Assignment 2 + Information Theory (SNLP Tutorial 3)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

11th, 12th May 2021

Assignment 2

- Exercise 1: Perplexity Calculation
- Exercise 2: Formulating n-gram models
- Exercise 3: Perplexity Calculation for n-grams
- Bonus: Alternative metric to perplexity

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

Concepts and formulations.

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

• $I(x) = -\log p(x)$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

•
$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X,Y) = -\sum_{x \in X, y \in Y} p(x,y) \cdot \log p(x,y)$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

•
$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X, Y) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(x, y)$$

•
$$H(Y|X) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(y \mid x)$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X,Y) = -\sum_{x \in X, y \in Y} p(x,y) \cdot \log p(x,y)$$

•
$$H(Y|X) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(y \mid x)$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x) \cdot p(y)}$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X, Y) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(x, y)$$

•
$$H(Y|X) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(y \mid x)$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x) \cdot p(y)}$$

•
$$H(p,q) = -\sum_{x} p(x) \cdot \log q(x)$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

•
$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X, Y) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(x, y)$$

•
$$H(Y|X) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(y \mid x)$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x) \cdot p(y)}$$

•
$$H(p,q) = -\sum_{x} p(x) \cdot \log q(x)$$

•
$$D(p||q) = -\sum_{x} p(x) \cdot \log \frac{p(x)}{q(x)}$$

- Information Content
- Entropy
- Joint entropy
- Conditional entropy
- Mutual Information (IG)
- Cross-entropy
- KL-Divergence
- Mutual Information (D_{KL})

$$I(x) = -\log p(x)$$

•
$$H(X) = -\sum_{x \in X} p(x) \cdot \log p(x)$$

•
$$H(X,Y) = -\sum_{x \in X, y \in Y} p(x,y) \cdot \log p(x,y)$$

•
$$H(Y|X) = -\sum_{x \in X, y \in Y} p(x, y) \cdot \log p(y \mid x)$$

•
$$I(X;Y) = \sum_{x,y} p(x,y) \cdot \log \frac{p(x,y)}{p(x) \cdot p(y)}$$

•
$$H(p,q) = -\sum_{x} p(x) \cdot \log q(x)$$

•
$$D(p||q) = -\sum_{x} p(x) \cdot \log \frac{p(x)}{q(x)}$$

•
$$I(X; Y) = D(p(X, Y) || p(X)p(Y))$$

Chain Rule:

$$H(X, Y) = H(X) + H(Y|X)$$

$$H(X_1...X_n) = H(X_1) + H(X_2 \mid X_1) + ... + H(X_n \mid X_1, ..., X_{n-1})$$

Chain Rule:

$$H(X, Y) = H(X) + H(Y|X)$$

$$H(X_1...X_n) = H(X_1) + H(X_2 \mid X_1) + ... + H(X_n \mid X_1, ..., X_{n-1})$$

Mutual Information and Entropy

$$I(X; Y) = H(X) - H(X \mid Y) = H(X) + H(Y) - H(X, Y)$$

Chain Rule:

$$H(X, Y) = H(X) + H(Y|X)$$

$$H(X_1...X_n) = H(X_1) + H(X_2 \mid X_1) + ... + H(X_n \mid X_1, ..., X_{n-1})$$

Mutual Information and Entropy

$$I(X; Y) = H(X) - H(X \mid Y) = H(X) + H(Y) - H(X, Y)$$

Apply to 3 variables

$$I(X; Y \mid Z) = I((X; Y)|Z) = H(X \mid Z) - H(X \mid Y, Z)$$

 $Source: \ https://syncedreview.com/2020/11/30/synced-tradition-and-machine-learning-series-part-1-entropy/$

Source: https://en.wikipedia.org/wiki/Information_diagram

Example - Entropy calculation

$\overline{X \setminus Y}$	0	1
0	1/2	1/6
1	1/3	0

Find

- \bullet H(X), H(Y)
- \bullet H(X,Y)
- H(X|Y), H(Y|X)
- I(X; Y)
- I(X; Y) = H(Y) H(Y|X) = H(X) H(X|Y)

Example - Entropy of functions

What is the (in)equality relationship between H(X) and H(Y) when

- y = f(x) (general case)
- $y = 2^x$
- y = sin(x)

Example - Conditional vs. basic

• Which one is true? (1) $H(Y|X) \leq H(Y)$, (2) $H(Y|X) \geq H(Y)$ or (3) No systematic bound

Example - Conditional vs. basic

- Which one is true? (1) $H(Y|X) \leq H(Y)$, (2) $H(Y|X) \geq H(Y)$ or (3) No systematic bound
- Intuitivelly?

Example - Conditional vs. basic

- Which one is true? (1) $H(Y|X) \leq H(Y)$, (2) $H(Y|X) \geq H(Y)$ or (3) No systematic bound
- Intuitivelly?
- Formally?

• Task: Predict if a student i will pass the exam $(y_i \in \{\text{no}, \text{yes}\})$.

$\overline{Age \setminus Exam}$	Yes	No	$\overline{HW\setminusExam}$	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	 5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
		• • •				• • •					

- Task: Predict if a student i will pass the exam $(y_i \in \{\text{no}, \text{yes}\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$

$\overline{Age \setminus Exam}$	Yes	No	$\overline{HW\setminusExam}$	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
		• • •				• • •					

- Task: Predict if a student i will pass the exam $(y_i \in \{\text{no}, \text{yes}\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$Age \setminus Exam$	Yes	No	HW \ Exam	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			

- Task: Predict if a student *i* will pass the exam $(y_i \in \{\text{no}, \text{yes}\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$Age \setminus Exam$	Yes	No	HW \ Exam	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
						• • •					

• Q: Is age a better predictor for y than hw performance? How do we measure this?

- Task: Predict if a student i will pass the exam $(y_i \in \{no, yes\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$Age \setminus Exam$	Yes	No	HW \ Exam	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
						• • •					

- ullet Q: Is age a better predictor for y than hw performance? How do we measure this?
- Idea: decide majority class, compute accuracy

- Task: Predict if a student i will pass the exam $(y_i \in \{no, yes\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$\overline{Age \setminus Exam}$	Yes	No	$\overline{HW \setminus Exam}$	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			

- Q: Is age a better predictor for y than hw performance? How do we measure this?
- Idea: decide majority class, compute accuracy
- Issue: no consideration between equally bad (or good) features, suspectible to imbalance.

- Task: Predict if a student i will pass the exam $(y_i \in \{no, yes\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$Age \setminus Exam$	Yes	No	HW \ Exam	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
											•

- ullet Q: Is age a better predictor for y than hw performance? How do we measure this?
- Idea: decide majority class, compute accuracy
- Issue: no consideration between equally bad (or good) features, suspectible to imbalance.
- A: I(exam; hw performance)

- Task: Predict if a student i will pass the exam $(y_i \in \{no, yes\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$Age \setminus Exam$	Yes	No	HW \ Exam	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			
						• • •					

- ullet Q: Is age a better predictor for y than hw performance? How do we measure this?
- Idea: decide majority class, compute accuracy
- Issue: no consideration between equally bad (or good) features, suspectible to imbalance.
- A: I(exam; hw performance)
- Q: Can we use conditional entropy instead?

- Task: Predict if a student i will pass the exam $(y_i \in \{no, yes\})$.
- Input: Massive feature vector $x_i = (age, semesters at uni, hw performance, ...)$
- Example: $(x_1, y_1) = [(24, 2, \text{excellent}, ...), \text{yes}], (x_2, y_2) = [(23, 5, \text{poor}, ...), \text{no}]$

$\overline{Age \setminus Exam}$	Yes	No	$\overline{HW\setminusExam}$	Yes	No	Age* \ Exam	Yes	No	HW* \ Exam	Yes	No
22	1	2	Poor	1	21	22	1	1	Poor	6	5
23	19	7	Ok	23	12	23	19	1	Ok	23	0
24	39	30	Excelent	41	3	24	39	2	Excelent	41	0
25	25	8				25	25	1			

- ullet Q: Is age a better predictor for y than hw performance? How do we measure this?
- Idea: decide majority class, compute accuracy
- Issue: no consideration between equally bad (or good) features, suspectible to imbalance.
- A: I(exam; hw performance)
- Q: Can we use conditional entropy instead?
- A: Yes. but!

KL-divergence

Question: Can we use the chain rule on KL-Divergence?

KL-divergence

Question: Can we use the chain rule on KL-Divergence?

$$D(p(x,y) || q(x,y)) = D(p(x) || q(x)) + D(p(y | x) || q(y | x))$$

Applications of KL Divergence:

- Bayesian inference
- Compression techniques
- Variational autoencoders

Assignment 3

- Exercise 1: Understanding entropy in languages
- Exercise 2: Entropy as a measure of uncertainty
- Exercise 3: KL Divergence properties
- Bonus: Computation of KL Divergence

Resources

- http://csustan.csustan.edu/~tom/sfi-csss/info-theory/info-lec.pdf
- https://www.cs.cmu.edu/~odonnell/toolkit13/lecture20.pdf
- https://syncedreview.com/2020/11/30/synced-tradition-and-machine-learning-series-part-1-entropy/