

Maharashtra rainfall analysis

Developers: M R Abhishek

K Vagdevi

Guide: Dr. Mainak Thakur

Details of data

- Source of data: https://www.indiawaterportal.org/met_data/
- State: Maharashtra
- Total number of districts: 29
- **Data type**: Precipitation
- Data Range: Monthly mean precipitation for all the years from 1901 to 2003
- We have 1224 (102 *12) data points for each district in Maharashtra. In total, we have 35,496 data points.

Format of Maharashtra Data

	District	Year	jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
26826	Ahmadnagar	1901	2.51	11.489	11.325	33.931	30.401	262.971	162.397	120.152	58.708	62.633	0.596	0.0
26827	Ahmadnagar	1902	0.603	0.0	0.003	134	6.338	90.293	223.483	101.852	297.212	61.453	41.992	26.715
26828	Ahmadnagar	1903	0.227	0.0	0.0	2.602	69.076	182.652	500.983	156.236	164.433	88.419	2,022	3,999
26829	Ahmadnagar	1904	0.937	1.126	1.051	2,378	4.365	120.658	117.058	38.47	225.726	72.389	0.271	0.0
26830	Ahmadnagar	1905	0.0	0.622	0.0	0.452	4115	114.385	197.696	116.061	54.338	65.508	6.581	0.0
26831	Ahmadnagar	1906	3.051	1.005	0.124	0.006	4.612	259.556	159.938	285.418	62.414	14.387	3.823	19.299
26832	Ahmadnagar	1907	0.0	4.317	1.187	57.017	0.282	148.949	407.846	199.486	82.819	4.017	0.544	1968
26833	Ahmadnagar	1908	0.228	0.0	4.065	2.63	2.059	118.277	151.933	107.993	212.96	16.046	0.678	0.0
26834	Ahmadnagar	1909	0.745	0.345	0.301	2.323	72.218	208.955	143.086	159.47	207.009	20.276	0.271	5.98
26835	Ahmadnagar	1910	0.0	0.0	0.008	0.006	7.74	296.432	318.644	191.564	265.571	60.167	52.152	0.0
26836	Ahmadnagar	1911	1.584	0.0	0.521	0.351	3.158	101.505	444.751	144.037	31.325	2.432	49.787	2.649
26837	Ahmadnagar	1912	ao	1.166	0.0	5.83	12.037	87.747	206.988	112.025	7.127	71.342	40.658	0.0
26838	Ahmadnagar	1913	0.0	0.0	0.0	1.719	23.627	361.091	312.628	74.991	72.612	36.054	0.33	2.47
26839	Ahmadnagar	1914	0.0	0.168	0.07	1,169	11.297	268.759	228.972	131.181	167.434	12.747	30.745	9.453
26840	Ahmadnagar	1915	3.081	0.315	15.25	25.554	90.597	255.959	342.74	58.797	271.783	91.273	14.348	25.365
26841	Ahmadnagar	1916	0.0	0.0	2.368	4.886	54.521	140.368	581.759	94.054	236.88	149.621	24.658	0.0
26842	Ahmadnagar	1917	0.126	5.627	3.366	9.791	10.82	159.173	89.7	254.389	253.643	147.429	22.548	0.0
26843	Ahmadnagar	1918	0.569	10.947	1.81	1685	140.872	66.522	47.636	54.943	64.184	18.455	8.772	6.489
26844	Ahmadnagar	1919	0.295	0.255	1.448	3.082	18.446	240.662	185.198	66.495	266.7	24.18	38.946	0.954
26845	Ahmadnagar	1920	3.554	0.522	0.0	18.65	6.27	91.08	95.867	51.391	139.689	14.646	0.272	0.0

Monthly mean rainfall of Pune over 100 years

Total number of data points for Pune: 1224 (102 years * 12 months)

Correlation of rainfall between districts

- The correlation between districts ranges from 0.63 to 0.992
- The least correlation is 0.63 which says that the variation of rainfall in Maharashtra is almost same in all districts.

- 0.72

Highly correlated districts

- The correlation between Bhandara and Gondiya is 0.992(highest).
- The districts that are correlated more than 0.98 are plotted on the map.
- We can see that the districts that are highly correlated are adjacent to each other.

Box plot: Range of rainfall in all districts

- In Kolhapur district, the rainfall is more than 800mm for about 49 times in the past 100 years(1901 - 2002), 25 times in Satara.
- If we observe, Kolhapur and Satara are very near to each other (in map).

Heavy rainfall districts

- In Kolhapur district, the rainfall is more than 800mm for about 49 times in the past 100 years(1901 - 2002), 25 times in Satara.
- If we observe, Kolhapur and Satara are very near to each other (in map).
- All the districts lie in a row.

Rainfall >= 800mm in 100 years

- The rainfall is heavy only in the months of June, July and August.
- Except Kolhapur, the rainfall was not much heavy in June and August.
- In Kolhapur, the average rainfall in July is 676.47mm.

District	Count	June	July	August	
Kolhapur	49	17	27	5	
Nandurbar	10	-	10	-	
Nashik	1	-	1	-	
Pune	3	1	2	-	
Sangli	1	-	1	-	
Satara	25	5	20	-	

Monthly rainfall for each year in Maharashtra

- The rainfall is added over all districts of Maharashtra to plot this graph.
- The graph shows that the rainfall is high in July. We can easily interpret(pink colour line).

Seasonal rainfall for each year in Maharashtra

- We divided the months into four seasons to know the season in which the rainfall is high.
- From the graph, we can say that the rainfall is high compared in June September when compared to other seasons.
- The rainfall is very less in the months of January and February.

District wise Seasonal rainfall across all years

- This graph gives intuition about rainfall in all districts.
- The rainfall is high in the season June to September in all districts.
- If we see Kolhapur district, the rainfall is very high compared to other districts(June to September). This is because the rainfall is more than 800mm 43 times(we got this before itself).

District wise Monthly mean rainfall across all years

 This is similar to the previous graph. This is for all months instead of seasons.

Annual rainfall in Maharashtra

- If we see, the rainfall is very very less in the years 1918, 1920 and 1972.
- From a quick Google search, we got this:
 - "1970-73 years were years of droughts over Maharashtra. These years created an extremely difficult situation for the government and people of Maharashtra. 1971 and particularly 1972 were the years of deficient rainfall over Maharashtra."
 - The worst drought years observed over Maharashtra State are 1918 and 1920.
- So, the data is saying the truth.

Neural Networks - Forecasting time series data

- Some of the Neural Network architectures that are widely used for time series data are:
 - Feed forward Neural Network(FNN)
 - Time Lagged Neural Network(TLNN)
 - Seasonal Artificial Neural Network(SANN)
 - Long Short Term Memory(LSTM)
- ARIMA is a statistical method that is widely used for time series data.
- We have compared the above methods for each district of Maharashtra.

Neural Networks - Feed forward Neural Network

- The most widely used ANNs in forecasting problems are multi-layer perceptrons (MLPs), which use a single hidden layer feed forward network(FNN).
- The model is characterized by a network of three layers, viz. input, hidden and output layer. There may be more than one hidden layer.
- Here, the output(y_t) depends on the previous 'p' time steps.
- So, the output layer consists of one unit and input layer layer consists of p units.

Neural Networks - Time Lagged Neural Network

- TLNN is another variation of FNN and it also widely used.
- In TLNN, the input nodes are the time series values at some particular lags. For example, a typical TLNN for a time series, with seasonal period s = 12 can contain the input nodes as the lagged values at time t 1, t 2 and t 12. The value at time t is to be forecasted using the values at lags 1, 2 and 12 as shown in the figure.

Neural Networks - Seasonal Artificial Neural Network

- The SANN structure is proposed to improve the forecasting performance of ANNs for seasonal time series data.
- SANN can learn the seasonal pattern in the series, without removing them, contrary to some other traditional approaches, such as SARIMA.
- Thus while forecasting with SANN, the number of input and output neurons should be taken as 12 for monthly and 4 for quarterly time series. The appropriate number of hidden nodes can be determined by performing suitable experiments on the training data.

Results of Kolhapur district

- LSTM

District wise best method

- Out of 29 districts, ARIMA performed well for 9 districts and LSTM performed well for the other 20 districts.
- TLNN, SANN didn't perform well at least for one district.
- If we group the districts based on the best method of that district, fortunately they are clustered together.
- But, there is no reason for why ARIMA or LSTM is working better.

Some of the districts for which LSTM performed well

Some of the districts for which LSTM performed well

Some of the districts for which ARIMA performed well

Some of the districts for which ARIMA performed well

Visualization of Actual and forecasted values

Future work

- We will get real daily rainfall data for each station of Maharashtra for the past 40 50 years in a week.
- Till now, We have worked on Monthly rainfall. We may get more insights from the new data because that will be more accurate.
- Will work on Spatio-temporal correlation.

