1. You are training a classification model with logistic

1 point

regression. Which of the following statements are true? Check

all that apply.

- Adding many new features to the model helps prevent overfitting on the training set.
- Adding a new feature to the model always results in equal or better performance on the training set.
- Introducing regularization to the model always results in equal or better performance on the training set.
- Introducing regularization to the model always results in equal or better performance on examples not in the training set.
- **2.** Suppose you ran logistic regression twice, once with $\lambda=0$, and once with $\lambda=1$. One of the times, you got

1 point

parameters
$$heta = egin{bmatrix} 23.4 \\ 37.9 \end{bmatrix}$$
 , and the other time you got

$$heta = egin{bmatrix} 1.03 \\ 0.28 \end{bmatrix}$$
 . However, you forgot which value of

 λ corresponds to which value of heta . Which one do you

think corresponds to $\lambda=1$?

$$\bigcirc \quad \theta = \begin{bmatrix} 23.4 \\ 37.9 \end{bmatrix}$$

$$\theta = \begin{bmatrix} 1.03 \\ 0.28 \end{bmatrix}$$

3. Which of the following statements about regularization are

1 point

true? Check all that apply.

- Using too large a value of λ can cause your hypothesis to overfit the data; this can be avoided by reducing λ .
- Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.
- Because logistic regression outputs values $0 \le h_{\theta}(x) \le 1$, its range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.
- Consider a classification problem. Adding regularization may cause your classifier to incorrectly classify some training examples (which it had correctly classified when not using regularization, i.e. when $\lambda=0$).
- 4. In which one of the following figures do you think the hypothesis has overfit the training set?

1 point

O Figure:

O Figure:

Figure:

○ Figure:

O Figure:

