Improving Adaptive Bagging Methods for Evolving Data Streams

A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà

University of Waikato Hamilton, New Zealand

Laboratory for Relational Algorithmics, Complexity and Learning LARCA UPC-Barcelona Tech, Catalonia

Nanjing, 4 November 2009 1st Asian Conference on Machine Learning (ACML'09)

Motivation

MOA Software for Mining Data Streams

Build a useful software mining for massive data sets

Bagging for data streams

Improve accuracy on classification methods for data streams

Data stream classification cycle

- Process an example at a time, and inspect it only once (at most)
- Use a limited amount of memory
- Work in a limited amount of time
- Be ready to predict at any point

Realtime analytics: from Databases to Dataflows

Data streams

- Data streams are ordered datasets
- Not all datasets are data streams
- All dataset may be processed incrementally as a data stream

MOA: Massive Online Analysis

Faster Mining Software using less resources

Instant mining: more for less

What is MOA?

{M}assive {O}nline {A}nalysis is a framework for online learning from data streams.

- It is closely related to WEKA
- It includes a collection of offline and online as well as tools for evaluation:
 - boosting and bagging
 - Hoeffding Trees

with and without Naïve Bayes classifiers at the leaves.

WEKA

- Waikato Environment for Knowledge Analysis
- Collection of state-of-the-art machine learning algorithms and data processing tools implemented in Java
 - Released under the GPL
- Support for the whole process of experimental data mining
 - Preparation of input data
 - Statistical evaluation of learning schemes
 - Visualization of input data and the result of learning

- Used for education, research and applications
- Complements "Data Mining" by Witten & Frank

WEKA: the bird

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

Concept Drift Framework

Definition

Given two data streams a, b, we define $c = a \oplus_{t_0}^W b$ as the data stream built joining the two data streams a and b

•
$$Pr[c(t) = b(t)] = 1/(1 + e^{-4(t-t_0)/W}).$$

•
$$Pr[c(t) = a(t)] = 1 - Pr[c(t) = b(t)]$$

Concept Drift Framework

Example

- $(((a \oplus_{t_0}^{W_0} b) \oplus_{t_1}^{W_1} c) \oplus_{t_2}^{W_2} d) \dots$
- $\bullet \ (((SEA_9 \oplus^{W}_{t_0} SEA_8) \oplus^{W}_{2t_0} SEA_7) \oplus^{W}_{3t_0} SEA_{9.5})$
- CovPokElec = (CoverType $\oplus_{581,012}^{5,000}$ Poker) $\oplus_{1,000,000}^{5,000}$ ELEC2

New Ensemble Methods For Evolving Data Streams

New Ensemble Methods For Evolving Streams (KDD'09)

- a new experimental data stream framework for studying concept drift
- two new variants of Bagging:
 - ADWIN Bagging
 - Adaptive-Size Hoeffding Tree (ASHT) Bagging.
- an evaluation study on synthetic and real-world datasets

Outline

- Adaptive-Size Hoeffding Tree bagging
- 2 ADWIN Bagging
- 3 Empirical evaluation

Adaptive-Size Hoeffding Tree

Ensemble of trees of different size

- each tree has a maximum size
- after one node splits, it deletes some nodes to reduce its size if the size of the tree is higher than the maximum value

Adaptive-Size Hoeffding Tree

Ensemble of trees of different size

- smaller trees adapt more quickly to changes,
- larger trees do better during periods with little change
- diversity

Adaptive-Size Hoeffding Tree

Figure: Kappa-Error diagrams for ASHT bagging (left) and bagging (right) on dataset RandomRBF with drift, plotting 90 pairs of classifiers.

Improvement for ASHT Bagging Method

Improvement for ASHT Bagging ensemble method

- Bagging using trees of different size
 - add a change detector for each tree in the ensemble
 - DDM: Gama et al.
 - EDDM: Baena, del Campo, Fidalgo et al.

Outline

- Adaptive-Size Hoeffding Tree bagging
- ADWIN Bagging
- 3 Empirical evaluation

ADWIN Bagging

ADWIN

An adaptive sliding window whose size is recomputed online according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)

- On ratio of false positives and negatives
- On the relation of the size of the current window and change rates

ADWIN Bagging

When a change is detected, the worst classifier is removed and a new classifier is added.

Optimal Change Detector and Predictor

- High accuracy
- Fast detection of change
- Low false positives and false negatives ratios
- Low computational cost: minimum space and time needed
- Theoretical guarantees
- No parameters needed
- Estimator with Memory and Change Detector

```
Example
```

```
W= 101010110111111
```

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

```
Example
W = 101010110111111
W_0 = 1 W_1 = 01010110111111
```

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example
W = 101010110111111
W_0 = 10 W_1 = 1010110111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

```
Example
W = 101010110111111
W_0 = 101 W_1 = 010110111111
```

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example
W = 101010110111111
W_0 = 1010 W_1 = 10110111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example W = 101010110111111 W_0 = 10101 W_1 = 0110111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example

W = 101010110111111

W_0 = 101010
W_1 = 110111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example
W = 101010110111111
W_0 = 1010101 \quad W_1 = 10111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

```
Example
W = 101010110111111
W_0 = 10101011 \quad W_1 = 0111111
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN

Example

```
W = \boxed{101010110111111} \ |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| \geq \varepsilon_c : \text{CHANGE DET.!} \\ W_0 = \boxed{101010110} \ W_1 = \boxed{111111}
```

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

ADWIN: ADAPTIVE WINDOWING ALGORITHM

ADWIN

Example W = 1010101101111111 Drop elements from the tail of $W_0 = 1010101101 W_1 = 11111111$

```
1 Initialize Window W
2 for each t > 0
3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)
4 repeat Drop elements from the tail of W
5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds
6 for every split of W into W = W_0 \cdot W_1
7 Output \hat{\mu}_W
```

ADWIN

Example

```
W = \boxed{01010110111111} Drop elements from the tail of W
W_0 = \boxed{101010110} W_1 = \boxed{111111}
```

```
ADWIN: ADAPTIVE WINDOWING ALGORITHM
```

```
1 Initialize Window W

2 for each t > 0

3 do W \leftarrow W \cup \{x_t\} (i.e., add x_t to the head of W)

4 repeat Drop elements from the tail of W

5 until |\hat{\mu}_{W_0} - \hat{\mu}_{W_1}| < \varepsilon_c holds

6 for every split of W into W = W_0 \cdot W_1

7 Output \hat{\mu}_W
```

Theorem

ADWIN

At every time step we have:

- (False positive rate bound). If μ_t remains constant within W, the probability that ADWIN shrinks the window at this step is at most δ .
- ② (False negative rate bound). Suppose that for some partition of W in two parts W_0W_1 (where W_1 contains the most recent items) we have $|\mu_{W_0} \mu_{W_1}| > 2\varepsilon_c$. Then with probability 1δ ADWIN shrinks W to W_1 , or shorter.

ADWIN tunes itself to the data stream at hand, with no need for the user to hardwire or precompute parameters.

ADWIN using a Data Stream Sliding Window Model,

- can provide the exact counts of 1's in O(1) time per point.
- tries $O(\log W)$ cutpoints
- uses $O(\frac{1}{\varepsilon} \log W)$ memory words
- the processing time per example is $O(\log W)$ (amortized and worst-case).

Sliding Window Model

	1010101	101	11	1	1
Content:	4	2	2	1	1
Capacity:	7	3	2	1	1

ADWIN bagging using Hoeffding Adaptive Trees

Decision Trees: Hoeffding Adaptive Tree

CVFDT: Hulten, Spencer and Domingos

- No theoretical guarantees on the error rate of CVFDT
- Parameters needed: size of window, number of examples,...

Hoeffding Adaptive Tree:

- replace frequency statistics counters by estimators
 - don't need a window to store examples
- use a change detector with theoretical guarantees to substitute trees

Advantages:

- Theoretical guarantees
- No Parameters

Outline

- Adaptive-Size Hoeffding Tree bagging
- ADWIN Bagging
- Empirical evaluation

Empirical evaluation

Dataset	Most Accurate Method		
Hyperplane Drift 0.0001	Bag10 ASHT W+R		
Hyperplane Drift 0.001	DDM Bag10 ASHT W		
SEA W = 50	Bagadwin 10 HAT		
SEA W = 50000	Bagadwin 10 HAT		
RandomRBF No Drift 50 centers	Bag 10 HT		
RandomRBF Drift .0001 50 centers	Bagadwin 10 HAT		
RandomRBF Drift .001 50 centers	DDM Bag10 ASHT W		
RandomRBF Drift .001 10 centers	Bagadwin 10 HAT		
Cover Type	DDM Bag10 ASHT W		
Poker	Bagadwin 10 HAT		
Electricity	DDM Bag10 ASHT W		
CovPokElec	Bagadwin 10 HAT		

Empirical evaluation

	SEA			
	W= 50000			
	Time	Acc.	Mem.	
Bagadwin 10 HAT	154.91	88.88 ± 0.05	2.35	
DDM Bag10 ASHT W	44.02	88.72 ± 0.05	0.65	
NaiveBayes	5.52	84.60 ± 0.03	0.00	
NBADWIN	12.40	87.83 ± 0.07	0.02	
HT	7.20	85.02 ± 0.11	0.33	
HT DDM	7.88	88.17 ± 0.18	0.16	
HAT	20.96	88.40 ± 0.07	0.18	
BagADWIN 10 HT	53.15	88.58 ± 0.10	0.88	
Bag10 HT	30.88	85.38 ± 0.06	3.36	
Bag10 ASHT W+R	33.56	88.51 ± 0.06	0.84	

Empirical evaluation

Figure: Accuracy on dataset LED with three concept drifts.

Summary

http://www.cs.waikato.ac.nz/~abifet/MOA/

Conclusions

- New improvements for ensemble bagging methods:
 - Adaptive-Size Hoeffding Tree bagging using change detection methods
 - ADWIN bagging using Hoeffding Adaptive Trees
- MOA is easy to use and extend

Future Work

Extend MOA to more data mining and learning methods.