Esame di Ingegneria del software Appello del 31 gennaio 2018

\mathbf{Nome}	\mathbf{e}	cognome
Matrio	'n	la:

Il punteggio relativo a ciascuna domanda, indicato fra parentesi, è in trentesimi. I candidati devono consegnare entro un'ora dall'inizio della prova.

$f 1 \\ f 2$	Disegnare il diagramma di classi corrispondente al listato di Fig. 1. Scrivere un programma in C++ che, usando il codice di Fig. 1, legga	(5) (5)
4	da ingresso standard un numero positivo K e, per K volte, legga i valori di	(0)
	pressione da due manometri e scriva la media fra i due su uscita standard.	
3	Disegnare uno statechart UML che specifichi quanto segue: un regolatore	(5)
3	deve assicurare che, dopo la chiusura di una certa valvola $A(a)$ o di una valvola	(5)
	B (b), avvenga l'apertura di una valvola di scarico S , apertura che può essere	
	automatica (sa) o comandata dal regolatore (sc), entro Σ secondi; nello stato	
	iniziale, il tempo (rappresentato da una variabile t) scorre a partire da zero; in	
	corrispondenza di ogni chiusura delle valvole $A \in B$ il regolatore resta nello stato	
	iniziale ed il tempo viene azzerato; se passano Σ secondi senza che intercorrano	
	chiusure di A o B , il regolatore invia il segnale sc , restando nello stato iniziale;	
	quando si verifica un'apertura automatica di S , il regolatore entra in uno stato	
	di attesa da cui esce quando si richiude A o B , rientrando nello stato iniziale	
	ed azzerando il tempo (suggerimento: serve l'evento temporale after()).	
4	Ridisegnare il diagramma di Fig. 2 come architettura a strati.	(5)
5	La classe Module contiene una rappresentazione interna del codice sorgente	(5)
	di un programma. Una delle sue operazioni è assemble(), che restituisce una	()
	struttura dati di tipo Object contenente il risultato della compilazione. Appli-	
	care il pattern Strategy (Fig. 3) in modo da poter cambiare facilmente il tipo di	
	processore (per esempio ARM, Atmel, PowerPC) per cui generare il codice.	
	Mostrare l'implementazione dell'operazione assemble() e specificare eventuali	
	argomenti e valori restituiti delle operazioni introdotte.	
6	Rispondere alle seguenti domande.	(5)
	In un sistema formale corretto, tutte le formule valide sono dimostrabili.	$V \square F \boxtimes$
	Il CppUnit è un framework per il testing.	$V \boxtimes F \square$
	I membri pubblici di una classe costituiscono la sua interfaccia richiesta.	$V \square F \boxtimes$
	Una classe realizza un'interfaccia se ne implementa la parte privata.	$V \square F \boxtimes$
	Tutte le formule valide sono vere.	$V \boxtimes F \square$

```
class Probe {
public:
    virtual int get_sample(void) =0;
};
class Conditioner {
public:
    virtual int smooth(int raw) =0;
};
class Manometer : public Probe {
    Conditioner* mc;
    int raw;
public:
    Manometer(Conditioner* c): mc(c);
    int raw_data(void);
    int get_sample(void);
};
class PConditioner : public Conditioner {
    // data structures for smoothing
public:
    int smooth(int raw);
};
int
Manometer::
raw_data(void)
    // read value from hardware
int
Manometer::
get_sample(void)
   raw = raw_data();
   return mc->smooth(value);
}
int
PConditioner::
smooth(int value)
    // implementation of smoothing algorithm
```

2

Figura 2: Domanda 4.

Figura 3: Domanda 5.

Figura 4: Domanda 1, soluzione.

```
int
main()
{
    int N;
    cin >> N;

    KFilter kf1;
    KFilter kf2;
    TempSensor ts1(&kf1);
    TempSensor ts2(&kf2);

    for (int i = 0; i < N; i++) {
        ts1.read();
        int v1 = ts1.get_temp();
        ts2.read();
        int v2 = ts2.get_temp();
        cout << (v1 + v2)/2 < endl;
    }
}</pre>
```

Figura 5: Domanda 2, soluzione.

Figura 6: Domanda 3, soluzione.

Figura 7: Domanda 4, soluzione.

Figura 8: Domanda 5, soluzione.