Interface Aster aux lois de comportements mécaniques dans mfront T. Helfer 2013

RÉSUMÉ

SOMMAIRE

0.1	PROTOTYPE DES FONCTIONS GÉNÉRÉES PAR L'INTERFACE ASTER			
0.2	Conventions			
	0.2.1	Choix du type de calcul	4	
	0.2.2	Valeur de retour	4	
0.3	GESTION DES BORNES			
0.4	Мотѕ	CLÉS SPÉCIFIQUES		
	0.4.1	Vérification de la matrice tangente calculée par perturbation	5	
	0.4.2	Stockage de la matrice de raideur à la suite des variables internes	5	
	0.4.3	Affichage des erreurs d'intégration	5	
	0.4.4	Génération automatique d'un fichier mtest en cas d'échec	6	
	0.4.5	Choix d'une formulation grandes transformations	6	

Cette annexe décrit l'interface Aster.

0.1 Prototype des fonctions générées par l'interface aster

```
SUBROUTINE aster ( STRESS, STATEV, DDSDDE STRAN, DSTRAN, DTIME, TEMP, DTEMP, PREDEF, DPRED, NTENS, NSTATV, PROPS, NPROPS, DROT, PNEWDT, NUMMOD,
```

FIGURE 1 : Prototype de la fonction aster.

STRESS	REAL*8(NTENS)	tenseur des contraintes. En entrée, ce tableau donne le
		tenseur des contraintes à t_0 . En sortie, ce tableau doit
		contenir le tenseur des contraintes à $t_0 + \Delta t$
STATEV	REAL*8(*)	variables internes. En entrée, ce tableau contient les va-
		riables internes à t_0 . En sortie, il doit contenir les variables
		internes à $t_0 + \Delta t$
DDSDDE	REAL*8(NTENS,NTENS)	matrice jacobienne du modèle (matrice de Hooke tan-
		gente) à $t_0 + \Delta t$.
STRAN	REAL*8(NTENS)	tenseur des déformations totales à t_0
DSTRAN	REAL*8(NTENS)	tenseur des incréments de déformation totale par rapport
		a l'état de reference à t_0
DTIME	REAL*8	DTIME = Δt est l'incrément de temps
TEMP	REAL*8	température à t_0
DTEMP	REAL*8	incrément de température à $t_0 + \Delta t$
PREDEF	REAL*8(*)	vecteur des paramètres externes de la loi de comporte-
		ment, valeurs à t_0
DPRED	REAL*8(*)	incréments des paramètres externes à $t_0 + \Delta t$
NTENS	INTEGER	nombre de composantes du tenseur des contraintes
NSTATV	INTEGER	nombre de variables internes
PROPS	REAL*8(NPROPS)	vecteur des propriétés du matériau.
NPROPS	INTEGER	nombre de propriétés du matériau
DROT	REAL*8(3,3)	matrice d'incréments de rotation. Cette matrice décrit la
		rotation sur le pas de temps de la base dans laquelle sont
		exprimés les tenseurs de contraintes et de déformations.
PNEWDT	REAL*8	rapport entre le nouveau pas de temps suggéré et le pas
		de temps donné en entrée
NUMMOD	INTEGER	hypothèse de modélisation : 3 pour le 3D, 4 pour l'axisym-
		métrique, 5 pour les contraintes planes et 6 pour les défor-
		mation planes.

TABLEAU 1: Arguments de la fonction aster

Le type entier ${\tt INTEGER}$ dépend de la plateforme : ${\tt Aster}$ utilise des directives de compilation spéficique pour que ce type soit de la taille d'un pointeur.

En C++, nous noterons AsterReal le type numérique utilisé par Aster et AsterInt le type entier.

0.2 Conventions

0.2.1 Choix du type de calcul

Le premier élément du tableau DDSOE permet de préciser le type de calcul à effectuer et le type de matrice de raideur attendue.

Une valeur strictement négative correspond à un calcul d'une matrice de prédiction. Dans ce cas, il n'y a pas d'intégration de la loi de comportement. Les valeurs supportées sont :

- -1, qui correspond au calcul de la matrice d'élasticité initiale (non endommagée);
- -2, qui correspond au calcul de la matrice sécante (matrice d'élasticité endommagée);
- -3, qui correspond au calcul de la matrice tangente.

Une valeur positive ou nulle du premier élément du tableau DDSOE conduit à l'intégration de la loi de comportement sur le pas de temps. Si cette intégration s'effectue avec succès, une matrice de raideur peut être calculée. Le type de matrice calculée dépend de la valeur du premier élément du tableau DDSOE :

- 1, correspond au calcul de la matrice d'élasticité initiale (non endommagée);
- 2, correspond au calcul de la matrice sécante (matrice d'élasticité endommagée);
- 3, correspond au calcul de la matrice tangente;
- 4, correspond au calcul de la matrice tangente cohérente;

0.2.2 Valeur de retour

La loi de comportement a rencontré une erreur grave si la valeur de PNEWDT est inférieure à 0. Différents cas peuvent se présenter :

- l'intégration n'a pas convergé;
- le nombre de valeurs transmises pour les variables internes ou les propriétés matériau n'est pas celui attendu ;
- un borne physique a été atteinte;
- etc...

Plus précisément, nous avons les correspondances suivantes :

- -2: exception de type AsterException. Cette exception est lancée par l'interface Aster à la loi de comportement. Elle peut signifier de nombreuses choses: par exemple, elle est lancée quand le nombre de propriétés matériau n'est pas celui attendu,
- 3 : exception de type OutOfBoundsException. Cette exception est lancée quand :
 - une variable est hors des bornes physiques;
 - une variable est hors des bornes de corrélation de la loi et que la politique de dépassement des bornes est égale à 'ARRET (voir paragraphe 0.3).
- -4: exception de type <code>DivergenceException</code>. Cette exception est lancée quand l'algorithme d'intégration de la loi a échoué.
- -5: exception de type Material Exception. Il s'agit d'une exception issue d'une fonction de la librairie TFEL/Material.
- -6: exception de type TFELException. Il s'agit du plus haut niveau dans la hiérarchie des exceptions de TFEL.
- -7: exception de type exception. Il s'agit d'une exception de la librairie standard.
- --8: exception de type inconnu.

Par défaut, un message d'erreur est affiché quand une exception est captée. Ce comportement est modifiable à l'aide du mot clé @AsterErrorReport, décrit au paragraphe 0.4.3.

0.3 GESTION DES BORNES

Aster permet à l'utilisateur de choisir le comportement à adopter en cas de dépassement des bornes de la

corrélation à l'aide du mot-clé VERI_BORNE.

Ce mot clé a trois options :

- SANS ignore les dépassements de borne;
- MESSAGE affiche un message d'avertissement;
- ARRET provoque une erreur lors de l'intégration.

0.4 Mots clés spécifiques

0.4.1 Vérification de la matrice tangente calculée par perturbation

L'interface Aster propose de vérifier la matrice tangente calculée par comparaison à une matrice tangente obtenue par perturbation.

Le mot clé @AsterCompareToNumericalTangentOperator qui doit être suivi d'une valeur booléenne true ou false demande à ce que cette comparaison soit effectuée (ou pas).

La matrice tangente numérique est obtenue par différences finies centrées. Le valeur de la perturbation utilisée pour ce calcul peut être spécifié par le mot clé @AsterStrainPerturbationValue qui est suivi par la valeur à utiliser. Par défaut, cette perturbation est prise égale à 10^{-6} .

La comparaison entre la matrice jacobienne $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}}$ et son approximation numérique $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}}$ est faite terme à

terme et l'on retient comme erreur :

$$\varepsilon = \max_{i,j} \left| \frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}} (i,j) - \frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}} (i,j) \right|$$

Cette erreur est comparée à un critère que l'utilisateur peut définir par le mot clé <code>@AsterTangentOperator-ComparisonCriterium</code>. La valeur par défaut de ce critère est de 10^7 .

Si l'erreur est supérieure au critère, la valeur de l'erreur, un pourcentage relatif de l'erreur¹, la jacobienne calculée par l'utilisateur et son approximation numérique sont affichés.

0.4.2 Stockage de la matrice de raideur à la suite des variables internes

Le mot clé @AsterSaveTangentOperator qui doit être suivi d'une valeur booléenne true ou false demande à ce que la matrice de raideur soit stockée à la suite des variables internes (ou pas).

0.4.3 Affichage des erreurs d'intégration

Par défaut, mfront affiche sur la sortie standard des messages en cas d'erreur d'intégration.

Le mot clé @AsterErrorReport, qui doit être suivi d'une valeur booléenne true ou false, permet de modifier ce comportement.

1. Ce pourcentage relatif de l'erreur est calculé ainsi :

$$\frac{100 \varepsilon}{\frac{1}{2} \max \left(\max_{i,j} \left| \frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}} (i,j) \right|, \max_{i,j} \left| \frac{\partial \Delta \underline{\sigma}}{\partial \Delta \underline{\epsilon}^{to}} (i,j) \right| \right)}$$

0.4.4 Génération automatique d'un fichier mtest en cas d'échec

Le mot clé @AsterGenerateMTestFileOnFailure est suivi d'une valeur booléenne. Si cette valeur est vraie, un fichier mtest sera généré automatiquement en cas d'échec de l'intégration.

0.4.5 Choix d'une formulation grandes transformations

Pour les lois en grandes transformations, le mot clé @AsterFiniteStrainFormulation permet de sélection une des formulations grandes transformations disponibles dans Aster.

Ce mot clé est suivi d'une des valeurs suivantes :

- SIMO_MIEHE (le défaut). Dans ce cas, la loi devra être déclarée avec le mot clé DEFORMATION=SIMO_MIEHE dans les opérateurs mécaniques.
- GROT_GDEP ou TotalLagrangian. Dans ce cas, la loi devra être déclarée avec le mot clé DEFORMATION=GROT_GDE dans les opérateurs mécaniques.