We begin with a definition:

Definition 1. Let X be a topological space. We say that $Z \subseteq X$ is **closed** if $Z^c \subseteq X$ is open in X.

Proposition 1. Suppose that X is a topological space. Then:

- 1. X, \emptyset are closed subsets of X.
- 2. If $Z_i \subset X$ for each $i \in I$ is a closed subset of X, then so is $\bigcap_{i \in I} Z_i \subseteq X$ is closed is X as well.
- 3. If Z_1, \ldots, Z_n are closed subsets of X, then their union $\bigcup_{i=1}^n Z_i \subseteq X$ is as well.

Proof. We will show that this follows directly from the three tenants of what it means to be a topology.

- 1. Notice that $\emptyset = X^c$ and likewise $X = \emptyset^c$, so X and \emptyset are trivially clopen.
- 2. For this and the following part, we will leverage De Morgan's laws. Let $Z_i \subseteq X$ be a closed subset for each $i \in I$ then

$$\bigcap_{i \in I} Z_i = \left(\bigcap_{i \in I} Z_i^c\right)^c$$

$$= \left(\bigcup_{i \in I} Z_i^c\right)^c$$

But we know that Z_i^c is open, so this union is an open set, so its complement is closed.

3. Let Z_i , i = 1, ..., n be a closed collection of subsets of X. Then again:

$$\bigcup_{i=1}^{n} Z_i = \left(\bigcup_{i=1}^{n} Z_i^c\right)^c$$
$$= \left(\bigcap_{i=1}^{n} Z_i^c\right)^c$$

So we have the result again in the same way.

Idea. Any statement made in terms of open sets can be rephrased in terms of an equivalent statement about closed sets.

Fact. A topological space can be defined by specifying a collection of closed sets and showing that they satisfy the equivalent closed set definition of a topology.

Proposition 2. If X, Y are topological spaces, then a function $f: X \to Y$ s continuous iff whenever $Z \subseteq Y$ is closed in Y, $f^{-1}(Z)$ is a closed subset of X.

- *Proof.* (\Rightarrow) Assume $f: X \to Y$ is continuous. Let $Z \subseteq Y$ be a closed subset. Then $f^{-1}(Z^c)^c$ is also closed. But Z^c is open, so $f^{-1}(Z^c)$ is open, and thus $f^{-1}(Z^c)^c$ is closed.
- (\Leftarrow) Assume that pre-images of closed subsets are closed. So let $U \subseteq Y$ be an open subset. Then $f^{-1}(U) = f^{-1}(U^c)^c$, and the same thing happens again. $f^{-1}(U^c)$ is the pre-image of a closed set, which is closed, and so its complement is open. And the result falls out.

Definition 2. A polynomial in n variable is a function $f: \mathbb{R}^n \to \mathbb{R}$.

$$f(x_1 \dots x_n) = \sum c_I x^I$$

The **Zero Locus** of a set of polynomials $\{f_i\}_{i\in I}$ is the subset

$$Z(\{f_i\}) = \{(x_1, \dots, x_n) \in \mathbb{R}^n | f_i(x_1 \dots x_n) = 0\}.$$

For example: $f(x,y) = y - x^2$: Z(f) should be a parabola.

Definition 3. The zero locus of a set of polynomials is called an **algebraic variety**. The **Zariski** topology on \mathbb{R}^n is the topology on \mathbb{R}^n in which the algebraic varieties are the closed subsets.

Definition 4. Given a topological space (X, τ_X) and a subset $Y \subseteq X$, the subspace topology on Y is the topology

$$\tau_Y = \{ U \cap Y | U \in \tau_X \}$$

This is possibly the most important example that we will give.

Example 1. $\{0,1\} \subseteq \mathbb{R}$. Then $\tau_Y = \{\emptyset, \{1\}, \{0\}, \{0,1\}\}$ where τ_Y is the subspace topology of the usual topology on \mathbb{R} . This gives us a reason to call the discrete topology what it is...

Proposition 3. Let (X, τ_X) a topological space, (Y, τ_Y) a subset of X with the subspace "topology". Then τ_Y is a topology.

Proof. 1. $\emptyset_{\tau_y} = \emptyset_{\tau_x} \ cap Y$, and furthermore $Y = Y \cap X$.

2. Suppose that $U_i \in \tau_y$ for each $i \in I$. By the definition of τ_y , for each U_i , $\exists V_i \in \tau_x$ such that $V_i \cap Y = U_i$. Then

$$\bigcup_{i \in I} U_i = \bigcup_{i \in I} (V_i \cap Y) = \left(\bigcup_{i \in I} V_i\right) \cap Y \in \tau_Y.$$

And the same idea for the intersections.

3. Let $U_1 \dots U_n \in \tau_Y$. Then we can find $V_1, \dots, V_n \in \tau_X$ such that $U_i = V_i \cap Y$ for each $i = 1 \dots n$. Then

$$\bigcap_{i=1}^{n} U_i = \bigcap_{i=1}^{n} (V_i \cap Y)$$
$$= \left(\bigcap_{i=1}^{n} V_i\right) \cap Y \in \tau_Y$$

So we really do have a topology.

Note that it is actually important to do these intersections, since open subsets of a subset might **NOT** be open in the larger space.