Conjectures and results on the size and number of Diophantine tuples

Andrej Dujella

Department of Mathematics University of Zagreb, Croatia

e-mail: duje@math.hr

URL: http://web.math.hr/~duje/

Diophantus: Find four (positive rational) numbers such that the product of any two of them, increased by 1, is a perfect square.

$$\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$$

Fermat: {1, 3, 8, 120}

$$1 \cdot 3 + 1 = 2^2$$
, $3 \cdot 8 + 1 = 5^2$, $1 \cdot 8 + 1 = 3^2$, $3 \cdot 120 + 1 = 19^2$, $1 \cdot 120 + 1 = 11^2$, $8 \cdot 120 + 1 = 31^2$.

Euler:
$$\{1, 3, 8, 120, \frac{777480}{2879^2}\}$$

 $ab + 1 = r^2 \mapsto \{a, b, a + b + 2r, 4r(a + r)(b + r)\}$

Gibbs (1999):
$$\{\frac{11}{192}, \frac{35}{192}, \frac{155}{27}, \frac{512}{27}, \frac{1235}{48}, \frac{180873}{16}\}$$

Definition: A set $\{a_1, a_2, \ldots, a_m\}$ of m positive integers (rationals) is called a *(rational)* Diophantine m-tuple if $a_i \cdot a_j + 1$ is a perfect square for all $1 \le i < j \le n$.

Question: How large such sets can be?

Conjecture 1: There does not exist a Diophantine quintuple.

Baker & Davenport (1969):

$$\{1,3,8,d\} \Rightarrow d = 120$$
 (problem raised by Gardner (1967))

Arkin, Hoggatt & Strauss (1978): Let

$$ab + 1$$
, $ac + 1 = s^2$, $bc + 1 = t^2$

and define

$$d_{+,-} = a + b + c + 2abc \pm 2rst.$$

Then $\{a, b, c, d_{+,-}\}$ is a Diophantine quadruple (if $d_{-} \neq 0$).

Conjecture 2: If $\{a, b, c, d\}$ is a Diophantine quadruple, then $d = d_+$ or $d = d_-$, i.e. all Diophantine quadruples are *regular*.

D. (1997):
$$\{k-1, k+1, 4k, d\} \Rightarrow d = 16k^3 - 4k$$

D. & Pethő (1998): $\{1,3\}$ cannot be extended to a Diophantine quintuple

Fujita (2008): $\{k-1, k+1\}$ cannot be extended to a Diophantine quintuple

Bugeaud, D. & Mignotte (2007):

$$\{k-1, k+1, 16k^3 - 4k, d\} \Rightarrow$$

 $d = 4k \text{ or } d = 64k^5 - 48k^3 + 8k$

D. (2004): There does not exist a Diophantine sextuple.

There are only finitely many Diophantine quintuples.

$$\max\{a,b,c,d,e\} < 10^{10^{26}}$$

Fujita (2008): If $\{a,b,c,d,e\}$ (a < b < c < d < e) is a Diophantine quintuple, then $\{a,b,c,d\}$ is a regular Diophantine quadruple.

Extending the Diophantine triple $\{a,b,c\}$ $(a \le b \le c)$ to a Diophantine quadruple $\{a,b,c,d\}$:

$$ad + 1 = x^2$$
, $bd + 1 = y^2$, $cd + 1 = z^2$.

System of simultaneous Pellian equations:

$$cx^2 - az^2 = c - a$$
, $cy^2 - bz^2 = c - b$.

Binary recursive sequences:

finitely many equations of the form $v_m = w_n$.

Linear forms in three logarithms:

$$v_m \approx \alpha \beta^m$$
, $w_n \approx \gamma \delta^n \Rightarrow m \log \beta - n \log \delta + \log \frac{\alpha}{\gamma} \approx 0$

Baker's theory gives upper bounds for m, n (logarithmic functions in c).

Simultaneous Diophantine approximations:

 $\frac{x}{z}$ and $\frac{y}{z}$ are good rational approximations to $\sqrt{\frac{a}{c}}$ and $\sqrt{\frac{b}{c}}$, resp.

 $\frac{bsx}{abz}$ and $\frac{aty}{abz}$ are good rational approximations to $\frac{s}{a}\sqrt{\frac{a}{c}}=\sqrt{1+\frac{b}{abc}}$ and $\frac{t}{b}\sqrt{\frac{b}{c}}=\sqrt{1+\frac{a}{abc}}$, resp.

If c is large compared to b (say $c > b^6$), then hypergeometric method (Bennett's result (1998)) gives (very good) upper bounds for x, y, z.

Congruence method:

 $v_m \equiv w_n \pmod{c^2}$

If m, n are small (compared with c), then \equiv can be replaced by =, and this (hopefully) leads to a contradiction (if m, n > 2).

Therefore, we obtain lower bounds for m,n (small powers of c).

Conclusion: Contradiction for large c.

Definition: Let n be an integer. A set of m positive integers is called a *Diophantine* m-tuple with the property D(n) or simply D(n)-m-tuple (or P_n -set of size m), if the product of any two of them, increased by n, is a perfect square.

$$M_n = \sup\{\#D : D \text{ is a } D(n)\text{-tuple}\}$$

Conjecture 3: There exist a constant C such that $M_n < C$ for all non-zero integers n. In particular, there does not exist a rational C-tuple.

D. (2004):
$$4 \le M_1 \le 5$$
 (implies directly $4 \le M_4 \le 7$)

Filipin (2008):
$$4 \le M_4 \le 5$$

D. (2004):
$$M_n \le 31$$
 if $|n| \le 400$ $M_n < 15.476 \cdot \log |n|$ if $|n| > 400$

D. & Luca (2005): $M_p < 2^{146}$ if p is a prime

Brown, Gupta & Singh, Mohanty & Ramasamy (1985):

If $n \equiv 2 \pmod{4}$, then $M_n = 3$.

D. (1993): If $n \not\equiv 2 \pmod{4}$ and $n \not\in S_1 = \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then $M_n \ge 4$.

Conjecture 4: If $n \in S_1$, then $M_n = 3$.

D. & Fuchs (2005): $3 \le M_{-1} \le 4$

Remark: $n \equiv 2 \pmod{4}$ if and only if n is not representable as a difference of the squares of two integers.

D. (1997), Franušić (2004, 2008): Analogous results, which show strong connection between the existence of D(n)-quadruples and the representability as a difference of two squares, also hold for integers in some quadratic fields.

D., Filipin & Fuchs (2007): There are only finitely many D(-1)-quadruples. If $\{a,b,c,d\}$ is a D(-1)-quadruple, then $\max\{a,b,c,d\} < 10^{10^{23}}$.

Conjecture 5: If n is not a perfect square, then there exist only finitely many D(n)-quadruples.

Euler: There exist infinitely many D(1)-quadruples, and therefore infinitely many $D(k^2)$ -quadruples.

DFF implies that the conjecture is true for n = -1 and n = -4.

Let
$$D_m(n; N) =$$

 $|\{D \subseteq \{1, 2, ..., N\} : D \text{ is a } D(n)\text{-}m\text{-tuple }\}|.$

D. (2008): $D_3(1; N) = \frac{3}{\pi^2} N \log N + O(N);$ 0.1608 $\sqrt[3]{N} \log N < D_4(1; N) < 0.5354 <math>\sqrt[3]{N} \log N$ for large N.

D. & Pethő (2008):

 $D_3(n; N) \sim C(n)N \log(N)$ if n is a perfect square, $D_3(n; N) \sim C(n)N$ otherwise.

D. (1993): If $n \not\equiv 2 \pmod{4}$ and $n \not\in S_2$, where $S_2 = S_1 \cup \{-15, -12, -7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84\}$, then there exist at least two different D(n)-quadruples.

Conjecture 6: The set S_3 of all integers n, not of the form 4k+2, with the property that there exist at most two different D(n)-quadruples is infinite.

D. (1998, 2008): Let n be an integer such that $n \equiv 3 \pmod{4}$, $n \not\in \{-9, -1, 3, 7, 11\}$, and there exist at most two different D(n)-quadruples. Then |n-1|/2, |n-9|/2 and |9n-1|/2 are primes. Furthermore, either |n| is prime or n=pq, where $p\equiv 3 \pmod{4}$ and q=p+2 are twin primes.

- **D.** (1993): For an integer $k \notin \{-1,0,1,2\}$, the sets $\{1,k^2-2k-2,k^2+1,4k^2-4k-3\}$ and $\{1,9k^2+8k+1,9k^2+14k+6,36k^2+44k+13\}$
- **D.** (2008): If $k \notin \{-1,0\}$ is an integer, then $\{1, 144k^4 + 216k^3 + 113k^2 + 20k + 1, 144k^4 + 360k^3 + 329k^2 + 134k + 22, 576k^4 + 1152k^3 + 848k^2 + 272k + 33\}$

are two different D(4k + 3)-quadruples.

is a D((4k+1)(4k+3))-quadruple.

Definition: A set S of m non-zero rationals is called a strong Diophantine m-tuple if xy + 1 is a perfect square for all $x, y \in S$ (including x = y).

$$\left\{\frac{1976}{5607}, \frac{3780}{1691}, \frac{14596}{1197}\right\}$$

D. & Petričević: There exist infinitely many strong Diophantine triples.

Conjecture 7: There does nor exist a strong Diophantine quintuple.

Example:

"almost strong Diophantine quadruple"

$$\{a,b,c,d\}$$

such that a^2+1 , b^2+1 , c^2+1 , d^2+1 , ab+1, ac+1, ad+1, bc+1 and bd+1 are perfect squares, but cd+1 is not a perfect square:

$$\left\{\frac{140}{51}, \frac{2223}{30464}, \frac{278817}{33856}, \frac{3182740}{17661}\right\}$$

Let $\{a,b,c\}$ be a Diophantine triple. Consider the elliptic curve

E:
$$y^2 = (ax + 1)(bx + 1)(cx + 1)$$
.

Conjecture 8: All integer points on E are: $(0,\pm 1)$, $(d_+,\pm (at+rs)(bs+rt)(cr+st))$, $(d_-,\pm (at-rs)(bs-rt)(cr-st))$, and also (-1,0) if $1 \in \{a,b,c\}$.

D. (2000): Conjecture is true for elliptic curves

$$E_k$$
: $y^2 = ((k-1)x+1)((k+1)x+1)(4kx+1)$, under assumption that rank $E_k(\mathbb{Q}) = 1$ (also for two subfamilies of rank 2 and one subfamily of rank 3). Furthermore, it is true for all k , $2 \le k \le 1000$. The condition rank $E_k(\mathbb{Q}) = 1$ is not unrealistic since rank $E(\mathbb{Q}(k)) = 1$.

Similar results for other families: D.-Pethő (2000), D. (2001) and Fujita (2007, 2008).

Conjecture 9: For an integer r and a group $T \in \{\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}\}$ there exist a rational Diophantine triple $\{a, b, c\}$ such that the elliptic curve

$$y^2 = (ax+1)(bx+1)(cx+1)$$

has rank $\geq r$ and torsion group isomorphic to T.

D. (2007):

```
 \{3164/491, 10692/491, 302996685420/118370771\}  r=9 and T=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}   \{-22552/5129, 5129/22552, -52463190/14458651\}  r=7 and T=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}   \{39123/96976, 12947200/418209, 42427/1104\}  r=4 and T=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}   \{145/408, -408/145, -145439/59160\}  r=3 and T=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}
```