Санкт-Петербургский государственный университет Факультет прикладной математики — процессов управления

А.П.Иванов, Л.Т.Позняк, А.С.Еремин
Практикум на ЭВМ по численным методам
Тема 1. Вычисление функций
Методические указания

Основы теории погрешностей

На погрешность результата приближенного решения задачи влияют следующие причины:

- а) Неточность информации о решаемой задаче. Ошибки в начальных данных дают ту часть погрешности в решении, которая не зависит от математической стороны решения задачи и называется неустранимой погрешностью.
- б) Погрешность аппроксимации (методическая погрешность). При решении задачи численными методами необходимо считаться с тем, что неизбежно придётся иметь дело только с конечным количеством чисел, и с ними можно выполнить только конечное число операций. Поэтому вместо точного решения задачи приходится прибегать к приближенному методу.
- в) Погрешность округления. Всякое положительное число a может быть представлено в виде конечной или бесконечной десятичной дроби

$$a = \alpha_m 10^m + \alpha_{m-1} 10^{m-1} + \dots + \alpha_{m-n+1} 10^{m-n+1} + \dots,$$

где α_i — цифры числа a, причём старшая цифра $\alpha_m \neq 0$, а m — некоторое число (старший десятичный разряд числа a).

Например,

$$3141.59... = 3 \cdot 10^3 + 1 \cdot 10^2 + 4 \cdot 10^1 + 1 \cdot 10^0 + 5 \cdot 10^{-1} + 9 \cdot 10^{-2} + \cdots$$

На практике имеют дело с приближёнными числами, представляющими собой конечные десятичные дроби

$$\bar{b} = \beta_m 10^m + \beta_{m-1} 10^{m-1} + \dots + \beta_{m-n+1} 10^{m-n+1}, \quad \beta_m \neq 0.$$

Определение 1. Цифра β_k в изображении числа \bar{b} называется верной, если имеет место неравенство $|b-\bar{b}|\leqslant \omega 10^k,\ \omega\leqslant 1$, чаще всего, $\omega=0.5$. Здесь b — точное значение величины, представленной приближённой записью через \bar{b} .

Очевидно, что если цифра β_k верная, то и все цифры в записи числа b, расположенные левее неё, тоже верны.

Определение 2. Значащей цифрой числа называется всякая его цифра в десятичном изображении, кроме нулей, стоящих слева в записи числа до первой ненулевой цифры.

Число, являющееся решением конкретной задачи, принято записывать только с *верными значащими цифрами*. Например, в числе 0.002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими. В случае, если в данном числе 0.002080 последняя цифра не является верной, то её не следует использовать в записи числа.

Определение 3. Число $\Delta a = a - \bar{a}$ называется абсолютной погрешностью приближённого значения \bar{a} . Часто абсолютной погрешностью называют $|\Delta a|$, однако для работы с *оценками* погрешностей разницы нет.

Определение 4. Число Δ_a такое, что $|\Delta a| \leqslant \Delta_a$, называется верхней границей (оценкой) абсолютной погрешности приближённого значения \bar{a} .

Определение 5. Число $\delta a = \frac{\Delta a}{|a|}$ называется *относительной погрешностью* приближенного значения \bar{a} (при $a \neq 0$). Обычно значение a неизвестно, и практически используется близкое значение $\delta a = \frac{\Delta a}{|\bar{a}|}$ при $\bar{a} \neq 0$. Конечно, близость этих значений зависит от соотношения абсолютных величин числа и его погрешности.

Определение 6. Число δ_a такое, что $|\delta a| \leqslant \delta_a$, называется верхней границей (оценкой) относительной погрешности приближённого значения \bar{a} .

Часто в определениях 4 и 6 слово «верхняя» опускают для краткости. Если известна граница абсолютной погрешности Δ_a , то в качестве δ_a , очевидно, можно взять $\frac{\Delta_a}{|\bar{a}|}$. Если же известна верхняя граница относительной погрешности δ_a , то за Δ_a можно взять $|\bar{a}|\delta_a$. Эту связь между Δ_a и δ_a выражают формулой $\Delta_a = |\bar{a}|\delta_a$.

Замечание 1. Для $\bar{a}=0$ относительная погрешность не определена.

Использование различных характеристик точности

Чаще в практике вычислений при работе с числами с плавающей точкой используют не абсолютную, а относительную погрешность, так как более значимым является получение нужного числа верных цифр всех компонентов решения, насколько бы они ни различались по абсолютной величине. Однако в тех случаях, когда абсолютные значения становятся очень малы или, тем более, обращаются в нуль, все же проверяется малость абсолютной погрешности.

Обычно задают различные допуски на относительную и абсолютную погрешности. Обозначим их rtol и atol (от англ. $relative\ tolerance$ и $absolute\ tolerance$) соответственно. Можно удобно объединить в одной формуле проверку относительной и абсолютной погрешностей и одновременно избежать деления на малую величины (если $|\bar{a}|$ мало). Считаем, что точность удовлетворена, если

$$|\Delta a| \leqslant rtol \cdot |\bar{a}| + atol. \tag{1}$$

Поскольку на практике atol на порядки меньше чем rtol, то в случае, когда значение |a| (и $|\bar{a}|$) достаточно велико, величина правой части определяется первым слагаемым и мы проверяем малость относительной погрешности. Если же |a| достаточно мало, то начинает доминировать atol и проверяется абсолютная погрешность.

Например, пусть мы работаем с точностью double, которая позволяет хранить примерно шестнадцать десятичных цифр в записи числа. Пусть $tol=10^{-6}$, то есть мы требуем, чтобы ответ содержал шесть верных десятичных знаков, но было бы наивно надеяться, что можно получить шесть верных цифр, если сама величина близка к нулю. Потому, зададим $atol=10^{-12}$ и тем самым будем проверять только те цифры, которые соответствуют разрядам большим чем 10^{-12} .

Так если

$$\bar{a} = 0.033166247903554,$$

TO

$$rtol \cdot |\bar{a}| + atol = 0.000\,000\,033\,167\,248.$$

Таким образом при проверке абсолютная погрешность не должна превышать 10^{-8} , что гарантирует шесть верных цифр в \bar{a} .

Если же

$$\bar{a} = 0.000000003316625,$$

$$rtol \cdot |\bar{a}| + atol = 0.000\,000\,000\,001\,0033$$

и абсолютная погрешность не должна превышать 10^{-12} , что гарантирует лишь три верных десятичных знака для \bar{a} . Если же $|\bar{a}| < atol$, то мы вообще не проверяем его погрешность, считая его равным вычислительному нулю.

Если мы работаем с вектором, то вместо модуля используется норма вектора, например проверку (1) проводится покоординатно, что соответствовует норме-максимум. Часто используются следующие нормы векторов:

$$\begin{split} &\|\sigma\|_{\infty} = \max_{1\leqslant i\leqslant m} |\sigma^i| \quad \text{(норма-максимум)},\\ &\|\sigma\|_1 = \sum_{i=1}^m |\sigma^i|,\\ &\|\sigma\|_2 = \left(\sum_{i=1}^n (\sigma^i)^2\right)^{1/2} \quad \text{(евклидова норма)}. \end{split}$$

Однако, порой при решении больших систем приходится накладывать разные ограничения на погрешности для разных компонент решения, например, если одна часть неизвестных соответствует координатам объекта, а другая — скоростям их изменения, или одна — зарядам на узлах электрической цепи, а другая — токам через эти узлы. Характерные величины разных по физической природе искомых функций могут сильно различаться, и добиваться одинаковой точности (абсолютной или относительной) становится нецелесообразно. Весь вектор решения разделяется тогда на подвекторы w_j , для каждого из которых погрешность Δ_i сравнивается со своими собственными rtol_j и atol_j по норме (в предельном случае каждая компонента образует свой подвектор и сравнивается со своими допусками). Может быть и так, что для некоторых из подвекторов решения мы вообще не ведем контроль погрешности.

Прямая задача теории погрешностей

В дальнейшем изложении будем считать, что погрешность округлений пренебрежимо мала по сравнению с методической погрешностью и работать с абсолютными прогрешностями.

Пусть в выпуклой области $G \in \mathbb{R}^n$ рассматривается непрерывно дифференцируемая функция $y = f(\cdot)$. Предположим, что в точке $x = (x_1, x_2, \ldots, x_n)$ области G нужно вычислить значение y = f(x). Пусть нам известны лишь приближённые значения $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$ такие, что точка $\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n) \in G$.

Необходимо найти оценку погрешности приближённого значения функции $\bar{y}=f(\bar{x}),$ обусловленную погрешностями аргументов. Через погрешности $\Delta x_i=x_i-\bar{x}_i$ аргументов она выражается следующим образом:

$$\Delta y = f(\bar{x}_1 + \Delta x_1, \bar{x}_2 + \Delta x_2, \dots, \bar{x}_n + \Delta x_n) - f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n).$$

Или, если воспользоваться формулой Лагранжа¹,

$$\Delta y = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(\bar{x}_1 + \theta_1 \Delta x_1, \bar{x}_2 + \theta_2 \Delta x_2, \dots, \bar{x}_n + \theta_n \Delta x_n), \quad \theta_i \in [0, 1].$$

Отсюда получается оценка для границы погрешности вычисления функции, порождённой погрешностью её аргументов:

$$|\Delta y| \leqslant \sum_{i=1}^{n} B_i \Delta_{x_i},\tag{3}$$

где $|\Delta x_i| \leqslant \Delta_{x_i}$,

$$B_{i} = \max_{\substack{\theta_{j} \in [0,1] \\ j=1,\dots,n}} \left| \frac{\partial}{\partial x_{i}} f(\bar{x}_{1} + \theta_{1} \Delta x_{1}, \bar{x}_{2} + \theta_{2} \Delta x_{2}, \dots, \bar{x}_{n} + \theta_{n} \Delta x_{n}) \right|.$$

Таким образом решается nрямая задача теории погрешностей: известны погрешности некоторой системы величин. Требуется определить погрешность вычисления заданной функции f этих величин, порождённой их погрешностями.

Здесь учтена лишь неустранимая погрешность вычисления функции, порождённая погрешностями её аргументов. Если же считать,

 $^{^1}$ Жозеф Луи Лагранж

что значение функции f(x) не может быть вычислено точно (например, $\sqrt{2}$) и его вычисление заменяется вычислением другой функции $\bar{f}(x)$ (например, отрезка ряда Тейлора), то возникает и методическая погрешность вычисления функции. Для совокупной (полной) погрешности (без учёта ошибок округления) имеем:

$$|f(x) - \bar{f}(\bar{x})| \le |f(x) - f(\bar{x})| + |f(\bar{x}) - \bar{f}(\bar{x})| \le |\Delta y| + \Delta_{f(\bar{x})}.$$

В итоге, для полной погрешности Δy вычисления функции f(x) следует написать оценку:

$$|\Delta f| \leqslant \Delta_{f(\bar{x})} + \sum_{i=1}^{n} B_i \Delta_{x_i}, \tag{4}$$

Неравенство (4) назовём решением полной задачи теории погрешностей.

Полная обратная задача теории погрешностей

Рассмотрим вопрос: каковы должны быть абсолютные погрешности аргументов функции и методическая погрешность функции, чтобы абсолютная величина полной погрешности вычисления функции не превышала заданной величины?

Эта задача математически неопределена, так как заданную предельную погрешность (допуск ε на верхнюю границу абсолютной погрешности Δf) можно обеспечить, устанавливая по-разному предельные абсолютные погрешности Δ_{x_i} её аргументов и вычисления функции $\Delta_{f(\bar{x})}$ лишь бы они удовлетворяли условию:

$$\Delta_{f(\bar{x})} + \sum_{i=1}^{n} B_i \Delta_{x_i} \leqslant \varepsilon. \tag{5}$$

Требуется наложить дополнительное условие, чтобы задача имела единственное решение.

Одно из двух простейших решений обратной задачи даётся так называемым *принципом равных влияний*. Предполагается, что все слагаемые в правой части (5) имеют одинаковую величину. Тогда

$$\Delta_{f(\bar{x})} \leqslant \frac{\varepsilon}{n+1}, \quad \Delta_{x_i} \leqslant \frac{\varepsilon}{(n+1)B_i}, \quad i = \overline{1, n}.$$

Другой столь же простой способ носит название принципа равных погрешностей: считается, что $\Delta_{f(\bar{x})} = \Delta_{x_i}, \ i = \overline{1,n}$, и тогда из (5) немедленно получаем:

$$\Delta_{f(\bar{x})} \leqslant \frac{\varepsilon}{1 + \sum_{j=1}^{n} B_j}, \quad \Delta_{x_i} \leqslant \frac{\varepsilon}{1 + \sum_{j=1}^{n} B_j}, \quad i = \overline{1, n}.$$

Исходя из особенностей задачи и вычисляемой функции можно выставлять и другие требования к уровню погрешностей аргументов, например, сгруппировать аргументы по их физическому смыслу и использовать принцип равных влияний для разных групп, а внутри групп применить принцип равных погрешностей, или исходя из неких соображений задать погрешности для части аргументов, а погрешности остальных найти из условия выполнения равенства (5) с учётом положительности искомых величин $\Delta_{f(\bar{x})}$ и Δ_{x_i} , $i=\overline{1,n}$.

Пример. Требуется с погрешностью $\Delta_M=1$ г определить массу металла, потребного для изготовления диска толщиной $h\approx 1$ см и радиусом $r\approx 10$ см (плотность металла ϱ). Для определенности будем считать, что $\varrho=10$ г/см³, $h=1\pm 0.1$ см, $\pi=3.14\pm 0.002$, $r=10\pm 0.1$ см.

Решение. Поскольку масса диска (цилиндра) вычисляется по формуле $M=\varrho h\pi r^2$, то поставленный вопрос эквивалентен вопросу: с какой погрешностью должны быть измерены радиус и толщина диска, а также сколько следует взять знаков в числе π , чтобы выполнить условия по точности вычисления массы диска (считая, что плотность — величина точная)?

Согласно формуле (5), имеем:

$$\Delta_M \leqslant B_h \Delta_h + B_\pi \Delta_\pi + B_r \Delta_r,$$

где

$$B_h = \max_{\pi,r} (\varrho \pi r^2) = 3205.52,$$

 $B_{\pi} = \max_{h,r} (\varrho h r^2) = 1122.11,$
 $B_r = \max_{h} (2\varrho h \pi r) = 698.15.$

Применяя принцип равных погрешностей, получаем:

$$\Delta_h = \Delta_\pi = \Delta_r \approx 1/5000 = 2 \cdot 10^{-4}$$
.

т. е. линейные размеры диска должны быть определены с точностью 2 микрона, а значение числа π следует взять с точностью 5 знаков после запятой.

Обратная задача для вычисления элементарных функций

Общие положения

Пусть $z(x)=f(u(x),v(x)), x\in [a,b],$ и требуется построить таблицу значений этой функции для узлов $x=x_i,\ i=1,...,n.$ Здесь x- скалярный аргумент $(x_i< x_{i+1}).$ Предполагается, что каждая из трёх функций f,u и v не может быть вычислена точно и вычисляется приближённо:

$$u(x) \approx \bar{u}(x), \quad v(x) \approx \bar{v}(x), \quad f(x) \approx \bar{f}(x).$$

Таким образом, реально вместо искомых точных значений функции $z_i = f(u(x_i), v(x_i))$ будут вычислены приближённые значения $\bar{z}_i = \bar{f}(\bar{u}(x_i), \bar{v}(x_i))$. Требуется определить с какой точностью должны быть вычислены $\bar{u}(x), \bar{v}(x)$ и $\bar{f}(x)$, чтобы обеспечивалась заданная точность приближённых значений \bar{z}_i , т.е. чтобы $|z_i - \bar{z}_i| \leqslant \varepsilon$. Как нетрудно убедиться, здесь мы имеем дело с рассмотренной ранее обратной задачей теории погрешностей. В самом деле, нам требуется вычислить значения функции двух переменных f(u,v) при некоторых значениях аргументов u и v, которые известны нам не точно, но могут быть найдены их приближённые значения \bar{u} и \bar{v} с требуемой точностью.

Пусть $u_*\leqslant u(x)\leqslant u^*,\ v_*\leqslant v(x)\leqslant v^*$ при $x\in[x_1;x_n]$. В таком случае область G есть прямоугольник $[u_*,u^*]\times[v_*,v^*]$. Считаем далее, что производные $\frac{\partial f}{\partial u}$ и $\frac{\partial f}{\partial v}$ мало изменяются в G, и что

$$\left|\frac{\partial f}{\partial u}(u,v)\right|\leqslant c_u,\quad \left|\frac{\partial f}{\partial v}(u,v)\right|\leqslant c_v\quad (u,v)\in G.$$

Из предыдущих рассуждений о решении обратной задачи вытекает, что требуемая точность ε приближённых табличных значений \bar{z}_i обеспечивается тогда, когда приближённые значения аргументов \bar{u} и \bar{v} удовлетворяют неравенствам

$$|u(x_i) - \bar{u}(x_i)| \le \frac{\varepsilon}{3c_n}, \quad |v(x_i) - \bar{v}(x_i)| \le \frac{\varepsilon}{3c_n},$$

а приближённо вычисленное значение $\bar{f}(\bar{u},\bar{v})$ удовлетворяет неравенству

$$|f(\bar{u},\bar{v}) - \bar{f}(\bar{u},\bar{v})| \leqslant \frac{\varepsilon}{3}.$$

Предполагаем, что мы умеем оценивать методическую погрешность вычисления функций u, v и f, т.е. можем дать оценки:

$$|u(x) - \bar{u}(x)| \leq \Delta_u,$$

$$|v(x) - \bar{v}(x)| \leq \Delta_v,$$

$$|f(\bar{u}, \bar{v}) - \bar{f}(\bar{u}, \bar{v})| \leq \Delta_f.$$

Поставленная задача будет решена, когда будет обеспечено выполнение следующих неравенств:

$$\Delta_u \leqslant \frac{\varepsilon}{3c_u}, \quad \Delta_v \leqslant \frac{\varepsilon}{3c_v}, \quad \Delta_f \leqslant \frac{\varepsilon}{3}.$$

Примеры построения таблицы значений функции

Пример 1. Требуется построить таблицу значений функции

$$z(x) = \sqrt{\frac{\sin(0.9x + 0.51)}{xe^{x+0.3}}}$$

для x=0.5(0.01)0.6 (т.е. для $x\in[0.5,0.6]$ с шагом 0.01) с заданной точностью $\varepsilon=10^{-6}$. Источниками погрешности (при точных значениях x) являются три функции: синус, экспонента и квадратный корень. Положим

$$u(x) = \sin(0.9x + 0.51), \quad v(x) = e^{x+0.3}, \quad f(u, v, x) = \sqrt{\frac{u}{xv}}.$$

Упростим обозначения, не указывая явную зависимость f от x, так как этот аргумент мы считаем точным. Тогда z(x) = f(u(x), v(x)). Найдём пределы изменения величин u и v при $x \in [0.5, 0.6]$. Поскольку функции u и v монотонны на [0.5, 0.6], то $\sin 0.96 \leqslant u \leqslant \sin 1.05$, а $\mathrm{e}^{0.8} \leqslant v \leqslant \mathrm{e}^{0.9}$.

Интервалы изменения u и v можно расширить, чтобы не вычислять верхние и нижние границы изменения этих функций с большой точностью. Положим с недостатком $\sin 0.96 \approx 0.8$, $\exp 0.8 \approx 2.2$ и с избытком $\sin 1.05 \approx 0.9$, $\exp 0.9 \approx 2.5$. Таким образом, можно положить

$$G = \{(u, v) \mid 0.8 \leqslant u \leqslant 0.9, \ 2.2 \leqslant v \leqslant 2.5\}$$

Оценим в G частные производные

$$\frac{\partial f}{\partial u}(u,v) = \frac{1}{2\sqrt{uvx}}, \quad \frac{\partial f}{\partial v}(u,v) = -\frac{\sqrt{u}}{2v\sqrt{vx}}:$$

$$\left| \frac{\partial f}{\partial u} \right| \leqslant \frac{1}{2\sqrt{0.8 \cdot 2.2 \cdot 0.5}} < 0.54, \quad \left| \frac{\partial f}{\partial v} \right| \leqslant \frac{\sqrt{0.9}}{2 \cdot 2.2 \cdot \sqrt{2.2 \cdot 0.5}} < 0.21,$$

Итак, в данном примере $c_u=0.54,\ c_v=0.21$ и, следовательно, функцию u(x) нужно вычислять с точностью $\varepsilon_u=10^{-6}/1.62,$ функцию v(x) — с точностью $\varepsilon_v=10^{-6}/0.63,\ {\rm a}\ f(u,v)$ — с точностью $\varepsilon_f=10^{-6}/3.$

Функции u(x) и v(x) предлагается вычислять, ракладывая функции $\cos y$ и e^t в ряд Маклорена по аргументам $y = \frac{\pi}{2} - (0.9x + 0.51)$ и t = x + 0.3 (при этом будет $y \in (0; \frac{\pi}{4}) \subset [0; 1]$ и ряд для $\cos y$ станет лейбницевым). Функцию f(u,v) предлагается вычислять, определяя приближённое значение функции \sqrt{s} по формуле Герона (частного случая формулы Ньютона):

$$w_{k+1} = \frac{1}{2} \left(w_k + \frac{s}{w_k} \right),$$

где начальное w_0 — приближённое значение \sqrt{s} с избытком. Можно, к примеру, взять в данном случае $w_0=1$.

Для всех трёх функций мы умеем оценивать абсолютную величину методической погрешности (с учётом того, что элементарные функции вычисляются с помощью разложения в ряд Маклорена):

$$\begin{split} |u(x) - \bar{u}(x)| &\leqslant \left| \frac{y^{2n}}{(2n)!} \right| = \Delta_u \leqslant \varepsilon_u, \\ |v(x) - \bar{v}(x)| &\leqslant \left| \frac{t^m}{m!} \right| = \Delta_v \leqslant \varepsilon_v, \\ |f(\bar{u}, \bar{v}) - \bar{f}(\bar{u}, \bar{v})| &\leqslant |w_{k+1} - w_k| = \Delta_f \leqslant \varepsilon_f. \end{split}$$

Следовательно, требуемая точность табличных значений функции z(x) будет обеспечена тогда, когда номера $n,\,m$ и k будут удовлетворять неравенствам

$$\left| \frac{y^{2n}}{(2n)!} \right| \leqslant \frac{10^{-6}}{1.62},$$

$$\left| \frac{t^m}{m!} \right| \leqslant \frac{10^{-6}}{0.63},$$

$$\left| w_{k+1} - w_k \right| \leqslant \frac{10^{-6}}{3}.$$

Пример 2. Рассмотрим пример, в котором последнее действие в функции f выполняется точно. В этом случае удобнее все источники погрешности считать её аргументами и в формуле (4) $\Delta_{f(\bar{x})}$ будет равно нулю.

Требуется построить таблицу значений функции

$$z(x) = \frac{\sqrt{\sin(0.9x + 0.51)}}{xe^{x+0.3}}$$

для x=0.5(0.01)0.6 с заданной точностью $\varepsilon=10^{-6}.$ Источниками погрешности являются те же три функции, что и в примере 1. Положим

$$u(x) = \sin(0.9x + 0.51), \quad v(x) = e^{x+0.3}, \quad w(u) = \sqrt{u}.$$

Ещё одним отличием от примера 1 здесь является сложная зависимость f от u, а именно z(x) = f(w(u(x)), v(x)). Найдём пределы изменения величин u, v и w при $x \in [0.5, 0.6]$. Все три функции монотонны на рассматриваемом отрезке, и к двум полученным в примере 1 оценкам $\sin 0.96 \le u \le \sin 1.05$, $\mathrm{e}^{0.8} \le v \le \mathrm{e}^{0.9}$ добавляется $\sqrt{\sin 0.96} \le w \le \sqrt{\sin 1.05}$.

Получим область

$$G = \{(u, v, w) \mid 0.8 \leqslant u \leqslant 0.9, \ 2.2 \leqslant v \leqslant 2.5, \ 0.9 \leqslant w \leqslant 0.95\}$$

Оценим в G частные производные функции f=w(u)/xv:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial w} \frac{\partial w}{\partial u} = \frac{1}{2vx\sqrt{u}}, \quad \frac{\partial f}{\partial v} = -\frac{w}{2xv^2}, \quad \frac{\partial f}{\partial w} = \frac{1}{xv}:$$

$$\left| \frac{\partial f}{\partial u} \right| \leqslant \frac{1}{2 \cdot 0.5 \cdot 2.2 \cdot \sqrt{0.8}} < 0.51, \quad \left| \frac{\partial f}{\partial v} \right| \leqslant \frac{0.95}{2 \cdot 0.5 \cdot 2.2^2} < 0.4,$$

$$\left| \frac{\partial f}{\partial w} \right| \leqslant \frac{1}{0.5 \cdot 2.2} < 0.91.$$

Отсюда $c_u=0.51, c_v=0.4, c_w=0.91.$ Следовательно, функцию u(x) нужно вычислять с точностью $\varepsilon_u=10^{-6}/1.53$, функцию v(x) — с точностью $\varepsilon_f=10^{-6}/2.73$.

Последние действия, а именно вычисления d = xv и f = w/d, считаются выполняемыми точно.

Содержание задания

- 1. Решить обратную задачу теории погрешностей для заданной функции z(x) с допуском $\varepsilon=10^{-6}$. Выполняется аналитически.
- 2. Найти с требуемой точностью приближенные значения $\bar{z}(x)$ этой функции (квадратный корень вычислять по формуле Герона, а остальные элементарные функции вычислять с использованием степенных рядов, указанных ниже).
- 3. Найти «точные» значения z(x), используя встроенные функции языка программирования. Убедиться, что абсолютная погрешность вычислений удовлетворяет заданному допуску ε .

Итоговый вывод программы должен представлять собой таблицу

причём погрешности должны быть меньше 10^{-6} , однако не должны быть слишком маленькими (не меньше 10^{-10}).

Задания для самостоятельного выполнения

1.
$$z(x) = \sqrt{1 + \arctan(16.7x + 0.1)}/\cos(7x + 0.3), x = 0.01(0.005)0.05;$$

2.
$$z(x) = \sqrt{1 + \arctan(6.4x + 1.1)}/\sin(2x + 1.05), x = 0.01(0.005)0.06;$$

3.
$$z(x) = \sqrt{(1+x)\exp(x+0.5) + \sin(x+0.4)}, x = 0.5(0.01)0.6;$$

4.
$$z(x) = \exp(1+x)\cos\sqrt{2+x^2}$$
, $x = 0.01(0.005)0.06$;

5.
$$z(x) = \sqrt{2x + 0.4} \arctan \cos(3x + 1), x = 0.01(0.005)0.06;$$

6.
$$z(x) = \sqrt{\sinh(2x + 0.45)} \arctan(6x + 1), x = 0.01(0.005)0.06;$$

7.
$$z(x) = tg(2x + 0.6)/\exp\sqrt{(1 + x - 12x^2)}, x = 0.1(0.01)0.2;$$

8.
$$z(x) = \sqrt{\cos(2.6x + 0.1)}/\exp(1+x), x = 0.1(0.01)0.2;$$

9.
$$z(x) = \sqrt{1 + \arctan(0.8x + 0.2)} / \exp(2x + 1), x = 0.1(0.01)0.2;$$

10.
$$z(x) = \sqrt{\sin(x+0.74)} \sinh(0.8x^2+0.1), x = 0.1(0.01)0.2;$$

11.
$$z(x) = \cos(2.8x + \sqrt{1+x}) \arctan(1.5x + 0.2), x = 0.1(0.01)0.2;$$

12.
$$z(x) = \cosh(1 + \sqrt{1+x})/\cos\sqrt{1+x-x^2}, x = 0.1(0.01)0.2;$$

13.
$$z(x) = \sqrt{1+x^2}(\sin(3x+0.1) + \cos(2x+0.3)), x = 0.2(0.01)0.3;$$

14.
$$z(x) = \arctan(\sqrt{0.9x + 1}/(1 - x^2)) + \sin(3x + 0.6), x = 0.2(0.01)0.3;$$

15.
$$z(x) = (\arctan \sqrt{1 + 0.6x}) / \sin(1 + 0.4x), x = 0.2(0.01)0.3;$$

16.
$$z(x) = \frac{\sinh(\sqrt{1+x^2}}{(1-x)} + \sin(x^2 + 0.4), x = 0.2(0.01)0.3;$$

17.
$$z(x) = \frac{\operatorname{ch}(\sqrt{x^2 + 0.3}/(1+x))\sin((1+x)/0.6x)}{\sin(x^2 + 0.3)\sin(x^2 + 0.3$$

18.
$$z(x) = \sqrt{(1+x)} \exp(x+0.5) \sin(0.3x+0.7), x = 0.5(0.01)0.6;$$

19.
$$z(x) = \frac{\cosh(2x^2 + \sqrt{x})}{\sin(0.3 + \sqrt{x})}, x = 0.5(0.01)0.6;$$

20.
$$z(x) = \cos(0.5 + \sqrt{x}) / \arctan(1 + 2x\sqrt{x}), x = 0.5(0.01)0.6.$$

Степенные ряды для элементарных функций и оценки их остатков

Через u_k обозначен k-й член ряда, а через R_n — остаток частичной суммы $S_n = \sum_{k=0}^n u_k$.

1.
$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $|R_n(x)| \le |u_n(x)|$, $|x| < n+2$;

2.
$$\sinh x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \quad |R_n(x)| \le |u_n(x)|/3, \quad |x| \le n;$$

3.
$$\operatorname{ch} x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad |R_n(x)| \le 2|u_n(x)|/3, \quad |x| \le n;$$

4.
$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \quad |R_n(x)| \le |u_n(x)|, \quad |x| < \frac{\pi}{4};$$

5.
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \quad |R_n(x)| \le |u_n(x)|, \quad |x| < \frac{\pi}{4};$$

$$6.\ \operatorname{arctg} x = \begin{cases} \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}, & |x| < 1, \\ \frac{\pi}{2} \operatorname{sgn}(x) - \sum_{k=0}^{\infty} (-1)^k \frac{x^{-(2k+1)}}{2k+1}, & |x| \geqslant 1, \end{cases}$$
 в обоих случаях $|R_n(x)| \leqslant |u_n(x)|.$

Литература

- 1. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы, 9-е изд. М.: Лаборатория знаний, 2020. 636 с.
- 2. Вержбицкий В. М. Основы численных методов: учебник для вузов М.: Директ-Медиа, 2013. 847 с.
- 3. Демидович Б. П., Марон И. А. Основы вычислительной математики. М.: Изд. Наука, 1970. 664 с.