NA 568 - Winter 2022

Nonlinear Kalman Filtering

Maani Ghaffari

January 13, 2021

Dynamic Bayesian Network for Controls, States, and Sensations

State Estimation

- $\ \square$ Estimate the state x of a system given observations z and controls u
- □ Goal:

$$p(x \mid z, u)$$

Courtesy: C. Stachniss

Prediction and Correction Step

- Bayes filter can be written as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

Courtesy: C. Stachniss

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

sensor or observation model

Courtesy: C. Stachniss

Bayes Filters: Framework

- ► Given:
 - ▶ Stream of observations $z_{1:t}$ and action data $u_{1:t}$
 - Sensor/measurement model $p(z_t|x_t)$
 - Action/motion/transition model $p(x_t|x_{t-1},u_t)$
- ► Wanted:
 - ▶ The state x_t of dynamical system
 - ▶ The posterior of state is called belief $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

Bayes Filter

Algorithm 1 Bayes-filter

```
Require: Belief bel(x_{t-1}) = p(x_{t-1}|z_{1:t-1}, u_{1:t-1}), action u_t, measurement z_t;
```

- 1: for all state variables do
- 2: $\overline{bel}(x_t) = \int p(x_t|x_{t-1},u_t)bel(x_{t-1})\mathrm{d}x_{t-1}$ // Predict using action/control input u_t
- 3: $bel(x_t) = \eta p(z_t|x_t)\overline{bel}(x_t)$ // Update using perceptual data z_t
- 4: return $bel(x_t)$

Nonlinear Dynamic Systems

Nonlinear dynamic system with additive noise.

► Nonlinear process model:

$$x_k = f(u_k, x_{k-1}) + w_k$$

► Nonlinear measurement model:

$$z_k = h(x_k) + v_k$$

Nonlinear Dynamic Systems

Nonlinear dynamic system with multiplicative noise.

► Nonlinear process model:

$$x_k = f(u_k, x_{k-1}, w_k)$$

Nonlinear measurement model:

$$z_k = h(x_k, v_k)$$

Q. How to map belief (a probability distribution) through a nonlinear function?

Q. How to map belief (a probability distribution) through a nonlinear function?

Key ideas:

► Linearization via Taylor expansion

Q. How to map belief (a probability distribution) through a nonlinear function?

Key ideas:

- Linearization via Taylor expansion
- Unscented Transform (deterministic sampling)

Q. How to map belief (a probability distribution) through a nonlinear function?

Key ideas:

- Linearization via Taylor expansion
- Unscented Transform (deterministic sampling)
- Monte-Carlo methods (random sampling)

Q. How to map belief (a probability distribution) through a nonlinear function?

Key ideas:

- Linearization via Taylor expansion
 - → Extended Kalman Filter (EKF)
- Unscented Transform (deterministic sampling)
 - → Unscented Kalman Filter (UKF)
- Monte-Carlo methods (random sampling)
 - → Sequential Monte-Carlo methods (Particle Filters)

Linearization via Taylor Expansion

Linearization of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ around point a is

$$f(x) \approx f(a) + \frac{\partial f}{\partial x}\Big|_{x=a} (x-a)$$

$$= (f(a) - \frac{\partial f}{\partial x}\Big|_{x=a} a) + \frac{\partial f}{\partial x}\Big|_{x=a} x$$

$$=: x_0 + Fx$$

Affine! We know how to propagate a Gaussian through an affine map.

Recall: Affine Transformation of a Multivariate Gaussian

Suppose $x \sim \mathcal{N}(\mu, \Sigma)$ and y = Ax + b.

Then $y \sim \mathcal{N}(A\mu + b, A\Sigma A^{\mathsf{T}})$.

EKF Algorithm

$$F_k = \left. \frac{\partial f}{\partial x} \right|_{x=\mu_{k-1}} \text{, } W_k = \left. \frac{\partial f}{\partial w} \right|_{x=\mu_{k-1}} \text{, } H_k = \left. \frac{\partial h}{\partial x} \right|_{x=\mu_k^-} \text{, } V_k = \left. \frac{\partial h}{\partial v} \right|_{x=\mu_k^-}$$

Algorithm 2 Extended-Kalman-filter

Require: belief mean μ_{k-1} , belief covariance Σ_{k-1} , action u_k , measurement z_k ;

1:
$$\mu_k^- \leftarrow f(u_k, \mu_{k-1})$$

1:
$$\mu_k^- \leftarrow f(u_k, \mu_{k-1})$$
 \triangleright predicted mean
2: $\Sigma_k^- \leftarrow F_k \Sigma_{k-1} F_k^\mathsf{T} + W_k Q_k W_k^\mathsf{T}$ \triangleright predicted covariance

3:
$$\nu_k \leftarrow z_k - h(\mu_k^-)$$

4:
$$S_k \leftarrow H_k \Sigma_k^- H_k^\mathsf{T} + V_k R_k V_k^\mathsf{T}$$

5:
$$K_k \leftarrow \Sigma_k^- H_k^\mathsf{T} S_k^{-1}$$

6: $\mu_k \leftarrow \mu_k^- + K_k \nu_k$

7.
$$\Sigma_i \leftarrow (I - K_i H_i) \Sigma^-$$

7:
$$\Sigma_k \leftarrow (I - K_k H_k) \Sigma_k^-$$

8:
$$//\Sigma_k \leftarrow (I - K_k H_k) \Sigma_k^- (I - K_k H_k)^\mathsf{T} + K_k R_k K_k^\mathsf{T}$$
 form

9: return μ_k , Σ_k

Example: EKF Target Tracking

A target is moving in a 2D plane. The ownship position is known and fixed at the origin. We have access to relative noisy range and bearing measurements of the target position at any time step.

$$x_k = f(u_k, x_{k-1}) + w_k = x_{k-1} + w_k$$

$$z_k = h(x_k) + v_k = \begin{bmatrix} \sqrt{x_k^{1^2} + x_k^{2^2}} \\ \operatorname{atan2}(x_k^1, x_k^2) \end{bmatrix} + v_k$$

$$F_k = I_2, G_k = 0_2, Q_k = 0.001 \ I_2, R_k = \operatorname{diag}(0.05^2, 0.01^2)$$

$$H_k = \begin{bmatrix} \frac{x_k^1}{\sqrt{x_k^{1^2} + x_k^{2^2}}} & \frac{x_k^2}{\sqrt{x_k^{1^2} + x_k^{2^2}}} \\ \frac{x_k^2}{x_k^{1^2} + x_k^{2^2}} & \frac{-x_k^1}{x_k^{1^2} + x_k^{2^2}} \end{bmatrix}$$

Example: EKF Target Tracking

See ekf_single_target.m for code.

EKF Summary

- ightharpoonup Highly efficient; polynomial time in measurement dimensionality n_z and state dimensionality n_x .
- ► Not optimal.
- Can diverge if nonlinearities are large.
- Can work well in practice for many problems despite violating all the underlying assumptions.

Unscented Transform Overview

- \triangleright Compute a set of sigma points (samples) \mathcal{X} ;
- \triangleright Each sigma point has a weight w;
- ightharpoonup Transform the point through the nonlinear function g(x);
- Compute a Gaussian distribution from weighted points using weighted sample mean and covariance;

Unscented Transform: Sigma Points

The first sigma point is the mean.

$$x_0 = \mu$$

$$x_i = \mu + \ell'_i \quad i = 1, \dots, n$$

$$x_i = \mu - \ell'_{i-n} \quad i = n+1, \dots, 2n$$

 ℓ_i' is the i-th column of L' where $L' = \sqrt{(n+\kappa)}L$ and $\Sigma = LL^{\mathsf{T}}$ can be computed using Cholesky decomposition. n is the dimension of the state and κ is a user-definable parameter.

Recover the Gaussian

Let $g: \mathbb{R}^n \to \mathbb{R}^m$. Compute a Gaussian distribution using the weights and transformed points

$$\mu' = \sum_{i=0}^{2n} w_i g(x_i)$$

$$\Sigma' = \sum_{i=0}^{2n} w_i (g(x_i) - \mu') (g(x_i) - \mu')^\mathsf{T}$$

Unscented Transform: Weights

$$w_0 = \frac{\kappa}{n+\kappa}$$

$$w_i = \frac{1}{2(n+\kappa)} \quad i = 1, \dots, 2n$$

The user-defined parameter, κ , can be tuned to adjust the weight for a particular transformation. For instance $\kappa=2$ (see *State Estimation for Robotics*, Timothy D. Barfoot, 2018, Ch. 4.2.7.).

Unscented Transform

Remark

If the noise is additive, we simply add the noise covariance to the propagated sample covariance. If the noise is multiplicative, we augment the state with noise by adding zeros of appropriate dimension to the mean and constructing a block-diagonal covariance matrix of the state and noise covariances. Note that in the latter case the dimension of the augmented state is increased to the sum of the dimensions of the state and noise vectors; hence, more samples need to be drawn. See State Estimation for Robotics, Timothy D. Barfoot, 2018, Ch. 4.2.9.

See unscented_transform_example.m for code.

Transform a Gaussian distribution from polar to Cartesian coordinates.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}, \qquad \begin{bmatrix} r \\ \theta \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 1.5 \\ \pi/6 \end{bmatrix}, \begin{bmatrix} 0.3^2 & -0.14^2 \\ -0.14^2 & 0.35^2 \end{bmatrix})$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}, \qquad \begin{bmatrix} r \\ \theta \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 1.5 \\ \pi/6 \end{bmatrix}, \begin{bmatrix} 0.3^2 & -0.14^2 \\ -0.14^2 & 0.35^2 \end{bmatrix})$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}, \qquad \begin{bmatrix} r \\ \theta \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 1.5 \\ \pi/6 \end{bmatrix}, \begin{bmatrix} 0.3^2 & -0.14^2 \\ -0.14^2 & 0.35^2 \end{bmatrix})$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}, \qquad \begin{bmatrix} r \\ \theta \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 1.5 \\ \pi/6 \end{bmatrix}, \begin{bmatrix} 0.1^2 & -0.09^2 \\ -0.09^2 & 0.6^2 \end{bmatrix})$$

UKF Algorithm

Algorithm 3 Unscented-Kalman-filter

Require: belief mean μ_{k-1} , belief covariance Σ_{k-1} , action u_k , measurement z_k ;

1:
$$\mathcal{X}_{k-1} \leftarrow$$
 compute the set of $2n+1$ sigma points using μ_{k-1} and Σ_{k-1}

2:
$$w^- \leftarrow$$
 compute the set of $2n+1$ weights

3:
$$\mu_k^- = \sum_{i=0}^{2n} w_i^- f(u_k, x_{k-1,i})$$

4:
$$\Sigma_k^- \leftarrow \sum_{i=0}^{2n} w_i^- (f(u_k, x_{k-1,i}) - \mu_k^-) (f(u_k, x_{k-1,i}) - \mu_k^-)^\mathsf{T} + Q_k$$
 \triangleright predicted covariance

5:
$$\mathcal{X}_k^- \leftarrow$$
 compute the set of $2n+1$ sigma points using μ_k^- and Σ_k^-

6:
$$w \leftarrow \text{compute the set of } 2n+1 \text{ weights}$$

7:
$$z_k^- = \sum_{i=0}^{2n} w_i h(x_{k,i}^-)$$

8:
$$\nu_k \leftarrow z_k - z_k^-$$

9:
$$S_k \leftarrow \sum_{i=0}^{2n} w_i (h(x_{k,i}^-) - z_k^-) (h(x_{k,i}^-) - z_k^-)^\mathsf{T} + R_k$$

10:
$$\Sigma_k^{xz} \leftarrow \sum_{i=0}^{2n} w_k^{[i]} (x_{k,i}^- - \mu_k^-) (h(x_{k,i}^-) - z_k^-)^\mathsf{T}$$

▶ state and measurement cross

11:
$$K_k \leftarrow \Sigma_k^{xz} S_k^{-1}$$

12: $\mu_k \leftarrow \mu_k^- + K_k \nu_k$

13:
$$\Sigma_k \leftarrow \Sigma_k^- - K_k S_k K_k^{\mathsf{T}}$$

14: return
$$\mu_k$$
, Σ_k

Example: UKF Target Tracking

A target is moving in a 2D plane. The ownship position is known and fixed at the origin. We have access to relative noisy range and bearing measurements of the target position at any time step.

$$x_k = f(u_k, x_{k-1}) + w_k = x_{k-1} + w_k$$
$$z_k = h(x_k) + v_k = \begin{bmatrix} \sqrt{x_k^{12} + x_k^{22}} \\ \operatorname{atan2}(x_k^1, x_k^2) \end{bmatrix} + v_k$$

$$F_k = I_2, G_k = 0_2, Q_k = 0.001 I_2, R_k = \text{diag}(0.05^2, 0.01^2)$$

Example: UKF Target Tracking

See ukf_single_target.m for code.

UKF Summary

- Highly efficient: same complexity as EKF, with a constant factor slower in typical practical applications;
- Better linearization than EKF;
- ► Derivative-free: no Jacobians needed.
- Not optimal.

UKF vs. EKF

- Same results as EKF for linear models;
- ▶ Better approximation than EKF for non-linear models;
- Differences often "somewhat small";
- No Jacobians needed for the UKF;
- Same complexity class;
- Slightly slower than the EKF

Readings

- ▶ Probabilistic Robotics: Ch. 3
- ▶ State Estimation for Robotics: Ch. 3 and 4