Determine if the system is linear, and if so determine which is homogeneous? or inhomogeneous?

$$\begin{cases} x_1' = -2x_1 + x_1x_2 \\ x_2' = -3x_1 - x_2 \end{cases}$$

Solution

The system is nonlinear because of the term $x_1 x_2$

Exercise

Determine if the system is linear, and if so determine which is homogeneous? or inhomogeneous?

$$\begin{cases} x_1' = -x_2 \\ x_2' = \sin x_1 \end{cases}$$

Solution

The system is nonlinear because of the term $\sin x_1$

Exercise

Determine if the system is linear, and if so determine which is homogeneous? or inhomogeneous?

$$\begin{cases} x_1' = x_1 + (\sin t)x_2 \\ x_2' = 2tx_1 - x_2 \end{cases}$$

Solution

The system is linear and homogeneous, because $f_1(t) = f_2(t) = 0$

$$\begin{split} x_1' &= a_{11}(t)x_1 + a_{12}(t)x_2 + f_1(t) \\ x_2' &= a_{21}(t)x_1 + a_{2n}(t)x_2 + f_2(t) \end{split}$$

Exercise

Write the given system of equations in matrix-form then show that the given vector is a solution to the system

$$\begin{cases} x_1' = -3x_1 + x_2 \\ x_2' = -2x_1 \end{cases} \quad v = \left(-e^{-2t} + e^{-t}, -e^{-2t} + 2e^{-t}\right)^T$$

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -3 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$x_1 = -e^{-2t} + e^{-t} \qquad x_2 = -e^{-2t} + 2e^{-t}$$

$$x_1' = -3x_1 + x_2$$

$$2e^{-2t} - e^{-t} = -3\left(-e^{-2t} + e^{-t}\right) + \left(-e^{-2t} + 2e^{-t}\right)$$

$$2e^{-2t} - e^{-t} = 3e^{-2t} - 3e^{-t} - e^{-2t} + 2e^{-t}$$

$$2e^{-2t} - e^{-t} = 2e^{-2t} - e^{-t}$$

$$2e^{-2t} - e^{-t} = 2e^{-2t} - e^{-t}$$

$$x_2' = \left(-e^{-2t} + 2e^{-t}\right)'$$

$$= 2e^{-2t} - 2e^{-t}$$

$$= -2\left(-e^{-2t} + e^{-t}\right)$$

$$= -2x_1$$

Write the given system of equations in matrix-form then show that the given vector is a solution to the system

$$\begin{cases} x_1' = -x_1 + 4x_2 \\ x_2' = 3x_2 \end{cases} \quad v = \left(e^{3t} - e^{-t}, e^{3t}\right)^T$$

Solution

$$x_{1} = e^{3t} - e^{-t}$$

$$x_{2} = e^{3t}$$

$$x'_{1} = 3e^{3t} + e^{-t}$$

$$= 4e^{3t} - e^{3t} + e^{-t}$$

$$= -\left(e^{3t} - e^{-t}\right) + 4e^{3t}$$

$$= -x_{1} + 4x_{2}$$

$$x'_{2} = 3e^{3t} = 3x_{2}$$

Exercise

Verify by substitution that $x_1(t)$ and $x_2(t)$ are solutions of the given homogenous equation. Show also that the solutions $x_1(t)$ and $x_2(t)$ are linearly independent. Find the solution of the given homogeneous equation with the initial condition $x(0) = x_0$

$$x_1(t) = \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix}, \qquad x_2(t) = \begin{pmatrix} -e^{-2t} \\ e^{-2t} \end{pmatrix}$$
$$x' = \begin{pmatrix} -6 & -4 \\ 8 & 6 \end{pmatrix} x \qquad x(0) = \begin{pmatrix} -5 \\ 8 \end{pmatrix}$$

$$x' = \begin{bmatrix} -6 & -4 \\ 8 & 6 \end{bmatrix} x \qquad x(0) = \begin{bmatrix} -3 \\ 8 \end{bmatrix}$$

$$\frac{\text{Ilution}}{x_1'(t)} = \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix}' = \begin{pmatrix} -2e^{2t} \\ 4e^{2t} \end{pmatrix}$$

$$\begin{pmatrix} -6 & -4 \\ 8 & 6 \end{pmatrix} x_1 = \begin{pmatrix} -6 & -4 \\ 8 & 6 \end{pmatrix} \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} -2e^{2t} \\ 4e^{2t} \end{pmatrix} \implies \text{Therefore, } x_1 \text{ is a solution.}$$

$$x'_2(t) = \begin{pmatrix} -e^{-2t} \\ e^{-2t} \end{pmatrix}' = \begin{pmatrix} 2e^{2t} \\ -2e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} -6 & -4 \\ 8 & 6 \end{pmatrix} x_2 = \begin{pmatrix} -6 & -4 \\ 8 & 6 \end{pmatrix} \begin{pmatrix} -e^{2t} \\ e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} -2e^{2t} \\ 2e^{2t} \end{pmatrix} \implies x_2 \text{ is also a solution.}$$

$$x_1(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad x_2(0) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} -e^{-2t} \\ e^{-2t} \end{pmatrix}$$

$$x(0) = C_1 \begin{pmatrix} -1 \\ 2e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 1e^{-2t} \end{pmatrix}$$

$$= \begin{pmatrix} -5 \\ 8 \end{pmatrix} = \begin{pmatrix} -C_1 - C_2 \\ 2C_1 + C_2 \end{pmatrix} \implies \begin{cases} -C_1 - C_2 = -5 \\ 2C_1 + C_2 = 8 \end{cases} \implies \boxed{C_1 = 3} \qquad \boxed{C_2 = 2}$$

$$x(t) = 3 \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix} + 2 \begin{pmatrix} -e^{-2t} \\ e^{-2t} \end{pmatrix}$$

$$= \begin{pmatrix} -3e^{2t} - 2e^{-2t} \\ 6e^{2t} + 2e^{-2t} \end{pmatrix}$$

$$= \begin{pmatrix} -3e^{2t} - 2e^{-2t} \\ 6e^{2t} + 2e^{-2t} \end{pmatrix}$$

Verify by substitution that $x_1(t)$ and $x_2(t)$ are solutions of the given homogenous equation. Show also that the solutions $x_1(t)$ and $x_2(t)$ are linearly independent. Find the solution of the given homogeneous equation with the initial condition $x(0) = x_0$

$$x_{1}(t) = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}, \qquad x_{2}(t) = \begin{pmatrix} e^{2t} (t+2) \\ e^{2t} (t+1) \end{pmatrix}$$
$$x' = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} x \qquad x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Solution

$$x'_{1}(t) = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}' = \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \end{pmatrix}$$

$$\begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} x_{1}(t) = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \end{pmatrix} = x'_{1}$$

$$x'_{2}(t) = \begin{pmatrix} e^{2t}(t+2) \\ e^{2t}(t+1) \end{pmatrix}'$$

$$= \begin{pmatrix} 2e^{2t}(t+2) + e^{2t} \\ 2e^{2t}(t+1) + e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} 2te^{2t} + 4e^{2t} + e^{2t} \\ 2te^{2t} + 2e^{2t} + e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} 2te^{2t} + 5e^{2t} \\ 2te^{2t} + 3e^{2t} \end{pmatrix}$$

$$\begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} x_{2}(t) = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} te^{2t} + 2e^{2t} \\ te^{2t} + e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} 2te^{2t} + 5e^{2t} \\ 2te^{2t} + 3e^{2t} \end{pmatrix}$$

$$x_{1}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad x_{2}(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

The vectors are independent (x_1 is not a multiple of x_2), so the x_1 and x_2 are independent.

Therefore, the general solution is:

$$x(t) = C_{1} \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix} + C_{2} \begin{pmatrix} e^{2t} (t+2) \\ e^{2t} (t+1) \end{pmatrix}$$

$$x(0) = C_{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} C_{1} + 2C_{2} \\ C_{1} + C_{2} \end{pmatrix}$$

$$\begin{cases} C_{1} + 2C_{2} = 0 \\ C_{1} + C_{2} = 1 \end{cases} \rightarrow C_{1} = 2 \qquad C_{2} = -1$$

$$x(t) = 2 \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix} - \begin{pmatrix} te^{2t} + 2e^{2t} \\ te^{2t} + e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} -te^{2t} \\ -te^{2t} + e^{2t} \end{pmatrix}$$

Exercise

Verify by substitution that $x_1(t)$ and $x_2(t)$ are solutions of the given homogenous equation. Show also that the solutions $x_1(t)$ and $x_2(t)$ are linearly independent. Find the solution of the given homogeneous equation with the initial condition $x(0) = x_0$

$$x_1(t) = \begin{pmatrix} \frac{1}{2}\cos t - \frac{1}{2}\sin t \\ \cos t \end{pmatrix}, \quad x_2(t) = \begin{pmatrix} \frac{1}{2}\cos t + \frac{1}{2}\sin t \\ \sin t \end{pmatrix}$$
$$x' = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}x \qquad x(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$x'_{1}(t) = \begin{pmatrix} \frac{1}{2}\cos t - \frac{1}{2}\sin t \\ \cos t \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}\sin t - \frac{1}{2}\cos t \\ -\sin t \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} x_{1} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}\cos t - \frac{1}{2}\sin t \\ \cos t \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2}\cos t - \frac{1}{2}\sin t \\ -\sin t \end{pmatrix}$$

$$\begin{split} x_2'(t) &= \begin{pmatrix} \frac{1}{2}\cos t + \frac{1}{2}\sin t \\ \sin t \end{pmatrix}' = \begin{pmatrix} -\frac{1}{2}\sin t + \frac{1}{2}\cos t \\ \cos t \end{pmatrix}' \\ \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} x_2 &= \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}\cos t + \frac{1}{2}\sin t \\ \sin t \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2}\cos t - \frac{1}{2}\sin t \\ \cos t \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2}\cos(0) - \frac{1}{2}\sin(0) \\ \cos(0) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} \qquad x_2(0) = \begin{pmatrix} \frac{1}{2}\cos(0) + \frac{1}{2}\sin(0) \\ \sin(0) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \end{split}$$

The vectors are independent (x_1 is not a multiple of x_2), so the x_1 and x_2 are independent.

Therefore, the general solution is:

$$x(t) = C_{1} \begin{pmatrix} \frac{1}{2}\cos t - \frac{1}{2}\sin t \\ \cos t \end{pmatrix} + C_{2} \begin{pmatrix} \frac{1}{2}\cos t + \frac{1}{2}\sin t \\ \sin t \end{pmatrix}$$

$$x(0) = C_{1} \begin{pmatrix} \frac{1}{2}\cos(0) - \frac{1}{2}\sin(0) \\ \cos(0) \end{pmatrix} + C_{2} \begin{pmatrix} \frac{1}{2}\cos(0) + \frac{1}{2}\sin(0) \\ \sin(0) \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = C_{1} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} + C_{2} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}C_{1} + \frac{1}{2}C_{2} \\ C_{1} \end{pmatrix} \Rightarrow C_{1} = 0 \qquad C_{2} = 2$$

$$x(t) = 2 \begin{pmatrix} \frac{1}{2}\cos t + \frac{1}{2}\sin t \\ \sin t \end{pmatrix}$$

$$= \begin{pmatrix} \cos t + \sin t \\ 2\sin t \end{pmatrix}$$

Exercise

Rewrite the given equation into a system in normal form with initial value.

$$y^{(4)} - y^{(3)} + 7y = \cos t$$
; $y(0) = y'(0) = 1$, $y''(0) = 0$, $y^{(3)}(0) = 2$

$$y_1 = y$$
$$y_2 = y_1' = y'$$

$$y_{3} = y'_{2} = y''$$

$$y_{4} = y'_{3} = y'''$$

$$y^{(4)} - y^{(3)} + 7y = \cos t$$

$$y'_{4} = y_{4} - 7y_{1} + \cos t$$

$$y_{1}(0) = y_{2}(0) = 1, \quad y_{3}(0) = 0, \quad y_{4}(0) = 2$$

Rewrite the given equation into a system in normal form with initial value.

$$y^{(4)} + 3y'' - (\sin t)y' + 8y = t^2$$
, $y(0) = 1$, $y'(0) = 2$, $y''(0) = 3$, $y'''(0) = 4$

Solution

$$x_{1} = y$$

$$x_{2} = x'_{1} = y'$$

$$x_{3} = x'_{2} = y''$$

$$x_{4} = x'_{3} = y'''$$

$$x'_{4} = y^{(4)}$$

$$= -3x_{3} + (\sin t)x_{2} - 8x_{1} + t^{2}$$

$$x_{1}(0) = 1, x_{2}(0) = 2, x_{3}(0) = 3, x_{4}(0) = 4$$

Exercise

Rewrite the given equation into a system in normal form with initial value.

$$y^{(6)} - (y')^3 = e^{2t} - \sin y;$$
 $y(0) = y'(0) = y''(0) = y^{(3)}(0) = y^{(4)}(0) = y^{(5)}(0) = 0$

$$x_{1} = y$$

$$x_{2} = x'_{1} = y'$$

$$x_{3} = x'_{2} = y''$$

$$x_{4} = x'_{3} = y'''$$

$$x_{5} = x'_{4} = y^{(4)}$$

$$x_{6} = x'_{5} = y^{(5)}$$

$$y^{(6)} - (y')^3 = e^{2t} - \sin y$$

$$x_6' = x_2^3 - \sin x_1 + e^{2t}$$

$$x_1(0) = x_2(0) = x_3(0) = x_4(0) = x_5(0) = x_6(0) = 0$$

Rewrite the given equation into a system in normal form with initial value.

$$\begin{cases} 3x'' = -5x + 2y \\ 4y'' = 6x - 2y \end{cases}$$

$$\begin{cases} 3x'' = -5x + 2y \\ 4y'' = 6x - 2y \end{cases} \begin{cases} x(0) = -1, & x'(0) = 0 \\ y(0) = 1, & y'(0) = 2 \end{cases}$$

Solution

$$x_{1} = x_{1}$$

$$x_2 = x_1' = x'$$

$$x_2 = y$$

$$x_4 = x_3' = y'$$

$$\begin{cases} x'' = -\frac{5}{3}x + \frac{3}{2}y \\ y'' = \frac{3}{2}x - \frac{1}{2}y \end{cases}$$

$$\begin{cases} x_1' = x_2 \\ x_2' = -\frac{5}{3}x_1 + \frac{3}{2}x_3 \\ x_3' = x_4 \end{cases}$$

$$\int x_3' = x_4$$

$$x_4' = \frac{3}{2}x_1 - \frac{1}{2}x_3$$

$$(x_1(0) = -1, x_2(0) = 0)$$

$$\begin{cases} x_1(0) = -1, & x_2(0) = 0 \\ x_3(0) = 1, & x_4(0) = 2 \end{cases}$$

Exercise

Rewrite the given equation into a system in normal form with initial value.

$$\begin{cases} x''' - y = t \\ 2x'' + 5y'' - 2y = 1 \end{cases}$$

$$\begin{cases} x''' - y = t & \begin{cases} x(0) = x'(0) = x''(0) = 4 \\ 2x'' + 5y'' - 2y = 1 \end{cases} & \begin{cases} y(0) = y'(0) = 1 \end{cases}$$

$$\begin{cases} x''' = y + t \\ 5y'' = -2x'' + 2y + 1 \end{cases}$$

$$x_1 = x \qquad x_2 = x_1' = x' \qquad x_3 = x_2' = x''$$

$$x_1 = x$$

$$x_2 = x_1' = x'$$

$$x_2 = x_2' = x'$$

$$x_{\Delta} = y$$

$$x_5 = x_4' = y'$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ x'_3 = x_4 + t \\ x'_4 = x_5 \end{cases}$$

$$\begin{cases} x_1(0) = x_2(0) = x_3(0) = 4 \\ x_4(0) = x_5(0) = 1 \end{cases}$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ x'_3 = x_4 + t \\ x'_4 = x_5 \end{cases}$$

Transform the given differential equation or system into an equivalent system of 1st-order differential equation $x'' + 3x' + 7x = t^2$

Solution

Let
$$x_1 = x$$
, $x_2 = x' = x'_1$
Yield the system
$$\begin{cases} x'_1 = x_2 \\ x'_2 = -7x_1 - 3x_2 + t^2 \end{cases}$$

Exercise

Transform the given differential equation or system into an equivalent system of 1st-order differential equation $x^{(4)} + 6x'' - 3x' + x = \cos 3t$

Solution

Let
$$x_1 = x$$
, $x_2 = x' = x'_1$, $x_3 = x'' = x'_2$, $x_4 = x''' = x'_3$
Yield the system
$$\begin{cases} x'_1 = x_2, & x'_2 = x_3, & x'_3 = x_4 \\ x'_4 = -x_1 + 3x_2 - 6x_3 + \cos 3t \end{cases}$$

Exercise

Transform the given differential equation or system into an equivalent system of 1st-order differential equation $t^2x'' + tx' + \left(t^2 - 1\right)x = 0$

Let
$$x_1 = x$$
, $x_2 = x' = x'_1$
Yield the system
$$\begin{cases} x'_1 = x_2 \\ t^2 x'_2 = (1 - t^2)x_1 - tx_2 \end{cases}$$

Transform the given differential equation or system into an equivalent system of 1st-order differential equation $t^3x^{(3)} - 2t^2x'' + 3tx' + 5x = \ln t$

Solution

Let
$$x_1 = x$$
, $x_2 = x' = x'_1$, $x_3 = x'' = x'_2$
Yield the system
$$\begin{cases} x'_1 = x_2, & x'_2 = x_3, & x'_3 = x_4 \\ t^3 x'_3 = -5x_1 - 3tx_2 + 2t^2 x_3 + \ln t \end{cases}$$

Exercise

Transform the given differential equation or system into an equivalent system of 1st-order differential equation x'' - 5x + 4y = 0, y'' + 4x - 5y = 0

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x'_1 \\ y_1 &= y & y_2 &= y' &= y'_1 \end{aligned} \Rightarrow \begin{cases} x'_1 &= x_2 \\ x'_2 &= 5x_1 - 4y_1 \end{cases}$$

$$\begin{cases} y'_1 &= y_2 \\ y'_2 &= -4x_1 + 5y_1 \end{cases}$$

Exercise

Transform the given differential equation or system into an equivalent system of 1st-order differential equation x'' - 3x' + 4x - 2y = 0, $y'' + 2y' - 3x + y = \cos t$

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x_1' \\ y_1 &= y & y_2 &= y' &= y_1' \end{aligned} \Rightarrow \begin{cases} x_1' &= x_2 \\ x_2' &= -4x_1 + 2y_1 + 3x_2 \end{cases} \begin{cases} y_1' &= y_2 \\ y_2' &= 3x_1 - y_1 - 2y_2 + \cos t \end{cases}$$

Exercise

Transform the given differential equation or system into an equivalent system of 1st-order differential equation x'' = 3x - y + 2z, y'' = x + y - 4z, z'' = 5x - y - z

Transform the given differential equation or system into an equivalent system of 1st-order differential equation x'' = (1 - y)x, y'' = (1 - x)y

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x'_1 \\ y_1 &= y & y_2 &= y' &= y'_1 \end{aligned} \Rightarrow \begin{cases} x'_1 &= x_2, & y'_1 &= y_2 \\ x'_2 &= (1 - y_1)x_1 \\ y'_2 &= (1 - x_1)y_1 \end{aligned}$$

Exercise

Prove that the general solution of

$$X' = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} X$$

On the interval $(-\infty, \infty)$ is

$$X = C_1 \begin{pmatrix} 6 \\ -1 \\ -5 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} e^{-2t} + C_3 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} e^{3t}$$

Let
$$A = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$X_{1} = \begin{pmatrix} 6 \\ -1 \\ -5 \end{pmatrix} e^{-t} \rightarrow X'_{1} = \begin{pmatrix} -6 \\ 1 \\ 5 \end{pmatrix} e^{-t}$$

$$AX_{1} = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \\ -5 \end{pmatrix} e^{-t} = \begin{pmatrix} -6 \\ 1 \\ 5 \end{pmatrix} e^{-t} \rightarrow X'_{1} = AX_{1}$$

$$X_{2} = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} e^{-2t} \rightarrow X'_{2} = \begin{pmatrix} 6 \\ -2 \\ -2 \end{pmatrix} e^{-2t}$$

$$AX_{2} = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \\ 1 & 1 & 0 \end{pmatrix} e^{-2t} = \begin{pmatrix} 6 \\ -2 \\ -2 \end{pmatrix} e^{-2t} \rightarrow X'_{2} = AX_{2}$$

$$X_{3} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} e^{3t} \rightarrow X'_{3} = \begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix} e^{3t}$$

$$AX_{3} = \begin{pmatrix} 0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} e^{3t} = \begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix} e^{3t} \rightarrow X'_{3} = AX_{3}$$

$$W = \begin{vmatrix} 6 & -3 & 2 \\ -1 & 1 & 1 \\ -5 & 1 & 1 \end{vmatrix} = 20 \neq 0$$

 $\therefore X_1, X_2, \text{ and } X_3 \text{ form a fundamental set for } X' = AX \text{ on } (-\infty, \infty)$

Exercise

Prove that the general solution of

$$X' = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} X + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^2 + \begin{pmatrix} 4 \\ -6 \end{pmatrix} t + \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

On the interval $(-\infty, \infty)$ is

$$X = C_1 \begin{pmatrix} 1 \\ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} + C_2 \begin{pmatrix} 1 \\ -1 + \sqrt{2} \end{pmatrix} e^{-\sqrt{2}t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} t^2 + \begin{pmatrix} -2 \\ 4 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} -1 & -1 \ -1 & 1 \end{pmatrix}$$

 $X_1 = \begin{pmatrix} 1 \ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} \rightarrow X_1' = \begin{pmatrix} \sqrt{2} \ -\sqrt{2} - 2 \end{pmatrix} e^{\sqrt{2}t}$
 $AX_1 = \begin{pmatrix} -1 & -1 \ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} = \begin{pmatrix} \sqrt{2} \ -\sqrt{2} - 2 \end{pmatrix} e^{\sqrt{2}t} \rightarrow X_1' = AX_1$
 $X_2 = \begin{pmatrix} 1 \ -1 + \sqrt{2} \end{pmatrix} e^{-\sqrt{2}t} \rightarrow X_2' = \begin{pmatrix} -\sqrt{2} \ \sqrt{2} - 2 \end{pmatrix} e^{-\sqrt{2}t}$
 $AX_1 = \begin{pmatrix} -1 & -1 \ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -1 - \sqrt{2} \end{pmatrix} e^{\sqrt{2}t} = \begin{pmatrix} \sqrt{2} \ -\sqrt{2} - 2 \end{pmatrix} e^{\sqrt{2}t} \rightarrow X_1' = AX_1$
 $X_p = \begin{pmatrix} 1 \ 0 \end{pmatrix} t^2 + \begin{pmatrix} -2 \ 4 \end{pmatrix} t + \begin{pmatrix} 1 \ 0 \end{pmatrix} \rightarrow X_p' = \begin{pmatrix} 2 \ 0 \end{pmatrix} t + \begin{pmatrix} -2 \ 4 \end{pmatrix}$
 $AX_p = \begin{pmatrix} -1 & -1 \ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \end{pmatrix} t^2 + \begin{pmatrix} -2 \ 4 \end{pmatrix} t + \begin{pmatrix} 1 \ 0 \end{pmatrix} + \begin{pmatrix} 1 \ 1 \end{pmatrix} t^2 + \begin{pmatrix} 4 \ -6 \end{pmatrix} t + \begin{pmatrix} -1 \ 5 \end{pmatrix}$

$$= \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} t^2 - 2t + 1 \\ 4t \end{pmatrix} + \begin{pmatrix} t^2 + 4t - 1 \\ t^2 - 6t + 5 \end{pmatrix}$$

$$= \begin{pmatrix} -t^2 - 2t - 1 \\ -t^2 + 6t - 1 \end{pmatrix} + \begin{pmatrix} t^2 + 4t - 1 \\ t^2 - 6t + 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2t - 2 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 0 \end{pmatrix} t + \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$= X'_p$$

$$W = \begin{vmatrix} 1 & 1 \\ -1 - \sqrt{2} & -1 + \sqrt{2} \end{vmatrix} = 2\sqrt{2} \neq 0$$

 $\therefore X_1$ and X_2 form a fundamental set for X' = AX on $(-\infty, \infty)$

Exercise

$$\mathbf{x}' = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.

Solution

a)
$$\vec{x}_1' = \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix}' = \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix}$$
 $x' \vec{x}_1 = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix} = \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix} = \vec{x}_1'$ \checkmark

$$\vec{x}_2' = \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ -2e^{2t} \end{bmatrix}$$
 $x' \vec{x}_2 = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix} = \begin{bmatrix} 2e^{2t} \\ -2e^{2t} \end{bmatrix} = \vec{x}_2'$ \checkmark

$$b) W = \begin{vmatrix} 2e^t & e^{2t} \\ -3e^t & -e^{2t} \end{vmatrix} = e^{3t} \neq 0$$

The solutions x_1 and x_2 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 = C_1 \begin{pmatrix} 2e^t \\ -3e^t \end{pmatrix} + C_2 \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} = \begin{pmatrix} 2C_1 e^t + C_2 e^{2t} \\ -3C_1 e^t - C_2 e^{2t} \end{pmatrix}$$

$$x' = \begin{bmatrix} -3 & 2 \\ -3 & 4 \end{bmatrix} x; \quad \vec{x}_1 = \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 2e^{-2t} \\ e^{-2t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 0 \\ x_2(0) = 5 \end{cases}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

Solution

a)
$$\vec{x}_{1}' = \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix}' = \begin{bmatrix} 3e^{3t} \\ 9e^{3t} \end{bmatrix}$$
 $\mathbf{x}' \cdot \vec{x}_{1} = \begin{bmatrix} -3 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix} = \begin{bmatrix} 3e^{3t} \\ 9e^{3t} \end{bmatrix} = \vec{x}_{1}'$ \checkmark

$$\vec{x}_{2}' = \begin{bmatrix} 2e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} -4e^{-2t} \\ -2e^{-2t} \end{bmatrix}$$
 $\mathbf{x}' \cdot \vec{x}_{2} = \begin{bmatrix} -3 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 2e^{-2t} \\ e^{-2t} \end{bmatrix} = \begin{bmatrix} -4e^{2t} \\ -2e^{2t} \end{bmatrix} = \vec{x}_{2}'$ \checkmark

$$\mathbf{b}) \quad W = \begin{vmatrix} e^{3t} & 2e^{-2t} \\ 3e^{3t} & e^{-2t} \end{vmatrix} = -5e^{t} \neq 0$$

The solutions x_1 and x_2 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 = C_1 \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix} + C_2 \begin{pmatrix} 2e^{-2t} \\ e^{-2t} \end{pmatrix} = \begin{pmatrix} C_1 e^{3t} + 2C_2 e^{-2t} \\ 3C_1 e^{3t} + C_2 e^{-2t} \end{pmatrix}$$
d) $x_1 = C_1 e^{3t} + 2C_2 e^{-2t}$ $x_2 = 3C_1 e^{3t} + C_2 e^{-2t}$

$$x_1(0) = C_1 + 2C_2 = 0$$
 $x_2(0) = 3C_1 + C_2 = 5$

$$\Rightarrow C_1 = 2 \quad C_2 = -1$$

$$\begin{cases} x_1 = 2e^{3t} - 2e^{-2t} \\ x_2 = 6e^{3t} - e^{-2t} \end{cases}$$

Exercise

$$\mathbf{x}' = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{x}_2 = e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad \begin{cases} x_1(0) = 5 \\ x_2(0) = -3 \end{cases}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

Solution

a)
$$\vec{x}_{1}' = \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ 2e^{2t} \end{bmatrix}$$
 $x' \cdot \vec{x}_{1} = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} 2e^{2t} \\ 2e^{2t} \end{bmatrix} = \vec{x}_{1}'$ $\sqrt{ }$

$$\vec{x}_{2}' = \begin{bmatrix} e^{-2t} \\ 5e^{-2t} \end{bmatrix}' = \begin{bmatrix} -2e^{-2t} \\ -10e^{-2t} \end{bmatrix}$$
 $x' \cdot \vec{x}_{2} = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} e^{-2t} \\ 5e^{-2t} \end{bmatrix} = \begin{bmatrix} -2e^{2t} \\ -10e^{2t} \end{bmatrix} = \vec{x}_{2}'$

b)
$$W = \begin{vmatrix} e^{2t} & e^{-2t} \\ e^{2t} & 5e^{-2t} \end{vmatrix} = 4 \neq 0$$

The solutions x_1 and x_2 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 = C_1 \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} e^{-2t} \\ 5e^{-2t} \end{pmatrix} = \begin{pmatrix} C_1 e^{2t} + C_2 e^{-2t} \\ C_1 e^{2t} + 5C_2 e^{-2t} \end{pmatrix}$$

d)
$$x_1 = C_1 e^{2t} + C_2 e^{-2t}$$
 $x_2 = C_1 e^{2t} + 5C_2 e^{-2t}$
 $x_1(0) = C_1 + C_2 = 5$ $x_2(0) = C_1 + 5C_2 = -3$
 $\Rightarrow C_1 = 7 \quad C_2 = -2$

$$\begin{cases} x_1 = 7e^{2t} - 2e^{-2t} \\ x_2 = 7e^{2t} - 10e^{-2t} \end{cases}$$

Exercise

$$x' = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} x; \quad \vec{x}_1 = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 8 \\ x_2(0) = 0 \end{cases}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

a)
$$\vec{x}_{1}' = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}' = \begin{bmatrix} 6e^{2t} \\ 4e^{2t} \end{bmatrix}$$
 $x' \cdot \vec{x}_{1} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix} = \begin{bmatrix} 6e^{2t} \\ 4e^{2t} \end{bmatrix} = \vec{x}_{1}' \checkmark$

$$\vec{x}_{2}' = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}' = \begin{bmatrix} -5e^{-2t} \\ -15e^{-2t} \end{bmatrix}$$
 $x' \cdot \vec{x}_{2} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix} = \begin{bmatrix} -5e^{2t} \\ -15e^{2t} \end{bmatrix} = \vec{x}_{2}' \checkmark$

b)
$$W = \begin{vmatrix} 3e^{2t} & e^{-5t} \\ 2e^{2t} & 3e^{-5t} \end{vmatrix} = 7e^{-3t} \neq 0$$

The solutions x_1 and x_2 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 = C_1 \begin{pmatrix} 3e^{2t} \\ 2e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} e^{-5t} \\ 3e^{-5t} \end{pmatrix} = \begin{pmatrix} 3C_1 e^{2t} + C_2 e^{-5t} \\ 2C_1 e^{2t} + 3C_2 e^{-5t} \end{pmatrix}$$

$$\begin{array}{ll} \textit{d)} & x_1 = 3C_1e^{2t} + C_2e^{-5t} & x_2 = 2C_1e^{2t} + 3C_2e^{-5t} \\ & x_1\left(0\right) = 3C_1 + C_2 = 8 & x_2\left(0\right) = 2C_1 + 3C_2 = 0 & \Longrightarrow & C_1 = \frac{24}{7} \quad C_2 = -\frac{16}{7} \\ & \left\{x_1 = \frac{72}{7}e^{2t} - \frac{16}{7}e^{-2t} \\ & x_2 = \frac{48}{7}e^{2t} - \frac{48}{7}e^{-2t} \right. \end{array}$$

Exercise

$$\mathbf{x}' = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} 2e^t \\ 2e^t \\ e^t \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} -2e^{3t} \\ 0 \\ e^{3t} \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 0 \\ x_2(0) = 0 \\ x_3(0) = 4 \end{cases}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

$$\vec{x}_{1}' = \begin{bmatrix} 2e^{t} \\ 2e^{t} \\ e^{t} \end{bmatrix}' = \begin{bmatrix} 2e^{t} \\ 2e^{t} \\ e^{t} \end{bmatrix}$$

$$\vec{x}_{1}' \cdot \vec{x}_{1} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2e^{t} \\ 2e^{t} \\ e^{t} \end{bmatrix} = \begin{bmatrix} 2e^{t} \\ 2e^{t} \\ e^{t} \end{bmatrix} = \vec{x}_{1}' \quad \checkmark$$

$$\vec{x}_{2}' = \begin{bmatrix} -2e^{3t} \\ 0 \\ e^{3t} \end{bmatrix}' = \begin{bmatrix} -6e^{3t} \\ 0 \\ 3e^{3t} \end{bmatrix}$$

$$\vec{x}' \cdot \vec{x}_{2} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2e^{3t} \\ 0 \\ e^{3t} \end{bmatrix} = \begin{bmatrix} -6e^{3t} \\ 0 \\ 3e^{3t} \end{bmatrix} = \vec{x}_{2}' \quad \checkmark$$

$$\vec{x}_{3}' = \begin{bmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{bmatrix}' = \begin{bmatrix} 10e^{5t} \\ -10e^{5t} \\ 5e^{5t} \end{bmatrix}$$

$$\vec{x}' \cdot \vec{x}_{3} = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{bmatrix} = \begin{bmatrix} 10e^{5t} \\ -10e^{5t} \\ 5e^{5t} \end{bmatrix} = \vec{x}_{3}' \quad \checkmark$$

b)
$$W = \begin{vmatrix} 2e^t & -2e^{3t} & 2e^{5t} \\ 2e^t & 0 & -2e^{5t} \\ e^t & e^{3t} & e^{5t} \end{vmatrix} = 4e^{9t} + 4e^{9t} + 4e^{9t} + 4e^{9t} = 16e^{9t} \neq 0$$

The solutions x_1 , x_2 and x_3 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 + C_3 \vec{x}_3 = C_1 \begin{pmatrix} 2e^t \\ 2e^t \\ e^t \end{pmatrix} + C_2 \begin{pmatrix} -2e^{3t} \\ 0 \\ e^{3t} \end{pmatrix} + C_3 \begin{pmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{pmatrix}$$

$$= \begin{pmatrix} 2C_1 e^t - 2C_2 e^{3t} + 2C_3 e^{5t} \\ 2C_1 e^t & -2C_3 e^{5t} \\ C_1 e^t + C_2 e^{3t} + C_3 e^{5t} \end{pmatrix}$$

d)
$$x_1 = 2C_1e^t - 2C_2e^{3t} + 2C_3e^{5t}$$
 $x_2 = 2C_1e^t - 2C_3e^{5t}$ $x_3 = C_1e^t + C_2e^{3t} + C_3e^{5t}$

$$\begin{cases} x_1(0) = 2C_1 - 2C_2 + 2C_3 = 0 \\ x_2(0) = 2C_1 - 2C_3 = 0 \end{cases} \rightarrow \begin{bmatrix} 2 & -2 & 2 & | & 0 \\ 2 & 0 & -2 & | & 0 \\ 1 & 1 & 1 & | & 4 \end{bmatrix}$$

$$\Rightarrow C_1 = 1 \quad C_2 = 2 \quad C_3 = 1$$

$$\begin{cases} x_1(t) = 2e^t - 4e^{3t} + 2e^{5t} \\ x_2(t) = 2e^t - 2e^{5t} \\ x_3(t) = e^t + 2e^{3t} + e^{5t} \end{cases}$$

Exercise

$$\mathbf{x}' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{bmatrix}, \quad \begin{bmatrix} x_1(0) = 10 \\ x_2(0) = 12 \\ x_3(0) = -1 \end{bmatrix}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

a)
$$\vec{x}_1' = \begin{pmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix}' = \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \\ 2e^{2t} \end{pmatrix}$$

a)
$$\vec{x}_{1}' = \begin{pmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix}' = \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \\ 2e^{2t} \end{pmatrix}$$
 $x' \cdot \vec{x}_{1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix} = \begin{pmatrix} 2e^{2t} \\ 2e^{2t} \\ 2e^{2t} \end{pmatrix} = \vec{x}_{1}' \quad \checkmark$

$$\vec{x}_2' = \begin{pmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{pmatrix}' = \begin{pmatrix} -e^{-t} \\ 0 \\ e^{-t} \end{pmatrix}$$

$$\vec{x_2}' = \begin{pmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{pmatrix}' = \begin{pmatrix} -e^{-t} \\ 0 \\ e^{-t} \end{pmatrix} \qquad \qquad \vec{x'} \cdot \vec{x_2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{pmatrix} = \begin{pmatrix} -e^{-t} \\ 0 \\ e^{-t} \end{pmatrix} = \vec{x_2}' \quad \checkmark$$

$$\vec{x}_3' = \begin{pmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{pmatrix}' = \begin{pmatrix} 0 \\ -e^{-t} \\ e^{-t} \end{pmatrix}$$

$$\vec{x}_{3}' = \begin{pmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{pmatrix}' = \begin{pmatrix} 0 \\ -e^{-t} \\ e^{-t} \end{pmatrix} \qquad \qquad \mathbf{x}' \cdot \vec{x}_{3} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{pmatrix} = \begin{pmatrix} 0 \\ -e^{-t} \\ e^{-t} \end{pmatrix} = \vec{x}_{3}' \quad \checkmark$$

b)
$$W = \begin{vmatrix} e^{2t} & e^{-t} & 0 \\ e^{2t} & 0 & e^{-t} \\ e^{2t} & -e^{-t} & -e^{-t} \end{vmatrix} = 3 \neq 0$$
 The solutions x_1 , x_2 and x_3 are linearly independent.

c)
$$x(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 + C_3 \vec{x}_3 = C_1 \begin{pmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix} + C_2 \begin{pmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{pmatrix} + C_3 \begin{pmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{pmatrix}$$

$$= \begin{pmatrix} C_1 e^{2t} + C_2 e^{-t} \\ C_1 e^{2t} + C_3 e^{-t} \\ C_1 e^{2t} - C_2 e^{-t} - C_3 e^{-t} \end{pmatrix}$$

d)
$$x_1 = C_1 e^{2t} + C_2 e^{-t}$$
 $x_2 = C_1 e^{2t} + C_3 e^{-t}$ $x_3 = C_1 e^{2t} - C_2 e^{-t} - C_3 e^{-t}$

$$\begin{cases} x_1(0) = C_1 + C_2 = 10 \\ x_2(0) = C_1 + C_3 = 12 \\ x_3(0) = C_1 - C_2 - C_3 = -1 \end{cases} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 10 \\ 1 & 0 & 1 & | & 12 \\ 1 & -1 & -1 & | & -1 \end{bmatrix}$$

$$\Rightarrow C_1 = 7 \quad C_2 = 3 \quad C_3 = 5$$

$$\begin{cases} x_1(t) = 7e^{2t} + 3e^{-t} \\ x_2(t) = 7e^{2t} + 5e^{-t} \\ x_3(t) = 7e^{2t} - 8e^{-t} \end{cases}$$

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} e^{-t} \\ 0 \\ 0 \\ e^{-t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 0 \\ 0 \\ e^{-t} \\ 0 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ e^t \\ 0 \\ -2e^t \end{bmatrix}, \quad \vec{x}_4 = \begin{bmatrix} e^t \\ 0 \\ 3e^t \\ 0 \end{bmatrix}, \quad \begin{bmatrix} x_1(0) = 1 \\ x_2(0) = 3 \\ x_3(0) = 4 \\ x_4(0) = 7 \end{bmatrix}$$

- a) Verify that the given vectors are solutions of the given system.
- b) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

Solution

a)
$$\vec{x}_{1}' = \begin{pmatrix} e^{-t} \\ 0 \\ 0 \\ e^{-t} \end{pmatrix}' = \begin{pmatrix} -e^{-t} \\ 0 \\ 0 \\ -e^{-t} \end{pmatrix}$$

$$x' \cdot \vec{x}_{1} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{-t} \\ 0 \\ 0 \\ e^{-t} \end{pmatrix} = \begin{pmatrix} -e^{-t} \\ 0 \\ 0 \\ -e^{-t} \end{pmatrix}$$

$$\vec{x}_{2}' = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -e^{-t} \\ 0 \end{pmatrix}' = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -e^{-t} \\ 0 \end{pmatrix}$$

$$\vec{x}' \cdot \vec{x}_{2} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ e^{-t} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -e^{-t} \\ 0 \end{pmatrix}$$

$$\vec{x}_{3}' = \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ -2e^{t} \end{pmatrix} = \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ -2e^{t} \end{pmatrix}$$

$$\vec{x}' \cdot \vec{x}_{3} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ -2e^{t} \end{pmatrix} = \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ -2e^{t} \end{pmatrix}$$

$$\vec{x}_{3}' \cdot \vec{x}_{3} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{3} \cdot \vec{x}_{4}' = \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{4} \cdot \vec{x}_{5} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{5} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{5} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{pmatrix} \begin{pmatrix} e^{t} \\ 0 \\ 3e^{t} \\ 0 \end{pmatrix} = \vec{x}_{3}' \cdot \checkmark$$

$$\vec{x}_{7} = \begin{pmatrix}$$

The solutions x_1 , x_2 and x_3 are linearly independent.

$$c) \quad \boldsymbol{x}(t) = C_1 \vec{x}_1 + C_2 \vec{x}_2 + C_3 \vec{x}_3 + C_4 \vec{x}_4 = C_1 \begin{pmatrix} e^{-t} \\ 0 \\ 0 \\ e^{-t} \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 0 \\ e^{-t} \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} 0 \\ e^t \\ 0 \\ -2e^t \end{pmatrix} + C_4 \begin{pmatrix} e^t \\ 0 \\ 3e^t \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} C_1 e^{-t} + C_4 e^t \\ C_3 e^t \\ C_2 e^{-t} + 3C_4 e^t \\ C_1 e^{-t} - 2C_3 e^t \end{pmatrix}$$

d)
$$x_1(t) = C_1 e^{-t} + C_4 e^t$$
, $x_2(t) = C_3 e^t$, $x_3(t) = C_2 e^{-t} + 3C_4 e^t$, $x_4(t) = C_1 e^{-t} - 2C_3 e^t$

$$\begin{cases} x_1(0) = C_1 + C_4 = 1 \\ x_2(0) = C_3 = 3 \\ x_3(0) = C_2 + 3C_4 = 4 \\ x_4(0) = C_1 - 2C_3 = 7 \end{cases} \Rightarrow C_1 = 13 \quad C_2 = 40 \quad C_3 = 3 \quad C_4 = -12$$

$$\begin{cases} x_1(t) = 13e^{-t} - 12e^t \\ x_2(t) = 3e^t \\ x_3(t) = 40e^{-t} - 36e^t \\ x_3(t) = 13e^{-t} - 6e^t \end{cases}$$

Consider the *RLC* parallel circuit below. Let *V* represent the voltage drop across the capacitor and I represent the current across the inductor.

Show that: $V' = -\frac{V}{RC} - \frac{1}{C}$ $I' = \frac{V}{L}$

Solution

Using Kirchhoff's current law: $I_1 + I_2 + I_3 = 0$

In the RC loop: $V_1 - V_2 = 0$

In the LC loop: $V_2 - V_3 = 0$

 $V_2 = RI_2$, $CV_1' = I_1$, $LI_3' = V_3$

Since the circuit elements are in parallel, therefore $V_1 = V_2 = V_3 = V$

$$LI_3' = V_1 \Rightarrow \underline{I_3' = \frac{V_1}{L}}$$

$$\begin{aligned} CV_1' &= I_1 \\ &= -I_2 - I_3 \\ &= -\frac{V_2}{R} - I_3 \end{aligned} \qquad V_2 = RI_2 \\ V_2 &= V_1 \end{aligned}$$

$$= -\frac{V_1}{R} - I_3$$

$$V_1' = -\frac{V_1}{CR} - \frac{I_3}{C}$$

Since
$$V_1 = V$$
 and $I_3 = I$

$$\Rightarrow \begin{cases} I' = \frac{V}{L} \\ V' = -\frac{V}{CR} - \frac{I}{C} \end{cases}$$

Consider the *RLC* parallel circuit below. Let *V* represent the voltage drop across the capacitor and I represent the current across the inductor.

Show that:
$$CV' = -I - \frac{V}{R_2}$$
 $LI' = -R_1I + V$

Solution

Using Kirchhoff's current law: $I + I_2 + I_3 = 0$ (1)

In the
$$R_1 L R_2$$
 loop: $R_1 I + L I' - R_2 I_2 = 0$ (2)

In the
$$R_2C$$
 loop: $R_2I_2 - V = 0$ (3)

From (3):
$$V = R_2 I_2 \Rightarrow I_2 = \frac{V}{R_2}$$

From (2):
$$LI' = -R_1I + R_2I_2$$
 $V = R_2I_2$

$$= -R_1I + V$$

From (1):
$$I_2 = -I - I_3$$

$$\frac{V}{R_2} = -I - I_3$$

However, the voltage drop across the capacitor is: $V = \frac{q}{C}$

$$\Rightarrow CV = q$$
$$CV' = q'$$

$$I_3 = q'$$

$$CV' = I_3$$

$$\frac{V}{R_2} = -I - CV'$$

$$CV' = -I - \frac{V}{R_2}$$

Let I_1 and I_2 represent the current flow across the indicators L_1 and L_2 respectively. Show that the circuit is modeled by the system

$$\begin{cases} L_{1}I_{1}' = -R_{1}I_{1} - R_{1}I_{2} + E \\ L_{2}I_{2}' = -R_{1}I_{1} - \left(R_{1} + R_{2}\right)I_{2} + E \end{cases}$$

Solution

By Kirchhoff's second law:

$$I = I_1 + I_2$$

From loop 1:

$$\begin{split} -E + R_1 I + L_1 I_1' &= 0 \\ L_1 I_1' &= E - R_1 I \\ &= E - R_1 \left(I_1 + I_2 \right) \\ &= -R_1 I_1 - R_1 I_2 + E \end{split}$$

From loop 2:

$$\begin{split} -E + R_1 I + R_2 I_2 + L_2 I_2' &= 0 \\ L_2 I_2' &= -R_1 I - R_2 I_2 + E \\ &= -R_1 \Big(I_1 + I_2 \Big) - R_2 I_2 + E \\ &= -R_1 I_1 - R_1 I_2 - R_2 I_2 + E \end{split}$$

Two tanks are connected by two pipes. Each tank contains 500 *gallons* of a salt solution. Through on pipe solution is pumped from the first tank to the second at 1 *gal/min*. Through the other pipe, solution is pumped at the same rate from the second to the first tank. Show the salt content in each tank varies with time.

Solution

 $x_1(t)$ and $x_2(t)$ represent the salt content.

Rate out =
$$1 \ gal \ / \ min \times \frac{x_1}{500} \ lb \ / \ gal = \frac{x_1}{500} \ lb \ / \ min$$

Rate in = $1 \ gal \ / \ min \times \frac{x_2}{500} \ lb \ / \ gal = \frac{x_2}{500} \ lb \ / \ min$

$$\frac{dx_1}{dt} = Rate \ out - Rate \ in = \frac{x_2}{500} - \frac{x_1}{500}$$

And
$$\frac{dx_2}{dt} = \frac{x_1}{500} - \frac{x_2}{500}$$

$$x' = Ax \rightarrow \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -\frac{1}{500} & \frac{1}{500} \\ \frac{1}{500} & -\frac{1}{500} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Exercise

Each tank contains 100 *gallons* of a salt solution. Pure water flows into the upper tank at a rate of 4 *gal/min*. Salt solution drains from the upper tank into the lower tank at a rate of 4 *gal/min*. Finally, salt solution drains from the lower tank at a rate of 4 *gal/min*, effectively keeping the volume of solution in each tank at a constant 100 *gal*. If the initial salt content of the upper and lower tanks is 10 and 20 *pounds*, respectively. Set up an initial value problem that models the amount of salt in each tank over time (do not solve). Write the model in matrix-vector form. Is the system homogeneous or inhomogeneous?

Solution

For the first tank: Rate out = $4 \frac{gal}{min} \times \frac{x_1}{100} \frac{lb}{gal} = \frac{x_1}{25} lb / min$ = $\frac{x_1}{25} lb / min$

$$\frac{dx_1}{dt} = Rate \ out - Rate \ in$$
$$= -\frac{x_1}{25}$$

For the second tank: Rate out = $4 \frac{gal}{min} \times \frac{x_2}{100} \frac{lb}{gal}$ = $\frac{x_2}{25} \frac{lb}{min}$

$$\frac{dx_2}{dt} = Rate \ out - Rate \ in$$

$$= \frac{x_1}{25} - \frac{x_2}{25}$$

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -\frac{1}{25} & 0 \\ \frac{1}{25} & -\frac{1}{25} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Two masses on a frictionless tabletop are connected with a spring having spring constant k_2 . The first mass is connected to a vertical support with a spring having spring constant k_1 . The second mass is shaken harmonically via a force equaling $F = A\cos\omega t$. Let x(t) and y(t) measure the displacements of the masses m_1 and m_2 , respectively, from their equilibrium positions as a function of time. If both masses start from rest at their equilibrium positions at time t=0.

Set up an initial value problem that models the position of the masses over time (do not solve). Write the model in matrix-vector form. Is the system homogeneous or inhomogeneous?

Solution

By Newton's Law; the first mass:

$$m_1 x'' = -k_1 x + k_2 (y - x)$$
$$x'' = -\frac{k_1}{m_1} x + \frac{k_2}{m_1} (y - x)$$

 k_1 k_2 m_2 k_1 k_2 m_2 k_2 k_2

The second mass:

$$m_2 y'' = -k_2 (y - x) + A \cos \omega t$$

$$y'' = -\frac{k_2}{m_2} (y - x) + \frac{A}{m_2} \cos \omega t$$

Let assume:
$$x_1 = x$$
, $x_2 = x'$, $x_3 = y$, $x_4 = y'$

$$\begin{cases} x_1' = x_2 \\ x_2' = -\frac{k_1}{m_1} x_1 + \frac{k_2}{m_1} (x_3 - x_1) \\ x_3' = x_4 \\ x_4' = -\frac{k_2}{m_2} (x_3 - x_1) + \frac{A}{m_2} \cos \omega t \end{cases} \Rightarrow \begin{cases} x_1' = x_2 \\ x_2' = -\left(\frac{k_1}{m_1} + \frac{k_2}{m_1}\right) x_1 + \frac{k_2}{m_1} x_3 \\ x_3' = x_4 \\ x_4' = \frac{k_2}{m_2} x_1 - \frac{k_2}{m_2} x_3 + \frac{A}{m_2} \cos \omega t \end{cases}$$

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & 0 & -\frac{k_2}{m_2} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{A}{m_2} \cos \omega t \end{pmatrix}$$

Derive the equations
$$\begin{cases} m_1 x_1'' = -(k_1 + k_2)x_1 + k_2 x_2 \\ m_2 x_2'' = k_2 x_1 - (k_2 + k_3)x_2 \end{cases}$$

For the displacements (from equilibrium) of the 2 masses.

Solution

First spring is stretched by x_1

Second spring is stretched by $x_2 - x_1$

Third spring is stretched by x_2

Newton's second law gives:

For
$$m_1 \Rightarrow m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1)$$

For
$$m_2 \Rightarrow m_2 x_2'' = -k_2 (x_2 - x_1) - k_3 x_2$$

That implies to:
$$\begin{cases} m_1 x_1'' = -\left(k_1 + k_2\right) x_1 + k_2 x_2 \\ m_2 x_2'' = k_2 x_1 - \left(k_2 + k_3\right) x_2 \end{cases}$$

Exercise

Two particles each of mass m are attached to a string under (constant) tension T. Assume that the particles oscillate vertically (that is, parallel to the y-axis) with amplitudes so small that the sines of the angles shown are accurately approximated by their tangents. Show that the displacement y_1 and y_2 satisfy the equations

$$\begin{cases} ky_1'' = -2y_1 + y_2 \\ ky_2'' = y_1 - 2y_2 \end{cases} where k = \frac{mL}{T}$$

Solution

For the first mass:

$$my_1'' = -T\sin\theta_1 + T\sin\theta_2$$

$$\begin{split} &\approx -T\tan\theta_1 + T\tan\theta_2\\ &my_1'' = -T\frac{y_1}{L} + T\frac{y_2 - y_1}{L}\\ &\frac{L}{T}my_1'' = -\frac{L}{T}T\frac{y_1}{L} + \frac{L}{T}T\frac{y_2 - y_1}{L} \qquad where \ k = \frac{mL}{T}\\ &\lfloor ky_1'' = -y_1 + y_2 - y_1 \\ &= -2y_1 + y_2 \, \Big| \end{split}$$

For the second mass:

$$my_{2}'' = -T\sin\theta_{2} + T\sin\theta_{3}$$

$$\approx -T\tan\theta_{2} + T\tan\theta_{3}$$

$$my_{2}'' = -T\frac{y_{2} - y_{1}}{L} + T\frac{y_{2}}{L}$$

$$\frac{L}{T}my_{2}'' = -\frac{L}{T}T\frac{y_{2} - y_{1}}{L} + \frac{L}{T}T\frac{y_{2}}{L} \qquad where \ k = \frac{mL}{T}$$

$$|ky_{2}'' = -y_{2} + y_{1} - y_{2}| = y_{1} - 2y_{2}|$$

$$\Rightarrow \begin{cases} ky_{1}'' = -2y_{1} + y_{2} \\ ky_{2}'' = y_{1} - 2y_{2} \end{cases} \quad where \ k = \frac{mL}{T}$$

Exercise

There 100-gal fermentation vats are connected, and the mixtures in each tank are kept uniform by stirring. Denote by $x_i(t)$ the amount (in pounds) of alcohol in tank T_i at time t (i = 1, 2, 3). Suppose that the mixture circulates between the tanks at the rate of 10 gal/min. Derive the equations

$$\begin{cases} 10x_1' = -x_1 + x_3 \\ 10x_2' = x_1 - x_2 \\ 10x_3' = x_2 - x_3 \end{cases}$$

Solution

Concentration of salt in each tank is: $c_i = \frac{X}{V} = \frac{x_i}{100}$

Rate in/out = Volume Rate x Concentration

 $Rate\ of\ change = Rate\ in-rate\ out$

For
$$T_1$$
: $x_1' = r \frac{x_3}{100} - r \frac{x_1}{100} = \frac{1}{10} (x_3 - x_1)$

For
$$T_2$$
: $x_2' = r \frac{x_1}{100} - r \frac{x_2}{100} = \frac{1}{10} (x_1 - x_2)$

For
$$T_3$$
: $x_3' = r \frac{x_2}{100} - r \frac{x_3}{100} = \frac{1}{10} (x_2 - x_3)$

That implies:

$$\begin{cases} 10x'_1 = -x_1 + x_3 \\ 10x'_2 = x_1 - x_2 \\ 10x'_3 = x_2 - x_3 \end{cases}$$

Exercise

Suppose that a particle with mass m and electrical charge q moves in the xy-plane under the influence of the magnetic field $\vec{B} = B\hat{k}$ (thus a uniform field parallel to the z-axis), so the force on the particle is $\vec{F} = q\vec{v} \times \vec{B}$ if its velocity is \vec{v} . Show that the equations of motion of the particle are

$$mx'' = +qBy', \quad my'' = -qBx'$$

Solution

Let $\vec{r} = (x, y, z)$ be the position vector, then Newton's law

$$\vec{F} = mx''$$

$$\vec{F} = mx'' = q(\vec{v} \times \vec{B})$$

$$= q \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x' & y' & z' \\ 0 & 0 & B \end{vmatrix}$$

$$= qBy'\hat{i} - qBx'\hat{j}$$

$$\Rightarrow mx'' = +qBy', \quad my'' = -qBx'$$

Solutions

Section 3.6 – Planar Systems – Distinct, Complex, and Repeated Eigenvalues – Eigenvectors

Exercise

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 12 & 14 \\ -7 & -9 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} 12 - \lambda & 14 \\ -7 & -9 - \lambda \end{vmatrix}$$
$$= (12 - \lambda)(-9 - \lambda) - (14)(-7)$$
$$= -108 - 12\lambda + 9\lambda + \lambda^{2} + 98$$
$$= \lambda^{2} - 3\lambda - 10 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -2$ and $\lambda_2 = 5$

For
$$\lambda_1 = -2$$
, we have: $\begin{pmatrix} A - \lambda_1 I \end{pmatrix} V_1 = 0$

$$\begin{pmatrix} 12 + 2 & 14 \\ -7 & -9 + 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 14 & 14 \\ -7 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} 14x + 14y = 0 \\ -7x - 7y = 0 \end{cases} \Rightarrow x = -y$$

$$\Rightarrow V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 5$$
, we have $(A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 7 & 14 \\ -7 & -14 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} 7x + 14y = 0 \\ -7x - 14y = 0 \end{cases} \Rightarrow x = -2y$$

$$\Rightarrow V_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Exercise

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} -4 & 1 \\ -2 & 1 \end{pmatrix}$

$$\det(A - \lambda I) = \begin{vmatrix} -4 - \lambda & 1 \\ -2 & 1 - \lambda \end{vmatrix}$$
$$= (-4 - \lambda)(1 - \lambda) + 2$$
$$= \lambda^2 + 3\lambda - 2 = 0$$

Thus, the eigenvalues are:
$$\lambda_1 = \frac{-3 - \sqrt{17}}{2}$$
 and $\lambda_2 = \frac{-3 + \sqrt{17}}{2}$

For
$$\lambda_1 = \frac{-3 - \sqrt{17}}{2}$$
, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -4 - \frac{-3 - \sqrt{17}}{2} & 1 \\ -2 & 1 - \frac{-3 - \sqrt{17}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{-5 + \sqrt{17}}{2} & 1 \\ -2 & \frac{5 + \sqrt{17}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} \frac{-5 + \sqrt{17}}{2} x + y = 0 \\ -2x + \frac{5 + \sqrt{17}}{2} y = 0 \end{cases} \Rightarrow x = \begin{pmatrix} \frac{5 + \sqrt{17}}{4} \end{pmatrix} y$$

$$\Rightarrow V_1 = \begin{pmatrix} \frac{5 + \sqrt{17}}{4} \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = \frac{-3+\sqrt{17}}{2}$$
, we have: $(A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -4 - \frac{-3+\sqrt{17}}{2} & 1 \\ -2 & 1 - \frac{-3+\sqrt{17}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{-5-\sqrt{17}}{2} & 1 \\ -2 & \frac{5-\sqrt{17}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} \frac{-5-\sqrt{17}}{2}x + y = 0 \\ -2x + \frac{5-\sqrt{17}}{2}y = 0 \end{cases} \Rightarrow x = \begin{pmatrix} \frac{5-\sqrt{17}}{4} \end{pmatrix} y$$

$$\Rightarrow V_2 = \begin{pmatrix} \frac{5-\sqrt{17}}{4} \\ 1 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 5 & 3 \\ -6 & -4 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & 3 \\ -6 & -4 - \lambda \end{vmatrix}$$
$$= (-4 - \lambda)(5 - \lambda) + 18$$
$$= \lambda^2 - \lambda - 2 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = 2$

For
$$\lambda_1 = -1$$
, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 6 & 3 \\ -6 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 6x + 3y = 0 \\ -6x - 3y = 0 \end{cases} \Rightarrow y = -2x$$
$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

For
$$\lambda_2 = 2 \implies (A - \lambda_2 I)V_2 = 0$$

$$\begin{pmatrix} 3 & 3 \\ -6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{cases} 3x + 3y = 0 \\ -6x - 6y = 0 \end{cases} \implies y = -x$$

$$\implies V_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} -2 & 3 \\ 0 & -5 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & 3\\ 0 & -5 - \lambda \end{vmatrix}$$
$$= (-2 - \lambda)(-5 - \lambda) - 0$$
$$= (2 + \lambda)(5 + \lambda) = 0$$

Thus, the eigenvalues are: $\lambda_1 = -5$ and $\lambda_2 = -2$

For
$$\lambda_1 = -5$$
, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & 3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 3x + 3y = 0 \Longrightarrow y = -x$$

$$\Longrightarrow V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

For
$$\lambda_2 = -2 \implies (A - \lambda_2 I)V_2 = 0$$

$$\begin{pmatrix} 0 & 3 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{cases} 3y = 0 \\ -3y = 0 \end{cases} \Rightarrow y = 0$$

$$\Rightarrow V_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 6 & 10 \\ -5 & -9 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} 6 - \lambda & 10 \\ -5 & -9 - \lambda \end{vmatrix}$$
$$= (6 - \lambda)(-9 - \lambda) + 50$$
$$= -54 + 3\lambda + \lambda^2 + 50$$
$$= \lambda^2 + 3\lambda - 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -4$ and $\lambda_2 = 1$

For
$$\lambda_1 = -4$$
, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 10 & 10 \\ -5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} 10x + 10y = 0 \\ -5x - 5y = 0 \end{cases} \Rightarrow y = -x$$

$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

For
$$\lambda_2 = 1 \implies (A - \lambda_2 I)V_2 = 0$$

$$\begin{pmatrix} 5 & 10 \\ -5 & -10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \rightarrow \begin{cases} 5x + 10y = 0 \\ -5x - 10y = 0 \end{cases} \implies x = -2y$$

$$\implies V_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Exercise

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 0 \\ 8 & -1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)(-1 - \lambda) - 0$$
$$= \lambda^2 - 2\lambda - 3$$

The characteristic equation: $\lambda^2 - 2\lambda - 3$

$$\lambda^2 - 2\lambda - 3 = 0$$
 The eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 3$

$$\lambda_1 = -1 \rightarrow (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} 4 & 0 \\ 8 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 4x = 0 \\ 8x = 0 \end{cases} \Rightarrow x = 0$$

Therefore, the eigenvector $V_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\lambda_2 = 3 \rightarrow \left(A - \lambda_2 I\right) V_2 = 0$$

$$\begin{pmatrix} 0 & 0 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 0 = 0 \\ 8x - 4y = 0 \end{cases} \Rightarrow 8x = 4y \rightarrow \boxed{2x = y}$$

Therefore, the eigenvector $V_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Exercise

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$

<u>Solution</u>

$$\det(A - \lambda I) = \begin{vmatrix} 10 - \lambda & -9 \\ 4 & -2 - \lambda \end{vmatrix}$$
$$= (10 - \lambda)(-2 - \lambda) + 36$$
$$= \lambda^2 - 8\lambda + 16$$

 \Rightarrow The characteristic equation: $\lambda^2 - 8\lambda + 16$

$$\lambda^2 - 8\lambda + 16 = 0$$
 \Rightarrow The eigenvalues are $\lambda_{1,2} = 4$

$$\lambda_1 = 4 \rightarrow \left(A - \lambda_1 I\right) V_1 = 0$$

$$\begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 6x - 9y = 0 \\ 4x - 6y = 0 \end{cases} \Rightarrow \boxed{2x = 3y}$$

Therefore the eigenvector $V_1 = \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$

Exercise

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 0 & 1 \\ -2 & 1 - \lambda & 0 \\ -2 & 0 & 1 - \lambda \end{vmatrix}$$
$$= (4 - \lambda)(1 - \lambda)(1 - \lambda) + 2(1 - \lambda)$$
$$= (1 - \lambda)[(4 - \lambda)(1 - \lambda) + 2]$$
$$= (1 - \lambda)(\lambda^2 - 5\lambda + 6)$$

 \Rightarrow The characteristic equation: $-\lambda^3 + 6\lambda^2 - 11\lambda + 6$

 $-\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0$ The eigenvalues are $\lambda = 1, 2, 3$

$$\lambda_1 = 1 \rightarrow \begin{pmatrix} 3 & 0 & 1 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 3x_1 + x_3 = 0 \\ x_1 = 0 \end{cases} \Rightarrow x_1 = x_3 = 0$$

Therefore; the eigenvector $V_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

$$\lambda_2 = 2 \quad \rightarrow \quad \begin{pmatrix} 2 & 0 & 1 \\ -2 & -1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \rightarrow \begin{cases} 2x_1 + x_3 = 0 \\ -2x_1 - x_2 = 0 \Rightarrow \begin{cases} x_3 = -2x_1 \\ x_2 = -2x_1 \end{cases}$$

Therefore; the eigenvector $V_2 = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$

$$\lambda_{3} = 3 \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\rightarrow \begin{cases} x_{1} + x_{3} = 0 \\ -2x_{1} - 2x_{2} = 0 \Rightarrow \begin{cases} x_{3} = -x_{1} \\ x_{2} = -x_{1} \end{cases}$$

Therefore; the eigenvector $V_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 3 & 2 \\ -8 & -4 & -3 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 4 & 3 - \lambda & 2 \\ -8 & -4 & -3 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(3 - \lambda)(-3 - \lambda) + 8(1 - \lambda)$$
$$= -9 + 9\lambda + \lambda^2 - \lambda^3 + 8 - 8\lambda$$
$$= -\lambda^3 + \lambda^2 + \lambda - 1 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_{2.3} = 1$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 0 & 0 & 0 \\ 4 & 2 & 2 \\ -8 & -4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 0 = 0 \\ 4x + 2y + 2z = 0 \\ -8x - 4y - 4z = 0 \end{cases} \Rightarrow \begin{cases} 2x = -y - z \\ 2x = -y - z \end{cases} \xrightarrow{[y = -z]} If \boxed{x = 0}$$

$$\Rightarrow V_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_{2,3} = -1$$
 $\Rightarrow \left(A - \lambda_2 I\right) V_2 = 0$

$$\begin{pmatrix} 2 & 0 & 0 \\ 4 & 4 & 2 \\ -8 & -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 2x = 0 \\ 4x + 4y + 2z = 0 \\ -8x - 4y - 2z = 0 \end{cases} \Rightarrow \begin{cases} \boxed{x = 0} \\ 4y = -2z \\ 4y = -2z \end{cases}$$

$$\Rightarrow V_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices $A = \begin{pmatrix} -1 & -4 & -2 \\ 0 & 1 & 1 \\ -6 & -12 & 2 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & -4 & -2 \\ 0 & 1 - \lambda & 1 \\ -6 & -12 & 2 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda)(1 - \lambda)(2 - \lambda) + 24 - 12(1 - \lambda) + 12(-1 - \lambda)$$
$$= -\lambda^3 + 2\lambda^2 + \lambda - 2 + 24 - 12 + 12\lambda - 12 - 12\lambda$$
$$= -\lambda^3 + 2\lambda^2 + \lambda - 2 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$ $\lambda_2 = 1$ and $\lambda_3 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 0 & -4 & -2 \\ 0 & 2 & 1 \\ -6 & -12 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} -4y - 2z = 0 \\ 2y + z = 0 \\ -6x - 12y + 3z = 0 \end{cases} \Rightarrow \begin{cases} -4y = 2z \\ 2y = -z \\ -6x = 12y - 3z \end{cases} \xrightarrow{\begin{vmatrix} y = -\frac{1}{2}z \\ -6z = \frac{3}{2}z \end{vmatrix}}$$

$$\Rightarrow V_1 = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 1$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & -4 & -2 \\ 0 & 0 & 1 \\ -6 & -12 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} -2x - 4y - 2z = 0 \\ z = 0 \\ -6x - 12y + 2z = 0 \end{cases} \Rightarrow \begin{cases} -2x - 4y = 0 \\ -6x - 12y = 0 \end{cases}$$

$$\Rightarrow V_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_3 = 2$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -3 & -4 & -2 \\ 0 & -1 & 1 \\ -6 & -12 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} -3x - 4y - 2z = 0 \\ -y + z = 0 \\ -6x - 12y = 0 \end{cases} \Rightarrow \underbrace{y = z} \Rightarrow \begin{cases} -3x = 6z \\ -6x = 12z \end{cases} \Rightarrow \begin{cases} x = -2z \end{bmatrix}$$

$$\Rightarrow V_3 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices $A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 & 2 \\ 1 & 4 - \lambda & 1 \\ -2 & -4 & -1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)(4 - \lambda)(-1 - \lambda) - 4 - 8 + 4(4 - \lambda) + 4(3 - \lambda) + 2\lambda + 2$$
$$= -\lambda^3 + 6\lambda^2 - 5\lambda - 12 - 12 + 16 - 4\lambda + 12 - 4\lambda + 2\lambda + 2$$
$$= -\lambda^3 + 6\lambda^2 - 11\lambda + 6 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 1$ $\lambda_2 = 2$ and $\lambda_3 = 3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 2 & 2 \\ 1 & 3 & 1 \\ -2 & -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 2x + 2y + 2z = 0 \\ x + 3y + z = 0 \Rightarrow (1) & & (3) \rightarrow \underline{y} = 0 \end{bmatrix}$$

$$-2x - 4y - 2z = 0$$

$$\Rightarrow \begin{cases} 2x + 2z = 0 \\ x + z = 0 \end{cases} \Rightarrow \underline{x} = -z$$

$$\Rightarrow V_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2 \implies (A - \lambda_2 I)V_2 = 0$$

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} x + 2y + 2z = 0 \\ x + 2y + z = 0 \Rightarrow \\ -2x - 4y - 3z = 0 \end{cases} \Rightarrow \begin{cases} 2x + 4y + 2z = 0 \rightarrow z = 0 \Rightarrow x = -2y \\ -2x - 4y - 3z = 0 \end{cases}$$

$$\Rightarrow V_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
For $\lambda_3 = 3 \implies (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ -2 & -4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 2y + 2z = 0 \\ x + y + z = 0 \Rightarrow \\ -2x - 4y - 4z = 0 \end{cases} \Rightarrow \Rightarrow \Rightarrow x = 0$$

$$\Rightarrow V_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices $A = \begin{pmatrix} -6 & 4 & 4 \\ -4 & 2 & 4 \\ -10 & 8 & 4 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} -6 - \lambda & 4 & 4 \\ -4 & 2 - \lambda & 4 \\ -10 & 8 & 4 - \lambda \end{vmatrix}$$
$$= (-6 - \lambda)(2 - \lambda)(4 - \lambda) - 160 - 128 + 40(2 - \lambda) + 32(6 + \lambda) + 16(4 - \lambda)$$
$$= -\lambda^3 + 4\lambda = 0$$

Thus, the eigenvalues are: $\lambda_1 = 0$ $\lambda_2 = -2$ and $\lambda_3 = 2$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -6 & 4 & 4 \\ -4 & 2 & 4 \\ -10 & 8 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} -6x + 4y + 4z = 0 \\ -4x + 2y + 4z = 0 \Rightarrow 2x - 2y = 0 \rightarrow x = y \\ -10x + 8y + 4z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} -2x + 4z = 0 \\ -2x + 4z = 0 \end{cases} \Rightarrow x = 2z = y$$

$$\Rightarrow V_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

$$\Rightarrow V_2 = -2 \Rightarrow (A - \lambda_2 I)V_2 = 0$$

For
$$\lambda_2 = -2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -4 & 4 & 4 \\ -4 & 4 & 4 \\ -10 & 8 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} -4x + 4y + 4z = 0 \\ -4x + 4y + 4z = 0 \Rightarrow -x + y + z = 0 \\ -10x + 8y + 6z = 0 & -5x + 4y + 3z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} 4x - 4y = 4z \\ -5x + 4y = -3z \end{cases} \Rightarrow \begin{vmatrix} x = -z \\ y = -2z \end{vmatrix}$$

$$\Rightarrow V_2 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

For
$$\lambda_3 = 2$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -8 & 4 & 4 \\ -4 & 0 & 4 \\ -10 & 8 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} -8x + 4y + 4z = 0 \\ -4x + 4z = 0 \Rightarrow x = z \Rightarrow \Rightarrow y = z \\ -10x + 8y + 2z = 0 \end{cases} \Rightarrow y = z$$

$$\Rightarrow V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors for each of the matrices. $A = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{pmatrix} -\lambda & 0 & 2 & 0 \\ 1 & -\lambda & 1 & 0 \\ 0 & 1 & -2 - \lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda & 0 & 2 \\ 1 & -\lambda & 1 \\ 0 & 1 & -2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \left(\lambda^{2} (-2 - \lambda) + 2 + \lambda\right)$$
$$= (1 - \lambda) \left(-\lambda^{3} - 2\lambda^{2} + \lambda + 2\right)$$
$$= \lambda^{4} + \lambda^{3} - 3\lambda^{2} - \lambda + 2$$

 \Rightarrow The characteristic equation: $\lambda^4 + \lambda^3 - 3\lambda^2 - \lambda + 2$

$$\lambda^4 + \lambda^3 - 3\lambda^2 - \lambda + 2 = 0 \implies \text{The eigenvalues are } \left[\lambda = -2, -1, 1, 1\right]$$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 0 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 2x_1 + 2x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \\ x_2 = 0 \\ x_4 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = -x_3 \\ x_1 = -x_3 \\ x_2 = 0 \\ x_4 = 0 \end{cases}$$

Therefore; the eigenvector $V_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

For
$$\lambda_2 = -1$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix}
1 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\rightarrow
\begin{cases}
x_1 + 2x_3 = 0 \\
x_1 + x_2 + x_3 = 0 \\
x_2 - x_3 = 0
\end{cases}$$

$$x_4 = 0$$

$$x_1 = -2x_3 \\
x_1 = -x_2 - x_3 \\
x_2 = x_3$$

Therefore; the eigenvector $V_2 = \begin{pmatrix} -2\\1\\1\\0 \end{pmatrix}$

For
$$\lambda_3 = 1$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -1 & 0 & 2 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -x_1 + 2x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ x_2 - 3x_3 = 0 \end{cases}$$

Therefore; the eigenvector $V_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix}$

$$\lambda_4 = 1 \rightarrow \text{Therefore; the eigenvector } V_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Find a fundamental set of solutions for the system x' = Ax, where A is the given matrices.

$$A = \begin{pmatrix} 2 & 0 \\ -4 & -2 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 \\ -4 & -2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(-2 - \lambda) - 0$$
$$= \lambda^2 - 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -2$ and $\lambda_2 = 2$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & 0 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} 4x = 0 \\ -4x = 0 \end{cases} \Rightarrow \boxed{x = 0} \qquad \boxed{y = 1}$$

The eigenvector is: $V_1 = (0, 1)^T$

The solution is: $x_1(t) = e^{-2t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 0 & 0 \\ -4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} 0 = 0 \\ -4x - 4y = 0 \end{cases} \Rightarrow \boxed{x = -y}$$

The eigenvector is: $V_2 = (-1, 1)^T$

The solution is: $x_2(t) = e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Since the vectors V_1 and V_2 are independent, the solutions $x_1(t)$ and $x_2(t)$ are independent for all t and for a fundamental set of solutions.

Exercise

Find a fundamental set of solutions for the system x' = Ax, where A is the given matrices.

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -5 & -6 \\ -2 & 3 & 4 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & 0 & 0 \\ 2 & -5 - \lambda & -6 \\ -2 & 3 & 4 - \lambda \end{vmatrix}$$
$$= \lambda^3 + 2\lambda^2 - \lambda - 2 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -2$ $\lambda_2 = -1$ and $\lambda_3 = 1$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & -3 & -6 \\ -2 & 3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} x = 0 \\ 2x - 3y - 6z = 0 \Rightarrow 3y = -6z \rightarrow y = -2z \\ -2x + 3y + 6z = 0 \end{cases}$$

$$\Rightarrow V_1 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = -1$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & -4 & -6 \\ -2 & 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 0 = 0 \\ 2x - 4y - 6z = 0 \Rightarrow -4y = 6z \Rightarrow y = -z \\ -2x + 3y + 5z = 0 & 3y = -5z \end{cases}$$

$$\Rightarrow 2x = 4y + 6z = 2z \Rightarrow x = z$$

$$\Rightarrow V_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_3 = 1$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -2 & 0 & 0 \\ 2 & -6 & -6 \\ -2 & 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -2x = 0 & x = 0 \\ 2x - 6y - 6z = 0 \Rightarrow -6y = 6z \rightarrow y = -2z \\ -2x + 3y + 3z = 0 & 3y = -3z \end{cases}$$

$$\Rightarrow V_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

The vectors are given by:
$$V = \begin{pmatrix} 0 & 1 & 0 \\ -2 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\det(V) = \begin{vmatrix} 0 & 1 & 0 \\ -2 & -1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = 1 \neq 0$$

The solutions are independent for all t and form a fundamental set of solutions.

Exercise

Find the general solution of the system $\begin{cases}
x'_1(t) = x_1 + 2x_2 \\
x'_2(t) = 4x_1 + 3x_2
\end{cases}$

$$\begin{cases} x_1'(t) = x_1 + 2x_2 \\ x_2'(t) = 4x_1 + 3x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 4\lambda - 5 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = 5$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$

For
$$\lambda_2 = 5$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -4 & 2 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 2x = y \qquad \Rightarrow \qquad V_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t}$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 2x_1 + 2x_2 \\ x_2'(t) = x_1 + 3x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 5\lambda + 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 1$ and $\lambda_2 = 4$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$
$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -2y} \Rightarrow V_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^t$

For
$$\lambda_2 = 4$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$
$$\begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t}$

$$\therefore x(t) = C_1 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = -4x_1 + 2x_2 \\ x_2'(t) = -\frac{5}{2}x_1 + 2x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} -4 & 2 \\ -\frac{5}{2} & 2 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} -4 - \lambda & 2 \\ -\frac{5}{2} & 2 - \lambda \end{vmatrix}$$
$$= \lambda^2 + 2\lambda - 3 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 1$ and $\lambda_2 = -3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -5 & 2 \\ -\frac{5}{2} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{5x = 2y} \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 2 \\ 5 \end{pmatrix} e^t$

For
$$\lambda_2 = -3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 2 \\ -\frac{5}{2} & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = 2y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-3t}$

$$\therefore x(t) = C_1 \begin{pmatrix} 2 \\ 5 \end{pmatrix} e^t + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-3t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = -\frac{5}{2}x_1 + 2x_2 \\ x_2'(t) = \frac{3}{4}x_1 - 2x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} -\frac{5}{2} & 2\\ \frac{3}{4} & -2 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} -\frac{5}{2} - \lambda & 2\\ \frac{3}{4} & -2 - \lambda \end{vmatrix}$$
$$= \lambda^2 + \frac{9}{2}\lambda + \frac{7}{2} = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = -\frac{7}{2}$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -\frac{3}{2} & 2 \\ \frac{3}{4} & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \frac{3}{2}x = 2y$$
 $\Rightarrow V_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

The solution is: $x_1(t) = {4 \choose 3} e^{-t}$

For
$$\lambda_2 = -\frac{7}{2}$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & 2 \\ \frac{3}{4} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = -2y} \qquad \Rightarrow \quad V_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-7t/2}$

$$\therefore x(t) = C_1 {4 \choose 3} e^{-t} + C_2 {-2 \choose 1} e^{-7t/2}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 3x_1 - x_2 \\ x_2'(t) = 9x_1 - 3x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 3 & -1 \\ 9 & -3 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 \\ 9 & -3 - \lambda \end{vmatrix}$$
$$= \lambda^2 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 0$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & -1 \\ 9 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{3x = y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

For the second eigenvector $V_2 \implies AV_2 = V_1$

$$\begin{pmatrix} 3 & -1 \\ 9 & -3 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \longrightarrow 3x - y = 1$$

$$\rightarrow if \quad x=1 \quad \Rightarrow \quad y=2 \qquad \qquad V_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

The solution is:
$$x_2(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} t$$

$$x_2(t) = e^{\lambda t} \left(V_2 + t V_1 \right)$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} t$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = -6x_1 + 5x_2 \\ x_2'(t) = -5x_1 + 4x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} -6 - \lambda & 5 \\ -5 & 4 - \lambda \end{vmatrix}$$
$$= \lambda^2 + 2\lambda + 1 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -5 & 5 \\ -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = y} \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
The solution is: $x_1(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

For the second eigenvector $V_2 \Rightarrow AV_2 = V_1$

$$\begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \longrightarrow -6x + 5y = 1$$

$$\rightarrow if \quad x = 0 \quad \rightarrow \quad y = \frac{1}{5} \qquad \Rightarrow V_2 = \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t$

$$x_{2}\left(t\right) = e^{\lambda t} \left(V_{2} + tV_{1}\right)$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 6x_1 - x_2 \\ x_2'(t) = 5x_1 + 2x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 6 & -1 \\ 5 & 2 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 6 - \lambda & -1 \\ 5 & 2 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 8\lambda + 17 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 4 \pm i$

For
$$\lambda_1 = 4 + i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2-i & -1 \\ 5 & -2-i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow (2-i)x = y$$
 $\Rightarrow V_1 = \begin{pmatrix} 1 \\ 2-i \end{pmatrix}$

The solution is: $x_1(t) = \begin{pmatrix} 1 \\ 2-i \end{pmatrix}$

$$z(t) = \begin{pmatrix} 1 \\ 2 - i \end{pmatrix} e^{(4+i)t}$$

$$= \begin{pmatrix} 1 \\ 2 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix} \Big(\cos t + i \sin t \Big) e^{4t}$$

$$= \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ -1 \end{pmatrix} \sin t + i \begin{pmatrix} 1 \\ 2 \end{pmatrix} \sin t + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \cos t \Big) e^{4t}$$

$$= \begin{pmatrix} \cos t \\ 2 \cos t + \sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ 2 \sin t - \cos t \end{pmatrix} e^{4t}$$

$$\therefore x(t) = C_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{4t} + C_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{4t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x'_{1}(t) = x_{1} + x_{2} \\ x'_{2}(t) = -2x_{1} - x_{2} \end{cases}$$

Solution

$$A = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ -2 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 + 1 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = \pm i$

For
$$\lambda_1 = i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1-i & 1 \\ -2 & -1-i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \underbrace{\left(-1+i\right)x = y} \implies V_1 = \begin{pmatrix} 1 \\ -1+i \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 1 \\ -1+i \end{pmatrix}$

$$z(t) = \begin{pmatrix} 1 \\ -1+i \end{pmatrix} e^{it}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Big(\cos t + i \sin t \Big)$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sin t + i \Big(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \sin t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos t \Big)$$

$$= \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ -\sin t + \cos t \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} + C_2 \begin{pmatrix} \sin t \\ \cos t - \sin t \end{pmatrix}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 5x_1 + x_2 \\ x_2'(t) = -2x_1 + 3x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & 1 \\ -2 & 3 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 8\lambda + 17 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 4 \pm i$

For
$$\lambda_1 = 4 + i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 - i & 1 \\ -2 & -1 - i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad (-1 + i)x = y$$

$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ -1 + i \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 1 \\ -1+i \end{pmatrix}$

$$z(t) = \begin{pmatrix} 1 \\ -1+i \end{pmatrix} e^{(4+i)t}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix} (\cos t + i \sin t) e^{4t}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sin t + i \begin{pmatrix} 1 \\ -1 \end{pmatrix} \sin t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos t \end{pmatrix} e^{4t}$$

$$= \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ 2\sin t + \cos t \end{pmatrix} e^{4t}$$

$$\therefore x(t) = C_1 \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} e^{4t} + C_2 \begin{pmatrix} \sin t \\ 2\sin t + \cos t \end{pmatrix} e^{4t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 4x_1 + 5x_2 \\ x_2'(t) = -2x_1 + 6x_2 \end{cases}$$

Solution

$$A = \begin{pmatrix} 4 & 5 \\ -2 & 6 \end{pmatrix}$$
$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & 5 \\ -2 & 6 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 10\lambda + 34 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 5 \pm 3i$

For
$$\lambda_1 = 5 + 3i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 - 3i & 5 \\ -2 & 1 - 3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow (1 + 3i)x = 5y$$

$$\Rightarrow V_1 = \begin{pmatrix} 5 \\ 1 + 3i \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 5 \\ 1+3i \end{pmatrix}$

$$z(t) = {5 \choose 1+3i} e^{(5+3i)t}$$
$$= {5 \choose 1} + i {0 \choose 3} (\cos 3t + i \sin 3t) e^{5t}$$

$$= \left(\binom{5}{1} \cos 3t - \binom{0}{3} \sin 3t + i \left(\binom{5}{1} \sin 3t + \binom{0}{3} \cos 3t \right) \right) e^{5t}$$

$$= \left(\binom{5 \cos 3t}{\cos 3t - 3 \sin 3t} \right) + i \binom{5 \sin 3t}{\sin 3t + 3 \cos 3t} \right) e^{5t}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 5\cos 3t \\ \cos 3t - 3\sin 3t \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} 5\sin 3t \\ \sin 3t + 3\cos 3t \end{pmatrix} e^{5t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 5x_1 - 4x_2 \\ x_2'(t) = 2x_1 - x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -4 \\ 2 & -1 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 4\lambda + 3 = 0$$

$$A = \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ and $\lambda_2 = 3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$
$$\begin{pmatrix} 4 & -4 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$
$$\begin{pmatrix} 2 & -4 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = 2y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{3t}$$

Exercise

Find the general solution of the system $\begin{cases} x_1'(t) = 6x_1 - 6x_2 \\ x_2'(t) = 4x_1 - 4x_2 \end{cases}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 6 - \lambda & -6 \\ 4 & -4 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 2\lambda = 0$$

$$A = \begin{pmatrix} 6 & -6 \\ 4 & -4 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 0$ & $\lambda_2 = 2$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 6 & -6 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \underline{x = y} \quad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 2$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 4 & -6 \\ 4 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \underline{2x = 3y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{3t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 5x_1 - 3x_2 \\ x_2'(t) = 2x_1 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -3 \\ 2 & -\lambda \end{vmatrix}$$

$$= \lambda^2 - 5\lambda + 6 = 0$$

$$A = \begin{pmatrix} 5 & -3 \\ 2 & 0 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 2$ & $\lambda_2 = 3$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & -3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 2 & -3 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad 2x = 3y \qquad \Rightarrow \quad V_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{3t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x'_{1}(t) = 5x_{1} - 4x_{2} \\ x'_{2}(t) = 3x_{1} - 2x_{2} \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -4 \\ 3 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda + 2 = 0$$

$$A = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & -4 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \underline{x = y} \implies V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 3 & -4 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 3x = 4y \qquad \Rightarrow \qquad V_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} e^{2t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 9x_1 - 8x_2 \\ x_2'(t) = 6x_1 - 5x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 9 - \lambda & -8 \\ 6 & -5 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 4\lambda + 3 = 0$$

$$A = \begin{pmatrix} 9 & -8 \\ 6 & -5 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 8 & -8 \\ 6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \underline{x = y} \longrightarrow V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 6 & -8 \\ 6 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{3x = 4y} \implies V_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} e^{3t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 10x_1 - 6x_2 \\ x_2'(t) = 12x_1 - 7x_2 \end{cases}$$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 10 - \lambda & -6 \\ 12 & -7 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda + 2 = 0$$

$$A = \begin{pmatrix} 10 & -6 \\ 12 & -7 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 9 & -6 \\ 12 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 3x = 2y \rfloor \implies V_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 8 & -6 \\ 12 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \underbrace{4x = 3y} \longrightarrow V_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^t + C_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} e^{2t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 6x_1 - 10x_2 \\ x_2'(t) = 2x_1 - 3x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 6 - \lambda & -10 \\ 2 & -3 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda + 2 = 0$$

$$A = \begin{pmatrix} 6 & -10 \\ 2 & -3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 5 & -10 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \underline{x = 2y} \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 4 & -10 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad 2x = 5y \rfloor \quad \Rightarrow \quad V_2 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 5 \\ 2 \end{pmatrix} e^{2t}$$

 $\begin{cases} x_1'(t) = 11x_1 - 15x_2 \\ x_2'(t) = 6x_1 - 8x_2 \end{cases}$ Find the general solution of the system

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 11 - \lambda & -15 \\ 6 & -8 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda + 2 = 0$$

$$A = \begin{pmatrix} 11 & -15 \\ 6 & -8 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 10 & -15 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad 2x = 3y \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 9 & -15 \\ 6 & -10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 3x = 5y \qquad \Rightarrow \qquad V_2 = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

$$\therefore x(t) = C_1 \binom{3}{2} e^t + C_2 \binom{5}{3} e^{2t}$$

Exercise

 $\begin{cases} x_1'(t) = 3x_1 + x_2 \\ x_2'(t) = x_1 + 3x_2 \end{cases}$ Find the general solution of the system

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 6\lambda + 8 = 0$$

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 2$ & $\lambda_2 = 4$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 4$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = y} \qquad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t}$$

Find the general solution of the system $\begin{cases} x_1'(t) = 4x_1 + 2x_2 \\ x_2'(t) = 2x_1 + 4x_2 \end{cases}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & 2 \\ 2 & 4 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 8\lambda + 12 = 0$$

$$A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 2$ & $\lambda_2 = 6$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -y} \Rightarrow V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 6$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \Rightarrow V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{6t}$$

Exercise

Find the general solution of the system $\begin{cases} x_1'(t) = 9x_1 + 2x_2 \\ x_2'(t) = 2x_1 + 6x_2 \end{cases}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 9 - \lambda & 2 \\ 2 & 6 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 15\lambda + 50 = 0$$

$$A = \begin{pmatrix} 9 & 2 \\ 2 & 6 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 5$ & $\lambda_2 = 10$

For
$$\lambda_1 = 5$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \underline{2x = y} \quad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
For $\lambda_2 = 10$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \underline{x = 2y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{10t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 13x_1 + 4x_2 \\ x_2'(t) = 4x_1 + 7x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 13 - \lambda & 4 \\ 4 & 7 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 20\lambda + 75 = 0$$

$$A = \begin{pmatrix} 13 & 4 \\ 4 & 7 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 5$ & $\lambda_2 = 15$

For
$$\lambda_1 = 5$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 8 & 4 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{2x = y} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
For $\lambda_2 = 15$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{x = 2y} \Rightarrow V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{15t}$$

Exercise

Find the general solution of the system $\begin{cases} x_1'(t) = 3x_1 - 2x_2 \\ x_2'(t) = 2x_1 - 2x_2 \end{cases}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -2 \\ 2 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - \lambda - 2 = 0$$

$$A = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ & $\lambda_2 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{2x = y} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{x = 2y} \Rightarrow V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t}$$

Exercise

Find the general solution of the system $\begin{cases} x_1'(t) = 2x_1 - x_2 \\ x_2'(t) = 3x_1 - 2x_2 \end{cases}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & -1 \\ 3 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 1 = 0$$

$$A = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ & $\lambda_2 = 1$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & -1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{3x = y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

For
$$\lambda_2 = 1$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & -1 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \Rightarrow V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 5x_1 - x_2 \\ x_2'(t) = 3x_1 - x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -1 \\ 3 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 4\lambda - 2 = 0$$

$$A = \begin{pmatrix} 5 & -1 \\ 3 & -1 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = 2 \pm \sqrt{6}$

For
$$\lambda_1 = 2 - \sqrt{6}$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 + \sqrt{6} & -1 \\ 3 & -3 + \sqrt{6} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow (3 + \sqrt{6})x = y$$

$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ 3 + \sqrt{6} \end{pmatrix}$$

For
$$\lambda_2 = 2 + \sqrt{6}$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 3 - \sqrt{6} & -1 \\ 3 & -3 - \sqrt{6} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow (3 - \sqrt{6})x = y$$

$$\Rightarrow V_2 = \begin{pmatrix} 1 \\ 3 - \sqrt{6} \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 3 + \sqrt{6} \end{pmatrix} e^{(2 - \sqrt{6})t} + C_2 \begin{pmatrix} 1 \\ 3 - \sqrt{6} \end{pmatrix} e^{(2 + \sqrt{6})t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = x_1 + x_2 \\ x_2'(t) = 4x_1 - 2x_2 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 4 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 + \lambda - 6 = 0$$

$$A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -3$ & $\lambda_2 = 2$

For
$$\lambda_1 = -3$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 4x = y \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$
$$\begin{pmatrix} -1 & 1 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = y} \quad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\therefore x(t) = C_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = -x_1 - 4x_2 \\ x_2'(t) = x_1 - x_2 \end{cases}$$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} -1 - \lambda & -4 \\ 1 & -1 - \lambda \end{vmatrix}$$
$$= \lambda^2 + 2\lambda + 5 = 0$$
$$A = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1 \pm 2i$

For
$$\lambda_1 = -1 - 2i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2i & -4 \\ 1 & 2i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = -2iy} \quad \Rightarrow \quad V_1 = \begin{pmatrix} 2i \\ -1 \end{pmatrix}$$

$$\underline{x_1(t) = \begin{pmatrix} 2i \\ -1 \end{pmatrix}}$$

$$z(t) = {2i \choose -1} e^{(-1-2i)t}$$

$$= {0 \choose -1} + i {2 \choose 0} (\cos 2t + i \sin 2t) e^{-t}$$

$$= {0 \choose -1} \cos 2t - {2 \choose 0} \sin 2t + i {0 \choose -1} \sin 2t + {2 \choose 0} \cos 2t$$

$$= {0 \choose -1} \cos 2t - {2 \choose 0} \sin 2t + i {0 \choose -1} \sin 2t + {2 \choose 0} \cos 2t$$

$$= {0 \choose -1} \cos 2t + i {2 \cos 2t \choose -\sin 2t} e^{-t}$$

$$\therefore x(t) = C_1 \begin{pmatrix} -2\sin 2t \\ -\cos 2t \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2\cos 2t \\ -\sin 2t \end{pmatrix} e^{-t}$$

Find the general solution of the system

$$\begin{cases} x_1'(t) = 2x_1 + 3x_2 - 7 \\ x_2'(t) = -x_1 - 2x_2 + 5 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 3 \\ -1 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 1 = 0$$

$$A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = 1$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t}$

For
$$\lambda_2 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -3y} \Rightarrow V_1 = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

The solution is: $x_2(t) = \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^t$

$$\begin{aligned} x_h(t) &= C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^t \\ \begin{cases} 2a_1 + 3a_2 &= 7 \\ -a_1 - 2a_2 &= -5 \end{cases} & \Delta = \begin{vmatrix} 2 & 3 \\ -1 & -2 \end{vmatrix} = -1 & \Delta_1 = \begin{vmatrix} 7 & 3 \\ -5 & -2 \end{vmatrix} = 1 & \Delta_2 = \begin{vmatrix} 2 & 7 \\ -1 & -5 \end{vmatrix} = -3 \\ a_1 &= -1 & a_2 &= 3 & \rightarrow & x_p &= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \end{aligned}$$

$$\therefore x(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{t} + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 5x_1 + 9x_2 + 2 \\ x_2'(t) = -x_1 + 11x_2 + 6 \end{cases}$$

Solution

$$A = \begin{pmatrix} 5 & 9 \\ -1 & 11 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & 9 \\ -1 & 11 - \lambda \end{vmatrix}$$
$$= \lambda^2 - 16\lambda - 64 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 8$

For
$$\lambda_1 = 8$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -3 & 9 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = 3y} \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

The solution is: $x_1(t) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{8t}$

For the second eigenvector $V_2 \implies AV_2 = V_1$

$$\begin{pmatrix} -3 & 9 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \longrightarrow -x + 3y = 1$$

$$\rightarrow if \quad y = 1 \quad \Rightarrow \quad x = 2 \qquad V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

The solution is:
$$x_2(t) = \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} t \right) e^{8t}$$

$$x_2(t) = e^{\lambda t} \left(V_2 + tV_1 \right)$$

$$x_h(t) = C_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{8t} + C_2 \left[\begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} t \right] e^{8t}$$

$$\begin{cases} 5a_1 + 9a_2 = -2 \\ -a_1 11a_2 = -6 \end{cases} \qquad \Delta = \begin{vmatrix} 5 & 9 \\ -1 & 11 \end{vmatrix} = 64 \quad \Delta_1 = \begin{vmatrix} -2 & 9 \\ -6 & 11 \end{vmatrix} = 32 \quad \Delta_2 = \begin{vmatrix} 5 & -2 \\ -1 & -6 \end{vmatrix} = -32$$

$$a_1 = \frac{1}{2}$$
 $a_2 = -\frac{1}{2}$ \rightarrow $x_p = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$

$$\therefore x(t) = C_1 \binom{3}{1} e^{8t} + C_2 \left[\binom{2}{1} + \binom{3}{1} t \right] e^{8t} + \binom{\frac{1}{2}}{-\frac{1}{2}}$$

Find the general solution of the system

$$\begin{cases} y_1'(t) = 6y_1 + y_2 + 6t \\ y_2'(t) = 4y_1 + 3y_2 - 10t + 4 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 6 - \lambda & 1 \\ 4 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 6 & 1 \\ 4 & 3 \end{pmatrix}$$
$$= \lambda^2 - 9\lambda + 14 = 0$$

The eigenvalues: $\lambda_{1,2} = 2$, 7

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow 4x = -y \quad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

For
$$\lambda_2 = 7$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \quad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$Y_h = C_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7t}$$

$$\varphi(t) = \begin{pmatrix} e^{2t} & e^{7t} \\ -4e^{2t} & e^{7t} \end{pmatrix}$$

$$\varphi^{-1} = \frac{1}{5e^{9t}} \begin{pmatrix} e^{7t} & -e^{7t} \\ 4e^{2t} & e^{2t} \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} e^{-2t} & -e^{-2t} \\ 4e^{-7t} & e^{-7t} \end{pmatrix}$$

$$\begin{cases} 6y_1 + y_2 + 6t \\ 4y_1 + 3y_2 - 10t + 4 \end{cases}$$

		$\int e^{-7t}$
+	14t + 4	$-\frac{1}{7}e^{-7t}$
_	14	$\frac{1}{49}e^{-7t}$

		$\int e^{-2t}$
+	16 <i>t</i> – 4	$-\frac{1}{2}e^{-2t}$
_	16	$\frac{1}{4}e^{-2t}$

$$F(t) = \begin{pmatrix} 6t \\ -10t + 4 \end{pmatrix}$$

$$Y_{p} = \frac{1}{5} \begin{pmatrix} e^{2t} & e^{7t} \\ -4e^{2t} & e^{7t} \end{pmatrix} \int \begin{pmatrix} e^{-2t} & -e^{-2t} \\ 4e^{-7t} & e^{-7t} \end{pmatrix} \begin{pmatrix} 6t \\ -10t + 4 \end{pmatrix} dt$$
$$= \frac{1}{5} \begin{pmatrix} e^{2t} & e^{7t} \\ -4e^{2t} & e^{7t} \end{pmatrix} \int \begin{pmatrix} (16t - 4)e^{-2t} \\ (14t + 4)e^{-7t} \end{pmatrix} dt$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

$$\begin{split} &= \frac{1}{5} \begin{pmatrix} e^{2t} & e^{7t} \\ -4e^{2t} & e^{7t} \end{pmatrix} \begin{pmatrix} (-8t+2-4)e^{-2t} \\ (-2t-\frac{4}{7}-\frac{14}{49})e^{-7t} \end{pmatrix} \\ &= \frac{1}{5} \begin{pmatrix} e^{2t} & e^{7t} \\ -4e^{2t} & e^{7t} \end{pmatrix} \begin{pmatrix} (-8t-2)e^{-2t} \\ (-2t-\frac{6}{7})e^{-7t} \end{pmatrix} \\ &= \frac{1}{5} \begin{pmatrix} -8t-2-2t-\frac{6}{7} \\ 32t+8-2t-\frac{6}{7} \end{pmatrix} \\ &= \frac{1}{5} \begin{pmatrix} -10t-\frac{20}{7} \\ 30t+\frac{50}{7} \end{pmatrix} \\ &= \begin{pmatrix} -2t-\frac{4}{7} \\ 6t+\frac{10}{7} \end{pmatrix} \\ &= \begin{pmatrix} -2 \\ 6 \end{pmatrix} t + \begin{pmatrix} -\frac{4}{7} \\ \frac{10}{7} \end{pmatrix} \\ &Y(t) = C_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7t} + \begin{pmatrix} -2 \\ 6 \end{pmatrix} t + \begin{pmatrix} -\frac{4}{7} \\ \frac{10}{7} \end{pmatrix} \\ &y_1(t) = C_1 e^{2t} + C_2 e^{7t} - 2t - \frac{4}{7} \\ &y_2(t) = -4C_1 e^{2t} + C_2 e^{7t} + 6t + \frac{10}{7} \end{split}$$

Find the general solution of the system
$$\begin{cases} x'(t) = 5x + 3y - 2e^{-t} + 1\\ y'(t) = -x + y + e^{-t} - 5t + 7 \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & 3 \\ -1 & 1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix}$$
$$= \lambda^2 - 6\lambda + 8 = 0$$

The eigenvalues: $\lambda_{1,2} = 2, 4$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = -y \implies V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 4 \implies (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = -3y \implies V_2 = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

$$\frac{Y_h = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{4t} }{e^{2t} - 3e^{4t}}$$

$$\varphi(t) = \begin{pmatrix} -e^{2t} & -3e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix}$$

$$\varphi^{-1} = \frac{1}{2e^{6t}} \begin{pmatrix} e^{4t} & 3e^{4t} \\ -e^{2t} & -e^{2t} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} e^{-2t} & 3e^{-2t} \\ -e^{-4t} & -e^{-4t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} 1 - 2e^{-t} \\ e^{-t} - 5t + 7 \end{pmatrix}$$

$$\varphi^{-1}(t) F(t) = \frac{1}{2} \begin{pmatrix} e^{-2t} & 3e^{-2t} \\ -e^{-4t} & -e^{-4t} \end{pmatrix} \begin{pmatrix} 1 - 2e^{-t} \\ e^{-t} - 5t + 7 \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \frac{1}{2} \begin{pmatrix} e^{-2t} & 3e^{-2t} \\ -e^{-4t} & -e^{-4t} \end{pmatrix} \begin{pmatrix} 1 - 2e^{-t} \\ e^{-t} - 5t + 7 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} e^{-2t} - 2e^{-3t} + 3e^{-3t} - 15te^{-2t} + 21e^{-2t} \\ -e^{-4t} + 2e^{-5t} - e^{-5t} + 5te^{-4t} - 7e^{-4t} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} e^{-3t} + (-15t + 22)e^{-2t} \\ e^{-5t} + (5t - 8)e^{-4t} \end{pmatrix}$$

$$Y_{p} = \frac{1}{2} \begin{pmatrix} -e^{2t} & -3e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \int \begin{pmatrix} e^{-3t} + (-15t + 22)e^{-2t} \\ e^{-5t} + (5t - 8)e^{-4t} \end{pmatrix} dt$$

$$= \frac{1}{2} \begin{pmatrix} -e^{2t} & -3e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \begin{pmatrix} -\frac{1}{3}e^{-3t} + \left(\frac{15}{2}t - 11 + \frac{15}{4}\right)e^{-2t} \\ -\frac{1}{5}e^{-5t} + \left(-\frac{5}{4}t + 2 - \frac{5}{16}\right)e^{-4t} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} -e^{2t} & -3e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \begin{pmatrix} -\frac{1}{3}e^{-3t} + \left(\frac{15}{2}t - \frac{29}{4}\right)e^{-2t} \\ -\frac{1}{5}e^{-5t} + \left(-\frac{5}{4}t + \frac{27}{16}\right)e^{-4t} \end{pmatrix}$$

		$\int e^{-4t}$
+	5 <i>t</i> – 8	$-\frac{1}{4}e^{-4t}$
_	5	$\frac{1}{16}e^{-4t}$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

		$\int e^{-2t}$
+	-15t + 22	$-\frac{1}{2}e^{-2t}$
_	-15	$\frac{1}{4}e^{-2t}$

$$\begin{split} &=\frac{1}{2}\left(\frac{1}{3}e^{-t}-\frac{15}{2}t+\frac{29}{4}+\frac{3}{5}e^{-t}+\frac{15}{4}t-\frac{81}{16}\right)\\ &=\frac{1}{3}e^{-t}+\frac{15}{2}t-\frac{29}{4}-\frac{1}{5}e^{-t}-\frac{5}{4}t+\frac{27}{16}\right)\\ &=\frac{1}{2}\left(\frac{\frac{14}{15}e^{-t}-\frac{15}{4}t+\frac{35}{16}}{-\frac{8}{15}e^{-t}+\frac{25}{4}t-\frac{89}{16}}\right)\\ &=\left(\frac{\frac{14}{30}e^{-t}-\frac{15}{8}t+\frac{35}{32}}{-\frac{8}{30}e^{-t}+\frac{25}{8}t-\frac{89}{32}}\right)\\ &Y(t)=C_1\begin{pmatrix}-1\\1\end{pmatrix}e^{2t}+C_2\begin{pmatrix}-3\\1\end{pmatrix}e^{4t}+\begin{pmatrix}\frac{14}{30}\\-\frac{8}{30}\end{pmatrix}e^{-t}+\begin{pmatrix}-\frac{15}{4}\\\frac{25}{8}\end{pmatrix}t+\begin{pmatrix}\frac{35}{32}\\-\frac{89}{32}\end{pmatrix}\\ &y_1(t)=-C_1e^{2t}-3C_2e^{4t}+\frac{14}{30}e^{-t}-\frac{15}{4}t+\frac{35}{32}\\ &y_2(t)=C_1e^{2t}+C_2e^{4t}-\frac{8}{30}e^{-t}+\frac{25}{8}t-\frac{89}{32} \end{split}$$

Find the general solution of the system

$$\begin{cases} x'(t) = -3x + y + 3t \\ y'(t) = 2x - 4y + e^{-t} \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} -3 - \lambda & 1 \\ 2 & -4 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} -3 & 1 \\ 2 & -4 \end{pmatrix}$$
$$= \lambda^2 + 7\lambda + 10 = 0$$

The eigenvalues: $\lambda_{1,2} = -2, -5$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \quad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = -5$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow 2x = -y \quad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} - Y_h = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-5t}$$

$$\begin{split} \varphi(t) &= \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \\ \varphi^{-1} &= -\frac{1}{3e^{-7t}} \begin{pmatrix} -2e^{-5t} & -e^{-5t} \\ -e^{-2t} & e^{-2t} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2e^{2t} & e^{2t} \\ e^{5t} & -e^{5t} \end{pmatrix} \\ F(t) &= \begin{pmatrix} 3t \\ e^{-t} \end{pmatrix} \\ \varphi^{-1}(t)F(t) &= \frac{1}{3} \begin{pmatrix} 2e^{2t} & e^{2t} \\ e^{5t} & -e^{5t} \end{pmatrix} \begin{pmatrix} 3t \\ e^{-t} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 6te^{2t} + e^t \\ 3te^{5t} - e^{4t} \end{pmatrix} \\ Y_p &= \frac{1}{3} \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \int \begin{pmatrix} 6te^{2t} + e^t \\ 3te^{5t} - e^{4t} \end{pmatrix} dt \\ &= \frac{1}{3} \begin{pmatrix} e^{-2t} & e^{-5t} \\ e^{-2t} & -2e^{-5t} \end{pmatrix} \begin{pmatrix} (3t - \frac{3}{2})e^{2t} + e^t \\ (\frac{3}{5}t - \frac{3}{25})e^{5t} - \frac{1}{4}e^{4t} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 3t - \frac{3}{2} + e^{-t} + \frac{3}{5}t - \frac{3}{25} - \frac{1}{4}e^{-t} \\ 3t - \frac{3}{2} + e^{-t} - \frac{6}{5}t + \frac{6}{25} + \frac{1}{2}e^{-t} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} \frac{3}{4}e^{-t} + \frac{18}{5}t - \frac{81}{50} \\ \frac{3}{2}e^{-t} + \frac{9}{5}t - \frac{63}{50} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{4}e^{-t} + \frac{6}{5}t - \frac{27}{50} \\ \frac{1}{2}e^{-t} + \frac{3}{5}t - \frac{21}{50} \end{pmatrix} \\ Y(t) &= C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-5t} + \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} e^{-t} + \begin{pmatrix} \frac{6}{5} \\ \frac{3}{5} \end{pmatrix} t - \begin{pmatrix} \frac{27}{50} \\ \frac{21}{50} \end{pmatrix} \\ Y_2(t) &= C_1 e^{-2t} + C_2 e^{-5t} + \frac{1}{4}e^{-t} + \frac{6}{5}t - \frac{27}{50} \\ Y_2(t) &= C_1 e^{-2t} - 2C_2 e^{-5t} + \frac{1}{2}e^{-t} + \frac{3}{5}t - \frac{21}{50} \end{pmatrix} \end{split}$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

		$\int e^{5t}$
+	3t	$\frac{1}{5}e^{5t}$
_	3	$\frac{1}{25}e^{5t}$

Find the general solution of the system

$$\begin{cases} x'(t) = 2x - y + (\sin 2t)e^{2t} \\ y'(t) = 4x + 2y + (2\cos 2t)e^{2t} \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & -1 \\ 4 & 2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix}$$
$$= \lambda^2 - 4\lambda + 8 = 0$$

The eigenvalues: $\lambda_{1,2} = 2 \pm 2i$

For
$$\lambda_1 = 2 - 2i \implies (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} 2i & -1 \\ 4 & 2i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies 2ix = y \implies V_1 = \begin{pmatrix} 1 \\ 2i \end{pmatrix}$$

$$z(t) = \begin{pmatrix} 1 \\ 2i \end{pmatrix} e^{(-2-2i)t}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 2 \end{pmatrix} (\cos 2t - i\sin 2t) e^{-2t}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cos 2t + \begin{pmatrix} 0 \\ 2 \end{pmatrix} \sin 2t + i \begin{pmatrix} 0 \\ 2 \end{pmatrix} \cos 2t - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \sin 2t \end{pmatrix} e^{-2t}$$

$$= \begin{pmatrix} \cos 2t \\ 2\sin 2t \end{pmatrix} + i \begin{pmatrix} -\sin 2t \\ 2\cos 2t \end{pmatrix} e^{2t}$$

$$Y_h = C_1 \begin{pmatrix} \cos 2t \\ 2\sin 2t \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} -\sin 2t \\ 2\cos 2t \end{pmatrix} e^{2t}$$

$$\varphi(t) = \begin{pmatrix} e^{2t} \cos 2t & -e^{2t} \sin 2t \\ 2e^{2t} \sin 2t & 2e^{2t} \cos 2t \end{pmatrix}$$

$$\varphi^{-1} = \frac{1}{2e^{4t}} \begin{pmatrix} 2e^{2t}\cos 2t & e^{2t}\sin 2t \\ -2e^{2t}\sin 2t & e^{2t}\cos 2t \end{pmatrix}$$
$$= \begin{pmatrix} e^{-2t}\cos 2t & \frac{1}{2}e^{-2t}\sin 2t \\ -e^{-2t}\sin 2t & \frac{1}{2}e^{-2t}\cos 2t \end{pmatrix}$$

$$F(t) = \begin{pmatrix} (\sin 2t)e^{2t} \\ (2\cos 2t)e^{2t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} e^{-2t}\cos 2t & \frac{1}{2}e^{-2t}\sin 2t \\ -e^{-2t}\sin 2t & \frac{1}{2}e^{-2t}\cos 2t \end{pmatrix} \begin{pmatrix} (\sin 2t)e^{2t} \\ (2\cos 2t)e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} 2\cos 2t\sin 2t \\ \cos^2 2t - \sin^2 2t \end{pmatrix}$$

$$= \begin{pmatrix} \sin 4t \\ \cos 4t \end{pmatrix}$$

$$Y_p = \begin{pmatrix} e^{2t}\cos 2t & -e^{2t}\sin 2t \\ 2e^{2t}\sin 2t & 2e^{2t}\cos 2t \end{pmatrix} \int \begin{pmatrix} \sin 4t \\ \cos 4t \end{pmatrix} dt \qquad \qquad X_p = \varphi(t) \int \varphi^{-1}(t)F(t)dt$$

$$= \begin{pmatrix} e^{2t}\cos 2t & -e^{2t}\sin 2t \\ 2e^{2t}\sin 2t & 2e^{2t}\cos 2t \end{pmatrix} \begin{pmatrix} -\frac{1}{4}\cos 4t \\ \frac{1}{4}\sin 4t \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{4}\cos 2t\cos 4t - \frac{1}{4}\sin 2t\sin 4t \\ -\frac{1}{2}\sin 2t\cos 4t + \frac{1}{2}\cos 2t\sin 4t \end{pmatrix} e^{2t}$$

$$Y(t) = C_1 \begin{pmatrix} \cos 2t \\ 2\sin 2t \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} -\sin 2t \\ 2\cos 2t \end{pmatrix} e^{2t} + \begin{pmatrix} -\frac{1}{4}\cos 2t\cos 4t - \frac{1}{4}\sin 2t\sin 4t \\ -\frac{1}{2}\sin 2t\cos 4t + \frac{1}{2}\cos 2t\sin 4t \end{pmatrix} e^{2t}$$

$$\begin{cases} x(t) = \left(C_1 \cos 2t - C_2 \sin 2t - \frac{1}{4}\cos 2t\cos 4t - \frac{1}{4}\sin 2t\sin 4t \right) e^{2t} \\ y(t) = \left(2C_1 \sin 2t + 2C_2 \cos 2t - \frac{1}{2}\sin 2t\cos 4t + \frac{1}{2}\cos 2t\sin 4t \right) e^{2t} \end{cases}$$

Find the general solution of the system $\begin{cases} x'(t) = 2y + e^t \\ y'(t) = -x + 3y - e^t \end{cases}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} -\lambda & 2 \\ -1 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$$
$$= \lambda^2 - 3\lambda + 2 = 0$$

The eigenvalues: $\lambda_{1,2} = 1, 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = 2y \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
1141

For
$$\lambda_2 = 2 \implies (A - \lambda_2 I)V_2 = 0$$

$$\begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x = y \implies V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$Y_h = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

$$\varphi(t) = \begin{pmatrix} 2e^t & e^{2t} \\ e^t & e^{2t} \end{pmatrix}$$

$$\varphi^{-1} = \frac{1}{e^{3t}} \begin{pmatrix} e^{2t} & -e^{2t} \\ -e^t & 2e^t \end{pmatrix}$$

$$= \begin{pmatrix} e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} e^t \\ -e^t \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -3e^{-t} \end{pmatrix}$$

$$Y_p = \begin{pmatrix} 2e^t & e^{2t} \\ e^t & e^{2t} \end{pmatrix} \int \begin{pmatrix} 2 \\ -3e^{-t} \end{pmatrix} dt$$

$$= \begin{pmatrix} 2e^t & e^{2t} \\ e^t & e^{2t} \end{pmatrix} \begin{pmatrix} 2t \\ 3e^{-t} \end{pmatrix}$$

$$= \begin{pmatrix} 4te^t + 3 \\ 2te^t + 3 \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 2 \end{pmatrix} te^t + \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$Y(t) = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + C_2 e^{2t} + 4te^t + 3$$

$$Y(t) = C_1e^t + C_2e^{2t} + 2te^t + 3$$

$$Y(t) = C_1e^t + C_2e^{2t} + 2te^t + 3$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

Find the general solution of the system $\begin{cases} x'(t) = 2y + 2 \\ y'(t) = -x + 3y + e^{-3t} \end{cases}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} -\lambda & 2 \\ -1 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$$
$$= \lambda^2 - 3\lambda + 2 = 0$$

The eigenvalues: $\lambda_{1,2} = 1, 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = 2y \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \qquad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$Y_h = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

$$\varphi(t) = \begin{pmatrix} 2e^t & e^{2t} \\ e^t & e^{2t} \end{pmatrix}$$

$$\varphi^{-1} = \frac{1}{e^{3t}} \begin{pmatrix} e^{2t} & -e^{2t} \\ -e^t & 2e^t \end{pmatrix}$$
$$= \begin{pmatrix} e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} 2 \\ e^{-3t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} e^{-t} & -e^{-t} \\ -e^{-2t} & 2e^{-2t} \end{pmatrix} \begin{pmatrix} 2 \\ e^{-3t} \end{pmatrix}$$
$$= \begin{pmatrix} 2e^{-t} - e^{-4t} \\ -2e^{-2t} + 2e^{-5t} \end{pmatrix}$$

$$Y_{p} = \begin{pmatrix} 2e^{t} & e^{2t} \\ e^{t} & e^{2t} \end{pmatrix} \int \begin{pmatrix} 2e^{-t} - e^{-4t} \\ -2e^{-2t} + 2e^{-5t} \end{pmatrix} dt$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

$$= \begin{pmatrix} 2e^{t} & e^{2t} \\ e^{t} & e^{2t} \end{pmatrix} \begin{pmatrix} -2e^{-t} + \frac{1}{4}e^{-4t} \\ e^{-2t} - \frac{2}{5}e^{-5t} \end{pmatrix}$$

$$= \begin{pmatrix} -4 + \frac{1}{2}e^{-3t} + 1 - \frac{2}{5}e^{-3t} \\ -2 + \frac{1}{4}e^{-3t} + 1 - \frac{2}{5}e^{-3t} \end{pmatrix}$$

$$= \begin{pmatrix} -3 + \frac{1}{10}e^{-3t} \\ -1 - \frac{3}{20}e^{-3t} \end{pmatrix}$$

$$Y(t) = C_{1} \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{t} + C_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} \frac{1}{10} \\ -\frac{3}{20} \end{pmatrix} e^{-3t} - \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\begin{cases} x(t) = 2C_{1}e^{t} + C_{2}e^{2t} + \frac{1}{10}e^{-3t} - 3 \\ y(t) = C_{1}e^{t} + C_{2}e^{2t} - \frac{3}{20}e^{-3t} - 1 \end{cases}$$

Find the general solution of the system

$$\begin{cases} x'(t) = x + 8y + 12t \\ y'(t) = x - y + 12t \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 8 \\ 1 & -1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & 8 \\ 1 & -1 \end{pmatrix}$$
$$= \lambda^2 - 9 = 0$$

The eigenvalues: $\lambda_{1,2} = \pm 3$

For
$$\lambda_1 = -3$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -2y \quad \Rightarrow \quad V_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 3$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & 8 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = 4y \quad \Rightarrow \quad V_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$Y_h = C_1 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 4 \\ 1 \end{pmatrix} e^{3t}$$

$$\varphi(t) = \begin{pmatrix} -2e^{-3t} & 4e^{3t} \\ e^{-3t} & e^{3t} \end{pmatrix}$$

$$\varphi^{-1} = -\frac{1}{6} \begin{pmatrix} e^{3t} & -4e^{3t} \\ -e^{-3t} & -2e^{-3t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} 12t \\ 12t \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = -\frac{1}{6} \begin{pmatrix} e^{3t} & -4e^{3t} \\ -e^{-3t} & -2e^{-3t} \end{pmatrix} \begin{pmatrix} 12t \\ 12t \end{pmatrix}$$

$$= \begin{pmatrix} -e^{3t} & 4e^{3t} \\ e^{-3t} & 2e^{-3t} \end{pmatrix} \begin{pmatrix} 2t \\ 2t \end{pmatrix}$$

$$= \begin{pmatrix} 6te^{3t} \\ 6te^{-3t} \end{pmatrix}$$

$$Y_p = \begin{pmatrix} -2e^{-3t} & 4e^{3t} \\ e^{-3t} & e^{3t} \end{pmatrix} \int \begin{pmatrix} 6te^{3t} \\ 6te^{-3t} \end{pmatrix} dt$$

$$= \begin{pmatrix} -2e^{-3t} & 4e^{3t} \\ e^{-3t} & e^{3t} \end{pmatrix} \begin{pmatrix} (2t - \frac{2}{3})e^{3t} \\ (-2t - \frac{2}{3})e^{-3t} \end{pmatrix}$$

$$= \begin{pmatrix} -4t + \frac{4}{3} - 8t - \frac{8}{3} \\ 2t - \frac{2}{3} - 2t - \frac{2}{3} \end{pmatrix}$$

$$\begin{array}{c|cccc}
 & \int e^{3t} \\
+ & 6t & \frac{1}{3}e^{3t} \\
- & 6 & \frac{1}{9}e^{3t}
\end{array}$$

$$Y(t) = C_1 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 4 \\ 1 \end{pmatrix} e^{3t} + \begin{pmatrix} -12 \\ 0 \end{pmatrix} t - \begin{pmatrix} \frac{4}{3} \\ \frac{4}{3} \end{pmatrix}$$

$$\begin{cases} x(t) = -2C_1 e^{-3t} + 4C_2 e^{3t} - 12t - \frac{4}{3} \\ y(t) = C_1 e^{-3t} + C_2 e^{3t} - \frac{4}{3} \end{cases}$$

 $= \begin{pmatrix} -12t - \frac{4}{3} \\ -\frac{4}{3} \end{pmatrix}$

Find the general solution of the system

$$\begin{cases} x'_{1}(t) = x_{1} + x_{2} - x_{3} \\ x'_{2}(t) = 2x_{2} \\ x'_{3}(t) = x_{2} - x_{3} \end{cases}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & -1 \\ 0 & 2 - \lambda & 0 \\ 0 & 1 & -1 - \lambda \end{vmatrix}$$

$$= -\left(1 - \lambda^2\right)(2 - \lambda) = 0$$

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$, $\lambda_2 = 1$ and $\lambda_2 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 2x + y - z = 0 \\ y = 0 \end{cases} \quad 2x - z = 0 \Rightarrow V_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

For
$$\lambda_2 = 1$$
 $\Rightarrow \left(A - \lambda_2 I\right) V_2 = 0$

$$\begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} y - z = 0 & z = 0 \\ y = 0 & \Rightarrow V_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

For
$$\lambda_3 = 2 \implies (A - \lambda_3 I)V_3 = 0$$

$$\begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} -x + y - z = 0 \\ y = 3z \end{cases} \implies V_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{t} + C_3 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} e^{2t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 2x_1 - 7x_2 \\ x_2'(t) = 5x_1 + 10x_2 + 4x_3 \\ x_3'(t) = 5x_2 + 2x_3 \end{cases}$$

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & -7 & 0 \\ 5 & 10 - \lambda & 4 \\ 0 & 5 & 2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 2 & -7 & 0 \\ 5 & 10 & 4 \\ 0 & 5 & 2 \end{pmatrix}$$
$$= (2 - \lambda)^2 (10 - \lambda) - 20(2 - \lambda) + 35(2 - \lambda)$$
$$= (2 - \lambda)((10 - \lambda)(2 - \lambda) + 15)$$
$$= (2 - \lambda)(35 - 12\lambda + \lambda^2) = 0$$

Thus, the eigenvalues are: $\lambda_1 = 2$, $\lambda_2 = 5$ and $\lambda_2 = 7$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 0 & -7 & 0 \\ 5 & 8 & 4 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} y = 0 \\ 5x = -4z \Rightarrow V_1 = \begin{pmatrix} -5 \\ 0 \\ 4 \end{pmatrix}$$

For
$$\lambda_2 = 5$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -5 & -7 & 0 \\ 5 & 3 & 4 \\ 0 & 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 5x = -7y \\ y = z \end{cases} \Rightarrow V_2 = \begin{pmatrix} -7 \\ 5 \\ 5 \end{pmatrix}$$

For
$$\lambda_3 = 7 \implies (A - \lambda_3 I)V_3 = 0$$

$$\begin{pmatrix} 0 & -7 & 0 \\ 5 & 8 & 4 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{cases} y = 0 \\ 5x = -4z \implies V_1 = \begin{pmatrix} -5 \\ 0 \\ 4 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} -7 \\ 3 \\ 5 \end{pmatrix} e^{5t} + C_3 \begin{pmatrix} -7 \\ 5 \\ 5 \end{pmatrix} e^{7t}$$

Exercise

Find the general solution of the system
$$\begin{cases} x_1'(t) = 3x_1 - x_2 - x_3 \\ x_2'(t) = x_1 + x_2 - x_3 \\ x_3'(t) = x_1 - x_2 + x_3 \end{cases}$$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ 1 & 1 - \lambda & -1 \\ 1 & -1 & 1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
$$= \left(1 - 2\lambda + \lambda^2\right) (3 - \lambda) + 2 + 2 - 2\lambda - 3 + \lambda$$

$$= 3 - 7\lambda + 5\lambda^2 - \lambda^3 + 1 - \lambda$$
$$= -\lambda^3 + 5\lambda^2 - 8\lambda + 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 1$ and $\lambda_{2,3} = 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} y = 0 \\ x = y \\ x = z \end{cases} \Longrightarrow V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$x(t) = C_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + C_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t}$$

Exercise

Find the general solution of the system

$$\begin{cases} x_1'(t) = 3x_1 + 2x_2 + 4x_3 \\ x_2'(t) = 2x_1 + 2x_3 \\ x_3'(t) = 4x_1 + 2x_2 + 3x_3 \end{cases}$$

Solution

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix}$$

$$= -9\lambda + 6\lambda^2 - \lambda^3 + 32 + 16\lambda - 12 + 4\lambda - 12 + 4\lambda$$

$$= -\lambda^3 + 6\lambda^2 + 15\lambda + 8 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 8$ and $\lambda_{2,3} = -1$

For
$$\lambda_1 = 8$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 5x - 2y - 4z = 0 \\ x - 4y + z = 0 \\ 4x + 2y - 5z = 0 \end{cases} \Rightarrow V_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
For $\lambda_2 = -1$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 2x + y + 2z = 0 \\ 2x + y + 2z = 0 \\ 4x + 2y + 4z = 0 \end{cases} \Rightarrow V_2 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$\Rightarrow V_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} e^{8t} + C_2 \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} e^{-t} + C_3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t}$$

Find the general solution of the system
$$\begin{cases} x_1'(t) = x_1 + x_2 + x_3 \\ x_2'(t) = 2x_1 + x_2 - x_3 \\ x_3'(t) = -8x_1 - 5x_2 - 3x_3 \end{cases}$$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 2 & 1 - \lambda & -1 \\ -8 & -5 & -3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix}$$
$$= \left(1 - 2\lambda + \lambda^2\right) \left(-3 - \lambda\right) - 2 + 3 - 3\lambda + 6 + 2\lambda$$
$$= -\lambda^3 - \lambda^2 + 4\lambda + 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -1$, $\lambda_2 = -2$, and $\lambda_3 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & -1 \\ -8 & -5 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} 2x + y + z = 0 \\ 2x + 2y - z = 0 \\ -8x - 5y - 2z = 0 \end{cases}$$

$$z = 1 \Rightarrow \begin{cases} 2x + y = -1 \\ 2x + 2y = 1 \end{cases} \qquad \Delta = \begin{vmatrix} 2 & 1 \\ 2 & 2 \end{vmatrix} = 2 \qquad \Delta_x = \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = -3 \qquad \Delta_y = \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} = 4$$

$$\Rightarrow V_1 = \begin{pmatrix} -\frac{3}{2} \\ 2 \\ 1 \end{pmatrix}$$

$$-2 \Rightarrow (A - \lambda_2)$$

For
$$\lambda_2 = -2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 3 & 1 & 1 \\ 2 & 3 & -1 \\ -8 & -5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} 3x + y + z = 0 \\ 2x + 3y - z = 0 \\ -8x - 5y - z = 0 \end{cases}$$

$$z = 1 \rightarrow \begin{cases} 3x + y = -1 \\ 2x + 3y = 1 \end{cases} \qquad \Delta = \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} = 7 \quad \Delta_x = \begin{vmatrix} -1 & 1 \\ 1 & 3 \end{vmatrix} = -4 \quad \Delta_y = \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} = 5$$

$$\Rightarrow V_2 = \begin{pmatrix} -\frac{4}{7} \\ \frac{5}{7} \\ 1 \end{pmatrix}$$

For
$$\lambda_3 = 2$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -1 & 1 & 1 \\ 2 & -1 & -1 \\ -8 & -5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} -x + y + z = 0 \\ 2x - y - z = 0 \\ -8x - 5y - 5z = 0 \end{cases}$$

$$x = 0 \rightarrow \begin{cases} y + z = 0 \\ -y - z = 0 \end{cases} \Rightarrow V_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} -\frac{3}{2} \\ 2 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -\frac{4}{7} \\ \frac{5}{7} \\ 1 \end{pmatrix} e^{-2t} + C_3 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} e^{2t}$$

Find the general solution of the system

$$\begin{cases} x'_{1}(t) = x_{1} - x_{2} + 4x_{3} \\ x'_{2}(t) = 3x_{1} + 2x_{2} - x_{3} \\ x'_{3}(t) = 2x_{1} + x_{2} - x_{3} \end{cases}$$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 & 4 \\ 3 & 2 - \lambda & -1 \\ 2 & 1 & -1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$= -\left(1 - \lambda^{2}\right)(2 - \lambda) + 14 - 16 + 8\lambda + 1 - \lambda - 3 - 3\lambda$$

$$= -\lambda^{3} + 2\lambda^{2} + 5\lambda - 6 = 0$$

$$= 0$$
The eigenvalues are: $\lambda_{1} = -2$, $\lambda_{2} = 1$, and $\lambda_{3} = 3$

$$\begin{vmatrix}
1 & -1 & 2 & 5 & -6 \\
-1 & 1 & 6 & 0 \\
\hline
-1 & 1 & 6 & 0
\end{vmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -2$, $\lambda_2 = 1$, and $\lambda_3 = 3$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & -1 & 4 \\ 3 & 4 & -1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 3x - y + 4z = 0 \\ 3x + 4y - z = 0 \\ 2x + y + z = 0 \end{cases}$$

$$z = 1 \rightarrow \begin{cases} 3x - y = -4 \\ 3x + 4y = 1 \end{cases} \qquad \Delta = \begin{vmatrix} 3 & -1 \\ 3 & 4 \end{vmatrix} = 15 \quad \Delta_x = \begin{vmatrix} -4 & -1 \\ 1 & 4 \end{vmatrix} = -15 \quad \Delta_y = \begin{vmatrix} 3 & -4 \\ 3 & 1 \end{vmatrix} = 15$$

$$\Rightarrow V_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 1$$
 $\Rightarrow \left(A - \lambda_2 I\right) V_2 = 0$

$$\begin{pmatrix} 0 & -1 & 4 \\ 3 & 1 & -1 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} -y + 4z = 0 \\ 3x + y - z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

$$z = 1 \quad \Rightarrow \begin{cases} y = 4 \\ 3x + y = 1 \end{cases} \quad \Rightarrow \quad V_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$$

For
$$\lambda_3 = 3$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -2 & -1 & 4 \\ 3 & -1 & -1 \\ 2 & 1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} -2x - y + 4z = 0 \\ 3x - y - z = 0 \\ 2x + y - 4z = 0 \end{cases}$$

$$z = 1 \Rightarrow \begin{cases} -2x - y = -4 \\ 3x - y = 1 \end{cases} \qquad \Delta = \begin{vmatrix} -2 & -1 \\ 3 & -1 \end{vmatrix} = 5 \qquad \Delta_x = \begin{vmatrix} -4 & -1 \\ 1 & -1 \end{vmatrix} = 5 \qquad \Delta_y = \begin{vmatrix} -2 & -4 \\ 3 & 1 \end{vmatrix} = 10$$

$$\Rightarrow V_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$x(t) = C_1 \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} e^{-2t} + C_2 \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} e^t + C_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} e^{3t}$$

Find the general solution of the system $\begin{cases} x_1'(t) = x_1 + x_2 + e^t \\ x_2'(t) = x_1 + x_2 + e^{2t} \\ x_3'(t) = 3x_3 + te^{3t} \end{cases}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$= (1 - 2\lambda + \lambda^2)(3 - \lambda) - (3 - \lambda)$$
$$= (3 - \lambda)(\lambda^2 - 2\lambda) = 0$$

The eigenvalues: $\lambda_{1,2,3} = 0$, 2, 3

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} x = -y \\ z = 0 \end{cases} \Rightarrow V_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} x = y \\ z = 0 \end{cases} \Rightarrow V_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_3 = 3$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} 2x = y \\ x = 2y \end{cases} \Rightarrow V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$X_{h} = C_{1} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + C_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{3t}$$

$$\varphi(t) = \begin{pmatrix} -1 & e^{2t} & 0 \\ 1 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix}$$

$$\varphi^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2}e^{-2t} & \frac{1}{2}e^{-2t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} e^{t} \\ e^{2t} \\ te^{3t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2}e^{-2t} & \frac{1}{2}e^{-2t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix} \begin{pmatrix} e^{t} \\ e^{2t} \\ te^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}e^{t} - \frac{1}{2}e^{2t} \\ \frac{1}{2}e^{-t} + \frac{1}{2} \\ t \end{pmatrix}$$

$$\int (\frac{1}{2}e^{t} - \frac{1}{2}e^{2t})dt = \frac{1}{2}e^{t} - \frac{1}{4}e^{2t}$$

$$\int tdt = \frac{1}{2}t^{2}$$

$$X_{p} = \begin{pmatrix} -1 & e^{2t} & 0 \\ 1 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{1}{2}e^{t} - \frac{1}{4}e^{2t} \\ -\frac{1}{2}e^{-t} + \frac{1}{2}t \\ \frac{1}{2}t^{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2}e^{t} + \frac{1}{4}e^{2t} - \frac{1}{2}e^{t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}e^{t} - \frac{1}{4}e^{2t} - \frac{1}{2}e^{t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}t^{2}e^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} -e^{t} + \frac{1}{4}e^{2t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}t^{2}e^{3t} \end{pmatrix}$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

$$X(t) = C_{1} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + C_{3} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} e^{3t} + \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} e^{t} + \begin{pmatrix} \frac{1}{2}t + \frac{1}{4} \\ \frac{1}{2}t - \frac{1}{4} \\ 0 \end{pmatrix} e^{2t} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2}t^{2} \end{pmatrix} e^{3t}$$

$$\begin{bmatrix} x_{1}(t) = -C_{1} - e^{t} + \left(C_{2} + \frac{1}{2}t + \frac{1}{4}\right)e^{2t} + C_{3}e^{3t} \end{bmatrix}$$

$$\begin{cases} x_1(t) = -C_1 - e^t + \left(C_2 + \frac{1}{2}t + \frac{1}{4}\right)e^{2t} + C_3e^{3t} \\ x_2(t) = C_1 + \left(C_2 + \frac{1}{2}t - \frac{1}{4}\right)e^{2t} + 2C_3e^{3t} \\ x_3(t) = \left(C_3 + \frac{1}{2}t^2\right)e^{3t} \end{cases}$$

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = -y_1 + 6y_2 \\ y_2'(t) = -3y_1 + 8y_2 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & 6 \\ -3 & 8 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda)(8 - \lambda) + 18$$

$$= -8 - 7\lambda + \lambda^2 + 18$$

$$= \lambda^2 - 7\lambda + 10$$

$$A = \begin{pmatrix} -1 & 6 \\ -3 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 6 \\ -3 & 8 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 2$ and $\lambda_2 = 5$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -3 & 6 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -3x + 6y = 0 \\ -3x + 6y = 0 \end{cases} \Rightarrow \boxed{x = 2y}$$

$$V_1 = (2, 1)^T$$

The solution is: $y_1(t) = e^{2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

For
$$\lambda_2 = 5$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -6 & 6 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} -6x + 6y = 0 \\ -3x + 3y = 0 \end{cases} \Rightarrow \boxed{x = y} \qquad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^T$$

The solution is: $y_2(t) = e^{5t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

The general solution is given by: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$y(t) = C_1 e^{2t} \binom{2}{1} + C_2 e^{5t} \binom{1}{1}$$

$$y(0) = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2C_1 + C_2 \\ C_1 + C_2 \end{pmatrix} \longrightarrow \begin{cases} 2C_1 + C_2 = 1 \\ C_1 + C_2 = -2 \end{cases} \longrightarrow \begin{bmatrix} C_1 = 3 \end{bmatrix} \qquad \boxed{C_2 = -5}$$

The particular solution is:

$$y(t) = 3e^{2t} {2 \choose 1} - 5e^{5t} {1 \choose 1} \rightarrow \begin{cases} y_1(t) = 6e^{2t} - 5e^{5t} \\ y_2(t) = 3e^{2t} - 5e^{5t} \end{cases}$$

Exercise

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = y_1 + 2y_2 \\ y_2'(t) = -y_1 + 4y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \qquad |A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ -1 & 4 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(4 - \lambda) + 2$$
$$= 4 - 5\lambda + \lambda^2 + 2$$
$$= \lambda^2 - 5\lambda + 6$$

Thus, the eigenvalues are: $\lambda_1 = 2$ and $\lambda_2 = 3$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -x + 2y = 0 \\ -x + 2y = 0 \end{cases} \Rightarrow \boxed{x = 2y}$$

The eigenvector is: $V_1 = (2, 1)^T$

The solution is: $y_1(t) = e^{2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -2x + 2y = 0 \\ -x + y = 0 \end{cases} \Rightarrow \boxed{x = y}$$

The eigenvector is: $V_2 = (1, 1)^T$

The solution is: $y_2(t) = e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

The general solution is given by: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$y(t) = C_1 e^{2t} \binom{2}{1} + C_2 e^{3t} \binom{1}{1}$$

$$y(0) = C_1 \binom{2}{1} + C_2 \binom{1}{1}$$

$$\binom{3}{2} = \binom{2C_1 + C_2}{C_1 + C_2} \longrightarrow \binom{2C_1 + C_2 = 3}{C_1 + C_2 = 2} \longrightarrow \boxed{C_1 = 1}$$

$$\boxed{C_2 = 1}$$

The particular solution is: $y(t) = e^{2t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Exercise

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -4y_1 - 8y_2 \\ y_2'(t) = 4y_1 + 4y_2 \end{cases} \quad y(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} -4 & -8 \\ 4 & 4 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} -4 - \lambda & -8 \\ 4 & 4 - \lambda \end{vmatrix}$$

$$= (-4 - \lambda)(4 - \lambda) + 32$$

$$= -16 + \lambda^2 + 32$$

$$= \lambda^2 + 16 = 0$$

$$\lambda^2 = -16 \Rightarrow \lambda = \pm 4i$$

Thus, the eigenvalues are: $\lambda_1 = -4i$ and $\lambda_2 = 4i$

For
$$\lambda = 4i$$
 $\Rightarrow (A - \lambda I)V = 0$

$$\begin{pmatrix} -4 - 4i & -8 \\ 4 & 4 - 4i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} (-4 - 4i)x - 8y = 0 \\ 4x + (4 - 4i)y = 0 \end{cases} \Rightarrow divide by 4 \begin{cases} -x - ix - 2y = 0 \\ x + y - iy = 0 \\ -ix - y - iy = 0 \end{cases}$$

$$ix = (-1 - i)y \Rightarrow \underline{x} = \frac{-1 - i}{i}y\frac{i}{i} = \frac{-i + 1}{-1}y = (-1 + i)y$$

The eigenvector is: $V = (-1+i, 1)^T$

$$z(t) = e^{4it} \begin{pmatrix} -1+i\\1 \end{pmatrix}$$

$$= \left(\cos 4t + i\sin 4t\right) \left[\begin{pmatrix} -1\\1 \end{pmatrix} + i \begin{pmatrix} 1\\0 \end{pmatrix} \right]$$

$$= \cos 4t \begin{pmatrix} -1\\1 \end{pmatrix} - \sin 4t \begin{pmatrix} 1\\0 \end{pmatrix} + i \left(\sin 4t \begin{pmatrix} -1\\1 \end{pmatrix} + \cos 4t \begin{pmatrix} 1\\0 \end{pmatrix} \right)$$

$$= \begin{pmatrix} -\cos 4t - \sin 4t \\ \cos 4t \end{pmatrix} + i \begin{pmatrix} -\sin 4t + \cos 4t \\ \sin 4t \end{pmatrix}$$
$$y_1(t) = \begin{pmatrix} -\cos 4t - \sin 4t \\ \cos 4t \end{pmatrix} & & y_2(t) = \begin{pmatrix} -\sin 4t + \cos 4t \\ \sin 4t \end{pmatrix}$$

The general solution is given by: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$y(t) = C_1 \begin{pmatrix} -\cos 4t - \sin 4t \\ \cos 4t \end{pmatrix} + C_2 \begin{pmatrix} \cos 4t - \sin 4t \\ \sin 4t \end{pmatrix}$$

$$y(0) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -C_1 + C_2 \\ C_1 \end{pmatrix} \Rightarrow C_1 = 2 \begin{vmatrix} C_2 = 2 \end{vmatrix}$$

$$y(t) = 2 \begin{pmatrix} -\cos 4t - \sin 4t \\ \cos 4t \end{pmatrix} + 2 \begin{pmatrix} \cos 4t - \sin 4t \\ \sin 4t \end{pmatrix}$$

$$= \begin{pmatrix} -4\sin 4t \\ 2\cos 4t + 2\sin 4t \end{pmatrix}$$

Exercise

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -y_1 - 2y_2 \\ y_2'(t) = 4y_1 + 3y_2 \end{cases} \quad y(0) = (0 \quad 1)^T$

$$A = \begin{pmatrix} -1 & -2 \\ 4 & 3 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & -2 \\ 4 & 3 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda)(3 - \lambda) + 8$$

$$= -3 - 2\lambda + \lambda^2 + 8$$

$$= \lambda^2 - 2\lambda + 5 = 0$$

$$\Rightarrow \lambda = 1 \pm 2i$$

For
$$\lambda = 1 + 2i$$
 $\Rightarrow (A - \lambda I)V = 0$

$$\begin{pmatrix} -2 - 2i & -2 \\ 4 & 2 - 2i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} (-2 - 2i)x - 2y = 0 \\ 4x + (2 - 2i)y = 0 \end{cases} \Rightarrow divide \ by \ 2 \begin{cases} -x - ix - y = 0 \\ 2x + y - iy = 0 \end{cases}$$

$$(1 - i)x = iy \Rightarrow \frac{i}{i} \frac{1 - i}{i} x = y$$

$$\Rightarrow y = -(i + 1)x$$

The eigenvector is: $V = (1, -1-i)^T$

$$z(t) = e^{(1+2i)t} \begin{pmatrix} 1 \\ -1-i \end{pmatrix}$$

$$= e^{t}e^{2it} \begin{pmatrix} 1 \\ -1-i \end{pmatrix}$$

$$= e^{t} \left(\cos 2t + i\sin 2t\right) \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix} + i\begin{pmatrix} 0 \\ -1 \end{pmatrix}\right)$$

$$= e^{t} \left[\cos 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + i\cos 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + i\sin 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \sin 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix}\right]$$

$$= e^{t} \left[\cos 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \sin 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix}\right] + ie^{t} \left[\left(\cos 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \sin 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)\right]$$

$$= e^{t} \begin{pmatrix} \cos 2t \\ -\cos 2t + \sin 2t \end{pmatrix} + ie^{t} \begin{pmatrix} \sin 2t \\ -\cos 2t - \sin 2t \end{pmatrix}$$

$$y_{1}(t) = e^{t} \begin{pmatrix} \cos 2t \\ -\cos 2t + \sin 2t \end{pmatrix}$$

$$& \qquad y_{2}(t) = e^{t} \begin{pmatrix} \sin 2t \\ -\cos 2t - \sin 2t \end{pmatrix}$$

Form a fundamental equation:

$$y(t) = C_1 e^t \begin{pmatrix} \cos 2t \\ -\cos 2t + \sin 2t \end{pmatrix} + C_2 e^t \begin{pmatrix} \sin 2t \\ -\cos 2t - \sin 2t \end{pmatrix}$$

$$y(0) = C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} C_1 \\ -C_1 - C_2 \end{pmatrix} \implies C_1 = 0 \mid C_2 = -1 \mid$$

$$y(t) = -e^t \begin{pmatrix} \sin 2t \\ -\cos 2t - \sin 2t \end{pmatrix}$$

Exercise

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 - y_2 \\ y_2'(t) = y_1 + y_2 \end{cases} \quad y(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix}$$

$$= (3 - \lambda)(1 - \lambda) + 1$$

$$= 3 - 4\lambda + \lambda^2 + 1$$

$$A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$$

$$=\lambda^2-4\lambda+4=0$$

Thus, the eigenvalues are: $\lambda_1 = \lambda_2 = 2$

For
$$\lambda = 2$$
 $\Rightarrow (A - 2I)V_1 = 0$

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \begin{cases} x - y = 0 \\ x - y = 0 \end{cases} \Rightarrow \underline{x = y}$$

The eigenvector is: $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

The solution is: $y_1(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$

For the second eigenvector $V_2 \implies (A-2I)V_2 = V_1$

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \longrightarrow \begin{cases} x - y = 1 \\ x - y = 1 \end{cases} \Rightarrow if \ y = 0 \Rightarrow \underline{x = 1}$$

The eigenvector is: $V_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

The solution is: $y_2(t) = e^{2t} \left(V_2 + tV_1 \right)$

$$=e^{2t}\left(\begin{pmatrix}1\\0\end{pmatrix}+t\begin{pmatrix}1\\1\end{pmatrix}\right)$$

Therefore, the final solution can be written as: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$\begin{aligned} y(t) &= C_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &= e^{2t} \begin{pmatrix} C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ & \end{aligned}$$

$$y(0) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} C_1 + C_2 \\ C_1 \end{pmatrix} \longrightarrow \begin{cases} C_1 + C_2 = 2 \\ C_1 = -1 \end{pmatrix} \Rightarrow \underline{|C_2|} = 2 - C_1 \underline{= 3}$$

$$y(t) = e^{2t} \left(-\binom{1}{1} + 3\binom{1}{0} + 3t \binom{1}{1} \right)$$
$$= e^{2t} \binom{2+3t}{-1+3t}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -3y_1 + y_2 \\ y_2'(t) = -y_1 - y_2 \end{cases} \quad y(0) = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} -3 & 1 \\ -1 & -1 \end{pmatrix} \qquad |A - \lambda I| = \begin{vmatrix} -3 - \lambda & 1 \\ -1 & -1 - \lambda \end{vmatrix}$$
$$= (-3 - \lambda)(-1 - \lambda) + 1$$
$$= 3 + 4\lambda + \lambda^2 + 1$$
$$= \lambda^2 + 4\lambda + 4 = 0$$

Thus, the eigenvalues are: $\lambda_1 = \lambda_2 = -2$

For
$$\lambda = -2$$
 $\Rightarrow (A+2I)V_1 = 0$
$$\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -x+y=0 \\ -x+y=0 \end{cases} \Rightarrow x=y$$
 The eigenvector is: $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\Rightarrow y_1(t) = e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For the second eigenvector $V_2 \implies (A+2I)V_2 = V_1$

$$\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \longrightarrow \begin{cases} -x + y = 1 \\ -x + y = 1 \end{cases} \implies if \ y = 0 \implies \underline{x = -1}$$

The eigenvector is: $V_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

The solution is:
$$y_2(t) = e^{-2t} \left(V_2 + tV_1 \right)$$
$$= e^{-2t} \left(\begin{pmatrix} -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)$$

Therefore, the final solution can be written as: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$y(t) = C_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= e^{-2t} \begin{pmatrix} C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \end{pmatrix} + C_2 t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$y(0) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} C_1 - C_2 \\ C_1 \end{pmatrix} \longrightarrow \begin{cases} C_1 - C_2 = 0 \\ C_1 = -3 \end{pmatrix} \Longrightarrow |C_2 = C_1 = -3|$$

$$y(t) = e^{-2t} \begin{pmatrix} -3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 0 \end{pmatrix} - 3t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$= e^{-2t} \begin{pmatrix} -3t \\ -3 - 3t \end{pmatrix}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 2y_1 + 4y_2 \\ y_2'(t) = -y_1 + 6y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

Solution

$$A = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 4 \\ -1 & 6 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)(6 - \lambda) + 4$$

$$= 12 - 2\lambda - 6\lambda + \lambda^2 + 4$$

$$= \lambda^2 - 8\lambda + 16 = 0$$

Thus, the eigenvalues are: $\lambda_1 = \lambda_2 = 4$

For
$$\lambda = 4$$
 $\Rightarrow (A - 4I)V_1 = 0$

$$\begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} -2x + 4y = 0 \\ -x + 2y = 0 \end{cases} \Rightarrow \underbrace{x = 2y}$$

The eigenvector is: $V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

$$\Rightarrow y_1(t) = e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

For the second eigenvector V_2 $\Rightarrow (A-4I)V_2 = V_1$

$$\begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \longrightarrow \begin{cases} -2x + 4y = 2 \\ -x + 2y = 1 \end{cases} \implies if \ y = 0 \implies \underline{x = -1}$$

The eigenvector is: $V_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

The solution is:
$$y_2(t) = e^{4t} \left(V_2 + tV_1 \right)$$
$$= e^{4t} \left(\begin{pmatrix} -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)$$

Therefore, the final solution can be written as: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$\begin{split} y(t) &= C_1 e^{-2t} \binom{1}{1} + C_2 e^{-2t} \binom{-1}{0} + t \binom{1}{1} \end{pmatrix} \\ &= e^{4t} \binom{2}{1} + C_2 \binom{-1}{0} + C_2 t \binom{2}{1} \end{pmatrix} \\ y(0) &= C_1 \binom{2}{1} + C_2 \binom{-1}{0} \\ \binom{3}{1} &= \binom{2C_1 - C_2}{C_1} & \rightarrow \begin{cases} 2C_1 - C_2 = 3 \\ C_1 = 1 \end{cases} \\ &\Rightarrow \binom{2}{2} = 2C_1 - 3 = -1 \end{cases} \\ y(t) &= e^{4t} \binom{2}{1} - \binom{-1}{0} - t \binom{2}{1} \end{pmatrix} \\ &= e^{4t} \binom{3 - 2t}{1 - t} \end{bmatrix}$$

Exercise

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = -8y_1 - 10y_2 \\ y_2'(t) = 5y_1 + 7y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Solution

$$A = \begin{pmatrix} -8 & -10 \\ 5 & 7 \end{pmatrix} \qquad |A - \lambda I| = \begin{vmatrix} -8 - \lambda & -10 \\ 5 & 7 - \lambda \end{vmatrix}$$
$$= (-8 - \lambda)(7 - \lambda) + 50$$
$$= -56 + 8\lambda - 7\lambda + \lambda^2 + 50$$
$$= \lambda^2 + \lambda - 6 = 0$$

Thus, the eigenvalues are: $\lambda_1 = -3$ and $\lambda_2 = 2$

For
$$\lambda_1 = -3$$
 $\Rightarrow (A+3I)V_1 = 0$

$$\begin{pmatrix} -5 & -10 \\ 5 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} -5x - 10y = 0 \\ 5x + 10y = 0 \end{cases} \Rightarrow 5x = -10y \Rightarrow \underline{x = -2y}$$
The eigenvector is: $V_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

$$\Rightarrow y_1(t) = e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - 2I)V_2 = 0$

$$\begin{pmatrix} -10 & -10 \\ 5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} -10x - 10y = 0 \\ 5x + 5y = 0 \end{cases} \Rightarrow 5x = -5y \Rightarrow \underline{x = -y}$$
The eigenvector is: $V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

$$\Rightarrow y_2(t) = e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Therefore, the final solution can be written as: $y(t) = C_1 y_1(t) + C_2 y_2(t)$

$$y(t) = C_1 e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$y(0) = C_1 \begin{pmatrix} -2 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -2C_1 - C_2 \\ C_1 + C_2 \end{pmatrix}$$

$$\begin{cases} -2C_1 - C_2 = 3 \\ C_1 + C_2 = 1 \end{cases} \rightarrow C_1 = -4$$

$$\Rightarrow \begin{vmatrix} C_1 + C_2 = 1 \\ -C_1 = 4 \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} C_2 = 1 - C_1 = 5 \end{vmatrix}$$

$$y(t) = -4e^{-3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + 5e^{2t} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 8e^{-3t} - 5e^{2t} \\ -4e^{-3t} + 5e^{2t} \end{pmatrix}$$

Exercise

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = -3y_1 + 2y_2 \\ y_2'(t) = -3y_1 + 4y_2 \end{cases} \quad y(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} -3 - \lambda & 2 \\ -3 & 4 - \lambda \end{vmatrix}$$

$$= \lambda^2 - \lambda - 6 = 0$$

$$A = \begin{pmatrix} -3 & 2 \\ -3 & 4 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -2$ and $\lambda_2 = 3$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 2 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow x = 2y \qquad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -6 & 2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 3x = y \qquad V_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$y(t) = C_1 \binom{2}{1} e^{-2t} + C_2 \binom{1}{3} e^{3t}$$

$$y(0) = C_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\begin{cases} 2C_1 + C_2 = 0 \\ C_1 + 3C_2 = 2 \end{cases} \qquad \Delta = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5 \quad \Delta_1 = \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = -2 \quad \Delta_2 = \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix} = 4$$

$$C_1 = -\frac{2}{5}, \quad C_2 = \frac{4}{5}$$

$$y(t) = -\frac{2}{5} {2 \choose 1} e^{-2t} + \frac{4}{5} {1 \choose 3} e^{3t}$$

$$= \begin{pmatrix} -\frac{4}{5} \\ -\frac{2}{5} \end{pmatrix} e^{-2t} + \begin{pmatrix} \frac{4}{5} \\ \frac{12}{5} \end{pmatrix} e^{3t}$$

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = 3y_1 - y_2 \\ y_2'(t) = 5y_1 - 3y_2 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 \\ 5 & -3 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 4 = 0$$

$$A = \begin{pmatrix} 3 & -1 \\ 5 & -3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = \pm 2$

For
$$\lambda_1 = -2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 5 & -1 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 5x = y \qquad V_1 = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix}
1 & -1 \\
5 & -5
\end{pmatrix}\begin{pmatrix} x \\
y \end{pmatrix} = \begin{pmatrix} 0 \\
0 \end{pmatrix} \rightarrow x = y \qquad V_2 = \begin{pmatrix} 1 \\
1 \end{pmatrix}$$

$$\frac{y(t) = C_1 \begin{pmatrix} 5 \\ 1 \end{pmatrix} e^{-2t} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} \Big|$$

$$y(0) = C_1 \begin{pmatrix} 5 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{cases}
5C_1 + C_2 = 1 \\
C_1 + C_2 = -1
\end{cases} \qquad \Delta = \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix} = 4 \quad \Delta_1 = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 2 \quad \Delta_2 = \begin{vmatrix} 5 & 1 \\ 1 & -1 \end{vmatrix} = -6$$

$$C_1 = \frac{1}{2}, \quad C_2 = -\frac{3}{2}$$

$$y(t) = \frac{1}{2} \begin{pmatrix} 5 \\ 1 \end{pmatrix} e^{-2t} - \frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

$$= \begin{pmatrix} \frac{5}{2} \\ \frac{1}{2} \end{pmatrix} e^{-2t} - \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \end{pmatrix} e^{2t}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = y_1 + 9y_2 \\ y_2'(t) = -2y_1 - 5y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 9 \\ -2 & -5 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 4\lambda + 13 = 0$$

$$A = \begin{pmatrix} 1 & 9 \\ -2 & -5 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -2 \pm 3i$

For
$$\lambda_1 = -2 - 3i$$
 $\Rightarrow \left(A - \lambda_1 I\right) V_1 = 0$

$$\begin{pmatrix} 3 + 3i & 9 \\ -2 & -3 + 3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad (1+i)x = -3y \qquad V_1 = \begin{pmatrix} -3 \\ 1+i \end{pmatrix}$$

$$z(t) = \begin{pmatrix} -3 \\ 1 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix} \left(\cos 3t - i\sin 3t\right) e^{-2t}$$

$$= \left[\begin{pmatrix} -3 \\ 1 \end{pmatrix} \cos 3t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sin 3t + i \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos 3t - \begin{pmatrix} -3 \\ 1 \end{pmatrix} \sin 3t \right)\right] e^{-2t}$$

$$= \begin{bmatrix} -3\cos 3t \\ \cos 3t + \sin 3t \end{bmatrix} + i \begin{bmatrix} 3\sin 3t \\ \cos 3t - \sin 3t \end{bmatrix} e^{-2t}$$

$$y(t) = C_1 \begin{bmatrix} -3\cos 3t \\ \cos 3t + \sin 3t \end{bmatrix} e^{-2t} + C_2 \begin{bmatrix} 3\sin 3t \\ \cos 3t - \sin 3t \end{bmatrix} e^{-2t}$$

$$y(0) = C_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{cases} -3C_1 = 3 \\ C_1 + C_2 = 2 \end{cases} \qquad C_1 = -1, \quad C_2 = 3 \end{bmatrix}$$

$$y(t) = \begin{bmatrix} 3\cos 3t \\ -\cos 3t - \sin 3t \end{bmatrix} e^{-2t} + \begin{bmatrix} 9\sin 3t \\ 3\cos 3t - 3\sin 3t \end{bmatrix} e^{-2t}$$

$$= \begin{bmatrix} 3\cos 3t + 9\sin 3t \\ 2\cos 3t - 4\sin 3t \end{bmatrix} e^{-2t}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 4y_1 + y_2 \\ y_2'(t) = -2y_1 + y_2 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 4 - \lambda & 1 \\ -2 & 1 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 5\lambda + 6 = 0$$

$$A = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 2$ & $\lambda_2 = 3$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow 2x = -y \quad V_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
For $\lambda_2 = 3$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -y \quad V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{2t} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{3t}$$

$$y(0) = C_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{cases} C_1 - C_2 = 1 \\ -2C_1 + C_2 = 0 \end{cases} \qquad C_1 = -1, \quad C_2 = -2$$

$$\begin{cases} y_1(t) = -e^{2t} + 2e^{3t} \\ y_2(t) = 2e^{2t} - 2e^{3t} \end{cases}$$

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = 2y_1 + y_2 - e^{2t} \\ y_2'(t) = y_1 + 2y_2 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 4\lambda + 3 = 0$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = 1$ & $\lambda_2 = 3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -y \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 3$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \quad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$y_h = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t}$$

$$\varphi(t) = \begin{pmatrix} -e^t & e^{3t} \\ e^t & e^{3t} \end{pmatrix}$$

$$\varphi^{-1}(t) = \frac{1}{-2e^{4t}} \begin{pmatrix} e^{3t} & -e^{3t} \\ -e^t & -e^t \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} -e^{-t} & e^{-t} \\ e^{-3t} & e^{-3t} \end{pmatrix}$$

$$\varphi^{-1} \cdot \begin{pmatrix} -e^{2t} \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -e^{-t} & e^{-t} \\ e^{-3t} & e^{-3t} \end{pmatrix} \begin{pmatrix} -e^{2t} \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{t} \\ -e^{-t} \end{pmatrix}$$

$$X = \frac{1}{2} \int \begin{pmatrix} e^{t} \\ -e^{-t} \end{pmatrix} dt$$

$$= \frac{1}{2} \begin{pmatrix} e^{t} \\ e^{-t} \end{pmatrix}$$

$$X_{p}(t) = \varphi X = \frac{1}{2} \begin{pmatrix} -e^{t} & e^{3t} \\ e^{t} & e^{3t} \end{pmatrix} \begin{pmatrix} e^{t} \\ e^{-t} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ e^{2t} \end{pmatrix}$$

$$y(t) = \begin{pmatrix} -C_{1}e^{t} + C_{2}e^{3t} \\ C_{1}e^{t} + C_{2}e^{3t} \end{pmatrix} + \begin{pmatrix} 0 \\ e^{2t} \end{pmatrix}$$

$$y(0) = \begin{pmatrix} -C_{1} + C_{2} \\ C_{1} + C_{2} + 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{cases} -C_{1} + C_{2} = 1 \\ C_{1} + C_{2} = -2 \end{cases} \rightarrow \underbrace{C_{1} = -\frac{3}{2}, C_{2} = -\frac{1}{2}}$$

$$\begin{cases} y_{1}(t) = \frac{3}{2}e^{t} - \frac{1}{2}e^{3t} \\ y_{1}(t) = -\frac{3}{2}e^{t} - \frac{1}{2}e^{3t} + e^{2t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) + 2y_2'(t) = 4y_1 + 5y_2 \\ 2y_1'(t) - y_2'(t) = 3y_1 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Solution

$$\begin{aligned} y_{1}'(t) + 2y_{2}'(t) &= 4y_{1} + 5y_{2} \\ 4y_{1}'(t) - 2y_{2}'(t) &= 6y_{1} \end{aligned} \rightarrow \begin{cases} y_{1}'(t) &= 2y_{1} + y_{2} \\ y_{2}'(t) &= y_{1} + 2y_{2} \end{cases}$$
$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \lambda^{2} - 4\lambda + 3 = 0$$

Thus, the eigenvalues are: $\lambda_1 = 1$ and $\lambda_2 = 3$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow x = -y \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 2 \implies (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow x = y \qquad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t}$$

$$y(0) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{cases} -C_1 + C_2 = 1 \\ C_1 + C_2 = -1 \end{cases} \qquad C_1 = -1, \quad C_2 = 0$$

$$y(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 - 2y_2 \\ y_2'(t) = 2y_1 - 2y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ \frac{1}{2} \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -2 \\ 2 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - \lambda - 2 = 0$$

$$A = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 2x = y \qquad V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
For $\lambda_2 = 2$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = 2y \qquad V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t}$$

$$y(0) = C_{1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ \frac{1}{2} \end{pmatrix}$$

$$\begin{cases} C_{1} + 2C_{2} = 3 \\ 2C_{1} + C_{2} = \frac{1}{2} \end{cases} \qquad \Delta = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3 \quad \Delta_{1} = \begin{vmatrix} 3 & 2 \\ \frac{1}{2} & 1 \end{vmatrix} = 2 \quad \Delta_{2} = \begin{vmatrix} 1 & 3 \\ 2 & \frac{1}{2} \end{vmatrix} = -\frac{11}{2}$$

$$C_{1} = -\frac{2}{3}, \quad C_{2} = \frac{11}{6}$$

$$\begin{cases} y_{1}(t) = -\frac{2}{3}e^{-t} + \frac{11}{3}e^{2t} \\ y_{2}(t) = -\frac{4}{3}e^{-t} + \frac{11}{6}e^{2t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = y_1 - 2y_2 \\ y_2'(t) = 3y_1 - 4y_2 \end{cases} \quad y(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -2 \\ 3 & -4 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 3\lambda + 2 = 0$$

$$A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ and $\lambda_2 = -2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & -2 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 3x = 2y \qquad V_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-2t}$$

$$y(0) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$\begin{cases} C_1 + 2C_2 = -1 \\ C_1 + 3C_2 = 2 \end{cases} \qquad \Delta = \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1 \quad \Delta_1 = \begin{vmatrix} -1 & 2 \\ 2 & 3 \end{vmatrix} = -7 \quad \Delta_2 = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3$$

$$C_1 = -7, \quad C_2 = 3 \end{vmatrix}$$

$$y(t) = -7 \binom{1}{1} e^{-t} + 3 \binom{2}{3} e^{-2t}$$

$$\begin{cases} y_1(t) = -7e^{-t} + 6e^{-2t} \\ y_2(t) = -7e^{-t} + 9e^{-2t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = y_1 - 4y_2 \\ y_2'(t) = 4y_1 - 7y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -4 \\ 4 & -7 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 6\lambda + 9 = 0$$

$$A = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -3$

For
$$\lambda_1 = -3$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 4 & -4 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = y \qquad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow y_1(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-3t}$$
For V_2 $\Rightarrow (A - \lambda I)V_2 = V_1$

$$\begin{pmatrix} 4 & -4 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow 4x - 4y = 1 \qquad V_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}$$

$$y_2(t) = \begin{pmatrix} V_2 + tV_1 \end{pmatrix} e^{-3t}$$

$$= \begin{pmatrix} \frac{1}{4} + t \\ t \end{pmatrix} e^{-3t}$$

$$y(t) = \begin{pmatrix} C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} \frac{1}{4} + t \\ t \end{pmatrix} e^{-3t}$$

$$y(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \rightarrow C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\begin{cases} C_1 + \frac{1}{4}C_2 = 3 & C_2 = 4 \\ C_1 = 2 \end{cases}$$

$$y(t) = \left(\begin{pmatrix} 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 1+4t \\ 4t \end{pmatrix} \right) e^{-3t}$$

$$\begin{cases} y_1(t) = (3+4t)e^{-3t} \\ y_2(t) = (2+4t)e^{-3t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 + 9y_2 \\ y_2'(t) = -y_1 - 3y_2 \end{cases} \quad y(0) = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 9 \\ -1 & -3 - \lambda \end{vmatrix}$$

$$= \lambda^2 = 0$$

$$A = \begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = 0$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -3y \quad V_1 = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

$$\Rightarrow y_1(t) = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
For $V_2 \Rightarrow (A - \lambda I)V_2 = V_1$

$$\begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \quad \Rightarrow x + 3y = -1 \quad V_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$y_2(t) = V_2 + tV_1$$

$$= \frac{\begin{pmatrix} -1 - 3t \\ t \end{pmatrix}}{t}$$

$$y(t) = C_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 - 3t \\ t \end{pmatrix}$$

$$y(0) = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \rightarrow C_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$\begin{cases} -3C_1 - C_2 = 2 & C_2 = -14 \\ C_1 = 4 \end{cases}$$

$$y(t) = \begin{pmatrix} -12\\4 \end{pmatrix} + \begin{pmatrix} 14 + 42t\\-14t \end{pmatrix}$$
$$\begin{cases} y_1(t) = 2 + 42t\\ y_2(t) = 4 - 14t \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 2y_1 + \frac{3}{2}y_2 \\ y_2'(t) = -\frac{3}{2}y_1 - y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & \frac{3}{2} \\ -\frac{3}{2} & -1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 2 & \frac{3}{2} \\ -\frac{3}{2} & -1 \end{pmatrix}$$
$$= \lambda^2 - \lambda + \frac{1}{4} = 0 \quad \rightarrow \quad \left(\lambda - \frac{1}{2}\right)^2 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = \frac{1}{2}$

For
$$\lambda_1 = \frac{1}{2}$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = -y \quad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \underline{y_1(t)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{t/2}$$

For
$$V_2 \Rightarrow (A - \lambda I)V_2 = V_1$$

$$\begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \rightarrow \frac{3}{2}x + \frac{3}{2}y = -1 \quad V_2 = \begin{pmatrix} -\frac{2}{3} \\ 0 \end{pmatrix}$$

$$y_{2}(t) = (V_{2} + tV_{1})e^{t/2}$$
$$= \begin{pmatrix} -\frac{2}{3} - t \\ t \end{pmatrix} e^{t/2}$$

$$y(t) = \left(C_1 \begin{pmatrix} -1\\1 \end{pmatrix} + C_2 \begin{pmatrix} -\frac{2}{3} - t\\t \end{pmatrix}\right) e^{t/2}$$

$$y(0) = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \rightarrow C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} -\frac{2}{3} \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\begin{cases} -C_1 - \frac{2}{3}C_2 = 3 & C_2 = -\frac{3}{2} \\ C_1 = -2 \end{cases}$$

$$y(t) = \begin{pmatrix} 2 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 + \frac{3}{2}t \\ -\frac{3}{2}t \end{pmatrix} e^{t/2}$$

$$\begin{cases} y_1(t) = \left(3 + \frac{3}{2}t\right)e^{t/2} \\ y_2(t) = -\left(2 + \frac{3}{2}t\right)e^{t/2} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -5y_1 + 12y_2 \\ y_2'(t) = -2y_1 + 5y_2 \end{cases} \quad y(0) = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} -5 - \lambda & 12 \\ -2 & 5 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 1 = 0$$

$$A = \begin{pmatrix} -5 & 12 \\ -2 & 5 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = \pm 1$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -4 & 12 \\ -2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = 3y \quad V_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 1$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -6 & 12 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = 2y \quad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$y(t) = C_{1} {3 \choose 1} e^{-t} + C_{2} {2 \choose 1} e^{t}$$

$$y(0) = {8 \choose 3} \rightarrow C_{1} {3 \choose 1} + C_{2} {2 \choose 1} = {8 \choose 3}$$

$$\begin{cases} 3C_{1} + 2C_{2} = 8 \\ C_{1} + C_{2} = 3 \end{cases} \rightarrow C_{1} = 2, C_{2} = 1$$

$$y(t) = \binom{6}{2}e^{-t} + \binom{2}{1}e^{t}$$

$$\begin{cases} y_1(t) = 6e^{-t} + 2e^t \\ y_2(t) = 2e^{-t} + e^t \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -4y_1 + 6y_2 \\ y_2'(t) = -3y_1 + 5y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} -4 - \lambda & 6 \\ -3 & 5 - \lambda \end{vmatrix}$$

$$= \lambda^2 - \lambda - 2 = 0$$

$$A = \begin{pmatrix} -4 & 6 \\ -3 & 5 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_1 = -1$ & $\lambda_2 = 2$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -3 & 6 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = 2y \qquad V_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -6 & 6 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = y \qquad V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{split} y(t) &= C_1 \binom{2}{1} e^{-t} + C_2 \binom{1}{1} e^{2t} \\ y(0) &= \binom{3}{2} \quad \rightarrow \quad C_1 \binom{2}{1} + C_2 \binom{1}{1} = \binom{3}{2} \\ \binom{2C_1 + C_2 = 3}{C_1 + C_2 = 2} \quad \rightarrow \quad C_1 = 1, \ C_2 = 1 \end{split}$$

$$y(t) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$$

$$\begin{cases} y_1(t) = 2e^{-t} + e^{2t} \\ y_2(t) = e^{-t} + e^{2t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y'_1(t) = y_1 + 2y_2 \\ y'_2(t) = 3y_1 + 2y_2 \end{cases} \quad y(0) = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$

$$\begin{cases} y_1'(t) = y_1 + 2y_2 \\ y_2'(t) = 3y_1 + 2y_2 \end{cases} \quad y(0) = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda - 4 = 0$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1$, 4

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = -y \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 4$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 3x = 2y \qquad V_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\frac{y(t) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{4t}$$

$$y(0) = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

$$\begin{cases} -C_1 + 2C_2 = 0 \\ C_1 + 3C_2 = -4 \qquad \Delta = \begin{vmatrix} -1 & 2 \\ 1 & 3 \end{vmatrix} = -5 \quad \Delta_1 = \begin{vmatrix} 0 & 2 \\ -4 & 3 \end{vmatrix} = 8 \quad \Delta_2 = \begin{vmatrix} -1 & 0 \\ 1 & -4 \end{vmatrix} = 4$$

$$C_1 = -\frac{8}{5}, \quad C_2 = -\frac{4}{5}$$

$$y(t) = -\frac{8}{5} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} - \frac{4}{5} \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{4t}$$

Exercise

 $\begin{cases} y_1(t) = \frac{8}{5}e^{-t} - \frac{8}{5}e^{4t} \\ y_2(t) = -\frac{8}{5}e^{-t} - \frac{12}{5}e^{4t} \end{cases}$

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = -5y_1 + y_2 \\ y_2'(t) = 4y_1 - 2y_2 \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} -5 - \lambda & 1\\ 4 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 7\lambda + 6 = 0$$

$$A = \begin{pmatrix} -5 & 1\\ 4 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1, -6$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -4 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow 4x = y \qquad V_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
For $\lambda_2 = -6$ $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & 1 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -y \quad V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-6t}$$

$$y(0) = C_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{cases} C_1 - C_2 = 1 \\ 4C_1 + C_2 = 2 \end{cases} \rightarrow C_1 = \frac{3}{5}, \quad C_2 = -\frac{2}{5}$$

$$y(t) = \frac{3}{5} {1 \choose 4} e^{-t} - \frac{2}{5} {-1 \choose 1} e^{-6t}$$

$$\begin{cases} y_1(t) = \frac{3}{5}e^{-t} + \frac{2}{5}e^{-6t} \\ y_2(t) = \frac{12}{5}e^{-t} - \frac{2}{5}e^{-6t} \end{cases}$$

Exercise

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 - 9y_2 \\ y_2'(t) = 4y_1 - 3y_2 \end{cases} \quad y(0) = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 3 - \lambda & -9 \\ 4 & -3 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 27 = 0$$

$$A = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = \pm 3\sqrt{3}i$

For
$$\lambda_1 = 3\sqrt{3} i \implies (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} 3 - 3\sqrt{3} i & -9 \\ 4 & -3 - 3\sqrt{3} i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{\left(1 - \sqrt{3} i\right)} x = 3y$$

$$\Rightarrow V_1 = \begin{pmatrix} 3 \\ 1 - \sqrt{3} i \end{pmatrix}$$

$$y(t) = \begin{pmatrix} 3 \\ 1 - \sqrt{3} i \end{pmatrix} e^{3\sqrt{3} it}$$

$$= \begin{pmatrix} 3 \\ 1 - \sqrt{3} i \end{pmatrix} \left(\cos\left(3\sqrt{3} t\right) + i\sin\left(3\sqrt{3} t\right)\right)$$

$$= \begin{pmatrix} 3\cos 3\sqrt{3}t + 3i\sin 3\sqrt{3}t \\ \cos 3\sqrt{3}t + \sqrt{3}\sin 3\sqrt{3}t + i\left(\sin 3\sqrt{3}t - \sqrt{3}\cos 3\sqrt{3}t\right)\right)$$

$$\begin{cases} y_1(t) = 3C_1\cos 3\sqrt{3}t + 3C_2\sin 3\sqrt{3}t \\ y_2(t) = C_1\left(\cos 3\sqrt{3}t + \sqrt{3}\sin 3\sqrt{3}t\right) + C_2\left(\sin 3\sqrt{3}t - \sqrt{3}\cos 3\sqrt{3}t\right) \end{cases}$$

$$Given: \ y_1(0) = 2, \ y_2(0) = -4$$

$$\begin{cases} y_1(0) = 3C_1 = 2 & \rightarrow C_1 = \frac{2}{3} \\ y_2(0) = C_1 - \sqrt{3}C_2 = -4 & \rightarrow C_2 = \frac{14}{3\sqrt{3}} \end{cases}$$

$$\begin{cases} y_1(t) = 2\cos 3\sqrt{3}t + \frac{14}{\sqrt{3}}\sin 3\sqrt{3}t \\ y_2(t) = \frac{2}{3}\cos 3\sqrt{3}t + \frac{2\sqrt{3}}{3}\sin 3\sqrt{3}t + \frac{14}{\sqrt{3}}\sin 3\sqrt{3}t - 14\cos 3\sqrt{3}t \end{cases}$$

$$\begin{cases} y_1(t) = 2\cos 3\sqrt{3}t + \frac{14}{\sqrt{3}}\sin 3\sqrt{3}t \\ y_2(t) = \frac{16\sqrt{3}}{3}\sin 3\sqrt{3}t - 40\cos 3\sqrt{3}t \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 - 13y_2 \\ y_2'(t) = 5y_1 + y_2 \end{cases} \quad y(0) = \begin{pmatrix} 3 \\ -10 \end{pmatrix}$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -13 \\ 5 & 1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 3 & -13 \\ 5 & 1 \end{pmatrix}$$

$$=\lambda^2-4\lambda+68=0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 2 \pm 8i$

For
$$\lambda_1 = 2 + 8i$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 - 8i & -13 \\ 5 & -1 - 8i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{(1 - 8i)x = 13y}$$

$$\Rightarrow V_1 = \begin{pmatrix} 13 \\ 1 - 8i \end{pmatrix}$$

$$y(t) = {13 \choose 1-8i} e^{(2+8i)t}$$

$$= {13 \choose 1-8i} (\cos 8t + i \sin 8t) e^{2t}$$

$$= {13\cos 8t + 13i \sin 8t \choose \cos 8t + 8\sin 8t + i (\sin 8t - 8\cos 8t)} e^{2t}$$

$$\begin{cases} y_1(t) = (13C_1 \cos 8t + 13C_2 \sin 8t)e^{2t} \\ y_2(t) = (C_1(\cos 8t + 8\sin 8t) + C_2(\sin 8t - 8\cos 8t))e^{2t} \end{cases}$$

Given:
$$y_1(0) = 3$$
, $y_2(0) = -10$

$$\begin{cases} y_1(0) = 13C_1 = 3 & \rightarrow C_1 = \frac{3}{13} \\ y_2(0) = C_1 - 8C_2 = -10 & \rightarrow C_2 = \frac{133}{104} \end{cases}$$

$$\begin{cases} y_1(t) = \left(3\cos 8t + \frac{133}{8}\sin 8t\right)e^{2t} \\ y_2(t) = \left(\frac{3}{13}\cos 8t + \frac{24}{13}\sin 8t + \frac{133}{104}\sin 8t - \frac{133}{13}\cos 8t\right)e^{2t} \end{cases}$$

$$\begin{cases} y_1(t) = \left(3\cos 8t + \frac{133}{8}\sin 8t\right)e^{2t} \\ y_2(t) = \left(\frac{325}{104}\sin 8t - 10\cos 8t\right)e^{2t} \end{cases}$$

Find the general solution of the system y' = Ay

$$\begin{cases} y_1'(t) = 7y_1 + y_2 \\ y_2'(t) = -4y_1 + 3y_2 \end{cases} \quad y(0) = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 7 - \lambda & 1 \\ -4 & 3 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 10\lambda + 25 = 0$$

$$A = \begin{pmatrix} 7 & 1 \\ -4 & 3 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = 5$

For
$$\lambda_1 = 5$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 2x = -y$$

$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \rightarrow y_1(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{5t}$$

For
$$V_2 \Rightarrow (A - \lambda I)V_2 = V_1$$

$$\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \Rightarrow \quad 2x + y = 1 \quad V_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$y_{2}(t) = V_{2} + tV_{1}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 1+t \\ -1-2t \end{pmatrix} e^{5t}$$

$$y(t) = C_{1}y_{1}(t) + C_{2}y_{2}(t)$$

$$= C_{1}\begin{pmatrix} 1 \\ -2 \end{pmatrix}e^{5t} + C_{2}\begin{pmatrix} 1+t \\ -1-2t \end{pmatrix}e^{5t}$$

$$y(0) = C_{1}\begin{pmatrix} 1 \\ -2 \end{pmatrix} + C_{2}\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

$$\begin{cases} C_{1} + C_{2} = 2 \\ -2C_{1} - C_{2} = -5 \end{cases} \rightarrow C_{1} = 3, C_{2} = -1 \end{cases}$$

$$y(t) = \begin{pmatrix} 3 \\ -6 \end{pmatrix} + \begin{pmatrix} -1-t \\ 1+2t \end{pmatrix} e^{5t}$$

$$= \begin{pmatrix} 2-t \\ -5+2t \end{pmatrix} e^{5t}$$

$$\begin{cases} y_{1}(t) = (2-t)e^{5t} \\ y_{2}(t) = (-5+2t)e^{5t} \end{cases}$$

Find the general solution of the system y' = Ay

$$\begin{cases} y_1'(t) = -y_1 + \frac{3}{2}y_2 \\ y_2'(t) = -\frac{1}{6}y_1 - 2y_2 \end{cases} \quad y(2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & \frac{3}{2} \\ -\frac{1}{6} & -2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} -1 & \frac{3}{2} \\ -\frac{1}{6} & -2 \end{pmatrix}$$
$$= \lambda^2 + 3\lambda + \frac{9}{4} = \left(\lambda + \frac{3}{2}\right)^2 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = -\frac{3}{2}$

For
$$\lambda_1 = -\frac{3}{2} \implies (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ -\frac{1}{6} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \frac{x = -3y}{1}$$

$$\implies V_1 = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \implies y_1(t) = \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-3t/2}$$
For $V_2 \implies (A - \lambda I)V_2 = V_1$

$$\begin{pmatrix} \frac{1}{2} & \frac{3}{2} \\ -\frac{1}{6} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix} \implies x + 3y = -6 \quad V_2 = \begin{pmatrix} -9 \\ 1 \end{pmatrix}$$

$$y_2(t) = V_2 + tV_1$$

$$= \begin{pmatrix} -9 - 3t \\ 1 + t \end{pmatrix} e^{-3t/2}$$

$$y(t) = C_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-3t/2} + C_2 \begin{pmatrix} -9 - 3t \\ 1 + t \end{pmatrix} e^{-3t/2}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-3t/2} + C_2 \begin{pmatrix} -9 - 3t \\ 1 + t \end{pmatrix} e^{-3t/2}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-3} + C_2 \begin{pmatrix} -15 \\ 3 \end{pmatrix} e^{-3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$y(2) = C_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-3} + C_2 \begin{pmatrix} -15 \\ 3 \end{pmatrix} e^{-3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{cases} \begin{pmatrix} -3C_1 - 15C_2 \\ 1 \end{pmatrix} e^{-3} = 1 \\ \begin{pmatrix} C_1 + 3C_2 \end{pmatrix} e^{-3} = 0 \end{cases} \implies \begin{cases} 3C_1 + 15C_2 = -e^3 \\ C_1 + 3C_2 = 0 \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & 15 \\ 1 & 3 \end{vmatrix} = -6 \quad \Delta_1 = \begin{vmatrix} -e^3 & 15 \\ 0 & 3 \end{vmatrix} = -3e^3 \quad \Delta_2 = \begin{vmatrix} 3 & -e^3 \\ 1 & 0 \end{vmatrix} = e^3$$

$$\Rightarrow C_1 = \frac{-3e^3}{-6} = \frac{1}{2}e^3, \quad C_2 = -\frac{e^3}{6} \end{cases}$$

$$y(t) = \frac{1}{2}e^3 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-3t/2} - \frac{1}{6}e^3 \begin{pmatrix} -9 - 3t \\ 1 + t \end{pmatrix} e^{-3t/2}$$

$$= \begin{pmatrix} -\frac{3}{2} + \frac{3}{2} + \frac{1}{2}t \\ \frac{1}{2} - \frac{1}{6} - \frac{1}{6}t \end{pmatrix} e^{-3t/2}$$

$$= \begin{pmatrix} \frac{1}{2}t \\ \frac{1}{3} - \frac{1}{6}t \end{pmatrix} e^{-\frac{3t}{2} + 3}$$

$$= \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix} e^{-\frac{3t}{2} + 3} + t \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{6} \end{pmatrix} e^{-\frac{3t}{2} + 3}$$

$$\begin{cases} y_1(t) = \frac{1}{2}te^{-\frac{3t}{2} + 3} \\ y_2(t) = \left(\frac{1}{3} - \frac{1}{6}t\right)e^{-\frac{3t}{2} + 3} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = 3y_1 - 3y_2 + 2 \\ y_2'(t) = -6y_1 - t \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} 3 - \lambda & -3 \\ -6 & -\lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda - 18 = 0$$

$$A = \begin{pmatrix} 3 & -3 \\ -6 & 0 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -3$, 6

For
$$\lambda_1 = -3$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 6 & -3 \\ -6 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow 2x = y \qquad \Rightarrow V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

For
$$\lambda_2 = 6$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -3 & -3 \\ -6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \underline{x = -y} \qquad \Rightarrow \quad V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$y_h = C_1 \binom{1}{2} e^{-3t} + C_2 \binom{-1}{1} e^{6t}$$

$$\varphi(t) = \begin{pmatrix} e^{-3t} & -e^{6t} \\ 2e^{-3t} & e^{6t} \end{pmatrix}$$

$$\varphi^{-1}(t) = \frac{1}{3e^{3t}} \begin{pmatrix} e^{6t} & e^{6t} \\ -2e^{-3t} & e^{-3t} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} e^{3t} & e^{3t} \\ -2e^{-6t} & e^{-6t} \end{pmatrix}$$

$$\varphi^{-1} \cdot \begin{pmatrix} 2 \\ -t \end{pmatrix} = \frac{1}{3} \begin{pmatrix} e^{3t} & e^{3t} \\ -2e^{-6t} & e^{-6t} \end{pmatrix} \begin{pmatrix} 2 \\ -t \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 2e^{3t} - te^{3t} \\ -4e^{-6t} - te^{-6t} \end{pmatrix}$$

$$X = \frac{1}{3} \int \left(\frac{2e^{3t} - te^{3t}}{-4e^{-6t} - te^{-6t}} \right) dt$$

$$\left(\frac{2}{3}e^{3t} - \frac{1}{3}te^{3t} + \frac{1}{3}e^{3t} \right) dt$$

$$= \frac{1}{3} \left(\frac{\frac{2}{3}e^{3t} - \frac{1}{3}te^{3t} + \frac{1}{9}e^{3t}}{\frac{2}{3}e^{-6t} + \frac{1}{6}te^{-6t} + \frac{1}{36}e^{-6t}} \right)$$

$$i_{p}(t) = \varphi X = \frac{1}{3} \begin{pmatrix} e^{-3t} & -e^{6t} \\ 2e^{-3t} & e^{6t} \end{pmatrix} \begin{pmatrix} \frac{2}{3}e^{3t} - \frac{1}{3}te^{3t} + \frac{1}{9}e^{3t} \\ \frac{2}{3}e^{-6t} + \frac{1}{6}te^{-6t} + \frac{1}{36}e^{-6t} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} \frac{2}{3} - \frac{1}{3}t + \frac{1}{9} - \frac{2}{3} - \frac{1}{6}t - \frac{1}{36} \\ \frac{4}{3} - \frac{2}{3}t + \frac{2}{9} + \frac{2}{3} + \frac{1}{6}t + \frac{1}{36} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} -\frac{1}{2}t + \frac{1}{12} \\ -\frac{1}{2}t + \frac{81}{36} \end{pmatrix}$$

$$y(t) = \begin{pmatrix} C_1 e^{-3t} - C_2 e^{6t} \\ 2C_1 e^{-3t} + C_2 e^{6t} \end{pmatrix} + \begin{pmatrix} -\frac{1}{6}t + \frac{1}{36} \\ -\frac{1}{6}t + \frac{81}{108} \end{pmatrix}$$
$$= \begin{pmatrix} C_1 e^{-3t} - C_2 e^{6t} - \frac{1}{6}t + \frac{1}{36} \\ 2C_1 e^{-3t} + C_2 e^{6t} - \frac{1}{6}t + \frac{81}{108} \end{pmatrix}$$

Given:
$$y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$y(0) = \begin{pmatrix} C_1 - C_2 + \frac{1}{36} \\ 2C_1 + C_2 + \frac{81}{108} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{cases} C_1 - C_2 + \frac{1}{36} = 1 \\ 2C_1 + C_2 + \frac{81}{108} = -1 \end{cases} \rightarrow \begin{cases} C_1 - C_2 = \frac{35}{36} \\ 2C_1 + C_2 = -\frac{189}{108} \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 3 \quad \Delta_1 = \begin{vmatrix} \frac{35}{36} & -1 \\ -\frac{189}{108} & 1 \end{vmatrix} = -\frac{84}{108} \quad \Delta_2 = \begin{vmatrix} 1 & \frac{35}{36} \\ 2 & -\frac{189}{108} \end{vmatrix} = -\frac{133}{36}$$

		$\int e^{3t}$
+	t	$\frac{1}{3}e^{3t}$
_	1	$\frac{1}{9}e^{3t}$

		$\int e^{-6t}$
+	t	$-\frac{1}{6}e^{-6t}$
_	1	$\frac{1}{36}e^{-6t}$

$$\begin{split} & \underline{C_1} = -\frac{7}{27} \quad \underline{C_2} = -\frac{133}{108} \\ & y(t) = \begin{pmatrix} -\frac{7}{27}e^{-3t} - \frac{133}{108}e^{6t} - \frac{1}{6}t + \frac{1}{36} \\ -\frac{14}{27}e^{-3t} + \frac{133}{108}e^{6t} - \frac{1}{6}t + \frac{81}{108} \end{pmatrix} \\ & \begin{cases} y_1(t) = -\frac{7}{27}e^{-3t} - \frac{133}{108}e^{6t} - \frac{1}{6}t + \frac{1}{36} \\ y_2(t) = -\frac{14}{27}e^{-3t} + \frac{133}{108}e^{6t} - \frac{1}{6}t + \frac{81}{108} \end{cases} \end{split}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = -5y_1 + y_2 + 6e^{2t} \\ y_2'(t) = 4y_1 - 2y_2 - e^{2t} \end{cases}$ $y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Solution

$$\begin{vmatrix} A - \lambda I \end{vmatrix} = \begin{vmatrix} -5 - \lambda & 1 \\ 4 & -2 - \lambda \end{vmatrix}$$

$$= \lambda^2 + 7\lambda + 6 = 0$$

$$A = \begin{pmatrix} -5 & 1 \\ 4 & -2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1, -6$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -4 & 1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{4x = y} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

For
$$\lambda_2 = -6$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 1 & 1 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{x = -y} \Rightarrow V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$y_h = C_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-6t}$$

$$\varphi(t) = \begin{pmatrix} e^{-t} & -e^{-6t} \\ 4e^{-t} & e^{-6t} \end{pmatrix}$$

$$\varphi^{-1}(t) = \frac{1}{5e^{-7t}} \begin{pmatrix} e^{-6t} & e^{-6t} \\ -4e^{-t} & e^{-t} \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} e^{t} & e^{t} \\ -4e^{6t} & e^{6t} \end{pmatrix}$$

$$\varphi^{-1} \cdot \begin{pmatrix} 6e^{2t} \\ -e^{2t} \end{pmatrix} = \frac{1}{5} \begin{pmatrix} e^t & e^t \\ -4e^{6t} & e^{6t} \end{pmatrix} \begin{pmatrix} 6e^{2t} \\ -e^{2t} \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 5e^{3t} \\ -25e^{8t} \end{pmatrix}$$

$$= \begin{pmatrix} e^{3t} \\ -5e^{8t} \end{pmatrix}$$

$$X = \int \begin{pmatrix} e^{3t} \\ -5e^{8t} \end{pmatrix} dt$$

$$= \begin{pmatrix} \frac{1}{3}e^{3t} \\ -\frac{5}{8}e^{8t} \end{pmatrix}$$

$$i_p(t) = \varphi X = \begin{pmatrix} e^{-t} & -e^{-6t} \\ 4e^{-t} & e^{-6t} \end{pmatrix} \begin{pmatrix} \frac{1}{3}e^{3t} \\ -\frac{5}{8}e^{8t} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{23}{24}e^{2t} \\ \frac{17}{24}e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{23}{24}e^{2t} \\ \frac{17}{24}e^{2t} \end{pmatrix}$$

$$= (\frac{1}{4}e^{-t} + C_2\begin{pmatrix} -1 \\ 1 \end{pmatrix})e^{-6t} + \begin{pmatrix} \frac{23}{24} \\ \frac{17}{24}e^{2t} \end{pmatrix}$$

$$Given: y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$y(0) = \begin{pmatrix} C_1 - C_2 + \frac{23}{24} \\ 4C_1 + C_2 + \frac{17}{24} = -1 \end{pmatrix} \Rightarrow \begin{cases} C_1 - C_2 = \frac{1}{24} \\ 4C_1 + C_2 = -\frac{41}{24} \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & -1 \\ 4 & 1 \end{vmatrix} = 5 \quad \Delta_1 = \begin{vmatrix} \frac{1}{24} & -1 \\ -\frac{41}{24} & 1 \end{vmatrix} = -\frac{5}{3} \quad \Delta_2 = \begin{vmatrix} 1 & \frac{1}{24} \\ 4 - \frac{41}{24} \end{vmatrix} = -\frac{15}{8}$$

$$C_1 = -\frac{1}{3}$$
 $C_2 = -\frac{3}{8}$

$$y(t) = -\frac{1}{3} {1 \choose 4} e^{-t} - \frac{3}{8} {-1 \choose 1} e^{-6t} + {\frac{23}{24} \choose \frac{17}{24}} e^{2t}$$

$$\begin{cases} y_1(t) = -\frac{1}{3}e^{-t} + \frac{3}{8}e^{-6t} + \frac{23}{24}e^{2t} \\ y_2(t) = -\frac{4}{3}e^{-t} - \frac{3}{8}e^{-6t} + \frac{17}{24}e^{2t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases} y_1'(t) = y_1 + 2y_2 + 2t \\ y_2'(t) = 3y_1 + 2y_2 - 4t \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix}$$

$$= \lambda^2 - 3\lambda - 4 = 0$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$

Thus, the eigenvalues are: $\lambda_{1,2} = -1, 4$

For
$$\lambda_1 = -1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underline{x = -y} \qquad \Rightarrow \qquad V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 4$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \underbrace{3x = 2y} \Rightarrow V_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$y_h = C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{4t}$$

$$\varphi(t) = \begin{pmatrix} -e^{-t} & 2e^{4t} \\ e^{-t} & 3e^{4t} \end{pmatrix}$$

$$\varphi^{-1}(t) = -\frac{1}{5e^{3t}} \begin{pmatrix} 3e^{4t} & -2e^{4t} \\ -e^{-t} & -e^{-t} \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} -3e^t & 2e^t \\ e^{-4t} & e^{-4t} \end{pmatrix}$$

$$\begin{split} \varphi^{-1} \cdot \begin{pmatrix} 2t \\ -4t \end{pmatrix} &= \frac{1}{5} \begin{pmatrix} -3e^t & 2e^t \\ e^{-4t} & e^{-4t} \end{pmatrix} \begin{pmatrix} 2t \\ -4t \end{pmatrix} \\ &= \frac{1}{5} \begin{pmatrix} -14te^t \\ -2te^{-4t} \end{pmatrix} \\ &= -\frac{2}{5} \begin{pmatrix} 7te^t \\ te^{-4t} \end{pmatrix} \\ X &= -\frac{2}{5} \int \begin{pmatrix} 7te^t \\ te^{-4t} \end{pmatrix} dt \\ &= -\frac{2}{5} \begin{pmatrix} 7(te^t - 1)e^t \\ -\left(\frac{1}{4}t + \frac{1}{16}\right)e^{-4t} \end{pmatrix} \\ i_p(t) &= \varphi X = -\frac{2}{5} \begin{pmatrix} -e^{-t} & 2e^{4t} \\ e^{-t} & 3e^{4t} \end{pmatrix} \begin{pmatrix} 7(te^t - 1)e^t \\ -\left(\frac{1}{4}t + \frac{1}{16}\right)e^{-4t} \end{pmatrix} \\ &= -\frac{2}{5} \begin{pmatrix} -7t + 7 - \frac{1}{2}t - \frac{1}{8} \\ 7t - 7 - \frac{3}{4}t - \frac{3}{16} \end{pmatrix} \\ &= -\frac{2}{5} \begin{pmatrix} -\frac{15}{2}t + \frac{55}{8} \\ \frac{25}{4}t - \frac{115}{16} \end{pmatrix} \\ &= \begin{pmatrix} 3t - \frac{11}{4} \\ -\frac{5}{2}t + \frac{23}{8} \end{pmatrix} \\ y(t) &= C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{4t} + \begin{pmatrix} 3t - \frac{11}{4} \\ -\frac{5}{2}t + \frac{23}{8} \end{pmatrix} \\ y(0) &= C_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} -\frac{11}{4} \\ \frac{23}{8} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -C_1 + 2C_2 - \frac{11}{4} = 1 \\ C_1 + 3C_2 + \frac{23}{8} = 1 \end{pmatrix} \rightarrow \begin{pmatrix} -C_1 + 2C_2 = \frac{15}{4} \\ C_1 + 3C_2 - \frac{15}{2} = \frac{15}{2} \end{pmatrix} \end{split}$$

		$\int e^t$
+	t	e^t
I	1	e^t

		$\int e^{-4t}$
+	t	$-\frac{1}{4}e^{-4t}$
_	1	$\frac{1}{16}e^{-4t}$

$$\Delta = \begin{vmatrix} -1 & 2 \\ 1 & 3 \end{vmatrix} = -5 \quad \Delta_1 = \begin{vmatrix} \frac{15}{4} & 2 \\ -\frac{15}{8} & 3 \end{vmatrix} = 15 \quad \Delta_2 = \begin{vmatrix} -1 & \frac{15}{4} \\ 1 & -\frac{15}{8} \end{vmatrix} = -\frac{15}{8}$$

$$C_1 = -3 \quad C_2 = \frac{3}{8}$$

$$y(t) = -3 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + \frac{3}{8} \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{4t} + \begin{pmatrix} 3t - \frac{11}{4} \\ -\frac{5}{2}t + \frac{23}{8} \end{pmatrix}$$

$$\begin{cases} y_1(t) = -3e^{-t} + \frac{3}{4}e^{4t} + 3t - \frac{11}{4} \\ y_2(t) = 3e^{-t} + \frac{9}{8}e^{4t} - \frac{5}{2}t + \frac{23}{8} \end{cases}$$

Find the general solution of the system
$$\begin{cases} x_1'(t) = 3x_1 - x_2 + 4e^{2t} \\ x_2'(t) = -x_1 + 3x_2 + 4e^{4t} \end{cases} \quad X(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$
$$= \lambda^2 - 6\lambda + 8 = 0$$

The eigenvalues: $\lambda_{1,2} = 2, 4$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 4$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = -y \quad \Rightarrow \quad V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$X_{h} = C_{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + C_{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{4t}$$

$$\varphi(t) = \begin{pmatrix} e^{2t} & -e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix}$$

$$\begin{split} \varphi^{-1} &= \frac{1}{2e^{6t}} \begin{pmatrix} e^{4t} & e^{4t} \\ -e^{2t} & e^{2t} \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} e^{-2t} & e^{-2t} \\ -e^{-4t} & e^{-4t} \end{pmatrix} \\ F(t) &= \begin{pmatrix} 4e^{2t} \\ 4e^{4t} \end{pmatrix} \\ \varphi^{-1}(t) F(t) &= \frac{1}{2} \begin{pmatrix} e^{-2t} & e^{-2t} \\ -e^{-4t} & e^{-4t} \end{pmatrix} \begin{pmatrix} 4e^{2t} \\ 4e^{4t} \end{pmatrix} \\ &= \begin{pmatrix} 2+2e^{2t} \\ 2-2e^{-2t} \end{pmatrix} \\ X_p &= \begin{pmatrix} e^{2t} & -e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \int \begin{pmatrix} 2+2e^{2t} \\ 2-2e^{-2t} \end{pmatrix} dt \\ &= \begin{pmatrix} e^{2t} & -e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \int (2+e^{2t} \\ 2-2e^{-2t} \end{pmatrix} \\ &= \begin{pmatrix} e^{2t} & -e^{4t} \\ e^{2t} & e^{4t} \end{pmatrix} \begin{pmatrix} 2t+e^{2t} \\ 2t+e^{-2t} \end{pmatrix} \\ &= \begin{pmatrix} 2te^{2t} + e^{4t} - 2te^{4t} - e^{2t} \\ 2te^{2t} + e^{4t} + 2te^{4t} + e^{2t} \end{pmatrix} \\ &= \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} te^{2t} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} te^{4t} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} \\ &= \begin{pmatrix} 2 \\ 2 \end{pmatrix} te^{2t} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} +$$

Find the general solution of the system $\begin{cases} x_1'(t) = x_1 - x_2 + \frac{1}{t} \\ x_2'(t) = x_1 - x_2 + \frac{1}{t} \end{cases} \quad X(1) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & -1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
$$= \lambda^2 = 0$$

The eigenvalues: $\lambda_{1,2} = 0, 0$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$
$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow a_1 = b_1 \qquad \Rightarrow \quad V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For
$$V_2 \Rightarrow (A - \lambda I)V_2 = V_1$$

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \Rightarrow a_2 - b_2 = 1 \quad \Rightarrow \quad V_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$y_{2}(t) = V_{2} + tV_{1}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} t$$

$$= \begin{pmatrix} 1+t \\ t \end{pmatrix}$$

$$X_{h} = C_{1}\begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_{2}\begin{pmatrix} 1+t \\ t \end{pmatrix}$$

$$\frac{X_h = C_1 \binom{1}{1} + C_2 \binom{t}{t}}{\varphi(t) = \binom{1}{1} + \binom{1}{t}}$$

$$\varphi^{-1} = -\begin{pmatrix} t & -1 - t \\ -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -t & 1 + t \\ 1 & -1 \end{pmatrix}$$

$$F(t) = \begin{pmatrix} \frac{1}{t} \\ \frac{1}{t} \end{pmatrix}$$

$$\begin{split} \varphi^{-1}(t)F(t) &= \begin{pmatrix} -t & 1+t \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{t} \\ \frac{1}{t} \\ 0 \end{pmatrix} \\ X_p &= \begin{pmatrix} 1 & 1+t \\ 1 & t \end{pmatrix} \int \begin{pmatrix} \frac{1}{t} \\ 0 \\ 0 \end{pmatrix} dt \\ &= \begin{pmatrix} 1 & 1+t \\ 1 & t \end{pmatrix} \begin{pmatrix} \ln t \\ 0 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \ln t \\ \ln t \end{pmatrix} \\ X(t) &= C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1+t \\ t \end{pmatrix} + \begin{pmatrix} \ln t \\ \ln t \end{pmatrix} \\ X(1) &= C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \\ \begin{cases} C_1 + 2C_2 = 2 \\ C_1 + C_2 = -1 \end{cases} \rightarrow C_1 &= \frac{4}{-1} = -4, C_2 = 3 \\ \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = -4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3 \begin{pmatrix} 1+t \\ t \end{pmatrix} + \begin{pmatrix} \ln t \\ \ln t \end{pmatrix} \\ \begin{pmatrix} \ln t \\ \ln t \end{pmatrix} \end{split}$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

 $\begin{cases} x_1(t) = -1 + 3t + \ln t \\ x_2(t) = -4 + 3t + \ln t \end{cases}$

Find the general solution of the system
$$\begin{cases} x_1'(t) = 3x_1 - 2x_2 - 2e^{-t} \\ x_2'(t) = x_1 - 2e^{-t} \end{cases} \quad X(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{vmatrix} \qquad A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$
$$= \lambda^2 - 3\lambda + 2 = 0$$

The eigenvalues: $\lambda_{1,2} = 1, 2$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix}
2 & -2 \\
1 & -1
\end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = y \qquad \Rightarrow V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
For $\lambda_2 = 2 \Rightarrow (A - \lambda_2 t)V_2 = 0$

$$\begin{pmatrix}
1 & -2 \\ 1 & -2
\end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow x = 2y \qquad \Rightarrow V_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\frac{X_h = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t}}{e^t - 2e^{2t}}$$

$$\varphi(t) = \begin{pmatrix} e^t & 2e^{2t} \\ e^t & e^{2t} \end{pmatrix}$$

$$\varphi^{-1} = -\frac{1}{e^{3t}} \begin{pmatrix} e^{2t} & -2e^{2t} \\ -e^t & e^t \end{pmatrix}$$

$$= \begin{pmatrix} -e^{-t} & 2e^{-t} \\ e^{-2t} & -e^{-2t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} -2e^{-t} \\ -2e^{-t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} -e^{-t} & 2e^{-t} \\ -2e^{-t} \end{pmatrix}$$

$$= \begin{pmatrix} -2e^{-2t} \\ 0 \end{pmatrix}$$

$$X_p = \begin{pmatrix} e^t & 2e^{2t} \\ e^t & e^{2t} \end{pmatrix} \int \begin{pmatrix} -2e^{-2t} \\ 0 \end{pmatrix} dt$$

$$= \begin{pmatrix} e^t & 2e^{2t} \\ e^t & e^{2t} \end{pmatrix} \begin{pmatrix} -2t \\ 0 \end{pmatrix}$$

$$X_p = \begin{pmatrix} e^t & 2e^{2t} \\ e^t & e^{2t} \end{pmatrix} \begin{pmatrix} -2t \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} e^t & 2e^{2t} \\ e^t & e^{2t} \end{pmatrix} \begin{pmatrix} e^{-2t} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} e^{-t} \\ e^{-t} \\ e^{-t} \end{pmatrix}$$

$$X(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$

$$X(0) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\begin{cases} C_1 + 2C_2 = 1 \\ C_1 + C_2 = -2 \end{cases} \rightarrow C_1 = \frac{5}{-1} = -5, \ C_2 = 3$$

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = -5 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + 3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} e^{-t} \\ e^{-t} \end{pmatrix}$$

$$\begin{cases} x_1(t) = -5e^t + 6e^{2t} + e^{-t} \\ x_2(t) = -5e^t + 3e^{2t} + e^{-t} \end{cases}$$

Find the general solution of the system y' = Ay $\begin{cases}
y_1'(t) = y_1 \\
y_2'(t) = -4y_1 + y_2 \\
y_3'(t) = 3y_1 + 6y_2 + 2y_3
\end{cases}$ $y(0) = \begin{pmatrix} -1 \\ 2 \\ -30 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ -4 & 1 - \lambda & 0 \\ 3 & 6 & 2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 3 & 6 & 2 \end{pmatrix}$$
$$= (1 - \lambda)^2 (2 - \lambda) = 0$$

Thus, the eigenvalues are: $\lambda_1 = 2$ & $\lambda_{2,3} = 1$

For
$$\lambda_1 = 2$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -1 & 0 & 0 \\ -4 & -1 & 0 \\ 3 & 6 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x = y = 0 \quad \Rightarrow V_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 = 1$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} 0 & 0 & 0 \\ -4 & 0 & 0 \\ 2 & 6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} x = 0 \\ 6y = -z \end{pmatrix} \Rightarrow V_2 = \begin{pmatrix} 0 \\ 1 \\ 6y = -z \end{pmatrix}$$

For
$$V_3 \Rightarrow (A - \lambda I)V_3 = V_2$$

$$\begin{pmatrix} 0 & 0 & 0 \\ -4 & 0 & 0 \\ 3 & 6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -6 \end{pmatrix} \longrightarrow \begin{pmatrix} -4x = 1 \\ 6y + z = -\frac{21}{4} \end{pmatrix} \implies V_3 = \begin{pmatrix} -\frac{1}{4} \\ -\frac{21}{24} \\ 0 \end{pmatrix}$$

$$y_3(t) = (V_3 + tV_2)e^t$$

$$y(t) = C_{1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} 0 \\ 1 \\ -6 \end{pmatrix} + C_{3} \begin{pmatrix} -\frac{1}{4} \\ -\frac{21}{24} + t \\ -6t \end{pmatrix} e^{t}$$

$$y(0) = \begin{pmatrix} -1 \\ 2 \\ -30 \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{4}C_{3} \\ C_{2} - \frac{21}{24}C_{3} \\ C_{1} - 6C_{2} \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -30 \end{pmatrix} \qquad C_{3} = 4, \quad C_{2} = \frac{33}{6}, \quad C_{1} = 3$$

$$y(t) = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} e^{2t} + \begin{pmatrix} -1 \\ 2+4t \\ -33-24t \end{pmatrix} e^{t}$$

$$\begin{cases} y_1(t) = -e^t \\ y_2(t) = (2+4t)e^t \\ y_2(t) = 3e^{2t} - (33+24t)e^t \end{cases}$$

Exercise

Find the general solution of the system
$$y' = Ay$$

$$\begin{cases} y_1'(t) = -\frac{5}{2}y_1 + y_2 + y_3 \\ y_2'(t) = y_1 - \frac{5}{2}y_2 + y_3 \\ y_3'(t) = y_1 + y_2 - \frac{5}{2}y_3 \end{cases} \quad y(0) = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
Solution

$$|A - \lambda I| = \begin{vmatrix} -\frac{5}{2} - \lambda & 1 & 1 \\ 1 & -\frac{5}{2} - \lambda & 1 \\ 1 & 1 & -\frac{5}{2} - \lambda \end{vmatrix}$$

$$= -\left(\frac{5}{2} + \lambda\right)^3 + 2 + 3\left(\frac{5}{2} + \lambda\right)$$

$$= -\frac{49}{8} - \frac{63}{4}\lambda - \frac{15}{2}\lambda^2 - \lambda^3 = 0$$

$$8\lambda^3 + 60\lambda^2 + 126\lambda + 49 = 0$$

$$A = \begin{pmatrix} -\frac{5}{2} & 1 & 1 \\ 1 & -\frac{5}{2} & 1 \\ 1 & 1 & -\frac{5}{2} \end{pmatrix}$$

$$-\frac{1}{2} \begin{vmatrix} 8 & 60 & 126 & 49 \\ -4 & -28 & -49 \\ 8 & 56 & 98 & 0 \end{vmatrix} \rightarrow \frac{8\lambda^2 + 56\lambda + 98 = 0}{8 \times 56 \times 98 \times 9}$$

Thus, the eigenvalues are:
$$\lambda_1 = -\frac{1}{2}$$
 & $\lambda_{2,3} = -\frac{7}{2}$

For
$$\lambda_1 = -\frac{1}{2} \implies (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x - 2y + z = 0 \\ x + y - 2z = 0 \end{pmatrix}$$

$$z = 1 \implies \begin{cases} -2x + y = -1 \\ x - 2y = -1 \end{cases} \quad \Delta = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3 \quad \Delta_x = \begin{vmatrix} -2 & -1 \\ 1 & -1 \end{vmatrix} = 3$$

$$\implies V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
For $\lambda_1 = -\frac{7}{2} \implies (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x + y + z = 1$$

$$z = 0 \implies x + y = 1 \quad y = 1 \implies x = -1 \implies V_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$y = 0 \implies x + z = 1 \quad z = 1 \implies x = -1 \implies V_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$y(t) = C_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{-t/2} + \begin{pmatrix} C_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} e^{-7t/2}$$

$$y(0) = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \implies \begin{pmatrix} C_1 - C_2 - C_3 \\ C_1 + C_2 \\ C_2 + C_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

$$\begin{cases} C_1 - C_2 - C_3 = 2 \\ C_1 + C_2 = 3 \\ C_1 + C_3 = -1 \end{cases}$$

$$\begin{cases} C_1 - C_2 - C_3 = 2 \\ C_1 + C_2 = 3 \\ C_1 + C_3 = -1 \end{cases} \qquad \Delta = \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 3 \quad \Delta_1 = \begin{vmatrix} 2 & -1 & -1 \\ 3 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 4$$

$$C_1 = \frac{4}{3}, \quad C_2 = \frac{5}{3}, \quad C_3 = -\frac{7}{3}$$

$$y(t) = \frac{4}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{-t/2} + \begin{pmatrix} \frac{5}{3} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} - \frac{7}{3} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} e^{-7t/2}$$

$$\begin{cases} y_1(t) = \frac{4}{3}e^{-t/2} + \frac{2}{3}e^{-7t/2} \\ y_2(t) = \frac{4}{3}e^{-t/2} + \frac{5}{3}e^{-7t/2} \\ y_2(t) = \frac{4}{3}e^{-t/2} - \frac{7}{3}e^{-7t/2} \end{cases}$$

Find the general solution of the system
$$\begin{cases} x_1'(t) = 3x_1 - x_2 - x_3 \\ x_2'(t) = x_1 + x_2 - x_3 + t \\ x_3'(t) = x_1 - x_2 + x_3 + 2e^t \end{cases} X(0) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Solution

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ 1 & 1 - \lambda & -1 \\ 1 & -1 & 1 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= \left(1 - 2\lambda + \lambda^{2}\right) (3 - \lambda) + 2 + 2(1 - \lambda) - (3 - \lambda)$$

$$= 3 - 6\lambda + 3\lambda^{2} - \lambda + 2\lambda^{2} - \lambda^{3} + 1 - \lambda$$

$$= -\lambda^{3} + 5\lambda^{2} - 8\lambda + 4 = 0$$
The eigenvalues: $\lambda_{1,2,3} = 1, 2, 2$

$$\frac{\lambda_{1,2,3} = 1, 2, 2}{1 - 1} \qquad \frac{\lambda_{1,2,3} = 1, 2, 2}{$$

For
$$\lambda_1 = 1$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} 2x = y + z \\ x = z \Rightarrow V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

For
$$V_3 \Rightarrow (A - \lambda_2 I)V_3 = V_2$$

$$\varphi^{-1} = \begin{pmatrix} -e^{-t} & e^{-t} & e^{-t} \\ e^{-2t} & 0 & -e^{-2t} \\ e^{-2t} & -e^{-2t} & 0 \end{pmatrix}$$

$$F(t) = \begin{pmatrix} 0 \\ t \\ 2e^t \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} -e^{-t} & e^{-t} & e^{-t} \\ e^{-2t} & 0 & -e^{-2t} \\ e^{-2t} & -e^{-2t} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ t \\ 2e^{t} \end{pmatrix}$$
$$= \begin{pmatrix} te^{-t} + 2 \\ -2e^{-t} \\ -te^{-2t} \end{pmatrix}$$

$$\int (te^{-t} + 2)dt = (-t - 1)e^{-t} + 2t$$

$$\int -2e^{-t}dt = \underline{2e^{-t}}$$

$$\int -te^{-2t}dt = (\underline{\frac{1}{2}t} + \underline{\frac{1}{4}})e^{-2t}$$

$$X_{p} = \begin{pmatrix} e^{t} & e^{2t} & e^{2t} \\ e^{t} & e^{2t} & 0 \\ e^{t} & 0 & e^{2t} \end{pmatrix} \begin{pmatrix} (-t-1)e^{-t} + 2t \\ 2e^{-t} \\ \left(\frac{1}{2}t + \frac{1}{4}\right)e^{-2t} \end{pmatrix}$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$

$$= \begin{pmatrix} -t - 1 + (2t + 2)e^{t} + \frac{1}{2}t + \frac{1}{4} \\ -t - 1 + 2te^{t} + 2e^{t} \\ -t - 1 + 2te^{t} + \frac{1}{2}t + \frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} \\ -1 \\ -\frac{1}{2} \end{pmatrix} t + \begin{pmatrix} -\frac{3}{4} \\ -1 \\ -\frac{3}{4} \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} e^{t} + \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} t e^{t}$$

$$X(t) = C_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + C_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} -\frac{1}{2} \\ -1 \\ -\frac{1}{2} \end{pmatrix} t + \begin{pmatrix} -\frac{3}{4} \\ -1 \\ -\frac{3}{4} \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} t e^t$$

$$X\left(\frac{0}{0}\right) = C_1 \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + C_2 \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + C_3 \begin{pmatrix} 1\\0\\1 \end{pmatrix} + \begin{pmatrix} -\frac{3}{4}\\-1\\-\frac{3}{4} \end{pmatrix} + \begin{pmatrix} 2\\2\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$

$$\begin{cases} C_1 + C_2 + C_3 - \frac{3}{4} + 2 = 1 \\ C_1 + C_2 - 1 + 2 = 1 \\ C_1 + C_3 - \frac{3}{4} = 1 \end{cases}$$

$$\begin{cases} C_1 + C_2 + C_3 = -\frac{1}{4} \\ C_1 + C_2 = 0 \\ C_1 + C_3 = \frac{7}{4} \end{cases} \qquad \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = -1 \quad \Delta_1 = \begin{vmatrix} -\frac{1}{4} & 1 & 1 \\ 0 & 1 & 0 \\ \frac{7}{4} & 0 & 1 \end{vmatrix} = -2 \quad \Delta_2 = \begin{vmatrix} 1 & -\frac{1}{4} & 1 \\ 1 & 0 & 0 \\ 1 & \frac{7}{4} & 1 \end{vmatrix} = 2$$

$$C_1 = 2$$
, $C_2 = -2$, $C_3 = -\frac{1}{4}$

$$X(t) = \begin{pmatrix} 2+2\\2+2\\2 \end{pmatrix} e^{t} + \begin{pmatrix} -2-\frac{1}{4}\\2\\-\frac{1}{4} \end{pmatrix} e^{2t} + \begin{pmatrix} -\frac{1}{2}\\-1\\-\frac{1}{2} \end{pmatrix} t + \begin{pmatrix} -\frac{3}{4}\\-1\\-\frac{3}{4} \end{pmatrix} + \begin{pmatrix} 2\\2\\2 \end{pmatrix} t e^{t}$$

$$\begin{cases} x_1(t) = 4e^t - \frac{9}{4}e^{2t} - \frac{3}{4} - \frac{1}{2}t + 2te^t \\ x_2(t) = 4e^t + 2e^{2t} - 1 - t + 2te^t \\ x_3(t) = 2e^t - \frac{1}{4}e^{2t} - \frac{3}{4} - \frac{1}{2}t + 2te^t \end{cases}$$

Find the general solution of the system $\begin{cases} x_1'(t) = x_1 + x_2 + e^t \\ x_2'(t) = x_1 + x_2 + e^{2t} \\ x_3'(t) = 3x_3 + te^{3t} \end{cases} X(0) = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$= (1 - 2\lambda + \lambda^2)(3 - \lambda) - (3 - \lambda)$$
$$= (3 - \lambda)(\lambda^2 - 2\lambda) = 0$$

The eigenvalues: $\lambda_{1,2,3} = 0$, 2, 3

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} x = -y \\ z = 0 \end{cases} \Rightarrow V_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_2 = 2$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} x = y \\ z = 0 \end{cases} \Rightarrow V_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_3 = 3$$
 $\Rightarrow (A - \lambda_3 I)V_3 = 0$

$$\begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} 2x = y \\ x = 2y \end{cases} \Rightarrow V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$X_{h} = C_{1} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + C_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{3t}$$

$$\varphi(t) = \begin{pmatrix} -1 & e^{2t} & 0 \\ 1 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix}$$

$$\varphi^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2}e^{-2t} & \frac{1}{2}e^{-2t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix}$$

$$F(t) = \begin{pmatrix} e^{t} \\ e^{2t} \\ te^{3t} \end{pmatrix}$$

$$\varphi^{-1}(t)F(t) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2}e^{-2t} & \frac{1}{2}e^{-2t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix} \begin{pmatrix} e^{t} \\ e^{2t} \\ te^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}e^{t} - \frac{1}{2}e^{2t} \\ \frac{1}{2}e^{-t} + \frac{1}{2} \\ t \end{pmatrix}$$

$$\int \left(\frac{1}{2}e^{t} - \frac{1}{2}e^{2t}\right) dt = \frac{1}{2}e^{t} - \frac{1}{4}e^{2t}$$

$$\int tdt = \frac{1}{2}t^{2}$$

$$X_{p} = \begin{pmatrix} -1 & e^{2t} & 0 \\ 1 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix} \begin{pmatrix} \frac{1}{2}e^{t} - \frac{1}{4}e^{2t} \\ -\frac{1}{2}e^{-t} + \frac{1}{2}t \\ \frac{1}{2}t^{2} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2}e^{t} + \frac{1}{4}e^{2t} - \frac{1}{2}e^{t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}e^{t} - \frac{1}{4}e^{2t} - \frac{1}{2}e^{t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}t^{2}e^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} -e^{t} + \frac{1}{4}e^{2t} - \frac{1}{2}e^{t} + \frac{1}{2}te^{2t} \\ \frac{1}{2}t^{2}e^{3t} \end{pmatrix}$$

$$X_{p} = \varphi(t) \int \varphi^{-1}(t) F(t) dt$$
1201

$$\begin{split} X(t) &= C_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + C_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} e^{3t} + \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} \frac{1}{2}t + \frac{1}{4} \\ \frac{1}{2}t - \frac{1}{4} \\ 0 \end{pmatrix} e^{2t} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2}t^2 \end{pmatrix} e^{3t} \\ X(0) &= C_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{4} \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \begin{pmatrix} -C_1 + C_2 + C_3 = \frac{11}{4} \\ C_1 + C_2 + 2C_3 = \frac{13}{4} \\ C_1 + C_2 = \frac{21}{4} \end{pmatrix} e^{2t} + C_2 = \frac{15}{4} \\ C_1 + C_2 &= \frac{21}{4} \end{pmatrix} C_1 = \frac{3}{4}, \quad C_2 = \frac{9}{2} \\ \begin{pmatrix} x_1(t) = -C_1 - e^t + \left(C_2 + \frac{1}{2}t + \frac{1}{4}\right)e^{2t} + C_3e^{3t} \\ x_2(t) = C_1 + \left(C_2 + \frac{1}{2}t - \frac{1}{4}\right)e^{2t} + 2C_3e^{3t} \\ x_3(t) &= \left(C_3 + \frac{1}{2}t^2\right)e^{3t} \\ \end{pmatrix} \\ \begin{pmatrix} x_1(t) = -\frac{3}{4} - e^t + \left(\frac{1}{2}t + \frac{19}{4}\right)e^{2t} - 2e^{3t} \\ x_2(t) &= \frac{3}{4} + \left(\frac{1}{2}t + \frac{17}{4}\right)e^{2t} - 2e^{3t} \\ \end{pmatrix} \end{split}$$

Find the general solution of the system x'' + x = 3; $x(\pi) = 1$, $x'(\pi) = 2$

 $x_3(t) = (\frac{1}{2}t^2 - 1)e^{3t}$

$$x'' + x = 3$$
; $x(\pi) = 1$, $x'(\pi) = 2$

Solution

Let
$$x_1 = x$$
 $x_2 = x' = x'_1$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -x_1 + 3 \end{cases} \rightarrow x(\pi) = x_1(\pi) = 1, \quad x'(\pi) = x_2(\pi) = 2$$

$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$= \lambda^2 + 1 = 0$$

The eigenvalues: $\lambda_{1,2} = \pm i$

For
$$\lambda_1 = i \implies (A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies ix = y \implies V_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ i \end{pmatrix} e^{it} = \begin{pmatrix} 1 \\ i \end{pmatrix} (\cos t + i \sin t)$$

$$= \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix}$$

$$= \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

$$X_h = C_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + C_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

$$X_2' \begin{cases} a_2 = 0 \\ x_2' \begin{cases} -a_1 - 3 = 0 \end{cases} \implies \begin{cases} a_2 = 0 \\ a_1 = 3 \end{cases} \implies X_p = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$X(t) = C_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + C_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} + \begin{pmatrix} 3 \\ \cos t \end{pmatrix} \implies x_1(\pi) = 1, \quad x_2(\pi) = 2$$

$$X(\pi) = C_1 \begin{pmatrix} -1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{cases} -C_1 + 3 = 1 \implies C_1 = 2 \\ -C_2 = 2 \implies C_2 = -2 \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (t) = 2 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} - 2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$\begin{cases} x_1(t) = 2\cos t - 2\sin t + 3 \\ x_2(t) = -2\sin t - 2\cos t \end{cases}$$

$$x(t) = x_1(t) = 2\cos t - 2\sin t + 3$$

Find the general solution of the system $\begin{cases} x \\ y'' \end{cases}$

$$\begin{cases} x'' = x - y \\ y'' = x - y \end{cases} \begin{cases} x(3) = 5, & x'(3) = 2 \\ y(3) = 1, & y'(3) = -1 \end{cases}$$

Solution

$$\begin{vmatrix} A - \lambda^2 I \end{vmatrix} = \begin{vmatrix} 1 - \lambda^2 & -1 \\ 1 & -1 - \lambda^2 \end{vmatrix}$$
$$= \lambda^4 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2,3,4} = 0$

$$x(t) = C_1 + C_2 t + C_3 t^2 + C_4 t^3$$

$$x(3) = C_1 + 3C_2 + 9C_3 + 27C_4 = 5$$

$$x' = C_2 + 2C_3 t + 3C_4 t^2$$

$$x'(3) = C_2 + 6C_3 + 27C_4 = 2$$

$$x'' = x - y \rightarrow y = x - x''$$

$$x'' = 2C_3 + 6C_4 t$$

$$y(t) = C_1 - 2C_3 + (C_2 - 6C_4)t + C_3t^2 + C_4t^3$$

$$y(3) = C_1 + 3C_2 + 7C_3 + 9C_4 = 1$$

$$y' = C_2 - 6C_4 + 2C_3t + 3C_4t^2$$

$$y'(3) = C_2 + 6C_3 + 21C_4 = -1$$

$$\Delta = \begin{vmatrix} 1 & 3 & 9 & 27 \\ 0 & 1 & 6 & 27 \\ 1 & 3 & 7 & 9 \\ 0 & 1 & 6 & 21 \end{vmatrix} = 12 \quad \Delta_1 = \begin{vmatrix} 5 & 3 & 9 & 27 \\ 2 & 1 & 6 & 27 \\ 1 & 3 & 7 & 9 \\ -1 & 1 & 6 & 21 \end{vmatrix} = 42 \quad \Delta_2 = \begin{vmatrix} 1 & 5 & 9 & 27 \\ 0 & 2 & 6 & 27 \\ 1 & 1 & 7 & 9 \\ 0 & -1 & 6 & 21 \end{vmatrix} = 42$$

$$C_1 = \frac{42}{12} = \frac{7}{2}, \quad C_2 = \frac{7}{2}, \quad C_3 = -\frac{5}{2}, \quad C_4 = \frac{1}{2}$$

$$\begin{cases} x(t) = \frac{7}{2} + \frac{7}{2}t - \frac{5}{2}t^2 + \frac{1}{2}t^3 \\ y(t) = \frac{17}{2} + \frac{1}{2}t - \frac{5}{2}t^2 + \frac{1}{2}t^3 \end{cases}$$

Exercise

Find the general solution of the system

$$\begin{cases} x'' = x - y \\ y'' = -x + y \end{cases} \begin{cases} x(0) = -1, & x'(0) = 0 \\ y(0) = 1, & y'(0) = 0 \end{cases}$$

Solution

$$\begin{vmatrix} A - \lambda^2 I \end{vmatrix} = \begin{vmatrix} 1 - \lambda^2 & -1 \\ -1 & 1 - \lambda^2 \end{vmatrix}$$
$$= \lambda^4 - 2\lambda^2 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = 0$ & $\lambda_{3,4} = \pm \sqrt{2}$

$$x(t) = C_1 + C_2 t + C_3 e^{-\sqrt{2}t} + C_4 e^{\sqrt{2}t}$$

$$x(0) = \underbrace{C_1 + C_3 + C_4}_{x'} = -1$$

$$x' = C_2 - \sqrt{2}C_3 e^{-\sqrt{2}t} + \sqrt{2}C_4 e^{\sqrt{2}t}$$

$$x'(0) = \underbrace{C_2 - \sqrt{2}C_3 + \sqrt{2}C_4}_{y'} = 0$$

$$x'' = x - y \rightarrow y = x - x''$$

$$x''' = 2C_3 e^{-\sqrt{2}t} + 2C_4 e^{\sqrt{2}t}$$

$$y(t) = C_1 + C_2 t - C_3 e^{-\sqrt{2}t} - C_4 e^{\sqrt{2}t}$$

$$y(0) = \underbrace{C_1 - C_3 - C_4}_{1} = 1$$

$$y' = C_2 + \sqrt{2}C_3 e^{-\sqrt{2}t} - \sqrt{2}C_4 e^{\sqrt{2}t}$$

$$y'(0) = \underbrace{C_2 + \sqrt{2}C_3 - \sqrt{2}C_4}_{1} = 0$$

$$\Delta = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -\sqrt{2} & \sqrt{2} \\ 1 & 0 & -1 & -1 \\ 0 & 1 & \sqrt{2} & -\sqrt{2} \end{vmatrix} = 8\sqrt{2} \quad \Delta_1 = \begin{vmatrix} -1 & 0 & 1 & 1 \\ 0 & 1 & -\sqrt{2} & \sqrt{2} \\ 1 & 0 & -1 & -1 \\ 0 & 1 & \sqrt{2} & -\sqrt{2} \end{vmatrix} = 0$$

$$\begin{cases} C_3 + C_4 = -1 \\ \sqrt{2}C_3 - \sqrt{2}C_4 = 0 \end{cases}$$

$$C_1 = 0, \quad C_2 = 0, \quad C_3 = -\frac{\sqrt{2}}{2\sqrt{2}} = -\frac{1}{2}, \quad C_4 = -\frac{1}{2}$$

$$\begin{cases} x(t) = -\frac{1}{2}e^{-\sqrt{2}t} + \frac{1}{2}e^{\sqrt{2}t} \\ y(t) = \frac{1}{2}e^{-\sqrt{2}t} + \frac{1}{2}e^{\sqrt{2}t} \end{cases}$$

Find the general solution of the system

$$\begin{cases} \frac{d^2 x}{dt^2} = y; & x(0) = 3, & x'(0) = 1\\ \frac{d^2 y}{dt^2} = x; & y(0) = 1, & y'(0) = -1 \end{cases}$$

Solution

$$\begin{vmatrix} A - \lambda^2 I \end{vmatrix} = \begin{vmatrix} -\lambda^2 & 1 \\ 1 & -\lambda^2 \end{vmatrix}$$
$$= \lambda^4 - 1 = 0$$

Thus, the eigenvalues are: $\lambda_{1,2} = \pm 1$ & $\lambda_{3,4} = \pm i$

$$x(t) = C_1 e^{-t} + C_2 e^t + C_3 \cos t + C_4 \sin t$$

$$x(0) = \underbrace{C_1 + C_2 + C_3}_{1} = 3$$

$$x' = -C_1 e^{-t} + C_2 e^t - C_3 \sin t + C_4 \cos t$$

$$x'(0) = \underbrace{-C_1 + C_2 + C_4}_{1} = 1$$

$$x'' = y$$

$$y(t) = C_1 e^{-t} + C_2 e^t - C_3 \cos t - C_4 \sin t$$
$$y(0) = C_1 + C_2 - C_3 = 1$$

$$y' = -C_1 e^{-t} + C_2 e^t + C_3 \sin t - C_4 \cos t$$
$$y'(0) = -C_1 + C_2 - C_4 = -1$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ -1 & 1 & 0 & -1 \end{vmatrix} = 8 \quad \Delta_1 = \begin{vmatrix} 3 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ -1 & 1 & 0 & -1 \end{vmatrix} = 8 \quad \Delta_2 = \begin{vmatrix} 1 & 3 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ -1 & -1 & 0 & -1 \end{vmatrix} = 8$$

$$\Delta_{3} = \begin{vmatrix} 1 & 1 & 3 & 0 \\ -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ -1 & 1 & -1 & -1 \end{vmatrix} = 8 \quad \Delta_{4} = \begin{vmatrix} 1 & 1 & 1 & 3 \\ -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 0 & -1 \end{vmatrix} = 8$$

$$C_1 = 1$$
, $C_2 = 1$, $C_3 = 1$, $C_4 = 1$

$$\begin{cases} x(t) = e^{-t} + e^t + \cos t + \sin t \\ y(t) = e^{-t} + e^t - \cos t - \sin t \end{cases}$$

Find the general solution of the system

$$\begin{cases} x'' + 5x - 2y = 0 & x(0) = x'(0) = 0 \\ y'' + 2y - 2x = 3\sin 2t & y(0) = 1, y'(0) = 0 \end{cases}$$

Solution

$$\begin{cases} x'' = -5x + 2y \\ y'' = 2x - 2y + 3\sin 2t \end{cases}$$

$$\begin{vmatrix} A - \lambda^2 I \end{vmatrix} = \begin{vmatrix} -5 - \lambda^2 & 2 \\ 2 & -2 - \lambda^2 \end{vmatrix}$$

$$= \lambda^4 + 7\lambda^2 + 6 = 0 \qquad \lambda^2 = -1, -6$$

The eigenvalues: $\lambda_{1,2} = i \& \lambda_{3,4} = \pm i\sqrt{6}$

$$x_{h}(t) = C_{1}\cos t + C_{2}\sin t + C_{3}\cos\sqrt{6}t + C_{4}\sin\sqrt{6}t$$

$$\begin{cases} x_{p} = A\sin 2t \\ y_{p} = B\sin 2t \end{cases} \rightarrow \begin{cases} x''_{p} = -4A\sin 2t \\ y''_{p} = -4B\sin 2t \end{cases}$$

$$\begin{cases} -4A\sin 2t + 5A\sin 2t - 2B\sin 2t = 0 \\ -4B\sin 2t + 2B\sin t - 2A\sin 2t = 3\sin 2t \end{cases}$$

$$\begin{cases} A - 2B = 0 \\ -2A - 2B = 3 \end{cases} \rightarrow A = -1, B = -\frac{1}{2}$$

$$\begin{cases} x_p = -\sin 2t \\ y_p = -\frac{1}{2}\sin 2t \end{cases}$$

$$x(t) = C_1 \cos t + C_2 \sin t + C_3 \cos \sqrt{6}t + C_4 \sin \sqrt{6}t - \sin 2t$$

$$x(0) = C_1 + C_3 = 0$$

$$x' = -C_1 \sin t + C_2 \cos t - \sqrt{6}C_3 \sin \sqrt{6}t + \sqrt{6}C_4 \cos \sqrt{6}t - 2\cos 2t$$

$$x'(0) = C_2 + \sqrt{6}C_4 - 2 = 0$$
(2)

$$\begin{split} x'' + 5x - 2y &= 0 \quad \rightarrow \quad y = \frac{1}{2} \left(x'' + 5x \right) \\ x'' &= -C_1 \cos t - C_2 \sin t - 6C_3 \cos \sqrt{6}t - 6C_4 \sin \sqrt{6}t + 4\sin 2t \\ y(t) &= \frac{1}{2} \left(x'' + 5x \right) \\ &= \frac{1}{2} \left(4C_1 \cos t + 4C_2 \sin t - C_3 \cos \sqrt{6}t - C_4 \sin \sqrt{6}t - \sin 2t \right) \\ &= 2C_1 \cos t + 2C_2 \sin t - \frac{1}{2}C_3 \cos \sqrt{6}t - \frac{1}{2}C_4 \sin \sqrt{6}t - \frac{1}{2}\sin 2t \end{split}$$

$$y(0) = 2C_1 - \frac{1}{2}C_3 = 1$$
 (3)

$$y' = -2C_1 \sin t + 2C_2 \cos t + \frac{\sqrt{6}}{2}C_3 \sin \sqrt{6}t - \frac{\sqrt{6}}{2}C_4 \cos \sqrt{6}t - \cos 2t$$

$$y'(0) = 2C_2 - \frac{\sqrt{6}}{2}C_4 - 1 = 0$$
 (4)

$$\begin{cases} (1) & C_1 + C_3 = 0 \\ (3) & 4C_1 - C_3 = 2 \end{cases} \qquad C_1 = \frac{2}{5}, \quad C_3 = -\frac{2}{5}$$

$$\begin{cases} (2) & C_2 + \sqrt{6}C_4 = 2 \\ (4) & 4C_2 - \sqrt{6}C_4 = 2 \end{cases} \qquad C_2 = \frac{4\sqrt{6}}{5\sqrt{6}} = \frac{4}{5}, \quad C_4 = \frac{6}{5\sqrt{6}} = \frac{\sqrt{6}}{5}$$

$$\begin{cases} x(t) = \frac{2}{5}\cos t + \frac{4}{5}\sin t - \frac{2}{5}\cos\sqrt{6}t + \frac{\sqrt{6}}{5}\sin\sqrt{6}t - \sin 2t \\ y(t) = \frac{4}{5}\cos t + \frac{8}{5}\sin t + \frac{1}{5}\cos\sqrt{6}t - \frac{\sqrt{6}}{10}\sin\sqrt{6}t - \frac{1}{2}\sin 2t \end{cases}$$

Find the general solution of the system

$$\begin{cases} x'' = -2x' - 5y + 3 \\ y' = x' + 2y \end{cases} \qquad x(0) = 0, \ x'(0) = 0, \ y(0) = 1$$

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x'_1 \\ y_1 &= y & y_2 &= y' &= y'_1 \end{aligned} \begin{cases} x(0) &= x_1(0) &= 0 \\ x'(0) &= x_2(0) &= 0 \\ y(0) &= y_1(0) &= 1 \end{cases}$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -2x_2 - 5y_1 + 3 \\ y'_1 = x_2 + 2y_1 \\ |-\lambda| & 1 & 0 \end{cases}$$

$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -2 - \lambda & -5 \\ 0 & 1 & 2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -2 & -5 \\ 0 & 1 & 2 \end{pmatrix}$$
$$= \lambda \left(4 - \lambda^2 \right) - 5\lambda$$
$$= -\lambda^3 - \lambda = 0$$

The eigenvalues: $\lambda_1 = 0$, $\lambda_{2,3} = \pm i$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{cases} 0 & 1 & 0 \\ 0 & -2 & -5 \\ 0 & 1 & 2 \end{cases} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} y = 0 \\ z = 0 \end{cases} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
For $\lambda_2 = -i \Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{cases} i & 1 & 0 \\ 0 & -2 + i & -5 \\ 0 & 1 & 2 + i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} ix = -y \\ (-2 + i)y = 5z \\ y = -(2 + i)z \end{cases} \Rightarrow V_2 = \begin{pmatrix} 1 \\ -i \\ \frac{1}{5}(1 + 2i) \end{pmatrix}$$

$$\begin{cases} 1 \\ -i \\ \frac{1}{5}(1 + 2i) \end{pmatrix} e^{-it} = \begin{pmatrix} 1 \\ -i \\ \frac{1}{5}(1 + 2i) \end{pmatrix} (\cos t - i \sin t)$$

$$= \begin{pmatrix} \cos t - i \sin t \\ -\sin t - i \cos t \\ \frac{1}{5}(\cos t + 2 \sin t + i(2 \cos t - \sin t)) \end{pmatrix}$$

$$= \begin{pmatrix} \cos t \\ -\sin t \\ -\cos t \\ \frac{1}{5}(\cos t + 2 \sin t) \end{pmatrix} + i \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$X_h = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \cos t \\ -\sin t \\ \frac{1}{5}(\cos t + 2 \sin t) \end{pmatrix} + C_3 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\sin t \\ -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{pmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \sin t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5}(2 \cos t - \cos t) \end{vmatrix}$$

$$\begin{cases} -\cos t \\ \frac{1}{5$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (t) = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \cos t \\ -\sin t \\ -\sin t \\ \frac{1}{5} (\cos t + 2\sin t) \end{pmatrix} + C_3 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5} (2\cos t - \sin t) \end{pmatrix} + \begin{pmatrix} -6t \\ -6 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (0) = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \\ \frac{1}{5} \end{pmatrix} + C_3 \begin{pmatrix} 0 \\ -1 \\ \frac{2}{5} \end{pmatrix} + \begin{pmatrix} 0 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{cases} C_1 + C_2 = 0 & \rightarrow C_1 = -2 \\ -C_3 - 6 = 0 & \rightarrow C_3 = -6 \\ \frac{1}{5}C_2 + \frac{2}{5}C_3 + 3 = 1 & \rightarrow C_2 = 2 \end{bmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (t) = -2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} \cos t \\ -\sin t \\ \frac{1}{5}(\cos t + 2\sin t) \end{pmatrix} - 6 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5}(2\cos t - \sin t) \end{pmatrix} + \begin{pmatrix} -6t \\ -6 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} -2 + 2\cos t + 6\sin t - 6t \\ -2\sin t + 6\cos t - 6 \\ \frac{2}{5}\cos t + \frac{4}{5}\sin t - \frac{12}{5}\cos t + \frac{6}{5}\sin t + 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2\cos t + 6\sin t - 6t - 2 \\ -2\sin t + 6\cos t - 6 \\ 2\sin t - 2\cos t + 3 \end{pmatrix}$$

$$\begin{cases} x(t) = x_1(t) = 2\cos t + 6\sin t - 6t - 2 \\ y(t) = y_1(t) = 2\sin t - 2\cos t + 3 \end{pmatrix}$$

Find the general solution of the system

$$\begin{cases} x'' = 2x' + 5y + 3 \\ y' = -x' - 2y \end{cases} \qquad x(0) = 0, \ x'(0) = 0, \ y(0) = 1$$

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x'_1 \\ y_1 &= y & y_2 &= y' &= y'_1 \end{aligned} \begin{cases} x(0) &= x_1(0) &= 0 \\ x'(0) &= x_2(0) &= 0 \\ y(0) &= y_1(0) &= 1 \end{cases}$$
$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= 2x_2 & 5y_1 &+ 3 \\ y'_1 &= -x_2 &- 2y_1 \end{cases}$$
$$|A - \lambda I| = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & 2 - \lambda & 5 \\ 0 & -1 & -2 - \lambda \end{vmatrix} \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 5 \\ 0 & -1 & -2 \end{pmatrix}$$

$$= \lambda \left(4 - \lambda^2\right) - 5\lambda$$
$$= -\lambda^3 - \lambda = 0$$

The eigenvalues: $\lambda_1 = 0$, $\lambda_{2,3} = \pm i$

For
$$\lambda_1 = 0$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 5 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} y = 0 \\ z = 0 \end{cases} \Rightarrow V_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

For
$$\lambda_2 = -i$$
 $\Rightarrow (A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} i & 1 & 0 \\ 0 & 2+i & 5 \\ 0 & -1 & -2+i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} ix = -y \\ (2+i)y = -5z \\ y = (-2+i)z \end{cases}$$

$$x = 1 \Rightarrow y = -i \Rightarrow -i = (-2+i)z$$

$$z = -\frac{i}{-2+i} \frac{-2-i}{-2-i} = \frac{-1+2i}{5}$$

$$\Rightarrow V_2 = \begin{pmatrix} 1 \\ -i \\ \frac{1}{5}(-1+2i) \end{pmatrix}$$

$$\begin{pmatrix}
1 \\
-i \\
\frac{1}{5}(-1+2i)
\end{pmatrix} e^{-it} = \begin{pmatrix}
1 \\
-i \\
\frac{1}{5}(-1+2i)
\end{pmatrix} (\cos t - i\sin t)$$

$$= \begin{pmatrix}
\cos t - i\sin t \\
-\sin t - i\cos t \\
\frac{1}{5}(-\cos t + 2\sin t + i(2\cos t + \sin t))
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos t \\
-\sin t \\
-\sin t \\
-\cos t
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos t \\
-\sin t \\
-\cos t
\end{pmatrix}$$

$$X_h = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \cos t \\ -\sin t \\ \frac{1}{5} \left(-\cos t + 2\sin t \right) \end{pmatrix} + C_3 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5} \left(2\cos t + \sin t \right) \end{pmatrix}$$

$$\begin{cases} 2a_2 + 5a_3 = -3 \\ -a_2 - 2a_3 = 0 \end{cases} \Delta = \begin{vmatrix} 2 & 5 \\ -1 & -2 \end{vmatrix} = 1 \quad \Delta_1 = \begin{vmatrix} -3 & 5 \\ 0 & -2 \end{vmatrix} = 6 \quad \Delta_2 = \begin{vmatrix} 2 & -3 \\ -1 & 0 \end{vmatrix} = -3 \end{cases}$$

$$\Rightarrow a_2 = 6 \quad a_3 = -3$$

$$x_1' = x_2 \Rightarrow a_1' = 6 \Rightarrow a_1 = 6t$$

$$X_P = \begin{pmatrix} 6t \\ 6 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (t) = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \cos t \\ -\sin t \\ -\cos t + 2\sin t \end{pmatrix} + C_3 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5}(2\cos t + \sin t) \end{pmatrix} + \begin{pmatrix} 6t \\ 6 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (0) = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{5} \end{pmatrix} + C_3 \begin{pmatrix} 0 \\ -1 \\ \frac{1}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} C_1 + C_2 = 0 \\ -C_3 + 6 = 0 \end{pmatrix} \rightarrow C_1 = 8$$

$$-C_3 + 6 = 0 \rightarrow C_3 = 6$$

$$-\frac{1}{5}C_2 + \frac{2}{5}C_3 - 3 = 1 \rightarrow C_2 = -8$$

$$\begin{pmatrix} x_1 \\ x_2 \\ y_1 \end{pmatrix} (t) = 8 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 8 \begin{pmatrix} \cos t \\ -\sin t \\ -\cos t \end{pmatrix} + 6 \begin{pmatrix} -\sin t \\ -\cos t \\ \frac{1}{5}(2\cos t + \sin t) \end{pmatrix} + \begin{pmatrix} 6t \\ 6 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} 8 - 8\cos t - 6\sin t + 6t \\ 8\sin t - 6\cos t + 6 \\ 8\sin t - 6\cos t + 6 \\ 4\cos t - 2\sin t - 3 \end{pmatrix}$$

$$= \begin{pmatrix} -8\cos t - 6\sin t + 6t + 8 \\ 8\sin t - 6\cos t + 6 \\ 4\cos t - 2\sin t - 3 \end{pmatrix}$$

$$\begin{cases} x(t) = x_1(t) = -8\cos t - 6\sin t + 6t + 8 \\ y(t) = y_1(t) = 4\cos t - 2\sin t - 3 \end{pmatrix}$$

Find the real and imaginary part of $z(t) = e^{2it} \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$

Solution

$$z(t) = (\cos 2t + i \sin 2t) \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$$

$$= \begin{pmatrix} \cos 2t + i \sin 2t \\ \cos 2t + i \sin 2t + i \cos 2t - \sin 2t \end{pmatrix}$$

$$= \begin{pmatrix} \cos 2t + i \sin 2t \\ \cos 2t - \sin 2t + i (\sin 2t + \cos 2t) \end{pmatrix}$$

The real part is: $(\cos 2t, \cos 2t - \sin 2t)^T$

The imaginary part is: $(\sin 2t, \sin 2t + \cos 2t)^T$

Exercise

Two tanks, each containing 360 *liters* of a salt solution. Pure water pours into tank *A* at a rate of 5 *L/min*. There are two pipes connecting tank *A* to tank *B*. The first pumps salt solution from tank *B* into tank *A* at a rate of 4 *L/min*. The second pumps salt solution from tank *A* into tank *B* at a rate of 9 *L/min*. Finally, there is a drain on tank *B* from which salt solution drains at a rate of 5 *L/min*. Thus, each tank maintains a constant volume of 360 *liters* of salt solution. Initially, there are 60 kg of salt present in tank *A*, but tank *B* contains pure water.

- a) Set up, in matrix-vector form, an initial value problem that models the salt content in each tank over time.
- b) Find the eigenvalues and eigenvectors of the coefficient matrix in part (a), then find the general solution in vector form. Find the solution that satisfies the initial conditions posed in part (a).
- c) Plot each component of your solution in part (b) over a period of four time constants $\begin{bmatrix} 0, 4T_c \end{bmatrix}$. What is the eventual salt content in each tank? Give both a physical and a mathematical reason for your answer.

Solution

a) Let $x_A(t)$ and $x_A(t)$ represent the number of pounds of salt as a function of time.

Tank A:

Rate in =
$$(5+4) \frac{L}{\min} \frac{x_A}{360} \frac{kg}{L} = \frac{x_A}{40} kg / min$$

Rate out =
$$4 \frac{L}{\min} \frac{x_B}{360} \frac{kg}{L} = \frac{x_B}{90} kg / min$$

$$\frac{dx_A}{dt} = Rate in - Rate out = -\frac{x_A}{40} + \frac{x_B}{90}$$

Tank B:

Rate in = 9
$$\frac{L}{\min} \frac{x_A}{360} \frac{kg}{L} = \frac{x_A}{40} kg / min$$

Rate out = $(5+4) \frac{L}{\min} \frac{x_B}{360} \frac{kg}{L} = \frac{x_B}{40} kg / min$

$$\frac{dx_B}{dt} = Rate in - Rate out = \frac{x_A}{40} - \frac{x_B}{40}$$

$$\begin{cases} x'_A = -\frac{x_A}{40} + \frac{x_B}{90} \\ x'_B = \frac{x_A}{40} - \frac{x_B}{40} \end{cases}$$

The system is:
$$\begin{pmatrix} x_A \\ x_B \end{pmatrix}' = \begin{pmatrix} -\frac{1}{40} & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{40} \end{pmatrix} \begin{pmatrix} x_A \\ x_B \end{pmatrix}$$

$$x' = Ax(t)$$

With initial 60 kg of salt in tank A; $\begin{pmatrix} x_A(0) \\ x_B(0) \end{pmatrix} = \begin{pmatrix} 60 \\ 0 \end{pmatrix}$

$$b) \det(A - \lambda I) = \begin{vmatrix} -\frac{1}{40} - \lambda & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{40} - \lambda \end{vmatrix}$$
$$= \left(-\frac{1}{40} - \lambda \right) \left(-\frac{1}{40} - \lambda \right) - \frac{1}{90} \frac{1}{40}$$
$$= \frac{1}{1600} + \frac{1}{20} \lambda + \lambda^2 - \frac{1}{3600}$$
$$= \lambda^2 + \frac{1}{20} \lambda + \frac{5}{14400}$$

 \therefore The eigenvalues are: $\lambda_1 = -\frac{1}{120}$ and $\lambda_2 = -\frac{1}{24}$

For
$$\lambda_1 = -\frac{1}{120}$$
 \Rightarrow $\left(A - \lambda_1 I\right) V_1 = 0$, we have
$$\begin{pmatrix} -\frac{1}{40} + \frac{1}{120} & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{40} + \frac{1}{120} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -\frac{1}{60} & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{60} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{60} & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{60} \end{pmatrix} \xrightarrow{ref} \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & 0 \end{pmatrix} \Rightarrow x - \frac{2}{3}y = 0$$

$$V_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \Rightarrow x_1(t) = \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-t/120}$$
For $\lambda_2 = -\frac{1}{24} \Rightarrow (A - \lambda_2 I)V_2 = 0$, we have
$$\begin{pmatrix} -\frac{1}{40} + \frac{1}{24} & \frac{1}{90} \\ \frac{1}{40} & -\frac{1}{40} + \frac{1}{24} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{60} & \frac{1}{90} \\ \frac{1}{40} & \frac{1}{60} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \frac{1}{60} & \frac{1}{90} \\ \frac{1}{40} & \frac{1}{60} \end{pmatrix} \xrightarrow{ref} \begin{pmatrix} 1 & \frac{2}{3} \\ 0 & 0 \end{pmatrix} \Rightarrow x + \frac{2}{3}y = 0$$

$$V_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix} \Rightarrow x_2(t) = \begin{pmatrix} -2 \\ 3 \end{pmatrix} e^{-t/24}$$

$$x(t) = C_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-t/120} + C_2 \begin{pmatrix} -2 \\ 3 \end{pmatrix} e^{-t/24}$$

$$Given \begin{pmatrix} x_A(0) \\ x_B(0) \end{pmatrix} = \begin{pmatrix} 60 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 60 \\ 0 \end{pmatrix} = C_1 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + C_2 \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$\Rightarrow \begin{cases} 2C_1 - 2C_2 \\ 3C_1 + 3C_2 \end{cases} \Rightarrow \begin{cases} 2C_1 - 2C_2 \\ 3C_1 + 3C_2 \end{cases}$$

$$\Rightarrow \begin{cases} 2C_1 - 2C_2 = 60 \\ 3C_1 + 3C_2 = 0 \end{cases} \Rightarrow C_1 = 15$$

$$x(t) = 15 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-t/120} - 15 \begin{pmatrix} -2 \\ 3 \end{pmatrix} e^{-t/24}$$

$$e) \quad x(t) = \begin{pmatrix} 30 & 30 \\ 45 & -45 \end{pmatrix} \begin{pmatrix} e^{-t/120} \\ e^{-t/24} \end{pmatrix}$$

$$\begin{pmatrix} x_A \\ x_D \end{pmatrix} = \begin{pmatrix} 30 e^{-t/120} + 30e^{-t/24} \\ 45 e^{-t/120} - 45e^{-t/24} \end{pmatrix}$$

The time constant on $e^{-t/120}$ is $T_c = 120$

The time constant on $e^{-t/24}$ is $T_c = 24$

If we choose the larger of these two time constants over a period of four time constants

$$[0, 4T_c] = [0, 480].$$

This allows enough time to show both components decaying to zero.

Physically, if we keep pouring pure water into the tank *B*, eventually the system will purge itself of all salt content.

Mathematically:
$$\begin{cases} 30e^{-t/120} + 30e^{-t/24} \xrightarrow[t \to \infty]{} 0 \\ 45e^{-t/120} - 45e^{-t/24} \xrightarrow[t \to \infty]{} 0 \end{cases}$$

Exercise

Consider the *RLC* parallel circuit below. Let *V* represent the voltage drop across the capacitor and *I* represent the current across the inductor that satisfied the system.

$$\begin{cases} V' = -\frac{V}{RC} - \frac{1}{C} \\ I' = \frac{V}{L} \end{cases}$$

Suppose that the resistance is $R = \frac{1}{2}\Omega$, the capacitor is C = 1 farad, and the inductance is $L = \frac{1}{2}$ henry. If the initial voltage across the capacitor is V(0) = 10 volts and there is no initial current across the inductor, solve the system to determine the voltage and current as a function of time. Plot the voltage and current as a function of time. Assume current flows in the directions indicated.

Solution

$$\begin{cases} V' = -2V - 1 \\ I' = 2V \end{cases}$$

$$\begin{pmatrix} V \\ I \end{pmatrix}' = \begin{pmatrix} -2 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} V \\ I \end{pmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -1 \\ 2 & -\lambda \end{vmatrix}$$

$$= \lambda^2 + 2\lambda + 2 = 0$$

 \therefore The eigenvalues are: $\lambda = -1 \pm i$

For
$$\lambda_1 = -1 + i$$
 $\Rightarrow (A - \lambda_1 I)V = 0$

$$\begin{pmatrix} -1-i & -1 \\ 2 & 1-i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} -x-y-ix=0 \\ 2x+y-iy=0 \end{pmatrix} \rightarrow 2x = (-1+i)y$$

$$V = \begin{pmatrix} -1+i \\ 2 \end{pmatrix} \rightarrow z(t) = \begin{pmatrix} -1+i \\ 2 \end{pmatrix} e^{(-1+i)t}$$

$$z(t) = \begin{pmatrix} -1+i \\ 2 \end{pmatrix} e^{-t}e^{it}$$

$$= e^{-t} \left(\cos t + i \sin t\right) \left(\begin{pmatrix} -1 \\ 2 \end{pmatrix} + i \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)$$

$$= e^{t} \left[\cos t \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \sin t \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] + ie^{t} \left[\left(\sin t \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \cos \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)\right]$$

$$= e^{-t} \begin{pmatrix} -\cos t - \sin t \\ 2\cos t \end{pmatrix} + ie^{-t} \begin{pmatrix} \cos t - \sin t \\ 2\sin t \end{pmatrix}$$

$$x(t) = C_{1}e^{-t} \begin{pmatrix} -\cos t - \sin t \\ 2\cos t \end{pmatrix} + C_{2}e^{-t} \begin{pmatrix} \cos t - \sin t \\ 2\sin t \end{pmatrix}$$

$$x(0) = (1) \begin{pmatrix} -1-0 \\ 2(1) \end{pmatrix} + i(1) \begin{pmatrix} 1-0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 0 \end{pmatrix} = C_{1} \begin{pmatrix} -1 \\ 2 \end{pmatrix} + C_{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 0 \end{pmatrix} = \begin{pmatrix} -1C_{1} + C_{2} \\ 2C_{1} \end{pmatrix} \Rightarrow C_{1} = 0 \quad C_{2} = 10$$

$$x(t) = 10e^{-t} \begin{pmatrix} \cos t - \sin t \\ 2\sin t \end{pmatrix}$$

$$\begin{pmatrix} V(t) \\ I(t) \end{pmatrix} = x(t) = \begin{pmatrix} 10e^{-t} (\cos t - \sin t) \\ 20e^{-t} \sin t \end{pmatrix}$$

Show that the voltage V across the capacitor and the current I through the inductor satisfy the system

$$\begin{cases} I' = -\frac{R_1}{L}I + \frac{1}{L}V \\ V' = -\frac{1}{C}I - \frac{1}{R_2C}V \end{cases}$$

Suppose that the capacitance is C=1 farad, the inductance is L=1 henry, the leftmost resistor has resistance $R_2=1$ Ω , and the rightmost resistor has resistance $R_1=5$ Ω . If the initial voltage across the capacitor is 12 volts and the initial current through the inductor is zero, determine the voltage V across the capacitor and the current I through the inductor as functions of time. Plot the voltage and current as functions of time. Assume current flows in the directions indicated.

Solution

The current coming into the node at a must equal the current coming out,

$$\begin{split} I + I_1 + I_2 &= 0 \\ -R_2 I_2 + V &= 0 \\ -R_2 \left(-I - I_1 \right) + V &= 0 \\ R_2 I + R_2 I_1 &= -V \end{split}$$

The voltage across the capacitor follows the law

 $V = \frac{1}{C}q_1$, where q_1 is the charge in the capacitor.

$$CV = q_1$$

$$(CV)' = (q_1)'$$

$$CV' = q_1' = I_1$$

$$R_2I + R_2\frac{I}{1} = -V \rightarrow R_2I + R_2\left(\frac{CV'}{}\right) = -V$$

$$R_2CV' = -V - R_2I$$

$$V' = -\frac{1}{R_2C}V - \frac{1}{C}I$$

$$-V + LI' + R_1I = 0$$

$$LI' = V - R_1I$$

$$I' = \frac{1}{L}V - \frac{R_1}{L}I$$

$$\begin{pmatrix} V \\ I \end{pmatrix}' = \begin{pmatrix} -\frac{1}{R_2 C} & -\frac{1}{C} \\ \frac{1}{L} & -\frac{R_1}{L} \end{pmatrix} \begin{pmatrix} V \\ I \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{(1)(1)} & -\frac{1}{1} \\ \frac{1}{1} & -\frac{5}{1} \end{pmatrix} \begin{pmatrix} V \\ I \end{pmatrix}$$

$$= \begin{pmatrix} -1 & -1 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} V \\ I \end{pmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} -1 - \lambda & -1 \\ 1 & -5 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda)(-5 - \lambda) + 1$$
$$= \lambda^2 + 6\lambda + 6 = 0$$

 \therefore The eigenvalues are: $\lambda = -3 \pm \sqrt{3}$

For
$$\lambda_1 = -3 + \sqrt{3}$$
 $\Rightarrow (A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} 2 - \sqrt{3} & -1 \\ 1 & -2 - \sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} \left(2 - \sqrt{3}\right)x - y = 0 \\ x - \left(2 + \sqrt{3}\right)y = 0 \end{cases}$$

$$V_1 = \begin{pmatrix} 2 + \sqrt{3} \\ 1 \end{pmatrix} \rightarrow x_1(t) = \begin{pmatrix} 2 + \sqrt{3} \\ 1 \end{pmatrix} e^{\left(-3 + \sqrt{3}\right)t}$$

For
$$\lambda_2 = -3 - \sqrt{3}$$

$$V_{2} = \begin{pmatrix} 2 - \sqrt{3} \\ 1 \end{pmatrix} \rightarrow x_{2}(t) = \begin{pmatrix} 2 - \sqrt{3} \\ 1 \end{pmatrix} e^{\left(-3 - \sqrt{3}\right)t}$$

$$x(t) = C_1 e^{\left(-3+\sqrt{3}\right)t} {2+\sqrt{3} \choose 1} + C_2 e^{\left(-3-\sqrt{3}\right)t} {2-\sqrt{3} \choose 1}$$

Given:
$$V_0 = 12 \ V \quad I_0 = 0A$$

$$\binom{12}{0} = C_1 \binom{2+\sqrt{3}}{1} + C_2 \binom{2-\sqrt{3}}{1}$$

$$\begin{cases} (2+\sqrt{3})C_1 + (2-\sqrt{3})C_2 = 12 \\ C_1 + C_2 = 0 \end{cases} \Rightarrow C_1 = 2\sqrt{3}, C_2 = -2\sqrt{3}$$

$$\boldsymbol{x}(t) = 2\sqrt{3}e^{\left(-3+\sqrt{3}\right)t} \begin{pmatrix} 2+\sqrt{3} \\ 1 \end{pmatrix} - 2\sqrt{3}e^{\left(-3-\sqrt{3}\right)t} \begin{pmatrix} 2-\sqrt{3} \\ 1 \end{pmatrix}$$

$$\binom{V}{I} = \begin{pmatrix} (4\sqrt{3} + 6)e^{\left(-3 + \sqrt{3}\right)t} - (4\sqrt{3} - 6)e^{\left(-3 - \sqrt{3}\right)t} \\ 2\sqrt{3}e^{\left(-3 + \sqrt{3}\right)t} - 2\sqrt{3}e^{\left(-3 - \sqrt{3}\right)t} \end{pmatrix}$$

Which leads to the solutions

$$V(t) = (4\sqrt{3} + 6)e^{(-3+\sqrt{3})t} - (4\sqrt{3} - 6)e^{(-3-\sqrt{3})t}$$
$$I(t) = 2\sqrt{3}e^{(-3+\sqrt{3})t} - 2\sqrt{3}e^{(-3-\sqrt{3})t}$$

