### SAGE

# A 2-D Self-Adaptive Grid Evolution Code and its Application in Computational Fluid Dynamics

b y

Carol B. Davies<sup>1</sup>, Ethiraj Venkatapathy<sup>2</sup> and George S. Deiwert<sup>3</sup>

### **Abstract**

SAGE is a user-friendly, highly efficient, 2-dimensional self-adaptive grid code based on Nakahashi & Deiwert's variational principles method. Grid points are redistributed into regions of high flowfield gradients while maintaining smoothness and orthogonality of the grid. CPU efficiency is obtained by splitting the adaption into 2 directions and applying one-sided torsion control, thus producing a 1-D elliptic system that can be solved as a set of tridiagonal equations.

Sterling Software, Palo Alto, Ca.

<sup>&</sup>lt;sup>2</sup> Eloret Institute, Sunnyvale, Ca.
<sup>3</sup> Chief, Aerothermodynics Branch, NASA Ames Research Center, Moffett Field, Ca.

## Outline of Presentation

- Brief Description of Self-Adaptive Method (based on Nakahashi & Deiwert's variational principles scheme.)
- SAGE code features, including input parameters.
- Application of SAGE to various flow problems:
- Hypersonic blunt body
  Supersonic shock impingement
  Hypersonic inlet with cowl
  Supersonic plume flow
  Supersonic inlet

## Self-Adaptive Grid Method of Nakahashi & Deiwert

Objective: to redistribute points into regions of high flow gradients (utilizing minimization principles) while maintaining smoothness and orthogonality between adapted lines. The technique is analogous to connecting each node by tension and torsion springs and locating the equilibrium position of the resulting system.



### Adaption Equation

Splitting the adaption into 2 directions and applying one sided torsion control reduces the problem to the following 1-D elliptic system which can be solved as a tridiagonal system of equations:

$$\omega_{\mathbf{i}}\Delta s_{\mathbf{i+1}} + \omega_{\mathbf{i-1}}\Delta s_{\mathbf{i}} - C_{\mathbf{i}}\theta_{\mathbf{i}} = 0$$

where

tension spring constants,  $\omega_{\mathbf{i}} = 1 + Af_{\mathbf{i}}^{\mathbf{B}}$ 

f<sub>i</sub>=f(gradient of Q<sub>i</sub>) {error measure}

self-adaptive mesh size controlled by A and B:

 $A = \Delta s_{max}/\Delta s_{min} - 1$ , B enforces computed  $\Delta s_{min} = \Delta s_{min}$ 

torsion spring constant,  $C_i = f(\omega_i, \lambda_i, cell \text{ aspect ratio})$ 

and  $\theta_i$ =f( $C_t$ ,smoothness,orthogonality)

## **SAGE Input Parameters**

### Control parameters:

λ, Ct, Δsmin and Δsmax

### Adaption parameters:

Limits of adaption domain. Stepping direction. Adaption variable (or combination or user defined).

Boundary spacing controls. Addition of grid points. Order of interpolation and smoothing.

## SAGE Code Features

Fast and efficient - ~0.005 secs/grid point on a VMS/VAX e.g. 30x30 grid takes 5 secs

Small size: 1900 lines of code (40% comments)

 Structured code and detailed user guide available easy to customise Few user input parameters necessary but many options for great flexibility

Can be applied to zonal, patched and multiple grids

## Application 1: Hypersonic Blunt Body

Flow features: Simple 1-directional problem, shock shape aligned with grid.



# Application 2: Cowl Lip with Shock Impingement

Flow features: blunt body shocks, impinging shock and shear layers



Initial density solution

Adapted grid i: 
$$\Delta s_{min}=.25$$
,  $C_{t}=.7$ ,  $\lambda=.005$ 

## Application 3: Hypersonic Inlet with Cowl

Flow features: Cowl blunt body shock, Mach stem & reflected shocks



Initial Grid (128x32)

Initial density contours



OFFICE PAGE IS OF POOR QUALITY

## Application 3 continued: Adapted Grid

## Example of zonal adaption

i-direction - full domain adaption j-direction - 3 zonal adaptions:

cowl region
 lower inlet region
 upper inlet region



#### **Application 4: Plume Flow**

Flow features: Outer shear layer, barrel shock, Mach disc, reflected shock, triple-point shear layer



Initial grid and Mach contours



Adapted grid and solution (after 3 iterations)



Comparison with shadowgraph

#### **Application 5: Supersonic Inlet**

Flow features: Corner shock, reflected shock and expansion fan

Initial grid (101x81) and density solution contours





### Application 5 continued: Adapted grid (marching in j) and Solution

Input parameters:  $\Delta s_{min}$ =.25,  $\Delta s_{max}$ =2.5,  $\lambda$ =.0005





### Application 5 continued: Adapted Grid (marching in i) and Solution

Input parameters: jstep=false, Δsmin=.25, λ=.001





## Concluding Remarks

- SAGE is a new 2-D self-adaptive grid code that is user-friendly, flexible and efficient.
- Appropriate for a variety of CFD applications.
- Use of the SAGE code will efficiently improve the flowfield solution

