

Winning Space Race with Data Science

Patrick Demario 22 February 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection via API and Web Scraping
 - Data Wrangling
 - Data analysis with Python & SQL
 - Machine Learning Prediction

- Summary of all results
 - Result of Data Analysis
 - Predictive Analysis
 - Interactive

Introduction

• Space X's Falcon 9 cost \$62 Million much cheaper than other providersWe want to know if this information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and Wikipedia
- Perform data wrangling
 - Hot Encoding
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Get Request of the SpaceX API
- Decode the JSON content using .json() function
- Clean the data

Data Collection – SpaceX API

 This is how data collection with SpaceX REST calls using key phrases and flowcharts

 https://github.com/vellosOx1/IBM-Coursera-Final-Course/blob/main/jupyter-labsspacex-data-collection-api.ipynb

Data Collection - Scraping

 This is how web scraping process using key phrases and flowcharts

https://github.com/vellos0x1
/IBM-Coursera-FinalCourse/blob/main/jupyterlabswebscraping%20(3).ipynb

Data Wrangling

- Perform Data Analysis and determined the train label
- Calculate the launches, and quantity of orbits
- Create the landing outcome label and then export as .csv
- https://github.com/vellos0x1/IBM-Coursera-Final-Course/blob/main/jupyter-labs-webscraping%20(3).ipynb

EDA with Data Visualization

- We use scatter plots because it's the best chart to visualize the data of flight number and site, payload, success rate, and the orbit type
- https://github.com/vellos0x1/IBM-Coursera-Final-Course/blob/main/jupyter-labs-webscraping%20(4).ipynb

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
- Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose
- IBM WATSON STUDIO stopped working so theres nothing in here

Build an Interactive Map with Folium

- The map objects such as markers, circles, and lines to mark the success or failure of each launch
- https://github.com/vellosOx1/IBM-Coursera-Final-Course/blob/main/lab jupyter launch site location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

- We use Pie Charts to show total launches of sites and Scatter Graphs for Payload mass for different boosters
- https://github.com/vellosOx1/IBM-Coursera-Final-Course/blob/main/spacex dash app.py

Predictive Analysis (Classification)

- Load numpy and pandas, transform data, split into train and test.
- You need present your model development process using key phrases and flowchart
- https://github.com/vellosOx1/IBM-Coursera-Final-Course/blob/main/IBM-DSO321EN SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.j upyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

IBM WATSON STUDIO stopped working so theres nothing in here

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

IBM WATSON STUDIO stopped working so theres nothing in here

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

IBM WATSON STUDIO stopped working so theres nothing in here

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

IBM WATSON STUDIO stopped working so theres nothing in here

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

IBM WATSON STUDIO stopped working so theres nothing in here

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

IBM WATSON STUDIO stopped working so theres nothing in here

All Launch Site Names

- KSC LC 39A
- CCAFS LC 40
- CCAFS SLC 40
- VAFB SLC 4E

Launch Site Names Begin with 'CCA'

• I have issues with my IBM Watson Studio so here is the top 5 Launch sites with names begin with 'CCA'

Total Payload Mass

• I have issues with my IBM Watson Studio so here is the total sum of payload mass in the spreadsheet. The total payload Mass is 619967 KGs or 619.967 Tonnes

=SUM([PAYLOA	D_MASSKG_])		
ooster_Version	Launch_Site -	Payload	PAYLOAD_MASSKG_
B5 B1058.3	KSC LC-39A	Starlink 12 v1.0, Starlink 13 v1.0	1560
B5 B1051.6	KSC LC-39A	Starlink 13 v1.0, Starlink 14 v1.0	15600
B5B1061.1	KSC LC-39A	Crew-1, Sentinel-6 Michael Freilich	12500
B5 B1058.4	KSC LC-39A	SpaceX CRS-21	2972
v1.1 B1003	VAFB SLC-4E	CASSIOPE	500
v1.1 B1017	VAFB SLC-4E	Jason-3	553
FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600
FT B1036.1	VAFB SLC-4E	Iridium NEXT 2	9600
FT B1038.1	VAFB SLC-4E	Formosat-5	475
B4 B1041.1	VAFB SLC-4E	Iridium NEXT 3	9600
FT B1036.2	VAFB SLC-4E	Iridium NEXT 4	9600
FT B1038.2	VAFB SLC-4E	Paz Tintin A & B	2150
B4 B1041.2	VAFB SLC-4E	Iridium NEXT 5	9600
B4 B1043.2	VAFB SLC-4E	Iridium NEXT 6 GRACE-FO 1, 2	6460
B5B1048.1	VAFB SLC-4E	Iridium NEXT-7	9600
B5 B1048.2	VAFB SLC-4E	SAOCOM 1A	3000
B5 B1046.3	VAFB SLC-4E	SSO-A	4000
B5 B1049.2	VAFB SLC-4E	Iridium NEXT-8	9600
B5 B1051.2	VAFB SLC-4E	RADARSAT Constellation, SpaceX CRS-18	4200
B5B1063.1	VAFB SLC-4E	Sentinel-6 Michael Freilich, Starlink 15 v1.0	1192
			619967

Average Payload Mass by F9 v1.1

• I have issues with my IBM Watson Studio so here is the average payload by F9 v1.1 mass in the spreadsheet. The average payload Mass is 2843.6 KGs or 2.84 Tonnes

7 03/12/2013	22:41:00 F9 v1.1	CCAFS LC-40	SES-8	3170
8 06/01/2014	22:06:00 F9 v1.1	CCAFS LC-40	Thaicom 6	3325
9 18/04/2014	19:25:00 F9 v1.1	CCAFS LC-40	SpaceX CRS-3	2296
10 14/07/2014	15:15:00 F9 v1.1	CCAFS LC-40	OG2 Mission 1 6 Orbcomm-OG2 satellites	1316
11 05/08/2014	08:00:00 F9 v1.1	CCAFS LC-40	AsiaSat 8	4535
12 07/09/2014	05:00:00 F9 v1.1 B1011	CCAFS LC-40	AsiaSat 6	4428
13 21/09/2014	05:52:00 F9 v1.1 B1010	CCAFS LC-40	SpaceX CRS-4	2216
14 10/01/2015	09:47:00 F9 v1.1 B1012	CCAFS LC-40	SpaceX CRS-5	2395
15 11/02/2015	23:03:00 F9 v1.1 B1013	CCAFS LC-40	DSCOVR	570
16 02/03/2015	03:50:00 F9 v1.1 B1014	CCAFS LC-40	ABS-3A Eutelsat 115 West B	4159
17 14/04/2015	20:10:00 F9 v1.1 B1015	CCAFS LC-40	SpaceX CRS-6	1898
18 27/04/2015	23:03:00 F9 v1.1 B1016	CCAFS LC-40	Turkmen 52 / MonacoSAT	4707
19 28/06/2015	14:21:00 F9 v1.1 B1018	CCAFS LC-40	SpaceX CRS-7	1952

First Successful Ground Landing Date

• I have issues with my IBM Watson Studio so here is the first successful ground landing date. Which is on 22/12/2015

Successful Drone Ship Landing with Payload between 4000 and 6000

- I have issues with my IBM Watson Studio so here is the successful drone ship landing with payload between 4000 & 6000
- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- I have issues with my IBM Watson Studio so here is the total number of successful and failure missions
- Success 100 (1 success with payload unknown status)
- Failure 1 (failure inlfight)

							_
▲ A	В С	D	E	F G	Н	l	J
Date ▼ 1	Time (UTC) ▼ Booster_Versior ▼	Launch_Site ▼	Payload 🔻	PAYLOAD_MASSKG_▼ Orbit ▼	Customer	Mission_Outcome -	Landing _Outco
28/06/2015	14:21:00 F9 v1.1 B1018	CCAFS LC-40	SpaceX CRS-7	1952 LEO (ISS)	NASA (CRS)	Failure (in flight)	Precluded (dron
04/06/2010	18:45:00 F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0 LEO	SpaceX	Success	Failure (parachu
08/12/2010	15:43:00 F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere chees	0 LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachu
18/04/2018	22:51:00 F9 B4 B1045.1	CCAFS SLC-40	Transiting Exoplanet Survey Satellite (TESS)	362 HEO	NASA (LSP)	Success	Success (drone:
24/08/2017	18:51:00 F9 FT B1038.1	VAFB SLC-4E	Formosat-5	475 SSO	NSPO	Success	Success (drone:
08/10/2012	00:35:00 F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500 LEO (ISS)	NASA (CRS)	Success	No attempt
29/09/2013	16:00:00 F9 v1.1 B1003	VAFB SLC-4E	CASSIOPE	500 Polar LEO	MDA	Success	Uncontrolled (o
22/05/2012	07:44:00 F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525 LEO (ISS)	NASA (COTS)	Success	No attempt
17/01/2016	18:42:00 F9 v1.1 B1017	VAFB SLC-4E	Jason-3	553 LEO	NASA (LSP) NOAA CNES	Success	Failure (drone s
11/02/2015	23:03:00 F9 v1.1 B1013	CCAFS LC-40	DSCOVR	570 HEO	U.S. Air Force NASA NOAA	Success	Controlled (ocea
01/03/2013	15:10:00 F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677 LEO (ISS)	NASA (CRS)	Success	No attempt
21/11/2020	17:17:08 F9 B5B1063.1	VAFB SLC-4E	Sentinel-6 Michael Freilich, Starlink 15 v1.0	1192 LEO	NASA / NOAA / ESA / EUMETSAT	Success	Success
14/07/2014	15:15:00 F9 v1.1	CCAFS LC-40	OG2 Mission 1 6 Orbcomm-OG2 satellites	1316 LEO	Orbcomm	Success	Controlled (ocea
14/04/2015	20:10:00 F9 v1.1 B1015	CCAFS LC-40	SpaceX CRS-6	1898 LEO (ISS)	NASA (CRS)	Success	Failure (drone s
07/03/2020	04:50:00 F9 B5 B1059.2	CCAFS SLC-40	SpaceX CRS-20, Starlink 5 v1.0	1977 LEO (ISS)	NASA (CRS)	Success	Success
22/12/2015	01:29:00 F9 FT B1019	CCAFS LC-40	OG2 Mission 2 11 Orbcomm-OG2 satellites	2034 LEO	Orbcomm	Success	Success (ground
22/02/2018	14:17:00 F9 FT B1038.2	VAFB SLC-4E	Paz Tintin A & B	2150 SSO	Hisdesat exactEarth SpaceX	Success	No attempt
15/12/2017	15:36:00 F9 FT B1035.2	CCAFS SLC-40	SpaceX CRS-13	2205 LEO (ISS)	NASA (CRS)	Success	Success (ground
21/09/2014	05:52:00 F9 v1.1 B1010	CCAFS LC-40	SpaceX CRS-4	2216 LEO (ISS)	NASA (CRS)	Success	Uncontrolled (or
18/07/2016	04:45:00 F9 FT B1025.1	CCAFS LC-40	SpaceX CRS-9	2257 LEO (ISS)	NASA (CRS)	Success	Success (ground
25/07/2019	22:01:00 F9 B5 B1056.2	CCAFS SLC-40	SpaceX CRS-18, AMOS-17	2268 LEO (ISS)	NASA (CRS)	Success	Success
18/04/2014	19:25:00 F9 v1.1	CCAFS LC-40	SpaceX CRS-3	2296 LEO (ISS)	NASA (CRS)	Success	Controlled (ocea
10/01/2015	09:47:00 F9 v1.1 B1012	CCAFS LC-40	SpaceX CRS-5	2395 LEO (ISS)	NASA (CRS)	Success	Failure (drone s
19/02/2017	14:39:00 F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490 LEO (ISS)	NASA (CRS)	Success	Success (ground
04/05/2019	06:48:00 F9 B5B1056.1	CCAFS SLC-40	SpaceX CRS-17, Starlink v0.9	2495 LEO (ISS)	NASA (CRS)	Success	Success
05/12/2018	18:16:00 F9 B5B1050	CCAFS SLC-40	SpaceX CRS-16	2500 LEO (ISS)	NASA (CRS)	Success	Failure
05/12/2019	17:29:00 F9 B5B1059.1	CCAFS SLC-40	SpaceX CRS-19, JCSat-18 / Kacific 1	2617 LEO (ISS)	NASA (CRS), Kacific 1	Success	Success
02/04/2018	20:30:00 F9 B4 B1039.2	CCAFS SLC-40	SpaceX CRS-14	2647 LEO (ISS)	NASA (CRS)	Success	No attempt
29/06/2018	09:42:00 F9 B4 B1045.2	CCAFS SLC-40	SpaceX CRS-15	2697 LEO (ISS)	NASA (CRS)	Success	No attempt
03/06/2017	21:07:00 F9 FT R1035 1	KSC LC-39A	SpaceX CRS-11	2708 LEO (ISS)	NASA (CRS)	Success	Success (ground

Boosters Carried Maximum Payload

I have issues with my IBM Watson Studio so here are the boosters that carried the maximum payload

4	Α	В	С	D	E	F	
1	Date ▼	Time (UTC) ▼	Booster_Versior ▼	Launch_Site ▼	Payload ▼	PAYLOAD_MASS_	_KG _. →
2	17/02/2020	15:05:00	F9 B5 B1056.4	CCAFS SLC-40	Starlink 4 v1.0, SpaceX CRS-20		15600
3	18/03/2020	12:16:00	F9 B5 B1048.5	KSC LC-39A	Starlink 5 v1.0, Starlink 6 v1.0		15600
4	11/11/2019	14:56:00	F9 B5 B1048.4	CCAFS SLC-40	Starlink 1 v1.0, SpaceX CRS-19		15600
5	07/01/2020	02:33:00	F9 B5 B1049.4	CCAFS SLC-40	Starlink 2 v1.0, Crew Dragon in-flight abort test		15600
6	29/01/2020	14:07:00	F9 B5 B1051.3	CCAFS SLC-40	Starlink 3 v1.0, Starlink 4 v1.0		15600
7	04/06/2020	01:25:00	F9 B5 B1049.5	CCAFS SLC-40	Starlink 7 v1.0, Starlink 8 v1.0		15600
8	24/10/2020	15:31:34	F9 B5 B1060.3	CCAFS SLC-40	Starlink 14 v1.0, GPS III-04		15600
9	25/11/2020	02:13:00	F9 B5 B1049.7	CCAFS SLC-40	Starlink 15 v1.0, SpaceX CRS-21		15600
10	22/04/2020	19:30:00	F9 B5 B1051.4	KSC LC-39A	Starlink 6 v1.0, Crew Dragon Demo-2		15600
11	03/09/2020	12:46:14	F9 B5 B1060.2	KSC LC-39A	Starlink 11 v1.0, Starlink 12 v1.0		15600
12	06/10/2020	11:29:34	F9 B5 B1058.3	KSC LC-39A	Starlink 12 v1.0, Starlink 13 v1.0		15600

- F9 B5 B1056.2
- F9 B5 B1056.3
- F9 B5 B1056.4
- F9 B5 B1056.5
- F9 B5 B1056.7

2015 Launch Records

- I have issues with my IBM Watson Studio so here is the name of the boosters that has failure while landing in drone ship in the year 2015
- F9 v1.1 B1015
- F9 v.1.1 B1012

14/04/2015	20:10:00 F9 v1.1 B1015	CCAFS LC-40	SpaceX CRS-6	1898 LEO (ISS)	NASA (CRS)	Success	Failure (drone s
10/01/2015	09:47:00 F9 v1.1 B1012	CCAFS LC-40	SpaceX CRS-5	2395 LEO (ISS)	NASA (CRS)	Success	Failure (drone s

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Present your query result with a short explanation here

Map Markers

Color Labels

Landmarks near the Launch site

Pie Chart of the Successful Launch Rate

Pie Chart of the launch site with the highest success rate

Payload vs Launch Outcome Scatter Plot

• We can see the success rate for lower payload is higher than higher payload

Classification Accuracy

Best params is : {'criterion': 'gini', 'max depth': 6, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 5, 'splitter': 'random'}

Decision tree is the highest accuracy

Best model is DecisionTree with a score of 0.8732142857142856

Confusion Matrix

• This Matrix shows the classifier can distinguish between different classes of success rates of the launch site.

Conclusions

- SpaceX is improving their launch success rates as seen from 2013-2020 with increasing in launch rates.
- Site KSC LC-39A has the most launch success rate
- Decision tree classifier is the most accurate ML method

