

数学思维与人工智能

第三章:知识表示与知识图谱

中国矿业大学数学学院

祁永强

15862179376

qiyongqiang3@163.com

- 人类的智能活动主要是获得并运用知识。知识是智能的基础。为了使计算机具有智能,能模拟人类的智能行为,就必须使它具有知识。但知识需要用适当的模式表示出来才能存储到计算机中去,因此,知识的表示成为人工智能中一个十分重要的研究课题。
- ■本章首先介绍知识与知识表示的概念,然后介绍一阶谓词逻辑、产生式、框架、语义网络等当前人工智能中应用广泛的知识表示方法,简要介绍知识图谱,为后面介绍推理方法、专家系统等奠定基础。

- 3.1 知识与知识表示的概念
- 3.2 一阶谓词逻辑表示法
- 3.3 产生式表示法
- 3.4 框架表示法
- 3.5 知识图谱

3.1.1 知识的概念

- 知识: 在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
- 知识: 把有关信, 信息关联形式: "如果....., 则....."
- 知识反映了客观,如果大雁向南飞,则冬天就要来临了。 物或者相同事物问的不问大尔形成了不问的知识。

例如:

"雪是白色的"。

——事实

"如果头痛且流涕,则有可能患了感冒"。——规则

1.相对正确性

1+1=2 (十进制) 1+1=10 (二进制)

■ 任何知识都是在一定的条件及环境下产生的,在这种条件及环境下才是正确的。

王安石(1021~1086):西风昨夜过园林

吹落黄花满地金

苏 轼(1037~1101):秋花不比春花落

说与诗人仔细吟

后来, 王安石将苏轼贬到黄州任团练使, 见到了落花的菊花。

2. 不确定性

- ① 随机性引起的不确定性
- 2 模糊性引起的不确定性
- ③ 经验引起的不确定性
- 4 不完全性引起的不确定性

2. 不确定性 / "如果头痛且流涕,则有可能患了感冒

- ① 随机性引起的不确定性
- ■《三国演义》火烧赤壁:
- ■操升帐谓众谋士曰: 若非天命助吾, 安得凤雏妙计? 铁索 连舟,果然渡江如履平地。
- ■程昱曰: 彼若用火攻,难以回避,不得不防。
- ▶操曰:凡用火攻,必借风力。方今隆冬之际,但有西风北 风,安有东风南风耶?吾居于西北之上,彼兵皆在南岸,彼 若用火, 是烧自己之兵也, 吾何惧哉?
- ■诸将皆拜服曰:丞相高见,众人不及。

②模糊性引起的不确定性

模糊的概念

③经验性引起的不确定性

老马识途: 齐桓公应燕国的要求, 出兵攻打入侵燕国的山戎, 迷路了, 放出老马, 部队跟随老马找到了出路。

4不完全性引起的不确定性

MATLAB

火星上可能有水、生命?

- 3. 可表示性与可利用性
- 知识的可表示性:知识可以用适当形式表示出来,如用语言、文字、图形、神经网络等。
- 知识的可利用性: 知识可以被利用。

3.1.3 知识的表示

- 知识表示(knowledge representation):将人类知识形式化或者模型化。
- 知识表示是对知识的一种描述,或者说是一组约定,一种计算机可以接受的用于描述知识的数据结构。
- 选择知识表示方法的原则:
 - (1) 充分表示领域知识。
 - (2) 有利于对知识的利用。
 - (3) 便于对知识的组织、维护与管理。
 - (4) 便于理解与实现。

3.2 一阶谓词逻辑表示法

3.2 一阶谓词逻辑表示法

- 3.2.1 命题
- 3.2.2 谓词
- 3.2.3 谓词公式
- 3.2.4 谓词公式的性质
- 3.2.5 一阶谓词逻辑知识表示方法
- 3.2.6 一阶谓词逻辑表示法的特点

3.2.1 命题

- · 命题 (proposition): 一个非真即假的陈述句。
- ·若命题的意义为真,称它的真值为真,记为 T。例如: 3<5
- 若命题的意义为假,称它的真值;例如:太阳从西边升起
- ■一个命题可在一种条件下为真,在另一种条件下为假。

例: 1+1=10

- 命题逻辑: 研究命题及命题之间关系的符号逻辑系统。
- 命题逻辑表示法: 无法把它所描述的事物的结构及逻辑特征反映出来, 也不能把不同事物间的共同特征表述出来。

P: 老李是小李的父亲

MATLAB

P: 李白是诗人

Q: 杜甫也是诗人

3.2.2 谓词

- 谓词的一般形式: $P(x_1, x_2, ..., x_n)$
- 个体 x₁, x₂,..., x_n: 某个独立存在的事物或者某个抽象的概念;
- 谓词名P: 刻画个体的性质、状态或个体间的关系。
 - (1) 个体是常量:一个或者一组指定的个体。
 - ■"老张是一个教师": 一元谓词 Teacher (Zhang)
 - "5>3": 二元谓词 Greater (5, 3)
 - "Smith作为一个工程师为IBM工作":

三元谓词 Works (Smith, IBM, engineer)

3.2.2 谓词

(2) 个体是变元(变量):没有指定的一个或者一组个体。

"x < 5": Less(x, 5)

(3) 个体是函数:一个个体到另一个个体的映射。

"小李的父亲是教师": Teacher (father (Li))

(4) 个体是谓词

■ "Smith作为一个工程师为IBM工作":

二阶谓词 Works (engineer (Smith), IBM)

1. 连接词 (连词)

(1) 一: "否定" (negation) 或"非"。

(2) V: "析取" (disjunction) ——或。

(3) ∧: "合取" (conjunction) ——与。

"机器人不在2号房间": ¬Inroom (robot, r2)

"我喜欢音乐和绘画": Like (I, music) ∧ Like (I, painting)

"李明打篮球或踢足球":

Plays (Liming, basketball) \(\forall \) Plays (Liming, football)

1. 连接词 (连词)

(4)→: "蕴含" (implication)或 "条件" (condition)。

"如果刘华跑得最快,那么他取得冠军。":

RUNS (Liuhua, faster) -> WINS (Liuhua, champion)

(5) ↔: "等价" (equivalence)或"双条件" (bicondition)。

P ↔Q: "P当且仅当Q"。

1. 连接词 (连词)

谓词逻辑真值表

Р	Q	¬₽	PVQ	PΛQ	P→Q	P↔Q
T	Т	F	T	T	T	T
Т	F	F	T	F	F	F
F	T	T	T	F	T	F
F	Ŧ	T	F	F	T	T

- 2. 量词 (quantifier)
- (1) 全称量词 (universal quantifier) ($\forall x$): "对个体域中的所有(或任一个)个体x"。
- "所有的机器人都是灰色的":

 $(\forall x)[ROBOT(x) \rightarrow COLOR(x, GRAY)]$

(2) 存在量词 (existential quantifier) (∃x): "在个体域中存在个体x"。

"1号房间有个物体": (∃x) INROOM (x, r1)

全称量词和存在量词举例:

- $(\forall x)(\exists y) F(x, y)$ 表示对于个体域中的任何个体x都存在个体y, x与y是朋友。
- $(\exists x)(\forall y) F(x, y)$ 表示在个体域中存在个体x, 与个体域中的任何个体y都是朋友。
- $(\exists x)(\exists y) F(x,y)$ 表示在个体域中存在个体x与个体y, x与y是朋友。
- $(\forall x)(\forall y) F(x, y)$ 表示对于个体域中的任何两个个体x 和y, x与y都是朋友。

全称量词和存在量词出现的次序将影响命题的意思。例如:

- $(\forall x)(\exists y)(Employee(x) \rightarrow Manager(y, x)):$ "每个雇员都有一个经理。"

- 3. 谓词公式
- 定义3.2 可按下述规则得到谓词演算的谓词公式:
 - (1) 单个谓词是谓词公式, 称为原子谓词公式。
 - (2) 若A是谓词公式,则一A也是谓词公式。
 - (3) 若A, B都是谓词公式,则A∧B, A∨B, A→B, A↔B也都是谓词公式。
 - (4) 若A是谓词公式,则 $(\forall x)$ A, $(\exists x)$ A 也是谓词公式。
 - (5)有限步应用(1) (4) 生成的公式也是谓词公式。

连接词的优先级别从高到低排列:

 \neg , \wedge , \vee , \rightarrow , \longleftrightarrow

- 4. 量词的辖域
- 量词的辖域:位于量词后面的单个谓词或者用括弧括起来的谓词公式。
- 约束变元与自由变元:辖域内与量词中同名的变元称为约束变元,不同名的变元称为自由变元。
 - 例如: $(\exists x)(P(x,y) \rightarrow Q(x,y)) \lor R(x,y)$
 - $(P(x,y) \rightarrow Q(x,y))$: (∃x)的辖域,辖域内的变元x是 (∃x) 约束的变元,R(x,y)中的x是自由变元。
 - ·公式中的所有y都是自由变元。

- 1. 谓词公式的解释
- 谓词公式在个体域上的解释: 个体域中的实体对谓词演算表达式的每个常量、变量、谓词和函数符号的指派。

Friends (george, x)
Friends (george, susie)
Friends (george, kate)
F

■对于每一个解释,谓词公式都可求出一个真值(T或F)。

- 2. 谓词公式的永真性、可满足性、不可满足性
- ■定义3.3 如果谓词公式P对个体域D上的任何一个解释都取得真值T,则称P在D上是永真的;如果P在每个非空个体域上均永真,则称P永真。
- ■定义3.4 如果谓词公式P对个体域D上的任何一个解释都取得真值F,则称P在D上是永假的;如果P在每个非空个体域上均永假,则称P永假。
- •定义3.5 对于谓词公式P,如果至少存在一个解释使得P在此解释下的真值为T,则称P是可满足的,否则,则称P是不可满足的。

3. 谓词公式的等价性

- ■定义3.6 设P与Q是两个谓词公式,D是它们共同的个体域,若对D上的任何一个解释,P与Q都有相同的真值,则称公式P和Q在D上是等价的。如果D是任意个体域,则称P和Q是等价的,记为P ⇔ Q。
- (4) 德.摩根律(De. Morgen)
- (8) 连接词化规律(蕴含、等价等值式)
- (10) 量词转换律

4. 谓词公式的永真蕴含

- 定义3.7 对于谓词公式P与Q,如果P→Q永真,则称公式P永真蕴含Q,且称Q为P的逻辑结论,称P为Q的前提,记为P ⇒Q。
- (3) 假言推理
- (4) 拒取式推理
- (5) 假言三段论

- 谓词逻辑的其他推理规则
- ① P规则:在推理的任何步骤上都可引入前提。
- ② T规则:在推理过程中,如果前面步骤中有一个或 多个公式永真蕴含公式S,则可把S引入推理过程中。
- ③ CP规则:如果能从任意引入的命题R和前提集合中推出S来,则可从前提集合推出 $R \rightarrow S$ 来。

- 所有的人都是会死的, $\forall x(Human(x) \rightarrow Die(x))$
- 因为诸葛亮是人, Human (Zhugeliang)
- 所以诸葛亮是会死的。

$$(3) P, P \to Q \Rightarrow Q$$

• $\{1\}$ $\forall x(Human(x) \rightarrow Die(x))$

P规则

• {2} Human (Zhugeliang)

P规则

• { 1, 2 } Die (Zhugeliang)

T规则

- 谓词逻辑的其他推理规则:
- ④ 反证法: $P \Rightarrow Q$,当且仅当 $P \land \neg Q \Leftrightarrow F$ 即 $Q \Rightarrow P$ 的逻辑结论,当且仅当 $P \land \neg Q$ 是不可满足的。
- **■** 定理: Q为 P_1 , P_2 , ... P_n , 的逻辑结论, 当且仅当 $(P_1 \wedge P_2 \wedge \cdots \wedge P_n) \wedge \neg Q$ 是不可满足的。

3.2.5 一阶谓词逻辑知识表示方法

- 谓词公式表示知识的步骤:
 - (1) 定义谓词及个体。
 - (2) 变元赋值。
 - (3) 用连接词连接各个谓词,形成谓词公式。
- ■例如: 用一阶谓词逻辑表示下列关系数据库。

住户	房间	电话号码	房间
Zhang	201	491	201
Li	201	492	201
Wang	202	451	202
Zhao °	203	451 %	203

MATLAB

Occupant

Telephone

3.2.5 一阶谓词逻辑知识表示方法

■ 用一阶谓词表示:

Occupant (Zhang, 201)

Occupant (Li, 201)

Occupant (Wang, 202)

Occupant (Zhao, 203)

Telephone (491, 201)

Telephone (492, 201)

Telephone (451, 202)

Telephone (451, 203)

3.2.6 一阶谓词逻辑表示法的特点

· 优点:

- ①自然性
- ②精确性
- ③严密性
- 4 容易实现

局限性:

- ① 不能表示不确定的知识
- 2 组合爆炸
- ③ 效率低

□ 应用:

- (1) 自动问答系统(Green等人研制的QA3系统)
- (2) 机器人行动规划系统(Fikes等人研制的STRIPS系统)
- (3) 机器博弈系统(Filman等人研制的FOL系统)
- (4) 问题求解系统(Kowalski等设计的PS系统)

3.3 产生式表示法

- 3.3.1 产生式
- 3.3.2 产生式系统
- 3.3.3 产生式系统——动物识别系统
- 3.3.4 产生式表示法的特点

- · "产生式": 1943年, 美国数学家波斯特(E. Post) 首先提出。
- 1972年, 纽厄尔和西蒙在研究人类的认知模型中开发了基于规则的产生式系统。
- 产生式通常用于表示事实、规则以及它们的不确定 性度量,适合于表示事实性知识和规则性知识。

- 1. 确定性规则知识的产生式表示
- ■基本形式: IF P THEN Q

或者: $P \rightarrow Q$

• 例如:

 r_4 : IF 动物会飞 AND 会下蛋 THEN 该动物是鸟

2. 不确定性规则知识的产生式表示

■ 基本形式: IF P THEN Q (置信度)

或者: $P \rightarrow Q$ (置信度)

例如: IF 发烧 THEN 感冒 (0.6)

- 3. 确定性事实性知识的产生式表示
- 三元组表示: (对象, 属性, 值)

或者: (关系,对象1,对象2)

■例: 老李年龄是40岁: (Li, age, 40)

老李和老王是朋友: (friend, Li, Wang)

- 4. 不确定性事实性知识的产生式表示
- ■四元组表示: (对象, 属性, 值, 置信度)

或者: (关系,对象1,对象2,置信度)

●例: 老李年龄很可能是40岁: (Li, age, 40, 0.8)

老李和老王不大可能是朋友: (friend, Li, Wang, 0.1)

- 产生式与谓词逻辑中的蕴含式的区别:
 - (1)除逻辑蕴含外,产生式还包括各种操作、规则、变换、 算子、函数等。例如,"如果炉温超过上限,则立即关 闭风门"是一个产生式,但不是蕴含式。
 - (2) 蕴含式只能表示精确知识,而产生式不仅可以表示精确的知识,还可以表示不精确知识。蕴含式的匹配总要求是精确的。产生式匹配可以是精确的,也可以是不精确的,只要按某种算法求出的相似度落在预先指定的范围内就认为是可匹配的。

· 产生式的形式描述及语义——巴科斯范式BNF(backus normal form)

<产生式>::=<前提>—×结论>

<前提>::=<简单条件>|<复合条件>

<结论>::=<事实>|<操作>

<复合条件>::=<简单条件>AND<简单条件>[AND<简单条件

>… |<简单条件>OR<简单条件>[OR<简单条件>…

<操 作>::=<操作名>[(<变元>, …)]

符号"::="表示"定义为";符号"|"表示"或者是";

符号"[]"表示"可缺省"。

- ■规则库:用于描述相应领域内知识的产生式集合。
- ■综合数据库(事实库、上下文、黑板等): 一个用于存放 问题求解过程中各种当前信息的数据结构。
- ■控制系统(推理机构):由一组程序组成,负责整个产生式系统的运行,实现对问题的求解。

3.3.2 产生式系统

控制系统做以下几项工作:

- (1) 从规则库中选择与综合数据库中的已知事实进行匹配。
- (2) 匹配成功的规则可能不止一条,进行冲突消解。
- (3) 执行某一规则时,如果其右部是一个或多个结论,则 把这些结论加入到综合数据库中:如果其右部是一个或多个 操作,则执行这些操作。
- (4)对于不确定性知识,在执行每一条规则时还要按一定的算法计算结论的不确定性。
- (5)检查综合数据库中是否包含了最终结论,决定是否停止系统的运行。

3.3.2 产生式系统

例如:动物识别系统——识别虎、金钱豹、斑马、

长颈鹿、鸵鸟、企鹅、信天翁等七种动物的产生式系统。

• 规则库:

r₁: IF 该动物有毛发 THEN 该动物是哺乳动物

r₂: IF 该动物有奶 THEN 该动物是哺乳动物

r3: IF 该动物有羽毛 THEN 该动物是鸟

r4: IF 该动物会飞 AND 会下蛋 THEN 该动物是鸟

rs: IF 该动物吃肉 THEN 该动物是食肉动物

re: IF 该动物有犬齿 AND 有爪 AND 眼盯前方

THEN 该动物是食肉动物

r7: IF 该动物是哺乳动物 AND 有蹄

THEN 该动物是有蹄类动物

rs: IF 该动物是哺乳动物 AND 是反刍动物

THEN 该动物是有蹄类动物

r₁₀: IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎

r₁₁: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿

r₁₂: IF 该动物有蹄类动物 AND 身上有黑色条纹

THEN 该动物是斑马

r₁₃: IF 该动物是鸟 AND 有长脖子 AND 有长腿 AND 不会飞 AND 有黑白二色 THEN 该动物是鸵鸟

r₁₄: IF 该动物是鸟 AND 会游泳 AND 不会飞 AND 有黑白二色 THEN 该动物是企鹅

MATLAIF 该动物是鸟 AND 善飞 THEN 该动物是信天翁

- 设已知初始事实存放在综合数据库中:
 - 该动物身上有: 暗斑点, 长脖子, 长腿, 奶, 蹄
- 推理机构的工作过程:
 - (1) 从规则库中取出 r_1 ,检查其前提是否可与综合数据库中的已知事实匹配。匹配失败则 r_1 不能被用于推理。然后取 r_2 进行同样的工作。匹配成功则 r_2 被执行。
- 综合数据库:

该动物身上有: 暗斑点, 长脖子, 长腿, 奶, 蹄, 哺乳动物

- ▶ 推理机构的工作过程:
- (2)分别用 r_3 , r_4 , r_5 , r_6 综合数据库中的已知事实进行匹配,均不成功。 r_7 匹配成功,执行 r_7 。
- 综合数据库

该动物身上有: 暗斑点, 长脖子, 长腿, 奶, 蹄, 哺乳动物, 有蹄类动物

(3) r11匹配成功,并推出"该动物是长颈鹿"。

3.3.4 产生式表示法的特点

1. 产生式表示法的优点

- (1) 自然性
- (2) 模块性
- (3) 有效性
- (4) 清晰性

2. 产生式表示法的缺点

- (1) 效率不高
- (2) 不能表达结构性知识

MATLAB

3. 适合产生式表示的知识

- (1)领域知识间关系不密切, 不存在结构关系。
- (2) 经验性及不确定性的知识,且相关领域中对这些知识没有严格、统一的理论。
- (3)领域问题的求解过程可被表示为一系列相对独立的操作,且每个操作可被表示为一条或多条产生式规则。

3.4 框架表示法

- 1975年,美国明斯基提出了框架理论:人们对现实世界中各种事物的认识都是以一种类似于框架的结构存储在记忆中的。
- 框架表示法:一种结构化的知识表示方法,已在多种系统中得到应用。

3.4.1 框架的一般结构

- 框架 (frame): 一种描述所论对象 (一个事物、事件或概念) 属性的数据结构。
- · 一个框架由若干个被称为"槽"(slot)的结构组成,每一个槽又可根据实际情况划分为若干个"侧面"(faced)。
- 一个槽用于描述所论对象某一方面的属性。
- 一个侧面用于描述相应属性的一个方面。
- 槽和侧面所具有的属性值分别被称为槽值和侧面值。

3.4.1 框架的一般结构

<框架名>

槽名1: 侧面名11

侧面名_{1m}

槽名n: 侧面名n1

侧面名nm

约束: 约束条件1

MATLAB 约束条件。

侧面值₁₁₁, ..., 侧面值_{11P1}

侧面值 $_{1m1}$, …,侧面值 $_{1mPm}$

侧面值 $_{n11}$, …,侧面值 $_{n1P1}$

侧面值 $_{nm1}$, …,侧面值 $_{nmPm}$

■ 例1 教师框架

框架名:〈教师〉

姓名:单位(姓、名)

年龄:单位(岁)

性别:范围(男、女)

缺省: 男

职称:范围(教授,副教授,讲师,助教)

缺省: 讲师

部门:单位(系,教研室)

住址:〈住址框架〉

工资:〈工资框架〉

开始工作时间:单位(年、月)

截止时间:单位(年、月)

缺省: 现在

■ 例2 教师框架

当把具体的信息填入槽或侧面后,就得到了相应框架的一个事例框架。

框架名:〈教师-1〉

姓名: 夏冰

年龄: 36

性别:女

职称: 副教授

部门: 计算机系软件教研室

住址: 〈adr-1〉

工资: 〈sal-1〉

开始工作时间: 1988, 9

截止时间: 1996, 7

例3 教室框架

框架名:〈教室〉

墙数:

窗数:

门数:

座位数:

前墙:〈墙框架〉

后墙:〈墙框架〉

左墙:〈墙框架〉

右墙:〈墙框架〉

门:〈门框架〉

窗:〈窗框架〉

黑板:〈黑板框架〉

天花板:〈天花板框架〉

讲台:〈讲台框架〉

 例4将下列一则地震消息用框架表示: "某年某月某日, 某地发生6.0级地震,若以膨胀注水孕震模式为标准, 则三项地震前兆中的波速比为0.45,水氡含量为0.43, 地形改变为0.60。"

• 解: 地震消息用框架如下图所示。

框架名:〈地震〉

地 点: 某地

日 期:某年某月某日

震 级: 6.0

波 速 比: 0.45

水氡含量: 0.43

地形改变: 0.60

3.4.3 框架表示法的特点

(1) 结构性

便于表达结构性知识,能够将知识的内部结构关系及知识间的联系表示出来。

(2) 继承性

框架网络中,下层框架可以继承上层框架的槽值,也可以进行补充和修改。

(3) 自然性

框架表示法与人在观察事物时的思维活动是一致的。

3.5 知识图谱

- 由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了挑战。
- · 谷歌于2012年5月16日首先发布了知识图谱(Knowledge Graph)。
- 知识图谱是一种互联网环境下的知识表示方法。
- 知识图谱的目的是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。
- · Google、百度和搜狗等搜索引擎公司构建的知识图谱, 分别称为知识图谱、知心和知立方。

3.5.1知识图谱的定义

- 知识图谱(Knowledge Graph/Vault),又称科学知识图谱,用各种不同的图形等可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。
- 知识图谱是由一些相互连接的实体及其属性构成的。
- 三元组是知识图谱的一种通用表示方式:

(实体1-关系-实体2): 中国-首都-北京

(实体-属性-属性值): 北京-人口-2069万

3.5.2 知识图谱的表示

• 知识图谱也可被看作是一张图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。

3.5.3知识图谱的架构

- 1. 知识图谱的逻辑结构: 模式层与数据层。
- 数据层主要是由一系列的事实组成,而知识以事实为单位进行存储。
- 模式层构建在数据层之上, 是知识图谱的核心。
- 2. 知识图谱的体系架构

3.5.3知识图谱的架构

- 获取知识的资源对象大体可分为:
- 结构化数据是指知识定义和表示都比较完备的数据。
- 半结构化数据是指部分数据是结构化的,但存在大量结构化程度较低的数据。
- 非结构化数据是指没有定义和规范约束的"自由"数据。

3.5.4 知识图谱的构建

- (1) 自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。
- (2)自底向上指的是从一些开放链接数据中提取出实体, 选择其中置信度较高的加入到知识库,再构建顶层的本体模式

3.5.5 知识图谱的典型应用

维基百科(Wikipedia)由维基媒体基金会负责运营的一个自由内容、自由编辑的多语言知识库。

DBpedia由2007年德国柏林自由大学以及莱比锡大学的研究者从维基百科里萃取结构化知识的项目开始建立

YAGO由德国马克斯-普朗克研究所 (MPI) 构建的大型多语言的语义知识库,从10个维基百科以不同语言提取事实和事实的组合。

XLORE是清华大学构建的基于中、英文维基和百度百科的开放知识平台,是第一个中英文知识规模较为平衡的大规模中英文知识图谱。

