i = 0) {
       auto &n = tree[i];
     if(r <= n.1 || n.r <= 1) return;</pre>
     if(1 <= n.1 && n.r <= r) return push(n.u):
     push(n); update(l,r,u,n.lc); update(l,r,u,n.
     n.t = op(tree[n.lc].t, tree[n.rc].t);
37 };
```

3.9.8 Suffix tree

```
1 #include "../header.h"
2 using T = char;
3 using M = map<T,int>; // or array<T,</pre>
      ALPHABET_SIZE >
                        // could be vector <T> as
4 using V = string:
      well
5 using It = V::const_iterator;
6 struct Node{
    It b, e; M edges; int link; // end is
        exclusive
    Node(It b, It e) : b(b), e(e), link(-1) {}
  int size() const { return e-b; }
10 };
11 struct SuffixTree{
const V &s; vector < Node > t;
int root.n.len.remainder.llink: It edge:
   SuffixTree(const V &s) : s(s) { build(); }
  int add_node(It b, It e){ return t.push_back({b
        .e}). t.size()-1: }
```

```
int add_node(It b){ return add_node(b,s.end());
    void link(int node){ if(llink) t[llink].link =
        node: llink = node: }
    void build(){
      len = remainder = 0; edge = s.begin();
      n = root = add_node(s.begin(), s.begin());
      for(auto i = s.begin(); i != s.end(); ++i){
        ++remainder: llink = 0:
        while(remainder){
        if(len == 0) edge = i:
24
         if(t[n].edges[*edge] == 0){
                                         // add
              new leaf
            t[n].edges[*edge] = add_node(i); link(n
               );
         } else {
            auto x = t[n].edges[*edge]; // neXt
                node [with edge]
           if(len >= t[x].size()){
                                    // walk to
                next node
              len -= t[x].size(); edge += t[x].size
                 (): n = x:
              continue;
           }
            if(*(t[x].b + len) == *i){ // walk}
                along edge
              ++len; link(n); break;
                // split edge
            auto split = add_node(t[x].b, t[x].b+
            t[n].edges[*edge] = split;
            t[x].b += len;
            t[split].edges[*i] = add node(i):
            t[split].edges[*t[x].b] = x;
           link(split):
41
          --remainder;
          if(n == root && len > 0)
           --len, edge = i - remainder + 1;
          else n = t[n].link > 0 ? t[n].link : root
47
   }
```

3.9.9 UnionFind

```
for(int i = 0: i < n: ++i) par[i] = i:</pre>
7 }
   int find(int i) { return (par[i] == i ? i : (
        par[i] = find(par[i])); }
   bool same(int i, int j) { return find(i) ==
        find(j); }
    int get_size(int i) { return size[find(i)]; }
    int count() { return c; }
    int merge(int i, int i) {
      if((i = find(i)) == (j = find(j))) return -1;
      if(rank[i] > rank[j]) swap(i, j);
      par[i] = j;
      size[j] += size[i];
      if(rank[i] == rank[j]) rank[j]++;
      return j;
20 }
21 };
```

4 Other Mathematics

4.1 Helpful functions

4.1.1 Euler's Totient Function $n = p_1^{k_1-1} \cdot (p_1-1) \cdot \dots \cdot p_r^{k_r-1} \cdot (p_r-1)$, where $p_1^{k_1} \cdot \dots \cdot p_r^{k_r}$ is the prime factorization of n.

```
1 # include "header.h"
2 ll phi(ll n) { // \Phi(n)
     ll ans = 1:
      for (11 i = 2; i*i <= n; i++) {</pre>
        if (n % i == 0) {
              ans *= i-1:
              n /= i;
              while (n % i == 0) {
                  ans *= i:
                  n /= i;
          }
      if (n > 1) ans *= n-1:
      return ans;
17 vi phis(int n) { // All \Phi(i) up to n
    vi phi(n + 1, OLL);
    iota(phi.begin(), phi.end(), OLL);
    for (11 i = 2LL: i <= n: ++i)</pre>
      if (phi[i] == i)
      for (11 j = i; j <= n; j += i)
          phi[j] -= phi[j] / i;
24 return phi;
```

```
Formulas \Phi(n) counts all numbers in 1, \ldots, n-1 coprime to n. a^{\varphi(n)} \equiv 1 \mod n, a and n are coprimes. \forall e > \log_2 m : n^e \mod m = n^{\Phi(m) + e \mod \Phi(m)} \mod m. \gcd(m, n) = 1 \Rightarrow \Phi(m \cdot n) = \Phi(m) \cdot \Phi(n).
```

4.1.2 Pascal's trinagle $\binom{n}{k}$ is k-th element in the n-th row, indexing both from 0

4.2 Theorems and definitions

Fermat's little theorem

$$a^p \equiv a \mod p$$

Subfactorial

$$!n = n! \sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$$

$$!(0) = 1, !n = n \cdot !(n-1) + (-1)^n$$

Binomials and other partitionings

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} = \prod_{i=1}^{k} \frac{n-i+1}{i}$$

This last product may be computed incrementally since any product of k' consecutive values is divisible by k'!. Basic identities: The hockeystick identity:

$$\sum_{k=r}^{n} \binom{k}{r} = \binom{n+1}{r+1}$$

or

$$\sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

Also

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

For $n, m \geq 0$ and p prime: write n, m in base p, i.e. $n = n_k p^k + \dots + n_1 p + n_0$ and $m = m_k p^k + \dots + m_1 p + m_0$. Then by Lucas theorem we have $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \mod p$, with the convention that $n_i < m_i \implies \binom{n_i}{m_i} = 0$.

Fibonacci (See also number theory section)

$$\sum_{0 \le k \le n} \binom{n-k}{k} = F_{n+1}$$

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

$$\sum_{i=1}^n F_i = F_{n+2} - 1, \sum_{i=1}^n F_i^2 = F_n F_{n+1}$$

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}$$

$$\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = 1$$

Bit stuff $a+b=a\oplus b+2(a\&b)=a|b+a\&b$. kth bit is set in x iff $x \mod 2^{k-1} \geq 2^k$, or iff $x \mod 2^{k-1}-x \mod 2^k \neq 0$ (i.e. $=2^k$) It comes handy when you need to look at the bits of the numbers which are pair sums or subset sums etc.

$$n \mod 2^i = n\&(2^i - 1).$$

$$\forall k: \ 1 \oplus 2 \oplus \ldots \oplus (4k-1) = 0$$

Stirling's numbers First kind: $S_1(n,k)$ count permutations on n items with k cycles. $S_1(n,k) = S_1(n-1,k-1) + (n-1)S_1(n-1,k)$ with $S_1(0,0) = 1$. Note:

$$\sum_{k=0}^{n} S_1(n,k)x^k = x(x+1)\dots(x+n-1)$$

$$\sum_{k=0}^{n} S_1(n,k) = n!$$

Second kind: $S_2(n, k)$ count partitions of n distinct elements into exactly k non-empty groups.

$$S_2(n,k) = S_2(n-1,k-1) + kS_2(n-1,k)$$

$$S_2(n,1) = S_2(n,n) = 1$$

$$S_2(n,k) = \frac{1}{k!} \sum_{i=1}^{k} (-1)^{k-i} \binom{k}{i} i^n$$

4.3 Geometry Formulas

$$[ABC] = rs = \frac{1}{2}ab\sin\gamma$$

$$= \frac{abc}{4R} = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2} \left| (B-A, C-A)^T \right|$$

$$s = \frac{a+b+c}{2} \qquad 2R = \frac{a}{\sin \alpha}$$
 cosine rule:
$$c^2 = a^2 + b^2 - 2ab\cos \gamma$$
 Euler:
$$1 + CC = V - E + F$$
 Pick:
$$\operatorname{Area} = \operatorname{itr} \operatorname{pts} + \frac{\operatorname{bdry} \operatorname{pts}}{2} - 1$$

$$p \cdot q = |p||q|\cos(\theta) \qquad |p \times q| = |p||q|\sin(\theta)$$

Given a non-self-intersecting closed polygon on n vertices, given as (x_i, y_i) , its centroid (C_x, C_y) is given as:

$$C_x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i),$$

$$C_y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)$$

$$A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) = \text{polygon area}$$

Inclusion-Exclusion For appropriate f compute $\sum_{S\subseteq T} (-1)^{|T\setminus S|} f(S)$, or if only the size of S matters, $\sum_{s=0}^{n} (-1)^{n-s} \binom{n}{s} f(s)$. In some contexts we might use Stirling numbers, not binomial coefficients!

Some useful applications:

Graph coloring Let I(S) count the number of independent sets contained in $S \subseteq V$ ($I(\emptyset) = 1$, $I(S) = I(S \setminus v) + I(S \setminus N(v))$). Let $c_k = \sum_{S \subseteq V} (-1)^{|V \setminus S|} I(S)$. Then V is k-colorable iff v > 0. Thus we can compute the chromatic number of a graph in $O^*(2^n)$ time.

Burnside's lemma Given a group G acting on a set X, the number of elements in X up to symmetry is

$$\frac{1}{|G|} \sum_{g \in G} |X^g|$$

with X^g the elements of X invariant under g. For example, if f(n) counts "configurations" of some sort of length n, and we want to count them up to rotational symmetry using $G = \mathbb{Z}/n\mathbb{Z}$, then

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k||n} f(k)\phi(n/k)$$

I.e. for coloring with c colors we have $f(k) = k^c$.

Relatedly, in Pólya's enumeration theorem we imagine X as a set of n beads with G permuting the beads (e.g. a necklace, with G all rotations and reflections of the n-cycle, i.e. the dihedral group D_n). Suppose further that we had Y colors, then the number of G-invariant colorings Y^X/G is counted by

$$\frac{1}{|G|} \sum_{g \in G} |Y|^{c(g)}$$

with c(g) counting the number of cycles of g when viewed as a permutation of X. We can generalize this to a weighted version: if the color i can occur exactly r_i times, then this is counted by the coefficient of $t_1^{r_1} \dots t_n^{r_n}$ in the polynomial

$$Z(t_1, \dots, t_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{m \ge 1} (t_1^m + \dots + t_n^m)^{c_m(g)}$$

where $c_m(g)$ counts the number of length m cycles in g acting as a permutation on X. Note we get the original formula by setting all $t_i = 1$. Here Z is the cycle index. Note: you can cleverly deal with even/odd sizes by setting some t_i to -1.

Lucas Theorem If p is prime, then:

$$\frac{p^a}{k} \equiv 0 \pmod{p}$$

Thus for non-negative integers $m = m_k p^k + \ldots + m_1 p + m_0$ and $n = n_k p^k + \ldots + n_1 p + n_0$:

$$\frac{m}{n} = \prod_{i=0}^k \frac{m_i}{n_i} \mod p$$

Note: The fraction's mean integer division.

Catalan Numbers - Number of correct bracket sequence consisting of n opening and n closing brackets.

The number of ways to completely parenthesize n+1 factors.

The number of triangulations of a convex polygon with n+2 sides (i.e. the number of partitions of polygon into disjoint triangles by using the diagonals).

The number of ways to connect the 2n points on a circle to form n disjoint i.e. non-intersecting chords.

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

$$C_0 = 1, \ C_1 = 1, \ C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$$

Narayana numbers The number of expressions containing n pairs of parentheses, which are correctly matched and which contain k distinct nestings.

$$N(n,k) = \frac{1}{n} \frac{n}{k} \frac{n}{k-1}$$