Name: Harsh Vardhan Shukla

Reg. No.: 21BCE2236

Class Assessment – 1

<u>ll.</u> Construct PAC, write pseudocode and draw flow chart for swapping two number.

INPUT	PROCESSING	OUTPUT	SOLUTION ALTERNATIVES
1) Input A=10	1) Declare new variable C	1) A=20	1) We can calculate by
2) Input B=20	2) Set C=A Set A=B	2) B=10	the following steps as well.
	Set B=C		i) A = A + B ii) B= A - B
	3) Print A, B		iii) A =A - B

Pseudocode: 1) Start

2) Input integer A

3) Input integer B

4) C = A

5) A = B

6) B = C

7) Print A

8) Print B

9) End

<u>Q2.</u> Construct PAC, write pseudocode and draw a flow chart to find whether the given number is even or odd number.

INPUT	PROCESSING	OUTPUT
Case 1: Input A=10	1) If A=0: Print ("A is Zero") 2) Else:	Case 1: Output "A is an even no."
Case 2: Input A=33	If A%2=0: Print ("A is Even")	Case 2: Output "A is not an even no."
Case 3: Input A=0	Else: Print ("A is Odd")	Case 3: Output "A is zero"

Q3. Construct PAC, write pseudocode and draw a flow chart to depict the steps for withdrawing money from an ATM. Allow the users to withdraw cash only in Thousands and Hundreds. Eg. 1400 is a valid and 1350 is invalid

INPUT	PROCESSING	OUTPUT
Case 1: Input A=0 Case 2: Input A=-100 Case 3: Input A=1350 Case 4: Input A = 1400	1) If A≤0: Print ("Please enter an valid amount to withdraw.") 2) Else: If A%100=0: Print ("Valid amount!! You can Withdraw this amount now") Else: Print ("Sorry!! You can only withdraw amount in 100s or 1000s currency.")	Case 1: Output "Please enter an valid amount to withdraw." Case 2: Output "Please enter an valid amount to withdraw" Case 3: Output "Sorry!! You can only withdraw amount in 100s or 1000s currency."
		Case 4: Output "Valid amount!! You can Withdraw this amount now"

Pseudocode:

<u>4.</u> Construct PAC, write pseudocode and draw a flow chart to check whether the given number is a three-digit number or not.

INPUT	PROCESSING	OUTPUT	ALTERNATIVE
			SOLUTIONS
Case 1: Input A=10	If A<100: Print ("A is not a 3-digit no.") 2) Else:	Case 1: Output "A is not a 3-digit	If (A>=100 and A<1000): print ("A is a 3-digit no.")
Case 2: Input A=331	If A≥1000: Print ("A is not a 3-digit no.") Else: Print ("A is a 3-digit no.")	no." Case 2: Output "A is a 3-digit no."	else: print ("A is not a 3-digit no.")
Case 3: Input A=1012		Case 3: Output "A is not a 3-digit no."	

$\underline{\fine 05}$. Construct PAC, write pseudocode and draw a flow chart to generate the pay slips of N

employees working in ABC Company. Input for the process will be the basic pay of the

employees. Gross salary is calculated as Basic Pay + HRA + DA. HRA is fixed as 30% of Basic

pay and DA as 80% of Basic pay.

INPUT	PROCESSING	OUTPUT	ALTERNATIVE SOLUTIONS
Name, Bacis Pay(BP) Eg: Name = Harsh BP= 20000	1) i=0 2) Input N 3) while i≤N:	Name: Harsh Salary is 42000	1) i=0 2) Input N 3) For I in range (0,N+1):

Name: Harsh Vardhan Shukla

Reg. No.: 21BCE2236

<u>Class Assignment - 1</u>

[]. Write an algorithm and pseudo code and flow chart for swapping two numbers.

Sol:

Pseudocode: 1) Start

- 2) Input integer A
- 3) Input integer B
- 4) C = A
- 5) A = B
- 6) B = C
- 7) Print A
- 8) Print B
- 9) End

- 1) Initiate the program
- 2) Declare new variable A, B and C
- 3) Read two no. A, B
- 4) Put C=A
- 5) Put A=B
- 6) Put B=C
- 7) Print A, B
- 8) End / Terminate the program

Q2. Write an algorithm, pseudo code and flow chart for simple interest calculation.

Sol:

Pseudocode: 1) Start

- 2) Input integer P
- 3) Input integer R
- 4) Input integer T
- 5) S=(P*R*T)/100
- 6) Print S
- 7) End

- 1) Initiate the program
- 2) Declare new variable P, R and T
- 3) Read P, R and T
- 4) Put S = (P*R*T)/100
- 5) Print S
- 6) End / Terminate the program

Q3. Write an algorithm, pseudo code and flow chart for computing the area of the circle with radius given.

Sol:

Pseudocode: 1) Start

- 2) Input integer r
- 3) A=3.14*r*r
- 6) Print A
- 7) End

- 1) Initiate the program
- 2) Declare new variable r and A
- 3) Read r
- 4) Put A = 3.14*r*r
- 5) Print A
- 6) End / Terminate the program

[4]. Write an algorithm, pseudo code and flow chart for extracting the unit digit of a given number.

Sol:

Pseudocode: 1) Start

- 2) Input integer N
- 3) U=N%10
- 6) Print U
- 7) End

- 1) Initiate the program
- 2) Declare new variable N and U
- 3) Read N
- 4) Put U = N%10
- 5) Print U
- 6) End / Terminate the program

Q5. Write an algorithm, pseudo code and flow chart for calculating largest of two given numbers.

Sol:

Pseudocode: 1) Start

- 2) Input integer A,B
- 3) If A>B:

Print A

4) Else:

Print B

5) End

Algorithm:

- 1) Initiate the program
- 2) Declare new variable A and B
- 3) Read A, B
- 4) If A is greater and B;

Print A

Or else:

Print B

- 5) Print U
- 6) End / Terminate the program

Q6. Write an algorithm, pseudo code and flow chart for determining whether a given integer number is positive or negative.

Sol:


```
Pseudocode:
             1) Start
             2) Input integer A
             3) If A \le 0:
                   If A = 0:
                        Print ("A is Zero.")
                   Else:
                        Print ("A is Negative")
             4) Else:
                          Print ("A is Positive")
             5) End
Algorithm:
1) Initiate the program
2) Declare new variable A
3) Read A
4) If A is lesser than or equal to 0:
                          IF A=0:
                                 Print A is 0
                          Else:
```

5) Or else:

Print A is Positive

Print A is Negative

6) End / Terminate the program

Q7. Write an algorithm, pseudo code and flow chart for determining if a number is odd or even.

Sol: Input A No If A = 0 No Print A is Zero If A%2 = 0 Print A is ODD Print A is Even

Stop

```
Pseudocode: 1) Start
             2) Input integer A
             3) If A=0:
                      Print ("A is Zero")
             6) Else:
                      If A%2=0:
                            Print ("A is Even")
                      Else:
                           Print ("A is Odd")
             7) End
Algorithm:
1) Initiate the program
2) Declare new variable A
3) Read A
4) If A is 0:
           Print A is ZERO
5) Else:
           IF A%2=0:
                Print A is Even
           Else:
                Print A is Odd
```

6) End / Terminate the program

QB. Write an algorithm, pseudo code and flow chart for finding the largest of three given numbers.

Sol:

Pseudocode: 1) Start

2) Input integer A,B,C

Algorithm:

- 1) Initiate the program
- 2) Declare new variable A and B

5) End

- 3) Read A, B
- 4) If A is greater and B;

Print A

Or else:

Print B

- 5) Print U
- 6) End / Terminate the program

Q9. Write an algorithm, pseudo code and flow chart for printing first N natural nos.

Sol:

Pseudocode: 1) Start

- 2) Input integer N
- 3) i=1
- 4) While i≤N:

Print i I=i+1

5) End

Algorithm:

- 1) Initiate the program
- 2) Input N
- 3) i=1
- 4) Repeat steps 5 and 6 until $I \le N$
- 5) Print i
- 6) i=i+1
- 7) End / Terminate the program

QID. Design an algorithm for adding the test score as 26,49,98,87,62,75.

Psuedocode:1) Start

- 2) i=1
- 3) sum=0
- 4) While i≤6:

- 5) Print sum
- 6) End

- 1) Initiate the program
- 2) Declare variable i as i=1
- 3) Declare variable sum as sum=0
- 4) Repeat steps 5, 6 and 7 until $I \le 6$
- 5) Input integer V
- 6) sum=sum+1
- 7) i=i+1
- 8) Print sum
- 9) End / Terminate the program

Ill. Write an algorithm, pseudo code and flow chart for finding the sum of n natural nos

Sol:

Psuedocode:1) Start

- 2)Input N
- 3) i=1
- 4) sum=0
- 5) While i≤N:

sum=sum+i

- i=i+1
- 6) Print sum
- 7) End

- 1) Initiate the program
- 2) Read N
- 3) Declare variable i as i=1
- 4) Declare variable sum as sum=0
- 5) Repeat steps 6 and 7 until $I \le N$
- 6) sum=sum+i
- 7) i=i+1
- 8) Print sum
- 9) End / Terminate the program

Q12. Write an algorithm, pseudo code and flow chart for finding the Factorial of n natural nos

Sol:

Psuedocode:1) Start

- 2)Input N
- 3) i=1
- 4) prod=1
- 5) While i≤N:

- 6) Print prod
- 7) End

- 1) Initiate the program
- 2) Read N
- 3) Declare variable i as i=1
- 4) Declare variable prod as prod=1
- 5) Repeat steps 6 and 7 until $i \le N$
- 6) prod=prod*i
- 7) i=i+1
- 8) Print prod
- 9) End / Terminate the program

Il3. Write the pseudo code to print the grade obtained by a student using the following rules:

Marks - Grade above 75 - O 60-70 - A 50-60 - B 40-50 - C less than 40 – D

Sol:

PseudoCode: 1) Start

- 2)Input marks
- 3) If marks >75

Print O grade

- 4) Else If 70 < marks < 60 Print A grade
- 5) Else If 60 < marks < 50 Print B grade
- 6) Else If 50 < marks < 40
 Print C grade
- 7) Else

Print D grade

8) End

- 1) Initiate the program
- 2) Read Marks
- 3) if marks >75, print O grade

- 4) else If 70 < marks < 60, print A grade
- 5) else If 60 < marks < 50, print B grade
- 6) else If 50 < marks < 40, print C grade
- 7) else print D grade
- 8) End / Terminate the program

114. Write the pseudo code to print the reverse of a no.

Psuedocode:1) Start

- 2)Input N
- 3) rev=0
- 4) While i!=N:

$$r=n\%10$$

$$n=n/10$$

- 5) Print
- 6) End

- 1) start
- 2) read n
- 3) Set rev=0
- 4) repeat steps 5,6 & 7 unit n!=0
- 5) set r = n % 10
- 6) set rev = rev*10 + r
- 7) set n=n/10
- 8) print rev
- 9) stop

Q15.Write the pseudo code to add 2 no.s.

Sol:

Pseudocode: 1) Input A

- 2) Input B
- 3) S=A+B
- 4) Print S
- 5) End

Algorithm: 1) Read two integers A and B

- 2) Declare variable S
- 3) S = A + B
- 4) Print S
- 5) End

