Computational Models of IR

Kyle A. Joyce

Department of Political Science University of California, Davis

August 4, 2014

Cederman (APSR, 2003)

 Puzzle: the severity of interstate wars is power law distributed (Richardson 1948, 1960).

- Puzzle: the severity of interstate wars is power law distributed (Richardson 1948, 1960).
- Question: what underlying mechanism(s) could explain this empirical regularity.

• Power law: the frequency of an event is inversely proportional to its size.

- Power law: the frequency of an event is inversely proportional to its size.
- Use cumulative relative frequencies of war sizes N(S > s) to estimate P(S > s).

- Power law: the frequency of an event is inversely proportional to its size.
- Use cumulative relative frequencies of war sizes N(S > s) to estimate P(S > s).
- $P(S > s) = Cs^D$, where C is positive and D is negative.

- Power law: the frequency of an event is inversely proportional to its size.
- Use cumulative relative frequencies of war sizes N(S > s) to estimate P(S > s).
- $P(S > s) = Cs^D$, where C is positive and D is negative.

FIGURE 1. Cumulative Frequency Distribution of Severity of Interstate Wars, 1820-1997

Source: COW data.

 Self-Organized Criticality: slowly driven threshold systems that have meta-stable equilibria interrupted by disturbances with sizes scaling as a power law.

- Self-Organized Criticality: slowly driven threshold systems
 that have meta-stable equilibria interrupted by disturbances
 with sizes scaling as a power law.
- Steady, linear input generates tensions inside a system that leads to nonlinear and delayed output ranging from small events to large ones.

- Self-Organized Criticality: slowly driven threshold systems
 that have meta-stable equilibria interrupted by disturbances
 with sizes scaling as a power law.
- Steady, linear input generates tensions inside a system that leads to nonlinear and delayed output ranging from small events to large ones.
- The Sandpile

- Self-Organized Criticality: slowly driven threshold systems
 that have meta-stable equilibria interrupted by disturbances
 with sizes scaling as a power law.
- Steady, linear input generates tensions inside a system that leads to nonlinear and delayed output ranging from small events to large ones.
- The Sandpile
- Interstate War

• GeoSim: a macro-historical approach to agent-based modeling of international systems.

- GeoSim: a macro-historical approach to agent-based modeling of international systems.
- 200 composite state-like agents interact locally on a 50x50 square lattice.

- GeoSim: a macro-historical approach to agent-based modeling of international systems.
- 200 composite state-like agents interact locally on a 50x50 square lattice.
- Locally=Von Neumann neighborhood.

Resource Updating

• Each site on the grid is worth 1 resource unit.

Resource Updating

- Each site on the grid is worth 1 resource unit.
- Each agent calculates its overall resource level based on the size of its territory.

Resource Updating

- Each site on the grid is worth 1 resource unit.
- Each agent calculates its overall resource level based on the size of its territory.
- It accumulates only a share of these resources (more on this below).

Resource Allocation

 Actors allocate resources to their borders and then chose whether or not to fight with their territorial neighbors.

Resource Allocation

- Actors allocate resources to their borders and then chose whether or not to fight with their territorial neighbors.
- 0.5 allocated evenly to each front, 0.5 are fungible and distributed in proportion to neighbors' power.

Resource Allocation

- Actors allocate resources to their borders and then chose whether or not to fight with their territorial neighbors.
- 0.5 allocated evenly to each front, 0.5 are fungible and distributed in proportion to neighbors' power.
- Creates strategic interdependence.

Decision Rules

All states use grim-trigger strategy.

Decision Rules

- All states use grim-trigger strategy.
- Unprovoked attacks happen probabilistically when a state has a 3:1 power advantage against a neighbor.

Context Activation

 States go on high alert if there is a conflict in their neighborhood.

Context Activation

- States go on high alert if there is a conflict in their neighborhood.
- If on high alert, states attempt unprovoked attacks every time period.

Conquest

• When local balance of capability favors the stronger actor, conquest results.

Conquest

- When local balance of capability favors the stronger actor, conquest results.
- The victor absorbs the targeted province and its resources, which creates larger and more powerful states.

Conquest

- When local balance of capability favors the stronger actor, conquest results.
- The victor absorbs the targeted province and its resources, which creates larger and more powerful states.
- o If the targeted province was the capital, the state collapses.

After conquest, states can tax new provinces.

- After conquest, states can tax new provinces.
- · Rate of extraction depends on the loss-of-strength gradient.

- After conquest, states can tax new provinces.
- Rate of extraction depends on the loss-of-strength gradient.
- Power projection also affected by the loss-of-strength gradient.

- After conquest, states can tax new provinces.
- Rate of extraction depends on the loss-of-strength gradient.
- Power projection also affected by the loss-of-strength gradient.

Technological Change

• Shifts the loss-of-strength gradient such that tax extraction and power projection increases.

Counting Wars

 Have to identify spatio-temporal conflict clusters as wars and measure their severity.

Counting Wars

- Have to identify spatio-temporal conflict clusters as wars and measure their severity.
- Algorithm accumulates the total battle damage incurred by all parties to a conflict.

Counting Wars

- Have to identify spatio-temporal conflict clusters as wars and measure their severity.
- Algorithm accumulates the total battle damage incurred by all parties to a conflict.
- Battle damage is 10% of the resources allocated to a particular front.

Built-In Implications

- Number of states decreases.
- Size of states increases.
- Local equilibria emerge if no state wants to launch attack.
- Global equilibrium emerges if all states want to refrain from attacking.

• Initial Phase: states compete for 500 time periods.

- Initial Phase: states compete for 500 time periods.
- Main Phase: technological change and war counting begins after initial phase until time period 10,500.

- Initial Phase: states compete for 500 time periods.
- Main Phase: technological change and war counting begins after initial phase until time period 10,500.
- 15 runs.

TABLE 1. F	Replication	Results Based	on 15	Runs of	Each System
------------	-------------	----------------------	-------	---------	-------------

	Slope Coefficient D		R^2			Range	N Wars	
	Min.	Median	Max.	Min.	Median	Max.	(Median)	(Median)
Main results								
1. Base runs	-0.64	-0.55	-0.49	0.975	0.991	0.996	4.2	204
2. Smaller shocks ^a	-0.71	-0.62	-0.56	0.968	0.980	0.993	3.7	267
3. No shocks	-1.43	-1.32	-1.17	0.878	0.941	0.975	1.4	132
No context activation	-1.52	-1.34	-1.20	0.835	0.882	0.934	1.6	696
Sensitivity analysis								
5. warShadow=10	-0.69	-0.60	-0.53	0.966	0.990	0.996	4.2	325
6. warShadow=40	-0.60	-0.50	-0.45	0.970	0.989	0.997	4.2	148
7. supThresh=2.5a	-0.62	-0.53	-0.46	0.965	0.984	0.991	4.3	210
8.propMobile=0.9	-0.65	-0.58	-0.53	0.954	0.987	0.992	4.3	250
9. distOffset=0.2	-0.72	-0.52	-0.43	0.908	0.990	0.995	4.4	211
10.distSlope=5	-0.60	-0.53	-0.46	0.974	0.986	0.991	4.3	217
11. nx × ny=75 × 75	-0.67	-0.59	-0.54	0.987	0.993	0.996	4.6	502

Note: See Table A1 for explanations of the parameter names.

^aBased on runs with shockSize=10 instead of 20.

Results

- Technological change and contextual activation are responsible for the power law distribution of war sizes.
- Model suggests that warfare follows the idea of self-organized criticality.

Future Research

- No alliances.
- Interaction restricted to contiguous neighbors. What about great powers?
- All wars are dyadic.

Take-Away Points

- Chose an empirical target
- Macro-historical approach
- Build in model implications that must be true
- Use illustrative runs to highlight model features
- Only turns a few model knobs
- Has shown one specification that can produce power laws
- Pseudo-code

Joyce (Working Paper)

Questions

· Why do some wars expand while others do not?

Questions

- Why do some wars expand while others do not?
- Why do some wars expand to include a large number of additional states while others only expand to include a few states?

Empirical Targets

- o 73% did not expand, 27% did expand
- Explosive expansion vs. small expansion

Two Linked Mechanisms

1) Interdependent nature of third parties' decisions

Two Linked Mechanisms

- 1 Interdependent nature of third parties' decisions
- 2 Dynamics of war

An Agent-Based Model of War Expansion

Artificial International System

100 agents (i.e., states)

War

• Randomly select two agents (I_A and I_B) to be designated as the initial belligerents in a war

Agent Characteristics

- 1 Material capability (P_i, P_A, P_B)
- 2 Utility third-party would derive from each of the initial belligerents winning the war (α_i^A, α_i^B)

Parallel Execution

- At each time point (t) all agents simultaneously decide whether or not to join the ongoing war.
- Agents who joined in t-1 have to decide whether they want to remain in the war at t or exit the war.
- Agents who do not join at t have the opportunity to join at t+1, t+2, ..., T.
- Multiple agents can join at each time point (e.g., UK, France, New Zealand, Australia in WWII).
- Agents who previously joined can exit the war as it persists (e.g., Finland, Greece in WWII).

Agents' "Naive Utility" for Joining the War

• If $\alpha_i^A > \alpha_i^B$, then agent O_i prefers I_A to win and would join the war if and only if:

$$\left[\frac{\mathsf{P}_A + \mathsf{P}_i}{\mathsf{P}_A + \mathsf{P}_B + \mathsf{P}_i} - \frac{\mathsf{P}_A}{\mathsf{P}_A + \mathsf{P}_B}\right] \times (\alpha_i^A - \alpha_i^B) - c_{it} > 0 \quad (1)$$

• If $\alpha_i^A < \alpha_i^B$, then O_i prefers I_B to win and would join the war if and only if:

$$\left[\frac{\mathsf{P}_A}{\mathsf{P}_A + \mathsf{P}_B + \mathsf{P}_i} - \frac{\mathsf{P}_A}{\mathsf{P}_A + \mathsf{P}_B}\right] \times (\alpha_i^A - \alpha_i^B) - c_{it} > 0 \quad (2)$$

Forecasting Rule

- If an agent's naive utility is positive and $\alpha_i^A > \alpha_i^B$ the agent is forecasted to join I_A $(j \in F^A)$.
- If an agent's naive utility is positive and $\alpha_i^A < \alpha_i^B$ the agent is forecasted to join I_B $(k \in F^B)$.
- If an agent's naive utility is negative the agent is forecasted to remain neutral.

Forecasting Rule

Each agent then calculates the probabilities of I_A and I_B winning the war based on which agents are forecasted to join each side:

$$\rho_{i}^{A} = \frac{P_{A} + \sum_{j \in F^{A}} P_{j}}{P_{A} + P_{B} + \sum_{j \in F^{A}} P_{j} + \sum_{k \in F^{B}} P_{k}}$$
(3)

$$p_{i}^{B} = \frac{P_{B} + \sum_{k \in F^{B}} P_{k}}{P_{A} + P_{B} + \sum_{j \in F^{A}} P_{j} + \sum_{k \in F^{B}} P_{k}}$$
(4)

Forecasting Rule

Finally, each agent that is forecasted to join calculates the probabilities of I_A and I_B winning the war if all of the agents forecasted to join each side do so but they remain neutral:

$$p_{\sim i}^{A} = \frac{P_{A} + \sum_{j \in F^{A}, \ j \neq i} P_{j}}{P_{A} + P_{B} + \sum_{j \in F^{A}, \ j \neq i} P_{j} + \sum_{k \in F^{B}, \ k \neq i} P_{k}}$$
(5)

$$p_{\sim i}^{B} = \frac{P_{B} + \sum_{k \in F^{B}, \ k \neq i} P_{k}}{P_{a} + P_{b} + \sum_{j \in F^{A}, \ j \neq i} P_{j} + \sum_{k \in F^{B}, \ k \neq i} P_{k}}$$
(6)

Agents' Decision Rule for Joining the War

$$\mathsf{EU}_i(\mathsf{J}) = \alpha_i^A p_i^A + \alpha_i^B (1 - p_i^A) - c_{it} \tag{7}$$

$$\mathsf{EU}_i(\mathsf{SQ}) = \alpha_i^{\mathsf{A}} p_{\sim i}^{\mathsf{A}} + \alpha_i^{\mathsf{B}} (1 - p_{\sim i}^{\mathsf{A}}) \tag{8}$$

- If $EU_i(J) > EU_i(SQ)$ the agent joins I_A or I_B depending on whether $\alpha_i^A > \alpha_i^B$ or $\alpha_i^A < \alpha_i^B$ and receives a payoff equivalent to $EU_i(J)$.
- If $EU_i(J) < EU_i(SQ)$ the agent remains neutral and receives a payoff equivalent to $EU_i(SQ)$.

Per Period Cost of Joining the War

- Fixed and stochastic component.
- Heterogeneous across agents.

$$c_{it} = \frac{\kappa_i + \kappa_{it}}{2} \tag{9}$$

- $\kappa_i \sim U[0.00001, 0.0001]$, unique to each agent and does not vary with t (importance of war).
- $\kappa_{it} \sim U[0.01, 0.1]$, unique to each agent and varies with t (actual loss of resources).
- If an agent joins the war then the cost of joining is subtracted from their capability (P_i) .

War Termination

- When the distribution of capabilities between the two coalitions of belligerents (including the initial belligerents and any third parties that joined) exceeds the victory threshold, and
- 2 When a random number drawn from a uniform distribution exceeds the victory threshold

Conducted simulations with and without the forecasting rule.

Macro-Level Patterns

- Percentage of simulated wars that did and did not expand.
- Percentage of agents in the artificial international system that joined in simulated wars that expanded.

Percentage of Simulated Wars that Did and Did Not Expand

	Not Strategic	Strategic	Empirical
Expanded	97%	22%	27%
Not Expanded	3%	78%	73%

Results

- Most wars do not expand to include additional agents.
- Of the wars that do expand, they either expand to include a few additional agents or many additional agents.

Questions

- Why do some wars expand while others do not?
- Why do some wars expand to include a large number of additional states while others only expand to include a few states?

Answer

Interdependent nature of third parties' decisions

Take-Away Points

- Chose an empirical target
- Micro-level approach (in contrast to Cederman)
- Assign agent characteristics based on empirical data
- Small number of knobs
- Has shown one specification that comes close to the historical record