

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a XII-a

Varianta 2 — Soluţii şi barem orientativ

Problema 1. Fie \mathcal{F} mulţimea funcţiilor continue $f:[0,1] \to \mathbb{R}$, care îndeplinesc condiţia $\max_{0 \le x \le 1} |f(x)| = 1$, şi fie $I: \mathcal{F} \to \mathbb{R}$,

$$I(f) = \int_0^1 f(x) dx - f(0) + f(1).$$

- (a) Arătați că I(f) < 3, oricare ar fi $f \in \mathcal{F}$.
- (b) Determinați sup $\{I(f) | f \in \mathcal{F}\}.$

Soluţie. (a) Fie f o funcţie din \mathcal{F} . Din condiţia $\max_{0 \le x \le 1} |f(x)| = 1$, rezultă că $I(f) \le \int_0^1 1 \, \mathrm{d}x + 1 + 1 = 3$ 2 puncte

(b) Pentru $n \geq 2$, funcția $f_n : [0,1] \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 2nx - 1, & 0 \le x \le 1/n, \\ 1, & 1/n < x \le 1, \end{cases}$$

este un element din ${\mathcal F}$ 2 puncte

Pentru această funcție,

$$I(f_n) = \int_0^1 f_n(x) dx - f_n(0) + f_n(1) = \int_0^{1/n} (2nx - 1) dx + \int_{1/n}^1 1 dx + 1 + 1$$
$$= (nx^2 - x) \Big|_0^{1/n} + 3 - 1/n = 3 - 1/n.$$

Problema 2. Fie p un număr natural mai mare sau egal cu 2 și fie (M, \cdot) un monoid finit, astfel încât $a^p \neq a$, oricare ar fi $a \in M \setminus \{e\}$, unde e este elementul neutru al lui M. Arătați că (M, \cdot) este grup.

Problema 3. Arătați că o funcție continuă $f \colon \mathbb{R} \to \mathbb{R}$ este crescătoare dacă și numai dacă

$$(c-b) \int_a^b f(x) \, \mathrm{d}x \le (b-a) \int_b^c f(x) \, \mathrm{d}x,$$

oricare ar fi numerele reale a < b < c.

Soluție. Dacă f este crescătoare și a < b < c, atunci

$$(c-b) \int_a^b f(x) \, \mathrm{d}x \le (c-b)(b-a)f(b) = (b-a)(c-b)f(b) \le (b-a) \int_b^c f(x) \, \mathrm{d}x.$$

......3 puncte

Reciproc, fie a și b două numere reale, astfel încât a < b, și fie $F \colon \mathbb{R} \to \mathbb{R}$ o primitivă a lui f. Dacă x și y sunt numere reale, astfel încât a < x < y < b, din relația din enunț rezultă că

$$\frac{F(x) - F(a)}{x - a} \le \frac{F(y) - F(x)}{y - x} \le \frac{F(b) - F(y)}{b - y}.$$

......2 puncte

Cum F este derivabilă și F' = f, obținem

$$f(a) = F'(a) = \lim_{x \searrow a} \frac{F(x) - F(a)}{x - a} \le \lim_{y \nearrow b} \frac{F(b) - F(y)}{b - y} = F'(b) = f(b).$$

Remarcă. Implicația directă nu necesită continuitatea lui f, deoarece monotonia funcției implică integrabilitatea pe orice interval compact.

Implicația reciprocă nu necesită nici ea continuitatea lui f, ci doar existența primitivelor pe \mathbb{R} .

În cazul în care f este continuă, implicația directă mai poate fi demonstrată după cum urmează: conform teoremei de medie, există $\alpha \in (a,b)$ și $\beta \in (b,c)$, astfel încât

$$\int_a^b f(x) dx = (b - a)f(\alpha) \quad \text{si} \quad \int_b^c f(x) dx = (c - b)f(\beta).$$

Cum $\alpha < \beta$, rezultă $f(\alpha) \leq f(\beta)$, deci

$$(c-b) \int_{a}^{b} f(x) dx = (c-b)(b-a)f(\alpha) \le (b-a)(c-b)f(\beta) = (b-a) \int_{b}^{c} f(x) dx.$$

Problema 4. Fie n şi q două numere naturale, $n \ge 2$, $q \ge 2$ şi $q \ne 1 \pmod{4}$, şi fie K un corp finit care are exact q elemente. Arătaţi că, oricare ar fi elementul a din K, există x şi y în K, astfel încât $a = x^{2^n} + y^{2^n}$. (Orice corp finit este comutativ.)

Dacă $p \equiv 3 \pmod{4}$ și α este impar, atunci și $q \equiv 3 \pmod{4}$, i.e., q = 4k + 3, unde k este un număr natural. Fie $g \colon K^* \to K^*$, $g(x) = x^{2^n}$, și fie x și y două elemente din K^* , astfel încât g(x) = g(y). Atunci $(xy^{-1})^{2^n} = 1$ și cum $(xy^{-1})^{4k+2} = (xy^{-1})^{q-1} = 1$, iar $(2^n, 4k + 2) = 2$, rezultă $(xy^{-1})^2 = 1$, deci $xy^{-1} = \pm 1$, i.e., $y = \pm x$ 1 punct