Einführung in die KI Formelblatt

Funktionsuntersuchung

Lineare Regression

Hypothese:

$$h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n$$

Kostenfunktion (MSE):

$$J(\theta) =$$

frac
$$\{1\}\{2n\}\sum_{\{i=1\}}^{n}\left(h_{\theta(x^{\{(i)\}})}-y^{\{(i)\}}\right)^2$$

Ziel: $\min_{\theta} J(\theta)$

Multivariat:

Mehrere Features $x_1, x_2, ..., x_n$

Polynom-Regression:

$$h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \dots$$

Gradient Descent

Update-Regel:

$$\theta_j \coloneqq \theta_j - \alpha \, \operatorname{frac}\{\partial\} \big\{\partial \theta_j\big\} J(\theta)$$

Für lineare Regression:

$$\begin{array}{l} \theta_j \coloneqq \theta_j + \alpha \; \mathrm{frac}\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{\theta(x^{\{(i)\}})}\right) \cdot x_j^{\{(i)\}} \end{array}$$

Lernrate α :

Zu groß \rightarrow Divergenz,

zu klein — langsame Konvergenz

Integralrechnung

Funktionsuntersuchung Expone

Exponentialfunktionen & Wachstum

Kurvenanpassung