Physiopathologie des états de chocs

La physiopathologie est l'étude des fonctions modifiées par la maladie:

- Les modifications.
- Leurs amplitudes.
- Leurs causes.
- Leurs effet bénéfiques neutres ou délétères pour la survie de l'organisme.
- Suggérer des cibles thérapeutiques.

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bukker Christoph Hofer Roman Jaeschke Alexandre Mebazau Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes

CONFERENCE REPORTS AND EXPERT PANEL

Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

Shock is a state in which the circulation is unable to deliver sufficient oxygen to meet the demands of the tissues, resulting in cellular dysfunction.

Intensive Care Med (2014) 40:1795-1815

SEPSIS-3 : définition du sepsis

☐ Sepsis : infection => réaction « dérégulée » de l'hôte => dysfonction(s) aiguë(s)

SEPSIS-3: définition du choc septique

☐ Choc septique : sepsis => dysfonctions circulatoire et métabolique profondes malgré un RV

SEPSIS-3: diagnostic du sepsis

Infection + score SOFA total ≥ 2

=> Mortalité >10%

0 à 24 points

Singer et al. JAMA 2016

Seymour et al. JAMA 2016

SEPSIS-3 : diagnostic de choc septique

SEPSIS-3: critères simplifiés ...

Infection + score « quick SOFA » ≥ 2

Critères du score qSOFA	Points
Pression artérielle systolique ≤ 100 mmHg	1
Fréquence respiratoire ≥ 22 /min	1
Score de Glasgow ≤14	1

SIGNS OF CIRCULATORY SHOCK PATHWAY

Normal circulation

Cardiogenic shock Ventricular failure

SHOCK: DIFFERENT TYPES?

Vanina S. Kanoore Edulab, Can Inceb, and Arnaldo Dubinbc

"The condition in which the microcirculation fails to support tissue oxygenation in the face of normal(ized) systemic hemodynamics"

Prolonged tissue hypoxia elicits an inflammatory response

Any type may eventually evolve into distributive shock

Finalité de la circulation

The ultimate purpose of the cardiovascular system

is to provide the microcirculation with oxygen carrying red blood cells to provide tissue cells with oxygen needed to support oxidative phosphorylation.

Finalité de la circulation: PA

 Maintien distendu les parois du système artériel et assure l'écoulement

Son maintien assure une perfusion dans toute les circonstances

Distribution du débit cardiaque (résistances)

La pression artérielle est régulée.

Les différentes pressions

- Systolique
- Diastolique
- Moyenne
- Pression Pulsée

Finalité de la circulation: le débit

Apports nutritifs

• Eliminer les déchets

Régler au minimum

• Le débit cardiaque est adapté

Karl Ludwig (1816-95)

"... the fundamental problems in the circulation derive from the fact that the supply of adequate amounts of blood to the organs of the body is the main purpose of the circulation and the pressures that are necessary to achieve it are of secondary importance; but the measurement of flow is difficult while that of pressure is easy so that our knowledge of flow is usually derivatory."

REGULATION OF BLOOD FLOW

Regional

Local

Cardiac Output Preload Contractility

Afterload

Vital ↔ NonVital organs

Resistances vessels Sympathetic control

Functional capillary density

Extrinsic

- Neural
- Humoral

Intrinsec

- Metabolic
- Vascular

Autorégulation des débits régionaux

PROPOSED RECLASSIFICATION OF SHOCK STATES

With special reference to distributive defects

"Even though cardiac output may be substantial, if blood flow does not arrive at the exchange sites, the ultimate metabolic detriment is not different from low cardiac output without shunt flow."

Dr. Max Harry Weil

Septic shock → distributive alterations in tissue perfusion due to abnormal control of microvasculature

Weil MH, Shubin H (1971) Adv Exp Med Biol 23:13-23.

Physiopatholgie

Compartimentalisation

A Thrombosis

Décompartimentalisation

B Bacterial inhibition of thrombosis

Inflammatory responses to sepsis

Transport et utilisation de l'oxygène

Transport artériel en Oxygène

DC: débit cardiaque

VES : volume d'éjection systolique

FC: fréquence cardiaque

CaO₂: contenu artériel en O₂

Hb: hémoglobinémie

SaO₂: saturation artérielle en O₂

PaO₂: pression en O₂ du sang artériel.

- Seul le débit cardiaque a un système de régulation
- Contenu artériel en O₂
 très dépendant de l'Hb.

Défaillance circulatoire

Définition

Mécanismes de base

Etat de choc

Défaillance circulatoire Mécanismes de base Choc hypovolémique ≥ volume sanguin central ≥ débit cardiaque ☑ précharge cardiaque artériel en O₂ Hypoxie tissulaire

Choc hypovolémique

Mécanismes adaptatifs

Choc hypovolémique Défaillance circulatoire Mécanismes adaptatifs Détermine la Pression artérielle perfusion des organes moyenne Régulée par le système sympathique

La microcirculation protège contre l'hypoxie tissulaire

Recrutement de capillaires fermés

La microcirculation protège contre l'hypoxie tissulaire

Recrutement de capillaires fermés

Choc hypovolémique

Mécanismes de base

Choc hypovolémique

Mécanismes de base

Choc septique Mécanismes de base

Choc septique Mécanismes de base

Choc septique Mécanismes adaptatifs

Retentissement sur l'organisme

Défaillance d'organes

Retentissement sur l'organisme Hypoxie tissulaire glucose Métabolisme anaérobie pyruvate -> lactate Mit

La noradrénaline

- 1 Entraîne une vasoconstriction artérielle
- 2 Entraîne une vasoconstriction veineuse
- 3 Exerce un effet synergique avec le remplissage vasculaire

Classification of vasopressors Peripheral vascular & direct cardiac effects

Vasopressors increase arterial pressure via peripheral vasoconstriction (increased SVR)

- Pure vasoconstrictors lack inotropic effects
 - Phenylephrine
 - Vasopressin
 - Angiotensin-II

No direct cardiac toxicity

- Catecholamines have beta1 inotropic effects
 - Epinephrine (strong)
 - Norepinephrine (weak)
 - Dopamine (strong)

Risk of cardiac toxicity

Catecholamine-sparing vasopressors First-line for catecholamine-resistant shock

Characteristic	Vasopressin	Angiotensin-II	
Dose range	0.01-0.03 U/min	5-80 ng/kg/min	
Typical use	Fixed dose?	Titrated	
Receptor	Vasopressin-1a	Angiotensin-1	
Advantages	May reduce mortality Lower risk of AKI* Reduces arrhythmias*	May reduce mortality (if high renin or RRT)** Improves severe AKI	
Disadvantages	Excessive vasoconstriction (mesenteric/skin +/- coronary)	Thrombosis risk Cost	
Onset	~10-20 minutes	~1-2 minutes	
Response rate	>50%	~70%, esp. high renin	
Ideal use	Catecholamine-resistant septic shock	Catecholamine-refractory septic shock	

Vasopressors & septic shock Don't wait until resistant/refractory shock

MILD - NE <0.1 mcg/kg/min

>Only NE needed in most patients

MODERATE - NE 0.1-0.19 mcg/kg/min

- ➤ Check S_{cv}O₂, echo, ionized Ca, arterial pH
- ➤ Consider whether to add 2nd vasopressor

<u>SEVERE</u> – NE 0.2-0.29 mcg/kg/min

- Add second vasopressor
- Adjunctive stress-dose corticosteroids

RESISTANT - NE 0.3-0.5 mcg/kg/min

REFRACTORY - NE >0.5 mcg/kg/min

Which second vasopressor to add? Catecholamine vs. catecholamine-sparing

Characteristic	Epinephrine	Vasopressin	Angiotensin-II
Dose	0.05-0.2 μg/kg/min	0.03 U/min*	10-20 ng/kg/min
Cost in USA	\$	\$\$	\$\$\$
Heart rate	11	1	1
Cardiac output	1	1	1
PVR	1	\leftrightarrow	?
Cardiac toxicity	++	-	-
Lactate/glucose	1	-	-
Mortality?	↔	Probable ↓	Possible ↓
Predict benefit?	Low ScvO ₂	Acidemia	High renin
ldeal use	Moderate/severe septic shock with low HR / CO	Severe/resistant septic shock, esp. high HR / CO	Resistant or refractory septic shock, esp. AKI

Individualizing second-line therapy How to select add-on vasopressors

EPINEPHRINE - selected patients

- ✓ Low CO, low S_vO₂, low HR, LV dysfunction
- Ischemia, arrhythmia, lactic acidosis, DKA

VASOPRESSIN – preferred

- ✓ High HR, arrhythmia, acidemia, vasoplegia
- ♣ Low CO/S_vO₂, LV dysfunction, gut ischemia

ANGIOTENSIN-II – alternative

- ✓ High renin, AKI on CRRT, refractory shock
- ❖ Low CO/S_vO₂, LV dysfunction, thrombosis

Clinical pearls – tips & tricks How to optimize vasopressor therapy

- If catecholamine doses are rapidly rising:
 - ✓ Be sure you know what you are treating!
 - Rule out & treat acidemia or low ionized Ca
 - Add a catecholamine-sparing vasopressor
 - When adding 2nd vasopressor, add steroids
- Vasopressin/angiotensin don't always work
 - √If no response in 1 hour, switch agents
- Weaning catecholamines before stopping vasopressin reduces risk of hypotension
 - √Wean vasopressin gradually (not abruptly)

What is microcirculatory shock?

Vanina S. Kanoore Edula, Can Inceb, and Arnaldo Dubinb,c

"The condition in which the microcirculation fails to support tissue oxygenation in face of normal(ized) systemic hemodynamics"

Distributive shock is microcirculatory shock

ı

Monitoring of microcirculation during resuscitation seems necessary to guarantee the restoration of tissue perfusion and oxygenation

HEMODYNAMIC COHERENCE CONCEPT

REGULATION OF BLOOD FLOW

Central

Preload
Contractility
Afterload

Regional

Local

Vital ↔ NonVital organs

Resistances vessels Sympathetic control ↓ Functional capillary density

Loss of Vascular Reactivity

Microthrombosis

↑ Capillary permeability

MECHANISMS OF DISCONNECTION

Sepsis occurs when a dysregulated host response to an infection results in life-threatening tissue damage and organ dysfunction

Alterations in each organ can range from mild dysfunction to complete organ failure

The mechanisms that underlie organ dysfunction in sepsis are similar for all organs

DETERMINANTS OF MICROVASCULAR OXYGEN TRANSPORT

REGULATION OF BLOOD FLOW

Regional

Cardiac Output

Preload, Contractility, Afterload, Heart Rate

Vital ↔ NonVital organs

Resistance vessels Sympathetic control

Functional Capillary Density

Extrinsic

Intrinsec

- Neural
- Metabolic
- Humoral
- Vascular

Redistribution of Flow

ÎO,ER