STATISTICAL LEARNING PROJECT

Detecting Heart Disease

1 THE HEART DATA DATASET

DATA PRE-PROCESSING

O3. SUPERVISED LEARNING
Decision Trees, Bagging & Random Forests

04. UNSUPERVISED LEARNING
Hierarchical Clustering

TABLE OF CONTENT

THE DATASET

The dataset is retrieved from the UCI Machine Learning Repository, i.e., a collection of databases, domain theories, and data generators provided by the University of California.

The dataset is made up of 918 observations, 11 predictors and 1 response variable: HeartDisease.

Among the predictors, there are 5 numerical variables and 5 categorical variables. The response variable is binary, and the possible outcomes are "HD", when the patient is predicted to have an heart disease, and "Normal" when it's not.

The aim of my project is to build models that are able to accurately predict the arise of heart disease.

SUMMARY OF THE DATASET

Attribute	Description	Data Type	Domain
Age	Patient's age in years	Numerical	28 - 77
Sex	Patient's sex	Binary	[M, F]
ChestPainType	Type of chest pain	Nominal	[ASY, ATA, TA, NAP]
RestingBP	Blood pressure at rest	Numerical	0 - 200
Cholesterol	Total serum cholesterol	Numerical	0 - 603
FastingBS	Level of blood sugar higher or lower than 120 mg/dl	Binary	[Y,N]
RestingECG	ECG results	Nominal	[Normal, ST, LVH]
MaxHR	Maximum heart rate achieved	Numerical	60 - 202
ExerciseAngina	Exercise-induced angina	Binary	[0, 1]
Oldpeak	Exercise-induced level of ST depression	Numerical	(-2.6) - 6.2
ST-Slope	Peak-exercise ST slope	Nominal	[Up, Down, Flat]
HeartDisease	Output variable	Binary	[Normal, HD]

Table 1: Summary of the dataset.

SUMMARY OF THE QUANTITATIVE VARIABLES

	Age	RestingBP	Cholesterol	MaxHR	Oldpeak
min	28	0.0	0.0	60.0	-2.6
1st Q.	47	120.0	173.2	120.0	0.0
median	54	130.0	223.0	138.0	0.6
mean	53.51	132.4	198.8	136.80	0.8874
3rd Q.	60.0	140.0	267.0	156.0	1.5
max	77	200.0	603.0	202.0	6.2

Table 2: Summary statics for numerical variables.

Variable		Count	Frequency	
	М	725	78.98 %	
Sex	F	193	21.02 %	
	Total	918	100. 00 %	
	0	704	76.69 %	
Fasting Blood Sugar	1	114	23.31 %	
Jugui	Total	918	100. 00 %	
	ATA	173	18.85 %	
	TA	46	5.01 %	
ChestPainType	NAP	203	22.11 %	
	ASY	496	54.03 %	
	Total	918	100.00 %	
	Flat	460	50.11 %	
ST Slone	Up	395	43.03 %	
ST_Slope	Down	63	6. 86 %	
	Total	918	100.00 %	
	Υ	371	40.41 %	
ExerciseAngina	N	547	59. 59 %	
	Total	918	100.00 %	
	Normal	552	60.13 %	
Posting CC	ST	178	19.39 %	
RestingECG	LVH	118	20.48 %	
	Total	918	100.00 %	

SUMMARY OF THE QUALITATIVE VARIABLES

DATA PRE-PROCESSING

- Removed the "dead" person, i.e., observation with RestingBP equal to 0.
- Applied random forests to replace the 0s to the variable Cholesterol.
- Cleaned the dataset from the most extreme values.
- Applied resampling methods to balance Sex and FastingBS.

Comparison of Different Imputation Methods

Cholesterol

DIFFERENT IMPUTATION METHODS

I've applied several imputation stategy to replace the zeros in Cholesterol:

- 1. Removed all the observations where Cholesterol = 0;
- 2. Replaced the zeros with the *median* value.
- 3. Used pmm algorithm.
- 4. Used random forests algorithm.

REMOVED ONLY THE MOST EXTREME OUTLIERS

I've only removed the extreme values from Cholesterol, for a few reasons:

- I'm going to use decision trees and random forests, which are not sensitive to outliers, thus their performance won't be altered much the presence of some outliers.
- In the medical field outliers could represent important information, that should be preserved.

RE-BALANCED THE CLASSES OF SEX AND FASTINGBS

I've applied random resampling techniques to re-balance the distribution of the observations across the classes of Sex and FastingBS.

I've first applied random undersampling to Sex, and then random oversampling to FastingBS (undersampling, and oversampling functions in caret).

The final datset contains 610 observations, where the class distributions over Sex and FastingBS are split evenly.

SUPERVISED LEARNING Decision Trees

I've finally fit a decision tree on each sample I've created:

- rf on which I've only imputed the missing values of Cholesterol.
- clean on which I've removed the extreme outliers.
- train on which I've performed re-sampling over the imbalanced classes.

I've measured the performance of each tree on test samples based on several performance metrics:

- Accuracy, as the rate of the correctly predicted classes over the total number of predictions.
- Sensitivity, as the rate of correctly predicted positives (HD) over all the predictions of HD.
- Sensibility, as as the rate of correctly predicted negatives (Normal) over all the predictions of Normal.
- Precision, as the rate of correctly predicted positives (HD), when HD is true.
- Recall, as the rate of correctly predicted negatives (Normal), when lack of HD is true.

SUPERVISED LEARNING Decision Trees

Training Set	Test Set	Accuracy	Sensitivity	Specificity	Precision	Recall	F1
train	rf	0.8451	0.8600	0.8268	0.8789	0.8304	0.8550
clean[train,]	clean[-train,]	0.8333	0.9175	0.7349	0.8018	0.9175	0.856
rf[train,]	rf[-train,]	0.8207	0.7921	0.8554	0.8696	0.7921	0.8296

Overall, the best performing tree is the one trained on the *clean* dataset.

SUPERVISED LEARNING Decision Trees - Best Performing Tree

ST_Slope and ChestPainType seem to be quite important variables in the detection of heart disease.

However, these results could be due to some further class imbalance on the two variables.

SUPERVISED LEARNING Bagging

Training Set	Test Set	Accuracy	Sensitivity	Specificity	Precision	Recall	F1	OOB error
train	rf	0.8975	0.8836	0.9146	0.9275	0.8836	0.9051	8.52%
clean[train1,	clean[- train1,]	0.8389	0.8557	0.8193	0.8389	0.8469	0.8513	14.05%
rf[train1,]	rf[- train1,]	0.8478	0.8714	0.8714	0.8544	0.8713	0.8627	18.14%

Overall, the best performing bagging tree is the one trained on the *train* dataset. Since it's *bagging*, the number of variables picked for each tree is the total number of variables.

In this case, I've also added the Out-Of-Bag error estimate, which is an estimate of the prediction errors on the *out-of-bag* samples, i.e., the ones on which the trees have not been fit.

SUPERVISED LEARNING Random Forests

Training Set	Test Set	n. of variables at each split	Accuracy	Sensitivity	Specificity	Precision	Recall	F1	OOB error
train	rf	3	0.9138	0.9172	0.9098	0.9263	0.9172	0.9217	7.38%
clean[train2,]	clean[-train2,]	3	0.8778	0.9263	0.8235	0.8544	0.9263	0.8889	15.44%
rf[train2,]	rf[-train2,]	3	0.8578	0.9109	0.7952	0.8440	0.9109	0.8762	14.19%

Overall, the best performing random forest is the one trained on the *train* dataset. In this case, the number of variables picked to build each tree on the training set is 3.

SUPERVISED LEARNING Random Forests & Bagging - Best Performing Models

Among all the possible bagged trees or random forests, the best performing classifier is the random forest built on the *train* sample.

SUPERVISED LEARNING Random Forests - Variable Importance

The mean decrease in Gini coefficient is a measure of how each variable contributes to the purity of the nodes and leaves in the resulting random forest.

The higher the value of mean decrease accuracy or mean decrease Gini score, the higher the importance of the variable in the model.

In this case, ST_Slope and ChestPainType are again the 2 most important variables; however, this could be resulting due to the relative class imbalance of the two variables.

UNSUPERVISED LEARNING Data Pre-Processing

In order to apply Hierarchical Clustering, I first re-scaled all the numerical variables.

	Age	RestingBP	Cholesterol	MaxHR	Oldpeak
min	-2.713	-2.910	-2.816	-3.01	-3.268
1st Q.	-0.696	-0.697	-0.672	-0.656	-0.828
median	0.05	-0.144	-0.104	-0.656	-0.828
mean	0.00	0.00	0.00	0.00	0.00
3rd Q.	0.684	0.409	0.654	0.755	0579
max	2.489	3.728	0.654	2.576	4.989

Table 7: Example of summary statics for numerical variables after scaling, for *clean.csv* dataset.

UNSUPERVISED LEARNING Hierarchical Clustering

Since the dataset is made-up of mixed data types, I've used Gower distance to measure the pairwise distances across the distributions.

	Age	sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	01dpeak
157	42	M	ATA	120	196	0	Normal	150	0	0
141	42	M	ATA	120	198	0	Normal	155	0	0
	ST_S	:Tope	HeartDisease							
157		Up	Normal							
141		Up	Normal							

Figure 18: Least dissimilar pair of observations from *clean.csv*.

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	01dpeak
715	56	F	ASY	200	288	1	LVH	133	1	4
281	36	M	ATA	120	166	0	Normal	180	0	0
	ST_S	Поре	HeartDisease							
715		Dowr	n HD							
281		Up	Normal							

Figure 19: Most dissimilar pair of observations from clean.csv.

UNSUPERVISED LEARNING Hierarchical Clustering

I've applied hierarchical clustering on *clean* and *train* datasets.

The optimal number of clusters in both is two.

These are two examples of the clusters; on both the splits across the clusters have been determined by average linkage.

- (1) is the dendogram built on the *clean* sample;
- (2) is the dendogram built on the *train* sample.

UNSUPERVISED LEARNING Hierarchical Clustering - 2D Representation of the Clusters

(1) The clusters have been built on the *clean* dataset.

(2) The clusters have been built on the *train* dataset.

Thank you for your attention!

