Drone Homework 4 (Final Homework) Report

50 Drones:

1. DFS Search

Based on the output, Drone_23 was found at position 232 during the DFS traversal, meaning 232 nodes were traversed to locate its exact position. The operation to search for Drone_23 took 0.0456 ms, with the system operating at peak performance at 105 FPS.

2. Shortest Path

Before searching for the shortest path for any assigned drone, we need to determine its exact path. Therefore, the SearchID button should be clicked first to identify its path.

Afterward, we can search for the shortest path for the drone. The output shows that the shortest path from Drone_1 to Drone_23 is: Drone_1 \rightarrow Drone_3 \rightarrow Drone_23. The time taken to search for the shortest path is 0 ms, with the system operating at approximately 101 FPS.

100 Drones:

1. DFS Search

Based on the output, Drone_55 was found at position 7 during the DFS traversal, meaning 7 nodes were traversed to locate its exact position. The operation to search for Drone_55 took 0.0157 ms, with the system operating at peak performance at 39 FPS.

2. Shortest Path

Before searching for the shortest path for any assigned drone, we need to determine its exact path. Therefore, the SearchID button should be clicked first to identify its path.

Afterward, we can search for the shortest path for the drone. The output shows that the shortest path from Drone_2 to Drone_35 is: Drone_2 \rightarrow Drone_17 \rightarrow Drone_23 \rightarrow Drone_96 \rightarrow Drone_35. The time taken to search for the shortest path is 2 ms, with the system operating at approximately 46 FPS.

500 Drone:

1. DFS Search

Based on the output, Drone_300 was found at position 5357 during the DFS traversal, meaning 5357 nodes were traversed to locate its exact position. The operation to search for Drone_300 took 1.0309 ms, with the system operating at peak performance at 6 FPS.

2. Shortest Path

Before searching for the shortest path for any assigned drone, we need to determine its exact path. Therefore, the SearchID button should be clicked first to identify its path.

Afterward, we can search for the shortest path for the drone. The output shows that the shortest path from Drone_2 to Drone_33 is: Drone_2 \rightarrow Drone_421 \rightarrow Drone_8. The time taken to search for the shortest path is 10 ms, with the system operating at approximately 6 FPS.

Unfortunately, for 1000 Drones, our machine can't go further because of the machine keep crashing after we run the code.

To enhance the functionality and make our program resemble a drone simulation, we added a Deactivate button. This button is designed to deactivated all the drones when clicked.

When the button is clicked, all drones turn red, and after 1 ms, all the drones are deactivated.

The output will display the message "All Drones Deactivated" after all drones have been deactivated.

PC Specifications for the test:

CPU: Intel i7-11370H

GPU: Nvidia RTX 3050 Ti

RAM: 40GB

Storage: 1.5TB SSD