main

August 11, 2024

0.1 Lab 1: Machine Learning Engineering

- Pablo Escobar 20936
- Diego Cordova 20212
- Paola Contreras 20213
- Paola de León 20361
- Jun Woo 20358
- Sebastian Gonzalez 18588

Repositorio: https://github.com/Diego-CB/Lab1-MLE

```
[]: import pandas as pd
```

```
[]: # save filepath to variable for easier access
melbourne_file_path = './input/melbourne-housing-snapshot/melb_data.csv'
# read the data and store data in DataFrame titled melbourne_data
melbourne_data = pd.read_csv(melbourne_file_path)
# print a summary of the data in Melbourne data
melbourne_data.describe()
```

[]:		Rooms	Price	Distance	Postcode	Bedroom2	\
	count	13580.000000	1.358000e+04	13580.000000	13580.000000	13580.000000	
	mean	2.937997	1.075684e+06	10.137776	3105.301915	2.914728	
	std	0.955748	6.393107e+05	5.868725	90.676964	0.965921	
	min	1.000000	8.500000e+04	0.000000	3000.000000	0.00000	
	25%	2.000000	6.500000e+05	6.100000	3044.000000	2.000000	
	50%	3.000000	9.030000e+05	9.200000	3084.000000	3.000000	
	75%	3.000000	1.330000e+06	13.000000	3148.000000	3.000000	
	max	10.000000	9.000000e+06	48.100000	3977.000000	20.000000	
		${\tt Bathroom}$	Car	Landsize	BuildingArea	YearBuilt	\
	count	13580.000000	13518.000000	13580.000000	7130.000000	8205.000000	
	mean	1.534242	1.610075	558.416127	151.967650	1964.684217	
	std	0.691712	0.962634	3990.669241	541.014538	37.273762	
	min	0.000000	0.000000	0.000000	0.000000	1196.000000	
	25%	1.000000	1.000000	177.000000	93.000000	1940.000000	
	50%	1.000000	2.000000	440.000000	126.000000	1970.000000	
	75%	2.000000	2.000000	651.000000	174.000000	1999.000000	

	Lattitude	Longtitude	Propertycount
count	13580.000000	13580.000000	13580.000000
mean	-37.809203	144.995216	7454.417378
std	0.079260	0.103916	4378.581772
min	-38.182550	144.431810	249.000000
25%	-37.856822	144.929600	4380.000000
50%	-37.802355	145.000100	6555.000000
75%	-37.756400	145.058305	10331.000000
max	-37.408530	145.526350	21650.000000

Aqui estamos realizando un analisis exploratorio de los datos numericos para poder observar como se comportan los datos. Cone stos datos podemos afirmar cosas como que en promedio, las propiedades tienen aproximadamente 2.94 habitaciones y un precio medio de alrededor de 1,075,684, con una desviación estándar considerable de \$639,311, lo que indica una dispersión significativa en los precios.

```
[]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6)) # Ajusta el tamaño de la figura
sns.heatmap(melbourne_data.isnull(), cmap='viridis', cbar=False)
plt.title('Mapa de calor de los datos nulos')
plt.show()
```


Con este grafico podemos observar en que columnas existen mayor cantidad de datos nulos, lo que nos puede ayudar al momento de que limpiemos la data para entrenar al modelo

Limpiamos los datos nulos que existían en nuestro dataset

[]:		Rooms	Bathroom	Landsize	Lattitude	Longtitude
	count	6196.000000	6196.000000	6196.000000	6196.000000	6196.000000
	mean	2.931407	1.576340	471.006940	-37.807904	144.990201
	std	0.971079	0.711362	897.449881	0.075850	0.099165
	min	1.000000	1.000000	0.000000	-38.164920	144.542370
	25%	2.000000	1.000000	152.000000	-37.855438	144.926198
	50%	3.000000	1.000000	373.000000	-37.802250	144.995800
	75%	4.000000	2.000000	628.000000	-37.758200	145.052700
	max	8.000000	8.000000	37000.000000	-37.457090	145.526350

Escogemos los features con los cuales entrenaremos nuestro modelo.

0.1.1 Train Split

```
[]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0,_u

--test_size=0.25)
```

0.1.2 Elección de Modelo

En este caso se utilizó un GridSearch para encontrar para comparar varios modelos con varios parámetros con el finde evaluarlos con el dataset y encontrar el que brinda mejor rendimiento. Para esto se compararon los siguientes modelos: - Regresión Lineal - Árbol de Decisión - Random Forest - Support Vector Machines

```
[]: from sklearn.linear_model import LinearRegression
     from sklearn.model_selection import GridSearchCV
     from sklearn.pipeline import Pipeline
     from sklearn import tree
     from sklearn.svm import LinearSVR
     from sklearn.preprocessing import FunctionTransformer
     from sklearn.ensemble import RandomForestRegressor
     pipeline = Pipeline([
         ('regr', LinearRegression()) # Default model, will be overridden by
      \hookrightarrow GridSearch
     1)
     search_space = [
         {'regr': [LinearRegression()], 'regr__fit_intercept': [True, False]},
         {'regr': [tree.DecisionTreeRegressor()],
         'regr_max_depth': [None, 10, 20]},
         {'regr': [RandomForestRegressor()],
         'regr_n_estimators': [10, 50, 100],
         'regr__max_depth': [None, 10, 20],
         'regr__max_features': ['auto', 'sqrt', 'log2', None, 0.2, 0.5]},
         {'regr': [LinearSVR()],
         'regr_epsilon': [0.01, 0.1, 1, 10, 100]}
     ]
     gs = GridSearchCV(pipeline, param_grid = search_space, scoring = __

¬'neg_mean_squared_error', cv = 5)
     gs.fit(X_train, y_train)
```

c:\Python312\Lib\site-packages\sklearn\model_selection_validation.py:540: FitFailedWarning:

45 fits failed out of a total of 320.

The score on these train-test partitions for these parameters will be set to nan.

If these failures are not expected, you can try to debug them by setting error_score='raise'.

```
Below are more details about the failures:
```

45 fits failed with the following error:

Traceback (most recent call last):

File "c:\Python312\Lib\site-packages\sklearn\model_selection_validation.py", line 888, in _fit_and_score

estimator.fit(X_train, y_train, **fit_params)

File "c:\Python312\Lib\site-packages\sklearn\base.py", line 1473, in wrapper return fit_method(estimator, *args, **kwargs)

File "c:\Python312\Lib\site-packages\sklearn\pipeline.py", line 473, in fit self._final_estimator.fit(Xt, y, **last_step_params["fit"])

File "c:\Python312\Lib\site-packages\sklearn\base.py", line 1466, in wrapper estimator._validate_params()

File "c:\Python312\Lib\site-packages\sklearn\base.py", line 666, in validate params

validate parameter constraints(

File "c:\Python312\Lib\site-packages\sklearn\utils_param_validation.py", line 95, in validate parameter constraints

raise InvalidParameterError(

-1.12596427e+11

sklearn.utils. param validation.InvalidParameterError: The 'max features' parameter of RandomForestRegressor must be an int in the range [1, inf), a float in the range (0.0, 1.0], a str among {'log2', 'sqrt'} or None. Got 'auto' instead.

warnings.warn(some_fits_failed_message, FitFailedWarning)

c:\Python312\Lib\site-packages\sklearn\model_selection_search.py:1102:

UserWarning: One or more of the test scores are non-finite: [-2.63645131e+11

-2.71940960e+11 -1.86980923e+11 -1.56915786e+11

```
-1.83516465e+11
```

-1.10271121e+11 -9.71854290e+10 -9.68563635e+10 -1.03981652e+11

-9.87730781e+10 -9.78414880e+10 -1.03807060e+11 -9.68233659e+10

-9.44102216e+10 -1.16676006e+11 -1.03567380e+11 -1.01876483e+11

-1.08577062e+11 -9.72828617e+10 -9.68469380e+10 nan nan -1.20180788e+11 -1.14742034e+11 nan

-1.13320692e+11 -1.18367553e+11 -1.13452271e+11 -1.13321374e+11

-1.09309178e+11 -1.04706986e+11 -1.04837444e+11 -1.30807001e+11

-1.24729677e+11 -1.21986191e+11 -1.19618133e+11 -1.15867907e+11

-1.05995603e+11 -9.63035394e+10 -9.66227418e+10 -1.06708449e+11

-9.80739847e+10 -9.73163107e+10 -1.03555941e+11 -9.74941946e+10

-9.76832232e+10 -1.14593861e+11 -1.04225766e+11 -1.01262825e+11

-1.10525504e+11 -9.73605509e+10 -9.72291900e+10 -4.69852556e+11

```
warnings.warn(
[]: GridSearchCV(cv=5, estimator=Pipeline(steps=[('regr', LinearRegression())]),
                  param grid=[{'regr': [LinearRegression()],
                               'regr__fit_intercept': [True, False]},
                              {'regr': [DecisionTreeRegressor()],
                               'regr_max_depth': [None, 10, 20]},
                              {'regr': [RandomForestRegressor()],
                               'regr_max_depth': [None, 10, 20],
                               'regr_max_features': ['auto', 'sqrt', 'log2', None,
                                                      0.2, 0.5],
                               'regr_n_estimators': [10, 50, 100]},
                              {'regr': [LinearSVR()],
                               'regr_epsilon': [0.01, 0.1, 1, 10, 100]}],
                  scoring='neg_mean_squared_error')
[]: best pipeline = gs.best estimator
     best_regression_model = best_pipeline.named_steps['regr']
     best_model_hyperparameters = best_regression_model.get_params()
     print("> Best Regresion Model:", best_regression_model)
     print("> Best Hyper-parameters:", best_model_hyperparameters)
    > Best Regresion Model: RandomForestRegressor(max features=None)
    > Best Hyper-parameters: {'bootstrap': True, 'ccp alpha': 0.0, 'criterion':
    'squared_error', 'max_depth': None, 'max_features': None, 'max_leaf_nodes':
    None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1,
    'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'monotonic_cst': None,
    'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': None,
    'verbose': 0, 'warm_start': False}
    En este caso el modelo con mejor rendimiento fue el RandomForest, además se logró encontrar los
    hiperparámetros más adecuados con el mismo gridSearch
[]: model = best_regression_model
     y_pred = model.predict(X_train)
     plt.figure(figsize=(10, 6))
     sns.scatterplot(x=y_train, y=y_pred, alpha=0.7)
     plt.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()], '--r',__
      →linewidth=2) # Line of perfect fit
     plt.xlabel('Actual Values')
```

-4.68253962e+11 -4.69176087e+11 -4.69432661e+11 -4.68342953e+11]

plt.title('Actual vs. Predicted Values - RandomForestRegressor')

plt.ylabel('Predicted Values')

plt.show()


```
[]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
     import numpy as np
     # Calcular las métricas
     mse = mean_squared_error(y_train, y_pred)
     mae = mean_absolute_error(y_train, y_pred)
     r2 = r2_score(y_train, y_pred)
     # Importancia de las variables
     feature_importances = model.feature_importances_
     featuresArray = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
     # Mostrar los resultados
     print(f"Error Cuadrático Medio (MSE): {mse}")
     print(f"Error Absoluto Medio (MAE): {mae}")
     print(f"R2 (Coeficiente de Determinación): {r2}")
     print("\nImportancia de las Variables:")
     for i, importance in enumerate(feature_importances):
         print(f"{featuresArray[i]}: {importance}")
```

Error Cuadrático Medio (MSE): 13257277967.425127Error Absoluto Medio (MAE): 69361.45243731234R 2 (Coeficiente de Determinación): 0.9688784502677918 Importancia de las Variables: Rooms: 0.2739266406476306 Bathroom: 0.05575731536004612 Landsize: 0.16477917881511578 Lattitude: 0.26150031760293596 Longtitude: 0.24403654757427154

Estos resultados nos indican que nuestros valores mas importantes son la cantidad de cuartos y la latitud y longitud de la propiedad. El siguiente feature más importante es el tamaño de la propiedad el feature menos importante para nuestro modelo es la cantidad de baños.