ELEC 3300 Introduction to Embedded Systems

Topic 2

More about Embedded Systems
Prof. Tim Woo

Expected Outcomes

- On successful completion of this topic, you will be able to
 - Draft the project plan from your abstract idea
 - Investigate your design concept of an embedded systems

Project Design from abstract idea to implementation

How do engineers solve daily life problems?

How do engineers solve daily life problems?

http://stem.mpls.k12.mn.us/

Problem Solving

We have to consider 6 components but not limited to these

	Description	Choices in this course	
Products	Abstract idea of project (Define the functionality of the system)	Many	
	Data format / representation	Many	1.8
	Programming Language	C-language	10
	Communication Protocol	Many	18
	Physical connection (Pins assignment)	Many	
_	Hardware devices (Microcontroller, Peripherals)	Microcontroller: STM32 ARM Planer Peripherals: Many	atform

Some inquiries, but not limited to these

Let's start from a simple project idea:

Product

A device is used to monitor and control the temperature of this lecture room.

Do you have any additional features in the design?

Some inquiries may help you to explore the features, but not limited to

Take another example: Fan control

Products

Now, you are asked to enhance the design of Fan control system.
Which features do you have in the design?

Another example:

Products

Which features of monitor do you ask for?

We have to consider 6 components but not limited to these

	Description	Choices in this	course	
Products	Abstract idea of project (Define the functionality of the system)	Many		
\bigcap	Data format / representation	Many		
	Programming Language	C-language	This is the part	
	Communication Protocol	Many	we have to fill up.	
	Physical connection (Pins assignment)	Many		
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: Peripherals: Mar	STM32 ARM Platforn	n

Get to know the hardware devices and their characteristics

Common Cathode Common

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

How to connect the embedded system board to other device(s)?

Pins assignment

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Connect other devices

Typical concerns when we connect other devices to the embedded system board:

- Physical Connections
 - GPIO
 - Serial port / USB port

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Connect other devices

Typical concerns when we connect other devices to the embedded system board:

- Communication Protocol
 - Example: TCP/IP, USB, I²C
- This includes
 - Signal Types
 - Signal Direction flow

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

- Programming Language
- Control other devices

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

How to program the MCU board to control other device(s)?

High-level and low-level programming languages

High-level Language

```
void main()
{
    int i, z = 0;

for (i = 10, i>0,i--)
    {
      z+=i;
    }
}
```

Low-level Language

```
ORG 00H

MOV A, #0 ; A is accumulator
; for addition operation
MOV R0, #0 ; Assign: R0 = z
MOV R1, #10 ; Assign: R1 = i

LOOP:
ADD A, R1
DJNZ R1, LOOP
MOV R0, A

END
```

High-level and low-level programming languages

High-level Language

Trade-offs

Low-level Language

Programming skills - Easier

Limited Flexibility in variable declaration (R0, R1, etc.)

Handling codes in libraries

Higher Execution speed

Memory limitations of exe file

From high-level programming languages to program running

Typical method on bringing high-level programming language to execution

From high-level programming languages to program running

Example on translation

From high-level programming languages to program running

Example (Cont'd)

Initialization Low-level language 8051 Assembly Language

	ORG	00H
		MOV A, #0 ; A is accumulator
		; for addition operation
		MOV R0, #0 ; Assign: R0 = z
		MOV R1, #10 ; Assign: R1 = i
	LOOP	:
		ADD A, R1
	DJNZ R1, LOOP	
		MOV R0, A
7	END	
L	+	

Need to know where the data / instruction is stored in the hardware system such as ROM / RAM

implementation

Address of R0 Address of R1 Address of A

Software

ELEC 3300 : Fall 2022-23

8051 Machine Codes in Main Memory

Code Seg	Code Segment (Internal Code Memory) (ROM)	
Address	Content	
(in Hex)	(in Hex)	
0000	74	
0001	00 ; 7400 (2 bytes) represents MOV A, #0	
0002	78	
0003	00 ; 7800 (2 bytes) represents MOV R0, #0	
0004	79	
0005	0A; 790A (2 bytes) represents MOV R1, #10	
0006	29; 29 (1 byte) represents ADD A, R1	
0007	D9 ;	
0008	FD; D9FD (2 bytes) represents DJNZ R1, LOOP	
	(actually FD means jump 3 bytes backward,	
	0006-0009 = -3)	
0009	F8; F8 (1 bytes) represents MOV R0, A	

Data Segment (Internal Data Memory) (RAM)

Address Content (in Hex)

00 00; Value of R0, assume data bank 0 is selected

10; Value of R1, assume data bank 0 is selected

00; Value of Accumulator

Hardware

Tim Woo 25

- Data format / representation
- Bitmap format:
 - Image resolutions

1920 x 1080

1280 x 720

640 x 480

Color format

black and white

256-level grey scale

24-bit true color

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

32-bit true color

Class exercise: Let's complete the following information of DHT11

Description	Choices in this course
Abstract idea of project (Define the functionality of the system)	What's are measured data of this sensor? Do you have any other features in the project?
Data format / representation	What is the data format? How to present RH and T?
Programming Language	Which Programming language will you use?
Communication Protocol	How to communicate between MCU and DHT11 sensor?
Physical connection (Pins assignment)	How many pins are there?
Hardware devices (Microcontroller, Peripherals)	Which devices / components do you need?

ELEC 3300 : Fall 2022-23

- Class exercise: Let's complete these information of DHT11
 - Tips: Search the Datasheet of DHT 11 via internet / CANVAS site

We have to consider 6 components but not limited to these

	Description	Choices in this course
Products	Abstract idea of project (Define the functionality of the system)	Many
	Data format / representation	Many
	Programming Language	C-language
	Communication Protocol	Many
	Physical connection (Pins assignment)	Many
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: STM32 ARM Platform Peripherals: Many

Components

Please apply this concepts in your laboratory experiments and project design.

Mixed Hardware/Software Co-Development

- Traditionally, in a mixed hardware/software system, hardware and software are seen as independent
- First partition into H/W and S/W, and then development independently
- In general, changes in hardware imply changes in software and vice versa
- The overall verification is not done until the integration phase, which means that the cost of detecting hardware/software errors is very high

Mixed Hardware/Software Co-Development

Take an example:

Mixed Hardware/Software Co-Development

• It is obviously better if the hardware and software engineers can work together through the design and integration so that debugging can be done during the development rather than during the post integration process

Example

Mixed Hardware/Software Co-Development

Japan Robot Trash Can

Mechanical Design

Electronics Circuit Design

Trash can level: JAPAN

Joystick controller

Wireless communication

Computer

Kinect

Object detection algorithm

https://www.youtube.com/watch?v=ZNWd4FFYDv0

ELEC 3300 : Fall 2022-23 Tim Woo 33

What is the impact of embedded system?

Challenge

- A doctor is doing a surgery for a patient. Meanwhile, s/he would like to locate the cancer cells. How could you advise her / him?
 - Review the corresponding X-ray film (which was took before)
 - By experience
 - Consults with his / her colleagues
 - Use a device to "see" the cancer cells in the real-time

Hi-tech goggles detects cancer cells

https://www.insidescience.org/video/cancer-glasses-detect-tiny-tumors

Reflection (Self-evaluation)

- Do you
 - Draft a roadmap / design plan of your design project?
 - Understand the six design layers of your project?
 - Describe the Mixed Hardware/Software Co-Development?

– Design embedded systems in tackling any challenges in COVID-19 pandemic?

37

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Topic 2 More about Embedded Systems