Report

Comparison of PCA and t-SNE for Dimensionality Reduction

1. Trade-offs Between PCA and t-SNE

Principal Component Analysis (PCA)

- PCA is a linear transformation technique that maintains global variance in highdimensional data.
- It aids in feature selection and dimensionality reduction while keeping interpretability intact.
- The explained variance ratio provides a way to **quantify the amount of retained information** after reduction.
- However, PCA does not perform well for nonlinear relationships and may fail to distinctly separate clusters.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- t-SNE is a nonlinear technique that is effective in clustering similar data points together.
- It is particularly useful for **preserving local structures**, uncovering patterns that PCA might overlook.
- Unlike PCA, **t-SNE** does not maintain original feature relationships, making interpretation challenging.
- It is computationally expensive and may **yield different results on multiple runs** due to random initialization.

Key Trade-offs

Feature	PCA	t-SNE
Type of Transformation Linear		Nonlinear
Interpretability	High	Low
Structure Preserved	Global	Local

Cluster Separation Weak Strong

Computational Cost Low High

Usage Feature selection, preprocessing Data visualization, clustering

2. Key Observations from the Visualizations

PCA Visualization (2D Projection)

- The PCA scatter plot did not show distinct clusters, as data was spread based on variance.
- It preserved the global structure but overlapped different wine quality scores.
- Since PCA is a linear transformation, it did not capture nonlinear patterns within the dataset.

t-SNE Visualization (2D Projection)

- The t-SNE scatter plot **revealed more distinct groupings**, suggesting potential clusters in the dataset.
- Similar wine quality scores appeared more closely packed, demonstrating better local structure preservation.
- However, t-SNE's axes **lack direct interpretability**, making it less suitable for understanding feature relationships.

Dimensionality Reduction vs. Information Loss

- From the **explained variance ratio** in PCA, **PC1 to PC6** accounted for **85% of the variance**, offering a balance between **dimensionality reduction and data retention**.
- t-SNE does not provide a metric like explained variance but excels at **clustering and uncovering hidden patterns**.

3. Conclusion

PCA is ideal for feature selection and understanding data variance, making it
useful in predictive modeling.

- t-SNE is best suited for visualizing underlying structures in high-dimensional datasets but is computationally demanding.
- The choice between PCA and t-SNE depends on the purpose of the analysis:
 - o Use PCA when reducing dimensionality for machine learning models.
 - o Use t-SNE for clustering insights and exploratory data analysis.