Analysis Notes

Cruz Godar

Math 412, 413, and 414 Professor Hamilton Cal Poly, Fall 2017–Spring 2018

I - A Construction of \mathbb{R}

Definition 1.1: A **Dedekind cut** is a set $A \subseteq \mathbb{Q}$ such that

- 1. $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
- 2. If $r \in A$, then $q \in A$ for all $q \in \mathbb{Q}$ with q < r.
- 3. A does not have a maximum element that is, if $r \in A$, then r < s for some $s \in A$.

Definition 1.2: The **real numbers**, \mathbb{R} , are the set of all Dedekind cuts.

Definition 1.3: Let $A, B \in \mathbb{R}$. A is **less than** B, written $A \leq B$, if $A \subseteq B$.

Proposition 1.4: \leq is a total order on \mathbb{R} .

Proof: Clearly, \leq is reflexive, antisymmetric, and transitive, since \subseteq is. Thus \leq is a partial order on $\mathbb R$. To show that it is a total order, suppose $A \nleq B$. Then $A \nsubseteq B$, so there is an $a \in A$ with $a \notin B$. Let $b \in B$. Since $a \notin B$, $b \in B$, and B is a cut, a > b (where \leq here is the standard order on $\mathbb Q$), and since A is a cut, $b \in A$. Thus $B \subseteq A$, so $B \leq A$.

Definition 1.5: Let $A, B \in \mathbb{R}$. The sum of A and B is A + B $\{a + b \mid a \in A, b \in B\}$.

Theorem 1.6: \mathbb{R} is closed under addition.

Proof: Let $A, B \in \mathbb{R}$. To show $A + B \in \mathbb{R}$, we need to verify each of the three Dedekind cut axioms.

- (1) Since $A \neq \emptyset$ and $B \neq \emptyset$, $A + B \neq \emptyset$. Since $A \neq \mathbb{Q}$ and $B \neq \mathbb{Q}$, there is an $s \in \mathbb{Q} \setminus A$ and a $t \in \mathbb{Q} \setminus B$, and since A and B are cuts, a < s and b < t for all $a \in A$ and $b \in B$. Thus a + b < s + t for all $a \in A$ and $b \in B$, or, equivalently, for all $a + b \in A + B$. Thus $s + t \notin A + B$, so $A + B \neq \mathbb{Q}$.
- (2) Let $a+b \in A+B$ and let $s \in \mathbb{Q}$ such that s < a+b. Then s-b < a, so $s-b \in A$, since A is a cut. Thus $(s-b)+b=s \in A+B$.
- (3) Let $a + b \in A + B$. Since A and B are cuts, there is an $s \in A$ and a $t \in B$ such that a < s and b < t. Then $s + t \in A + B$ and a + b < s + t.

Proposition 1.7: Let $A, B, C \in \mathbb{R}$. Then A + B = B + A and (A + B) + C = A + (B + C).

Definition 1.8: The real numbers **zero** and **one** are defined as $\mathbf{0} = \{q \in \mathbb{Q} \mid q < 0\}$ and $\mathbf{1} = \{q \in \mathbb{Q} \mid q < 1\}$.

Proposition 1.9: For all $A \in \mathbb{R}$, $A + \mathbf{0} = A$.

Proof: (\subseteq) Let $a + x \in A + \mathbf{0}$. Since x < 0, a + x < a, and since A is a cut, $a + x \in A$. Thus $A + \mathbf{0} \subseteq A$.

(2) Let $a \in A$. Since A is a cut, there is an $s \in A$ such that s > a. Then a - s < 0, so $a - a \in \mathbf{0}$. Thus $a = s + (a - s) \in A + \mathbf{0}$, so $A \subset A + \mathbf{0}$.

Definition 1.10: Let $A \in \mathbb{R}$. The additive inverse of A is $-A = \{r \in \mathbb{Q} \mid r < -t \text{ for some } t \notin A\}$.

Proposition 1.11: Let $A \in \mathbb{R}$. Then $-A \in \mathbb{R}$.

Proposition 1.12: Let $A \in \mathbb{R}$. Then A + (-A) = 0.

Proof: (\subseteq) Let $a + n \in A + (-A)$. Since $n \in -A$, there is a $t \notin A$ such that n < -t, and since $a \in A$ and $t \notin A$, a < t < -n, so a + n < 0. Thus $a + n \in \mathbf{0}$, so $A + (-A) \subseteq \mathbf{0}$.

(2) Let $x \in \mathbf{0}$, let $\varepsilon = \frac{|x|}{2} = -\frac{x}{2}$, and let $t \in \mathbb{Q}$ such that $t \notin A$ but $t - \varepsilon \in A$. Since $t \notin A$, $-(t + \varepsilon) \in -A$, since $t < -(-(t + \varepsilon))$ and therefore $-(t + \varepsilon) < -t$. Then $x = -2\varepsilon = -(t + \varepsilon) + (t - \varepsilon) \in A + (-A)$, so $\mathbf{0} \subseteq A + (-A)$.

Definition 1.13: Let $A, B \in \mathbb{R}$. If $A \ge 0$ and $B \ge 0$, then the **product** of A and B is

$$AB = \{ab \mid a \in A, b \in B, a \ge 0, b \ge 0\} \cup \mathbf{0}.$$

If $A \ge 0$ and B < 0, then AB = -(A(-B)), if A < 0 and $B \ge 0$, then AB = -((-A)B), and if A < 0 and B < 0, then AB = (-A)(-B).

Theorem 1.14: Let $A, B, C \in \mathbb{R}$. Then $AB \in \mathbb{R}$, AB = BA, (AB)C = A(BC), 1A = A, and if $A \neq 0$, then there is an $A^{-1} \in \mathbb{R}$ with $AA^{-1} = 1$.

Definition 1.15: A set $U \subseteq \mathbb{R}$ is **bounded above** if there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. We call B an **upper bound** for U, and define **bounded below** and **lower bound** similarly.

Definition 1.16: Let $U \in \mathbb{R}$ such that $U \neq \emptyset$ and U is bounded above. We define $S(U) = \bigcup_{A \in U} A$.

Theorem 1.17: Let $U \subset \mathbb{R}$ be nonempty and bounded above. Then S(U) is a cut.

Proof: (1) Since $U \neq \emptyset$ and $U \subseteq S(U)$, $S(U) \neq \emptyset$. Since U is bounded above, there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. Then $A \subseteq B$ for all $A \in U$, so $S(U) = \bigcup A \subseteq B$. Since $B \neq \mathbb{Q}$, $S(U) \neq \mathbb{Q}$.

- (2) Let $a \in S(U)$ and q < a. Then $a \in A$ for some $A \in U$, and since A is a cut and $q < a, q \in A \subseteq S(U)$.
- (3) Let $a \in S(U)$. Then $a \in A$ for some $A \in U$, and since A is a cut, there is a $q \in A \subseteq S(U)$ with a < q.

Proposition 1.18: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then S(U) is an upper bound for U.

Proof: For all $A \in U$, $A \subseteq \bigcup A = S(U)$, so $A \leq S(U)$.

Definition 1.19: A set $U \subseteq \mathbb{R}$ has a **supremum**, or least upper bound, if there is a $B \in \mathbb{R}$ such that B is an upper bound for U and $B \leq C$ for any upper bound C for U. We define the **infimum**, or greatest lower bound, similarly, and write $\sup U$ and $\inf U$ for the supremum and infimum.

Proposition 1.20: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then $S(U) = \sup U$.

Proof: Let C be an upper bound for U. Then $A \leq C$ for all $A \in U$, so $A \subseteq C$ for all $A \in U$. Then $S = \bigcup A \subset C$, so $S \leq C$.

Theorem 1.21: (The Completeness of the Reals) Every nonempty, bounded above subset of \mathbb{R} has a supremum in \mathbb{R} .

II — The Reals

Proposition 2.1: Let $A \subseteq \mathbb{R}$. If $\sup A \in A$, then $\sup A = \max A$.

Proposition 2.2: If $A, B \subseteq \mathbb{R}$ such that $A \subseteq B$, then $\sup A \le \sup B$.

Proof: Since $A \subseteq B$, $a \in B$ for all $a \in A$, and so since $\sup B \ge b$ for all $b \in B$, $\sup B \ge a$ for all $a \in A$. Then $\sup B$ is an upper bound for A, so $\sup A \le \sup B$.

Theorem 2.3: Let s be an upper bound for $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if for all $\varepsilon > 0$, there is an $a \in A$ with $s - \varepsilon < a$.

Proof: (\Rightarrow) Assume $s = \sup A$ and let $\varepsilon > 0$. Since $s - \varepsilon < s = \sup A$, $s - \varepsilon$ cannot be an upper bound for A. Thus there must be an $a \in A$ with $a > s - \varepsilon$.

Assume s is an upper bound for A and that for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s - \varepsilon$. Let b be an upper bound for A and suppose b < s. Let $\varepsilon = \frac{s-b}{2}$. Since a < b for all $a \in A$, there is no $a \in A$ such that $a > s - \varepsilon$, since $s - \varepsilon$ is the midpoint of s and b, and is therefore greater than b. \nleq

Theorem 2.4: (The Nested Interval Theorem) For each $n \in \mathbb{N}$, let $I_n = [a_n, b_n]$ be an interval such that $I_n \subseteq I_{n-1}$. Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof: Let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is nonempty and bounded above (by b_1 , for instance), A has a least upper bound. In fact, each b_i is an upper bound for A, since otherwise the intervals would not be nested.

Let $s = \sup A$ and let $n \in \mathbb{N}$. Since s is an upper bound for $A, s \ge a_n$, and since b_n is an upper bound for $A, s \le b_n$. Thus $s \in I_n$ for all $n \in \mathbb{N}$, so $s \in \cap I_n$.

Theorem 2.5: (The Well-Ordering Principle) Every nonempty subset of \mathbb{N} has a minimum element.

Proposition 2.6: (The Archimedean Property) Let $x \in \mathbb{R}$. Then there is a $y \in \mathbb{N}$ with y > x.

Corollary 2.6.1: Let $x \in \mathbb{R}^+$. Then there is a $y \in \mathbb{N}$ with $\frac{1}{y} < x$.

Theorem 2.7: (The Density of \mathbb{Q} in \mathbb{R}) Let $a, b \in \mathbb{R}$ with a < b. Then there is a $q \in \mathbb{Q}$ with a < q < b.

Proof: First, suppose $a \ge 0$. By the Archimedean property, let $n \in \mathbb{N}$ such that $\frac{1}{n} < b-a$. Let m be the smallest natural greater than na. Then $m-1 \le na < m$, so $m \le na+1 < m+1$. Since na < m, $a < \frac{m}{n}$, and since $m \le na+1$ and $\frac{1}{n} < b-a$, $m < n\left(b-\frac{1}{n}\right)+1=nb$. Thus $\frac{m}{n} < b$, and so $a < \frac{m}{n} < b$.

If a < 0 and b > 0, then $a < \frac{0}{1} < b$, and if a < 0 and $b \le 0$, then since -b < -a (and -b, -a > 0), there is a $q \in \mathbb{Q}$ with -b < q < -a, so a < -q < b.

Theorem 2.8: There is an $\alpha \in \mathbb{R}$ with $\alpha^2 = 2$.

Proof: Let $T = \{t \in \mathbb{R} \mid t^2 < 2\}$, which is is nonempty and bounded above, and let $\alpha = \sup T$. Suppose $\alpha < 2$. By the Archimedean principle, there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{2-\alpha^2}{2\alpha+1}$, or, equivalently, $\frac{2\alpha+1}{n} < 2-\alpha^2$. Then

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$

$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$

$$= \alpha^2 + \frac{2\alpha + 1}{n}$$

$$< \alpha^2 + (2 - \alpha^2)$$

$$= 2,$$

so $\alpha + \frac{1}{n} \in T$, but $\alpha + \frac{1}{n} > \alpha = \sup T$. $\mbox{$\rlap/2$}$ Similarly, a > 2 gives a contradiction.