Benchmark

Sebastian Gjertsen

29. oktober 2016

Problem Defintion

Domain

The computational domain resembles the classic cfd benchmark with an added bar, with dimensions: The box: L=2.5, H=0.41 The bar: l=0.35, h=0.02 The circle is positioned at $(0.2,\,0.2)$ making it 0.05 of center from bottom to top, this is done to induce oscillations to a otherwise laminar flow.

Fluid Structure Interaction Problem formulation

We define the fluid domain as Ω^f and structure domain as Ω^s and the part where the fluid and structure interact Γ^0 . We denote Γ^1 as the "ceiling"and floor"and the circle and $\Gamma^{2,3}$ as the inlet and outlet. We define the displacement d^s and displacement velocity w in the structure as:

$$d^{s}(\mathbf{X}, t) = \chi^{s}(\mathbf{X}, t) - \mathbf{X}$$
$$w(\mathbf{X}, t) = \frac{\partial \chi^{s}(\mathbf{X}, t)}{\partial t}$$

where **X** denote a material point in the reference domain and χ^s denotes the mapping from the reference configuration. The velocity in the fluid is denoted $u(\mathbf{X},t)$ We define the deformation gradient $F = I + \nabla d$ and J = det(F) We express the solid balance laws in the Lagrangian formulation from the initial configuration

$$J\rho_s \frac{\partial^2 d}{\partial t^2} = \nabla \sigma_s(d) in \Omega^s$$

The fluid equations are denoted from the initial configuration:

$$\rho_s \left(\frac{\partial u}{\partial t} + (\nabla u) F^{-1} (u - w) = J^{-1} \nabla \cdot (J \sigma_f F^{-T}) \quad in \Omega^f$$

$$\nabla \cdot (J u F^{-T}) = 0 \quad in \quad \Omega^f$$

$$\nabla^2 d = 0 \quad in \quad \Omega^f$$

Boundary conditions:

$$u=u0 \quad on \ \Gamma^2$$

$$u=0 \quad on \ \Gamma^1$$

$$\sigma_f n_s = \sigma_s n_f \quad on \ \Gamma^0(interface)$$