AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph beginning on page 4, line 27 and ending on page 7, line 10 with:

More preferably, each ligand that is a beta lactam antibiotic <u>and</u> is selected from the group consisting of:

(i) a compound of formula (a):

$$R$$
 NH
 S
 R^1
 R^2
 $COOH$

wherein:

R is substituted alkyl, aryl, aralkyl, or heteroaryl wherein each of said substituent optionally links (a) to a linker via a covalent bond or R is a covalent bond that links (a) to a linker; and

R¹ and R² are, independently of each other, alkyl or at least one of R¹ and R² is a covalent bond linking (a) to a linker;

(ii) a compound of formula (b):

$$R^3$$
—CO-NH— R^5
 R^4
 $COOH$

$$R^3$$
 CO-NH Q M R^4 (b)

wherein:

4

one of [[P]] \underline{M} and Q is O, S, or -CH₂- and the other is -CH₂-;

 R^3 is substituted alkyl, heteroarylalkyl, aralkyl, heterocyclylalkyl, or $-C(R^6)=NOR^7$ (where R^6 is aryl, heteroaryl, or substituted alkyl; and R^7 is alkyl or substituted alkyl) wherein each of said substituent optionally links (b) to a linker or R^3 is a covalent bond that links (b) to a linker; and

R⁴ is hydrogen, alkyl, alkenyl, substituted alkenylene, substituted alkyl, halo, heteroarylalkyl, heterocyclylalkyl, -SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (b) to a linker or R⁴ is a covalent bond that links (b) to a linker;

R⁵ is hydrogen, hydroxy, or alkoxy;

(iii) a compound of formula (c):

wherein:

T is S or CH₂

R^{8a} is alkyl;

W is O, S, $-OCH_2$ -, or CH_2 ; and R^8 is $-(alkylene)-NHC(R^b)=NH$ where R^b is a covalent bond linking (c) to a linker; or $-W-R^8$ is a covalent bond that links (c) to a linker; (iv) a compound of formula (d):

wherein:

dì

R⁹ and R^{9a} are alkyl;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, aryl, heteroaryl, heterocyclyl, aralkyl, heteroaralkyl, heterocyclylalkyl or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (d) to a linker or at least one of R⁹ and R¹⁰ is a covalent bond that links (d) to a linker; or

R⁹ and R¹⁰ together with the carbon atoms to which they are attached form an aryl, heteroaryl, cycloalkyl, substituted cycloalkyl, or heterocyclyl ring of 4 to 7 ring atoms wherein one of the ring atoms optionally links (d) to a linker; or

(v) a compound of formula (e):

$$R^{13} \longrightarrow R^{12}$$

$$R^{13} \longrightarrow R^{13}$$

$$H \longrightarrow R^{14}$$

$$H \longrightarrow R^{15}$$

$$H \longrightarrow R^{12}$$

$$H \longrightarrow R^{14}$$

$$H \longrightarrow R^{15}$$

$$H \longrightarrow R^$$

wherein:

R¹¹ is -SO₃H or -(alkylene)-COOH;

R¹² is alkyl, substituted alkyl, haloalkyl, alkoxy, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, substituted cycloalkyl, or heterocyclyl wherein each of said substituent optionally binds (e) to a linker or R¹² is a covalent bond that links (e) to a linker:

and

R¹³ is alkyl, acyl, or -COC(R¹⁴)=N-OR¹⁵ wherein R¹⁴ is aryl, heteroaryl which optionally links (e) to a linker, and R¹⁵ is -(alkylene)-COOR¹⁶ wherein R¹⁶ is hydrogen or

optionally links (e) to a linker or R¹³ is a covalent bond that links (e) to a linker; and pharmaceutically acceptable salts thereof;

Please amend the paragraph beginning on page 39, line 16 and ending on page 48, line 8 with:

While the broadest definition of this invention is set forth in the Summary of the Invention, certain compounds of Formula (I) are preferred.

(A) One preferred group of compounds is a multibinding compound of Formula (II):

wherein:

L^a is a beta lactam antibiotic and is selected from the group consisting of:

(i) a compound of formula (a):

$$R$$
 NH
 S
 R^1
 R^2
 $COOH$

wherein:

R is substituted alkyl, aryl, aralkyl, or heteroaryl wherein each of said substituent optionally links (a) to a linker via a covalent bond or R is a covalent bond that links (a) to a linker; and

R¹ and R² are, independently of each other, alkyl or at least one of R¹ and R² is a covalent bond linking (a) to a linker;

(ii) a compound of formula (b):

$$R^{3}$$
 CO-NH R^{4} (b)

wherein:

one of [[P]] \underline{M} and Q is O, S, or -CH₂- and the other is -CH₂-;

 R^3 is substituted alkyl, heteroarylalkyl, aralkyl, heterocyclylalkyl, or $-C(R^6)=NOR^7$ (where R^6 is aryl, heteroaryl, or substituted alkyl; and R^7 is alkyl or substituted alkyl) wherein each of said substituent optionally links (b) to a linker or R^3 is a covalent bond that links (b) to a linker; and

R⁴ is hydrogen, alkyl, alkenyl, substituted alkenylene, substituted alkyl, halo, heteroarylalkyl, heterocyclylalkyl, -SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (b) to a linker or R⁴ is a covalent bond that links (b) to a linker;

R⁵ is hydrogen, hydroxy, or alkoxy;

(iii) a compound of formula (c):

wherein:

T is S or CH₂;

R^{8a} is alkyl;

W is O, S, $-OCH_2$ -, or CH_2 ; and R^8 is $-(alkylene)-NHC(R^b)=NH$ where R^b is a covalent bond linking (c) to a linker; or $-W-R^8$ is a covalent bond that links (c) to a linker; (iv) a compound of formula (d):

wherein:

R⁹ and R^{9a} are alkyl;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, aryl, heteroaryl, heterocyclyl, aralkyl, heteroaralkyl, heterocyclylalkyl or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (d) to a linker or at least one of R⁹ and R¹⁰ is a covalent bond that links (d) to a linker; or

R⁹ and R¹⁰ together with the carbon atoms to which they are attached form an aryl, heteroaryl, cycloalkyl, substituted cycloalkyl, or heterocyclyl ring of 4 to 7 ring atoms wherein one of the ring atoms optionally links (d) to a linker; or

(v) a compound of formula (e):

wherein:

R¹¹ is -SO₃H or -(alkylene)-COOH;

R¹² is alkyl, substituted alkyl, haloalkyl, alkoxy, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, substituted cycloalkyl, or heterocyclyl wherein each of said substituent optionally binds (e) to a linker or R¹² is a covalent bond that links (e) to a linker; and

 R^{13} is alkyl, acyl, or -COC(R^{14})=N-OR¹⁵ wherein R^{14} is aryl, heteroaryl which optionally links (e) to a linker, and R^{15} is -(alkylene)-COOR¹⁶ wherein R^{16} is hydrogen or optionally links (e) to a linker or R^{13} is a covalent bond that links (e) to a linker, preferably

L^a is selected from the group consisting of:

(i) a compound of formula (a):

$$R$$
 NH
 S
 R^1
 R^2
 $COOH$

wherein:

R is:

$$R^{17}$$
 CH_2
 CH_2
 CH_3
 R^{19}
 CH_3
 R^{19}
 CH_4
 R^{18}
 R^{18}
 CH_5
 R^{18}
 R^{1

R²⁰=Cl and R²¹=H

where:

R¹⁷ is a covalent bond that links the (a) group to a linker;

one of R^{18} and R^{19} is hydrogen and the other is a covalent bond that links the (a) group

to a linker; and

R¹ and R² are methyl;

(ii) a compound of formula (b):

where:

R³ and R⁴ are:

 R^3 R^4 -CH₂OCOCH₃ -CH₃ NHR¹⁹ -CH₃ I NHR¹⁹ or ·CH₂SO₃· CH₂OCONHR¹⁹ -CH₂OCOCH₃ -CI I NHR¹⁹ -CH₂OCONHR¹⁹ NOCH₃ SCH₂-

$$R^{17}NH$$
 S
 $NOCH_3$
 $-CH_2OCOCH_3$, $-CH_2OCH_3$, H
 $R^{18}NH$
 S
 $NOCH_3$
 $-CH_2OCOCH_3$, H
 S
 $NOCH_3$
 NOC

(Note: the R³ group in the left column is paired with the R⁴ in the right column) wherein:

n is 0 or 1; m is 1-5; Z is CH or N; Y is H or halo; R is alkyl; R¹⁷ is a covalent bond that links the (b) group to a linker; one of R¹⁸ and R¹⁹ is hydrogen or alkyl; R³⁰ and R³¹ are, independently of each other, hydrogen or alkyl; or together with the nitrogen atom to which they are attached form a heterocycloamino group; and R, R³² and R³³ are independently alkyl wherein one of R¹⁸, R¹⁹, R³⁰-R³³ is a covalent bond that links the (b) group to a linker;

(iii) a compound of formula (c):

wherein R^b is a covalent bond linking (c) to a linker;

(iv) a compound of formula (d):

where Ra is:

$$\bigcap_{R^{24}} \bigcap_{R^{25}} \bigcap_{R^{25}$$

where:

 R^{23} is a covalent bond that links (d) to a linker; one of R^{24} and R^{25} is hydrogen, alkyl, substituted alkyl, or aralkyl, and other is a covalent bond that links (d) to a linker; R^{26} is alkyl; or

(v) a compound of formula (e):

$$R^{21}OOC \longrightarrow CH_3$$
 CH_3
 $N \longrightarrow C$
 N

wherein one of R²¹ and R²² is hydrogen and the other links (d) to a linker;[;]

L^b is an optionally substituted vancomycin which is linked to a linker via any hydroxyl group, carboxyl group or amino group; and

X is a linker and is selected from a compound of formula:

$$-X^{a}-Z-(Y^{a}-Z)_{m}-X^{a}-$$

wherein

m is an integer of from 0 to 20;

X^a at each separate occurrence is selected from the group consisting of -O-, -S-, -NR-, -C(O)-, -C(O)O-, -OC(O)-, -C(O)NR-, -NRC(O)-, C(S), -C(S)O-, -C(S)NR-, -NRC(S)-, or a covalent bond where R is as defined below;

Z at each separate occurrence is selected from the group consisting of alkylene, substituted alkylene, cycloalkylene, substituted cylcoalkylene, alkenylene, substituted alkynylene, cycloalkenylene, substituted cycloalkenylene, arylene, heteroarylene, heterocyclene, or a covalent bond;

each Y^a at each separate occurrence is selected from the group consisting of -O-, -C(O)-, -OC(O)-, -C(O)O-, -NR-, -S(O)n-, -C(O)NR'-, -NR'C(O)-, -NR'C(O)NR'-, -NR'C(O)NR'-, -NR'C(O)NR'-, -NR'C(O)NR'-, -NR'-C(O)-O-, -N=C(X^a)-NR'-, -NR'-C(X^a)=N-,-P(O)(OR')-O-, -O-P(O)(OR')-, -S(O)_nCR'R"-, -S(O)_n-NR'-, -NR'-S(O)_n-, -S-S-, and a covalent bond; where n is 0, 1 or 2; and R, R' and R" at each separate occurrence are selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, substituted alkenyl, cycloallcenyl, substituted cycloalkenyl, alkynyl, substituted alkynyl, aryl, heteroaryl and heterocycic; and pharmaceutically acceptable salts thereof provided that when L^b is vancomycin attached to a linker via the [C] terminus, then L^a cannot be cefalexin

attached to the linker via acylation of its alpha amino group; and pharmaceutically acceptable salts thereof.

Please amend the paragraph beginning on page 48, line 10 and ending on page 57, line 18 with:

(B) Another more preferred group of compounds is a multibinding compound of Formula (III):

wherein:

ligands, L^c and L^d, are a beta lactam antibiotic and are independently selected from the group consisting of:

(i) a compound of formula (a):

wherein:

R is substituted alkyl, aryl, aralkyl, or heteroaryl wherein each of said substituent optionally links (a) to a linker via a covalent bond or R is a covalent bond that links (a) to a linker; and

R¹ and R² are, independently of each other, alkyl or at least one of R¹ and R² is a covalent bond linking (a) to a linker;

(ii) a compound of formula (b):

wherein:

one of [[P]] \underline{M} and Q is O, S, or -CH₂- and the other is -CH₂-;

 R^3 is substituted alkyl, heteroarylalkyl, aralkyl, heterocyclylalkyl, or $-C(R^6)=NOR^7$ (where R^6 is aryl, heteroaryl, or substituted alkyl; and R^7 is alkyl or substituted alkyl) wherein each of said substituent optionally links (b) to a linker or R^3 is a covalent bond that links (b) to a linker; and

R⁴ is hydrogen, alkyl, alkenyl, substituted alkenylene, substituted alkyl, halo, heteroarylalkyl, heterocyclylalkyl, -SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (b) to a linker or R⁴ is a covalent bond that links (b) to a linker;

R⁵ is hydrogen, hydroxy, or alkoxy;

(iii) a compound of formula (c):

wherein:

T is S or CH₂;

R^{8a} is alkyl;

W is O, S, -OCH₂-, or CH₂; and R⁸ is -(alkylene)-NHC(R^b)=NH where R^b is a covalent bond linking (c) to a linker; or -W-R⁸ is a covalent bond that links (c) to a linker; (iv) a compound of formula (d):

wherein:

R⁹ and R^{9a} are alkyl;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, aryl, heteroaryl, heterocyclyl, aralkyl, heteroaralkyl, heterocyclylalkyl or -CH₂SR^a (where R^a is aryl, heteroaryl, heterocyclyl, or cycloalkyl) wherein each of said substituent optionally links (d) to a linker or at least one of R⁹ and R¹⁰ is a covalent bond that links (d) to a linker; or

R⁹ and R¹⁰ together with the carbon atoms to which they are attached form an aryl, heteroaryl, cycloalkyl, substituted cycloalkyl, or heterocyclyl ring of 4 to 7 ring atoms wherein one of the ring atoms optionally links (d) to a linker; or

(v) a compound of formula (e):

$$R^{13} \longrightarrow R^{12}$$

$$R^{13} \longrightarrow R^{13}$$

$$H \longrightarrow R^{14}$$

wherein:

R¹¹ is -SO₃H or -(alkylene)-COOH;

R¹² is alkyl, substituted alkyl, haloalkyl, alkoxy, aryl, aralkyl, heteroaryl, heteroaralkyl, cycloalkyl, substituted cycloalkyl, or heterocyclyl wherein each of said

substituent optionally binds (e) to a linker or R¹² is a covalent bond that links (e) to a linker; and

 R^{13} is alkyl, acyl, or -COC(R^{14})=N-OR¹⁵ wherein R^{14} is aryl, heteroaryl which optionally links (e) to a linker, and R^{15} is -(alkylene)-COOR¹⁶ wherein R^{16} is hydrogen or optionally links (e) to a linker or R^{13} is a covalent bond that links (e) to a linker, preferably

L^c and L^d are independently selected from the group consisting of:

(i) a compound of formula (a):

wherein:

R is:

$$R^{17}$$
 CH_2
 CH_2
 CH_3
 R^{19}
 CH_3
 R^{19}
 CH_4
 R^{19}
 CH_5
 R^{19}
 CH_5
 R^{19}
 CH_5
 R^{19}
 CH_5
 R^{19}
 CH_7
 $COOR^{19}$

$$R^{20}=R^{21}=H$$

$$R^{20}=R^{21}=CI$$

where:

R¹⁷ is a covalent bond that links the (a) group to a linker; one of R¹⁸ and R¹⁹ is hydrogen and the other is a covalent bond that links the (a) group to a linker; and

(ii) a compound of formula (b):

where:

R³ and R⁴ are:

R^3	R ⁴
R ¹⁷ CH ₂ -	-CH₂OCOCH₃
R ¹⁷ N————————————————————————————————————	H_3C \longrightarrow S SCH_2 -
CH- NHR ¹⁹	-CH ₃
R ¹⁸ OCHNHR ¹⁹	-CH ₃
CH- OR ¹⁹	N N N N N N N N N N
R ¹⁸ CH ₂ -	CH₂OCONHR ¹⁹ −CH₂OCOCH3
CH- NHR ¹⁹	-CI
R ¹⁸ NOCH ₃	-CH₂OCONHR ¹⁹
CH ₂ NHR ¹⁹	N==- N-CH₂COOH

$$R^{17}NH$$
 S
 $NOCH_3$
 $-CH_2OCOCH_3$. $-CH_2OCH_3$. H
 $R^{18}NH$
 S
 $X = halo$
 R^{19}
 R^{19}

(Note: the R³ group in the left column is paired with the R⁴ in the right column) wherein:

n is 0 or 1; m is 1-5; Z is CH or N; Y is H or halo; R is alkyl;

R¹⁷ is a covalent bond that links the (b) group to a linker; one of R¹⁸ and R19 is hydrogen or alkyl; R³⁰ and R³¹ are, independently of each other, hydrogen or alkyl; or together with the nitrogen atom to which they are attached form a heterocycloamino group; and R, R³² and R³³ are independently alkyl wherein one of R¹⁸, R¹⁹, R³⁰-R³³ is a covalent bond that links the (b) group to a linker;

(iii) a compound of formula (c):

wherein R^b is a covalent

bond linking (c) to a linker;

(iv) a compound of

formula (d):

where R^a is:

$$\begin{array}{c} OH \\ R^{24} \\ R^{25} \\$$

where:

R²³ is a covalent bond that links (d) to a linker;

one of R^{24} and R^{25} is hydrogen, alkyl, substituted alkyl, or aralkyl, and other is a covalent bond that links (d) to a linker; R^{26} is alkyl; or

(v) a compound of formula (e):

wherein one of R^{21} and R^{22} is hydrogen and the other links (d) to a linker; and X is a linker is selected from a compound of formula:

$$-X^a-Z-(Y^a-Z)_m-X^a-$$

wherein

m is an integer of from 0 to 20;

 X^a at each separate occurrence is selected from the group consisting of -O-, -S-, -NR-, -C(O)-, -C(O)O-, -OC(O)-, -C(O)NR-, -NRC(O)-, C(S), -C(S)O-, -C(S)NR-, -NRC(S)-, or a covalent bond where R is as defined below;

Z at each separate occurrence is selected from the group consisting of alkylene, substituted alkylene, cycloalkylene, substituted cylcoalkylene, alkenylene, substituted alkynylene, alkynylene, substituted cycloalkenylene, substituted cycloalkenylene, arylene, heteroarylene, heterocyclene, or a covalent bond;

each Y^a at each separate occurrence is selected from the group consisting of -O-, -C(O)-, -OC(O)-, -C(O)O-, -NR-, -S(O)n-, -C(O)NR'-, -NR'C(O)-, -NR'C(O)NR'-, -NR'C(O)NR'-, -NR'-C(=NR')-NR'-, -OC(O)-NR'-, -NR'-C(O)-O-, -N=C(X^a)-NR'-, -NR'-C(X^a)=N-,-P(O)(OR')-O-, -O-P(O)(OR')-, -S(O)_nCR'R"-, -S(O)_n-NR'-, -NR'-S(O)_n-, -S-S-, and a covalent bond; where n is 0, 1 or 2; and R, R' and R" at each separate occurrence are selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, substituted alkenyl, cycloallcenyl, substituted cycloalkenyl, alkynyl, substituted alkynyl, aryl, heteroaryl and heterocycic; and pharmaceutically acceptable salts thereof.

Please amend the paragraph beginning on page 57, line 20 and ending on page 80 with:

Within the above more preferred groups, an even more preferred group of compounds is that wherein:

L^a, L^c, and L^d are independently selected from the group consisting of:

L^b is selected from the group consisting of:

wherein the atom carrying the bond with the dashed line indicates the point of attachment of the ligand to the linker; and

the linker is selected from the group consisting of:

DIAMINES

HN	NH NH	HN CH ₃
hN NH	HINNH	HN NH
HN O	HN——NH	NH NH
NHNHNHNHNHNHNHNH	NH————————————————————————————————————	9NH
HN—CH ₃	HNNH	Z H
HN NH	NH HN	HN————————————————————————————————————

chiral CH ₃ H ₃ C	chiral H ₃ C NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	H ₃ C H ₃ C CH ₃ CH ₃ CCH ₃
H ₃ O CH ₃		O CI
N—CH ₃	H ₃ C — N	H ₃ C — N — CH ₃
HN	NH HN	HN

HN	T T T T T T T T T T T T T T T T T T T	HN NH
HN	HN NH	HN NH
H N N N N N N N N N N N N N N N N N N N	F F F F F F F F F F F F F F F F F F F	HN H
NH NH	NH	H ₃ C CH ₃

LINKERS DERIVED FROM AMINOALDEHYDES

LINKERS DERIVED FROM AMINOACIDS

H N N	H N N
H	H
H	H N N
H N	H N
H	H N N N N N N N N N N N N N N N N N N N

Representative compounds of the invention are shown in the table below:

Compounds of Formula (III) wherein the ligands are selected from a compound of formula (b) and are linked to a via the R³ group and where [[P]], Q, R⁴, and R⁵ and are as defined below are: linker, X,

چ م	
₹	
Ø	
<u> </u>	
Linker X	
Cpd	

	Y		
ω.	σ	တ	σ
-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -
Ι	I	I	I
CH ³	CH ³	CH ₃	OH3
H H - 1-1-	Z Z	HINITION TO THE PARTY OF THE PA	HOOHHOON HOON HOON HOON HOON HOON HOON

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

<i>σ</i> *	σ	Ø
-CH ₂ -	-CH ₂ -	-CH ₂ -
Ι	I	I
СН3	CH ³	CH³
OH IN	g o	HO H

•	ω '	ဟ	v	Ø
	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -
	I	I	I	I
	CH ₃	CH ₃	CH ₃	CH ₃
	Z	HAVIIII	S HINI	HN NH
	ω	o	10	-

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

•	<i>σ</i> '	o ပ	ဟ
	-CH ₂ -	-CH ₂ -	-CH ₂ -
	工	工	I
	ਨੂੰ - ਜੁਹੂ	CH ³	CH ₃
	T N		
		THE STATE OF THE S	
			N _T T
	Ž.	Ž-,	
	12		41

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

· ω `	o ပ
-[5 子 O-	-CH ₂ -
I	I
-CH ₂ -1- methyl-1H- tetrazol-5- ylsulfanyl	-CH ₂ -1- methyl-1H- tetrazol-5- ylsulfanyl
15	16

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

•	်	ဟ
	-CH ₂ -	-CH ₂ -
	エ	エ
	-CH ₂ -1- methyl-1H- tetrazol-5- ylsulfanyl	-CH ₂ -1- methyl-1H- tetrazol-5- ylsulfanyl
		118 O O O O O O O O O O O O O O O O O O

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

20 CHz-1- H -CHz-1 H -CHz-1 H -CHz-1 H -CHz-1 H -CHz-1 H -CHz-1 Ksulfanyi H - CHz-1 H -CHz-1 S H - CHz-1 S H - CHz	,	· · · · · · · · · · · · · · · · · · ·
H methyl-1H- retrazol-5- yisutfanyi M tetrazol-5- yisutfanyi M tetrazol-5- yisutfanyi M tetrazol-5- yisutfanyi M tetrazol-5- yisutfanyi	ν σ ΄	Ø
H methyl-1H- retrazol-5- yisurfanyi H CHz-1- H methyl-1H- tetrazol-5- yisurfanyi N yisurfanyi N yisurfanyi N yisurfanyi	-CH ₂ -	Ť Ç-
High and the state of the state		

Application No.: 09/457,926 Attorney Docket No.: 9210.0004-00

-CH ₂ -	-CH ₂ .
-CH ₂ -1- H methyl-1H- tetrazol-5- ylsulfanyl	-CH ₂ -1- H methyl-1H- tetrazol-5- ylsulfanyl
ý.	2

Compound of Formula (III) wherein the ligands are selected from a compound of formula (b) and are linked to a linker, X, via the R^4 group and where [[P]] \overline{M} , Q, R^3 , and R^5 and are as defined below are: $\widehat{\parallel}$

ç Ç			
			Ø
Q R			- CH ₂ -
Ø			エ
[[P]] <u>M</u>		Secondary	(2-aminothiazol-4-yl)-methoxyiminomethyl
Cp Linker X			
Cb	Q	8	-

III. Other compounds of the invention are: