Grammar-Based Automated Music Composition in Haskell

Donya Quick and Paul Hudak
Yale University
Department of Computer Science

FARM 2013

All You Need To Know About Music

- A <u>chord</u> is a collection of simultaneous pitches.
 - Roman numerals I VII are <u>abstract chords</u>.
 - Many ways to interpret them musically.
 - Interpretation depends on <u>key/mode</u>.
 - Concrete chords are what appear on scores.

Composition System Overview

Probabilistic Temporal Graph Grammar (PTGG): Alphabet and Notations

- Chords in the grammar are Roman numerals:
 C = {I, II, III, IV, V, II, VII}
- c^t is the chord c with duration t (any real number).
- A chord progression is written: $c_1^{t1} c_2^{t2} c_3^{t3} \dots c_n^{tn}$
- Modulations: $M = \{M_2, M_3, M_4, M_5, M_6, M_7\}$
 - Modulations change a section's key/mode.
 - Parentheses are used to denote modulated sections: $m(c_1^{t_1} \dots c_n^{t_n})$, where $m \in M$.
 - Parentheses are a "meta-symbol"

PTGG Definition: G = (N, T, R, S)

- Nonterminals: $N = \{c^t \mid c \in C, t \text{ is a real number}\}$
- Terminals: $N \cup M$

These are infinite sets!

- Start symbol S=I^t, where t is total duration desired.
- Rules are **functions** of duration from chords to chord progressions: $c^t \rightarrow f(t)$. For example:

Probability (0.1)
$$V^t o V^{t/2}$$
 $I^{t/2}$ Both insidentical of application (0.1) $V^t o V^t$ $V^t o V^t$ (0.1) $V^t o V^t$ (0.1) $V^t o V^t$ in $X imes X$

Both instances of x must be identical after generation.

let
$$\mathbf{x} = \mathbf{\nabla}^{t1} \mathbf{I}^{t2}$$
 in $\mathbf{x} \mathbf{x} \Rightarrow$

$$\mathbf{\nabla}^{t1} \mathbf{I}^{t2} \mathbf{\nabla}^{t1} \mathbf{I}^{t2}$$

Recall: $C = \{I, III, IVI, V, II, VII\}$ and $M = \{M_2, M_3, M_4, M_5, M_6, M_7\}$

Haskell Implementation: Progressions

data $CType = I \mid II \mid III \mid IV \mid V \mid VI \mid VII$ deriving (Eq, Show, Ord, Enum) $C = \{I, II, ..., VII\}$

data $MType = M2 \mid M3 \mid M4 \mid M5 \mid M6 \mid M7$ deriving (Eq, Show, Ord, Enum) $M = \{M_1, ..., M_5\}$

data Chord = Chord Dur CType deriving (Eq, Show)

It becomes Chord t I

data Term =

NT Chord | S [Term] | Mod MType Term |

Let String Term Term | Var String

deriving (Eq, Show)

let x = A **in** B becomes Let "x" A B

 V^{t1} I^{t2} becomes $S[Chord\ t1\ V,\ Chord\ t2\ I]$

Haskell Implementation: Rules

type
$$Prob = Double$$

type $RuleFun = Dur \rightarrow Term$
data $Rule = (CType, Prob) :\rightarrow RuleFun$

$$i t = Chord t I :: RuleFun$$

 $ii t = Chord t II :: RuleFun$

Shorthand functions:

$$r1 = (I, 0.2) : \rightarrow i$$

$$\textbf{I}^t \rightarrow \textbf{I}^t$$

$$r2 = (I, 0.2) : \rightarrow$$
$$\lambda t \rightarrow S [v (t/2), i (t/2)]$$

$$I^t \rightarrow V^{t/2} I^{t/2}$$

$$r3 = (V, 0.10) : \rightarrow (Mod M5.i)$$

$$V^{t} \rightarrow M_{5}(I^{t})$$

$$r4 = (I, 0.1) : \rightarrow \lambda t \rightarrow$$

$$Let "x" (i (t/2)) S [Var "x", Var "x"] I^{t} \rightarrow let x = I^{t/2} in x x$$

$$I^t \rightarrow \text{let } x=I^{t/2} \text{ in } x x$$

Example of Generative Algorithm

Rules Applied (Stochastic)

Start symbol: I^t

$$\mathbf{I}^{\mathsf{t}} \, \longrightarrow \, \mathbf{I} \, \mathbf{I}^{\mathsf{t}/4} \, \mathbf{V}^{\mathsf{t}/4} \, \mathbf{I}^{\mathsf{t}/2}$$

id,
$$I^{t} \rightarrow V^{t/2}$$
 $I^{t/2}$, $I^{t} \rightarrow V^{t/2}$ $I^{t/2}$

For **let** x = A **in** B, the phrases A and B are generated separately, leaving instances of $x \in B$ unaltered. Then, instances of x can be instantiated.

Musical Interpretation

We use **chord spaces** as an integral part of our interpretation.

Chord Spaces

- Mathematically grouping chords in musically useful ways.
 - Each chord belongs to an equivalence class.
- Examples generated with classical chord spaces [1,2] and also "jazz spaces."
- Assigning pitches to Roman numerals reduces to a pathfinding and constraint-satisfatction problem [3].
 - For each abstract chord, choose a concrete chord from its equivalence class meeting some criteria.
 - Let constraints shrink the search space!
- [1] C. Callender et al., "Generalized voice-leading spaces," Science Magazine 2008.
- [2] D. Tymoczko et al., "The geometry of musical chords." Science Magazine, 2006.
- [3] D. Quick and P. Hudak, "Computing with chord spaces," ICMC 2012.

Let Constraints and Chord Spaces

- Progression: let x = P Q in x x
 ⇒ P Q P Q
- Chord space: P~{a,b}, Q~{c,d}
 Imposed ordering/indices: 0 1 0 1

P & Q are abstract chords, like I or V

a, b, c, & d are concrete chords

Depth first without lets:

<u>#</u>	<u>lnd.</u>	<u>Value</u>	Satisfies Lets?
1	0000	acac	Yes
2	0001	acad	No
3	0010	acbc	No
4	0011	acbd	No
5	0100	adac	No
64	 1111	bdbd	Yes

Depth first WITH lets:

		<u>Value</u>	Satisfies Lets?
1	0000	acac	Yes
2	0101	adad	Yes
3	1010	bcbc	Yes
4	1111	bdbd	Yes

Constrained indices move in lockstep, dramatically reducing the number of solutions explored.

8-measure example.

Classical chord space for 4 voices.

Shows repetition from nested Let expressions.

NO extra musical post-processing!

В

B1

Same System, More Examples

Simple Classical Music

Uses classical chord spaces for 4 voices.

Foreground features added include passing and neighboring tones.

Bach chorale for comparison:

IJIJ

Modern, texturally interesting music

Uses classical chord spaces for 4 voices.

Parts were generated independently and later combined.

Human-controlled: volume changes, staggering of voices, choice of seeds

Jazz Harmonies

Jazz chord spaces add seconds and sevenths for 5 voices.

Lowest voice's rhythm was stochastically altered.

Conclusions

- A functional approach to modeling music gives us:
 - An elegant Haskell implementation.
 - Let expressions that support repetition of phrases.
- Chord spaces allow many different musical styles.
- Areas of potential future work:
 - Melody currently left to post-processing.
 - More diverse rhythmic support (3/4, triplets in 4/4, etc.)
 - Larger-scale/more complex developmental patterns
 - Theme and variations, partial repetition, etc.
 - Empirical testing with human subjects.
 - How well is a particular style reproduced?

Thank You!

- Implementation at: haskell.cs.yale.edu
- Full recordings of examples at: soundcloud.com/donyaquick

Monadic Algorithm Compositions 1, 2, and 3

Complete Rule Set

Num.	Probability	Rule
1	0.20	$I^t \rightarrow II^{t/4} V^{t/4} I^{t/2}$
2	0.20	$I^t ightarrow I^{t/4} \ IV^{t/4} \ V^{t/4} \ I^{t/4}$
3	0.20	$I^t \rightarrow V^{t/2} I^{t/2}$
4	0.20	$I^t \rightarrow I^{t/4} II^{t/4} V^{t/4} I^{t/4}$
5	0.20	$I^t ightarrow I^t$
6	0.80	$H^t ightarrow H^t$
7	0.20	$II^t \rightarrow (M_2 \ V^{t/2} \ I^{t/2})$
8	0.70	$III^t ightarrow III^t$
9	0.30	$III^t \rightarrow (M_3 I^t)$
10	0.80	$IV^t ightarrow IV^t$
11	0.20	$IV^t \rightarrow (M_4 I^{t/4} V^{t/4} I^{t/2})$
12	0.10	$V^t ightarrow V^t$
13	0.15	$V^t ightarrow IV^{t/2} \ V^{t/2}$
14	0.10	$V^t ightarrow III^{t/2} \ VI^{t/2}$
15	0.10	$V^t \rightarrow I^{t/4} III^{t/4} VI^{t/4} I^{t/4}$

Num.	Probability	Rule
16	0.10	$V^t \rightarrow V^{t/4} \ VI^{t/4} \ VII^{t/4} \ V^{t/4}$
17	0.10	$V^t o V^{t/2} \ VI^{t/2}$
18	0.10	$V^t ightarrow III^t$
19	0.05	$V^t o (M_7 \ V^t)$
20	0.10	$V^t ightarrow VII^t$
22	0.10	$V^t o (M_5 \ I^t)$
22	0.70	$VI^t ightarrow VI^t$
23	0.30	$VI^t \rightarrow (M_6 \ I^t)$
24	0.40	$VII^t ightarrow VII^t$
25	0.50	$VII^t \rightarrow I^{t/2} III^{t/2}$
26	0.10	$VII^t \rightarrow (M_7 \ I^t)$

Extra Let rules for all $c \in C$:

$$c^{t} \rightarrow \text{let } x = c^{t/2} \text{ in } x x$$
 $c^{t} \rightarrow \text{let } x = c^{t/4} \text{ in } x c^{t/2} x$
 $c^{t} \rightarrow \text{let } x = c^{t/4} \text{ in } x v^{t/2} x$

Voice-Leading with Chord Spaces

