

CONTENIDO

WATER

Objetivo del diseño experimental

102 Potencial de Hidrógeno - pH

03 Metodología

Q4 Resultados del experimento

05 Conclusiones

01 Objetivo del diseño experimental

Validar el efecto en la variación del pH producto de los cambios en los niveles de la temperatura, la salinidad y por el tipo de agua.

02 Potencial del Hidrógeno (pH)

El potencial de Hidrogeno (pH) es una medida que indica la acidez o la alcalinidad del agua (H2O). Se define como la concentración de iones hidrógeno (H+) en el agua.

Figura 1. Escala de pH (Química y algo más, 2011).

02 Potencial del Hidrógeno (pH)

pH y el agua para consumo humano

El rango óptimo generalmente aceptado para el pH en el agua para consumo humano, puede estar entre 6.5 a 9.5

pH y la temperatura

Cuando hay un incremento en la temperatura, el pH disminuye, de igual forma una disminución de temperatura implica un aumento en el pH

pH y la salinidad

Las sales son electrolitos fuertes que se disocian por completo en el agua, para formar sus correspondientes iones.

03 Metodología

Tres distintos tipos de agua

- Embotellada Cristal
- Embotellada Alpina
- Agua ANDA

Dos rangos de temperatura

- Helada: entre 1 y 7 grados Celsius.
- Ambiente: entre 23
 y 29 grados Celsius

Rangos de salinidad

1 onza de sal común por cada 100 ml de muestra de H₂O.

- *Ninguna*: 0 onzas de sal/100 ml de agua
- Alta: 1 onza de sal/100 ml de agua.

03 Metodología

Resumen del diseño experimental

Unidad experimental

Agua apta para consumo humano, a la cual tiene acceso la población en el área metropolitana de San Salvador.

Factores y niveles

Tipos de agua, nivel de temperatura del agua y nivel de salinidad agregada al agua.

Variable de respuesta

pH del agua.

- Salinidad base de las muestras
- Uso de sal común e impurezas presenten en la sal común a utilizar, y sustancias químicas presentes en el agua.
- Diferencia en la calidad de cada tipo de agua y material de embotellado para cada tipo de agua
- De fondo
- Temperatura ambienta durante la toma de datos
- No utilización de cristalería de alta precisión
- Uso de medidor de temperatura de tipo laser no invasivo con precisión de ± 2%
- Utilización de medidor de pH digital portátil tipo "lápiz" de precisión de hasta ± 0.1 pH.
- Entre otras.

04 Resultados del experimento

El estadístico utilizado es el diseño factorial de un modelo general.

Análisis de significancia

Factor o interacción	p-valor
Temperatura	3.24 E -6
Salinidad	1.34 E -11
Tipo de agua	2.95 E -5
Interacción entre la Temperatura y el tipo de agua	1.21 E -6

Fuente: Elaboración propia con resultados de RStudio V5.12

Comprobación de supuestos

	Supuesto	Prueba estadística	p-valor
1	Normalidad	Anderson-Darling	0.8267
2	Homocedasticidad	Prueba de Bartlett	0.6394
3	Independencia	Test de Durbin-Watson	0.7418
4	Aditividad (Test de Tukey)	Temperatura y Salinidad Temperatura y Tipo de Agua Tipo de Agua y Salinidad	0.9646 0.4120 0.8887

Fuente: Elaboración propia con resultados de RStudio V5.12

04 Resultados del experimento

Evaluación de los efectos

Factor estadísticamente significativo	Porcentaje de variabilidad explicada en la variable de respuesta	Tamaño del efecto
Temperatura	7.79%	Pequeño
Salinidad	70.54%	Grande
Tipo de agua	6.65%	Pequeño
Interacción entre la Temperatura y el tipo de agua	12.33%	Mediano

Fuente: Elaboración propia con resultados de RStudio V5.12

Variación del pH respecto a la salinidad y tipo de agua

04 Resultados del experimento

Pruebas multimedia

Temperatura

La variación en el nivel de pH en el agua, de acuerdo con el cambio en el nivel de temperatura, fue en promedio de 0.385834 unidades de pH.

Salinidad

La variación en el nivel de pH en el agua, de acuerdo con el cambio en la concentración de NaCl (salinidad), fue en promedio de 1.160834 unidades de pH.

Tipo de agua

La variación en el nivel de pH en el agua, de acuerdo con el tipo de agua, fue en promedio de:

- Entre Alpina y ANDA = 0.2350 unidades de pH.
- Entre Alpina y Cristal = 0.436250 unidades de pH.
- Entre ANDA y Cristal = 0.201250 unidades de pH.

05 Conclusiones

01

Existe un efecto sobre la variación de pH del agua, debido al cambio de los niveles de temperatura establecidos en el experimento.

03

El cambio en los tipos de agua utilizados en el experimento tiene un efecto sobre la variación del pH.

02

El cambio en los niveles de salinidad del experimento causa un cambio en la variación del pH del agua.

04

La interacción de la temperatura con el tipo de agua tiene un efecto sobre la variación del pH.

Refefencias bibliográficas

- [1] Fernandez Cirelli A, 2012, "El agua: un recurso esencial," Quimicaviva, vol. 11, no. 3, pp. 147-170.
- [2] Química y algo más, «Química y algo más,» 2011. [En línea]. Available: https://quimicayalgomas.com/quimica-general/acidos-y-bases-ph-2/.
- [3] Water Boards, «California Water Boards,» 2022. [En línea]. Available: https://www.waterboards.ca.gov/.
- [4] OMS, Guías para la calidad del agua potable, Tercera ed., vol. 1, Organización Mundial de la Salud, 2006.
- [5] E. Pérez López, «Control de calidad en aguas para consumo humano en la región occidental de Costa Rica,» Tecnología en Marcha, 2016.
- [6] HANNA, «La Temperatura afecta el pH del Agua,» 2022. [En línea]. Available: https://www.hannacolombia.com/blog/post/39/la-temperatura-afecta-el-ph-del
 - agua#:~:text=Cuando%20hay%20un%20incremento%20en,sus%20elementos%3A%20hidr%C3%B3geno%20y%20ox%C3%ADgeno..
- [7] EII, «Escuela de Ingenierías Industriales,» 2022. [En línea]. Available: http://www.eis.uva.es/organica/practicas/P4-Hidrolisis.pdf.
- [8] J. M. Calahorra, «ejercicios-fyq.com,» 2009. [En línea]. Available: https://ejercicios-fyq.com/Grafica-de-solubilidad-a-partir-de-datos.

