Predicting Singapore's Electricity Peak Demand

Prepared by: Lindy Tan

Problem Statement: Predict Singapore's peak electricity demand for 2022

- Peak electricity demand = Highest instantaneous demand
- Important because there needs to be sufficient electricity infrastructure in place to meet total system demand at any point in time
- Accurate prediction to advise decision makers on amount of infrastructure required
 - Over prediction -> waste resources
 - Under prediction -> black out (reserve margin of 27% to maintain system security)

Data: Half-hourly System Demand (MW)

Daily System Highest Demand trend is not stationary

Stationary assumption fulfilled for first-ordered differenced demand

Illustration of Evaluation Metrics: Mean error of peak demand for 3 one-year ahead testing periods

Model Exploration: Base Model ARIMA

Tuning parameters for ARIMA:

p = (0,1,..., 5)

d = 1

q = (0,1,..., 5)

Model Exploration: ACF and PACF* shows strong and consistent seasonal pattern

^{*} Details of identifying AR, MA terms and seasonal components can be found in "Summary of rules for identifying ARIMA models" (https://people.duke.edu/~rnau/arimrule.htm)

Tuning parameters for SARIMA:

 $\begin{array}{lll} \text{Non-seasonal} & \text{Seasonal} \\ p = (0,1,2) & P = (0,1,2) \\ d = 1 & D = 1 \\ q = (0,1,2) & Q = (0,1,2) \\ S = 7 & \end{array}$

Daily Maximum Demand (MW) with SARIMA(2, 1, 1) x (2, 1, 1, 7) Predictions

Demand is highly correlated with GDP as ~85% is contributed by Commercial & Industrial consumers

Based on least-error SARIMA, factor in exogenous predictors with appropriate time lag

Demand is higher between week 12-42 (Mar - Oct)

Demand is higher on weekdays

Demand is lowest during Circuit Breaker (CB) with severe disruption to economic activities

Use % WFH as a proxy of economy recovery

Model Exploration: SARIMAX with exogenous predictors 1-year lag GDP, Week, Day of Week, % WFH

Tuning parameters for SARIMAX:

- Quarterly GDP of 1-year lag
- Week
- Day of week/ is_weekday
- % WFH due to COVID-19

Summary of Performance of SARIMAX models

Model	Tuning parameters	Selected Model	MSE
ARIMA	p = (0,1,, 5) d = 1 q = (0,1,, 5)	ARIMA (3,1,3)	444 MW
SARIMA	p = (0,1,2) $d = 1$ $q = (0,1,2)$ $P = (0,1,2)$ $D = 1$ $Q = (0,1,2)$ $S = 7$	SARIMA (2, 1, 1)×(2,1,1,7)	190 MW
SARIMAX	Individual and combination of following: • Quarterly GDP of 1-year lag • Week • Day of week/ is_weekday • % WFH due to COVID-19	SARIMAX (2, 1, 1)x(2,1,1,7) using all exogenous predictors (except is_weekday)	121 MW

Model Exporation: LSTM RNN with recursive strategy (many-to-one model)

Model Exporation: LSTM RNN with recursive strategy (many-to-one model)

LSTM RNN with recursive strategy (many-to-one model)

Features:

- Yt-1, ... Yt-365
- GDP of 1-year lag
- Week
- Day of week
- % WFH due to COVID-19

Final Model: Choose SARIMAX considering its explanatory power

Tuning parameters for SARIMA:

Non-seasonal	Seasonal
p = (0,1,2)	P = (0,1,2)
d = 1	D = 1
q = (0,1,2)	Q = (0,1,2)
dictions	S = 7

Daily Maximum Demand (MW) with SARIMA(1, 1, 2) x (0, 1, 2, 7) Predictions

Prediction: Predicted peak demand for 2022 is 7750 MW

^{*} Further easing of measures from 26 Apr which have no restrictions to the number of people returning to workplaces

Next Steps

- Feature Engineering
 - Incorporate public holidays
 - Transform day and week to sin and cos functions to better model their cyclical patterns*
- Model
 - Increasing testing period to 5 years (instead of 3)
 - Exploration:
 - Further tune the LSTM RNN model
 - Multiple output strategy (one 'many-to-many' architecture) for RNN (instead of sliding windows)
 - GRU, CNN, etc.
- Application
 - Predict total annual demand -> useful for computing electricity tariff
 - Predict peak demand/total annual demand for a longer forecast period