Conditional Probability -

- Two events are there a and b
- We need to find the probability of event 'a' happening with a given condition that event b has already occurred.
- Eg: event 'a' is India winning the tournament, event 'b' is virat kohli scoring three centuries.
- $P(a|b) = p(a^b)/p(b)$

Example –

- In one class 40 students like apples a
- 30 students like oranges b
- 20 students likes both apple and orange

As per the formula -

- P(b) = 30/100 = 0.3
- $P(a^b) = 20/100 = 0.2$
- $p(a^b)/p(b) = 0.2/0.3 = 0.67$

Bayes Theorem -

- Bayes theorem suggests that probability of event a happening given that event b has
 occurred is equal with (probability of event b given that event a has occurred, multiplied
 with probability of event a divided by probability of event b happening.
- P(a|b) = p(b|a).p(a)/p(b)
- In bayes theorem a is called as hypothesis,
- b is called as evidence/data
- p(a|b) is called posterior
- p(b|a) is called likelihood
- p(a) is called prior
- p(b) is called marginal.

Example -

- Finding the probability of a card being king given it's a face card from 52 cards in the pack
- King is a here
- Face is b here.

Naïve Bayes Classifier -

Fruit	Yellow	Sweet	Long	Total
Orange	350	450	0	650
Banana	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

- Q finding the probability of a fruit being yellow (a) given it's orange (b)
- Q finding the probability of a fruit being yellow (a) given it's sweet b)
- Q finding the probability of a fruit being yellow (a) given it's long (b)