

Simulaciones cuánticas

Dominique Spehner

Departamento de Ingeniería Matemática Universidad de Concepción, Chile

2^{nda} escuela en computación cuántica, Santiago, 8-12/01/2024

Outlines

• Introducción: computación cuántica

Bits cuánticos (qubits)

El estado de un sistema cuántico se representa por un vector normalizado de $\mathcal{H} = \mathbb{C}^d$ (ó de un espacio de Hilbert \mathcal{H} de dim. infinita)

Classical Bit

0

Qubit

$$\diamond$$
 1 qubit : $\mathcal{H} = \mathbb{C}^2$, base computational $\{|0\rangle, |1\rangle\}$

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle \in \mathbb{C}^2$$

 $c_{0,1} \in \mathbb{C}$ componentes complejos tales que $|c_0|^2 + |c_1|^2 = 1$.

 $\diamond n$ qubits: $\mathcal{H} = \mathbb{C}^{2^n}$, base computacional

$$\{|x\rangle = |x_{n-1}\dots x_0\rangle = |x_{n-1}\rangle \dots |x_0\rangle; x_i = 0, 1\}$$
$$|\psi\rangle = \sum_{x \in \{0,1\}^n} c_x |x\rangle \in \mathbb{C}^{2^n}$$

 $c_x \in \mathbb{C}$ componentes complejos tales que $\sum_x |c_x|^2 = 1$.

Computadores clásico y cuántico

• Computador clásico:

$$\begin{cases} \text{ input: } & x = x_n \dots x_1 \in \{0, 1\}^n \\ \text{ output: } & y = y_m \dots y_1 \in \{0, 1\}^m \end{cases}$$

• Computador cuántico:

$$\begin{cases} \text{ input: } |\psi_0\rangle \in \mathbb{C}^d \ , \ d=2^n \\ \text{ output: } |\psi\rangle = U|\psi_0\rangle \in \mathbb{C}^d \end{cases}$$

U operador unitario (matriz $d \times d$).

Medición en la base computacional $\{|x\rangle; x \in \{0,1\}^n\}$:

 \longrightarrow resultado **aleatorio** $y \in \{0,1\}^n$ con proba $p_y = |\langle y|\psi\rangle|^2$

 \hookrightarrow Se extrae **información clásica** del estado cuántico $|\psi\rangle$

Circuitos cuánticos

- Una $puerta\ cu\'antica$ es un operador unitario U que transforma el estado $|\psi\rangle\in\mathcal{H}$ de n qubits en otro estado $U|\psi\rangle\in\mathcal{H}$.
- **Ejemplo:** puerta CNOT para 2 qubits. En la base computacional: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- Un *conjunto universal* es un conjunto $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Pauli-X (X) puertas tal que cualquiera Pauli-Y (Y) transformación unitaria U sobre Pauli-Z (Z) $\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix}$ Hadamard (H) qubits puede implementarse en un Phase (S, P) circuito finito compuesto únicamente por puertas de este conjunto, con un Controlled Not (CNOT, CX) error arbitrariamente chico.
- {puertas de 1 qubit, CNOT} y {H,S,T,CNOT} son universales.

Outlines

- ✓ Introducción: computación cuántica
 - Simulaciones cuánticas

Dificultades en simular sistemas cuánticos

Los computadores clásicos **no son eficientes** para simular la dinámica de sistemas cuánticos con un gran número de partículas.

• Se necesita resolver numericamente la ecuación de Schrödinger

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle = H|\Psi(t)\rangle$$

 $|\Psi(t)\rangle\in\mathcal{H}$ estado del sistema al tiempo t

 ${\cal H}$ espacio de Hilbert del sistema

H Hamiltoniano (= operador auto-adjunto sobre \mathcal{H})

• Problema estacionario: determinar el estado basal $|\Psi_0\rangle$,

$$H|\Psi_0\rangle = E_0|\Psi_0\rangle$$

Sistemas cuánticos con N partículas

Espacio de Hilbert: $\mathcal{H} = \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} \otimes \cdots \otimes \mathcal{H}^{(N)}$ \mathcal{H} tiene dimensión $\dim \mathcal{H} = d_1 d_2 \cdots d_N \sim d^N$ $d_i = \dim \mathcal{H}^{(i)}$ dimensión del espacio de la i-esima partícula

Ejemplo: sistema de N spin 1/2 (N qubits): $\dim \mathcal{H} = 2^N$

 \hookrightarrow Cuando hay interacciones fuertes entre partículas, debido a la forma del Hamiltoniano H, se necesita resolver la ecuación de Schrödinger sobre un espacio cuya **dimensión** crece exponencialmente con N.

Para un (super)computador clásico: imposible si $N \gtrsim 100$

Un computador cuántico para simular... sistemas cuánticos

Can physics be simulated by a universal computer?

The full description of quantum mechanics for a large system with R particles [...] has too many variables, it cannot be simulated with a normal computer with a number of elements proportional to R [...] but it can be simulated with quantum computer elements.

(R. Feynman 1982)

 $(R. \ Feynman \ 1982)$

- Un computador cuántico evoluciona con la ecuación de Schrödinger, por tanto el puede simular sistemas cuánticos de manera eficiente.
- Para simular un sistema de N partículas, basta que el número de qubits sea proporcional a N (o N^{α}).

¿ Que es un buen simulador cuántico?

El sistema usado como simulador debe ser tal que:

- > se puede controlar y cambiar su estado y su Hamiltoniano
- ▶ los efectos de decoherencia inducen una pérdida rápida de las propiedades cuánticas
- ▶ los qubits deben **interactuar entre sí** de manera controlada, para así crear entrelazamiento.
- el Hamiltoniano del sistema por simular se puede descomponer en suma de términos más simples.

Ejemplos: iones atrapados, átomos fríos, circuitos supraconductores, fotones, NV-centers,...

Simuladores analógicos y digitales

Tipos de simuladores cuánticos:

- ➤ Simulador digital: simula la dinámica con un circuito cuántico compuesto de puertas de un conjunto universal.
 - → el mismo computador puede simular cualquiera evolución
- ightharpoonup Simulador analógico: mapea el sistema y su Hamiltoniano H en un sistema cuántico controlable con un Hamiltoniano similar
 - → simulador no universal, pero más eficiente (se necesitan menos puertas)
- ► Simulador híbrido: digital-analógico
 - → puede ser universal y necesita menos puertas que un simulador digital (Hamiltoniano analógico = recurso poderoso)

Método general

• Discretización en el tiempo:

$$t_i < t_i + \Delta t < \dots < t_i + k\Delta t < \dots < t_f \operatorname{con} \Delta t = (t_f - t_i)/m$$

Solución de la ecuación de Schrödinger:

$$|\psi(t_f)\rangle = e^{-iH(t_f - t_i)}|\psi_i\rangle = (e^{-iH\Delta t})^m|\psi_i\rangle$$

• Aproximación del operator de evolución: si $H = \sum_{\ell=1}^L H_\ell$ donde los H_ℓ actuan sobre q partículas, q=1,2,..., luego

$$e^{-iH\Delta t} = \prod_{\ell=1}^{L} e^{-iH_{\ell}\Delta t} + O(\Delta t)^{2}$$

NOTA: el error es $\neq 0$ si los H_{ℓ} no comutan entre sí

Aproximación de $e^{-\mathrm{i}H\Delta t}$

$$e^{-\mathrm{i}H\Delta t} = \prod_{\ell=1}^L e^{-\mathrm{i}H_\ell\Delta t} + O(\Delta t)^2 \;,\; \Delta t = \frac{t_f - t_i}{m} \;\; \mathrm{con} \;\; m \gg 1$$

 $Dem. \ (caso \ L=2)$ Por la fórmula de Taylor,

$$e^{-i(H_1+H_2)\Delta t} = 1 - i(H_1+H_2)\Delta t + O(\Delta t^2)$$

$$e^{-iH_{1}\Delta t}e^{-iH_{2}\Delta t} = (1 - iH_{1}\Delta t + O(\Delta t^{2}))(1 - iH_{2}\Delta t + O(\Delta t^{2}))$$
$$= 1 - i(H_{1} + H_{2})\Delta t + O(\Delta t^{2})$$

Error =
$$e^{-i(H_1+H_2)\Delta t} - e^{-iH_1\Delta t}e^{-iH_2\Delta t}$$

= $-\left((H_1+H_2)^2 - H_1^2 - H_2^2 - 2H_1H_2\right)\frac{\Delta t^2}{2} + O(\Delta t^3)$
= $[H_1, H_2]\frac{\Delta t^2}{2} + O(\Delta t^3)$

Aproximación más precisa: $e^{-\mathrm{i}(H_1+H_2)\Delta t}=e^{-\mathrm{i}H_1\frac{\Delta t}{2}}e^{-\mathrm{i}H_2\Delta t}e^{-\mathrm{i}H_1\frac{\Delta t}{2}}+O(\Delta t^3)$

Fórmula de Trotter-Kato

• Para todos operadores auto-adjuntos H_1 y $H_2: \mathcal{H} \to \mathcal{H}$,

$$e^{-i(H_1+H_2)(t_f-t_i)} = s - \lim_{m\to\infty} (e^{-iH_1\Delta t}e^{-iH_2\Delta t})^m$$

con
$$\Delta t = (t_f - t_i)/m$$
.

ALGORITMO:

 $|\psi_0\rangle=$ aproximación del estado inicial $|\psi(t_i)\rangle$ en el espacio del simulador k=0

WHILE
$$(k\Delta t \leqslant t_f - t_i)$$
 DO
$$|\psi_{k+1}\rangle = e^{-\mathrm{i}H_1\Delta t}\cdots e^{-\mathrm{i}H_L}|\psi_k\rangle$$

$$k \leftarrow k+1$$

END DO

Ejemplo: Hamiltoniano de Heisenberg

Cadena de espines 1/2 en una red unidimensional

$$H = -\sum_{j=1}^{N} \left(J_{x} \sigma_{j}^{x} \sigma_{j+1}^{x} + J_{y} \sigma_{j}^{y} \sigma_{j+1}^{y} + J_{z} \sigma_{j}^{y} \sigma_{j+1}^{y} + h \sigma_{j}^{z} \right)$$

 $\sigma_j^{x,y,z}=$ espin al sitio j en la dirección x,y,z h= campo magnético en la dirección z

Como H acopla todo los espines, no se puede simular facilmente $e^{-\mathrm{i}H\Delta t}$

 \leftrightarrow se puede simular de manera eficiente $e^{\mathrm{i}h\sigma_j^z\Delta t}$, $e^{\mathrm{i}J_x\sigma_j^x\sigma_{j+1}^x\Delta t}$, $e^{\mathrm{i}J_y\sigma_j^y\sigma_{j+1}^y\Delta t}$ y $e^{\mathrm{i}J_z\sigma_j^z\sigma_{j+1}^z\Delta t}$

Fórmula de Trotter

$$e^{-\mathrm{i}H(t_f - t_i)} = \lim_{m \to \infty} \left(e^{\mathrm{i}h \sum_j \sigma_j^z \Delta t} \prod_{j=1}^N e^{\mathrm{i}J_x \sigma_j^x \sigma_{j+1}^x \Delta t} e^{\mathrm{i}J_y \sigma_j^y \sigma_{j+1}^y \Delta t} e^{\mathrm{i}J_z \sigma_j^z \sigma_{j+1}^z \Delta t} \right)^m$$

Algunas aplicaciones de las simulaciones cuánticas

Química cuántica, medicina:

- → propiedades químicas de moleculas (energía, tasa de reacción,...)
- → aplicaciones farmacéuticas

♦ Nanotecnologia

→ dispositivos semiconductores, nuevos materiales

♦ Física fundamental

- → supraconductividad, sistemas afuera de equilibrio
 - → física de alta energía (QED, QCD)

Outlines

- ✓ Introducción: computación cuántica
- √ Simulaciones cuánticas
- Átomos frios

Condensados de Bose-Einstein

La condensación de Bose-Einstein ha sido observada por $1^{\rm era}$ vez en 1995 por E. Cornell, C. Wieman, y W. Ketterle (premios Nobel 2001). Para lograrlo, ellos enfriaron un gas diluido de átomos de Rubidium atrapados magneticamente hasta una temperatura de ~ 100 mK.

Observación en NIST/JILA en 1995 de un condensado con un número macroscópico de átomos en su estado fundamental $(T < T_c)$.

 Desde entonces, muchos investigadores han producidos condensados de B-E con átomos fríos atrapados en potenciales ajustables, controlando su estados internos con láser.

Gases de átomos frios en trampas ópticas

- → Interacciones entre átomos ajustables (attractivas o repulsivas) con resonancias de Feshbach
- → Diseño del potencial de confinamiento en tiempo real
- → Análogo a circuitos supraconductores, pero
 - bosones/fermiones en vez de electrones
 - acoplamiento con el entorno más débil (los átomos neutros no son sensibles al campo eléctrico ambiente)
 - → menos efectos de decoherencia
 - escalibilidad (up to $\sim 10^5$ átomos)
 - campo magnético artificial obtenido al rotar los átomos o mediante laseres (hasta 100× más grandes que en materia condensada)

Aplicaciones a las tecnologías cuánticas

- Simulaciones del estado fundamental y de la dinámica afuera de equilibrio de sistemas de materia condensada
- Metrología cuántica: interferometría ultraprecisa, sensores de campo magnético, ...
 - → saca provecho del entrelazamiento multipartito entre átomos
 - → interferómetro de Mach-Zehnder con atomos atrapados en potenciales de doble poso o de un solo poso en dos estados internos.

[Gross et al., Nature 464, 1164 ('10)], [Riedel et al., Nature 464, 1170 ('10)]

♦ Computación cuántica: "flux qubits" con átomos atrapados opticamente en redes en forma de anillo con un campo magnético (AQUID) [Aghamalyan et al., NJP 17, 045023 ('15)]

Simulaciones cuánticas con átomos frios

Los átomos fríos forman un **simulador analógico ideal** debido a su alto grado de controlabilidad (dimensión, geometría, desorden,...) [Gross, Bloch, Science 357, 995 ('17)]

En particular, se puede simular sistemas discretos confinados en redes en 1,2 y 3 dimensiones

Microscopios de gases cuánticos permiten detectar los átomos en cada sitio con una alta eficiencia [Sherson et al., Nature 467, 68 ('10)]

Modelo de Bose-Hubbard, sistemas de espines

 Modelo de Bose-Hubbard: Observación de la transición superfluido-aislante de Mott [Greiner et al., Nature 415, 39 ('02)]

• Cadena de espines: Modelo de Ising (antiferomagnetismo)

[Simon et al., Nature 472, 307 ('11)]

Modelo de Heisenberg isótropo (dinámica de espines, magnons)

[T.Fukushara et al., Nat. Phys. 9, 235 ('13);x Nature 502, 76 ('13)]

Magnetismo en sistemas de espines frustrados

[J. Struck et al., Science 333, 996 ('11)]

Termalización vs localización

 Termalización de sistemas con muchas partículas

> [T. Langen et al, Nat. Phys. 9, 640 ('13)] [H. Kaufman et al, Science 353, 794 ('16)]

 Localización de Anderson con muchos cuerpos en 1 o 2 dimensiones

[J. Y. Choi et al, Science 352, 1547 ('16)] [S.S. Kondov et al. PRL 114, 083002 ('15)] [J. Smith et al., Nat. Phys. 12, 907 ('16)]

Gracias por su atención!