Accelerating Medicines Partnership - Alzheimer's Disease

[www.synapse.org/ampad]

Thanneer M Perumal

Senior Research Scientist

thanneer.perumal@sagebase.org

Sage Bionetworks

We are a Seattle based non-profit research organization promoting open systems, incentives, and norms to redefine how complex biological data is gathered, shared, and used

The New York Times

HEALTH

An Unusual Partnership to Tackle Stubborn Diseases

By GINA KOLATA FEB. 4, 2014

A public/private partnership between NIH, 10 biopharmaceutical companies, and several non-profit organisations

(\$ Millions)	Total Project	Total NIH	Total Industry
Alzheimer's Disease	92.5	69.6	22.9
Type 2 Diabetes	58.4	30.4	28
Rheumatoid Arthritis	41.6	20.9	20.7
Total	192.5	120.9	71.6

⊕ RUSH	Genomics, Transcriptomics	iPS neurons and astrocytes, iPS compound screens
Icahn School of Medicine at Mount Sinai	Genomics, Transcriptomics	iPS neurons and astrocytes, Mouse hippocampal slices, Drosophila model
UFHealth UNIVERSITY OF FLORIDA HEALTH MAYO CLINIC Institute for Systems Biology	Genomics, Transcriptomics	aB and Tau mouse models, rAAV delivered models
EMORY	Proteomics	Cell culture models, Mouse models, Drosophila model
Duke	Metabolomics	ApoE4 TR and APP/PSI/ApoE4 mouse models
HARVARD MEDICAL SCHOOL	Genomics, Transcriptomics	Studying the healthy human brain

Target Discovery

Target Discovery

Target Discovery

Target Discovery

Coordinated sharing of early-phase target identification insights

Target Validation

Target Validation

Target Validation

Target Validation

Quarterly public release of data and analysis results through Synapse: www.synapse.org/ampad

AMP-AD RNASeq Sample Overview

Donor Samples Donor Samples Donor Samples Frontal Pole, Superiortemporal Gyrus, Dorsolateral Cerebellum prefrontal cortex Parahipocampal Gyrus, Temporal Cortex Inferiorfrontal Gyrus Tissue preparation Tissue preparation Cohorts Tissue preparation Cohorts Mayo Cohorts ROSMAP MSBB RNA extraction RNA extraction RNA extraction RNA sequencing RNA sequencing RNA sequencing Original BAM Original BAM Original BAM

Sample Collection

of samples (based on harmonised case-control)

	Region	Defin	# of Samples		
Source		CONTROL	AD	CONTROL	AD
ROSMAP	DLPFC	cogdx=1, Braak <=3, CERAD >=3 and no other pathology	cogdx=4, Braak >=4, CERAD <=2	86	155
MSBB	FP	CDR<=0.5, Braak <=3, NP.1 <= 1	CDR>=1, Braak >=4, NP.1 >= 2	45	90
	IFG			37	79
	PHG			40	65
	STG			37	86
MAYO	CER	CERAD <=1 and no	Definite AD from NINCDS-ADRDA criteria, Braak >= 4	74	79
	TCX			73	80
Total				392	634

AMP-AD RNASeq Sample Overview

Source	# of Individuals	Brain Regions	Library Preparation	Read Length	Depth of Sequencing
ROSMAP	634	Dorsolateral prefrontal cortex	Poly-A Selection	101 bp Paired End	50-100M per library
MSBB	301	Frontal Pole, Superiortemporal Gyrus, Parahipocampal Gyrus, Inferiorfrontal Gyrus	RiboZero	100 bp Single End	120M per library
MAYO	303	Cerebellum Temporal Cortex	Poly-A Selection	100 bp Paired End	120M per library

RNASeq Sample SWAP

• Objective:

 To quantify technical variations across different sequencing centers

Design:

 10 Samples from each cohort was re-sequenced across all three centers

- Top 2 principal components of gene expression from 10 ROSMAP samples that were sequenced at all three centers: Broad, Mt.Sinai and Mayo
 - PC1: Differences between Ribozero vs PolyA preparation
 - PC2: Sequencing centers

RNASeq Reprocessing*

- Goal:
 - To create a uniformly processed RNAseq dataset across the three largest AMP-AD contributed studies (ROSMAP/MSBB/MayoRNAseq)
- Method:
 - FASTQ generation
 - Conversion of BAMs to FASTQs using Picard.
 - Alignment
 - Re-alignment of FASTQ reads using STAR.
 - Computing alignment metrics using Picard.
 - Gene counting
 - Counting reads per gene using STAR

Gene Filtering

Reprocessed Counts

Filter genes

Gene Filtering

 Filter genes that have less than 1 CPM in more than 50% of samples for each brain region times diagnosis category

	ROSMAP	MSBB	MAYO
# of Genes	15582	16348	17003
Fraction of antisense	0.03	0.04	0.05
Fraction of lincRNA	0.03	0.04	0.05
Fraction of protein coding	0.87	0.85	0.84
Fraction of transcribed unprocessed pseudogene	0.01	0.01	0.01

Library Normalisation

- Gene Filtering
 - Filter genes that have less than 1 CPM in more than 50% of samples for each brain region times diagnosis category
- Library Normalisation (using CQN*)
 - Conditional quantile normalisation accounting for gene length and GC content

Iterative Outlier Analysis

- Gene Filtering
 - Filter genes that have less than 1 CPM in more than 50% of samples for each brain region times diagnosis category
- Library Normalisation (using CQN)
 - Conditional quantile normalisation accounting for gene length and GC content
- Iterative outlier detection
 - PCA and euclidean distance based dendrogram trees were used to identify outliers

Iterative Outlier Analysis: MAYO Samples

Association b/w Expression and Covariates

Expression Association with Covariates in MAYO Cohort

Association b/w Covariates

Iterative Covariates Identification

Covariate Adjusted Data

Expression Weighted Cell Type Enrichment*

Expression Weighted Cell Type Enrichment*

Upcoming Challenges

Launches July 5 (Pre-registration is open)

The goal of this challenge is to evaluate systems and platforms for executing portable analysis workflows in the interest of developing common standards and best practices. Participants will run high quality genomics workflows in their system of choice to assess portability and reproducibility in a concrete way.

Parkinson's Disease Digital Biomarker DREAM Challenge ●

Launching July 6, 2017 (Pre-registration is open)

Using data collected through two Parkinson's Disease mobile research studies, the goal of this challenge is to identify the best methods for processing mobile sensor data in order to distinguish gait and motor differences between Parkinson's Disease patients and controls.

Parkinson's Disease Digital Biomarker DREAM Challenge

ENABLED BY

- ✓ Launched: 6
 July 2017
- ✓ Close: October 2017

Acknowledgements

Sage Bionetworks
Team

Kristen Dang

James Eddy

Ben Logsdon

Solly Sieberts

Mette Peters

Lara Mangravite

Larsson Omberg

Mt. Sinai Team

Minghui Wang

Bin Zhang

Eric Schadt

Rush Team

Jishu Xu

Philip De Jager

David Bennett

<u>UFL-Mayo-ISB</u>

<u>Team</u>

Xue Wang

Mariet Allen

Nilufer Taner

Todd Golde

Nathan Price

Lilly Team

Philip J Ebert

John Calley

Yuhao Lin

Corey James

David Collier

Funding

We would like to thank the NIH for their financial support: U01 AG046152, U01 AG046139, U01 AG046161, U01 AG046170, BDDS (1U54EB020406-01)

AMP-AD Differential Expression Analysis Working

Group Members

AMP-AD Network Analysis Working Group

Members

AMP-AD RNASeq Reprocessing Working Group

Members

And many others...

Thank You

thanneer.perumal@sagebase.org

