

Sub Code: 18CS62

Dr. Ambedkar Institute of Technology (An Autonomous Institution, Aided by Government of Karnataka

(An Autonomous Institution, Aided by Government of Karnataka Affiliated to Visvesvaraya Technological University, Belgaum & Approved by AICTE, New Delhi) BDA Outer Ring Road, Near Jnana Bharathi Campus, Mallathahalli, Bengaluru-560056, Karnataka

Department of Computer Science & Engineering Sixth Semester B.E. Degree (Autonomous) Continuous Internal Evaluation (CIE – III) 2021

Date: 14/07/2021	Sub. Title: Machine Learning	Timings: 1.30-2.30
Day: Monday	Sub. Code:18CS62	Time duration: 60 Mins
Branch: CSE		Max marks : 25
		Staff in-charge:
Semester: 6	CIE – III	Asha K N
		Asha Rani K P

Q. No.		Note: Answer ALL the questions	Marks	Course Outcome	Blooms Level				
1.	a)	Explain the method of comparing two algorithms. Justify with Paired <i>t</i> test.	10 M	CO4	L3				
2.	a)	Explain the K – nearest neighbour algorithm for approximating a discrete – valued function $f: \mathbb{R}^n \to V$ with pseudo code.	5 M	CO3	L3				
	b)	Explain CADET System using Case based reasoning.	5 M	CO4	L3				
	OR								
	c)	Explain Sample error, True error and Confidence intervals with example.	5 M	CO3	L3				

Faculty Incharge: Asha K N Asha Rani K P Dr. Siddaraju Dean(A),HOD, CSE

QU.	QUIZ Note: Answer ALL the questions 10X0.5=05 Marks						larks				
1.	Which of the following distance metric can be used in k-NN?										
	A	Manhattan Distance	;	В	Hamming Dista	ance	C	Euclidean Dista	nce	D	All of the above
2.	The difference between Estimation bias and inductive bias of a learner is										
	A	Estimation = numerical quantity, Inductive bias = a set of assertions.	I	B a	Estimation = a set assertions, (inductive bias = numerical quantity		(Estimation = a s of assertions, C Inductive bias = Alphanumerical value.		D	None of the above
3.	Give	n number of instance	s ir	th	ne sample <i>n=65</i> a	and n	ımb	er of instances m	iscla	ssifie	ed <i>r=12</i> , find the
	true	error- $error_D(h)$?									
	A	0.18		В	0.3		\mathbb{C} 5	5.4	D	No	ne of the above
4.	Whe	n we say that \mathbf{Y} is an	un	bia	ised estimator fo	or p					
	A	If the estimation bias is zero	В	OI	the estimation biane			C If the estimation bias is infinity		ט	None of the above
5.	Whi	ch of the following v	vill	be	Euclidean Dista	nce b	etw	een the two data	point	A(1	,3) and B(2,3)?
	A	1		В	2		С	4		D	8
6.	Loca	ocally weighted linear regression is a									
	A	Supervised Learning Algorithm.	В	L	Insupervised earning Algorithm.		Lea	nforcement arning corithm	D	All of the above	
7.	Insta	nce based learning is	als	o c	called						
	A	Lazy learning		В	Memory-based Learning		C	Both a & B	D	No	ne of the above
8.	Radial Basis Function (RBF) networks have layers										
	A	One		В	Two		С	Three	D	Fo	ur
9.	What does the normal distribution look like?										
	A	A bell		В	A circle		С	A square	D	A	straight line
10.	Whic	ch of the following de	eno	tes	the expected va	lue of	a ra	andom variable?			
	A	It is a value that has the highest probability of occurring.		В	It is the mean value over an infinite number observations of variable.		С	It is the largest value that will ever occur.	D	val nu ob	s most common ue over a finite mber of servations of the riable.