Take-Home / Live Coding Exam - Infrastructure

Take-Home Exam Infrastructure	1
Outline:	1
Problem Statement:	1
Scenario:	1
Tasks:	2
Deliverables:	3
Evaluation Criteria:	3
Submission:	4

Outline:

- 1. Problem Statement
- 2. Tasks
- 3. Deliverables
- 4. Evaluation Criteria

Problem Statement:

Scenario:

You are part of an engineering team tasked with building a scalable and secure data platform on AWS to support machine learning operations (MLOps). The platform should include the following components:

- An S3 bucket for data storage.
- An EC2 instance for running ETL jobs.
- An RDS instance for storing processed data.
- A CI/CD pipeline using GitHub Actions to automate deployments.
- Monitoring and logging for all components.

Your task is to use Terraform for infrastructure provisioning and Python for scripting the automation of ETL processes.

Tasks:

1. Infrastructure Provisioning with Terraform:

- a. S3 Bucket:
- Create an S3 bucket named `<your-name>-hadrian-ml-data-bucket` with versioning enabled.
 - b. EC2 Instance:
 - Provision an EC2 instance with the latest Ubuntu AMI.
 - Configure security groups to allow SSH and HTTP access.
 - Use user data to install Docker and Docker Compose.
 - c. RDS Instance:
 - Create an RDS instance using PostgreSQL.
 - Configure security groups to allow access from the EC2 instance.
 - d. CI/CD Pipeline:
 - Use GitHub Actions to create a CI/CD pipeline that deploys changes to the EC2 instance.

2. ETL Automation with Python:

- a. Data Ingestion:
 - Write a Python script to upload sample data to the S3 bucket.
- (CSV example data checked into git and deployed as seed data in your python program is fine is fine)
 - b. ETL Job:
 - Write a Python script to run on the EC2 instance that:
 - Downloads data from the S3 bucket.
 - Processes the data (e.g., simple transformation, i.e. change one word or a regex).
 - Uploads the processed data to the RDS instance.

3. Monitoring and Logging:

- a. CloudWatch:
 - Configure CloudWatch to monitor EC2 instance metrics.
 - Set up log streaming for the EC2 instance to CloudWatch Logs.

4. Documentation:

- Provide a README file explaining:
 - Infrastructure setup.
 - How to run the ETL scripts.
 - How to trigger the CI/CD pipeline.
 - Monitoring and logging configuration.

_

Deliverables:

- 1. Terraform Scripts:
 - All `.tf` files required to set up the infrastructure.
- 2. Python Scripts:
 - Python scripts for data ingestion and ETL job.
- 3. CI/CD Configuration:
 - GitHub Actions workflow files for the CI/CD pipeline setup.
- 4. Documentation:
 - README file with detailed instructions.
- 5. Additional Configurations:
 - Any additional configuration files (e.g., Dockerfiles, CloudWatch config).

_

Evaluation Criteria:

- 1. Completeness:
 - All required components are provisioned and configured correctly.
 - Python scripts perform the expected tasks.
- 2. Code Quality:
 - Code is well-structured, commented, and follows best practices.
- 3. Documentation:
 - README is clear, concise, and provides all necessary information.
- 4. Scalability and Security:

- Infrastructure is designed to be scalable and secure.
- Security best practices are followed (e.g., least privilege, encrypted storage).

5. Automation:

- CI/CD pipeline is correctly configured and automates deployments.

6. Monitoring and Logging:

- Proper monitoring and logging configurations are in place.

Submission:

- Create a GitHub repository with all the deliverables.
- Provide a link to the repository along with any additional instructions if necessary.