



## Mangrove carbon assessment tool: Model development and sensitivity analysis



Zhaohua Dai<sup>a,d,\*</sup>, Carl C. Trettin<sup>a</sup>, Steve Frolking<sup>b</sup>, Richard A. Birdsey<sup>c</sup>

<sup>a</sup> Center for Forested Wetlands Research, USDA Forest Service, Cordesville, SC USA

<sup>b</sup> Earth System Research Center, University of New Hampshire, Durham, NH USA

<sup>c</sup> Woods Hole Research Center, Falmouth, MA USA

<sup>d</sup> School of Forest Resources and Environmental Science, Michigan Tech University, Houghton, MI USA

### ARTICLE INFO

**Keywords:**  
 MCAT-DNDC  
 Marine wetland  
 Dissolved carbon  
 Particulate organic carbon  
 Burial carbon  
 $\text{CH}_4$   
 Blue carbon

### ABSTRACT

It is important to have the capability to assess carbon (C) dynamics in mangrove forests and estimate their role in mitigating climate change because of their high carbon density, the threats to their integrity from land-use change and sea-level rise, and functional linkages of the many goods and services. A process-based model for mangroves was developed by integrating new features with existing biogeochemical processes in Forest-DNDC for simulating C sequestration and turnover in mangrove ecosystems. The new model is used to assess (1) the dynamics of C, nitrogen and phosphorous in mangrove ecosystems, including above-and below-ground C in saline wetlands, (2) the impacts of ecological drivers, including climate, soil nitrogen and phosphorous deficit and salt stress, on mangrove production, (3) the production of methane, and aerobic and anaerobic oxidation of methane with sulfate, nitrate and nitrite reductions, (4) the contributions of dissolved inorganic C (DIC), dissolved organic C (DOC), particulate organic C (POC) and burial C (BC) to blue C, and (5) impacts of natural and anthropogenic disturbances on C sequestration in mangrove ecosystems. Model sensitivity analysis showed that C sequestration in mangrove ecosystems was highly sensitive to multiple ecological factors, including climate, soil phosphorus, salinity and sulfate, as well as latitude. The responses of different C components to these factors were distinct. The responses of gross and net primary productivity and aboveground biomass to alterations of mean daily temperature (MDT) were quadratic, or increasing or decreasing non-linearly with an increment or decrement in MDT, but leaf production was linear. Similarly, other mangrove C components, such as BC, DIC, DOC and POC, respond substantially to variations of the ecological drivers. The combined effects of the driving factors are complex due to their intricate interactions. For example, while mangrove productivity is sensitive to available phosphorous, phosphorous cannot mitigate the stress imposed by high salinity. These results highlight the value of a tool to assess C dynamics in mangroves, especially for regional or large mangrove forests.

### 1. Introduction

Mangroves are widely recognized and valued for their ecological functions and socioeconomic values (Clough, 1998; Chen and Twilley, 1999; Alongi, 2009; Barr et al., 2012; Castaneda-Moya et al., 2013) because they provide a variety of goods and services and play an important role in the global C cycle. High rates of C sequestration and large accumulated C stocks are characteristics of mangroves, and are a foundation for mitigating climate change (Jennerjahn et al., 2017) and reducing damages of landward ecosystems in coastal areas threatened by tsunamis and hurricanes (Kathiresan and Rajendran, 2005; Alongi, 2008).

Mangroves not only accumulate C in woody biomass, but also bury

C (BC) in sediments/soils (Matsui, 1998; Donato et al., 2011; Kauffman et al., 2011; Wang et al., 2013; Kauffman et al., 2014; Jones et al., 2014) and export DIC, DOC, and POC to oceanic deposition (Alongi, 2009, 2014; Dittmar et al., 2006). Mangroves are also a source of renewable resources for local communities (FAO, 1994). Their contributions to the global C cycle and mitigating climate change are substantially different from other terrestrial forests. However, mangroves are being rapidly depleted and degraded (FAO, 2007) due to increasing pressures from climate change and growing populations. Accordingly, understanding C dynamics in mangrove forests is fundamental to assess their contribution to mitigating climate change and inform mangrove management and MRV (Monitoring, Reporting and Verification) for REDD+ (Reducing emissions from deforestation and forest

\* Corresponding author. Center for Forested Wetlands Research, USDA Forest Service, Cordesville, SC USA.  
 E-mail addresses: [mcatndc2015@gmail.com](mailto:mcatndc2015@gmail.com), [zdai@fs.fed.us](mailto:zdai@fs.fed.us) (Z. Dai).

degradation, plus conserving forests and promoting sustainable forest management).

Mangroves are dynamic and their production varies widely due to differences in ecological factors, including species composition (Alongi, 2009; Rahman et al., 2015), geographic location (Bouillon et al., 2008; Alongi, 2014), salinity (Naidoo, 1987; Ball and Pidsley, 1995; Galvan-Ampudia and Testerink, 2011), topographic gradient (Alongi, 2014), and nutrient status (Lin and Sternberg, 1992; Twilley and Day, 1999; Liang et al., 2008). While mangrove carbon stocks have been characterized amongst a wide variety of mangrove types and regional eco-environmental conditions, existing inventories are insufficient to understand long-term C, nitrogen (N) and phosphorous (P) dynamics in mangrove forests, especially for large regions where limitations in personnel, equipment, funds and complex environmental conditions prevent comprehensive inventories. Mechanistic computer models, which are developed from expert knowledge and observations, are an important additional tool for understanding mangrove ecosystems.

There are several models with capability to assess C dynamics in mangrove ecosystems (Chen and Twilley, 1998; Luo et al., 2010; Barr et al., 2013a; Hutchison et al., 2013; Grueters et al., 2014; Jardine and Siikamaki, 2014; Bukoski et al., 2017), however, most of these models are empirical and not spatially-explicit. Except for the model modified from Biome-BGC (Luo et al., 2010), which can be used to estimate more than two mangrove C components, the other models can only be used to assess either biomass and/or NPP or soil C in mangrove ecosystems. There are also two models with functionalities that can be utilized to assess effects of disturbances on mangroves and estimate recovery after disturbances (Rideout et al., 2013; Mukherjee et al., 2014). However, there isn't a model that can simultaneously estimate dynamics of several important mangrove C components, including aboveground and belowground biomass, soil C pool, and aquatic C (DIC, DOC and POC) and gaseous C ( $\text{CH}_4$  and  $\text{CO}_2$ ) fluxes, and that can also access the effects of multiple disturbances on mangroves.

There are substantial differences in ecological drivers, such as climate, soil and hydrology, as well as species composition that influence C sequestration in mangroves. Accordingly, a spatially-explicit process-based assessment tool is needed to estimate spatial dynamics of two important C processes in mangrove ecosystems, the contribution of mangroves to blue C<sup>1</sup> and mitigating climate change, and to assess the impacts of natural and anthropogenic disturbances on C sequestration in mangrove ecosystems.

We have developed a process-based model for mangroves by integrating features unique to mangroves within the biogeochemical process based model Forest-DNDC for simulating C dynamics. The following presents (1) the spatially-explicit, process-based mangrove carbon assessment tool, and (2) results from sensitivity analyses for the environmental factors used as model inputs that may substantially impact C sequestration in mangrove ecosystems. Vegetation and soil characteristics at a site in the Everglades National Park (ENP) in Florida of USA (Castaneda-Moya et al., 2013) were used as the basis of the sensitivity analysis because this site has been widely studied with respect to biomass estimate, soil analysis and water table observations. The analysis involves quantifying the sensitivities of gross primary productivity (GPP), net primary productivity (NPP), aboveground biomass (AGB), BC, DOC, DIC, and POC, as well as  $\text{CH}_4$  flux and heterotrophic soil respiration (Rh) to climate, latitude, salt stress (salinity) and P deficiency, and combined effect of soil salinity and P as well as the impact of combined climate and latitude on C sequestration in mangrove ecosystems.

## 2. Modeling methods

### 2.1. Model framework

The model, MCAT-DNDC (Mangrove-Carbon-Assessment-Tool-DeNitrification-DeComposition), was constructed by integrating existing biogeochemical processes of Forest-DNDC (Li et al., 2000) with new components that consider processes specific to mangroves. Forest-DNDC (FDNDC) has been used to assess C dynamics in forested uplands and freshwater wetlands (Zhang et al., 2002; Li et al., 2004; Cui et al., 2005; Dai et al., 2012). FDNDC is process-based, and used to simulate forest growth and above- and below-ground C and N dynamics in forest ecosystems, including trace gas emissions, based on the balance of water, light, and nutrition in forest ecosystems (Li et al., 2000; Stange et al., 2000; Miehle et al., 2006). The model integrates photosynthesis, decomposition, nitrification-denitrification, carbon storage and consumption, and hydrothermal balance in forest ecosystems. The vegetation is divided into three layers: overstory, understory, and ground. The vegetation of each layer is simulated based on competition for energy and nutrients. This model has been tested and used for estimating greenhouse gas (GHG) from forested upland and freshwater wetland ecosystems and assessing C sequestration in forests in a wide range of climatic regions, from boreal to tropical (Stange et al., 2000; Zhang et al., 2002; Li et al., 2004; Dai et al., 2014).

The processes in FDNDC were modified to estimate C dynamics in mangroves because the physiological mechanisms and rooting environment of mangroves are substantially different from those of terrestrial forests. The MCAT-DNDC estimates C, N and P dynamics in saline wetlands (Fig. 1), and predicts mangrove growth and degradation, C accumulation in aboveground and belowground biomass, litter production and decomposition and organic C accumulation in soil/sediment, as well as the effects of N and P deficit and salt stress on above- and below-ground biomass; and MCAT-DNDC assesses the anaerobic oxidation of methane (AOM) via sulfate, nitrate and nitrite reduction, as well as production of DIC, DOC, POC and BC and their contributions to blue C; the model can also be used to assess the impacts of natural and anthropogenic disturbances, including insects, storms, fires and harvesting, on mangroves.

To better accommodate the spatial heterogeneity in biophysical and biogeochemical conditions in mangrove ecosystems, MCAT-DNDC is designed to explicitly represent spatial complexities in hydrogeological and climatic characteristics, and soil and vegetation types at different scales that are flexible from a single soil-plant profile to a large region consisted of various geographical mosaics. A polygon-based spatial dataset joined vegetation, soil, climate and geographical gradient is used for the model set-up (Dai et al., 2017), i.e., each polygon contains the information needed to assess C, N and P dynamics in mangrove ecosystems. The model runs daily on a daily time-step for all processes and polygons are processed sequentially.

### 2.2. Carbon accumulation and consumption

Rates of accumulation and consumption of C in mangrove ecosystems are principally dependent on ecological drivers (Fig. 1). The main drivers are vegetation, soils/sediments, hydrology regulated by climate and tides, disturbance, and incoming radiation impacted by climatic conditions. Plants use light energy to assimilate atmospheric  $\text{CO}_2$  by photosynthetic process to accumulate C in ecosystems. Primary productivity is related to the accumulation rate of biomass. Gross primary productivity (GPP) is used to represent the capability of plants assimilating  $\text{CO}_2$ . However, plants release  $\text{CO}_2$  too because of respiration needed for growth and maintenance of the plant. Accordingly, net primary productivity (NPP) is used to quantitatively reflect C accumulation in the plant systems, or

$$\text{NPP} = \text{GPP} - R_p \quad (1)$$

<sup>1</sup> Blue carbon is the carbon captured by oceans and coastal ecosystems.



**Fig. 1.** The framework of MCAT-DNDC. WT: water table; Ra: radiation; PET: potential evapotranspiration; AET: estimated actual evapotranspiration; PSN: photosynthesis; NPP: net primary production; GPP: gross primary production; Death: including fallen leaf and dead woods; VL: very labile organic matter; L: labile organic matter; R: resistant organic matter; MP: mineral C pool; HP: humus pool; PHP: positive pool; DIC: dissolved inorganic C; DOC: dissolved organic C; AT: atmosphere; POC: particle organic C.

where  $R_p$  represents the plant respiration, which is:

$$R_p = R_l + R_w + R_r \quad (2)$$

where  $R_l$  is leaf respiration;  $R_w$  and  $R_r$  are aboveground woody tissue and root respiration, respectively.

Similar to Forest-DNDC (Li et al., 2000; Dai et al., 2012), MCAT-DNDC uses a multi-layer canopy to simulate photosynthesis such that GPP is the sum of photosynthetic C of all canopy layers:

$$GPP = \beta \times f(t, m) \times \sum FPAR_i \times LAI_i \quad (3)$$

where  $\beta$  is the photosynthetic rate, 5–25 μmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> for different species (Alongi, 2009);  $f(t, m)$  is a coefficient of temperature and moisture regulated by climate and hydrology;  $FPAR_i$  is available PAR (photosynthetically active radiation) at  $i$ th layer of the canopy depth starting from the top, and  $FPAR_0$  is the PAR above the canopy that is related to geographical location;  $LAI_i$  is the leaf area index at the  $i$ th layer, calculated from leaf weight (see Eq. (7)) divided by specific leaf weight (SLW, g m<sup>-2</sup>).

Net primary production (NPP) reflects the net C sequestration or accumulation (see Eq. (1)) within the ecosystem over a specified period. However, C loss from organic matter decomposition (e.g., heterotrophic respiration  $R_h$ ) must be also considered for C balance in ecosystems. Net ecosystem exchange (NEE) is, thus, used to determine the net exchange of C between the ecosystem and the atmosphere (Eqn. (4)) (Kirschbaum et al., 2001)

$$NEE = NPP - R_h \quad (4)$$

where  $R_h$  is heterotrophic respiration, representing land surface gaseous C flux excluding root respiration, only CO<sub>2</sub> resulted from dead organic matter decomposition.

NEP (net ecosystem productivity) is similar to NEE, which is used to estimate C accumulation in ecosystem. However, NEE does not consider non-gaseous C loss, thus, NEE may be larger than the value of NEP (Lovett et al., 2006) because

$$NEE = NEP + \Delta DIC + \Delta DOC + \Delta POC + \Delta O_X \quad (5)$$

where  $\Delta DIC$ ,  $\Delta DOC$  and  $\Delta POC$  are the parts of DIC, DOC and POC

losses from mangrove ecosystems to oceanic/aquatic ecosystems, respectively. These three components are important for estimating the roles of mangrove ecosystems in mitigating climate change.  $\Delta O_X$  is the C loss to or obtaining from other natural factors, such as methane release from or uptake by soils/sediments.

Natural and anthropogenic disturbances impact C sequestration in mangroves. Accordingly, net biome productivity (NBP) is used to assess how much C can accumulate in the ecosystem over a specified period (Eq. (6)).

$$NBP = NEP - \sum D_i \quad (6)$$

where  $D_i$  is C removal from the ecosystems by  $i$ th disturbance factor. The factors considered in our model framework include harvest, insects, fires, and storms.

### 2.3. Salt stress

Salt stress influences mangrove productivity (Parida and Das, 2005). A common response to salt stress is that the leaf surface expansion is reduced, thereby reducing photosynthesis, which in turn reduces mangrove production (Ball and Farquhar, 1984; Ball and Pidsley, 1995; Takemura et al., 2000; Parida et al., 2004; Suarez and Medina, 2005; Nguyen et al., 2015). The leaf production of mangroves and the impact of salt stress on the production are estimated in MCAT-DNDC as:

$$W_i = W_{i-1} + \alpha_i \times f_{lm} \times f_s \quad (7)$$

where  $W_i$  and  $W_{i-1}$  are leaf mass at the  $i$ th and  $i-1$ th time steps;  $i = 1, 2, 3, \dots, n$ ;  $W_0 = 0$  when  $i = 0$ ;  $\alpha_i$  is the correspondent growth rate of the leaf at the  $i$ th time step;  $f_{lm}$  is the coefficient of temperature and moisture, which are regulated by climate, hydrology and physical soil properties;  $f_s$  is salinity coefficient, given by

$$f_s = e^{-\omega s} \quad (8)$$

where  $\omega$  is a coefficient, 0.0225, and  $s$  is salinity (ppt, parts per thousand).

#### 2.4. Phosphorus

Many studies have concluded that phosphorus (P) deficiency in mangroves can influence productivity (Alongi, 2009). Phosphorus concentration in near shore marine sediments typically ranges between 8 and 108 µmol g<sup>-1</sup> (Filippelli, 1997). The ratio of organic P to inorganic P in oceanic sediments varies largely based on P species in oceanic sediments (Baturin, 2003). Dissolved P in pore water of oceanic sediments is between < 0.01 and 40 mg l<sup>-1</sup>, dissolved organic P in oceanic water is about 1–40 µg l<sup>-1</sup>. Dissolved inorganic P is mainly available for plants, occurs in oceanic surface water as HPO<sub>4</sub><sup>2-</sup> (about 87%) and PO<sub>4</sub><sup>3-</sup> (12%) (Baturin, 2003). However, the impact of P on plant growth is complicated because P availability for plants is influenced by many factors, including ionic concentration of Ca, Mg and Na, and pH and fungi (Grattan and Grieve, 1999). The interaction between P and salinity makes the effect of P on mangrove growth even more complex (Chapin, 1980; Clarkson, 1985; Bolan, 1991; Grattan and Grieve, 1992; Schachtman et al., 1998; Dakora and Phillips, 2002).

The rate of P uptake by plants is the key index to estimate the effect of P on mangrove production. A Michaelis-Menten equation (Clarkson, 1985) was used to estimate P uptake by plant as follows

$$P_u = \frac{P_{max} \times (C_s - C_{min})}{K_m + (C_s - C_{min})} \quad (9)$$

where  $P_u$  is P uptake by plants;  $P_{max}$  is maximum P uptake while P is adequate;  $C_s$  is the P concentration in the rhizosphere;  $C_{min}$  is the minimum concentration in the rhizosphere at the level that P uptake by plant is 0, or  $P_u = 0$ ;  $K_m$  is equal to  $(C_s - C_{min})$  while  $P_u = 0.5 \times P_{max}$ . We assumed  $C_{min} = 0$ , and  $P_{max}$  = P demand amount by mangroves at daily base when P is enough. Accordingly,  $K_m$  is a constant (mg P) under a specific environment, 0.1 mg P for initial input.  $C_s$  varies in soils, depending on many factors, including (1) total P in soils, (2) organic P mineralization (Froelich, 1988; Li et al., 1992; Follmi, 1996), (3) fixation of phosphorus (Tiessen et al., 1984; Van der Molen, 1991; Ingall et al., 1993; Filippelli and Delaney, 1996; Filippelli, 1997; Bridgman et al., 1998), and (4) equilibrium between dissolved P ions and phosphates (Atlas et al., 1976; Johansson and Wedborg, 1979; Froelich, 1988; Burton and Walter, 1990; Vazquez et al., 2000).

#### 2.5. Dissolved inorganic carbon

DIC consists of dissolved gaseous CO<sub>2</sub> (CO<sub>2(aq)</sub>), HCO<sub>3</sub><sup>-</sup> and CO<sub>3</sub><sup>2-</sup> (DOE, 1994), i.e.,

$$DIC = CO_{2(aq)} + HCO_3^- + CO_3^{2-} \quad (10)$$

We assume that dissolved CO<sub>2</sub> in the surface water of mangroves has been reached under equilibrium with atmospheric conditions and the solution content of carbonate and sulfate. Concentration of dissolved DIC should closely correlate to the partial pressure of CO<sub>2</sub> (Raymond et al., 2000). Accordingly, DIC generation in mangrove systems is mainly controlled by organic matter decomposition (OMD), mangrove root respiration (R<sub>r</sub>, see Eq. (2)) and the hydrogeological characteristics. The concentrations, diffusion and flux of gaseous CO<sub>2</sub>, CO<sub>2(aq)</sub>, HCO<sub>3</sub><sup>-</sup> and CO<sub>3</sub><sup>2-</sup> are calculated at each time step based on the changing hydrology and climate, and CO<sub>2</sub> released from OMD and R<sub>r</sub> to pore water in mangrove systems.

#### 2.6. Production and anaerobic oxidation of methane

Production and emission of CH<sub>4</sub> in rice paddies and forested freshwater wetlands have been described in previous versions of DNDC (Li et al., 1992, 2000; Zhang et al., 2002; Cui et al., 2005; Li, 2007), which focus on (1) the effects of sulfate reduction and oxides of iron and manganese on the redox potential that regulates CH<sub>4</sub> production, (2) gaseous diffusion in soils, and (3) impacts of water depth and plants on

CH<sub>4</sub> fluxes under freshwater conditions. This functionality has been modified for MCAT-DNDC to include the impact of tides on sulfate concentration in pore and surface water in mangroves (see below), which influences CH<sub>4</sub> production and emission.

Anaerobic oxidation of methane (AOM) was not in Forest-DNDC because changes in sulfate, nitrate and nitrite concentration were either small or not frequent in freshwater wetlands, thus, their reductions were assumed to mainly influence Redox potential that regulates CH<sub>4</sub> production in freshwater wetland ecosystems. However, studies have shown that AOM with sulfate, nitrate and nitrite reductions may play an important role in CH<sub>4</sub> flux from saline tidal wetlands (Joye et al., 2004; Shima and Thauer, 2005; Raghoebarsing et al., 2006; Ettwig et al., 2010; Thauer, 2011; Joye, 2012; Haroon et al., 2013) because of frequently varying concentrations of these compounds, especially given sulfate's high concentration in seawater. Accordingly, AOM with nitrate, nitrite and sulfate reduction in mangrove ecosystems is more complicated due to tides that make the concentration of these substances in the water dynamic in mangrove wetlands, which impacts Redox potential and methane production and oxidation in mangrove systems. The dynamic concentration is estimated as

$$[A]_i = [A]_{i-1} + \Delta[A] \quad (11)$$

where  $[A]_i$  and  $[A]_{i-1}$  are sulfate, nitrate and nitrite concentration in mangrove systems at the  $i$ th and  $i-1$ <sup>th</sup> time; and  $\Delta[A]$  is added by tides or consumed by reductions, and the sign is positive for addition and negative for reduction; and when  $i = 0$ ,  $[A]_i$  is the initialized value, equal to the measured or estimated concentration in pore water in target study mangroves. The impact of these acidic substances on Redox potential regulating CH<sub>4</sub> production is simulated firstly with the variable concentrations, and then AOM is estimated.

AOM by sulfate reduction may also produce more DIC in mangrove ecosystems (Caldwell et al., 2008; Milucka et al., 2012) as follows



AOM with nitrate and nitrite reductions resulted in reducing CH<sub>4</sub> flux from mangrove wetlands (Ettwig et al., 2010; Haroon et al., 2013; Green-Saxena et al., 2014) are



and



Dissolved CH<sub>4</sub> was calculated based on its stability and solubility in marine sediments (Sun and Duan, 2007) to estimate AOM with sulfate, nitrate and nitrite reductions. We assumed that principal gases in the pore water in mangrove systems are CO<sub>2</sub> and CH<sub>4</sub>, other gases are not considered.

#### 3. Model parameterization for sensitive analysis

MCAT-DNDC was parameterized to analyze the sensitivity of the mangrove C cycle to ecological drivers (Table 1). The vegetation and soil characteristics from an Everglades National Park (ENP) site in Florida (Fig. 2) were used as the basis of this analysis because it has well documented measures of biomass, NPP based on eddy covariance, soil characterization and water table within the mangroves (Barr et al., 2006, 2010, 2013b; Twilley, 1985; Chen and Twilley, 1999; Romigh et al., 2006; Castaneda-Moya et al., 2013).

Studies have shown that biomass and litter production of mangroves are related to latitude (Bouillon et al., 2008; Alongi, 2009). In order to analyze this effect and the combining effect of temperature and latitude, 16 locations, including ENP, were selected along Atlantic coast of USA and Caribbean coast of Mexico, between about 15.06° and 34.97° N latitude (Fig. 2).

Climatic data was obtained from the Daymet database (Thornton et al., 2012; <http://daymet.ornl.gov/index.html>) for the 16 sites,

**Table 1**  
Initialization of key parameters for MCAT-DNDC.

| Item                                                                            | Value           | Item                                          | Value  |
|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------|--------|
| $\beta$ , photosynthetic rate ( $\mu\text{mol m}^{-2} \text{s}^{-1}$ )          | 16              | $K_b$ , light attenuation constant            | 0.58   |
| $P_c$ , photosynthetic capacity ( $\text{nmol s}^{-1} \text{g}^{-1} \text{N}$ ) | 68              | $\omega$ , salt stress coefficient            | 0.0225 |
| $T_o$ , optimal photosynthetic temperature ( $^{\circ}\text{C}$ )               | 25              | $K_m$ , P deficit coefficient                 | 0.1    |
| $T_n$ , minimum photosynthetic temperature ( $^{\circ}\text{C}$ )               | 2               | $L_r$ , leaf retention years                  | 1.33   |
| $T_x$ , maximum photosynthetic temperature ( $^{\circ}\text{C}$ )               | 45              | $L_{C/N}$ , C/N ratio in leaf                 | 35     |
| $K_a$ , half saturation constant, $\mu\text{ mol m}^{-2} \text{s}^{-1}$         | 150             | $L_{N/P}$ , N/P ratio in leaf                 | 10     |
| $N_c$ , initial N concentration in foliage (%)                                  | 1.25            | $W_{C/N}$ , C/N ratio in wood                 | 200    |
| $W_u$ , water demand for producing 1 unit of biomass                            | 30.9            | $W_{N/P}$ , N/P ratio in wood                 | 16     |
| $C_s$ , critical concentration of P uptake by plants                            | 0               | specific leaf weight ( $\text{g m}^{-2}$ )    | 110    |
| $\alpha$ , coefficient of leaf growth potential                                 | 0.01            | Organic C in organic layer (%)                | PB     |
| Daily minimum temperature ( $^{\circ}\text{C}$ )                                | PB <sup>a</sup> | Organic C in mineral soils (%)                | PB     |
| Daily maximum temperature ( $^{\circ}\text{C}$ )                                | PB              | P in organic layer ( $\text{kg m}^{-2}$ )     | PB     |
| Daily precipitation (mm)                                                        | PB              | P in mineral layer ( $\text{kg m}^{-2}$ )     | PB     |
| Latitude (decimal)                                                              | PB              | Sulfate in pore water ( $\text{mol l}^{-1}$ ) | PB     |
| Maximum tidal height (cm)                                                       | PB              | Daily water table (cm)                        | PB     |
| Minimum tidal height (cm)                                                       | PB              |                                               |        |

<sup>a</sup> PB, the value is plot based.



**Fig. 2.** Climate data at sites (red points) along Atlantic coast of USA and Caribbean of Mexico used for model sensitivity analysis; ENP, Everglades National Park in Florida, USA. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

including daily minimum and maximum temperature and daily precipitation, and used to analyze the sensitivity of mangrove C to temperature and precipitation and the combined effect of climate and latitude.

To analyze mangrove C sensitivity to salinity, sulfate, P, and the combined impact of soil salinity and P deficiency, the model was run using different salinity, and P and sulfate concentrations (Table 2); inter-combinations of salinity and P were used to analyze their combined impacts on C dynamics in mangrove ecosystems. These inter-combinations created two combined effects of salinity and phosphorus (SP, in which both P and salinity increased from low to high values, and PS, in which P decreased from high to low while salinity increased from low to high; see Table 2).

Water table (WT) depth is an important attribute that influences C dynamics in mangroves. Unfortunately, WT data were not available for all sites used in this study. Accordingly, we created a WT dataset based on the pattern of WT in 2002 at the ENP site in Florida (Castaneda-Moya et al., 2013); this dataset was used for all simulations. This meant that changes in sea level were not considered. Other assumptions were: (1) all locations/plots used for sensitivity analysis were fully forested, or canopy cover at these sites should be approximately 100% when mangroves are mature; (2) the land use at these points has been mangroves over hundreds of years, based on accumulated soil/sediment organic layer thickness that is over several meters at ENP (Castaneda-Moya et al., 2013); (3) current mangroves at all sites were naturally regenerated; (4) there were no disturbances following stand establishment, although this model contains functionality to estimate the effects of disturbances including fire, hurricane, insects and harvest. The simulation period was 200 years, beginning with natural stand regeneration. This time span was selected to accommodate assessment of C dynamics from stand development through maturity.

#### 4. Statistical analysis

Univariate and multivariate linear and non-linear regressions were used to analyze the sensitivity for main eco-environmental drivers used as model inputs. The level of statistical significance was set to  $\alpha = 0.02$  to determine whether C cycle components were sensitive to one or multiple eco-environmental factors, rather than  $\alpha = 0.05$ ; accordingly, the use of “significant” or “significantly” indicates  $P \leq 0.02$ .

The average values were calculated for mature mangrove forests (stand age  $\geq 20$  years old), and standard deviation for the same period. Annual BC (cohort mass) was the difference between current and previous year. Annual aboveground net primary productivity (ANPP) was the sum of annual net increment in aboveground biomass and litter-fall, calculated as dry matter ( $\text{Mg ha}^{-1} \text{yr}^{-1}$ ).

## 5. Results and discussion

### 5.1. Climatic factors

Leaf biomass (LPD), a surrogate for leaf area, significantly ( $P < 0.001$ ) increased linearly with an increase in mean daily temperature (MDT) (Table 3a), at a rate of about  $67 \text{ kg C ha}^{-1} \text{yr}^{-1}$  per  $^{\circ}\text{C}$ . Correspondingly, both GPP and NPP were sensitive to temperature, exhibiting different quadratic response functions to increased air temperature (Fig. 3, Table 3a). GPP tended to increase or decrease with a corresponding change in MDT between 18 and  $24^{\circ}\text{C}$ . However, when MDT was over  $25^{\circ}\text{C}$ , GPP did not increase substantially with an

**Table 2**

Various soil salinity and concentrations of P and sulfate, and different combinations of salinity and P used to analyze sensitivity of mangrove to these components.<sup>a</sup>

| Factor (P) <sub>i</sub> | Value (g kg <sup>-1</sup> ) | Factor (S) <sub>i</sub> | Value (ppt) | Factor PS <sub>i</sub> | Value (g kg <sup>-1</sup> /ppt) | Factor SP <sub>i</sub> | Value (ppt/g kg <sup>-1</sup> ) | Sulfate SF <sub>i</sub> | Value (mol l <sup>-1</sup> ) |
|-------------------------|-----------------------------|-------------------------|-------------|------------------------|---------------------------------|------------------------|---------------------------------|-------------------------|------------------------------|
| P1                      | 0.1                         | S1                      | 5           | PS1                    | 2.0/5                           | SP1                    | 5/0.1                           | SF1                     | 0.175                        |
| P2                      | 0.2                         | S2                      | 10          | PS2                    | 1.7/10                          | SP2                    | 10/0.2                          | SF2                     | 0.350                        |
| P3                      | 0.3                         | S3                      | 15          | PS3                    | 1.4/15                          | SP3                    | 15/0.3                          | SF3                     | 0.524                        |
| P4                      | 0.5                         | S4                      | 20          | PS4                    | 0.8/20                          | SP4                    | 20/0.5                          | SF4                     | 0.699                        |
| P5                      | 0.8                         | S5                      | 25          | PS5                    | 0.5/30                          | SP5                    | 30/0.8                          | SF5                     | 1.049                        |
| P6                      | 1.1                         | S6                      | 30          | PS6                    | 0.3/40                          | SP6                    | 40/1.4                          | SF6                     | 1.398                        |
| P7                      | 1.4                         | S7                      | 40          | PS7                    | 0.2/50                          | SP7                    | 50/1.7                          | SF7                     | 1.748                        |
| P8                      | 1.7                         | S8                      | 50          | PS8                    | 0.1/60                          | SP8                    | 60/2.0                          | SF8                     | 2.098                        |
| P9                      | 2.0                         | S9                      | 60          |                        |                                 |                        |                                 |                         |                              |

<sup>a</sup> P1 – P9, changes in soil phosphorus concentration (g P kg<sup>-1</sup>); S1 – S9, changes in salinity (ppt); PS1 – PS8, phosphorus decrease accompanied by an increase in salinity; SP1 – SP8, an increase in both salinity and phosphorus; SF1 – SF7, soils sulfate concentration; all other ecological drivers were as same as those at NEP.

**Table 3a**

Statistic results from Univariate linear and non-linear regressions for sensitivity analysis.<sup>a</sup>

| Variables            | n  | R <sup>2</sup> | Equation                                                                                                   |
|----------------------|----|----------------|------------------------------------------------------------------------------------------------------------|
| LPD vs T             | 16 | 0.9944         | $67.406 \times T + 2332.6$                                                                                 |
| LLT vs T             | 16 | 0.9944         | $67.376 \times T + 2330.6$                                                                                 |
| AGB vs T             | 16 | 0.9869         | $-0.231 \times T^2 + 12.322 \times T + 25.549$                                                             |
| GPP vs T             | 16 | 0.9368         | $-7.055 \times T^2 + 349.0 \times T - 1498.0$                                                              |
| NPP vs T             | 16 | 0.9725         | $-8.688 \times T^2 + 343.4 \times T - 1473.9$                                                              |
| BC vs T              | 16 | 0.9778         | $6.188 \times T - 7.637$                                                                                   |
| DIC vs T             | 16 | 0.9457         | $-0.612 \times T^2 + 24.194 \times T - 53.846$                                                             |
| DOC vs T             | 16 | 0.9651         | $2.441 \times T + 36.73$                                                                                   |
| POC vs T             | 16 | 0.0624         | $-0.4639 \times T + 98.535$                                                                                |
| Rh vs T              | 16 | 0.9960         | $-2.843 \times T^2 + 149.46 \times T - 566.96$                                                             |
| CH <sub>4</sub> vs T | 16 | 0.9727         | $1.1345 \times T - 3.0887$                                                                                 |
| ANPP vs T            | 16 | 0.9635         | $0.234 \times T + 10.597$                                                                                  |
| TLT vs T             | 16 | 0.9844         | $0.1071 \times T + 4.6583$                                                                                 |
| LPD vs L             | 16 | 0.9985         | $-123.9 \times L + 5788.5$                                                                                 |
| LLT vs L             | 16 | 0.9985         | $-122.86 \times L + 5741.2$                                                                                |
| AGB vs L             | 16 | 0.9999         | $0.0091 \times L^3 - 0.8018 \times L^2 + 2.263 \times L + 103.65$                                          |
| GPP vs L             | 16 | 0.9999         | $-1.1174 \times L^2 + 5.5864 \times L + 2282.2$                                                            |
| NPP vs L             | 16 | 0.9999         | $0.0351 \times L^3 - 3.5069 \times L^2 + 15.686 \times L + 1014.8$                                         |
| ANPP vs L            | 16 | 0.9968         | $-0.4226 \times L + 20.866$                                                                                |
| BC vs L              | 16 | 0.9974         | $-1.2224 \times L + 49.917$                                                                                |
| DIC vs L             | 16 | 0.9092         | $-2.2234 \times L + 196.42$                                                                                |
| DOC vs L             | 16 | 0.9984         | $0.0084 \times L^3 - 0.6027 \times L^2 + 11.701 \times L + 22.325$                                         |
| POC vs L             | 16 | 0.9995         | $-2.7519 \times L + 130.71$                                                                                |
| Rh vs L              | 16 | 0.9983         | $-17.793 \times L + 980.8$                                                                                 |
| CH <sub>4</sub> vs L | 16 | 0.9836         | $-0.0404 \times L + 3.2095$                                                                                |
| LPD vs S             | 9  | 0.9991         | $-21.984 \times S + 3147.7$                                                                                |
| LLT vs S             | 9  | 0.9989         | $-21.716 \times S + 3119.9$                                                                                |
| AGB vs S             | 9  | 0.9949         | $-0.0035 \times S^2 - 0.6234 \times S + 109.02$                                                            |
| GPP vs S             | 9  | 0.9999         | $-0.074 \times S^2 - 4.4779 \times S + 1864.1$                                                             |
| NPP vs S             | 9  | 0.9989         | $-0.0379 \times S^2 - 3.045 \times S + 973.98$                                                             |
| ANPP vs S            | 9  | 0.9992         | $-0.1015 \times S + 12.806$                                                                                |
| BC vs S              | 9  | 0.9997         | $0.0002 \times S^3 - 0.1043 \times S^2 + 2.2909 \times S + 9.3844$                                         |
| DIC vs S             | 9  | 0.9996         | $-0.0008 \times S^3 + 0.0437 \times S^2 - 1.0034 \times S + 154.01$                                        |
| DOC vs S             | 9  | 0.9961         | $0.0063 \times S^2 - 1.0878 \times S + 44.74$                                                              |
| POC vs S             | 9  | 0.9916         | $-1.0795 \times S + 83.731$                                                                                |
| Rh vs S              | 9  | 0.9949         | $-0.1057 \times S^2 + 0.2963 \times S + 612.29$                                                            |
| LPD vs P             | 9  | 0.9979         | $-194.32 \times P^4 + 1348.8 \times P^3 - 3586.7 \times P^2 + 4471.9 \times P + 539.97$                    |
| LLT vs P             | 9  | 0.9979         | $-193.73 \times P^4 + 1343.8 \times P^3 - 3568.8 \times P^2 + 4441.5 \times P + 537.01$                    |
| AGB vs P             | 9  | 0.9991         | $4.2376 \times P^4 - 14.995 \times P^3 - 18.133 \times P^2 + 113.24 \times P + 3.307$                      |
| GPP vs P             | 9  | 0.9985         | $-210.13 \times P^4 + 1350.5 \times P^3 - 3154.7 \times P^2 + 3249.0 \times P + 467.62$                    |
| NPP vs P             | 9  | 0.9867         | $-69.057 \times P^4 + 440.84 \times P^3 - 1051.3 \times P^2 + 1168.0 \times P + 377.56$                    |
| BC vs P              | 9  | 0.9979         | $-8.4929 \times P^4 + 59.366 \times P^3 - 159.45 \times P^2 + 201.14 \times P + 4.334$                     |
| DIC vs P             | 9  | 0.9999         | $25.954 \times P^5 - 203.11 \times P^4 + 613.06 \times P^3 - 894.73 \times P^2 + 637.15 \times P + 17.341$ |
| DOC vs P             | 9  | 0.9975         | $1.1092 \times P^3 - 11.737 \times P^2 + 33.731 \times P - 1.8159$                                         |
| POC vs P             | 9  | 0.9982         | $5.4663 \times P^3 - 36.204 \times P^2 + 78.845 \times P + 10.998$                                         |
| Rh vs P              | 9  | 0.9971         | $62.853 \times P^3 - 352.6 \times P^2 + 643.15 \times P + 60.863$                                          |
| CH <sub>4</sub> vs P | 9  | 0.9966         | $0.3031 \times P^3 - 1.6673 \times P^2 + 2.964 \times P + 2.307$                                           |
| ANPP vs P            | 9  | 0.9991         | $1.0219 \times P^3 - 6.6933 \times P^2 + 14.384 \times P + 1.3175$                                         |

<sup>a</sup> T, temperature, °C; L, latitude, degree; S, salinity, ppt; P, soil phosphorous, g P kg<sup>-1</sup>; n, number of samples; R<sup>2</sup>, coefficient of determination, squared correlation coefficient; others, as same as those in text; LPD and LLT, kg C ha<sup>-1</sup>; AGB and TLT, Mg C ha<sup>-1</sup>; GPP, NPP, BC, DIC, DOC, POC and Rh, g C m<sup>-2</sup>, respectively; ANPP, Mg dry matter per hectare; CH<sub>4</sub>, mg CH<sub>4</sub> m<sup>-2</sup>d<sup>-1</sup>.



**Fig. 3.** Sensitivity of GPP, NPP, DIC, DOC, Rh and BC ( $\text{g C m}^{-2}$ ), LLT ( $\text{kg C ha}^{-1}$ ), AGB ( $\text{Mg C ha}^{-1}$ ), ANPP ( $\text{Mg dry matter ha}^{-1}$ ) and  $\text{CH}_4$  ( $\text{mg m}^{-2} \text{d}^{-1}$ ) to temperature (soil salinity and phosphorous, and hydrological conditions were the same as at the NEP plot in Florida, USA (Castaneda-Moya et al., 2013)); see Table 3a for correlative equations and the correlations to temperature (T).



**Fig. 4.** Effect of latitude on AGB ( $\text{Mg C ha}^{-1}$ ), ANPP ( $\text{Mg dry matter ha}^{-1}$ ), GPP, NPP, BC, DIC, DOC, POC and Rh ( $\text{g C m}^{-2}$ ), and LLT ( $\text{kg C ha}^{-1}$ ), respectively (environmental conditions, except latitude, were the same as those at ENP in Florida, USA); see Table 3a for the correlative equations and correlations to latitude (L).

increment in MDT.

NPP increased with an increase in temperature when MDT  $\leq 25^\circ\text{C}$ , but it reduced nonlinearly with an increase in temperature when MDT  $> 25^\circ\text{C}$ , because autotrophic respiration increases with an increase in temperature. Correspondingly, AGB exhibited a quadratic response to changes in MDT, it increased with an increment in MDT when MDT was  $\leq 25^\circ\text{C}$ , and when MDT was over  $25^\circ\text{C}$ , AGB did not increase with an increase in MDT, but it decreased little when MDT  $> 26^\circ\text{C}$ .

The responses of fluxes of DIC, DOC and POC, and BC and total litter (TLT, leaf + root + woody litter) to changes in MDT were different (Fig. 3, Table 3a). DIC was quadratic ( $R^2 > 0.94$ ,  $n = 16$ ), and BC, DOC and TLT were linear. BC, DOC and TLT increased substantially ( $P < 0.001$ ) with an increase in temperature, at a rate of about 6.2, 2.4 and  $10.7 \text{ g C m}^{-2} \text{ yr}^{-1}$  per  $^\circ\text{C}$ , respectively. However, POC had only a minor change with an increase or decrease in temperature (by  $0.464 \text{ g C m}^{-2} \text{ yr}^{-1}$  per  $^\circ\text{C}$ ) due to POC flux being regulated mainly by hydrology.

$\text{CO}_2$  flux from heterotrophic soil respiration (Rh) (Fig. 3) was strongly influenced by MDT ( $R^2 = 0.996$ ,  $n = 16$ ,  $p < 0.001$ ). Its response to changes in temperature was quadratic, with an optimum at about  $26^\circ\text{C}$ . When MDT was  $\leq 26^\circ\text{C}$ , the flux increased substantially with an increase in temperature, but when MDT was over  $26^\circ\text{C}$ , the flux increased little with an increase in temperature.  $\text{CH}_4$  emission was also influenced by temperature, increasing approximately linearly below  $25^\circ\text{C}$ , and with little sensitivity above  $25^\circ\text{C}$ .

The results indicate that temperature can substantially affect C sequestration in mangrove ecosystems, including C accumulation in the

mangrove forest and soil/sediment and C export to the ocean; and these results also indicate that the model simulates the effect of temperature on C storage in sediments and woody product, and loss C to atmosphere as  $\text{CO}_2$  (Rh) and  $\text{CH}_4$ , and export C to aquatic ecosystems as DIC, DOC and POC.

C sequestration in mangrove ecosystems showed little sensitivity to precipitation ( $P > 0.1$ ) within the precipitation range used in this study ( $1113\text{--}1966 \text{ mm y}^{-1}$ ). Accordingly, results related to the direct effect of precipitation on the dynamics of mangrove C are not reported, though the effect of precipitation on mangrove C sequestration may also be implicit in the latitudinal relationships with productivity (see below). There may be two principal reasons for the small effect of precipitation on mangrove C: first, the precipitation range we used ( $1113\text{--}1966 \text{ mm}$ ) may be over the threshold level of precipitation that can substantially influence C sequestration in mangroves (Osland et al., 2014); second, our assumption that the hydrological, vegetation and soil conditions for this analysis were the same as those at ENP in Florida (Fig. 1).

## 5.2. Geographical location

Bouillon et al. (2008) and Alongi (2009) suggest that leaf litter production (LLT) and AGB of mangroves are closely related to latitude, decreasing with an increase in latitude. Simulated results showed that LPD, LLT, GPP, NPP, AGB, BC and fluxes of DIC, DOC and POC decreased significantly ( $P < 0.001$ ) with an increase in latitude (Fig. 4 and Table 3a). These variable responses to changes in geographical



**Fig. 5.** (a). Impacts of soil salinity on LLT ( $\text{kg C ha}^{-1}$ ), AGB ( $\text{Mg C ha}^{-1}$ ), ANPP ( $\text{Mg ha}^{-1}$ ), and GPP, NPP, DIC, DOC, POC, and Rh ( $\text{g C m}^{-2}$  yr $^{-1}$ ) (other environmental conditions were the same as those at ENP in Florida, USA); see Table 3a for the correlative equations and the correlations to salinity ( $S$ ). (b). The effect of salinity on  $\text{CH}_4$  (environmental conditions, except salinity, were the same as those at ENP in Florida, USA).

latitudes were either linear, quadratic or cubic polynomial ( $P < 0.001$ ).

GPP, NPP and DOC significantly decreased nonlinearly with an increment in latitude although they could also be well correlated linearly to latitude ( $R^2 = 0.9863$ , 0.971 and 0.9786 for GPP, NPP and DOC, respectively, with  $P \ll 0.001$ ), similar to the findings reported by Alongi (2009). Other mangrove C components, including ANPP, BC,  $\text{CH}_4$ , DIC, LLT, LPD, POC and Rh significantly decreased linearly with an increase in geographical latitude.

LPD and LLT decreased similarly, at a rate of approximately  $123 \text{ kg C ha}^{-1} \text{ yr}^{-1}$  per degree latitude, because annual leaf regeneration and leaf fall are almost equal in a mature mangrove forest. Annual LLT from this study for the latitude range between  $15^\circ$  and  $35^\circ$  corresponds with the findings reported by Bouillon et al. (2008).

ANPP, BC, DIC and POC decreased linearly by about  $0.42 \text{ Mg ha}^{-1} \text{ yr}^{-1}$  for ANPP and by  $1.22$ ,  $2.22$  and  $2.75 \text{ g C m}^{-2} \text{ yr}^{-1}$  for BC, DIC and POC, respectively, with an increase in latitude. The responses of the soil-borne gaseous C fluxes, Rh and  $\text{CH}_4$  to changes in latitude were linear.  $\text{CH}_4$  flux decreased with an increase in latitude at a rate of about  $14.7 \text{ mg CH}_4 \text{ m}^{-2} \text{ yr}^{-1}$  per degree latitude, Rh flux decreased at a rate of about  $17.8 \text{ g C m}^{-2} \text{ yr}^{-1}$  per degree latitude.

There was a significant linear relationship between biomass and latitude from this study ( $R^2 = 0.9613$ ,  $P < 0.001$ ) although AGB from this analysis did not increase with a decrease in latitude when latitude was lower than  $17^\circ$  (Fig. 4). For latitudes  $> 17^\circ$ , the linear decrease in AGB of about  $6.4 \text{ Mg ha}^{-1}$  per degree increase in latitude is similar to the trend of  $6.1 \text{ Mg ha}^{-1}$  found by Alongi (2009).

### 5.3. Salt stress

Numerous studies have shown that salinity can influence C

sequestration in mangrove ecosystems (Ball and Farquhar, 1984; Takemura et al., 2000; Parida et al., 2004; Suarez and Medina, 2005). The sensitivity analysis showed that annual mean LPD decreased linearly ( $P < 0.01$ ) with an increase in salinity (Fig. 5a, Table 3a), at a rate of approximately  $22.0 \text{ kg C ha}^{-1} \text{ yr}^{-1}$  per 1.0 ppt increase in salinity within the range of 5–60 ppt. The linear correlation between litter-fall and salinity is similar to that reported by Day et al. (1996). However, the effect of salinity on annual mean litter-fall from this study was about  $149 \text{ kg dry mass ha}^{-1} \text{ yr}^{-1}$  per ppt within a salinity range of 5–60 ppt, about 7 kg dry matter more than the mean value reported by Day et al. (1996) for fringe and basin mangroves in Campeche, Mexico, with salinities of 40–80 ppt.

AGB, GPP and NPP decreased quadratically with an increase in salinity (Fig. 5a), while the increase or decrease in BC with an increment or decrement in salinity was cubic polynomial. POC decreased linearly with an increase in salinity at a rate of about  $1.08 \text{ g C m}^{-2} \text{ yr}^{-1}$  per ppt; DOC and DIC decreased quadratically and cubically, respectively, with an increase in salinity (Fig. 5a). However, the response of  $\text{CH}_4$  to salt stress was more complex (Fig. 5b).  $\text{CH}_4$  flux decreased slowly with an increasing salinity at low values (< 20 ppt), but decreased sharply between 20 and 40 ppt, and the flux was approximately zero when salinity was  $\geq 50$  ppt.

These responses of mangrove C components to salt stress affirm that the salinity in mangrove wetlands is an important factor that can impact C accumulation in mangrove ecosystems, i.e., the higher salt stress, the less the C sequestration in mangroves, especially in mangrove biomass, but response of BC to salt stress is not consistent with those responses of other mangrove C components, which might be related to lowering organic matter decomposition due to high salinity.



**Fig. 6.** Effect of P deficit on AGB ( $\text{Mg C ha}^{-1}$ ), ANPP ( $\text{Mg ha}^{-1}$ ), LLT ( $\text{kg C ha}^{-1}$ ), and GPP, NPP, DIC, DOC, POC, and Rh ( $\text{g C m}^{-2}$ ) (other environmental conditions are the same as those at ENP in Florida, USA); see Table 3a for the correlative equations and the correlations to phosphorus (P).

#### 5.4. Phosphorus

Available soil P concentration for plants in mangrove ecosystems is considered as an important factor regulating mangrove production (Alongi, 2009). Similar to varied effects of salinity on C dynamics in mangroves, P strongly influences leaf production, and corresponding components of the C cycle (Fig. 6). Results from sensitivity analysis

exhibited that the effect of soil P on GPP and NPP (Fig. 6) was large when soil  $P < 0.5 \text{ g kg}^{-1}$ , but when  $P > 0.8 \text{ g kg}^{-1}$ , GPP and NPP hardly increased with an increase in soil P. AGB, LLT and LPD increased non-linearly with an increase when  $P \leq 1.4 \text{ g P kg}^{-1}$ , and then hardly increased when  $P > 1.5$ . Accordingly, the equation used to describe the relationship between P and these three mangrove C components was complex (Table 3a). However, the response of ANPP to changes in

**Table 3b**  
Statistic results from multivariate regression for sensitivity analysis.<sup>a</sup>

| Variable        | n  | F       | Significance | Equation                                                                                     |
|-----------------|----|---------|--------------|----------------------------------------------------------------------------------------------|
| TLT             | 16 | 208.5   | 1.33E-10     | $4.411 - 0.030 \times S + 1.054 \times \ln(P)$                                               |
| LPD             | 16 | 246.3   | 4.64E-11     | $2878.4 - 19.646 \times S + 591.821 \times \ln(P)$                                           |
| LLT             | 16 | 245.0   | 4.79E-11     | $2853.2 - 19.422 \times S + 585.742 \times \ln(P)$                                           |
| AGB             | 16 | 114.0   | 5.73E-09     | $92.799 - 0.549 \times S + 29.557 \times \ln(P)$                                             |
| ANPP            | 16 | 149.5   | 1.07E-09     | $11.12 - 0.076 \times S + 2.866 \times \ln(P)$                                               |
| GPP             | 16 | 138.9   | 1.69E-09     | $1838.2 - 10.548 \times S + 321.15 \times \ln(P)$                                            |
| NPP             | 16 | 169.4   | 4.89E-10     | $958.3 - 5.706 \times S + 138.96 \times \ln(P)$                                              |
| DIC             | 16 | 59.7    | 2.80E-07     | $224.588 - 1.85 \times S + 37.779 \times \ln(P)$                                             |
| DOC             | 16 | 32.6    | 8.56E-06     | $28.36 - 0.38 \times S + 6.693 \times \ln(P)$                                                |
| POC             | 16 | 53.7    | 5.19E-07     | $72.14 - 0.837 \times S + 14.173 \times \ln(P)$                                              |
| BC              | 16 | 140.4   | 1.58E-09     | $59.19 - 0.346 \times S + 19.393 \times \ln(P)$                                              |
| Rh              | 16 | 92.0    | 2.19E-08     | $460.533 - 3.811 \times S + 101.99 \times \ln(P)$                                            |
| CH <sub>4</sub> | 16 | 30.3    | 1.27E-05     | $4.503 - 0.086 \times S + 0.206 \times \ln(P)$                                               |
| GPP             | 16 | 6280.6  | 1.95E-19     | $146.181 \times T - 0.274 \times R - 1.192 \times L$                                         |
| NPP             | 16 | 2706.9  | 2.57E-15     | $5.883 \times T^2 - 327.522 \times T - 0.090 \times R - 9.615 \times L^2 + 485.822 \times L$ |
| ANPP            | 16 | 9781.7  | 1.37E-20     | $37.367 - 0.073 \times T + 0.0002 \times R - 0.828 \times L$                                 |
| AGB             | 16 | 2334.4  | 7.28E-17     | $11.288 \times T - 0.0004 \times R - 3.000 \times L$                                         |
| TLT             | 16 | 9863.1  | 1.30E-20     | $18.784 - 0.0425 \times T + 0.00006 \times R - 0.415 \times L$                               |
| LPD             | 16 | 3355.4  | 8.35E-18     | $11060.2 - 52.245 \times T + 0.308 \times R - 246.798 \times L$                              |
| DIC             | 16 | 1734.2  | 4.35E-16     | $5.837 \times T + 0.033 \times R - 0.089 \times L$                                           |
| DOC             | 16 | 15524.8 | 8.57E-22     | $569.5 \times T - 0.0077 \times R - 2.057 \times L$                                          |
| POC             | 16 | 418.6   | 2.10E-12     | $4.588 \times T + 0.0094 \times R - 1.287 \times L$                                          |
| Rh              | 16 | 6011.2  | 2.54E-19     | $85.544 \times T - 0.124 \times R - 19.079 \times L$                                         |
| CH <sub>4</sub> | 16 | 3633.6  | 5.18E-18     | $18.335 + 0.119 \times T - 0.0003 \times R - 0.461 \times L$                                 |
| AGB             | 16 | 3775.5  | 5.55E-17     | $11.269 \times T - 3.005 \times L$                                                           |
| GPP             | 16 | 32137.4 | 2.76E-22     | $49.626 \times T + 166.86 \times L + 0.545 \times T^2 - 3.985 \times L^2$                    |
| NPP             | 16 | 3504.0  | 5.40E-17     | $-368.774 \times T + 485.666 \times L + 7.467 \times T^2 - 9.299 \times L^2$                 |
| ANPP            | 16 | 2945.4  | 5.35E-18     | $0.919 \times T - 0.264 \times L$                                                            |
| LPD             | 16 | 2054.3  | 5.53E-17     | $254.248 \times T - 76.455 \times L$                                                         |
| LLT             | 16 | 2053.3  | 5.53E-17     | $254.087 \times T - 76.415 \times L$                                                         |
| DIC             | 16 | 1749.6  | 1.56E-16     | $7.46 \times T + 0.319 \times L$                                                             |
| DOC             | 16 | 11542.4 | 7.54E-22     | $6.158 \times T - 2.152 \times L$                                                            |
| POC             | 16 | 644.0   | 9.95E-14     | $5.048 \times T - 1.172 \times L$                                                            |
| BC              | 16 | 952.9   | 7.95E-15     | $10.569 \times T - 4.085 \times L$                                                           |
| Rh              | 16 | 6316.9  | 3.78E-20     | $79.501 \times T - 20.600 \times L$                                                          |
| CH <sub>4</sub> | 16 | 4428.3  | 3.79E-19     | $0.588 \times T - 0.188 \times L$                                                            |
| TLT             | 16 | 2865.4  | 6.39E-18     | $0.455 \times T - 0.131 \times L$                                                            |

<sup>a</sup> F, the statistic of F test; R, precipitation, mm;  $\ln(P)$ , natural logarithmic value of P; others, the same as those in Table 3a.



**Fig. 7.** (A). Combined effect of phosphorus-salinity (increase in both salinity and phosphorous, SP, see Table 2) on GPP, NPP, BC, DIC, DOC, POC, and Rh ( $\text{g C m}^{-2}$ ), LLT and LPD ( $\text{kg C ha}^{-1}$ ), AGB ( $\text{Mg C ha}^{-1}$ ),  $\text{CH}_4^*$  ( $\text{mg CH}_4 \text{ m}^{-2}$ ), and ANPP\* ( $\text{g dry matter m}^{-2}$ ); \*: the units used for ANPP and  $\text{CH}_4$  in this figure are different from those used in text and other figures; (Other environmental conditions are as same as those at ENP); see Table 3b for the correlative equations and the correlations to combined effects of phosphorus (P) and salinity (S). (B). Combined effect of phosphorus-salinity (dual pressure, PS in Table 2, or an increase in salinity and decrease in soil P) on GPP, NPP, BC, DIC, DOC, POC, and Rh ( $\text{g C m}^{-2}$ ), LLT and LPD ( $\text{kg C ha}^{-1}$ ), AGB ( $\text{Mg C ha}^{-1}$ ),  $\text{CH}_4^*$  ( $\text{mg CH}_4 \text{ m}^{-2}$ ), and ANPP\* ( $\text{g dry matter m}^{-2}$ ); \*: the units used for ANPP and  $\text{CH}_4$  in this figure are different from those used in text and other figures; (Other environmental conditions are as same as those at ENP); see Table 3b for the correlative equations and the correlation to the combined effects of salinity-phosphorus.

soil P was cubic polynomial, affirming that soil P can substantially influence mangrove production.

BC and fluxes of DIC, DOC and POC can be strongly sensitive to soil P content because P deficit can substantially impact the primary production of mangroves. Fig. 6 showed that the responses of DOC and POC to changes in soil P were cubic polynomial. They increased substantially with an increase in soil P when soil P  $< 1.0 \text{ g kg}^{-1}$  ( $P < 0.001$ ), and the increment became small when soil P  $> 1.0 \text{ g kg}^{-1}$ . However, the responses of BC and DIC to changes in soil P were high degree polynomial (Fig. 6, Table 3a), similar to the responses of AGB, GPP and NPP.

The fluxes of  $\text{CH}_4$  and Rh can be influenced by soil P. The responses of these gaseous fluxes to soil P were cubic polynomial (Table 3a). Similar to DOC, when soil P was lower than  $1.0 \text{ g P kg}^{-1}$ , both fluxes of  $\text{CH}_4$  and Rh increased largely with an increase in soil P, but the increment was small or unsubstantial when P  $> 1.0 \text{ g kg}^{-1}$ . The increment in DIC, DOC, POC and gaseous C fluxes with an increase in soil P exhibits that soil P content can substantially impact C dynamics in mangrove soil ecosystems.

### 5.5. Combined effect of salinity and phosphorus

Combined effects of salinity-phosphorus, SP and PS (see Table 2) on C sequestration in mangrove ecosystems are more complicated. Accordingly, the sensitivity of C sequestration in mangrove ecosystems to these complex effects was analyzed. Results from multivariate regression analysis (Table 3b) indicated that SP and PS substantially impacted C sequestration in mangrove ecosystems.

The multivariate effects of salinity and phosphorous on twelve mangrove C components were different from the individual impacts of salinity or P on these variables. In the SP case, the responses of these mangrove elements to increases in both salinity and P were divergent.

AGB, GPP, ANPP, LLT, LPD and Rh increased with an increment in both salinity and P when salinity  $\leq 40 \text{ ppt}$  and P  $= 1.4 \text{ g kg}^{-1}$ , and they decreased with an increase in both salinity and P when salinity  $> 40 \text{ ppt}$ , although P concentration was higher (Fig. 7a). The impact of SP on DIC, DOC and POC was similar to the effect on AGB. This combined impact on NPP and BC was smaller than or similar to that on other mangrove C components.  $\text{CH}_4$  flux increased substantially with an increment in both salinity and P when salinity was  $< 20 \text{ ppt}$  and P  $< 0.5 \text{ g kg}^{-1}$ , and then it decreased with an increment in both salinity and P when salinity  $> 20 \text{ ppt}$ . Mangrove C cycling responds strongly and negatively to a combined increase in both salt stress and P deficit (Fig. 7b), particularly when salinity was  $\geq 15 \text{ ppt}$  and P was  $\leq 1.4 \text{ g kg}^{-1}$ .

This sensitivity analysis shows that both salinity and P are important factors influencing C sequestration in mangroves. High P cannot offset the effect of high salt stress although C sequestration in mangroves can substantially increase with an increment in P when salinity  $< 50 \text{ ppt}$ ; and dual pressure from high salinity and P deficiency can impede C sequestration in mangroves.

### 5.6. Combining climate with latitude

Assessment of the mangrove C balance for the 16 locations (Fig. 1) showed that the combined impact of latitude and climate was completely different from their individual effects, especially from the independent impacts of temperature and latitude. Result from single factor sensitivity analysis showed that AGB might increase or decrease by about  $2.0 \text{ Mg C ha}^{-1}$  with a decrease or increment in temperature of  $1^\circ \text{C}$  (Fig. 3 and Table 3a) and by about  $3.6 \text{ Mg C ha}^{-1}$  with a decrease or increment in geographical latitude per degree when latitude  $> 18^\circ$  (Fig. 4 and Table 3a). However, the combined effect showed that AGB might only decrement at a rate of about  $3.0 \text{ Mg C ha}^{-1}$  per degree latitude with an



**Fig. 8.** Effect of sulfate on methane flux (Other environmental conditions are as same as those at ENP).

increase in latitude (Table 3b) within the same latitude range for single factor analysis, but the impact of temperature under this combined effect became larger than that from individual influence factor.

Similarly, the responses of other mangrove C components to this combined effect were different from their responses to single factors. The responses of GPP and NPP to changes in latitude became larger under the combined effect than their responses to changes in single factors, and their responses to temperature became smaller.

Comparing of the combined effects of latitude and climate with and without precipitation showed that precipitation has a small impact mangrove C. LPD and LLT increased slightly, by about  $30 \text{ kg C ha}^{-1} \text{ yr}^{-1}$  with an increased in annual precipitation by 100 mm, but precipitation hardly influenced other mangrove components for a precipitation range from 1113 to 1966 mm used in this sensitivity analysis.

### 5.7. Flux and anaerobic oxidation of methane

Ecological drivers can substantially impact CH<sub>4</sub> production and emissions. CH<sub>4</sub> flux increased or decreased by about  $1.1 \text{ mg CH}_4 \text{ m}^{-2} \text{ d}^{-1}$  with an increase or decrease in temperature of  $1^\circ\text{C}$  (Table 3a), decreased by about  $0.04 \text{ mg m}^{-2} \text{ d}^{-1}$  with an increment in latitude of  $1^\circ$ . Similarly, P and salinity can substantially impact CH<sub>4</sub> flux in mangrove ecosystems (Figs. 5b and 7), increased with an increase in P and decreased with an increment in salinity. The results from the sensitivity analysis indicated that temperature, geographical location and salinity can influence CH<sub>4</sub> flux. However, we did not find a substantial trend in increase or decrease in CH<sub>4</sub> flux with an increase or decrease in precipitation within simulation precipitation range (1113–1966 mm), which might be related to the hydrological conditions for this study assumed that was as same as those at ENP in Florida.

The CH<sub>4</sub> flux significantly decreased nonlinearly with an increase in sulfate concentration (Fig. 8), and the flux was strongly sensitive to high sulfate concentration in mangrove soils with a response of fourth degree polynomial. Because other ecological factors were constant except for sulfate, the flux was relatively constant when sulfate  $\leq 0.8 \text{ mol l}^{-1}$ , showed that the sensitivity of the CH<sub>4</sub> efflux was low at low sulfate concentrations. Accordingly, AOM might occur when

sulfate  $> 0.8 \text{ mol l}^{-1}$ .

## 6. Conclusions

MCAT-DNDC is a stable process-based model capable of simulating carbon dynamics among vegetation, soil and water pools within the mangroves. Sensitivity analysis for temperature, precipitation, salinity, phosphorus, latitude and sulfate used as the model inputs showed that C accumulation and consumption in mangrove ecosystems is sensitive to all of these factors in the MCAT-DNDC simulations.

Overlapping effects of multiple factors were considered to assess C dynamics in mangrove ecosystems in the model MCAT-DNDC. The model was effective at considering their influences and interactions; for example, an increase in temperature and decrease in P deficit can increase C sequestration, but mangrove C can decrease with an increase in salt stress and P deficit.

Unfortunately, we didn't have sufficient available hydrological observations from mangroves to evaluate the sensitivity of the C dynamics with respect to the tidal hydrology. It should be analyzed in future because it can affect the C dynamics in mangrove ecosystems (Krauss et al., 2006), especially with respect to DIC, DOC and POC. In addition, hydrology can be regulated by climate change, especially for riverine mangroves where the hydrology is impacted by the freshwater flux in the rivers.

AOM needs more measurement data to evaluate the processes of the production and oxidation of CH<sub>4</sub> at different soil depths to assess the interactions of sulfate, nitrate and nitrite reduction processes.

The disturbance functionality of the model was not assessed because reliable disturbance response information was not available; simulation of these impacts will need to be calibrated and validated as observations become available. Similarly the effects of hydrology, topographical gradient, and soil/sediment texture on C sequestration in mangroves have not been evaluated because of insufficient data for validation. Additional field studies are needed, including data from different mangrove species and geographical locations for biomass, BC, DOC, DIC, POC, and more.

## Dedication

We dedicate this paper to remember Dr. Changsheng Li, a former professor of University of New Hampshire, and the pioneer of the DNDC model.

## Acknowledgements

We thank Dr. Jordan Barr from South Florida Natural Resource Center for support for this model development. Support for the development of this model was provided through the Sustainable Wetland Adaptation and Mitigation Program supported by the US Agency for International Development, and the Estimating Total Ecosystem Carbon in Blue Carbon and Tropical Peatland Ecosystems supported by the NASA Carbon Monitoring Systems program.

## Appendix

### Acronyms

| Acronym | Explanation                                 |
|---------|---------------------------------------------|
| AGB     | Aboveground Biomass                         |
| AOM     | Anaerobic Oxidation of Methane              |
| ANPP    | annual Aboveground Net Primary Productivity |
| BC      | Burial Carbon                               |
| C       | Carbon                                      |
| DIC     | Dissolved Inorganic Carbon                  |

|       |                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|
| DOC   | Dissolved Organic Carbon                                                                                                          |
| DNDC  | Denitrification and Decomposition                                                                                                 |
| ENP   | Everglades National Park, located in southern Florida, USA                                                                        |
| FDNDC | Forest-DNDC                                                                                                                       |
| GHG   | Greenhouse Gas                                                                                                                    |
| GPP   | Gross Primary Productivity                                                                                                        |
| LAI   | Leaf Area Index                                                                                                                   |
| LLT   | Leaf Litter                                                                                                                       |
| LPD   | Leaf biomass                                                                                                                      |
| MCAT  | Mangrove Carbon Assessment Tool                                                                                                   |
| MDT   | Mean Daily Temperature                                                                                                            |
| MRV   | Monitoring, Reporting and Verification                                                                                            |
| N     | Nitrogen                                                                                                                          |
| NEE   | Net Ecosystem Exchange                                                                                                            |
| NPP   | Net Primary Productivity                                                                                                          |
| P     | Phosphorous                                                                                                                       |
| PAR   | Photosynthetically Active Radiation                                                                                               |
| POC   | Particulate Organic Carbon                                                                                                        |
| PS    | Combined impact of Phosphorous and Salinity                                                                                       |
| REDD+ | Reducing Emissions from Deforestation and forest Degradation, plus conserving forests and promoting sustainable forest management |
| Rh    | Heterotrophic soil Respiration                                                                                                    |
| SLW   | Specific Leaf Weight                                                                                                              |
| SP    | Combined impact of Salinity and Phosphorous                                                                                       |
| TLT   | Total Litter                                                                                                                      |
| WT    | Water Table level                                                                                                                 |

## References

Alongi, D.M., 2008. Mangroves forests: resilience, protection from tsunami, and responses to global climate change. *Estuar. Coast Shelf Sci.* 76, 1–13.

Alongi, D.M., 2009. The Energetics of Mangrove Forests. Springer printed in USA, ISBN: 978-1-4020-4270-6.

Alongi, D.M., 2014. Carbon cycling and storage in mangrove forests. *Ann. Rev Mar. Sci.* 6, 195–219.

Atlas, E., Culberson, C., Pytkowicz, R.M., 1976. Phosphate association with  $\text{Na}^+$ ,  $\text{Ca}^{2+}$  and  $\text{Mg}^{2+}$  in seawater. *Mar. Chem.* 4, 243–254.

Ball, M.C., Farquhar, G.D., 1984. Photosynthetic and stomatal responses of the grey mangrove, *Avicennia marina*, to transient salinity conditions. *Plant Physiol.* 74, 7–11.

Ball, M.C., Pidsley, S.M., 1995. Growth responses to salinity in relation to distribution of two mangrove species, *Sonneratia alba* and *S. lanceolata*, in northern Australia. *Funct. Ecol.* 9, 77–85.

Barr, J.G., Fuentes, D., O'Halloran, T., Barr, D., Zieman, J.C., Childers, D.L., 2006. Carbon assimilation by mangrove forests in the Florida Everglades. *Amalgam* 1, 27–37.

Barr, J.G., Engel, V., Fuentes, J.D., Zieman, J.C., O'Halloran, T.L., Simth III, T.J., Anderson, G.H., 2010. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. *JGR* 115 <http://dx.doi.org/10.1029/2009JG001186>. G02020.

Barr, J.G., Engel, V., Smith, T.J., Fuentes, J.D., 2012. Hurricane disturbance and recovery of energy balance,  $\text{CO}_2$  fluxes and canopy structure in a mangrove forest of the Florida Everglades. *Agric. For. Meteorol.* 153, 54–66. <http://dx.doi.org/10.1016/j.agrmet.2011.07.022>.

Barr, J.G., Engel, V., Fuentes, J.D., Fuller, D.O., Kwon, H., 2013a. Modeling light use efficiency in a subtropical mangrove forest equipped with  $\text{CO}_2$  eddy covariance. *Biogeosciences* 10, 2145–2158. <http://dx.doi.org/10.5194/bg-10-2145-2013>.

Barr, J.G., Fuentes, J.D., Delonge, M.S., O'Halloran, T.L., Barr, D., Zieman, J.C., 2013b. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest. *Biogeosciences* 10, 1–11. <http://dx.doi.org/10.5194/bg-10-1-2013>.

Baturin, G.N., 2003. Phosphorus cycle in the ocean. *Lithol. Miner. Resour.* 38, 101–119.

Bolan, N.S., 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. *Plant Soil* 134, 189–207.

Bouillon, S., Borges, A.V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Lee, S.Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H., Smith II, T.J., Twilley, R.R., 2008. Mangrove production and carbon sinks: a revision of global budget estimates. *Global Biogeochem. Cycles* 22 <http://dx.doi.org/10.1029/2007GB003052>. GB2013.

Bridgham, S.D., Updegraff, K., Pastor, J., 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. *Ecology* 79, 1545–1561.

Bukoski, J.J., Broadhead, J.S., Donato, D.C., Murdiyarso, D., Gregoire, T.G., 2017. *PLoS One*. <http://dx.doi.org/10.1371/journal.pone.0169096>.

Burton, E., Walter, L.M., 1990. The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. *Geochem. Cosmochim. Acta* 54, 797–808.

Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., Colwell, F.S., 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. *Environ. Sci. Technol.* 42, 6791–6799.

Chapin III, F.S., 1980. The mineral nutrition of wild plants. *Annu. Rev. Ecol. Systemat.* 11, 233–260.

Castaneda-Moya, E., Twilley, R.R., Rivera-Monroy, V.H., 2013. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida coastal Everglades, USA. *For. Ecol. Manag.* 307, 226–241.

Chen, R., Twilley, R.R., 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. *J. Ecol.* 86, 37–51.

Chen, R., Twilley, R.R., 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. *Estuaries* 22, 955–970.

Clarkson, D.T., 1985. Factors affecting mineral nutrient acquisition by plants. *Annu. Rev. Plant Physiol.* 36, 77–115.

Clough, B., 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. *Mangroves Salt Marshes* 2, 191–198.

Cui, J., Li, C., Sun, G., Trettin, C., 2005. Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. *Biogeochemistry* 72, 147–167.

Dai, Z., Trettin, C.C., Li, C., Li, H., Sun, G., Amatya, D.M., 2012. Effect of assessment scale on spatial and temporal variations in  $\text{CH}_4$ ,  $\text{CO}_2$  and  $\text{N}_2\text{O}$  fluxes in a forested watershed. *Water Air Soil Pollut.* 223, 253–265. <http://dx.doi.org/10.1007/s11270-011-0855-0>.

Dai, Z., Birdsey, R.A., Johnson, K.D., Dupuy, J.M., Hernandez-Stefanoni, J.L., Richardson, K., 2014. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico. *Water Air Soil Pollut.* 225, 1925. <http://dx.doi.org/10.1007/s11270-014-1925-x>.

Dai, Z., Birdsey, R.A., Dugan, A.J., 2017. Estimated carbon sequestration in a temperate forest in Idaho of USA. *Nat. Sci.* 9, 421–436. <http://dx.doi.org/10.4236/ns.2017912040>.

Dakora, F.D., Phillips, D.A., 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. *Plant Soil* 245, 35–47.

Day Jr., J.W., Coronado-Molina, C., Vera-Herrera, F.R., Twilley, R., Rivera-Monroy, V.H., Alvarez-Guillen, H., Day, R., Conner, W., 1996. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. *Aquat. Bot.* 55, 39–60.

Dittmar, T., Hertkorn, N., Kattner, G., Lara, R.J., 2006. Mangroves, a major source of dissolved organic carbon to the oceans. *Global Biogeochem. Cycles* 20 <http://dx.doi.org/10.1029/2005GB002570>. GB1012.

DOE, 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. In: Dickson, A.G., Goeyt, G. (Eds.), ORNL/CDIAC-74. (Washington D.C.).

Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., 2011. Mangroves among the most carbon-rich forests in the tropics. *Nat. Geosci.* 4, 293–297.

Ettwig, K.F., Butler, M.K., Paslier, D.L., Pelletier, E., Mangenot, S., Kuyers, M.M.M., Schreiber, F., Dutihl, B.E., Zedelius, J., Beer, D.D., Gloerich, J., Wessels, H.J.C.T., Alen, T.V., Luesken, F., Wu, M.L., Pas-Schoonen, K.T.V.D., Camp, H.J.M.O.D., Janssen-Megens, E.M., Francoijis, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. *Nature* 464, 543–548.

FAO, 1994. Mangrove Forest Management Guidelines. FAO Forest Paper 117. FAO Forest Department, Rome, pp. 345.

FAO, 2007. The World's Mangroves 1998 – 2005. A Thematic Study Prepared in the

Framework of Global Forest Resources Assessment, FAO Forest Paper 153. FAO Forestry Department, Rome, pp. 89.

Filippelli, G.M., 1997. Controls on phosphorus concentration and accumulation in oceanic sediments. *Mar. Geol.* 139, 231–240.

Filippelli, G.M., Delaney, M.L., 1996. Phosphorus geochemistry of equatorial Pacific sediments. *Geochim. Cosmochim. Acta* 60, 1479–1495.

Follmi, K.B., 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. *Earth Sci. Rev.* 40, 55–124.

Froelich, P.N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. *Limnol. Oceanogr.* 33, 649–667.

Galvan-Ampudia, C.S., Testerink, C., 2011. Salt stress signals shape the plant root. *Plant Biol.* 14, 296–302.

Grattan, S.R., Grieve, C.M., 1992. Mineral element acquisition and growth response of plant grown in saline environments. *Agric. Ecosyst. Environ.* 38, 275–300.

Grattan, S.R., Grieve, C.M., 1999. Salinity-mineral nutrient relations in horticultural crops. *Sci. Hortic.* 78, 127–157.

Green-Saxena, A., Dekas, A.E., Dalleska, N.F., Orphan, V.J., 2014. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. *ISME J.* 8, 150–163.

Grueters, U., Seltmann, T., Schmidt, H., Horn, H., Pranchai, A., Vovides, A.G., Peters, R., Vogt, J., Dahdouh-Guebas, F., Berger, U., 2014. The mangrove forest dynamics model mesoFON. *Ecol. Model.* 291, 28–41.

Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. *Nature* 500, 567–570. <http://dx.doi.org/10.1038/nature12375>.

Hutchison, J., Manica, A., Swetnam, R., Balmford, A., Spalding, M., 2013. Predicting global patterns in mangrove forest biomass. *Conserv. Lett.* <http://dx.doi.org/10.1111/conl.12060>.

Ingall, E.D., Buston, R.M., Cappellen, P.V., 1993. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. *Geochim. Cosmochim. Acta* 57, 303–316.

Jardine, S.L., Siikamaki, J.V., 2014. A global predictive model carbon in mangrove soils. *Environ. Res. Lett.* 9. <http://dx.doi.org/10.1088/1748-9326/10/104013>.

Jennerjahn, T.C., Gilman, E., Krauss, K.W., Lacerda, L.D., Nordhaus, I., Wolanski, E., 2017. Mangrove ecosystems under climate change. In: Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E., Twilley, R.R. (Eds.), *Mangrove Ecosystems: A Global Biogeographic Perspective*. Springer, Cham Online ISBN: 978-3-319-62206-4. <https://doi.org/10.1007/978-3-319-62206-4>.

Johansson, O., Wedborg, M., 1979. Stability constants of phosphoric acid in seawater of 5–40‰ salinity and temperatures of 5–25°C. *Mar. Chem.* 8, 57–69.

Jones, T.G., Rakoto Ratsimbazafy, H., Ravaorainorotsihorana, L., Cripps, G., Bey, A., 2014. Ecological variability and carbon stock estimates of mangrove ecosystems in north-western Madagascar. *Forests* 5, 177–205. <http://dx.doi.org/10.3390/f5010177>.

Joye, S.B., Boetius, A., Orcutt, B.N., Montoya, J.P., Schulz, H.N., Erickson, M.J., Lugo, S.K., 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. *Chem. Geol.* 205, 210–238.

Joye, S.B., 2012. A piece of the methane puzzle. *Nature* 491, 538–539.

Kathiresan, K., Rajendran, N., 2005. Coastal mangrove forests mitigated tsunami. *Estuar. Coast. Shelf Sci.* 65, 601–606.

Kauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A., Donato, D.C., 2011. Ecosystem carbon stocks of Micronesian mangrove forests. *Wetlands* 31, 343–352. <http://dx.doi.org/10.1007/s13157-011-0148-9>.

Kauffman, J.B., Heider, C., Norfolk, J., Payne, F., 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. *Ecol. Appl.* 24, 518–527.

Kirschbaum, M.U.F., Gifford, R.M., Roxburgh, S.H., Sands, P.J., 2001. Definitions of some ecological terms commonly used in carbon accounting. In: Kirschbaum, M.U.F., Mueller, R. (Eds.), *Proceedings: Net Ecosystem Exchange. Cooperative Research Centre for Greenhouse Accounting*, pp. 18–20 April 2001, Commonwealth of Australia.

Krauss, K.W., Doyle, T.W., Twilley, R.R., Rivera-Monroy, V.H., Sullivan, J.K., 2006. Evaluating the relative contributions of hydroperiod and fertility on growth of south Florida mangroves. *Hydrobiologia* 569, 311–324.

Li, C., Frolking, S., Frolking, T.A., 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. *JGR* 97, 9759–9776.

Li, C., Aber, J., Stang, F., Butter-Bahl, K., Papen, H., 2000. A process-oriented model of  $\text{N}_2\text{O}$  and NO emissions from forest soils. 1. Model development. *J. Geophys. Res. Atmos.* 105, 4369–4384.

Li, C., Cui, J., Sun, G., Trettin, C.C., 2004. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. *Environ. Manag.* 33, S176–S186.

Li, C., 2007. Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach. *Soil Sci. Plant Nutr.* 53, 344–352.

Liang, S., Zhou, R., Dong, S., Shi, S., 2008. Adaptation to salinity in mangroves: implication on the evolution of salt-tolerance. *Chin. Sci. Bull.* 53, 1708–1715.

Lin, G., Sternberg, L.S.L., 1992. Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (*Rhizophora mangle* L.). *Aust. J. Plant Physiol.* 19, 509–517.

Lovett, G.M., Cole, J.J., Pace, M.L., 2006. Is net ecosystem production equal to ecosystem carbon accumulation? *Ecosystems* 9, 1–4. <http://dx.doi.org/10.1007/s10021-005-0036-3>.

Luo, Z., Sun, O.J., Wang, E., Ren, H., Xu, H., 2010. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC. *Ecosystems* 13, 949–965. <http://dx.doi.org/10.1007/s10021-010-9365-y>.

Matsui, N., 1998. Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Australia. *Mangroves Salt Marshes* 2, 199–204.

Miehle, P., Livesley, S.J., Feikema, P.M., Li, C., Arndt, S.K., 2006. Assessing productivity and carbon sequestration capacity of *Eucalyptus* globules plantation using the process model Forest-DNDC: calibration and validation. *Ecol. Model.* 192, 83–94.

Milucka, J., Ferdelman, T.G., Polerecky, L., Frankzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., Kuyper, M.M., 2012. Zero-valent Sulphur is a key intermediate in marine methane oxidation. *Nature* 491, 541–546. <http://dx.doi.org/10.1038/nature11656>.

Mukherjee, N., Sutherland, W.J., Khan, M.N.I., Berger, U., Schmitz, N., Dahdouh-Guebas, F., Koedam, N., 2014. Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate time frame for recovery. *Ecol. Evol.* 4, 2247–2262. <http://dx.doi.org/10.1002/ece3.1085>.

Naidoo, G., 1987. Effects of salinity and nitrogen on growth and water relations in the mangrove, *Avicennia marina* (Forsk.) Vierh. *New Phytol.* 107, 317–325.

Nguyen, H.T., Stanton, D.E., Schmitz, N., Farquhar, G.D., Ball, M.C., 2015. Growth responses of the mangrove *Avicennia marina* to salinity: development and function of shoot hydraulic systems require saline conditions. *Ann. Bot.* 115, 397–407.

Osland, M.J., Enwright, N., Stagg, C.L., 2014. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient. *Ecology* 95, 2789–2802.

Parida, A.K., Das, A.B., Mittra, B., 2004. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, *Bruguiera parviflora*. *Trees* 18, 167–174. <http://dx.doi.org/10.1007/s00468-003-0293-8>.

Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: a review. *Ecotoxicol. Environ. Saf.* 60, 324–349.

Raghoebarsing, A.A., Pol, A., Pas-Schoonen, K.T.V.D., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Sinninghe Damste, J.S., Camp, H.J.M.O.D., Jetten, M.S.M., Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. *Nature* 440, 918–921.

Rahman, M.M., Khan, M.N.I., Hoque, A.K.F., Ahmed, I., 2015. Carbon stock in the Sundarbans mangrove forests: spatial variations in vegetation types and salinity zones. *Wetl. Ecol. Manag.* 23, 269–283.

Raymond, P.A., Bauer, J.E., Cole, J.J., 2000. Atmospheric  $\text{CO}_2$  evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. *Limn. Oceanogr.* 45, 1707–1717.

Rideout, A.J.R., Josh, N.P., Viergever, K.M., Huxham, M., Briers, R.A., 2013. Making predictions of mangrove deforestation: a comparison of two methods in Kenya. *Global Change Biol.* 19, 3493–3501. <http://dx.doi.org/10.1111/gcb.12176>.

Romigh, M.M., Davis II, S.E., Rivera-Monroy, V.H., Twilley, R.R., 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. *Hydrobiologia* 569, 505–516. <http://dx.doi.org/10.1007/s10750-006-0152-x>.

Schachtmann, D.P., Reid, R.J., Ayling, S.M., 1998. Phosphorus uptake by plants: from soil to cell. *Plant Physiol.* 116, 447–453.

Shima, S., Thauer, R.K., 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. *Curr. Opin. Microbiol.* 8, 643–648.

Stange, F., Butterbach, K., Papen, H., Zechmeister-Boltenstern, S., Li, C., Aber, J., 2000. A process-oriented model of  $\text{N}_2\text{O}$  and NO emissions from forest soils. *J. Geophys. Res.* 105, 4385–4398.

Suarez, N., Medina, E., 2005. Salinity effect on plant growth and leaf demography of mangrove, *Avicennia germinans* L. *Trees* 19, 721–727.

Sun, R., Duan, Z., 2007. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. *Chem. Geol.* 244, 248–262.

Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., Dubinsky, Z., 2000. Physiological and biochemical responses to salt stress in the mangrove, *Bruguera gymnorhiza*. *Aquat. Bot.* 68, 15–28.

Thauer, R.K., 2011. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from  $\text{CO}_2$ . *Curr. Opin. Microbiol.* 14, 292–299.

Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Cook, R.B., 2012. Daymet: Daily Surface Weather on a 1 Km Grid for North America, 1980–2008. [http://dx.doi.org/10.3334/ORNLDAC/Daymet\\_V2](http://dx.doi.org/10.3334/ORNLDAC/Daymet_V2). Acquired online. <http://daymet.ornl.gov/> on 30/08/2014 from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.

Tiessen, H., Stewart, J.W.B., Cole, C.V., 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. *Soil Sci. Soc. Am. J.* 48, 853–858.

Twilley, R.R., 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. *Estuar. Coast. Shelf Sci.* 20, 543–557.

Twilley, R.R., Day Jr., J.W., 1999. The productivity and nutrient cycling of mangrove ecosystems. In: Yanez-Arancibia, A., Lara-Dominguez, A.L. (Eds.), *Ecosistemas de manglar en América Tropical*. Instituto de Ecología A.C. Mexico, IUCN/ORMA, Costa Rica, NOAA/NMFS Silver Spring MD USA 380pp.

Van der Molen, D.T., 1991. A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow, eutrophic systems. *Water Res.* 25, 737–744.

Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y., 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. *Biol. Fertil. Soils* 30, 460–468.

Wang, G., Guan, D., Peart, M.R., Chen, Y., Peng, Y., 2013. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong province of south China. *For. Ecol. Manag.* 310, 539–546.

Zhang, Y., Li, C., Trettin, C.C., Li, H., Sun, G., 2002. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland systems. *Global Biogeochem. Cycles* 16 <http://dx.doi.org/10.1029/2001GB001838>. GB001838.