Understanding the Distribution of Secondary COVID-19 cases.

Quick note

Background

- Not all infectors are born equal i.e. SARS-CoV-2 transmission is heterogeneous.
- Most individuals don't infect anybody while a few are responsible for the majority of transmission.
- Superspreading events hit the news in 2020.
- Characterise the R-distribution == secondary case distribution
- How does the contact pattern affect the shape of the secondary case distribution?
- How does the setting of spreading affect the shape of the secondary case distribution?

R, reproductive number

- R is the average number of secondary infections produced by a typical case of an infection in a population.
- If R > 1, there is a chance of an epidemic.
- Depends on:
 - The rate of contacts in the host population.
 - The probability of infection being transmitted during contact.
 - Infectiousness of viral strain, susceptibility to infection, proximity of contact
 - The duration of infectiousness.

Secondary case distribution

- Not all infectors are born equal;
 - i.e. SARS-CoV-2 transmission is heterogeneous.
- Hence, a secondary case distribution.
- The mean of the secondary case distribution is R.
- Characterised by a shape, variance, range, etc.

How do we characterise the secondary case distribution?

- Current assumption: negative binomial distribution.
- Is this necessarily the best assumption in all scenarios?
- Transmission is clustered with relatively high aggregation.
- Most individuals do not infect anybody while a few are responsible for the majority of transmission.
- Higher maximum number of new cases.
- A lower percentage of infectors are responsible for majority of new infections == superspreaders.

Clustering

- Depends on:
 - The rate of contacts in the host population.
 - The probability of infection being transmitted during contact.
 - Infectiousness of viral strain, susceptibility to infection, proximity of contact
 - The duration of infectiousness.
- How does the contact pattern affect the secondary case distribution?
- Assume distinct settings comprise distinct contact patterns.
- How does the setting of spreading affect the shape of the secondary case distribution?

Research question

How does the setting of SARS-CoV-2 infection affect the shape of the secondary case distribution?

Methods

- Find publicly available transmission data in the literature;
- Aggregate data sets and group transmission chains by setting;
- social, hospital, work, family, leisure, education, etc
- Fit and compare different distributions to the data to test the negative binomial assumption.

Data used

Publicly available data -

- Limited data availability
- Not public and derived from models assuming neg binom
- Negative correlation between GDPR and data availability
- Resolution and availability of data decreased over time
- Media and news reports: a substantial chunk of data
- Bias towards superspreading and early pandemic
- public private distinction media superspreading events

Datasets used

- Korean Contact Tracing: patients, infectors (where known), detailed location of infection, age, sex, date confirmed that they had the virus.
- COVID-19 Settings of Transmission: setting (category), indoor/outdoor, country, city, reference (predominantly news articles), number of clusters, primary cases (where known), secondary cases (where known), total number of cases per cluster.
- Transmission pairs: infector, infectee, 'cluster risk' (family, social, work, travel), cluster generation, pair type (imported or local), dates of primary and secondary infections.
- China Contact Tracing: infector, infectee, ages, city, province, dates of infection, household/non-household but no information on settings.

Dataset #1: COVID-19 contact tracing data in mainland China

Infector, infectee, ages, city, province, dates of infection, household/non-household but no information on settings. ### Dataset #2: COVID-19 contact tracing data in Hong Kong Infector, infectee, 'cluster risk' (family, social, work, travel), cluster generation, pair type (imported or local), dates of primary and secondary infections.

Restults

Clusetring

Freq distribution by age and household.

Household and non-household age distributions are very similar.

 ${\bf Kolmogorov\text{-}Smirnov\ Tests:}$

• Infector ages:

$$\mathrm{D}=0.071691,\,p\text{-}value\,=\,0.0627$$

• Infectee ages:

$$D = 0.11277, \, p\text{-}value = 0.00036$$

Who is infecting whom?

Age-specific infection patterns

Discussion

Some problems with the data

- Limited data availability.
- Resolution and availability of data decreased over time.
- Secondary distribution data derived from models
- Models assume negative binomial distribution
- Sources: media and news reports make a substantial chunk of "interesting" data
- Bias towards superspreading and early stage of pandemic
- Different transmission dynamics

Impacts and conclusions

- SARS-CoV-2 transmission strongly governed by age.
- The importance of age-specific contact patterns is not novel.
- Why are there no long chains of transmission?
 - $-\,$ seen in SARS and other infections
- Even some qualitative/descriptive treatment of the data can yield interesting observations and insightful questions.