Автономни системи

ФАЗОВО ПРОСТРАНСТВО. КИНЕМАТИЧНА ИНТЕРПРЕТАЦИЯ НА РЕШЕНИЯТА. ПРИМЕРИ

Както вече имахме случай да отбележим, системите от вида

$$\dot{\mathbf{x}} = \mathbf{f}(x),$$

където $\mathbf{x} = (x^1, x^2, \dots, x^n)$ описва нячаква област D от \mathbf{R}^n , а функцията $\mathbf{f}: D \longrightarrow \mathbf{R}^n$ е гладка, се наричат автономни. В този контекст D се нарича фазово пространство на системата (1). Обикновено задачите на динамиката водят до автономни системи. Например според основния закон на Нютон движението на материална точка, $\mathbf{x} = (x^1, x^2, x^3)$ с маса m в силово поле $\mathbf{F}(\mathbf{x}) = (F^1(\mathbf{x}), F^2(\mathbf{x}), F^3(\mathbf{x}))$, дефинирано в някаква област $G \subset \mathbf{R}^3$, се описва от системата

$$m\ddot{\mathbf{x}} = \mathbf{F}(\mathbf{x}),$$

която лесно се свежда до автономна. Достатъчно е да положим

(3)
$$\dot{x}^1 = x^4, \qquad \dot{x}^2 = x^5, \qquad \dot{x}^3 = x^6,$$

за да получим уравненията

(4)
$$\dot{x}^4 = \frac{1}{m}F^1(\mathbf{x}), \qquad \dot{x}^5 = \frac{1}{m}F^2(\mathbf{x}), \qquad \dot{x}^6 = \frac{1}{m}F^3(\mathbf{x}),$$

които заедно с (3) образуват автономна система с неизвестий x^1, x^2, \ldots, x^6 и фазово пространство $G \times \mathbf{R}^3 \subset \mathbf{R}^6$. Точно по същий начин за координатите и скоростите на произволна система $\sum_{i=1}^{n} f(x_i) = f(x_i)$

състояща се от n материални точки в \mathbf{R}^3 , получаваме автономна система с 6n-мерно фазово пространство, което за определеност ще означим с Φ_{Σ} . Нещо повече, ако знаем, че в момента t_0 състоянието на \sum се описва от $\mathbf{x}_0 \in \Phi_{\Sigma}$, с помощта на теоремата за

съществуване и единственост поне по принцип можем да научим съществлото и да предскажем бъдещето на ∑. Фактът, че дясната $_{\rm crpaha}$ на (1) не зависи от t, означава, че законът, който управлява ∑, е даден веднъж завинаги и остава неизменен. Както току-що констатирахме, това предположение естествено води до заключението, че цялата еволюция на ∑ се определя от нейното състояние в един-единствен момент. Това обстоятелство обяснява и появата на термина "автономна система".

Забележка 1. Всяка нормална система

(5)
$$\dot{\mathbf{x}} = \mathbf{f}(t, x), \quad \dot{\mathbf{f}} = (f^1, f^2, \dots, f^n), \quad \mathbf{x} = (x^1, x^2, \dots, x^n)$$

може да се сведе до автономна, ако въведем още една пространствена променлива с помощта на равенството $x^{n+1} = t$. В такъв случай от (5) и от връзката между x^{n-1} и t получаваме

г.е. автономна система с (n+1)-мерно фазово пространство, което ъвпада с дефиниционната област на f.

Въпреки че според тази зајележка класът на автономните истеми не е по-тесен от класа $^{\mathrm{la}}$ нормалните, липсата на t в чясната страна на (1) дава известни предимства, защото ни 103волява да използваме някои юлезни геометрични и кинемагични нагледи. Както обикнозено ще започнем с няколко дефиниции.

Дефиниция 1. Нека, D е област в \mathbf{R}^n и нека $\mathbf{f}:D \stackrel{\prime}{\longrightarrow} \mathbf{R}^n$ е непрекъсната функция. В такъв случай на всяко $\mathbf{x} \in D$ мо-

жем да съпоставим вектора f(x) с начало в x. Като оставим x да опише D, получаваме множество от вектори, което наричаме векторно поле (фиг. 34). Стараейки се да направим възможно използването на геометричната интуиция, вместо за векторната функция f по-често говорим за векторното поле f. Казваме, че едно векторно поле принадлежи на класа $C^k(D)$, ако функцията, която му съответства, има това свойство. Векторните полета са основни обекти за изследване в геометрията и в диференциалната топология. Понеже чрез равенството x = f(x) между автономните системи и векторните полета се установява еднозначно обратимо съответствие, общата теория на автономните системи и диференциалната топология се оказват тясно свързани. Макар че в тези лекции почти няма да използваме тази връзка, ще си служим с геометричен език навсякъде, където това е целесъобразно.

Да разгледаме отново автономната система

(1)
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \qquad \mathbf{f} \in C^1(D),$$

където D е област в \mathbb{R}^n . Векторът $\mathbf{f}(\mathbf{x})$ се нарича фазова скорост на (1) в точката $x, x \in D$. Точките, в които f се анулира, се наричат точки на равновесие на (1) или особени точки на векторното поле f*. Тези точки са от особен интерес както в теорията на автономните системи, така и в диференциалната топология. Очевидно е, че ако а е точка на равновесие на (1), константата x = a е решение на (1), защото $\dot{a} = 0$, f(a) = 0. Нещо повече, според теоремата за единственост $\mathbf{x} = \mathbf{a}$ е единственото решение на (1), което минава през а. Този резултат заедно с интуитивната представа за равновесие, която имаме от физиката, обяснява появата на първия термин. Шо се касае до названието "особена точка", то произхожда от факта, че близо до точките, в които f се анулира, в общия случай направлението на вектора f(x) не се мени непрекъснато, въпреки че функцията f е гладка. Читателят би могъл да се убеди в това, като изобрази достатъчно подробно полето f(x) = x, $x \in \mathbb{R}^2$, около точката x = 0.

Макар и очевидна, следващата лема дава полезна интерпретация на решенията на (1).

Лема 1. Нека (m_1, m_2) е интервал от $\mathbf R$ и векторната функция $\varphi: (m_1, m_2) \longrightarrow D$ принадлежи на $C^1(m_1, m_2)$. В такъв случай тя удовлетворява системата (1) тогава и само тогава, когато за

^{*}Предпочитаме втория термин като по-кратък и често вместо за точка на равновесие ще говорим за особена точка на (1).

всяко $t \in (m_1, m_2)$ векторът $\dot{\varphi}(t)$ съвпада с фазовата скорост на (1) B TOURATA $\varphi(t)$.

Наистина равенството $\dot{arphi}(t)=\mathbf{f}(arphi(t))$ е аналитичен запис на

формулираното твърдение.

Дефиниция 2. Нека G е фазовото пространство на системата (1) и $\varphi: (m_1, m_2) \longrightarrow G$ е решение на тази система. Траектори- $_{\text{ята, която}}$ се описва от точката $\varphi(t)$, когато t пробягва $(m_1,\ m_2)$,

се нарича фазова крива на (1).

Ясно е, че интегралните и фазовите криви на една автономна система са тясно свързани, но между тях има и съществена $_{
m pазлика}$: докато фазовите криви лежат в G, интегралните криви ce намират в разширеното фазово пространство $\mathbb{R} \times G$. Разбира се, ако $t\longrightarrow (t,\; arphi(t))$ е интегрална крива, нейната проекция в G е фазова крива.

Въведените понятия имат естествени аналози и в неавтоном-

ния случай: ако D е област от \mathbb{R}^n и

(7)
$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{f} \in C^1\{(a, b) \times D\},$$

е нормална система, D също се нарича ϕ азово пространство, а проекциите на интегралните криви в $D-\phi$ азови криви. В неавтономния случай обаче фазовите криви не са особено полезни, защото съществено различни решения на (7) могат да имат пресичащи се фазови криви, докато в автономния случай това е невъзможно. Този факт е следствие от

Лема 2. Ако $t\longrightarrow arphi(t)$ е непродължимо решение на (1) с дефиниционен интервал $(m_1,\ m_2)$, то $t\longrightarrow arphi(t+c)$ удовлетворява (1)в интервала $(m_1-c,\ m_2-c)$ и, разбира се, също е непродължимо.

Доказателство. Да положим за краткост $\mathbf{x}(t) = \varphi(t+c)$, $t \in (m_1-c, m_2-c)$. Имаме $\dot{\mathbf{x}}(t)=\dot{arphi}(t+c)$. Като фиксираме t в интервала $(m_1-c,\ m_2-c)$ и заместим $\lambda=t+c$ в тъждеството $\varphi(\lambda)=\mathbf{f}(\varphi(\lambda)),\;\lambda\in(m_1,\;m_2),\;$ получаваме $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t))$ и завърщваме доказателството.

Предоставяме на читателя сам да се убеди, че решението $t \longrightarrow \varphi(t+c)$ е непродължимо извън интервала (m_1-c, m_2-c) . Ясно е, че траекториите на $t \longrightarrow \varphi(t)$ и $t \longrightarrow \varphi(t+c)$ съвпадат, само че едната от тях се описва от фазовата точка със закъснение с спрямо другата.

Следствие. Ако две фазови криви L_1 и L_2 на (1) се пресичат,

те съвпадат.

Доказателство. Нека L_k е траектория на решението φ_k с максимален дефиниционен интервал $(m_{1k}, m_{2k}), k = 1, 2$. Щом L_1 и L_2 се пресичат, съществуват точки t_1 и t_2 , $m_{11} < t_1 < m_{21}$, $m_{12} < t_2 < m_{22}$, за които $\varphi_1(t_1) = \varphi_2(t_2)$. Да разгледаме решението $\psi(t) = \varphi_2(t+c)$, където $c = t_2 - t_1$. Очевидно $\psi(t_1) = \varphi_2(t_2) = \dot{\varphi}_1(t_1)$. Следователно според теоремата за единственост решенията ψ и φ_1 съвпадат, т.е. за всяко $t \in (m_1, m_2)$ имаме $\varphi_1(t) = \varphi_2(t+c)$ и, нещо повече, $m_{11} = m_{12} - c$, $m_{21} = m_{22} - c$. От установеното равенство, разбира се, следва, че $L_1 = L_2$.

Коментар. Една траектория L във фазовото пространство на (1) може да бъде параметризирана по безбройно много

Тя е фазова криначини. само тогатогава и ва, когато съществува такава параметризация х = $\mathbf{x}(t)$, че "скоростта" $\dot{\mathbf{x}}(t)$ на движещата се по L точка $\mathbf{x}(t)$ да съвпада с фазовата скорост f(x(t)) за всяко t от дефиниционния интервал на функцията $t \longrightarrow$ $\mathbf{x}(t)$. Според току-що доказаното следствие при дадена фазова крива L параметризацията, която я превръща в решение, е определена с точност до транслация.

Всевъзможните фазови криви на автономната система (1) образуват нейния фазов портрет. Понякога

Фиг. 35

(предимно в двумерния случай) достатъчно пълното графично изображение на фазовото векторно поле дава представа за фазовия портрет на системата. Ето два примера:

Пример 1. Да разгледаме системата с постоянни коефициенти

(8)
$$\dot{x}^1 = x^2, \qquad \dot{x}^2 = -x^1,$$

чието фазово пространство е \mathbb{R}^2 . Нейното векторно поле се получава, като на точката (x^1, x^2) съпоставим вектора $(x^2, -x^1)$, който чертаем с начало в (x^1, x^2) . Картината е изобразена на фиг. 35. Тя ни подсказва, че фазовите криви са окръжности с център в началото. За да се убедим в това, достатъчно е да умножим първото уравнение на (8) с x^1 , второто — с x^2 и да съберем.

В предишния параграф установихме, че

различните фазови криви на (1) не се пресичат. Не е изключено различеникои от тях да се самопресичат.

Дефиниция 1. Казваме, че траекторията на решението t — $\wp(l), l \in (m_1, m_2),$ се самопресича, ако съществуват поне две различни числа t_1 и t_2 от $(m_1,\ m_2)$, за които $\varphi(t_1)=\varphi(t_2)$.

Припомняме на читателя, че всички фазови криви на систе-

мата $\dot{x}^1 = x^2, \ \dot{x}^2 = -x^1$ имат това свойство .

Следващата теорема дава съществена информация за самопресичащите се траектории.

Теорема 1. Нека фазовата крива L се самопресича. Тогава еналице точно една от следните две възможности:

- а) L е траектория на периодично решение $\widetilde{\varphi}$, което има наймалък положителен период;
- б) L е точка на равновесие на системата. В този случай L е траектория на решение от вида $\widetilde{\varphi} = \mathrm{const.}$

И в двата случая решението $t \longrightarrow \widetilde{\varphi}$ е дефинирано за всяко

Доказателство. Нека $t\longrightarrow \varphi(t)$ е едно от решенията с траектория L и нека $(m_1,\ m_2)$ е дефиниционният интервал на arphi. Понеже L се самопресича, съществуват числа t_1 и $t_2,\,t_1 < t_2,$ от (m_1, m_2) такива, че $\varphi(t_1) = \varphi(t_2)$. Нека $\widetilde{\varphi}$ е непродължимото решение, което съвпада с φ за $t\in(m_1,\ m_2)$, и \widetilde{L} е траекторията $\widetilde{\varphi}$. Ше докажем, че $\widetilde{L}=L$ и че $\widetilde{\varphi}$ е периодично с период t_2-t_1 . \mathbb{I}_{a} означим с $(\widetilde{m}_1,\ \widetilde{m}_2)$ дефиниционния интервал на \widetilde{arphi} и да разгледаме решението на (1), дефинирано с равенството $\psi(t) = \widetilde{\varphi}(t+c)$, $c=t_2-t_1$. Очевидно $\psi(\widetilde{t_1})=\widetilde{arphi}(t_2)=\widetilde{arphi}(t_1)$, т.е. $\psi=\widetilde{arphi}$.

Понеже $\widetilde{\varphi}$ е непродължимо, то и ψ има това свойство. (Допуснете противното!) Като сравняваме дефиниционните интервали на $\widetilde{\varphi}$ и ψ , намираме $\widetilde{m}_1=\widetilde{m}_1-c,\ \widetilde{m}_2=\widetilde{m}_2-c$ и заключаваме, $\tilde{m}_1 = -\infty$, $\tilde{m}_2 = +\infty$. С други думи, установихме равенството $\widetilde{\varphi}(t) = \widetilde{\varphi}(t+c), t \in \mathbf{R}$, което показва, че решението $\widetilde{\varphi}$ е периодично с период с. Тъй като за всяко k имаме $\widetilde{\varphi}(t+kc)=\widetilde{\varphi}(t)$, цялата $[t_1, t_2] \subset ($ $[t_1,\ t_2]\subset (m_1,\ m_2).$ Понеже в $[t_1,\ t_2]$ имаме $\varphi=\widetilde{\varphi}$, равенството

 $L = \widetilde{L}$ е установено.

И така оказа се, че всяка самопресичаща се интегрална крива е траектория на периодично решение, дефинирано за всяко реал-но t. Оста но г. Остава да разграничим случанте а) и б). За тази цел ще изучим свойствата на множеството от периодите.