

Análise e interpretação de métricas de qualidade

Luís Vieira

Objetivos

• Avaliar qualitativamente as *reads* de NGS utilizando o software *FastQC*

FastQC

- Software desenvolvido pelo Grupo de Bioinformática do Babraham Institute (Cambridge)
- Permite verificar de forma simples um conjunto de parâmetros de qualidade das amostras (análise primária) antes de se progredir com a análise secundária
- As funções principais são:
 - Fornecer uma visão geral das áreas em que poderão ter ocorrido problemas ou biases (analysis modules)
 - Apresentar tabelas e gráficos para visualizar rapidamente os dados
 - Exportar os resultados para um relatório .html

FastQC

- O FastQC pode utilizar ficheiros *fastq*. (comprimidos ou não), *bam*. ou *sam*. (por defeito, o FastQC adivinha o tipo de ficheiro)
- Pode abrir vários ficheiros em simultâneo e, dependendo do tamanho dos ficheiros, pode levar vários minutos a abrir
- Os resultados da análise podem ser guardados num relatório html, que pode ser distribuído. Por defeito, o nome do relatório contém a designação do ficheiro fastq e uma terminação _fastqc.html
- O relatório pode ser aberto num browser (e.g., *Google Chrome*)

Ficheiros fastq

- Os ficheiros *fastq* são ficheiros em formato de texto que armazenam informação sobre a sequência de nucleótidos e os correspondentes valores de qualidade de cada *read*
- Por questões de economia de espaço, os valores de qualidade estão codificados com um único caracter ASCII

Códigos ASCII

Table 4 ASCII Codes for Q-Scores 0-40

Symbol	ASCII Code	Q-score	Symbol	ASCII Code	Q-score
!	33	0	6	54	21
10	34	1	7	55	22
#	35	2	8	56	23
\$	36	3	9	57	24
%	37	4	:	58	25
&z	38	5	;	59	26
,	39	6	<	60	27
(40	7	= 1	61	28
)	41	8	>	62	29
*	42	9	?	63	30
+	43	10	@	64	31
,	44	11	A	65	32
=	45	12	В	66	33
	46	13	С	67	34
/	47	14	D	68	35
0	48	15	E	69	36
1	49	16	F	70	37
2	50	17	G	71	38
3	51	18	Н	72	39
4	52	19	I	73	40
5	53	20			

Ficheiros fastq

- O ficheiro *fastq* contém normalmente <u>4 linhas</u>:
 - Linha 1: Identificador (após o símbolo @)
 @Instrument:RunID:FlowCellID:Lane:Tile:X:Y ReadNum:FilterFlag:0:SampleNumber
 - Linha 2: Sequência
 - Linha 3: Um sinal + (seguido de uma descrição opcional)
 - Linha 4: Valores de qualidade (o número de carateres tem de ser o mesmo que o da sequência)

Exemplo:

```
@SIM:1:FCX:1:15:6329:1045 1:N:0:2
TCGCACTCAACGCCCTGCATATGACAAGACAGAATC
+
<>;##=><9=AAAAAAAAAAAA9#:<#<;?????#=
```


Valores de qualidade

• Os valores de qualidade estão associados logaritmicamente às probabilidades de erro:

Qualidade =
$$-10 \times \log_{10}(p)$$

p – estimativa da probabilidade de erro para um base-call

Valores de qualidade	Probabilidade da base atribuída estar errada	Precisão da base atribuída
Q10	1 em 10	90%
Q20	1 em 100	99%
Q30	1 em 1.000	99.9%
Q40	1 em 10.000	99.99%

Analysis modules

Analysis modules

- O FastQC assume que as amostras "normais" são constituídas por bibliotecas de fragmentos aleatórios e diversas; logo, a escala de cores (verde, amarelo, vermelho) pode não refletir os resultados para o tipo de experiência efetuada, i.e., os resultados de cada módulo de análise devem ser analisados no contexto daquilo que esperamos para as nossas bibliotecas
- Para alguns módulos, o *FastQC* analisa apenas as primeiras 100.000-200.000 sequências de forma a utilizar pouca memória e processamento

Exemplos

Per base sequence quality

• Sequenciação de genoma –qualidade elevada por base

Per base sequence quality

• Sequenciação de genoma – baixa qualidade > base 170

MiSeq flow cell

Per tile sequence quality

• Boa qualidade por tile/base

Per tile sequence quality

• Má qualidade em alguns tiles

Per sequence quality scores

• Sequenciação de genoma – *reads* de qualidade elevada

Per sequence quality scores

• Sequenciação de genoma – *reads* de qualidade baixa

Per base sequence content

• Sequenciação de genoma fragmentado por sonicação

Per base sequence content

• Sequenciação de genoma fragmentado com transposases

Per base sequence content

• Sequenciação de amplicões

Per sequence GC content

• Sequenciação de genoma – biblioteca equilibrada

Per sequence GC content

• Sequenciação de amplicões – biblioteca desequilibrada

Per base N content

Ausência de bases N ao longo da read

Sequence length distribution

• Reads com comprimento uniforme

Sequence length distribution

• *Reads* com comprimentos diferentes

Sequence length distribution

• Reads com comprimento único

Sequence duplication levels

• Sequenciação de genoma

Sequence duplication levels

• Sequenciação de RNA

Sequence duplication levels

• Sequenciação de amplicões

Overrepresented sequences

Adapter content

Ausência de sequências de adaptadores

Adapter content

• Presença de sequências de adaptadores Illumina

Bibliografia

Download

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Manual do FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/

• Videos online

- "Using FastQC to check the quality of high throughput sequence": https://www.youtube.com/watch?v=bz93ReOv87Y
- "Fastqc Linux Install and Usage (Commandline & GUI)":
 https://www.youtube.com/watch?v=5nth7o -f0Q