Tema 2. Resolución de problemas mediante búsqueda

Búsqueda informada

Lecturas:

- CAPÍTULO 4 de Russell & Norvig
- CAPÍTULOS 9, 10, 11 de Nilsson

Herramientas:

http://qiao.github.io/PathFinding.js/visual/

Heurística

- \aleph Del griego ευρισκω = encontrar, descubrir.
 - "EUREKA!" De Arquímedes
 - Reglas que generalmente (pero no siempre) ayudan a dirigir la búsqueda hacia la solución.
 - 1945, Georg: "How to Solve It" Métodos para solucionar problemas.
 - 1. Entender el problema.
 - 2. Construir un plan.
 - 3. Ejecutar el plan
 - 4. Mejorar el plan.
 - 1958, Simposio Teddington sobre "Mecanización de procesos mentales", UK
 - John McCarthy: "Programas con sentido común"
 - Oliver Selfridge: "Pandemonium"
 - Marvin Minsky: "Algunos métodos de programación heurística e inteligencia artificial"
 - 1963, Newell
 - Mediados de los 60's-80's: Proyecto de Programación Heurística de Stanford (HPP), dirigido por E. Feigenbaum para desarrollar sistemas expertos basados en reglas (DENDRAL, MYCIN)

Búsqueda informada

- # Las estrategias de búsqueda no informada (ciega) son generalmente muy ineficientes.
- El uso de **conocimiento específico** sobre el problema (más allá de la definición del problema) **para guiar la búsqueda** puede mejorar enormemente la eficiencia.
 - Versión informada de algoritmos de búsqueda general: búsqueda primero-el-mejor
 - Búsqueda avariciosa primero-el-mejor
 - Búsqueda A*
 - Búsqueda heurística con memoria acotada
 - IDA* (A* con profundidad iterativa)
 - RBFS (búsqueda primero-el-mejor recursiva)
 - MA* (A* con memoria acotada)
 - SMA* (MA* simplificada)
 - Funciones heurísticas
 - Búsqueda local y optimización.
 - Búsqueda online y exploración.

Búsqueda primero-el-mejor

Realizar la elección del nodo de *lista-abierta* que expandiremos de acuerdo a una **función de evaluación** [f(n)] que da el coste del camino menos costoso que va desde el nodo n al objetivo.

- Implementación:
 - Usar búsqueda-en-grafo con una cola de prioridad para la lista de candidatos a expandir (*lista-abierta*).
 - Los nodos nuevos que se generan se insertan en la cola en orden ascendente de sus valores de $f \Rightarrow$ nodos con valores de f más pequeños se expanden primero.
- Rendimiento:
 - Por definición es óptima, completa y tiene la menor complejidad posible, pero no es una búsqueda.

<u>Problema</u>: f es generalmente desconocida. Podemos usar solamente estimaciones de la distancia existente entre un nodo dado y el objetivo.

Búsqueda primero-el-mejor avariciosa, l

Función de evaluación = función heurística

$$f(n) = h(n)$$

h(n) = coste estimado del camino menos costoso desde el nodo n al estado objetivo

Búsqueda primero-el-mejor general

function BÚSQUEDA-PRIMERO-EL-MEJOR (problema, Eval-Fn) devuelve una secuencia solución

entradas: problema, un problema

Eval-Fn, una función de evaluación

Fn-Encolamiento ← una función que ordena nodos por Eval-Fn return BÚSQUEDA-GENERAL (problema, Fn-Encolamiento)

Búsqueda primero-el-mejor avariciosa

function BÚSQUEDA-PRIMERO-EL-MEJOR-AVARICIOSA (problema) devuelve una secuencia solución, o fallo

return BÚSQUEDA-PRIMERO-EL-MEJOR (problema, h)

Problema: mapa de carreteras

Encontrar el mejor itinerario entre dos ciudades en Rumanía

Función heurística (admisible, monótona)

h(n) = distancia en línea recta desde la ciudad n a **Bucarest**.

Búsqueda avariciosa para el problema del mapa de carreteras

Estado inicial: Ciudad de salida Arad

h-366

2. Expande Sibiu (valor de h más pequeño, 253)

1. Expande Arad

4. Objetivo alcanzado: Bucarest

Búsqueda avariciosa: estados repetidos

Si no tenemos en cuenta posibles bucles, la búsqueda primero-el-mejor avariciosa puede no llegar a encontrar una solución

Ejemplo: Encontrar el itinerario entre "Iasi" y "Fagaras":

I: Iasi

N: Neamt

V: Vaslui

Búsqueda avariciosa: Eficiencia

- No es completa
- No es óptima
- Complejidad del peor caso:
 - Complejidad temporal : $O(b^m)$
 - Complejidad espacial: Todos los nodos se almacenan en memoria $O(b^m)$
 - m=profundidad máxima del árbol

Búsqueda A*

Función de evaluación

$$f(n) = g(n) + h(n)$$

- g(n) = coste real del camino entre el estado inicial y el nodo n
- h(n) = coste estimado del camino menos costoso desde n al estado objetivo
- f(n) = coste estimado de la solución menos costosa (camino desde el estado inicial al estado objetivo) que pasa por n:

function BÚSQUEDA-PRIMERO-EL-MEJOR (problema, Eval-Fn) devuelve una secuencia solución

entradas: problema, un problema

Eval-Fn, una función de evaluación

Fn-Encolamiento ← una función que ordena nodos por Eval-Fn return BÚSQUEDA-GENERAL (problema, Fn-Encolamiento)

function BÚSQUEDA-A* (problema) devuelve una secuencia solución, o fallo

return BÚSQUEDA-PRIMERO-EL-MEJOR (*problema*, *g*+*h*)

Búsqueda A*: Mapa de carreteras, I

1. Expande Arad

2. Expande Sibiu

Búsqueda A*: Mapa de carreteras, II

3. Expande Rimnicu (f más pequeño, 413)

4. Expande Pitesti

6. Objetivo encontrado: Bucarest

Heurística admisible

La función heurística h(n) es admisible si nunca sobreestima el coste de alcanzar el objetivo (es decir, es una estimación optimista).

$$h(n) \le h^*(n), \forall n$$

- $h^*(n)$ = coste real del camino óptimo (es decir, con menor coste) desde n al objetivo.
- <u>Ejemplo</u>: En el problema del mapa de carreteras, la distancia en línea recta es una función heurística admisible.

★ TEOREMA: Si se usa búsqueda-en-árbol, y h es admisible ⇒ A* es completa y óptima Demostración:

- C* : coste de la solución óptima
- Considérese G_2 un nodo objetivo subóptimo (i.e. $g(G_2) > C^*$, $h(G_2) = 0$) que está en la frontera del árbol de búsqueda:

$$f(G_2) = g(G_2) + h(G_2) = g(G_2) > C^* \Rightarrow f(G_2) > C^*$$
 (1)

- Considérese el nodo n del conjunto frontera del árbol de búsqueda que está en un camino solución óptimo.
 - Dado que n está en el camino solución óptimo, $g(n) = g^*(n)$
 - Dado que h is admisible: $h(n) \le h^*(n)$

$$f(n) = g(n) + h(n) \le g^*(n) + h^*(n) = C^* \implies f(n) \le C^*$$
 (2)

(1)+(2)
$$\Rightarrow$$
 f(n) \leq C* $<$ f(G₂) y se explora n antes que G₂

A* + heurística admisible

Si se usa **búsqueda-en-grafo**, **A* puede no ser óptima** incluso si **h es admisible:** Se pueden generar soluciones subóptimas si el camino óptimo a un estado repetido no es el que primero se genera.

A* + heurística admisible

Solución: Descartar el **camino** con coste más alto.

 Aumenta la complejidad del algoritmo: necesita eliminar de lista-abierta el nodo con coste más alto y sus descendientes.

La solución encontrada es óptima: coste = 5

Heurística monótona (o "consistente")

Una función heurística h(n) es monótona si se satisface la siguiente desigualdad triangular:

$$h(n) \le \operatorname{coste}(n \to n') + h(n'),$$

 $\forall n, n'[n' \text{ sucesor de } n]$

- <u>Ejemplo</u>: Para el problema del mapa de carreteras, la distancia en línea recta es una función heurística monótona.
- \Re Si h es monótona \Rightarrow h es admisible

[Ejercicio: Demostrar esto]

Hay heurísticas admisibles que no son monótonas

A* + heurística monótona

TEOREMA:

Si h es monótona ⇒ los valores de f(n) a lo largo del camino buscado por A* son no-decrecientes

Demostración:

Supongamos que n' es un sucesor de n

$$f(n') = g(n') + h(n') = g(n) + coste(n \rightarrow n') + h(n')$$

$$\geq g(n) + h(n) = f(n) \qquad \Rightarrow \qquad f(n') \geq f(n)$$

TEOREMA:

Si h es monótona > A* usando búsqueda-en-grafo es completa y óptima.

Demostración:

Dado que f(n) es no-decreciente el primer nodo objetivo expandido debe ser el correspondiente a la solución óptima.

A* + heurística monótona

TEOREMA: Si h es monótona y A* ha expandido un nodo n, se cumple g(n)=g*(n) **Demostración:** Consideremos el problema de búsqueda relacionado con el mismo estado inicial y con nodo n como nodo objetivo.

Definamos la nueva heurística para este nuevo problema:

$$h'(m) = h(m) - h(n), \quad \forall m / f(m) \leq f(n).$$

Dado que la diferencia entre h y h' es una constante:

- Las búsquedas (A* con h) y (A* con h') empezando desde el mismo estado inicial, exploran la misma secuencia de nodos antes de expandir n.
- h' es una heurística monótona para el nuevo problema.

Dado que A* con una heurística monótona es completa y óptima, la búsqueda (A* con h') encuentra el camino óptimo entre el estado inicial y el nodo n. Este camino será también el óptimo para la búsqueda (A* con h) \Rightarrow g(n)=g*(n).

TEOREMA: **A*** es óptimamente eficiente.

Para una heurística dada, ningún otro algoritmo expandirá menos nodos que los que expande A* (excepto posibles empates)

Demostración: si hay nodos que no se expanden entre el origen y la curva de nivel óptima, no está garantizado que el algoritmo encuentre la solución óptima.

[Dechter, Pearl, 1985]

A* + heurística monótona

Si h es una heurística monótona, la exploración se realiza en curvas de nivel con valores crecientes de f(n).

- En una búsqueda de coste uniforme [h(n) =0], las curvas de nivel son "concéntricas" alrededor del estado de partida.
- En heurísticas mejores estas curvas forman bandas que se extienden hacia el estado objetivo.

Complejidad de A*

X Complejidad temporal

• Exponencial para h arbitrario

$$O(b^{\tilde{d}}), \qquad \tilde{d} = \frac{C^*}{\varepsilon}$$

 $C^* = Coste óptimo; \epsilon = mínimo coste por acción$

• Subexponencial si $|h(n) - h^*(n)| \le O(\log h^*(n))$

<u>Karanta Complejidad espacial:</u>

- Igual a la complejidad temporal (se mantienen todos los nodos en memoria).
- Normalmente es el factor limitante.

Debido al gran requerimiento de memoria, A* no es un algoritmo práctico para problemas grandes.

Búsqueda IDA*

Realizar una búsqueda primero-en-profundidad con una profundidad límite de f, e ir aumentando este valor.

- n_0 = nodo inicial
- Sean

$$C_0 = f(n_0);$$

 $C_k = \min_{n} \{ f(n) \mid f(n) > C_{k-1} \}; \quad k = 1,2,K$

Iteración k: expandir todos los nodos que cumplan {n | f(n) ≤ C_k}

Propiedades

- Si h es monótona ⇒ IDA* es completa y óptima.
- Complejidad espacial: O(b·d); $d = C^*/\epsilon$.

 $C^* = coste óptimo; \epsilon = mínimo coste por acción$

- Complejidad temporal: En el peor caso, un sólo nodo es expandido en cada iteración. Asumiendo que el último nodo que se expande es el nodo solución, el número de iteraciones es 1+2+...+N ~O(N²)
 - Variación IDA*:

$$C_k = f(n_0) + k\Delta C; \quad k \ge 0$$

Número de iteraciones ~ O(C*/∆C)

Ejemplo (A*, IDA*)

Estados finales: K, L

A* + búsqueda en árbol

Nota: Los empates se resuelven expandiendo primero los nodos más antiguos (1) + orden alfabético (2)

IDA* + búsqueda en árbol, I

En la primera iteración IDA* expande f<= C_0 ; C_0 = 6 C_1 = 7

IDA* + búsqueda en árbol, II

IDA* + búsqueda en árbol, III

IDA* + búsqueda en árbol, IV

IDA* + búsqueda en árbol, IV

Evaluación de la heurística

- # Factor de ramificación efectivo (b*):
 - N = Número de nodos expandidos por A*.
 - d = Profundidad de la solución
 - b* = factor de ramificación de un árbol uniforme de profundidad d, donde
 N = # nodos que se necesita expandir para llegar a la solución óptima.

$$N = b^* + (b^*)^2 + \dots + (b^*)^d = b^* \frac{(b^*)^d - 1}{b^* - 1}$$

- Ejemplo: d=5, $N=52 \Rightarrow b^*=1.92$.
- Promediar b* para diferentes ejemplos del mismo problema
- De manera ideal: b* lo más cercano posible a 1.
- \mathbb{H} Comparación de las heurísticas admisibles h_1 , h_2 :

 h_2 domina a h_1 , si \forall n: h_2 (n) \geq h_1 (n)

- Si usamos búsqueda A* y h₂ domina a h₁
 - h₂ nunca expande más nodos que h₁
 - Generalmente, b₂* ≤ b₁*
- Usar h₂ si h₂ domina a h₁ y los costes de computar las heurísticas son comparables.

Búsqueda de heurísticas

- Si hay disponibles varias heurísticas admisibles $(h_1, h_2, ... h_K)$, la heurística $h_{max}(n) = max\{h_1(n), h_2(n), ... h_K(n)\}$ es admisible y domina a $h_1, h_2, ... h_K$.
- **Método de relajación:**
 - Definir un problema relajado eliminando algunas restricciones del problema original.
 - Usar como heurística para el problema original la función de coste óptimo del problema relajado.
 - La **heurística** obtenida es **admisible y monótona** (por ser func. de coste óptimo)
 - Ejemplo del 8-puzzle:
 - Problema original: La ficha en la posición A puede moverse a B si A es adyacente a B y B está vacía.
 - Problemas relajados:

La ficha en la posición A puede moverse a B, aunque B esté ocupado:

- 1. Sin restricciones (h₁: # fichas cuya colocación es incorrecta)
- 2. Si A adyacente a B (h₂: distancia de Manhattan o distancia de bloques)

h₂ domina a h₁

	Search Cost			Effective Branching Factor		
d	IDS	$A*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2 4 6 8 10 12	10 112 680 6384 47127 364404 3473941	6 13 20 39 93 227 539	6 12 18 25 39 73 113	2.45 2.87 2.73 2.80 2.79 2.78 2.83	1.79 1.48 1.34 1.33 1.38 1.42	1.79 1.45 1.30 1.24 1.22 1.24 1.23
16 18 20 22 24	- - - - -	1301 3056 7276 18094 39135	211 363 676 1219 1641	- - - -	1.45 1.46 1.47 1.48 1.48	1.25 1.26 1.27 1.28 1.26

Búsqueda local

- **Problemas de optimización** donde lo importante es sólo el **objetivo** (el camino hasta él es irrelevante).
 - **Maximizar una función objetivo** (o minimizar una función de coste) que es computable con un sólo estado.
 - Paisaje del espacio de estados
 - Máximos globales vs. locales.
 - Mesetas, crestas.
 - Discontinuidades.

- **<u>Búsqueda local</u>**: Mover desde el estado actual a uno de los vecinos.
 - Un sólo estado actual (requerimientos pequeños de memoria)
 - Puede encontrar una solución razonable en espacios de estados grandes o infinitos (es decir, problemas continuos), donde una búsqueda exhaustiva es imposible.
 - Completa: Si garantiza convergencia a un máximo.
 - Óptima: Si el máximo encontrado es un máximo global.

Algoritmo de escalada

```
function ESCALADA (problema) devuelve un estado solución
entrada: problema, un problema
variables locales:
actual, siguiente: nodos

actual ← GENERAR-NODO (ESTADO-INICIAL[problema])
loop do

siguiente ← nodo sucesor de actual con mayor valor
if VALOR[siguiente] < VALOR[actual] then return actual
actual ← siguiente
end
```

- # Búsqueda local avariciosa: Moverse al vecino que tenga el valor más alto de la función objetivo.
 - Completa: Converge a un máximo local.
 - No óptima: Puede no converger a un máximo global.
 - Problemas: máximos locales, crestas, mesetas.

X Variaciones

- <u>Escalada estocástica</u>: Moverse a un vecino elegido aleatoriamente, que tenga un valor de función objetivo mayor que el estado actual.
- <u>Escalada con reinicio aleatorio</u>: Escalada desde estados iniciales generados aleatoriamente.
 - Conforme el número de reinicios aumenta, el algoritmo se hace completo (generará eventualmente el estado objetivo como uno de los estados iniciales)

Optimización continua

** Ascenso por gradiente (búsqueda local avariciosa en un espacio continuo): Moverse en la dirección del gradiente de la función objetivo

$$\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$$

- La dirección del gradiente de una función es la dirección de mayor variación local.
- α es la tasa de ascenso (un valor pequeño)
- Si no disponemos de la forma analítica del gradiente, podemos usar estimaciones numéricas

$$\frac{\partial}{\partial x_i} f(\mathbf{x}) \approx \frac{f(\mathbf{x} + \mathbf{h}_i) - f(\mathbf{x} - \mathbf{h}_i)}{2h_i} \quad \mathbf{h}_i = \begin{pmatrix} 0 \\ M \\ h_i \\ M \\ 0 \end{pmatrix} \leftarrow \begin{array}{c} \text{componente número i} \\ h_i \to 0 \end{array}$$

Newton-Raphson

$$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{H}^{-1}(\mathbf{x}) \cdot \nabla f(\mathbf{x}); \quad H_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$$
 (Matriz Hessiana)

- **Cuasi-Newton**
- **# Gradiente conjugado**
- **Optimización con restricciones**: lineales, cuadráticas, programación no lineal.

Temple simulado

Maximiza una "función de energía" de acuerdo al siguiente esquema

```
function TEMPLE-SIMULADO (problema, programa) devuelve un estado solución entradas: problema, un problema programa: una correspondencia entre iteración y "temperatura" variables locales: actual, siguiente: nodos T, "temperatura" que controla la probabilidad de ir pendiente abajo actual \leftarrow GENERAR-NODO (ESTADO-INICIAL[problema]) for t \leftarrow 1 to \infty do

T \leftarrow programa[T]
if T=0 then return actual siguiente \leftarrow un sucesor de actual elegido aleatoriamente \Delta E \leftarrow \text{VALOR}[siguiente] - \text{VALOR}[actual]
if \Delta E > 0 then actual \leftarrow siguiente else actual \leftarrow siguiente sólo con probabilidad \exp(\Delta E/T)
```

- Seleccionar aleatoriamente un vecino del estado actual
 - Si $\Delta E > 0$ aceptar.
 - Si $\Delta E \leq 0$ aceptar sólo con probabilidad p= exp($\Delta E/T$)
- $T = 0 \Rightarrow Escalada$.
- $T = \infty \Rightarrow$ Búsqueda estocástica.
- Programa geométrico de temple
 - Mantener T constante durante un número de iteraciones (una "época")
 - Entre época y época, reducir T multiplicándolo por β <1.

Búsqueda local paralela

- # Búsqueda local en haz: Búsquedas estocásticas paralelas en k estados
 - 1. Seleccionar aleatoriamente k estados iniciales.
 - 2. Generar todos los sucesores de los k estados.
 - 3. Seleccionar de estos sucesores los mejores k estados.
 - 4. Repetir paso 2 con el conjunto elegido, hasta que se satisfaga el criterio de convergencia.
- # Algoritmos genéticos: Usar evolución artificial para maximizar la función de fitness
 - Codificación del problema:
 - Un individuo corresponde a una posible solución del problema.
 - Cada individuo se representa por un **cromosoma**: Cadena de longitud fija que codifica completamente al individuo (por ejemplo, usando una cadena de {0,1}).
 - Ejemplo de algoritmo genético:
 - 1. Inicializar aleatoriamente una población de M individuos
 - 2. **Seleccionar** los padres **de acuerdo al fitness**.
 - 3. Generar una nueva población de M hijos mediante **cruces** entre los padres elegidos.
 - 4. Introducir variaciones en individuos usando **mutación**.
 - 5. Repetir desde el paso 2 hasta que se satisfaga el criterio de convergencia.