Активные и пассивные фильтры

Лабораторная работа

Высшая школа экономики, Санкт-Петербургская школа физико-математических и компьютерных наук Физика, 2 курс

Андрей Ситников

Никита Афанасьев

Введение

Полосовые фильтры — достаточно востребованная вещь в электронике, если нужно получить только некоторый диапазон частот от сигнала. Такое может быть крайне полезно для радиоэлектроники, обработки аналогового звука, фильтрации паразитных частот в научных приборах.

Полосовые фильтры часто делят на пассивные и активные. Пассивные фильтры, как правило, крайне простые устройства, для сборки достаточно пары резисторов и конденсаторов. Однако они не позволят получить произвольные параметры фильтрации — используя только линейные элементы, мы не можем получить "резкий" скачок в спектре пропускания.

В свою очередь, активные фильтры гораздо более гибкие, но более сложные, требующие дополнительного питания и, как следствие, менее отказоустойчивые. Самые распространенные схемы используют операционный усилитель — небольшую микросхему со сложным подключением транзисторов внутри, многократно ($k \sim 10~000$) усиливая разность напряжений. Если как-либо подключить выход к одному из входов, мы можем получить разные нужные соотношения на напряжения.

В этой работе мы попробовали спаять активный полосовой фильтр, а также создать и замерить АЧХ простейшего пассивного фильтра нижних частот.

Схема активного полосового фильтра

Мы решили спаять следующую схему (параметры элементов брали из расчета на центральную частоту $\sim 5\,$ 000 Гц (среднее арифметическое между нижней и верхней границей пропускания), полосу пропускания около 500 Гц, коэффициент передачи — около 1):

Figure 1: Схема активного полосового фильтра

Параметры фильтра можно получить аналитически, так как он состоит из линейных элементов и операционного усилителя, дающего условие $V_{out}=k(V_+-V_-)$. Но схема достаточно известная, так что мы "поверили" готовым формулам 1 , которые мы проверили, используя симулятор электрических цепей 2 .

Мы посчитали, что параметры при указанных элементах должны быть следующие:

Параметр	Наименование	Значение
f_{L}	Центральная частота	4 700 Гц
$f_{L} \ \Delta f$	Полоса пропускания	700 Гц
Q	Добротность	6.5
κ	Коэффициент пропускания	1.0

Оборудование

Для простоты (фильтр не планировалось использовать для реальных задач) мы решили использовать макетную плату.

Использованные компоненты:

Компонент	Количество
Плата печатная ОПП 50×100 мм	1
Микросхема TL072CP — малошумящий операционный усилитель (Китай)	1
Плата печатная ДПП 10×20 мм для SMD компонентов	1
Резистор 1 кОм МЛТ-0.5	3
Резистор 12 Ом МЛТ-0.125	1
Конденсатор 0.22 мкФ / 63 В К73-17 10%	1

¹https://analogiu.ru/6/6-5-2-3.html

²https://falstad.com/circuit/circuitjs.html

Обычно одна микросхема содержит в себе два операционных усилителя, питание общее. Нам нужен только один усилитель, так что мы будем использовать одну половину.

Figure 2: Распиновка выходов операционного усилителя

К сожалению, оказалось, что расстояние между ножками не соответствует расстоянию на макетной плате, изза чего мы решили купить плату для SMD компонентов. Увы, ножки оказались еще меньше, и пришлось изобретать "пайку по диагонали":

Figure 3: Схема пайки операционного усилителя

Надежностью такая схема не отличается, но это был единственный доступный вариант в наших условиях (травить плату мы не хотели).

Figure 4: Общий вид спаянного фильтра

Для измерения мы использовали источники постоянного и переменного тока (в нашем случае сигнал для измерения был синусоидальным), измерения проводили с помощью осциллографа и вольтметра (в нашем случае вольтметр измеряет "мощность" выходного сигнала, преобразуя её в действующее напряжение, предполагая, что сигнал — синусоида).

Figure 5: image-20221004013329232

Результаты измерения параметров полосового фильтра

Амплитуда и мощность практически не зависят от частоты, как и наличия питания на операционном усилителе. Это значит, что где-то в схеме была допущена ошибка — могла "подвести" как "диагональная пайка", так и сам операционный усилитель — способа проверить его работоспособность у нас не было.

Однако график сигнала, получаемого с использованием "бракованной" схемы отличался от обычной синусоиды (на снимках на осциллографе одна кривая отвечает за входной сигнал, вторая — за "отфильтрованный"):

(b) Выходной сигнал после того, как у нас отвалился один из проводов

(с) Что-то еще отошло, и мы получили картину интересных "нижних пиков"

Анализировать такие результаты сложно, но позволим себе заметить, что выходной сигнал не был простым линейным преобразованием входного — из синусоиды наш "фильтр" делал отличную от синусоиды периодичную функцию. Так как одними конденсаторами и резисторами этого добиться нельзя, можно заключить, что как-то наш операционный усилитель работал, пусть и не так, как хотелось бы.

Пассивный фильтр

Чтобы убедиться, что проблема в операционном усилителе/его пайке, а не системе измерения/линейных элементов, мы отделили часть схемы с резистором и конденсатором, создав таким образом простейший пассивный фильтр нижних частот.

(а) Использованная часть схемы для нового фильтра

(b) Внешний вид подключения части схемы

Figure 7: Сборка фильтра

Figure 8: Схема пассивного фильтра нижних частот

Теоретическое АЧХ такого простейшего фильтра нижних частот легко найти, используя метод комплексных электрических сопротивлений:

$$z = R + \frac{1}{i\omega C}$$

$$U = \frac{1}{i\omega C} \cdot \frac{U_0}{z} = \frac{1}{i\omega C} \cdot \frac{U_0}{R - \frac{i}{\omega C}} = \frac{U_0}{R \cdot i\omega C - 1}$$

$$|U| = \frac{U_0}{\left(R^2 \cdot \omega^2 C^2 + 1\right)^2}$$

Результаты измерений

Так как вольтметр показывает ∂ ействующее напряжение, то полученный результат нужно умножить на $\sqrt{2}$. Построим теоретическую зависимость, зная, что R=1 $k\Omega$, C=220 nF, нанесем на нее экспериментальные точки:

Figure 9: АЧХ пассивного фильтра нижних частот, двойной логарифмический масштаб

АЧХ хорошо согласуется с теоретическим, однако видна резкая просадка на напряжениях $<10^{-3}$ В. Скорее всего, это вызвано тем, что такие напряжения становятся неотличимы от "шума", и вольтметр просто отфильтровывает их. Возможно, механизм немного другой, но ясно, что на *разумных* напряжениях и частотах фильтр работает полностью корректно. Таким образом, проблема в активном фильтре скорее всего была не в системе измерения, резисторах или конденсаторах, а в операционном усилителе или его способе пайки.

Выводы