Chapitre 6: Relations

Définition 0.1. Une <u>relation</u> (binaire) sur un ensemble est une partie \mathcal{R} de $E \times E$ Étant donné $x, y \in E$, on notera $x \mathcal{R} y$ si (x, y) est élément de \mathcal{R} et $x \mathcal{R} u$ sinon.

1 Relation d'ordre

1.1 Généralités

Définition 1.1. Soit *E* un ensemble.

Une relation d'ordre sur E est une relation R:

- * Réflexive : $\forall x \in E, x \mathcal{R} x$
- * Antisymétrique : $\forall x, y \in E, (x \mathcal{R} y \text{ et } y \mathcal{R} x) \implies x = y$
- * Transitive : $\forall x, y, z \in E$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \implies x \mathcal{R} z$

Définition 1.2. Soit (E, \preceq) un ensemble ordonné.

On dit que l'ordre \leq est total si $\forall x, y \in E$, $(x \leq y \text{ ou } y \leq x)$

Définition 1.3. Soit (E, \preceq) un ensemble ordonné.

- * Deux éléments $x, y \in E$ sont dits comparables si $x \leq y$ ou $y \leq x$
- * Une partie $A \subseteq E$ est une chaîne si deux éléments quelconques de A sont toujours comparables.
- * Une partie $A \subseteq E$ est une antichaîne si deux éléments quelconques de A ne sont jamais comparables.

Définition 1.4. Soit (E, \preceq) et (F, \sqsubseteq) deux ensembles ordonnées.

Une application $f: E \to F$ est dite croissante si $\forall x_1, x_2 \in E, x_1 \preccurlyeq x_2 \implies f(x_1) \sqsubseteq f(x_2)$

1.2 Éléments particuliers

Définition 1.5. Soit (E, \preceq) un ensemble ordonné.

Soit $A \subseteq E$. On dit que :

- * A est majoré s'il existe $M \in E$ tel que $\forall a \in A, a \leq M$
- * A est minoré s'il existe $m \in E$ tel que $\forall a \in A, m \leq a$
- * *A* admet un maximum s'il existe $M \in A$ tel que $\forall a \in A, a \leq M$
- * *A* admet un minimum s'il existe $m \in A$ tel que $\forall a \in A$, $m \leq a$

Proposition 1.6. Soit (E, \preceq) un ensemble ordonné et $A \subseteq E$

S'il existe, le maximum (resp. le minimum de *A*) est unique.

On le note max(A) (resp. min(A)).

Définition 1.7. Soit (E, \preceq) un ensemble ordonné et $A \subseteq E$

Un élément $a \in A$ est dit :

- * <u>Maximal</u>, s'il n'y a pas d'élément de *A* qui lui est strictement supérieur, càd si $\forall a' \in A, a \leq a' \implies a = a'$
- * Minimal, si $\forall a' \in A, a' \leq a \implies a' = a$

Proposition 1.8. Soit (E, \preceq) un ensemble ordonné et $A \subseteq E$

Alors, si A admet un maximum, max(A) est l'unique élément maximal de A

2 Relation d'équivalence

2.1 Généralités

Définition 2.1. Une relation \mathcal{R} sur E est une relation d'équivalence si elle est :

- * Réflexive : $\forall x \in E, x \mathcal{R} x$
- * Symétrique : $\forall x, y \in E, x \mathcal{R} y \implies y \mathcal{R} x$
- * Transitive : $\forall x, y, z \in E$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \implies x \mathcal{R} z$

2.2 Classes d'équivalence

Définition 2.2. Soit E un ensemble muni d'une relation d'équivalence \sim et $x \in E$ On définit la classe d'équivalence de x

$$[x]_{\sim} = d(x) = \bar{x} = \dot{x} = \{ y \in E \mid x \sim y \}$$

Définition 2.3. Soit *E* un ensemble.

Une famille $(A_i)_{i \in I}$ de parties de E est une partition de E si :

- * $\forall i \in I, A_i \neq \emptyset$
- * Les ensembles sont (2 à 2) disjoints : $\forall i, j \in I, i \neq j \implies A_i \cap A_j \neq \emptyset$
- * Les ensembles recouvrent E, càd $\bigcup_{i \in I} A_i = E$

Proposition 2.4. Soit E un ensemble et \sim une relation d'équivalence sur E Les classes de \sim forment une partition de E

Lemme 2.5. Soit $x, y \in E$ tels que $x \sim y$ Alors [x] = [y]

2.3 Ensemble quotient

Définition 2.6. Soit \sim une relation d'équivalence sur un ensemble E

- * On appelle ensemble quotient l'ensemble E/\sim des classes d'équivalence de \sim
- * L'application $\begin{cases} E \to E/\sim \\ x \mapsto [x]_{\sim} \end{cases}$ est appelée la <u>surjection canonique</u>.

Définition 2.7. Soit E un ensemble muni d'une relation d'équivalence. Soit $f: E \to F$ une application.

Notons $\pi: E \to E/\sim$ la surjection canonique.

On dit que f <u>passe</u> (ou <u>descend</u>) au quotient si $\forall x_1, x_2 \in E, x_1 \sim x_2 \implies f(x_1) = f(x_2)$ Dans ce cas, il existe une unique application $\bar{f}: E/\sim \to F$ telle que $\bar{f}\circ \pi = f$

2.4 Deux quotients importants

"Construction" de $\mathbb Q$ à partir de $\mathbb N$ et $\mathbb Z$

On munit l'ensemble $\mathbb{Z} \times \mathbb{N}^*$ de la relation \sim définie par :

$$\forall (a_1, b_1), (a_2, b_2) \in \mathbb{Z} \times \mathbb{N}^*, (a_1, b_1) \sim (a_2, b_2) \iff a_1b_2 = a_2b_1$$

On "définit" \mathbb{Q} comme l'ensemble quotient $\mathbb{Z}\times\mathbb{N}^*/\sim$

On définit alors 2 lois :

$$+: \begin{cases} (\mathbb{Z} \times \mathbb{N}^*)/\sim \times (\mathbb{Z} \times \mathbb{N}^*)/\sim \to (\mathbb{Z} \times \mathbb{N}^*)/\sim \\ ([(a_1,b_1)]_{\sim},[(a_2,b_2)]_{\sim}) \mapsto [(a_1b_2+a_2+b_1,b_1b_2)]_{\sim} \end{cases}$$

$$\cdot: \begin{cases} (\mathbb{Z} \times \mathbb{N}^*)/\sim \times (\mathbb{Z} \times \mathbb{N}^*)/\sim \to (\mathbb{Z} \times \mathbb{N}^*)/\sim \\ ([(a_1,b_1)]_{\sim},[(a_2,b_2)]_{\sim}) \mapsto [(a_1a_2,b_1b_2)]_{\sim} \end{cases}$$

"Construction" de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$

On sait que la congruence modulo n est une relation d'équivalence sur $\mathbb Z$

On note $[x]_n$ la classe d'équivalence de x par cette relation et $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient.