Aula 30: Problemas P, NP, NP-árduos, e NP-completos

Uma breve introdução

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemática Aplicada

Plano

Introdução

Arcabouço teórico

Arcabouço teórico

A classe de problemas ${\cal P}$

A classe de problemas \mathcal{NP}

NP-completeza Redução Definição e exemplo

Referência: Cormen, cap 36.

Introdução

- Considere os seguintes problemas:
 - ▶ Determinar se um grafo G = (V, E) é Hamiltoniano: \exists uma sequência de arestas que visita cada vértice exatamente uma vez, e volta ao vértice inicial
 - ▶ Dado um circuito combinacional, formado por portas lógicas (and, or, not), com n entradas e uma única saída, determine se existe uma combinação de valores na entrada tal que a saída é 1.
 - ▶ Dado um conjunto de números V₁, V₂,... V_n, e um valor N, determine se existe um subconjunto cuja soma é V.
- Para nenhum desses problemas conhece-se um algoritmo de complexidade polinomial
- Se existe um algoritmo de complexidade polinomial para um, então existe um algoritmo polinomial para os demais.
- Qual é a teoria envolvida nesses resultados surpreendentes?
- ▶ Classes de problemas \mathcal{P} , \mathcal{NP} ; problemas \mathcal{NP} -completos; problemas \mathcal{NP} -árduos.

Princípios

- É considerado tratável um problema para o qual existe um algoritmo com complexidade polinomial $(O(n^k))$
 - ▶ na prática k é geralmente "pequeno"
- É considerado intratável um problema para o qual só são conhecidos algoritmos com complexidade não polinomial $(O(k^n))$
- Motivação
 - abordagens heurísticas
 - consciência desta barreira teórical (provável)

Arcabouço teórico

- problemas de decisão
 - ▶ saída: sim / não
 - exemplo (circuito combinacional): existe uma valoração das entradas tal que a saída é 1.
- instâncias de problemas são codificadas, digamos em binário
 - (prática: entrada é uma sequência de bits)
 - complexidade é função do tamanho desta codificação
- um conjunto de instâncias
 - ▶ ≡ um conjunto de palavras binárias
 - ightharpoonup \equiv uma linguagem sobre $\{0,1\}$
- ▶ a cada problema de decisão P corresponde uma linguagem L
- ▶ decidir uma instância / de P
 - ▶ ≡ decidir se uma palavra pertence à linguagem

Problemas de decisão

- ▶ E se o problema não for de decisão?
- Geralmente existe um problema de decisão relacionado
- Exemplo
 - original Qual o tamanho do menor caminho entre dois vértices u e v de um grafo sem pesos?
 - decisão Existe um caminho de u até v passando por exatamente k arestas?

Decisão e aceitação

Definição (Decisão)

O algoritmo A decide L quando, dado uma palavra x, ou A aceita x, ou A rejeita x: A termina e retorna 1 ou 0.

Definição (Decisão em tempo polinomial)

O algoritmo A decide L em tempo polinomial quando existe k tal que, dado x uma palavra de tamanho n, A decide se $x \in L$ em $O(n^k)$.

Definição (Aceitação)

O algoritmo A aceita L quando, dado uma palavra $x \in L$, A aceita x. Se $x \notin L$, ou A rejeita x, ou A não termina.

Definição (Aceitação em tempo polinomial)

O algoritmo A aceita L em tempo polinomial quando existe k tal que, dado $x \in L$ uma palavra de tamanho n, A aceita x em $O(n^k)$

Decisão e aceitação

Definição (Decisão)

O algoritmo A decide L quando, dado uma palavra x, ou A aceita x, ou A rejeita x: A termina e retorna 1 ou 0.

Definição (Decisão em tempo polinomial)

O algoritmo A decide L em tempo polinomial quando existe k tal que, dado x uma palavra de tamanho n, A decide se $x \in L$ em $O(n^k)$.

Definição (Aceitação)

O algoritmo A aceita L quando, dado uma palavra $x \in L$, A aceita x. Se $x \notin L$, ou A rejeita x, ou A não termina.

Definição (Aceitação em tempo polinomial)

O algoritmo A aceita L em tempo polinomial quando existe k tal que, dado $x \in L$ uma palavra de tamanho n, A aceita x em $O(n^k)$.

Decidir é mais "difícil" que aceitar?

A classe de problemas ${\cal P}$

Definição (A classe de problemas \mathcal{P})

A classe de problemas de decisão polinomiais é $\mathcal{P}=\{L\subseteq\{0,1\}^*$ existe um algoritmo que decide L em tempo polinomial $\}$.

Teorema

A classe de problemas \mathcal{P} é a classe de problemas que são aceitos em tempo polinomial.

Verificação

Definição (Verificação)

O algoritmo A verifica L quando, dado uma palavra $x \in L$, e um certificado y, A(x,y) = 1.

O algoritmo de verificação confere se uma instância x pertence à linguagem com base uma evidência y.

Definição (A classe de problemas \mathcal{NP})

A classe de problemas \mathcal{NP} é a classe de problemas L tais que existe um algoritmo de verificação polinomial.

Definição (A classe de problemas co- \mathcal{NP})

A classe de problemas co- \mathcal{NP} é a classe de problemas L tais que existe um algoritmo de verificação polinomial para \bar{L} .

Relação entre classes de problemas

- $ightharpoonup \mathcal{P} \subseteq \mathcal{NP}, \, \mathcal{P} \subseteq \text{co-}\mathcal{NP}$
- $\triangleright \mathcal{P} = \mathcal{NP}$?
- $P = \mathcal{NP} \cap \text{co-}\mathcal{NP}?$

Redução entre problemas

Definição (Redução entre problemas)

Um problema (linguagem) L_1 é redutível polinomialmente em um problema L_2 se existe uma função f calculável em tempo polinomial tal que $\forall x \in \{0,1\}^* \cdot x \in L_1 \iff f(x) \in L_2$.

- ▶ Solucionar L_1 não é mais difícil que solucionar L_2 .
- Notação: L₁ ≤_P L₂

Redução e ${\mathcal P}$

Lema

Seja $L_1, L_2 \subseteq \{0,1\}^*$, tais que $L_1 \leq_P L_2$. Então $L_2 \in \mathcal{P} \Rightarrow L_1 \in \mathcal{P}$.

\mathcal{NP} -completeza

Definição (\mathcal{NP} -árduo)

 $L\subseteq\{0,1\}^*$ é \mathcal{NP} -árduo se, para cada $L'\in\mathcal{NP}$, $L'\leq_P L$.

Definição (\mathcal{NP} -completo)

 $L\subseteq\{0,1\}^*$ é \mathcal{NP} -completo se

- 1. $L \in \mathcal{NP}$, e
- 2. $L' \leq_P L$, para cada $L' \in \mathcal{NP}$ ($L \in NP$ -árduo)
 - ightharpoonup O problema SAT de determinar se um dado circuito lógico pode ter a sua saída setada a um é um problema \mathcal{NP} -completo.
 - ▶ Há centenas de outros problemas computacionais que foram mostrados como send \mathcal{NP} -completos.