

УНИВЕРСИТЕТ ИТМО

Курс «Системы на кристалле»

Лекция 4 Технологии верификации, отладки и тестирования СнК

Быковский С.В

e-mail: sergei_bykovskii@itmo.ru

Санкт-Петербург, 2019

Ситуации нарушения функционирования

ГОСТ 27.002-2015 Надежность в технике. Основные понятия. Термины и определения

- Отказ событие, заключающееся в нарушении работоспособного состояния объекта.
 - явный/скрытый отказ
 - перемежающийся отказ
 - деградационный отказ
 - и др.
- Сбой Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.

Причины отказов

1. Ошибки проектирования

- Ошибки спецификации
- Ошибка в выборе проектных решений

2. Ошибки реализации

- Ошибки технологии производства
- Ошибки кодирования/программирования
- Инструментальная ошибка (работа компилятора, RTL-синтезатора и др.)

3. Условия эксплуатации

- Приобретаемые ошибки (старение, воздействие радиации и др.)
- Ошибки внешних воздействий (форматы данных, непрогнозируемая последовательность стимулов и др.)

1. Невычислительные отказы

• Отказы элементной базы

2. Вычислительные отказы

 Нарушение алгоритмов функционирования системы

Верификация, валидация и тестирование

- **▼ Верификация** проверка соответствия параметров функционирования системы требованиям спецификации.
- ▼ Валидация подтверждение того, что продукт соответствует требованиям эксплуатации.
- ▼ Тестирование метод исследования системы посредством помещения её в различные ситуации и наблюдения за изменением её характеристик.

Связь понятий: верификация, отладка, валидация

Жизненный цикл проекта СнК

Формальные методы

Динамические методы верификации

Пример задания утверждений (assertion)

Производится проверка, что после сигнала req должен следовать ack. Это должно быть обязательно выполнено перед любым следующим req.


```
sequence s transfer;
 req ##1 !req [*1:max] ##0 ack;
endsequence
property p_transfer;
 @(posedge clk)
  disable iff (reset)
   req |-> s_transfer;
endproperty
a transfer:
 assert property(p_transfer)
  else $error("illegal transfer");
```

Пример задания рандомизированных значений

```
module test;
class randValues;
  rand int data in;
  constraint c {
    data in dist {
      [-30000:30000]:=1,
      [70000: 100000] := 1
endclass
```

```
randValues r;
initial begin
 r = new();
 repeat(5) begin
  r.randomize();
  $display("R value = %d",
r.data in);
 end
end
```

endmodule

Варианты симуляции

Базовые:

- SIL (software in the loop) тестируем программную модель аппаратуры. Окружение либо моделируем, либо берем реальное.
- HIL (hardware in the loop) тестируется реальная аппаратура. Внешнее окружение задается моделью.

Частные:

- MIL (model in the loop) объектом тестирования является модель.
- PIL (processor in the loop) объектом тестирования является реальный процессор.

Инфраструктура тестирования (UVM)

UVM (Universal Verification Methodology) — это технология повторного использования тестового окружения, а не технология/методология тестирования/верификации

Cadence

Mentor

2005

VMM

URM

AVM

2006 2007

OVM

UVM

2008 2009 2010 2011 2012

Metric driven verification (Cadence)

Доля пропущенных ошибок перед началом натурных испытаний

- доля "пропущенных" ошибок
- доля микросхем, перевыпущенных из-за ошибок данного типа

Верификация СнК на этапе натурных испытаний

Преимущества

- Система функционирует в реальном времени
- Система работает в реальных, либо максимально приближенным к реальным условиям

Особенности

- Возможно наблюдать только за ограниченным количеством элементов системы
- Необходимо создавать специальные вычислительные средства для наблюдения, которые являются частью самой системы
- Один тест ни о чем не говорит. Необходимо проводить множественное тестирование.

Средства натурной верификации СнК

Внешние средства

- Логические анализаторы
- Осциллографы
- Анализаторы спектра

Встроенные средства

- Встроенные логические анализаторы
- Встроенные средства протоколирования событий
- Мониторы-утверждения

Преимущества

• Не надо проектировать диагностическую подсистему. Требуется иметь измерительный прибор.

Преимущества

 Возможно наблюдать за «быстрыми» внутренними сигналами со скоростью работы системы

ARM CoreSight

Мониторы-утверждений (assertion checkers)

Компиляторы мониторовутверждений:

- MBAC
- BusMOP
- FoCs

Checkers in Formal Verification

Model Check the Property: G !AsrError

Checkers in Dynamic Verification

Simulate DUV+Checker: trace

Мониторы-утверждений

Средства исправления ошибок на этапе эксплуатации (hardware patch)

Средства исправления ошибок на этапе эксплуатации (hardware patch)

Спасибо за внимание!

sergei_bykovskii@itmo.ru