Differential Equation Solver

By Thomas DeWitt

What is it?

The code diffeq.py numerically solves an arbitrary system of coupled differential equations

$$\begin{cases}
\frac{d\phi_1}{dt} = f_1(\phi_1, \phi_2, \dots \phi_n) \\
\frac{d\phi_2}{dt} = f_2(\phi_1, \phi_2, \dots \phi_n) \\
\dots \\
\frac{d\phi_N}{dt} = f_N(\phi_1, \phi_2, \dots \phi_n)
\end{cases}$$
(7)

by discretizing them into time steps Δt such that

$$\phi_i^{t+\Delta t} = \phi_i^{\Delta t} + f_i(\phi_1, \phi_2, \dots \phi_n) \Delta t. \tag{8}$$

Usage guide

The function diffeq.solve() takes 3 required parameters

- ic: Array-like list of initial conditions $\phi_1^{t=0}, \phi_2^{t=0}, ..., \phi_n^{t=0}$.
- func: Python function that takes a single argument $[\phi_1, \phi_2, ..., \phi_n)]$ and returns $[f_1(\phi_1, \phi_2, ..., \phi_n), f_2(\phi_1, \phi_2, ..., \phi_n), ..., f_N(\phi_1, \phi_2, ..., \phi_n)]$. Output must be a np.ndarray with dtype=dtype (see below).
- dt: Δt
- end_time: How long to simulate for.

and 3 optional parameters

- save_data: Whether to save variables $\phi_1^{t_i}, \phi_2^{t_i}, ... \phi_n^{t_i}$ for $t_i \in \{\Delta t, 2\Delta t, ..., (n-1)\Delta t\}$. If True, return a 2-D np.ndarray where column 0 is t_i , columns [1:] are the variables $\phi_1^{t_i}, \phi_2^{t_i}, ..., \phi_n^{t_i}$, and each row corresponds to a time step t_i . If False, return only $[\phi_1^{t_{end}}, \phi_2^{t_{end}}, ..., \phi_n^{t_{end}}]$. Default False.
- jit: Whether func is jitted using numba.njit(). jit=True speeds computation for many time steps. Default False.
- dtype: dtype of all arrays. Default np.float32.

Example

Consider the system

$$\frac{d^2x}{dt^2} = -10x\tag{9}$$

which can be turned into the system

$$\frac{dx}{dt} = y \tag{10}$$

$$\frac{dy}{dt} = -10x. (11)$$

This can be implemented as a Python function like

```
def f(vars):
    x,y = vars
    return np.array([y,- 10 * x], dtype=np.float32)
```

and

solve([1,0], f, .0001, 100, save_data=True)

produces the expected sine wave.