NO₂ VERTICAL PROFILES OVER SOUTH KOREA AND THEIR RELATION TO OXIDANT CHEMISTRY:

IMPLICATIONS FOR GEOSTATIONARY SATELLITE RETRIEVALS

Laura Hyesung Yang

D. Jacob, N. Colombi, S. Zhai, K. Bates, V. Shah, E. Beaudry, B. Yantosca, H. Lin, J. Brewer, H. Chong, K. Travis, J. Crawford, L. Lamsal, J-H Koo, J. Kim

The 13th GEMS Workshop, Nov. 10th, 2022

Overview of monitoring NO₂ from space (Solar backscatter retrieval)

- Convert radiance to slant column (SC)
- Remove stratospheric portion from SC
- Convert tropospheric SC to vertical column (VC)

$$VC = \frac{SC}{AMF}$$

AMF = Air Mass Factor

Air Mass Factor (AMF) depends on 3 quantities

$$AMF = AMF_G \int_0^{z_T} w(z)S(z)dz$$

Viewing Geometry

Solar zenith angle (SZA; θ_s) Satellite viewing angle (VZA; θ_v)

Scattering Weight

Captures where the satellite is sensitive to (from RTM)

Scattering weight vs. altitude

RTM: Radiative Transfer Model RAA: Relative Azimuth Angle

Shape Factor

Vertical distribution of NO₂ (from CTM like GEOS-Chem)

NO₂ shape factor vs. altitude

CTM: Chemical Transport Model

NO₂ concentrations are controlled by oxidant chemistry

KORUS-AQ campaign offers observational constraint for chemical species

Standard Model

v13.3.4

 $0.25^{\circ} \times 0.3215^{\circ}$

No nitrate aerosol photolysis

No HNO₃ uptake by PMC

No VCP emission

CO boundary condition not scaled up

$$\gamma_{HO_2} = 0.2$$

Modified Model

 $0.25^{\circ} \times 0.3215^{\circ}$

With nitrate aerosol photolysis

With HNO₃ uptake by PMC

With VCP emission

CO boundary condition $\times 1.5$

$$\gamma_{HO_2} = 0.1$$

PMC: Coarse PM

Volatile Chemical Product

 γ_{HO_2} : HO₂ uptake coefficient

GEOS-Chem is successful in simulating key species that drives NO₂ formation & oxidant chemistry

Median vertical profiles

Instruments/PIs

Chemiluminescence: A. Weinheimer ATHOS: W. Brune

 O_3 and HO_2 are key driver species for forming NO_2

 O_3 underestimation was significant issue in standard GEOS-Chem (Park et al., 2021)

GEOS-Chem successfully simulates NO, NO₂, and NO/NO₂

Median vertical profiles

Instruments/PIs

Chemiluminescence: A. Weinheimer TD-LIF: R. Cohen

NO/NO₂ observation departs from the model above 5km (TD-LIF NO₂ positive interference)

Photostationary Steady State (PSS) is more reliable & updated model is in closer agreement with PSS

Over South Korea, NO_2 columns are mainly (80%) contained within planetary boundary layer (PBL; $z \le 2$ km)

Reflects highly polluted condition

Over the U.S., only 20 – 35% of the column is contained within PBL (Travis et al. 2016)

SZA: Solar Zenith Angle VZA: Viewing Zenith Angle RAA: Relative Azimuth Angle

SCD: Slant Column Density (Same as SC)

Accounting for diurnal variation of scattering correction factor is critical

Time of day	AMF _G	$\int_0^{z_T} w(z)S(z)dz$	AMF
8-9 AM	3.09	0.38 (0.39)	1.19 (1.20)
12-1 PM	2.42	0.46 (0.47)	1.11 (1.14)
3-4 PM	2.77	0.46 (0.46)	1.26 (1.27)

Column's diurnal variation (22%) is much smaller than that of surface (87%)
[Crawford et al. 2021]

Solar zenith effect (24%) and scattering correction factor (18%) offset each other

Diurnal variation in AMF (14%) is comparable to that of column (~25%)

GEOS-Chem can capture the variability of observed AMF

Observed AMF shows high variability (1.05 – 1.63)

Ocean vs. land, and the time-of-day drive observed variability

Timing of the mixed layer growth in the morning is the largest contributor to the model error

Takeaways

Accurate accounting of oxidant chemistry is important for modeling the shape factor that is used in the GEMS NO_2 retrieval

Accurate accounting for the diurnal variation in AMF is critical in interpretating the diurnal variation in NO_2 columns

GEOS-Chem can provide AMFs for GEMS retrieval with relatively low error (NMB: 2.8%, RRMSE = 7.7%)