

FACULTY OF COMPUTING

SEMESTER 1 2024/2025

SECI 1013 DISCRETE STRUCTURE

SECTION 03

ASSIGNMENT 3

LECTURER: DR. MUHAMMAD ALIIF BIN AHMAD

Student name	Matric Number
TOH SHEE THONG	A24CS0309
NUR ALIA ATHIRAH BINTI SUZUDDIN	A24CS0153
LEE PEI YUAN	A24CS0262
MUHAMMAD ALIFF BIN HELMI	A24CS0272

3.
$$\frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{3}{100} = 0.03$$

4.
$$0.4 \quad P = 0.8 \quad S \quad P(P') = (0.6 \times 0.5) + (0.6 \times 0.7)$$

$$= 0.6 \quad P' = 0.5 \quad S' \quad = 0.6$$

ii)
$$P(P|S) = \frac{P(P \cap S)}{P(S)}$$

= $\frac{0.4(0.8)}{0.4(0.8) + 0.6(0.3)}$

b. lines that connected 2 points (A) (B) (. vertices that connected by an edge .

d. edge that connect 2 vertices.

e. reitices that doesn't connect with others ⑥→⑥ ② means that C is isolated vertex.

f. edge that start and end in one vertex.

9. 2 edge connected with 2 same vertices. (A) B) means that e, and ez are

	6,	دع	ls	€4	29	lo	li	ار	la	e co	Q.	P.15	l.o	0	lis
٧,	(Ó	U	0	0	D	0	Ö	D	0	0	0	013	X14	D I
٧	1	1	1	1	0	O	0	0	0	0	0	0	0	O	0
V3	"	1	0	0	0	Ò	1	0	0	0	O	1	0	D	0
V4	0		0	1	1	D	U	0	0	0	0	0	0	0	$p \mid$
1/2	D	0	Ì	0	0	1	0	0	O	0	0	1	0	1	0
VL	0	0	0	0	Ì	1	D	l	1	Ó	0	0)	n	0
V7	0	0	O	0	0	0	1	Í	۲	1	Ω	b	0	D	$n \mid$
Ng	0	U	0	0	0	0	0	b	Ì	0	ì	0	U	D	0
Vq	0	0	0	D	0	0	O	0	0	1	ί	0	0	1	١_ ١

incident matrix:

adjacent matrix .

i){V1, e1, V2, e2, Ve, e3, Va}

{V1, e1, V2, e2, Vk, V11, N5, e12, N9}

V6, C10, Va }

ii) { V, , l, , V2, l2, V6, l3, V4}

{ V, , l, , V2, l2, V6, V11, V5, l12, V4}

{ V, , l1, V2, l2, V6, V11, V6, l4, V4, l6, V2, l6, V1, l1, V6, l10, V4}

{ V, , l4, V2, l2, V6, l10, V4}

{ V, , l1, V2, l2, V6, l10, V4}

{ V, , l1, V2, l2, V6, l10, V6, l2, V2, l6, V6, l10, V4}

{ V, , l4, V2, l5, V4, l4, V5, l4, V6, l2, V4}

{ V, , l4, V2, l5, V4, l4, V5, l12, V6}

{ V, , l4, V2, l6, V4, l4, V5, l12, V6}

{ V, , l4, V2, l6, V1, l1, V6, l2, V3, l6, V4, l4, V5, l12, V4}

{ V1, l4, V3, l6, V6, l10, Vq}

{ V1, l1, V2, l2, V6, l11, V5, lq, V4, l5, V3, l8, V6, l10, Vq}

{ V1, l4, V3, l5, V4, lq, V5, l11, V6, l3, Vq}

{ V1, l11, V3, l5, V4, lq, V5, l12, Vq}

iii) and iv)

shortest : { V1, l1, V2, l2, V6, l3, Vq}

{ V1, l4, V3, l6, V6, l10, Vq}

longest : { V1, l1, V2, l2, V6, l10, Vq}

longest : { V1, l1, V2, l2, V6, l11, V5, lq, V4, l6, V3, l6, V7, l1, V2, l2, V6, l11, V5, lq, V4, l6, V3, l6, V7, l17, V6, l11, V2, l2, V6, l11, V5, l11, V6, l12, V6, l11, V6, l12, V6, l11, V

{ V, e, V, l, Ve, V., Vs, eq, V4, es, V3, e, V1, e1, V6, e10,

5 a) d(A) = 4 No. Since all the degrees d(B) = 2 are even.
d(c) = 4
d(0) = 2
d(E) = 2
d(F) = 4

b) Euler circuit = {A, B, C, D, F, C, A, F, E, A}

C) Hamilton arcuit : { A,B,C,D,F,E,A}

d) Enler circuit passes through edge exactly one but Hamilton doesn't need to connect all the edges.