MATH 201¹ – Midterm summary study guide²

First Order Equations

(1) General Form of ODE: $\frac{dy}{dx} = f(x, y)$

(2) Initial Value Problem: $y' = f(x, y), y(x_0) = y_0$

Linear Equations

(3) General Form: y' + p(x)y = f(x)

(4) Integrating Factor: $\mu(x) = e^{\int p(x)dx}$

(5) $\Longrightarrow \frac{d}{dx}(\mu(x)y) = \mu(x)f(x)$

(6) General Solution: $y = \frac{1}{\mu(x)} \left(\int \mu(x) f(x) dx + C \right)$

Homogeneous Equations

(7) General Form: y' = f(y/x)

(8) Substitution: y = zx

 $(9) \Longrightarrow y' = z + xz'$

The result is always separable in z:

$$\frac{dz}{f(z) - z} = \frac{dx}{x}$$

Bernoulli Equations

(11) General Form: $y' + p(x)y = q(x)y^n$

(12) Substitution: $z = y^{1-n}$

The result is always linear in z:

(13)
$$z' + (1-n)p(x)z = (1-n)q(x)$$

Exact Equations

(14) General Form: M(x,y)dx + N(x,y)dy = 0

(15) Test for Exactness: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

(16) Solution: $\phi = C$ where

(17) $M = \frac{\partial \phi}{\partial x} \text{ and } N = \frac{\partial \phi}{\partial y}$

Method for Solving Exact Equations:

1. Let $\phi = \int M(x,y)dx + h(y)$

2. Set $\frac{\partial \phi}{\partial y} = N(x, y)$

3. Simplify and solve for h(y).

4. Substitute the result for h(y) in the expression for ϕ from step 1 and then set $\phi = 0$. This is the solution.

Alternatively:

1. Let $\phi = \int N(x, y) dy + g(x)$

2. Set $\frac{\partial \phi}{\partial x} = M(x, y)$

3. Simplify and solve for g(x).

4. Substitute the result for g(x) in the expression for ϕ from step 1 and then set $\phi = 0$. This is the solution.

Integrating Factors

Case 1: If P(x,y) depends only on x, where

(18)
$$P(x,y) = \frac{M_y - N_x}{N} \implies \mu(x) = e^{\int P(x)dx}$$

then

(19)
$$\mu(x)M(x,y)dx + \mu(x)N(x,y)dy = 0$$

is exact.

Case 2: If Q(x,y) depends only on y, where

(20)
$$Q(x,y) = \frac{N_x - M_y}{M} \implies \mu(y) = e^{\int Q(y)dy}$$

Then

(21)
$$\mu(y)M(x,y)dx + \mu(y)N(x,y)dy = 0$$

is exact.

 $^{^1\}mathrm{MATH}\ 201$ - Differential Equations – University of Alberta

²Carlos Contreras ③ 2018 https://sites.ualberta.ca/~ccontrer/ Originally: Differential Equations Study Guide ⑤ 2014 http://integral-table.com. This work is licensed under the Creative Commons Attribution – Noncommercial – No Derivative Works 3.0 United States License. To view a copy of this license, visit: http://creativecommons.org/licenses/by-nc-nd/3.0/us/.

Second Order Linear Equations

General Form of the Equation

(22) **General Form:** a(t)y'' + b(t)y' + c(t)y = g(t)

(23) **Homogeneous:**
$$a(t)y'' + b(t)y' + c(t)y = 0$$

(24) Standard Form:
$$y'' + p(t)y' + q(t)y = f(t)$$

The **general solution** of (22) or (24) is

(25)
$$y = C_1 y_1(t) + C_2 y_2(t) + y_p(t)$$

where $y_1(t)$ and $y_2(t)$ are linearly independent solutions of (23).

Linear Independence and The Wronskian

Two functions f(x) and g(x) are **linearly dependent** if there exist numbers a and b, not both zero, such that af(x) + bg(x) = 0 for all x. If no such numbers exist then they are **linearly independent**.

If y_1 and y_2 are two solutions of (23) then

(26) Wronskian:
$$W(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

(27) **Abel's Formula:**
$$W(t) = Ce^{-\int p(t)dt}$$

and the following are all equivalent:

- 1. $\{y_1, y_2\}$ are linearly independent.
- 2. $\{y_1, y_2\}$ are a fundamental set of solutions.
- 3. $W(y_1, y_2)(t_0) \neq 0$ at some point t_0 .
- 4. $W(y_1, y_2)(t) \neq 0$ for all t.

Initial Value Problem

(28)
$$\begin{cases} y'' + p(t)y' + q(t)y = 0\\ y(t_0) = y_0\\ y'(t_0) = y_1 \end{cases}$$

Linear Equation: Constant Coefficients

(29) Homogeneous:
$$ay'' + by' + cy = 0$$

(30) Non-homogeneous:
$$ay'' + by' + cy = q(t)$$

(31) Characteristic Equation:
$$ar^2 + br + c = 0$$

(32) Quadratic Roots:
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The solution of (29) is given by:

(33) Real Roots
$$(r_1 \neq r_2)$$
: $y_h = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

(34) **Repeated**
$$(r_1 = r_2)$$
: $y_h = (C_1 + C_2 t)e^{r_1 t}$

(35) Complex
$$(r = \alpha \pm i\beta)$$
: $y_h = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t)$

The solution of (30) is $y = y_p + y_h$ where y_h is given by (33) through (35) and y_p is found by **undetermined coefficients** or **variation of parameters**.

Heuristics for Undetermined Coefficients (Trial and Error)

,		
If $f(t) =$		then guess that a particular solution $y_p =$
$P_n(t)$		$t^s(A_0 + A_1t + \dots + A_nt^n)$
$P_n(t)e^{at}$		$t^{s}(A_0 + A_1t + \dots + A_nt^n)e^{at}$
$P_n(t)e^{at}$		$t^s e^{at} [(A_0 + A_1 t + \dots + A_n t^n) \cos bt$
or $P_n(t)$	$e^{at}\cos bt$	$+(B_0+B_1t+\cdots+B_nt^n)\sin bt]$

where s = 0, 1, 2 if r = a is not a root, is a single root, or a double root of (31), respectively.

Method of Reduction of Order

When solving (23), given y_1 , then y_2 is given by

(36)
$$y_2 = y_1 \int \frac{e^{-\int p(x)dx}dx}{y_1(x)^2}$$

Method of Variation of Parameters

If $y_1(t)$ and $y_2(t)$ are a fundamental set of solutions to (23) then a particular solution to (24) is

(37)
$$y_P(t) = -y_1(t) \int \frac{y_2(t)f(t)}{W(t)} dt + y_2(t) \int \frac{y_1(t)f(t)}{W(t)} dt$$

Cauchy-Euler Equation

(38) ODE:
$$ax^2y'' + bxy' + cy = q(x)$$

(39) Auxilliary Equation:
$$ar(r-1) + br + c = 0$$

The homogeneous solutions of (38) depend on the roots of (39):

(40) Real Roots
$$(r_1 \neq r_2)$$
: $y_h = C_1 x^{r_1} + C_2 x^{r_2}$

(41) Repeated
$$(r_1 = r_2)$$
: $y_h = C_1 x^r + C_2 x^r \ln x$

Complex
$$(r_{1,2} = \alpha \pm i\beta)$$
: $y_h = x^{\alpha}[C_1 \cos(\beta \ln x)]$

$$(42) + C_2 \sin(\beta \ln x)$$

The substitution $x = e^t$ transform (38) into a (30)

(43)
$$ay''(t) + (b-a)y'(t) + cy(t) = q(e^t)$$

Series Solutions

(44)
$$y'' + p(x)y' + q(x)y = 0$$

If x_0 is a **regular point** of (44) then

(45)
$$y(x) = \sum_{k=0}^{\infty} a_k (x - x_k)^k$$

At a Regular Singular Point x_0 :

(46) Indicial Equation:
$$r^2 + (p(0) - 1)r + q(0) = 0$$

(47) First Solution:
$$y_1 = (x - x_0)^{r_1} \sum_{k=0}^{\infty} a_k (x - x_k)^k$$

Where r_1 is the larger real root if both roots of (46) are real or either root if the solutions are complex.