TP 2

CLASSES ET OBJETS EN JAVA

© Dr. BEN SALEM Yosra 2021 – 2022 Atelier POO

AU MENU...

- Implémenter des classes
- Instancier des objets
- Implémenter des relations entre les classes

RAPPEL...

Structure générale d'un programme

```
public class < NomClasse>
     public static void main (String[] args)
        // Instructions
```

- Implémenter une classe
- Tester une classe

Classes et Objets en JAVA

IMPLÉMENTER DES CLASSES EN JAVA

Définition

```
public class <NomClasse>
{
    // Déclaration des attributs
    // Déclaration des méthodes
}
```


Activité

Point

x:entier

y:entier

initialiser()

deplacer()

- Créer une nouvelle classe
- Déclarer les attributs
- Implémenter les méthodes

Activité

☐ Tester la classe Point = Créer des objets de type Point

Point

x:entier

y:entier

initialiser()

deplacer()

afficher()

Dans la même classe

main dans Point

Dans une classe différente

main dans TestPoint

Activité

- □ Remplacer l'initialisation des attributs par des valeurs mises en paramètre de la méthode initialiser.
- Remplacer l'initialisation des attributs par valeur absolue en valeur entrée par l'utilisateur.
- □ Implémenter une méthode affiche_deplacement qui appelle la méthode déplacer et affiche les coordonnées du point avec le déplacement effectué.

Point

x:entier

y:entier

initialiser()
deplacer()

Classes et Objets en JAVA

NOTION DE CONSTRUCTEUR

Activité

Point

x:entier

y:entier

- Implémenter la classe Point suivante.
- Créer un objet « p » de type Point.
- Appeler la méthode afficher pour le point p. Que ce passe – t – il?

Définition et principe

- Pour créer un objet d'une classe on utilise l'opérateur « new »
- « new » fait appel au constructeur de la classe.
- Chaque classe possède un constructeur par défaut créé par le compilateur lorsqu'une classe n'implémente pas de constructeur.
- Lorsqu'un constructeur est implémenté dans une classe, le constructeur par défaut est ignoré.

Définition et principe

- Un constructeur peut seulement être appelé en association avec l'opérateur new.
- ☐ Un constructeur ne peut pas être appliqué à un objet existant pour redéfinir les champs d'instance.

Définition

- ☐ Un constructeur est une méthode particulière permettant de créer et d'initialiser un objet d'une classe.
- Une classe peut avoir plusieurs constructeurs.
- Un constructeur est une méthode :
 - qui n'a pas un type de retour
 - qui porte le même nom de la classe
 - qui peut avoir des paramètres

Activité

Point

x:entier

y:entier

- ☐ Implémenter un constructeur pour la classe Point permettant d'initialiser les coordonnées d'un point avec les valeur 0 et 0 .
- ☐ Implémenter un autre constructeur avec deux paramètres permettant d'initialiser les coordonnées d'un point à partir des valeurs des paramètres.
- Modifier le premier constructeur de façon à saisir les coordonnées à partir du clavier.

Le mot clé « this »

- « this » signifie l'instance courante d'un objet.
- ☐ Fait référence à un paramètre implicite d'une méthode
- ☐ Si la première instruction d'un constructeur a la forme this(...), ce constructeur appelle un autre constructeur de la même classe.

Activité

- ☐ Implémenter un constructeur avec deux paramètres pour la classe Point. Il doit posséder les mêmes identifiants de paramètres que les attributs
- □ Implémenter un constructeur sans paramètres faisant appel au constructeur précédent avec les valeurs (0,0).

Classes et Objets en JAVA

LES RELATIONS ENTRE LES CLASSES

Activité

- Quels attributs peuvent caractériser un cercle?
- Quels sont les types de ces attributs?
- Quelle est la nature de la relation entre la classe Point et la classe Cercle?
- ☐ Quel degré de dépendance existe t il entre un objet de la classe Point et un objet de la classe Cercle?

Activité

Point

x:entier y:entier

Point()

Point(a: entier, b: entier)

deplacer(a : entier, b : entier)

afficher()

Cercle

c:Point

r:int

cercle()

cercle(p : Point, x : entier)

surface(): réel perimetre():réel

Activité

Activité

Cercle

c:Point

r:int

cercle()

cercle(p : Point, x : entier)

surface(): réel perimetre():réel

- Implémenter la classe Cercle où :
 - □ surface permet de calculer la surface d'un cercle
 - perimetre permet de calculer le périmètre d'un cercle
 - ☐ afficher permet d'afficher les coordonnées du centre du cercle, son rayon, son périmètre et sa surface

Exercice

☐ Implémenter une méthode pour la classe Point permettant de vérifier si un point du plan coïncide avec un autre point.

Classes et Objets en JAVA

MANIPULER DES OBJETS

MANIPULER DES OBJETS...

Exercice

- Créer p1 et p2 deux instances de la classe Point en utilisant un constructeur avec paramètres.
- Ré-initialiser le point p2 avec le constructeur avec paramètre. Que ce passe –t
 il ? Justifier
- Créer un point p3 avec un constructeur sans paramètres.
- □ affecter p2 à p3 puis afficher p2 et p3. Que ce passe t il?
- Déplacer p1, puis affecter p1 à p3. Afficher P1 et P3. Que remarquez vous?

- Exercice I
- Exercice 2

Classes et Objets en JAVA

APPLICATION

- □ Soit une figure composée de cercles et/ou de rectangles. Les cercles et les rectangles possèdent des centres ayant deux coordonnées cartésiennes dans le plan.
- Un cercle est définit par son centre, et son rayon.
- Un rectangle est définit par son centre, sa largeur et sa longueur.
- □ Un cercle doit pouvoir calculer son périmètre, sa surface et doit vérifier s'il est tangent à un autre cercle où à un rectangle par un de ses cotés droit, gauche, haut ou bas.

- □ Un rectangle doit pouvoir calculer son périmètre, sa surface, doit vérifier s'il est carré ou pas et doit vérifier s'il est tangent à un cercle ou à un autre rectangle par un de ses cotés droit, gauche, haut ou bas.
- □ On doit vérifier si un rectangle et un cercle coïncident. Un rectangle et un cercle coïncident si leurs centres coïncident (ayant les mêmes coordonnées).
- On doit vérifier si un cercle est inscrit dans un rectangle ou un rectangle est inscrit dans un cercle.

- □ R1 et R2 sont tangents
- R2 est un carré
- □ R1 et C1 sont tangents
- ☐ C1 et R3 coïncident
- C2 et R4 coïncident
- C1 et C2 sont tangents
- □ R4 et C1 sont tangents
- C1 est circonscrit à R3
- C2 est inscrit à R4

Travail demandé

- 1. Tracer le diagramme de classe de cette situation
- 2. Implémenter les différentes classes.
- 3. Implémenter pour chaque classe la méthode affichage adéquate pour faire l'affichage des différents paramètres.
- 4. Implémenter la classe Figure permettant de tester les différentes classes créées.
- □ Indication : Utiliser la formule de calcul de distance AB entre deux points du plan $A(x_A, y_A)$ et $B(x_B, y_B)$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

- Reprendre l'exercice Jeu allumette du TP1 et réécrire le en utilisant le concept orienté objet.
 - 1. Tracer le diagramme de classe de la situation du jeu allumette
 - 2. Implémenter les classes.
 - 3. Implémenter une classe de Test permettant de simuler le jeu.

