Ciclovias

Nome do arquivo: ciclovias.c, ciclovias.cpp, ciclovias.pas, ciclovias.java, ciclovias.js ou ciclovias.py

A cidade de Nlogônia é mundialmente conhecida pelas suas iniciativas de preservação ambiental. Dentre elas, uma das que mais chama atenção é a existência de ciclovias em todas as ruas da cidade. Essa medida teve um sucesso tão grande, que agora a maioria dos moradores usa a bicicleta diariamente. Em N \log ônia, as interseções são numeradas de 1 até N. Cada rua liga duas interseções A e B e possui uma ciclovia entre A e B. Um caminho P de tamanho K é definido como uma sequência de interseções P_1, P_2, \dots, P_K , tal que para todo $i, 1 \le i < K$, existe uma ciclovia entre P_i e P_{i+1} . Arnaldo e Bernardo estavam passeando de bicileta pelas ruas de Nlognônia quando pensaram em um novo jogo. Nesse jogo, os dois partem de alguma interseção C e procuram o caminho P de maior tamanho que satisfaça a seguinte regra: as subsequências

$$P_1, P_3, P_5, \dots, P_{2x+1}$$
 e $P_2, P_4, P_6, \dots, P_{2x}$

da sequência P devem ser ambas crescentes. Ganha o jogo aquele que encontrar o maior caminho. Bernardo te ligou pedindo ajuda para se preparar para o jogo. Com o mapa da cidade você deve encontrar o tamanho do maior caminho possível para todas as interseções iniciais possíveis, seguindo as restrições acima. No exemplo abaixo, o maior caminho possível para início na interseção 1 é P = (1, 3, 5, 4, 7) e para início na interseção 5 é P = (5, 3, 6) ou P = (5, 4, 7).

Entrada

A primeira linha contém dois inteiros $N \in M$, representando respectivamente o número de interseções e o número de ruas. As M linhas seguintes contém dois inteiros A e B indicando que existe uma ciclovia entre A a B.

Saída

Seu programa deve produzir uma única linha, contendo N inteiros $R_1, R_2, \dots R_N$, onde R_i é o tamanho do maior caminho possível se o jogo começar na interseção i.

Restrições

- $0 \le M \le \frac{N(N-1)}{2}$. $0 \le M \le 5 \times 10^5$.
- $A \neq B$.
- $1 \le A, B \le N$.
- Não existem duas ciclovias iguais.

Informações sobre a pontuação

- \bullet Em um conjunto de casos de teste equivalente a 20 pontos, $N \leq 7.$
- Em um conjunto de casos de teste equivalente a 40 pontos, $N \leq 100$.
- $\bullet\,$ Em um conjunto de casos de teste equivalente a 60 pontos, $N \leq 1000.$

Exemplos

Entrada	Saída
5 5	4 4 4 2 2
1 5	
1 3	
1 2	
2 5	
4 5	

Entrada	Saída
6 6	7 5 6 4 2 1
1 3	
2 3	
4 2	
3 4	
3 5	
5 4	

Entrada	Saída
7 6	5 6 4 2 3 2 2
1 2	
1 3	
3 5	
3 6	
5 4	
4 7	