Python for Data processing

Lecture 3:

Arrays, tensors and computations - Part III

Kosta Rozen

# What we already know

#### A lot about NumPy arrays:

- creation
- indexing
- universal functions
- linear algebra
- best practices
- 1/0

#### This lecture

#### PyTorch:

- basics
- operations
- gradients
- logistic regression

# Why NumPy is not enough

#### NumPy arrays are great but:

- they work only on CPU
- they provide only basic building blocks

#### For deep learning:

- CPU/GPU/TPU/?
- gradients

# PyTorch

- **tensors** provide the same operations as NumPy arrays
- work on CPU/GPU/TPU
- provide autogradients
- deep learning building blocks
- efficient data loading
- deployment

## PyTorch tensors

#### **Tensors**

- similar to arrays, provide the same computational facilities
- can **share** data
- can live on **different devices**
- provide **declarative** computations

→let's try it out!

#### Tensors and storage



#### Devices and computations



# View, copies, reshaping

PyTorch is a bit more elaborated:

- view: always returns a view or fails
- reshape: returns either view or new tensor
- depends on contiguity constraints

#### Gradients

In deep learning we need **gradients**:

- to calculate updates to network parameters (weights)
- no way to do that in NumPy
- an easy go in PyTorch (a bit more elaborated in Tensorflow)

$$L\left(a_{ij}\right)$$
 (scalar)  $ightarrow \frac{\partial L}{\partial a_{ij}}$  (tensor)

→let's try it out!

# Logistic regression with PyTorch

## Logistic regression: setup

- **two-dimensional** input (created with make\_blobs from sklearn.datasets)
- binary classification with linear decision boundary
- output: sigmoid
- from **scratch**

#### LR breakdown



# Log loss



We want: probability  $\downarrow$  for class 0, probability  $\uparrow$  for class 1

## Log loss function

Log loss is -1 \* the log-likelihood function you learned in probability course as part of max-likelihood method for parameter estimation:



## Log loss function

Log parts of the function represent the cost of error when estimating probability:

- When we're right (p=1), log(p) is 0
- When we're wrong (small p), log(p) is negative and -log(p) is positive.
- The smaller p is, the larger the error (-log) will be.

$$\begin{split} L = -\frac{1}{N} \sum_{k} \left(y_k \underline{\log(\hat{y}_k)} + (1 - y_k) \underline{\log(1 - \hat{y}_k)} \right) \\ \hat{y}_i = \sigma(X_{ik} W_k + b) \end{split}$$



#### →let's try it out!

#### What we've learned

- PyTorch tensors and gradients
- how to perform simple gradient descent

# Assignment

- explore PyTorch tensor operations

questions?