b.	Compare				
	 (i) Step index and graded index fiber (ii) Stimulated Raman scattering and stimulated Brillouin scattering (iii) Define normalized frequency (or) V-parameter 	4 4 4	3 3 3	1 1 1	1 1 1
27. a.	Explain the concept of link power budget and rise time budget in detail.	10	4	2	2
b.	(OR) Mention the classification of WDM light wave systems. Explain about them in detail.	10	3	2	3
28. a.	Explain in detail about the Erbium Doped Fiber Amplifier (EDFA) with neat diagram.	10	4	3	1
b.i.	(OR) Define dispersion maps and mention its types. Also, briefly explain the importance of Dispersion Compensating Fibers (DCFs).	6	4	3	1
ii.	Briefly explain about Fiber Bragg gratings (FBGs).	4	3	3	1
29. a.	Describe the basic transmission problems associated with optical wireless transmission. Also, list the possible solutions for the same.	10	3	4	3
b.	(OR) What are the applications of Radio over Fiber Technology? Give a detailed explanation.	10	4	4	1
30. a.	With a neat sketch, explain the concept of Heterogenous Optical Networks (HONs) in detail.	10	3	5	1
b.	(OR) Describe the concept of Visible Light Communication (VLC) in detail. Mention the advantages and applications.	10	3	5	1

Reg. No.				

B.Tech. DEGREE EXAMINATION, MAY 2022

Seventh Semester

18ECE323T – ADVANCED OPTICAL COMMUNICATION

	(For the candidates as	dmitted from the ac	ademic year 2018-2019 to 2019-2020	2)			
Note:			id: Cut 40 minutes and OMB abox	t ahou	ld bo	hon	dod
(i)	Part - A should be answered	and of 40^{th} minute	ithin first 40 minutes and OMR shee	t shou	ia ve	Hall	dea
(ii)	over to hall invigilator at the Part - B should be answered	in answer booklet.					
(11)	Tart - D should be answered	in mo,, or occine					
Time: 2	4 Hours		n Charles are a re	Max.	. Ma	rks:	75
	PART -	$A (25 \times 1 = 25 N)$	Marks)	Marks	BL	CO	PO
		ver ALL Questio					â
1.	In an optical fiber, the describing the ability of	concept of num	erical aperture is applicable in	1	1	1	1
	(A) Light collection	(B)	Light scattering				
	(C) Light dispersion		Light polarization				
	(c) Light dispersion						
2.	The tendency of material	ls to become co	mpressed in the presence of an	1	1	1	1
	electric field is called	The second second					
	(A) Electro refraction	(B)	Electrostriction				
	(C) Electro absorption	(D)	Electro friction				
				1	•	1	2
3.	For synchronous heterody	ne receivers, the	bit error rate for QPSK is given	1.01	2	1	3
	as	m \					
	(A) $\frac{1}{2}erfc(\sqrt{SNR})$	(B)	$\frac{1}{2}erfc\left(\frac{\sqrt{SNR}}{4}\right)$				
	(C) 1 $(\overline{2})$	(D)	$1 \left(\sqrt{SNR} \right)$				
	(C) $\frac{1}{2} erfc \left(\sqrt{\frac{2}{5} SNR} \right)$		$\frac{1}{2}erfc\left(\frac{\sqrt{SNR}}{2}\right)$				
	2 (13		2 (2)				
			1	1	2	1	2
4.			angular frequency $\omega_1, \omega_2, \omega_3$ then		_		
	a new wave is generated a						
	$(A) \omega_4 = \omega_1 - \omega_2 - \omega_3$	` '	$\omega_4 = \omega_1 + \omega_2 + \omega_3$				
	(C) $\omega_4 = \omega_1 + \omega_2 - \omega_3$	(D)	$\omega_4 = \omega_1 - \omega_2 + \omega_3$				
	¥	-0.17	T		1	1	l
5.		dic power exchar	nge between the two polarization	. 1	1	,	1
	components.	(D)	no it is a label of the label of				
	(A) Birefringence	` '	Dispersion Confinement factor				
	(C) Spot size	(D)	Confinement factor				
	The rise time of the receiv	ver lighally range	s hetween	1	2	2	2
0.			10% and 90%				
	(A) 0% and 10% (C) 90% and 100%	(D)	25% and 50%			F	
	(C) 7070 and 10070	(D)					

Page 1 of 4

7		enon that limits the performance of a	1 1 2 1	17.		ser beam forming since the signals to	1	1	4	1
	single WDM channel is				different users are transmitted in diff					
	(A) Self-phase modulation	(B) Stimulated raman scattering	29		(A) Relaying	(B) Multihop				
	(C) Four wave mixing	(D) Cross phase modulation			(C) Precoding	(D) Spatial diversity				- 35
- 8	. Telephone networks employ	topology for distribution of audio	1 1 2 1	18.	is a measure of stati	stical dispersion which indicates the	1	1	4	1
channels within a city.					fairness of access in wireless commu					
	(A) Hub	(B) Bus			(A) Gini coefficient	(B) Shannon coefficient				
	(C) Star	(D) Ring			(C) Markovian coefficient					
	(6)	(D) Tang		22	(c) Markovian coefficient	(D) Guassian coemicient				
9		of spread spectrum technique is referred	1 2 2 1	19.	The location where the radio signals	are collected and processed is known	1	1	4	1
	to as	(D) W -1 -1 -1			as	(D) D				
	(A) Time division multiplexing	(B) Wavelength division	-		(A) Joint processing unit	(B) Processing unit				
		multiplexing			(C) Central processing unit	(D) Central unit				
	(C) Code division multiplexing	(D) Space division multiplexing								
				20.		ave analog signals over an optical fiber	1	1	, 4	1
10	. Which of the following calculation	is used to determine the power margin	1 2 2 2		link have become known as	techniques.				
	between the optical transmitter	output and the minimum receiver			(A) RF-over fiber	(B) AF-over fiber				
	sensitivity?	•			(C) Analog modulation	(D) Digital modulation				
	(A) Rise time budget	(B) Link power budget								
	(C) Bit error rate calculation	(D) Signal to noise ratio calculation		21	Nodes which communicate directly	with the base station in FSO sensor	1	1	5	1
	(0)	(2) signal to notice tune cure station			network system is called	with the superstance in 150 sensor				
11	. Which wavelength is the most suitab	ole for pumping an EDFA?	1 1 3 1		(A) Sector nodes	(B) Cluster nodes				
	(A) 0.85 μm	(B) 0.98μm			(C) Gateway nodes	(D) Open nodes				
	(C) 1.30µm	(D) 1.55µm			(0) (300,13) 110 200	(2) open nodes			35 36	
	(ε) 1.30μμ	(D) 1.55µm		22	The number of nodes within the radi	o rance of a node is called as	1	1	5	1
12	A smoothed masion area which most s	of the incident light is healt reflected in	1 1 3 1	44.	(A) Cluster density	(B) Node density		(A)		
12		of the incident light is back reflected in			•					
	fiber Bragg gratings is known as	(C)			(C) Cell density	(D) Spectral density				
	(A) Fixed band	(B) Attenuated band		22	TEEE 000 157 . 1 11 1		1	2	5	1
	(C) Stop band	(D) Negative band		23.	IEEE 802.15.7 standard belongs to _	(D) 77 11 11 11 1	1	2	3	1
					(A) WiMax	(B) Visible light communication				
13		t and cross sectional area of the pump	1 2 3 3		(C) Bluetooth	(D) WLAN				
	beam inside the fiber is called as									3 1
	(A) Effective length	(B) Effective mode area		24.	The Ultrawide Band (UWB)	communications operating in	1	2	5	2
	(C) Raman gain efficiency	(D) Raman amplification factor			range.					
					(A) 2.8 GHz -9.4 GHz	(B) 3.1 GHz -10.6 GHz				
14	. In dispersion-shifted fibers, the way	relength of zero dispersion is shifted to	1 2 3 2		(C) 4.8 GHz -11.4 GHz	(D) 5 GHz -12 GHz				
		tion, which mostly lies in the								
	wavelength region.			25.	The time from when the network	begins sensing and transmitting data,	1	1	5	1
	(A) 850 nm	(B) 980 nm	v 5	-14		alls to 0% of the total deployed area is				
	(C) 1300 nm	(D) 1550 nm			called as					
	(C) 1300 IMI	(b) 1330 imi			(A) Network lifetime	(B) Node life time				
15	If m is the refractive index and A) i	is the grating bandwidth, the expression	1 2 3 2		(C) Cell lifetime	(D) Gateway life time				
15		is the grating bandwidth, the expression			(c) con metane	(b) Gateway, the time				
	for grating dispersion is given as	(D) Da 2541/-								
	(A) $Dg = \frac{2\overline{n}c}{\Lambda\lambda}$	(B) $Dg = 2\overline{n}\Delta\lambda/c$			DADE D (8 40	70.35	Morle	DI	CO	DO.
	7 470			37	$PART - B (5 \times 10 = 1)$	•	Marks	BL	CO	TU
	(C) $Dg = 2\overline{n} / c\Delta\lambda$	(D) $Dg = 2\overline{n}c\Delta\lambda$			Answer ALL Q	uestions				
16	The cell spectral efficiency is massy	ared in	1 1 4 1	26. a	With a neat sketch explain the opera	tion of synchronous and asynchronous	10	3	1	3
10	. The cell spectral efficiency is measu			A.	heterodyne receiver.	and any non-village				
	(A) bit/J/s/cell	(B) bit/m/Hz/cell								
	(C) bit/s/J/cell	(D) bit/s/Hz/cell			(OR)					
Page 2 of	4	200 2 2 2	19MF718ECE323T	Page 3 of 4			19N	F7181	ECE32	3T