Application No.: 09/783,248

Office Action Dated: December 16, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

PATENT

Listing of Claims

1. (currently amended) A compound comprising:

- i) 1-10 targeting moieties;
- ii) a chelator; and
- iii) 0-1 linking groups between the targeting moiety and chelator;
 wherein the targeting moiety is a matrix metalloproteinase inhibitor <u>having an</u> <u>inhibitory constant K_i of <100 nM</u>; and

wherein the chelator is capable of conjugating to a cytotoxic radioisotope.

- 2. (cancelled)
- 3. (cancelled)
- 4. (original) A compound according to claim 1, comprising 1-5 targeting moieties.
- 5. (original) A compound according to claim 1, comprising one targeting moiety.
- 6. (currently amended) A compound according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

RHN
$$\stackrel{\cdot}{\underset{O}{\overset{}}{\underset{}}} \stackrel{R^{1}}{\underset{}} X \stackrel{\cdot}{\underset{}} R^{3} \qquad R^{8} - N \stackrel{O}{\underset{}} \stackrel{NR^{10}R^{11}}{\underset{}} = N \stackrel{\cdot}{\underset{}} \stackrel{NR^{10}R^{11}}{\underset{}} = N \stackrel{\cdot}{\underset{}} \stackrel{\overset$$

wherein,

R is independently OH or -CH₂SH;

R¹ is independently selected at each occurrence from the group: H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and heterocycle-S-CH₂-;

R² is independently C₁₋₂₀ alkyl;

Office Action Dated: December 16, 2003

X is independently C=O or SO_2 , provided when X is C=O, \mathbb{R}^3 is

PATENT

$$=$$
 N $=$ N

R⁴ is independently selected at each occurrence from the group: C₁₋₆ alkyl, phenyl, and benzyl;

 R^5 is independently <u>selected</u> at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;

R⁶ is independently aryloxy substituted with 0-3 R⁷;

R⁷ is independently halogen or methoxy;

or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the chelator;

or alternatively,

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to the linking group or a bond to the chelator; or

 R^1 and R^2 taken together with the **nitrogen and** carbon **atom atoms** through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to **Ln said linking group**, a bond to **Ch**-**said chelator**, and $-C(=O)-NR^{29}R^{30}$;

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to the linking group or a bond to the chelator, provided that when R^8 is phenyl, R^{10} is $-C(=O)-CR^{12}-NH-CH(CH_3)-COOH$ $-C(=O)-CHR^{12}-NH-CH(CH_3)-COOH$;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 R^9 and R^9 ' are independently H, C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R^9 and R^9 ' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to the linking group or a bond to the chelator;

PATENT

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} , a bond to the linking group or a bond to the chelator;

or alternatively,

R⁹ and R¹⁰ are taken together with the <u>nitrogen atom and</u> carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 <u>0-2 additional</u> heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with a bond to the linking group or a bond to the chelator; and

 R^{12} is independently $C_{1\text{--}20}$ alkyl;

 R^{27} is =0, C1-4 alkyl C_{1-4} alkyl, or phenyl substituted with R^{28} ;

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 C_{5-7} atom saturated ring system substituted with R^{31} ; and

 R^{31} is a benzyloxy group substituted with C1-4 alkyl C_{1-4} alkyl.

7. (currently amended) A compound according to claim 1 wherein

A compound according to claim 1, wherein the targeting moiety is a matrix metalloproteinase inhibitor of the formulae (Ia) or (Ib):

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

RHN
$$\stackrel{\stackrel{}{\underset{=}}}{\overset{=}{\underset{=}}} X \stackrel{\stackrel{}{\underset{=}}}{\overset{}{\underset{=}}} X \stackrel{\stackrel{}{\underset{=}}}{\overset{}{\underset{=}}} R^8 \stackrel{\stackrel{}{\underset{=}}}{\overset{}{\underset{=}}} \stackrel{\stackrel{}{\underset{=}}}{\overset{}{\underset{=}}} NR^{10}R^{11}}{\overset{\stackrel{}{\underset{=}}}{\underset{=}}} \stackrel{\stackrel{}{\underset{=}}}{\underset{=}} \stackrel{\stackrel{}{\underset{=}}}{\underset{=}} NR^{10}R^{11}$$
; wherein,

R is OH;

 R^1 is independently selected at each occurrence from the group: H, OH, C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, and heterocycle-S-CH₂-;

R² is independently C₁₋₆ alkyl;

X is C=O;

$$R^3$$
 is R^4 R^5

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

 R^5 is independently <u>selected</u> at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to the linking group or a bond to the chelator;

R⁶ is independently aryloxy substituted with 0-3 R⁷;

R⁷ is independently halogen or methoxy;

or alternatively,

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to the linking group or a bond to the chelator;

or alternatively,

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to the linking group or a bond to the chelator; or

 R^1 and R^2 taken together with the **nitrogen and** carbon **atom atoms** through which they are attached form a C_{5-7} atom saturated ring system substituted with one

Application No.: 09/783,248

Office Action Dated: December 16, 2003

or more substituents selected from the group consisting of: a bond to **Ln** said linking group, a bond to **Ch**-said chelator, and -C(=O)-NR²⁹R³⁰;

R⁸ is OH:

 R^9 and R^9 ' are independently H, C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the carbon atom to which R^9 and R^9 ' are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from $O_{\bar{7}}$ and $N_{\bar{7}}$ said ring system optionally substituted with a bond to the linking group or a bond to the chelator;

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to the linking group or a bond to the chelator, or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-1 heteroatoms selected from O_3 and N_{3} , said ring system optionally substituted with 0-3 R^{27} , a bond to the linking group or a bond to the chelator;

or alternatively,

R⁹ and R¹⁰ are taken together with the <u>nitrogen atom and</u> carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing <u>an additional</u> 0-1 <u>heteroatoms heteroatom</u> selected from O₅ <u>and</u> N, said ring system optionally substituted with a bond to the linking group or a bond to the chelator; and

R¹² is independently C₁₋₆ alkyl;

 R^{27} is =0, C1-4 alkyl C_{1-4} alkyl, or phenyl substituted with R^{28} ;

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 atom saturated ring system substituted with R^{31} ; and

 R^{31} is a benzyloxy group substituted with C1-4 alkyl C_{1-4} alkyl.

8. (currently amended) A compound according to claim 7 wherein:

Application No.: 09/783,248

Office Action Dated: December 16, 2003

R is -OH;

 R^2 is C_{1-6} alkyl;

X is C=O;

$$R^3$$
 is R^4 R^5

 R^1 and R^4 are taken together to form a bridging group of formula –(CH₂)₃-O-phenyl-CH₂-;

 R^5 is NH(C1-6alkyl), NH(C₁₋₆alkyl), substituted with a bond to the linking group or a bond to the chelator.

9. (currently amended) A compound according to claim 7, wherein:

R is -OH;

 R^1 and R^2 taken together with the **nitrogen and** carbon **atom atoms** through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to **Ln said linking group**, a bond to **Ch said chelator**, and $-C(=O)-NR^{29}R^{30}$;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 $\underline{C}_{5.7}$ atom saturated ring system substituted with R^{31} ; and

 R^{31} is a benzyloxy group substituted with C1-4 alkyl $\underline{C_{1-4}}$ alkyl.

10. (currently amended) A compound according to claim 1, wherein the linking group is of the formula:

$$((W^1)_{h^{\text{-}}}(CR^{13}R^{14})_g)_{x^{\text{-}}}(Z)_{k^{\text{-}}}((CR^{13}aR^{14}a)_{g^{\text{'}}\text{-}}(W^2)_{h^{\text{'}}})_{x^{\text{''}}};$$

 W^1 and W^2 are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR 15 C(=O), C(=O)NR 15 , C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO2, SO2NH, -(OCH2CH2)76-84 , (OCH2CH2)s, (CH2CH2O)s', (OCH2CH2CH2)s", (CH2CH2CH2O)t, and (aa)t";

Application No.: 09/783,248

Office Action Dated: December 16, 2003

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} .

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C₁-C₅ alkoxy substituted with 0-3 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to the chelator;

R¹⁶ is independently selected at each occurrence from the group: a bond to the chelator, COOR¹⁷, C(=O)NHR¹⁷, NHC(=O)R¹⁷, OH, NHR¹⁷, SO₃H, PO₃H, -OPO₃H₂, -OSO₃H, aryl substituted with 0-3 R¹⁷, C₁₋₅ alkyl substituted with 0-1 R¹⁸, C₁₋₅ alkoxy substituted with 0-1 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

R¹⁷ is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀ cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸, cyclodextrin substituted with 0-1 R¹⁸, amino acid substituted with 0-1 R¹⁸, polycarboxyalkyl substituted with 0-1 R¹⁸, polyazaalkyl substituted with 0-1 R¹⁸, peptide substituted with 0-1 R¹⁸, wherein the peptide is comprised of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to the chelator;

R¹⁸ is a bond to the chelator;

k is selected from 0, 1, and 2;

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

h is selected from 0, 1, and 2; h' is selected from 0, 1, and 2; g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; s'' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; x is selected from 0, 1, 2, 3, 4, and 5; and x' is selected from 0, 1, 2, 3, 4, and 5.

11. (currently amended) A compound according to claim 10 wherein

 W^1 and W^2 are independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, -(CH₂CH₂O)₇₆₋₈₄₋, (OCH₂CH₂O)₈, (CH₂CH₂O)₈, (OCH₂CH₂CH₂O)₈, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-1 R¹⁶, C₃₋₁₀ cycloalkyl substituted with 0-1 R¹⁶, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁶;

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C₁-C₅ alkoxy substituted with 0-1 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to the chelator;

k is 0 or 1;

s is selected from 0, 1, 2, 3, 4, and 5;

PATENT

Application No.: 09/783,248 Office Action Dated: December 16, 2003 s' is selected from 0, 1, 2, 3, 4, and 5; s" is selected from 0, 1, 2, 3, 4, and 5; and t is selected from 0, 1, 2, 3, 4, and 5. 12. (original) A compound according to claim 10, wherein: W^{1} is C(=0)NR¹⁵; h is 1; g is 3; R¹³ and R¹⁴ are independently H; x is 1; k is 0; g'is 0; h' is 1; W^2 is NH; and x' is 1. 13. (original) A compound according to claim 10, wherein: x is 0; k is 1; Z is aryl substituted with 0-3 R¹⁶; g' is 1; W² is NH; R^{13a} and R^{14a} are independently H; h' is 1; and x' is 1. 14. (original) A compound according to claim 10, wherein: W^{1} is C(=0)NR¹⁵; h is 1; g is 2;

DOCKET NO.: PH-7064/BMS-0685

```
DOCKET NO.: PH-7064/BMS-0685
                                                                                                       PATENT
Application No.: 09/783,248
Office Action Dated: December 16, 2003
                  R<sup>13</sup> and R<sup>14</sup> are independently H;
                  x is 1;
                  k is 0;
                  g' is 1;
                  R<sup>13a</sup> and R<sup>14a</sup> are independently H; or C<sub>1-5</sub> alkyl substituted with 0-3 R<sup>16</sup>;
                  R<sup>16</sup> is SO<sub>3</sub>H;
                  W^2 is NHC(=0) or NH;
                  h' is 1; and
                  x' is 2.
15. (original) A compound according to claim 10, wherein:
                  W^1 is C(=O)NH;
                  h is 1;
                  g is 3;
                  R<sup>13</sup> and R<sup>14</sup> are independently H;
                  k is 0;
                  g' is 0;
                  x is 1;
                  W^2 is -NH(C=O)- or -(OCH<sub>2</sub>CH<sub>2</sub>)<sub>76-84</sub>-;
                  h' is 2; and
                  x' is 1.
16. (original) A compound according to claim 10, wherein:
                  x is 0;
                  k is 0;
                  g' is 3;
                 h' is 1;
                  W<sup>2</sup> is NH; and
```

x' is 1.

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

17. (currently amended) A compound according to claim 10, wherein:

x is 0;

Z is aryl substituted with 0-3 R¹⁶;

k is 1;

g' is 1;

R^{13a} and R^{14a} are independently H;

 W^2 is NHC(=0) or $-(OCH_2CH_2)_{76-84}$ -; and x' is 1.

18. (original) A compound according to claim 10, wherein:

 W^1 is C=O;

g is 2;

R¹³ and R¹⁴ are independently H;

k is 0;

g'is 0;

h' is 1;

W² is NH; and

x' is 1.

- 19. (original) A compound according to claim 1 wherein the linking group is absent.
- 20. (*original*) A compound according to claim 1, wherein the chelator is a metal bonding unit having a formula selected from the group:

Application No.: 09/783,248

Office Action Dated: December 16, 2003

$$A^{3}$$
 A^{3}
 A^{4}
 A^{5}
 A^{1}
 A^{1}
 A^{1}
 A^{1}
 A^{2}
 A^{2}
 A^{2}
 A^{3}
 A^{4}
 A^{5}
 A^{5

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: N, NR²⁶,NR¹⁹, NR¹⁹R²⁰, S, SH, –S(Pg), O, OH, PR¹⁹, PR¹⁹R²⁰, -O-P(O)(R²¹)-O-, P(O)R²¹R²², a bond to the targeting moiety and a bond to the linking group;

Pg is a thiol protecting group;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₆ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl- substituted with 0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

 R^{19} and R^{20} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{1-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

 R^{21} and R^{22} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, -OH, C₁-C₁₀ alkyl substituted with 0-3 R^{23} , C₁-C₁₀ alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C₃₋₁₀ cycloalkyl substituted with 0-3 R^{23} , heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R^{23} , C₁₋₁₀ alkyl-C₆₋₁₀ aryl- substituted with

Application No.: 09/783,248

Office Action Dated: December 16, 2003

0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

 R^{23} is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, =0, F, Cl, Br, I, -CF3, -CN, -CO₂R²⁴, -C(=O)R²⁴, -C(=O)N(R²⁴)₂, -CHO, -CH₂OR²⁴, -OC(=O)R²⁴, -OC(=O)R²⁴, -OC(=O)N(R²⁴)₂, -NR²⁵C(=O)R²⁴, -NR²⁵C(=O)OR^{24a}, -NR²⁵C(=O)N(R²⁴)₂, -NR²⁵SO₂N(R²⁴)₂, -NR²⁵SO₂R^{24a}, -SO₃H, -SO₂R^{24a}, -SR²⁴, -S(=O)R^{24a}, -SO₂N(R²⁴)₂, -N(R²⁴)₂, -NHC(=S)NHR²⁴, =NOR²⁴, NO₂, -C(=O)NHOR²⁴, -C(=O)NHNR²⁴R^{24a}, -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C₁-C₅ alkyl, C₂-C₄ alkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkylmethyl, C₂-C₆ alkoxyalkyl, aryl substituted with 0-2 R²⁴, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and

wherein at least one of A¹, A², A³, A⁴, A⁵, A⁶, A⁷, A⁸ or R²³ is a bond to the linking group or targeting moiety;

R²⁴, R^{24a}, and R²⁵ are independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, H, C₁-C₆ alkyl, phenyl, benzyl, C₁-C₆ alkoxy, halide, nitro, cyano, and trifluoromethyl; and

R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting group.

21. (currently amended) A compound according to claim 20 wherein:

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: NR^{19} , $NR^{19}R^{20}$, S, SH, OH, a bond to the targeting moiety and a bond to the linking group;

 E^1 , E^2 , E^3 , E^4 , E^5 , E^6 , E^7 , and E^8 are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

wherein at least one of A¹, A², A³, A⁴, A⁵, A⁶, A⁷, A⁸ and R²³ is a bond to the linking group or a targeting moiety;

PATENT

 R^{19} , and R^{20} are each independently selected from the group: a bond to the targeting moiety, a bond to the linking group, hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

 R^{23} is independently selected at each occurrence from the group: a bond to the targeting moiety, a bond to the linking group, =O, F, Cl, Br, I, -CF3, -CN, -CO₂R²⁴, -C(=O)R²⁴, -C(=O)N(R²⁴)₂, -CH₂OR²⁴, -OC(=O)R²⁴, -OC(=O)OR²⁴a, -OR²⁴, -OC(=O)N(R²⁴)₂, -NR²⁵C(=O)R²⁴, -NR²⁵C(=O)OR²⁴a, -NR²⁵C(=O)N(R²⁴)₂, -NR²⁵SO₂N(R²⁴)₂, -NR²⁵SO₂R²⁴a, -SO₃H, -SO₂R²⁴a, -S(=O)R²⁴a, -SO₂N(R²⁴)₂, -N(R²⁴)₂, -NHC(=S)NHR²⁴, =NOR¹⁸, -C(=O)NHNR¹⁸R^{18a}, =NOR²⁴, -C(=O)NHNR²⁴R²⁴a, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy; and

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, H, and C₁-C₆ alkyl.

22. (currently amended) A compound according to claim 20 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{4}
 A^{6}
 E^{7}
 A^{7}
 A^{8}
 A^{3}
 A^{5}
 A^{8}

A¹ is a bond to the linking group;

 A^2 , A^4 , and A^6 are each N;

 A^3 , A^5 , A^7 and A^8 are each OH;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 E^1 , E^2 , and E^4 are C_2 alkyl;

 E^3 , E^5 , E^7 , and E^8 are C_2 alkyl substituted with 0-1 R^{23} ; and

PATENT

 R^{23} is =0.

23. (*currently amended*) A compound according to claim 20 wherein the chelator is of the formula:

Ch Ch is

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{5}
 A^{6}
 E^{8}
 A^{7}
 A^{8}

wherein:

A5 is a bond to Ln;

 A^1 , A^3 , A^7 and A^8 are each OH;

 A^2 , A^4 and A^6 are each NH;

 E^1 , E^3 , E^5 , E^7 , and E^8 are C_2 alkyl substituted with 0-1 R^{23} ;

 E^2 , and E^4 , are C_2 alkyl;

 R^{23} is =0.

24. (*currently amended*) A compound according to claim 20 wherein the chelator is of the formula:

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 A^1 , A^2 , A^3 and A^4 are each N;

 A^5 , A^6 and A^8 are each OH;

A⁷ is a bond to **Ln** said linking group;

 E^1, E^2, E^3, E^4 are each independently C_2 alkyl; and

 ${\rm E}^5, {\rm E}^6, {\rm E}^7, {\rm E}^8 \ {\rm are \ each \ independently} \ C_2 \ {\rm alkyl \ substituted} \ {\rm with} \ 0\text{--}1 \ R^{23};$

 R^{23} is =0.

25. (original) A compound according to claim 20 wherein the chelator is of the formula:

$$E^1 - A^2$$

A¹ is NR²⁶;

 R^{26} is a co-ordinate bond to a metal or a hydrazine protecting group;;

E¹ is a bond;

 A^2 is NHR¹⁹;

 R^{19} is a heterocycle substituted with R^{23} , the heterocycle being selected from pyridine and pyrimidine;

 R^{23} is selected from a bond to the linking group, C(=O)NHR²⁴ and C(=O)R²⁴; and

 R^{24} is a bond to the linking group.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

PATENT

26. (currently amended) A compound according to claim 20 wherein the chelator is of the formula:

$$A^3$$

$$E^3$$

$$A^2$$

$$E^2$$

$$A^4$$

$$E^4$$

$$A^5$$

wherein:

A¹ and A⁵ are each –S(Pg);

Pg is a thiol protecting group;

 E^1 and E^4 are C_2 alkyl substituted with 0-1 R^{23} ;

 R^{23} is =0;

A² and A⁴ are each –NH;

 E^2 is CH_2 ;

 E^3 is C_{1-3} alkyl substituted with 0-1 R^{23} ;

A³ is a bond to **Ln** said linking group.

27. (original) A compound according to claim 20 wherein the chelator is of the formula:

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{3}
 E^{3}
 E^{4}
 E^{5}
 A^{5}
 E^{6}

wherein:

A¹ is a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

A² is NH;

 E^2 is C_2 alkyl substituted with 0-1 R^{23} ;

 A^3 is $-O-P(O)(R^{21})-O$;

 E^3 is C_1 alkyl;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

A⁴ and A⁵ are each -O-;

 E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0-1 R^{23} ;

PATENT

 E^5 is C_1 alkyl;

R²¹ is -OH; and

 R^{23} is =0.

28. (currently amended) A compound of claim 1 having the formula:

$(Q)_{d}$ - L_{n} - C_{h} $(Q)_{d}$ - L_{n} - C_{h}

wherein, <u>Ln is said linking group, Ch is said chelator, and</u> Q is a compound of Formulae (Ia) or (Ib):

$$RHN \xrightarrow{\stackrel{}{\downarrow}} X \xrightarrow{} R^3 \qquad R^8 \xrightarrow{\qquad N} \stackrel{}{\downarrow} NR^{10}R^{11}$$

$$\stackrel{}{\downarrow} R^{9} \xrightarrow{} NR^{10}R^{11}$$

$$\stackrel{}{\downarrow} R^{10} \xrightarrow{} R^{10} \xrightarrow$$

R is independently OH or -CH₂SH;

R¹ is independently selected at each occurrence from the group: H, OH, C₁₋₃ alkyl, C₂₋₃ alkenyl, C₂₋₃ alkynyl, and heterocycle-S-CH₂-;

 R^2 is independently C_{1-20} alkyl;

X is independently C=O or SO_2 , provided when X is C=O, R^3 is

$$-N$$
 R^4 R^5

 $\overset{\text{ii}}{\circ}$, and when X is SO₂, R³ is independently selected from the group: aryl substituted with 0-2 R⁶, and heterocycle substituted with 0-2 R⁶;

 R^4 is independently selected at each occurrence from the group: C_{1-6} alkyl, phenyl, and benzyl;

 R^5 is independently <u>selected</u> at each occurrence from the group: NH(C₁₋₆ alkyl), NH-phenyl, and NH-heterocycle; wherein said alkyl, phenyl and heterocycle groups are optionally substituted with a bond to L_n ;

R⁶ is independently aryloxy substituted with 0-3 R⁷;

 R^7 is independently halogen or methoxy; or alternatively,

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 R^1 and R^4 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -O-phenyl- CH_2 -, optionally substituted with a bond to L_n ; or alternatively,

PATENT

 R^1 and R^2 may be taken together to form a bridging group of the formula $-(CH_2)_3$ -NH-, optionally substituted with a bond to L_n ; or

 R^1 and R^2 taken together with the **nitrogen and** carbon **atom atoms** through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=O)-NR^{29}R^{30}$;

 R^8 is independently at each occurrence OH or phenyl, optionally substituted with a bond to L_n , provided that when R^8 is phenyl, R^{10} is $-C(=O)-CR^{12}-NH-CH(CH_3)-COOH$;

 R^9 and R^9 ' are independently H, C_{1-6} alkyl optionally substituted with a bond to L_n , or are taken together with the carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system substituted with R^6 and optionally substituted with a bond to L_n Ln;

 R^{10} and R^{11} are independently H, or C_{1-6} alkyl optionally substituted with a bond to $\mathbf{L_n}$ \mathbf{Ln} , or are taken together with the nitrogen atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 heteroatoms selected from O, N, SO_2 and S, said ring system optionally substituted with 0-3 R^{27} or a bond to $\mathbf{L_n}$ \mathbf{Ln} ;

or alternatively,

 R^9 and R^{10} are taken together with the <u>nitrogen atom and</u> carbon atom to which they are attached to form a 5-7 atom saturated, partially unsaturated or aromatic ring system containing 0-3 0-2 additional heteroatoms selected from O, N, SO₂ and S, said ring system optionally substituted with a bond to \mathbf{L}_n \mathbf{L}_n ;

 R^{12} is independently C_{1-20} alkyl;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 $\mathbf{L}_{\mathbf{n}}$ is a linking group having the formula:

$$((W^1)_{h^{\text{-}}}(CR^{13}R^{14})_g)_{x^{\text{-}}}(Z)_{k^{\text{-}}}((CR^{13a}R^{14a})_g, (W^2)_h,)_{x^{\text{+}}};$$

 W^1 and W^2 are independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, SO₂NH, -(OCH₂CH₂)₇₆₋₈₄, (OCH₂CH₂)₈, (CH₂CH₂O)₈, (OCH₂CH₂CH₂O)₈, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R^{16} , C_{3-10} cycloalkyl substituted with 0-3 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{16} :

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO3H, PO3H, C1-C5 alkyl substituted with 0-3 R^{16} , aryl substituted with 0-3 R^{16} , benzyl substituted with 0-3 R^{16} , and C1-C5 alkoxy substituted with 0-3 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R^{17} , and a bond to C_h C_h ;

 R^{16} is independently selected at each occurrence from the group: a bond to C_h , $COOR^{17}$, $C(=O)NHR^{17}$, $NHC(=O)R^{17}$, OH, NHR^{17} , SO_3H , PO_3H , $-OPO_3H_2$, $-OSO_3H$, aryl substituted with 0-3 R^{17} , C_{1-5} alkyl substituted with 0-1 R^{18} , C_{1-5} alkoxy substituted with 0-1 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;

R¹⁷ is independently selected at each occurrence from the group: H, alkyl substituted with 0-1 R¹⁸, aryl substituted with 0-1 R¹⁸, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹⁸, C₃₋₁₀ cycloalkyl substituted with 0-1 R¹⁸, polyalkylene glycol substituted with 0-1 R¹⁸, carbohydrate substituted with 0-1 R¹⁸,

Application No.: 09/783,248

Office Action Dated: December 16, 2003

cyclodextrin substituted with 0-1 R^{18} , amino acid substituted with 0-1 R^{18} , polycarboxyalkyl substituted with 0-1 R^{18} , polyazaalkyl substituted with 0-1 R^{18} , peptide substituted with 0-1 R^{18} , wherein the peptide is comprised of 2-10 amino acids, 3,6-O-disulfo-B-D-galactopyranosyl, bis(phosphonomethyl)glycine, and a bond to C_h Ch;

 R^{18} is a bond to C_h Ch;

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;

h' is selected from 0, 1, and 2;

g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

s" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

x is selected from 0, 1, 2, 3, 4, and 5;

x' is selected from 0, 1, 2, 3, 4, and 5;

 C_h is a metal bonding unit having a formula selected from the group:

$$A^{1}$$
 A^{1}
 A^{1}
 A^{1}
 A^{1}
 A^{1}
 A^{1}
 A^{1}
 A^{2}
 A^{2}
 A^{2}
 A^{2}
 A^{3}
 A^{4}
 A^{5}
 $A^{$

Application No.: 09/783,248

Office Action Dated: December 16, 2003

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{5}
 A^{8}
 A^{5}
 A^{5}
 A^{6}
 A^{7}
 A^{7}
 A^{7}
 A^{7}
 A^{8}
 A^{8}
 A^{1}
 A^{1}
 A^{2}
 A^{5}
 A^{6}
 A^{6}
 A^{7}
 A^{7

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: N, NR²⁶, NR¹⁹, NR¹⁹R²⁰, S, SH, –S(Pg), O, OH, PR¹⁹, PR¹⁹R²⁰, -O-P(O)(R²¹)-O-, P(O)R²¹R²², a bond to the targeting moiety and a bond to the linking group;

Pg is a thiol protecting group;

E¹, E², E³, E⁴, E⁵, E⁶, E⁷, and E⁸ are independently a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₆ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl- substituted with 0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

 R^{19} and R^{20} are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{1-10} cycloalkyl substituted with 0-3 R^{23} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{23} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{23} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron;

R²¹ and R²² are each independently selected from the group: a bond to the linking group, a bond to the targeting moiety, -OH, C₁-C₁₀ alkyl substituted with 0-3 R²³, C₁-C₁₀ alkyl substituted with 0-3 R²³, aryl substituted with 0-3 R²³, C₃₋₁₀ cycloalkyl substituted with 0-3 R²³, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R²³, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R²³, C₁₋₁₀ alkyl-C₆₋₁₀ aryl- substituted with 0-3 R²³, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R²³;

 R^{23} is independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, =O, F, Cl, Br, I, -CF3, -CN, -CO2 R^{24} , -C(=O) R^{24} , -C(=O) R^{24}), -CHO, -CH2 R^{24} , -OC(=O) R^{24} , -OC(=O) R^{24} , -OC(=O) R^{24} , -OC(=O) R^{24} , -NR2 R^{25} C(=O) R^{24} , -NR2 R^{25} C(=O) R^{24} , -NR2 R^{25} C(=O) R^{24} , -S02 R^{24} , -C(=O) R^{24} , -C(=O) R^{24} , -OCH2CO2H, 2-(1-morpholino)ethoxy, C1-C5 alkyl, C2-C4 alkenyl, C3-C6 cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6

Application No.: 09/783,248

Office Action Dated: December 16, 2003

alkoxyalkyl, aryl substituted with 0-2 R²⁴, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O; and

PATENT

wherein at least one of A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 or R^{23} is a bond to the linking group or targeting moiety;

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to the linking group, a bond to the targeting moiety, H, C₁-C₆ alkyl, phenyl, benzyl, C₁-C₆ alkoxy, halide, nitro, cyano, and trifluoromethyl; and

R²⁶ is a co-ordinate bond to a metal or a hydrazine protecting group; or a pharmaceutically acceptable salt thereof.

29. (currently amended) A compound according to claim 28 wherein:

R is -OH;

 R^2 is C1-6 alkyl C_{1-6} alkyl;

X is C=O;

$$\mathbb{R}^3$$
 is \mathbb{R}^4 \mathbb{R}^5

 R^1 and R^4 are taken together to form a bridging group of formula –(CH₂)₃-O-phenyl-CH₂-; <u>and</u>

 R^5 is NH(C1-6alkyl), NH(C₁₋₆alkyl), substituted with a bond to the linking group or a bond to the chelator.

30. (currently amended) A compound according to claim 28 wherein:

R is -OH;

 R^9 is C_1 alkyl substituted with a bond to Ln;

 R^{10} and R^{11} taken together with the nitrogen atom to which they are attached form a 5 atom saturated ring system, <u>wherein</u> said <u>right ring</u> system is substituted with 0-3 R^{27} :

 R^{27} is =0, C1-4 alkyl C₁₋₄ alkyl, or phenyl substituted with R^{28} ; and

Application No.: 09/783,248

Office Action Dated: December 16, 2003

R²⁸ is a phenoxy group substituted with 0-2 OCH₃ groups.

31. (currently amended) A compound according to claim 28 wherein R is -OH;

 R^1 and R^2 taken together with the nitrogen and carbon atom atoms through which they are attached form a C_{5-7} atom saturated ring system substituted with one or more substituents selected from the group consisting of: a bond to Ln, a bond to Ch, and $-C(=O)-NR^{29}R^{30}$;

 R^{29} and R^{30} taken together with the nitrogen atom through which they are attached form a C5-7 $\underline{C}_{5.7}$ atom saturated ring system substituted with R^{31} ; and

 R^{31} is a benzyloxy group substituted with C1-4 alkyl C_{1-4} alkyl.

32. (currently amended) A compound according to claim 28 wherein d is selected from 1, 2, 3, 4, and 5;

 $\underline{W^1}$ and $\underline{W^2}$ are \underline{W} is independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, NR¹⁵C(=O), C(=O)NR¹⁵, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂O)₈, (CH₂CH₂O)₈, (OCH₂CH₂O)₈, (CH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-1 R^{16} , C_{3-10} cycloalkyl substituted with 0-1 R^{16} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R^{16} .

 R^{13} , R^{13a} , R^{14} , R^{14a} , and R^{15} are independently selected at each occurrence from the group: H, =O, COOH, SO3H, C1-C5 alkyl substituted with 0-1 R^{16} , aryl substituted with 0-1 R^{16} , benzyl substituted with 0-1 R^{16} , and C1-C5 alkoxy substituted with 0-1 R^{16} , NHC(=O)R¹⁷, C(=O)NHR¹⁷, NHC(=O)NHR¹⁷, NHR¹⁷, R¹⁷, and a bond to **Ch Ch**;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

k is 0 or 1;

s is selected from 0, 1, 2, 3, 4, and 5;

s' is selected from 0, 1, 2, 3, 4, and 5;

s" is selected from 0, 1, 2, 3, 4, and 5;

t is selected from 0, 1, 2, 3, 4, and 5;

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group: NR^{19} , $NR^{19}R^{20}$, S, SH, OH, and a bond to L_n L_n ;

PATENT

E is a bond, CH, or a spacer group independently selected at each occurrence from the group: C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , C_{3-10} cycloalkyl substituted with 0-3 R^{23} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

 R^{19} , and R^{20} are each independently selected from the group: a bond to L_n Ln, hydrogen, C_1 - C_{10} alkyl substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and an electron, provided that when one of R^{19} or R^{20} is an electron, then the other is also an electron:

 R^{23} is independently selected at each occurrence from the group: a bond to L_R L_R , =O, F, Cl, Br, I, -CF3, -CN, -CO2 R^{24} , -C(=O) R^{24} , -C(=O) R^{24})2, -CH2O R^{24} , -OC(=O) R^{24} , -OC(=O)OR24a, -OR24, -OC(=O)N(R^{24})2, -NR25C(=O)R24, -NR25C(=O)OR24a, -NR25C(=O)N(=O)N(=C10)N(=C10)N(=C10)NHNR24a, -SO2=NR24a, -SO2=

 R^{24} , R^{24a} , and R^{25} are independently selected at each occurrence from the group: a bond to L_n L_n , H, and C_1 - C_6 alkyl; and.

33. (currently amended) A compound according to claim 28 wherein

Application No.: 09/783,248

Office Action Dated: December 16, 2003

d is 1,

Ch Ch is

$$A^{1}$$
 A^{2}
 A^{2}
 A^{4}
 A^{6}
 A^{7}
 A^{7}
 A^{3}
 A^{5}
 A^{8}

 A^1 is a bond to L_n ;

 A^2 , A^4 , and A^6 are each N;

 A^3 , A^5 , A^7 and A^8 are each OH;

 E^1 , E^2 , and E^4 are C_2 alkyl;

 E^3 , E^5 , E^7 , and E^8 are C_2 alkyl substituted with 0-1 R^{23} ; and R^{23} is $=O_{\frac{5}{2}}$

34. (currently amended) A compound according to claim 28 wherein

€_h <u>Ch</u> is

$$A^{1}$$
 E^{1}
 A^{2}
 E^{2}
 A^{4}
 E^{5}
 E^{8}
 A^{8}

wherein:

A5 A^5 is a bond to Ln;

 A^1 , A^3 , A^7 and A^8 are each OH;

 A^2 , A^4 and A^6 are each NH;

E¹, E³, E⁵, E⁷, and E⁸ are C₂ alkyl substituted with 0-1 R²³;

 E^2 , and E^4 , are C_2 alkyl;

 R^{23} is =0.

35. (currently amended) A compound according to claim 28 wherein

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

Ch is

$$A^{5}$$
 E^{5}
 A^{1}
 E^{1}
 A^{2}
 E^{6}
 A^{6}
 A^{8}
 E^{8}
 A^{4}
 E^{3}
 A^{7}
 A^{7}

 A^1 , A^2 , A^3 and A^4 are each N;

 A^5 , A^6 and A^8 are each OH;

 A^7 is a bond to L_n ;

 E^1 , E^2 , E^3 , E^4 are each independently, C_2 alkyl; and

E⁵, E⁶, E⁷, E⁸ are each independently, C₂ alkyl substituted with 0-1 R²³; and R²³ is =O:

36. (currently amended) A compound according to claim 28 wherein

$$E^1 - A^2$$
 $C_h Ch$ is A^1 ;

A1 is NR26:

 R^{26} is a co-ordinate bond to a metal; or a hydrazine protecting group;

E¹ is a bond;

 A^2 is NHR¹⁹;

 R^{19} is a heterocycle substituted with R^{23} , the heterocycle being selected from pyridine and pyrimidine;

 R^{23} is selected from a bond to L_n , $C(=O)NHR^{24}$ and $C(=O)R^{24}$; and

 R^{24} is a bond to L_n Ln.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

PATENT

37. (currently amended) A compound according to claim 28 wherein

Ch is

wherein:

 A^1 and A^5 are each -S(Pg);

Pg is a thiol protecting group;

 E^1 and E^4 are C_2 alkyl substituted with 0-1 R^{23} ;

 R^{23} is =0;

A² and A⁴ are each –NH;

E² is CH₂;

 E^3 is C1-3 alkyl C₁₋₃ alkyl substituted with 0-1 R^{23} ;

A³ is a bond to Ln.

38. (currently amended) A compound according to claim 28 wherein

Ch is

wherein:

A¹ ia is a bond to Ln;

 E^1 is C_1 alkyl substituted by R^{23} ;

A² is NH;

 E^2 is C_2 alkyl sunsttuted wth substituted with 0-1 R^{23} ;

 A^3 is $-O-P(O)(R^{21})-O$;

```
DOCKET NO.: PH-7064/BMS-0685
                                                                                                      PATENT
Application No.: 09/783,248
Office Action Dated: December 16, 2003
                  E^3 is C_1 alkyl;
                  A<sup>4</sup> and A<sup>5</sup> are each -O-;
                  E^4 and E^6 are each independently C_{1-16} alkyl substituted with 0-1R^{23};
                  E<sup>5</sup> is C<sub>1</sub> alkyl;
                  A^5 is -O-;
                  R<sup>21</sup> is -OH; and
                  R^{23} is =0.
39. (original) A compound according to claim 28 wherein
                  W^{1} is C(=O)NR^{15}:
                  h is 1;
                  g is 3;
                  R<sup>13</sup> and R<sup>14</sup> are independently H;
                  x is 1;
                  k is 0;
                  g'is 0;
                  h' is 1;
                  W<sup>2</sup> is NH; and
                  x' is 1.
40. (original) A compound according to claim 28 wherein
                  x is 0;
                  k is 1;
                  Z is aryl substituted with 0-3 R<sup>16</sup>;
                  g' is 1;
                  W<sup>2</sup> is NH;
```

R^{13a} and R^{14a} are independently H;

h' is 1; and

x' is 1.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

41. (currently amended) A compound according to claim 28 wherein

```
W^1 is C(=O)NR^{15};
h is 1;
g is 2;
R^{13} and R^{14} are independently H;
x is 1;
k is 0;
g' is 1;
```

 R^{13a} and R^{14a} are independently H; or C1-5 alkyl C_{1-5} alkyl substituted with

 $0-3 R^{16}$;

$$R^{16}$$
 is SO_3H ;

$$W^2$$
 is NHC(=O) or NH;

h' is 1; and

x' is 2.

42. (original) A compound according to claim 28 wherein

```
W^1 is C(=O)NH;
```

h is 1;

g is 3;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

x is 1;

 W^2 is -NH(C=O)- or -(OCH₂CH₂)₇₆₋₈₄-;

h' is 2; and

x' is 1.

43. (original) A compound according to claim 28 wherein

x is 0;

k is 0;

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

g' is 3;

h' is 1;

W² is NH; and

x' is 1.

44. (currently amended) A compound according to claim 28 wherein

x is 0;

Z is aryl substituted with 0-3 R¹⁶;

k is 1;

g' is 1;

R^{13a} and R^{14a} are independently H;

 W^2 is NHC(=0) or -(OCH2CH2)76-84--(OCH2CH2)76-84-; and

x' is 1.

45. (original) A compound according to claim 28 wherein

 W^1 is C=O:

g is 2;

R¹³ and R¹⁴ are independently H;

k is 0;

g' is 0;

h' is 1;

W² is NH; and

x' is 1.

46. (currently amended) A compound according to claim 1 selected from the group consisting of:

2-{[5-(3-{2-[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-

propylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid;

Application No.: 09/783,248

Office Action Dated: December 16, 2003

2-{[5-(4-{[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-amino]-methyl}-benzylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid;

 $2-[7-(\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino\}acetylamino)propyl]carbamoyl\}methyl)-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;$

2-{7-[(N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-carbonylamino}methyl)phenyl]methyl}carbamoyl)methyl]-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl}acetic acid;

 $2-(7-\{[N-(1-\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino\}acetylamino)propyl]carbamoyl\}-2-sulfoethyl)carbamoyl]methyl}-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl)acetic acid;$

 $2-[7-(\{N-[1-(N-\{[4-(\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-carbonylamino\}methyl)phenyl]methyl\}carbamoyl)-2-sulfoethyl]carbamoyl\}methyl)-1,4,7,10-tetraaza-4,10-bis(carboxymethyl)cyclododecyl]acetic acid;$

 $\frac{2-(\{2-[(\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino\}acetylamino)propyl]carbamoyl\}methyl)(carboxymethyl)amino}{ethyl)\{2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid;}$

 $\frac{2-[(\{2-[(\{N-[3-(2-\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino\}acetylamino)propyl]carbamoyl\}methyl)(carboxymethyl)]}{amino}ethyl)\{2-[bis(carboxymethyl)amino]ethyl\}amino]acetic acid;}$

 $2-[(2-\{[(N-\{[4-(\{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-carbonylamino\}methyl)phenyl]methyl\}carbamoyl)methyl](carboxymethyl)amino}ethyl)\{2-[bis(carboxymethyl)amino]ethyl\}amino]acetic acid;$

PATENT

DOCKET NO.: PH-7064/BMS-0685

Application No.: 09/783,248

Office Action Dated: December 16, 2003

N-[3-(2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino} acetylamino)propyl]-4,5-bis[2-(ethoxyethylthio)acetylamino]pentanamide;

N-{[4-({[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}methyl)-phenyl]methyl}-4,5-bis[2-(ethoxyethylthio)acetylamino]-pentanamide;

1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)- α , ω -dicarbonylPEG3400-2-{[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]carbonylamino}-N-(3-aminopropyl)acetamide;

 $1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-\alpha, \omega-dicarbonylPEG3400-[7-(N-hydroxycarbamoyl)(3S,6R,7S)-4-aza-6-(2-methylpropyl)-11-oxa-5-oxobicyclo[10.2.2]hexadeca-1(15),12(16),13-trien-3-yl]-N-{[4-(aminomethyl)phenyl]methyl}carboxamide conjugate;}$

2-[2-({5-[N-(5-(N-hydroxycarbamoyl)(5R)-5-{3-[4-(3,4-dimethoxyphenoxy)phenyl]-3-methyl-2-oxopyrrolidinyl}pentyl)carbamoyl](2-pyridyl)}amino)(1Z)-2-azavinyl]benzenesulfonic acid;

2-(2-{[5-(N-{3-[3-(N-hydroxycarbamoyl)(4S)-4-({4-[(4-methylphenyl)methoxy]piperidyl}carbonyl)piperidyl]-3-oxopropyl}carbamoyl)(2-pyridyl)]amino}(1Z)-2-azavinyl)benzenesulfonic acid; and

47. (*original*) A radiopharmaceutical comprising a compound of claim 1 and a cytotoxic radioisotope which is complexed to the chelator.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

48. (*original*) A radiopharmaceutical comprising a compound of claim 28 and a cytotoxic radioisotope which is complexed to the chelator.

' PATENT

- 49. (*original*) A radiopharmaceutical comprising a compound of claim 46 and a cytotoxic radioisotope.
- 50. (currently amended) A radiopharmaceutical according to claim 49 20

 wherein the compound is selected from the group consisting of:

 2-{[5-(3-{2-[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-amino]-acetylamino}-propylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid; and

 2-{[5-(4-{[(6-Hydroxycarbamoyl-7-isobutyl-8-oxo-2-oxa-9-aza-bicyclo[10.2.2]hexadeca-1(15),12(16),13-triene-10-carbonyl)-amino]-methyl}-benzylcarbamoyl)-pyridin-2-yl]-hydrazonomethyl}-benzenesulfonic acid; and

 wherein the cytotoxic radioisotope is 99mTc.
- 51. (*original*) A radiopharmaceutical according to claim 47 wherein the cytotoxic radioisotope is selected from the group consisting of beta particle emitters, alpha particle emitters, and Auger electron emitters.
- 52. (*original*) A radiopharmaceutical according to claim 47 wherein the cytotoxic radioisotope is selected from the group consisting of: 186Re, 188Re, 153Sm, 166Ho, 177Lu, 149Pm, 90Y, 212Bi, 103Pd, 109Pd, 159Gd, 140La, 198Au, 199Au, 169Yb, 175Yb, 165Dy, 166Dy, 67Cu, 105Rh, 111Ag, and 192Ir.
- 53. (*original*) A radiopharmaceutical according to claim 47 wherein the cytotoxic radioisotope is selected from the group consisting of: ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁴⁹Pm, ⁹⁰Y, ²¹²Bi, ¹⁰³Pd, and ¹⁰⁵Rh.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

54. (*original*) A radiopharmaceutical according to claim 47 wherein the cytotoxic radioisotope is selected from the group consisting of: 186Re, 188Re, 153Sm, 166Ho, 177Lu, 149Pm, 90Y, and 212Bi.

- 55. (*original*) A composition comprising a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 56. (*currently amended*) A radiopharmaceutical composition comprising a <u>radiopharmaceutical</u> <u>compound</u> of claim 47, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 57. (original) A radiopharmaceutical composition comprising: according to claim 56, further comprising

a compound comprising:

- i) 1-10 targeting moieties;
- ii) a chelator; and
- iii) 0-1 linking groups between the targeting moiety and chelator; wherein the targeting moiety is a matrix metalloproteinase inhibitor; and wherein the chelator is capable of conjugating to a cytotoxic radioisotope; a cytotoxic radioisotope which is complexed to the chelator; a pharmaceutically acceptable carrier; and

at least one agent selected from the group consisting of a chemotherapeutic agent and a radiosensitizer agent, or a pharmaceutically acceptable salt thereof.

58. (*original*) A radiopharmaceutical composition according to claim 57, wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustin, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitracrine, zinostatin, cetrorelix, letrozole, raltitrexed, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate,

Application No.: 09/783,248

Office Action Dated: December 16, 2003

PATENT

isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, improsulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitiostanol, formestane, interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.

- 59. (currently amended) A radiopharmaceutical composition according to claim 57, wherein <u>said</u> radiosensitizer agent is selected from the group <u>consisting</u> eonsiting of 2-(3-nitro-1,2,4-triazol-1-yl)-N-(2-methoxyethyl)acetamide, N-(3-nitro-4-quinolinyl)-4-morpholine carboxamidine, 3-amino-1,2,4-benzotriazine-1,4-dioxide, N-(2-hydroxyethyl)-2-nitroimidazole-1-acetamide, 1-(2-nitroimidazol-1-yl)-3-(1-piperidinyl)-2-propanol, and 1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol.
- 60. (*original*) A kit comprising a compound of Claim 1, or a pharmaceutically acceptable salt form thereof and a pharmaceutically acceptable carrier.
- 61. (currently amended) A radiopharmaceutical kit comprising a <u>radiopharmaceutical</u> empound of Claim 47, or a pharmaceutically acceptable salt form thereof and a pharmaceutically acceptable carrier.
- 62. (original) A kit of Claim 60 further comprising a stabilizer.
- 63. (*original*) A radiopharmaceutical kit according to Claim 61, wherein the radioisotope is ¹⁸⁶Re or ¹⁸⁸Re and the kit further comprises one or more ancillary ligands and a reducing agent.
- 64. (*original*) A radiopharmaceutical kit according to Claim 63, wherein the ancillary ligands are tricine and a phosphine.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

65. (currently amended) A kit comprising: according to claim 60, further comprising and a compound comprising:

- i) 1-10 targeting moieties;
- ii) a chelator; and
- iii) 0-1 linking groups between the targeting moiety and chelator;
 wherein the targeting moiety is a matrix metalloproteinase inhibitor; and
 wherein the chelator is capable of conjugating to a cytotoxic radioisotope;
 at least one agent selected from the group consisting of a chemotherapeutic
 agent and a radiosensitizer agent, or a pharmaceutically acceptable salt thereof; ; and
 a pharmaceutically acceptable carrier.
- 66. (original) A kit according to Claim 65, wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustin, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitracrine, zinostatin, cetrorelix, letrozole, raltitrexed, thymalfasin, daunorubicin, fadrozole, fotemustine, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, improsulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitiostanol, formestane, interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.
- 67. (currently amended) A kit according to Claim 65, wherein radiosensitizer agent is selected from the group eonsiting consisting of 2-(3-nitro-1,2,4-triazol-1-yl)-N-(2-methoxyethyl)acetamide, N-(3-nitro-4-quinolinyl)-4-morpholinecarboxamidine, 3-amino-1,2,4-benzotriazine-1,4-dioxide, N-(2-hydroxyethyl)-2-nitroimidazole-1-

Application No.: 09/783,248

Office Action Dated: December 16, 2003

acetamide, 1-(2-nitroimidazol-1-yl)-3-(1-piperidinyl)-2-propanol, and 1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol.

PATENT

- 68. (currently amended) A method of treating a pathological disorder mediated by a matrix metalloproteinase in a patient which comprises administring administering to a patient in need thereof a therapeutically effective amount of a radiopharmaceutical according to claim 47₇ and a pharmaceutically acceptable carrier.
- 69. (*original*) A method of claim 68, wherein the disorder is selected from the group consisting of atherosclerosis, restenosis, angiogenesis, tumor metastasis, tumor growth, osteoarthritis, and rheumatoid arthritis.
- 70. (currently amended) A method of claim 68, wherein the disorder is age related macular degeneration, diabetic retinopathy, proliferative <u>vitreoretinopathy</u>, <u>retinopathy</u> <u>vitreoretinopathy</u>, retinopathy of prematurity, ocular tumors, ocular angiogenesis/neovascularization or and corneal graft rejection.
- 71. (*original*) A method of claim 68, wherein the disorder is cancer selected from the group consisting of prostate, breast, colon, lung melanoma and lymph cancer.
- 72. (*original*) A method of inhibiting proliferation of cancer cells, comprising contacting the cancer cells with a proliferation-inhibitory amount of a radiopharmaceutical of claim 47.
- 73. (*currently amended*) A method of claim 68, wherein the matrix metalloproteinase is selected from the group **consisting** of: MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14.
- 74. (*currently amended*) A method of claim 68 wherein the matrix metalloproteinase is selected from the group **consisting** of: MMP-2, MMP-9, and MMP-14.

Application No.: 09/783,248

Office Action Dated: December 16, 2003

75. (*original*) A method of treating cancer in a patient comprising: administering to a patient in need thereof a therapeutic radiopharmaceutical of claim 47 or a pharmaceutically acceptable salt thereof, and at least one agent selected from the group consisting of a chemotherapeutic agent and a radiosensitizer agent, or a pharmaceutically acceptable salt thereof.

PATENT

- 76. (original) A method according to claim 75 wherein the chemotherapeutic agent is selected from the group consisting of mitomycin, tretinoin, ribomustin, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitracrine, zinostatin, cetrorelix, letrozole, raltitrexed, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, improsulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitiostanol, formestane, interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, and leutinizing hormone releasing factor.
- 77. (currently amended) A method according to claim 75 wherein the radiosensitizer agent is selected from the group consisting consisting of 2-(3-nitro-1,2,4-triazol-1-yl)-N-(2-methoxyethyl)acetamide, N-(3-nitro-4-quinolinyl)-4-morpholinecarboxamidine, 3-amino-1,2,4-benzotriazine-1,4-dioxide, N-(2-hydroxyethyl)-2-nitroimidazole-1-acetamide, 1-(2-nitroimidazol-1-yl)-3-(1-piperidinyl)-2-propanol, and 1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol.
- 78. (*original*) A process for the preparation of a radiopharmaceutical, said process comprising generating a macrostructure from a plurality of molecular components

Application No.: 09/783,248
Office Action Dated: December 16, 2003

wherein the plurality of components includes a compound of claim 1 and a cytotoxic radioisotope.

79. (canceled)