Introduction to Rings and Modules

Lecture 21, Monday June 26 2023 Ari Feiglin

Definition 21.0.1:

Suppose R is an integral domain, then a absolute value on R is a function

$$|\cdot|\colon R \longrightarrow \mathbb{R}_{\geq 0}$$

which satisfies

- (1) |a| = 0 if and only if a = 0.
- (2) $|a \cdot b| = |a| \cdot |b|$ for every $a, b \in R$.
- (3) $|a+b| \le |a| + |b|$ for every $a, b \in R$.

This is a generalization of the concept of an absolute value in \mathbb{R} , or the modulus of \mathbb{C} . Of course both of these are valuations on these fields.

Another example would be

$$|a| = \begin{cases} 0 & a = 0 \\ 1 & a \neq 0 \end{cases}$$

We will focus now on absolute values over fields. We can construct an absolute value over the field \mathbb{Q} , as follows: let p be prime, then of course $|0|_p = 0$. Then suppose $0 \neq a \in \mathbb{Q}$, $a = \frac{m}{n}$. Then $m = p^b m'$ and $n = p^a n'$ where m' and n' are coprime with p, so

$$a = p^{b-c} \frac{m}{n}$$

and so we define

$$|a|_p = p^{c-b}$$

Or in other words, if

$$a = p^d \frac{m}{n}$$

where p is coprime with m and n and $d \in \mathbb{Z}$, then $|a|_p = p^{-d}$.

This is well-defined since if $a = \frac{m}{n} = \frac{x}{y}$ then suppose $m = p^d m'$ and $n = p^{d'} n'$ and $x = p^e x'$ and $y = p^{e'} y'$ then

$$p^{d-d'}\frac{m'}{n'} = p^{e-e'}\frac{x'}{v'}$$

and so

$$p^{d-d'}m'y' = p^{e-e'}x'n'$$

and since m', n', x', and y' are all coprime with p, we must have d - d' = e - e' which means the absolute value is well-defined.

Definition 21.0.2:

The absolute value defined above is called the *p*-adic absolute value.

Proposition 21.0.3:

The p-adic absolute value is indeed an absolute value.

Proof:

Obviously $|a| = 0_p$ if and only if a = 0, and the absolute value is non-negative. Now suppose

$$a = p^d \frac{m_1}{n_1}, \quad b = p^e \frac{m_2}{n_2}$$

and so

$$ab = p^{d+e} \frac{m_1 m_2}{n_1 n_2}$$

and since m_1m_2 and n_1n_2 are still coprime with p, we have

$$|ab|_p = p^{-d-e} = p^{-d}p^{-e} = |a|_p |b|_p$$

as required.

Finally, for the triangle inequality, suppose without loss of generality that $d \leq e$. So

$$a+b=p^d\bigg(\frac{m_1}{n_1}+p^{e-d}\frac{m_2}{n_2}\bigg)=p^d\frac{m_1n_2+p^{e-d}m_2n_1}{n_1n_2}=p^d\frac{m_3}{n_1n_2}$$

Now suppose $m_3 = p^f m_4$, then we have

$$a + b = p^{d+f} \frac{m_4}{n_1 n_2}$$

which means that

$$|a+b|_p = p^{-d-f} \le p^{-d} = \max\{p^{-d}, p^{-e}\} = \max\{|a|_p, |b|_p\} \le |a|_p + |b|_p$$

as required.

We actually have proven a stronger property of the p-adic absolute value, that

$$|a+b|_p \le \max\Bigl\{|a|_p,|b|_p\Bigr\}$$

Such a property is called the strong triangle inequality.

Proposition 21.0.4:

Suppose R is an integral domain with an absolute value, then $|1_R| = 1$.

Let $0 \neq a \in R$ then $|a| \neq 0$ and $|a| = |a \cdot 1_R| = |a||1_R|$ and since \mathbb{R} is a field, we have $|1_R| = 1$ as required.

Proposition 21.0.5:

Suppose $b \in R$ is invertible, then $|b^{-1}| = |b|^{-1}$.

Since $|b| \cdot |b^{-1}| = |bb^{-1}| = |1| = 1$, since \mathbb{R} is a field we have $|b^{-1}| = |b|^{-1}$.

Proposition 21.0.6:

$$|-a| = |a|$$

Since $1 = |-1| \cdot |-1|$, we have that |-1| is a unit in $\mathbb{R}_{>0}$, meaning |-1| = 1.

Notice that if $n \in \mathbb{Z}$ such that $p \nmid n$, then n is coprime with p and thus $|n|_p = p^{-0} = 1$. And on the flipside, $|p^n| = p^{-n}$. So let $\varepsilon > 0$ and d be the smallest integer such that $p^{-d} < \varepsilon$, thus p^{-d} is the largest exponent of p less than ε ,

$$|a-b|_p < \varepsilon$$

if and only if $a-b=p^c\frac{m}{n}$ where $p^{-c}<\varepsilon$ and so $p^{-c}< p^{-d}$, meaning

$$|a-p|_p < \varepsilon \iff |a-b|_p < p^{-d}$$

Note 21.0.7:

If R is an integral domain with an absolute value, then we can define a metric on it by

$$d(a,b) = |a - b|$$

Obviously $d(a,b) \ge 0$ and is zero only when a=b, and it is symmetric. And finally

$$d(a,b) + d(b,c) = |a-b| + |b-c| \ge |(a-b) + (b-c)| = |a-c| = d(a,c)$$

Thus an absolute value defines a metricizable topology on R, generated by the basis of balls $B_{\varepsilon}(a)$.

Definition 21.0.8:

Two absolute values on the ring R are equivalent if they define the same topology on R.

Proposition 21.0.9:

Two absolute values on R, $|\cdot|_1$ and $|\cdot|_2$, are equivalent if and only if there exists an $n \in \mathbb{Z}$ such that for every $a \in R$, $|a|_1 = |a|_2^n$.

Proof:

Let us show that if the equality holds, they are equivalent. This is because

$$|a-b|_1 < \varepsilon \iff |a-b|_2^n < \varepsilon \iff |a-b|_2 < \varepsilon^{1/n}$$

and thus

$$B_{\varepsilon}^{1}(a) = B_{\varepsilon^{1/n}}^{2}(a)$$

Now suppose the two absolute values are equivalent. Now suppose that $a \in R$, then for any $\varepsilon > 0$ there exists a $\delta > 0$ such that $|a - b|_1 < \varepsilon$ if and only if $|a - b|_2 < \delta$.

Definition 21.0.10:

Let R be a ring, then for $n \in \mathbb{N}$, let $n_R = 1_R + \cdots + 1_R$ (n times). If $n \in \mathbb{Z}$ and n < 0 then $n_R = (-n)_R$.

Note that the unique ring homomorphism $\varphi \colon \mathbb{Z} \longrightarrow R$ is given by $\varphi(n) = n_R$.

Definition 21.0.11:

If R is an integral domain with an absolute value $|\cdot|$, the absolute value is non-Archimedean if

$$\{|n_R| \mid n \in \mathbb{N}\} \subseteq \mathbb{R}_{\geq 0}$$

is bounded from above.

The absolute value is Archimedean if it is not non-Archimedean.

Proposition 21.0.12:

An absolute value on a ring R is non-Archimedean if and only if it satisfies the strong triangle inequality.

Proof:

Suppose the strong triangle inequality is satisfied, then inductively, we show that $|n_R| \leq 1$. For n = 1 this is trivial, and otherwise

$$|(n+1)_R| = |n_R + 1_R| \le \max\{|n_R|, |1_R|\} \le \max\{1, 1\} = 1$$

So the absolute value is non-Archimedean.

Now suppose the absolute value is non-Archimedean, suppose M > 0 is a bound for $\{|n_R|\}$. Let $a, b \in R$ and suppose

 $|b| \leq |a|$. Then let $k \in \mathbb{N}$, so

$$\left| (a+b)^k \right| = \left| \sum_{i=0}^k \binom{n}{i}_R a^i b^{k-i} \right| \le \sum_{i=0}^k M|a|^i |b|^{k-i} \le (k+1)M|a|^k$$

Thus by taking the k-th root from both sides, we get

$$|a+b| \le (k+1)^{1/k} \cdot M^{1/k} \cdot |a|$$

and then we can let $k \to \infty$, and $(k+1)^{1/k}$, $M^{1/k} \to 1$ and so

$$|a+b| \le |a| = \max\{|a|, |b|\}$$

Thus $|\cdot|$ satisfies the strong triangle ienquality, as required.

Note then that the p-adic metric is non-Archimedean (this is not hard to prove directly).

Theorem 21.0.13 (Ostrowski's Theorem):

Every non-trivial absolute value on \mathbb{Q} is equivalent either to a p-adic absolute value $|\cdot|_p$ or the normal absolute value, denoted $|\cdot|_{\infty}$.

Proof:

Suppose $|\cdot|$ is a non-trivial absolute value on \mathbb{Q} . If the absolute value is non-Archimedean, then it must satisfy the strong triangle inequality, and thus

$$|n| \le \max\{|1|, \dots, |1|\} = |1|$$

for every $0 \neq z \in \mathbb{Z}$. Let

$$I = \{ n \in \mathbb{Z} \mid |n| < 1 \}$$

then $I \subseteq \mathbb{Z}$ is a prime ideal. $I \neq \mathbb{Z}$ since |1| = 1, and $0 \in I$. I is an ideal since if $a \in \mathbb{Z}$ and $n \in I$ then $|an| = |a||n| \le |n| < 1$ so $an \in I$. And if $a, b \in I$ then $|a + b| \le \max\{|a|, |b|\} < 1$ since the absolute value satisfies the strong triangle inequality. Now suppose $nm \in I$ then |nm| = |n||m| < 1. Since $|n|, |m| \le 1$, if neither of them are in I then |n|, |m| = 1 and so |nm| = 1 in contradiction.

We will show that $I \neq (0)$. If I = (0) then for every $\frac{a}{b} \in \mathbb{Q}$, we have that $\left| \frac{a}{b} \right| = \left| ab^{-1} \right| = \left| a||b|^{-1} = 1$, which is 1 if $a \neq 0$ and 0 if a = 0, meaning the absolute value is trivial, in contradiction.

Thus $I = p\mathbb{Z}$ for some prime p. We claim that the absolute value is equivalent to the p-adic absolute value. So we have that for every prime $q \neq p, q \notin I$ and thus |q| = 1. So suppose $n \in \mathbb{N}$, and so $n = p^d \cdot p_1^{n_1} \cdots p_k^{n_k}$ and so

$$|n| = |p|^d \cdot |p_1|^{n_1} \cdots |p_k|^{n_k} = |p|^d$$

And in general if $\frac{m}{n} \in \mathbb{Q}$, where $m = p^d m'$ and $n = p^{d'} n'$ then we have $|m| = |p|^d$ and $|n| = |p|^{d'}$ and so

$$\left|\frac{m}{n}\right| = \left|p\right|^{d-d'}$$

Now we know that

$$\left|\frac{m}{n}\right|_{p} = p^{d'-d}$$

Let $|p| = p^{-s}$ (or in other words $s = -\log_p |p|$)

$$\left|\frac{m}{n}\right| = \left(p^{-s}\right)^{d-d'} = \left(p^{d'-d}\right)^s = \left|\frac{m}{n}\right|_n^s$$

meaning the absolute value is equal to the the p-adic absolute value, raised to the sth power, which we showed means they are equivalent.