INFO-F408: Computability & complexity

Rémy Detobel 27 novembre, 2017

$S \to friendship$	(1)
ightarrow friend	(2)
ightarrow relationship	(3)
ightarrow friendly	(4)

(a) Unmodified grammar

1 NP-Complete problems

- 3-SAT
- CLIQUE
- INDEPENDENT SET (complément de CLIQUE) \equiv CLIQUE in \overline{G}
- VERTEX COVER
- HAMILTONIAN PATH
- SUBSET SUM

1.1 K-Independant Set in G

 \equiv CLIQUE in \overline{G} $\equiv (n - K)$ VERTEX COVER in G

Vertex cover

Lemme:

Pour G = (V, E)

Si S \leq V est un vertex cover, alors V_S est un INDEPENDANT SET

1.2 SUBSET SUM

$$\begin{split} = & \Big\{ < S, t > |S = \{s_1, s_2, ... s_k\} \\ \exists \{y_1, ... y_l\} \subseteq S \\ \text{tel que } \sum_{s \in S} s = t \Big\} \end{split}$$

Théorème

SUBSET-SUM est NP-Complet

Preuve:

Réduction depuis 3 SAT où $x_1...x_v$ sont des variables et où $c_1...c_n$ sont des clauses (conditions).

		1	2	3		ν	1	2	3		m
x_1	y_1	1	0	0	0	0		1	1		
	z_1	1	0	0	0	0					
x_2	y ₂	0	1	0	0	0		1	0		
	z_2	0	1	0	0	0			1		
χ_3	y ₃	0	0	1	0	0		1			
	z_3	0	0	1	0	0					
*	g_1	0	0	0	0	0	0	0	0	*	0
	hi	0	0	0	0	0	0	0	0	*	0
t		1	1	1	1	1	3	3	3	3	3

$$C_2 = (x_1 \lor x_2 \lor x_3)$$

$$C_3 = (x_1 \lor \overline{x_2} \lor x_4)$$

 $\frac{C_3}{C_2}$ contient $\frac{\overline{X_2}}{\overline{X_1}}$

*Pour chaque clause/colonne c_i , on inclut deux fois le nombre : 0...010...0 (où le 1 est placé en index i).

- 1. Supposons qu'il existe une instance de SAT :
 - \rightarrow construisons s' comme ceci : $\forall i=1...V$ si $x_i=T$ prenons y_i dans s', z_i dans les autres cas.

Jusqu'à ce que cela satisfasse chaque clause où chaque 1, 2 ou 3 littéraux sont égaux à "True".

 $\forall i = 1...m$:

- Si c_i a 1 littéral à vrai qui inclut g_i et h_i dans S'
- Si c_i a 2 littéraux à vrai qui inclut g_i seulement.

2. Supposons qu'il existe $S' \subseteq S$ tel que $\sum S' = t$. L'assignation est construite telle que :

 $\bar{X}_i = \mathsf{T} \Leftrightarrow y_i \in \mathsf{S}' (= \mathsf{F} \text{ dans les autres cas}) \forall i = 1...\mathsf{V}$

Et ceci n'est pas une assignation valide pour SAT.

2 Programmation dynamique

Algorithme pour SUBSET-SUM x[i] est un nombre dans S et t est la somme a calculer.

Table T

 $T[i][j] = True \Leftrightarrow il$ existe un sous-ensemble du premier nombre i où la somme est j i=1...|S| $j=0...\sum_{x\in S} x$

Algorithme

Initialisons T. Pour i = 1...|S|, j = 0...t: $T[i][j] \leftarrow T[i-1][j] \lor T[i-1][j-x[i]]$ ReturnT[S][t].

n a la taille de l'entrée (par exemple : le nombre de bits).

La complexité de l'algorithme DP pour le problème SUBSET SUM : $|S| \times t$

$$n \simeq \big(\sum\limits_{x_i \in S} log_2\, x_i \big) + log_2\, t$$

2.1 Exemple

$$S = \{5\ 000\ 000\ 000, 939\ 000\ 000, 333\ 212\}$$

 $t = 5\ 939\ 333\ 212$

Complexité : $n \le 4 \times 10 \times 4 = 160$ $|S| \times t \ge 4 \times 5 \times 10^9$

3 3-COLORING

Prenons un simple graphe non dirigé G, peut-on colorier ses points en 3 couleurs tel que deux point adjacents n'ont pas la même couleur?

3.1 Exercice 7.27

Prouver que 3-COLORING est NP-Complet

Il y a plusieurs manière de représenter le "OR-GADGET" :

Réduction depuis 3 SAT : 3 CNF formule ϕ , variables : $x_1, ...x_1$: **Preuve** :

Par exemple : $(x_1 \vee \overline{x_2} \vee x_1)$

 $\overline{x_1}$

 $\exists 3 - coloring \Leftrightarrow y \text{ est satisfaisable.}$

 χ_{l}

1. Supposons que ϕ est satisfaisable : \exists un SAT associé a $f:\{x_1,...x_n\} \to \{T,F\}$. Colorer la palette en rouge vert bleu comme indiqué.

 \forall varaible x_i : colorier la variable gadget et : x_i

Si $f(x_i) = T$ dans les autres cas

 \forall "OR-GADGET" : utiliser la couleur A ou B pour le "second" ou gadgets et colorer A, B ou C pour le "premier".

2. Supposons \exists un 3-COLORING colorer en rouge (F) vert (T) bleu (N). Mettre x_i a vrai si : \bigcirc et a faux si \bigcirc