Syntax-based Statistical Machine Translation

Philip Williams and Philipp Koehn

29 October 2014

- Part I Introduction
- Part II Rule Extraction
- Part III Decoding
- Part IV Extensions

What Do We Mean by Syntax-based SMT?

- "Syntax-based" is a very inclusive term. It refers to a large family of approaches:
 - Hiero, syntax-directed MT, syntax-augmented MT, syntactified phrasebased MT, tree-to-string, string-to-dependency, dependency tree-let-based, soft syntax, fuzzy tree-to-tree, tree-based, . . .
- We mean that the translation model uses a tree-based representation of language.
 - We don't count syntax-based preordering or syntactic LMs.
- We will focus on four widely-used approaches:
 - 1. Hierarchical phrase-based
 - 2. Tree-to-string

- 3. String-to-tree
- 4. Tree-to-tree

Why Use Syntax?

- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output
- Encourage grammatically coherent output
- Important step towards more linguistically motivated models (semantics)
- State-of-the art for some language pairs
 - Chinese-English (NIST 2008)
 - English-German (WMT 2012)
 - German-English (WMT 2013)

Statistical Machine Translation

Given a source string, s, find the target string, t^* , with the highest probability according to a distribution p(t|s):

$$t^* = \arg\max_t p(t|s)$$

- 1. Model a probability distribution p(t|s)
- 2. Learn the parameters for the model
- 3. Find or approximate the highest probability string t^*

Statistical Machine Translation

- 1. Model a probability distribution p(t|s)
 - How is syntax used in modelling?
- 2. Learn the parameters for the model
 - What are the parameters of a syntax-based model?
- 3. Find or approximate the highest probability string t^*
 - How do we decode with a syntax-based model?

Modelling p(t|s)

• Most SMT models use Och and Ney's (2002) log-linear formulation:

$$p(t|s) = \frac{\exp\left(\sum_{m=1}^{M} \lambda_m h_m(t,s)\right)}{\sum_{t'} \exp\left(\sum_{m=1}^{M} \lambda_m h_m(t',s)\right)}$$

 h_1, \ldots, h_M are real-valued functions and $\lambda_1, \ldots, \lambda_M$ are real-valued constants

• Denominator can be ignored during search:

$$t^* = \arg \max_{t} p(t|s)$$
$$= \arg \max_{t} \sum_{m=1}^{M} \lambda_m h_m(t,s)$$

Modelling p(t|s)

$$t^* = \arg\max_{t} \sum_{m=1}^{M} \lambda_m h_m(t, s) \tag{1}$$

- ullet In word-based models, s and t are modelled as sequences of words.
- ullet In phrase-based models, s and t are modelled as sequences of phrases.
- So what about syntax-based models?

Like phrase pairs. . .

But with nesting:

Hierarchical phrase pairs:

are modelled using Synchronous Context-Free Grammar (SCFG):

```
X \rightarrow ist \ dieser \ X_1 \mid , \ this \ one \ is \ X_1
```

 $\mathbf{X} \rightarrow nicht\ besonders\ \mathbf{X}_1 \mid not\ particularly\ \mathbf{X}_1$

 $\mathbf{x} \rightarrow schl\ddot{u}pfrig \mid juicy$

Rules can include up to two non-terminals:

$$X \rightarrow deshalb X_1 die X_2 \mid therefore the X_2 X_1 \ X \rightarrow X_1 und X_2 \mid X_1 and X_2$$

Glue rules concatenate hierarchical phrases:

$$S \rightarrow X_1 \mid X_1$$

$$S \rightarrow S_1 X_2 \mid S_1 X_2$$

- Synchronous Context-Free Grammar:
 - Rewrite rules of the form $\langle A, B \rangle \to \langle \alpha, \beta, \sim \rangle$
 - -A and B are source and target non-terminals, respectively
 - α and β are strings of terminals and non-terminals for the source and target sides, respectively.
 - $-\sim$ is a one-to-one correspondence between source and target non-terminals.
- Hiero grammars are a special case of SCFG:
 - One non-terminal type, X, on source side
 - Two non-terminal types, \boldsymbol{x} and \boldsymbol{s} , on target side
 - Various restrictions on rule form (see Chiang (2007))

 $S_1 \mid S_1$

• Derivation starts with pair of linked S symbols.

$$S_1 \mid S_1$$

$$\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3$$

•
$$s \rightarrow s_1 x_2 \mid s_1 x_2$$
 (glue rule)

$$S_1 \mid S_1$$

$$\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3$$

$$\Rightarrow S_2 \mid X_4 \mid Und \mid X_5 \mid S_2 \mid X_4 \mid Und \mid$$

• $X \rightarrow X_1 \ und \ X_2 \mid X_1 \ and \ X_2$

```
S_1 \mid S_1
\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3
\Rightarrow S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid X_4 \mid und \mid X_5
\Rightarrow S_2 \mid unzut reffend \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid X_5 \mid S_3 \mid unfounded \mid und \mid X_5 \mid S_3 \mid unfounded \mid und \mid X_5 \mid S_4 \mid unfounded \mid und \mid X_5 \mid S_5 \mid unfounded \mid und \mid X_5 \mid unfounded \mid und \mid
```

 \bullet X \rightarrow unzutreffend | unfounded

```
S_1 \mid S_1
\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3
\Rightarrow S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid X_4 \mid und \mid X_5
\Rightarrow S_2 \mid unzut reffend \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid unfounded \mid
```

• $x \rightarrow irref\"{u}hrend \mid misleading$

```
S_1 \mid S_1
\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3
\Rightarrow S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid unfounded \mid unfoun
```

• $s \rightarrow x_1 \mid x_1$ (glue rule)

```
S_1 \mid S_1
\Rightarrow S_2 \mid X_3 \mid S_2 \mid X_3
\Rightarrow S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid X_4 \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid X_5 \mid S_2 \mid unfounded \mid und \mid x_5 \mid S_2 \mid unfounded \mid und \mid unfounded \mid
```

• $x \rightarrow deshalb x_1 die x_2 \mid therefore the x_2 x_1$ (non-terminal reordering)

```
\begin{array}{l} \mathbf{S}_{1} \ | \ \mathbf{S}_{1} \\ \Rightarrow \ \mathbf{S}_{2} \ \mathbf{X}_{3} \ | \ \mathbf{S}_{2} \ \mathbf{X}_{3} \\ \Rightarrow \ \mathbf{S}_{2} \ \mathbf{X}_{4} \ und \ \mathbf{X}_{5} \ | \ \mathbf{S}_{2} \ \mathbf{X}_{4} \ and \ \mathbf{X}_{5} \\ \Rightarrow \ \mathbf{S}_{2} \ unzutreffend \ und \ \mathbf{X}_{5} \ | \ \mathbf{S}_{2} \ unfounded \ and \ \mathbf{X}_{5} \\ \Rightarrow \ \mathbf{S}_{2} \ unzutreffend \ und \ irref\"{u}hrend \ | \ \mathbf{S}_{2} \ unfounded \ and \ misleading} \\ \Rightarrow \ \mathbf{X}_{6} \ unzutreffend \ und \ irref\"{u}hrend \ | \ \mathbf{X}_{6} \ unfounded \ and \ misleading} \\ \Rightarrow \ deshalb \ \mathbf{X}_{7} \ die \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ \mathbf{X}_{7} \ unfounded \ and \ misleading} \\ \Rightarrow \ deshalb \ sei \ die \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\"{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\ddot{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\ddot{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\ddot{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \ irref\ddot{u}hrend \ | \ therefore \ the \ \mathbf{X}_{8} \ unzutreffend \ und \
```

 \bullet X \rightarrow sei | was

```
S_1 \mid S_1
    \Rightarrow S<sub>2</sub> X<sub>3</sub> | S<sub>2</sub> X<sub>3</sub>
    \Rightarrow S<sub>2</sub> X<sub>4</sub> und X<sub>5</sub> | S<sub>2</sub> X<sub>4</sub> and X<sub>5</sub>
    \Rightarrow S<sub>2</sub> unzutreffend und X<sub>5</sub> | S<sub>2</sub> unfounded and X<sub>5</sub>
    \Rightarrow S<sub>2</sub> unzutreffend und irreführend | S<sub>2</sub> unfounded and misleading
    \Rightarrow X<sub>6</sub> unzutreffend und irreführend | X<sub>6</sub> unfounded and misleading
    \Rightarrow deshalb x_7 die x_8 unzutreffend und irreführend
               therefore the X<sub>8</sub> X<sub>7</sub> unfounded and misleading
    \Rightarrow deshalb sei die x_8 unzutreffend und irreführend
               therefore the x_8 was unfounded and misleading
    ⇒ deshalb sei die Werbung unzutreffend und irreführend
               therefore the advertisement was unfounded and misleading
```

 \bullet X \rightarrow Werbung | advertisement

We can now define the search in terms of SCFG derivations

$$t^* = \arg\max_{t} \sum_{m=1}^{M} \lambda_m h_m(t, s) \tag{1}$$

$$= \arg\max_{t} \sum_{m=1}^{M} \lambda_{m} h_{m}(t, s, d) \tag{2}$$

 $d \in D$, the set of synchronous derivations with source s and yield t.

• In practice, approximated with search for single-best derivation:

$$d^* = \arg\max_{d} \sum_{m=1}^{M} \lambda_m h_m(t, s, d)$$
 (3)

• Search for single-best derivation:

$$d^* = \arg\max_{d} \sum_{m=1}^{M} \lambda_m h_m(t, s, d)$$
 (3)

• Rule-local feature functions allow decomposition of derivation scores:

$$h_m(d) = \sum_{r_i} h_m(r_i)$$

ullet But n-gram language model can't be decomposed this way. . .

$$d^* = \arg\max_{d} \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right) \tag{4}$$

• Summary so far:

- Generalizes concept of phrase pair to allow nested phrases
- Formalized using SCFG
- No use of linguistic annotation: syntactic in a purely formal sense
- Model uses standard SMT log-linear formulation
- Search over derivations

• Later:

- Rule extraction and scoring
- Decoding (search for best derivation)
- k-best extraction

Hierarchical phrase pairs but with embedded tree fragments on the source side:

Each source subphrase is a complete subtree.

Formalized using Synchronous Tree-Substitution Grammar (STSG):

- Synchronous Tree Substitution Grammar (STSG):
 - Grammar rules have the form $\langle \pi, \gamma, \sim \rangle$
 - $-\pi$ is a tree with source terminal and non-terminal leaves
 - $-\gamma$ is a string¹ of target terminals and non-terminals
 - $-\sim$ is a one-to-one correspondence between source and target non-terminals.

Unlike Hiero:

- Linguistic-annotation (on source-side)
- No limit to number of substitution sites (non-terminals)
- No reordering limit during decoding

 $^{^1 \}text{Technically, a 1-level tree formed by adding X as the root and the symbols from } \gamma$ as children.

- Derivation involves synchronous rewrites (like SCFG)
- Tree fragments required to match input parse tree.
 - Motivation: tree provides context for rule selection ("syntax-directed")
- Efficient decoding algorithms available: source tree constrains rule options
- Search for single-best derivation:

$$d^* = \arg\max_{d} \left(\lambda_1 \log p_{LM}(d) + \sum_{r_i} \sum_{m=2}^{M} \lambda_m h_m(r_i) \right)$$

where source-side of d must match input tree

String-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on the target side:

Each target subphrase is a complete subtree.

String-to-Tree

Formalized using STSG:

Or SCFG:

SBAR
$$\rightarrow f\ddot{u}r X_1 \mid as NP_1 go$$

NP $\rightarrow britische Skandale \mid British political scandals$

String-to-Tree

- Derivation is a rewriting process, like hierarchical phrase-based and tree-to-string
 - Rewrites only allowed if target labels match at substitution sites
 - Internal tree structure not used in derivation (hence frequent use of SCFG)
 - Motivation: constraints provided by target syntax lead to more fluent output

• Later:

- Rule extraction and scoring
- Decoding (Hiero will be special case of S2T)
- k-best extraction (likewise)

Tree-to-Tree

Hierarchical phrase pairs but with embedded tree fragments on both sides:

Formalized using STSG

Tree-to-Tree

Differences in source and target syntactic structure increasingly important

Can be differences in treebank annotation style or simply differences in language choice

Summary So Far

• We have introduced four models:

Model	Formalism	Source Syntax	Target Syntax	Input
Hiero	SCFG	N	N	string
T2S	STSG	Y	N	tree
S2T	STSG or SCFG	N	Υ	string
T2T	STSG	Υ	Υ	tree

- Next:
 - Rule extraction

- Part I Introduction
- Part II Rule Extraction
- Part III Decoding
- Part IV Extensions

Learning Synchronous Grammars

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - only one non-terminal symbol x
 - no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must also be parsed with syntactic parser

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Hierarchical Phrase Translation Rules

Formal Definition

Recall: consistent phrase pairs

$$(ar{e},ar{f})$$
 consistent with $A\Leftrightarrow$
$$\forall e_i\in ar{e}:(e_i,f_j)\in A o f_j\in ar{f}$$
 and $\forall f_j\in ar{f}:(e_i,f_j)\in A o e_i\in ar{e}$ and $\exists e_i\in ar{e},f_j\in ar{f}:(e_i,f_j)\in A$

ullet Let P be the set of all extracted phrase pairs (\bar{e},\bar{f})

Formal Definition

• Extend recursively:

$$\begin{split} \text{if } (\bar{e},\bar{f}) \in P \text{ and } (\bar{e}_{\text{SUB}},\bar{f}_{\text{SUB}}) \in P \\ \text{and } \bar{e} &= \bar{e}_{\text{PRE}} + \bar{e}_{\text{SUB}} + \bar{e}_{\text{POST}} \\ \text{and } \bar{f} &= \bar{f}_{\text{PRE}} + \bar{f}_{\text{SUB}} + \bar{f}_{\text{POST}} \\ \text{and } \bar{e} &\neq \bar{e}_{\text{SUB}} \text{ and } \bar{f} \neq \bar{f}_{\text{SUB}} \end{split}$$

$$\text{add } (e_{\text{PRE}} + \mathbf{X} + e_{\text{POST}}, f_{\text{PRE}} + \mathbf{X} + f_{\text{POST}}) \text{ to } P \end{split}$$

(note: any of e_{PRE} , e_{POST} , f_{PRE} , or f_{POST} may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

Comments

 Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$Y \rightarrow X_1 X_2 \mid X_2 \text{ of } X_1$$

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)

Learning Syntactic Translation Rules

Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 syntactic rules must cover constituents in the tree
- ◆ Hierarchical: gaps may cover any span
 ⇒ gaps must cover constituents in the tree

Much fewer rules are extracted (all things being equal)

Impossible Rules

Rules with Context

Too Many Rules Extractable

- Huge number of rules can be extracted
 (every alignable node may or may not be part of a rule → exponential number of rules)
- Need to limit which rules to extract
- Option 1: similar restriction as for hierarchical model (maximum span size, maximum number of terminals and non-terminals, etc.)
- Option 2: only extract minimal rules ("GHKM" rules)

Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Extracted rule: $PRP \rightarrow Ich \mid I$

Extracted rule: $PRP \rightarrow Ihnen \mid you$

Extracted rule: DT \rightarrow die | some

Extracted rule: NNS → Anmerkungen | comments

Insertion Rule

Extracted rule: $PP \rightarrow X \mid to PRP$

Non-Lexical Rule

Extracted rule: NP \rightarrow X₁ X₂ | DT₁ NNS₂

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow X_1 X_2$ aushändigen | passing on $PP_1 NP_2$

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow werde \ X \mid shall \ be \ VP$ (ignoring internal structure)

Non-Lexical Rule

Extracted rule: $S \rightarrow X_1 X_2 \mid PRP_1 VP_2$

DONE — note: one rule per alignable constituent

Unaligned Source Words

Attach to neighboring words or higher nodes \rightarrow additional rules

Too Few Phrasal Rules?

- Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)
- But: phrasal rules very beneficial in phrase-based models
- Solutions
 - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
 - compose minimal rules to cover a maximum number of non-leaf nodes

Composed Rules

• Current rules

$$X_1 X_2 = NP$$

$$\widehat{DT_1 NNS_1}$$

$$die = DT$$
 $some$

• Composed rule

(1 non-leaf node: NP)

Composed Rules

• Minimal rule: $X_1 \ X_2 \ aushändigen = VP$ 3 non-leaf nodes: $VP, \ PP, \ NP$ PRP PRP PP1 NP2

passing on

• Composed rule: Ihnen x_1 aushändigen = VP 3 non-leaf nodes: v_{PRP} PRP v_{PRP} PP v_{PRP} v_{PRP} v

Relaxing Tree Constraints

• Impossible rule

$$X = MD VB$$
 werde shall be

- Create new non-terminal label: MD+VB
- \Rightarrow New rule

$$\begin{array}{rcl}
x & = & MD + VB \\
\text{werde} & & \widehat{MD} & VB \\
& & \text{shall be}
\end{array}$$

Zollmann Venugopal Relaxation

- If span consists of two constituents, join them: X+Y
- If span conststs of three constituents, join them: X+Y+Z
- If span covers constituents with the same parent x and include
 - every but the first child Y, label as $X \setminus Y$
 - every but the last child Y, label as X/Y
- For all other cases, label as FAIL

⇒ More rules can be extracted, but number of non-terminals blows up

Special Problem: Flat Structures

• Flat structures severely limit rule extraction

• Can only extract rules for individual words or entire phrase

Relaxation by Tree Binarization

More rules can be extracted Left-binarization or right-binarization?

Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - rule application probability: $p(RHS_f, RHS_e|LHS)$
 - direct translation probability: $p(RHS_e|RHS_f, LHS)$
 - noisy channel translation probability: $p(RHS_f|RHS_e, LHS)$
 - lexical translation probability: $\prod_{e_i \in RHS_e} p(e_i | RHS_f, a)$
- Edinburgh's WMT System:
 - $p(RHS_e, LHS|RHS_f)$ and $p(RHS_f|RHS_e, LHS)$
 - lexical translation probability: $\prod_{e_i \in RHS_e} p(e_i | RHS_f, a)$
 - PCFG probability of tree fragment: $p_{pefq}\left(\pi\right)$
 - rule rareness and rule count penalties: $\exp(-1/count(r))$ and $\exp(1)$

- Part I Introduction
- Part II Rule Extraction
- Part III Decoding
- Part IV Extensions

Outline

- 1. Hiero/S2T decoding (SCFG with string input)
 - Viterbi decoding with local features (-LM)
 - k-best extraction
 - LM integration (cube pruning)
 - The S2T algorithm, as implemented in Moses
- 2. T2S decoding (STSG with tree input)
 - Vanilla T2S: non-directional, cube pruning
- 3. T2T decoding (STSG with tree input)
 - Included for completeness better alternatives explored later

Viterbi S2T Decoding (-LM)

Find the highest-scoring synchronous derivation d^* **Objective**

- C_i , α_i and β_i are LHS, source RHS, target RHS of rule r_i , respectively.
- w_i is weight of rule r_i (weighted product of rule-local feature functions).
- \bullet |G| is the number of rules in the grammar G.

 $w_{|G|}$

Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d^*

Solution

1. Project grammar

Project weighted SCFG to weighted CFG $f: G \rightarrow G'$ (many-to-one rule mapping)

2. Parse

Find Viterbi parse of sentence wrt G'

3. Translate

Produce synchronous tree pair by applying inverse projection f'

Example

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
\rightarrow Josef K. | Josef K.
                                                                                                        0.90
r_1:
              \rightarrow verleumdet | slandered
                                                                                                        0.40
      VBN
              \rightarrow verleumdet | defamed
                                                                                                        0.20
      VBN
              \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                        0.10
r_{4}:
       VP
              \rightarrow jemand X_1 | someone VP_1
                                                                                                        0.60
r_5:
              \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1
                                                                                                        0.80
r_6:
              \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                        0.05
r_7:
```

(Six derivations in total)

jemand mußte Josef K. verleumdet haben Input

Source

someone must Josef K. slandered have

Grammar

```
NP \rightarrow Josef K. | Josef K.
\Rightarrow r_1:
                 \rightarrow verleumdet | slandered
                                                                                                                   0.40
\Rightarrow r_2:
          VBN
                   \rightarrow verleumdet | defamed
                                                                                                                   0.20
          VBN
\Rightarrow r_4:
                 \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                   0.10
         VP
\Rightarrow r_5: S \rightarrow jemand X_1 \mid someone VP_1
                                                                                                                   0.60
        S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                   0.80
   r_6:
                   \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                                   0.05
   r_7:
```

Target

Derivation 1

0.90

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP \rightarrow Josef K. | Josef K.
                                                                                                                   0.90
\Rightarrow r_1:
                 \rightarrow verleumdet | slandered
                                                                                                                   0.40
          VBN
                   \rightarrow verleumdet | defamed
                                                                                                                   0.20
\Rightarrow r_3:
          VBN
         VP \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                   0.10
\Rightarrow r_4:
\Rightarrow r_5: S \rightarrow jemand X_1 \mid someone VP_1
                                                                                                                   0.60
        S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                   0.80
   r_6:
                   \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                                   0.05
   r_7:
```

Target

Derivation 2

Source

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP \rightarrow Josef K. | Josef K.
                                                                                                                   0.90
\Rightarrow r_1:
                 \rightarrow verleumdet | slandered
                                                                                                                   0.40
\Rightarrow r_2:
          VBN
                   \rightarrow verleumdet | defamed
                                                                                                                   0.20
          VBN
                   \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                   0.10
         S \rightarrow jemand X_1 \mid someone VP_1
   r_5:
                                                                                                                   0.60
\Rightarrow r_6: S \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN<sub>2</sub> NP<sub>1</sub>
                                                                                                                   0.80
              S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \ | \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                   0.05
```

Source Target

Derivation 3

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

 $NP \rightarrow Iosef K \mid Iosef K$

Grammar

→ / 1.	111	/		0.50
r_2 :	VBN	\rightarrow	$verleumdet \mid slandered$	0.40
$\Rightarrow r_3$:	VBN	\rightarrow	$verleumdet \mid defamed$	0.20
r_4 :	VP	\rightarrow	$mu\beta te \ X_1 \ X_2 \ haben \mid must \ have \ VBN_2 \ NP_1$	0.10
r_5 :	\mathbf{S}	\rightarrow	$jemand X_1 \mid someone VP_1$	0.60
$\Rightarrow r_6$:	\mathbf{S}	\rightarrow	$jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1$	0.80
r_7 :	\mathbf{S}	\rightarrow	jemand mußte X ₁ X ₂ haben NP ₁ must have been VBN ₁ by someone	0.05

Source Target

Derivation 4

0.90

Input jemand mußte Josef K. verleumdet haben

someone must Josef K. slandered have

Grammar

```
NP \rightarrow Josef K. | Josef K.
                                                                                                                      0.90
\Rightarrow r_1:
                  \rightarrow verleumdet | slandered
                                                                                                                      0.40
\Rightarrow r_2:
          VBN
                   \rightarrow verleumdet | defamed
                                                                                                                      0.20
          VBN
                   \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                      0.10
   r_{4}:
          VP
                   \rightarrow jemand X_1 | someone VP_1
                                                                                                                      0.60
   r_5:
              S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1
                                                                                                                      0.80
   r_6:
              S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \ | \ NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                      0.05
\Rightarrow r_7:
```

Source Target

Derivation 5

jemand mußte Josef K. verleumdet haben Input

someone must Josef K. slandered have

Grammar

$\Rightarrow r_1$:	NP	\rightarrow	$Josef\ K.\ \ Josef\ K.$	0.90
r_2 :	VBN	\rightarrow	$verleumdet \mid slandered$	0.40
$\Rightarrow r_3$:	VBN	\rightarrow	$verleumdet \mid defamed$	0.20
r_4 :	VP	\rightarrow	$mu\beta te \ \mathrm{X}_1 \ \mathrm{X}_2 \ haben \mid must \ have \ \mathrm{VBN}_2 \ \mathrm{NP}_1$	0.10
r_5 :	\mathbf{S}	\rightarrow	$jemand X_1 \mid someone VP_1$	0.60
r_6 :	\mathbf{S}	\rightarrow	$jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid someone \ must \ have \ VBN_2 \ NP_1$	0.80
$\Rightarrow r_7$:	\mathbf{S}	\rightarrow	jemand mußte X_1 X_2 haben NP ₁ must have been VBN ₁ by someone	0.05

Source Target

Derivation 6

G	$egin{array}{c} r_1: & r_2: & & & & & & & & & & & & & & & & & & &$	NP VBN VP S S	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.90 0.40 0.20 0.10 0.60 0.80 0.05
G'	q_1 : q_2 : q_3 : q_4 : q_5 :	NP VBN VP S	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Josef K. verleumdet mußte NP VBN haben jemand VP jemand mußte NP VBN haben	0.90 0.40 0.10 0.60 0.80

 \bullet G is original synchronous grammar, G' is monolingual projection

```
NP \rightarrow Josef K. \mid Josef K.
                                                                                                                               0.90
          \Rightarrow r_1:
                     VBN \rightarrow verleumdet \mid slandered
                                                                                                                               0.40
                     VBN \rightarrow verleumdet \mid defamed
                                                                                                                               0.20
              r_3:
G
                             \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                               0.10
              r_{4}:
                             \rightarrow jemand X_1 | someone VP_1
                                                                                                                              0.60
              r_5:
                             \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1
                                                                                                                              0.80
                             \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                                              0.05
              r_7:
                                                                                                                               0.90
                      NP \rightarrow Josef K.
          \Rightarrow q_1:
                             \rightarrow verleumdet
                                                                                                                               0.40
                     VBN
G'
                             \rightarrow mu\beta te \text{ NP VBN } haben
                                                                                                                               0.10
              q_3:
                             \rightarrow jemand VP
                                                                                                                               0.60
              q_4:
                             \rightarrow jemand mußte NP VBN haben
                                                                                                                              0.80
              q_5:
```

Projected rule gets LHS and source RHS (but with target non-terminal labels)

```
NP \rightarrow Josef K. \mid Josef K.
                                                                                                                              0.90
              r_1:
                    VBN \rightarrow verleumdet \mid slandered
                                                                                                                              0.40
                    VBN \rightarrow verleumdet \mid defamed
                                                                                                                              0.20
          \Rightarrow r_3:
G
                             \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                              0.10
              r_{4}:
                             \rightarrow jemand X_1 | someone VP_1
                                                                                                                              0.60
              r_5:
                             \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1
                                                                                                                              0.80
                             \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                                              0.05
              r_7:
                                                                                                                              0.90
                      NP
                             \rightarrow Josef K.
              q_1:
          \Rightarrow q_2:
                    VBN
                             \rightarrow verleumdet
                                                                                                                              0.40
G'
                             \rightarrow mu\beta te \text{ NP VBN } haben
                                                                                                                              0.10
                             \rightarrow jemand VP
                                                                                                                              0.60
              q_4:
                             \rightarrow jemand mußte NP VBN haben
                                                                                                                              0.80
              q_5:
```

• Many-to-one: weight of projected rule is the best from set of projecting rules

```
NP \rightarrow Josef K. \mid Josef K.
                                                                                                                               0.90
              r_1:
                     VBN \rightarrow verleumdet \mid slandered
                                                                                                                               0.40
                     VBN \rightarrow verleumdet \mid defamed
                                                                                                                               0.20
              r_3:
G
                             \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                               0.10
          \Rightarrow r_{A}:
                             \rightarrow jemand X_1 | someone VP_1
                                                                                                                              0.60
                             \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1
                                                                                                                              0.80
                             \rightarrow jemand mußte X_1 X_2 haben | NP<sub>1</sub> must have been VBN<sub>1</sub> by someone
                                                                                                                              0.05
              r_7:
                                                                                                                               0.90
                           \rightarrow Josef K.
                       NP
              q_1:
                             \rightarrow verleumdet
                                                                                                                               0.40
                     VBN
G'
                             \rightarrow mu\beta te \text{ NP VBN } haben
          \Rightarrow q_3:
                                                                                                                               0.10
                       VP
                             \rightarrow jemand VP
                                                                                                                               0.60
              q_4:
                         S \rightarrow jemand mu\beta te NP VBN haben
                                                                                                                              0.80
              q_5:
```

• Target non-terminal labels projected to monolingual rule (in source order)

```
NP \rightarrow Josef K. \mid Josef K.
                                                                                                                              0.90
              r_1:
                     VBN \rightarrow verleumdet \mid slandered
                                                                                                                              0.40
                     VBN \rightarrow verleumdet \mid defamed
                                                                                                                             0.20
G
                             \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                             0.10
              r_{4}:
                    S \rightarrow jemand X_1 \mid someone VP_1
                                                                                                                             0.60
          \Rightarrow r_5:
                             \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1
                                                                                                                             0.80
                        S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                             0.05
              r_7:
                                                                                                                              0.90
                           \rightarrow Josef K.
                      NP
              q_1:
                             \rightarrow verleumdet
                    VBN
                                                                                                                             0.40
G'
                             \rightarrow mu\beta te \text{ NP VBN } haben
                                                                                                                             0.10
              q_3:
                    s \rightarrow jemand VP
                                                                                                                              0.60
          \Rightarrow q_4:
                        S \rightarrow jemand mu\beta te NP VBN haben
                                                                                                                             0.80
```

• And so on. . .

```
NP \rightarrow Josef K. \mid Josef K.
                                                                                                                               0.90
              r_1:
                                                                                                                               0.40
                     VBN \rightarrow verleumdet \mid slandered
                     VBN \rightarrow verleumdet \mid defamed
                                                                                                                               0.20
              r_3:
G
                              \rightarrow mu\beta te X_1 X_2 haben \mid must have VBN_2 NP_1
                                                                                                                               0.10
              r_{4}:
                             \rightarrow jemand X_1 | someone VP_1
                                                                                                                               0.60
           \Rightarrow r_6: S \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN<sub>2</sub> NP<sub>1</sub>
                                                                                                                               0.80
          \Rightarrow r_7:
                        S \rightarrow jemand \ mu\beta te \ X_1 \ X_2 \ haben \mid NP_1 \ must \ have \ been \ VBN_1 \ by \ someone
                                                                                                                               0.05
                                                                                                                               0.90
                            \rightarrow Josef K.
                       NP
              q_1:
                              \rightarrow verleumdet
                     VBN
                                                                                                                               0.40
G'
                             \rightarrow mu\beta te \text{ NP VBN } haben
                                                                                                                               0.10
              q_3:
                     s \rightarrow jemand VP
                                                                                                                               0.60
              q_4:
                         s \rightarrow jemand mu\beta te NP VBN haben
                                                                                                                               0.80
```

• And so on.

Step 2: Find Viterbi Parse

- Standard weighted parsing algorithms.
- Binarization can be explicit (like CYK) or implicit (like Earley / CYK+)

1-best parse tree

Source-side parse tree

1-best parse tree Source-side parse tree

• Source-side: replace non-terminals with Xs

1-best parse tree

Source-side parse tree

• Target-side: invert grammar projection

1-best parse tree

Source-side parse tree

• Target-side: invert grammar projection

$$NP \rightarrow Josef K. \mid Josef K.$$

1-best parse tree Source-side parse tree Source-side parse tree Josef K. verleumdet Source-side parse tree

• Target-side: invert grammar projection (multiple rules? pick highest-scoring)

```
VBN \rightarrow verleumdet | slandered 0.4

VBN \rightarrow verleumdet | defamed 0.2
```

1-best parse tree Source-side parse tree

Target-side: invert grammar projection (multiple rules? pick highest-scoring)

```
S \rightarrow jemand mußte X_1 X_2 haben | someone must have VBN_2 NP_1 0.80
S \rightarrow jemand mußte X_1 X_2 haben | NP_1 must have been VBN_2 by someone 0.05
```

k-best Extraction

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Well. . .

- 1. 1-best derivation is 1-best monolingual parse tree with best set of translations
- 2. 2-best is one of
 - (a) 1-best monolingual parse tree with second best set of translations, and
 - (b) 2-best monolingual parse tree with best translations
- 3. 3-best derivation is 'the other one' or one of
 - (a) 1-best monolingual parse tree with third best set of translations, and
 - (b) 2-best monolingual parse tree with second best translations, and
 - (c) 3-best monolingual parse tree with best translations
- 4. 4-best derivation is 'one of what's left' or . . .

k-best Extraction

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Well. . .

- 1. 1-best derivation is 1-best monolingual parse tree with best set of translations
- 2. 2-best is one of
 - (a) 1-best monolingual parse tree with second best set of translations, and
 - (b) 2-best monolingual parse tree with best translations

3. . . .

We know part of the solution: how to get the k-best monolingual derivations (Huang and Chiang, 2005)

Digression: Parsing and Hypergraphs

Digression: Parsing and Hypergraphs

- Generalization of a graph: hyperedges connect two sets of vertices
- Terminology: vertices and hyperedges (nodes and arcs)
- A parse forest can be represented by a rooted, connected, labelled, directed, acyclic hypergraph (Klein and Manning, 2001)
- Vertices represent parsing states; hyperedges represent rule applications

Monolingual *k*-best Extraction

Huang and Chiang (2005) provide efficient algorithms for k-best extraction.

Objective

Extract the k-best monolingual derivations $d_1, d_2, \dots d_k$ from a weighted parse forest

Outline (alg. 3)

- 1. The 1-best subderivation for every vertex (and its incoming hyperedges) is known from the outset
- 2. Given the i-best derivation, the next best candidate along the same hyperedge is identical except for a substitution at a single incoming vertex
- 3. At the top vertex, generates candidates by recursively asking predecessors for next best subderivations.
- 4. Maintain priority queue of candidates at each vertex

Synchronous k-best Extraction

Replace hyperedges according to f' (invert grammar projection)

- ullet The standard k-best extraction algorithm now gives the k-best synchronous derivations.
- The second hypergraph is sometimes called a "translation hypergraph".
- We'll call the first the "parse forest hypergraph" or the "parse hypergraph."

S2T Decoding (LM-) Summary

Objective

Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Solution

1. Project grammar

Project weighted SCFG to unweighted CFG $f: G \rightarrow G'$ (many-to-one)

2. Parse

Build parse hypergraph wrt G'

3. Invert projection

Expand hypergraph by replacing hyperedges according to f'

4. Extract derivations

Extract k-best derivations using Huang and Chiang's (2005) algorithm

LM Integration

Without LM

k-best derivation is k-best path through translation hypergraph

Optimal substructure

If global best path includes ${
m VBN_{4,4}}$ then best path must include hyperedge labelled r_2

LM Integration

Consider the two paths that include the hyperedge labelled r_6 :

What's the best path through this hypergraph? For bi-gram LM we need to compute:

```
have slandered Josef p(\text{have} \mid \langle \mathbf{s} \rangle) \times p(\text{slandered} \mid \text{have}) \times p(\text{Josef} \mid \text{slandered}) \times \dots have defamed Josef p(\text{have} \mid \langle \mathbf{s} \rangle) \times p(\text{defamed} \mid \text{have}) \times p(\text{Josef} \mid \text{defamed}) \times \dots
```

State Splitting?

Restore optimal substructure property by splitting states:

- Vertex labels include first and last words of translation.
- Hyperedges labelled with weights that incorporate LM costs.
- *k*-best derivation is *k*-best path.

State Splitting?

Objective

Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Potential Solution

- 1. Project grammar Project weighted SCFG to weighted CFG $f: G \rightarrow G'$
- 2. Parse Build parse hypergraph wrt G'
- Invert projection + split states
 Expand hypergraph by replacing hyperedges according to f'. During replacement, split states and add LM costs
- 4. Extract derivations Extract k-best derivations (Huang and Chiang, 2005)

State Splitting?

- ullet Pick a search vertex for $\left(\begin{array}{c} NP_{3,4} \end{array} \right)$ from the set $\left\{ \begin{array}{c} \left(\begin{array}{c} NP_{3,4,Josef\ K.} \end{array} \right) \end{array} \right\}$
- ullet Pick a search vertex for $\left(v_{BN_{5,5}} \right)$ from the set $\left\{ \left(v_{P_{5,5,slandered}} \right), \left(v_{P_{5,5,defamed}} \right) \right\}$
- ullet Pick a synchronous rule from the set $f'(q_5)=\{r_6,r_7\}$ (i.e. pick a target-side)

The full set is generated by taking the Cartesian product of these three sets.

The Search Hypergraph is Too Large. . .

The parse hypergraph has $O(n^3)$ space constraints (assuming certain grammar properties. . .)

With a m-gram LM the search hypergraph is much larger:

	Vertices	Hyperedges
Parse	$O(n^2 C)$	$O(n^3 G)$
Search	$O(n^2 C T ^{2(m-1)})$	$O(n^3 G T ^{2A(m-1)})$

C is the set of target non-terminals n is the input sentence length T is the set of target-side terminals m is the order of the LM A is the maximum rule arity

Heuristic Search

- In practice, only part of the search hypergraph can be explored.
- During search, a partial search hypergraph is generated in topological order.
- Three main strategies for reducing search space:
 - Parse forest pruning Avoid splitting some parse forest hyperedges by prepruning the forest (methods can be exact or inexact).
 - **Heuristic best-first splitting** e.g. cube pruning. Use a splitting algorithm that finds expanded hyperedges in approximately best-first order.
 - **Beam search** Bin vertices according to source word span and category. Keep only the highest-scoring vertices for use later in the search.

Strategy 1: Parse Forest Pruning

- If parse forest is constructed in full prior to search then dead-ends can be pruned away.
- State splitting can be restricted to a small subset of promising hyperedges.
 - Moses ranks hyperedges according to -LM rule cost plus sums of incoming +LM vertex costs.
- Monolingual forest pruning methods (Inside-outside estimates, see e.g. Charniak and Johnson (2005)).

(Forest pruning methods haven't been widely explored in the MT literature.)

Strategy 2: Heuristic Best-First State Splitting

• For every hyperedge in the parse hypergraph, there can be very many corresponding hyperedges in the search hypergraph.

• Cube pruning (Chiang, 2007) is most widely-used approximate algorithm but see Heafield et al. (2013) for a faster alternative.

Cube Pruning

Arrange all the choices in a "cube"

(here: a square, generally an orthotope, also called a hyperrectangle)

Create the First Hyperedge

• Hyperedges created in cube: (0,0)

"Pop" Hyperedge

- ullet Hyperedges created in cube: ϵ
- Hyperedges popped: (0,0)

Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,0)
- Hyperedges popped: (0,0)

Pop Best Hyperedge

- Hyperedges created in cube: (0,1)
- Hyperedges popped: (0,0), (1,0)

Create Neighboring Hyperedges

- Hyperedges created in cube: (0,1), (1,1), (2,0)
- Hyperedges popped: (0,0), (1,0)

More of the Same

- Hyperedges created in cube: (0,1), (1,2), (2,1), (2,0)
- Hyperedges popped: (0,0), (1,0), (1,1)

Queue of Cubes

- Many parse hyperedges for any given span
- Each of them will have a cube
- We can create a queue of cubes
- ⇒ Always pop off the most promising hyperedge, regardless of cube

• May have separate queues for different target constituent labels

Strategy 3: Beam search

- Bin vertices according to source word span and category.
- Keep only the highest-scoring vertices for use later in the search.

Putting it All Together: The S2T Decoding Algorithm in Moses

Objective

Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Outline

1. Project grammar

Project weighted SCFG to weighted CFG $f: G \rightarrow G'$

2. Interleaved parse + search

Span-by-span, build parse hypergraph wrt G^\prime and build partial search hypergraph

3. Extract derivations

Extract k-best derivations (Huang and Chiang, 2005)

- Vertices of the parse hypergraph are stored in a chart (includes input sentence)
- Hyperedges are enumerated but not stored in chart
- Terminology: PChart, PVertex, PHyperedge

- Parser generates PHyperedges for given span of PChart
- Parser has access to partially-completed PChart
- For now, the parser is a black-box component but we'll return to parsing. . .

- Vertices of the search hypergraph are stored in a chart (includes input sentence)
- Vertices are stored in stacks (one per span + category), which are sorted
- Hyperedges are stored (unlike in PChart)
- Terminology: SChart, SVertex, SHyperedge

- Cube pruning algorithm (or similar) produces SHyperedges from PHyperedges
- A single SVertex can be produced multiple times so must check for this ('recombination')

The Moses S2T Decoding Algorithm

```
1: initialize PChart and SChart by adding vertices for input words
 2: for each span (in parser-defined order) do
      p-hyperedges = ForestPrune(parser.EnumerateHyperedges(span, p-chart), s-chart)
     for all p-hyperedges do
 4:
        create a cube for it
 5:
        create first s-hyperedge in cube
 6:
        place cube in queue
 7:
     end for
 8:
     for specified number of pops do
 9:
        pop off best s-hyperedge of any cube in queue
10:
        add it to a category-specific buffer
11:
        create its neighbors
12:
     end for
13:
     for category do
14:
        recombine s-hyperedges from buffer and move into s-chart stack
15:
        sort stack
16:
     end for
17:
18: end for
```

Parsing for S2T Decoding

- Parser's job is to enumerate PHyperedges, span-by-span.
- Parser has access to partially-filled PChart.

Parsing for S2T Decoding

- Can we just use CYK / CYK+ / Earley?
 - All require binarization (implicit or explicit).
 - Wasn't a problem for Viterbi -LM case.
- **Idea 1** Binarize G'
 - Binary normal forms exist for monolingual CFG grammars.
 - But we still need to know the synchronous rules for +LM search.
- Idea 2 Binarize G before projection to CFG
 - Binarization impossible for some SCFG rules with rank ≥ 4
 - Not necessarily a problem: non-binarizable cases are rare in word-aligned translation data (Zhang et al., 2006)
 - But tricky in practice: how do we weight rules? And what about grammar inflation?

How to Avoid Binarization

• Hopkins and Langmead (2010) define a grammar property called scope:

Pattern	Scope	Pattern	Scope
abcde	0	a ⋄ ⋄ ⋄ e	2
a ⋄ c ⋄ e	0	♦ b c d ♦	2
a ⋄ ⋄ d e	1	♦ ♦ c d ♦	3
♦ b c d e	1	$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$	6

- They prove that a sentence of length n can be parsed with a scope k grammar in O(nk) chart updates without binarization.
- They demonstrate empirically that reducing a GHKM grammar to scope-3 by pruning does not harm translation quality compared to synchronous binarization (and pruning is much simpler).
- Chung et al. (2011) perform similar comparison and achieve same result.

Specialized Parsing Algorithms

- CYK+ and Earley are popular choices for S2T decoding.
- But storing large numbers of dotted rules is problematic in practice (Chung et al. 2011 find scope-3 slower than binarized grammar with Earley parser, which they attribute to dotted rule storage).
- Several parsing algorithms have been designed specifically for synchronous translation grammars: DeNero et al. (2009), Hopkins and Langmead (2010), Sennrich (2014).
- We use Sennrich (2014)'s recursive variant of CYK+:
 - Good performance on WMT-scale task: fast, low-memory overhead
 - Simpler than CYK+ and alternatives
 - No dotted rule storage

Parsing for S2T Decoding (Moses-style)

```
\begin{array}{lll} q_1\colon & \operatorname{NP} & \to & Josef \ K. \\ q_2\colon & \operatorname{VBN} & \to & verleum det \\ q_3\colon & \operatorname{VP} & \to & mu\beta te \ \operatorname{NP} \ \operatorname{VBN} \ haben \\ q_4\colon & \operatorname{S} & \to & jemand \ \operatorname{VP} \\ q_5\colon & \operatorname{S} & \to & jemand \ mu\beta te \ \operatorname{NP} \ \operatorname{VBN} \ haben \end{array}
```


- \bullet Projected grammar G' is represented as a trie (sometimes called a prefix tree)
- Edges are labelled with terminals and non-terminals
- Labels along path (from root) represent prefix of rule RHS
- ullet Vertices in black are associated with group of rules from G (sub-grouped by rule LHS)

- Sennrich (2014)'s parsing algorithm visits cells in right-to-left, depth-first order.
- We consider situation where all of PChart filled except for left-most diagonal.
- Recall that PVertices are stored, but PHyperedges are not.

- Tail prefix: []
- Recursion level: 0

- Tail prefix: []
- Recursion level: 0
- Look for edge labelled 'jemand' at root node

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 0
- Look for edge labelled 'jemand' at root node found

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 0
- Check for rules at current node none

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 0
- Now visit each cell along previous diagonal (recursive step)

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 1
- Look for edge labelled 'mußte' at current node

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 1
- Look for edge labelled 'mußte' at current node found

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 1
- Now visit each cell along previous diagonal

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'Josef' at current node

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'Josef' at current node not found

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 2
- Look for edge labelled 'NP' at current node

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}]$
- Recursion level: 2
- Look for edge labelled 'NP' at current node found

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}]$
- Recursion level: 3
- And so on...

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}]$
- Recursion level: 3
- And so on...

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]$
- Recursion level: 4
- And so on...

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]$
- Recursion level: 4
- At this point we add a PVertex for each LHS from trie node's rule group

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]$
- Recursion level: 4
- At this point we add a PVertex for each LHS from trie node's rule group

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]$
- Recursion level: 4
- Together the PVertex and tail prefix constitute a complete PHyperedge.

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}, haben_{6,6}]$
- Recursion level: 4
- Reached end of sentence, so now the recursion stack unwinds

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}, VBN_{5,5}]$
- Recursion level: 3
- The recursion stack unwinds. . .

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}, NP_{3,4}]$
- Recursion level: 2
- The recursion stack unwinds. . .

- Tail prefix: $[jemand_{1,1}, mußte_{2,2}]$
- Recursion level: 1
- The parser continues trying to extend the tail. . .

- Tail prefix: $[jemand_{1,1}]$
- Recursion level: 1
- The parser continues trying to extend the tail. . .

- Tail prefix: $[jemand_{1,1}, VP_{2,6}]$
- Recursion level: 1
- ullet PVertex $S_{1,6}$ has already been added, but new tail means new PHyperedge

Decoding Performance in Practice

- S2T Moses system trained using all English-German data from WMT14
- Span limit can be used to reduce decoding time (limit is typically 10-15 for Hiero; can be higher or unlimited for S2T)

String-to-Tree Decoding - Summary

- Input sentence is a string.
- Decoding algorithm based on monolingual parsing.
- Hiero decoding is special-case of S2T decoding.
- To integrate a m-gram LM, the parse forest hypergraph is expanded to a (much-larger) search hypergraph.
- Heavy pruning is required in practice.

Tree-to-String Decoding

Reminder

• Translation rules are STSG rules with source-side syntax

• Input is parse tree

Outline

Objective Find the k-best synchronous derivations $d_1, d_2, \dots d_k$

Outline

1. Project grammar

Project weighted STSG to unweighted TSG $f:G \to G'$

2. Match rules

Find rules from G^{\prime} that match input tree, record in match hypergraph

3. Search

In post-order traversal of match hypergraph, build partial search hypergraph

4. Extract derivations

Extract k-best derivations (Huang and Chiang, 2005)

Step 1: Project Grammar

• Take source-side of rule, ignore weights.

Step 2: Match Rules, Build Match Hypergraph

• Look for rules that match input tree

Step 2: Match Rules, Build Match Hypergraph

• For each matching rule, add hyperedge to match hypergraph

Step 2: Match Rules, Build Match Hypergraph

ullet Match hypergraph encodes forest of possible derivation trees from G'

Step 3: Build Partial Search Hypergraph

- Cube pruning algorithm produces SHyperedges from MHyperedges
- Translations not necessarily constituents (unlike S2T)

Step 3: Build Partial Search Hypergraph

• Vertices are stored in stacks, one per input tree node

The T2S Decoding Algorithm

```
1: build match hypergraph by matching grammar rules to input tree
 2: for each m-vertex (post-order) do
     for all incoming m-hyperedges do
        create a cube for it
 4:
        create first s-hyperedge in cube
 5:
        place cube in queue
 6:
     end for
 7:
     for specified number of pops do
 8:
        pop off best s-hyperedge of any cube in queue
 9:
        add it to a buffer
10:
        create its neighbors
11:
     end for
12:
     recombine s-hyperedges from buffer and move into stack
13:
     sort and prune stack
14:
15: end for
```

Rule Matching by DFA Intersection

- Rules are encoded as DFAs. Scheme here is from Matthews et al. (2014)
- Input tree encoded in same way.
- Standard DFA intersection algorithm produces rule match hypergraph.

Tree-to-String Decoding - Summary

- Input sentence is a parse tree.
- Tree constrains rule choice: much smaller search space than S2T
- Decoding algorithm based on rule matching with LM integration.
- LM integration identical to S2T.

A Sketch of Tree-to-Tree Decoding

- STSG with tree input.
- T2T decoding is combination of S2T and T2S:
 - Search state expanded to include target-side category
 - Rule matching used to select rules; further constrained by target categories
 - Multiple category-specific stacks per input tree node
 - LM integration identical to S2T / T2S.
- Exact T2T not widely used in practice due to syntactic divergence.

- Part I Introduction
- Part II Rule Extraction
- Part III Decoding
- Part IV Extensions

"Fuzzy" Syntax

- In a nutshell: move syntax out of grammar and into feature functions
 - Syntax becomes a soft constraint
 - Motivated by syntactic divergence problem in tree-to-tree model

- "Learning to Translate with Source and Target Syntax" (Chiang, 2010)
 - Zhang et al (2011) use fuzzy syntax on source-side of string-to-tree model and explore alternative feature functions

"Fuzzy" Syntax

- Parse trees on both sides of training data
- Uses Hiero rule extraction but with SAMT-style labelling

- Only most frequent labelling kept (one-to-one correspondence with Hiero rules)
 - r1 ADJA+NN | NP → britische Skandale | British political scandals
 r2 PP-MO | SBAR → für ADJA+NN1 | as NP1 go
 q1 X → britische Skandale | British political scandals
 q2 X → für X1 | as X1 go

"Fuzzy" Syntax

Rule labels not used during parsing but retrieved for search

- Feature functions score substitutions
 - e.g. if a NP is rewritten as a ADJA+NN on source side then the feature ${\tt subst^s}_{\tt NP\to ADJA+NN}$ fires
- Tens of thousands of features
- Outperforms exact tree-to-tree (0.4 BLEU on Zh-En; 1.5 BLEU on Ar-En)

Forest-to-String

- Translation quality of T2S model depends on accuracy of 1-best (or k-best) parse tree(s) for input sentences
- Forest-to-string extends T2S by using (pruned) parse forest as input

- Algorithm is identical to T2S except for rule matching step
- "Forest-based Translation" (Mi et al., 2008)

Forest-to-String

• Using forest gives better speed-quality trade-off than using k-best trees

(Figure taken from Mi et al., 2008)

Tree Transformation

- Adapting training data for syntax-based MT is active area of research (tree binarization, label coarsening / refinement, word alignment edits)
- "Transforming Trees to Improve Syntactic Convergence" (Burkett and Klein, 2012) proposes tree restructuring method to improve rule extraction:

(Figure taken from Burkett and Klein, 2012)

Tree Transformation

• Defines six classes of transformation

A: PARENT, B: LEFT, C: RIGHT Args: A: PARENT, B: TARGET

- Error-based learning method using GHKM frontier node count as metric
- Sequence of transformations learned from subset of training data then applied to full corpus
- Gain of 0.9 BLEU over baseline on Chinese to English; outperforms simple left and right binarization

Dependency

A different view on syntax

SCFG phrase structure

NP NP NP NP DT NN U DT NN the dog chews a bone

Syntactic dependency grammar

Phrase Structure is not Enough

syntactically well-formed

semantically implausible

Dependency in SCFG

Add head word to constituents

Add mapping of head words to rules

$$VP(w_1) \rightarrow V(w_1) NP(w_2)$$

requires identification of head child

Semantic Plausibility

Score each lexical relationship

- Rule: $VP(chews) \rightarrow V(chews) NP(dogs)$
 - Feature: $VP(chews) \rightarrow V-HEAD(chews)$ **OK**
 - Feature: $VP(chews) \rightarrow NP(dog)$ **BAD**
- Rule: $S(chews) \rightarrow NP(bone) VP(chews)$
 - Feature: $S(chews) \rightarrow NP(bone)$ BAD
 - Feature: $S(chews) \rightarrow V-HEAD(chews)$ **OK**

Informed by Source

- Languages with case marking
 - different word order
 - same dependency relationships

• Give preference to translations that preserve dependency relationships

Verb Frames

- Check if full verb frame is properly filled
 - intransitive / transitive / ditransitive
 - not just binary relationships
 - appropriate type of subjects / objects
- However: tracking verb frame is not trivial

Towards Semantics

- Different syntax same verb-noun semantic relationships
 - The bone is chewed by the dog.
 - The dog chews the bone.
 - The bone, the dog chews.
 - A dog chewed a bone.
- Even more abstract representations e.g., Abstract Meaning Representation (AMR):

```
(c / chew-01
    :arg0 (d / dog)
    :arg1 (b / bone))
```

• Generation of these types of representation open research problem

String-to-Dependency: Shen et al. (2008)

- Hiero rules but with unlabelled dependencies on target side
- Target-side allowed one head to which floating dependencies can attach

• "A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model" (Shen et al., 2008)

String-to-Dependency

- Decoding algorithm modified to combine dependency structures.
- Restriction to well-formed rules reduces grammar size from 140M to 26M rules (no significant effect on translation quality).
- Gains of 1.2 BLEU on Zh-En from addition of dependency LM (Markov model over dependency heads).

References

- Parsing and Hypergraphs
 Dan Klein and Christopher Manning. IWPT 2001.
- What's in a Translation Rule?
 Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. HLT-NAACL 2004.
- A Hierarchical Phrase-based Model for Statistical Machine Translation David Chiang. ACL 2005.
- Better k-best Parsing
 Liang Huang and David Chiang. IWPT 2005.
- Syntax Augmented Machine Translation via Chart Parsing Andreas Zollmann and Ashish Venugopal. WMT 2006.
- Synchronous Binarization for Machine Translation
 Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. NAACL 2006.
- Hierarchical Phrase-Based Translation
 David Chiang. Computational Linguistics 2007.

References

- A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model

 Libin Shen, Jinxi Xu, and Ralph Weischedel. ACL 2008.
- Forest-Based Translation
 Haitao Mi, Liang Huang, and Qun Liu. ACL 2008.
- Efficient Parsing for Transducer Grammars

 John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein. NAACL 2009.
- SCFG Decoding Without Binarization
 Mark Hopkins and Greg Langmead. EMNLP 2010.
- Learning to Translate with Source and Target Syntax David Chiang, ACI 2010.
- Issues Concerning Decoding with Synchronous Context-free Grammar Tagyoung Chung, Licheng Fang, and Daniel Gildea. ACL 2011.
- Transforming Trees to Improve Syntactic Convergence
 David Burkett and Dan Klein. EMNLP 2012.

References

- Grouping Language Model Boundary Words to Speed K-Best Extraction from Hypergraphs Kenneth Heafield, Philipp Koehn, and Alon Lavie. NAACL 2013.
- Tree Transduction Tools for cdec
 Austin Matthews, Paul Baltescu, Phil Blunsom, Alon Lavie, Chris Dyer. PBML Vol 102.
 (2014)
- A CYK+ Variant for SCFG Decoding Without a Dot Chart Rico Sennrich. SSST 2014.