CH_3

Hooke's Law

$$\sigma = E\varepsilon$$

• E: the modulus of elasticity of Youngs' modulus, which has the stress units

Poison Ratio

$$\nu = -\frac{\varepsilon'}{\varepsilon}$$

- ν : Poison Ratio
- ε : axial strain
- ε' : lateral strain

Shear Stress

the stress component that act in the plane of the sectioned area

Average Bearing Stress

$$\sigma_b = \frac{F_b}{A_b}$$

- F_b : bearing force
- A_b : bearing area

Average Shear Stress at Section

$$\tau_{aver} = \frac{V}{A}$$

- *V*: internal shear force at section determined from equations of equilibrium
- A: area of section

Single Shear

Double Shear

- Positive strain is when the angle between two positive faces is reduced
- Negative strain is when the angle between two positive faces is increased

Hooke's Law for Shear

$$\tau = G\gamma$$

$$G = \frac{E}{2(1+\nu)}$$

• G: shear modulus of elasticity

Allowable Stresses and Allowance Loads

When designing a structural member or mechanical element, the design interest is **strength**, that is *the capacity of the object to support or transmit loads*

• factor of safety (F.S.)

$$n = \frac{\textit{Actual Strength}}{\textit{Required Strength}}$$

allowable strength

$$\sigma_{
m allow} = rac{\sigma_{
m Y}}{n_1}$$
 $au_{
m allow} =$

- σ_Y and τ_Y are yield stresses
- n_1 and n_2 are the corresponding factors of safety.

Design for Axial Loads and Direct Shear

• determine the area of section subjected to a normal force

$$A = \frac{P}{\sigma_{allow}}$$

• determine the area of section subjected to a shear force

$$A = \frac{V}{\tau_{allow}}$$