二项分布的参数模拟

庄亮亮

Generating random Numbers

```
set.seed(0)
binom = function(n,p,a=1.96){
    #n为随机产生的个数, p为预先生成随机数的参数,
    result = list()
    x = rbinom(n,1,p)
    mean = mean(x)
    result$mean = mean
    var = var(x)*n/(n-1)
    result$var = var
    up = mean + a*sqrt(var/n)
    low = mean - a*sqrt(var/n)
    result$conf.int =c(low,up)
    return(result)
}
```

Simulation

• 当 p=0.5, 计算根据不同试验次数所对应的 p 的估计值

试验次数	p 估计值	偏差	区间估计
10	0.7	0.2	0.38441, 1.01559
50	0.48	0.02	0.3386918,0.6213082
100	0.48	0.02	0.3810893, 0.5789107

试验次数	p 估计值	偏差	区间估计
500	0.478	0.022	0.4341278,0.5218722
1000	0.477	0.023	0.4460115, 0.5079885
5000	0.501	0.001	0.487138,0.514862
10000	0.4999	10×10^{-5}	0.490099,0.509701

• 当 p=0.25, 计算根据不同试验次数所对应的 p 的估计值

试验次数	p 估计值	偏差	区间估计
10	0.1	0.15	-0.1066021, 0.3066021
50	0.16	0.09	0.0563081,0.2636919
100	0.24	0.01	0.1554462,0.3245538
500	0.218	0.032	0.1817363,0.2542637
1000	0.242	0.008	0.2154275,0.2685725
5000	0.2542	0.0042	0.2421286,0.2662714
10000	0.2507	7×10^{-4}	0.2422042,0.2591958

• 当 p=0.75, 计算根据不同试验次数所对应的 p 的估计值

试验次数	p 估计值	偏差	区间估计
10	0.8	0.05	0.5245305, 1.0754695
50	0.68	0.07	0.5480606,0.8119394
100	0.72	0.03	$0.6311073,\ 0.8088927$
500	0.732	0.018	0.6930988,0.7709012
1000	0.745	0.005	0.717958,0.772042
5000	0.7616	0.0116	0.7497866,0.7734134
10000	0.7486	0.0014	0.7400963,0.7571037

Conclusion

可以看到不管 p 为何值,随着 n 不断变大,p 估计值与实际参数之间的偏差在不断减小,区间估计效果越来越好。