Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

- **1** (Murphy 12.5 Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.
- (a) Prove that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that $\mathbf{v}_i^{\top} \mathbf{v}_j$ is 1 if i = j and 0 otherwise. Recall that $z_{ij} = \mathbf{x}_i^{\top} \mathbf{v}_j$.

(b) Now show that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that $\mathbf{v}_j^{\top} \mathbf{\Sigma} \mathbf{v}_j = \lambda_j \mathbf{v}_j^{\top} \mathbf{v}_j = \lambda_j$.

(c) If k = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$.

a)
$$\left\| \left(\chi_{i_1} - \sum_{j=1}^{k} z_{i_j} \vec{V}_{j} \right) \right\|_{2}^{2} = \left(\vec{\chi}_{i_1} - \sum_{j=1}^{k} z_{i_j} \vec{V}_{j} \right)^{T} \left(\chi_{i_1} - \sum_{j=1}^{k} z_{i_j} \vec{V}_{j} \right)$$

$$= \vec{x}_{i}^{T} \vec{x}_{i} - 2 \underbrace{\begin{cases} k \\ j=1 \end{cases}}_{j=1} \vec{v}_{ij}^{T} \vec{v}_{i} + \left(\underbrace{\begin{cases} k \\ j=1 \end{cases}}_{j=1} \vec{v}_{ij}^{T} \vec{v}_{i} \right)^{T} \left(\underbrace{\begin{cases} k \\ j=1 \end{cases}}_{j=1} \vec{v}_{ij}^{T} \vec{v}_{i} \right)$$

$$= \vec{x}_{i}^{T} \vec{x}_{i} - 2 \underbrace{\begin{cases} k \\ j=1 \end{cases}}_{j=1} \vec{v}_{ij}^{T} \vec{v}_{ij}^{T} \vec{v}_{ij} + \underbrace{\begin{cases} k \\ j=1 \end{cases}}_{j=1} \vec{v}_{ij}^{T} \vec{v}$$

b)
$$J_{k} = \frac{1}{N} \sum_{j=1}^{N} \left(\vec{x}_{i}^{T} \vec{x}_{j}^{T} - \vec{y}_{j}^{T} \vec{y}_{j}^{T} \right)$$

$$= \frac{1}{N} \sum_{j=1}^{N} \vec{x}_{i}^{T} \vec{x}_{i}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} \vec{y}_{j}^{T}$$

$$= \frac{1}{N} \sum_{j=1}^{N} \vec{x}_{i}^{T} \vec{x}_{i}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} \vec{y}_{j}^{T}$$

$$= \frac{1}{N} \sum_{j=1}^{N} \vec{x}_{i}^{T} \vec{x}_{i}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} \vec{y}_{j}^{T}$$

$$= \frac{1}{N} \sum_{j=1}^{N} \vec{x}_{i}^{T} \vec{x}_{i}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} \vec{y}_{j}^{T}$$

$$= \frac{1}{N} \sum_{j=1}^{N} \vec{x}_{i}^{T} \vec{x}_{i}^{T} - \sum_{j=1}^{N} \vec{y}_{j}^{T} \vec{y}_{j}^{T}$$

c)
$$J_{0}=0$$
, thus $\mathcal{L}_{i=1}^{d} \lambda_{i} = h \mathcal{L}_{i=1}^{n} \chi_{i}^{T} \chi_{i}$

Thus:

$$J_{k} = \frac{1}{n} \underbrace{A}_{i}^{n} \overrightarrow{x}_{i}^{T} \overrightarrow{x}_{i} - \underbrace{A}_{j}^{d} \xrightarrow{\lambda_{j}} \underbrace{A}_{j=k+1}^{d} \xrightarrow{\lambda_{j}} \underbrace{A}_{j=k+1}^{d} \xrightarrow{\lambda_{j}} \underbrace{A}_{j=k+1}^{d} \xrightarrow{\lambda_{j}}$$

reconstruction error = som of thrown eigenvalues.

2 (ℓ_1 -Regularization) Consider the ℓ_1 norm of a vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|.$$

Draw the norm-ball $B_k = \{\mathbf{x} : \|\mathbf{x}\|_1 \le k\}$ for k = 1. On the same graph, draw the Euclidean norm-ball $A_k = \{\mathbf{x} : \|\mathbf{x}\|_2 \le k\}$ for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem

minimize: $f(\mathbf{x})$

subj. to: $\|\mathbf{x}\|_p \le k$

is equivalent to

minimize: $f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_1 regularization (adding a $\lambda \|\mathbf{x}\|_1$ term to the objective) will give sparser solutions than using ℓ_2 regularization for suitably large λ .

nom-balls.

optimization problem: minimise:
$$f(\vec{x})$$

subj to: $||\vec{x}||_p \leq K$

some as: inf sup $\mathcal{L}(\vec{x}, \lambda) = \inf_{\alpha} \sup_{\alpha \geq 0} f(\vec{x}) + \lambda (||\vec{x}||_p - K)$

$$\Rightarrow \sup_{\lambda \geqslant 0} \inf_{x} f(\vec{x}) + \Im(||\vec{x}||_{p} - K) = \sup_{\lambda \geqslant 0} g(\lambda)$$

does not depend on x!

$$\Rightarrow \sup_{\lambda \geqslant 0} \inf_{x} f(\vec{x}) + \lambda \left(||\vec{x}||_{v} \right)$$

same as minimise: $f(\vec{x}) + \lambda(||\vec{x}||_{V})$

Extra Credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights θ of a model is equivelent to ℓ_1 regularization in the Maximum-a-Posteriori estimate

$$\text{maximize: } \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}.$$

Note the form of the Laplace distribution is

$$Lap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

where μ is the location parameter and b>0 controls the variance. Draw (by hand) and compare the density Lap(x|0,1) and the standard normal $\mathcal{N}(x|0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_2 regularization).