Oliver Thomas, Dara McCutcheon, Will McCutcheon

Modelling Nonlinear optics with the Bloch-Messiah reduction

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Quantum Engineering CDT University of Bristol

August 23, 2018

Overview

Modelling Nonlinear optics with the Bloch-Messia

- What is nonlinear optics?
- Why do we care about it?
- Gaussian optics
- What I have been doing
- Outlook

Motivation quantum nonlinear optics

Oliver Thomas, Dara McCutcheon, Will McCutcheon

The good

Spontaneous Parametric processes, SPDC, SFWM

- Heralded single photon sources
- Entangled photon pair generation (polarisation, spatial)

Kerr processes

- Self-Phase modulation (SPM), generating Bannana states (CV)
- Cross-Phase modulation (XPM) for sensing

The bad

Spontaneous parametric processes

- Generating more than two photons -> bad for quantum computing
- Understanding filtering
 All Kerr nonlinear processes
 - SPM -> Spectral broadening
 - XPM -> Unwanted phase shifts on single photons due to propagation of the pump

What do we mean by nonlinear optics?

Oliver
Thomas, Dara
McCutcheon,
Will
McCutcheon

 Roughly processes that conserve energy but do not conserve photon number.

$$\vec{P} = \chi^{(1)}\vec{E}_1 + \chi^{(2)}\vec{E}_1\vec{E}_2 + \chi^{(3)}\vec{E}_1\vec{E}_2\vec{E}_3 + \dots$$
 (1)

Here we are going to talk about squeezing, i.e SPDC or SFWM, Hamiltonians are then of the form,

$$\hat{H} = A\hat{a}_{S}^{\dagger}\hat{a}_{I}^{\dagger}\hat{a}_{P} + h.c. \tag{2}$$

$$\hat{H} = A\hat{a}_S^{\dagger}\hat{a}_I^{\dagger}\hat{a}_P\hat{a}_P + h.c. \tag{3}$$

Gaussian Optics

Oliver Thomas, Dara McCutcheon, Will McCutcheon Using the undepleted pump approximation we can write the Hamiltonians as terms which are at most quadratic in creation and annihilation operators.

$$\hat{U} = \exp\left[-\frac{i}{\hbar} \left(P \int d\omega_{1} \int d\omega_{2} \ f(\omega_{1}, \omega_{2}) \ \hat{a}_{s}^{\dagger}(\omega_{1}) \hat{a}_{i}^{\dagger}(\omega_{2}) + h.c. \right) \right]$$
Power JSA Signal & Idler

 These are Gaussian transforms, they take Gaussian states to Gaussian states ¹

$$\begin{bmatrix} \vec{b} \\ \vec{b}^{\dagger} \end{bmatrix} = \mathbf{M} \begin{bmatrix} \vec{a} \\ \vec{a}^{\dagger} \end{bmatrix} \tag{5}$$

¹These are linear symplectic transforms which conviently can be written as a matrix

Types of Gaussian transformations

Oliver Thomas, Dara McCutcheon, Will

Figure: Two source HOM dip

Figure: Type-1 Fusion gate

Schmidt decomposition

Oliver Thomas, Dara McCutcheon, Will We can re-write the Hamiltonian using a Schmidt-decomposition as,

$$P'F(\omega_1,\omega_2) = \sum_k r_k \psi_k(\omega_1) \phi_k(\omega_2)$$
 (6)

Where r_k is the Schmidt number, $\psi \& \phi$ are unitaries.

To solve this numerically we discretize the function and the Schmidt-decomposition is then the Singular value decomposition (SVD) of the JSA (F).

$$P'\mathbf{F}_{(\omega_1,\omega_2)} = \sum_{k} r_k \mathbf{U}_{(\omega_1,k)} \mathbf{V}_{(k,\omega_2)}^{\dagger}$$
 (7)

- ullet with $\psi_k(\omega_1)$ is the k-th row and ω_1 -th column of $oldsymbol{\mathsf{U}}_{(\omega_1,k)}$,
- with $\phi_k(\omega_2)$ is the ω_2 -th row and k-th column of $\mathbf{V}^{\dagger}_{(k,\underline{\omega}_2)}$

Joint Spectral Amplitudes (JSAs)

Modelling Nonlinear optics with the Bloch-Messial

¹Moving to the rotating frame...

Seperable JSAs Schmidt modes

Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dara McCutcheon, Will McCutcheon

(a) Signal (red) and Idler (blue)

Non-separable JSAs

Modelling Nonlinear optics with the Bloch-Messiah

Non-separable JSAs Schimdt modes

Modelling Nonlinear optics with the Bloch-Messia

(a) Signal (red) and Idler (blue)

Reducing the size of the state-space

Nonlinear optics with the Bloch-Messia reduction

Oliver Thomas, Dar McCutcheon Will

• The Schmidt decomposition lets us represent the system in a finite number of broadband modes $(\psi_k(\omega_1), \phi_k(\omega_2))$

0

Correlations in a HOM dip

Modelling Nonlinear optics with the Bloch-Messia

Figure: Two source HOM dip

Two squeezers JSA

Modelling Nonlinear optics with the Bloch-Messial

Oliver Thomas, Dara McCutcheon, Will

G(4) correlation function

Oliver Thomas, Dara McCutcheon, Will McCutcheon

$$G^{(4)} = \frac{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{3}^{\dagger} \hat{a}_{4}^{\dagger} \hat{a}_{1} \hat{a}_{2} \hat{a}_{3} \hat{a}_{4} \right\rangle}{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{1} \right\rangle \left\langle \hat{a}_{2}^{\dagger} \hat{a}_{2} \right\rangle \left\langle \hat{a}_{3}^{\dagger} \hat{a}_{3} \right\rangle \left\langle \hat{a}_{4}^{\dagger} \hat{a}_{4} \right\rangle} \tag{8}$$

Where,

$$a_i = \sum_j a_i(\omega_j) \tag{9}$$

Meaning we sum over all of the spectral modes of the spatial modes (1,2,3,4) separately. We end up with,

$$G^{(4)} = 1 - \left(\frac{2 \mid cosh(r) \mid^2}{\mid cosh(r) \mid^2 + \mid sinh(r) \mid^2} sin(\theta) cos(\theta)\right)^2$$
 (10)

G(4) correlation function

Modelling Nonlinear optics with the Bloch-Messiah

Summary

Modelling
Nonlinear
optics with
the
Bloch-Messiah