Домашня робота з курсу "Теорія Ймовірності"

Студента 3 курсу групи МП-31 Захарова Дмитра

Завдання 1.

Умова. Знайти ймовірність того, що при n=2000 підкиданнях грального кубику "одиниця" випаде m=400 разів.

Розв'язання. Введемо випадкову величину $\xi \sim \text{Bin}(n,\frac{1}{6})$ – кількість випадань одиниць після n кидань. Якщо позначити $p=\frac{1}{6},q=\frac{5}{6},$ то за теоремою Муавра-Лапласа

$$p(\xi = m) \approx \mathcal{N}(m \mid np, \sqrt{npq}),$$

де $\mathcal{N}(x \mid \mu, \sigma) \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$ — нормальний розподіл. Отже:

$$p(\xi = 400) \approx \frac{1}{\sqrt{2\pi \cdot 2000 \cdot \frac{1}{6} \cdot \frac{5}{6}}} \exp\left\{-\frac{(400 - 2000 \cdot \frac{1}{6})^2}{2 \cdot 2000 \cdot \frac{1}{6} \cdot \frac{5}{6}}\right\}$$

Далі рахуємо значення:

$$p(\xi = 400) \approx \frac{3e^{-8}}{50\sqrt{2\pi}} \approx 8 \cdot 10^{-6}$$

Реальне значення, якщо порахувати, виходить $p(\xi=m)=C_n^mp^mq^{n-m}\approx 1.1\cdot 10^{-7}$ – як бачимо, помилка вийшла невеликою.

Завдання 2.

Умова. Ймовірність деякої події A у кожному випробуванні з серії n незалежних випробувань дорівнює $\theta=\frac{1}{3}$. Знайти ймовірність того, що частота цієї події відхилиться від її ймовірності за абсолютним значенням не більш, ніж на $\delta=0.01$, якщо буде проведено n=9000 випробувань.

Розв'язання. Розглядаємо випадкову величину $\xi \sim \text{Bin}(n,\theta)$ – кількість випадіння події A. Частота події визначається як $\nu = \frac{\xi}{n}$. За умовою, треба знайти $p(|\nu - \theta| \le \delta)$, що в свою чергу еквівалентно

$$p(n(\theta - \delta) < \xi < n(\theta + \delta))$$

Застосуємо теорему Муавра-Лапласа. Тоді, приблизно $\xi \sim \mathcal{N}(n\theta, \sqrt{n\theta(1-\theta)})$. В такому разі, шукану ймовірність можна записати як:

$$p(n(\theta - \delta) < \xi < n(\theta + \delta)) = \int_{n(\theta - \delta)}^{n(\theta + \delta)} \mathcal{N}(x \mid n\theta, \sqrt{n\theta(1 - \theta)}) dx$$
$$= \frac{1}{\sqrt{2\pi n\theta(1 - \theta)}} \int_{(\theta - \delta)n}^{(\theta + \delta)n} \exp\left\{-\frac{(x - n\theta)^2}{2n\theta(1 - \theta)}\right\} dx$$

Робимо заміну $z=\frac{x-n\theta}{\sqrt{n\theta(1-\theta)}},$ тоді $dz=\frac{dx}{\sqrt{n\theta(1-\theta)}}.$ В такому разі, межі зміняться на $[-z_0,+z_0]$ де $z_0=\delta\sqrt{\frac{n}{\theta(1-\theta)}}.$ Тоді наш інтеграл має вид:

$$p((\theta - \delta)n < \xi < (\theta + \delta)n) = \frac{1}{\sqrt{2\pi}} \int_{-z_0}^{z_0} \exp\left\{-\frac{z^2}{2}\right\} dz = 2\Phi(z_0)$$

Або остаточно, наша відповідь

$$2\Phi\left(\delta\sqrt{\frac{n}{\theta(1-\theta)}}\right) = 2\Phi\left(\frac{9}{2\sqrt{5}}\right) \approx 0.96$$

Завдання 3.

Умова. Ймовірність виходу конденсатора з ладу протягом певного проміжку часу дорівнює $\theta=0.2$ і конденсатори виходять з ладу незалежно один від одного. Знайти ймовірність того, що за цей проміжок часу зі n=100 конденсаторів з ладу вийдуть від a=14 до b=26 конденсаторів.

Розв'язання. Розглядаємо випадкову величину $\xi \sim \text{Bin}(n,\theta)$. Застосовуючи теорему Муавра-Лапласа, приблизно можна вважати розподіл $\xi \sim \mathcal{N}(\mu,\sigma)$ з математичним сподіванням $\mu = n\theta = 20$ та середньоквадратичним відхиленням $\sigma = \sqrt{n\theta(1-\theta)} = 4$. За умовою, треба знайти

$$p(a < \xi < b) \approx \int_{a}^{b} \mathcal{N}(x \mid \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{a}^{b} \exp\left\{-\frac{(x - \mu)^{2}}{2\sigma^{2}}\right\} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{(a-\mu)/\sigma}^{(b-\mu)/\sigma} \exp\left\{-\frac{z^{2}}{2}\right\} dz = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Якщо підставляти конкретні числа, то маємо

$$p(a < \xi < b) = \Phi\left(\frac{3}{2}\right) - \Phi\left(-\frac{3}{2}\right) = 2\Phi(1.5) \approx 0.87$$

Завдання 4.

Умова. Знайти найменше число випробувань таке, щоб з ймовірністю, не менш $\tau=0.99$, частота події відхилялася за абсолютним значенням від її ймовірності $\theta=\frac{1}{3}$ не більш ніж на $\delta=0.01$.

Розв'язання. Як ми знаходили з другого завдання, ймовірність події з умови дорівнює

$$p((\theta - \delta)n < \xi < (\theta + \delta)n) = 2\Phi\left(\delta\sqrt{\frac{n}{\theta(1 - \theta)}}\right)$$

Нам потрібно, щоб $p((\theta - \delta)n < \xi < (\theta + \delta)n) \ge \tau$, отже

$$2\Phi\left(\delta\sqrt{\frac{n}{\theta(1-\theta)}}\right) \ge \tau \implies \sqrt{\frac{n}{\theta(1-\theta)}} \ge \frac{1}{\delta} \cdot \Phi^{-1}\left(\frac{\tau}{2}\right)$$

Звідки остаточно:

$$n \ge \frac{\theta(1-\theta)}{\delta^2} \cdot \Phi^{-1} \left(\frac{\tau}{2}\right)^2 \approx 14750$$