Decoding fMRI Using SVM

Nishmar Cestero

Dataset Information

- FMRI data of Frontal Localizer (FLoc) task Perceptual Neuroimaging Lab at Boston University
- FLoc:
 - Exercises working memory for the stimulus type presented. Indicate when the current stimulus matches the stimulus from two steps earlier in the sequence.
- Stimuli
 - Auditory
 - · Cat and dog vocalizations
 - Visual
 - Male and female faces
 - Each sequence shown twice:
 - · Passive condition
 - Task condition

Visual Stimuli

fMRI Basics

- Functional Magnetic Resonance Imaging (fMRI)
- Blood-oxygen-level dependent (BOLD):
 - Indirect measure of brain activity.
 - Hemodynamic responses in neurons : the rapid delivery of blood to neuronal tissues.
- Voxels:
 - 3-dimensional image of BOLD signal
 - Units representing a cube of brain tissue.
 - Each represents up to a million neurons
 - ~2 millimeters.

Preprocessing

FreeSurfer: software that provides functions for processing brain MRI images.

- Unpack raw data from DICOM files (medical image standard)
- 2. Add paradigm files
 - Text files containing stimuli schedule
- 3. Noise reduction
 - Motion correction, smoothing, projection to average brain

Data Format

- NIfTI:
 - Standard file format for neuroimaging data.
- Access Data:
 - NiBabel and NiLearn libraries
 - 4-dimensional matrix consisting of space coordinates x, y,
 z in millimeters and time point units of 2 seconds.
- Standardize :
 - Convert matrix from 4D to 2D: n samples x n features.
 - Retain BOLD data for each voxel while discarding location information

Basic Statistics

Samples:

- 1016 total samples
 - 8 subjects, 8 runs each, 2 hemispheres, 8 blocks of stimuli
- 512 left hemisphere samples
- 504 right hemisphere samples (one corrupted run file)

Features:

- 163,847 voxels
- average of BOLD signal across 40-second block of a stimuli

Basic Statistics, cont.

Hypotheses

- Decoding: using brain image to predict external variables.
- **H1**: Auditory vs. Visual Stimuli: predict for group
- H2: Working Memory vs. Passive: predict for group
- H3: Cat vs. Dog sounds: predict for individuals
- H4: Cat vs. Dog sounds: unable to predict for group
- H5: Male vs. Female face: predict for individuals
- H6: Male vs. Female face: unable to predict for group

Methods

Feature Selection

- ANOVA: Univariate feature selection
 - Simple
 - Doesn't remove redundancy / pick best of highly correlated features

Classification

- SVM : Linear SVC
 - Effective for high dimensional data
 - Coefficients: weight vector of features

Probability Estimates

- Cross-validation
 - 10-fold

Results: H1 and H2

 Auditory vs. Visual Stimuli classification accuracy much higher than chance

– LH: 88%

- RH: 87%

 Working Memory vs. Passive classification Accuracy much higher than chance

- LH: 81%

- RH: 78%

Auditory vs. Visual Features

< FRONT - BACK - FRONT>

WM vs. Passive Features

< FRONT - BACK - FRONT>

The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network

George Bush & Lisa M Shin

Results: H3 and H5

- Separate classifiers for each individual
- Cat vs. Dog sound classification accuracy higher than chance for most subjects
- Male vs. Female face classification accuracy borderline higher than chance in most subjects

Results: H4 and H6

 Classifiers attempting to predict specific stimuli

Sound: 42%, 47%

Face: 40%, 41%

- Object representations in the brain vary widely across individuals
- Cat vs. Dog sound classification for individual classifiers better

– LH::65%

RH: 63%

 Male vs. Female face classification for individuals only slightly better

Future Work

- Train individual classifiers with more samples
 - Improve accuracy
 - Visualize
- Project coefficients for individual brains to visualize differences in object representations
- Compare results of using feature selection to using a brain mask
- Investigate positivity/negativity of SVC weights
- Confirm results of visualizing the working memory vs. passive SVC coefficients