Examples $(1,2) = \{x \in R : 1 < x < 2\} - 6 \text{per}$ R is both $(-\infty,1) = \{x \in R : x < 1\} - 0 \text{per}$ open and Closed $[1,\infty)$ is closed because Complement open (1,2] is neither open nor closed

Compact Set & GR" is compact of it is closed and bounded. I so bounded if IM 5.t. || x || < M + x E - 8

Examples $\begin{bmatrix} 1,2 \end{bmatrix} = \{x \in \mathbb{R} : 1 \le x \le 2\}$ $\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 4\}$

Extrema of sets of scalars Let $A \subset R$.

The infimum of A, or ninf A, is largest $Y \leq t$. $Y \leq X$, $Y \times EA$. If no such Y exists, inf $A = -\infty$.

Similar definition for sufremum of A or suf A.

- If $\inf A = x^*$ for some $x^* \in A$, then $x^* = \min A$ or minimum of A.
 - · similarly max A or maximum of A.