Комплексни числа.

Множеството на комплексните числа може да бъде отъждествено с множеството от точки, лежащи в една (комплексната) равнина. Алгебрически то се описва като наредена двойка реални числа чрез

$$\mathbb{C} = \{ z = x + yi \mid x, y \in \mathbb{R}, i^2 = -1 \}.$$

Числото x се нарича реална, а числото y имагинерна част на z. За две комплексни числа $z_1, z_2 \in \mathbb{C}$ с $z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i$ имаме, че $z_1 = z_2 \iff x_1 = x_2$ и $y_1 = y_2$.

В множеството $\mathbb C$ са дефинирани операции събиране иумножение по следния начин

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i,$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i.$$

Числото $|z|=\sqrt{x^2+y^2}\in\mathbb{R}$ се нарича модул на комплексното число z и както при реалните числа показва разстоянието от образа на числото z до пресечната точка (0,0) на реалната и имагинерната ос. Ясно е, че $|z|=0\iff z=0$.

Ако $z=x+yi\in\mathbb{C}$, то числото $\overline{z}=x-yi\in\mathbb{C}$ се нарича негово комплексно спрегнато. То е негово симетрично спрямо реаланата ос. Директно се вижда, че $z\cdot\overline{z}=x^2+y^2=|z|^2\geq 0$.

Задача 1. Решете уравнението

$$|z| + (1-i)z = 4 + 7i.$$

Решение. Представяме $z \in \mathbb{C}$ като z = x + yi за $x, y \in \mathbb{R}$. Така имаме

$$\sqrt{x^2 + y^2} + (1 - i)(x + yi) = 4 + 7i,$$

$$\sqrt{x^2 + y^2} + x + y + (y - x)i = 4 + 7i$$

и остава да решим системата

$$\begin{vmatrix} \sqrt{x^2 + y^2} + x + y &= 4, \\ y - x &= 7. \end{vmatrix}$$

От второто уравнение изразяваме y=x+7 и замествайки това в първото получаваме уравнението

$$\sqrt{2x^2 + 14x + 49} = -3 - 2x,$$

което има смисъл при $x \leq -\frac{3}{2}$. След катоповдигне двете страни на квадрат получаваме уравнението

$$2x^2 - 2x - 40 = 0,$$

като единсвеният корен, попадащ в дефиниционната област, е $x=-\frac{9}{2}$. Тогава $y=\frac{5}{2}$ и $z=-\frac{9}{2}+\frac{5}{2}i$.

Нека $z \in \mathbb{C}$, $r = |z| \in \mathbb{R}$ и $\alpha \in [0, 2\pi)$ е ъгълът, който радиус-векторът на образа на числото z сключва с положителната посока на реалната ос. Тогава, ако z = x + yi, то $x = r\cos\alpha$, $y = r\sin\alpha$ и записваме $z = r(\cos\alpha + i\sin\alpha)$. Този запис се нарича тригонометричен вид на комплексното число z. Ъгълът α се нарича аргумент на z. Тригонометричният вид е особено удобрен за пресмятане на степените на комплексни числа. В сила е формулата на Моавър

$$z^{n} = r^{n} \left(\cos(n\alpha) + i \sin(n\alpha) \right).$$

В множеството на комплексните числа уравнението

$$x^n = z$$

има винаги n на брой корена. В частност, уравенението

$$x^n = 1$$

също има n на брой корена $\omega_k = \cos 2k\pi + i\sin 2k\pi$ за $k = 0, 1, \dots, n-1$, наречени n-ти корени на единицата. Ако $z \in \mathbb{C}$ е такова, че $z = r(\cos \alpha + i\sin \alpha)$, то в сила е формулата на Моавър за коренуване

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\alpha + 2k\pi}{n} + i \sin \frac{\alpha + 2k\pi}{n} \right), k = 0, 1, \dots, n - 1.$$

Задача 2. Извършете означениете действия в множеството на комплексните числа.

a)
$$\frac{2+3i}{1-i}$$
,

6) $\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{6k}$, $k \in \mathbb{Z}$,

6) $\sqrt{2i}$.

Решение. а) За да елиминираме имагинерната част на знаменателя, разширяваме цялата дроб с комплексно спрегнатото му. По този начин получаваме реално число в знаменател и можем да продължим нататък. Имаме

$$\frac{2+3i}{1-i} = \frac{(2+3i)(1+i)}{(1-i)(1+i)} = \frac{-1+5i}{2} = -\frac{1}{2} + i\frac{5}{2}.$$

б) Да превърнем числото $-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ в тригонометричен вид. За про-изволно комплесно число z=x+yi търсим представяне от вида $z=r(\cos\alpha+i\sin\alpha)$. Имаме, че

$$r = |z| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1.$$

От $x=r\cos\alpha$ и $y=r\sin\alpha$ намираме, че $\lg\alpha=\frac{y}{x}=\sqrt{3}$, т.е. $\alpha=\frac{2\pi}{3}$. Така намерихме, че

$$z = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}.$$

Сега по формулата на Моавър

$$z^{6k} = \cos 4k\pi + i\sin 4k\pi = 1.$$

в) Или процедираме като в подточка б) и намираме тригонометричния вид на 2i, а след това използваме формулата на Моавър за коренуване, или търсим комплексно число z=x+yi, такова че $(x+yi)^2=2i$. Това означава, че

$$x^2 - y^2 + 2xyi = 2i$$

и трябва да е изпълнена реалнозначната система

$$\begin{vmatrix} x^2 - y^2 &= 0, \\ 2xy &= 2, \end{vmatrix}$$

чието решение е $x=\pm 1, y=\pm 1.$ Тогава имаме $z_1=1+i, z_2=-1-i.$

Задача 3. Решете уравненията в множеството на комплексните числа.

a)
$$x^4 = \sqrt{3} + i$$
.

6)
$$x^2 + 2x + 3 = 0$$

$$(6) x^2 - (3+7i)x - 10 + 11i = 0.$$

Решение. а) Имаме, че $\sqrt{3}+i=2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})$. Тогава по формулата на Моавър за коренуване имаме, че

$$x = \sqrt[4]{2\left(\cos\frac{\pi}{6} + i\sin\pi6\right)} = \sqrt[4]{2}\left(\cos\frac{\frac{\pi}{6} + 2k\pi}{4} + i\sin\frac{\frac{\pi}{6} + 2k\pi}{4}\right), k = 0, 1, 2, 3.$$

б) Използваме добре познатата формула за корените квадратно уравнение. Дискриминантата е D=-2 и следователно

$$x_{1,2} = \frac{-2 \pm \sqrt{-2}}{2} = -1 \pm \sqrt{2}i.$$

в) Отново чрез формулата за корените за квадратното уравнение намираме, че D=-2i и $\sqrt{D}=\pm(1-i)$. Тогава

$$x_{1,2} = \frac{3 + 7i \pm (1 - i)}{2}.$$