

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ET	И	НФОРМАТІ	ИКА И СИСТЕМЫ У	ПРАВЛЕНИЯ			
КАФЕДРА	ЕДРАКОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ							
НАПРАВЛ гехника	ЕНИЕ ПО	ЭДГО	ОТОВКИ 09 .	.03.01 Информатика	и вычислительная			
			0	ТЧЕТ				
по лабораторной работе № 2								
Дисциплиі	на: Маши	інно-	зависимые я	ізыки и основы компи	ляции			
Название лабораторной работы: Программирование целочисленных вычислений								
Вариант: 17								
	Студент	гр.	ИУ6-43Б	04.03.2022 (Подпись, дата)	М.А. Мяделец (И.О. Фамилия)			
Преподаватель					М.В. Шипокова			

(Подпись, дата)

(И.О. Фамилия)

Программирование целочисленных вычислений

Цель работы: изучение форматов машинных команд, команд целочисленной арифметики ассемблера и программирование целочисленных вычислений.

Задание 1.

Рассмотрим задание для лабораторной работы 2 (смотри рисунок 1).

Лабораторная работ №2. Программирование целочисленных вычислений.

Вычислить целочисленное выражение:

$$c = \frac{a}{3} - k + (d+2) * 5$$

Рисунок 1 - Условие задания.

Поместим в оперативную память двухбайтовые значения:

- 1) a = 22
- 2) k = 5
- 3) d = -6

Рассмотрим некоторые операции и их результаты (смотри рисунок 2).

$$C = \frac{\alpha}{3} - \mathcal{K} + (d+2) \cdot 5$$

$$C = \frac{22}{3} - 5 + (-6+2) \cdot 5 = -18 = ff \cdot ee$$

$$\frac{22}{3} = \frac{7}{8} = \frac{$$

Рисунок 2 - Описание работы операций деления и умножения.

Реализуем данную задачу на языке ассемблера (смотри рисунки 3, 4).

```
section .data ; сегмент инициализированных переменных
           dw 22
    а
    k
           dw 5
5 ▼ d
          dw -6
           section .bss ; сегмент неинициализированных переменных
9 ▼ c
          resw 1
11
          section .text ; сегмент кода
12
           global _start
13 ▼ start:
           mov AX, [a]
14
15
16
           mov CX, 3
17
18
           cwd
           div CX
19
           sub AX, [k] ; (a / 3) - k
21
22
           mov BX, AX
23
24
           add word[d], 2 ; d + 2
           mov AX, [d]
25
           moν CX, 5
                         ; (d + 2) * 5
           imul CX
28
          add AX, BX; (a / 3) - k + (d + 2) * 5
30
31
           mov [c], AX
32
```

Рисунок 3 - Программа по вычислению выражения.

→ 0804:8080 Lab2_1!_start	66 a1 b8 90 04 08	mov ax, [0x80490b8]
0804:8086	66 b9 03 00	mov ∈x, 3
0804:808a	66 99	cwd
0804:808c	66 f7 f1	div cx
0804:808f	66 2b 05 ba 90 04 08	sub ax, [0x80490ba]
0804:8096	66 89 c3	mov bx, ax
0804:8099	66 83 05 bc 90 04 08	add word [0x80490bc], 2
0804:80a1	66 a1 bc 90 04 08	mov ax, [0x80490bc]
0804:80a7	66 b9 05 00	mov cx, 5
0804:80ab	66 f7 e9	imul cx
0804:80ae	66 01 d8	add ax, bx
0804:80b1	66 a3 c0 90 04 08	mov [0x80490c0], ax

Рисунок 4 - Машинный и дисассемблированный коды программы.

Рассмотрим подробнее некоторые операции в отладчике (смотри нижеприведенное объяснение и рисунки 5-8).

1) Операция деления (19 строчка на рисунке 4)

Рисунок 5 - Значения регистров после операции div.

Перед операцией необходимо расширить регистр AX до DX:AX командой CWD, чтобы деление выполнилось корректно.

$$\frac{DX:AX}{AX}$$
,

причем после выполнения операции в регистр DX помещается остаток.

2) Операция сложения (24 строчка на рисунке 3)

d + 2 = -6 + 2 = -4 = 1111 1111 1111 11100 (в дополнительном коде) = **ff fc** (в 16-ричной).

Рисунок 6 - Значения по адресу d.

3) Операция умножения (28 строчка на рисунке 3)

Рисунок 7 - Значения регистров после операции imul.

В регистр EDX помещается старшая часть результата после умножения. В нашем случае -4*5=-20, соответственно регистр DX будет содержать знаковый разряд.

4) Результат (32 строчка на рисунке 3)

Значение в памяти, которую символизирует имя С (итоговое значение совпало с ответом на рисунке 2)

Рисунок 8 - Значения по адресу С.

Задание 2. Расшифровка команд точ

Перевод строчки 1 (смотри рисунок 4).

Рисунок 9 - Перевод машинного кода 1

Перевод строчки 2 (смотри рисунок 4).

Рисунок 10 - Перевод машинного кода 2

Перевод строчки 3 (смотри рисунок 10).

Рисунок 11 - Перевод машинного кода 3

Контрольные вопросы

1) Что такое машинная команда? Какие форматы имеют машинные команды процессора IA32? Чем различаются эти форматы?

Машинная команда – команда процессоре (смотри рисунок 12).

Рисунок 12 - Общий формат команды процессора старших моделей

2) Назовите мнемоники основных команд целочисленной арифметики. Какие форматы для них можно использовать?

Add, sub, mul / imul, div / idiv, dec, inc

Форматы различаются по типам операндов: регистры, значения в оперативной памяти или литералы, а также по количеству операндов. Например, команда add принимает 2 операнда, mul и inc – один.

3) Сформулируйте основные правила построения линейной программы вычисления заданного выражения.

Определяем инициализированные и неинициализированные данные в оперативной памяти, далее расставляем порядок действий в выражении, в соответствие с которым последовательно выполняем команды целочисленной арифметики для получения ответа.

4) Почему ввод-вывод на языке ассемблера не программируют с использованием соответствующих машинных команд? Какая библиотека используется для организации ввода вывода в данной лабораторной?

Системные функции read и write осуществляют ввод и вывод данных в виде символьных строк. Для перевода числа в строку и обратно в библиотеке для выполнения лабораторных работ *lib.asm* предусмотрены подпрограммы *IntToStr* и *StrToInt* соответственно.

5. Расскажите, какие операции используют при организации ввода-вывода.

Для операции ввода-вывода используются следующие операции, которые подробно описаны в комментариях (смотри рисунок 13).

```
; write
mov
        eax, 4
                         ; системная функция 4 (write)
        ebx, 1
                         ; дескриптор файла stdout=1
mov
        ecx, ExitMsg
                          адрес выводимой строки
mov
        edx, lenExit
                         ; длина выводимой строки
mov
        80h
                         ; вызов системной функции
int
        eax, 3
                         ; системная функция 3 (read)
mov
mov
        ebx, 0
mov
        ecx, InBuf
                         ; адрес буфера ввода
mov
        edx, lenIn
                         ; размер буфера
        80h
                         ; вызов системной функции
int
                         ; системная функция 1 (exit)
mov
        eax, 1
xor
        ebx, ebx
int
        80h
                         ; вызов системной функции
```

Рисунок 13 – Шаблон для 32-разрядной системы

Вывод: была сделана лабораторная работа 2, которая была связана с программированием целочисленных вычислений. Было посчитано выражение, результат которого был помещен в оперативную память. В процессе выполнения задания были использованы команды целочисленной арифметики, применены знаковые расширения, проанализированы различия знаковых и беззнаковых команд div / idiv, mul / imul, а также произведен перевод машинных кодов на язык ассемблера. Результаты тестирования корректны, работы выполнена успешно.