# VE401, Probabilistic Methods in Eng. Recitation Class - Week 8

Zhanpeng Zhou

UMJI-SJTU Joint Institute

April 20, 2021

1/53

#### Table of contents

- Test for Statistics
- 2 Exercises

- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

## Sign Test for Median

Sign test. Let  $X_1, \ldots, X_n$  be a random sample of size n from an arbitrary continuous distribution and let

$$Q_+ = \#\{X_k: X_k - M_0 > 0\}, \qquad Q_- = \#\{X_k: X_k - M_0 < 0\}.$$

We reject at a significance level  $\alpha$ 

- $H_0: M \le M_0$  if  $P[Y \le q_-|M = M_0] < \alpha$ ,
- $H_0: M \ge M_0$  if  $P[Y \le q_+|M = M_0] < \alpha$ ,
- $H_0: M = M_0 \text{ if } P[Y \leq \min(q_-, q_+) | M = M_0] < \alpha/2$ ,

where  $q_-, q_+$  are values of  $Q_-, Q_+$ , and Y follows a binomial distribution with parameters n' and 1/2, i.e.,

$$P[Y \le k | M = M_0] = \sum_{y=0}^k \binom{n'}{y} \frac{1}{2^{n'}}, \qquad n' = q_+ + q_-.$$

Wilcoxon signed rank Test. Let  $X_1, \ldots, X_n$  be a random sample of size n from a *symmetric* distribution. Order the n absolute differences  $|X_i - M_0|$  according to the magnitude, so that  $X_{R_i} - M_0$  is the  $R_i$ th smallest difference by modulus. If ties in the rank occur, the mean of the ranks is assigned to all equal values. Let

$$W_+ = \sum_{R_i > 0} R_i, \qquad |W_-| = \sum_{R_i < 0} |R_i|.$$

We reject at significance level  $\alpha$ 

- $H_0: M \leq M_0$  if  $|W_-|$  is smaller than the critical value for  $\alpha$ ,
- $H_0: M \ge M_0$  if  $W_+$  is smaller than the critical value for  $\alpha$ ,
- $H_0: M = M_0$  if  $W = \min(W_+, |W_-|)$  is smaller than the critical value for  $\alpha/2$ .

As is in the sign test, we use n' after discarding data with  $X_i = M_0$ .

Normal approximation for distribution of  $|W_-|$ . Let  $I_i$  be the Bernoulli random variable with parameter 1/2 and  $I_i = 1$  if  $X_i < M_0$ . Then we have

$$|W_{-}| = \sum_{i=1}^{n} |R_{i}|I_{i} \quad \Rightarrow \quad \mathsf{E}[|W_{-}|] = \mathsf{E}\left[\sum_{i=1}^{n} |R_{i}|I_{i}\right]$$

$$= \sum_{i=1}^{n} \frac{|R_{i}|}{2} = \frac{n(n+1)}{4},$$

$$\mathsf{Var}|W_{-}| = \sum_{i=1}^{n} |R_{i}|^{2} \mathsf{Var} \ I_{i}$$

$$= \sum_{i=1}^{n} \frac{|R_{i}|^{2}}{4} = \frac{n(n+1)(2n+1)}{24}.$$

Normal approximation for distribution of  $|W_{-}|$  (ties). Suppose we have a group of t ties, with ranks R and I given by

$${R_{j+1},\ldots,R_{j+t}}, \qquad {I_{j+1},\ldots,I_{j+t}}.$$

Suppose for now  $R_j > 0$  and denote

$$\overline{R} = \frac{\sum_{k=1}^{t} R_{j+k}}{t} = \frac{2R_{j+1} + t - 1}{2} \implies R_{j+1} = \overline{R} - \frac{t - 1}{2}.$$

Since the ranks of ties are calculated as the average of the original ranks, the mean does no change. In terms of variance,

$$\sum_{k=1}^{t} |R_{j+k}|^2 \text{Var } I_{j+k} - \sum_{k=1}^{t} |\overline{R}|^2 \text{Var } I_{j+k}$$

$$= \frac{1}{4} \left( \sum_{k=1}^{R_{j+1}+t-1} k^2 - \sum_{k=1}^{R_{j+1}-1} k^2 - t\overline{R}^2 \right) =: \frac{1}{4} A.$$

4□▶4圖▶4분▶4분> 분 90

Normal approximation for distribution of  $|W_-|$  (ties). Then substituting  $R_{i+1}$  with  $\overline{R}$ , we have

$$A = \frac{\left(a + \frac{t}{2}\right)\left(b + \frac{t}{2}\right)\left(c + t\right) - \left(a - \frac{t}{2}\right)\left(b - \frac{t}{2}\right)\left(c - t\right)}{6} - t\overline{R}^{2}$$

$$= \frac{t^{3} - t}{12}.$$

where

$$a = \overline{R} - \frac{1}{2}, \qquad b = \overline{R} + \frac{1}{2}, \qquad c = 2\overline{R}.$$

Therefore, for each group of t ties, we need to subtract  $(t^3-t)/48$  from the variance. With large sample size, the distribution of  $|W_-|$  can be approximated as normal with mean and variance given above.

◆ロト ◆問 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 Q ○

Critical values for two-tailed test. For one-tailed test with significance level  $\alpha$ , use  $2\alpha$  for lookup.

| alpha values |       |       |      |       |      |      |      |  |  |  |  |
|--------------|-------|-------|------|-------|------|------|------|--|--|--|--|
| n            | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10 | 0.20 |  |  |  |  |
| 5            |       |       |      |       |      | 0    | 2    |  |  |  |  |
| 6            |       |       |      |       | 0    | 2    | 3    |  |  |  |  |
| 7            |       |       |      | 0     | 2    | 3    | 5    |  |  |  |  |
| 8            |       |       | 0    | 2     | 3    | 5    | 8    |  |  |  |  |
| 9            |       | 0     | 1    | 3     | 5    | 8    | 10   |  |  |  |  |
| 10           |       | 1     | 3    | 5     | 8    | 10   | 14   |  |  |  |  |
| 11           | 0     | 3     | 5    | 8     | 10   | 13   | 17   |  |  |  |  |
| 12           | 1     | 5     | 7    | 10    | 13   | 17   | 21   |  |  |  |  |
| 13           | 2     | 7     | 9    | 13    | 17   | 21   | 26   |  |  |  |  |
| 14           | 4     | 9     | 12   | 17    | 21   | 25   | 31   |  |  |  |  |
| 15           | 6     | 12    | 15   | 20    | 25   | 30   | 36   |  |  |  |  |
| 16           | 8     | 15    | 19   | 25    | 29   | 35   | 42   |  |  |  |  |
| 17           | 11    | 19    | 23   | 29    | 34   | 41   | 48   |  |  |  |  |
| 18           | 14    | 23    | 27   | 34    | 40   | 47   | 55   |  |  |  |  |
| 19           | 18    | 27    | 32   | 39    | 46   | 53   | 62   |  |  |  |  |
| 20           | 21    | 32    | 37   | 45    | 52   | 60   | 69   |  |  |  |  |
| 21           | 25    | 37    | 42   | 51    | 58   | 67   | 77   |  |  |  |  |
| 22           | 30    | 42    | 48   | 57    | 65   | 75   | 86   |  |  |  |  |
| 23           | 35    | 48    | 54   | 64    | 73   | 83   | 94   |  |  |  |  |
| 24           | 40    | 54    | 61   | 72    | 81   | 91   | 104  |  |  |  |  |
| 25           | 45    | 60    | 68   | 79    | 89   | 100  | 113  |  |  |  |  |
| 26           | 51    | 67    | 75   | 87    | 98   | 110  | 124  |  |  |  |  |
| 27           | 57    | 74    | 83   | 96    | 107  | 119  | 134  |  |  |  |  |

| alpha values |                                        |         |            |     |     |     |     |  |  |  |  |  |  |  |
|--------------|----------------------------------------|---------|------------|-----|-----|-----|-----|--|--|--|--|--|--|--|
| n            | n 0.001 0.005 0.01 0.025 0.05 0.10 0.2 |         |            |     |     |     |     |  |  |  |  |  |  |  |
| 28           | 64 82                                  |         | 91         | 105 | 116 | 130 | 145 |  |  |  |  |  |  |  |
| 29           | 71                                     | 90      | 100        | 114 | 126 | 140 | 157 |  |  |  |  |  |  |  |
| 30           | 78                                     | 98      | 100        | 124 | 137 | 151 | 169 |  |  |  |  |  |  |  |
|              |                                        |         |            |     |     |     |     |  |  |  |  |  |  |  |
| 31           | 86                                     | 107     | 118        | 134 | 147 | 163 | 181 |  |  |  |  |  |  |  |
| 32           | 94                                     | 116     | 128<br>138 | 144 | 159 | 175 | 194 |  |  |  |  |  |  |  |
| 33           | 102                                    | 102 126 |            | 155 | 170 | 187 | 207 |  |  |  |  |  |  |  |
| 34           | 111                                    | 136     | 148        | 167 | 182 | 200 | 221 |  |  |  |  |  |  |  |
| 35           | 120                                    | 146     | 159        | 178 | 195 | 213 | 235 |  |  |  |  |  |  |  |
| 36           | 130                                    | 130 157 |            | 191 | 208 | 227 | 250 |  |  |  |  |  |  |  |
| 37           | 140                                    | 168     | 182        | 203 | 221 | 241 | 265 |  |  |  |  |  |  |  |
| 38           | 150                                    | 180     | 194        | 216 | 235 | 256 | 281 |  |  |  |  |  |  |  |
| 39           | 161                                    | 192     | 207        | 230 | 249 | 271 | 297 |  |  |  |  |  |  |  |
| 40           | 172                                    | 204     | 220        | 244 | 264 | 286 | 313 |  |  |  |  |  |  |  |
| 41           | 183                                    | 183 217 |            | 258 | 279 | 302 | 330 |  |  |  |  |  |  |  |
| 42           | 195 230                                |         | 247        | 273 | 294 | 319 | 348 |  |  |  |  |  |  |  |
| 43           | 207 244                                |         | 261        | 288 | 310 | 336 | 365 |  |  |  |  |  |  |  |
| 44           | 220 258                                |         | 276        | 303 | 327 | 353 | 384 |  |  |  |  |  |  |  |
| 45           | 233                                    | 272     | 291        | 319 | 343 | 371 | 402 |  |  |  |  |  |  |  |
| 46           | 246                                    | 246 287 |            | 336 | 361 | 389 | 422 |  |  |  |  |  |  |  |
| 47           | 260                                    | 302     | 322        | 353 | 378 | 407 | 441 |  |  |  |  |  |  |  |
| 48           | 274                                    | 318     | 339        | 370 | 396 | 426 | 462 |  |  |  |  |  |  |  |
| 49           | 289                                    | 334     | 355        | 388 | 415 | 446 | 482 |  |  |  |  |  |  |  |
| 50           | 304                                    | 350     | 373        | 406 | 434 | 466 | 503 |  |  |  |  |  |  |  |

- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

## **Estimating Proportions**

Proportion. Let  $X_1, ..., X_n$  be a random sample of X with sample space  $\{0,1\}$ , an unbiased estimator for proportion is given by

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Statistic and distribution (by central limit theorem).

$$Z = rac{\widehat{p} - p}{\sqrt{p(1-p)/n}} \sim \mathsf{Normal}(0,1).$$

•  $100(1-\alpha)\%$  two-sided confidence interval for p.

$$\widehat{p} \pm z_{\alpha/2} \sqrt{\widehat{p}(1-\widehat{p})/n}$$
.

#### **Estimating Proportions**

Proportion. Let  $X_1, \ldots, X_n$  be a random sample of X with sample space  $\{0,1\}$ , an unbiased estimator for proportion is given by

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

• Choose sample size.  $\hat{p}$  differs from p by at most d with  $100(1-\alpha)\%$  confidence.

$$d = z_{\alpha/2} \sqrt{\widehat{p}(1-\widehat{p})/n} \quad \Rightarrow \quad n = \frac{z_{\alpha/2}^2 \widehat{p}(1-\widehat{p})}{d^2}.$$

When no estimate for p is available, we use

$$n=\frac{z_{\alpha/2}^2}{4d^2}.$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 ○ ○

# Hypothesis Testing on Proportion

Large-sample test for proportion. Let  $X_1, \ldots, X_n$  be a random sample of size n from a Bernoulli distribution with parameter p and let  $\widehat{p} = \overline{X}$  denote the sample mean. The test statistic is

$$Z=\frac{\widehat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}.$$

- $H_0: p = p_0 \text{ if } |Z| > z_{\alpha/2}$ ,
- $H_0: p \le p_0 \text{ if } Z > z_{\alpha}$ ,
- $H_0: p \ge p_0 \text{ if } Z < -z_{\alpha}.$

# Comparing Two Proportions

Difference of proportions. Suppose we have random samples of sizes  $n_1$ ,  $n_2$  of  $X^{(1)}$  and  $X^{(2)}$ , respectively.

Statistic and distribution. For large sample sizes,

$$Z = rac{\widehat{p}_1 - \widehat{p}_2 - (p_1 - p_2)}{\sqrt{rac{p_1(1-p_1)}{n_1} + rac{p_2(1-p_2)}{n_2}}} \sim \mathsf{Normal}(0,1).$$

•  $100(1-\alpha)\%$  two-sided confidence interval for  $p_1-p_2$ .

$$\widehat{p}_1 - \widehat{p}_2 \pm z_{\alpha/2} \sqrt{rac{\widehat{p}_1(1-\widehat{p}_2)}{n_1} + rac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}.$$

# Hypothesis Testing on Difference of Proportions

Test for comparing two proportions. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}, i = 1, 2$  be random samples of sizes  $n_i$  from two Bernoulli distributions with parameters  $p_i$  and let  $\hat{p}_i = \overline{X}_i$  denote the corresponding sample means. The test statistic is given by

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2 - (p_1 - p_2)_0}{\sqrt{\frac{\widehat{p}_1(1 - \widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1 - \widehat{p}_2)}{n_2}}}.$$

- $H_0: p_1-p_2=(p_1-p_2)_0 \text{ if } |Z|>z_{\alpha/2},$
- $H_0: p_1-p_2 \leq (p_1-p_2)_0 \text{ if } Z>z_\alpha$ ,
- $H_0: p_1-p_2 \geq (p_1-p_2)_0$  if  $Z<-z_\alpha$ .



# Hypothesis Testing on Equality of Proportions

Pooled test for equality of proportions. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}, i=1,2$  be random samples of sizes  $n_i$  from two Bernoulli distributions with parameters  $p_i$  and let  $\widehat{p}_i = \overline{X}_i$  denote the corresponding sample means. The test statistic is given by

$$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \qquad \widehat{p} = \frac{n_1\widehat{p}_1 + n_2\widehat{p}_2}{n_1 + n_2}.$$

- $H_0: p_1 = p_2 \text{ if } |Z| > z_{\alpha/2}$ ,
- $H_0: p_1 \le p_2 \text{ if } Z > z_{\alpha}$ ,
- $H_0: p_1 \ge p_2 \text{ if } Z < -z_{\alpha}.$



- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

#### Basic Distribution

The F-distribution. Let  $\chi^2_{\gamma_1}$  and  $\chi^2_{\gamma_2}$  be independent chi-squared random variables with  $\gamma_1$  and  $\gamma_2$  degrees of freedom, respectively. Then the random variable

$$F_{\gamma_1,\gamma_2} = \frac{\chi_{\gamma_1}^2/\gamma_1}{\chi_{\gamma_2}/\gamma_2}$$

follows a **F-distribution with**  $\gamma_1$  **and**  $\gamma_2$  **degrees of freedom**, with density function

$$f_{\gamma_1,\gamma_2} = \gamma_1^{\gamma_1/2} \gamma_2^{\gamma_2/2} \frac{\Gamma\left(\frac{\gamma_1+\gamma_2}{2}\right)}{\Gamma\left(\frac{\gamma_1}{2}\right) \Gamma\left(\frac{\gamma_2}{2}\right)} \frac{x^{\gamma_1/2-1}}{(\gamma_1 x + \gamma_2)^{(\gamma_1+\gamma_2)/2}}$$

for  $x \ge 0$  and  $f_{\gamma_1,\gamma_2}(x) = 0$  for x < 0. Furthermore,

$$P[F_{\gamma_1,\gamma_2} < x] = P\left[\frac{1}{F_{\gamma_1,\gamma_2}} > \frac{1}{x}\right] = 1 - P\left[F_{\gamma_2,\gamma_1} < \frac{1}{x}\right].$$

# The F-test for Comparing Variances

F-test. Let  $S_1^2$  and  $S_2^2$  be sample variances based on independent random samples of sizes  $n_1$  and  $n_2$  drawn from normal populations with means  $\mu_1$  and  $\mu_2$  and variances  $\sigma_1^2$  and  $\sigma_2^2$ , respectively. The test statistic is given by

$$F_{n_1-1,n_2-1}=\frac{S_1^2}{S_2^2}.$$

We reject at significance level  $\alpha$ 

- $H_0: \sigma_1 \leq \sigma_2 \text{ if } S_1^2/S_2^2 > f_{\alpha,n_1-1,n_2-1}$ ,
- $H_0: \sigma_1 \geq \sigma_2$  if  $S_2^2/S_1^2 > f_{\alpha,n_2-1,n_1-1}$ ,
- $H_0: \sigma_1 = \sigma_2$  if  $S_1^2/S_2^2 > f_{\alpha/2, n_1-1, n_2-1}$  or  $S_2^2/S_1^2 > f_{\alpha/2, n_2-1, n_1-1}$ .

OC curve. The abscissa is defined by

$$\lambda = \frac{\sigma_1}{\sigma_2}.$$



- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

## Comparing Two Means

Basic distribution. Suppose sample means  $\overline{X}^{(1)}$  and  $\overline{X}^{(2)}$  are cal-culated from samples of sizes  $n_1$  and  $n_2$  respectively from normal populations with means  $\mu_1, \mu_2$  and variances  $\sigma_1, \sigma_2$ . Then since

$$\overline{X}^{(1)} \sim \mathsf{N}(\mu_1, \sigma_1^2/\mathit{n}_1), \qquad \overline{X}^{(2)} \sim \mathsf{N}(\mu_2, \sigma_2^2/\mathit{n}_2),$$

the statistic

$$Z = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

follows a standard normal distribution.

#### Variances Known

Variances known. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$  with i=1,2 be samples of sizes  $n_1$  and  $n_2$  from normal distributions with unknown means  $\mu_1, \mu_2$  and **known** variances  $\sigma_1^2, \sigma_2^2$ . Then the test statistic is given by

$$Z = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$  if  $|Z| > z_{\alpha/2}$ ,
- $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$  if  $Z > z_\alpha$ ,
- $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$  if  $Z < -z_\alpha$ .

#### Variances Known

OC curve. When testing equality of means  $H_0$ :  $\mu_1 = \mu_2$ , we have  $(\mu_1 - \mu_2)_0 = 0$ . We can use the OC curves for normal distributions with

$$d = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

with  $n = n_1 = n_2$ . When  $n_1 \neq n_2$ , we use the equivalent sample size

$$n = \frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2/n_1 + \sigma_2^2/n_2}.$$

## Variances Equal but Unknown — Student's T-Test

Variances equal but unknown. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$  with i=1,2 be samples of sizes  $n_1$  and  $n_2$  from normal distributions with unknown means  $\mu_1, \mu_2$  and **equal** but **unknown** variances  $\sigma^2 = \sigma_1^2 = \sigma_2^2$ . Then the test statistic is given by

$$T_{n_1+n_2-2} = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2(1/n_1 + 1/n_2)}},$$

with pooled estimator for variance

$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}.$$

We reject at significance level  $\alpha$ 

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$  if  $|T_{n_1+n_2-2}| > t_{\alpha/2,n_1+n_2-2}$ ,
- $H_0: \mu_1 \mu_2 \leq (\mu_1 \mu_2)_0$  if  $T_{n_1+n_2-2} > t_{\alpha,n_1+n_2-2}$ ,
- $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$  if  $T_{n_1 + n_2 2} < -t_{\alpha, n_1 + n_2 2}$ .

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

#### Variances Equal but Unknown — Student's *T*-Test

OC curve. When testing equality of means  $H_0: \mu_1 = \mu_2$ , we have  $(\mu_1 - \mu_2)_0 = 0$ . We can use the OC curves for the T-test in case of equal sample sizes  $n = n_1 = n_2$ 

$$d=\frac{|\mu_1-\mu_2|}{2\sigma}.$$

When reading the charts, we must use the modified sample size  $n^* = 2n - 1$ .

## Variances Unequal and Unknown — Welch's T-test

Welch-Satterthwaite Relation. Let  $X^{(1)},\ldots,X^{(k)}$  be k independent normally distributed random variables with variances  $\sigma_1^2,\ldots,\sigma_k^2$ . Let  $s_1^2,\ldots,s_k^2$  be sample variances based on samples of sizes  $n_1,\ldots,n_k$  from the k populations, respectively. Let  $\lambda_1,\ldots,\lambda_k>0$  be positive real numbers and define

$$\gamma := \frac{(\lambda_1 s_1^2 + \dots + \lambda_k s_k^2)^2}{\sum_{i=1}^k \frac{(\lambda_i s_i^2)^2}{n_i - 1}}.$$

Then

$$\chi_{\gamma}^2 := \gamma \cdot \frac{\lambda_1 s_1^2 + \dots + \lambda_k s_k^2}{\lambda_1 \sigma_1^2 + \dots + \lambda_k \sigma_k^2}$$

follows approximately a chi-squared distribution with  $\gamma$  degrees of freedom, where we round  $\gamma$  down to the nearest integer.

## Variances Unequal and Unknown — Welch's T-test

Welch's T-test. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$  with i=1,2 be samples of sizes  $n_1$  and  $n_2$  from normal distributions with unknown means  $\mu_1, \mu_2$  and **unequal** and **unknown** variances  $\sigma_1^2, \sigma_2^2$ . The test statistic is given by

$$T_{\gamma} = \frac{\overline{X}^{(1)} - \overline{X}^{(2)} - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}, \qquad \gamma = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

- $H_0: \mu_1 \mu_2 = (\mu_1 \mu_2)_0$  if  $T_{\gamma} > t_{\alpha/2,\gamma}$ ,
- $H_0: \mu_1 \mu_2 \le (\mu_1 \mu_2)_0$  if  $T_{\gamma} > t_{\alpha,\gamma}$ ,
- $H_0: \mu_1 \mu_2 \ge (\mu_1 \mu_2)_0$  if  $T_{\gamma} < -t_{\alpha,\gamma}$ .

- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

#### Wilcoxon Rank-Sum Test

Wilcoxon rank-sum test. Let X and Y be two random populations following some continuous distributions.

Let  $X_1, \ldots, X_m$  and  $Y_1, \ldots, Y_n$ , where  $m \le n$ , be random samples from X and Y and associate the rank  $R_i, i = 1, \ldots, m+n$ , to the  $R_i$ th smallest among the m+n total observations. If ties in the rank occur, the mean of the ranks is assigned to all equal values. The test statistic is given by

$$W_m = \text{sum of the ranks of } X_1, \dots, X_m$$

We reject  $H_0: P[X > Y] = 1/2$  at significance level  $\alpha$  if  $W_m$  falls into the corresponding critical region.

#### Wilcoxon Rank-Sum Test.

Critical values for Wilcoxon rank-sum test. m is the sample size of the smaller sample, while n is the size of the larger sample. W includes the critical values for two-tailed or one-tailed tests. P is the corresponding p-value.

| 1-tail $\alpha = 0.02$<br>2-tail $\alpha = 0.02$ |    |       | $lpha=0.05 \ lpha=0.10$ |       |       | 1-tail<br>2-tail |       | $lpha = 0.025 \ lpha = 0.05$ |    |    |    | $lpha=0.05 \ lpha=0.10$ |       |      |    |       |       |    |    |    |   |       |    |    |    |       |
|--------------------------------------------------|----|-------|-------------------------|-------|-------|------------------|-------|------------------------------|----|----|----|-------------------------|-------|------|----|-------|-------|----|----|----|---|-------|----|----|----|-------|
| m                                                | n  | W     | d                       | P     | W     | d                | P     | m                            | n  | V  | V  | d                       | P     | V    | V  | d     | P     |    |    |    |   |       |    |    |    |       |
| 3 3                                              | 3  | 3     | 3                       | 3     | 3     | 3                | 3     | 3                            | 3  | 3  |    |                         |       | 6 15 | 1  | .0500 | 5     | 10 | 23 | 57 | 9 | .0200 | 26 | 54 | 12 | .0496 |
| 3                                                | 4  |       |                         |       | 6 18  | 1                | .0286 | 5                            | 11 | 24 | 61 | 10                      | .0190 | 27   | 58 | 13    | .0449 |    |    |    |   |       |    |    |    |       |
| 3                                                | 5  | 6 21  | 1                       | .0179 | 7 20  | 2                | .0357 | 5                            | 12 | 26 | 64 | 12                      | .0242 | 28   | 62 | 14    | .0409 |    |    |    |   |       |    |    |    |       |
| 3                                                | 6  | 7 23  | 2                       | .0238 | 8 22  | 3                | .0476 | 5                            | 13 | 27 | 68 | 13                      | .0230 | 30   | 65 | 16    | .0473 |    |    |    |   |       |    |    |    |       |
| 3                                                | 7  | 7 26  | 2                       | .0167 | 8 25  | 3                | .0333 | 5                            | 14 | 28 | 72 | 14                      | .0218 | 31   | 69 | 17    | .0435 |    |    |    |   |       |    |    |    |       |
| 3                                                | 8  | 8 28  | 3                       | .0242 | 9 27  | 4                | .0424 | 5                            | 15 | 29 | 76 | 15                      | .0209 | 33   | 72 | 19    | .0491 |    |    |    |   |       |    |    |    |       |
| 3                                                | 9  | 8 31  | 3                       | .0182 | 10 29 | 5                | .0500 | 5                            | 16 | 30 | 80 | 16                      | .0201 | 34   | 76 | 20    | .0455 |    |    |    |   |       |    |    |    |       |
| 3                                                | 10 | 9 33  | 4                       | .0245 | 10 32 | 5                | .0385 | 5                            | 17 | 32 | 83 | 18                      | .0238 | 35   | 80 | 21    | .0425 |    |    |    |   |       |    |    |    |       |
| 3                                                | 11 | 9 36  | 4                       | .0192 | 11 34 | 6                | .0440 | 5                            | 18 | 33 | 87 | 19                      | .0229 | 37   | 83 | 23    | .0472 |    |    |    |   |       |    |    |    |       |
| 3                                                | 12 | 10 38 | 5                       | .0242 | 11 37 | 6                | .0352 | 5                            | 19 | 34 | 91 | 20                      | .0220 | 38   | 87 | 24    | .0442 |    |    |    |   |       |    |    |    |       |

A larger table can be found in rc files.

#### Wilcoxon Rank-Sum Test

Wilcoxon rank-sum test. For large values of  $m(m \ge 20)$ ,  $W_m$  is approximated normally distributed with

$$\mathsf{E}[W_m] = \frac{m(m+n+1)}{2}, \qquad \mathsf{Var}[W_m] = \frac{mn(m+n+1)}{12}.$$

In case of ties, the variance may be corrected by taking

$$\mathsf{Var}[W_m] = \frac{mn(m+n+1)}{12 - \sum_{\mathsf{groups}} \frac{t^3 + t}{12}},$$

where the sum is taken over all groups of t ties.

- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

## Variances Equal but Unknown — Paired *T*-Test

Paired T-test. Let  $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$  with i=1,2 be samples of size  $n=n_1=n_2$  from normal distributions with unknown means  $\mu_1, \mu_2$  and **equal** but **unknown** variances  $\sigma^2=\sigma_1^2=\sigma_2^2$ . Then  $D_i=X_i-Y_i$  follows normal distributions. Then the test statistic is given by

$$T_{n-1} = \frac{\overline{D} - \mu_0}{\sqrt{S_D^2/n}}.$$

- $H_0: \mu_D = \mu_0 \text{ if } |T_{n-1}| > t_{\alpha/2, n-1}$ ,
- $H_0: \mu_D \leq \mu_0 \text{ if } T_{n-1} > t_{\alpha,n-1}$ ,
- $H_0: \mu_D \ge \mu_0$  if  $T_{n-1} < -t_{\alpha,n-1}$ .

#### Paired vs. Pooled T-Tests

With two populations X and Y with equal variances  $\sigma^2$ , we want to test  $H_0: \mu_X = \mu_Y$  using samples of equal size n. Then the statistics are

$$T_{
m pooled} = rac{\overline{X} - \overline{Y}}{\sqrt{2S_p^2/n}}, \qquad ext{critical value} = t_{lpha/2,2n-2}, \ T_{
m paired} = rac{\overline{X} - \overline{Y}}{\sqrt{S_D^2/n}}, \qquad ext{critical value} = t_{lpha/2,n-1}.$$

Preferring a more powerful test, we consider the following.

- $t_{\alpha/2,2n-2} < t_{\alpha/2,n-1}$ , smaller critical values  $\Rightarrow$  easier to reject.
- $2S_p^2/n$  estimates  $2\sigma^2/n$ , while  $S_D^2/n$  estimates  $\sigma_D^2/n=\sigma_{\overline{D}}^2$ , where

$$\sigma_{\overline{D}}^2 = \frac{2\sigma^2}{n}(1 - \rho_{\overline{XY}}) = \frac{2\sigma^2}{n}(1 - \rho_{XY}).$$

When  $\rho_{XY} > 0$ , paired T-test would be more powerful.

## Non-parametric Paired Test

Comparison of medians. Let X and Y be two independent random variables that follow the same distribution but differ only in their location, i.e.,  $X':=X-\delta$  and Y are independent and identically distributed. Then D=X-Y and  $2\delta-D$  follow the same distribution. Therefore, D is symmetric about  $\delta$ , .i.e.,

$$f_D(\delta+d)=f_D(\delta-d).$$

Then we can perform the Wilcoxon signed-rank test on D.

- Test for Statistics
  - Non-Parametric Single Sample Tests for Median
  - Inferences on Proportions
  - Comparing Two Variances
  - Comparison of Two Means
  - Non-parametric Comparisons
  - Paired Tests
  - Correlation Coefficient
- 2 Exercises

# **Estimating Correlation**

Estimator for correlation. The unbiased estimators for variance and covariance are given by

$$\widehat{\mathsf{Var}[X]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

$$\widehat{\mathsf{Var}[Y]} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2,$$

$$\widehat{\mathsf{Cov}[X, Y]} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}),$$

giving

$$R := \widehat{\rho} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2} \sqrt{\sum (Y_i - \overline{Y})^2}}.$$

# Hypothesis Tests for the Correlation Coefficient

Distribution. Suppose (X,Y) follows a bivariate normal distribution with relation coefficient  $\rho \in (-1,1)$ . For large sample size n, the Fisher transformation of R

$$\frac{1}{2}\ln\left(\frac{1+R}{1-R}\right) = \operatorname{Artanh}(R)$$

is approximately normal with

$$\mu = \frac{1}{2} \ln \left( \frac{1+
ho}{1-
ho} \right) = \operatorname{Artanh}(
ho), \qquad \sigma^2 = \frac{1}{n-3}.$$

# Hypothesis Tests for the Correlation Coefficient

Confidence interval. A  $100(1-\alpha)\%$  confidence interval for  $\rho$  is given by

$$\left[\frac{1+R-(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{2z_{\alpha/2}/\sqrt{n-3}}}, \frac{1+R-(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}{1+R+(1-R)e^{-2z_{\alpha/2}/\sqrt{n-3}}}\right]$$

or

$$\tanh\left(\operatorname{Artanh}(R)\pm rac{z_{lpha/2}}{\sqrt{n-3}}
ight).$$

# Hypothesis Tests for the Correlation Coefficient

Test for correlation coefficient. Suppose  $(X_1, Y_1), \ldots, (X_n, Y_n)$  is a sample of size n from a bivariate normal population (X, Y) with correlation coefficient  $\rho \in (-1, 1)$ . The test statistic is given by

$$\begin{split} Z &= \frac{\sqrt{n-3}}{2} \left( \ln \left( \frac{1+R}{1-R} \right) - \ln \left( \frac{1+\rho_0}{1-\rho_0} \right) \right) \\ &= \sqrt{n-3} (\operatorname{Artanh}(R) - \operatorname{Artanh}(\rho_0)). \end{split}$$

We reject at significance level  $\alpha$ 

- $H_0: \rho = \rho_0 \text{ if } |Z| > z_{\alpha/2}$ ,
- $H_0: \rho \leq \rho_0$  if  $Z > z_\alpha$ ,
- $H_0: \rho \ge \rho_0 \text{ if } Z < -z_{\alpha}.$

- Test for Statistics
- 2 Exercises
  - Exercise 1.
  - Exercise 2.
  - Exercise 3.

### Exercise 1.

Discuss whether the following interpretations of the *P*-value are true:

- The P -value represents (an upper bound for) the probability that  $H_0$  is true.
- When  $H_0$  is rejected, the P -value represents (an upper bound for) the probability that  $H_0$  is true even though it was rejected.
- When  $H_0$  is rejected, the P -value represents (an upper bound for) the probability that this rejection occurred even though  $H_0$  was true (Type I error).

### Exercise 1.

Discuss whether the following interpretations of the *P*-value are true:

- The P -value represents (an upper bound for) the probability that  $H_0$  is true.
- When  $H_0$  is rejected, the P -value represents (an upper bound for) the probability that  $H_0$  is true even though it was rejected.
- When  $H_0$  is rejected, the P -value represents (an upper bound for) the probability that this rejection occurred even though  $H_0$  was true (Type I error).

Answers: F, F, T

- Test for Statistics
- 2 Exercises
  - Exercise 1.
  - Exercise 2.
  - Exercise 3.

# Exercise 2. I

Suppose we have two normally distributed populations  $X^{(1)}$  and  $X^{(2)}$  with mean  $\mu_1, \mu_2$  and variances  $\sigma_1^2, \sigma_2^2$ , respectively. A sample of size n=20 is gathered for each of these populations. We get the sample means and variances as below:

$$\bar{x}_1 = 2.604, \quad \bar{x}_2 = 2.343.$$

$$s_1^2 = 1.263, \quad s_2^2 = 0.534.$$

We want to test the hypotheses

$$H_0: \mu_1 = \mu_2, \quad H_1: |\mu_1 - \mu_2| \ge 0.5$$

with significance level  $\alpha = 0.05$  in the following cases.

- We know the variances are  $\sigma_1^2 = \sigma_2^2 = 1$ . Perform the test. What is the required sample size for the power of the test to be at least 80%?
- ① The variances are unknown but equal  $\sigma^2 = \sigma_1^2 = \sigma_2^2$ . Perform the test. What is the required sample size for the power of the test to be at least 80%?

# Exercise 2. II

The variances are unknown and not necessarily equal. Perform the hypothesis test.







O.C. curves for different values of n for the two-sided t-test for a level of significance  $\alpha = 0.05$ .

### Exercise 2. Answers I

#### Answers:

The test statistic is given by

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} = \frac{2.604 - 2.343}{\sqrt{1/20 + 1/20}} = 0.8254$$

The critical value is given by  $z_{\alpha/2}=1.96>z.$  Therefore, we fail to reject  $H_0$ . We calculate

$$d = \frac{|\mu_1 - \mu_2|}{\sqrt{2\sigma^2}} = 0.35$$

and read from OC curve for normal tests. We would require a sample size of at least 75.

# Exercise 2. Answers II

We calculate the pooled variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{s_1^2 + s_2^2}{2} = 0.940.$$

Then the test statistic is given by

$$t_{38} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(1/n_1 + 1/n_2\right)}} = 0.851$$

The critical value is given by  $t_{\alpha/2,38}=2.024>t_{38}$ . Therefore, we fail to reject  $H_0$ . We calculate

$$d = \frac{|\mu_1 - \mu_2|}{2s_p} = \frac{0.5}{2\sqrt{0.940}} = 0.258$$

where we estimate the variance using pooled variance, and read from OC curve for T -tests. We would require a modified sample size of at least  $n^* = 2n - 1 = 75$ , giving n = 38.

### Exercise 2. Answers III

Solution. We calculate

$$\gamma = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}} = 32.64 \approx 32$$

and thus the test statistic

$$t_{32} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = 0.871$$

with critical value  $t_{\alpha/2,32}=2.04>t_{32}.$  Therefore, we fail to reject  $H_0$ 

- Test for Statistics
- 2 Exercises
  - Exercise 1.
  - Exercise 2.
  - Exercise 3.

### Exercise 3. I

A manufacturer of precision measuring instruments claims that the standard deviation in the use of an instrument is not more than 0.00002 inch. A potential customer requires the instruments to have a standard deviation of not more than 0.00004 inch and will buy them unless there is evidence that the standard deviation is larger than advertised by the manufacturer.

- lacktriangle Set up appropriate null and alternative hypotheses  $H_0$  and  $H_1$  for a Neyman-Pearson test.
- **a** Assuming a normal distribution for the instrument readings. If eight readings are taken, find the critical region for the test, using  $\alpha = 0.01$ .
- 9 What is the power of the test if eight sample readings are taken and  $H_1$  is true?
- What is the smallest sample size that can be used to detect a true standard deviation of 0.00004 inch or more with a probability of at least 0.95?

### Exercise 3. II

② Eight readings are taken and a sample standard deviation of 0.00005 inch is obtained. What is your conclusion? What is the probability that your decision (to accept either  $H_0$  or  $H_1$ ) is wrong?



(1) O.C. curves for different values of n for the one-sided (upper tail) chi-square test for a level of significance  $\alpha=0.01$ .



(n) O.C. curves for different values of n for the one-sided (lower tail) chi-square test for a level of significance  $\alpha=0.01$ .

### Exercise 3. Answers I

We test the hypotheses

$$H_0: \sigma \leq 0.00002, \quad H_1: \sigma > 0.00004.$$

 $\bullet$  If  $H_0$  is true, the statistic

$$X_{n-1}^2 = (n-1)\frac{S^2}{\sigma_0^2}$$

follows a chi-squared distribution with n-1=7 degrees of freedom. For  $\alpha=0.01$ , the critical value is  $\chi^2_{0.01,7}=18.5$ , so the critical region is the interval  $(18.5,\infty)$ .



# Exercise 3. Answers II

We use the OC curve for the right-tailed chi-squared test (why?). The abscissa parameetr is

$$\lambda = \frac{\sigma}{\sigma_0} = \frac{0.00004}{0.00002} = 2$$

and the sample size is n=8. We read off  $\beta \approx 0.34$ , so the power is approximately  $1-\beta=0.66$ .

- ② Again, we use the OC chart with  $\lambda=2$  and  $\beta=1-0.95=0.05$ . A sample size of n=20 is sufficient to achieve the power stated.
- The value of the statistic is

$$x_7^2 = 7 \cdot \frac{25 \cdot 10^{-8}}{4 \cdot 10^{-8}} = 43.75$$

Since this lies in the critical region, we reject  $H_0$ . There is evidence that the manufacturer's claim is not justified and the customer will not buy instruments. There is less than 1% (P-value) chance that the

### Exercise 3. Answers III

decision is not justified and the manufacturer's stated precision is accurate.