

KANDIDAT

311

PRØVE

MAT121 0 Lineær algebra

Emnekode	MAT121	
Vurderingsform	Skriftlig eksamen	
Starttid	23.05.2025 07:00	
Sluttid	23.05.2025 11:00	
Sensurfrist		
PDF opprettet	27.05.2025 13:35	

Del 1 - flervalgsoppgaver

Oppgave	Tittel	Oppgavetype	
1	Oppgave 1	Flervalg	
2	Oppgave 2	Flervalg	
3	Oppgave 3	Flervalg	
4	Oppgave 4	Flervalg	
5	Oppgave 5	Flervalg	
6	Oppgave 6	Flervalg	
7	Oppgave 7	Flervalg	
8	Oppgave 8	Flervalg	
9	Oppgave 9	Flervalg	
10	Oppgave 10	Flervalg	
11	Oppgave 11	Flervalg	
12	Oppgave 12	Flervalg	
13	Oppgave 13	Flervalg	
14	Oppgave 14	Flervalg	
15	Oppgave 15	Flervalg	
16	Oppgave 16	Flervalg	
17	Oppgave 17	Flervalg	
18	Oppgave 18	Flervalg	

Del 2 - langsvaroppgaver

Oppgave	Tittel	Oppgavetype
19	Oppgave 19	Langsvar
20	Oppgave 20	Langsvar
21	Oppgave 21	Langsvar

¹ Oppgave 1

 $egin{aligned} \mathsf{A} = egin{bmatrix} 4 & 6 \ 3 & 2 \end{bmatrix} \end{aligned}$

Determinanten til A er lik:

Velg ett alternativ:

- **13**
- **-6**
- 0
- _ -1
- _ -1/5
- **2**
- 3/4
- **4**

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

MAT121 0 Lineær algebra

Oppgave 2

Anta at

- A er en m x n-matrise
- B er en 3 x 4-matrise
- C er en 5 x 4-matrise

og at

 $A = BC^TC$

Da er:

Velg ett alternativ:

- m=3, n=5
- m=4, n=5
- m=5, n=4
- o m=7, n=9
- m=n=5
- m=n=3
- m=n=4
- o m=3, n=4

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

9696618

Candidate 311

³ Oppgave 3

La

$$A = egin{bmatrix} -2 \ 3 \end{bmatrix} [3 \quad 2] + egin{bmatrix} 7 & 7 \ -7 & 1 \end{bmatrix}$$

Hva er den inverse til A?

Velg ett alternativ:

$$\begin{bmatrix} 12 & -6 \\ -3 & 7 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1/7 & 4/7 \\ -3/7 & 6/7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 9 \\ -5 & 14 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & -6 \end{bmatrix}$$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

⁴ Oppgave 4

La

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix},$$
 $D = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad E = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Hvilke av disse matrisene er på redusert trappeform?

Velg ett alternativ:

- O A, D og E
- kun A
- ingen
- kun A og D
- kun A og B
- kun B og E
- alle
- kun E
- kun D
- O A, B og C

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

⁵ Oppgave 5

La

$$\mathbf{u} = egin{bmatrix} 1 \ 3 \ -1 \end{bmatrix}, \quad \mathbf{v} = egin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}, \quad \mathbf{w} = egin{bmatrix} 4 \ s \ t \end{bmatrix},$$

der s og t er reelle tall.

For hvilke s,t er \mathbf{w} ortogonal til både \mathbf{u} og \mathbf{v} ?

Velg ett alternativ:

Ingen av de andre alternativene

$$s = 0, t = -1$$

$$s = -2/3, t = 0$$

$$s = -2, t = 3$$

$$s = -1, t = 1/2$$

$$s = 1, t = 1/2$$

$$s = -4, t = -3$$

$$s = 13, t = -11$$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

⁶ Oppgave 6

La A og B være 4 x 4-matriser slik at

$$\det(A)=3, \qquad \det(B)=-2$$

Hva er determinanten til $2A^{-1}B^TBA^3$?

Velg ett alternativ:

- \bigcirc -6
- $\bigcirc 2^3 \cdot 3^2$
- $\bigcirc -2^6 \cdot 3^2$
- $3^6 \cdot 2^2$
- \bigcirc 2⁶ · 3²
- \bigcirc 0
- o ingen av de andre alternativene
- **6**

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

Oppgave 7

La $T \colon \mathbb{R}^4 o \mathbb{R}^4$ være gitt ved

$$Tegin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} x_4 \ x_2 - x_3 \ x_3 - x_4 \ x_4 - x_1 \end{bmatrix}.$$

Hvilken av de følgende er standardmatrisen til *T*?

Velg ett alternativ:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

o ingen av de andre alternativene

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Oppgave 8

La

$$A = egin{bmatrix} 1 & 0 & 0 \ h & 3 & 0 \ -4 & h^5 & h^2 - 2h \end{bmatrix}$$

der *h* er et reelt tall.

For hvilken verdi av h blir $\lambda = -1$ en egenverdi for A?

Velg ett alternativ:

- \bigcirc -1
- **12**
- \bigcirc -3
- alle h
- **1**
- o ingen h
- **10**
- $-\sqrt{3}$
- **2**

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

⁹ Oppgave 9

En 6 x 8-matrise A har redusert trappeform

Γ1	1	0	0	0	0	0	197
0	0	1	0	0	3	0	$ \begin{bmatrix} 19 \\ 0 \\ -7 \\ 0 \\ 1 \\ 0 $
0	0	0	1	0	11	0	-7
0	0	0	0	1	1	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0

Hva er dimensjonen til Col(A) (søylerommet til A)?

Velg ett alternativ:

- 9
- o ingen av de andre alternativene
- **4**
- **1**
- **5**
- 8
- **7**
- 0
- **6**
- **3**
- **2**

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

¹⁰ Oppgave 10

Vektoren $\mathbf{v} = egin{bmatrix} 1 \\ -1 \\ 2 \\ -1 \end{bmatrix}$ er en egenvektor for

$$A = egin{bmatrix} 1 & 2 & -1 & 2 \ 5 & 0 & -3 & -6 \ 0 & 14 & 6 & 8 \ 1 & 2 & 0 & -6 \end{bmatrix}$$

Hva er den tilsvarende egenverdien?

Velg ett alternativ:

- \bigcirc 1
- **7**
- \bigcirc 0
- ingen av de andre alternativene
- \bigcirc -2
- 8
- \bigcirc -1
- **○ -5**
- -11/4
- **3**
- **12**

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

¹¹ Oppgave 11

For hvilken verdi av s er vektorene

$$\mathbf{u}_1 = egin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}, \quad \mathbf{u}_2 = egin{bmatrix} 0 \ 1 \ 2 \end{bmatrix}, \quad \mathbf{u}_3 = egin{bmatrix} s \ 1 \ -1 \end{bmatrix},$$

lineært avhengige?

Velg ett alternativ:

- \bigcirc 3/5
- \bigcirc -4
- \bigcirc 0
- 0 1/2
- -2/3
- -1/2
- 01
- o ingen av de andre alternativene
- $-\sqrt{2}$
- **11/3**
- \bigcirc -1

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

¹² Oppgave 12

La

$$A = egin{bmatrix} 3 & 0 & 0 \ 0 & -4 & 22 \ 0 & -2 & 11 \end{bmatrix}$$

Hva er egenverdiene til A? Velg ett alternativ:

- -5,0,1
- 0 1, 3, 22
- 3, 11, 22
- -2/3, -1, 11
- -10, 3, 13
- 0,3,7
- **11, 12, 13**
- -4, -3, 0
- -4, 3, 11

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

¹³ Oppgave 13

5

6

La A være en 5 x 7-matrise slik at ligningen $A\mathbf{x} = \mathbf{b}$ er konsistent for hver \mathbf{b} i \mathbb{R}^5 . Hva e	ŗ
dimensjonen til $\mathrm{Nul}(A)$ (dvs. løsningsrommet til ligningen $A\mathbf{x}=0$)?	
Velg ett alternativ:	

35
7
4
1
2
0
3

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

¹⁴ Oppgave 14

Vi betrakter ligningssystemet

$$x_1+2x_3=-2$$

$$x_1 - 2x_2 = 0$$

$$x_3 + 3x_4 = 1$$

$$-2x_1 + 2x_2 + 6x_4 = h$$

der *h* er et reelt tall. For hvilke *h* er systemet konsistent?

Velg ett alternativ:

- h = 3
- h=0
- alle h
- h=1
- 0 h = -2
- 0 h = 5
- h = -5
- h = 2
- oingen h
- h = -4
- h = -1 og h = 6
- h = -3
- h = 4

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

Oppgave 15

La W være underrommet av \mathbb{R}^4 som består av alle vektorer

$$\begin{bmatrix} a+b \\ b-c-3d \\ a+c+3d \\ b+c-d \end{bmatrix}$$

der a,b,c,d er reelle tall. Hva er dimensjonen til W? Velg ett alternativ:

- **5**
- **2**
- 8
- 07
- **4**
- o ingen av de andre alternativene
- 0 1
- 0
- 3
- **6**

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

¹⁶ Oppgave 16

La

$$\mathbf{u}_1 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \qquad \mathbf{u}_2 = egin{bmatrix} 2 \ 0 \ 2 \end{bmatrix}, \qquad \mathbf{y} = egin{bmatrix} 7 \ -6 \ -2 \end{bmatrix}$$

La W være underrommet av \mathbb{R}^3 utspent av $\, \mathbf{u_1} \,$ og $\, \mathbf{u_2} .$ La

$$\mathbf{w} = egin{bmatrix} w_1 \ w_2 \ w_3 \end{bmatrix}$$

betegne den ortogonale projeksjonen av **y** på *W*. Da er:

Velg ett alternativ:

$$w_1 = 1/3, w_2 = 1/6$$

$$w_1 = 0, w_2 = 1$$

$$w_1 = 1, w_2 = 1$$

$$w_1 = 1/2, w_2 = -4$$

$$w_1 = 0, w_2 = 0$$

$$w_1 = 1, w_2 = 3$$

$$w_1 = 2, w_2 = -1$$

$$w_1 = 1, w_2 = -3$$

$$w_1 = -1, w_2 = 1$$

$$w_1 = 5/3, w_2 = -1/5$$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

¹⁷ Oppgave 17

La \mathbb{P}_2 betegne vektorrommet av polynomer

$$p(t) = a_0 + a_1 t + a_2 t^2$$

med reelle koeffisienter. La $T \colon \mathbb{P}_2 o \mathbb{P}_2$ være lineæravbildningen definert ved

$$T(p(t)) = (t^2 + 1)p''(t) - 3tp'(t) + 3p(t),$$

der p' og p'' betegner hhv. første- og annenderivert av p. Matrisen til T relativt til basisen $\mathcal{B}=\{1,t,t^2\}$ er da:

Velg ett alternativ:

$$egin{aligned} igcup [T]_{\mathcal{B}} = egin{bmatrix} 0 & 0 & 2 \ 0 & 1 & 5 \ 0 & 0 & -1 \end{bmatrix} \end{aligned}$$

$$egin{aligned} igcup [T]_{\mathcal{B}} = egin{bmatrix} 0 & 1 & 0 \ -1 & 0 & 2 \ 0 & -2 & 0 \end{bmatrix} \end{aligned}$$

$$egin{aligned} igcap [T]_{\mathcal{B}} = egin{bmatrix} 1 & 2 & 2 \ 0 & 4 & 0 \ 0 & 0 & -1 \end{bmatrix} \end{aligned}$$

$$lackbox{0}[T]_{\mathcal{B}} = egin{bmatrix} 5 & 0 & 0 \ 0 & 1 & 0 \ 1 & -1 & 2 \end{bmatrix}$$

$$egin{aligned} igcup [T]_{\mathcal{B}} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 2 \ 0 & 0 & 0 \end{bmatrix} \end{aligned}$$

o ingen av de andre alternativene

$$egin{aligned} igcolum{0}{1} & [T]_{\mathcal{B}} = egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 4 \end{bmatrix} \end{aligned}$$

$$egin{array}{cccc} igcap [T]_{\mathcal{B}} = egin{bmatrix} -4 & 1 & 0 \ 0 & 0 & -2 \ 0 & 0 & 3 \end{bmatrix} \end{array}$$

$$egin{array}{ccc} [T]_{\mathcal{B}} = egin{bmatrix} 3 & 0 & 2 \ 0 & 0 & 0 \ 0 & 0 & -1 \end{bmatrix} \end{array}$$

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

¹⁸ Oppgave 18

La ${f a},{f b}$ være vektorer i ${\Bbb R}^2$ slik at matrisen med søyler ${f a},{f b}$ har determinant lik 3. La $T:{\Bbb R}^2 o {\Bbb R}^2$ være en lineæravbildning slik at

$$T(\mathbf{a}) = 2\mathbf{a}, \qquad T(\mathbf{b}) = 5\mathbf{a} + h\mathbf{b},$$

der h er et positivt tall. Anta at parallellogrammet utspent av $T(\mathbf{a})$ og $T(\mathbf{b})$ har areal lik 10. Hva er da verdien av h?

Velg ett alternativ:

- o ingen av de andre alternativene
- **15**
- **10**
- **6**
- **12**
- 5/3
- 0 1/2
- 0 1
- 3/2
- 9/4

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

¹⁹ Oppgave 19

La

$$A = egin{bmatrix} 1 & -1 & 0 \ -2 & 1 & 0 \ 1 & 1 & 1 \end{bmatrix}$$

Regn ut den inverse til A.

Skriv ditt svar på papir (alternativt direkte i boksen - anbefales ikke). Alle svar må begrunnes og mellomregninger vises, slik at det klart fremgår hvordan du har kommet frem til svaret.

ark

Ord: 1

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

Håndtegning 1 av 1

²⁰ Oppgave 20

Finn egenverdiene til

$$A = egin{bmatrix} 4 & 0 & 2 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}.$$

Er A diagonaliserbar? Finn i så fall en inverterbar matrise P slik at $P^{-1}AP$ er diagonal.

Alle svar må begrunnes og mellomregninger vises, slik at det klart fremgår hvordan du har kommet frem til svaret.

ark

Ord: 1

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

Håndtegning 1 av 1

²¹ Oppgave 21

La W være et underrom av \mathbb{R}^n , og la W^\perp betegne det ortogonale komplementet til W. Vis at hvis $\mathcal{B}=\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ er en basis for W og $\mathcal{C}=\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ en basis for W^\perp , så er

$$\mathcal{D} := \{\mathbf{u}_1, \dots, \mathbf{u}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$$

en basis for \mathbb{R}^n . Hva kan du fra dette konkludere om p+q? (Hint: Du kan uten bevis bruke at hver \mathbf{y} i \mathbb{R}^n kan dekomponeres entydig som $\mathbf{y}=\mathbf{w}+\mathbf{z}$ der \mathbf{w} og \mathbf{z} er i henholdsvis W og W^\perp .)

Alle svar må begrunnes og mellomregninger vises, slik at det klart fremgår hvordan du har kommet frem til svaret.

ark + tekst:

Siden et ortogonalt komplement er settet av vektorer som står ortogonalt på W, dvs hver vektor i det ortogonale settet V * U = o for hver U i W. P + Q = n, siden det ortogonale settet vil spenne hele nullrommet til W.

Så W er en underrom av n, og det ortogonale komplementet WO vil spenne hele hele nullrommet til W og da lage vil D spenne hele hele rommet n.

Du kan tenke på det som om vi hadde et plan i R3 og la til alle vektorene som sto ortogonalt på dette planet. Da ville planet + det ortogonale sette spenne hele R3.

$$P + Q = n$$
.

Ord: 116

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:

Håndtegning 1 av 1

