Performance and Energy Aware Kubernetes Scheduler

Han Dong, Hamilton College, USA
Parul Singh, Red Hat Inc, Netherlands
Yara Awad, Boston University, USA
Felix George, IBM Research, India
Krishnasuri Narayanam, IBM Research, India
Sanjay Arora, Red Hat Inc, USA
Jonathan Appavoo, Boston University, USA

Performance and Energy Aware Kubernetes Scheduler

Advocating for better hardware awareness in cloud-scale deployments...

Exposing and exploiting hardware uniqueness...

- Challenges of managing microservices in the cloud
 - Explosive configuration space
- State-of-the-art configuration approaches
 - Kubernetes HPA, Cliantro Research System
- PAX approach and evaluation
 - Configuration via Black-Box Bayesian Optimization

Microservices Cloud Deployments

Microservices Cloud Deployments

Interdependence between microservices forces configuration to be the joint configuration of all microservices.

Microservices Configuration: Scaling + Placement

microservice-to-scaling-factor && microservice-to-node-placement

Configuration Space Explodes

microservice-to-scaling-factor X microservice-to-node-placement

nodes

Constraints (s_i, p_i)

$$1 \le s_i \le CPU_{max}$$

 $1 \le p_i \le NODE_{max}$

Kubernetes Deployment

Kubernetes: a container-based cloud deployment platform

pod: set of processes belonging
to one microservice

pod-replica: instance (or copy)
of a microservice (created or
destroyed as a result of scaling)

Kubernetes Deployment

microservices

Control plane manages the scaling and scheduling of microservices.

HPA: horizontal pod autoscaler - default pod-to-replica mechanism

Kube-Scheduler: default pod-to-node placement mechanism

microservice-to-scaling-factor X + microservice-to-node-placement

Scaling Configuration (1xK vector)

microservices (or pod-types)

Placement Configuration (1xK' vector)

instances (or pod replicas)

Scaling Configuration (1xK vector)

Integer Partitioning Problem

Placement Configuration (1xK' vector)

O(N^{K'}) pod-to-node configurations

(N = number of nodes, K' = total number of pods)

Scaling Configuration (1xK vector)

HPA: user-defined parameters + heuristic-based algorithms

Cilantro: optimization policy searches configuration space for optimal pod-to-CPUs configuration

Placement Configuration (1xK' vector)

kube-scheduler places pod replicas on suitable and available nodes

µservice	# Replicas
А	3
В	1
K	7
	\mathbf{X}^{0}

Objective Function is updated at every iteration until it yields an optimal objective

Objective Space Y

Utility/ Performance Metric	Value	
Average P99 Latency	1705 ms	-
Utilization	75%	

Objective Function is updated at every iteration until it yields an optimal objective

Objective Space Y

Utility/ Performance Metric	Value	
Average P99 Latency	1930 ms	7
Utilization	70%	

PAX Black Box Optimization: Coupling Scaling and Placement

µservice	# Replicas	Node		Utility/ Performance Metric	Value	
A	3	2		T CHOTHLANCE WICKIO		
В	1	13		Average P99 Latency	1705 ms	Y
			$f_{obj}(X) \rightarrow Y$	•••		
K	7	13				
	X		Bayesian Optimization sample-efficient black-box optimization			

PAX Pod Scheduler: Coupling Scaling and Placement

microservice-to-scaling-factor X microservice-to-node-placement

PAX Experimental Setup

Benchmark: HotelReservation (from DeathStarBench)

Hardware Cluster: 3 different clusters each with a total of 128 allocatable CPU

Cluster A 4x c220g2 nodes Cluster B 2x sm220u nodes Cluster C
2x c220g2 + 1x sm220u nodes

Name	Processor (Intel)	Node	Release	CPUs	TDP (W)	NIC	RAM	SSD	CO2 (kg)	Cost
c220g2	E5-2630 v3	22 nm	Q3'14	2 x 16	2 x 85	10GbE	128GB	480 GB	118.4	\$599 [21]
sm220u	Xeon Silver 4314	10 nm	Q2'21	2 x 32	2 x 135	40GbE	256GB	960 GB	221.9	\$6080 [5]

Table 1. Different hardware explored.

Benchmark: HotelReservation (from DeathStarBench)

Hardware Cluster: 3 different clusters each with a total of 128 allocatable CPU

Name	Processor (Intel)	Node	Release	CPUs	TDP (W)	NIC	RAM	SSD	CO2 (kg)	Cost
c220g2	E5-2630 v3	22 nm	Q3'14	2 x 16	2 x 85	10GbE	128GB	480 GB	118.4	\$599 [21]
sm220u	Xeon Silver 4314	10 nm	Q2'21	2 x 32	2 x 135	40GbE	256GB	960 GB	221.9	\$6080 [5]

300

Table 1. Different hardware explored.

Cluster C (hybrid)

Examining Replica Count and Placement

		HPA		Cilantro	PAX		
Microservice	Replicas	Node	Replicas	Node	Replicas	Node	
consul	1	2021-A	20	2014-A, 2014-B, 2021-A	10	2014-A	
frontend	7	2014-A, 2014-B, 2021-A	10	2014-A, 2014-B, 2021-A	5	2014-A	
jaeger	1	2021-A	9	2014-A, 2014-B, 2021-A	10	2014-B	
search	6	2014-A, 2014-B, 2021-A	5	2014-A, 2014-B, 2021-A	1	2021-A	
user	1	2021-A	5	2014-A, 2014-B, 2021-A	3	2014-B	
mongodb-user	1	2014-A	3	2014-A, 2014-B, 2021-A	1	2014-B	
geo	7	2014-A, 2014-B, 2021-A	7	2014-A, 2014-B, 2021-A	15	2014-B	
mongodb-geo	1	2014-A	3	2014-A, 2014-B, 2021-A	1	2014-A	
profile	7	2014-A, 2014-B, 2021-A	4	2014-B, 2021-A	1	2014-A	
mongodb-profile	1	2021-A	3	2014-A, 2014-B, 2021-A	1	2014-A	
memcached-profile	1	2021-A	7	2014-A, 2014-B	26	2021-A	
rate	6	2014-A, 2014-B, 2021-A	4	2014-A, 2014-B, 2021-A	2	2014-A	
mongodb-rate	1	2014-B	3	2014-A, 2014-B, 2021-A	1	2014-B	
memcached-rate	2	2014-B, 2021-A	6	2014-A, 2014-B, 2021-A	19	2014-B	
recommendation	6	2014-A, 2014-B, 2021-A	8	2014-A, 2014-B, 2021-A	12	2014-A	
mongodb-recommendation	1	2014-A	3	2014-A, 2014-B, 2021-A		2014-B	
reserve	6	2014-A, 2014-B, 2021-A	3	2014-A, 2014-B, 2021-A	8	2021-A	
mongodb-reserve	1	2021-A	3	2014-A, 2014-B, 2021-A	1	2014-A	
memcached-reserve	2	2014-B, 2021-A	4	2014-A, 2014-B	1	2014-A	

Table 4. Pod replicas and their node placement in the 2X-Server-2014, 1X-Server-20221 cluster. 2014-A and 2014-B refer to distinct 2014 servers and 2021-A is the 2021 server.

Open Questions, Limitations, and Future Work

- Stabilizing configuration versus reconfiguring in response to an event
 - Rate of reconfiguration
- Colocating versus distributing replicas across nodes
- Configuring a larger node/CPU space
- Evaluating other benchmarks from DeathStarBench
- Running PAX dynamically in response to a changing world