Problem 2.22

(a)
$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi ft) dt$$
$$= \int_{-\infty}^{0} g(t) \exp(-j2\pi ft) dt + \int_{0}^{\infty} g(t) \exp(-j2\pi ft) dt$$
$$= \int_{-\infty}^{0} g(t) \cos(2\pi ft) dt - \int_{-\infty}^{0} jg(t) \sin(2\pi ft) dt$$
$$+ \int_{0}^{\infty} g(t) \cos(2\pi ft) dt - \int_{0}^{\infty} jg(t) \sin(2\pi ft) dt$$

If g(t) is even, then g(t) = g(-t). Hence,

$$\int_{-\infty}^{0} g(t)\cos(2\pi ft)dt = \int_{0}^{\infty} g(t)\cos(2\pi ft)dt$$

$$\int_{-\infty}^{0} g(t)\sin(2\pi ft)dt = -\int_{0}^{\infty} g(t)\sin(2\pi ft)dt$$

and so

$$G(f) = 2\int_0^\infty g(t)\cos(2\pi ft)dt$$
. which is purely real.

If, on the other hand, g(t) is odd, g(t) = -g(-t). Hence,

$$\int_{-\infty}^{0} g(t)\sin(2\pi ft)dt = \int_{0}^{\infty} g(t)\sin(2\pi ft)dt$$

$$\int_{-\infty}^{0} g(t)\cos(2\pi ft)dt = -\int_{0}^{\infty} g(t)\cos(2\pi ft)dt$$

and thus

$$G(f) = -2i\int_0^\infty g(t)\sin(2\pi ft)dt$$
 which is purely imaginary.

(b) The Fourier transform of g(t) is defined by

$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi f t) dt$$

Differentiating both sides of this relation *n* times with respect to *f*:

$$\frac{d^n G(f)}{df^n} = (-j2\pi)^n \int_{-\infty}^{\infty} t^n \exp(-j2\pi f t) dt \tag{1}$$

That is,

$$t^{n}g(t) \rightleftharpoons \left(\frac{j}{2\pi}\right)^{n}\frac{d^{n}G(f)}{df^{n}}$$

(c) Putting f = 0 in Eq. (1), we get

$$\int_{-\infty}^{\infty} t^n g(t) dt = \left(\frac{j}{2\pi}\right)^n G^{(n)}(0)$$

Continued on next slide

Problem 2.22 continued

where
$$G^{(n)}(f) = \frac{d^n G(f)}{d f n}$$

(d) Since

$$g_2^*(t) \rightleftharpoons G_2^*(-f)$$

it follows that

$$g_1(t)g_2^*(t) \rightleftharpoons \int_{-\infty}^{\infty} G_1(\lambda)G_2^*(\lambda - f)d\lambda$$

From this result we deduce the Fourier transform

$$\mathbf{F}[g_1(t)g_2^*(t)] = \int_{-\infty}^{\infty} g_1(t)g_2^*(t)\exp(-j2\pi f t)dt$$

$$= \int_{-\infty}^{\infty} G_1(\lambda)G_2^*(\lambda - f)d\lambda \tag{2}$$

Setting f = 0 in Eq. (2), we get the desired relation

$$\int_{-\infty}^{\infty} g_1(t)g_2^*(t) = \int_{-\infty}^{\infty} G_1(\lambda)G_2^*(\lambda)d\lambda$$