

Machine Learning Datasets Why? Which? For What?

(Largely based on slides from Samuel Fadel)

Edson Bollis (Ph.D. Student)

Institute of Computing (IC/Unicamp)

MC886/MO444, September 6, 2018

Why?

Superhuman Pattern Recognition

IJCNN Traffic Sign Recognition Competition (2011)

- 40+ classes and ~50k images
- First system to beat humans in visual pattern recognition

Superhuman Pattern Recognition

IJCNN Traffic Sign Recognition Competition (2011)

• Why was ImageNet 2012 more memorable?

1k classes, 1.2 million training images

Superhuman Pattern Recognition

IJCNN Traffic Sign Recognition Competition (2011)

• Why was ImageNet 2012 more memorable?

German traffic sign recognition versus.

Large-scale visual recognition (1k classes)

ImageNet

Figure source: Kaiming He

Why?

- Convince audience
- Baseline for comparison with other methods
- Suggest possible applications
- Highlight weaknesses

Which?

Which?

WordNet A lexical database for English

"I find the experimental section of the paper rather weak: it mainly comprises of experiments on toy data sets"

"experiments are performed on a set of (rather artificial) data sets"

"the experiments should be conducted with more real datasets"

Trabalhos	Bases Utilizadas					
	cultura	num. imag.	nome	acurácia (%)	tipo	ano
Dubey e Jalal [19]	maçã	431		93,0	N.A.	2012
Kulkarni e Patil [40]	romã	140		91,0	N.A.	2012
Hassanien et al. [27]	tomate			91,5	UCI repository	2012
Li et al. [43]	cereja, ameixa,	520		N.A.	cedido por	2015
	pêssego e castanhas				terceiros	
Barbedo et al. [5]	misto	1335		58,0	N.A.	2016
Deng et al. [18]	citros	898		91,9	N.A.	2016
Mohanty et al. [50]	várias	54.306	PlantVillage	99,4	público	2016
Nachtigall et al. [51]	maçã	2.539		97,3	público	2016
Pourreza et al. [57]	citrus	300		N.A.	N.A.	2016
Ranulf et al. [59]	citros	160		90,0	N.A.	2016
Sarkar et al. [64]	citros			93,0	N.A.	2016
Sandika et al. [61]	uva	900		86,0	N.A.	2016
Tan et al. [68]	maçã e melão	4.000		97,5	N.A.	2016
Wetterich et al. [75]	citros	420		95,0	N.A.	2016
Bhandari et al. [7]	alface			N.A.	N.A.	2017
Cruz et al. [11]	várias	54.306	PlantVillage	98,6	público	2017
Fuentes et al. [20]	tomate	5000		97,0	N.A.	2017
Hanson et al. [26]	misto	33.469		96,3	N.A.	2017
Panda [53]	mamão papaia			94,1	N.A.	2017
Petrellis [56]	uva	140		90,0	N.A.	2017
Wang et al. [72]	maçã	54.306	PlantVillage	90,4	público	2017

Which?

Toy datasets illustrate concepts and are easy to interpret

Two 20d Gaussians reduced to 2d with 5 methods

Which?

Challenging datasets are meant to push the state of the art.

Q: There is a **sphere** with the **same size as** the **metal cube**; is it **made of the same material as** the **small red sphere**?

Hotness

Public

Your Datasets

Favorites

View ALL Data Sets

Welcome to the UC Irvine Machine Learning Repository!

We currently maintain 440 data sets as a service to the machine learning community. You may view all data sets through our searchable interface. Our old web site is still available, for those who prefer the old format. For a general overview of the Repository, please visit our About page. For information about citing data sets in publications, please read our citation policy. If you wish to donate a data set, please consult our donation

UCI https://archive.ics.uci.edu/ml

Yet Another Computer Vision Index To Datasets (YACVID)

This website provides a list of frequently used computer vision datasets. Wait, there is more!

There is also a description containing common problems, pitfalls and characteristics **and now a searchable TAG cloud**.

Plus, this is open for crowd editing (if you pass the ultimate turing test)! - Questions? yacvid [at] hayko [dot] at

Content, Design and Idea © by Hayko Riemenschneider, 2011-2016. Texts and Images are subject of copyright by the respective authors.

Hey! If you're reading this, why not help and update the description of the dataset you're working on?

Add a new dataset

YACVID https://riemenschneider.hayko.at/vision/dataset

CHALLENGE CHANGE CHEMISTRY CHEST CHICAGO CHROMATICITY CHURCH CIRCLE CITY CITYSCAPES CLASSIFICATION CLOTHING CLOUD CLUSTERING CLUTTER CNN CO-LOCALIZATION CO-SALIENCY CO-SEGMENTATION CO-SKELETONIZATION COCO CODE CODEBOOK COFFEE COLLABORATIVE COLOR COMMUNITY COMPARISON COMPUTER CONDITION CONSTANCY CONTEXT CONTOUR COOKING COPYRIGHT COUNTING COVER COW CREPE CRF CROP CROSS-VIEW CROWD CT CUTTING DAILY DANCE DARK DATA DATASET DAY DAYLIGHT DECOMPOSITION DEEP DEFOCUS DEFORMATION DENOISING DENSE DEPTH DESCRIPTION DESCRIPTOR DETAIL

DETECTION DICHROMATIC DISEASE DISGUST DISPARITY DOGS DOMAIN DPED DRIVING DROWE DUBROVNIK DUPLICATE DYNAMIC EAR EDGE EGOCENTRIC ELLIPSE EMOTION EMPTY ENDTOEND ENHANCEMENT ENVIRONMENT ESTIMATION EVALUATION EVENT EXPERTISE EXPRESSION EYE FACADE FACE FACIAL FAXE FASHION FEAR FEATURE FIELD FINE-GRAINED FINGERPRINT INIGETY FINEST-PERSON FISH FISHEYE FITTING FLICKR FLIGHT FLOORPLAN FLOW FLY FLYING FOOD FOOD FOOT FOOTPRINT FOREGROUND FOV FRAMES FRONTVIEW FUNDUS GAIT GAME GAN GAZE GENDER GENETIC GENOME GEOGRAPHY GEOMETRY GEOGRAPHY GEOMETRY GEOGRAPHY GEOMETRY GIF GIRAFFE GIS GLOBAL GOOGLE GPS GRAMMAR GRAPHICS GRAYSCALE GRAZ GROUND GROWTH GSD HAND HANDWRITTEN HD HEAD HEART HEAT HIERARCHY HIGH-DEFINITION HIGH-RESOLUTION HIGHLIGHT HIGHWAY HOLES

HORSE HOUSE HOWTO HUMAN IDENTIFICATION ILLUMINATION ILLUMINIATION ILLUSION IMAGE IMAGES IMAGES IMAGE IMAGES IMAGE IMAGES IMAGE IMAGES IMAGE METHAL INTERNATION INSERTS INSTANCE INTERNATION INTERNATION INTERNATION INTERNATION IMAGE METHAL KINIA KINECT KITCHEN KITTI LABEL LABELING LABORATORY LAND LANDMARK LANG LANGUAGE LARGE LARGE-SCALE LASER LATTICE LAYOUT LEAF LEARNING LETTER LEUVEN LIDAR LIFESPAN LIGHT LIGHTFIELD LIGHTING LIMITED LINE LIP LISBON LIVER LOCAL LOCALIZATION LOCATION LOGO LOW LOWLEVEL MACHINE MAKEUP

About Blog Code & Data Keynotes Our Team Projects Reports Visit us

RECOD Code & Data

1. DSO-1 and DSI-1 Datasets (Digital Forensics)

Blogroll

- RECOD on Twitter
- RECOD on FaceBook
- Prof. Eduardo Valle's Twitter

RECOD https://recodbr.wordpress.com/code-n-data

- 4. Flickr-dog Dataset (Vision)
- 5. VGDB-2016 (Painter Attribution)
- 6. UVAD Dataset (Biometric Spoofing Detection)

- extra
- Keynotes
- media
- publications
- science
- talk
- thesis defense.

Recent Posts

District Dating and the Datasets (Madical Incoming)

http://dados.gov.br/dataset

For What?

Sentiment Analysis

Sentiment Analysis on Movie Reviews

"The movie is surprising with plenty of unsettling plot twists."

- Classification
 - Negative
 - Somewhat negative
 - Neutral
 - Somewhat positive
 - Positive

Data Compression

ImageNet data, YFCC100M, AudioSet

Compress audio/image/video

Social Media Engagement Prediction

Facebook Comment Volume Dataset

- 480k posts
- Regression
 - Predict number of comments a post will receive

Age and Gender Prediction

IMDB-Wiki

- Classification
 - Predict gender
- Regression
 - Predict age

Predicting Media Interestingness

Media Interestingness Data

- Image, video, and metadata
- 5,054 samples (train) + 2,342 (test)
- Classification
 - Interesting
 - Not interesting

Gender Prediction from Handwriting

Handwriting Data

- Images in two languages (English, Arabic)
- Two pages for each language per writer
- Classification
 - Author's gender from handwriting style

Recommendation System

MovieLens 1M dataset

- 1M ratings from 6k users on 4k movies
- Regression
 - Predict ratings (1 to 5)

Bike Sharing

Bike Sharing Dataset

- Regression
 - Predict bike rental count (hourly or daily)
- Anomaly detection
 - Detect days with spurious rental counts

Be bold! Be brave!