### DIM0436

23. DPLL e teorias

20141021

### Sumário

Provadores SAT

2 Teorias da primeira ordem: aritmética

- Provadores SAT
- 2 Teorias da primeira ordem: aritmética

# Exemplo de árvore binária de decisão

$$\Phi = (\neg A \lor B) \land (\neg B \lor C)$$



DIM0436 20141021

### **FNC**

- $\Delta = CNF(\Phi) = \{ \{ \neg A, B \}, \{ \neg B, C \} \}$
- $\bullet \ \Delta \mid A, \neg B = \{\{\bot, \bot\}, \{\top, C\}\}\} = \Box$



DIM0436

# Melhorada possível

- $\Delta = CNF(\Phi) = \{ \{ \neg A, B \}, \{ \neg B, C \} \}$
- Todas as cláusulas são subsumidas uma vez que  $\{A\mapsto 0, B\mapsto 0\}$



DIM0436 20141021

# $DPLL(\Delta, d)$

```
\begin{split} &\text{if } \Delta = \{\} \text{ then} \\ &\text{ return } \{\} \\ &\text{else if } \{\} \in \Delta \text{ then} \\ &\text{ return UNSAT} \\ &\text{else if } \mathbf{L} = \mathsf{DPLL}(\Delta|P_{d+1},d+1) \neq \mathsf{UNSAT} \text{ then} \\ &\text{ return } \mathbf{L} \cup P_{d+1} \\ &\text{else if } \mathbf{L} = \mathsf{DPLL}(\Delta|\neg P_{d+1},d+1) \neq \mathsf{UNSAT} \text{ then} \\ &\text{ return } \mathbf{L} \cup \neg P_{d+1} \\ &\text{else} \\ &\text{ return UNSAT} \\ &\text{end if} \end{split}
```

DIM0436 20141021

### Resolução unitária

#### Problema

- Seia  $\Delta = \{ \{ \neg A, B \}, \{ \neg B, \neg C \}, \{ C, \neg D \} \}$
- $\Delta | A = \{ \{B\}, \{\neg B, \neg C\}, \{C, \neg D\} \}$
- Nesse ponto  $\Delta \neq \{\} \land \{\} \notin \Delta$
- Mas poderíamos já declarar sucesso

#### Propagação unitária

- Antes do teste de sucesso/falha, propagar cláusulas unitárias
- A fase de resolução unitária produz dois resultados
  - 1: literais presentes como cláusulas unitárias ou derivados por resolução unitária
  - Γ uma nova FNC.

DIM0436 20141021

## Exemplos

```
① \Delta = \{ \{ \neg A, \neg B \}, \{ B, C \}, \{ \neg C, D \}, \{ A \} \}

I = \{ A, \neg B, C, D \}

\Gamma = \{ \}

② \Delta = \{ \{ \neg A, \neg B \}, \{ B, C \}, \{ \neg C, D \}, \{ C \} \}

I = \{ C, D \}

\Gamma = \{ \{ \neg A, \neg B \} \}
```

DIM0436 20141021

# Algoritmo $DPLL_{Unit}(\Delta)$

```
(I,\Gamma) \leftarrow UNIT - RESOLUTION(\Delta)
if \Gamma = \{\} then return /
else
    if \{\} \in \Gamma then return UNSATISFIABLE
    else
        choose a literal I in \Gamma
        if L = DPLL(\Gamma|L) \neq UNSATISFIABLE then return L \cup I \cup \{L\}
        else if L = DPLL(\Gamma | \neg L) \neq UNSATISFIABLE then return L \cup I \cup \{\neg L\}
        elsereturn UNSATISFIABLE
        end if
    end if
end if
```

DIM0436 20141021 10 / 39

## Backtracking cronológico

- ullet Se os dois valores duma variável ao nível n geram uma contradição, o algoritmo DPLL<sub>Unit</sub> volta ao nível n-1
- Se o backtracking voltar até o nível 0 a FNC é incoerente.

### Diferenças

- Mudar do nível corrente a um nível inferior é backtracking
- Se o backtracking ao nível n for feito só após tentar os 2 valores ao nível n+1, é backtracking cronológico

DIM0436 20141021

## Exemplo

 $\Delta =$ 

- **③** {A, B}
- **②** {*B*, *C*}

- **6**  $\{\neg A, X, \neg Z\}$



DIM0436 20141021

## Backtracking não cronológico

#### Conjunto de conflito

- Backtracking não cronológico pode ser usado após identificação de toda valoração que contribui à derivação da cláusula vazia.
- Esse conjunto é o conjunto de conflito
- Em vez de um backtracking até a última variável mudada, o algoritmo volta à variável de decisão **mais recente** do conjunto de conflito.

DIM0436 20141021

## Exemplo

 $\Delta =$ 

- **1** {*A*, *B*}
- **2** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- **6**  $\{\neg A, X, \neg Z\}$
- $\bigcirc$   $\{\neg A, \neg Y, \neg Z\}$

- 2 Por resolução unitária,  $Y \mapsto 1, Z \mapsto 1$
- Cláusula ?? vira vazia
- O conjunto de conflito é  ${A \mapsto 1, X \mapsto 1, Y \mapsto 1, Z \mapsto 1}$
- Vamos dar um outro valor a X
- Outro conflito:  $\{A \mapsto 1, X \mapsto 1, Z \mapsto 1\}$
- Como não tem mas valores para X, voltamos para  $A \mapsto 0$

20141021

### Pista de melhorada

#### $\Delta =$

- **1** {*A*, *B*}
- **②** {*B*, *C*}

- **6**  $\{\neg A, X, \neg Z\}$
- - Cada vez que a resolução unitária descobre uma contradição, tem a possibilidade de identificar uma cláusula implicada pela FNC
  - Essa cláusula permitiria a realização de novas implicações pela resolução unitária (assim {¬A,¬X} é uma consequência da FNC acima)
  - É a cláusula de conflito

DIM0436 20141021

## Grafo de implicação

### Como ler o grafo

• 3/Y=1: a variável Y é valorada a verdadeira ao nível 3, usando cláusula 3,  $A\mapsto 1, X\mapsto 1$ 





DIM0436 20141021 16 / 39

#### Calcular uma cláusula conflito

- Todo corte do grafo de implicação define um conjunto de conflito enquanto o corte separa as variáveis de decisão da contradição.
- Todo nó com uma aresta saindo cruzando o corte faz parte do conjunto de conflito.
- Após a identificação de um conjunto de conflito, a cláusula de conflito é calculada a partir da negação da valoração do conjunto de conflito Assim se ele for  $\{A\mapsto 1, B\mapsto 0, C\mapsto 0\}$ , a cláusula de conflito é  $\{\neg A, B, C\}$
- Uma cláusula de conflito gerada a partir de cortes que contem exatamente uma variável valorada nesse nível são asserting.
  - ► Cláusulas asserting são necessárias para a completude
  - O nível de asserção é o segundo maior nível da cláusula de conflito, -1 se não existir

DIM0436 20141021 17 / 39

### Cortes



DIM0436 20141021 18 / 39

```
Algoritmo DPLL+
                                                                ⊳ sequência vazia de decisões
   D \leftarrow ()
   Γ ← {}
                                                               > nenhuma cláusula aprendida
   while true do
       if Unit-resolution acha uma contradição em \Delta, \Gamma, D then
           if D = () then

⊳ contradição sem decisão

                return UNSAT
           else
                                                                                 ▷ backtracking
                \alpha \leftarrow \mathsf{cláusula} assertinda
                m \leftarrow nível de asserção de \alpha
                D \leftarrow primeiras m decisões de D
                                                                   \triangleright apagar decisões l_{m+1}, \ldots
                \Gamma \leftarrow \{\alpha\} \cup \Gamma
           end if
       else
                                                  > sem contradição por resolução unitária
           if I é um literal \wedge nem I nem \negI são implicadas por resolução unitária
   (\Delta, \Gamma, D) then
                D \leftarrow D:I
                                                                       ⊳ nova decisão / em D
           else
                return SAT
           end if
       end if
```

DIM0436

20141021

$$\Delta =$$

- **③** {*A*, *B*}
- **②** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }

**1** 
$$D = (), \Gamma = \{\}$$

$$\Delta =$$

- **③** {*A*, *B*}
- **②** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- **6**  $\{\neg A, X, \neg Z\}$

- **1**  $D = (), \Gamma = \{\}$
- ② Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$

$$\Delta =$$

- **③** {*A*, *B*}
- ② {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- **6**  $\{\neg A, X, \neg Z\}$

- **a**  $D = (), \Gamma = \{\}$
- ② Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$
- 3 Cláusula de conflito  $\{\neg A, \neg X\}$  de nível 0

$$\Delta =$$

- $\bullet$  {A, B}
- **②** {*B*, *C*}
- $\bullet$   $\{\neg A, X, Z\}$

- **1**  $D = (), \Gamma = \{\}$
- 2 Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$
- **3** Cláusula de conflito  $\{\neg A, \neg X\}$  de nível 0
- **4 Backtracking** ao nível de asserção :  $D = (A \mapsto 1), \Gamma = \{\{\neg A, \neg X\}\}$

DIM0436

$$\Delta =$$

- **③** {*A*, *B*}
- **2** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- $\bigcirc$   $\{\neg A, X, \neg Z\}$
- $\bigcirc$   $\{\neg A, \neg Y, \neg Z\}$

- **1**  $D = (), \Gamma = \{\}$
- Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$
- 3 Cláusula de conflito  $\{\neg A, \neg X\}$  de nível 0
- Backtracking ao nível de asserção :  $D = (A \mapsto 1), \Gamma = \{\{\neg A, \neg X\}\}$
- Resolução unitária acha um conflito, gerando  $\{\neg A\}$  com nível (-1).

20141021

$$\Delta =$$

- **1** {*A*, *B*}
- **②** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- $\bigcirc$   $\{\neg A, X, \neg Z\}$
- $\bigcirc$   $\{\neg A, \neg Y, \neg Z\}$

- **1**  $D = (), \Gamma = \{\}$
- 2 Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$
- **3** Cláusula de conflito  $\{\neg A, \neg X\}$  de nível 0
- Backtracking ao nível de asserção :  $D = (A \mapsto 1), \Gamma = \{\{\neg A, \neg X\}\}$
- Sesolução unitária acha um conflito, gerando  $\{\neg A\}$  com nível (-1).
- **6** Backtracking:  $D = (), \Gamma = \{\{\neg A, \neg X\}, \{\neg A\}\}$

DIM0436 20141021

$$\Delta =$$

- **1** {*A*, *B*}
- **②** {*B*, *C*}
- $\bullet$  { $\neg A, X, Z$ }
- $\bigcirc$   $\{\neg A, X, \neg Z\}$
- $\bigcirc$   $\{\neg A, \neg Y, \neg Z\}$

- **1**  $D = (), \Gamma = \{\}$
- Suponha que  $D = (A \mapsto 1, B \mapsto 1, C \mapsto 1, X \mapsto 1)$
- **3** Cláusula de conflito  $\{\neg A, \neg X\}$  de nível 0
- Backtracking ao nível de asserção :  $D = (A \mapsto 1), \Gamma = \{\{\neg A, \neg X\}\}$
- Sesolução unitária acha um conflito, gerando  $\{\neg A\}$  com nível (-1).
- **6** Backtracking:  $D = (), \Gamma = \{\{\neg A, \neg X\}, \{\neg A\}\}$
- 7 ...

20141021

- Provadores SAT
- 2 Teorias da primeira ordem: aritmética

DIM0436 20141021 21 / 39

### Teoria de primeira ordem

#### Definição

Uma teoria de primeira ordem T é definida por

- ullet uma **assinatura**  $\Sigma$ : um conjunto de constantes, funções e símbolos de predicados
- um conjunto de **axiomas**  $\mathcal{A}$ , um conjunto de fórmulas de primeira ordem nas quais só constantes, funções e predicados de  $\Sigma$  aparecem.
- Uma  $\Sigma$ -fórmula contem constantes, funções e predicados de  $\Sigma$  bem como conectivos lógicos e quantificadores.
- ullet Os axiomas  ${\cal A}$  dão o sentido dos símbolos de  $\Sigma$

DIM0436 20141021 22

## Igualdade

- $\exists \forall x, y, z \ x = y \land y = z \Rightarrow x = z$
- lacktriangle para todo inteiro positivo n e símbolo de função f de aridade n

$$\forall \bar{x}, \bar{y}, \bigwedge_i x_i = y_i \Rightarrow f(\bar{x}) = f(\bar{y})$$

 $\bullet$  para todo inteiro positivo n e símbolo de predicado p de aridade n

$$\forall \bar{x}, \bar{y}, \bigwedge_i x_i = y_i \Rightarrow p(\bar{x}) \Leftrightarrow p(\bar{y})$$

DIM0436 20141021 23 / 39

### Aritmética de Peano

#### Assinatura

$$\Sigma_{PA} = \{0, 1, +, *, =\}$$

#### **Axiomas**

$$\forall x, y \ x + 1 = y + 1 \Rightarrow x = y$$

**4** 
$$\forall x \, x + 0 = x$$

**5** 
$$\forall x, y (x + (y + 1) = (x + y) + 1)$$

**6** 
$$\forall x \ x * 0 = 0$$

$$\forall x, y \ x * (y + 1) = x * (y + x)$$

#### Observação sobre indução

• Indução é um esquema de axiomas: é o conjunto de axiomas obtido por a substituição de F por cada  $\Sigma_{PA}$ -fórmula com precisamente uma variável livre.

DIM0436 20141021

## Interpretação e decidibilidade

### Interpretação: $\alpha_I$

- $\bullet$   $\alpha_I[0] \doteq 0_{\mathbb{N}}$
- $\bullet$   $\alpha_I[1] \doteq 1_{\mathbb{N}}$
- $\circ \alpha_I[+] \doteq +_{\mathbb{N}}$
- $\alpha_I[*] \doteq *_{\mathbb{N}}$
- $\circ \alpha_I = \dot{=} = \mathbb{N}$

#### Decidibilidade

- Satisfazibilidade e validade em  $T_{PA}$  é indecidível.
- O primeiro teorema de incompletude de Gödel implica que a aritmética de Peano não captura a "aritmética verdadeira".

20141021

## Aritmética de Presburger

#### Assinatura

$$\Sigma_{\mathbb{N}}=\{0,1,+,=\}$$

#### **Axiomas**

- **③**  $\forall x \neg (x + 1 = 0)$
- $\forall x, y \ x+1=y+1 \Rightarrow x=y$
- **4**  $\forall x \ x + 0 = x$
- **5**  $\forall x, y (x + (y + 1) = (x + y) + 1)$

#### Observação sobre indução

• Indução é um esquema de axiomas: é o conjunto de axiomas obtido por a substituição de F por cada  $\Sigma_{\mathbb{N}}$ -fórmula com precisamente uma variável livre.

DIM0436 20141021

## Interpretação e decidibilidade

### Interpretação : $\alpha_I$

- $\alpha_I[0] \doteq 0_{\mathbb{N}}$
- $\quad \circ \ \alpha_I[1] \doteq 1_{\mathbb{N}}$
- $\circ \alpha_I[+] \doteq +_{\mathbb{N}}$
- $\circ \alpha_I[=] \doteq =_{\mathbb{N}}$

### Decidibilidade (Presburger)

 $T_{\mathbb{N}}$  é decidível.

DIM0436

20141021

# Usar a aritmética de Presburger para ${\mathbb Z}$

Considere a fórmula 
$$F_0 = \forall w, x \exists y, z \ (x + 2y - z - 13 > -3w - 5)$$

### Introdução de diferenças

$$F_1 = \forall w_n, w_p, x_n, x_p \ \exists y_n, y_p, z_n, z_p (x_p - x_n + 2(y_p - y_n) - (z_p - z_n) - 13 > -3(w_p - w_n) - 5)$$

#### Eliminação de —

$$F_2 = \forall w_n, w_p, x_n, x_p \exists y_n, y_p, z_n, z_p \\ \$(x_p + 2y_p + z_n) + 3w_p + 5 > x_n + 2y_n + z_p + 3w_n + 13 \$$$

### Eliminação de \*

$$F_{3} = \forall w_{n}, w_{p}, x_{n}, x_{p} \exists y_{n}, y_{p}, z_{n}, z_{p} \exists u \neg (u = 0) \land (x_{p} + y_{p} + y_{p} + z_{n} + w_{p} + w_{p} + w_{p} + u = x_{n} + y_{n} + y_{n} + z_{p} + w_{n} + w_{n} + w_{n} + \underbrace{1 + \dots + 1}_{\circ}$$

DIM0436 20141021 2

# Exemplos

DIM0436 20141021 29 / 39

## Eliminação dos quantificadores

#### Admissibilidade

Uma teoria T admite eliminação dos quantificadores se existir um algoritmo que, dado uma  $\Sigma$ -fórmula F, calcula uma fórmula G sem quantificadores T-equivalente a F.

### Exemplo

Seja 
$$F = \exists x \cdot 2x = y$$
.

- $\circ$  Se F for uma  $\Sigma_{\mathbb{O}}$ -fórmula,  $G=\top$
- Se F for uma  $\Sigma_{\mathbb{Z}}$ -fórmula, G = ??

#### Predicado de divisibilidade

- $ullet k|\cdot$  para  $k\in\mathbb{Z}^+$  tal que k|x seja verdadeira sse  $x\mathsf{mod}k=0$
- $\bullet \ \widehat{T_{\mathbb{Z}}} = T_{\mathbb{Z}} \cup \{|\}$

DIM0436 20141021

## Método de Cooper

### Objetivo

- A entrada uma  $\widehat{\Sigma}_{\mathbb{Z}}$ -fórmula  $\exists x \ F(x)$ , com F uma fórmula sem quantificador, mas com outras variáveis livres que x.
- O algoritmo vai construir uma  $\widehat{\Sigma}_{\mathbb{Z}}$ -fórmula sem quantificador  $\widehat{T}_{\mathbb{Z}}$ -equivalente a  $\exists x \ F(x)$ .

#### Etapa 1

- Calcular a NNF de F(x), chamada de  $F_1(x)$ .
- $\exists x \ F(x) \equiv_{\widehat{T}_{\mathbb{Z}}} \exists x \ F_1(x)$

DIM0436 20141021

# Método de Cooper (etapa 2)

#### Reescrita de literais

- **1**  $s = t \rightarrow s < t + 1 \land t < s + 1$
- 2  $\neg (s = t) \rightarrow s < t \lor t < s$
- 3  $\neg (s < t) \rightarrow t < s + 1$

#### Análise da saida

A saída  $\exists x \ F_2(x) \equiv_{\widehat{T}_{\pi}} \exists x \ F_1(x)$  e contem só literais da forma

$$s < t, k | t \text{ ou } \neg(k | t)$$

### Exemplo

Reescrever  $\neg(x < y) \land \neg(x = y + 3)$ .

DIM0436 20141021

# Método de Cooper (etapa 3)

#### Descrição

ullet Reunir os termos contendo x, para que os literais tiverem a forma

$$hx < t$$
,  $t < hx$ ,  $k|hx + t$  ou  $\neg(k|hx + t)$  com  $x \neg \in t$ 

#### Saída

$$\exists x \; F_3(x) \equiv_{\widehat{T_{\mathbb{Z}}}} \exists x \; F_2(x)$$

### Exemplo

Reunir os termos da fórmula x + x + y < z + 3z + 2y - 4x

DIM0436 20141021

# Método de Cooper (etapa 4)

### Descrição

Seja  $\delta = \text{mmc}\{h|hcoeficientedexem}F_3(x)\}.$ 

2 
$$t < hx \rightarrow h't < \delta x$$
  $h'h = \delta$ 

3 
$$k|hx + t \rightarrow h'k|\delta x + h't$$
  $h'h = \delta$ 

#### Análise da saída

- $\bullet$   $h'k|\cdot \neg k|\cdot$
- A fórmula obtida é  $F_3'$ 
  - ① Seja  $F''_3 = F'_3 \{ \delta x \mapsto x' \}$
  - Seja  $\Gamma_3 = \Gamma_3 \{0x \mapsto x\}$
  - $\exists x' \ F_4(x') = \exists x' \ F''_3(x') \land \delta | x'$
- $\exists x' \ F_4(x') \equiv_{\widehat{T}_x} \exists x \ F_3(x)$ , com literais de  $F_4$  da forma

$$(\mathbf{A})x' < a, (\mathbf{B})b < x', (\mathbf{C})h|x' + c \text{ ou } (\mathbf{D})k|x' + d, x = a, b, c, \text{ ou d}$$

DIM0436 20141021 34

# Método de Cooper (etapa 5)

#### Descrição

- Construir a projeção esquerda infinita  $F_{-\infty}(x')$  de  $F_4(x')$
- Reescrita de
  - $\mathbf{1} \quad \mathbf{x}' < \mathbf{a} \rightarrow \top$
  - ②  $b < x' \rightarrow \bot$
- Seja
  - $\gamma = \text{mmc}\{h \text{ dos literais } h|x'+c, k \text{ dos literais } k|x'+d\}$
  - $B = \{b \text{ dos literais } (\mathbf{B})\}$
- Construir  $F_5 = \bigvee_{j=1}^{\gamma} F_{-\infty}(j) \vee \bigvee_{j=1}^{\gamma} \bigvee_{b \in B} F_4(b+j)$

DIM0436 20141021

#### Exercícios

#### Assunto

Transforme com o método de Cooper as fórmulas abaixo:

$$\exists x \ 3x - 2y + 1 > -y \land 2x - 6 < z \land 4 | 5x + 1$$

$$\exists x \ 2x = y$$

3 
$$\exists x (3x + 1 < 10 \lor 7x - 6 > 7) \land 2|x$$

DIM0436 20141021

#### Resumo

Provadores SAT

2 Teorias da primeira ordem: aritmética

DIM0436

#### Referências



Aaron R. Bradley and Zohar Manna, The Calculus of Computation: Decision Procedures with Applications to Verification, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

Daniel Kroening and Ofer Strichman, Decision Procedures: An Algorithmic Point of View, 1 ed., Springer Publishing Company, Incorporated, 2008.

## Perguntas?



http://dimap.ufrn.br/~richard/dim0436

DIM0436 20141021 39 / 39