Домашняя работа №14 (Аверьянов Тимофей ПМ3-1) Макроэкономика

Задача №1. Обосновать формулу (8) по аналогии формулы (9):

$$\frac{Y - Y_*}{Y_*} = -(1 - \alpha) \cdot (u - u_*) \tag{8}$$

$$Y = F(K, L(u)) = F(K, L(u_*) + \{-L(u_*) \cdot (u - u_*)\}) \approx$$

$$\approx F(K, L(u_*) + MPL \cdot L(u_*) \cdot \{-(u - u_*)\}) =$$

$$= Y_* - (1 - \alpha) \cdot Y_* \cdot (u - u_*)$$

$$\Rightarrow \frac{Y - Y_*}{Y_*} = -(1 - \alpha) \cdot (u - u_*) \blacksquare$$
(*)

Y_{*} – реальный ВВП при естественном уровне безработицы.

1-lpha — эластичность ВВП по затратам живого труда

Если принять $u_* = 0$, то получаем правило (9) потери от наличия безработицы в стране:

$$\frac{Y - Y_E}{Y_E} = -(1 - \alpha) \cdot u \tag{9}$$

 Y_E — ВВП при полной занятости.

Задача № 2. Оценить модель Оукена со спецификацией (11), где цепной уровень безработицы в стране.

Модель с цепным приростом уровня безработицы:

$$\begin{cases} \frac{Y_t - Y_{t-1}}{Y_{t-1}} = a_0 + a_1 \cdot (u_t - u_{t-1}) \\ a_1 < 0 \end{cases}$$
 (11)

Решение:

Год	∆Yt/Yt-1	u	ut-ut-1
2000	10	10.6	
2001	5.1	9	-1.6
2002	4.7	7.9	-1.1
2003	7.3	8.2	0.3
2004	7.2	7.8	-0.4
2005	6.4	7.2	-0.6
2006	8.2	7.2	0
2007	8.5	5.7	-1.5
2008	5.2	7	1.3
2009	-7.8	8.4	1.4
2010	4.5	7.5	-0.9
2011	4.3	6.7	-0.8
2012	4	5.7	-1
2013	1.8	5.5	-0.2
2014	0.7	5.2	-0.3
2015	-2	5.6	0.4
2016	0.2	5.5	-0.1
2017	1.8	5.2	-0.3
2018	2.5	4.8	-0.4
2019	1.3	4.6	-0.2
	a1	a0	
	-2.561958725	2.554118297	
	1.02823632	0.860930814	
	0.267496976	3.475570049	
	6.208095329	17	
	74.99122868	205.3529819	

Подставим оценённые значения:

$$\begin{cases} \frac{Y_t - Y_{t-1}}{Y_{t-1}} = 2.55 + 2.56 \cdot (u_t - u_{t-1}) \\ a_1 < 0 \end{cases}$$