Naive Bayes

Do Italian guys love football?

I don't like football!

How many italian guys you know?

What happens if you meet other 20

Italian guys who don't love football?

Prior belief

Evidence

Posterior belief

Prior belief = "italian guys love football"

(very strong)

Evidence = "Edo doesn't love football"

Posterior belief = "italian guys love

football" (less strong)

Posterior = Update(Prior, Evidence)

What's this?!

Posterior = Update(Prior, Evidence)

Solution: Bayes Theorem

P(play tennis | weather=overcast)

Conditional probability

Hypothesis

$$p(H|E) = \frac{p(E|H)p(H)}{p(E)}$$

Evidence

P (DRUNK | POSITIVE) = P (POSITIVE | DRUNK) P (DRUNK) P (POSITIVE)

Likelihood Prior Posterior P (DRUNK | POSITIVE) = P (POSITIVE | DRUNK) P (DRUNK) P(POSITIVE) Normalization

QUIZ

Example: Rare Disease

Predicted

		negative	positive
Real	No disease	90	10
	disease	5	95

Is the model good?

Incidence on the population

1/100,000 = 0.001%

Taken a <u>random guy</u> from the street, if he's positive to the test, what is the probability that he has the disease?

80%? 5%?

P(disease | positive) = ?

P(disease | positive)

P(disease) * P(positive | disease)

P(positive)

P(disease | positive)

0.00001 = 95 / 100 = 0.95

P(disease) * P(positive | disease)

P(positive)

(95+10) / (200) = 0.52

P(disease | positive)

0.0018%

Bayes Classifier

P(class=apple | color=red)?

P(class=pear | color=red)?

Color (feature)	Fruit (class)
red	apple 🍎
red	apple 🍎
yellow	apple 🍎
red	pear 💍
yellow	pear 💍
yellow	pear 💍
yellow	pear 🂍

P(apple | red) = p(apple)*p(red | apple)/p(red)

P(pear | red) = p(pear)*p(red | pear)/p(red)

P(apple | red) = 3/4

P(pear | red) = 1/4

Maive Bayes Classifier

P(class=apple | color=red, width=5cm)

Naive

It assumes features are independent

Strong assumption!

In practice

The model works even when the assumption is violated

When is Naive Bayes good?

1 - Quick

2 - Good for text

In general not very performing

(Like Knn, Logistic Regression, etc.)

Naive Bayes In Sklearn

1. Multi-variate Bernoulli

2. Multinomial

3. Gaussian

Multi-variate Bernoulli

Binary features (i.e., 0s and 1s)

Binary bag of words

Multinomial Naive Bayes

Discrete counts.

Traditional Bag of Words

Gaussian

Normally Distributed features

E.g. Iris dataset - sepal width, petal width, sepal length, petal length

SKIP Generative vs. Discriminative