Task 1: Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

			oggi in F , 03 Dicem				
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa
Intensità del vento	15 km/h	14 km/h	9 km/h	9 km/h	7 km/h	8 km/h	8 km/h
Direzione del vento	\leftarrow	\leftarrow	\leftarrow	\leftarrow	>	>	>
	▣	▤	▣	▣	SE	SE	SE
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Punto di rugiada	3°C	3°C	3°C	1°C	-1°C	0°C	-1°C
Nuvole	21 %	13 %	42 %	15 %	2 %	3 %	3 %
Nuvole basse	11 %	7 %	42 %	15 %	2 %	3 %	3 %
Nuvole medie	18 %	12 %	2 %	0 %	1 %	0 %	0 %
Nuvole alte	0 %	0 %	0 %	0 %	0 %	0 %	0 %

December 3 | 16:00 | Piacenza, PC, Italy.

P = 102.5 kPa;

 Φ = **69%**;

T = 8 C or T = 281 K;

 $P_g = 1.079 \text{ kPa};$

Considering Aula A as 10m*8m*5m

We need to determine:

- 1) the absolute humidity ω
- 2) the wet-bulb temperature T_wet bulb
- 3) the mass of water vapor in the air m

The absolute humidity formula:

The absolute humidity formula:
$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$

$$\omega = 0.622 \frac{P_v}{P_a}$$

$$P_v = P_g * \phi = 1.079 * 0.69 = \textbf{0.744 kPa}$$

$$\omega = 0.622 \frac{0.744}{101.756} = \textbf{0.0045 kg}_v/\textbf{kg}_a$$

$$P_a = P - P_v = 102.5 - 0.744 = \textbf{101.756 kPa}$$

$$m_a = \frac{P_a V_a}{R_a T} = \frac{101.756 * (10 * 8 * 5)}{0.287 * 281} = \textbf{504.69 kg}$$

$$m_v = \frac{P_v V_a}{R_v T} = \frac{0.744 * (10 * 8 * 5)}{0.4615 * 281} = \textbf{2.29 kg}$$

Task 1: Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Internal gains

Q'_(ig_sensible)=136+2.2 *A_cf+22 N_oc=136+2.2*200+22*2= **620 W** Q'_(ig_latent)=20+0.22*A_cf+12 N_oc=20+0.22*200+12*2= **88 W**

A_es=200+144=**344** m^2 A_L=A_es×A_ul=344×1.4=**481.6** cm^2

IDF_heating=**0.063** L/(s.cm^2) IDF_cooling=**0.031** L/(s.cm^2)

<i>Н</i> , п	Heating Design Temperature, °C				Cooling Design Temperature, °C				
	-40	-30	-20	-10	0	10	30	35	40
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074

V_(infiltration_heating)=A_L×IDF= 481.6*0.063=30.34 L/s V_(infiltration_cooling)=A_L×IDF= 481.6*0.31=14.92 L/s

V_ventilation=0.05 A_cf+3.5 (N_br+1)= 0.05*200+3.5*2=17 L/S

V_(inf-ventilation_heating)= 30.34+17=**47.34 L/s**V_(inf-ventilation_cooling)=14.92+17=**31.92 L/s**

C_sensible=1.23, C_latent=3010

Q _(inf-ventilation_(cooling_sensible))=C_sensible V Δ T_Cooling=1.23 * 31.92*7.1=**278 W** Q _(inf-ventilation_(cooling_(latent)))= C_latent V $\Delta\omega$ _Cooling=3010 * 31.92 * 0.0039=**374 W**

Q'_(inf-ventilation_(heatingg_sensible))=C_sensible V \Darabel{DT_heating} T_heating=1.23 *47.34*15.9=925.28 W