1 Vorweg

Anmerkung zur Notation: Wir schreiben

- \mathbb{N}_+ für die Menge der positiven ganzen Zahlen, also $\mathbb{N}_+ = \{1, 2, 3, \dots\}$
- \mathbb{N}_0 für die Menge der nichtnegativen ganzen Zahlen, also $\mathbb{N}_0 = \mathbb{N}_+ \cup \{0\} = \{0, 1, 2, 3, \dots\}$
- \mathbb{G}_n für die Menge der ganzen Zahlen von 0 bis n-1, also $\mathbb{G}_n = \{0, 1, 2, 3, \dots, (n-1)\}$

2 Alphabete, Abbildungen, Aussagenlogik

2.1 Alphabete

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Was ein Zeichen ist, wird nicht weiter diskutiert, hinterfragt, o.ä., weshalb man letzten Endes "theoretisch" *jede* endliche nichtleere Menge als Alphabet nehmen könnte. Das machen wir aber nicht.

2.2 Relationen und Abbildungen

Kartesisches Produkt erst mal an einfachem endlichen Beispiel klar machen:

$$\{\mathtt{a},\mathtt{b}\}\times\{1,2,3\}=\{(\mathtt{a},1),(\mathtt{a},2),(\mathtt{a},3),(\mathtt{b},1),(\mathtt{b},2),(\mathtt{b},3)\}$$

• In der letzten Klausur waren unfassbar viele der Meinung, dass $A \times B = B \times A$ gelte. Vielleicht kurz erwähnen, dass das ganz bestimmt nicht immer so ist.

Begriff der Relation:

- Des öfteren ist bei einer Relation $R \subseteq A \times B$ auch A = B; man spricht dann auch von einer Relation auf der Menge A.
- Beispiel "Kleiner-Gleich-Relation" auf der Menge $M = \{1, 2, 3\}$, d.h als Teilmenge von $M \times M$, gegeben durch die Paare

$$R \le \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

• Manchmal benutzt man bekanntlich lieber Infixschreibweise und notiert $1 \le 3$ statt $(1,3) \in R_{<}$.

• Spezialfälle $A = \emptyset$ oder/und $B = \emptyset$: dann ist auch $A \times B = \emptyset$ und die einzig mögliche Relation ist $R = \emptyset$.

Linkstotal etc.

- Begriffe linkstotal, rechtseindeutig und Abbildung (a.k.a. Funktion) an Beispielen wiederholen, Definitionen in äquivalente umformulieren, z.B. "rechtstotal, wenn es kein $b \in B$ gibt, zu dem kein $a \in A$ in Relation steht"
- Begriffe linkseindeutig/injektiv und rechtstotal/surjektiv und bijektiv wiederholen

Erinnerung: Der Begriff *injektiv* wird bei Abbildungen benutzt, *linkseindeutig* bei Relationen. Analog bei rechtstotal/surjektiv.

- Begriffe Definitionsbereich, Zielbereich
- Betrachte $f:A\to A$, also Definitionsbereich gleich Zielbereich und A sei endlich. Dann kann man sich ein paar Sachen klar machen:
 - Wenn injektiv, dann auch surjektiv.
 - Wenn surjektiv, dann auch injektiv.
 - Wenn A unendlich ist, dann stimmen diese Behauptungen im allgemeinen nicht mehr.

Eine ähnliche Aufgabe dazu war auf dem ersten Übungsblatt 2008 dran.

• Als Beispielaufgabe kann man z.B. eine Aufgabe vom letztjährigen Übungsblatt rechnen lassen:

Was kann man über die Surjektivität, Injektivität, Bijektivität folgender Abbildungen sagen? Begründen Sie jeweils kurz.

a)
$$f_1: \mathbb{N}_0 \to \mathbb{N}_0: x \to \begin{cases} 42, & \text{wenn } x = 1 \text{ oder } x = 0, \\ x - 1, & \text{sonst} \end{cases}$$

- b) $f_2: A_4 \to B_3$
- c) $f_3: A_4 \to B_4$
- d) $f_4: A_4 \to B_5$

 A_4 enthält 4 Elemente. B_3, B_4, B_5 enthalten je nach Index 3, 4 oder 5 Elemente.

2.3 Mengen

- Ich weiss nicht wie weit das die Mathe-Vorlesungen abdecken. Aber einige scheinen da wohl als Probleme zu haben. Also klar machen, dass z.B.
 - eine Menge auch leer sein kann: ∅
 - Reihenfolge der Elemente in der Menge ist egal
 - Mehrfaches Vorkommen von Elementen auch egal
- Durchschnitt und Vereinigung von Mengen nochmal klar machen. Dazu gibts auch auf dem aktuellen Übungsblatt eine Aufgabe.

2.4 Logisches

Tja, letztes Jahr sind wir so weit gekommen, dieses mal leider nicht. Daher erst im zweiten Tutorium dazu kommen . . .