Höhere Mathematik I

G. Herzog, C. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Reelle Zahlen	3
2	Folgen und Konvergenz	11
3	Unendliche Reihen	22
Stichwortverzeichnis		23

1 Reelle Zahlen

Grundmenge der Analysis is die Menge \mathbb{R} , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen \mathbb{R} als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von \mathbb{R} aus denen sich alle weiteren Rechenregeln herleiten lassen.

Körperaxiome: in \mathbb{R} seien zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar $a,b\in\mathbb{R}$ genau ein $a+b\in\mathbb{R}$ und genau ein $ab\coloneqq a\cdot b\in\mathbb{R}$ zuordnen. Dabei soll gelten:

(A1)
$$\forall a, b, c \in \mathbb{R}$$
 $a + (b + c) = (a + b) + c$ (Assoziativgesetz)

$$(A5) \ \forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(A2) \ \exists 0 \in \mathbb{R} \ \text{mit} \ \forall a \in \mathbb{R} \ a + 0 = a \ (\text{Null})$$

(A6)
$$\exists 1 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Eins)}$$

$$(A3) \ \forall a \in \mathbb{R} \ \exists -a \in \mathbb{R} \ a + (-a) = 0$$

$$(A7) \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1} \in \mathbb{R} \ a \cdot a^{-1} = 1$$

(A4)
$$\forall a, b \in \mathbb{R} \ a + b = b + a$$
 (Kommutativgesetz)

(A8)
$$\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a$$
 (Kommutativgesetz)

(A9)
$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c$$
 (Distributivgesetz)

Schreibweisen. $f\ddot{u}r\ a,b\in\mathbb{R}$: $a-b\coloneqq a+(-b)\ und\ f\ddot{u}r\ b\neq 0$: $\frac{a}{b}\coloneqq a\cdot b^{-1}$.

Alle bekannten Regeln der Grundrechnungsarten lassen sich aus (A1) - (A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele.

a) Beh.: $\exists_1 0 \in \mathbb{R} \ mit \ \forall a \in \mathbb{R} \ a + 0 = a$

Beweis. Sei $\tilde{0} \in \mathbb{R}$ mit $\forall a \in \mathbb{R}$ $a + \tilde{0} = a$. Mit a = 0 folgt: $0 + \tilde{0} = 0$. Mit $a = \tilde{0}$ in (A2) folgt: $\tilde{0} + 0 = \tilde{0}$. Dann $0 = 0 + \tilde{0} = (A4)$ $\tilde{0} + 0 = \tilde{0}$

b) Beh.: $\forall a \in \mathbb{R} \ a \cdot 0 = 0$

Beweis. Sei
$$a \in \mathbb{R}$$
 und $b := a \cdot 0$. Dann: $b =_{(A2)} a(0+0) =_{(A9)} a \cdot 0 + a \cdot 0 = b + b$. $0 =_{(A3)} b + (-b) = (b+b) + (-b) =_{(A1)} b + (b+(-b)) = b + 0 =_{(A2)} b$

Anordnungsaxiome: in \mathbb{R} ist eine Relation $\dots \leq$ "gegeben.

Dabei sollen gelten:

$$(A10)$$
 für $a,b\in\mathbb{R}$ gilt $a\leq b$ oder $b\leq a$

(A11) aus
$$a \leq b$$
 und $b \leq a$ folgt $a = b$

(A12) aus
$$a \leq b$$
 und $b \leq c$ folgt $a \leq c$

(A13) aus
$$a \leq b$$
 folgt $\forall c \in \mathbb{R} \ a + c \leq b + c$

(A14) aus
$$a \le b$$
 und $0 \le c$ folgt $ac \le bc$

Schreibweisen. $b \ge a : \iff a \le b; a < b : \iff a \le b \text{ und } a \ne b; b > 0 : \iff a < b$

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (ohne Beweis).

- a) aus a < b und 0 < c folgt ac < bc
- b) aus a < b und c < 0 folgt ac > bc
- c) aus $a \le b$ und $c \le d$ folgt $a + c \ge b + d$

Intervalle: Seien $a, b \in \mathbb{R}$ und a < b

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) \coloneqq \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a, b] \coloneqq \{x \in \mathbb{R} : a < x \le b\}$$
 (halboffenes Intervall)

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
 (halboffenes Intervall)

$$[a,\infty) := \{x \in \mathbb{R} : x > a\}, (a,\infty) := \{x \in \mathbb{R} : x > a\}$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \le a\}, (-\infty, a) := \{x \in \mathbb{R} : x < a\}$$

$$(-\infty,\infty) \coloneqq \mathbb{R}$$

Der Betrag

Für
$$a \in \mathbb{R}$$
 heißt $|a| \coloneqq \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$ der Betrag von a .

Beispiele. |1| = 1, |-7| = -(-7) = 7.

Es ist
$$|-a| = |a|$$
 und $|a-b| = |b-a|$

Regeln.

$$|a| = 0$$

$$|a| = 0 \iff a = 0$$

$$c) |ab| = |a||b|$$

$$d) \pm a \le |a|$$

$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

$$||a| - |b|| \le |a - b|$$

Beweis.

$$a)-d)$$
 leichte Übung

e) Fall 1:
$$a + b \ge 0$$
. Dann: $|a + b| = a + b \le_{d}$ $|a| + |b|$.
Fall 2: $a + b < 0$. Dann: $|a + b| = -(a + b) = -a + (-b) \le_{d}$ $|a| + |b|$.

f)
$$c := |a| - |b|$$
; $|a| = |a - b + b| \le_{d}$ $|a - b| + |b|$
 $\Rightarrow c = |a| - |b| \le |a - b|$. Analog: $-c = |b| - |a| \le |b - a| = |a - b|$
Also: $\pm c \le |a - b|$.

Definition. Sei $\emptyset \neq M \subseteq \mathbb{R}$.

a) M heißt nach oben $beschränkt : \iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ x \leq \gamma$ In diesem Fall heißt γ eine obere Schranke

- b) Ist γ eine obere Schranke von M und gilt $\gamma \leq \delta$ für jede weitere obere Schranke δ von M, so heißt γ das **Supremum** von M (kleinste obere Schranke von M)
- c) M heißt nach unten beschränkt : $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ \gamma \leq x$ In diesem Fall heißt γ eine untere Schranke (US)
- d) Ist γ eine untere Schranke von M und gilt $\gamma \geq \delta$ für jede weitere untere Schranke δ von M, so heißt γ das **Infimum** von M (größte untere Schranke von M)

Bez.: in dem Fall: $\gamma = \sup M$ bzw. $\gamma = \inf M$.

Aus (A11) folgt: ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup $M \in M$ bzw. inf $M \in M$, so heißt sup M das Maximum bzw. inf M das Minimum von M und wird mit max M bzw. min M bezeichnet.

Beispiele. a) M = (1, 2). sup $M = 2 \notin M$, inf $M = 1 \notin M$. M hat kein Maximum und kein Minimum.

- b) M = (1, 2]. $\sup M = 2 \in M$, $\max M = 2$
- c) $M = (3, \infty)$. M ist nicht nach oben beschränkt, $3 = \inf M \notin M$.
- d) $M = (-\infty, 0]$. M ist nach unten unbeschränkt, $0 = \sup M = \max M$.

Vollständigkeitsaxiom:

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so ist sup M vorhanden.

Satz 1.1. Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach unten beschränkt, so ist inf M vorhanden.

Beweis. i. d. Übungen.

Definition. Sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt beschränkt : $\iff M$ ist nach oben und nach unten beschränkt ($\iff \exists c \geq 0 \ \forall x \in M \ |x| \leq c \iff \exists c \geq 0 \ \forall x \in M \ -c \leq x \leq c$)

Satz 1.2. Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$

- a) Ist A bechränkt \Rightarrow inf $A \le \sup A$
- b) Ist A nach oben bzw. unten beschränkt \Rightarrow B ist nach oben beschränkt und $\sup B \le \sup A$ bzw. nach unten beschränkt und $\inf B \ge \inf A$

c) A sei nach oben bzw. unten beschränkt und γ eine obere bzw. untere Schranke von A. Dann

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$

bzw.

$$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

Beweis.

a) $A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$. Dann inf $A \leq x$, $x \leq \sup A$ (A12)

$$\Rightarrow \inf A \leq \sup A$$

b) Sei $x \in B$. Dann: $x \in A$, also $x \le \sup A$. B ist also nach oben beschränkt und $\sup A$ ist eine obere Schranke von B

$$\Rightarrow \sup B \le \sup A$$

Analog der Fall für A nach unten beschränkt.

c) " \Rightarrow " $Sei \ \gamma = \sup A \ und \ \varepsilon > 0$. $Dann: \ \gamma - \varepsilon < \varepsilon$. $\gamma - \varepsilon$ ist also keine obere $Schranke \ von \ A$. $Also: \exists x \in A : x > \gamma - \varepsilon$ " $Sei \ \tilde{\gamma} \le \gamma$. $Annahme: \ \gamma \ne \tilde{\gamma}$. $Dann \ \tilde{\gamma} < \gamma$, $also \ \varepsilon := \gamma - \tilde{\gamma} > 0$. $\xrightarrow{Vor.} \exists x \in A : x > \gamma - \varepsilon = \gamma - (\gamma - \tilde{\gamma}) = \tilde{\gamma}$. $Widerspruch \ zu \ x \le \tilde{\gamma}$.

Natürliche Zahlen

Definition.

- a) $A \subseteq \mathbb{R}$ heißt eine Induktionsmenge (IM): $\iff \begin{cases} 1. & 1 \in A; \\ 2. & aus \ x \in A \ folgt \ stets \ x+1 \in A \end{cases}$ Beispiele: $\mathbb{R}, [1, \infty), \{1\} \cup [2, \infty)$ sind Induktionsmengen
- b) $\mathbb{N} := \{x \in \mathbb{R} : x \text{ geh\"{o}rt zu } \textbf{jeder } IM \} = Durchschnitt aller } IMn$ Also: $\mathbb{N} \subseteq A$ f\"{u}r jede Induktionsmenge A.

Satz 1.3.

- a) \mathbb{N} ist eine Induktionsmenge
- b) N ist nicht nach oben beschränkt

c) Ist $x \in \mathbb{R}$, so ex. ein $n \in \mathbb{N} : N > x$

Von nun an sei $\mathbb{N} = \{1, 2, 3, \dots\}$ bekannt.

Proposition 1.4 (Prinzip der vollständigen Induktion). Ist $A \subseteq \mathbb{N}$ und A eine Induktionsmenge, so ist A = N.

Beweis. $A \subseteq \mathbb{N}$ (nach Vor.) und $\mathbb{N} \subset A$ (nach Def.), also $A = \mathbb{N}$

Beweisverfahren durch vollständige Induktion

A(n) sei eine Aussage, die für jedes $n \in \mathbb{N}$ definiert ist. Für A(n) gelte:

$$\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch A(n + 1) wahr;} \end{cases}$$

Dann ist A(n) wahr für **jedes** $n \in \mathbb{N}!$

Beweis. Sei $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$. Dann:

 $A \subseteq \mathbb{N} \ und, \ wg. \ (I), \ (II), \ A \ ist \ eine \ Induktionsmenge \stackrel{(1.4)}{\Longrightarrow} A = \mathbb{N}$

Beispiel. Beh.:
$$\underbrace{1+2+\ldots+n=\frac{n(n+1)}{2}}_{A(n)}, \forall n \in \mathbb{N}$$

Beweis (induktiv). I.A.: $1 = \frac{1(1+1)}{2} \checkmark$, A(1) ist also wahr.

I.V.: Für ein
$$n \in \mathbb{N}$$
 gelte $1+2+\ldots+n=\frac{n(n+1)}{2}$ I.S.: $n \curvearrowright n+1$:

$$1 + 2 + \ldots + n + (n+1) =_{I.V.} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

 $\Rightarrow A(n+1)$ ist wahr.

Definition. $a) \mathbb{N}_0 := \mathbb{N} \cup \{0\}$

- b) $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}$ (ganze Zahlen)
- c) $\mathbb{Q} := \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$ (rationale Zahlen)

Satz 1.5. Sind $x, y \in \mathbb{R}$ und $x < y \Rightarrow \exists r \in \mathbb{Q}$:

Beweis. i. d. Übungen.

Einige Definitionen und Formeln

- a) Für $a \in \mathbb{R}$ und $n \in \mathbb{N}$: $a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$, $a^0 \coloneqq 1$ und ist $a \neq 0$: $a^{-n} \coloneqq \frac{1}{a^n}$ Es gelten die bekannten Rechenregeln.
- b) Für $n \in \mathbb{N} : n! := 1 \cdot 2 \cdot \ldots \cdot n$, 0! := 1 (Fakultäten)
- c) Binomialkoeffizienten: für $n \in \mathbb{N}_0, k \in \mathbb{N}_0$ und $k \leq n$:

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}$$

z.B. $\binom{n}{0} = 1 = \binom{n}{n}$. Es gilt (nachrechnen!):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

d) Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$a^{n+1} - b^{n+1} = (a - b) \left(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k}b^k$$

- e) Binomischer Satz: $a, b \in \mathbb{R} \ \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Beweis. *i. d. Übungen.*
- f) Bernoullische Ungleichung: Sei $x \in \mathbb{R}$ und $x \ge -1$. Dann:

$$(1+x)^n > 1 + nx$$

Beweis (induktiv). *I.A.*: n = 1: $1 + x \ge 1 + x$ *I.V.*: Für ein $n \in \mathbb{N}$ gelte $(1 + x)^n \ge 1 + nx$ *I.S.*: $n \curvearrowright n + 1$: $\stackrel{I.V.}{\Longrightarrow} (1 + x)^n \ge 1 + nx$ und da $1 + x \ge 0$:

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

$$= 1+nx+x+\underbrace{nx^n}_{\ge 0}$$

$$\ge 1+nx+x$$

$$= 1+(n+1)x$$

Hilfssatz (HS). Für $x, y \ge 0$ und $n \in \mathbb{N}$ gilt: $x \le y \iff x^n \le y^n$

Beweis. i. d. Übungen.

Satz 1.6. Sei $a \ge 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \ge 0$ mit: $x^n = a$. Dieses x heißt n-te Wurzel aus a; Bez.: $x = \sqrt[n]{a}$. $(\sqrt[n]{a} =: \sqrt{a})$

Beweis. Existenz: später in §7.

Eindeutigkeit: seien $x, y \ge 0$ und $x^n = a = y^n$. $\stackrel{HS}{\Longrightarrow} x = y$

Bemerkungen.

- a) $\sqrt{2} \notin \mathbb{Q}$ (s. Schule)
- b) Für $a \ge 0$ ist $\sqrt[n]{a} \ge 0$. Bsp.: $\sqrt{4} = 2$, $\sqrt{4} \ne -2$. Die Gleichung $x^2 = 4$ hat zwei Lösungen: $x = \pm \sqrt{4} = \pm 2$.
- c) $\sqrt{x^2}|x| \ \forall x \in \mathbb{R}$

Rationale Exponenten

a) Sei zunächste a > 0 und $r \in \mathbb{Q}, r > 0$. Dann ex. $m, n \in \mathbb{N} : r = \frac{m}{n}$. Wir wollen definieren:

$$a^r \coloneqq \left(\sqrt[n]{a}\right)^m \quad (*)$$

Problem: gilt auch noch $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$, gilt dann $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$? Antwort: ja (d.h. obige Def. (*) ist sinnvoll).

Beweis. $x := (\sqrt[n]{a})^m$, $y := (\sqrt[q]{a})^p$, dann: $x, y \ge 0$ und mq = np, also

$$x^{q} = \left(\sqrt[n]{a}\right)^{mq} = \left(\sqrt[n]{a}\right)^{np} = \left(\left(\sqrt[n]{a}\right)^{m}\right)^{p} = a^{p}$$
$$= \left(\left(\sqrt[q]{a}\right)^{q}\right)^{p} = \left(\left(\sqrt[q]{a}\right)^{p}\right)^{q} = y^{q}$$

 $\Longrightarrow x = y$.

b) Sei $a>0, r\in\mathbb{Q}$ und r<0. $a^r\coloneqq\frac{1}{a^{-r}}.$ Es gelten die bekannten Rechenregeln:

$$(a^r a^s = a^{r+s}, (a^r)^s = a^{rs}, \dots)$$

2 Folgen und Konvergenz

Definition. Es sei X eine Menge, $X \neq \emptyset$. Eine Funktion $a: \mathbb{N} \to X$ heißt eine **Folge** in X. Ist $X = \mathbb{R}$, so heißt a eine **reelle Folge**.

Schreibweisen. a_n statt a(n) (n-tes Folgenglied) (a_n) oder $(a_n)_{n=1}^{\infty}$ oder $(a_1, a_2, ...)$ statt a

Beispiele.

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \ also \ (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$
- b) $a_{2n} := 0$, $a_{2n-1} := 1$ $(n \in \mathbb{N})$, also $(a_n) = (1, 0, 1, 0, \dots)$

Bemerkung. Ist $p \in \mathbb{Z}$ und $a: \{p, p+1, \ldots\} \to X$ eine Funktion, so spricht man ebenfalls von einer Folge in X. Bez.: $(a_n)_{n=p}^{\infty}$. Meist p=0 oder p=1.

Definition. Sei X eine Menge, $X \neq \emptyset$.

- a) X heißt $abz\ddot{a}hlbar : \iff \exists Folge (a_n) \text{ in } X \colon X = \{a_1, a_2, a_3, \dots\}$
- b) X heißt $\ddot{u}berabz\ddot{a}hlbar:\iff X$ ist nicht abzählbar

Beispiele.

- a) Ist X endlich, so ist X abzählbar.
- b) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$ mit $a_n := n \ (n \in \mathbb{N})$
- c) \mathbb{Z} ist abzählbar, denn $\mathbb{Z} = \{a_1, a_2, a_3, \dots\}$ mit $a_1 \coloneqq 0, a_2 \coloneqq 1, a_3 \coloneqq -1, a_4 \coloneqq 2, a_5 \coloneqq -2, \dots$ also

$$a_{2n} := n, \quad a_{2n+1} := -n \quad (n \in \mathbb{N})$$

d) Q ist abzählbar!

Durchnummerieren in Pfeilrichtung liefert

$$\{x \in \mathbb{Q} : x > 0\} = \{a_1, a_2, a_3, \dots\}$$

$$b_1 := 0, b_{2n} := a_n, b_{2n+1} := -a_n \ (n \in \mathbb{N}). \ Dann:$$

$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}$$

e) \mathbb{R} ist überabzählbar (Beweis in §5).

Vereinbarung. Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in \mathbb{R} .

Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form $(a_n)_{n=1}^{\infty}$. Sie gelten sinngemäß für Folgen der Form $(a_n)_{n=p}^{\infty}$ $(p \in \mathbb{Z})$.

Definition. Sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$.

- a) (a_n) heißt nach oben beschränkt : $\iff M$ ist nach oben beschränkt. I.d. Fall: $\sup_{n\in\mathbb{N}} a_n := \sup_{n=1}^{\infty} a_n := \sup M$.
- b) (a_n) heißt nach unten beschränkt: $\iff M$ ist nach unten beschränkt. I.d. Fall: $\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M$.
- c) (a_n) heißt **beschränkt** : \iff M ist beschränkt

$$\iff \exists c \ge 0 : |a_n| \le c \ \forall n \in \mathbb{N}$$

Definition. Sei A(n) eine für jedes $n \in \mathbb{N}$ definierte Aussage. A(n) gilt für fast alle (ffa) $n \in \mathbb{N}$: $\iff \exists n_0 \in \mathbb{N} : A(n)$ ist wahr $\forall n \geq n_0$

Definition. Sei $a \in \mathbb{R}$ und $\varepsilon > 0$

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

 $hei\beta t \ \varepsilon$ -Umgebung von a.

Definition. Eine Folge (a_n) heißt konvergent

$$:\iff \exists a\in\mathbb{R}: \begin{cases} zu\ jedem\ \varepsilon>0\ ex.\ n_0=n_0(\varepsilon)\in\mathbb{N}:\\ |a_n-a|<\varepsilon\ \forall n\geq n_0 \end{cases}$$

I. d. Fall heißt a **Grenzwert** (GW) oder **Limes** von (a_n) und man schreibt

$$a_n \to a \ (n \to \infty) \ oder \ a_n \to a \ oder \ \lim_{n \to \infty} a_n = a$$

Ist (a_n) nicht konvergent, so heißt (a_n) divergent

Beachte:
$$a_n \to a \ (n \to \infty) \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : a_n \in U_{\varepsilon}(a) \ \forall n \ge n_0$$

 $\iff \forall \varepsilon > 0 \ gilt: a_n \in U_{\varepsilon}(a) \ ffa \ n \in \mathbb{N}$
 $\iff \forall \varepsilon > 0 \ gilt: a_n \notin U_{\varepsilon}(a) \ f\"{u}r \ h\"{o}chstens \ endlich \ viele \ n \in \mathbb{N}$

Satz 2.1. (a_n) sei konvergent und $a = \lim a_n$

- a) Gilt auch noch $a_n \to b$, so ist a = b
- b) (a_n) ist beschränkt

Beweis.

a) Annahme $a \neq b$. Dann ist $\varepsilon := \frac{|a-b|}{2} > 0$.

$$\exists n_0 \in \mathbb{N} : |a_{n_0} - a| < \varepsilon \quad \forall n \ge n_0 \text{ und } \exists n_1 \in \mathbb{N} : |a_n - b| < \varepsilon \quad \forall n \ge n_1$$

 $N := \max\{n_0, n_1\}$. Dann:

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon$$

Widerspruch! Also a = b

b) $Zu \varepsilon = 1 \exists n_0 \in \mathbb{N} : |a_n - a| < 1 \ \forall n \geq n_0. \ Dann:$

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a| \quad \forall n \ge n_0$$

 $c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$. Dann: $|a_n| \le \varepsilon \ \forall n \ge 1$.

Beispiele.

a) Sei $c \in \mathbb{R}$ und $a_n := c \ \forall n \in \mathbb{N}$. Dann:

$$|a_n - c| = 0 \quad \forall n \in \mathbb{N}$$

Also: $a_n \to c$.

b) $a_n := \frac{1}{n} \ (n \in \mathbb{N})$. Beh: $a_n \to 0 \ (n \to \infty)$.

Beweis. $Sei \ \varepsilon > 0 : |a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$

$$\stackrel{1.3 \ c)}{\Longrightarrow} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon}$$

Für $n \ge n_0$ ist $n > \frac{1}{\varepsilon}$, also $\frac{1}{n} < \varepsilon$. Somit $|a_n - 0| < \varepsilon \ \forall n \ge n_0$

c) $a_n := (-1)^n$. Es ist $|a_n| = 1 \ \forall n \in \mathbb{N}$, (a_n) ist also beschränkt. Behauptung: (a_n) ist divergent.

Beweis. $\forall n \in \mathbb{N} : |a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n| (1 - (-1)) = 2.$ Annahme: (a_n) konvergiert. Definiere $a := \lim a_n$, dann

$$\exists n_0 \in \mathbb{N}: |a_n - a| < \frac{1}{2} \quad \forall n \ge n_0$$

 $F\ddot{u}r \ n \ge n_0 \ gilt \ dann \ aber$:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1$$

Widerspruch!

- d) $a_n := n \ (n \in \mathbb{N}). \ (a_n) \ ist \ nicht \ beschränkt \xrightarrow{2.1b} (a_n) \ ist \ divergent.$
- e) $a_n := \frac{1}{\sqrt{n}} (n \in \mathbb{N})$. Beh.: $a_n \to 0$

Beweis. Sei $\varepsilon > 0$.

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{n} \iff n > \frac{1}{\varepsilon^2}$$

$$\xrightarrow{1.3c}$$
 $\exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}$. Ist $n \ge n_0 \Rightarrow n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon \Rightarrow |a_n - 0| < \varepsilon$

$$f) \ a_n := \sqrt{n+1} - \sqrt{n}.$$

Beweis.

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ \forall n \in \mathbb{N}. \ Sei \ \varepsilon > 0, \ nach \ Beispiel \ e) \ folgt:$

$$\exists n_0 \in \mathbb{N}: \frac{1}{\sqrt{n}} < \varepsilon \quad \forall n \ge n_0 \Rightarrow |a_n - 0| < \varepsilon \quad \forall n \ge n_0$$

Also $a_n \to 0$.

Definition. (a_n) und (b_n) seien Folgen und $\alpha \in \mathbb{R}$

$$(a_n) \pm (b_n) := (a_n \pm b_n); \ \alpha(a_n) := (\alpha a_n); \ (a_n)(b_n) := (a_n b_n)$$

Gilt $b_n \neq 0 \ \forall n \geq m$, so ist die Folge $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$ definiert.

Satz 2.2. $(a_n), (b_n), (c_n)$ und (α_n) seien Folge und $a, b, \alpha \in \mathbb{R}$

$$a) \ a_n \to a \iff |a_n - a| \to 0$$

b) Gilt
$$|a_n - a| \le \alpha_n$$
 ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$

c) Es gelte
$$a_n \to a$$
 und $b_n \to b$. Dann:

(i)
$$|a_n| \rightarrow |a|$$

(ii)
$$a_n + b_n \to a + b$$

(iii)
$$\alpha a_n \to \alpha a$$

(iv)
$$a_n b_n \to ab$$

(v) ist
$$a \neq 0$$
, so ex. ein $m \in \mathbb{N}$:

$$a_n \neq 0 \ \forall n \geq m \ und \ f\ddot{u}r \ die \ Folge \ \left(\frac{1}{a_n}\right)_{n=m}^{\infty} \ gilt: \frac{1}{a_n} \to \frac{1}{a}$$

d) Es gelte
$$a_n \to a$$
, $b_n \to b$ und $a_n \le b_n$ ffa $n \in \mathbb{N} \Rightarrow a \le b$

e) Es gelte
$$a_n \to a$$
, $b_n \to a$ und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N}$. Dann $c_n \to a$.

Beispiele.

a) Sei
$$p \in \mathbb{N}$$
 und $a_n := \frac{1}{n^p}$. Es ist $n \le n^p \ \forall n \in \mathbb{N}$.
Dann: $0 \le a_n \le \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{2.2e} a_n \to 0$, also $\frac{1}{n^p} \to 0$.

b)
$$a_n := \frac{5n^2 + 3n + 1}{4n^2 - n + 2} = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \to \frac{5}{4}$$

Beweis (von 2.2).

a) folgt aus der Definition der Konvergenz

b)
$$\exists m \in \mathbb{N} : |a_n - a| \le \alpha_m \ \forall n \ge m. \ Sei \ \varepsilon > 0$$

$$\exists n_1 \in \mathbb{N} : \alpha_n < \varepsilon \ \forall n \ge n_1.$$

$$n_0 := \max\{m, n_1\}$$
. Für $n \ge n_0$: $|a_n - a| \le \alpha_n < \varepsilon$

c) (i)
$$||a_n| - |a|| \le 1 |a_n - a| \forall n \in \mathbb{N} \stackrel{b)}{\Longrightarrow} |a_n| \to |a|$$

(ii) Sei
$$\varepsilon > 0$$
. $\exists n_1, n_2 \in \mathbb{N}; |a_n - a| < \frac{\varepsilon}{2} \ \forall n \ge n_1, \ |b_n - b| < \frac{\varepsilon}{2} \ \forall n \ge n_2$
 $n_0 := \max\{n_1, n_2\}. \ F\ddot{u}r \ n \ge n_0:$

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

- (iii) Übung
- (iv) $c_k := |a_n b_n ab|$. z. z.: $c_n \to 0$

$$c_n = |a_n b_n - a_n b + a_n b - a b| = |an(b_n - b) + (a_n - a)b|$$

$$< |a_n||b_n - b| + |b||a_n - a|$$

 $\stackrel{2.1b)}{\Longrightarrow} \exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N} \ und \ c \geq |b|. \ Dann:$

$$c_n \le c(|b_n - b| + |a_n - a|) =: \alpha_n \xrightarrow[c){(ii),c)(iii)} \alpha_n \to 0$$

Also:
$$|c_n - 0| = c_n \le \alpha_n \ \forall n \in \mathbb{N} \ und \ \alpha_n \to 0 \stackrel{b)}{\Rightarrow} c_n \to 0.$$

(v) $\varepsilon := \frac{|a|}{2}$; and (i): $|a_n| \to |a| \Rightarrow \exists n \in N$:

$$|a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon) = (\frac{|a|}{2}, \frac{3}{2}|a|) \quad \forall n \ge m$$

 $\Rightarrow |a_n| > \frac{|a|}{2} > 0 \ \forall n \ge m \Rightarrow a_n \ne 0 \ \forall n \ge m.$

 $F\ddot{u}r \ n \geq m$:

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n$$

$$\alpha_n \to 0 \stackrel{b)}{\Rightarrow} \frac{1}{a_n} \to \frac{1}{a}$$
.

d) Annahme $b < a, \varepsilon := \frac{a-b}{2} > 0$ Dann: $x < y \ \forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a)$.

$$\exists n_0 \in \mathbb{N} : b_n \in U_{\varepsilon}(b) \ \forall n \ge n_0$$
$$\exists m \in \mathbb{N} : a_n < b_n \ \forall n > m$$

 $m_0 := \max\{n_0, m\}$. Für $n \ge m_0$: $a_n \le b_n < b + \varepsilon$, also $a_n \notin U_{\varepsilon}(a)$. Widerspruch!

e) $\exists m \in \mathbb{N} : a_n \leq c_n \leq b_n \ \forall n \geq m. \ Sei \ \varepsilon > 0. \ \exists n_1, n_2 \in \mathbb{N}$:

$$a - \varepsilon < a_n < a + \varepsilon \ \forall n \ge n_1$$

 $a - \varepsilon < b_n < a + \varepsilon \ \forall n > n_2$

 $n_0 := \max\{n_1, n_2, m\}$. Für $n \ge n_0$:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

Also: $|a_n - a| < \varepsilon \forall n \ge n_0$.

Definition.

- a) (a_n) heißt monoton wachsend : $\iff a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$.
- b) (a_n) heißt streng monoton wachsend : $\iff a_{n+1} > a_n \ \forall n \in \mathbb{N}$.
- c) Entsprechend definiert man monoton fallend und streng monoton fallend.
- d) (a_n) heißt **monoton**: \iff $(a_n)n$ ist monoton wachsend oder monoton fallend.

Proposition 2.3 (Monotoniekriterium).

a) (a_n) sei monoton wachsend und nach oben beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n \to \infty} a_n = \sup_{n=1}^{\infty} a_n$$

b) (a_n) sei monoton fallend und nach unten beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n \to \infty} a_n = \inf_{n=1}^{\infty} a_n$$

Beweis. $a := \sup_{n=1}^{\infty} a_n$. Sei $\varepsilon > 0$. Dann ist $a - \varepsilon$ keine obere Schranke von $\{a_1, a_2, \dots\}$, also existiert ein $n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon$. Für $n \ge n_0$:

$$a - \varepsilon < a_{n_0} \le a_n \le a \le a + \varepsilon$$

also $|a_n - a| \le \varepsilon \ \forall n \ge n_0$.

Beispiel. $a_1 := \sqrt[3]{6}$, $a_{n+1} := \sqrt[3]{6 + a_n} (n \ge 2)$.

$$a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6+a_1} < \sqrt[3]{6+2} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} < \sqrt[3]{6} = a_1;$$

Behauptung: $0 < a_n < 2 \text{ und } a_{n+1} > a_n \ \forall n \in \mathbb{N}$

Beweis (induktiv).

I.A.: s.o.

I. V.: Sei $n \in \mathbb{N}$ und $0 < a_n < 2$ und $a_{n+1} > a_n$. $n \curvearrowright n+1$: $a_{n+1} = \sqrt[3]{6+a_n} >_{I.V.} 0$

$$a_{n+1} = \sqrt[3]{6 + a_n} <_{I.V.} \sqrt[3]{6 + 2} = 2;$$
 $a_{n+2} = \sqrt[3]{6 + a_{n+1}} >_{I.V.} \sqrt[3]{6 + a_n} = a_{n+1}$

Also: (a_n) ist nach oben beschränkt und monoton wachsend.

 $\stackrel{2.3}{\Longrightarrow} (a_n)$ ist konvergent. $a := \lim a_n, \ a_n \ge 0 \ \forall n \stackrel{2.2}{\Longrightarrow} a \ge 0$. Es ist

$$a_{n+1}^3 = 6 + a_n \quad \forall n \in \mathbb{N}$$

$$\stackrel{2.2}{\Longrightarrow} a^3 = 6 + a \Rightarrow 0 = a^3 - a + 6 = (a - 2)(\underbrace{a^2 - 2a + 3}_{>3})$$

 $\Rightarrow a = 2$.

Wichtige Beispiele:

Vorbemerkung: Seien $x, y \ge 0$ und $p \in \mathbb{N}$: es ist (s. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|$$

Beispiel 2.4. Sei $a_n \ge 0 \ \forall n \in \mathbb{N}, \ a_n \to a (\ge 0) \ und \ p \in \mathbb{N}. \ Dann \ \sqrt[p]{a_n} \to \sqrt[p]{a_n}$

Beweis.

Fall 1: a = 0. Sei $\varepsilon > 0, \exists n_0 \in \mathbb{N} : |a_n| < \varepsilon^p \ \forall n \ge n_0$

$$\Rightarrow |\sqrt[p]{a_n} = \sqrt[p]{|a_n|} < \varepsilon \ \forall n \ge n_0$$

Also $\sqrt[p]{a_n} \to 0$.

Fall 2: $a \neq 0$.

$$|a_{n} - a| = |\underbrace{(\sqrt[p]{a_{n}})^{p}}_{=:x} - |\underbrace{\sqrt[p]{a}}_{=:y}|^{p}| = |x^{p} - y^{p}|$$

$$\geq_{s.o.} y^{p-1} |x - y| = c |\sqrt[p]{a_{n}} - \sqrt[p]{a}|, \quad c > 0$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n. \ \alpha_n \to 0 \Rightarrow \sqrt[p]{a_n} \to \sqrt[p]{a}$$

Beispiel 2.5. Für $x \in \mathbb{R}$ gilt (x^n) ist konvergent $\iff x \in (-1,1]$, i. d. Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beweis.

Fall 1: x = 0. Dann $x^k \to 0$. Fall 2: x = 1. Dann $x^k \to 1$.

Fall 3: x = -1. Dann $(x^k) = ((-1)^k)$, ist divergent.

Fall 4: |x| > 1. $\exists \delta > 0$: $|x| = 1 + \delta \Rightarrow |x^k| = |x|^k = (1 + \delta)^k \ge 1 + n\delta \ge n\delta$

 \Rightarrow ist nicht beschränkt $\stackrel{2.1}{\Longrightarrow}$ (x^k) ist divergent. Fall 5: $0 < |x| < 1 \Rightarrow \frac{1}{|x|} > 1 \Rightarrow \exists \eta > 0$: $\frac{1}{|x|} = 1 + \eta$.

$$\Rightarrow \left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta$$

$$\Rightarrow |x^n| \le \frac{1}{\eta} \cdot \frac{1}{n} \Rightarrow x^n \to 0.$$

Beispiel 2.6. Sei $x \in \mathbb{R}$ und $s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k$

Fall 1: x = 1. Dann: $x_n = n + 1$, (s_n) ist also divergent.

Fall 2: $x \neq 1 \Rightarrow s_n = \frac{1-x^{n+1}}{1-x}$. Aus (2.5):

$$(s_n)$$
 konvergent \iff $|x| < 1$

i.d. Fall: $\lim s_n = \frac{1}{1-r}$

Beispiel 2.7. Behauptung: $\sqrt[n]{n} \to 1$.

Beweis. Es ist $\sqrt[n]{n} \ge 1 \ \forall n \in \mathbb{N}$, also $a_n := \sqrt[n]{n} - 1 \ge 0 \ \forall n \in \mathbb{N}$. Z. z.: $a_n \to 0$. Für $n \ge 2$:

$$n = \left(\sqrt[n]{n}\right)^n = (a_n + 1)^n = \sup_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2$$

$$\Rightarrow \frac{n-1}{2}a_n^2 \le 1$$
. Also $\Longrightarrow 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}}(n \ge 2)$. $\Rightarrow a_n \to 0$.

Beispiel 2.8. Sei c > 0. Beh.: $\sqrt[n]{c} \to 1$.

Beweis. Fall 1: $c \ge 1$. $\exists m \in \mathbb{N} : 1 \le c \le m$

$$\Rightarrow 1 \le c \le n \ \forall n \ge m \Rightarrow 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \ \forall n \ge m \Rightarrow Beh.$$

Fall 2:
$$0 < c < 1 \Rightarrow \frac{1}{c} > 1 \Rightarrow \sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall_1} 1(n \to \infty) \Rightarrow Beh.$$

Beispiel 2.9. $a_n := \left(1 + \frac{1}{n}\right)^n$; $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$ Beh.: (a_n) und (b_n) sind konvergent und $\lim a_n = \lim b_n$

Beweis. I. d. gr. Übungen wird gezeigt: $2 \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$

$$\stackrel{2.3}{\Longrightarrow} (a_n) \text{ konvergiert, } a := \lim a_n$$

Es ist $b_n > 0$ und $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$. (b_n) ist also monoton wachsend. Für n > 3:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 2}}_{<\left(\frac{1}{2}\right)^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<\left(\frac{1}{2}\right)^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<\left(\frac{1}{2}\right)^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3 \quad \forall n \in \mathbb{N}$$

 $\stackrel{2.3}{\Longrightarrow}(b_n)$ konvergiert. $b := \lim b_n$. Für $n \ge 2$:

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \sup_{k=0}^{n} \sum_{k=0}^{n} n \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)}_{<1}$$

$$\leq 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} = b_{n}$$

Also $a_n \leq b_n \ \forall n \geq 2. \ Z. \ z.: \Rightarrow a \leq b$

Sei $j \in \mathbb{N}, j \geq 2$ (zunächst fest). Für $n \in \mathbb{N}, n \geq j$:

$$a_{n} =_{s.o.} 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} \underbrace{(1 - \frac{1}{n}) \underbrace{(1 - \frac{2}{n}) \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}}_{\to 1}$$

$$\to 1 + 1 + 1 \sum_{k=2}^{j} \frac{1}{k!} = b_{j} \quad (n \to \infty)$$

Also $a \ge b_j \ \forall j \ge 2 \xrightarrow{j \to \infty} a \ge b$.

Definition.

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ (= \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!})$$

heißt **Eulersche Zahl**. Übung: 2 < e < 3. $e \approx 2,718...$

Definition. Sei (a_n) eine Folge und $(n_1, n_2, n_3, ...)$ eine Folge in \mathbb{N} mit $n_1 < n_2 < n_3 < ...$ Für $k \in \mathbb{N}$ setze

$$b_k \coloneqq a_{n_k}$$

also $b_1 = a_{n_1}, b_2 = a_{n_2}, \ldots$ Dann heißt $(b_k) = (a_{n_k})$ eine **Teilfolge** (TF) von (a_n) .

Beispiele.

- a) $(a_2, a_4, a_6, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = 2k$
- b) $(a_1, a_4, a_9, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = k^2$
- c) $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, \dots)$ ist keine Teilfolge von (a_n) .

Definition. (a_n) sei eine Folge und $\alpha \in \mathbb{R}$. α heißt ein **Häufungswert** (HW) von (a_n)

$$:\iff \exists (TF)(a_{n_k}) \ von \ (a_n): a_{n_k} \to \alpha(k \to \infty)$$

 $H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n) \}.$

Satz 2.10. $\alpha \in \mathbb{R}$ ist ein HW von (a_n)

$$\iff \forall \epsilon > 0 : a_{n_{\epsilon}} \in U_{\epsilon}(\alpha) \quad (*)$$

für unendlich viele $n \in \mathbb{N}$.

Beweis. $_{n} \Rightarrow$ "Sei $(a_{n_{k}})$ eine Teilfolge mit $a_{n_{k}} \to \infty$. Sei $\epsilon > 0 \exists k_{0} \in \mathbb{N} : a_{n_{k}} \in U_{\epsilon}(\alpha)$ für $k \geq k_{0} \Rightarrow (*)$ $_{n} \Leftarrow$ " $\exists n_{1} \in \mathbb{N} :$

3 Unendliche Reihen

Stichwortverzeichnis

abzählbar, 11	Monotoniekriterium, 17		
Axiome	N. (* 1.1 . 7.11 7		
Anordnungs-, 4	Natürliche Zahlen, 7		
Körper-, 3	rationale Zahlen, 8		
Vollständigkeits-, 6			
Bernoullische Ungleichung, 9	Schranke, 5		
beschränkt, 6	Supremum, 5		
Folge, 12	Teilfolge, 21		
Menge, 5			
Betrag, 5	überabzählbar, 11		
Binomialkoeffizient, 9	Umgebung, 13		
Binomischer Satz, 9	vollständige Induktion, 8		
divergent, 13	Wurzel, 10		
Eulersche Zahl, 21			
für fast alle, 13			
Fakultäten, 9			
Folge, 11			
reelle, 11			
ganze Zahlen, 8			
Grenzwert, 13			
Grenzwerv, 10			
Induktionsmenge, 7			
Infimum, 5			
Intervalle, 4			
konvergent, 13			
Limes, 13			
monoton, 17			
fallend, 17			
streng fallend, 17			
streng wachsend, 17			
wachsend, 17			