INTERNATINONAL UNIVERSITY (IU) – VIETNAM NATIONAL UNIVERSITY – HCMC

Final Examination

Date: Jan. 18th, 2017

Duration: 120 minutes

SUBJECT: ¿Electronic Devices	
Dean of School of Electrical Engineering	Lecturer: Tran Van Su, M.Eng.
Signature:	Signature:
Re	hc_
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

1. One note (A4 size) and calculators are allowed during the examination. Books, e-books, laptops and communications devices are prohibited.

2. Answer all questions

Question 1 (25 Marks)

Fig. 1 shows the amplifier circuit with $V_{CC} = 10V$, $R_1 = 200 \Omega$, $R_1 = 9.6 K\Omega$, $R_2 = 2.2 k\Omega$, $R_C = 4.2 k\Omega$, $R_{C} = 10V$, R_{C}

a. Determine I_{CQ} and V_{CEQ} of the transistor. (5 Marks) $I_c = 1.14$, $V_c = 4.072$

b. Plot the small AC-signal equivalent circuit. (5 Marks)

c. Determine input impedance R_{in} and output impedance R_o. (5 Marks) Rin = 990; R_o = P_o

d. Determine the voltage gain $A_v = v_0/v_i$. (5 Marks) - 54.77

e. Determine the current gain $A_i = i_1/i_1$ (5 Marks)

Fig. 1

Question 2 (25 Marks)

Fig. 2 shows the transistor circuit which has V_{CC} = 10 V, R_S = 1k Ω , β = 100, and early voltage

a. If $V_{CEQ} = 10.79V$ calculate R_b . (Hint: $V_{CEQ} = V_C - V_{EQ}$ and $V_{BE} = 0.7V$) (5 Marks) $R_b = 909 \ \mathcal{O}$

b. If $R_b = 30k\Omega$ compute V_{CEQ} . (5 Marks) $V_{CEQ} = 10.99 \text{ F}$

c. Determine the voltage gain $A_V = v_0/v_i$ if $R_L = 4.2 \text{ k}\Omega$. (5 Marks)

d. Determine R_L to obtain $R_{in} \ge 120 \text{ k}\Omega$. (10 Marks) PL > 1180.28

 $V_{DD} = 12 \text{ V}, R_G = 470 \text{ K}\Omega, R_{Sig} = 50 \text{ K}\Omega, R_L = 2.2 \text{ K}\Omega, V_t = 1 \text{ V}, \text{ and } \mu_n C_{ox} \frac{W}{L} = 2 \text{ } mA/V^2.$ a. Compute V_{GS} and V_{S} . (5 Marks)

b. Find R_D to obtain $V_D = 6 \text{ V}$. (5 Marks) Vas = 2V Vs = -2V

c. Plot the small AC-signal equivalent circuit. (5 Marks)

d. Determine $A_V = V_0/V_{sig}$ with the value R_D obtained in (b) (5 Marks) -2.91

e. Find value of R_D at which the transistor changes from saturation to triode. (5 Marks) RD > 13000

Question 4 (25 Marks)

Given $V_{DD} = 12 \text{ V}$, $R_1 = R_2 = 100 \text{ K}\Omega$, $R_D = 4\text{K}\Omega$, $I_D = 1\text{mA}$

a. Find R_S to obtain $V_{GS}=3V$. (Hint: Find V_G , V_S) (5 Marks) $R_{c} = 3000$

b. Find V_{DS.} (5 Marks) 5 V

c. Sketch T-model small-signal equivalent circuit. (10 Marks)

d. Find the voltage gain v_0/v_i if $g_m = 8mA/V$ (5 Marks)

Fig. 4