Train - Validate - Test

Part II

Overfitting the Validation set: Part I

Overfitting the Validation set: Part II

Overfitting the Validation set: Part III

Overfitting the Validation set: Part IV

Cross Validation

Pro: More stable, more data

Con: Slower

Cross Validation + Test Set

N-Fold Cross Validation

public

Model 2 Model 3 Model 1

Err = 0.2Err = 0.4Err = 0.4

Err = 0.5Err = 0.4Err = 0.5

Err = 0.6Err = 0.3Err = 0.3

Avg Err Avg Err Avg Err = 0.5= 0.4= 0.3

Testing Set

private

Machine Learning Workflow: Part II

Machine Learning Workflow: Part III

- 1. Split labeled data into training, validation, and test sets.
- 2. Repeat steps below until happy with performance on validation set:
 - a. Build and revise your feature extraction methodology.
 - b. Choose a machine learning algorithm.
 - c. Train machine learning model with various hyperparameter settings.
 - d. Evaluate prediction functions on validation set.
- Retrain model (train + validation)
- 4. Evaluate performance on test set. Report this number to product manager.
- 5. Retrain on all labeled data (training + validation + test).
- 6. Deploy resulting prediction function.

