10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 10: Introduction to Radical Polymerization

Segmented Copolymers

Segmented Polyurethanes (Prof. Hammond's thesis)

- 1) "soft segment" \rightarrow ends in -OH groups
 - oligomer
 - low T_q (liquid-like at 25°C)

HO OH HO—
$$(CH_2)_4 \cdot O$$
— H oligomeric diols simple polyether

$$CH_3 \\ HO — CH_2O \xrightarrow{CH_3} CH_2OH$$

$$CH_3 \\ CH_3$$

(2)Diisocyanate: (-N=C=O)

OCN-R-NCO

e.g.

OCN-(CH₂)₆-NCO

$$CCN - H_2 - NCC$$

- (3) Chain extender
 - Connector between different units
 - Almost always short diol

ex

To get segmented polyurethane:

1. Endcap soft segment w/diisocyanate:

2 OCN
$$-R$$
—NCO + HO OH $\xrightarrow{\text{(rapid)}}$ OCN $-R$ — $\stackrel{O}{N}$

soft	isocyanate	chain extender	0 0 0 0
1	2	1	+0-C-N-R-N-C-0-R'-0C-N-R-N-C+
1	3	2	/ Hard Segment
1	4	3	Can be made longer by adding diol and diisocyanate in equal proportions
-	- 1	- 1	1 3
-	-	-	[] ₄

Step Growth Polymerization

- 2nd order kinetics
- MW \uparrow linearly with time ($\overline{p_n} = 1 + [a]_o kt$)
- MW $\propto \frac{1}{1-\pi}$
- All species in rxn bath are reactive
- Need high π for high MW
- **Chain Growth (Addition)**

- monomer activation required for polymerization
- only activated monomer/polymer growing chains are active in rxn (v. small fraction at given time)
- growing chains get large rapidly then terminate, deactivates chain
- new monomer is activated

- have only monomer high MW polymer growing chains
- MW ≠ f(π) unless "living" system although it is f[M]_o

Addition monomers are:

vinyl groups (C=C)

ketones (C=O) aldehydes

heterocyclic ring monomers (strained)

Propagating (active) species:

anionic
$$C \ominus$$

cationic $C \ominus$

free radical $C \bullet$

Processes in Addition Polymerization:

- 1. Initiation
- 2. Propagation
- 3. Termination
- 4. Transfer of charge or active species from one chain to another

Free Radical Polymerization

Kinetics: $I \rightarrow 2R \bullet$

1. Initiation:

2. Propagation Step:

$$RM. + M \longrightarrow RM_2.$$

$$RM_{n}$$
 + M \longrightarrow RM_{n+1}

3. Termination:

Happens one of 2 ways:

a. coupling

$$RM_{n}$$
· + RM_{p} · \longrightarrow RM_{n+p} — R doubling size of polymer

b. disproportionation

4. Chain Transfer:

Kinetic Rate Expression

Initiation:

$$-\frac{d[I]}{dt} = k_d[I] = \frac{1}{2} \frac{d[R \cdot]}{dt}$$
create 2
fragments

$$\frac{d[RM \cdot]}{dt} = f \frac{d[R \cdot]}{dt} = 2fk_d[I] k_d \sim 10^{-4} - 10^{-6} \frac{l}{mol \cdot sec}$$

Propagation

$$RM_{n}$$
. + M \longrightarrow RM_{n+1} .

$$R_p = -\frac{d[M]}{dt} = k_p \underbrace{\left[M \cdot \right]}_{p} [M]$$

 $[M \cdot] \equiv [Mn \cdot]$ any active monomer

(assume equal reactivity for all M. species)

$$k_p \sim 10^2 - 10^4 \frac{l}{mol \cdot sec}$$

Termination

$$M_i \cdot + M_i \cdot \longrightarrow M_{i+j}$$

$$R_t = -\frac{d[M \cdot]}{dt} = 2k[M \cdot]^2$$

assume same disproportionation:

let
$$k_t = k_{tc} + k_{td}$$

 $k_t \sim 10^6 - 10^8 \frac{l}{mol \cdot sec}$

How fast are you creating polymer?

Polymerization rate

$$-\frac{d[M \cdot]}{dt} = R_p = k_p [M \cdot][M]$$

Assume steady state free radical concentration [M·]

$$\Rightarrow R_i = R_t$$

$$2k_t[M\cdot]^2 = 2k_d f[I]$$

Solve for [M·]:

$$[M \cdot] = \left(\frac{k_d f[I]}{k_t}\right)^{\frac{1}{2}}$$
 plug into R_p expression

$$R_p = k_p \left(\frac{k_d f[I]}{k_t}\right)^{\frac{1}{2}} [M]$$

Generic Form:

$$R_p = \left(\frac{k_p^2}{2k_t}R_i\right)^{\frac{1}{2}} [M]$$