Caractérisation des singularités de type ${\mathfrak J}$

Félix Larose-Gervais Mai 2023

Contents

1	Introduction	3
		3
	1.2 Résultats connus	3
2	Propositions	4
3	Conjectures	5

1 Introduction

1.1 Définitions

Soit $r,n\in\mathbb{N},$ notons \mathbb{Z}_r l'anneau $\mathbb{Z}/r\mathbb{Z}$ et \mathbb{Z}_r^\times son groupe d'inversibles

Définition 1. Une singularité est un $[a] = ([a_1], \dots, [a_n]) \in (\mathbb{Z}_r^{\times})^n$, on appelle

- r la racine de la singularité
- $[a_1], \ldots, [a_n]$ les **poids** de la singularité

Définition 2. Un **éclatement** $a \in \mathbb{Z}^n$ d'une singularité [a] (noté $a \in [a]$) est un choix de représentant $a = (a_1, \ldots, a_n)$ tel que

$$\gcd(a_i, a_j) = 1 \qquad (\forall i \neq j)$$

On note E_a l'ensemble des singularités associées à l'éclatement a comme suit:

$$E_{a} = \{([a_{1}^{i}], \dots, [a_{n}^{i}]) \mid \forall i = 1..n, \ a_{i} > 1, [a_{1}^{i}], \dots, [a_{n}^{i}] \in \mathbb{Z}_{a_{i}}^{\times} \}$$

$$\forall j = 1..n : [a_{j}^{i}] \equiv \begin{cases} -r & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}}$$

Définition 3. Un éclatement $a \in [a]$ est dit **lisse** si $E_a = \emptyset$

Définition 4. La singularité [a] est dite de **type** \mathfrak{J} (noté $[a] \in \mathfrak{J}$) ssi

$$\exists a \in [a] : \forall [a^i] \in E_a : [a^i] \in \mathfrak{J}$$

1.2 Résultats connus

Résultats utiles, dûs à Habib Jaber.

Proposition 1. Soit $a_1, a_2 \in \mathbb{Z}$, $gcd(a_1, a_2) = 1$, alors

$$[(a_1 + a_2, a_1, a_2)] \in \mathfrak{J}$$

Exemple 1. $gcd(2,1) = 1 \implies [(3,2,1)] \in \mathfrak{J}$

Proposition 2.

$$[(a_0, a_1, a_2)] \in \mathfrak{J} \iff \forall k \in \mathbb{Z} : [(a_0 + k(a_1 a_2), a_1, a_2)] \in \mathfrak{J}$$

Exemple 2. $[(3,2,1)] \in \mathfrak{J} \implies [(5,2,1)] \in \mathfrak{J}, [(7,2,1)] \in \mathfrak{J}, \dots$

Propositions $\mathbf{2}$

Soit $\sigma \in S_n$, notons la permutation π

$$\pi: \mathbb{Z}_r^n \to \mathbb{Z}_r^n$$

$$([a_1], \dots, [a_n]) \mapsto ([a_{\sigma(1)}], \dots, [a_{\sigma(n)}])$$

Proposition 3. L'ordre des poids d'une singularité n'affecte pas le type \mathfrak{J} Soit $[a] = ([a_1], \dots, [a_n]) \in (\mathbb{Z}_r^{\times})^n$, alors

$$[a] \in \mathfrak{J} \implies \pi([a]) \in \mathfrak{J}$$

Proof. Notons $[b] = \pi([a])$

On a, pour a l'éclatement trivial de [a]

$$E_{a} = \{([a_{1}^{i}], \dots, [a_{n}^{i}]) \mid \forall i = 1..n, \ a_{i} > 1, \ [a_{1}^{i}], \dots, [a_{n}^{i}] \in \mathbb{Z}_{a_{i}}^{\times} \}$$
$$[a_{j}^{i}] \equiv \begin{cases} -r & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..n$$

Considérons, pour b l'éclatement trivial de [b]

$$E_b = \{([b_1^i], \dots, [b_n^i]) \mid \forall i = 1..n, \ b_i > 1, \ [b_1^i], \dots, [b_n^i] \in \mathbb{Z}_{b_i}^{\times}\}$$

$$[b_j^i] \equiv \begin{cases} -r & \text{si } i = j \\ b_j & \text{sinon} \end{cases} \pmod{b_i}$$

$$\equiv \begin{cases} -r & \text{si } \sigma(i) = \sigma(j) \\ a_{\sigma(j)} & \text{sinon} \end{cases} \pmod{a_{\sigma(i)}} \quad \forall j = 1..n$$

Donc $[b_j^i] = [a_{\sigma(j)}^{\sigma(i)}]$

Donc $[b^i] = ([a^{\sigma(i)}_{\sigma(1)}], \dots, [a^{\sigma(i)}_{\sigma(n)}]) = \pi([a^{\sigma(i)}])$ Ainsi $E_b = \{\pi([a^{\sigma(i)}]) \mid \forall i = 1..n, \ a_{\sigma(i)} > 1\} = \{\pi(a^i) \mid \forall i = 1..n, \ a_i > 1\}$ Donc π est une bijection entre E_a et E_b

Et elle préserve le caractère lisse

S'il existe une suite d'éclatements montrant $[a] \in \mathfrak{J}$

L'application de π à ces éléments est une suite montrant $[b] \in \mathfrak{J}$

Exemple 3. Sachant $(5,3,1) \in \mathfrak{J}$, on en déduit $(5,1,3) \in \mathfrak{J}$

Proposition 4. Soit $a = (a_0, a_1, a_2)$, alors

$$a \in \mathfrak{J} \implies a_0 \ge a_1 + a_2$$

Proof. Supposons $a_0 < a_1 + a_2$

Si $a_1 = a_2$, alors $\neg \mathfrak{J}(a)$

Sinon, $a_1 \neq a_2$, supposons sans perdre de généralité que $a_1 > a_2$ Considérons l'éclatement $a^1 = (a_1, -a_0 \mod a_1, a_2 \mod a_1) \in E_a$

$$a_1 > a_2 \implies 2a_1 > a_1 + a_2$$

$$\implies (-a_0 \mod a_1) = 2a_1 - a_0$$

$$a_1 > a_2 \implies (a_2 \mod a_1) = a_2$$

On a donc $a^1 = (a_1, 2a_1 - a_0, a_2)$

Puisque $a_0 < a_1 + a_2$, on a $a_1 < 2a_1 - a_0 + a_2$

Donc a^1 vérifie la condition initiale, on répète le raisonnement avec a^1

Exemple 4. $(5,4,3) \notin \mathfrak{J} \ car \ 5 < 7$

3 Conjectures

Conjecture 1. Soit $a = (a_0, a_1, a_2)$ un éclatement d'une singularité [a]

Posons $s = a_1 + a_2 + \gcd(a_0 - a_1, a_0 - a_2)$

Supposons $a_0 < s$

Alors [a] est de type $\mathfrak{J} \implies s = a_0 + 1$

On constate que la réciproque n'est pas vraie, par exemple prenons (13, 7, 4), on a s = 14, vérifiant donc $a_0 < 14$ et $a_0 + 1 = 14$, or elle n'est pas de type \mathfrak{J} .

Conjecture 2. Soit $a = (a_0, a_1, a_2)$ un éclatement d'une singularité [a]Alors [a] est de type $\mathfrak{J} \Longrightarrow \exists p, q : a_0 = p * a_1 + q * a_2$