ANÁLISE DE ITENS E PRESSUPOSTOS DA ANÁLISE FATORIAL EXPLORATÓRIA (AFE)

A AFE é uma das técnicas mais utilizadas na psicologia, especialmente na **psicometria**, com a finalidade de testar o desempenho de instrumentos psicométricos ou **gerar teorias** (Costello & Osborne, 2005; Haig, 2005)

MULTIVARIATE BEHAVIORAL RESEARCH, 40(3), 303–329 Copyright © 2005, Lawrence Erlbaum Associates, Inc.

Exploratory Factor Analysis, Theory Generation, and Scientific Method

Brian D. Haig University of Canterbury

CHARLES SPEARMAN

Foi desenvolvida por Spearman e utilizada na geração da teoria do fator geral de inteligência (g)

Sua hipótese era de que havia uma variável (geral) que explicava as relações entre habilidades específicas

CINCO GRANDES FATORES DA PERSONALIDADE (BIG FIVE)

Por Que Cinco Fatores?

A descoberta dos cinco fatores foi acidental e se constitui em uma generalização empírica, replicada independentemente inúmeras vezes. Como o modelo não foi desenvolvido a partir de uma teoria, não há, consequentemente, uma explicação teórica *a priori* (e satisfatória) dos motivos que levariam a organização da personalidade em cinco (e não quatro, ou sete) dimensões básicas.

Psicología Reflexão e Crítica Universidad Federal do Rio Grande do Sul prcrev@ufrgs.br ISSN: 0102-7972 BRASIL

PSICOMETRIA

Na Psicometria, o modelo de AFE é empregado para descobrir (!) o número de variáveis (latentes) necessárias e suficientes para explicar um conjunto de itens ou tarefas de um instrumento psicométrico. Um uso bem comum é na investigação das propriedades psicométricas de escalas, questionários e inventários

Uso da análise fatorial exploratória **EM PSICOLOGIA**

Bruno Figueiredo Damásio¹ – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

Figura 1 - Ilustração das variâncias de três itens e suas relações com um fator hipotético.

EM SUMA

A AFE é uma técnica que

- 1) parte da hipótese de que a correlação entre variáveis tem como <u>causa</u> uma ou mais variáveis, também chamada de "princípio da causa comum";
- 2) introduz a modelagem de variáveis latentes, isto é, variáveis que não são diretamente observáveis, e, por isso, não estão no banco de dados;
- 3) diferente de outras técnicas estatísticas, a AF é exploratória e interpretativa, alinhada ao raciocínio adbutivo (geração de hipóteses e teorias após a observação empírica)

FORMULAÇÃO MATEMÁTICA

$$X = b + a_1F_1 + a_2F_1 + a_3F_1 \dots + e$$

Em que:

X é o escore observado no teste;

b é um intercepto, em geral fixado em zero;

a é o coeficiente angular, indicando a relação linear entre item e fator;

F é um escore fatorial, valor latente do traço em questão;

e é um erro aleatório com média zero e distribuição normal.

PRESSUPOSTOS

Distribucionais – método de extração

Correlações – qualidade dos dados

Anexo

Escala de Satisfação com a Vida

Instruções

Abaixo você encontrará cinco afirmações com as quais pode ou não concordar. Usando a escala de resposta a seguir, que vai de 1 a 7, indique o quanto concorda ou discorda com cada uma; escreva um número no espaço ao lado da afirmação, segundo sua opinião. Por favor, seja o mais sincero possível nas suas respostas.

- 7 = Concordo totalmente
- 6 = Concordo
- 5 = Concordo ligeiramente
- 4 = Nem concordo nem discordo
- 3 = Discordo ligeiramente
- 2 = Discordo
- 1 = Discordo totalmente
- Na maioria dos aspectos, minha vida é próxima ao meu ideal.
- As condições da minha vida são excelentes.
- Estou satisfeito(a) com minha vida.
- Dentro do possível, tenho conseguido as coisas importantes que quero da vida.
- Se pudesse viver uma segunda vez, não mudaria quase nada na minha vida.

(http://www.vvgouveia.net/sp/images/Gouveia 2005 medindo a satisfao com a vida dos mdicos no brasil.pdf)

DISTRIBUIÇÕES

hist(ESV[,1]) shapiro.test(ESV[,1])

Normalidade: Pearson

Violações da normalidade:

- Spearman
- Tetracóricas (dicotômicos)
- Policóricas (categorias ordenadas)

Histogram of ESV[, 1]

DISTRIBUIÇÕES E CORRELAÇÕES

cor.plot(ESV[,-c(6,7)],numbers = TRUE,cex = 0.8) pairs.panels(ESV[,-c(6,7)])

QUALIDADE DOS DADOS

KMO = proporção entre correlações bivariadas e correlações parciais

- Quanto mais próximo à unidade, melhor
- Aceitável acima de 0,6

Teste de esfericidade de Batlett (p<0,05)

$$KMO = rac{\displaystyle\sum_{j
eq k} r_{jk}^2}{\displaystyle\sum_{j
eq k} r_{jk}^2 + \displaystyle\sum_{j
eq k} p_{jk}^2}$$

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

TECNICAS DE RETENÇÃO DE FATORES

Critério de Kaiser

Critério de Cattell

ANÁLISE PARALELA

Simular dados e comparar o poder explicativo dos fatores

Simulações: Monte Carlo (paramétrica) e por permutação dos valores

Parallel Analysis Scree Plots

fa(ESV[,-c(6,7)],cor="poly",fm="minrank")

Standardized loadings (pattern matrix) based upon correlation matrix

```
MRFA1 h2 u2 com

ESV1 0.87 0.75 0.25 1

ESV2 0.84 0.70 0.30 1

ESV3 0.92 0.85 0.15 1

ESV4 0.82 0.68 0.32 1

ESV5 0.74 0.55 0.45 1
```

MRFA1

SS loadings	3.52
Proportion Var	0.70

CONSISTÊNCIA INTERNA

0.9 0.91 0.92

Alpha de Cronbach alpha(ESV[,-c(6,7)])

```
Call: alpha(x = ESV[, -c(6, 7)])

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
0.91 0.91 0.9 0.68 11 0.0065 4.7 1.5

lower alpha upper 95% confidence boundaries
```

MODELOS MULTIDIMENSIONAIS

$$X = b + a_1F_1 + a_1F_2 + a_2F_1 \dots + e$$

Parallel Analysis Scree Plots

ROTAÇÃO FATORIAL

Rotação fatorial

A rotação fatorial é uma técnica que visa ajustar a solução fatorial (cargas fatoriais) de modo a deixá-la mais interpretável, ou clara. A solução não rotacionada pode levar aos itens apresentarem correlações com vários fatores. Para diminuir este efeito, os eixos dos fatores são rotacionados no espaço, de modo a permitir (rotação oblíqua) ou não (rotação ortogonal) a correlação entre os fatores.

ESCORES FATORIAIS

Fiz a AFE, e agora?

- () somar os itens e usar o resultado em outras análises
- () usa a informação da modelagem estatística, ponderando a importância de cada item, em outras análises

ESCORES FATORIAIS

 $Big5_fa < -fa(Big5[,-c(26,27)],5,cor="poly",fm="minrank",rotate = "oblimin",scores = "regression")$

View(Big5_fa\$scores)

*	MRFA1 [‡]	MRFA2 [‡]	MRFA4 [‡]	MRFA5 [‡]	MRFA3 [‡]
1	1.743510658	-0.61406410	-1.38189079	0.75822935	0.68997423
2	NA	NA	NA	NA	NA
3	-0.689141688	-0.00883950	-0.97104036	-1.71044114	-0.09944628
4	-0.500946099	1.07885105	-1.02285449	-0.12124280	1.77448972
5	-1.762444583	0.55404260	-0.53821931	-1.43584878	0.30273618
6	-0.130637187	-0.74167365	-1.62212615	-2.90191335	0.33061680
7	NA	NA	NA	NA	NA
8	0.493125538	-1.04918353	1.25134447	-1.81605333	0.14035380
9	-0.229904915	2.75605764	0.59508649	-0.60651766	-0.17919788

ESCORES FATORIAIS

t.test(Big5_fa\$scores[,5]~Big5\$Sexo)

boxplot(Big5_fa\$scores[,5]~Big5\$Sexo)

