Hfdst 13: Warmtewisselaars

- 1. Warmtewisselaarstypes
- 2. De totale warmteoverdrachtscoëfficiënt
- 3. De analyse van warmtewisselaars
- De logaritmisch-gemiddelde-temperatuursverschilmethode
- 5. De effectiviteit-NTU-methode
- 6. Selectie van warmtewisselaars

1. Warmtewisselaarstypes

Dubbele-buis-warmtewisselaar

Gelijk- en tegenstroom warmtewisselaars

- Gevinde buizen/compacte warmtewisselaar
 - oppervlaktedensiteit β = opp./volume > 700 m²/m³
 - Bvb. autoradiator: $\beta \approx 1000 \text{ m}^2/\text{m}^3$

Een gas-vloeistof compacte warmtewisselaar voor een air-conditioning-systeem.

Gevinde buizen (compacte warmtewisselaar)

(a) Both fluids unmixed

(b) One fluid mixed, one fluid unmixed

Dwarsstroming (cross-flow): de 2 fluïda bewegen meestal loodrecht t.o.v. elkaar in een compacte warmtewisselaar. De dwarsstroming wordt verder geclassificeerd als ongemengde en gemengde stroming.

Shell-and tube warmtewisselaar

Buizenwarmtewisselaar: het meest gebruikte type voor industriële toepassingen.

Een groot aantal buizen zijn gepakt (dikwijls >100).

Warmteoverdracht grijpt plaats doordat het ene fluïdum door de buizen stroomt en het andere door de shell.

Buizenwarmtewisselaar

Buizenwarmtewisselaars worden verder onderverdeeld naargelang het aantal buis- en shell-passages

(a) One-shell pass and two-tube passes

(b) Two-shell passes and four-tube passes

Platenwarmtewisselaar

- Vooral geschikt voor vloeistof-vloeistof-warmteoverdracht
- Vb. afkoelen van wort (bierproductie); opwarmen (pasteuriseren) van dranken (melk, bier)

2. De totale warmteoverdrachtscoëfficiënt

Thermisch
 weerstandsnetwerk
 geassocieerd met
 warmteoverdracht in een
 dubbele-buis warmtewisselaar

$$R_{\rm wall} = \frac{\ln \left(D_o/D_i\right)}{2\pi kL}$$

$$R = R_{\rm total} = R_i + R_{\rm wall} + R_o = \frac{1}{h_i A_i} + \frac{\ln{(D_o/D_i)}}{2\pi kL} + \frac{1}{h_o A_o}$$

$$A_i = \pi D_i L$$
 and $A_o = \pi D_o L$

$$\dot{Q} = \frac{\Delta T}{R} = UA\Delta T = U_i A_i \Delta T = U_o A_o \Delta T$$

U de totale warmteoverdrachtscoëfficiënt, W/m² · °C

$$\frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = R = \frac{1}{h_i A_i} + \frac{\ln (D_o/D_i)}{2\pi kL} + \frac{1}{h_o A_o}$$

$$U_i A_i = U_o A_o$$
, but $U_i \neq U_o$ unless $A_i = A_o$

Als
$$R_{\rm wall} \approx 0$$
 en $A_i \approx A_o \approx A_s$
$$\frac{1}{U} \approx \frac{1}{h_i} + \frac{1}{h_o} \qquad U \approx U_i \approx U_o$$

Representative values of the overall heat transfer coefficients in heat exchangers

Type of heat exchanger	U, W/m² · °C*
Water-to-water	850–1700
Water-to-oil	100-350
Water-to-gasoline or kerosene	300-1000
Feedwater heaters	1000-8500
Steam-to-light fuel oil	200-400
Steam-to-heavy fuel oil	50-200
Steam condenser	1000-6000
Freon condenser (water cooled)	300-1000
Ammonia condenser (water cooled)	800-1400
Alcohol condensers (water cooled)	250-700
Gas-to-gas	10-40
Water-to-air in finned tubes (water in tubes)	30-60 [†]
	400-850 [†]
Steam-to-air in finned tubes (steam in tubes)	30-300 [†]
	400-4000‡

De totale warmteoverdrachtcoëfficiënt varieert van ongeveer 10 W/m² · °C voor gas-gas-warmtewisselaars tot ongeveer 10 000 W/m² · °C voor warmtewisselaars met een faseverandering (condensors, boilers).

Bevuilingsfactor R_f

- Bevuiling = bijkomende weerstand voor warmteoverdacht
- Precipitatie: Ca-neerslag
- Corrosie
- Chemische bevuiling: producten van chemische reacties
- Biologische bevuiling: algen
- $R_f = 0$ voor nieuwe warmtewisselaars, de waarde stijgt bij gebruik
- R_f hangt af van: de temperatuur, vloeistofsnelheid, gebruiksperiode
- R_f neemt toe met toenemende temperatuur en dalende snelheid

Neerslagbevuiling van as deeltjes op hete buizen.

• Bevuilingsfactor R_f

$$\frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = R = \frac{1}{h_i A_i} + \frac{R_{f,i}}{A_i} + \frac{\ln{(D_o/D_i)}}{2\pi kL} + \frac{R_{f,o}}{A_o} + \frac{1}{h_o A_o}$$

Representative fouling factors (thermal resistance due to fouling for a unit surface area)

Fluid	R_f , m ² · °C/W
Distilled water, sea-	
water, river water,	
boiler feedwater:	
Below 50°C	0.0001
Above 50°C	0.0002
Fuel oil	0.0009
Steam (oil-free)	0.0001
Refrigerants (liquid)	0.0002
Refrigerants (vapor)	0.0004
Alcohol vapors	0.0001
Air	0.0004

Voorbeeld I: De totale warmteoverdrachtscoëffiënt

Eigenschappen bij van water bij 45°C:

k = 0,637 W/(m °C); Pr = 3,91

 $v = 0,602 \text{ } 10^{-6} \text{ } \text{ } \text{m}^2/\text{s}; \rho = 990 \text{ } \text{kg/m}^3$

Eigenschappen bij van olie bij 80°C:

k = 0.138 W/(m °C); Pr = 490

 $v = 37,5 \cdot 10^{-6} \text{ m}^2/\text{s}; \rho = 852 \text{ kg/m}^3$

Bepaal de totale warmteoverdrachtscoëfficiënt.

$$\frac{1}{U} \approx \frac{1}{h_i} + \frac{1}{h_o}$$

De dikte van de binnenste buis is te verwaarlozen.

$$V_m = \frac{\dot{m}}{\rho A_c} = \frac{\dot{m}}{\rho(\frac{1}{4}\pi D^2)} = \frac{0.5 \text{ kg/s}}{(990 \text{ kg/m}^3)[\frac{1}{4}\pi (0.02 \text{ m})^2]} = 1.61 \text{ m/s}$$

$$Re = \frac{V_m D_h}{v} = \frac{(1.61 \text{ m/s})(0.02 \text{ m})}{0.602 \times 10^{-6} \text{ m}^2/\text{s}} = 53,490 \implies \text{turbulente stroming}$$

$$Nu = \frac{hD_h}{k} = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4} = 0.023(53,490)^{0.8}(3.91)^{0.4} = 240.6$$

$$h = \frac{k}{D_h} \text{Nu} = \frac{0.637 \text{ W/m} \cdot ^{\circ}\text{C}}{0.02 \text{ m}} (240.6) = 7663 \text{ W/m}^2 \cdot ^{\circ}\text{C}$$

Olie:

$$D_h = D_o - D_i = 0.03 - 0.02 = 0.01 \text{ m}$$

$$V_m = \frac{\dot{m}}{\rho A_c} = \frac{\dot{m}}{\rho \left[\frac{1}{4}\pi (D_o^2 - D_i^2)\right]} = \frac{0.8 \text{ kg/s}}{(852 \text{ kg/m}^3)\left[\frac{1}{4}\pi (0.03^2 - 0.02^2)\right] \text{ m}^2} = 2.39 \text{ m/s}$$

Re =
$$\frac{V_m D_h}{v}$$
 = $\frac{(2.39 \text{ m/s})(0.01 \text{ m})}{37.5 \times 10^{-6} \text{ m}^2/\text{s}}$ = 637

$$Nu_0 = 4.57$$

$$D_i/D_o = 0.02/0.03 = 0.667 \text{ Nu}_i \times 5.45$$
 (Tabel 22-3)

$$Nu_i \times 5.45$$

$$h_o = \frac{k}{D_h} \text{Nu} = \frac{0.138 \text{ W/m} \cdot ^{\circ}\text{C}}{0.01 \text{ m}} (5.35) = 752 \text{ W/m}^2 \cdot ^{\circ}\text{C}$$

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}} = \frac{1}{7663 \text{ W/m}^2 \cdot ^{\circ}\text{C}} + \frac{1}{732 \text{ W/m}^2 \cdot ^{\circ}\text{C}} = 735 \text{ W/m}^2 \cdot ^{\circ}\text{C}$$
62.6

Voorbeeld 2: Effect van bevuiling

Bepaal: (a) de thermische weerstand van de warmtewisselaar per eenheidslengte, en (b) de totale warmteoverdrachtscoëfficiënten Ui en Uo∙

(a)
$$R = \frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = \frac{1}{h_i A_i} + \frac{R_{f,i}}{A_i} + \frac{\ln (D_o/D_i)}{2\pi kL} + \frac{R_{f,o}}{A_o} + \frac{1}{h_o A_o}$$

$$A_i = \pi D_i L = \pi (0.015 \text{ m})(1 \text{ m}) = 0.0471 \text{ m}^2$$

 $A_o = \pi D_o L = \pi (0.019 \text{ m})(1 \text{ m}) = 0.0597 \text{ m}^2$

$$R = \frac{1}{(800 \text{ W/m}^2 \cdot ^{\circ}\text{C})(0.0471 \text{ m}^2)} + \frac{0.0004 \text{ m}^2 \cdot ^{\circ}\text{C/W}}{0.0471 \text{ m}^2} + \frac{\ln (0.019/0.015)}{2\pi (15.1 \text{ W/m} \cdot ^{\circ}\text{C})(1 \text{ m})} + \frac{0.0001 \text{ m}^2 \cdot ^{\circ}\text{C/W}}{0.0597 \text{ m}^2} + \frac{1}{(1200 \text{ W/m}^2 \cdot ^{\circ}\text{C})(0.0597 \text{ m}^2)} + \frac{0.02654 + 0.00849 + 0.0025 + 0.00168 + 0.01396)^{\circ}\text{C/W}}{0.0532^{\circ}\text{C/W}}$$

(b)
$$U_i = \frac{1}{RA_i} = \frac{1}{(0.0532 \text{ °C/W})(0.0471 \text{ m}^2)} = 399 \text{ W/m}^2 \cdot \text{°C}$$

$$U_o = \frac{1}{RA_o} = \frac{1}{(0.0532 \text{ °C/W})(0.0597 \text{ m}^2)} = 315 \text{ W/m}^2 \cdot \text{°C}$$

3. De analyse van warmtewisselaars

Warmtebalansen

$$\dot{Q} = \dot{m}_c c_{pc} (T_{c,\,\mathrm{out}} - T_{c,\,\mathrm{in}})$$

$$\dot{Q} = \dot{m}_{h} c_{ph} (T_{h,\,\mathrm{in}} - T_{h,\,\mathrm{out}})$$

 \dot{m}_c , \dot{m}_h = mass flow rates

 c_{pc} , c_{ph} = specific heats

 $T_{c, \text{ out}}, T_{h, \text{ out}} = \text{outlet temperatures}$

 $T_{c, \text{in}}, T_{h, \text{in}} = \text{inlet temperatures}$

Warmtecapaciteitsdebiet:

$$C_h = \dot{m}_h c_{ph}$$
 and $C_c = \dot{m}_c c_{pc}$

$$\dot{Q} = C_c (T_{c, \text{ out}} - T_{c, \text{ in}})$$

$$\dot{Q} = C_c(T_{c, \text{ out}} - T_{c, \text{ in}})$$
 $\dot{Q} = C_h(T_{h, \text{ in}} - T_{h, \text{ out}})$

Condensors en boilers

$$\dot{Q} = \dot{m}h_{fg}$$

Condensatie- of verdampingswarmte (enthalpie)

$$\dot{Q} = \dot{m}C_p \, \Delta T$$

$$C_h \to \infty$$
 of $C_c \to \infty$

dan
$$C = \dot{m}C_p \to \infty$$
 vermits $\Delta T \to 0$

De warmtecapaciteitsnelheid van een fluïdum

gedurende een faseveranderingsproces gaat

temperatuursverandering praktisch 0 is.

naar oneindig vermits de

4. De logaritmisch-gemiddeldetemperatuursverschil-methode

 Het temperatuursverschil tussen de warme en koude vloeistof varieert langs de warmtewisselaar => werken met een gemiddeld temperatuursverschil

$$\dot{Q} = UA_s \Delta T_m$$

Gelijkstroom-dubbelbuiswarmtewisselaar:

$$\begin{split} \delta \dot{Q} &= -\dot{m}_h c_{ph} \, dT_h & \delta \dot{Q} &= \dot{m}_c c_{pc} \, dT_c \\ dT_h &= -\frac{\delta \dot{Q}}{\dot{m}_h c_{ph}} & dT_c &= \frac{\delta \dot{Q}}{\dot{m}_c c_{pc}} \\ dT_h &= -\delta \dot{Q} \left(\frac{1}{\dot{m}_h c_{ph}} + \frac{1}{\dot{m}_c c_{pc}} \right) \end{split}$$

$$\delta \dot{Q} = U(T_h - T_c) \, dA_s$$

$$\frac{d(T_h-T_c)}{T_h-T_c} = -U\,dA_s\left(\frac{1}{\dot{m}_h\,c_{ph}} + \frac{1}{\dot{m}_c\,c_{pc}}\right)$$

$$\ln \frac{T_{h,\,\mathrm{out}} - T_{c,\,\mathrm{out}}}{T_{h,\,\mathrm{in}} - T_{c,\,\mathrm{in}}} = -UA_s \left(\frac{1}{\dot{m}_h c_{ph}} + \frac{1}{\dot{m}_c c_{pc}} \right)$$

$$\dot{Q} = \dot{m}_c c_{pc} (T_{c,\,\mathrm{out}} - T_{c,\,\mathrm{in}})$$

$$\dot{Q} = \dot{m}_h c_{ph} (T_{h, \text{ in}} - T_{h, \text{ out}})$$

$$\ln \frac{T_{h,\,\mathrm{out}} - T_{c,\,\mathrm{out}}}{T_{h,\,\mathrm{in}} - T_{c,\,\mathrm{in}}} = -UA_s \left(\frac{1}{\dot{m}_h c_{ph}} + \frac{1}{\dot{m}_c c_{pc}} \right)$$

$$\dot{Q} = UA_s \Delta T_{\rm lm}$$

$$\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1 / \Delta T_2)}$$

Gelijkstroomwarmtewisselaar

Tegenstroomwarmtewisselaar

$$\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1 / \Delta T_2)}$$

(a) Parallel-flow heat exchangers

(b) Counter-flow heat exchangers

Tegenstroomwarmtewisselaar

$$\Delta T_{
m lm,\,CF} > \Delta T_{
m lm,\,PF}$$

Kleiner oppervlak

(= kleinere warmtewisselaar) is nodig bij tegenstroom

"Multipass"- en "cross flow"-warmtewisselaars: het gebruik van een correctiefactor F

$$\Delta T_{\rm lm} = F \, \Delta T_{\rm lm, \, CF}$$

F - correctiefactor hangt van de fluid geometrie van de warmtewisselaar af en $T_{h,\text{in}}$ van de in- en uitlaattemperaturen van de warme en koude stromen.

F wordt bepaald m.b.v. figuren:

$$P = \frac{t_2 - t_1}{T_1 - t_1} \quad R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{(\dot{m}c_p)_{\text{tube side}}}{(\dot{m}c_p)_{\text{shell side}}}$$

I en 2: inlaat en uitlaat

T en t: shell- en tube-side-

temperaturen

F = I voor een condensor of boiler

Heat transfer rate:

$$\dot{Q} = UA_s F\Delta T_{\rm lm,CF}$$

where
$$\Delta T_{\rm lm,CF} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1/\Delta T_2)}$$

$$\Delta T_1 = T_{h,\text{in}} - T_{c,\text{out}}$$

$$\Delta T_2 = T_{h, \text{out}} - T_{c, \text{in}}$$

and
$$F = ...$$
 (Fig. 22–18)

"Multipass"- buizenwarmtewisselaars: het gebruik van een correctiefactor F

$$P = \frac{t_2 - t_1}{T_1 - t_1}$$

$$R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{(\dot{m}c_p)_{\text{tube side}}}{(\dot{m}c_p)_{\text{shell side}}}$$

(a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes

(b) Two-shell passes and 4, 8, 12, etc. (any multiple of 4), tube passes

"Cross flow"-warmtewisselaars: het gebruik van een correctiefactor F

(c) Single-pass cross-flow with both fluids unmixed

(d) Single-pass cross-flow with one fluid mixed and the other unmixed

Voorbeeld I: Condensatie van stoom in een condenser

Oppervlakte van de buizen = 45 m^2 $U = 2100 \, \text{W/(m}^2 \, ^{\circ}\text{C})$

Bepaal het massadebiet van het koelwater en het massadebiet van het condensaat.

$$\frac{\Delta T_1 = T_{h, \text{ in}} - T_{c, \text{ out}} = (30 - 22)^{\circ}\text{C} = 8^{\circ}\text{C}}{\Delta T_2 = T_{h, \text{ out}} - T_{c, \text{ in}} = (30 - 14)^{\circ}\text{C} = 16^{\circ}\text{C}}$$

$$\Delta T_{\text{lm}} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1 / \Delta T_2)} = \frac{8 - 16}{\ln (8/16)} = 11.5^{\circ}\text{C}$$

$$\Delta T_{\text{lm}} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1 / \Delta T_2)} = \frac{8 - 16}{\ln (8/16)} = 11.5$$
°C

$$\dot{Q} = UA_s \Delta T_{\text{lm}} = (2100 \text{ W/m}^2 \cdot ^{\circ}\text{C})(45 \text{ m}^2)(11.5 ^{\circ}\text{C}) = 1.087 \times 10^6 \text{ W} = 1087 \text{ kW}$$

$$\dot{m}_{\text{cooling water}} = \frac{Q}{C_p (T_{\text{out}} - T_{\text{in}})}$$

$$= \frac{1087 \text{ kJ/s}}{(4.184 \text{ kJ/kg} \cdot ^{\circ}\text{C})(22 - 14)^{\circ}\text{C}} = 32.5 \text{ kg/s}$$

$$\dot{m}_{\text{steam}} = \frac{\dot{Q}}{h_{fg}} = \frac{1087 \text{ kJ/s}}{2431 \text{ kJ/kg}} = 0.45 \text{ kg/s}$$

Voorbeeld 2: Tegenstroomwarmtewisselaar

Bepaal de lengte van de warmtewisselaar.

$$\dot{Q} = [\dot{m}C_p(T_{\text{out}} - T_{\text{in}})]_{\text{water}} = (1.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C})(80 - 20)^{\circ}\text{C} = 301 \text{ kW}$$

$$\dot{Q} = [\dot{m}C_p(T_{\text{in}} - T_{\text{out}})]_{\text{geothermal}} \longrightarrow T_{\text{out}} = T_{\text{in}} - \frac{\dot{Q}}{\dot{m}C_p}$$

$$\dot{Q} = \left[\dot{m}C_p(T_{\rm in} - T_{\rm out})\right]_{\rm geothermal} \longrightarrow T_{\rm out} = T_{\rm in} - \frac{g}{\dot{m}C_p}$$

$$= 160^{\circ}\text{C} - \frac{301 \text{ kW}}{(2 \text{ kg/s})(4.31 \text{ kJ/kg} \cdot ^{\circ}\text{C})}$$

$$= 125^{\circ}\text{C}$$

$$\Delta T_1 = T_{h, \text{ in}} - T_{c, \text{ out}} = (160 - 80)^{\circ}\text{C} = 80^{\circ}\text{C}$$

 $\Delta T_2 = T_{h, \text{ out}} - T_{c, \text{ in}} = (125 - 20)^{\circ}\text{C} = 105^{\circ}\text{C}$

$$\Delta T_{\text{lm}} = \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1 / \Delta T_2)} = \frac{80 - 105}{\ln (80 / 105)} = 92.0$$
°C

$$\dot{Q} = UA_s \, \Delta T_{\rm lm} \longrightarrow A_s = \frac{\dot{Q}}{U \, \Delta T_{\rm lm}} = \frac{301,000 \, \text{W}}{(640 \, \text{W/m}^2 \cdot {}^{\circ}\text{C})(92.0 {}^{\circ}\text{C})} = 5.11 \, \text{m}^2$$

$$A_s = \pi DL \longrightarrow L = \frac{A_s}{\pi D} = \frac{5.11 \text{ m}^2}{\pi (0.015 \text{ m})} = 108 \text{ m}$$

Voorbeeld 3: "Multipass"-warmtewisselaar

Shell side:
$$h = 25 \text{ W/(m}^2 \text{ °C)}$$

Tube side: $h = 160 \text{ W/(m}^2 \text{ °C)}$
 $R_f = 0,0006 \text{ m}^2 \text{ °C/W}$

Bepaal het warmtedebiet (a) voordat bevuiling optrad, en (b) na bevuiling.

(a)

$$A_{s} = \pi DL = \pi (0.02 \text{ m})(60 \text{ m}) = 3.77 \text{ m}^{2}$$

$$\dot{Q} = UA_{s} F \Delta T_{\text{lm, CF}}$$

$$\Delta T_{1} = T_{h, \text{in}} - T_{c, \text{out}} = (80 - 50)^{\circ}\text{C} = 30^{\circ}\text{C}$$

$$\Delta T_{2} = T_{h, \text{out}} - T_{c, \text{in}} = (40 - 20)^{\circ}\text{C} = 20^{\circ}\text{C}$$

$$\Delta T_{\text{lm, CF}} = \frac{\Delta T_{1} - \Delta T_{2}}{\ln (\Delta T_{1}/\Delta T_{2})} = \frac{30 - 20}{\ln (30/20)} = 24.7^{\circ}\text{C}$$

(b)

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o} + R_f} = \frac{1}{\frac{1}{160 \text{ W/m}^2 \cdot ^{\circ}\text{C}} + \frac{1}{25 \text{ W/m}^2 \cdot ^{\circ}\text{C}} + 0.0006 \text{ m}^2 \cdot ^{\circ}\text{C/W}}$$

$$= 21.3 \text{ W/m}^2 \cdot ^{\circ}\text{C}$$

$$\dot{Q} = UA_s F \Delta T_{\text{lm, CF}} = (21.3 \text{ W/m}^2 \cdot ^{\circ}\text{C})(3.77 \text{ m}^2)(0.91)(24.7^{\circ}\text{C}) = 1805 \text{ W}$$

Voorbeeld 4: Koeling van een radiator

40 buizen

Interne diameter = 0.5 cm, lengte = 65 cm Massadebiet warm water = 0.6 kg/s $c_p = 4,195$ kJ/(kg °C) bij de gemiddelde temperatuur = (90 + 65)/2 = 77,5°C

Bepaal de totale warmteoverdrachtscoëffiënt U_i .

$$\dot{Q} = [\dot{m}C_p(T_{\rm in} - T_{\rm out})]_{\rm water} = (0.6 \text{ kg/s})(4.195 \text{ kJ/kg} \cdot ^{\circ}\text{C})(90 - 65)^{\circ}\text{C} = 62.93 \text{ kW}$$

$$A_i = n\pi D_i L = (40)\pi (0.005 \text{ m})(0.65 \text{ m}) = 0.408 \text{ m}^2$$

$$\dot{Q} = U_i A_i F \Delta T_{\text{lm, CF}} \longrightarrow U_i = \frac{Q}{A_i F \Delta T_{\text{lm, CF}}}$$

$$\Delta T_1 = T_{h, \text{ in}} - T_{c, \text{ out}} = (90 - 40)^{\circ}\text{C} = 50^{\circ}\text{C}$$

$$\Delta T_2 = T_{h, \text{ out}} - T_{c, \text{ in}} = (65 - 20)^{\circ}\text{C} = 45^{\circ}\text{C}$$

$$\Delta T_{\text{lm, CF}} = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1/\Delta T_2)} = \frac{50 - 45}{\ln(50/45)} = 47.6^{\circ}\text{C}$$

$$P = \frac{t_2 - t_1}{T_1 - t_1} = \frac{65 - 90}{20 - 90} = 0.36$$

$$R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{20 - 40}{65 - 90} = 0.80$$

$$F = 0.97$$
(Fig. 23–18c)

$$U_i = \frac{\dot{Q}}{A_i F \, \Delta T_{\text{lm, CF}}} = \frac{62,930 \,\text{W}}{(0.408 \,\text{m}^2)(0.97)(47.6^{\circ}\text{C})} = 3341 \,\text{W/m}^2 \cdot {^{\circ}\text{C}}$$

5. De effectiviteit-NTU-methode

• LMTD-methode: inlaat- en uitlaattemperaturen zijn gekend of kunnen bepaald worden via de energiebalans => bepalen van nodige oppervlakte A_s met $\dot{Q} = UA_s \Delta T_{lm}$

Procedure

- Selecteer een bepaald type warmtewisselaar
- Bepaal onbekende inlaat- of uitlaattemperatuur en warmtedebiet m.b.v. energiebalans
- Bereken ΔT_{lm} en correctiefactor F (indien nodig)
- Selecteer/bereken de waarde van U
- Bereken de warmteoverdrachtsoppervlakte A_s

2^e type probleem:

Bepaal het warmtedebiet en uitlaattemperatuur van de warme en koude vloeistoffen voor een gekend massadebiet en inlaattemperaturen als type en grootte van de warmtewisselaar gespecificeerd zijn (uitlaattemperaturen onbekend)

Gebruik de effectiviteit-NTU-methode

• Warmteoverdrachtseffectiviteit ε

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{\text{Actual heat transfer rate}}{\text{Maximum possible heat transfer rate}}$$

$$\dot{Q} = C_c (T_{c, \text{ out}} - T_{c, \text{ in}}) = C_h (T_{h, \text{ in}} - T_{h, \text{ out}})$$

$$C_c = \dot{m}_c c_{pc} \text{ and } C_h = \dot{m}_c c_{ph}$$

$$\Delta T_{\rm max} = T_{h,\,\rm in} - T_{c,\,\rm in}$$

$$\dot{Q}_{\text{max}} = C_{\text{min}}(T_{h, \text{in}} - T_{c, \text{in}})$$

Met C_{min} de kleinste waarde voor

$$C_c = \dot{m}_c c_{pc}$$
 of $C_h = \dot{m}_c c_{ph}$

$$\dot{Q} = \varepsilon \dot{Q}_{\rm max} = \varepsilon C_{\rm min} (T_{h,\,\rm in} - T_{c,\,\rm in})$$

Effectiviteitsrelatie voor een dubbele-buiswarmtewisselaar met gelijkstroming

$$\dot{Q} = \varepsilon \dot{Q}_{\rm max} = \varepsilon C_{\rm min} (T_{h,\,\rm in} - T_{c,\,\rm in})$$

$$\ln \frac{T_{h, \text{ out}} - T_{c, \text{ out}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} = -UA_s \left(\frac{1}{\dot{m}_h c_{ph}} + \frac{1}{\dot{m}_c c_{pc}} \right) \qquad \Rightarrow \quad \ln \frac{T_{h, \text{ out}} - T_{c, \text{ out}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} = -\frac{UA_s}{C_c} \left(1 + \frac{C_c}{C_h} \right)$$

$$\dot{Q} = C_c(T_{c,\, \text{out}} - T_{c,\, \text{in}}) = C_h(T_{h,\, \text{in}} - T_{h,\, \text{out}}) \longrightarrow T_{h,\, \text{out}} = T_{h,\, \text{in}} - \frac{C_c}{C_b}(T_{c,\, \text{out}} - T_{c,\, \text{in}})$$

$$\ln \frac{T_{h,\, \mathrm{in}} - T_{c,\, \mathrm{in}} + T_{c,\, \mathrm{in}} - T_{c,\, \mathrm{out}} - \frac{C_c}{C_h} (T_{c,\, \mathrm{out}} - T_{c,\, \mathrm{in}})}{T_{h,\, \mathrm{in}} - T_{c,\, \mathrm{in}}} = -\frac{U A_s}{C_c} \bigg(1 + \frac{C_c}{C_h} \bigg)$$

$$\ln \left[1 - \left(1 + \frac{C_c}{C_h} \right) \frac{T_{c, \text{ out}} - T_{c, \text{ in}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} \right] = -\frac{UA_s}{C_c} \left(1 + \frac{C_c}{C_h} \right)$$

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\rm max}} = \frac{C_c(T_{c,\,{\rm out}} - T_{c,\,{\rm in}})}{C_{\rm min}(T_{h,\,{\rm in}} - T_{c,\,{\rm in}})} \quad \longrightarrow \quad \frac{T_{c,\,{\rm out}} - T_{c,\,{\rm in}}}{T_{h,\,{\rm in}} - T_{c,\,{\rm in}}} = \varepsilon \, \frac{C_{\rm min}}{C_c}$$

$$\varepsilon_{\text{parallel flow}} = \frac{1 - \exp\left[-\frac{UA_s}{C_c}\left(1 + \frac{C_c}{C_h}\right)\right]}{\left(1 + \frac{C_c}{C_h}\right)\frac{C_{\min}}{C_c}}$$

$$\ln \frac{T_{h, \text{ out}} - T_{c, \text{ out}}}{T_{h, \text{ in}} - T_{c, \text{ in}}} = -\frac{UA_s}{C_c} \left(1 + \frac{C_c}{C_h}\right)$$

$$T_{h, \text{ out}} = T_{h, \text{ in}} - \frac{C_c}{C_h} (T_{c, \text{ out}} - T_{c, \text{ in}})$$

(a) Parallel flow

$$\varepsilon_{\text{parallel flow}} = \frac{1 - \exp\left[-\frac{UA_s}{C_c}\left(1 + \frac{C_c}{C_h}\right)\right]}{\left(1 + \frac{C_c}{C_h}\right)\frac{C_{\min}}{C_c}}$$

Stel C_{min} de kleinste waarde voor C_c of C_h

$$\varepsilon_{\text{parallel flow}} = \frac{1 - \exp\left[-\frac{UA_s}{C_{\min}}\left(1 + \frac{C_{\min}}{C_{\max}}\right)\right]}{1 + \frac{C_{\min}}{C_{\max}}}$$

Aantal transfereenheden (NTU):

Capaciteitsverhouding c:

$$NTU = \frac{UA_s}{C_{\min}} = \frac{UA_s}{(\dot{m}c_p)_{\min}}$$

$$c = \frac{C_{\min}}{C_{\max}}$$

De effectiviteit van een warmtewisselaar is een functie van het aantal transfereenheden (NTU) en de capaciteitsverhouding c:

$$\varepsilon = \text{function} (UA_s/C_{\min}, C_{\min}/C_{\max}) = \text{function} (NTU, c)$$

Effectiveness relations for heat exchangers: NTU = UA_s/C_{\min} and $c = C_{\min}/C_{\max} = (\dot{m}\,c_p)_{\min}/(\dot{m}\,c_p)_{\max}$

Heat exchanger type		Effectiveness relation
1	<i>Double pipe:</i> Parallel-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1+c)\right]}{1+c}$
	Counter-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1-c)\right]}{1 - c \exp\left[-NTU(1-c)\right]}$
2	Shell-and-tube: One-shell pass 2, 4, tube	$\varepsilon = 2 \left\{ 1 + c + \sqrt{1 + c^2} \frac{1 + \exp\left[-\text{NTU}\sqrt{1 + c^2}\right]}{1 - \exp\left[-\text{NTU}\sqrt{1 + c^2}\right]} \right\}^{-1}$
	passes	$(1 - \exp[-N 10 \sqrt{1 + c^{-1}}])$
3	Cross-flow (single-pass)	
	Both fluids unmixed	$\varepsilon = 1 - \exp \left\{ \frac{\text{NTU}^{0.22}}{c} \left[\exp \left(-c \text{ NTU}^{0.78} \right) - 1 \right] \right\}$
	$C_{ m max}$ mixed, $C_{ m min}$ unmixed	$\varepsilon = \frac{1}{c}(1 - \exp\{-c[1 - \exp(-NTU)]\})$
	C_{\min} mixed, C_{\max} unmixed	$\varepsilon = 1 - \exp\left\{-\frac{1}{c}[1 - \exp(-c \text{NTU})]\right\}$
4	All heat exchangers with $c = 0$	$\varepsilon = 1 - \exp(-NTU)$

(a) Parallel-flow

(b) Counter-flow

(c) One-shell pass and 2, 4, 6, ... tube passes

(d) Two-shell passes and 4, 8, 12, ... tube passes

(e) Cross-flow with both fluids unmixed

Number of transfer units NTU = $A_s U/C_{\min}$

(f) Cross-flow with one fluid mixed and the other unmixed

- Effectiviteit verandert snel tussen 0 en 1,5.
 Warmtewisselaar met NTU > 3 is te groot om economisch goed te zijn
- Tegenstroom geeft grootste effectiviteit; gelijkstroom laagste
- Effectiviteit is onafhankelijk van c voor NTU < 0,3
- Bij bepaalde NTU is ε maximaal als c = 0 en minimaal voor c = 1.

NTU relations for heat exchangers: NTU = UA_s/C_{\min} and $c = C_{\min}/C_{\max} = (\dot{m}c_p)_{\min}/(\dot{m}c_p)_{\max}$

Heat exchanger type	NTU relation
1 <i>Double-pipe:</i> Parallel-flow	$\begin{aligned} \text{NTU} &= -\frac{\ln\left[1 - \varepsilon(1+c)\right]}{1+c} \\ \text{NTU} &= \frac{1}{c-1}\ln\left(\frac{\varepsilon-1}{\varepsilon c-1}\right) \end{aligned}$
Counter-flow	$NTU = \frac{1}{c-1} \ln \left(\frac{\varepsilon - 1}{\varepsilon c - 1} \right)$
2 Shell and tube: One-shell pass 2, 4, tube passes	NTU = $-\frac{1}{\sqrt{1+c^2}} \ln \left(\frac{2/\varepsilon - 1 - c - \sqrt{1+c^2}}{2/\varepsilon - 1 - c + \sqrt{1+c^2}} \right)$
3 $Cross-flow$ ($single-pass$): C_{max} mixed, C_{min} unmixed	$NTU = -\ln\left[1 + \frac{\ln\left(1 - \varepsilon c\right)}{c}\right]$
C_{\min} mixed, C_{\max} unmixed 4 All heat exchangers with $c = 0$	$NTU = -\frac{\ln [c \ln (1 - \varepsilon) + 1]}{c}$ $NTU = -\ln(1 - \varepsilon)$

- Als alle in- en uitlaattemperaturen gekend zijn, dan kan de *grootte* van de warmtewisselaar gemakkelijk bepaald worden m.b.v. de LMTD-methode.
- De grootte kan ook bepaald worden met de effectiviteit-NTU-methode door eerst de effectiviteit te berekenen via de definitie en dan NTU m.b.v. de geschikte NTU-vergelijking

Voorbeeld I: Gebruik van de effectiviteit-NTU-

methode

Hot geothermal 160°C brine
$$2 \text{ kg/s}$$

20°C $D = 1.5 \text{ cm}$

 $U = 640 \text{ W/(m}^2 \text{ °C)}$

Bepaal de lengte van de warmtewisselaar (zie ook vorige oefening met LMTDmethode).

$$C_h = \dot{m}_h C_{ph} = (2 \text{ kg/s})(4.31 \text{ kJ/kg} \cdot ^{\circ}\text{C}) = 8.62 \text{ kW/}^{\circ}\text{C}$$

$$C_c = \dot{m}_c C_{pc} = (1.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C}) = 5.02 \text{ kW/}^{\circ}\text{C}$$

$$C_{\min} = C_c = 5.02 \text{ kW/}^{\circ}\text{C}$$

$$c = C_{\min}/C_{\max} = 5.02/8.62 = 0.583$$

$$\dot{Q}_{\text{max}} = C_{\text{min}}(T_{h, \text{in}} - T_{c, \text{in}})$$

= (5.02 kW/°C)(160 - 20)°C
= 702.8 kW

$$\dot{Q} = [\dot{m}C_p(T_{\text{out}} - T_{\text{in}})]_{\text{water}} = (1.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot {}^{\circ}\text{C})(80 - 20){}^{\circ}\text{C} = 301.0 \text{ kW}$$

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{301.0 \text{ kW}}{702.8 \text{ kW}} = 0.428$$

$$NTU = \frac{1}{c - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon c - 1} \right) = \frac{1}{0.583 - 1} \ln \left(\frac{0.428 - 1}{0.428 \times 0.583 - 1} \right) = 0.651$$

$$NTU = \frac{UA_s}{C_{\min}} \longrightarrow A_s = \frac{NTU \ C_{\min}}{U} = \frac{(0.651)(5020 \ \text{W/°C})}{640 \ \text{W/m}^2 \cdot \text{°C}} = 5.11 \ \text{m}^2$$

$$A_s = \pi DL \longrightarrow L = \frac{A_s}{\pi D} = \frac{5.11 \text{ m}^2}{\pi (0.015 \text{ m})} = 108 \text{ m}$$

Voorbeeld 2: "Multipass"-warmtewisselaar

Buizen: dunne wand, interne diameter=1.4 cm, lengte = 5 m/buispassage

Bepaal het warmtedebiet en de uitlaattemperaturen van de olie en het water.

$$C_h = \dot{m}_h C_{ph} = (0.3 \text{ kg/s})(2.13 \text{ kJ/kg} \cdot ^{\circ}\text{C}) = 0.639 \text{ kW/}^{\circ}\text{C}$$

 $C_c = \dot{m}_c C_{pc} = (0.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C}) = 0.836 \text{ kW/}^{\circ}\text{C}$

$$C_{\min} = C_h = 0.639 \text{ kW/}^{\circ}\text{C}$$
 $c = \frac{C_{\min}}{C_{\max}} = \frac{0.639}{0.836} = 0.764$

$$\dot{Q}_{\text{max}} = C_{\text{min}}(T_{h, \text{ in}} - T_{c, \text{ in}})$$

= $(0.639 \text{ kW/°C})(150 - 20)^{\circ}\text{C} = 83.1 \text{ kW}$

$$A_s = n(\pi DL) = 8\pi (0.014 \text{ m})(5 \text{ m}) = 1.76 \text{ m}^2$$

$$NTU = \frac{UA_s}{C_{min}} = \frac{(310 \text{ W/m}^2 \cdot ^{\circ}\text{C})(1.76 \text{ m}^2)}{639 \text{ W/}^{\circ}\text{C}} = 0.853$$

Fig. 22-26c:
$$\varepsilon = 0.47$$

$$\dot{Q} = \varepsilon \dot{Q}_{\text{max}} = (0.47)(83.1 \text{ kW}) = 39.1 \text{ kW}$$

$$\dot{Q} = C_c (T_{c, \text{ out}} - T_{c, \text{ in}}) \longrightarrow T_{c, \text{ out}} = T_{c, \text{ in}} + \frac{Q}{C_c}$$

$$= 20^{\circ}\text{C} + \frac{39.1 \text{ kW}}{0.836 \text{ kW/}^{\circ}\text{C}} = 66.8^{\circ}\text{C}$$

$$\dot{Q} = C_h(T_{h, \text{ in}} - T_{h, \text{ out}}) \longrightarrow T_{h, \text{ out}} = T_{h, \text{ in}} - \frac{\dot{Q}}{C_h}$$

$$= 150^{\circ}\text{C} - \frac{39.1 \text{ kW}}{0.639 \text{ kW/}^{\circ}\text{C}} = 88.8^{\circ}\text{C}$$

6. Selectie van warmtewisselaars

 Onzekerheid in de voorspelde *U*-waarde kan groter zijn dan 30% -> overdimensioneren

 Verbeterd warmteoverdracht gepaard met grotere drukverlies -> groter pompvermogen

 Meest viskeuze fluïdum aan de shell-zijde (grotere oppervlakte, minder drukverlies) en fluïdum met de grootste druk aan de buis-zijde

Praktijk:

 Doel: opwarmen of afkoelen van een fluïdum aan gekend massadebiet en temperatuur tot gewenste temperatuur

$$\dot{Q} = \dot{m}c_p(T_{\rm in} - T_{\rm out})$$

- Selectie:
 - Warmtedebiet
 - Kost: Kant-en-klaar of op maat gedimensioneerd
 - Pompvermogen

```
Operating cost = (Pumping power, kW) \times (Hours of operation, h) \times (Unit cost of electricity, $/kWh)
```

- Grootte en gewicht
- Type
- Materialen