Аппроксимация формулы Блэка с помощью нейросетей

Сергей Протасов

23 ноября 2024 г.

План презентации

В данной презентации будет рассмотрено следующее:

- 1. Постановка задачи
- 2. Генерация данных
- 3. Метрики
- ▶ 4. Фичи
- 5. Модели
- 6. Гиперпараметры
- 7. Функции потерь
- 8. Результаты
 - ▶ 8.1. MSE
 - ▶ 8.2. MAE
 - ▶ 8.3. MRE
 - 8.4. Implied Volatility
 - ▶ 8.5. Греки
- 9. Заключение

Постановка задачи

Постановка задачи

Формула Блэка для вычисления цены европейского опциона:

$$C = e^{-rT} (FN(d_1) - KN(d_2)), \quad P = e^{-rT} (KN(-d_2) - FN(-d_1)),$$

где:

$$d_1 = \frac{\ln\left(\frac{F}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T},$$

a:

- ightharpoonup C и P цена опциона (call и put соответственно),
- ▶ F форвардная цена актива,
- К цена страйка опциона,
- Т время до экспирации,
- ▶ r безрисковая процентная ставка,
- ▶ σ волатильность,
- $N(\cdot)$ стандартная нормальная кумулятивная функция распределения.

Упрощение задачи

Для упрощения модели были приняты следующие допущения:

- Безрисковая процентная ставка r=0, поэтому дисконт-фактор $e^{-rT}=1$.
- ▶ Цена спота S = 1, что приводит к равенству F = S = 1.

Формула упрощается до:

$$d_1 = \frac{\ln\left(\frac{1}{K}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T}.$$

Цены опционов (call и put):

$$C = N(d_1) - KN(d_2), \quad P = KN(-d_2) - N(-d_1).$$

Цель задачи: Аппроксимация цен опционов C и P для различных параметров K, T, σ с помощью нейросетевых моделей.

Генерация данных

Генерация данных

Для обучения модели данные были сгенерированы случайным образом в следующих диапазонах:

- Цена страйка K: от 0.4 до 2.5,
- ▶ Время до экспирации Т: от 0.004 до 4 (от 1 дня до 4 лет),
- **В** Волатильность σ : **от 0.1 до 0.5** (10–50%).

Тип опциона (call или put) определялся следующим образом:

Если $K \geq S$, то это call-опцион, иначе put-опцион, где S=1.

Сгенерированные данные включали:

► Входные признаки (features):

$$X = (K, T, \ln(K), \sigma\sqrt{T}, \sigma^2T, \Delta),$$

7 / 77

где Δ — значение грека "дельта".

 Целевая переменная (target): цена опциона, рассчитанная по упрощённой формуле Блэка.

Цель генерации данных: Создать репрезентативное пространство параметров, охватывающее реальные рыночные условия.

Размеры датасетов

Для обучения и тестирования моделей были созданы датасеты следующих размеров:

- Тренировочный датасет:
 - п (маленький): 1000 выборок,
 - **s** (средний): **10,000** выборок,
 - т (большой): 100,000 выборок,
 - ► I (очень большой): 300,000 выборок,
 - \times (экстра большой): **1,000,000** выборок (использовался опционально).
- Тестовый датасет:
 - Для каждого размера тренировочного датасета тестовый датасет составлял 20% от его объёма.

Параметры батчей для обучения и тестирования:

► Batch size: 128.

Задача: Проверить, как размер датасета влияет на производительность моделей и устойчивость метрик.

Метрики

Метрики

Для оценки моделей использовались следующие метрики:

- ► MSE (Mean Squared Error): $\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i y_i)^2$
- ► MAE (Mean Absolute Error): $\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i y_i|$
- ► MRE (Mean Relative Error): $\frac{1}{n} \sum_{i=1}^{n} \frac{|\hat{y}_i y_i|}{y_i}$

Ограничения MRE

Как известно, когда значения таргета y_i близки к нулю, вычисление MRE может приводить к значениям, равным $+\infty$. Это связано с делением на значения, стремящиеся к нулю.

Для того чтобы избежать таких ситуаций и обеспечить корректность вычислений, было принято следующее решение:

- Рассчитывать ошибку MRE только для значений таргета $y_i \ge 10^{-10}$.
- ightharpoonup Для значений y_i меньших этого порога ошибка не вычисляется.

Фичи

Фичи

Используемые входные фичи моделей:

- ▶ К (цена страйка)
- Т (время до экспирации)
- $\triangleright \log K$
- $ightharpoonup \sigma\sqrt{T}$
- $ightharpoonup \sigma^2 T$
- **Δ**:

$$\Delta = egin{cases} N(d_1), & \mathsf{call} \ N(d_1) - 1, & \mathsf{put} \end{cases}$$

Фичи, которые не смогли

Тестировались также и другие фичи:

- $ightharpoonup \log rac{F}{K}$ (moneyness) усложнялась модель, ухудшая обучаемость; при этом результаты при расчёте греков оказались хуже.
- option type (0 или 1) также усложняла модель, не давая при этом преимущества в приближении таргета.
- $ightharpoonup \sigma$ и \sqrt{T} (по отдельности) не дали никакого прироста по метрикам, при условии, что размер входного вектора увеличился на один параметр.

Модели

Модели

Тестировались следующие архитектуры нейросетей:

- ResNet: MLP с добавлением вычета на вход выходного слоя.
- ▶ EResNet: улучшенная ResNet с несколькими блоками.
- MLP: стандартный полносвязный перцептрон с тремя линейными слоями.
- ► MLPA: версия MLP с активацией tanh.
- KAN: модель с механизмом внимания.
- ► KolmogorovArnoldNetwork: сеть Колмогорова-Арнольда с количеством внутренних слоёв 10, и внешних 5.
- ▶ SIREN: модель с активацией $sin(\omega x)$.

Гиперпараметры

Гиперпараметры

Гиперпараметры подбирались с помощью библиотеки Optuna:

- ► Размер скрытого слоя (hidden_size): 128
- ▶ Размер выходного слоя (output_size): 1
- ▶ Параметр терпимости (patience): 5
- ► Количество эпох обучения (num epochs): 100
- ▶ Dropout (dropout_p): 0.15862014926048447 (для регуляризации методом Dropout)
- ▶ Устройство (device): CPU

Гиперпараметры

Для оптимизации модели использовался оптимизатор Nesterov Adam(NAdam) с параметрами:

- Оптимизатор: NAdam, который является улучшенной версией Adam с дополнительной коррекцией ускорения.
- ▶ Темп обучения (Ir): 0.05448376394581503.

Также был использован планировщик скорости обучения ReduceLROnPlateau, который автоматически снижает скорость обучения, если значение функции потерь не улучшается:

- ► Тип изменения: снижение скорости обучения при минимизации потерь ('min').
- ▶ Параметр терпимости (patience): 5, то есть если за 5 эпох модель не показывает улучшений, то темп обучения будет уменьшен.

Функции потерь

Функции потерь

Использовались следующие функции потерь:

- MSE (средняя квадратичная ошибка)
- MAE (средняя абсолютная ошибка)
- Log-Cosh Loss
- Huber Loss: комбинация MSE и MAE, устойчивая к выбросам.

Наилучшие результаты показала **Huber Loss**, так как она менее чувствительна к выбросам в данных.

Результаты

Размер обучающего датасета: N

Сравнение моделей по метрикам:

Модель (размер N)	MSE	MAE	MRE	IV MSE
MLP ReLU	2.72e-6	0.0105	7803.44	1.59e-4
MLP Tanh	4.06e-6	0.0137	126985.44	3.70e-4
ResNet	4.55e-6	0.0145	60810.65	3.37e-4
Enhanced ResNet	4.16e-6	0.0141	145827.89	4.04e-4
KAN	4.35e-5	0.0541	700643.21	1.31e-3
Kolmogorov-Arnold Network	3.47e-6	0.0125	195334.47	3.30e-4
SIREN	4.26e-5	0.0504	457089.45	1.02e-3

 Таблица:
 Сравнение моделей по метрикам с размером тестового датасета:
 N.

Сравнение моделей по метрикам:

Модель (размер N)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.78e-6	0.0098	181894.83	9.10e-5
MLP Tanh	2.66e-6	0.0122	168200.75	4.42e-4
ResNet	2.97e-6	0.0129	296440.81	4.02e-4
Enhanced ResNet	3.23e-6	0.0134	128037.40	5.61e-4
KAN	3.57e-5	0.0543	1477759.96	1.59e-3
Kolmogorov-Arnold Network	2.15e-6	0.0114	194671.58	4.08e-4
SIREN	3.52e-5	0.0504	1128121.09	1.26e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: S.

Сравнение моделей по метрикам:

Модель (размер N)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.76e-6	0.0099	168532.07	5.24e-5
MLP Tanh	2.82e-6	0.0128	210070.11	1.91e-4
ResNet	3.08e-6	0.0134	337033.08	1.50e-4
Enhanced ResNet	3.39e-6	0.0138	180916.86	3.20e-4
KAN	3.56e-5	0.0552	1804600.87	9.81e-4
Kolmogorov-Arnold Network	2.25e-6	0.0116	227112.87	1.55e-4
SIREN	3.52e-5	0.0512	1440217.18	7.82e-4

Таблица: Сравнение моделей по метрикам с размером тестового датасета: М.

Сравнение моделей по метрикам:

Модель (размер N)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.78e-6	0.0100	190852.12	5.40e-5
MLP Tanh	2.79e-6	0.0127	215628.74	2.00e-4
ResNet	3.08e-6	0.0135	347842.09	1.65e-4
Enhanced ResNet	3.31e-6	0.0137	170458.67	3.15e-4
KAN	3.52e-5	0.0550	1884006.56	9.74e-4
Kolmogorov-Arnold Network	2.26e-6	0.0117	241436.48	1.64e-4
SIREN	3.48e-5	0.0510	1508276.83	7.77e-4

 Таблица:
 Сравнение моделей по метрикам с размером тестового датасета:
 L.

Размер обучающего датасета: S

Сравнение моделей по метрикам:

Модель (размер S)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.50e-7	0.0027	718.80	2.53e-5
MLP Tanh	4.58e-7	0.0049	12473.11	3.13e-5
ResNet	4.38e-7	0.0047	94611.14	2.30e-5
Enhanced ResNet	4.11e-6	0.0149	90437.12	2.80e-4
KAN	8.25e-3	0.9045	10931114.79	2.51e-1
Kolmogorov-Arnold Network	6.70e-9	0.0006	15668.28	2.99e-5
SIREN	4.25e-5	0.0509	544728.58	1.33e-3

 Таблица:
 Сравнение моделей по метрикам с размером тестового датасета:
 N.

Сравнение моделей по метрикам:

Модель (размер S)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.02e-7	0.0026	51278.83	9.11e-5
MLP Tanh	3.44e-7	0.0044	105179.23	3.23e-5
ResNet	2.58e-7	0.0041	171680.30	1.31e-5
Enhanced ResNet	3.65e-6	0.0153	159156.92	5.25e-4
KAN	6.61e-3	0.9064	23055324.15	2.85e-1
Kolmogorov-Arnold Network	4.31e-9	0.0005	7530.83	1.87e-5
SIREN	3.50e-5	0.0510	1222495.65	2.16e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: S.

Сравнение моделей по метрикам:

Модель (размер S)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.07e-7	0.0027	57784.18	6.88e-5
MLP Tanh	3.52e-7	0.0044	110167.23	2.81e-5
ResNet	2.69e-7	0.0042	119334.07	1.37e-5
Enhanced ResNet	3.60e-6	0.0153	205349.81	5.28e-4
KAN	6.47e-3	0.9057	28154541.67	2.83e-1
Kolmogorov-Arnold Network	4.69e-9	0.0005	16002.50	3.98e-5
SIREN	3.50e-5	0.0519	1524276.71	2.08e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: М.

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	1.08e-7	0.0027	59308.07	6.83e-5
MLP Tanh	3.45e-7	0.0044	110559.10	2.57e-5
ResNet	2.68e-7	0.0042	134344.45	1.35e-5
Enhanced ResNet	3.61e-6	0.0154	213191.17	5.07e-4
KAN	6.45e-3	0.9059	29393391.83	2.82e-1
Kolmogorov-Arnold Network	4.64e-9	0.0005	16751.06	4.61e-5
SIREN	3.46e-5	0.0517	1577686.87	2.07e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: L.

Размер обучающего датасета: М

Сравнение моделей по метрикам:

Модель (размер М)	MSE	MAE	MRE	IV MSE
MLP ReLU	7.77e-8	0.0020	17610.53	2.00e-6
MLP Tanh	8.35e-8	0.0021	26855.93	2.69e-5
ResNet	3.16e-7	0.0044	19717.84	2.19e-5
Enhanced ResNet	4.26e-8	0.0015	611.84	3.28e-5
KAN	4.26e-5	0.0513	593287.46	1.35e-3
Kolmogorov-Arnold Network	9.81e-6	0.0220	38511.30	2.29e-4
SIREN	4.26e-5	0.0513	599202.91	1.35e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: N.

Сравнение моделей по метрикам:

Модель (размер М)	MSE	MAE	MRE	IV MSE
MLP ReLU	6.97e-8	0.0022	23155.37	1.86e-6
MLP Tanh	5.26e-8	0.0019	28970.15	4.59e-5
ResNet	2.24e-7	0.0042	38154.89	1.20e-4
Enhanced ResNet	3.63e-8	0.0015	23788.29	1.55e-4
KAN	3.49e-5	0.0512	1251330.87	2.18e-3
Kolmogorov-Arnold Network	6.49e-6	0.0199	214322.55	2.88e-4
SIREN	3.49e-5	0.0511	1250512.99	2.18e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: S.

Сравнение моделей по метрикам:

Модель (размер М)	MSE	MAE	MRE	IV MSE
MLP ReLU	6.52e-8	0.0021	27615.57	1.20e-5
MLP Tanh	5.20e-8	0.0019	42752.03	4.46e-5
ResNet	2.34e-7	0.0043	50754.86	9.02e-5
Enhanced ResNet	3.56e-8	0.0015	19612.54	1.58e-4
KAN	3.49e-5	0.0520	1528091.74	2.09e-3
Kolmogorov-Arnold Network	6.35e-6	0.0199	155253.41	2.72e-4
SIREN	3.49e-5	0.0520	1528944.17	2.09e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: М.

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	6.52e-8	0.0021	30577.90	1.33e-5
MLP Tanh	5.28e-8	0.0019	45915.04	4.65e-5
ResNet	2.30e-7	0.0043	50480.99	1.02e-4
Enhanced ResNet	3.55e-8	0.0015	20331.67	1.55e-4
KAN	3.45e-5	0.0518	1595330.53	2.09e-3
Kolmogorov-Arnold Network	6.38e-6	0.0199	173444.38	2.89e-4
SIREN	3.45e-5	0.0518	1595530.62	2.09e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: L.

Размер обучающего датасета: L

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	5.33e-7	0.0040	21441.80	1.41e-4
MLP Tanh	5.58e-8	0.0015	17534.73	2.24e-5
ResNet	1.21e-8	0.0007	1033.05	5.47e-5
Enhanced ResNet	3.01e-8	0.0012	5737.08	8.14e-5
KAN	4.26e-5	0.0513	592980.14	1.35e-3
Kolmogorov-Arnold Network	4.26e-5	0.0513	593030.69	1.35e-3
SIREN	4.26e-5	0.0513	595993.24	1.35e-3

 Таблица:
 Сравнение моделей по метрикам с размером тестового датасета:
 N.

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	2.55e-7	0.0035	45224.22	3.22e-4
MLP Tanh	2.93e-8	0.0013	29045.30	5.37e-5
ResNet	6.94e-9	0.0006	14619.31	2.28e-4
Enhanced ResNet	2.17e-8	0.0011	15742.58	1.97e-4
KAN	3.49e-5	0.0511	1250682.69	2.18e-3
Kolmogorov-Arnold Network	3.49e-5	0.0511	1250789.32	2.18e-3
SIREN	3.49e-5	0.0511	1247907.68	2.18e-3

Таблица: Сравнение моделей по метрикам с размером тестового датасета: S.

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	2.62e-7	0.0036	55226.65	3.14e-4
MLP Tanh	2.94e-8	0.0013	29289.43	9.75e-5
ResNet	7.30e-9	0.0006	11736.13	1.89e-4
Enhanced ResNet	2.12e-8	0.0011	15056.36	1.79e-4
KAN	3.49e-5	0.0520	1527300.21	2.09e-3
Kolmogorov-Arnold Network	3.49e-5	0.0520	1527430.41	2.09e-3
SIREN	3.49e-5	0.0520	1529087.64	2.09e-3

 Таблица: Сравнение моделей по метрикам с размером тестового датасета:
 М.

Сравнение моделей по метрикам:

Модель (размер L)	MSE	MAE	MRE	IV MSE
MLP ReLU	2.67e-7	0.0036	57656.73	3.13e-4
MLP Tanh	2.98e-8	0.0013	29545.54	1.04e-4
ResNet	7.37e-9	0.0006	12200.23	1.99e-4
Enhanced ResNet	2.10e-8	0.0011	16605.44	1.80e-4
KAN	3.45e-5	0.0518	1594504.17	2.09e-3
Kolmogorov-Arnold Network	3.45e-5	0.0518	1594640.10	2.09e-3
SIREN	3.45e-5	0.0518	1593903.96	2.09e-3

 Таблица:
 Сравнение моделей по метрикам с размером тестового датасета:
 L.

Результаты. Графики метрик

Результаты. Графики метрик. Размер тестового датасета: N. MSE

Результаты. Графики метрик. Размер тестовго датасета: N. MAE

Результаты. Графики метрик. Размер тестовго датасета: N. MRE

Результаты. Графики метрик. Размер тестовго датасета: N. IV MSE

Результаты. Графики метрик. Размер тестового датасета: S. MSE

Результаты. Графики метрик. Размер тестовго датасета: S. MAE

Результаты. Графики метрик. Размер тестовго датасета: S. MRE

Результаты. Графики метрик. Размер тестовго датасета: S. IV MSE

Результаты. Графики метрик. Размер тестового датасета: M. MSE

Результаты. Графики метрик. Размер тестовго датасета: М. МАЕ

Результаты. Графики метрик. Размер тестовго датасета: m. MRE

Результаты. Графики метрик. Размер тестовго датасета: М. IV MSE

Результаты. Графики метрик. Размер тестового датасета: L. MSE

Результаты. Графики метрик. Размер тестовго датасета: L. MAE

Результаты. Графики метрик. Размер тестовго датасета: L. MRE

Результаты. Графики метрик. Размер тестовго датасета: L. IV MSE

Результаты. Греки

Результаты. Греки. Размер обучающего датасета: N

Сравнение моделей по грекам:

Модель (размер N)	delta	gamma	theta	vega
MLP ReLU	0.2542	0.6017	0.0031	0.1115
MLP Tanh	0.2578	0.6120	0.0032	0.0935
ResNet	0.3025	0.6780	0.0017	0.1074
Enhanced ResNet	0.2742	0.6275	0.0037	0.1053
KAN	0.2596	0.5861	0.0035	0.1128
Kolmogorov-Arnold Network	0.2741	0.6212	0.0018	0.1142
SIREN	4e+13	4e+13	5e+13	8e+13

Таблица: Сравнение моделей по грекам с размером обучающего датасета: N.

Результаты. Греки. Размер обучающего датасета: S

Сравнение моделей по грекам:

Модель (размер S)	delta	gamma	theta	vega
MLP ReLU	0.3277	0.6746	5e+12	8e+12
MLP Tanh	0.2591	0.6070	0.0016	0.0865
ResNet	0.3891	0.7765	0.0014	0.1073
Enhanced ResNet	0.2579	0.6096	0.0040	0.1007
KAN	0.2596	0.5861	0.0040	0.1119
Kolmogorov-Arnold Network	0.2761	0.6217	0.0015	0.0978
SIREN	2e+21	2e+21	2e+21	3e+21

Таблица: Сравнение моделей по грекам с размером обучающего датасета: S.

Результаты. Греки. Размер обучающего датасета: М

Сравнение моделей по грекам:

Модель (размер М)	delta	gamma	theta	vega
MLP ReLU	0.4309	0.7836	2e+21	3e+21
MLP Tanh	0.5405	0.9414	0.0014	0.1272
ResNet	0.5066	0.8647	0.0016	0.1200
Enhanced ResNet	0.3115	0.6638	0.0016	0.1134
KAN	0.2596	0.5861	0.0014	0.1102
Kolmogorov-Arnold Network	0.2116	0.5365	0.0060	1.1600
SIREN	3e+25	3e+25	3e+25	6e+25

Таблица: Сравнение моделей по грекам с размером обучающего датасета: М.

Сравнение моделей по грекам:

Модель (размер L)	delta	gamma	theta	vega
MLP ReLU	1.0976	1.5571	3e+25	6e+25
MLP Tanh	0.8299	1.2795	0.0014	0.1034
ResNet	0.5359	0.9176	0.0014	0.1220
Enhanced ResNet	0.4346	0.7920	0.0014	0.1129
KAN	0.2596	0.5861	0.0014	0.1004
Kolmogorov-Arnold Network	0.2596	0.5861	0.0014	0.1440
SIREN	2e+25	2e+25	2+25	4e+25

Таблица: Сравнение моделей по грекам с размером обучающего датасета: L.

Результаты. Греки. Графики

Результаты. Греки. Delta

Результаты. Греки. Gamma

Результаты. Греки. Theta

Результаты. Греки. Vega

Результаты. Обучение

Результаты. Обучение. Размер обучающего датасета: N

Результаты. Обучение. Размер обучающего датасета: S

Результаты. Обучение. Размер обучающего датасета: М

Результаты. Обучение. Размер обучающего датасета: L

Заключение

Заключение

- Использование Huber Loss в качестве функции потерь обеспечило стабильное обучение и устойчивость к выбросам.
- Даже несмотря на то, что некоторые модели показали результаты намного хуже других моделей в одних метриках, имели наилучшие показатели в другой метрике (KAN)

Заключение

Лучшие и худшие модели в среднем по метрикам различались в зависимости от размера обучающего датасета:

- N
 - Худшая KAN
 - Лучшая MLP ReLU
- **S**
 - ▶ Худшая KAN
 - Лучшая Kolmogorov-Arnold Network
- M
 - Худшая KAN
 - Лучшая Enhanced ResNet
- ▶ Худшая KAN
- Лучшая ResNet