

성균관대학교 **5 1 0 R** 로봇학회 2022년 05월 15일

# EMBEDDED

5 주 차

## 목차

- 타이머/카운터
- 오버플로 인터럽트
- 비교일치 인터럽트
- 파형 출력
- PWM
- SPI

## 타이머/카운터



그림 14-1 타이머/카운터 블록 다이어그램

### 오버플로 인터럽트

```
코드 14-1 오버플로 인터럽트를 이용한 Blink
 #include <avr/io.h>
 #include <avr/interrupt.h>
                                         // 오버플로가 발생한 횟수
 int count = 0;
 int state = 0;
                                         // LED 점멸 상태
 ISR(TIMERO_OVF_vect)
     count++;
     if(count == 32){
                                         // 오버플로 32회 발생 = 0.5초 경과
        count = θ; // 카운터 초기화
        state = !state;
                                         // LED 상태 반전
        if(state) PORTB = 0xFF;
                                         // LED 켜기
        else PORTB = 0x00;
                                         // LED 1171
 int main(void)
                                         // PB5 핀을 출력으로 설정
     DDRB = 0x20;
                                         // LED는 끈 상태에서 시작
     PORTB = 0x00;
     TCCR0B |= (1 << CS02) | (1 << CS00); // 분주비를 1024로 설정
                                         // 오버플로 인터럽트 허용
     TIMSK0 |= (1 << TOIE0);
     sei();
                                         // 전역적으로 인터럽트 허용
     while(1){}
```

| 비트    | 7   | 6   | 5         | 4        | 3      | 2   | 1   | 0   |
|-------|-----|-----|-----------|----------|--------|-----|-----|-----|
|       |     |     |           | TCNT     | 0[7:0] |     |     |     |
| 읽기/쓰기 | R/W | R/W | R/W       | R/W      | R/W    | R/W | R/W | R/W |
| 초깃값   | 0   | 0   | 0         | 0        | 0      | 0   | 0   | 0   |
|       |     |     | 그림 14-2 7 | CNTO 레지: | 스터의 구조 |     |     |     |

TCNT: 현재까지 센 펄스의 수 저장 -> 오버플로 감지

| 비트    | 7     | 6     | 5 | 4 | 3     | 2    | 1    | 0    |
|-------|-------|-------|---|---|-------|------|------|------|
|       | FOC0A | FOC0B | - | - | WGM02 | CS02 | CS01 | CS00 |
| 읽기/쓰기 | W     | w     | R | R | R/W   | R/W  | R/W  | R/W  |
| 초깃값   | 0     | 0     | 0 | 0 | 0     | 0    | 0    | 0    |

TCCRnx (TCCR0B): 분주비 설정 & 카운트 시작

| 비트    | 7 | 6 | 5         | 4        | 3      | 2      | 1      | 0     |
|-------|---|---|-----------|----------|--------|--------|--------|-------|
|       | - | - | -         | -        | -      | OCIE0B | OCIE0A | TOIE0 |
| 읽기/쓰기 | R | R | R         | R        | R      | R/W    | R/W    | R/W   |
| 초깃값   | 0 | 0 | 0         | 0        | 0      | 0      | 0      | 0     |
|       |   |   | 그림 14-4 T | IMSK0 레지 | 스터의 구조 |        |        |       |

TIMSKn (TIMSK0): 0번 인터럽트 활성화

## 오버플로 인터럽트

| 비트    | 7     | 6     | 5 | 4 | 3     | 2    | 1    | 0    |
|-------|-------|-------|---|---|-------|------|------|------|
|       | FOC0A | FOC0B | - | - | WGM02 | CS02 | CS01 | CS00 |
| 읽기/쓰기 | W     | w     | R | R | R/W   | R/W  | R/W  | R/W  |
| 초깃값   | 0     | 0     | 0 | 0 | 0     | 0    | 0    | 0    |

그림 14-3 TCCROB 레지스터의 구조

TCCRnx (TCCR0B): 분주비 설정 & 카운트 시작

표 14-1 CSOn(n = 0, 1, 2) 비트 설정에 따른 클록 선택

| CS02 | CS01 | CS00 | 설명                            |
|------|------|------|-------------------------------|
| 0    | 0    | 0    | 클록 소스 없음(타이머/카운터 정지)          |
| 0    | 0    | 1    | 분주비 1                         |
| 0    | 1    | 0    | 분주비 8                         |
| 0    | 1    | 1    | 분주비 64                        |
| 1    | 0    | 0    | 분주비 256                       |
| 1    | 0    | 1    | 분주비 1024                      |
| 1    | 1    | 0    | T0 핀의 외부 클록 사용. 하강 에지에서 동작한다. |
| 1    | 1    | 1    | TO 핀의 외부 클록 사용. 상승 에지에서 동작한다. |

분주비가 1024가 되면 
$$\frac{16 MHz}{1024} = 16 KHz$$
 클록

펄스 256개를 세는 시간은 
$$\frac{256}{16K} = \frac{1}{64}$$
초:

$$1/64 * 32 = 0.5s$$

## 오버플로 인터럽트

| 비트    | 7 | 6 | 5 | 4 | 3 | 2      | 1      | 0     |
|-------|---|---|---|---|---|--------|--------|-------|
|       | - | - | - | - | - | OCIEOB | OCIE0A | TOIE0 |
| 읽기/쓰기 | R | R | R | R | R | R/W    | R/W    | R/W   |
| 초깃값   | 0 | 0 | 0 | 0 | 0 | 0      | 0      | 0     |

그림 14-4 TIMSKO 레지스터의 구조

TIMSKn (TIMSKO): 0번 인터럽트 활성화

#### 표 14-2 타이머/카운터 0번 인터럽트

| 벡터<br>번호 | 인터럽트        | 벡터 이름             | 인터럽트<br>허용 비트 |                                         |
|----------|-------------|-------------------|---------------|-----------------------------------------|
| 15       | 비교일치 인터럽트 A | TIMER0_COMPA_vect | OCIE0A        | Output Compare Match A Interrupt Enable |
| 16       | 비교일치 인터럽트 B | TIMERO_COMPB_vect | OCIE0B        | Output Compare Match B Interrupt Enable |
| 17       | 오버플로 인터럽트   | TIMER0_OVF_vect   | TOIE0         | Overflow Interrupt Enable               |

### 오버플로 인터럽트

#### 1KHz는 1000Hz인가, 1024Hz인가?

정확하게 이야기하면 1KHz는 1000Hz이다. 16MHz 클록은 1초에  $16 \times 2^{20}$ 개의 펄스가 발생하는 것이 아니라  $16 \times 10^6$ 개의 펄스가 발생하는 것이므로 분주비를 1024로 설정하면 클록 주파수는 16KHz가 아니라 15.625KHz가 된다. 정확하게 계산하면 분주비 1024에서 0번 타이머/카운터가 1초 동안 발생시키는 오버플로 인터럽트는 약 61.04회이며, 오버플로 인터럽트가 64회 발생하는 시간은 1초가 아니라 약 1.05초가 된다. 따라서 정밀한 시간 계산이 필요하다면 이 장의 예제들을 그대로 사용하여서는 안 된다. 이 장에서는 계산의 편의를 위해  $2^{10}$ 과  $10^3$ 을 흔히 동일한 값으로 취급하는 관례를 따랐다.

정밀한 시간 계산이 필요한 경우 염두에 두어야 할 또 다른 점은 클록 공급을 위해 아두이노 우노에서 사용하는 크리스털의 정밀도이다. 아두이노 우노에도 사용되고 있는 16MHz 크리스털의 정밀도는 표준편차가 0.7Hz 정도인 것으로 알려져 있다. 하지만 ATmega328의 동작 온도가 1도 상승할 때마다 크리스털의 클록 주파수는 약 0.97Hz 증가하고, 동작 전압이 1mV 증가할 때마다 크리스털의 클록 주파수는 약 0.03Hz 증가하는 등 동작 환경에 따라 클록 주파수는 가변적이다. 따라서 정밀한 시간 계산이 필요하다면 전용의 하드웨어 RTC(Real Time Clock)나 보상 회로가 추가되어 있는 클록을 사용하는 것이 바람직하다.



### 비교일치 인터럽트

#### 코드 14-2 비교일치 인터럽트를 이용한 Blink 1

```
#include <avr/io.h>
#include <avr/interrupt.h>
int count = 0;
                                          // 비교일치가 발생한 횟수
int state = 0;
                                          // LED 점멸 상태
ISR(TIMERO_COMPA_vect)
    count++;
   TCNT0 = 0;
                                          // 자동으로 0으로 변하지 않는다.
   if(count == 64){
                                          // 비교일치 64회 발생 = 0.5초 경과
        count = 0;
                                          // 카운터 초기화
        state = !state;
                                          // LED 상태 반전
        if(state) PORTB = 0xFF;
                                          // LED 켜기
        else PORTB = 0x00;
                                          // LED 117|
}
int main(void)
    DDRB = 0x20;
                                       // PB5 핀을 출력으로 설정
                                       // LED는 끈 상태에서 시작
    PORTB = 0x00;
    TCCR0B |= (1 << CS02) | (1 << CS00); // 분주비를 1024로 설정
    OCR0A = 128;
                                       // 비교일치 기준값
    TIMSKO |= (1 << OCIEOA);
                                       // 비교일치 인터럽트 허용
    sei();
                                       // 전역적으로 인터럽트 허용
    while(1){}
```

#### 코드 14-3 비교일치 인터럽트를 이용한 Blink 2

```
#include <avr/io.h>
#include <avr/interrupt.h>
                                         // 비교일치가 발생한 횟수
volatile int count = 0;
                                        // LED 점멸 상태
int state = 0;
ISR(TIMERO_COMPA_vect)
   count++;
   TCNT0 = 0;
                                         // 자동으로 0으로 변하지 않는다.
int main(void)
   DDRB = 0x20;
                                        // PB5 핀을 출력으로 설정
   PORTB = 0 \times 00;
                                        // LED는 끈 상태에서 시작
   TCCR0B |= (1 << CS02) | (1 << CS00); // 분주비를 1024로 설정
   OCR0A = 128;
                                        // 비교일치 기준값
   TIMSKO \mid = (1 << OCIEOA);
                                        // 비교일치 인터럽트 허용
   sei();
                                        // 전역적으로 인터럽트 허용
   while(1){
       if(count == 64){
                                        // 비교일치 64회 발생 = 0.5초 경과
                                        // 카운터 초기화
           count = 0;
                                        // LED 상태 반전
           state = !state;
           if(state) PORTB = 0xFF;
                                        // LED 켜기
           else PORTB = 0x00;
                                        // LED 117|
```

인터럽트를 짧게 만들어 줌!

## 비교일치 인터럽트

#### 코드 14-4 비교일치 인터럽트를 이용한 Blink 3

```
#include <avr/io.h>
#include <avr/interrupt.h>
int state = 0;
                                        // LED 점멸 상태
ISR(TIMER1_COMPA_vect)
   TCNT1 = 0;
                                        // 자동으로 0으로 변하지 않는다.
   state = !state;
                                        // LED 상태 반전
   if(state) PORTB = 0xFF;
                                        // LED 켜기
   else PORTB = 0x00;
                                        // LED 117|
int main(void)
   DDRB = 0x20;
                                        // PB5 핀을 출력으로 설정
   PORTB = 0 \times 00;
                                        // LED는 끈 상태에서 시작
   TCCR1B |= (1 << CS12) | (1 << CS10); // 분주비를 1024로 설정
    OCR1A = 0x2000;
                                        // 비교일치 기준값
   TIMSK1 |= (1 << OCIE1A);
                                        // 비교일치 인터럽트 허용
   sei();
                                        // 전역적으로 인터럽트 허용
   while(1){ }
```

| 비트      | 15  | 14  | 13        | 12          | 11       | 10  | 9   | 8   |
|---------|-----|-----|-----------|-------------|----------|-----|-----|-----|
| TCNT1H  |     |     |           | TCNT        | 1 [15:8] |     |     |     |
| TCNT1L  |     |     |           | TCNT        | 1 [7:0]  |     |     |     |
| 비트      | 7   | 6   | 5         | 4           | 3        | 2   | 1   | 0   |
| 읽기/쓰기   | R/W | R/W | R/W       | R/W         | R/W      | R/W | R/W | R/W |
| 초깃값     | 0   | 0   | 0         | 0           | 0        | 0   | 0   | 0   |
|         |     |     | 그림 14-6   | FCNT1 레지    | 스터의 구조   |     |     |     |
| 비트      | 15  | 14  | 13        | 12          | 11       | 10  | 9   | 8   |
| OCR1xH  |     |     |           | OCR1x       | [15:8]   |     |     |     |
| OCR1x1L |     |     |           | OCR1        | k [7:0]  | 9.  |     |     |
| 비트      | 7   | 6   | 5         | 4           | 3        | 2   | 1   | 0   |
| 읽기/쓰기   | R/W | R/W | R/W       | R/W         | R/W      | R/W | R/W | R/W |
| 초깃값     | 0   | 0   | 0         | 0           | 0        | 0   | 0   | 0   |
|         |     | 그림  | 14-7 OCR1 | x(x = A, B) | 레지스터의 -  | 구조  |     |     |

1clk = 1024/16M [s]0.5 [s] = 8K \* clk [s]

타이머/카운터 1번 (16bit) 사용

## 파형 출력

#### 표 14-3 비교일치 인터럽트 시 파형 출력 핀

| 타이머/카운터 | 파형 출 | 력 핀 | 아두이노 핀 번호 |  |
|---------|------|-----|-----------|--|
| 0       | OC0A | PD6 | 6         |  |
| 0       | OC0B | PD5 | 5         |  |
| 1       | OC1A | PB1 | 9         |  |
| 1       | OC1B | PB2 | 10        |  |
| 2       | OC2A | PB3 | 11        |  |
| 2       | OC2B | PD3 | 3         |  |

| 비트    | 7      | 6      | 5      | 4      | 3 | 2 | 1     | 0     |
|-------|--------|--------|--------|--------|---|---|-------|-------|
|       | COM1A1 | COM1A0 | COM1B1 | COM1B0 | - | - | WGM11 | WGM10 |
| 읽기/쓰기 | R/W    | R/W    | R/W    | R/W    | R | R | R/W   | R/W   |
| 초깃값   | 0      | 0      | 0      | 0      | 0 | 0 | 0     | 0     |

#### 표 14-4 OC1A 핀의 출력

| COM1A1 | COM1A0 | 설명                                                  |
|--------|--------|-----------------------------------------------------|
| 0      | 0      | OC1A 핀으로 데이터가 출력되지 않으며 OC1A 핀은 일반적인 범용 입출력 핀으로 동작한다 |
| 0      | 1      | 비교일치가 발생하면 OC1A 핀의 출력은 반전된다.                        |
| 1      | 0      | 비교일치가 발생하면 OC1A 핀의 출력은 LOW 값으로 바뀐다.                 |
| 1      | 1      | 비교일치가 발생하면 OC1A 핀의 출력은 HIGH 값으로 바뀐다.                |

#### 코드 14-5 파형 생성 1

```
#include <avr/io.h>
#include <avr/interrupt.h>
ISR(TIMER1_COMPA_vect)
   TCNT1 = 0;
                                               // 자동으로 0으로 변하지 않는다.
int main(void)
   TCCR1B |= (1 << CS12) | (1 << CS10);
                                               // 분주비를 1024로 설정
   OCR1A = 0x2000;
                                               // 비교일치 기준값
   // 비교일치 인터럽트 발생 시 OC1A 핀의 출력을 반전
   TCCR1A |= (1 << COM1A0);
   DDRB |= (1 << PB1);
                                               // OC1A 핀(PB1 핀)을 출력으로 설정
   TIMSK1 |= (1 << OCIE1A);
                                               // 비교일치 인터럽트 허용
   sei();
                                               // 전역적으로 인터럽트 허용
   while(1){}
```

표 14-5 PWM이 아닌 파형 생성 모드

|    | TCCR1B | CCR1B |       |       | La Caracia de la |
|----|--------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 모드 | WGM13  | WGM12 | WGM11 | WGM10 | 설명                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0  | 0      | 0     | 0     | 0     | 정상 모드(디폴트 모드)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4  | 0      | 1     | 0     | 0     | CTC 모드                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12 | 1      | 1     | 0     | 0     | CTC 모드                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 | 1      | 1     | 0     | 1     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## 파형 출력

#### 코드 14-6 파형 생성 2

```
#include <avr/io.h>
#include <avr/interrupt.h>
int main(void)
   TCCR1B |= (1 << CS12) | (1 << CS10); // 분주비를 1024로 설정
                                    // 비교일치 기준값
   OCR1A = 0x2000;
   // 비교일치 인터럽트 발생 시 OC1A 핀의 출력을 반전
                                                   CTC 모드: 자동으로 카운터 초기화
   TCCR1A |= (1 << COM1A0);
                                                   -> 인터럽트 루틴 제거
                                    // CTC 모드 선택
   TCCR1B |= (1 << WGM12);
                                    // OC1A 핀(PB1 핀)을 출력으로 설정
   DDRB |= (1 << PB1);
   while(1){ }
```

## 아두이노의 타이머

MsTimer2 라이브러리를 이용하여 할 수 있다고 함.

그냥 delay() 쓰는게 편하지 않을까요?ㅋㅎ

## PWM 이란?



### PWM 모드

표 15-2 타이머/카운터 통작을 위한 용어 정의

| 단어     | 설명                                                                                        |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------|--|--|--|--|
| воттом | 카운터의 값이 0x00일 때를 가리킨다.                                                                    |  |  |  |  |
| MAX    | 카운터의 값이 0xFF일 때를 가리킨다.                                                                    |  |  |  |  |
| TOP    | 카운터가 가질 수 있는 최댓값을 가리킨다. 오버플로 인터럽트의 경우 TOP은 0xFF이지만, 비교일치<br>인터럽트의 경우 사용자가 설정한 값이 TOP이 된다. |  |  |  |  |



그림 15-8 비반전 고속 PWM 모드에서의 PWM 파형 생성

### PWM 모드

고속 PWM 모드

$$f_{fast PWM} \approx \frac{f_{osc}}{N \cdot \text{TOP}}$$

위상 교정 PWM 모드

$$f_{PCPWM} \approx \frac{f_{osc}}{N \cdot 2 \cdot \text{TOP}}$$



### PWM 모드

### 위상 및 주파수 교정 PWM 모드



그림 15-13 TOP 값이 바뀌는 경우 위상 교정 PWM 모드와 위상 및 주파수 교정 PWM 모드에서의 주기

### PWM 모드

#### 표 15-8 WGM 비트 설정에 따른 1번 타이머/카운터의 파형 생성 모드

|    | TCCR1B |       | TCCR1A |       |                    | 700    |
|----|--------|-------|--------|-------|--------------------|--------|
| 모드 | WGM13  | WGM12 | WGM11  | WGM10 | 설명                 | ТОР    |
| 0  | 0      | 0     | 0      | 0     | 정상 모드              | 0xFFFF |
| 1  | 0      | 0     | 0      | 1     | 8비트 위상 교정 PWM 모드   | 0x00FF |
| 2  | 0      | 0     | 1      | 0     | 9비트 위상 교정 PWM 모드   | 0x01FF |
| 3  | 0      | 0     | 1      | 1     | 10비트 위상 교정 PWM 모드  | 0x03FF |
| 4  | 0      | 1     | 0      | 0     | CTC 모드             | OCR1A  |
| 5  | 0      | 1     | 0      | 1     | 8비트 고속 PWM 모드      | 0x00FF |
| 6  | 0      | 1     | 1      | 0     | 9비트 고속 PWM 모드      | 0x01FF |
| 7  | 0      | 1     | 1      | 1     | 10비트 고속 PWM 모드     | 0x03FF |
| 8  | 1      | 0     | 0      | 0     | 위상 및 주파수 교정 PWM 모드 | ICR1   |
| 9  | 1      | 0     | 0      | 1     | 위상 및 주파수 교정 PWM 모드 | OCR1A  |
| 10 | 1      | 0     | 1      | 0     | 위상 교정 PWM 모드       | ICR1   |
| 11 | 1      | 0     | 1      | 1     | 위상 교정 PWM 모드       | OCR1A  |
| 12 | 1      | 1     | 0      | 0     | CTC 모드             | ICR1   |
| 13 | 1      | 1     | 0      | 1     | -                  | -      |
| 14 | 1      | 1     | 1      | 0     | 고속 PWM 모드          | ICR1   |
| 15 | 1      | 1     | 1      | 1     | 고속 PWM 모드          | OCR1A  |

## PWM 모드

표 15-3 WGM 비트 설정에 따른 2번 타이머/카운터의 파형 생성 모드<sup>39</sup>

| 모드 | TCCR2B<br>WGM22 | TCCR2A |       | 400          | 700   |
|----|-----------------|--------|-------|--------------|-------|
|    |                 | WGM21  | WGM20 | 설명           | ТОР   |
| 0  | 0               | 0      | 0     | 정상 모드        | OxFF  |
| 1  | 0               | 0      | 1     | 위상 교정 PWM 모드 | OxFF  |
| 2  | 0               | 1      | 0     | CTC 모드       | OCR2A |
| 3  | 0               | 1      | 1     | 고속 PWM 모드    | OxFF  |
| 4  | 1               | 0      | 0     | -            | -     |
| 5  | 1               | 0      | 1     | 위상 교정 PWM 모드 | OCR2A |
| 6  | 1               | 1      | 0     | -            | -     |
| 7  | 1               | 1      | 1     | 고속 PWM 모드    | OCR2A |

### SPI



그림 16-2 일대다 SPI 연결

### SPI



그림 16-4 1비트 데이터 전송

### SPI

- CPOL: SPI 버스가 유휴 상태일 때의 클록 값을 결정한다. CPOL = 0이면 비활성 상태일 때 SCK는 LOW 값을 가지며, CPOL = 1이면 비활성 상태일 때 SCK는 HIGH 값을 가진다.
- CPHA: 데이터를 샘플링하는 시점을 결정한다. CPHA = 0이면 데이터는 비활성 상태에서 활성 상태로 바뀌는 에지에서 샘플링되고, CPHA = 1이면 데이터는 활성 상태에서 비활성 상태로 바뀌는 에지에서 샘플링된다.

### SPI





CPOL: CLK의 비활성 상태 결정(HIGH, LOW)

CPHA: Rising / Falling Edge 결정

성 균 관 대 학 교

# Thank You

로 봇 동 아 리