

Suites et séries de fonctions à valeurs dans un evn de dimension finie

Cours			2
1	Suites de fonctions		2
	1.1	Convergence simple	2
	1.2	Interlude : la norme infinie sur un evn de dimension finie	
	1.3	Convergence uniforme	2
	1.4	Convergence uniforme sur tout compact	3
	1.5	Continuité de la limite	3
	1.6	Théorème de la double limite	3
	1.7	Intégration sur un segment/primitivation et convergence uniforme	4
	1.8	Limite d'une suite de fonctions de classe C^1	
	1.9	Extension aux fonctions de classe \mathcal{C}^k	
2	Séries de fonctions		
	2.1	Convergence simple	6
	2.2	Convergence uniforme	6
	2.3	Convergence normale	6
	2.4	Transfert de continuité	
	2.5	Théorème de la double limite	
	2.6	Primitivation, intégration terme à terme sur un segment et convergence uniforme	
	2.7	Somme d'une série de fonctions de classe \mathcal{C}^1	
	2.8	Extension aux fonctions de classes \mathcal{C}^k	
3	Annexes		10
	3.1	Annexe : équivalence des N_{∞}	
Exercic			11
Pet	its prol	blèmes d'entrainement	11

On reprend essentiellement dans ce chapitre la théorie des suites et des séries de fonctions à valeurs dans \mathbb{R} ou \mathbb{C} , et on l'adapte aux fonctions entre deux evn de dimensions finies.

1 Suites de fonctions

1.1 Convergence simple

<u>Définition</u>. Soit $(f_n)_n$ une suite de fonctions définies sur A partie de E evn de dimension finie, à valeurs dans F evn de dimension finie, et $f: A \to F$ une fonction. On dit que $(f_n)_n$ converge simplement vers f sur A si et seulement si, pour tout $x \in A$ fixé:

$$f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

Remarque.

- Pour faire l'étude pratique de la convergence simple, on commence par fixer $x \in A$, et on étudie la suite (vectorielle, d'éléments de F) $(f_n(x))_{n \in \mathbb{N}}$.
- On peut quantifier cette définition par :

$$\forall x \in A, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ \|f_n(x) - f(x)\|_F \leqslant \varepsilon$$

1.2 Interlude : la norme infinie sur un evn de dimension finie

Définition. Soit F un evn de dimension finie, et $A \subset E$ une partie d'un evn de dimension finie. On définit sur $\mathcal{B}(A,F)$, l'espace des fonctions bornées $A \to F$, la **norme infinie** en posant, pour $f \in \mathcal{B}(A,F)$:

$$N_{\infty}(f) = \sup_{x \in A} (\|f(x)\|_F)$$

Proposition. Si on change la norme de F en une norme qui lui est équivalente, on change la norme N_{∞} en une norme qui lui est équivalente.

Remarque. On suppose F de dimension finie, et donc $\|\cdot\|_F^1$ et $\|\cdot\|_F^2$ sont automatiquement équivalentes. La proposition précédente permet de justifier que N_∞^1 et N_∞^2 sont toujours équivalentes, même si l'espace vectoriel $\mathcal{B}(A,F)$ n'est pas de dimension finie.

1.3 Convergence uniforme

<u>Définition.</u> Soit $(f_n)_n$ une suite de fonctions définies sur A partie de E evn de dimension finie, à valeurs dans F evn de dimension finie, et $f: A \to F$ une fonction. On dit que $(f_n)_n$ converge uniformément vers f sur A si et seulement si la suite numérique $(N_{\infty}(f_n - f))_n$ converge vers 0.

Remarque.

- Pour que cette définition ait un sens, on doit naturellement supposer que, au moins à partir d'un certain rang, la fonction $f f_n$ soit bornée sur A.
- On peut quantifier la définition :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N, \ \forall x \in A, \ \|f_n(x) - f(x)\|_F \leqslant \varepsilon$$

Théorème.

La convergence uniforme implique la convergence simple.

Étude pratique pour montrer la convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f.
- On cherche à majorer $||f_n(x) f(x)||_F$ indépendamment de $x \in A$ par une suite numérique qui converge vers 0.
- Le calcul explicite de $N_{\infty}(f_n f)$ est parfois possible.

Étude pratique pour montrer la non-convergence uniforme.

- On commence par déterminer la limite simple de $(f_n)_n$, notée f.
- S'il n'existe pas de rang à partir duquel $f_n f$ est bornée, la convergence ne peut pas être uniforme.
- On peut montrer le non-transfert à la limite d'une propriété, comme la continuité.
- On exhibe une suite $(x_n)_n$ d'éléments de I telle que la suite $(f_n(x_n) f(x_n))_n$ ne converge pas vers 0.

1.4 Convergence uniforme sur tout compact

Définition. Soit $(f_n)_n$ une suite de fonctions $A \subset E : F$ et $f : A \to F$.

On dit que $(f_n)_n$ converge vers f uniformément sur tout compact si et seulement si pour tout compact $K \subset A$, $(f_n|_K)_n$ converge uniformément vers $f|_K$ sur K.

1.5 Continuité de la limite

Transfert de continuité par convergence uniforme

Théorème.

Soit $(f_n)_n$ une suite de fonctions définies sur $A \subset E$ à valeurs dans F.

Si

- pour tout n, f_n est continue en a,
- $(f_n)_n$ converge uniformément sur A (ou sur un voisinage de a) vers f,

alors:

 \circ f est continue en a.

<u>Corollaire.</u> Si $(f_n)_n$ converge simplement sur A vers f, que les f_n sont continues sur A mais que f n'est pas continue sur A, alors la convergence n'est pas uniforme sur A.

Raisonnement classique. Si $(f_n)_n$ converge simplement sur A vers f, que les f_n sont continues sur A et qu'il y a convergence uniforme sur tout compact de A, alors f est continue sur tout compact de A donc sur A.

1.6 Théorème de la double limite

Théorème de la double limite.

Soit $(f_n)_n$ une suite de fonctions définies sur $A \subset E$ à valeurs dans F et a un point adhérent à A. Si :

- pour tout n, $f_n(x)$ admet une limite finie ℓ_n lorsque $x \to a$,
- $(f_n)_n$ converge uniformément vers f sur I,

alors:

- la suite $(\ell_n)_n$ converge vers $\ell \in \mathbb{R}$,
- f(x) admet une limite lorsque $x \to a$,
- cette limite est égale à ℓ .

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

• Le théorème s'applique aussi lorsque $A \subset \mathbb{R}$ et que $a = \pm \infty$ est adhérent à A.

1.7 Intégration sur un segment/primitivation et convergence uniforme

<u>Lemme.</u> Soit $(f_n)_n$ une suite de fonctions définies sur un intervalle I à valeurs dans F, et $a \in I$.

- $(f_n)_n$ converge uniformément vers f sur tout segment $K\subset I$,
- les f_n sont continues.

alors, en notant
$$G_n(x) = \int_a^x f_n(t) dt$$
 et $G(x) = \int_a^x f(t) dt$,

• $(G_n)_n$ converge uniformément vers G sur tout segment de I.

Remarque. Ainsi, la convergence uniforme sur tout segment se transmet par primitivation, à condition de prendre les primitives qui s'annulent toutes en un même point a donné.

Théorème d'interversion limite-intégrale par cv uniforme sur un segment.

Soit $(f_n)_n$ une suite de fonctions définies sur un segment [a,b], à valeurs dans F. Si :

- $(f_n)_n$ converge uniformément vers f sur [a,b],
- [a,b] est un segment,
- les f_n sont continues.

alors:

• la suite
$$\left(\int_a^b f_n(t) dt\right)_a$$
 converge,

$$\circ \int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{n \to +\infty} \int_{a}^{b} f_n(t) dt = \int_{a}^{b} \lim_{n \to +\infty} f_n(t) dt$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites envisagées et de mode de convergence de la suite de fonctions.

1.8 Limite d'une suite de fonctions de classe C^1

Théorème de dérivabilité de la limite d'une suite de fonctions.

Soit $(f_n)_n$ une suite de fonctions définies sur I intervalle, à valeurs dans F. Si ·

• pour tout n, f_n est de classe C^1 sur I,

- $(f_n)_n$ converge simplement sur I vers f,
- la suite des fonctions dérivées $(f'_n)_n$ converge uniformément sur I vers une fonction g,

alors:

- f est de classe C^1 sur I,
- \circ f'=g.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}}{\mathrm{d}x} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- La convergence uniforme de $(f_n)_n$ n'entraîne pas la dérivabilité de la limite.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I
 de (f'_n)_n par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles
 adaptés à la situation.

1.9 Extension aux fonctions de classe C^k

Théorème.

Soit $(f_n)_n$ une suite de fonctions définie sur I intervalle, à valeurs dans F, et $k \in \mathbb{N}^*$.

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $(f_n^{(j)})_n$ converge simplement sur I vers une fonction g_j ,
- la suite $(f_n^{(k)})_n$ converge uniformément sur I vers une fonction g_k ,

alors:

- o la limite simple g_0 de $(f_n)_n$ est de classe \mathcal{C}^k sur I
- pour tout $1 \leqslant j \leqslant k$, $g_0^{(j)} = g_j$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} f_n(x) \right)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $(f_n^{(k)})_n$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que g_0 est de classe C^{∞} , on montre la convergence simple de $(f_n)_n$ et la convergence uniforme de toutes les $(f_n^{(j)})_n$, pour $j \ge 1$.

2 Séries de fonctions

2.1 Convergence simple

<u>Définition</u>. Soit $\sum f_n$ une série de fonctions $A \subset E \to F$. On dit que $\sum f_n$ converge simplement si et seulement si, pour tout $x \in A$ fixé, la série vectorielle $\sum f_n(x)$ converge. Dans ce cas, on définit :

$$S: A \rightarrow F$$

$$x \mapsto \sum_{n=0}^{+\infty} f_n(x)$$

appelée somme de la série de fonctions $\sum f_n$.

Remarque.

- La convergence simple est la convergence point à point. On rédige toujours l'étude de la convergence simple en travaillant « à x fixé ».
- Pour $n \in \mathbb{N}$, on peut noter :

$$S_n: x \mapsto \sum_{k=0}^n f_k(x)$$

Alors $(S_n)_n$ la suite de fonctions des sommes partielles de $\sum f_n$, et la convergence simple de $\sum f_n$ est équivalente à la convergence simple de $(S_n)_n$.

• En cas de convergence simple sur I, on note :

$$R_n: x \mapsto \sum_{k=n+1}^{+\infty} f_k(x) = S(x) - S_n(x)$$

Alors la suite de fonctions $(R_n)_n$ converge simplement vers la fonction constante nulle sur A.

• On peut rencontrer des séries de fonctions qui sont indexées par $n \ge n_0$.

2.2 Convergence uniforme

<u>Définition.</u> Soit $\sum f_n$ une série de fonctions : $A \subset E \to F$. On dit que $\sum f_n$ converge uniformément sur A si et seulement si la suite de fonctions $(S_n)_n$ de ses sommes partielles converge uniformément sur A.

Remarque. On peut quantifier la définition par :

$$\forall \varepsilon > 0, \exists N \ t.q. \ \forall n \geqslant N, \ \forall x \in A, \ \left\| \sum_{k=n+1}^{+\infty} f_k(x) \right\|_F \leqslant \varepsilon$$

Proposition. La convergence uniforme d'une série de fonctions implique sa convergence simple.

Théorème.

 $\sum f_n$ converge uniformément sur A si et seulement si :

 $\begin{cases} \sum f_n \text{ converge simplement sur } A \\ (R_n)_n \text{ converge uniformément sur } A \text{ vers } 0 \end{cases}$

2.3 Convergence normale

<u>Définition.</u> Soit $\sum f_n$ une série de fonctions : $A \subset E \to F$. On dit que $\sum f_n$ converge normalement sur A si et seulement si :

$$\begin{cases} f_n \text{ est born\'ee sur } A \text{ pour tout } n \\ \sum N_{\infty}(f_n) \text{ converge} \end{cases}$$

Remarque.

- On rappelle que $N_{\infty}(f) = \sup_{x \in A} (\|f(x)\|_F)$. Le premier point permet de garantir l'existence de $N_{\infty}(f_n)$.
- On peut donner une définition moins forte, en ne travaillant que pour $n \ge n_0$.
- Le second point est la convergence d'une série numérique.
- La convergence normale de $\sum f_n$, c'est la convergence de $\sum N_{\infty}(f_n)$.

Théorème.

Soit $\sum f_n$ une série de fonctions : $A \subset E \to F$.

S'il existe une série numérique $\sum \alpha_n$ convergente et majorante, c'est-à-dire telle que :

$$\forall n, \forall x, \|f_n(x)\|_F \leqslant \alpha_n$$

où α_n est positive, indépendante de x et t.g. d'une série convergente, alors $\sum f_n$ converge normalement.

Proposition. La convergence normale implique la convergence absolue en tout point.

Proposition. La convergence normale implique la convergence uniforme.

2.4 Transfert de continuité

Théorème.

Soit $\sum f_n$ une série de fonctions : $A \subset E \to F$.

Si

- $\sum f_n$ converge uniformément sur A (on note S sa somme),
- pour tout n, f_n est continue sur A,

alors:

 \circ S est continue sur A.

Raisonnement classique. Si $\sum f_n$ converge uniformément sur tout compact $K \subset A$, et si les f_n sont continues sur A, alors S est continue sur tout $K \subset A$ donc sur A.

Exemple.

- exp : $\mathcal{M}_p(\mathbb{K}) \to \mathcal{M}_p(\mathbb{K})$ est continue sur $\mathcal{M}_p(\mathbb{K})$.
- Pour E espace vectoriel de dimension finie, $\exp: \mathcal{L}(E) \to \mathcal{L}(E)$ est continue sur $\mathcal{L}(E)$.

Corollaire. Une série entière $\sum a_n z^n$ de variable complexe, dont le rayon de convergence est R:

- converge normalement sur tout disque DF(0,r) où r < R;
- a une somme continue sur D(0,R).

2.5 Théorème de la double limite

Théorème de la double limite.

Soit $\sum f_n$ une série de fonctions : $A \subset E \to F$ et a adhérent à A.

- $\sum f_n$ converge uniformément sur A (on note S sa somme),
- pour tout n, f_n admet une limite ℓ_n en a,

alors:

- la série (vectorielle) $\sum \ell_n$ converge (on note ℓ sa somme),
- \circ la fonction S admet une limite en a,
- $\circ~$ cette limite est égale à $\ell.$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des limites envisagées.

2.6 Primitivation, intégration terme à terme sur un segment et convergence uniforme

Lemme. Soit $\sum f_n$ une série de fonctions continues sur un intervalle I à valeurs dans F. Soit $a \in I$. Pour tout n, on note G_n la primitive de f_n qui s'annule en a. Si:

• $\sum f_n$ converge uniformément sur tout segment $K \subset I$ (on note S sa somme),

alors:

- ∘ la série $\sum G_n$ converge uniformément sur tout segment $K \subset I$
- $\sum_{n=0}^{+\infty} G_n$ est la primitive de $\sum_{n=0}^{+\infty} f_n$ qui s'annule en a.

Théorème d'intégration terme à terme sur un segment par convergence uniforme.

Soit a < b, et $\sum f_n$ une série de fonctions définies sur un segment [a,b], à valeurs dans F. Si :

- $\sum f_n$ converge uniformément sur [a,b] (on note S sa somme),
- [a, b] est un segment,
- les f_n sont continues,

alors:

• la série
$$\sum \left(\int_a^b f_n(t) dt \right)$$
 converge,

$$\circ \sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b S(t) dt$$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t) dt$$

Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries envisagées.

2.7 Somme d'une série de fonctions de classe C^1

Théorème de dérivation terme à terme d'une série de fonctions.

Soit $\sum f_n$ une série de fonctions définies sur I, à valeurs dans F. Si :

- $\sum f_n$ converge simplement sur I (on note S sa somme),
- pour tout n, f_n est de classe C^1 sur I,
- la série des dérivées $\sum f'_n$ converge uniformément sur I,

alors:

- S est de classe C^1 sur I,
- pour tout $x: S'(x) = \sum_{n=0}^{+\infty} f'_n(x)$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \frac{\mathrm{d}f_n}{\mathrm{d}x}(x)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des dérivées envisagées.

- La convergence uniforme de $\sum f_n$ n'entraı̂ne pas la dérivabilité de la somme.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I
 de ∑ f'_n par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles
 adaptés à la situation.

2.8 Extension aux fonctions de classes C^k

Théorème.

Soit $\sum f_n$ une série de fonctions définie sur I à valeurs dans F, et $k \in \mathbb{N}^*$.

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $\sum f_n^{(j)}$ converge simplement sur I,
- la série $\sum f_n^{(k)}$ converge uniformément sur I,

alors:

- la somme $S = \sum_{n=0}^{+\infty} f_n$ est de classe C^k sur I
- pour tout $1 \leqslant j \leqslant k$, $S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}(x) = \sum_{n=0}^{+\infty} f_n^{(j)}(x)$$

Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $\sum f_n^{(k)}$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que S est de classe C^{∞} , on montre la convergence simple de $\sum f_n$ et la convergence uniforme de toutes les $\sum f_n^{(j)}$, pour $j \ge 1$.

Exemple.

- Soit $A \in \mathcal{M}_p(\mathbb{K})$. L'application $t \mapsto \exp(tA)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} , et sa dérivée est $t \mapsto A \exp(tA) = \exp(tA)A$.
- Pour E espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$, l'application $t \mapsto \exp(tu)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} , et sa dérivée est $t \mapsto u \circ \exp(tu) = \exp(tu) \circ u$.

Remarque. On retiendra:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\exp(tA)) = A\exp(tA) = \exp(tA)A$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\exp(tu)) = u \circ \exp(tu) = \exp(tu) \circ u$$

3 Annexes

3.1 Annexe : équivalence des N_{∞}

Définition. Soit F un evn de dimension finie, et $A \subset E$ une partie d'un evn de dimension finie. On définit sur $\mathcal{B}(A,F)$, l'espace des fonctions bornées $A \to F$, la **norme infinie** en posant, pour $f \in \mathcal{B}(A,F)$:

$$N_{\infty}(f) = \sup_{x \in A} (\|f(x)\|_F)$$

Proposition. Si on change la norme de F en une norme qui lui est équivalente, on change la norme N_{∞} en une norme qui lui est équivalente.

Preuve. Soit $\|\cdot\|_F^1$ et $\|\cdot\|_F^2$ deux normes équivalentes, qui satisfont :

$$\forall y \in F, \ \alpha \|y\|_F^1 \le \|y\|_F^2 \le \beta \|y\|_F^1$$

Pour tout $f \in \mathcal{B}(A, F)$, on a d'une part :

$$\begin{aligned} \forall x \in A, \ \|f(x)\|_F^2 & \leqslant \beta \|f(x)\|_F^1 \\ & \leqslant \beta N_\infty^1(f) \ \text{indépendant de } x \end{aligned}$$

donc $N_{\infty}^2(f) \leqslant N_{\infty}^1(f)$; et d'autre part :

$$\forall x \in A, \ \alpha \|f(x)\|_F^1 \leqslant \|f(x)\|_F^2$$

$$\leqslant N_\infty^2(f) \ \text{indépendant de } x$$

donc
$$\alpha N_{\infty}^1(f)\leqslant N_{\infty}^2(f)$$
.
On a montré que N_{∞}^1 et N_{∞}^2 sont équivalentes.

Petits problèmes d'entrainement

58.1

Soit $n \ge 2$.

- (a) Pourquoi exp : $\mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ n'est ni surjective, ni injective.
- (b) On munit $\mathcal{M}_n(\mathbb{K})$ d'une norme sous-multiplicative.
 - b1. Soit $U \in \mathcal{M}_n(\mathbb{K})$ telle que ||U|| < 1. Montrer que $I_n + U$ est inversible, et déterminer son inverse.
 - b2. Montrer que si $||M|| < \frac{1}{2}$ et $\exp(M) = I_n$, alors M = 0.
 - b3. En déduire que, sur un voisinage de 0, si M et N commutent et satisfont $\exp(M) = \exp(N)$, alors M = N.

58.2

Soit $A \in \mathcal{A}_n(\mathbb{R})$ une matrice antisymétrique et $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}_+^*$ continue. Montrer que :

$$\inf_{x \in \mathbb{R}} \left(f(\exp(xA)) \right) > 0$$

58.3

Pour $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente, on pose :

$$L(M) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} M^k$$

Montrer que :

$$\forall t \in \mathbb{R}, \ \exp(L(tM)) = I_n + tM$$

58.4

Pour $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente, on pose :

$$L(M) = \sum_{k=1}^{+\infty} \frac{1}{k} M^k$$

On étudier la fonction f donnée par :

$$\forall t \in \mathbb{R}, \ f(t) = \exp(-L(tM))$$

(a) Établir :

$$\forall t \in \mathbb{R}, \ f(t) = \prod_{k=1}^{n-1} \exp\left(-\frac{t^k}{k}M^k\right)$$

(b) Montrer que f est dérivable sur \mathbb{R} et :

$$\forall t \in \mathbb{R}, \ (I_n - tM)f'(t) = -Mf(t)$$

- (c) Montrer que f' est constante.
- (d) En déduire que exp $(L(M)) = (I_n M)^{-1}$.

58.5

On cherche les applications $\varphi: \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivables, vérifiant :

$$\forall x, y \in \mathbb{R}, \ \varphi(x+y) = \varphi(x)\varphi(y)$$

- (a) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Vérifier que $t \mapsto \exp(tA)$ est solution.
- (b) Soit φ une solution vérifiant $\varphi(0) \in GL_n(\mathbb{R})$.
 - b1. Calculer $\varphi(0)$.
 - b2. Montrer que : $\forall t \in \mathbb{R}, \ \varphi'(t) = \varphi(t)\varphi'(0)$.
- (c) En déduire qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\varphi(t) = \exp(tA)$ pour tout $t \in \mathbb{R}$.
- (d) On ne suppose plus $\varphi(0)$ inversible. Déterminer les fonctions φ solutions du problème.