

# 数学实验

# **Experiments in Mathematics**

清华大学数学科学系

1



# 为什么要开设数学实验课

- 既要学好"算数学", 更要培养"用数学"的能力
- •利用计算机技术提供的条件,培养分析、思考能力
- 感受"用数学"的酸甜苦辣, 激发学好数学的愿望

课程 宗旨 以学生动手为主,在教师指导下用学到的数学 知识和计算机技术,选择合适的数学软件, 分析、解决一些经过简化的实际问题



# 数学实验课的内容安排

- 介绍一些解决实际问题的常用数学方法: 数值计算、 优化方法、数理统计和计算机模拟的基本原理和算法;
- 选用一个合适的数学软件——MATLAB,能方便地 实现以上内容的主要算法:
- 数学建模贯穿整个课程,每个内容都从实际问题 引出,并归结于问题的解决;
- •精心安排学生的实验,上机和作实验报告的时间要保证。



## 14个数学实验的具体内容

预备实验: MATLAB使用练习

数学建模

实验1 数学建模初步 实验13 数学建模综合

数值计算

实验2 插值与拟合 实验3 数值积分与微分

实验4常微分方程数值解

实验5线性方程组的解法 实验6 非线性方程近似解

优化方法

实验7 无约束优化 实验8 约束优化

数理统计

实验9数据的统计描述和分析

实验11 回归分析 实验10 方差分析

计算机模拟

实验12 计算机模拟



# 实验报告格式的基本要求

系别、班级、学号、姓名

实验目的

计算题

题目,算法设计(包括计算公式),程序,计算结果(计算机输出),结果分析,结论。

应用题

题目,问题分析,模型假设,模型建立,算法设计(包括计算公式),程序,计算结果(计算机输出),结果的数学分析,结果的实际意义,结论。

收获与建议

5

# 数学实验

# **Experiments in Mathematics**



实验1 数学建模初步

## 从我们常见的模型到数学模型

玩具、照片、火箭模型...

~ 实物模型

水箱中的舰艇、风洞中的飞机... ~物理模型

地图、电路图、分子结构图... ~符号模型

模型是为了一定目的。对客观事物的一部分进行 简缩、抽象、提炼出来的原型的替代物。

模型集中反映了原型中人们需要的那一部分特征。

# 你碰到过的数学模型——"航行问题"

甲乙两地相距750千米,船从甲到乙 顺水航行需30小时,从乙到甲逆水航行需50小 时,问船的速度是多少。

用 x 表示船速, y 表示水速, 列出方程:

$$(x + y) \times 30 = 750$$

$$(x - y) \times 50 = 750$$

求解得到 x=20, y=5,答:船速每小时20千米

## 航行问题建立数学模型的基本步骤

- •作出简化假设(船速、水速为常数);
- •用符号表示有关量(x, v表示船速和水速);
- •用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);
- •求解得到数学解答(x=20, y=5);
- •回答原问题(船速每小时20千米)。

9



数学模型 (Mathematical Model) 和 数学建模 (Mathematical Modeling)

数学模型:对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。

> **数学建模:**建立数学模型的**全过程** (包括分析、建立、求解、检验)。

Motivation, Formulation, Solution, Verification



## 数学建模的重要意义

- •电子计算机的出现及飞速发展;
- •数学以空前的广度和深度向一切领域渗透。

数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。

- •在一般工程技术领域数学建模仍然大有用武之地;
- 在高新技术领域数学建模几乎是必不可少的工具;
- •数学进入一些新领域,为数学建模开辟了许多处女地。



#### 数 学 建 模 实 例 1



问题

# ---录象机计数器的用途

经试验,一盘录象带从头走到尾,时间用了183分30秒,计数器读数从0000变到6152。

在一次使用中录象带已经转过大半,计数器读数为4580,问剩下的一段还能否录下1小时的节目?

要求

不仅回答问题, 而且建立计数器读数与 录象带转过时间的关系。

思考

计数器读数是均匀增长的吗?



# 模型假设



- ·录象带的运动速度是常数 v;
- •计数器读数 n与右轮转数 m成正比,记 m=kn;
- ·录象带厚度(加两圈间空隙)为常数 w:
- ·空右轮盘半径记作 r;
- •时间 t=0 时读数 n=0.

建模目的

建立时间t与读数n之间的关系

(设V, k, w, r 为已知参数)

15

#### 模型建立



建立t与n的函数关系有多种方法

1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度等于录象带在时间t内移动的长度vt, 所以

$$\sum_{i=1}^{m} 2\pi (r + wi) = vt$$

$$m = kn$$

$$t = \frac{\pi w k^{-2}}{v} n^2 + \frac{2\pi r k}{v} n$$

#### 模型建立

2. 考察右轮盘面积的 变化,等于录象带厚度 乘以转过的长度,即



3. 考察t到t+dt录象带在 右轮盘缠绕的长度,有

$$\pi[(r + wkn)^{2} - r^{2}] = wvt \qquad (r + wkn)2\pi kdn = vdt$$

$$\downarrow \qquad \qquad \downarrow$$

$$t = \frac{\pi wk^{2}}{v}n^{2} + \frac{2\pi rk}{v}n$$

**思考** 1. 3种建模方法得到同一结果

17

$$\int_{i=1}^{m} 2\pi (r + wi) = vt$$

$$\pi[(r + wkn)^2 - r^2] = wvt$$

$$(r + wkn) 2\pi kdn = vdt$$



但仔细推算会发现稍有差别,请解释。

2. 模型中有**待定参数** r, w, v, k,

一种确定参数的办法是测量或调查,请设计测量方法。

# 参数估计

另一种确定参数的方法——测试分析

将模型改记作  $t = an^2 + bn$ , 只需估计 a, b,

理论上,已知t=183.5, n=6152, 再有一组(t, n)数据即可; 实际上,由于测试有误差,最好用足够多的数据作拟合。

#### 现有一批测试数据:

| t | 0    | 20   | 40   | 60   | 80            |
|---|------|------|------|------|---------------|
|   |      |      |      |      | 80<br>3466    |
| t | 100  | 120  | 140  | 160  | 183.5<br>6152 |
| n | 4068 | 4621 | 5135 | 5619 | 6152          |

用最小二乘法可得  $a = 2.51 \times 10^{-6}$ 

 $b = 1.44 \times 10^{-2}$ .

#### 模型检验

应该另外测试一批数据检验模型:



#### 模型应用

- 1. 回答提出的问题: 由模型算得 n = 4580 时 t = 118.5分, 剩下的录象带能录 183.5-118.5 = 65分钟的节目。
- 2. 揭示了"t 与 n 之间呈二次函数关系"这一普遍规律, 当录象带的状态改变时,只需重新估计 a,b 即可。

#### 数 学 建 模 实 例 2

# ——生产计划的安排



#### **问** 题

配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时因积压资金要付贮存费。今已知某产品的日需求量为100件,生产准备费5000元,贮存费每日每件1元。试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。

要求建立生产周期、产量与需求量、准备费、 贮存费之间的关系。

21

#### 问题分析与思考

- - 周期长,产量大 > 准备费少,贮存费多



- 这是一个优化问题, 目标是总费用最小。
  - 问: 能用一个周期的总费用作为目标函数吗? 为什么?

目标函数——每天总费用的平均值

•问:为什么不考虑生产费用?在什么条件下才不考虑?

#### 模型假设



- 1. 产品每天的需求量为常数 r;
- 2. 每次生产准备费为 c<sub>1</sub>, 每天每件产品贮存费为 c<sub>2</sub>;
- 3. T天生产一次(周期为T),每次生产Q件(产量为Q), 且当贮存量降到零时,Q件产品立即生产出来。

#### 建模目的

设r, c1, c2已知, 求T, Q, 使每天总费用的平均值最小。

23

#### 模型建立

将贮存量表示为时间的函数q(t),

t=0生产Q件, 贮存量q(0)=Q, q(t) 以需求r的速率递减, 直到q(T)=0.

$$\longrightarrow Q = rT$$
 (1)



$$\overline{C} = c_1 + c_2 \frac{Q}{2}T = c_1 + c_2 \frac{rT^2}{2}$$



#### 每天总费用平均值 (目标函数)

$$C(T) = \frac{\overline{C}}{T} = \frac{c_1}{T} + \frac{c_2 rT}{2}$$
 (2)





# # 网 模 型 方程模型 在P<sub>0</sub>点附近用直线近似曲线 $y_k = f(x_k)$ ⇒ $y_k - y_0 = -\alpha(x_k - x_0)$ ( $\alpha > 0$ ) $x_{k+1} = h(y_k)$ ⇒ $x_{k+1} - x_0 = \beta(y_k - y_0)$ ( $\beta > 0$ ) $x_{k+1} - x_0 = -\alpha\beta(x_k - x_0)$ $x_{k+1} - x_0 = (-\alpha\beta)^k (x_1 - x_0)$ $\alpha\beta < 1$ $\alpha(=K_f) < \frac{1}{\beta} (=K_g)$ ⇒ $x_k \to x_0$ P<sub>0</sub> 称 $\alpha\beta > 1$ $\alpha(=K_f) > \frac{1}{\beta} (=K_g)$ ⇒ $x_k \to \infty$ P<sub>0</sub> 不稳定





#### 指数增长模型



常用的计算公式 今年人口x<sub>0</sub>,年增长率r



$$\mathbf{k}$$
年后人口 
$$x_{k} = x_{0}(1+r)^{k}$$

马尔萨斯(1788--1834)提出的指数增长模型

x(t)~时刻t人口 r~人口(相对)增长率(常数)

$$x(t + \Delta t) - x(t) = rx(t)\Delta t$$

$$x(t) = x_{\scriptscriptstyle 0} e^{rt}$$

$$\frac{dx}{dt} = rx, \ x(0) = x_0$$

$$x(t) = x_0 e^{rt}$$

$$x(t) = x_0 (e^r)^t \approx x_0 (1+r)^t$$

#### 指数增长模型的应用及局限性

- 与19世纪以前欧洲一些地区人口统计数据吻合
- 适用于19世纪后迁往加拿大的欧洲移民后代
- 可用于短期人口增长预测
- 不符合19世纪后多数地区人口增长规律
- 不能预测较长期的人口增长过程

19世纪后人口数据 ⇒人口增长率r不是常数(逐渐下降)

# 阻滞增长模型 (Logistic模型)



人口增长到一定数量后,增长率下降的原因:

资源、环境等因素对人口增长的阻滞作用

且阻滞作用随人口数量增加而变大 🖒 r是x的减函数

**假定**: r(x)=r-sx (r,s>0)  $r\sim$ 固有(x很小)增长率

x<sub>m</sub>~人口容量(资源、环境能容纳的最大数量)

$$\Rightarrow r(x_m) = 0 \Rightarrow s = \frac{r}{x_m} \qquad r(x) = r(1 - \frac{x}{x_m})$$

$$r(x) = r(1 - \frac{x}{x_m})$$



#### 模型的参数估计





• 利用统计数据用最小二乘法作拟合

例:美国人口数据(单位~百万)

1790 1800 1810 1820 1830 ...... 1950 1960 1970 1980 3.9 9.6 12.9 ..... 150.7 179.3 204.0 226.5

r=0.2072,  $x_m=464$ 

• 专家估计

37

#### 模型检验

用模型预报1990年美国人口,与实际数据比较



 $\Rightarrow$  x(1990) = 250.5 实际为251.4 (百万)

# 模型应用——人口预报

用美国1790~1990年人口数据重新估计参数

 $\Rightarrow \quad |\mathbf{r}=0.2083, \mathbf{x}_{\mathrm{m}}=457.6| \quad \Rightarrow \quad |\mathbf{x}(2000)=275.0|$ 

x(2010)=297.9

Logistic模型在经济领域中的应用(如耐用消费品的售量)



#### 数学建模的基本方法和步骤

#### 基本方法

•机理分析

根据对客观事物特性的认识, 找出反映内部机理的数量规律

•测试分析

将研究对象看作"黑箱",通过对量测数据的统计分析,找出与数据拟合最好的模型

•二者结合 机理分析建立模型结构,测试分析确定模型参数

机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析 <sup>39</sup>

数学建模的一般步骤 模型构成 模型假设 模型准备 模型分析。 模型求解 模型检验 模型应用 模 了解实际背景 明确建模目的<mark>形成一个</mark> 型 比较清晰 准 掌握对象特征 搜集有关信息 的'问题'40 备



#### 数学建模的一般步骤

模型假设

针对问题特点和建模目的

作出合理的、简化的假设

在合理与简化之间作出折中

用数学的语言、符号描述问题

模型构成

发挥想象力

使用类比法

尽量采用简单的数学工具

41



#### 数学建模的一般步骤

模型 求解

各种数学方法、数学软件和计算机技术

模型 分析 如结果的误差分析、 模型对数据的稳定性分析

模型 检验

与实际现象、数据比较, 检验模型的合理性、适用性

模型应用



#### 怎样学习数学建模

# 数学建模与其说是一门技术,不如说是一门艺术

技术大致有章可循。艺术无法归纳成普遍适用的准则

想象力

洞察力

判断力

- 学习、分析、评价、改进别人作过的模型
- 亲自动手, 认真作几个实际题目



#### 全国大学生数学建模竞赛 (CUMCM)

教育部、中国工业与应用数学学会(CSIAM)共同主办 全国大学生中规模最大的课外科技竞赛

每年9月举行,连续3天 (今年为26~29日)

三人一队,任意组合(大二、三、四),学校选拔 颁发获奖证书,发表优秀论文

- http://csiam.edu.cn/mcm
- http://www.163.com 教育频道
- http://www.comap.com 美国竞赛

