

École d'ingénierie

Examen Final d'Algèbre linéaire

Semestre 4

Durée (2 h)

Prof. A.Ramadane, Ph.D.

Exercice 1: (5points)

Soit B= $(\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3})$ une base de V³ telle que

Soit $\overrightarrow{b_1} = 2\vec{i} + 2\vec{j} + \vec{k}$, $\overrightarrow{b_2} = -2\vec{i} - 8\vec{j} + 2\vec{k}$ et $\overrightarrow{b_3} = 3\vec{i} + 3\vec{j} + 6\vec{k}$ des vecteurs de V^3

- a) Trouver la base orthonormale B", obtenue à partir de B par le procédé de Gram-Schmidt
- b) Donner la matrice de transition de B à B", B"PB
- c) Donner la matrice de transition de C à B", \mathbf{B} ", $\mathbf{P}_{C.}$ Avec $\mathbf{C} = (\vec{\imath}, \vec{\jmath}, \vec{k})$
- d) Soit $\vec{U} = \vec{i} + \vec{j} 4\vec{k}$, Donner [\vec{U}]_{B".}
- e) Soit $W = [\overrightarrow{b_1}, \overrightarrow{b_2}]$. Exprimer \overrightarrow{U} sous la forme $\overrightarrow{U} = \overrightarrow{W_1} + \overrightarrow{W_2}$ où $\overrightarrow{W_1} \in W$ et $\overrightarrow{W_2} \in W$

Exercice 2: (4points)

Soit V^3 et sa base usuelle $C = (\vec{i}, \vec{j}, \vec{k})$, soit une application linéaire

 $T: V^3 \longrightarrow V^3$ telle que

$$T(x \vec{i} + y\vec{j} + z\vec{k}) = (x+y+3z) \vec{i} + (x+2y+z) \vec{j} + (x+y+3z) \vec{k}$$

- a) Donner $[T]_C$ la matrice représentative de T dans la base de C
- b) Quelle est la dimension de Ker(T)
- c) Donner une base de Im(T) et le rang de T.
- d) Montrer que le vecteur $-4\vec{i}+8\vec{j}-4\vec{k}$ appartient à l'image de T.
- e) Résoudre le système $\begin{cases} x+y+3z=-4\\ x+2y+z=8\\ x+y+3z=-4 \end{cases}$

Exercice 3: (4 points)

Soit la forme quadratique

$$f(x,y,z) = 3 x^2 + 2 xy + 3 y^2 - 2 x z + 2 y z + 3 z^2$$

- a) Trouver la matrice symétrique A qui lui est associée.
- b) Calculer les valeurs propres de A.
- c) Trouver les vecteurs propres de A.
- d) Trouver le changement orthogonal de coordonnées qui diagonalise la forme quadratique.
- e) Ecrire la forme quadratique sans les termes mixtes.

Exercice 4:(4 points)

Soit la matrice
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

- a) Donner le polynôme caractéristique de A ainsi que ses valeurs propres.
- b) Donner une base de chaque sous-espace propre de A.
- c) Est-ce que A est diagonalisable ? Justifier
- d) A est elle inversible ? Déduire Ker(A)

Exercice 5 (3 points)

a) Soit A = $(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$ et B= $(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ deux bases orthonormées d'un espace vectoriel V.

Montrer que
$${}_{A}\mathbf{P}_{B} = ({}_{B}\mathbf{P}_{A})^{t} = ({}_{B}\mathbf{P}_{A})^{-1}$$

b) Définir la projection orthogonale de \vec{U} sur \vec{a} , montrer que c'est une application linéaire, donner sa matrice et la diagonaliser.

