

Pengolahan Citra Digital Pertemuan 10

Segmentasi Citra

Tim Pengampu Mata Kuliah PCD

Content

1

Sensitivitas Operator Deteksi Tepi

2

Global Thresholding

3

Mean Clustering

Sensitivitas Deteksi Tepi

$$P = \frac{\left| n_N - n_R \right|}{n_R}$$

dimana:

nR: jumlah piksel yang dinyatakan sebagai tepi pada citra referensi

nN: jumlah piksel yang dinyatakan sebagai tepi pada citra noisy

Nilai *P* yang besar menyatakan sensitivitas detector tepi yang tinggi terhadap *noise*.

Sensitivitas Deteksi Tepi

Contoh:

Sebuah citra grayscale dideteksi tepinya menggunakan operator Robert, Prewitt, dan Sobel. Kemudian pada tiaptiap citra hasil deteksi tepi tersebut dihitung jumlah pikselnya menghasilkan R1 = 1,6620e+005, P1 = 4,9862e+005, dan S1 = 6,8239e+005. Setelah itu citra grayscale tadi diberi noise "Salt & Pepper" dengan kerapatan 0,05 dan dideteksi tepinya menggunakan operator deteksi tepi yang sama, ternyata menghasilkan jumlah piksel R2 = 4,9661e+005, P2 = 1,2007e+006, dan S2 = 1,6786e+006. Operator manakah yang memiliki sensitivitas tertinggi ?

Sensitivitas Deteksi Tepi

Perhitungan sensitivitas:

Hasil
$$P_R = \frac{|4,9661 - 1,6620|}{1,6620} = 1,9881$$

$$P_P = \frac{\left|12,007 - 4,9862\right|}{4,9862} = 1,4081$$

$$P_S = \frac{\left|16,786 - 6,8239\right|}{6,8239} = 1,4599$$

Tampak bahwa sentitivitas operator Robert yang memiliki nilai paling tinggi.

Global Thresholding

Global Thresholding

Langkah-langkah dalam menentukan threshold T adalah sebagai berikut:

- 1. Pilih nilai T awal yaitu nilai rata-rata dari intensitas citra.
- 2. Bagi citra menjadi dua daerah, misalnya R1, dan R2, menggunakan nilai T awal yang telah ditentukan.
- 3. Hitung nilai rata-rata intensitas $\mu 1$, dan $\mu 2$ masing-masing untuk daerah R1, dan daerah R2
- 4. Hitung nilai threshold yang baru dengan rumus
- 5. Ulangi langkah 2 sampai 4 hingga nilai-nilai μ1, dan μ2 tidak berubah lagi. Saat itulah nilai T merupakan nilai yang dicari.

Global Thresholding

Contoh:

Sebuah citra grayscale 3 bit (8 warna – dari 0 sampai 7) akan disegmentasi menggunakan metode *Global Thresholding*, tentukan hasilnya.

1	1	1	3	1	4	4	4	1	0
3	5	3	5	5	5	5	7	7	0
0	0	0	2	2	6	ю	6	6	6
5	5	4	4	4	4	4	4	7	33
2	2	0	0	0	0	1	1	1	1
7	5	5	5	7	7	7	ю	33	m
3	3	3	33	3	3	3	ത	7	5
5	5	5	5	5	5	5	5	2	M
0	0	0	0	0	0	4	4	4	4
3	3	3	Ø	33	1	1	1	ю	2

Langkah-langkah

1	1	1	3	1	4	4	4	1	0
3	5	3	5	5	5	5	7	7	0
0	0	0	2	2	6	б	6	6	6
5	5	4	4	4	4	4	4	7	3
2	2	0	0	0	0	1	1	1	1
7	5	5	5	7	7	7	6	3	3
3	3	3	3	3	3	3	3	7	5
5	5	5	5	5	5	5	5	2	3
0	0	0	0	0	0	4	4	4	4
3	3	3	3	3	1	1	1	6	2

Untuk menyelesaikan masalah tersebut, pertamakali buatlah table frekuensi dari kemunculan setiap warna seperti berikut

Warna (x)	0	1	2	3	4	5	6	7
Jumlah (y)	15	12	6	20	13	19	7	8

Kemudian hitung rata-rata intensitasnya,

$$Rata = \frac{15x0 + 12x1 + 6x2 + 20x3 + 13x4 + 19x5 + 7x6 + 8x7}{100} = 3,29 \approx 3$$

Ambil, threshold T = rata-rata = 3

Iterasi ke-1

Ambil da erah R₁? T dan R₂ > T, maka:

	R	-1			R	-2	
0	1	2	3	4	5	б	7
15	12	6	20	13	19	7	8

$$\mu_1 = \frac{15x0 + 12x1 + 6x2 + 20x3}{53} = 1,58$$

$$\mu_2 = \frac{13x4 + 19x5 + 7x6 + 8x7}{47} = 5,21$$

$$T = \frac{\mu_1 + \mu_2}{2} = \frac{1,58 + 5,21}{2} = 3,395 \approx 4$$

Langkah-langkah

Itera*s*i kæ-2

Ambil daerah R₁? T dan R₂ > T, maka :

		R_1				R_2	
0	1	2	3	4	5	б	7
15	12	б	20	13	19	7	8

$$\mu_{\mathbf{i}} = \frac{15x0 + 12x1 + 6x2 + 20x3 + 13x4}{66} = 2,06$$

$$\mu_1 = \frac{19x5 + 7x6 + 8x7}{34} = 5,67$$

$$T = \frac{\mu_1 + \mu_2}{2} = \frac{2,06 + 5,67}{2} = 3,865 \approx 4$$

Iterasi ke-3

Ambil daerah R₁? T dan R₂ > T, maka:

		R_1				R_2	
0	1	2	3	4	5	б	7
15	12	б	20	13	19	7	8

$$\mu_{1} = \frac{15x0 + 12x1 + 6x2 + 20x3 + 13x4}{66} = 2,06$$

$$\mu_2 = \frac{19x5 + 7x6 + 8x7}{34} = 5,67$$

$$T = \frac{\mu_1 + \mu_2}{2} = \frac{2,06 + 5,67}{2} = 3,865 \approx 4$$

FAKULTAS ILMU KOMPUTER

Sampai disini nilai μ_1 dan μ_2 tidak berubah, jadi nilai T=4. Terapkan nilai threshold ini sehingga menjadi:

			R_1				R_2	
ı	0	1	2	3	4	5	б	7
ı	0	0	0	0	0	1	1	1

Jadi milai-nilai piksel 0, 1, 2, 3, dan 4 diganti dengan 0 dan milai-nilai piksel 5, 6, dan 7 diganti dengan 1, sehingga citra berubah menjadi :

FAKULTAS ILMU KOMPUTER

1	1	1	3	1	4	4	4	1	0
3	5	3	5	5	5	5	7	7	0
0	0	0	2	2	6	6	6	6	6
5	5	4	4	4	4	4	4	7	3
2	2	0	0	0	0	1	1	1	1
7	5	5	5	7	7	7	6	3	3
3	3	3	3	3	3	3	3	7	5
5	5	5	5	5	5	5	5	2	3
0	0	0	0	0	0	4	4	4	4
3	3	3	3	3	1	1	1	6	2

0	0	0	0	0	0	0	0	0	0
0	1	0	1	1	1	1	1	1	0
0	0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	1	1
1	1	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0

Mean Clustering

Mean Clustering

- 1. Cari intensitas minimum dan maksimum dari citra
- 2. Lakukan pembagian histogram menjadi sejumlah N cluster. Jumlah N inilah yang nantinya akan menentukan jumlah obyek yang diharapkan ada pada citra
- 3. Tentukan nilai intensitas rata-rata setiap cluster secara random
- 4. Lakukan penelusuran untuk seluruh piksel, bandingkan nilai intensitas piksel ini dengan intensitas rata-rata pada setiap cluster.
- 5. Masukkan piksel ke cluster terdekat (selisih antara intensitas rata-rata dengan intensitas piksel dipilih yang paling minimal).
- 6. Hitung nilai rata-rata intensitas yang baru untuk setiap cluster
- 7. Ulangi langkah (d) sampai (f) dan berhenti bila tidak ada lagi piksel yang pindah ke cluster lain, atau sampai batasan iterasi tertentu, atau sampai ditemukan selisih antara *mean* yang lama dengan yang baru mencapai suatu nilai tertentu
- 8. Ganti intensitas seluruh piksel dalam cluster-cluster tersebut dengan intensitas rata-rata dari cluster masing masing

Mean Clustering

Contoh:

Sebuah citra grayscale 3 bit (8 warna) akan disegmentasi menggunakan metode *Mean Clustering* dengan jumlah kluster N = 3, tentukan hasilnya.

1	1	1	3	1	4	4	4	1	0
3	5	3	5	5	5	5	7	7	0
0	0	0	2	2	6	6	6	6	б
5	5	4	4	4	4	4	4	7	3
2	2	0	0	0	0	1	1	1	1
7	5	5	5	7	7	7	6	3	3
3	3	3	M	3	3	M	M	7	5
5	5	5	5	5	5	5	5	2	33
0	0	0	0	0	0	4	4	4	4
3	3	3	3	3	1	1	1	6	2

Untuk menyelesaikan masalah tersebut, pertamakali buatlah table frekuensi dari kemunculan setiap warna seperti berikut

Warna (x)	0	1	2	3	4	5	б	7
Jumlah (y)	15	12	6	20	13	19	7	8

Citra tersebut akan dibagi menjadi 3 kluster (N1, N2, dan N3). Misalkan rata-rata tiap-tiap kluster tersebut adalah (dipilih secara random)

$$R_1 = 2$$
 $R_2 = 4$ $R_3 = 6$

FAKULTAS ILMU KOMPUTER

Itera*s*i ke-1

Masukkan piksel ke cluster terdekat (selisih antara intensitas rata-rata dengan intensitas piksel dipilih yang paling minimal). Intensitas 0, 1, 2 dekat dengan R_1 , intensitas 3, 4, dan 5 dekat dengan R_2 , dan intensitas 6 dan 7 dekat dengan R_3 , jadi :

]	$R_1 = 2$?	I	$R_2 = 4$			$R_3 = 6$		
0	1	2	3	4	5	6	7		
15	12	6	20	13	19	7	8		

Hitung rata-rata kluster yang baru:

$$R_1 = \frac{15x0 + 12x1 + 6x2}{33} = 0.7 \approx 1$$

$$R_2 = \frac{20x3 + 13x4 + 19x5}{52} = 3.98 \approx 4$$

$$R_3 = \frac{7x6 + 8x7}{15} = 6.5 \approx 7$$

Iterasi ke-2

Masukkan piksel ke cluster terdekat (selisih antara intensitas rata-rata dengan intensitas piksel dipilih yang paling minimal). Intensitas 0, 1, 2 dekat dengan R1, intensitas 3, 4, dan 5 dekat dengan R2, dan intensitas 6 dan 7 dekat dengan R3, jadi

$R_1 = 1$			$R_2 = 4$			$R_3 = 7$		
0	1	2	3	4	5	6	7	
15	12	6	20	13	19	7	8	

Hitung rata-rata kluster yang baru:

$$R_1 = \frac{15x0 + 12x1 + 6x2}{33} = 0.7 \approx 1$$

$$R_2 = \frac{20x3 + 13x4 + 19x5}{52} = 3.98 \approx 4$$

$$R_3 = \frac{7x6 + 8x7}{15} = 6.5 \approx 7$$

Sampai disini sudah tidak ada lagi piksel yang berpindah ke kluster yang lain, sehingga proses iterasi dihentikan. Ini berarti inttensitas 0, 1, 2 diganti $R_1 = 1$, intensitas 3, 4, dan 5 diganti $R_2 = 4$ dan intensitas 6, dan 7 diganti $R_3 = 7$, sehingga citra berubah menjadi :

Hasil

1	1	1	3	1	4	4	4	1	0
3	5	3	5	5	5	5	7	7	0
0	0	0	2	2	6	6	6	6	б
5	5	4	4	4	4	4	4	7	3
2	2	0	0	0	0	1	1	1	1
7	5	5	5	7	7	7	6	33	3
3	3	3	3	3	3	3	3	7	5
5	5	5	5	5	5	5	5	2	3
0	0	0	0	0	0	4	4	4	4
3	3	3	3	3	1	1	1	6	2

Citra asli sebelum clustering

Citra setelah di cluster dengan N=3

Sekian

TERIMAKASIH