Symmetric Ciphers II

Computer and Network Security

Emilio Coppa

Advanced Encryption Standard (AES)

- AES is the most widely used symmetric cipher today
- The algorithm for AES was chosen by the US *National Institute of Standards and Technology* (NIST) in a multi-year selection process.
- The requirements for all AES candidate submissions were:
 - Block cipher with 128-bit block size
 - Three supported key lengths: 128, 192 and 256 bit
 - Security relative to other submitted algorithms
 - Efficiency in software and hardware

Chronology of the AES Selection

- Open call for a new block cipher announced by NIST in January, 1997
- 15 candidates algorithms accepted in August, 1998
- 5 finalists announced in August, 1999:
 - *Mars* IBM Corporation
 - RC6 RSA Laboratories
 - *Rijndael* J. Daemen & V. Rijmen
 - Serpent Eli Biham et al.
 - *Twofish* B. Schneier et al.
- In October 2000, *Rijndael* was chosen as the AES
- AES was formally approved as a US federal standard in November 2001.
 NSA allows to use AES with 192/256 bit key.

AES: overview

The number of rounds depends on the chosen key length:

Key length (bits)	Number of rounds
128	10
192	12
256	14

AES: Overview

Each round consists of different "layers"

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

AES: Overview (2)

AES: Overview (3)

AES: Layers

Each round consists of four main layers:

- 2. ShiftRow
- **3.** MixColumn ∫
- 4. Key Addition KEY WHITENING

Last round does not have MixColumn layer.

AES: Layers (2)

Visually:

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

Internal Structure of AES

- AES is a byte-oriented cipher. It is not based on Feistel network (as DES), but on a substitution-permutation network
- The state A (i.e., the 128-bit data path) can be arranged in a 4x4 matrix:

A_0	A ₄	A ₈	A ₁₂
A ₁	A_5	A_9	A ₁₃
A ₂	A_6	A ₁₀	A ₁₄
A_3	A ₇	A ₁₁	A ₁₅

with A_0 ,..., A_{15} denoting the 16-byte input of AES

Byte Substitution Layer

Confusion: if you flip one bit in A_i, it will affect on average 3 or 4 bits in B_i

- The Byte Substitution layer consists of 16 S-Boxes with the following properties:
- The S-Boxes are
 - identical
 - the only nonlinear elements of AES, i.e., ByteSub(A_i) + ByteSub(A_i) \neq ByteSub(A_i + A_i)
 - bijective, i.e., there exists a one-to-one mapping of input and output bytes ⇒ S-Box can be uniquely reversed
- In sw implementations, the S-Box is usually realized as a lookup table

Byte Substitution Layer (2)

$$S(A_i) = B_i$$

	Î	Î								y							
		0	1	2	3	4	5	6	7	8	9	A	В	\mathbf{C}	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED						CB				000000000000000000000000000000000000000	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
\boldsymbol{x}	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B 8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

E.g., Using AES S-Box:

$$S(\mathtt{0xC2}) = \mathtt{0x25}$$

Byte Substitution Layer (3)

- Q. How the S-Box has been built?
- A. The S-Box is designed to perform two operations:

Each A_i (8 bit) is seen as an element in GF(2⁸):

$$A_i = 1100\,0010 \Rightarrow A_i(x) = x^7 + x^6 + x$$

The first step computes the inverse (which provides the non linearity in AES):

$$B_i'(x)=A(x)^{-1}$$
 $P(x)=x^8+x^4+x^3+x+1$ such that: $B_i'(x)\cdot A(x)^{-1}\equiv 1 mod P(x)$ AES irreducible polynomial

Byte Substitution Layer (4)

E.g.,
$$A_i = 1100\,0010 \Rightarrow A_i(x) = x^7 + x^6 + x$$
 $B_i'(x) = A(x)^{-1} = x^5 + x^3 + x^2 + x + 1$ (computed with EEA)

The second step computed in the S-Box is an affine mapping (this is done to destroy some algebraic properties that could be exploited by an attacker):

Byte Substitution Layer (5)

Hence, the S-Box is a precomputation of the output for all the possibly A(x)

			y														
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
\boldsymbol{x}	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11				94	9B		87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

C code that can precompute this table.

Diffusion Layer

Diffusion: given a byte with some bit flips, it will spread the effect on 32 bits from the state.

 $B_2 \mid B_3$ $B_4 \mid B_5 \mid B_6 \mid B_7$ $B_8 \mid B_9 \mid B_{10} \mid B_{11}$ $B_0 \mid B_1$ $B_{12} B_{13} B_{14} B_{15}$ MixColumn $C_4 \mid C_5 \mid C_6 \mid C_7$ C_8 $C_{9} \mid C_{10} \mid C_{11}$ $C_2 \mid C_3$

- provides diffusion over all input state bits
- consists of two sublayers:
 - ShiftRows Sublayer: Permutation of the data on a byte level

ShiftRows

- MixColumn Sublayer: Matrix operation which combines ("mixes") blocks of four bytes
- performs a linear operation on state matrices A, B, i.e.,

$$DIFF(A) + DIFF(B) = DIFF(A + B)$$

ShiftRows Sublayer

Rows of the state matrix are shifted cyclically:

Input matrix

B_0	B_4	B_8	B ₁₂
B ₁	B_5	B_9	B ₁₃
B ₂	B_6	B ₁₀	B ₁₄
B_3	B ₇	B ₁₁	B ₁₅

Output matrix

B_0	B ₄	B ₈	B ₁₂
B ₅	B_9	B ₁₃	B ₁
B ₁₀	B ₁₄	B_2	B_6
B ₁₅	B_3	B ₇	B ₁₁

no shift

- ← one position left shift
- \leftarrow two positions left shift
- \leftarrow three positions left shift

MixColumn Sublayer

- Linear transformation which mixes each column of the state matrix
- Each 4-byte column is considered as a vector and multiplied by a fixed 4x4 matrix, e.g., the leftmost mix column box is:

$$\begin{pmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3
\end{pmatrix} = \begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{pmatrix} \cdot \begin{pmatrix}
B_0 \\
B_5 \\
B_{10} \\
B_{15}
\end{pmatrix}$$

- where 01, 02 and 03 are given in hexadecimal notation
- o each row of the matrix is a shift of the previous row
- All arithmetic is done in the Galois field GF(2⁸): e.g.,

$$C_0 = 02 \cdot B_0 + 03 \cdot B_5 + 01 \cdot B_{10} + 01 \cdot B_{15}$$

MixColumn Sublayer (2)

F.g.,
$$C_0 = 02 \cdot B_0 + 03 \cdot B_5 + 01 \cdot B_{10} + 01 \cdot B_{15}$$
 $C_0 = x \cdot B_0 + (x+1) \cdot B_5 + 1 \cdot B_{10} + 1 \cdot B_{15}$

Addition and multiplication are done as seen in GF(2^8)

$$02 \cdot 25 = x \cdot (x^5 + x^2 + 1)$$

$$= x^6 + x^3 + x,$$

$$03 \cdot 25 = (x+1) \cdot (x^5 + x^2 + 1)$$

$$= (x^6 + x^3 + x) + (x^5 + x^2 + 1)$$

$$= x^6 + x^5 + x^3 + x^2 + x + 1.$$

No modular reduction with P(x) is needed since the result have a degree smaller than 8.

Chapter 4 of Understanding Cryptography by Christof Paar and Jan Pelzl

MixColumn Sublayer (3)

Then the addition is, e.g.,:

$$01 \cdot 25 = x^{5} + x^{2} + 1$$

$$01 \cdot 25 = x^{5} + x^{2} + 1$$

$$02 \cdot 25 = x^{6} + x^{3} + x$$

$$03 \cdot 25 = x^{6} + x^{5} + x^{3} + x^{2} + x + 1$$

$$C_{i} = x^{5} + x^{5} + x^{2} + x + 1$$

MixColumn Sublayer (4)

Another way of defining the MixColumn Sublayer is treat each column as four-term polynomial:

$$b(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$$

where each coefficient b_i is in $GF(2^8)$ [this is different from coefficient in GF(2)!] and multiply it by:

$$a(x) = 3x^3 + x^2 + x + 2$$
 modulo $x^4 + 1$

This is the definition given by the standard and since it is a multiplication with a fixed polynomial can be writte as a matrix multiplication (previous slide).

Key Addition Layer

- Inputs:
 - 16-byte state matrix C
 - 16-byte subkey k_i
- Output: $C \oplus k_i$

The subkeys are generated in the key schedule

Key Schedule

- Subkeys are derived recursively from the original 128/192/256-bit input key
- Each round has 1 subkey, plus 1 subkey at the beginning of AES

Key length (bits)	Number of subkeys
128	11
192	13
256	15

• Key whitening: Subkey is used both at the input and output of AES

$$\Rightarrow$$
 # subkeys = # rounds + 1

• There are different key schedules for the different key sizes

Key Schedule

Example: Key schedule for 128-bit key AES

- Word-oriented: 1 word = 32 bits
- 11 subkeys are stored in W[0]...W[3],
 W[4]...W[7], ..., W[40]...W[43]
- First subkey W[0]...W[3] is the original AES key

Key Schedule (2)

Example: Key schedule for 128-bit key AES

Key Schedule (3)

- Function g rotates its four input bytes and performs a bytewise
 S-Box substitution ⇒ nonlinearity
- The round coefficient RC is only added to the leftmost byte and varies from round to round:

RC[1] =
$$x^0$$
 = $(00000001)_2$
RC[2] = x^1 = $(00000010)_2$
RC[3] = x^2 = $(00000100)_2$
...
RC[10] = x^9 = $(00110110)_2$

 xⁱ represents an element in a Galois field (again, cf. Chapter 4.3 of Understanding Cryptography)

Decryption

- AES is not based on a Feistel network
 - ⇒ All layers must be inverted for decryption:
 - MixColumn layer → Inv MixColumn layer
 - ShiftRows layer → Inv ShiftRows layer
 - Byte Substitution layer \rightarrow Inv Byte Substitution layer
 - Key Addition layer is its own inverse

Credits

These slides are based on material from:

- Slides of Prof. D'Amore from CNS 2019-2020
- Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students and Practitioners. Springer. http://www.crypto-textbook.com/
- Wikipedia (english version)