ΑΣΚΗΣΗ 4 Μηχανή Συνεχούς Ρεύματος

OMAΔA Δ1:

ΚΑΠΕΝΤΖΩΝΗΣ ΠΑΝΑΓΙΩΤΗΣ ΚΩΤΣΙΡΗΣ ΙΩΑΝΝΗΣ ΠΑΣΤΟΣ ΙΩΑΝΝΗΣ ΣΑΒΒΑΣ ΡΗΓΙΝΟΣ ΣΑΜΙΩΤΗΣ ΑΠΟΣΤΟΛΟΣ ΦΑΡΔΕΛΛΑΣ ΣΤΕΦΑΝΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ $\label{eq:total_total}$ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

2022

Ασκηση 4 / Μηχανή Συνεχούς Ρεύματος

Περιεχόμενα

4.1.1. Χαρακτηριστική εν κενώ	3
4.1.2. Χαρακτηριστική γεννήτριας υπό φορτίο	7
4.1.3. Χαρακτηριστική κινητήρα εν κενώ	8
4.1.4 Χαρακτηριστική κινητήρα υπό φορτίο	9
4.1.4. Χαρακτηριστική κινητήρα υπό φορτίο	2

4.1.1. Χαρακτηριστική εν κενώ

Χρησιμοποιήσαμε την μηχανή 2 σα γεννήτρια ξένης διέγερσης και την συνδέσαμε με τη μηχανή 1.

- **A)** Διατηρούμε τον αριθμό στροφών σταθερό με τη βοήθεια των αντιστάσεων. Μεταβάλλουμε το I_{f2} από 0.1~A έως 0.75~A και μετράμε το U_{T2} .
 - $\Gamma \iota \alpha \ n = 750$:

$I_{f2}\left(A\right)$	$U_{T2}\left(V\right)$
0.1	15
0.2	31
0.3	50
0.4	65
0.5	80
0.6	100
0.7	110
0.75	110

• Για *n* = 1110:

$I_{f2}\left(A\right)$	$U_{T2}\left(V\right)$
0.1	30
0.2	50
0.3	75
0.4	100
0.5	125
0.6	145
0.7	160
0.75	170

Σχεδιάζουμε τις $U_{T2}=f\left(I_{f2}\right)$ με παρέμετρο
n.

Ο ΜΑΤΙΑΒ κώδικας για τις ζητούμενες γραφικές παραστάσεις:

```
clear all; close all; clc;
```

```
If2 = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75];
UT2_1 = [15 31 50 65 80 100 110 110];
UT2_2 = [30 50 75 100 125 145 160 170];

figure();
plot(If2,UT2_1 ,'-o');
hold on;
plot(If2,UT2_2,'-o')
legend("UT2=f(If2) για n=750","UT2=f(If2) για n=1100");
title("UT2 = f(If2) για n=750 και UT2=f(If2) για n=1100");
```

Στην Εικόνα 1 φαίνονται οι ζητούμενες γραφικές παραστάσεις της $U_{T2} = f(I_{f2})$ για n = 750 και n = 1100 αντίστοιχα:

Εικόνα 1. Γραφικές παραστάσεις της Ut2 για n=750 αι n=1100.

Για τις μηχανές συνεχούς ρεύματος γνωρίζουμε οτι $C\Phi=U_T$ / Ω_0 . Στις μετρήσεις μας το U_{T2} μεταβάλλεται όσο μεταβάλλεται και το I_{f2} . Αρα μπορούμε να δημιουργούμε τους παρακάτω πίνακες.

• $\Gamma \iota \alpha n =$	75	0:
-----------------------------	----	----

$\mathcal{C}\Phi\left(Vs\right)$	$I_{f2}\left(A\right)$
0.186	0.1
0.390	0.2
0.636	0.3
0.828	0.4
1.014	0.5
1.272	0.6
1.398	0.7
1.398	0.75

• $\Gamma \iota \alpha \ n = 1100$:

СФ (V*s)	I_{f2} (A)
0.258	0.1
0.432	0.2
0.648	0.3
0.864	0.4
1.080	0.5
1.254	0.6
1.386	0.7
1.476	0.75

Ο ΜΑΤΙΑΒ κώδικας για τις ζητούμενες γραφικές παραστάσεις:

```
clear all; close all; clc;
```

```
If2 = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75];
CF_1 = [0.186 0.390 0.636 0.828 1.014 1.272 1.398 1.398];
```

```
CF_2 = [0.258 0.432 0.648 0.864 1.080 1.254 1.386 1.476];
figure();
plot(CF_1,If2,'-o');
hold on;
plot(CF_2,If2,'-o')
legend("CΦ =f(If2) για n=750","CΦ = f(If2) για n=1100");
title("CΦ = f(If2) για n=750 και CΦ = f(If2) για n=1100");
```

Παρακάτω, στην Εικόνα 2, φαίνονται οι ζητούμενες γραφικές παραστάσεις $C\Phi = f(I_{f2})$ για n=750 και n=1100 αντίστοιχα:

Εικόνα 2. Γραφικές παραστάσεις του $C\Phi$ για n=750 αι n=1100.

- **B)** Διατηρούμε σταθερό το I_{f2} . Μεταβάλλουμε τον αριθμό στροφών από 400 rpm έως 1200 rpm και μετράμε το U_{T2} .
 - $\Gamma \iota \alpha I_{f2} = 0.3$:

n (rpm)	$U_{T2}\left(V\right)$
400	30
500	35
600	45
700	50
800	60
900	65
1000	75
1100	80
1200	85

• $\Gamma \iota \alpha I_{f2} = 0.5$:

n (rpm)	$U_{T2}\left(V\right)$
400	45
500	55
600	65

700	80
800	90
900	100
1000	110
1100	120
1200	135

Ο ΜΑΤΙΑΒ κώδικας για τις ζητούμενες γραφικές παραστάσεις:

```
clear all; close all; clc;

n = [400 500 600 700 800 900 1000 1100 1200];
UT2_1 = [30 35 45 50 60 65 75 80 85];
UT2_2 = [45 55 65 80 90 100 110 120 135];

figure();
plot(n,UT2_1,'-o');
hold on;
plot(n,UT2_2,'-o')
legend("UT2 = f(n) για If2=0.3","UT2 = f(n) για If2=0.5");
title("UT2 = f(n) για If2=0.3 και UT2 = f(n) για If2=0.5");
```

Στην Εικόνα 3 φαίνονται οι γραφικές παραστάσεις της $U_{T2}=f(n)$ για $I_{f2}=0.3$ και $I_{f2}=0.5$ αντίστοιχα:

Εικόνα 3. Οι γραφικές παραστάσεις της τάσης τυμπάνου.

4.1.2. Χαρακτηριστική γεννήτριας υπό φορτίο

Διατηρούμε σταθερές τις στροφές της κινητήριας μηχανής στα $n=750\,rpm$ και το $I_{f2}=0.3\,A$. Μεταβάλλουμε το ρεύμα I_{T2} μέσω της ρυθμιστικής αντίστασης και μετράμε το U_{T2} .

Σκάλα R	$I_{T2}\left(A\right)$	$U_{T2}\left(V\right)$
1	9.4	30
2	9.3	31
3	7.2	31
4	6.5	32
5	5.7	33
6	5.5	33
7	5.3	33
8	5.2	33

Για να υπολογίσουμε την R_T χρησιμοποιούμε τους τύπους $U_T = U_{\varepsilon\pi} - R_T I_T$ και $U_{\varepsilon\pi} = C\Phi\Omega$ και λύνοντας ως προς το R_T καταλήγουμε στον τύπο $R_T = \frac{C\Phi\Omega - U_T}{I_T}$ και έτσι παίρνουμε τις παρακάτω μετρήσεις:

$$R_T = \begin{bmatrix} -1.63 & -0.04 & 2.62 & 5.07 & 8.17 & 12.15 & 14.47 & 14.75 \end{bmatrix}$$

Για την τελική τιμή της R_T βρίσκουμε το μέσο όρο $R_T=6.945~\Omega$. Σχεδιάζουμε την $U_{T2}=f(I_{T2})$. Ο MATLAB κώδικας για την ζητούμενη γραφική παράσταση:

```
clear all; close all; clc;
IT2 = [5.2 5.3 5.5 5.7 6.5 7.2 9.3 9.4];
UT2 = [33 33 33 33 32 31 31 30];
figure();
plot(IT2,UT2,'-o');
title("UT2 = f(IT2)");
```

Στην Εικόνα 4 γραφική παράσταση της τάσης τυμπάνου σε συνάρτηση με το ρεύμα τυμπάνου:

Εικόνα 4. Γραφική παράσταση τάσης τυμπάνου.

4.1.3. Χαρακτηριστική κινητήρα εν κενώ

Η μηχανή 1 συνδέεται με το δίκτυο και λειτουργεί ως κινητήρας ξένης διέγερσης εν κενώ. Κρατάμε σταθερό το U_{T1} , μεταβάλλουμε το I_{f1} και μετράμε την ταχύτητα n.

$I_{f1}\left(A\right)$	n (rpm)
0.5	1010
0.45	1170
0.40	1335
0.35	1435
0.30	1730

Σχεδιάζουμε την χαρακτηριστική της ταχύτητας συναρτήσει του ρεύματος διέγερσης. $n = f(l_{f1})$, η οποία φαίνεται στην Εικόνα 5. Ο MATLAB κώδικας για την ζητούμενη γραφική παράσταση:

```
clear all; close all; clc;

If1 = [0.3 0.35 0.4 0.45 0.5];
n = [1730 1435 1335 1170 1010];

figure();
plot(If1,n,'-o');
title("n = f(1f1)");
```


Εικόνα 5. Γραφική παράσταση ταχύτητας στροφών.

4.1.4 Χαρακτηριστική κινητήρα υπό φορτίο

Η μηχανή 1 συνδέεται με το δίκτυο και λειτουργεί ως κινητήρας ξένης διέγερσης, ενώ η μηχανή 2 συνδέεται ως γεννήτρια ξένης διέγερσης τροφοδοτώντας μια αντίσταση.

A) Για $U_{T1} = U_{1N} = 240 \ V$ και ονομαστικό ρεύμα διέγερσης $I_f = 0.3 \ A$ έχουμε $n_N = 1730 \ rpm$ από το ερώτημα 4.1.3. Άρα χρησιμοποιώντας τον τύπο $U_{TN} = C\Phi\Omega_N$ και λύνοντας ως προς $C\Phi$ καταλήγουμε οτι:

$$C\Phi = \frac{U_{TN}}{2 * \pi * \left(\frac{n_N}{60}\right)} = \frac{240}{2} * 3,14 * \left(\frac{1730}{60}\right) = 1,325 Vs$$

B) Κρατώντας σταθερό το ρεύμα διέγερσης στην ονομαστική τιμή του $I_f = 0.3~A$ μεταβάλλουμε το φορτίο της μηχανής 2 έτσι ώστε να μεταβληθεί το ρεύμα I_{T1} και για $U_{T1} = U_{1N} = 240~V$ μετράμε την ταχύτητα n.

$I_{T1}\left(A\right)$	n (rpm)
3	1945
3.5	1940
4	1938
4.5	1935
5	1929

Υπολογίζουμε την εσωτερική ροπή χρησιμοποιώντας τον τύπο $M=\mathcal{C}\Phi I_{T1}$ και τον συντελεστή απόδοσης μέσω του τύπου $\eta=\frac{M\Omega}{U_{T1}I_{T1}}+U_{f1}I_{f1}$ για $\Omega=\frac{2\pi n}{60}$ r/s, $U_{T1}=U_{1N}=240~V$, $I_{f1}=0.3~A$ και $U_{f1}=U_{fN}=220~V$. Άρα δημιουργούμε το παρακάτω πίνακα:

$I_{T1}\left(A\right)$	n (rpm)	M(Nm)	η
3	1945	3.975	0,903
3.5	1940	4.637	0,926
4	1938	5.300	0,946
4.5	1935	5.962	0,960
5	1929	6.625	0,971

Σχεδιάζουμε τις n = f(M), $I_{T1} = f(M)$ και $\eta = f(M)$ στην Εικόνα 6. Ο MATLAB κώδικας για τις ζητούμενες γραφικές παραστάσεις:

```
clear all; close all; clc;

IT1 = [3 3.5 4 4.5 5];
n = [1945 1940 1938 1935 1929];
M = [3.975 4.637 5.3 5.962 6.625];
h = [0.903 0.926 0.946 0.96 0.971];

figure();
subplot(3,1,1);
plot(M,n,'-o');
title("n = f(M)");

subplot(3,1,2);
plot(M,IT1,'-o');
title("IT1 = f(M)");

subplot(3,1,3);
plot(M,h,'-o');
title("n = f(M)");
```


Εικόνα 6. Γραφικές παραστάσεις στροφών, ρεύματος τυμπάνου και συντελεστή απόδοσης.