2d5fhg8ep

March 3, 2025

0.1 Películas más votadas

0.1.1 Sin nombre, solo tabla Ratings

```
[0]: from pyspark.sql import functions as func
     from pyspark.sql.types import StructType, StructField, IntegerType, LongType
     # Definir el esquema del DataFrame de ratings
     schema = StructType([ \
                           StructField("userID", IntegerType(), True), \
                           StructField("movieID", IntegerType(), True), \
                           StructField("rating", IntegerType(), True), \
                           StructField("timestamp", LongType(), True)])
     # Cargar el archivo de ratings u-data en un DataFrame, con separador el_{\sqcup}
      \hookrightarrow tabulador \setminus t
     moviesDF = spark.read.option("sep", "\t").schema(schema).csv("dbfs:/FileStore/u.
      ⇔data")
     # Funciones tipo SQL para agrupar y ordenar
     topMovieIDs = moviesDF.groupBy("movieID").count().orderBy(func.desc("count"))
     # Top 10
     topMovieIDs.show(10)
```

```
+----+
|movieID|count|
+----+
| 50| 583|
| 258| 509|
| 100| 508|
| 181| 507|
| 294| 485|
| 286| 481|
| 288| 478|
| 1| 452|
| 300| 431|
| 121| 429|
```

0.1.2 Con nombre, haciendo inner join con películas (u.item)

```
[0]: from pyspark.sql.types import StructType, StructField, IntegerType, StringType
     from pyspark.sql import functions as F
     # Definir el esquema del DataFrame de ratings
     esquemaRatings = StructType([
         StructField("UserID", IntegerType(), True),
         StructField("MovieID", IntegerType(), True),
         StructField("Rating", IntegerType(), True),
         StructField("Timestamp", IntegerType(), True)
     ])
     # Cargar el archivo de ratings u-data en un DataFrame, con separador el_{\sqcup}
      ⇒tabulador \t
     dfRatings = spark.read.csv("dbfs:/FileStore/u.data", sep="\t", |
      ⇔schema=esquemaRatings, header=False)
     # Definir esquema para el DataFrame de películas
     esquemaPeliculas = StructType([
         StructField("MovieID", IntegerType(), True),
         StructField("Title", StringType(), True),
         StructField("ReleaseDate", StringType(), True),
         StructField("EmptyColumn", StringType(), True),
         StructField("IMDB_URL", StringType(), True),
         StructField("Unknown", IntegerType(), True),
         StructField("Action", IntegerType(), True),
         StructField("Adventure", IntegerType(), True),
         StructField("Animation", IntegerType(), True),
         StructField("Children", IntegerType(), True),
         StructField("Comedy", IntegerType(), True),
         StructField("Crime", IntegerType(), True),
         StructField("Documentary", IntegerType(), True),
         StructField("Drama", IntegerType(), True),
         StructField("Fantasy", IntegerType(), True),
         StructField("FilmNoir", IntegerType(), True),
         StructField("Horror", IntegerType(), True),
         StructField("Musical", IntegerType(), True),
         StructField("Mystery", IntegerType(), True),
         StructField("Romance", IntegerType(), True),
         StructField("SciFi", IntegerType(), True),
         StructField("Thriller", IntegerType(), True),
         StructField("War", IntegerType(), True),
         StructField("Western", IntegerType(), True)
```

```
# Cargar el archivo de películas en un DataFrame, con separador |
dfPeliculas = spark.read.csv("dbfs:/FileStore/u.item", sep="|",u
schema=esquemaPeliculas, header=False)

# Mostrar las 10 películas con más votos
dfRatingsNombres = dfRatings.join(dfPeliculas,on="MovieID",how="inner")

dfRatingsAgrupados = dfRatingsNombres.groupBy("Title").agg(F.count("Title").
alias("Ratings")).orderBy("Ratings",ascending=False)
dfRatingsAgrupados.show(10)
```

```
Title | Ratings |
           -----+
    Star Wars (1977)|
                          583 l
      Contact (1997)|
                         509 l
        Fargo (1996)|
                          508 l
|Return of the Jed...|
                        507
    Liar Liar (1997)|
                          485 l
|English Patient, ...|
                      481 l
       Scream (1996)|
                          4781
     Toy Story (1995)|
                          4521
|Air Force One (1997)|
                          431 l
|Independence Day ...|
                        4291
only showing top 10 rows
```

0.1.3 Con un diccionario, UDF y broadcast

```
[0]: from pyspark.sql import functions as func
from pyspark.sql.types import StructType, StructField, IntegerType, LongType
import codecs

# Genera un diccionario con código y nombre de película
def loadMovieNames():
    movieNames = {}
    lines = sc.textFile("dbfs:/FileStore/u.item")
    collected_lines = lines.collect() # Convierte el RDD en una lista
    for line in collected_lines:
        fields = line.split('|')
        movieNames[int(fields[0])] = fields[1]
    return movieNames
```

```
# Carga el diccionario en una variable distribuida a todos los nodos conu
 \hookrightarrow broadcast
nameDict = spark.sparkContext.broadcast(loadMovieNames())
# Crea el esquema de rating
schema = StructType([ \
                     StructField("userID", IntegerType(), True), \
                     StructField("movieID", IntegerType(), True), \
                     StructField("rating", IntegerType(), True), \
                     StructField("timestamp", LongType(), True)])
# Carga df de ratings
moviesDF = spark.read.option("sep", "\t").schema(schema).csv("dbfs:/FileStore/u.

data")

movieCounts = moviesDF.groupBy("movieID").count()
# Crea una función definida por usuario (UDF) para buscar nombres de películas
⇔en el diccionario distribuido a partir del código
def lookupName(movieID):
    return nameDict.value[movieID]
lookupNameUDF = func.udf(lookupName)
# Añade la columna nombre de película usando la función UDF
moviesWithNames = movieCounts.withColumn("movieTitle", lookupNameUDF(func.

¬col("movieID")))
# Ordena los resultados
sortedMoviesWithNames = moviesWithNames.orderBy(func.desc("count"))
# Muestra los 10 primeros
sortedMoviesWithNames.show(10, False)
```

+	-+	-++
movieID count movieTitle		
+	-+	-++
150	583	Star Wars (1977)
258	509	Contact (1997)
100	508	Fargo (1996)
181	507	Return of the Jedi (1983)
1294	1485	Liar Liar (1997)
1286	481	English Patient, The (1996)
1288	1478	Scream (1996)
1	1452	Toy Story (1995)
300	431	Air Force One (1997)
121	1429	Independence Day (ID4) (1996)

```
only showing top 10 rows
```

0.1.4 Obtener una lista de nombres de películas y un diccionario con el número de votos en cada puntuación:

```
[0]: # Nos quedamos con las columnas MovieID y Rating
     dfRatings = dfRatings.select("MovieID", "Rating")
     # Convertir el DataFrame de ratings a un RDD de filas
     rddFilas = dfRatings.rdd
     # Convertir el RDD de filas a un RDD de tuplas
     rddTuplas = rddFilas.map(lambda fila: (fila[0], (fila[1],1)))
     # Función para crear un diccionario con el número de votos para cada puntuación
     def crearRatingDict(tuplas):
         RatingDict = {}
         for rating, cont in tuplas:
             if rating in RatingDict:
                 RatingDict[rating] += cont
                 RatingDict[rating] = cont
         return RatingDict
     # Agrupar por MovieID y agregar las puntuaciones
     rddRatingsAgrupados = rddTuplas.groupByKey().mapValues(crearRatingDict)
     # Volver a convertir a dataframe y hacer join con películas para obtener el 11
      \rightarrownombre
     # Mostrar 10 películas con su nombre y puntuaciones
```

0.1.5 Superhéroe más relacionado

En cada línea aparece un código de superhéroe y los códigos de otros superhéroes que aparecen con él en algún comic. Puede aparecer repetido en más de una línea.

Ficheros: Marvel-names.txt, Marvel-graph.txt

Obtener cuál es el superhéroe que más relaciones tiene con otros superhéroes.

```
StructField("name", StringType(), True)])

names = spark.read.schema(schema).option("sep", " ").csv("dbfs:/FileStore/

Marvel_names.txt")

lines = spark.read.text("dbfs:/FileStore/Marvel_graph.txt")

# Trim de la columna para eliminar posibles espacios duplicados

connections = lines.withColumn("id", func.split(func.trim(func.col("value")), "___

")[0]) \

.withColumn("connections", func.size(func.split(func.trim(func.col("value")), " ")) - 1) \

.groupBy("id").agg(func.sum("connections").alias("connections"))

mostPopular = connections.sort(func.col("connections").desc()).first()

mostPopularName = names.filter(func.col("id") == mostPopular[0]).select("name").

.first()

print(mostPopularName[0] + " es el superhéroe más relacionado con " +___

.str(mostPopular[1]) + " relaciones.")
```

CAPTAIN AMERICA es el superhéroe más relacionado con 1933 relaciones.

0.1.6 Distancia entre superhéroes

Grado de separación entre dos superhéroes, calculándolo a partir de las apariciones conjuntas en un comic.

Utilizamos algoritmo Breadth-first search: recorre un árbol o grafo nivel por nivel, comenzando desde la raíz (o nodo inicial) y explorando todos los nodos vecinos en el nivel actual antes de moverse al siguiente nivel.

BFS es útil para encontrar la ruta más corta en grafos no ponderados y para explorar todos los nodos a una cierta "profundidad" del nodo inicial.

Pasos del algoritmo:

- Inicialización:
 - Coloca el nodo inicial en una cola (queue).
 - Marca el nodo inicial como visitado.
- Proceso de recorrido:
 - Mientras la cola no esté vacía:
 - * Saca (dequeue) el nodo al frente de la cola.
 - * Procesa el nodo (por ejemplo, imprime su valor).
 - * Para cada nodo vecino no visitado:
 - · Marca el vecino como visitado.
 - · Añade (enqueue) el vecino a la cola.

```
[0]: # Ejemplo en Python:
     from collections import deque
     def bfs(tree, start_node):
         visited = set()
         queue = deque([start_node])
         visited.add(start_node)
         while queue:
             node = queue.popleft()
             print(node) # Procesa el nodo
             for neighbor in tree[node]:
                 if neighbor not in visited:
                     visited.add(neighbor)
                     queue.append(neighbor)
     # Ejemplo de uso
     tree = {
         'A': ['B', 'C'],
         'B': ['D', 'E'],
         'C': ['F', 'G'],
         'D': [],
         'E': [],
         'F': [],
         'G': []
     }
     bfs(tree, 'A')
```

A B C D E F

0.2 BFS map-reduce

Objetivo: Encontrar el camino más corto entre un nodo de inicio y un nodo destino en un grafo. Método: Se utiliza un algoritmo de búsqueda en anchura (BFS) basado en operaciones de mapreduce.

Estrategia:

- Cada nodo se representa con (nodo, ([vecinos], 9999, Pend))
- Lista de vecinos.
- Distancia: inicialmente 9999.
- Estado: Pend (no visitado), Doing (en cola para expandir) y Done (procesado).

- El nodo inicial se representa con distancia 0 y estado Doing: (N1, ([N2, N3], 0, Doing) En cada iteración se llama a las funciones map y reduce: Map: Expande nodos Doing, generando registros para sus vecinos con la distancia incrementada: (N2, ([], 1, Doing)), (N3, ([], 1, Doing))
- Reproduce nodo expandido como finalizado: (N1, ([N2, N3], 0, Done)) El resto de nodos se mantiene igual. Reduce: Combina registros de cada nodo: Une conjunto de nodos adyacentes.
- Mínimo de distancias. Estado más avanzado. Se utiliza un acumulador para detectar cuando se alcanza el Nodo destino.

Iteración

Datos Iniciales

Resultado Map

Resultado Reduce

⇔horizontal del árbol

Iteración 1

```
• N1: ([2,3], 0, Doing)- N2: ([4], 9999, N/A)- N3: ([4,5], 9999, N/A)- N4: ([], 9999, N/A)- N5:
         ([], 9999, N/A)
                Se expande nodo 1 (<b>Doing</b>):<br> - Emite para N2: (2, ([], 1, <b>Doing</b>)
                Agrupación por nodo:<br>
                    - <b>N1</b>: (1, ([2,3], 0, <b>Done</b>))<br>
                    - <b>N2</b>: Combina (2, ([], 1, <b>Doing</b>)) y (2, ([4], 9999, <b>Doing</b>))
                    - <b>N3</b>: Combina (3, ([], 1, <b>Doing</b>)) y (3, ([4,5], 9999, <b>Doing</b>
                    - <b>N4</b>: (4, ([], 9999, N/A))<br>
                    - <b>N5</b>: (5, ([], 9999, N/A))
                Se parte del resultado reduce de Iteración 1:<br> - N1: ([2,3], 0, <b>Done</b>)
                Se expanden nodos 2 y 3 (<b>Doing</b>):<br>
                    - <b>N2</b> (<b>Doing</b>):<br> -- Emite para N4: (4, ([], 2, <b>Doing</b>))<br>
                    - <b>N3</b> (<b>Doing</b>):<br> -- Emite para N4: (4, ([], 2, <b>Doing</b>))<br>
                Agrupación por nodo:<br>
                    - <b>N1</b>: (1, ([2,3], 0, <b>Done</b>))<br>
                    - \langle b \rangle N2 \langle b \rangle: Combina (2, ([], 2, \langle b \rangle Doing \langle b \rangle)) y (2, ([4], 1, \langle b \rangle Done \langle b \rangle)) \rightarrow (2, ([4], 1, \langle b \rangle Done \langle b \rangle))
                    - <b>N3</b>: Combina (3, ([], 2, PE)) y (3, ([4,5], 1, PR)) → (3, ([4,5], 1, <b))
                    - <b>N4</b>: Combina (4, ([], 2, <b>Doing</b>)) [de N2] y (4, ([], 2, <b>Doing</b>
                    - <b>N5</b>: Combina (5, ([], 2, <b>Doing</b>)) y (5, ([], 9999, N/A)) → (5, ([]
                [0]: startHeroID = 5306 #SpiderMan
     targetHeroID = 14 #ADAM 3,031
```

Acumulador para indicar que hemos encontrado el objetivo en el recorridou

```
hitCounter = sc.accumulator(0)
def convertToBFS(line):
    fields = line.split()
    heroID = int(fields[0])
    connections = []
    for connection in fields[1:]:
        connections.append(int(connection))
    status = 'N/A' # No alcanzado
    distance = 9999
    if (heroID == startHeroID):
        status = 'Doing' # En proceso
        distance = 0
    return (heroID, (connections, distance, status))
def createStartingRdd():
    inputFile = sc.textFile("dbfs:/FileStore/Marvel_graph.txt")
    return inputFile.map(convertToBFS)
def bfsMap(node):
   heroID = node[0]
    data = node[1]
    connections = data[0]
    distance = data[1]
    status = data[2]
    results = []
    if status == 'Doing':
        for connectionHero in connections:
            # Añade un nodo por cada conexión
            results.append((connectionHero, ([], distance + 1, 'Doing')))
            # Si se alcanza el nodo buscado, se incrementa el contador
            if connectionHero == targetHeroID:
                hitCounter.add(1)
        # Añade el nodo recibido como procesado
        results.append((heroID, (connections, distance, 'Done')))
    else:
```

```
# Añade el nodo recibido sin procesar
        results.append((heroID, (connections, distance, status)))
    return results
def bfsReduce(data1, data2):
    connections1 = data1[0]
    connections2 = data2[0]
    distance1 = data1[1]
    distance2 = data2[1]
    status1 = data1[2]
    status2 = data2[2]
    # Unifica las dos listas de conexiones
    connections = list(set(connections1 + connections2))
    # Se queda con la distancia menor
    distance = min(distance1, distance2)
    # Se queda con el estado más avanzado
    status_priority = {'N/A': 0, 'Pend': 1, 'Doing': 2, 'Done': 3}
    status = status1 if status_priority[status1] > status_priority[status2]_
 ⇔else status2
    return (connections, distance, status)
#Programa principal
iterationRdd = createStartingRdd()
iterationRdd.collect()
for iteration in range(1, 10):
    print("Procesando iteración # " + str(iteration))
    # Expande nodos Doing, generando registros para sus vecinos con lau
 ⇒distancia incrementada. El nodo expandido se añade como finalizado.
    # El resto de nodos se queda iqual.
    # Si se alcanza el nodo buscado, se incrementa el acumulador para indicaru
 ⇒que hemos terminado.
    mapped = iterationRdd.flatMap(bfsMap)
    # Se ejecuta la acción mapped.count() para forzar la evaluación del RDD y_{\sqcup}
 ⇒la actualización del acumulador
    print("Procesando " + str(mapped.count()) + " valores.")
```

```
if (hitCounter.value > 0):
    print("Se ha localizado el objetivo. Ramas paralelas en las que se ha

⇔alcanzado: " + str(hitCounter.value))
    break

# Reducer combina registros de cada id, uniendo los nodos adyacentes, y

⇔dejando el número de pasos menor y el estado más avanzado

iterationRdd = mapped.reduceByKey(bfsReduce)
```

```
Procesando iteración # 1
Procesando 8330 valores.
Procesando iteración # 2
Procesando 220615 valores.
Se ha localizado el objetivo. Ramas paralelas en las que se ha alcanzado: 1
```