Syllabus:

- Crystal lattices
- Miller indices
- Miller-Bravais indices
- Structures of metallic, ionic and polymer crystals
- Reciprocal lattice
- X-ray diffraction techniques
- Geometric structure factor
- Numerical problems related to these topics

Introduction Slide:

- Bonds:
 - Primary: Ionic, Metallic, Covalent
 - Secondary: Fluctuating Induced Dipole Bond, Polar Molecule-Induced Dipole Bonds
- Lattice + Basis = Crystalline Structure
- Crystallographic Structures:
 - Cubic
 - Tetragonal
 - Orthorhombic
 - Monoclinic
 - Triclinic
 - Rhombohedral
 - Hexagonal
- Space Lattice
- 2D Lattices:
 - Square Lattice
 - Rectangular Lattice (Rect. unit cell, centered unit cell)
 - Hexagonal Lattice
 - Parallelogram Lattice
- Crystallographic Restriction Theorem
- Unit Cells:
 - Primitive
 - Face Centered
 - Body Centered
 - Side Centered

 Combination of unit cells and crystallographic structures: Bravais Lattices

Book: Chapters 1-3:

- Unit Cell
- Coordination Number (CN)
- Atomic Packing Factor (APF)
- Face Centered Cubic (FCC)
 - Eq. atoms : 4
 - $a: 2\sqrt{2} R$
 - CN:12
 - APF: 0.74
- Body Centered Cubic (BCC)
 - Eq. atoms : 2
 - a: $4R/\sqrt{3}$
 - CN: 8
 - APF: 0.68
- Hexagonal Close Packed (HCP)
 - Eq. atoms : 6
 - c/a:1.633
 - CN:12
 - APF: 0.74
- Cation/Anion ratios : (r_c/r_a)
 - CN 2: < 0.155
 - CN 3: 0.155 0.225
 - CN 4: 0.225 0.414
 - CN 6: 0.414 732
 - CN 8: 0.732 1
 - CN 12:>1
- NaCl
 - FCC CN:6
- CsCl
 - BCC CN:8
- ZnS
 - Tetrahedral CN: 4
- Density computation formula
- Diamond
- Graphite

- Polymorphism
- Allotropy
- Crystallographic Directions
 - What, why
 - Notation
 - Drawing
 - Family of Directions
- Miller-Bravais Coordination System
 - What, why
 - Notation
 - Drawing
- Conversion from 3 to 4 indices, vice versa
 - [u'v'w'] = [uvwt]
 U = n (2u' v') /3
 V = n (2v' u') /3
 W = nw'
 T = (u+v)
- Crystallographic Planes
- Miller Indices [hkl]
- Miller Bravais Indices [hkil]
 - Conversion
 - -i = -(h + k)
- Polycrystalline Materials
- Anisotropy
- Isotropy

Reciprocal Lattice PDF:

- Definition, basics
- Mathematical Definition --> $e^{iK.R}$ = 1, for R of Bravais Lattice and periodicity K
- Reciprocal vectors from original vectors
- Proof that reciprocal of reciprocal lattice is original lattice
- Reciprocal Lattice of FCC
 - BCC
 - $b_1 = 4\pi/a (y + z x) ... and so on.$
- Vice versa for Reciprocal of BCC
- Reciprocal of Reciprocal Lattice
- Volume of RL : $(2\pi)^3/v$

- Lattice Plane definition
- Family of Lattice Planes definition
- Reciprocal Lattice Plane Theorem -- + -- Proof
- Reciprocal Vectors as Miller Indices of Lattice Plane
- Intercepts with crystal axes of a Lattice Plane are reciprocals of miller indices -- Proof

X-Ray Diffraction:

- Bragg's Equation
 - $n*\lambda = 2d\sin\theta$
 - Order of reflection = n
 - Assumptions
- Von Laue Approach
 - How is it different from Bragg's
 - Condition for constructive interference
 - K = |k k'|
- Equivalence of Bragg's and Von Laue Condition
- Ewald's Construction
 - Laue's method
 - Rotating Crystal Method
 - Powder or Debye Scherrer Method
- Geometric Structure Factor
 - Mathematical Definition
 - BCC Even | Odd Proof
- https://www.researchgate.net/post/How_can_I_find_the_structure
 FCC or BCC etc when it is not available in JCPDS
- http://physics.usask.ca/~bzulkosk/modphyslab/phys381manual/xray_d iffraction_2004.pdf