Lycée charif El Idrissi Assoul

Généralités sur les fonctions numériques

Professeur : Zillou Mouad Année scolaire : 2020/2021

Exercice 01 :

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = 1 - \frac{1}{x}$

Montrer que f est majorée par 1 sur \mathbb{R}_+^*

2) Soit f la fonction définie sur \mathbb{R} par :

$$f\left(x\right) = -2 + \frac{1}{x^2 + 1}$$

Montrer que f est minorée par -2 sur $\mathbb R$.

3)Soit g la fonction définie par $g(x) = \frac{\sqrt{x} - 3}{\sqrt{x} + 1}$

- a) Déterminer D_g .
- b) Montrer que la fonction g est majorée par 1 et minorée par -3.
- c) Interpréter les résultats géométriquement.

Exercice 02

Soit f une fonction définie par $f(x) = x + \frac{4}{x}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f
- **2)** Montrer que f(2) est une valeur minimale de la fonction f sur $]0;+\infty[$.
- **3)** Montrer que f(-2) est une valeur maximale de la fonction f sur $]-\infty;0[$.

Exercice 03

Soient f, g et h trois fonctions numériques telles que $f(x) = \cos^2(x)$; $g(x) = \sin(2\pi x)$ et $h(x) = \tan(2x)$

Montrer que les fonctions f,g et h sont des fonctions périodiques et π ;1 et $\frac{\pi}{2}$ sont respectivement leurs périodes.

Exercice 04

- Etudier l'égalité de f et g dans les cas suivants :
- $f(x) = \frac{x}{x^2}$ et $g(x) = \frac{1}{x}$
- $f(x) = \sqrt{(x+1)^2}$ et g(x) = x+1
- $f(x) = \frac{x^2 1}{x + 1}$ et g(x) = x 1.
- 2) Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = x^2 2x + 1$ et $g(x) = -2x^2 + 4x + 1$

Comparer f et g pour tout x dans ces intervalles suivants $]-\infty;0]$; $]2;+\infty[$ et [0;2] et déduire les positions relatives sur $]-\infty;0]$; $]2;+\infty[$ et [0;2].

3) Soient f et g deux fonctions et (C_f) et (C_g) leurs représentations graphiques :

Résoudre graphiquement :

$$f(x) \le g(x)$$
; $f(x) > g(x)$; $f(x) \ge 0$; $f(x) < 0$ et $f(x) = g(x)$.

Exercice 05

Soit f une fonction numérique dont le tableau de variations est le suivant :

Déterminer f([-2;4]); f([4;8[);f([-7;4])) et f([-7;8[)]).

Exercice 06

Soit f une fonction définie sur l'intervalle I = [-3; 4] dont la courbe est la suivante

- 1) Dresser le tableau de variations de f sur I
- 2) Déterminer les extremums de la fonction f, puis le nombre de solutions de l'équation f(x) = 1
- **3)** Déterminer graphiquement : f([-2;0]), f([-3;-2]), f([0;2]) et f([3;4])

Exercice 07

Soit f une fonction numérique définie par

$$f(x) = \frac{3}{x} + \frac{x}{3}$$

- 1) Déterminer D_f
- **2)** Etudier la parité de la fonction f
- 3) Montrer que pour tous a et b dans $]0;+\infty[$; on a $T = \frac{ab-9}{3ab}$.
- **4)** Déduire le sens de variations de la fonction f sur $[3; +\infty[$ et]0;3]
- **5)** Dresser le tableau de variations de f sur D_f en précisant sa valeur maximale et sa valeur minimale.

Exercice 08

Soient f et g les fonctions définies par :

$$f(x) = x^2 + 1$$
 et $g(x) = \frac{3x}{x - 1}$

- Déterminer l'ensemble de définition de chacune des fonctions f; g; $g \circ f$ et $f \circ g$.
- **2)** Déterminer l'expression de (gof)(x) pour tout $x \in D_{gof}$ et (fog)(x) pour tout $x \in D_{fog}$.
- **3)** Écrire sous forme d'une composée de deux fonctions dans les cas suivants :

$$h: x \mapsto \frac{x^2}{x^2 + 8}$$
; $h: x \mapsto \frac{\sqrt{x} - 2}{2\sqrt{x} + 3}$; $h: x \mapsto \frac{x^2 + 1}{|x| + 3}$

4) Soient u et w deux fonctions telles que v(x) = x - 1 et $w(x) = 2x^2 + 3x - 1$

Déterminer la fonction v telle que w = uov

Exercice 09

On considère les fonctions suivantes :

$$f(x) = x^2 - 2x - 1$$
 et $g(x) = \frac{x - 2}{x + 2}$

- 1) Déterminer D_f et D_g
- **2)** Déterminer D_{gof} puis calculer gof(x)
- **3)** Dresser le tableau de variations de f et g
- 4) Déduire le tableau de variations de gof

Exercice 10

Soit h une fonction numérique définie par

$$h(x) = \frac{x^2 - 4x + 6}{x^2 - 4x + 8}.$$

- Déterminer D_h l'ensemble de définition de h
- 2) Montrer que $(\forall x \in D_h): \frac{1}{2} \le h(x) \le 1$

Soient f et g deux fonctions définies par

$$f(x) = x^2 - 4x + 5$$
 et $g(x) = \frac{x+1}{x+3}$

- 1) Dresser le tableau de variations de f et g
- **2)** Vérifie que $(\forall x \in D_h): h(x) = (g \circ f)(x)$
- **3)** En utilisant les variations de la fonction f et les variations de la fonction g, étudier les variations de la fonction h sur $]-\infty;2]$ et $[2;+\infty[$.

Exercice 11

Soient f et g deux fonctions définies par :

$$f(x) = 2x^3$$
 et $g(x) = \sqrt{x+3}$

Soient (C_f) et (C_g) respectivement les courbes de f et g dans un repère orthonormé $(O; \vec{i}; \vec{j})$

- 1) Vérifier que f(1) = g(1), puis interpréter le résultat graphiquement.
- **2)** Dresser le tableau de variations de f et g.
- **3)** a-Construire les courbes dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

b- Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.

- c- Déterminer graphiquement $f([3;+\infty[)$
- **4)** a-Déterminer D_{fog} .

b- Étudier les variations de la fonction $f \circ g$ à partir des variations des fonctions f et g sur $[3;+\infty[$

c- Calculer fog(x) pour tout D_{fog} .