```
# YouTube Sentiment Analysis Project
# Import Libraries
import pandas as pd
import numpy as np
import re
import string
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Step 1: Load Dataset
df = pd.read csv("youtube comments.csv") # change to your dataset path
print(df.head())
# Step 2: Data Preprocessing
def clean text(text):
    text = text.lower()
    text = re.sub(r'http\S+', '', text) # remove URLs
    text = re.sub(r'@\w+', '', text) # remove mentions
    text = re.sub(r'#\w+', '', text) # remove hashtags
    text = re.sub(r'[^\w\s]', '', text) # remove punctuation
    text = re.sub(r'\d+', '', text) # remove numbers
    return text
df['cleaned'] = df['comment'].apply(clean text)
# Step 3: Split Data
X = df['cleaned']
y = df['label']
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Step 4: Feature Extraction (TF-IDF)
tfidf = TfidfVectorizer(max_features=5000)
X train tfidf = tfidf.fit transform(X train)
V +oc+ +fidf - +fidf +nancform(V +oc+)
```

```
A LEST LITAL - LITALITALISTOLINI(V FEST)
# Step 5: Train Model
model = MultinomialNB()
model.fit(X_train_tfidf, y_train)
# Step 6: Predictions
y pred = model.predict(X test tfidf)
# Step 7: Evaluation
print("Accuracy:", accuracy score(y test, y pred))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
# Step 8: Try New Predictions
sample comments = [
    "I love this video! It's awesome ",
    "This is terrible, I dislike it.",
    "It's okay, not too good or bad."
sample cleaned = [clean text(x) for x in sample comments]
sample tfidf = tfidf.transform(sample cleaned)
preds = model.predict(sample tfidf)
for c, p in zip(sample_comments, preds):
    print(f"Comment: {c} --> Sentiment: {p}")
                                                      label
                                          comment
0 This video is amazing! Loved every part of it. positive
                I really hate the sound quality. negative
1
               The editing was great and smooth. positive
2
                    Not bad, but could be better.
3
                                                  neutral
                 Worst video I've seen this week. negative
Accuracy: 0.0
Confusion Matrix:
[[0 0 1]
 [1 0 0]
 [2 0 0]]
```

Classification	Report:			
	precision	recall	f1-score	support
negative	0.00	0.00	0.00	1.0
neutral	0.00	0.00	0.00	1.0
positive	0.00	0.00	0.00	2.0
accuracy			0.00	4.0
macro avg	0.00	0.00	0.00	4.0
weighted avg	0.00	0.00	0.00	4.0

```
Comment: I love this video! It's awesome --> Sentiment: negative Comment: This is terrible, I dislike it. --> Sentiment: negative Comment: It's okay, not too good or bad. --> Sentiment: neutral
```

/usr/local/lib/python3.12/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defi _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/usr/local/lib/python3.12/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defi warn prf(average, modifier, f"{metric.capitalize()} is", len(result))

/usr/local/lib/python3.12/dist-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defi_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))