Computer Architecture EECS 361 Lecture 6: ALU Design

Review: ALU Design

- Bit-slice plus extra on the two ends
- Overflow means number too large for the representation
- Carry-look ahead and other adder tricks

Review: Elements of the Design Process

- Divide and Conquer (e.g., ALU)
 - Formulate a solution in terms of simpler components.
 - Design each of the components (subproblems)
- Generate and Test (e.g., ALU)
 - Given a collection of building blocks, look for ways of putting them together that meets requirement
- Successive Refinement (e.g., multiplier, divider)
 - Solve "most" of the problem (i.e., ignore some constraints or special cases), examine and correct shortcomings.
- Formulate High-Level Alternatives (e.g., shifter)
 - Articulate many strategies to "keep in mind" while pursuing any one approach.
- Work on the Things you Know How to Do
 - The unknown will become "obvious" as you make progress.

Outline of Today's Lecture

- ° Deriving the ALU from the Instruction Set
- ° Multiply

MIPS arithmetic instructions

0	Instruction	Example	Meaning	Comments
0	add	add \$1,\$2,\$3	1 = 2 + 3	3 operands; exception possible
0	subtract	sub \$1,\$2,\$3	1 = 2 - 3	3 operands; exception possible
0	add immediate	addi \$1,\$2,100	\$1 = \$2 + 100	+ constant; exception possible
0	add unsigned	addu \$1,\$2,\$3	1 = 2 + 3	3 operands; no exceptions
0	subtract unsigned	subu \$1,\$2,\$3	1 = 2 - 3	3 operands; no exceptions
0	add imm. unsign.	addiu \$1,\$2,10	0	\$1 = \$2 + 100 + constant;
	no exceptions			
0	multiply	mult \$2,\$3	Hi, $L_0 = \$2 \times \3	64-bit signed product
0	multiply unsigned	multu\$2,\$3	$Hi, Lo = \$2 \times \3	64-bit unsigned product
0	divide	div \$2,\$3	$L_0 = \$2 \div \$3,$	Lo = quotient, Hi = remainder
0				$Hi = \$2 \mod \3
0	divide unsigned	divu \$2,\$3	$L_0 = \$2 \div \$3,$	Unsigned quotient & remainder
0				$Hi = \$2 \mod \3
0	Move from Hi	mfhi \$1	1 = Hi	Used to get copy of Hi
0	Move from Lo	mflo \$1	$1 = L_0$	Used to get copy of Lo

MIPS logical instructions

Instruction	Example	Meaning	Comment
and	and \$1,\$2,\$3	\$1 = \$2 & \$3	3 reg. operands; Logical AND
or	or \$1,\$2,\$3	\$1 = \$2 \$3	3 reg. operands; Logical OR
xor	xor \$1,\$2,\$3	\$1 = \$2 ⊕ \$3	3 reg. operands; Logical XOR
nor	nor \$1,\$2,\$3	\$1 = ~(\$2 \$3)	3 reg. operands; Logical NOR
and immediate	andi \$1,\$2,10	\$1 = \$2 & 10	Logical AND reg, constant
or immediate	ori \$1,\$2,10	\$1 = \$2 10	Logical OR reg, constant
xor immediate	xori \$1, \$2,10	\$1 = ~\$2 &~10	Logical XOR reg, constant
shift left logical	sll \$1,\$2,10	\$1 = \$2 << 10	Shift left by constant
shift right logical	srl \$1,\$2,10	\$1 = \$2 >> 10	Shift right by constant
shift right arithm.	sra \$1,\$2,10	\$1 = \$2 >> 10	Shift right (sign extend)
shift left logical	sllv \$1,\$2,\$3	\$1 = \$2 << \$3	Shift left by variable
shift right logical	srlv \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right by variable
shift right arithm.	srav \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right arith. by variable

Additional MIPS ALU requirements

- Xor, Nor, Xorl
 => Logical XOR, logical NOR or use 2 steps: (A OR B) XOR 1111....1111
- SII, SrI, Sra
 Need left shift, right shift arithmetic by 0 to 31 bits
- Mult, MultU, Div, DivU
 Need 32-bit multiply and divide, signed and unsigned

Add XOR to ALU

Expand Multiplexor

MULTIPLY (unsigned)

° Paper and pencil example (unsigned):

```
Multiplicand 1000
Multiplier 1001
1000
0000
0000
1000
Product 01001000
```

- ° m bits x n bits = m+n bit product
- ° Binary makes it easy:

° 4 versions of multiply hardware & algorithm:

successive refinement

Unsigned Combinational Multiplier

- ° Stage i accumulates A * 2 i if B_i == 1
- ° Q: How much hardware for 32 bit multiplier? Critical path?

How does it work?

- ° at each stage shift A left (x 2)
- ° use next bit of B to determine whether to add in shifted multiplicand
- ° accumulate 2n bit partial product at each stage

Unsigned shift-add multiplier (version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
 32-bit multiplier reg

Multiplier = datapath + control

Observations on Multiply Version 1

- $^{\circ}$ 1 clock per step => 32 x 3 = \sim 100 clocks per multiply
 - Ratio of multiply frequency to add 1:5 to 1:100
 - Remember Amdahl's Law
- 1/2 bits in multiplicand always 0=> 64-bit adder is wasted
- ° 0's inserted in left of multiplicand as shifted
 => least significant bits of product never changed once formed
- ° Instead of shifting multiplicand to left, shift product to right?

MULTIPLY HARDWARE Version 2

32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
32-bit Multiplier reg

What's going on?

° Multiplicand stay's still and product moves right

Observations on Multiply Version 2

- ° Product register wastes space that exactly matches size of multiplier
 - => combine Multiplier register and Product register

MULTIPLY HARDWARE Version 3

° 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, (0-bit Multiplier reg)

Observations on Multiply Version 3

- ° 2 steps per bit because Multiplier & Product combined
- MIPS registers Hi and Lo are left and right half of Product
- Gives us MIPS instruction MultU
- ° How can you make it faster?
- ° What about signed multiplication?
 - easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
 - apply definition of 2's complement
 - need to sign-extend partial products and subtract at the end
 - Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles
 - can handle multiple bits at a time

Motivation for Booth's Algorithm

 $^{\circ}$ Example 2 x 6 = 0010 x 0110:

 $^\circ$ ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$
, or $0110 = -0010 + 1000$

Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one. For example

Booth's Algorithm Insight

end of run

O

1 1 1 1 D

beginning of run

Current Bit	Bit to the Right	Explanation	Example
1	0	Beginning of a run of 1s	000111 <u>10</u> 00
1	1	Middle of a run of 1s	00011 <u>11</u> 000
0	1	End of a run of 1s	00 <u>01</u> 111000
0	0	Middle of a run of 0s	0 <u>00</u> 1111000

Originally for Speed since shift faster than add for his machine

Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one

Booths Example (2 x 7)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 0111 0	10 -> sub
1a. P = P - m	1110	+ <u>1110</u> 1110 <u>0111</u> 0	shift P (sign ext)
1b.	0010	1111 0 <mark>011 1</mark>	11 -> nop, shift
2.	0010	1111 10 <mark>01 1</mark>	11 -> nop, shift
3.	0010	1111 110 <mark>0 1</mark>	01 -> add
4a.	0010	+ 0010 0001 110 <mark>0 1</mark>	shift
4b.	0010	0000 1110 <mark>0</mark>	done

Booths Example (2 x -3)

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 1101 0	10 -> sub
1a. P=P-m	1110	+ 1110 1110 1101 0	shift P (sign ext)
1b.	0010	1111 0 <mark>110 1</mark> + 0010	01 -> add
2a.		0001 0 <mark>110 1</mark>	shift P
2b.	0010	0000 10 <mark>11 0</mark> + 1110	10 -> sub
3a.	0010	1110 10 <mark>11 0</mark>	shift
3b. 4a	0010	1111 010 <mark>1 1</mark> 1111 010 <mark>1 1</mark>	11 -> nop shift
4b.	0010	1111 1010 <mark>1</mark>	done

Booth's Algorithm - Summary

- 1. Depending on the current and previous bits, do one of the following:
 - 00: a. Middle of a string of 0s, so no arithmetic operations.
 - 01: b. End of a string of 1s, so add the multiplicand to the left half of the product.
 - 10: c. Beginning of a string of 1s, so subtract the multiplicand from the left half of the product.
 - 11: d. Middle of a string of 1s, so no arithmetic operation.
- 2.As in the previous algorithm, shift the Product register right (arith) 1 bit.

MIPS logical instructions

0	<u>Instruction</u>	Example Meaning	Comment	_
0	and	and \$1,\$2,\$3	\$1 = \$2 & \$3	3 reg. operands; Logical AND
0	or	or \$1,\$2,\$3	\$1 = \$2 \$3	3 reg. operands; Logical OR
0	xor	xor \$1,\$2,\$3	\$1 = \$2 ⊕ \$3	3 reg. operands; Logical XOR
0	nor	nor \$1,\$2,\$3	\$1 = ~(\$2 \$3)	3 reg. operands; Logical NOR
0	and immediate	andi \$1,\$2,10	\$1 = \$2 & 10	Logical AND reg, constant
0	or immediate	ori \$1,\$2,10	\$1 = \$2 10	Logical OR reg, constant
0	xor immediate	xori \$1, \$2,10	\$1 = ~\$2 &~10	Logical XOR reg, constant
0	shift left logical	sII \$1,\$2,10	\$1 = \$2 << 10	Shift left by constant
0	shift right logical	srl \$1,\$2,10	\$1 = \$2 >> 10	Shift right by constant
0	shift right arithm	. sra \$1,\$2,10	\$1 = \$2 >> 10	Shift right (sign extend)
0	shift left logical	sllv \$1,\$2,\$3	\$1 = \$2 << \$3	Shift left by variable
0	shift right logical	srlv \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right by variable
0	shift right arithm	. srav \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right arith. by variable

Shifters

Three different kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

rotating-- shifted out bits are wrapped around (not in MIPS)

Note: these are single bit shifts. A given instruction might request 0 to 31 bits to be shifted!

Combinational Shifter from MUXes

8-bit right shifter

- ° What comes in the MSBs?
- ° How many levels for 32-bit shifter?
- ° What if we use 4-1 Muxes ?

General Shift Right Scheme using 16 bit example

If added Right-to-left connections could support Rotate (not in MIPS but found in other ISAs)

Summary

- o Instruction Set drives the ALU design
- Multiply: successive refinement to see final design
 - 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register
 - Booth's algorithm to handle signed multiplies
- ° There are algorithms that calculate many bits of multiply per cycle
- ° What's Missing from MIPS is Divide & Floating Point Arithmetic