ОПУКЛІСТЬ ФУНКЦІЙ БАГАТЬОХ ЗМІННИХ

ОЗНАЧЕННЯ 1. Множину $A \subset \mathbb{R}^m$ називають **опуклою**, якщо $\forall x,y \in A \ \forall \alpha \in (0,1) \ : \ \alpha x + (1-\alpha)y \in A.$

ОЗНАЧЕННЯ 2. Нехай $A \subset \mathbb{R}^m$ — опукла множина. Функцію $f:A \to \mathbb{R}$ називають **опуклою вниз** на A, якщо

$$\forall x,y \in A \ \forall \alpha \in (0,1) \ : \ f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y).$$

Функцію $f:A\to\mathbb{R}$ називають **строго опуклою вниз** на A, якщо

$$\forall x,y \in A \ \forall \alpha \in (0,1) \ : \ f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y).$$

Функцію $f:A \to \mathbb{R}$ називають **опуклою вгору** на A, якщо

$$\forall x, y \in A \ \forall \alpha \in (0, 1) : \ f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y).$$

Функцію $f: A \to \mathbb{R}$ називають **строго опуклою вгору** на A, якщо

$$\forall x, y \in A \ \forall \alpha \in (0, 1) \ : \ f(\alpha x + (1 - \alpha)y) > \alpha f(x) + (1 - \alpha)f(y).$$

ТЕОРЕМА 1. Нехай $A \subset \mathbb{R}^m$ — опукла множина, $f \in C^2(A)$, f'' — додатно визначена на A. Тоді f — строго опукла вниз на A.

Доведення. Нехай $x,y\in A,\ x\neq y$. Позначимо

$$\varphi(t) := f(tx + (1-t)y), \ t \in [0,1].$$

Оскільки внаслідок додатної визначеності другої похідної функції f

$$\varphi''(t) = f''(tx + (1-t)y)(x-y)^2 > 0, \ t \in [0,1],$$

то φ – опукла вниз на [0,1], зокрема

$$\forall \alpha \in (0,1) : \varphi(\alpha \cdot 0 + (1-\alpha) \cdot 1) \le \alpha \varphi(0) + (1-\alpha)\varphi(1).$$

Підставляючи вираз з означення функції φ , отримаємо потрібну нерівність.

ПРИКЛАДИ. Функція $f(x_1,x_2)=x_1^4-x_1^2+x_2^4-2x_2^2,\ x\in\mathbb{R}^2,$ опукла вниз на множині $(\frac{1}{\sqrt{6}},+\infty)\times(\frac{1}{\sqrt{3}},+\infty),$ опукла вгору на множині $(0,\frac{1}{\sqrt{6}})\times(0,\frac{1}{\sqrt{3}}).$ Дійсно,

$$f'' = \begin{pmatrix} 12x_1^2 - 2 & 0\\ 0 & 12x_2^2 - 4 \end{pmatrix}$$

ВЕКТОРНІ ФУНКЦІЇ

ОЗНАЧЕННЯ 1. Векторною функцією (відображенням) називають функцію $f: A \to \mathbb{R}^n$, $A \subset \mathbb{R}^m$.

ПРИКЛАДИ. 1. В процесі руху потоку рідини (наприклад, річки), швидкість рідини в кожній точці має різну величину і напрямок, тому швидкість — це векторна величина, що залежить від точки в просторі і часу: $\vec{v} = f(t, x_1, x_2, x_3), \ f: \mathbb{R}^4 \to \mathbb{R}^3$. Тому швидкість — це векторна функція.

- 2. Якщо необхідно здійснити перехід до іншої системи координат в просторі, то кожному набору координат (x_1, x_2, x_3) в початковій системі координат відповідає набір координат (y_1, y_2, y_3) в кінцевій системі. Маємо векторне відображення $f: \mathbb{R}^3 \to \mathbb{R}^3$. Аналогічно за допомогою векторного відображення $f: \mathbb{R}^2 \to \mathbb{R}^2$ переходять до інших координат в площині.
- 2a. На першому курсі обговорювалася **полярна система координат**, яку в механіці часто використовують для опису обертального руху в площині. Зв'язок її з декартовими координатами описувався відображенням

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}, \ r \ge 0, \ \varphi \in [0, 2\pi].$$

Для опису рухів в просторі використовуються дві аналогічні полярній системи координат.

26. **Циліндричні координати.** r, φ — полярні координати проекції точки на площину $Ox_1x_2, \ h=x_3$. Отже,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \\ h \end{pmatrix}, \ r \ge 0, \ \varphi \in [0, 2\pi], \ h \in \mathbb{R}.$$

Назва пов'язана з тим, що в цих координатах дуже легко записати рівняння прямого кругового циліндра: r = const.

2в. Сферичні координати. φ – полярна координата проекції точки на площину Ox_1x_2 , r – відстань від точки до початку координат, ψ – кут між радіус-вектором точки і площиною Ox_1x_2 (при $x_3 > 0$ він змінюється від 0 до $\frac{\pi}{2}$, при $x_3 < 0$ – від $-\frac{\pi}{2}$ до 0). Отже,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} r \cos \varphi \cos \psi \\ r \sin \varphi \cos \psi \\ r \sin \psi \end{pmatrix}, \ r \ge 0, \ \varphi \in [0, 2\pi], \ \psi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

Назва пов'язана з тим, що в цих координатах дуже легко записати рівняння сфери: r=const.

3. Іншим прикладом векторних відображень є лінійні відображення. Як відомо з алгебри, лінійні відображення $f: \mathbb{R}^n \to \mathbb{R}^m$ задаються матрицями $m \times n$. Зауважимо також, що якщо лінійне відображення задається матрицею D розміру $m \times m$, яка має обернену, то воно має обернене відображення D^{-1} . Лінійні відображення важливі тим, що в околі кожної точки гладке відображення гарно наближається лінійним (за допомогою диференціала).

ОЗНАЧЕННЯ 2. Нехай $f:A\to\mathbb{R}^n,\ A\subset\mathbb{R}^m$ – відкрита, $x^0\in A$. Відображення f називають **неперервним в точці** x^0 , якщо

$$\lim_{x \to x^0} f(x) = f(x^0),$$

тобто якщо

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \ \rho_m(x, x^0) < \delta : \ \rho_n(f(x), f(x_0)) < \varepsilon,$$

Відображення неперервне на множині A, якщо воно неперервне в кожній точці множини A.

ЗАУВАЖЕННЯ. Правильне також означення неперервності за Гейне, що доводиться так само, як в попередньому розділі.

З прикладів видно, що векторне відображення задається, як набір з n функцій, кожна з яких залежить від m змінних. Позначатимемо ці функції $f_1, ..., f_n$. Називатимемо їх координатними функціями функції f.

ТЕОРЕМА 1. (Критерій неперервності векторних функцій). Нехай $f: A \to \mathbb{R}^n$, $A \subset \mathbb{R}^m$. Відображення f неперервне на A тоді і лише тоді, коли неперервні на A всі функції $f_1, ..., f_n$.

Доведення. Збіжність в (\mathbb{R}^n, ρ_n) покоординатна, тому $f(x) \to f(x^0) \Leftrightarrow f_k(x) \to f_k(x^0), \ k = \overline{1, n}.$

Наслідок. Лінійне відображення неперервне.

Залишаються правильними ряд властивостей неперервних функцій, що були доведені раніше:

- 1. Якщо f,g – неперервні функції, $c \in \mathbb{R},$ то cf,f+g – неперервні функції;
- 2. Якщо $f: A \to B, \ g: B \to \mathbb{R}^l, \ A \subset \mathbb{R}^m, \ B \subset \mathbb{R}^n, \ f$ неперервна в точці $x_0 \in A, \ g$ неперервна в точці $f(x_0) \in B,$ то суперпозиція $h(x) = g(f(x)), \ x \in A,$ неперервна в точці $x_0.$
- 3. Відображення $f:A\to \mathbb{R}^n,\ A\subset \mathbb{R}^m,$ неперервне тоді й лише тоді, коли для довільної відкритої в \mathbb{R}^n множини G множина $f^{-1}(G)$ відкрита в (A,ρ_m) .

Те ж саме правильно для замкнених множин.

- 4. Образ компактної множини при неперервному відображенні компакт.
 - 5. Неперервна функція на компакті обмежена.
 - 6. Неперервна функція на компакті рівномірно неперервна.

Доведення. 1. Застосувати до координатних функцій теорему про арифметичні дії.

- 2. Застосувати означення Гейне.
- 3,4,5. Повторити доведення теореми з попереднього розділу.

ОЗНАЧЕННЯ 3. Нехай $f:A\to\mathbb{R}^n,\ A\subset\mathbb{R}^n$ — відкрита, $x^0\in A$. Відображення f називають **диференційовним в точці** x^0 , якщо існує лінійне відображення з \mathbb{R}^m в \mathbb{R}^n з матрицею D таке, що

$$||f(x^0 + a) - f(x^0) - Da|| = o(||a||), \ a \to 0.$$

Матрицю D називають **похідною відображення** f в точці x^0 , або **матрицею Якобі** і пишуть $D = f'(x^0)$.

Якщо m=n, її визначник називають **якобіаном відображення** f і позначають $\frac{\partial (f_1,f_2,...,f_m)}{\partial (x_1,...,x_m)}(x^0).$

ПРИКЛАДИ. Нехай

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1^2 + x_2^2 + x_3^2 \\ 3x_1 - 4x_2 + x_3 \\ x_2 \end{pmatrix}, (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Тоді похідна (матриця Якобі)

$$f' = \begin{pmatrix} 2x_1 & 2x_2 & 2x_3 \\ 3 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Якобіан

$$\frac{\partial(f_1, f_2, f_3)}{\partial(x_1, x_2, x_3)} = \begin{vmatrix} 2x_1 & 2x_2 & 2x_3 \\ 3 & -4 & 1 \\ 0 & 1 & 0 \end{vmatrix} = - \begin{vmatrix} 2x_1 & 2x_3 \\ 3 & 1 \end{vmatrix} = 6x_3 - 2x_1.$$

ТЕОРЕМА 2. (Критерій диференційовності векторного відображення). Нехай $f:A\to\mathbb{R}^n,\ A\subset\mathbb{R}^m$. Відображення f диференційовне в точці $x_0\in A$ тоді і лише тоді, коли диференційовні в цій точці всі функції $f_1,...,f_n$. При цьому $(f'(x))_{jk}=\frac{\partial f_j}{\partial x_k}(x^0)$.

Доведення. Необхідність. Якщо f – диференційовна і має похідну D, то при всіх $1 \leq j \leq n$ маємо

$$\left| f_j(x^0 + a) - f_j(x^0) - \sum_{k=1}^m d_{jk} a_k \right| \le$$

$$\le \left(\sum_{i=0}^n \left(f_i(x^0 + a) - f_i(x^0) - \sum_{k=1}^m d_{ik} a_k \right)^2 \right)^{1/2} =$$

$$= \left| |f(x^0 + a) - f(x^0) - Da| \right| = o(||a||), \ a \to 0.$$

Отже, функція f_j диференційовна і за теоремою про обчислення диференціала $\frac{\partial f_j}{\partial x_k}(x^0)=d_{jk},\ 1\leq k\leq n.$

Достатність. Нехай в точці x^0 диференційовні всі функції $f_1,...,f_n$. Покладемо $d_{jk}:=\frac{\partial f_j}{\partial x_k}(x^0),\ 1\leq j\leq m,\ 1\leq k\leq n$. Тоді

$$||f(x^{0}+a)-f(x^{0})-Da|| = \left(\sum_{i=0}^{n} \left(f_{i}(x^{0}+a) - f_{i}(x^{0}) - \sum_{k=1}^{m} d_{ik}a_{k}\right)^{2}\right)^{1/2} = \left(\sum_{i=0}^{n} o(||a||^{2})\right)^{1/2} = o(||a||), \ a \to 0.$$

Наслідок. Диференційовне відображення є неперервним.

ОЗНАЧЕННЯ 4. Будемо казати, що $f \in C^k(A, \mathbb{R}^n)$, якщо $f_1, ..., f_n \in C^k(A)$.

ПРИКЛАДИ. Обчислимо якобіани відображень переходу до інших систем координат.

Для полярних координат:

$$\frac{\partial(x_1, x_2)}{\partial(r, \varphi)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r.$$

Для циліндричних координат:

$$\frac{\partial(x_1, x_2, x_3)}{\partial(r, \varphi, h)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r.$$

Для сферичних координат:

$$\frac{\partial(x_1, x_2, x_3)}{\partial(r, \varphi, \psi)} = \begin{vmatrix} \cos \varphi \cos \psi & -r \sin \varphi \cos \psi & -r \cos \varphi \sin \psi \\ \sin \varphi \cos \psi & r \cos \varphi \cos \psi & -r \sin \varphi \sin \psi \\ \sin \psi & 0 & r \cos \psi \end{vmatrix} = r^2 \cos \psi.$$

Відзначимо, що якобіани обертаються в нуль в тих точках, де координати визначені неоднозначно. Тому взагалі нулі якобіанів називають точками виродження відображення.

ТЕОРЕМА 3. (Правило диференціювання складної функції). Нехай $f:A\to B,\ g:B\to\mathbb{R}^l,\ A\subset\mathbb{R}^m,\ B\subset\mathbb{R}^n$ – відкриті множини, f диференційовна в точці $x^0\in A,\ g$ диференційовна в точці $y^0:=f(x^0)\in B.$ Тоді суперпозиція $h(x)=g(f(x)),\ x\in A,$ диференційовна в точці x^0 і $h'(x^0)=g'(f(x^0))f'(x^0).$

ЗАУВАЖЕННЯ. Останній добуток — це добуток матриць у звичайному сенсі.

Наслідок. При m=n=l маємо правило множення для якобіанів:

$$\frac{\partial(h_1, h_2, ..., h_m)}{\partial(x_1, ..., x_m)}(x^0) = \frac{\partial(g_1, g_2, ..., g_m)}{\partial(y_1, ..., y_m)}(y^0) \cdot \frac{\partial(f_1, f_2, ..., f_m)}{\partial(x_1, ..., x_m)}(x^0).$$