Data Analysis

Team 7

December 10, 2021

Data Cleaning

```
# removing the header
df = df[c(-1,-2),]
# Renaming columns
df <- df%>%rename(Age=`Â `,Gender=Q2,Education=Q3,subgroup = FL_49_D0)
# Keeping only the finished surveys
df_finished = df%>%filter(Finished == 'True')
# making the blank cells to be the control group
df_finished$subgroup[df_finished$subgroup == ""] <- 'Control'</pre>
df_finished$group<- ifelse(grepl('^Treatment', df_finished$subgroup), 'Treatment', 'Control')</pre>
# extract out the dollar values
df_finished$willing_to_pay <- str_extract(df_finished$Q16, '\\$(\\d+)')</pre>
# Remove the dollar sign
df_finished$willing_to_pay <- (gsub("\\$", "", df_finished$willing_to_pay))</pre>
# Add O to the NA values
df_finished$willing_to_pay[is.na(df_finished$willing_to_pay)] <- 0</pre>
#Create binary outcome
df_finished$is_willing_to_pay<- ifelse(df_finished$willing_to_pay>0,1,0)
#Create binary indicators for age
df_finished$equal_over35<- ifelse(df_finished$Age=="35 or more than 35",1,0)
df_finished$equal_over30<- ifelse(df_finished$Age=="30-34" | df_finished$Age=="35 or more than 35",1,0
# Select just the columns needed
df_finished <- df_finished %>%
              select(ResponseId, Age, Gender, Education, subgroup, group, equal_over35, equal_over30, willing_t
              mutate(willing_to_pay = as.numeric(willing_to_pay))
control_group = df_finished%>%filter(group == "Control")
```

Survey Metadata

- We have collected so far 194 surveys.
- These include 167 finished surveys.
- We have 32 subjects in the control group and 135 subjects in the treatment groups

treatment_group = df_finished%>%filter(group == "Treatment")

Where Survey Participants Are Coming From

```
map_df <- df%>%select(LocationLatitude,LocationLongitude)
mapWorld <- borders("world", colour="gray50", fill="white")
mp <- ggplot() + mapWorld
mp + geom_point(data = map_df, aes(x =as.numeric(LocationLongitude), y=as.numeric(LocationLatitude)))</pre>
```

Warning: Removed 27 rows containing missing values (geom_point).

Distribution among Treatment and Control Groups

```
ggplot(data = df_finished)+
aes(x = factor(group), fill = group)+
geom_bar(stat = "count")+ggtitle("Subject Distribution")+xlab("Group")
```

Subject Distribution

Demographic Distribution

Gender

```
ggplot(data = df_finished)+
aes(x = factor(df_finished$Gender),fill = Gender)+
geom_bar(stat = "count")+ggtitle("Gender")
```


Education

```
ggplot(data = df_finished)+
aes(x = factor(df_finished$Education),fill = Education)+
geom_bar(stat = "count")+ggtitle("Education")+coord_flip()
```


Age Distribution

```
ggplot(data = df_finished)+
aes(x = factor(df_finished$Age),fill= Age)+
geom_bar(stat = "count")+ggtitle("Age")+xlab("Age Groups")
```


Testing to see if there is a Association between Gender and being in the control group

```
# Is the Gender distribution in the treatment and control group the same or different
# Ran a Fisher Test since the the smallest expected frequency is lower than 5

df <- table(df_finished$Gender, df_finished$group)
fisher.test(df)

##
## Fisher's Exact Test for Count Data
##
## data: df
## p-value = 0.02789
## alternative hypothesis: two.sided</pre>
```

seems like there is an association between gender and being the control or treatment group

Comparing the Control and Treatment group willingness to pay

Between The Control Group and All Treatment Groups

```
(group summary <- df finished%>%
                  group_by(group)%>%summarize(`avg willingness in dollars`=mean(willing_to_pay),
                                              `sd willing to pay in dollars` = sd(willing_to_pay),
                                              lower = t.test(willing_to_pay)$conf.int[1],
                                              upper = t.test(willing_to_pay)$conf.int[2]))
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 2 x 5
              'avg willingness in dollar 'sd willing to pay in dolla lower upper
    group
##
     <chr>>
                                     <dbl>
                                                                  <dbl> <dbl> <dbl>
                                                                   1.20 0.473 1.34
## 1 Control
                                     0.906
## 2 Treatment
                                     0.919
                                                                   1.22 0.711 1.13
```

Betweem The Control and Treatment Sub Groups

```
(sub_group_summary <- df_finished%>%
                      group_by(subgroup)%>%
                      summarize(`avg willingness in dollars`=mean(willing_to_pay),
                                `sd willing to pay in dollars` = sd(willing_to_pay),
                                lower = t.test(willing_to_pay)$conf.int[1],
                                upper = t.test(willing_to_pay)$conf.int[2]))
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 4 x 5
              'avg willingness in dolla~ 'sd willing to pay in dolla~ lower upper
     subgroup
     <chr>
                                     <dbl>
                                                                  <dbl> <dbl> <dbl>
##
## 1 Control
                                     0.906
                                                                   1.20 0.473 1.34
## 2 Treatment1
                                     0.787
                                                                   1.27 0.415 1.16
## 3 Treatment2
                                                                   1.12 0.463 1.14
                                     0.8
## 4 Treatment3
                                                                   1.26 0.799 1.57
                                     1.19
# plotting the values
ggplot(data = group_summary,
       aes(x=group,y=`avg willingness in dollars`,fill = group))+geom_bar(stat = 'identity')+
       ylim(0,3)+ylab("avg willingness to pay in dollars ($)")+
       geom_errorbar(aes(ymin=lower, ymax=upper),
                width=.2,
                                             # Width of the error bars
                position=position_dodge(0.9))+
       ggtitle ("Average Willingness to pay between all overall Treatment and Control")
```

Average Willingness to pay between all overall Treatment and Control

Average Willingness to pay between sub groups

Regression Analysis

## ## ##	Effect of Information Warning	J	
##	## Dependent varia		
## ## ## ##		willing_to_pay (Continuous) (1)	is_willing_to_pay (Binary) (2)
## ## ## ##	subgroupTreatment1	-0.119 (0.278)	-0.118 (0.113)
	subgroupTreatment2	-0.106 (0.281)	-0.015 (0.114)
	subgroupTreatment3	0.280 (0.283)	0.121 (0.115)

##			
##	Constant	0.906***	0.437***
##		(0.215)	(0.087)
##			
##			
##	Observations	167	167
##	R2	0.018	0.031
##	Adjusted R2	0.0004	0.014
##	Residual Std. Error (df = 163)	1.214	0.493
##	F Statistic (df = 3; 163)	1.023	1.764
##			
##	Note:	*p<0.1; **	p<0.05; ***p<0.01

Heterogeneous Treatment Effects

	Dependent variable:				
	willing_to_pay		is_willi	ng_to_pay	
	(Continuous)	(Continuous)	(Binary)	(Bi	
	(1)	(2)	(3)		
subgroupTreatment1	-0.119	-0.302	-0.118	-0	
	(0.278)	(0.328)	(0.113)	(0	
subgroupTreatment2	-0.106	-0.164	-0.015	-0	
SubgroupTreatment2	(0.281)	(0.318)	(0.114)	(0	
subgroupTreatment3	0.280	0.093	0.121	0	
	(0.283)	(0.324)	(0.115)	(0	
equal_over35		-0.708		-0	
		(0.496)		(0	
<pre>subgroupTreatment1:equal_over35</pre>		0.727		0	
subgroup rearment requar_overss		(0.624)		(0	
		0.000		^	
<pre>subgroupTreatment2:equal_over35</pre>		0.039 (0.685)		0	

## ##			(0.673)		(0
	Constant	0.906*** (0.215)	1.083*** (0.248)	0.437*** (0.087)	0.50
## ##		(0.213)	(0.246)	(0.087)	
	Observations	167	167	167	
##	R2	0.018	0.043	0.031	0
##	Adjusted R2	0.0004	0.001	0.014	0
##	Residual Std. Error	1.214 (df = 163)	1.214 (df = 159)	0.493 (df = 163)	0.494 (
##	F Statistic	1.023 (df = 3; 163)	1.017 (df = 7; 159)	1.764 (df = 3; 163)	1.256 (d:
##					=======
##	Note:			*p<0.1;	**p<0.05

Interaction Coefficients are not statistically significant, suggesting there are no Heterogenous Treatment Effects

##

subgroupTreatment3:equal_over30

```
# Run linear model for heterogeneous treatment effects for Age >= 30
lm.willing_to_pay.hetero <- lm(willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay.hetero <- lm(is_willing_to_pay ~ subgroup + equal_over30 + subgroup:equal_over30, data=d
lm.is_willing_to_pay ~ lm.is_
```

## ##		Dependent variable:				
##		willing_to_pay		is_willi	ng_to_pay	
##		(1)	(Continuous) (2)	(3)	(Bi	
## ##	subgroupTreatment1	-0.119	-0.173	-0.118	-0	
## ##		(0.278)	(0.396)	(0.113)	(0	
	subgroupTreatment2	-0.106	0.098	-0.015	0	
## ##		(0.281)	(0.380)	(0.114)	(0	
	subgroupTreatment3	0.280	0.326	0.121	0	
## ##		(0.283)	(0.391)	(0.115)	(0	
##	equal_over30		-0.051		-0	
## ##			(0.430)		(0	
##	<pre>subgroupTreatment1:equal_over30</pre>		0.109		-0	
## ##			(0.557)		(0	
##	<pre>subgroupTreatment2:equal_over30</pre>		-0.750		-0	
## ##			(0.586)		(0	

-0.146

##			(0.575)		(0
##					
##	Constant	0.906***	0.933***	0.437***	0.4
##		(0.215)	(0.313)	(0.087)	(0
##					
##					
##	Observations	167	167	167	
##	R2	0.018	0.045	0.031	0
##	Adjusted R2	0.0004	0.002	0.014	0
##	Residual Std. Error	1.214 (df = 163)	1.213 (df = 159)	0.493 (df = 163)	0.494 (
##	F Statistic	1.023 (df = 3; 163)	1.058 (df = 7; 159)	1.764 (df = 3; 163)	1.280 (d:
##			=======================================		
##	Note:			*p<0.1:	**p<0.05

Interaction Coefficients are not statistically significant, suggesting there are no Heterogenous Treatment Effects