

自然语言处理

在线峰会

机器翻译与同传论坛

2021.07.10 (周六) 09: 00~17: 30

AI技术在有道词典笔上 的应用实践

程 桥 资深算法工程师 张广勇 高性能计算专家

有道词典笔介绍

3 离线翻译

02 扫描和点查

1 EMLL

01 题目

有道词典笔

Subject

有道词典笔

有道词典笔

- 跨行整句扫描
 - 扫描准确率98%
- 整句翻译
 - 离线也可以翻译
- 超快点查
- 互动点读

有道词典笔上的 AI 技术

• 扫描和点查技术

• 离线翻译

• 高性能端侧机器学习计算库(EMML)

2 题目

扫描和点查

Subject

• 扫描识别和常见的字符识别场景不一样

- 一秒钟100张图像
 - 算法需要从快速从拍摄的图像中提取文字

- 全景拼接
 - 拼接效果对识别影响很大

• 全景拼接

• 像素级检测:对每个像素位置进行文字和背景分类

• 中心组行: 基于分类结果和位置信息, 将扫描的中心文字连接并组合成行

• 矫正切行: 将文本行从复杂的背景中切分出来

- 复杂的应用场景
 - 特殊字体,形近字,背景都会干 扰识别

would like a palace of my own, please." The King said, "Yes Molly. Of course, Molly.

sailing with the clouds.

Mr Bear laughed and laughed all the way home. What a bargain! Mr Rabbit

great hall where the lord ate and entertained guests

特殊字体、形近字、背景干扰

• 检测模块+识别模块+纠正模块

超快点查

- 问题
 - 超大广角点查导致广角畸变、光照不均
- 超快点查
 - 根据采集图像预设变换参数
 - 将采集图像逆变换得到无畸变图像
 - 对阴影进行补偿

03 题目

离线翻译

Subject

离线翻译

- 离线翻译的需求
 - 无网络环境
 - 低时延
 - 节省带宽
 - 隐私

不用网络也能翻译让学习更专注

无需介入WiFi,提笔即用 沉浸式学习,开学也能带去学校

在线翻译模型

- 编码器-解码器架构
- 多个编码器层和解码器层
- 很宽的维度
- 参数量达到上亿规模

• 神经网络模型存在一定冗余

Dim	newstest2013	Params
128	21.50 ± 0.16 (21.66)	36.13M
256	21.73 ± 0.09 (21.85)	46.20M
512	21.78 ± 0.05 (21.83)	66.32M
1024	21.36 ± 0.27 (21.67)	106.58M
2048	$21.86 \pm 0.17 (22.08)$	187.09M

Table 1: BLEU scores on newstest2013, varying the embedding dimensionality.

Britz D, Goldie A, Luong M T, et al. Massive exploration of neural machine translation architectures[J]. arXiv preprint arXiv:1703.03906, 2017.

- 裁剪模型
- 共享参数
- 量化
- 知识蒸馏
- Lite Transformer

不用网络也能翻译让学习更专注

无需介入WiFi,提笔即用 沉浸式学习,开学也能带去学校

- 裁剪模型
 - 编码器相对更重要
 - 更多压缩解码器
 - 减少深度的同时减少宽度

- 共享参数
 - 词向量的共享

Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention $N \times$ Forward Add & Norm $N \times$ Add & Norm Multi-Head Multi-Head Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

Output

Figure 1: The Transformer - model architecture.

- 共享参数
 - 词向量的共享
 - 不同层之间的共享

Xiao T, Li Y, Zhu J, et al. Sharing attention weights for fast transformer[J]. arXiv preprint arXiv:1906.11024, 2019.

- 量化
 - 高精度的浮点类型转化为低精度的整型计算

Quantized	1	Float	
0	1	-10.0	
255	1	30.0	
128	1	10.0	

• 浮点数运算使用量化运算

Jacob B, Kligys S, Chen B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2704-2713.

- 量化
 - · 计算量减少,对NPU,DSP芯片友好
 - 存储规模减少
 - 使用训练感知量化对质量影响也较小

- 知识蒸馏
 - 模型压缩导致质量下降

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\mathbf{t} = \hat{\mathbf{y}})$
English \rightarrow German WMT 2014						53
Teacher Baseline 4 × 1000 (Params: 221m)	17.7	_	19.5		6.7	1.3%
Baseline + Seq-Inter	19.6	+1.9	19.8	+0.3	10.4	8.2%
Student Baseline 2 × 500 (Params: 84m)	14.7	2	17.6	1	8.2	0.9%

Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.

- 知识蒸馏
 - 利用教师模型提升学生模型性能
 - 教师模型: 大而慢
 - 学生模型: 小而快

- 知识蒸馏
 - 蒸馏的方法
 - Word-level KD
 - Sentence-level KD

Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.

64 题目

Subject

高性能端侧机器学习计算库 EMLL(Edge ML Library)

端侧AI面临的挑战

- 算力、内存有限
- 功耗限制
- 算法更新
- 多应用部署

端侧AI芯片

- 端侧AI芯片
 - ARM CPU
 - 当前端侧AI落地主流平台
 - NPU、DSP、GPU
 - 受生态环境影响,当前可落地的AI应用较少
 - 未来发展趋势

端侧AI核心计算

- 端侧AI底层主要耗时计算
 - gemm (全连接层、卷积层)
- $Y(M, N) = X(M, K) \times W(K, N)$

- 扁平矩阵乘
- 第三方blas库gemm针对端侧AI场景下计算性能较差

端侧AI中部分矩阵乘法	Eigen	OpenBLAS	ARM Compute Library
M = 128, N = 16000, K = 128	25%	36%	35%
M = 7, N = 2048, K = 192	5%	6%	10%
M = 23, N = 1536, K = 320	12%	10%	25%

C(M, N) = A(M, K) * B(K, N)ARM cortex-A53第三方库gemm计算效率

EMLL

- EMLL(Edge ML Library)——高性能端侧机器学习计算库
 - 为加速端侧AI推理而设计
 - 为端侧AI常见的扁平矩阵的计算做了专门的优化
 - 支持fp32、fp16、int8等数据类型
 - 针对ARM cortex-A7/A35/A53/A55/A76等处理器进行汇编优化
 - 支持端侧运行OS: Linux和Android
 - 已开源

https://github.com/netease-youdao/EMLL

EMLL优化方法

访存

- 展开外层循环 计算/访存比
- 重排元素 顺序访存
- 多级分块 利用缓存
- 针对扁平矩阵的优化

计算

- SIMD 指令
- 指令顺序
- 指令并发
- 多线程(动态负载)

EMLL功能

• 支持的计算函数

计算函数	支持的数据类型
矩阵乘法	float32、float16、int8
全连接fc	float32
偏置	float32、int32
量化	float32 -> int8/int16
反量化	Int8/int16/int32 -> float32
重量化	int32 -> int16/int8,int16 -> int8

- 支持的架构
 - ARMv7a
 - ARMv8a
- 支持的端侧OS
 - Linux
 - Android

EMLL GEMM 性能

C(M, N) = A(M, K) * B(K, N)

I EMLL 在有道智能硬件中的性能

平台	CPU型号	主频(GHz)
有道词典笔	A35	1.2
有道超级词典	A53	1.5
有道翻译王	A53	2.0
某手机(晓龙855)	A76	2.8
RV1126	A7	1.5

NMT、ASR、OCR使用EMLL和Eigen端到端性能加速比

离线NMT量化效果

	BLEU	速度	内存
同模型int8 VS fp32	降低0.1以内	提升45~67%	减少50~60%
大模型int8 VS 小模型fp32	提升0.1	提升10%	降低32%

I 网易有道AI团队招聘

- NLP算法工程师
- 语音合成高级算法专家
- 图像算法工程师
- 算法研究员(自适应学习方向)
- 高性能计算研发工程师
- 数据工程师
- AI产品经理

简历发送: zhanggy@youdao.com

THANKS!

今天的分享就到这里...

Ending