

INSTITUTO FEDERAL FARROUPILHA DISCIPLINA: QUÍMICA

Compostos orgânicos oxigenados

Vanize Caldeira da Costa

Uruguaiana, abril de 2022

Álcoois (grupo funcional hidroxila)

Os álcoois são compostos que possuem um ou mais grupos <u>hidroxila</u> (OH) ligados a átomos de <u>carbono com hibridização sp³</u>

Diversas aplicações

- Componente de algumas bebidas;
- Antisséptico em vários produtos;
- Combustível;
- Anticongelante;
- Umectante em cosméticos e outros produtos.

Álcoois (grupo funcional hidroxila)

Os álcoois são classificados como primários, secundários ou terciários, dependendo do número de grupos alquil(a) ou aril(a) ligados ao mesmo carbono em que se encontra a hidroxila

Reatividade dos álcoois

Nomenclatura dos álcoois

Quando a hidroxila for o grupo funcional principal, os nomes dos álcoois serão derivados dos hidrocarbonetos correspondentes, substituindo-se a vogal "o" pelo sufixo "ol", precedido de um número indicativo da posição da hidroxila

Prefixo	Intermediário	Sufixo
número de carbonos	tipo de ligação	ol

A numeração da cadeia deve ser feita de forma a atribuir o menor número possível ao carbono ligado quimicamente à hidroxila

Nomenclatura dos álcoois

$$H_3$$
C $-$ C H_2 $-$ CH $-$ C H_3

butan-2-ol

4-etil-2,5-dimetilheptan-3-ol

Nomenclatura dos álcoois insaturados

No caso de existirem ligações duplas e triplas, estas devem ser indicadas pelos afixos "en" e "in", antecedidos dos numerais que especificam as sua posições

Nomenclatura dos álcoois

No caso de álcoois poliidroxilados, acrescentam-se ao nome do hidrocarboneto de origem os sufixos "diol", "triol", "tetraol" etc, precedidos dos números correspondentes às posições das hidroxilas

No caso da hidroxila não ser o grupo principal, a sua presença deve ser indicada pelo prefixo "hidroxi" antecedido de um numeral que indique a sua posição (deve ser tratada como um substituinte)

Nomenclatura dos álcoois

Nomenclatura usual para monoálcoois

Álcool Nome do hidrocarboneto correspondente – "o" + "ílico"

Álcool metílico

Álcool etílico

Qual o nome oficial dos composto mostrados abaixo?

OH
$$|$$
 $H_3C - CH_2 - CH - CH_3$

Éteres

Os éteres são compostos que possuem um átomo de oxigênio ligado a dois átomos de carbono, que podem possuir qualquer tipo de hibridização (sp³, sp² ou sp)

Diversas aplicações

- Anestésico geral;
- Intermediários na produção de fibras, resinas, tintas, filmes etc;
- Aditivo utilizado para melhorar a eficiência da combustão da gasolina.

Nomenclatura substitutiva

prefixo que indica o número de carbonos do menor radical

nome do hidrocarboneto
correspondente ao
maior radical
grupo principal

Grupo principal

I. Em compostos cíclicos, o que tiver o maior anel deve ser citado como grupo principal;

Grupo principal

II. Entre anéis de mesmo tamanho, a prioridade é dada ao menos hidrogenado;

III. Em grupos acíclicos, a prioridade é estabelecida de acordo com as regras utilizadas para escolher a cadeia principal dos alcanos, alcenos e alcinos.

Nomenclatura substitutiva

Nomenclatura radicofuncional

O nome é formado citando-se, em ordem alfabética, os nomes dos dois grupos ligados ao oxigênio seguidos da palavra "éter"

Escreva as fórmulas estruturais dos seguintes éteres:

- a) metoxipropano;
- b) metoximetano;
- c) propoxibutano.

Éteres cíclicos

- Em um dos sistemas de nomenclatura, utiliza-se o prefixo "epoxi" precedido dos números dos átomos de carbono aos quais se encontra ligado o átomo de oxigênio e, a seguir, deve ser descrito o nome do composto de origem;
- O prefixo "epoxi" é considerado um substituinte e citado em ordem alfabética como qualquer substituinte.

1,2-epoxipropano

2,3-epoxihexano

1,4-epoxipentano

1,2-epoxi-2-metilbutano

Aldeídos e cetonas

Os aldeídos e as cetonas são estruturalmente semelhantes, pois ambos possuem a carbonila (C=O) como grupo funcional

Aldeído

Grupo carbonila encontra-se na extremidade da cadeia

$$R \xrightarrow{O} H$$

Cetona

O átomo de carbono do grupo carbonila é secundário, ou seja, está ligado a dois átomos de carbono

Aldeídos e cetonas

Fragrâncias, corantes, hormônios, açúcares etc...

Aldeídos

Matéria-prima para a síntese de resinas e vários polímeros

Cetonas

Solvente

Progesterona: hormônio feminino

Civetona: produzido pela glândula perineal do gato *Vierra cieta*, encontrado na África

Vanilina: aromatizante sabor de baunilha

Responsável pelo odor de urina de gato

(S)-carvona: óleo extraído da *Menta viridis*

Furaneol: usado em perfumaria; aroma artificial de morango

Nomenclatura de aldeídos

- Os aldeídos acíclicos são nomeados substituindo-se a terminação "o" do nome do hidrocarboneto de origem pelo sufixo "al";
- A presença de insaturações e de grupos substituintes é indicada conforme as regras mostradas anteriormente.

Nomenclatura de cetonas

Nomenclatura substitutiva

- O nome de uma cetona acíclica é formado substituindo-se a terminação "o" do hidrocarboneto correspondente pelo sufixo "ona" ou "diona", "triona" etc, no caso de existir mais de uma carbonila na molécula;
- A posição da carbonila é indicada por números, como no caso das outras funções estudadas.

Nomenclatura de cetonas

Nomenclatura radicofuncional

Os nomes são formados citando-se, em ordem alfabética, os nomes dos grupos ligados à carbonila, seguidos pela palavra cetona

Ácidos carboxílicos

Os ácidos carboxílicos são caracterizados estruturalmente pela presença do grupo carboxila (-COOH)

Aplicações

- Herbicidas;
- Hormônio de crescimento de plantas;
- Ação anti-inflamatória, antitérmica e analgésica.

Nomes não sistemáticos

Fonte de obtenção

Nomenclatura de ácidos carboxílicos

ÁCIDO + PREFIXO + INFIXO + ÓICO

n° de tipo de átomos de ligação carbono

Ácido propanóico

3 átomos de C

Ácido butanodióico

4 átomos de C - butano

Ácido 2-metilpentanóico

5 átomos de C butano

Ésteres

Simplificadamente podemos considerar que os ésteres se originam a partir da substituição do hidrogênio do grupo OH de um ácido carboxílico por um radical orgânico (R)

- Feromônios;
- Solventes (ésteres de baixo peso molecular);
- Aditivos em polímeros (aumentar a flexibilidade);
- Flavorizantes e aromatizantes;
- Ceras e óleos.

Os nomes dos ésteres são derivados dos nomes dos ácidos carboxílicos correspondentes

Sufixo –oico é substituído por –ato, seguido do nome do grupo alquila ligado ao oxigênio do grupo –OR

Etanoato de metila

Ácido etanóico

Propanoato de etila

Ácido propanóico

