EYP2106 Modelos Probabilísticos

Solución de la Interrogación 2

Profesor Fernando Quintana Ayudante Rubén Soza Semestre 2019/1

1. Tenemos

$$f_{X_1,X_2}(x_1,x_2) = \left\{ \begin{array}{ll} c(x_1^2 + x_2^2) & \text{si } 0 < x_1 < 1 \text{ y } 0 < x_2 < 1 \\ 0 & \text{si no.} \end{array} \right.$$

que tiene claras simetrías en sus argumentos.

(a) Imponiendo la condición $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_1,X_2}(x_1,x_2) dx_2 dx_1 = 1$ tenemos

$$\begin{aligned} 1 &= c \int_0^1 \int_0^1 (x_1^2 + x_2^2) \, dx_2 dx_1 = c \left[\int_0^1 x_1^2 \int_0^1 1 \, dx_2 dx_1 + \int_0^1 x_2^2 \int_0^1 1 \, dx_1 dx_2 \right] \\ &= c \left[\int_0^1 x_1^2 \, dx_1 + \int_0^1 x_2^2 \, dx_2 \right] = \frac{2c}{3}, \end{aligned}$$

de donde $c = \frac{3}{2}$.

(b) Tenemos que $f_{X_1}(x_1) = 0$ si $x_1 \notin (0,1)$. Si $x_1 \in (0,1)$:

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) \, dx_2 = \frac{3}{2} \int_{0}^{1} \left(x_1^2 + x_2^2 \right) \, dx_2 = \frac{3}{2} \left(x_1^2 + \frac{1}{3} \right).$$

Análogamente, $f_{X_2}(x_2)=0$ si $x_2\not\in(0,1)$ y si $x_2\in(0,1)$:

$$f_{X_2}(x_2) = \frac{3}{2} \left(x_2^2 + \frac{1}{3} \right),$$

y claramente $f_{X_1,X_2}(x_1,x_2)$ y $f_{X_1}(x_1)f_{X_2}(x_2)$ no coinciden, por lo que X_1 y X_2 no son independientes.

(c) Tenemos

$$P(X_1 < X_2) = \frac{3}{2} \int_0^1 \int_{x_1}^1 (x_1^2 + x_2^2) dx_2 dx_1 = \frac{3}{2} \int_0^1 \left(x_1^2 (1 - x_1) + \frac{1 - x_1^3}{3} \right) dx_1$$
$$= \frac{3}{2} \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{3} - \frac{1}{12} \right) = \frac{3}{2} \times \frac{1}{3} = \frac{1}{2}$$

Este resultado se puede intuir por la simetría del problema.

- 2. X_i es discreta, con soporte D_{X_i} para $i = 1, \ldots, n$.
 - (a) Sabemos que variables aleatorias X_1, \ldots, X_n son independientes ssi

$$P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i), \quad \text{para todo } B_1, \dots, B_n \in \mathbb{B}(\mathbb{R}).$$

1

Luego, si X_1,\ldots,X_n son independientes, el resultado es inmediato con $B_i=\{x_i\},\ i=1,\ldots,n.$ A la inversa, si $p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n p_{X_i}(x_i)$, para todo $(x_1,\ldots,x_n)\in D_{X_1}\times\cdots\times D_{X_n}$, sean $B_1,\ldots,B_n\in\mathbb{B}(\mathbb{R})$ cualesquiera. Entonces

$$\begin{split} P(X_1 \in B_1, \dots, X_n \in B_n) &= P(X_1 \in B_1 \cap D_{X_1}, \dots, X_n \in B_n \cap D_{X_n}) \\ &= \sum_{x_1 \in B_1 \cap D_{X_1}} \dots \sum_{x_n \in B_n \cap D_{X_n}} P(X_1 = x_1, \dots, X_n = x_n) \\ &= \sum_{x_1 \in B_1 \cap D_{X_1}} \dots \sum_{x_n \in B_n \cap D_{X_n}} \prod_{i=1}^n p_{X_i}(x_i) \quad \text{(por hipótesis)} \\ &= \prod_{i=1}^n \sum_{x_i \in B_i \cap D_{X_i}} p_{X_i}(x_i) = \prod_{i=1}^n P(X_i \in B_i), \end{split}$$

como se quería probar.

(b) En este caso, todos los números a, b, c, d deben ser probabilidades, es decir, deben ser números en [0, 1], y además, a + b + c + d = 1. Calculando las distribuciones marginales tenemos

x_2			
x_1	0	1	$p_{X_1}(x_1)$
0	a	b	a+b
1	c	d	c+d
$p_{X_2}(x_2)$	a+c	b+d	1

Luego, para que se cumpla independencia debemos tener que

$$a = (a+b)(a+c), b = (a+b)(b+d), c = (c+d)(a+c), v d = (c+d)(b+d).$$

(c) En este caso tenemos:

$$a = \frac{2}{5} \times \frac{4}{7} = \frac{8}{35}, \quad b = \frac{2}{5} \times \frac{3}{7} = \frac{6}{35}, \quad c = \frac{3}{5} \times \frac{2}{7} = \frac{6}{35}, \quad d = \frac{3}{5} \times \frac{5}{7} = \frac{15}{35},$$

de modo $a+c=\frac{2}{5}, a+b=\frac{2}{5}$, y claramente $(a+c)(a+b)\neq a$ de modo que X_1 y X_2 no son independientes, pero como $p_{X_1}(0)=p_{X_2}(0)$ y similarmente, $p_{X_1}(1)=p_{X_2}(1)$, ellas sí son igualmente distribuidas.

- 3. Tenemos X_1, \ldots, X_n independientes, con $X_i \sim \text{Weibull}(\alpha, \lambda_i)$ para $i = 1, \ldots, n$.
 - (a) El tiempo hasta que la primera máquina se averíe es $\min(X_1, \dots, X_n)$. Denotando por Y dicha variable tenemos que para y > 0:

$$P(Y > y) = P(X_1 > y, \dots, X_n > y) = \prod_{i=1}^n P(X_i > y) = \prod_{i=1}^n (1 - F_{X_i}(y)).$$

Como para y > 0, $F_{X_i}(y) = \int_0^y f_{X_i}(x) dx = 1 - \exp(-\lambda_i x_i^{\alpha})$ tenemos que

$$P(Y > y) = \prod_{i=1}^{n} \exp(-\lambda_i y^{\alpha}) = \exp\left(-\left\{\sum_{i=1}^{n} \lambda_i\right\} y^{\alpha}\right),$$

de modo que $Y \sim \text{Weibull}(\alpha, \lambda_+)$, con $\lambda_+ = \sum_{i=1}^n \lambda_i$.

(b) Puesto que $F_Y(0) = 0$ tenemos

$$\begin{split} E(Y) &= \int_0^\infty (1 - F_Y(y)) \, dy = \int_0^\infty \exp(-\lambda_+ y^\alpha) \, dy \\ &= \int_0^\infty \frac{1}{\alpha} u^{\frac{1}{\alpha} - 1} \exp(-\lambda_+ u) \, du \quad \text{(haciendo } u = y^\alpha\text{)} \\ &= \frac{\Gamma(1/\alpha)}{\alpha \lambda_+^{1/\alpha}} = \frac{\Gamma(1 + 1/\alpha)}{\lambda_+^{1/\alpha}} \end{split}$$

- 4. Tenemos que $f_{X_1,X_2}(x_1,x_2) = I_{(0,1)}(x_1)I_{(0,1)}(x_2)$.
 - (a) Consideremos $(Y_1,Y_2)=g(X_1,X_2)=(X_1-X_2,X_2)$, de modo que $(X_1,X_2)=g^{-1}(Y_1,Y_2)=(Y_1+Y_2,Y_2)$, y claramente la matriz Jacobiana de g^{-1} tiene determinante 1, de modo que

$$f_{Y_1,Y_2}(y_1,y_2) = I_{(0,1)}(y_1 + y_2)I_{(0,1)}(y_2),$$

Como nos interesa $f_{Y_1}(y_1)$, calculamos la densidad marginal, notando que el soporte de Y_1 es (-1,1). Distinguimos 2 casos:

• (i) si $-1 < y_1 < 0$ entonces $y_1 + y_2 \in (0,1)$ e $y_2 \in (0,1)$ implican que $-y_1 < y_2 < 1$, de modo que

$$f_{Y_1}(y_1) = \int_{-y_1}^{1} 1 \, dy_2 = 1 + y_1.$$

• (ii) Si $0 \le y_1 < 1$ entonces $y_1 + y_2 \in (0,1)$ e $y_2 \in (0,1)$ implican que $0 < y_2 < 1 - y_1$, de modo que

$$f_{Y_1}(y_1) = \int_0^{1-y_1} 1 \, dy_2 = 1 - y_1.$$

En resumen,

$$f_{Y_1}(y_1) = \begin{cases} 1 + y_1 & \text{si } -1 < y_1 < 0 \\ 1 - y_1 & \text{si } 0 \le y_1 < 1 \\ 0 & \text{si no,} \end{cases}$$

que corresponde a una densidad de tipo triangular.

- (b) (i) Por definición, $E(Y_1) = \int_{-\infty}^{\infty} y f_{Y_1}(y_1) dy_1$ que en este caso resulta ser 0 porque f_{Y_1} es simétrica en torno a 0 y además tiene soporte acotado (de modo que $E(Y_1)$ existe).
 - (ii) Se tiene $E(Y_1) = E(X_1 X_2) = E(X_1) E(X_2) = 0$ porque X_1 y X_2 son idénticamente distribuidas (por lo que tienen la misma esperanza, y esta esperanza existe).