Document ressources

SCILAB - XCOS

PRÉSENTATION GÉNÉRALE DE SCILAB – XCOS

DÉMARRAGE DE SCILAB - XCOS

- Scilab est un logiciel de calcul numérique. Il comporte un langage de programmation qui lui est propre.
- Scilab s'ouvre à l'aide de l'icône suivant.

Le navigateur permet de savoir quel est le répertoire courant (répertoire de travail)

Le navigateur de variable permet de savoir quelles variables sont utilisées à un instant donné

L'historique des commandes permet de savoir quelles instructions ont précédemment été saisies.

DÉMARRAGE DE SCILAB - XCOS

- XCOS est un module de scilab qui permet de simuler des systèmes dynamiques ainsi que les SLCI. La modélisation des systèmes se fait par bloc.
- Pour lancer XCOS :
 - Menu Applications
 - Xcos

Le navigateur de palettes permet de sélectionner les blocs nécessaires à la réalisation du schéma bloc

La fenêtre permet de réaliser les schémas blocs

Convertisseur Matlab vers Scilab

Gestionnaire de Modules - ATOMS

Navigateur de Variables
Historique des Commandes

Navigateur de Fichiers

SciNotes

Xcos

SCHÉMAS BLOCS AVEC SCILAB – XCOS

SCHÉMAS BLOCS AVEC XCOS

 Tous les blocs nécessaires à la réalisation de schémas blocs se trouvent dans le navigateur de palette. La plupart des blocs que nous utiliserons se situent dans la palette CPGE.

BLOCS ESSENTIELS – FONCTIONS DE TRANSFERT

- Fraction rationnelle
 - Localisation
 - Palette CPGE : Opérateurs linéaires
 - Bloc : CLR
 - Fonctionnement
 - On double clique sur le bloc
 - La fonction de transfert est saisie de façon "naturelle", le polynome associé au numérateur en haut, et le polynome associé au dénominateur en bas.
 - Remarque s² s'écrit s**2

BLOCS ESSENTIELS – FONCTIONS DE TRANSFERT

- Gain purs
 - Localisation
 - Palettes CPGE : Opérateurs linéaires
 - Bloc : GAINBLK_f

- Intégrateur
 - Localisation
 - Palettes CPGE : Opérateurs linéaires
 - ◆ Bloc : *INTEGRAL_m*

BLOCS ESSENTIELS – ENTRÉES (SOURCES)

- Afin de solliciter le système il faut définir des entrées. Elles sont appelées sources pas XCOS.
- Echelon
 - Localisation
 - Palettes CPGE: Entrées
 - Bloc : STEP_FUNCTION
 - Fonctionnement

Allure de l'échelon

10

BLOCS ESSENTIELS – ENTRÉES (SOURCES)

- Rampe
 - Localisation
 - Palettes CPGE : Entrées
 - Bloc: RAMP
 - Fonctionnement
 - Réglage de la pente, de la valeur initiale et de l'instant de départ

Localisation

Palettes CPGE : Source

Bloc : GENSIN_f

- Fonctionnement
 - Réglage de l'amplitude, de la fréquence et du déphasage

11

BLOCS ESSENTIELS – ENTRÉES (SOURCES)

- XCOS va permettre d'afficher des réponses temporelles. Il est donc nécessaire de définir une horloge.
 - Localisation
 - Palettes CPGE : Sorties
 - Bloc : CLOCK_c
 - Fonctionnement
 - On cherche à obtenir des réponses temporelles continues, or scilab fonctionne de façon discrète. Il est donc nécessaire de réaliser une discrétisation de l'échelle des temps.
 - Si la simulation dure 10 secondes et que la période de l'horloge est de 0,1 s, scilab affichera 10/0,1 = 100 points. Les points sont alors relié ce qui donne l'illusion d'avoir des signaux continus.
 - Plus la discrétaisation est fine (petite) plus il y a de points. En revanche le temps de calcul peut augmenter.

BLOCS ESSENTIELS – SOMMATEURS

Localisation

Palettes CPGE : Opérateurs linéaires

Bloc: BIGSOM_f

Fonctionnement

Permet de modifier le nombre d'entrées et les signes du sommateur. Les 1 correspondent à des entrées +, les – correspondent à des entrées -

BLOCS D'AFFICHAGE – SINKS

- Afin d'afficher les résultats, il est nécessaire de dire à XCOS que les courbes doivent être tracées sur un graphe.
 - Localisation
 - Palette CPGE : Sorties

Bloc: SCOPE

- Fonctionnement
 - La flèche permet de raccorder au signal que l'on veut mesurer.
 - Si on veut afficher plusieurs courbes : on double clique sur le bloc et on sélectionne le nombre de courbes désirées

14

- Il est possible de définir des schémas blocs avec des valeurs littérales. Pour cela, il est nécessaire de les définir préalablement dans le contexte.
- Mode opératoire :
 - Clic droit sur le fond du diagramme
 - Modifier le contexte

 Les variables L, K et R sont maintant définies. Il est alors possible d'utiliser ces variables dans les fonctions de transfert.

SIMULATION

RÉALISATION D'UNE SIMULATION TEMPORELLE

- Positionner l'outil réponse temporelle sur le schéma
 - Localisation :
 - Palette CPGE
 - Bloc: REP_TEMP
 - Utilisation :
 - Nombre de points pour réaliser les calculs de la réponse temporelle
 - Durée de la simulation en secondes
- Lancement de la simulation

