

Class-Aware Hidden Markov Model for simultaneous functional connectivity estimation and classification

Chendi Han

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA

Statement

- We declare that there is no conflict of interest.
- The data used in this paper comes from Alzheimer's Disease Neuroimaging initiative (ADNI)*. All the data are publicly accessible, and patients' information is protected.
- This work was funded by NIH-R01AG071566-02 and NIH-P20GM109025-08

^{*}Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Background

	Dynamic	Fast state transition	Classification
Correlation based [1]	No	No	No
Sliding Window (SW)	Yes [2]	No	Additional classifier [3]
Hidden Markov Model (HMM) [4]	Yes	Yes	No
Ours	Yes	Yes	Yes

- [1] Biswal, B., et al., Magnetic resonance in medicine, 1995
- [2] Allen, E.A., et al., Cerebral cortex, 2004
- [3] Ji, J., et al., IEEE Journal of Biomedical and Health Informatics, 2021
- [4] Zhang, G., et al., IEEE transactions on medical imaging, 2019

Step 1: Dimensionality reduction

> ADNI dataset

	Number of subjects (AV45>1.1)		
Normal Control (NC)	74		
Mild Cognitive Impairment (MCI)	119		
Alzheimer's (AD)	99		
Total	292		

Independent component analysis [5] 54 Components corresponding to 9 different regions

Subcortical (SC)

Auditory (AUD)

Motor (MOT)

Visual (VIS)

Cognitive control (CCN)

Default mode (DMN)

Frontal (FN)

Temporal (TN)

Cerebellar (CB)

$$X \in \Re^{N \times T \times p}$$

N=292 Number of subjects

T = 135 Number of time points

p = 54 Number of ICA components

[5] McKeown, M.J., et al., Human brain mapping, 1998

Step 2: Hidden Markov Model

Observation: $x_t \in \Re^{1 \times 54}$

Hidden states: h

Transition probability: $p(h_t|h_{t-1}) = A_{h_{t-1}h_t}$

Emission probability: $p(x_t|h_t) = \mathcal{N}[\mu(h_t), \Sigma(h_t)]$

Joint probability: $\psi = \max_{A,\mu,\Sigma} \sum_{t} \sum_{\mathcal{H}} p(h_t|h_{t-1}) p(x_t|h_t)$

➤ HMM for multiple class

> Testing

Step 3: Supervised learning

Hidden conditional random fields [6]

Normalized probability:
$$p(c|X) = \frac{\psi^{(c)}(X)}{\sum_{i} \psi^{(i)}(X)}$$

Learning rate: 10^{-5}

Optimizer: Adam

Train/Validate/Test = 7/2/1

^[6] Quattoni, A., et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007

Results

• Classification accuracy (100 cross-fold validation)

	NC/MCI	MCI/AD	NC/AD	NC/MCI/A D
Unsupervised [Zhang, G., et al. 2019]	73.12%	75.62%	82.50%	65.69%
Supervised (Ours)	78.12%	80.42%	90.44%	72.36%

• Functional connectivity

Normal MCI

AD

Summary

Previously Sliding Window Methods

- ➤ Require fixed window size
- Not adaptive to fast transitions
- Need separate classifier

Previous HMM-based Methods

- Unsupervised; trained separately for each class
- ➤ Ignored inter-class information → lower accuracy

Our results

- ➤ Supervised HMM framework → improved prediction accuracy
- ➤ Joint connectivity estimation and classification → Faster, cleaner, and adaptive to rapid state changes

Thanks for your attention!