NCERT-9.5.13

EE24BTECH11065 - Spoorthi yellamanchali

Question:

The difference between two numbers is 26 and one number is three times the other. Find them.

Theoretical Solution:

Let the two numbers be x and y respectively, Then, by the question, we get the equation,

$$x - y = 26 \tag{0.1}$$

$$x = 3y \tag{0.2}$$

On substituting equation (0.2) in equation (0.1), we get,

$$3y - y = 26 \tag{0.3}$$

$$y = 13 \tag{0.4}$$

Then,

$$x = 3(13) = 39. (0.5)$$

 \therefore we get, x = 13 and y = 39

Solution by LU decomposition.

given equations:

$$x - y = 26 (0.6)$$

$$x - 3y = 0 \tag{0.7}$$

we can represent these set of equations as

$$A\bar{x} = b \tag{0.8}$$

where,

$$A = \begin{bmatrix} 1 & -1 \\ 1 & -3 \end{bmatrix} \tag{0.9}$$

$$\bar{x} = \begin{bmatrix} x \\ y \end{bmatrix} \tag{0.10}$$

$$b = \begin{bmatrix} 26\\0 \end{bmatrix} \tag{0.11}$$

Using guassian elimination algorithm, we can decompose matrix A into product of lower traingular matrix (L) and upper triangular matrix (U).

$$A = LU. (0.12)$$

1

let us first initialize

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{0.13}$$

and

$$U = A \tag{0.14}$$

Then on applying guassian elimination algorithm,

On elminating the element (making it zero) of position (2,1) by row operations, we get,

$$R_2 = R_2 - 1.R_1. ag{0.15}$$

updated U becomes,

$$\begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} \tag{0.16}$$

here, '1' is the multiplier we used. So, on updating the position (2,1) in the matrix L with the multiplier, we get the required matrices L and U respectively.

$$\therefore L = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \tag{0.17}$$

Now, equation (0.8) can be written as,

$$LU\bar{x} = b \tag{0.18}$$

Let,

$$U\bar{x} = y \tag{0.19}$$

Then,

$$Ly = b ag{0.20}$$

On solving using forward substitution, we get,

$$y = \begin{bmatrix} 26 \\ -26 \end{bmatrix} \tag{0.21}$$

Now, from equation (0.19), on solving for \bar{x} using backward substitution, we get,

$$\bar{x} = \begin{bmatrix} 39\\13 \end{bmatrix} \tag{0.22}$$

.. we get,

$$x = 39 \tag{0.23}$$

$$y = 13 \tag{0.24}$$

