

### Châm ngôn mang về

Càng tự nhiên bao nhiêu Càng hiệu quả bấy nhiêu

### Dữ liệu là chìa khoá

















Máy học là quá trình học vô cùng tự nhiên, thử, sai và chỉnh lại.

<u>Học cách nói "mẹ bế"</u>

| Con muốn | Con nói | Mẹ chỉnh |
|----------|---------|----------|
|          |         | •        |

| Con muốn Mẹ bế | Mommy bế | Mẹ bế |
|----------------|----------|-------|
| Con muốn Mẹ bế | Omma bế  | Mẹ bế |
| Con muốn Mẹ bế | Mẹ bế    | Mẹ bế |



Thực tế chúng ta có thể mô phỏng quá trình này để đào tạo (train) cho một máy tính học được quy trình này





>> 1.000.000 điểm dữ liệu (data point)

#### Quá trình training

| Features       | Prediction | Label |      |
|----------------|------------|-------|------|
| Con muốn Mẹ bế | Mommy bế   | Mẹ bế | Sai  |
| Con muốn Mẹ bế | Omma bế    | Mẹ bế | Sai  |
| Con muốn Mẹ bế | Mẹ bế      | Mẹ bế | Đúng |
| •••            | •••        | •••   |      |
| •••            | •••        | •••   |      |
| •••            | •••        | •••   |      |
|                |            |       |      |



### Mô hình (Model)



#### **Features**

# Con muốn Mẹ bế Con muốn Mẹ bế Con muốn Mẹ bế ... ...

>> 1.000.000

điểm dữ liệu (data point) Mô hình (Model)



#### **Prediction**

| Mommy bế |
|----------|
| Omma bế  |
| Mẹ bế    |
| •••      |
| •••      |
| •••      |

Hàm mất mát (Cost Function)



#### Label

| Mẹ bế |
|-------|
| Mẹ bế |
| Mẹ bế |
| •••   |
| •••   |
| •••   |
|       |

### Đọc hình ảnh

Từ một hình ảnh, mô hình sẽ trích xuất ra thông tin quan trọng.



### Ånh



Ảnh được cấu thành từ các pixel có giá trị trong khoảng [0, 255]



Ảnh màu có 3 channels: xanh dương, xanh lục, đỏ. Mỗi channel là một ma trận 2 chiều.

### Mô hình phân loại ảnh (Image Classification)

### Mạng Nơ ron



Duỗi ảnh



Các phép biến đổi tuyến tính/phi tuyến để trích xuất thông tin hữu ích cho mục đích phân loại



### Mang nơ ron Sự khám phá này **đơn giản** ở các lớp ẩn đầu, tổng hợp lại và **phức tạp hơn** ở các lớp ẩn tiếp theo -6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6 4 HIDDEN LAYERS OUTPUT S Test loss 0.038 erties do -6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6 feed in? Training loss 0.007 8 neurons 7 neurons 2 neurons 6 neurons The outputs are $^{\circ}$ $^{\circ}$ $^{\circ}$ mixed with varying weights, shown $X_1X_2$ by the thickness of the lines. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 $sin(X_1)$ Colors shows data, neuron and weight values. ☐ Show test data ☐ Discretize output

### Học cách xử lý ảnh (Mạng CNN)



Convolutional Neural Networks (LeCun, 1989) là một loại Neural Network đặc biệt để xử lý dữ liệu dạng lưới (grid-like topology), ví dụ là ảnh.

Ảnh thường có thể coi là lưới 2D các pixels



Yann LeCun Turing Award

Mạng CNN được bổ sung thêm khả năng học xử lý ảnh sử dụng các lớp Convolution + Pooling

### Lớp Convolution và Pooling





Lớp Convolution

Lớp Pooling



#### Tại sao phải sử dụng 2 lớp này ???

Tạo ra tính kháng dịch chuyển cho mô hình, cùng một đối tượng trong không gian nhưng đặt ở vị trí khác nhau, mạng CNN vẫn có thể trích xuất được đúng.

# Hàm mất mát (Cost Function)



### Transfer Learning trong thị giác máy tính







Nhiều hơn 14 triệu tấm ảnh



3000 tấm ảnh

# Transfer Learning đang rất gần



### Inception V3



# Đóng băng tham số



# Thay đổi lớp phân loại







### Thêm lớp phân loại



### Miêu tả hình ảnh (Image Captioning)

Features



A group of bikers driving down a curvy road.

Làm sao để mô phỏng được mô hình này?



### Bộ dữ liệu

MS COCO

82783 hình ảnh + miêu tả

https://cocodataset.org/#captions-2015





### Đọc dữ liệu (Loading Data)



Thực hành đọc dữ liệu 5000 hình ảnh + miêu tả



Trong thực tế có thể gặp trường hợp nhãn chưa miêu tả hoàn toàn đúng

Cách khắc phục: Sử dụng Label Smoothing.

Link: https://arxiv.org/pdf/1906.02629.pdf

# Trích xuất đặc trưng















(..., 64, 2048)

#### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh bằng việc đưa ảnh qua các pretrained model. E.g. Inception Inception Net



Attention is all you need

### Tách từ

#### Câu cho trước

```
sentences = [
  'I am Vietnamese',
  'Vietnamese people are pretty friendly',
]
```

### Từ điển

| <unk></unk>  | 1 |
|--------------|---|
| 'vietnamese' | 2 |
| 'j'          | 3 |
| 'am'         | 4 |
| 'people'     | 5 |
| 'are'        | 6 |
| 'pretty'     | 7 |
| 'friendly'   | 8 |
|              |   |

Thứ tự càng nhỏ số lần xuất hiện trong các câu càng lớn.

#### Câu mới

| l | am | pretty |
|---|----|--------|

texts\_to\_sequences

| 3 |  |
|---|--|
|---|--|

# Chia dữ liệu (Splitting Data)

Overfitting - High Variance là hiện tượng mô hình có độ chính xác cao trên tập dữ liệu này tuy nhiên lại thấp trên tập dự dữ liệu khác



Mất mát lớn -Underfitting

Hợp lý - đảm bảo tính tổng quát



Tập validation để kiểm tra độ Variance của mô hình hiện tại



Mất mát xấp xỉ 0 Overfitting

### Đọc văn bản

### Thông tin lịch sử từ đầu câu đến vị trí hiện tại (từ "driving")



Dữ liệu ngôn ngữ có đặc tính thứ tự theo thời gian cho nên cần một mô hình phù hợp để đọc hiểu.

A group of bikers driving down a curvy road.

### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả

















### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

Attention is all you need

A group of bikers driving down a curvy road.

### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

A group of bikers driving down a curvy road.

### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

# Kết hợp mô hình

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

#### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

https://arxiv.org/abs/1706.03762

# Kết hợp mô hình

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

#### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

https://arxiv.org/abs/1706.03762

# Những kết nối quan trọng để đưa quyết định

A group of bikers driving down a curvy road.

#### **RNN Model**

Trích xuất ra thông tin quan trọng từ câu miêu tả



#### **Attention Model**

Kết nối những thành phần liên quan tới nhau

#### **CNN Model**

Trích xuất ra thông tin quan trọng trên bức ảnh



Attention is all you need

https://arxiv.org/abs/1706.03762



Inception Net



Ånh đưa qua Inception Net

# Phân phối Attention Start>

#### Liên kết hidden state của từ với các vùng ảnh

Trong những mô hình đơn giản thì có thể sử dụng phép nhân vô hướng 2 vector



#### Mô hình hóa dưới dạng xác suất

Các giá trị quan hệ này được mô phỏng thành các giá trị đại diện cho một phân bố với **tổng các gía trị bằng 1** 



Tổng hợp mối quan hệ thành vector đại diện



Kết nối mối quan hệ với từ hiện tại



Tiến hành dự đoán





Từ được dự đoán tiếp tục được sử dụng

# Chi tiết Attention Quá trình sẽ kết thúc khi gặp token <end> hoặc chiều dài của câu dự đoán vượt quá chiều dài cho phép. Phân phối road

# Bước chân vào ngành

#### Khóa học

| Đại số                       | https://www.khanacademy.org/math/algebra                             |
|------------------------------|----------------------------------------------------------------------|
| Xác suất                     | https://www.khanacademy.org/math/statistics-probability              |
| Đạo hàm                      | https://www.khanacademy.org/math/statistics-probability              |
| ML Cơ bản                    | https://youtu.be/PPLop4L2eGk?list=PLLssT5z_DsK-h9vYZkQkYNWcltqhlRJLN |
| Thị giác<br>máy tính - CS231 | http://cs231n.stanford.edu/                                          |
| Xử lý ngôn<br>ngữ tự nhiên   | http://web.stanford.edu/class/cs224n/                                |

#### Sách

| Deep Learning                                                               | https://www.deeplearningbook.org/                        |
|-----------------------------------------------------------------------------|----------------------------------------------------------|
| Hands-On Machine<br>Learning with<br>Scikit-Learn, Keras,<br>and TensorFlow | https://www.khanacademy.org/math/s tatistics-probability |
| Speech and<br>Language Processing                                           | https://web.stanford.edu/~jurafsky/slp<br>3/             |

#### Chuỗi video luyện thi chứng chỉ Tensorflow





#### Bài báo (Thị giác máy tính) - Nâng cao

| Network in Network (NIN) | https://arxiv.org/pdf/1312.4400.pdf                                      |
|--------------------------|--------------------------------------------------------------------------|
| Inception Net            | https://arxiv.org/pdf/1409.4842.pdf                                      |
| Resnet                   | https://arxiv.org/abs/1512.03385<br>https://arxiv.org/pdf/1603.05027.pdf |
| MobileNet                | https://arxiv.org/pdf/1704.04861.pdf                                     |

#### Bài báo (Xử lý ngôn ngữ tự nhiên) -Nâng cao

| A Neural Probabilistic<br>Language Model | https://www.jmlr.org/papers/volume<br>3/bengio03a/bengio03a.pdf |
|------------------------------------------|-----------------------------------------------------------------|
| Xác suất                                 | https://arxiv.org/pdf/1408.3456v1.pdf                           |
| CBOW + SkipGram                          | https://arxiv.org/pdf/1301.3781.pdf                             |
| ELMO                                     | https://arxiv.org/abs/1802.05365                                |
| BERT                                     | https://arxiv.org/pdf/1810.04805.pdf                            |

#### Bài báo (thuật toán huấn luyện ) -Nâng cao

| AdaGrad                | https://www.jmlr.org/papers/volume3/<br>bengio03a/bengio03a.pdf             |
|------------------------|-----------------------------------------------------------------------------|
| AdaDelta               | https://arxiv.org/pdf/1408.3456v1.pdf                                       |
| RMSProp                | http://www.cs.toronto.edu/~tijmen/cs<br>c321/slides/lecture_slides_lec6.pdf |
| Adam                   | https://arxiv.org/abs/1412.6980                                             |
| Slanted triangular LRs | https://arxiv.org/pdf/1506.01186v6.pdf                                      |

