NABIL SOFT

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة : 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس $(O;\vec{i},\vec{j},\vec{k})$. نعتبر المستوبين (P') و (P') معادلتيهما على

x-2y+z-2=0 و 2x+y-z+1=0: الترتيب

- بيّن أنّ المستويين (P) و (P') متقاطعان. (1)
- $d\left(M,(P)\right)=d\left(M,(P')\right)$ عيّن $d\left(M,(P)\right)=d\left(M,(P')\right)$ من الفضاء التي تحقّق $d\left(M,(P')\right)=d\left(M,(P')\right)$ مجموعة النقط $d\left(M,(P')\right)$ من الفضاء التي تحقّق $d\left(M,(P')\right)$ المسافة بين $d\left(M,(P')\right)$ المسافة بين النقطة $d\left(M,(P')\right)$ والمستوي $d\left(M,(P')\right)$
 - A(1;2;0) تتقق أنّ النقطة A(1;2;0) تنتمي إلى المجموعة (3).
 - 4) H و H المسقطان العموديان للنقطة A على المستويين H و H على الترتيب. H أ جد تمثيلا وسيطيا لكل من المستقيمين H و H و H
 - \dot{H} و \dot{H} و استنتج إحداثيات كل من النقطتين
 - . AHH' ثمّ احسب مساحة المثلث I منتصف القطعة [HH'] ثمّ احسب مساحة المثلث (5

التمرين الثاني: (05 نقاط)

- . $f(x) = \sqrt{2x+8}$ بـ الدالة العددية المعرّفة على المجال $f(\mathbf{I})$
- . $(O;\vec{i},\vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلّم المتعامد والمتجانس (C)
 - $\lim_{x \to +\infty} f(x) = 1 1$
 - ب ادرس اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيّراتها.
- عيّن إحداثيي نقطة تقاطع المنحنى (C) مع المستقيم (Δ) الذي y=x معادلة له.
 - $\cdot(\Delta)$ و (C) ارسم (3
- $u_{n+1}=f\left(u_{n}
 ight)$ ، $u_{n}=0$ و من أجل كل عدد طبيعي ، و $u_{0}=0$ و المتتالية العددية المعرّفة بـ و $u_{0}=0$
- 1) مثّل في الشكل السابق على محور الفواصل ، الحدود u_1 ، u_2 ، u_1 ، u_2 ، u_3 و ويا المثّل في الشكل السابق على محور الفواصل ، الحدود u_1 ، u_2 ، u_3 الحدود u_3 ، u_4 ، u_5 الحدود u_5 ، الحدو
 - 2) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.
 - $0 \le u_n < 4$ ، التراجع أنّه من أجل كل عدد طبيعي (3
 - $\cdot (u_n)$ ادرس اتجاه تغیّر المتتالیة
 - $4-u_{n+1} \leq \frac{1}{2}(4-u_n)$ ، n عدد طبيعي عدد طبيعي أنّه من أجل كل عدد عدد طبيعي
 - $.4-u_n \le \frac{1}{2^n}(4-u_0) : n$ ثمّ استنتج أنّه من أجل كل عدد طبيعي
 - د استنج u_n د استنج

NABIL SOFT

التمرين الثالث: (04,5 نقطة)

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$. من أجل كل نقطة M من المستوي لاحقتها $z' = \frac{z-2}{z-1}$: z = z ليث z' = z ليث المعلم النقطة z' = z

. z'=z : z المعادلة ذات المجهول $\mathbb C$ في المعادلة ذات

 $\cdot z_2 = \overline{z_1}$ و $z_1 = 1 - i$ و $z_2 = z_1$ و النقطتان z_1 و الترتيب z_2 و الترتيب (2

أ - اكتب $\frac{z_2}{z_1}$ على الشكل الأسي.

ب - بيّن أنّ النقطة B هي صورة للنقطة A بالدوران R الذي مركزه المبدأ O ، يُطلب تعيين زاوية له.

. نصع $z \neq z$ نعتبر النقطتين C و C لاحقتيهما $z \neq z$

عيّن (Γ) مجموعة النقط M حيث M تنتمي إلى محور التراتيب ثم أنشئ (Γ) .

التحاكي الذي مركزه المبدأ O ونسبته h (4

أ - عيّن طبيعة التحويل النقطى $S=h\circ R$ وعناصره المميّزة .

S اكتب العبارة المركبة للتحويل

S النقطي المجموعة Γ صورة Γ بالتحويل النقطي S

التمرين الرابع: (06,5 نقطة)

 $g\left(x\right)=x^{2}+1-\ln x$ بــِ: $g\left(x\right)=x^{2}+1-\ln x$ بــِ: $g\left(x\right)=x^{2}+1-\ln x$ بادالة العددية المعرّفة على المجال

1) ادرس اتجاه تغيّر الدالة g.

g(x)>0 ، g(x)>0 ، $g(\frac{\sqrt{2}}{2})$ من المجال $g(\frac{\sqrt{2}}{2})$ احسب (2

 $f(x) = \frac{\ln x}{x} + x - 1$ بالدُالة العددية المعرّفة على المجال $0; +\infty$ الدُالة العددية المعرّفة على المجال $0; \vec{i}, \vec{j}$ المعلم المتعامد والمتجانس (C) .

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to \infty} f(x)$ احسب (1

. $f'(x) = \frac{g(x)}{x^2}$ ، $]0; +\infty[$ من المجال x من عدد حقیقی x من الحجال کل عدد x عدد حقیقی x من الحجال x الحال x عدد حقیقی x من الحجال تغیّرات الدالة x من الحجال x من الحجال

.1 اكتب معادلة للمماس (T) للمنحنى (C) في النقطة التي فاصلتها

هادلة له. y=x-1 : معادلة له مستقيما مقاربا مائلا y=x-1 عبين أنّ y=x-1 معادلة له.

 (Δ) و (C) ب - ادرس الوضع النسبي لـ

(C) ارسم المستقيمين (T) و (Δ) ثمّ المنحنى

عدد حقیقی. (Δ_m) المستقیم حیث y=mx-m عدد حقیقی (Δ_m) معادلة له.

أ - تحقّق أنّه من أجّل كلّ عدد حقيقي m ، النقطة A(1;0)تتمي إلى المستقيم (Δ_m) عدد حقيقي أ

f(x) = mx - m عدد حلول المعادلة: m عدد الوسيط الحقيقي عدد علول المعادلة:

 $[0;+\infty[$ ا - جد دالة أصلية للدالة $\frac{\ln x}{x}$ على المجال (7

ب - احسب I_n مساحة الحيَّزُ المستوي المحدّد بالمنحنى (C) ، المستقيم اللذين معادلتيهما: n>1 وللمستقيمين اللذين معادلتيهما: n>1 و n>1 عدد طبيعي n>1 عدد طبيعي n>1

. $I_n > 2$: فإن $n > n_0$ فإن $n > n_0$ بحيث إذا كان معر عدد طبيعي مدد طبيعي

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04,5 نقطة)

 $\cdot B(3;12;-7)$ الفضاء منسوب إلى المعلم المتعامد و المتجانس $(O;\vec{i},\vec{j},\vec{k})$. نعتبر النقطتين

.
$$\begin{cases} x=1+3k \\ y=1+2k \end{cases} ; \quad \left(k\in\mathbb{R}\right) :$$
 المستقيم المعرّف بالتمثيل الوسيطي التالي: (Δ

. الذي يشمل النقطة A و u(-2;1;1) شعاع توجيه له u(-2;1;1) أ) عيّن تمثيلا وسيطيا للمستقيم (Δ') الذي يشمل النقطة Δ'

ب) بيّن أنّ المستقيمين (Δ) و (Δ') متعامدان ، ثمّ تحقق أنّ النقطة C(1;1;0) نقطة تقاطعهما .

 (Δ') و (Δ) و المعيّن بالمستقيمين (Δ) و (Δ)

أ) بيّن أنّ الشعاع n(2;11;-7) ناظمي للمستوي (P)، ثمّ جد معادلة ديكارتية له.

(P) بيّن أنّ النقطة C هي المسقط العمودي للنقطة B على المستوي C

$$\begin{cases} x=3-eta \ y=12+12lpha+9eta : y=12+12lpha+9eta : eta$$
 من الفضاء المعرفة بـ $M\left(x;y;z
ight)$ مجموعة النقط α (3) $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ مجموعة النقط $lpha$ محموعة النقط $lpha$ من الفضاء المعرفة بـ $lpha$ عددان حقيقيان و $lpha$ محموعة النقط $lpha$ محموعة النقط النقط $lpha$ م

. أ) أثبت أنّ المجموعة (P') هي مستوِ ثمّ تحقق أنّ y-2z-41=0 هي معادلة ديكارتية له

ب) عيّن إحداثيات D و E نقطتي تقاطع المستوي (P') مع المستقيمين (Δ) و (Δ') على الترتيب.

ج) احسب حجم رباعي الوجوه BCDE

التمرين الثاني: (04 نقاط)

. $f(x) = \frac{5x}{x+2}$ بــِ: $[0;+\infty[$ الدالة العددية المعرّفة على المجال $f(\mathbf{I})$

. $\lim_{\substack{x \to +\infty \\ y}} f(x)$ حسب (أ (1 الحسب اتجاه تغیّر الدالة f ثمّ شكّل جدول تغیّراتها.

. $f(x) \ge 0$: $[0;+\infty]$ من المجال عدد حقيقي x من عدد حقيقي (2

 $u_{n+1} = \frac{5u_n}{u_n+2}$ ، u_{n+2} على المعرّفة على الأول $u_0 = 1$ المتتالية العددية المعرّفة على $u_0 = 1$ بحدّها الأول $u_n = 1$

 $1 \le u_n \le 3$: n برهن بالتراجع أنه من أجل كل عدد طبيعي أ (1

ب) ادرس اتجاه تغیّر المتتالیة (u_n) ، ثمّ استتج أنها متقاربة .

. $v_n = 1 - \frac{3}{n}$: كما يلي كما المتتالية العددية المعرّفة على \mathbb{N} كما يلي (2

. v_0 أن رحمن أنّ (v_n) متتالية هندسية أساسها $\frac{2}{5}$ ، يطلب حساب حدها الأول

n بدلالة n عبارة v_n ثم استنتج عبارة n بدلالة ب

 (u_n) احسب نهایة المتتالیة (ج

. $S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n}$: حيث $S_n = \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n}$ (3)

التمرين الثالث: (04,5 نقطة)

.
$$\left(z - \frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\left(z^2 + \sqrt{3}z + 1\right) = 0$$
 : المعادلة : \mathbb{C} المعادلة المركبة (1

NABIL SOFT

لتي المستوي المركب منسوب إلى المعلم المتعامد و المتجانس B ، A . O; u, v

$$z_{C} = \overline{z_{B}}$$
 و $z_{B} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_{A} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ و $z_{C} = \overline{z_{B}}$ و $z_{C} = \overline{z_{B}}$

- . و Z_B ، Z_A الأسي Z_B ، المتب Z_B
- ب) بيّن أنّه يوجد تشابه مباشر S مركزه B ويحوّل النقطة C إلى النقطة A يطلب تعيين عناصره المميزة.
 - 3) أ) عيّن لاحقة النقطة D حتى يكون الرباعي ABCD متوازي أضلاع ، ثمّ حدّد بدقة طبيعته.
- . z عيّن z مجموعة النقط z ذات الملاحقة z والتي تحقق z والتي تحقق z عيّن z هو مرافق
 - \mathbb{R} جين (Γ) مجموعة النقط M ذات اللاحقة z والتي تحقق z والتي تحقق z عندما α يتغير على α عين α عندما α عن

التمرين الرابع: (07 نقاط)

- . $g(x)=1+(x^2+x-1)e^{-x}$ بـ: $\mathbb R$ بـن المعرّفة على $g(\mathbf I)$
 - . $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to \infty} g(x)$ احسب (1)
 - ب) ادرس اتجاه تغیّر الدالة g ، ثمّ شكّل جدول تغیّراتها .
- . $-1,52 < \alpha < -1,51$: مين أنّ للمعادلة g(x) = 0 حلّين في \mathbb{R} ، أحدهما معدوم والآخر α حيث g(x) = 0 على \mathbb{R} على \mathbb{R}
- و في الدالة العددية المعرّفة على \mathbb{R} بـ: \mathbb{R} بـ: \mathbb{R} و $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ الدالة العددية المعرّفة على $f(0;\vec{i},\vec{j})$ بـ المستوي المنسوب إلى المعلم المتعامد و المتجانس $O(\vec{i},\vec{j})$ (وحدة الطول $O(\vec{i},\vec{j})$) وحدة الطول على المعلم المتعامد و المتجانس والمتعامد و المتعامد و المت
 - . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (أ (1
 - ب). f'(x) = -g(x)، x عدد حقيقي عدد حقيقي f'(x) = -g(x). f'(x) = -g(x)
 - . ($f(\alpha) \approx 0.38$ نأخذ) ، \mathbb{R} على على الدالة f على الدالة على الدالة على الدالة على الدالة الدالة على الدالة الدا
 - . ایسیا ، پر النتیجة هندسیا ، $\lim_{h\to 0} \frac{f(\alpha+h)-f(\alpha)}{h}$: میّن دون حساب (د
 - . $+\infty$ عند (C_f) عند مقارب مائل المنحنى y=-x عند عند (Δ) عند أنّ المستقيم (Δ)
 - . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة للمستقيم
 - ج) بيّن أنّ للمنحنى $\left(C_{f}
 ight)$ نقطتي انعطاف يطلب تعيين إحداثييهما.
 - . $[-2;+\infty[$ ارسم (Δ) و (C_f) و (Δ)
 - (m-x) $e^x+(x^2+3x+2)=0$: على المجال أوسيط الحقيقي m عدد وإشارة حلول المعادلة m-x. m=1
 - . $H(x) = (ax^2 + bx + c)e^{-x}$ و h(x) = x + f(x) بـ: \mathbb{R} بـ: $h(x) = (ax^2 + bx + c)e^{-x}$ و h(x) = x + f(x)
 - . $\mathbb R$ على الأعداد الحقيقية a ، b ، a و b ، a على الدالة أصلية للدالة b ، a على (1
 - (2) أ) احسب التكامل التالي : $A(\lambda) = \int_0^{\lambda} h(x) dx$ حيث λ عدد حقيقي موجب تماما وفسّر النتيجة هندسيا.
 - $\lim_{\lambda \to +\infty} A(\lambda)$ با احسب

انتهى الموضوع الثاني