DM 32 : corrigé CCP 2002 MP

I. Étude d'un exemple

1. \diamond Première méthode : avec les connaissances dont vous disposiez.

Posons
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. On calcule $A^2 = \begin{pmatrix} a^2 + cb & ac + cd \\ ab + bd & bc + d^2 \end{pmatrix}$, donc

$$(c d) (ab + bd bc + d^{2})^{2}$$

$$A^{2} - \text{Tr}(A)A + \det(A)I_{2} = \begin{pmatrix} a^{2} + cb - (a+d)a + ad - bc & ac + cd - (a+d)c \\ ab + bd - (a+d)b & bc + d^{2} - (a+d)d + (ad - bc) \end{pmatrix}.$$
Ainsi, on a bien $A^{2} - \text{Tr}(A)A + \det(A)I_{2} = 0.$

♦ Seconde méthode : avec les connaissances de seconde année.

Le polynôme caractéristique de A vaut :

$$\chi_A(X) = \begin{vmatrix} a - X & b \\ c & d - X \end{vmatrix} = X^2 - (a+d)X + (ad - bc) = X^2 - \text{Tr}(A)X + \det(A)$$

or d'après le théorème de Cayley-Hamilton, $\chi_A(A) = 0$ donc $A^2 - \text{Tr}(A)A + \det(A)I_2 = 0$.

2. Par définition, \mathbb{A} est le sous-espace vectoriel engendré par I_2 et A donc c'est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. De plus, A n'est pas une matrice scalaire donc (I_2, A) est une famille libre et par conséquent une base du \mathbb{R} -espace vectoriel \mathbb{A} .

Enfin, A est stable pour le produit car si $(a, b, a', b') \in \mathbb{R}^4$.

(1) :
$$(aI_2 + bA)(a'I_2 + b'A) = (aa' - bb'\det(A))I_2 + (ab' + a'b + bb'\operatorname{Tr}(A))A \in \mathbb{A}$$

et A contient I_2 , donc A est une sous-algèbre de $\mathcal{M}_2(\mathbb{R})$ de dimension 2.

3. Soit $B = aI_2 + bA \in \mathbb{A}$. D'après la relation (1) ci-dessus,

(C):
$$B^2 = -I_2 \iff -I_2 = (a^2 - b^2 \det(A))I_2 + (2ab + b^2 \operatorname{Tr}(A))A$$
, or (I_2, A) est libre, donc

$$(C) \iff \begin{cases} 2ab + b^2 \operatorname{Tr} A = 0 \\ a^2 - b^2 \det A = -1 \end{cases} \text{ Si } b = 0, (C) \implies a^2 = -1, \text{ ce qui est faux dans } \mathbb{R}, \text{ donc on } b = 0, (C) \implies a = -1, c = 0 \end{cases}$$

peut supposer que
$$b \neq 0$$
. Alors $(C) \iff \begin{cases} a = -\frac{b}{2} \operatorname{Tr} A \\ b^2 \operatorname{det} A - a^2 = 1 \end{cases} \iff \begin{cases} a = -\frac{b}{2} \operatorname{Tr} A \\ b^2 (\operatorname{det} A - \frac{1}{4} (\operatorname{Tr} A)^2) = 1 \end{cases}$.

Si $(\operatorname{Tr}(A))^2 \geq 4\operatorname{det}(A)$, alors $(C) \Longrightarrow 1 \leq 0$, donc il n'existe aucune matrice $B \in \mathbb{A}$ telle que $B^2 = -I_2$.

Réciproquement, si
$$(\text{Tr}(A))^2 < 4\text{det}(A)$$
, alors $(C) \iff \begin{cases} b = \pm \frac{2}{\sqrt{4\text{det}A - (\text{Tr}A)^2}} \\ a = -\frac{b}{2}\text{Tr}A \end{cases}$, donc il

existe des matrices $B \in \mathbb{A}$ telles que $B^2 = -I_2$.

- 4. \diamond On suppose que $B \in \mathbb{A}$ est telle que $B^2 = -I_2$. Alors B n'est pas une matrice scalaire (car si $\lambda \in \mathbb{R}$, $(\lambda I_2)^2 = \lambda^2 I_2 \neq -I_2$) donc (I_2, B) est une famille libre de \mathbb{A} , or dim $(\mathbb{A}) = 2$, donc (I_2, B) est une base de A.
 - \diamond Définissons alors f comme l'unique application linéaire entre les \mathbb{R} -espaces vectoriels \mathbb{A} et \mathbb{C} telle que $f(I_2) = 1$ et f(B) = i. Alors f est un isomorphisme d'espaces vectoriels car elle envoie une base de A sur une base de C. De plus $f(I_2) = 1$. Enfin, si $M = xI_2 + yB$ et $M' = x'I_2 + y'B$ sont deux éléments de \mathbb{A} , $MM' = xx'I_2 + (xy' + x'y)B + yy'B^2 = (xx' - yy')I_2 + (xy' + x'y)B$ donc $f(MM') = (xx' - yy')f(I_2) + (xy' + x'y)f(B) = (xx' - yy') + i(xy' + x'y)$ et f(M)f(M') = (x+iy)(x'+iy') = (xx'-yy') + i(xy'+x'y).

On a donc f(MM') = f(M)f(M') ce qui achève de montrer que f est un isomorphisme d'algèbres entre \mathbb{A} et \mathbb{C} .

5. D'après le calcul fait en question 3, en posant $M = aI_2 + bA$,

$$M^{2} = 0 \iff \begin{cases} a^{2} - b^{2} \det A = 0 \\ 2ab + b^{2} \operatorname{Tr} A = 0 \end{cases} \iff b = a = 0 \text{ ou } \begin{cases} a = -\frac{b}{2} \operatorname{Tr} A \\ b^{2} \left(\frac{1}{4} (\operatorname{Tr} A)^{2} - \det A\right) = 0 \end{cases},$$

donc, compte-tenu de l'hypothèse $(TrA)^2 = 4 \det A, M^2 = 0 \iff a = -\frac{b}{a}$

En conclusion, les solutions de l'équation $M^2=0$ dans $\mathbb A$ sont les matrices de la forme $b\left(\left(-\frac{\operatorname{Tr} A}{2}\right)I_2+A\right) \text{ avec } b \in \mathbb{R}.$

Il existe donc dans A des matrices non nulles de carré nul, donc non inversibles, par conséquent A n'est pas un corps.

- 6. Par hypothèse, B est une matrice non scalaire de $\mathcal{M}_2(\mathbb{R})$ et il existe $P \in \mathcal{GL}_2(\mathbb{R})$ telle que $B = P^{-1}AP$. On en déduit que A n'est pas non plus scalaire et (I_2, A) est une base de A. Définissons g comme l'unique application linéaire de \mathbb{A} dans \mathbb{B} telle que $g(I_2) = I_2$ et g(A) = B. L'application q est alors un isomorphisme car elle est linéaire et elle envoie une base de \mathbb{A} sur une base de \mathbb{B} . De plus, on a $\forall M = aI_2 + bA \in \mathbb{A}$,
 - $g(M)=aI_2+bB=aI_2+bP^{-1}AP=P^{-1}(aI_2+bA)P=P^{-1}MP$. On en déduit que pour tout $(M, M') \in \mathbb{A}^2$, $g(M)g(M') = P^{-1}MPP^{-1}M'P = P^{-1}MM'P = g(MM')$ ce qui achève de montrer que g est un isomorphisme d'algèbres. Par suite, $\mathbb A$ et $\mathbb B$ sont deux algèbres isomorphes.
- 7. \diamond Supposons que $(TrA)^2 > 4detA$.

Soit $\lambda \in \mathbb{R}$. $\lambda \in Sp(A) \iff A - \lambda I_2 \notin GL_2(\mathbb{R}) \iff \det(A - \lambda I_2) = 0$, or $\det(A - \lambda I_2) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = \chi_A(\lambda)$. On a ainsi montré que les valeurs propres de Asont exactement les racines du polynôme χ_A (ce qui est un résultat au programme de seconde année).

 $\chi_A(X) = X^2 - \text{Tr}(A)X + \det(A)$, or $(\text{Tr}A)^2 > 4\det A$, donc le discriminant du polynôme caractéristique de A est strictement positif. Ainsi χ_A possède deux racines réelles distinctes i.e. A possède deux valeurs propres réelles distinctes ce qui implique sa diagonalisabilité dans $\mathcal{M}_2(\mathbb{R})$, car la somme directe des deux sous-espaces propres associés est de dimension au moins 2, donc est égale à \mathbb{R}^2 .

 \diamond Ainsi, il existe une matrice B diagonale qui est semblable à A. D'après la question précédente, \mathbb{A} est isomorphe à $\mathbb{B} = \text{vect}\{I_2, B\}$. Or \mathbb{B} est égal à l'espace $\mathcal{D}_2(\mathbb{R})$ des matrices carrées diagonales d'ordre 2 : en effet $\mathbb{B} \subset \mathcal{D}_2(\mathbb{R})$ et $\dim_{\mathbb{R}}(\mathbb{B}) = 2 = \dim_{\mathbb{R}}(\mathcal{D}_2(\mathbb{R}))$ (car $\left(E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$ est une base de $\mathcal{D}_2(\mathbb{R})$). Ainsi, \mathbb{A} est isomorphe à

l'algèbre des matrices diagonale

On en déduit que A n'est pas un corps car si h désigne un isomorphisme de A sur $\mathbb{B} = \mathcal{D}_2(\mathbb{R})$, $h^{-1}(E_{11})$ et $h^{-1}(E_{22})$ sont deux éléments non nuls de A dont le produit est nul donc ce sont des éléments non nuls et non inversibles dans A.

II. Quelques résultats généraux

1. Soit $x, y \in \mathbb{D}$ et $x \in \mathbb{R}$.

 $\varphi_a(x+\alpha y) = a(x+\alpha y) = ax + a(\alpha y)$ d'après la distributivité de la multiplication par rapport au produit, donc $\varphi_a(x+\alpha y) = ax + \alpha(ay) = \varphi_a(x) + \alpha\varphi_a(y)$.

Ainsi φ_a est un endomorphisme de \mathbb{D} .

2. \diamond Soit $a, b \in \mathbb{D}$ et $\alpha \in \mathbb{R}$. Pour tout $x \in \mathbb{D}$, $\varphi_{a+\alpha b}(x) = (a+\alpha b)x = \varphi_a(x) + \alpha \varphi_b(x)$, donc $\varphi_{a+\alpha b} = \varphi_a + \alpha \varphi_b$, puis en passant aux matrices, $\Psi(a+\alpha b) = \Psi(a) + \alpha \Psi(b)$.

De plus, $\varphi_{ab}(x) = a(bx) = \varphi_a \circ \varphi_b(x)$, donc en passant aux matrices, $\Psi(ab) = \Psi(a)\Psi(b)$.

Enfin,
$$\Psi(1_{\mathbb{D}}) = \text{mat}_{\mathcal{B}}(Id_{\mathbb{D}}) = I_n$$
.

Ainsi Ψ est un morphisme d'algèbres.

 \diamond Soi $a \in \mathbb{D}$ tel que $\Psi(a) = 0 = \operatorname{mat}_{\mathcal{B}}(\varphi_a)$.

Alors $\varphi_a = 0$, puis $a = \varphi_a(1_{\mathbb{D}}) = 0$. Ainsi φ_a est injective.

 \diamond $\Psi(\mathbb{D})$ est alors une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$, en tant qu'image d'un morphisme d'algèbres. On peut vérifier plus généralement que l'image par un morphisme d'algèbres $\varphi:A\longrightarrow B$ d'une sous-algèbre C de A est une sous-algèbre de B:

$$1_B = \varphi(1_A) \in \varphi(C) \text{ car } 1_A \in C.$$

Si $\varphi(a), \varphi(b) \in \varphi(C)$ et $\alpha \in \mathbb{R}, \varphi(a)\varphi(b) = \varphi(ab) \in \varphi(C)$ car $ab \in C$

et
$$\varphi(a) + \alpha \varphi(b) = \varphi(a + \alpha b) \in \varphi(C)$$
 car $a + \alpha b \in C$.

- \diamond Par restriction, $\Psi^{|\Psi(\mathbb{D})}$ est un isomorphisme de \mathbb{D} dans $\Psi(\mathbb{D})$, donc \mathbb{D} est isomorphe à $\Psi(\mathbb{D})$ qui est bien une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.
- 3. Si $\mathbb{D} = \mathbb{C}$ et z = a + ib, $\varphi_z(1) = z = a + ib$ et $\varphi_z(i) = (a + ib)i = -b + ia$ donc si $\mathcal{B} = (1, i)$,

$$\operatorname{Mat}_{\mathcal{B}}(\varphi_z) = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

- 4. (a) $A \lambda I_n$ appartient à \mathbb{A} (car \mathbb{A} est stable par combinaisons linéaires et contient A et I_n), $A \lambda I_n$ est non inversible (car λ est valeur propre de A) et n'est pas la matrice nulle (car A n'est pas scalaire), donc \mathbb{A} n'est pas un corps.
 - (b) Supposons qu'il existe dans \mathbb{A} une matrice A trigonalisable (ou diagonalisable) non scalaire. Il existe donc une base $e = (e_1, \dots, e_n)$ de \mathbb{R}^n telle que $\max(A, e)$ est triangulaire supérieure (ici A est identifié avec l'endomorphisme canoniquement associé à A). Alors Ae_1 est colinéaire à e_1 , donc c'est un vecteur propre de A. D'après la question précédente, \mathbb{A} n'est pas un corps.
 - (c) Soit $A \in \mathbb{A} \setminus \{0\}$. D'après la question II.1, $\Phi_A : X \mapsto AX$ est un endomorphisme de \mathbb{A} . De plus, \mathbb{A} étant intègre et A étant non nulle, $\operatorname{Ker} \Phi_A = \{0\}$ donc Φ_A est injectif. Comme Φ_A est un endomorphisme d'un espace vectoriel de dimension finie, on en déduit que Φ_A est un isomorphisme. En particulier, Φ_A est surjective donc il existe $B \in \mathbb{A}$ telle que $\Phi_A(B) = I_n$. La matrice A possède donc un inverse à droite, ce qui d'après le cours est suffisant pour assurer que A est inversible, d'inverse B appartenant à A. Ainsi, tout élément non nul de A possède un inverse dans A donc A est un corps.

III. L'algèbre des quaternions

1. Comme $A^2 = -I_n$, on a $(\det A)^2 = (-1)^n \in \mathbb{R}^+$ donc n est pair.

2. Remarquons que $(AB)^2 = A(BA)B = A(-AB)B = -A^2B^2 = -I_n$, $BAB = -AB^2 = A$ et $ABA = -A^2B = B$. On en déduit que si $M = tI_n + xA + yB + zAB$ et $M' = t'I_n + x'A + y'B + z'AB$ sont deux éléments de \mathbb{H} , alors

$$MM' = (tt' - xx' - yy' - zz')I_n + (tx + xt' + yz' - zy')A + (ty' - xz' + yt' + zx')B + (tz' + xy' - yx' + zt')AB,$$

ce qui montre que \mathbb{H} est stable pour le produit; De plus \mathbb{H} est un sous-espace vectoriel contenant I_n , donc \mathbb{H} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

3. D'après 2.,

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = (t^2 + x^2 + y^2 + z^2)I_n$$

4. (a) Si $(t, x, y, z) \in \mathbb{R}^4$ sont tels que $tI_n + xA + yB + zAB = 0$ alors

$$(t^2 + x^2 + y^2 + z^2)I_n = (tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = 0$$

donc $t^2+x^2+y^2+z^2=0$ ce qui, vu que t,x,y,z sont réels impose t=x=y=z=0. La famille (I_n,A,B,AB) est donc libre.

(b) Soit M est un élément non nul de \mathbb{H} . Il existe $(t, x, y, z) \in \mathbb{R}^4 \setminus \{0\}$ tel que $M = tI_n + xA + yB + zAB$. D'après la question III.3, $(tI_n + xA + yB + zAB) \times \frac{1}{t^2 + x^2 + y^2 + z^2} (tI_n - xA - yB - zAB) = I_n, \text{ donc } M \text{ est inversible d'inverse } \frac{1}{t^2 + x^2 + y^2 + z^2} (tI_n - xA - yB - zAB) \in \mathbb{H}.$

Ceci prouve que H est un corps.

5. (a) On a $J^2 = -I_2$ et d'après les règles de calcul des produits de matrices par blocs,

$$A^{2} = \begin{pmatrix} J^{2} & 0 \\ 0 & J^{2} \end{pmatrix} = -I_{4}, B^{2} = \begin{pmatrix} -I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix} = -I_{4}$$
$$AB + BA = \begin{pmatrix} 0 & -J \\ -J & 0 \end{pmatrix} + \begin{pmatrix} 0 & J \\ J & 0 \end{pmatrix} = 0$$

6. ${}^{t}(AB) = {}^{t}B {}^{t}A = (-B)(-A) = BA = -AB$, donc A, B et C = AB sont antisymétriques,. Ainsi, lorsque $M = tI_n + xA + yB + zC \in \mathbb{H}$, ${}^{t}M = tI_n - xA - yB - zC \in \mathbb{H}$ et d'après la question III.3, $M {}^{t}M = (t^2 + x^2 + y^2 + z^2)I_4$. On en déduit donc que $(\det M)^2 = (t^2 + x^2 + y^2 + z^2)^4$. Ainsi, lorsque $M \neq 0$, d'après la question III.4.b,

$$M^{-1} = \frac{1}{\sqrt{|\det^t M|}} {}^t M.$$

IV. Les automorphismes de l'algèbre des quaternions

1. Si $(t, x, y, z) \in \mathbb{R}^4$ et $M = tI_n + xA + yB + zC$, $M + {}^tM = 2tI_n$ donc $M = -{}^tM$ si et seulement si t = 0 ou encore $M \in \text{vect}\{A, B, C\}$. Or (A, B, C) est une famille libre en tant que sous-famille de la famille libre (I_4, A, B, C) . Donc l'ensemble des quaternions purs est le sous-espace vectoriel de dimension 3 admettant pour base (A, B, C).

 \mathbb{L} n'est pas une sous-algèbre de \mathbb{H} car, par exemple $A \times A = -I_2 \notin \mathbb{L}$ alors que $A \in \mathbb{L}$.

2. Soit M = xA + yB + zC et N = x'A + y'B + z'C deux éléments de \mathbb{L} . Comme (A, B, C) est une base orthonormée pour le produit scalaire $(\cdot | \cdot)$, on a (M|N) = xx' + yy' + zz'. Par ailleurs, d'après III.3.,

$$MN + NM = (-xx' - yy' - zz')I_4 + (yz' - zy')A + (-xz' + zx')B + (xy' - yx')C$$
$$+(-x'x - y'y - z'z)I_4 + (y'z - z'y)A + (-x'z + z'x)B + (x'y - y'x)C$$
$$= -2(xx' + yy' + zz')I_4$$

On a donc $\frac{1}{2}(MN + NM) = -(M|N)I_4$.

3. \diamond Si $M \in \mathbb{L}$, d'après la relation précédente, $M^2 = \lambda I_4$ avec $\lambda = -\|M\|^2 \in \mathbb{R}^-$. \diamond Réciproquement, supposons que $M \in \mathbb{H} \setminus \mathbb{L}$.

Alors il existe $t \in \mathbb{R}$ et $N \in \mathbb{L}$ tels que $M = tI_4 + N$.

Alors $M^2 = t^2 I_4 + 2tN + N^2 = (t^2 - ||N||^2)I_4 + 2tN$.

Si $N \neq 0$ alors $N \notin \mathbb{R}I_4$ (sinon $N^2 \in \mathbb{R}_+^*I_4$, ce qui est faux d'après le sens direct), donc $M^2 \notin \mathbb{R}I_4$.

Si N=0, alors $M^2=t^2I_4\notin\mathbb{R}_-I_4$.

On a ainsi montré que, pour tout $M \in \mathbb{H}$, $M \in \mathbb{L} \iff M^2 \in \mathbb{R}_{-}I_4$.

- 4. Soit $M \in \mathbb{L}$: on a $M^2 = -\|M\|^2 I_4$ donc $\varphi(M)^2 = \varphi(M^2) = -\|M\|^2 \varphi(I_4) = -\|M\|^2 I_4$. On en déduit d'après la question précédente que $\varphi(M) \in \mathbb{L}$. On peut alors appliquer la question précédente à $\varphi(M) : \varphi(M)^2 = -\|\varphi(M)\|^2 I_4$ donc $-\|\varphi(M)\|^2 = -\|M\|^2$ soit $\|\varphi(M)\| = \|M\|$. Donc φ transforme tout quaternion pur en un quaternion pur de même norme. L'endomorphisme induit par φ sur \mathbb{L} conserve la norme donc c'est un endomorphisme ortho-
 - L'endomorphisme induit par φ sur \mathbb{L} conserve la norme donc c'est un endomorphisme orthogonal de \mathbb{L} .
- 5. On suppose que M et N sont deux quaternions purs de même norme.
 - (a) Supposons que M et N sont colinéaires.

Si $M \neq 0$, il existe $\lambda \in \mathbb{R}$ tel que $N = \lambda M$, donc si l'on note (x,y,z) les coordonnées de M dans la base (A,B,C), $\|M\|^2 = \|N\|^2 = \lambda^2(x^2+y^2+z^2) = \lambda^2\|M\|^2$ et $\|M\| \neq 0$. Ainsi, $\lambda^2 = 1$, puis $\lambda = \pm 1$. Ceci démontre que $N = \pm M$, et c'est encore vrai lorsque M = 0.

- \diamond Si M=N la matrice $P=I_4$ vérifie $P\in\mathbb{H},\,P\neq 0$ et $M=P^{-1}NP.$
- \diamond Si N=-M la condition $M=P^{-1}NP$ équivaut à PM+MP=0. Dans ces conditions, d'après la formule de la question 2, il suffit de prendre pour P une matrice non nulle de \mathbb{L} orthogonale à M dans \mathbb{L} , s'il existe une telle matrice P.

Si l'on note (a,b,c) et (x,y,z) les coordonnées de M et de P dans la base (A,B,C), cela revient à montrer qu'il existe $(x,y,z) \in \mathbb{R}^3 \setminus \{0\}$ tel que ax+by+cz=0. C'est évident lorsque M=0 et sinon cela revient à montrer que le plan de \mathbb{L} d'équation ax+by+cz=0 contient un vecteur non nul, ce qui est connu.

- (b) M et N sont deux quaternions purs non colinéaires de même norme, donc $M(MN) (MN)N = M^2N MN^2 = (-\|M\|^2I_4)N M(-\|N\|^2I_4) = \|M\|^2(M-N)$. On a donc $M(MN \|M\|^2I_4) = (MN \|M\|^2I_4)N$. Dans ces conditions, si on pose $P = MN \|M\|^2I_4$, on a MP = PN avec $P \in \mathbb{H}$. De plus, $P \neq 0$ car sinon on aurait $MN = \|M\|^2I_4 = -M^2$ ou encore M(N+M) = 0 donc M+N=0 (M est inversible car élément non nul de \mathbb{H}) ce qui est contradictoire avec le fait que la famille (M,N) soit libre. Comme P est un élément non nul de \mathbb{H} , P est inversible et $M = PNP^{-1}$.
- 6. \diamond Telle qu'elle est formulée cette question est incorrecte; en effet, sous la seule condition d'être non nulle et de vérifier MP=PN une matrice $P=\alpha I_4+Q$ avec $Q\in\mathbb{L}$ n'est pas

nécessairement telle que Q soit orthogonale à M et N. À titre de contre-exemple, prenons $M=A,\,N=B,\,Q=A+B$ et $P=Q=0\times I_4+Q$. M et N sont bien de même norme. De plus $PM=(A+B)A=-I_4+BA=B(A+B)=NP,\,P\neq 0$, mais $(Q|M)=(A+B|A)=1\neq 0$. \diamond Par contre, pour la matrice P mise en évidence dans chacun des 3 cas envisagés, on a bien la propriété souhaitée. En effet, dans le cas où M=N, on a choisi $P=I_4$ soit Q=0 qui est orthogonale à M=N, si M=-N, on a choisi $P=0I_4+Q$ avec Q orthogonale à M et N. Enfin, lorsque M et N sont linéairement indépendantes, posons $P=MN-\|M\|^2I_4=\alpha I_4+Q$ avec $Q\in\mathbb{L}$. Alors $^tQ=-Q$, donc $Q=\frac{1}{2}(Q-^tQ)=\frac{1}{2}(MN-NM)$, car $^t(MN)=^tN^tM=(-N)(-M)=NM$. D'après la formule de la question 2, $-4(Q|M)I_4=(MN-NM)M+M(MN-NM)=-NM^2+M^2N=0$ car $M^2=-\|M\|^2I_4$. Ainsi Q est orthogonale à M et de même, on montre que Q est orthogonale à N.

- 7. \diamond Remarquons tout d'abord que pour tout $P \in \mathbb{H} \setminus \{0\}$, l'application φ_P de \mathbb{H} dans luimême qui à M associe $P^{-1}MP$ est un isomorphisme de l'algèbre \mathbb{H} . En effet, φ_P est bien une application de \mathbb{H} dans \mathbb{H} puisque \mathbb{H} est un corps, φ_P est linéaire par bilinéarité du produit dans \mathbb{H} , $\varphi_P(I_4) = P^{-1}I_4P = I_4$ et $\varphi_P(M)\varphi_P(N) = (P^{-1}MP)(P^{-1}NP) = P^{-1}MNP = \varphi_P(MN)$ pour tout couple $(M, N) \in \mathbb{H}^2$. Enfin, φ_P est bien bijective, de bijection réciproque égale à $\varphi_{P^{-1}}$. Les isomorphismes φ_P s'appellent les automorphismes intérieurs de l'algèbre H.
 - \diamond Réciproquement, soit φ un automorphisme de l'algèbre \mathbb{H} . Il s'agit de montrer qu'il existe $P \in \mathbb{H} \setminus \{0\}$ tel que, pour tout $M \in \mathbb{H}$, $\varphi(M) = P^{-1}MP$ (ce qui prouvera que les seuls automorphismes de l'algèbre \mathbb{H} sont ses automorphismes intérieurs). Pour cela, il suffit de trouver $P \in \mathbb{H} \setminus \{0\}$ telle que $AP P\varphi(A) = 0 = BP P\varphi(B)$. En effet, dans ces conditions, $\varphi(C) = \varphi(A)\varphi(B) = P^{-1}(AB)P = P^{-1}CP$, puis pour tout $M = tI_4 + xA + yB + zC \in \mathbb{H}$, $\varphi(M) = tI_4 + xP^{-1}AP + yP^{-1}BP + zP^{-1}CP = P^{-1}MP$.

Premier cas. Etudions tout d'abord le cas où $\varphi(A) = A$. On recherche donc $P \in \mathbb{H} \setminus \{0\}$ telle que $P^{-1}AP = A$ et $P^{-1}BP = \varphi(B)$. D'après 4., on sait que $\varphi(B)$ est un quaternion pur de norme 1 et orthogonal à $\varphi(A) = A$ donc il existe $\theta \in \mathbb{R}$ tel que $\varphi(B) = \cos \theta \ B + \sin \theta \ C$. La question 6 nous incite à chercher P sous la forme $P = \alpha I_4 + \beta A$. Dans ces conditions, P commute avec A donc $P^{-1}AP = A$ et

 $BP - P\varphi(B) = \alpha B - \beta C - (\alpha I_4 + \beta A)(\cos \theta B + \sin \theta C)$ = $(\alpha (1 - \cos \theta) + \beta \sin \theta)B - (\beta (1 + \cos \theta) + \alpha \sin \theta)C$,

donc on cherche (α, β) non nul et solution de $\begin{cases} \alpha(1 - \cos \theta) + \beta \sin \theta = 0 \\ \alpha \sin \theta + \beta(1 + \cos \theta) = 0 \end{cases}$,

or $\alpha(1 - \cos \theta) + \beta \sin \theta = 2 \sin \frac{\theta}{2} (\alpha \sin \frac{\theta}{2} + \beta \cos \frac{\theta}{2})$ et $\alpha \sin \theta + \beta(1 + \cos \theta) = 2 \cos \frac{\theta}{2} (\alpha \sin \frac{\theta}{2} + \beta \cos \frac{\theta}{2})$,

donc $(\alpha, \beta) = (\cos \frac{\theta}{2}, -\sin \frac{\theta}{2})$ convient. Ainsi, en posant $P = \cos \frac{\theta}{2}I_4 - \sin \frac{\theta}{2}A$, on a alors $P \in \mathbb{H} \setminus \{0\}, P^{-1}AP = A = \varphi(A)$ et $P^{-1}BP = \varphi(B)$ et donc, $\forall M \in \mathbb{H}, \varphi(M) = P^{-1}MP$.

Cas général. Soit φ un isomorphisme de l'algèbre \mathbb{H} . Alors, d'après 4, on sait que $\varphi(A)$ est un quaternion pur de même norme que A donc d'après 5, il existe $Q \in \mathbb{H} \setminus \{0\}$ telle que $A = Q^{-1}\varphi(A)Q$. Si φ_Q désigne l'application de \mathbb{H} dans \mathbb{H} telle que $\varphi_Q(M) = Q^{-1}MQ$, alors $\varphi_Q \circ \varphi$ est un isomorphisme de l'algèbre \mathbb{H} tel que $\varphi_Q \circ \varphi(A) = A$ donc d'après le premier cas étudié, il existe $R \in \mathbb{H} \setminus \{0\}$ tel que pour tout M de \mathbb{H} , $\varphi_Q \circ \varphi(M) = R^{-1}MR$. En posant $P = RQ^{-1}$, on a $P \in \mathbb{H} \setminus \{0\}$ et pour tout M de \mathbb{H} , $\varphi(M) = P^{-1}MP$.