

MySQL RDBMS

Trainer: Mr. Nilesh Ghule

Row locking

- When an user update or delete a row (within a transaction), that row is locked and becomes read-only for other users.
- The other users see old row values, until transaction is committed by first user.
- If other users try to modify or delete such locked row, their transaction processing is blocked until row is unlocked. → or timeout
- Other users can INSERT into that table.
 Also they can UPDATE or DELETE other rows.
- The locks are automatically released when COMMIT/ROLLBACK is done by the user.
- This whole process is done automatically in MySQL. It is called as "OPTIMISTIC LOCKING".

Row locking

- Manually locking the row in advanced before issuing UPDATE or DELETE is known as "PESSIMISTIC LOCKING".
- This is done by appending FOR UPDATE to the SELECT query.
- It will lock all selected rows, until transaction is committed or rollbacked.
- If these rows are already locked by another users, the SELECT operation is blocked until rows lock is released.
- By default MySQL does table locking.
 Row locking is possible only when table is indexed on the column.

Entity Relations

- To avoid redundancy of the data, data should be organized into multiple tables so that tables are related to each other.
- The relations can be one of the following
 - · One to One → emps > addr
 - · One to Many → depts → emps
 - Many to One → emps → depts
 - · Many to Many > emps <> recentred
- Entity relations is outcome of Normalization process.

SQL Joins

- Join statements are used to SELECT data from multiple tables using single query.
- Typical RDBMS supports following types of joins:
 - Cross Join ✓
 - Inner Join
 - Left Outer Join
 - Right Outer Join ✓
 - Full Outer Join
 - Self join

Cross Join

deptno	dname	empno	ename	deptno
10	DEV	1	Amit	10
20	QA	2	Rahul	10
30	OPS	3	Nilesh	20
40	ACC	4	Nitin	50
		5	Sarang	50

- Compares each row of Table1 with every row of Table2.
- Yields all possible combinations of Table1 and Table2.
- In MySQL, The larger table is referred as "Driving Table", while smaller table is referred as "Driven Table". Each row of Driving table is combined with every row of Driven table.
- Cross join is the fastest join, because there is no condition check involved.

Inner Join

deptno	dname		empno	ename	deptno		
10	DEV		-1	Amit	10		
20	QA 🤇		2	Rahul	10		
30	OPS		3	Nilesh	20		
40	ACC		4	Nitin	50		
depts emps			5	Sarang	50		

- The inner JOIN is used to return rows from both tables that satisfy the join condition.
- Non-matching rows from both tables are skipped.
- If join condition contains equality check, it is referred as equi-join; otherwise it is non-equi-join.

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

