

网络用户浏览路径分析

网站分析、用户行为

北京 | 上海 | 广州 | 深圳 | 东京 | 硅谷 | 香港

肖嘉敏: jiaminshaw@gmail.com

张 翔: <u>birdzhangxiang@gmail.com</u>

Blog: www.shaw.cu.cc 2012-11-04

目录

- 1 网站分析简介
- 2 网络用户浏览路径
- 3 R与SQL切换
- 4 QQ群关系

准确度量,持续改进

一网站分析驱动目标达成

网站中发生了什么事情

- 用户从哪里来?哪里进入网站?又是哪里离开网站?
- 用户在网站中寻找什么?网站中的哪些 内容、哪些页面最受用户欢迎?

网站中各部分功能是否正常

- 页面布局合理吗?网站导航清晰吗?各项网站功能正常吗?
- 页面内容是否合适? 转化路径是否合理?

网站的改善与优化

- 哪些来源渠道的用户更有价值?网站哪方面 存在问题,需要改进?
- 网站的运营策略是否有效?如何采取进一步行动优化?

我们正在做的站内用户行为分析

首页分析

首页流量、首 页作为着陆页 的比例。 分析首页点击 分布、下一页 访问路径,包 括各去向页面 占比。 顶部频道和左 右侧导航点击; 公告或排行的 点击。 站内广告的点 击和转化。

站内搜索

浏览路径

发及浏合发主判主区的主, 的理理现要断流分词理现要断流分前路循断, 中出存上人际的话。 对 的口在。 群

单品访问

购物车与下单按钮的点击访问商品的分类:大中小行业,品牌确认下单商品

下单流程

化趋势

目录

- 1 网站分析简介
- 2 网络用户浏览路径
- 3 R与SQL切换
- 4 QQ群关系

浏览 路径 一 时间序列

通过序列分析探索用户上网模式 利用日志文件对用户上网模式进行分类

序列分析维度

- 如何从大量序列数据当中提取感兴趣的特征序列
- 如何**计算序列数据指标**,量化特征,进一步对序 列数据进行统计分析
- 序列数据可视化
- 序列数据<mark>相似性的度量</mark>,以此基础继续一些探索性 数据分析
- 识别具有共同模式的子集

URL归类

URL归类原则

- □ 按不同频道(垂直类)
- □ 按网站功能(电商)
- □ 按URL规则(门户)

用户日志转化序列数据对象

- Sample ID
- Datetime
- Domain
- Duration
- service

Code	Conversion	Example											
		Id	18	19	20	21	22	23	24	25	26	27	
STS	from/to	101	\mathbf{S}	\mathbf{S}	\mathbf{S}	M	\mathbf{M}	MC	MC	MC	MC	D	
		102	\mathbf{S}	\mathbf{S}	\mathbf{S}	MC	MC	MC	MC	MC	MC	MC	
		Id	1		2		3	4					
SPS	from/to	101	(S,3)	3)	(M,2)	(N	IC,4)	(D,1)					
		102	(S,3)	3)	(MC,7))							
		Id	1	2	3	4							
DSS	to	101	\mathbf{S}	Μ	MC	D							
		102	\mathbf{S}	MC									
		Id	Ind	ex	From	To	Stat	e					
		101	1		18	20	S (si	ingle)					
	from	101	2		21	22	M (1	marriec	l)				
SPELL		101	3		23	26	MC	(marri	ed wit	h child	ren)		
		101	4		27	27	D (divorced)						
		102	1		18	20	S (si	ingle)					
		102	2		21	27	MC	(marri	ed wit	h child	ren)		

> print(te, format='STS')

Sequence

1167 0-0-0-0-0-0-0-3-6-6-6-6-6

514 0-1-1-1-1-1-1-1-1-3-6-6-6

> print(te, format='SPS')

Sequence

[1] (0,9)-(3,1)-(6,6)

[2] (0,1)-(1,10)-(3,1)-(6,4)

>

序列数据可视化(站内)

站内浏览路径汇总

序列数据可视化(站内)

类别分布

source: http://news.iresearch.cn/Zt/173489.shtml

序列数据可视化(站外)

站外来源路径分析

- □ 进站前来源点
- □ 进站前精准路径
- □ 进站前模糊路径

站外去向路径分析

- □ 出站后去向点
- □ 进站前精准路径
- □ 出站后模糊路径

序列数据相似(异)性度量

评价序列相异性的两个重要方法:

1. 计算它们之间匹配总量;

Simple Hamming, Longest common prefix, Longest common suffix, Longest common subsequence

2. 两条序列相互转化的成本。

Optimal matching, Hamming, Dynamic Hamming

序列数据相似性度量

转换比率 transition rates

$$p(s_j \mid s_i) = \frac{\sum_{t=1}^{L-1} n_{t,t+1}(s_i, s_j)}{\sum_{t=1}^{L-1} n_{t}(s_i)}$$

 $n_t(s_i)$ 当t不是最后一个位置时, s_i 状态的个数; $n_{t,t+1}(s_i,s_j)$ 为 t位置为 s_i 状态, t+1位置为 s_i 状态的个数。

替换成本 substitution-cost

$$2 - p(s_i \mid s_j) - p(s_j \mid s_i)$$

序列数据相似性度量

编辑距离 Edit distance

Optimal matching(OM), Generalized Hamming (HAM) and dynamic Hamming (DHD)

搜索引擎识别拼写错误,并提示正确的写法:从一个字符变到 另一个字符主要有三种方式:替换一个字符、增加一个字符和 删除一个字符,把这三种操作都看做一次字符的修改,两个单 词的Edit Distance就是从一个单词变成另一个单词需要的最少 字符修改次数。

基于相似(异)性矩阵的序列分析

聚类分析

Dendrogram of agnes(x = y.om1, diss = TRUE, method = "ward")

y.om1 Agglomerative Coefficient = 0.98

基于相似(异)性矩阵的序列分析

提取代表序列

Type 1

Type 2

一般的处理方法:

- 1. 提取出现频次最高的 序列;
- 2. 提取中心度最高的序列

Type 3

Type 4

搜索代表序列方法

• 根据代表性得分对序列进行排序

 sequence frequency, neighborhood density, mean state frequency, centrality, sequence likelihood.

• 设定阈值删除冗余序列

The redundancy threshold is set as a percentage (10% by default) of the maximum theoretical dissimilarity D_{max} between two sequences and the representative set will thus not contain any pair of sequences that are nearer each other than this threshold.

目录

- 1 网站分析简介
- 2 网络用户浏览路径
- 3 R与SQL切换
- 4 QQ群关系

同样适合R编程的经典语句

"我们当中大多数人接受的教育是,在编程时,要把一个任务细分成多个更小的步骤,按一定的顺序 执行程序,进行想要计算。但是,如果也按这种思想来处理SQL编程,那么最终只能得到平庸的结果"

-----Microsoft SQL Server 2008技术内幕:T-SQL查询

Excel, sql, R切换自如

Excel 透视表

交互式报表,可快速合并和比较大量数据。旋转其行和列以看到源数据的不同汇总,而且可显示感兴趣区域的明细数据

sql 语句

select语句中可以通过group by将行划分成较<mark>小的</mark>组,然后使用聚集函数返回每一个小组的汇总<mark>信息</mark>

R

apply系列, plyr, sqldf等扩展包

切片计算

Many problems involve splitting up a large data structure, operating on each piece and joining the results back

together: split-apply-combine

Hadley Wickham, **Visualisation and data manipulation in R @ ebay** http://courses.had.co.nz/11-ebay/

访次&上网出入口的设计

排序 -> 移位-> 比较

rank	ID	Time	domain
1	1	18:49:24	a
2	1	18:57:25	b
3	1	18:57:29	b
4	1	19:57:47	a
5	1	19:58:22	a
6	2	18:59:13	c
7	2	18:59:18	a
8	2	19:00:01	a
9	2	21:00:09	a
10	3	19:00:17	c

rank	ID	Time	domain
2	1	18:57:25	b
3	1	18:57:29	b
4	1	19:57:47	a
5	1	19:58:22	a
6	2	18:59:13	c
7	2	18:59:18	a
8	2	19:00:01	a
9	2	21:00:09	a
10	3	19:00:17	c
1	1	18:49:24	a

R 涉及apply系列函数; sql涉及分页查询,全连接

访问次数 用户访问该网站比前一次访问的时间间隔超过30分钟,访问次数加1次,在30分钟之内连续访问该网站页面,只算1次。

上网出入口用户一天当中上网的起点各终点网站,最大连续不在线时间间隔。

目录

- 1 网站分析简介
- 2 网络用户浏览路径
- 3 R与SQL切换
- 4 QQ群关系

聊天记录分析

表〕发言量排行榜

Rank	Names	Freq
1	肖嘉敏(61792715)	1281
2	李源栋(276868740)	592
3	阿铁(355665588)	404
4	钱海燕(278310114)	190
5	王静(52392252)	185
6	王昭林(158242136)	174
7	江 (278310998)	133
8	周和根(278746367)	128
9	包军(281209168)	91
10	邓海梅(4197562)	87

表3 发起群聊次数排行

Rank	Names	Freq
1	肖嘉敏(61792715)	72
2	李源栋(276868740)	16
3	阿铁(355665588)	6
4	钱海燕(278310114)	6
5	周和根(278746367)	6
6	王强(276964812)	4
7	文德权(120849170)	4
8	夏老师(493594996)	4
9	陈珍珠(240014170)	3
10	邓海梅(4197562)	3

表2 活跃天数排行榜

Rank	Names	Freq
1	肖嘉敏(61792715)	143
2	李源栋(276868740)	49
3	钱海燕(278310114)	23
4	缪静 (277844672)	20
5	周和根(278746367)	20
6	阿铁(355665588)	17
7	江 (278310998)	16
8	王昭林(158242136)	14
9	邓海梅(4197562)	13
10	文德权(120849170)	11

表4 结束群聊次数排行

Rank	Names	Freq
1	肖嘉敏(61792715)	53
2	李源栋(276868740)	26
3	江 (278310998)	12
4	缪静 (277844672)	10
5	钱海燕(278310114)	7
6	王昭林(158242136)	5
7	周和根(278746367)	5
8	包军 (281209168)	3
9	刘志鹏(250429640)	3
10	梅林茂(275587572)	3

数据源:结合多人聊天记录文件

发言量: QQ消息数

活跃天数:参与群

聊的天数

群聊话题次数:将 所有数据按时间排 序,间隔超过30分 钟认为是一个新话 题的开始。每次群 聊话题必须有两个 及以上的人参与。

谁是聊天杀手

大家都说些什么?

群里大家聊的最多的是"我们"、"你们"、"现在"

30

节点的重要性

根据网络的 Eigenvector Centrality 和 Betweenness Centrality (即vertex和 edge信息) 寻找各个节点的重要性,"肖嘉敏"地位有点类似异常值,已删除。

群关系网

参与话题的群成员 当作网络中的节点,在 一个会话中有互动(参 与聊天)即各个成员之 间存在关系,也就形成 连接不同节点的边。

如图,整个群成员 之间主要由"肖嘉敏", "李源栋","钱海 燕"等几点重要的点将 大家紧密联系在一起。

选择艾瑞 选择可以信任的合作伙伴

