Python VNA-FMR Fitting Routine

Andy Berger

October 17, 2017

1 Initialization

- 1. Define folder path containing Raw S_{21} spectra vs. field
- 2. Define frequency window
- 3. Set field windowing (True/False), and set field window size (number of linewidths)
- 4. Create directories to save fit results
- 5. Import raw data
 - (a) Field (H)
 - (b) $Re(S_{21})$
 - (c) $Im(S_{21})$
- 6. Define constants

$$g = 2.1 \tag{1}$$

$$\mu_B = 9.274 \times 10^{-24} \,\mathrm{J} \,\mathrm{T}^{-1} \tag{2}$$

$$\hbar = \frac{1}{2\pi} 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s} \tag{3}$$

$$\gamma = g\mu_{\rm B}/\hbar \tag{4}$$

$$f =$$
frequency extracted from spectrum filename, in Hz (5)

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{H} \,\mathrm{m}^{-1} \tag{6}$$

$$H_{\text{eff}} = \frac{2\pi f}{\gamma \mu_0} \frac{4\pi}{10^3} \text{Oe} \tag{7}$$

where the factor of $4\pi/10^3$ converts A m⁻¹ to Oe, since that is the measured unit by the Hall probe in our experimental setup.

2 Data Conditioning

1. The LabVIEW code saves VNA data as the complex transmission data $Re(S_{21})$ and $Im(S_{21})$. Create the complex array:

$$S_{21} = \text{Re}(S_{21}) + i\text{Im}(S_{21}) \tag{8}$$

2. Estimate complex offset and slope in order to subtract the complex background and properly estimate the signal phase using the first and last values of the arrays:

$$\operatorname{Re}(C_0)_{\operatorname{pre}} = \langle \operatorname{Re}(S_{21}) \rangle$$
 (9)

$$\operatorname{Im}(C_0)_{\operatorname{pre}} = \langle \operatorname{Im}(S_{21}) \rangle \tag{10}$$

$$Re(C_1)_{pre} = \frac{(Re(S_{21})[end] - Re(S_{21})[0])}{(H[end] - H[0])}$$
(11)

$$Re(C_{1})_{pre} = \frac{(Re(S_{21})[end] - Re(S_{21})[0])}{(H[end] - H[0])}$$

$$Im(C_{1})_{pre} = \frac{(Im(S_{21})[end] - Im(S_{21})[0])}{(H[end] - H[0])}$$
(11)

where the subscript "pre" indicates an estimated value used for the Lorentzian pre-fit of the data (Sec. 3). Correct $Re(S_{21})$ and $Im(S_{21})$ arrays accordingly:

$$\operatorname{Re}(S_{21})_{\operatorname{corr}} = \operatorname{Re}(S_{21}) - \left(\left[\operatorname{Re}(C_0)_{\operatorname{pre}} - \operatorname{Re}(C_1) \frac{(\max(H) + \min(H))}{2} \right] + \operatorname{Re}(C_1)_{\operatorname{pre}} * H \right)$$
(13)

$$\operatorname{Im}(S_{21})_{\operatorname{corr}} = \operatorname{Im}(S_{21}) - \left(\left[\operatorname{Im}(C_0)_{\operatorname{pre}} - \operatorname{Im}(C_1) \frac{(\operatorname{max}(H) + \operatorname{min}(H))}{2} \right] + \operatorname{Im}(C_1)_{\operatorname{pre}} * H \right)$$
(14)

3. Calculate $(S_{21})_{\text{corr}}$, $|S_{21}|_{\text{corr}}$, and $\arg(S_{21})_{\text{corr}}$

Lorentzian Pre-Fit 3

- 1. Perform Lorentzian pre-fit to $|S_{21}|_{\text{corr}}$ to determine initial guesses for:
 - (a) amplitude, A
 - (b) M_{eff}
 - (c) linewidth, ΔH
 - (d) phase, ϕ

using Lorentzian pre-fit equation:

$$L(H) = C_0 + C_1 H + \frac{A\Delta H^2}{(H - H_{res})^2 + \Delta H^2}$$
 (15)

where C_0 and C_1 here are real-valued and not the same as those used to normalize S_{21} (Eqs. 9–12 and 30). Also must generate initial guesses within the Lorentzian pre-fit function

$$C_{0,\text{Lor}} = \frac{1}{2} (|S_{21}|[\text{end}] + |S_{21}|[0])$$
 (16)

$$C_{1,\text{Lor}} = 0 \tag{17}$$

$$A_{\text{Lor}} = \max |S_{21}| - \min |S_{21}|$$
 (18)

$$H_{\text{res}} = H[\text{index of max}(|S_{21}|)] \tag{19}$$

and to generate an initial guess for the Lorentzian linewidth, ΔH :

FHWM_{min} =
$$H[\text{largest index of } H \text{ where } H < H_{\text{res}} \& |S_{21}| < \max |S_{21}| - \frac{1}{2}A_{\text{Lor}}]$$

FHWM_{max} =
$$H[\text{smallest index of } H \text{ where } H > H_{\text{res}} \& |S_{21}| < \max |S_{21}| - \frac{1}{2}A_{\text{Lor}}]$$

$$\Delta H_{\rm Lor} = \rm FHWM_{\rm max} - \rm FHWM_{\rm min} \tag{20}$$

4 Full Susceptibility Fit

1. Using results of the Lorenztian pre-fit, generate initial guesses for full complex susceptibility fit of $Re(S_{21})$ and $Im(S_{21})$:

$$A_i = 2A_{\text{Lor}} \tag{21}$$

$$M_{\text{eff}i} = H_{\text{res}} - \frac{2\pi f}{\gamma \mu_0} \left(\frac{4\pi}{10^3}\right) \tag{22}$$

$$\Delta H_i = 2\Delta H_{\text{Lor}} \tag{23}$$

$$\phi_i = \arg(S_{21})_{\text{corr}} [\text{index of } \max(|S_{21}|_{\text{corr}})]$$
 (24)

$$Re(C_0)_i = Re(C_0)_{pre}$$
 (25)

$$\operatorname{Im}(C_0)_i = \operatorname{Im}(C_0)_{\operatorname{pre}} \tag{26}$$

$$Re(C_1)_i = 0 (27)$$

$$\operatorname{Im}(C_1)_i = 0 (28)$$

Because $\chi_{yy} = M_{\text{eff}}/\Delta H$ on resonance, re-scale A_i :

$$A_i = A_i \frac{\Delta H_i}{M_{\text{eff}\,i}} \tag{29}$$

2. I force ϕ_i to lie between 0 and $+2\pi$.

3. Define upper and lower bounds for fit parameters:

Parameter	Lower Bound	Upper Bound
A	0	$+\infty$
$M_{ m eff}$	0	$+\infty$
ΔH	0	$+\infty$
ϕ	0	2π
$\operatorname{Re}(C_0)$	$-\infty$	$+\infty$
$\operatorname{Im}(C_0)$	$-\infty$	$+\infty$
$\operatorname{Re}(C_1)$	$-\infty$	$+\infty$
$\operatorname{Im}(C_1)$	$-\infty$	$+\infty$

4. Fit S_{21} data with full complex susceptibility using non-linear least squares:

$$S_{21} = C_0 + C_1 H + A e^{i\phi} \chi_{yy} \tag{30}$$

$$\chi_{yy} = \frac{M_{\text{eff}}(H - M_{\text{eff}})}{(H - M_{\text{eff}})^2 - H_{\text{eff}}^2 + i\Delta H H_{\text{eff}}}$$
(31)

where C_0 and C_1 are complex offset and slope to the data, the +i in the denominator is chosen for the counter-clockwise rotation convention of most VNAs, and the complex pre-factor $Ae^{+i\phi}$ is the overall signal amplitude and phase, inclusive of signal loss and phase shift due to cable length. Both $Ae^{i\phi}$ and χ_{yy} are chosen to accommodate counter-clockwise rotation.

5. Calculate H_{res} from M_{eff} fit result:

$$H_{\rm res} = \frac{2\pi f}{\gamma \mu_0} \left(\frac{4\pi}{10^3}\right) + M_{\rm eff} \tag{32}$$

6. Calculate insertion loss:

IL (dB) =
$$20 \log_{10} \left(\sqrt{(\text{Re}(C_0) + \text{Re}(C_1)H_{\text{res}})^2 + (\text{Im}(C_0) + \text{Im}(C_1)H_{\text{res}})^2} \right)$$
 (33)

5 Error Analysis

Define the fit function of Eq. 30 as $f(H; \mathbf{k})$ with independent variable H, and \mathbf{k} is the vector of 8 fit parameters

$$\mathbf{k} = [A, M_{\text{eff}}, \Delta H, \phi, \text{Re}(C_0), \text{Im}(C_0), \text{Re}(C_1), \text{Im}(C_1)]$$
 (34)

Python's "optimize.least_squares" routine acts to minimize an objective function of the form

$$r_i = f(H_i; \mathbf{k}) - y_i \tag{35}$$

where H_i is the array of field points at which measurements y_i are taken.

The Jacobian is defined as

$$J(\mathbf{k})_{ij} = \frac{\partial r_i(\mathbf{k})}{\partial k_i} \tag{36}$$

where j = 1, ..., 8 and i = 1, ..., n for n field points at which measurements are acquired.

- 1. From the Jacobian, I calculate the Hessian as $\mathbb{H} = \mathbb{J}^T \mathbb{J}$
- 2. Calculate σ_r^2 , the variance of the residual (a vector which is also returned by "optimize.least_squares" routine).
- 3. Calculate the covariance matrix: $\Sigma = \sigma_r^2(\mathbb{H}^{-1})$
- 4. Calculate the standard error of each of the 8 fit parameters (diagonal elements of $\sqrt{|\Sigma|}$).

6 Post-Processing

6.1 Kittel Fit

Linear fit of H_{res} vs. f (weighted by error bars of H_{res} as determined from Susceptibility Fit):

$$H_{\rm res} = \frac{2\pi}{(g\mu_{\rm B}/\hbar)\mu_0} \left(\frac{4\pi}{10^3}\right) f + M_{\rm eff}$$
 (37)

g and M_{eff} are extracted fit parameters (H_{res} and M_{eff} in [Oe]).

6.2 Linewidth Fit

Linear fit of ΔH vs. f (weighted by error bars of ΔH as determined from Susceptibility Fit):

$$\Delta H = \frac{4\pi\alpha}{\gamma\mu_0} \left(\frac{4\pi}{10^3}\right) f + \Delta H_0 \tag{38}$$

 α and ΔH_0 (in [Oe]) are extracted fit parameters.

6.3 Inductance Analysis

1. The complex background is calculated as

$$Z_{\text{BG}} = \left[\text{Re}(C_0) + \text{Re}(C_1)H_{\text{res}} \right] + i \left[\text{Im}(C_0) + \text{Im}(C_1)H_{\text{res}} \right]$$
(39)

$$A_{\rm BG} = |Z_{\rm BG}| \tag{40}$$

$$\phi_{\rm BG} = \arctan\left(\operatorname{Im}(Z_{\rm BG})/\operatorname{Re}(Z_{\rm BG})\right)$$
 (41)

2. The complex signal is defined as the pre-factor of χ_{yy} in Eq. 30

$$Z = Ae^{i\phi} \tag{42}$$

where A and ϕ are fit parameters of the full susceptibility fit.

3. The complex sample inductance is calculated

$$L = \left(\frac{2Z_0}{2\pi f}\right) \frac{Z}{Z_{\rm BG}} e^{i\pi/2} \tag{43}$$

where $Z/Z_{\rm BG}$ is complex division, $Z_0 = 50 \,\Omega$, and the additional $\pi/2$ rotation is added to convert an impedance to an inductance.

4. Linear fits to Re(L) vs. f and Im(L) vs. f are used to extract $\text{Re}(L)|_{f=0}$ and $\text{Im}(L)|_{f=0}$. From this, we calculate an initial guess for the anomalous phase $\phi_{a,i}$

$$\phi_{\mathbf{a},i} = \arctan\left(\frac{\operatorname{Im}(L)|_{f=0}}{\operatorname{Re}(L)|_{f=0}}\right) \tag{44}$$

This provides a reasonable value for the anomalous phase. However, it is best to do a simultaneous fit to Re(L) and Im(L), instead of two separate linear fits. I therefore define a 4-parameter fit, with parameters L_0 , $Re(\partial_f L)$, $Im(\partial_f L)$, and ϕ_a . I then proceed to fit the Re and Im inductance data simultaneously with a least-squares fit where the error function is defined as:

concatenate
$$\left[\frac{(f_R(L_0, \operatorname{Re}(\partial_f L), \operatorname{Im}(\partial_f L), \phi_a) - \operatorname{Re}(L))}{\sigma_{\operatorname{Re}(L)}}, \frac{(f_I(L_0, \operatorname{Re}(\partial_f L), \operatorname{Im}(\partial_f L), \phi_a) - \operatorname{Im}(L))}{\sigma_{\operatorname{Im}(L)}}\right]$$
(45)

where $\sigma_{\text{Re}(L)}$ and $\sigma_{\text{Im}(L)}$ are the errors associated with the Re and Im parts of L, and f_R and f_I are linear equations for the Re and Im inductances:

$$f_R = [L_0 + \operatorname{Re}(\partial_f L)f]\cos(\phi_a) - [\operatorname{Im}(\partial_f L)f]\sin(\phi_a) \tag{46}$$

$$f_I = [\operatorname{Im}(\partial_f L)f)]\cos(\phi_a) + [L_0 + \operatorname{Re}(\partial_f L)f]\sin(\phi_a)$$
(47)

The least squares fit minimizes the sum of the squares of the residuals between these fit functions and the data Re(L) and Im(L), and reports a final value for ϕ_a .

- 5. A corrected complex inductance L_{corr} is calculated as $Le^{-i\phi_a}$ in order to rotate the inductance in the complex plane, to enforce that $\text{Im}(L)|_{f=0} = 0$.
- 6. $\operatorname{Re}(L)_{\operatorname{corr}}$ and $\operatorname{Im}(L)_{\operatorname{corr}}$ are plotted vs. frequency. Each is fit to a straight line to extract:

- (a) $L_0 \equiv \text{Re}(L)_{\text{corr}}|_{f=0}$
- (b) $\partial (\text{Re}(L)_{\text{corr}})/\partial f$
- (c) $\partial (\operatorname{Im}(L)_{\operatorname{corr}}/\partial f)$

(note that $\text{Im}(L)_{\text{corr}}|_{f=0} = 0$, by the action of Step 5).

• Error is propagated through each of the above steps in order to provide error bars on $Re(L)_{corr}$ and $Im(L)_{corr}$.

7 Data Saving

The following results are saved:

- 1. Figures of the Lorentzian prefit (magnitude and phase as a function of field) are saved in \MagS21.
- 2. Figures of Re and Im S_{21} fits (included initial guesses (dashed lines) and final fit (solid lines)) are saved in \S21.
- 3. Susceptibility fit results (Freq (GHz), H_{res} (Oe), ΔH (Oe), A, ϕ (rad), $Re(C_0)$, $Im(C_0)$, $Re(C_1)$, $Im(C_1)$, insertion loss (dB), and associated errors) are saved as "Susceptibility Fit Results.csv" as tab-delimited data
- 4. Kittel fit figure is saved as "Kittel Fit.png"
- 5. Damping fit figure is saved as "Damping Fit.png"
- 6. Spectroscopy results ($M_{\rm eff}$ (Oe), g, ΔH_0 (Oe), α , and associated errors) are saved in "Spectroscopy Fit Results.csv" as tab-delimited data
- 7. Inductance results (Freq (GHz), Re(L), Im(L), Re(L_{corr}), Im(L_{corr})) are saved as "Inductance Results.csv" as tab-delimited data
- 8. Corrected inductance results (L_0 (H), dRe(L)/df (H/GHz), dIm(L)/df (H/GHz), ϕ_a (rad), and associated errors) are saved as "L_corr vs f Fit Results.csv" as tab-delimited data
- 9. Spectroscopy and inductance results from "Spectroscopy Fit Results.csv" and "L_corr vs f Fit Results.csv" are combined into a single file "All Results.csv"