Research Module

Gewei Cao

December 14, 2022

1 Gaussain Process with Noise

1.1 Definition

We have data $\mathbf{D} = \{(\boldsymbol{x_i}, y_i)\}_{i=1}^{M}$, and assume that mean of y is 0.

Task: find the distribution of $f^*(x)$.

Assume that the true form of prediction function is: $y_i = f(\boldsymbol{x_i}) + \epsilon_i$ and $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$. Here we have a M dimensional dependent variable \mathbf{y} , and a $M \times N$ dimensional independent variable \mathbf{X} , where M is the number of observations, and N is the dimension of x, i.e. $\boldsymbol{x_i} \sim \mathbb{R}^N$. The function $f(\boldsymbol{x_i}) : \mathbb{R}^N \to \mathbb{R}$ takes vector $\boldsymbol{x_i} \in \mathbb{R}^N$. Let $\boldsymbol{K}_{X,X} = k(\boldsymbol{x}, \boldsymbol{x}^T)$ which is the matrix of $k(\boldsymbol{x_i}, \boldsymbol{x_j})$. Thus, \mathbf{K} is a $M \times M$ matrix.

The assumption of Gaussian Process is as following:

For a given vector \mathbf{y} , and its corresponding data \mathbf{X} , where vector $\mathbf{y} \in \mathbb{R}^M$ and \mathbf{X} is $M \times N$ matrix. In addition, for \mathbf{y} and \mathbf{X} data, the error term $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma^{\epsilon})$, and $\Sigma^{\epsilon} = diag(\sigma_1^2, \sigma_2^2, \sigma_3^2, \dots, \sigma_M^2)$. Meanwhile we have arbitrary $n \times N$ matrix \mathbf{Z} and predicted value $f^*(\mathbf{z}) \in \mathbb{R}^n$, where $\mathbf{z} = (\mathbf{z_1}, \mathbf{z_2}, \mathbf{z_3}, \dots, \mathbf{z_n})^T$.

Then we assume y and $f^*(z)$ follow a (M+n) multivariate normal distribution:

$$\begin{bmatrix} f^*(\mathbf{z}) \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_{f^*(\mathbf{z})} \\ \mu_{\mathbf{y}} \end{bmatrix} , \begin{bmatrix} \mathbf{K}_{Z,Z} & \mathbf{K}_{Z,X} \\ \mathbf{K}_{X,Z} & \hat{\mathbf{K}}_{X,X} \end{bmatrix} \right) \tag{1}$$

where $\hat{\boldsymbol{K}}_{X,X} = \boldsymbol{K}_{X,X} + \Sigma^{\epsilon}$.

Then given data \mathbf{y} , \mathbf{X} and \mathbf{Z} , according to the conditional distributions of the multivariate normal distribution¹, we have the posterior distribution

$$f^*(z)|y, X, Z \sim \mathcal{N}(\mu_{f^*(z)} + K_{Z,X}\hat{K}_{X,X}^{-1}(y - \mu_y), K_{Z,Z} - K_{Z,X}\hat{K}_{X,X}^{-1}K_{X,Z})$$
(2)

¹https://statproofbook.github.io/P/mvn-cond

1.2 Intuition behind Gaussain Process

The idea behind this process is that, assume our interested function is $f(\mathbf{x})$ is $f(\mathbf{x}) : \mathbb{R}^N \to \mathbb{R}$, and we have an arbitorary vector of independent variable $\mathbf{x} = (\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_M})^T$, and for each $\mathbf{x_i}, i = 1, 2, \dots, M, x_i \in \mathbb{R}^N$, then we can obtain a series of $f(\mathbf{x}) = (f(\mathbf{x_1}), f(\mathbf{x_2}), f(\mathbf{x_3}), \dots, f(\mathbf{x_M}))^T$. We assume that the series of $f(\mathbf{x})$ follows a multivariate normal distribution which is:

$$f(\boldsymbol{x}) \sim \mathcal{N}(\mu(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}^T))$$
 (3)

This is the prior distribution of our function f(x), here we have a set of infinitely functions that follow this distribution, their mean is the function $\mu(x_i)$, and the variance of them is $k(x_i, x_i^T)$. Here we use kernel to denote variance-covariance matrix because kernel value represents how near two data points in the space are, with this property we can obtain a smooth function. Meanwhile, kernel matrix is symmetric and semi-positive-definite, this is needed for variance-covariance matrix.

When we provide a set of observed data $D = \{x_i, y_i\}_{i=1}^M$, and introduce noise term, then we have $y_i = f(x_i) + \epsilon_i$, the property of noise term ϵ is the same as abouve. Data D is regarded as training data, and if we now have a testing data x^* , the joint distribution of $(y_i, f(x^*))$ is also multi-normal, here we can obtain the marginal distribution of $f(x^*)$, which is the conditional distribution given data D, and this is called posterior distribution. Thus, we also obtain the posterior mean function and posterior variance function of $f(x^*)$.

If our test data set contains multiple data, then we will obtain a vector of $f^*(x^*)$ and its posterior multivariate normal distribution as mentioned in section 1.1.

1.3 Gaussain Process in research paper

In our object paper, for given price data P,