Paper Reading Seminar

Yan Wang

October 3, 2012

Distributed Computer Vision Algorithms Through Distributed Averaging

- Intuition: make linear algebra algorithms distributed + CV applications
- Outline
 - Basic distributed algorithms
 - Linear algebra algorithms
 - Applications in CV

Basic distributed algorithm

- Basic assumption
 - Several computation nodes with limited computation power as well as battery
 - Not fully connected: info can only propagated among neighbors

Basic distributed algorithm

- Averaging a number x
 - ▶ Iterative algorithm: averaging among neighbors

$$x(t+1) = x(t) + \epsilon \sum_{j \in N_i} \left(x_j(t) - x_i(t)\right)$$

► Easily extended to vectors/matrices

Basic distributed algorithm

► Get the min/max

$$x_i(t+1) = \min_{j \in \{N_i \bigcup i\}} x_j(t)$$

- Covariance
 - $A = \begin{bmatrix} A_1^T & A_2^T & \cdots & A_N^T \end{bmatrix}^T \in \mathbb{R}^{n \times m}$
 - Compute $C = \frac{1}{N}A^TA$

$$C = \frac{1}{N} \sum_{i} A_{i}^{T} A_{i}$$

- ► Compute $C_i = A_i^T A_i$, and then average among all the nodes
- ▶ Only meaning for when $rank(C) \ll n$

Linear algebra algorithms

SVD

$$A = U\Sigma V^T$$

- Compute $C = A^T A$
- ▶ Locally compute C's SVD: $C = V(\frac{1}{N}\Sigma^2)V^T$
- Recover U_i locally: $U_i = A_i V \Sigma^{-1}$

Linear algebra algorithms

- PCA
 - Compute the average of $A \Rightarrow$ do data centralization
 - Compute covariance matrix $C = A^T A$
 - ▶ Local SVD decomposition: $C = U\Sigma U^T \Rightarrow \text{get the basis}$
 - Compute the new representation: $\hat{A} = A^T \hat{U}$

Linear algebra algorithms

- ► Least square estimation
 - $x_0 = \arg\min_{x} ||Ax b||^2$
 - $x_0 = \arg\min_x ||A^T A x A^T b||^2$ (is this true?)
 - \triangleright A^TA and A^Tb easy to compute distributedly
 - Can be solved locally
 - (Not very clear)

Applications in CV

- ▶ Point triangulation
- ▶ Linear pose estimation
- Structure from Motion

Coherency Sensitive Hashing

- A simple introduction
- Find ANN for local patches
- ▶ Naive baseline: brute-force match in the feature space
- PatchMatch: like Genetic Algorithm
 - ► Hold a candidate pool
 - ▶ If two patches in two images are similar, include nearby patches in the pool
 - Randomly add patch pairs in the pool to get rid of (too) local minima.

Approach

- Hashing + more sophisticated candidate expansion
 - ▶ Hashing: LSH + 2D Walsh Hadamard Kernel
 - Candidate expansion
 - $g_A(a) = g_B(b) \Rightarrow \text{include } b \text{ in Cand}(a)$
 - ▶ $b \in \mathsf{Cand}(a_1), g_A(a_1) = g_A(a_2) \Rightarrow \mathsf{include}\ b \mathsf{ in } \mathsf{Cand}(a_2)$
 - ▶ $b_1 \in \mathsf{Cand}(a_2), g_B(b_1) = g_B(b_2) \Rightarrow \mathsf{include}\ b_2 \mathsf{in}$ $\mathsf{Cand}(a_2)$
 - Include spatial neighbor pairs in the candidates
 - Still need to do verifications on the candidate set