UCSI UNIVERSITY

B.ENG. (HONS) IN MECHATRONIC ENGINEERING

COURSE OUTLINE

Subject name	Engineering Fundamentals											
Subject code	EE104											
Status	Minor											
Credit hour	2											
Semester/Year	1/1											
	1/1 Nil											
Pre-requisite												
Teaching method	Lecture											
Assessment	Test 10% Mid-Term 20%											
	Assignments 10% Project Presentation 10%											
	Final Exam 50%											
	The course has four assessment components as described above.											
	The course has four assessment components as described above. Tests: Test will be conducted on week 4-5 of the semester.											
	Midterm exam: will be conducted on week 8-9 of the semester. Assignment: Assignment will be given throughout the semester that w											
	Assignment: Assignment will be given throughout the semester that will focus on learning outcomes related to knowledge & understanding,											
	focus on learning outcomes related to knowledge & understanding, practical and intellectual skills. It is compulsory to submit all											
	practical and intellectual skills. It is compulsory to submit all assignments; failing to do so will result in complete failure in the subject.											
	Project Presentation: Projects will be given to all students at the											
	beginning of the semester and projects can be either on group or											
	individual basis. Students are required to submit the project findings and											
	do the project presentation in the class.											
	<i>Final Exam</i> component: 2 hours duration.											
	40% ruling: Applicable											
	Supplementary exam: Applicable (on the final exam only)											
Lecturer	Mr. Thair											
Objective	This unit aims to:											
	1. Introduce to students the careers in engineering and available options											
	in the various fields of engineering.											
	2. Introduce to students the basic knowledge and needs of engineering											
	problem solving and presentations.											
	3. Provide students with a fundamental understanding of how engineers											
	function in today's progressing world.											
	4. Introduce to students professional ethics and role of professional											
	bodies											
	5. Introduce to students to risk management and sustainability6. Develop students' skills in solving open-ended problems.											
	7. Motivate students to continue their engineering education.											
	7. Motivate students to continue their engineering education.											
Learning	Upon completion of this module, the student will be able to:											
Outcomes	1. Understand the engineering profession as well as the interaction											
	between various engineering disciplines.											
	2. Understand the importance of being competitive in the international											
	marketplace and how to use teaming and problem-solving skills to											
	achieve a high level of competitiveness.											
	3. Understand the need for developing their technical and non-technical											
	abilities in their chosen discipline.											

	4. Understand role of professional bodies	and the	ir importa	nce for
	professional ethics and code of practice.	*1*1	.1 11.1.1	
	5. Understand the importance of sustainab management of risk.	mity, pro	oduct nabn	nty and
	6. Understand the procedure for approaching	an engir	neering des	sign and
	problem solving, determining the neces			
	solution, and presenting the results.	-		
	7. Understand the engineering estimation and	d the use	of dimensi	ons and
	units.		.1 1.6.	11.1. C.
	8. Enhance the ability to use software application the analysis and presentation of engineering		ucn as ma	tiab for
Syllabus &	the unarysis and presentation of engineering	Lectu	<u>Tutoria</u>	<u>Lab</u>
Contact hour	1. Engineering - Definition; the technology	re	<u>l</u>	
	team; functions of the engineer; the	8	_	
	engineering disciplines; total quality in			
	engineering; education of the engineer;			
	professionalism and code of ethics;			
	professional and technical organizations; professional development; role and			
	responsibilities of the engineer in today's			
	world, Engineering education and			
	professionalism; challenges of the future.			
	2. Engineering Ethics (a case study	2		
	approach), Ring ceremony.			
	3. Sustainability; social implications of	3		
	technology, environmental impact of technology.	2		
	4. Engineering academic programmes -			
	Selection of a programme; a Malaysian			
	overview; where students end up;			
	relationship between institution and	3		
	industry.			
	5. Design as a part of Engineering – Definition of design; an approach to			
	design; reflections on the process;			
	design vs analysis; dealing with	2		
	uncertainty; failure and safety;			
	management of risk and product liability.	_		
	6. Engineering Solutions - Problem analysis;	2		
	the engineering method; problem presentation; standards of problem			
	presentation.	2		
	7. Representation of Technical Information –	_		
	Collecting and recording data; general			
	graphing procedures; empirical	2		
	functions; curve fitting; method of	2		
	selected points; empirical equations – linear and exponential curves.	2		
	8. Engineering Estimations and			
	Approximations - Significant digits;			
	accuracy and precision; errors;			
	approximations.			
	9. Preparation for Computer Solutions -			
	Introduction to engineering software;			
	Matlab, Pspice			

Total hour	28												
Textbook	ENGINEERING FUNDAMENTALS AND PROBLEM SC	LVING, 4TI	H ED.,										
	by Arvid, Eide, Roland Jenison, Lane Mashaw, and Lar	ry Northup.											
	McGraw Hill												
Reference	FOUNDATION OF ENGINEERING, 3RD ED., by Mark	T.Holtzappl	e,										
	W.Dan Reece. McGraw Hill												
	FUNDAMENTALS OF ENGINEERING DESIGN, 2 nd ED., by Barry Hyman,												
	Prentice Hall, 2002.												
	ENGINEERING ETHICS, AND THE ENVIRONMENT, 1	y P.A.Vesili	ind,										
	A.S.Gunn, Cambridge University Press.												
Lab session (if	Nil												
any)													

Matrix CO/PO

	Knowledge & Understanding						Intellectual Skills				Practical Skills					Transferable Skills						
	1	2	3	4	5	6	7	8	1	2	3	4	1	2	3	4	5	6	1	2	3	4
CO/ PO	В	A		С			В	С				В				С						

A: strongly related B: Moderately C: Slightly