Генерирование и моделирование случайных чисел

Методы и применения

Имитационное моделирование и случайные числа

- Случайные числа находят применение при математическом моделировании стохастических систем, в поисковых алгоритмах, системах шифрования и алгоритмах управления в системах.
- Имитационное моделирование систем воспроизводит поведение систем, которое разворачивается в масштабах модельного или реального времени.
- Моделируемое поведение реализует при запуске имитационной модели конкретный сценарий, который соответствует в установленных целями исследования рамках множеству возможных вариантов реализации сценария поведения реальной системы, модель которой исследуется

Общая схема метода статистического моделирования

ГСЧ — генераторы случайных чисел модели (в методе Монте-Карло это равномерно распределённые числа $r_{\rm pp} \in [0,1]$)

ПЗСЧ – преобразование закона распределения с.ч. (моделирование с.ч.)

Модель – модель стохастической системы (имитационная модель случайного процесса)

БНСтат – блок накопления статистических данных

БВСХ – блок вычисления статистических характеристик

БОД – блок оценки данных, полученных при использовании модели

Определения наблюдаемых статистических объектов

- Генеральная совокупность это совокупность всех мыслимых наблюдений (или всех мысленно возможных объектов интересующего нас типа, с которых «снимаются:» наблюдения), которые могли бы быть произведены при данном реальном комплексе условий.
- **Выборка** из данной генеральной совокупности это результаты ограниченного ряда наблюдений $\{X_1, X_2, ..., X_n\}$ случайной величины ξ .
- **Статистический ансамбль** это совокупность сколь угодно большого числа одинаковых физических систем многих частиц («копий» данной стохастической системы. •4

Оценка статистических данных по результатам полученных выборок при исследовании результатов имитационного моделирования

- Оценка выборочного (эмпирического) среднего:
- $\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}$, где N объём выборки
- Оценка выборочной дисперсии:
- $S^2 = \frac{\sum_{i=1}^{N} (X_i \bar{X})^2}{N-1}$ это смещённая оценка выборочной дисперсии
- Полученные на разных выборках наблюдений $V_j = \{..., X_i, ...\} | i = 1, 2, ..., N j = 1, 2, ..., M ,где <math>M > 1$ количество наблюдаемых выборок, множества оценок $\{..., \bar{X}_j, ...\}$ и $\{..., \bar{S}^2_j, ...\}$ представляют собой случайные величины.

• 5

Распределение частоты наблюдений

• Исследование закона распределения частоты наблюдаемых значений в интервале наблюдаемых данных производят с помощью построения гистограммы

Для построения гистограмм разбивают наблюдаемый интервал случайных значений на равные отрезки (карманы) и подсчитывают количество попаданий наблюдаемых значений в карманы: $\{..., \nu_k, ...\}|k = 1, 2, ... K$, где K – число карманов.

• 6

Общая схема алгоритма моделирования случайных чисел

На схеме представлена технология преобразования закона распределения СЧ - ПЗСЧ

- Г/Д генератор (датчик) случайных чисел, распределённых по равномерному закону;
- А алгоритм, воспроизводящий метод моделирования случайных чисел, требуемых при решении задачи.

Случайные процессы и статистические распределения

- В стохастических системах осуществляются случайные процессы.
- Случайный процесс характеризуется непредсказуемой последовательностью событий, которые математически можно связать с некоторой последовательностью случайных значений, взаимно однозначно соответствующих наблюдаемому потоку событий.
- Случайные значения, порождаемые потоком случайных событий в стохастических системах, подчиняются законам статистических распределений.
- Таким образом, моделирование случайных процессов связано с моделированием последовательностей случайных чисел, которые подчиняются тем или иным законам статистических распределений.

Генерирование чисел, распределённых по равномерному закону: СЧ РР()

- Генераторы случайных чисел по способу получения чисел делятся на:
- ••• Физические (аппаратные);
- •-- табличные;
- • алгоритмические...
- При аппаратном способе случайные числа
 вырабатываются электронной приставкой (генератор, датчик случайных чисел).
- Случайные числа оформлены в виде таблицы, которая хранится в оперативной памяти или на внешнем носителе.
- Случайные числа генерируются на компьютере по специальным алгоритмам.

Табличный способ ГСЧ

Случайные цифры							ы	Равномерно распределенные от 0 до 1 случайные числа
9	2	9	2	0	4	2	6	0.929
9	5	7	3	4	9	0	3	0.204
5	9	1	6	6	5	7	6	0.269

- Составить последовательность СЧ РР() и оценить статистические параметры выборки: выборочное среднее, выборочная дисперсия, выборочное среднее квадратическое отклонение.
- Сравнить с точными характеристиками рр СЧ на [0,1]

Алгоритмические способы ГСЧ

Битовые способы получения СЧ РР()

метод серединных квадратов

• метод перемешивания

Алгоритмические методы ГСЧ

- Линейный конгруэнтный метод
- В линейном конгруэнтным методе случайное число вычисляется по следующей рекуррентной формуле: $X_{n+1} = (aX_n + c) \ mod \ m$, где m модуль (m>0), a множитель $(0 \le a < m)$, c приращение $(0 \le c < m)$, X_0 начальное значение, которое также иногда называют зерном (от англ. seed) $(0 \le X_0 < m)$
- Дает при удачно подобранных коэффициентах и больших *т* достаточно непредсказуемые псевдослучайные числа
- не обладает криптографической стойкостью, так как, зная четыре подряд идущих числа, криптоаналитик может составить систему уравнений, из которой можно найти *a*, *c* и *m*
- Задать значения *X*₀, *m*, *a*, *c*:
- Рассчитать последовательность случайных чисел выборку
- Проверить статистические характеристики: диапазон СЧ $\in [0, m-1]$

Алгоритмические методы ГСЧ

- Генератор псевдослучайных чисел на основе алгоритма BBS
- выбираются два больших простых числа р и q. Числа р и q должны быть оба сравнимы с 3 по модулю 4, то есть при делении р и q на 4 должен получаться одинаковый остаток 3. Далее вычисляется число $M = p^* q$, называемое целым числом Блюма. Затем выбирается другое случайное целое число x, взаимно простое (то есть не имеющее общих делителей, кроме единицы) с M. Вычисляем $x_0 = x^2 mod M$. x_0 называется стартовым числом генератора.
- На каждом n-м шаге работы генератора вычисляется $x_{n+1} = x_n^2$ mod M. Результатом n-го шага является один (обычно младший) бит числа x_{n+1} .
- Иногда в качестве результата принимают бит чётности, то есть количество единиц в двоичном представлении элемента. Если количество единиц в записи числа четное бит четности принимается равным 0, нечетное бит четности принимается равным 1

Статистические характеристики РР СЧ

$$f(x) = \begin{cases} \frac{1}{b-a} & npu \quad a < x \le b \\ 0 & \text{вне отрезка} \end{cases}$$

- Плотность равномерного непрерывного распределения случайных чисел в интервале х ∈ [a, b]
- График функции плотности равномерного непрерывного распределения случайных чисел в интервале x ∈ [a, b]

Равномерное распределение:

$$PP(a,b): F(x) = \int_{a}^{x < b} f(x) dx = \frac{x - a}{b - a} ; x \in [a, b]$$

Математическое ожидание: $m_{\chi} = \frac{a+b}{2}$

Дисперсия:
$$\sigma_{\chi}^{2} = \frac{(b-a)^{2}}{12}$$

Среднее квадратическое отклонение: $\sigma_{x} = \frac{b-a}{\sqrt{12}}$

Критерий качества ГСЧ рр

 ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона для РР СЧ ∈ [0, 1]:

$$m_r = \frac{\sum\limits_{i=1}^n r_i}{n} \approx 0.5$$
 — математическое ожидание;
$$D_r = \frac{\sum\limits_{i=1}^n (r_i - m_r)^2}{n} \approx 0.0833$$
 — дисперсия;
$$\sigma_r = \sqrt{D_r} \approx 0.2887$$
 — среднеквадратичное отклонение.

В общем случае качество получаемой с помощью ГСЧ выборки (последовательности) случайных чисел на соответствие требуемому закону распределения проверяют с использованием статистических критериев. Проверка осуществляется на основе доверительной оценки справедливости предложенных статистических гипотез

- С помощью случайных равномерно распределенных чисел можно моделировать случайные события, составляющие конечные или счётные множества исходов и наступающие с заданной вероятностью, дискретные распределения
- Эту процедуру называют еще «реализацией жребия»
- Пусть событие A наступает с вероятностью p, тогда процедура моделирования этого события с помощью равномерно распределенных в интервале (0,1) случайных чисел выглядит следующим образом:
- 1) выбирается очередное сгенерированное равномерно распределённое случайное число ξ_i
- 2) проверкой неравенства $\xi_i \leq p$ (1)
- устанавливается принадлежность этого числа отрезку [0,p].
- Если число ξ_i удовлетворяет неравенству (1), говорят, что событие А наступило, в противном случае не наступило.

Моделирование дискретных случайных чисел

• ГСА: Метод «розыгрыша жребия» (гса-графическая схема алгоритма)

Пример реализации метода «жребия»

Г/Д: [РР(0,1)]	$\{r\} = \{0,26; 0,28; 0,90; 0,74; 0,44; 0,77; 0,65; 0,80; 0,14; 0,48\}$					
20404 20042 20042	1	2	3			
Закон распределения:	0,5	0,2	0,3			
А: Метод «жребия»	$\{x\} = \{1; 1; 3; 3; 1; 3; 2; 3; 1; 1\}$					

- Пояснения:
- Разыгрывается 10 исходов случайной реализации с заданным в таблице законом.
- Для этого получают (генерируют) порождающую последовательность равномерно распределённой величины PP(0,1): $\{r\}$.
- Затем, пользуясь методом «жребия», получаем выходную последовательность случайных исходов моделируемого процесса.
- Количество исходов связано с числом чисел в $\{r\}$.

18

- Метод моделирования **непрерывно распределённых случайных величин**, связанных с бесконечным множеством случайных исходов
- Требуется получить случайные числа y_i являющиеся возможными значениями случайной величины η с законом распределения, заданным функцией плотности f(y) или функцией вероятности F(y): $f(y) = \frac{dF(y)}{dy} \; ; F(y) = \int_{-\infty}^{y} f(y) dy$
- Случайная величина $F(\eta) = \xi$, являющаяся значением интеграла от плотности распределения f(y): $F(\eta) = \int_{-\infty}^{\eta} f(y) dy = \xi$,
- и определяющая величину вероятности нахождения значения случайной величины $y \le \eta$, распределена равномерно в интервале (0,1)

- Соотношением $\int_{-\infty}^{\eta} f(y) dy = F(\eta) = \xi$ можно воспользоваться получения случайных чисел с заданным законом распределения.
- Решение интегрального уравнения:

 $\int_{-\infty}^{\eta} f(y) dy = F(\eta) = \xi$ относительно η при заданных значениях ξ , которые получают с помощью ГСЧ pp: $\xi \in [0,1]$, — называемое **методом обратных функций** проиллюстрировано на графике: $r \to \xi$; $X \to y = \eta$.

- Можно разыграть **случайное** число, **непрерывно** распределённое по заданному закону **методом усечения Неймана**
- 1. **Ограничим** интервал распределения: сделаем его конечным. Пусть x случайная величина распределенная на интервале (a,b) и моделируемая плотность сверху ограничена значением моды M_0 .
- 2. **Генерируем** 2 значения: r_1 , r_2 равномерно-распределенной в интервале [0; 1] случайной величины r.
- 3. На плоскости f(y) и y отложим случайную точку $(\cdot)N$ с координатами (α,β) : $N(\alpha,\beta)$: $\alpha=a+r_1(b-a)$ и $\beta=r_2M_0$.
- Точка находится внутри прямоугольника.

4. Если $(\cdot)N$ лежит под кривой, т.е. $\beta < f(\alpha)$, то разыгранное полученное значение х считается равным $\alpha: X \to \alpha$. Если $(\cdot)N$ лежит над кривой, то пара r_1 и r_2 отбрасывается и генерируется новая пара значений r_3 и r_4 , и т.д.

Статистические оценки законов распределения

- Оценка качества получаемых случайных чисел на соответствие заданным законам распределения производится путем определения выборочных оценок и последующего их сравнения с теоретическими параметрами распределения, см. слайд 5.
- Выборочные:
- Среднее выборочное: $\bar{x} = \frac{\sum_{i} x_{i}}{n}$
- Выборочная дисперсия: $S_n^2 = \frac{\sum_i (x_i \bar{x})^2}{n} = \frac{\sum_i x_i^2}{n} \bar{x}^2$
- Смещенная выборочная дисперсия (уточненная оценка): $S_{n-1}{}^2 = \frac{n}{n-1} S_n{}^2$
- Выборочное среднее квадратическое отклонение: S_{n-1}
- Кроме вышерассмотренных оценок необходимо проводить исследование распределения частот наблюдаемых значений по интервалу наблюдаемых значений, см. слайд 6. Это исследование можно проводить с помощью построения гистограмм, или проверкой статистических гипотез, например, по критерию Пирсона.

- Метод генерации нормально распределенных чисел, использующий центральную предельную теорему
- Допустим, что нам надо в целях имитации получить ряд случайных чисел x, распределенных по нормальному закону с заданными математическим ожиданием m_x и среднеквадратичным отклонением σ_x .
- Сложим n случайных чисел, используя стандартный ГСЧ pp [0; $1]: V = \sum_{i=1}^n r_i$
- Согласно ЦПТ числа V образуют ряд значений, распределенный по нормальному закону. Эти числа тем лучше описывают нормальный закон, чем больше параметр n. На практике n берут равными 6 или 12. Заметим, что закон распределения чисел V имеет математическое ожидание

$$m_V = n/2$$
, $\sigma_V = \sqrt{\frac{n}{12}}$. Поэтому он является смещенным относительно заданного произвольного.

- С помощью формулы $z = (V m_V)/\sigma_V$ нормализуем этот ряд. Получим нормализованный закон нормального распределения чисел Z. То есть $m_z = 0$, $\sigma_z = 1$.
- Формулой (сдвиг на m_x и масштабирование на σ_x) преобразуем ряд Z в ряд x: $x = z \cdot \sigma_x + m_x$.
- Промоделировать СЧ нр, используя ГСЧ рр компьютера
- Сравнить выборочные статистические характеристики с характеристиками распределения.
- Метод генерации нормально распределенных чисел Метод Бокса-Мюллера
- Совсем простым методом получения нормализованных нормальных чисел является метод Мюллера, использующий формулы: $Z=\sqrt{-2Ln(r_1)}cos(2\pi r_2)$, где r_1 и r_2 случайные числа из ГСЧ $_{\rm DD}$ [0; 1].
- Можно также воспользоваться аналогичной формулой: $Z=\sqrt{-2Ln(r_1)}sin(2\pi r_2)$, где r_1 и r_2 случайные числа из ГСЧ $_{\rm pp}$ [0; 1].

Статистические характеристики НР СЧ

- График функции плотности непрерывного нормального распределения случайных чисел на числовой оси:
- $x \in (-\infty, \infty)$

Математическое ожидание: $m_\chi=m$

Дисперсия: $\sigma_x^2 = \sigma^2$

Среднее квадратическое отклонение: $\sigma_x = \sigma$

Распределение Рэлея: Функция плотности и функция вероятности

- Результаты оформить в формате документа:
- Описать методические основы
- Представить условие задачи
- Описать шаги решения
- Представить результаты
- Сделать выводы

• Задание 1:

- Смоделировать выборку (последовательность не менее 20-ти) равномерно распределённых случайных чисел СЧ РР(0,1) любым способом, см. слайды 9-15.
- Проверить качество полученного распределения, руководствуясь сведениями со слайдов 15,5-6,22.

Задание 2:

- Промоделировать методом ЦПТ и Бокса-Мюллера случайные числа (последовательность не менее 20-ти), распределённые по нормальному закону, используя компьютерный ГСЧ рр(0,1) и заданные значения m_x и σ_x (значения выбираем произвольно).
- Сравнить выборочные статистические характеристики с характеристиками распределения, см. слайды 15,5-6,22.

Задание 3:

- Смоделировать методом усечения Неймана случайные числа (последовательность не менее 20-ти) по закону распределения, заданного в ограниченной области $y \in [a, b]$ плотностью распределения:
- $f(y) = \frac{3\sqrt{A}}{4C\sqrt{C}}(C A(y m)^2)$, где A > 0, m > 0, C > 0
- Задать числа A, C, m ; вычислить $a=m-\sqrt{\frac{c}{A}}$, $b=m+\sqrt{\frac{c}{A}}$ и использовать СЧ pp, полученные ранее
- Сравнить выборочные статистические характеристики с характеристиками распределения, см. слайды 15,5-6,22.
- Математическое ожидание: $m_y=m$
- Дисперсия: ${\sigma_y}^2 = \bar{y}^2 m_y^2$, где средний квадрат случайной величины:

•
$$\bar{y}^2 = \frac{20Cm^2 + 4\frac{C^2}{A}}{20C}$$

• Задание 4:

- Смоделировать методом обратных функций случайные числа (последовательность не менее 20-ти), распределённые по закону Рэлея.
- Функция плотности вероятности:
- $f(x) = \frac{x}{\sigma^2} e^{-\frac{1}{2} (\frac{x}{\sigma})^2} \forall x \in [0,\infty)$. Параметр σ выбираем произвольно (например, берем с графика)
- Функция вероятности:
- $F(X < x) = \int_0^x f(x) dx = 1 e^{-\frac{1}{2} \left(\frac{x}{\sigma}\right)^2} \in [0,1] \forall x \in [0,\infty)$
- Сравнить выборочные статистические характеристики с характеристиками распределения, см. слайды 15,5-6,22.
- Математическое ожидание: $m_\chi = \sqrt{\frac{\pi}{2}} \, \sigma$
- Дисперсия: $\sigma_{\chi}^{2} = \left(2 \frac{\pi}{2}\right)\sigma^{2}$

• Задание 5:

- Смоделировать методом «розыгрыша жребия» случайные числа (последовательность не менее 20-ти), распределённые по дискретному геометрическому закону.
- Член последовательности распределения вероятностей по геометрическому закону описывается по формуле:
- $P_k = q^{k-1}p \ \forall k = 1, 2, ..., n, ... \in [1, \infty)$, где
- $q, p \in [0; 1]$ параметры распределения, причём q + p = 1, а
- $\sum_{k=1}^{\infty} P_k = 1$
- Математическое ожидание $m_K = \frac{1}{p}$
- Дисперсия $\sigma_K^2 = \frac{q}{p^2}$
- Вычислить выборочные характеристики и сравнить с теоретическими