

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии» (ИУ7)	
НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 «Программная инженерия»	

ОТЧЕТ по лабораторной работе № 1

Название Проектирование систем на кри	сталле на основе ПЛИС	
Дисциплина Архитектура элекронно-выч	ислительных машин	
Студент:	Козлова И. В.	
Прогодорожения	подпись, дата Фамилия, И.О.	
Преподаватель:	<u>Попов А. Ю.</u> Фамилия И О	

Цель работы

Изучение основ построения микропроцессорных систем на ПЛИС. В ходе работы необходимо ознакомиться с принципами построения систем на кристалле (СНК) на основе ПЛИС, получить навыки проектирования СНК в САПР Altera Quartus II, выполнить проектирование и верификацию системы с использованием отладочного комплекта Altera DE1Board.

Практическая часть

Функциональная схема разрабатываемой системы на кристале

Функциональная схема расзарабатываемой системы на кристале представлена на рисунке 1.

Рисунок 1 – Функциональная схема разрабатываемой системы на кристалле

Система на кристалле состоит из следующих блоков.

- 1. Микропроцессорное ядро Nios II/е выполняет функции управления системой.
- 2. Внутренняя оперативная память СНК, используемая для хранения программы управления и данных.
- 3. Системная шина Avalon обеспечивает связность всех компонентов системы.
- 4. Блок синхронизации и сброса обеспечивает обработку входных сигналов сброса и синхронизации и распределение их в системе. Внут-

ренний сигнал сброса синхронизирован и имеет необходимую для системы длительность.

- 5. Блок идентификации версии проекта обеспечивает хранение и выдачу уникального идентификатора версии, который используется программой управления при инициализации системы.
- 6. Контроллер UART обеспечивает прием и передачу информации по интерфейсу RS232.

Создание нового модуля системы на кристале QSYS

- 1. Был создан новый модуль Qsys.
- 2. Установлена частота внешнего сигнала синхронизации 50 000 000 Гц.
- 3. Добавлен в проект модуль синхронизируемого микропроцессорного ядра Nios2.
- 4. Добавлен в проект модуль ОЗУ программ и данных.
- 5. Добавлены компоненты Avalon System ID, Avalon UART.
- 6. Создана сеть синхронизации и сбоса системы.
- 7. Сигналы ТХ и RX экспортированы во внешние порты.
- 8. Назначены базовые адреса устройств.

Итог выполненных действий показан на рисунке 2.

Рисунок 2 – Модуль Qsys

Назначение портами проекта контакты микросхемы

Назначены котакты в соответствии с таблицей из методических указаний.

Таблица представлена на рисунке 3

Сигнал	Контакт
clk	L1
reset	R22
uart0_rxd	F14
uart0_txd	G12

Рисунок 3 – Таблица из методических указаний

Был выполнен синтез проекта.

Результат представлен на рисунке 4.

Рисунок 4 – Модуль Pin Planner

Создание проекта Nios2

В файле $hello_world_small.c$ добавлен код эхо-программы приема-передачи по интерфейсу RS232.

Также был создан образ ОС HAL с драйверами устройств, используемых в аппаратном проекте.

Результат представлен на рисунке 5.

Рисунок 5 - Проект Nios2

Подключение к ПК отладочной платы с ПЛИС EPC2C20 и вывод необходимого сообщения на экран

К ПК была подключена отладочная плата с ПЛИС EPC2C20.

Была выполнена верификация проекта с использованием программы терминала. Доработан код проекта с использованием необходимых библиотек (представлены ниже).

```
\label{linear_system} \begin{split} &\#include"system.h"\\ &\#include"altera\_avalon\_sysid\_qsys.h"\\ &\#include"altera\_avalon\_sysid\_qsys\_regs.h" \end{split}
```

Доработанный код проекта, а также вывод сообщения с номером группы (52) представлены на рисунке 6.

Рисунок 6 – Код программной части проекта

Вывод

В ходе данной лабораторной работы были изучены основы построения микропроцессорных систем на ПЛИС, получены навыки проектирования СНК в САПР Altera Quartus II, также были выполнены проектирование и верификация системы с использованием отладочного комплекта Altera DE1Board.

Поставленная цель достигнута.