

Министерство науки и высшего образования Российской

Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский

университет)» (МГТУ им. Н.Э. Баумана)

Лабораторная Работа №6 «Деревья» Вариант №6

Студент	Шахнович Дмитј	оий Сергеевич	
Группа	ИУ7-22Б		
Название г	тредприятия НУК И	ІУ МГТУ им. Н. Э. Баумана	
Студент		<u>Шахнович Д.С.</u>	
Оценка			

2023 г.

Описание условия задачи

Построить дерево в соответствии со своим вариантом задания. Вывести его на экран в виде дерева. Реализовать основные операции работы с деревом: обход дерева, включение, исключение и поиск узлов. Ввести значения переменных: от А до І. Построить и вывести на экран бинарное дерево следующего выражения: А + (В * (С + (D * (E + F) - (G - H)) + І)). Написать процедуры постфиксного, инфиксного и префиксного обхода дерева и вывести соответствующие выражения на экран. Подсчитать результат. Используя «польскую» запись, ввести данное выражение в стек. Сравнить время вычисления выражения с использованием дерева и стека.

Техническое задание

Исходные данные:

Для вычислений данными являются 9 целых чисел A, В... I, которые применяются для вычисления выражения из условия задачи. Во время работы программы данными могут быть символы, которую будет обрабатываться в дереве.

Выходные данные:

Программа должна выдавать схему нынешнего дерева в виде графа, информации о наличии отдельного символа в дереве, различные обходы по дереву, выводить результат вычисления заданного выражения и выводить информацию о сравнении различных вариантов реализации вычисления выражений.

Описание задания:

Реализация основных методов бинарных деревьев, а также сравнение скорости вычисления выражения на дереве и стеке.

Способы обращения к программе:

Запуск программы через терминал, затем управление программой с помощью меню. Пункты меню:

- 1 Добавить символ в дерево.
- 2 Найти символ в дереве.
- 3 Удалить символ из дерева
- 4 Префиксный обход дерева
- 5 Инфиксный обход дерева
- 6 Постфиксный обход дерева
- 7 Вывести изображение дерева
- 8 Изменить значения переменных в выражении
- 9 Провести вычисления деревом
- 10 Провести вычисления статическим стеком
- 11 Провести вычисления списком-стеком
- 12 Сравнить реализации
- 0 Выход.

Аварийные ситуации:

- 1) Ввод несуществующей команды в меню;
 - Сообщение: «Ошибка: Некорректная команда.»
- 2) Ошибка ввода/вывода;
 - Сообщение: «Ошибка функций ввода/вывода.»
- 3) Переполнение статического стека;
 - Сообщение: «Ошибка: стек переполнен.»
- 4) Неудачная попытка работы с файлом
 - Сообщение: «Ошибка при работе с файлом.»
- 5) Неудачная попытка выделения памяти;
 - Сообщение: «Ошибка выделения памяти.»
- 6) Ввод литералов или чисел вне запрашиваемого диапазона;

Сообщение: «Ошибка: Некорректный формат ввода.»

7) Удаление элемента дерева, которого не существует

Сообщение: «Ошибка: Элемент не найден.»

8) Добавление существующего элемента в дерево

Сообщение: «Ошибка: Элемент уже существует.»

9) Деление на ноль в дереве

Сообщение: «Ошибка: Деление на ноль.»

Описание структур данных

```
/// @brief Структура узла бинарного дерева выражения struct btree_node

{
    btree_node *parent; /// Указатель на родителя узла, для корня - NULL btree_node *left; /// Указатель на левого потомка btree_node *right; /// Указатель на правого потомка int data_id; /// Переменная для определения информационной части узла.

/// Если VALUE_ID, то хранится число, Если OPERATION_ID, то хранится символ операции union

{
    int value;
    char op;
} data; /// Информационная часть узла
};
```

```
/// @brief Узел стека ввиде односвязного списка
struct stack_node_t
{
 int data; /// Значение узла
```

```
stack_node_t *next; /// Указатель на следующий(более близкий к
начальному) элемент стека.
};
```

```
/// @brief Реализация стека с помощью статического массива struct static_stack_t {
    int *head_ptr; /// Указатель на голову стека int *end_ptr; /// Указатель на конец статического массива int arr[STATIC_STACK_SIZE]; /// Статический массив
};
```

Описание алгоритма

- 1. Вывести пользователю меню и ожидать ввода номера команды;
- 2. В зависимости от выбора пункта провести операцию с текущим деревом символов или провести вычисления на дереве выражений.

При возникновении ошибок или завершения пункта вернуться к выбору пункта меню.

Тестовые данные

Позитивные тесты			
Nº	Описание	Вход	Выход
1	Добавить символ в пустое дерево	Граф: Пустой f	f
2	Добавить символы в дерево с несколькими элементами	a d	c h
3	Найти существующий символ в дереве	c h	Символ найден в дереве.
4	Удалить лист дерева	c h	f c c

8	Инфиксный обход	f	acdfghi
	дерева	a d g i	
9	Постфиксный обход		adcgihf
9	дерева	f	aucgiiii
	TI-F-	c h	
		$\begin{pmatrix} a \end{pmatrix} \begin{pmatrix} d \end{pmatrix} \begin{pmatrix} g \end{pmatrix} \begin{pmatrix} i \end{pmatrix}$	
10	Посчитать	A = 1, 2, 3, 4, 5,	115
	выражение(всеми	6, 7, 8, 9	
	способами) со		
	стандартными		
	переменными		
11	Посчитать	A = -2, 4, 2, 6,	270
	выражение(всеми	12, -2, 1, 3, 4	
	способами) изменив		
	переменные		
Нег	ативные тесты		
1	Ввести некорректный	16	Ошибка: Некорректная
	код в меню.		команда.
2	При запросе числа	sda	Ошибка: Некорректный
	ввести литерал.		формат ввода.
3	При запросе символа	sdw	Ошибка: Некорректный
	ввести несколько		формат ввода.
4	Добавить символ в	Дерево: «a»	Ошибка: Элемент уже

	дерево, где уже есть этот		существует.
	СИМВОЛ	a	
5	Удалить не	Дерево: «а»	Ошибка: Элемент не
	существующий в дереве	b	найден.
	СИМВОЛ		
6	Вывести обход у пустого	Дерево: пустой	Пустое дерево
	дерева		
7	Задать выражение в	10 / 0	Ошибка: Деление на
	дереве с делением на		ноль.
	НОЛЬ		

Замеры эффективности

Замеры выполнения операции проводились 1000000 раз для каждого метода хранения со случайными значениями чисел. В качестве результата бралось среднее.

Время выполнения вычислений

Время вычисления деревом, нс	Время в списке-	Время в статическом
	стеке, мкс	стеке,нс
252	192	493

Как видно самым быстрым оказался метод вычисления статическими стеком, вероятно из-за того, что это единственный метод со статическим выделением памяти. Самым медленным был вариант со стеком-списком.

Ответы на вопросы

1.Что такое дерево? Как выделяется память под представление деревьев?

Дерево — нелинейная структура данных, которая используется для иерархических связей. Любое дерево определяется либо как пустое, либо как узел, к которому присоединены деревья, называемые поддеревьями. При этом у каждого поддерева может быть только одна связь с узлом из более высокого дерева.

Память под деревья выделяется динамически, отдельно под каждый узел дерева, из-за чего узлы дерева могут находиться в разных участках памяти.

2. Какие бывают типы деревьев?

Деревья можно разделить по количеству узлов-потомков у одного узла. Если их число не превышает 2, то такое дерево называется двоичным. Если двоичное дерево построено так, что все левые потомки меньше данного, а все правые — больше, то такое дерево называется двоичным деревом поиска.

Также среди деревьев можно выделить самобалансирующиеся бинарные деревья, в которых разница между высотами левой и правой ветвей не больше 1. Одной из разновидностью самобалансирующихся деревьев является красно-черное дерево, в котором с помощью особых правил достигается самобалансировка дерева, при этом каждый узел имеет цвет — красный или черный.

3. Какие стандартные операции возможны над деревьями?

Для деревьев стандартными операциями определяют:

- Включение элемента в дерево
- Исключения элемента из дерева
- Поиск элемента в дереве
- Обход дерева(прохождения по всем его узлам)

4. Что такое дерево двоичного поиска?

Деревом двоичного поиска называется двоичное дерево, в котором в левом поддереве узла находятся элементы меньшие данного, а в правом — большие. Такое расположение позволяет проводить операции поиска, добавления и удаления из бинарного дерева за O(logn), где п — глубина дерева.

Выводы

Во многих компьютерных системах для моделирования используется структура данных — дерево. Особенно часто используется его вариация — дерево двоичного поиска. Примером такой системы может быть решение арифметических выражений, которое как показал эксперимент, может быть быстрее чем с использованием стека. Однако при использовании дерева программисту требуется следить за правильностью всех указателей, использующихся в структуре.