Studio Completo di Funzione Fasi di analisi di una funzione

Pietro Poluzzi

August 31, 2020

Contents

1 Teoria introduttiva allo studio di funzione

1.1 Gli insiemi numerici

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Il simbolo \subset indica che l'insieme a sinistra è sottoinsieme dell'insieme che si trova a destra: \mathbb{N} è sottoinsieme di \mathbb{Z} , che a sua volta è sottoinsieme di \mathbb{Q} , che a sua volta è sottoinsieme di \mathbb{R} , il quale è sottoinsieme di \mathbb{C} (che si serve di \mathbb{I} per rappresentare i numeri complessi).

È importante sottolineare che \mathbb{R} è a sua volta sotto insieme di \mathbb{C} poiché è necessaria una componente immaginaria (un elemento di \mathbb{I}) per poter esprimere il valore dell'estrazione di radice in \mathbb{R}^-

1.2 L'insieme N

L'insieme N dei numeri naturali comprendere tutti gli interi non negativi e lo zero.

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \ldots\}$$

1.2.1 Proprietà dell'insieme N

L'insieme \mathbb{N} forma con l'operazione di somma un monoide commutativo e si esprime con la formula $(\mathbb{N}, +)$. Esiste l'elemento neutro rispetto alla somma, ovvero lo zero. Tale operazione gode di tre proprietà:

1. proprietà commutativa:

$$a + b = b + a \quad \forall a, b \in \mathbb{N}$$

- 2. proprietà associativa
- 3. proprietà distributiva del prodotto rispetto alla somma:

$$a(b+c) = a \cdot b + a \cdot c \quad \forall a, b, c \in \mathbb{N}$$

L'insieme \mathbb{N} forma con l'operazione di moltiplicazione un semigruppo commutativo e si esprime con la formula (\mathbb{N}, \cdot) . Esiste l'elemento neutro rispetto alla moltiplicazione, ovvero 1.

Grazie alle proprietà enunciate in precedenza si può concludere che $(\mathbb{N},+,\cdot)$ è un semianello unitario commutativo. Poiché nessun elemento di \mathbb{N} , fatta eccezione per lo 0, ha inverso additivo, allora $(\mathbb{N},+)$ non è un gruppo; di conseguenza $(\mathbb{N},+,\cdot)$ non potrà essere né un anello né un campo.

1.3 L'insieme Z

L'insieme \mathbb{Z} comprendere tutti gli interi relativi ovvero positivi, negativi e nulli (lo zero). Si può affermare che: $Z = \mathbb{N} \cup \mathbb{N}^-$

$$\mathbb{Z} = \{ \dots, -4, -3, -2, -1, 0, +1, +2, +3, +4, \dots \}$$

1.3.1 Proprietà dell'insieme Z

Ogni elemento dell'insieme \mathbb{Z} ha inverso additivo: per ogni elemento $a \in \mathbb{Z}$ esiste $-a \in \mathbb{Z}$ tale che a + (-a) = 0.

 $(\mathbb{Z}, +)$ è un gruppo abeliano: l'addizione gode della proprietà commutativa e della proprietà associativa.

1.4 L'insieme Q

L'insieme \mathbb{Q} dei numeri razionali relativi comprende tutti i numeri che possono essere rappresentati da una frazione ed è l'unione fra l'insieme \mathbb{Q}^+ dei numeri razionali assoluti e l'insieme \mathbb{Q}^- dei numeri razionali negativi. Si può quindi affermare che: $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^-$.

Gli elementi di Q si esprimono nella forma seguente:

$$c \in \mathbb{Q} \iff c = \frac{a}{b}, \quad a, b \in \mathbb{Z}, b \neq 0$$

1.4.1 Proprietà dell'insieme Q

L'insieme \mathbb{Q} è numerabile: esiste una corrispondenza biunivoca tra l'insieme \mathbb{Q} e l'insieme \mathbb{N} .

1.5 L'insieme R

L'insieme \mathbb{R} dei numeri reali è dato dall'unione dei numeri razionali e dei numeri irrazionali: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

Qualsiasi numero intero (che sia positivo, negativo o nullo), razionale o irrazionale appartiene all'insieme \mathbb{R}

1.5.1 Proprietà dell'insieme R

Gli elementi dell'insieme \mathbb{R} possono essere messi in corrispondenza biunivoca con i punti di una retta, detta retta reale. Di conseguenza, \mathbb{R} è un insieme ordinato: dati due elementi qualsiasi è sempre possibile stabilire se il primo elemento è minore, maggiore o uguale al secondo.

Le operazioni interne ad \mathbb{R} sono:

- 1. addizione
- 2. sottrazione
- 3. moltiplicazione

Le operazioni esterne ad \mathbb{R} sono invece:

- 1. divisione: la divisione per zero non è un'operazione definita.
- 2. estrazione di radice: si consideri un elemento appartenente a \mathbb{R}^- , la sua radice non esiste in \mathbb{R} .

Per ovviare al problema dell'estrazione di radice in \mathbb{R} , sono stati introdotti i numeri complessi.

 $\mathbb{R}\subset\mathbb{C}$

1.6 L'insieme I

L'insieme I dei numeri decimali illimitati non periodici comprende i numeri reali che non possono essere rappresentati tramite una frazione. Questo insieme comprende numeri come $\sqrt{2}$, π (Pi greco), e (numero di Nepero).

1.6.1 Proprietà dell'insieme I

 $[\dots]$

1.7 L'insieme C

[...]

1.7.1 Proprietà dell'insieme C

 $[\dots]$

1.8 Simbolistica degli insiemi

https://www.youmath.it/domande-a-risposte/view/6616-simboli-insiemi.html È qui riportata la simbolistica degli insiemi in ordine alfabetico.

Appartenenza e non ap	pa	artenenza
\in	-	∉
Cardinalità		
Complementare dell'ins	sie	eme
Differenza tra insiemi		
Differenza simmetrica		
Insieme delle parti		
Intersezione		1
Prodotto cartesiano	1	l
Sottoinsieme		_
		-
Sottoinsieme proprio		
	\subseteq	- =
Sovrainsieme: contien	e	
	\supset)
	Cardinalità Complementare dell'ins Differenza tra insiemi Differenza simmetrica Insieme delle parti Intersezione Prodotto cartesiano Sottoinsieme Sottoinsieme proprio	Complementare dell'insie Differenza tra insiemi Differenza simmetrica Insieme delle parti Intersezione Prodotto cartesiano Sottoinsieme Sottoinsieme proprio

1.8.12 Unione

 \bigcup

1.9 Operazioni tra insiemi

1.10 Proprietà delle operazioni tra insiemi

2 Classificazione di una funzione

$$f: A \Rightarrow B$$

2.1 Funzione suriettiva

Ogni elemento dell'insieme B è rappresentato da almeno un elemento dell'insieme A.

2.2 Funzione iniettiva

2.3 Funzione biettiva

3 Individuazione del Dominio

$$Dom(f) = A$$

4 Studio della funzione

Grazie allo studio di f(x) si trovano eventuali simmetrie, periodicità, i punti in cui essa si annulla e gli intervalli di positività e negatività.

4.1 Ricerca di eventuali simmetrie o periodicità

Una funzione è pari se f(x) = f(-x) ed è simmetrica rispetto all'asse y. Una funzione è dispari se -f(x) = f(-x) ed è simmetrica rispetto all'origine.

Una funzione è periodica se f(x) = f(x+T). Le funzioni periodiche sono generalmente goniometriche.

4.2 Intersezioni con gli assi

Per individuare le intersezioni con gli assi è necessario fare due sistemi di due equazioni, il primo con y = 0 e il secondo con x = 0 come mostrato di seguito.

$$\begin{cases} y = f(x) \\ y = 0 \end{cases}$$
$$\begin{cases} f(x) = 0 \\ x = 0 \end{cases}$$

4.3 Intervalli di positività e negatività

Ponendo f(x) > 0 si individuano gli intervalli di positività e negatività della funzione: dove è positiva (sopra l'asse x) e dove invece è negativa (sotto l'asse x).

4.4 Studio della funzione agli estremi del Dominio

Questa parte dello studio di funzione comprende:

- limiti per x che tende a più e meno infinito
- limiti per x che tende ai punti di discontinuità (se presenti)
- individuazione degli asintoti
- studio dei punti di discontinuità

4.4.1 Regole dell'algebra di infiniti e infinitesimi

Siano $a \in \mathbb{R}^+$, $b \in \mathbb{R}^-$, $c \in \mathbb{R}$ e $n \in \mathbb{R} - \{0\}$

$$\frac{0}{n} = 0$$

$$a^+ - a = 0^+$$
 $(-a)^+ + a = 0^+$

$$a^{-} - a = 0^{-}$$
 $(-a)^{-} + a = 0^{-}$

$$a \cdot 0^+ = 0^+ \qquad a \cdot 0^- = 0^-$$

$$b \cdot 0^+ = 0^ b \cdot 0^- = 0^+$$

$$0^+ \cdot 0^+ = 0^+ \qquad 0^+ \cdot 0^- = 0^-$$

$$0^- \cdot 0^+ = 0^ 0^- \cdot 0^- = 0^+$$

$$\frac{a}{0^+} = +\infty \qquad \qquad \frac{a}{0^-} = -\infty$$

$$\frac{b}{0^+} = -\infty \qquad \qquad \frac{b}{0^-} = +\infty$$

$$c + \infty = +\infty$$
 $c - \infty = -\infty$

$$a \cdot (+\infty) = +\infty \quad a \cdot (-\infty) = -\infty$$

$$b \cdot (+\infty) = -\infty$$
 $b \cdot (-\infty) = +\infty$

$$\frac{a}{+\infty} = 0^+ \qquad \qquad \frac{a}{-\infty} = 0^-$$

$$\frac{b}{+\infty} = 0^- \qquad \qquad \frac{b}{-\infty} = 0^+$$

$$\frac{+\infty}{a} = +\infty \qquad \frac{-\infty}{a} = -\infty$$

$$\frac{+\infty}{b} = -\infty \qquad \frac{-\infty}{b} = +\infty$$

$$\frac{0^+}{+\infty} = 0^+ \qquad \frac{0^-}{+\infty} = 0^-$$

$$\frac{0^+}{-\infty} = 0^- \qquad \frac{0^-}{-\infty} = 0^+$$

$$\frac{+\infty}{0^+} = +\infty \qquad \frac{-\infty}{0^+} = -\infty$$

$$\frac{+\infty}{0^-} = -\infty \qquad \frac{-\infty}{0^-} = +\infty$$

$$+\infty^{+\infty} = +\infty \qquad +\infty^{-\infty} = 0^+$$

4.5 Teoremi sui limiti

4.5.1 Teorema dell'unicità del limite

Se per $x \to x_0$ la funzione f(x) ha come limite $l \in \mathbb{R}$, tale limite è unico.

4.5.2 Teorema della permanenza del segno

Se per x_0 la funzione f(x) ha come limite il numero $l \in \mathbb{R} - \{0\}$, esiste un intorno $I(x_0)$, escluso al più x_0 , in cui f(x) e l sono entrambi positivi o entrambi negativi.

4.5.3 Teorema del confronto

Siano f(x), g(x) e h(x) tre funzioni definite nello stesso intorno di $I(x_0)$, escluso al più x_0 . Se in ogni punti di $I \neq x_0$ si ha che

$$f(x) \le g(x) \le h(x)$$

e

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$$

allora

$$\lim_{x \to x_0} h(x) = l$$

4.6 Operazioni sui limiti

4.6.1 Funzioni potenza

Sia $n \in \mathbb{R}$

Se n è pari:

$$\lim_{x \to \pm \infty} x^n = +\infty$$

Se n è dispari:

$$\lim_{x \to +\infty} x^n = +\infty \quad ; \quad \lim_{x \to -\infty} x^n = -\infty$$

4.6.2 Funzioni radice

Se n è pari:

$$\lim_{x \to 0^+} \sqrt[n]{x} = 0 \quad ; \quad \lim_{x \to +\infty} \sqrt[n]{x} = +\infty$$

Se n è dispari:

$$\lim_{x \to -\infty} \sqrt[n]{x} = -\infty \quad ; \quad \lim_{x \to +\infty} \sqrt[n]{x} = +\infty$$

4.6.3 Funzioni esponenziali

Se a > 1:

$$\lim_{x \to -\infty} a^x = 0 \quad ; \quad \lim_{x \to +\infty} a^x = +\infty$$

Se 0 < a < 1:

$$\lim_{x \to -\infty} a^x = +\infty \quad ; \quad \lim_{x \to +\infty} a^x = 0$$

4.6.4 Funzioni logaritmiche

Se a > 1:

$$\lim_{x \to 0^+} \log_a x = -\infty \quad ; \quad \lim_{x \to +\infty} \log_a x = +\infty$$

Se 0 < a < 1:

$$\lim_{x \to 0^+} \log_a x = +\infty \quad ; \quad \lim_{x \to +\infty} \log_a x = -\infty$$

4.6.5 Limite della somma

Se $\lim_{x\to\alpha} f(x) = l$ e $\lim_{x\to\alpha} g(x) = m$ con $l, m \in \mathbb{R}$ allora:

$$\lim_{x \to \alpha} [f(x) + g(x)] = \lim_{x \to \alpha} f(x) + \lim_{x \to \alpha} g(x) = l + m$$

Il limite della somma di due funzioni è uguale alla somma dei loro limiti.

4.6.6 Limite del prodotto

Se $\lim_{x\to\alpha} f(x) = l$ e $\lim_{x\to\alpha} g(x) = m$ con $l, m \in \mathbb{R}$ allora:

$$\lim_{x \to \alpha} [f(x) \cdot g(x)] = \lim_{x \to \alpha} f(x) \cdot \lim_{x \to \alpha} g(x) = l \cdot m$$

Il limite della prodotto di due funzioni è uguale alla prodotto dei loro limiti.

Si può inoltre ricavare il seguente teorema:

$$\lim_{x \to \alpha} [f(x)]^n = l^n \quad \forall n \in N - \{0\}$$

4.6.7 Limite del quoziente

Se $\lim_{x\to\alpha} f(x) = l$ e $\lim_{x\to\alpha} g(x) = m$ con $l, m \in \mathbb{R}$ e $m \neq 0$ allora:

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \alpha} f(x)}{\lim_{x \to \alpha} g(x)} = \frac{l}{m}$$

Il limite del quoziente di due funzioni è uguale al quoziente dei loro limiti.

4.6.8 Limite della potenza

Se f(x) > 0 e $\lim_{x \to \alpha} f(x) = l > 0$ e $\lim_{x \to \alpha} g(x) = m > 0$ allora:

$$\lim_{x \to \alpha} [f(x)]^{g(x)} = l^m$$

4.6.9 Limite delle funzioni composte

Siano y = f(x) e z = g(x) tale che f(z) è continua in z_0 , sia $\lim_{x\to\alpha} g(x) = z_0$ allora:

$$\lim_{x \to \alpha} f(g(x)) = f(\lim_{x \to \alpha} g(x)) = f(z_0)$$

4.7 Forme Indeterminate (o di indecisione)

$$+\infty \; , \; -\infty \; , \; 0 \cdot (\pm \infty) \; , \; \frac{0}{0} \; , \; \frac{\pm \infty}{\pm \infty} \; , \; 0^0 \; , \; 1^{\mp \infty} \; .$$

4.8 Limiti notevoli

4.8.1 Limite notevole del logaritmo naturale

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\ln(1+f(x))}{f(x)} = 1$$

4.8.2 Limite notevole della funziona logaritmica

Sia $a > 0, a \neq 1$

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \frac{1}{\ln(a)} \quad ; \quad \lim_{f(x) \to 0} \frac{\log_a (1+f(x))}{f(x)} = \frac{1}{\ln(a)}$$

4.8.3 Limite notevole della funzione esponenziale

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{e^{f(x)} - 1}{f(x)} = 1$$

Sia a > 0

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \quad ; \quad \lim_{f(x) \to 0} \frac{a^{f(x)} - 1}{f(x)} = \ln(a)$$

4.8.4 Limite notevole del numero di Nepero

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e \quad ; \quad \lim_{f(x) \to \pm \infty} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = 1$$

4.8.5 Limite notevole della potenza con differenza

Sia $c \in \mathbb{R}$

$$\lim_{x \to 0} \frac{(1+x)^c - 1}{x} = c \quad ; \quad \lim_{f(x) \to 0} \frac{(1+f(x))^c - 1}{f(x)} = c$$

4.8.6 Limite notevole della funzione seno

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\sin(f(x))}{f(x)} = 1$$

4.8.7 Limite notevole della funzione coseno

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} \quad ; \quad \lim_{f(x) \to 0} \frac{1 - \cos f(x)}{f(x)^2} = \frac{1}{2}$$

4.8.8 Limite notevole della funzione tangente

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\tan(f(x))}{f(x)} = 1$$

4.8.9 Limite notevole dell'arcoseno

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\arcsin(f(x))}{f(x)} = 1$$

4.8.10 Limite notevole dell'arcotangente

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\arctan(f(x))}{f(x)} = 1$$

4.8.11 Limite notevole del seno iperbolico

$$\lim_{x \to 0} \frac{\sinh(x)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\sinh(f(x))}{f(x)} = 1$$

4.8.12 Limite notevole del coseno iperbolico

$$\lim_{x \to 0} \frac{\cosh(x) - 1}{x^2} = \frac{1}{2} \quad ; \quad \lim_{f(x) \to 0} \frac{\cosh(f(x)) - 1}{f(x)^2} = \frac{1}{2}$$

4.8.13 Limite notevole della tangente iperbolica

$$\lim_{x \to 0} \frac{\tanh\left(x\right)}{x} = 1 \quad ; \quad \lim_{f(x) \to 0} \frac{\tanh\left(f(x)\right)}{f(x)} = 1$$

13

5 Asintoti

5.1 Asintoti verticali

Data una funzione f(x), essa presenta un asintoto verticale in x_0 se:

$$\lim_{x\to x_0} f(x) = -\infty; \quad \lim_{x\to x_0} f(x) = +\infty; \quad \lim_{x\to x_0} f(x) = \infty$$

Se il limite esiste soltanto per $x \to x_0^+$, l'asintoto è verticale destro. Se invece il limite esiste soltanto per $x \to x_0^-$, l'asintoto è verticale sinistro.

5.2 Asintoti orizzontali

Data una funzione f(x), essa presenta un asintoto orizzontale in x_0 se:

$$\lim_{x \to \infty} f(x) = x_0$$

La funzione presenta un asintoto orizzontale destro quando:

$$\lim_{x \to +\infty} f(x) = x_0$$

La funzione presenta un asintoto orizzontale sinistro quando:

$$\lim_{x \to -\infty} f(x) = x_0$$

5.3 Asintoti obliqui

La retta r: y = mx + q è un asintoto obliquo per la funzione f(x) se $\overline{PH} \to 0$ (ovvero se la distanza di un punto P dalla funzione tende a zero) per $x \to \infty$. Se f(x) presenta un asintoto obliquo, i valori del coefficiente angolare m e dell'ordinata all'origine q sono:

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
 ; $\lim_{x \to \infty} (f(x) - mx)$

Se i valori di m e q sono verificati soltanto per $x \to +\infty$, la retta r è un asintoto obliquo destro della funzione. Se invece i valori di m e q sono verificati soltanto per $x \to -\infty$, la retta r è un asintoto obliquo sinistro della funzione.

6 Derivata di una funzione

6.1 Rapporto incrementale

Definizione

Sia I =]a; b[e siano $c \in \mathbb{R}, h \in \mathbb{R} - \{0\}$ con $c, h \in I$. Data una funzione y = f(x) definita in I. Dato un punto A(c; f(c)), si può ottenere un punto C(c + h; f(c + h)) da cui si otterranno gli incrementi:

$$\Delta x = x_B - x_A = h$$

$$\Delta y = y_B - y_A = f(c+h) - f(c)$$

Il rapporto incrementale di f relativo a c è:

$$\frac{\Delta y}{\Delta x} = \frac{f(c+h) - f(c)}{h}$$

Esempio

Data $f(x) = 2x^2 - 3x$ e c = 1. Si calcoli il rapporto incrementale di f(x) relativo a c per un generico incremento $h \neq 0$. Si determini innanzitutto f(c+h):

$$f(1+h) = 2(1+h)^2 - 3(1+h) = 2(1+2h+h^2) - 3 - 3h = 1 + h + 2h^2$$

Si calcoli in seguito f(c): f(1) = -1

Si calcoli quindi il rapporto incrementale di f relativo a c:

$$\frac{\Delta y}{\Delta x} = \frac{1 + h + 2h^2 - (-1)}{h} = \frac{h(2h+1)}{h} = 2h + 1$$

Il rapporto incrementale rappresenta, al variare di h, il coefficiente angolare di una generica retta secante che passa per il punto A del grafico con x = c, in questo caso x = 1.

6.2 Definizione di derivata

Siano fatte le stesse considerazioni relative al rapporto incrementale, quando $h\to 0$ allora $B\to A$ e la retta AB tende a diventare la tangente alla curva

in A. La derivata della funzione f(x) nel punto c, quindi f(c), è il rapporto incrementale nel punto c (ovvero il coefficiente angolare di AB) che tende al coefficiente angolare della tangente in A.

In simboli:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

La funzione è derivabile in c se:

- 1. f(x) è definita in un intorno I(c)
- 2. $f'(c) = \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ esiste ed assume un valore finito

6.3 Derivata sinistra e derivata destra

Data y = f(x) e dato un punto $c \in \mathbb{R}$. La derivata sinistra di f(x) nel punto c:

$$f'_{-}(c) = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h}$$

La derivata destra di f(x) nel punto c:

$$f'_{+}(c) = \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h}$$

6.4 Derivata definita

Una funzione f(x) è derivabile in un intervallo chiuso e limitato I = [a; b] se:

- 1. f(x) è derivabile in tutti i punti di I
- 2. la derivata destra in a e la derivata sinistra in b esistono e hanno valore finito

6.5 Derivata e velocità di variazione

[...]

7 Derivate fondamentali

7.1 Derivata della funzione costante

Teorema

La derivata di una funzione costante è zero. D k = 0

Dimostrazione

Sia f(x) = k, allora f(x + h) = k, il valore della derivata è:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k - k}{h} = 0$$

Rappresentazione grafica

La tangente alla retta y = k in ogni suo punto è rappresentata da una retta parallela all'asse x che ha quindi il coefficiente angolare pari a zero.

7.2 Derivata della funzione identità

Teorema

La derivata della funzione identità è 1. D x = 1

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

Rappresentazione grafica

La funzione identità è la bisettrice del primo e terzo quadrante e coincide con la tangente al grafico: il coefficiente angolare è uguale a 1.

7.3 Derivata della funzione potenza

Teorema

Siano $\alpha \in \mathbb{R}$ e x > 0, allora $Dx^{\alpha} = \alpha x^{\alpha-1}$. Se $\alpha \in \mathbb{Z}$ oppure $\alpha = \frac{m}{n}$ con n dispari, il teorema è verificato anche per x < 0. Inoltre, per $n \in N - \{0\}$ e $\forall x \in \mathbb{R}$ si ottiene $Dx^n = nx^{n-1}$.

Dimostrazione

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{\alpha} - x^{\alpha}}{h} = \lim_{h \to 0} \frac{x^{\alpha} (1 + \frac{h}{x})^{\alpha} - x^{\alpha}}{h} = \lim_{h \to 0} x^{\alpha} \frac{(1 + \frac{h}{x})^{\alpha} - 1}{h} = \lim_{h \to 0} x^{\alpha - 1} = \lim_{h \to 0} x^{\alpha - 1} = \alpha x^{\alpha - 1}$$

1 rappresentazione grafica [...]

2 Teorema e Dimostrazione

Siano $n \in \mathbb{R}$ e x > 0,

$$D\frac{1}{x^n} = \frac{n}{x^{n+1}}$$

1 rappresentazione grafica

7.4 Derivata della funzione radice quadrata

Teorema

Siano
$$\alpha = \frac{1}{2}$$
 e $x > 0$. $D x^{\alpha} = \frac{1}{2\sqrt{x}}$
Si ricordi che $(a+b)(a-b) = a^2 - b^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$$

$$= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} =$$

$$= \lim_{h \to 0} \frac{(x+h-x)}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})} =$$

$$= \lim_{h \to 0} \frac{1}{h(\sqrt{x} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$$
(2)

Rappresentazione grafica

La funzione radice quadrata [...].

7.5 Derivata della funzione seno

Teorema

Sia x espresso in radianti $D \sin(x) = \cos(x)$

Dimostrazione

Si ricordi che $sin(\alpha + \beta) = sin(\alpha) \cdot cos(\beta) + cos(\alpha) \cdot sin(\beta)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\sin(x) \cdot \cos(h) + \cos(x) \cdot \sin(h) - \sin(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\sin(x) [\cos(h) - 1] + \cos(x) \cdot \sin(h)}{h} =$$

$$= \lim_{h \to 0} \sin(x) \frac{\cos(h) - 1}{h} + \cos(x) \cdot \frac{\sin(h)}{h} =$$

$$= \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos(x)$$
(3)

Rappresentazione grafica

La funzione seno è periodica [...].

7.6 Derivata della funzione coseno

Teorema

Sia x espresso in radianti $D \cos(x) = -\sin(x)$

Dimostrazione

Si veda la definizione precedente

Rappresentazione grafica

La funzione coseno è periodica [...].

7.7 Derivata della funzione tangente

Teorema

La derivata della funzione tangente si può esprimere in due modi.

$$D \tan(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Dimostrazione

 $[\ldots]$

Rappresentazione grafica

La funzione tangente [...].

7.8 Derivata della funzione cotangente

Teorema

La derivata della funzione cotangente si può esprimere in due modi.

$$D \cot(x) = -\frac{1}{\sin^2(x)} = -[1 + \cot^2(x)]$$

Dimostrazione

 $[\dots]$

Rappresentazione grafica

La funzione cotangente [...].

7.9 Derivata della funzione esponenziale

Teorema

$$D~\alpha^x=\alpha^x\cdot ln~\alpha$$
 Se $\alpha=e,$ allora $D~\alpha^x=\alpha^x$ poiché $ln~e=1$

Dimostrazione

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\alpha^{x+h} - \alpha^x}{h} =$$

$$= \lim_{h \to 0} \frac{\alpha^x (\alpha^h - 1)}{h} = \lim_{h \to 0} (\alpha^x \frac{\alpha^h - 1}{h}) = \alpha^x \cdot \ln \alpha$$
(4)

Rappresentazione grafica

La funzione esponenziale [...].

7.10 Derivata della funzione logaritmica

Teorema

$$D \log_{\alpha} x = \frac{1}{x} \cdot \log_{\alpha} e$$

Se $\alpha = e$, allora $D \ln x = \frac{1}{x}$ Inoltre si può osservare che $D e^x = e^x$

Dimostrazione

Si ricordi che $\log_{\alpha} x - \log_{\alpha} y = \log_{\alpha} \frac{x}{y}$

Rappresentazione grafica

La funzione logaritmica [...].

7.11 Derivata di una funzione composta

Teorema

Se g è derivabile nel punto x_0 ed f è derivabile nel punto $z = g(x_0)$, allora la funzione composta y = f(g(x)) è derivabile in x_0 .

$$D[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Dimostrazione

 $[\ldots]$

7.12 Derivata della funzione inversa

Teorema

Se f(x) è invertibile in un intervallo I e derivabile in un punto $x_0 \in I$ con $f'(x_0) \neq 0$, allora anche f^{-1} è derivabile nel punto $y = f'(x_0)$ ed è:

$$D[f^{-1}(y)] = \frac{1}{f'(x)}$$

Esempio

La funzione $f(x) = x^3 + x$ è invertibile in R, si calcoli quindi la derivata della funzione inversa nel punto y = 2. Per applicare il teorema sopra descritto è necessario calcolare il valore di x al quale corrisponde y = 2, si risolva quindi l'equazione $x^3 + x = 2$

$$x^3 + x = 2 \Rightarrow (x - 1)(x^2 + x + 2) = 0 \Rightarrow x = 1$$

 $f'(x) = 3x^2 + 1$ e $f'(1) = 3 + 1 = 4$
Si applichi il teorema: $D[f^{-1}(2)] = \frac{1}{f'(1)} = \frac{1}{4}$

8 Operazioni con le derivate

8.1 Derivata del prodotto di una costante per una funzione

Teorema

$$D\left[k \cdot f(x)\right] = k \cdot f'(x)$$

Dimostrazione

$$f'(x) = \lim_{h \to 0} \frac{k \cdot f(x+h) - k \cdot f(x)}{h} =$$

$$= \lim_{h \to 0} \frac{k \cdot [f(x+h) - f(x)]}{h} =$$

$$= \lim_{h \to 0} k \frac{f(x+h) - f(x)}{h} = k \cdot f'(x)$$
(5)

Esempio

$$y = -3 \cdot lnx \to y' = -3 \cdot \frac{1}{x} = -\frac{3}{x}$$

8.2 Derivata della somma di funzioni

Teorema

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

Dimostrazione

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h} =$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)] + [g(x+h) - g(x)]}{h} =$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} =$$

$$= f'(x) + g'(x)$$
(6)

Esempio

$$f(x) = x e g(x) = 2 \cdot sin(x)$$
$$y = x + 2 \cdot sin(x) \rightarrow y' = 1 + 2 \cdot cos(x)$$

8.3 Derivata del prodotto di funzioni

Teorema

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Dimostrazione

Esempio

$$f(x) = x e g(x) = sin(x)$$

$$y = x \cdot sin(x) \rightarrow y' = 1 \cdot sin(x) + x \cdot cos(x)$$

8.4 Derivata del quoziente di due funzioni

Teorema

Sia $g(x) \neq 0$

$$D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) + f(x) \cdot g'(x)}{g^2(x)}$$

Dimostrazione

[...]

Esempio

[...]

8.5 Derivata del reciproco di una funzione

Teorema

Sia $f(x) \neq 0$

$$D \frac{1}{f(x)} = \frac{f'(x)}{f^2(x)}$$

Dimostrazione

Esempio

$$f(x) = \sin(x)$$

$$y = \frac{1}{\sin(x)} \to y' = -\frac{\cos(x)}{\sin^2(x)}$$

8.6 Derivata di una funzione elevata ad un numero naturale maggiore di uno

Teorema

Sia $n \in \mathbb{N}, n > 1$

$$D[f(x)]^n = n \cdot [f(x)]^{n-1} \cdot f'(x)$$

Dimostrazione

 $[\dots]$

Esempio

 $[\ldots]$

- 9 Applicazioni geometriche del concetto di derivata
- 9.1 Retta tangente e normale ad un una curva
- 9.1.1 Equazione della retta tangente

$$y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

9.1.2 Equazione della retta normale (o perpendicolare)

$$y - f(x_0) = -\frac{1}{f'(x_0)} \cdot (x - x_0)$$

Esempio

Data la funzione $y = f(x) = x^3 - 2x^2 + 1$ nel punto di ascissa $x_0 = 2$. $f(x_0) \Rightarrow f(2) = 2^3 - 2 \cdot 2^2 + 1 = 8 - 8 + 1 = 1$ $f'(x) = 3x^2 - 4x$ $f'(x_0) \Rightarrow f'(2) = 3 \cdot 2^2 - 4 \cdot 2 = 12 - 8 = 4$

Equazione della retta tangente

$$y-f(x_0) = f'(x_0) \cdot (x-x_0) \Rightarrow y-1 = 4(x-2) \Rightarrow y-1 = 4x-8 \Rightarrow y = 4x-7$$

Equazione della retta normale

$$y - f(x_0) = f - \frac{1}{f'(x_0)} \Rightarrow y - 1 = -\frac{1}{4}(x - 2) \Rightarrow y - 1 = -\frac{1}{4}x + \frac{1}{2} \Rightarrow y = -\frac{1}{4}$$

Quindi si possono ricavare i seguenti coefficienti angolari: $m=4, m_{\perp}=-\frac{1}{4}$

10 Derivate Parziali

Lo studio della derivata prima permette di conoscere se la funzione è crescente, decrescente o decrescente e se ammette massimi e minimi. Le funzioni in due variabili vengono studiate attraverso il comportamento di due derivate: le derivate parziali.

Definizione

Sia z = f(x; y) una funzione con dominio D e sia $P_0(x_0; y_0) \in D$, la derivata parziale di f rispetto a x nel punto P_0 è il limite (se esiste ed assume un valore finito) per $h \to 0$ del rapporto incrementale di f nel punto P_0 rispetto ad x_0 .

La derivata rispetto ad x si può indicare con i simboli:

- 1. z'_x
- 2. f'_x
- 3. $\frac{\delta f}{\delta x}$

$$f'_x(x_0; y_0) = \lim_{h \to 0} \frac{f(x_0 + h; y_0) - f(x_0; y_0)}{h}$$

Quando si deriva rispetto a x, la variabile y è paragonabile ad una costante; quando invece si deriva rispetto a y, la variabile x è equiparabile ad una costante.

Esempio
$$z = x^3 + y^2 - 4xy$$

Si consideri z come funzione della sola variabile x derivando quindi rispetto a quest'ultima, si consideri y come una costante.

$$z_x' = 3x^2 - 4y$$

Si consideri z come funzione della sola variabile y derivando quindi rispetto a quest'ultima, si consideri x come una costante.

$$z_y' = 2y - 4x$$

10.1 Significato geometrico

Consideriamo la superficie che rappresenta una funzione z = f(x; y), il punto $P_0(x_0; y_0)$ e la sua immagine $A(x_0; y_0; z_0)$. A appartiene alla

superficie S. Sezionando questa superficie con un piano passante per A e parallelo al piano Oxz, si ottiene la curva γ . L'equazione del piano α è $y=y_0$. La curva γ è l'insieme dei punti di S che hanno ordinata costante y_0 . Il coefficiente angolare della retta r tangente a γ in A è $f'_x(x_0;y_0)$. Allo stesso modo, sezionando la superficie S con un piano β passante per A e parallelo al piano Oyz si ottiene la curva δ . Il coefficiente angolare della retta s tangente a δ in A è $f'_y(x_0;y_0)$.

10.2 Piano tangente a una superficie

Considerando ancora la superficie S, le rette tangenti r e s individuano il piano tangente alla superficie nel punto A. Per determinare la sua equazione, bisogna considerare l'equazione di un generico piano passante per $A(x_0; y_0; z_0)$, ovvero: $z - z_0 = m(x - x_0) + l(y - y_0)$

Sezionando il piano per A con il piano di equazione $y = y_0$, si ottiene la retta di equazione $z - z_0 = m(x - x_0)$

La retta trovata deve essere tangente alla curva in A, quindi $m = f'_x(x_0; y_0)$ così come $l = f'_y(x_0; y_0)$

Di conseguenza, se il piano tangente esiste, ha equazione: $z - z_0 = f'_x(x_0; y_0)(x - x_0) + f'_y(x_0; y_0)(y - y_0)$

Isolando z si ottiene:
$$z = f(x_0; y_0) + f'_x(x_0; y_0)(x - x_0) + f'_y(x_0; y_0)(y - y_0)$$

Questa è l'equazione di un piano poiché è lineare nelle variabili x, y, z. Il piano passa per A perché le sue coordinate soddisfano l'equazione.

Esempio 1

Si determini l'equazione del piano tangente alla superficie $z = 4x^2 + y^2 - 6x$ nel suo punto A(2;3;13). Si calcolino innanzitutto le derivate parziali della funzione in $P_0(2;3)$.

$$f'_x = 8x - 6 \rightarrow f'_x(2;3) = 8 \cdot 2 - 6 = 10$$

 $f'_y = 2y \rightarrow f'_y(2;3) = 2 \cdot 3 = 6$
L'equazione del piano tangente è: $z = 13 + 10(x - 2) + 6(y - 3)z = 10x + 6y - 25$

Esempio 2

Le funzioni in due variabili possono non avere punti in cui non esiste il piano tangente. Si determini il piano tangente alla superficie z=

$$\sqrt{x^2+y^2}$$
 nel suo punto $O(0;0;0)$.

Si calcolino le derivate parziali prime nel punto O(0;0;0).

$$z'_{x} = \lim_{\Delta x \to 0} \frac{z(0 + \Delta x; 0)}{\Delta x} = x_{1,2}$$

Con
$$x_1 = -1$$
 se $\Delta x \to 0^-$ e $x_2 = 1$ se $\Delta x \to 0^+$.

Se non esiste la derivata parziale rispetto a x, allora non esiste la derivata parziale rispetto a y. La superficie è un cono indefinito con vertice in O. Esistono infiniti piani che hanno in comune con il cono solo il vertice, non esiste quindi il piano tangente al cono nel suo vertice.

10.3 Differenziale

Definizione

Siano definiti i seguenti limiti:

$$\lim_{\Delta x \to 0} \alpha = 0 \quad ; \quad \lim_{\Delta y \to 0} \alpha = 0$$

La funzione f è differenziale nel punto $P_0(x_0; y_0)$ se l'incremento Δf si può scrivere come segue:

$$\Delta f = f'_x(x_0; y_0) \cdot \Delta x + f'_y(x_0; y_0) \cdot \Delta y + \alpha \cdot \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

Il differenziale totale di f nel punto $P_0(x_0; y_0)$ si indica con df:

$$f'_x(x_0; y_0) \cdot \Delta x + f'_y(x_0; y_0) \cdot \Delta y$$

Il differenziale parziale rispetto a x in $P_0(x_0; y_0)$ è $f'_x(x_0; y_0) \cdot \Delta x$ Il differenziale parziale rispetto a y in $P_0(x_0; y_0)$ è $f'_y(x_0; y_0) \cdot \Delta y$

Si considerino g(x;y)=x e h(x;y)=y ed i loro differenziali totali: $dg=dx=1\cdot\Delta x+0\cdot\Delta y=\Delta x$ e $dh=dy=0\cdot\Delta x+1\cdot\Delta y=\Delta y$ Risulta quindi $dx=\Delta x$ e $dy=\Delta y$, ovvero risulta che gli incrementi x e y sono uguali ai differenziale totali.

La differenziabilità assicura continuità.

10.4 Derivate parziali seconde

Definizione

Sia z = (x; y) dotata di derivate parziali f'_x e f'_y , ovvero le derivate

parziali prime. Se queste sono funzioni derivabili, si possono definire le derivate parziali seconde.

Derivata parziale rispetto a x della derivata parziale rispetto a x: f''_{xx} Derivata parziale rispetto a x della derivata parziale rispetto a y: f''_{xy} Derivata parziale rispetto a y della derivata parziale rispetto a x: f''_{yx} Derivata parziale rispetto a y della derivata parziale rispetto a y: f''_{yy}

Le derivate f''_{xy} e f''_{yx} sono dette derivate miste.

Teorema di Schwartz

Se z = f(x; y) ha derivate seconde miste che siano continue in I, allora:

$$f_{xy}''(x;y) = f_{yx}''(x;y) \quad \forall x \in I$$

11 Studio della derivata prima

11.1 Il Teorema di Fermat

Il Teorema di Fermat per le derivate e punti stazionari stabilisce che una funzione ammette un punto di massimo o minimo relativo (o assoluto) in un punto x_0 . In questo punto la funzione è derivabile e la sua derivata prima è nulla.

11.2 Il Teorema di Rolle

Sia f(x) una funzione continua e derivabile nell'intervallo chiuso e limitato [a;b] e derivabile in]a;b[. Se f(x) assume lo stesso valore agli estremi dell'intervallo, ovvero f(a) = f(b) allora esiste almeno un punto $x_0 \in]a;b[:f'(x_0) = 0$

11.3 Punti stazionari

I punti stazionari (o punti critici) sono punti interni al dominio della funzione e annullano la derivata prima. Considerando y = f(x) una funzione che ha per dominio l'insieme I =]a; b [e sia $x_0 \in I$. x_0 è un punto stazionari se f è derivabile in esso e se $f'(x_0) = 0$.

11.4 Crescenza e decrescenza della funzione

Dopo aver trovato i punti stazionari della funzione, si prosegue studiando il segno della derivata prima in modo da trovare i punti di massimo e minimo relativi. Si pone f'(x) > 0 e si studia il suo comportamento. Se f'(x) < 0 in $I^-(x_0)$ e f'(x) > 0 in $I^+(x_0)$ allora x_0 è un punto di minimo relativo e si indica con m. Se f'(x) > 0 in $I^-(x_0)$ e f'(x) < 0 in $I^+(x_0)$ allora x_0 è un punto di massimo relativo e si indica con M.

11.5 Studio dei punti di non derivabilità

11.5.1 Punto angoloso

Il punto x_0 è un punto angoloso se:

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = c_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = c_2 \in \mathbb{R}$$

La funzione f(x) = |x| presenta, per esempio, un punto angolo in $x_0 = 0$

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to 0^+} \frac{|h|}{h} = \lim_{x \to 0^+} \frac{+h}{h} = 1$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to 0^{-}} \frac{|h|}{h} = \lim_{x \to 0^{-}} \frac{-h}{h} = -1$$

11.5.2 Cuspide

Se in un intorno di zero i limiti destro e sinistro sono infiniti e di segno opposto, la funzione presenta una cuspide.

Il punto x_0 è un punto di cuspide se:

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty; \lim_{x \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty$$

oppure

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty; \lim_{x \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty$$

Si consideri, per esempio, la funzione $f(x) = \sqrt{|x|}$

$$\lim_{x \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to 0^{+}} \frac{\sqrt{|h|}}{h} = \lim_{x \to 0^{+}} \frac{\sqrt{+h}}{h} = +\infty$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to 0^{-}} \frac{\sqrt{|h|}}{h} = \lim_{x \to 0^{-}} \frac{\sqrt{-h}}{h} = -\infty$$

f(x) presenta un punto di cuspide in $x_0 = 0$.

11.5.3 Flessi

Un punto di flesso è un punto $x_0 \in I$ in cui la curva cambia concavità nel passare da I^- a I^+ . La retta tangente nel punto di flesso si chiama tangente inflessionale.

Sia f(x) continua e derivabile in I = [a; b] e sia t la retta tangente a f(x) in $x_0 \in I$. Poiché f(x) è derivabile, t esiste in ogni x_0 .

Considerando i punti P(f(x); n) e A(0; n) con $n \in I$, si ha una concavità verso l'alto se $y_P > y_A$. L'ordinata di f(x) è maggiore dell'ordinata di t (l'ascissa è la stessa).

Si ha invece una concavità verso il basso se $y_P < y_A$. L'ordinata di f(x) è minore dell'ordinata di t (l'ascissa è la stessa).

11.5.4 Flesso ascendente

 x_0 è un punto di flesso ascendente se f(x) è concava verso il basso in $I^-(x_0)$ e concava verso l'alto in $I^+(x_0)$.

11.5.5 Flesso discendente

 x_0 è un punto di flesso discendente se f(x) è concava verso l'alto in $I^-(x_0)$ e concava verso il basso in $I^+(x_0)$.

11.5.6 Flesso a tangente verticale

Se in un intorno di zero i limiti destro e sinistro sono infiniti e di segno uguale, la funzione presenta un fesso a tangente verticale. Il punto x_0 è un punto di fesso a tangente verticale se:

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty; \lim_{x \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty$$

oppure

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty; \lim_{x \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty$$

Si consideri, per esempio, la funzione $f(x) = \sqrt[3]{x}$ I flessi a tangente verticale sono tipici delle radici ad indice dispari

11.5.7 Flesso a tangente orizzontale

[...]

11.6 Determinazione dei punti di massimo e minimo

12 Calcolo della derivata seconda

12.1 Concavità

La funzione è concava verso l'alto in x_0 se, in I = [a; b], il suo grafico si trova sopra la retta tangente di x_0 . La funzione è concava verso il basso in x_0 se, in I = [a; b], il suo grafico si trova sotto la retta tangente di x_0 .

12.2 Determinazione dei punti di flesso

 $[\dots]$

13 Bibliografia

13.1 Link utili

Ecco alcuni link utili utilizzati per scrivere questo testo:

- Insieme Q su YouMath
- Insieme R su YouMath
- Insieme C su YouMath
- Spaziamento in modalità math
- Simboli matematici
- Punti di non derivabilità

• Lettere accentate in LaTeX