№	Задача №7	ИУ7-	ИУ7-	ИУ7-
	графы	31	32	33
		№ по	№ по	№ по
1	Hežru pos populuju soprovije oprovije	списку	списку	списку
1	Найти все вершины заданного орграфа,	1, 16, 31	20, 1	8, 11
	недостижимые из заданной его вершины.	31		
2	Определить, является ли связным заданный	2, 17,	19, 2	9, 12
	граф.	32		
3	Найти самый длинный простой путь в графе.	3, 18	18, 3	10, 13
4	Найти все вершины графа, к которым от	4, 19	17, 4	14, 26
	заданной вершины можно добраться по пути			
	не длиннее А.			
5	Задан граф - не дерево. Проверить, можно ли	5, 20	16, 5	15, 27
	превратить его в дерево удалением одной			
	вершины вместе с ее ребрами.		1	4 5 00
6	В графе найти максимальное расстояние	6, 21	15, 21	16, 28
	между всеми парами его вершин.			
7	Задана система двусторонних дорог (путь	7, 22	14, 22	17, 29
,	между двумя городами вв противоположные	1, 22	11,22	17, 27
	стороны может быть разным). Для каждой			
	пары городов найти длину кратчайшего пути			
	между ними.			
8	Задана система двусторонних дорог. Найти	8, 23	13, 23	18, 30
	два города и соединяющий их путь, который			
	проходит через каждую из дорог системы			
0	только один раз	0.24	10.04	1.10
9	Задана система двусторонних дорог, где для	9, 24	12, 24	1,19
	любой пары городов есть соединяющий их путь. Найти город с минимальной суммой			
	расстояний до остальных городов.			
10	Задана система двусторонних дорог.	10, 25	11, 25	2,20
	Определить, можно ли, построив еще три новые	,	11, 20	_,_ 。
	дороги, из заданного города добраться до			
	каждого из остальных городов, проезжая			
	расстояние не более Т единиц.			
11	Задана система двусторонних дорог.	11, 26	10,30	3,21
	Определить, можно ли, закрыв какие-нибудь			
	три дороги, добиться того, чтобы из города А			
10	нельзя было попасть в город В.	10.07	0.20	4.22
12	Задана система двусторонних дорог (путь	12, 27	9, 29	4,22
	между двумя городами в противоположные стороны может быть разным). Найти			
	множество городов, расстояние от которых до			
	выделенного города (столицы) больше, чем Т.			
13	В системе двусторонних дорог за проезд	13, 28	8, 28	5,23
	каждой дороги взимается некоторая пошлина.	, -		, -
	Найти путь из города А в город В с			
	минимальной величиной S+P, где S - сумма			
	длин дорог пути, а Р - сумма пошлин			
	проезжаемых дорог			

14	Заданы две системы двухсторонних дорог с	14, 29	7, 27,32	6,24
1 7	· · · · · · · · · · · · · · · · · · ·	17, 27	1, 21,32	0,24
	одним и тем же множеством городов			
	(железные и шоссейные дороги). Найти			
	минимальный по длине путь из города А в			
	город В, который может проходить как по			
	железной так и по шоссейной дорогам, и места			
	пересадок с одного вида транспорта на другой			
	на этом пути.			
15	Найти минимальное (по количеству ребер)	15, 30	6, 26,31	7, 25
	подмножество ребер, удаление которых			
	превращает заданный связный граф в			
	несвязный			
Для	Сравнить эффективность (по времени и			
желающих	памяти) алгоритма обработки графа (для			
получить	своего варианта) при различных способах			
дополнит.	представления графа.			
баллы				