

Hello, and welcome to this presentation of the STM32 Voltage Reference buffer. It covers the main features of this block, which creates an on-chip reference voltage.

The VREF buffer embedded into STM32L4 microcontrollers provides a stable voltage based on an internal bandgap reference for use by both the analog-to-digital and digital-to-analog converters. Its output voltage is programmable to 2.5 or 2.048 V. This output voltage can also support external loads up to 4 mA. External bulk and bypass capacitors are required when the internal VREF buffer is used. Applications can benefit from this on-chip voltage reference as it eliminates the need for an expensive, external standalone reference voltage IC. For space-constrained systems, it is common to use the analog supply as the reference voltage. By using this VREF buffer instead, it can create a stable voltage even if the analog supply is changing, for example when the VDDA supply comes from a battery output.

Low-power modes

Mode Description Run Active. Sleep Active Low-power run Active. Active. Low-power sleep Stop 0/Stop 1 Active. Stop 2 Not available. Peripheral registers content is kept. Standby Powered-down. The peripheral must be reinitialized after exiting Standby mode. Shutdown

The VREF Buffer is active in the following power modes: Run, Sleep, Low-power run, Low-power sleep, STOP 0 and STOP 1 modes.

Powered-down. The peripheral must be reinitialized after exiting Shutdown mode.

In Stop 2 mode, the VREF Buffer is not available, but the contents of its registers are preserved. In Standby and Shutdown modes, the VREF buffer is powered-down and it must be reinitialized after waking up from these modes.

Performance 4

Symbol	Condition	Typical	Unit
V_{DDA}	$V_{REF} = 2.048$	2.4~3.6	V
	$V_{REF} = 2.5$	2.8~3.6	V
V _{REF_OUT_ERROR}	$V_{REF} = 2.048$	-3 / +1	mV
	$V_{REF} = 2.5$	-2 / +2	mV
I _{load}	Max. load current	4	mA
I_{VDDA}	$I_{LOAD} = 0 \mu A$	16	μΑ
	$I_{LOAD} = 50 \mu A$	18	μΑ
	$I_{LOAD} = 4 \text{ mA}$	35	μΑ
PSRR	DC	60	dB
t _{start_up}	$C_{LOAD} = 1 \mu F$	500	μs

This table shows some performance parameters for the VREF buffer. The VREF buffer can work from 2.4 to 3.6 V for a 2.048 V output, and 2.8 to 3.6 V for a 2.5 V output. The quiescent current is very small even with a 4 mA output current. It is possible to disable the VREF buffer when it is not being used. It can be available again 500 micro seconds after it is re-enabled.

Related peripherals -

- Refer to these trainings linked to this peripheral, for more information
 - Analog-to-digital converter (ADC)
 - Digital-to-analog converter (DAC)

The STM32L4's analog-to-digital and digital-to-analog converters use this VREF Buffer output. Please refer to training modules for these peripheral for additional information.