Downloading DataSet

using BinglMageSearch - crack

▼ *Output Directory will be like *

[Path('dataset/Bear/BlackBear/Image_1.jpg'),Path('dataset/Bear/TeddyBear/Image_1.jpg.jpg')...]

Showing Downloaded Data

```
# #showing images from directory
# from PIL import Image as im
# global str
# for i in range(20):
# imgStr="Image_"
# imgStr=(f'{imgStr}{i+1}')
# print(imgStr)
# Image.open('dataset/cat/'+imgStr+'.jpg')
```

- Building Model

- Step 1
 - Tell Fastai Type of Data and how it is Structured

```
from fastai import *
```

```
from fastai.vision import *
from fastbook import *
bears = DataBlock(
    blocks=(ImageBlock, CategoryBlock),
    get items=get image files,
    splitter=RandomSplitter(valid pct=0.3, seed=42),
    get y=parent label,
    item tfms=Resize(128))
dls= bears.dataloaders('dataset/Bear')
#dls.valid.show batch(max n=30,nrows=6) #can be used anywhere to see your data
```

→ Step 2

- Train Model
- · Clean Data

Notes:

-Called CNN to create a architecture of 18 layers [resnet18]. -fine_tune will train pretrained model.

```
learn=vision learner(dls,resnet34,metrics=error rate)
learn.fine_tune(10)
```

epoch	train_loss	<pre>valid_loss</pre>	error_rate	time
0	2 055591	1 994754	0.511905	00:34

/usr/local/lib/python3.7/dist-packages/PIL/Image.py:960: UserWarning: Palette in "Palette images with Transparency expressed in bytes should be "

epoch	train_loss	<pre>valid_loss</pre>	error_rate	time
0	1.371218	1.215280	0.464286	00:44
1	1.143828	0.895549	0.392857	00:45
2	0.922690	0.765632	0.297619	00:44
3	0.751675	0.792297	0.238095	00:45
4	0.626648	0.789966	0.273810	00:46
5	0.524576	0.827829	0.261905	00:50
6	0.455256	0.831248	0.238095	00:45

Confusion Matrix

```
interp=ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()
# interp.plot top losses(3,nrows=3)
```


Turning Model to a program / Testing

```
learn.export()
path=Path()
```

```
path.ls(file_exts='.pkl')

learn_inf=load_learner(path/'export.pkl')

learn_inf.dls.vocab

['BlackBear', 'GrizzlyBear', 'TeddyBear']

learn_inf.predict('Image_19.jpg')

('TeddyBear', TensorBase(2), TensorBase([1.3252e-05, 1.4879e-04, 0.0084e-011))
```