

Simultaneous Penalization and Subsidization for Stabilizing Grand Cooperation

Reporter: Chengcheng Yu

Date: 2023.10.25

Paper Information

Title: Simultaneous Penalization and Subsidization for Stabilizing

Grand Cooperation

- Published on *Operations Research*
 - Received: *June 3, 2015*
 - Revised: September 30, 2016; July 14, 2017; November 30, 2017
 - Accepted: *December 23, 2017*
 - Area of Review: *Optimization*
 - Keywords: cooperative game; grand coalition stability; simultaneous penalization and subsidization; parallel machine scheduling game
 - Authors: Lindong Liu, Xiangtong Qi, Zhou Xu

Paper Information

• PhD thesis: To Stabilize Grand Coalitions in Unbalanced

Cooperative Games

- Computing Near-Optimal Stable Cost Allocations for Cooperative Games by Lagrangian Relaxation
- Simultaneous Penalization and Subsidization for Stabilizing Grand Cooperation
- Stabilizing Grand Cooperation via Cost Adjustment: An Inverse Optimization Approach

• The most important reference: Caprara, A., & Letchford, A. N. (2010). New techniques for cost sharing in combinatorial optimization games. Mathematical programming, 124, 93-118.

1. Background

■ Motivation:

- ✓ Two known instruments:
 - Penalization and subsidization
 - Penalization: Charging a penalty causes players to be dissatisfied
 - Subsidization: Providing a subsidy to the grand coalition is at the cost of injecting external resources.
- ✓ Stick-and-carrot:
 - Charges penalties and provides subsidies simultaneously

Research Problem

- ✓ Simultaneous Penalization and Subsidization for Stabilizing Grand Cooperation
 - Penalty and subsidy become complementary
 - Trade-off between penalty and subsidy

2. Formulation

Preliminaries:

- Core: Core $(V, c) = \{\theta : \theta(V) = c(V), \theta(s) \le c(s) \text{ for all } s \in S \setminus \{V\}, \theta \in \mathbb{R}^{\nu}\}.$
- Two instruments to stabilize the grand coalition:
- Penalization:

$$z^* = \min_{\beta, z} \{z : \beta(V) = c(V), \beta(s) \le c(s) + z \text{ for all } s \in S \setminus \{V\}, z \in \mathbb{R}, \beta \in \mathbb{R}^{\nu}\}.$$

Subsidization:

$$\omega^* = \min_{\alpha} \{c(V) - \alpha(V) : \alpha(s) \le c(s) \text{ for all } s \in S, \alpha \in \mathbb{R}^v\},$$
 which is equivalent to the OCAP in Caprara and Letchford (2010):
$$\max_{\alpha} \{\alpha(V) : \alpha(s) \le c(s) \text{ for all } s \in S, \alpha \in \mathbb{R}^v\}$$

2. Formulation

- Penalty-subsidy Function:
 - Penalty-subsidy function (PSF):

Definition 1. In a cooperative game (V, c), for any penalty $z \in \mathbb{R}$, consider the following LP:

$$\omega(z) = \min_{\beta} \{c(V) - \beta(V) : \beta(s) \le c(s) + z \text{ for all } s \in S \setminus \{V\}, \beta \in \mathbb{R}^n\}.$$

- For any penalty z that is not sufficient, the central authority provides a subsidy $\omega(z)$ to make the grand coalition cooperate.
- ➤ Monotonicity and two extreme cases:

Lemma 1. The penalty-subsidy function $\omega(z)$ is strictly decreasing in z for $z \in [0, z^*]$. In addition, $\omega(0) = \omega^*$, $\omega(z^*) = 0$, and $0 < \omega(z) < \omega^*$ for any $z \in (0, z^*)$.

2. Formulation

Penalty-subsidy Function:

Example 1:

EXAMPLE 1. Consider an SMW game with $V = \{1, 2, 3, 4\}$ of four players. Each player $k \in V$ has a job with weight w_k and processing time t_k , where $w_1 = 4$, $w_2 = 3$, $w_3 = 2$, $w_4 = 1$, $t_1 = 5$, $t_2 = 6$, $t_3 = 7$, and $t_4 = 8$. Each coalition $s \in S$ aims to minimize the total weighted completion time by processing all their jobs on a single machine.

Table 1 z-penalized minimum subsidies and z-penalized optimal cost allocations for Example 1.

$\frac{z}{\omega(z)}$	0 55	5 35	10 20	15 9	19.5 0
$\beta(2,z)$	18.00	23.00	28.00	31.45	34.12
$\beta(3,z)$	14.00	19.00	24.00	27.38	28.80
$\beta(4,z)$	8.00	13.00	13.71	15.55	17.38

Structural Properties:

> Taking the dual of LP (5), by strong duality we have:

$$\omega(z) = \max_{\rho} \{c(V) + \sum_{s \in S \setminus \{V\}} -\rho_s[c(s) + z] : \sum_{s \in S \setminus \{V\}, k \in s} \rho_s = 1, \forall k \in V, \rho_s \geq 0, \forall s \in S \setminus \{V\}\}.$$

- \triangleright Maximally unsatisfied coalitions: $\beta(s,z) = c(s) + z$.
- Let $S^{\beta z} = \left\{ s_1^{\beta z}, s_2^{\beta z}, ..., s_{h(\beta, z)}^{\beta z} \right\}$ denote the collection of all maximally unsatisfied coalitions, where $h(\beta, z) = |S^{\beta z}|$.

Theorem 1. Consider any penalty z, and any z-penalized optimal cost allocation $\beta(\cdot, z)$. The union of all maximally unsatisfied coalitions in $S^{\beta z}$ equals the grand coalition V, i.e.,

$$s_1^{\beta z} \cup s_2^{\beta z} \cup \cdots \cup s_{h(\beta,z)}^{\beta z} = V.$$

Structural Properties:

Theorem 2. $\omega(z)$ is strictly decreasing, piecewise linear, and convex in penalty z for $z \in [0, z^*]$.

➤ Implications:

- Strong complementarity;
- Fully characterize the PSF at only a finite number;
- A diminishing effect.

Theorem 3. For each linear segment of $\omega(z)$, its derivative $\omega'(z)$ is in the range $[-v, -\frac{v}{v-1}]$.

Implications: The derivatives of $\omega(z)$ may have large variations, depending on the number of players v.

Structural Properties:

 \triangleright Let \prod^z denote the set of all optimal solutions ρ to LP (6).

$$K_l^z = \min\left\{\sum\nolimits_{s \in S \setminus \{V\}} - \rho_s : \rho \in \Pi^z\right\} \text{ and } K_r^z = \max\left\{\sum\nolimits_{s \in S \setminus \{V\}} - \rho_s : \rho \in \Pi^z\right\}.$$

If, and only if $K_l^z \neq K_r^z$, point $(z, \omega(z))$ is a breakpoint on the PSF curve.

► Weak derivatives : $K_l^z \le K_{l'}^z \le K_{r'}^z \le K_r^z$

Construction of the PSF $\omega(z)$:

- **Construction of the Exact PSF:**
- To construct a set P^* of values from $[0, z^*]$ that cover all the breakpoints of $\omega(z)$, and then connect points $(z, \omega(z))$ for all $z \in P^*$.

```
Algorithm 1 Intersection Points Computation (IPC) Algorithm to Construct the PSF
```

Step 1. Initially, set $P^* = \{0, z^*\}$ and $\mathbb{P} = \{[0, z^*]\}$.

Step 2. If \mathbb{P} is not empty, update P^* and \mathbb{P} by the following steps:

Step 2.1. Relabel values in P^* by $z_0 < z_1 < \cdots < z_q$, where $z_0 = 0$, $z_q = z^*$ and $q = |P^*| - 1$. Step 2.2. Select any interval from \mathbb{P} , denoted by $\left[z_{k-1}, z_k\right]$ with $1 \le k \le q$.

Step 2.3. Construct two linear functions $R_{k-1}(z)$ and $L_k(z)$ so that $R_{k-1}(z)$ passes $(z_{k-1}, \omega(z_{k-1}))$ with a slope equal to a right weak derivative $K_{r'}^{z_{k-1}}$ of $\omega(z)$ at z_{k-1} , and that $L_k(z)$ passes $(z_k, \omega(z_k))$ with a slope equal to a left weak derivative $K_{l'}^{z_k}$ of $\omega(z)$ at

Step 2.4. Consider the following two cases:

Case 1: If $R_{k-1}(z)$ passes $(z_k, \omega(z_k))$ or $L_k(z)$ passes $(z_{k-1}, \omega(z_{k-1}))$, then update \mathbb{P} by removing $[z_{k-1}, z_k]$.

Case 2: Otherwise, $R_{k-1}(z)$ and $L_k(z)$ must have a unique intersection point at z=z' for some $z' \in (z_{k-1}, z_k)$. Update P^* by adding z', and update \mathbb{P} by removing $[z_{k-1}, z_k]$ and adding $[z_l, z']$ and $[z', z_r]$.

Step 2.5. Go to step 2.

Step 3. Return a piecewise linear function by connecting points $(z, \omega(z))$ for all $z \in P^*$.

■ Construction of the PSF $\omega(z)$:

Construction of the Exact PSF:

Theorem 4. (i) The function returned by the IPC algorithm equals the PSF $\omega(z)$ for $z \in [0, z^*]$. (ii) If function $\omega(z)$ has $\hat{q} \geq 2$ linear segments (or equivalently, $\hat{q} + 1$ breakpoints), then the IPC algorithm will terminate after at most $4\hat{q} - 1$

iterations.

> Instance in Example 1:

Three times: $\{[0,19.5]\}$ to $\{[0,8], [8,19.5]\}$, to $\{[8,19.5]\}$, and then to an empty set

- Construction of the PSF $\omega(z)$:
 - \triangleright ϵ -Approximation of the PSF:
 - To construct an upper bound function.

```
Algorithm 2 Approximation Algorithm to Construct an \epsilon-Approximation of the PSF Step 1. Divide [0, z^*] into |2v/\epsilon| sub-intervals denoted by [z_0, z_1), [z_1, z_2), ..., [z_{\lceil v/\epsilon \rceil - 2}, z_{\lceil 2v/\epsilon \rceil - 1}), and [z_{\lceil 2v/\epsilon \rceil - 1}, z_{\lceil 2v/\epsilon \rceil}], such that each segment has the same length of (z^*/\lceil 2v/\epsilon \rceil), where z_0 = 0 and z_{\lceil 2v/\epsilon \rceil} = z^*. Step 2. For each 0 \le k \le \lceil 2v/\epsilon \rceil, compute the z-penalized minimum subsidy \omega(z) for z = z_k. Step 3. Obtain an upper bound U_{\epsilon}(z) for the PSF \omega(z) by connecting points in \{(z_0, \omega(z_0)), (z_1, \omega(z_1)), \ldots, (z_{\lceil 2v/\epsilon \rceil - 1}, \omega(z_{\lceil 2v/\epsilon \rceil - 1})), (z_{\lceil 2v/\epsilon \rceil}, \omega(z_{\lceil 2v/\epsilon \rceil}))\}.
```

Theorem 5. $E_c \le (\epsilon/2)(z^*)^2 \le \epsilon \int_0^{z^*} \omega(z) dz$ and $E_{\text{max}} \le (\epsilon z^*)/2$, for any given $\epsilon > 0$.

• Computing the value of $\omega(z)$:

Integer Minimization (IM) games:

$$c(s) = \min_{x} \{cx: Ax \ge By^{s} + D, x \in \mathbb{Z}^{t}\}.$$

 \triangleright Let $\pi(z)$ denote the optimal objective value of the following LP:

$$\pi(z) = \max_{\beta} \{ \beta(V) : \beta(s) \le c(s) + z \text{ for all } s \in S \setminus \{V\}, \beta \in \mathbb{R}^{\nu} \},$$

where
$$\omega(z) = c(V) - \pi(z)$$
.

- Remarks:
- When either c(V) or $\pi(z)$ is hard to obtain, we can compute their bounds to obtain a bound on $\omega(z)$.
- Only its special case $\pi(0)$, has recently been studied by Caprara and Letchford (2010) and Liu et al. (2016).

Cutting Plane Approach:

> LP (12) contains an exponential number of constraints.

```
Algorithm 3 Cutting Plane (CP) Approach to Computing ω(z) for a Given z
Step 1. Let S' ⊆ S \ {V} indicate a restricted coalition set, which includes some initial coalitions, e.g., {1}, {2}, ..., and {v}.
Step 2. Find an optimal solution β̄(·,z) to a relaxed LP of (12) defined as max<sub>β</sub> {β(V,z): β(s,z) ≤ c(s) + z, for all s ∈ S', β∈ ℝ<sup>v</sup>}.
Step 3. Find an optimal solution s* to the separation problem δ = min {c(s) + z - β(s,z): ∀s ∈ S \ {V}}.
Step 4. If δ < 0, then add s* to S', and go to step 2; otherwise, return (i) the z-penalized minimum subsidy ω(z) = c(V) - β̄(V,z); and (ii) a pair of weak derivatives (K<sup>βz</sup><sub>V</sub>, K<sup>βz</sup><sub>V</sub>) computed by solving (9) with Π<sup>βz</sup> replaced by Π<sup>βz</sup>.
```

• The critical part of the above CP approach is how to efficiently solve the separation problem in step 3 to find a violated constraint $\beta(s * , z) \le c(s *) + z$, and this depends on the specific game being studied.

■ Linear Programming Approach:

- LP approach: based on the theory of linear programming and duality.
- Let Q^{xy} denote the overall set of feasible solutions to ILP of c(s) for all $s \in S \setminus \{V\}$:

$$Q^{xy} = \{(x, y) : Ax \ge By + D, y = y^s \text{ for some } s \in S \setminus \{V\}, x \in \mathbb{Z}^t, y \in \{0, 1\}^v\}$$

Lemma 3. If $P^{xy} = \{(x, y): A'x \ge B'y + D'\}$ is a relaxation of Q^{xy} , then $\min\{cx + z\mu: A'x \ge B'1 + D'\mu\} \le \pi(z)$, which holds with equality if P^{xy} equals the convex hull of Q^{xy} .

Theorem 6. Consider any $P^{xy} = \{(x,y) : A'x \ge B'y + D'\}$ that is a relaxation of Q^{xy} , where the dimensions of A', B', and D' are polynomially bounded. Then, we have that:

- (i) the LP approach runs in polynomial time with an upper bound of ω(z) returned for any given penalty z, which equals ω(z) if P^{xy} equals the convex hull of Q^{xy}, and that
 (ii) there exists a polynomial time algorithm that can produce a z-penalized feasible cost allocation
- (ii) there exists a polynomial time algorithm that can produce a z-penalized feasible cost allocation $\beta(\cdot,z)$ with a total shared value of min $\{cx+z\mu: A'x \geq B'\mathbf{1}+D'\mu\}$, which is optimal if P^{xy} equals the convex hull of Q^{xy} .

■ Linear Programming Approach:

LP approach: based on the theory of linear programming and duality.

Algorithm 4 Linear Programming (LP) Approach to Computing $\omega(z)$ for a Given zStep 1. Denote the overall set of solutions to programs c(s) for all $s \in S \setminus \{V\}$ by $Q^{xy} = \{(x,y): Ax \geq By + D, y = y^s \text{ for some } s \in S \setminus \{V\}, x \in \mathbb{Z}^t, y \in \{0,1\}^v\}.$ Step 2. Relax Q^{xy} to some convex polyhedron $P^{xy} = \{(x,y): A'x \geq B'y + D'\}$ Step 3. Find an optimal solution $[x^*, \mu^*]$ to min $\{cx + z\mu: A'x \geq B'\mathbf{1} + D'\mu\}$.

5. Applications to Parallel Machine 中国神学技术大学 Scheduling Games

Identical parallel machine scheduling of unweighted jobs (IPU)

> IPU game: Minimize the total completion time

$$c_{\mathrm{IPU}}(s) = \min \sum_{\substack{k \in s}} \sum_{j \in O} c_{kj} x_{kj}$$

$$\mathrm{s.t.} \sum_{j \in O} x_{kj} - y_k^s = 0, \forall k \in V,$$

$$\sum_{\substack{k \in V \\ k \in V}} x_{kj} \leq m, \forall j \in O,$$

$$0 \leq x_{kj} \leq 1, x_{kj} \in \mathbb{Z}, \forall k \in V, \forall j \in O.$$

Can be solved by the shortest processing time first (SPT) rule.

5. Applications to Parallel Machine 中国神学技术大学 Scheduling Games

CP Approach:

 \triangleright Separation problem for any given cost allocation $\beta \in \mathbb{R}^{\nu}$:

$$\delta_{\text{IPU}} = \min_{s \in S \setminus \{V\}} \{c_{\text{IPU}}(s) + z - \sum_{k \in s} \beta_k \}.$$

Solve the separation problem (17) by dynamic programming.

$$P(k,u) = \min \left\{ \begin{aligned} &P(k-1,u), \text{ for the case when } s^* \text{ does not contain } k, \\ &P(k-1,u-1) + \lceil u/m \rceil t_k - \beta_k, \text{ for the case when } s^* \text{ contains } k. \end{aligned} \right.$$

Lemma 4. For game (V, c_{IPU}) , the separation problem (17) can be solved in $O(v^2)$ time.

5. Applications to Parallel Machine 中国神学技术大学 Scheduling Games

■ LP Approach:

• Let P_{IPU}^{xy} indicate the polyhedron defined by the LP relaxation of Q_{IPU}^{xy} , with the integral constraints being relaxed.

Lemma 5. P_{IPU}^{xy} equals the convex hull of Q_{IPU}^{xy} .

Theorem 7. For game (V, c_{IPU}) , the PSF $\omega(z)$ has $O(v^4)$ breakpoints, and it can be exactly constructed in polynomial time by the IPC algorithm.

Thank You!

Reporter: Chengcheng Yu