5	r	,	005
ı	NTERROGATION	ECRIT	E N°U/

NOM: Prénom: Note:

1. Montrer qu'une boule ouverte d'un espace vectoriel normé $(E, \|\cdot\|)$ est un ouvert.

Considérons la boule ouverte B(a,r) où $a \in E$ et $r \in \mathbb{R}_+^*$. Soit $x \in B(a,r)$. Posons $\varepsilon = r - \|x - a\|$. Soit $y \in B(x,\varepsilon)$. Alors

$$||y - a|| \le ||y - x|| + ||x - a|| < \varepsilon + ||x - a|| = r$$

Ainsi $y \in B(a,r)$. On en déduit que $B(x,\varepsilon) \subset B(a,r)$, ce qui prouve que B(a,r) est un ouvert.

2. Soit S: $x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$. Montrer que S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

Posons $f_n: x \mapsto \frac{1}{n+x}$. Soit $x \in \mathbb{R}_+^*$. Alors la suite $(f_n(x))$ est décroissante de limite nulle. D'après le critère spécial des séries alternées, $\sum (-1)^n f_n(x)$ converge. Ainsi $\sum (-1)^n f_n$ converge simplement sur \mathbb{R}_+^* . Pour tout $n \in \mathbb{N}^*$, f_n est de classe \mathbb{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ f_n'(x) = -\frac{1}{(n+x)^2}$$

Pour tout $n \in \mathbb{N}^*$,

$$\|(-1)^n f_n'\|_{\infty} = \frac{1}{n^2}$$

donc la série $\sum_{n\in\mathbb{N}^*} (-1)^n f_n$ converge normalement et, a fortiori, uniformément sur \mathbb{R}_+^* .

On en déduit que $x \mapsto \sum_{n=1}^{+\infty} (-1)^n f_n(x) = S(x) - \frac{1}{x}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Enfin, comme $x \mapsto \frac{1}{x}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , S l'est également.

3. Montrer que \mathbb{Q} est dense dans \mathbb{R} .

Soit $x \in \mathbb{R}$. Posons $u_n = \frac{\lfloor nx \rfloor}{n}$ pour $n \in \mathbb{N}^*$. Par encadrement de la partie entière,

$$\forall n \in \mathbb{N}^*, \ nx - 1 < \lfloor nx \rfloor \le nx$$

puis

$$\forall n \in \mathbb{N}^*, \ x - \frac{1}{n} < u_n \le x$$

Par théorème des gendarmes, $\lim_{n\to+\infty} u_n = x$. On en déduit que $\mathbb Q$ est dense dans $\mathbb R$.

4. Soit $\zeta \colon x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$. Déterminer la limite de ζ en $+\infty$.

Posons $f_n: x \mapsto \frac{1}{n^x}$. Alors $||f_n||_{\infty,[2,+\infty[} = \frac{1}{n^2}$. On en déduit que $\sum f_n$ converge normalement et donc uniformément sur $[2,+\infty[$. De plus, pour tout $n \in \mathbb{N}^*$, $\lim_{n \to \infty} f_n = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$. Par théorème d'interversion série/limite,

$$\lim_{+\infty} \zeta = \sum_{n=1}^{+\infty} \lim_{+\infty} f_n = 1$$

5. On munit $\mathbb{R}[X]$ de la norme $\|\cdot\|_{\infty}$ définie par $\left\|\sum_{n=0}^{+\infty}a_nX^n\right\|_{\infty} = \max_{n\in\mathbb{N}}|a_n|$. Montrer que l'endomorphisme D : $P\in\mathbb{R}[X]\mapsto P'$ n'est pas continu.

Pour tout $k \in \mathbb{N}$, $\|X^k\|_{\infty} = 1$ et $\|D(X^k)\|_{\infty} = \|kX^{k-1}\|_{\infty} = k$. Ainsi $\frac{\|D(X^k)\|_{\infty}}{\|X^k\|_{\infty}} = k \xrightarrow[k \to +\infty]{} +\infty$. On en déduit que D n'est pas un endomorphisme continu de $(\mathbb{R}[X], \|\cdot\|_1)$.