Geometría Afín II: Sistema de referencia baricéntrico.

- **1.** Sean A = (1, 1, 1), B = (1, 2, 3), C = (2, 3, 1) y D = (3, 1, 2) cuatro puntos de $\mathbb{A}^3(\mathbb{R})$ dados por sus coordenadas cartesianas respecto a un sistema de referencia \mathcal{R} .
- a) Demuestra que $\mathcal{R}' = \{A, B, C, D\}$ es un sistema de referencia baricéntrico.
- b) Calcula las coordenadas cartesianas respecto a \mathcal{R} del baricentro de A, B, C, D.
- c) Si $\mathcal{R} = \{O; \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$, halla las coordenadas baricéntricas de O respecto a \mathcal{R}' .
- 2. Demuestra que en $\mathbb{A}^2(\mathbb{R})$ los puntos medios de cualquier cuadrilátero forman un paralelogramo.
- 3. Sean O un punto y \overrightarrow{u} y \overrightarrow{v} dos vectores linealmente independientes. A todo escalar λ , se le asocian los puntos A y B tales que

$$\overrightarrow{OA} = \lambda \overrightarrow{u}, \quad \overrightarrow{OB} = \lambda \overrightarrow{v}.$$

Determina el baricentro de A y B en función de λ .

4. Halla las ecuaciones baricéntricas del plano que contiene a la recta

$$r \equiv \frac{x-1}{3} = \frac{y+2}{-1} = z$$

y al punto P = (-1, -2, 5) en $\mathbb{A}^3(\mathbb{R})$.

5. Sea $\mathbb A$ un $\mathbb K$ -espacio afín de dimensión n y $A_0, \ldots A_k \in \mathbb A$. Dado $X \in \mathbb A$, supongamos que existe $P \in \mathbb A$ y $\alpha_0, \ldots \alpha_k \in \mathbb K$ tales que

$$\overrightarrow{PX} = \alpha_0 \overrightarrow{PA_0} + \alpha_1 \overrightarrow{PA_1} + \dots + \alpha_k \overrightarrow{PA_k}$$

$$\alpha_0 + \alpha_1 + \dots + \alpha_k = 1.$$
(*)

Demostrar:

- a) La expresión (*) es válida, con los mismos coeficientes, cambiando P por cualquier $Q \in \mathbb{A}$.
- b) Si $\{A_0, \ldots, A_k\}$ son afínmente independientes, los valores $\alpha_0, \ldots \alpha_k$ son únicos.
- **6.** Cambio de coordenadas baricentricas a cartesianas: Sea \mathbb{A} un espacio afín de dimensión n, $\mathcal{R}_b = \{A_0, \ldots, A_n\}$ un sistema de referencia baricéntrico de \mathbb{A} y $\mathcal{R} = \{\mathcal{O}; \mathcal{B}\}$ un sistema de referencia cartesiano de \mathbb{A} . Supongamos que las coordenadas de los puntos A_i con respecto a \mathcal{R} son

$$A_i = (\alpha_{1i}, \dots, \alpha_{ni})_{\mathcal{R}}, \qquad i = 0, \dots, n.$$

Entonces si $X = (\beta_0, \dots, \beta_n)_{\mathcal{R}_b}$, demostrar que se tiene

$$X = \left(\sum_{i=0}^{n} \beta_i \alpha_{1i}, \dots, \sum_{i=0}^{n} \beta_i \alpha_{ni}\right)_{\mathcal{R}}.$$

Es decir, si $X = (\gamma_1, \dots, \gamma_n)_{\mathcal{R}}$ y denotemos por $C_{\mathcal{R}_b\mathcal{R}} = (\alpha_{ij}), i = 0, \dots, n, j = 1, \dots, n$ se tiene:

$$\begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix} = C_{\mathcal{R}_b \mathcal{R}} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix}.$$

- 7. Sea \mathbb{A} un \mathbb{K} -espacio afín de dimensión n y $p_0, \dots p_r \in \mathbb{A}$. Llamemos $(x_{kj})_{0 \le j \le n}$ a las coordenadas de cada punto p_k en un sistema de referencia baricéntrico \mathcal{R} . Sea la matriz $M = (x_{ij}), 0 \le j \le n, 0 \le i \le r$.
- a) Sea $\mathcal{L}(\{p_0, p_1, \dots, p_r\})$ la mínima variedad lineal que contiene a los puntos p_0, p_1, \dots, p_r . Demostrar la siguiente igualdad

$$\dim(\mathcal{L}(\{p_0, p_1, \dots, p_r\})) + 1 = \operatorname{rg}(M).$$

- b) Supongamos r = n. Comprueba que, para que los n+1 puntos $p_0, \dots p_n$ sean afinmente independientes es necesario y suficiente que $\det(M) \neq 0$.
- 8. Cambio de coordenadas baricentricas: Sea \mathbb{A} un espacio afín de dimensión n, $\mathcal{R}_b = \{A_0, \dots, A_n\}$ y $\mathcal{R}'_b = \{A'_0, \dots, A'_n\}$ dos sistemas de referencia baricéntricos de \mathbb{A} . Supongamos que las coordenadas de los puntos A'_i con respecto a \mathcal{R}_b son

$$A'_i = (\alpha_{0i}, \dots, \alpha_{ni})_{\mathcal{R}_b}, \qquad i = 0, \dots, n.$$

Entonces si $X = (\beta_0, \ldots, \beta_n)_{\mathcal{R}'_h}$, demostrar que se tiene

$$X = \left(\sum_{i=0}^{n} \beta_i \alpha_{0i}, \dots, \sum_{i=0}^{n} \beta_i \alpha_{ni}\right)_{\mathcal{R}_{\perp}}.$$

Es decir, si $X = (\gamma_0, \dots, \gamma_n)_{\mathcal{R}_b}$ y denotemos por $C_{\mathcal{R}_b'\mathcal{R}_b} = (\alpha_{ij}), i = 0, \dots, n, j = 0, \dots, n$. se tiene:

$$\begin{pmatrix} \gamma_0 \\ \vdots \\ \gamma_n \end{pmatrix} = C_{\mathcal{R}_b' \mathcal{R}_b} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix}.$$

9. En $\mathbb{A}^2(\mathbb{R})$, considera los puntos P_0, P_1, P_2, Q_0, Q_1 y Q_2 , cuyas coordenadas cartesianas en el sistema de referencia cartesiano $\mathcal{R}_C = \{P_0; \overrightarrow{e_1}, \overrightarrow{e_2}\}$ son las siguientes:

$$P_0 = (0,0),$$
 $P_1 = (1,7),$ $P_2 = (1,1)$
 $Q_0 = (-1,1),$ $Q_1 = (1,4),$ $Q_2 = (3,0)$

- a) Demuestra que los puntos de $\mathcal{R}' = \{P_0, P_1, P_2\}$ son afínmente independientes. Demuestra que los puntos de $\mathcal{R}'' = \{Q_0, Q_1, Q_2\}$ son afínmente independientes.
- b) Halla las coordenadas baricéntricas de P_0 , P_1 y P_2 respecto a \mathcal{R}'' y las de Q_0 , Q_1 y Q_2 respecto a \mathcal{R}' .

Considera los sistemas de referencia cartesianos $\mathcal{R}'_C = \{P_0; \overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}\}\ y\ \mathcal{R}''_C = \{Q_0; \overrightarrow{Q_0Q_1}, \overrightarrow{Q_0Q_2}\}.$

- c) Calcula las coordenadas cartesianas de Q_0, Q_1 y Q_2 respecto a \mathcal{R}'_C y las de P_0, P_1 y P_2 respecto a \mathcal{R}''_C .
- d) Describe las ecuaciones generales de cambio de coordenadas cartesianas entre \mathcal{R}'_C y \mathcal{R}''_C .
- e) Describe las ecuaciones generales de cambio de coordenadas baricéntricas entre \mathcal{R}' y \mathcal{R}'' .