МК и взаимодействие с внешним миром

GPIO

Характеристики GPIO

Table 11. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} , V_{DD} and V_{BAT}) ⁽¹⁾	-0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V
VIN	Input voltage on any other pin	V _{SS} -0.3	4.0	
	Input voltage for BOOT0	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including V _{REF-}		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio	-	

Характеристики GPIO

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit		
ΣI_{VDD}	Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	160			
Σ I _{VSS}	Total current out of sum of all V _{SS_x} ground lines (sink) ⁽¹⁾	-160	1		
I _{VDD}	I _{VDD} Maximum current into each V _{DD_x} power line (source) ⁽¹⁾				
I _{VSS}	Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	-100			
I _{IO} ΣΙ _{IO}	Output current sunk by any I/O and control pin	25			
	Output current sourced by any I/O and control pin	-25	mA		
	Total output current sunk by sum of all I/O and control pins (2) 120				
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-120	1		
(3)	Injected current on FT pins (4)	5/10			
INJ(PIN) (3)	Injected current on NRST and B pins (4)	-5/+0			
Σl _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25			

Запись в GPIO

Регистры управления GPIO

Table 39. GPI	O register map	and reset values
---------------	----------------	------------------

Table 39. GPIO register map and reset values																								
Offset	Register	31	29	27	25	22	20	19	17	15	4 6	2 2	1	10	9	8	7	9	2	4	3	2	-	0
0x00	GPIOA_ MODER	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]		MODER6[1:0]	MODER5[1:0]		MODER4[1:0]	6:1	MODER3[1:0]		MODER2[1:0]		MODER 1[1:0]		MODER0[1:0]	
	Reset value	1 0	1 0	1 0	0 0	0 0	0 0	0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x00	GPIOB_ MODER	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]		MODER6[1:0]	MODER5[1:0]		MODER4[1:0]	Section 1	MODER3[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0	0	0	0	1	0	1	0	0	0	0	0	0	0
0x00	GPIOx_MODER (where x = Cl/J/K)	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]		MODER6[1:0]	MODER5[1:0]		MODER4[1:0]	in the second	MODER3[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:0]	
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	GPIOx_ OTYPER (where x = AI/J/K)				Rese	erved				OT15					019			910						010
	Reset value									0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	GPIOx_ OSPEEDR (where x = AI/J/K except B)	OSPEEDR15[1:0]	OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]		OSPEEDR6[1:0]	OSPEEDR5[1:0]		OSPEEDR4[1:0]	for the part of	OSPEEDR3[1:0]		OSPEEDR2[1:0]		OSPEEDR1[1:0]		OSPEEDR0[1:0]	
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	GPIOB_ OSPEEDR	OSPEEDR15[1:0]	OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0].	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]		OSPEEDR6[1:0]	OSPEEDR5[1:0]		OSPEEDR4[1:0]	6:1	OSPEEDR3[1:0]		OSPEEDR2[1:0]		OSPEEDR1[1:0]		OSPEEDR0[1:0]	

```
#define REGISTER ADDR(x)
                          (volatile uint32 t*)(x)
#define RCC BASE
                       (0x40023800)
#define RCC AHB1RSTR
                       REGISTER ADDR(RCC BASE + 0x10)
#define RCC AHB1ENR
                       REGISTER ADDR(RCC BASE + 0x30)
#define GPIOC BASE
                       (0x40020800)
#define GPIOC MODER
                       REGISTER ADDR(GPIOC BASE + 0x00)
#define GPIOC OTYPER
                       REGISTER ADDR(GPIOC BASE + 0x04)
#define GPIOC OSPEEDR
                       REGISTER ADDR(GPIOC BASE + 0x08)
#define GPIOC PUPDR
                       REGISTER ADDR(GPIOC BASE + 0x0C)
```

```
// Тактирование GPIOC
*RCC_AHB1ENR |= (1 << 2);

// пин 13 в единичку
*GPIOC_ODR |= (1 << 13);

// пин 13 на open drain
*GPIOC_OTYPER |= (1 << 13);

// пин 13 на максимальную скорость
*GPIOC_OSPEEDR |= (3 << (13*2));

// пин 13 на вывод
*GPIOC_MODER |= (1 << (13*2));
```

25,11,2022

Blinky (Hello world)

```
4 #define LED0 PORT»
                       (GPIOE)
5 #define LEDO PIN»
                       (GPIO PIN 5)
6 #define LED1 PORT»
                       (GPIOE)
  #define LED1 PIN»
                       (GPIO PIN 6)
8 #define LED2 PORT»
                       (GPIOE)
  #define LED2 PIN»
                       (GPIO PIN 13)
28@ int · blinky()
29 {
       HAL RCC GPIOE CLK ENABLE();
30 »
31
       GPIO InitTypeDef port config = {0};
32 »
33 »
       port config. Mode = GPIO MODE OUTPUT OD;
34 »
       port config.Pin = LED0 PIN;
       port config.Pull = GPIO NOPULL;
35 »
       port config.Speed = GPIO SPEED FREQ VERY HIGH;
36 »
37 »
       HAL GPIO Init(LEDO PORT, &port config);
38
       while(1)
39 »
40 »
           HAL GPIO TogglePin(LEDO PORT, LEDO PIN);
           HAL Delay(100);
43 »
44 }
```


Управление мощной нагрузкой

Чтение GPIO

Чтение напряжения с GPIO

Триггер Шмидта

BASICS OF SCHMITT TRIGGER

Transistor based, Op-Amp based, Transfer Function, Applications

Pull-up или pull-down. Подтяжки

```
ΤÜ
11 #define BTN0 PORT»
                            (GPIOE)
12 #define BTN0 PIN»
                            (GPIO PIN 0)
13 #define BTN1 PORT»
                            (GPIOE)
14 #define BTN1 PIN»
                            (GPIO PIN 1)
   #define BTN2 PORT»
                            (GPIOA)
   #define BTN2 PIN»
                            (GPIO PIN 0)
17
55@int.gpio_read()
56 {
57 »
       setup leds();
58
59 »
        HAL RCC GPIOE CLK ENABLE();
60 »
       HAL RCC GPIOA CLK ENABLE();
61
62 »
       GPIO InitTypeDef pc = {0};
63 »
       pc.Mode = GPIO MODE INPUT;
       pc.Pin = BTN0 \overline{P}IN;
64 »
       pc.Pull = GPIO PULLDOWN;
65 »
       pc.Speed = GPIO SPEED FREQ_VERY_HIGH;
66 »
      HAL GPIO Init(BTNO PORT, &pc);
68
69 »
       while(1)
70 »
           GPIO PinState state = HAL GPIO ReadPin(BTNO PORT, BTNO PIN);
           if (state)
              led set(0, 1);
           else
75 »
              led set(0, 0);
76 »
77 }
```


Аналого-цифровой преобразователь (АЦП)

Аналого-цифровой преобразователь (АЦП)

25,11,2022

Аналого-цифровой преобразователь (АЦП)

```
GPIO InitTypeDef adc port init = {0}:
adc port init.Mode = GPIO MODE ANALOG;
adc port init.Pin = GPIO PIN 0;
adc port init.Pull = GPIO NOPULL;
adc port init.Speed = GPIO SPEED FREQ VERY HIGH;
HAL GPIO Init(GPIOA, &adc port init);
ADC HandleTypeDef adc = {0};
adc.Instance = ADC1;
adc.Init.ClockPrescaler = ADC CLOCK SYNC PCLK DIV4;
adc.Init.Resolution = ADC RESOLUTION 12B;
adc.Init.ScanConvMode = DISABLE:
adc.Init.ContinuousConvMode = DISABLE;
adc.Init.DiscontinuousConvMode = DISABLE;
adc.Init.ExternalTrigConvEdge = ADC EXTERNALTRIGCONVEDGE NONE;
adc.Init.ExternalTrigConv = ADC SOFTWARE START;
adc.Init.DataAlign = ADC DATAALIGN RIGHT;
adc.Init.NbrOfConversion = 1;
adc.Init.DMAContinuousRequests = DISABLE;
adc.Init.EOCSelection = ADC EOC SINGLE CONV;
HAL ADC Init(&adc);
```

```
KHz)

168 Ethernet PTP clock (MHz)

HCLK to AHB bus, core, memory and DMA (MHz)

168 To Cortex System timer (MHz)

168 FCLK Cortex clock (MHz)

APB1 Prescaler

PCLK1

42 APB1 peripheral clocks (MHz)

APB2 Prescaler

PCLK2

APB2 Prescaler

PCLK2

APB2 Prescaler

PCLK2

APB2 peripheral clocks (MHz)

APB2 peripheral clocks (MHz)

APB2 peripheral clocks (MHz)

APB2 peripheral clocks (MHz)

84 APB2 timer clocks (MHz)

84 APB2 timer clocks (MHz)

12S source Mux

PLLI2SCLK

PLLI2SCLK
```

```
ADC_ChannelConfTypeDef cconfig = {0};
cconfig.Channel = ADC_CHANNEL_0;
cconfig.Rank = 1;
cconfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
HAL_ADC_ConfigChannel(&adc, &cconfig);
```

Цифро-аналоговый преобразователь (ЦАП)

Широтно-имульсная модуляция (ШИМ/PWM)

Широтно-имульсная модуляция (ШИМ/PWM)

```
57⊖ static · int · pwm main()
58 {
       setup leds();
59 »
60
       int period = 10;
       float on time = 1;
       float step = 0.1;
64
       while(1)
           led set(0, 1);
           HAL Delay(on time);
69
           led set(0, 0);
           HAL Delay(period - on time);
           on time += step;
           if (on time >= period)
               step = - step:
                on time = period;
           else if (on time <= 0)
               step = -step;
                on time = 0;
85
86 »
       return 0;
87 }
```


Обмен цифровой информацией

Параллельный порт

```
3
40 int parallel_demo_sender()
5 {
6 > uint16_t data = 0xBEAF;
7 > GPIOA->ODR = data;
8 }
```


Параллельный порт с синхронизацией

```
49 int parallel demo sender()
          while(1)
                uint16 t data = get next byte();
                GPIOA->ODR = data:
                GPIOB -> ODR -= 0 \times 01:
                HAL Delay(1);
                GPIOB \rightarrow ODR = 0 \times 00;
14
15
16 »
          GPIOB \rightarrow ODR \rightarrow -= 0 \times 01:
17 }
200 int parallel demo receiver()
          while(1)
                while (GPIO \rightarrow IDR \cdot \& \cdot 0 \times 01 \cdot == \cdot 0)
26
                uint16 t data = GPIOA->IDR;
                process next byte(data);
                while (GPIO \rightarrow IDR \cdot \& \cdot 0 \times 01 \cdot ! = \cdot 0)
```

Parallel transmission often also includes a clock signal wire which means the receiver will read the voltage of all the other wires when it receives a pulse on the clock wire. Receiver

Параллельный порт

Параллельный порт и FSMC

Последовательный порт

8-bit Parallel Interface

Последовательный порт

RS232

	DTE Device (Computer)			DCE Device (Modem)				
Pin#	RS-232 Signal Names	Signal Direction	Pin#	RS-232 Signal Names				
1	Carrier Detector (DCD)	CD	←	1	Carrier Detector (DCD)	CD		
2	Receive Data (Rx)	RD	←	2	Receive Data (Rx)	RD		
3	Transmit Data (Tx)	TD	\rightarrow	3	Transmit Data (Tx)	TD		
4	Data Terminal Ready	DTR	\rightarrow	4	Data Terminal Ready	DTR		
5	Signal Ground/Common (SG)	GND	\leftrightarrow	5	Signal Ground/Common (SG)	GND		
6	Data Set Ready	DSR	←	6	Data Set Ready	DSR		
7	Request to Send	RTS	\rightarrow	7	Request to Send	RTS		
8	Clear to Send	CTS	←	8	Clear to Send	CTS		
9	Ring Indicator	RI	←	9 Ring Indicator		RI		
Solde	ered to DB9 Metal - Shield	FGND	$\leftarrow \rightarrow$	Solde	FGND			

RS232

	DCE Device (Modem)					
Pin#	RS-232 Signal Name	Signal Direction	Pin#	Pin # RS-232 Signal Names		
1	Carrier Detector (DCD)	CD		1	Carrier Detector (DCD)	CD
2	Receive Data (Rx)	RD		2	Receive Data (Rx)	RD
3	Transmit Data (Tx)	TD	← ~	3	Transmit Data (Tx)	TD
4	Data Terminal Ready	DTR	←	4	Data Terminal Ready	DTR
5	Signal Ground/Common (SG)	GND	$\leftrightarrow\!$	5	Signal Ground/Common (SG)	GND
6	Data Set Ready	DSR		6	Data Set Ready	DSR
7	Request to Send	RTS	← √→	7	Request to Send	RTS
8	Clear to Send	CTS		8	Clear to Send	CTS
9	Ring Indicator	RI		9	Ring Indicator	RI
Soldered to DB9 Metal - Shield FGNI		FGND	$\leftarrow \rightarrow$	Solde	red to DB9 Metal - Shield	FGND

U(S)ART

Send the ASCII letter 'W' (1010111)

U(S)ART Pinout

Table 9. Alternate function

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
Pe	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UA
	PAO		TIM2_CH1_ ETR	TIM 5_CH1	TIM8_ETR				USART2_CTS	UA
	PA1		TIM2_CH2	TIM5_CH2	-	-	-		USART2_RTS	UA
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1		-	-	USART2_TX	
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-		USART2_RX	
	PA4			-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	
	PA5	-	TIM2_CH1_ ETR	-	TIM8_CH1N	-	SPI1_SCK		-	
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	-	
Port A	PA7		TIM1_CH1N	TIM3_CH2	TIM8_CH1N		SPI1_MOSI	-		
	PA8	MCO1	TIM1_CH1		-	I2C3_SCL	-	-	USART1_CK	
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-		USART1_TX	
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_RX	
	PA11	-	TIM1_CH4		-	-	-		USART1_CTS	
	PA12		TIM1_ETR		-	-	-		USART1_RTS	
	PA13	JTMS- SWDIO			-	-	-		-	
	PA14	JTCK- SWCLK		-		-				
	PA15	JTDI	TIM 2_CH1 TIM 2_ETR		-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	

USART Конфигурация

```
57@int uart main()
58 {
59 »
        HAL RCC GPIOA CLK ENABLE();
       HAL RCC USART2 CLK ENABLE();
61
       GPIO InitTypeDef port config = {0};
62 »
       port config.Alternate = GPIO AF7 USART2;
       port config. Mode = GPIO MODE AF PP;
       port config.Pin = GPIO PIN 2 | GPIO PIN 3; // PA2 - TX, PA3 - RX
       HAL GPIO Init(GPIOA, &port config);
66 »
67
68 »
      UART HandleTypeDef uart = {0};
      uart.Instance = USART2:
      uart.Init.BaudRate = 115200;
       uart.Init.HwFlowCtl = UART HWCONTROL NONE;
      uart.Init.Mode = UART MODE TX RX;
      uart.Init.OverSampling = UART OVERSAMPLING 16;
      uart.Init.Parity = UART PARITY NONE;
       uart.Init.StopBits = UART STOPBITS 1;
      uart.Init.WordLength = 8;
76 >>
77 >>
      HAL UART Init(&uart);
78
79 »
      while(1)
80 >>
           const char message[] = "Hello World!\n";
81 »
82 »
           HAL UART Transmit(&uart, (uint8 t*)message, sizeof(message)-1, HAL MAX DELAY);
83 »
84 }
85
```

USART printf

```
#include < stm32f4xx_hal.h>

#include < stm32f4xx_hal.h>

extern · UART_HandleTypeDef · huart1;

fint · _write(int · file, · char · *ptr, · int · len)

{

HAL_UART_Transmit(&huart1, · (uint8_t*)ptr, · len, · HAL_MAX_DELAY);

return · len;
}
```


Inter-Integrated Circuit (IIC, I2C)

Inter-Integrated Circuit (IIC, I2C)

Арбитраж I2C

I2C Регистровый доступ

Table 14. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 15. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 16. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave

								•	•	•	•				
Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Скорость І2С

I²C modes

Mode ^[11]	Maximum speed	Maximum capacitance	Drive	Direction
Standard mode (Sm)	100 kbit/s	400 pF	Open drain*	Bidirectional
Fast mode (Fm)	400 kbit/s	400 pF	Open drain*	Bidirectional
Fast mode plus (Fm+)	1 Mbit/s	550 pF	Open drain*	Bidirectional
High-speed mode (Hs)	1.7 Mbit/s	400 pF	Open drain*	Bidirectional
High-speed mode (Hs)	3.4 Mbit/s	100 pF	Open drain*	Bidirectional
Ultra-fast mode (UFm)	5 Mbit/s	?	Push-pull	Unidirectional

Hастройка I2C для STM32 HAL

```
59 »
         HAL RCC GPIOB CLK ENABLE();
60 »
         HAL RCC I2C2 CLK ENABLE();
61
       GPIO InitTypeDef port config = {0};
62 »
       port config.Alternate = GPIO AF4 I2C2;
63 »
       port config. Mode = GPIO MODE AF OD;
64 »
65 »
       port config. Pin = GPIO PIN 10 | GPIO PIN 11;
       port config.Pull = GPIO NOPULL;
66 »
       port config.Speed = GPIO SPEED FREQ VERY HIGH;
67 »
       HAL GPIO Init(GPIOB, &port config);
68 »
69
70 »
       I2C HandleTypeDef i2c = {0};
       i2c.Instance = I2C2;
71 »
       i2c.Init.AddressingMode = I2C ADDRESSINGMODE 7BIT;
72 »
       i2c.Init.ClockSpeed = 400*1000;
73 »
74 >>
       i2c.Init.DualAddressMode = I2C DUALADDRESS DISABLE;
75 »
       i2c.Init.DutyCycle = I2C DUTYCYCLE 16 9;
       i2c.Init.GeneralCallMode = I2C GENERALCALL DISABLE;
76 »
77 >>
       i2c.Init.NoStretchMode = I2C NOSTRETCH ENABLE;
       i2c.Init.0wnAddress1 = 0x42;
78 »
79 »
       i2c.Init.OwnAddress2 = 0x24;
       HAL I2C Init(&i2c);
80 >>
```

```
while(1)
    uint8 t dev addr = I2C 7BIT ADD READ(0x12 << 1);
    uint8 t data[10];
    HAL StatusTypeDef rc = HAL I2C Master Receive(
            &i2c.
             DevAddress.
             data.
             sizeof(data),
             HAL MAX DELAY
    dev addr = I2C 7BIT ADD WRITE(0x12 << 1);</pre>
    uint16 t mem addr = 0x10;
    uint8 \overline{t} mem \overline{d}ata[10] = {0};
    rc = HAL I2C Mem Write(
             &i2c,
             dev addr,
             mem addr, 1,
            mem data, sizeof(mem data),
            HAL MAX DELAY
    );
```


Figure 9. Read and write protocol

Figure 14. SPI read protocol in 3-wire mode


```
-- t
59 »
        HAL RCC GPIOB CLK ENABLE();
       HAL RCC SPI2 CLK ENABLE();
60 »
61
62 »
       GPIO InitTypeDef port config = {0}:
       port config.Alternate = GPIO AF5 SPI2;
63 »
       port config. Mode = GPIO MODE AF PP;
64 »
       port config.Pin = GPIO PIN 3 | GPIO PIN 4 | GPIO PIN 5;
65 »
       port config.Pull = GPIO NOPULL;
66 »
       port config. Speed = GPIO SPEED FREQ VERY HIGH;
68 »
       HAL GPIO Init(GPIOB, &port config);
                                                                  while (1)
69
70 »
       port config.Mode = GPIO MODE OUTPUT PP;
                                                                       uint8 t tx data[10] = {0};
71 »
       port config.Pin = GPIO PIN 6;
                                                                       HAL SPI Transmit(&spi, tx data, sizeof(tx data), HAL MAX DELAY);
72 »
       HAL GPIO Init(GPIOB, &port config);
73
                                                                       uint8 t rx data[10] = {0};
74 »
       SPI HandleTypeDef spi = {0};
                                                                       HAL SPI Receive(&spi, rx data, sizeof(rx data), HAL MAX DELAY);
75 »
       spi.Instance = SPI2;
       spi.Init.Mode = SPI MODE MASTER;
76 »
                                                                       HAL SPI TransmitReceive(&spi, tx data, rx data, 10, HAL MAX DELAY);
77 »
       spi.Init.Direction = SPI DIRECTION 2LINES;
                                                               >> >>
       spi.Init.DataSize = SPI DATASIZE 8BIT;
                                                               >>
78 »
       spi.Init.CLKPolarity = SPI POLARITY LOW;
79 »
80 »
       spi.Init.CLKPhase = SPI PHASE 1EDGE;
       spi.Init.NSS = SPI NSS SOFT;
81 »
       spi.Init.BaudRatePrescaler = SPI BAUDRATEPRESCALER 2;
82 »
       spi.Init.FirstBit = SPI FIRSTBIT MSB;
83 »
       spi.Init.TIMode = SPI TIMODE DISABLE:
84 »
       spi.Init.CRCCalculation = SPI CRCCALCULATION DISABLE;
85 »
       spi.Init.CRCPolynomial = 10;
86 »
87 »
       HAL SPI Init(&spi);
88
```

Все вместе

