Extensions of Options Theory

Barrier Options

Knock-out (KO) option is an ordinary European optin which ceases to exist if the barrier H is reached by the price of its underlying asset.

Knock-in (KI) option comes into existence if a certain barrier is reached.

	call	put
knock-out	down-and-out	up-and-out
	$(H < S \le \infty)$	$(0 \le S < H)$
knock-in	down-and-in	up-and-in
	$(0 \le S < H)$	$(H < S \le \infty)$

The value of a European barrier options on a stock paying a dividend yield of q is

• Down-and-in call

$$Se^{-q\tau} \Big(\frac{H}{S}\Big)^{2\lambda} \mathcal{N}(x) - Xe^{-r\tau} \Big(\frac{H}{S}\Big)^{2\lambda-2} \mathcal{N}(x - \sigma\sqrt{\tau})$$

where

$$x = \frac{\ln(H^2/SX) + (r - q + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}$$
$$\lambda = \frac{(r - q + \sigma^2/2)}{\sigma^2}$$

- Down-and-out call
 Can be priced via the in-out parity.
- Up-and-in put

$$Xe^{-r\tau} \left(\frac{H}{S}\right)^{2\lambda-2} N(-x + \sigma\sqrt{\tau}) - Se^{-q\tau} \left(\frac{H}{S}\right)^{2\lambda} N(-x)$$

Up-and-out put
 Can be priced via the in-out parity.

Binomial Tree Algorithms

Barrier options can be priced by binomial tree algorithms.

Example: Down-and-out

$$S = 8, X = 6, H = 4, R = 1.25, u = 2, \text{ and } d = 0.5.$$

Backward-induction: $C = (0.5 \times C_u + 0.5 \times C_d)/1.25.$

backward reduction:碰到 H 這條線的點全部設爲 (),其餘不變,線以下的點都不用繼續算。

But convergence is erratic because H is not at a price level on the tree.

H 不一定會剛好落在 tree 的某個點上,在做 backward reduction 不得已把 H 往上或往下移 到某個存在的股價上 (edge 被移動)。不同的 N (# of periods),edge 都不一樣,等同於 解不同的 barrier option,故收斂效果差。

Path-Dependent Derivatives

Its value depends only on the underlying asset's terminal price regardless of how it gets there. **Average-rate options**: also called **Asian options**.

- Arithmetic average-rate call's terminal value: $\max\left(\frac{1}{n+1}\sum_{i=0}^{n}S_{i}-X,0\right)$
- Arithmetic average-rate put's terminal value: $\max \left(X \frac{1}{n+1} \sum_{i=0}^{n} S_i, 0\right)$

Lookback option: Strike price isn't fixed.

- Terminal payoff of lookback call option on the minimum: $S_n \min_{0 \le i \le n} S_i$
- \bullet Terminal payoff of lookback put option on the maximum: $\max_{0 \leq i \leq n} S_i S_n$
- Terminal payoff of fixed-strike lookback call option: max $(\max_{0 \le i \le n} S_i X, 0)$
- Terminal payoff of fixed-strike lookback put option: $\max (X \max_{0 \le i \le n} S_i, 0)$

Average-strike options: lookback calls and puts on the average (instead of a constant X).

Average-Rate Options (Asian Options)

The binomial tree for the averages does not combine.

State for the Asian option: the tuple

where i is the time, S is the prevailing stock price, and P is the running sum. For the binomial model, the state transition is:

$$\nearrow \quad (i+1,Su,P+Su), \text{ for the up move}$$

$$(i,S,P)$$

$$\searrow \quad (i+1,Sd,P+Sd), \text{ for the down move}$$

Approximation Algorithm for Asian Options (Based on BOPM)

Step 1: Running Average

Let N(j,i) denotes the node at time j with the underlying asset price equal to $S_0u^{j-i}d^i$. The running sum at node $N(j,i)=\sum_{m=0}^{j}S_m$

先乘 u 在乘 d 必定最大因無人可穿越他

• The running sum has a maximum value:

$$S_0(1 + u + u^2 + \dots + u^{j-i} + u^{j-i}d + u^{j-i}d^i)$$

$$= S_0 \frac{1 - u^{j-i+1}}{1 - u} + S_0 u^{j-i}d \frac{1 - d^i}{1 - d}$$

Running averages: divide this value by j + 1 and call it $A_{\text{max}}(j, i)$.

• The running sum has a minimum value:

$$S_0(1+d+d^2+\ldots+d^{j-i}+d^{j-i}u+d^{j-i}u^i)$$

$$=S_0\frac{1-d^{i+1}}{1-d}+S_0d^iu\frac{1-u^{j-i}}{1-u}$$

Running averages: divide this value by j + 1 and call it $A_{\min}(j, i)$.

All averages must lie between $A_{\min(j,i)}$ and $A_{\max(j,i)}$

Step 2: Bucketing

Pick k+1 equally spaced values in range $[A_{\min(j,i)}, A_{\max(j,i)}]$ and treat them as the true and only running averages. For m=0,1,...,k

$$A_m(j,i) = \left(\frac{k-m}{k}\right) A_{\min}(j,i) + \left(\frac{m}{k}\right) A_{\max}(j,i)$$

Bucketing introduces errors, but it works reasonably well in practice.

A better alternative picks values whose logarithms are equally spaced.

Step 3: Backward induction

Calculates the option values at each node for the k+1 running averages.

Suppose the current node is N(j,i) and the running average is a.

Assume the next node is N(j+1,i) after an up move.

1. Calculate A_u

Asset price: $S_0 u^{j+1-i} d^i$

New running average:

$$A_u = \frac{(j+1)a + S_0 u^{j+1-i} d^i}{j+2}$$

2. Find l

Since A_u is not likely to be one of the k+1 running averages at N(j+1,i), it's required to find the 2 running average that bracket A_u :

$$A_l(j+1,i) \le A_u < A_{l+1}(j+1,i)$$

In "most" cases, the fastest way to nail l is via:

$$l = \left\lfloor \frac{A_u - A_{\min}(j+1,i)}{[A_{\max}(j+1,i) - A_{\min}(j+1,i)]/k} \right\rfloor$$

But watch out for some rare case,

- $A_u = A_l(j+1,i)$ for some l
- $A_u = A_{\max}(j+1,i)$
- $A_0(j+1,i) = ... = A_k(j+1,i)$, which happen along extreme paths

3. Find x

Express A_u as a linearly interpolated value of the two running averages:

$$A_{ij} = xA_{i}(i+1,i) + (1-x)A_{i+1}(i+1,i), 0 < x < 1$$

4. Calculate C_u

Obtain the approximate option value given the running average A_u via

$$C_{ii} = xC_{l}(j+1,i) + (1-x)C_{l+1}(j+1,i)$$

where $C_l(t,s)$ denotes the option value at node N(t,s) with running average $A_l(t,s)$.

The same steps are repeated for the down node N(j+1, i+1) to obtain another approximate option value C_d .

Finally obtain the option value

$$[pC_u + (1-p)C_d]e^{-r\Delta t}$$

For the calculations at time step n-1, no interpolation is needed.

The option values for calls are simply

$$C_u = \max(A_u - X, 0)$$

$$C_d = \max(A_d - X, 0)$$

Remark on Asian Option Pricing

Running time: $O(kn^2)$ where there are $O(n^2)$ nodes and each node has O(k) buckets.

To guarantee convergence, k needs to grow with n at least.