Abstract Algebra for Cryptography Part I

Algebraic Properties and Field Arihmetic

Izmir Institute of Technology

Department of Computer Engineering

Asst. Prof. Serap ŞAHİN

Outline

- Algebraic Properties
 - Basic concepts in Set theory
 - The random mappings
 - Groups
 - Cyclic Groups
 - Generators
 - Rings
 - Fields
- Field Arithmetic
 - Prime Field Arithmetic
 - Binary Field (Polynomial) Arithmetic

Set \rightarrow A collection of well defined elements.

- 1. Description A set defined in words.
 - Example: Set A is the set of Natural numbers ending in 10.
- 2. Roster A set is defined with a list of elements surrounded by braces { }.
 - **Example:** $A = \{1,2,3,4,5,6,7,8,9,10\}$

3. Set Builder Notation

- Example: $A = \{x | x \text{ is a natural number less than } 11\}$, which reads: "Set A is set of all elements x such that x is a natural number less than 11."

- Element → An item in a set denoted by the symbol ∈.
 - Example: If $A = \{1,2,3\}$, then $3 \in A$
- Equal sets → are identical, containing exactly the same elements.
 - Example: If $A = \{A,B,C,D\}$, and $B = \{D,C,B,A\}$, then A = B
- Equivalent sets → have the same cardinal number of elements, denoted by the symbol n(), but the elements do not need to be identical.
 - Example: If $A = \{1,2,3,4\}$ and $B = \{April, May, June, July\}$, then n(A)=n(B). Sets A and B are equivalent.

- Empty or Null Set \rightarrow is a set that contains no elements and are denoted by the symbols $\{\}$ and \emptyset .
- Subset → denoted by the symbol ⊆ occurs when all the elements of one set are also the elements of another. A subset may be, but doesn't have to be equal to the original set.
 - Example: If $A = \{A,B,C,D\}$ and $B = \{A,B,C,D,E,F,G\}$, then $A \subseteq B$.
- Proper Subset \rightarrow denoted by the symbol \subset occurs when the subset contains at least one less element than the original set.
 - Example: If $A = \{A,B,C,D\}$ and $B = \{A,B,D\}$, then $B \subset A$

- Number of Subsets \rightarrow is 2^n , where n is the number of elements in the set.
 - Example: $A = \{A, B, C, D\}$. Since set A has 4 elements, the formula for number of subsets is: $2^4 = 16$.
 - Therefore, there are 16 subsets of set A. They are: Ø, {A}, {B}, {C}, {D}, {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D} and {A,B,C,D}.
 - Note that the first fifteen subsets of set A are also **proper subsets**. The formula for the number of proper subsets is $2^n 1$. In this example of set A, the number of proper subsets is $2^4 1 = 15$.

- Universal Set → contains all the elements for any specific discussion, and is symbolized by the symbol U.
 - Example: $U = \{A, E, I, O, U\}$
- Intersection \rightarrow contains the elements common to 2 or more sets and is denoted by the symbol, \cap .
- Union \rightarrow contains all the elements in two or more sets and is denoted by the symbol, U.
- Complement \rightarrow contains all the elements in the universal set that are not in the original set and is denoted by the symbol, 'or $\overline{}$.
 - Example: $U = \{1,2,3,4,5,6,7,8,9,0\}$ $A = \{1,2,3,\}$ $B = \{2,3,4,5,6\}$
 - $A \cap B = \{2,3\}, A \cup B = \{1,2,3,4,5,6\}, A' = \{4,5,6,7,8,9,0\}$ B'= $\{1,7,8,9,0\}$

The Random Mappings

Definition:

Let F_n denote the collection of all functions (mappings) from a finite domain of size n to a finite codomain of size n.

Models where random elements of F_n are considered are called random mappings models.

Definition:

Let f be a function in F_n with domain and codomain equal to $\{1,2,...,n\}$. The **functional graph** of f is a **directed graph** whose **points** are the elements $\{1,2,...,n\}$ and whose **edges** are the ordered pairs (x, f(x)) for all $x \in \{1,2,...,n\}$.

Example: The Random Mappings

Consider the function $f:\{1,2,...,13\} \rightarrow \{1,2,...,13\}$ defined by following table:

Definition Let f be a random function from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$ and let $u \in \{1, 2, ..., n\}$. Consider the sequence of points $u_0, u_1, u_2, ...$ defined by $u_0 = u, u_i = f(u_{i-1})$ for $i \ge 1$. In terms of the functional graph of f, this sequence describes a path that connects to a cycle.

- (i) The number of edges in the path is called the *tail length* of u, denoted $\lambda(u)$.
- (ii) The number of edges in the cycle is called the cycle length of u, denoted $\mu(u)$.
- (iii) The *rho-length* of u is the quantity $\rho(u) = \lambda(u) + \mu(u)$.

Example The functional graph in Figure 2.1 has 2 components and 4 terminal points. The point u=3 has parameters $\lambda(u)=1$, $\mu(u)=4$, $\rho(u)=5$. The tree, component, and predecessors sizes of u=3 are 4, 9, and 3, respectively.

The Groups

- A group (G, .) is a set of elements G with binary operations "." that satisfy the following axioms for x, y in G:
 - Closure : x.y is in G.
 - Associativity : x.(y.z) = (x.y).z
 - There exists an identity element e in G such that for all x in G:

$$(x.e) = (e.x) = x$$

- There exists an inverse x^{-1} in G such that

$$(x.x^{-1}) = (x^{-1}.x) = e$$
 for all x in G.

Example: (Z, +) is a group

- A group that is commutative is also known as abelian: x.y = y.x

Cyclic Group and Generator

- Let G is a group and a E G
- If G={a n | n ∈ Z}, then a is a generator of G and the group G=< a > is cyclic.
- If the cyclic group < a > of G is finite, then the order of a is the |< a > | of this cyclic subgroup. Otherwise, we say that G has infinite order.
- If a \in G is finite order m, than m is the smallest positive integer such that a m =e.
- Every cyclic group is abelian. (commutative axiom)
- A subgroup of a cyclic group is cyclic.

Cyclic Groups

 If <G> has an <u>infinite</u> number of elements, then there is no two distinct exponents h and k which can point to the same element in the group.

2. If <G> has <u>finite</u> order. Which means that for some

 $a^h = a^k$

Cyclic Groups: An example

$$f(x) = 2^x \pmod{5}$$
 and $x \in \mathbb{Z}$;

$$2^0 = 1 \pmod{5}$$

$$2^1 = 2 \pmod{5}$$

$$2^2 = 4 \pmod{5}$$

$$2^3 = 3 \pmod{5}$$

$$2^4 = 1 \pmod{5}$$

$$2^5 = 2 \pmod{5}$$

• • •

Even if
$$h \neq k$$
, still $a^h = a^k$
 $h = 1$ and $k = 4$, and $a = 2$
 $2^1 \pmod{5} = 2^5 \pmod{5}$

$$Z_5^* = \{1, 2, 3, 4\}$$

Generators: Definition

- ·Let p be a prime,
- with an integer g such that g<p;then g is a generator (mod p)
- if for each integer b from 1 to (p-1),
 there exists some integer a where,

$$g^{a} \equiv b \pmod{p}$$
.

Generators: Example

Let p=11, and g=2, so (p-1)=10, then "a" goes from 1 upto 10 Let's try to obtain all numbers from 1 to 10 in the form of $g^a \equiv b \pmod{p}$ to see if g=2 is indeed a generator.

Generators: How to Find the Generators?

• For p=11, the other generators are 2,6,7 and 8.

But 3 is not since there is no solution to

$$3^a \equiv 2 \pmod{11}$$

 Usually it is hard to test whether a given number is a generator or not.

• The easy way is to use the factorization of (p-1).

Generators: How to Find the Generators?

• Let $q_1, q_2,...,q_n$ be the prime factors of (p-1),

Step #1

Find $g^{(p-1)/q}$ (mod p) for all values of $q=q_1,q_2,...,q_n$

Step #2

g is a generator if value does not equal to 1 for any values of q. Otherwise it is not.

Generators: Example #2

• Let p=11, prime factors of (p-1)=10 are 2 and 5.

Testing 2 whether it is a generator:

$$2^{(11-1)/2}$$
 (mod 11) = 10
 $2^{(11-1)/5}$ (mod 11) = 4

Neither result is 1, so 2 is a generator.

Testing 3 whether it is a generator:

$$3^{(11-1)/2}$$
 (mod 11) = 1
 $3^{(11-1)/5}$ (mod 11) = 9

One result is 1, so 3 is NOT a generator.

Finite Fields

Consists of a finite set of elements for the operations of multiplication and addition which satisfy the below rules:

1. Associativity
$$a+(b+c) = (a+b)+c$$

 $a.(b.c) = (a.b).c$

- 2. Commutativity a+b=b+aa.b=b.a
- 3. Distributive law a.(b+c)=(a.b) + (a.c)
- 4. Additive Identity
- 5. Multiplicative Identity
- 6. Additive Inverse
- 7. Multiplicative Inverse

For Example; $Z/Z_p \rightarrow$ The field of integers modulo a prime number p.

Finite Fields

- 1. The order of finite field is the number of elements in the field.
- 2. There exists a finite field of order q if and only if q is a prime power. This field is denoted by F_q
- 3. If $q = p^m$ where p is a prime and m is a positive integer then p is called the characteristic of F_q and, m is called the extention degree of $F_q = F_{pm}$

Algebraic Properties

Group - Ring - Field

Ring;

- It has created two sets for each + and x operations which are at least two element.
- Associativity,
- Distribution.

Field;

- It has included all inverse elements of each element in the set for both + and x operation.
- It is the abelian for + and x operations.

Group;

- Closure,
- Associativity,
- Identitiy element,
- Invers element,
- Abelian (commutative).

Fields

- Let p be a prime number.
- In other case, p=i.j and $1 < i \le j < p$ and it is not any x value such that i.x=1 (mod p). It means that i has not inverse element in Zp set. Hence, Zp is not a field.
- Zp is a cyclic group if and only if p is prime and p>1.

Finite Field Arithmetic

- There are three kinds of fields;
 - Prime Fields
 - Binary Fields
 - Optimal Extention Fields
- There are four basic arithmetic operations;
 - Addition
 - Subtraction
 - Multiplication
 - Inversion

Field Operation

$$a,b\in F_q, a-b=a+(-b)$$
 Where $b+(-b)=0$ and -b is called the **negative** of b.

$$a,b\in F,b\neq 0,a/b=a.b^{-1}$$
 Where $b.b^{-1}=1$ and b^{-1} is called the **inverse** of b.

Prime Fields

- · Let p be a prime number.
- The integers modulo p, consisting of the integers {0,1,2,...,p-1} with addition and multiplication performed modulo p, is a finite order p.
- We denote this field by F_p and call p modulus of F_p .
- For any integers a, a mod p shall denote the unique integer remainder r, $0 \le r \le p-1$, obtained upon dividing a by p; this operation is called **reduction modulo p**.

Example: for the prime field F_{29} ;

Addition: 17+20 = 8 since 37 mod 29 = 8,

Subtraction: 17-20 = 26 since -3 mod 29 = 26,

Multiplication: 17.20 = 21 since 340 mod 29 = 21,

Inversion: 17⁻¹=12 since 17.12 mod 29=1.

Binary Fields

- Finite fields of order 2^m are called binary fields or characteristic-two finite fields.
- One way to construct F_2^m is to use **polynomial basis** representation.
- Binary polynomials whose coefficients are in the field $F_2=\{0,1\}$ of degree at most m-1:

$$F_{2^m} = \{a_{m-1}z^{m-1} + a_{m-2}z^{m-2} + \dots + a_2z^2 + a_1z^1 + a_0 : a_i \in \{0,1\}\}.$$

Binary Fields

Addition of field elements is the usual addition of polynomials,
 with coefficient arithmetic modulo 2.

 Irreducibility; of f(z) means that f(z) cannot be factored as a product of binary polynomials each of degree less than m.

Binary Fields

- Reduction polynomial f(z); it should be $f(z) = z^m + r(z)$ and f(z) is irreducible.
- Multiplication of field elements is performed modulo the reduction polynomial f(z). For any binary polynomial a(z), a(z) mod f(z) shall denote unique remainder polynomial r(z) of degree less than m obtained upon long division of a(z) by f(z); this operation is called reduction modulo f(z).

Binary Fields - Plynomial Bases Representation

Addition

 $(a_{m-1} \ldots a_1 a_0) + (b_{m-1} \ldots b_1 b_0) = (c_{m-1} \ldots c_1 c_0)$ where each $c_i = a_i + b_i$ over F_2 . Addition is just the componentwise XOR of $(a_{m-1} \ldots a_1 a_0)$ and $(b_{m-1} \ldots b_1 b_0)$.

Subtraction

In the field F_2 m, each element $(a_{m-1} \dots a_1 a_0)$ is its own additive inverse, since $(a_{m-1} \dots a_1 a_0) + (a_{m-1} \dots a_1 a_0) = (0 \dots 0 0)$, the additive identity. Thus addition and subtraction are equivalent operations in F_2 m.

Multiplication

 $(a_{m-1} \ldots a_1 a_0)$ $(b_{m-1} \ldots b_1 b_0) = (r_{m-1} \ldots r_1 r_0)$ where $r_{m-1}x^{m-1} + \ldots + r_1x + r_0$ is the remainder when the polynomial $(a_{m-1}x^{m-1} + \ldots + a_1x + a_0)$ $(b_{m-1}x^{m-1} + \ldots + b_1x + b_0)$ is divided by the polynomial f(x) over F_2 . (Note that all polynomial coefficients are reduced modulo 2.)

Binary Fields - Plynomial Bases Representation

Exponentiation

The exponentiation $(a_{m-1} \ldots a_1 \ a_0)^e$ is performed by multiplying together e copies of $(a_{m-1} \ldots a_1 \ a_0)$.

Multiplicative Inversion

There exists at least one element g in F_2 m such that all non-zero elements in F_2 m can be expressed as a power of g. Such an element g is called a *generator* of F_2 m. The multiplicative inverse of an element g is g is g is g is g in g

Example: Binary Field F₂⁴

Addition: $(z^3 + z^2 + 1) + (z^2 + z + 1) = (z^3 + z)$.

Subtraction: $(z^3 + z^2 + 1) - (z^2 + z + 1) = (z^3 + z)$.

Multiplication: $(z^3 + z^2 + 1).(z^2 + z + 1) = z^5 + z + 1$ and $(z^5 + z + 1) \mod(z^4 + z + 1) = z^2 + 1.$

Inversion: $(z^3 + z^2 + 1)^{-1} = z^2 =>$ $(z^3 + z^2 + 1) \cdot z^2 \mod(z^4 + z + 1) = 1.$

Example: Binary Field F₂⁴

The elements of F_2^4 are the 16 vectors:

```
(0000) (0001) (0010) (0011) (0100) (0101) (0110) (0111) (1000) (1001) (1010) (1011) (1100) (1101) (1110) (1111).
```

The irreducible polynomial used will be $f(x) = x^4 + x + 1$. The following are sample calculations.

```
Addition
(0110) + (0101) = (0011).
Multiplication
(1101) (1001)
= (x^3 + x^2 + 1) (x^3 + 1) \mod f(x)
= x^6 + x^5 + 2x^3 + x^2 + 1 \mod f(x)
= x^6 + x^5 + x^2 + 1 \mod f(x) \text{ (coefficients are reduced modulo 2)}
= (x^4 + x + 1)(x^2 + x) + (x^3 + x^2 + x + 1) \mod f(x)
= x^3 + x^2 + x + 1
= (1111).
```

Example: Binary Field F₂⁴

```
Exponentiation
    To compute (0010)5, first find
    (0010)^2
    = (0010) (0010)
    = x \times \text{mod } f(x)
= (x^4 + x + 1)(0) + (x^2) \text{mod } f(x)
    = (0100).
    Then
    (0010)^4
      (0010)^2 (0010)^2
      (0100)(0100)
    = x^2 x^2 \mod f(x)
      (x^4 + x + 1)(1) + (x + 1) \mod f(x)
    = x + 1
    = (0011).
    Finally, (0010)<sup>5</sup>
      (0010)^4 (0010)
      (0011)(0010)
      (x + 1)(x) \mod f(x)

(x^2 + x) \mod f(x)

(x^4 + x + 1)(0) + (x^2 + x) \mod f(x)
      <u>(0110)</u>
```

Example: Binary Field F24

Multiplicative Inversion

```
The element q = (0010) is a generator for the field. The powers
   of q are:
  g^0 = (0001) g^1 = (0010) g^2 = (0100) g^3 = (1000) g^4 = (0011)
  g^5 = (0110) g^6 = (1100) g^7 = (1011) g^8 = (0101) g^9 = (1010)
  q^{10} = (0111) q^{11} = (1110) q^{12} = (1111) q^{13} = (1101)
  q^{14} = (1001) q^{15} = (0001).
   The multiplicative identity for the field is g^0 = (0001). The
   multiplicative inverse of:
q^7 = (1011) is q^{-7} \mod 15 = q^8 \mod 15 = (0101).
To verify this, see that
   (1011)(0101)
```

= $(x^3 + x + 1) (x^2 + 1) \mod f(x)$ = $x^5 + x^2 + x + 1 \mod f(x)$ = $(x^4 + x + 1)(x) + (1) \mod f(x)$ = 1 = (0001), which is the multiplicative identity.