SGGI Package

Peter A. Brooksbank

Bucknell University pbrooksb@bucknell.edu

Contents

Chapter 1. Introduction	1
Citing SGGI	1
1.1. Overview	1
1.2. Version	1
Chapter 2. String groups generated by involutions	3
2.1. Constructing SGGIs	3
2.1.1. Special constructions	3
2.1.2. Duals	4
2.2. Isomorphism Testing	5
Chapter 3. String C-groups	7
3.1. Search Functions	7
Bibliography	g

CHAPTER 1

Introduction

This documentation describes Magma functions that facilitate computation with *string groups generated by involutions* (SGGIs). Functions that compute with these structures already exist in distributed versions of Magma [BCP]. The purpose of the current package is to supplement—and in some cases improve upon—the existing machinery.

Citing SGGI. To cite the SGGI package, please use the following:

Peter A. Brooksbank, SGGI, version 0.1, GitHub, 2020. https://github.com/galois60/SGGI.

```
For AMSRefs:
```

```
\bib{SGGI}{misc}{
   author={Brooksbank, Peter A.},
   title={SGGI},
   publisher={GitHub},
   year={2020},
   edition={version 0.1},
   note={\texttt{https://github.com/galois60/SGGI}},
}
```

- 1.1. Overview
- 1.2. Version

String groups generated by involutions

This package works with SGGIs as a data type. We begin by describing the essential ingredients. A string group generated by involutions, or SGGI consists of:

- (1) a group H; and
- (2) a list h_1, \ldots, h_m of involutions of H.

The properties that make it an SGGI are first that $H = \langle h_1, \dots, h_n \rangle$, and secondly that the involutions satisfy the **string condition**, namely

(1)
$$\forall i, j \in [m] \qquad |i - j| > 1 \implies h_i h_j = h_j h_i$$

The integer m is the rank of the SGGI. The package uses a data type SGGI for these objects.

2.1. Constructing SGGIs

The package works with the two representations of groups that are currently most relevant to computation with SGGIs, namely permutation groups and matrix groups.

A user can specify a SGGI in several related ways.

```
 \begin{array}{l} {\rm StringGroupGeneratedByInvolutions(S)} : {\rm SeqEnum[GrpPermElt]} \to {\rm SGGI} \\ {\rm StringGroupGeneratedByInvolutions(S)} : {\rm SeqEnum[GrpMatElt]} \to {\rm SGGI} \\ {\rm Provided} \ S \ {\rm is \ a \ list \ of \ involutions \ satisfying \ (1) \ this \ returns \ the \ {\rm SGGI} \ with \ group \ generated \ by \ S.} \\ {\rm StringGroupGeneratedByInvolutions(G, S)} : {\rm GrpPerm, \ SeqEnum[GrpPermElt]} \to {\rm SGGI} \\ {\rm StringGroupGeneratedByInvolutions(G, S)} : {\rm GrpMat, \ SeqEnum[GrpMatElt]} \to {\rm SGGI} \\ {\rm Similar, \ but \ checks \ that \ the \ specified \ G \ is \ in \ fact \ generated \ by \ S.} \ One \ can \ build \ the \ {\rm SGGI} \ on \ the \ defining \ generators \ of \ input \ group \ G \ as \ follows: \end{array}
```

 $\label{thm:constraint} StringGroupGeneratedByInvolutions(G) : GrpPerm -> SGGI\\ StringGroupGeneratedByInvolutions(G) : GrpMat -> SGGI\\$

Here are some basic access functions for SGGIs.

```
Group(H) : SGGI -> Grp
```

gives the underlying group of H, and

```
Generators(H) : SGGI -> SeqEnum
```

returns the sequence h_1, \ldots, h_n of involutions generating that group.

```
Rank(H) : SGGI -> RngIntElt
```

is the rank of H, and

```
SchlafliType(H) : SGGI -> SeqEnum[RngIntElt]
```

return the Schlafli symbol of H, namely the sequence $\operatorname{ord}(h_i h_{i+1})$ for $i = 1, \ldots, n-1$.

```
Print(H) : SGGI
```

displays information about H.

2.1.1. Special constructions. The symmetric group S_{n+1} with generators (1 2), (2 3), ..., (n n+1) is the most obvious construction of a SGGI of rank n. The corresponding polytope is the simplex:

```
Simplex(n) : RngIntElt -> SGGI
```

Example 2.1. Simplex

We build the 5-simplex as an SGGI and access its basic features.

```
> H := Simplex(5);
> Group(H);
Permutation group acting on a set of cardinality 6
      (1, 2)
      (2, 3)
      (3, 4)
      (4, 5)
      (5, 6)
> Rank(H);
5
> SchlafliType(H);
[3, 3, 3, 3]
> Print(H);
SGGI with underlying group type GrpPerm.
```

SGGIs arise naturally as quotients of Coxeter groups.

```
ModularReflectionGroup(L, p) : SeqEnum[RngIntElt], RngIntElt -> SGGI
```

Given a list $L = [\ell_1, \dots, \ell_{n-1}]$ of natural numbers such that the reflection group G_0 with Schlafli symbol L is crystallographic, return the reduction of G_0 modulo the specified prime p. (Note, a "0" entry in L is understood as " ∞ ".)

2.1.2. Duals. If H is an SGGI of rank n with distinguished involution sequence $[h_1, \ldots, h_n]$, evidently there is a dual SGGI (on the same group) of rank n with involution sequence $[h_n, \ldots, h_1]$.

```
Dual(H) : SGGI -> SGGI
```

One can also form the **Petrie dual** of an SGGI:

```
PetrieDual(H) : SGGI -> SGGI
```

returns the SGGI (on the same group) of rank n whose involution sequence has h_3 replaced by h_1h_3 . The Petrie construction can also be used to reduce the rank of an SGGI:

```
PetrieReduction(H) : SGGI -> SGGI
```

returns the SGGI of rank n-1 on involution sequence $[h_2, h_1h_3, h_4, \ldots, h_n]$. (Note, this may or may not have the same underlying group as H.)

Example 2.2. Reflection Group

We build the SGGI that is the reduction modulo 7 of the crystallographic Coxeter group of type $[3, 3, \infty, 3]$, together with various duals and rank-reduced versions.

```
> H := ModularReflectionGroup([3,3,0,3], 7);
> SchlafliType(H);
[3, 3, 7, 3]
> Generic (Group(H));
GL(5, GF(7))
> D := Dual(H); SchlafliType(D);
[3, 7, 3, 3]
> PD := PetrieDual(H); SchlafliType(PD);
[3, 4, 14, 3]
> PR := PetrieReduction(H); SchlafliType(PR);
[4, 14, 3]
> Group(PR) eq Group(H);
true
```

2.2. Isomorphism Testing

Two SGGIs H and J of rank n, with distinguished involution sequences $[h_1, \ldots, h_n]$ and $[j_1, \ldots, j_n]$ are **isomorphic** if there is an isomorphism of the underlying groups sending one generating sequence to the other. The SGGIs are **equivalent** is either they are isomorphic, or H is isomorphic to the dual of J. These conditions are tested as follows:

```
IsIsomorphic(H,J) : SGGI , SGGI -> BoolElt
IsEquivalent(H,J) : SGGI , SGGI -> BoolElt
```

CHAPTER 3

String C-groups

An SGGI H of rank n with distinguished involution sequence $[h_1, \ldots, h_n]$ satisfies the **intersection** property if

```
(2) \forall I, J \subseteq [n] \qquad \langle h_i \mid i \in I \rangle \cap \langle h_j \mid j \in J \rangle = \langle h_k \mid k \in I \cap J \rangle.
```

An SGGI that satisfies this condition is called a **string C-group**.

```
HasIntersectionProperty(H) : SGGI -> BoolElt
IsStringCGroup(H) : SGGI -> BoolElt
```

3.1. Search Functions

Given a group G one can try to build all sequences of involutions that generate G as a string C-group of a given rank n. This can be done as follows:

```
AllStringCReps(G,n) : GrpPerm , RngIntElt -> SeqEnum[SGGI]
AllStringCReps(G,n) : GrpMat , RngIntElt -> SeqEnum[SGGI]
```

The user is warned that this can be a time (and memory) consuming computation when G is a large group.

Bibliography

- [BCP] Wieb Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. **3-4** (1997), 235-265.
 - [BL] Peter A. Brooksbank and Dimitri Leemans, Rank reduction of string C-group representations, Proc. Amer. Math. Soc.