36710 - 36752 ADVANCED PROBABILITY OVERVIEW FALL 2020 LECTURE 6: MON, SEP 21, 2020 LAST TIME: MEASURABLE FUNCTIONS Properties of meas real-valued functions: __ creck {w; fw) < = 2 1) IF (cs MEAS., THEN SO IS 2. f ANY DER. APPLIES TO APPLIES. GENERAL & LL) IF $f: \Omega \rightarrow S$ AND $g: S \rightarrow T$ ARE MEAS., SO IS 9(f) or gof: 12 DT [BECAUSE [9(f)]-(B)=9-(f-(B)) 222) IF F AND & ARE REAL VALUED FUNCTIONS, 50 15 ftg, max {f.g}, [f-g], ... COMPOSITION OF h(2,4) = 2+4 AND If TAKING LACUES IN R? ASIDE : IF f: A -> IR USEXTENDED REAL LINE WE CAN CRECU MEASURABILITY IN THE SAME WAY. IN PARTICULAR

f-({\pi_{\pi_3}}) = \int_{\pi_1} \{\pi_1 \pi_2 \pi_1 \pi_2 \pi_3 \pi_3

OTHER	EXAMPLES OF A	IEAS. FUNCTIO	.30			
Than ce	f f . Ω ->	R BE MEA	is. FOR ALL	n. THEN, THE	הונטטוים אפ	E ALSO MEAS
~	lin sup for	and lim	in F fin			
	n 1		n'		Ī	-> EXERCISE
11	lum for ce	THE LIMIT	EX1875	THE SET	Ew: lim force	L CASM 21 ETISIZE (.
	n t				^	7
2)						
Pf/ FOR	ω ,> (in sup force	= inf o	p fucu),	IT IS ENOUGH	TO SHOW THAT
sup	fn is MEAS	s But	MIS IS TRUE	BECYDIE , 8	AS AM CE	R,
					: fn(w) = c	
		n	J J	1	MEAL	
THE	proof for	w -> ha	af facu)=	up int fix	(cu)	
				n k>n'		
11)	ASSUME	fn(w) ->	flo) ALL	w.=> f	IS MEAT. IT	IS ENOUGH TO SHOW
	THAT THE	FOLLOWING	· SET IS ME	AS. (FOR AL	cceR):	
					e/)	
	[w: [(w)]	, c } =	jw: Iln fr	$(\omega) > 0$	r=1 24:	for (w) > c + 1 EVENTIALLY
			2 (m .m f	5 f.,	2264/3	
			lim inf			
		_ ()	05 05 05 05 05 05 05 05 05 05 05 05 05 0	Sen : fre	120+13	
		Y=1	U=1 K=u	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	r	
				MCAS		
	RANDOM 1	IARIABLE	-S			
	(2,5,1			2000	Champan	X 2
A	MEASURABLE T IS POSSIBLE	FUNCTION	FRSM IL	INTO CE	(,05).	ELO.
4>	T IS POSSIBLE	TO ALLOW	X TO GE	AN EXTENOED	REAL - VALUED	FUNCTION

EXAMPLE. IL = [0,1], & ROREL 6-FIELD ON IT AND PIS THE LEBESGUE MEASURE ON X(w) = L2 w 1 $Z(\omega) = \omega$ DEF (INDUCED MEASURE) LET (PL. S, M) BE A MEASURE SPACE AND LET F BE A MEAS. PUNCTION FROM THIS SPACE INTO THE MEASURABLE SPACE (S. A). THEN, f INDUCES A MEASURE ON (S, A) DEFINED BY: $V(A) = M(f^{-1}(A)), \forall A \in \mathcal{A}$ = M ({ cw: fcw e A }) V IS CALLED THE INDUCED MEASURE DEF (PROBABILITY DITTRIBUTON) LET X BE A RANDOM VARIABLE, DEFINED ON (A, F, P) AND TAKING VALUE IN (S, R). THE DISTRIBUTION OF X IS THE PROBABILITY MEASURE ON (S.A.) INDUCED BY X REMARK: WE WANT TO WRITE SOMETHING THAT X BELONGS TO A SET A. Pr (XGA), A & B. FOR DUS TO MAKE SENSE, WE NEED TO (1) HAVE AN ABSTRACT PROB. SPACE (Q, F, P). (L) MAKE SCRE X IS MEAS. TUEN, Pr (XEA) = P ({ w: X(w) c A }) = P (X'(A)) THIS IS DIE DISTRIBUTION OF X! LET UX SE THE DITTE OF X. $u \times (A) = P_{\Lambda} (X \in A) = P(\{\omega : X(\omega) \in A\})$

X ~ Bernoull (1/2) BECKSE P (Ew: X/co)=13) SO BACK TO THE EXAMPLE: Z ~ Uniform Coil] BECAUSE, FOR ALL CE [DII] P ({ \alpha : 2/\omega) < c } = c " IN FACT, IN MOST CASES, WE CAN TAKE 1 = [0,1] F = B on Co11] M = LEGESGUE MEASURE ON COLL] SUPPOSE WE WANT TO FGENERATE A R.V. X THAT HAS A COLF FX TARE X(w) = Fx'(w) = IMF {x: Fx(x) = w}. THEN, FOR ANY CEIR $\Pr(X \leq c) = \lambda(\{\omega : X(\omega) \leq c\}) = \lambda(\{\omega \in C_{01}\}, F_{X}(\omega) \leq c\})$ = $\lambda \left(\left\{ \omega : \omega \leq F_{x(c)} \right\} \right) = \lambda \left(\left[0, F_{x(c)} \right] \right)$ = Fx(=). INTEGRATION. Def (SIMPLE FUNCTION) A SIMPLE FUNCTION IS A MEAS. FUNCTION TAKING ON PINITELY MANY VALUES. WE CAN REPRESENT A SIMPLE FUNCTION CANONICALLY AS: f(w) = 21, an 1-A(w) ac, ..., an ARE REALS A1, ... An ARE DISTOLAT ELEMENTS A = { w : f(a) = a } Lemma LET & BE A MEAS. (POSSIBLY EXTENDED) REAL-VALUED FUNCTION, THAT IS NON-NEGATIVE. THEN, THERE EXISTS A SEQUENCE ETN 3 n

OF NON- NECOCTIVE SIMPLE FUNCTIONS S.T. (n(w) & f(w) ALL M AND W AND $\lim_{n \to \infty} f_{n}(\omega) = f(\omega)$ acc ω [$f_n \uparrow f$] $\frac{k-1}{2^n} = \begin{cases} \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} < \frac{k}{2^n} \end{cases} < \frac{k}{2^n}$ $= \begin{cases} \frac{k-1}{2^n} & \text{otherwise} \end{cases}$ $f_n = \frac{1}{2^n} \frac{2!}{n-c} \frac{n-c}{2^n} 1_{A_1} (\omega) + n 1_{A_0} (\omega)$ $A_{\Lambda} = f^{-1}\left(\left[\frac{n-1}{2^{n}}, \frac{n}{2^{n}}\right]\right) \qquad A_{\infty} = f^{-1}\left(\left[n, \infty\right]\right).$ · IF f is A MEAS. REAL VALUED FUNCTION, THEN WE EXPRESS IT AS: $f(\omega) = f(\omega) - f(\omega)$ f'(w) = max {f(w), 0} f'(w) = -min {f(w), 0} NOW, It AND IT ARE NON-NEGATIVE AND CAN BE APPROXIMATED MONOTOMCALLY USING SUMPLE FUNCTIONS. Def (INTEGRAL OF SIMPLE FUNCTIONS) LET ((.) = 2 2, 1, (.) BE A SIMPLE FUNCTION FROM (2, 5, 11) INTO (R, B). THE INTEGRAL OF F WITH RESPECT TO 11 IS DEFINED TO BE WRITTEN AS $\int f dm , \int f(\omega) dm(\omega) = \int f(\omega) m(d\omega)$

IT IS POSSIBLE THAT STOM = too OR - 00 HUNEVER, IT IS POSSIBLE THAT IN OUR DEPINITION OF JOHN WE MAY END UP WITH - 00 + 00 , WHELCH IS UNDEFINED. TO AVOID DUS, LET f = f+ - f- WE SAY THAT f IS IMEGRASCE IF Sftdu < 00 AND Sftdu < 00. OR If I'M IS INFINITY IF ONLY ONE OF IT OR I HAVE INFINITE INTEGRAL. f is integrable if If I = f + f - is integrable · CONVENTION FOR TUNDLING 00: 0 × 00 = 0 c x 00 = sign(c) x co C + C) = ± C) 00 - 00 UNDE FILED