Выбор моделей глубокого обучения субпотимальной сложности

Бахтеев Олег

МФТИ

14.03.2018

Сложность модели: зачем?

Устойчивость моделей при возмущении выборки

Качество классификации при удалении параметров

Сложность модели: зачем?

Еще мотивация ???

Принцип минимальной длины описания

$$\mathsf{MDL}(\mathbf{f},\mathbf{X}) = L(\mathbf{f}) + L(\mathbf{X}|\mathbf{f}),$$

где ${f f}$ — модель, ${f X}$ — выборка, ${f L}$ — длина описания в битах.

$$\mathsf{MDL}(\mathbf{f}, \mathbf{X}) \sim L(\mathbf{f}) + L(\mathbf{w}^*|\mathbf{f}) + L(\mathbf{X}|\mathbf{w}^*, \mathbf{f}),$$

 ${\bf w}^*$ — оптимальные параметры модели.

$\mathbf{f_1}$	$L(\mathbf{f}_1)$	$L(w_1^* f_1)$		$L(X w_1^*, f_1)$	
\mathbf{f}_2	$L(\mathbf{f}_2)$	$L(\mathbf{w}_2^* \mathbf{f}_2)$		$L(\mathbf{X} \mathbf{w}_2^*,\mathbf{f}_2)$	
f_3	$L(\mathbf{f}_3)$	$L(\mathbf{w}_3^* $	f ₃)	$L(X \mathbf{w}_3^*,\mathbf{f}_3)$	

14.03.2018

4 / 31

MDL и Колмогоровская сложность

Колмогоровская сложность — длина минимального кода для выборки на предварительно заданном языке.

Теорема инвариантности

Для двух сводимых по Тьюрингу языков колмогоровская сложность отличается не более чем на константу, не зависяющую от мощности выборки.

Отличия от MDL:

- Колмогоровская сложность невычислима.
- Длина кода может зависеть от выбранного языка. Для небольших выборок теорема инвариантности не дает адекватных результатов.

Оптимальная универсальная модель MDL

Пусть выборка X лежит в некотором конечном множестве $\mathbb{X}: X \subset \mathbb{X}$.

$$\begin{aligned} \mathsf{MDL}(\mathbf{f},\mathbf{X}) &= L(\mathbf{X}|\mathbf{w}^*(\mathbf{X}),\mathbf{f}) + \mathsf{COMP}(\mathbf{f}), \\ L(\mathbf{X}|\mathbf{w}^*,\mathbf{f}) &= -\mathsf{log} p(\mathbf{X}|\mathbf{w}^*(\mathbf{X}),\mathbf{f}), \quad \mathsf{COMP} &= \mathsf{log} \sum P(\mathbf{X}'|\mathbf{w}^*(\mathbf{X}'),\mathbf{f}). \end{aligned}$$

В случае, если распределение $p(\mathbf{X}|\mathbf{w})$ принадлежит экспоненциальному семейству, оценка MDL совпадает с точностью до o(1) с байесовской оценкой правдоподобия ("Evidence"):

$$p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w})p(\mathbf{w})d\mathbf{w},$$

где $p(\mathbf{w})$ — априорное распределение специанльного вида:

$$p(\mathbf{w}) = rac{\sqrt{|J(\mathbf{w})|}}{\int_{\mathbf{w}'} \sqrt{|J(\mathbf{w}')|} d\mathbf{w}'},$$

 $J(\mathbf{w})$ — информация Фишера.

Байесовый подход к сложности

Правдоподобие модели ("Evidence"):

$$p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w})p(\mathbf{w}|\mathbf{f})d\mathbf{w}.$$

Схема выбора модели по правдоподобию

Пример: полиномы

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 7 / 31

Evidence vs MDL

Evidence	MDL	
Использует априорные знания	Независима от априорных знаний	
Основывается на гипотезе о порождении		
выборки	Минимизирует длину описания выборки	
вне зависимости от их природы		

Evidence vs Кросс-валидация

Оценка Evidece:

$$\log p(X|f) = \log p(x_1|f) + \log p(x_2|x_1,f) + \cdots + \log p(x_n|x_1,...,x_{n-1},f).$$

Оценка leave-one-out:

$$LOU = Elog p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{f}).$$

Кросс-валидация использует среднее значение последнего члена $p(\mathbf{x}_n|\mathbf{x}_1,\dots,\mathbf{x}_{n-1},\mathbf{f})$ для оценки сложности.

Evidence учитывает **полную** сложность описания заданной выборки, определяющую предсказательную способность модели с самого начала.

Методы получения оценок Evidence: метод Лапласа

$$p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} p(\mathbf{X}|\mathbf{w})p(\mathbf{w}|\mathbf{f}) = \int_{\mathbf{w}} \exp(-S(\mathbf{w})) \sim \exp S(\hat{\mathbf{w}}) \int_{\mathbf{w}} \exp(-\frac{1}{2}\Delta\mathbf{w}^{\mathsf{T}}\nabla\nabla S(\hat{\mathbf{w}})\Delta\mathbf{w}).$$

Laplace approximation of posterior of Normal(10,σ)

Бахтеев Олег (МФТИ) 14.03.2018 10 / 31 Выбор молелей

Методы получения оценок Evidence: Метод Монте-Карло

$$\rho(\mathbf{X}|\mathbf{f}) \sim \frac{1}{K} \sum_{\mathbf{w} \in \mathbf{W}} \rho(\mathbf{X}|\mathbf{w}, \mathbf{f}) \rho(\mathbf{w}|\mathbf{f}),$$

 \mathbf{W} — множество векторов параметров мощностью K.

- Плохо работает в пространствах большой размерности
- Существует ряд модификаций, позволяющих преодолеть проклятие размерности
- Может применяться в связке с вариационным выводом

14.03.2018 11 / 31 Бахтеев Олег (МФТИ) Выбор молелей

Вариационная оценка

Вариационная оценка Evidence — метод нахождения приближенного значения аналитически невычислимого распределения $p(\mathbf{w}|\mathbf{X},\mathbf{f})$ распределением $q(\mathbf{w}) \in \mathbf{Q}$. Получение вариационной нижней оценки обычно сводится к задаче минимизации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X})) = -\int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathbf{X})}{q(\mathbf{w})} d\mathbf{w}.$$

Аппроксимация неизвестного распределения нормальным

Апроксимация Лапласа и вариационная оценка

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 12 / 31

Получение вариацонной нижней оценки

$$\begin{split} \log p(\mathbf{X}|\mathbf{f}) &= \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} + \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}, \mathbf{f})) \geq \\ &\geq \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} = \\ &= -\mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})) + \int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{X}|\mathbf{w}, \mathbf{f}) d\mathbf{w}, \\ &\mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})) = - \int_{\mathsf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w}. \end{split}$$

где

Бахтеев Олег (МФТИ)

D_{KL}

Максимизация вариационной нижней оценки

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w}$$

эквивалентна минимизации дивергенции между распределением распределением $q(\mathbf{w}) \in Q$ и апостериорным распределением параметров $p(\mathbf{w}|\mathbf{X},\mathbf{f})$:

$$q = \operatorname{argmax}_{q \in Q} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w} | \mathbf{f})}{q(\mathbf{w})} d\mathbf{w} \Leftrightarrow q = \operatorname{argmin}_{q \in Q} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}) || p(\mathbf{w} | \mathbf{X}, \mathbf{f})),$$

T.K.

$$\log p(\mathbf{X}|\mathbf{f}) = \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} + D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}, \mathbf{f})) = \mathsf{const.}$$

Бахтеев Олег (МФТИ)

Пример: аппроксимация мультимодального распределения

Использование вариационной нижней оценки

Для чего используют variational inference?

- получение оценок Evidence;
- получение оценок распределений моделей со скрытыми переменными (тематическое моделирование, снижение размерности).

Зачем используют variational inference?

- сводит задачу нахождения апостериорной вероятности к методам оптимизации;
- проще масштабируется, чем аппроксимация Лапласа;
- проще в использовании, чем сэмплирующие методы.

Variational Inference может давать сильно заниженную оценку.

Получение оценок Evidence

Пусть $q \sim \mathcal{N}(\boldsymbol{\mu}_{q}, \mathbf{A}_{q})$.

Тогда вариационная оценка имеет вид:

$$\int_{\mathbf{w}} q(\mathbf{w}) {\log \ p(\mathbf{Y}|\mathbf{X},\mathbf{w},\mathbf{f})} d\mathbf{w} + D_{\mathsf{KL}} \big(q(\mathbf{w}) || p(\mathbf{w}|\mathbf{f}) \big) \simeq$$

$$\sum_{i=1}^{m} \log p(\mathbf{y}_i|\mathbf{x}_i,\mathbf{w}_i) + D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})\big) \to \max_{\mathbf{A}_{\boldsymbol{q}},\boldsymbol{\mu}_{\boldsymbol{q}}},$$

В случае, если априорное распределение параметров $p(\mathbf{w}|\mathbf{f})$ является нормальным:

$$ho(\mathbf{w}|\mathbf{f}) \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{A}),$$

дивергенция $D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})$ вычисляется аналитически:

$$D_{\mathsf{KL}}\big(q(\mathbf{w}||p(\mathbf{w}|\mathbf{f})) = \frac{1}{2}\big(\mathsf{tr}(\mathbf{A}^{-1}\mathbf{A}_q) + (\mu - \mu_q)^{\mathsf{T}}\mathbf{A}^{-1}(\mu - \mu_q) - n + \mathsf{ln} \ |\mathbf{A}| - \mathsf{ln} \ |\mathbf{A}_q|\big).$$

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 17 / 31

Graves, 2011

Априорное распределение: $p(\mathbf{w}|\sigma) \sim \mathcal{N}(\boldsymbol{\mu}, \sigma \mathbf{I})$. Вариационное распределение: $q(\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu}_q, \sigma_q \mathbf{I})$. Жадная оптимизация гиперпараметров:

$$\mu = \hat{E} \mathbf{w}, \quad \sigma = \hat{D} \mathbf{w}.$$

Прунинг параметра w_i определяется относительной плотностью:

$$\frac{q(\mathbf{0})}{q(\boldsymbol{\mu}_{i,q})} = \exp(-\frac{\mu_i^2}{2\sigma_i^2}).$$

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 18 / 31

Выбор моделей: Graves, 2011

Louizos et. al, 2017

Априорное распределение задается для каждого нейрона отдельно: $p(w_{ii}|\sigma) \sim \mathcal{N}(0,z), \quad p(z_i) \propto |z_i|^{-1}.$

$$ho(\mathbf{w}, \mathbf{z}) \propto \prod_i rac{1}{|z_i|} \prod_j \mathcal{N}(w_{i,j}|0, z_i^2).$$

Вариационное распределение: $q(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_q^{\mathbf{z}}, \boldsymbol{\sigma}_q^{\mathbf{z}}|\mathbf{I}), \quad q(\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu}_q, \sigma_q|\mathbf{I}).$ Прунинг нейронов \mathbf{w}_i определяется величиной

$$rac{{oldsymbol{\sigma^{z}}_{q,i}^2}}{{oldsymbol{\mu^{z}}_{q,i}^2}}.$$

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 20 / 31

Кросс-Валидация vs. Evidence: отбор признаков

Градиентный спуск для оценки правдоподобия

Проведем оптимизацию нейросети в режиме мультистарта из r различных начальных приближений $\mathbf{w}_1, \dots, \mathbf{w}_r$ с использованием градиентного спуска:

$$\mathbf{w}' = \mathbf{w} - \alpha \nabla \sum_{\mathbf{x} \in \mathbf{X}} \log p(\mathbf{x}, \mathbf{w} | \mathbf{f}) = \sum_{\mathbf{x} \in \mathbf{X}} \log p(\mathbf{x} | \mathbf{w}, \mathbf{f}) p(\mathbf{w} | \mathbf{f}).$$

Векторы параметров $\mathbf{w}_1, \dots, \mathbf{w}_r$ соответствуют некоторому скрытому распределению $q(\mathbf{w})$.

14.03.2018 22 / 31 Бахтеев Олег (МФТИ) Выбор моделей

Энтропия

Формулу вариационной оценки можно переписать с использованием энтропии:

$$\log p(\mathbf{X}|\mathbf{f}) \ge \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{X}, \mathbf{w}|\mathbf{f})}{q(\mathbf{w})} d\mathbf{w} =$$

$$\mathsf{E}_{q(\mathsf{w})}[\log p(\mathsf{X},\mathsf{w}|\mathsf{f})] - \mathsf{S}(q(\mathsf{w})),$$

где $S(q(\mathbf{w}))$ — энтропия:

$$S(q(\mathbf{w})) = -\int_{\mathbf{w}} q(\mathbf{w}) \log q(\mathbf{w}) d\mathbf{w}.$$

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 23 / 31

Градиентный спуск для оценки правдоподобия

При достаточно малой длине шага оптимизации α разность энтропии на различных шагах оптимизации вычисляется как:

$$\mathsf{S}(q'(\mathbf{w})) - \mathsf{S}(q(\mathbf{w})) \simeq \frac{1}{r} \sum_{g=1}^{r} \left(-\alpha \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)] - \alpha^2 \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g) \mathsf{H}(\mathbf{w}'^g)] \right).$$

Итоговая оценка на шаге оптимизации au:

$$\log \hat{p}(\mathbf{Y}|\mathbf{X},\mathbf{f}) \sim \frac{1}{r} \sum_{g=1}^{r} L(\mathbf{w}_{\tau}^{g}, \mathbf{X}, \mathbf{Y}) + S(q^{0}(\mathbf{w})) + \frac{1}{r} \sum_{b=1}^{r} \sum_{g=1}^{r} \left(-\alpha \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] - \alpha^{2} \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] + \alpha^{2} \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})] \right),$$

 \mathbf{w}_b^g — вектор параметров старта g на шаге b, $\mathsf{S}(q^0(\mathbf{w}))$ — начальная энтропия.

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 24 / 31

Переобучение

Градиентный спуск не минимизирует дивергенцию $\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X}))$. При приближении к моде распределения снижается оценка Evidence, что интерпретируется как переоубчение модели.

Схождение распределения к моде

Оценка начала переобучения, (Maclaurin et. al, 2015)

Стохастическая динамика Ланжевена

Модификация стохастического градиентного спуска:

$$\Delta \mathbf{w} = \alpha \nabla (\log p(\mathbf{w}) + \frac{m}{\hat{m}} \log p(\hat{\mathbf{X}}|\mathbf{w})) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\alpha}{2})$$

где \hat{m} — размер подвыборки, $\hat{\mathbf{X}} \subset \mathbf{X}$ — подвыборка, шаг оптимизации lpha изменяется с количеством итераций:

$$\sum_{\tau=1}^{\infty} \alpha_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \alpha_{\tau}^{2} < \infty.$$

Утверждение [Welling, 2011]. Распределине $q^{\tau}(\mathbf{w})$ сходится к апостериорному распределению $p(\mathbf{w}|\mathbf{X},\mathbf{f})$.

Изменение энтропии с учетом добавленного шума:

$$\hat{\mathsf{S}}\big(q^{\tau}(\mathbf{w})\big) \geq \frac{1}{2}|\mathbf{w}|\mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^{\tau}(\mathbf{w}))}{|\mathbf{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\mathbf{w}|}\big)\big).$$

Стохастическая динамика Ланжевена

Распределения параметров после 2000 итераций:

Выбор константы регуляризации

Выборка MNIST, 50 нейронов на скрытом слое.

Кросс-валидация

Оценка Evidence

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 28 / 31

Качество моделей при возмущении параметров

1.00 0.95 Accuracy 68.0 0.80 0.2 0.4 0.6 0.8 1.0 Стандартное отклонение

Boston: 3-слойная нейросеть

MNIST (50-dim PCA): 3-слойная нейросеть

Бахтеев Олег (МФТИ) Выбор моделей 14.03.2018 29 / 31

Используемые материалы

- David J. C. MacKay, Information Theory, Inference & Learning Algorithms
- Peter Grunwald, A tutorial introduction to the minimum description length principle
- Muznetsov M.P., Tokmakova A.A., Strijov V.V. Analytic and stochastic methods of structure parameter estimation
- Ohristopher Bishop, Pattern Recognition and Machine Learning
- Ohristos Louizos, Karen Ullrich, Max Welling, Bayesian Compression for Deep Learning
- Ougal Maclaurin, David Duvenaud, Ryan P. Adams, Early Stopping is Nonparametric Variational Inference
- Max Welling, Yee Whye Teh, Bayesian Learning via Stochastic Gradient Langevin Dynamics
- A. Graves, Practical Variational Inference for Neural Networks