

PAMS Project meeting 16th May 2017, Kraków

First principles study of CI-doped 5-AGNR on Au(111) surface

Pedro Brandimarte

5-AGNR realized with one step reaction

5-AGNR realized with one step reaction

Free standing CI-5-AGNR

symmetric

$$E_{tot} = -5178.84 \text{ eV}$$

flat

$$E_{tot} = -5175.93 \text{ eV}$$

asymmetric

$$E_{tot} = -5179.04 \text{ eV}$$

Population analysis: Mulliken

Partitioning in Hilbert space

$$N = \int d\mathbf{r} \sum_{i} n_{i} |\psi_{i}(\mathbf{r})|^{2} = \sum_{A} \sum_{\mu \in A} (DS)_{\mu\mu}$$

Population analysis: Mulliken

Partitioning in Hilbert space

$$N = \int d\mathbf{r} \sum_{i} n_{i} |\psi_{i}(\mathbf{r})|^{2} = \sum_{A} \sum_{\mu \in A} (DS)_{\mu\mu}$$

Population analysis: Mulliken

Partitioning in Hilbert space

$$N = \int d\mathbf{r} \sum_{i} n_{i} |\psi_{i}(\mathbf{r})|^{2} = \sum_{A} \sum_{\mu \in A} (DS)_{\mu\mu}$$

$$Q_A^{Mulliken} = eZ_A - eN_A$$

Population analysis: Mulliken

Population analysis: Hirshfeld

$$ho^{pro}(m{r}) = \sum_A
ho_A^{free}(m{r})$$

Population analysis: Hirshfeld

$$ho^{pro}(m{r}) = \sum_A
ho_A^{free}(m{r})$$

$$ho_A^{eff}(m{r}) = rac{
ho_A^{free}(m{r})}{
ho_A^{pro}(m{r})}
ho^{mol}(m{r})$$

Population analysis: Hirshfeld

$$ho^{pro}(m{r}) = \sum_{A}
ho_A^{free}(m{r})$$

$$ho_A^{eff}(oldsymbol{r}) = rac{
ho_A^{free}(oldsymbol{r})}{
ho_A^{pro}(oldsymbol{r})}
ho^{mol}(oldsymbol{r})$$

$$Q_A^{Hirshfeld} = eZ_A - e \int d\mathbf{r} \rho_A^{eff}(\mathbf{r})$$

Population analysis: Hirshfeld

Population analysis: Hirshfeld

Population analysis: Bader

$$\nabla \rho(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) = 0, \quad \forall \mathbf{r} \in \partial \Omega$$

Population analysis: Bader

$$\nabla \rho(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) = 0, \quad \forall \mathbf{r} \in \partial \Omega$$

$$Q_A^{Bader} = eZ_A - e \int_{\Omega_A} d\mathbf{r} \rho(\mathbf{r})$$

Population analysis: Bader

Population analysis: Bader

Interaction between CI-5AGNRs

initial

Interaction between CI-5AGNRs

Interaction between CI-5AGNRs

Interaction energy: $\Delta E = E_{tot} - E_{GNR1} - E_{GNR2}$

gas phase geometry

Interaction between CI-5AGNRs

Interaction energy: $\Delta E = E_{tot} - E_{GNR1} - E_{GNR2}$

Electrostatic potential (mapped on charge density surface)

Interaction between CI-5AGNRs on Au(111) surface

optimization

Interaction between CI-5AGNRs on Au(111) surface

Interaction between CI-5AGNRs on Au(111) surface

Induced charge upon adsorption

Electrostatic potential (mapped on charge density surface)

symmetric

Electrostatic potential (mapped on charge density surface)

5-AGNR realized with one step reaction

Electrostatic potential (mapped on charge density surface)

Pristine 5-AGNR

Electrostatic potential (mapped on charge density surface)

Thank you for your attention!

