Individual Events

I 1	a	0	I2	а	8	I3	а	8	I4	а	2
	b	-1		b	64		b	2		b	1
	c	7		С	15936		С	10		с	$\frac{3}{44}$
	d	18		d	*5312 see the remark		d	1023		d	$\frac{1945}{3872}$

Group Events

G1	a	-1	G2	A	2	G3	R	0	G4	P	*18 see the remark
	b	3		В	28		S	-1		Q	$\frac{63}{512}$
	c	$\frac{1}{9}$		C	300		T	4		R	377
	d	393		D	11		U	$-2\sqrt{3}$		S	5

Individual Event 1

I1.1
$$\ddot{z}$$
 \ddot{z} \ddot{z}

If a is the number of real roots of
$$\frac{1}{(x+2)(x+3)} = \frac{1}{(x+1)(x+4)}$$
, determine the value of a.

$$(x+1)(x+4) = (x+2)(x+3)$$

$$(x+1)(x+4) = (x+2)(x+3)$$

$$(x+1)(x+4) = (x+2)(x+3)$$

$$x^2 + 5x + 4 = x^2 + 5x + 6$$

$$0 = 2$$

$$x^2 + 5x + 4 = x^2 + 5x + 6$$

$$0 = 2$$
No solution, $a = 0$

I1.2 若 x 為實數及 b 為 -|x-a-9|-|10-x| 的最大值,求 b 的值。

If x is a real number and b is the maximum value of -|x-a-9|-|10-x|, determine the value of b. (Reference: 2008, HI8, 2010 HG6, 2011 FGS.1, 2012 FG2.3, 2016 FI4.3)

我們利用三角不等式 $ p + q \ge p + q $	We use the triangle inequality $ p + q \ge p + q $
- x-9 - 10-x =-(x-9 + 10-x)	- x-9 - 10-x = -(x-9 + 10-x)
$\leq - x-9+10-x =-1$	$\leq - x-9+10-x =-1$
$\therefore b = -1$	$\therefore b = -1$

I1.3 若實數 x 及 y 满足 $4x^2 + 4y^2 + 9xy = -119b$, 求 xy 的最大值 c。

If real numbers
$$x$$
 and y satisfy $4x^2 + 4y^2 + 9xy = -119b$, determine c , the maximum value of xy .

$$4x^2 + 4y^2 + 9xy = 119$$

$$119 \ge 2\sqrt{(2x)^2 \cdot (2y)^2} + 9xy \quad (A.M. \ge G.M.)$$

$$119 \ge 17xy$$

$$7 \ge xy$$

$$c = 7$$

I1.4 若正實數
$$x$$
 满足方程 $x^2 + \frac{1}{x^2} = c$, 求 $d = x^3 + \frac{1}{x^3}$ 。

If a positive real number x satisfies $x^2 + \frac{1}{x^2} = c$, determine the value of $d = x^3 + \frac{1}{x^3}$.

Reference: 1985 FI1.2, 1990 HI12

$x^2 + \frac{1}{x^2} = 7$	$x^2 + \frac{1}{x^2} = 7$
$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 9$	$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 9$
⇒ $x + \frac{1}{x} = 3 \text{ or } -3 \text{ (捨去 } $ $ ∴ x > 0 \text{)} $	$\Rightarrow x + \frac{1}{x} = 3 \text{ or } -3 \text{ (rejected, } \because x > 0)$
$d = x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$	$d = x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$
$= 3 \times (7 - 1) = 18$	$= 3 \times (7 - 1) = 18$

Individual Event 2

12.1 兩個學生於長 1-km 的圓形跑道的起點開始分別以10 km/h 及 6 km/h 的速率跑沿相反方向跑步。當他們於起點再相遇時便停止跑步。 若 a 為他們開始及停止前相互經過的次數,求 a 的值。

Two students run in opposite directions from a starting point of a 1-km circular track at speeds of 10 km/h and 6 km/h, respectively. They stop running when they meet each other at the starting point again. If a is number of times they cross each other after they start and before they stop, determine the value of a.

在半小時內,他們分別經過起點 5 次和 3 次。 lin half an hour, they will pass the starting point 5 總 跑步距離 = (5+3)km = 8 km 總相遇次數 = a = 8 limes and 3 times respectively. Total distance travelled = (5+3)km = 8 km Number of times they meet = a = 8 limes and $\frac{5}{8}$, $\frac{10}{8}$, $\frac{15}{8}$, $\frac{20}{8}$, $\frac{25}{8}$, $\frac{30}{8}$, $\frac{35}{8}$, $\frac{40}{8}$.

I2.2 袋中有若干粒紅色及藍色的彈珠,紅色彈珠與藍色彈珠的比例為3:1。若加入a粒藍色彈珠,紅色彈珠與藍色彈珠的比例則為2:1。求彈珠的總數b。

There is a set of red marbles and blue marbles. When a red marbles are added to the set, the ratio of red marbles to the blue marbles is 3:1. When a blue marbles are added, the ratio of red marbles to blue marbles becomes 2:1. Determine the total number of marbles, b.

12.3 若 c 為 $1\,000\,000$ 與一個平方數之最小的相差,其中此平方數為 b 的倍數,求 c 的值。 If c is the smallest difference between $1\,000\,000$ and a square, where the square is a multiple of b, determine the value of c.

假設該平方數為 $64n^2$ 。 $1000 = 8 \times 125$ $1 000 000 = 64 \times 125^2$ $1 000 000 - 64n^2 = 64 \times (125^2 - n^2)$ $64 \times (125^2 - 124^2)$ 或 $64 \times (126^2 - 125^2)$ $64 \times (125 + 124)$ 或 $64 \times (126 + 125)$ 最小值= $c = 64 \times 249 = 15936$ Let the square be $64n^2$. $1000 000 = 8 \times 125$ $1 000 000 = 64 \times 125^2$ $1 000 000 - 64n^2 = 64 \times (125^2 - n^2)$ $64 \times (125^2 - 124^2) \text{ or } 64 \times (126^2 - 125^2)$ $64 \times (125 + 124) \text{ or } 64 \times (126 + 125)$ Minimum value = $c = 64 \times 249 = 15936$

12.4 於一個月的時間完成建築一個水庫需要 d 個技工或 y 個勞工,當中 d+y=c。 若挑選 d 個勞工去建築一個同樣的水庫,所需要的時間是挑選 y 個技工的 4 倍,求 d 的值。 The building of a reservoir takes d technicians, or alternatively y labours to complete in a month, where d+y=c. If d labours are employed to build the same reservoir, the time taken is 4 times as much as the time taken when y technicians are employed. Determine the value of d.

$$d+y=15936$$
 每名技工每天工作量= $\frac{1}{30d}$. Amount of work for one technician per day = $\frac{1}{30d}$. Amount of work for one technician per day = $\frac{1}{30d}$. Amount of work for one labour per day = $\frac{1}{30d}$. Days for d labours to finish the job = $1\div\frac{d}{30y}=\frac{30y}{d}$. Days for y technicians to finish the job = $1\div\frac{d}{30y}=\frac{30y}{d}$. Days for y technicians to finish the job = $1\div\frac{d}{30y}=\frac{30y}{d}$. Days for y technicians to finish the job = $1\div\frac{y}{30d}=\frac{30d}{15936-d}$. $1\div\frac{y}{30$

Remark: The Chinese version and the English version have different meaning.

Original version: …所需要的時間較挑選 y 個技工的多4倍… the time taken is 4 times as much as …

New version: …所需要的時間是挑選 y 個技工的4倍… the time taken is 4 times as much as …

Individual Event 3

I3.1 若 $\{x_0, y_0, z_0\}$ 為以下方程組的解,求 $a = x_0 + y_0 + z_0$ 的值。 If $\{x_0, y_0, z_0\}$ is a solution to the set of simultaneous equations below, determine the value of $a = x_0 + y_0 + z_0$.

$$\begin{cases} 2x - 2y + z = -15 \\ x + 2y + 2z = 18 \\ 2x - y + 2z = -5 \end{cases}$$

$$\begin{bmatrix} 2 & -2 & 1 & -15 \\ 1 & 2 & 2 & 18 \\ 2 & -1 & 2 & -5 \end{bmatrix} \begin{matrix} R_2 \to R_1 \\ R_3 - R_1 \\ 2R_2 - R_3 \end{matrix} \sim \begin{bmatrix} 1 & 2 & 2 & 18 \\ 0 & 1 & 1 & 10 \\ 0 & 5 & 2 & 41 \end{bmatrix} \begin{matrix} R_1 - 2R_2 \\ 0 & 1 & 1 & 10 \\ 0 & 5 & 2 & 41 \end{bmatrix} \begin{matrix} 10 & 0 & -2 \\ 0 & 1 & 1 & 10 \\ 0 & 0 & 3 & 9 \end{matrix} \begin{matrix} R_2 - \frac{1}{3}R_3 \\ \frac{1}{3}R_3 \end{matrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$x_0 = -2$$
, $y_0 = 7$, $z_0 = 3$
 $a = -2 + 7 + 3 = 8$

13.2
$$\not \equiv b = \frac{\sqrt{6 + 2\sqrt{a}} + \sqrt{6 - 2\sqrt{a}}}{2}$$
 的值。

Determine the value of $b = \frac{\sqrt{6 + 2\sqrt{a}} + \sqrt{6 - 2\sqrt{a}}}{2}$

Reference: 2011 HI7, 2013 HI1, 2013 FI3.1, 2015 FG3.1, 2016 FG4.3

$$b = \frac{\sqrt{6 + 2\sqrt{8} + \sqrt{6 - 2\sqrt{8}}}}{2}$$

$$= \frac{\sqrt{(\sqrt{4})^2 + 2\sqrt{4} \cdot \sqrt{2} + (\sqrt{2})^2} + \sqrt{(\sqrt{4})^2 - 2\sqrt{4} \cdot \sqrt{2} + (\sqrt{2})^2}}{2}$$

$$= \frac{\sqrt{(\sqrt{4} + \sqrt{2})^2} + \sqrt{(\sqrt{4} - \sqrt{2})^2}}{2}$$

$$= \frac{\sqrt{4} + \sqrt{2} + \sqrt{4} - \sqrt{2}}{2} = 2$$

I3.3 若x 是正整數且 $\log_{10} b^x > 3$, 求x 的最小值c。

If x is a positive integer and $\log_{10} b^x > 3$, determine c, the minimum value of x. $\log_{10} 2^x > 3 = \log_{10} 1000$

$$2^9 = 512 < 1000 < 1024 = 2^{10}$$

$$c = 10$$

I3.4 若 $f(x) = 2^0 + 2^1 + 2^2 + \dots + 2^{x-2} + 2^{x-1}$, 求 d = f(c) 的值。

If $f(x) = 2^0 + 2^1 + 2^2 + \dots + 2^{x-2} + 2^{x-1}$, determine the value of d = f(c).

Reference: 2009 FI1.3, 2015 FI1.4

$$d = f(10) = 2^{0} + 2^{1} + 2^{2} + \dots + 2^{8} + 2^{9}$$

$$= 2^{10} - 1$$

$$= 1023$$

Individual Event 4

I4.1 若 a 為正整數,求 a 的最大值使得 $ax^2 - (a-3)x + (a-2) = 0$ 有實根。 If a is a positive integer, determine the greatest value of a such that $ax^2 - (a-3)x + (a-2) = 0$ has real root(s).

I4.2 若 x 及 y 為實數且 1 < y < x 及 $\log_x y + 3 \log_y x = \frac{13}{a}$, 求 $b = \frac{x + y^4}{x^2 + y^2}$ 的值。

If x and y are real numbers with 1 < y < x and $\log_x y + 3 \log_y x = \frac{13}{a}$,

determine the value of $b = \frac{x + y^4}{x^2 + y^2}$.

設
$$t = \log_x y$$
, 則 $\log_y x = \frac{1}{t}$

原 式變成: $t + \frac{3}{t} = \frac{13}{2}$

The equation becomes: $t + \frac{3}{t} = \frac{13}{2}$
 $2t^2 - 13t + 6 = 0$
 $(2t - 1)(t - 6) = 0$
 $t = \frac{1}{2}$ 或 $t = 6$
 $1 < y < x : \log_x y < 1$
 $\log_x y = \frac{1}{2}$
 $y = \sqrt{x}$
 $b = \frac{x + y^4}{x^2 + y^2} = \frac{x + x^2}{x^2 + x} = 1$

Let $t = \log_x y$, then $\log_y x = \frac{1}{t}$

The equation becomes: $t + \frac{3}{t} = \frac{13}{2}$
 $2t^2 - 13t + 6 = 0$
 $(2t - 1)(t - 6) = 0$
 $t = \frac{1}{2}$ or $t = 6$
 $1 < y < x : \log_x y < 1$
 $1 < y < x : \log_x y < 1$
 $1 < y < x : \log_x y < 1$
 $1 < y < x : \log_x y < 1$
 $1 < y < x : \log_x y < 1$

I4.3 一個袋中有紅球 b+2個,白球 b+3個及藍球 b+4個,從袋中隨機抽出3個並不重新放進袋中。求三個抽出的球都是相同顏色的概率 c 的值。

A bag contains b + 2 red balls, b + 3 white balls and b + 4 blue balls. Three balls are randomly drawn from the bag without replacement. Determine the value of the probability, c, that the 3 balls are of the same colours.

紅球 = 3、白球 = 4、藍球 = 5
$$P(同 E) = \frac{3 \times 2 \times 1 + 4 \times 3 \times 2 + 5 \times 4 \times 3}{12 \times 11 \times 10}$$

$$= \frac{3}{44}$$
Red balls = 3, White balls = 4, Blue balls = 5
$$P(\text{same colour}) = \frac{3 \times 2 \times 1 + 4 \times 3 \times 2 + 5 \times 4 \times 3}{12 \times 11 \times 10}$$

$$= \frac{3}{44}$$

14.4 若 $\cos 2\theta = c$,求 $d = \sin^4 \theta + \cos^4 \theta$ 的值。
If $\cos 2\theta = c$, determine the value of $d = \sin^4 \theta + \cos^4 \theta$. $d = (\cos^2 \theta + \sin^2 \theta)^2 - 2 \sin^2 \theta \cos^2 \theta$ $d = 1 - 0.5 \sin^2 2\theta$ $d = 1 - \frac{1}{2} (1 - \cos^2 2\theta)$ $d = \frac{1}{2} \left(1 + \frac{3^2}{44^2} \right)$ $d = \frac{1936 + 9}{2 \cdot 1936}$ $d = \frac{1945}{3872}$

G1.1 若實數
$$x \cdot y$$
 及 z 满足 $x + \frac{1}{y} = -1$, $y + \frac{1}{z} = -2$ 及 $z + \frac{1}{x} = -5$ 。求 $a = \frac{1}{xvz}$ 的值。

If real numbers x, y and z satisfy $x + \frac{1}{y} = -1$, $y + \frac{1}{z} = -2$ and $z + \frac{1}{x} = -5$. Determine the value of a

$$=\frac{1}{xyz}$$
. (Reference: 2008 FG2.4, 2010 FG2.2)

$$(1)\times(2)\times(3)-(1)-(2)-(3)$$
:

$$xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} - \left(x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = -10 + 8 \Rightarrow xyz + \frac{1}{xyz} = -2$$

$$(xyz+1)^2=0$$

$$a = \frac{1}{xyz} = -1$$

G1.2 若
$$|x-|2x-1|=\frac{1}{2}$$
 為實數方程,求實根數量 b 的值。

If $|x-|2x-1| = \frac{1}{2}$ is a real equation, determine the value of b, the number of real solutions of the equation

Reference: 2012 FG4.3, 2005 FG4.2, 2009 HG9, 2012 FG4.2

|
$$x - |2x - 1| = \frac{1}{2}$$
 | 或 $x - |2x - 1| = -\frac{1}{2}$ | $x - |2x - 1| = \frac{1}{2}$ | $x - |2x - 1|$

G1.3 若實數
$$x$$
 及 y 满足 $xy > 0$ 及 $x + y = 3$,求 $\left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right)$ 的最大值 c 。

If real numbers x and y satisfy xy > 0 and x + y = 3

find c, the maximum value of $\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)$.

If a real number x satisfies $x - \frac{1}{x} = 3$, determine the value of $d = x^5 - \frac{1}{x^5}$.

$$\left(x - \frac{1}{x}\right)^2 = 3^2 = 9$$

$$x^2 + \frac{1}{x^2} = 11$$

$$\left(x^2 + \frac{1}{x^2}\right)^2 = 11^2 = 121$$

$$x^4 + \frac{1}{x^4} = 119$$

$$d = x^5 - \frac{1}{x^5} = \left(x - \frac{1}{x}\right)\left(x^4 + x^2 + 1 + \frac{1}{x^2} + \frac{1}{x^4}\right)$$

$$d = 3 \times (119 + 11 + 1)$$

$$d = 393$$

G2.1 在六進制中,若A為 123456÷136 的餘數,求A的值。

In base-6 system, if $12345_6 \div 13_6$ has remainder A, determine the value of A.

$$12345_6 = 6^4 + 2 \times 6^3 + 3 \times 6^2 + 4 \times 6 + 5 = 1296 + 2 \times 216 + 108 + 24 + 5 = 1865_{10}$$

 $13_6 = 9_{10}$

 $1865 \div 9, A = 2$

G2.2 立方體的任意兩個頂點可相連成一線段。若B 為最多所能夠相連成的直線的數量,求B的值。

Any two vertices in a cube can form a line segment. If B is the greatest number of line segments thus formed, determine the value of *B*.

立方體有 8 個頂點。	There are 8 vertices in a cube.
從中選取兩點形成一線段。	Select any two vertices to form a line segment.
	$B = C_2^8 = 28$

G2.3 若實數 $x \cdot y$ 及 z 满足 (x+y+z)=30 及 $C=\overline{x^2+y^2+z^2}$,求 C 的最小值。 If real numbers x, y and z satisfy (x + y + z) = 30 and $C = x^2 + y^2 + z^2$, determine the least value

考慮
$$t^2 - 2xt + x^2 = (t - x)^2 \cdots (1)$$

$$t^2 - 2yt + y^2 = (t - y)^2 \cdots (2)$$

$$t^2 - 2zt + z^2 = (t - z)^2 \cdots (3)$$

$$(1) + (2) + (3):$$
L.H.S. $= 3t^2 - 2(x + y + z)t + (x^2 + y^2 + z^2)$
此函數必為非負
$$\Delta = 4(x + y + z)^2 - 4(3)(x^2 + y^2 + z^2) \le 0$$

$$(1^2 + 1^2 + 1^2)(x^2 + y^2 + z^2) \ge (x + y + z)^2$$
 $3C \ge 30^2$

$$C \ge 300$$
C 的最小值=300

Consider $t^2 - 2xt + x^2 = (t - x)^2 \cdots (1)$

$$t^2 - 2yt + y^2 = (t - y)^2 \cdots (2)$$

$$t^2 - 2zt + z^2 = (t - z)^2 \cdots (3)$$

$$(1) + (2) + (3):$$
L.H.S. $= 3t^2 - 2(x + y + z)t + (x^2 + y^2 + z^2)$
The function is always non-negative
$$\Delta = 4(x + y + z)^2 - 4(3)(x^2 + y^2 + z^2) \le 0$$

$$(1^2 + 1^2 + 1^2)(x^2 + y^2 + z^2) \ge (x + y + z)^2$$

$$3C \ge 30^2$$

$$C \ge 300$$
The minimum value of $C = 300$

G2.4 已知 $D = (x-1)^3 + 3$ 。當 $-3 \le x \le 3$,求 D 的最大值。 Given that $D = (x-1)^3 + 3$. Determine the greatest value of D for $-3 \le x \le 3$.

$-4 \le x - 1 \le 2$	$-4 \le x - 1 \le 2$
$-64 \le (x-1)^3 \le 8$	$-64 \le (x-1)^3 \le 8$
$-61 \le (x-1)^3 + 3 \le 11$	$-61 \le (x-1)^3 + 3 \le 11$
D 的最大值=11	The greatest value of $D = 11$

G3.1 設 $a \cdot b$ 及 c 為整數且 1 < a < b < c。若 (ab-1)(bc-1)(ac-1)可被 abc 整除, 求 ab + bc + ac - 1 除以 abc 所得之餘數 R 的值。 Let a, b and c be integers with $1 \le a \le b \le c$. If (ab-1)(bc-1)(ac-1) is divisible by abc, determine the value of the remainder R when ab + bc + ac - 1 is divided by abc.

$$(ab-1)(bc-1)(ac-1)$$

$$= (abc)^2 - abc(a+b+c) + (ab+bc+ca) - 1$$
它可被abc 整除。
$$\therefore ab+bc+ca-1 = mabc, m \triangleq \$$$
餘數 $R=0$

$$(ab-1)(bc-1)(ac-1)$$

$$= (abc)^2 - abc(a+b+c) + (ab+bc+ca) - 1$$
It is divisible by abc .
$$\therefore ab+bc+ca-1 = mabc, m \text{ is an integer}$$
The remainder $R=0$

G3.2 若
$$0 < x < 1$$
,求 $S = \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} + x - 1}\right) \cdot \left(\sqrt{\frac{1}{x^2} - 1} - \frac{1}{x}\right)$ 的值。
If $0 < x < 1$, determine the value of $S = \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} + x - 1}\right) \cdot \left(\sqrt{\frac{1}{x^2} - 1} - \frac{1}{x}\right)$.

Reference: 2016 FI3.3

$$S = \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} + x - 1}\right) \times \left(\sqrt{\frac{1}{x^2} - 1} - \frac{1}{x}\right)$$

$$= \left\{\frac{\sqrt{1+x} \cdot \left(\sqrt{1+x} + \sqrt{1-x}\right)}{(1+x) - (1-x)} + \frac{(1-x) \cdot \left[\sqrt{1-x^2} - (x - 1)\right]}{(1-x^2) - (x - 1)^2}\right\} \times \left(\sqrt{\frac{1-x^2}{x^2}} - \frac{1}{x}\right)$$

$$= \left\{\frac{1+x+\sqrt{1-x^2}}{2x} + \frac{(1-x) \cdot \left[\sqrt{1-x^2} + (1-x)\right]}{(1-x^2) - (1-2x+x^2)}\right\} \times \left(\frac{\sqrt{1-x^2}}{x} - \frac{1}{x}\right)$$

$$= \left\{\frac{1+x+\sqrt{1-x^2}}{2x} + \frac{(1-x) \cdot \left[\sqrt{1-x^2} + (1-x)\right]}{2x(1-x)}\right\} \times \left(\frac{\sqrt{1-x^2} - 1}{x}\right)$$

$$= \left[\frac{1+x+\sqrt{1-x^2}}{2x} + \frac{\sqrt{1-x^2} + (1-x)}{2x}\right] \times \left(\frac{\sqrt{1-x^2} - 1}{x}\right)$$

$$= \left(\frac{2+2\sqrt{1-x^2}}{2x}\right) \times \left(\frac{\sqrt{1-x^2} - 1}{x}\right) = \left(\frac{1+\sqrt{1-x^2}}{x}\right) \times \left(\frac{\sqrt{1-x^2} - 1}{x}\right)$$

$$= \frac{(1-x^2) - 1}{x^2} = -1$$

Remark: You may substitute x = 0.5 directly to find the value of c.

G3.3 求方程 $x^4 + (x-4)^4 = 544$ 的實根之和 T 的值。 Determine the value of T, the sum of real roots of $x^4 + (x-4)^4 = 544$. Reference: 2014 FG4.4

設 t=2-x,則 x=t+2,x-4=t-2Let t = 2 - x, then x = t + 2, x - 4 = t - 2The equation becomes: $(t + 2)^4 + (t - 2)^4 = 544$ 方程變成: $(t+2)^4 + (t-2)^4 = 544$ $2[t^4 + 6(2)^2t^2 + 2^4] = 544$ $2[t^4 + 6(2)^2t^2 + 2^4] = 544$ $t^{4} + 24t^{2} - 256 = 0$ $(t^{2} + 32)(t^{2} - 8) = 0$ $t^4 + 24t^2 - 256 = 0$ $(t^2+32)(t^2-8)=0$ $t^2 = -32$ (rejected) or $t^2 = 8$ $t^2 = -32$ (捨去) or $t^2 = 8$ $x = 2 \pm 2\sqrt{2}$ $x = 2 \pm 2\sqrt{2}$ T = Sum of real roots = 4T=實根之和 =4

G3.4 在三角形 ABC 中,BC=a, $\angle ABC=\frac{\pi}{3}$ 及面積為 $\sqrt{3}a^2$ 。求 $U=\tan(\angle ACB)$ 的值。

In triangle ABC, BC = a, $\angle ABC = \frac{\pi}{3}$ and its area is $\sqrt{3}a^2$.

Determine the value of $U = \tan(\angle ACB)$.

設 $AB = c$	Let $AB = c$
$\frac{1}{2}ac\sin\frac{\pi}{3} = \sqrt{3}a^2$	$\frac{1}{2}ac\sin\frac{\pi}{3} = \sqrt{3}a^2$
c = 4a	c = 4a
$BC^2 = a^2 + (4a)^2 - 2a \cdot 4a \cos \frac{\pi}{3}$	$BC^2 = a^2 + (4a)^2 - 2a \cdot 4a \cos \frac{\pi}{3}$
$BC = \sqrt{13a}$	$BC = \sqrt{13a}$
$\cos \angle ACB = \frac{a^2 + (\sqrt{13}a)^2 - (4a)^2}{2 \cdot a \cdot \sqrt{13}a} = -\frac{1}{\sqrt{13}}$	$\cos \angle ACB = \frac{a^2 + (\sqrt{13}a)^2 - (4a)^2}{2 \cdot a \cdot \sqrt{13}a} = -\frac{1}{\sqrt{13}}$
$U = \tan \angle ACB = -\frac{\sqrt{13-1}}{1} = -2\sqrt{3}$	$U = \tan \angle ACB = -\frac{\sqrt{13-1}}{1} = -2\sqrt{3}$

G4.1 製作某玩具,需要先倒模,後上色。甲先生每日可以為 3 件玩具倒模,或為 15 件玩具 上色; 乙先生每日則可以為 5 件玩具倒模, 或為 15 件玩具上色。各人每日只能倒模或 上色,而不能同做兩事。若甲先生和乙先生合作,求最小多少日 P 才可以製作 120 件玩 具。

To make a specific toy, it must be first moulded and then painted. Mr. A can mould 3 pieces of toys or paint 15 pieces of toys in one day, whereas Mr. B can mould 5 pieces or paint 15 pieces of toys in one day. Each of them can either mould or paint toys in one day, but not both. If Mr. A and Mr. B work together, determine the least number of days P to make 120 toys.

A倒模的速度比B慢,而A上色的速度和B一樣。 The speed of making moulds for A is slower than 模,y日上色。

$$3x + 5(x + y) = 120 \Rightarrow 8x + 5y = 120 \cdots (1)$$

$$15y = 120 \Rightarrow y = 8 \cdot \dots \cdot (2)$$

代 (2) 入 (1):
$$8x + 40 = 120$$

x = 10

最小日數P=18

因此,為了要使得製作120件玩具的日數最短, B while the speed of painting for A is the same as B所有時間皆被指派去倒模。假設A花了x日倒B. So, in order to minimize the number of days to make 120 toys, all time of B is allocated for moulding. Let A uses x days for moulding and y days for painting.

$$|3x + 5(x + y)| = 120 \Rightarrow 8x + 5y = 120 \cdots (1)$$

$$15y = 120 \Rightarrow y = 8 \cdot \cdot \cdot \cdot \cdot (2)$$

Sub. (2) into (1):
$$8x + 40 = 120$$

x = 10

The least number of days P = 18

Remark: The following sentence is missing in the Chinese version:

各人每日只能倒模或上色,而不能同做兩事。

G4.2 在一個射鴨子遊戲中一男孩射了 10 發子彈,該男孩每發子彈射中鴨子的概率為 0.5。求 他於最後一發子彈射中第六隻鴨子的概率 Q。

In a duck shooting game, a boy fires 10 shots. The probability of him shooting down a duck with a shot is 0.5. Determine the probability O of him shooting down the 6th duck at the last shot.

P(最後一發子彈射中第六隻鴨子)	P(shoot down the 6th duck at the last shot)
= P(頭9發射中5隻,第10發射中1隻)	= P(1-9 shots 5 ducks, last shot 6th duck)
$=\frac{C_5^9}{1} \cdot \frac{1}{1} = \frac{63}{1}$	$= \frac{C_5^9}{1} \cdot \frac{1}{1} = \frac{63}{1}$
$=\frac{3}{2^9}\cdot\frac{1}{2}=\frac{1}{512}$	2° 2 512

G4.3 如圖 1 ,求按箭咀方向由 A 往 B 的路線總數 R 。

As shown in Figure 1 below, determine the number of ways R getting from point A to B with the direction indicated by the arrows.

R = 377

G4.4 如果用 3 款顏料替下圖中所有區域著色,並且相鄰的區域不可用相同顏料。求同一款顏 料最多可用作上色的區域數目S。

To shade all the regions inside the following circular map using 3 colours, for which adjacent regions must not be in the same colour. Determine the maximum number S of regions being shaded by the same colour.

