

PARUL UNIVERSITY

Faculty Of Engineering & Technology
Department of Applied Sciences & Humanities
1st year B.Tech Programme (All branches)

Mathematics-II (Subject Code :303191151) ASSIGNMENT-II

Do as direct

- 1. What type of roots we can get, if $a^2 4ab = 0$?
- 2. Write general solution for $\frac{d^2y}{dx^2} + k^2y = 0$.
- 3. Write y_p for $x + \sin 4x$.
- 4. Solve Wronskian for $y'' + y = x \sin x$.
- 5. Write L.C.R equation if no extra charge is applied.
- 6. State convolution theorem.
- 7. Evaluate (i) $L^{-1}\left\{\frac{s+1}{(s+1)^2+4}\right\} =$ _____.(ii) $L^{-1}\left\{\frac{3}{s^5}\right\} =$ ____.
- 8. If $L\{f(t)\} = F(s)$ then $L\{\int_0^t f(u) du\} = \underline{\hspace{1cm}}$.
- 9. If $L\{f(t)\} = F(s)$ then $L\{(t-2)u(t-2)\} =$ _____.
- 10. Evaluate $\int_0^1 \int_0^1 x^2 y^3 dy dx$.

Solve following (3-marks).

1.
$$y'' - 6y' + 7y = e^{2x}$$
.

2.
$$(D^2 + 25)y = \cos 5x$$
.

3.
$$y'' + 4y = 4x^2$$
.

$$4. \ \frac{d^2y}{dx^2} + a^2y = cosecax.$$

$$5. \ \ y'' - 2y' + y = 3x^2$$

6. Evaluate (i)
$$L^{-1} \left\{ ln \frac{s+2}{s+3} \right\}$$
 (ii) $L^{-1} \left\{ \frac{s+5}{s^2+10s+29} \right\}$

- 7. Using convolution theorem, determine $L^{-1}\left\{\frac{3}{s(s^2+9)}\right\}$.
- 8. Find the Laplace transform of

(i)
$$f(t) = te^{2t} sin^2 3t$$

(ii)
$$f(t) = \frac{e^t \sin \pi t}{t}$$

(iii)
$$f(t) = \int_0^t t \sin^2 3t dt$$

Solve following (4-marks).

1.
$$y'' + 2y' + 2y = 0$$
 for $y(0) = 1$, $y(\frac{\pi}{2}) = 0$.

2. Solve
$$y''' + 6y'' + 3y' - 10y = x$$
. Using undetermined coefficient method.

3. Evaluate
$$L^{-1}\left\{\frac{3s^2+2}{(s+1)(s+2)(s+3)}\right\}$$
 (ii) $L^{-1}\left\{\frac{3s+7}{(s^2+2s+5)}\right\}$

- 4. Evaluate $\iint_R xy dA$, where R is the region bounded x-axis, the ordinates x=2a and the curve x^2 =4ay.
- curve $x^2=4ay$. 5. Evaluate $L^{-1}\left\{\frac{1+e^{-\frac{\pi}{2}s}}{(s^2+4)}\right\}$.

Solve following (5-marks).

- 1. Solve Cauchy -Euler equation $x^2y'' 3xy' + 4y = 2x^2$.
- 2. $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + 2y = 3logx$.
- 3. Change the order of integration in the following integration $\int_{0}^{4a2\sqrt{ax}} dy dx$
- 4. By using the method of Laplace transform, solve the initial the value problem $y'' + 2y' + y = e^{-t}$; y(0) = -1 and y'(0) = 1.
- 5. In an LCR circuit with equation $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E(t)$, R = 10 ohms L = 1 henry, and $C = \frac{1}{1900}$ farad, Applied voltage E(t) = 150 volts and then find charge on capacitor at time t.