Lecture 4

February 1, 2019

Anders Sundheim asundheim@wisc.edu

Characterization of Critical Points 2

Recall

Let A be a $n \times n$ real, symmetric matrix, and $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$ For $h \in \mathbb{R}^n$, denote by

$$Q(h) = h^T A h = \sum_{i,j=1}^n a_{ij} h_i h_j$$

0.1 Lemma

Q(H) > 0 for all $h \neq \vec{0} \iff$ all eigenvalues of A are positive

Proof. Since A is a real, symmetric matrix, we have that A is diagonalizable, and we can write

$$\begin{cases} A = CDC^T \\ D \text{ is a diagonalizable matrix, } D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \\ CC^T = I, \text{ that is, } C^T = C^{-1} \end{cases}$$

Then, eigenvalues of A are $\lambda_1, \lambda_2, \dots, \lambda_n$ we note then that:

$$Q(h) = h^T A h = h^T C D C^T h = (h^T C) D(C^T h)$$

Set
$$x = C^T h \in \mathbb{R}^n \Rightarrow x^T = (C^T h)^T = h^T C$$
. Then

$$Q(h) = x^T D x = (x_1, \dots, x_n) \begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \boxed{\sum_{i=1}^n \lambda_i x_i^2}$$

The last identity is very important as it confirms what we need

- Firstly, if $\lambda_1, \ldots, \lambda_n > 0$, then for $h \neq \vec{0}$, $x = C^T h \neq \vec{0}$, and so $Q(h) = \sum_{i=1}^{n} \lambda_i x_i^2 > 0$
- Secondly, in order for Q(h) > 0 for all $h \neq \vec{0}$, we need $\sum_{i=1}^{n} \lambda_i x_i^2 > 0 \text{ for all } x \neq \vec{0}.$

Clearly we yield that $\lambda_1, \ldots, \lambda_n > 0$

0.2Second derivative test for critical points of functions of two variables

Let $B(y,r) \subset \mathbb{R}^2$, and $f: B(y,r) \to \mathbb{R}$ Assume that $\frac{d^2f}{dx_idx_j}$ exists and continuous in B(y,r) for all $1 \le i,j \le 2$ Assume further that f has a critical point at y, that is, $\nabla \overline{f(y)} = \vec{0}$

Our Hessian at y is:

$$H(y) = \begin{pmatrix} f_{x_1x_1}(y) & f_{x_1x_2}(y) \\ f_{x_2x_1}(y) & f_{x_2x_2}(y) \end{pmatrix} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$
where we set $A = f_{x_1x_1}(y)$, $B = f_{x_1x_2}(y)$, $C = f_{x_2x_2}(y)$

To find eigenvalues of H(y), we solve

$$\det(\lambda I - H(y)) = \det\begin{pmatrix} \lambda - A & -B \\ -B & \lambda - C \end{pmatrix} = (\lambda - A)(\lambda - C) - B^2 = 0$$

$$\iff \lambda^2 - (A+C)\lambda + AC - B^2 = 0$$

Let λ_1 , λ_2 be the two roots of the above quadratic equation.

Then (by Vieta's theorem)
$$\begin{cases} \lambda_1 + \lambda_2 = A + C \\ \lambda_1 \cdot \lambda_2 = AC - B^2 = \Delta = \det H(y) \end{cases}$$
 (1)

Then we have the following conclusions

- 1 If $\Delta < 0$, then λ_1 , λ_2 have opposite signs \Rightarrow y is a saddle point
- (2) If $\Delta > 0$, then λ_1 , λ_2 have the same signs.

We now just need to determine their signs

Note that

$$\Delta = AC - B^2 > 0 \Rightarrow AC > B^2 \ge 0 \Rightarrow AC > 0$$

$$(2.1)$$
 If $A > 0$ $\Rightarrow C > 0 \Rightarrow A + C > 0 \Rightarrow \lambda_1, \lambda_2 > 0$

which gives that y is a local min

$$(2.2)$$
 If $A < 0$ Same logic gives y is a local max