MATH 1200 A02 TUTORIAL 4 SUMMARY OF PROOF METHODS

JOE TRAN

To prove an assertion with propositions P and Q that translates to $P \to Q$. We can either proceed by directly proving the assertion or by taking an indirect approach, including contradiction or contrapositive.

1. Direct Proofs

Assume P holds true, then proceed to show Q holds true. It is because for the conditional \rightarrow , with P true, only the truth value true for Q makes the conditional valid.

2. Proof by Contraposition

As the word contraposition conveys "taking a contrary position", we assume the "contrary of Q" to be true, i.e. assume $\neg Q$ true, and proceed to show that the "contrary of P", i.e. $\neg P$ is true, we show

$$\neg O \rightarrow \neg P$$

3. Proof by Contradiction

We aim to get a contradiction of the original assumption, by assuming the hypothesis and the contrary of the conclusion. So we assume $p \land \neg Q$ to be true, i.e. P and the contrary of Q to be true. We proceed to find that $\neg P$ to be true, that is,

$$(P \land \neg Q) \to \neg P$$

4. Truth Table

Now consider the truth table of those arguments:

P	Q	$\neg P$	$\neg Q$	$P \wedge \neg Q$	$\neg Q \rightarrow \neg P$	$(P \land \neg Q) \to \neg P$	$P \rightarrow Q$
Τ	Τ	F	F	F	Т	Т	Т
T	F	F	Т	Т	F	F	F
F	Τ	Τ	F	F	T	T	Т
F	F	Т	Т	F	Т	T	Т

The last three columns are identical in truth values, hence their logical equivalences:

$$P \to Q \equiv \neg Q \to \neg P \equiv (P \land \neg Q) \to \neg P$$

Date: April 1, 2024.

2 JOE TRAN

Example. Suppose we want to prove the following proposition: "If n is an integer and n+8 is even, then n is even". We will prove it in three different ways.

Direct Proof. Assume that n is an integer and n+8 is even. We want to show that n is an even integer. Since n+8 is an even integer, then there exists an integer $k \in \mathbb{Z}$ such that n+8=2k. But then n=2k-8=2(k-4). Since $k \in \mathbb{Z}$, it follows that $k-4 \in \mathbb{Z}$ and thus by the definition of even, n is even.

Proof by Contraposition. Assume that n is an odd. We want to show that n+8 is odd. Since n is odd, there exists an integer $k \in \mathbb{Z}$ such that n=2k+1. Then n+8=(2k+1)+8=(2k+8)+1. Since $k \in \mathbb{Z}$, it follows that $2k+8 \in \mathbb{Z}$, and therefore by the definition of odd, n+8 is also odd. Therefore, since we have proven the contrary, if n is even, then n+8 is even.

Proof by Contradiction. Assume that n is an integer and n+8 is even. For the sake of contradiction, assume that n is an odd integer. Since n+8 is an even integer, then there exists an integer $k_1 \in \mathbb{Z}$ such that $n+8=2k_1$. Since n is an odd integer, then there exists an integer $k_2 \in \mathbb{Z}$ such that $n=2k_2+1$. But then $n+8=(2k_2+1)+8=2k_2+9=2k_1$, and thus, $2(k_1-k_2)=-9$. Since $k_1,k_2 \in \mathbb{Z}$, then it follows that $k_1-k_2 \in \mathbb{Z}$ and thus, $2(k_1-k_2)$ is an even integer, which is a contradiction since we have even on one side, and odd on the other side. Therefore, it must be the case that n is an odd integer.

5. Tutorial Problems

Exercise 1. Prove the following

- (1) Show that for each integer a, if $a \not\equiv 0 \pmod{3}$, then $a^2 \equiv 1 \pmod{3}$.
- (2) Using (1) show that for each natural number n, $\sqrt{3n+2}$ is not a natural number.

Exercise 2. Prove that the product of three consecutive integers is divisible by 3.

Exercise 3. Prove that the difference of a rational number and an irrational number is irrational.