Repaso tema 4

1.- Dado el sistema de ecuaciones con coeficientes en Z_5

$$\left. \begin{array}{l}
 ax + y + z = 1 \\
 x + y + z = 2 \\
 x + y + z = a
 \end{array} \right\}$$

- a) Si $a \ne 1$ el sistema es incompatible
- b) Si a = 1 el sistema es compatible indeterminado
- c) El sistema es siempre incompatible
- d) Existe un único valor de a para el que el sistema es compatible

2.- Sea
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 0 & 1 \\ 0 & 4 & 3 \\ 2 & 4 & 0 \end{pmatrix} \in M_{4x3}(Z_5)$$
. El rango de A vale a) 2 b) 3 c) 1 d) 4

3.- Sea
$$A = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 3 & 1 & 3 \\ 2 & 1 & 4 & 1 \\ 3 & 3 & 2 & 3 \end{pmatrix} \in M_4(Z_5)$$
. El determinante de A vale a) 1 b) 3 c) 4 d) 0

4.- Dado el sistema de ecuaciones con coeficientes en Z_5

$$2x + y + 3z + 4t = 3$$

$$4x + 3y + z + 2t = 1$$

$$4x + 4y + z + t = 1$$

- a) Tiene 5 soluciones distintas
- b) Tiene 25 soluciones distintas
- c) Tiene cero soluciones
- d) Tiene una única solución

5.- Sea $A \in M_3(Z_{11})$ una matriz que verifica la ecuación $A^2 + 2A + Id_3 = 0$. Entonces podemos asegurar que:

- a) Es regular
- b) Es diagonalizable
- c) El determinante de A vale cero
- d) Es simétrica
- **6.** Dados los sistemas con coeficientes en Z_7

$$3x + 5y = 2 2x + 4y = 5$$

$$2x + (2b + 5)y = 5b + 5 x + (b + 3)y = 3b + 6$$

- a) Son equivalentes para b = 6
- b) No son equivalentes para ningún valor de b
- c) Son equivalentes para b = 2
- d) Son equivalentes para b = 4
- 7.- Sea $X \in M_2(R)$ tal que $X \bullet \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 4 \\ -4 & 1 \end{pmatrix}$. Entonces:

$$a) X^{-1} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}$$

b)
$$X^{-1} = \begin{pmatrix} \frac{-25}{11} & \frac{-2}{11} \\ \frac{-23}{11} & \frac{-3}{11} \end{pmatrix}$$

c)
$$X^{-1} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$

- d) La matriz X no es regular
- 8.- Dada la matriz $\begin{pmatrix} 2 & 4 & 1 & 0 \\ 4 & 1 & 3 & 1 \\ 5 & 3 & 4 & 5 \end{pmatrix} \in M_{3x4}(Z_7)$, su forma normal de Hermite a) $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

a)
$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 3 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\text{d)} \left(\begin{array}{ccccc}
 1 & 2 & 0 & 3 \\
 0 & 0 & 1 & 4 \\
 0 & 0 & 0 & 0
 \end{array} \right)$$

- **9.-** Sea $A \in M_4(R)$. Entonces
 - a) La matriz $I A + A^t$ es simétrica
 - b) La matriz $I A^2$ es simétrica
 - c) La matriz I 2A es simétrica
 - d) La matriz $I AA^t$ es simétrica
- 10.- El valor del determinante $\begin{vmatrix} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{vmatrix}$ sobre R es igual a a) $a^4 + 2a^2b^2 + b^4$ b) $a^4 b^4$ c) $a^4 2a^2b^2 + b^4$ d) $a^4 a^3b + ab^3 b^4$

a)
$$a^4 + 2a^2b^2 + b^4$$

b)
$$a^4 - b^4$$

c)
$$a^4 - 2a^2b^2 + b^4$$

d)
$$a^4 - a^3b + ab^3 - b^4$$