МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра програмування

Практичне завдання № 3

КОДИ ТА ЇХ ВЛАСТИВОСТІ

з курсу "Теорія інформації"

Виконала: студент групи ПМІ-41 Шипка Олена

Варіант <u>1</u>

Оцінка

Прийняв: доц. Рикалюк Р.Є. ас. Жировецький В.В.

Завдання 3.1. Алфавіт дискретного джерела налічує 16 символів, які кодуються завадостійким двійковим кодом довжиною 7. Визначити надлишковість коду.

Знайдемо довжину коду для безнадлишкового кодування скориставшись формулою $k = log_2 N = log_2 16 = 4$. Тоді надлишковість коду становить

$$\rho = 1 - \frac{k}{n} = 1 - \frac{4}{7} = 0,429$$

Завдання 3.2. Визначити кодову віддаль між двійковими комбінаціями A=0101 та B=1011 двійкового коду та записати всі комбінації, які знаходяться від комбінації А на кодовій віддалі d=2.

Щоб визначити кодову віддаль між комбінаціями A та B знаходимо поелементну суму за mod 2 цих комбінацій

$$\frac{\oplus \frac{0101}{1011}}{1110}$$

Вага отриманої комбінації w=3, що і є кодовою віддаллю між комбінаціями A та B

Будь-яка комбінація ваги w=2, якщо її порозрядно додати за mod 2 до комбінації A (такої ж довжини), дає нову комбінацію, яка буде знаходитися від комбінації B на кодовій віддалі d=2. Кількість таких комбінацій буде дорівнювати $C_n^d=\frac{n!}{d!(n-d)!}=\frac{4!}{2!(4-2)!}=\frac{24}{2*2}=6$

Ці комбінації отримуємо, додаючи порозрядно до комбінації A почергово всі комбінації з вагою w=2:

1	2	3	4	5	6
$\begin{array}{c} \oplus \frac{0101}{1100} \\ \hline 1001 \end{array}$	$\begin{array}{c} \oplus \frac{0101}{1010} \\ \hline 1111 \end{array}$	$\frac{\oplus \frac{0101}{1001}}{1100}$	$\frac{\oplus \frac{0101}{0110}}{0011}$	$\frac{\oplus \frac{0101}{0101}}{0000}$	$\frac{\oplus \frac{0101}{0011}}{0110}$

Завдання 3.3. Визначити мінімальну та максимальну кодові віддалі Хеммінга d між комбінаціями

$$A = 11011011,$$

 $B = 01001010,$

$$C = 01010101$$
,

D = 11001101

двійкового п-елементного простого коду.

Щоб визначити кодову віддаль між комбінаціями знаходимо поелементну суму за mod 2 усіх комбінацій.

$A \oplus B$	$A \oplus C$	$A \oplus D$	$B \oplus C$	$B \oplus D$	$C \oplus D$
$\oplus \frac{11011011}{01001010}$	$\oplus \frac{11011011}{01010101}$	$\oplus \frac{11011011}{11001101}$	$\oplus \frac{01001010}{01010101}$	$\oplus \frac{01001010}{11001101}$	$\oplus \frac{01010101}{11001101}$
10010001	10001110	00010110	00011111	10000111	1001101
w = 3	w = 4	w = 3	w = 5	w = 4	w = 3

Звідси, найбільша кодова відстань — 5, найменша — 3.