

Fachbereich Mathematik Sommersemester 2014

Christian Eder Lucas Ruhstorfer

Einführung in die Topologie Übungsblatt 06

Abgabetermin: Mittwoch, 16.07.2014, 13:30 Uhr

Aufgabe 1. Es sei $n \ge 2$. Zeige, dass gilt:

- (a) Die Abbildung $p: S^n \to \mathbb{P}^n$ mit $x \mapsto \bar{x}$ ist eine zweiblättrige Überlagerung. (Beachte: $\mathbb{P}^n \cong S^n/\{\pm 1\}$.)
- (b) $\Pi_1(\mathbb{P}^n, x_0) \cong \mathbb{Z}_2$ für alle $x_0 \in \mathbb{P}^n$.

Aufgabe 2. Es sei I eine Indexmenge und $\{U_i \mid i \in I\}$ eine offene Überdeckung eines kompakten metrischen Raumes X. Dann gibt es ein $\varepsilon \in \mathbb{R}_{>0}$, so dass jede offene Kugel $U_{\varepsilon}(x) \subset X$ für beliebiges $x \in X$ bereits in einem U_i enthalten ist.

Aufgabe 3.

- (a) Es sei $p:X\to Y$ eine Überlagerung. Zeige, dass dann p offen ist, d.h. $p(U)\in \mathcal{T}_Y$ für alle $U\in \mathcal{T}_X$.
- (b) Es seien $p: X \to Y$ und $p': X' \to Y'$ Überlagerungen. Zeige, dass dann auch $p \times p': X \times X' \to Y \times Y'$ eine Überlagerung ist.

Aufgabe 4. Sei $f: D^2 \longrightarrow D^2$ stetig. Dann besitzt f einen Fixpunkt, d.h. es existiert ein $x \in D^2$ mit f(x) = x. (Gilt übrigens allgemein für $f: D^n \to D^n$ mit $n \ge 1$. Den Fall n = 1 hatten wir schon in Aufgabe 1 auf Blatt 2 da $D^1 = I$.)