12. gyakorlat

FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 3.

 $Eml\'e keztet\Howant''$. A pontbeli folytonoss\'ag fogalma. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban, ha

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ |x - a| < \delta : |f(x) - f(a)| < \varepsilon.$

Jelölés: $f \in C\{a\}$. Fontos! A függvény pontbeli folytonosságát csak értelmezési tartománybeli pontokra értelmezzük! Ezért csak ilyen pontokban lehet vizsgálni a folytonosságot. Azokat az értelmezési tartománybeli pontokat, ahol a függvény nem folytonos szakadási helyeknek nevezzük.

A szakadási helyeket a következőképpen osztályozzuk:

0. Az $a \in \mathcal{D}_f$ pont az f függvény megszüntethető szakadási helye, ha

$$\exists \lim_{a} f$$
 véges határérték, de $\lim_{a} f \neq f(a)$.

1. Az $a \in \mathcal{D}_f$ pont az f függvény **elsőfajú szakadási helye** (vagy f-nek **ugrása van** a-ban), ha

$$\exists \lim_{a \to 0} f \ \text{ \'es } \ \exists \lim_{a \to 0} f, \quad \text{ezek v\'egesek, de} \quad \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

2. Minden más esetben, amikor a függvény nem folytonos egy $a \in \mathcal{D}_f$ pontban, azt mondjuk, hogy az f függvénynek az a helyen másodfajú szakadása van.

Tétel. Legyen $f \in \mathbb{R} \to \mathbb{R}$.

- 1. Ha $a \in \mathcal{D}_f \setminus \mathcal{D}'_f$, azaz az a pont izolált pontja \mathcal{D}_f -nek, akkor $f \in C\{a\}$,
- 2. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, azaz az a pont torlódási pontja \mathcal{D}_f -nek, akkor

$$f \in C\{a\}$$
 \iff $\exists \lim_{a} f \text{ \'es } \lim_{a} f = f(a).$

Tétel. (A folytonosságra vonatkozó átviteli elv) *Tegyük fel, hogy* $f \in \mathbb{R} \to \mathbb{R}$, és $a \in \mathcal{D}_f$. Ekkor

$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = f(a).$$

Tétel. (Az algebrai műveletek és a folytonosság kapcsolata) $Tegyük fel, hogy f, g \in C\{a\}$. Ekkor a

$$\lambda f \ (\lambda \in \mathbb{R}), \quad f+g, \quad f \cdot g, \quad \frac{f}{g} \ (ha \ g(a) \neq 0)$$

függvények is folytonosak a-ban.

Tétel. (Hatványsor összegfüggvényének folytonossága) Minden hatványsor összegfüggvénye folytonos a hatványsor teljes konvergenciahalmazán.

Fontos! A hatványfüggvények, a polinomok és általánosan a racionális törtfüggvények, a gyökfüggvények, illetve az exponenciális, a szinusz- és a koszinuszfüggvény az értelmezési tartományuk minden pontjában folytonosak.

Tétel. (Az összetett függvény folytonossága) *Tegyük fel, hogy* $f, g \in \mathbb{R} \to \mathbb{R}$, $g \in C\{a\}$ és $f \in C\{g(a)\}$. Ekkor $f \circ g \in C\{a\}$, azaz az összetett függvény "örökli" a belső- és a külső függvény folytonosságát.

Tétel. (Az összetett függvény határértéke) Legyen $f,g \in \mathbb{R} \to \mathbb{R}$ két valós függvény, amire $R_g \subset \mathcal{D}_f$ teljesül, és $a \in \overline{\mathbb{R}}$. Tegyük fel, hogy

$$a\in \mathcal{D}_g', \ \exists \lim_a g=:b\in \overline{\mathbb{R}} \qquad \textit{\'es} \qquad b\in \mathcal{D}_f', \ \exists \lim_b f=:A\in \overline{\mathbb{R}}.$$

Ekkor

1. ha $b \in \mathbb{R}$ úgy, hogy $f \in C\{b\}$, akkor az $f \circ g$ függvénynek van határértéke az a pontban, és

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = A,$$

azaz a kompozíció- és a határérték képzés sorrendje felcserélhető.

2. ha a g függvény nem veszi fel a b értéket az a egy pontozott környezetében, akkor az f o g függvénynek van határértéke az a pontban, és

$$\lim_{x \to a} f(g(x)) = \lim_{y \to b} f(y) = A.$$

A tétel mindkét állításának eredménye a

$$\lim_{x \to a} f(g(x)) = \lim_{y \to b} f(y) \qquad (y = g(x) \to b, \text{ ha } x \to a)$$

módon is írható, ami úgy tekinthető, mint a lim f(g(x)) határértékben alkalmazott y = g(x) helyettesítés. A tétel értelmében ez a helyettesítés akkor alkalmazható, ha

• f folytonos a b pontban,

vagy

• q nem veszi fel a b értéket az a egy pontozott környezetében (pl. ha q invertálható, mondjuk nem állandó, lineáris függvény).

Egy nevezetes határérték: $\left| \lim_{x \to 0} \frac{\sin x}{x} = 1 \right|$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

1. Feladat. Legyen $f: \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Tegyük fel, hogy

(*)
$$\exists \delta > 0, \ hogy \ \forall \varepsilon > 0 \ \ és \ \ \forall x \in \mathcal{D}_f, \ |x - a| < \delta \ \ eset\'{e}n \ \ \left| f(x) - f(a) \right| < \varepsilon.$$

Az f függvény milyen tulajdonságát fejezi ki ez az állítás?

Megoldás. A feladatban leírt függvénytulajdonság emlékeztet a pontbeli folytonosság definíciójához:

$$f \in C\{a\}$$
 \iff $\forall \varepsilon > 0\text{-hoz } \exists \delta > 0, \ \forall x \in \mathcal{D}_f, |x - a| < \delta \colon |f(x) - f(a)| < \varepsilon.$

Annyi változás történt "csupán", hogy az ε és a δ számokra vonatkozó feltételek sorrendjét felcseréltük.

Vegyük észre, hogy (*)-ban **minden** $\varepsilon > 0$ számra és **minden** x számra előírtuk az $|f(x) - f(a)| < \varepsilon$ feltételt. Világos, hogy ez csak úgy teljesülhet, ha

$$\exists \delta > 0, \ \forall x \in \mathcal{D}_f, |x - a| < \delta \colon |f(x) - f(a)| = 0 \implies f(x) = f(a).$$

A feladatban megfogalmazott feltétel tehát pontosan azt fejezi ki, hogy az f függvény az a pont δ -sugarú környezetében állandó.

2. Feladat. Határozzuk meg az

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 3x + 2} & (x < 1) \\ \sqrt{x + 3} & (1 \le x \le 6) \\ \frac{\sin(2x - 12)}{x - 6} & (x > 6) \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

Megoldás. A megadott f függvény minden $x \in \mathbb{R}$ esetén értelmezhető, hiszen az

$$f_1(x) := \frac{x^2 - 4x + 3}{x^2 - 3x + 2} = \frac{(x - 1)(x - 3)}{(x - 1)(x - 2)} = \frac{x - 3}{x - 2} \qquad (x \in \mathbb{R} \setminus \{1, 2\}),$$

$$f_2(x) := \sqrt{x+3} \quad (x \in [-3, +\infty)) \quad \text{és} \quad f_3(x) := \frac{\sin(2x-12)}{x-6} \quad (x \in \mathbb{R} \setminus \{6\})$$

függvények értelmezhetők az f-ben szereplő intervallumokon. A polinomok, a gyök- és a szinuszfüggvény, illetve a folytonos függvényekkel végzett alapműveletek (kivéve természetesen a kritikus műveletek) és a kompozíció folytonossága miatt igaz, hogy f_1 , f_2 és f_3 folytonosak minden értelmezési tartománybeli pontjukban. Ha $x \neq 1$ és $x \neq 6$, akkor az x pontnak van olyan környezete, ahol az f függvény értéke kizárólag az f_1 , az f_2 vagy az f_3 függvények egyikével kifejezhető. Ez azt jelenti, hogy f folytonos az $\mathbb{R} \setminus \{1,6\}$ halmazon.

x = 1 esetén

$$\lim_{x \to 1-0} f = \lim_{x \to 1-0} \frac{x-3}{x-2} = \frac{1-3}{1-2} = 2,$$

$$\lim_{x \to 1+0} f = \lim_{x \to 1+0} \sqrt{x+3} = \sqrt{1+3} = 2 = f(1),$$

így f folytonos az x = 1 pontban.

 $\underline{x=6}$ esetén az y=2x-12 helyettesítéssel

$$\lim_{6 \to 0} f = \lim_{x \to 6 \to 0} \sqrt{x+3} = \sqrt{6+3} = 3 = f(6),$$

$$\lim_{6+0} f = \lim_{x \to 6+0} \frac{\sin(2x - 12)}{x - 6} = 2\lim_{x \to 6+0} \frac{\sin(2x - 12)}{2x - 12} = 2\lim_{y \to 0+0} \frac{\sin y}{y} = 2 \cdot 1 = 2,$$

így f nem folytonos az x=6 pontban, hiszen a pont bal- és jobb oldali határértéke nem egyezik meg. Mivel mindkét határérték véges, ezért az f függvénynek elsőfajú szakadása van az x=6 pontban.

3. Feladat. Az $\alpha \in \mathbb{R}$ paraméter mely értékei esetén lesznek mindenütt folytonosak a következő függvények?

a)
$$f(x) := \begin{cases} \alpha x^2 + 4x - 1 & (x \le 1) \\ -x + 3 & (x > 1), \end{cases}$$
 b) $f(x) := \begin{cases} \frac{1}{e^{x + \frac{1}{x}}} & (x > 0) \\ -2x + \alpha & (x \le 0). \end{cases}$

Megold'as.

a) A megadott f függvény minden $x \in \mathbb{R}$ esetén értelmezhető, és a benne szereplő

$$f_1(x) := \alpha x^2 + 4x - 1 \quad (x \le 1)$$
 és $f_2(x) := -x + 3 \quad (x > 1)$

függvények polinomok, azaz folytonosak az f-ben szereplő intervallumokon, az α paramétertől függetlenül. Ha $x \neq 1$, akkor az x pontnak van olyan környezete, ahol az f függvény értéke kizárólag az f_1 vagy az f_2 függvények egyikével kifejezhető. Ez azt jelenti, hogy f folytonos az $\mathbb{R} \setminus \{1\}$ halmazon minden $\alpha \in \mathbb{R}$ esetén.

x = 1 esetén

$$\lim_{x \to 1} f = \lim_{x \to 1-0} (\alpha x^2 + 4x - 1) = \alpha + 4 - 1 = \alpha + 3 = f(1),$$

$$\lim_{x \to 1+0} f = \lim_{x \to 1+0} (-x + 3) = -1 + 3 = 2,$$

így fcsak akkor folytonos az x=1pontban, ha $\alpha+3=2,$ azaz $\underline{\alpha=-1}$ esetén.

b) A megadott f függvény minden $x \in \mathbb{R}$ esetén értelmezhető, hiszen az

$$f_1(x) := \frac{1}{e^{x + \frac{1}{x}}} \quad (x \in \mathbb{R} \setminus \{0\}), \quad \text{és} \quad f_2(x) := -2x + \alpha \quad (x \in \mathbb{R})$$

függvények értelmezhetők az f-ben szereplő intervallumokon, mivel az exponenciális függvény nem veheti fel a nulla értéket. A polinomok, az exponenciális függvény, illetve a folytonos függvényekkel végzett alapműveletek (kivéve természetesen a kritikus műveletek) és a kompozíció folytonossága miatt igaz, hogy f_1 és f_2 folytonosak minden értelmezési tartománybeli pontjukban. Ha $x \neq 0$, akkor az x pontnak van olyan környezete, ahol az f függvény értéke kizárólag az f_1 vagy az f_2 függvények egyikével kifejezhető. Ez azt jelenti, hogy f folytonos az $\mathbb{R} \setminus \{0\}$ halmazon minden $\alpha \in \mathbb{R}$ esetén.

x = 0 esetén

$$\lim_{0 \to 0} f = \lim_{x \to 0+0} \frac{1}{e^{x + \frac{1}{x}}} = \lim_{x \to 0+0} \frac{1}{e^x e^{\frac{1}{x}}} = \lim_{x \to 0+0} \frac{1}{e^x} \cdot \lim_{x \to 0+0} \frac{1}{e^{\frac{1}{x}}} = \frac{1}{e^0} \cdot \lim_{x \to 0+0} \frac{1}{e^0} = \frac{1}{e^0}$$

így f csak akkor folytonos az x=0 pontban, ha $\alpha=0$.

4. Feladat. $Az \ \alpha, \beta \in \mathbb{R}$ paraméterektől függően határozzuk meg az

$$f(x) := \begin{cases} \frac{\sin^2 \alpha x}{x^2} & (x < 0) \\ \alpha - \beta x^3 & (0 \le x \le 1) \\ \frac{\alpha x + \beta}{x^2 - 1} & (x > 1) \end{cases}$$

függvény folytonossági, illetve szakadási helyeit, valamint a szakadási helyek típusait!

Megoldás. A megadott f függvény minden $x \in \mathbb{R}$ esetén értelmezhető, hiszen az

$$f_1(x) := \frac{\sin^2 \alpha x}{x^2} \quad (x \in \mathbb{R} \setminus \{0\}), \qquad f_2(x) := \alpha - \beta x^3 \quad (x \in \mathbb{R})$$

illetve

$$f_3(x) := \frac{\alpha x + \beta}{x^2 - 1} \quad \left(x \in \mathbb{R} \setminus \{-1, 1\} \right)$$

függvények értelmezhetők az f-ben szereplő intervallumokon, az α, β paraméterektől függetlenül. A polinomok, a racionális tört- és a szinuszfüggvény, illetve a folytonos függvényekkel végzett alapműveletek (kivéve természetesen a kritikus műveletek) és a kompozíció folytonossága miatt igaz, hogy f_1 , f_2 és f_3 folytonosak minden értelmezési tartománybeli pontjukban. Ha $x \neq 0$ és $x \neq 1$, akkor az x pontnak van olyan környezete, ahol az f függvény értéke kizárólag az f_1 , az f_2 vagy az f_3 függvények egyikével kifejezhető. Ez azt jelenti, hogy f folytonos az $\mathbb{R} \setminus \{0,1\}$ halmazon minden $\alpha, \beta \in \mathbb{R}$ esetén.

 $\underline{x=0}$ esetén, ha $\alpha=0,$ akkor $f_1(x)=0$ (x<0),így $\lim_{0\to 0}f=0.$ Ha $\alpha\neq 0,$ akkor

$$\lim_{0 \to 0} f = \lim_{x \to 0 \to 0} \frac{\sin^2 \alpha x}{x^2} = \lim_{x \to 0 \to 0} \left(\alpha^2 \left(\frac{\sin \alpha x}{\alpha x} \right)^2 \right) = \alpha^2 \cdot 1^2 = \alpha^2.$$

Másrészt

$$\lim_{0 \to 0} f = \lim_{x \to 0+0} (\alpha - \beta x^3) = \alpha - \beta \cdot 0^3 = \alpha.$$

Ez azt jelenti, hogy minden $\alpha, \beta \in \mathbb{R}$ esetén létezik az x=0 pont bal- és jobboldali határértéke, és mindkettő véges. Az f függvény akkor és csak akkor folytonos az x=0 pontban, ha mindkét határérték megegyezik. Ekkor $\alpha^2=\alpha$, azaz $\alpha=0$ vagy $\alpha=1$, és $\overline{\beta \in \mathbb{R}}$ tetszőleges. Ha $\alpha \in \mathbb{R} \setminus \{0,1\}$, akkor az f függvénynek elsőfajú szakadása van az $\overline{x=0}$ pontban a β értéktől függetlenül.

x = 1 esetén

$$\lim_{1 \to 0} f = \lim_{x \to 1 \to 0} (\alpha - \beta x^3) = \alpha - \beta \cdot 1^3 = \alpha - \beta.$$

Másrészt

$$\lim_{x \to 1+0} f = \lim_{x \to 1+0} \frac{\alpha x + \beta}{x^2 - 1} = \lim_{x \to 1+0} \frac{\alpha (x - 1) + \alpha + \beta}{(x - 1)(x + 1)} = \lim_{x \to 1+0} \left(\frac{\alpha}{x + 1} + \frac{\alpha + \beta}{(x - 1)(x + 1)} \right).$$

Ha $\alpha + \beta = 0$, akkor

$$\lim_{1+0} f = \lim_{x \to 1+0} \left(\frac{\alpha}{x+1} \right) = \frac{\alpha}{1+1} = \frac{\alpha}{2}.$$

Ez azt jelenti, hogy $\alpha+\beta=0$ esetén létezik az x=1 pont bal- és jobboldali határértéke, és mindkettő véges. Az f függvény akkor és csak akkor folytonos az x=0 pontban, ha mindkét határérték megegyezik. Ekkor $\alpha-\beta=\alpha/2$, azaz $\beta=\alpha/2$. Ekkor az $\alpha+\beta=0$ feltétel csak akkor teljesül, ha $\alpha=\beta=0$. Ha $\alpha=-\beta\neq 0$, akkor az f függvénynek elsőfajú szakadása van az x=1 pontban.

Ha $\alpha + \beta \neq 0$, akkor a

$$\lim_{x \to 1+0} f = \lim_{x \to 1+0} \frac{\alpha}{x+1} + (\alpha + \beta) \lim_{x \to 1+0} \frac{1}{x+1} \cdot \lim_{x \to 1+0} \frac{1}{x+1} =$$

$$= \frac{\alpha}{2} + (\alpha + \beta) \cdot \frac{1}{2} \cdot (+\infty) = \begin{cases} +\infty & (\alpha + \beta > 0) \\ -\infty & (\alpha + \beta < 0). \end{cases}$$

határérték létezik, de nem véges. Így, ha $\alpha + \beta \neq 0$, akkor az f függvénynek másodfajú szakadása van az x=1 pontban.

Emlékeztető.

Tétel. (Bolzano tétele) Ha egy korlátos és zárt intervallumon értelmezett folytonos függvény az intervallum két végpontjában különböző előjelű, akkor a függvénynek legalább egy zérushelye van, azaz

$$f \in C[a,b]$$
 és $f(a) \cdot f(b) < 0$ \Longrightarrow $\exists \xi \in (a,b) : f(\xi) = 0.$

- **5. Feladat.** Igazoljuk, hogy az alábbi egyenleteknek van megoldása a jelzett I intervallumon!
 - a) $x^5 x^2 + 2x + 3 = 0$, $I := \mathbb{R}$, b) $e^x = 2 x$, $I := \mathbb{R}$,
 - c) $x = \cos x$, I := (0,1),
- d) $\frac{1}{r} + \frac{1}{r-2} = e^{x^2}$, I := (0,2).

Megoldás.

a) Legyen $f(x) = x^5 - x^2 + 2x + 3$ ($x \in \mathbb{R}$). Az f függvény egy polinom, így folytonos R-en. Vegyük észre, hogy

$$f(0) = 3 > 0$$
 és $f(-1) = -1 < 0$.

Ezért $f \in C[-1,0]$ és $f(-1)\cdot f(0) < 0$, így a Bolzano-tétel szerint $\exists \xi \in (-1,0) \colon f(\xi) = 0$. Ez azt jelenti, hogy a megadott egyenletnek van megoldása R-en.

b) Legyen $f(x) = e^x + x - 2$ ($x \in \mathbb{R}$). Az f függvény folytonos \mathbb{R} -en, hiszen folytonos függvények összege. Vegyük észre, hogy

$$f(0) = 1 + 0 - 2 = -1 < 0$$
 és $f(1) = e + 1 - 2 = e - 1 > 2 - 1 > 0$.

Ezért $f \in C[0,1]$ és $f(0) \cdot f(1) < 0$. Így a Bolzano tétele szerint $\exists \xi \in (0,1) \colon f(\xi) = 0$, azaz

$$e^{\xi} + \xi - 2 = 0 \qquad \Longrightarrow \qquad e^{\xi} = 2 - \xi.$$

Ez azt jelenti, hogy a megadott egyenletnek van megoldása R-en.

c) Legyen $f(x) = \cos x - x$ ($x \in \mathbb{R}$). Az f függvény folytonos \mathbb{R} -en, hiszen folytonos függvények különbsége. Vegyük észre, hogy

$$f(0) = \cos 0 - 0 = 1 > 0$$
 és $f(1) = \cos 1 - 1 < 0$,

hiszen

$$\cos 1 = \sum_{n=0}^{+\infty} (-1)^n \frac{1^n}{2n!} = 1 + \underbrace{\left(-\frac{1}{2!} + \frac{1}{4!}\right)}_{<0} + \underbrace{\left(-\frac{1}{6!} + \frac{1}{8!}\right)}_{<0} + \dots < 1.$$

Ezért $f \in C[0,1]$ és $f(0) \cdot f(1) < 0$. Így a Bolzano tétele szerint $\exists \xi \in (0,1) \colon f(\xi) = 0$, azaz

$$\cos \xi - \xi = 0 \implies \cos \xi = \xi.$$

Ez azt jelenti, hogy a megadott egyenletnek van megoldása a (0,1) intervallumon.

d) Legyen

$$f(x) = \frac{1}{x} + \frac{1}{x - 2} - e^{x^2}$$
 $(x \in \mathbb{R} \setminus \{0, 2\}).$

6

A polinomok, a racionális tört- és az exponenciális függvény, illetve a folytonos függvényekkel végzett alapműveletek és a kompozíció folytonossága miatt igaz, hogy f folytonos az $\mathbb{R} \setminus \{0,2\}$ halmazon. Vegyük észre, hogy

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \left(\frac{1}{x} + \frac{1}{x-2} - e^{x^2} \right) = +\infty + \frac{1}{-2} - e^0 = +\infty,$$

$$\lim_{x \to 2-} f(x) = \lim_{x \to 2-} \left(\frac{1}{x} + \frac{1}{x-2} - e^{x^2} \right) = \frac{1}{2} + (-\infty) - e^4 = -\infty.$$

Így $\exists a \in (0,1): f(a) > 0$, és $\exists b \in (1,2): f(b) < 0$. Ezért $f \in C[a,b]$ és $f(a) \cdot f(b) < 0$. Így a Bolzano tétele szerint $\exists \xi \in (a,b) \subset (0,2): f(\xi) = 0$, azaz

$$\frac{1}{\xi} + \frac{1}{\xi - 2} - e^{\xi^2} = 0 \qquad \Longrightarrow \qquad \frac{1}{\xi} + \frac{1}{\xi - 2} = e^{\xi^2}.$$

Ez azt jelenti, hogy a megadott egyenletnek van megoldása a (0,2) intervallumon.

6. Feladat. Lássuk be, hogy minden páratlan fokszámú, valós együtthatós polinomnak van valós gyöke! Lényeges-e a polinom fokszámára tett feltétel?

Megoldás. Legyen

$$p(x) := a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + \dots + a_1x + a_0 \qquad (x \in \mathbb{R})$$

egy páratlan fokszámú, valós együtthatós polinom, így $a_{2n+1} \neq 0, n \in \mathbb{N}$.

Tegyük fel először, hogy a polinom főegyütthatója pozitív, azaz $a_{2n+1} > 0$. Ekkor

$$\lim_{x \to +\infty} p(x) = \lim_{x \to +\infty} x^{2n+1} \left(a_{2n+1} + \frac{a_{2n}}{x} + \dots + \frac{a_1}{x^{2n}} + \frac{a_1}{x^{2n+1}} \right) = (+\infty) \cdot a_{2n+1} = +\infty,$$

$$\lim_{x \to -\infty} p(x) = \lim_{x \to -\infty} x^{2n+1} \left(a_{2n+1} + \frac{a_{2n}}{x} + \dots + \frac{a_1}{x^{2n}} + \frac{a_1}{x^{2n+1}} \right) = (-\infty) \cdot a_{2n+1} = -\infty,$$

hiszen

$$\lim_{x \to \pm \infty} x^{2n+1} = \pm \infty \qquad \text{és} \qquad \lim_{x \to \pm \infty} \frac{1}{x^k} = 0 \quad (k \in \mathbb{N}^+).$$

Így $\exists a \in (-\infty, -1): p(a) < 0$, ill. $\exists b \in (1, +\infty): p(b) > 0$. Ezért $p(a) \cdot p(b) < 0$, illetve tudjuk, hogy $p \in C[a, b]$. Így a Bolzano tétele szerint $\exists \xi \in (a, b) \subset \mathbb{R}: p(\xi) = 0$.

Ha $a_{2n+1} < 0$, akkor f(x) = -p(x) $(x \in \mathbb{R})$ egy olyan páratlan fokszámú, valós együtthatós polinom, amelynek főegyütthatója pozitív. Így az előzőek szerint $\exists \xi \in \mathbb{R} \colon f(\xi) = 0$, azaz $p(\xi) = -f(\xi) = 0$.

A polinom fokszámára tett feltétel azért lényeges, mert több olyan páros fokszámú, valós együtthatós polinom van, amelynek nincs valós gyöke. Ilyen például a $p(x)=x^2+1$ $(x\in\mathbb{R})$ polinom.

7. Feladat. Igazoljuk, hogy az $x^3 + x - 1$ polinomnak pontosan egy valós gyöke van, és számítsuk ki ezt a gyököt 10^{-1} pontossággal!

Megoldás. Az előző feladat állítása szerint a $p(x) = x^3 + x - 1$ $(x \in \mathbb{R})$ polinomnak van valós gyöke. Egyetlen egy valós gyöke van, hiszen p szigorúan monoton növekvő, tudniillik minden x < y valós számok esetén

$$p(x) - p(y) = x^3 + x - 1 - \left(y^3 + y - 1\right) = x^3 - y^3 + x - y = (x - y)(x^2 + xy + y^2 + 1) = \underbrace{\left(x - y\right)}_{<0} \cdot \underbrace{\left(\left(x + \frac{y}{2}\right)^2 + \frac{3y^2}{4} + 1\right)}_{>0} < 0,$$

és így p(x) < p(y). Az egyetlen ξ zérushely a Bolzano tétele szerint a (0,1) intervallumon található, hiszen

$$p(0) = -1 < 0$$
 és $p(1) = 1 > 0$.

A zérushely közelítő értékének kiszámítását a tanult intervallumfelezési eljárással fogjuk megvalósítani. Az eljárás lényege, hogy ha tudjuk, hogy az f folytonos függvénynek van egy ξ zérushelye az $[x_n, y_n]$ intervallum belsejében, mert $f(x_n) \cdot f(y_n) < 0$, akkor

$$|z_n - \xi| < h_n := z_n - x_n$$
, ahol $z_n := \frac{x_n + y_n}{2}$.

Így, ha $f(z_n) = 0$ vagy $h_n < \varepsilon$, ahol ε a megadott hibakorlát, akkor z_n a keresett közelítő érték. Ellenkező esetben folytatjuk az eljárást az $[x_{n+1}, y_{n+1}]$ intervallummal, ahol

- ha $f(x_n)f(z_n) > 0$, akkor $x_{n+1} = z_n$ és $y_{n+1} = y_n$,
- ha $f(x_n)f(z_n) < 0$, akkor $x_{n+1} = x_n$ és $y_{n+1} = z_n$.

Mindkét esetben megtartjuk az $f(x_{n+1}) \cdot f(y_{n+1}) < 0$ tulajdonságot, de az intervallum hossza feleződött, azaz $h_{n+1} = h_n/2$.

Az $f(x) = x^3 + x - 1$ függvénnyel fogjuk az eljárást alkalmazni a megadott $\varepsilon = 0, 1$ hibakorláttal. A kezdőintervallum az $[x_0, y_0] = [0, 1]$, hiszen $f(0) \cdot f(1) < 0$. Az eljárás részeredményei a következő táblázatban láthatók.

n	x_n	y_n	$z_n = \frac{x_n + y_n}{2}$	$h_n = z_n - x_n$	$f(x_n)f(z_n)$
0	0	1	$\frac{1}{2}$	0,5	+
1	$\frac{1}{2}$	1	$\frac{3}{4}$	0,25	_
2	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{5}{8}$	0,125	+
3	$\frac{5}{8}$	$\frac{3}{4}$	$11 \over 16$	0,0625	

Így a keresett közelítő érték $\underline{\xi} \approx \frac{11}{16}\,.$

Emlékeztető.

Tétel. (Weierstrass tétele) Egy korlátos és zárt intervallumon értelmezett folytonos függvénynek mindig van abszolút maximum- és abszolút minimumhelye, azaz

$$f \in C[a,b] \iff \exists \alpha, \beta \in [a,b], \ \forall x \in [a,b]: f(\beta) \le f(x) \le f(\alpha).$$

8. Feladat. Tegyük fel, hogy az $f : \mathbb{R} \to \mathbb{R}$ függvény folytonos,

$$\lim_{x \to -\infty} f(x) = +\infty \qquad \text{és} \qquad \lim_{x \to +\infty} f(x) = +\infty.$$

Mutassuk meg, hogy ekkor f-nek létezik abszolút minimuma!

Megoldás. A Weierstrass-tételt fogjuk alkalmazni, azonban f értelmezési tartománya nem korlátos zárt intervallum, hiszen $D_f = \mathbb{R}$, ezért a Weierstrass-tétel közvetlenül nem alkalmazható.

i) Először azt fogjuk igazolni, hogy f alulról korlátos a teljes számegyenesen. A $\lim_{x\to-\infty} f(x)=+\infty$ definíciójából a P=1 választással azt kapjuk, hogy

$$\exists x_1 < 0, \ \forall x < x_1 : \ f(x) > 1.$$

A $\lim_{x\to +\infty} f(x) = +\infty$ definíciójából a P=1 választással azt kapjuk, hogy

$$\exists x_2 > 0, \ \forall x > x_2 : \ f(x) > 1.$$

Tehát f alulról korlátos az $\mathbb{R}\setminus[x_1,x_2]$ halmazon. Azonban $f\in C[x_1,x_2]$, így f korlátos (alulról korlátos is) az $[x_1,x_2]$ intervallumon. Ezért összességében azt mondhatjuk, hogy f alulról korlátos a teljes számegyenesen.

ii) Legyen

$$m := \inf R_f = \inf \{ f(x) \mid x \in \mathbb{R} \}.$$

Mivel f alulról korlátos, így $m \in \mathbb{R}$. Alkalmazzuk i) gondolatmenetét P = m + 1-re! Ekkor azt kapjuk, hogy $\exists a < 0$ és $\exists b > 0$, hogy

$$f(x) > m+1$$
 $(x \in (-\infty, a) \cup (b, \infty)).$

Ebből következik, hogy

$$m = \inf \{ f(x) \mid x \in [a, b] \}.$$

Azonban $f \in C[a,b]$, így a Weierstrass-tétel szerint $\exists \alpha \in [a,b] \colon f(\alpha) = m$. Ez azt jelenti, hogy α az $f \colon \mathbb{R} \to \mathbb{R}$ függvény abszolút minimumhelye, és $f(\alpha)$ a függvény abszolút minimuma.