

MATHEMATICS: SPECIALIST 1 & 2

SEMESTER 1 2018 TEST 3

Name	

Calculator Free

Reading time: 2 mins Time allowed: 23 mins

Total marks: 22

1. [5 marks: 2, 3]

Given the 2 vectors below \mathbf{a} and \mathbf{b} and $|\mathbf{a}| = 5$ and $|\mathbf{b}| = 6$

Determine the exact values of

(a) **a.a** =
$$a^2 \sqrt{ }$$

= 5^2
= $25 \sqrt{ }$

(b) **b.a** =
$$6 \times 5 \times \cos 120$$

= $30 \times -\frac{1}{2} /$
= $-.15$.

2. [3 marks]

If
$$\mathbf{a} = 4\mathbf{i} - 3\mathbf{j}$$
 and $\mathbf{b} = -6\mathbf{i} + 8\mathbf{j}$, find m if $\begin{pmatrix} 2 \\ m \end{pmatrix}$ is perpendicular to \mathbf{b} .

$$-6x2+8xM = 0$$

 $-12+8m = 0$
 $8m = 12$
 $m = 1\frac{7}{8}$
 $m = 1.5$

3. [4 marks]

The vectors **a** and **b** are given by $\mathbf{a} = (5,12)$ and $\mathbf{b} = (2,-1)$. Determine the **vector** projection of **a** on **b**.

$$(\underline{a} \cdot \underline{b}) \underline{\hat{b}} \qquad \qquad \underline{\hat{b}} = \frac{1}{\sqrt{5}} (2\underline{i} - \underline{j}) \checkmark$$

$$(5i+12j) \cdot \frac{1}{5}(2i-j) \cdot \frac{1}{5}(2i-j)$$

$$5x2-12 = -2x + (2i-j)$$

$$= -2(2i-j)$$

$$= -\frac{2}{5}(2\underline{i} - \underline{j})$$

- 4. [6 marks: 3, 3]
- (a) A circle centred at O has $s\angle AOC = 140^\circ$, as shown in the diagram. Determine the values of b and d. Justify your answers.

(b) A circle centred at O has a tangent ST as shown in the diagram. Given that s∠CDT = 55°, determine the value of x. Justify your answer.

5. [4 marks: 1,3]

A line drawn from a point A forms a tangent to a circle at B. A secant from A cuts through the same circle at point C and D.

(a) State a relationship between the lengths of the line segments AB, AD and AC.

$$AB^2 = AD \times AC$$

(b) Hence prove that $\triangle ABD \sim \triangle ACB$.

$$\frac{AC}{AB} = \frac{AB^2}{AB}$$

$$=$$
 $\frac{AB^2}{ADAB}$

$$\frac{AC}{AD} = \frac{AB}{AD}$$
 - Sides in same ratio

MATHEMATICS: SPECIALIST 1 & 2

SEMESTER 1 2018 TEST 3

Name)	

Calculator Assumed

Reading time: 3 mins Time allowed: 32 mins

Total marks: 30

6. [5 marks: 2, 3]

OABC is a parallelogram, X is the midpoint of AB and Y is such that $\overrightarrow{CY} = \frac{2}{3}\overrightarrow{CB}$.

Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{b}$.

(a) Express \overrightarrow{OX} and \overrightarrow{OY} in terms of a and/or b.

$$\overrightarrow{OX} = \underline{a} + \underline{b}$$

$$\overrightarrow{OY} = \underline{b} + \frac{2}{3} \underline{a} /$$

(b) Show that $\overrightarrow{OX} \bullet \overrightarrow{OY} = \frac{4}{3} \mathbf{a} \bullet \mathbf{b} + 8$, given $|\mathbf{a}| = 3$ and $|\mathbf{b}| = 2$.

$$\frac{\partial x \cdot \partial y}{\partial x} = \frac{(a + \frac{1}{2}b) \cdot (b + \frac{2}{3}a)}{2a^2 + \frac{1}{2}b^2 + \frac{2}{6}a \cdot b} = \frac{4}{3}a \cdot b + \frac{2}{3}(9) + \frac{1}{2}(4)$$

$$= \frac{4}{3}a \cdot b + 8.$$

(a) Vectors **a** and **b** have the same magnitude and vectors **a** and **c** are perpendicular, where $\mathbf{a} = \begin{bmatrix} m \\ n \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Determine the values of m and n.

$$M^2 + \Lambda^2 = 16 + 36$$

 $M^2 + \Lambda^2 = 52$

$$M \times 2 + N \times 3 = 0$$

 $2m + 3n = 0$

Solve on classpad
$$M = -6$$

$$\Lambda = 4$$
or
$$M = 6$$

$$\Lambda = -4$$

(b) Determine the scalar projection of a velocity of 12 m/s on a bearing of 65° onto a velocity of 20 m/s on a bearing of 280°, giving your answer to three significant figures.

Scalar projection =
$$\frac{12\cos\theta}{12\cos 145}$$
 //
= -9.83 /

Determine the size of angle a in the diagram below. (a) A, B and C lie on a circle. DE is a tangent at C. AB = AC and ∠DCA = 110°

$$a = \langle BAC = 40^{\circ} - alt. segment$$
(or angle sum of tri.)

Determine the size of angle **b** in the diagram below. P, Q and R lie on a circle. PQ is parallel to OR and \angle ORQ = 68°, \angle PRQ = b°,

$$< RSP = 180-112$$

= 68° (opp. aryles in cyclic quad.)

$$68 - b = 22$$

$$b = 46^{\circ}$$

In the circle shown (not to scale), chords AC and BD intersect at E. (c) If AE = 2x, BE = x-1, CE = 2x-1 and DE = 5x, determine the length x. Justify your answer.

AE
$$\times$$
 CE = BE \times DE

$$2x \times (2x-1) = (x-1) \times 5x$$

$$4x^2 - 2x = 5x^2 - 5x$$

$$0 = x^2 - 3x$$

$$0 = x(x-3)$$

$$\chi = 0$$
 $\chi = 3$

$$= 3$$

$$= 0$$

$$= 0$$

$$= 3$$

$$= 0$$

$$= 0$$

$$= 0$$

9. [4 marks]

Prove that if the diagonals of a rectangle are perpendicular then the rectangle is a square.

$$\overrightarrow{AB} = \underline{b} - \underline{a}$$

Diagonals perp. =)
$$\partial \hat{c} \cdot AB = 0$$

$$(a+b) \cdot (b-a) = 0$$

$$a \cdot b - a^2 + b^2 - a \cdot b = 0$$

$$b^2 - a^2 = 0$$

$$b^2 = a^2$$

$$|b| = |a|$$

$$a square$$

10. [4 marks]

Prove that opposite angles in a cyclic quadrilateral are supplementary. State reasons for each stage of your proof.

$$2x+2y=360$$
 (angle sum around a point.)
$$2(x+y)=360$$

$$x+y=180$$
and $ADC+ABC=180$

$$2\omega + 2z = 360$$

 $2(\omega + z) = 360$
 $\omega + z = 180$
 $\Delta N < DAB + < OCB = 180$

Also accept splitting quadrilateral into 4 voiceles triangles.