Research Project

Master Artificial Intelligence & Robotics 2023/2024

Sterley Gilbert LABADY

Tutors:

- Pr. Thanos MANOS,
- Dr. Cristian JIMENEZ-ROMERO,
- Pr. Mathias QUOY

Friday 29th March 2024

Contents

- 1. Introduction
- 2. Literature review
- 3. Methodology & Results
- 4. Conclusion
- 5. Relevant References
- 6. Questions

Introduction History & Context

Generations

Perceptron & ADALINE

1940 - Adaptive Filters

Artificial Neural Networks (ANNs)

1980 - Non-linear problem

Spiking Neural Networks (SNNs)

1990 - Biological Process

souce : datascientest.com

souce: geeksforgeeks.org

souce : xialod.top

Introduction Objectives & Challenges

Objectives

Exploring SNNs:

Boost their application in machine learning.

Mechanisms of Adaptability:

Learning through local plasticity rules.

Practical Application:

Demonstrate the effectiveness of enhanced SNNs in machine learning.

Challenges

Training SNNs:

Machine learning tasks without gradient-based methods.

Nature of Spikes:

Spikes complicates the use of backpropagation.

Incorporating Plasticity:

Local plasticity rules adds complexity to network architecture and training.

Literature Review - Leaky Integrate-and-Fire (LIF) - Spike-Timing- Dependent Plasticity (STDP) - Neural Simulation Tool (NEST) - Mountain Car (MC) - Genetic Algorithms (GAs) - Learning to learn (L2L)

Literature Review LIF

Neuron model : LIF

$$\frac{dV_m}{dt} = \frac{V_m - E_L}{\tau_m} + \frac{I_{syn} + I_e}{C_m}$$

Parameter	Unit	Description	Value
V_{th}	mV	Spike threshold	-55
E_L	mV	Resting membrane potential	-70
C_m	pF	Membrane capacitance	250
$ au_m$	ms	Membrane time constant	10.0
$ au_{ref}$	ms	Refractory period duration	1.0
V_{reset}	mV	Reset potential	-70
τ_{syn_ex}	ms	Excitatory synaptic time constant	2.0
τ_{syn_in}	ms	Inhibitory synaptic time constant	2.0
I_e	pA	Constant input current	_

souce: neuronaldynamics.epfl.ch/index.html

State of the art: Hodgkin-Huxley Model, Exponential Integrate-and-Fire (EIF), Adaptive Exponential Integrate-and-Fire (AdEx)

Literature Review STDP

Synapse model: STDP

Synaptic weight potentiation:

$$w_{pot} = W_{max} \left(\frac{w}{W_{max}} + \lambda \left(1 - \frac{w}{W_{max}} \right)^{\mu_{+}} pre_trace \right)$$
(8)

Synaptic weight depression:

$$w_{dep} = W_{max} \left(\frac{w}{W_{max}} - \alpha \lambda \left(\frac{w}{W_{max}} \right)^{\mu_{-}} post_trace \right)$$
(9)

- Weight (w): The strength of the synaptic connection, set by the plasticity mechanism.
- Transmission delay (d): The time taken for the signal to traverse the synapse, set to 1.0 ms.
- Learning rate (λ): Determines the rate at which the synapse can change, set to 0.01.
- Pre-trace and post-trace time constants (τ_{plus}, τ_{minus}): Governs the decay of spike traces, both set to 20.0 ms.
- Potentiation factor (μ_{plus}): Modulates the weight change during potentiation, set to 1.0.
- Depression factor (μ_{minus}): Modulates the weight change during depression, set to 1.0.
- Maximum synaptic weight (W_{max}): Defines the upper limit within which the synaptic weight can vary, set to 3000.0.

State of the art : Hebbian Learning, Rate-Based Plasticity, Short-Term Plasticity (STP), R-STDP

Literature Review Simulation

Neural Simulation Tool (NEST)

- Simulation software for SNNs.
- Highly regarded simulator in computational neuroscience.
- Rich library of neuron & synapse models and dynamics.

State of the art : NEURON, Brian, Nengo, PyNN, CARLsim

Mountain Car (MC)

The MC environment, a benchmark in RL, involves a car in a valley, requiring strategic accelerations to reach a goal atop a hill. The agent must learn to navigate to the goal efficiently.

Observations: Position & Velocity

Actions : Accelerate Left, No Acceleration, Accelerate Right.

Literature Review

Genetic Algorithms (GAs)

- Population size (32): Determines the number of individuals in each generation. A larger population size allows for more diverse solutions but increases computational load.
- Crossover probability (0.7): The likelihood of two individuals exchanging genetic information, promoting diversity in the population. (Exploration)
- Mutation probability (0.7): Governs the chance of random alterations in an individual's genetic, introducing variability.($\Delta Mut \sim \mathcal{N}(\mu=0,\sigma=1)$) (Exploration)
- Number of generations (1000): The total number of iterations for the GA, affecting the convergence of the algorithm.
- Tournament size (4): Used in the selection process to choose individuals for reproduction. (Exploitation)
- Mating Bend (0.5)): Half of each parent genetics is used for crossover operation.

souce : researchgate.net

Literature Review Learning to learn (L2L)

souce: frontiersin.org/articles/10.3389/fncom.2022.885207/full

Methodology

Optimizing Static-synapses SNNs

Multi-simulator interactions

souce: frontiersin.org/articles/10.3389/fncom.2022.885207/full

Setup

Population size: 32

Number of individuals per generation

Training parameters: Weights

Static synapses -> Static weights value

Simulation: 110 steps:

Number of steps allowed for the agent to solve the challenge

$$\mathsf{Fitness}(I) = f(\mathsf{paramètres}(I)) = \max_T(PET)$$

Optimizing Static-synapses SNNs

Training Fitness Evolution

- The x-axis represents the Generation Index (times 10)
- The y-axis denotes the best individual fitness value of each generation.
- Convergence of the GA from the 110th Generation.

Environment Dynamics

Methodology

Enhancing SNNs with Synaptic Plasticity

Updates

Population size: 96

This configuration aligns with the hardware's capacity: 96 CPUs

Training parameters:

Plasticity_flags & Initial Weights value

Simulation: 600 steps allowed:

Requires a higher number of simulation steps.

Plastic Hub:

All-to-all connectivity pattern with no self-connections.

$$\mathsf{Fitness}(I) = f(\mathsf{paramètres}(I)) = \max_T(PET)$$

Enhancing SNNs with Synaptic Plasticity

Training Fitness Evolution

- The x-axis indicates the generation index (factor of 5)
- The y-axis denotes the best individual fitness value of each generation.
- This peak signifies the emergence of an individual that successfully solved the challenge.

Best individual

Plastic synapses:

1389/2700 (51.44%) plasticity flag = 1

Simulation steps:

585 over 600 steps

Network Evolution Simulation 1

Network Evolution Simulation 2

Network Evolution Simulation 3

Conclusion Discussion

01

Feasibility Demonstration

Our experiments show that plasticity-driven SNNs can effectively solve complex RL problems.

02

Potentials & Benefits

Opens up new possibilities for creating more adaptable and efficient AI systems.

03

Generation

Pushing the boundaries of what these networks can achieve with several different random initial state.

04

Scalability

Adapt for more complex tasks and larger datasets in future applications.

Conclusion Future work insights

Allow more steps to the SNN: 600 -> 1000

As a plastic network requires a higher number of simulation steps compared to a static one.

03

Novel fitness function

If MaxPosition < 0.5 : Fitness = MaxPosition

If MaxPosition >= 0.5 : Fitness = MaxPosition + 100/sim_step

Relevant References

2014

Wulfram et al. Neuronal dynamics - a neuroscience textbook, cambridge university press.

2019

Wunderlich et al. Demonstrating Advantages of Neuromorphic Computation.

2022

Yegenoglu et al. Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn. Frontiers in Computational Neuroscience

2007

Marc-Oliver Gewaltig and Markus Diesmann, NEST (NEural Simulation Tool)

2022

Haşegan et al. Evolutionary and spike-timing-dependent reinforcement learning train spiking neuronal network motor control,

2019

Bing et al. Supervised learning in SNN via reward-modulated spike-timing- dependent plasticity for a target reaching vehicle.

Questions

Laboratoire Etis 6 Rue du Ponceau 95000 Cergy etis-lab.fr

T.07 61 76 91 47

