ECEN 4517/5517

Power Electronics and Photovoltaic Power Systems Laboratory

Lecture 10

True Sine Wave Inverter

And Other Inverter Modulation Techniques

Announcements

- Exp 4 Lab Report due by 11:59 pm (MT) on Friday April 7, 2017
- This week's lab: Experiment 5
 - Have 2 weeks to work on Experiment 5
 - Exp 5 Lab Report due by 11:59 pm (MT) on Friday April 21, 2017
- After that: Assemble Complete System
- Quiz 2 on Monday April 24, 2017
 - In-class 40-minute quiz administered during lecture time
 - Closed book/notes, calculator allowed
 - Will cover Experiment 4 and 5 material
- Expo (Final Demo) on Thursday May 4, 2017

Experiments

- Exp 1 PV panel and battery characteristics and direct energy transfer
- Exp 2 TI MSP430 microcontroller introduction
- Exp 3-1, 3-2 Buck dc-dc converter for PV MPPT and battery charge control
- Exp 4 Step-up 12V-200V dc-dc converter
- Exp 5 Single-phase dc-ac converter (inverter)
- Expo Complete system demonstration

Experiment 5 – Off-Grid Inverter

• **Required**: Demonstrate modified sine-wave inverter

• Extra Credit: Demonstrate PWM inverter

Off-Grid H-Bridge Inverter

Filtering of ac output not explicitly shown

• Grid-tied: control *i*_{ac}(t)

Off-grid: control v_{ac}(t)

"Modified Sine Wave" Inverter

v_{ac}(t) has a rectangular waveform

Inverter transistors switch at 60 Hz, T = 16.66 msec

RMS value of $v_{ac}(t)$ is:

$$V_{ac,RMS} = \sqrt{\frac{1}{T}} \int_0^T v_{ac}^2(t) dt = \sqrt{D} V_{HVDC}$$

- Choose V_{HVDC} larger than desired V_{ac,RMS}
- Can regulate value of V_{ac,RMS} by variation of D
- Waveform is highly nonsinusoidal, with significant harmonics

Inverter Control

- Use MSP430 to control the MOSFET gate drivers
 - Can use Timer A (or logic outputs) to generate drive signals

• Your goal: adjust V_{ref} and inverter duty cycle to obtain $V_{ac} = 120 \text{ V rms}$

Gate Drive Timing

- For modified sine wave inverter: switch once per ac half cycle
- Adjust duty cycle to control rms voltage
- Require deadtime > (switching/delay times of MOSFETs plus gate drivers);
 otherwise, simultaneous conduction of Q₁ and Q₂ causes "shoot-through"
 current that can damage MOSFETs

Half-Bridge Gate Drivers

Half-bridge gate driver examples: IR21094 and FAN 73832 (your parts kit has IR21094)

Half-Bridge Gate Driver Functionality

Contains two MOSFET drivers:

- Low side driver
- High side driver

High side driver includes

- Level-shifting circuitry
- Provisions for bootstrap power supply

Undervoltage lockout circuitry holds MOSFETs off when driver power supply is below threshhold

Figure 3. Functional Block Diagram of FAN73832

Half-Bridge Gate Driver - IR21094

Half-Bridge Gate Driver Circuit Example

Half-Bridge Gate Driver Circuit Example

Figure 2. Application Circuit for Full-Bridge DC Motor Driver

- High side circuitry includes external diode and capacitor for bootstrap power supply
- To charge bootstrap capacitor, low side MOSFET must conduct

PWM Inverter

- Average v_{ac}(t) has a sinusoidal waveform
- Inverter transistors switch at frequency substantially higher than 60 Hz

- Choose V_{HVDC} larger than desired V_{ac,peak}
- Can regulate waveshape and value of V_{ac,RMS} by variation of d(t) (programming inside microcontroller)
- · Can achieve sinusoidal waveform, with negligible harmonics
- Higher switching frequency leads to more switching loss and need to filter high-frequency switching harmonics and common-mode currents
- For the same $V_{ac,RMS}$, need larger V_{HVDC}

Alternate Ways to Generate PWM Sinusoid

(a) Operate left and right sides with same (complementary) gate drive signals

$$v(t) = (2d(t) - 1) V_g$$

(b) PWM one side, while other side switches at 60 Hz

$$v(t) = \pm d(t) V_g$$

Filtering the AC Output

Note: the "Kill-a-Watt" power meters cannot tolerate high frequency components in the ac voltage waveform. Do not connect these meters to an unfiltered inverter output!

Review of Fourier Series

Any periodic waveform f(t) can be expressed in terms of harmonically related sin() and cos() terms

$$f(t) = \frac{b_0}{2} + \sum_{N=1}^{\infty} \left[a_N Sin(n\omega_0 t) + b_N Cos(n\omega_0 t) \right]$$
where $\omega_0 = \frac{2\pi}{T}$ and T is period of $f(t)$

The coefficients a_n and b_n can be calculated from:

$$a_n = \frac{2}{T} \int_T f(t) \sin(n\omega_0 t) dt$$

$$\frac{2}{T} \int_{T} f(t) \sin(n\omega_{0}t) dt \qquad b_{n} = \frac{2}{T} \int_{T} f(t) \cos(n\omega_{0}t) dt$$

Classification of Waveforms

· Some waveforms have special characteristics

an = 0 for all n Even func. x Odd func. = Odd func. | Odd func. x Even func. = Odd func $a_n = \frac{2}{T} \int_{-\infty}^{\infty} (0dd func.) dt = 0$

Odd
$$x(t) = -x(-t)$$

No Cos terms since Cos is Even

 $b_n = 0$ for all n

Odd func. x Even func. $= 0$ od func

 $b_n = \frac{2}{3} \int_{-\infty}^{7/2} 0 dd f_{n} dt = 0$

No Cos terms since Cosis Even No Even Harmonics

$$b_n = 0 \quad \text{for all } n$$

$$0dd \text{ func. } x \text{ Even func.} = 0dd \text{ func}$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} (0dd \text{ func.}) dt = 0$$

$$-T/2$$

$$-T/2$$
No Even Harmonics

$$a_{2k} = 0 \notin b_{2k} = 0 \text{ for all } k$$

$$a_{2k} = 0 \notin b_{2k} = 0 \text{ for all } k$$
For n Even
$$\int_{-T/2}^{T/2} (0dd \text{ func.}) dt = 0$$

$$-T/2$$

$$\Rightarrow a_n = 0 \notin b_n = 0 \text{ for all } k$$

$$f(t) = \frac{b_0}{2} + \sum_{N=1}^{\infty} \left[a_N Sin(N\omega_0 t) + b_N Cos(N\omega_0 t) \right]$$

Hall-wave Symmetric

1 x(t) = -x(t-I)

Modified Sine-Wave Inverter

- · Vx waveform is Odd -> No costerms, Only Sinterms
- · 1x waveform is Hall-wone Symmetric -> No even harmonics

$$v_{x}(t) = \sum_{n \text{ odd}} V_{n} \sin(n \omega_{0} t)$$

Frequency Content of Modified Sine-Wave

- · If we can filter out the harmonics, load voltage will be more sinusoidal than 1x
- · However, difficult to filter because the frequencies to be rejected (3 wo, 5 wo,...) are close to the frequency we want to keep (wo)
- · Would like to find another way to eliminate harmonics

Impact of Change of δ

(A) Control & Fundamental Magnitude

$$V_{dc} \stackrel{AVx}{\longrightarrow} \frac{1}{\sqrt{1 + 8}} = \frac{1}{\sqrt{1 + 8}} \quad V_{x}(t) = \sum_{n \text{ odd}} V_{n} Sin(n\omega_{0}t)$$

$$-V_{dc} \stackrel{AVx}{\longrightarrow} \frac{1}{\sqrt{1 + 8}} = \frac{1}{\sqrt{1 + 8}} \quad V_{x}(\omega_{0}t) Sin(\omega_{0}t) \delta(\omega_{0}t)$$

$$V_{1} = \frac{2}{\sqrt{1 + 8}} \int_{0}^{\pi - 8} V_{x}(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t) = \frac{2\pi}{2\pi} \int_{0}^{\pi - 8} V_{x}(\omega_{0}t) Sin(\omega_{0}t) \delta(\omega_{0}t)$$

$$V_{1} = \frac{4\pi}{2\pi} \int_{0}^{\pi - 8} V_{dc} Sin(\omega_{0}t) d(\omega_{0}t) = \frac{4\pi}{2\pi} \int_{0}^{\pi - 8} V_{x}(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t)$$

$$V_{1} = \frac{4\pi}{2\pi} \int_{0}^{\pi - 8} V_{dc} Sin(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t) = \frac{4\pi}{2\pi} \int_{0}^{\pi - 8} V_{x}(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t)$$

$$V_{1} = \frac{4\pi}{2\pi} \int_{0}^{\pi - 8} V_{dc} Sin(\omega_{0}t) d(\omega_{0}t) d(\omega_{0}t$$

- · Hence we can control the magnitude of the fundamental by controlling &
- · Can be useful if we want to regulate the output voltage of an inverter when the input voltage is changing (e.g., in a UPS when battery voltage is drooping as it discharges)

Impact of Change of δ (Cont.)

(B) Control of Harmonics' Magnitude

$$V_{n} = \frac{2}{T} \int v_{x}(t) \sin(n\omega_{o}t) dt = \frac{2}{2\pi} \int v_{x}(\omega_{o}t) \sin(n\omega_{o}t) d(\omega_{o}t)$$

$$V_{3} = \frac{2}{2\pi} \int v_{dc} \sin(3\omega_{o}t) d(\omega_{o}t) = \frac{2}{\pi} \frac{V_{dc}}{3} \left[-\cos(3\omega_{o}t) \right]_{\varepsilon}^{\pi-\delta}$$

$$V_{3} = \frac{2}{2\pi} \int v_{dc} \left[-\cos(3\pi-3\delta) + \cos(3\delta) \right] \Rightarrow V_{3} = \frac{4}{3\pi} \frac{V_{dc}}{3\pi} \cos(3\delta)$$

$$V_{3} = \frac{2}{3\pi} \int v_{dc} \left[-\cos(3\pi-3\delta) + \cos(3\delta) \right] \Rightarrow V_{3} = \frac{4}{3\pi} \int v_{dc} \cos(3\delta)$$

$$v_{3} = \frac{2}{3\pi} \int v_{dc} \left[-\cos(3\pi-3\delta) + \cos(3\delta) \right] \Rightarrow V_{3} = \frac{4}{3\pi} \int v_{dc} \cos(3\delta)$$

$$v_{3} = \frac{4}{3\pi} \int v_{dc} \cos(3\delta) + \cos(3\delta) d(\omega_{o}t) + \cos(3\delta) d$$

• So as we change 8, the magnitude of the 3rd harmonic also changes • If $8 = 30^{\circ} \implies 38 = 90^{\circ} \implies V_3 = 0$ Hence we can kill the 3rd harmonic by selfing $8 = 30^{\circ}$

Harmonic Elimination

· Easy to visualize why 3rd harmonic is killed by 8=30°

Con use same technique to see what happens to other harmonics

- · Hence the lowest harmonic we are left with is the 5th so filtering becomes easier
- · Note 8=30°, eliminates all triple-n (3n) harmonics (i.e., 9th, 15th are also killed).
- · However, when we fix & to kill harmonics, we cannot use it to regulate the magnitude of the fundamental

Elimination of 3rd and 5th Harmonic

