Ackermann's Function

The Ackermann's function is defined by the following recurrence relation:

$$A(1.j) = 2^j \text{ for } j \ge 1$$

$$A(i, 1) = A(i - 1, 2)$$
 for $i \ge 2$

$$A(i,j) = A(i-1,A(i,j-1))$$
 for $i,j \ge 2$

Use the recurrence relation to fill up as many values as you can in the table below. Start with Row 1 and work your way up to larger values of i and j.

Ackermann Table					
i/j	1	2	3	4	
1	٢	K	^	14	• • •
2	4	14	Y 14	r 19	a 6
3.	14				

What pattern emerges in Row 2?

$$A(r,j) = r^{A(r,j-1)}$$