Brief Electronics Project Portfolio

By Matthew Smith

Datasheet Values		Estimated Parameters	
I_{sc}	7.36 A	I_{pk}	7.36 A
V _{oc}	30.4 V	I _o	0.104 uA
V_{mpp}	24.2 V	A	1.310
I_{mpp}	6.83 A	R_s	0.251 ohms
n _s	50	R _{sh}	1168 ohms
Temperature Coefficients			
K,	0.057%	K_{ν}	-0.346%

Custom 5-parameter solar panel model shows good agreement with built in Simulink model

Real-time hardware solar panel simulator [work in progress]

Project Type: Hobby

Knowledge and Skills:

- Solar panel simulation with voltage and current control of 1 kW (0-80V output range) isolated full-bridge buck converter
- Simulation of solar panels for converter control based upon five-parameter photovoltaic model to allow simulation of arbitrary solar panels from easily found parameters (Voc, Isc, Vmpp, Impp)
- PFC Boost Rectifier input stage (universal input to 400 VDC) for solar panel simulator
- MPPT (incorporating extremum seeking controller) and single-phase grid tie inverter modules to be designed and developed to aid in testing and verification of the solar panel simulator
- Scale and complexity of project intended to help familiarise understanding and intricacies of all stages of design, modelling, and construction of high-power, isolated, power electronics converter, along with designing robust control systems for power electronics

High-speed high-linearity analog triangle wave generator

Project Type: Hobby

Knowledge and Skills:

- 1 MHz, high-linearity triangle wave generator using full-bridge bidirectional current steering
- Exercise in learning about higher speed, precision analog signal generation
- Small form-factor PCB designed in Kicad

Electronic Load (Bench Test Equipment)

Project Type: Hobby

Knowledge and Skills:

- Control loop design and stability analysis
- Thermal analysis and heat management solution design
- Input protection design (device protection)
- PCB design
- Electronics troubleshooting
- Firmware (external control of electronic load through software)

Outcome: Reliable electronic "dummy" load (0-30 V, 0-3 A) primarily used for testing project power supplies. For thermal management, the system has been designed to use an off-the-shelf CPU fan.

Early revision modified for troubleshooting (Populated PCB)

Portable IoT (Internet of things) Data Monitoring Device

Project Type: University Assessment

Knowledge and Skills:

- Analog circuit design
 - Component selection to meet budget (2 x devices for AUD\$100) and size constraints (another cost reduction strategy)
 - Low power circuitry design
 - PCB design to act as stackable board for a Sparkfun ESP32 Thing (commercially available microcontroller board)
- Firmware
 - Periodically poll sensor data (temperature, humidity, GPS data)
 - Tone detection (listening for select frequency)
 - Send secure data packets over WiFi via MQTT
 - Adhere to strict power consumption goals (<
 1.5 mW)

Outcome: Reliable data sensing and WiFi data logging while adhering to budget and power consumption

Portable ECG with QRS Wave (Heartbeat) Detection

Project Type: Assessment

Knowledge and Skills:

- Analog circuit design
 - Amplifier design
 - Analog signal filtering and conditioning
- Prototyping
 - Modular and compact prototype
- Electronic safety
 - Considerations for safety where a human forms part of the circuitry
- Digital signal processing on MCU
 - Digital signal filtering
 - Signal feature detection

Outcome: Reliable QRS wave detection even under noisy conditions.