Doubly Robust Estimator for Ranking Metrics with Post-Click Conversions

ACM Conference on Recommender Systems (RecSys'20)

Yuta Saito (https://usaito.github.io/)

Tokyo Institute of Technology

Introduction & Problem Setting

In an Amazon example, a user first **click** the item in a recommendation list

- query: "statistics"
- click "ESL" here
- click itself is not our outcome

We observe the conversion indicator only for an item with a click

User's intended action on the item is revealed as a conversion indicator

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) (英語) ハードカバー – 2009/3/1 Trevor Hastie (著), Robert Tibshirani ~ (著), Jerome Friedman (著) ☆☆☆☆ ~ 311個の評価 ペストセラー1位 - カテゴリ Bioinformatics > その他(3)の形式およびエディションを表示する Kindle版 (電子書籍) ハードカバー ¥8.668 ¥9.218 獲得ポイント: 87pt 獲得ポイント: 92pt √prime 今すぐお跡みいただけます。無料アプリ ¥9107上り6中古品 ¥8.636 上 n 19 新品 6/5 金曜日 8:00-12:00 にお届けするには、今から3 時間 33 分以内にお届け日時指定便を選択して注文を確定してください(有料オプショ ン。Amazonプライム会員は無料) 詳細を見る This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many く締きを読む □ 不正確な製品情報を報告。

Recommend Items with high conversion rate (CVR)

example) Top-3 Recommendation in E-commerce

Ranking	Recommender A	Recommender B		
1	CV=1	CV=0		
2	CV=1	CV=1		
3	CV=1	CV=0		
9	CV=0 CV=1			
10	CV=0	CV=1		

Recommender A
is better than
Recommender B
simply because

Recommender A
creates a list of more
conversions

Recommend Items with high conversion rate (CVR)

example) Top-3 Recommendation in E-commerce

Ranking	Recommender A	Recommender B		
1	missing	missing		
2	CV=1	missing		
3	missing	CV=0		
9	missing	CV=1		
10	CV=0	missing		

We cannot use
conversion indicators
for unclicked items
in offline evaluation

Ground-truth Ranking Performance

We want to calculate the *ground-truth ranking measure* to evaluate the ranking performance of recommenders offline

 $\mathcal{R}_{GT}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} p_{u,i}^{cvr} \cdot c(\hat{Z}_{u,i})$ a set of predicted rankings for user-item paris ranking function (weighting function)

Ground-truth Ranking Performance

The function c(.) characterizes ranking metrics

Average Relevance Position:
$$c(\hat{Z}_{u,i}) = \hat{Z}_{u,i}$$

Discounted Cumulative Gain:
$$c(\hat{Z}_{u,i}) = \log_2(1+\hat{Z}_{u,i})^{-1}$$

where Z is the predicted ranking for a user-item pair

$$\hat{Z}_{u,i} = \operatorname{rank}(\hat{S}_{u,i} \mid \{\hat{S}_{u,j}\}_{j \in \mathcal{I}})$$

Offline Evaluation of Recommenders in E-commerce settings

It is desirable to use the ground-truth ranking metric to identify a recommender that can obtain the maximum CVs

Offline Evaluation of Recommenders in E-commerce settings

It is **desirable to use the ground-truth ranking metric** to identify a recommender that can obtain the maximum CVs

However, there are several difficulties in evaluating recommenders in an offline environment, including...

- missing, sparse conversions
- selection bias issue

Challenge 1: Missing, Sparse Conversions

Users first **click** the item then they decide whether they should **convert**

When a click does not happen, then the

conversion is unobserved

Challenge 2: Selection Bias

We can use only conversions with a click in offline eval

Observed data is biased and not representative of the whole data

(a) selection bias problem

In summary,

It is essential to estimate the ground-truth using only observed CVs

Ground-truth:
$$\mathcal{R}_{GT}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} \underbrace{p_{u,i}^{cvr} \cdot c(\hat{Z}_{u,i})}_{\downarrow}$$
 An Estimator:
$$\hat{\mathcal{R}}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} \underbrace{p_{u,i}^{cvr} \cdot c(\hat{Z}_{u,i})}_{2??} c\left(\hat{Z}_{u,i}\right)$$

In summary,

It is essential to estimate the ground-truth using only observed CVs

Using offline (observable) data:

$$\{(u, i, \underline{y_{u,i}}) \mid \underline{z_{u,i}} = 1\}$$

conversion indicator

with a click

A Previous Solution: IPS Estimator

(Yang et al. 2018) proposed the *IPS estimator* to estimate the ground-truth ranking metrics

$$\hat{\mathcal{R}}_{IPS}(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i \in I: z_{u,i} = 1} \frac{y_{u,i}}{p_{u,i}^{ctr}} c\left(\hat{Z}_{u,i}\right)$$
 weight conversions by the

inverse of the CTRs

Pros and Cons of the IPS Estimator

The IPS estimator is *unbiased* for the ground-truth ranking metrics

$$\mathbb{E}\left[\widehat{\mathcal{R}}_{IPS}(\widehat{Z})\right] = \mathcal{R}_{GT}(\widehat{Z})$$

but, the variance is huge, when conversions are highly sparse

Theorem 3.3. (Variance of the IPS estimator) When the set of true CTRs and scoring set \hat{Z} are given, the variance of the IPS estimator is

$$\mathbb{V}\left(\widehat{\mathcal{R}}_{IPS}(\widehat{Z})\right) = \frac{1}{|\mathcal{U}|^2} \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} \left(\frac{1}{p_{u,i}^{ctr}} - p_{u,i}^{cvr}\right) p_{u,i}^{cvr} c(\widehat{Z}_{u,i})^2$$

Our Approach: Doubly Robust Estimator

To alleviate the variance issue of IPS, we propose the following *doubly robust* estimator

Variance Reduction by the DR estimator

The DR estimator is also *unbiased* for the ground-truth ranking metrics

$$\mathbb{E}\left[\widehat{\mathcal{R}}_{DR}(\widehat{Z})\right] = \mathcal{R}_{GT}(\widehat{Z})$$

in most cases, the DR estimator has a lower variance

$$\mathbb{V}\left(\widehat{\mathcal{R}}_{DR}(\widehat{Z})\right) \leq \mathbb{V}\left(\widehat{\mathcal{R}}_{IPS}(\widehat{Z})\right)$$

Solutions & Experiments

Real-World Experiment (with Yahoo! R3 and Coat)

We compared the estimation performances of estimators

Yahoo! R3 and Coat datasets

- contain ground-truth relevance label (5 star-rating)
- contain train-test data with different item distributions

These datasets are especially convenient for the evaluation of offline evaluation with the presence of selection bias

Performance measures for offline estimators

We used the following *relative-RMSE* to evaluate the performance of estimators

$$relative\text{-}RMSE\;(\widehat{\mathcal{R}}) = \sqrt{\frac{1}{|\mathcal{M}|} \sum_{\widehat{Z} \in \mathcal{M}} \left(\frac{\mathcal{R}_{GT}(\widehat{Z}) - \widehat{\mathcal{R}}(\widehat{Z})}{\mathcal{R}_{GT}(\widehat{Z})}\right)^2}$$
 an estimator to be evaluated

a set of 32 recommenders

Brief Experimental Results on Yahoo! and Coat

DR outperforms the others (lower values mean accurate evaluation!)

Table 4: Comparison of relative-RMSE (model evaluation performances) of alternative estimators

		DCG@K			Recall@K		
Datasets	Estimators	K = 5	<i>K</i> = 10	K = 50	K = 5	<i>K</i> = 10	K = 50
Yahoo! R3	Naive IPS	0.613 (± 0.070) 0.767 (± 0.022)	0.470 (± 0.057) 0.780 (± 0.024)	0.245 (± 0.027) 0.850 (± 0.015)	0.615 (± 0.067) 0.473 (± 0.040)	0.442 (± 0.047) 0.308 (± 0.032)	0.207 (± 0.017) 0.158 (± 0.013)
	DR (ours)	$0.461 \; (\pm \; 0.053)$	0.316 (± 0.040)	0.181 (± 0.022)	0.397 (± 0.042)	0.261 (± 0.029)	0.101 (± 0.011)
Coat	Naive IPS	$0.666 (\pm 0.037)$ $0.785 (\pm 0.020)$	0.430 (± 0.013) 0.805 (± 0.010)	0.208 (± 0.005) 0.915 (± 0.004)	0.617 (± 0.027) 0.605 (± 0.028)	0.387 (± 0.011) 0.374 (± 0.011)	0.184 (± 0.004) 0.181 (± 0.004)
	DR (ours)	0.661 (± 0.066)	0.359 (± 0.020)	0.137 (± 0.004)	0.599 (± 0.050)	0.318 (± 0.014)	0.118 (± 0.003)

^{*} relative-RMSE measures the accuracy of offline evaluation, (not that of predictions)

Conclusions

- We study offline evaluation with biased click -> conversion data
- Previous unbiased estimator has a large variance
- We proposed the doubly robust estimator to estimate the ground-truth ranking performance efficiently
- Proposed estimator evaluates the performance of recommenders accurately in a real-world experiment

Thank you for listening!

theoretical analysis, semi-synthetic experiment, related work are all in the <u>full paper</u>!

email: saito.y.bj@m.titech.ac.jp