RSA Conference 2015 Singapore | 22-24 July | Marina Bay Sands

SESSION ID: MBS-F04

Mitigating Cybersecurity Threats on Mobile Platforms

Selim Aissi, Taeho Kgil, Gyan Prakash

Agenda

- Threats
- Mitigation
- Summary

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Threats

Cybersecurity Threats on Mobile Platforms

- Sensitive Information in primary stores (key, data) is leaked (Data Leakage)
- Sensitive Information for data-in-use is leaked (Data Leakage)
- Sensitive Information Not Cleared From Data-in-use (Data Leakage)
- Primary stores (key, data) are tampered with and set to deterministic state (Tampering)
- Code Module, OS platform and device is cloned (Spoofing)
- Code Module executing security capabilities tampered with (Tampering)
- Denial of Service launched on Code Module (DOS)

Best Practices for Addressing those Threats

- Setting up clear and comprehensive Security Architecture Principles
- Setting up clear, comprehensive, and achievable Security Objectives
- Defining comprehensive Mitigating Security Controls
- Translating those Controls into Platform Security Requirements

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Mitigation

Security Architecture Principles

- Apply defense in depth (complete mediation)
- Use a positive security model (fail-safe defaults, minimize attack surface)
- Fail securely
- Run with least privilege
- Avoid security by obscurity (open design)
- Keep security simple (verifiable, economy of mechanism)
- Detect intrusions (compromise recording)
- Establish secure defaults (psychological acceptability)
- Don't trust external systems

Setting the Security Objectives

- Confidentiality and integrity of cryptographic keys
- Confidentiality and integrity of cryptographic process
- Confidentiality and integrity of data-at-rest
- Confidentiality and integrity of data-in-transit
- Confidentiality and integrity of application memory & storage
- Confidentiality and integrity of virtual machine codes
- Confidentiality and integrity of user input
- Integrity of application codes

Mitigating Security Controls

Binary Immunization: resist, detect, minimize and repair from tampering

App Logic to Generate Cryptogram based on data elements in **Secure Storage**

Secure Storage: Host hardened Data, Key, Credential and DFP store

App Logic to establish mutually authenticated Secure Channel

Platform Security Requirements

- Hardware & Firmware Security
 - Secure Boot
 - SIM Card Security
 - E.g., Mobile Identity Assurance
 - Trusted Execution Environment
 - E.g., Trusted UI, Key Management, SIM lock, HD content protection
 - Mobile Device Vendor Specific Native APIs
 - E.g., SMART APIS
- OS Platform Security
 - Application Signature Verification
 - Access Control & Application Isolation
 - Integrity Framework

Summary

- Setting up clear and comprehensive Security Architecture Principles
- Setting up clear, comprehensive, and achievable Security Objectives
- Defining comprehensive Mitigating Security Controls
- Translating those Controls into Platform Security Requirements