1. Definiu la curvatura $\kappa(s)$ i la torsió $\tau(s)$ d'una corba parametritzada per l'arc i demostreu que

$$\frac{dN(s)}{ds} = -\kappa(s)T(s) - \tau(s)B(s)$$

on T, N, B denota el triedre de Frenet. (2 punts)

- 2. Considerem la corba parametritzada $c(t) = (2t, t^2, t_3^3)$
 - a) Calculeu-ne la curvatura $\kappa(t)$ i la torsió $\tau(t)$. (1 punt)
 - b) Troben el triedre de Frenet T(1), N(1), B(1) en el punt c(1) (1 punt)
 - e) Sigui $\gamma(t) = (x(t), y(t), z(t))$ una corba parametritzada regular amb curvatura $\kappa(t)$ i torsió $\tau(t)$ definides en tot punt. Donat $\lambda \in \mathbb{R} \setminus \{0\}$, expresseu la curvatura i la torsió de la corba $\beta(t) = (\lambda x(t), \lambda y(t), \lambda z(t))$ en funció de $\kappa(t)$ i de $\tau(t)$. (1 punt)
- 3. Sigui M una superfície regular i sigui $\varphi:U\to M$ una parametrització local tal que $M=\varphi(U)$. Suposem que els coeficients de la primera forma fonamental de M respecte $\varphi(u,v)$ són

$$E = e^{2u}, \quad F = 0, \quad G = e^{2v}$$

- a) Trobeu les equacions de les geodésiques respecte aquesta parametrització. Proveu que existeixen funcions f(t) que fan que les corbes $\alpha(t) = \varphi(f(t), v_0)$ i $\beta(t) = \varphi(u_0, f(t))$ siguin geodèsiques. (1 punt)
- b) Calculeu la curvatura de Gauss de M en $\varphi(u, v)$. (1 punt)
- c) Trobeu una isometria local $\Phi: M \to P$ on P és el pla $P = \{(x, y, 0) | x, y \in \mathbb{R}\}.$ (1 punt)
- 4. Sigui M una superfície regular orientada amb aplicació de Gauss ν . Sigui $p \in M$ un punt no umbilical amb curvatura mitjana H(p). Considerem una esfera Σ de radi R i centre $p + R\nu(p)$. Sigui $\alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ una corba parametritzada per l'arc i suposem que $\alpha(s) \in M \cap \Sigma$ per tot $s \in (-\varepsilon, \varepsilon)$ i que $\alpha(0) = p$. Demostreu que $\alpha'(0)$ pertany a una de les bisectrius de les direccions principals de M en p si i només si H(p) = 1/R. (2 punts)