

SmartSensTM

V1.2 2018.4.26

应用

- 机器视觉
- 条码扫描
- 汽车电子
- 安防监控系统
- 高速摄影系统

特性

- 全局曝光
- 支持高动态输出
- 支持外部控制曝光及多 sensor 同步
- 自动曝光/增益控制,支持小于一行曝光
- 支持 LED STROBE
- 水平/垂直窗口调整
- 15.5x 模拟增益, 16x 数字增益
- 高光敏度
- I2C 接口寄存器编程
- 低功耗 (Max: 120mW)

- 分辨率: 30万
- 有效像素阵列: 640H×480V
- 像素尺寸: 3.744μm×3.744 μm BSI
- 镜头光学尺寸: 1/6"
- 最大图像传输速率:
 - Non-HDR

640H×480V@10bit 240fps

■ HDR

 $640H\times480V@10$ bit 120fps(KPC on) $640H\times480V@10$ bit 240fps(KPC off)

- 输出接口:
 - 12/10/8-bit 2/1 lane MIPI
 - 12/10/8-bit 2/1 lane LVDS
- 输出格式: MONO
- CRA: 33°
- 灵敏度: 6.5V/Lux s
- 满阱电荷: 7000e-
- 动态范围:
 - 普通模式 56dB
 - HDR 模式 >100dB
- 信噪比: 38dB
- 工作温度范围: -40° C~+85° C
- 最佳工作温度范围: -20°C~+60°C
- 电源电压:
 - AVDD = $2.8V\pm0.1V$
 - DVDD = $1.5V\pm0.1V$
 - DOVDD = $1.8V \pm 0.1V$
- 封装信息:
 - 32pin CSP
 - 3.704mm×3.072mm

关键指标 (典型值)

目录

長目	ξ		3
图片	ˈ 索引		5
表格	· 李引		6
1.	芯片简述		7
1.1.	芯片机	我述	7
1.2.	系统村	E架	7
1.3.		描述	× ,
1.4.	芯片衫	7始化	10
	1.4.1.	上电时序	10
	1.4.2.	睡眠模式	11
	1.4.3.	复位模式	11
1.5.	配置指	2 —	11
1.6.	数据技	₹ □	13
	1 6 1 MI	PI	13
		DS	
1.7.		Γ	
2.			
2.1		ROBE	
2.2		文全局曝光模式	
2.3		· 模式	
2.5	2.3.1		
2.4	Y	GC	
	•		
	2.4.2	AEC/AGC 的控制策略	
	2.4.3	AEC/AGC 控制寄存器说明	24
2.5	GROU	P_HOLD	29
2.6	黑电平	^z 控制(BLC)	29
2.7	HDR (Calibration	30

SC031GS

2.8	视频输出模式	31
	2.8.1 读取顺序	31
	2.8.2 输出窗口	32
2.9	帧率计算	32
2.10	测试模式	33
3. 电	1气特性	35
4. 光	台学特性(TBD)	37
5. 封	t装信息	37
6. 版	在变更记录	39

图片索引

图	1-1 SC031GS 结构图	7
图	1-2 典型应用示意图	8
图	1-3 引脚图	.10
图	1-4 上电时序图	.10
	1-5 I2C 接口时序	
图	1-6 MIPI/LVDS 接口示意图	.14
图	1-7 MIPI 底层数据包示意图	.14
	1-8 MIPI 长/短数据包结构示意图	
图	1-9 MIPI 数据包 DI 结构	15
图	1-10 LVDS 每个 lane 数据结构示意图(以 10bit 为例)	.17
	1-11 PLL 控制示意图	
	2-1 外部触发全局模式时序图	
图	2-2 HDR 功能说明	.22
图	2-3 HDR 功能控制	.23
图	2-4 像素阵列图一	.31
图	2-5 镜像和倒置实例	.31
图	2-6 视频有效输出示意图	.33
图	2-7 测试模式	.33
图	5-1 封装示意图(单位 mm)	37

表格索引

表	1-1 SC031GS 引脚描述	8
表	1-2 睡眠模式控制寄存器	11
表	1-3 软复位控制寄存器	11
表	1-4 I2C 接口时序详细参数	13
表	1-5 MIPI 数据类型	16
表	1-6 MIPI 同步调整寄存器	16
表	1-7 LVDS 数据同步信息编码示意表	17
表	1-8 LVDS 调整相关寄存器	18
表	2-1 外部触发全局曝光控制寄存器	21
表	2-2 HDR 模式控制寄存器	23
	2-3 增益/曝光的手动控制寄存器	
	2-4 模拟 gain 值控制寄存器	
表	2-5 数字 gain 值控制寄存器	26
表	2-6 Group hold 控制寄存器	29
表	2-7 BLC 控制寄存器	29
表	2-8 KPC 寄存器控制	30
	2-9 镜像和倒置模式控制寄存器	
表	2-10 输出窗口寄存器	32
表	2-11 帧率相关寄存器	33
表	2-12 测试模式控制寄存器	34
表	3-1 绝对最大额定值	35
表	3-2 直流电气特性(AVDD=3.3V,DOVDD=1.8V MIPI 下测试)	35
表	3-3 交流特性(TA=25℃,AVDD=3.3V,DOVDD=1.8V)	36
表	5-1 封装尺寸图	38

1. 芯片简述

1.1. 芯片概述

SC031GS 是一款 Global shutter CMOS 图像传感器,最高支持 640H×480V @ 240fps 的传输速率。SC031GS 输出黑白图像,有效像素窗口为 640H×480V,支持复杂的片上操作——例如 HDR 模式、支持外触发全局曝光模式、窗口化、水平或垂直镜像化等。

SC031GS 可以通过标准的 I2C 接口进行配置。

SC031GS 可以通过 TRIG 引脚实现外部控制曝光。

1.2. 系统框架

图 1-1 展示了 SC031GS 图像传感器的功能模块图。1-2 示了一个典型的应用示例。

SC031GS Block Diagram LED STROBE 行 光学阵列 输 模拟处理模块 数字处理模块 640*480 MIPI/LVDS λ 列输入 系统控制 PLL **I2C Slave XSHUTDN TRIG** SCL SDA **EXTCLK**

图 1-1 SC031GS 结构图

SC031GS 支持 LVDS 接口、MIPI 接口,以 MIPI 接口为例:

图 1-2 典型应用示意图

1.3. 引脚描述

表 1-1 列出了 SC031GS 图像传感器的引脚描述。

表 1-1 SC031GS 引脚描述

序号	编号	信号名	引脚类型	描述
1	A2	OTPPGM	输入	OTP 烧录电压控制管脚。使用
NY				4.7K 电阻下拉至 DGND。
2	A4	AVDD	电源	2.8V 模拟电源
3	A6	SID1	输入	I2C Device ID 1
4	A8	AGND	地线	模拟地
5	B1	LEDSTROBE	输出	LED STROBE 信号
6	В3	TRIG	输入	触发信号,外部曝光控制
7	B5	AGND	地线	模拟地
8	В7	XSHUTDN	输入	XSHUTDN 信号输入(内置上拉
				电阻,低电位有效)
9	C2	SDA	输入/输出	I2C 数据线(open drain)

SC031GS

序号	编号	信号名	引脚类型	描述
10	C4	DVDD	电源	1.5V 数字电源
11	C6	SID0	输入	I2C Device ID 0
12	C8	RSTM	输出	内部参考电压(外接电容至
				AGND)
13	D1	EXTCLK	输入	时钟输入
14	D3	SCL	输入	I2C 时钟线
15	D5	DOGND	地线	IO地
16	D7	VREFGS	输出	内部参考电压(外接电容至
				AGND)
17	E2	DOGND	地线	IO地
18	E4	DVDD	电源	1.5V 数字电源
19	E6	AVDD	电源	2.8V 模拟电源
20	E8	VREF1	输出	内部参考电压(外接电容至
			A	AGND)
21	F1	DVDD	电源	1.5V 数字电源
22	F3	MD0P	输出	MIPI 数据 0 正极信号
23	F5	MD1N	输出	MIPI 数据 1 负极信号
24	F7	VREFN1	输出	内部参考电压(外接电容至
			Y	AGND)
25	G2	MD0N	输出	MIPI 数据 0 负极信号
26	G4	MCP	输出	MIPI 时钟正极信号
27	G6	AGND	地线	模拟地
28	G8	VREFH	输出	内部参考电压(外接电容至
				AGND)
29	H1	DOVDD	电源	1.8V IO 电源
30	Н3	MCN	输出	MIPI 时钟负极信号
31	H5	MD1P	输出	MIPI 数据 1 正极信号
32	H7	VREFN	输出	内部参考电压(外接电容至
				AGND)

Top View

图 1-3 引脚图

1.4. 芯片初始化

1.4.1. 上电时序

DVDD 外部供电 1.5V,上电时序要求如下:

DVDD

AVDD

XSHUTDN

I2C activity is ready

图 1-4 上电时序图

说明:

1).T1>0ms, T2>1ms, T3>2ms, T4>2ms;

1.4.2. 睡眠模式

在睡眠模式下,寄存器保持不变。SC031GS 提供两种方式进入睡眠模式:

- 1) 将 XSHUTDN 拉低,此时不能访问寄存器。
- 2) 将寄存器 16'h0100[0]写入 0, 此时仍然可以访问传感器的寄存器。

表 1-2 睡眠模式控制寄存器

地址	寄存器名	默认 值	读/写	描述
16'h0100	Manual sleep mode	'ь0	R/W	Bit[0]: manual stream enable 0: sleep enable 1: sleep disable

1.4.3. 复位模式

在复位模式下, SC031GS 所有寄存器都重置为默认值; 通过将 SC031GS 寄存器 16'h0103 的 Bit[0]设置为 1 进入复位模式,如表 1-3 所示。

表 1-3 软复位控制寄存器

地址	寄存器名	默认值	读/写	描述
16'h0103	Rst_pon	'b0	W	Bit[0]: rst soft

1.5. 配置接口

SC031GS 提供标准的 I2C 总线配置接口对寄存器进行读写,I2C 设备地址由 PAD SID0,SID1 的电平值决定,如表 1-4 所示。

表 1-4 I2C 设备地址控制

7Bit I2C 设备地址	SID0	SID1
7'h30	低电平	低电平
7'h31	高电平	低电平
7'h32	低电平	高电平

7Bit I2C 设备地址	SID0	SID1		
7'h33	高电平	高电平		

消息类型: 16-bit 地址、8-bit 数据和 7-bit 设备地址

S	Slave Address	R/W	А	Sub Address [15:8]	Α	Sub Address [7:0]	Α	data	A/Ã	Р					
I2C Write															
S	Slave Address	0	А	Sub Address [15:8]	Α	Sub Address [7:0]	Α	data	A/Ã	Р			\ \ \	0)
I2C	Read											X)		
S	Slave Address	0	А	Sub Address [15:8]	Α	Sub Address [7:0]	А	Sr		ave ress	1	А	data	Ã	Р
Slave to Master S: Start Condition A: Acknowledge															
	Master to Slave P: Stop Condition A: No-Acknowledge														

Direction depends on the operation Sr: Restart Condition

I2C 时序

图 1-5 I2C 接口时序

注意:

- 1) 图 1-5 是在 400kHz 模式下的 I2C 时序。
- 2) 判断上升沿起始或下降沿终止的电平阈值为 10%; 判断上升沿终止或下降沿起始

的阈值为 90%。

表 1-5 I2C 接口时序详细参数

符号	参数	最小值	典型值	最大值	单位
fI2C	时钟频率	_	_	400	kHz
tlow	时钟低电平时间	1.3	_	_	μs
thigh	时钟高电平时间	0.6	_	_	μs
tsl2dov	SCL 拉低至输出数据有效间时间间隔	0.1	_	0.9	μs
tbusft	下一个起始状态前总线空闲时间	1.3	_		μs
tscst0	起始条件保持时间	0.6	_ /	<u></u>	μs
tscst	起始条件建立时间	0.6		_	μs
tdiht	输入数据保持时间	0		_	μs
tdist	输入数据建立时间	0.1	_	_	μs
tscst1	终止条件建立时间	0.6	_	_	μs
tf/tr	下降上升时间比	_	_	0.3	μs
tdoht	输出数据保持时间	0.05	_	_	μs

1.6. 数据接口

SC031GS 提供两种数据接口: MIPI、 LVDS。

1.6.1 MIPI

SC031GS 提供串行视频端口(MIPI)。图 1-6 是 MIPI/LVDS 数据接口示意图,其中 Sensor 支持 1/2lane 来传输图像 8/10/12bit 数据。

图 1-6 MIPI/LVDS 接口示意图

图 1-7 是 MIPI 底层数据包的简略示意图,其中分别展示了一个短数据包和长数据包的传输过程。

图 1-7 MIPI 底层数据包示意图

图 1-8 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来区分不同的数据包类型。图 1-9 展示了 MIPI 工作在 2lane 模式下的数据包传输示意图,需要注意的是,在 2lane 模式下传输的一行数据包个数必须是偶数。图 1-10 中,DI 包括两部分,分别是虚拟通道(VC)和数据类型(DT)。默认情况下,Sensor 给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-6 所示。

图 1-8 MIPI 长/短数据包结构示意图

图 1-9 MIPI 2-lane 模式数据包传输示意图

图 1-10 MIPI 数据包 DI 结构

表 1-6 MIPI 数据类型

DT	描述		
8'h00	帧起始短包		
8'h01	帧结束短包		
8'h2a	8-bit 模式下数据长包		
8'h2b	10-bit 模式下数据长包		
8'h2c	12-bit 模式下数据长包		

表 1-7 是 MIPI 调整相关寄存器。

表 1-7 MIPI 同步调整寄存器

功能	寄存器名	描述
MIPI pad 引脚输出(高位)	16'h3000	Bit[3:0]: pad_ctrl
		4'h0:MIPI pad 引脚输出
		4'hf:DVP pad 引脚输出
MIPI pad 引脚输出(低位)	16'h3001	Bit[7:0]: pad_ctrl
	0	8'hff:DVP pad 引脚输出
		8'h00:MIPI pad 引脚输出
MIPI fifo read 使能	16'h4603	Bit[0]: mipi_read_dis
	\wedge	0~mipi read from fifo enable
		1~mipi read from fifo enable
MIPI lane 数量	16'h3018	Bit[7:5]: mipi lane num-1
		3'h0∼ 1 lane mode
		3'h1∼ 2 lane mode
MIPI 输出数据模式	16'h3031	Bit[3:0]: mipi bit mode
		4'h8∼ raw8 mode
2.0		4'ha~ raw10 mode
		4'hc~ raw12 mode
MIPI clock 设置	16'h303f	Bit[7]: pclk sel
		1'b0~ sel pll_pclk
MIPI 模式下 FIFO 设置	16'h3c00	Bit[2]: fifo mode
		1'b0∼ fifo data for mipi
LP 模式驱动	16'h3650	Bit[1:0]: LP 模式驱动能力调整,默认
, , , , , , , , , , , , , , , , , , ,		10
HS 模式驱动	16'h3651	Bit[2:0]: HS 模式驱动能力调整,默
		认 101

功能	寄存器名	描述
MIPI Lane 0&1 延时	16'h3652	Bit[7]: lane0 相位反向,默认 0
		Bit[6:4]~lane0 延时,100ps/step,默
		认 3'b100
		Bit[3]~lane1 相位反向, 默认 0
		Bit[2:0]~lane1 延时,100ps/step,默
		认 3'b100
MIPI Clock 延时	16'h3654	Bit[3] ~ 时钟反向,默认 0
		Bit[2:0]~ 时钟延时, 100ps/step, 默
		认 3'b100

1.6.2 LVDS

SC031GS 提供串行视频端口(LVDS),其数据接口与 MIPI 数据接口复用,通过寄存器控制选择输出 LVDS 格式数据。支持 1/2 个 Data lane 来传输图像 8/10/12 bit 数据,默认先传输数据(8/10 bit)的 HSB 位。接口示意图如图 1-6 MIPI/LVDS 接口示意图所示。

SC031GS LVDS 传输顺序为: 上电复位后 → first active line → second active line → ... → last acvtive line → only one dummy line-→ next frame first active line →...。LVDS 输出时在行开始插入 line sav 同步编码,行结束处插入 line eav 同步编码,使用 dummy line 做帧结束标识。LVDS 同步编码数据结构如图 1-10 所示。

图 1-11 LVDS 每个 lane 数据结构示意图(以 10bit 为例)

- 1) 图中的 10'h010,10'h080 分别是 Dummy0 data,Dummy1 data,可由寄存器控制。
- 2) 1lane 及 2lane 模式的 lane 数据结构与图 1-10 一样。

SC031GS LVDS 同步编码信息为 8bit 数据,放在数据高 8bit 传输,同步编码信息如表 1-7 所示。

表 1-8 LVDS 数据同步信息编码示意表

默认值	描述	
8'hab	Dummy line SAV	
8'hb6	Dummy line EAV	

默认值	描述	
8'h80	Active Line SAV	
8'h9d	Active Line EAV	

备注:以 10bit 为列,Active Line SAV 为 10'h200

表 1-9 LVDS 调整相关寄存器

功能	寄存器地址名	描述
LVDS pad 引脚输出(高位)	16'h3000	BIT[3:0]: pad_ctrl[11:8]
		4'hf~DVP pad 引脚输出
		4'h0~LVDS pad 引脚输出
LVDS pad 引脚输出(低位)	16'h3001	BIT[7:0]: pad_ctrl[7:0]
		8'hff~DVP pad 引脚输出
		8'h00~LVDS pad 引脚输出
LVDS/MIPI 功能切换	16'h3022	BIT[3]:mipi_lvds_mode
		1'b1 ~ LVDS
	C	1'b0 ∼ MIPI
MIPI fifo read 使能	16'h4603	Bit[0]: mipi_read_dis
	()	0~mipi read from fifo enable
		1~mipi read from fifo enable
LVDS lane 数量	16'h3018	BIT[7:5]:lane_num-1
		3 'h $0 \sim 1$ lane mode
,		$3'h1 \sim 2$ lane mode
LVDS 输出数据模式	16'h302b	BIT[6:5]:bitsel_man
		2'b0 ~ raw 8 mode
		2'b1 ~ raw 10 mode
		2'b10 ~ raw 12 mode
LVDS CLOCK 设置	16'h303f	Bit[7]: pclk sel
, O ^v		1'b0 ~ sel pll_pclk
LVDS bit 设置	16'h4b00	BIT[3]:r_bit_flip_i,
		1'b1 ∼ HSB first
>		1'b0 ∼ LSB first
DUMMY0 data	{16'h4b02[3:0],16'h4b03}	Dummy0 data
DUMMY1 data	{16'h4b04[3:0],16'h4b05}	Dummy1 data
LVDS 驱动	16'h3651	Bit[2:0]:LVDS 驱动能力调整,默认 101
LVDS Lane 0&1 延时	16'h3652	Bit[7]: lane0 相位反向
		Bit[6:4]: lane0 延时,100ps/step
		Bit[3]: lane1 相位反向
		Bit[2:0]: lane1 延时,100ps/step

	功能	寄存器地址名	描述
LV	DS Clock 延时	16'h3654	Bit[3]: 时钟反向
			Bit[2:0]: 时钟延时,100ps/step

1.7. 锁相环

SC031GS 的 PLL 模块允许的输入时钟频率范围为 $6^{\sim}27MHz$,其中 VCO 输出频率 (F_{VCO}) 的范围为 100MHz-1200MHz。PLL 结构示意图在图 1-18 展示。

图 1-12 PLL 控制示意图

2. 功能介绍

2.1 LED STROBE

SC031GS 支持 LED STROBE 功能,当 SC031GS Pixel 处于曝光期间时,PAD LEDSTROBE 置于高电平,以驱动外部 LED。

功能	寄存器地址	说明
LED STROBE 使能	16'h3361[7:6]	LED STROBE 使能控制
		2'b11~LED STROBE 功能关闭
		2'b00~LED STROBE 功能打开

表 2-1 LED STROBE 控制寄存器

2.2 外触发全局曝光模式

外触发全局曝光模式是主控芯片通过 TRIG 信号触发曝光,以实现多个 sensor 同步曝光 及视频数据输出。当 TRIG 信号由低电平变为高电平时,SC031GS 开始曝光,曝光结束后输 出图像数据,帧率受外部控制。

当 SC031GS 工作在外触发全局曝光模式时,主控芯片通过 TRIG 引脚触发曝光开始。通过寄存器{16'h3e01,16'h3e02}控制曝光时间,具体时序如图 2-1。

图 2-1 外部触发全局模式时序图

注释:

1) EXP Rows 以行为单位,EXP Rows = {16'h3e01,0x3e02[7:4]} + 16'h3226

- 2) 当 TRIG 上升沿发生后,经过寄存器 16'h3226 所配置的行数后(不建议调整,该段时间会进行多次 Pixel 复位操作,以获取更高的图像质量), SC031GS 开始曝光
- 3) Start of frame N 表示曝光结束及开始读取并传输图像数据
- 4) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位
- 5) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位

表 2-2 外部触发全局曝光控制寄存器

功能	寄存器地址	说明
Trigger 模式使能	16'h3222[1]	Trigger 模式使能控制
		1~Trigger 模式打开
		0~Trigger 模式关闭
Active Rows	{16'h3202,16'h3203}	Active Rows = ({16'h 3206, 16'h 3207} –
	{16'h3206,16'h3207}	{16'h 3202, 16'h 3203} + 1 +
	16'h3248	16'h3249 - 16'h3248 + 1 +
	16'h3249	{16'h324c,16'h324d} -
	{16'h324a,16'h324b}	{16'h324a,16'h324b} + 1)
	{16'h324c,16'h324d}	Y
Blank Rows	{16'h3218,16'h3219}	Blank Rows = {0x3218,0x3219} x2

2.3 高动态模式

SC031GS 提供两种曝光模式: 1. Normal mode 2. HDR mode,如图 2-2 所示。

图 2-2 HDR 功能说明

Normal mode 下,输出值随曝光线性变化,芯片可感应到的最大曝光为 L1。

HDR mode 下,输出值随曝光分为两段。在曝光较小时(小于 HDR point),输出值随曝光变化敏感,灵敏度高;在曝光较大时(大于 HDR point),输出值随 Light 变化不敏感,可响应更大的曝光范围,可分辨的最大曝光为 L2。因此,开启高动态模式后,动态范围可以增加 20*log(L2/L1)。

图 2-3 HDR 功能控制

2.3.1 HDR 控制模式

表 2-3 HDR 模式控制寄存器

功能	寄存器地址	说明
HDR 模式使能	16'h3220[6]	HDR 模式使能控制
		1~HDR 模式打开
		0~HDR 模式关闭
TOTAL 曝光时间	{16'h3e01,16'h3e02}	以 1/16 行为单位
HDR 曝光时间	{16'h3e31,16'h3e32}	以 1/16 行为单位

2.4 AEC/AGC

AEC/AGC 都是基于亮度进行调节的,AEC 调节曝光时间,AGC 调节增益值,最终使图像亮度落在设定亮度阈值范围内。

2.4.2 AEC/AGC 的控制策略

SC031GS 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。 在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:

曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为: ①不开启任何增益,直到曝光时间达到上限; ②曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将直接导致平均噪声呈倍数放大;而曝光时间加大,则有助于提升信噪比。

反之,当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,才会降低曝 光时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

2.4.3 AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如表 2-3 所示。

{16'h3e31,16'h3e32}

 功能
 寄存器地址
 说明

 曝光时间
 {16'h3e01,16'h3e02}
 Normal 模式下的曝光时间,HDR 模式下的总曝光时间。

 以 1/16 行为单位
 以 1/16 行为单位

以 1/16 行为单位

表 2-4 增益/曝光的手动控制寄存器

AEC 控制说明如下:

HDR 曝光时间

- 1) AEC 的调节步长为一行曝光时间,一行行曝光时间等于行长乘以 TP (其中的 TP 为 Pixel clock 的一个周期),行长 = 寄存器 $\{16'h320c,16'h320d\}$ 的值。
- 2) 曝光时间及增益都是在第一帧(第 N 帧)写入,第三帧(第 N+2 帧)生效。
- 3) 曝光时间上限不能超过当前帧长减去 6 行,帧长 = 寄存器{16'h320e,16'h320f}的值,即在同一时刻,写入的{16'h3e01,16'h3e02[7:4]}值最大为{16'h320e,16'h320f}-6。如果曝光时间大于等于帧长,为了避免时序错误而闪烁,sensor 会自动加大真实帧长(此时真实帧长会在{16'h320e,16'h320f}基础上按需加一个值),以避免闪烁,但同时也带来帧率的下降。

AGC 控制方法有两种,具体说明如下:

- 1) 16'h3e03 设置为 8'h03 时的 Gain mapping: gain 值 = {16'h3e08,16'h3e09}/8'h10。
- 2) 16'h3e03 设置为 8'h0b 时对应的模拟 gain 值如表 2-5 所示,数字 gain 值如表 2-6 所示。

SC031GS 具有 Digital Fine Gain, Digital Fine Gain 的精度为 1/128,以 1/16 的精度为例,列出 digital gain 的控制如下表 2-6 所示。

表 2-5 模拟 gain 值控制寄存器

	Coorse gai (16' h3E09)			
Items	Coarse gain (16' h3E08) bit[4:2]	bit	[7:0]	Total gain
	(10 H3E00) DIC[4.2]	寄存器值	増益	
		10	1	1
		11	1.0625	1.0625
		12	1.125	1.125
		13	1.1875	1.1875
		14	1.25	1.25
		15	1.3125	1.3125
	增益 X1	16	1.375	1.375
	垣皿 八	17	1.4375	1.4375
	寄存器值: 0	18	1.5	1.5
	H 11 HE HE • O	19	1.5625	1.5625
		1a	1.625	1.625
		1b	1.6875	1.6875
		1c	1.75	1.75
		1d	1.8125	1.8125
		1e	1.875	1.875
		1f	1.9375	1.9375
	_	10	1	2
增益控制) 11	1.0625	2.125
>H TIT 17.16.1		12	1.125	2.25
		13	1.1875	2.375
		14	1.25	2.5
		15	1.3125	2.625
	₩ ★ WO	16	1.375	2.75
	增益 X2	17	1.4375	2.875
	灾方现估 1	18	1.5	3
	寄存器值:1	19	1.5625	3.125
	/	1a	1.625	3.25
		1b	1.6875	3.375
>		1c	1.75	3.5
		1d	1.8125	3.625
		1e	1.875	3.75
		1f	1.9375	3.875
	134.34	10	1	4
	增益 X4	11	1.0625	4.25
	安女叩住 2	12	1.125	4.5
	寄存器值:3	13	1.1875	4.75
	I .		l .	l .

Items	Coarse gain (16' h3E08) bit[4:2]	Fine gai(16' h3E09) bit[7:0]		Total gain
	(10 H3E08) BIT[4:2]	寄存器值	增益	
		14	1.25	5
		15	1.3125	5.25
		16	1.375	5.5
		17	1.4375	5.75
		18	1.5	6
		19	1.5625	6.25
		1a	1.625	6.5
		1b	1.6875	6.75
		1c	1.75	7
		1d	1.8125	7.25
		1e	1.875	7.5
		1f	1.9375	7.75
		10	1	8
		11	1.0625	8.5
		12	1.125	9
		13	1.1875	9.5
		14	1.25	10
		15	1.3125	10.5
	增益 X8	16	1.375	11
	增益 入8) 17	1.4375	11.5
	寄存器值:7	18	1.5	12
	可付价但: /	19	1.5625	12.5
	AUC DIE	1a	1.625	13
	0	1b	1.6875	13.5
		1c	1.75	14
		1d	1.8125	14.5
		1e	1.875	15
		1f	1.9375	15.5

表 2-6 数字 gain 值控制寄存器

Items	Digital gain(16' h3E06) bit[3:0]	Fin gain(16' bit[7:0] 寄存器值		Total gain
增益控制	增益 X1	80	1	1
	寄存器值: 0	88	1.0625	1.0625
		90	1.125	1.125
		98	1.1875	1.1875

	Digital	Fin gain(16'	h3E07)	
Items	gain(16' h3E06)			Total gain
	bit[3:0]	寄存器值	増益	
		a0	1.25	1.25
		a8	1.3125	1.3125
		b0	1.375	1.375
		b8	1.4375	1.4375
		c0	1.5	1.5
		c8	1.5625	1.5625
		d0	1.625	1.625
		d8	1.6875	1.6875
		e0	1.75	1.75
		e8	1.8125	1.8125
		f0	1.875	1.875
		f8	1.9375	1.9375
	增益 X2	80	A (1)	2
		88	1.0625	2.125
	寄存器值: 1	90	1.125	2.25
		98	1.1875	2.375
		a0	1.25	2.5
		a8	1.3125	2.625
		b0	1.375	2.75
		b8	1.4375	2.875
		c0	1.5	3
		c8	1.5625	3.125
		d0	1.625	3.25
	60	d8	1.6875	3.375
	, 0	e0	1.75	3.5
_		e8	1.8125	3.625
	Y	f0	1.875	3.75
		f8	1.9375	3.875
	增益 X4	80	1	4
X *		88	1.0625	4.25
	寄存器值:3	90	1.125	4.5
		98	1.1875	4.75
		a0	1.25	5
		a8	1.3125	5.25
		b0	1.375	5.5
		b8	1.4375	5.75
		c0	1.5	6
		с8	1.5625	6.25

	Digital	Fin gain(16'	h3E07)	
Items				Total gain
	bit[3:0]	寄存器值	増益	
		d0	1.625	6.5
		d8	1.6875	6.75
		e0	1.75	7
		e8	1.8125	7.25
		f0	1.875	7.5
		f8	1.9375	7.75
	增益 X8	80	1	8
		88	1.0625	8.5
	寄存器值:7	90	1.125	9
		98	1.1875	9.5
		a0	1.25	10
		a8	1.3125	10.5
		b0	1.375	11
		b8	1.4375	11.5
		c0	1.5	12
		c8	1.5625	12.5
		d0	1.625	13
		d8	1.6875	13.5
		e0	1.75	14
) e8	1.8125	14.5
		f0	1.875	15
		f8	1.9375	15.5
	增益 X16	80	1	16
	60	88	1.0625	17
	寄存器值: F	90	1.125	18
_		98	1.1875	19
	Y	a0	1.25	20
		a8	1.3125	21
P.Y.S		b0	1.375	22
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		b8	1.4375	23
		c0	1.5	24
		c8	1.5625	25
		d0	1.625	26
		d8	1.6875	27
		e0	1.75	28
		e8	1.8125	29
		f0	1.875	30
		f8	1.9375	31

2.5 GROUP_HOLD

SC031GS 具有 Group hold 功能, Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。

使用方法: 寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入对应值,寄存器 16'h3812 写 8'h30。备注:①需要打包生效的寄存器最多支持 10 个 ②打包生效的时刻为 16'h3812 写 8'h30 之后第一个帧内生效时刻(帧延迟为 0 时),帧内生效时刻由寄存器{16'h3235,16'h3236} 控制,{16'h3235,16'h3236}==16'h0 时表示帧开始。

功能	寄存器名	描述
帧内生效时刻	{16'h3235,16'h3236}	帧内生效时刻,以行为单位, 当该值等于 0 时表示帧开始
帧延迟控制	16'h3802	Bit[7:0]:帧延迟控制,生效时间 帧延迟控制,写 0 表示不做 帧延迟,写 1 表示一帧延迟

表 2-7 Group hold 控制寄存器

2.6 黑电平控制(BLC)

SC031GS 像素阵列包含 12 条黑行,这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值,而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。

默认情况下,改变增益值后会重新进行 BLC 操作。

黑电平有两种计算模式: 手动 BLC 和自动 BLC。在手动模式下,补偿值由寄存器指定;在自动模式下,补偿值通过黑行计算得到。

功能	寄存器名	描述
BLC 使能	16'h3900	Bit[0]: blc_enable
		0∼ bypass BLC
		1~ BLC enable
		Bit[6]: blc_auto_en
自动 BLC 使能	16'h3902	0∼ manual mode
		1∼ auto mode

表 2-8 BLC 控制寄存器

功能	寄存器名	描述
BLC 通道选择	{16'h3928[0],16'h3905[6]}	16'h3928[0]: 0~ use 8 channel offset mode 1~ use 4 channel offset mode 16'h3905[6]: one channel enable 0~ use 8 or 4 channel offset 1~ use one channel mode
BLC 目标值	{16'h3907[4:0],16'h3908}	BLC target

2.7 HDR Calibration

为提高图像效果,SC031GS 在 HDR 模式下具有 HDRC 功能,用于消除 HDR 模式带来的图像噪声。

HDRC 功能打开时,SC031GS 要多读取一帧 HDR point 数据,图像读取时间会增加一倍。该模式下读取期间不能进行曝光,帧率由曝光时间(Texp)与读取时间(Tread)之和决定。HDRC 功能关闭时,帧率由曝光时间和读取时间中的较大者决定。

以 240fps(Tread=4.17ms) 为例, HDRC 功能打开时,一帧时间=Tread x 2 + Texp =8.34ms+Texp,如需 4.17ms 曝光时间,则一帧时间为 4.17x2+4.17=12.51ms,对应最高帧率 80fps,如需更长的曝光时间,会进一步降低帧率。HDRC 关闭时,曝光与读取可以同步进行,帧率只取决于二者中的较大者,如需实现 4.17ms 曝光,仍然可以达到 240fps。

表 2-9 HDRC 寄存器控制

功能	寄存器名	描述
HDR point 数据读取使能	16'h3222	Bit[5:4]:HDR point 数据读取使能
		2'b00~不读取 HDR point 数据
		2'b11~读取 HDR point 数据
HDRC 功能控制	16'h540a	Bit[3]: HDRC 功能控制
		默认当 HDR point 数据读取功能打
<i>></i>		开时 HDRC 功能自动打开,当 HDR
		point 数据读取功能关闭时 HDRC 功
		能自动关闭,如需要改变 HDRC 功
		能开关,把该寄存器 Bit 写 1
HDR point 均值自动计算使能	16'h3906	Bit[6]: HDR point 均值自动计算使能
		0~ HDR point 均值寄存器控制
		1~ HDR point 均值自动计算
HDR point 均值寄存器值	{16'h393b[3:0],16'h393c}	HDR point 均值控制控制值

2.8 视频输出模式

2.8.1 读取顺序

图 2-5 提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。此图是在 A2 脚置于上方的时候得到(top view)。

图 2-4 像素阵列图一

SC031GS 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 2-7 所示。

表 2-10 镜像和倒置模式控制寄存器

功能	寄存器地址	寄存器值	描述	
镜像模式	16'h 3221[2:1]	2'h 3	Bit[2:1]: mirror ctrl	
			2'b00~mirror off	
			2'b11~mirror on	
			Bit[6:5]: flip ctrl	
倒置模式	16'h 3221[6:5]	2'h 3	2'b00~filp off	
			2'b11~flip on	

2.8.2 输出窗口

表 2-11 输出窗口寄存器

功能	寄存器名	描述
窗口宽度	{16'h3208,16'h3209}	输出窗口宽度
窗口高度	{16'h320a, 16'h320b}	输出窗口高度
列起始	{16'h3210, 16'h3211}	输出窗口列起始位置
行起始	{16'h3212, 16'h3213}	输出窗口行起始位置

2.9 帧率计算

图 2-6 为有效输出示意图,可以按照以下公式来计算图像帧率: 帧率 =F_{PCLK}/(行长*帧长)。其中 F_{PCLK} 指的是 Pixel CLK 的时钟频率,行长包括图像水平方向上,有效区域宽度以及行消隐区宽度之和; 帧长包括图像竖直方向上,有效区域高度以及帧消隐区高度之和。

图 2-6 视频有效输出示意图

表 2-12 帧率相关寄存器

功能	寄存器名	# 述
行长	{16'h320c,16'h320d}	一行数据的个数
帧长	{16'h320e,16'h320f}	一帧图像的行数

2.10 测试模式

为方便测试, SC031GS 提供了灰度渐变测试模式, 如图 2-7 所示。

图 2-7 测试模式

表 2-13 测试模式控制寄存器

功能	寄存器地址	寄存器值	描述
+- Dr Ve - 20 LH _ D	16'h4501[3]	1'b1	Bit[3]: incremental pattern enable 0~ normal image 1~ incremental pattern
灰度渐变模式	16'h3902[6]	1'b0	Bit[6]: blc auto enable 0~ manual BLC 1~aoto BLC

3. 电气特性

表 3-1 绝对最大额定值

项目	符号	绝对最大额定值	单位
模拟电源电压	AVDD	-0.3~4.0	V
IO 电源电压	DOVDD	-0.3~4.0	V
数字电源电压	DVDD	-0.3~1.6	v
I/O 输入电压	_	-0.3~DOVDD+0.3	V
I/O 输出电压	_	-0.3~DOVDD+0.3	V
工作温度	_	-40~+85	°C
最佳工作温度	_	-20~+60	°C
贮存温度	_	-50~+120	°C

表 3-2 直流电气特性(AVDD=2.8V, DOVDD=1.8V MIPI 下测试)

项目	符号	最小值	典型值	最大值	单位
电源					
模拟电源电压	AVDD	2.700	2.800	2.900	V
IO 供电电压	DOVDD	V_{DOVDD} -0.1	1.800	V _{DOVDD} +0.1	V
数字电源	DVDD	1.4	1.500	1.6	v
模拟电源电流	IAVDD	_	14	_	mA
数字电源电流	I _{DVDD}	_	54	_	mA
IO 电源电流	Idovdd	_	0.2	_	mA
总功耗(*)	Power	_	120	_	mW
数字输入 (典型条件: AVDD=2.8V, DOVDD=1.8V)					
输入低电平	VIL	_	_	0.3×DOVDD	V
输入高电平	V _{IH}	0.7×DOVDD	_	_	V
输入电容	C _{IN}	_	_	10	pF
数字输出 (25pF 标准负载)					

项目	符号	最小值	典型值	最大值	单位			
输出高电平	V _{OH}	0.9×DOVDD	_	_	V			
输出低电平	Vol	_	_	0.1×DOVDD	V			
I2C 接口输入(SC	I2C 接口输入(SCL 和 SDA)							
输入低电平	V _{IL}	-0.5	0	0.3×DOVDD	V			
输入高电平	V_{IH}	0.7×DOVDD	DOVDD	DOVDD+0.5	v			
SPI 接口输入								
输入低电平	V _{IL}	-0.5	0	0.3×DOVDD	V			
输入高电平	V _{IH}	0.7×DOVDD	DOVDD	DOVDD+0,5	V			

注: *该功耗是在使用 MIPI 2 Lane 传输图像,240fps 的情况下的测试结果。

表 3-3 交流特性(TA=25°C, AVDD=2.8V, DOVDD=1.8V)

项目	符号	最小值	典型值	最大值	单位
交流参数					
直流微分线性误差	DLE	0	<1	_	LSB
直流积分线性误差	ILE		<2	_	LSB
软复位设置时间	-	_	_	1	ms
更改分辨率设置时间	-	_	_	1	ms
配置寄存器设置时间	7	_	_	300	ms
晶振和时钟输入					
输入时钟频率	Fosc	_	27	_	MHz
输入时钟上升/下降时间	_	_	_	5	ns

注: 封装热阻, θ_{ia}=40℃/W。

4. 光学特性(TBD)

SC031GS 的 CRA 角度设计为 33 度。

5. 封装信息

图 5-1 封装示意图

备注: SC031GS 的 BGA 中心与光学中心不重合, Pixel Center (38.98, -172.655) 等于 Optical Center, 单位为 um。

表 5-1 封装尺寸图

Parameter	Symbo1	Nominal	Min	Max	Nominal	Min	Max
		Millimeters		Inches			
Package Body Dimension X	A	3.7038	3.6788	3.7288	0.1458	0.1448	0.1468
Package Body Dimension Y	В	3.0720	3.0470	3.0970	0.1209	0.1200	0.1219
Package Height	С	0.7600	0.7000	0.8200	0.0299	0.0276	0.0323
Ball Height	C1	0.1300	0.1000	0.1600	0.0051	0.0040	0.0063
Package Body Thickness	C2	0.6300	0.5950	0.6650	0.0248	0.0234	0.0262
Thickness from top glass surface to wafer	C3	0.4450	0.4250	0.4650	0.0175	0.0167	0.0183
Glass Thickness	C4	0.4000	0.3900	0.4100	0.0157	0.0154	0.0161
Ball Diameter	D	0.2500	0.2200	0.2800	0.0098	0.0087	0.0110
Total Ball Count	N	32	_	_) —	_
Pins Pitch X axis	J1	0.4000	—	_	A ->	_	_
Pins Pitch Y axis	J2	0.3000	_	- (7, ~	_	_
Edge to Pin Center Distance along X1	S1	0.4519	0.4219	0.4819	0.0178	0.0166	0.0190
Edge to Pin Center Distance along Y1	S2	0.4860	0.4560	0.5160	0.0191	0.0180	0.0203

6. 版本变更记录

版本	修改内容以及说明	Owner and date
1.0	初始版本	Christina. Gao/2018.1.14
1.1	修改了一些描述错误	Christina. Gao/2018.1.18
1.2	修改了 P30 HDR 的描述	Christina. Gao/2018.4.26

联系我们:

总部:

地址:上海市徐汇区宜山路 900 号 A 座 1101 室

电话: 021-64853570 传真: 021-64853572-8004 邮箱: sales@smartsenstech.com

美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129

电话: +1 (408) 981-6626

深圳分公司:

地址:深圳市龙岗区坂田街道五和大道南星河 WORLD B 座 2908.

电话: 0755-23739713

思特威技术支持邮箱:

support@smartsenstech.com