

Evaluation N° 1 2 Semestre Sciences de la Vie et de la Terre

Année scolaire : 2017-2018

Niveau: 1 ére année Bac. Mathématiques.

Date: 19/03/2018 Durée: 2 heures

Professeur: Hanane NAFIA

Partie 1: Restitution des connaissances : 5 points

Exercice 1:2,5 pts

1) Définir: 1 pt

Génie génétique - Sonde moléculaire - Banque génomique - Sable

2) Repérer la (les) bonne(s) proposition(s) et corriger celle(s) qui est (sont) fausse(s) : 1,5 pt

- a / La production de l'insuline se fait par introduction de deux gènes, l'un codant pour la chaine A, l'autre codant pour la chaine B.
- b /En génie génétique, la transcriptase inverse permet de former l'ARN copie à partir de l'ADN.
- c/ Le gène cloné ne peut s'exprimer que s'il possède les séquences régulatrices nécessaires à sa transcription en ARN messager.
- d/ En génie génétique, l'isolement d'un gène à partir de l'ADN nécessite des enzymes ligases.
- e/ Les grains EL sont des grains transparents, anguleux, aux arrêtes tranchantes.
- f/ Les rides symétriques témoignent de courant bidirectionnel.

Exercice 2:2,5 pts

Questions à réponses courtes :

- A) Citer les étapes de préparation du sable pour l'étude granulométrique.
- B) Citer trois exemples de figures sédimentaires.
- C) Expliquer pourquoi le colibacille représente le matériel préféré des biologistes pour les recherches concernant la structure et le fonctionnement des gènes.

Partie 2 : Raisonnement scientifique et communication écrite et graphique : 15 points

Exercice: 1(9 points)

L'analyse granulométrique d'un sable a donné les valeurs représentées dans le tableau du document 1.

Diamètres des grains en mm	Pourcentage pondéral	pourcentage cumulatif
84	5%	
42	10%	
21	25%	
11/2	40%	
1/21/4	10%	
1/41/8	8%	
1/81 /16	2%	

Document 1

Indice de classement S ₀	Type de classement
S ₀ < 1,23	Très bien classé
1,23 < S ₀ < 1,41	Bien classé
1,41 < S ₀ < 1,74	Moyennement classé
1,74 < S ₀ < 2	Mal classé
S ₀ > 2	Très mal classé

Document 2

sédiments. A=fluviatile, B=embouchure, C=littoral, D=fluviatile, E=éolien , F= glaciaire.

Document 3

- 1) Compléter le tableau du document 1. 1 pt
- 2) Tracer l'histogramme et la courbe de fréquence de ce sable.
 - 1,5 pt
- 3) Analyser la courbe de fréquence obtenue, puis conclure l'homogénéité de ce sable.
- 1,5 pt
- 4) Tracer la courbe cumulative rétrograde de ce sable, puis déterminer graphiquement les quartiles Q1 et Q3. 2,5 pts
- 5) Calculer l'indice de Trask de ce sable, puis déduire son classement en utilisant le tableau du document 2. 1,5 pt
- 6) Comparer la courbe cumulative réalisée avec celles de référence (Représentées dans le document 3) pour déterminer Le type de ce sable.

Exercice: 2 (6 points)

Le maïs est une source importante d'alimentation pour les humains et les animaux, mais les cultures de cette plante sont exposées à l'impact des insectes et des champignons nocifs.

Nous vous proposons quelques données sur l'utilisation des techniques de génie génétique afin d'améliorer la productivité agricole du maïs.

- Le document 1 fournit les étapes essentielles des techniques de génie génétique utilisées dans la production de maïs résistant aux larves de l'insecte appelé Pyrale qui endommage les plantations de maïs.
- Le document 2 représente la surface globale cultivée de maïs génétiquement modifié et celle cultivée de maïs normale (non OGM) dans le monde au cours de la dernière décennie.

- 1/ En vous basant sur vos connaissances et sur les données du document 1 :
 - a) Identifier le principe du génie génétique. 0,5 pt
 - b) Indiquer comment se réalise l'étape A. 1 pt
 - c) A partir des étapes B et C, montrer comment on obtient le plasmide n° 5. 1 pt
 - d) Préciser le rôle de ce plasmide. 0,5 pt
 - e) Décrire la suite des étapes pour obtenir la plante 8. 1 pt
 - f) Comment peut- on qualifier cette plante? Justifier. 0,5pt
- 2/Comparer les données du document 2 et utiliser vos connaissances, pour conclure les effets positifs de la modification génétique appliquée au maïs. 1pt

..

3/ Citer deux exemples d'application de cette technique. 0,5pt