21-484 Notes JD Nir jnir@andrew.cmu.edu April 6, 2012

- → Show that a nonempty regular bipartite graph contains a perfect matching.
- \rightarrow Matchings + bipartite \Rightarrow Hall's Thm.

 \rightarrow Let G = (U, W, E) be a d > 0 regular graph. Need to show

$$X \subseteq U \Rightarrow |X| \le |N(X)|$$

- \rightarrow Indeed, the sum of degrees of vertices in X is $d \cdot |X|$
- \to If |N(X)| < |X|, then the sum of degrees of vertices in N(X) is $d \cdot |N(X)| < d \cdot |X|$ since all edges leaving X are going in N(X).
- \rightarrow The same for W
- $\rightarrow u$ and v are two nonadjacent vertices in G, such that $d(u) + d(v) \geq n$

G + uv is Hamiltonian $\iff G$ is Hamiltonian

- \rightarrow if G contains a Hamiltonian cycle C, then G + uv also contains C.
- \rightarrow Assume that G + uv contains a Hamiltonian cycle C.
- \rightarrow If C does not use uv, we are done.

- \rightarrow Let $C = (v_1, \dots, v_{n-2}, v, u, v_1).$
- \rightarrow we want to find two vertices v_i , v_{i+1} such that

$$vv_i \in E(G)$$
 and $uv_{i+1} \in E(G)$

 \rightarrow Let I be the set of indices of neighbors of v.

$$\rightarrow$$
 Let $J = \{i + 1 | i \in I, i < n - 2\}$

$$|J| = |I| - 1 = d(v) - 1$$

- $\to u$ must have a neighbor with index in J, since there are n-2-|J|=n-2-d(v)+1=n-1-d(v) vertices out of J (and u and v) but the degree of u is $d(u) \ge n-d(v)$
- \rightarrow So there are v_i and v_{i+1} as required.
- \rightarrow the cycle $u, v_1, \dots, v_i, v, v_{n-2}, v_{n-3}, \dots, v_{i+1}, u$ is Hamiltonian.

G is bipartite $G = (U \cup W, E)$. The size of a maximal matching is

$$|U| - \max_{X \subseteq U} (|X| - |N(X)|) \ \ \textcircled{*}$$

 \rightarrow There is no matching of size bigger than, because (*), because if X is the maximal set then we can match all vertices of $U \setminus X$ plus N(X) vertices from X: $|U \setminus X| + |N(X)| = |U| - |X| + |N(X)|$

- \rightarrow Let G be such a graph and let x be a maximal set.
- \rightarrow We want to match all the vertices in $U \setminus X$ with vertices from $W \setminus N(X)$.
- \rightarrow Need to show: $\forall Y \subseteq U \setminus X, |Y| \leq |N(Y) \setminus N(X)|$

indeed, if $|Y| > |N(Y) \setminus N(X)|$, consider $X \cup Y$

$$|X \cup Y| - |N(X \cup Y)| = |X| + |Y| - |N(X)| - |N(Y) \setminus N(X)| = |X| - |N(X)| + |Y| - \underbrace{|N(Y) \setminus N(X)|}_{>0}$$

 $\not\vdash$ maximality of X.

- \rightarrow Have a matching that matches all vertices of $U \setminus X$ outside of N(X).
- \rightarrow We want to show: $Z \subseteq N(X) \Rightarrow |Z| \leq |N(Z)|$. Assume |Z| > |N(Z)|, consider $X \setminus N(Z)$.

$$|X \setminus N(Z)| - |N(X \setminus N(Z))| = |X| - |N(Z)| - N(X \setminus X \setminus N(Z))|$$

claim: $|N(X \setminus N(Z))| \leq |N(X)| - |Z|$ a vertex of Z can not be in $N(X \setminus N(Z))$.

$$|X| - |N(Z)| - |N(X)| + |Z|$$
. 4 maximality of X.

$$Q_k \ \kappa(Q_k) = \lambda(Q_k) = k.$$

