```
In [69]: import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          %matplotlib inline
          plt.style.use('ggplot')
          from sklearn.model_selection import train_test_split
          from sklearn import metrics
          from sklearn.model selection import GridSearchCV
          from sklearn.model selection import RandomizedSearchCV
          from sklearn.model selection import cross val score
          from sklearn.metrics import confusion matrix
          from sklearn.metrics import roc curve, auc
          from sklearn.metrics import classification report
          from sklearn.ensemble import RandomForestClassifier
In [70]: import os
          os.getcwd()
Out[70]: 'C:\\Users\\itzal\\Untitled Folder 4'
In [71]: | df = pd.read_csv('diabetic_data.csv')
In [72]: df.head()
Out[72]:
             encounter_id patient_nbr
                                             race
                                                  gender age weight admission_type_id discharge_d
                                                           [0-
           0
                                                                   ?
                 2278392
                                                  Female
                                                                                    6
                            8222157
                                         Caucasian
                                                           10)
                                                          [10-
                  149190
                           55629189
                                         Caucasian
                                                  Female
                                                          20)
                                                          [20-
           2
                   64410
                           86047875 AfricanAmerican Female
                                                                                    1
                                                           30)
                                                          [30-
                  500364
                           82442376
                                         Caucasian
                                                     Male
                                                           40)
                                                          [40-
                   16680
                           42519267
                                         Caucasian
                                                     Male
                                                           50)
          5 rows × 50 columns
In [73]: | df.shape
Out[73]: (101766, 50)
```

```
In [74]: df.readmitted.value_counts()
```

Out[74]: NO 54864

>30 35545 <30 11357

Name: readmitted, dtype: int64

In [75]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 101766 entries, 0 to 101765
Data columns (total 50 columns):

Data	columns (total 50 columns):				
#	Column	Non-Null Count	Dtype		
0	encounter_id	101766 non-null	int64		
1	patient_nbr	101766 non-null	int64		
2	race	101766 non-null	object		
3		101766 non-null	object		
	gender		_		
4	age	101766 non-null	object		
5	weight	101766 non-null	object		
6	admission_type_id	101766 non-null	int64		
7	discharge_disposition_id	101766 non-null	int64		
8	admission_source_id	101766 non-null	int64		
9	time_in_hospital	101766 non-null	int64		
10	payer_code	101766 non-null	object		
11	medical_specialty	101766 non-null	object		
12	num_lab_procedures	101766 non-null	int64		
13	num_procedures	101766 non-null	int64		
14	num_medications	101766 non-null	int64		
15	number_outpatient	101766 non-null	int64		
16	number_emergency	101766 non-null	int64		
17	number_inpatient	101766 non-null	int64		
18	diag_1	101766 non-null	object		
19	diag_2	101766 non-null	object		
20	diag_3	101766 non-null	object		
21	number_diagnoses	101766 non-null	int64		
22	max_glu_serum	101766 non-null	object		
23	A1Cresult	101766 non-null	object		
24	metformin	101766 non-null	object		
25	repaglinide	101766 non-null	object		
26	nateglinide	101766 non-null	object		
	•				
27	chlorpropamide	101766 non-null	object		
28	glimepiride	101766 non-null	object		
29	acetohexamide	101766 non-null	object		
30	glipizide	101766 non-null	object		
31	glyburide	101766 non-null	object		
32	tolbutamide	101766 non-null	object		
33	pioglitazone	101766 non-null	object		
34	rosiglitazone	101766 non-null	object		
35	acarbose	101766 non-null	object		
36	miglitol	101766 non-null	object		
37	troglitazone	101766 non-null	object		
38	tolazamide	101766 non-null	object		
39	examide	101766 non-null	object		
40	citoglipton	101766 non-null	object		
41	insulin	101766 non-null	object		
42	glyburide-metformin	101766 non-null	object		
43	glipizide-metformin	101766 non-null	object		
44	glimepiride-pioglitazone	101766 non-null	object		
45	metformin-rosiglitazone	101766 non-null	object		
46	metformin-pioglitazone	101766 non-null	object		
47	change	101766 non-null	object		
48	diabetesMed	101766 non-null	object		
49	readmitted	101766 non-null	object		
49	i cadilit cced	TOTAGO HOH-HULL	object		

dtypes: int64(13), object(37)
memory usage: 38.8+ MB

```
In [76]: #Data Cleaning
In [77]: df.shape
Out[77]: (101766, 50)
In [78]: #There are 101,766 data points in the dataset, some of them are doublicates. We wanted
         df['patient_nbr'].value_counts()
Out[78]: 88785891
                       40
         43140906
                       28
         1660293
                       23
                       23
         88227540
                       23
         23199021
         11005362
                        1
         98252496
                        1
         1019673
                        1
         13396320
                        1
         175429310
         Name: patient_nbr, Length: 71518, dtype: int64
In [79]: | df = df.drop_duplicates(subset=['patient_nbr'])
```

```
In [80]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 71518 entries, 0 to 101765
Data columns (total 50 columns):

Data	columns (total 50 columns)		
#	Column	Non-Null Count	Dtype
0	encounter_id	71518 non-null	int64
1	patient_nbr	71518 non-null	int64
2	race	71518 non-null	object
3	gender	71518 non-null	object
4	age	71518 non-null	object
5	weight	71518 non-null	object
6	admission_type_id	71518 non-null	int64
7	discharge_disposition_id	71518 non-null	int64
8	admission_source_id	71518 non-null	int64
9	time_in_hospital	71518 non-null	int64
10	payer_code	71518 non-null	object
11	medical_specialty	71518 non-null	object
12	num_lab_procedures	71518 non-null	int64
13	num_procedures	71518 non-null	int64
14	num_medications	71518 non-null	int64
15	number_outpatient	71518 non-null	int64
16	number_emergency	71518 non-null	int64
17	number_inpatient	71518 non-null	int64
18	diag_1	71518 non-null	object
19	diag_2	71518 non-null	object
20	diag_3	71518 non-null	object
21	number_diagnoses	71518 non-null	int64
22	max_glu_serum	71518 non-null	object
23	A1Cresult	71518 non-null	object
24	metformin	71518 non-null	object
25	repaglinide	71518 non-null	object
26	nateglinide	71518 non-null	object
27	chlorpropamide	71518 non-null	object
28	glimepiride	71518 non-null	object
29	acetohexamide	71518 non-null	object
30	glipizide	71518 non-null	object
31	glyburide	71518 non-null	object
32	tolbutamide	71518 non-null	object
33	pioglitazone	71518 non-null	object
34	rosiglitazone	71518 non-null	object
35	acarbose	71518 non-null	object
36	miglitol	71518 non-null	object
37	troglitazone	71518 non-null	object
38	tolazamide	71518 non-null	object
39	examide	71518 non-null	object
40	citoglipton	71518 non-null	object
41	insulin	71518 non-null	object
42	glyburide-metformin	71518 non-null	object
43	glipizide-metformin	71518 non-null	object
44	glimepiride-pioglitazone	71518 non-null	object
45	metformin-rosiglitazone	71518 non-null	object
46	metformin-pioglitazone	71518 non-null	object
47	change	71518 non-null	object
48	diabetesMed	71518 non-null	object
49	readmitted	71518 non-null	object
			_

dtypes: int64(13), object(37)
memory usage: 27.8+ MB

```
In [81]: | features_drop_list = ['encounter_id', 'patient_nbr', 'weight', 'payer_code',
                                                                                        Þ
In [82]: | df.drop(features_drop_list, axis=1,inplace=True)
In [83]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 71518 entries, 0 to 101765
         Data columns (total 29 columns):
              Column
                                        Non-Null Count Dtype
          0
              race
                                         71518 non-null
                                                        object
          1
              gender
                                        71518 non-null object
          2
              age
                                        71518 non-null object
          3
              admission_type_id
                                        71518 non-null
                                                        int64
          4
              discharge disposition id
                                        71518 non-null
                                                        int64
          5
              admission source id
                                        71518 non-null
                                                        int64
          6
              time in hospital
                                        71518 non-null
                                                        int64
          7
              num lab procedures
                                        71518 non-null
                                                        int64
          8
              num procedures
                                        71518 non-null
                                                        int64
          9
              num_medications
                                        71518 non-null
                                                        int64
          10
              number outpatient
                                        71518 non-null
                                                        int64
          11
             number emergency
                                        71518 non-null
                                                        int64
          12
              number_inpatient
                                        71518 non-null
                                                        int64
          13
             diag 1
                                        71518 non-null
                                                        object
          14 diag 2
                                        71518 non-null object
          15
              diag_3
                                        71518 non-null object
          16 number_diagnoses
                                        71518 non-null int64
          17
              max glu serum
                                        71518 non-null object
          18 A1Cresult
                                        71518 non-null object
          19
              metformin
                                        71518 non-null object
          20
              glimepiride
                                        71518 non-null object
                                        71518 non-null object
          21 glipizide
          22
              glyburide
                                        71518 non-null object
          23 pioglitazone
                                        71518 non-null object
          24 rosiglitazone
                                        71518 non-null
                                                        object
          25 insulin
                                        71518 non-null object
          26 change
                                        71518 non-null object
          27
              diabetesMed
                                        71518 non-null
                                                        object
          28
              readmitted
                                        71518 non-null
                                                        object
         dtypes: int64(11), object(18)
```

localhost:8888/notebooks/Untitled Folder 4/Hospital Readmissions.ipynb

memory usage: 16.4+ MB

```
In [84]: #start by setting all values containing E or V into 0 (as one category)
    df.loc[df['diag_1'].str.contains('V',na=False,case=False), 'diag_1'] = 0
    df.loc[df['diag_1'].str.contains('E',na=False,case=False), 'diag_2'] = 0
    df.loc[df['diag_2'].str.contains('V',na=False,case=False), 'diag_2'] = 0
    df.loc[df['diag_3'].str.contains('E',na=False,case=False), 'diag_3'] = 0
    df.loc[df['diag_3'].str.contains('V',na=False,case=False), 'diag_3'] = 0

#setting all missing values into -1
    df['diag_1'] = df['diag_1'].replace('?', -1)
    df['diag_2'] = df['diag_2'].replace('?', -1)

#No all diag values can be converted into numeric values

df['diag_1'] = df['diag_1'].astype(float)

df['diag_2'] = df['diag_2'].astype(float)

df['diag_3'] = df['diag_3'].astype(float)
```

```
In [85]: #Now we will reduce the number of categories in diag features according to ICD-9
          #(Missing values will be grouped as E & V values)
          df['diag 1'].loc[(df['diag 1']>=1) & (df['diag 1']< 140)] = 1
          df['diag 1'].loc[(df['diag 1']>=140) & (df['diag 1']< 240)] = 2</pre>
          df['diag 1'].loc[(df['diag 1']>=240) & (df['diag 1']< 280)] = 3</pre>
          df['diag_1'].loc[(df['diag_1']>=280) & (df['diag_1']< 290)] = 4</pre>
          df['diag_1'].loc[(df['diag_1']>=290) & (df['diag_1']< 320)] = 5</pre>
          df['diag 1'].loc[(df['diag 1']>=320) & (df['diag 1']< 390)] = 6
          df['diag_1'].loc[(df['diag_1']>=390) & (df['diag_1']< 460)] = 7
          df['diag_1'].loc[(df['diag_1']>=460) & (df['diag_1']< 520)] = 8</pre>
          df['diag 1'].loc[(df['diag 1']>=520) & (df['diag 1']< 580)] = 9</pre>
          df['diag_1'].loc[(df['diag_1']>=580) & (df['diag_1']< 630)] = 10</pre>
          df['diag_1'].loc[(df['diag_1']>=630) & (df['diag_1']< 680)] = 11</pre>
          df['diag_1'].loc[(df['diag_1']>=680) & (df['diag_1']< 710)] = 12</pre>
          df['diag 1'].loc[(df['diag 1']>=710) & (df['diag 1']< 740)] = 13
          df['diag_1'].loc[(df['diag_1']>=740) & (df['diag_1']< 760)] = 14</pre>
          df['diag 1'].loc[(df['diag 1']>=760) & (df['diag 1']< 780)] = 15
          df['diag_1'].loc[(df['diag_1']>=780) & (df['diag_1']< 800)] = 16</pre>
          df['diag_1'].loc[(df['diag_1']>=800) & (df['diag_1']< 1000)] = 17</pre>
          df['diag 1'].loc[(df['diag 1']==-1)] = 0
          df['diag 2'].loc[(df['diag 2']>=1) & (df['diag 2']< 140)] = 1</pre>
          df['diag_2'].loc[(df['diag_2']>=140) & (df['diag_2']< 240)] = 2</pre>
          df['diag_2'].loc[(df['diag_2']>=240) & (df['diag_2']< 280)] = 3</pre>
          df['diag_2'].loc[(df['diag_2']>=280) & (df['diag_2']< 290)] = 4</pre>
          df['diag 2'].loc[(df['diag 2']>=290) & (df['diag 2']< 320)] = 5
          df['diag_2'].loc[(df['diag_2']>=320) & (df['diag_2']< 390)] = 6</pre>
          df['diag 2'].loc[(df['diag 2']>=390) & (df['diag 2']< 460)] = 7
          df['diag_2'].loc[(df['diag_2']>=460) & (df['diag_2']< 520)] = 8</pre>
          df['diag_2'].loc[(df['diag_2']>=520) & (df['diag_2']< 580)] = 9</pre>
          df['diag 2'].loc[(df['diag 2']>=580) & (df['diag 2']< 630)] = 10
          df['diag_2'].loc[(df['diag_2']>=630) & (df['diag_2']< 680)] = 11</pre>
          df['diag 2'].loc[(df['diag 2']>=680) & (df['diag 2']<710)] = 12
          df['diag_2'].loc[(df['diag_2']>=710) & (df['diag_2']< 740)] = 13</pre>
          df['diag_2'].loc[(df['diag_2']>=740) & (df['diag_2']< 760)] = 14</pre>
          df['diag_2'].loc[(df['diag_2']>=760) & (df['diag_2']< 780)] = 15</pre>
          df['diag_2'].loc[(df['diag_2']>=780) & (df['diag_2']< 800)] = 16</pre>
          df['diag 2'].loc[(df['diag 2']>=800) & (df['diag 2']< 1000)] = 17</pre>
          df['diag_2'].loc[(df['diag_2']==-1)] = 0
          df['diag_3'].loc[(df['diag_3']>=1) & (df['diag_3']< 140)] = 1</pre>
          df['diag 3'].loc[(df['diag 3']>=140) & (df['diag 3']< 240)] = 2
          df['diag 3'].loc[(df['diag 3']>=240) & (df['diag 3']< 280)] = 3</pre>
          df['diag_3'].loc[(df['diag_3']>=280) & (df['diag_3']< 290)] = 4</pre>
          df['diag_3'].loc[(df['diag_3']>=290) & (df['diag_3']< 320)] = 5</pre>
          df['diag_3'].loc[(df['diag_3']>=320) & (df['diag_3']< 390)] = 6</pre>
          df['diag 3'].loc[(df['diag 3']>=390) & (df['diag 3']< 460)] = 7
          df['diag_3'].loc[(df['diag_3']>=460) & (df['diag_3']< 520)] = 8</pre>
          df['diag 3'].loc[(df['diag 3']>=520) & (df['diag 3']< 580)] = 9</pre>
          df['diag 3'].loc[(df['diag 3']>=580) & (df['diag 3']< 630)] = 10
          df['diag_3'].loc[(df['diag_3']>=630) & (df['diag_3']< 680)] = 11</pre>
          df['diag_3'].loc[(df['diag_3']>=680) & (df['diag_3']< 710)] = 12</pre>
          df['diag_3'].loc[(df['diag_3']>=710) & (df['diag_3']< 740)] = 13</pre>
          df['diag 3'].loc[(df['diag 3']>=740) & (df['diag 3']< 760)] = 14
```

```
df['diag_3'].loc[(df['diag_3']>=760) & (df['diag_3']< 780)] = 15
df['diag_3'].loc[(df['diag_3']>=780) & (df['diag_3']< 800)] = 16
df['diag_3'].loc[(df['diag_3']>=800) & (df['diag_3']< 1000)] = 17
df['diag_3'].loc[(df['diag_3']==-1)] = 0</pre>
```

C:\Users\itzal\anaconda3\lib\site-packages\pandas\core\indexing.py:1732: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_block(indexer, value, name)

```
In [86]: #check the results
         df.diag_1.unique()
Out[86]: array([ 3., 11., 1., 2., 7., 8., 17., 12., 13., 9., 0., 16., 10.,
                 5., 6., 4., 14.])
In [87]: | df['race'] = df['race'].replace('?', 'Other')
         df.race.value counts()
Out[87]: Caucasian
                             53491
         AfricanAmerican
                             12887
         Other
                              3126
         Hispanic
                              1517
         Asian
                               497
         Name: race, dtype: int64
In [88]: df.gender.value counts()
Out[88]: Female
                             38025
         Male
                             33490
         Unknown/Invalid
         Name: gender, dtype: int64
In [89]: |df['gender'] = df['gender'].replace('Unknown/Invalid', 'Female')
         df.gender.value counts()
Out[89]: Female
                   38028
         Male
                   33490
         Name: gender, dtype: int64
In [90]: df['gender'] = df['gender'].replace('Male', 1)
         df['gender'] = df['gender'].replace('Female', 0)
         df.gender.value_counts()
Out[90]: 0
              38028
              33490
         Name: gender, dtype: int64
```

```
In [91]: df.age.value counts()
Out[91]: [70-80)
                      18210
          [60-70)
                      15960
          [50-60)
                      12466
          [80-90)
                      11589
          [40-50)
                       6878
         [30-40)
                       2699
          [90-100)
                       1900
         [20-30)
                       1127
         [10-20)
                        535
         [0-10)
                        154
         Name: age, dtype: int64
In [92]: for i in range(0,10):
             df['age'] = df['age'].replace('['+str(10*i)+'-'+str(10*(i+1))+')', i*10+5)
         df['age'].value counts()
Out[92]: 75
                18210
         65
                15960
         55
                12466
         85
                11589
         45
                 6878
         35
                 2699
         95
                 1900
         25
                 1127
         15
                  535
         5
                  154
         Name: age, dtype: int64
In [93]: df.max_glu_serum.value_counts()
Out[93]: None
                  68062
         Norm
                   1731
         >200
                    969
         >300
                    756
         Name: max_glu_serum, dtype: int64
         df['max glu serum']=df['max glu serum'].replace("None", 0)
In [94]:
         df['max_glu_serum']=df['max_glu_serum'].replace("Norm", 1)
         df['max glu serum']=df['max glu serum'].replace(">200", 2)
         df['max_glu_serum']=df['max_glu_serum'].replace(">300", 3)
         df.max_glu_serum.value_counts()
Out[94]: 0
               68062
                1731
         1
         2
                 969
          3
                 756
         Name: max_glu_serum, dtype: int64
```

```
In [95]: df.A1Cresult.value counts()
 Out[95]: None
                   58532
          >8
                    6304
                    3791
          Norm
          >7
                    2891
          Name: A1Cresult, dtype: int64
 In [96]: df['A1Cresult']=df['A1Cresult'].replace("None", 0)
          df['A1Cresult']=df['A1Cresult'].replace("Norm", 1)
          df['A1Cresult']=df['A1Cresult'].replace(">7", 2)
          df['A1Cresult']=df['A1Cresult'].replace(">8", 3)
 In [97]: df.A1Cresult.value counts()
 Out[97]: 0
               58532
                6304
          3
          1
                3791
          2
                2891
          Name: A1Cresult, dtype: int64
 In [98]: drug_list = ['metformin', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone'
          for i in drug list:
              df[i] = df[i].replace('No', 0)
              df[i] = df[i].replace('Steady', 2)
              df[i] = df[i].replace('Down', 1)
              df[i] = df[i].replace('Up', 3)
 In [99]: df.insulin.value_counts()
 Out[99]: 0
               34921
          2
               22129
          1
                7505
                6963
          Name: insulin, dtype: int64
In [100]: | df.change.value_counts()
Out[100]: No
                39494
                32024
          Name: change, dtype: int64
```

```
In [101]: df['change']=df['change'].replace('No', 0)
          df['change']=df['change'].replace('Ch', 1)
          df.change.value_counts()
Out[101]: 0
               39494
               32024
          Name: change, dtype: int64
In [102]: df.diabetesMed.value_counts()
Out[102]: Yes
                  54319
          No
                  17199
          Name: diabetesMed, dtype: int64
In [103]: | df['diabetesMed']=df['diabetesMed'].replace('Yes', 1)
          df['diabetesMed']=df['diabetesMed'].replace('No', 0)
          df.diabetesMed.value_counts()
Out[103]: 1
               54319
               17199
          Name: diabetesMed, dtype: int64
In [104]: | df.readmitted.value_counts()
Out[104]: NO
                  42985
          >30
                  22240
           <30
                   6293
          Name: readmitted, dtype: int64
In [105]:
          df['readmitted']=df['readmitted'].replace('NO', 0)
          df['readmitted']=df['readmitted'].replace('>30', 1)
          df['readmitted']=df['readmitted'].replace('<30', 2)</pre>
          df.readmitted.value_counts()
Out[105]: 0
               42985
               22240
                 6293
          2
          Name: readmitted, dtype: int64
```

```
In [106]: df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 71518 entries, 0 to 101765 Data columns (total 29 columns):

	Columns (cocal 25 columns,		Б.		
#	Column	Non-Null Count	Dtype		
0	race	71518 non-null	object		
1	gender	71518 non-null	int64		
2	age	71518 non-null	int64		
3	admission_type_id	71518 non-null	int64		
4	discharge_disposition_id	71518 non-null	int64		
5	admission_source_id	71518 non-null	int64		
6	time_in_hospital	71518 non-null	int64		
7	num_lab_procedures	71518 non-null	int64		
8	num_procedures	71518 non-null	int64		
9	num_medications	71518 non-null	int64		
10	number_outpatient	71518 non-null	int64		
11	number_emergency	71518 non-null	int64		
12	number_inpatient	71518 non-null	int64		
13	diag_1	71518 non-null	float64		
14	diag_2	71518 non-null	float64		
15	diag_3	71518 non-null	float64		
16	number_diagnoses	71518 non-null	int64		
17	max_glu_serum	71518 non-null	int64		
18	A1Cresult	71518 non-null	int64		
19	metformin	71518 non-null	int64		
20	glimepiride	71518 non-null	int64		
21	glipizide	71518 non-null	int64		
22	glyburide	71518 non-null	int64		
23	pioglitazone	71518 non-null	int64		
24	rosiglitazone	71518 non-null	int64		
25	insulin	71518 non-null	int64		
26	change	71518 non-null	int64		
27	diabetesMed	71518 non-null	int64		
28	readmitted	71518 non-null	int64		
dtype	es: float64(3), int64(25),	object(1)			
memory usage: 16.4+ MB					

```
In [107]: matrix = np.triu(df.corr())
    fig, ax = plt.subplots(figsize=(16,16))
    sns.heatmap(df.corr(), annot=True, ax=ax, fmt='.1g', vmin=-1, vmax=1, center= 0,
    plt.show()
```



```
In [108]: fig = plt.figure(figsize=(18, 6))

ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax4 = fig.add_subplot(2, 2, 4)

sns.countplot(data=df, x='race', hue='readmitted', ax=ax1)
sns.countplot(data=df, x='age', hue='readmitted', ax=ax2)
sns.countplot(data=df, x='gender', hue='readmitted', ax=ax3)
sns.countplot(data=df, x='diabetesMed', hue='readmitted', ax=ax4)

ax1.legend(loc='upper right')
ax2.legend(loc='upper right')
ax3.legend(loc='upper right')
ax4.legend(loc='upper right')
plt.tight_layout()
plt.show()
```



```
In [109]:
          fig, ax = plt.subplots(1, 7,figsize=(20, 4), subplot kw=dict(aspect="equal"))
          ax[0].pie(df['metformin'].value_counts(), autopct='%1.0f%%', labels=['No', 'Stead
          ax[0].set title('metformin Dosage')
          ax[1].pie(df['glimepiride'].value counts(), autopct='%1.0f%%', labels=['No', 'Ste
          ax[1].set title('glimepiride Dosage')
          ax[2].pie(df['glipizide'].value_counts(), autopct='%1.0f%%', labels=['No', 'Stead
          ax[2].set title('glipizide Dosage')
          ax[3].pie(df['glyburide'].value counts(), autopct='%1.0f%%', labels=['No', 'Stead
          ax[3].set title('glyburide Dosage')
          ax[4].pie(df['pioglitazone'].value_counts(), autopct='%1.0f%%', labels=['No', 'St
          ax[4].set title('pioglitazone Dosage')
          ax[5].pie(df['rosiglitazone'].value_counts(), autopct='%1.0f%%', labels=['No', '$
          ax[5].set_title('rosiglitazone Dosage')
          ax[6].pie(df['insulin'].value counts(), autopct='%1.0f%%', labels=['No', 'Steady
          ax[6].set title('insulin Dosage')
          fig.suptitle('Drugs Dosage Changes During Encounter')
          plt.show()
```

Drugs Dosage Changes During Encounter


```
In [110]: fig = plt.figure(figsize=(12,6))
    ax=sns.kdeplot(df.loc[(df['readmitted'] == 0),'time_in_hospital'] , color='b',sha
    ax=sns.kdeplot(df.loc[(df['readmitted'] == 1),'time_in_hospital'] , color='r',sha
    ax=sns.kdeplot(df.loc[(df['readmitted'] == 2),'time_in_hospital'] , color='y',sha
    ax.set(xlabel='Time in Hospital (days)', ylabel='Frequency')
    plt.title('Time in Hospital VS. Readmission')
```

Out[110]: Text(0.5, 1.0, 'Time in Hospital VS. Readmission')


```
In [111]: | df = pd.concat([df,pd.get_dummies(df['race'], prefix='race')], axis=1).drop(['race'])
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 71518 entries, 0 to 101765
          Data columns (total 33 columns):
               Column
                                         Non-Null Count Dtype
          - - -
           0
               gender
                                         71518 non-null
                                                         int64
                                         71518 non-null int64
           1
               age
           2
               admission_type_id
                                         71518 non-null int64
           3
               discharge disposition id
                                         71518 non-null int64
               admission source id
           4
                                         71518 non-null
                                                         int64
           5
               time in hospital
                                         71518 non-null int64
           6
               num_lab_procedures
                                         71518 non-null int64
           7
               num procedures
                                         71518 non-null
                                                        int64
           8
               num medications
                                         71518 non-null int64
           9
               number outpatient
                                         71518 non-null
                                                         int64
           10 number_emergency
                                         71518 non-null int64
           11 number_inpatient
                                         71518 non-null int64
           12 diag 1
                                         71518 non-null float64
           13 diag 2
                                         71518 non-null float64
           14 diag 3
                                         71518 non-null float64
           15 number diagnoses
                                         71518 non-null int64
               max_glu_serum
                                         71518 non-null int64
           16
           17
               A1Cresult
                                         71518 non-null int64
           18
               metformin
                                         71518 non-null int64
           19
               glimepiride
                                         71518 non-null
                                                         int64
           20
                                         71518 non-null
               glipizide
                                                         int64
           21 glyburide
                                         71518 non-null
                                                         int64
           22 pioglitazone
                                         71518 non-null
                                                        int64
           23 rosiglitazone
                                         71518 non-null int64
           24
               insulin
                                         71518 non-null
                                                         int64
           25 change
                                         71518 non-null int64
           26 diabetesMed
                                         71518 non-null int64
           27
               readmitted
                                         71518 non-null
                                                        int64
           28 race AfricanAmerican
                                         71518 non-null uint8
           29 race Asian
                                         71518 non-null
                                                         uint8
           30 race Caucasian
                                         71518 non-null uint8
           31
               race_Hispanic
                                         71518 non-null
                                                         uint8
               race Other
                                         71518 non-null
                                                         uint8
          dtypes: float64(3), int64(25), uint8(5)
          memory usage: 18.2 MB
In [112]: df.shape
Out[112]: (71518, 33)
 In [42]: y = df['readmitted']
          X = df.drop(['readmitted'], axis=1)
```

```
In [113]: y.value_counts()
Out[113]: 0
               42985
                22240
                 6293
          Name: readmitted, dtype: int64
In [114]: from imblearn.over_sampling import SMOTE
In [115]: | smote = SMOTE(sampling_strategy = 'minority')
In [117]: | x_sm, y_sm = smote.fit_resample(X,y)
In [118]: y_sm.value_counts()
Out[118]: 0
               42985
               42985
               22240
          1
          Name: readmitted, dtype: int64
In [120]: #training and testing 80 20 split
In [121]: X_train, X_test, y_train, y_test = train_test_split(x_sm,y_sm, test_size=0.2, rar
In [127]: y_test.value_counts()
Out[127]: 0
               8670
               8586
               4386
          1
          Name: readmitted, dtype: int64
In [124]: y_train.shape
Out[124]: (86568,)
In [126]: X_test.shape
Out[126]: (21642, 32)
In [128]: # Model Building
In [129]: | rf = RandomForestClassifier()
          rf.fit(X_train,y_train)
Out[129]: RandomForestClassifier()
In [130]: y_pred = rf.predict(X_test)
```

```
In [134]: rf.score(X_test,y_test) #Accuracy on test dataset

Out[134]: 0.7345439423343498

In [149]: rf.n_estimators

Out[149]: 200

In [135]: rf.score(X_train,y_train) # Accuracy on train dataset

Out[135]: 0.9999768967747897
```

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f
eature names

warnings.warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:550: Use rWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.

warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f
eature names

warnings.warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:550: Use rWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.

warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f
eature names

warnings.warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:550: Use rWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.

warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f
eature names

warnings.warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:550: Use rWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.

warn

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f
eature names

warnings.warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:550: Use rWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.

warn(

C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
does not have valid feature names, but RandomForestClassifier was fitted with f

eature names

warnings.warn(

```
C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
          does not have valid feature names, but RandomForestClassifier was fitted with f
          eature names
            warnings.warn(
          C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
          does not have valid feature names, but RandomForestClassifier was fitted with f
          eature names
            warnings.warn(
          C:\Users\itzal\anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
          does not have valid feature names, but RandomForestClassifier was fitted with f
          eature names
            warnings.warn(
In [145]: test results
Out[145]: [0.5937066814527308,
           0.6272987709084188,
           0.6643101376952223,
           0.6936974401626467,
           0.7111634784215877,
           0.7258109232048794,
           0.7314019037057573,
           0.735329451991498,
           0.7372239164587376]
In [147]: train_results
Out[147]: [0.8491012845393217,
           0.8570950004620645,
           0.9410636724886794,
           0.9817715553091212,
           0.997008132335274,
           0.9996534516218464,
           0.9999653451621846,
           0.9999768967747897,
           0.9999768967747897]
In [148]: | oob_score_results
Out[148]: [0.46814065243507996,
           0.5224678865169577,
           0.5819817946585343,
           0.6353848997320026,
           0.678483966361704,
           0.7044057850475927,
           0.7206011459199704,
           0.7274859070326217,
           0.7350753165141853
In [136]: # Confusion matrix
In [151]: y predicted2 = rf.predict(X train) #confusion matrix on the train set
```

```
In [152]: cm2 = confusion_matrix(y_train,y_predicted2) #confusion matrix on the train set
In [153]: cm2
Out[153]: array([[34314,
                                      1],
                       0, 17854,
                                      0],
                              0, 34398]], dtype=int64)
In [154]: plt.figure(figsize=(10,7))
           sns.heatmap(cm2,annot=True)
           plt.xlabel('Predicted')
          plt.ylabel('Truth')
Out[154]: Text(69.0, 0.5, 'Truth')
                                                                                    - 30000
                        3.4e+04
                                                                                    - 25000
                                                                                    - 20000
                                            1.8e+04
                                                                                    - 15000
                                                                                    - 10000
                                                                3.4e + 04
                                                                                    - 5000
                                                                   2
                                           Predicted
In [137]: y_predicted = rf.predict(X_test) # confusion matrix on the test set
In [138]: cm = confusion_matrix(y_test, y_predicted) # confusion matrix on the test set
           cm
Out[138]: array([[7740,
                          612,
                                318],
                          654,
                                183],
                  [3549,
                  [ 943, 140, 7503]], dtype=int64)
```

```
In [141]: plt.figure(figsize=(10,7))
    sns.heatmap(cm,annot=True)
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
```

Out[141]: Text(69.0, 0.5, 'Truth')


```
In [155]: #define a list that has all feature names
predictors = [x for x in X_train.columns]

feat_imp = pd.Series(rf.feature_importances_, predictors).sort_values(ascending=Fig = plt.figure(figsize=(12, 6))
    feat_imp.plot(kind='bar', title='Feature Importances')
    plt.ylabel('Feature Importance Score')
```

Out[155]: Text(0, 0.5, 'Feature Importance Score')

