Espace vectoriels normés

Charles Vin

2021

1 Normes

Cadre : $(E, +, \cdot)$ est un espace vectoriels (e.v.) sur \mathbb{R} .

Exemple 1.1. $-E = \mathbb{R}^n$

- $-E = \{f : \mathbb{R} \to \mathbb{R} fonctions\}$
- $-E = \mathcal{C}^0([a,b],\mathbb{R})$
- -E =ensemble des suites à valeur dans \mathbb{R}

Définition 1.1. Une **norme** sur l'e.v *E* est une application

$$\|\cdot\| : E \to [0; +\infty[$$
$$x \mapsto \|x\|$$

telle que $\forall x, y, z \in E$ et $\lambda \in \mathbb{R}$

- $\|x\| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$
- $||x+y|| \le ||x|| + ||y||$ (inégalité triangulaire)

(E, ||||) est un espace vectoriel normé (e.v.n.)

Conséquence : Un e.v.n. $(E, \|\|)$ est un espace métrique pour la distance $E \times E \to [0; +\infty[, (x, y) \mapsto x]]$ $d(x,y) = ||x_y||$. En particulier $|||x|| - ||y||| \le ||x_y||$

— $x \mapsto |x|$ norme sur $\mathbb{R} \to$ distance usuelle Exemple 1.2.

- Sur \mathbb{R}^n
- $\begin{array}{l} -\text{ Sul }\mathbb{R} \\ -\|x\|_p = (\sum_{i=1}^n |p|^p)^{1/p} \text{ norme pour } p \geq 1 \text{ (distance } d_p \text{)} \\ -\|x\|_\infty = \max\{|x_1|,\ldots,|x_n|\} \text{ norme (distance } d_\infty \text{)} \\ -\text{ Sur } C^0([a,b],\mathbb{R}) \text{ e.v des fonctions continues de } [a,b] \text{ dans } \mathbb{R} \\ -\|f\|_p = (\int_{[a,b]} |f(x)|^p \, d\lambda(x))^{1/p} \text{ norme } L^p \text{ pour } p \geq 1 \\ -\|f\|_\infty = \max\{|f(x)|,x \in [a,b]\} \text{ norme de la convergence uniforme} \end{array}$

Attention: même sur un e.v. il y a des distances qui ne viennent pas d'une norme. Par exemple sur

 $E=\mathbb{R}^2$ la distance grossière $d(x,y)=\mathbb{1}_{x\neq y}$

Définition 1.2 (normes équivalente). Les normes $\|\cdot\|$ et $\|\cdot\|'$ sont **équivalente** s'il existe des constantes strictement positives a et b telles que

$$\forall x \in E, a \|x\| \le \|x\|' \le b \|x\|.$$

ou (moins important mais ce retrouve rapidement)

$$\forall x \in E, \frac{1}{h} \|x\|' \le \|x\| \le \frac{1}{a} \|x\|'.$$

Note. Les normes peuvent être vu comme des temps de déplacement. On peut aller 2 fois plus vite, cela donne deux normes différente, mais avec les mêmes propriétés, il peut même aller entre a et b fois plus vite, ce qui redonne l'inégalité ici.

Proposition 1.1. Deux normes équivalentes induisent sur E deux distances qui donnent les mêmes voisinages, les mêmes voisinages, les mêmes fermés, les mêmes intérieurs et adhérences, les mêmes bornés, les mêmes suites convergences.

Idée de preuve : $\|x-y\| < r \Rightarrow \|x-y\|' < b_r$ donc $B_{\parallel\parallel}(x,r) \subset B_{\parallel\parallel'}(x,b_r)$ $\|x-y\|' < r' \Rightarrow \|x-y\| < \frac{1}{a}r'$ donc $B_{\parallel\parallel'}(x,r') \subset B_{\parallel\parallel}(x,\frac{r'}{a})$ donc si A est voisinage de x pour l'une des normes il l'est pour l'autre.

Théorème 1.2 ((admis)). *Si E* est un e.v.n de dimension finie

- Toutes les normes sur E sont équivalentes
- Toutes les parties fermées bornées de E sont compactes

2 Espaces de Banach

Définition 2.1 (Espace de Banach). Un **espace de Banach** est un e.v.n complet. (toutes les suites de Cauchy convergent, pour la distance induite par la normes)

Exemple 2.1 (d'espace de Banach (admis)). .

- $(\mathbb{R}^n, \|\|)$ (pour n'importe quelle norme...)
- $-C^0([a,b],\mathbb{R})$ est un Banach pour $\|\|_{\infty}$ (mais pas pour $\|\|_p$)

2.1 Pourquoi les Banach sont confortables?

Dans un Banach la convergence normale (convergence absolue pour la norme) implique la convergence :

Si
$$\sum_{k=1}^{+\infty}\|x_k\|~(\in\mathbb{R})<+\infty$$
 alors $\sum_{k=1}^{+\infty}x_k(\in E)$ existe

Preuve:

$$\sum_{k=0}^{+\infty} \|x_k\| < +\infty \Rightarrow \forall \epsilon > 0, \exists n_\epsilon \in \mathbb{N}, \forall n, m \ge n_\epsilon, \sum_{k=n+1}^m \|x_k\| < \epsilon$$
$$\|S_m - S_n\| \le \left\|\sum_{k=n+1}^m x_k\right\| \le \sum_{k=n+1}^m \|x_k\| < \epsilon$$

 $(S_n)_n$ est de Cauchy donc $(S_n)_n$ converge car $(E, \|\|)$ est complet.

3 Produit scalaire, espace de Hilbert

Définition 3.1 (Produit scalaire). Un **produit scalaire** sur l'e.v. E est une application

$$<\cdot,\cdot>: E\times E\to \mathbb{R}$$

$$(x,y)\mapsto <\cdot,\cdot>$$

Propriétés:

. — Bilinéaire :

$$\forall x \in E, y \mapsto \langle x, y \rangle$$
 linéaire $\forall y \in E, x \mapsto \langle x, y \rangle$ linéaire

- Symétrie : $\forall x, y \in E, \langle x, y \rangle = \langle y, x \rangle$
- Définie positives : $\forall x \in E, \langle x, x \rangle \geq 0 et \langle x, x \rangle = 0 \Leftrightarrow x = 0$

3.1 Inégalité de Cauchu-Schawarz

Définition 3.2 (Inégalité de Cauchu-Schawarz). Si $(E, <\cdot, \cdot>)$ est un espace préhilbertien

$$\forall x, y \in E, |\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$
 avec égalité si x et y sont liés $(\Leftrightarrow \exists \alpha, \beta \in \mathbb{R} \setminus \{(0, 0)\}, \alpha x + \beta y = 0)$

Preuve:

$$0 \le \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle$$
.

Equation du second degrés de discriminant négatif (car équation positive) : $4 < x, y >^2 -4 < x, x > 0$

Corollaire. Tout espace préhilbertien est un e.v.n pour la norme $||x|| = \sqrt{\langle x, x \rangle}$ (et on retrouve la forme habituelle de l'inégalité de Cauchy-Schwarz)

Preuve: A faire seul, pas trop dur, il faut utiliser Cauchy-Schwarz pour l'inégalité triangulaire. □

Définition 3.3 (Espace de Hilbert). Un **espace de Hilbert** est un espace préhilbertien $(E, <\cdot, \cdot>)$ qui est complet pour la norme $\|\cdot\| = \sqrt{<\cdot, \cdot>}$ (i.e. qui est un Banach)

Résumé de tous nos espaces

$$(E,d)$$
 espace métrique o Si les suite de cauchy convergent o (E,d) Espace métrique complet o $d(x,y) = \|x-y\|$ $(E,\|\cdot\|)$ e.v.n o Si les suite de cauchy convergent o Espace de Banach

$$\Downarrow ||x|| = \sqrt{\langle x, x \rangle}$$

$$(E,<\cdot,\cdot>)$$
 préhilbertien \longrightarrow Si les suite de cauchy convergent \longrightarrow Espace de Hilbert

4 Application linéaires

Rappel : f linéaire de l'e.v. E vers l'e.v E' si

$$\forall x, y \in E, f(x+y) = f(x) + f(y)$$
$$\forall x \in E, \forall \lambda \in \mathbb{R} f(\lambda x) = \lambda f(x)$$

Proposition 4.1. Pour f linéaire de E vers (E', ||||') les propriétés suivantes sont équivalentes

- 1. f est continue sur E
- 2. f est continue en un point x de E
- 3. f est bornée sur la boule unité fermée $\bar{B}_{\parallel\parallel}(0,1)$
- 4. Il existe une constante K telle que $\forall x \in E, \|f(x)\|' < K \|x\|$
- 5. f est lipschitzienne

Idée de preuve : $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$

$$\begin{split} \|f(x)-f(y)\|' &= \|f(x-y)\|' = \left\|\|x-y\| \, f(\frac{x-y}{\|x-y\|})\right\|' \, \mathsf{car} \, x-y = \|x-y\| \, \frac{x-y}{\|x-y\|} (=1) \\ & |\|x-y\|| \, \left\|f(\frac{x-y}{\|x-y\|})\right\|' \\ &\leq \|x-y\| \, \sup\{\|f(u)\|', u \in E \, \mathsf{tel} \, \mathsf{que} \, \|u\| \leq 1\} \\ &\leq \|x-y\| \, \sup_{\bar{B}_{\parallel\parallel}(0,1)\|f\|'} (\, \mathsf{le} \, \mathsf{sup} = \mathsf{constante} \, \mathsf{de} \, \mathsf{lipschitz}) \end{split}$$

Corollaire. Si f est une application linéaire sur un e.v.n. de dimension finie, alors f est continue

Preuve :
$$f(x) = \sum_{i=1}^n x_i f(e_i)$$
 où (e_1, \dots, e_n) base de l'e.v. et $x = \sum_{i=1}^n x_i e_i$

$$\|f(x)\|' \le \sum_{i=1}^n |x_i| \|f(e_i)\|' \le \|x\|_{\infty} \sum_{i=1}^n \|f(e_i)\|'$$
 (la somme représente la constante de lipschitz)

Théorème 4.2 (de Riesz (admis)). Si $(E, <\cdot, \cdot>)$ est un espace de Hilbert, toute forme (application à valeur dans $\mathbb R$) linéaire continue sur E est le produit scalaire avec un vecteur de E fixé :

$$\forall f: E \to \mathbb{R} \ \textit{lin\'eaire continue}, \exists x_f \in E, f: E \to \mathbb{R}$$

$$y \mapsto f(y) = < x_f, y > m$$

i.e.

$$\begin{split} E \to E^* &= \{f: E \to \mathbb{R} \text{ lin\'eaire continues}\} \\ x \mapsto \begin{pmatrix} E \to \mathbb{R} \\ y \mapsto < x, y > \end{pmatrix} \end{split}$$

est une bijection.