Robot Autonomy

Lecture 10: Planning with Costs

Oliver Kroemer

Cost of a trajectory

$$C(\tau) = \int_0^1 c(\tau(s)) \left| \frac{d\tau}{ds} \right| ds$$
 configuration reparameterization cost invariant

Goal is to minimize cost

$$\tau^* = \arg\min_{\tau \in H} C(\tau)$$

Shortest feasible path

$$c(q) = 1 \text{ if } q \in C_{free}$$

 $c(q) = \infty \text{ if } q \in C_{obs}$

arc/path length

$$C(\tau) = \int_0^1 \left| \frac{d\tau}{ds} \right| ds$$

Discretized Costs for Trajectories

Approximate trajectory by a set of equal spaced points

$$C(\tau) \approx \frac{L}{N} \sum_{i=0}^{N-1} c(\tau(s_i)) \qquad \qquad s_i = \frac{i}{N-1}$$

- Segment has cost of initial starting point in segment
- Can also have variable lengths for segments
 - Be careful of skipping over costly regions with large segments

Example Costs

Distance to obstacles

Traversability

• Effort

Human preferences

Time-dependent Trajectory Costs

• Time dependent trajectories may penalize derivatives

Velocity

 $\dot{ au}(t)$

Acceleration

 $\ddot{\tau}(t)$

Jerk

 $\ddot{\tau}(t)$

PRM Lowest Cost

Compute cost for each edge of PRM

- Search for path with minimum cost (discrete search)
- Limited to paths along PRM (could potentially do better)

Path Shortening with Costs

- Assume we have an initial trajectory to goal (PRM,RRT)
- How can we improve the trajectory?

- Select two points along the trajectory
- Create straight connection and compute corresponding cost
- Select new path with probability $p(\Delta C)$

Acceptance Probability

Always accept if cost is reduced:

$$p(\Delta C) = 1 \text{ if } \Delta C < 0$$

- If cost is increased: $\Delta C > 0$
 - Hill climbing

$$p(\Delta C) = 0$$

Metropolis Hasting

$$p(\Delta C) = \exp(-\Delta C/T)$$
 with T fixed

Simulated Annealing

$$p(\Delta C) = \exp(-\Delta C/T)$$
 with T decreasing

Metropolis-Hasting (MCMC) Sampling

Optimizing Point Locations

Can also shift points locally to attempt to improve cost

- Locally sample shifted point, e.g., Gaussian
- Shift individual point or multiple points at a time
- What about smooth curves for trajectories?

Bezier Curves

Parameterized curves between points (e.g., spline)

- Shape of curve defined by control points
- Optimize locations of control points
- Curve within convex hull of control points

Bezier Curves

Crazy Fly Example

Heuristically Guided RRT

Want to bias RRT growth towards lower cost paths

- Sample q_r , find q_n , compute $m(q_n)$
- Resample if $rand > max(m(q_n), p_{min})$, else expand q_n
- Tends to rejects samples that would expand poor nodes

Heuristically Guided RRT

HRRT can reject a lot if poor nodes near open space

ullet q_b has high probability of being NN, but low quality (high reject)

- Solution is to consider K nearest neighbours:
 - Keep iterating between neighbours until one is accepted
 - Alternatively, select the neighbour with with highest quality

Anytime RRT

- Anytime algorithms refine solutions over time
 - Can get a solution quickly, but get a better solution if you wait
- Anytime RRT iteratively creates multiple RRTs
- Cost of path from j-th iteration is given by

$$C^{j}$$

Want to find trajectory with next RRT that is better

$$C^{j+1} < (1 - \epsilon)C^j = C_{target}$$

improvement factor

How do we achieve the target cost?
Clever node sampling, node selection, and node extension

Node Sampling

Only accept nodes that may be better than target

Accept if

$$h(q_i, q_s) + h(q_s, q_g) < C_{target}$$

Node Selection

Increasing favour building on nodes with low cost

- Select neighbour with min $\delta_d dist(q,q_r) + \delta_c cost(q_i,q)$
- Initially $\delta_d = 1 \text{ and } \delta_c = 0$
- With each iteration, increase δ_c and decrease δ_d

Node Extension

Generate multiple potential extensions (shooting)

Select cheapest extension that satisfies

$$C(q_i, q) + H(q, q_g) < C_{target}$$

and doesn't collide with obstacles

Questions?