Introduction to Time Series Analysis

Ivan Medovikov

University of Western Ontario

October 17, 2011

Overview

- 1. Introduction to data with time dimension
- 2. Stationary and non-stationary time series
- 3. Auto-correlation function
- 4. Basic time series models
- 5. Time series analysis with Eviews

What is time series?

- Random quantity that evolves over time
- ► For example, river flow, stock prices or human height
- Sample at intervals to get sequence of observations
- Such sequence is a time series

Example: Daily Values of the S&P 500 Index

What makes time series special?

- Consider a sample of ten male students
- ▶ If students are of same age, heights are identically distributed
- ▶ If selected at random and unrelated, heights are independent
- ▶ Independent and identically-distributed (i.i.d.) sample is key
- Law of Large Numbers ensures consistent mean estimate

What makes time series special?

- Consider observing the height of one student for ten years
- Observations are no longer independent
- Most importantly, observations are not identically distributed
- Averaging out does not give true estimate of mean height

2. Stationarity and Non-Stationary Series

Stationarity

- ▶ In general, let X_t , t = 1, 2, ... be sequence of random variables
- ▶ We get inconsistent estimates if $F_{X_i}(x_i) \neq F_{X_i}(x_j)$
- ▶ That is if probability distribution changes over time
- In this case, time-series is non-stationary
- ▶ Similarly, if $F_{X_i}(x_i) = F_{X_i}(x_j) = F_X(x_k)$, series is **stationary**
- We may use usual inference tools with stationary time-series

2. Stationarity and Non-Stationary Series Stationary vs Non-Stationary Series

2. Stationarity and Non-Stationary Series

Consequences of Non-Stationary

- Spurious regression results
- ▶ Exceptionally high R^2 values and t-ratios
- No economic meaning

2. Stationarity and Non-Stationary Series

Testing for Non-Stationarity

- Many time-series in social sciences are non-stationary
- Several parametric and non-parametric methods are available
- One popular method is the Wald & Wolfowitz "runs" test
- Basic idea is to split time series into several sub-series
- Check if means and standard deviations are different
- ▶ Also may use Dickey & Fuller "unit root" test

3. Auto-Correlation Function (ACF)

Correlogram and Auto-Correlations

- Before formal test, a useful "first-pass" is finding the ACF
- Auto-Correlation Function shows correlations of different lags
- ▶ For example, X_t may be correlated with X_{t-1} , but not with X_{t-2}
- Correlogram shows ACF values at many lags
- ▶ Major problem with ACF: it only picks up linear dependence

3. Auto-Correlation Function (ACF)

Example: Correlogram

Date: 10/17/11 Time: 15:28

Sample: 1 200

Included observations: 200

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8 9	0.901 0.883 0.866 0.846 0.826 0.806	0.055 -0.020 0.133 0.015 -0.000 -0.053 0.001 -0.005	191.11 373.16 546.07 713.24 874.84 1031.1 1180.8 1324.3 1461.7 1592.9	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		11 12	0.769 0.753	0.054	1719.2 1841.2	0.000

3. Auto-Correlation Function (ACF)

Interpreting Correlogram

- ACF may help identify the nature of the series
- For example, long-decaying ACF may indicate non-stationarity
- Zero auto-correlations may signal random noise
- Other patters may suggest certain types of processes

4. Common Time-Series Models

Dealing with Non-Stationarity

- Many non-stationary series may have stationary differences
- Even if we can't work with levels, can use stationary differences
- Given that now stationary series, what are the common models?

Auto-Regressive Models

- ► AR(p) model is the "workhorse" of time-series econometrics
- We model variable at time t as function of its p lags
- ▶ For example, let Y_t , t = 1, 2... be stationary time series
- ▶ Basic Auto-Regressive model of order p is given by:

$$Y_t = \alpha_0 + \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + \dots + \alpha_p Y_{t-p} + \epsilon_t$$

AR(1) Model

▶ Simplest model of this form is AR(1):

$$Y_t = \alpha_0 + \alpha_1 Y_{t-1} + \epsilon_t$$

- lacktriangle A process of this form is stationary as long as $|lpha_1| < 1$
- lacktriangle Then we can use usual least squares techniques to estimate \hat{lpha}_1
- ▶ If $|\alpha_1| \ge 1$, process has a **unit root** and is non-stationary
- ▶ Note that we can't use the usual t-test on $\hat{\alpha}_1$ for $H_0: |\alpha_1| \geq 1$
- ▶ Under H_0 $\hat{\alpha}_1$ has unknown distribution!

Testing for Unit Root in AR(1) Model

- Instead use the Dickey & Fuller test
- Rewrite model in terms of differences:

$$Y_t - Y_{t-1} = (\alpha_0 - 1)Y_{t-1} + \epsilon_t$$

Or alternatively as

$$\Delta Y_t = \delta_0 Y_{t-1} + \epsilon_t$$

▶ Under H_0 , $\delta_0 = 0$

Identifying AR(1) Process

- ▶ When to use AR(1) model?
- For AR(1) process, can show that $E[X_t X_{t+n}] = \frac{\sigma_\epsilon^2}{1 \alpha_1^2} \times \alpha_1^{|n|}$
- Exponential decay of auto-covariance for AR(1) process
- ► ACF that decays quickly may signal AR(1) model

AR(1) ACF

Date: 10/17/11 Time: 17:01

Sample: 1 200

Included observations: 200

Autocorrelation	Partial Correlation	AC		
		3 4 5	0.611 0.361 0.154 0.090 0.104 0.126 0.098	

4. Conditional Heteroscedasticity Models

General Auto-Regressive Conditional Heteroscedasticity (GARCH) Model

- ▶ In many applications, it is useful to model variance of series
- For example, stock volatility tends to cluster
- ▶ GARCH model fits and predicts volatility clusters well

4. Conditional Heteroscedasticity Models

GARCH Model

- ▶ Let $\epsilon_t = Y_t \alpha_0 \alpha_1 Y_{t-1}$ be AR(1) errors
- \blacktriangleright We suspect conditional heteroscedasticity (clustering) of ϵ_t 's
- ▶ Most basic GARCH model for ϵ_t 's is $\epsilon_t = \sigma_t z_t$, there $z_t \sim N(0,1)$, and σ_t is given by:

$$\sigma_t^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 + \alpha_2 \sigma_{t-2}^2 + \dots + \alpha_p \sigma_{t-p}^2$$

- We can estimate the model with least squares
- GARCH predicts financial market volatility very well

5. Time-series with Eviews

Eviews

- One of the most popular tools for time-series analysis is Eviews
- Packages also available in STATA
- Many free tools are implemented in R statistical computing suite