CRITICAL KERNELS Reference Manual $0.1\,$

Generated by Doxygen 1.3.7

Mon Dec 25 10:14:35 2006

Contents

1	$\mathbf{C}\mathbf{R}$	ITICAL KERNELS File Index	1
	1.1	CRITICAL KERNELS File List	1
2	$\mathbf{C}\mathbf{R}$	ITICAL KERNELS File Documentation	3
	2.1	pgm2raw.c File Reference	3
	2.2	raw2pgm.c File Reference	4
	2.3	skel_AK2.c File Reference	5
	2.4	skel_CK3.c File Reference	6
	2.5	skel_EK3.c File Reference	7
	2.6	skel_MK2.c File Reference	8
	2.7	skel_MK3.c File Reference	9
	2.8	skel NK2.c File Reference	10

Chapter 1

CRITICAL KERNELS File Index

1.1 CRITICAL KERNELS File List

Here is a list of all documented files with brief descriptions:

pgm2raw.c (Suppress the header from a pgm file)
raw2pgm.c (Converts from raw format into pgm format)
skel AK2.c (Parallel 2D binary curvilinear skeleton)
skel CK3.c (Parallel 3D binary curvilinear skeleton)
skel EK3.c (Parallel 3D binary curvilinear skeleton based on ends)
skel MK2.c (Parallel 2D binary ultimate skeleton)
skel MK3.c (Parallel 3D binary ultimate skeleton)
skel_NK2.c (Parallel 2D binary curvilinear skeleton)

Chapter 2

CRITICAL KERNELS File Documentation

2.1 pgm2raw.c File Reference

suppress the header from a pgm file

2.1.1 Detailed Description

suppress the header from a pgm file

Usage: pgm2raw in.pgm out.raw

Description: suppress the header from a pgm file

Types supported: byte 2d, byte 3d

Category: convert

Author:

2.2 raw2pgm.c File Reference

converts from raw format into pgm format

2.2.1 Detailed Description

converts from raw format into pgm format

Usage: in.raw rs cs ds headersize nbytespervox littleendian [xdim ydim zdim] out.pgm

Description: Converts from raw format into pgm format.

Parameters:

- in.pgm: source file in raw format
- rs (int32_t): row size (number of voxels in a row)
- **cs** (int32_t): column size (number of voxels in a column)
- ds (int32 t): number of planes
- headersize (int32 t): size of the header in bytes (information in the header will be ignored)
- **nbytespervox** (int32 t): number of bytes per voxel (1, 2 or 4)
- littleendian (int32 t) 1: littleendian, 0: bigendian. Usual choice is 0.
- xdim (float, optional): gap (in the real world) between two adjacent voxels in a row.
- ydim (float, optional): gap (in the real world) between two adjacent voxels in a column.
- zdim (float, optional): gap (in the real world) between two adjacent planes.

Types supported: byte 3D, int16 t 3D, int32 t 3D

Warning:

Signed integers are not supported.

Category: convert

Author:

2.3 skel AK2.c File Reference

parallel 2D binary curvilinear skeleton

2.3.1 Detailed Description

parallel 2D binary curvilinear skeleton

Usage: skel AK2 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 2D binary thinning or curvilinear skeleton. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Reference: G. Bertrand and M. Couprie, "Two-dimensional thinning algorithms based on critical kernels", *Journal of Mathematical Imaging and Vision*, submitted, 2006. Preprint: IGM2006-02.

Types supported: byte 2d

Category: topobin

Author:

2.4 skel CK3.c File Reference

parallel 3D binary curvilinear skeleton

2.4.1 Detailed Description

parallel 3D binary curvilinear skeleton

Usage: skel CK3 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 3D binary thinning or curvilinear skeleton. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Types supported: byte 3d

Category: topobin

Author:

2.5 skel EK3.c File Reference

parallel 3D binary curvilinear skeleton based on ends

2.5.1 Detailed Description

parallel 3D binary curvilinear skeleton based on ends

Usage: skel EK3 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 3D binary thinning or curvilinear skeleton based on ends. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Types supported: byte 3d

Category: topobin

Author:

2.6 skel MK2.c File Reference

parallel 2D binary ultimate skeleton

2.6.1 Detailed Description

parallel 2D binary ultimate skeleton

Usage: skel MK2 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 2D binary thinning or ultimate skeleton. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Reference: G. Bertrand and M. Couprie, "Two-dimensional thinning algorithms based on critical kernels", *Journal of Mathematical Imaging and Vision*, submitted, 2006. Preprint: IGM2006-02.

Types supported: byte 2d

Category: topobin

Author:

2.7 skel MK3.c File Reference

parallel 3D binary ultimate skeleton

2.7.1 Detailed Description

parallel 3D binary ultimate skeleton

Usage: skel MK3 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 3D binary thinning or ultimate skeleton. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Reference: G. Bertrand and M. Couprie, "New 3D parallel thinning algorithms based on critical kernels", *Discrete geometry for computer imagery*, Lecture Notes in Computer Science, Vol. 4245, pp. 580-591, Springer, 2006.

Types supported: byte 3d

Category: topobin

Author:

2.8 skel NK2.c File Reference

parallel 2D binary curvilinear skeleton

2.8.1 Detailed Description

parallel 2D binary curvilinear skeleton

Usage: skel NK2 in.pgm nsteps [inhibit] out.pgm

Description: Parallel 2D binary thinning or curvilinear skeleton. The parameter **nsteps** gives, if positive, the number of parallel thinning steps to be processed. If the value given for **nsteps** equals -1, the thinning is continued until stability.

If the parameter **inhibit** is given and is a binary image name, then the points of this image will be left unchanged.

Reference: G. Bertrand and M. Couprie, "Two-dimensional thinning algorithms based on critical kernels", *Journal of Mathematical Imaging and Vision*, submitted, 2006. Preprint: IGM2006-02.

Types supported: byte 2d

Category: topobin

Author:

Index

- pgm2raw.c, 3
- raw2pgm.c, 4
- skel_AK2.c, 5 skel_CK3.c, 6 skel_EK3.c, 7

- skel_MK2.c, 8
- skel_MK3.c, 9 skel_NK2.c, 10