Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples

Abulhair Saparov Richard Yuanzhe Pang Vishakh Padmakumar Seyed Mehran Kazemi Najoung Kim*

Nitish Joshi

Example from PrOntoQA-OOD (Proof-and-oncology-generated QA, OOD): a programmable dataset

[Input]

Q: Sterpuses are tumpuses. Each sterpus is large. Vumpuses are zumpuses. Zumpuses are not spicy. Each vumpus is not slow. Each vumpus is a brimpus. Fae is a sterpus. Fae is a vumpus.

Prove: Fae is not slow.

[Output] A: Fae is a vumpus. Each vumpus is not slow. Fae is not slow.

Out-of-demonstration generalization

("training" refers to 8-shot prompting / in-context learning)

3

PrOntoQA-OOD covers more deduction rules

 $f(a) \ \forall x \ (f(x) \rightarrow g(x))$ **Implication** Alex is a cat. All cats are carnivores. Alex is a carnivore. elimination g(a)A BConjunction Alex is a cat. Alex is orange. Alex is a cat and orange. introduction $A \wedge B$ $A \wedge B$ Conjunction Alex is a cat and orange. Alex is orange. elimination A A Disjunction Alex is a cat. Alex is a cat or orange. introduction $A \vee B$ Disjunction Alex is a cat or a dog. Suppose Alex is a $A \lor B A \vdash C B \vdash C$ elimination cat ... then Alex is warm-blooded. Suppose Alex is a dog ... then Alex is (proof by warm-blooded. Alex is warm-blooded. cases) Alex is cold-blooded. If Alex is a $A \vdash B$ mammal, Alex is not cold-blooded. Proof by Suppose Alex is a mammal. Alex is not contradiction $A \wedge B$ cold-blooded. This contradicts with Alex is cold-blooded. Alex is not a mammal.

ICL generalizes differently from supervised learning

(ICL: in-context learning)

It could be worse to provide in-context examples from the same distribution as the test example!

Figure: better generalization to compositional proofs when the in-context examples each contain individual deduction rules

Chain-of-thought (CoT) can elicit OOD reasoning

CoT can elicit OOD reasoning in LLMs generalizing to

- unseen rules (however, for proof by cases and proof by contradiction: LLMs require need in-demonstration examples)
- compositional proofs and longer proofs (provided they are given in-context examples of suitable depth)

ID: Rule generalization 1.00 broof accuracy 0.50 -0.25 -**GPT-3.5** PaLM LLaMA FLAN-T5 implication disjunction disjunction proof by conjunction conjunction elimination contradiction elimination introduction introduction elimination OOD: Rule generalization 0.5

Larger model != better deductive reasoning

Models experimented

	FLAN-15	LLaMA	GP1-3.5	Palm
Model Size	11B	65B	175B*	540B
Instruction Tuned	✓	*	~	*
RLHF	*	*	~	*
Access	Open	Limited	Limited	Limited

As shown in prior figures, model size does not strongly correlate with reasoning ability.

△ proof accuracy implication conjunction conjunction disjunction disjunction proof by introduction elimination introduction elimination contradiction elimination