

David J. Miller Zhen Xiang George <u>Kesidis</u>

Adversarial Learning and Secure Al

© David J. Miller, Zhen Xiang, and George Kesidis 2023

Chapter 08

Transfer PT-RED (T-PT-RED) Against Backdoors

Outline

- Motivation
 - ightharpoonup Two-class (K=2) case
 - Different source-target-class attack configurations
- Expected Transferability Statistic of T-PT-RED
- Experiments
- Discussion

T-PT-RED Backdoor Detection via Expected Transferability (ET)

Key ideas

- Process each class pair independently: obtain an expected transferability (ET) statistic independently for each class pair, then compare ET with a detection threshold.
- No need for null distribution estimation.
- There is a common threshold on ET to determine if a class is a backdoor target class, irrespective of the classification domain or particulars of the attack.
 - ⇒ No need for domain-specific supervision.
- Norks when there are only two classes, K=2.

Backdoor Detection Using Expected Transferability (ET)

Definition of ET

ightharpoonup ϵ -solution set: For any \underline{x} from any class, the ϵ -solution set is:

$$\mathcal{V}_{\epsilon}(\underline{x}) \triangleq \{\underline{v} \mid \|\underline{v}\|_{2} - \|\underline{v}^{*}\|_{2} \leq \epsilon, f(\underline{x} + \underline{v})) \neq f(\underline{x})\},$$

where \underline{v}^* is the global optimal solution to

$$\underset{v}{\text{minimize}} \|\underline{v}\|_2 \qquad \text{subject to } f(\underline{x} + \underline{v}) \neq f(\underline{x})$$

and $\epsilon > 0$ is the "quality gap" of practical solutions to the same problem, which is usually small for existing methods.

4 D > 4 B > 4 B > 4 B > 9 Q P

Backdoor Detection Using Expected Transferability (ET)

Definition of ET (cont'd)

• ϵ -transferable set: The ϵ -transferable set for any sample \underline{x} and $\epsilon>0$ is defined by

$$\mathcal{T}_{\epsilon}(\underline{x}) \triangleq \{\underline{y} \in \mathcal{X} \mid f(\underline{y}) = f(\underline{x}), \exists \underline{v} \in \mathcal{V}_{\epsilon}(\underline{x}) \text{ s.t. } f(\underline{y} + \underline{v}) \neq f(\underline{y}) \}.$$

▶ ET statistic: For any class $i \in \mathcal{Y} = \{0,1\}$ and $\epsilon > 0$, considering independent random samples $\underline{X}, \underline{Y} \sim P_i$ with P_i the sample distribution of class i, the ET statistic for class i is defined by

$$\mathrm{ET}_{i,\epsilon} \triangleq \mathbb{E}_{\underline{X} \sim P_i} \big[\mathrm{P}(\underline{Y} \in \mathcal{T}_{\epsilon}(\underline{X}) \mid \underline{X}) \big].$$

4 D > 4 B > 4 E > 4 E > 9 Q P

Backdoor Detection Using Expected Transferability (ET)

Detection method

- Properties of ET: There exists a constant detection threshold (see Theorem 10)
 - If class $i \in \mathcal{Y} = \{0,1\}$ is not backdoor target class, we will have $\mathrm{ET}_{1-i,\epsilon} \leq \frac{1}{2}$
 - Otherwise, we will have $\mathrm{ET}_{1-i,\epsilon} > \frac{1}{2}$
- Detection procedure
 - Estimate ET for each class
 - ▶ Check if there is any ET statistic greater than $\frac{1}{2}$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Backdoor Defense Post-Training

ET - experiments

- Dataset: CIFAR-10, CIFAR-100, STL-10, TinyImageNet, FMNIST, MNIST
- Backdoor pattern: both additive perturbation and patch replacement, examples:

Backdoor Defense Post-Training

ET - experiments (cont'd)

▶ Detection accuracy using ET (2-class domains, ET threshold $\frac{1}{2}$)

A_1	A_2	A_3	A_4	A_5	A_6	A_7	A ₈	A_9	A ₁₀
45/45	18/20	16/20	17/20	20/20	20/20	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a	45/45	20/20	19/20	19/20
П	RE-AP	45/45	20/20	20/20	20/20	20/20	20/20	_	
ı	RE-PR	39/45	19/20	20/20	16/20	18/20	19/20		
	45/45 n/a	45/45 18/20 n/a n/a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45/45 18/20 16/20 17/20 20/20 20/20 n/a n/a n/a n/a n/a n/a L C1 C2 C3 C4 RE-AP 45/45 20/20 20/20 20/20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RE-AP 45/45 20/20 20/20 20/20 20/20 20/20

- $A_1 \sim A_6$: attack instances with additive perturbation (AP) backdoor patterns
- A₇~A₁₀: attack instances with patch replacement (PR) backdoor patterns
- $ightharpoonup C_1 \sim C_6$: clean instances
- ► RE-AP: T-PT-RED with RE backdoor pattern of I-PT-RED
- ▶ RE-PR: T-PT-RED with RE backdoor pattern of P-PT-RED

4 D > 4 B > 4 E > 4 E > 9 Q P

Backdoor Defense Post-Training

ET - experiments (cont'd)

Comparison between ET and other detection statistics

- ightharpoonup L₁: I_1 norm of estimated mask of P-PT-RED
- ▶ L₂: I₂ norm of estimated perturbation of I-PT-RED
- CS: cosine similarity [R. Wang et al. ECCV '20]

4 D F 4 P F F F F F F

Discussion

- ▶ T-PT-RED can obviously also be applied to the case of more than two classes (K > 2).
- ► As I-PT-RED, T-PT-RED/RE-AP can also work with perturbations applied to embedded features.
- ➤ As I-PT-RED, T-PT-RED can detect X-to-1 and all-to-all attacks.
- Since T-PT-RED works with sample-specific putative backdoor patterns, it's possible that it can detect different simultaneous backdoors with the same associated source and target classes.

4 D > 4 B > 4 E > 4 E > 9 Q P

With Permission, Figures Reproduced From

 Z. Xiang, D.J. Miller and G. Kesidis. Post-Training Detection of Backdoor Attacks for Two-Class and Multi-Attack Scenarios. In Proc. ICLR, Apr. 2022.

