Part I

ALGEBRA LINIARA

Teorie și aplicații

1 2. SPAŢII VECTORIALE

1.1 TEORIE

În acest capitol introducem o nouă structură algebrică, asemănătoare cu cele studiate în clasa a XII-a. Modelul de referință este, așa cum arată și numele, spațiul vectorilor.

Așa cum ați văzut în clasa a IX-a, vectorii se pot aduna (după regula paralelogramului; suma a doi vectori este un vector) și se pot înmulți cu scalari (produsul dintre un număr real și un vector este un vector); matricele studiate la matematică se pot aduna (suma a două matrice de un anumit tip este o matrice de același tip) și se pot înmulți cu scalari (produsul dintre un număr și o matrice este o matrice). Vom studia aici structuri dotate cu două operații: o adunare și o înmulțire cu scalari, operații supuse unor reguli simple, generalizând astfel cele două exemple.

1. Definiția spațiului vectorial.

Dacă (V, +) este un grup abelian, $(K, +, \cdot)$ este un corp comutativ (de regulă $K = \mathbb{R}$, \mathbb{C} sau \mathbb{Z}_p , unde p este un număr prim), iar

$$K \times V \to V$$
, $(\alpha, v) \longmapsto \alpha v$

este o operație care verifică axiomele:

- $\alpha(v+w) = \alpha v + \alpha w$,
- $(\alpha + \beta)v = \alpha v + \beta v$,
- $\alpha(\beta v) = (\alpha \beta) v \text{ si}$
- 1v = v, (unde 1 este elementul neutru față de înmulțirea din K),

pentru orice $\alpha, \beta \in K$ și pentru orice $v, w \in V$ spunem că pe V s-a definit o structură de spațiu vectorial (sau liniar) peste corpul K, sau că V este spațiu vectorial (liniar) peste corpul K; în acest caz

- elementele grupului V se numesc vectori;
- elementele corpului K se numesc scalari;

- spunem că operația de adunare a vectorilor este o *operație internă* (deoarece suma a doi vectori este un vector);
- spunem că operația de înmulțire a scalarilor cu vectori este o operație externă (adică pentru orice element α al corpului K și pentru orice element v al grupului V s-a definit produsul $\alpha v \in V$, sau, produsul dintre un scalar si un vector este un vector):
- în lipsa altor precizări notăm cu θ elementul neutru al grupului (V, +) (adică vectorul nul), cu -v simetricul (opusul) vectorului v, cu 0 elementul neutru (scalarul nul) al grupului (K, +), iar cu 1 elementul neutru al grupului (K^*, \cdot) , unde $K^* := K \setminus \{0\}$;
- notația V/K indică faptul că V este spațiu liniar peste corpul K;
- când $K = \mathbb{R}$ spunem că V/K este spaţiu vectorial real, iar când $K = \mathbb{C}$ spunem că V/K este spaţiu vectorial complex;
- un spaţiu liniar format cu un singur vector (vectorul nul!) se numeşte spaţiu trivial.

Proprietăți. Fie V/K un spațiu vectorial, $\alpha \in K$ și $v \in V$. Atunci:

- (a) $0v = \theta$, adică produsul dintre scalarul nul și un vector oarecare este vectorul nul;
- (b) $\alpha\theta = \theta$, adică produsul dintre un scalar oarecare şi vectorul nul este vectorul nul;
- (c) (-1)v = -v, adică produsul dintre scalarul -1 şi vectorul v este opusul vectorului v;
- (d) $\alpha v = \theta \Rightarrow \alpha = 0 \text{ sau } v = \theta$.
- (e) Dacă $n \in \mathbb{N}$, $\alpha_1, \alpha_2, ..., \alpha_n \in K$ şi $v_1, v_2, ..., v_n \in V$ atunci $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n \in V$. Un vector de forma $v = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ cu $\alpha_1, \alpha_2, ..., \alpha_n \in K$ se numește combinație liniară a vectorilor $v_1, v_2, ..., v_n$.

2. Exemple de spaţii vectoriale.

- (a) Mulţimea vectorilor legaţi, având acelaşi punct de aplicaţie, notat O, din spaţiul fizic S, adică $V = \{\overrightarrow{OA} \mid A \in S\}$, studiaţi la fizică. La matematică aţi studiat numai vectori în plan. În spaţiu, adunarea vectorilor \overrightarrow{OA} şi \overrightarrow{OB} se defineşte ca şi în plan ţinând cont de faptul că punctele O, A, B sunt coplanare. (unde adunarea vectorilor necoliniari este definită prin regula paralelogramului (sau a triunghiului)
- (b) Spatiul aritmetic \mathbb{R}^n/\mathbb{R} , unde \mathbb{R}^n este mulţimea n-uplurilor de numere reale, i.e.: $\mathbb{R}^n = \{x = (x_1, x_2, ..., x_n) \mid x_1, x_2, ..., x_n \in \mathbb{R}\};$

(notația consacrată în Computer Science pentru n-uplul $x \in \mathbb{R}^n$ este cea din $\mathbb{R}^{n \times 1} := M_{n,1}(\mathbb{R})$, deci vom scrie uneori și noi, prin abuz de notație, $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^{n \times 1}$), iar adunarea vectorilor și înmulțirea cu scalari sunt definite prin:

• $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ şi • $\alpha(x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$

pentru orice $(x_1, x_2, ..., x_n)$, $(y_1, y_2, ..., y_n) \in \mathbb{R}^n$ şi pentru orice $\alpha, \beta \in \mathbb{R}$. Mai general:

- (c) Spaţiul K^n/K , unde $(K,+,\cdot)$ este un corp comutativ; într-adevar, $K^n=\{x=(x_1,x_2,...,x_n)\,|\,x_1,x_2,...,x_n\in K\}$ cu operaţiile, internă şi externă, definite ca la spaţiul aritmetic, adică
 - $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ şi • $\alpha(x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$

pentru orice $(x_1, x_2, ..., x_n)$, $(y_1, y_2, ..., y_n) \in K^n$ și orice $\alpha, \beta \in K$, este un spațiu liniar peste corpul K.

În particular, pentru corpul $K = \mathbb{Z}_2 = \{0,1\}$, obținem spațiul vectorial al n-uplurilor de elemente din \mathbb{Z}_2 - numite *şiruri de n biți* (ori "stringuri" de n biți) $\mathbb{Z}_2^n = \{b = (b_1, b_2, ..., b_n) | b_i \in \mathbb{Z}_2, i = \overline{1, n}\};$

suma şirurilor $b = (b_1, b_2, ..., b_n), c = (c_1, c_2, ..., c_n)$ este şirul $b + c = (b_1 \oplus c_1, b_2 \oplus c_2, ..., b_n \oplus c_n),$

unde " \oplus " este adunarea modulo 2 (operatia XOR între biți): $0 \oplus 1 = 1 \oplus 0 = 1$, $1 \oplus 1 = 0 + 0 = 0$,

iar şirul $\theta = (0, 0, ..., 0)$ este vectorul nul; produsul scalarului $\alpha \in \mathbb{Z}_2$ cu şirul $b = (b_1, b_2, ..., b_n)$ este

 $\alpha b = (\alpha \cdot b_1, \ \alpha \cdot b_2, ..., \alpha \cdot b_n)$, unde pe componente am folosit înmultirea modulo $2: 0 \cdot 1 = 1 \cdot 0 = 0 \cdot 0 = 0$ si $1 \cdot 1 = 1$.

(d) Dacă A este o mulțime, iar $(K, +, \cdot)$ este un corp comutativ, atunci mulțimea $\mathcal{F}(A) = \{f : A \to K | f \text{ este funcție}\}$ admite o structură de spațiu vectorial peste K relativ la adunarea funcțiilor din $\mathcal{F}(A)$ (pentru $f, g \in \mathcal{F}(A)$ suma $f + g \in \mathcal{F}(A)$ este definită punctual prin $(f + g)(x) = f(x) + g(x), \forall x \in A)$, respectiv, înmulțirea cu scalari (pentru $f \in \mathcal{F}(A)$ și $\alpha \in K$ produsul $\alpha f \in \mathcal{F}(A)$ se definește prin $(\alpha f)(x) = \alpha f(x), \forall x \in A)$.

În electronică se studiază spațiul vectorial real al semnalelor în timp continuu $\mathcal{F}(\mathcal{T})/\mathbb{R}$ și spațiul vectorial complex al semnalelor în timp continuu $\mathcal{F}(\mathcal{T})/\mathbb{C}$, unde $\mathcal{T} \subset \mathbb{R}$ este, de regulă, un interval de numere reale.

Dacă impunem ca $\mathcal{T} \subset \mathbb{Z}$ atunci $\mathcal{F}(\mathcal{T})/\mathbb{R}$, respectiv $\mathcal{F}(\mathcal{T})/\mathbb{C}$ este spațiu vectorial real, respectiv complex de semnale discrete.

Dacă $T = \mathbb{N}$, $\mathcal{F}(\mathcal{T})$ este spațiul şirurilor de elemente din K.

(e) Dacă A este o mulțime de numere reale atunci mulțimea $\mathcal{C}^0(A) = \{ f : A \to \mathbb{R} \mid f \text{ este funcție continuă} \}$ înzestrată cu operațiile de adunare a funcțiilor, respectiv, de înmulțire a acestora cu nu-

mere reale (adică operațiile din $\mathcal{F}(A)/\mathbb{R}$) este spațiu vectorial peste \mathbb{R}

- (f) Mulţimea $\mathcal{M}_{m,n}(K)$, unde $(K,+,\cdot)$ este un corp comutativ, devine un spaţiu liniar relativ la operaţiile de adunare a matricelor (operaţia internă) şi de înmulţire a acestora cu elemente din K (operaţia externă).
- (g) Fie $A \in \mathcal{M}_{m,n}(K)$, unde $(K,+,\cdot)$ este un corp comutativ. Mulţimea Null(A) a soluţiilor sistemului liniar şi omogen Ax = 0 (cu coeficienţi din corpul K) furnizează spaţiul Null(A)/K cu operaţiile din spaţiul $K^{n\times 1}/K$.

3. Subspaţii vectoriale.

Așa cum s-a analizat la grupuri noțiunea de subgrup, la inele noțiunea de subinel, ori la corpuri noțiunea de subcorp - și aici, în cazul spațiilor vectoriale, ne punem problema: în ce condiții o submulțime S a unui spațiu liniar V/K, este, la rândul ei, un spațiu vectorial relativ la restricțiile operațiillor, internă, respectiv, externă; dacă acest lucru se întâmplă spunem că S este subspațiu vectorial (liniar) al spațiului V; indicăm faptul că S este subspațiu vectorial al spațiului V prin notația $S \leq V$.

Exemplul 2.(e). arată că mulțimea funcțiilor continue pe mulțimea A, privită ca submulțime în $\mathcal{F}(A)$ este spațiu vectorial relativ la operațiile din spațiul $\mathcal{F}(A)/\mathbb{R}$, deci, cu notația introdusă, avem $C^0(A) \leq \mathcal{F}(A)$.

Exemplul 2.(g). arată că, în spațiul $K^{n\times 1}/K$, avem $Null(A) \leq K^{n\times 1}$; Null(A) se numește subspațiul nul al matricei A, iar ecuațiile sistemului Ax = 0 se numesc ecuațiile subspațiului Null(A).

Propoziție. Fie S o submulțime nevidă din spațiul V/K. Următoarele afirmații sunt echivalente:

- (a) $S \leq V$;
- (b) pentru orice vectori $u, v \in S$ şi pentru orice scalar $\alpha \in K$ avem $u + v \in S$ şi $\alpha u \in S$;
- (c) pentru orice vectori $u, v \in S$ şi pentru orice scalari $\alpha, \beta \in K$ avem $\alpha u + \beta v \in S$.

Aplicând inductiv afirmația (c) din propoziția de mai sus, vom avea că o submulțime S a unui spațiu vectorial V este subspațiu dacă si numai dacă orice combinație liniară de vectori din S rămâne în S

Exercițiul 1. Să verificăm că

$$S = \left\{ A(a,b,c) = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{R}, \ a+2b=c \right\} \le \mathcal{M}_{2,2}(\mathbb{R}).$$

Folosim propoziția de mai sus (punctul (c)). Considerăm doi vectori arbitrari $A(a,b,c), A(a',b',c') \in S$ și doi scalari arbitrari $\alpha, \beta \in \mathbb{R}$.

În combinația liniară $\alpha A(a,b,c) + \beta A(a',b',c') =$ = $A(\alpha a, \alpha b, \alpha c) + A(\beta a', \beta b', \beta c') = A(\alpha a + \beta a', \alpha b + \beta b', \alpha c + \beta c')$ avem, conform ipotezei, $\alpha c + \beta c' = \alpha (a+2b) + \beta (a'+2b') = \alpha a + \beta a' + 2(\alpha b + \beta b')$, ceea ce indică faptul că $\alpha A(a,b,c) + \beta A(a',b',c') \in S$. Prin urmare S este subspațiu vectorial al spațiului $\mathcal{M}_{2,2}(\mathbb{R})/\mathbb{R}$.

Exemple de subspații vectoriale.

- (a) Dacă θ este vectorul nul din spațiul V/K atunci $\{\theta\} \leq V$; subspațiul $\{\theta\}$ se numește subspațiul nul al spațiului V. De asemenea $V \leq V$. Subspațiile $\{\theta\}$ și V se numesc subspații triviale ale spațiului V. Un subspațiu S diferit de subspațiile triviale se numește subspațiu propriu.
 - Subspațiul S de la Exercițiul 1. este un subspațiu propriu al spațiului $\mathcal{M}_{2,2}(\mathbb{R})/\mathbb{R}$.
- (b) Fie V spațiul vectorial al vectorilor legați de origine în spațiul 3D. Mulțimea S a vectorilor situați în planul xOy este un subspațiu vectorial al lui V. Mai mult, orice plan ce conține originea este subspațiu al lui V
- (c) Spaţiul C al şirurilor convergente de numere reale este un subspaţiu în spaţiul şirurilor de numere reale $\mathcal{F}(\mathbb{N})$. Într-adevăr, suma a două şiruri convergente este un şir convergent, iar produsul cu un scalar al unui şir convergent este tot un şir convergent. Spaţiul şirurilor de numere reale care tind la 0 este şi el un subspaţiu vectorial al lui $\mathcal{F}(\mathbb{N})$, dar şi al lui C, asta deoarece $x_n \longrightarrow 0$, $y_n \longrightarrow 0 \Rightarrow \alpha x_n + \beta y_n \longrightarrow 0$.
- (d) Dacă $S = \{v_1, v_2, ..., v_m\} \subset V$, unde V este spațiu vectorial peste corpul K, mulțimea tuturor combinațiilor liniare ale vectorilor din S notată span(S) este un subspațiu vectorial al spațiului V (deci $span(S) \leq V$) numit subspațiul generat de sistemul de vectori S. Dacă span(S) = V, atunci S se numește sistem de generatori pentru spațiul V.
- (e) În particular, dacă c_1, c_2, \ldots, c_m sunt coloanele unei matrici $A = [c_1|\ldots|c_m]$ cu n linii şi m coloane, subspațiul $Span(c_1,\ldots,c_n)$ al lui \mathbb{R}^n îl numim spațiul coloanelor matricii A și îl vom nota Col(A). O matrice A ca mai sus ne definește patru subspații vectoriale: Null(A) și subspațiul generat de liniile sale $Lin(A) := Col(A^T)$ sunt subspații ale spațiului vectorial \mathbb{R}^m iar $Null(A^T)$ și Col(A) sunt subspații în \mathbb{R}^n . Aceste patru subspații se mai numesc cele patru subspații fundamentale definite de matricea A.
- (f) Fie U şi W două subspații vectoriale ale spațiului V/K. Atunci:
 - i. $U \cap W \leq V$:
 - ii. $U+W:=\{u+w\mid u\in U, w\in W\}\leq V.$ Subspaţiul U+W se numeste suma subspaţiilor U şi W. Analog se defineşte suma mai multor subspaţii.

- iii. Dacă suma subspațiilor U şi W are proprietatea: $\forall v \in U + W \; \exists ! u \in U \; \text{şi} \; \exists ! \; w \in W \; \text{astfel încât} \; v = u + w$ atunci notăm suma $U + W := U \oplus W \; \text{şi} \; \text{o numim } suma \; directă$ a subspațiilor U şi W. Dacă $V = U \oplus W \; \text{spunem că} \; U \; \text{şi} \; W$ sunt $subspații \; suplementare$. (Simbolul $\exists ! \; \text{este} \; \text{o} \; \text{prescutare} \; \text{a} \; \text{sintagmei} \; "există \; \text{şi} \; este \; unic(ă)"). Mai general:$
- iv. Dacă $U_1, U_2, ..., U_m \leq V$, atunci suma subspațiilor $U_1 + U_2 + ... + U_m := U \leq V$; dacă, în plus, $\forall v \in U \; \exists ! u_i \in U_i, i = \overline{1,m}$ astfel încât $v = u_1 + u_2 + ... + u_m$ subspațiul U se numește $suma \; directă \; a \; subspațiilor <math>U_1, U_2, ..., U_m$ și scriem $U = U_1 \oplus U_2 \oplus ... \oplus U_m := \bigoplus_{i=1}^m U_i.$

Exercițiul 2. Fie $A(a,b,c) \in S$, unde S este subspațiul de la Exercițiul 1. Deoarece A(a,b,c) = A(a,b,a+2b) = aA(1,0,1) + bA(0,1,2) rezultă că S = span(A(1,0,1),A(0,1,2)). Tehnica de obținere a unui sistem de generatori pentru subspațiul S- numită parametrizare (am utilizat legătura dintre parametrii a,b și scalarul c=a+2b)— va fi folosită adesea în cele ce urmează.

Mai mult, observăm că S = span(A(1,0,1)) + span(A(0,1,2)), iar dacă $A(a,b,c) \in span(A(1,0,1)) + span(A(0,1,2))$ atunci $A(a,0,a) \in span(A(1,0,1))$, respectiv $A(0,b,2b) \in span(A(0,1,2))$ sunt unicele matrice din span(A(1,0,1)) respectiv span(A(0,1,2)) pentru care A(a,b,c) = A(a,0,a) + A(0,b,2b). În consecință S este suma directă a subspațiilor span(A(1,0,1)) și span(A(0,1,2)).

De fapt avem $span(A(1,0,1)) \cap span(A(0,1,2)) = \left\{\theta = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\right\}$, condiție care asigură faptul că span(A(1,0,1)) și span(A(0,1,2)) sunt subspații suplementare pentru spațiul vectorial S. În general are loc:

Propoziție. Fie $U_1, U_2, ..., U_m$ subspații vectoriale ale spatiului V/K. Următoarele afirmații sunt echivalente:

- (a) $U_1 + U_2 + ... + U_m = U_1 \oplus U_2 \oplus ... \oplus U_m;$
- (b) $U_i \cap (U_1 + U_2 + ...U_{i-1} + U_{i+1} + ... + U_m) = \{\theta\}$, pentru $i = \overline{1, m}$.

4. Dependenţă şi independenţă liniară.

Definiție. Fie V/K un spațiu vectorial.

(a) Vectorii $v_1, v_2, ..., v_n \in V$ sunt liniar dependenți dacă există n scalari $\alpha_1, \alpha_2, ..., \alpha_n \in K$, nu toți nuli, astfel încât $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \theta$; (*) mai spunem că mulțimea $\{v_1, v_2, ..., v_n\}$ este un sistem de vectori liniar dependenți (uneori -sistem liniar dependent), iar relația (*)

este o relatie de dependență liniară (pentru vectorii $v_1, v_2, ..., v_n$); dacă, de exemplu, am determinat scalarii $\alpha_1, \alpha_2, ..., \alpha_n$, cu $\alpha_1 \neq 0$, care satisfac relația (*) atunci $v_1 = -\alpha_1^{-1}(\alpha_2 v_2 + ... + \alpha_n v_n)$ este, de asemenea o relație de dependență liniară;

cu alte cuvinte, vectorii $\{v_1, v_2, ..., v_n\}$ sunt liniar dependenți dacă (măcar) unul dintre vectorii $\{v_1, v_2, ..., v_n\}$ se scrie ca o combinație liniară a celorlalți (faptul că în relația de dependență liniară (*) măcar unul dintre coeficienții α_i este nenul, ne permite să scriem vectorul corespunzător ca o combinație liniară a celorlalți).

(b) vectorii $v_1, v_2, ..., v_n$ sunt liniar independenți dacă nu sunt liniar dependenți, i.e.

```
\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \theta, \alpha_1, \alpha_2, \dots, \alpha_n \in K \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0;
```

(Implicația reciprocă:

 $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \theta$ are loc întotdeauna, așa încât condiția de mai sus revine la următoarea:

o combinație liniară a vectorilor $v_1, v_2, ..., v_n$ este vectorul nul dacă și numai dacă toți scalarii $\alpha_1, \alpha_2, ..., \alpha_n$ sunt nuli); mai spunem, în acest caz, că $\{v_1, v_2, ..., v_n\}$ este un sistem de vectori liniar independenți (sau sistem liniar independent).

Altfel spus: considerăm în spațiul V/K ecuația (*) de necunoscute $\alpha_1, \alpha_2, ..., \alpha_n \in K$.

- Dacă ecuația admite soluții nebanale, atunci $\{v_1, v_2, ..., v_n\}$ este un sistem de vectori liniar dependenți.
- Dacă ecuația admite doar soluția banală, atunci $\{v_1, v_2, ..., v_n\}$ este un sistem de vectori liniar independenți.

Observație. Orice sistem de vectori care conține vectorul nul este un sistem liniar dependent.

Exemplu. În spațiul vectorial al vectorilor legați din plan, doi vectori nenuli u și v vor fi liniar independenți dacă și numai dacă sunt necoliniari, căci relația de dependența liniară $u = \alpha v$ implică faptul că ei sunt coliniari. În schimb trei vectori legați din plan u, v, w vor fi întotdeauna liniar dependenți pentru că putem găsi αu coliniar cu u și βv coliniar cu v astfel încât w să fie diagonala paralelogramului construit pe αu și βv .

Exercițiul 3. Fie $v_1=(1,1,2), v_2=(1,-2,-1), v_3=(2,3,\alpha)$ trei vectori din spațiul vectorial \mathbb{R}^3/\mathbb{R} , unde α este un număr real. Să analizam dependența/independența sistemului $S=\{v_1,v_2,v_3\}$. Conform definiției, considerăm, în \mathbb{R}^3/\mathbb{R} , ecuația

$$xv_1 + yv_2 + zv_3 = \theta, \tag{1}$$

unde $\theta=(0,0,0)$ și necunoscutele sunt scalarii $x,y,z\in\mathbb{R}$; trebuie să aflăm dacă ecuația are doar soluția banală x=y=z=0 (ceea ce indică

liniar independența vectorilor v_1, v_2, v_3) sau are mai multe soluții (ceea ce înseamnă dependența liniară a sistemului $S = \{v_1, v_2, v_3\}$). Deoarece

$$(1) \Leftrightarrow (x, x, 2x) + (y, -2y, -y) + (2z, 3z, \alpha z) = (0, 0, 0) \Leftrightarrow$$

$$\Leftrightarrow (x + y + 2z, x - 2y + 3z, 2x - y + \alpha z) = (0, 0, 0),$$

rezultă că relația (1) este echivalentă cu sistemul liniar omogen:

$$\begin{cases} x + y + 2z = 0 \\ x - 2y + 3z = 0 \\ 2x - y + \alpha z = 0 \end{cases}$$
 (2).

Conform teoriei sistemelor liniare și omogene, problema noastră este acum să determinăm rangul matricei sistemului:

$$A := \begin{pmatrix} 1 & 1 & 2 \\ 1 & -2 & 3 \\ 2 & -1 & \alpha \end{pmatrix},$$

matrice care se obține prin concatenarea coloanelo
r $v_1^T,v_2^T,v_3^T.$ Avem două posibilități:

- dacă rangul este 3, sistemul este compatibil determinat, i.e. unica soluție este x = y = z = 0 (soluția banala), caz în care S este un sistem de vectori liniar independent;
- dacă rangul este mai mic decât 3, sistemul admite și soluții nebanale, deci S este un sistem de vectori liniar dependent, iar o relație de dependență liniară se poate determina cu ajutorul matricei scară reduse. (O relație de dependență liniară este dată de scrierea relației $xv_1+yv_2+zv_3=\theta$, cu (x,y,z) o soluție nebanală a sistemului (2). O asemenea soluție se poate obține rezolvând sistemul (2), de exemplu, cu metoda lui Gauss-Jordan.)

Cu transformările elementare pe linii $-L_1+L_2 \to L_2$ și $-L_1-L_2+L_3 \to L_3$ obținem

$$A \sim \begin{pmatrix} 1 & 1 & 2 \\ 0 & -3 & 1 \\ 0 & 0 & \alpha - 5 \end{pmatrix};$$

matricea obținută are forma scară, furnizează rangul (rang(A) = numărul pivoților) și, implicit, tranșează natura sistemului S:

- dacă $\alpha \neq 5$ atunci rang(A) = 3, deci S este liniar independent;
- dacă $\alpha=5$ atunci rang(A)=2, deci S este liniar dependent; în acest caz, continuând cu transformările elementare $-\frac{1}{3}L_2 \to L_2$ apoi cu $-L_2 + L_1 \to L_1$ obținem forma scară redusă a matricei A

$$A \sim \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & 0 & \frac{7}{3} \\ 0 & \boxed{1} & -\frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix};$$

observăm că a treia coloană se poate exprima ca o combinație liniară a coloanelor care conțin pivoții:

$$\begin{pmatrix} \frac{7}{3} \\ -\frac{1}{3} \\ 0 \end{pmatrix} = \frac{7}{3} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix};$$

observăm că și în matricea A coloana a III-a se poate exprima ca o combinație liniară a primelor două coloane folosind de asemenea coeficienții $\frac{7}{3}$, respectiv $-\frac{1}{3}$:

$$\begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} = \frac{7}{3} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \Leftrightarrow v_3 = \frac{7}{3} v_1 - \frac{1}{1} 3v_2,$$

adică am obținut o relație de dependență liniară a vectorilor dați.

Aici am folosit o proprietate importantă a formei scară redusă:

Forma scară redusă păstrează combinațiile liniare de coloane ale unei matrice Mai precis, o coloană a unei matrice A se poate scrie combinație liniară de alte coloane ale matricii dacă și numai dacă aceeași combinație liniară are loc și între coloanele de pe aceleași poziții ale formei scară redus ă S_A^0 a matricii A. Tehnica utilizată în acest exercițiu este aplicabilă în K^n/K :

Criteriul practic de dependență în K^n/K . Vectorii $v_1, v_2, ..., v_m \in K^n$ sunt liniar dependenți dacă și numai dacă rangul matricei $A = (v_1^T \mid v_2^T \mid ... \mid v_m^T) \neq m$; mai mult, deoarece transformările elementare pe linie conservă rangul și relațiile de dependență liniară, dacă S_A este forma scară redusă a matricei A, atunci:

- dacă numărul de pivoți din S_A coincide cu numărul de vectori, m, atunci vectorii sunt liniar independenți;
- dacă numărul r de pivoți din matricea S_A este diferit de numărul vectorilor (adică $r \neq m$), atunci vectorii $v_1, v_2, ..., v_m$ sunt liniar dependenți; în cazul în care vectorul nul nu este printre vectorii dați, atunci
 - (a) pozițiile pivoților sunt $(1, j_1), (2, j_2), ..., (r, j_r)$;
 - (b) vectorii $v_{j_1}, v_{j_2}, ..., v_{j_r}$ sunt liniar indepedenți;
 - (c) ceilalţi vectori sunt combinaţii liniare ale vectorilor $v_{j_1}, v_{j_2}, ..., v_{j_r}$, combinaţii care se citesc din coloanele matricei S_A ; de exemplu, dacă în matricea S_A avem coloana $S_{:j} = (\alpha_1, ..., \alpha_r, 0, ..., 0)^T$ (cu $j \notin \{j_1, ..., j_r\}$), atunci $v_j = \alpha_1 v_{j_1} + \alpha_2 v_{j_2} + ... + \alpha_r v_{j_r}$.

Exercițiul 4. Fie $v_1 = (1, 1, 2, 1), v_2 = (1, -2, -1, 2), v_3 = (1, 1, 0, 0), v_4 = (0, 1, 1, 0), v_5 = (0, 0, 1, 1)$ vectori în spațiul vectorial \mathbb{R}^4/\mathbb{R} .

- (a) Să se arate că $M=\{v_1,v_2,v_3,v_4,v_5\}$ este sistem de vectori liniar dependenți.
- (b) Să se determine numărul maxim m de vectori liniar independenți din mulțimea M și să se indice o submulțime $M_m \subset M$ de m astfel de vectori.
- (c) Este M_m unica submulțime de m vectori liniar independenți din M?
- (d) Să se exprime vectorii din $M \setminus M_m$ ca şi combinații liniare ale vectorilor din M_m . Sunt unice aceste exprimări?

Rezolvare. Folosim criteriul practic. Pentru aceasta formăm matricea A prin concatenarea matricelor coloană corespunzătoare vectorilor daţi, urmând sa o aducem la forma scară redusă; pentru că urmărim să obţinem o matrice superior triunghiulară, vom concatena vectorii daţi într-o ordine care ne uşurează prelucrarea prin transformări elementare. De exemplu, formăm matricea

$$A = (v_3^T \mid v_4^T \mid v_5^T \mid v_1^T \mid v_2^T) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 & -1 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}.$$

- (a) Deoarece rangul matricei A este mai mic decât 5 rezultă că $M = \{v_1, v_2, v_3, v_4, v_5\}$ este sistem de vectori liniar dependenți.
- (b) Pentru a determina numărul m aducem A la forma scară redusă; obținem

$$A \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Forma scară redusă are 4 pivoți, deci rangul matricei A este 4, iar m=4. Pivoții se găsesc pe primele patru coloane, prin urmare am obținut submulțimea maximală de vectori liniar independenți $M_4 = \{v_3, v_4, v_5, v_1\}$.

(c) De exemplu, matricea
$$(v_2^T \mid v_4^T \mid v_5^T \mid v_1^T) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 1 \\ -1 & 1 & 1 & 2 \\ 2 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

are, de asemenea, rangul egal cu 4; rezultă că și submulțimea $\{v_1, v_2, v_4, v_5\} \neq M_4$ e formată din patru vectori liniar independenți.

(d) Deoarece în forma scară redusă coloana a cincea se poate exprima în

funcție de celelalte coloane:
$$\begin{pmatrix} 1 \\ -3 \\ 2 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} -3 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} +2 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} +0 \cdot$$

 $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ obţinem, corespunzčator, exprimarea ultimei coloane din ma-

tricea A în funcție de primele patru coloane, deci $v_2 = v_3 - 3v_4 + 2v_5$. Exprimarea lui v_2 este unică; într-adevăr dacă $v_2 = \alpha v_3 + \beta v_4 + \gamma v_5 + \delta v_1$, (cu $\alpha, \beta, \gamma, \delta \in \mathbb{R}$) urmează că $\alpha v_3 + \beta v_4 + \gamma v_5 + \delta v_1 = v_3 - 3v_4 + 2v_5$, sau echivalent, $(\alpha - 1)v_3 + (\beta + 3)v_4 + (\gamma - 2)v_5 + \delta v_1 = \theta$; dar vectorii v_1, v_3, v_4, v_5 sunt liniar independenți și, în consecință scalarii care intervin în combinație sunt toți nuli, adică $\alpha = 1, \beta = -3, \gamma = 2$ și $\delta = 0$.

Observație: Spațiul scalarilor este esențial în stabilirea liniar independenției, după cum putem vedea din exemplul de mai jos:

Exercițiu (NR.) Studiați liniar independența vectorilor $v_1=1$ și $v_2=i$ în spațiile vectoriale \mathbb{C}/\mathbb{R} și \mathbb{C}/\mathbb{C} .

Rezolvare: În \mathbb{C}/\mathbb{R} liniar independența revine la a studia dacă $\alpha \cdot 1 + \beta \cdot i = 0$, $\alpha, \beta \in \mathbb{R}$ implică $\alpha = \beta = 0$. Egalând părțile reale, apoi pe cele imaginare în egalitatea de numere complexe $\alpha + i\beta = 0$ se obține $\alpha = \beta = 0$, deci 1, i sunt liniar independenți.

În \mathbb{C}/\mathbb{C} liniar independența revine la la a studia dacă $\alpha \cdot 1 + \beta \cdot i = 0, \ \alpha, \beta \in \mathbb{C}$ implică $\alpha = \beta = 0$. Acest lucru nu se întâmplă: de exemplu $\alpha = -i, \beta = 1$ stabilesc relația de dependență liniară $v_2 = i \cdot v_1$. Prin urmare, în acest spațiu vectorial, vectorii v_1, v_2 nu sunt liniar independenți.

Baze. Caracterizări.

Definiție. Un sistem ordonat de vectori $B = \{e_1, e_2, ..., e_n\} \subset V$ este o bază pentru spațiul V/K dacă

- (a) sistemul B este liniar independent;
- (b) B este sistem de generatori (i.e. span(S) = V).

Exemple.

- (a) În spațiul aritmetic \mathbb{R}^n/\mathbb{R} mulțimea $\{(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,0,1)\}$ este o bază numită baza canonică.
- (b) Mai general, în spatiul K^n/K mulțimea $\{(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,0,1)\}$ este o bază numită baza canonică (ca de obicei, 1 este elementul neutru al grupului abelian $(K^* = K \setminus \{0\}, \cdot)$.
- (c) În spațiul $\mathcal{M}_{m,n}(K)/K$ mulțimea $B=\left\{e_{ij}\mid i=\overline{1,m},j=\overline{1,n}\right\}$ unde

$$e_{11} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}, e_{12} = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, e_{1n} = \begin{pmatrix} 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix},$$

$$e_{21} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, e_{2n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, e_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

este o bază numită baza canonic

(d) În spațiul $\mathbb{R}_n[x]/\mathbb{R}$ mulțimea $\{1, x, x^2, ..., x^n\}$ este o bază numită baza canonică.

Exercițiul 5. La Exercițiul 1. am văzut că $S = \left\{ A(a,b,c) = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{R}, a+2b=c \right\} \text{ este un subspațiu vectorial al spațiului } \mathcal{M}_{2,2}(\mathbb{R})/\mathbb{R}; \text{ la Exercițiul 2.} \quad \text{am constatat (folosind folosind folo$ tehnica parametrizării) că vectorii $A(1,0,1)=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și A(0,1,2)=

 $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ generează spațiul S. Deoarece $span(A(1,0,1)) \cap span(A(0,1,2))$ $=\left\{\begin{pmatrix}0&0\\0&0\end{pmatrix}\right\}$, rezultă că cei doi vectori sunt liniar independenți. În consecință mulțimea $\{A(1,0,1),A(0,1,2)\}$ este o bază pentru spațiul S.

Propoziție. Fie V/K un spațiu vectorial și $B = \{e_1, e_2, ..., e_n\} \subset V$ o bază a sa.

- (a) Orice vector $v \in V$ se exprimă în mod unic ca o combinație liniară a vectorilor (ordonați, după indicii 1, 2, ...) din bază, i.e. există și sunt unici scalarii $x_1, x_2, ..., x_n \in K$ astfel încât $v = x_1e_1 + x_2e_2 + ... + x_ne_n$; scalarii $x_1, x_2, ..., x_n$ se numesc coordonatele vectorului v în baza B.
- (b) Orice altă bază a spațiului V/K are același număr de vectori; numărul vectorilor dintr-o bază a spațiului V/K se numește dimensiunea spațiului vectorial V/K; vom scrie dim(V) = n.

Există spații care conțin un număr infinit de vectori liniar independenți (i.e. exista n vectori liniar independenti oricare ar fi $\in \mathbb{N}^*$). De exemplu vectorii $\{1, X, X^2, ..., X^n\}$ sunt liniar independenți în spațiul real al tuturor polinoamelor cu coeficienți reali pentru orice $n \in \mathbb{N}^*$. Obiectul Algebrei liniare este studiul spațiilor finit dimensionale.

Exemple. Tinând cont de bazele canonice prezentate mai sus rezultă că:

- (a) dimensiunea spaţiului \mathbb{R}^n/\mathbb{R} este n;
- (b) dimensiunea spațiului K^n/K este n;
- (c) dimensiunea spațiului $\mathcal{M}_{m,n}(K)/K$ este nm;
- (d) dimensiunea spatiului $\mathbb{R}_n[x]/\mathbb{R}$ este n+1;
- (e) in \mathbb{C}/\mathbb{R} cu baza canonică este $\{1, i\}$, deci dim $(\mathbb{C}/\mathbb{R}) = 2$;
- (f) spațiul vectorilor din plan are baza canonica $\{\overrightarrow{\imath}, \overrightarrow{\jmath}\}$, deci dimensiunea acestuia este 2.

La Exercițiul 5. am arătat de fapt că $\dim(S) = 2$.

Teoremă. Fie V/K un spațiu vectorial și $B = \{e_1, e_2, ..., e_n\} \subset V$ un sistem de vectori. Următoarele afirmații sunt echivalente:

- (a) sistemul B este o bază pentru spațiul V/K;
- (b) B este un sistem maximal de vectori liniar independenți, adică sistemul $\{e_1, e_2, ..., e_n, u\}$ este liniar dependent, oricare ar fi vectorul $u \in V$;
- (c) orice vector $v \in V$ se exprima in mod unic ca o combinație liniară a vectorilor din sistemul B.

5. SCHIMBARI DE BAZE

Am vazut ca intr-un spatiu vectorial exista, in general, mai multe baze (dintre exemplele date doar $\mathbb{Z}_2/\mathbb{Z}_2$ are o singura baza). Raspundem aici la intrebarea: care este legatura dintre coordonatele unui vector relativ la doua baze?

Fie $B=\{e_1,e_2,...,e_n\}$ si $B'=\{e'_1,e'_2,...,e'_n\}$ doua baze in spatiul V/K. Exprimam vectorii bazei B' in baza B: exista si sunt unici scalarii $a_{ij}\in K$ asfel ca $e'_j=\sum_{i=1}^n a_{ij}e_i$ pentru orice $j\in\{1,...,n\}$, adica

$$e'_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n$$

 $e'_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{n2}e_n$
...

$$e'_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n$$

Definitie. Matricea $T_{BB'} := (a_{ij}) \in K^{n \times n}$ se numeste **matricea de** trecere de la baza B la baza B'.

Prin urmare matricea de trecere este

$$T_{BB'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{21} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix};$$

ea are pe coloane coordonatele vectorilor $e'_1, e'_2, ..., e'_n$ din "baza noua" B'-in aceasta ordine- in "baza veche" B. Matriceal avem

$$\begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_n' \end{pmatrix} = T_{BB'}^T \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}.$$

Analog construim matricea de trecere $T_{B'B}$ -de la baza B' la baza B si avem relatia matriceala

$$\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = T_{B'B}^T \begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_n' \end{pmatrix}.$$

Din cele doua relatii matriceale obtinem

$$\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = T_{B'B}^T T_{BB'}^T \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} \operatorname{si} \begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_n' \end{pmatrix} = T_{BB'}^T T_{B'B}^T \begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_n' \end{pmatrix}.$$

Cum matricea de trecere $T_{BB}=T_{B'B'}=I_n$, iar exprimarea intr-o baza este unica, rezulta ca $T_{B'B}^TT_{BB'}^T=I_n=T_{BB'}^TT_{B'B}^T$, ori

$$T_{B'B}T_{BB'} = T_{BB'}T_{B'B} = I_n,$$

adica cele doua matrice de trecere sunt inversabile si

$$T_{B'B}^{-1} = T_{BB'}$$
.

Daca $B'' = \{e_1'', e_2'', ..., e_n''\}$ este o alta baza in spatiul V/K atunci

$$\begin{pmatrix} e_1'' \\ e_2'' \\ \vdots \\ e_n'' \end{pmatrix} = T_{B'B''}^T \begin{pmatrix} e_1' \\ e_2' \\ \vdots \\ e_n' \end{pmatrix} = T_{B'B''}^T T_{BB'}^T \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

 \sin

$$\begin{pmatrix} e_1'' \\ e_2'' \\ \vdots \\ e_n'' \end{pmatrix} = T_{BB''}^T \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

deci $T^T_{BB^{\prime\prime}}=T^T_{B^\prime B^{\prime\prime}}T^T_{BB^\prime}=\left(T_{BB^\prime}T_{B^\prime B^{\prime\prime}}\right)^T$. Prin urmare

$$T_{BB''} = T_{BB'}T_{B'B''}$$
.

Fie acum $v \in V$ un vector arbitrar. Conform teoremei precedente v se exprima in mod unic ca o combinatie liniara a vectorilor din baza B, si, de asemenea, ca o combinatie liniara unica a vectorilor din B'. Prin urmare exista si sunt unici scalarii $x_1, ..., x_n$ si $x'_1, ..., x'_n$ astfel ca

$$v = x_1 e_1 + \dots + x_n e_n = x_1' e_1' + \dots + x_n' e_n'.$$

Deoarece $e_j'=\sum_{i=1}^n a_{ij}e_i$ pentru orice $j\in\{1,...,n\}$, folosind cele doua exprimari ale lui v, avem

$$v = \sum_{j=1}^{n} x_{j}' e_{j}' = \sum_{j=1}^{n} x_{j}' \sum_{i=1}^{n} a_{ij} e_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j}' \right) e_{i} = \left(\sum_{j=1}^{n} a_{1j} x_{j}' \right) e_{1} + \dots + \left(\sum_{j=1}^{n} a_{nj} x_{j}' \right) e_{n},$$

adica $x_i = \sum_{j=1}^n a_{ij} x_j'$ pentru orice $i \in \{1, ..., n\}$. Matriceal obtinem

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{21} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}.$$

Sa notam cu v_B respectiv cu v_{B^\prime} matricele coloana ale coordonatelor in cele doua baze, adica

$$v_B = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ si } v_{B'} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix}.$$

Atunci relatia obtinuta poate fi scrisa pe scurt

$$v_B = T_{BB'}v_{B'}$$
, sau, echivalent $v_{B'} = T_{BB'}^{-1}v_B$.

Am obtinut urmatorul rezultat.

Teorema. Fie B, B' si B'' baze in spatiul V/K. Atunci matricea de trecere de la baza B la baza B' este invesabila si inversa ei este matricea de trecere de la baza B' la baza B, adica

$$T_{BB'}^{-1} = T_{B'B}.$$

Intre matricele de trecere ale celor trei baze avem legatura urmatoare:

$$T_{BB''} = T_{BB'}T_{B'B''}$$
.

Daca $v \in V$ iar v_B este matricea coloana a coordonatelor vectorului v in baza B si $v_{B'}$ este matricea coloana a coordonatelor vectorului v in baza B' atunci

$$v_{B'} = T_{BB'}^{-1} v_B.$$

Exemplu. Sa consideram bazele B_c , $B = \{1 + X, X + X^2, X^2 + 1\}$ si $B' = \{1, X - 1, X^2 - 1\}$ din spatiul $\mathbb{R}_2[X]/\mathbb{R}$, unde B_c este baza canonica. Ne propunem sa determinam

- (a) T_{B_cB} si T_{BB_c} ;
- (b) $T_{B_cB'}$ si $T_{B'B_c}$;
- (c) $T_{BB'}$;
- (d) coordonatele vectorului $f = 1 + X + X^2$ in bazele B si B'.

b. Rezolvare. a. Deoarece $B_c = \{1, X, X^2\}$ urmeaza ca, in baza canonica, vectorul 1+X are coordonatele 1,1,0, vectorul $X+X^2$ are coordonatele 0,1,1 iar vectorul X^2+1 are coordonatele 1,0,1. Prin urmare matricea de trecere de la baza canonica la baza B este

$$T_{B_cB} = \left(egin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}
ight).$$

$$T_{BB_c} = \left(egin{array}{ccc} rac{1}{2} & rac{1}{2} & -rac{1}{2} \ -rac{1}{2} & rac{1}{2} & rac{1}{2} \ rac{1}{2} & -rac{1}{2} & rac{1}{2} \end{array}
ight)$$

- 1. **b.** Analog $T_{B_cB'} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, si $T_{B'B_c} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - **c.** Folosim din nou teorema precedenta. Avem $T_{BB'} = T_{BB_c} T_{B_c B'} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 1/2 & -1/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & -1 \\ -1/2 & -1 & 1 \\ 1/2 & -1/2 & 0 \end{pmatrix}.$
 - **d.** coordonatele vectorului $f = 1 + X + X^2$ in bazele B si B'. Cu notatiile din teorema precedenta avem $f_B = T_{BB_c} \cdot f_{B_c} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 1/2 \end{pmatrix}$

$$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$$
, deci coordonatele vectorului f in baza B sunt $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.

Similar
$$f_{B'} = T_{B'B_c} \cdot f_{B_c} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
, deci coordonatele vectorului f in baza B' sunt 3, 1.1.

1.2 PROBLEME REZOLVATE

1. Folosind definiția, să se arate că vectorii

$$u_1 = (1, 1, 2), u_2 = (2, 1, 1), u_3 = (-1, 1, 1) \in \mathbb{R}^3$$

sunt liniar independen'ti.

Rezolvare:

Fie $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ astfel încât $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \theta$. Înlocuind, avem că relația e echivalentă cu

$$\alpha_1(1,1,2) + \alpha_2(2,1,1) + \alpha_3(-1,1,1) = (0,0,0)$$

și făcând operațiile în membrul stâng, cu

$$(\alpha_1 + 2\alpha_2 - \alpha_3, \alpha_1 + \alpha_2 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3) = (0, 0, 0)$$

ceea ce ne conduce la sistemul omogen

$$\begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 = 0 \\ \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ 2\alpha_1 + \alpha_2 + \alpha_3 = 0 \end{cases}$$

matricea sistemului are determinantul $det\left[\begin{array}{ccc} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{array}\right] = 3 \neq 0$ deci

sistemul omogen admite doar soluția banală $\alpha_1 = \alpha_2 = \alpha 3 = 0$, așadar vectorii u_1, u_2, u_3 sunt liniar independen'ti.

2. Folosind criteriul practic, să se arate că $S = \{u_1 = (1, 2, 0), u_2 = (1, 2, 3), u_3 = (0, 1, 1)\}$ reprezintă un sistem liniar independent de vectori din \mathbb{R}^3 . Rezolvare:

Construim matricea

$$A = [u_1^T | u_2^T | u_3^T] = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix}$$

Calculăm $det(A)=-3\neq 0$, deci conform criteriului practic, avem că S reprezintă un sistem liniar independent de vectori din \mathbb{R}^3

3. Sistemul

$$A = \{u_1 = (1, -2, 1), u_2 = (-1, 2, -1), u_1 = (2, 1, 7), u_4 = (1, 1, 4), u_5 = (-1, 2, -1)\}$$

este un sistem liniar dependent de vectori din \mathbb{R}^3 . Cum putem justifica acest lucru fără calcule? Să se extragă un subsistem $S' \subset S$, liniar independent.

Rezolvare:

Concatenăm cei cinci vectori pentru a construi matricea $A = [u_1^T | u_2^T | u_3^T | u_4^T | u_5^T]$. Cum matricea A are numai trei linii, $rang(A) \leq 3$, deci vectorii din S nu pot fi liniar independenți.

Prin operații pe linie, avem

$$A \xrightarrow{2L_1 + L_2 \to L_2; -L_1 + L_3 \to L_3} \begin{bmatrix} \boxed{1} & -1 & 2 & 1 & -1 \\ 0 & 0 & \boxed{5} & 3 & 0 \\ 0 & 0 & 5 & 3 & 0 \end{bmatrix} \xrightarrow{-L_2 + L_3 \to L_3} \begin{bmatrix} \boxed{1} & -1 & 2 & 1 & -1 \\ 0 & 0 & \boxed{5} & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = S_A$$

În S_A , coloanele cu pivoți sunt prima și cea de-a treia, deci $S' = \{u_1, u_3\}$ reprezintă subsistemul căutat.

4. Să se arate că

$$\left\{A_1 = \left[egin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}
ight], A_2 = \left[egin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}
ight], A_3 = \left[egin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}
ight], A_4 = \left[egin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}
ight]
ight\}$$

Reprezintă un sistem liniar independent de vectori din $\mathbb{R}^{2\times 2}$. Rezolvare:

Fie $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}$ astfel încât $\alpha_1 A_1 + \alpha_2 A_2 + \alpha_3 A_3 + \alpha_4 A_4$, adică

$$\alpha_1 \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] + \alpha_2 \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right] + \alpha_3 \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] + \alpha_4 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

Făcând calculele în membrul stâng și identificând elementele vom avea că relația de mai sus e echivalentă cu sistemul omogen:

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0\\ \alpha_1 + \alpha_2 + \alpha_3 = 0\\ \alpha_1 + \alpha_2 = 0\\ \alpha_1 = 0 \end{cases}$$

Sistemul fiind superior triunghiular, admite soluție unică soluția banală $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, deci $\{A_1, A_2, A_3, A_4\}$ reprezintă un sistem liniar independent de vectori din $\mathbb{R}^{2\times 2}$

5. Să se arate că sistemul de vectori liniar independent S din problema 2 reprezintă o bază în \mathbb{R}^3 și să se calculeze coordonatele vectorului v = (-1, 1, 1) relative la baza S.

Rezolvare:

Din problema a doua știm că vectorii sunt liniar independenți. Dar cum $Card(S) = 3 = dim(\mathbb{R}^3)$, avem că formează un sistem liniar independent maximal, cu alte cuvinte formează o bază în \mathbb{R}^3 .

Coordonatele pe care le căutăm sunt $x_1, x_2, x_3 \in \mathbb{R}$ astfel încât $x_1u_1 + x_2u_2 + x_3u_3 = v$. Dar înlocuind vectorii, această combinație liniară ne conduce la sistemul compatibil determinat

$$\begin{cases} x_1 + x_2 = -1 \\ 2x_1 + 2x_2 + x_3 = 1 \\ 3x_2 + x_3 = 1 \end{cases}$$

Rezovându-l, găsim $x_1 = -1/3, x_2 = -2/3, x_3 = 3$

Alternativ, am fi putut calcula coordonatele construind matricea $A = [u_1^T | u_2^T | u_3^T | u_4^T | v]$. Forma ei scar'a redusă $S_A^0 = [c_1 | c_2 | c_3 | c_4]$ ar fi avut pivoți pe primele trei coloane, iar c_4 s-ar fi scris combinație liniară de acestea $c_4 = x_1c_1 + x_2c_2 + x_3c_3$. Apoi am fi folosit faptul că forma scară redusă păstrează combinațiile liniare de coloane ale unei matrici.

6. Să se arate că polinoamele Bernstein¹ de grad doi $\{B_2^k(t) = C_2^k t^k (1-t)^{2-k}, k=0,1,2$ Formează o bază în $\mathbb{R}^2[t]$ și să se calculeze coordonatele polinomului $p(t)=3+2t+t^2$ relative la aceast'a baz'a. Rezolvare: Explicităm cele trei polinoame și găsim $B_2^0(t)=1-2t+t^2, B_2^1(t)=2t-2t^2, B_2^2(t)=t^2$ Fie $\alpha_0,\alpha_1,\alpha_2\in\mathbb{R}$ astfel încât $\alpha_0B_2^0(t)+\alpha_1B_2^1(t)+\alpha_2B_2^2(t)=\theta$, sau explicitând, $\alpha_0(1-2t+t^2)+\alpha_1(2t-2t^2)+\alpha_2t^2=0$. După ce desfacem parantezele, grupăm monoamele de același grad și identificăm coeficienții în cei doi membri, relația va fi echivalentă cu

$$\begin{cases} \alpha_0 - 2\alpha_1 + \alpha_2 = 0 \\ -2\alpha_0 + 2\alpha_1 = 0 \\ \alpha_0 = 0 \end{cases}$$

Sistemul omogen fiind superior triunghiular va avea soluție unică, mai precis doar soluția banală $\alpha_0 = \alpha_1 = \alpha_2 = 0$. Astfel, cele trei polinoame sunt liniar independente.

Pe de altă parte, în spațiul vectorial $\mathbb{R}_2[t]$ avem baza canonică $\mathcal{B} = \{e_1(t) = 1, e_2(t) = t, e_3(t) = t^2\}$, deci $\mathbb{R}^2[t]$ are dimensiunea trei, valoare care coincide cu cardinalul mulțimii celor trei polinoame Bernstein. Adică acestea formează o bază.

Coordonatele pe care le căutăm sunt $x_0, x_1, x_2 \in \mathbb{R}$ astfel încât $x_0B_2^0(t) + x_1B_2^1(t) + x_2B_2^2(t) = p(t)$. După ce explicităm polinoamele și identificăm coeficienții ca înainte, ajungem la un sistem de ecuații

$$\begin{cases} x_0 - 2x_1 + x_2 &= 1\\ -2x_0 + 2x_1 &= 2\\ x_0 &= 3 \end{cases}$$

de unde găsim $x_0 = 3, x_1 = 4, x_2 = 6$

7. Să se determine câte o bază în cele patru subspații fundamentale ale lui \mathbb{R}^2 definite de matricea:

a)
$$A = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Rezolvare:

a) Aducem la forma scar'a redus'a matricea A

$$A = \left[egin{array}{cc} 0 & 0 \ 1 & 2 \end{array}
ight] \stackrel{L_1 \leftrightarrow L_2}{\longrightarrow} \left[egin{array}{cc} 1 & 2 \ 0 & 0 \end{array}
ight] = S_A^0 = [c_1|c_2]$$

¹ aceste polinoame se folosesc pentru a defini curbele Bezier. Toate fonturile sunt desenate din arce de curbe Bezier, mai mult, softurile de proiectare de tip CAD folosesc astfel de curbe.

și matricea A^T

$$A^T = \left[egin{array}{ccc} 0 & 1 \ 0 & 2 \end{array}
ight] \stackrel{-2L_1 + L_2
ightarrow L_2}{\longrightarrow} \left[egin{array}{ccc} 0 & \boxed{1} \ 0 & 0 \end{array}
ight] = S^0_{A^T} = \left[c_1' | c_2'
ight]$$

Matricea S_A^0 are pivot pe coloana c_1 , deci prima coloană a matricii A reprezintă un sistem liniar independent, astfel $\mathcal{B}_1 = \{u_1 = (0,1)^T\}$ este o bază în Col(A).

Matricea $S_{A^T}^0$ are pivot pe coloana c'_2 , deci a doua coloană a matricii A^T reprezintă un sistem liniar independent, astfel $\mathcal{B}'_1 = \{u'_1 = (1,2)^T\}$ este o bază în $Lin(A) = Col(A^T)$.

Pentru Null(A) observăm că un vector $u=(x_1,x_2)^T\in\mathbb{R}^2, u\in Null(A^T)=Null(S^0_A)$ dacă și numai dacă

$$x_1 + 2x_2 = 0$$

Relația de mai sus reprezintă un sistem de o ecuație cu două necunoscute cu matrice de rang 1. x_1 va fi necunoscută principală și $x_2 = \alpha$ necunoscută secundară. Obținem $x_1 = -2\alpha$ și deci $u \in Null(A) \iff u = (-2\alpha, \alpha)^T = \alpha(-2, 1)^T$. Adică un vector u aparține subspațiului Null(A) dacă și numai dacă se scrie combinație liniară de vectorul $v_1 = (-2, 1)^T$. Deci $Null(A) = Span(v_1)$. Dar un sistem format dintr-un singur vector nenul este un sistem liniar independent și astfel $\mathcal{B}_2 = \{v_1 = (-2, 1)^T\}$ reprezintă o bază în Null(A).

Pentru $Null(A^T)$ observăm că un vector $u=(x_1,x_2)^T\in\mathbb{R}^2, u\in Null(A^T)=Null(S^0_{A^T})$ dacă și numai dacă

$$x_2 = 0$$

Adic'a $u \in Null(A^T) \iff u = (\alpha,0)^T = \alpha(1,0)^T$. Adică un vector u aparţine subspaţiului $Null(A^T)$ dacă şi numai dacă se scrie combinaţie liniară de vectorul $v_1' = (1,0)^T$. Deci $Null(A^T) = Span(v_1')$. Dar un sistem format dintr-un singur vector nenul este un sistem liniar independent şi astfel $\mathcal{B}_2' = \{v_1' = (1,0)^T\}$ reprezintă o bază în $Null(A^T)$.

8. Prin operații pe linie, matricea

$$A = [u_1|u_2|u_3|u_4|u_5] = \begin{bmatrix} 1 & 2 & 1 & 1 & -1 \\ -2 & -4 & -2 & -2 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 3 & 2 & 3 & 1 \end{bmatrix}$$

se transformă într-o matrice

În ce spațiu vectorial este Col(A) subspațiu? Dar Null(A)? Să se determine câte o bază în aceste subspații.

Rezolvare:

Col(A) este generat de coloanele matricii A și cum fiecare coloană e vector din $\mathbb{R}^{4\times 1}$ înseamnă că Col(A) e un subspațiu vectorial al lui $\mathbb{R}^{4\times 1}$. Pe de altă parte, Null(A) reprezintă mulțimea soluțiilor sistemului omogen scris matricial Ax=0. Matricea A, având cinci coloane, sistemul omogen va avea cinci necunoscute, deci va fi subspațiu vectorial al lui $\mathbb{R}^{5\times 1}$.

Întrucât matricea B este o matrice scară redusă şi a fost obținută din A prin operații elementare pe linie, înseamnă că este chiar forma scară redusă a matricii A. În B pivoții se găsesc pe coloanele c_1 și c_2 , deci în A coloanele u_1 și u_2 sunt liniar independente, celelalte putându-se scrie combinație liniară de ele. Astfel, o bază în $Col(A) = Span(u_1, u_2, u_3, u_4, u_5)$ este $\mathcal{B} = \{u_1 = (1, -2, 1, 2)^T, u_2 = (2, -4, 1, 3)^T\}.$

Pentru că B este forma scară redusă a matricii A, sistemul omogen Ax=0 are aceleași soluții cu sistemul Bx=0 dar al doilea e mai ușor de rezolvat. Deoarece în matricea B pivoții sunt pe coloanele c_1 și c_2 , vom lua x_1 și x_2 necunoscute principale, iar necunoscutele secundare le notăm cu parametri după cum urmează: $x_3=\alpha, x_4=\beta, x_5=\gamma$. Înlocuind în sistem, avem

$$\begin{cases} x_1 + \alpha + 3\beta + 5\gamma = 0 \\ x_2 - \beta - 3\gamma = 0 \end{cases}$$

deci $x_1 = -\alpha - 3\beta - 5\gamma$, $x_2 = \beta + 3\gamma$. Astfel, un vector $x = [x_1, x_2, x_3, x_4, x_5]^T \in Null(B) = Null(A)$ dacă și numai dacă

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -\alpha - 3\beta - 5\gamma \\ \beta + 3\gamma \\ \alpha \\ \beta \\ \gamma \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} -5 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

iar dacă notăm $v_1 = [-1, 0, 1, 0, 0]^T$, $v_2 = [-3, 1, 0, 1, 0]^T$, $v_3 = [-5, 3, 0, 0, 1]^T$, relația de mai sus ne spune că $Null(B) = Span(v_1, v_2, v_3)$. În plus, acești vectori sunt liniar independenți și astfel $\mathcal{B}' = \{v_1, v_2, v_3\}$ reprezintă o bază în Null(A).

9. Construiți o matrice A pentru care $u=(1,2,3)^T\in Null(A)$ Rezolvare:

 $u \in Null(A) \iff Au = 0$ și înmulțirea se poate efectua doar dacă matricea A are trei coloane. Deci vom căuta o matrice $A = [x, y, x] \in \mathbb{R}^{1 \times 3}$. Avem că

$$Au = 0 \iff x + 2y + 3z = 0$$

iar ultima relație este un sistem de o ecuație cu trei necunoscute. Rangul matricii sistemul e 1, deci luăm x necunoscut'a principală iar necunoscutele secundare le notăm $y=\alpha, z=\beta$. Găsim $x=-2\alpha-3\beta$ și pentru $\alpha=\beta=1$ vom avea x=-5, y=1, z=1, deci matricea A=[-5,1,1]

10. Construiți o matrice Apentru care $Col(A)=Span(u=(1,1,2)^T)$ și Lin(A)=Span(v=(1,5))

Rezolvare:

Evident, căutăm o matrice cu trei linii şi două coloane c_1, c_2 . Pentru c'a $c_1, c_2 \in span(u = (1, 1, 2)^T)$, cele două coloane sunt de forma $c_1 = \alpha(1, 1, 2)^T, c_2 = \beta(1, 1, 2)$. Astfel

$$A = \left[egin{array}{ccc} lpha & eta \ lpha & eta \ 2lpha & 2eta \end{array}
ight]$$

dar cele trei linii trebuie să fie elemente din Span(1,5), adică fiecare linie să fie multiplu de acest vector, atunci

$$A = \left[\begin{array}{cc} 1 & 5 \\ 1 & 5 \\ 2 & 10 \end{array} \right]$$

11. Să se găsească ecuațiile subspațiului $S = Span(u_1 = (1, 1, 2), u_2 = (-1, 1, 2))$ al lui \mathbb{R}^2 .

Rezolvare:

Fie $v=(x_1,x_2,x_3)$ un vector oarecare din \mathbb{R}^3 . Construim matricea $A=[u_1^T|u_2^T|v]$ și o aducem la forma scară:

$$A = \begin{bmatrix} \boxed{1} & -1 & x_1 \\ 1 & 1 & x_2 \\ 2 & 2 & x_3 \end{bmatrix} \xrightarrow{-L_1 + L_2 \to L_2; \ -2L_1 + L_3 \to L_3} \begin{bmatrix} \boxed{1} & -1 & x_1 \\ 0 & \boxed{2} & -x_1 + x_2 \\ 0 & 4 & -2x_1 + x_3 \end{bmatrix} \to$$

$$\begin{bmatrix}
-2L_2 + L_3 \to L_3 \\
 \to &
\end{bmatrix}
\begin{bmatrix}
1 & -1 & x_1 \\
 0 & 2 & -x_1 + x_2 \\
 0 & 0 & -2x_2 + x_3
\end{bmatrix} = S_A$$

Ultima coloană din S_A se poate scrie combinație liniară de primele două dacă și numai dacă nu conține pivot, adică dacă $-2x_2 + x_3 = 0$. Dar aceasta e și condi'tia ca ultima coloană din A să se poată scrie combinație liniară de primele două, deci condiția ca $v \in Span(u_1, u_2)$. Așadar

$$S = \{v = (x_1, x_2, x_3) \in \mathbb{R}^3 | -2x_2 + x_3 = 0\}$$

12. În $\mathbb{R}^{2\times 2},$ mulțime
aSa matricilor de rang unu este subspațiu? Rezolvare:

Matricile
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 şi $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ au $rang(A) = rang(B) = 1$

dar $Rang(A+B) = Rang(I_2) = 2 \neq 1$, deci exista combinații liniare de elemente din S care nu dau un element din S, așadar S nu este subspațiu vectorial în $\mathbb{R}^{2\times 2}$

Să se determine dimensiunea substațiului vectorial $S=\{v=[a,b+2c,a+b+2c]^T|a,b,c\in\mathbb{R}\}$ al lui $\mathbb{R}^{3\times 1}$

Rezolvare:

Observăm că $v = a[1,0,1]^T + b[0,1,1]^T + c[0,2,2]^T$ deci $S = Span(u_1 = [1,0,1]^T, u_2 = [0,1,1]^T, u_3 = [0,2,2]^T)$. Dar u_2 ši u_3 nu sunt liniar independenți, pentru că $u_3 = 2u_2$. O bază în S va fi $\mathcal{B} = \{u_1,u_2\}$, așadar dim(S) = 2

1.3 PROBLEME PROPUSE

- 1. Arătați că într-un spațiu vectorial:
 - (a) există un singur vector nul;
 - (b) oricare vector are un unic vector opus.
- 2. În spațiul vectorial \mathbb{R}^3/\mathbb{R} se dau vectorii $u=(1,2,1),\ v=(1,1,1),\ w=(0,9,8).$
 - (a) Scrieți baza canonică a spațiului \mathbb{R}^3/\mathbb{R} .
 - (b) Exprimați vectorii dați în baza canonică.
 - (c) Determinati coordonatele vectorilor dați în baza canonică.
 - (d) Determinați vectorul $\tilde{v} = 3v + 5u w$; stabiliți dacă următoarele sisteme de vectori sunt baze pentru spațiul V:
 - i. $\{u, v, w\}$; ii. $\{u, v, w, \tilde{v}\}$; iii. $\{u, v, \tilde{v}\}$; iv. $\{\theta, w, \tilde{v}\}$; v. $\{v, w, \tilde{v}\}$.
- 3. Să se arate că multimea matricelor cu elemente din corpul K i.e. $\mathcal{M}_{m,n}(K)$ este un spațiu vectorial peste corpul K, față de operația (internă) de adunare a matricelor, respectiv, față de operația (externă) de înmulțire a matricelor cu scalari.
- 4. Verificați că în spațiul vectorial V/K:
 - (a) $0v = \theta$, pentru orice $v \in V$, adică produsul scalarului 0 cu orice vector v este vectorul nul;
 - (b) $\alpha\theta = \theta$, pentru orice $\alpha \in K$, adică produsul scalarului α cu vectorul nul este vectorul nul;

- (c) (-1)v = -v pentru orice $v \in V$, adică produsul dintre scalarul -1 şi vectorul v este opusul vectorului v;
- (d) dacă $\alpha \in K$, $v \in V$ și $\alpha v = \theta$, atunci $\alpha = 0$ sau $v = \theta$.
- 5. Să se arate că următoarele mulțimi se pot înzestra cu o structură de spațiu liniar peste corpul numerelor reale:
 - (a) $\{(a, 0, b + c, a + b + c) | a, b, c \in \mathbb{R} \}$
 - (b) $\{(a, -c, -b + c + d, a + b + c + d) | a, b, c, d \in \mathbb{R} \}$.
- 6. În spațiul $\mathbb{R}^{3\times 1}/\mathbb{R}$ considerăm vectorii $v_1=(9,0,1)^T,\ v_2=(2,2,1)^T,\ v_3=(0,2,1)^T,\ v_4=(1,1,1)^T.$
 - (a) Să se scrie combinația liniară $v = v_1 + 2(-13, 0, 1)^T + v_2 v_3 + v_4$.
 - (b) Să se determine coordonatele vectorilor considerați în baza canonică.
 - (c) Să se determine rangul matricei $A = (v_1 \mid v_2 \mid v_3 \mid v_4)$.
 - (d) Sunt vectorii considerați liniar independenți?
 - (e) Să se determine cel mai mare $n \leq 4$ pentru care multimea $\{v_i : i = \overline{1, n}\}$ este liniar independentă.
 - (f) Să se determine mulțimea tuturor combinațiilor liniare ale vectorilor
 - i. v_1, v_2, v_3, v_4 .
 - ii. $v_1, v_2, ..., v_n$.
- 7. Să se arate că vectorii notați $v_1, v_2, ...$ formează o bază într-un spațiu aritmetic, apoi determinați coordonatele vectorului v în baza respectivă:
 - (a) $v_1 = (1, 1, 1), v_2 = (1, 1, 2), v_3 = (1, 2, 3); v = (6, 9, 14).$
 - (b) $v_1 = (2, 1, -3), v_2 = (3, 2, -5), v_3 = (1, -1, 1); v = (6, 2, -7).$
 - (c) $v_1 = (1, 2, -1, -2,), v_2 = (2, 3, 0, -1), v_3 = (1, 2, 1, 4), v_4 = (1, 3, -1, 1); v = (7, 14, -1, 2).$

Răspunsuri. (a). 1, 2, 3; (b). 1, 1, 1; (c). 0, 2, 1, 2.

- 8. Să se arate că vectorii notați $v_1, v_2, ...$, respectiv $v'_1, v'_2, ...$, formează baze într-un spațiu aritmetic; exprimați vectorii $v_1, v_2, ...$ în cele două baze.
 - (a) $v_1 = (1, 2, 1), v_2 = (2, 3, 3), v_3 = (3, 7, 1); v'_1 = (3, 1, 4), v'_2 = (5, 2, 1), v'_3 = (1, 1, -6).$
 - (b) $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 1, 1), v_3 = (1, 1, 2, 1), v_4 = (1, 3, 2, 3); v_1' = (1, 0, 3, 3), v_2' = (-2, -3, -5, -4), v_3' = (2, 2, 5, 4), v_4' = (2, 2, 5, 4).$

Răspunsuri

(a)
$$v_1 = -27v_1' - 71v_2' - 41v_3', v_2 = 9v_1' + 20v_2' + 9v_3', v_3 = 4v_1' + 12v_2' + 8v_3';$$

(b)
$$v_1 = 2v_1' + v_3' - v_4', v_2 = -3v_1' + v_2' - 2v_3' + v_4', v_3 = v_1' - 2v_2' + v_3' - v_4', v_4 = v_1' - v_2' + v_3' - v_4'.$$

9. Să se determine $\lambda \in \mathbb{R}$ astfel încât vectorul v să se poată exprima ca o combinație liniară a celorlalți vectori dați:

(a)
$$v = (7, -2, \lambda), v_1 = (2, 3, 5), v_2 = (3, 7, 8), v_3 = (1, -6, 1);$$

(b)
$$v = (9, 12, \lambda), v_1 = (3, 4, 2), v_2 = (6, 8, 7).$$

Răspunsuri. (a). $\lambda = 15$; (b). $\lambda \in \mathbb{R}$.

- 10. * Fie V/K un spațiu liniar de dimensiune n. Se știe că, în general, într-un asemenea spațiu există mai multe baze.
 - (a) Să se arate că pentru $K=\mathbb{R}$ sau $K=\mathbb{C}$ spațiul V are o infinitate de baze.
 - (b) Să se dea câte un exemplu de spațiu care are exact 0, 1, 2, 3, respectiv 4 baze.
- 11. Determinați dimensiunile următoarelor spații vectoriale:
 - (a) $\{(0,0,0)\}$
 - (b) $\{(a, a, a, a)^T | a \in \mathbb{R} \}$
 - (c) $\{(a, 0, b + c, a + b + c)^T | a, b, c \in \mathbb{R} \}$
 - (d) $\{(a, -c, -b+c+d, a+b+c+d)^T | a, b, c, d \in \mathbb{R} \}$.
 - (e) $\{(0, a+c, c+d, a+b+c+d) | a, b, c, d \in \mathbb{R} \}$.

Răspusuri. (a). 0; (b). 1; (c). 2; (d). 4; (d). 3.

12. Să se găsească câte o bază în fiecare din cele patru subspații fundamentale ale matricii

$$A = \left[\begin{array}{ccccc} -1 & 1 & 2 & 1 & 1 \\ -2 & -2 & -4 & -2 & -1 \\ 3 & 1 & 2 & 1 & 0 \\ 2 & 2 & 4 & 2 & 1 \end{array} \right]$$

13. Să se determine matricea de trecere de la baza B la baza B' și inversa ei unde:

(a)
$$B = \{(1,2,1), (2,3,3), (3,7,1)\}, B' = \{(3,1,4), (5,2,1), (1,1,-6)\};$$

(b)
$$B' = \{(1, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 3, 2, 3)\}, B = \{(1, 0, 3, 3), (-2, -3, -5, -4), (2, 2, 5, 4), (2, 2, 2, 2, 5), (2, 2$$

14. Să se stabilească dimensiunea spațiului $\mathbb{R}_n[x]/\mathbb{R}$ (spațiul funcțiilor polinomiale de grad mai mic sau egal cu n), să se determine coordonatele vectorilor 1, (x-a), $(x-a)^2$, ..., $(x-a)^n$ în baza canonică, să se arate că vectorii 1, (x-a), $(x-a)^2$, ..., $(x-a)^n$ formează o bază în $\mathbb{R}_n[x]/\mathbb{R}$, apoi să se scrie matricele de trecere dintre cele doua baze.

- 15. Să se arate că în spațiul $\mathbb{R}_3[x]/\mathbb{R}$ sistemul de vectori
 - (a) $B = \{1, 2x, 2x^2, 2x^3\}$ este o bază, iar coordonatele vectorului $x + x^2$ sunt (0, 1/2, 1/2, 0);
 - (b) $B'=\left\{1+x,1-x,x+x^2,x+x^3\right\}$ este o bază, iar coordonatele vectorului $x+x^2$ sunt (0,0,1,0).
 - (c) $\mathcal{B}_3''^k(x)=C_3^kx^k(1-x)^{3-k},\ k=0,1,2,3\}$ este o bază iar coordonatele vectorului $x+x^2$ sunt (0,1/3,3,8)
- 16. * Să se arate că următorul sistem de vectori (în ce spațiu poate fi considerat?) este liniar independent: $\{1, \cos x, \sin x, \cos 2x, \sin 2x, ..., \cos nx, \sin nx\}$.
- 17. Stabiliți care dintre următoarele mulțimi de vectori este subspațiu al unui spațiu vectorial real adecvat:
 - (a) vectorii unui spaţiu liniar n dimensional care au coordonatele numere întregi;
 - (b) vectorii legați cu același punct de aplicație (origine), O, din spațiul fizic:
 - i. care au vârfurile (extremitățile) pe axele de coordonate;
 - ii. care au vârfurile pe o dreaptă dată;
 - iii. ale căror vârfuri nu sunt pe o dreaptă dată;
 - iv. care au vârfurile în primul cadran;
 - (c) vectorii din \mathbb{R}^n/\mathbb{R} ale căror coordonate verifică ecuația: $x_1 + x_2 + \dots + x_n = 0$;
 - (d) vectorii din \mathbb{R}^n/\mathbb{R} ale căror coordonate verifică ecuația: $x_1 + x_2 + \dots + x_n = 1$;
 - (e) vectorii din \mathbb{R}^n/\mathbb{R} care sunt combinații liniare ale unor vectori dați.

Răspunsuri. (a). nu; (b).i. nu; ii. da, dacă și numai dacă dreapta trece prin origine; iii. nu; iv. nu; (c). da; (d). nu, (e). da.

18. Enumerați toate subspațiile spațiului vectorilor din spațiu.

Răspuns. Tot spatiul; multimea vectorilor dintr-un plan care trece prin origine; multimea vectorilor de pe o dreaptă care trece prin origine; mulțimea formată din vectorul nul.

- 19. Descrieți subspațiile generate de vectorii indicați precizând spațiul aritmetic în care se lucrează și stabiliți dimensiunea lor:
 - (a) 1;
 - (b) (1,1),(2,2);
 - (c) (1,2),(2,1);
 - (d) (10,0,-10),(21,1,1),(11,1,11).

Răspunsuri. (a). \mathbb{R} , 1 (b). $\{(\alpha, \alpha) \mid \alpha \in \mathbb{R}\}$, 1 (c). \mathbb{R}^2 , 2; (d). $\{(10\alpha + 21\beta, \beta, \beta - 10\alpha) \mid \alpha, \beta \in \mathbb{R}\}$, 2.

- 20. Fie $\mathcal{M}_{n,n}(K)/K$. Arătati că mulțimea matricelor diagonale formează un subspațiu liniar; care este dimensiunea acestuia?
- 21. În spațiul funcțiilor reale peste corpul $\mathbb R$ analizați dimensiunea subspațiului generat de vectorii
 - (a) $\sin x$;
 - (b) $\sin x, \sin^2 x$;
 - (c) $\sin x, \sin^2 x, ..., \sin^n x$.
- 22. Determinați câte o bază pentru:
 - (a) subspațiul $\{ax^2 + bx + c | a + b = c\}$ al spațiului $\mathbb{R}_3[x]/\mathbb{R}$;
 - (b) subspaţiul matricelor de tip 2×2 de forma $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$ (verificaţi, în prealabil că este subspațiu);
 - (c) subspațiul matricelor din $\mathcal{M}_{m,n}(\mathbb{R})$ care au primele două coloane nule.
- 23. Determinați câte o bază pentru subspațiile polinoamelor $p \in \mathbb{R}_3[x]/\mathbb{R}$ având proprietatea:
 - (a) p(1) = 0;
 - (b) p(1) = 0si p(2) = 0;
 - (c) p(1) = 0, p(2) = 0 si p(3) = 0;
 - (d) p(0) = 0, p(1) = 0, p(2) = 0 si p(3) = 0.
- 24. Fie $A=\begin{pmatrix}1&1&1&1&1&1\\1&2&3&4&5&6\\2&3&4&5&6&7\\2&4&6&8&10&12\end{pmatrix}$. Să se determine câte o bază pentru :
 - (a) spațiul generat de liniile sale;
 - (b) spațiul generat de coloanele sale;
 - (c) Null(A).

Răspusuri. De exemplu:

- (a) $[(1 \ 1 \ 1 \ 1 \ 1 \ 1), (1 \ 2 \ 3 \ 4 \ 5 \ 6)]$
- (b) $\begin{bmatrix} \begin{pmatrix} 1\\1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \end{bmatrix}$

(c)
$$\begin{bmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ -5 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} .$$

- 25. Fie V multimea matricelor de tip 4×4 a căror matrice scară redusă are ultima linie nulă. Este V un subspațiu în $\mathcal{M}_{4,4}(\mathbb{R})$?
- 26. Fie W/K un spațiu vectorial, U și V două subspații, iar $B_U = \{u_1, u_2, ... u_k\}$, respectiv $B_V = \{v_1, v_2, ... v_\ell\}$ baze ale acestora.
 - (a) Să se arate că multimea $U \cap V$ este subspațiu al spațiului W.
 - (b) Să se arate că mulțimea $U + V := \{u + v \mid u \in U, v \in V\}$ este subspațiu al spațiului W.
 - (c) Să se arate că dacă $U \subset V$ și $k = \ell$, atunci U = V.
 - (d) * Determinați dimensiunea subspațiului U+V și indicați o procedură concretă de obtinere a unei baze.

Indicație. O bază pentru U+V este formată dintr-o submulțime maximală de vectori liniar independenți ai mulțimii $\{u_1, u_2, ... u_k, v_1, v_2, ... v_\ell\}$.

27. *Determinați câte o bază pentru suma, respectiv intersecția subspațiilor generate de mulțimile de vectori $v_1, ..., v_n$ și $v'_1, ..., v'_n$:

(a)
$$v_1 = (1,2,1), v_2 = (1,1,-1), v_3 = (1,3,3); v_1' = (2,3,-1), v_2' = (1,2,2), v_3' = (1,1,-3).$$

(b)
$$v_1 = (1, 1, 0, 0), v_2 = (0, 1, 1, 0), v_3 = (0, 0, 1, 1); v_1' = (1, 0, 1, 0), v_2' = (0, 2, 1, 1), v_3' = (1, 2, 1, 2).$$

Răspusuri. (a). de exemplu, pentru sumă $\{v_1, v_2, v_1'\}$, iar pentru intersecție $\{v\}$, unde $v=2v_1+v_2=v_1'+v_3'=(3,5,1)$. (b). de exemplu, pentru sumă $\{v_1,v_2,v_3,v_1'\}$, iar pentru intersecție $\{v_1'',v_2''\}$, unde $v_1''=v_1+v_2+v_3=v_1'+v_2'=(1,2,2,1)$ și $v_2''=2v_1+2v_3=v_1'+v_3'$.

28. Arătați că matricile
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 formează o bază în subspațiul $\mathbb{R}_S^{2\times 2}$ al matricilor simetrice din spațiul

vectorial $\mathbb{R}^{2\times 2}$. Relatia

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & \frac{2b}{2} \\ \frac{2c}{2} & d \end{bmatrix} = \begin{bmatrix} a & \frac{2b+c-c}{2} \\ \frac{2c+b-b}{2} & d \end{bmatrix} =$$

$$= \begin{bmatrix} a & \frac{b+c}{2} + \frac{b-c}{2} \\ \frac{b+c}{2} - \frac{b-c}{2} & d \end{bmatrix} = \begin{bmatrix} a & \frac{b+c}{2} \\ \frac{b+c}{2} & d \end{bmatrix} + \begin{bmatrix} 0 & \frac{b-c}{2} \\ -\frac{b-c}{2} & 0 \end{bmatrix}$$

ne arată că orice matrice 2×2 se poate descompune în suma dintre o matrice simetrică și una antisimetrică (adică o matrice A cu proprietatea că $A^T=-A$). Dacă notăm $\mathbb{R}^{2\times 2}_S$ mulțimea matricilor antisimetrice 2×2 , atunci afirmația

$$\mathbb{R}^{2\times 2} = R_S^{2\times 2} + R_A^{2\times 2}$$

este falsă. De ce?

29. Care e subspațiul vectorial al lui $\mathbb{R}^{2\times 2}$ generat de matricile cu elemente pozitive?

Răspuns: Este $\mathbb{R}^{2\times 2}$ însuși.

 $\mathbf{2}$