Lecture #13 Disjoint Set

Algorithm
JBNU
Jinhong Jung

In This Lecture

- ☐ Advanced data structure disjoint set
 - What is the disjoint set?
 - How to represent and implement disjoint sets?
 - Basic version of disjoint set
 - How to improve efficiency?
 - Union by rank
 - Path compression

Outline

☐ Definition of disjoint set

☐ Disjoint set using non-binary tree

☐ How to improve efficiency?

☐ Analysis of disjoint set

Disjoint Set

■ What is disjoint set?

- **Disjoint set** is a data structure managing non-overlapping sets
 - A set is used to contain unique objects.
 - Each intersection of two sets are empty.

Disjoint sets

■ Applications

- Used when we need to manage multiple partitions or groups in a problem
 - Connected components in a graph
 - Minimum spanning tree in a graph (Kruskal's algorithm)

Main Operations

- ☐ make-set(u)
 - Create a new set containing only given element u
- ☐ find-set(u)
 - Return the set containing given element u
- \square union(u, v)
 - Merge (or union) the set having u and the set having v
- Notes
 - No need to consider intersect operation in disjoint set
 - Due to the operations, it's also known as union-find.

Outline

☐ Definition of disjoint set

☐ Disjoint set using non-binary tree

☐ How to improve efficiency?

☐ Analysis of disjoint set

How To Represent Disjoint Set

- ☐ A disjoint set is represented by a non-binary tree.
 - Unlike normal trees, we use parent pointer tree.
 - A child points to its parent, and the root points to itself (self-looped).
 - Each tree represents a set (i.e., forest = multiple sets)
 - This tree is implemented by an 1D array called p.
 - Assume an element in the set is a positive integer.

Main Operations of Basic Version

- ☐ make-set(u)
 - It's implemented as u's parent points to u
- ☐ find-set(u)
 - Return the root of the set containing given u
 - Recursively walk up from u to the root
- \square union(u, v)
 - Merge the set having u and the set having v
 - Let the root of one set point to the root of other set

```
p[u]
u
```

```
def make-set(u):
                        def find-set(u):
                                                            def union(u, v):
     p[u] \leftarrow u
                             if u is p[u]: # if self-looped,
                                                                 p[find-set(v)] \leftarrow find-set(u)
                                  return u
                                                                  # v's root points to u's root
                             else:
                                  return find-set(p[u]) # go up one level
```

Analysis of Basic Version

☐ Space complexity

■ It takes $\Theta(n)$ space because of the array p.

☐ Time complexity

- make-set(u) takes $\Theta(1)$ time.
- find-set(u) takes $\Theta(h_u)$ time.
 - $\circ h_u$ is the height of the tree having u
- union(u, v) takes $h_v + h_u + c$ time.

\square For a worst case, find-set(u) takes $\Theta(n)$ time.

- \blacksquare When the tree of n nodes becomes degenerate
- Can we improve this even for such a worst case?

Outline

☐ Definition of disjoint set

☐ Disjoint set using non-binary tree

☐ How to improve efficiency?

☐ Analysis of disjoint set

How To Improve Efficiency?

- ☐ The efficiency of disjoint set can be improved
 - By reducing the height of each tree
 - Because main operations totally depends on the tree height

- ☐ Two techniques can be used for the purpose
 - □ Union by rank
 - Idea: smaller tree is merged into taller tree in union
 - Path compression
 - Idea: flatten the tree while walking up to the root in find-set

Union By Rank (1)

☐ When does the tree's height increase?

- It increases while we merge two disjoint sets union(u, v)
- Suppose the right tree is merged into the left one.

- What if the left tree is merged into the right one?
 - Then, the height doesn't change.

Union By Rank (2)

☐ Smaller into taller strategy

Let's merge the shorter tree into the taller tree

■ To check the tree's height quickly, let's store a variable for each node, called rank.

Union By Rank (3)

- ☐ make-set(u)
 - Make one disjoint set of u

```
def make-set(u):
    p[u] \leftarrow u
    rank[u] \leftarrow 0
```


- \square union(u, v)
 - Merge the set having u and the set having v by smaller into larger strategy

Examples (1)

☐ When the height does not change after merge

If their heights are different, the height of the merged tree don't change.

Examples (2)

■ When the height changes

If their heights are the same, the height of the merged tree increases by 1.

How To Improve Efficiency?

- ☐ The efficiency of disjoint set can be improved
 - By reducing the height of each tree
 - Because main operations totally depends on the tree height

- ☐ Two techniques can be used for the purpose
 - Union by rank
 - Idea: smaller tree is merged into taller tree in union
 - Path compression
 - Idea: flatten the tree while walking up to the root in find-set

Path Compression

- ☐ Even though we use union-by-rank, the tree's height can increase during the union operation
 - When the height of the sets to be merged is the same
 - Where else can we reduce the tree's height?

- ☐ Path compression's idea: Let's flatten the tree
 - Every time we walk up the tree during find-set, let's reassign parent pointers to make each node we pass a direct child of the root

Examples (1)

```
def find-set(u):
    if p[u] != u:
        p[u] ← find-set(p[u])
    return p[u]
```


Examples (2)

```
def find-set(u):
    if p[u] != u:
        p[u] ← find-set(p[u])
    return p[u]
```


Examples (3)

```
def find-set(u):
    if p[u] != u:
        p[u] ← find-set(p[u])
    return p[u]
```


Examples (4)

```
def find-set(u):
    if p[u] != u:
        p[u] ← find-set(p[u])
    return p[u]
```


Outline

☐ Definition of disjoint set

☐ Disjoint set using non-binary tree

☐ How to improve efficiency?

☐ Analysis of disjoint set

Analysis of Union By Rank

- □ Claim: using union by rank, # of elements in a set represented by a root having rank k is at least 2^k .
 - Base case: If rank = $0, 2^0 = 1$ element in the set.
 - Inductive step
 - Assume the claim holds for rank r; then, is it true for rank r + 1.
 - The rank becomes r + 1 when both ranks of two sets are r.
 - \circ By the assumption, each set has at least 2^r elements.
 - Thus, the merged set of rank r+1 has at least $2^r+2^r=2^{r+1}$ elements.
- \Box Claim: using union by rank, if the set has n nodes, then the root of the set for has $O(\log n)$ rank.
 - Let k be the root's rank; $n \ge 2^k \Leftrightarrow k \le \log_2 n = O(\log n)$
 - The height of the tree \leq rank $k \leq \log_2 n$

Analysis of Union By Rank

☐ Time complexity of basic version + union-by-rank

- make-set(u) takes 0(1) time.
- find-set(u) takes $O(\log n)$ time.
- union(u, v) takes $O(\log n)$ time.

☐ (Amortized) Analysis in a sequence of operations

- Among m operations consisting of make-set, find-set, and union, let n be the number of make-set operations.
- Then, the total complexity is $O(m \log n)$.
 - Because after n make-set operations, there are n nodes; thus, the height of a tree cannot exceeds $O(\log n)$.
 - Thus, m times of the above operations takes $O(m \log n)$

Analysis of Path Compression

☐ (Amortized) Analysis in on a sequence of operations

- Among m operations consisting of make-set, find-set, and union, let n be the number of make-set operations.
- The total complexity is $O(m \log^* n)$ (proof is out-of-scope)
 - $\circ \log^* n = \min\{k \mid \log \log \cdots \log n \le 1\}$ (repeatedly apply log() to n, k times)
 - $\circ \log^* n$ is very small for extremely large n (e.g., $\log^* 2^{65536} = 5$).
- \blacksquare \Rightarrow After m operations, it takes O(m) time for a worst case.
 - \circ On average, each operation takes O(1) time!
- Disjoint-set with union-by-rank and path-compression supports very fast operations.

What You Need To Know

☐ Disjoint set (a.k.a. union-find)

- Data structure managing such non-overlapping sets
- Main operations: make-set, find-set, and union
- Represented by a non-binary parent pointer tree
 - For positive integer elements, 1D-array is enough for the purpose
- Disjoint set is improved by
 - Union by rank: smaller into taller strategy
 - Path compression: flatten the tree while walking up to the root
- Disjoint set with both techniques is very fast
 - \circ By amortized analysis, each operation takes O(1) time!

In Next Lecture

- ☐ Minimum spanning tree on a graph
 - Prim's algorithm
 - Kruskal's algorithm

- ☐ Should review graph representation & basic graph searches
 - See the graph section in data structure
 - Adjacency matrix
 - Adjacency list
 - Depth first search
 - Breadth first search

Thank You