The Markov Property¹

26 February 2008

The random variables X, Y and Z are said to form a Markov chain in that order

$$X \to Y \to Z$$
 (1)

if and only if p(x|y, z) = p(x|y) for all x, y and z. This is equivalent to requiring X, Z are conditional independent on Y:

$$p(x, z|y) = p(x|y)p(z|y)$$
(2)

As an extremely simple example consider snakes and ladders: imagine a game of snakes and ladders with no snakes and no ladders, for each turn you flip a coin and move one or two squares depending on whether you get a head or a tail. This is a Markov chain: the probability distributions of positions at the nth throw depends only on your current position and not on how you got their. To make this more definite let X_1 be your position after one throw, X_2 after two and X_3 after three. Thus

$$p_{X_1}(1) = p_{X_1}(2) = 1/2 (3)$$

Now X_3 is not independent of X_1 . If $X_1 = 1$ then two heads gives $X_3 = 3$, a head and a tails or visa versa, gives $X_3 = 4$ and two tails puts $X_3 = 5$.

$$p_{X_3|X_1}(3|1) = p_{X_3|X_1}(5|1) = 1/4$$

$$p_{X_3|X_1}(4|1) = 1/2$$
(4)

whereas, if $X_1 = 2$ you are starting one further along and

$$p_{X_3|X_1}(4|2) = p_{X_3|X_1}(6|2) = 1/4$$

$$p_{X_3|X_1}(5|2) = 1/2$$
(5)

we can add to get

$$p_{X_3}(3) = 1/8$$

 $p_{X_3}(4) = 3/8$
 $p_{X_3}(5) = 3/8$
 $p_{X_3}(6) = 1/8$
(6)

but, more importantly, clearly, as stated above and as we would guess, the conditional distributions are different for different values of X_1 .

¹Conor Houghton, houghton@maths.tcd.ie please send me any corrections.

Now, X_2 and X_3 are also dependent, however, if you know X_2 knowing X_1 will not tell you any more about X_3 , all the dependence of X_3 on X_1 comes through X_2 and $X_1 \to X_2 \to X_3$. For completeness, here are the conditional probabilities

$$p_{X_3|X_2}(3|2) = p_{X_3|X_2}(4|2) = 1/2$$

$$p_{X_3|X_2}(4|3) = p_{X_3|X_2}(5|3) = 1/2$$

$$p_{X_3|X_2}(5|4) = p_{X_3|X_2}(6|4) = 1/2$$
(7)

The important point is, that if, say $X_2 = 3$ we know X_3 is equally likely to be four or five. There are also two possible values of X_1 , for X_2 to be three, we could have had $X_1 = 1$ or $X_1 = 2$, but knowing which it was does not affect the distribution for X_3 . In fact $p(x_1, x_3|X_2 = 3) = 1/4$ for each of the possible values of x_1 and x_3 , just as $p(x_1|X_2 = 3) = 1/2$ and $p(x_3|X_2 = 3) = 1/2$ for each possible value of x_1 and x_3 .