

CORES TG – September 4 2023

Arjan Bink
Jérôme Quevremont
Davide Schiavone

Agenda

- 10xEngineers roadmap on CVA6
- Thales design in on CVA6
- CV-X-IF project concept at Sept. 25th TWG meeting
- CV32E40X / CV32E40S status
- CV32E40P status
- Core overview

Participants

10xE CVA6 Roadmap

Fatima SaleemSr. Engineer

Open Source: Contributions & Experience

- Added support for Bit Manipulation extensions (Zba, Zbb, Zbc, Zbs) in CVA6 and verified it using the RISC-V Architectural Compliance tests (PR#878)
 - Added 43 instructions in total, and made the implementation parameterisable for XLEN 64 & 32 with clean synthesis
 - Updated the core-v-verif infrastructure to run the architectural compliance tests for bitmanip (PR#1254)
- Resolved over ~100 Lint warnings in CVA6 (<u>PR#1150</u>, <u>PR#1268</u>, <u>PR#1280</u>,
 <u>PR#1297</u>, <u>PR#1303</u>) (<u>issue#1155</u>)
- Developed MMU Architectural DV Plan and documented it in VPTOOL (PR#1789)

Open Source: Contributions & Experience (CVA6+CVVEC)

- Added support for 17 vector instruction to make ARA Compatible with RVV1.0
 - Vector Fixed Point vsmul, vssra, vssrl, vnclup, vnclipu (PR#147)
 - Vector Mask vmsbf.m, vmsif, vmsof.m, viota.m,vid, vpopc, vfirst (PR#149, #178)
 - Vector Permutations vrgather, vcompress(PR<u>#180</u>)
 - Vector Floating Point vfrec7.v, vfsqrt.v, vfncvt.rod.f.f.w (PR#184 #191 #201)
- Added support for single lane configuration and added support for shorter vector Lengths VLEN = 128,256,512 (PR#194)
- Added Design <u>Documentation</u> of ARA

Client work: Contributions & Experience

Integrated CVA6 in a system with a custom vector accelerator

- Enhanced CVA6 issue and load store logic to have the memory accesses consistency between scalar and vector loads and stores
- Shared CVA6 MMU for the address translation of vector load/store accesses
- Design and Verification of the RISC-V Vector Processor's Load/Store Unit
- Bringup of SV based verification environment for Questa/Vivado simulation
- Implemented co-simulation environment using SystemC for RTL vs an ISS model

Current Commitments

- Writing self-checking tests to execute MMU architectural testplan (Q3 2023)
- Resolve the remaining lint issues (Q3 2023)
 - Close the remaining open issues related to lint warnings
- Design Documentation of MMU (Q3 2023)
- Boot linux on ARA (CVA6+CVVEC) (Q4 2023)
 - Add Virtual Memory Support by Sharing CVA6 MMU for address translation of vector load/store
 - Verify the support for exceptions/interrupts and shared MMU

Current Commitments

- SV/UVM Agent for Micro-architectural Verification of MMU (Q1 2024)
 - Plan is to test MMU mircro-arch using coverpoints and passive SV/UVM agent that would simply monitor the RTL and model transactions and broadcast it to the checker for comparison
 - Monitor would get the transactions from MMU and broadcast it to the scoreboard or checker
 - Model will contain tasks to mimic the MMU HW
 - Scoreboard/Checker would compare the transactions that it would get from the MMU model and MMU RTL

Potential Future Roadmap

- Adding support for extensions
 - Add support for Zicond (Conditional Ops) extension (Q3 2023)
 - Pending Verification
 - Add support for Code Size Reduction extensions (Zca, Zcb, Zcd, Zce, Zcf, Zcmp, Zcmt) (Q4 2023)
 - Add support for Bfloat16 Extensions (Zfbfmin, Zvfbfmin, Zvfbfwma) (TBD)
- Performance modeling and performance improvement
 - Enabling Dual issue, and renaming
 - Exploring the idea of updating the performance model for CVA6, which will help to identify the performance bottlenecks

Design-in: CVA6 embedded configuration

Jean-Roch COULON - THALES (TSS)

Recent Design-in: THALES TSS plans to insert cva6 in its own products

Embedded configuration

- Embedded configuration requests Design and Verification work
- Main Challenges are (in order):
 - ➤ **Power:** 32bits, smaller I and D caches, no FPU, only Machine mode, no perf counters, exception gate count reduction, AXI simplification, (Dual issue?)
 - > Security: PMP (out of MMU), no debug mode, CVXIF
 - > Performance: (Data scratch pad?), bare metal, (ZBitmanip and Zicond extensions?)
 - > Code size: C, Zc extensions
- Features are RTL options
- Start project for Dual Issue, will be presented in Aug 28th TWG

Next steps?

- TRISTAN RISC-V
- cv32a60x verification (step1) is on-going, step2 and step3 were planned
- Thales TSS plans to use CV32A6_embedded for industrial product: design and verification tasks
- 10xEngineers presented its roadmap
- BOSCH, Axellera,... could join the project

CV-X-IF Project Concept

- The TRISTAN and ISOLDE European cooperative projects will work on the CV-X-IF specifications
 - E.g. addressing gaps...
 - Public work
 - Led by Christian Herber, NXP
- OpenHW members are welcome to join the initiative
- Next:
 - Project Concept at TWG Meeting
 - Monday 25th September, 16:00 CEST, 10:00 am EDT
 - Details in https://calendar.google.com/calendar/u/0/r?cid=meetings@openhwgroup.org

CV32E40X / CV32E40S status

Øystein Knauserud

© OpenHW Group

16

CV32E40X and CV32E40S

- Cleanup
 - TODO removal
 - Lint cleaning
- Bugfixes
- Spec updates (CLIC and debug)
- Standardized way of killing multicyle instructions
 - Power saving in DIV/MUL
- User Manual updates

Timeline

- Both cores delayed until Q4 2023
 - Major unfinished work is the extension interface
 - Outstanding bugs, want to do a major rewrite of the implementation
 - Likely to prioritize other things above XIF, further delay expected.
 - Unratified CLIC and debug specifications

February 2023

CV32E40Pv2 status

Pascal Gouédo

Yoann Pruvost

Xavier Aubert

© OpenHW Group April 3, 2023

Project

- Project
 - Design & Verification meeting
 - Wednesday 14:00 CET every 2 weeks(<u>Ical</u>)
 - Dedicated technical meetings when needed
 - Reporting to Cores TG
- Mattermost channels
 - TWG: Cores: CV32E4*P
 - TWG: Verification

- Resources
 - Pascal Gouédo
 - Specification, Design, Verification & Formal
 - Yoann Pruvost
 - Design, Verification & Formal
 - Xavier Aubert
 - Verification leader
 - Vaibhav Jain
 - Verification
 - Bao Shan Mak
 - Verification
- OpenHW staff
 - Mike Thompson
 - Verification support
 - Davide Schiavone
 - Architecture & Design support

September 4, 2023

User Manual

- Updates since cv32e40p_v1.3.0 creation
 - v1.3.1
 - HWloop start and end address registers 2 LSBs hardwired to 0
 - v1.3.2
 - Fixed some instructions ambiguity, corrected cv.avg emulation
 - Added pseudo-instructions section and re-ordered all sections
 - Added a note about post-incremented loads GPR write priority
 - Added a constraint about HWloop start, and and setup instructions alignment
 - Changed parameters values for Zfinx CSR presence
 - v1.4.0
 - Updated mimpid description
 - Renamed cv.slet/cv.sletu to cv.sle/cv.sleu
 - Aligned Post-Increment Load/Store instructions syntax with respect to proposals and final vote
 - Moved Synthesis Guidelines from Introduction section to Core Integration one
 - v1.4.1 (to create once PRs merged in master)
 - Added some additional information on HW loop constraints
 - Verification section elaborated (a little bit)

Formal Verification

- RV32IMC[F|Zfinx]X_Zicsr_Zifencei (all but DIV/SQRT results)
 - 18 bugs
 - F instructions decoding
 - F instructions result impact on pipeline
 - FFLAGS not correctly set
 - Missing MSTATUS.FS and SD (when Zfinx = 0)
 - FMUL.S wrong result

- Intensive debug and bug correction
 - All bugs corrections confirmed formally and pushed on git repo

© OpenHW Group October 3, 2022

Design

- CVFPU v0.8.0 release created
 - Integrated new single-precision divider from T-Head OpenE906
 - 2 bugs corrected (<u>#86 #90</u>)
- CVFPU v0.8.1 release created
 - Fix Underflow flag for MUL and DIV/SQRT operations (#94 #726 #729)
 - Fix for Float to Int conversion (#97 #83 #727)
- Core
 - Moved from PULP_ZFINX to v1.0 ZFINX, moved PULP_XPULP to COREV_PULP, PULP_CLUSTER to COREV_CLUSTER in all RTL files
 - Updated MISA value and make MSTATUS.FS/SD ZFINX dependent
 - Renamed cv32e40p_wrapper to cv32e40p_top, added a clock gating cell for FPU in cv32e40p_top
 - HWloop start and end address registers 2 LSBs hardwired to 0
 - Added new ZFINX CSR
 - Aligned uhartid, privly and zfinx CSR addresses to v1.3.0 user manual
 - HW loop count decrementing to 0 after the end of body execution
 - Removed HW loop constraints hardware check
 - Vendorized CVFPU 0.8.0 and then 0.8.1
 - Corrections of 18 bugs found by formal verification

Tools

- SW toolchain deliveries:
 - 4 releases since April
 - Remaining
 - Automatic generation of HW loop instructions by GCC compiler
- Imperas
 - 5 Reference Model releases since April
 - 2 PULP riscvISACOV coverage files releases since April

Verification (1)

- Verification test plans
 - Mike & Mario feedback integration on-going
- core-v-verif environment
 - COREV-DV supporting all PULP instructions and Zfinx extension
 - Scenarios implemented to match DV Plan requirements (~2000 tests)
 - Switch to ImperasDV pushed in central repo
 - Switch to RVVI interface took way longer than planned but this work is behind us
 - Instructions and Functional Coverage
 - Standard & PULP instructions riscvISACOV files received from ImperasDV. Enabled in core-v-verif with ISS
 - Coverage collection will start in coming weeks
 - Additional PULP functional coverage will be added to ISACOV according to test plans
 - Non-regression
 - Addition of Siemens EDA Verification Run Manager scripts
 - Flow consolidation still needed to merge 20+ non-regressions on 9 configurations

Verification (2)

- Architectural tests using RISCOF framework
 - Integrated in core-v-verif (for cv32e40p only)
 Successfully generated RV32IMCF_Zicsr_Zifencei html reports with latest RTL 236 Passed, 0 Failed
- Non-regression results
 - 3 non-regression ran on 7 configurations
 - Total of 20 non-regressions
 - 1608 tests run
 - 893 failing tests (~45% OK)

Core overview

									COIL
Core	TRL	Privilege	ISA	Debug	Interrupts	Bus	Gate count (min, typ, max)	CoreMark / MHz (min, typ, max)	Target date
CV32E20	5	M, U (v1.11)	RV32I, RV32E, C, M, Zicsr	0.13.2	CLINT	ОВІ	14K, 19K, -	-, 2,47, -	2023 Q1 (per August 2022)
CV32E40P	5	M (v1.11)	RV32I, C, F, M, Xpulp, Zicsr, Zfinx, Zifencei	0.13.2	CLINT	ОВІ	-, -, -	-, 2.91, -	2023 Q1 (per October 2022)
CV32E40S	5	M, U (v1.12)	RV32I, RV32E, C, M, Xsecure, Zba, Zbb, Zbc, Zbkc, Zbs, Zca, Zcb, Zcmp, Zcmt, Zicsr, Zifencei, Zkt, Zmmul	1.00	CLINT, CLIC	OBI	-, -, -	-, 2.91, 3.12	2023 Q4 (per August 2023)
CV32E40X	5	M (v1.12)	RV32I, RV32E, A, C, M, Xif, Zba, Zbb, Zbc, Zbkc, Zbs, Zca, Zcb, Zcmp, Zcmt, Zicntr, Zihpm, Zicsr, Zifencei, Zkt, Zmmul	1.00	CLINT, CLIC	OBI	-, -, -	-, 2.91, 3.12	2023 Q4 (per August 2023)
CV32E41P	3	M (v1.11)	RV32I, C, F, M, Zca, Zcb, Zcmb, Zcmp, Zcmt, Zfinx	0.13.2	CLINT	OBI	-, -, -	-, 2.91, -	Not in active development
CVA5	3	M, S, U	RV32I, A, M				-, -, -	-, -, -	Not applicable
CVA6	5	M, S, U (v1.10)		0.13.2	CLINT	AXI4	-, -, -	-, 2.93, -	Unknown

Thank you!

