1

(Jan 2020)

Assignment 1

EE24Btech11024 - G. Abhimanyu Koushik

1) For which of the following ordered pairs (μ, δ) the system of linear equations

x + 2y + 3z = 1 $3x + 4y + 5z = \mu$ $4x + 4y + 4z = \delta$ is inconsistent?

a) (4,6)	b) (3,4)	c) (1,0)	d) (4,3)			
2) Let $y = f(x)$ be a solution to the differential equation $\sqrt{1 - x^2} \frac{dy}{dx} + \sqrt{1 - y^2} = 0$, $ x < 1$ If $y(\frac{1}{2}) = \frac{\sqrt{3}}{2}$, then $y(-\frac{1}{\sqrt{2}})$ is equal to						
(2)	V2) -		(Jan 2020)		
a) $-\frac{1}{\sqrt{2}}$	b) $-\frac{\sqrt{3}}{2}$	c) $\frac{1}{\sqrt{2}}$	d) $\frac{\sqrt{3}}{2}$			
3) If a , b and c are the greatest values of ${}^{19}C_p$, ${}^{20}C_q$, ${}^{21}C_r$ respectively, then: (Jan 2020)						
a) $\left(\frac{a}{11}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{42}\right)$	b) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right) = \left(\frac{c}{42}\right)$	c) $\left(\frac{a}{11}\right) = \left(\frac{b}{22}\right) = \left(\frac{c}{21}\right)$	d) $\left(\frac{a}{10}\right) = \left(\frac{b}{11}\right) = \left(\frac{c}{21}\right)$			
4) Which of the following is a tautology?						
			(Jan 2020)		
a) $(P \land (P \to Q)) \to Q$	b) $P \wedge (P \vee Q)$	c) $(Q \to (\land (P \to Q)))$	d) $P \lor (P \land Q)$			
5) Let $f: \mathbb{R} \to \mathbb{R}$ be such that for all $x \in \mathbb{R}$, $(2^{1+x} + 2^{1-x})$, $f(x)$ and $(3^x + 3^{-x})$ are in A.P, then the						
minimum value of $f(x)$) 18.		(Jan 2020)		
a) 0	b) 4	c) 3	d) 2			
6) The locus of a point which divides the line segment joining the point $(0, -1)$ and a point on parabola,						
$x^2 = 4y$, internally in the	ne ratio 1 : 2 is:		(Jan 2020)		
a) $9x^2 - 12y = 8$	b) $4x^2 - 3y = 2$	c) $x^2 - 3y = 2$	d) $9x^2 - 3y = 2$			
7) For $a > 0$, let the curves $C_1: y^2 = ax$ and $C_2: x^2 = ay$ intersect at origin O and a point P . Let the line $x = b$ ($0 < b < a$) intersect the chord OP and the x-axis at points Q and R , respectively. If the line $x = b$ bisects the area bounded by the curves, C_1 and C_2 , and the area of $\triangle OQR = \frac{1}{2}$, then a satisfies						
the equation			(Jan 2020)		

a) $x^6 - 12x^3 + 4 = 0$	b) $x^6 - 12x^3 - 4 = 0$	c) $x^6 + 6x^3 - 4 = 0$	d) $x^6 - 6x^3 + 4 = 0$			
8) The inverse of the function $f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$ is						
	0 +0		(Jan 2020)			
a) $\frac{1}{4} (\log_8 e) \log_e \left(\frac{1+x}{1-x}\right)$	b) $\frac{1}{4} (\log_8 e) \log_e \left(\frac{1-x}{1+x}\right)$	c) $\frac{1}{4} \log_e \left(\frac{1+x}{1-x} \right)$	d) $\frac{1}{4} \log_e \left(\frac{1-x}{1+x} \right)$			
9) $\lim_{x\to 0} \left(\frac{3x^2+2}{7x^2+2}\right)^{\frac{1}{x^2}}$ is equal to						
			(Jan 2020)			
a) <i>e</i>	b) $\frac{1}{e^2}$	c) $\frac{1}{e}$	d) e^2			
10) Let $f(x) = \left(\sin\left(\tan^{-1}x\right) + \sin\left(\cot^{-1}x\right)\right)^2 - 1$ where $ x > 1$. If $\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}\left(\sin^{-1}f(x)\right)$ and $y\left(\sqrt{3}\right) = \frac{\pi}{6}$, then $y\left(-\sqrt{3}\right)$ is equal to:						
			(Jan 2020)			
a) $\frac{\pi}{3}$	b) $\frac{2\pi}{3}$	c) $-\frac{\pi}{6}$	d) $\frac{5\pi}{6}$			
11) If the equation, $x^2 + bx + 45 = 0$ ($b \in \mathbb{R}$) has conjugate complex roots and they satisfy $ z + 1 = 2\sqrt{10}$, then:						
			(Jan 2020)			
a) $b^2 + b = 12$	b) $b^2 - b = 42$	c) $b^2 - b = 30$	d) $b^2 + b = 72$			
12) The mean and standard deviation of 10 observations are 20 and 2 respectively. Each of these 10 observations is multiplied by p and then reduced by q , where $p \neq 0$ and $q \neq 0$. If the new mean and standard deviation become half of their original values, then q is equal to:						
			(Jan 2020)			
a) -20	b) -5	c) 10	d) -10			
13) If $\int \frac{\cos x}{\sin^3 x \left(1+\sin^6 x\right)^{\frac{2}{3}}} dx = f(x) \left(1+\sin^6 x\right)^{\frac{1}{4}} + c$, where c is a constant of integration, then $\lambda f\left(\frac{\pi}{3}\right)$ is equal to:						
10.			(Jan 2020)			
a) $-\frac{9}{8}$	b) $\frac{9}{8}$	c) 2	d) -2			
14) Let A and B be two independent events such that $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{6}$. Then which of the following is TRUE ?						
6 · · · ·			(Jan 2020)			
a) $P\left(\frac{A}{A \cup B}\right) = \frac{1}{4}$	b) $P\left(\frac{A}{B'}\right) = \frac{1}{3}$	c) $P\left(\frac{A}{B}\right) = \frac{2}{3}$	d) $P\left(\frac{A'}{B'}\right) = \frac{1}{3}$			
15) If volume of a parallelepiped whose coterminous edges are given by $\mathbf{u} = \mathbf{i} + \mathbf{j} + \lambda \mathbf{k}$, $\mathbf{v} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{w} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ be 1cu.unit. If θ is the angle between the edges \mathbf{u} and \mathbf{w} then, $\cos \theta$ will be:						
			(Jan 2020)			

- a) $\frac{7}{6\sqrt{6}}$

- b) $\frac{5}{7}$ c) $\frac{7}{6\sqrt{3}}$ d) $\frac{5}{3\sqrt{3}}$