Identifying Counties for a Food Access Program

Using Public Data on Health Outcomes, Socioeconomic and Sociodemographic Statuses, and Access to Healthy Food

Introduction

N1 Health's client, a national Medicare Advantage plan, is seeking to understand how best to use its resources to address food access challenges in its membership.

- 1. Where should we deploy a food access program?
- 1. Where should we deploy a food access program?
- 2. Which segment of the population might benefit the most from the program?
- 3. What do we know about the potential impact of the food program on medical costs or utilization?

Data Wrangling

Pivoting raw tables

Preliminary feature selection using df_fda_vars

Using Excel

Why use this?

Why those variables?

Data Slicing

Using col_feat to create df_fda_full

Exploratory Data Analysis

Feature Engineering

- Working only with percent change instead of PCT_POP
 - Dim Reduction
 - Consistent data types
 - Reflects momentum in the data
- Creation of Need Ranking
- Transformation

Variables in the Need Ranking

- 1. PERPOV10
- 2. CHILDPOVRATE15
- 3. PERCHLDPOV10
- 4. PCT_BIPOC_10
- 5. PCH_FOODINSEC_12_17
- 6. PCT_LACCESS_BIPOC15

Model Training/Deployment

RFC

Randomized Search with Cross Validation

Exploring the Results

Random Forest Classifier

	precision	recall	f1-score	support
Rank10	0.95	0.74	0.83	72
Rank9	0.82	0.89	0.85	62
Rank8	0.78	0.79	0.79	72
Rank7	0.60	0.74	0.66	53
Rank6	0.63	0.59	0.61	68
Rank5	0.60	0.48	0.54	66
Rank4	0.51	0.61	0.56	61
Rank3	0.41	0.46	0.43	46
Rank2	0.61	0.44	0.51	68
Rank1	0.64	0.84	0.72	61
accuracy			0.66	629
macro avg	0.66	0.66	0.65	629
weighted avg	0.67	0.66	0.66	629

	Confusion Matrix: RFC												
	Rank10 -	55		1		1			i	1	0		
Tue label	Rank9 -	7	51								0		
	Rank8 -		23	30		2					0		
	Rank7 -	1	2	12	21	10					0		
	Rank6 -			1	17	37					0		
	Rank5 -					19	32	12			0		
	Rank4 -					2	15	40	11		0		
	Rank3 -							11	39		0		
	Rank2 -								12	57	3		
	Rankl -	1	1	2		1			2	12	53		
		Rank10	Rank9	Rank8	Rank7	Rank6	Rank5	Rank4	Rank3	Rank2	Rank1		

- 50

40

30

20

n

Limitations/ Future Work

- Health outcome data (CDC)
- Ranking System
- Machine Learning to Predict Food Insecurity by County
- Integration with CMS data
 - ML to predict expenditures
- What Sort of Program?
 - New or Existing Program?
- Communities Impacted:
 - o BIPOC
 - Experiencing Poverty
 - Highest Rates of Metabolic Syndromes