Finite Fields Recall: If F is a field, F contains a prime field FosF and $F_0 \simeq \mathbb{Q}$ or $F_0 \simeq |F_p|$ for some p. Lemma: If F is a finite field, then F is a finite extension of IFp. If [F: Fp] = n, then $IFI = p^n$. Theorem: If F is a finite field, $F^* = (F \setminus 10)$, x) is cyclic. Proof: F* is a finite abelian group, so by the Fundamental Theorem of Finitely Generated Abelian Groups Fx ~ Zm, x Zm2 x ··· x Zmk for some integers $m_1 \mid m_2 \mid \cdots \mid m_k$, so $x^{m_k} - 1 = 0$ for all $x \in F^x$. However, xmk-1=0 has at most mk roots in F, so $|F| = m_1 m_2 \cdots m_k \le m_k$, so k = 1 and $F^{\times} \cong \mathbb{Z}_m$. Corollary: If F is a finite field, F = IFp(a) for some a & F. Observation: If F is a finite field of characteristic p. then $x \mapsto x^p$ is an automorphism of F (because $(x+y)^p$ = $x^p + y^p$ in characteristic p). What is fixed by this? We have $a^p = a$ for any $a \in IF^p$ and $x^p - x$ has at most p roots in F, so the fixed field is Fp so

Proposition: F is a finite field with p^n elements if and only if F is the splitting field of $x^{p^n}-x$ over 1Fp.

Proof: Assume $|F| = p^n$, i.e. [F:|Fp] = n. Then $|F^x| = p^{n-1}$

1×1-xp3 ∈ Aut (F).

So $\alpha^{p^n-1}-1=0$ for any $\alpha \in F^x$, so $\alpha^{p^n}-\alpha=0$ for any $\alpha \in F$. In particular, F contains all roots of $x^{p^n}-x$ over IF_p , so F contains a splitting field of $x^{p^n}-x=0$, but all elements are roots. So F is a splitting field.

Conversely, if F is a splitting field of $x^p - x$, note $(x^{p^n} - x)^r = -1$ so this polynomial has no repeated roots. So f has p^n distinct roots in F. The fixed field of $x \mapsto x^p$ is some subfield of F. But F is generated by the roots of $x^{p^n} - x = 0$, so F is this fixed field. $F = \frac{1}{1} \operatorname{roots} \circ f(x^{p^n} - x)^r$ which contains p^n roots.

Corollary: If F_1 and F_2 are finite fields and $|F_1| = |F_2|$, then $F_1 \simeq F_2$,

Proposition: If F is a finite field, then F is a cyclic Galois extension of IFp, i.e. Gal (F/IFp) is cyclic.

Proof: F is a splitting field of $x^{p^n} - x$, which is separable, so F/IFp is Galois.

Let $\sigma(x) = x^p$, $\sigma \in Gal(F/IFp)$. Observe that $\sigma^n(x) = x^{p^n} = x$ for all $x \in F$. So $\sigma^n = id$. On the other hand, for j < n, $\sigma^j(x) = x$ has at most p^j roots, so σ^j does not fix F, so σ has order n, but |Gal(F/IFp)| = |F||Fp| = n, so $Gal(F/IFp) = |\sigma| = |\sigma| = |E|$

The subgroups of Gal(F/IFp) are (o^d) where $d \mid n$, so the corresponding intermediate fields of size p^d where $d \mid n$.

Example: If n=6. Then

Cyclic Extensions

All finite extension fields of finite fields are cyclic. In general, Call a Galois extension cyclic if Gal(F/K) is cyclic.

Example: Let 3 be a primitive nth root of unity and let x^n -a be irreducible over $K = \mathbb{Q}(5)$. Let ω be a root and $F = K(\omega)$. Over F,

$$x^{n} - \alpha = (x - \alpha)(x - 3\alpha) - (x - 3^{n}\alpha) \in F[x]$$

30 F is a splitting field of x^n -a over K. Because [F:K]=n as x^n -a is irreducible over K and [Gal(F/K)]=n for every root 5^{5} a of x^n -a, there is a σ_5 e Gal(F/K) with $\sigma_5(\alpha)=3^{5}\alpha$, so $Gal(F/K)=\frac{1}{2}\sigma_0,\ldots,\sigma_{K-1}$. Observe that

Gok (a) = $\sigma_j(5^k a) = 3^k \sigma_j(a) = 3^k 3^j a = 3^{j+k} a = \sigma_{j+k}(a)$.

In particular, Gal(F/K) = \mathbb{Z}_n j \mapsto $\sigma_j(a)$. Thus F/K is a cyclic extension.

Proposition: Let F/K be a cyclic extension of degree n of fields of characteristic p. Then there are intermediate subfields $F \ge E_0 \ge E_1 \ge \cdots \ge E_e = K$ such that F is a cyclic extension of E_0 of degree p with $p \nmid m$ and E_K is a cyclic extension of E_{K+1} of degree p so $n = p^e m$.

Proof: The lattice of subgroups of a cyclic group for example Gal(F/K) has a subgroup of order m, and its fixed field Eo of F as a degree m extension. Eo is a cyclic extension of K of degree pe. Proceed inductively.

Note: Just understand cyclic extensions of degree p or degree prime to p, in char p.

Definition: Let F be a finite separable extension of K, and let K be some algebraic closure K (or just algebraically closed extension). Let $\sigma_1, \ldots, \sigma_r$ be the distinct embeddings of F into K which fixes K. Define

- · NF/K (a) = IT oi(a) the norm of a
- Tr F/K (a) = $\sum_{i=1}^{n} \sigma_i(a)$ the trace of a

```
Example: K=IR, F=C, K=F, O, =id, O2(x+iy)=x-iy.
 • Norm (x+iy) = (x+iy)(x-iy) = x^2 + y^2
 · Tre/1R (x+iy) = (x+iy) + (x-iy) = 2x
Note: If F/K is Galois, then F is a stable subfield of
K, so o: F-7 K is an embedding fixing K, then o(F)=F
=> TE Aut (F) = Gal (F/K), Su
  · NF/K (d) = T o(d)
  · TrF/K (a) = I o(a)
Note: If TE Gal(F/K), T(TrF/K(d)) = Z( Z of GEG(F/K))
  = \sum_{\sigma \in G(F/K)} T\sigma(\alpha) = \sum_{\sigma \in G(F/K)} \sigma(\alpha) = Tr_{F/K}(\alpha)
  => TrF/K = K and similar for NF/K.
```