Introducing a BBS Tax in Germany

Karin Altvater, Santosh Bhandari, Patrick Frey, Sanghyo Moon

General Modell

For the decision analysis, we are focusing on health care costs

Decision Modell

Estimate value

- Saved Health care cost
 - saved health care cost for diabetes = reduced incidences of diabetes * saved health care cost for diabetes per case
 - saved health care cost for obesities = reduced incidences of obesity * saved health care cost for obesity per case saved health care cost for cancer = reduced incidences of cancer * saved health care cost for cancer per case
- Cost for implementation
 - Government implementation
 - Costs for accompanying campaigns/public information
 - Industry compliance

R code for estimation

```
library(decisionSupport)
decision_SSB_Tax <- function(x, varnames){</pre>
  #Estimate Saved cost of Diabetes care
  saved_diabetes <- red_diabetes * saved_diabetes</pre>
 #Estimate Saved cost of Obesities care
  saved_obesities <- red_obesity * saved_obesity</pre>
 #Estimate Saved cost of Cancers care
  saved_cancer <- red_cancer * saved_cancer</pre>
 #calculation saved Health care
  saved_health_care <- sum(saved_diabetes + saved_obesities +</pre>
                              saved_cancer)
 #sum of saved and revenue
  saved_and_revenue <- saved_health_care + revenue_tax</pre>
 #Estimate implement cost
 implementation_cost <- sum(intervention_costs_admin + intervention_costs_prod +</pre>
                                intervention_costs_info)
 #result of implementation
  result_imple <- saved_and_revenue - implementation_cost</pre>
  result_n_imple <- implementation_cost - saved_and_revenue
 #not clear with discount rate
 NPV_imple <-
    discount(result_imple, discount_rate, calculate_NPV = TRUE)
 NPV_n_imple <-
    discount(result_n_imple, discount_rate, calculate_NPV = TRUE)
 #Generate the list of outputs from the Monte Carlo simulation
  return(list(Imple_NPV = NPV_imple,
              NO_Imple_NPV = NPV_n_imple,
              NPV_decision_do = NPV_imple - NPV_n_imple,
              Cashflow_decision_do = NPV_imple - NPV_n_imple))
```

Input table

description	label	variable	distribution	lower	median	upper	unit
Establishment costs	Government implementation	intervention_costs_admin	posnorm	1371265500.00		1782645150.00	Euro
	Industry compliance	intervention_costs_prod	posnorm	1353124040.00		1791975080.00	Euro
	Costs for accompanying campaigns/public information	intervention_costs_info	posnorm	1000000.00		5000000.00	Euro
Reduced incidences of	Diabetes	red_diabetes	posnorm	155400.00		218100.00	Case
	Obesity	red_obesity	posnorm	1604000.00		2857700.00	Case
	Cancer	red_cancer	posnorm	16040.00		28577.00	Case
Saved health care costs per case	Diabetes	saved_diabetes	posnorm	4524.30		4917.20	Euro
	Obesity	saved_obesity	posnorm	95.19		95.34	Euro
	Cancer	saved_cancer	posnorm	95189.27		95340.08	Euro
Tax income for the government	Tax revenue	revenue_tax	posnorm	19200000.00		19200000000.00	Euro
Discount rate (%)	Discount rate (%)	discount_rate	posnorm	1.00		5.00	

plot with the estimate results

More problem

- If we run the code for cash flow we get the warning message:
 - Error: Time scale is not greater than or equal to '2'. Consider adding more time to the model.!!

Next step

- Figure out how we can solve the problem with cash flows
- More estimation?