K-Means Clustering

What is K-Means?

K-Means is an unsupervised machine learning algorithm used to group data into clusters based on their similarity.

Key Concepts

- **Clusters:** Groups of similar data points.
- Centroid: The center point of each cluster.
- WCSS (Within-Cluster-Sum-of-Squares): Measures the compactness of clusters.

Steps in K-Means

- 1. Initialize the number of clusters (k).
- 2. Randomly assign cluster centroids.
- 3. Assign each data point to the nearest centroid.
- 4. Update centroids by calculating the mean of assigned points.
- 5. Repeat until cluster assignments no longer change.

Choosing the Optimal Number of Clusters

• Use the **Elbow Method**: Plot WCSS vs. number of clusters and choose the "elbow" point.

Applications of K-Means

- Customer segmentation
- Image compression

- Document clustering
- Pattern recognition

Importing the necessary libraries

```
In [1]: import numpy as np # For numerical computations
    import matplotlib.pyplot as plt # For data visualization
    import pandas as pd # For data manipulation
    import warnings
    warnings.filterwarnings('ignore')

In [3]: # Importing the dataset
    # The dataset contains information about customers' annual income and spending score
    dataset = pd.read_csv(r"D:\FSDS Material\Dataset\Clustering\Mall_Customers.csv")
    X = dataset.iloc[:, [3, 4]].values # Selecting columns 'Annual Income' and 'Spending Score'

In [5]: dataset.shape

Out[5]: (200, 5)

In [7]: print(X)
```

[[15 39] [15 81] [16 6] [16 77] [17 40] 76] [17 [18 6] [18 94] [19 3] [19 72] [19 14] [19 99] [20 15] [20 77] [20 13] [20 79] [21 35] [21 66] [23 29] [23 98] [24 35] [24 73] [25 5] [25 73] [28 14] [28 82] [28 32] [28 61] [29 31] [29 87] [30 4] [30 73] [33 4] [33 92] [33 14] [33 81] [34 17] [34 73] [37 26] [37 75] [38 35]

[38 92]

- [39 36]
- [39 61]
- [39 28]
- [39 65]
- [40 55]
- 47] [40
- 42] [40
- [40 42]
- 52] [42
- [42 60]
- 54] [43
- 60] [43
- 45] [43
- [43 41]
- [44 50]
- [44 46]
- 51] [46
- [46 46]
- [46 56]
- [46 55]
- 52] [47
- [47 59]
- [48 51]
- 59] [48
- [48 50]
- [48 48]
- [48 59]
- [48 47]
- [49 55]
- 42] [49
- [50 49]
- [50 56]
- [54 47]
- [54 54]
- ⁵⁴ 53]
- [54 48]
- [54 52]
- [54 42]
- [54 51]
- [54 55]
- [54 41]
- [54 44]

- [54 57] [54 46]
- [57 58]
- [57 55]
- [58 60]
- [58 46]
- [59 55]
- [59 41]
- [60 49]
- [60 40]
- [60 42]
- [60
- 52]
- 47] [60
- [60 50]
- [61 42]
- 49] [61
- [62 41]
- [62 48]
- [62 59]
- [62 55]
- [62 56]
- [62 42]
- [63 50]
- [63 46]
- [63 43]
- [63 48]
- [63 52]
- [63 54]
- [64 42]
- 46] [64
- [65 48]
- [65 50]
- [65 43]
- 59] [65
- [67 43]
- [67
- 57] [67 56]
- [67 40]
- [69 58]
- [69 91]
- [70 29]
- [70 77]

- [71 35] [71 95] [71 11] [71 75] [71 9] [71 75] [72 34] [72 71] [73 5] [73 88] [73 7] [73 73] [74 10] [74 72] [75 5] [75 93] [76 40] [76 87] [77 12] 77 97] 77 36] [77 74] [78 22] 90] [78 [78 17] [78 88] [78 20] [78 76] [78 16] [78 89] [78 1] 78] [78 [78 1] [78 73] [79 35] [79 83] [81 5] [81 93] [85 26] [85 75] [86 20]
- file:///C:/Users/satyabrata/Downloads/Behavior-Based Customer Segmentation (1).html

[86 95]

```
[ 87 27]
        [ 87 63]
        [ 87 13]
        [ 87 75]
        [ 87 10]
        [ 87 92]
        [ 88 13]
        [ 88 86]
        [ 88 15]
        [ 88 69]
        [ 93 14]
        [ 93 90]
        [ 97 32]
        [ 97 86]
        [ 98 15]
        [ 98 88]
        [ 99 39]
        [ 99 97]
        [101 24]
        [101 68]
        [103 17]
        [103 85]
        [103 23]
         [103 69]
         [113 8]
         [113 91]
        [120 16]
        [120 79]
        [126 28]
        [126 74]
        [137 18]
        [137 83]]
 In [9]: # Using the Elbow Method to find the optimal number of clusters
         from sklearn.cluster import KMeans # Importing the K-Means clustering model
In [10]: # List to store the Within-Cluster-Sum-of-Squares (WCSS) for different cluster numbers
         wcss = []
In [13]: # Check WCSS
         print("WCSS values:", wcss)
```

WCSS values: []

```
In [15]: # Iterating over a range of cluster counts (1 to 10) to compute WCSS
for i in range(1, 11):
    # Initializing K-Means with `i` clusters
    # `init='k-means++'` ensures efficient cluster centroid initialization
    # `random_state=0` ensures reproducibility
    kmeans = KMeans(n_clusters=i, init="k-means++", random_state=0)
    kmeans.fit(X) # Fitting K-Means to the dataset
    wcss.append(kmeans.inertia_) # Inertia is the WCSS value for the current model
```

```
In [17]: # Plotting the Elbow Curve
    plt.plot(range(1, 11), wcss) # Number of clusters vs. WCSS
    plt.title('The Elbow Method') # Title for the plot
    plt.xlabel('Number of clusters') # X-axis Label
    plt.ylabel('WCSS') # Y-axis Label
    plt.show() # Display the plot
```


Explanation:

The "Elbow Method" involves plotting WCSS against the number of clusters.

The optimal number of clusters is at the "elbow" point, where WCSS starts decreasing at a slower rate.

```
In [20]: # Training the K-Means model on the dataset with the optimal number of clusters (e.g., 5)
         kmeans = KMeans(n clusters=5, init='k-means++', random state=0) # 5 clusters
         y kmeans = kmeans.fit predict(X) # Predicting the cluster for each data point
In [22]: # Visualizing the clusters
         # Scatter plots for each cluster, identified by `v kmeans`
         plt.scatter(X[v kmeans == 0, 0], X[v kmeans == 0, 1], s=100, c='red', label='Cluster 1') # Cluster 1
         plt.scatter(X[y kmeans == 1, 0], X[y kmeans == 1, 1], s=100, c='blue', label='Cluster 2') # Cluster 2
         plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s=100, c='green', label='Cluster 3') # Cluster 3
         plt.scatter(X[y kmeans == 3, 0], X[y kmeans == 3, 1], s=100, c='cyan', label='Cluster 4') # Cluster 4
         plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s=100, c='magenta', label='Cluster 5') # Cluster 5
         # Highlighting the cluster centroids
         plt.scatter(kmeans.cluster centers [:, 0], kmeans.cluster centers [:, 1],
                     s=300, c='yellow', label='Centroids') # Centroids of the clusters
         # Adding titles and labels
         plt.title('Clusters of customers') # Plot title
         plt.xlabel('Annual Income (k$)') # X-axis Label
         plt.ylabel('Spending Score (1-100)') # Y-axis Label
         plt.legend() # Legend to identify clusters and centroids
         plt.show() # Display the visualization
```


Explanation:

- Each cluster is represented by a different color.
- The centroids are marked in yellow and represent the central point of each cluster.
- Clustering helps to segment customers based on their spending behavior and income.

In []: