机器学习的数学笔记

目录

Notation		
	逻辑回归 1.1 二项逻辑回归模型	
	附录:信息熵 2.1 相关概念	
参	\$考文献	13

Notation

This section provides a concise reference describing notation used throughout this document. If you are unfamiliar with any of the corresponding mathematical concepts, Goodfellow *et al.* (2016) describe most of these ideas in chapters 2–4.

Numbers and Arrays

- a A scalar (integer or real)
- a A vector
- A A matrix
- A A tensor
- I_n Identity matrix with n rows and n columns
- I Identity matrix with dimensionality implied by context
- $\boldsymbol{e}^{(i)}$ Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position i
- $\operatorname{diag}(\boldsymbol{a})$ A square, diagonal matrix with diagonal entries given by \boldsymbol{a}
 - a A scalar random variable
 - a A vector-valued random variable
 - A A matrix-valued random variable

Sets and Graphs

A A set

 \mathbb{R} The set of real numbers

 $\{0,1\}$ The set containing 0 and 1

 $\{0,1,\ldots,n\}$ The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

 $\mathbb{A}\backslash\mathbb{B}$ Set subtraction, i.e., the set containing the elements of

 \mathbb{A} that are not in \mathbb{B}

 \mathcal{G} A graph

 $Pa_{\mathcal{G}}(\mathbf{x}_i)$ The parents of \mathbf{x}_i in \mathcal{G}

Indexing

 a_i Element i of vector \boldsymbol{a} , with indexing starting at 1

 a_{-i} All elements of vector \boldsymbol{a} except for element i

 $A_{i,j}$ Element i,j of matrix \boldsymbol{A}

 $\boldsymbol{A}_{i,:}$ Row i of matrix \boldsymbol{A}

 $\boldsymbol{A}_{:,i}$ Column i of matrix \boldsymbol{A}

 $A_{i,j,k}$ Element (i,j,k) of a 3-D tensor **A**

 $\mathbf{A}_{:,:,i}$ 2-D slice of a 3-D tensor

 a_i Element i of the random vector \mathbf{a}

Linear Algebra Operations

 A^{\top} Transpose of matrix A

 A^+ Moore-Penrose pseudoinverse of A

 $m{A}\odot m{B}$ Element-wise (Hadamard) product of $m{A}$ and $m{B}$

 $\det(\mathbf{A})$ Determinant of \mathbf{A}

Calculus

do.	Calculus		
$\frac{dy}{dx}$	Derivative of y with respect to x		
$rac{\partial y}{\partial x}$	Partial derivative of y with respect to x		
$ abla_{m{x}} y$	Gradient of y with respect to \boldsymbol{x}		
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to \boldsymbol{X}		
$ abla_{\mathbf{X}}y$	Tensor containing derivatives of y with respect to ${\sf X}$		
$rac{\partial f}{\partial oldsymbol{x}}$	Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$		
$\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x})$ or $\boldsymbol{H}(f)(\boldsymbol{x})$	The Hessian matrix of f at input point \boldsymbol{x}		
$\int f(m{x}) dm{x}$	Definite integral over the entire domain of \boldsymbol{x}		
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to \boldsymbol{x} over the set $\mathbb S$		
Probability and Information Theory			
$\mathrm{a}\bot\mathrm{b}$	The random variables a and b are independent		
$\mathrm{a}\bot\mathrm{b}\mid\mathrm{c}$	They are conditionally independent given c		
P(a)	A probability distribution over a discrete variable		
$p(\mathbf{a})$	A probability distribution over a continuous variable, or over a variable whose type has not been specified		
$a \sim P$	Random variable a has distribution P		
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$		
Var(f(x))	Variance of $f(x)$ under $P(x)$		
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$		
$H(\mathbf{x})$	Shannon entropy of the random variable x		
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q		
$\mathcal{N}(m{x};m{\mu},m{\Sigma})$	Gaussian distribution over ${\boldsymbol x}$ with mean ${\boldsymbol \mu}$ and covariance ${\boldsymbol \Sigma}$		

Functions

 $f: \mathbb{A} \to \mathbb{B}$ The function f with domain A and range B

 $f \circ g$ Composition of the functions f and g

 $f(x; \theta)$ A function of x parametrized by θ . (Sometimes we write f(x) and omit the argument θ to lighten notation)

 $\log x$ Natural logarithm of x

$$\sigma(x)$$
 Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$

 $\zeta(x)$ Softplus, $\log(1 + \exp(x))$

 $||\boldsymbol{x}||_p$ L^p norm of \boldsymbol{x}

 $||\boldsymbol{x}||$ L^2 norm of \boldsymbol{x}

 x^+ Positive part of x, i.e., max(0, x)

 $\mathbf{1}_{\mathrm{condition}}$ is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector, matrix, or tensor: $f(\boldsymbol{x})$, $f(\boldsymbol{X})$, or $f(\boldsymbol{X})$. This denotes the application of f to the array element-wise. For example, if $\mathbf{C} = \sigma(\boldsymbol{X})$, then $C_{i,j,k} = \sigma(X_{i,j,k})$ for all valid values of i,j and k.

Datasets and Distributions

 p_{data} The data generating distribution

 \hat{p}_{data} The empirical distribution defined by the training set

 \mathbb{X} A set of training examples

 $x^{(i)}$ The *i*-th example (input) from a dataset

 $y^{(i)}$ or $\boldsymbol{y}^{(i)}$ The target associated with $\boldsymbol{x}^{(i)}$ for supervised learning

X The $m \times n$ matrix with input example $x^{(i)}$ in row $X_{i,:}$

Chapter 1

逻辑回归

1.1 二项逻辑回归模型

二项逻辑回归模型是如下的条件概率分布

$$P(Y = 1|\mathbf{x}) = \frac{\exp(\boldsymbol{\theta}^T \mathbf{x} + b)}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$
$$P(Y = 0|\mathbf{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$

其中 $x \in \mathbb{R}^n$ 是输入变量, $Y \in \{0,1\}$ 是输出变量, $\theta \in \mathbb{R}^n$ 和 $b \in \mathbb{R}$ 是参数。 x和 θ 为n维列向量。

若令
$$\boldsymbol{\theta} = (\theta^{(1)}, ..., \theta^{(n)}, b)^T$$
, $\boldsymbol{x} = (x^{(1)}, ..., x^{(n)}, 1)^T$, 那么条件概率可以表示为
$$P(Y = 1 | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}^T \boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$

$$P(Y = 0 | \boldsymbol{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$
 (1.1)

1.1.1 模型的参数估计

对于给定的训练集 $\mathbb{X} = \{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_N, y_N)\}$,可应用极大似然估计法估计模型参数。

为表示方便,令
$$P(Y=1|\mathbf{x})=\pi(\mathbf{x}), P(Y=0|\mathbf{x})=1-\pi(\mathbf{x})$$
,似然函数为
$$L(\boldsymbol{\theta})=\prod_{i=1}^{N}\left(\pi(\mathbf{x}_{i})\right)^{y_{i}}\left(1-\pi(\mathbf{x}_{i})\right)^{1-y_{i}}$$

那么对数似然函数为

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \log \pi(\boldsymbol{x}_i) + (1 - y_i) \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i \log \frac{\pi(\boldsymbol{x}_i)}{1 - \pi(\boldsymbol{x}_i)} + \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i (\boldsymbol{\theta}^T \boldsymbol{x}_i) - \log(1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)) \right)$$
(1.2)

1.1.1.1 参数估计:梯度下降法

根据公式 (1.2), 对数似然函数对 θ 的偏导为

$$\nabla_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \boldsymbol{x}_i - \frac{\exp(\boldsymbol{\theta}^T x_i) \boldsymbol{x}_i}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)} \right)$$
$$= \sum_{i=1}^{N} \left(y_i - \pi(x_i) \right) x_i$$

由此此处求对数似然函数的最大值,故需要沿着梯度上升的方向进行迭代,迭代公式为

$$\theta := \theta + \alpha \frac{\partial}{\partial \theta} \log L(\theta)$$

$$= \theta + \alpha \sum_{i=1}^{N} (y_i - \pi(\mathbf{x}_i)) \mathbf{x}_i$$
(1.3)

其中α称为学习率,是一个正常数。

公式 (1.3)可以用矩阵表示

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha X^T \boldsymbol{\Lambda} \tag{1.4}$$

其中
$$\mathbf{\Lambda} = \begin{pmatrix} y_1 - \pi(\mathbf{x}_1) \\ y_2 - \pi(\mathbf{x}_2) \\ \dots \\ y_N - \pi(\mathbf{x}_N) \end{pmatrix}_{N \times 1}$$
 , X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一

1.1.1.2 参数估计: 随机梯度下降法

梯度下降算法在每次更新回归系数时需要遍历整个数据集,当数据集数量庞大或者

特征过多时,该方法的计算复杂度太高。改进方法是每次迭代仅用一个样本来更新回归 系数,称为随机梯度下降法。

具体而言,对于训练集中的每一个样本 (x_i, y_i) ,计算该样本梯度,并依据迭代公式:

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha \left(y_i - \pi(\boldsymbol{x}_i) \right) \boldsymbol{x}_i \tag{1.5}$$

与公式 (1.3)相比,随机梯度下降的迭代公式 (1.5)中

- 误差变量是数值,而不是向量
- 不再有矩阵变换的过程

所以随机梯度下降算法的计算效率较高,缺点是存在解的不稳定性(如解存在周期性波动)的问题。为了解决这一问题,并进一步加快收敛速度,可以通过随机选取样本来更新回归系数。

1.2 Softmax回归模型

Softmax模型是二项回归模型在多分类问题上的推广,在多分类问题中,类标签Y可以取两个以上的值。

假设Y的取值集合是 $\{1,2,...,K\}$,Softmax模型是如下的条件概率分布

$$P(Y = k | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_k^T \boldsymbol{x})}{\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})}$$
(1.6)

其中 $\theta_1,...,\theta_K \in \mathbb{R}^{n+1}$ 是模型的参数。

为方便起见,下文用矩阵 $\Theta_{K\times(n+1)}$ 表示全部的模型参数

$$oldsymbol{\Theta} = \left[egin{array}{c} oldsymbol{ heta}_1^T \ dots \ oldsymbol{ heta}_K^T \end{array}
ight]$$

1.2.1 模型的参数估计

令 $P(Y = k | x) = \pi_k(x)$,与二项逻辑回归类似,Softmax的似然函数可以表示为

$$L(\boldsymbol{\Theta}) = \prod_{i=1}^{N} \prod_{k=1}^{K} \left(\pi_k(\boldsymbol{x}_i)\right)^{\mathbb{1}_{y_i = k}}$$

对数似然函数为

$$\log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbb{1}_{y_i = k} \log \pi_k(\boldsymbol{x}_i)$$
(1.7)

1.2.1.1 参数估计:梯度下降法

首先求

$$\frac{\partial \pi_k(\boldsymbol{x}_i)}{\partial \boldsymbol{\theta}_k} = \frac{\boldsymbol{x}_i \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i) \left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x}) - \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i)\right)}{\left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})\right)^2}$$
(1.8)

故根据公式(1.7),得到Softmax模型的对数似然函数的梯度

$$\nabla_{\boldsymbol{\theta}_{k}} \log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \mathbb{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\partial \pi_{k}(\boldsymbol{x}_{i})}{\partial \boldsymbol{\theta}_{k}}$$

$$= \sum_{i=1}^{N} \mathbb{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\boldsymbol{x}_{i} \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i}) \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i})\right)^{2}}$$

$$= \sum_{i=1}^{N} \mathbb{1}_{y_{i}=k} \frac{\boldsymbol{x}_{i} \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x})}$$

$$= \sum_{i=1}^{N} \mathbb{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

$$= \sum_{i=1}^{N} \mathbb{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

对于任意第k个分类的参数 θ_k ,可沿着梯度上升的方向进行迭代

$$\boldsymbol{\theta}_k := \boldsymbol{\theta}_k + \alpha \sum_{i=1}^N \mathbb{1}_{y_i = k} \boldsymbol{x}_i \left(1 - \pi_k(\boldsymbol{x}_i) \right)$$
 (1.10)

公式 (1.10)的迭代关系用矩阵可以表示为

$$\boldsymbol{\theta}_k \coloneqq \boldsymbol{\theta}_k + \alpha X^T \boldsymbol{\Lambda} \tag{1.11}$$

其中
$$\Lambda = \begin{pmatrix} \mathbbm{1}_{y_1=k} \left(1 - \pi_k({m x}_1)\right) \\ \mathbbm{1}_{y_2=k} \left(1 - \pi_k({m x}_2)\right) \\ \dots \\ \mathbbm{1}_{y_N=k} \left(1 - \pi_k({m x}_N)\right) \end{pmatrix}_{N \times 1}$$
, X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一个样本,每一列对应样本的一个维度,其中还包括一维常数项)。

Chapter 2

附录:信息熵

假设 1X 是一个取有限值的离散随机变量(本文只考虑离散情况),概率分布为P。

那么 $I(X = x_i) = -\log P(X = x_i)$ 称为事件 x_i 的自信息量,随机变量X的熵定义为X的自信息量的数学期望,即

$$H(X) = \mathbb{E}(I(X)) = -\sum_{x} P(x) \log P(x)$$

熵反映的是随机变量不确定程度的大小:熵的值越大,不确定程度越高。

2.1 相关概念

2.1.1 条件熵

条件熵是指在联合概率空间上熵的条件自信息的数学期望。在已知X时,Y的条件熵为

$$H(Y|X) = \mathbb{E}_{x,y}I(y_j|x_i) = -\sum_{x}\sum_{y}P(x,y)\log P(y|x)$$
 (2.1)

Lemma 2.1.1. 与公式 (2.1)等价的定义为给定X条件下Y的条件分布概率的熵的数学期望

$$H(Y|X) = \mathbb{E}_{\mathbf{x}} H(Y|X=x) = \sum_{x} P(x) H(Y|X=x)$$

¹本章参考了信息论与编码(http://www.docin.com/p-957983839-f6.html)和信息论基础(https://wenku.baidu.com/view/5319fed3b9f3f90f76c61b1a.html)

证明.

$$H(Y|X) = -\sum_{x} \sum_{y} P(x,y) \log P(y|x)$$

$$= -\sum_{x} \sum_{y} P(x)P(y|x) \log P(y|x)$$

$$= -\sum_{x} P(x) \sum_{y} P(y|x) \log P(y|x) \quad (P(x) - y + x)$$

$$= \sum_{x} P(x)[-\sum_{y} P(y|x) \log P(y|x)]$$

$$= \sum_{x} P(x)H(Y|X = x)$$

H(Y|X)的含义是已知在X发生的前提下,Y发生**新带来的熵**。

2.1.2 相对熵

相对熵,也称KL散度,交叉熵等,定义为两个概率分布之比的数学期望。 设Q(x), P(x)是随机变量X中取值的两个概率分布,则P对Q的相对熵是

$$D_{\mathrm{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E}_{\mathrm{x}} \log \frac{P(x)}{Q(x)}$$
(2.2)

相对熵可以用来度量两个随机变量的"距离"。

Lemma 2.1.2. 相对熵恒大于等于零。

证明. 对于任意分布P,Q,根据公式 (2.2),可知

$$D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$= -\sum_{x} P(x) \log \frac{Q(x)}{P(x)}$$

$$\geq -\log(\sum_{x} P(x) \frac{Q(x)}{P(x)}) \quad (対-logx 应用Jensen不等式)$$

$$= -\log \sum_{x} Q(x)$$

$$= -\log 1$$

$$= 0$$

2.1.3 互信息

两个随机变量X,Y的**互信息**,定义为X,Y的联合分布和独立分布乘积的相对熵

$$I(X,Y) = D_{KL}(P(X,Y)||P(X)P(Y))$$
 (2.3)

Lemma 2.1.3. 互信息与条件熵满足如下关系

$$H(X|Y) = H(X) - I(X,Y) \tag{2.4}$$

证明. 根据公式 (2.2)以及互信息的定义可知

$$I(X,Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

那么

$$H(X) - I(X,Y) = -\sum_{x} P(x) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x} \left(\sum_{y} P(x,y)\right) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \left(\log P(x) + \log \frac{P(x,y)}{P(x)P(y)}\right)$$

$$= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x \mid y)$$

$$= H(X|Y) \quad (根据公式(2.1))$$

2.2 熵的性质

X的熵具有如下几个性质

- 非负性: $H(X) \ge 0$.
- 对称性: 当随机变量的概率取值任意互换时, 熵不变。

$$H(p_1, p_2...p_n) = H(p_2, p_1...p_n) = H(p_3, p_1...p_n) = ...$$

- 可加性: 如果随机变量X, Y相互独立,则H(X, Y) = H(X) + H(Y)。
- 极值性: 对于任意概率分布 $P(X = x_i) = p_i$ 和 $P(Y = y_i) = q_i$, i = 1...n, 都有

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i$$
 (2.5)

当X和Y的概率分布相同时,公式(2.5)取等号。

该性质表明,任意概率分布,它对其他概率分布的自信息取数学期望时,必大于它本身的熵。

• 凸性: 对于任意概率分布 $P(X=x_i)=p_i$ 和 $P(Y=y_i)=q_i$, i=1...n, 假设随机变量Z的分布为 $P(Z=z_i)=\gamma_i=\alpha p_i+(1-\alpha)q_i$, $\alpha\in[0,1]$, 那么Z的熵满足

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y) \tag{2.6}$$

Theorem 2.2.1 (最大熵定理). 离散随机变量X的概率分布为 $P(X=x_i)=p_i, i=1...n$,那么

$$H(X) \le \log n \tag{2.7}$$

当 $p_1 = p_2 = \dots = \frac{1}{n}$ 时,等号成立。

证明. 求熵的最大值等价于以下优化问题

$$\max \quad H(x) = -\sum_{i=1}^{n} p_i \log p_i$$

$$s.t. \quad \sum_{i=1}^{n} p_i = 1$$

利用拉格朗日乘子法构造函数

$$G(p,\lambda) = -\sum_{i=1}^{n} p_i \log p_i + \lambda \left(\sum_{i=1}^{n} p_i - 1\right)$$
 (2.8)

 $^{^2}$ 实际上这种非负性对于离散随机变量X成立,对连续随机变量X不一定成立。这是本文只考虑离散情况的原因。

公式 (2.8)中分别对 p_i 和 λ 求导,令其为零,得到

$$\frac{\partial G(p,\lambda)}{\partial p_i} = -\log p_i - 1 + \lambda = 0$$

$$\sum_{i=1}^n p_i - 1 = 0$$
(2.9)

由 $-\log p_i - 1 + \lambda = 0$ 可得到 $p_i = e^{\lambda - 1}, i = 1, 2..n$, 由此可知 $p_1 = p_2 = ... = \frac{1}{n}$

Lemma 2.2.1 (熵的强可加性). 当随机变量X, Y相关的情况下,联合熵满足强可加性,即

$$H(X,Y) = H(Y) + H(X|Y)$$

 $H(X,Y) = H(X) + H(Y|X)$ (2.10)

证明.

$$\begin{split} H(Y) + H(X|Y) &= -\sum_{y} P(y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(x,y) \\ &= H(X,Y) \end{split}$$

同理可证

$$H(X,Y) = H(X) + H(Y|X)$$

Lemma 2.2.2 (熵的凸性). 证明公式 (2.6)

证明.

$$H(Z) = -\sum_{i=1}^{n} \gamma_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \gamma_{i} - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \left(\gamma_{i} \frac{p_{i}}{p_{i}} \right) - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \left(\gamma_{i} \frac{q_{i}}{q_{i}} \right)$$

$$= -\alpha \sum_{i=1}^{n} p_{i} \log p_{i} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log q_{i} - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$= \alpha H(X) + (1 - \alpha) H(Y) - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$(2.11)$$

其中公式 (2.11)的倒数第二项

$$-\alpha \sum_{i=1}^{n} p_i \log \frac{\gamma_i}{p_i} = \alpha \left(-\sum_{i=1}^{n} p_i \log \gamma_i + \sum_{i=1}^{n} p_i \log p_i \right)$$

$$\geq 0 \quad (根据公式 (2.5)))$$

同理可知公式 (2.11)的倒数第一项

$$-(1-\alpha)\sum_{i=1}^{n} q_i \log \frac{\gamma_i}{q_i} \ge 0$$

所以得到

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y)$$

Theorem 2.2.2. 条件熵小于无条件熵,即 $H(X|Y) \leq H(X)$

证明.

$$H(X|Y) - H(X) = -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} P(x) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} \left(\sum_{y} P(x,y)\right) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x,y} P(x,y) \log P(x)$$

$$= -\sum_{x,y} P(x,y) \left(\log P(x|y) - \log P(x)\right)$$

$$= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x,y) - \left(-\sum_{x,y} P(x,y) \log P(x)P(y)\right)$$

$$\leq 0 \quad (根据熵的极值性)$$

2.2.1 整理得到的公式

根据本节内容整理得到的重要公式

• 根据条件熵定义可得

$$H(X|Y) = H(X,Y) - H(Y)$$
 (2.13)

• 根据互信息定义展开可得

$$H(X|Y) = H(X) - I(X,Y)$$
 (2.14)

根据公式 (2.13)和公式 (2.14)得到的对偶形式

$$H(Y|X) = H(X,Y) - H(X)$$

$$H(Y|X) = H(Y) - I(X,Y)$$

• 多数文献将下式作为互信息的定义公式

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

• $H(X|Y) \le H(X)$

参考文献

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. ii