

Standard method for microCT-based additive manufacturing quality control 1: Porosity analysis

Anton du Plessis

Abstract

MicroCT is a well-established technique that is used to analyze the interior of objects nondestructively, and it is especially useful for void or porosity analysis. Besides its widespread use, few standards exist and none for additive manufacturing as yet. This is due to the inherent differences in part design, sizes and geometries, which results in different scan resolutions and qualities. This makes direct comparison between different scans of additively manufactured parts almost impossible. In addition, different image analysis methodologies can produce different results. In this method paper, we present a simplified 10 mm cube-shaped coupon sample as a standard size for detailed analysis of porosity using microCT, and a simplified workflow for obtaining porosity information. The aim is to be able to obtain directly comparable porosity information from different samples from the same AM system and even from different AM systems, and to potentially correlate detailed morphologies of the pores or voids with improper process parameters. The method is applied to two examples of different characteristic types of voids in AM: sub-surface lack of fusion due to improper contour scanning, and tree-like pores growing in the build direction. This standardized method demonstrates the capability for microCT to not only quantify porosity, but also identify void types which can be used to improve AM process optimization.

Citation: Anton du Plessis Standard method for microCT-based additive manufacturing quality control 1: Porosity

analysis. protocols.io

dx.doi.org/10.17504/protocols.io.sbueanw

Published: 03 Aug 2018

Protocol