Logique Propositionnelle et Systèmes Formels

Une feuille recto verso manuscrite autorisée, 45 minutes, toutes les réponses doivent être justifiées (sauf précisé autrement).

Rappels:

- En cas d'ambiguïté, l'implication " \Rightarrow " est associative à droite; par exemple, $p \Rightarrow q \Rightarrow r$ signifie $p \Rightarrow (q \Rightarrow r)$. De plus les opérateur \land et \lor sont prioritaire sur l'implication : $p \lor q \Rightarrow r$ signifie $(p \lor q) \Rightarrow r$
- Pour un ensemble de formules Γ et une formule F, $\Gamma \vdash_{\mathcal{S}} F$ signifie que F est prouvable à partir des hypothèses Γ dans le système \mathcal{S} . Γ , F est une notation pour $\Gamma \cup \{F\}$.
- pour un alphabet A (ou une simple lettre), A^+ signifie $A^* \setminus \{\epsilon\}$ c'est à dire un mot quelconque non vide.
- 1. Axiome K : $A \Rightarrow B \Rightarrow A$
- 2. Axiome S: $(A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow B) \Rightarrow A \Rightarrow C$
- 3. Règle:

$$A\Rightarrow B$$
 A B B

FIGURE 1 – Système de Hilbert minimal H

Théorème 1 (de la déduction)

$$\Gamma \vdash_H A \Rightarrow B \text{ si et seulement si } \Gamma, A \vdash_H B$$

Définition 1 Voici un rappel de l'interprétation usuelle issue de chaque opérateur en logique propositionnelle en fonction de l'interprétation des formules A et B.

A	B	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$\neg A$
0	0	0	0	1	1
0	1	0	1	1	1
1	0	0	1	0	0
1	1	1	1	1	0

Une formule A est valide (tautologie) si toute interprétation satisfait A.

Exercices

Exercice 1 $(\approx 10 \text{min})$

- 1) Déterminez parmi les formules suivantes, celles qui sont valides, celles qui sont satisfiables et celles qui sont contradictoires (il n'y a pas forcément une de chaque).
 - (a) $A \Rightarrow B \Rightarrow (A \land B)$

(b)
$$(A \land ((B \land E) \Rightarrow ((\neg C \Rightarrow A) \land (A \lor C \lor D)))) \Rightarrow A$$

2) Mettre la formule suivante sous forme normale conjonctive :

$$(B \Rightarrow A) \Rightarrow \neg (B \lor C)$$

Exercice 2 (≈25min)

On ajoute l'opérateur binaire \mathfrak{O} aux formules logique (si A et B sont des formules, alors $A \mathfrak{O} B$ est aussi une formule). Soit $H_{\mathfrak{O}}$ le système H de Hilbert augmenté des schémas d'axiomes \mathcal{X}_1 et \mathcal{X}_2 suivants : pour toute formules A et B.

$$\mathcal{X}_1 = A \Rightarrow (B \Rightarrow (A \circ B),$$

 $\mathcal{X}_2 = (A \circ B) \Rightarrow A.$

1) Justifiez rapidement (par une/deux phrases simples) pourquoi on a l'équivalence suivante :

$$\Gamma, \mathcal{X}_1, \mathcal{X}_2 \vdash_H P$$
 si et seulement si $\Gamma \vdash_{H_{\mathfrak{G}}} P$

2) En déduire que le théorème de déduction est vrai dans H_{\circlearrowleft} , c'est-à-dire que :

$$\Gamma \vdash_{H_{\mathfrak{G}}} A \Rightarrow B \text{ si et seulement si } \Gamma, A \vdash_{H_{\mathfrak{G}}} B$$

(on pourra se servir du Théorème 1. de la déduction dans H).

3) Montrez que les formules suivantes sont des théorèmes du système H_{\emptyset} :

(a)
$$(A \circ B) \Rightarrow (B \Rightarrow (B \circ A))$$

(b)
$$(A \Rightarrow B) \Rightarrow (A \Rightarrow (B \circ A))$$

4) On propose deux interprétations possibles pour l'opérateur \circ : I_1 et I_2 définis par les tableaux de vérité suivants :

Interprétation I_1 :

A	B	A $\bigcirc B$
0	0	0
1	0	0
0	1	0
1	1	1

A	B	$A \circ B$
0	0	0
1	0	1
0	1	0
1	1	1

L'opérateur \Rightarrow s'interprète de manière usuel (voir rappel en début de page). On dit qu'une formule F est valide avec I_i , avec i=1,2, si pour toutes interprétations des variables propositionnelles on a $I_i(F)=1$.

Montrer que le système H_{\circlearrowleft} est correct avec l'interprétation I_2 ? (on admettra dans la suite qu'il est correct pour l'interprétation I_1).

- 5) La formule $A \circ B \Rightarrow B \circ A$ est-elle valide avec I_1 ? avec I_2 ? est-ce un théorème du système H_{\circ} ?
- 6) Le système $H_{\mathfrak{O}}$ avec l'interprétation I_1 est-il complet?

Exercice 3 ($\approx 10 \text{min}$)

On considère le système formel (Σ, F, A, R) où :

- $\Sigma = \{\sim, \square\}$;
- $\bullet \ F = \{x \square y \quad | \quad x,y \in {\sim^*}\};$
- $A = \{ \square \sim \};$
- R contient une règle définie par :

$$[R_1] \frac{x \square y}{\sim x \square yy}$$

- 1) Les formules suivantes sont-elles des théorèmes du système (justifier chaque réponse) :
 - $(i) \sim \sim \sim \square \sim \sim \sim \sim \sim$
 - $(ii) \sim \square \sim \sim \sim$
 - $(iii) \sim \square$
- 2) Donner une interprétation de ce système formel qui soit correcte et complête (Justifier chaque réponse).