On the parity of k-th powers modulo p

Jennifer Paulhus

Kansas State University paulhus@math.ksu.edu www.math.ksu.edu/~paulhus

This is joint work with Todd Cochrane and Chris Pinner of Kansas State University and Jean Bourgain of the Institute for

Advanced Study.

Notation

p will denote an odd prime

$$\mathbb{O}=\{1,3,5,\ldots,p-2\}\subset \mathbb{Z}/p\mathbb{Z}$$
 the odd residues $\mathbb{E}=\{2,4,6,\ldots,p-1\}\subset \mathbb{Z}/p\mathbb{Z}$ the even residues $e_p(*)=e^{2\pi i*/p}$

We consider

$$N_k = N_k(A) = \#\{x \in \mathbb{E} \mid Ax^k \in \mathbb{O}\}\$$

where k and A are any integers with $p \nmid A$.

In previous work, we showed $N_k > 0$ for p sufficiently large and (k, p-1) = 1, resolving a conjecture of Goresky and Klapper.

A Generalization

Lehmer posed the problem of determining $N_{-1}(1)$, the number of even residues with odd multiplicative inverse (mod p). The expectation is that $N_{-1}(1) \sim p/4$, which was later proven by Zhang.

For example when p = 13, $N_{-1}(1) = 3$.

Residue	Inverse	Residue	Inverse
2	7	8	5
4	10	10	4
6	11	12	12

In the general setting we no longer always have $N_k \sim p/4$.

A general estimate for N_k

$$\Phi(k) = \max_{\substack{a \in \mathbb{Z}/p\mathbb{Z} \\ a \neq 0}} \left| \sum_{x \neq 0} e_p(ax^k) \right|, \quad \Phi'(k) = \max_{\substack{a \in \mathbb{Z}/p\mathbb{Z} \\ a \neq 0}} \left| \sum_{x = 1}^{(p-1)/2} e_p(ax^k) \right|$$

Theorem

For any integer k

$$\left|N_k - \frac{\rho}{4}\right| < \frac{1}{\pi}\Phi'(k)\min\{\log\left(\frac{356\rho}{\Phi'(k)}\right), \log(5\rho)\}$$

When k is even, $\Phi'(k) = \frac{1}{2}\Phi(k)$ and so $N_k \sim p/4$ when $\Phi(k) = o(p)$.

Ideas of Proof

Let $S = \{x_n\}$ be a sequence defined by $x_n \equiv A2^{k-1}n^k \mod p$ for $1 \le n \le \frac{p-1}{2}$ and $I = \{-1, -2, \dots, -\frac{p-1}{2}\}$.

$$x_n \in I$$
 precisely when $A(2n)^k \in \mathbb{O}$ so $N_k = \sum_{n=1}^{\frac{p-1}{2}} \chi_I(x_n)$.

Using the Fourier expansion of χ_I and bounds on exponential sums we obtain the second estimate in the theorem: $|N_k - p/4| < \frac{1}{\pi}\Phi'(k)\log(5p)$.

A better bound is obtained by using a smooth approximation to the characteristic function which leads to an Erdös-Turán type inequality.

Ideas of Proof, continued

Theorem

For any sequence
$$S = (x_1, \dots, x_N) \in \mathbb{Z}/p\mathbb{Z}$$
, interval $I = \{a+1, a+2, \dots, a+M\} \subset \mathbb{Z}/p\mathbb{Z}$, and positive $H < p$
$$\left|\sum_{n=1}^N \chi_I(x_n) - \frac{MN}{p}\right| \le \frac{N}{H+1} - \frac{N}{p} + \frac{2}{\pi} \left(\log H + \gamma + \frac{\pi}{2}\right) \Phi_S$$

where γ is Euler's constant and

$$\Phi_{\mathcal{S}} = \max_{p \nmid y} \left| \sum_{n=1}^{N} e_{p}(yx_{n}) \right|.$$

The left hand side corresponds to measuring the discrepancy of the sequence of points $x_n/p \mod 1$.

To obtain the constants here we use a bound of Vaaler on the discrepancy of a sequence. The bound can be improved since our interval is of length $\frac{1}{2}$.

Restating

$$\Phi(k) = \max_{\substack{a \in \mathbb{Z}/p\mathbb{Z} \\ a \neq 0}} \left| \sum_{x \neq 0} e_p(ax^k) \right|, \quad \Phi'(k) = \max_{\substack{a \in \mathbb{Z}/p\mathbb{Z} \\ a \neq 0}} \left| \sum_{x=1}^{(p-1)/2} e_p(ax^k) \right|$$

Theorem

For any integer k

$$\left|N_k - \frac{\rho}{4}\right| < \frac{1}{\pi}\Phi'(k)\min\{\log\left(\frac{356\rho}{\Phi'(k)}\right),\log(5\rho)\}$$

k odd

Two parameters which help dictate the bias in the parity of kth powers are d=(k,p-1) and $d_1=(k-1,p-1)$. Similarly we have the values $s=\frac{p-1}{d}$ and $t=\frac{p-1}{d_1}$.

Theorem

(a) If k is odd and t is even then

$$\left|N_k - \frac{\rho}{4}\right| \le 0.35 \rho^{89/92} \log^{3/2}(5\rho).$$

(b) If k is odd and t is odd then

$$\left|N_k-\frac{p}{4}\right|\ll d_1+\frac{p}{\log p}.$$

As long as $d_1 = o(p)$ then $N_k \sim p/4$.

Small $s = \frac{p-1}{d}$

An Example

If k = p - 1, $x^k = 1$ identically so $N_k = 0$ or $\frac{p-1}{2}$ depending on whether A is even or odd.

If $k = \frac{p-1}{2}$, $x^k = \pm 1$. A and -A have opposite parity and roughly half even residues are quadratic residues so $N_k \sim \frac{p}{4}$.

If $k = \frac{p-1}{3}$ then $Ax^k \equiv AC_1$, AC_2 , or AC_3 mod p where the C_i are the cube roots of unity. Then $N_k = 0$, $\frac{p-1}{6}$, $\frac{p-1}{3}$, or $\frac{p-1}{2}$ depending on how many AC_i are odd.

Small $s = \frac{p-1}{d}$, continued

These examples suggest the following theorem.

Theorem

Let k, A be any integers with $p \nmid A$ and $(\mathbb{Z}/p\mathbb{Z}^*)^k = \{C_1, \ldots, C_s\}.$

- (a) If k is even then $N_k = \frac{p-1}{2s} \sum_{i=1}^s \chi_{\mathbb{O}}(AC_i)$. In particular if k is even and s is even then $N_k = \frac{p-1}{4}$.
- (b) If k is odd then $\left|N_k \frac{p-1}{4}\right| < \frac{s-1}{2\pi}\sqrt{p}\log(5p)$.

Ideas of Proof

Again, let $\{C_1, \ldots, C_s\}$ be the kth powers in $\mathbb{Z}/p\mathbb{Z}^*$ and define c_i such that $c_i^k \equiv C_i \mod p$.

$$N_k = \sum_{x} \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(Ax^k) = Main + Error$$

where, after some manipulations,

$$\begin{aligned} \textit{Main} &= \frac{p-1}{2s} \sum_{i=1}^{s} \chi_{\mathbb{O}}(\textit{AC}_{i}) \\ \textit{Error} &= \frac{1}{s} \sum_{\substack{\psi^{s} = \psi_{0} \\ \psi \neq \psi_{0}}} \sum_{i=1}^{s} \chi_{\mathbb{O}}(\textit{AC}_{i}) \psi(\overline{c_{i}}) \sum_{x \neq 0} \psi(x) \chi_{\mathbb{E}}(x) \end{aligned}$$

Ideas of Proof, continued

If $\psi(-1)=1$ then $\sum\limits_{x=1}^{\frac{\rho-1}{2}}\psi(x)=\frac{1}{2}\sum\limits_{x}\psi(x)=0$. This will happen to all ψ satisfying $\psi^s=\psi_0$ if k is even. Hence $\mathit{Error}=0$.

If $\psi(-1) = -1$ we need to use a bound of Polya, Landau, Schur, and Vinogradov for incomplete character sums.

$$\left|\sum_{x} \psi(x) \chi_{\mathbb{E}}(x)\right| = \left|\sum_{x=1}^{(p-1)/2} \psi(x)\right| \leq \frac{1}{\pi} \sqrt{p} \log(5p).$$

When k is odd exactly half the ψ satisfying $\psi^s = \psi_0$ will also satisfy $\psi(-1) = -1$.

$$|\mathit{Error}| < \frac{s-1}{2\pi} \sqrt{p} \log(5p).$$

Restating

Theorem

Let k, A be any integers with $p \nmid A$ and $(\mathbb{Z}/p\mathbb{Z}^*)^k = \{C_1, \ldots, C_s\}.$

- (a) If k is even then $N_k = \frac{p-1}{2s} \sum_{i=1}^s \chi_{\mathbb{O}}(AC_i)$. In particular if k is even and s is even then $N_k = \frac{p-1}{4}$.
- (b) If k is odd then $\left|N_k \frac{p-1}{4}\right| < \frac{s-1}{2\pi}\sqrt{p}\log(5p)$.

Small
$$t = \frac{p-1}{d_1}$$

An Example

If $k = \frac{p+1}{2}$ then t = 2 and $Ax^k \equiv Ax$ or -Ax mod p depending on whether x is a quadratic residue or not. So we expect about half the even residues to become odd.

If
$$k = \frac{p+2}{3}$$
 then $t = 3$ and $Ax^k \equiv AC_1x$, AC_2x or AC_3x mod p

To compute N_k in this example we need to study the distribution of points on the lattices $y \equiv AC_i x \mod p$.

When none of the lattices have a small nonzero point then even and odd values are equidistributed and $N_k \sim \frac{p}{4}$.

Bias

If one of the lattices has a small point, there may be bias.

An Example

If $k=\frac{p+2}{3}$ then t=3 and $Ax^k\equiv AC_1x$, AC_2x or AC_3x mod p. Our results give that, depending on the size of the smallest point in the lattices, N_k is asymptotically between $\frac{p}{4}-\frac{p}{12}$ and $\frac{p}{4}+\frac{p}{12}$.

Another Example

When t and |A| are both small odd numbers we get bias. In particular if $|A| < (p/t)^{1/2(t-1)}$ and $t \ll \log p$ then

$$N_k \sim \left(1 - \frac{1}{At}\right) \frac{\rho}{4}$$

Open Problems

How large does s need to be for $\Phi(k) = o(p)$?

- Work of Bourgain says there is a constant c such that $\Phi(k) = o(p)$ if $s > p^{\frac{c}{\log \log p}}$.
- Montgomery, Vaughan, and Wooley conjecture $\Phi(k) \ll \sqrt{dp \log p}$ which would give $\Phi(k) = o(p)$ if $\frac{\log p}{s} \to 0$ as $p \to \infty$.
- We know from Shparlinski that $\Phi(k) = o(p)$ requires $\frac{s}{\log p} \to \infty$ as $p \to \infty$.

When is $N_k = 0$?

- If $p = \frac{3^s-1}{2}$ and $k = \frac{p-1}{s}$ then the k-th powers are just $<3>=\{1,3,3^2,\ldots,3^{s-1}\}$ which are all odd.
- Here $s \approx \log p$, are there examples with larger s?

The End