Project Step 5

Kislay

2024-04-27

```
data <- read.csv("/Users/kislaynandan/Desktop/MA 641/Electric_Production.csv")
df = data
setDT(data)
df$DateTime <- as.POSIXct(paste(df$DATE), format="%Y-%m-%d")
df$Month = month(df$DateTime)

df$Year = year(df$DateTime)

ts_data <- ts(df$Value, start = min(df$Year), end = max(df$Year), frequency = 12)</pre>
```

plot(ts_data)

Decomposed Data

```
decomp_result <- decompose(ts_data)
plot(decomp_result)</pre>
```

Decomposition of additive time series


```
#Stationarity Test

result <- adf.test(ts_data)

## Warning in adf.test(ts_data): p-value smaller than printed p-value

result

##

## Augmented Dickey-Fuller Test

##

## data: ts_data

## Dickey-Fuller = -5.139, Lag order = 7, p-value = 0.01

## alternative hypothesis: stationary

cat("p-value:", result$p.value)</pre>
```

p-value: 0.01

Data Visualisation

```
acf(df$Value, lag.max = 50,
    main = "Autocorrelation Function (ACF) Plot",
    xlab = "Lag", ylab = "ACF")
```

Autocorrelation Function (ACF) Plot


```
pacf(df$Value, lag.max = 50,
    main = "Partial Autocorrelation Function (PACF) Plot",
    xlab = "Lag", ylab = "Partial Autocorrelation")
```

Partial Autocorrelation Function (PACF) Plot

eacf(df\$Value)

Model fitting

SARIMA MODEL FITTING

- Because the series is seasonal, SARIMA (Seasonal ARIMA) will be used instead of ARIMA. From ACF and PACF plot below models are chosen to fit to the data:
- Fit 1: SARIMA(5,0,0)(1,0,0)[12]
- Fit 2: SARIMA(4,0,0)(1,0,0)[12]
- Fit 3: SARIMA(3,0,0)(1,0,0)[12]

Since the data is daily, seasonality is 12.

```
fit <- auto.arima(ts_data)</pre>
## Series: ts_data
## ARIMA(2,1,1)(0,1,1)[12]
##
## Coefficients:
##
                     ar2
            ar1
                              ma1
                                      sma1
         0.5503 -0.0683
                          -0.9477
                                   -0.7635
##
## s.e. 0.0544
                           0.0193
                  0.0549
                                    0.0331
## sigma^2 = 5.838: log likelihood = -888.05
## AIC=1786.11 AICc=1786.27 BIC=1805.86
sarima_model <- Arima(df$Value, order = c(2, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))</pre>
sarima model
## Series: df$Value
## ARIMA(2,1,1)(0,1,1)[12]
## Coefficients:
            ar1
                     ar2
                              ma1
                                      sma1
         0.5503 -0.0683 -0.9477
##
                                  -0.7635
## s.e. 0.0544 0.0549
                          0.0193
## sigma^2 = 5.838: log likelihood = -888.05
## AIC=1786.11 AICc=1786.27 BIC=1805.86
Arima(df$Value, order = c(5, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
## Series: df$Value
## ARIMA(5,0,0)(1,0,0)[12] with non-zero mean
##
## Coefficients:
##
                     ar2
                             ar3
                                      ar4
                                              ar5
                                                     sar1
##
         0.6461 \quad -0.1252 \quad 0.2403 \quad -0.0944 \quad 0.0688 \quad 0.9414 \quad 86.7475
## s.e. 0.0541 0.0623 0.0604 0.0611 0.0568 0.0183 6.6373
## sigma^2 = 8.452: log likelihood = -996.96
## AIC=2009.92 AICc=2010.3 BIC=2041.8
Arima(df$Value, order = c(4, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
## Series: df$Value
## ARIMA(4,0,0)(1,0,0)[12] with non-zero mean
##
## Coefficients:
##
                             ar3
                                      ar4
            ar1
                     ar2
                                             sar1
                                                      mean
         0.6369 -0.1072 0.2350 -0.0572 0.9495 86.4348
## s.e. 0.0533 0.0602 0.0602 0.0529 0.0149
```

```
##
## sigma^2 = 8.428: log likelihood = -997.71
## AIC=2009.42 AICc=2009.71
                               BIC=2037.31
Arima(df$Value, order = c(3, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
## Series: df$Value
## ARIMA(3,0,0)(1,0,0)[12] with non-zero mean
##
## Coefficients:
##
            ar1
                             ar3
                                    sar1
                                             mean
                     ar2
##
         0.6293
                -0.1021
                         0.1997
                                  0.9454
                                         86.7786
        0.0532
                  0.0602 0.0506
                                 0.0153
## s.e.
                                           6.7813
##
## sigma^2 = 8.449: log likelihood = -998.29
## AIC=2008.58
                AICc=2008.8
                               BIC=2032.49
```

Residual Analysis

```
residuals <- residuals(fit)
plot(residuals, main="Residuals from ARIMA model")</pre>
```

Residuals from ARIMA model

Series as.vector(residuals)

pacf(as.vector(residuals), lag.max = 50)

Series as.vector(residuals)

qqnorm(residuals)
qqline(residuals)

Normal Q-Q Plot

hist(residuals)

Histogram of residuals

shapiro.test(residuals)

```
##
## Shapiro-Wilk normality test
##
## data: residuals
## W = 0.98648, p-value = 0.0009324
```

Box.test(residuals,lag=10, type="Ljung-Box")

```
##
## Box-Ljung test
##
## data: residuals
## X-squared = 9.4504, df = 10, p-value = 0.49
```

The ACF plot of the residuals shows that most autocorrelations are within the confidence bounds (the blue dotted lines), which is a good indication that the residuals are white noise. The plot shows most points lie close to the reference line, suggesting that the residuals are approximately normally distributed. The histogram shows a relatively bell-shaped curve, but it is not perfectly symmetric, and there appears to be a slight skew to the right. With a p-value of 0.49, which is above the alpha level of 0.05, we fail to reject the null hypothesis that the residuals are independently distributed, meaning there is no autocorrelation.

tsdiag(fit)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Prediction

```
predictions <- forecast(sarima_model, h = 12)
predictions</pre>
```

```
Hi 80
##
      Point Forecast
                          Lo 80
                                              Lo 95
                                                        Hi 95
## 398
            114.31111 111.21470 117.40753 109.57555 119.04667
## 399
            104.45857 100.84328 108.07386
                                           98.92946 109.98768
## 400
             92.09910 88.35393 95.84426
                                           86.37136
                                                     97.82683
## 401
             93.63140 89.84270 97.42011
                                           87.83708 99.42572
## 402
            104.31821 100.50733 108.12909
                                           98.48997 110.14645
## 403
            113.65996 109.83314 117.48678 107.80734 119.51258
            112.58325 108.74256 116.42394 106.70943 118.45708
## 404
## 405
            101.93541 98.08160 105.78922
                                           96.04152 107.82930
## 406
            93.85642 89.98978 97.72305
                                           87.94291 99.76992
## 407
            97.12217 93.24285 101.00150
                                           91.18925 103.05509
            112.41629 108.52434 116.30823 106.46407 118.36850
## 408
## 409
            122.04284 118.13833 125.94735 116.07140 128.01428
```

```
plot(df$Value, type = "l", col = "blue", xlab = "Year", ylab = "Electric Production", main = "Electric I
lines(predictions$mean, col = "red")
legend("topleft", legend = c("Original", "Predictions"), col = c("blue", "red"), lty = c(1, 1))
```

Electric Production Forecast using SARIMA

Non Seasonal Data

```
library(data.table)
library(forecast)
library(tseries)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
```

```
library(ggplot2)
library(MASS)

##
## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':
##
## select

library(TSA)
```


Autocorrelation Function (ACF)

pacf(tss, main = "Partial Autocorrelation Function (PACF)",lag.max = 80)

Partial Autocorrelation Function (PACF)

The above ACF is decaying/decreasing, very slowly, and remains well above the significance range (dotted blue lines). This is indicative of a non-stationary series. # Stationarity Test

```
g = as.numeric(tss)
adf.test(g)
##
    Augmented Dickey-Fuller Test
##
##
## data: g
## Dickey-Fuller = -1.5185, Lag order = 7, p-value = 0.7802
## alternative hypothesis: stationary
tss_diff = diff(tss)
# Stationarity after differencing
h = as.numeric(tss_diff)
adf.test(h)
## Warning in adf.test(h): p-value smaller than printed p-value
##
##
    Augmented Dickey-Fuller Test
##
## data: h
## Dickey-Fuller = -9.2043, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
```

Series tss_diff

pacf(tss_diff)

Series tss_diff

eacf(tss_diff)

Model fitting

Model 1: ARIMA(3,1,2)
Model 2: ARIMA(2,1,2)
Model 3: ARIMA(1,1,1)
Model 4: ARIMA(0,1,1)

```
arimafit <- auto.arima(tss)
arimafit</pre>
```

```
## Series: tss
## ARIMA(1,1,2)
##
## Coefficients:
         ar1
                 ma1
##
       0.4199 -0.5435 -0.2880
## s.e. 0.0957 0.0964 0.0669
## sigma^2 = 32.26: log likelihood = -1150.7
## AIC=2309.4 AICc=2309.51 BIC=2325
Arima(tss, order = c(3, 1, 2))
## Series: tss
## ARIMA(3,1,2)
##
## Coefficients:
##
         ar1
                 ar2
                         ar3
                                 ma1
       0.8679 -0.3260 0.1226 -0.9952 0.0916
## s.e. 0.4978 0.3643 0.1010 0.5012 0.4379
## sigma^2 = 32.38: log likelihood = -1150.3
## AIC=2312.61 AICc=2312.84 BIC=2336.01
Arima(tss, order = c(2, 1, 2))
## Series: tss
## ARIMA(2,1,2)
##
## Coefficients:
##
          ar1
                 ar2 ma1
        0.3719 0.0402 -0.4973 -0.3330
## s.e. 0.2056 0.1548 0.1976 0.1821
## sigma^2 = 32.35: log likelihood = -1150.66
## AIC=2311.33 AICc=2311.5 BIC=2330.83
Arima(tss, order = c(1, 1, 2))
## Series: tss
## ARIMA(1,1,2)
## Coefficients:
          ar1
                 ma1
       0.4199 -0.5435 -0.2880
## s.e. 0.0957 0.0964 0.0669
## sigma^2 = 32.26: log likelihood = -1150.7
## AIC=2309.4 AICc=2309.51 BIC=2325
```

```
model <- Arima(tss, order = c(1, 1, 2))
model
## Series: tss
## ARIMA(1,1,2)
##
## Coefficients:
##
                              ma2
            ar1
                     ma1
##
         0.4199
                 -0.5435
                          -0.2880
                           0.0669
## s.e. 0.0957
                  0.0964
##
## sigma^2 = 32.26: log likelihood = -1150.7
## AIC=2309.4
                AICc=2309.51
                               BIC=2325
```

Residual Analysis

```
arima_residuals <- residuals(model)
plot(arima_residuals, main = "Residuals from ARIMA Model", ylab = "Residuals")</pre>
```

Residuals from ARIMA Model


```
acf(as.vector(arima_residuals), lag.max = 50)
```

Series as.vector(arima_residuals)

pacf(as.vector(arima_residuals), lag.max = 50)

Series as.vector(arima_residuals)

qqnorm(arima_residuals)
qqline(arima_residuals)

Normal Q-Q Plot

hist(arima_residuals)

Histogram of arima_residuals


```
print(shapiro.test(arima_residuals))
##
##
   Shapiro-Wilk normality test
##
## data: arima_residuals
## W = 0.99101, p-value = 0.02506
ljung_box_test <- Box.test(arima_residuals, lag = 10, type = "Ljung-Box")</pre>
ljung_box_test
##
##
   Box-Ljung test
##
## data: arima_residuals
## X-squared = 6.8724, df = 10, p-value = 0.7374
tsdiag(model)
```

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Prediction

```
forecast_best_model <- forecast(model, h = 12)
forecast_best_model</pre>
```

```
##
       Point Forecast
                         Lo 80
                                  Hi 80
                                           Lo 95
                                                    Hi 95
             38.61261 31.33317 45.89205 27.47967 49.74556
## 367
## 368
             38.74589 29.06627 48.42550 23.94220 53.54958
## 369
             38.80185 28.36396 49.23974 22.83848 54.76523
             38.82535 28.00095 49.64975 22.27086 55.37985
## 370
## 371
             38.83522 27.74132 49.92912 21.86857 55.80188
             38.83937 27.52015 50.15858 21.52812 56.15061
## 372
## 373
             38.84111 27.31571 50.36650 21.21453 56.46768
             38.84184 27.11982 50.56386 20.91456 56.76912
## 374
## 375
             38.84214 26.92917 50.75512 20.62283 57.06146
             38.84227 26.74236 50.94218 20.33706 57.34749
## 376
## 377
             38.84233 26.55873 51.12592 20.05619 57.62846
             38.84235 26.37795 51.30675 19.77969 57.90501
## 378
```

```
plot(forecast_best_model, col="red", main = "ARIMA Forecast")
```

ARIMA Forecast

