Simulação de Fluxo Laminar em Canal Retangular 3D:

Um Estudo de Convergência de Malha

Seu Nome Completo

13 de outubro de 2025

Sumário

1	Introdução e Objetivos	2
2	Descrição do Problema e Metodologia2.1Descrição do Problema Físico2.2Parâmetros de Estudo	
3	Resultados e Discussão3.1 Perfis de Velocidade	3
4	Conclusão	4

1 Introdução e Objetivos

Nesta seção, descreva o contexto do trabalho [1].

- Apresente a importância do estudo de escoamentos em microcanais.
- Mencione as aplicações (por exemplo, microfluídica, MEMS, etc.).
- Defina claramente os objetivos deste relatório, como comparar resultados numéricos com a solução teórica de Bruus [1], avaliar a influência do refinamento de malha, da vazão e do fluido sobre a solução numérica.

2 Descrição do Problema e Metodologia

2.1 Descrição do Problema Físico

O problema consiste no escoamento laminar, incompressível e estacionário de um fluido em um canal retangular tridimensional.

Geometria: O canal possui comprimento L=2 cm e seção transversal quadrada com largura $W=100~\mu\mathrm{m}$ e altura $H=100~\mu\mathrm{m}$.

Condições de Contorno:

- Entrada: Perfil de velocidade uniforme com vazão prescrita.
- Saída: Pressão de referência zero.
- Paredes: Condição de não-deslizamento (no-slip, $\vec{u} = 0$).

2.2 Parâmetros de Estudo

Fluidos: As simulações foram realizadas para dois fluidos distintos, cujas propriedades a 20°C estão listadas na Tabela 1:

Tabela 1: Propriedades dos fluidos utilizados.

Fluido	Densidade ρ [kg/m ⁸]	Viscosidade μ [Pa·s]
Água	1000	1.0×10^{-3}
Álcool Isopropílico	786	2.04×10^{-3}

Vazões e Número de Reynolds: Foram investigadas quatro vazões volumétricas: $Q = [1, 10, 100, 1000] \mu L/min$. Para cada caso, o número de Reynolds Re foi calculado para verificar o regime laminar, usando a fórmula

$$Re = \frac{\rho U D_h}{\mu},$$

onde U é a velocidade média no canal e D_h é o diâmetro hidráulico. Os resultados estão na Tabela 2.

Tabela 2: Vazões e números de Reynolds correspondentes para a água.

Vazão Q [$\mu L/min$]	Velocidade U [m/s]	Número de Reynolds Re
1		
10	• • •	
100		
1000		

Malhas: Foram utilizadas quatro malhas com diferentes refinamentos (Coarse, Normal, Fine, Finer). As características de cada malha estão na Tabela 3.

Tabela 3: Características das malhas utilizadas no estudo.

Nível	Número de Elementos	Tamanho Médio da Célula [m]
Coarse	• • •	
Normal	• • •	
Fine	• • •	•••
Finer	• • •	•••

3 Resultados e Discussão

3.1 Perfis de Velocidade

Nesta seção, apresentamos os perfis de velocidade obtidos numericamente e comparamos com a solução teórica de Bruus. O perfil foi extraído na seção central do canal (x = L/2).

Figura 1: Comparação entre os perfis de velocidade numéricos (para cada malha) e a solução teórica, para água com vazão de ... $\mu L/min$.

Aqui, discuta o que o gráfico mostra: se a solução numérica aproxima-se da teórica conforme a malha é refinada, onde diverge, etc.

3.2 Análise de Convergência de Malha

Para quantificar a precisão da solução, calculou-se o erro relativo para cada malha. A Figura 2 mostra o comportamento do erro em função do tamanho da malha (gráfico log-log), permitindo estimar a ordem de convergência.

Figura 2: Gráfico log-log do erro relativo em função do tamanho médio da célula.

Discuta: o erro diminui com o refinamento, e qual a ordem de convergência observada (linear, quadrática, etc.).

3.3 Influência da Vazão e do Fluido

Aqui, analise como a variação da vazão (e, consequentemente, do número de Reynolds) e a troca do fluido (viscosidade diferente) afetaram os resultados numéricos e a convergência.

4 Conclusão

Resuma os principais resultados obtidos. Por exemplo: - Os objetivos foram alcançados? - Qual foi a precisão da simulação em relação aos parâmetros estudados? - Quais limitações foram encontradas? - Sugira trabalhos futuros (por exemplo, estudo de não-linearidades, efeitos de instabilidade, diferentes geometrias, fluxo pulsátil, etc.).

Referências

 $[1] \ \ Henrik \ Bruus, \ \textit{Theoretical Microfluidics}, \ Oxford \ University \ Press, \ 2008.$