Since the inequality

$$g(c) + (x - c)g'(c) \le g(x)$$

is assumed valid for every possible value x of the random variable X, we obtain

$$g(c) + (X - c)g'(c) \le g(X).$$

For any two random variables, Y and Z, if it is always the case that $Y \leq Z$, then we must have $\mathbf{E}[Y] \leq \mathbf{E}[Z]$. By applying this fact to the inequality above, and choosing $c = \mathbf{E}[X]$, we obtain

$$g(\mathbf{E}[X]) + (\mathbf{E}[X] - \mathbf{E}[X])g'(\mathbf{E}[X]) \le \mathbf{E}[g(X)],$$

or

$$g(\mathbf{E}[X]) \le \mathbf{E}[g(X)].$$