# Exam 1a **Chem 1142 Spring 2011**

Name:

| MULTIPLE CHOICE                                          | . [3 pts ea.] Choos                 | e the best respon          | nse on the scan                       | tron sheet. [33 pts total.]                                                                |   |
|----------------------------------------------------------|-------------------------------------|----------------------------|---------------------------------------|--------------------------------------------------------------------------------------------|---|
|                                                          | •                                   |                            | 1                                     | in the following molecule:                                                                 |   |
| : O:<br>: F _ O B H                                      | 3 repulsions<br>120<br>trigorphonos | #rep 2<br>hybrid sp        | 3 4 5<br>sp² sp³ sp                   | 5 6<br>3d sp3d <sup>2</sup>                                                                |   |
| a) sp                                                    | b) sp <sup>2</sup>                  | c) $sn^3$                  | d) $sp^3d$                            | e) $sn^3d^2$                                                                               |   |
| Q2. The angle between a) 180°                            | en sp hybrid orbita<br>b) 120°      | als is:<br>c) 109.5°       | d) 90°                                | $Sp \rightarrow linear e geom$<br>e) $60^{\circ} \Rightarrow 188^{\circ}$                  |   |
| Q3. The number of s                                      | igma and pi bonds<br>Fist<br>—H     | in the following           | r molecule is:                        |                                                                                            |   |
| a) 1 σ, 3 π                                              | b) $2 \sigma$ , $2 \pi$             | c) 3 σ, 1 π                | d) 4 σ                                | e) 4 π                                                                                     |   |
| Q4. Which of the following C <sub>2</sub> H <sub>6</sub> | lowing molecules :<br>b) HI         | are capable of hy<br>c) KF | vdrogen bondin<br>d) BeH <sub>2</sub> | g among themselves:  (e) CH <sub>3</sub> NH <sub>2</sub> H-C-N:IIIH-N-E-  the solid state: | K |
| Q5. Which of the fol                                     | lowing substances                   | forms an amorp             | hous crystal in                       | the solid state:                                                                           |   |



- a) Simple cubic
- b) Face-centered Cubic
- c) Body-centered cubic

d) Tetragonal

a) Ice

- e) Monoclinic
- Q7. Which of the following substances would be most likely to dissolve in CCl<sub>4</sub>?
  - a) NaNO<sub>3</sub>
- b) HCl

b) Glass

Q6. Which type of unit cell is shown below?

c) NH<sub>3</sub>

c) Quartz

d) CH<sub>3</sub>OH

d) Graphite

e) Br<sub>2</sub>

like-dissolves-like

i.m= 3x0.070m = 0.21m

N: = H-Bond acceptor

N-H = H-Bond donor

- Q8. Which of the following aqueous solutions would have the greatest boiling point?
  - a) 0.100 m C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>
- b) 0.080 m NaCl e) pure water
- c) 0.070 m CaCl<sub>2</sub> Call\_ -> Ca2++2a-, i=3

e) Ammonia

d) 0.050 m NaC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> ATh = i.m. Kb

2 im

# particles (ions) each formula

Q9. Which substance has the following solid-state structure?



- a) Graphite
- b) Quartz
- c) Diamond
- d) Glass
- e) Sodium
- Q10. The phase diagram for an unknown substance is show below. Based on this phase diagram, what is the boiling point of this substance at 60 atm?



- a) 60 °C
- b) 350 °C
- c) 370 °C
- d) 550 °C
- e) 760 °C
- Q11. The Henry's law constant for ethanol in water is 160 M atm-1 at 37 °C. What is the predicted partial pressure of ethanol vapor above an aqueous sample of ethanol whose molar concentration is 1.7 x 10<sup>-2</sup> M? (Note: this corresponds to a Blood Alcohol Concentration of 0.08, which is the legal definition of intoxication.)

- e) 1.7 x 10-2 atm

(Note: this corresponds to a Blood Alcohol Concentration of 0.08, which is the legal definition of 1.1 x 10-4 atm b) 9400 atm c) 
$$5.5 \times 10^{-5}$$
 atm d)  $2.72$  atm

Henry:  $C = K \cdot P$ 

Henry:  $A = \frac{1.7 \times 10^{-2} M}{160 M \cdot adm} = \frac{1.1 \times 10^{-4} adm}{10^{-4} adm}$ 

## Short Response.

Show ALL work to receive credit.

Q12. [10 pts.] Calculate the % by mass, the molarity, and the molality of a solution made by mixing 12.0 g NaCl with 139.0 g HaO. such that its final volume is 144.0. To of the control o with 139.0 g H<sub>2</sub>O, such that its final volume is 141.0 mL. Show ALL work.

Comment: For dilute ag solas, Molar cone & Molal conc

Q13. [2 pts.] The greater the molar heat of vaporization of a liquid, the greater is vapor pressure. True or false?

X(1) -> X(g); AHrop -IT AHrop 1, takes more E to convert 1-29 >> Will have lower vp, since has good will form. Q14. [5 pts.] What is the osmotic pressure of  $0.100 \text{ M Ca}(NO_3)_2(aq)$  at 37 °C? 37+273.15=310.K

$$C_{a}(NO_{3})_{2}(aq) \longrightarrow C_{a}^{2t}(aq) + 2NO_{3}^{2}(aq)$$
If no isn-pointy, i=3
$$T = i \cdot M \cdot R \cdot T$$
=  $3 \times 0.100 \frac{\text{mol}}{100} \times 0.08206 \frac{\text{atm.} k}{\text{mol} \cdot k} \times 310. k$ 
=  $7.63 \text{ atm.}$ 

Q15. [3 pts.] Under what circumstance will a gas not obey Henry's law? Give an example.

If the gas reacts w/ solvent, rather than just dissolving in it. ex: NH, (g) in H,010

Q16. [8 pts.] Draw a diagram showing the formation of hydrogen bonds between molecules of CH<sub>3</sub>OH. Clearly label the location of the hydrogen bonds in your diagram!



Q17. [8 pts.] EXPLAIN which of the following substances would have the GREATEST vapor pressure.

Q18. [8 pts.] If the osmotic pressure of 175. mL of an aqueous solution at 305 K containing 0.0341 g of solute is  $1.31 \times 10^{-3}$  atm, then what is the molar mass of the solute? The solute is a non-electrolyte.

$$T(=iMRT = MRT (i=1, since solut is non-electrolyte)$$

$$M = \frac{T1}{RT} = \frac{1.31 \times 10^{-3} \text{ atm}}{0.0820 \times \text{ atm} \cdot L} \times 305 \text{ k}$$

$$= 5 \cdot 234 \times 10^{-5} \text{ mol}$$

$$L$$

$$M = \frac{\#g}{\#\text{mol}} = \frac{0.0341 \text{ g}}{9.1596 \times 10^{-6} \text{ mol}} = \frac{3720 \text{ g/mol}}{9.1596 \times 10^{-6} \text{ mol}}$$

$$\frac{\#\text{mol}?}{175 \text{ mol}} = \frac{1.596 \times 10^{-6} \text{ mol}}{1.500 \text{ gr.}} = \frac{1.596 \times 10^{-6} \text{ mol$$

Q19. [3 pts.] Why are metals good conductors of electricity?

In metallic crystal, valence er are filly delocalized, forming an "electron sea". These free es are what causes metals to be good conductors.

## Old-Time Chemistry Corner

Q20. [10 pts.] Write formulas for the following substances:

- Q21. [10 pts.] Predict the MOLECULAR geometry of SF<sub>4</sub>. Your answer should include a valid Lewis structure, and a sketch of the molecular geometry including approximate bond angles.

Explain whether SF4 is polar or non-polar.

SF4

5 - repulsions

D+4

6+7×4=34e

Lavis: | 34

-8 (bonds)

-24 (lpont)

2 e

-2e (lpon

v) calcium sulfite dihydrate

SEPP

5 - repulsions
around S

Thigoral bi-pyramidal.

George See-sa

Lipole FO

Polar

Position (only 2 reps @ 90)

### Periodic Table of the Elements

| IA<br>1 | IIA    |        |        |        | abic ( |        |        |        |        |        |        | IIIA   | IVA    | VA       | VIA    | VIIA   | VIIIA<br>18 |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|-------------|
| 1       |        |        |        |        |        |        |        |        |        |        |        |        |        |          |        |        | 2           |
| H       |        |        |        |        |        |        |        |        |        |        |        |        |        |          |        |        | He          |
| 1.01    | 2      |        |        |        |        |        |        |        |        |        |        | 13     | 14     | 15       | 16     | 17     | 4.00        |
| 3       | 4      |        |        |        |        |        |        |        |        |        |        | 5      | 6      | 7        | 8      | 9      | 10          |
| Li      | Be     |        |        |        |        |        |        |        |        |        |        | В      | С      | N        | 0      | F      | Ne          |
| 6.94    | 9.01   |        |        |        |        |        |        |        |        |        |        | 10.81  | 12.01  | 14.01    | 16.00  | 19.00  | 20.18       |
| 11      | 12     |        |        |        |        |        |        |        |        |        |        | 13     | 14     | 15       | 16     | 17     | 18          |
| Na      | Mg     |        |        |        |        |        |        |        |        |        |        | ΑI     | Si     | P        | S      | CI     | Ar          |
| 22.99   | 24.31  | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 26.98  | 28.09  | 30.97    | 32.07  | 35.45  | 39.95       |
| 19      | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     | 33       | 34     | 35     | 36          |
| K       | Ca     | Sc     | Ti     | V      | Cr     | Mn     | Fe     | Co     | Ni     | Cu     | Zn     | Ga     | Ge     | As       | Se     | Br     | Kr          |
| 39.10   | 40.08  | 44.96  | 47.87  | 50.94  | 52.00  | 54.94  | 55.85  | 58.93  | 58.69  | 63.55  | 65.39  | 69.72  | 72.61  | 74.92160 | 78.96  | 79.90  | 83.80       |
| 37      | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     | 51       | 52     | 53     | 54          |
| Rb      | Sr     | Υ      | Zr     | Nb     | Mo     | Tc     | Ru     | Rh     | Pd     | Ag     | Cd     | In     | Sn     | Sb       | Te     | 1      | Xe          |
| 85.47   | 87.62  | 88.91  | 91.22  | 92.91  | 95.94  | [98]   | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76   | 127.60 | 126.90 | 131.29      |
| 55      | 56     | 71     | 72     | 73     | 74     | 75     | 76     | 77     | 78     | 79     | 80     | 81     | 82     | 83       | 84     | 85     | 86          |
| Cs      | Ba*    | Lu     | Hf     | Ta     | W      | Re     | Os     | lr     | Pt     | Au     | Hg     | TI     | Pb     | Bi       | Po     | At     | Rn          |
| 132.91  | 137.33 | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.20 | 208.98   | [210]  | [210]  | [222]       |
| 87      | 88     | 103    | 104    | 105    | 106    | 107    | 108    | 109    | 110    | 111    | 112    | 113    | 114    | 115      | 116    | 117    | 118         |
| Fr      | Ra**   | Lr     | Rf     | Db     | Sg     | Bh     | Hs     | Mt     |        |        |        |        |        |          |        |        |             |
| [223]   | [226]  | [262]  | [261]  | [262]  | [266]  | [264]  | [265]  | [268]  | [269]  | [272]  | [277]  |        | [285]  |          | [289]  |        | [293]       |
|         |        |        | •      | •      | •      |        |        |        |        |        |        |        |        | •        |        |        |             |
|         |        | 57     | 58     | 59     | 60     | 61     | 62     | 63     | 64     | 65     | 66     | 67     | 68     | 69       | 70     |        |             |
|         | *      | La     | Ce     | Pr     | Nd     | Pm     | Sm     | Eu     | Gd     | Tb     | Dy     | Ho     | Er     | Tm       | Yb     |        |             |
|         |        | 138.91 | 140.12 | 140.91 | 144.24 | [145]  | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93   | 173.04 |        |             |
|         |        | 89     | 90     | 91     | 92     | 93     | 94     | 95     | 96     | 97     | 98     | 99     | 100    | 101      | 102    |        |             |
|         | **     | Ac     | Th     | Pa     | U      | Np     | Pu     | Am     | Cm     | Bk     | Cf     | Es     | Fm     | Md       | No     |        |             |
|         |        | [227]  | 232.04 | 231.04 | 238.03 | [237]  | [244]  | [243]  | [247]  | [247]  | [251]  | [252]  | [257]  | [258]    | [259]  |        |             |

1 atm = 101,325 Pa = 760 mmHg = 760 torr

 $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ 

$$(p + an^2/V^2)(V - nb) = nRT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$pM = dRT$$

 $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H_{f}^{\circ}(products) - \Sigma m \Delta H_{f}^{\circ}(reactants)$ 

 $E = h \mathbf{v}$ 

$$c = \nu \lambda$$

 $c = 3.00 \times 10^8 \,\text{m/s}$ 

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$E_n = -R_H (1/n^2)$$

$$R_{\rm H} = 2.18 \ x \ 10^{-18} \ J$$

 $\Delta T_{\rm f} = i k_{\rm f} m$ 

$$\Delta T_{\rm b} = i k_{\rm b} m$$

$$c = kP$$

$$R = 8.314 \text{ J/mol} \cdot \text{K}$$

$$pV = nRT$$

$$pV = nRT$$

$$q = ms\Delta t = C\Delta t$$

$$N_{\rm A}$$
 = 6.022 x 10<sup>23</sup> mol<sup>-1</sup>

$$E = \frac{hc}{\lambda}$$

$$M_1V_1 = M_2V_2$$

$$\Pi = iMRT$$

