# Project 2 – R Practice Summary Report ALY6000 Prepared By: Muhammad Umer Presented To: Prof. John Wilder Date: 2024/09/28

# **Introduction and Key Findings**

### Overview:

This report presents an analysis of batting statistics from the 1986 Major League Baseball season to determine potential candidates for the Most Valuable Player (MVP) award. The study aims to provide data-driven insights to support the MVP selection process, focusing on key performance metrics and their relationships.

## **Key Findings:**

## 1. Age and Performance Correlation:

Analysis of age-related statistics revealed interesting patterns in player performance:

| •  | Age <sup>‡</sup> | Count <sup>‡</sup> | HR <sup>‡</sup> | н 🗼      | <b>R</b> |
|----|------------------|--------------------|-----------------|----------|----------|
| 1  | 20               | 5                  | 3.400000        | 24.00000 | 11.80000 |
| 2  | 21               | 16                 | 3.687500        | 25.18750 | 15.81250 |
| 3  | 22               | 35                 | 2.514286        | 30.91429 | 15.54286 |
| 4  | 23               | 35                 | 4.057143        | 39.85714 | 21.71429 |
| 5  | 24               | 62                 | 4.580645        | 44.64516 | 23.16129 |
| 6  | 25               | 90                 | 4.700000        | 44.74444 | 21.90000 |
| 7  | 26               | 84                 | 5.833333        | 51.03571 | 25.50000 |
| 8  | 27               | 57                 | 5.105263        | 57.43860 | 30.00000 |
| 9  | 28               | 61                 | 4.131148        | 51.72131 | 27.09836 |
| 10 | 29               | 49                 | 5.693878        | 56.87755 | 28.51020 |
| 11 | 30               | 45                 | 4.244444        | 54.86667 | 25.28889 |
| 12 | 31               | 44                 | 4.340909        | 42.38636 | 22.65909 |
| 43 | 22               | 22                 | C 477047        | C1.01704 | 20.20425 |

Figure 1: Age-related performance statistics for the 1986 MLB season.

The data suggests that players in their mid-20s tend to have higher performance across multiple metrics, including home runs (HR), hits (H), and runs (R).

### 2. Strikeout Leaders:

Identifying players with the highest strikeout rates provides insight into batting discipline:

| •  | Last <sup>‡</sup> | First ‡ | Age <sup>‡</sup> | G <sup>‡</sup> | <b>PA</b> <sup>‡</sup> | AB <sup>‡</sup> | <b>R</b> <sup>‡</sup> | H <sup>‡</sup> | <b>X2B</b> <sup>‡</sup> | <b>X3B</b> <sup>‡</sup> | HR <sup>‡</sup> | RBI <sup>‡</sup> | SB <sup>‡</sup> | CS ‡ | BB <sup>‡</sup> | so ‡ |
|----|-------------------|---------|------------------|----------------|------------------------|-----------------|-----------------------|----------------|-------------------------|-------------------------|-----------------|------------------|-----------------|------|-----------------|------|
| 1  | Incaviglia        | Pete    | 22               | 153            | 606                    | 540             | 82                    | 135            | 21                      | 2                       | 30              | 88               | 3               | 2    | 55              | 185  |
| 2  | Deer              | Rob     | 25               | 134            | 546                    | 466             | 75                    | 108            | 17                      | 3                       | 33              | 86               | 5               | 2    | 72              | 179  |
| 3  | Canseco           | Jose    | 21               | 157            | 682                    | 600             | 85                    | 144            | 29                      | 1                       | 33              | 117              | 15              | 7    | 65              | 175  |
| 4  | Presley           | Jim     | 24               | 155            | 660                    | 616             | 83                    | 163            | 33                      | 4                       | 27              | 107              | 0               | 4    | 32              | 172  |
| 5  | Tartabull         | Danny   | 23               | 137            | 578                    | 511             | 76                    | 138            | 25                      | 6                       | 25              | 96               | 4               | 8    | 61              | 157  |
| 6  | Balboni           | Steve   | 29               | 138            | 562                    | 512             | 54                    | 117            | 25                      | 1                       | 29              | 88               | 0               | 0    | 43              | 146  |
| 7  | Barfield          | Jesse   | 26               | 158            | 671                    | 589             | 107                   | 170            | 35                      | 2                       | 40              | 108              | 8               | 8    | 69              | 146  |
| 8  | Samuel            | Juan    | 25               | 145            | 633                    | 591             | 90                    | 157            | 36                      | 12                      | 16              | 78               | 42              | 14   | 26              | 142  |
| 9  | Murphy            | Dale    | 30               | 160            | 692                    | 614             | 89                    | 163            | 29                      | 7                       | 29              | 83               | 7               | 7    | 75              | 141  |
| 10 | Strawberry        | Darryl  | 24               | 136            | 562                    | 475             | 76                    | 123            | 27                      | 5                       | 27              | 93               | 28              | 12   | 72              | 141  |

Figure 2Top 10 players with the highest strikeout rates in the 1986 MLB season.

This data highlights players who, despite high strikeout rates, may still contribute significantly in other areas such as home runs and RBIs.

### 3. Home Runs vs. RBIs Correlation:

A scatterplot analysis of home runs versus RBIs revealed a strong positive correlation between these two metrics, indicating that power hitters tend to drive in more runs.



Figure 3: Scatterplot of Home Runs vs. RBIs for eligible players in the 1986 MLB season.

# 4. Batting Average Distribution:

The histogram of batting averages for eligible players provides insight into the overall hitting performance across the league:



Figure 4: Distribution of batting averages for eligible players in the 1986 MLB season.

The distribution appears to be roughly normal, with a peak around the .260-.280 range, suggesting this as the typical performance level for MLB players in 1986.

# 5. MVP Candidates:

Based on a composite ranking of Home Runs, RBIs, and On-Base Percentage, the top MVP candidates were identified:

| *  | First <sup>‡</sup> | Last       | RankHR <sup>‡</sup> | RankRBI <sup>‡</sup> | RankOBP <sup>‡</sup> | TotalRank <sup>‡</sup> |
|----|--------------------|------------|---------------------|----------------------|----------------------|------------------------|
| 1  | Don                | Mattingly  | 7                   | 5                    | 8                    | 20                     |
| 2  | Mike               | Schmidt    | 2                   | 2                    | 16                   | 20                     |
| 3  | Jesse              | Barfield   | 1                   | 7                    | 45                   | 53                     |
| 4  | Dwight             | Evans      | 27                  | 17                   | 30                   | 74                     |
| 5  | Kirby              | Puckett    | 7                   | 18                   | 50                   | 75                     |
| 6  | Jim                | Rice       | 52                  | 6                    | 18                   | 76                     |
| 7  | Pete               | O'Brien    | 36                  | 28                   | 17                   | 81                     |
| 8  | George             | Bell       | 7                   | 7                    | 74                   | 88                     |
| 9  | Kevin              | McReynolds | 27                  | 18                   | 45                   | 90                     |
| 10 | Kirk               | Gibson     | 19                  | 34                   | 41                   | 94                     |
| 11 | Gary               | Gaetti     | 4                   | 7                    | 86                   | 97                     |
| 12 | Von                | Hayes      | 61                  | 16                   | 21                   | 98                     |
| 13 | Brian              | Downing    | 52                  | 22                   | 28                   | 102                    |
| 14 | Darryl             | Strawberry | 23                  | 26                   | 57                   | 106                    |
| 15 | Darrell            | Evans      | 14                  | 38                   | 57                   | 109                    |
| 16 | Kent               | Hrbek      | 14                  | 27                   | 71                   | 112                    |
| 17 | Eric               | Davis      | 23                  | 71                   | 22                   | 116                    |
| 18 | Dave               | Winfield   | 32                  | 12                   | 74                   | 118                    |
| 19 | Larry              | Parrish    | 19                  | 23                   | 77                   | 119                    |
| 20 | Eddie              | Murray     | 74                  | 40                   | 6                    | 120                    |

Figure 5: Top 5 MVP candidates based on composite ranking of HR, RBI, and OBP.

### Conclusion and Recommendations:

- 1. **MVP Selection**: Based on the composite ranking, Don Mattingly and Mike Schmidt emerge as the top candidates for the MVP award. Their consistent high performance across multiple offensive categories sets them apart from other players.
- Age Consideration: The data suggests that players in their mid-20s tend to perform at their peak. Teams should consider this when making roster decisions and planning for player development.
- 3. **Balanced Evaluation**: While home runs and RBIs are important metrics, the analysis shows that on-base percentage (OBP) is also crucial. Decision-makers should consider a balanced approach when evaluating player performance.
- 4. **Strikeout Analysis**: High strikeout rates don't necessarily indicate poor overall performance. Players like Pete Incaviglia and Rob Deer, despite high strikeout numbers, contribute significantly in power categories. Teams should evaluate players holistically rather than focusing on a single metric.
- 5. **Further Analysis**: To provide a more comprehensive MVP recommendation, it is suggested that defensive metrics and pitcher performance be incorporated into future analyses. This would give a more complete picture of a player's overall value to their team.

In conclusion, while the data points to Don Mattingly and Mike Schmidt as leading MVP candidates, the final decision should consider additional factors not captured in this analysis, such as team performance and intangible leadership qualities.

|   | Bibliography                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R | luman, A. G. (2018). Elementary statistics: a step by step approach. McGraw-Hill Education.                                                                                               |
|   | V3 School for R Tutorials, <a href="https://www.w3schools.com/R/">https://www.w3schools.com/R/</a>                                                                                        |
|   |                                                                                                                                                                                           |
|   | Vickham, H., et al. (2024). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. <a href="https://doi.org/10.21105/joss.01686">https://doi.org/10.21105/joss.01686</a> |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |
|   |                                                                                                                                                                                           |