$12n_{0846} (K12n_{0846})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5u^{21} + 43u^{20} + \dots + 8b + 200, \ -15u^{21} + 129u^{20} + \dots + 16a + 272, \ u^{22} - 9u^{21} + \dots - 176u + 16 \rangle \\ I_2^u &= \langle u^3a - u^3 + 3au - 2u^2 + 2b + a - 3u - 5, \ 3u^3a + 2u^2a + u^3 + a^2 + 8au - 2u^2 + 3a + 2u - 2, \\ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_3^u &= \langle u^{10} + 7u^8 + 17u^6 - u^5 + 17u^4 - 2u^3 + 7u^2 + b + u + 1, \\ -u^{13} - 10u^{11} - 2u^{10} - 37u^9 - 13u^8 - 61u^7 - 29u^6 - 39u^5 - 30u^4 - u^3 - 19u^2 + 2a + 2u - 1, \\ u^{14} + 10u^{12} + 39u^{10} - u^9 + 75u^8 - 5u^7 + 75u^6 - 6u^5 + 39u^4 + u^3 + 10u^2 + u + 2 \rangle \\ I_4^u &= \langle 64742a^5u^3 + 484970a^4u^3 + \dots - 385898a - 56434, \ 3a^5u^3 - 2a^4u^3 + \dots + 8a - 9, \\ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5u^{21} + 43u^{20} + \dots + 8b + 200, -15u^{21} + 129u^{20} + \dots + 16a + 272, u^{22} - 9u^{21} + \dots - 176u + 16 \rangle$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{15}{16}u^{21} - \frac{129}{16}u^{20} + \dots + \frac{359}{2}u - 17 \\ \frac{1}{8}u^{21} - \frac{43}{8}u^{20} + \dots + 233u - 25 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{25}{16}u^{21} - \frac{215}{16}u^{20} + \dots + \frac{825}{2}u - 42 \\ \frac{5}{8}u^{21} - \frac{43}{8}u^{20} + \dots + 233u - 25 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.37500u^{21} + 11.2500u^{20} + \dots - 398.750u + 45.5000 \\ -\frac{9}{8}u^{21} + \frac{73}{8}u^{20} + \dots - \frac{391}{2}u + 22 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.812500u^{21} - 6.81250u^{20} + \dots + 76.7500u - 6.50000 \\ -\frac{1}{2}u^{21} + \frac{15}{4}u^{20} + \dots - \frac{81}{2}u + 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{21} - \frac{67}{8}u^{20} + \dots + \frac{477}{2}u - 26 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.812500u^{21} - 7.06250u^{20} + \dots + 255.250u - 27.5000 \\ -\frac{1}{2}u^{21} + \frac{19}{4}u^{20} + \dots - \frac{273}{2}u + 13 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1}{2}u^{21} - \frac{9}{2}u^{20} + \frac{53}{2}u^{19} - 114u^{18} + 395u^{17} - 1141u^{16} + \frac{5639}{2}u^{15} - \frac{12093}{2}u^{14} + 11359u^{13} - \frac{37595}{2}u^{12} + \frac{54937}{2}u^{11} - \frac{70905}{2}u^{10} + \frac{80651}{2}u^9 - 40255u^8 + 35027u^7 - 26326u^6 + 16866u^5 - \frac{18113}{2}u^4 + 3971u^3 - 1368u^2 + 346u - 54$$

Crossings	u-Polynomials at each crossing
c_1	$u^{22} - 19u^{21} + \dots - 640u + 256$
c_2, c_8	$u^{22} + u^{21} + \dots - 2u + 2$
c_3, c_7	$u^{22} + 3u^{20} + \dots - u^2 + 1$
c_4, c_9	$u^{22} + 14u^{20} + \dots + u + 1$
c_5, c_6, c_{11} c_{12}	$u^{22} + 9u^{21} + \dots + 176u + 16$
c_{10}	$u^{22} + 15u^{21} + \dots + 160u + 16$

Crossings	Riley Polynomials at each crossing
c_1	$y^{22} - 17y^{21} + \dots + 483328y + 65536$
c_2, c_8	$y^{22} + 3y^{21} + \dots + 32y + 4$
c_{3}, c_{7}	$y^{22} + 6y^{21} + \dots - 2y + 1$
c_4, c_9	$y^{22} + 28y^{21} + \dots + 11y + 1$
c_5, c_6, c_{11} c_{12}	$y^{22} + 25y^{21} + \dots - 384y + 256$
c_{10}	$y^{22} + 7y^{21} + \dots + 2432y + 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.287964 + 0.924780I		
a = -0.34728 + 1.43125I	2.14244 - 3.29575I	-1.06475 + 2.74337I
b = -0.805889 - 0.918892I		
u = 0.287964 - 0.924780I		
a = -0.34728 - 1.43125I	2.14244 + 3.29575I	-1.06475 - 2.74337I
b = -0.805889 + 0.918892I		
u = 0.927630 + 0.184659I		
a = 0.129761 + 0.188778I	-6.83184 + 5.48292I	-4.03618 - 4.85229I
b = -0.777225 + 0.767673I		
u = 0.927630 - 0.184659I		
a = 0.129761 - 0.188778I	-6.83184 - 5.48292I	-4.03618 + 4.85229I
b = -0.777225 - 0.767673I		
u = 0.842891 + 0.639931I		
a = 0.429405 - 0.313332I	-2.36000 - 2.86683I	3.02711 + 5.17659I
b = 0.187769 + 0.832828I		
u = 0.842891 - 0.639931I		
a = 0.429405 + 0.313332I	-2.36000 + 2.86683I	3.02711 - 5.17659I
b = 0.187769 - 0.832828I		
u = 0.702570 + 0.819082I		
a = 0.363866 - 1.106770I	-4.90801 - 10.80840I	-1.85897 + 7.63550I
b = 0.97246 + 1.06574I		
u = 0.702570 - 0.819082I		
a = 0.363866 + 1.106770I	-4.90801 + 10.80840I	-1.85897 - 7.63550I
b = 0.97246 - 1.06574I		
u = 0.117025 + 0.707443I		
a = 0.327460 + 0.729010I	0.65660 - 1.39506I	0.82058 + 5.90353I
b = -0.504470 - 0.045202I		
u = 0.117025 - 0.707443I		
a = 0.327460 - 0.729010I	0.65660 + 1.39506I	0.82058 - 5.90353I
b = -0.504470 + 0.045202I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.59656 + 1.29686I		
a = -0.600773 + 0.160192I	-2.42718 + 0.16938I	2.49026 - 5.93197I
b = 0.356754 - 0.547531I		
u = 0.59656 - 1.29686I		
a = -0.600773 - 0.160192I	-2.42718 - 0.16938I	2.49026 + 5.93197I
b = 0.356754 + 0.547531I		
u = 0.454810 + 0.112434I		
a = 0.910049 + 0.178219I	-1.041380 - 0.734179I	-6.66165 + 2.13353I
b = 0.626422 + 0.465538I		
u = 0.454810 - 0.112434I		
a = 0.910049 - 0.178219I	-1.041380 + 0.734179I	-6.66165 - 2.13353I
b = 0.626422 - 0.465538I		
u = 0.25923 + 1.61438I		
a = -0.255394 + 1.262780I	5.16479 - 6.92628I	2.76500 + 4.70851I
b = -0.450728 - 1.096960I		
u = 0.25923 - 1.61438I		
a = -0.255394 - 1.262780I	5.16479 + 6.92628I	2.76500 - 4.70851I
b = -0.450728 + 1.096960I		
u = 0.22193 + 1.65185I		
a = 0.18340 + 1.86093I	3.3965 - 14.3712I	0.70200 + 6.98452I
b = -1.06261 - 1.33577I		
u = 0.22193 - 1.65185I		
a = 0.18340 - 1.86093I	3.3965 + 14.3712I	0.70200 - 6.98452I
b = -1.06261 + 1.33577I		
u = 0.07299 + 1.69387I		
a = -0.25150 - 1.73742I	11.37540 - 4.70341I	-1.53492 - 1.20569I
b = 0.97828 + 1.19120I		
u = 0.07299 - 1.69387I		
a = -0.25150 + 1.73742I	11.37540 + 4.70341I	-1.53492 + 1.20569I
b = 0.97828 - 1.19120I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.01640 + 1.72547I		
a = -0.138986 - 0.857092I	9.63715 - 1.43342I	1.85153 + 4.64223I
b = 0.479233 + 0.582586I		
u = 0.01640 - 1.72547I		
a = -0.138986 + 0.857092I	9.63715 + 1.43342I	1.85153 - 4.64223I
b = 0.479233 - 0.582586I		

II.
$$I_2^u = \langle u^3 a - u^3 + 3au - 2u^2 + 2b + a - 3u - 5, \ 3u^3 a + u^3 + \dots + 3a - 2, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots - \frac{1}{2}a + \frac{5}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{5}{2} \\ -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots - \frac{1}{2}a + \frac{5}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{3}a - \frac{3}{2}u^{3} + \dots - \frac{5}{2}a - \frac{5}{2} \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}a + u^{2} + 2a + 1 \\ -\frac{3}{2}u^{3}a - \frac{1}{2}u^{3} + \dots - \frac{3}{2}a + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{3}a - \frac{3}{2}u^{3} + \dots - \frac{3}{2}a - \frac{3}{2} \\ \frac{1}{2}u^{3}a + \frac{3}{2}u^{3} + \dots + \frac{3}{2}a + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^3 8u^2 24u 14$

Crossings	u-Polynomials at each crossing		
c_1	$(u^4 + 3u^3 + u^2 - 2u + 1)^2$		
c_{2}, c_{8}	$u^8 + 2u^7 + 3u^6 - 4u^5 - 3u^4 - 12u^3 + 18u^2 - 14u + 41$		
c_3, c_7	$u^8 + 2u^7 + 3u^6 + 5u^5 + 15u^4 + 12u^3 + u^2 - 11u + 4$		
c_4, c_9	$u^8 - 2u^7 + 5u^6 - 13u^5 + 15u^4 - 26u^3 + 29u^2 - 15u + 22$		
c_5, c_6, c_{11} c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$		
c_{10}	$(u^4 - u^3 + u^2 + 1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^2$		
c_{2}, c_{8}	$y^8 + 2y^7 + 19y^6 + 50y^5 + 159y^4 - 118y^3 - 258y^2 + 1280y + 1681$		
c_3, c_7	$y^8 + 2y^7 + 19y^6 + 19y^5 + 163y^4 + 20y^3 + 385y^2 - 113y + 16$		
c_4, c_9	$y^8 + 6y^7 + 3y^6 - 65y^5 - 177y^4 + 24y^3 + 721y^2 + 1051y + 484$		
$c_5, c_6, c_{11} \\ c_{12}$	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$		
c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.771008 - 0.709655I	-5.35681 + 2.83021I	-5.65348 - 9.81749I
b = 1.37255 + 1.06120I		
u = -0.395123 + 0.506844I		
a = 0.40506 - 2.86559I	-5.35681 + 2.83021I	-5.65348 - 9.81749I
b = -0.415863 + 0.165981I		
u = -0.395123 - 0.506844I		
a = -0.771008 + 0.709655I	-5.35681 - 2.83021I	-5.65348 + 9.81749I
b = 1.37255 - 1.06120I		
u = -0.395123 - 0.506844I		
a = 0.40506 + 2.86559I	-5.35681 - 2.83021I	-5.65348 + 9.81749I
b = -0.415863 - 0.165981I		
u = -0.10488 + 1.55249I		
a = 0.13089 + 1.50540I	8.64668 + 6.32793I	1.65348 - 5.12960I
b = 0.955379 - 0.991300I		
u = -0.10488 + 1.55249I		
a = 0.23506 - 2.20215I	8.64668 + 6.32793I	1.65348 - 5.12960I
b = -0.91206 + 1.63250I		
u = -0.10488 - 1.55249I		
a = 0.13089 - 1.50540I	8.64668 - 6.32793I	1.65348 + 5.12960I
b = 0.955379 + 0.991300I		
u = -0.10488 - 1.55249I		
a = 0.23506 + 2.20215I	8.64668 - 6.32793I	1.65348 + 5.12960I
b = -0.91206 - 1.63250I		

$$III. \\ I_3^u = \langle u^{10} + 7u^8 + \dots + b + 1, \ -u^{13} - 10u^{11} + \dots + 2a - 1, \ u^{14} + 10u^{12} + \dots + u + 2 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{13} + 5u^{11} + \dots - u + \frac{1}{2} \\ -u^{10} - 7u^{8} - 17u^{6} + u^{5} - 17u^{4} + 2u^{3} - 7u^{2} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{13} + 5u^{11} + \dots - 2u - \frac{1}{2} \\ -u^{10} - 7u^{8} - 17u^{6} + u^{5} - 17u^{4} + 2u^{3} - 7u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{13} - u^{12} + \dots - 3u - \frac{7}{2} \\ -u^{13} - 9u^{11} + \dots - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{13} - 9u^{11} - 31u^{9} + u^{8} - 50u^{7} + 5u^{6} - 36u^{5} + 7u^{4} - 8u^{3} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{13} - 5u^{11} + \dots - 8u + \frac{3}{2} \\ u^{9} + 6u^{7} + 12u^{5} + 9u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{13} + 4u^{11} + \dots - 2u + \frac{1}{2} \\ -u^{13} - u^{12} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes

$$= u^{13} + 2u^{12} + 8u^{11} + 16u^{10} + 23u^9 + 45u^8 + 23u^7 + 50u^6 - 9u^5 + 14u^4 - 24u^3 - 4u^2 - 4u^3 + 23u^3 + 23u^3$$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} - 10u^{13} + \dots + 16u + 1$
c_2, c_8	$u^{14} - u^{13} + \dots - 11u + 12$
c_3, c_7	$u^{14} + 2u^{12} + \dots - 2u + 1$
c_4, c_9	$u^{14} + 5u^{12} + \dots + u + 1$
c_5, c_6	$u^{14} + 10u^{12} + \dots - u + 2$
c_{10}	$u^{14} - 4u^{13} + \dots + 5u^2 + 1$
c_{11}, c_{12}	$u^{14} + 10u^{12} + \dots + u + 2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 10y^{13} + \dots - 116y + 1$
c_2, c_8	$y^{14} + 5y^{13} + \dots - 169y + 144$
c_3, c_7	$y^{14} + 4y^{13} + \dots - 2y + 1$
c_4, c_9	$y^{14} + 10y^{13} + \dots - 9y + 1$
c_5, c_6, c_{11} c_{12}	$y^{14} + 20y^{13} + \dots + 39y + 4$
c_{10}	$y^{14} + 6y^{13} + \dots + 10y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.216588 + 0.766661I		
a = -0.79945 + 1.58663I	3.12382 - 4.21919I	5.40196 + 5.63555I
b = -0.734213 - 1.062220I		
u = 0.216588 - 0.766661I		
a = -0.79945 - 1.58663I	3.12382 + 4.21919I	5.40196 - 5.63555I
b = -0.734213 + 1.062220I		
u = -0.378992 + 1.158350I		
a = 0.707988 + 0.209626I	-2.78436 + 0.58627I	-2.37749 - 2.49068I
b = -0.481839 + 0.132352I		
u = -0.378992 - 1.158350I		
a = 0.707988 - 0.209626I	-2.78436 - 0.58627I	-2.37749 + 2.49068I
b = -0.481839 - 0.132352I		
u = 0.370851 + 0.545702I		
a = -1.071550 - 0.239968I	2.25383 + 2.26223I	8.00771 - 5.34861I
b = 0.288392 - 0.820734I		
u = 0.370851 - 0.545702I		
a = -1.071550 + 0.239968I	2.25383 - 2.26223I	8.00771 + 5.34861I
b = 0.288392 + 0.820734I		
u = -0.304789 + 0.397142I		
a = -0.53814 - 2.60756I	-5.08623 + 1.96121I	-1.63137 - 0.59067I
b = 0.717374 + 0.663663I		
u = -0.304789 - 0.397142I		
a = -0.53814 + 2.60756I	-5.08623 - 1.96121I	-1.63137 + 0.59067I
b = 0.717374 - 0.663663I		
u = -0.08871 + 1.55131I		
a = 0.42730 + 1.64814I	1.73020 + 3.34530I	-1.14043 - 1.01217I
b = -1.009610 - 0.964029I		
u = -0.08871 - 1.55131I		
a = 0.42730 - 1.64814I	1.73020 - 3.34530I	-1.14043 + 1.01217I
b = -1.009610 + 0.964029I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05772 + 1.67208I		
a = -0.19555 - 1.81258I	11.81410 - 5.26341I	5.92578 + 7.14568I
b = 0.96827 + 1.26017I		
u = 0.05772 - 1.67208I		
a = -0.19555 + 1.81258I	11.81410 + 5.26341I	5.92578 - 7.14568I
b = 0.96827 - 1.26017I		
u = 0.12734 + 1.69142I		
a = 0.219396 - 0.895572I	10.33280 + 0.06735I	7.31384 - 0.14644I
b = 0.251625 + 0.782266I		
u = 0.12734 - 1.69142I		
a = 0.219396 + 0.895572I	10.33280 - 0.06735I	7.31384 + 0.14644I
b = 0.251625 - 0.782266I		

IV.
$$I_4^u = \langle 6.47 \times 10^4 a^5 u^3 + 4.85 \times 10^5 a^4 u^3 + \dots - 3.86 \times 10^5 a - 5.64 \times 10^4, \ 3a^5 u^3 - 2a^4 u^3 + \dots + 8a - 9, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

$$\begin{aligned} a_{7} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{4} &= \begin{pmatrix} -0.0689494a^{5}u^{3} - 0.516487a^{4}u^{3} + \dots + 0.410977a + 0.0601015 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 1 \\ u^{2} \end{pmatrix} \\ a_{3} &= \begin{pmatrix} -0.0689494a^{5}u^{3} - 0.516487a^{4}u^{3} + \dots + 1.41098a + 0.0601015 \\ -0.0689494a^{5}u^{3} - 0.516487a^{4}u^{3} + \dots + 0.410977a + 0.0601015 \end{pmatrix} \\ a_{8} &= \begin{pmatrix} 0.140805a^{5}u^{3} - 0.346580a^{4}u^{3} + \dots - 0.706629a - 1.69831 \\ 0.160361a^{5}u^{3} + 0.183546a^{4}u^{3} + \dots - 0.869155a - 1.38070 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} u \\ u^{3} + u \end{pmatrix} \\ a_{1} &= \begin{pmatrix} u^{2} + 1 \\ -u^{3} - u^{2} - 2u - 1 \end{pmatrix} \\ a_{5} &= \begin{pmatrix} u^{3} + 2u \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} -0.000760401a^{5}u^{3} - 0.631549a^{4}u^{3} + \dots - 1.72584a + 1.80502 \\ -0.122303a^{5}u^{3} - 0.0408039a^{4}u^{3} + \dots + 0.836778a - 0.878400 \end{pmatrix} \\ a_{2} &= \begin{pmatrix} 0.05719625u^{3} + 0.310935a^{4}u^{3} + \dots + 1.43692a - 0.163214 \\ 0.0409488a^{5}u^{3} - 0.886450a^{4}u^{3} + \dots - 0.599105a - 0.139767 \end{pmatrix} \\ a_{9} &= \begin{pmatrix} -0.177120a^{5}u^{3} + 0.152318a^{4}u^{3} + \dots + 1.00470a + 1.79206 \\ 0.101777a^{5}u^{3} - 0.569117a^{4}u^{3} + \dots - 1.15970a - 1.37536 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{71470}{469489}a^5u^3 - \frac{268064}{469489}a^4u^3 + \dots + \frac{60802}{469489}a - \frac{452394}{469489}a^4u^3 + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$(u^4 + 3u^3 + u^2 - 2u + 1)^6$
c_2, c_8	$u^{24} - 3u^{23} + \dots + 8u + 8$
c_{3}, c_{7}	$u^{24} - 5u^{23} + \dots - 4u + 8$
c_4, c_9	$u^{24} + u^{23} + \dots - 32u + 8$
$c_5, c_6, c_{11} \\ c_{12}$	$(u^4 - u^3 + 3u^2 - 2u + 1)^6$
c_{10}	$(u^4 - u^3 + u^2 + 1)^6$

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^6$
c_2, c_8	$y^{24} + 9y^{23} + \dots + 1696y + 64$
c_{3}, c_{7}	$y^{24} + 5y^{23} + \dots + 1136y + 64$
c_4, c_9	$y^{24} + 21y^{23} + \dots + 3808y + 64$
c_5, c_6, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^6$
c_{10}	$(y^4 + y^3 + 3y^2 + 2y + 1)^6$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.637870 + 0.739647I	1.64493 - 1.74886I	-2.00000 - 2.34394I
b = 0.115226 + 0.635056I		
u = -0.395123 + 0.506844I		
a = 1.159350 + 0.059125I	1.64493 - 1.74886I	-2.00000 - 2.34394I
b = -0.490251 - 0.808077I		
u = -0.395123 + 0.506844I		
a = 1.27325 - 0.74075I	-5.35681	-5.65348 + 0.I
b = 0.957415 + 0.141715I		
u = -0.395123 + 0.506844I		
a = 0.86187 + 1.25769I	1.64493 + 4.57907I	-2.00000 - 7.47354I
b = 0.76295 - 1.20476I		
u = -0.395123 + 0.506844I		
a = -1.53954 - 0.58632I	1.64493 + 4.57907I	-2.00000 - 7.47354I
b = -0.668828 + 0.802618I		
u = -0.395123 + 0.506844I		
a = -0.16426 - 2.67779I	-5.35681	-5.65348 + 0.I
b = -0.57777 + 1.36729I		
u = -0.395123 - 0.506844I		
a = -0.637870 - 0.739647I	1.64493 + 1.74886I	-2.00000 + 2.34394I
b = 0.115226 - 0.635056I		
u = -0.395123 - 0.506844I		
a = 1.159350 - 0.059125I	1.64493 + 1.74886I	-2.00000 + 2.34394I
b = -0.490251 + 0.808077I		
u = -0.395123 - 0.506844I		
a = 1.27325 + 0.74075I	-5.35681	-5.65348 + 0.I
b = 0.957415 - 0.141715I		
u = -0.395123 - 0.506844I		
a = 0.86187 - 1.25769I	1.64493 - 4.57907I	-2.00000 + 7.47354I
b = 0.76295 + 1.20476I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 - 0.506844I		
a = -1.53954 + 0.58632I	1.64493 - 4.57907I	-2.00000 + 7.47354I
b = -0.668828 - 0.802618I		
u = -0.395123 - 0.506844I		
a = -0.16426 + 2.67779I	-5.35681	-5.65348 + 0.I
b = -0.57777 - 1.36729I		
u = -0.10488 + 1.55249I		
a = -0.076529 + 0.814337I	8.64668	1.65348 + 0.I
b = 0.668148 - 0.834125I		
u = -0.10488 + 1.55249I		
a = -0.53246 - 1.31285I	8.64668	1.65348 + 0.I
b = -0.031326 + 0.920559I		
u = -0.10488 + 1.55249I		
a = 0.083538 + 0.334406I	1.64493 + 1.74886I	-2.00000 + 2.34394I
b = -1.249390 - 0.253465I		
u = -0.10488 + 1.55249I		
a = -0.55405 + 1.75382I	1.64493 + 4.57907I	-2.00000 - 7.47354I
b = 0.023049 - 0.425939I		
u = -0.10488 + 1.55249I		
a = 1.73172 + 0.96731I	1.64493 + 4.57907I	-2.00000 - 7.47354I
b = -2.00583 - 0.96364I		
u = -0.10488 + 1.55249I		
a = -0.10502 + 2.63055I	1.64493 + 1.74886I	-2.00000 + 2.34394I
b = -0.00339 - 1.81847I		
u = -0.10488 - 1.55249I		
a = -0.076529 - 0.814337I	8.64668	1.65348 + 0.I
b = 0.668148 + 0.834125I		
u = -0.10488 - 1.55249I		
a = -0.53246 + 1.31285I	8.64668	1.65348 + 0.I
b = -0.031326 - 0.920559I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10488 - 1.55249I		
a = 0.083538 - 0.334406I	1.64493 - 1.74886I	-2.00000 - 2.34394I
b = -1.249390 + 0.253465I		
u = -0.10488 - 1.55249I		
a = -0.55405 - 1.75382I	1.64493 - 4.57907I	-2.00000 + 7.47354I
b = 0.023049 + 0.425939I		
u = -0.10488 - 1.55249I		
a = 1.73172 - 0.96731I	1.64493 - 4.57907I	-2.00000 + 7.47354I
b = -2.00583 + 0.96364I		
u = -0.10488 - 1.55249I		
a = -0.10502 - 2.63055I	1.64493 - 1.74886I	-2.00000 - 2.34394I
b = -0.00339 + 1.81847I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^4 + 3u^3 + u^2 - 2u + 1)^8)(u^{14} - 10u^{13} + \dots + 16u + 1)$ $\cdot (u^{22} - 19u^{21} + \dots - 640u + 256)$
c_2, c_8	$(u^{8} + 2u^{7} + 3u^{6} - 4u^{5} - 3u^{4} - 12u^{3} + 18u^{2} - 14u + 41)$ $\cdot (u^{14} - u^{13} + \dots - 11u + 12)(u^{22} + u^{21} + \dots - 2u + 2)$ $\cdot (u^{24} - 3u^{23} + \dots + 8u + 8)$
c_3, c_7	$(u^{8} + 2u^{7} + 3u^{6} + 5u^{5} + 15u^{4} + 12u^{3} + u^{2} - 11u + 4)$ $\cdot (u^{14} + 2u^{12} + \dots - 2u + 1)(u^{22} + 3u^{20} + \dots - u^{2} + 1)$ $\cdot (u^{24} - 5u^{23} + \dots - 4u + 8)$
c_4, c_9	$(u^{8} - 2u^{7} + 5u^{6} - 13u^{5} + 15u^{4} - 26u^{3} + 29u^{2} - 15u + 22)$ $\cdot (u^{14} + 5u^{12} + \dots + u + 1)(u^{22} + 14u^{20} + \dots + u + 1)$ $\cdot (u^{24} + u^{23} + \dots - 32u + 8)$
c_5, c_6	$((u^4 - u^3 + 3u^2 - 2u + 1)^8)(u^{14} + 10u^{12} + \dots - u + 2)$ $\cdot (u^{22} + 9u^{21} + \dots + 176u + 16)$
c_{10}	$((u^4 - u^3 + u^2 + 1)^8)(u^{14} - 4u^{13} + \dots + 5u^2 + 1)$ $\cdot (u^{22} + 15u^{21} + \dots + 160u + 16)$
c_{11}, c_{12}	$((u^4 - u^3 + 3u^2 - 2u + 1)^8)(u^{14} + 10u^{12} + \dots + u + 2)$ $\cdot (u^{22} + 9u^{21} + \dots + 176u + 16)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^4 - 7y^3 + 15y^2 - 2y + 1)^8)(y^{14} - 10y^{13} + \dots - 116y + 1)$ $\cdot (y^{22} - 17y^{21} + \dots + 483328y + 65536)$
c_2, c_8	$(y^{8} + 2y^{7} + 19y^{6} + 50y^{5} + 159y^{4} - 118y^{3} - 258y^{2} + 1280y + 1681)$ $\cdot (y^{14} + 5y^{13} + \dots - 169y + 144)(y^{22} + 3y^{21} + \dots + 32y + 4)$ $\cdot (y^{24} + 9y^{23} + \dots + 1696y + 64)$
c_3, c_7	$(y^{8} + 2y^{7} + 19y^{6} + 19y^{5} + 163y^{4} + 20y^{3} + 385y^{2} - 113y + 16)$ $\cdot (y^{14} + 4y^{13} + \dots - 2y + 1)(y^{22} + 6y^{21} + \dots - 2y + 1)$ $\cdot (y^{24} + 5y^{23} + \dots + 1136y + 64)$
c_4, c_9	$(y^{8} + 6y^{7} + 3y^{6} - 65y^{5} - 177y^{4} + 24y^{3} + 721y^{2} + 1051y + 484)$ $\cdot (y^{14} + 10y^{13} + \dots - 9y + 1)(y^{22} + 28y^{21} + \dots + 11y + 1)$ $\cdot (y^{24} + 21y^{23} + \dots + 3808y + 64)$
$c_5, c_6, c_{11} \\ c_{12}$	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^8)(y^{14} + 20y^{13} + \dots + 39y + 4)$ $\cdot (y^{22} + 25y^{21} + \dots - 384y + 256)$
c_{10}	$((y^4 + y^3 + 3y^2 + 2y + 1)^8)(y^{14} + 6y^{13} + \dots + 10y + 1)$ $\cdot (y^{22} + 7y^{21} + \dots + 2432y + 256)$