4.4.1 基本概念

定义

设 <A,*> 和 $<B,^\circ>$ 是代数系统, $f:A\to B$, 如果 f 保持运算,即对 $\forall x,y\in A$, 有f(x*y)=f(x) 。 f(y) 。 称 f 为代数系统 <A,*> 到 $<B,^\circ>$ 的同态映射,简称同态。 也称之为两代数系统同态。

4.4.1 基本概念

定义

设 <A,*> 和 <B,°> 是代数系统, f 是 A 到 B 的同态。如果 f 是单射的, 称 f 为单同态; 如果 f 是满射的, 称 f 为满同态; 如果 f 是双射的, 称 f 为同构映射, 简称为同构。

4.4.1 基本概念

定义

设 <A,*> 是代数系统,若存在函数f:A→A, 并且对 \forall x,y∈A,有 f(x*y)=f(x)*f(y)。称 f 为 <A,*> 的自同态; 如果 f 是双射的,则称 f 为 <A,*> 的自同构。

例:验证下列两个代数系统是同构的。

$$\langle A, * \rangle \langle B, ^{\circ} \rangle$$

*	a	b	c	d
a	a	b	c	d
b	b	a	a	c
C	c	d	d	c
d	d	b	c	d

0	α	β	γ	δ
α	α	β	γ	δ
β	β	α	α	γ
γ	γ	δ	δ	γ
δ	δ	β	γ	δ

<A,*>

<B,° >

设 <A,*> 和 <B,°> 是代数系统, (1) f:A→B, 如果 f 保持运算,即对 ∀x,y∈A,有 f(x*y)=f(x)∘f(y)。 (2) f是双射函数(单射,满射)

(1)建立函数f, f(a)=a;f(b)=β;f(c)=γ;f(d)=δ 是否满足 f(x*y)=f(x)。f(y);
f(a*b)=f(b)=f(a)°f(b)=a°β=β;
f(a*c)=f(c)=f(a)°f(c)=a°γ=γ
f(a*d)=f(d)=f(a)°f(d)=a°δ=δ
(2) f是双射函数(单射,满射)

(2) **f**是双射函数(单射,满射) 由函数的定义可知,**f**是双射函数。

下列两个代数系统还同构吗?

*	a	b	c	d
a	a	b	c	d
b	b	a	a	c
c	c	d	d	c
d	d	b	c	d

0	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	α	δ	γ
δ	δ	β	γ	δ

$$f(b*c)=f(a)=a$$
 ? $f(b)$ ° $f(c)=β$ ° γ=δ 运算保持不满足

例:验证下列两个代数系统是同态的。<A,*><B,°>;e是B的单位元。f:a→e,∀a∈A同构吗?

解: f:a→e; 该函数不是满射的,所以不是同构函数 又 f(x*y)=f(z)=e f(x)°f(y)=e°e=e 所以 f(x*y)= f(x)°f(y) 所以f是同态

4.4.2 同态、同构的性质

(1)如果两函数是同态、同构的,则复合函数也是同态、 同构的。

定理

假设 f 是<A,*> 到 <B,•>的同态,g是 <B,•> 到<C, Δ > 的同态,则gof是<A,*> 到 <C, Δ >的同态; 如果 f 和 g 是单同态、满同态、同构时,则gof也是单 同态、满同态和同构。

注: "o"是函数的复合运算

4.4.2 同态、同构的性质

(2) 满同态保持结合律

定理

假设 f 是<A,*> 到 <B,°>的满同态。如果 * 运算满足结合律,则 ° 运算也满足结合律,即 满同态保持结合律。

定理

假设 f 是<A,*> 到 <B,°>的满同态。如果 * 运算满足结合律,则 ° 运算也满足结合律,即满同态保持结合律。

证明:

```
*满足结合律 \forall x,y,z \in A;即有x^* (y^*z) = (x^*y)^*z °也满足结合律, \forall a,b,c \in B; a ° (b ° c)=(a ° b) ° c f(x*y)=f(x) ° f(y) a ° (b ° c)=f(x) ° (f(y) ° f(z))= f(x) ° f(y*z)=f(x*(y*z))=f((x*y)*z) = (f(x) ° f(y) )° f(z)= (a ° b )° c
```

4.4.2 同态、同构的性质

- (3) 满同态保持交换律
- (4) 满同态保持单位元

定理

假设 f 是 < A,* > 到 < B,° > 的满同态。e 是 < A,* > 的单位元,则 f(e) 是 < B,° > 的单位元。

4.4.2 同态、同构的性质

(5) 满同态保持逆元

定理

假设 f 是<A,*>到<B,°>的满同态。 e_A 和 e_B 分别是<A,*>和<B,°>的单位元,如果 A 中元素 x和 x' 互逆,则 B 中元素 f(x) 和 f(x')也互逆。

4.4.2 同态、同构的性质

(6) 满同态保持零元

定理

假设 f 是<A,*> 到 <B,°>的满同态。θ 是 <A,*> 的零元,则 $f(\theta)$ 是<B,°>的零元。

4.4.2 同态、同构的性质

(7) 满同态保持幂等元

定理

假设 f 是<A,*>到<B, $^{\circ}$ >的满同态。并且 x∈A是<A,*>的幂等元,则 f(x)∈B 是<B, $^{\circ}$ >的 幂等元。

4.4.2 同态、同构的性质

(8) 同构映射运算性质双向保持

定理

假设 f 是<A,*> 到 <B,°>的同构映射。则 f⁻¹是<B,°> 到 <A,*>的同构映射。

§ 4.5 同余关系与商代数

4.5.1 同余关系

定义

假设 <A,*> 是一个代数系统,E 是 A 上的等价关系。如果对 $\forall x_1,x_2,y_1,y_2\in A$,当 x_1Ex_2,y_1Ey_2 时,必有 $(x_1*y_1)E(x_2*y_2)$,则称 E 是 A 上的同余关系。

§4.6 直积

定义:

设 <A,*> 和 <B,°> 为两个代数系统, <A×B, Δ > 称为两代数系统的直积。其中 A×B 是 A 和 B 的笛卡尔乘积, Δ 定义如下: 对任意的<x,y>,<u,v> \in A×B, <x,y> Δ <u,v>=<x*u,y°v>

§ 4.6 直积

定理:

假设 <A,*> 和 <B,°> 为两个代数系统, 且分别有单位元 e_A,e_B,在两代数系统的直积 <A×B, Δ >中存在子代数系统 S,T,使得 <A,*> \cong <S, Δ >,<B,°> \cong <T, Δ >。

小结

- 1、同态和同构
- 2、满同态具有"六保持":结合律,交换律,单位元,零元,幂等元,逆元。
- 3、同余关系,直积