Total No. of Printed Pages:5

F.E. Semester-I (Revised Course 2007-08) EXAMINATION Aug/Sept 2019 Basic Civil Engineering & Engineering Mechanics

[Duration : Three Hours] [Max. Marks : 100]

Instructions:

- 1) Answer any 5 question, minimum one question from each Module.
- 2) Assume additional data if required and state them clearly.
- 3) Draw neat sketches wherever necessary.

Module I

1	a.	Explain the importance of the following. i. Geotechnical Engineering ii. Structural Engineering	10
	b.	Write a note on components of roads.	5
	c.	distingues between load bearing structures and framed structures.	5
2	a.	Describe combined footing and also explain when we use this type of footing	5
	b.	Explain what are the various components of a super structure of a building?	5
	c.	Write a note on i. Ready mix concrete ii. Workability of concrete	10

Module - II

a. Three cylinders are placed in a ditch determine the reaction between cylinder A and the vertical wall the weight of the cylinders A, B, C are as follows 75N,200N,100N and the radii is 100mm, 150mm and 125mm

Fig 1 (3a)

Paper / Subject Code: FE113 / Basic Civil Engineering & Engineering Mechanics

FE113

b. Find the resultant of the force acting the member?

10

a. Determine the forces in various segments of the cable loaded?

4

10

b. Find the magnitude and direction of reactions at support of the beam?

10

Fig 4 (4b)

FE113

MODULE III

a. Determine the moment of inertia of section about axis AD.

5

10

fig 5 (5a)

b. Find the position of the centroid of the shaded area shown. Take x=15mm

10

Fig 6 (5b)

10

6

a. The system of bodies will impend at an application of force P. find the force P? Coefficient of friction is 0.2. Assume pulley to be smooth

Fig 7 (6a)

b. Determine the least value of α which the ladder may be placed at without slipping, the ladder is carrying a vertical weight of 900N at a distance of 1m from the wall? The coefficient of friction is 0.4 between the ladder and the wall, and 0.3 between ladder and the floor.

10

Fig 8(6b)

10

MODULE IV

a. Two blocks A and B are placed on incline planes at 30° and 60° to the horizontal the blocks weigh 2000N and 1800N. find the tension in the string and the time required to attain a velocity of 9.81 m/s $\mu = 0.2$ assume pulleys to be frictionless.

Fig 9(7a)

b. Determine the force P required for a system shown below to attain a velocity of 3 m/s after moving 4.5m from rest. What is the tension in the string? Assume coef of friction $\mu = 0.20$ and friction less pulley. Use work energy equation

8

7

a) In a simple lifting machine an effort of 500N is to be moved by a distance of 20m to raise a load of 10000N by a distance of 0.8m, Determine the velocity ratio mechanical Advantage and efficiency of the machine. Also determine the ideal effort, effort lost in friction, ideal load and frictional resistance.

10

b) A Double purchase crab has the following details:
No. of teeth on pinion =15 and 20
No. of teeth on spur wheel = 45 and 40
Diameter of load axel=150mm
Efficiency = 40%

10

What load will be lifted by an effort of 250N applied at the end of the handle?