VEDA MC

Ввод в эксплуатацию

Преобразователь частоты VEDA VFD VF-101

Содержание

Общая информация о преобразователе частоты VF-101 с трехфазным асинхронным двигателем	3
Руководство и литература	3
Указания по технике безопасности	3
Проверка соответствия компонентов	3
Проверка условий установки преобразователя частоты	3
Электрические соединения	3
Проверка правильности подключения двигателя	6
Пользовательский интерфейс	6
Внешний вид клеммной колодки ПЧ	
Схема электрических соединений	8
Ввод в эксплуатацию	8
Включение ПЧ в сеть. Приведение к заводским настройкам/инициализация	8
Адаптация ПЧ на работу с новым двигателем. Параметры двигателя	9
Алгоритм подготовки ПЧ перед настройкой под соответствующее применение	10
Основные параметры защиты, ограничений и пределов ЭД	10
Общие универсальные функции	11
Примеры применений VEDA VFD VF-101	13
Старт и управление привода от Пульта ПЧ, без внешней цепи управления	13
Старт привода от Тумблера и плавная регулировка внешним потенциометром	14
Старт привода Трехпроводной схемой управления и плавная регулировка внешним потенциометром	15
Старт привода и регулировка скорости Цифровым потенциометром	16
Многоскоростное управление приводом	
Запуск насоса с Датчиком обратной связи по давлению	18
Запуск насоса с Датчиком обратной связи по давлению (задание от потенциометра)	20
Запуск вентилятора с возможностью подхвата скорости	22

Общая информация о преобразователе частоты VF-101 с трехфазным асинхронным двигателем

В руководстве представлен алгоритм подключения и настройки преобразователя частоты VEDA VFD VF-101 для работы с трехфазным асинхронным электродвигателем.

Руководство и литература

Перед установкой и запуском преобразователя частоты внимательно ознакомьтесь с «Инструкцией по эксплуатации преобразователя частоты VEDA VFD VF-101». Данное руководство не заменяет собой инструкцию по эксплуатации.

Указания по технике безопасности

Прикосновение к токоведущим частям может привести к смертельному исходу, даже если оборудование отключено от сети. Убедитесь, что отключены другие входы напряжения (подключение промежуточной цепи постоянного тока), отсоединен кабель электродвигателя. Имейте в виду, что высокое напряжение в цепи постоянного тока может сохраняться, даже если светодиоды погасли. Прежде чем прикасаться к потенциально опасным токоведущим частям приводов всех типоразмеров — подождите не менее пяти минут.

Преобразователь частоты должен быть заземлен надлежащим образом.

Кнопка «Стоп» на панели управления не выполняет функции защитного выключателя. Она не отключает преобразователь частоты от сети.

Проверка соответствия компонентов

- 1. Сверьте кодовый номер преобразователя с тем, который был заказан.
- 2. Убедитесь, что входное напряжение, указанное на преобразователе частоты, совпадает с напряжением питающей сети, к которой планируется подключение. В случае если напряжение питающей сети ниже входного напряжения ПЧ, то устройство будет работать с пониженными характеристиками или будет работать с ошибкой.

Подключение устройства к питающей сети с напряжением, превышающим входное напряжение преобразователя, указанное на информационной табличке, не допускается!

- 3. Проверьте, что номинальное напряжение электродвигателя не превышает входного значения напряжения преобразователя частоты. Номинальное напряжение электродвигателя в большинстве случаев определяется схемой соединения, поэтому убедитесь, подключен двигатель звездой или треугольником и какие значения напряжения соответствуют данной схеме подключения (указано на табличке двигателя).
- 4. Номинальный ток двигателя в большинстве случаев не должен превышать номинальный входной ток преобразователя частоты, в противном случае привод не сможет развить номинальный момент.

Проверка условий установки преобразователя частоты

- 1. Внешние условия должны соответствовать степени защиты корпуса стандартное исполнение преобразователя IP20 не защищает от попадания пыли или капель жидкости внутрь устройства. Убедитесь, что возле вентиляторов чисто, нет пыли и грязи
 - 2. Место установки должно быть сухим (максимальная относительная влажность воздуха 95 % без конденсации).
- 3. Оптимальная рабочая температура окружающей среды 0...+40 °C. При температуре в диапазоне +40...+50 °C преобразователь будет работать с пониженными характеристиками. Допускается эксплуатация при температуре от −10 до 0 °C, но без выпадения конденсата. Не рекомендуется эксплуатировать ПЧ при температурах ниже −10 и свыше +50 °C, так как это может привести к сокращению срока службы изделия.
 - 4. Максимальная высота установки устройства над уровнем моря для работы без снижения характеристик 1000 м
- 5. Проверьте условия вентиляции преобразователя частоты. Допускается монтаж преобразователей стенка к стенке, однако обязательно должно быть предусмотрено воздушное пространство 150 мм сверху/снизу устройства.

Электрические соединения

1. К преобразователю частоты можно подключать кабели сети/двигателя/заземления согласно таблице ниже.

Напряжение питания, В	Номинальная мощность, кВт	Крепеж	Момент затяжки, Нм	Рекомендуемое сечение подключаемых проводников, мм²
	0,75	M3	0,8-1	2,5
	1,5	M3	0,8-1	2,5
	2,2	M3,5	1,2-1,5	4
	4	M3,5	1,2-1,5	4
	5,5	M4	1,2-1,5	4
	7,5	M6	4-6	16
	11	M6	4-6	16
230	15	M6	4-6	25
	18,5	M6	4-6	25
	22	M6	4-6	25
	30	M8	8-10	35
	37	M8	8-10	50
	45	M8	8-10	50
	55	M8	8-10	70
	0,75	M3	0,8-1	1,5
	1,5	M3	0,8-1	2,5
	2,2	M3	0,8-1	2,5
	4	M3,5	1,2-1,5	4
	5,5	M3,5	1,2-1,5	6
	7,5	M4	1,2-1,5	6
	11	M4	1,2-1,5	10
	15	M6	4-6	10
	18,5	M6	4-6	16
	22	M6	4-6	16
400	30	M6	4-6	25
400	37	M6	4-6	25
	45	M8	8-10	35
	55	M8	8-10	35
	75	M8	8-10	50
	90	M8	8-10	50
	110	M8	8-10	70
	132	M12	14-16	95
	160	M12	14-16	95
	185	M12	14-16	120
	200	M12	14-16	150
	220	M12	14-16	150

Напряжение	Номинальная	Крепеж	Момент	Рекомендуемое сечение
питания, В	мощность, кВт		затяжки, Нм	подключаемых проводников, мм ²
	250	M12	14-16	185
	280	M12	14-16	185
	315	M16	20-23	240
	355	M16	20-23	240
	400	M16	20-23	300
	450	M16	20-23	400
400	500	M16	20-23	400
	560	M16	20-23	500
	630	M16	20-23	500
	710	M16	85	500
	800	M16	85	2x300
	900	M16	85	2x300
	1000	M16	85	2x300
	1120	M16	85	2x300
	22	M8	8-10	35
	30	M8	8-10	35
	37	M8	8-10	35
	45	M8	8-10	35
	55	M8	8-10	35
	75	M8	8-10	50
	90	M8	8-10	50
	110	M8	8-10	70
	132	M12	14-16	95
	160	M12	14-16	95
690	185	M12	14-16	120
	200	M12	14-16	150
	220	M12	14-16	150
	250	M12	14-16	185
	280	M12	14-16	185
	315	M16	20-23	240
	355	M16	20-23	240
	400	M16	20-23	300
	450	M16	20-23	400
	500	M16	20-23	400
	560	M16	20-23	500

^{2.} Каждый привод должен быть заземлен индивидуально. Длина линии заземления должна быть минимальной. Рекомендуемое сечение заземляющих кабелей 4 мм2 и 16 мм2.

Первоначально следует подключить провод заземления!

- 3. Необходимо установить входной аппарат защиты. (Номинал уточняйте в руководстве).
- 4. Раздельные кабель-каналы должны использоваться для входных силовых кабелей, выходных силовых кабелей и кабелей управления.
- 5. Для выполнения требований по ЭМС используйте экранированные кабели. Обеспечьте защиту кабелей управления от электромагнитных помех.
- 6. Проверьте правильность подсоединения входных (клеммы R/L, T/N для однофазной сети и R/L, S, T/N для трехфазной) и выходных силовых кабелей к клеммам преобразователя частоты (клеммы U, V, W).

Проверка правильности подключения двигателя

- 1. Максимальная длина экранированного моторного кабеля составляет 100 м (в зависимости от мощности), неэкранированного более 100 м с понижением частоты ШИМ (до 2 кГц).
- 2. В силовую цепь между приводом и двигателем не должно быть подключено конденсаторных батарей для компенсации реактивной мощности.
- 3. Двухскоростные двигатели, двигатели с фазным ротором и двигатели, которые раньше пускались по схеме Y–Δ, должны быть постоянно включены по одной рабочей схеме и на одну скорость.
- 4. Если есть контактор или рубильник в цепи между приводом и двигателем, то на привод должен приходить согласующий сигнал о его положении. Не допускается разрывать контактором моторную цепь питания во время работы привода.
- 5. В случае если двигатель оснащен принудительной вентиляцией, должно быть предусмотрено ее включение при работе двигателя.

Пользовательский интерфейс

Панель управления преобразователя частоты

Обозначение	Назначение	Описание
А	Индикатор размерности параметра индикации	Гц: частота. 1/мин: скорость вращения. А: ток двигателя. В: напряжение в DC цепи. %: проценты уставки.
В	Индикатор состояния	Светодиод горит: двигатель запущен в прямом направлении. Светодиод мигает: двигатель запущен в обратном направлении. Светодиод выключен: двигатель остановлен
С	Кнопка вызова меню	Вход в меню в режиме ожидания или в режиме «Работа». Выход из текущего меню параметра. Для входа в интерфейс состояния удерживать кнопку одну секунду в режиме ожидания или в режиме «Работа».
D	Кнопка установки/ переключения	Сохранение измененного параметра. Для переключения бита параметра удерживать кнопку одну секунду (при дальнейшем удержании переключение будет происходить циклично)
E	Кнопка изменения параметров	Кнопка «Вверх» увеличивает значение параметра. Кнопка «Вниз» уменьшает значение параметра.
F	Кнопка «Пуск»	Если ПЧ управляется с панели управления, кнопка «Пуск» запускает двигатель в прямом направлении.
	Кнопка «Стоп/Сброс»	Если ПЧ управляется с панели управления, кнопка «Стоп/Сброс» останавливает двигатель. Параметр [F04.08] может задать для кнопки «Стоп/Сброс» другую команду. При наличии аварии кнопка «Стоп/Сброс» сбрасывает аварию.

Внешний вид клеммной колодки ПЧ

Схема электрических соединений

^{*}Подробное описание схемы внешних соединений представлено в инструкции по эксплуатации

Ввод в эксплуатацию

Включение ПЧ в сеть. Приведение к заводским настройкам/инициализация

Внимание! Данную процедуру рекомендуется проводить перед началом работ по параметрированию преобразователя частоты, если не вносятся изменения в существующую программу, а осуществляется настройка на новое применение, либо нет сведений о ранее введенных параметрах.

Внимание! После инициализации преобразователя частоты, сведения о ранее введенных параметрах будут потеряны. Если в дальнейшем программа преобразователя будет востребована — ее рекомендуется сохранить.

Инициализация преобразователя VF-101 производится через меню параметров. В параметре «F00.03» установить значение «22». Возможные варианты инициализации:

0	Не используется
11	Все параметры, кроме параметров двигателя
22	Все параметры
33	Очистить лог ошибок

После выполнения инициализации в параметры преобразователя запишутся заводские установки. На дисплее во время инициализации отобразится слово «Save».

Адаптация ПЧ на работу с новым двигателем. Параметры двигателя

Параметры двигателя установлены в ПЧ по умолчанию под типовой двигатель на номинальные параметры ПЧ. В подавляющем большинстве случаев (типовая частота АД 50 Гц, напряжение 400 В) данные совпадут, и ПЧ будет работать с АД. Тем не менее, настоятельно рекомендуется сверить значения параметров с паспортом электродвигателя.

Nº	Параметр	Описание	
F02.00	Тип двигателя	Асинхронный/синхронный	
F02.01	Число полюсов ЭД	# шт. На шильдике ЭД может быть указано количество пар полюсов	
F02.02	Номинальная мощность	## кВт: с шильдика (таблички двигателя), округляется до ближайшей десятичной величины	
F02.03	Номинальная частота	## Гц: с шильдика (таблички двигателя)	
F02.04	Номинальная скорость	## об/мин: с шильдика (таблички двигателя)	
F02.05	Номинальное напряжение	## В: с шильдика (таблички двигателя)	
F02.06	Номинальный ток	## А: с шильдика (таблички двигателя	
F02.07	1. Адаптация с вращением ЭД. Рекомендуется, если муфта электродв демонтирована, или кратковременное вращение не влияет на технологический процесс.		

^{## —} заводские значения соответствуют номинальным параметрам преобразователя частоты. Необходимо установить значения электродвигателя.

08.06.2023

Алгоритм подготовки ПЧ перед настройкой под соответствующее применение

Основные параметры защиты, ограничений и пределов ЭД

Nō	Параметр	Описание
F01.13	Минимальная скорость вращения	[0] Гц - для большинства приложений. [20] для насосов (для предотвращения перегрева и износа механизмов).
F01.10	Максимальная скорость вращения	[50] Гц, рекомендуется не выходить за номинальную скорость двигателя.

Nō	Параметр	Описание
F10.14	Функция торможения (для высокоинерционной нагрузки)	[2] Торможение с резистором и контроль перенапряжения. [1] Торможение с резистором, контроль перенапряжения отсутствует. [0] Без тормозного резистора.
F10.16	Функция кинетического резервирования (для высокоинерционной нагрузки)	[1] Когда уровень напряжения в звене постоянного тока ниже, чем указано в параметре F10.17, ПЧ автоматически снижает выходную частоту, чтобы предотвратить отключение по низкому напряжению. Чем выше инерция механизма, тем дольше работа ПЧ без входного напряжения.
F10.11	Контроль перенапряжения	Для предотвращения возникновения аварийных ситуаций по перенапряжению при динамичных разгонах и торможениях.
F01.40	Частота ШИМ	[4] кГц. Низкая частота ведет к уменьшению тепловыделения в ПЧ (необходимо при высокой температуре окружающей среды) и позволяет увеличить длину моторного кабеля (см. инструкцию на ПЧ), однако создает больше потерь в кабеле, двигателе и усиливает акустический эффект. Высокая частота снижает акустический эффект двигателя (шум)

Общие универсальные функции

Данные функции работают вне зависимости от режима управления ЭД и применения.

Параметр	Описание	Рекомендуемое значение			
Подхват на ле	Подхват на лету				
F07.00	Режим старта	[2] Старт после определения скорости и направления вращения.			
F07.26	Время поиска частоты	*0,5 с. Чем меньше время поиска, тем больше воздействие повышенного тока на ЭД и тем быстрее теряется скорость свободного торможения.			
F07.27	Задержка после нахождения частоты	*1 с. Время на размагничивание ЭД после определения текущей скорости вращения. Чем выше мощность ЭД, тем большее время паузы рекомендуется.			
F07.28	Ток поиска частоты	*120 %. Уровень тока для быстрого и полного определения скорости.			
Кинетическо	е резервирование (рекомен	дуется применять в механизмах с большой инерцией, например, вентилятор)			
F10.16	Контроль пониженного напряжения	[1] Вкл. При включении данной функции в случае падения напряжения в звене постоянного тока ПЧ будет тормозить ЭД для поддержания уровня напряжения, указанного в параметре F10.17			
F10.17	Уровень поддержания напряжения	*430 В. Уровень напряжения, при котором активируется «Контроль пониженного напряжения». Также является значением, которое будет поддерживаться, пока не восстановится питание, или ЭД не остановится и ПЧ не отключится.			
F03.16	Крутящий момент в генераторном режиме	80–90%. Тормозной момент, создаваемый на валу ЭД при торможении. Подбирать по месту. Слишком малое значение будет затягивать торможение двигателя в режиме нормальной работы.			
Спящий режи	Спящий режим (работает только в режиме ПИД - регулирования)				
F13.29	Спящий режим	[1] Вкл. Включение функции спящего режима.			
F13.30	Частота спящего режима	*10 Гц. Частота, при достижении которой, включается таймер спящего режима. (Должна быть не меньше ограничения в F01.13).			
F13.31	Задержка до сна	*60 с. Время работы ПЧ на минимальной частоте. По истечении «засыпает».			

08.06.2023

Параметр	Описание	Рекомендуемое значение
F13.32	Просадка рег. величины для пробуждения	*5 %. Уровень падения регулируемой величины относительно уставки, вызывающий «пробуждение» ПЧ.
F13.33	Время задержки пробуждения	*1 с. Время, после которого ПЧ пробуждается, если произошло падение регулируемой величины.
F13.23	Ограничение минимальной частоты	40 % от максимальной частоты. В зависимости от рекомендаций производителя.

* Значение по умолчанию.

Параметр	в соответ	араметра ствующем име	Описание
	OLVC	U/f	
Принцип управления двигателем	F01.00 [1]	F01.00 [0]	Скалярный/векторный режим для асинхронных/синхронных ЭД
Включение режима энергосбережения	F03.37	F04.30	Компенсация потерь в обмотках статора ЭД. Актуально для ЭД малой мощности (где активное сопротивление превышает реактивное) и в механизмах с не повышенной перегрузкой
Коррекция режима энергосбережения	F03.38/ F03.39	F04.30/ F04.31	Поиск минимально допустимой точки намагничивания без потери качества регулирования
Контроль характеристики ЭД (скорость/момент)	F03.40	-	Режим поддержания постоянной скорости/момента

Подробное описание данных функций приведено в инструкции по эксплуатации

Примеры применений VEDA VFD VF-101

Старт и управление привода от Пульта ПЧ, без внешней цепи управления.

Запуск при помощи кнопок Старт/Стоп Пульта ПЧ.

Регулировка скорости кнопками Вверх/Вниз Пульта ПЧ.

№ пар.	Параметр	Требуется установить значение
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок
F02.01	Количество полюсов эл. двигателя	шт с паспортной таблички двигателя
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя
F02.06	Номинальный ток	А - с паспортной таблички двигателя
F01.01	Выбор источника команды	[0] Keyboard control – команды через клавиши Пуск/Стоп
F01.02	Выбор источника задания	[0] Keybord control – команды клавишами Вверх/Вниз
F01.22	Время разгона	сек. – определяется индивидуально, по месту
F01.23	Время торможения	сек. – определяется индивидуально, по месту
F01.10	Максимальная выходная частота	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.12	Задание верхнего предела частоты	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.13	Задание нижнего предела частоты	Гц — определяется индивидуально (по умолчанию 0 Гц)

08.06.2023

Старт привода от Тумблера и плавная регулировка внешним потенциометром.

Пуск/Стоп при помощи тумблера.

Регулировка скорости от внешнего потенциометра.

№ пар.	Параметр	Требуется установить значение
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок
F02.01	Количество полюсов эл. двигателя	шт с паспортной таблички двигателя
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя
F02.06	Номинальный ток	А - с паспортной таблички двигателя
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления
F01.02	Выбор источника задания канала А	[2] Analog AI – аналоговый вход AI
F01.22	Время разгона	сек. – определяется индивидуально, по месту
F01.23	Время торможения	сек. – определяется индивидуально, по месту
F01.10	Максимальная выходная частота	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.12	Задание верхнего предела частоты	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.13	Задание нижнего предела частоты	Гц — определяется индивидуально (по умолчанию 0 Гц)
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед
F05.41	Тип сигнала AI	[0] Voltage – напряжение 010 В
F05.50	Нижнее ограничение AI сигнала	[0] % — нижний диапазон Al (0B)
F10.14	Режим торможения	[1] – Включение резистивного торможения

Для более точного регулирования электроприводом рекомендуется использовать векторный режим управления.

Для этого следует активировать его в параметре F01.00 - [1] и дополнительно провести процедуру автоадаптации к электродвигателю для измерения дополнительный значений.

Запуск автоадаптации проводится в параметре F02.07 - [2]. После выбора следует нажать клавишу

«Пуск» и дождаться окончания процедуры.

Старт привода Трехпроводной схемой управления и плавная регулировка внешним потенциометром.

Запуск при помощи кнопок Старт/Стоп.

Трехпроводная схема управления.

Регулировка от внешнего потенциометра.

№ пар.	Параметр	Требуется установить значение
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок
F02.01	Количество полюсов эл. двигателя	шт с паспортной таблички двигателя
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя
F02.06	Номинальный ток	А - с паспортной таблички двигателя
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления
F01.02	Выбор источника задания канала А	[2] Analog AI – аналоговый вход AI
F01.22	Время разгона	сек. – определяется индивидуально, по месту
F01.23	Время торможения	сек. – определяется индивидуально, по месту
F01.10	Максимальная выходная частота	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.12	Задание верхнего предела частоты	Гц — определяется индивидуально (по умолчанию 50 Гц)
F01.13	Задание нижнего предела частоты	Гц — определяется индивидуально (по умолчанию 0 Гц)
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед
F05.01	Функция цифр. вх. Х2	[3] 3-Wire control (Xi) – команда Стоп
F05.20	Тип схемы управления	[2] Three wire system— трехпроводная система управления
F05.41	Тип сигнала AI	[0] Voltage – напряжение 010 В
F05.50	Нижнее ограничение AI сигнала	[0] % — нижний диапазон AI (0B)

Для более точного регулирования электроприводом рекомендуется использовать векторный режим управления.

Для этого следует активировать его в параметре F01.00 - [1] и дополнительно провести процедуру автоадаптации к электродвигателю для измерения дополнительный значений.

Запуск автоадаптации проводится в параметре F02.07 - [2]. После выбора следует нажать клавишу «Пуск» и дождаться окончания процедуры.

Старт привода и регулировка скорости Цифровым потенциометром.

Старт/Стоп при помощи тумблера.

Регулировка скорости кнопками Больше/Меньше. Кнопка сброса аварии.

№ пар.	Параметр	Требуется установить значение	
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок	
F02.01	Количество полюсов эл. двигателя	шт. – с паспортной таблички двигателя	
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя	
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя	
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя	
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя	
F02.06	Номинальный ток	А - с паспортной таблички двигателя	
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления	
F01.02	Выбор источника задания	[7] Terminal Up/Dw control – цифровой потенциометр	
F01.22	Время разгона	сек. – определяется индивидуально, по месту	
F01.23	Время торможения	сек. – определяется индивидуально, по месту	
F01.10	Максимальная выходная частота	Гц — определяется индивидуально (по умолчанию 50 Гц)	
F01.12	Задание верхнего предела частоты	Гц — определяется индивидуально (по умолчанию 50 Гц)	
F01.13	Задание нижнего предела частоты	Гц — определяется индивидуально (по умолчанию 0 Гц)	
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед	
F05.01	Функция цифр. вх. Х2	[10] Increasing frequency (Up) – увеличить задание, скор.	
F05.02	Функция цифр. вх. Х3	[11] Decreasing frequency (Dw) – уменьшить задание, скор.	
F05.03	Функция цифр. вх. Х4	[8] Fault reset– сброс аварии	
F05.25	Режим управления потенциометром	[0] Frequency power off storage – сохранение частоты после	
103.23	т ежим управления потенциометром	перезапуска силового питания	
F05.26	Темп работы цифрового потенциометра	[0.5 гц/с]– регулировка скорости отклика задания цифрового	
	темп разоты цифрового потепциометра	потенциометра	

Для более точного регулирования электроприводом рекомендуется использовать векторный режим управления.

Для этого следует активировать его в параметре F01.00 - [1] и дополнительно провести процедуру автоадаптации к электродвигателю для измерения дополнительный значений.

Запуск автоадаптации проводится в параметре F02.07 - [2]. После выбора следует нажать клавишу «Пуск» и дождаться окончания процедуры.

Многоскоростное управление приводом.

Старт/Стоп при помощи тумблера.

Регулировка скорости по тумблерам комбинации скоростей.

№ пар.	№ пар. Параметр Требуется установить значен		
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок	
F02.01	Количество полюсов эл. двигателя	шт. – с паспортной таблички двигателя	
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя	
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя	
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя	
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя	
F02.06	Номинальный ток	А - с паспортной таблички двигателя	
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления	
F01.02	Выбор источника задания	[11] Multi-stage speed given – Цифровое	
F04.00		многоскоростное управление	
F01.22	Время разгона	сек. – определяется индивидуально, по месту	
F01.23	Время торможения	сек. – определяется индивидуально, по месту	
F01.10	Максимальная выходная частота	Гц — определяется индивидуально (по умолчанию 50 Гц)	
F01.12	Задание верхнего предела частоты	Гц — определяется индивидуально (по умолчанию 50 Гц)	
F01.13	Задание нижнего предела частоты	Гц — определяется индивидуально (по умолчанию 0 Гц)	
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед	
F05.01	Функция цифр. вх. Х2	[16] Multi-speed terminal 1 – Многоскоростной режим- бит 0 (см. табл. ниже)	
F05.02	Функция цифр. вх. Х3	[17] Multi-speed terminal 2 – Многоскоростной режим- бит 1 (см. табл. ниже)	
F05.03	Функция цифр. вх. Х4	[18] Multi-speed terminal 3 – Многоскоростной режимбит 3 (см. табл. ниже)	
F01.09	Частота, задаваемая панелью управления	Гц — Предустановленная скорость при выключенных S1, S2, S3	
F014.00- F14.06	Заданная частота 1 — Заданная частота 7	Гц — Предустановленная скорость при включенных S1, S2, S3 (см. таблицу ниже)	

Таблица выбора предустановленной скорости в зависимости от включенного тумблера (0-выкл. 1-вкл.)

Тумблеры	S3 Бит 2 (X4)	S2 Бит 1 (X3)	S1 Бит 0 (X2)	SO CTAPT (X1)
СТОП	0	0	0	0
СТАРТ (предустановленная скорость в F01.09)	0	0	0	1
F14.00 (задание 1-ой предустановленной скорости) ## Гц	0	0	1	1
F14.01 (задание 2-ой предустановленной скорости) ## Гц	0	1	0	1
F14.02 (задание 3-ей предустановленной скорости) ## Гц	0	1	1	1
F14.03 (задание 4-ой предустановленной скорости) ## Гц	1	0	0	1
F14.04 (задание 5-ой предустановленной скорости) ## Гц	1	0	1	1
F14.05 (задание 6-ой предустановленной скорости) ## Гц	1	1	0	1
F14.06 (задание 7-ой предустановленной скорости) ## Гц	1	1	1	1

Запуск насоса с Датчиком обратной связи по давлению.

Запуск ПИД-регулятора процесса для поддержания давления.

Уставка давления с панели ПЧ.

Функция «Спящий режим».

№ пар.	. Параметр Требуется установить значение		
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок	
F01.00	Режим управления двигателем	[1] AM open loop vector – векторное управление	
F02.01	Количество полюсов эл. двигателя	шт. – с паспортной таблички двигателя	
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя	
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя	
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя	
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя	
F02.06	Номинальный ток	А - с паспортной таблички двигателя	
F02.07	Автоматическая адаптация двигателя	[2] Static self-learning — для запуска установите [2] и на панели нажмите «Пуск»	
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления	
F01.02	Выбор источника задания	[8] PID control – ПИД-регулирование	
F01.22	Время разгона	сек определяется индивидуально, по месту	
F01.23	Время торможения	сек определяется индивидуально, по месту	
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед	
F05.42	Тип сигнала AI2	[1] Current – токовая петля 020 мА	
F05.55	Нижнее ограничение AI2 сигнала	[20] % — Нижний диапазон AI2 (4мA)	
F05.57	Верхнее ограничение AI2 сигнала	[100] % – Верхний диапазон Al2 (20мA)	
F11.11	Смена отображения параметра на дисплее	[0008] — отображение на дисплее задания ПИД-регулятора	
F13.00	Источник задания ПИД-регулятора	[0] – Панель управления	
F13.01	Уровень задания ПИД-регулятора с панели	[40]% - определяется индивидуально, по месту	
F13.03	Источник обратной связи ПИД-регулятора	[3] Al2 – Источник Al2	
F13.11	Коэффициент Р (пропорциональности)	[0.200] - значение подбирается индивидуально, по месту	
F13.12	Время I (интегрирования)	[2с] - значение подбирается индивидуально, по месту	

08.06.2023

№ пар.	р. Параметр Требуется установить значение		
F13.23	Ограничение нижней скорости насо- са (Нижняя граница выходного сигнала ПИД-регулятора)	[40] % – устанавливается в зависимости от рекомендаций про- изводителя насоса	
F13.29	Активация режима сна	[1] – включение режима сна	
F13.30	Частота активации режима сна	[Гц] — включение таймера при достижении этой частоты, подбирается по месту	
F13.31	Задержка при переходе в режим сна	[сек] – переход в режим сна по истечению времени таймера по месту, не ниже скорости в пар F13.23	
F13.32	Уровень просадки давления для пробуж- дения	[%] Устанавливается в % от уставки давления	
F13.33	Задержка режима пробуждения	[сек.] – задержка включения режима сна после простоя	

Запуск насоса с Датчиком обратной связи по давлению (задание от потенциометра)

Запуск ПИД-регулятора процесса для поддержания давления.

Уставка давления с аналогового входа Al1.

Функция «Спящий режим».

№ пар.	. Параметр Требуется установить значение		
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок	
F01.00	Режим управления двигателем	[1] AM open loop vector – векторное управление	
F02.01	Количество полюсов эл. двигателя	шт. – с паспортной таблички двигателя	
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя	
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя	
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя	
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя	
F02.06	Номинальный ток	А - с паспортной таблички двигателя	
F02.07	Автоматическая адаптация двигателя	[2] Static self-learning — для запуска установите [2] и на панели нажмите «Пуск»	
F01.01	Выбор источника команды	[1] Terminal control – команды через клеммы управления	
F01.02	Выбор источника задания	[8] PID control – ПИД-регулирование	
F01.22	Время разгона	сек определяется индивидуально, по месту	
F01.23	Время торможения	сек определяется индивидуально, по месту	
F05.00	Функция цифр. вх. Х1	[1] Forward running – команда Старт вперед	
F05.42	Тип сигнала Al2	[1] Current – токовая петля 020 мА	
F05.55	Нижнее ограничение AI2 сигнала	[20] % — Нижний диапазон Al2 (4мA)	
F05.57	Верхнее ограничение AI2 сигнала	[100] % — Верхний диапазон AI2 (20мA)	
F11.11	Смена отображения параметра на дисплее	[0008] – отображение на дисплее задания ПИД-регулятора	
F13.00	Источник задания ПИД-регулятора	[2] – Источник уставки давления аналоговый вход Аl1	
F13.03	Источник обратной связи ПИД-регулятора	[3] Al2 – Вход датчика давления аналоговый вход Al2	
F13.11	Коэффициент Р (пропорциональности)	[0.200] - значение подбирается индивидуально, по месту	
F13.12	Время I (интегрирования)	[2с] - значение подбирается индивидуально, по месту	

№ пар.	Параметр	Требуется установить значение	
F13.23	Ограничение нижней скорости насоса (Нижняя граница выходного сигнала ПИД-регулятора)	[40] % – устанавливается в зависимости от рекомендаций производителя насоса	
F13.29	Активация режима сна	[1] – включение режима сна	
F13.30	Частота активации режима сна	[Гц] – включение таймера при достижении этой частоты, подбирается по месту	
F13.31	Задержка при переходе в режим сна	[сек] – переход в режим сна по истечению времени таймера по месту, не ниже скорости в пар F13.23	
F13.32	Уровень просадки давления для пробуждения	[%] Устанавливается в % от уставки давления	
F13.33	Задержка режима пробуждения	[сек.] – задержка включения режима сна после простоя	

Запуск вентилятора с возможностью подхвата скорости

Запуск/Останов при помощи тумблера.

Останов вентилятора выбегом.

Регулировка скорости вентилятора кнопками Вверх/Вниз пульта ПЧ.

№ пар.	Параметр	Требуется установить значение
F00.03	Сброс параметров	[22] Initialization – Сброс до заводских уставок
F01.00	Режим управления двигателем	[1] AM open loop vector – векторное управление
F02.01	Количество полюсов эл. двигателя	шт. – с паспортной таблички двигателя
F02.02	Номинальная мощность	кВт - с паспортной таблички двигателя
F02.03	Номинальная частота	Гц - с паспортной таблички двигателя
F02.04	Номинальная скорость	Об/мин - с паспортной таблички двигателя
F02.05	Номинальное напряжение	В - с паспортной таблички двигателя
F02.06	Номинальный ток	А - с паспортной таблички двигателя
F02.07	Автоматическая адаптация двигателя	[2] Static self-learning — для запуска установите [2] и на панели нажмите кнопку «Пуск»
F01.01	Выбор источника команды	[1] Terminal control – клеммы управления
F01.02	Выбор источника задания	[0] Keybord control – команды клавишами Вверх/Вниз
F01.22	Время разгона	сек определяется индивидуально, по месту
F01.23	Время торможения	сек определяется индивидуально, по месту
F05.00	Функция цифр. вх. Х1	[1] Forward running – Старт вперед
F07.00	Режим запуска	[2] Start after speed tracking – Запуск с подхватом скорости
F07.10	Режим останова	[1] Free stop – Останов выбегом

Компания «ВЕДА МК» испытала и проверила информацию, содержащуюся в настоящем руководстве.

Ни при каких обстоятельствах компания «ВЕДА МК» не несет ответственности за прямые, косвенные, фактические, побочные или косвенные убытки, понесенные вследствие использования или ненадлежащего использования информации, содержащейся в настоящем руководстве.

Дата составления 08.06.2023 г.