UBND Tỉnh Quảng Bình Trường Đại học Quảng Bình

MỘT SỐ BÀI TOÁN DÃY SỐ, LUYỆN THI OLYMPIC TOÁN

Biên soạn: Th.s Phan Trọng Tiến

Một số kiến thức nhắc lại:

Dãy số là một ánh xạ từ tập các số tự nhiên (hoặc các số nguyên không âm) vào tập các số thực

$$f: \mathbb{N} \to \mathbb{R}$$
.

Đặt $a_n = f(n), n \in \mathbb{N}$, và dùng ký hiệu $\{a_n\}$ để chỉ dãy số.

Dãy số $\{a_n\}$ được gọi là:

- dương (âm) nếu $a_n > 0$ $(a_n < 0)$ với mọi n;
- không âm (không dương) nếu $a_n \ge 0$ ($a_n \le 0$) với mọi n;
- đơn điệu tăng (giảm) nếu $a_{n+1} \ge a_n \ (a_{n+1} \le a_n)$ với mọi n;
- tăng (giảm) ngặt nếu $a_{n+1} > a_n (a_{n+1} < a_n)$ với mọi n;
- hội tụ tới $a \in \mathbb{R}$ (hoặc có giới hạn hữu hạn là a), nếu với mọi số $\varepsilon > 0$ cho trước bé tùy ý, tồn tại $n(\varepsilon) \in \mathbb{N}$ sao cho

$$|a_n - a| < \varepsilon, \ \forall n \ge n_0.$$

Trong trường hợp như thế, ta nói dãy $\{a_n\}$ hội tụ, và gọi a là giới hạn của dãy $\{a_n\}$ và viết

$$\lim_{n \to \infty} a_n = a$$

- phân kỳ ra $+\infty$, nếu với mọi số A>0 cho trước lớn tùy ý, tồn tại $n(A)\in\mathbb{N}$ sao cho

$$a_n > A, \ \forall n \ge n(A).$$

Trong trường hợp như thế, ta viết

$$\lim_{n \to \infty} a_n = +\infty.$$

- phân kỳ ra $-\infty$, nếu với mọi số A>0 cho trước lớn tùy ý, tồn tại $n(A)\in\mathbb{N}$ sao cho

$$a_n < -A, \ \forall n \ge n(A).$$

Trong trường hợp như thế, ta viết

$$\lim_{n\to\infty} a_n = -\infty$$

- dãy Cauchy (hoặc dãy cơ bản), nếu với mọi số $\varepsilon>0$ cho trước bé tùy ý, tồn tại $n(\varepsilon)\in\mathbb{N}$ sao cho

$$|a_m - a_n| < \varepsilon, \forall m, n \ge n(\varepsilon).$$

Định lý hội tụ đơn điệu nói rằng dãy số đơn điệu (tăng hoặc giảm) và bị chặn có giới hạn hữu hạn.

Cụ thể: Dãy $\{a_n\}$ tăng và bị chặn trên thì hội tụ về $\sup\{a_1, a_2, ...\}$; dãy $\{a_n\}$ giảm và bị chặn dưới thì hội tụ về $\inf\{a_1, a_2, ...\}$

Tiêu chuẩn Cauchy nói rằng dãy số hội tụ khi và chỉ khi nó là dãy Cauchy (dãy cơ bản).

Các tính chất cơ bản của giới hạn là

- Một dãy hội tụ thì bị chặn.
- Bảo toàn các phép tính số học, tức là, nếu

$$\lim_{n \to \infty} a_n = a; \lim_{n \to \infty} b_n = b$$

thì

$$\lim_{n \to \infty} (\alpha a_n \pm \beta b_n) = \alpha a \pm \beta b, \forall \alpha, \beta \in \mathbb{R};$$

$$\lim_{n \to \infty} a_n b_n = ab; \lim_{n \to \infty} (a_n/b_n) = a/b \ (b \neq 0)$$

- Bảo toàn thứ tự theo nghĩa sau: nếu

$$\lim_{n \to \infty} a_n = a; \lim_{n \to \infty} b_n = b$$

 $a_n \ge b_n$; với $n \ge n_0$ nào đó, thì $a \ge b$.

- Định lý kẹp: Cho ba dãy số thực $\{a_n\},\{b_n\},\{c_n\}$. Nếu $a_n\leq c_n\leq b_n,$ với $n\geq n_0$ nào đó

$$\lim_{n \to \infty} a_n = a; \lim_{n \to \infty} b_n = a$$

thì $\lim_{n\to\infty} c_n = a$.

1. Giả sử $\{a_1, a_2, ..., a_p\}$ là những số dương cố định. Xét các dãy sau:

$$s_n = \frac{a_1^n + a_2^n + \dots + a_p^n}{p} \text{ và } x_n = \sqrt[n]{s_n}; \ n \in \mathbb{N}.$$

Chứng minh rằng $\{x_n\}$ là dãy đơn điệu tăng. HD. Trước tiên xét tính đơn điệu của dãy $\left\{\frac{s_n}{s_{n-1}}\right\}$ $n\geq 2$.

- **2.** Chứng minh rằng dãy $\{a_n\}$, với $a_n=\frac{n}{2^n}, n>1$, là dãy giảm ngặt và tìm giới hạn của dãy.
- **3.** Cho $\{a_n\}$ là dãy bị chặn thoả mãn điều kiện $a_{n+1} \geq a_n \frac{1}{2^n}, n \in \mathbb{N}$. Chứng minh rằng dãy $\{a_n\}$ hội tụ. HD. Xét dãy $\left\{a_n \frac{1}{2^{n-1}}\right\}$.
- 4. Chứng minh rằng dãy $\{a_n\}$ được xác định theo công thức truy hồi

$$a_1 = \frac{3}{2}, a_n = \sqrt{3a_{n-1} - 2}, \text{ với } n \ge 2$$

hội tụ và tìm giới hạn của nó.

5. Cho c>2, xét dãy $\{a_n\}$ được xác định theo công thức truy hồi

$$a_1 = c^2, a_{n+1} = (a_n - c)^2, n \ge 1.$$

Chứng minh dãy $\{a_n\}$ tăng ngặt. HD cm $a_n > 2c$

- **6.** Giả sử dãy $\{a_n\}$ thoả mãn điều kiện $0 < a_n < 1, a_n(1 a_{n+1}) > \frac{1}{4}$ với $n \in \mathbb{N}$. Thiết lập sự hội tụ của dãy và tìm giới hạn của nó.
- 7. Thiết lập sự hội tụ và tìm giới hạn của dãy được xác định theo biểu thức

$$a_1 = 0, a_{n+1} = \sqrt{6 + a_n}$$
 với $n > 1$.

8. Khảo sát tính đơn điệu của dãy và xác định giới hạn của nó.

$$a_n = \frac{n!}{(2n+1)!!}, n \ge 1,$$

- 9. Hãy xác định tính hội tụ hay phân kỳ của dãy $a_n = \frac{(2n)!!}{(2n+1)!!}, n \ge 1.$
- 10. Chứng minh sự hội tụ của các dãy sau

a)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}; n \in \mathbb{N}^*$$

b)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n}; n \in \mathbb{N}^*.$$

11. Cho $p \in \mathbb{N}^*$, a > 0 và $a_1 > 0$, định nghĩa dãy $\{a_n\}$ bởi

$$a_{n+1} = \frac{1}{p} \left((p-1)a_n + \frac{a}{a_n^{p-1}} \right), n \in \mathbb{N}.$$

Tìm $\lim_{n\to\infty} a_n$. HD cm $a_{n+1} > \sqrt[p]{a}$, lập hiệu $a_{n+1} - a_n$ để chứng minh $\{a_n\}$ tăng.

12. Dãy $\{a_n\}$ được xác định theo công thức truy hồi

$$a_1 = 1, a_{n+1} = \frac{2(2a_n + 1)}{a_n + 3}, \text{ v\'oi } n \in \mathbb{N}.$$

Thiết lập sự hội tụ và tìm giới hạn của dãy $\{a_n\}$.

13. Tìm các hằng số c>0 sao cho dãy $\{a_n\}$ được định nghĩa bởi công thức truy hồi

$$a_1 = \frac{c}{2}, a_{n+1} = \frac{1}{2}(c + a_n^2), n \in \mathbb{N}$$

là hội tụ. Trong trường hợp hội tụ hãy tìm $\lim_{n\to\infty}a_n$. HD cm bằng quy nạp dãy $\{a_n\}$ tăng ngặt

14. Cho a > 0 cố định, xét dãy $\{a_n\}$ được xác định như sau

$$a_1 > 0, a_{n+1} = a_n \frac{a_n^2 + 3a}{3a_n^2 + a}, n \in \mathbb{N}.$$

Tìm tất cả các số a_1 sao cho dãy trên hội tụ và trong những trường hợp đó hãy tìm giới hạn của dãy. HD $a_{n+1}=a_n\left(1-2\frac{a_n^2-a}{3a_n^2+a}\right), n\geq 1; \ a_n\frac{a_n^2+3a}{3a_n^2+a}>\sqrt{a}\Leftrightarrow (a_n-\sqrt{a})^3>0.$

3

15. Cho a là một số cố định bất kỳ và ta định nghĩa $\{a_n\}$ như sau:

$$a_1 \in \mathbb{R}, a_{n+1} = a_n^2 + (1 - 2a)a_n + a^2, n \in \mathbb{N}.$$

Xác định a_1 sao cho dãy trên hội tụ và trong trường hợp như thế tìm giới hạn của nó.

16. Cho c > 0 và b > a > 0, ta định nghĩa dãy $\{a_n\}$ như sau:

$$a_1 = c, a_{n+1} = \frac{a_n^2 + ab}{a+b}$$

với $n \in \mathbb{N}$. Với những giá trị của a, b và c dãy trên sẽ hội tụ? Trong các trường hợp đó hãy xác định giới hạn của dãy.

17. Tính

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n + 1}} \right).$$

18. Cho $a_1, a_2, ..., a_p$ là các số dương, hãy tìm

$$\lim_{n\to\infty} \left(\sqrt[n]{\frac{a_1^n + a_2^n + \dots + a_p^n}{p}} \right).$$

19. Tính

$$\lim_{n \to \infty} \left(\sqrt[n]{2\sin^2 \frac{n^{2009}}{n+1} + \cos^2 \frac{n^{2009}}{n+1}} \right).$$

UBND Tỉnh Quảng Bình

Trường Đại học Quảng Bình

MỘT SỐ BÀI TOÁN ĐẠO HÀM, LUYỆN THI OLYMPIC TOÁN

Biên soạn: Th.s Phan Trọng Tiến

Một số kiến thức nhắc lại:

Cho hàm f xác định trên [a,b] và $x_0 \in (a,b)$. Ta nói hàm f đạt cực đại địa phương tại x_0 nếu tồn tại một lân cận $U = (x_0 - \delta, x_0 + \delta) \subset (a,b)$ của x_0 sao cho $f(x) \leq f(x_0)$ mọi $x \in U$. **Định lý Fermat:** Hàm số f xác định trên (a,b). Nếu f đạt cực trị địa phương tại x_0 và có

đạo hàm tại x_0 thì $f'(x_0) = 0$.

Định lý Lagrange: Cho f liên tục trên [a,b] và có đạo hàm trong (a,b). Khi đó, tồn tại $c \in (a,b)$ sao cho $\frac{f(b)-f(a)}{b-a}=f'(c)$.

Định lý Cauchy: f, g là hai hàm liên tục [a, b] và có đạo hàm trong (a, b). Khi đó, tồn tại $c \in (a, b)$ sao cho [f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).

20. Chứng minh rằng nếu $|a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx| \le |\sin x|$, $\forall x \in \mathbb{R}$ thì $|a_1 + 2a_2 + ... + na_n| \le 1$.

21. Chứng minh rằng nếu f liên tục trong khoảng đóng [a;b], khả vi trên khoảng mở (a;b) và f(a) = f(b) = 0 thì với $\alpha \in \mathbb{R}$, tồn tại $x \in (a;b)$ sao cho $\alpha f(x) + f'(x) = 0$.

4

WWW.YIETMATHS.COM

- **22.** Cho f và g là các hàm liên tục trên [a;b], khả vi trên khoảng mở (a;b) và giả sử f(a) = f(b) = 0. Chứng minh rằng tồn tại $x \in (a;b)$ sao cho g'(x)f(x) + f'(x) = 0.
- **23.** Cho f là hàm liên tục trên [a;b]; a>0 và khả vi trên khoảng mở (a;b). Chứng minh rằng nếu $\frac{f(a)}{a}=\frac{f(b)}{b}$, thì tồn tại $x_0\in(a;b)$ sao cho $x_0f'(x_0)=f(x_0)$:
- **24.** Giả sử f liên tục trên [a;b] và khả vi trên (a;b). Chứng minh rằng nếu $f^2(b) f^2(a) = b^2 a^2$ thì phương trình f'(x)f(x) = x có ít nhất một nghiệm trong (a;b).
- **25.** Giả sử f và g liên tục, khác 0 trong [a;b] và khả vi trên (a;b). Chứng minh rằng nếu f(a)g(b)=f(b)g(a) thì tồn tại $x_0\in(a;b)$ sao cho $\frac{f'(x_0)}{f(x_0)}=\frac{g'(x_0)}{g(x_0)}$.
- **26.** Giả sử $a_0; a_1; ...; a_n$ là các số thực thoả mãn $\frac{a_0}{n+1} + \frac{a_1}{n} + ... + \frac{a_{n-1}}{2} + a_n = 0$: Chứng minh rằng đa thức $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ có ít nhất một nghiệm trong (0;1).
- **27.** Cho f khả vi liên tục trên [a;b] và khả vi cấp hai trên (a;b), giả sử f(a)=f'(a)=f(b)=0. Chứng minh rằng tồn tại $x_1 \in (a;b)$ sao cho $f''(x_1)=0$.
- **28.** Cho f liên tục trên [0;2] và khả vi cấp hai trên (0;2). Chứng minh rằng nếu (f(0)=0;f(1)=1 và f(2)=2 thì tồn tại $x_0\in(0;2)$ sao cho $f''(x_0)=0$.
- **29.** Cho f liên tục [0,1] và khả vi trên (0,1), $f(x) \neq -1, \forall x \in [0,1]$. f(0) = 0, f(1) = 1. CMR: $\exists \xi \in (0,1)$ sao cho $f'(\xi) = \frac{1}{2}[1+f(\xi)]^2$.
- **30.** Cho hàm số f(x) có đạo hàm và trên $(0, +\infty)$ và không phải là hàm hằng. Cho a, b là hai số thực thỏa mãn điều kiện 0 < a < b. Chứng minh rằng phương trình sau có ít nhất một nghiệm thuộc (a, b): $xf'(x) f(x) = \frac{af(b) bf(a)}{b a}$.
- **31.** Cho f là một hàm liên tục trên [0,1], khả vi trên (0,1) sao cho f(0)=0, f(1)=1. Chứng minh rằng tồn tại các điểm $x_1,x_2,...,x_{2009},\ 0< x_1< x_2<...< x_{2009}<1$ sao cho $f'(x_1)+f'(x_2)+...+f'(x_{2009})=2009$.

UBND Tỉnh Quảng Bình Trường Đại học Quảng Bình

MỘT SỐ BÀI TOÁN HÀM LIÊN TỤC, LUYỆN THI OLYMPIC TOÁN

Biên soạn: Th.s Phan Trọng Tiến

Một số kiến thức nhắc lại:

Cho $X \subset \mathbb{R}$. Ta gọi một ánh xạ f từ X vào \mathbb{R} là một hàm số. Tập X được gọi là tập xác định của hàm f.

Hàm đơn điệu:

Ta nói hàm số f đơn điệu tăng (đơn điệu giảm) trên tập $E \subset \mathbb{R}$ nếu với mỗi cặp $x_1, x_2 \in E$ mà $x_1 < x_2$ thì $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$.

Hàm f được gọi là đơn điệu tăng ngặt (đơn điệu giảm ngặt) trên tập $E \subset \mathbb{R}$ nếu với mỗi

cặp $x_1, x_2 \in E$ mà $x_1 < x_2$ thì $f(x_1) < f(x_2)$ $(f(x_1) > f(x_2))$.

Hàm số đơn điệu tăng (ngặt) hay đơn điệu giảm (ngặt) được gọi chung là hàm đơn điệu (ngặt).

Hàm bị chặn:

Hàm số f được gọi là bi chặn trên tập $D \subset \mathbb{R}$ nếu tồn tại số M sao cho $f(x) \leq M, \forall x \in D$. Hàm f được gọi là bị chặn dưới trên tập $D \subset \mathbb{R}$ nếu tồn tại một số m sao cho $f(x) \geq m, \forall x \in D$.

Hàm f vừa bị chặn trên vừa bị chặn dưới trên D được gọi là bị chặn trên D. Như vậy có thể suy ra rằng: hàm f bị chặn trên D nếu tồn tại số $M \ge 0$ sao cho $|f(x)| \le M, \forall x \in D$.

Giới hạn của hàm số:

Số thực l được gọi là giới hạn của hàm số f khi x dần đến x_0 nếu $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$: $\forall x \in X$ mà $0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$. Lúc đó kí hiệu: $\lim_{x \to x_0} f(x) = l$ hay $f(x) \to l$ khi $x \to x_0$.

Định lý chuyển qua dãy: Điều kiện cần và đủ để $\lim_{x\to x_0} f(x) = l$ là với mọi dãy $(x_n)_n \subset X$ mà $x_n \to x_0$ khi $n \to \infty$ thì $f(x_n) \to l$ khi $n \to \infty$.

Giới han bằng vô cùng và giới han ở vô cùng:

Nếu với mỗi số M>0 tồn tại số $\delta>0$ sao cho f(x)>M (f(x)<-M) với mọi x thoả mãn bất đẳng thức $0<|x-a|<\delta$ thì ta nói f có giới hạn bằng $+\infty$ $(-\infty)$ khi x tiến tới a và ký hiệu:

$$\lim_{x \to a} f(x) = +\infty \left(\lim_{x \to a} f(x) = -\infty \right).$$

Bây giờ ta giả thiết rằng hàm f xác định trên tập không bị chặn.

Số L được gọi là giới hạn của f khi x tiến ra $+\infty(-\infty)$ nếu với mỗi $\varepsilon>0$ tồn tại số M>0 sao cho với mọi $x\in X$ thoả mãn bất đẳng thức x>M (x<-M) ta có: $|f(x)-L|<\varepsilon$. Ký hiệu: $\lim_{x\to +\infty}f(x)=L$ $(\lim_{x\to -\infty}f(x)=L)$.

Nếu với mỗi số E > 0 tồn tại số M > 0 sao cho f(x) > E (f(x) < -E) với mọi $x \in X$ thoả mãn x > M thì ta nói hàm f có giới hạn $+\infty(-\infty)$ khi x tiến ra $+\infty$ và ký hiệu:

$$\lim_{x \to +\infty} f(x) = +\infty \left(\lim_{x \to -\infty} f(x) = -\infty \right).$$

Tương tự cho $\lim_{x \to +\infty} f(x) = -\infty$ và $\lim_{x \to +\infty} f(x) = -\infty$.

Hàm liên tục:

Hàm f được gọi là liên tục tại điểm x_0 nếu: Tồn tại giới hạn $\lim_{x\to x_0} f(x)$; $f(x_0) = \lim_{x\to x_0} f(x)$.

Theo ngôn ngữ $\varepsilon - \delta$ thì

Hàm f được gọi là liên tục tại x_0 nếu với mỗi $\varepsilon > 0$ tồn tại một số $\delta > 0$ sao cho với mọi $x : |x - a| < \delta$ ta có $|f(x) - f(x_0)| < \varepsilon$.

Tính chất hàm liên tục:

- 1) Nếu f liên tục trên [a,b] và f(a).f(b) < 0 thì có ít nhất một điểm $c \in (a,b)$ sao cho f(c) = 0.
- 2) Giả sử f liên tục trên [a,b] và $f(a)=A\neq B=f(b)$. Khi ấy f nhận mọi giá trị trung gian giữa A và B. (Ta nói : f lấp đầy đoạn [A,B]).

Hàm số được gọi là liên tục đều trên tập $X\subset\mathbb{R}$ nếu như với mỗi số dương ε (nhỏ bao nhiêu

tùy ý), ta tìm được số dương δ sao cho

$$\forall x, y \in X, |x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon.$$

Định lý Cantor: Hàm liên tục trên đoạn thì cũng liên tục đều trên đoạn đó.

Nếu hàm f liên tục trên đoạn [a,b] thì f bị chặn trên đoạn [a,b]. Hơn nữa f đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó, tức là có $\alpha, \beta \in [a,b]$ để

$$f(\beta) = \min_{x \in [a,b]} f(x) \text{ và } f(\alpha) = \max_{x \in [a,b]} f(x).$$

Bài 1.1. Cho f là một hàm liên tục trên \mathbb{R} sao cho f(f(x)) = x với mọi $x \in \mathbb{R}$.

- a) Chứng minh rằng phương trình f(x) = x luôn luôn có nghiệm.
- b) Hãy tìm một hàm thoả mãn điều kiện trên nhưng không đồng nhất bằng x trên \mathbb{R} .
- Bài 1.2. Cho $f:[a,b] \to [a,b]$ là một hàm liên tục sao cho $f(a)=a,\ f(b)=b$ và f(f(x))=x với mọi $x\in [a,b]$. Chứng minh rằng f(x)=x với mọi $x\in [a,b]$.
- Bài 1.3. Cho f là một hàm liên tục trên $\mathbb R$ thoả mãn f(f(f(x))) = x với mọi $x \in \mathbb R$.
 - a) Chứng minh rằng f(x) = x trên \mathbb{R} . Hãy tìm bài toán tổng quát hơn.
- b) Tìm một hàm f xác định trên $\mathbb R$ thoả mãn f(f(f(x))) = x nhưng f(x) không đồng nhất bằng x.
- Bài 1.4. Cho f là một hàm liên tục và đơn ánh trên (a,b). Chứng minh rằng f là một hàm đơn điệu ngặt trên (a,b).
- Bài 1.5.Cho hàm số $f:[a,b] \rightarrow [a,b]$ thoả mãn điều kiện

$$|f(x) - f(y)| < |x - y|$$
 với mọi $x \in [a, b], x \neq y$.

Chứng minh rằng phương trình f(x)=x luôn luôn có duy nhất nghiệm trên [a,b].

Bài 1.6. Cho f là một hàm liên tục trên $\mathbb R$ thoả mãn một trong hai điều kiện sau:

- a) f là hàm đơn điệu giảm trên \mathbb{R} .
- b) f là một hàm bị chặn trên \mathbb{R} .

Chứng minh rằng phương trình f(x)=x luôn luôn có nghiệm. Trong mỗi trường hợp, hãy xem điều kiện duy nhất nghiệm có được đảm bảo không?

Bài 1.7. Cho f là một hàm liên tục trên \mathbb{R} . Chứng minh rằng nếu phương trình f(f(x)) = x có nghiệm thì phương trình f(x) = x cũng có nghiệm.

Bài 1.8. Cho f là một hàm liên tục trên $\mathbb R$ thoả mãn

$$|f(x)| < |x|$$
 với mọi $x \neq 0$.

- a) Chứng minh rằng f(0) = 0.
- b) Chứng minh rằng nếu 0 < a < b thì tồn tại $K \in [0,1)$ sao cho

$$|f(x) \le K|x|, \forall x \in [a, b].$$

Bài 1.9. Cho f là một hàm liên tục trên $\mathbb R$ và thoả mãn một trong ba điều kiện dưới đây:

- a) $f(x) + f(2x) = 0, \forall \in \mathbb{R}$.
- **b)** $f(x^2) = f(x), \forall x \in \mathbb{R}.$
- c) $f(x) = f(\sin x), \ \forall x \in \mathbb{R}.$

Chứng minh rằng f là hàm hằng.

Bài 1.10. Cho f là một hàm không âm, liên tục trên $[0, +\infty)$ và $\lim_{x\to\infty} \frac{f(x)}{x} = k < 1$. Chứng minh rằng tồn tại $x_o \in [0, +\infty)$ sao cho $f(x_o) = x_o$.

UBND Tỉnh Quảng Bình

Trường Đại học Quảng Bình

MÔT SỐ BÀI TOÁN TÍCH PHÂN, LUYÊN THI OLYMPIC TOÁN

Biên soạn: Th.s Phan Trọng Tiến

Một số kiến thức nhắc lại:

MĐ Nếu f là một hàm liên tục trên [a,b] và $f(x) \ge 0 \forall x \in [a,b]$ thì $\int\limits_a^b f(x) dx \ge 0$.

MĐ Nếu f,g là hai hàm liên tục trên [a,b] và $f(x) \ge g(x) \forall x \in [a,b]$ thì $\int\limits_a^b f(x) dx \ge \int\limits_a^b g(x) dx$.

MĐ Nếu f là một hàm liên tục trên [a,b] và $f(x) \ge 0 \forall x \in [a,b]$ và f không đồng nhất bằng 0 trên [a,b] thì $\int\limits_a^b f(x) dx > 0$.

MĐ Nếu f là một hàm liên tục trên [a,b] thì $\left|\int\limits_a^b f(x)dx\right| \leq \int\limits_a^b |f(x)|dx$.

Số thực $\mu = \frac{1}{b-a} \int_a^b f(x) dx$ gọi là giá trị trung bình của hàm f trên [a,b].

Mệnh đề: Nếu hàm f khả tích trên đoạn [a,b] và $m \leq f(x) \leq M, \forall x \in [a,b]$ thì tồn tại số $\mu \in [m,M]$ sao cho $\int\limits_a^b f(x) dx = \mu(b-a).$

Hệ quả: Nếu f là một hàm liên tục trên [a,b] thì tồn tại ít nhất một điểm $c \in [a,b]$ sao cho $\int\limits_a^b f(x)dx = f(c)(b-a).$

8

32. Cho f,g là các hàm liên tục trên [a,b]. Chúng minh rằng

a)
$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b (f(x))^2 dx \cdot \int_a^b (g(x))^2 dx$$
.

WWW.VIETMATHS.COM

b)
$$\int_{0}^{1} x^{n} \sqrt{1 - x} dx \le \frac{1}{(n+1)\sqrt{n+2}}$$
.

c) Nếu
$$f(x) > 0$$
, $\forall x \in [a, b]$, thì $\int_a^b f(x) dx$. $\int_a^b \frac{1}{f(x)} dx \ge (b - a)^2$.

HD b)

$$\int_{0}^{1} x^{n} \sqrt{1 - x} dx = \int_{0}^{1} \sqrt{x^{n}} \cdot \sqrt{x^{n} (1 - x)} dx \le \left(\int_{0}^{1} x^{n} dx \right)^{\frac{1}{2}} \cdot \left(\int_{0}^{1} x^{n} (1 - x) dx \right)^{\frac{1}{2}}$$

$$\le \frac{1}{\sqrt{n + 1}} \left(\int_{0}^{1} x^{n} dx - \int_{0}^{1} x^{n + 1} dx \right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n + 1}} \left(\frac{1}{n + 1} - \frac{1}{n + 2} \right)^{\frac{1}{2}}$$

$$\le \frac{1}{\sqrt{n + 1}} \cdot \frac{1}{\sqrt{n + 1} \cdot \sqrt{n + 2}} = \frac{1}{(n + 1)\sqrt{n + 2}}$$

- 33. Cho f là một hàm liên tục trên \mathbb{R} . Đặt $F(x) = \int_0^x f(t)dt$. Chứng minh rằng nếu f là hàm chẵn thì F là hàm lẻ, nếu f là hàm lẻ thì F là hàm chẵn.
- **34.** Cho f là một hàm liên tục và nhận giá trị dương trên [0,1].
- a) Chứng minh rằng $\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)dx}{f(\sin x) + f(\cos x)} = \frac{\pi}{4}.$
- b) Tính các tích phân $I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + e^{\cos 2x}}; \ J = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{tgx}}$
- **35.** Cho f là một hàm chẵn liên tục trên [-a,a], a>0; g là một hàm liên tục nhận giá trị dương trên [-a,a] và $g(-x)=\frac{1}{g(x)}, \ \forall x\in [-a,a].$
- a) Chứng minh rằng $\int_{-a}^{a} \frac{f(x)dx}{1+g(x)} = \int_{0}^{a} f(x)dx$.
- b) Tính $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 x + \sqrt{x^2 + 1}} dx$.
- c) Tính $\lim_{a \to +\infty} \int_{-a}^{a} \frac{dx}{(1+x^2)(1+e^x)}$.
- **36.** Cho f là hàm liên tục trên [0,1]. Chứng minh rằng
- a) $\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx = \frac{1}{2} \int_{0}^{\pi} f(\sin x) dx$.
- b) $\int_{0}^{n\pi} f(\cos^2 x) dx = n \int_{0}^{\pi} f(\cos^2 x) dx$.
- 37. Cho f là một hàm liên tục nhận giá trị dương và tuần hoàn với chu kỳ bằng 1 trên \mathbb{R} . Chứng minh rằng $\int_0^1 \frac{f(x)}{f(x+\frac{1}{n})} dx \ge 1, \ \forall n \in \mathbb{N}^*.$
- 38. Cho f là một hàm khả vi liên tục trên [a,b], f(a)=0 và $0 \le f'(x) \le 1, \ \forall x \in [a,b].$ Chứng minh rằng

a)
$$\int_{a}^{b} f(x)dx \ge \frac{1}{2} \Big[(f(b))^2 - (f(a))^2 \Big];$$
 b) $\int_{a}^{b} (f(x))^3 dx \le \Big(\int_{a}^{b} f(x) dx \Big)^2.$

HD
$$F(x) = (\int_{a}^{x} f(t)dt)^{2} - \int_{a}^{x} (f(t))^{3}dt, \ x \in [a,b]. \ F'(x) = 2.\int_{a}^{x} f(t)dt.f(x) - (f(x))^{3} = f(x) \left[2\int_{a}^{x} f(t)dt - (f(x))^{2}\right].$$

Đặt
$$G(x) = 2 \int_{x}^{x} f(t)dt - (f(x))^{2}$$
. Ta có

$$G'(x) = 2f(x) - 2f(x) \cdot f'(x) = 2f(x)(1 - f'(x)) \ge 0, \ \forall x \in [a, b].$$

39. Cho $f\in C_{[a,b]};\ x_1,x_2,\cdots,x_n\in [a,b], k_1,k_2,\cdots,k_n>0.$ Chứng minh rằng tồn tại $x_o\in [a,b]$ sao cho

$$k_1 \int_{x_0}^{x_1} f(x)dx + k_2 \int_{x_0}^{x_2} f(x)dx + \dots + k_n \int_{x_0}^{x_n} f(x)dx = 0.$$

Giải: Xét hàm

$$\varphi(x) = k_1 \int_{x}^{x_1} f(t)dt + k_2 \int_{x}^{x_2} f(t)dt + \dots + k_n \int_{x}^{x_n} f(t)dt.$$

Ta dễ dàng kiểm tra được

$$k_1\varphi(x_1) + k_2\varphi(x_2) + \dots + k_n\varphi(x_n) = 0.$$

Mặt khác φ là hàm liên tục trên [a,b] và $k_i>0$ với mọi $i=\overline{1,n}$, do đó tồn tại $x_o\in[a,b]$ sao cho $\varphi(x_o)=0$, hay $k_1\int\limits_{x_o}^{x_1}f(x)dx+k_2\int\limits_{x_o}^{x_2}f(x)dx+\cdots+k_n\int\limits_{x_o}^{x_n}f(x)dx=0$.

40. Tìm tất cả các hàm f liên tục trên [0,1] sao cho $\int_{0}^{x} f(t)dt = \int_{x}^{1} f(t)dt$.

HD Lấy đạo hàm hai vế.

41. Cho f là hàm khả vi liên tục trên [a,b], f(a)=f(b)=0. Chứng minh rằng

a)
$$\int_{a}^{b} x f(x) \cdot f'(x) dx = -\frac{1}{2} \int_{a}^{b} [f(x)]^{2} dx$$
.

b) Giả sử $\int_a^b [f(x)]^2 dx = 1$. Hãy chứng minh

$$\int_{a}^{b} [f'(x)]^{2} dx. \int_{a}^{b} [xf(x)]^{2} dx \ge \frac{1}{4}.$$

42. Cho f là hàm liên tục trên $[0,\pi]$ sao cho

$$\int_{0}^{\pi} f(x)\sin x dx = \int_{0}^{\pi} f(x)\cos x dx = 0.$$

Chứng minh rằng phương trình f(x) = 0 có ít nhất hai nghiệm phân biệt trong $(0, \pi)$.

Giải:

Giả sử rằng f có không quá một nghiệm trên $(0, \pi)$.

Th
1: f vô nghiệm trên $(0,\pi)$. Do tính liên tục của f ta suy ra f không đổi dấu trên $(0,\pi)$. Không mất tính tổng quát, giả sử f(x)>0 với mọi $x\in(0,\pi)$. Khi đó $\int\limits_0^\pi f(x)\sin xdx>0$, mâu thuẫn.

Th
2: f có duy nhất nghiệm $x_o \in (0,\pi)$. Dễ thấy rằng hàm

 $g(x) = f(x) \sin(x - x_o)$ không đổi dấu trên $(0,\pi).$ Do đó

$$\int_{0}^{\pi} f(x)\sin(x-x_{o})dx > 0.$$

Mặt khác từ giả thiết đã cho ta có

$$\int_{0}^{\pi} f(x)\sin(x - x_{o})dx = \cos x_{o} \int_{0}^{\pi} f(x)\sin x dx - \sin x_{o} \int_{0}^{\pi} f(x)\cos x dx = 0$$

Mâu thuẫn trên chứng tỏ f có ít nhất hai nghiệm phân biệt trên $(0, \pi)$.

43. Cho f là hàm khả vi trên [-1, 1] sao cho

$$\int_{-1}^{0} f(x)dx = \int_{0}^{1} f(x)dx.$$

Chúng minh rằng tồn tại $c \in (-1,1)$ sao cho f'(c) = 0.

Giải:

Theo định lý giá trị trung bình của tích phân, tồn tại $x_1 \in [-1,0]$,

 $x_2 \in [0, 1]$ sao cho

$$\int_{-1}^{0} f(x)dx = f(x_1), \text{ và } \int_{0}^{1} f(x)dx = f(x_2).$$

* Nếu $x_1 \neq 0$ hoặc $x_2 \neq 0$ thì $x_1 \neq x_2$. Theo định lý Rolle, tồn tại $c \in (x_1, x_2) \subset (-1, 1)$ sao cho f'(c) = 0.

* Nếu $x_1 = x_2 = 0$, thì

$$\int_{-1}^{0} f(x)dx = f(0) = \int_{0}^{1} f(x)dx.$$

Nếu $f(x) \neq f(0)$, $\forall x \in (0,1]$ thì $g(x) = f(x) - f(0) \neq 0$ với mọi $x \in (0,1]$. Vì vậy g(x) không đổi dấu trên (0,1] và

$$\int_{0}^{1} g(x)dx = \int_{0}^{1} g(x)dx - f(0) \neq 0.$$

Mâu thuẫn này chứng tỏ tồn tại $x_1 \in (0,1]$ sao cho

$$f(x_1) = f(0).$$

Lại áp dụng định lý Rolle ta có điều cần chứng minh.

44. Cho f là hàm liên tục trên [0,1]. Chứng minh rằng tồn tại $c \in [0,1]$ sao cho

$$\int_{0}^{1} f(x)x^{2}dx = \frac{1}{3}f(c).$$

Giải:

Do f là hàm liên tục trên [0,1] nên tồn tại $x_1,x_2\in[0,1]$

$$f(x_1) = \min_{x \in [0,1]} f(x), \ f(x_2) = \max_{x \in [0,1]} f(x).$$

Do đó

$$x^2 f(x_1) \le x^2 f(x) \le x^2 f(x_2), \forall x \in [0, 1].$$

Suy ra

$$\frac{1}{3}f(x_1) \le \int_0^1 x^2 f(x) dx \le \frac{1}{3}f(x_2).$$

$$\iff f(x_1) \le 3 \int_0^1 x^2 f(x) dx \le f(x_2).$$

Theo định lý giá trị trung gian của hàm liên tục, tồn tại $c \in [0,1]$ để $f(c) = 3 \int_{0}^{1} x^{2} f(x) dx$.

45. Cho f là hàm liên tục trên [0,n] và $\int\limits_0^n f(x)dx=0,\ (n\in\mathbb{N})$. Chứng minh rằng tồn tại $c\in[0,n-1]$ sao cho

$$\int_{0}^{c} f(x)dx = \int_{0}^{c+1} f(x)dx.$$

Giải:

Xét hàm

$$\varphi(x) = \int_{0}^{x} f(t)dt - \int_{0}^{x+1} f(t)dt = \int_{x}^{x+1} f(t)dt.$$

Rỗ ràng φ liên tục trên [0, n-1] và

$$\varphi(0) + \varphi(1) + \dots + \varphi(n-1) = 0.$$

Ta để dàng suy ra tồn tại $c \in [0, n-1]$ để $\varphi(c) = 0$.

46. Cho f là hàm khả vi liên tục trên $[a,b],\ f(a)=0.$ Chứng minh rằng

$$\int_{a}^{b} |f(x).f'(x)| dx \le \frac{(b-a)}{2} \int_{a}^{b} (f'(x))^{2} dx.$$

Lời giải:

Với mọi $x \in [a, b]$, ta có $f(x) = \int_{a}^{x} f'(t)dt$.

Do đó
$$|f(x).f'(x)| \le \int_{a}^{x} |f'(t)| dt. |f'(x)|.$$

Suy ra

$$\int_{a}^{b} |f(x).f'(x)| dx \le \int_{a}^{b} \left(\int_{a}^{x} |f'(t)| dt \right) |f'(x)| dx.$$

Ta có:
$$\left(\int\limits_a^x |f'(t)|dt\right)' = |f'(x)|$$
. Do vậy

$$\int_{a}^{b} \left(\int_{a}^{x} |f'(t)dt \right) . |f'(x)| dx = \frac{1}{2} \left(\int_{a}^{x} |f'(t)| dt \right)^{2} \Big|_{a}^{b} = \frac{1}{2} \left(\int_{a}^{b} |f'(x)| dx \right)^{2} \le \frac{1}{2} (b-a) . \int_{a}^{b} |f'(x)|^{2} dx.$$

Ta có bất đẳng thức cần chứng minh.

47. Cho f là hàm khả vi liên tục trên $[a,b],\ f(a)=0$. Chứng minh rằng

$$\frac{1}{b-a} \int_{a}^{b} |f(x)| dx \le \int_{a}^{b} |f'(x)| dx.$$

Giải: Ta có

$$|f(x)| = |f(x) - f(a)| = \Big| \int_{a}^{x} f'(t)dt \Big| \le \int_{a}^{x} |f'(t)|dt \le \int_{a}^{b} |f'(t)|dt.$$

Do đó

$$\int_{a}^{b} |f(x)| dx \le (b-a) \int_{a}^{b} |f'(x)| dx.$$

48. Cho f là hàm khả vi liên tục trên [a,b]. Chứng minh rằng

$$\int_{a}^{b} (f(x) - f(a))^{2} dx \le \frac{(b-a)^{2}}{2} \int_{a}^{b} (f'(x))^{2} dx.$$

Lời giải: Ta có

$$(f(x) - f(a))^{2} = \left(\int_{a}^{x} f'(t)dt\right)^{2} \le \int_{a}^{x} (f'(t))^{2}dt. \int_{a}^{x} 1^{1}dt \le (x - a) \int_{a}^{x} (f'(t))^{2}dt$$
$$\le (x - a) \int_{a}^{b} (f'(x))^{2}dx.$$

Do đó

$$\int_{a}^{b} (f(x) - f(a))^{2} dx \le \int_{a}^{b} (x - a) dx. \int_{a}^{b} (f'(x))^{2} dx \le \frac{(b - a)^{2}}{2} \int_{a}^{b} (f'(x))^{2} dx.$$