

Phishing Websites Detector for CS 235

Yash Aggarwal UC Riverside yagga004@ucr.e

Hritvik Gupta
UC Riverside
hgupt010@ucr.edu

Siddhant Poojary UC Riverside spooj003@ucr.edu

Nityash Gautam UC Riverside ngaut006@ucr.edu

Shubham
Sharma
UC Riverside
sshar180@ucr.edu

Introduction

What is Phishing?

- Spoofed website to trick user to reveal sensitive information to attacker
- Most Common Cyber attack as of 2022

Scope of this work

 Given an input website, Extract useful features and use them to predict if the website is legit or phishing

Proposed Method

We will be attempting to classify websites into legit and benign using multiple algorithms like

Splitting

Decision Node

Decision Node

Terminal Node

Terminal Node

Terminal Node

Terminal Node

Note:- A is parent node of B and C.

output layer

Decision Tree

K-Nearest Neighbour

Random Forest

Conclusions

Algorithms Implemented - Baseline and Self

- i. Perceptron
- ii. MultiLayer Perceptron
- iii. Random Forest
- iv. k-Nearest Neighbor
- v. Decision Trees

Performance Evaluation Metric – *MISS RATE*Baseline Implementation - Best Performance - *PERCEPTRON*Self Implementation - Best Performance - *RANDOM FOREST*

Problem Definition

What's the problem?

- Phishing website imitate the legitimate and trick user
- Hack into the system
- Need to distinguish those sites with correctness
- Machine learning classifiers can help to achieve those

Results

Perceptron

entation	CS Baseline Implementation
Precisio	on 0.94

METRICS	Baseline Implementation	Self Implementation
Precision	0.99	0.95
Recall	0.82	0.90
F1-Score	0.90	0.92
Miss Rate	0.013	0.05

METRICS	Baseline Implementation	Self Implementation
Precision	0.94	0.96
Recall	0.95	0.97
F1-Score	0.94	0.97
Miss Rate	0.04	0.02

Random Forest

MultiLayer Perceptron

METRICS	Baseline Implementation	Self Implementation
Precision	0.9	0.89
Recall	0.9	0.89
F1-Score	0.89	0.88
Miss Rate	0.09	0.13

METRICS	Baseline Implementation	Self Implementation
Precision	0.94	0.95
Recall	0.94	0.95
F1-Score	0.94	0.95
Miss Rate	0.05	0.06

Decision Trees

k-Nearest Neighbor

METRICS	Baseline Implementation	Self Implementation
Precision	0.95	0.95
Recall	0.94	0.95
F1-Score	0.95	0.95
Miss Rate	0.05	0.05

Related Work

Similar works have been done by web browsers to classify websites as phishing based on its characteristics

Another related aspect if the emails that we receive might be phishing and gmail detects and marks them as phishing

