Examenul de bacalaureat național 2015 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \left(\frac{1}{2}\right)^4 = 2 + \frac{1}{16} = \frac{33}{16}$	3p
	$\frac{33}{16}:\frac{33}{16}=1$	2p
2.	f(2) + f(-2) = (2+a) + (-2+a) = 2a	3p
	$2a = 4 \Leftrightarrow a = 2$	2p
3.	$x^2 + 2 = 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	$x_1 = 1$ și $x_2 = 2$	2p
4.	După prima scumpire cu 10%, prețul obiectului va fi $200 + \frac{10}{100} \cdot 200 = 220$ de lei	2p
	După a doua scumpire cu 10%, prețul obiectului va fi $220 + \frac{10}{100} \cdot 220 = 242$ de lei	3 p
5.	M(0,4)	2p
	OM = 4	3 p
6.	$\triangle ABC$ este dreptunghic în A , deci $\mathcal{A}_{\triangle ABC} = \frac{\sqrt{2} \cdot \sqrt{2}}{2} =$	3p
	=1	2p

SUBIECTUL al II-lea (30 de puncte)

1.	1007*1008 = 1007 + 1008 - 2015 =	3р
	=2015-2015=0	2p
2.	(x*y)*z = (x+y-2015)+z-2015 = x+y+z-4030	2 p
	x*(y*z) = x + (y+z-2015) - 2015 = x + y + z - 4030 = (x*y)*z, pentru orice numere reale x , y şi z	3 p
3.	x * 2015 = x + 2015 - 2015 = x	2p
	2015*x = 2015 + x - 2015 = x = x*2015, pentru orice număr real x , deci $e = 2015$ este element neutru al legii de compoziție "*"	3 p
4.	x + x - 2015 = 2015	3p
	x = 2015	2p
5.	x*(x+2015) = x+(x+2015)-2015 = 2x	2p
	(x+1007)*(x+1008) = (x+1007)+(x+1008)-2015 = 2x = x*(x+2015), pentru orice număr real x	3 p
6.	$5^{x} + 5^{2x} - 30 = 0 \Leftrightarrow (5^{x})^{2} + 5^{x} - 30 = 0$	2p
	$5^x = 5 \Leftrightarrow x = 1$	2p
	$5^x = -6$ nu are soluție	1p

SUBIECTUL al III-lea		(30 de puncte)	
1.	$\det A = \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1 \cdot 0 - (-1) \cdot 3 =$	3р	
	=0+3=3	2p	
2.	$ \begin{vmatrix} a-1 & b+1 \\ 0 & 4 \end{vmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{vmatrix} $	3р	
	a=5 și $b=-1$	2 p	
3.	$\det B = \begin{vmatrix} 0 & b \\ 3 & 4 \end{vmatrix} = 0 \cdot 4 - b \cdot 3 = -3b$	3р	
	$-3b = 9 \Leftrightarrow b = -3$	2p	
4.	$AB = \begin{pmatrix} a-3 & b-4 \\ 3a & 3b \end{pmatrix}, BA = \begin{pmatrix} a+3b & -a \\ 15 & -3 \end{pmatrix}$	2p	
	$AB = BA \Leftrightarrow a = 5$ și $b = -1$	3p	
5.	$A \cdot \begin{pmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3р	
	$\begin{bmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{bmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \text{ este inversa matricei } A$	2 p	
6.	$B = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$, det $B = 1$, $B^{-1} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}$	3p	
	$X = B^{-1} \cdot A \Longleftrightarrow X = \begin{pmatrix} 1 & -4 \\ 0 & 3 \end{pmatrix}$	2p	