Analízis 2.

Programtervező informatikus A. szakirány

Definíciók és tételek 2022-2023. tanév 1. félév

Petrányi Bálint

2022. november 29.

Remélem nem írtam el semmit illetve hogy jól értelmeztem a kérdéseket ha mégis írjatok hogy mit hibáztam és kijavítom.

Tartalomjegyzék

2.	Gyakorlat elméleti kérdései	2
3.	Gyakorlat elméleti kérdései	4
4.	Gyakorlat elméleti kérdései	6
5.	Gyakorlat elméleti kérdései	8
6.	Gyakorlat elméleti kérdései	10
7.	Gyakorlat elméleti kérdései	11
8.	Gyakorlat elméleti kérdései	13
9.	Gyakorlat elméleti kérdései	15
10	. Gyakorlat elméleti kérdései	17

1. Mi a belső pont definíciója?

Legyen $\emptyset \neq A \subset \mathbb{R}$. Azt mondjuk, hogy az $a \subset \mathbb{R}$ pont az A halmaz egyes belső pontja, ha $\exists \delta > 0$ olyan, hogy $k_{\delta} \subset A$.

Emlékeztető: $k_{\delta}(a) = (a - \delta, a + \delta)$

jelölés: az A belse
jének hívjuk és int A-val jelöljük.

2. Mikor mondjuk azt, hogy egy $f\in\mathbb{R}\to\mathbb{R}$ függvény differenciálható valamely $a\in \text{int }\mathcal{D}_f$

Akkor ha

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}$$

Jelölése: $f \in \mathcal{D}\{a\}$

3. Mi a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

$$f \in \mathbb{R} \to \mathbb{R}, \quad f \in D\{a\} \implies f \in C\{a\}$$

Szóban: Ha egy valós-valós függvény differenciálható egy pontban, akkor folytonos abban a pontban.

4. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra lineáris közelítéssel?

Legyen $f \in \mathbb{R} \to \mathbb{R}, a \in \text{int } \mathcal{D}_f$. Ekkor

$$f\in D\{a\}$$

$$\updownarrow$$

$$\exists A\in\mathbb{R}, \text{ \'es }\epsilon:\mathcal{D}_f\to\mathbb{R}, \lim_a\epsilon=0 \quad \text{\'ugy, hogy} \ f(x)-f(a)=A(x-a)+\epsilon(x)(x-a)$$

5. Mi az érintő definíciója?

Legyen $f \in D\{a\}$. Ekkor az

$$e_a f : \mathbb{R} \to \mathbb{R}, \quad e_a f(x) = f'(a)(x-a) + f(a)$$

egyenesest az f függvény a pontbeli érintőjének hívjuk .

6. Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

$$f, g \in D\{a\} \implies f \cdot g \in D\{a\}, \text{ és } (f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$$

7. Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

$$f,g\in D\{a\} \text{ \'es } g(a)\neq 0 \quad \Longrightarrow \quad \frac{f}{g}\in D\{a\}, \text{ \'es } \Big(\frac{f}{g}\Big)'(a)=\frac{f'(a)g(a)-f(a)g'(a)}{g^2(a)}$$

8. Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Legyen $f,g\in\mathbb{R}\to\mathbb{R}$, Tegyük fel, hogy az a int \mathcal{D}_g pontban $g\in D\{a\}$, továbbá $f\in D\{g(a)\}$. Ekkor:

$$f \circ g \in D\{a\}, \text{ és } (f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

- 9. Mi az exp, sin, cos függvények derivált függvénye?
 - $\bullet (e^x)' = e^x$
 - $\sin' = \cos$
 - $\cos' = -\sin$

- 1. Írja fel az exp
, $\ln x, \sin, \cos, \, \mathrm{tg}, \, a^x(a>0, x\in\mathbb{R})$ függvények derivált függvényét.
 - $\bullet (e^x)' = e^x$
 - $\ln x' = \frac{1}{x}$
 - $\sin' = \cos$
 - $\cos' = -\sin$
 - $\operatorname{tg} x' = \frac{1}{\cos^2 x}$
 - $a^{x'} = a \cdot \ln a$
- **2.** Adjon példát olyan függvényre, ami az $a \in \mathbb{R}$ pontban folytonos, de nem differenciálható!

Az abszolút érték függvény folytonos a 0 pontban, de nem differenciálható 0-ban.

3. Mi a jobb oldali derivált definíciója?

Legyen $f \in \mathbb{R} \to \mathbb{R}, a \in \mathcal{D}_f$ és tegyük fel hogy az f függvény jobbról deriválható (differenciálható), ha

$$\exists \quad \text{\'es v\'eges a} \quad \lim_{x \to a+0} \frac{f(x) - f(a)}{x-a} \mathrm{hat\'ar\'ett\'ek}$$

Ezt a határértéket nevezzük az f függvényapontbeli jobb oldal deriváltjának és $f'_+(a)\text{-val}$ jelöljük

4. Mi az érintő definíciója?

Legyen $f \in D\{a\}$. Ekkor az

$$e_a f: \mathbb{R} \to \mathbb{R}, \quad e_a f(x) = f'(a)(x-a) + f(a)$$

egyenesest az f függvény a pontbeli érintőjének hívjuk .

5. Írja le az inverz függvény differenciálszámításáról szóló tételt!

Legyen $I \in \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$. Tegyük fel, hogy

- 1. f szigorúan monoton és folytonos I-n,
- 2. f differenciálható az $a \in I$ és $f'(a) \neq 0$.

Ekkor az f^{-1} inverz függvény deriválható a b := f(a) pontban, és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

6. Milyen tételt hatványsor összegfüggvényének differenciálhatóságáról és a deriváltjáról?

Tegyük fel, hogy a $\sum (\alpha_n(x-a)^n)$ $(x\in\mathbb{R})$ hatványsor Rkonvergenciasugara pozitív. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \quad (x \in K_R(a))$$

a hat ványsor összegfügevénye.

Ekkor minden $x \in K_R(a)$ pontban $f \in D\{x\}$ és

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1} \quad (\forall x \in K_R(a))$$

 ${\bf 1.}~$ Milyen szükséges és elégséges feltételt ismer differenciálható függvény monoton növekedésével kapcsolatban?

Legyen $I\subset \mathbb{R}$ nyílt intervallum. Tegyük fel hogy $f:I\to \mathbb{R},\; f\in D(I)$ Ekkor:

$$f \nearrow \iff f' \ge 0.$$

Megjegyzés: az $f' \ge 0$ feltétel azt jelenti, hogy minden $x \in I$ pontban $f'(x) \ge 0$, aminek geometriai interpretációja az, hogy az érintő meredeksége minden pontban nem negatív.

 ${\bf 2.}~$ Milyen elégséges feltételt ismer differenciálható függvény szigorú monoton növekedésével kapcsolatban?

Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel hogy $f: I \to \mathbb{R}, \ f \in D(I)$ Ekkor:

$$f' > 0 \implies f \uparrow$$

Megjegyzés: Az állítás fordítottja nem igaz. Az $f(x) = x^3$ $(x \in \mathbb{R})$ függvény szigorúan monoton növekedő, de f'(0) = 0

3. Mit ért azon hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény valamely helyen lokális minimuma van?

Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \text{int } \mathcal{D}_f$ pontban lokális minimuma van ha

$$\exists K(a), \quad \text{hogy} \quad \forall x \in K(a) \cap \mathcal{D}_f \quad \text{eset\'en} \quad f(x) \geq f(a)$$

Ekkor az $a \in \mathcal{D}_f$ pontot az f lokális minimumhelyének nevezzük, f(a) pedig az f lokális minimuma.

4. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

Tegyük fel, hogy az $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban lokális szélsőértéke van és $f \in D\{a\}$ Ekkor:

$$f'(a) = 0$$

5. Adjon példát olyan $f \in \mathbb{R} \to \mathbb{R}$ függvényre, amelyre valamely $a \in \mathbb{R}$ esetén $f \in D\{a\}, f'(a) = 0$ teljesül, de az f függvénynek az a pontjában nincs lokális szélsőértéke

 $f(x)=x^3\quad (x\in\mathbb{R})$ esetén $f'(x)=3x^2$ derivált csak a 0 pontban 0 ami viszont egyértelműen nem lokális szélsőértékhely x<0esetén $x^3<0$ és x>0esetén $x^3>0$

¹(Ha nem jó valaki javítson ki mert nem tudom ere mi lenne a pontos válasz)

6. Mit ért azon, hogy egy függvény valamely helyen jelet vált?

Azt mondjuk hogy $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \text{int } \mathcal{D}_f$ pontban (-,+) előjelet vált ha f(a) = 0, és van olyan $\delta > 0$, hogy

$$f(x) < 0 \ (a - \delta < x < a), \quad f(x) > 0 \ (a < x < a + \delta)$$

 \mathbf{A} (+,-) jelváltás értelem szerűen definiálható

7. Hogyan szól a lokális maximumra vonatkozó elsőrendű elégséges feltétel?

Legyen $f \in \mathbb{R} \to \mathbb{R}$, és a $a \in \text{int } \mathcal{D}_f$.

Tegyük fel hogy $\exists \delta > 0$, amelyre $f \in D((a - \delta, a + \delta))$ és f' előjelet vált a-ban Ekkor f-nek szigorú lokális szélsőértéke van az a-ban

(+,-) jelváltás esetén maximum.

Megjegyzés: (-,+) jelváltás esetén minimum,

8. Írja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.

Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$

Tegyük fel hogy:

$$1.\ f\in D^2\{a\}$$

2.
$$f'(a) = 0$$
 és $f''(a) \neq 0$

Ekkor az a pont a szigorú lokális szélsőértékhelye az f. függvénynek f''(a)>0 esetén minimum

Megjegyzés: f''(a) < 0 esetén maximum

9. Mondja ki a Lagrange-féle középértéktételt! Legyen $a, b \in \mathbb{R}$ és a < b. Tegyük fel hogy

1.
$$f \in C[a, b]$$

$$f \in D(a,b)$$

Ekkor:

$$\exists \varepsilon \in (a, b) \quad \text{hogy} \quad f'(\varepsilon) = \frac{f(b) - f(a)}{b - a}$$

10. Mondja ki a Cauchy-féle középértéktételt!

Legyen $a, b \in \mathbb{R}$ és a < b. Tegyük fel hogy

1.
$$f,g \in C[a,b]$$

2.
$$f, g \in D(a, b)$$

3.
$$g'(x) \neq 0 (x \in (a,b))$$

Ekkor:

$$\exists \varepsilon \in (a, b), \quad \text{hogy} \quad \frac{f'(\varepsilon)}{g'(\varepsilon)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

1. Definiálja az inflexiós pont fogalmát. Legyen I nyílt intervallumon, $f \in \mathbb{R} \to \mathbb{R}, I \subset \mathcal{D}_f$ Azt mondjuk hogy az $a \in I$ pont az f függvénynek inflexiós pontja ha:

 $\exists \delta>0\ k_\delta(a)\subset I\ \text{olyan hogy}$ f konvex az $(a-\delta,a]$ intervallumon és konkáv az $[a,a+\delta)$ -n intervallumon vagy fordítva

2. Mondja ki az inflexiós pont létezésére vonatkozó másodrendű szükséges feltételt.

Legye $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$ Ha $f \in C^2\{a\}$ és f-nek az a pontjában inflexiója van akkor f''(a) = 0

3. Mikor mondjuk, hogy egy függvénynek aszimptotája van a $+\infty$ -ben? Legyen $a \in \mathbb{R}$ és $f:(a,+\infty) \to \mathbb{R}$. Azt mondjuk hogy f-nek van aszimptotája $(+\infty)$ -ben, ha:

$$\exists l(x) = Ax + B \quad (x \in \mathbb{R})$$

elsőfokú függvény, amelyre:

$$\lim_{x \to +\infty} (f(x) - l(x)) = 0$$

Ekkor az l(x) $(x \in \mathbb{R})$ egyenes az f aszimptotája $(+\infty)$ -ben

4. Hogyan szól a $(+\infty)$ -beli aszimptota létezésére vonatkozó tétel? Az $f:(a,+\infty)\to\mathbb{R}$ függvénynek akkor és csak akkor van aszimptotája $(+\infty)$ -ben, ha léteznek és végesek az alábbi határértékek:

$$\lim_{x \to +\infty} \frac{f(x)}{x} =: A \in \mathbb{R} \quad \lim_{x \to +\infty} (f(x) - Ax) =: B \in \mathbb{R}$$

Ekkor az

$$l(x) = Ax + B \quad (x \in \mathbb{R})$$

Egyenes az f függvény aszimptotája $(+\infty)$ -ben

- 5. Írja le a jobboldali határérték $\frac{0}{0}$ esetére vonatkozó L'Hospital-szabályt. Legyen $-\infty \leq a < b < +\infty$ és $f,g \in D(a,b)$. Tegyük fel hogy:
 - $\bullet \ \exists \lim_{a+0} f = \lim_{a+0} g = 0$
 - $g(x) \neq 0$ és $g'(x) \neq 0$ $\forall x \in (a, b)$
 - $\bullet \ \exists \lim_{a+0} \frac{f'}{g'} \in \overline{\mathbb{R}}$

Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \quad \text{ és } \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

- 6. Írja le a baloldali határérték $\frac{+\infty}{+\infty}$ esetére vonatkozó L'Hospital-szabályt. Legyen $-\infty < a < b \le +\infty$ és $f,g \in D(a,b)$ Tegyük fel hogy:
 - $\bullet \ \exists \lim_{a = 0} f = \lim_{a = 0} g = +\infty$
 - $g(x) \neq 0$ és $g'(x) \neq 0$ $\forall x \in (a, b)$
 - $\bullet \ \exists \lim_{a=0} \frac{f'}{g'} \in \overline{\mathbb{R}}$

 Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \in \overline{\mathbb{R}} \quad \text{és} \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$$

1. Definiálja a primitív függvény fogalmát!

Legyen $I \subset \mathbb{R}$ nyílt intervallumon és $f: I \to \mathbb{R}$ egy adott függvény. Azt mondjuk, hogy a $F: I \to \mathbb{R}$ függvény az f egy primitív függvénye ha,

$$F \in D(i)$$
 és $F'(x) = f(x)$ $(\forall x \in i)$

2. Mit nevezünk egy függvény határozatlan integráljának?

Legyen $I\subset\mathbb{R}$ nyílt intervallumon és $f:I\to\mathbb{R}$ Az f függvény primitív függvényeinek halmazát az f határozatlan integráljának nevezzük.

Jelölések : $\int f, \int f(x)dx$

3. Mikor mondjuk, hogy egy függvény Darboux-tulajdonságú?

Legyen I nyílt intervallumon, $f \in \mathbb{R} \to \mathbb{R}$, $I \subset \mathcal{D}_f$

Azt mondjuk, hogy az f függvény Daroux-tulajdonságú az I intervallumon, ha tetszőleges $a,b \in I, a < b$ és bármely f(a) és f(b) közé eső c esetén van olyan $\varepsilon \in [a,b]$, hogy $f(\varepsilon) = c$

 $\mathbf{Megjegyz\acute{e}s}$: Ha $f:I\to\mathbb{R}$ folytonos akkor f Daroux-tulajdonságú az I-n

4. Mit mond ki a primitív függvényekkel kapcsolatos parciális integrálás tétele?

Legyen I nyílt intervallum.

Tegyük fel, hogy $f,g\in D(I)$ és az f'g függvénynek létezik függvénye I-n Ekkor az fg' függvénynek is van primitív függvénye és

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx \quad (x \in I)$$

5. Hogyan szól a primitív függvényekkel kapcsolatos első helyettesítési szabály?

Legyenek adottak az I,Jnyílt intervallumok és a $g:I\to\mathbb{R},f:J\to\mathbb{R}$ függvények.

Tegyük fel hogy $g\in D(I), \mathcal{R}_g\subset J$ és az f függvénynek van primitív függvénye. Ekkor az $(f\circ g)\cdot g'$ függvénynek is van primitív függvénye és

$$\int f(g(x)) \cdot g'(x) dx = F(g(x)) + C \quad (x \in I)$$

ahol F a f függvénynek egy primitív függvénye

- 6. Adja meg az alábbi függvények egy primitív függvényét: exp, $x^a\ (x>0,a\in\mathbb{R}\setminus\{-1\})$, sin, $\frac{1}{1+x^2}\ (x\in\mathbb{R})$
 - $f(x) = e^x, F(x) = e^x$
 - $f(x) = x^a, F(x) = \frac{x^{a+1}}{a+1}$
 - $f(x) = \sin x, F(x) = -\cos x$
 - $f(x) = \frac{1}{1+x^2}, F(x) = \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right|$

1. Mit ért a határozatlan integrál linearitásán?

Legyen I nyílt intervallum. Ha az $f,g:I\to\mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha\beta\in\mathbb{R}$ mellet $(\alpha f+\beta g)$ -nek is létezik primitív függvénye és

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx \quad (x \in I)$$

2. Fogalmazza meg a primitív függvényekkel kapcsolatos második helyettesítési szabályt

Legyen $I, J \subset \mathbb{R}$ nyílt intervallumok tegyük fel hogy $f: I \to \mathbb{R}, \quad g: J \to I$ bijekció továbbá $g \in D(J), \ g'(x) \neq 0 \ (x \in J)$ Ha az $f \circ g \cdot g': J \to \mathbb{R}$ függvénynek van primitív függvénye akkor az f függvénynek is van primitív függvénye és

$$\int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)} \quad (x \in I)$$

3. Legyen $I \subset \mathbb{R}$ nyílt intervallum $f: I \to \mathbb{R}$ és $f \in D(I)$. Mi a határozatlan integrálja az $f' \cdot f^n$ függvénynek.

$$\int f^{n}(x)f'(x)dx = \frac{f^{n+1}(x)}{n+1} + c \quad (x \in Ic \in \mathbb{R})$$

4. Definiálja intervallum egy felosztását

(Fogalmam nincs melyik a jó szerintem mind ugyan az de leírom mindet biztos ami biztos lehet válogatni)

- 1. Az [a,b] intervallum olyan véges részhalmazait, amik tartalmazzák az intervallum végpontjait azaz az a,b pontokat az [a,b] intervallum felosztásainak nevezzük Az [a,b] intervallum felosztásainak a halmazát F[a,b]-vel jelöljük
- 2. Legyen $a, b \in \mathbb{R}$ a < b Ekkor az [a, b] intervallum felosztásán olyan véges

$$\tau = \{x_0, ..., x_n\} \subset [a, b]$$

halmazt értünk amelyre

$$a = x_0 < x_1 < \dots < x_n = b$$

3. Az [a, b] intervallum egy felosztásán a

$$\tau := \{ a = x_0 < x_1 < x_2 < \dots < x_n = b \}$$

halmazt értjük ahol $n \in \mathbb{N}^+$

5. Mit jelent egy felosztás finomítása

Legyen $a,b\in\mathbb{R},\quad a< b$ és $\tau_1,\tau_2\subset[a,b]$ egy-egy felosztása [a,b]-nek. Ekkor τ_2 finomítása τ_1 -nek, ha $\tau_1\subset\tau_2$

6. Mi az also közelítő összeg definíciója

(Kitudja hogy kérdezi e a felső közelítést olyan hasonló hogy inkább leírom mind 2 öt) Legyen $f \in K[a,b]$ $\tau \in F[a,b]$, $\tau = \{a = x_0 < x_1 < x_2 < ... < x_n = b\}$ Alsó közelítő összeg:

$$m_i := \inf\{f(x): x_{i-1} \leq x \leq x_i\} = \inf f_{\left|[x_{i-1}, x_i]\right|} \quad (i = 1, 2, ..., n)$$

Ekkor:

$$s(f,\tau) := \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Felső közelítő összeg

$$M_i := \sup\{f(x) : x_{i-1} \le x \le x_i\} = \sup f_{|[x_{i-1}, x_i]|} \quad (i = 1, 2, ..., n)$$

Ekkor:

$$S(f,\tau) := \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

 ${\bf tldr:}$ A kettő ugyan az anyi különbség van bennük hogy inf helyet sup és m és shelyet M és S van

 ${\bf 1.}~$ Fogalmazza meg a primitív függvényekkel kapcsolatos második helyettesítési szabályt

Legyen $I, J \subset \mathbb{R}$ nyílt intervallumok tegyük fel hogy $f: I \to \mathbb{R}$, $q: J \to I$ bijekció

tegyük fel hogy $f:I\to\mathbb{R},\quad g:J\to I$ bijekció továbbá $g\in D(J),\ g'(x)\neq 0\ (x\in J)$ Ha az $f\circ g\cdot g':J\to\mathbb{R}$ függvénynek van primitív függvénye akkor az f függvénynek is van primitív függvénye és

$$\int f(x)dx \underset{x=g(t)}{=} \int f(g(t)) \cdot g'(t)dt_{\big| t=g^{-}1(x)} \quad (x \in I)$$

2. Milyen viszony van az alsó és a felső közelítő összegek között? (Nem vagyok benne biztos)

Legyen $f \in K[a, b]$ és tegyük fel, hogy $\tau_1, \tau_2 \in \mathcal{F}[a, b]$

• Ha τ_2 finomabb τ_1 -nél (azaz $\tau_1 \subset \tau_2$) akkor :

$$s(f, \tau_1) \le s(f, \tau_2)$$
 és $S(f, \tau_1) \ge S(f, \tau_2)$

• Tetszőleges $\tau_1, \tau_2 \in \mathcal{F}[a, b]$ esetén

$$s(f, \tau_1) \le S(f, \tau_2)$$

3. Mi a Darboux-féle alsó integrál definíciója?

Legyen $f \in K[a, b]$ Az alsó közelítő összegek szuprémumát, azaz az

$$I_*(f) := \sup\{s(f,\tau) | | \tau \in \mathcal{F}[a,b]\} \in \mathbb{R}$$

számot az f függvény Darbux-féle alsó integráljának nevezzük

4. Mi a Darboux-féle alsó integrál definíciója?

Legyen $f \in K[a, b]$ A felső közelítő összegek infimumát, azaz az

$$I^*(f) := \inf\{S(f,\tau) | | \tau \in F[a,b]\} \in \mathbb{R}$$

számot az f függvény Darbux-féle felső integráljának nevezzük

5. Mikor nevez egy függvényt (Riemann)-integrálhatónak?

Azt mondjuk hogy az $f \in K[a,b]$ függvény Riemann-integrálható az [a,b] intervallumon (röviden integrálható [a,b]-n) ha:

$$I_*(f) = I^*(f)$$

Ezt a számot az f függvény [a,b] intervallum vett Riemann integráljának nevezzük, és következő képen jelöljük:

$$\int_{a}^{b} \text{ vagy } \int_{a}^{b} f(x)dx$$

15

6. Hogyan értelmezi egy függvény határozott (vagy Riemann-) integrálját?

Legyen $a,b\in\mathbb{R},\ a< b$ és $f:[a,b]\to\mathbb{R}$ egy korlátos függvény. Ha $I_*(f)=I^*(f)$, akkor az f függvény határozott (vagy Riemann-)integrálja az $I_*(f)=I^*(f)$ valós szám

7. Adjon meg egy példát nem integrálható függvényre!

Legyen

$$f(x) := \begin{cases} 1, & \text{hax } \in \mathbb{Q} \\ 0, & \text{hax } \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

8. Mi az oszcillációs összeg definíciója?

Ha $f\in K[a,b]$ és $\tau\in\mathcal{F}[a,b],$ akkor

$$\Omega(f,\tau) := S(f,\tau) - s(f,\tau)$$

az f függvény τ felosztásához tartózó oszcillációs összege

9. Hogyan szól a Riemann-integrálhatósággal kapcsolatban tanult kritérium az oszcillációs összegekkel megfogalmazva?

 $f \in R[a,b] \iff$

$$\forall \varepsilon > 0$$
-hoz $\exists \tau \in \mathcal{F}[a, b] : \Omega(f, \tau) < \varepsilon$

1. Felosztássorozatok segítségével adja meg a Riemann-integrálhatóság egy ekvivalens átfogalmazását!

 $f \in R[a,b]$ és $\int\limits_a^b f = i$ akkor és csak akkor, ha

 \exists olyan $\tau_n \in \overset{a}{\mathcal{F}}[a,b] \ (n \in \mathbb{N})$ felosztás szorzat, amelyre

$$\lim_{n \to +\infty} s(f, \tau_n) = \lim_{n \to +\infty} S(f, \tau_n) = i$$

2. Hogyan szól a Riemann-integrálható függvények összegével kapcsolatban tanult tétel?

Tegyük fel, hogy $f,g\in R[a,b]$ Ekkor:

$$f+g\in R[a,b]$$
 és $\int\limits_a^b (f+g)=\int\limits_a^b f+\int\limits_a^b g$

3. Hogyan szól a Riemann-integrálható függvények szorzatával kapcsolatban tanult tétel?

Ha $f,g\in R[a,b]$ akkor $f\cdot g\in R[a,b]$

4. Hogyan szól a Riemann-integrálható függvények hányadosával kapcsolatban tanult tétel?

Ha $f,g\in R[a,b], \left|g(x)\right|\geq m>0 \quad (\forall x\in [a,b])$ akkor $\frac{f}{g}\in R[a,b]$

 ${\bf 5.}~~$ Milyen tételt tanult Riemann-integrálható függvény értékeinek megváltoztatását illetően?

Tegyük fel hogy $f,g:[a,b]\to\mathbb{R}$ Ha $f\in R[a,b]$ és az

$$A := \{x \in [a, b] | f(x) \neq (x) \}$$
halmaz véges

akkor $g \in R[a, b]$ és

$$\int_{a}^{b} g = \int_{a}^{b} f$$

6. Mit ért a Riemann-integrál intervallum szerinti additivitásán?

Tegyük fel hogy $f \in K[a, b]$ és legyen $c \in (a, b)$ Ekkor:

- 1. $f \in R[a,b] \Leftrightarrow f \in R[a,c]$ és $f \in R[c,b]$
- 2. ha $f \in R[a,c]$ és $f \in R[c,b]$ (vagy $f \in R[a,b])$ akkor

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

17

7. Hogyan szól az integrálszámítás első középértéktétele?

Tegyük fel, hogy $f,g\in R[a,b]$ és $g\geq 0$ Ekkor

1. az
$$m:=\inf_{[a,b]}f, M:=\sup_{[a,b]}f$$
jelölésekkel

$$m \cdot \int_{a}^{b} g \leq \int_{a}^{b} f \cdot g \leq M \cdot \int_{a}^{b} g$$

2. ha $f\in C[a,b]$ is teljesül, ekkor $\exists \varepsilon\in [a,b]$ olyan, hogy

$$\int\limits_a^b f\cdot g=f(\varepsilon)\cdot\int\limits_a^b g$$

 $\textbf{8.} \hspace{0.5cm} \textbf{Fogalmazza meg a Cauchy-Bunyakovszkij-Schwarz-féle egyenlőtlenséget!} \\$

Tetszőleges $f,g\in R[a,b]$ függvények esetén

$$\left| \int\limits_a^b f \cdot g \right| \leq \sqrt{\int\limits_a^b f^2} \cdot \sqrt{\int\limits_a^b g^2}$$

9. Mi a kapcsolat a monotonitás és a Riemann-integrálhatóság között?

Ha az $f:[a,b]\to\mathbb{R}$ függvény monoton, akkor integrálható.

10. Definiálja a szakaszonként monoton függvény fogalmát!

Legyen $a, b \in \mathbb{R}a < b$

azt mondjuk hogy $f:[a,b]\to\mathbb{R}$ függvény szakaszonként monoton ha

$$\exists m \in \mathbb{N}^+ \text{ és } \tau\{a = x_0 < x_1 < \dots < x_m = b\} \in \mathcal{F}[a, b]$$

úgy, hogy minden i = 1, ..., m index esetén

- 1. az $f_{\mid (x_{i-1},x_i)}$ függvény monoton
- 2. f korlátos [a, b]-n