Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	\mathbf{R}^2

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	\subset
intersection	

Meaning	Symbol
union	U
complement	superscript ^C
set minus	

Logic Symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	A
there exists	∃

Function Notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
C_A^1	set of differentiable functions on set A
$A \to B$	set of functions from A to B

Magnitude & Conjugate

For all $a, b \in \mathbf{R}$

$$|a + ib| = \sqrt{a^2 + b^2}$$
$$\overline{a + ib} = a - ib$$

For all $x, y, z \in \mathbf{C}$, we have

$$|xy| = |x||y|$$

$$|x + y| \le |x| + |y|$$

$$||x| - |y|| \le |x - y|$$

$$\overline{xy} = \overline{xy}$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} (\text{ for } z \ne 0)$$

$$\overline{\left(\frac{x}{y}\right)} = \frac{\overline{x}}{\overline{y}}$$

Complex Exponential

For $x, y \in \mathbf{R}$

$$e^{iy} = \cos(y) + i\sin(y)$$
$$e^{x+iy} = e^x (\cos(y) + i\sin(y))$$

For all $z_1, z_2 \in \mathbf{C}$,

$$e^{z_1+z_2} = e^{z_1}e^{z_2}$$

 $[e^{z_1} = e^{z_2}] \equiv [z_1 - z_2 = 2\pi n, n \in \mathbf{Z}]$

Argument & Polar form

For all $z \in \mathbf{C}_{\neq 0}$, there is $\theta \in \mathbf{R}$ such that

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

 $\arg(z) = \theta$

We have

$$\sqrt{z} = \sqrt{|z|}(\cos(\theta/2) + i\sin(\theta/2))$$

$$z^{a} = |z|^{a}(\cos(\theta/a) + i\sin(\theta/a)) \quad \text{(for } a \in \mathbf{R})$$

$$\log(z) = \log(|z|) + i\arg(z)$$

When $\theta \in (-\pi, \pi]$, we say θ is the principle argument Arg(z); further

$$\operatorname{Arg}(z) = \operatorname{arg}(z) - 2\pi \left[\frac{\operatorname{arg}(z) - \pi}{2\pi} \right].$$

Topology & Disks

For $a \in \mathbf{C}$ and $r \in \mathbf{R}_{>0}$, we define

$$D[a,r] = \{z \in \mathbf{C} | |z-a| < r\},\$$

$$D'[a,r] = \{z \in \mathbf{C} | 0 < |z-a| < r\},\$$

$$C[a,r] = \{z \in \mathbf{C} | |z-a| = r\}.$$

Let G be a subset of \mathbb{C} . We say

- z is an interior point of G provided $(\exists r \in \mathbf{R}_{>0})(D[z,r] \subset G)$.
- z is a boundary point of G provided $(\forall r \in \mathbf{R}_{>0})(D[z,r] \cap G \neq \emptyset \wedge D[z,r] \cap G^C \neq \emptyset).$
- z is an accumulation point of G provided $(\forall r \in \mathbf{R}_{>0})(D'[z,r] \cap G \neq \varnothing)$.
- *G* is *open* provided every member of *G* is an interior point of *G*.
- G is bounded provided $(\exists r \in \mathbf{R}_{>0})(G \subset D[0,r])$.

Power Series

For $z \in D[0,1]$, we have

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$$

For all $z \in \mathbf{C}$, we have

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Limits

Let G be a subset of \mathbf{C} , z_o be an accumulation point of G, and $F \in G \to \mathbf{C}$. We say F has a limit towards z_o provided

- (a) $\exists L \in \mathbf{C}$
- (b) $\forall \varepsilon \in \mathbf{R}_{>0}$
- (c) $\exists \delta \in \mathbf{R}_{>0}$
- (d) $\forall z \in D[z_o, \delta]$
- (e) we have $|F(z) L| < \varepsilon$.

Continuity

Let G be a subset of **C** and let $z_o \in \text{dom} F$. We say F is continuous at z_o provided

- (a) $\forall \varepsilon \in \mathbf{R}_{>0}$
- (b) $\exists \delta \in \mathbf{R}_{>0}$
- (c) $\forall z \in D[z_o, \delta]$
- (d) we have $|F(z) F(z_o)| < \varepsilon$.

Derivatives

Let G be a subset of \mathbb{C} and let z_o be an interior point of G. We say F is differentiable at z_o provided

$$\lim_{z \to z_o} \frac{F(z) - F(z_o)}{z - z_o}$$

exists.

Cauchy Reimann

Let $F(x+\mathrm{i}y)=u(x,y)+\mathrm{i}v(x,y).$ The function F is differentiable on a region G provided for all $x+\mathrm{i}y\in G,$ we have

$$\begin{bmatrix} u \\ v \end{bmatrix}_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}_y$$

Revised February 8, 2023. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit