HOJA DE EJERCICIOS 2

Análisis Matemático. CURSO 2021-2022.

Sea $f:(X,d) \to (Z,\rho)$ una aplicación entre espacios métricos.

Decimos que f es **Lipschitziana**, o simplemente **Lipschitz**, si existe una constante $M \ge 0$ tal que

$$\rho\left(f(x), f(y)\right) \leq M d(x, y)$$
, para cualesquiera $x, y \in X$,

y de un tal número M decimos que es una constante de Lipschitz para f.

Decimos que f es localmente Lipschitziana, o localmente Lipschitz, si para cada punto $x_0 \in X$ existen un entorno U de x_0 en X y un número $M_U \ge 0$ tales que

$$\rho(f(x), f(y)) \leq M_U d(x, y)$$
, para cualesquiera $x, y \in U$,

es decir que la restricción $f|_U$ es Lipschitz.

Problema 1. Demuestra que toda aplicación localmente Lipschitz es continua.

Problema 2. Determina, para cada una de la siguientes funciones continuas:

- 1. si es localmente Lipschitz o no,
- 2. si es Lipschitz o no.

$$\mathbb{R} \to \mathbb{R}$$
 , $x \longmapsto x^2$.

$$\mathbb{R} \to \mathbb{R}$$
 , $x \longmapsto \sqrt{1+x^2}$.

$$\mathbb{R} \to \mathbb{R}$$
 , $x \longmapsto \arctan x$.

$$(-1,1)\to \mathbb{R}\quad,\quad x\longmapsto \mathrm{arc}\,\mathrm{sen}\,x.$$

$$[-1,1] \to \mathbb{R} \quad , \quad x \longmapsto \arcsin x.$$

$$(0, +\infty) \to \mathbb{R}$$
 , $x \longmapsto \log x$.

<u>Problema</u> 3. Sea $L: (\mathbb{V}, \|\cdot\|) \to (\mathbb{W}, \|\cdot\|')$ una aplicación lineal entre dos espacios normados. Demuestra que son equivalentes:

- 1. L es continuna en el punto $\mathbf{0} \in \mathbb{V}$.
- $2.\ L$ es lineal acotada.
- 3. L es Lipschitz para las distancias $||v_1 v_2||$ en \mathbb{V} y $||w_1 w_2||'$ en \mathbb{W} .

<u>Problema</u> 4. Sea (X, d) un espacio métrico. Fijado un punto $a \in X$, demuestra que la siguiente función

$$d_a: X \longrightarrow \mathbb{R}$$
 , $d_a(x) = d(x, a)$,

es Lipschitziana en (X, d).

Deduce que, en todo espacio normado $(\mathbb{V}, \|\cdot\|)$, la norma es una función Lipschitz. ¿Cuál es la constante de Lipschitz para esas funciones?

Problema 5. Sea $1 . Demuestra que para todo <math>v \in \mathbb{R}^n$,

$$||v||_{\infty} \le ||v||_n \le ||v||_1 \le n ||v||_{\infty}$$
.

Problema 6. Sean $\|\cdot\|$ y $\|\cdot\|'$ dos normas en \mathbb{R}^n .

- Demuestra que un conjunto $E \subseteq \mathbb{R}^n$ es acotado para $\|\cdot\|$ si y sólo si es acotado para $\|\cdot\|'$.
- Demuestra que si $\{x_n\} \subset \mathbb{R}^n$ es una **sucesión de Cauchy** para $\|\cdot\|$ (es decir, para cada $\varepsilon > 0$ hay un $k = k(\varepsilon)$ tal que $n, m \ge k \implies \|x_n x_m\| \le \varepsilon$), entonces es una sucesión de Cauchy para $\|\cdot\|'$; y viceversa.
- Dado cualquier subconjunto no vacío $E \subseteq \mathbb{R}^n$, con las distancias $d_E(x,y) = ||x-y||$ y $d'_E(x,y) = ||x-y||'$, y dada cualquier función $f: E \to \mathbb{R}$, demuestra que f es Lipschitz en (E,d) si y sólo si es Lipschitz en (E,d').

<u>Problema</u> 7. Sean (X, d) un espacio métrico y $A \subseteq X$ un subconjunto no vacío. Definimos la **distancia a A** como la siguiente función

$$\operatorname{dist}(\cdot,A):X\ \longrightarrow\ \mathbb{R}\quad,\quad \operatorname{dist}(x,A)\ =\ \operatorname{inf}\left\{\,d(x,y)\,:\,y\in A\,\right\}\,.$$

- 1. Demuesta que dist (\cdot, A) es una función Lipschitz en (X, d) ¿con qué constate de Lipschitz?
- 2. Si además A es compacto, demuestra que para todo $x \in X$ existe $a \in A$ tal que dist(x, A) = d(x, a); es decir, un **punto más cercano a x** entre los puntos de A.

Problema 8. Fijamos \mathbb{R}^n . Sea $\mathbf{e}_1 = (1, 0, \dots, 0)$ el primer vector de la base estándar. Demuestra que:

- 1. Los subconjuntos $B(0,1) \cup B(2\mathbf{e}_1,1)$ y $\overline{B}(0,1) \cup \overline{B}(3\mathbf{e}_1,1)$ no son conexos por caminos.
- 2. Los subconjuntos $B(0,1) \cup B(2\mathbf{e}_1,1) \cup \{\mathbf{e}_1\}$ y $\overline{B}(0,1) \cup \overline{B}(3\mathbf{e}_1,1) \cup \{t\mathbf{e}_1 : 1 < t < 2\}$ son conexos por caminos.

Problema 9. Sea $(V, ||\cdot||)$ un espacio normado.

- a) Dados $x_0 \in V$ y r > 0, prueba que el cierre de la bola abierta $B(x_0, r)$ es la bola cerrada $\overline{B}(x_0, r)$.
- b) Considera la distancia $d(x, y) = \min\{||x y||, 1\}$. Demuestra que $||\cdot||$ y d definen los mismos abiertos en V (y, por lo tanto, definen los mismos cerrados y el mismo concepto de cierre).
- c) Comprueba que se tiene $B_d(\mathbf{0},1) = B_{\|\cdot\|}(\mathbf{0},1)$ pero el cierre de este conjunto no es la bola cerrada $\overline{B}_d(\mathbf{0},1)$.

Problema 10. a) Sea X conexo por caminos, y sea $f: X \to \mathbb{R}$ una función continua. Determinar cómo es f si $f(X) \subset \mathbb{Z}$. Lo mismo para $f(X) \subset \mathbb{Q}$. Lo mismo para $f(X) \subset \mathbb{Q}$.

- b) Sea X conexo por caminos y $f:X\to\mathbb{R}$ una función continua no constante. Demostrar que f(X) es no numerable.
- c) Demostrar que no existe ninguna función continua $f: \mathbb{R} \to \mathbb{R}$ tal que $f(\mathbb{Q}) \subset \mathbb{R} \mathbb{Q}$ y $f(\mathbb{R} \mathbb{Q}) \subset \mathbb{Q}$.

Problema 11. Sea $(V, ||\cdot||)$ un espacio normado. Dados subconjuntos $A, B \subset V$, se define

$$A + B = \{ a + b : a \in A, b \in B \}$$

- a) Demostrar que si A es compacto y B cerrado, entonces A+B es cerrado.
- b) Poner un ejemplo de un espacio V y dos cerrados A, B tales que A + B no es cerrado.

<u>Problema</u> 12. Sean (X, d_1) , (Y, d_2) dos espacios métricos. Decimos que $f: X \to Y$ es una isometría si satisface:

$$d_2(f(x), f(y)) = d_1(x, y)$$
 para todo $x, y \in X$.

Demostrar que toda isometría entre dos espacios métricos satisface:

- a) Es invectiva.
- b) Es continua en X.
- c) La inversa $f^{-1}: f(X) \to X$ también es isometría.

Problema 13. Sea $(F, ||\cdot||)$ un espacio normado.

- a) Demuestra que toda aplicación lineal $T: \mathbb{R} \to F$ es acotada, con |||T||| = ||T(1)||.
- b) Sea $\mathcal{L}(\mathbb{R}, F)$ el conjunto de las aplicaciones lineales $T : \mathbb{R} \to F$. Si definimos $\phi : \mathcal{L}(\mathbb{R}, F) \to F$ mediante $\phi(T) = T(1)$, demostrar que ϕ es una aplicación lineal y una isometría.

<u>Problema</u> 14. Para cada función analícese, en el punto (0,0), la continuidad, la existencia de derivadas parciales, la diferenciabilidad y la continuidad de las derivadas parciales.

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{si} \quad (x,y) \neq (0,0) \,, \\ 0 & \text{si} \quad (x,y) = (0,0) \,. \end{cases}$$

$$f(x,y) = \begin{cases} \frac{x^4 e^{-|x|}}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \,, \\ 0 & \text{si} \quad (x,y) = (0,0) \,. \end{cases}$$

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + 7y^2} & \text{si} \quad (x,y) \neq (0,0) \,, \\ 0 & \text{si} \quad (x,y) = (0,0) \,. \end{cases}$$

$$f(x,y) = \begin{cases} (x^2 + y^2) \sec \frac{1}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \,, \\ 0 & \text{si} \quad (x,y) = (0,0) \,. \end{cases}$$

Problema 15. Considérese la siguiente función vectorial, definida en $\mathbb{R}^2 \setminus \{(0,0)\}$,

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

¿Es posible asignar un valor a f(0,0) de forma que la f extendida sea continua en este punto? Calcula la matriz de la diferencial Df(x,y), respecto de las bases estándar en \mathbb{R}^2 , en cada $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Halla la función inversa de f.

Problema 16. Sea E un espacio vectorial dotado de un producto escalar $\langle \cdot, \cdot \rangle$ y de la norma asociada $||\cdot||$. Demuestra que la función $f: E \to \mathbb{R}$ dada por $f(x) = ||x||^2$ es diferenciable en todo punto, y que

$$(Df)_x u = 2 < x, u >$$
 para cualesquiera $x, u \in E$.

Problema 17. Sean $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ funciones continuas. Se define $f : \mathbb{R}^2 \to \mathbb{R}$ mediante

$$f(x,y) = \int_0^x g_1(t,0) dt + \int_0^y g_2(x,t) dt.$$

a) Probar que

$$\frac{\partial f(x,y)}{\partial y} = g_2(x,y).$$

b) Hallar una función $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$\frac{\partial f(x,y)}{\partial x} = x$$
 y $\frac{\partial f(x,y)}{\partial y} = y$.

c) Hallar una función $f: \mathbb{R}^3 \to \mathbb{R}$ tal que

$$\frac{\partial f(x,y,z)}{\partial x} = 2 \, xy \,, \qquad \frac{\partial f(x,y,z)}{\partial y} = x^2 - 2 \, y \qquad \text{y} \qquad \frac{\partial f(x,y,z)}{\partial z} = e^z \,.$$

Problema 18. Se dice que una función $f: \mathbb{R}^N \setminus \{\mathbf{0}\} \to \mathbb{R}$ es homogénea de grado m cuando $f(tx) = t^m f(x)$ para todo $x \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ y $t \in \mathbb{R} \setminus \{0\}$. Si una tal f es diferenciable, probar que

$$\langle \nabla f(x), x \rangle = m f(x)$$
 en cada $x \in \mathbb{R}^N$.

Problema 19. Consideremos $F: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ definida por

$$F(x,y) = \langle x, y \rangle,$$

producto escalar en \mathbb{R}^N .

- a) Hallar DF(a, b).
- b) Si $f, g : \mathbb{R} \to \mathbb{R}^N$ son differenciables y $h : \mathbb{R} \to \mathbb{R}$ se define por h(t) = F(f(t), g(t)), calcular h'(t).
- c) Sea $f: \mathbb{R} \to \mathbb{R}^N$ diferenciable. Demostrar que ||f(t)|| es constante si y sólo si los vectores f(t) y f'(t) son ortogonales.

Problema 20. a) Calcular las diferenciales de $f_1(x) = \langle a, x \rangle$, $f_2(x) = \langle x, L(x) \rangle$ y $f_3(x, y) = \langle x, L(y) \rangle$, donde $a \in \mathbb{R}^N$ es fijo, $x, y \in \mathbb{R}^N$ son variables y $L : \mathbb{R}^N \to \mathbb{R}^N$ es una aplicación lineal.

- b) Sea $B: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ una aplicación bilineal. Calcular la aplicación lineal DB(x,y).
- c) Considérese la aplicación $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida

$$f(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$

Hallar la aplicación lineal Df(x, y).

<u>Problema</u> 21. Dadas $f: \mathbb{R}^3 \to \mathbb{R}$, $g: \mathbb{R}^2 \to \mathbb{R}$ y $h: \mathbb{R} \to \mathbb{R}$ diferenciables, utiliza la regla de la cadena para calcular las derivadas parciales de las siguientes funciones,

- a) F(x, y, z) = f(h(x), g(x, y), z),
- b) G(x, y, z) = h(f(x, y, z)g(x, y)),
- c) H(x, y, z) = g(f(x, y, h(x)), g(z, y)),