$12a_{0380} \ (K12a_{0380})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{38} + u^{37} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{38} + u^{37} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} - 5u^{10} - 7u^{8} + 2u^{4} - 3u^{2} + 1 \\ u^{12} + 6u^{10} + 12u^{8} + 8u^{6} + u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{16} + 7u^{14} + 17u^{12} + 14u^{10} - u^{8} + 2u^{6} + 6u^{4} - 4u^{2} + 1 \\ -u^{16} - 8u^{14} - 24u^{12} - 32u^{10} - 18u^{8} - 8u^{6} - 8u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{28} + 13u^{26} + \dots - 5u^{2} + 1 \\ u^{30} + 14u^{28} + \dots - 16u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{20} + 10u^{18} + 40u^{16} + 80u^{14} + 83u^{12} + 50u^{10} + 36u^{8} + 24u^{6} + u^{4} + 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{36} - 4u^{35} - 72u^{34} - 68u^{33} - 580u^{32} - 516u^{31} - 2748u^{30} - 2292u^{29} - 8476u^{28} - 6576u^{27} - 17864u^{26} - 12736u^{25} - 26568u^{24} - 17112u^{23} - 29228u^{22} - 16736u^{21} - 26160u^{20} - 13388u^{19} - 21072u^{18} - 9832u^{17} - 14636u^{16} - 5896u^{15} - 7812u^{14} - 2336u^{13} - 3700u^{12} - 856u^{11} - 1816u^{10} - 336u^9 - 456u^8 + 80u^7 - 56u^6 + 40u^5 - 68u^4 + 20u^3 + 24u^2 + 16u + 2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 23u^{37} + \dots + 5u + 1$
c_2, c_5	$u^{38} + u^{37} + \dots + u + 1$
c_3	$u^{38} - u^{37} + \dots + 81u + 317$
c_4, c_9, c_{10}	$u^{38} + u^{37} + \dots + u + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$u^{38} + 3u^{37} + \dots + 15u + 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 15y^{37} + \dots + 3y + 1$
c_{2}, c_{5}	$y^{38} - 23y^{37} + \dots - 5y + 1$
c_3	$y^{38} + 25y^{37} + \dots + 1416135y + 100489$
c_4, c_9, c_{10}	$y^{38} + 37y^{37} + \dots - 5y + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^{38} + 53y^{37} + \dots + 123y + 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.699030 + 0.516783I	-16.5834 + 2.6642I	-1.43407 - 0.13323I
u = -0.699030 - 0.516783I	-16.5834 - 2.6642I	-1.43407 + 0.13323I
u = -0.709471 + 0.500003I	-16.5259 - 7.3585I	-1.27138 + 5.67363I
u = -0.709471 - 0.500003I	-16.5259 + 7.3585I	-1.27138 - 5.67363I
u = 0.699159 + 0.504973I	-12.61000 + 2.32929I	1.79922 - 2.79577I
u = 0.699159 - 0.504973I	-12.61000 - 2.32929I	1.79922 + 2.79577I
u = 0.046655 + 1.266040I	-2.65817 + 1.73113I	5.04604 - 4.55747I
u = 0.046655 - 1.266040I	-2.65817 - 1.73113I	5.04604 + 4.55747I
u = 0.617788 + 0.394340I	-5.75531 + 5.89610I	-0.12847 - 7.53727I
u = 0.617788 - 0.394340I	-5.75531 - 5.89610I	-0.12847 + 7.53727I
u = 0.548294 + 0.475497I	-6.07647 - 2.03534I	-1.49342 + 0.25635I
u = 0.548294 - 0.475497I	-6.07647 + 2.03534I	-1.49342 - 0.25635I
u = -0.553289 + 0.398678I	-2.61813 - 1.78595I	2.96437 + 4.13592I
u = -0.553289 - 0.398678I	-2.61813 + 1.78595I	2.96437 - 4.13592I
u = 0.108014 + 1.329890I	-3.47258 + 1.99659I	3.63851 - 3.32884I
u = 0.108014 - 1.329890I	-3.47258 - 1.99659I	3.63851 + 3.32884I
u = -0.165337 + 1.349130I	-5.18486 - 5.72137I	0. + 8.45786I
u = -0.165337 - 1.349130I	-5.18486 + 5.72137I	0 8.45786I
u = -0.070878 + 1.410250I	-7.16634 - 0.25397I	0
u = -0.070878 - 1.410250I	-7.16634 + 0.25397I	0
u = -0.529018 + 0.191801I	-0.35654 - 3.20662I	5.93778 + 9.20174I
u = -0.529018 - 0.191801I	-0.35654 + 3.20662I	5.93778 - 9.20174I
u = -0.19412 + 1.44071I	-8.51769 - 4.51489I	0
u = -0.19412 - 1.44071I	-8.51769 + 4.51489I	0
u = 0.21879 + 1.44502I	-11.6645 + 8.9374I	0
u = 0.21879 - 1.44502I	-11.6645 - 8.9374I	0
u = 0.18046 + 1.46649I	-12.33810 + 0.59580I	0
u = 0.18046 - 1.46649I	-12.33810 - 0.59580I	0
u = 0.24198 + 1.50771I	-19.1586 + 5.7629I	0
u = 0.24198 - 1.50771I	-19.1586 - 5.7629I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.24749 + 1.50794I	16.4216 - 10.8522I	0
u = -0.24749 - 1.50794I	16.4216 + 10.8522I	0
u = -0.23899 + 1.51269I	16.2818 - 0.7569I	0
u = -0.23899 - 1.51269I	16.2818 + 0.7569I	0
u = 0.455694 + 0.048977I	0.826554 + 0.063442I	12.58366 - 0.84901I
u = 0.455694 - 0.048977I	0.826554 - 0.063442I	12.58366 + 0.84901I
u = -0.209212 + 0.399902I	-1.53939 + 0.81265I	-1.98721 - 0.48886I
u = -0.209212 - 0.399902I	-1.53939 - 0.81265I	-1.98721 + 0.48886I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 23u^{37} + \dots + 5u + 1$
c_2, c_5	$u^{38} + u^{37} + \dots + u + 1$
c_3	$u^{38} - u^{37} + \dots + 81u + 317$
c_4, c_9, c_{10}	$u^{38} + u^{37} + \dots + u + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$u^{38} + 3u^{37} + \dots + 15u + 3$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 15y^{37} + \dots + 3y + 1$
c_2, c_5	$y^{38} - 23y^{37} + \dots - 5y + 1$
c_3	$y^{38} + 25y^{37} + \dots + 1416135y + 100489$
c_4, c_9, c_{10}	$y^{38} + 37y^{37} + \dots - 5y + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^{38} + 53y^{37} + \dots + 123y + 9$