What is claimed is:

- 1 1. An a-C:H gate ISFET device, comprising:
- 2 a semiconductor substrate;
- a gate oxide layer on the semiconductor substrate;
- an a-C:H layer overlying the gate oxide layer to form an a-C:H gate;
- a source/drain in the semiconductor substrate beside the a-C:H gate;
- 8 a metal wire on the source/drain; and
- 9 a sealing layer overlying the metal wire and exposing the a-C:H layer.
 - The a-C:H gate ISFET device as claimed in claim
 the width of the channel, the width of the
 channel and ratio of width/length of the channel of the
 ISFET are 50μm, 1000μm and 20, respectively.
 - 3. The a-C:H gate ISFET device as claimed in claim
 1, wherein the semiconductor substrate is p-type.
 - 1 4. The a-C:H gate ISFET device as claimed in claim 1, wherein the resistivity of the semiconductor substrate ranges from 8 to 12Ω -cm.
 - The a-C:H gate ISFET device as claimed in claim

 the lattice parameter of the semiconductor is

 (1,0,0).
 - 1 6. The a-C:H gate ISFET device as claimed in claim
 2 1, wherein the thickness of the gate oxide layer is
 3 1000Å.

1	7. The a-C:H gate ISFET device as claimed in claim
2	1, wherein the metal wire is Al.
1	8. The a-C:H gate ISFET device as claimed in claim
2	1, wherein the sealing layer is epoxide resin.
1	The a-C:H gate ISFET device as claimed in claim
2	1, wherein the source/drain is N-type.
1	10. A method for fabricating an a-C:H gate ISFET
2	device, comprising steps of:
3	providing a semiconductor substrate;
4	forming an virtual gate on the semiconductor
5	substrate to define the gate area of the ISFET;
6	forming a source/drain in the semiconductor
7	substrate beside the virtual gate;
8	removing the virtual gate;
9	forming an a-C:H gate in the gate area to form a
10	ISFET by PE-LPCVD.
1	11. The method as claimed in claim 10, wherein
2	forming the virtual gate to define the gate area of the
3	ISFET further comprises:
4	rinsing the semiconductor substrate;
5	forming a pad oxide layer on the semiconductor
6	substrate; and
7	removing a portion of the oxide layer to form a
8	virtual gate to define the gate area.
1	12. The method as claimed in claim 11, wherein the
2	PE-LPCVD is performed under conditions of:

base pressure at least 10⁻⁶ torr;

1

2

3

- temperature of the semiconductor substrate between 140°C and 160°C;
- a mixing gas comprising methane and hydrogen at flow ratio between 6 to 10 SCCM;
- the process pressure between 0.08 and 0.1 torr; and a RF power between 145W and 160W.
- 1 13. The method as claimed in claim 10, further
 2 comprising a step of forming a gate oxide layer below the
 3 a-C:H gate in the gate area.
 - 14. The method as claimed in claim 10, wherein forming the source/drain beside the virtual gate further comprises doping the semiconductor substrate by the virtual gate as a mask to form a source/drain.
- 1 15. The method as claimed in claim 12, wherein the 2 ratio of the methane and hydrogen, in the mixing gas, is 3 30 to 70.
- 1 16. The method as claimed in claim 12, wherein the temperature of the semiconductor substrate is 150°C.
- 1 17. The method as claimed in claim 1, wherein the flow ratio of the mixing gas is 8SCCM.
- 1 18. The method as claimed in claim 1, wherein the 2 pressure of the mixing gas of methane and hydrogen is 3 0.09 torr.
- 1 19. The method as claimed in claim 1, wherein the 2 RF power is 150W.

- 1	20. A method of measuring the temperature
2	parameters of an ISFET with an a-C:H as a detection
3	membrane, comprising:
4	immersing the detection membrane in a buffer
5	solution;
6	changing the pH of the buffer solution at a
7	predetermined temperature;
8	measuring and recording the source-drain current and
9	the gate voltage of the ISFET to obtain a
10	curve;
11	selecting a fixed current from the curve to obtain
12	the sensitivity of the ISFET at the
13	predetermined temperature;
14	changing the temperature of the buffer solution and
15	repeating immersion, pH change, measurement,
16	recording and selection, to obtain the
17	sensitivities of the ISFET at different
18	temperatures.
1	21. The method as claimed in claim 20, wherein the
2	increment of the gate voltage is caused by increasing per
3	unit pH at the predetermined temperature.
1	22. The method as claimed in claim 21, wherein the
2	predetermined temperature is fixed by a temperature
3	controller and a heater.
1	23. The method as claimed in claim 22, wherein the
2	predetermined temperature is between 5°C and 55°C.

- The method as claimed in claim 23, wherein the 24. 1 2 pH of buffer solution is between 1 and 10. 1 An apparatus for measuring the temperature of an ISFET with a-C:H as a detection membrane, comprising: 2 a semiconductor substrate where the ISFET is formed, 3 comprising a pair of sources and 4 separated from each other and the detection 5 membrane insulated from the surface of the 6 semiconductor substrate; 7 a buffer solution contacting the ISFET; Я a light-isolating container for the buffer solution; 9 a heater for the buffer solution; 10 a temperature controller for the solution heater; 11 12 a test fixer connected to the source and drain of the ISFET; and 13 a current/voltage measuring device connected to the 14 15 test fixer to measure and record the source-16 drain current and the gate voltage of 17 ISFET.
 - 26. The apparatus as claimed in claim 25, further comprising a reference electrode with one end contacting the buffer solution and the other end connected to the test fixer.

1

2

3

4

1

2

3

5

27. The apparatus as claimed in claim 26, further comprising a thermometer with one end contacting the referring solution and the other end connected to the test fixer to detect the temperature of the referring solution.

- 1 The apparatus as claimed in claim 25, wherein 28. the detection membrane and the surface of the ISFET are 2 isolated by a silicon oxide layer. 3 1 The apparatus as claimed in claim 25, wherein 2 the test fixer contacts the source/drain of the ISFET 3 through an aluminum contact plug and an aluminum wire. 1 The apparatus as claimed in claim 25, wherein 2 the temperature controller is PID temperature а controller. 3 31. A method of measuring the hysteresis width of 1 2 an ISFET with a-C:H as a detection membrane, comprising 3 the steps of: 4 fixing the drain-source current and the drain-source 5 voltage of the ISFET by a constant 6 voltage/current circuit; 7 immersing the detection membrane in buffer 8 solution; 9 recording the gate/source output voltage of the 10 ISFET by a voltage-time recorder; and 11 changing the pH of the buffer solution and repeating 12 fixing, immersion and recording to measure the 13 hysteresis width of the ISFET. 1 The method as claimed in claim 31, wherein the hysteresis width is the change in the gate/source output 2 3 voltage from the first measuring point to the final 4 measuring point.

The method as claimed in claim 31, wherein the 33. - 1 source-drain current is fixed at 80 μ A, and the drain-2 3 source voltage is fixed at 0.2V. The method as claimed in claim 31, further 1 34. comprising immersing the ISFET with a-C:H as a detection 2 3 membrane in a standard solution to maintain stability prior to immersing the detection membrane in the buffer 5 solution. The method as claimed in claim 31, wherein the 1 pH is changed from pH=6 to pH=2, to pH=6, to pH=10, and 2 to pH=6. 3 1 The method as claimed in claim 35, wherein each 2 pH level of the buffer solution is fixed for one minute. 1 37. A method of measuring the drift rate of an ISFET with a-C:H as detection membrane (called a-C:H 2 3 ISFET), comprising: fixing the drain/source current and the drain/source 4 5 voltage of the a-C:H ISFET by a constant voltage/source circuit; 6 7 immersing the detection membrane in a buffer solution; 8

38. The method as claimed in claim 37, further comprising a step of changing the pH of the buffer

a-C:H ISFET.

9

10

11

12

1

2

recording the gate/source output voltage of the a-

C:H ISFET during constant period by a voltage-

time recorder to obtain the drift rate of the

1

2

3

1

2

8

9

- solution to measure the drift rates of the a-C:H ISFET at different pH levels.
- 1 39. The method as claimed in claim 38, wherein the 2 drift rate is the change in the gate/source voltage per 3 unit of time.
- 1 40. The method as claimed in claim 37, wherein the 2 gate/source current is fixed at $80\,\mu\text{A}$, and the drain-3 source voltage is fixed at 0.2V.
 - 41. The method as claimed in claim 37, further comprising a step of immersing the a-C:H ISFET in a standard solution to maintain stability prior to immersing the a-C:H ISFET in the buffer solution.
- 1 42. The method as claimed in claim 37, wherein the 2 gate/source output voltage of the a-C:H ISFET is recorded 3 for more than twelve hours.
 - 43. An apparatus of measuring the hysteresis width and the drift rate, comprising:
- an a-C:H ISFET formed on a semiconductor substrate,

 comprising a pair of source/drain regions

 within the semiconductor and a detection

 membrane of a-C:H isolated from the surface of

 the semiconductor substrate;
 - a buffer solution for receiving the a-C:H ISFET;
 - a light-isolation container for isolating light and carrying buffer solution and the a-C:H ISFET;
- a heater for heating the buffer solution;

12	a constant current/voltage circuit coupled to the
13	source and drain of the a-C:H ISFET to fix the
14	drain/source current and the drain/source
15	voltage of the a-C:H ISFET;
16	a current/voltage measuring device coupled to the
17	constant current/voltage circuit; and
18	a voltage-time recorder coupled to the constant
19	current/voltage circuit to record the
20	gate/source output voltage of the a-C:H ISFET.
1	44. The apparatus as claimed in claim 43, further
2	comprising a reference electrode with one end immersed in
3	the buffer and the other end connected to the constant
4	voltage/current circuit.
1	45. The apparatus as claimed in claim 44, further
2	comprising a thermometer with one end immersed in the
3	buffer solution and the other end coupled to a
4	temperature controller.
-	
1	46. The apparatus as claimed in claim 45, wherein
2	the temperature controller fixes the temperature of the

- 1 47. The apparatus as claimed in claim 46, wherein 2 the constant voltage/current circuit is a negative
- 3 feedback circuit.

buffer solution at 25°C.

- 1 48. The apparatus as claimed in claim 47, wherein
- 2 the current/voltage measuring device comprises digital
- 3 multimeters.

49. The apparatus as claimed in claim 48, wherein the constant voltage/current circuit is connected to the source/drain of the a-C:H ISFET by an aluminum contact plug and an aluminum wire.