Answers of homework Exercises Module FIR: Finite Impulse Response

Course: Signals Processing Basics (5ESE0)

Notes:

- During the contact hours complete workout of exercises can be explained by a tutor on request.
- The symbol [P] in the margin of an exercise denotes there is a pencast available.

Exercise 1

Exercise 2 a)

b)
$$y[n] = 7x[n] - 2x[n-1] + 3x[n-2] - 3x[n-3]$$

[P1] c)

Exercise 3

Exercise 4

a)

b)
$$y[n] = \left\{ \begin{array}{cc} 0 & n < 0 \\ \frac{1}{L}(n+1) & 0 \leq n \leq L-1 \\ 1 & n > L-1 \end{array} \right.$$

Exercise 5

a.
$$b_0 = 1, b_1 = 2, b_2 = 3, b_3 = 4, b_4 = 5$$
 and $b_n = 0$ for $n < 0$ and $n > 4$.

b.
$$h[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3] + 5\delta[n-4]$$

c.
$$y[n] = \delta[n] + 3\delta[n-1] + 6\delta[n-2] + 10\delta[n-3] + 15u[n-4]$$

Exercise 6

[P2] a)

b)
$$h[n] = \delta[n] - 2\delta[n-1] + 3\delta[n-2] - 4\delta[n-3] + 2\delta[n-4]$$

c)

$$y[n] \ = \ \delta[n] - 3\delta[n-1] + 4\delta[n-2] - 9\delta[n-3] + 9\delta[n-4] - 6\delta[n-5] + 2\delta[n-6]$$

Exercise 7

a.

$$A_1 = A_2 = 4$$
; $\theta_1 = -\theta_2 = \theta_x = \frac{\pi}{6}$; $\phi_1 = -\phi_2 = -\frac{\pi}{6}$

b. Thus $A=8,\ \theta_y=\theta_x=\frac{\pi}{6}$ and $\phi=-\frac{\pi}{6}$. The output frequency θ_y is equal to the input frequency θ_x .

Exercise 8

	Linear	Time-Invariant	Causal
a	Yes	Yes	No
b	No	Yes	No
С	No	Yes	Yes
d	Yes	No	Yes
е	Yes	Yes	Yes

[8b=P3]

Exercise 9

L=3 and $\{b_0,b_1,b_2,b_3\}=\{0,1,2,3\}$,, while all other coefficients are equal to zero.

Exercise 10

Exercise 11

We can set up a linear set of 3 equations with two unknown b_0 and b_1 :

$$\begin{array}{rcl} b_0 & = & 1 \\ b_0 + b_1 & = & 0 \\ b_1 & = & 0 \end{array}$$

which leads to a contradiction. Thus we can not make such an FIR.

Exercise 12

$$y[n] = \delta[n-1] + \delta[n-3] - \delta[n-4] - \delta[n-6]$$

Exercise 13

a.
$$v[n] = x[n] - x[n-1]$$

b.
$$h_2[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

The cascaded system has 4 delays and 5 multiplications.

d.

$$h[n] \quad = \quad \frac{1}{4}\delta[n] - \frac{1}{4}\delta[n-4]$$

e. A signal flow graph of the combined system is given in the figure.

This realization contains 4 delays and two multipliers.

Exercise 14

[P4]

a.

$$h[n] = \delta[n] - \delta[n - 10]$$

b. y[n] = x[n] - x[n-10].

Exercise 15

Filter $h_1[n]$ has a 'low pass' character, since it passes low frequencies and it attenuates high frequencies.

Filter $h_2[n]$ has a 'high pass' character, since it passes high frequencies and it attenuates low frequencies.