of EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Thursday, 25th October 2018

□ CMOS Fabrication

- connection between physical layout & structure
- NMOS process & LOCOS
- process steps in CMOS

IC Fabrication & Layout Linkage

(why care about fabrication in layout design)

- ☐ In integrated circuit (IC) design, certain degree of knowledge about the IC fabrication will be helpful in creating the physical layout:
 - > understand the **device structures** resulting from the **physical layout design** (i.e. knowing what will get, especially by visualising the 2-D or 3D structure)
 - > understand better the **layout design** <u>rules</u> (from fabrication constraints)
 - avoid certain pitfalls in the circuits while designing the physical layout
 - obtain somewhat better device and circuit performance
 with optimised IC layout

 Xi'an Jiaotong-Liverpool University
 あ交利が消大学

IC Fabrication & Layout Linkage

(CMOS transistors – nMOS & pMOS)

■ In studying EEE201, you should be able to draw the transistor schematic circuit from the IC layout (a) & sketch the corresponding cross-sectional structure (b).

From: Roger T. Howe & Charles G. Sodini, *Microelectronics:*An Integrated Approach, © 1997 Prentice-Hall, USA.

MOSFET

fabrication & layout

(material originally developed by Professor Cezhou Zhao)

OUTLINE (fabrication & layout)

- Process Flow Example #1
 - Etched field oxide isolation
- Process Flow Example #2
 - LOCOS isolation
- Process Flow Example #3
 - CMOS n-Well process

8

Gate becomes n+ type.

9

Mask 3: contacts

Mask 4: metal lines

Schematic Cross-Sectional View

SiO₂

Schematic Cross-Sectional View

Source

Αl

 n^+

Polysilicon

gate

Drain

Al

LOCOS ():

- 1. Pad oxide
- 2. p+ doping
- 3. Field oxide
- 4. Bird's beak
- 4 lithography steps are required:
- 1. active area
- 2. gate electrode
- 3. contacts
- 4. metal interconnects

Layout (Top View)

p-type substrate

Local Oxidation of Silicon

CVD oxide

SiO₂

- Thermal oxidation
 (~10 nm "pad oxide")
- 2) Silicon-nitride (Si₃N₄) deposition by CVD (~40nm)
- 3) Active-area definition (lithography & etch)
- 4) Boron ion implantation ("channel stop" implan.,
- 5) Thermal oxidation to grow oxide in "field regions"
- 6) Si₃N₄ & pad oxide removal

7) Thermal oxidation ("gate oxide")

SiO₂ SiO₂ D

8) Poly-Si deposition by CVD

9) Poly-Si gate-electrode patterning (litho. & etch)

Active area

Si - subs

10) P or As ion implantation + annealing to form n+ source and n+ drain regions

Self-Aligned Technology: poly-Si gate

The poly-Si gate of a MOSFET is used as a mask for the doping of the source and drain regions.

- 11) SiO₂ CVD
- 12) Contact definition (litho. & etch)

- 13) Al deposition by sputtering
- 14) Al patterning by litho. & etch to form interconnects

Complementary Metal Oxide Semiconductor

CMOS Process

CMOS n-Well process

Additional Process Steps Required for CMOS

CMOS Technology

Challenge: Build both NMOS & PMOS transistors on a single silicon chip

- NMOSFETs need a p-type substrate
- PMOSFETs need an n-type substrate
- → Requires extra process steps!

LOCOS

- 1. Pad SiO₂ is used to protect the Si surface from stress caused by Si₃N₄.
- 2. p+ doping: n channel-stop implants.
- 3. Field oxide (isolation): the lateral insulation between transistors.
- 4. Bird's beak region: a reduction of the active region.

p-Si

 Si_3N_4

SiO₂

CMOS Fabrication

p-type start wafer

Grow p epitaxial layer

Spin Resist Coating

M1 Expose resist with n-well mask

Mask1: n-Well

Develop resist

Implant n-type Well

Remove resist

Anneal wafer – gives us new oxide layer and diffuses n-Well

Remove oxide from anneal

LOCOS: Pad SiO₂ + Si₃N₄ + Resist, then M2 & p+ implantation

Grow pad SiO₂, CVD Si₃N₄, and then Spin resist

Mask2: active regions

Expose resist with Active diffusion mask

Develop resist and etch SiO₂ and Si₃N₄

Channel stop implantation

Channel stop implantation resist Si₃N₄ SiO₂ p-Epi p-Substrate

Resist is removed during growing field oxide on exposed surface

Remove pad SiO₂ and CVD Si₃N₄

Grow thin gate oxide

Deposit poly silicon using CVD over surface

Mask3: poly gate

Expose resist using poly gate mask

Remove resist

Remove thin gate oxide layer where exposed

Mask4: p-select

Spin resist and Expose resist using p-select mask

Develop resist

Resist is removed and oxide is formed during annealing for B+ implantation

Etch oxide

Mask5: n-select

Spin resist and Expose resist using n-select mask

Resist is removed and oxide is formed during annealing for As+ implantation

Etch oxide

Deposit oxide using CVD

Spin resist

Mask6: ohmic contact

Expose resist using contact mask

Develop resist

Etch contact holes

Remove resist

Deposit metal Al using PVD

Mask 7: metal mask

Spin resist and Expose resist using metal mask

Develop resist

Etch metal

Remove resist

Passivation

Conceptual CMOS Process Flow

- - Using M2 to define active region, channel stop implant, field oxidation
- 4. Remove pad oxide and Si₃N₄, grow gate oxide
- 5. Deposit & pattern poly-Si gate electrodes using M3
- 6. Dope p-channel S/D & p-Sub contacts (need to protect NMOS areas)
- 7. Dope n-channel S/D & n-well contacts (need to protect PMOS areas)
- 8. Deposit insulating layer (oxide)
 Open contact holes using M6
- → At least 3 more masks, as compared to NMOS process
- 9. Deposit and pattern metal interconnects using M7

M4

Conceptual CMOS Process Flow

- Using M2 to define active region, channel stop implant, field oxidation
- 4. Remove pad oxide and Si₃N₄, grow gate oxide
- 5. Deposit & pattern poly-Si gate electrodes using M3
- 6. Dope n-channel S/D & n-Sub contacts (need to protect PMOS areas)
- 7. Dope p-channel S/D & p-well contacts (need to protect NMOS areas)

 M5
- 8. Deposit insulating layer (oxide)
 Open contact holes using M6
- → At least 3 more masks, as compared to NMOS process
- 9. Deposit and pattern metal interconnects using M7

M4

Additional Process Steps Required for CMOS

1. Well Formation

- Before transistor fabrication, we must perform the following process steps:
 - a) grow oxide layer; pattern oxide using p-well mask
 - b) implant phosphorus; anneal to form deep p-type regions

2. Masking the Source/Drain Implants

"Select p-channel" -> We must protect the n-channel devices during the boron implantation step, and

"Select n-channel" -> We must protect the p-channel devices during the arsenic implantation step

Example: Select p-channel

2. Masking the Source/Drain Implants

"Select p-channel" -> We must protect the n-channel devices during the boron implantation step, and

"Select n-channel" -> We must protect the p-channel devices during the arsenic implantation step

Example: Select p-channel

Forming Body Contacts

Modify oxide mask and "select" masks:

- Open holes in original oxide layer, for body contacts
- 2. Include openings in select masks, to dope these regions

Active mask

Select Masks

Simplified CMOS Inverter Process: Masks

Thanks to Mary Jane Irwin www.cse.psu.edu/~cq477

Simplified CMOS Inverter Process

n-Well Mask (M1)

After n-well mask, As+ implant + drive-in

Active Mask (M2) SiO₂ Si₃N₄

After M2, field oxide + gate oxide

poly-Si deposition

Poly Mask (M3)

Poly Mask (M3)

N-Select Mask (M4)

N Select Mask (M4)

After M4, As+ implant

P-Select Mask (M5)

P-Select Mask (M5)

After M5, B+ implant

After M5, B+ implant + drive-in

Contact Mask (M6)

Contact Mask (M6)

Metal Deposit

Metal Mask (M7)

