

Radar Systems

Lecture 1. Introduction to Radar Systems

구 자 열

차 례

- Why radar? —
- The basics
- Course agenda

What Means are Available for Lifting the Fog of War?

D-Day + 1

The Invasion of Normandy

D-Day

Courtesy of National Archives.

What Means are Available for Lifting the Fog of War?

Iwo Jima 1945

Military Means of Sensing

	Optical/IR		Radar	Acoustic	Other
Applications	Ground surveillance/ reconnaissance/ID Laser targeting		 Surveillance Tracking Fire control Target ID/ discrimination Ground surveillance/ reconnaissance Ground mapping Moving target detection Air traffic control Missile seekers 	 Sonar Blast detection Troop movement detection 	
Attributes		Long range All-weather Day/night 3-space target location Reasonably robust against countermeasures			

Early Days of Radar Chain Home Radar, Deployment Began 1936

Chain Home Radar Coverage circa 1940 (21 Early Warning Radar Sites)

Sept 2006 Photograph of Three Chain Home Transmit Towers, near Dover

Courtesy of Robert Cromwell. Used with permission.

Chain Home Radar System

Typical Chain Home Radar Site

Radar Parameters

- Frequency
 - 20-30 MHz
- Wavelength
 - 10-15 m
- Antenna
 - Dipole Array on Transmit
 - Crossed Dipoles on Receive
- Azimuth Beamwidth
 - About 100°
- Peak Power
 - 350 kW
- Detection Range
 - ~160 nmi on German Bomber

Chain Home Transmit & Receive Antennas

Transmit Antenna

Receive Antenna

Radar and "The Battle of Britain"

Chain Home Radar Coverage circa 1940 (21 Early Warning Radar Sites)

- The Chain Home Radar
 - British "Force Multiplier" during the Battle of Britain"
- Timely warning of direction and size of German aircraft attacks allowed British to
 - Focus their limited numbers of interceptor aircraft
 - Achieve numerical parity with the attacking German aircraft
- Effect on the War
 - Germany was unable to achieve Air Superiority
 - Invasion of Great Britain was postponed indefinitely

Surveillance and Fire Control Radars

Airborne and Air Traffic Control Radars

Instrumentation Radars

차 례

- Why radar?
- The basics ←
- Course agenda

RADAR RAdio Detection And Ranging

Radar observables:

- Target range
- Target angles (azimuth & elevation)
- Target size (radar cross section)
- Target speed (Doppler)
- Target features (imaging)

Electromagnetic Waves

Courtesy Berkeley National Laboratory

Radar Frequencies

Properties of Waves Relationship Between Frequency and Wavelength

Frequency (1/s) =
$$\frac{\text{Speed of light (m/s)}}{\text{Wavelength } \lambda \text{ (m)}}$$

Examp	les:
-------	------

Frequency	Wavelength	
100 MHz	3 m	
1 GHz	30 cm	
3 GHz	10 cm	
10 GHz	3 cm	

Properties of Waves Phase and Amplitude

Properties of Waves Constructive vs. Destructive Addition

Constructive (in phase)

Partially Constructive (somewhat out of phase)

Destructive (180° out of phase)

Non-coherent signals (noise)

Polarization

Vertical Polarization

Horizontal Polarization

Radar Frequency Bands

IEEE Standard Radar Bands (Typical Use)

HF	3 – 30 MHz	
VHF	30 MHz-300 MHz	Search
UHF	300 MHz-1 GHz	Radars
L-Band	1 GHz-2 GHz	
S-Band	2 GHz-4 GHz	Search & Track Radars
C-Band	4 GHz−8 GHz	Track Nadars
X-Band	8 GHz-12 GHz	Fire Control & Imaging Radars
Ku-Band	12 GHz-18 GHz	
K-Band	18 GHz-27 GHz	Missile
Ka-Band	27 GHz-40 GHz	Seekers
W-Band	40 GHz – 100+ GHz	

Radar Block Diagram

Radar Range Equation

Received Signal Energy =
$$\begin{bmatrix} Transmit Power & Transmit Gain Factor Aperture Time
$$\begin{bmatrix} 4\pi A \\ \lambda^2 \end{bmatrix} \begin{bmatrix} \frac{1}{4\pi R^2} \end{bmatrix} \begin{bmatrix} \frac{1}{4\pi R^2} \end{bmatrix} \begin{bmatrix} \sigma \end{bmatrix} \begin{bmatrix} \frac{1}{4\pi R^2} \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \tau \end{bmatrix}$$$$

Signal-to-Noise Ratio

What the #@!*% is a dB?

The relative value of two things, measured on a logarithmic scale, is often expressed in deciBel's (dB)

Example:

Signal-to-noise ratio (dB) = 10 log
$$_{10}$$
 Signal Power Noise Power

	Scientific			
Factor of:	Notation	dB		
10	10 ¹	10	0 dB =	factor of 1
100	10 ²	20	-10 dB =	factor of 1/10
1000	10 ³	30	-20 dB =	factor of 1/100
			3 dB =	factor of 2
1,000,000	10 ⁶	60	-3 dB =	factor of 1/2

Pulsed Radar Terminology and Concepts

Average power = Peak power * Duty cycle

Pulse repetition frequency (PRF) = 1/(PRI)

Continuous wave (CW) radar: Duty cycle = 100% (always on)

Pulsed Radar Terminology and Concepts

Brief Mathematical Digression Scientific Notation and Greek Prefixes

Scientific Notation	Standard Notation	Greek Prefix	Radar Examples
10 ⁹	1,000,000,000	Giga	GHz
10 ⁶	1,000,000	Mega	MHz, MW
10 ³	1,000	kilo	km
10 ¹	10	8. -	-
10 ⁰	1	(30)	-
10 -3	0.001	milli	msec
10-6	0.000,001	micro	μsec

MHz = Megahertz MW = Megawatt

Radar Waveforms

What do radars transmit?

Radar Waveforms (cont'd.)

Pulse at single frequency

Pulse with changing frequency

Linear Frequency-Modulated (LFM) Waveform

Radar Range Measurement

Courtesy of Raytheon. Used with permission.

Antenna Gain

Isotropic antenna

Directional antenna

Propagation Effects on Radar Performance

- Atmospheric attenuation
- Reflection off of earth's surface

- Over-the-horizon diffraction
- Atmospheric refraction

Radar beams can be attenuated, reflected and bent by the environment

Radar Cross Section (RCS)

Radar Cross Section (RCS, or s) is the <u>effective</u> crosssectional area of the target as seen by the radar

measured in m2, or dBm2

Signal Processing Pulse Compression

Problem: Pulse can be very long; does not allow accurate range measurement

Solution: Use pulse with changing frequency and signal process using "matched filter"

Bandwidth

Why Bandwidth is Important

Detection of Signals in Noise

Coherent Integration

 Noise is different each time; doesn't add coherently (N)

Doppler Effect

Figure by MIT OCW.

Doppler Shift Concept

Why Doppler is Important

Surface Radar

Clutter returns are much larger than target returns...

...however, targets move, clutter doesn't.

Airborne Radar

Note: if you're moving too, you need to take that into account.

Doppler lets you separate things that are moving from things that aren't

Clutter Doppler Spectra

Radar Block Diagram

차 례

- Why radar?
- The basics
- Course agenda

Introduction to Radar Systems Tutorial Agenda

- Introduction
- Radar Equation
- Propagation Effects
- Target Radar Cross Section
- Detection of Signals in Noise & Pulse Compression
- Radar Antennas
- Radar Clutter and Chaff
- Signal Processing-MTI and Pulse Doppler
- Tracking and Parameter Estimation
- Transmitters and Receivers

Q & A

