LÓGICA COMPUTACIONAL I

APRESENTAÇÃO & BREVE CONSIDERAÇÕES

Lógica Computacional: É o uso da lógica para executar ou raciocinar sobre computação, através de símbolos e fórmulas matemática.

Lógica: Estuda o raciocínio correcto humano.

Base de Dados

Arquitectura de Computadores

Lógica Computacional

```
$controller = $this->request[0];

if (class_exists($controller)) {
    $controller = new $controller(); // creates an instance of this controller
    $method = $this->request[1] = !$this->request[1]?"index":$this->request[1]; // index is
$method = $this->request[1];
$method = str_replace("-","-",$method); // replaces hifen on url by underline
$method = ( (!method_exists($controller, $method)) && (!Config::$indexMethod)

if (method_exists($controller, $method)) {
    $firstParam = ($method == "index") && ($this->request[1] != "index") ? Is
    $for ($i = $firstParam; ($i < count($this->request[1] != "index") ? Is
    $for ($i = $firstParam; ($i < count($this->request[1] != "index") ? Is
    $for ($i = $firstParam; ($i < count($this->request[1] != "index") ? Is
    $firstParam; ($i < count($this->request[1] != "index") }
```

Programação

LÓGICA COMPUTACIONAL I

Tema # 1: Lógica Proposicional.

- Conferencia 2:
 - 2.1. Proposições.
 - 2.2. Operações com proposições

Proposição: É Uma expressão que tem associado um valor de verdade.

Exemplos de proposições:

- Os gorilas são mamíferos v
- Benguela é uma cidade
- -2 + 3 = 6
- -3 + 3 = 6

Exemplos de proposições:

V

$$\mathbf{F}$$

Exemplos de proposições:

Operador unário (Negação):

2.2. Operações com proposições

Operadores lógicos: assim como um operador aritmético, são elementos que actuam sobre proposições com objectivo de gerar um valor de verdade.

Tipos de Operadores Lógicos:

Unário:

~: Negação

Binário:

∧ :Inclusão

V:Disjunção

✓ :Disjunção exclusiva

⇒:Implicação

<⇒:Equivalência

Inclusão (^): Operador lógico no qual a resposta da operação é verdade (1) se ambas as variáveis de entrada forem verdade.

Disjunção inclusiva (V): Operador lógico no qual a resposta da operação é verdade (1) se pelo menos uma das variáveis de entrada for verdade.

Disjunção exclusiva (∑): Operador lógico no qual a resposta da operação é verdade (1) quando as variáveis assumirem valores diferentes entre si.

Implicação (=>): Operador lógico no qual a resposta da operação é falsa (0) quando <u>verdade</u> implica <u>falso</u>.

Equivalência (=>): Operador lógico no qual a resposta da operação é falsa (0) quando contrárias.

Negação (~): Operador lógico que representa a negação (inverso) da variável actual. Se ela for verdade, torna-se falsa, e vice-versa.

Exemplos:

$$2 < 3$$
 : 1 $p \land q$: 0
 $2+7 \neq 9$: 0 $p \lor q$: 1
 $18+3=9:0$ $p \lor q$: 1
 $2+7 \neq 9$: 0 $p \lor q$: 1
 $2+7 \neq 9$: 0 $p \lor q$: 1

Tabela de Verdade: É um tipo de tabela matemática usada em Lógica para determinar se uma fórmula é válida ou se um sequente é correcto.

Quantidade de valores da proposição = Qi

Quantidade de proposição = n

$$2^n = Qi$$

Tabela de Verdade:

$$2^{n} = Qi$$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$
 $2^{1} = 2$

Tabela de Verdade

Determine as interpretações da proposição composta: $p^{\wedge}q$

$2^n = Qi$	p	\mathbf{q}	p^q
$2^2 = 4 \stackrel{1}{\swarrow}$	1	1	1
$\frac{1}{2}$	1	0	0
	0	1	0
$\sqrt{4}$	0	0	0

Determine as interpretações da proposição composta: **pvq**

$$2^n = Qi$$

$$2^2 = 4$$

p	q	p v q
1	1	1
1	0	1
0	1	1
0	0	0

Determine as interpretações da proposição composta: **pvq**

p	q	p v q
1	1	0
1	0	1
0	1	1
0	0	0

Determine as interpretações da proposição composta: p => q

p	\mathbf{q}	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Determine as interpretações da proposição composta: p <=> q

p	\mathbf{q}	p <=> q
1	1	1
1	0	0
0	1	0
0	0	1

Complete os espaços vazios com os valores de verdade correctos:

р	q	~p	~q	p^q	p v q	руф	p => q	p<=>q
1	1							
1	0							
0	1							
0	0							

Complete os espaços vazios com os valores de verdade correctos:

p	\mathbf{q}	r	~p	p^q	p^r	qvr
1	1	1				
1	1	0				
1	0	1				
1	0	0				
0	1	1				
0	1	0				
0	0	1				
0	0	0				

1. Obter o valor de verdade da proposição seguinte quando p=1, q e r=0:

$$p => \sim q \wedge p \vee r \vee \sim p <=> \sim r$$

2. Elaborar a tabela de verdade...

Tarefa:

$$(a)p => \{ \sim q \land p \lor [r \lor (\sim p <=> \sim r)] \}$$

(b)p
$$\Rightarrow$$
 \sim [q \wedge p \vee r \vee (\sim p $<=> \sim$ r)]

(a) & (b) Elaborar a tabela de verdade...