Universidade Federal de Goiás Instituto de Matemática e Estatística

Data:13/03/2020 Profa:Marina (sala 206 - IME/UFG)

Solução de uma uma desigualdade: obter um valor satisfazendo uma das desigualdades $<, \le, >, \ge$.

1.
$$3x-4<5\Rightarrow 3x-4+4<5+4\Rightarrow 3x<9\Rightarrow \frac{1}{3}(3x)<\frac{1}{3}(9)\Rightarrow x<3$$
; Solução em notação intervalar: $(-\infty,3)$.

2.
$$3x-4 \le 5 \Rightarrow 3x-4+4 \le 5+4 \Rightarrow 3x \le 9 \Rightarrow \frac{1}{3}(3x) \le \frac{1}{3}(9) \Rightarrow x \le 3$$
; Solução em notação intervalar: $(-\infty,3]$.

3.
$$3x-4>5 \Rightarrow 3x-4+4>5+4 \Rightarrow 3x>9 \Rightarrow \frac{1}{3}(3x)>\frac{1}{3}(9) \Rightarrow x>3$$
; Solução em notação intervalar: $(3,+\infty)$.

4.
$$3x-4 \ge 5 \Rightarrow 3x-4+4 \ge 5+4 \Rightarrow 3x \ge 9 \Rightarrow \frac{1}{3}(3x) \ge \frac{1}{3}(9) \Rightarrow x \ge 3$$
; Solução em notação intervalar: $[3,+\infty)$.

5.
$$(x-1)(x-3) < 0 \Rightarrow (x-1 < 0 \ e \ x-3 > 0)$$
 ou $(x-1 > 0 \ e \ x-3 < 0) \Rightarrow (x < 1 \ e \ x > 3)$ ou $(x > 1 \ e \ x < 3)$.
Logo, $1 < x < 3$ ou $x \in (1,3)$.

6.
$$(x-1)(x-3) \le 0 \Rightarrow (x-1 \le 0 \ e \ x-3 \ge 0)$$
 ou $(x-1 \ge 0 \ e \ x-3 \le 0) \Rightarrow (x \le 1 \ e \ x \ge 3)$ ou $(x \ge 1 \ e \ x \le 3)$. Logo, $1 \le x \le 3$ ou $x \in [1,3]$.

7.
$$(x-1)(x-3) > 0 \Rightarrow (x-1 > 0 \ e \ x-3 > 0)$$
 ou $(x-1 < 0 \ e \ x-3 < 0) \Rightarrow (x > 1 \ e \ x > 3)$ ou $(x < 1 \ e \ x < 3)$.
Logo, $x > 3$ ou $x < 1$ e a notação intervalar $(-\infty, 1) \cup (3, +\infty)$.

8.
$$(x-1)(x-3) \ge 0 \Rightarrow (x-1 \ge 0 \ e \ x-3 \ge 0)$$
 ou $(x-1 \le 0 \ e \ x-3 \le 0) \Rightarrow (x \ge 1 \ e \ x \ge 3)$ ou $(x \le 1 \ e \ x \le 3)$.
Logo, $x \ge 3$ ou $x \le 1$ e a notação intervalar $(-\infty, 1] \cup [3, +\infty)$.

9.
$$\frac{(x-1)}{(x-3)} \ge 0 \Rightarrow (x-1 \ge 0 \ e \ x-3 > 0) \ ou \ (x-1 \le 0 \ e \ x-3 < 0) \Rightarrow (x \ge 1 \ e \ x > 3) \ ou \ (x \le 1 \ e \ x < 3)$$
. Logo, $x > 3$ ou $x \le 1$ e a notação intervalar $(-\infty, 1] \cup (3, +\infty)$.

Resolva as inequações dadas:

a)
$$x - 4 < 2x$$
. Resposta: $\{x \in \mathbb{R} | x > -4\} = (-4, +\infty)$.

b)
$$-3x - \frac{5}{4} > \frac{1}{4}$$
. Resposta: $\{x \in \mathbb{R} | x < -\frac{1}{2}\} = (-\infty, -1/2),$

$$c)(x - \pi)(x - 1.2) \le 0$$
. Resposta: $\{x \in \mathbb{R} | x \ge \pi \text{ ou } x \le 1.2\} = (-\infty, 1.2] \cup [\pi, +\infty)$..

d)
$$\frac{(x-5)}{(x-\sqrt{2})} \ge 0$$
. Resposta: $\{x \in \mathbb{R} | x \ge 5 \text{ ou } x < \sqrt{2}\} = (-\infty, 5] \cup (\sqrt{2}, +\infty)$.