

# A Survey on Automated Fact-Checking

Zhijiang Guo\*, Michael Schlichtkrull\* and Andreas Vlachos



## Introduction

- Fact-checking assesses and argues for the factuality of claims made in written or spoken language.
- NLP can play a major role in fact-checking:
  - Searching large collections of documents for evidence.
  - Triaging claims to identify the highest priority targets for professionals to debunk.
  - **Spotting** connections between pieces of evidence.
  - Identifying previously fact-checked claims.

### Motivation

- Summarizes up-to-date research efforts, including the production of justifications.
- Introduces a unified framework for automated fact-checking.
- Documents and compares datasets and models across different approaches.
- Anticipates key future challenges.

#### Framework



- Claim detection identifies claims that require verification.
- Evidence retrieval finds sources supporting or refuting the claim.
- Claim verification assesses the veracity of the claim based on the retrieved evidence. It can be decomposed into two parts:
  - Verdict prediction, where claims are assigned truthfulness labels.
  - Justification production, where explanations for verdicts are produced.
- Evidence retrieval and claim verification are sometimes tackled as a single task called factual verification.

#### **Datasets & Models**

• In this survey, we analyse and compare existing datasets and models extensively.

| Stages                  | Туре         | #Datasets | #Models |  |
|-------------------------|--------------|-----------|---------|--|
| Claim<br>Detection      | Check-worthy | 14        | - 18    |  |
|                         | Checkable    | 3         |         |  |
| Factual<br>Verification | Natural      | 25        | - 37    |  |
|                         | Artificial   | 17        |         |  |

 Datasets are analysed along three axes aligned with the three stages of our framework: the input, the evidence used, and the verdicts and justifications that constitute the output.

| Dataset                               | Input | #Inputs | Evidence     | Verdict   | Sources   |
|---------------------------------------|-------|---------|--------------|-----------|-----------|
| Politifact (Vlachos and Riedel, 2014) | State | 106     | Text/Meta    | 5Class    | Factcheck |
| Emergent (Ferreira and Vlachos, 2016) | State | 300     | Text         | 3Class    | Emergent  |
| PunditFact (Rashkin et al., 2017)     | State | 4,361   | X            | 2/6Class  | Factcheck |
| Liar (Wang, 2017)                     | State | 12,836  | Meta         | 6Class    | Factcheck |
| Snopes (Hanselowski et al., 2019)     | State | 6,422   | Text         | 3Class    | Factcheck |
| MultiFC (Augenstein et al., 2019)     | State | 36,534  | Text/Meta    | 2-27Class | Factcheck |
| SciFact (Wadden et al., 2020)         | State | 1,409   | Text         | 3Class    | Science   |
| Health (Kotonya and Toni, 2020b)      | State | 11,832  | Text         | 4Class    | Factcheck |
| X-Fact (Gupta and Srikumar, 2021)     | State | 31,189  | Text         | 7Class    | Factcheck |
| FEVER (Thorne et al., 2018a)          | State | 185,445 | Text         | 3Class    | Wiki      |
| HOVER (Jiang et al., 2020)            | State | 26,171  | Text         | 2Class    | Wiki      |
| VitaminC (Schuster et al., 2021)      | State | 488,904 | Text         | 3Class    | Wiki      |
| TabFact (Chen et al., 2020)           | State | 92,283  | Table        | 2Class    | Wiki      |
| InfoTabs (Gupta et al., 2020)         | State | 23,738  | <b>Table</b> | 3Class    | Wiki      |
| Sem-Tab-Fact (Wang et al., 2021)      | State | 5,715   | <b>Table</b> | 3Class    | Wiki      |
| FEVEROUS (Aly et al., 2021)           | State | 87,026  | Text/Table   | 3Class    | Wiki      |

• Pipeline and joint modelling strategies are also surveyed based on our proposed framework.

# Research Challenges

- Epistemology (binary labelling too simplistic, untrustworthy and/or contradictory sources an inevitability, biased datasets)
- Practice (multilinguality, multimodality, and how to generate faithful justifications)
- Application (Early intervention and prebunking)

#### Resources

Check out our **Github Repo** for details of datasets and models, or send us a pull request if your work is missing!

