Épreuve de mathématiques I Correction

Exercice

Calcul de la somme de la série de Riemann $\sum_{n\in\mathbb{N}^*} \frac{1}{n^2}$

- **1.** Une intégration par parties, montre que, pour tout $k \in \mathbb{N}^*$, $\int_0^{\pi} \left(\frac{x^2}{2\pi} x\right) \cos(kx) dx = \frac{1}{k^2}$.
- **2.** (a) Puisque $x \in]0, \pi[$, alors $e^{ix} \neq 1$ et par conséquent :

$$\begin{split} \sum_{n=1}^{m} e^{inx} &= e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}} \\ &= e^{ix} \frac{e^{\frac{inx}{2}}}{e^{\frac{ix}{2}}} \frac{e^{\frac{-inx}{2}} - e^{\frac{inx}{2}}}{e^{\frac{-ix}{2}} - e^{\frac{ix}{2}}} = e^{i(n+1)\frac{x}{2}} \frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}}. \end{split}$$

(b) D'après ce qui précède, on a :

$$\sum_{k=1}^{m} \cos(kx) = \operatorname{Re}\left(\sum_{k=1}^{n} e^{ikt}\right) = \frac{\cos(n+1)\frac{x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$$

3. Une intégration par parties donne

$$\int_0^{\pi} \psi(t) \sin(mx) dx = \frac{1}{m} \left[\psi(0) \cos 0 - f(\pi) \cos(m\pi) + \int_0^{\pi} \psi'(x) \cos(mx) dx \right].$$

En utilisant l'inégalité triangulaire, le fait que $\forall t \in \mathbb{R}, \ |\cos t| \le 1$ et l'inégalité du cours $\left| \int_0^\pi \psi \right| \le \int_0^\pi |\psi|$, on obtient la majoration

$$\left| \int_0^{\pi} \psi(x) \sin(mx) dx \right| \le \frac{1}{|m|} \left(|\psi(0)| + |\psi(\pi)| + \int_0^{\pi} |\psi'(x)| dx \right),$$

donc une inégalité de la forme $\left|\int_0^\pi \psi(x) \sin(mx) \mathrm{d}x\right| \leq \frac{C}{|m|}$, où C est une constante indépendante de m, ce qui permet de conclure.

4. Il est clair que g est de classe \mathscr{C}^1 sur $]0,\pi]$ et que $\forall x \in]0,\pi]$,

$$g'(x) = \frac{\left(\frac{x}{\pi} - 1\right) 2\sin\frac{x}{2} - \left(\frac{x^2}{2\pi} - x\right)\cos\frac{x}{2}}{4\sin^2\frac{x}{2}}.$$

- $\lim_{x \to 0^+} g(x) = -1 = g(0)$, donc g est continue sur $[0,\pi]$
- $\lim_{x\to 0^+} g'(t) = \frac{1}{2\pi}$, donc g est dérivable en 0, donc de classe \mathscr{C}^1 sur $[0,\pi]$, d'après le théorème du prolongement de la dérivée.

5. (a) D'après la question 1., on peut écrire
$$\sum_{n=1}^m \frac{1}{n^2} = \int_0^\pi \left(\frac{x^2}{2\pi} - x\right) \sum_{n=1}^m \cos(nx) \mathrm{d}x,$$
 mais

$$\sum_{n=1}^{m} \cos(nx) = \frac{\cos(m+1)\frac{x}{2}\sin\frac{mx}{2}}{\sin\frac{x}{2}} = \frac{-1}{2} + \frac{1}{2}\frac{\sin(2m+1)\frac{x}{2}}{\sin\left(\frac{x}{2}\right)};$$

$$\operatorname{donc} \sum_{n=1}^{m} \frac{1}{n^2} = \int_0^{\pi} \left(\frac{x^2}{2\pi} - x \right) \left[\frac{-1}{2} + \frac{1}{2} \frac{\sin(2m+1)\frac{x}{2}}{\sin\left(\frac{x}{2}\right)} \right] dx = \frac{\pi^2}{6} + \int_0^{\pi} g(x) \sin\frac{(2m+1)x}{2} dx.$$

(b) On obtient, en utilisant le résultat de la question 3

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{m \to \infty} \sum_{n=1}^{m} \frac{1}{n^2} = \frac{\pi^2}{6} + \lim_{m \to \infty} \int_0^{\pi} g(x) \sin \frac{(2m+1)x}{2} dx = \frac{\pi^2}{6}.$$

- **6.** (a) Posons $u_n(x) = \frac{x}{n(1+2nx)}$ pour tout $x \in]0,+\infty[$. On a $0 \le u_n(x) \sim \frac{x}{2n^2}$. Donc la série $\sum_{n \in \mathbb{N}^*} u_n(x)$ converge pour tout x > 0.
 - (b) On a $\forall x \in]0, +\infty[$, $0 \le u_n(x) \le \frac{1}{2n^2}$, donc la série converge uniformément sur $]0, +\infty[$ et comme $\forall n \ge 2$, $\lim_{x \to +\infty} u_n(x) = \frac{1}{2n^2}$ et la série $\sum_{n \in \mathbb{N}^*} \frac{1}{2n^2}$ converge, alors, d'après le théorème d'interversion des limites, $\lim_{x \to +\infty} \varphi(x) = \sum_{n=1}^\infty \frac{1}{2n^2} = \frac{\pi^2}{12}$.

Problème 1

Partie 1: Exemples

1. La fonction $t \longmapsto e^{(-\alpha - nx)t}$ est intégrable sur $]0, +\infty[$ car $-\alpha - nx < 0$, donc $\varphi_{\alpha} \in \mathscr{L}$, et on a :

$$\mathcal{N}_n(\varphi_\alpha) = \int_0^{+\infty} e^{(-\alpha - nx)t} dt = \frac{1}{\alpha + nx}.$$

2. On utilise $e^{iwt} = C(t) + iS(t)$. On a $|e^{iwt}e^{-nxt}| = e^{-nxt}$, donc $t \mapsto e^{(iw-nx)t}$ est intégrable sur $[0, +\infty[$, donc il est de même pour les applications C et S. On effectue les calculs avec x > 0.

$$\int_0^{+\infty} e^{(iw - nx)t} dt = \frac{1}{nx - iw} = \frac{nx + iw}{w^2 + n^2x^2}.$$

D'où

$$\mathcal{N}_n(C)(x) = \frac{nx}{w^2 + n^2 x^2}$$
 et $\mathcal{N}_n(S)(x) = \frac{w}{w^2 + n^2 x^2}$.

Partie II: Comportements asymptotiques

1. (a) Soit M > 0 tel que $\forall x \ge 0$, $|f(x)| \le M$. On a donc $|f(t)e^{-xt}| \le Me^{-nxt}$, donc

$$\forall x > 0, \ |\mathcal{N}_n(f)(x)| \le M \int_0^{+\infty} e^{-nxt} dt = \frac{M}{nx}$$

Donc $\lim_{x \to +\infty} \mathcal{N}_n(f)(x) = 0.$

(b) Soient x > 0, $A \in \mathbb{R}_+^*$, on a $t \longmapsto f(t)$ et $t \longmapsto e^{-xt}$ sont \mathscr{C}^1 sur [0, A], donc une intégration par parties donne

(*)
$$\int_0^A f'(t)e^{-nxt}dt = [f(A)e^{-nxA} - f(0)] + nx \int_0^A f(t)e^{-nxt}dt.$$

f' étant bornée, donc $f' \in \mathcal{L}$, alors la relation (*) précédente permet d'affirmer que

$$\int_{0}^{+\infty} f'(t)e^{-nxt}dt = -f(0) + nx \int_{0}^{+\infty} f(t)e^{-nxt}dt.$$

ou encore

$$\mathcal{N}_n(f')(x) = nx\mathcal{N}_n(f) - f(0)$$

D'où $\lim_{x\to +\infty} nx \mathscr{N}_n(f)(x) - f(0) = \lim_{x\to +\infty} \mathscr{N}_n(f')(x) = 0$, c'est-à-dire $\lim_{x\to +\infty} x \mathscr{N}_n(f)(x) = \frac{f(0)}{n}$. (a) Comme $\lim_{t\to +\infty} f(t) = l$, alors il existe A>0 tel que $|f(x)-l|\leq 1$ pour tout $x\geq A$. Sur le segment

- 2. (a) Comme $\lim_{t\to +\infty} f(t) = l$, alors il existe A>0 tel que $|f(x)-l|\leq 1$ pour tout $x\geq A$. Sur le segment [0,A] f est bornée par un certain M>0, donc $\forall x\in \mathbb{R}, |f(x)|\leq \max(M,|l|+1)$. Donc f est bornée sur $[0,+\infty[$.
 - (b) i. Il suffit de considérer le changement de variable u = xt.
 - ii. la fonction f est bornée sur $[0, +\infty[$, donc pour x>0 la fonction $t\longmapsto f(t)e^{-nxt}$ est intégrable sur $]0, +\infty[$. Écrivons

$$x\mathscr{N}_n(f)(x) - \frac{l}{n} = \int_0^{+\infty} x(f(t) - l)e^{-nxt}dt.$$

Soit M un majorant de $t \mapsto |f(t) - l| \sup [0, +\infty[$. Pour tout A > 0, on peut alors écrire

$$\left| x \mathcal{N}_n(f)(x) - \frac{l}{n} \right| \leq \left| \int_0^A x e^{-nxt} (f(t) - l) dt \right| + \left| \int_A^{+\infty} x e^{-nxt} (f(t) - l) dt \right|$$

$$\leq M \int_0^A x e^{-nxt} dt + \left| \int_A^{+\infty} x e^{-nxt} (f(t) - l) dt \right|$$

Soit $\varepsilon > 0$, fixons A > 0 tel que $|f(t) - l| \le \varepsilon$ dés que $t \ge A$, donc

$$\left| x \mathcal{N}_n(f)(x) - \frac{l}{n} \right| \le \frac{M}{n} (1 - e^{-nxA}) + \frac{\varepsilon}{n} e^{-nxA},$$

et par conséquent

$$\lim_{x \to 0} x \mathcal{N}_n(f)(x) = \frac{l}{n}.$$

3. On a $g_n = \mathscr{N}_n(f)\left(\frac{1}{n+1}\right) = \int_0^{+\infty} f(t)e^{\frac{-nt}{n+1}}\mathrm{d}t$. La suite de fonctions de terme général $f_n: t \mapsto f(t)e^{\frac{-nt}{n+1}}$ converge simplement sur $]0,+\infty[$ vers la fonction intégrable $t\mapsto f(t)e^{-t}$, et dominée par la fonction intégrable $t\mapsto |f(t)|$, donc d'après le théorème de la convergence dominée, $(g_n)_{n\in\mathbb{N}}$ converge et

$$\lim_{n \to \infty} g_n = \lim_{n \to \infty} \int_0^{+\infty} f(t)e^{\frac{-nt}{n+1}} dt = \int_0^{+\infty} f(t)e^{-t} dt.$$

Partie III : Quelques propriétés de \mathcal{N}_n

1. (a) On a $\lim_{t\to +\infty} t^m e^{\frac{-nxt}{2}}=0$, donc il existe B>0 tel que pour $t\geq B$, $t^m e^{\frac{-nxt}{2}}\leq 1$ ou encore $t^m e^{-nxt}\leq e^{\frac{-nxt}{2}}$.

- (b) $\forall t \geq 0$, $|g_m(t)e^{-nxt}| \leq |f(t)|e^{\frac{-nxt}{2}}$ et la fonction $t \mapsto f(t)e^{\frac{-nxt}{2}}$ est intégrable sur $]0, +\infty[$ ($f \in \mathcal{L}$), donc il est de même de la fonction $t \mapsto g_m(t)e^{-nxt}$, donc $g_m \in \mathcal{L}$.
- **2.** Soit $f \in \mathcal{L}$. On va utiliser le théorème de régularité des intégrales à paramètres.
 - $\forall t \in]0, +\infty[$, $x \mapsto f(t)e^{-nxt}$ est de classe \mathscr{C}^{∞} sur $]0, +\infty[$, de dérivée m-ième $x \mapsto (-nt)^m f(t)e^{-nxt} = (-n)^m g_m(t)e^{-nxt}$.
 - $\forall x \in]0, +\infty[$, $t \mapsto (-n)^m g_m(t) e^{-nxt}$ est continue sur $]0, +\infty[$.
 - $\forall x \in [a, +\infty[\ (a > 0)\ \forall t \in]0, +\infty[,\ \forall p \in \mathbb{N}^*,\ |(-n)^m g_m(t) e^{-nxt}| \leq |f(t)| e^{-\frac{nat}{2}}$. Enfin, le majorant est intégrable sur le segment $]0, +\infty[\ \text{car}\ f \in \mathscr{L}.$

Le théorème s'applique sur tout intervalle $[a, +\infty[$, donc \mathscr{N}_n est de classe \mathscr{C}^m sur $]0, +\infty[$ et $\forall x > 0$, $\forall k \in \mathbb{N}^*$, on a :

$$\mathcal{N}_n(f)^{(k)}(x) = (-n)^k \int_0^{+\infty} t^k f(t) e^{-nxt} dt = (-n)^k \mathcal{N}_n(g_k).$$

3. (a) Soient $x \in \mathbb{R}_+^*$, $A \in \mathbb{R}_+^*$, on a $t \longmapsto f(t)$ et $t \longmapsto e^{-xt}$ sont \mathscr{C}^1 sur [0,A], donc une intégration par parties donne

(*)
$$\int_0^A f'(t)e^{-nxt}dt = [f(A)e^{-nxA} - f(0)] + nx \int_0^A f(t)e^{-nxt}dt.$$

f' étant dans \mathscr{L} , alors la relation (*) précédente permet d'affirmer que

$$\int_{0}^{+\infty} f'(t)e^{-nxt}dt = -f(0) + nx \int_{0}^{+\infty} f(t)e^{-nxt}dt.$$

ou encore

$$\mathcal{N}_n(f')(x) = nx\mathcal{N}_n(f) - f(0)$$

(b) D'après la question précédente, pour tout x > 0, on a :

$$\mathcal{N}_n(f'')(x) = nx\mathcal{N}_n(f') - f'(0) = nx(nx\mathcal{N}_n(f) - f(0)) - f'(0) = (nx)^2 \mathcal{N}_n(f) - nxf(0) - f'(0).$$

4. Montrons le résultat par récurrence. La propriété est vraie pour k=1. Supposons qu'elle est vraie à l'ordre k. On a d'abord

$$\mathcal{N}_n(f^{(k)})(x) = nx\mathcal{N}_n(f^{(k-1)}) - f^{(k-1)}(0),$$

d'après l'hypothèse de récurrence on obtient :

$$\mathcal{N}_n(f^k)(x) = nx \left((nx)^{k-1} \right) \mathcal{N}_n(f)(x) - \sum_{i=1}^{k-1} (nx)^{i-1} f^{k-1-i}(0) \right) - f^{(k-1)}(0)$$
$$= (nx)^k \mathcal{N}_n(f)(x) - \sum_{i=1}^k (nx)^{i-1} f^{k-i}(0).$$

D'où le résultat.

Partie IV : Injectivité de \mathcal{N}_n

1. (a) En effet, puisque tout polynôme est combinaison linéaire de monômes, on a pour tout polynôme $P: \int_a^b P(t)h(t)dt = 0$.

(b) D'après le théorème de Weierstrass, il existe une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers h sur [0,1]. On a alors pour $n\in\mathbb{N}$:

$$0 \le \int_a^b (h(x))^2 dx = \int_a^b (h(x) - P_n(x)) h(x) dx \le (b - a) ||h - P_n||_{\infty} ||h||_{\infty}$$

Comme la suite $(\|h - P_n\|_{\infty})_{n \in \mathbb{N}}$ tend vers 0, on déduit que $\int_a^b (h(x))^2 dx = 0$, d'où, puisque h est continue sur [0, 1], h = 0.

2. (a) Soit $x \in]0, +\infty[$ et k > 0, alors :

$$\mathcal{N}_n(f)(1+k) = \int_0^{+\infty} e^{-n(1+k)t} f(t) dt$$

$$= \int_0^{+\infty} e^{-nt} f(t) e^{-nkt} dt$$

$$= \int_0^{+\infty} h'_n(t) e^{-nkt} dt$$

$$= [e^{-nkt} h_n(t)]_0^{+\infty} + nk \int_0^{+\infty} h_n(t) e^{-nkt} dt$$

$$= nk \mathcal{N}_n(h_n)(k)$$

 $\operatorname{car} \lim_{t \to +\infty} e^{-nkt} h_n(t) = 0$ (h_n est bornée $\sup]0, +\infty[.)$

(b) Soit $k \in \mathbb{N}^*$. On a:

$$0 = \mathcal{N}_n(f)(1 + (k+1)) = n(k+1) \int_0^{+\infty} e^{-(k+1)nt} h_n(t) dt = (k+1) \int_0^1 u^k g\left(-\frac{\ln u}{n}\right) du,$$

en posant $u = e^{-nt}$. D'où

$$\int_0^1 u^k h_n \left(-\frac{\ln u}{n} \right) \mathrm{d}u = 0.$$

(c) Soit g l'application définie sur [0, 1] par :

$$g(u) = \begin{cases} h_n \left(-\frac{\ln u}{a} \right) & \text{si } u \in]0, 1] \\ \int_0^{+\infty} e^{-nv} f(v) dv & \text{si } u = 0. \end{cases}$$

est continue sur [0,1] et donc $\forall n \in \mathbb{N}$, $\int_0^1 u^n g(u) du = 0$ et d'après le théorème de Weierstrass g est nulle sur [0,1] et donc h_n est nulle sur $[0,+\infty[$.

3. Soit $f \in \mathcal{L}$ tel que $\mathcal{N}_n(f) = 0$, en particulier $\mathcal{N}_n(f)(1+k) = 0$ pour tout $k \in \mathbb{N}$. Comme dans les questions précédentes $h_n = 0$ et donc $\forall t \geq 0$, $0 = h'_n(t) = e^{-nt}f(t)$, on conclut que f = 0 sur $[0, +\infty[$.

Partie V : Application au calcul de l'intégrale de Dirichlet

1. Puisque g est continue sur $[0, +\infty[$, il suffit que son intégral sur $[1, +\infty[$ converge. À l'aide d'une intégration par parties, on a pour tout $x \ge 1$:

$$\int_{1}^{x} g(t)dt = \frac{-\cos(wx)}{wx} + \frac{\cos w}{w} - \frac{1}{w} \int_{1}^{x} \frac{\cos(wt)}{t^2} dt$$

D'une part,
$$\lim_{x \to +\infty} \frac{-\cos(x)}{wx} + \frac{\cos w}{w} = \frac{\cos w}{w}$$
.

D'une part, $\lim_{x \longrightarrow +\infty} \frac{-\cos(x)}{wx} + \frac{\cos w}{w} = \frac{\cos w}{w}$. D'autre part, $t \longmapsto \frac{\cos(wt)}{t^2}$ est intégrable sur $[1, +\infty[$, car $\left|\frac{\cos(wt)}{t^2}\right| \le \frac{1}{t^2}$, donc

$$\lim_{x \longrightarrow +\infty} \int_{1}^{x} \frac{\cos(wt)}{t^{2}} = \int_{1}^{+\infty} \frac{\cos(wx)}{x^{2}} dx.$$

Il en résulte que $\lim_{x \to \infty} \int_1^x g(t) dt$ existe, donc l'intégrale $\int_0^{+\infty} \frac{\sin(wt)}{t} dt$ est convergente.

2. (a) Posons $\Phi_n: x \longmapsto \int_0^{+\infty} e^{-nxt} \frac{\sin wt}{t} dt$. Montrons que Φ_n est \mathscr{C}^1 sur $]0, +\infty[$, en effet, posons $g_n(x,t) = e^{-nxt} \frac{\sin wt}{t}$. On a $\frac{\partial g_n}{\partial x}(x,t) = -ne^{-nxt} \sin wt$ et si $x \ge a$ (a > 0) on a

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le ne^{-at},$$

ceci prouve que Φ_n est \mathscr{C}^1 sur $[a, +\infty[$ pour tout a > 0, donc sur $]0, +\infty[$ et

$$\Phi'_n(x) = -n \int_0^{+\infty} e^{-nxt} \sin wt = -n \mathcal{N}_n(S)(x) = -\frac{nw}{w^2 + n^2 x^2}.$$

Donc $\Phi_n(x) = c - \arctan\left(\frac{nx}{w}\right)$. Or $\lim_{x \to +\infty} \Phi_n(x) = 0$, $\operatorname{car}\left|e^{-nxt}\frac{\sin wt}{t}\right| \le e^{-nxt}$ et donc $|\Phi(x)| \le \frac{1}{nx}$, ainsi $c = \frac{\pi}{2}$, d'où $\forall x > 0$, $\mathcal{N}_n(g)(x) = \Phi_n(x) = \frac{\pi}{2} - \arctan\left(\frac{nx}{m}\right)$.

(b) i. Soit $G(x) = \int_{0}^{x} \frac{\sin wt}{t} dt$ avec x > 0. G est \mathscr{C}^{1} sur $[0, +\infty[$ et admet une limite finie en $+\infty$, donc bornée sur $[0,+\infty[$. Pour tout x>0, la fonction $t\longmapsto G(t)e^{-nxt}$ est intégrable sur $]0,+\infty[$ et $\lim_{t\to\infty}G(t)e^{-nxt}=0$, donc par une intégration par parties

$$\forall x > 0, \quad \int_0^{+\infty} g(t)e^{-nxt}dt = nx \int_0^{+\infty} G(t)e^{-nxt}dt$$

d'où

$$(**) \forall x > 0, \ \mathcal{N}_n(g)(x) = nx \mathcal{N}_n(G)(x)$$

ii. La transformée $\mathcal{N}_n(G)$ est définie au moins sur $]0,+\infty[$ et continue sur $]0,+\infty[$: en effet, si on fixe $x_0 > 0$, la fonction $t \mapsto G(t)e^{-x_0t}$ est intégrable sur $]0, +\infty[$ et une domination évidente montre la continuité de $\mathcal{N}_n(G)$ sur $[x_0, +\infty[$. Grâce à (**), on déduit la continuité de $\mathcal{N}_n(G)$ et donc de $\mathcal{N}_n(g)$ sur $]0, +\infty[$. En fin

$$\mathscr{N}_n(g)(0) = \int_0^{+\infty} g(t)dt = \lim_{t \to +\infty} G(t) = \lim_{x \to 0} nx \mathscr{N}_n(G) = \lim_{x \to 0} \mathscr{N}_n(g)(x).$$

Ceci est équivalent à $\lim_{x\to 0}\Phi_n(x)=\Phi_n(0)$, alors

$$\int_{0}^{+\infty} \frac{\sin wt}{t} dt = \frac{\pi}{2}.$$

Partie VI: Application à la résolution des équations différentielles

1. On sait que $\mathcal{N}_n(f^k)(x) = (nx)^k \mathcal{N}_n(f)(x) - \sum_{i=1}^k (nx)^{i-1} f^{(k-i)}(0)$. Appliquons la transformée \mathcal{N}_n à l'équation différentielle (E), on obtient donc :

$$\sum_{k=1}^{m} a_{m-i}(nx)^{k} \mathcal{N}_{n}(y)(x) - \sum_{k=1}^{m} \sum_{i=1}^{k} (nx)^{i-1} y^{(k-i)}(0) + a_{m} \mathcal{N}_{n}(y) = \mathcal{N}_{n}(f)(x)$$

Il suffit de prendre $\varphi_{n,m}(x) = \sum_{k=1}^m a_{m-i}(nx)^k + a_m$ et $\varphi_{n,m-1}(x) = \sum_{k=1}^m \sum_{i=1}^k (nx)^{i-1} y^{(k-i)}(0)$ ce sont des polynômes en de degré respectivement inférieure à m et m-1.

2. Soit y une solution et $F = \mathcal{N}_1(y)$. On a

$$\mathcal{N}_1(y')(x) = x\mathcal{N}_1(y)(x) - y(0) = xF(x) - 1$$

et

$$\mathcal{N}_1(y'')(x) = x^2 F(x) - (xy(0) + y'(0)) = x^2 F(x) - x - 2$$

on a donc par linéarité de \mathcal{N}_1

$$\mathcal{N}_1(y'')(x) + 3\mathcal{N}_1(y')(x) + 2\mathcal{N}_1(y) = 2\mathcal{N}_1(e^{\frac{-3}{2}t})(x)$$

donc

$$(x^{2} + 3x + 2)F(x) - x - 5 = \frac{2}{x + \frac{3}{2}}$$

donc

$$F(x) = \frac{x^2 + \frac{13}{2}x + \frac{19}{2}}{(x+1)(x+2)(x+\frac{3}{2})} = \frac{8}{x+1} + \frac{1}{(x+2)} - \frac{8}{x+\frac{3}{2}} = \mathcal{N}_1(8e^{-t} + e^{-2t} - 8e^{-\frac{3}{2}t})(x)$$

par l'injectivité de \mathcal{N}_1 , on obtient

$$y(t) = 8e^{-t} + e^{-2t} - 8e^{-\frac{3}{2}t}.$$

3. Soit y une solution et $F = \mathcal{N}_2(y)$. On a

$$\mathcal{N}_2(y')(x) = 2x\mathcal{N}_1(y)(x) - y(0) = 2xF(x) - 1$$

et

$$\mathcal{N}_2(y'')(x) = 4x^2 F(x) - 2xy(0) - y'(0) = 4x^2 F(x) - 2x + 3$$

on a donc par linéarité de \mathcal{N}_2

$$\mathcal{N}_2(y'')(x) + 4\mathcal{N}_2(y')(x) + 3\mathcal{N}_2(y) = \mathcal{N}_2(\sin t)(x)$$

donc

$$(4x^2 + 8x + 3)F(x) - 2x - 1 = \frac{1}{1 + 4x^2}$$

donc

$$F(x) = \frac{1 + (1 + 2x)(1 + 4x^2)}{4(1 + 4x^2)(4x^2 + 8x + 3)} = \frac{\frac{1}{4}}{1 + 2x} + \frac{\frac{19}{20}}{3 + 2x} + \frac{\frac{-4}{10}x + \frac{1}{10}}{1 + (2x)^2} = \mathcal{N}_2\left(\frac{1}{4}e^{-t} + \frac{19}{20}e^{-3t} - \frac{1}{5}\cos t + \frac{1}{10}\sin t\right)(x)$$

par l'injectivité de \mathcal{N}_2 , on obtient

$$y(t) = \frac{1}{4}e^{-t} + \frac{19}{20}e^{-3t} - \frac{1}{5}\cos t + \frac{1}{10}\sin t.$$

4. En appliquant la transformée \mathcal{N}_1 à (S) on obtient

$$\begin{cases} (x-1)\mathcal{N}_1(y_1)(x) + (x+1)\mathcal{N}_1(y_2)(x) - 2 = \frac{-4}{x+3} \\ (x+3)\mathcal{N}_1(y_1)(x) + (2x+1)\mathcal{N}_1(y_2)(x) - 2 = \frac{5x}{1+x^2} \end{cases}$$

D'où

$$\mathcal{N}_1(y_2)(x) = \frac{1}{1+x^2} = \mathcal{N}_1(\sin t)(x).$$

Donc

$$y_2(t) = \sin t,$$

et puis, par soustraction,

$$y_1(t) = \frac{1}{4} \left(5\cos t + 4e^{-3t} - y_2'(t) \right) = e^{-3t} + \cos t.$$

Problème 2

Partie I : Quelques prpriétés de la fonction génératrice et quelques exemples

- **1.** On a $\forall t \in [-1,1], \ \forall k \in \mathbb{N}, \ |p(X=k)t^k| \leq p(X=k)$. La série de terme $\sum_{k \in \mathbb{N}} p(X=k)$ converge, et sa somme vaut 1. Donc le théorème de comparaison des séries à termes positifs nous permet d'affirmer que la série $\sum_{k \in \mathbb{N}} p(X=k)t^k$ converge absolument. Or la convergence absolue entraîne la convergence. Donc la fonction génératrice est au moins définie sur l'intervalle [-1,1].
- **2.** G_X est une fonction définie par une série entière, donc les coefficients du développement de la série sont définis d'une manière unique par les relations :

$$\forall k \in \mathbb{N}, \ p(X = k) = \frac{G_X^{(k)}(0)}{k!}.$$

3. (a) Si X suit une loi de Bernoulli de paramètre p, alors on a :

$$\forall t \in \mathbb{R}, \ G_X(t) = \sum_{k=0}^{1} p(X=k)t^k = (1-p)t^0 + pt = pt + 1 - p.$$

(b) Si X suit une loi binomiale $\mathcal{B}(n,p)$, alors, pour tout $t \in \mathbb{R}$, on a :

$$G_X(t) = \sum_{k=0}^n p(X=k)t^k = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} t^k = \sum_{k=0}^n \binom{n}{k} (pt)^k (1-p)^{n-k} = (pt+1-p)^n.$$

- (c) Si X suit une loi géométrique de paramètre $p \in]0,1[$, alors :
 - $\bullet X(\Omega) = \mathbb{N}^*$:
 - $\forall k \in \mathbb{N}, p(X = k) = (1 p)^{k-1}p.$

Donc

$$\forall t \in [-1, 1], \ G_X(t) = \sum_{k=1}^{\infty} p(X = k)t^k = \sum_{k=1}^{\infty} (1 - p)^{k-1} \cdot pt^k = \frac{p}{1 - p} \sum_{k=1}^{\infty} (t - pt)^k = \frac{pt}{pt - t + 1}.$$

4. Supposons que X admet une espérance E(X). On a, pour tout $t \in [0,1[$:

$$G_X(t) - G_X(1) = \sum_{k=0}^{\infty} t^k p(X=k) - \sum_{k=0}^{\infty} p(X=k)$$

$$= \sum_{k=0}^{\infty} (t^k - 1)p(X=k)$$

$$= \sum_{k=0}^{\infty} (t-1)(1+t+t^2+\dots+t^{k-1})p(X=k).$$

Donc:

$$\frac{G_X(t) - G_X(1)}{t - 1} = \sum_{k=0}^{\infty} (1 + t + t^2 + \dots + t^{k-1}) p(X = k).$$

Ensuite:

$$\forall a, b \in [0, 1] \qquad a \le b \Rightarrow a^i \le b^i$$

$$\Rightarrow \sum_{i=0}^k a^i \le \sum_{i=0}^k b^i$$

$$\Rightarrow \sum_{k=1}^\infty \left(\sum_{i=0}^k a^i\right) p(X=k) \le \sum_{k=1}^\infty \left(\sum_{i=0}^k b^i\right) p(X=k)$$

$$\Rightarrow \frac{G_X(a) - G_X(1)}{a-1} \le \frac{G_X(b) - G_X(1)}{b-1},$$

donc la fonction $t\longmapsto \frac{G_X(t)-G_X(1)}{t-1}$ est croissante sur [0,1[. De plus :

$$\frac{G_X(t) - G_X(1)}{t - 1} = \sum_{k=0}^{\infty} (1 + t + t^2 + \dots + t^{k-1}) p(X = k)$$

$$\leq \sum_{k=0}^{\infty} \left(\underbrace{\frac{1 + 1 + 1 + \dots + 1}{k \text{ termes}}} \right) p(X = k)$$

$$= \sum_{k=0}^{\infty} k \cdot p(X = k)$$

$$= E(X).$$

La fonction $t\longmapsto \frac{G_X(t)-G_X(1)}{t-1}$ étant croissante et majorée par E(X) sur [0,1[admettra donc une limite fini pour t tendant vers 1 par valeurs inférieures . Ce qui montre que G_X est dérivable à gauche en 1.

Inversement, supposons que G_X est dérivable en 1, alors :

$$\forall t \in [0,1]$$
 $G'_X(t) = \sum_{k=1}^{\infty} p(X=k)k.t^{k-1}$

Et par conséquent :

$$G'_X(1) = \sum_{k=1}^{\infty} p(X=k)k \times 1^{k-1} = \sum_{k=1}^{\infty} k \cdot p(X=k) = E(X).$$

5. On a vu que, $\forall t \in [0, 1]$,

$$G'_X(t) = \sum_{k=1}^{\infty} p(X=k)k.t^{k-1}$$

$$G_X''(t) = \sum_{k=2}^{\infty} p(X=k)k(k-1).t^{k-2}.$$

Et donc:

$$G_X''(1) = \sum_{k=2}^{\infty} p(X=k)k(k-1).1^{k-2} = \sum_{k=2}^{\infty} k(k-1)p(X=k) = E(X(X-1)).$$

Par conséquent :

$$V(X) = E(X^{2}) - (E(X))^{2}$$

$$= E(X(X - 1)) + E(X) - (E(X))^{2}$$

$$= G''_{X}(1) + G'_{X}(1) - (G'_{X}(1))^{2}.$$

6. L'espérance de X est donnée par la formule, avec q = 1 - p:

$$E(X) = \sum_{k=1}^{\infty} kp(X=k) = p \sum_{k=1}^{\infty} kq^{k-1} = p \left(\frac{1}{1-q}\right)' = \frac{p}{(1-q)^2} = \frac{p}{q}.$$

Calculons maintenant V(X) la variance de X: On a

$$V(X) = \sum_{k=1}^{\infty} k^2 p(X = k) = p \sum_{k=1}^{\infty} k^2 q^{k-1}.$$

Écrivons k^2 sous la forme $k^2 = k(k-1) + k$. Alors

$$V(X) = pq^2 \sum_{k=2}^{\infty} k(k-1)q^{k-2} + pq \sum_{k=1}^{\infty} kq^{k-1} = \left(\frac{1}{1-q}\right)'' = \frac{2}{(1-q)^2} = \frac{2}{p^3}.$$

D'où $V(X)=rac{2q^2}{p^2}+rac{p}{q}$. Nous en déduisons la variance de X :

$$V(X) = E(X(X-1)) + E(X) - E(X)^{2} = \frac{2q^{2}}{p^{2}} + \frac{p}{q} - \frac{q^{2}}{p^{2}} = \frac{1-p}{p^{2}}.$$

Partie II : La fonction génératrice d'une somme de variables aléatoires

1. On a, par définition, $G_{X_1+X_2}(t)=E(t^{X_1+X_2})=E(t_1^Xt_2^X)$ et les variables aléatoires t_1^X et t_2^X sont indépendantes, donc $G_{X_1+X_2}(t)=G_{X_1}(t).G_{X_2}(t)=G_X^2(t).$ D'où la propriété est vraie pour k=2. Supposons la vraie pour k. On a alors

$$G_{k+1} \underbrace{X_i}(t) = G_{k} \underbrace{X_i + X_{k+1}}(t) = G_{k} \underbrace{X_i}(t) \cdot G_{X_{k+1}}(t) = \prod_{i=1}^k G_{X_i}(t) \cdot G_{X_{k+1}}(t) = \prod_{i=1}^{k+1} G_{X_i}(t) = G_{X_i}^k(t) \cdot G_{X_{k+1}}(t) = \prod_{i=1}^k G_{X_i}(t) \cdot$$

Et la propriété est vrai pour k + 1. La propriété est donc vraie pour tout $k \in \mathbb{N}^*$.

2. (a) La variable aléatoire N étant à valeurs dans $[\![1,n]\!]$, la famille $(N=k)_{k\in[\![1,n]\!]}$ est un système complet d'événements. Utilisons la formule des probabilités totales :

$$\begin{aligned} \forall y \in Y(\Omega), \ \ P(Y=y) &= \sum_{k=1}^n P(Y=y,N=k) = \sum_{k=1}^n p(Y=y/N=k) p(N=k). \text{ D'où} \\ E(Y) &= \sum_{y \in Y(\Omega)} y p(Y=y) \\ &= \sum_{y \in Y(\Omega)} y \sum_{k=1}^n p(Y=y/N=k) p(N=k) \\ &= \sum_{y \in Y(\Omega)} y \sum_{k=1}^n p(N=k) \sum_{y \in Y(\Omega)} y p(Y=y/N=k), \quad \text{car } Y(\Omega) \text{ est fini} \\ &= \sum_{k=1}^n p(N=k) E(Y/N=k) \end{aligned}$$

(b) Par définition, on a :

$$\forall t \in \mathbb{R}, \ E(t^S/N = k) = \sum_{j=0}^{\infty} t^j p(S = j/N = k) = \sum_{j=0}^{\infty} t^j p\left(\sum_{i=1}^k X_i = j\right) = G_{X_1 + X_2 + \ldots + X_k}(t) = G_X^k(t).$$

(c) On an d'après la question 2. a) de cette partie :

$$\forall t \in \mathbb{R}, \ \sum_{k=1}^{n} p(N=k)G_X^k(t) = \sum_{k=1}^{n} p(N=k)E(t^S/N=k) = E(t^S) = G_S(t).$$

(d) D'après l'égalité précédente, on a $\forall t \in \mathbb{R}$,

$$G_S(t) = \sum_{k=1}^n p(N=k)(G_X(t))^k = G_N(G_X(t)) = G_N \circ G_X(t),$$

d'où:

$$G_S = G_N \circ G_X$$
.

3. On a $G_S'(1) = G_N'(G_X(1).G_X'(1)) = G_N'(1).G_X'(1)$ ou encore E(S) = E(N)E(X).

Partie III : Application

- **1.** (a) N suit une loi de Bernoulli de paramètre $\frac{1}{2}$: $N(\Omega)=\{1,2\}$ et $p(N=1)=p(N=2)=\frac{1}{2}$.
 - (b) La variable aléatoire S/[N=1] suit la loi uniforme sur $\{1,2,3,4\}$. D'où :

i	1	2	3	4
p(S = i/[N = 1])	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Notons X_1 le résultat du premier lancer et X_2 le résultat du deuxième lancer lorsque N=2. X_1 et X_2 suivent une loi uniforme sur $\{1, 2, 3, 4\}$, alors :

$$\forall t \in \mathbb{R}, \ G_{X_1}(t) = G_{X_2}(t) = \frac{1}{4} \sum_{k=1}^{4} t^k.$$

Si X_1 et X_2 sont indépendantes, alors :

$$G_S(t) = G_{X_1 + X_2}(t) = G_{X_1}(t)G_{X_2}(t) = \frac{1}{16} (t^2 + 2t^3 + 3t^4 + 4t^5 + 3t^6 + 2t^7 + t^8).$$

On en déduit la loi de probabilité de S lorsque N=2:

(c) On a d'abord $S(\Omega) = [1, 8]$ et $(S = i) = (S = i, N = 1) \cup (S = i, N = 2)$, donc

$$\begin{split} p(S=i) &= p(S=i,N=1) + p(S=i,N=2) \\ &= p(S=i/[N=1])p(N=1) + p(S=i/[N=2])p(N=2) \\ &= \frac{1}{2} \left[p(S=i/[N=1]) + p(S=i/[N=2]) \right]. \end{split}$$

D'où la loi de S:

i	1	2	3	4	5	6	7	8
p(S=i)	$\frac{1}{8}$	$\frac{5}{32}$	$\frac{3}{16}$	$\frac{7}{32}$	$\frac{1}{8}$	$\frac{3}{32}$	$\frac{1}{16}$	$\frac{1}{32}$

On trouve
$$E(S) = \sum_{i=1}^{8} ip(S=i) = \frac{15}{4}$$
 et $V(S) = E(S^2) - (E(S))^2 = \frac{35}{2} - \left(\frac{15}{4}\right)^2 = \frac{55}{16}$.

- 2. (a) X suit la loi uniforme sur l'ensemble $\{1,2,3,4\}$. (b) On sait que $\forall t \in \mathbb{R}$, $G_N(t) = \frac{1}{2}(t+t^2)$ et $G_X(t) = \frac{1}{4}(t+t^2+t^3+t^4)$. D'où $\forall t \in \mathbb{R}$

$$G_S(t) = G_N(G_X(t))$$

$$= \frac{1}{2} \left(\frac{1}{4} (t + t^2 + t^3 + t^4) + \frac{1}{16} (t + t^2 + t^3 + t^4)^2 \right)$$

$$= \frac{1}{8} t + \frac{5}{32} t^2 + \frac{3}{16} t^3 + \frac{7}{32} t^4 + \frac{1}{8} t^5 + \frac{3}{32} t^6 + \frac{1}{16} t^7 + \frac{1}{32} t^8.$$

(c) La loi de S est donnée par les coefficients du polynôme G_X en t. $E(S) = G_S'(1) = \frac{15}{4}$ et $V(S) = G_S''(1) + G_S'(1) - (G_S'(1))^2 = \frac{55}{4} + \frac{15}{4} - \left(\frac{15}{4}\right)^2 = \frac{55}{16}.$