Universidade Estadual Vale do Acaraú - UVA

Curso: Ciência da Computação Disciplina: Matemática Discreta

Professor: Hudson Costa

Aula de Ordem Parcial

- 1. Seja a seguinte definição: "Um número inteiro x divide um número inteiro y (x|y) se existe algum número inteiro k tal que y = kx". Mostre que a relação de divisibilidade | faz do conjunto \mathbb{N} dos números naturais um conjunto parcialmente ordenado.
- 2. Explique por que a relação R em $\{0, 1, 2, 3\}$ dada por $R = \{(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 2), (2, 3), (0, 2), (1, 3)\}$ não é uma ordenação parcial em $\{0, 1, 2, 3\}$. Seja específico.
- 3. A relação divide "Z" determina uma ordenação parcial no conjunto {1,23,6,8,10}. Desenhe o diagrama de Hasse para esse conjunto de ordem parcial. Quais são os elementos maximais?
- 4. Seja X o conjunto a seguir (de conjuntos de letras). $X = \{\{b\}, \{b,e\}, \{b,r\}, \{b,e,r\}, \{a,r\}, \{b,a,r\}, \{b,e,a,r,s\}\}.$ Então X é um conjunto parcialmente ordenado pela relação \subseteq .
 - a) Desenhe um diagrama de Hasse para essa ordenação parcial.
 - b) Liste todos os elementos minimais, se houver.
 - c) Encontre um par de elementos incomparáveis, se houver.
- 5. Seja $X = \{1, 2, 3, 4\}$. Desenhe o diagrama de Hasse para o conjunto de ordem parcial $(P(X), \subseteq)$.
- 6. Seja $F \subseteq \mathbb{N}$ o conjunto de todos os fatores de 210. A seguir, encontre no conjunto de ordem parcial (F, |) cada um dos seguintes:
 - a) $30 \wedge 21$, o encontro de 30 e 21.
 - b) $35 \lor 15$, a junção de 35 e 15.
 - c) $2 \wedge 7$.
 - d) $2 \vee 7$.
 - e) $\neg 30$, o complementos de 30.