Minanshu Raj AIDS-BZ 076

LAB MANUAL: EXPERIMENT 1

Aim: To verify Lambert-Beer's law using a given solution of potassium permanganate at the wavelength of its maximum absorption (λ_{max}) and consequent determination of the unknown concentration of a solution of potassium permanganate.

Theory:

The Beer-Lambert law states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length. Thus, for a fixed path length (cuvette length), UV/Vis spectroscopy can be used to determine the concentration of the absorber in a solution. The absorbance changes with concentration. Thus, a higher concentration of the colored solution absorbs more light (and transmits less) than a solution of lower concentration.

$$\log (I_e I_t) = A = \epsilon c 1$$

According to Beer-Lambert law,

 $log(I_o/I_t) = A = \epsilon cl$ where I_o and I_t are the incident and transmitted intensities,

A= absorbance and ϵ is a constant i.e. absorptivity (also called the extinction coefficient).

If the concentration is measured in molL⁻¹, the absorptivity is called molar absorptivity. $A = \varepsilon cl$. At constant length $A \infty c$

Working principle of spectrophotometer

Spectrophotometer

Cuvette

Requirements:

spectrophotometer, cuvette, six test tubes, Measuring cylinder, 10 mL pipette, 0.001M KMnO₄ solution, distilled water, test tube rack, and tissues (preferably lint-free).

Procedure & observation table:

Step 1: To record the absorbance of KMnO₄ solution at different wavelengths to determine the light wavelength for its maximum absorption (λ_{max}):

- (a) Prepare 100 mL of 0.001M KMnO₄ (Molecular weight 158.03 gm/mol) solution in distilled water.
- > Label five clean, dry, test tubes 1-5.
- c) Use a 10 mL pipette to prepare five standard solutions according to able 1.
- Thoroughly mix each solution.
- E) Calibrate the spectrophotometer with respect to the blank solution i.e. stilled water.
- Fill any one of the prepared solutions (1-5) up to a certain level in the vette of the spectrophotometer.
- Record the absorbance of the respective solution at different avelengths as mentioned in Table 2.
- Plot the absorbance data in the graph paper with respect to the avelength and calculate the light wavelength for its maximum absorption

 1.) In KMnO4.

Table 1:

[Mn = 158]

Test-tube	0.001M KMnO ₄ (mL)	Distilled water (mL)	Concentration (M)	
1	1	9	-0-3022-	0.0001
2	2	8	白色	0,0002
3	3	7		0.0003
4	4	6	超到	0-0004
5	5	5		0.0005

Entry	Wavelength (λ in nm)	Absorbance	Selection .
1	450	6.227	
2	475	0.526	
3	500	1.156	>mox
4	525	1.820 -	7 3
5	550	1.584	
6	550	0.780/	

Step 2: To record the absorbance of different concentrations of solutions at the specified λ_{max} :

- Set the operating wavelength of the spectrophotometer in the range of assorption maxima of aqueous KMnO4 solution (λ_{max}).
- Calibrate the spectrophotometer with respect to the blank solution i.e.
- Fill each of the solutions up to a certain level in the cuvette of the pectrophotometer.
- 2) Record the absorbance of the respective solutions as stated in Table 3.
- e) Plot the absorbance data in the graph paper with respect to the concentration which should be a straight line passing through the origin.

Table 3:

Entry	Test-tube	Absorbance
1	1	0.654
2	2	10.234
3	3	1.830
4	4	2:427
5	5	3.000%
Unknown	6 th	1.235/

Step 3: Determination of the unknown concentration of a given potassium permanganate solution:

- Fill the solutions up to a certain level in the cuvette of the ectrophotometer.
- Record the absorbance of the given solution of unknown concentration. Plot the absorbance data in the same graph obtained above (ideally it
- and be on the same straight line obtained from the plot of step 1)
- Draw a perpendicular line from the absorbance point to the : -centration axis.
- Note down the corresponding unknown concentration.

Conclusion:

1) The light wavelength for its maximum absorption (λ_{max}) is found to be (25/) nm.

ine concentration of the unknown solution was found to be .0.0000M

Precautions:

- -Iways mix the standard solutions properly.
 - the outside of the cuvette every time with a lint-free tissue.
 - -andle cuvettes only by the top edge of the ribbed sides.
- Slodge any bubbles by gently tapping the cuvette on a hard surface.
- : Always position the cuvette so the light passes through the clear sides.
- . Always set the light source of the instrument in the absorption maxima te of the given solution.