$\begin{array}{c} Probability \ and \ Stochastic \ Processes \ for \ Finance \ I \\ (MTH \ 9831). \end{array}$

Final Examination.

Instructions: Please **print** your name below. Show all work and write legibly. Full credit corresponds to 100 points. **Good luck!**

Student's name:	Grade

Problem	Out of	Score	Comments
1	15		
2	15		
3	20		10+5+5
4	20		
5	15		
6	25		
7	30		
Total	140		

Problem 1. Find the conditional distribution of B(s) given that B(t) = x.

Problem 2. Let $\tau_m=\inf\{t\geq 0:\ B(t)=m\}$. Show that for every $m\neq 0$ $E(\tau_m^\alpha)<\infty\quad\Longleftrightarrow\quad\alpha<1/2.$

Problem 3. Let $B(s), s \ge 0$, be a standard Brownian motion.

(a) Solve the following SDE for $t \geq 0$:

$$dY(s) = (2 - Y(s))dt + 2dB(s), \quad Y(0) = x.$$

(b) Fix $t \in [0,1]$ and let $X(u), u \ge t$, be the solution of

$$dX(u) = (2 - X(u)) du + 2dB(u), \quad X(t) = x.$$

Find the distribution, expectation, and variance of $X(u), u \ge t$.

(c) Compute the second moment of X(1).

Problem 4. Let g(t,x) be the solution to the following terminal value problem on $[0,1]\times\mathbb{R}$:

$$g_t + (2-x)g_x + 2g_{xx} = x$$
, $g(1,x) = x^2$.

- (a) Write the stochastic representation of g(t,x). Hint: apply Itô-Doeblin formula to g(u,X(u)) for an appropriate process X, use the PDE, integrate, and take the expectation to arrive at the required stochastic representation.
- (b) Compute the expectation in the previous part and find g(t,x).

Problem 5. Let $(B(t))_{t\geq 0}$ be a standard Brownian motion and $B^*(t) = \max_{0\leq u\leq t} B(u)$. Show that the two-dimensional process $(B(t), B^*(t))_{t\geq 0}$ is a Markov process with respect to the natural filtration of $(B(t))_{t\geq 0}$. Hint: start by writing for $0\leq s\leq t$

$$B^*(t) = B^*(s) + (\max_{s \le u \le t} B(u) - B^*(s))_+$$

and use the definition of a Markov process, properties of Brownian motion, and the independence lemma.

Problem 6. Let B(t), $t \ge 0$, be a standard Brownian motion, Q(t), $t \ge 0$, be a compound Poisson process with respect to the same filtration. Assume that the intensity of the Poisson process is λ and the jump distribution is normal with mean η and variance v. Set

$$S(t) = S(0)e^{\mu t + \sigma B(t) + Q(t)},$$

where $\mu \in \mathbb{R}$, $\sigma > 0$ are constants.

- (a) Find $Cov(S(t), \ln S(t))$.
- (b) Determine under which condition on μ , σ , η , v the process S(t), $t \geq 0$, is a martingale. Justify your answer. Hint: it is simpler to use the definition of a martingale than Itô-Doeblin formula.

Problem 7. Let B(t), $t \geq 0$, be a standard Brownian motion, Q(t), $t \geq 0$, be a compound Poisson process (relative to the same filtration). Assume that the jump intensity is λ and that the jump distribution is discrete with possible values y_1, y_2, \ldots, y_m taken with probabilities p_1, p_2, \ldots, p_m respectively. Define $X(t) = \mu t + \sigma B(t) + Q(t)$, $\mu \in \mathbb{R}$, $\sigma > 0$.

(a) Let the stock price S(t), $t \geq 0$, under \mathbb{P} satisfy the following equation

$$S(t) = S(0) + \int_0^t S(u) \, dX^c(u) + \sum_{0 < u < t} S(u - \Delta X(u)).$$

Solve this equation and find an explicit formula for S(t), $t \geq 0$.

- (b) Describe all equivalent measures $\tilde{\mathbb{P}}$ under which $e^{-rt}S(t)$ is a $\tilde{\mathbb{P}}$ -martingale (give conditions on parameters and the Radon-Nikodym derivative with respect to \mathbb{P}).
- (c) Let c(t,x) be the price of a call option at time t when S(t) = x. Which equation should c(t,x) satisfy in order for $e^{-rt}c(t,S(t))$ to be a martingale under $\tilde{\mathbb{P}}$ (pick and fix one from the previous part)? Derive the equation.