Practice problems

QUESTION 1

1. Nucleotide mutations that do change the encoded	A. Activator
amino acid to another amino acid are called	B. Alternative splicing
mutations.	C. Bootstrap analysis D. DNA
2. Homology is a measure of the	E. Degenerate
relationship between organisms or sequences.	F. Distance matrix
3. One must compare sequences when	G. Eukaryotes
looking for promoters or other untranslated RNA	H. High-complexity
sequences (ribosomal and transfer RNAs, for	I. Low-complexity
example).	J. Messenger RNA (mRNA)
4regions will often align well	K. Missense L. Nonsense
with one another, but the alignment is not due to	M. Open reading frame
homology but by chance.	N. Position weight matrix
5. The genetic code ismeans that	O. Prokaryotes
most amino acids can be specified by more than	P. Promoter
one codon.	Q. Proteins
6 is the main reason behind the fact	R. Qualitative S. Quantitative
these genomes have a much small number of	T. Ribosomal RNA (rRNA)
genes when compared to the number of proteins.	U. Shine-Dalgarno sequence
7. The major difference between eukaryotes and	V. Transfer RNA (tRNA)
prokaryotes in terms of their transcription and	
translation processes is that the	
mRNA transcripts are substantially modified	
before translation.	
8. The most important core sequence in	
genes transcribed by RNA polymerase II is called	
the TATA box. This sequence is characterized by	
TATA sequence motif.	
9. Theis the physical link	
between the mRNA and the growing protein	
chain.	
10is designed to estimate the	
robustness of the constructed phylogenetic tree.	
It is based on repeating the tree construction for	
different samplings of the same dataset.	

Below is one of the BLAST hits. For each ALIGNMENT, the QUERY sequence ("Query") is shown at the top and the hit ("Sbjct") underneath it, with the position of the amino acids indicated on the right and left of the alignment.

RecName: Full=Paired box protein Pax-3; AltName: Full=HuP2
Sequence ID: P23760.2 Length: 479 Number of Matches: 1

Range 1	: 38 to	277 <u>Gen</u>	Pept Graphics					▼ Next	t Match	A Previous	Match
Score		Expect	Method			Identities	P	ositives		Gaps	
260 bit	s(664)	5e-82	Compositiona	l matrix	adjust.	134/263(51	%) 1	74/263(66%)	25/263(9%	o)
Query	27		/FVNGRPLPDSTI /F+NGRPLP+ I								
Sbjct	38		FINGRPLPNHIE								
Query	87		SKPR-VATPEVVO								
Sbjct	98		KPKQVTTPDVE								
Query	146		KQQMGADGMYER		GQTGTWGT	RPGWYPGTSV	PGQP	NQDGCQQ:	SDGGG:	EN 205	
Sbjct	158	LRSKFGF	GEEEEADLERKE	EAE			ES	EKKAKHS:	IDGIL	SE 194	
Query	206		NGEDSD-ETQMRI								
Sbjct	195		BDEGSDIDSEPDI								
Query	265		ARIQVWFSNRRAH AR+OVWFSNRRAH		287						
Sbjct	255		ARVQVWFSNRRAF		277						

Answer the following questions:

1)	In the Sbjct sequence between 158 and 194, what do the stretches "" represent?
2)	What is the name of the gene that this BLAST hit returns
3)	What is the degree of similarity between the query and the hit?
4)	What is the statistical probability that the similarity between the query and the hit
	occurs only by chance?
5)	What does the '+' signs between the query and hit stand for?

1) The nucleotide sequence of one DNA strand of a double helix is given. Write the complementary sequence found on the other strand. Label the 5' and 3' ends of the molecule.

5' --- GACAGTCATGGCTTTTGA --- 3'

- 2) Suppose that the DNA molecule above is transcribed and the lower strand is used as the template strand. What is the RNA sequence obtained from the transcription? Label the 5' and 3' ends of the molecule.
- 3) How many possible reading frames are there for the following sequence (do not need to list out all the reading frames)?

5' --- GCACTAGTCAAGGCTTTTGAC --- 3'

- 4) Complete the following table. Label 5' and 3' ends of DNA and RNA, and the amino and carboxyl ends of proteins. Assume that
 - the reading is from left to right
 - the columns represent transcriptional and translational alignments

	С													DNA double helix
				Т	С	Α								DNA double fielix
		С	Α											mRNA transcribed
										G	С	Α		Appropriate tRNA anticodon
							Tr	p (V	V)					Amino acids incorporated into protein

- 5) True or False. Write **T** for True, **F** for False.
 - a) The key assumption made when constructing a phylogenetic tree from a set of sequences is that they are all derived from a single ancestral sequence. _____
 - b) When comparing data from two distantly related species, the rapidly changing regions will show almost uniform dissimilarity, but the more conserved regions will convey useful information for the construction of phylogenetic trees. ____
 - c) Cladograms assumes a constant rate of mutation along all branches, known as the molecular clock assumption. _____
 - d) Using a protein sequence, one can perform BLAST search using the blastx algorithm. _____
 - e) Because the two strands of DNA are complementary, the mRNA of a given gene can be synthesized using either strand as a template.

LO	cus	HSU14680		5711 bp	mRNA	linear	PRI	10-JUN-2002
DEI	FINITION	_	lens breast blete cds.	and ovaria	an cancer	susceptibi	lity	(BRCA1)
ACC	CESSION	U14680						
	ATURES		Location/Qu	alifiers				
	source		15711					
			/organism="	Homo sapie	ens"			
			/mol_type="	'mRNA''				
			/chromosome	="17"				
			/map="17q21	; spans Di	17s855"			
	gene		15711					
			/gene="BRCA	1"				
	exon		1100					
			/gene="BRCA	11"				
			/number=1					
	exon		101199					
			/gene="BRCA	11"				
			/number=2					
	CDS		1205711					
			/gene="BRCA					
			/codon_star				1	1
			/protein id			cancer susce	sptir	oiiity"
	00		200253	I= AAA / 3963	<u> </u>			
	exon		/gene="BRCA	.1 !!				
			/number=3	7.1				
OR	GIN		/ IIdiliber – 5					
		acteactaa	gacttcctgg	accccccac	e aggetgt	ggg gtttete	aσa f	taactgggcc
			ggaggccttc					
			tgctcttcgc					
			tcccatctgt					
			caaattttgc					
4١	\\/\ = + = = +							
1)	wnat are t	tne first 3 ai	mino acids of	tne protein (encoded by	this gene?		
2)	What is th	e length of	the protein er	ncoded by th	is gene?			
3)	What are t	the start an	d end position	ns of the 5'-L	JTR of this a	gene? Start		End
4)	For each o	of the follow	ving three mu	tations, mar	k the muta	ition on the se	equei	nce and explain
•			_				-	ino acid change
		-	=	_	-			mo dola ollange
			y give details	as was done	ili Ciass ioi	Sillillai probi	ems.	
	a) Exc	on 1, 57 G 🖯	→ A					
	b) Exc	on 2, 122 G	→ A					
	c) Exc	on 3, 200 de	el T					

Fill in the blanks:

- 1. The height of the sequence logo represents the
- 2. Answer the following questions using the screenshot below:

- a) What strand is this gene locate?
- b) How many exons are in the MDM2 transcript that is highlighted above?
- c) What gene is being displayed here?
- d) Circle the 3'-UTR regions on the MDM2 transcript that is highlighted above. Be specific.
- e) What are the genomic regions that contain ——— symbol?
- f) Put a 'X' on third exon on the highlighted MDM2 transcript above.
- g) Which the tool generates this display? _____

1. Consider the following lines from a fastq file generated by Illumina, a next-generation sequencing platform:

Explain the content of these 4 lines above:

Line 1:	 	 	
Line 2:	 	 	
Line 3:	 	 	
Line 4:			

2. Fill in the blanks for the NGS workflow typically employed for variant discovery or genotyping. Select from the choices and place the letter representing the answer in each box below:

- A. Perform variant calling
- B. Trimming low base quality and sequencing adapters from the ends of the reads
- C. Mark duplicate reads in the aligned reads
- D. Align sequencing reads to the reference genome
- E. Read Quality Control using FastQC
- F. Recalibrate base quality scores
- 3. What are the 7 steps in preparing the DNA extracted from a biological sample for Illumina NGS?