Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S == \iiint (\frac{1}{6} (2t_1 \mathcal{A}^{\alpha}_{\alpha} \mathcal{A}_{i}^{\theta} + 6 f^{\alpha\beta} t_{\alpha\beta} + 6 \mathcal{A}^{\alpha\beta X} \sigma_{\alpha\beta X} - 4t_1 \mathcal{A}_{\alpha}^{\theta} \partial_{i} f^{\alpha i} + 4t_1 \mathcal{A}_{i}^{\theta} \partial_{i} f^{\alpha}_{\alpha} - 2t_1 \partial_{i} f^{\theta}_{\theta} \partial^{i} f^{\alpha}_{\alpha} - 2t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 4t_1 \mathcal{A}_{i}^{\theta} \partial_{i} f^{\alpha}_{\alpha} - 2t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 4t_1 \mathcal{A}_{i}^{\theta} \partial_{i} f^{\alpha}_{\alpha} - 2t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 4t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 3t_1 \partial_{i} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 4t_2 \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} + 4t_2 \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} \partial_{\theta} f^{\alpha i} - 4t_2 \partial_{\theta} f^{\alpha i} \partial_{\theta}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Χβκ				$f_{0}^{\#1}$	0	0	0	0	O_0^+	·	U	U	U	U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\sigma_{2^{-}}^{\#1}$	0	0	2 t ₁						$ au_{0}^{\#1}$	†	0	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \frac{1}{\sqrt{5}t_1}\right $		$\frac{k}{2t_1}$	$\frac{1}{t_1}$		$\mathcal{H}_{\mathcal{O}}$					$\tau_{0}^{\#2}$	†	0	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2k^2)^2$	$\tau_{2}^{\#1}\alpha_{l}$	2 i √2 L+2 k²)	$\frac{4k^2}{+2k^2)^2}$	0		$\mathcal{A}_0^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\mathcal{A}_{0}^{\#1}$ †	$\sigma_0^{\#1}$	+	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{i(6k^2)}{2k(1+\frac{1}{2})}$		ı				•										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>	$_{2}^{\#1}$	$\frac{2}{2 k^2)^2}$	$\frac{i}{2} \sqrt{2} k$ $2 k^2)^2$	0	A											
$\mathcal{A}_{1}^{\#1}{}_{\alpha\beta} \ \mathcal{A}_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta} \ \mathcal{A}_{1}^{\#1}{}_{\alpha} \ \mathcal{A}_{1}^{\#2}{}_{\alpha} $	7.5		3 (1+	3 2 (1+			2 #1 + α	β									
$\mathcal{A}_{1}^{\#1}{}_{\alpha\beta} \ \mathcal{A}_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta} \ \mathcal{A}_{1}^{\#1}{}_{\alpha} \ \mathcal{A}_{1}^{\#2}{}_{\alpha} $	$\frac{i}{5+2k^3}$		1 + α¢	.1 †α¢	$+^{\alpha\beta}$	<i>)</i> 	2+ I	By .	√2	K							
$\mathcal{A}_{1}^{\#1} + \alpha \beta $	kr		σ_2^*	t_2^*	$\sigma_{2}^{\#1}$	$\mathcal{A}_2^{\#}$	†"†"		0		0	2					
$\mathcal{A}_{1}^{\#2} + \alpha \beta = \frac{t_{1}}{\sqrt{2}} 0 0 0 0 0 0$ $f_{1}^{\#1} + \alpha \beta = \frac{ikt_{1}}{\sqrt{2}} 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#1} + \alpha \beta = \frac{ikt_{1}}{\sqrt{2}} 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#1} + \alpha \beta = 0 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#2} + \alpha \beta = 0 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#2} + \alpha \beta = 0 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#2} + \alpha \beta = 0 0 0 0 0 0 0$ $\mathcal{A}_{1}^{\#2} + \alpha \beta = 0 0 0 0 0 0 0$			_	$\mathcal{A}_{1}^{\sharp 1}$	$_{lphaeta}$ A	#2 1 ⁺ αβ	$f_{1+c}^{#1}$	ιβ	${\mathcal R}_1^{\sharp 1}$	α	${\mathcal F}$	#2 1 α		$f_{1}^{#1}$	χ	$f_{1-\alpha}^{#2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$ $f_{1}^{\#1}\dagger^{lphaeta}$		$k^2 r_5 - \frac{t_1}{2}$		$\frac{t_1}{\sqrt{2}} -\frac{i k t_1}{\sqrt{2}}$		<u>l</u>	0		0			0		0	
$\mathcal{A}_{1}^{\#1} + \alpha = 0 \qquad 0 \qquad 0 \qquad k^{2} r_{5} + \frac{t_{1}}{6} \qquad \frac{t_{1}}{3\sqrt{2}} \qquad 0 \qquad \frac{ikt_{1}}{3}$ $\mathcal{A}_{1}^{\#2} + \alpha = 0 \qquad 0 \qquad 0 \qquad \frac{t_{1}}{3\sqrt{2}} \qquad \frac{t_{1}}{3} \qquad 0 \qquad \frac{1}{3} i \sqrt{2} kt_{1}$				$-\frac{t_1}{\sqrt{2}}$		0 0			0		0		0		0		
$\mathcal{A}_{1}^{\#2} + \alpha \qquad 0 \qquad 0 \qquad 0 \qquad \frac{t_{1}}{3\sqrt{2}} \qquad \frac{t_{1}}{3} \qquad 0 \qquad \frac{1}{3} i \sqrt{2} k t_{1}$	0			$\frac{ikt_1}{\sqrt{2}}$		0	0		0		0			0		0	
$\mathcal{A}_{1}^{\#2} + \alpha \qquad 0 \qquad 0 \qquad 0 \qquad \frac{t_{1}}{3\sqrt{2}} \qquad \frac{t_{1}}{3} \qquad 0 \qquad \frac{1}{3} i \sqrt{2} k t_{1}$				0		0 0		k²	$k^2 r_5 + \frac{t_1}{6}$		$\frac{t_1}{3\sqrt{2}}$			0	<u> </u>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\mathcal{A}_{1}^{\#_{2}}$ † lpha		0	0		0		$\frac{t_1}{3\sqrt{2}}$					0	$\frac{1}{3}$ \bar{I}		
$f_{1}^{\#2} + \alpha \qquad 0 \qquad 0 \qquad -\frac{1}{3} i k t_{1} -\frac{1}{3} i \sqrt{2} k t_{1} 0 \qquad \frac{2k^{2}t_{1}}{3}$	$+_{\alpha}$	f ₁ ^{#1} †		0		0	0				0			0		0	
	$t_1^{\#2}$	$f_{1}^{#2} \dagger^{\alpha}$		0		0 0		-	$-\frac{1}{3}ikt_1$		$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$		$\langle t_1 $	0		$\frac{2 k^2 t_1}{3}$	
					•			-									

 $\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t}$

0

 $\frac{1}{\sqrt{2} (k^2 r_5 + 2k^4 r_5)}$ $\frac{6k^2 r_5 + t_1}{2(k + 2k^3)^2 r_5 t_1}$

 $\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 \, k^4 \; r_5)}$

0

0

0

 $\sigma_1^{\#2} +^{\alpha}$

0

0

0

 $\tau_{1}^{\#1} +^{\alpha}$

0

0

0

 $\sigma_{1}^{\#_1} \dagger^\alpha$

0

0

0

0

0

0

 $\sigma_1^{\#_2^2} \dagger^{\alpha\beta}$

 $\sigma_{1}^{\#1}{}_{\alpha}$

0

0

0

0

0

0

 $\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$

 $\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$

Massive and massless spectra

Massive particle							
Pole residue: $-\frac{1}{r_2} > 0$							
Polarisations:	1						
Square mass:	$\frac{t_1}{r_2} > 0$						
Spin:	0						
Parity:	Odd						

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$