1 Задание 6

1.1 Задача 1

Кажется, что да, попробуем это доказать.

Единица на нечетном месте, будем считать слева направо, при делении на 3 даёт остаток 1, на четном даёт остаток 2:

 $1 \mod 3 \equiv 1$, $2 \mod 3 \equiv 2$, $4 \mod 3 \equiv 1$.

При добавлении символа каждая четная позиция становится нечетной, и каждая нечетная становится четной. Новый символ (слева) меняет позиции с четных на нечетные и нечетные на четные, а сам считываемый символ всегда на несчитываемой символ. Тогда будем рассматривать следующие комбинации: Кол-во Ч (Остаток от деления кол-ва единиц на четных местах), Кол-во Н (Остаток от деления кол-ва единиц на нечетных местах), s - слово, которое будем дописывать.

ления кол-ва единиц на нечетных местах), в - слово, которое будем дописывать.					
N	Кол-во Ч	Кол-во Н	$\omega \mod 3$	S	ω ·s mod 3
1	1	1	$1 \cdot 2 + 1 \cdot 1 \equiv 0 \bmod 3$	0	$1 \cdot 2 + 1 \cdot 1 + 0 \equiv 0 \mod 3$
2	1	2	$1 \cdot 2 + 2 \cdot 1 \equiv 1 \bmod 3$	0	$2 \cdot 2 + 1 \cdot 1 + 0 \equiv 2 \mod 3$
3	1	0	$1 \cdot 2 + 0 \cdot 1 \equiv 2 \bmod 3$	0	$0 \cdot 2 + 1 \cdot 1 + 0 \equiv 1 \mod 3$
4	2	1	$2 \cdot 2 + 1 \cdot 1 \equiv 2 \bmod 3$	0	$1 \cdot 2 + 2 \cdot 1 + 0 \equiv 1 \mod 3$
5	2	2	$2 \cdot 2 + 2 \cdot 1 \equiv 0 \bmod 3$	0	$2 \cdot 2 + 2 \cdot 1 + 0 \equiv 0 \mod 3$
6	2	0	$2 \cdot 2 + 0 \cdot 1 \equiv 1 \bmod 3$	0	$0 \cdot 2 + 2 \cdot 1 + 0 \equiv 2 \mod 3$
7	0	1	$0\cdot 2+1\cdot 1\equiv 1\bmod 3$	0	$1 \cdot 2 + 0 \cdot 1 + 0 \equiv 2 \mod 3$
8	0	2	$0 \cdot 2 + 2 \cdot 1 \equiv 2 \bmod 3$	0	$2 \cdot 2 + 0 \cdot 1 + 0 \equiv 1 \mod 3$
9	0	0	$0\cdot 2 + 0\cdot 1 \equiv 0 \bmod 3$	0	$0 \cdot 2 + 0 \cdot 1 + 0 \equiv 0 \mod 3$
10	1	1	$1 \cdot 2 + 1 \cdot 1 \equiv 0 \bmod 3$	1	$1 \cdot 2 + 1 \cdot 1 + 1 \equiv 1 \mod 3$
11	1	2	$1 \cdot 2 + 2 \cdot 1 \equiv 1 \bmod 3$	1	$2 \cdot 2 + 1 \cdot 1 + 1 \equiv 0 \bmod 3$
12	1	0	$1 \cdot 2 + 0 \cdot 1 \equiv 2 \bmod 3$	1	$0 \cdot 2 + 1 \cdot 1 + 1 \equiv 2 \mod 3$
13	2	1	$2 \cdot 2 + 1 \cdot 1 \equiv 2 \bmod 3$	1	$1 \cdot 2 + 2 \cdot 1 + 1 \equiv 2 \bmod 3$
14	2	2	$2 \cdot 2 + 2 \cdot 1 \equiv 0 \bmod 3$	1	$2 \cdot 2 + 2 \cdot 1 + 1 \equiv 1 \mod 3$
15	2	0	$2 \cdot 2 + 0 \cdot 1 \equiv 1 \bmod 3$	1	$0 \cdot 2 + 2 \cdot 1 + 1 \equiv 0 \bmod 3$
16	0	1	$0 \cdot 2 + 0 \cdot 1 \equiv 1 \bmod 3$	1	$1 \cdot 2 + 0 \cdot 1 + 1 \equiv 0 \bmod 3$
17	0	2	$0\cdot 2 + 2\cdot 1 \equiv 2 \bmod 3$	1	$2 \cdot 2 + 0 \cdot 1 + 1 \equiv 2 \mod 3$
18	0	0	$0 \cdot 2 + 0 \cdot 1 \equiv 0 \bmod 3$	1	$0 \cdot 2 + 0 \cdot 1 + 1 \equiv 1 \mod 3$

Остатки при делении на 3 задают классы эквивалентности по отношению \sim действительно:

- 1. $\omega \mod 3 \equiv 1$, to $\omega \cdot 0 \mod 3 \equiv 2 \in L$, $\omega \cdot 1 \mod 3 \equiv 0 \notin L$
- 2. $\omega \mod 3 \equiv 2$, to $\omega \cdot 0 \mod 3 \equiv 1 \notin L$, $\omega \cdot 1 \mod 3 \equiv 2 \in L$
- 3. $\omega \mod 3 \equiv 0$, to $\omega \cdot 0 \mod 3 \equiv 0 \notin L$, $\omega \cdot 1 \mod 3 \equiv 1 \notin L$

Построим ДКА из этих классов по алгоритму и получим:

Доказано

1.2 Задача 6

Построим табличку непринимающих состояний и принимающих состояний и выполним алгоритм.

Ура, всё получилось, теперь можем построить ДКА из этой картинки.

1.3 ХУЙ

1.4 Задача 7

$$\begin{array}{l} \mathbf{L} = \{\mathbf{a}b^{2^{i}} \mid \mathbf{i} \geqslant 0 \} \cup \{b^{j} \mid \mathbf{j} \geqslant 0\} \cup \{a^{m}b^{n} \mid \mathbf{m} > 1, \, \mathbf{n} \geqslant 0 \} \\ L_{1} = \{\mathbf{a}b^{2^{i}} \mid \mathbf{i} \geqslant 0 \} \\ L_{2} = \{b^{j} \mid \mathbf{j} \geqslant 0\} \\ L_{3} = \{a^{m}b^{n} \mid \mathbf{m} > 1, \, \mathbf{n} \geqslant 0 \} \\ \mathbf{L} = L_{1} \cup L_{2} \cup L_{3} \end{array}$$

Теперь, докажем, что лемма о накачке выполняется для этого языка L.

Рассмотрим лемму: для L_1 можем взять $p_1=1,\,x=\epsilon,\,y=a(|y|=1\leqslant p_1),\,z=b^{2^i}$. Тогда при k=0 $xy^kz=b^{2^i}\in L_2\subseteq L;$ При k=1 $xy^kz=ab^{2^i}\in L_1\subseteq L.$ При k>1 $xy^j=a^jb^{2^i}\in L_3\subseteq L.$ Значит все слова из L_1 удовлетворяют лемме о накачке для L.

Рассмотрим лемму: для L_2 можем взять $p_2=1, x=\epsilon, y=b(|y|=1\leqslant p), z=b^{j-1}$. Тогда $xy^kz=b^{j+k-1}\in L_2\subseteq L$. Значит все слова из L_2 удовлетворяют лемме о накачке для L.

Для L_3 можно построить ДКА \mathcal{A}_3 . Приведу его ниже:

Значит для L_3 выполняется лемма о накачке: $\exists p_3 \forall \omega \in L_3 : |\omega| > p_3, \exists xyz = \omega$

 $((y \neq \epsilon) \land (|xy| \geqslant p_L)) \land (\forall i \geqslant 0 \ xy^iz \in L)) \rightarrow xy^iz \in L.$ Локазано

Теперь докажем, что $L \notin REG$. $L_1 \cap L_2 = \emptyset$, $L_1 \cap L_3 = \emptyset$, $L_2 \cap L_3 = \emptyset$. $L1 = L \ (L_2 \cup L_3)$. REG замкнуто относительно разности и объединения, тогда от противного предположим, что $L \in REG$, т.к. $L_3 \in REG$ по доказанному выше, а $\{b\} \in REG \to L_2 = \{b\}^* \in REG, (L_2 \cup L_3) \in REG \to L_1 \in REG$.

Но $L_1 \notin REG$. Для него не выполняется лемма о накачке, т.е.

 $\forall p \exists \omega \in L : |\omega| > p, \forall xyz = \omega((y = \epsilon) \bigvee (|xy| > p) \bigvee (\exists \geqslant 0 : xy^tz \notin L))$

Теперь попробуем показать это: Если взять $x = \epsilon$, $y = ab^k$, то $xy^0z = b^{2^i-k} \notin L_1$, если взять $y = b^k$, то $xy^iz = ab^{2^i-k+tk} = ab^{2^i+(t-1)k}$. Если бы $L_1 \in REG$, то $\forall k > 0$ $\forall t \geqslant 0$ $2^i + (t-1)k = 2^j$. Но при четном k, i > 0 или нечетного k, i = 0 это не будет выполнено ни для какого четного t, а в случае нечетного k, i > 0 или четного k, i = 0 - ни для какого четного t.

Следовательно лемма не выполнется, т.е. $L_1 \notin REG \to L \notin REG$ Доказано