DAY 5 - Ethernet LAN Switching

Purinat33

Ethernet LAN Switching

- **Before**: We have looked at **Physical Layer Ethernet** (UTP, Fiber Optics etc.).
- Now: We will look at Data Link Layer Ethernet (Frame) now.

Ethernet Frame:

IEEE 802.3 Ethernet Frame Format

- Minimum Size: 64 Bytes (Not including Preamble + SFD)
- Minimum Data Payload Size: 46 Bytes
 - If the size is less than 46, will be padded to the Data Payload until it is 46 Bytes long.

1. Ethernet Header

- Preamble:
 - Not really part of the Ethernet header.

- 7 bytes of consecutive 10101010 s.
- Use for synchronization of receiver clocks.

• SFD (Start Frame Delimiter):

- Also not really part of the Ethernet header.
- 1 byte of 10101011
- Marks the end of the preamble, and the beginning of the rest of the frame.

• Destination/Source Address:

- Indicate devices sending & receiving the frame.
- MAC Address (Media Access Control):
- 6 bytes each

• Type or Length:

- 2 Bytes field.
- Depending on the value inside this field:
 - * A value of **1500 or less** in this field indicates the **LENGTH** of the *encapsulated packet* (in Bytes)
 - * A value of **1536** or greater indicates the **TYPE** of the *encapsulated packet*. The length of the packet will be determined via other methods.

0x0800 : IPv40x86DD : IPv60x0806 : ARP

2. Ethernet Trailer

IEEE 802.3 Ethernet Frame Format

• FCS:

- Frame Check Sequence
- 4 Bytes
- Detects corrupted data by running a CRC Algorithm over the received data.

MAC Address

- 6 Bytes (48 bits) physical address assigned to the device when manufactured
- Also known as Burned-In Address
- Is globally unique
- Written as 12 Hexadecimal digits
 - C8-3A-35-C8-01-04
 - C83A.35C8.0104
- The **First 3 Bytes** are the **OUI** (Organizationally Unique Identifier), which is associated to the company making the device.
- The Last 3 Bytes are unique to the device itself.
 - C8-3A-35-C8-01-04

* C8-3A-35 : OUI

* C8-01-04 : Device

Frame Transmission

Switch: Forwards Frames out of its various interfaces to the frame intended destinations based on the **Switch**'s MAC Address Table. (eg.):

Switch#show mac address-table Mac Address Table

Vlan	Mac Address	Type	Ports
1	000c.cf25.415c 0060.2fce.30db	DYNAMIC DYNAMIC	Fa0/1 Fa0/3

Unicast Frame: A frame destined for a single target. (eg. PC1-PC2)

• Known Unicast Frame: The Destination MAC Address of the Frame is found in a switch's MAC Address Table. The switch will simply only forward the frame out of the matching port/interface.

- **Source:** .415c

Destination: .30dbSend out Port: Fa0/3

0060.2fce.30db DYNAMIC Fa0/3

• Unknown Unicast Frame: The Destination MAC Address of the Frame is not found in the switch's MAC Address Table. The switch will need to learn what port is associated with what MAC Addresses.

MAC Address Learning (PC and Switch)

Normally devices communicate using IP Addresses and not MAC Addresses.

eg. ping 192.168.1.1 and not ping a9-12-00-3c-10-f9

- How will a Source device learn the MAC address of the Destination device?
- <u>Answer</u>: Using Address Resolution Protocol (**ARP**)

Address Resolution Protocol (ARP)

- 1. PC1 wants to communicate with PC4.
- 2. PC1 only knows the **IP Address** of PC4.
- 3. PC1 cannot send an Ethernet frame yet since the **Destination MAC Address** is unknown.
 - (a) Source IP Address: 10.0.0.1
 - (b) Destination IP Address: 10.0.0.4
 - (c) Source MAC Address: a1a1. (abbreviated)
 - (d) **Destination MAC Address**: **UNKNOWN** (not in database)
- 4. PC1 use **ARP** to discover PC4's MAC Address.
- 5. PC1 creates an **ARP REQUEST Frame** which broadcast to every devices in the LAN.
 - (a) Source IP Address: 10.0.0.1
 - (b) Destination IP Address: 10.0.0.4
 - (c) Source MAC Address: a1a1.
 - (d) **Destination MAC Address**: FFFF.FFFF. (broadcast)
- 6. PC1 basically shouts "Whoever has an IP of 10.0.0.4 please reply directly to a1a1. with your MAC Address".
- 7. The ARP REQUEST Frame enters Switch 1 via the F0/1 interface.
- 8. Switch 1 discovers that:
 - (a) A Frame entered its F0/1 interface
 - (b) That Frame has a Source MAC Address of a1a1.
 - (c) THUS, associate any frame with MAC Address a1a1. with interface F0/1 into its MAC table.
- 9. Switch 1 sees that the **Destination MAC Address** is FFFF.FFFF. FFFF which is the broadcast address.
- 10. Switch 1 duplicates and **FLOOD** the frames through all of its ports except the incoming port.
- 11. Switch 2 and PC2 receives the frames, PC2 sees that the **Destination IP**

- Address (10.0.0.4) wasn't meant for them, and thus discard the frame.
- 12. Switch 2 perform the same thing as Switch 1 including flooding the frames and adding ala1. with F0/3 into its MAC table.
- 13. PC3, PC4 all receive the ARP Request Frame
- 14. PC3 sees that the **Destination IP Address** (10.0.0.4) wasn't meant for them, and thus discard the frame. Only PC4 accepts the frame.
- 15. PC4 creates an **ARP Reply** which is a **unicast** Frame this time, using the information from PC1 that comes with the **ARP Request**.
 - (a) Source IP Address: 10.0.0.4
 - (b) Destination IP Address: 10.0.0.1
 - (c) Source MAC Address: d4d4.
 - (d) Destination MAC Address: ala1.
- 16. The reverse process is basically the same as the **ARP Request** process.
- 17. When PC1 receives the **ARP Reply** unicast frame from PC4, PC1 adds PC4's MAC Address to its own memory called an **ARP Table**
 - (a) can be viewed using arp -a on a device or show arp on Cisco devices.

```
C:\>arp -a
Internet Address Physical Address Type
10.0.0.4 0001.43c5.4caa dynamic
```

Summary

Ethernet Frame

IEEE 802.3 Ethernet Frame Format

Pre-Header:

- Preamble: 7 Bytes of 10101010 for synchronization.
- SFD: 10101011, marks the end of the *Preamble*

Ethernet Header (14 Bytes):

• Destination MAC Address:

- 6 Bytes
- If Destination MAC Address is FFFF.FFFF = Broadcast to all devices in the LAN (except to the originator)
- Source MAC Address:
 - 6 Bytes.
- Length/Type:
 - 2 Bytes
 - If value is Less than or equal 1500 indicates the LENGTH of the data payload.
 - If value is More than or equal 1536 indicates the TYPE of the data payload.

* 0x0800 : IPv4 * 0x86DD : IPv6 * 0x0806 : ARP

DATA PAYLOAD:

- 46 to 1500 Bytes
- If the length is less than 46, then 0 bits are padded to the data payload until the length is 46.

Ethernet Trailer (4 Bytes):

• Frame Check Sequence (CRC): Detects corruption.

MAC Address

- 12 Hexadecimal Digits
- 6 Bytes (48 bits)
 - First 3 Bytes (6 Hexadecimal Digits): **OUI** (Organizational)
 - Last 3 Bytes (6 Hexadecimal Digits): Unique to a device.

Switches

- View/Clear MAC table of a switch.
 - show mac address-table

- clear mac address-table dynamic address {address} Clear the entry with a specific MAC Address.
- clear mac address-table dynamic interface {interface}
 Clear the entry with a specific **PORTS**
- Switch learns the MAC/Ports mapping via **Source MAC Address** of an **Incoming Frame** to the **Port** it came through.
- Flooding: The act in which Switch duplicates and then send out the duplicated Frames out of all the ports **except** the original incoming port.
 - Broadcast
 - Unicast with unknown **Destination MAC Address** not in the table.
- **Aging**: The act in which after some times have passed, the entries which are *old* enough will be removed from the table.

Address Resolution Protocol (ARP)

- The sender/source usually doesn't know the **MAC** of the receiver/destination device. Only the **IP** is known.
- The sender creates an **ARP Request** Broadcast frame, containing the:
 - Sender's IP Address
 - Receiver's IP Address
 - Sender's MAC Address
 - Broadcast MAC Address (FFFF.FFFF.FFFF)
- Every devices in the **same LAN** will receive the **ARP Request** Frame, but only the intended receiver will accept the frame (based on the **Receiver's IP Address**).
- The receiver creates an ARP Reply Unicast frame, containing:
 - Receiver's IP Address
 - Sender's IP Address
 - Receiver's MAC Address
 - Sender's MAC Address
- A device stores its known MAC/IP mapping in its ARP table
 - Viewed using show arp or arp -a