

$\text{Log}(q')$ (cc/min)

FIG. 1

FIG. 2

FIG. 3

FIG. 4 (a)

FIG. 4 (b)

FIG. 4 (c)

FIG. 5

FIG. 6

FIG. 7

P_s : NEGATIVE PRESSURE DUE TO VISCOSITY WHEN INK TANK IS FULL OF INK

P_i : INK TANK WATER HEAD PRESSURE (TANK WATER PRESSURE)

P_E : CRITICAL PRESSURE DUE TO INK ABSORBING BODY WHEN INK TANK IS EMPTY OF INK

P_m : CRITICAL PRESSURE DUE TO FILTER

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

$$R_d = \int_0^x \frac{1}{\{2\sqrt{(dm/2)^2 - X^2}\}^4} dX$$

$$R_m = \int_0^x \frac{1}{dm^4} dX$$

FIG. 17

FIG. 18

FIG. 19

$$Pt = 4 \eta \cos \theta / d$$

FIG. 20

$$P_t = 4 \eta / d$$

FIG. 21

FIG. 22 (a)

FIG. 22 (b)

FIG. 22 (c)

FIG. 22 (d)

FIG. 22 (e)

FIG. 22 (f)

FIG. 22 (g)

FIG. 22 (h)

FIG. 23 (a)

FIG. 23 (b)

FIG. 24

FIG. 25

