Costruzione omotopica della coomologia Enunciato

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \longrightarrow \widetilde{H}^n(X; G)$$

naturale in X.

- ▶ Esiste una struttura canonica di gruppo abeliano su $\langle X, K(G, n) \rangle$ che rende T un isomorfismo di gruppi.
- T è della forma

$$T([f]) = f^*(\alpha)$$

dove α è la "classe fondamentale" di $H^n(K(G, n); G)$.

Categoria **CW**.

Lavoreremo prevalentemente nella categoria CW.

- ▶ Gli oggetti sono i CW-complessi puntati (X, x_0) .
- ▶ I morfismi sono

$$\mathsf{Hom}((X,x_0),(Y,y_0))=\langle X,Y\rangle\,,$$

funzioni continue $f:(X,x_0)\to (Y,y_0)$ a meno di omotopia che fissa il punto base.

▶ La composizione

$$\circ: \langle Y, Z \rangle \times \langle X, Y \rangle \longrightarrow \langle X, Z \rangle$$

è ben definita.

Esempio

Abbiamo l'uguaglianza (per ora solo insiemistica)

$$\pi_n(X) = \langle S^n, X \rangle$$
.

Definizione

Una funzione $f\colon X\to Y$ si dice equivalenza omotopica debole se per ogni $n\ge 0$ la mappa indotta

$$f_*: \pi_n(X) \longrightarrow \pi_n(Y)$$

è un isomorfismo.

Proposizione

Siano X un CW-complesso, $f\colon Y\to Z$ un'equivalenza omotopica debole di spazi topologici. Allora

$$f \circ -: \langle X, Y \rangle \longrightarrow \langle X, Z \rangle$$

è una bijezione.

Teorema (Approssimazione CW)

Per ogni spazio topologico X esistono un CW-complesso Z e un'equivalenza omotopica debole $f\colon Z\to X$.

Categoria **CW**_•

ightharpoonup La sospensione SX di uno spazio topologico X è

$$SX = X \times [0,1]/\sim$$
, $X \times \{0\}$ e $X \times \{1\}$ collassati a due punti.

Per un CW-complesso puntato (X, x_0) , è conveniente considerare la sospensione ridotta

$$\Sigma X = SX/\{x_0\} \times [0,1],$$
 con punto base $[x_0]$.

▶ Ogni $f \in \langle X, Y \rangle$ induce $\Sigma f \in \langle \Sigma X, \Sigma Y \rangle$; la sospensione ridotta è dunque un funtore

$$\Sigma \colon \text{CW}_{\bullet} \longrightarrow \text{CW}_{\bullet}.$$

Categoria CW_{\bullet} Funtore Ω

content...

Ω -spettri e coomologia

Teorie coomologiche

Teorema

Sia $\{K_n\}_{n\in\mathbb{Z}}$ un Ω -spettro. Allora i funtori $h^n=\langle -,K_n\rangle$ definiscono una teoria coomologica ridotta sulla categoria \mathbf{CW}_{\bullet} .

Richiamo

Una teoria coomologica ridotta sulla categoria CW₁ è una famiglia di funtori

$$h^n : \mathbf{CW}_{\bullet} \longrightarrow \mathbf{Ab}^{\mathrm{op}}, \qquad n \in \mathbb{Z}$$

che soddisfa i seguenti assiomi.

1. Per ogni coppia (X,A) con $x_0 \in A$ esiste una successione esatta lunga

$$\ldots \xrightarrow{\delta} h^n(X/A) \xrightarrow{q^*} h^n(X) \xrightarrow{i^*} h^n(A) \xrightarrow{\delta} h^{n+1}(X/A) \xrightarrow{q^*} \ldots$$

naturale nella coppia (X, A).

2. Per ogni famiglia $\{X_{\alpha}\}_{\alpha}$, le inclusioni inducono un isomorfismo

$$h^n(\bigvee_{\alpha}X_{\alpha})\longrightarrow \prod_{\alpha}h^n(X_{\alpha}).$$

Ω -spettri e coomologia Dimostrazione

Per ogni $f: X \to Y$,

$$h^n(f) = (-\circ f): \langle Y, K_n \rangle \longrightarrow \langle X, K_n \rangle$$

è un omomorfismo di gruppi:

$$\begin{array}{c} \langle Y, K_n \rangle \xrightarrow{-\circ f} \langle X, K_n \rangle \\ \downarrow \simeq & \downarrow \simeq \\ \langle Y, \Omega K_{n+1} \rangle \xrightarrow{-\circ f} \langle X, \Omega K_{n+1} \rangle \end{array}.$$

L'assioma 2. è soddisfatto: nella categoria CW. un morfismo

$$\bigvee_{\alpha} X_{\alpha} \longrightarrow K_n$$

è precisamente una collezione di morfismi

$${X_{\alpha} \longrightarrow K_n}_{\alpha}$$
.

Costruiamo la successione esatta lunga associata a una coppia (X, A).

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Ω-spettri e coomologia

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle.$$

Per verificarne l'esattezza, è sufficiente mostrare che

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X \cup CA, K_n \rangle$$

è esatta. Sia $f: X \to K$. Allora

f appartiene al nucleo di $\langle X, K_n \rangle \longrightarrow \langle A, K_n \rangle$

 \iff $f|_A$ è omotopicamente banale (fissando il punto base)

 \iff f si estende a una mappa $X \cup \mathcal{C}A \longrightarrow \mathcal{K}_n$

 \iff f appartiene all'immagine di $\langle X \cup \mathcal{C}A, K_n \rangle \longrightarrow \langle X, K_n \rangle$.

Applicando il funtore h^n , otteniamo una successione di gruppi abeliani:

$$\langle A, K_n \rangle \longleftarrow \langle X, K_n \rangle \longleftarrow \langle X/A, K_n \rangle \longleftarrow \langle \Sigma A, K_n \rangle \longleftarrow \langle \Sigma X, K_n \rangle \,.$$

Tale successione è esatta. Posto $K = K_n$, $K' = K_{n+1}$, le due successioni ottenute si possono incollare.

$$\langle A, K \rangle \longleftarrow \langle X, K \rangle \longleftarrow \langle X/A, K \rangle \leftarrow \langle \Sigma A, K \rangle$$

$$\downarrow^{\simeq} \qquad \downarrow^{\simeq}$$

$$\langle A, K' \rangle \longleftarrow \langle X, K' \rangle$$

$$\downarrow^{\simeq} \qquad \downarrow^{\simeq}$$

$$\langle X, K' \rangle \leftarrow \langle X/A, K' \rangle \leftarrow \langle \Sigma A, K' \rangle \leftarrow \langle \Sigma X, K' \rangle$$

Otteniamo così la successione esatta lunga

$$\ldots \leftarrow \langle X/A, K_{n+1} \rangle \leftarrow \langle A, K_n \rangle \leftarrow \langle X, K_n \rangle \leftarrow \langle X/A, K_n \rangle \leftarrow \ldots$$

naturale in (X, A).