Math 104 Worksheet 2

UC Berkeley, Summer 2021 Tuesday, June 22

1. The following theorem is a fundamental idea in real analysis, and it is one of the most important techniques in the subject.

Theorem.

- (a) If $a \le b + \varepsilon$ for any $\varepsilon > 0$, then $a \le b$.
- (b) If $a \ge b \varepsilon$ for any $\varepsilon > 0$, then $a \ge b$.

Proof. (a) Suppose that a > b. Let $\varepsilon = (a - b)/2 > 0$. Then $a > b + \varepsilon$, so the statement that $a \le b + \varepsilon$ for any $\varepsilon > 0$ is not true.

- (b) (Your turn)
- **2.** Given two nonempty bounded subsets A and B of \mathbb{R} , define the set

$$A + B = \{a + b : a \in A, b \in B\}.$$

Theorem.

- (a) $\sup(A+B) = \sup(A) + \sup(B)$.
- (b) $\inf(A+B) = \inf(A) + \inf(B)$.

Proof. Given two quantities x and y, if you are asked to show that x = y, a common technique is to show that $x \le y$ and $x \ge y$, since if both are true then x = y.

- (a) Strategy: We will show that both inequalities (i) $\sup(A+B) \leq \sup(A) + \sup(B)$ and (ii) $\sup(A+B) \geq \sup(A) + \sup(B)$ are true.
- (i) For any pair of elements $a \in A$ and $b \in B$, since the supremum of a set is **an** upper bound for the set, we have that $a \le \sup(A)$ and $b \le \sup(B)$. Therefore, $a + b \le \sup(A) + \sup(B)$. Since this is true for any $a \in A$ and $b \in B$, it follows that $c \le \sup(A) + \sup(B)$ for all $c \in A + B$. That means that $\sup(A) + \sup(B)$ is an upper bound for A + B. (Complete the proof by explaining why $\sup(A + B)$ must be less than $\sup(A) + \sup(B)$.)
- (ii) To show that $\sup(A+B) \ge \sup(A) + \sup(B)$, we will use the technique from Problem 1. Let $\varepsilon > 0$. The goal is to show that $\sup(A+B) \ge \sup(A) + \sup(B) \varepsilon$. If we can find $a \in A$ and $b \in B$ such that $a + b \ge \sup(A) + \sup(B) \varepsilon$, the boxed inequality would follow because... (why?)

Now explain why it is possible to find such a and b. $(Hint: \sup(A) - \frac{\varepsilon}{2})$ is **not** an upper bound for A.)

(b) (Your turn)