TECNICA GREEDY: CODICI DI HUFFMAN

[Cormen] cap. 16 Sezione 16.3

Quest'opera è in parte tratta da (Damiani F., Giovannetti E., "Algoritmi e Strutture Dati 2014-15") e pubblicata sotto la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia.

Per vedere una copia della licenza visita http://creativecommons.org/licenses/by-nc-sa/3.0/it/.

Codifica di caratteri

Una codifica (di caratteri/simboli) associa un insieme di caratteri/simboli (l'alfabeto) ad un insieme di altri elementi, denominati parole in codice (nel caso del computer, sono sequenze di bit).

Ad esempio, la codifica ASCII associa dei simboli alfanumerici a sequenze di 7 bit (e.g., il carattere 'a' è rappresentato in ASCII come 110 0001)

La codifica di caratteri può essere generalizzata alla codifica di un intero testo, tramite la concatenazione delle singole codifiche.

(e.g., 'ab' è rappresentato in ASCII come 110 0001 110 0010)

Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph	Binary	Oct	Dec	Hex	Glyph	
010 0000	040	32	20		100 000	0 100	64	40	@	110 0000	140	96	60	٠.	L
010 0001	041	33	21	!	100 000	1 101	65	41	Α	110 0001	141	97	61	а	1
010 0010	042	34	22		100 001	0 102	66	42	В	110 0010	142	98	62	b	•
010 0011	043	35	23	#	100 001	1 103	67	43	С	110 0011	143	99	63	С	
010 0100	044	36	24	\$	100 010	0 104	68	44	D	110 0100	144	100	64	d	
010 0101	045	37	25	%	100 010	1 105	69	45	Е	110 0101	145	101	65	е	
010 0110	046	38	26	&	100 011	0 106	70	46	F	110 0110	146	102	66	f	
010 0111	047	39	27	100	100 011	1 107	71	47	G	110 0111	147	103	67	g	
010 1000	050	40	28	(100 100	0 110	72	48	Н	110 1000	150	104	68	h	
010 1001	051	41	29)	100 100	1 111	73	49	-1	110 1001	151	105	69	i	
010 1010	052	42	2A	*	100 101	0 112	74	4A	J	110 1010	152	106	6A	j	
010 1011	053	43	2B	+	100 101	1 113	75	4B	K	110 1011	153	107	6B	k	
010 1100	054	44	2C	,	100 110	0 114	76	4C	L	110 1100	154	108	6C	-1	
010 1101	055	45	2D	-	100 110	1 115	77	4D	М	110 1101	155	109	6D	m	
010 1110	056	46	2E		100 111	0 116	78	4E	N	110 1110	156	110	6E	n	
010 1111	057	47	2F	1	100 111	1 117	79	4F	0	110 1111	157	111	6F	0	
011 0000	060	48	30	0	101 000	0 120	80	50	Р	111 0000	160	112	70	р	
011 0001	061	49	31	1	101 000	1 121	81	51	Q	111 0001	161	113	71	q	
011 0010	062	50	32	2	101 001	0 122	82	52	R	111 0010	162	114	72	r	
011 0011	063	51	33	3	101 001	1 123	83	53	S	111 0011	163	115	73	s	
011 0100	064	52	34	4	101 010	0 124	84	54	Т	111 0100	164	116	74	t	
011 0101	065	53	35	5	101 010	1 125	85	55	U	111 0101	165	117	75	u	
011 0110	066	54	36	6	101 011	0 126	86	56	٧	111 0110	166	118	76	V	
011 0111	067	55	37	7	101 011	1 127	87	57	W	111 0111	167	119	77	w	
011 1000	070	56	38	8	101 100	0 130	88	58	Х	111 1000	170	120	78	х	
011 1001	071	57	39	9	101 100	1 131	89	59	Υ	111 1001	171	121	79	у	
011 1010	072	58	ЗА	:	101 101	0 132	90	5A	Z	111 1010	172	122	7A	Z	
011 1011	073	59	3B	÷	101 101	1 133	91	5B	[111 1011	173	123	7B	{	
011 1100	074	60	3C	<	101 110	0 134	92	5C	- 1	111 1100	174	124	7C	-1	
011 1101	075	61	3D	=	101 110	1 135	93	5D]	111 1101	175	125	7D	}	
011 1110	076	62	3E	>	101 111	0 136	94	5E	٨	111 1110	176	126	7E	~	
011 1111	077	63	3F	?	101 111	1 137	95	5F	_						

Codici (senza) prefissi

Le codifiche possono avere lunghezza fissa (tutti i caratteri/simboli sono codificati da un numero costante di bit, come ASCII) o variabile.

Quando codifichiamo delle sequenze di caratteri, affinché la codifica risulti non ambigua (cioè nella sequenza di bit sia sempre determinabile dove termina la codifica di un carattere e inizia quello successivo) bisogna che nessuna codifica di un carattere sia un prefisso di un'altra, ad esempio (01 e 010)

Un codice con questa proprietà si chiama codice senza prefissi o codice prefisso

Tutte le codifiche a lunghezza fissa sono prefisse, per quelle a lunghezza variabile non è detto.

Rappresentazione di codici prefissi tramite alberi binari

Un codice binario prefisso può essere rappresentato in modo compatto tramite un albero binario in cui le foglie rappresentano i caratteri ed i cammini dalla radice alle foglie rappresentano la codifica dei caratteri.

L'albero prende il nome di albero di codifica.

a: 000, b: 001, c: 010, d: 011, e: 100, f: 101

Costo di una codifica (di un testo)

Dato un alfabeto C e, un testo espresso usando C ed un albero T di codifica per C, si chiama lunghezza media di codifica o costo di T

$$L(T) = \sum_{c \in C} d_c \cdot f(c)$$

dove

f(c) è la frequenza con cui il carattere c compare nel testo

 $\mathbf{d_c}$ è il livello, quindi la lunghezza in bit della codifica, del carattere c in T.

Se n è il numero di caratteri che compongono il testo con frequenze date dalla funzione f, la lunghezza in bit della codifica del testo è ovviamente data da

lunghezza testo codificato = B(T) =
$$\sum_{c \in C} d_c \cdot n \cdot f(c) = n \cdot L(T)$$

Il problema: codifica ottima

Il problema affrontato dall'algoritmo di Huffman è il seguente:

Dato un testo scritto secondo un certo alfabeto C, trovare una codifica che sia minimale, cioè che renda minima la lunghezza del testo codificato.

... o meglio...

Dato l'alfabeto C e la funzione di frequenza f(c), tra tutti gli alberi di codifica T per C, trovare quello (o uno di quelli) che minimizza L(T).

La codifica di Huffman è quindi una tecnica di compressione, non è un altro modo di fare ciò che fa ASCII!

Codifica a lunghezza fissa – costo

Una codifica a lunghezza fissa usa parole in codice tutte della stessa dimensione (ad es. ASCII).

Con questa codifica servono almeno $\lceil \log_2 n \rceil$ bit per rappresentare ogni parola in codice per un alfabeto di n elementi.

ESEMPIO: Si consideri un alfabeto di 6 caratteri: a, b, c, d, e, f.

In un codice a lunghezza fissa servono 3 bit (L(T)=3) per la loro rappresentazione: a: 000, b: 001, c: 010, d: 011, e: 100, f: 101.

Quindi un file di dati di **100.000 caratteri** richiede **300.000 bit** (indipendentemente dalla frequenza di ogni singolo carattere).

Vogliamo capire se è possibile usare meno caratteri.

Alberi Pieni

Un albero avente nodi interni con un solo figlio non è ottimale.

Un nodo con un solo figlio, infatti, può venire **eliminato** attaccando i suoi figli **direttamente al padre**.

Un albero binario in cui ogni nodo interno ha esattamente due figli si chiama albero (binario) pieno.

A chi assegnare le codifiche più corte?

Gli alberi pieni, assegnano ad ogni carattere codifiche di lunghezza diversa. A chi assegno le codifiche più corte e a chi le più lunghe?

Per ottenere la maggior compressione possibile, i caratteri più frequenti devono avere le codifiche più corte, cioè comparire ai livelli più alti dell'albero.

Ad es., per le frequenze:

a 0.45

d 0.16

b 0.13

c 0.12

e 0.09

f 0.05

Codifica a lunghezza variabile – costo

COME: Codificare con meno bit i simboli che compaiono più di frequente, con più bit quelli che compaiono più raramente.

Ciò può permettere un risparmio anche del 25-90%.

Esempio. Supponiamo che nel testo considerato i sei caratteri compaiano con le frequenze sotto indicate, e usiamo la codifica descritta.

Caratteri:	а	b	С	d	е	f
Frequenze:	0,45	0,13	0,12	0,16	0,09	0,05
Codice I. fissa	000	001	010	011	100	101
Codice I. variabile	0	101	100	111	1101	1100

Costo lunghezza fissa (L(T)=3): 3*100.000 = 300.000

Costo lunghezza variabile:

L(T)=1*0,45+3*0,13+3*0,12+3*0,16+4*0,09+4*0,05 = 2,24*100.000 = 224.000

Quindi...

Una codifica ottimale molto probabilmente corrisponderà ad un albero pieno, in cui le foglie sono a livelli differenti.

Inoltre, le foglie più alte corrisponderanno ai caratteri più frequenti.

Ma abbiamo ancora un numero molto alto di soluzioni ammissibili, e non tutte saranno ottime!

Come otteniamo un codice che (dato un testo, o f(c)) abbia la maggior compressione possibile?

Parametri dell'algoritmo di Huffman

Input:

- un alfabeto, cioè un insieme C di caratteri (distinti);
- una funzione f che dà la **frequenza di ciascun carattere** in un dato testo t o, equivalentemente, il numero di volte num(c, t) in cui ciascun carattere compare nel testo; ovviamente

dove lunghezza(t) è il numero di caratteri del testo.

Output:

un codice binario ottimo per la compressione di quel testo t.

L'algoritmo di Huffman

L'algoritmo di Huffman è un'applicazione della tecnica Greedy con appetibilità modificabili:

 Per ciascun carattere crea un albero formato solo da una foglia contenente il carattere e la frequenza del carattere;

(Appetibilità: considera gli alberi in ordine non decrescente di frequenza)

- Fondi i due alberi che hanno le due frequenze minime e costruisci un nuovo albero che ha come frequenza la somma delle frequenze degli alberi fusi;
- 2. Ripeti la fusione finché si ottiene un unico albero

Esempio

caratteri: a, b, c, d, e, f

frequenza: 0.45, 0.13, 0.12, 0.16, 0.09, 0.05

Implementazione

Sia C un insieme di |C| caratteri. Per ogni carattere c, f[c] è la frequenza.

```
Huffman(C, f)
 n <- |C|
 Q <- empty priority queue()
 foreach c in C
   enqueue(Q, createTreeNode(c,NULL,NULL), f[c]) // aggiungi c a Q con priorità f[c]
 for i = 0; i < n-1; i++
    x <- dequeue_min(Q);</pre>
    y <- dequeue_min(Q);</pre>
    z <- createTreeNode(null, x, y); // interno: non contiene carattere
    f[z] <- f[x] + f[y];
    enqueue(Q, z, f[z]);
 return dequeue_min(Q) // restituisce l'albero ottenuto
```

Complessità

Numero di iterazioni: O(n) (esattamente, n-1).

Costo dequeue_min: O(log n)

Costo enqueue: O(log n)

TOT: O(n log n) se la coda con priorità è realizzata con uno heap binario.

(O(n²) se la coda con priorità è realizzata con una struttura con inserimento e/o estrazione del minimo lineari)

Correttezza

DIMOSTRIAMO CHE: L'algoritmo restituisce un albero di Huffman, che rende minima la lunghezza media di codifica L(T).

(ricorda, L(T) =
$$\sum_{c \in C} d_c \cdot f(c)$$
)

COME: per induzione. Partiamo dall'ipotesi (invariante) che ciò che è mantenuto dall'algoritmo può essere completato in un albero di Huffman T. Dimostriamo che se vale tale ipotesi, essa continua a valere dopo ogni passo (in particolare, esisterà un albero T''' in cui la foresta di Huffman risultante può essere completata).

Definizione: Foresta di Huffman

Foresta di Huffman per un alfabeto C con funzione frequenza f:

è una foresta i cui elementi T_1 , T_2 , ... T_n sono sottoalberi di un albero di Huffman T per l'alfabeto C con frequenze f; cioè una foresta $\{T_1, T_2, ... T_n\}$ tale che esiste un albero di Huffman T per C di cui T_1 , T_2 , ... T_n sono sottoalberi.

Inoltre le foglie degli alberi della foresta sono tutti e soli i caratteri di C (con associate le rispettive frequenze).

Invariante di Ciclo

La foresta $\{T_1, T_2, ... T_n\}$ costruita dall'algoritmo al generico passo è una foresta di Huffman per C ed f;

cioè esiste un albero di Huffman T (che non conosciamo) di cui gli alberi T_1 , T_2 , ... T_n sono sottoalberi, e le foglie di tali alberi sono tutti e soli i caratteri di C.

Base dell'induzione

Nell'istante immediatamente precedente l'esecuzione del ciclo l'invariante vale banalmente.

Gli alberi sono infatti tutti costituiti da nodi singoli, cioè da foglie corrispondenti ai caratteri dell'alfabeto C.

Ovviamente essi sono sottoalberi banali di qualunque albero di Huffman per C.

Passo induttivo

Assumiamo che prima della k-esima iterazione del ciclo l'invariante valga, cioè che la foresta $F = \{T_1, T_2, ... T_n\}$ sia una foresta di Huffman per il dato alfabeto C.

Mostriamo che dopo il (k+1)-esimo passo dell'iterazione, che fonde due alberi T_a e T_b aventi (le) due frequenze minime in nuovo albero T_{ab} , la nuova foresta $F - \{T_a, T_b\}$ U $\{T_{ab}\}$ è ancora una foresta di Huffman.

Dimostrazione del passo induttivo

In altre parole, mostriamo che fra tutti gli alberi di codifica di cui T_1 , ... T_n sono sottoalberi, vi è un albero (T''') la cui lunghezza media di codifica L(T''') è minima e di cui T_{ab} è un sottoalbero (cioè T_a e T_b sono fratelli).

Quindi l'albero T_{ab} può essere inserito nella foresta al posto di T_a e T_b : la foresta risultante $F - \{T_a, T_b\}$ U $\{T_{ab}\}$ è ancora una foresta di Huffman.

Dimostrazione del passo induttivo

Per **ipotesi induttiva** esiste un albero di Huffman T' di cui gli alberi $T_1, ..., T_a$, ..., T_b ... T_n sono **sottoalberi**, dove T_a e T_b sono, nella foresta al passo considerato, i due alberi di **frequenze minime** (o "pesi" minimi) $f(T_a)$ e $f(T_b)$.

Mostriamo che allora esiste un albero di Huffman T''' avente T_{ab}

come sottoalbero.

La parte tratteggiata
è T', che noi non
conosciamo

T_a

T_b

Consideriamo, fra i nodi (interni) di T' non appartenenti alla foresta F, cioè fra i nodi di T' che nel passo considerato non sono ancora stati creati, quello (o uno di quelli) di profondità massima. Sia esso z. Come ogni nodo interno, z deve avere due sottoalberifigli non nulli, siano T_x e T_y .

Poiché T_a e T_b sono, al passo considerato, i due alberi di **pesi** minimi, assumendo $f(T_a) <= f(T_b)$ e $f(T_x) <= f(T_y)$ (solo per ordinarli tra di loro) abbiamo:

$$f(T_a) \le f(T_x) e f(T_b) \le f(T_v)$$

Poiché z è un nodo di **profondità massima** (fra quelli di T' non ancora creati), le radici degli alberi T_x e T_y si trovano in T' a profondità d non inferiore a quelle di T_a e T_b , siano d_1 e d_2 .

Dunque:

$$f(T_a) \le f(T_x)$$
 $f(T_b) \le f(T_y)$
 $d_1 \le d$ $d_2 \le d$

Scambiamo di posizione T_a e T_x : otteniamo un albero T'' di lunghezza media non superiore.

Ricordando L(T) = $\sum_{c \in C} d_c \cdot f(c)$ si ha infatti:

$$L(T'') = L(T') - d_1 f(T_a) - d f(T_x) + d_1 f(T_x) + d f(T_a)$$

$$= L(T') - d_1 (f(T_a) - f(T_x)) + d(f(T_a) - f(T_x))$$

$$= L(T') + (f(T_a) - f(T_x)) (d - d_1)$$

$$f(T_a) - f(T_x) <= 0 \text{ e d } - d_1 >= 0.$$

ma $f(T_a) - f(T_x) \le 0 \text{ e d} - d_1 \ge 0.$ quindi $L(T') + (f(T_a) - f(T_x)) (d - d_1) \le L(T')$

La parte tratteggiata è
T'', che noi non
conosciamo

Analogamente, scambiando di posizione T_b e T_y otteniamo un albero T''' di lunghezza media non superiore a quella di T''.

Si ha dunque:

$$L(T''') <= L(T'') <= L(T')$$

La parte tratteggiata è T''', che noi non conosciamo

Ma T' è un albero di Huffman, cioè avente L(T') minimo.

Quindi deve essere L(T''') = L(T'), e anche T''', che ha T_{ab} come sottoalbero, è un albero di Huffman.

Dunque la foresta $F - \{T_a, T_b\} \cup \{T_{ab}\}$, ottenuta al k+1-esimo passo di iterazione, è "completabile" in un albero di Huffman, cioè è ancora una foresta di Huffman, CVD.

Cosa devo aver capito fino ad ora

- Codifica di caratteri in sequenze di bit
- Codifica a lunghezza fissa e variabile
- Codifiche ottime
- Algoritmo di Huffman per trovare una codifica ottima
- Correttezza dell'algoritmo di Huffman

...se non ho capito qualcosa

- Alzo la mano e chiedo
- Ripasso sul libro
- Chiedo aiuto sul forum
- Chiedo o mando una mail al docente