Konvergenz von Folgen (Fortsetzung)

Def Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt bestimmt divergent gegen $+\infty$ bzw. $-\infty$, falls es zu jedem $K\in\mathbb{R}$ ein $N\in\mathbb{N}$ gibt, so dass für alle $n\geq N$ gilt:

$$a_n > K$$
 bzw. $a_n < K$.

Satz 2.6 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen. Dann gilt:

$$a_n \to +\infty \quad \Leftrightarrow \quad \frac{1}{a_n} \text{ ist eine Nullfolge.}$$

Def (Erweiterte reelle Zahlen)

Die Menge der erweiterten reellen Zahlen ist definiert als

$$\overline{\mathbb{R}} := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$$

mit den Rechenregeln

$$\begin{split} \pm\infty + x &= x + (\pm\infty) := \pm\infty \text{ für alle } x \in \mathbb{R}, \\ +\infty + (+\infty) &:= +\infty, \qquad -\infty + (-\infty) := -\infty, \\ \pm\infty \cdot x := \pm\infty \text{ für alle } x > 0, \qquad \pm\infty \cdot x := \mp\infty \text{ für alle } x < 0, \\ \frac{x}{\pm\infty} := 0 \text{ für alle } x \in \mathbb{R}. \end{split}$$

Außerdem gilt $-\infty < x < +\infty$ für alle $x \in \mathbb{R}$.

Def Eine Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} heißt

monoton wachsend, falls $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ und monoton fallend, falls $a_{n+1} \le a_n$ für alle $n \in \mathbb{N}$.

Eine Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} heißt

streng monoton wachsend, falls $a_{n+1} > a_n$ für alle $n \in \mathbb{N}$ und streng monoton fallend, falls $a_{n+1} < a_n$ für alle $n \in \mathbb{N}$.

Satz 2.7 Jede monoton wachsende und nach oben beschränkte Folge in \mathbb{R} konvergiert. Jede monoton fallende und nach unten beschränkte Folge in \mathbb{R} konvergiert.