

Livro

Capítulo 4 Secção 1

Resumo

- Procura local
- Algorítmos de procura local
 - Hill-climbing
 - Simulated annealing
 - Local beam
 - Genetic algorithms

Procura Sistemática

- No capítulo 3, analisamos estratégias de procura sistemática
 - Exploram sistematicamente caminhos a partir de um estado inicial
 - Guardam um ou mais caminhos em memória
 - Guardam também as alternativas ainda não exploradas em cada ponto de decisão
 - Quando o objectivo é encontrado, o caminho para esse objectivo corresponde a uma solução para o problema

- Em muitos problemas de optimização, o caminho que leva ao objectivo é irrelevante;
 - o próprio estado objectivo é a solução (e.g., n-rainhas)
- Nestes casos, podemos usar procura local
 - Mantém um único "estado actual"; caminhos não são memorizados
 - Tipicamente, um estado transita para estados "vizinhos", substituindo o estado actual

- Vantagens
 - Usam muito pouca memoria (memoria constante)
 - Conseguem encontram soluções em espaços de estados infinitos
 - Procuras sistemáticas não
 - Boas para resolver
 - problemas de optimização
 - Encontrar o estado que maximize/minimize uma função de avaliação
 - problemas de reparação
 - Começamos de um estado inicial completo mas que não satisfaz as restrições do problema
 - Encontrar o estado que satisfaça as restrições, com o mínimo de alterações

Desvantagens

- Não podem ser aplicadas se precisarmos do caminho
- Não são normalmente completas/óptimas, pois podem ficar presas facilmente em máximos locais

 Problema: dependendo do estado inicial, pode ficar preso a um máximo local

Hill-climbing (trepar-a-colina) ou procura local ganaciosa

- É um simples ciclo que se move continuamente na direcção de um valor melhor. Termina quando nenhum sucessor tem valores melhores.
- Não guarda árvore de procura
- Não olha para além dos vizinhos imediatos
- "É como subir o Evereste com nevoeiro cerrado e amnésia" (AIMA)

Algoritmo Hill-climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
```

```
current ← Make-Node(problem.Initial-State)
loop do
```

neighbor ← a highest-valued successor of *current* if *neighbor*.Value ≤ *current*.Value then return *current*.State *current* ← *neighboor*

Examplo: N-rainhas

 Problema: Colocar as N rainhas numa matriz n × n de modo que nenhuma esteja em posição de atacar as outras

- Modelado como problema de reparação
 - Estado inicial com uma rainha por coluna gerado aleatoriamente
 - Novos estados gerados a partir de movimentos para estados vizinhos

Procura com o Hill-climbing no problema das 8 rainhas

- Função sucessor: mexer uma rainha para outra posição na mesma coluna.
- Tipicamente, o Hill-climbing escolhe aleatoriamente entre os melhores sucessores, se houver mais do que um.

Procura com o Hill-climbing no problema das 8 rainhas

- $h = n^0$ de pares de rainhas que se estão a atacar
 - No tabuleiro apresentado: h = 17
 - Num tabuleiro objectivo: h = 0
- Inteiros correspondem ao valor de h para sucessores resultantes de mover rainha na respectiva coluna (≥12)

Procura com o Hill-climbing no problema das 8 rainhas

- Mínimo local com h = 1
- Qualquer sucessor tem valor de h superior

Não encontrou solução e não evoluiu para outro estado...

Problemas Hill-climbing

- Hill-climbing tem problemas com:
 - Máximos locais pico mais elevado que todos os seus vizinhos
 - Planaltos zona do espaço de estados onde a função de avaliação é plana
 - Cumeadas sequência de máximos locais através dos quais é difícil viajar

Hill Climbing

- No caso das 8-rainhas
 - Começando num estado aleatório...
 - Só resolve 14% dos casos (necessita em média de 4 iterações)
 - Nos restantes casos fica "parado" ao fim de 3 iterações (em média)
- Como resolver estes problemas?
 - Aleatoriedade :D

Stochastic Hill climbing

- em vez de escolher o melhor nó vizinho
- escolhe aleatoriamente de entre os vizinhos que melhoram o valor actual
- probabilidade de selecção varia em função do valor da melhoria
- Converge mais lentamente para uma solução
- Mas em certos problemas obtem melhores soluções

- First-choice Hill Climbing
 - gera os sucessores aleatoriamente um de cada vez
 - se o sucessor gerado for melhor que o nó actual avança para esse sucessor
 - restantes sucessores já não vão ser gerados
 - Ideal para problemas onde o número de sucessores é muito grande ou mesmo infinito
- No entanto, estas duas variantes não resolvem o problema de máximos locais

- Random-restart Hill Climbing:
 - Se à primeira não conseguimos, tentar de novo
- conduz uma sequência de procuras hill-climbing a partir de diferentes estados iniciais
 - gerados aleatoriamente
 - pára quando se encontra o objectivo
- completa com probabilidade perto de 1
 - eventualmente, se repetirmos vezes suficientes
 - o estado inicial será o estado objectivo
- mas não chega a ser completa com 100% (só no infinito)
 - analogia com o teorema do macaco c/ tempo infinito

- Random-restart Hill Climbing:
 - Se p for a probabilidade de sucesso de cada procura Hill-climbing
 - número esperado de tentativas é 1/p
 - Exemplo 8-rainhas
 - P ~ 0.14
 - Em média são necessárias 7 tentativas (6 falhadas + 1 sucesso)
 - 22 passos para encontrar o objectivo
 - Média de 3 passos por iteração

Hill Climbing

- Apesar de tudo:
 - Converge (ou não) rapidamente
 - Por exemplo, o Random-restart Hill Climbing consegue encontrar uma solução para as n-rainhas, em menos de um minuto, mesmo para 3 milhões de rainhas.
- Boa quando
 - Espaço de estados com poucos máximos locais e planaltos
 - Random-restart contorna facilmente esses máximos locais
- Em problemas mais complexos
 - Consegue encontrar um máximo local "razoável" ao fim de poucas iterações

Procura Simulated Annealing

- Em Português: têmpera simulada
- Ideia: escapar ao mínimos locais permitindo que se façam movimentos "maus", mas vai gradualmente decrementando a sua frequência
 - Escolhe um sucessor aleatoriamente
 - Se o valor do successor é melhor que o actual movemo-nos para o successor
 - Mas mesmo que seja pior, podemos mover-nos na mesma
 - Com probabilidade p < 1,
 - Probabilidade decresce exponencialmente com a má qualidade do movimento ΔΕ
 - Probabilidade desce também com temperatura T

Procura Simulated _ Annealing

- Valores elevados da Temperatura T
 - Maus movimentos s\u00e3o facilmente permitidos
- Valores baixos da temperatura T
 - Maus movimentos não são facilmente permitidos
- Consegue-se provar que se temperatura T diminuir suficientemente devagar (em função do schedule), então a procura simulated annealing vai encontrar um máximo global com probabilidade próxima de 1
- Analogia com metalurgia (annealing)
 - Processo usado para temperar e endurecer metais e vidros
 - Aqueçe-se o material a uma temperatura muito alta
 - Deixa-se arrefecer muito devagarinho

Simulated Annealing

- Metáfora: imaginar a tarefa de pôr uma bola de ping-pong no buraco mais profundo de uma superfície cheia de buracos
- Uma solução é deixar a bola ir parar a um mínimo local e depois abanar a superfície de modo a tirá-la do mínimo local
- Simulated annealing começa por "abanar" muito no início e depois vai abanando cada vez menos

Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
   inputs: problem, a problem
            schedule, a mapping from time to "temperature"
   current ← Make-Node(problem.Initial-State)
   for t = 1 to \infty do
         T \leftarrow schedule(t)
         if T = 0 then return current
         next ← a randomly selected successor of current
         \triangle E \leftarrow next. Value - current. Value
         if \triangle E > 0 then current \leftarrow next
         else current \leftarrow next only with probability e^{\triangle E/T}
```


Local Beam (procura em banda)

- Será que não podemos gastar um pouco mais de memória?
- Ideia: guardar a referência a k estados, em vez de 1
 - Começa com k estados gerados aleatoriamente
- Em cada iteração, todos os sucessores dos k estados são gerados
- Se algum é um estado objectivo, pára; caso contrário escolhe os k melhores sucessores e repete

Procura Local Beam

- Atenção que este algoritmo é mais do que correr k Random-restart Hill Climbings em paralelo!!
 - Não têm de ser escolhidos sucessores de todos os estados
 - Se um estado gera vários bons sucessores e os outros k-1 estados não, os estados menos promissores são abandonados
- No entanto, também pode ter problemas: pode haver pouca diversidade nos k estados...
 - os k estados podem facilmente ficar concentrados numa área pequena do espaço de estados

Procura Stochastic Beam

Stochastic Beam Search

- Os k sucessores são escolhidos aleatoriamente
- Probabilidade da escolha aumenta em função da sua qualidade

- Variante da stochastic beam search
- Começa com k estados gerados aleatoriamente (população) tal como procura em banda
 - Um estado é representados como uma string sobre um alfabeto finito (geralmente {0,1})
- O estado sucessor é gerado através da combinação de dois estados (pais)
 - A função de avaliação (fitness function) dá valores mais altos aos melhores estados
 - Quanto melhor a avaliação de um estado, maior a probabilidade de ser selecionado para "procriação"
 - Produz a próxima geração de estados por selecção, cruzamento e mutação

- Fitness function (b): n^o de pares de rainhas não atacantes (min = 0, max = (8 × 7)/2 = 28)
 - Probabilidade de selecção (c) em função da fitness function
 - $Ex^0 24/(24+23+20+11) = 31\%$
 - Um estado pode ser seleccionado mais de uma vez

- O ponto de cruzamento é escolhido aleatoriamente
- São criados os filhos (d)
- Depois de criado o filho,
 - Com uma probabilidade baixa independente
 - Esse filho pode sofrer mutações aleatórias (e)

Algoritmos Genéticos: cruzamento e mutação

• Há ainda muito trabalho a fazer de modo a perceber em que condições e com que parâmetros é que os algoritmos genéticos se comportam bem