ME 3001 Lecture - A Brief Refresher in MATLAB

• What is it?

- High Level programming language
 - * language written in C++
 - * Interactive Development Environment written in JAVA
 - * Windows, Mac, and Linux compatible
- -MATrix LABoratory
- Technical Computing Language Mathworks

• Why use it?

- A powerful tool for engineers, scientists, and students
 - * optimized for floating point arithmetic and linear algebra
 - * extensive library of mathematical functions and operations
 - * specialized functions and operations
 - · Aerospace

· Image/Signal Processing

· Robotics

- · Embedded Systems and
- · Communications
- Controls
- * ability to use *symbolic programming*
- Ease of Access and Community
 - * Plug and Play, it works out of the box
 - * requires little or no programming experience to begin
 - * online community for sharing code, MATLAB Central

• Why Not?

- Review of some basic MATLAB
 - Useful Commands (type in Command Window)

>>

- Built-In MATLAB functions
 - * Typical Mathematics Functions

* Other Useful Functions

- round()
- floor()
- · int8()
- sign()
- . mod()
- rem()
- fzero()

* The Built in Help

- \cdot use the help to get information about the built in functions
- \cdot the full documentation is also available online

- Constants

Several useful constants are built into MATLAB.

- * pi
- * i
- *
- * inf
- * NaN

- Random Numbers

Sometime it is useful generate random data in MATLAB.

- * rand()
- * randi()

User Defined Functions

* We often write our own functions in MATLAB. To do this we must define the function in the function file.

* When we use a function we call the function.

* we can refer to a function with $handle\ operator$

• A Mechanical Design Problem

As an engineer you are asked to design a structure. The geometry of this structures is simple but certain properties are critical. Also you want to spend as little as possible on materials.

surface area,
$$s = \pi r l = \pi r \sqrt{h^2 + r^2}$$

volume,
$$v = \pi r^2 \frac{h}{3}$$

The first structure you are required to design is a cone with a surface area of exactly $25m^2$ to a tolerance of $0.1 m^2$ and a height of exactly 1m. Your goal is to find the radius in meters.

Write a program the uses the *Newton -Raphson* method to solve the problem. Verify and compare your answer with the *fzero* function.

- REMINDER Homework 1 is due Friday
- REMINDER MATLAB script from today's lecture will be posted on ilearn.