SCIENCE MEETS LIFE

Two-way anova

Aims

- Rationale of factorial ANOVA
- Partitioning variance
- Interaction effects
 - Interaction graphs
 - ▶ Interpretation

What is Two-Way Independent ANOVA?

- Two independent variables
 - Two-way = 2 Independent variables
 - Three-way = 3 Independent variables
- Different participants in all conditions
 - Independent = 'different participants'
- Several independent variables is known as a factorial design.

Benefit of Factorial Designs

- We can look at how variables *interact*.
- Interactions
 - Show how the effects of one var might depend on the effects of another
 - Are often more interesting than main effects.
- Examples
 - Interaction between stress and well-watered conditions on the growth of different plants.

An Example

- Field (2009): Testing the effects of alcohol and gender on 'the beergoggles effect':
 - V 1 (Alcohol): none, 2 pints, 4 pints
 - V 2 (Gender): male, female
- Dependent variable (DV) was an objective measure of the attractiveness of the partner selected at the end of the evening.

Factorial anova as regression

- Subset the data
 - Gender: "Male" and "Female", ref level="Male"
 - For alcohol: keep the levels "None" and "4 pints", ref level ="None"
 - We obtain 2 factors, each with two levels

Factorial anova as regression

Attractiveness_i= $b_0+b_1*genderF_i+b_2*alcohol_i+b_3*genderF_i*alcohol_i+\epsilon_i$

E(A|M, none) = bo E(A|F, none) = bo + b1 E(A|M, 4pints) = bo + b2E(A|F, 4pints) = bo + b1 + b2 + b3

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept b _o	66.87500000	В	3.05502002	21.89	<.0001
gender Female b ₁	-6.25000000	В	4.32045075	-1.45	0.1591
gender Male	0.00000000	В		(8)	34
alcohol 4 Pints b ₂	-31.25000000	В	4.32045075	-7.23	<.0001
alcohol None	0.00000000	В			38
gender*alcohol Female 4 P b ₃	28.12500000	В	6.11004004	4.60	<.0001
gender*alcohol Female None	0.00000000	В			
gender*alcohol Male 4 Pints	0.00000000	В	2	12	. 8
gender*alcohol Male None	0.00000000	В		:	

What Is an Interaction?

Factorial anova as regression

```
E(A|M, none) = bo

E(A|F, none) = bo + b1

E(A|M, 4pints) = bo + b2

E(A|F, 4pints) = bo + b1 + b2 + b3
```

b_o is the mean attractiveness for men that drunk no alcohol (ref=men, no alcohol)

b₁ is the difference in mean attractiveness between women that drunk no alcohol and men that drunk no alcohol

b₂ is the difference in mean attractiveness between men that drunk 4 pints vs none

b₃ compares the difference between men and women in the no alcohol condition to the difference between men and women in the 4 pints condition

Variance partitioning balanced data

Table 12.1: Data for the beer-goggles effect

Alcohol	No	ne j=1	2 Pi	ints j=2	4 Pi	nts j=3
Gender	Female k	=1 Male k=2	Female	Male	Female	Male
	65	50	70	45	55	30
	70	55	65	60	65	30
-	60	80	60	85	70	30
R=8	60	65	70	65	55	55
11(-0)	60	70	65	70	55	35
	55	75	60	70	60	20
-	60	75	60	80	50	45
	55	65	50	60	50	40
Total	485	535	500	535	460	285
Mean $ar{x}_{.jk}$	60.625	66.875	62.50	66.875	57.50	35.625
Variance s_{jk}^2		106.70	42.86	156.70	50.00	117.41

Step 1: Calculate SS_T

65	50	70	45	55	30
50	55	65	60	65	30
70	80	60	85	70	30
45	65	70	65	55	55
55	70	65	70	55	35
30	75	60	70	60	20
70	7 5	60	80	50	45
55	65	50	60	50	40

$$ar{x}_{\dots}=$$
 Grand Mean = 58.33

$$SS_T = s^2(N-1)$$

 $SS_T = 190.78(48-1)$
 $SS_T = 8966.67$

Step 2: Calculate SS_M

$$SS_M = \sum_{j=1}^k n_j (\bar{x}_{.j} - \bar{x}_{..})^2$$

$$SS_M = 8(60.625 - 58.33)^2 + 8(66.875 - 58.33)^2 + 8(62.5 - 58.33)^2 + 8(66.875 - 58.33)^2 + 8(57.5 - 58.33)^2 + 8(35.625 - 58.33)^2$$

+8(66.875 - 58.33)^2 + 8(57.5 - 58.33)^2 + 8(35.625 - 58.33)^2
$$SS_M = 5479.167$$

Step 2a: Calculate SS_G

	Female	
65	70	55
70	65	65
60	60	70
60	70	55
60	65	55
55	60	60
60	60	50
55	50	50

Mean Female = 60.21

	Male	
50	45	30
55	60	30
80	85	30
65	65	55
70	70	35
75	70	20
75	80	45
65	60	40

Mean Male = 56.46

$$SS_{Gender} = \sum_{k=1}^{K} n_k (\bar{x}_{..k} - \bar{x}_{...})^2$$

 $\bar{x}_{..k}$

Step 2b: Calculate SS_A

None					
65	50				
70	55				
60	80				
60	65				
60	70				
55	75				
60	75				
55	65				

Mean	None =	63 75
MCail	110116 -	03.73

2 P	ints
70	45
65	60
60	85
70	65
65	70
60	70
60	80
50	60
	Dinte -

Mean 2 Pints = 64.6875

4 Pints					
55	30				
65	30				
70	30				
55	55				
55	35				
60	20				
50	45				
50	40				

$$SS_{Alcohol} = \sum_{j=1}^{J} n_j (\bar{x}_{.j.} - \bar{x}_{...})^2$$

 $\bar{x}_{.j.}$

$$SS_{Alcohol} = 16(63.75 - 58.33)^2 + 16(64.6875 - 58.33)^2 + 16(46.5625 - 58.33)^2$$

 $SS_{Alcohol} = 3332.292$

SCIENCE MEETS LIFE

Step 2c: Calculate SS_{A*G}

$$SS_{A*G} = SS_M - SS_{Alcohol} - SS_{Gender}$$

 $SS_{A*G} = 5479.167 - 168.75 - 3332.292$
 $SS_{A*G} = 1978.125$

Note: True in balanced designs

Step 3: Calculate SS_E

$$SS_E = \sum_{j=1}^{J} \sum_{k=1}^{K} s_{jk} (n_{jk} - 1)$$

$$SS_E = s_{11}^2(n_{11} - 1) + s_{12}^2(n_{12} - 1) + s_{21}^2(n_{21} - 1) + s_{22}^2(n_{22} - 1) + s_{31}^2(n_{31} - 1) + s_{32}^2(n_{32} - 1) SS_E = (24.55 * 7) + (106.7 * 7) + (42.86 * 7) + (156.7 * 7) + (50 * 7) + (117.41 * 7) = 3487.52$$

Two-way anova table

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio
Factor A	J-1	SS _A	$MS_A = SS_A/(J-1)$	$F_A = MS_A/MS_E$
Factor G	K-1	SS _G	$MS_G = SS_G/(K-1)$	$F_G = MS_G/MS_E$
Interaction	(J-1)(K-1)	SS _{AG}	$MS_{AG}=SS_{AG}/(J-1)(K-1)$	F _{AG} =MS _{AG} /MS E
Error	JK(R-1)=N- JK	SS _E	$MS_E = SS_E/JK(R-1)$	

Sums of squares

- When data is unbalanced, there are different ways to calculate the sums of squares. Assume the model A + B + A*B
 - > Type ISS: Tests for the presence of an effect given that the previous one stated is already in the model
 - SS(A): reduction in residual SS attributable to A
 - SS(B|A): reduction in residual SS attributable to B when A is already in the model
 - SS(A*B|A,B): reduction in residual SS attributable to A*B when A and B are already in the model
 - **Type II SS**: Tests for the presence of an effect, given that the others not containing this term are already in the model
 - SS(A|B), SS(B|A), SS(A*B|A,B)
 - **Type III SS**: Tests for the presence of an effect, given that the others are in the model
 - SS(A|B, A*B), SS(B|A, A*B), SS(A*B|A, B)
- Do not interpret a main effect if interactions are present (generally speaking, if a significant interaction is present, the main effects should not be further analysed).
- When data is balanced, types I, II and III all give the same results.

Interpreting Factorial ANOVA

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	4433.593750	1477.864583	19.79	<.0001
Error	28	2090.625000	74.665179		
Corrected Total	31	6524.218750			

R-Square	Coeff Var	Root MSE	attractiveness Mean
0.679559	15.66622	8.640901	55.15625

Source	DF	Type III SS	Mean Square	F Value	Pr > F
gender	1	488.281250	488.281250	6.54	0.0163
alcohol	1	2363.281250	2363.281250	31.65	<.0001
gender*alcohol	1	1582.031250	1582.031250	21.19	<.0001

Interpretation: Interaction

There was a significant interaction between the amount of alcohol consumed and the gender of the person selecting a mate, on the attractiveness of the partner selected (p=8e-5).

Is There Likely to Be a Significant Interaction Effect?

Gender I Male I Female

Is There Likely to Be a Significant Interaction Effect?

Workflow two-way anova

- Summary statistics
- Graphs (box plots, bar charts, interaction plot)
- 3. Anova model
- 4. Testing assumptions
- 5. Post-hoc tests provided that a significant interaction was found

The anova table

glm model

The GLM Procedure

Dependent Variable: attractiveness

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	5479.166667	1095.833333	13.20	<.0001
Error	42	3487.500000	83.035714		
Corrected Total	47	8966.666667			

R-Square	Coeff Var	Root MSE	attractiveness Mean
0.611059	15.62125	9.112393	58.33333

Source	DF	Type III SS	Mean Square	F Value	Pr > F
gender	1	168.750000	168.750000	2.03	0.1614
alcohol	2	3332.291667	1666.145833	20.07	<.0001
gender*alcohol	2	1978.125000	989.062500	11.91	<.0001

Testing the assumptions

All-pairwise comparions

				Diff	erences of gend Adjustment for				The second second second					
gender	alcohol	_gender	_alcohol	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
Female	2 Pints	Female	4 Pints	5.0000	4.5562	42	1.10	0.2787	0.8796	0.05	-4.1948	14.1948	-8.6013	18.6013
Female	2 Pints	Female	None	1.8750	4.5562	42	0.41	0.6828	0.9984	0.05	-7.3198	11.0698	-11.7263	15.4763
Female	2 Pints	Male	2 Pints	-4.3750	4.5562	42	-0.96	0.3424	0.9278	0.05	-13.5698	4.8198	-17.9763	9.2263
Female	2 Pints	Male	4 Pints	26.8750	4.5562	42	5.90	<.0001	<.0001	0.05	17.6802	36.0698	13.2737	40.4763
Female	2 Pints	Male	None	-4.3750	4.5562	42	-0.96	0.3424	0.9278	0.05	-13.5698	4.8198	-17.9763	9.2263
Female	4 Pints	Female	None	-3.1250	4.5562	42	-0.69	0.4966	0.9826	0.05	-12.3198	6.0698	-16.7263	10.4763
Female	4 Pints	Male	2 Pints	-9.3750	4.5562	42	-2.06	0.0459	0.3287	0.05	-18.5698	-0.1802	-22.9763	4.2263
Female	4 Pints	Male	4 Pints	21.8750	4.5562	42	4.80	<.0001	0.0003	0.05	12.6802	31.0698	8.2737	35.4763
Female	4 Pints	Male	None	-9.3750	4.5562	42	-2.06	0.0459	0.3287	0.05	-18.5698	-0.1802	-22.9763	4.2263
Female	None	Male	2 Pints	-6.2500	4.5562	42	-1.37	0.1774	0.7432	0.05	-15.4448	2.9448	-19.8513	7.3513
Female	None	Male	4 Pints	25.0000	4.5562	42	5.49	<.0001	<.0001	0.05	15.8052	34.1948	11.3987	38.6013
Female	None	Male	None	-6.2500	4.5562	42	-1.37	0.1774	0.7432	0.05	-15.4448	2.9448	-19.8513	7.3513
Male	2 Pints	Male	4 Pints	31.2500	4.5562	42	6.86	<.0001	<.0001	0.05	22.0552	40.4448	17.6487	44.8513
Male	2 Pints	Male	None	4.23E-15	4.5562	42	0.00	1.0000	1.0000	0.05	-9.1948	9.1948	-13.6013	13.6013
Male	4 Pints	Male	None	-31.2500	4.5562	42	-6.86	<.0001	<.0001	0.05	-40.4448	-22.0552	-44.8513	-17.6487

Simple tests of effect

				Differences of g djustment for Mi						ans			
Slice	alcohol	_alcohol	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
gender Female	2 Pints	4 Pints	5.0000	4.5562	42	1.10	0.2787	0.8361	0.05	-4.1948	14.1948	-6.3616	16.3616
gender Female	2 Pints	None	1.8750	4.5562	42	0.41	0.6828	1.0000	0.05	-7.3198	11.0698	-9.4866	13.2366
gender Female	4 Pints	None	-3.1250	4.5562	42	-0.69	0.4966	1.0000	0.05	-12.3198	6.0698	-14.4866	8.2366

				le Differences of Adjustment for I						eans			
Slice	alcohol	_alcohol	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
gender Male	2 Pints	4 Pints	31.2500	4.5562	42	6.86	<.0001	<.0001	0.05	22.0552	40.4448	19.8884	42.6116
gender Male	2 Pints	None	4.23E-15	4.5562	42	0.00	1.0000	1.0000	0.05	-9.1948	9.1948	-11.3616	11.3616
gender Male	4 Pints	None	-31.2500	4.5562	42	-6.86	<.0001	<.0001	0.05	-40.4448	-22.0552	-42.6116	-19.8884

Simple Differences of gender*alcohol Least Squares Means Adjustment for Multiple Comparisons: Bonferroni													
Slice	gender	_gender	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
alcohol 2 Pints	Female	Male	-4.3750	4.5562	42	-0.96	0.3424	0.3424	0.05	-13.5698	4.8198	-13.5698	4.8198

Simple Differences of gender*alcohol Least Squares Means Adjustment for Multiple Comparisons: Bonferroni													
Slice	gender	_gender	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
alcohol 4 Pints	Female	Male	21.8750	4.5562	42	4.80	<.0001	<.0001	0.05	12.6802	31.0698	12.6802	31.0698

User defined contrasts

			Least Squares M Adjustment for M									
Effect	Label	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Uppe
gender*alcohol	none female - none male	-6.2500	4.5562	42	-1.37	0.1774	0.7904	0.05	-15.4448	2.9448	-19.3290	6.8290
gender*alcohol	2 pints female - 2 pints male	-4.3750	4.5562	42	-0.96	0.3424	0.9650	0.05	-13.5698	4.8198	-17.4540	8.7040
gender*alcohol	4 pints female - 4 pints male	21.8750	4.5562	42	4.80	<.0001	0.0002	0.05	12.6802	31.0698	8.7960	34.9540
gender*alcohol	d1:female 4 pints - female none	-3.1250	4.5562	42	-0.69	0.4966	0.9959	0.05	-12.3198	6.0698	-16.2040	9.9540
gender*alcohol	female 2 pints - female none	1.8750	4.5562	42	0.41	0.6828	0.9999	0.05	-7.3198	11.0698	-11.2040	14.9540
gender*alcohol	d2:male 4 pints - male none	-31.2500	4.5562	42	-6.86	<.0001	<.0001	0.05	-40.4448	-22.0552	-44.3290	-18.1710
gender*alcohol	male 2 pints - male none	4.23E-15	4.5562	42	0.00	1.0000	1.0000	0.05	-9.1948	9.1948	-13.0790	13.0790
gender*alcohol	d1 vs d2	28.1250	6.4434	42	4.36	<.0001	0.0006	0.05	15.1216	41.1284	9.6284	46.6216

To Transform ... Or Not

- Transforming the data helps as often as it hinders the accuracy of F (Games & Lucas, 1966).
- Games (1984):
 - The central limit theorem: sampling distribution of the mean will be normal in samples > 30 anyway.
 - Transforming the data changes the hypothesis being tested
 - E.g. when using a log transformation and comparing means, you change from comparing arithmetic means to comparing geometric means

$$2 = 6$$

$$2 \times 18 = 6 \times 6$$

$$\int_{1}^{n} \prod_{i=1}^{n} x_{i} = exp\left(\frac{\sum_{i=1}^{n} log_{e}(x_{i})}{n}\right)$$

- In small samples it is tricky to determine normality one way or another.
- The consequences for the statistical model of applying the 'wrong' transformation could be worse than the consequences of analysing the untransformed scores.

Effect log transformation

Effect log transformation

Original scale

Ho: ColT - ColM = 35ST - 35SM

inoc\$Genotype

Log scale

Ho: log(ColT) - log(ColM)

 $= \log(35ST) - \log(35SM)$

After backtransformation: Col T/Col M = 35S T/35S M

