Aula

Desenvolvimento de Aplicativos para Dispositivos Móveis

Professor Marcus Paulo de Q. Amorim

Características do paradigma estruturado:

- Sequência: as instruções (comandos) são executadas em uma sequência predeterminada – de cima para baixo
- Decisão: em função de uma expressão lógica, um bloco de instruções é executado em detrimento de outros
- Repetição: um bloco de instruções pode ser executado repetidamente (loop)
- Qualquer programa estruturado pode ser descrito utilizando esses três elementos básicos.
- Esses elementos podem ser representados graficamente, para facilitar o projeto de algoritmos.

(Também denominado de diagrama de fluxo e não fluxograma) é uma ferramenta usada e desenvolvida pelo profissional que está envolvido diretamente com a programação, tendo como objetivo descrever o método e a sequência do processo dos planos num computador, pode ser desenvolvido em qualquer nível de detalhe que seja necessário, seu nível de detalhamento pode chegar até as instruções.

- •Para desenvolver um diagrama correto, deve-se considerar como procedimentos prioritários os itens seguintes:
- 1) Os diagramas de blocos devem ser feitos e quebrados em níveis.
- 2) Para o desenvolvimento correto de um diagrama, ele deve ser iniciado de cima para baixo.
- 3) É incorreto e "proibido" ocorrer cruzamento das linhas de fluxo de dados.

- •Tomemos uma escola como exemplo, em que o cálculo da média é realizado por quatro notas bimestrais que determinam a aprovação ou reprovação dos alunos. Considere ainda, que a média deve ser maior ou igual a 7 para que haja aprovação.
- •Primeira etapa do Diagrama de Blocos sem detalhamento.

•A segunda etapa apresenta um detalhamento no que se refere a entrada e saída, ou seja, deve-se entrar com 4 notas para se obter como resultado, o cálculo da média e assim definir a aprovação ou reprovação do aluno.

- •A terceira etapa consiste em trabalhar o termo "determinar a aprovação". Para ser possível determinar algo, é necessário estabelecer uma condição.
- •Uma condição envolve uma decisão a ser tomada segundo um determinado resultado. No caso, a média.
- •Desta forma, a condição de aprovação: média maior ou igual a 7, deve ser considerada no algoritmo.

- •A quarta etapa envolve o desenvolvimento do Diagrama com mais detalhamento ainda com a utilização de variáveis.
- •Muitas vezes é preferível construir o Diagrama de Blocos trabalhando com variáveis.

Problema de decisão

• Exemplo: Informe o maior número entre dois números N1 e N2 informados.

Problema de decisão

Algoritmo em pseudocódigo

Le N1, N2
 Se N1 > N2
 então escreve "N1 é maior"
 senão escreve "N2 é maior"

Programa com repetição contável

 Exemplo: Liste todos os números ímpares de 1 a 100.

Programa com repetição contável

(imprimir os números acrescentando 2 ao número anterior)

 Para I variando de 1 a 100, com passo 2 Imprima I

Problema com repetição condicional

 <u>Exemplo</u>: Some todos os números informados até que o número <u>zero</u> seja informado.
 No final, informe a soma.

Problema com repetição condicional

Algoritmo

É um processo de cálculo matemático ou de resolução de um grupo de problemas semelhantes, pode-se dizer que são regras formais para obtenção de um resultado ou da solução de um problema, englobando fórmulas de expressões aritméticas.

Algoritmo (Exemplo)

EXERCÍCIOS EXEMPLOS

- Exemplo 01
 - Faça um algoritmo que leia 2 números e depois apresente a soma entre eles

```
Algoritmo
Inteiro: n1;
Inteiro: n2;
Inteiro: res;
escreva("Digite o prieiro número: ");
leia(n1);
escreva("Digite o segundo número: ");
leia(n2);
res ← (n1+n2);

v escreva("O resultado é: ",res);
fimalgoritmo
```

Características

 Antes de dar como terminado o algoritmo, é importante testar! Faça uso do método Chinês.
 Dê especial atenção para os momentos extremos, como início e término de uma repetição

 <u>Método Chinês</u>: ler o algoritmo do início ao fim, obedecendo cada uma das instruções e anotando os valores de cada variável em uma folha de papel. Ao final, será possível identificar se alguma instrução está se comportando de forma inapropriada.

Princípios de Resolução de Problemas

Problema é uma questão que foge a uma determinada regra, ou melhor, é o desvio de um percurso, o qual impede de atingir um determinado objetivo com eficiência e eficácia.

Diferentes das diagramações clássicas, que não fornecem grandes subsídios para análise, os diagramas de blocos são realmente o melhor instrumento para avaliação do problema do fluxo de informações de um dado sistema.

Exercícios

Diagrama de Blocos (Exercício)

Desenvolva um fluxograma que:

- Leia 2 números
- Calcule a média
- Mostre o resultado (Aprovado / Reprovado).

QBS.: Leve em consideração que a média para aprovação é 7.

(Resposta)

Português Estruturado

Técnica narrativa denominada pseudocódigo, ou chamado por alguns de Portugol, é baseada em PDL (Program Design Language- Linguagem de Projeto de programação).

Português Estruturado

programa MÉDIA var RESULTADO : caractere N1, N2, N3, N4 : real SOMA, MÉDIA : real início leia N1, N2, N3, N4 SOMA ← N1 + N2 + N3 + N4 MÉDIA ← SOMA / 4 se (MÉDIA >= 7) então RESULTADO ← "Aprovado" senão RESULTADO ← "Reprovado" fim se escreva "Nota 1: ", N1 escreva "Nota 2: ", N2 escreva "Nota 3: ", N3 escreva "Nota 4: ", N4 escreva "Soma: ", SOMA escreva "Média: ", MÉDIA escreva "Resultado: ", RESULTADO fim

Tipos de Informação

Um computador nada mais é do que uma ferramenta utilizada para solucionar problemas que envolvam a manipulação de informações, sendo que essas informações classificam-se a grosso modo em dois tipos básicos: dados e instruções.

Tipos de Dados

Os dados são representados pelas informações a serem tratadas (processadas) por um computador. Essas informações estão caracterizadas por três tipos de dados, a saber: dados numéricos (inteiros e reais), dados caracteres e dados lógicos.

O PORTUGOL é uma pseudolinguagem de programação. A ideia é permitir que com um conjunto básico de primitivas seja possível ao projetista pensar no problema e não na máquina que vai executar o algoritmo e, por outro lado, não fique muito distante desta mesma máquina.

Em outra perspectiva, que o projetista possa pensar na solução do problema e que esta solução seja facilmente implementada no computador.

Definição de Variáveis

Podemos imaginar uma variável como o nome de um local onde se pode colocar qualquer valor do conjunto de valores possíveis do tipo básico associado. O nome da variável é um identificador.

Um identificador é formado por um ou mais caracteres, sendo que o primeiro caracter deve, obrigatóriamente, ser uma letra e os seguintes, letras ou dígitos, não sendo permitidos o uso de símbolos especiais.

01

Definição de Variáveis

Exemplos:

Variáveis válidas:

NOMEUSUARIO, FONE1, X, DELTA25, Z4.

Variáveis inválidas:

NOME USUARIO, FONE#, 1X, ESCREVA.

Declaração de Variáveis - Tipos Básicos - Guimarães / Lages

No PORTUGOL, temos quatro tipos básicos, isto é, tipos básicos de dados que podem ser utilizados:

INTEIRO: qualquer número inteiro, negativo, nulo ou positivo.

Ex: -5, 0, 235.

REAL: qualquer número real, negativo, nulo ou positivo.

Ex: -5, 0, 30.5, 40.

CARACTER: qualquer conjunto de caracteres alfanuméricos.

Ex: "AB", "XYZ", "ABACATE".

<u>LÓGICO:</u> conjunto de valores FALSO ou VERDADEIRO em proposições lógicas.

Constantes

É tudo aquilo que é fixo ou estável. E existirão vários momentos em que este conceito deverá estar em uso.

Por exemplo, o valor 1.23 da fórmula seguinte é uma constante: RESULTADO = ENTRADA * 1.23

Declaração de Variáveis - Guimarães / Lages

Toda declaração de variáveis tem a seguinte forma:

Exemplos de declaração de variáveis:

inteiro: X1;

real: A, B;

caracter: FRASE, NOME;

02

PORTUGOL

Declaração de Variáveis - Farrel

Toda declaração de variáveis tem a seguinte forma:

declare lista-de-identificadores nome-do-tipo

Onde:

Declare:	é uma palavra-chave do algoritmo;
Lista-de-identificadores:	são os nomes escolhidos para as variáveis que devem estar separados por vírgula;
Nome-do-tipo:	é uma das três palavras-chaves, numérico, lógico ou literal, que indicam o tipo associado às variáveis.

Exemplo:

declare NOTA, CÓDIGO, X5 <u>numérico</u>; declare TESTE, SIM <u>lógico</u>;

Comando de Atribuição

Para a atribuição de um valor a uma variável, usaremos o símbolo de atribuição ←, que tem um caráter imperativo.

A sintaxe do comando é: identificador ← expressão;

Onde:

Identificador é o nome da variável à qual está sendo atribuído o valor;

← é o símbolo de atribuição;

Expressão pode ser uma expressão aritmética, expressão lógica ou literal de cuja avaliação é obtido o valor a ser atribuído à variável.

Comentários

É muito importante um algoritmo com clareza, ou seja, o grau de facilidade que as pessoas terão em compreender o que nele está descrito.

Um instrumento de grande valia usado para esta finalidade denomina-se comentário. Ele é um texto, ou simplesmente uma frase, que aparece sempre delimitado por chaves {comentário}.

Comentários

Podem ser colocados em qualquer ponto do algoritmo onde se façam necessários.

No exemplo abaixo é mostrado um conjunto de declarações onde foram introduzidos comentários com o intuito de explicar o significado de cada uma das variáveis.

Exemplo:

<u>declare</u> MAT, {número de matrícula do aluno}

NOTA, {total de pontos obtidos no semestre}

COD {código do curso}

<u>numérico</u>

Operadores Aritméticos

Além dos símbolos das quatro operações básicas +, -, *, /, usaremos símbolos para raiz quadrada ($\sqrt{\ }$) e exponenciação, por exemplo:

- a) X + Y:
- b) X Y:
- c) 2 × NOTA;

- d) TOTAL/N;
- e) \sqrt{P} ;
- n soma²;

- g) $\sqrt{Fl + G^2} H$;
- h) $A \times B + C$:
- i) $TOT/M + K^{\tau}$.

Denomina-se expressão aritmética aquela cujos operadores são aritméticos e cujos operandos são constantes e/ou variáveis do tipo numérico,

Operadores Aritméticos - Funções

Além das operações básicas, anteriormente citadas, podem-se usar nas expressões aritméticas algumas funções muito comuns na Matemática. Na tabela 1.2. encontram-se algumas das principais funções existentes e o resultado fornecido por cada uma delas.

Nome	Resultado
LOG(EA)	logaritmo na base 10 de EA
LN (EA)	logaritmo neperiano de EA
EXP(EA)	o número e (base dos logaritmos neperianos) elevado a EA
ABS(EA)	valor absoluto de EA
TRUNCA (EA)	a parte inteira de um número fracionário
ARREDONDA (EA)	transforma, por arredondamento, um número fracionário em inteiro
SINAL (EA)	fornecer o valor -1. +1 ou zero conforme o valor de EA seja negativo,
	positivo ou igual a zero
QUOCIENTE (EAx. EAy)	quociente inteiro da divisão de EAx por EAy
RESTO (EAx, Eay)	resto da divisão de EAx por Eay

Operadores Aritméticos - Funções

A função atua sobre um argumento numérico, que é o resultado obtido após a avaliação da expressão aritmética entre parênteses. As palavras que designam as funções são escritas com letras maiúsculas.

Exemplos:

```
X+ SEN (A + B +C);
QUOCIENTE (NOTA,2) x 100 + T;
x + LN(Y) - ABS (A - B);
W - G x F x SINAL (C + D).
```

Operadores Aritméticos – Funções – Guimarães / Lages

Div: fornece o resultado da divisão inteira de duas variáveis inteiras.

Ex.: sendo A e B variáveis inteiras, então se A = 5; B = 2;

C = A div B; Tem como resultado: 2.

Mod: fornece o resto da divisão entre duas variáveis inteiras.

Ex.: sendo A e B variáveis inteiras, então se A = 16; B = 6;

C = A mod B; Tem como resultado: 4.

Operadores Aritméticos – Funções - Farrel

Exemplos com explicação:

Sendo A,B,X,Y variáveis do tipo numérico, quais os resultados fornecidos por cada uma das seguintes funções, onde A = 10, B = 3, X = 2,5 e Y = 1,2.

Operadores Aritméticos - Funções

Exemplos com explicação:

Sendo A,B,X,Y variáveis do tipo numérico, quais os resultados fornecidos por cada uma das seguintes funções, onde A = 10, B = 3, X = 2,5 e Y = 1,2.

SINAL
$$(X + Y - A)$$
, SINAL $(A - B^2 + Y)$ e SINAL $(A - 4 * X)$

SINAL
$$(X + Y - A) = SINAL (2,5 + 1,2 - 10) = SINAL (-6,3) = -1$$

SINAL $(A - B^2 + Y) = SINAL (10 - 9 + 1,2) = SINAL (2,2) = 1$
SINAL $(A - 4 * X) = SINAL (10 - 4 X 2,5) = SINAL (0) = 0$

Operadores Aritméticos - Funções

Exemplos com explicação:

Sendo A,B,X,Y variáveis do tipo numérico, quais os resultados fornecidos por cada uma das seguintes funções, onde A = 10, B = 3, X = 2,5 e Y = 1,2.

ARREDONDA (A - X), ARREDONDA (B + Y) e ARREDONDA (Y - X)

ARREDONDA (A - X) = ARREDONDA (10 - 2,5) = ARREDONDA (7,5) = 8 ARREDONDA (B + Y) = ARREDONDA (3 + 1,2) = ARREDONDA (4,2) = 4 ARREDONDA (Y - X) = ARREDONDA (1,2 - 2,5) = ARREDONDA (-1,3) = -1

Operadores Aritméticos - Funções

Exemplos com explicação:

Sendo A,B,X,Y variáveis do tipo numérico, quais os resultados fornecidos por cada uma das seguintes funções, onde A = 10, B = 3, X = 2,5 e Y = 1,2.

TRUNCA ($B^2 + X$), TRUNCA (A/3 + 1) e TRUNCA (X - 3,2)

TRUNCA ($B^2 + X$) = TRUNCA (9 + 2,5) = TRUNCA (11,5) = 11 TRUNCA (A/3 + 1) = TRUNCA (3,333 + 1) = TRUNCA (4,333) = 4 TRUNCA (X - 3,2) = TRUNCA (2,5 - 3,2) = TRUNCA (-0,7) = O

Operadores Aritméticos - Funções

Exemplos com explicação:

Sendo A,B,X.Y variáveis do tipo numérico, quais os resultados fornecidos por cada uma das seguintes funções, onde A = 10, B = 3, X = 2,5 e Y = 1,2.

ABS
$$(A - B^3)$$
 e ABS $(A - B)$
ABS $(A - B^3)$ = ABS $(10 - 27)$ = ABS (-17) = 17
ABS $(A - B)$ = ABS $(10 - 3)$ = ABS (7) = 7

EXERCÍCIOS

Sendo P, Q, R e S variáveis do tipo numérico, cujos conteúdos são iguais a 2, 3, 12 e 4.5, respectivamente, quais os valores fornecidos por cada uma das expressões aritméticas abaixo?

b)
$$P * MOD(R,5) - Q/2$$

2 x 2 - 1.5 = 2.5

c)
$$SINAL(S - R) + TRUNCA(S)$$

-1 + 4 = 3

d) R + P
$$\uparrow$$
2 + ARREDONDA(S)
12 + 4 + 5 = 21

e)
$$MOD(R, P + 3) - Q * R$$

2 - 36 = -34

f) 1 + DIV(R + Q, Q
$$\uparrow$$
2) * SINAL(2 * P * Q - R)
1 + 1 x 0 = 1