幾性代數与空间解析几何

3.1 几何向量的概念及其线性运算

- 一 几何向量的概念
- 二 几何向量的线性运算

一 几何向量的概念

向量: 既有大小又有方向的有向线段.

向量表示: \vec{a} 或者 \overrightarrow{AB}

以A 为起点,B 为终点的有向线段

向量的模: 有向线段的长度. $|\vec{a}|$ 或者 $|\overrightarrow{AB}|$

单位向量: 长度为1的向量. \vec{a}^0

零向量: 起点和终点重合的向量. 0

规定:零向量方向是任意的

$$\vec{a} = \vec{0} \Leftrightarrow |\vec{a}| = 0$$

自由向量:与起点无关的向量.

向量相等:大小相等且方向相同的向量.

$$\vec{a} \longrightarrow \vec{b}$$
 记做 $\vec{a} = \vec{b}$

即经过平行移动能够完全重合的向量.

平行: 两个向量方向相同或者相反 $\vec{a} / l\vec{b}$

共线: 若将两个平行向量的起点放在 同一个点上,它们的终点和公 共起点都在一条直线上

二 几何向量的线性运算

1 加法: 设 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$, 定义 $\vec{a} + \vec{b}$ 是个向量

(1) 当 \vec{a} 与 \vec{b} 共线时 $\begin{cases} |\vec{a}| + |\vec{b}| = |\vec{a}| + |\vec{b}|, \hat{b}| = |\vec{a}| = |\vec{b}|, \hat{b}| = |\vec{a}| + |\vec{b}|, \hat{b}| = |\vec{a}| + |\vec{b}|, \hat{b}| = |\vec{a}| + |\vec{b}|, \hat{b}|$ (1) 的 $|\vec{a}| + |\vec{b}| = |\vec{a}| + |\vec{b}| = |\vec{a}| + |\vec{b}| = |\vec{a}| + |\vec{b}|, \hat{b}|$ 方向与长度长的向量同向

$$\vec{a} + \vec{b}$$

$$\vec{a} + \vec{b}$$

$$\vec{a} + \vec{b}$$

(2) 当 \vec{a} 与 \vec{b} 不共线时,首先将 \vec{a} 与 \vec{b} 的起点重合

向量的加法符合下列运算规律:

(1)交換律:
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
.

(2) 结合律:
$$\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
.

(3)
$$\vec{a} + (-\vec{a}) = \vec{0}$$
.

2 减法
$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

3 数乘

设k 为实数, \vec{a} 为向量, 定义 $k\vec{a}$ 为向量

- (1) 当 \vec{a} 为零向量时, $k\vec{a} = \vec{0}$
- (2) 当 $\vec{a} \neq \vec{0}$ 时,定义 $|k\vec{a}| = |k||\vec{a}|$ k > 0时, $k\vec{a}$ 与 \vec{a} 同向; 方向 k < 0时, $k\vec{a}$ 与 \vec{a} 反向; k = 0时, $k\vec{a} = \vec{0}$,方向任意.

$$\vec{a}$$
 $\sqrt{2\vec{a}}$ $-\frac{1}{2}\vec{a}$

数与向量的乘积符合下列运算规律:

(1) 结合律:
$$k(l\vec{a}) = l(k\vec{a}) = (kl)\vec{a}$$

(2) 分配律:
$$(k+l)\vec{a} = k\vec{a} + l\vec{a}$$

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

两个向量的平行关系

定理 向量 \vec{a} 与向量 \vec{b} 的充分必要条件是:

存在数k,使 $\vec{b} = k\vec{a}$ 或 $\vec{a} = k\vec{b}$.

小结果

设 \vec{a}^0 表示与非零向量 \vec{a} 同方向的单位向量,

$$|\vec{a}| = |\vec{a}| |\vec{a}|^0 \Longrightarrow \frac{|\vec{a}|}{|\vec{a}|} = |\vec{a}|^0.$$

上式表明:一个非零向量除以它的模的结果 是一个与原向量同方向的单位向量.