Ant System (ou ACO) Aplicado ao Problema de Cobertura de Conjunto

Prof. Ademir A. Constantino Departamento de Informática Universidade Estadual de Maringá www.din.uem.br/~ademir

Modelo Set Covering

O problema de cobertura de conjunto (Set Covering) é um problema de programação linear inteira.

Minimizar
$$\sum_{j=1}^{n} c_j x_j$$
 Define-se ainda: Matriz $m \times n A = [a_{ij}];$ Sugeito a $\sum_{j=1}^{n} a_{ij} x_j \ge 1$ para $i=1, 2, ..., m$, $N = \{1, 2, ..., n\}$ o conjunto das colunas ando

onde

$$c_{j} = \text{custo da coluna } j;$$

$$a_{ij} = \begin{cases} 1 \text{ se linha } i \text{ \'e coberta pela coluna } j; \\ 0 \text{ caso contr\'ario} \end{cases}$$

$$x_{j} = \begin{cases} 1 \text{ se a coluna } j \text{ est\'a na solução;} \\ 0 \text{ caso contr\'ario.} \end{cases}$$

Problema de Cobertura de Conjunto

Exemplo de Set Covering na forma matricial:

Sujeito à	1	0	0	1	1	1	1	x_1		1
	0	1	0	0	1	0	1	x_2		1
	1	0	1	0	0	1	0	x_3	<u> </u>	1
	0	0	1	1	0	0	1	x_4		1
	1	0	0	1	1	0	0	χ_5		1
	0	1	0	0	0	1	0	x_6		1
	0	0	1	1	1	0	1	χ_7		1

Esquema Geral do Algoritmo

```
Procedure Ant System_SCP;
Begin
   While > Critério de Parada não satisfeito > begin
        For \phi:=1 to nForm do begin
             S_{\omega}:= GerarSolução;
             Eliminar Redundância (S<sub>o</sub>);
        If Z(S_{\omega}) \leq Z(Best\_Solution) then
          Best_Solution:= S_{\omega};
       <Atualizar Feromônio>;
   end;
End;
```

Probabilidade de Transição

$$p_{j}^{\varphi}(t) = \begin{cases} \frac{\left[\tau_{j}(t)\right]^{\alpha}.\left[\eta_{j}^{\varphi}\right]^{\beta}}{\sum_{k \in J^{*}} \left[\tau_{k}(t)\right]^{\alpha}.\left[\eta_{k}^{\varphi}\right]^{\beta}} & \text{se } j \in J^{*} \\ 0 & \text{caso contrário.} \end{cases}$$

Onde:

- é o conjunto de colunas que ainda não fazem parte da solução da form
- J^* define a taxa de feromônio na coluna j na iteração t; $\tau_j(t)$ define o valor de visibilidade (custo) da coluna para a formiga ϕ ;
- $\alpha \notin \operatorname{Hom}^{\varphi}(t)$ parâmetro que define a importância do termo
- β é um parâmetro que define a importância do termo

Visibilidade/proximidade

(10)

Onde:

- \bullet é o número de linhas que a coluna *j* cobre das linhas ainda não cobertas pela formiga φ na iteração *t*;
- \bullet é o custo da coluna j;

Construção da Solução

```
Seja:
♦ I \leftarrow o conjunto de linhas;
   J \leftarrow o conjunto de colunas;
        \leftarrow o conjunto de colunas que cobrem a linha i,
       \leftarrow o conjunto de linhas cobertas pelo coluna j,
Construirsolução
 Inicialize
                 ; // S é o conjunto de colunas na solução
 Inicialize
                  ; // U é o conjunto de linhas não cobertas
 Inicialize
                         ; // é o número de colunas em S que cobrem a linha i,
 While (
              ) do
        Selecione aleatoriamente uma linha
        Selecione uma coluna que maximize
        Faça
        Faça
```

Retorne S.

Faça

Construção da Solução

Após a construção de um solução as colunas redundantes devem ser eliminadas.

EliminarRedundancia(S)

```
T \leftarrow S;

While ( ) do

Selecione aleatoriamente uma coluna j, ;

Faça ;

if ( ) then

Faça ;

Faça ;

Retorne S.
```

Atualização do Feromônio

(11)

Onde:

- $\tau_i(t)$ é a intensidade de feromônio no elemento j na iteração t (anterior);
- ρ determina quanto do feromônio deve evaporar;
- $\Delta \tau_i(t)$ é a quantidade de feromônio que deve ser depositado no nó j.

A taxa de feromônio que deve ser depositada no nó j foi definida como:

(12)

Onde:

- é a formiga que cobre a coluna *j* com o melhor custo. Isto significa que a coluna *j* terá o seu feromônio atualizado somente por uma única formiga, aquela que obteve a melhor solução contendo a coluna *j*.

Atualização do Feromônio

A quantidade de substância depositada na coluna *j* pela formiga φ é:

(13)

Onde:

- ♦ Q é o custo da melhor solução alcançada até o momento;
- é o custo da solução encontrada pela formiga φ;
- ♦ y é uma constante utilizada para aumentar a importância de na quantidade de feromônio a ser depositada nas colunas da solução.

Obs: Na primeira iteração Q recebe o custo da melhor solução, a partir daí, Q é atualizado sempre que uma solução melhor é gerada. Na iteração t o parâmetro Q assume o valor da melhor solução entre todas as geradas nas iterações anteriores

Parâmetros

Parâmetros do sistema:

- define a importância do feromônio;
- define a importância da visibilidade;
- ♦ Taxa de evaporação;
- Número máximo de iterações do sistema sem que hajam melhoras nas soluções;
- ♦ Número de formigas no sistema.

Os valores para os parâmetros que mais contribuíram para a geração de boas soluções foram:

- **♦** 0.2;
- **♦** 0.8;
- **♦** 0.7;
- **♦** 15;
- ♦ Número de colunas do problema.

Resultados

Dados Obtidos da OR-Library

				Ant System		Algoritmo Genético		
Arquivos de	Número de	Número de	Melhor Solução	Solução Alcançada	Tempo de processa	Solução Alcançad	Tempo de processa	
Dados	Colunas	Linhas	conhecida		mento	a	mento	
Scp41	1.000	200	429 *	429	01:15	432	00:40	
Scp410	1.000	200	514 *	514	01:53	517	01:05	
Scp52	2.000	200	302 *	302	08:10	313	00:40	
Scp53	2.000	200	226 *	226	07:32	226	00:45	
Scp54	2.000	200	242 *	242	05:46	242	00:50	
Scp55	2.000	200	211 *	211	04:22	211	01:50	
Scp58	2.000	200	288 *	288	02:36	289	02:10	
Scpd1	4.000	400	60	60	25:53	60	05:00	
Scpnrh5	10.000	1.000	55	55	01:30:00	55	08:00	

^{*} solução ótima

Comparação do ACO aplicado ao SCP e TSP

TSP

- A ordem em que os itens (vértices) aparecem na solução é importante.
- O próximo item a ser selecionado depende basicamente do último item adicionado à solução.

SCP

- A ordem que os itens aparecem na solução não é importante.
- O próximo item a ser selecionado depende basicamente de todos os itens presentes na solução.