

## Ayudantía 4

17 de abril de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

## Pregunta 1

Se define la siguiente operación entre dos conjuntos:

$$A \star B = A \setminus B \cup B \setminus A.$$

Demuestre que

$$A \star B = (A \cap B)^c \setminus (A \cup B)^c$$

## Pregunta 2

Sea  $P = \{A_1, ... A_n\}$  una colección de conjuntos no vacíos, y sea A un conjunto cualquiera. Se dice que P es una partición de A si y sólo si

- $A_i \cap A_j = \emptyset$  para todo  $i \neq j$
- $A = \cup_{i=1}^n A_i$

Sean  $\{A_1,...,A_m\}$  y  $\{B_1,...,B_n\}$  particiones de un conjunto X. Muestre que la colección de conjuntos

$$P = \{A_i \cap B_j \neq \emptyset \mid 1 \le i \le m, 1 \le j \le n\}$$

también es una partición de X.

## Pregunta 3

Sea  $S = \{1, ..., n\}$  un conjunto finito. Decimos que un conjunto  $\mathcal{C} \subseteq \mathcal{P}(S)$  es una anti-cadena si para todo  $A, B \in \mathcal{C}$  con  $A \neq B$  se cumple que  $A \not\subseteq B$  y  $B \not\subseteq A$ .

- 1. De una cota superior de la cantidad de anti-cadenas puede uno formar para  $S = \{1, 2, 3, ..., n\}$ . Explique su respuesta.
- 2. Un conjunto  $\mathcal{C} = \{A_1, \ldots, A_m\} \subseteq \mathcal{P}(S)$  se dice que es un sistema separador de S si para todo  $i \neq j$  en S, existen  $A \in \mathcal{C}$  y  $B \in \mathcal{C}$  tal que  $i \in A$ ,  $i \notin B$ ,  $j \notin A$  y  $j \in B$  (en otras palabras,  $i \in A \setminus B$  y  $j \in B \setminus A$ ). El conjunto dual  $\mathcal{C}^* = \{B_1, \ldots, B_n\}$  de  $\mathcal{C}$  se define como  $B_i = \{k \in \{1, \ldots, m\} \mid i \in A_k\}$  para todo  $i \leq n$ .

Demuestre que un conjunto  $\mathcal{C}$  es un sistema separador si, y solo si,  $|\mathcal{C}^*| = n$  y  $\mathcal{C}^*$  es una anti-cadena.