How Classification Baseline Works for Deep Metric Learning: A Perspective of Metric Space

1. Complete proof

Lemma 1 Set d(0,1) = M. If d(x,y) is a semi-metric on R that $L_m(x,y)$ is also semi-metric on R^c and by the way:

$$L_m(\boldsymbol{l_a}, \boldsymbol{l_b}) = F(2M)$$

Proof: By the definition of semi-metric in (1,2):

$$L_m(\mathbf{l_a}, \mathbf{l_b}) = F[d(0, 1) + d(1, 0) + (c - 2)d(0, 0)]$$

= $F[d(0, 1) + d(0, 1) + 0] = F(2M)$

Lemma 2 If F is a non-convex function, that d is a weak-metric on R contains that $L_m(\boldsymbol{x}, \boldsymbol{y})$ is a weak-metric on R^c , d is a metric on R contains that $L_m(\boldsymbol{x}, \boldsymbol{y})$ is a metric on R^c

Proof: For any $x, y, z \in \mathbb{R}^c$, firstly shows that d is semi-metric contains that F is semi-metric:

Non-negative:

$$L_m(\boldsymbol{x}, \boldsymbol{y}) = F(\sum_{i=1}^c d(x_i, y_i)) \ge F(0) = 0$$

$$L_m(\boldsymbol{x}, \boldsymbol{y}) = F(\sum_{i=1}^c d(x_i, y_i)) = 0$$

$$\Rightarrow \sum_{i=1}^c d(x_i, y_i) = 0 \Rightarrow d(x_i, y_i) = 0 \quad i = 1, 2, ..., c$$

$$\Rightarrow x_i = y_i \quad i = 1, 2, ..., c \Rightarrow \boldsymbol{x} = \boldsymbol{y}$$

Symmetry:

$$L_m(\boldsymbol{x}, \boldsymbol{y}) = F(\sum_{i=1}^{c} d(x_i, y_i)) = F(\sum_{i=1}^{c} d(y_i, x_i)) = L_m(\boldsymbol{y}, \boldsymbol{x})$$

Then in unit function, non-convex is equivalent to non-negative second derivative, that is for any $a, b \in [0, +\infty)$:

$$F''(a) \le 0$$

© 2024.

By differential median theorem in unit function, set $\xi_1 \in (0, a), \xi_2 \in (a, a + b)$:

$$F(a) - F(0) = aF'(\xi_1)$$

$$F(a+b) - F(b) = aF'(\xi_2)$$

$$F(a+b) - F(b) - F(a) + F(0) = a(F'(\xi_2) - F'(\xi_1)) \le 0$$

$$\Rightarrow F(a+b) \le F(a) + F(b)$$

Thus when d satisfies triangle inequality:

$$L_m(\boldsymbol{x}, \boldsymbol{y}) = F(\sum_{i=1}^{c} d(x_i, y_i)) \le F(\sum_{i=1}^{c} d(x_i, z_i) + \sum_{i=1}^{c} d(y_i, z_i))$$

$$\le F(\sum_{i=1}^{c} d(x_i, z_i)) + F(\sum_{i=1}^{c} d(y_i, z_i))$$

$$\le L_m(\boldsymbol{x}, \boldsymbol{z}) + L_m(\boldsymbol{y}, \boldsymbol{z})$$

Lemma 3 If $L_m(\boldsymbol{x}, \boldsymbol{y})$ is a weak-metric with uniform point l or a metric, $\boldsymbol{a}, \boldsymbol{b} \in R^c$ are two samples with same label $l \in R^c$, that:

$$L_m(\boldsymbol{a}, \boldsymbol{b}) \le L_m(\boldsymbol{a}, \boldsymbol{l}) + L_m(\boldsymbol{l}, \boldsymbol{b}) \le 2\epsilon$$

Proof: By the definition of weak-metric in (1,2):

$$L_m(\boldsymbol{a}, \boldsymbol{b}) \le L_m(\boldsymbol{a}, \boldsymbol{l}) + L_m(\boldsymbol{l}, \boldsymbol{b})$$

 $\le 2sup_{\boldsymbol{a} \in f(P)} L_m(\boldsymbol{a}, \mathcal{L}(\boldsymbol{a})) = 2\epsilon$

Lemma 4 If $L_m(x, y)$ is a metric, $a, b \in \mathbb{R}^c$ are two samples with different labels $l_a, l_b \in \mathbb{R}^c$ respectively, that:

$$L_m(\boldsymbol{a}, \boldsymbol{b}) \geq F(2M) - 2\epsilon$$

Proof: By the definition of metric in (3):

$$L_m(\boldsymbol{a}, \boldsymbol{b}) + L_m(\boldsymbol{a}, \boldsymbol{l}_a) \ge L_m(\boldsymbol{b}, \boldsymbol{l}_a)$$

$$L_m(\boldsymbol{a}, \boldsymbol{b}) \ge L_m(\boldsymbol{b}, \boldsymbol{l}_a) + L_m(\boldsymbol{b}, \boldsymbol{l}_b) - L_m(\boldsymbol{a}, \boldsymbol{l}_a) - L_m(\boldsymbol{b}, \boldsymbol{l}_b)$$

$$\ge L_m(\boldsymbol{l}_a, \boldsymbol{l}_b) - 2sup_{\boldsymbol{a} \in f(P)} L_m(\boldsymbol{a}, \mathcal{L}(\boldsymbol{a}))$$

$$= F(2M) - 2\epsilon.$$

Example $L^1_{CE'}$ is a weak-metric. $L^2_{CE'}$ is a metric iff.:

$$2^{p+1} - 2^{2p} \ge \frac{b}{a+1}$$

Proof: $L^1_{CE'}$ is weak-metric with label as its uniform point, that is: for any labels and any $x, z \in [0, 1]^c$:

$$\sum_{i=1}^{c} log(1 - |x_i - z_i|) \ge \sum_{i=1}^{c} log(1 - |x_i|) + \sum_{i=1}^{c} log(1 - |z_i|)$$

$$\Leftarrow |x_i - z_i| \le |x_i| + |z_i| - |x_i z_i|$$

$$\Leftarrow |x_i - z_i| \le |x_i| + |z_i| - min\{|z_i|, |x_i|\} = max\{|x_i|, |z_i|\}$$

which is obvious for x_i, z_i are both positive. And:

$$-\sum_{i=1}^{c} log(1-|x_{i}-z_{i}|) \leq$$

$$-\sum_{i=1}^{c} log(1-|x_{i}-1|) - \sum_{i=1}^{c} log(1-|1-z_{i}|)$$

$$\Leftrightarrow |x_{i}-z_{i}| \leq |x_{i}-1| + |z_{i}-1| - |x_{i}-1||1-z_{i}|$$

$$\Leftrightarrow |1-x_{i}-(1-z_{i})| \leq |1-x_{i}| + |1-z_{i}| - |1-x_{i}||1-z_{i}|$$

which is similar to above for $1 - x_i$, $1 - z_i$ are both positive. entry in label is only 0 or 1, thus it's down. When y is arbitrary in $[0,1]^c$, $L^1_{CE'}$ is not a metric for when x, y, z are respectively 0, 1/2, 1 triangle inequality is broken, thus when we need a metric loss, $L^1_{CE'}$ is need, all we need prove is (set a' = log(1+a)):

$$-\log(1+a-b|x_i-z_i|^p) + a' \le -\log(1+a-b|x_i-y_i|^p) - \log(1+a-b|y_i-z_i|^p) + 2a' 1+a-b|x_i-z_i|^p \ge \frac{(1+a-b|x_i-y_i|^p)(1+a-b|y_i-z_i|^p)}{1+a}$$

set $k = \frac{b}{a+1}$, it's:

$$\Leftarrow |x_i - z_i|^p \le |x_i - y_i|^p + |y_i - z_i|^p - k|x_i - y_i|^p|y_i - z_i|^p$$

i. when y_i is between x_i, z_i (i.e. $x_i \leq y_i \leq z_i, z_i \leq y_i \leq x_i$ is similar), set $u = y_i - x_i, v = z_i - y_i$, that:

$$|u+v|^p \le |u|^p + |v|^p - k|u|^p|v|^p$$
 s.t. $0 \le u+v \le 1$

It's easy to derive that there's an only extremum for u = v = 1/2:

$$1 \le (1/2)^p + (1/2)^p - k(1/2)^p (1/2)^p$$

$$\Rightarrow 2^{p+1} - 2^{2p} \ge k$$

ii. when y is out of range between x and z(i.e., $x \le z \le y$, or similarly $y \le x \le z$), set u = z - x, v = y - z, that:

$$|u|^p \le |u+v|^p + |v|^p - k|u+v|^p|v|^p$$
 s.t. $0 \le u+v \le 1$
 $\le |u+v|^p + |v|^p - |v|$

for both k and |u+v| is less than 1.