

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERT	ru du	TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT					
(51) Classification internationale des brevets ⁶ :		(11) Numéro de publication internationale: WO 98/44121					
C12N 15/34, 15/86, C07K 14/075, C12N 5/10, 7/00, A61K 48/00	A1	(43) Date de publication internationale: 8 octobre 1998 (08.10.98)					
(21) Numéro de la demande internationale: PCT/FR (22) Date de dépôt international: 2 avril 1998 (BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,					
 (30) Données relatives à la priorité: 97/03987 97/04747 17 avril 1997 (02.04.97) 17 avril 1997 (17.04.97) (71) Déposants (pour tous les Etats désignés sauf US): GENE S.A. [FR/FR]; 11, rue de Molsheim, F-670 bourg (FR). CENTRE NATIONAL DE LA RECISCIENTIFIQUE (CNRS) [FR/FR]; 3, rue MichF-75794 Paris Cedex 16 (FR). (72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): LEGRAND [FR/FR]; 40, boulevard Balzac, F-67200 Strasbo MEHTALI, Majid [FR/FR]; 16, impasse de Reims, Illkirch Graffenstaden (FR). BOULANGER, Pierre 6, rue Maguelone, F-34000 Montpellier (FR). (74) Mandataires: MARTIN, Jean-Jacques etc.; Cabine beau, 26, avenue Kléber, F-75116 Paris (FR). 	TRAN 300 Stra HERCH nel Ang O, Valé ourg (FF , F-674	is- HE ge, cie (). (). ()00 ();					

- (54) Title: MODIFIED ADENOVIRAL FIBER AND TARGET ADENOVIRUSES
- (54) Titre: FIBRE ADENOVIRALE MODIFIEE ET ADENOVIRUS CIBLES

(57) Abstract

The invention relates to an adenovirus fiber modified by the mutation of one or more residues. The residues are directed towards the natural cell receptor in the three-dimensional structure of said adenovirus. The invention further relates to a DNA fragment, and expression vector, and a cell line expressing said fiber, and also concerns an adenovirus, the process for producing this type of adenovirus, and a infectable host cell, as well as their therapeutic application and a corresponding pharmaceutical composition.

(57) Abrégé

La présente invention a pour objet une fibre d'un adénovirus modifiée par mutation d'un ou plusieurs résidus, lesdits résidus étant dirigés vers le récepteur cellulaire naturel dudit adénovirus au niveau de la structure tridimensionnelle. Elle concerne également un fragment d'ADN, un vecteur d'expression ainsi qu'une lignée cellulaire exprimant ladite fibre. Enfin, elle a trait à un adénovirus la comprenant, le procédé pour produire un tel adénovirus et une cellule hôte infectable ainsi qu'à leur usage thérapeutique et une composition pharmaceutique correspondante.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israëi	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

10

15

20

25

FIBRE ADENOVIRALE MODIFIEE ET ADENOVIRUS CIBLES.

La présente invention a pour objet une fibre adénovirale mutée dans les régions impliquées dans la reconnaissance et la liaison du récepteur cellulaire naturel des adénovirus. Elle concerne également les adénovirus recombinants portant à leur surface une telle fibre et un ligand qui leur confère une spécificité d'hôte modifiée ou ciblée envers un type cellulaire particulier, les cellules contenant ces adénovirus ainsi qu'une méthode pour préparer des particules virales infectieuses de ces derniers destinées à un usage thérapeutique. L'invention présente un intérêt tout particulier pour des perspectives de thérapie génique, notamment chez l'homme.

Grâce à leurs propriétés particulières, les adénovirus sont employés dans un nombre croissant d'applications en thérapie génique. Mis en évidence dans de nombreuses espèces animales, ils sont peu pathogènes, non-intégratifs et se répliquent aussi bien dans les cellules en division que quiescentes. De plus, ils présentent un large spectre d'hôte et sont capables d'infecter un très grand nombre de types cellulaires tels que les cellules épithéliales, endothéliales, les myocytes, les hépatocytes, les cellules nerveuses et les synoviocytes (Bramson et al., 1995, Curr. Op. Biotech. 6, 590-595). Cependant, cette absence de spécificité d'infection pourrait constituer une limite à l'utilisation des adénovirus recombinants, d'une part, au niveau de la sécurité puisqu'il peut y avoir dissémination du gène recombinant dans l'organisme hôte et, d'autre part, au niveau de l'efficacité puisque le virus n'infecte pas spécifiquement le type cellulaire que l'on souhaite traiter.

D'une manière générale, le génome adénoviral est constitué d'une molécule d'ADN linéaire, bicaténaire et d'environ 36kb contenant les gènes codant pour les protéines virales et à ses extrémités deux répétitions inversées (désignées ITR pour Inverted Terminal Repeat) intervenant dans la réplication et la région d'encapsidation. Les gènes précoces sont répartis en 4 régions dispersées dans le génome adénoviral (E1

WO 98/44121 PCT/FR98/00668

à E4; E pour early en anglais), comportant 6 unités transcriptionnelles munies de leurs propres promoteurs. Les gènes tardifs (L1 à L5; L pour late en anglais) recouvrent en partie les unités de transcription précoces et sont, pour la plupart, transcrits à partir du promoteur majeur tardif MLP (pour Major Late Promoter en anglais).

5

10

15

20

25

A titre indicatif, tous les adénovirus utilisés dans les protocoles de thérapie génique sont déficients pour la réplication par délétion d'au moins la région Elet sont propagés dans une lignée cellulaire de complémentation, qui fournit *en trans* les fonctions virales délétées. On utilise couramment la lignée 293, établie à partir de cellules de rein embryonnaire humain, qui complémente efficacement la fonction El (Graham et al., 1977, J. Gen. Virol. 36, 59-72). Des vecteurs de seconde génération ont récemment été proposés dans la littérature. Ils conservent les régions *en cis* nécessaires à la réplication du virus dans la cellule infectée (ITRs et séquences d'encapsidation) et comportent des délétions internes importantes visant à supprimer l'essentiel des gènes viraux dont l'expression *in vivo* peut conduire à l'établissement de réponses inflammatoires ou immunitaires chez l'hôte. Les vecteurs adénoviraux et leur technique de préparation ont fait l'objet de nombreuses publications accessibles à l'homme du métier.

Le cycle infectieux des adénovirus se déroule en 2 étapes. La phase précoce précède l'initiation de la réplication et permet de produire les protéines précoces régulant la réplication et la transcription de l'ADN viral. La réplication du génome est suivie de la phase tardive au cours de laquelle sont synthétisées les protéines structurales qui constituent les particules virales. L'assemblage des nouveaux virions prend place dans le noyau. Dans un premier temps, les protéines virales s'assemblent de manière à former des capsides vides de structure icosaédrique dans lesquelles le génome est encapsidé. Les adénovirus libérés sont susceptibles d'infecter d'autres cellules permissives. A cet égard, la fibre et le penton base présents à la surface des capsides jouent un rôle critique dans l'attachement cellulaire des virions et leur internalisation.

L'adénovirus se lie à un récepteur cellulaire présent à la surface des cellules

permissives par l'intermédiaire de la fibre trimérique (Philipson et al., 1968, J. Virol. 2, 1064-1075; Defer et al., 1990, J. Virol. 64, 3661-3673). La particule est ensuite internalisée par endocytose par la liaison du penton base aux intégrines cellulaires $\alpha_v \beta_3$ et $\alpha_v \beta_5$ (Mathias et al., 1994, J. Virol. 68, 6811-6814). La capacité de la fibre soluble ou d'anticorps anti-fibre à inhiber l'infection démontre son rôle dans l'attachement cellulaire du virus.

5

10

La fibre est composée de 3 domaines (Chroboczek et al., 1995, Current Top. Microbiol. Immunol. 199, 165-200):

- (1) En N-terminal, la queue très conservée d'un sérotype à l'autre, interagit avec le penton base et assure l'ancrage de la molécule dans la capside.
- (2) La tige est une structure en bâtonnet composée d'un certain nombre de répétitions de feuillets β, ce nombre variant selon les sérotypes.
- Enfin, à l'extrémité distale de la tige, la tête est une structure globulaire sphérique qui contient les signaux de trimérisation (Hong et Engler, 1996, J. Virol. 70, 7071-7078; Novelli et Boulanger, 1991, J. Biol. Chem. 266, 9299-9303; Novelli et Boulanger, 1991, Virology 185, 365-376). De plus, la plupart des données expérimentales montrent que le domaine de la tête est responsable de la liaison aux cellules permissives (Henry et al., 1994, J. Virol 68, 5239-5246; Louis et al., 1994, J. Virol. 68, 4104-4106).
- Des adénovirus "ciblés" dont la fibre native est modifiée de manière à reconnaître un récepteur cellulaire différent ont déjà été proposés dans la littérature. Ainsi, WO94/10323 décrit des mutants de la fibre d'Ad5 dans lesquels une séquence codant pour un fragment d'anticorps (de type scFv) est insérée à la fin de l'une des 22 unités répétitives de la tige dans le but de modifier la spécificité d'infection à l'égard des cellules présentant l'antigène cible. US 5,543,328 décrit une fibre chimère Ad5 dans laquelle le domaine de la tête est remplacé par le facteur de nécrose des turneurs (TNF) de manière à interagir avec le récepteur cellulaire du TNF. Dans une autre construction, la fibre native d'Ad5 est fusionnée à son extrémité C-terminale au peptide ApoE

10

15

20

25

permettant une liaison au récepteur LDL (pour low density lipoprotein en anglais) présent à la surface des cellules hépatiques. WO95/26412 décrit une fibre modifiée par incorporation d'un ligand à l'extrémité C-terminale qui conserve ses capacités de trimérisation. WO96/26281 décrit une fibre chimère obtenue par remplacement d'une partie de la fibre native et, en particulier de la tête, par la partie équivalente d'une fibre adénovirale d'un autre sérotype et, éventuellement, par insertion à l'extrémité C-terminale d'un peptide RGD spécifique de la vitronectine.

Comme précédemment indiqué, la spécificité d'infection d'un adénovirus est déterminée par l'attachement de la fibre adénovirale à un récepteur cellulaire situé à la surface des cellules permissives. La demande de brevet français 97 01005 a mis en évidence le rôle des antigènes du complexe majeur d'histocompatibilité de classe I et des modules III de la fibronectine à titre respectivement de récepteur primaire et de cofacteur des adénovirus. Mais d'autres protéines peuvent intervenir. A cet égard, des travaux récents ont présumé l'utilisation du récepteur cellulaire des coxsachie virus par les adénovirus de types 2 et 5 pour pénétrer dans leurs cellules cibles (Bergelson et al., 1997, Science 275, 1320-1323). Le problème que la présente invention se propose de résoudre est de modifier la région d'interaction de la fibre adénovirale avec le(s) récepteur(s) cellulaire(s) afin d'altérer la spécificité d'hôte naturelle des adénovirus portant la fibre mutée. Pour faciliter la compréhension, on utilisera ci-après le terme «récepteur cellulaire» des adénovirus pour désigner le ou les polypeptides cellulaires intervenant directement ou non dans la liaison des adénovirus à leurs cellules cibles naturelles ou dans la pénétration au sein de ces dernières. Bien entendu, ledit récepteur peut être différent selon les sérotypes. L'addition d'un ligand permet de conférer un nouveau tropisme envers un ou plusieurs types cellulaires spécifiques portant à leur surface une molécule cible reconnue par le ligand en question.

La présente invention constitue une amélioration de la technique antérieure puisqu'elle divulgue les régions de la fibre à muter pour inhiber ou empêcher la liaison au récepteur cellulaire naturel des adénovirus. On a maintenant substitué ou délété un

WO 98/44121 PCT/FR98/00668

ou plusieurs résidus de la région 443 à 462 de la tête de la fibre d'Ad5 et montré une inhibition de l'infectivité des adénovirus correspondants à l'égard des cellules normalement permissives. L'introduction du ligand GRP (pour gastrin releasing peptide en anglais) au sein de ces fibres devrait permettre de cibler l'infection vers les cellules exprimant le récepteur au GRP. Le but de la présente invention est de diminuer les quantités thérapeutiques d'adénovirus à utiliser et de cibler l'infection au niveau des cellules à traiter. Cette spécificité est indispensable lorsque l'on met en oeuvre un adénovirus exprimant un gène cytotoxique pour éviter la propagation de l'effet cytotoxique aux cellules saines. Les avantages procurés par la présente invention sont de réduire les risques de dissémination et les effets secondaires liés à la technologie adénovirale.

5

10

15

20

25

C'est pourquoi la présente invention a pour objet une fibre d'un adénovirus modifiée par mutation d'un ou plusieurs résidus de ladite fibre, caractérisée en ce que lesdits résidus sont dirigés vers le récepteur cellulaire naturel dudit adénovirus.

Le terme "fibre" est largement défini dans la partie introductive. La fibre de la présente invention peut dériver d'un adénovirus d'origine humaine, canine, aviaire, bovine, murine, ovine, porcine ou simienne ou encore être hybride et comprendre des fragments d'origines diverses. Concernant les adénovirus humains, on préfère utiliser ceux de sérotype C et, notamment, les adénovirus de type 2 ou 5 (Ad2 ou Ad5). On indique que la fibre d'Ad2 comporte 580 acides aminés (aa) dont la séquence est divulguée dans Herissé et al. (1981, Nucleic Acid Res. 9, 4023-4042). Celle d'Ad5 présente 582 aa et sa séquence présentée à l'identificateur de séquence 1 (SEQ ID NO: 1) a été déterminée par Chroboczek et Jacrot (1987, Virology 161, 549-554). Lorsque la fibre de la présente invention est originaire d'un adénovirus animal, on a de préférence recours aux adénovirus bovins et, en particulier, ceux de la souche BAV-3. Ces derniers ont fait l'objet de nombreuses études et la séquence de la fibre est divulguée dans la demande internationale WO95/16048. Bien entendu, la fibre de la présente invention peut présenter d'autres modifications par rapport à la séquence native, outre celles qui

WO 98/44121 PCT/FR98/00668

font l'objet de la présente invention.

10

15

20

25

Conformément aux buts poursuivis par la présente invention, la fibre selon l'invention est modifiée de manière à réduire ou abolir sa capacité de liaison au récepteur cellulaire naturel. Une telle propriété peut être vérifiée par l'étude de l'infectivité ou de la liaison cellulaire des virus correspondants en appliquant les techniques de l'art telles que celles détaillées ci-après. Selon un mode de réalisation avantageux, les propriétés de trimérisation et de liaison au penton-base ne sont pas affectées.

Au sens de la présente invention, le terme "mutation" désigne une délétion, une substitution ou encore une addition d'un ou plusieurs résidus ou une combinaison de ces possibilités. On préfère tout particulièrement le cas où les régions d'interaction avec le récepteur cellulaire naturel sont délétées en totalité ou en partie et remplacées notamment par un ligand spécifique d'une protéine de surface cellulaire autre que le récepteur naturel des adénovirus.

La structure crystallographique tridimensionnelle de la tête adénovirale a été déterminée par Xia et al. (1994, Structure 2, 1259-1270). Chaque monomère comporte 8 feuillets β antiparallèles désignés A à D et G à J et 6 boucles majeures de 8 à 55 résidus. Par exemple, la boucle CD relie le feuillet β C au feuillet β D. On indique que les feuillets mineurs E et F sont considérés comme faisant partie de la boucle DG située entre les feuillets D et G. A titre indicatif, le tableau 1 indique la localisation de ces structures dans la séquence en acides aminés de la fibre d'Ad5 telle que montrée à l'identificateur de séquence n° 1 (SEQ ID NO: 1), le +1 représentant le résidu Met initiateur. D'une manière générale, les feuillets forment une structure ordonnée et compacte alors que les boucles sont plus flexibles. Ces termes sont classiques dans le domaine de la biochimie des protéines et sont définis dans les ouvrages de base (voir par exemple Stryer, Biochemistry, 2ème édition, Chap 2, p 11 à 39, Ed Freeman et Compagny, San Francisco).

Tableau 1

feu	illet β	boucle					
nomenclature	résidus	nomenclature	résidus				
A	400 à 403	AB	404 à 418				
В	419 à 428	-	-				
С	431 à 440	CD	441 à 453				
D	454 à 461	DG	462 à 514				
G	515 à 521	GH	522 à 5 28				
Н	529 à 536	НІ	537 à 549				
I	550 à 557	IJ	558 à 572				
J	573 à 578						

Les quatres feuillets \(\beta \), C et J constituent les feuillets V dirigés vers la 5 particule virale. Les quatre autres (D, G, H et I) forment les feuillets R, supposés faire face au récepteur cellulaire. Les feuillets V semblent jouer un rôle important dans la trimérisation de la structure alors que les feuillets R seraient impliqués dans l'interaction avec le récepteur. Les résidus de la fibre d'Ad2, Ad3, Ad5, Ad7, Ad40, Ad41 et de l'adénovirus canin CAV formant ces différentes structures sont clairement indiqués dans la référence précédente.

Les modifications de la fibre adénovirale selon l'invention touchent plus particulièrement le domaine s'étendant de la boucle CD au feuillet I et concernent notamment les résidus 441 à 557 de la fibre Ad5 et 441 à 558 de la fibre d'Ad2. Du fait de leur localisation spatiale dans la fibre native, ces résidus sont susceptibles de reconnaître et/ou interagir directement ou indirectement avec le récepteur cellulaire naturel de l'adénovirus concerné. Au sein de cette région, on préfère modifier la partie qui comprend la boucle CD, le feuillet D et la partie proximale de la boucle DG (positions 441 à 478 de la fibre d'Ad2 et d'Ad5) et, plus particulièrement, la région s'étendant des résidus 443 à 462 pour ce qui est de l'Ad5 ou 451 à 466 dans le cas de l'Ad2. L'autre région cible pour les modifications est le feuillet H (aa 529 à 536 de l'Ad5 fibre et de la fibre d'Ad2). Une autre alternative consiste en la modification des feuillets mineurs E (aa 479-482 Ad5) et F (aa 485-486 Ad5).

Comme indiqué précédemment, on peut opérer par substitution d'un ou plusieurs acides aminés dans les régions exposées. On peut citer à ce titre les exemples suivants qui dérivent de la fibre d'Ad5 dans laquelle :

- le résidu glycine en position 443 est substitué par un acide aspartique,
- le résidu leucine en position 445 est substitué par une phénylalanine,
- 15 le résidu glycine en position 450 est substitué par une asparagine,

5

10

20

25

- le résidu thréonine en position 451 est substitué par une lysine,
 - le résidu valine en position 452 est substitué par une asparagine,
 - le résidu alanine en position 455 est substitué par une phénylalanine,
 - le résidu leucine en position 457 est substitué par une alanine ou une lysine, et/ou
 - le résidu isoleucine en position 459 est substitué par une alanine.

Il est également possible d'introduire plusieurs substitutions au sein de la région ciblée de la fibre notamment au niveau des acides aminés formant un coude, de préférence de type αα (voir le Tableau 2 de Xia et al., 1994, *supra*). Pour illustrer, on peut citer les deux exemples suivants dans lesquels la fibre d'Ad5 est modifiée par substitution :

- du résidu glycine en position 443 par un acide aspartique,
- du résidu sérine en position 444 par une lysine, et

15

- du résidu alanine en position 446 par une thréonine ou encore

- du résidu sérine en position 449 par un acide aspartique,
- du résidu glycine en position 450 par une lysine,
- 5 du résidu thréonine en position 451 par une leucine, et
 - du résidu valine en position 452 par une thréonine.

Bien entendu, les acides aminés de remplacement ne sont mentionnés qu'à titre indicatif et tout acide aminé peut convenir aux fins de la présente invention. On préfère cependant ne pas modifier de façon drastique la structure tridimensionnelle. De préférence, les acides aminés formant un coude seront remplacés par des résidus formant une structure similaire tels que ceux cités dans la référence Xia et al. déjà mentionnée.

La fibre de la présente invention peut également être modifiée par délétion. La région éliminée peut concerner tout ou partie du domaine exposé et, notamment de la boucle CD, du feuillet D, de la boucle DG et/ou des feuillets E et F. Concernant une fibre d'Ad5 selon l'invention, on peut citer plus particulièrement la délétion :

- de la région s'étendant de la sérine en position 454 à la phénylalanine en position 461,
- de la région s'étendant de la valine en position 441 à la glutamine en position 20 453.
 - de la région s'étendant de la valine en position 441 à la phénylalanine en position 461, ou
 - de la région s'étendant de l'asparagine en position 479 à la thréonine en position 486.

Il est également possible de générer d'autres mutants de substitution ou de délétion dans les autres feuillets ou boucles, comme par exemple les feuillets G, H et I et les boucles HI et DG.

Selon un mode de réalisation avantageux, lorsque l'une au moins des

modifications est une délétion d'au moins 3 résidus consécutifs d'une boucle et/ou d'un feuillet, les résidus délétés peuvent être remplacés par des résidus d'une boucle et/ ou d'un feuillet équivalent dérivé d'une fibre d'un second adénovirus susceptible d'interagir avec un récepteur cellulaire différent de celui reconnu par le premier adénovirus. Le second adénovirus peut être d'une origine quelconque humaine ou animale. Ceci permet de maintenir la structure de la fibre selon l'invention tout en lui conférant une spécificité d'hôte correspondant à celle du second adénovirus. Comme indiqué dans Xia et al. (1994, supra), le récepteur cellulaire médiant l'infection des adénovirus de types 2 et 5 est différent de celui interagissant avec les adénovirus de types 3 et 7. Ainsi, une fibre d'Ad5 ou d'Ad2 délétée d'au moins 3 résidus consécutifs parmi ceux spécifiés ci-dessus peut-être substituée par les résidus issus d'une région équivalente de la fibre d'Ad3 ou d'Ad7 pour réduire sa capacité à lier le récepteur d'Ad5 et lui conférer une nouvelle spécificité envers le récepteur cellulaire d'Ad3 ou d'Ad7. A titre d'exemple non limitatif, on peut citer le remplacement des résidus LAPISGTVQSAHLIIRFD (positions 445 à 462) de la fibre d'Ad5 par les résidus VNTLFKNKNVSINVELYFD de la fibre d'Ad3 ou le remplacement des résidus PVTLTITL (position 529 à 536) de la fibre de l'Ad5 par les résidus PLEVTVML de la fibre de l'Ad3.

10

15

20

25

La présente invention concerne également une fibre d'un adénovirus présentant une capacité de liaison au récepteur cellulaire naturel substantiellement réduite et néanmoins capable de trimériser et de lier le penton base. Comme indiqué ci-avant, le récepteur cellulaire naturel est avantageusement choisi parmi le groupe constitué par les antigènes majeurs d'histocompatibilité de classe I, la fibronectine et le récepteur cellulaire des coxsachie virus (CAR) ou tout autre déterminant de surface cellulaire intervenant habituellement ou participant à l'infectivité des adénovirus.

Selon un mode de réalisation également avantageux, la fibre selon l'invention comprend en outre un ligand. Au sens de la présente invention, le terme ligand définit toute entité capable de reconnaître et lier, de préférence avec une forte affinité, une molécule de surface cellulaire différente du récepteur cellulaire naturel. Cette molécule

WO 98/44121 PCT/FR98/00668

- 11 -

peut être exprimée ou exposée à la surface de la cellule que l'on désire cibler (marqueur de surface cellulaire, récepteur, peptide antigénique présenté par les antigènes d'histocompatibilité...). Conformément aux buts poursuivis par la présente invention, un ligand peut être un anticorps, un peptide, une hormone, un polypeptide ou encore un sucre. Le terme anticorps comprend notamment les anticorps monoclonaux, les fragments d'anticorps (Fab) et les anticorps simple chaîne (scFv). Ces dénominations et abréviations sont conventionnelles dans le domaine de l'immunologie.

5

10

15

20

25

Dans le cadre de la présente invention, il peut être intéressant de cibler plus particulièrement une cellule tumorale, une cellule infectée, un type cellulaire particulier ou une catégorie de cellules portant un marqueur de surface spécifique. Par exemple, si la cellule hôte à cibler est une cellule infectée par le virus HIV (Human Immunodeficiency Virus), le ligand peut être un fragment d'anticorps contre la fusine, le récepteur CD4 ou contre une protéine virale exposée (glycoprotéine d'enveloppe) ou encore la partie de la protéine TAT du virus HIV s'étendant des résidus 37 à 72 ; (Fawell et al., 1994, Proc. Natl. Acad. Sci. USA 91, 664-668). S'agissant d'une cellule tumorale, le choix se portera sur un ligand reconnaissant un antigène spécifique de tumeur (par exemple la protéine MUC-1 dans le cas du cancer du sein, certains épitopes des protéines E6 ou E7 du papilloma virus HPV) ou surexprimé (récepteur à l'IL-2 surexprimé dans certaines tumeurs lymphoïdes, peptide GRP pour Gastrin Releasing Peptide surexprimé dans les cellules de carcinome du poumon (Michaël et al., 1995 Gene Therapy 2, 660-668) et dans les tumeurs du pancréas de la prostate et de l'extomac). Si l'on désire cibler les lymphocytes T, on peut employer un ligand du récepteur de cellule T. Par ailleurs, la transferrine est un bon candidat pour un ciblage hépatique. D'une manière générale, les ligands qui peuvent être utilisés dans le contexte de l'invention sont largement décrits dans la littérature et peuvent être clonés par les techniques standards. Il est également possible de les synthétiser par voie chimique et les coupler à la fibre selon l'invention. A cet égard, le couplage de résidus galactosyl devrait conférer une spécificité hépatique en raison de l'interaction avec les récepteurs

aux asialoglycoprotéines. Mais le mode de réalisation préféré consiste à insérer le ligand à l'extrémité C-terminale de la fibre selon l'invention ou en remplacement des résidus délétés lorsque l'une au moins des modifications est une délétion d'au moins 3 résidus consécutifs.

5

10

15

20

25

La présente invention a également trait à un fragment d'ADN codant pour une fibre selon l'invention ainsi qu'à un vecteur d'expression d'un tel fragment. Tout type de vecteur peut être employé à cet effet, qu'il soit d'origine plasmidique ou virale, intégratif ou non. De tels vecteurs sont disponibles commercialement ou décrits dans la littérature. De même, l'homme du métier est capable d'adapter les éléments de régulation nécessaires à l'expression du fragment d'ADN selon l'invention. En outre, il peut être associé à une ou plusieurs substances susceptibles d'améliorer l'efficacité transfectionnelle et/ou la stabilité du vecteur. Ces substances sont largement documentées dans la littérature accessible à l'homme de l'art (voir par exemple Felgner et al., 1989, Proc. West. Pharmacol. Soc. 32, 115-121; Hodgson et Solaiman, 1996, Nature Biotechnology 14, 339-342; Remy et al., 1994, Bioconjugate chemistry 5, 647-654). A titre illustratif et non limitatif, il peut s'agir de polymères, de lipides notamment cationiques, de liposomes, de protéines nucléaires et de lipides neutres. Une combinaison envisageable est un vecteur associé à des lipides cationiques (DC-Chol, DOGS ...etc) et des lipides neutres (DOPE).

La présente invention concerne également un adénovirus dépourvu d'une fibre native fonctionnelle et qui comprend à sa surface une fibre selon l'invention. Celle-ci peut être exprimée par le génome adénoviral ou apportée *en trans* par une lignée cellulaire de complémentation, telle que celles définies ci-après. Il peut en outre comprendre un ligand tel que défini ci-dessus. De préférence, la spécificité de liaison d'un tel adénovirus à son récepteur cellulaire naturel est réduite de manière significative ou mieux abolie, du fait de la fibre modifiée qu'il porte. La perte de la spécificité naturelle peut être évaluée par des études d'attachement cellulaire réalisées en présence de virus marqués (par exemple à la ³H thymidine selon la technique de Roelvink et al.,

1996, J. Virol. 70, 7614-7621) ou par des études d'infectivité de cellules permissives ou exprimant la molécule de surface ciblée par le ligand (voir les exemples qui suivent).

Le ligand peut être couplé de manière chimique à l'adénovirus selon l'invention. Mais, on préfère la variante selon laquelle les séquences codant pour le ligand sont insérées au sein du génome adénoviral, en particulier, au sein des séquences codant pour la fibre modifiée selon l'invention, de préférence, en phase afin de préserver le cadre de lecture. L'insertion peut avoir lieu à un endroit quelconque. Néanmoins, le site d'insertion préféré est en amont du codon stop à l'extrémité C-terminale ou à la place des résidus délétés. Il est également envisageable d'introduire les séquences du ligand au sein d'autres séquences adénovirales, notamment celles codant pour une autre protéine de capside, comme l'hexon ou le penton.

5

10

15

20

25

Avantageusement, un adénovirus selon l'invention est recombinant et défectif pour la réplication, c'est à dire incapable de réplication autonome dans une cellule hôte. La déficience est obtenue par mutation ou délétion d'un ou plusieurs gènes viraux essentiels et, notamment, de tout ou partie de la région E1. Des délétions au sein de la région E3 peuvent être envisagées pour accroître les capacités de clonage. Cependant, il peut être avantageux de conserver les séquences codant pour la protéine gp19k (Gooding et Wood, 1990, Critical Reviews of Immunology 10, 53-71) afin de moduler les réponses immunitaires de l'hôte. Bien entendu, le génome d'un adénovirus selon l'invention peut également comprendre des délétions ou mutations supplémentaires affectant d'autres régions, notamment les régions E2, E4 et/ou L1-L5 (voir par exemple la demande internationale WO94/28152 et Ensinger et al., 1972, J. Virol. 10, 328-339 décrivant la mutation thermosensible du gène DBP de E2).

Selon un mode de réalisation préféré, un adénovirus selon l'invention est recombinant et comprend un ou plusieurs gène(s) d'intérêt placé(s) sous le contrôle des éléments nécessaires à son (leur) expression dans une cellule hôte. Le gène en question peut être d'une origine quelconque, génomique, ADNc (ADN complémentaire) ou hybride (minigène dépourvu d'un ou plusieurs introns). Il peut être obtenu par les

techniques conventionnelles de biologie moléculaire ou par synthèse chimique. Il peut coder pour un ARN anti-sens, un ribozyme ou un ARNm qui sera ensuite traduit en polypeptide d'intérêt. Celui-ci peut être cytoplasmique, membranaire ou être secrété de la cellule hôte. Par ailleurs, il peut s'agir de tout ou partie d'un polypeptide tel que trouvé dans la nature, d'un polypeptide chimère provenant de la fusion de séquences d'origines diverses, ou d'un polypeptide muté par rapport à la séquence native présentant des propriétés biologiques améliorées et/ou modifiées.

Dans le cadre de la présente invention, il peut être avantageux d'utiliser les gènes codant pour les polypeptides suivants :

- cytokines ou lymphokines (interférons α, β et γ, interleukines et notamment l'IL-2, l'IL-6, l'IL-10 ou l'IL-12, facteurs nécrosant des tumeurs (TNF), facteurs stimulateurs de colonies (GM-CSF, C-CSF, M-CSF...);
 - récepteurs cellulaires ou nucléaires, notamment ceux reconnus par des organismes pathogènes (virus, bactéries, ou parasites) et, de préférence, par le virus VIH ou leurs ligands (fas ligand);
 - protéines impliquées dans une maladie génétique (facteur VII, facteur VIII, facteur IX, dystrophine ou minidystrophine, insuline, protéine CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), hormones de croissance (hGH);
- 20 enzymes (uréase, rénine, thrombine....);
 - inhibiteurs d'enzymes (α1-antitrypsine, antithrombine III, inhibiteurs de protéases virales...);
- polypeptides à effet anti-tumoral capables d'inhiber au moins partiellement l'initiation ou la progression de tumeurs ou cancers (anticorps, inhibiteurs agissant au niveau de la division cellulaire ou des signaux de transduction, produits d'expression des gènes suppresseurs de tumeurs, par exemple p53 ou Rb, protéines stimulant le système immunitaire....);
 - protéines du complexe majeur d'histocompatibilité des classes I ou II ou

- protéines régulatrices agissant sur l'expression des genes correspondants ;
- polypeptides capables d'inhiber une infection virale, bactérienne ou parasitaire ou son développement (polypeptides antigéniques ayant des propriétés immunogènes, épitopes antigéniques, anticorps, variants trans-dominants susceptibles d'inhiber l'action d'une protéine native par compétition...):
- toxines (thymidine kinase de virus simplex de l'herpès 1 (TK-HSV-1), ricine, toxine cholérique, diphtérique.....) ou immunotoxines
- marqueurs (β-galactosidase, luciférase....),

20

25

- polypeptide ayant un effet sur l'apoptose (inducteur d'apoptose : Bax.... inhibiteur d'apoptose Bcl2, Bclx), agents cytostatiques (p21, p16, Rb...), les apolipoprotéines (apoE....), SOD, catalase, oxyde nitrique synthase (NOS) ; et
 - facteurs de croissance (FGF pour Fibroblast growth Factor, VEGF pour Vascular Endothelial cell growth Factor....).

Il est à signaler que cette liste n'est pas limitative et que d'autres gènes peuvent également être employés.

Par ailleurs, un adénovirus selon l'invention peut, en outre, comprendre un gène de sélection permettant de sélectionner ou identifier les cellules infectées. On peut citer les gènes néo (codant pour la néomycine phosphotransférase) conférant une résistance à l'antibiotique G418, dhfr (Dihydrofolate Réductase), CAT (Chloramphenicol Acetyl transférase), pac (Puromycine Acétyl-Transferase) ou encore gpt (Xanthine Guanine Phosphoribosyl Transferase). D'une manière générale, les gènes de sélection sont connus de l'homme de l'art.

Par éléments nécessaires à l'expression d'un gène d'intérêt dans une cellule hôte, on entend l'ensemble des éléments permettant sa transcription en ARN et la traduction d'un ARNm en protéine. Parmi ceux-ci, le promoteur revêt une importance particulière. Dans le cadre de la présente invention, il peut dériver d'un gène quelconque d'origine eucaryote ou même virale et peut être constitutif ou régulable. Par ailleurs, il peut être modifié de manière à améliorer l'activité promotrice, supprimer une région inhibitrice

- 16 -

WO 98/44121 PCT/FR98/00668

de la transcription, rendre un promoteur constitutif régulable ou vice versa, introduire un site de restriction..... Alternativement, il peut s'agir du promoteur naturel du gène à exprimer. On peut mentionner, à titre d'exemples, les promoteurs viraux CMV (Cytomegalovirus), RSV (Rous Sarcoma Virus), du gène TK du virus HSV-1, précoce du virus SV40 (Simian Virus 40), adénoviral MLP ou encore les promoteurs eucaryotes des gènes PGK (Phospho Glycerate kinase) murin ou humain, MT (métallothionéine), α1-antitrypsine et albumine (foie-spécifique), immunoglobulines (lymphocyte-spécifique). On peut également employer un promoteur spécifique de tumeur (α fétoprotéine AFP, Ido et al., 1995, Cancer Res. 55, 3105-3109; MUC-1; PSA pour prostate specific antigen, Lee et al., 1996, J. Biol. Chem. 271, 4561-4568; et flt1 specifique des cellules endothéliales, Morishita et al., 1995, J. Biol. Chem. 270, 27948-27953).

5

10

15

Bien entendu, un gène d'intérêt en usage dans la présente invention peut en outre comprendre des éléments additionnels nécessaires à l'expression (séquence intronique, séquence signal, séquence de localisation nucléaire, séquence terminatrice de la transcription, site d'initiation de la traduction de type IRES ou autre....) ou encore à sa maintenance dans la cellule hôte. De tels éléments sont connus de l'homme de l'art.

L'invention concerne également un procédé de préparation d'un adénovirus selon l'invention, selon lequel :

- 20 on transfecte le génome dudit adénovirus dans une lignée cellulaire appropriée,
 - on cultive ladite lignée cellulaire transfectée dans des conditions appropriées pour permettre la production dudit adénovirus, et
 - on récupère ledit adénovirus dans la culture de ladite lignée cellulaire transfectée et, éventuellement, on purifie substantiellement ledit adénovirus.

Le choix de la lignée cellulaire dépend des fonctions déficientes de l'adénovirus selon l'invention et on utilisera une lignée de complémentation capable de fournir en trans la ou les fonction(s) défectueuse(s). La lignée 293 convient pour complémenter la fonction E1 (Graham et al., 1977, J. Gen. Virol. 36, 59-72). Pour une double

15

20

déficience E1 et E2 ou E4, on peut employer une lignée parmi celles décrites dans la demande de brevet français 96 04413. On peut également mettre en oeuvre un virus auxilliaire pour complémenter l'adénovirus défectif selon l'invention dans une cellule hôte quelconque ou encore un système mixte utilisant cellule de complémentation et virus auxilliaire dans lequel les éléments sont dépendants les uns des autres. Les moyens de propagation d'un adénovirus défectif sont connus de l'homme de l'art qui peut se référer par exemple à Graham et Prevec (1991, Methods in Molecular Biology, vol 7, p 190-128; Ed E.J. Murey, The Human Press Inc.). Le génome adénoviral est de préférence reconstitué *in vitro* dans *Escherichia coli (E. coli)* par ligation ou encore recombinaison homologue (voir par exemple la demande française 94 14470). Les procédés de purification sont décrits dans l'état de la technique. On peut citer la technique de centrifugation sur gradient de densité.

La présente invention concerne également une lignée cellulaire comprenant soit sous forme intégrée dans le génome ou sous forme d'épisome un fragment d'ADN codant pour une fibre selon l'invention placé sous le contrôle des éléments permettant son expression. Ladite lignée peut en outre être capable de complémenter un adénovirus déficient pour une ou plusieurs fonctions sélectionnées parmi celles codées par les régions E1, E2, E4 et L1-L5. Elle dérive de préférence de la lignée 293. Une telle lignée peut être utile à la préparation d'un adénovirus dont le génome est dépourvu de tout ou partie des séquences codant pour la fibre (de manière à produire une fibre non fonctionnelle). La présente invention a également pour objet le procédé correspondant, selon lequel :

- on transfecte le génome dudit adénovirus dans une lignée cellulaire selon l'invention,
- on cultive ladite lignée cellulaire transfectée dans des conditions appropriées
 pour permettre la production dudit adénovirus, et
 - on récupère ledit adénovirus dans la culture de ladite lignée cellulaire transfectée et, éventuellement, on purifie substantiellement ledit adénovirus.

WO 98/44121 PCT/FR98/00668

La présente invention couvre également une cellule hôte infectée par un adénovirus selon l'invention ou susceptible d'être obtenu par un procédé selon l'invention. Il s'agit avantageusement d'une cellule de mammifère et, notamment, d'une cellule humaine. Elle peut être primaire ou tumorale et d'une origine quelconque, par exemple hématopoïétique (cellule souche totipotente, leucocyte, lymphocyte, monocyte ou macrophage ...), musculaire (cellule satellite, myocyte, myoblaste, cellule musculaire lisse), cardiaque, nasale, pulmonaire, trachéale, hépatique, épithéliale ou fibroblaste.

5

10

15

20

25

L'invention a également pour objet une composition pharmaceutique comprenant à titre d'agent thérapeutique ou prophylactique, une cellule hôte ou un adénovirus selon l'invention ou susceptible d'être obtenu par un procédé selon l'invention, en association avec un support acceptable d'un point de vue pharmaceutique. La composition selon l'invention est, en particulier, destinée au traitement préventif ou curatif de maladies telles que les maladies génétiques (hémophilie, mucoviscidose, diabète ou myopathie de Duchenne, de Becker...), les cancers, comme ceux induits par des oncogènes ou des virus, les maladies virales, comme l'hépatite B ou C et le SIDA (syndrome de l'immunodéficience acquise résultant de l'infection par le VIH), les maladies virales récurrentes, comme les infections virales provoquées par le virus de l'herpès et les maladies cardiovasculaires dont les resténoses.

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier, on associe une quantité thérapeutiquement efficace de l'agent thérapeutique ou prophylactique à un support tel qu'un diluant. Une composition selon l'invention peut être administrée par voie locale, systémique ou par aérosol, en particulier par voie intragastrique, sous-cutanée, intracardiaque, intramusculaire, intraveineuse, intrapéritonéale, intratumorale, intrapulmonaire, intranasale ou intratrachéale. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. La voie d'administration et le dosage appropriés varient en fonction de divers paramètres, par exemple, de l'individu ou de la maladie à traiter ou encore du ou des gène(s) d'intérêt à transférer. En

10

15

20

particulier, les particules virales selon l'invention peuvent être formulées sous forme de doses comprises entre 10⁴ et 10¹⁴ ufp (unités formant des plages), avantageusement 10⁵ et 10¹³ ufp et, de préférence, 10⁶ et 10¹² ufp. La formulation peut également inclure un diluant, un adjuvant, un excipient acceptable d'un point de vue pharmaceutique de même qu'un agent de stabilisation, de préservation et/ou de solubilisation. Une formulation en solution saline, non aqueuse ou isotonique convient particulièrement à une administration injectable. Elle peut être présentée sous forme liquide ou sèche (par exemple lyophilisat...) ou tout autre forme gallénique couramment employée dans le domaine pharmaceutique.

Enfin, la présente invention est relative à l'usage thérapeutique ou prophylactique d'un adénovirus ou d'une cellule hôte selon l'invention ou d'un adénovirus susceptible d'être obtenu par un procédé selon l'invention, pour la préparation d'un médicament destiné au traitement du corps humain ou animal par thérapie génique. Selon une première possibilité, le médicament peut être administré directement *in vivo* (par exemple par injection intraveineuse, dans une tumeur accessible, dans les poumons par aérosol...). On peut également adopter l'approche *ex vivo* qui consiste à prélever des cellules du patient (cellules souches de la moëlle osseuse, lymphocytes du sang périphérique, cellules musculaires...), de les transfecter ou infecter *in vitro* selon les techniques de l'art et de les réadminister au patient.

L'invention s'étend également à une méthode de traitement selon laquelle on administre une quantité thérapeutiquement efficace d'un adénovirus ou d'une cellule hôte selon l'invention à un patient ayant besoin d'un tel traitement.

EXEMPLES

25

Les exemples suivants n'illustrent qu'un mode de réalisation de la présente invention.

Les constructions décrites ci-dessous sont réalisées selon les techniques générales

de génie génétique et de clonage moléculaire, détaillées dans Maniatis et al., (1989, Laboratory Manual, Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY) ou selon les recommandations du fabricant lorsqu'on utilise un kit commercial. Les étapes de clonage mettant en oeuvre des plasmides bactériens sont réalisées de préférence dans la souche *E. coli* 5K (Hubacek et Glover, 1970, J. Mol. Biol. 50, 111-127) ou BJ 5183 (Hanahan, 1983, J. Mol. Biol. 166, 557-580). On utilise préférentiellement cette dernière souche pour les étapes de recombinaison homologue. La souche NM522 (Stratagène) convient à la propagation des vecteurs phagiques M13. Les techniques d'amplification par PCR sont connues de l'homme de l'art (voir par exemple PCR Protocols-A guide to methods and applications, 1990, edité par Innis, Gelfand, Sninsky et White, Academic Press Inc). S'agissant de la réparation des sites de restriction, la technique employée consiste en un remplissage des extrémités 5' protubérantes à l'aide du grand fragment de l'ADN polymérase I d'*E. coli* (Klenow). Les séquences nucléotidiques Ad5 sont celles utilisées dans la banque de donnée Genebank sous la référence M73260.

5

10

15

20

25

En ce qui concerne la biologie cellulaire, les cellules sont transfectées selon les techniques standards bien connues de l'homme du métier. On peut citer la technique au phosphate de calcium (Maniatis et al., *supra*), mais tout autre protocole peut également être employé, tel que la technique au DEAE dextran, l'électroporation, les méthodes basées sur les chocs osmotiques, la microinjection ou les méthodes basées sur l'emploi de lipides cationiques. Quant aux conditions de culture, elles sont classiques. Dans les exemples qui suivent, on a recours à la lignée humaine 293 (ATCC CRL1573) et aux lignées murines Swiss 3T3 (ATCC CCL92), NR6 (Wells et al., 1990, Science 247: 962-964), NR6-hEGFR (Schneider et al., 1986, Proc. Natl. Acad. Sci. USA 83, 333-336), Daudi HLA- (ATCC CCL213) et Daudi HLA+ (Quillet et al., 1988, J. Immunol. 141, 17-20). On indique que la lignée Daudi est établie à partir d'un lymphome de Burkitt et est naturellement déficiente en l'expression de la β-2 microglobuline et, de ce fait, ne possède pas à sa surface les molécules HLA de classe I (Daudi HLA-). La lignée

WO 98/44121 PCT/FR98/00668

- 21 -

cellulaire E8.1 dérivée des Daudi a été générée par transfection d'un gène codant pour la β-2 microglobuline afin de restaurer l'expression de molécules HLA de classe I à leur surface (Daudi-HLA+; Quillet et al., 1988, J. Immunol. 141, 17-20). Il est entendu que d'autres lignées cellulaires peuvent également être utilisées.

5

15

20

25

EXEMPLE 1: Construction d'un adénovirus présentant un tropisme d'hôte envers les cellules exprimant le récepteur du GRP (pour gastrin releasing peptide en anglais).

10 A. Insertion des séquences codant pour le ligand GRP (fibre-GRP).

Le plasmide pTG6593 derive du p poly II (Lathe et al., 1987, Gene 57, 193-201) par introduction du gène complet codant pour la fibre d'Ad5 sous la forme d'un fragment EcoRI-SmaI (nucléotides (nt) 30049 à 33093). Le fragment HindIII-SmaI (nt 31994-33093) est isolé et cloné dans M13TG130 (Kieny et al., 1983, Gene 26, 91-99) digéré par ces mêmes enzymes, pour donner M13TG6526. Ce dernier est soumis à une mutagénèse dirigée à l'aide de l'oligonucléotide oTG7000 (SEQ ID NO: 2) (kit Sculptor, in vitro mutagenesis, Amersham) afin d'introduire un adaptateur codant pour un bras espaceur de 12 acides aminés de séquence PSASASASAPGS. Le vecteur muté ainsi obtenu, M13TG6527, est soumis à une seconde mutagénèse permettant d'introduire la séquence codant pour les 10 résidus du peptide GRP (GNHWAVGHLM ; Michael et al., 1995, Gene Ther. 2, 660-668). On utilise à cet effet l'oligonucléotide oTG7001 (SEQ ID NO: 3). Le fragment HindIII-SmaI est isolé du phage muté M13TG6528 et introduit par la technique de recombinaison homologue (Chartier et al., 1996, J. Virol. 70, 4805-4810) dans le plasmide pTG6590 portant le fragment de génome adénoviral Ad5 s'étendant des nt 27081 à 35935 et linéarisé par MunI (nt 32825). Le fragment Spel-Scal (portant les nt 27082 à 35935 du génome Ad5 modifiés par introduction du bras espaceur et du peptide GRP) est isolé du vecteur précédent

15

20

désigné pTG8599 puis est échangé contre le fragment équivalent de pTG6591 préalablement digéré par ces mêmes enzymes. A titre indicatif, pTG6591 comprend les séquences adénovirales sauvages des positions 21562 à 35935. On obtient pTG4600 dont on isole le fragment *Bst*EII (nt 24843 à 35233). Après recombinaison homologue avec le plasmide pTG3602 qui comprend le génome Ad5 (décrit plus en détail dans la demande internationale WO96/17070), on génère le vecteur pTG4601.

Une cassette permettant l'expression du gène LacZ est introduite à la place de la région adénovirale E1 par recombinaison homologue entre le plasmide pTG4601 linéarisé par ClaI et un fragment BsrGI-PstI comprenant le gène LacZ codant pour la β-galactosidase sous le contrôle du promoteur MLP d'Ad2 et le signal de polyadénylation du virus SV40. Ce fragment est isolé du vecteur pTG8526 contenant l'extrémité 5' de l'ADN génomique viral (nt 1 à 6241) dans lequel la région E1 (nt 459 à 3328) est remplacée par la cassette d'expression LacZ. Sa construction est à la portée de l'homme du métier. Le vecteur final est désigné pTG4628.

Les virus correspondants AdTG4601 et AdTG4628 sont obtenus par transfection des fragments adénoviraux libérés des séquences plasmidiques par digestion *PacI* dans la lignée 293. A titre indicatif, AdTG4601 porte le génome Ad5 complet dans lequel le gène de la fibre comprend en son extrémité 3' un bras espaceur suivi du peptide GRP. Le virus recombinant AdTG4628 porte en outre la cassette d'expression du gène rapporteur LacZ sous le contrôle du promoteur adénoviral MLP.

B. Etude du tropisme du virus portant la fibre-GRP.

La présence du peptide GRP au niveau de la fibre adénovirale permet de cibler les cellules exprimant à leur surface le récepteur au GRP. L'expression des messagers codant pour ce dernier est étudiée dans les cellules 293 et dans les cellules murines Swiss-3T3 (Zachary et al., 1985, Proc. Natl. Acad. Sci. USA 82, 7616-7620) par Northern-blot. On utilise à titre de sonde un mélange de 2 fragments d'ADN

complémentaires à la séquence codant pour le récepteur au GRP marqués par les techniques conventionnelles à l'isotope ³²P. A titre indicatif, les fragments sont produits par PCR réverse à partir des ARN cellulaires totaux à l'aide des oligonucléotides oTG10776 (SEQ ID NO: 4) et oTG10781(SEQ ID NO: 5) (Battey et al., 1991, Proc. Natl. Acad. Sci. USA 88, 395-399; Corjay et al., 1991, J. Biol. Chem. 266, 18771-18779). L'intensité des ARNm détectés est beaucoup plus importante dans le cas des cellules Swiss-3T3 que dans les cellules 293, indiquant la surexpression du récepteur GRP par la lignée murine.

Des expériences de compétition sont réalisées sur les 2 types de cellules. Le compétiteur est constitué par la tête de la fibre d'Ad5 produite dans E.coli dont les propriétés de liaison au récepteur cellulaire adénoviral ont été montrées (Henry et al., 1994, J. Virol 68, 5239-5246). Les cellules en monocouche sont préalablement incubées pendant 30 min en présence de PBS ou de concentrations croissantes de tête Ad5 recombinante (0,1 à 100 μg/ml) dans du milieu DMEM (Gibco BRL) complémenté avec du sérum de veau foetal 2% (FCS). Puis, le virus AdTG4628 dont la fibre contient le peptide GRP est ajouté à une multiplicité d'infection de 0,001 unité infectieuse/cellule pour 24h à 37°C. On utilise à titre de contrôle et selon les mêmes conditions expérimentales, le virus recombinant AdLacZ (Stratford-Perricaudet et al., 1992, J. Clin. Invest. 90, 626-630) qui porte un gène de la fibre natif. Les cellules sont ensuite fixées et l'expression du gène LacZ évaluée (Sanes et al., 1986, EMBO J. 5, 3133-3142). Le nombre de cellules bleues est représentatif de l'efficacité de l'infection virale. Une inhibition par compétiton se traduit par une réduction du nombre de cellules colorées par rapport à un témoin sans compétiteur (PBS).

10

15

20

25

L'addition de tête Ad5 recombinante à une concentration de 100 µg/ml inhibe fortement l'infection des cellules 293 par les virus AdLacZ et AdTG4628 (taux d'inhibition de 95 et 98%). Ceci suggère que la présence du compétiteur empêche l'interaction de la fibre adénovirale avec son récepteur cellulaire naturel. Par contre, les deux virus ont un comportement différent sur les cellules Swiss-3T3. L'infection du

- 24 -

virus AdTG4628 en présence de 100 μg/ml de compétiteur n'est que partiellement inhibée alors que, dans les mêmes conditions expérimentales, celle du virus AdLacZ ayant la fibre native est totalement inhibée. Ces résultats suggèrent que l'infection des cellules Swiss-3T3 par l'AdTG4628 est en partie médiée par un récepteur indépendant, probablement le récepteur au GRP que ces cellules surexpriment. En conclusion, l'addition du ligand GRP à l'extrémité C-terminale de la fibre favorise l'infection des cellules exprimant le récepteur au GRP d'une manière indépendante de l'intéraction fibre-récepteur cellulaire naturel.

10 EXEMPLE 2 : Construction d'un adénovirus présentant un tropisme d'hôte envers

les cellules exprimant le récepteur à l'EGF (Epidermal Growth
Factor en anglais).

Cet exemple décrit une fibre portant les séquences EGF à son extrémité Cterminale. Pour cela, on met en oeuvre les oligonucléotides oTG11065 (SEQ ID NO:
6) et oTG11066 (SEQ ID NO: 7) pour amplifier un fragment *Hind*III-*Xba*I à partir du
plasmide M13TG6527. Les oligonucléotides oTG11067 (SEQ ID NO: 8) et oTG11068
(SEQ ID NO: 9) permettent de générer un fragment *XhoI-Sma*I (allant du codon stop
jusqu'au nt 33093) à partir de M13TG6527. L'ADN complémentaire de l'EGF, obtenu
de l'ATCC (#59957), est amplifié sous forme d'un fragment *XhoI-Xba*I à l'aide des
oligonucléotides oTG 11069 (SEQ ID NO: 10) et oTG11070 (SEQ ID NO: 11). Les
3 fragments digérés par les enzymes adéquates sont ensuite religués pour donner un
fragment *Hind*III-*Sma*I contenant l'EGF fusionné à l'extrémité C-terminale de la fibre.
On applique la même procédure de recombinaison homologue que celle décrite à
l'exemple 1 pour replacer ce fragment dans son contexte génomique.

Cependant, on peut simplifier les étapes de clonage en introduisant un site unique BstBI dans la région ciblée par les techniques classiques de mutagénèse. On obtient pTG4609 et pTG4213 avec LacZ. La recombinaison homologue entre pTG4609 WO 98/44121 PCT/FR98/00668

- 25 -

linéarisé par *Bst*B1 et le fragment *Hind*III-*Sma*1 précédant génère le plasmide pTG4225 portant la région E1 sauvage. Son équivalent portant la cassette d'expression LacZ pTG4226 est obtenu par recombinaison homologue avec le pTG4213 digéré par *Bst*B1. Les virus AdTG4225 et AdTG4226 peuvent être produits classiquement par transfection d'une lignée cellulaire appropriée par exemple surexprimant le récepteur de l'EGF.

Pour tester la spécificité d'infection de ces virus, on peut utiliser les cellules fibroblastiques murines NR6 et les cellules NR6-hEGFR exprimant le récepteur de l'EGF humain. Des compétitions avec la tête d'Ad5 recombinante ou avec l'EGF permettent d'évaluer l'intervention des récepteurs cellulaires naturels et EGF pour médier l'infection des virus.

EXEMPLE 3 : Modifications de la tête de la fibre pour éliminer la liaison au récepteur cellulaire naturel.

15

10

5

La mutation de la région de la fibre adénovirale impliquée dans l'interaction avec le récepteur cellulaire naturel a été entreprise afin d'éliminer la capacité de la fibre à lier son récepteur naturel et l'addition d'un ligand permettra de modifier le tropisme des adénovirus correspondants.

20

25

Les séquences de la fibre Ad5 codant pour la région s'étendant des résidus 443 à 462 et 529 à 536 ont été soumises à diverses mutations. La délétion du feuillet D met en oeuvre l'oligonucléotide de mutagénèse oTG7414 (SEQ ID NO: 12) et la délétion de la boucle CD l'oligonucléotide oTGA (SEQ ID NO: 13). L'oligonucléotide oTGB (SEQ ID NO: 14) permet quant à lui la délétion de la boucle CD et du feuillet D. L'oligonucléotide OTG 7416 (SEQ ID NO: 38) permet la délétion du feuillet H. Tous ces oligonucléotides contiennent un site *Bam*HI permettant de détecter facilement les mutants et, également, d'insérer les séquences codant pour un ligand, par exemple le peptide EGF.

Une autre série de modifications consiste à remplacer ces régions délétées par les séquences équivalentes issues de la fibre d'Ad3 (D+CD5 en D+CD3 signifie que la région CD et D de la fibre Ad5 est remplacée par son équivalent d'Ad3). En effet, de nombreuses données montrent que l'Ad5 et l'Ad3 ne se lient pas au même récepteur, de sorte qu'une telle substitution devrait abolir l'infection médiée par le récepteur Ad5 et cibler les cellules portant le récepteur Ad3. Le remplacement de la boucle CD Ad5 par celle de l'Ad3 met en oeuvre oTG11135 (SEQ ID NO: 15), le remplacement du feuillet D de la fibre Ad5 par celui de la fibre Ad3 est effectué par l'oligonucléotide oTG10350 (SEQ ID NO: 16) et le remplacement du feuillet D et de la boucle CD de l'Ad5 par ceux de l'Ad3 est réalisé sur le mutant précédent à l'aide de oTG11136 (SEQ ID NO: 17). Le remplacement du feuillet H est réalisé à l'aide de l'oligonucléotide OTG 10352 (SEQ ID NO: 39).

On a également modifié cette région cible de la tête adénovirale par une série de mutations ponctuelles :

- remplacement du coude αα GSLA en coude αα DKLT: oTGC (SEQ ID NO: 18),
 - remplacement du coude $\alpha\alpha$ SGTV en coude $\alpha\alpha$ DKLT : oTGD (SEQ ID NO: 19),
 - G443 en D (G443D): oTGE (SEQ ID NO: 20),
- 20 L445 en F (L445F): oTGF (SEQ ID NO: 21),
 - G450 en N (G450N): oTGG (SEQ ID NO: 22),
 - T451 en K (T451K): oTGH (SEQ ID NO: 23),
 - V452 en N (V425N): oTGI (SEQ ID NO: 24),
 - A 455 en F (A455F) : oTGJ (SEQ ID NO: 25),
- 25 L457 en K (L457K): oTGK (SEQ ID NO: 26).
 - I459 en A (I459A): oTG L (SEQ ID NO: 27).

Les oTGE à I introduisent des mutations dans la boucle CD de la fibre

15

20

25

adénovirale sur des acides aminés qui sont non conservatifs entre l'Ad5 et l'Ad3 alors que les oTGJ à K concernent des acides aminés du feuillet D non engagés dans une liaison hydrogène stabilisant la structure.

Les mutagénèses peuvent être réalisées sur le vecteur M13TG6526 ou M13TG6528. Le premier porte le fragment *Hind*III-SmaI sauvage et le second ce même fragment modifié par l'insertion des séquences GRP. Les plasmides portant le génome adénoviral peuvent être reconstitués comme décrit auparavant pour les plasmides pTG4609 (E1 sauvage) et pTG4213 (LacZ à la place de la région E1). Les virus sont générés par transfection des cellules 293 ou bien de cellules surexprimant le récepteur liant le ligand concerné. De telles cellules peuvent être générées par transfection de l'ADN complémentaire correspondant. On utilise de préférence des cellules qui n'expriment pas naturellement le récepteur cellulaire naturel des adénovirus, par exemple la lignée Daudi (ATCC CCL213).

La viabilité des différents mutants est évaluée par transfection de cellules 293 et 293-Fb+ (cellules 293 transfectées par un vecteur d'expression de la fibre d'Ad5 sauvage). Cependant, l'efficacité de transfection est variable d'une expérience à l'autre, même en ce qui concerne un adénovirus portant une fibre sauvage ayant incorporée le peptide GRP à son extrémité C-terminale (AdFbGRP). Pour standardiser les résultats, les plages obtenues après transfection des cellules 293-Fb+ sont tout d'abord amplifiées sur cette même lignée et les virus générés sont titrés : à ce stade ils peuvent porter soit la fibre sauvage soit la fibre mutante ou les 2 types. Les cellules 293 sont alors infectées avec ces virus à une faible multiplicité d'infection ne permettant d'infecter qu'environ 10% des cellules (MOI d'environ 0,2 unité infectieuse/cellule) et on détermine l'étendue de l'infection virale à 7 jours post-infection en mesurant l'accumulation de l'ADN viral et le titre viral. La propagation de l'infection étant dépendante de la fibre mutée, les mutants intéressants sont ceux qui ne donnent pas lieu à une infection productive, montrant que la mutation altère la liaison au récepteur naturel. La capacité de propagation des adénovirus portant la fibre mutée est comparée à celle d'un adénovirus

sauvage et d'un AdFbGRP.

5

10

15

20

25

Les résultats montrent que l'insertion du peptide GRP à l'extrémité de la fibre sauvage réduit légèrement la croissance du virus correspondant par rapport à un Ad sauvage, mais le facteur de multiplication est néanmoins de l'ordre de 1000. Les mutations V452N, D+CD5 en D+CD3 et L445F réduisent de manière significative (facteur 3 à 11) l'affinité de la tête de la fibre mutée pour le récepteur cellulaire naturel des adénovirus. Les mutations ΔD (délétion du feuillet D de la fibre Ad5), ΔCD+D (délétion de la boucle CD et du feuillet D), CD5 en CD3 (remplacement de la boucle CD d'un Ad5 par son équivalent d'un Ad3), G443D, A455F, L457K et I459A abolissent la propagation des virus correspondants dans les cellules 293 (facteur de multiplication inférieur à 1).

Puis on vérifie la capacité des virus mutants à pénétrer dans les cellules cibles par le biais du récepteur au GRP. Les mutants intéressants sont ceux qui présentent un facteur de multiplication significatif (supérieur à 1). A ce titre, on peut employer une lignée désignée 293-GRPR exprimant le MHC-I et le récepteur au GRP à des niveaux élevés. Elle est générée par transfection des cellules 293 par un plasmide d'expression eucaryotique portant l'ADNc du récepteur au GRP (Corjay et al., 1991, J. Biol. Chem. 266, 18771-18779). La cassette d'expression est constituée par le promoteur CMV précoce (Boshart et al., 1985, Cell 41, 521), les séquences d'épissage du gène β-globine, l'ADNc codant pour le récepteur au GRP et les séquences polyA du gène β-globine. La sélection des transformants est effectuée en présence d'hygromycine (350 μg/ml) et 50 clones sont sélectionnés, amplifiés et testés pour l'expression de l'ARNm codant pour le récepteur par la technique de Northern. Les clones les plus producteurs sont rassemblés et désignés 293-GRPR. L'expression de la protéine peut également être controlée par FACS à l'aide d'un peptide GRP conjugué à la biotine et à l'avidine-FITC suivi d'une détection à l'aide de fluorosceine.

EXEMPLE 4: Insertion du ligand dans une protéine de capside autre que la fibre

10

15

20

25

en association avec une des modifications de la fibre précitées.

Cet exemple décrit l'insertion du ligand EGF dans la protéine de capside hexon. Bien entendu, il est préférable que l'adénovirus correspondant ait perdu sa capacité d'attachement au récepteur cellulaire naturel. Son génome peut par exemple inclure un gène de la fibre modifié (voir exemple 3) ou être dépourvu d'une partie au moins des séquences de la fibre.

On construit un plasmide de transfert pour la recombinaison homologue couvrant la région du génome d'Ad5 codant pour l'hexon (nt 18842-21700). Le fragment d'Ad5 HindIII-XhoI (nt 18836-24816) est cloné dans pBSK+ (Stratagène) digéré par ces mêmes enzymes pour donner le plasmide pTG4224. Les séquences codant pour le peptide EGF sont introduites dans la boucle hypervariable L1 de l'hexon par création de fragments chimériques par PCR : hexon (nt19043-19647)-XbaI-EGF-BsrGI-hexon (nt19699-20312). Le fragment nt19043 à 19647 est obtenu par amplification PCR à partir du plasmide pTG3602 avec les oligonucléotides oTG11102 (SEQ ID NO: 28) et oTG11103 (SEQ ID NO: 29). Le fragment nt19699 à 20312 est amplifié à partir du même ADN avec les oligonucléotides oTG11104 (SEQ ID NO: 30) et oTG11105 (SEQ ID NO: 31). L'EGF est cloné à partir de l'ADNc à l'aide des oligonucléotides oTG11106 (SEQ ID NO: 32) et oTG11107 (SEQ ID NO: 33) permettant de mettre la séquence codante de l'EGF en phase avec l'hexon. Les produits PCR sont digérés par les enzymes adéquates puis religués. Le fragment chimérique peut alors être inséré par recombinaison homologue dans le plasmide pTG4224 linéarisé par NdeI (nt 19549), pour donner pTG4229. Les séquences codant pour l'hexon modifié peuvent être obtenues par digestion HindIII-XhoI et replacées dans leur contexte génomique par recombinaison homologue. On peut utiliser le vecteur pTG3602, pTG4607, pTG4629 linéarisé par Sg/I ou un vecteur portant le génome adénoviral délété des séquences de la fibre (comme pTG4607 décrit ci-dessous) ou exprimant une fibre modifiée conformément à l'exemple 3.

10

15

PCT/FR98/00668

Le génome adénoviral incapable de produire une fibre native fonctionnelle est obtenu par une délétion touchant le codon initiateur mais ne s'étendant pas aux autres ORFs adénoviraux. On procède de la façon suivante: le fragment adénoviral en 5' de la délétion (nt 30564 à 31041) est amplifié par PCR à l'aide des amorces oTG7171 et oTG7275 (SEQ ID NO: 34 et 35). L'amplification du fragment en 3' (nt 31129 à 33099) met en oeuvre les amorces oTG7276 et oTG7049 (SEQ ID NO: 36 et 37). Les fragments PCR sont digérés par XhoI et mis en ligation avant d'être introduits par recombinaison homologue dans le vecteur pTG6591 linéarisé par NdeI, pour donner pTG4602. Puis le fragment BstEII isolé de ce dernier est soumis à une recombinaison homologue avec le vecteur pTG3602 digéré par SpeI. On obtient pTG4607. Le vecteur pTG4629 est équivalent à pTG4607, mais porte en outre la cassette d'expression LacZ à la place de E1.

Les virus correspondants peuvent être obtenus après transfection de cellules 293, 293-Fb+ ou de cellules surexprimant le récepteur de l'EGF. L'étude de la spécificité d'infection pourra être réalisée comme décrit auparavant en utilisant l'EGF en tant que compétiteur.

EXEMPLE 5: Construction d'un mutant de la fibre délété des feuillets E et F.

On a également généré un mutant de délétion des feuillets EF du domaine de la tête de la fibre d'Ad5. Le plasmide pTG6593 est digéré par HindIII et SmaI et le fragment portant les séquences de la fibre est isolé et cloné dans le vecteur M13TG130 clivé par HindIII et SmaI. La mutation délétère met en oeuvre l'oligonucléotide indiqué dans la SEQ ID NO: 40. Le fragment HindIII-SmaI muté est recombiné dans E. coli avec pTG4609 linéarisé par BstBI (Chartier et al., 1996, J. Virol. 70, 4805-4810). Ce dernier contient le génome Ad5 complet comportant un site BstBI en position 32940 en aval du codon stop de la fibre.

La capacité à trimériser de la fibre modifiée est testée sur gel NDS-PAGE

10

15

20

(Novelli et Boulanger, J. of Biological Chemistry, 1991, 266, 9299-9303) à partir de la protéine produite par voie recombinante dans les cellules d'insectes Sf9 à l'aide d'un baculovirus recombinant portant les séquences correspondantes placées sous le contrôle du promoteur polyhédrine. En parallèle, la viabilité (ou capacité à se propager) des virions portant la fibre mutée est déterminée par transfection des cellules 293 et 293Fb+. Enfin, la liaison de la fibre aux récepteurs cellulaires MHC-I et CAR peut être étudiée dans des expériences de compétition d'infection d'un adénovirus recombinant Ad5-Luc sur les cellules Daudi-HLA+ et CHO-CAR (Bergelson et al., 1997, Science 275, 1320-1323). A titre indicatif, le virus Ad5Luc est un adénovirus compétent pour la réplication qui contient le gène luciférase placé sous le contrôle du promoteur précoce du virus SV40 (Virus simien 40) inséré dans la région E3 du génome adénoviral (Mittal et al., 1993, Virus Research 28, 67-90).

La fibre ΔEF s'accumule sous forme de trimères, peut se propager dans les cellules 293 et 293Fb+ et n'est pas un compétiteur pour l'infection des cellules Daudi-HLA+ par l'Ad5Luc. Elle est capable d'inhiber partiellement l'infection des cellules CHO-CAR, mais moins efficacement que la fibre sauvage. Ceci suppose que les feuillets E et F sont importants pour l'attachement de l'Ad5 au récepteur MHC-I alors qu'il joue un rôle plus mineur, peut être de stabilisation dans la liaison au CAR. L'insertion d'un nouveau ligand devrait permettre de rediriger l'infectivité vers les cellules portant le récepteur reconnu par le ligand.

PCT/FR98/00668 WO 98/44121

- 32 -

LISTE DE SEQUENCES

(1) INFORMATION GENERALE:

- (i) DEPOSANT:
 - (A) NOM: Transgene S.A
 - (B) RUE: 11 rue de Molsheim
 - (C) VILLE: Strasbourg
 (E) PAYS: France

 - (F) CODE POSTAL: 67000
 - (G) TELEPHONE: (33) 03 88 27 91 00 (H) TELECOPIE: (33) 03 88 27 91 11

 - (A) NOM: Centre National de la Recherche Scientifique (CNRS)
 - (B) RUE: 3 rue Michael Ange
 - (C) VILLE: Paris
 - (E) PAYS: France
 - (F) CODE POSTAL: 75794 Cedex 16
 - (G) TELEPHONE: (33) 01 44 96 40 00
 - (H) TELECOPIE: (33) 01 44 96 50 00
- (ii) TITRE DE L' INVENTION: Fibre adenovirale modifiee et adenovirus cibles
- (iii) NOMBRE DE SEQUENCES: 40
- (iv) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)
- (2) INFORMATION POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 581 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: protéine
 - (iii) HYPOTHETIQUE: NON
 - (vi) ORIGINE:
 - (A) ORGANISME: Mastadenovirus
 - (B) SOUCHE: adenovirus 5
 - (C) INDIVIDUEL ISOLE: fibre Ad5
 - (viii) POSITION DANS LE GENOME:
 - (B) POSITION SUR LA CARTE: 31063 a 33120 du genome Ad5
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro 20 25 30Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Ser Asn Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu 105 Thr Val Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln Thr Ser Gly Pro Leu Thr Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu 185 Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly 200 Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr 225 Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn

Lys 305	Gly	Leu	Tyr	Leu	Phe 310	Thr	Ala	Ser	Asn	Asn 315	Ser	Lys	Lys	Leu	Glu 320
Val	Asn	L∈u	Ser	Thr 325	Ala	Lys	Gly	Leu	Met 330		Asp	Ala	Thr	Ala 335	
Ala	Ile	Asn	Ala 340	Gly	Asp	Gly	Leu	Glu 345	Phe	Gly	ser	Pro	Asn 350	Ala	Pro
Asn	Thr	Asn 355	Pro	Leu	Lys	Thr	Lys 360	Ile	Gly	His	Gly	Leu 365	Glu	Phe	Asp
Ser	Asn 370	Lys	Ala	Met	Val	Pro 375	Lys	Leu	Gly	Thr	Gly 380	Leu	Ser	Phe	Asp
Ser 385	Thr	Gly	Alā	Ile	Thr 390	Val	Gly	Asn	Lys	Asn 395	Asn	Asp	Lys	Leu	Thr 400
Leu	Trp	Thr	Thr	Pro 405	Ala	Pro	Ser	Pro	Asn 410	Cys	Arg	Leu	Asn	Ala 415	Glu
Lys	Asp	Ala	Lys 420	Leu	Thr	Leu	Val	Leu 425	Thr	Lys	Cys	Gly	Ser 430	Gln	Ile
Leu	Ala	Thr 435	Val	Ser	Val	Leu	Ala 440	Val	Lys	Gly	Ser	Leu 445	Ala	Pro	Ile
Ser	Gly 450	Thr	Val	Gln	Ser	Ala 455	His	Leu	Ile	Ile	Arg 460	Phe	Asp	Glu	Asn
Gly 465	Val	Leu	Leu	Asn	Asn 470	ser	Phe	Leu	Asp	Pro 475	Glu	Tyr	Trp	Asn	Phe 480
Arg	Asn	Gly	Asp	Leu 485	Thr	Glu	Gly	Thr	Ala 490	Tyr	Thr	Asn	Ala	Val 495	Gly
Phe	Met	Pro	Asn 500	Leu	Ser	Ala	Tyr	Pro 505	Lys	Ser	His	Gly	Lys 510	Thr	Ala
Lys	Ser	Asn 515	Ile	Val	Ser	Gln	Val 520	Tyr	Leu	Asn	Gly	Asp 525	Lys	Thr	Lys
Pro	Val 530	Thr	Leu	Thr	Ile	Thr 535	Leu	Asn	Gly	Thr	Gln 540	Glu	Thr	Gly	Asp
Thr 545	Thr	Pro	Ser	Ala	Tyr 550	Ser	Met	Ser	Phe	Ser 555	Trp	Asp	Trp	Ser	Gly 560
His	Asn	Tyr	Ile	Asn 565	Glu	Ile	Phe	Ala	Thr 570	Ser	Ser	Tyr	Thr	Phe 575	Ser
Tyr	Ile	Ala	Gln 580	Glu											

(2) INFORMATION POUR LA SEQ ID NO: 2:

- 35 -

(i) CARACTERISTIQUES DE LA SEQUENCE:

	(A, LUNGUEUR: 60 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(vi)	ORIGINE: (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7000 (code pour PSASASASAPGS)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:	
AACGATTC	TT TAGCTGCCGG GAGCAGAGGC GGAGGCGGAG GCGCTGGGTT CTTGGGCAAT	€⊃
(2) INFO	RMATION POUR LA SEQ ID NO: 3:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 57 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(Vi)	ORIGINE: (C) INDIVIDUEL ISOLE: oligonucleotide de synthese otg7001 (code pour GRP)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:	
AACGATTC:	IT TACATCAGGT GGCCCACAGC CCAGTGGTTT CCGCTGCCGG GAGCAGA	57
(2) INFO	RMATION POUR LA SEQ ID NO: 4:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 20 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: NON	

- 36 -

(vi) ORIGINE: (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG10776	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:	
CCTTCCA	CGG GAAGATTGTA	20
(2) INF	CORMATION POUR LA SEQ ID NO: 5:	
(<u>i</u>	(A) LONGUEUR: 20 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(iıi) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: OUI	
(Vı) ORIGINE: (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG10781	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:	
GGGGTGT	CTG TCTTCACACT	20
(2) INF	CORMATION POUR LA SEQ ID NO: 6:	
(i	(A) LONGUEUR: 26 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(iii) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: NON	
(vi	ORIGINE: (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11065	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:	
GGGAAGC	TTG AGGTTAACCT AAGCAC	26
(2) INF	CORMATION POUR LA SEQ ID NO: 7:	
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 28 paires de bases	

- 37 -

```
(B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (V1) ORIGINE:
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11066
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:
GGGTCTAGAG CTGCCGGGAG CAGAGGCG
                                                                           28
(2) INFORMATION POUR LA SEQ ID NO: 8:
     (i) CARACTERISTIQUES DE LA SEQUENCE:(A) LONGUEUR: 29 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: NON
    (vi) ORIGINE:
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11067
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:
GGGCTCGAGT TATGTTTCAA CGTGTTTAT
                                                                           29
(2) INFORMATION POUR LA SEQ ID NO: 9:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 24 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11068
```

- 38 -

	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:	
GTG	cccgg	GG AGTTTATTAA TATC	24
(2)	INFO	RMATION POUR LA SEQ ID NO: 10:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 31 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADNC	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: NON	
	(vi)	ORIGINE: (A) ORGANISME: Homo sapiens (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11069 (clonage EGF)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:	
GCG	TCTAG	AA ATAGTGACTC TGAATGTCCC C	31
(2)	INFO	RMATION POUR LA SEQ ID NO: 11:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 46 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADNo	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: OUI	
	(Vi)	ORIGINE: (A) ORGANISME: Homo sapiens (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11070 (clonage EGF)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:	
GCG	CTCGA	GC ACAAACGATT CTTTAGCGCA GTTCCCACCA CTTCAG	46
(2)	INFO	RMATION POUR LA SEQ ID NO: 12:	
	/÷ \	CADACTEDISTICUES DE LA SECUENCE.	

- 39 -

	(A) LONGUEUR: 42 paires de bases(B) TYPE: acide nucléique(C) NOMBRE DE BRINS: simple(D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(Vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: adenovirus 5 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7414 (deletion du feuillet D)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:	
TAGCACTC	CA TTTTCGTCGG ATCCTTGAAC TGTTCCAGAT AT	42
(2) INFO	RMATION POUR LA SEQ ID NO: 13:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 43 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(ii i)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGA (deletion de la boucle CD)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:	
CTTATAATA	AA GATGAGCACT GGATCCAGCC AAAACTGAAA CTG	43
(2) INFOR	RMATION POUR LA SEQ ID NO: 14:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 45 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(11)	TYPE DE MOLECULE: ADN (génomique)	

- 40 -

(1-1) 1.	TOTALITY OF NOW	
(iii) A	ANTI-SENS: OUI	
	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese cTGB (deletion boucle CD et f.D)	
(xi) D	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:	
GTAGCACTCC	ATTTTCGTCG GATCCAACAG CCAAAACTGA AACTG	45
(2) INFORM	MATION POUR LA SEQ ID NO: 15:	
	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 88 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) T	YPE DE MOLECULE: ADN (génomique)	
(iii) H	YPOTHETIQUE: NON	
(iii) A	NTI-SENS: OUI	
	RIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus humain Ad5 et Ad3 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11135 (boucle CD5 en CD3)	
(xi) DI	PESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:	
CGTCAAATCT	TATAATAAGA TGAGCACTCA CGTTTTTGTT TTTAAACAGG GTGTTGTAGT	60
CGCTAACAGC	CAAAACTGAA ACTGTAGC	88
(2) INFORM	ATION POUR LA SEQ ID NO: 16:	
	ARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 64 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) T	YPE DE MOLECULE: ADN (génomique)	
(iii) H	YPOTHETIQUE: NON	
(iii) Ar	NTI-SENS: OUI	
(vi) OF	RIGINE:	

-41-

(A) ORGANISME: Adenovirus (Mastadenovirus)

(B) SOUCHE: Adenovirus 3(C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG10350 (feuillet D5 en D3)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:
GTAGCACTCC ATTTTCGTCA AAGTAGAGCT CCACGTTGAT ACTTTGAACT GTTCCAGATA 60
TTGG 64
(2) INFORMATION POUR LA SEQ ID NO: 17:
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 88 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(i1) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: OUI
 (vi) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus Ad5 et Ad3 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11136 (CD+D5 en CD+D3)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:
CGTCAAAGTA GAGCTCCACG TTGATACTCA CGTTTTTGTT TTTAAACAGG GTGTTGTAGT 60
CGCTAACAGC CAAAACTGAA ACTGTAGC 88
(2) INFORMATION POUR LA SEQ ID NO: 18:
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 56 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: OUI
 (vi) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGC

- 42 -

(rempl. coude GSLA en DKLT)

(XI) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

TTGAACTGTT CCAGATATTG GGGTCAGTTT GTCTTTAACA GCCAAAACTG AAACTG 56

(2) INFORMATION POUR LA SEQ ID NO: 19:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 48 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: ADN (génomique)
- (iii) HYPOTHETIQUE: NON
- (iii) ANTI-SENS: OUI
- (vi) ORIGINE:
 - (A) ORGANISME: Mastadenovirus
 - (B) SOUCHE: Adenovirus 5 (Ad5)
 - (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGD (rempl. coude SGTV en DKLT)
- (XI) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:

 AATAAGATGA GCACTTTGGG TCAGTTTGTC TATTGGAGCC AAACTGCC

- (2) INFORMATION POUR LA SEQ ID NO: 20:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 44 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN (génomique)
 - (iii) HYPOTHETIQUE: NON
 - (iii) ANTI-SENS: OUI
 - (vi) ORIGINE:
 - (A) ORGANISME: Mastadenovirus
 - (B) SOUCHE: Adenovirus 5
 - (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGE (rempl. G443 en D)
- (Xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:

 CCAGATATTG GAGCCAAACT GTCTTTAACA GCCAAAACTG AAAC

 44

- 43 -

(2)	INFO	RMATION POUR LA SEQ ID NO: 21:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: OUI	
	(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese cTGF (rempl. L445 en F)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:	
TGT:	TCCAG	AT ATTGGAGCGA AACTGCCTTT AACAGCCAAA AC	42
(2)	INFO	RMATION POUR LA SEQ ID NO: 22:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: OUI	
	(Vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGG (rempl. G450 en N)	
		DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:	
ATG	AGCACI	T TGAACTGTGT TAGATATTGG AGCCAAACTG CC	42
(2)	INFOR	MATION POUR LA SEQ ID NO: 23:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 44 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	

- 44 -

```
(ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5 (Ad5)
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGH
                 (rempl. T451 en K)
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:
TAAGATGAGC ACTTTGAACC TTTCCAGATA TTGGAGCCAA ACTG
                                                                         44
(2) INFORMATION POUR LA SEQ ID NO: 24:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 45 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5 (Ad5)
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGI
                 (rempl. V452 en N)
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:
CTTATAATAA GATGAGCACT TTGGTTTGTT CCAGATATTG GAGCC
                                                                        45
(2) INFORMATION POUR LA SEQ ID NO: 25:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 48 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
```

- 45 -

```
(V1) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGJ
                 (rempl. A455 en F)
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:
GTCAAATCTT ATAATAAGAT GGAAACTTTG AACTGTTCCA GATATTGG
                                                                         48
(2) INFORMATION POUR LA SEQ ID NO: 26:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 47 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGK
                 (rempl. L457 en K)
    (xi) DESCRIPTION DE LA SEQUENCE: SEO ID NO: 26:
CCATTTCGT CAAATCTTAT AATTTTATGA GCACTTTGAA CTGTTCC
                                                                         47
(2) INFORMATION POUR LA SEQ ID NO: 27:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 46 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5 (Ad5)
```

(C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTGL

(rempl.I459 en A)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:

- 46 -

GCACICCA	II IICGICAAAI CIAGCAAIAA GATGAGCACT TTGAAC	4.6
(2) INFO	RMATION POUR LA SEQ ID NO: 26:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(111)	ANTI-SENS: NON	
(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11102 (clonage hexon)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28:	
CGGTTCAT	CC CTGTGGACCG TGA	23
(2) INFO	RMATION POUR LA SEQ ID NO: 29:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 38 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11103 (clonage hexon)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:	
GGCCTCTA	GA GTTGAGAAAA ATTGCATTTC CACTTGAC	38
(2) INFO	RMATION POUR LA SEQ ID NO: 30:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases	

- 47 -

	(E) TYPE: acide nuclèique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: NON	
(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SCUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11104 (clonage hexon)	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:	
ggtattgta	AC AGTGAAGATG TAG	23
(2) INFOR	MATION POUR LA SEQ ID NO: 31:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 23 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADN (génomique)	
(iii)	HYPOTHETIQUE: NON	
(iii)	ANTI-SENS: OUI	
(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11105	
(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 31:	
CGTTGGAAG	G ACTGTACTTT AGC	23
(2) INFOR	MATION POUR LA SEQ ID NO: 32:	
(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 38 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii)	TYPE DE MOLECULE: ADNo	
(iii)	HYPOTHETIQUE: NON	

- 48 -

```
(iii) ANTI-SENS: NON
    (vi) ORIGINE:
          (A) ORGANISME: Homo sapiens
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11106
                 (clonage cDNA EGF)
    (X1) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 32:
CGCGTCTAGA GGCGAATAGT GACTCTGAAT GTCCCCTG
                                                                         38
(2) INFORMATION POUR LA SEQ ID NO: 33:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 45 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADNo
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: OUI
    (vi) ORIGINE:
          (A) ORGANISME: Homo sapiens
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG11107
                 (clonage cDNA EGF)
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:
CCACTGTACA ATACCACTTT AGGGCGCAGT TCCCACCACT TCAGG
                                                                         45
(2) INFORMATION POUR LA SEQ ID NO: 34:
     (i) CARACTERISTIQUES DE LA SEQUENCE:
          (A) LONGUEUR: 21 paires de bases
          (B) TYPE: acide nucléique
          (C) NOMBRE DE BRINS: simple
          (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE: ADN (génomique)
   (iii) HYPOTHETIQUE: NON
   (iii) ANTI-SENS: NON
    (vi) ORIGINE:
          (A) ORGANISME: Mastadenovirus
          (B) SOUCHE: Adenovirus 5 (Ad5)
          (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7171
```

(deletion de la fibre)

- 49 -

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:	
ATGGTTAACT TGCACCAGTG C	21
(2) INFORMATION POUR LA SEQ ID NO: 35:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(111) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: OUI	
<pre>(vi) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7275</pre>	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:	
GGGCTCGAGC TGCAACAACA TGAAGAT	27
(2) INFORMATION POUR LA SEQ ID NO: 36:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 27 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(iii) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: NON	
 (Vi) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7276 (deletion de la fibre) 	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 36:	
CCGCTCGAGA CTCCTCCCTT TGTATCC	27
(2) INFORMATION POUR LA SEO ID NO: 37:	

(i) CARACTERISTIQUES DE LA SEQUENCE:

- 50 -

		(A) LONGUEUR: 20 paires de bases(B) TYPE: acide nucléique(C) NOMBRE DE BRINS: simple(D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: OUI	
	(Vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 5 (Ad5) (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7049 (deletion de la fibre)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:	
CTG	CCCGG	ga gtttattaat	20
(2)	INFO	RMATION POUR LA SEQ ID NO: 38:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii)	TYPE DE MOLECULE: ADN (génomique)	
	(iii)	HYPOTHETIQUE: NON	
	(iii)	ANTI-SENS: OUI	
	(vi)	ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: adenovirus 5 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG7416 (deletion du feuillet H)	
	(xi)	DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 38:	
TGT	TTCCT	GT GTACCGTTGG ATCCTTTAGT TTTGTCTCCG TT	42
(2)	INFO	RMATION POUR LA SEQ ID NO: 39:	
	(i)	CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 64 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	

(ii) TYPE DE MOLECULE: ADN (génomique)

(iii) HYPOTHETIQUE: NON

- 51 -

(iii) ANTI-SENS: OUI	
 (V1) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: Adenovirus 3 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese oTG10352 (feuillet H5 en H3) 	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39:	
TGTTTCCTGT GTACCGTTTA GCATCACGGT CACCTCGAGA GGTTTAGTTT TGTCTCCGTT	€0
TAAG	64
(2) INFORMATION POUR LA SEQ ID NO: 40:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: acide nucléique (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN (génomique)	
(iii) HYPOTHETIQUE: NON	
(iii) ANTI-SENS: OUI	
 (vi) ORIGINE: (A) ORGANISME: Mastadenovirus (B) SOUCHE: adenovirus 5 (C) INDIVIDUEL ISOLE: oligonucleotide de synthese (deletion feuillets E et F) 	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 40:	
TGTATAGGCT GTGCCTTCGG ATCCCCAATA TTCTGGGTCC AG	42

15

REVENDICATIONS

- Fibre d'un adénovirus modifiée par mutation d'un ou plusieurs résidus de ladite
 fibre, caractérisée en ce que lesdits résidus sont dirigées vers le récepteur cellulaire naturel dudit adénovirus et compris entre la boucle CD et le feuillet β I de ladite fibre et, de préférence entre les boucles CD et DG.
- Fibre d'un adénovirus selon la revendication 1, caractérisée en ce qu'elle est modifiée par mutation d'un ou plusieurs résidus compris entre la boucle CD et le feuillet βI de ladite fibre et, de préférence dans les feuillets E et F.
 - 3. Fibre d'un adénovirus selon la revendication 1 ou 2, caractérisée en ce qu'elle dérive d'une fibre d'un adénovirus de type 5 (Ad5) comprenant tout ou partie de la séquence telle que montrée à l'identificateur de séquence n° 1 (SEQ ID NO: 1) et qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 441 et 557.
- Fibre d'un adénovirus Ad5 selon la revendication 3, caractérisée en ce qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 441 à 478 de la SEQ ID NO: 1 et, de préférence, 443 à 462.
- Fibre d'un Ad5 selon la revendication 3, caractérisée en ce qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 479 à 486
 de la SEQ ID NO: 1.
 - 6. Fibre d'un adénovirus Ad5 selon la revendication 4, caractérisée en ce qu'elle est modifiée par substitution :

WO 98/44121

PCT/FR98/00668

- 53 -

		-	du résidu glycine en position 443 par un résidu acide aspartique,
		-	du résidu leucine en position 445 par un résidu phénylalanine,
		-	du résidu glycine en position 450 par un résidu asparagine,
		-	du résidu thréonine en position 451 par un résidu lysine,
5		-	du résidu valine en position 452 par un résidu asparagine,
		-	du résidu alanine en position 455 par un résidu phénylalanine,
		-	du résidu leucine en position 457 par un résidu alanine ou lysine, et/ou
		-	du résidu isoleucine en position 459 par un résidu alanine.
10	7.	Fibre d'un	adénovirus Ad5 selon la revendication 4, caractérisée en ce qu'elle est
		modifiée p	ar substitution :

- du résidu glycine en position 443.par un résidu acide aspartique,
- du résidu sérine en position 444 par un résidu lysine, et
- du résidu alanine en position 446 par un résidu thréonine ;
- 15 ou
 - du résidu sérine en position 449 par un résidu acide aspartique,
 - du résidu glycine en position 450 par un résidu lysine,
 - du résidu thréonine en position 451 par un résidu leucine, et
 - du résidu valine en position 452 par un résidu thréonine.

- 8. Fibre d'un adénovirus Ad5 selon la revendication 4 ou 5, caractérisée en ce qu'elle est modifiée par délétion
 - de la région s'étendant de la sérine en position 454 à la phénylalanine en position 461,
- de la région s'étendant de la valine en position 441 à la glutamine en position 453,
 - de la région s'étendant de la valine en position 441 à la phénylalanine en position 461, ou

15

- 54 -
- de la région s'étendant de l'asparagine en position 479 à la thréonine en position 486.
- Fibre d'un adénovirus selon la revendication 1, caractérisée en ce qu'elle dérive
 d'une fibre d'un adénovirus de type 2 (Ad2) et qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 441 et 558 de ladite fibre.
- 10. Fibre d'un adénovirus Ad2 selon la revendication 9, caractérisée en ce qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 441 à 478 et, de préférence, 451 à 466 de ladite fibre.
 - 11. Fibre d'un Ad2 selon la revendication 9, caractérisée en ce qu'elle est modifiée par mutation d'un ou plusieurs résidus de la région comprise entre les résidus 479 à 486 de ladite fibre.
 - 12. Fibre d'un adénovirus selon l'une des revendications 1 à 11, caractérisée en ce que l'une au moins des modifications est une délétion d'au moins 3 résidus consécutifs d'une boucle et/ou d'un feuillet de ladite fibre et que lesdits résidus délétés sont remplacés par des résidus d'une boucle et/ou d'un feuillet équivalent dérivé d'une fibre d'un second adénovirus, notamment de type 3 ou 7, suceptible d'interagir avec un récepteur cellulaire différent dudit premier adénovirus.
- 13. Fibre d'un adénovirus caractérisée en ce qu'elle présente une capacité de liaison au
 récepteur cellulaire naturel substantiellement réduite et qu'elle est capable de trimériser.
 - 14. Fibre d'un adénovirus selon l'une des revendications 1 à 13, caractérisée en ce

WO 98/44121

10

15

20

25

PCT/FR98/00668

qu'elle comprend en outre un ligand capable de reconnaître une molécule de surface cellulaire différente du récepteur cellulaire naturel dudit adénovirus.

- 15. Fibre d'un adénovirus selon la revendication 14, caractérisée en ce que le ligand est sélectionné parmi le groupe constitué par un anticorps, un peptide, une hormone, un polypeptide ou encore un sucre.
 - 16. Fibre d'un adénovirus selon la revendication 14 ou 15, caractérisée en ce que le ligand est inséré à l'extrémité C-terminale de la fibre ou, lorsque l'une au moins des modifications est une délétion d'au moins 3 résidus consécutifs, en remplacement des résidus délétés.
 - 17. Fragment d'ADN ou vecteur d'expression codant pour une fibre d'un adénovirus selon l'une des revendications 1 à 16
 - 18. Lignée cellulaire caractérisée en ce qu'elle comprend soit sous forme intégrée dans le génome ou sous forme d'épisome un fragment d'ADN selon la revendication 17 placé sous le contrôle des éléments permettant son expression dans ladite lignée cellulaire.
 - 19. Lignée cellulaire selon la revendication 18, caractérisée en ce en ce qu'elle est en outre capable de complémenter un adénovirus déficient pour une ou plusieurs fonctions sélectionnées parmi les fonctions codées par les régions E1, E2, E4 et L1-L5.
 - 20. Lignée cellulaire selon la revendication 18 ou 19, caractérisée en ce qu'elle dérive de la lignée 293.

- 56 -

21. Adénovirus caractérisé en ce qu'il est dépourvu d'une fibre native fonctionnelle et qu'il comprend une fibre selon l'une des revendications 1 à 16, ladite fibre selon l'une des revendications 1 à 16 pouvant être codée par le génome dudit adénovirus ou fournie en trans par une lignée cellulaire selon l'une des revendications 18 à 20.

5

22. Adénovirus caractérisé en ce qu'il est dépourvu d'une fibre fonctionnelle et qu'il comprend une fibre selon l'une des revendications 1 à 16 et un ligand capable de reconnaître une molécule de surface cellulaire différente du récepteur cellulaire naturel dudit adénovirus.

- 23. Adénovirus selon la revendication 22, caractérisé en ce que le ligand est sélectionné parmi le groupe constitué par un anticorps, un peptide, une hormone, un polypeptide ou encore un sucre.
- 24. Adénovirus selon l'une des revendications 22 et 23, caractérisé en ce que le ligand est inséré à l'extrémité C-terminale de la fibre ou, lorsque l'une au moins des modifications est une délétion d'au moins 3 résidus consécutifs, en remplacement des résidus délétés.
- 25. Adénovirus selon l'une des revendications 21 à 23, caractérisé en ce que le ligand est inséré dans une protéine de capside autre que la fibre, notamment l'hexon ou le penton.
- 26. Adénovirus selon l'une des revendications 21 à 25, caractérisé en ce qu'il s'agit d'un
 adénovirus recombinant défectif pour la réplication.
 - 27. Adénovirus selon la revendication 26, caractérisé en ce qu'il est délété de tout ou partie de la région E1 et, optionnellement, de tout ou partie de la région E3.

- 28. Adénovirus selon la revendication 27, caractérisé en ce qu'il est en outre délété de tout ou partie de la région E2, E4 et/ou L1-L5.
- 5 29. Adénovirus selon l'une des revendications 26 à 28, caractérisé en ce qu'il comprend un gène d'intérêt sélectionné parmi les gènes codant pour une cytokine, un récepteur cellulaire ou nucléaire, un ligand, un facteur de coagulation, la protéine CFTR, l'insuline, la dystrophine, une hormone de croissance, une enzyme, un inhibiteur d'enzyme, un polypeptide à effet anti-tumoral, un polypeptide capable d'inhiber une infection bactérienne, parasitaire ou virale et, notamment le VIH, un anticorps, une toxine, une immunotoxine et un marqueur.
 - 30. Procédé pour produire un adénovirus selon l'une des revendications 21 à 29, caractérisé en ce que :
- on transfecte le génome dudit adénovirus dans une lignée cellulaire appropriée,
 - on cultive ladite lignée cellulaire transfectée dans des conditions appropriées pour permettre la production dudit adénovirus, et
- on récupère ledit adénovirus de ladite culture de ladite lignée cellulaire transfectée et, éventuellement, on purifie substantiellement ledit adénovirus.
 - 31. Procédé pour produire un adénovirus dont le génome est dépourvu de tout ou partie des séquences codant pour une fibre, caractérisé en ce que :
- on transfecte le génome dudit adénovirus dans une lignée cellulaire selon l'une des revendications 18 à 20,
 - on cultive ladite lignée cellulaire transfectée dans des conditions appropriées pour permettre la production dudit adénovirus, et

- on récupère ledit adénovirus dans la culture de ladite lignée cellulaire transfectée et, éventuellement, on purifie substantiellement ledit adénovirus.
- 5 32. Cellule hôte infectée par un adénovirus selon l'une des revendications 21 à 29 ou susceptible d'être obtenu par un procédé selon la revendication 30 ou 31.
 - 33. Composition pharmaceutique comprenant un adénovirus selon l'une des revendications 21 à 29 ou susceptible d'être obtenu par un procédé selon la revendication 30 ou 31 ou une cellule hôte selon la revendication 32 en association avec un support acceptable d'un point de vue pharmaceutique.

10

34. Utilisation thérapeutique ou prophylactique d'un adénovirus selon l'une des revendications 21 à 29 ou susceptible d'être obtenu par un procédé selon la revendication 30 ou 31 ou d'une cellule hôte selon la revendication 32, pour la préparation d'un médicament destiné au traitement du corps humain ou animal par thérapie génique.

INTERNATIONAL SEARCH REPORT

			101711 90/00						
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/34 C12N15/86 C07K14/0 A61K48/00)75 C12N5/10	C12N7/0						
According to	International Patent Classification(IPC) or to both national classification	ation and IPC							
	SEARCHED								
Minimum do	cumentation searched (classification system followed by classification	on sympois)							
IPC 6	C12N C07K A61K								
Documental	ion searched other than minimum cocumentation to the extent that si	uch documents are includ	led in the fields searche	σ					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)									
C. DOCUME	NTS CONSIDERED TO BE RELEVANT								
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages		Relevant to claim No.					
X	J. GALL ET AL.: "Adenovirus type capsid chimaera: Fiber replacemen receptor tropism without affectin immune neutralization epitopes" JOURNAL OF VIROLOGY., vol. 70, no. 4, April 1996, pages 2116-2123, XPO02050655 AMERICAN SOCIETY FOR MICROBIOLOGY see figure 1	nt alters ng primary		1,9,10, 14-19, 23-25					
X	WO 96 26281 A (GENVEC, INC.) 29 A 1996 cited in the application see examples 2,5,7 	August -/		1,9,10, 14-19, 23-25					
X Furth	er documents are listed in the continuation of box C.	X Patent family m	embers are listed in ann	nex.					
"A" docume consid "E" earlier of filling d "L" docume which citatior "O" docume other of the residual of the r	nt which may throw doubts on priority claim(s) or is cited to establish the publicationdate of another in or other special reason (as specified) and referring to an oral disclosure, use, exhibition or neans are prior to the international filing date but lean the priority date claimed	cited to understand invention "X" document of particul cannot be consider involve an inventive "Y" document of particul cannot be consider document is combinents, such combinin the art. "&" document member of document member of the considered and the combining and the considered and the combining and the considered and the consider	not in conflict with the at I the principle or theory lar relevance; the claims ad novel or cannot be constant are relevance; the claims are relevance; the claims and the country of the claims are the constant of the const	ipplication but underlying the ad invention onsidered to int is taken alone ad invention we step when the her such docu- a person skilled					
	actual completion of the international search B July 1998	Date of mailing of the international search report 04/08/1998							
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer	М						

Inte onal Application No PCT/FR 98/00668

Category	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of gocument, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Citation of document, with indication, where appropriate, or the relevant passages	
X	WO 95 26412 A (THE UAB RESEARCH FOUNDATION) 5 October 1995 cited in the application see the whole document	13-21, 23-29
X	A. MCCLELLAND ET AL: "Modification of the adenovirus fiber protein for targeted gene delivery" JOURNAL OF CELLULAR BIOCHEMISTRY - SUPPLEMENT, 26 March 1995, page 411 XP000608380 see abstract	1,9,10
X	WO 95 05201 A (GENETIC THERAPY, INC.) 23 February 1995 cited in the application see examples 1-4	11-21, 23-29
X	WO 94 17832 A (THE SCRIPPS RESEARCH INSTITUTE) 18 August 1994 see page 3, line 12 - page 4, line 11	11-29

information on patent family members

Inter PCT/FR 98/00668

Patent document cited in search repor	t	Publication date	Patent family member(s)		Publication date
WO 9626281	A	29-08-1996	US AU CA EP	5770442 A 4980496 A 2213343 A 0811069 A	23-06-1998 11-09-1996 29-08-1996 10-12-1997
W0 9526412	Α	05-10-1995	AU EP JP	2195495 A 0753068 A 10501684 T	17-10-1995 15-01-1997 17-02-1998
WO 9505201	Α	23-02-1995	US EP US	5543328 A 0696206 A 5756086 A	06-08-1996 14-02-1996 26-05-1998
WO 9417832	Α	18-08-1994	AU	6133394 A	29-08-1994

RAPPORT DE RECHERCHE INTERNATIONALE

: Internationale No

PCT/FR 98/00668 A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/34 C12N15 C12N15/86 C07K14/075 C12N5/10 C12N7/00 A61K48/00 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultee (systeme de classification suivi des symboles de classement) CIB 6 C12N C07K A61K Documentation consultée autre que la gocumentationminimale dans la mesure où ces documents relevent des domaines sur lesquels a porte la recherche Base de données électronique consultée au œurs de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche C. DOCUMENTS CONSIDERES COMME PERTINENTS Categorie * Identification des documents cites, avec, le cas échéant, l'indication des passages pertinents no, des revendications visées J. GALL ET AL.: "Adenovirus type 5 and 7 χ 1,9,10, 14-19, capsid chimaera: Fiber replacement alters 23-25 receptor tropism without affecting primary immune neutralization epitopes" JOURNAL OF VIROLOGY. vol. 70, no. 4, avril 1996, pages 2116-2123, XP002050655 AMERICAN SOCIETY FOR MICROBIOLOGY US voir figure 1 X WO 96 26281 A (GENVEC, INC.) 29 août 1996 1,9,10, 14-19, cité dans la demande 23-25 voir exemples 2.5.7 -/--Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe Catégories speciales de documents cités: "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la lechnique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base del invention "A" document définissant l'état général de latechnique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date dedépôt international "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément ou après cette date document pouvant jeter un doute sur une revendcation de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) document particulièrement pertinent; l'Invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associe à un ou plusieurs autres "O" document se référant à une divulgation orale, à un usage, à documents de même nature, cette combinaison étant évidente pour une personne du mêtier une exposition ou tous autres movens document publié avant la date de dépôtinternational, mais postérieurement à la date de priorité revendiquée Date à laquelle la recherche internationale a été effectivement achevée Date d'expedition du présent rapport de recherche internationale

Formulaire PCT/ISA/210 (deuxieme (euille) (juillet 1992)

1

28 juillet 1998

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Europeen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV. Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

04/08/1998

Cupido, M

Fonctionnaire autorisé

RAPPORT DE RECHERCHE INTERNATIONALE Dem : Internationale No

PCT/FR 98/00668

	OCUMENTS CONSIDERES COMME PERTINENTS	tinents no. des revendications visées
Catégorie :	Identification des documents cités, avec le cas échéant. l'Indicationdes passages per	Tinents Tio. des reversalidations visees
(WO 95 26412 A (THE UAB RESEARCH FOUNDATION) 5 octobre 1995 cité dans la demande voir le document en entier	13-21, 23-29
(A. MCCLELLAND ET AL: "Modification of the adenovirus fiber protein for targeted gene delivery" JOURNAL OF CELLULAR BIOCHEMISTRY - SUPPLEMENT, 26 mars 1995, page 411 XP000608380 voir abrégé	1,9,10
	WO 95 05201 A (GENETIC THERAPY, INC.) 23 février 1995 cité dans la demande voir exemples 1-4	11-21, 23-29
(WO 94 17832 A (THE SCRIPPS RESEARCH INSTITUTE) 18 août 1994 voir page 3, ligne 12 - page 4, ligne 11 	11-29

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de families de brevets

PCT/FR 98/00668

Document brevet ci	té che	Date de publication	Membre(s) de la tamille de brevet(s)		Date de publication
WO 9626281	A	29-08-1996	US AU CA EP	5770442 A 4980496 A 2213343 A 0811069 A	23-06-1998 11-09-1996 29-08-1996 10-12-1997
WO 9526412	Α	05-10-1995	AU EP JP	2195495 A 0753068 A 10501684 T	17-10-1995 15-01-1997 17-02-1998
WO 9505201	Ā	23-02-1995	US EP US	5543328 A 0696206 A 5756086 A	06-08-1996 14-02-1996 26-05-1998
WO 9417832	Α	18-08-1994		6133394 A	29-08-1994