ABELIAN VARIETIES OVER FINITE FIELDS: PROBLEM SET 5

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to venture into the world of p-divisible groups and Dieudonné modules. Problems marked (\star) , $(\star\star)$, and $(\star\star\star)$ denote beginner, intermediate, and advanced problems, respectively.

Notation: As customary, p will be a prime, and q will be a power of p.

In the first two problems, we explore the Newton polygon of a polynomial and use it to define the q-Newton polygon of an abelian variety. These problems are inspired by problems from [Poo06], which serves as a good complementary reference.

Problem 1 (*)

Let K be a field with a non-archimedean valuation $v: K^{\times} \to \mathbb{R}$. The Newton polygon of a polynomial $P(T) = a_0 T^n + a_1 T^{n-1} + \cdots + a_{n-1} T + a_n$ is the lower convex hull of the finite set $\{(j, v(a_j)) \in \mathbb{R}^2 : 0 \le j \le n \text{ and } a_j \ne 0\}$. We will denote it by $\mathcal{N}(P) = \mathcal{N}(P, v)$. We define the width of a line segment from (a, b) to (c, d) (with a < c) to be c - a.

Theorem A. Suppose that (K, v) above is complete, so that there is a unique extension v_L of v to any algebraic field extension $L \supset K$. Let \bar{K} be an algebraic closure of K, and let \bar{v} denote the extension of v to \bar{K} . Then,

$$\#\{\alpha \in \bar{K} : P(\alpha) = 0 \text{ and } \bar{v}(\alpha) = s\} = \text{ width of the segment of slope } s \text{ in } \mathcal{N}(P).$$

- (1) Prove Theorem A.^a
- (2) Let m be a positive integer. How does $\mathcal{N}(P)$ compare to $\mathcal{N}(P^m)$?
- (3) How does the Newton polygon of a product of polynomials relate to the Newton polygons of the factors?

^aHint: By changing P(T) to $P(\lambda T)$ for some suitable $\lambda \in \overline{K}$, reduce to the case of slope s=0. Start with P(T) in factored form, and in terms of the number of zeros with positive and negative valuation, determine the location of the slope-zero part of the Newton polygon.

In the context of abelian varieties over finite fields, we focus on the case where $K = \mathbb{Q}_p$, and p is the characteristic of our base field \mathbb{F}_q .

Problem 2 (*)

Let the q-valuation $\bar{v} \colon \overline{\mathbb{Q}}_p^{\times} \to \mathbb{R}$ to be the p-adic valuation renormalized so that $\bar{v}(q) = 1$. We can define the q-Newton polygon of an abelian variety A/\mathbb{F}_q to be the Newton polygon of the characteristic polynomial of Frobenius $P_A(T)$ with respect to the q-valuation \bar{v} . We write $\mathcal{N}(A) := \mathcal{N}(P_A(T), \bar{v})$. Newton polygons of g-dimensional abelian varieties over \mathbb{F}_q satisfy the following properties:

- a. The left endpoint is (0,0) and the right endpoint is (2q,q).
- b. The vertices are all integer points with nonnegative second coordinate.
- c. The vertices are symmetric: (i, j) is a vertex if and only if (2g i, g j) is a vertex. Equivalently, (i, j) lies above the polygon if and only if (2g i, g j) does so.

We say a Newton polygon is admissible if it satisfies properties a, b, c.

- (1) Describe the admissible Newton polygons for $g \leq 3$.
- (2) Are all admissible Newton polygons realized by some abelian variety of dimension $g \leq 3$? Find explicit examples in the LMFDB for each one.
- (3) How does the Newton polygon of an abelian variety relate to the Newton polygons of its simple factors in the isogeny category?
- (4) How does the q-Newton polygon of A compare to the q^r -Newton polygon of $A_{\mathbb{F}_{q^r}}$?
- (5) Calculate the Newton polygon of the varieties described in PSET 4 Problem 11.

 ${}^a\!\mathrm{See}$ how many of these you can prove!

The following problem establishes the basics of the ring of Witt vectors attached to a commutative ring. It is taken from [Neu13, Chapter II. Exercise 2-5].

Problem 3 (**)

Let X_0, X_1, \ldots be an infinite sequence of variables, and p a prime number. For each $n \in \mathbb{Z}_{\geq 1}$, let $W_n(X_0, \ldots, X_n) := X_0^{p^n} + pX_1^{p^{n-1}} + \cdots + p^nX_n$.

(1) Show that there exists polynomials $S_0, S_1, \ldots; P_0, P_1, \cdots \in \mathbb{Z}[X_0, X_1, \ldots; Y_0, Y_1, \ldots]$ such that

$$W_n(S_0, S_1, \dots, S_n) = W_n(X_0, X_1, \dots, X_n) + W_n(Y_0, Y_1, \dots, Y_n)$$

$$W_n(P_0, P_1, \dots, P_n) = W_n(X_0, X_1, \dots, X_n) \cdot W_n(Y_0, Y_1, \dots, Y_n)$$

Now, let A be a commutative ring such that pA = 0. Let $\underline{a} := (a_0, a_1, \dots)$ be an infinite tuple with $a_i \in A$. We make the set of such tuples into a commutative ring W(A) as follows. For two such tuples $\underline{a} = (a_0, a_1, \dots), \underline{b} = (b_0, b_1, \dots)$, define addition and multiplication

$$\underline{a} + \underline{b} := (S_0(a, b), S_1(a, b), \dots)$$
 and $\underline{a} \cdot \underline{b} := (P_0(a, b), P_1(a, b), \dots)$.

W(A) is the ring of (p-typical) Witt vectors attached to A.

- (2) Check that 1 := (1, 0, ...) is the multiplicative identity of W(A), and that p := 1 + 1 + ... + 1 is the element (0, 1, 0, ...) in W(A).
- (3) Show that $\underline{a} = \underline{b}$ in W(A) if and only if $W_n(\underline{a}) = W_n(\underline{b})$.
- (4) For every Witt vector $\underline{a} = (a_0, a_1, \dots) \in W(A)$, we define the ghost components $a^{(n)}$ as

$$\underline{a}^{(n)} := W_n(\underline{a}) = a_0^{p^n} + p a_1^{p^{n-1}} + \dots + p^n a_n.$$

Consider mappings $V, F: W(A) \to W(A)$ defined by

$$V(a) := (0, a_0, a_1, \dots)$$
 and $F(a) := (a_0^p, a_1^p, \dots)$.

Show that

$$V(\underline{a})^{(n)} = p\underline{a}^{(n-1)} \text{ and } \underline{a}^{(n)} = (F(\underline{a}))^{(n)} + p^n a_n.$$

(5) Now let K be a field of characteristic p. Show that V is a homomorphism of W(K) as an additive group, F is a homomorphism of W(K) as a ring, and

$$V \circ F(\underline{a}) = F \circ V(\underline{a}) = p \cdot \underline{a} = (0, a_0^p, a_1^p, \dots)^a$$

- (6) $(\star \star \star)$ If K is a perfect field of characteristic p, then W(K) is a complete discrete valuation ring with residue field K and maximal ideal pW(K).
- (7) $(\star \star \star)$ Show that $W(\mathbb{F}_{p^n}) \cong \mathbb{Z}_{p^n}$, which is the valuation ring of \mathbb{Q}_{p^n} , the unique degree n unramified extension of \mathbb{Q}_p .

The next problem is Exercise 7.4.5 in [BC09], which gives a different way to understand the Witt vectors.

Problem 4 (**)

Let k be an arbitrary field of characteristic p > 0.

^aTo show that f, g are the same map from $W(A) \to W(A)$, it suffices to show that $W_n \circ f = W_n \circ g$ from W(A) to A.

- (1) Use the addition law on the truncated Witt ring W_n defined in Problem 3 (applied to all k-algebras), to explain how this gives \mathbb{A}^n_k the structure of a smooth group variety W_n .
- (2) Describe the group variety structure explicitly for n=2 and any k.
- (3) Recall from PSET 1, Problem 8 the idea of a ring variety. Write down the axioms to define a "commutative ring scheme" and exhibit W_n as such an example.

The following is Lemma/Exercise after Definition 4.28 in [CO09]. It introduces the notion of the Dieudonné ring and the local Cartier ring.

Problem 5 (*)

Let K be a perfect field of characteristic p. Let W(K) be the ring of Witt vectors and let $\sigma \colon W(K) \to W(K)$ be the homomorphism $(a_0, a_1, \ldots) \mapsto (a_0^p, a_1^p, \ldots)$. The Dieudonné ring D_K is defined to the polynomial ring W(K)[F, V] satisfying FV = VF = p, $F\underline{a} = \underline{a}^{\sigma}F$, $V\underline{a}^{\sigma} = \underline{a}V$.

- (1) Show that the Dieudonné ring D_K can be naturally identified with the \mathbb{Z} -graded ring $\bigoplus_{i\in\mathbb{Z}} c_i V^i W(K)$ with the relation $\underline{a}V^n = V^n \underline{a}^{\sigma^n}$, where $c_i = p^{-i}$ if i < 0 and $c_i = 1$ otherwise. This means W(k)[F, V] is the ring consisting of finite sums $\sum_i a_i V^i$ where $a_i \in W(K)$, $\underline{v}_K(a_i) \geq \max\{0, -i\}$.
- (2) Let $W(K)[[V, F]\rangle$ be the ring consisting of formal Laurent series $\sum_i a_i V^i$ where $a_i \in W(K), v_K(a_i) \ge \max\{0, -i\}$, and $v_p(a_i) + i \to \infty$ as $|i| \to \infty$. Again the relation $\underline{a}V^n = V^n\underline{a}^{\sigma^n}$ is given. Let $v \colon W(K)[[V, F]\rangle \to \mathbb{Z}$ be defined by $v(\sum_i a_i V^i) = \min_i \{v_K(a_i) + i\}$. Show that v is a discrete valuation on $W(K)[[V, F]\rangle$.
- (3) Show that the inclusion $W(K)[F,V] \hookrightarrow W(K)[[V,F])$ is a ring homomorphism whose image is dense.

We compute the Cartier duals of some finite flat group schemes.

Problem 6 (**)

Let k be a field. Compute the Cartier duals of the following commutative k-groups.

- (1) $\underline{\mathbb{Z}/n\mathbb{Z}}$. Recall that as a k-scheme, this is given by Spec A where $A := \prod_{i \in \mathbb{Z}/n\mathbb{Z}} e_i k$. The multiplication on A is defined by $e_i \cdot e_j = \delta_{ij} e_i$, and the co-multiplication is given by $\Delta(e_r) = \sum_{i+j=r} e_i \otimes e_j$.
- (2) When k has characteristic p, the group $\alpha_p := \operatorname{Spec} k[x]/(x^p)$, considered as a subgroup of \mathbb{A}^1_k .

In problem 7 and 8, we use Dieudonné modules to classify the commutative finite flat group schemes of order p defined over an algebraically closed field k of characteristic p, and apply this to study the p-torsion group scheme of a supersingular elliptic curve over k. If you get stuck, the solutions can be found here.

Problem 7 (*)

Let k be an algebraically closed field of characteristic p. Let $D_k = W(k)[F, V]$ be the Dieudonné ring.

- (1) Using [BC09, Theorem 7.2.4], there is an equivalence of categories between commutative order p finite flat group schemes over k and D_k -modules M whose underlying W(k)-module is of length 1. Use (6) from Problem 3 to show that such an M must be isomorphic to W(k)/(p) as a W(k)-module.
- (2) To specify the D_k -module structure on M, it suffices to write down the action of F and V. Let e be a basis element of M as a 1-dimensional k-vector space. Let $\alpha, \beta \in k$ be such that

$$Fe = \alpha e, \quad Ve = \beta e.$$

Show that at least one of α, β is zero.

- (3) Conversely, show that upon fixing a basis element e, any choice of (α, β) with at least one of α and β being 0 uniquely determines a Dieudonné module over $W(\bar{k})$ of length 1.
- (4) Use a change of basis $e' := \lambda e$ for some $\lambda \in k^{\times}$ to show that if one of α, β is nonzero, then it equals 1.

^aThis ring can be naturally identified with the local Cartier ring $Cart_p(K)$.

 $^{^{}b}$ This indicates that the Dieudonné ring can be naturally identified as a dense subring of the local Cartier ring.

- (5) Now we have reduced to the cases (α, β) being (0,0), (1,0), or (0,1). There are three well-known finite flat group schemes of order p over a characteristic p field: μ_p , $\mathbb{Z}/p\mathbb{Z}$, and α_p . For each group scheme, find out whether it is connected, étale, or neither.
- (6) Show that the relative Frobenius kills a connected order p group scheme over k, and is trivial on an étale group scheme. ^a Deduce that the (1,0) Dieudonné module must correspond to $\mathbb{Z}/p\mathbb{Z}$.
- (7) Use the definition of the Verschiebung morphism on a group scheme together with Problem 6 to decide which of μ_p , α_p correspond to (0,1), and which to (0,0).

^aHint: See these notes by Andrew Snowden.

Problem 8 (**)

Let $E/\overline{\mathbb{F}}_p$ be a supersingular elliptic curve. We will show there is a unique group scheme G over $\overline{\mathbb{F}}_p$ of order p^2 such that $E[p] \cong G$.

- (1) Using [BC09, Theorem 7.2.4] again, a group scheme G over k of order p^2 corresponds to a Dieudonné module M(G) of length 2 as a $W(\overline{\mathbb{F}}_p)$ -module. Show that if G is p-torsion, then so is M(G). In particular, M(G) must be isomorphic to $W(\overline{\mathbb{F}}_p)/(p) \oplus W(\overline{\mathbb{F}}_p)/(p)$ as a $W(\overline{\mathbb{F}}_p)$ -module.
- (2) (**) Use the connected-étale sequence and the fact that $\#E[p](\overline{\mathbb{F}}_p) = 1$ to show that E[p] is connected.
- (3) (**) As an extension of Part (6) of Problem 7, one can show the relative Frobenius ϕ_G is a finite flat morphism of degree p, and is nilpotent on any connected finite flat group scheme G over a field. Use this to show that the kernel of ϕ_G is an order p flat group scheme, and so the Dieudonné module of $\ker(\phi_G)$ must be isomorphic to $\overline{\mathbb{F}}_p$ as a $W(\overline{\mathbb{F}}_p)$ -module.
- (4) The induced action of Frobenius on the Dieudonné module M(E[p]) is also nilpotent by functoriality, so we can choose an $\overline{\mathbb{F}}_p$ -basis e_1, e_2 of M(E[p]) so that

$$Fe_1 = e_2, \quad Fe_2 = 0.$$

Show that $Ve_2 = 0$, and $Ve_1 = \alpha e_2$ for some $\alpha \in \overline{\mathbb{F}}_p$. Show that $\alpha \neq 0$.

(5) By scaling e_1 and using that $\overline{\mathbb{F}}_p$ is algebraically closed, show that we can let $\alpha = 1$. In particular, there is a unique Dieudonné module corresponding to the group scheme E[p] for a supersingular elliptic curve.

The case of E ordinary is more straightforward. Use the fact that $\#E[p](\overline{\mathbb{F}}_p) = p$ and the fact that the connected-étale exact sequence splits for group schemes over a perfect field to show that $E[p] \cong \mu_p \times \mathbb{Z}/p\mathbb{Z}$.

The following problem is adapted from [CO09, Exercise 4.6]. Here we investigate the endomorphism algebra of simple Dieudonné modules over an algebraically closed base field.

Problem 9 (**)

Let k be an algebraically closed field containing \mathbb{F}_p . Let D_k be the Dieudonné ring as in Problem 5, and $D_k[\frac{1}{p}]$ be the rational Dieudonné ring. Now, let (m,n) be a pair of non-negative integer such that $\gcd(m,n)=1$. Let $N_{m,n}:=D_k[\frac{1}{p}]/D_k[\frac{1}{p}](F^m-V^n)$. $N_{m,n}$ is a simple object in the isogeny category of Dieudonné module over k. We want to compute $\operatorname{End}_{D_k[\frac{1}{p}]}(N_{m,n})$.

- (1) Show that $N_{m,n} \cong D_k[\frac{1}{p}]/D_k[\frac{1}{p}](F^{m+n} p^n)$.
- (2) Let $\varphi \in \operatorname{End}_{D_k[\frac{1}{p}]}(N_{m,n})$. Suppose $\varphi(1) = \sum_{i=0}^{m+n-1} a_i F^i$ with $a_i \in W(k)[\frac{1}{p}]$. Use the fact that $(F^{m+n} p^n)\varphi(1) \in D_k[\frac{1}{p}](F^{m+n} p^n)$ to show that all the a_i 's lie in $W(\mathbb{F}_{p^{m+n}})[\frac{1}{p}] = \mathbb{Q}_{p^{m+n}}$
- (3) Show that the center of $\operatorname{End}_{D_k[\frac{1}{p}]}(N_{m,n})$ is \mathbb{Q}_p .
- (4) Use the fact that $N_{m,n}$ is a simple left $D_k[\frac{1}{p}]$ -module, show that $\operatorname{End}_{D_k[\frac{1}{p}]}(N_{m,n})$ is a central division algebra over \mathbb{Q}_p .

- (5) Recall the definition and notation of $D_{p,h,n}$ from PSET 2, Problem 4. It can be written as $\mathbb{Q}_{p^h}[F]/(F^h-p^n)$, where $F\alpha=\alpha^{\sigma}F$ for $\alpha\in\mathbb{Q}_{p^h}$. Show that $\varphi\mapsto\varphi(1)$ gives an isomorphism $\mathrm{End}_{D_k[\frac{1}{p}]}(N_{m,n})\cong\mathbb{Q}_{p^{m+n}}[F]/(F^{m+n}-p^n)$.
- (6) Conclude that $\operatorname{End}_{D_k[\frac{1}{n}]}(N_{m,n})$ is a central simple algebra over \mathbb{Q}_p with Hasse-invariant $\frac{n}{m+n}$.

^aThat is, show that $a_i^{\sigma^{m+n}} = a^i$ for all a_i .

The next problem is Exercise 7.4.8 in [BC09]. It displays the role p-divisible groups play compared to ℓ -adic Tate-modules: they are more suitable for encoding information at p!

Problem 10 $(\star \star \star)$

Let A and B be abelian varieties over a perfect field k of characteristic p > 0. Recall that there is an additive antiequivalence of categories $G \mapsto \mathbb{D}(G)$ between the category of p-divisible groups over k and the category of left W(k)[F,V]-modules which are also finite as W(k)-modules.

(1) Show that the natural map

$$\operatorname{Hom}_k(A,B) \otimes_{\mathbb{Z}} \mathbb{Z}_p \to \operatorname{Hom}_{W(k)[F,V]}(\mathbb{D}(B[p^{\infty}]), \mathbb{D}(A[p^{\infty}]))$$

is injective.

(2) Show however, the natural map

$$\operatorname{Hom}_k(A,B) \otimes_{\mathbb{Z}} \mathbb{Z}_p \to \operatorname{Hom}_{\mathbb{Z}_p}(T_pA, T_pB)$$

is never injective.

(3) If $f \in \operatorname{End}_k(A)$ is a nonzero endomorphism of A then the common characteristic polynomial $P_f \in \mathbb{Z}[T]$ of all $T_\ell(f) \in \operatorname{End}_{\mathbb{Z}_\ell}(T_\ell A)$ with $\ell \neq \operatorname{char} k$ is also the characteristic polynomial of $\mathbb{D}(f) \in \operatorname{End}_{W(k)}(\mathbb{D}(A[p^{\infty}]))$.

In Problem 7, we have considered examples of finite flat group schemes of order p. The following problem expands on these examples to give examples of p-divisible groups of height 1.

Problem 11 (**)

Let k be an algebraically closed field of characteristic p.

- (1) Let \mathbb{G}_m/k be the multiplicative group scheme defined over k.
 - (a) Show that the multiplication $[p^i]$ is given by $x \mapsto x^{p^i}$ on the coordinate ring. Determine the Hopf algebra of the group scheme $\mathbb{G}_m[p^i]$, i.e. the kernel of $[p^i]$.
 - (b) Define $G_i := \mathbb{G}_m[p^i]$. Show that $\mathbb{G}_m[p^\infty] := \{G_i\}_{i \geq 1}$, together with the inclusion $j_i : G_i \to G_{i+1}$, is a p-divisible group of height 1.
 - (c) Show that the relative Frobenius $F_{G_i/k}: G_i \to G_i^{(p)} \cong G_i$, agrees with $[p]: G_i \to G_i$. Conclude that $V_{G_i/k}: G_i \to G_i$ is the identity.
 - (d) Let $G_{m,n}$ be the p-divisible group whose Dieudonné module is $M_{m,n} := D_k/D_k(F^m V^n)$. By comparing the action of Frobenius and Verschiebung and using the Dieudonné-Mannin classfication^a, show that $\mathbb{G}_m[p^{\infty}]$ is isogenous to $G_{0,1}$. That is, $\mathbb{D}(\mathbb{G}_m[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong M_{0,1} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.
- (2) Let $H_i = p^{-i}\mathbb{Z}/\mathbb{Z}_k$ be the constant group scheme over k attached to the finite group $p^{-i}\mathbb{Z}/\mathbb{Z}$.
 - (a) Show that $\underline{\mathbb{Q}_p}/\mathbb{Z}_{p_k} := \{H_i\}_{i\geq 1}$, together with the inclusion $j_i: H_i \to H_{i+1}$, is a p-divisible group of height 1.
 - (b) Show that $F_{H_i/k}: H_i \to H_i^{(p)} \cong H_i$ is the identity. Conclude that $V_{H_i/k}$ is [p].
 - (c) Show that $\mathbb{Q}_p/\mathbb{Z}_{p_k}$ is isogenous to $G_{1,0}$.

^aUse the statement of [BC09, Theorem 8.1.4]. $M_{m,n} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is $D_{m,m+n}$ in the notation of Theorem 8.1.4, and is $N_{m,n}$ in the notation of Problem 9.

 $^{{}^}b\mathrm{Use}$ the fact that $\mathbb{D}(G^t)=\mathbb{D}(G)^\vee$ and $M_{m,n}^\vee=M_{n,m}$, we see that $\mathbb{G}_m[p^\infty]$ is the Serre dual (see below) of $\mathbb{Q}_p/\mathbb{Z}_{p_k}$.

The following problem gives the construction of Dieudonné module associated to the Serre dual of a p-divisible group.

Problem 12 (**)

Let k be an algebraically closed field of characteristic p. Let M be a Dieudonné module^a, i.e. a finite free W(k)-module with left D_k action. We construct its dual M^{\vee} as follows. As a W(k) module, $M^{\vee} = \operatorname{Hom}_{W(k)}(M, W(k))$, with the action of V and F given as

$$(V \cdot h)(m) = (h(F(m))^{\sigma^{-1}}, (F \cdot h)(m) = (h(V(m))^{\sigma})^{\sigma^{-1}}$$

for all $h \in M^{\vee}$ and $m \in M$.

- (1) For a pair of non-negative integer (m,n) such that gcd(m,n) = 1, let $M_{m,n}$ be as in Problem 11. Show that $M_{m,n}^{\vee} \cong M_{n,m}$.
- (2) We have the following facts:
 - Let X/k an abelian variety. Let $X[p^{\infty}]$ denote its p-divisible group, and $X[p^{\infty}]^t$ the Serre dual of $X[p^{\infty}]$, then

$$X[p^{\infty}]^{\mathrm{t}} \cong X^{\vee}[p^{\infty}],$$

where X^{\vee} is the dual abelian variety.

• If G is a p-divisible group over k, and D(G) is its Dieudonné module, then

$$D(G^t) \cong D(G)^{\vee}$$

Use the above facts, show that the Newton polygon of an abelian variety is symmetric. That is, $X[p^{\infty}]$ is isogenous to $\bigoplus_i (G_{m_i,n_i} \oplus G_{n_i,m_i})^{r_i}$ for some (m_i,n_i) non-negative and $\gcd(m_i,n_i) = 1$.

The following problem explores examples of p-divisible groups attached to an abelian variety and compute their Newton polygons.

Problem 13 (**)

- (1) Recall that if $f: X \to Y$ is an isogeny between abelian varieties over a field k, then $\deg(f) = \operatorname{rank}(\ker(f))$, i.e. the rank of the finite group scheme $\ker(f)$ over k. Show that the p-divisible group of a g-dimensional abelian variety over k is of height 2g.
- (2) Now let E/\mathbb{F}_q be an elliptic curve.
 - (a) Suppose E/\mathbb{F}_q is supersingular. Recall in PSET 3, problem 7, we have shown that $\operatorname{End}^0(E) \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong D_{p,2,1}$, the central division algebra over \mathbb{Q}_p with Hasse-invariant $\frac{1}{2}$. Combine Problem 10 and Problem 9 Part (5) to conclude that $E_{\overline{\mathbb{F}}_q}[p^{\infty}]$ is isogenous to $G_{1,1}$.
 - (b) Suppose E/\mathbb{F}_q is ordinary. Recall in PSET 3, problem 9, we have shown that $L = \operatorname{End}^0(E)$ is an imaginary quadratic extension over \mathbb{Q} generated by ϕ_q . Furthermore, the characteristic polynomial of ϕ_q is $T^2 aT + q$, where $v_p(a) = 0$. Show that $L \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \mathbb{Q}_p \oplus \mathbb{Q}_p$. Use the injection

$$\operatorname{End}^0(E) \otimes_{\mathbb{Q}} \mathbb{Q}_p \to \operatorname{End}^0(E_{\overline{\mathbb{F}}_q}) \otimes_{\mathbb{Q}} \mathbb{Q}_p \to \operatorname{End}(E_{\overline{\mathbb{F}}_p}[p^{\infty}]) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

to conclude that $E_{\mathbb{F}_a}[p^{\infty}]$ is isogenous to $G_{1,0} \oplus G_{0,1}$.

(3) Recall that in PSET 4, Problem 11, for a pair of non-negative integers (m,n) with n < m and $\gcd(m,n)=1$, we have a simple abelian variety A/\mathbb{F}_q of dimension g=m+n, and the Frobenius ϕ_q on A has minimal polynomial $h_A(T)=T^2-p^nT+p^g$. Moreover, $\operatorname{End}^0(A)\otimes_{\mathbb{Q}}\mathbb{Q}_p\cong D_{p,g,m}\oplus D_{p,g,n}$. Use these to show that $A_{\mathbb{F}_q}[p^\infty]$ is isogenous to $G_{n,m}\oplus G_{m,n}$.

As an important notion to study p-divisible groups, we introduce the Tate module of a p-divisible group.

 $^{^{}a}$ There is an unfortunate clash of terminology with the Dieudonné module of a finite flat group scheme, which isn't necessarily torsionfree. We hope that the meanings are clear from the context.

Problem 14 (**)

Let G be a p-divisible group over a perfect scheme S of characteristic p. Consider the inverse limit

$$TG := \varprojlim_{p} G[p^n].$$

Show that this limit exists in the category of schemes and TG is an affine scheme, flat over S. This is called the (schematic) Tate module of the p-divisible group G.

(1) Show that the functor of points of TG identifies with the following functor

$$(T \to S) \mapsto \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, G_T),$$

where $\mathbb{Q}_p/\mathbb{Z}_p$ is the constant p-divisible group over T, and G_T denotes the base change.

(2) Show that over a noetherian scheme of characteristic p, the Tate module of $\mu_{p^{\infty}}$ is trivial.

^aDepending on conventions, sometimes the Tate module of G refers to the sections of TG, which is a finite free \mathbb{Z}_p -module.

References

- [BC09] Olivier Brinon and Brian Conrad, CMI Summer School notes on p-adic Hodge theory (preliminary version), 2009, Available at https://math.stanford.edu/~conrad/papers/notes.pdf.
- [CO09] Ching-Li Chai and Frans Oort, Moduli of abelian varieties and p-divisible groups, Arithmetic geometry 8 (2009), 441–536.
- [Neu13] Jürgen Neukirch, Algebraic number theory, vol. 322, Springer Science & Business Media, 2013.
- [Poo06] Bjorn Poonen, Lecture on rational points on curves, https://math.mit.edu/~poonen/papers/curves.pdf, March 2006.