# On-line Supplemental Material for

## Phonon thermal conductivity by non-local non-equilibrium molecular dynamics

### Philip B. Allen\*

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

### Yerong Li<sup>†</sup>

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA and Department of Intensive Instruction, Nanjing University, Nanjing 210093, China (Dated: November 30, 2016)

This supplement contains details of the FAT algorithm used to find the best value of  $\pm \Delta \vec{v}$  to use in the heating algorithm. It also contains details of the analytic integrations shown in Appendix A.

### I. HEAT EXCHANGE ALGORITHM

The Müller-Plathe recipe is: find the hottest atom in the cold  $(\ell = N_S/2)$  slab, and the coldest atom in the hot  $(\ell = 0)$  slab. Interchange their velocities. Energy and momentum are both conserved, and the system is driven from equilibrium in a way that must be monitored. Cao and Li<sup>1</sup> among others, have suggested modified algorithms of this type. Furtado, Abreu, and Tavares<sup>2</sup> (FAT) devised a gentler and more versatile method. An earlier version of the present paper, which was was posted on the arXiv<sup>3</sup>, derived the same procedure. We call it the FAT algorithm, because Furtado  $et\ al$ . discovered it simultaneously and published it first.

In our computation, driving is done by spatially periodic injection  $(\dot{e}(\ell) \propto \cos(2\pi\ell/N_s))$  and simultaneous removal of heat. Examine a slab  $\ell$  (with  $0 \le \ell < N_S/4$ ), and its conjugate slab  $N_S/2 - \ell$ . The former is "hotter" than the latter because  $\dot{e}(\ell) > 0 > \dot{e}(N_S/2 - \ell) = -\dot{e}(\ell)$ . Find the coldest atom (meaning least kinetic energy) of all atoms of mass  $m_i$  in the hotter slab, denoting its velocity as  $\vec{v}_C$ . Find the hottest atom of the same mass in the colder slab, denoting its velocity  $\vec{v}_H$ . Given the large fluctuations of the Maxwell-Boltzmann ensemble, it is certain that  $v_H^2 > v_C^2$ . Choose an appropriate velocity  $\vec{w}$  and add it to the velocity  $\vec{v}_C$  and subtract it from  $\vec{v}_H$ :

$$\vec{v}_H \to \vec{v}_H - \vec{w}$$
  
 $\vec{v}_C \to \vec{v}_C + \vec{w}$  (1)

The same operation should be done for the pair of slabs  $-\ell$  and  $\ell - N_S/2$ . All slabs can be done simultaneously, or different random times can be used for different slabs.

There are three criteria for an appropriate  $\vec{w}$ , which uniquely fix the desired choice. (i) The cold atom's kinetic energy should increase by  $\Delta$ , an energy that can be specified in advance as  $(\dot{e}\Omega_S\tau)\cos(2\pi\ell/N_S)$ , where  $\tau$  is the average time interval between random interventions, and  $\Omega_S$  is the volume of a slab. (ii) The hot atom's kinetic energy should decrease by  $\Delta$ . Then both momentum and energy are conserved. Heating has the desired sinusoidal form, with  $\dot{e}$  chosen not too different from  $k_BT/\Omega_S\tau$ . Trial calculations should test for the best choices of  $\dot{e}$ 



FIG. 1. Geometric construction for finding the smoothest velocity change  $\vec{w}$  of the coldest atoms (with velocity  $\vec{v}_C$  in the hotter region and the hottest atoms (with velocity  $\vec{v}_H$  in the colder region. Both figures represent a sphere of radius  $\vec{r} = (\vec{v}_C - \vec{v}_H)/2$ . The plane perpendicular to  $\vec{b}$ , intersects the sphere in a circle, which is the locus of solutions  $\vec{w}$  obeying energy and momentum conservation rules. The points C and C' (in the  $\vec{r}$ - $\vec{b}$  plane) give the solutions with least and greatest impulse. The right-hand version shows the largest vector  $\vec{b}$  which allows solutions for  $\vec{w}$ . The minimum and maximum impulse solutions have merged to a point.

and  $\tau$ . (iii) There is still a one-dimensional family of vectors  $\vec{w}$ ; from these, choose the smallest  $|\vec{w}|$ , which gives the least impulse to the affected atoms. Except for the sinusoidal spatial variation of  $\Delta$ , these are exactly the criteria chosen by Furtado *et al.*. Their implementation of these criteria is also exactly like ours. We present our derivation here for the convenience of the reader.

The energy shift criteria (i) and (ii) give equations  $-2\vec{v}_H \cdot \vec{w} + w^2 = -2\Delta/m \equiv -\delta$ , and  $2\vec{v}_C \cdot \vec{w} + w^2 = +\delta$ . Adding and subtracting these equations give

$$\delta = (\vec{v}_H + \vec{v}_C) \cdot \vec{w}$$

$$w^2 = (\vec{v}_H - \vec{v}_C) \cdot \vec{w}, \qquad (2)$$

a linear and a quadratic equation for  $\vec{w}$ . These have a simple geometric interpretation shown in Fig. 1. The first equation restricts the projection of  $\vec{w}$  along the vector  $\vec{v}_H + \vec{v}_C$ . Geometrically, this means that  $\vec{w}$  lies on the plane (shown by C, C' in Fig. 1) perpendicular to the vector  $\vec{b} \equiv \delta(\vec{v}_C + \vec{v}_H)/|\vec{v}_C + \vec{v}_H|^2$ , where the origin of  $\vec{w}$  coincides with the origin of  $\vec{b}$ . The second equation re-

stricts  $\vec{w}$  to the surface of a sphere of radius  $|\vec{v}_H - \vec{v}_C|/2$ , centered at the end of the vector  $\vec{r} \equiv (\vec{v}_H - \vec{v}_C)/2$ , whose origin also coincides with the origin of  $\vec{w}$ . The sphere and the plane intersect on a circle, indicated by C, C' in Fig. 1. This circle is the one-dimensional family of solutions  $\vec{w}$  satisfying Eqs.(2). It is also clear from the geometry that the shortest vector  $\vec{w}$  (the one that satisfies criterion (iii)) is the one shown, from O to C. This lies in the same plane as the two known vectors  $\vec{r}$  and  $\vec{b}$  (also the same plane as  $\vec{v}_H$  and  $\vec{v}_C$ ). Therefore

$$\vec{w} = \alpha \vec{r} + \beta \vec{b} 
\vec{r} = (\vec{v}_H - \vec{v}_C)/2 
\vec{b} = \frac{\delta(\vec{v}_H + \vec{v}_C)}{|\vec{v}_H + \vec{v}_C|^2}.$$
(3)

These definitions allow Eqs.(2) to be written as

$$b^2 = \vec{w} \cdot \vec{b}$$

$$w^2 = 2\vec{r} \cdot \vec{w}.$$
 (4)

The solution for  $\vec{w}$  is

$$\beta = 1 - \alpha \frac{\vec{r} \cdot \vec{b}}{b^2}$$

$$\alpha = 1 - \sqrt{1 - X}$$

$$X = \frac{(b^2 - 2\vec{b} \cdot \vec{r})b^2}{b^2r^2 - (\vec{b} \cdot \vec{r})^2}$$
(5)

To derive this, substitute Eq.(3) for  $\vec{w}$  in terms of the unknown coefficients  $\alpha$  and  $\beta$  into the Eqs.(2). The linear equation is used to find  $\beta$  in terms of  $\alpha$ . Eliminating  $\beta$  in favor of  $\alpha$  in the quadratic equation gives a quadratic equation for  $\alpha$ . The appropriate solution is displayed in Eq.(5). An alternate version directly in terms of the velocities  $\vec{v}_H$  and  $\vec{v}_C$  is

$$X = (2\Delta/m) \frac{(2\Delta/m) - (v_H^2 - v_C^2)}{v_H^2 v_C^2 - (\vec{v}_H \cdot \vec{v}_C)^2}$$
 (6)

$$\vec{w} = \frac{\alpha}{2}(\vec{v}_H - \vec{v}_C) + \left[\frac{2\Delta}{m} - \frac{\alpha}{2}(v_H^2 - v_C^2)\right] \frac{\vec{v}_H + \vec{v}_C}{|\vec{v}_H + \vec{v}_C|^2}$$
(7)

Notice that X in Eq.(6) has a non-negative denominator that becomes zero in an accidental event where  $\vec{v}_H$  and  $\vec{v}_C$  are parallel; X is then ill-defined, because no solution exists. An alternate pair of C and H atoms must be chosen. In the simulations reported in subsequent sections, we find that  $\Delta$  should be chosen small, making the numerator of X in Eq.(6) negative. Thus both X and  $\alpha$  are negative, contrary to the version shown in Fig. 1. This does not adversely affect anything.

There is a second solution,  $\alpha = 1 + \sqrt{1 - X}$ , corresponding to the maximum  $|\vec{w}|$ , designated as C' in Fig. 1. For  $|\vec{b}| > b_{\text{max}}$ , there are no real solutions. This corresponds to X > 1. The condition for the two solutions to coincide is X = 1, which agrees with  $b_{\text{max}} = r(1 + \cos \theta)$ ,

where  $\theta$  is the angle between  $\vec{b}$  and  $\vec{r}$ . This can be understood from the right hand part of Fig. 1, illustrating the case where the circle collapses to a point. For reasonable choices of the parameter  $m\delta/2 = \Delta$ , meaning values smaller than or similar to  $k_BT/N_S$ , solutions should always exist.

### II. DEBYE-RTA MODEL, ESPECIALLY p=2

Appendix A gives formulas in the Debye-RTA model. Here are details. Equation 13 of ref. 4 is

$$\kappa_{\text{RTA}}(q) = \frac{k_B}{\Omega} \sum_{Q} \frac{v_{Qx}^2}{1/\tau_Q + iqv_{Qx}}.$$
 (8)

This is the classical limit of the solution of the Boltzmann equation in the relaxation time approximation (RTA). Now make a Debye model, and model the scattering rate as  $1/\tau_Q = (1/\tau_D)(Q/Q_D)^p$ . Multiplying numerator and denominator by  $\tau_D$ , and using  $x = Q/Q_D$ ,  $\mu = v_x/v = \cos \theta$ , and  $\lambda = qv$ , this generates Eq.(A1),

$$\tilde{\kappa}_p(q) = \frac{9}{2}\kappa_0 \int_0^1 dx x^2 \int_{-1}^1 d\mu \frac{\mu^2}{x^p + i\lambda\mu},\tag{9}$$

where  $\kappa_0 = Nk_B v^2 \tau / \Omega$ . One way to perform the integrations is to do the  $\mu$ -integral first.

$$\frac{\tilde{\kappa}_p(q)}{\kappa_0} = \frac{9}{\lambda} \int_0^1 dx x^2 \left[ \frac{x^p}{\lambda} - \left( \frac{x^p}{\lambda} \right)^2 \tan^{-1} \left( \frac{\lambda}{x^p} \right) \right]. \tag{10}$$

The most important case is p=2, and also the trickiest to integrate further. Using  $u=x^2$ , this can be written

$$\frac{\tilde{\kappa}_2(q)}{\kappa_0} = \frac{9}{2\lambda^2} \int_0^1 du u^{3/2} \left[ 1 - \frac{u}{\lambda} \cot^{-1} \frac{u}{\lambda} \right]. \tag{11}$$

This uses  $\tan^{-1}(1/x) = \cot^{-1} x$ . The answer can be written as

$$\frac{\tilde{\kappa}_p(q)}{\kappa_0} = \frac{9}{7\lambda^2} [h(1) - h(0)] \tag{12}$$

where h(u) is

$$h(u) = \frac{7}{2} \int du \left[ u^{3/2} - \frac{u^{5/2}}{\lambda} \cot^{-1} \frac{u}{\lambda} \right]$$

$$= u^{5/2} + 2\lambda^2 u^{1/2} - \frac{u^{7/2}}{\lambda} \cot^{-1} \frac{u}{\lambda}$$

$$- \frac{\lambda^{5/2}}{\sqrt{2}} \left[ \frac{1}{2} \log \left( \frac{u + \sqrt{2u\lambda} + \lambda}{u - \sqrt{2u\lambda} + \lambda} \right) + \tan^{-1} \left( \sqrt{2u/\lambda} + 1 \right) + \tan^{-1} \left( \sqrt{2u/\lambda} - 1 \right) \right]$$
(13)

This gives the result of Eq.(A4).

Going back to Eq.(9), an alternate route that is often simpler is to do the radial (x) integral before the angular  $(\mu)$  integral. In the tricky p=2 case, this gives

$$\frac{\tilde{\kappa}_2(q)}{\kappa_0} = 9 \int_0^1 d\mu \mu^2 \left[ 1 - \frac{\pi}{2} \sqrt{\frac{\lambda \mu}{2}} + \mathcal{R}e^{\frac{r}{2}} \log \left( \frac{1-r}{1+r} \right) \right],\tag{14}$$

where  $r=\sqrt{\lambda\mu}\exp(-i\pi/4)$ . By numerical integrations, we have convinced ourselves that both integrals (Eq.(10) and Eq.(14)) give the same result as the fully integrated formula in Eq.(A4). These results are used in Appendix D to confirm the conjecture of Refs. 4 and 5 that MD results, which are likely to conform to the p=2 case, should be extrapolated by plotting  $\kappa_{\rm eff}(L)$  versus  $\sqrt(1/L)$ .

† yerong.li@outlook.com

<sup>3</sup> Y. Li and P. B. Allen, arXiv:1412.3099v1 (2014).

<sup>4</sup> P. B. Allen, Phys. Rev. B **90**, 054301 (2014), URL http: //link.aps.org/doi/10.1103/PhysRevB.90.054301.

<sup>\*</sup> philip.allen@stonybrook.edu

B.-Y. Cao and Y.-W. Li, The Journal of Chemical Physics 133, 024106 (2010), URL http://scitation.aip.org/ content/aip/journal/jcp/133/2/10.1063/1.3463699.

F. A. Furtado, C. R. A. Abreu, and F. W. Tavares, AIChE Journal 61, 2881 (2015), ISSN 1547-5905, URL http://dx.doi.org/10.1002/aic.14803.

D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 81, 214305 (2010), URL http://link.aps.org/doi/10.1103/PhysRevB.81.214305.