

PENGOLAHAN CITRA DIGITAL

Aditya Wikan Mahastama mahas@ukdw.ac.id

UNIV KRISTEN DUTA WACANA – GENAP 1213

- Perataan histogram bertujuan untuk membuat distribusi nilai keabuan sebuah citra digital menjadi rata, dengan asumsi bahwa sebaran nilai keabuan yang merata akan meningkatkan kejelasan persepsi sebuah citra
- Untuk membantu perataan, digunakan histogram komulatif
- Langkah-langkah perataan histogram akan dijelaskan pada slide selanjutnya

Misalkan ada sebuah citra 3-bit dengan resolusi 4 x 4 berikut:

5	5	6	6
5	4	4	7
0	0	2	2
0	1	1	3

• Maka histogram citra tersebut adalah:

· Dari data tersebut kita buat distribusi komulatifnya

Histogram	Distribusi Komulatif
3	3
2	3+2 = 5
2	5+2 = 7
1	7+1 = 8
2	8+2 =10
3	10+3 = 13
2	13+2 = 15
1	15+1 = 16
	3 2 2 1 2 3 2

 Kemudian kita hitung nilai histogram hasil perataan dengan rumus:

$$w = \frac{c_w \cdot t}{n_x n_y}$$

```
w = nilai intensitas baru hasil perataan
```

 c_w = histogram komulatif

t = threshold keabuan, yaitu = L-1

 $n_{x'} n_{y} = \text{resolusi citra}$

Perhitungan nilai hasil perataan

Intensitas	Histogram Komulatif	Intensitas hasil perataan	Pembulatan Intensitas
0	3	(3 * 7) / 16 = 1.3125	1
1	5	(5 * 7) / 16 = 2.1875	2
2	7	(7 * 7) / 16 = 3.0625	3
3	8	(8 * 7) / 16 = 3.5	4
4	10	(10 * 7) / 16 = 4.375	4
5	13	(13 * 7) / 16 = 5.6875	6
6	15	(15 * 7) / 16 = 6.5625	7
7	16	(16 * 7) / 16 = 7	7

Histogram hasil perataan

Intensitas	Histogram Awal	Intensitas Baru	Histogram Akhir
0	3	1	0
1	2	2	3
2	2	3	2
3	1	4	2
4	2	4	2 + 1 = 3
5	3	6	0
6	2	7	3
7	1	7	1 + 2 = 3

Hasil perataan histogram:

Contoh Citra Hasil Perataan Histogram

- Meskipun perataan histogram bertujuan menyebarkan secara merata nilai-nilai derajat keabuan, tetapi seringkali histogram hasil perataan tidak benar-benar tersebar secara merata. Alasannya adalah :
- 1. Derajat keabuan terbatas jumlahnya.
 Nilai intensitas baru hasil perataan
 merupakan pembulatan ke derajat
 keabuan terdekat.
- 2. Jumlah pixel yang digunakan sangat terbatas.
- Agar hasil perataan benar-benar seragam sebarannya, maka citra yang diolah haruslah dalam bentuk malar (continue), yang dalam praktek ini jelas tidak mungkin.

(a) Kiri: citra anjing collie yang terlalu gelap; Kanan: histogramnya

(b) Kiri: citra anjing collie setelah perataan histogram; kanan: histogramnya

- Transformasi geometris diterapkan pada titik (piksel), di mana hasilnya akan mengubah koordinat piksel, tetapi tidak mengubah intensitas piksel tersebut
- Jenis-jenis transformasi di antaranya adalah: dilatasi (scaling), rotasi, translasi (moving), dan mèncèng (shearing)

Dilatasi / Scaling / Penskalaan

Translasi / Moving / Geseran

 Detail operasi transformasi geometris ada di slide 05 dari mata kuliah Grafika Game berikut.

SELESAI UNTUK TOPIK INI

Materi berikutnya: Penapisan Citra