Física do século XX

Método e recomendacións

PROBLEMAS

Efecto fotoeléctrico

- Ao iluminar un metal con luz de frecuencia 2,5·1015 Hz obsérvase que emite electróns que poden deterse ao aplicar un potencial de freado de 7,2 V. Se a luz que se emprega co mesmo fin é de lonxitude de onda no baleiro 1,78·10⁻⁷ m, o devandito potencial pasa a ser de 3,8 V. Determina:
 - a) O valor da constante de Planck.
 - b) O traballo de extracción do metal.

Datos:
$$|q_e| = 1.6 \cdot 10^{-19} \text{ C}$$
; $c = 3 \cdot 10^8 \text{ m·s}^{-1}$.

(A.B.A.U. extr. 22)

Rta.: a) $h = 6.7 \cdot 10^{-34} \text{ J} \cdot \text{s}$; b) $W_e = 5 \cdot 10^{-19} \text{ J}$.

- Nunha célula fotoeléctrica, o cátodo ilumínase cunha radiación de lonxitude de onda $\lambda = 3.10^{-7}$ m.
 - a) Estude se a radiación produce efecto fotoeléctrico, considerando que o traballo de extracción corresponde a unha frecuencia de 7,0·10¹⁴ Hz.
 - b) Calcule a velocidade máxima dos electróns arrancados e a diferenza de potencial que hai que aplicar entre ánodo e cátodo para que se anule a corrente fotoeléctrica.

DATOS:
$$|q_e| = 1,6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9,1 \cdot 10^{-31} \text{ kg}$; $c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$; $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$. (A.B.A.U. ord. 22)
Rta.: b) $v = 6,6 \cdot 10^5 \text{ m/s}$; $V = 1,24 \text{ V}$.

- Ilumínase un metal con luz monocromática dunha certa lonxitude de onda. Se o traballo de extracción é de 4,8·10⁻¹⁹ J e o potencial de freado é de 2,0 V, calcula:
 - a) A velocidade máxima dos electróns emitidos.
 - b) A lonxitude de onda da radiación incidente.
 - c) Representa graficamente a enerxía cinética máxima dos electróns emitidos en función da frecuencia da luz incidente.

DATOS:
$$|q_e| = 1.6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$; $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}^{-1}$; $c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$. (A.B.A.U. extr. 19)
Rta.: a) $v = 8.4 \cdot 10^5 \text{ m/s}$; b) $\lambda = 250 \text{ nm}$.

- O traballo de extracción para o sodio é de 2,50 eV. Calcula:
 - a) A lonxitude de onda da radiación que debemos usar para que a velocidade máxima dos electróns emitidos sexa de $1,00\cdot10^7$ m·s⁻¹.
 - b) O potencial de freado.
 - c) A lonxitude de onda de De Broglie asociada aos electróns emitidos polo metal con velocidade

Datos:
$$h = 6,63 \cdot 10^{-34} \text{ J·s}$$
; $c = 3 \cdot 10^8 \text{ m·s}^{-1}$; $|q(e)| = 1,6 \cdot 10^{-19} \text{ C}$; 1 nm = 10^{-9} m ; $m(e) = 9,1 \cdot 10^{-31}$. (A.B.A.U. extr. 18)

Rta.: a) $\lambda = 4.33$ nm; b) V = 284 V; c) $\lambda_B = 72.9$ pm.

- Unha radiación monocromática que ten unha lonxitude de onda de 600 nm penetra nunha célula fotoeléctrica de cátodo de cesio cuxo traballo de extracción é 3,2·10⁻¹⁹ J. Calcula:
 - a) A lonxitude de onda limiar para o cesio.
 - b) A enerxía cinética máxima dos electróns emitidos.
 - c) O potencial de freado.

DATOS:
$$h = 6,62 \cdot 10^{-34} \text{ J·s}$$
; $c = 3 \cdot 10^8 \text{ m·s}^{-1}$; $q_e = -1,6 \cdot 10^{-19} \text{ C}$; 1 nm = 10^{-9} m (A.B.A.U. ord. 18)
Rta.: a) $\lambda_0 = 621 \text{ nm}$; b) $E_c = 1,1 \cdot 10^{-20} \text{ J}$; c) $V = 0,069 \text{ V}$.

Desintegración radioactiva

- Marie Curie recibiu o Premio Nobel de Química en 1911 polo descubrimento do radio. Se nese mesmo ano se gardasen no seu laboratorio 2,00 g de radio-226, calcula:
 - a) A cantidade de radio que quedaría e a actividade da mostra na actualidade.

b) Os anos que pasarían ata que a mostra de radio se reducise ó 1 % do seu valor inicial.

DATOS: $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$. Tempo de semidesintegración do radio = 1.59×10^3 anos. (A.B.A.U. ord. 24)

Rta.: a) m = 1.90 g; $A = 7.01 \cdot 10^{10}$ Bq; b) $t = 1.06 \cdot 10^4$ anos

- O 280 Pb transfórmase en polonio ao emitir dúas partículas beta e posteriormente, por emisión dunha partícula alfa, obtense chumbo.
 - a) Escribe as reaccións nucleares descritas.
 - b) O período de semidesintegración do 210 Pb é de 22,3 anos. Si tiñamos inicialmente 3 moles de átomos dese elemento e transcorreron 100 anos, calcula o número de núcleos radioactivos que quedan sen desintegrar e a actividade inicial da mostra.

DATO:
$$N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$$
.

(A.B.A.U. ord. 23)

DATO:
$$N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$$
. (A.B.A.U)

Rta.: a) ${}^{210}_{82}\text{Pb} \rightarrow {}^{210}_{83}\text{Bi} + {}^{0}_{-1}\text{e} \rightarrow {}^{210}_{84}\text{Po} + {}^{0}_{-1}\text{e} \rightarrow {}^{206}_{82}\text{Pb} + {}^{4}_{2}\text{He}$; b) $N = 8.07 \cdot 10^{22} \text{ núcleos}$; $A_0 = 1.78 \cdot 10^{15} \text{ Bq}$.

- Nun laboratorio recíbense 100 g dun isótopo descoñecido. Transcorridas 2 horas desintegrouse o 20 % da masa inicial do isótopo. Calcula:
 - a) A constante radioactiva.
 - b) O período de semidesintegración do isótopo e a masa que fica do isótopo orixinal transcorridas 20 horas.

(A.B.A.U. ord. 21)

Rta.: a)
$$\lambda = 3{,}10 \cdot 10^{-5} \text{ s}^{-1}$$
; b) $T_{\frac{1}{2}} = 6 \text{ h } 13 \text{ min}$; $m = 10{,}7 \text{ g.}$

- Nunha cova encóntranse restos orgánicos e ao realizar a proba do carbono-14 obsérvase que a actividade da mostra é de 106 desintegracións/s. Sabendo que o período de semidesintegración do carbono-14 é de 5730 anos, calcula:
 - a) A masa inicial da mostra.
 - b) A masa da mostra cando transcorran 4000 anos.

DATOS:
$$N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$$
; $A(^{14}\text{C}) = 14$.

(A.B.A.U. ord. 20)

Rta.: a)
$$m_0 = 6,06 \,\mu\text{g}$$
; b) $m = 3,74 \,\mu\text{g}$.

- O 131 l é un isótopo radioactivo que se utiliza en medicina para o tratamento do hipertiroidismo. O seu período de semidesintegración é de 8 días. Se inicialmente se dispón dunha mostra de 20 mg de ¹³¹l:
 - a) Calcula a masa que queda sen desintegrar despois de estar almacenada nun hospital 50 días.
 - b) Representa nunha gráfica, de forma cualitativa, a variación da masa en función do tempo.
 - c) Cal é a actividade inicial de 2 mg de 131 l?

DATO:
$$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$$
.

(A.B.A.U. ord. 18)

Rta.: a)
$$m = 0.263$$
 mg; c) $A = 9.22 \cdot 10^{12}$ Bq.

- En 2012 atopouse no Sahara un meteorito que contiña restos de U-238. Sabemos que no momento da súa formación había unha concentración de 5,00·1012 átomos de U-238 por cm3, mentres que na actualidade a concentración medida é de 2,50·1012 átomos de U-238 por cm3. Se o tempo de semidesintegración deste isótopo é de 4,51·10° anos, determina:
 - a) A constante de desintegración do U-238.
 - b) A idade do meteorito.
 - c) Sabendo que o gas radon resulta da desintegración do U-238. completa a seguinte serie radioactiva coas correspondentes partículas ata chegar ao gas radon:

$${}^{238}_{92}\text{U} + ... \rightarrow {}^{234}_{90}\text{Th} + ... \rightarrow {}^{234}_{91}\text{Pa} + ... \rightarrow {}^{234}_{92}\text{U} + ... \rightarrow {}^{230}_{90}\text{Th} + ... \rightarrow {}^{226}_{88}\text{Ra} + ... \rightarrow {}^{222}_{86}\text{Rn}$$

Rta.: a)
$$\lambda = 4.87 \cdot 10^{-18} \text{ s}^{-1}$$
; b) $t = 4.51 \cdot 10^9 \text{ anos}$; c) $\frac{238}{92} \text{U} \xrightarrow{\alpha} \frac{234}{90} \text{Th} \xrightarrow{\beta} \frac{234}{91} \text{Pa} \xrightarrow{\beta} \frac{234}{92} \text{U} \xrightarrow{\alpha} \frac{230}{90} \text{Th} \xrightarrow{\alpha} \frac{226}{88} \text{Ra} \xrightarrow{\alpha} \frac{222}{86} \text{Rn}$.

- O período de semidesintegración do ⁹⁰₃₈Sr é 28 anos. Calcula:
 - a) A constante de desintegración radioactiva expresada en s⁻¹.
 - b) A actividade inicial dunha mostra de 1 mg.
 - c) O tempo necesario para que esa mostra se reduza a 0,25 mg.

Datos:
$$N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$$
; masa atómica do ${}^{90}_{38}\text{Sr} = 90 \text{ g} \cdot \text{mol}^{-1}$.

(A.B.A.U. ord. 17)

Rta.: a)
$$\lambda = 7.84 \cdot 10^{-10} \text{ s}^{-1}$$
; b) $A_0 = 5.25 \cdot 10^9 \text{ Bq}$; c) $t = 56 \text{ anos}$.

• Enerxía nuclear

- 1. Para o núcleo de uranio, ²³⁸/₂₂U, calcula:
 - a) O defecto de masa.
 - b) A enerxía de enlace nuclear.
 - c) A enerxía de enlace por nucleón.

Datos: $m(^{238}_{92}\text{U}) = 238,051 \text{ u}$; 1 g = 6,02·10²³ u; $c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$; m(p) = 1,007277 u; m(n) = 1,008665 u (A.B.A.U. extr. 18)

Rta.: a) $\Delta m = 1,883 \text{ u} = 3,128 \cdot 10^{-27} \text{ kg; b})$ $E_e = 2,81 \cdot 10^{-10} \text{ J/átomo; c})$ $E_n = 1,18 \cdot 10^{-12} \text{ J/nucleón.}$

♦ CUESTIÓNS

Física relativista

- 1. Unha nave espacial viaxa a unha velocidade uniforme 0,866 *c* relativa á Terra. Se un observador da Terra rexistra que a nave en movemento mide 100 m, canto medirá a nave para o seu piloto?:
 - A) 50 m.
 - B) 100 m.
 - C) 200 m.

Nota: *c* é a velocidade da luz no baleiro.

(A.B.A.U. ord. 24)

- 2. Unha muller situada na Terra observa que dúas naves espaciais, A e B, se dirixen cara a ela na mesma dirección e con sentidos opostos con velocidades 0,7 c e 0,6 c respectivamente. A velocidade relativa da nave A medida por unha observadora pertencente á nave B é:
 - A) 1,3 *c*
 - B) 0.9 c
 - C) 0,1 c

(A.B.A.U. ord. 23)

- 3. Un astronauta viaxa nunha nave espacial con velocidade constante $\overline{\mathbf{v}}$ respecto a un observador que está en repouso na Terra. O astronauta mide a lonxitude l (que coincide coa dirección de $\overline{\mathbf{v}}$) e a altura h da nave. As medidas da lonxitude l' e altura h' que fai o terrícola serán:
 - A) l' < l e h' < h.
 - B) l' < l e h' = h.
 - C) l' > l e h' > h.

(A.B.A.U. ord. 22)

- 4. Un astronauta (A) achégase a unha estrela cunha velocidade de 200 000 km/s e outro astronauta (B) distánciase da mesma estrela coa mesma velocidade coa que se achega o (A). A velocidade con que estes astronautas perciben a velocidade da luz da estrela é:
 - A) Maior para o astronauta (A) e menor para o (B).
 - B) Menor para o astronauta (A) e maior para o (B).
 - C) Igual para os dous astronautas.

(A.B.A.U. ord. 19)

- 5. Un vehículo espacial afástase da Terra cunha velocidade de 0.5 c (c = velocidade da luz). Desde a Terra envíase un sinal luminoso e a tripulación mide a velocidade do sinal obtendo o valor:
 - A) 0.5 c
 - B) *c*
 - C) 1,5 c

(A.B.A.U. extr. 22)

6. Medimos o noso pulso na Terra (en repouso) observando que o tempo entre cada latexo é de 0,80 s. Despois facemos a medida viaxando nunha nave espacial á velocidade de 0,70 c, sendo c a velocidade da luz no baleiro. De acordo coa teoría especial da relatividade, o tempo que medimos será:

- A) 1,12 s
- B) 0,57 s
- C) 0,80 s

(A.B.A.U. ord. 20)

- 7. A ecuación de Einstein $E = m \cdot c^2$ implica que:
 - A) Unha masa *m* necesita unha enerxía *E* para poñerse en movemento.
 - B) A enerxía E é a que ten unha masa m cando vai á velocidade da luz.
 - C) E é a enerxía equivalente a unha masa m.

(A.B.A.U. extr. 21)

• Física cuántica

- 1. Ilumínase o cátodo dunha célula fotoeléctrica cunha radiación de frecuencia 1,6×10¹⁵ Hz e o potencial de freado é de 2 V. Se usamos unha luz de 187,5 nm, o potencial de freado será:
 - A) Menor.
 - B) Maior.
 - C) Igual.

DATO: $c = 3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. ord. 24)

- 2. A teoría ondulatoria de Huygens sobre a natureza da luz vén confirmada polos fenómenos:
 - A) Reflexión e formación de sombras.
 - B) Refracción e interferencias.
 - C) Efecto fotoeléctrico e efecto Compton.

(A.B.A.U. extr. 23)

- 3. Ao irradiar un metal con luz vermella (682 nm) prodúcese efecto fotoeléctrico. Se irradiamos o mesmo metal con luz amarela (570 nm):
 - A) Non se produce efecto fotoeléctrico.
 - B) Os electróns emitidos son máis rápidos.
 - C) Emítense máis electróns, pero á mesma velocidade.

(A.B.A.U. ord. 23)

- 4. Un fotón de luz visible con lonxitude de onda de 500 nm ten un momento lineal de:
 - A) 0
 - B) 3,31·10⁻²⁵ kg·m·s⁻¹
 - C) $1.33 \cdot 10^{-27} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$

DATO: $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

(A.B.A.U. ord. 21)

- 5. Un determinado feixe de luz provoca efecto fotoeléctrico nun determinado metal. Se aumentamos a intensidade do feixe incidente:
 - A) Aumenta o número de fotoelectróns arrancados, así como a súa enerxía cinética.
 - B) Aumenta o número de fotoelectróns arrancados sen se modificar a súa enerxía cinética.
 - C) O número de fotoelectróns arrancados non varía, pero a súa enerxía cinética aumenta.

(A.B.A.U. ord. 19)

- 6. O efecto fotoeléctrico prodúcese se:
 - A) A intensidade da radiación incidente é moi grande.
 - B) A lonxitude de onda da radiación é grande.
 - C) A frecuencia da radiación é superior á frecuencia limiar.

(A.B.A.U. extr. 17)

- 7. Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de λ = 175 nm e o potencial de freado é de 1 V. Cando usamos unha luz de 250 nm, o potencial de freado será:
 - A) Menor.
 - B) Maior.
 - C) Igual.

(A.B.A.U. ord. 20)

- 8. A hipótese de De Broglie refírese a que:
 - A) Ao medir con precisión a posición dunha partícula atómica altérase a súa enerxía.
 - B) Todas as partículas en movemento levan asociada unha onda.
 - C) A velocidade da luz é independente do movemento da fonte emisora de luz.

(A.B.A.U. ord. 17)

• Desintegración radioactiva

- 1. Obsérvase que o número de núcleos N_0 inicialmente presentes nunha mostra de isótopo radioactivo queda reducida a $N_0/16$ ao cabo de 24 horas. O período de semidesintegración é:
 - A) 4 h
 - B) 6 h
 - C) 8,6 h

(A.B.A.U. extr. 21)

- 2. O estroncio-90 é un isótopo radioactivo cun período de semidesintegración de 28 anos. Se dispoñemos dunha mostra de dous moles do dito isótopo, o número de átomos de estroncio-90 que quedarán na mostra despois de 112 anos será:
 - A) $1/8 N_A$
 - B) $1/16 N_{A}$
 - C) $1/4 N_A$

DATO: $N_A = 6,022 \cdot 10^{23}$ partículas/mol.

(A.B.A.U. ord. 19)

- 3. Unha mostra dunha substancia radioactiva contiña hai 10 anos o dobre de núcleos que no instante actual; polo tanto, o número de núcleos que había hai 30 anos respecto ao momento actual era:
 - A) Seis veces maior.
 - B) Tres veces maior.
 - C) Oito veces maior.

(A.B.A.U. extr. 20)

- 4. A vida media dun núclido radioactivo e o período de semidesintegración son:
 - A) Conceptualmente iguais.
 - B) Conceptualmente diferentes pero valen o mesmo.
 - C) Diferentes, a vida media é maior.

(A.B.A.U. extr. 18)

Enerxía nuclear

- A masa dun núcleo atómico é:
 - A) Maior cá suma das masas das partículas que o constitúen.
 - B) Menor cá suma das masas das partículas que o constitúen.
 - C) Igual á suma das masas das partículas que o constitúen.

(A.B.A.U. extr. 22)

• Reaccións nucleares

- 1. Algúns átomos de nitróxeno (¹⁴N) atmosférico chocan cun neutrón e transfórmanse en carbono (¹⁴C) que, por emisión β, se converte de novo en nitróxeno. Neste proceso:
 - A) Emítese radiación gamma.
 - B) Emítese un protón.
 - C) Non pode existir este proceso xa que se obtería 14B.

(A.B.A.U. extr. 23)

- 2. Na reacción ${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{141}_{56}\text{Ba} + {}^{A}_{Z}\text{X} + 3 {}^{1}_{0}\text{n}$, cúmprese que:
 - A) É unha fusión nuclear.
 - B) Ponse en xogo unha gran cantidade de enerxía correspondente ao defecto de masa.
 - C) Ao elemento X correspóndelle o número atómico 36 e o número másico 94.

(A.B.A.U. ord. 22)

- 3. O $^{232}_{90}$ Th desintégrase emitindo 6 partículas α e 4 partículas β , o que dá lugar a un isótopo estable do chumbo de número atómico:
 - A) 82
 - B) 78
 - C) 74

(A.B.A.U. extr. 19)

Actualizado: 13/06/24

♦ LABORATORIO

- 1. Ao iluminar a superficie dun metal con luz de lonxitude de onda 280 nm, a emisión de fotoelectróns cesa para un potencial de freado de 1,3 V.
 - a) Determina a función traballo do metal e a frecuencia limiar de emisión fotoeléctrica.
 - b) Representa a gráfica enerxía cinética frecuencia e determina o valor da constante de Planck a partir da dita gráfica.

DATOS:
$$h = 6,63 \cdot 10^{-34} \text{ J s}$$
; $c = 3 \cdot 10^8 \text{ m s}^{-1}$; $|q_e| = 1,6 \cdot 10^{-19} \text{ C}$. (A.B.A.U. extr. 23)
Rta.: a) $W_e = 5,0 \cdot 10^{-19} \text{ J}$; $f_0 = 7,6 \cdot 10^{14} \text{ Hz}$.

- 2. Nunha experiencia para medir h, ao iluminar unha superficie metálica cunha radiación de lonxitude de onda $\lambda = 200 \cdot 10^{-9}$ m, o potencial de freado para os electróns é de 1,00 V. Se $\lambda = 175 \cdot 10^{-9}$ m, o potencial de freado é 1,86 V.
 - a) Determina o traballo de extracción do metal.
 - b) Representa o valor absoluto do potencial de freado fronte á frecuencia e obtén da dita representación o valor da constante de Planck.

DATOS:
$$|q_e| = 1,6 \cdot 10^{-19} \text{ C}$$
; $c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$. (A.B.A.U. extr. 21)
Rta.: a) $W_e = 8,3 \cdot 10^{-19} \text{ J}$; b) $h = 6,6 \cdot 10^{-34} \text{ J} \cdot \text{s}$

- 3. Nunha experiencia para calcular o traballo de extracción dun metal observamos que os fotoelectróns expulsados da súa superficie por unha luz de $4\cdot10^{-7}$ m de lonxitude de onda no baleiro son freados por unha diferenza de potencial de 0,80 V. E se a lonxitude de onda é de $3\cdot10^{-7}$ m o potencial de freado é 1.84 V.
 - a) Representa graficamente a frecuencia fronte ao potencial de freado.
 - b) Determina o traballo de extracción a partir da gráfica.

DATOS:
$$c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$$
; $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$; $|q_e| = 1.6 \cdot 10^{-19} \text{ C}$. (A.B.A.U. extr. 20)
Rta.: $W_e = 2.3 \text{ eV}$

4. Pódese medir experimentalmente a enerxía cinética máxima dos electróns emitidos ao facer incidir luz de distintas frecuencias sobre unha superficie metálica. Determina o valor da constante de Planck a partir dos resultados que se mostran na gráfica adxunta. DATO: 1 eV = 1,6·10⁻¹⁹ J.

(A.B.A.U. extr. 18)

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza. Respostas e composición de Alfonso J. Barbadillo Marán.

Actualizado: 13/06/24