Stata Introduction

Maria R. Munch, Ulrich Halekoh

Epidemiology, Biostatistics and Biodemography; SDU Revision 1

September 1, 2014

Outline

Introduction

Stata-Environment

Stata has several windows

 Command You type commands like the logarithm of 100 and display

display log(100)

To execute the command press the ENTER-key
To recall the last command type
Windows: Page Up or Page Down
Mac: Fn Up or Fn Down

The result is shown in the:

- Result window
- the Review window holds the history of all your typed commands

Where am I? Your working directory!

Stata points to a certain directory if opened

pwd

C:/Users/uhalekoh/Documents

This directory is not the directory you may want to use for your work.

Create a directory for this purpose

mkdir c:/Users/UHHStata

Put yourself into this directory

cd c:/users/UHHStata

Where am I? Your working directory!

Check whether you are really there

pwd

Find out the contents of the directory

Is

Stata- Basic work flow

Stata has the following basic philosophy:

- open some data to Stata session
- work on these data

Open data Stata provides on the web, e.g.the data apple

```
webuse apple
```

We list (=print) just the first two rows (=observations)

```
list in 1/2
```

Create a new variable that is the square of weight

```
generate weightQ= weight^2
```

We remove (=drop) weight from our data set

```
drop weight
```

Save/Read data in Stata format

Having done all this hard work; save the data onto your computer

```
save appleNy , replace
```

It should be saved as an appleNy.dta file.

Convince yourself: it's in your working directory

ls

If you want to read such a Stata data from this directory use

use appleNy , clear

Do-file

- Script file: keeps record of Stata commands
- allows to run sequence of commands several times
- default extension .do

1. Open a new do-file via the task line

1. Open a new do-file via the task line


```
disp "Good Day"
```

1. Open a new do-file via the task line

2. Type in the do-file the command

```
disp "Good Day"
```

Mark at least part of the line, and execute via CTRL D (on a Mac: SHIFT CMD D)

1. Open a new do-file via the task line


```
disp "Good Day"
```

- 3. Mark at least part of the line, and execute via CTRL D (on a Mac: SHIFT CMD D)
- Run the whole file: CTRL A and CTRL D (on a Mac: CMD A and SHIFT CMD D)

1. Open a new do-file via the task line


```
disp "Good Day"
```

- Mark at least part of the line, and execute via CTRL D (on a Mac: SHIFT CMD D)
- Run the whole file: CTRL A and CTRL D (on a Mac: CMD A and SHIFT CMD D)
- 5. Save via menu or CTRL S (give the file the name sky)

1. Open a new do-file via the task line


```
disp "Good Day"
```

- Mark at least part of the line, and execute via CTRL D (on a Mac: SHIFT CMD D)
- Run the whole file: CTRL A and CTRL D (on a Mac: CMD A and SHIFT CMD D)
- 5. Save via menu or CTRL S (give the file the name sky)
- 6. Close Stata!

1. Open a new do-file via the task line

```
File Edit Data Graphics Statistics User W.
```

```
disp "Good Day"
```

- Mark at least part of the line, and execute via CTRL D (on a Mac: SHIFT CMD D)
- Run the whole file: CTRL A and CTRL D (on a Mac: CMD A and SHIFT CMD D)
- 5. Save via menu or CTRL S (give the file the name sky)
- 6. Close Stata!
- 7. Double click on the file sky.do: Stata should open sky.do

Do-files: Comments and commands spanning several lines

comments in do-files: * at the beginning of a line

```
* The preliminary analysis
```

or everything within /* and */

```
/* The preparation of the important
   part of my data */
```

commands over multiple lines: split by ///

```
display A B ///
C D
```

Do-files: helpful key strokes

Using do file is much easier using the following key strokes

Task	Windows	Mac
mark all	CTRL A	CMD A
execute marked region	CTRL D	SHIFT CMD D
copy marked region to clipboard	CTRL C	CMD C
insert from clipboard	CTRL V	CMD V
delete marked region	CTRL X	CMD X
recover deletion	CTRL Z	CMD Z

Where to get help?

- ▶ help drop
- search drop
- ▶ Google
- Search for Stata -programs by others:

findit unitroot

The running example dataset for the course:

- ▶ Dataset is partly from Cropper C 1977 ¹. Honours thesis available at StatSci.org
- 48 stroke patients were randomly allocated to three treatment groups
- ▶ followed weekly for eight weeks
- recovery over time was measured using the Barthel Index and Goteburg Evaluation of Hemiplegia

¹http://www.statsci.org/data/oz/stroke.html

Table: The stroke data set fakestrokeData.dta

Variable	Description
subject	Subject ID, 1,, 48
group	Experimental (E), pre-existing (F) or non-treatment (G)
sex	Male (M) or female (F)
side	Side of brain affected, left (L) or right (R)
age	Age of subject in years
lapse	Time lapse from stroke to start of program in weeks
ei	Upper extremities score (out of 36) at week i=1,,8
hwi	Hand-wrist score (out of 24) at week i
lei	Lower extremities score (out of 30) at week i
bali	Balance score (out of 14) at week i
barti	Barthel Index score (out of 100) at week i

- Make sure that the data file (fakestrokeData.dta delivered with the material for this day) is in your working directory
- 2. Open a new do-file
- Read the data (= write the command in your do file and execute! Excute all the following Stata commands from the do file!)
- 4. Get a first description of all variables by executing describe
- 5. Keep only the variables subject, age, bart1, group, using keep (the list of variables must only be separated by blanks!)
- 6. Execute **codebook**

7. Generate a new variable kup which is the square root of age. Use the **generate** command and the $\mathbf{sqrt} \ (\mathbf{X}) = \sqrt{X} \ \text{function}.$

- 8. Make a simple summary of your data : summarize
- 9. Save the .do file and give it a reasonable name
- 10. Open it again and execute it.

Collecting output into a log-file

Save the output from all Stata commands into a log file: First line of your .do file

log using "myOutput.log" , replace

Close the log file: Last line of your .do file

log close

Exercise 1 (continuation)

11. Capture the output of your previously defined .do file in the file results.log.

Dataimport/-export: Excel Files

Import (reading) of Excel-file:

```
import excel mydata.xlsx , firstrow clear
```

Export (writing) of actual Stata file to an Excel-file:

```
export excel using mydata.xlsx , firstrow(var) replace
```

For more information about import/export of Excel files see

help import excel

Human beta-endorphin (HBE) is a hormone secreted under stress. For 10 patient measurements in two months are available in the Excel-file hbe.xlsx.

- 1. Make sure that the file is located in your working directory.
- 2. Read the file
- 3. Print the first 4 observations
- 4. Make a variable called diff that contains the difference between the May to the January measurements.
- 5. Save the actual Stata file as the Excel file hbeNew.xlsx and open it with Excel.
- 6. Save the actual Stata file as a Stata-data file.

Dataimport: ASCII (Text Files)*

▶ Tab separated (Tab symbolised here by ->)

```
name -> age
Ute Hansen -> 77.3
Ib Ibsen -> 22.0
```

import delim using mydataSpace.txt , clear

 Space separated (make sure that variable entries are separated by exactly ONE space (blank))

```
name age
"Ute Hansen" 77.3
"Ib Ibsen" 22.0
```

```
import delim using mydataSpace.txt , clear delim(" ")
```

Dataimport: ASCII (Text Files): csv-files*

Comma separated (often these files have the extension .csv)

```
name,age
Ute Hansen,77.3
Ib Ibsen,22.0
```

import delim using mydata.csv, clear delim(",")

Dataexport: write Stata files to csv files*

To write the actual Stata file say

```
input str4 animal weight
dog 6.3
cat 8.9
whale 8
end
```

to the comma-separated file animals.csv do

```
export delim using animals.csv , replace
```

For more information about import/export of ASCII files see

help import delimited

Data manipulation

For the following we use the data fakestrokeData.dta.

use fakestrokeData , clear

Data manipulation- generate new variable

- ► Generate a new variable **gen** ageD = **int(**age/10)

 ageD contains the age decade values
- ► Change an existing variable (here: set to missing =.)

```
replace ageD = . if ageD >= 6
```

Rename an existing variable

```
rename ageD age_decade
```

Print first four observations for the two variables

Data manipulation-conditional change of values

Create a dichotomous variable from a continuous variable

- generate bart1_ct = 0 if bart1 <= 59</pre>
- replace bart1_ct = 1 if bart1 >=60

Warning: Stata saves missing values as a large value need to add an additional condition to the if statement

replace bart1_ct = 1 if bart1 >= 60 & !missing(bart1)

Data manipulation-add labels to categorical variables

For variables which

- take only few different values
- the values have no interpretation as numbers

it is helpful to add descriptive labels

Adding value labels to the binary bart1_ct

Define label variable bartLab

label define bartLab 0 "dependent"

label define bartLab 1 "independent" , add

Attach labels to the variable

label values bart1_ct bartLab

Data manipulation- drop or keep

Drop or keep variables

- drop age_decade
 Drops the variable age_decade
- keep subject sex age group bart bart1_ct e
 Keeps only the mentioned variables in the data file
 Drop or keep observations
 - drop if subject <= 3 | subject == 18

Drops first three subjects and subject 18 (| means in Stata OR)

keep in 5 /12

Keeps observations from observation number 5 to 12

Data manip.- Add summarizing variables to data file

```
egen avg_bart1 = mean(bart1)
```

Adds the overall mean of bart1 to the data file Important is the **by** option

```
egen avg_bart1= mean(bart1) , by(group)
```

Adds the group specific mean of bart1 to the data file

Notice: the option is separated from the main command by a comma!

- 1. Use the data fakestrokeData.dta. Keep only the variables subject, age, sex, group
- 2. Generate a variable ageMed that contains the overall median of age for all observations.
- 3. Generate a variable ageDiff that is the difference between age and the overall median.
- 4. Generate a variable ageMed2 that is the median for each group.
- 5. Generate a variable ageDiff2 that is the difference between age and the group-specific median for each group level.

Exercise 3 (continue)

6. Execute

```
encode sex , generate (sexNew )
```

This will generate a new variables sexNew that is no longer a string, but a numeric variable with the levels 1 and 2. Convince yourself by executing

codebook sex sexNew

- 7. Change the labels of sexNew, choosing 'female' for the numeric value 1 and 'male' for the value 2.
- 8. Create a new variable groupN which has the definition
 - groupN equals LOWER if group=E or group=F
 - groupN equals UPPER if group=G

The OR is represented in Stata by |.

Exercise 3-continued

Stata has functions to make quick statistical summaries

9. Execute (only selecting people 70 years or older:)

```
use fakestrokeData, clear
keep subject age bart1 group
keep if age >= 70
```

- 10. Execute **describe**
- 11. Execute summarize . Why do you think you get reasonable information about age but not group?
 Execute codebook age group to find the answer.

Exercise 3-continued

- 12. Execute **table** age . How many people are 72 years old?
- 13. Execute **tab** age . How many people are 70 years or older?
- 14. Execute **tab** age group . How many people are 72 years old and belong to group E?
- 15. Execute **tab2** age group , **cell** . Which proportion of people that are 72 years old are in group E?

Reshaping Data

Generally, data exists in two formats: wide and long.

Assume we have measurements on j occasions for i subjects.

wide: one line per subject id each occasion j is represented by a variable weightj

sex	weight3	weight2	weight1	id
1	. 5	3	1	1
2	3	16	2	2
1	2	12	5	3

reshape long weight, i(id) j(occ)

Note: the variable occ will be newly generated for the long table.

long: one line per occasion

id	occ	weight	sex
1	1	1	1
1	2	3	1
1	3	5	1
2	1	2	2
2	2	16	2
2	3	3	2
3	1	5	1
3	2	12	1
3	3	2	1

reshape wide weight, i(id) j(occ)

Reduce the stroke data to three subjects with the Barthel indices for the first 5 weeks by executing

```
use fakestrokeData.dta, clear
keep subject bart1-bart5
keep if subject <=3
```

+						+
	subject	bart1	bart2	bart3	bart4	bart5
1.	1	45	45	45	45	80
2.	1 2	20	25	25	25	30
3.] 3	50	50	55	70	70
-	+					+

Reshape the data into

++				
	subject	week	bart	
1.	1	1	45	
2.	1	2	45	
3.	1	3	45	
4.	1	4	45	
5.	1	5	80	
6.	1 2	1	20	
7.	1 2	2	25	
8.	1 2	3	25	
9.	1 2	4	25	
10.	1 2	5	30	
11.	3	1	50 l	
12.	3	2	50 l	
13.	3	3	55 l	
14.] 3	4	70	
15.] 3	5	70	
	+		+	

Graphic

Stata is also a powerful graphic tool.

A graph is created by one command of sometimes considerable length.

Often one can easily produce a basic plot and then improve by using the inbuilt Graph Editor² on the graph.

A comprehensive overview of graphics is Mitchel, Michael N. (2012) *A Visual Guide to Stata Graphics*, 3rd Edition, Stata Press

²http://www.stata.com/manuals13/gsu15.pdf

Scatter plot

scatter bart1 age , ytitle(Bathel index at week 1)

y axis variable (bart1) by x axis variable (age)
The ytitle is an option, separated from the main plotting command by a comma!

Scatter plot, differentiating between groups

twoway scatter bart1 age if sex == "F" scatter bart1 age if sex == "M" Bart1 60 20 80

Scatter plot, differentiating between groups

In principle we overlay two scatterplots (one for males one for females)

Each plotting command separated by the || lines.

The legend with Bart1 and Bart1 is rather uninformative.

We can improve on this.

Scatter plot, differentiating between groups*

Different symbols to the two groups, improved labelling

```
twoway scatter bart1 age if sex == "F" ///
|| scatter bart1 age if sex == "M" ///
,msymbol( Oh t ) ///
```

legend(label (1 "male") label(2 "female"))

Scatter plot, side by side

twoway scatter bart1 age , by(sex)

Histogram

histogram age , frequency

Boxplots

graph box age, over(group) b1title(treatment group)

Stata graphs -saving

Graphs can simply be copied (Windows: CTRL+C) and then copied to a Word document (CTRL+V). Graphs can be saved to files

▶ **graph save** "boxplot.gph"

This format can be edited using Stata's graph editor (see http://www.stata.com/manuals13/gsu15.pdf)

Other possible formats: pdf, png, ...

- graph export "boxplots.pdf" , replace
- graph export "boxplots.png" , replace

Use fakestrokeData.dta

- 1. Plot Barthel index in week 8 (bart8) against the Barthel index in week 1(bart1).
- 2. Using th Stata's graphic editor:
 - 2.1 Go to the graphic window and follow File -> Stat Graph Editor.
 - 2.2 Click on a plotted point and change its symbol, color or size.
 - 2.3 Save the plot as bart.gph with File -> Save.
 - 2.4 Close the graphic window.
 - 2.5 Open file bart.gph by clicking on its file name.
- 3. Same plot as before but differentiate between the three treatment groups (group).
- 4. Produce a separate plot for the relations of the two Barthel indices for each level of group.

- 5. Make a boxplot of bart1 and differentiate between males and females.
- Make a boxplot of bart1 and differentiate between males and females and the treatment group levels. (Use two over() statements.
- 7. Copy the graph into a Word document.
- 8. Save and export the last graph into a .png file and import it into a Word document.