TD 11: Files d'attente markoviennes

Exercice 1:

On suppose que des requètes informatiques arrivent à N serveurs (identiques) selon un processus de Poisson de paramètre $\lambda>0$. Chaque serveur ne peut traiter à chaque instant qu'une requète à la fois. Le temps de traitement d'une requète par un serveur est donné par une v.a. de loi exponentielle de paramètre $\mu>0$. Les temps de traitements sont indépendants (entre eux et du processus des arrivées) et une requète traîtée par un serveur quitte le système. Si les N serveurs sont occupés, la requète est mise en file d'attente. Il s'agit d'un modèle $M/M/N/+\infty$.

Soit Z_t le nombre total de requètes qui sont à l'instant t en traitement ou dans la file d'attente.

- 1. Déterminer le générateur infinitésimal du PMS $(Z_t)_{t\geqslant 0}$ et la matrice de transition de la chaîne de Markov induite.
- 2. Sous quelle condition sur les paramètres λ et μ le processus $(Z_t)_{t\geqslant 0}$ est-il récurrent positif? Déterminer alors sa probabilité invariante π .
- 3. Pour tous paramètres λ et μ déterminer $\lim_{t\to+\infty} P_t(i,j)$.
- 4. On considère maintenant le cas N=1. Soit U le temps d'attente à l'équilibre (ou en régime stationnaire). Déterminer la fonction de survie de U i.e.

$$\forall t \geqslant 0, \quad \mathbf{P}_{\pi} \left[U > t \right].$$

Exercice 2:

Des véhicules arrivent à une station aux instants $0 < \tau_1 < \tau_2 < \cdots$ d'un processus de Poisson de paramètre $\lambda > 0$. Chaque véhicule dépose deux passagers qui se placent dans une file. Ils sont alors servis un par un. Les temps de service sont i.i.d. de loi exponentielle de paramètre $\mu > 0$ et indépendants des arrivées.

- 1. On note M_t le nombre de clients arrivés entre 0 et t. Quelle est la limite presque sûre de M_t/t lorsque $t \to \infty$?
- 2. Montrer que M_t est un PMS dont on déterminera le semi-groupe de transition $(\tilde{P}_t)_{t\geqslant 0}$ et générateur infinitésimal \tilde{A} .

On note X_t le nombre de clients présents dans la station à l'instant t.

3. Montrer que le processus $(X_t)_{t\geqslant 0}$ est un PMS de générateur infinitésimal A qui a pour termes non diagonaux pour tout n

$$A(n, n + 2) = \lambda$$
, $A(n, n - 1) = \mu \text{ si } n > 0$.

- 4. Montrer que le processus $(X_t)_{t\geqslant 0}$ est irreductible. Est-il réversible?
- 5. Montrer que le processus $(X_t)_{t\geqslant 0}$ est récurrent positif si et seulement si $\mu>2\lambda$ (considérer la fonction génératrice g de la mesure π solution de $\pi A=0$ i.e. $g(s)=\sum_{n\geqslant 0}s^n\pi(n)$ pour $0\leqslant s\leqslant 1$).
- 6. Sous la condition $\mu > 2\lambda$, déterminer $\mathbf{E}_{\pi}[X_t]$.
- 7. Quelle est la file la plus efficace entre celle considérée ci-dessus et la file $M/M/1/\infty$ avec le même taux moyen d'arrivée 2λ et de service μ ?

Exercice 3:

Soit $(\tau_n)_{n\geqslant 0}$ un processus de renouvellement *i.e.* tel que $0=\tau_0<\tau_1<\cdots<\tau_n<\cdots$ et $(\tau_n-\tau_{n-1})_{n\geqslant 1}$ est *i.i.d.*. Soit $(N_t)_{t\geqslant 0}$ le processus de comptage associé

$$\forall t \geqslant 0, \quad N_t = \sum_{n=1}^{+\infty} \mathbf{1}_{[0,t]}(\tau_n)$$

1. Montrer, en utilisant la loi de grands nombres, que

$$\lim_{t\rightarrow +\infty}\frac{N_{t}}{t}=\frac{1}{\mathbf{E}\left[\tau_{1}\right] }\quad p.s.$$

- 2. Soit $\mathscr{F} = (\mathscr{F}_n)_{n \geqslant 0}$ la filtration engendrée par $(\tau_n)_{n \geqslant 0}$ i.e. $\mathscr{F}_n = \sigma(\tau_1, \dots, \tau_n)$ et T un \mathscr{F} -temps d'arrêt. Montrer que $\mathbf{E}[\tau_T] = \mathbf{E}[\tau_1] \mathbf{E}[T]$ (lemme de Wald).
- 3. Supposons τ_1 borné. Montrer que

$$\lim_{t \to +\infty} \mathbf{E} \left[\frac{N_t}{t} \right] = \frac{1}{\mathbf{E} \left[\tau_1 \right]}$$

4. Etendre le résultat au cas τ_1 non borné.

Exercice 4:

Des clients arrivent à des instants de sauts $T_1 < T_2 < \cdots < T_n < \cdots$ d'un processus de Poisson homogène $(N_t)_{t\geqslant 0}$ de paramètre $\mu>0$. Soit une suite $(V_n)_{n\geqslant 1}$ i.i.d., indépendante de $(N_t)_{t\geqslant 0}$, de loi G portée par $\mathbf N$ et caractérisée par les $p_i=G(\{i\}),\ i\in \mathbf N$ avec $p_0=0$. On note $g(s)=\sum_{n\geqslant 0} s^n p_n$ la fonction génératrice de la loi G. Le nombre de clients arrivés entre 0 est t est donné par

$$Z_t = \sum_{n \geqslant 1} V_n \mathbf{1}_{\{T_n \leqslant t\}}.$$

On suppose qu'il y a un seul serveur et que les clients ont des temps de service indépendants entre eux et de toutes les autres variables de loi exponentielle de paramètre $\nu > 0$.

Soit X_t le nombre de clients présents dans la file d'attente à l'instant t.

- 1. Montrer que $(X_t)_{t\geq 0}$ est une PMS et déterminer son générateur infinitésimal A.
- 2. Montrer qu'il est irréductible et qu'il n'explose pas.
- 3. Supposons qu'il existe probabilité invariante π pour $(X_t)_{t\geqslant 0}$ de fonction génératrice ψ . Montrer qu'alors

$$\forall 0 \le s < 1, \quad \psi(s) = \frac{\nu \pi(0)(1-s)}{s\mu(g(s)-1) + \nu(1-s)}.$$

En déduire que $m = \mathbf{E}[V_1] < +\infty$ et que $m^{\mu}_{\lambda} < 1$.

- 4. Montrer réciproquement que si $m^{\mu}_{\lambda} < 1$ alors il existe une probabilité invariante et une seule.
- 5. Que peut-on dire de la récurrence du processus $(X_t)_{t\geqslant 0}$?
- 6. Quelle est l'espérance de X_t à l'équilibre (ou en régime stationnaire)?

Exercice 5:

On considère une file d'attente M/M/1/0. Il s'agit d'une file à un serveur avec temps d'arrivés et de services Poissoniens et une salle d'attente à 0 place : si un client arrive alors que le serveur est déjà occupé, ce client est rejetté.

La taille du système X_t est donc à valeur dans $\{0,1\}$. Son générateur A s'écrit

$$A = \left(\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array} \right),$$

où $\lambda, \mu > 0$. On note T_n les temps de sauts successifs du processus $(X_t)_{t \geqslant 0}$. Excepté pour la question 5, on supposera toujours $X_0 = 0$.

- 1. Quelle est la loi de $(T_1, T_2 T_1)$.
- 2. Plus généralement quelle est la loi du vecteur

$$(T_1, T_2 - T_1, \dots, T_{2n-1} - T_{2n-2}, T_{2n} - T_{2n-1})$$

- 3. Montrer que si $\lambda = \mu$ alors $(T_n)_{n \ge 1}$ représente les instants de sauts d'un processus de Poisson.
- 4. Calculer la probabilité invariante π du processus $(X_t)_{t \ge 0}$.
- 5. Le processus des sorties est-il à l'équilibre un processus de Poisson? (on pourra calculer $\mathbf{E}_{\pi}\left[e^{-\alpha S}\right]$ pour $\alpha \geqslant 0$ où S est le l'instant de sortie du premier client).
- 6. Déterminer $(P_t)_{t\geqslant 0}$ le semi-groupe de transition.