Stepping Motor

Applications

Mobile equipment

Digital cameras, Mobile equipments, PDA, etc.

Office automation equipment

Printers, facsimiles, Typewriters, Photocopiers, FDD head drives, CD-ROM pickup drives, Scanners, etc.

Audio-visual equipment

Video cameras, Digital cameras, etc.

Measuring instruments

Automotive odometers, Various integrating meters and counters

Game equipment

Pachinko machines, etc.

Structure and operation

Stepper motors convert electric pulses into incremental mechanical motions. FDK's stepper motors have a claw-pole yoke structure with a cylindrical permanent magnet rotor, as illustrated below. These motors rotate when a rotating magnetic field is generated and when the rotor magnet is synchronized with the rotating magnetic field.

Specifically, a rotating field is generated by applying alternating current to the solenoid coils of two stators, which are sandwiched between yokes. These yokes have the same number of teeth as the poles of the rotor magnet. The stators are positioned so that their electric phase angles are 90 degrees apart.

Code names

http://www.fdk.com FDK CORPORATION

Rotor magnets

Rotors are the most important component of stepper motors, and FDK uses its original magnets in rotors.

The following types of FDK magnets are used in rotors to match each of the diverse stepper motor applications.

		B29	B51	N51
Rotor ma	gnets	Ferrite plastic magnet	Ferrite	Rare earth
		Pole-oriented anisotropic	anisotropic	
Residual induction	Br(mT)		•	650~690
Coercive force	bHc(KA/m)	•	•	348~395
Coercive force	iHc(KA/m)	•	•	616~672
Max. energy product	(BH)max.(KJ/m ³)	=		6.5~7.1
Density	ρ(g/cm ³)	3.7	4.7~5.0	5.7~5.9

Types and specifications

		No. of s	teps (ste	ep angle)		Applica	able roto	r grade	Weight	Motor dimensions			
	20	24	48	96	100				(g)		(mm)		
Туре	(18°)	(15°)	(7.5°)	(3.75°)	(3.6°)	B29	B51	N51	,	Out diameter	Height	Shaft diameter	Pin terminal
SM6									1.14	6	7.4	1	
SMS6									1	6	4.9	1	
SM8									3	8	8.8	1	
SMS8									1.8	8	6.6	1	
SM10									4	10	9.7	1.5	
SM15									12	15	10	1.5	
SME20									28	20	14.2	1.5	
SMP20									28	20	18.2	1.5	
SME25									35	25	15	2	
SMF25									20	25	8.5	2	
SMJ35									80	35	14.7	2	
SMB40									110	42	14.4	3	
SMJ40									150	42	21.8	3	
SMW42									100	42	18.3	3	

Note: * "External dimensions" refer to the three measurements shown in the lefthand drawing.

* White circles indicate models under development.

http://www.fdk.com

Shapes and dimensions

These drawings are full-scale. Please see page 8 for shaft length.

Standard flanges

1. Flange shapes

The standard flange shapes of FDK stepper motors are divided into round aperture types and screw types. These standard shapes are intended to

shorten the delivery period and reduce the initial costs. Special-shape flanges are available on a customized-design basis.

Unit:mm

Type name	Flange type	Fixing screw	d	S	Р	L	D	R
SM15	1	M2	2.2	-	20 ^{± 0.1}	24.5	15	2.25
SME20	1	M2	2.2	-	25 ^{± 0.15}	29.5	20	2
SMP20	1	M2	2.2	-	25 ^{± 0.15}	29.5	20	2
SME25	1	M2	3.2	-	25 ^{± 0.15}	38	20	3
SMF25	2	M3	3.2	-	32 ^{± 0.15}	38	20	3
	1	M3	3.2	-	42 ± 0.2	50	35	4
SMJ35	2	M3	-	М3	42 ± 0.2	50	35	4
SMB40								
SMJ40	1	M3	3.5	-	49.5 ^{± 0.2}	57.7	42	2
SMW42	2	M3	-	М3	49.5 ^{± 0.2}	57.7	42	2

http://www.fdk.com

2. Flange angle

Shaft length

The shaft length is measured from the outer flange surface, and is determined through consultation between the customer and our engineers.

Lead wire length

The lead wire length is measured from the outer circumference of the stepper motor to the near-end of the connector (or to the end of the core wire of the lead wire when there is no connector). The normal tolerance is ±10 mm.

Lead wires

FDK also provides standard lead wires with regard to wire color, thickness, stepper motor rotational directions, and other aspects. Examples are shown below.

1. Standard colors and rotational directions (in two-phase excitation)

2. Standard lead wires

: standard : semi-standard

	UL standard wires											
			Style r	number			Wire diameter					
Type	UL	UL	UL	UL	UL	UL	AWG	AWG				
	1007	1061	1685	3265	1430	1571	28	26				
							equivalent	equivalent				
SME20												
SMP20												
SME25												
SMF25												
SMJ35												
SMB40												
SMJ40												
SMW42												

3. UL electric wire standards

	Rate	d	Insulation		
Style number	Temperature	Voltage	Materials	Min. thickness (mm)	Remarks
UL1571	80	30V	PVC, cross-linked PVC	0.05 ~ 2.54	
UL1061	80	300V	Semi-hard PVC	0.229	CSA AWM
UL1685	105	30V	Cross-linked PVC	0.05 ~ 2.54	
UL1007	80	300V	Thermo-resistant PVC	0.381	CSA TR · 64(90)
UL1430	105	300V	Cross-linked PVC	0.4	CSA REW
UL3265	125	150V	Cross-linked PE	0.254	CSA AWM

■When ordering stepper motors

How to place orders

When ordering our stepper motors, please provide the following information so we can recommend the most suitable models.

1) Mode	I	SM								Rotor material		Specify If any: [
2) Voltaç	ge		DC []	V	3) Number of step	ps]steps / rev	
4) Excita	ation mo	ode	2-ph	ase •	1-ph	ase • 1/2	2 step			5) Drive mode Unipolar • Bipolar				
6) Windir	ng resista	ance	[] Ω/μ	ohase (at	25°C)				
7) Curre	nt		[] m/	\/phase	MAX. (at		pps)		
8) Holdir	ng torqu	ie	[] mN	l√m M	IIN. (2-phase • 1-pha	se)			
9) Dynai	mic torq	que	PULL— (OUT · IN) [[]	mN∙r	n MIN. (at		pps)			
				PULL— (OUT · IN) [] mN·m MIN. (at					pps)					
				PUI	LL—	(OUT • I	N)		[]	mN⋅n	n MIN. (at		pps)
10) Drive	e circuit	:	Cons	stant	volta	ge/Chop	per (P	lease	attach ac	ditional information	materi	al on chopper currer	nt, electroni	c chips, etc
11) Exter	nal dimen	nsions											Round hole	ф
								-	()			Tapped hole	М
Pir	nion gea	ar)	-	(<u> </u>	•	()		
Needed Not need											M			
Modules	[]					膩				· · · · · · · · · · · · · · · · · · ·	-	
No. teeth	[]			()	4						
ditional informa	ation on gea	r specifica	tion			()	-	_	_			\$	
				P.	1		4							
				Pin location	2		5						Lead wi	re length: L
Accuracy	JGM	1A 6		tion	3		6							mr
* Please	provide	e spec	ific val	ues i	n [. If these	e value	s are	not given	, we will apply our st	andard	I values. Note that, f	or design r	easons, it
may be	ecome r	necess	ary to	char	ige y	our spec	ified v	alues.						
12) Coni	nector		Neede	d/Not r	eeded	/Not needed	d for samp	oles Mo	del [
13) Lead	d wire		Spec	cify	If an	/: [
14) Sele	ct from	① thre	ough @	1) to i	ndica	ate the m	nost im	portar	nt factor ir	n deciding specificati	ons.			
1	Resist	ance (priority	ove	r torc	ue and	current) ②	Torque	e (priority over resista	ance a	nd current)		
3	Currer	nt (prio	rity ove	er tor	que	and resi	stance)	4	Other	actors [

- * Information items 1)~5), or 6)~9), provide us with the minimum data needed to know your requirements. Please be sure to fill in these items.
- * In case you have not selected a specific stepper motor model, indicate the acceptable ranges of the motor's external dimensions. (For example, φ 42 max.)
- * To speed up the delivery of samples, we would prefer to apply our standard specifications to the samples insofar as possible, and omit the gears and connectors from them.
- * We cannot produce an approved specification paper, unless we reach an agreement with our customers on major specifications.

■Drive

FDK's stepper motors also offer selections in excitation modes, drive modes, and circuit formats. Below are examples of popular options.

1. Drive modes

Mode	Stepper motor	Basic circuit	Remarks
Unipolar drive	Lead wires: 6	Motor A B B B B B B B B B B B B B B B B B B	Widely used because of simple drive circuit design.
Bipolar drive	Lead wires: 4 Bidirectional current	A B B B B B B B B B B B B B B B B B B B	 Motor windings are used efficiently. Large torque is obtained relative to motor size. Increasingly used due to availability of monolithic IC drive circuits.
Chopper drive		Converter Pulse control circuit Reference voltage Current detection resistance	Chopper control enables application of a high voltage to the coil. Aquick current start is realized. Alow power loss is ensured. The switching period of current is determined by the following excitation modes: Self excitation The ON-OFF frequency is dependent on the time constant of the coil. Separate excitation Also called "PWM mode", this separate excitation mode can vary the ON time within the switching period of a high-frequency reference oscillator. Example of voltage/current waveforms Voltage

http://www.fdk.co.jp

2. Excitation modes

Mode	Explanation	Excitation sequence (H: on, L: off)
Single-phase excitation	Only one phase excited at a time. Low power consumption.	А
Two-phase excitation	 Two phases excited at a time. Large torque output, although consuming 2 times more power than single phase. Small damping oscillation, and wide-range responses. Most popularly used excitation mode. 	А
Half-step excitation	 Alternating single- and two-phase excitation modes. Consumes 1.5 times more power than single phase. Step angle equal to half of single- and two-phase step angles, thus called "half-step drive". Two times wider response frequency range. 	A
W half-step excitation	 Also called "microstep" drive, this excitation features finer step angles through the control of current. Its step angle is half of the half- step excitation, and quarter of the two-phase excitation. This excitation mode is used to obtain finer step motions or smoother rotations. 	A

■When using stepper motors

- 1. The characteristics of stepper motors are affected by their drive circuits. Please disign the circuit carefully.
- 2. Temperature is also an influential factor. Be sure to operate the stepper motors within the permissible temperature range.
- 3. When test-driving stepper motors, check their service life, vibration, noise, etc.

■Stepper motor terminology

Term	Meaning
Holding torque	The maximum torque generated to counter an external torque, which is applied to the shaft when the motor is in a stationary excited state.
Detent torque	Same as holding torque, except the motor is left in a stationary non-excited state.
θ – T (stiffness) characteristics	Relation between the displacement angle and torque when an external torque is applied to the shaft of the motor in a stationary excited state. T (torque) Holding torque θ (angle)
Dynamic characteristics (torque vs. frequency)	Relation between the drive frequency and torque, as shown by lines (A) and (B) in the graph below. Torque (mN·m) (mN·m) Frequency (pps)
Pull-in characteristics	© D pps: pulses per second
Pull-in range	Pull-in (starting) characteristics:
Pull-in torque	Relation between the input frequency and the maximum (pull-in) torque capable of
	starting the motor at this input frequency level.
Pull-out characteristics	B Pull-out (slewing) characteristics:
Pull-out range	Relation between the input frequency and the maximum torque obtainable by
Pull-out torque	synchronizing the motor rotation with this input frequency, which has been gradually increased after the start of the motor in the pull-in range. The area shaded by solid lines indicates the "pull-in range." Stepper motors can be operated without problem as long as the operation characteristics are in this range. The area marked by dots indicates the "pull-out range." If the operation characteristic is in the area, the motor speed must be properly adjusted.
Maximum starting rate	The highest frequency at which the motor can be started and halted in synch with the input signals under a no-load condition (indicated by point © in the above graph).
Maximum slewing rate	The highest frequency at which the motor can be rotated in synch under a no-load condition, when the starting frequency is gradually increased (indicated by point ① in the above graph).
Step position error	The maximum positive or negative error caused when the motor has rotated one step from a holding position to the next position, and is expressed in angular measure or the ratio of the error angle to the step angle. Step position error = [Measured step angle] - [Theoretical step angle] (Note: Max. value)

Position error	The motor is stepped N times (N = 360°/ step angle) from any initial position, and the angle from the initial position is measured. This routine is repeated for all the different initial positions. If the measured angle to the N-step position is θ_N and the error is $\Delta\theta_N$, then we have: $\Delta\theta_N = \theta_N - (\text{step angle}) \times N$ The position error is equal to the differential of the maximum and minimum $\Delta\theta_N$, and is normally expressed with a ± sign. That is: $ \text{Position error} = \pm \frac{1}{2} \Delta\theta (\text{max}) - \Delta\theta (\text{min}) $
Hysteresis position error	The values obtained from the above position errors, when the measurement is taken in both clockwise and counterclockwise stepping directions.
Moment of inertia	The inertia of matter rotating around an axis is expressed as: $J = \int \rho r^2 dv \ (\rho : density, r: distance from axis, dv: cubic factor)$ For example, the inertia of the righthand cylinder rotating around its own central axis obtained by: $J = \frac{\pi}{32} \rho \ \ell \ (D_1^4 - D_2^4)$ $J : inertia \ (g \cdot cm^2)$ Although the motor has its own inertia, its pull-in characteristics are changed when the load is given a large inertia. The larger the load inertia, the smaller the pull-in area, as shown in the graph below. © Pull-in characteristics when there is no load inertia. © Pull-in characteristics when linked to a large load inertia.
Single step response/ Indicial response	While the stepper motor performs its stepping operation whenever the excitation condition is switched, it comes to a complete halt only after the attenuation of vibration. Pulse Angle or tr: Rise time ts: Settling time
Stepping rate/ revolving speed (rps, rpm)	The revolving speed of the stepper motor is usually expressed in pps (pulses per second), or sometimes in the number of steps per second. The relationship between the drive frequency and the rotational speed is as follows: 1 Rotational speed (rps: revolutions per second) $= \text{frequency (pps)} \div \left(\frac{360^{\circ}}{\text{single-step angle}} \right)$ 2 Rotational speed (rpm: revolutions per minute) = rps × 60

■Appendix

1. Inertia conversion table

В	kg-cm²	kg·cm·s²	g∙cm²	g·cm·s²	lb∙in²	lb·in·s²	oz·in²	oz∙in∙s²	lb∙ft²	lb·ft·s²
kg-cm²	1	1.01972 ×10 ⁻³	10³	1.01972	0.341716	8.85073 ×10 ⁻⁴	5.46745	1.41612 ×10 ⁻²	2.37303 ×10 ⁻³	7.37561 ×10 ⁻⁵
kg-cm-s²	980.665	1	980.665 10³	10³	335.109	0.867960	5.36174 ×10³	13.8874	2.32714	7.23300 ×10 ⁻²
g·cm²	10⁻³	1.01972 ×10 ⁻⁶	1	1.01972 ×10 ⁻³	3.41716 ×10 ⁻⁴	8.85073 ×10 ⁻⁷	5.46745 ×10 ⁻³	1.41612 ×10 ⁻⁵	2.37303 ×10 ⁻⁶	7.37561 ×10 ⁻⁸
g·cm·s²	0.980665	10⁻³	980.665	1	0.335109	8.67960 ×10 ⁻⁴	5.36174	1.38874 ×10 ⁻²	2.32714 ×10 ⁻³	7.23300 ×10 ⁻⁵
lb∙in²	2.92641	2.98411 ×10 ⁻³	2.92641 ×10 ³	2.98411	1	2.59009 ×10 ⁻³	16	4.14414 ×10 ⁻²	6.94444 ×10 ⁻³	2.15840 ×10 ⁻⁴
lb·in·s²	1.12985 ×10³	1.15213	1.12985 ×10 ⁶	1.15213 ×10³	386.088	1	6.17740 ×10 ³	16	2.68117	8.33333 ×10 ⁻²
oz·in²	0.182901	1.86507 ×10 ⁻⁴	182.901	0.186507	0.0625	1.61880 ×10 ⁻⁴	1	2.59009 ×10 ⁻³	4.34028 ×10 ⁻⁴	1.34900 ×10 ⁻⁵
oz·in·s²	70.6157	72.0079 ×10 ⁻³	70.6157 ×10³	72.0079	24.1305	6.25 ×10 ⁻²	386.088	1	0.107573	5.20833 ×10 ⁻³
lb⋅ft²	421.403	0.429711	421.403 ×10³	429.711	144	0.372972	2304	5.96756	1	3.10810 ×10 ⁻²
lb·ft⋅s²	1.35582 ×10⁴	13.8255	1.35582 ×10 ⁷	1.38255 ×10⁴	4.63305 ×10 ³	12	7.41289 ×10⁴	192	32.1740	1

To convert an A unit into a B unit, multiply the A-unit value with the corresponding number listed in the above table. Example: $5g \cdot cm^2 = 5 \times 5.46745 \times 10^3 oz \cdot in^2$

2. Torque conversion table

В	N⋅m	dyn⋅cm	kg⋅m	kg⋅cm	g⋅cm	oz∙in	lb∙in	lb∙ft
N⋅m	1	10 ⁷	0.101972	10.1972	1.01972 ×10⁴	141.612	8.85074	0.737562
dyn⋅cm	×10 ⁻⁷	1	1.01972 ×10 ⁻⁸	1.01972 ×10 ⁻⁶	1.01972 ×10³	1.41612 ×10⁵	8.85074 ×10 ⁻⁷	7.37562 ×10 ⁻⁸
kg⋅m	9.80665	9.80665 ×10 ⁷	1	10²	10⁵	1.38874 ×10 ³	86.7962	7.23301
kg⋅cm	9.80665 ×10 ⁻²	9.80665 ×10 ⁵	10 ⁻²	1	10³	13.8874	0.867962	7.23301 ×10 ⁻²
g⋅cm	9.80665 ×10 ^{-₅}	9.80665 ×10 ²	10⁻⁵	10⁻³	1	1.38874 ×10 ⁻²	8.67962 ×10 ⁻⁴	7.23301 ×10⁵
oz∙in	7.06155 ×10 ⁻³	7.06155 ×10⁴	72.0077 ×10⁻⁵	72.0077 ×10 ⁻³	72.0077	1	6.25 ×10 ⁻²	5.20833 ×10 ⁻³
lb∙in	0.112985	1.12985 ×10 ⁶	1.15212 ×10 ⁻²	1.15212	1.15212 ×10 ³	16	1	8.33333 ×10 ⁻²
lb-ft	1.35582	1.35582 ×10 ⁷	0.138255	1.38255 ×10	1.38255 ×10⁴	192	12	1

To convert an A unit into a Bunit, multiply the A-unit value with the corresponding number listed in the above table. Example: $100g \cdot cm = 100 \times 9.80665 \times 10^{-5} N \cdot m$

=100×9.80665×10⁻²mN·m