Unit 3 Method of Maximum Likelihood Estimation

Let
$$\underline{\boldsymbol{\theta}} = (\phi_1,...,\phi_p,\theta_1,...,\theta_q,\underline{\sigma}^2)'$$
 denote the vector of population parameters. Suppose we have observed a sample of size T
$$\mathbf{x} = (x_1,...,x_T)$$

Let the joint probability density function (p.d.f.) of these data be denoted

$$f(x_T, x_{T-1}, ..., x_1; \boldsymbol{\theta})$$

The likelihood function is this joint density treated as a function of the parameters θ given the data \mathbf{x} :

$$L(\boldsymbol{\theta}|\mathbf{x}) = f(x_T, x_{T-1}, ..., x_1; \boldsymbol{\theta})$$

$$\frac{df(x)}{dx} = 0$$

$$\frac{d^2f(x)}{dx^2} < 0$$

The maximum likelihood estimator (MLE) is

$$\hat{\boldsymbol{\theta}}_{MLE} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}|\mathbf{x})$$

where $\underline{\Theta}$ is the parameter space.

For simplifying calculations, it is customary to work with the natural logarithm of L, given by

$$\log L(\boldsymbol{\theta}|\mathbf{x}) = I(\boldsymbol{\theta}|\mathbf{x}).$$

This function is commonly referred to as the log-likelihood.

Since the logarithm is a monotone transformation the values that maximize $L(\theta|\mathbf{x})$ are the same as those that maximize $I(\theta|\mathbf{x})$, that is

$$\hat{\boldsymbol{\theta}}_{MLE} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}|\mathbf{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \underline{\boldsymbol{l}(\boldsymbol{\theta}|\mathbf{x})}$$

but the log-likelihood is computationally more convenient.

Now, we assume that the derivative of $I(\theta|\mathbf{x})$ (w.r. θ) exists and is continuous for all θ .

The necessary condition for maximizing $I(\theta|\mathbf{x})$ is

$$\frac{\delta I(\boldsymbol{\theta}|\mathbf{x})}{\delta \boldsymbol{\theta}} = \mathbf{0}$$

which is called likelihood equation.

The maximum likelihood estimate, $\hat{\boldsymbol{\theta}}_{MLE}$, will be the solution of

$$\frac{\delta I(\boldsymbol{\theta}|\mathbf{x})}{\delta \boldsymbol{\theta}} = \mathbf{0}$$

Properties of Maximum Likelihood Estimators

Maximum Likelihood Estimators are most attractive because of their asymptotic properties.

Under regularity conditions, the Maximum Likelihood Estimator, $\hat{\boldsymbol{\theta}}_{MLE}$, will have the following asymptotic properties:

- It is consistent
- It is asymptotically normally distributed
- It is asymptotically efficient

These three properties explain the prevalence of the maximum likelihood technique in time series analysis

The exact Gaussian likelihood of an ARMA process (Normal)

To write down the likelihood function for an ARMA process, one must assume a particular distribution for the white noise process u_t . Here, we assume that u_t is a Gaussian white noise:

$$u_t \sim \underline{i.i.d.N(0,\sigma^2)}$$

The exact Gaussian likelihood of an ARMA process

$$f(x) = \sqrt{\frac{1}{2\pi}} e^{-\frac{1}{2\pi}(x-u)^2}$$

This implies that the exact Gaussian likelihood of $\mathbf{x} = (x_1, x_2, ..., x_T)'$ is given by

$$L(\boldsymbol{\theta}|\mathbf{x}) = \underline{(2\pi)^{-T/2}} \underline{|\Gamma(\boldsymbol{\theta})|}^{-1/2} \exp\left\{-\frac{1}{2}\mathbf{x}'\Gamma(\boldsymbol{\theta})^{-1}\mathbf{x}\right\}$$

where $\underline{\Gamma(\theta) = E(\mathbf{x}\mathbf{x}')}$ is the $T \times T$ covariance matrix of \mathbf{x} depending on θ .

The exact Gaussian likelihood of an ARMA process

The exact Gaussian log-likelihood is then given by

$$I(\boldsymbol{\theta}|\mathbf{x}) = -\frac{1}{2} \left[T \log(2\pi) + \log|\Gamma(\boldsymbol{\theta})| + \mathbf{x}'\Gamma(\boldsymbol{\theta})^{-1}\mathbf{x} \right]$$

The exact Gaussian likelihood of an AR(1) process

A Gaussian AR(1) process takes the form

$$x_t = \phi_1 x_{t-1} + u_t \text{ or } \xi_t$$

with

$$u_t \sim i.i.d.N(0, \sigma^2)$$

For this case, the vector of population parameters to be estimated consists of $\boldsymbol{\theta} = (\phi_1, \sigma^2)'$.

The exact Gaussian likelihood of an AR(1) process

The exact Gaussian likelihood of $\mathbf{x} = (x_1, x_2, ..., x_T)'$ is given by

$$\underline{L(\boldsymbol{\theta}|\mathbf{x})} = \underline{(2\pi)^{-T/2}} |\Gamma(\boldsymbol{\theta})|^{-1/2} \exp\left\{-\frac{1}{2}\mathbf{x}'\Gamma(\boldsymbol{\theta})^{-1}\mathbf{x}\right\}$$

where

$$\underline{\Gamma(\boldsymbol{\theta})} = \frac{\sigma^2}{1 - \phi_1^2} \begin{bmatrix} 1 & \phi_1 & \phi_1^2 & \cdots & \phi_1^{T-1} \\ \phi_1 & 1 & \phi_1 & \cdots & \phi_1^{T-2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \phi_1^{T-1} & \phi_1^{T-2} & \phi_1^{T-3} & \cdots & 1 \end{bmatrix}$$

In fact we recall that the j-th autovariance for an AR(1) process is given by

$$E(x_t x_{t-j}) = \frac{\sigma^2 \phi_1^j}{1 - \phi_1^2}$$

The exact Gaussian likelihood of an MA(1) process

The exact Gaussian likelihood of $\mathbf{x} = (x_1, x_2, ..., x_T)'$ is given by

$$L(\boldsymbol{\theta}|\mathbf{x}) = (2\pi)^{-T/2} |\Gamma(\boldsymbol{\theta})|^{-1/2} \exp\left\{-\frac{1}{2}\mathbf{x}'\Gamma(\boldsymbol{\theta})^{-1}\mathbf{x}\right\}$$

where

$$\Gamma(\boldsymbol{\theta}) = \sigma^2 \begin{bmatrix} (1+\theta_1) & \underline{\theta_1} & 0 & \cdots & 0 \\ \underline{\theta_1} & (1+\theta_1) & \underline{\theta_1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & (1+\theta_1) \end{bmatrix}$$

Non-zero mean µ

Consider an ARMA process $\{x_t; t \in \mathbb{Z}\}$ with mean $\mu \neq 0$, defined by the equation

$$x_{t} - \phi_{1}x_{t-1} - \dots - \phi_{p}x_{t-p} = c + \underbrace{u_{t} + \theta u_{t-1} + \dots + \theta u_{t-p}}_{\mathcal{L}_{t} \text{ by } u_{t}} \sim WN(0, \sigma^{2})$$

where $\phi^{-1}(1)c = \mu$. The unknown parameters in this model

are

- $\phi = (\phi_1, ..., \phi_p)'$ $\theta = (\theta_1, ..., \theta_q)'$
- $\circ \sigma^2$

Non-zero mean µ

The equation

JŁ

$$x_t - \phi_1 x_{t-1} - \dots - \phi_p x_{t-p} = c + u_t + \theta u_{t-1} + \dots + \theta u_{t-p}$$

can be rewritten as

$$(x_t - \mu) - \phi_1(x_{t-1} - \mu) - \dots - \phi_p(x_{t-p} - \mu) = u_t + \theta u_{t-1} + \dots + \theta u_{t-p}$$

Non-zero mean µ

We estimate
$$\mu$$
 by $\bar{x}_T = \sum_{t=1}^T x_t$

and proceed to analyze the demeaned series

$$\{(x_t - \bar{x}_T); t = 1, ..., T\}$$