1 不定积分

1.1 基本积分表

1. 写出以下积分公式:

$$\int \tan x \, dx, \int \cot x \, dx, \int \cot x \, dx$$

$$\int \sec x \, dx, \int \csc x \, dx$$

$$\int \tan x \sec x \, dx, \int \cot x \csc x \, dx$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx, \int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx$$

$$\int \frac{1}{x^2 - a^2} \, dx, \int \frac{1}{x^2 + a^2} \, dx$$

$$\int \sqrt{a^2 - x^2} \, dx, \int \sqrt{x^2 \pm a^2} \, dx$$

2. 重要的积分:

(1)
$$\int \sec^3 x dx$$

1.2 换元积分法难题

$$1. \int \frac{1}{\sin^2 x \cos^2 x} dx$$

$$2. \int \frac{1}{1 + e^x} dx$$

$$3. \int \frac{\sin x - 2 \cos x}{\sin x + \cos x} dx$$

$$4. \int \frac{1 - \ln x}{(x - \ln x)^2} dx$$

1.3 分部积分法难题

$$1.\int \frac{xe^x}{(1+x)^2} dx$$
$$2.\int e^{2x} (\tan x + 1)^2 dx$$

3. (上交 22-23 高数期中)
$$\int_{e^{-5}}^{e^5} \left[\frac{1+\ln x}{\sqrt{x}(1+x)} + \frac{4}{x} \right] \mathrm{d}x$$
 4. $\int x^2 e^x \cos x \mathrm{d}x$

1.4 联合求解法

1.5 有理函数积分

$$1.\int \frac{1}{\sin(x+a)\sin(x+b)} \mathrm{d}x$$

2 定积分

2.1 Darboux 和与 Darboux 定理

- 1. 写出 Darboux 和的五条性质
- 2. 写出 Darboux 定理

2.2 可积的三大充要条件

- 1. 写出可积的第一充分必要条件(Darboux 上下和)
- 2. 写出可积的第二充分必要条件(振幅)
- 3. 写出可积的第三充分必要条件 (σ)
- 4. 证明: Riemann 函数在任意有限区间上可积.

2.3 可积函数类

- 1. 证明: [a,b] 上的连续函数必可积
- 2. 证明: [a,b] 上有限个间断点的函数必可积
- 3. 证明: [a,b] 上的单调函数必可积
- **4.** 设 f(x) 在 [a,b] 有界且有无限多个间断点,但间断点有有限多个极限点,证明: f(x) 可积
- 5. 设 f(x) 与 g(x) 只有有限个取值不同的点,若 f 可积,则 g 可积且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx$$

2.4 定积分运算性质

- 1. 描述积分的可除性
- 2. (积分的复合运算) 证明: 若 $f \in C([a,b])$, $g \in R([\alpha,\beta])$ 且 $g(t) \in [a,b]$, 求证: $f(g(x)) \in R([\alpha,\beta])$
 - 2'. 举出反例: 若 $f \in R([a,b])$, $g \in R([\alpha,\beta])$ 且 $g(t) \in [a,b]$, $f(g(x)) \in R([\alpha,\beta])$ 不一定成立
 - 2". 举出反例: 若 $f \in R([a,b])$, $g \in C([\alpha,\beta])$ 且 $g(t) \in [a,b]$, $f(g(x)) \in R([\alpha,\beta])$ 不一定成立

2.5 积分中值定理与积分不等式例题

1. 设 $f \in C([a,b])$ 且 $f(x) \ge 0$,求证: $\int_{a}^{b} f(x) dx = 0$ 时, 1. 变上限积分 $\Phi(x) = \int_{a}^{x} f(t) dt$ 的性质: 有 f(x) = 0

1'. 设 $f \in R([a,b])$ 且 f(x) > 0,求证: $\int_{a}^{b} f(x) dx > 0$

2. (积分的几何平均) 设 $f \in C([a,b])$ $\stackrel{\ {}_\circ}{=} f(x) \geq 0$, 证明:

$$\lim_{n \to \infty} \left(\int_a^b f^n(x) \mathrm{d}x \right)^{\frac{1}{n}} = \max_{x \in [a,b]} f(x)$$

- 3. 写出积分第一中值定理
- 4. 写出积分第二中值定理, 并写出其两个特殊形式
- 5. 证明 Cauchy-Schwartz 不等式 (更一般的 Hölder 不 等式不做要求)

$$\int_{a}^{b} |f(x)g(x)| \leq (\int_{a}^{b} f^{2}(x) \mathrm{d}x)^{\frac{1}{2}} (\int_{a}^{b} g^{2}(x) \mathrm{d}x)^{\frac{1}{2}}$$

6.(Young 不等式) 设 $\varphi(x)(x \ge 0)$ 是严格单调增加的连 续函数, $\varphi(0) = 0$, $x = \psi(y)$ 是它的反函数, 证明:

$$\int_0^a \varphi(x) dx + \int_0^b \psi(y) dy \ge ab \ (a \ge 0, \ b \ge 0)$$

7. (Hadamard 不等式) 设 $f \in (a,b)$ 的下凸函数,则对 每一对 $x_1, x_2 \in (a, b)$, $x_1 < x_2$, 有

$$f(\frac{x_1 + x_2}{2}) \le \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} f(t) dt \le \frac{f(x_1) + f(x_2)}{2}$$

8. 设 $f(x) \ge 0$, 在 [0,1] 连续且单调递减, $0 < \alpha < \beta < 1$, 证明:

$$\int_0^{\alpha} f(x) dx \ge \frac{\alpha}{\beta} \int_{\alpha}^{\beta} f(x) dx$$

9. 设 $f \in C([a,b])$ 且 $\lim_{x \to +\infty} f(x) = A$,证明:

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt = A$$

10. 设 $f \in R([a,b])$ 且 $f(x) \ge m > 0$, $x \in [a,b]$, 则

$$\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{1}{f(x)} dx \ge (b - a)^{2}$$

11. 设 $f \in C([a,b])$ 且单调递增,证明:

$$\int_{a}^{b} x f(x) dx \ge \frac{a+b}{2} \int_{a}^{b} f(x) dx$$

2.6 微积分学基本定理

- (1) 若 $f \in \mathbf{R}([a,b])$, 则 $\Phi(x)$ 是否连续? 进一步地, 能 否加强为可导?
- (2) 若 $f \in C([a,b])$, 则 $\Phi(x)$ 是否可导? 此时 $\Phi(x)$ 和 f(x) 是什么关系?
- 2. 原函数 F(x) 的性质
 - (1) 若 $f \in \mathbf{C}([a,b])$, f(x) 是否一定有原函数? 什么是 它的一个原函数?
 - (2) 若 f(x) 有原函数,是否一定有 $f \in \mathbb{C}([a,b])$?
 - (3) 若 $f \notin \mathbf{R}([a,b])$, f(x) 是否一定有原函数?
 - (4) $f \in \mathbf{R}([a,b]), f(x)$ 是否一定有原函数?

Newton-Leibniz 公式的条件与积分求导公式

1.(Newton-Leibniz) 设 $f \in \mathbf{C}([a,b])$, F(x) 为 f(x) 的 一个原函数,则

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

- (1) N-L 公式仍成立,如果: $f \in \mathbf{R}([a,b])$ 且 f(x) 有 原函数 F(x)
- (2) N-L 公式仍成立,如果: $f \in \mathbf{R}([a,b])$ 且 f(x) 有 次原函数 F(x)

 $(F \in \mathbf{C}([a,b])$ 且仅有限个点上不成立 F'(x) = f(x))

- 2. 写出积分求导公式: $\left(\int_{a(x)}^{b(x)} f(t) dt\right)'$
- 3 (1) 求导数: $F(x) = \int_{2x}^{Ja(x)} \sqrt{t}e^{t} dt$ (2) 若 $f \in \mathbf{C}([a,b])$, 求二阶导数:

$$F(x) = \int_{1}^{x^2} \frac{1}{t} \left(\int_{0}^{t} f(u) du \right) dt$$

4. (1) 求极限:

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (1+t^2) e^{t^2 - x^2} dt$$

(2) 设 $f \in \mathbf{C}(-\infty, +\infty)$,求

$$I = \lim_{x \to a} \frac{x^2}{x - a} \int_a^x f(t) dt$$

5. 设 f(x) 在 [0,1] 上可导, $f' \in \mathbf{R}([0,1])$, 证明:

$$\int_0^1 |f(x)| \mathrm{d}x \le \max\{\int_0^1 |f'(x)| \mathrm{d}x, |\int_0^1 f(x) \mathrm{d}x|\}$$

6. 设 f(x) 在 [0,1] 可导且当 $x \in (0,1)$ 时,0 < f'(x) < 1, f(0) = 0,求证:

$$(\int_0^1 f(x) dx)^2 > \int_0^1 f^3(x) dx$$

2.8 定积分计算性质

2.8.1 周期性

设 $f \in \mathbf{C}(\mathbb{R})$, f(x) 以 T 为周期, 求证:

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

2.8.2 涉及三角函数的定积分恒等式

1. 设 $f \in \mathbf{C}([0,\pi])$

(1) 求证:
$$\int_0^{\pi/2} f(\sin x) dx = \int_0^{\pi/2} f(\cos x) dx, \text{ 并由此计}$$
 算 $I_n = \int_0^{\pi/2} \frac{1}{1 + \tan^n x} dx$

(2) 求证:
$$\int_0^{\pi} x f(\sin x) dx = \pi \int_0^{\pi/2} f(\sin x) dx, \text{ 并由此计}$$
 算 $I_n = \int_0^{\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} dx$

2.(其他代换) 设 $f \in \mathbf{C}(\mathbb{R})$, 且

$$\int_0^x f(x-t)t dt = e^x - x - 1$$

求 f(x)

2.8.3 点火公式与 Wallis 公式

- 1. 写出点火公式: $\int_0^{\pi/2} \sin^n x dx$

2. 写出 Wallis 公式,并证明之
3. 设
$$a_n = \sqrt{n} \frac{(n-1)!!}{n!!}$$
,求证: $\overline{\lim}_{n \to \infty} a_n = \sqrt{\frac{\pi}{2}}$, $\underline{\lim}_{n \to \infty} a_n = \sqrt{\frac{\pi}{2}}$,并由此估计 $\frac{(2n-1)!!}{(2n)!!}$ 的阶

2.9 分部积分法证明不等式

1. 设 $f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$, 求 $I = \int_0^\pi f(x) dx$ 2. 设 f(x) 在 [a, b] 上二阶可导且 f''(x) > 0,又 $f(x) \le 0$, 证明:

$$f(x) \ge \frac{2}{b-a} \int_a^b f(x) dx$$

3. 设 f(x) 在 [a,b] 上二阶可导且 $f'' \in \mathbf{R}([a,b])$,又 f(a) =

$$(1) \int_{a}^{b} f(x) dx = \frac{1}{2} \int_{a}^{b} f''(x)(x-a)(x-b) dx$$
$$(2) \left| \int_{a}^{b} f(x) dx \right| \le \frac{(b-a)^{3}}{12} \sup_{x \in [a,b]} |f''(x)|$$

定积分的各项应用

3.1 定积分应用公式表

1. 填表:

反常积分

4.1 收敛无穷限反常积分被积函数在 +∞ 处性质

- 1. 举出反例: $\int_{1}^{+\infty} f(x) dx \, \psi \, dx \Rightarrow \lim_{x \to +\infty} f(x) = 0$ 2. 证明: 若 $\int_{a}^{+\infty} f(x) dx$ 收敛且 $\lim_{x \to +\infty} f(x)$ 存在,则必有 $\lim_{x \to +\infty} f(x) = 0$
 - (更强的结论) 2'. 证明: 若 $\int_a^{+\infty} f(x) dx$ 收敛且 f(x) 单调,则有 $\lim_{x \to +\infty} x f(x) = 0$
- 3. 若 $\int_a^{+\infty} f(x) dx$ 收敛且 f(x) 在 $[a, +\infty)$ 上**一致连续**, 则 有 $\lim_{x \to +\infty} f(x) = 0$
 - 3'. 若将"一致连续"改为"连续", 原命题是否还成立? 如 果不成立请举出范例.

4. (与 Heine 定理的结合)

证明: $\int_{a}^{+\infty} f(x) dx$ 收敛 \iff 对任意单调递增 $\{A_n\}$ 且 $\lim_{n\to\infty} A_n = +\infty$, $A_0 = a$, $\lim_{n\to\infty} \int_{a}^{A_n} f(x) dx$ 存在且相等

- 4'. 如果将"存在且相等"改为存在,原命题是否还成立?如果不成立请举出反例.
- 4". 证明: $f(x) \ge 0$, $\int_a^{+\infty} f(x) dx$ 收敛 \iff 存在某个单调递增且趋于 $+\infty$ 的 $\{A_n\}$, $\lim_{n \to \infty} \int_a^{A_n} f(x) dx$ 存在
- 5. 设 $f \in C(-\infty, +\infty)$, $\int_{-\infty}^{+\infty} f(x) dx$ 收敛, 则对任意 $x \in$
- \mathbb{R} , 计算: (1) $\frac{\mathrm{d}}{\mathrm{d}x}(\int_{-\infty}^{x} f(t) \mathrm{d}t)$ (2) $\frac{\mathrm{d}}{\mathrm{d}x}(\int_{x}^{-\infty} f(t) \mathrm{d}t)$

4.2 反常积分判别法

	无穷限反常积分	瑕积分
有界判别法		
比较判别法		
比较判别法极限形式		
Cauchy 判别法		
Cauchy 判别法极限形式		
Dirichlet 判别法		
Abel 判别法		

[注]: 其他反常积分判别法:

- (无穷限反常积分) $f(x) \ge 0$ 且 $f(x) \to 0(x \to +\infty)$, 如果无穷小量 f(x) 的阶大于 1 就收敛
- (瑕积分) $f(x) \ge 0$ 且 $f(x) \to \infty(x \to a)$, 如果奇点 处无穷大量 f(x) 的阶**小于** 1 就收敛
- 用加/减拆成两个部分
- 分部积分法/变量替换
- 级数方法
- 表格与以上方法均失效时,尝试使用 Cauchy 判别法

无穷限积分的敛散性判别

(1) 讨论
$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx$$

(2) 讨论
$$\int_{1}^{+\infty} \frac{1}{x^p(\ln x)^q} \mathrm{d}x$$

2. 讨论如下无穷限积分的敛散性 (1)
$$\int_0^{+\infty} e^{-x^2} dx$$

(2)
$$\int_{0}^{+\infty} e^{-x^2} \cos bx dx$$

(3)
$$\int_{1}^{+\infty} \frac{\ln x}{x + \sqrt{x}} dx$$

(4)
$$\int_{2}^{+\infty} \frac{\sin^{2}(x+\frac{1}{x})}{x^{3}(x^{2}+\sin x)} dx$$

$$(5) \int_{1}^{+\infty} \frac{x}{x^2 + m} - \frac{m}{x + 1} dx$$

(6)
$$\int_{1}^{+\infty} \frac{x^2 + m}{\sin(x^2) dx}, \int_{1}^{+\infty} \frac{x + 1}{\cos(x^2) dx}, \int_{1}^{+\infty} x \sin(x^4) dx$$

(7)
$$\int_{1}^{+\infty} \frac{\sin x \arctan x}{x^p} dx$$

(8)
$$\int_{1}^{+\infty} \frac{\sin x}{x^p + \sin x} dx (p > 0)$$

4.2.2 瑕积分的敛散性判别

1. 无穷限积分与瑕积分的关系: 设 a 为瑕点,则令 $y = \frac{1}{x-a}$

$$\int_{a}^{b} f(x) dx = \int_{+\infty}^{\frac{1}{b-a}} f(a + \frac{1}{y})(-\frac{1}{y^{2}}) dy$$
$$= \int_{\frac{1}{b-a}}^{+\infty} \frac{1}{y^{2}} f(a + \frac{1}{y}) dy$$

2. 几个关键积分的敛散性:

(1) 讨论
$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx(p>0), \int_{a}^{b} \frac{1}{(b-x)^{p}} dx(p>0)$$

(2) 讨论
$$\int_{a}^{b} \frac{1}{(x-a)^{p}(b-x)^{q}} dx(p,q>0)$$

(3) Euler 积分:
$$\int_0^{\pi/2} \ln \sin x dx$$
 (4) 讨论
$$\int_0^1 \frac{\sin x}{x^p} dx (p > 0)$$

• 变体 1: Euler 积分 =
$$-\int_0^{\pi/2} \frac{x}{\tan x} dx$$

• 变体 2: Euler 积分 =
$$-\int_0^1 \frac{\arcsin x}{x} dx$$

3. 讨论如下瑕积分的敛散性

$$(1) \int_0^1 \frac{\ln x}{x^p} \mathrm{d}x$$

(2)
$$\int_{0}^{1} \frac{\ln x}{(1-x)^{p}} dx$$

(3)
$$\int_{0}^{1} \frac{\cos^{2} x - e^{-x^{2}}}{x^{\alpha} \tan x} dx (\alpha > 0)$$

(4)
$$\int_{0}^{1} \frac{\sin \frac{1}{x}}{x^{p}} dx (0$$

4. 计算下列瑕积分 (1)
$$\int_0^1 \ln(1-x^2) dx$$

(2)
$$\int_{-1}^{1} \frac{1}{(2-x^2)\sqrt{1-x^2}} dx$$

(3)
$$\int_0^{+\infty} \frac{\ln x}{1+x^2} dx$$

$$(4) I_n = \int_0^1 (\ln x) \mathrm{d}x$$

4.2.3 混合式反常积分

(1)
$$\int_0^{+\infty} \ln(1+\frac{1}{x}) - \frac{1}{1+x} dx$$

$$(2) \int_0^{+\infty} \frac{\sin x}{x^2 + x} \mathrm{d}x$$

(3)
$$\int_0^1 \frac{\ln x}{x^p} dx$$

(4)
$$*\int_{0}^{+\infty} \frac{1}{x^{p} |\ln x|^{q}} dx$$

$$(5) * \int_0^{+\infty} \frac{\sin x \cos \frac{1}{x}}{x^{\alpha}} dx (\alpha > 0)$$

5 数项级数

5.1 级数的基本性质

1. 若 $\sum_{n=1}^{\infty} u_n$ 收敛,对其任意加括号所得级数

$$(u_1 + \dots + u_{i_1}) + (u_{i_1+1} + \dots + u_{i_2}) + \dots + (u_{i_{n-1}+1} + \dots + u_{i_n}) + \dots$$

是否收敛?给出证明:

- 反过来,加括号后级数收敛是否能说明原级数收敛?如果不能,给出反例.
- 若加括号后级数发散,则原级数是否发散?
- 若加括号后级数收敛,且 u_n 不变号,则原级数是否收敛?给出证明.

2. 数项级数与数项的关系:

- (1) 证明: 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\lim_{n\to\infty} u_n = 0$
- (2) (Abel-Pringsheim) 证明: 若 $\sum_{n=1}^{\infty} u_n$ 收敛且 $\{u_n\}$ 非负递减,则 $\lim_{n\to\infty} nu_n = 0$
 - 注: 反过来,若 $\lim_{n\to\infty} nu_n = 0$ 且 $\{u_n\}$ 非负递减,是 否能说明 $\sum_{n=1}^{\infty} u_n$ 收敛? 若不能,给出反例
 - 注: 若 $\{u_n\}$ 不递减,则结论是否成立?若不成立,给出反例
 - 反过来,若 $\lim_{n\to\infty}u_n=0$,是否说明 $\sum_{n=1}^{\infty}u_n$ 收敛? 若不能,给出反例.
- 3. 反常积分与级数的关系: 写出反常积分 $I=\int_a^{+\infty}f(x)\mathrm{d}x$ 与级数 $\sum_{n=1}^{\infty}u_n$ 的关系, 其中 $u_n=\int_{A_{k-1}}^{A_k}f(x)\mathrm{d}x$

5.2 收敛判别法

1. 填表

	定理描述	判别条件
Cauchy 收敛原理		
Cauchy 凝聚判别法		
比较判别法		
比较判别法极限形式		
Cauchy 判别法		
Cauchy 判别法极限形式		
d'Alembert 判别法		
d'Alembert 极限形式		
Raabe 判别法		
Raabe 判别法极限形式		
Bertrand 判别法		
Gauss 判别法		
对数判别法		
Cauchy 积分判别法		
Leibniz 判别法		
Dirichlet 判别法	8	
Abel 判别法		

2. 判断下列正项级数的敛散性
(1) (Cauchy 凝聚)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} (p > 0)$$

(2)
$$\sum_{n=2}^{\infty} \frac{1}{x^{\ln n}} (x > 0), \sum_{n=1}^{\infty} \frac{1}{3\sqrt{n}}$$

$$(3) (比较判别) \sum_{n=1}^{\infty} \frac{\ln(n+1)}{n^p}$$

(4) (比较判别)
$$\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^p$$

(5) (数项极限)
$$\sum_{n=1}^{\infty} \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n}$$

(6) (数项极限)
$$\sum_{n=1}^{\infty} (\sqrt[n]{n} - \sin \frac{1}{n})^{n^2}$$

(7) (柯西判別)
$$\sum_{n=1}^{\infty} n^3 \frac{[\sqrt{2} + (-1)^n]}{3^n}$$

(8) (达朗贝尔)
$$\sum_{n=1}^{\infty} n! (\frac{e}{n})^n$$

(9) (达朗贝尔)
$$\sum_{n=1}^{n-1} a_n$$
, 其中 $a_1 = 1, a_{n+1} = \frac{\sin a_n}{n^p}$

(10) (拉贝判别)
$$\sum_{n=1}^{\infty} \frac{n!}{(x+1)...(x+n)}$$
(11) (拉贝判别)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$$

(11) (拉贝判别)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{(2n)!!}$$

(12) (Cauchy 积分判别)
$$\sum_{n=3}^{\infty} \frac{1}{n(\ln n)(\ln \ln n)^p}$$

判断
$$\sum_{n=1}^{\infty} \int_{0}^{\pi/4} \sin^{n} x dx$$
, $\sum_{n=1}^{\infty} \int_{0}^{\pi/4} \cos^{n} x dx$

4. 证明比较判别法的比值形式:

对于严格正项级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$:

(1) 若
$$\sum_{n=1}^{\infty} b_n$$
 收敛,且当 n 充分大时 $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$,则

$$\sum_{n=1}^{\infty} a_n$$
 收敛

(2) 若
$$\sum_{n=1}^{\infty} b_n$$
 收敛,且当 n 充分大时 $\frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n}$,则

$$\sum_{n=1}^{\infty} a_n$$
 发散

• 讨论正项级数
$$\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^n \cdot n!}$$
 的敛散性

5.d'Alembert 判别法的错误使用: 举反例说明为什么 $\overline{\lim}_{n\to\infty}\frac{u_{n+1}}{u_n}=q>1$ 不能说明 $\sum_{n=1}^{\infty}u_n$ 发散

6. 设正项级数
$$\sum\limits_{n=1}^{\infty}a_n$$
 收敛,记 $r_n=\sum\limits_{k=n}^{\infty}a_k, n=1,2,...$,求证: 当 $p<1$ 时, $\sum\limits_{n=1}^{\infty}\frac{a_n}{r_n^p}$ 收敛

5.3 任意项级数

5.3.1 Cauchy 和 d'Alembert 判别绝对收敛的特殊性:

若由 Cauchy 判別法或 d'Alembert 判別法得出 $\sum_{n=1}^{\infty} |u_n|$ 发 散,是否能够直接得知 $\sum_{n=1}^{\infty} u_n$ 发散?

5.3.2交错级数

5.3.3 Leibniz 判别法

1. 证明:对于 Leibniz 级数, 余和的符号与余项第一项的 符号一致,且余和的绝对值不超过余和第一项的绝对值

2. 判定敛散性:
(1)
$$\sum_{n=1}^{\infty} \frac{(-\alpha)^n}{n^{\varepsilon}} (\alpha > 0, \varepsilon > 0)$$

(2)
$$\sum_{n=1}^{n-1} (-1)^{n-1} \frac{(2n-1)!!}{(2n)!!}$$

(3)
$$\sum_{n=1}^{\infty} \ln(1 + \frac{(-1)^n}{n^p})$$

(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$

$$3.\sum_{n=1}^{\infty} u_n$$
 为严格正项级数, $\lim_{n\to\infty} n(1-\frac{u_{n+1}}{u_n}) = r > 0$,求证: $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛

5.3.4 Abel 与 Dirichlet 判别法

- 1. 写出 Abel 变换
- 2. 写出并证明 Abel 引理

3. **重要结论**: 若 $\{a_n\}$ 单调趋于 0, 证明:

级数	条件
$\sum_{n=1}^{\infty} a_n \sin nx$	对任意 x 都收敛
$\sum_{n=0}^{\infty} a_n \cos nx$	$x \neq 2k\pi$ 时收敛
n=1	$x = 2k\pi$ 时无法判断

4. 设 $\sum_{n=1}^{\infty} b_n$ 收敛,证明: $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} k b_k = 0$

5. 判断下列级数的敛散性
$$(1) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{1+\frac{1}{n}}}$$

$$(2) \sum_{n=1}^{\infty} (-1)^{n} \frac{\sin n}{n}$$

$$(2) \sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n}$$

5.4 绝对收敛级数与条件收敛级数

1. 写出数列正部 v_n , 数列负部 w_n 与原级数 w_n 的敛散性 关系:

2. 级数的交换律:

证明: 绝对收敛级数 $\sum_{n=1}^{\infty} u_n$ 的任何更序级数 $\sum_{n=1}^{\infty} u'_n$ 都绝 对收敛, 且 $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u'_n$

- 若条件改为**条件收敛级数** $\sum\limits_{n=1}^{\infty}u_n$ 结论是否还成立? 若 $f\in C(I)$ 是否能推出 $f_n(x)\Rightarrow f(x), x\in I$,如果不成 不成立,给出反例.
- 写出 Riemann 定理

5.5 级数乘法

1. 写出从 Cauchy 定理到 Mertens 定理再到 Abel 级数乘 法定理, 级数绝对收敛性条件的减弱和乘积排列条件的加 强过程

函数项级数、幂级数、Taylor 级数

6.1 函数项级数的一致收敛

6.1.1 函数列的一致收敛

- 1. 写出逐点收敛的定义,并用 εN 语言描绘逐点收敛
- 2. 用 εN 语言描绘函数列的一致收敛
- 3. 用 εN 语言描绘函数列的不一致收敛
- 4. 写出函数列的一致收敛的等价定义
- 5. 写出函数列的内闭一致收敛的定义
- 6. 设 $f \in C([0,1])$ 且 f(1) = 0,证明: $x^n f(x) \Rightarrow 0, (n \to \infty)$ ∞), $x \in [0, 1]$

$$7.S_n(x) = 2n^2xe^{-n^2x^2}$$
, $\{S_n(x)\}$ 是否在 $(0,1)$ 一致收敛?

 $8.f_n(x) = n^2(e^{\frac{1}{nx}} - 1)\sin{\frac{1}{nx}}, x \in [a, +\infty), a > 0, \text{ } \emptyset$ $\{f_n(x)\}$ 在 $[a,+\infty)$ 是否一致收敛?

6.1.2 一致收敛判别法

- 1. 描绘 Dini 定理
- 2. 描绘一致收敛的 Cauchy 准则

6.1.3 一致收敛函数列的性质

- 1. 描绘一致收敛函数列的极限可换序性
- 2. 描绘一致收敛函数列的连续性定理
 - 利用其逆否命题判断 $\{f_n(x)\}$ 在 I 上不一致收敛于
- 3. 描绘一致收敛函数列的可积性定理
 - 如果将 $f_n(x) \Rightarrow f(x)$ 减弱为 $f_n(x) \rightarrow f(x)$, 可积性 定理是否还成立?如果不成立,试举出范例
 - $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n\to\infty} f_n(x) dx$ 是否能推出 $f_n(x) \Rightarrow f(x)$? 如果不成立,试举出反例
- 4. 描述一致收敛函数列的可微性定理
 - 如果 $\{f'_n(x)\}$ 一致收敛减弱为 $\{f_n(x)\}$ 一致收敛,可 微性定理是否还成立?如果不成立,试举出反例

6.1.4 函数项级数的一致收敛性

- 1. 用 εN 语言描述**函数项级数**一致收敛,并写出等价定
- 2. 描绘函数项级数的 Dini 定理, 并与函数列的 Dini 定理
- 3. 描绘函数项级数的 Cauchy 准则
 - 证明函数项级数一致收敛的必要条件: $\sum_{n=1}^{\infty} u_n(x)$ 收敛 $\Rightarrow u_n(x) \rightrightarrows 0$

- 设 $u_n(x)$ 在 [a,b] 上连续, $\sum_{n=0}^{\infty} u_n(x)$ 在 (a,b) 内一致
 - (1) $\sum_{n=1}^{\infty} u_n(a)$, $\sum_{n=1}^{\infty} u_n(b)$ 收敛
 - (2) $\sum_{n=0}^{\infty} u_n(x)$ 在 [a,b] 上一致收敛
- 4. (绕过求前 n 项部分和与和函数) 证明: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{x+n}$ 在 ◆ 举出反例: $\sum_{n=1}^{\infty} b_n(x)$ 一致收敛不能推出部分和 $B_n(x)$ 一致有界
- $[0,+\infty)$ 上一致收敛 5. 证明: $\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}$ 在 $(0,+\infty)$ 非一致收敛

函数项级数的一致收敛判别法

- 1. 写出 Weierstrass 判别法:
 - 使用 Weierstrass 判别法不仅能得出 $\sum_{n=1}^{\infty} u_n(x)$ 一致收 4. 描绘一致收敛的函数项级数的可微性定理 敛, 更能得出 $\sum_{n=1}^{\infty} u_n(x)$ 绝对一致收敛
 - (1) 若对任意的 n, $a_n(x)$ 在 [a,b] 上单调,且 $\sum_{n=1}^{\infty} a_n(x)$ 在 [a,b] 的端点处绝对收敛,证明: $\sum_{n=1}^{\infty} a_n(x)$ 在 [a,b] • 证明: (1) $\sum_{n=1}^{\infty} \int_0^x t^n \sin \pi t dt = \int_0^x \frac{\sin \pi t}{1-t} dt$; 上一致收敛且绝对收敛
 - (2) 若对任意的 n, $a_n(x)$ 在 [a,b] 上连续, $\sum_{n=1}^{\infty} a_n(x)$ 在 (a,b) 内一致收敛,证明:
 - (i) $\sum_{n=1}^{\infty} a_n(a)$, $\sum_{n=1}^{\infty} a_n(b)$ 收敛
 - (ii) $\sum_{n=0}^{\infty} a_n(x)$ 在 [a,b] 上一致收敛
 - (3) 证明: $\sum_{x=1}^{\infty} \frac{1}{n^x}$ 在 $(1,+\infty)$ 内非一致收敛
 - (4)若 a_n 绝对收敛,证明: $\sum_{n=1}^{\infty} a_n \sin nx$ 和 $\sum_{n=1}^{\infty} a_n \cos nx$ 在 $(-\infty, +\infty)$ 内一致收敛且绝对收敛
 - (5) **(Picardo 迭代法)** 设 $u_1(t)$ 在 [a,b] 上可积, $u_{n+1}(x) = \int_{a}^{x} u_n(t) dt$,证明: $\sum_{n=1}^{\infty} u_{n+1}(x)$ 在 [a,b] 上
 - (6) 判断 $\sum_{n=1}^{\infty} (-1)^{n-1} (x \ln x)^n$, $x \in (0,1]$ 的一致收敛

- 2. 写出函数项级数的 Dirichlet 判别法
 - 3. 写出函数项级数的 Abel 判别法
 - 4. 函数项级数 Abel 判别条件不能推出 Dirichlet 判别条件
 - 举出反例: $\{a_n(x)\}$ 单调且一致有界不能推出 $\{a_n(x)\}$

6.1.6 一致收敛函数项级数的性质

- 1. 描绘一致收敛的函数项级数的连续性定理
- 2. 描绘一致收敛的函数项级数的极限可换序性
- 3. 描绘一致收敛的函数项级数的可积性定理
- 5. (开区间包括法)
 - 证明: 设 $\sum_{n=1}^{\infty} \frac{1}{n^x}$, 证明 (1) x > 1 上连续; (2) x > 1

 - (2) $\sum_{n=1}^{\infty} \int_{0}^{x} t^{n} \sin \pi t dt$ 在 [0,1] 一致收敛
 - (3) $\sum_{n=1}^{\infty} \int_{0}^{1} t^{n} \sin \pi t dt = \int_{0}^{1} \frac{\sin \pi t}{1-t} dt$

6.2幂级数

幂级数的敛散性

- 1. 写出 Cauchy 判别法定义的收敛半径:
 - 描述 Cauchy-Hardmard 定理:
 - 描述 Abel 第一定理:
- 2. 写出 d'Alembert 判别法定义的收敛半径:
- 3. 描述 Abel 第二定理:

4. 设 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的收敛半径为 R, $\lim\limits_{n\to\infty}|\frac{a_{n+1}}{a_n}|=\rho$, 求下列

$$\bullet \quad \sum_{n=0}^{\infty} a_n x^{2n+1}$$

•
$$\sum_{n=0}^{\infty} (a_n(2x)^n + a_{n+1}x^n)$$

5. 求以下幂级数的收敛半径与收敛域

•
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-1)^n$$

$$\bullet \quad \sum_{n=1}^{\infty} \frac{x^{n^3}}{3^n}$$

6.2.2 幂级数的性质

- 1. 描述幂级数的连续性定理
- 2. 描述幂级数的可积性定理
- 3. 描述幂级数的可微性定理

6.3 Taylor 级数

- 1. 设 f(x) 在 $x = x_0$ 处存在任意阶导数, 写出 f(x) 在 $x = x_0$ 处的 Taylor 级数
- 2. 举出反例: f(x) 在 $x = x_0$ 处 Taylor 级数不一定是 f(x)
- 3. 写出 f(x) 在 x_0 邻域内可以展开成 Taylor 级数的充分 条件:
 - (数分 I Taylor 公式/逐项求导性质) Taylor 展开式是 唯一的
 - $x_0 = 0$ 处的 Taylor 展开式成为 Maclaurin 级数

6.3.1 Taylor 级数的余项

- 1. 写出积分型余项、Lagrange 余项和 Cauchy 型余项
- 2. 写出 e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $\ln x$, $(1+x)^{\alpha}$ 的 Maclaurin 展开式, 并标出收敛域

6.4 专题: 幂级数相关计算

6.4.1 求和函数

$$1.\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n(n-1)}$$
 的和函数

$$2. \ \ \cancel{x} \ \sum_{n=1}^{\infty} \frac{n}{2^n}$$

3. 设 $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ 定义在 [0,1] 上,证明:f(x) 在 (0,1) 内满足方程

$$f(x) + f(1-x) + \ln x \ln(1-x) = f(1)$$

4. 证明:
$$\int_0^1 \frac{\ln(1-x)}{x} dx = -\sum_{n=1}^\infty \frac{1}{n^2}$$

5. 求数项级数的和:
$$S = \sum_{n=0}^{\infty} \frac{(2n+1)}{n!}$$

6.4.2 幂级数展开

- 1. 求 $\ln(1 + x + x^2 + x^3)$ 的收敛域 2. 在 x = 0 处展开 $f(x) = \arctan \frac{1+x}{1-x}$
- 3. 展开 $f(x) = \frac{\ln(1+x)}{(1+x)}$ (提示: Cauchy 乘积)
- 4. 在 x = 5 处展开 $f(x) = \frac{x}{x^2 5x + 4}$

Fourier 级数

7.1 三角函数系的正交性

- 1. 写出在 $[c, c + 2\pi]$ 上一个三角函数系,并阐述为什么**这** 个三角函数系在 $[c,c+2\pi]$ 具有正交性
 - 此三角函数系可用于表示任意周期为 2π 的函数
 - 正交性与区间有关,周期大小不同的函数可用不同的 函数系表示

函数的 Fourier 级数展开

7.2.1 Fourier 级数的计算

1. 推导 Euler-Fourier 公式: 假设 f(x) 在 $[-\pi,\pi]$ 上能 展开为一致收敛的三角级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \tag{1}$$

求 Fourier 系数 a_n, b_n

- 我们记(1)为 f(x)关于三角函数系 $\{1,\cos x,\sin x,$ $\cos 2x, \sin 2x, ...$ } 的 Fourier 级数,记作 $f(x) \sim \frac{a_0}{2}$ + $\sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$
- f(x) 展开为一致收敛的三角级数的条件可以换为 f(x) 可积与绝对可积

7.2.2 Fourier 级数的收敛

1. 补全 Fourier 级数在 x 点收敛的定义:

设 f(x) 在 $[-\pi,\pi]$ 上可积与绝对可积,满足 $f(x)\sim \frac{a_0}{2}+1$. 写出展开为正弦级数的方式,此时 Fourier 系数是多少? $\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad \underline{\hspace{1cm}}$

- 1^* : 分别写出当 x 为 f(x) 的连续点与间断点时, f(x)收敛干什么?
- 1^{**} : 当 f(x) 的 Fourier 级数在区间 X 上的任意点 x 收 敛于 f(x) 时,我们称 f(x) 在 X 上可以展开为 Fourier 级数,记作 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$
- 1^{***} 在端点处,无论 f(x) 是否有定义,都需额外讨论 Fourier 级数的收敛性

2. 与出 Lipscritz 判别法 : $\mathcal{D}_{\mathcal{J}}(x)$ 以 2π 为周期,且任
$[-\pi,\pi]$ 上可积或广义绝对可积,若,存
在,使得当
有
其中,则 $f(x)$ 的 Fourier 级数
在 x_0 点处收敛于 $f(x_0)$
一般地, 若存在 h > 0 使得当 0 < u < h 时,
存在,则 $f(x)$ 的 Fourier 级数
在 x ₀ 点处收敛于

- 写出 Lipschitz 判别法的推论: 在 x₀ 处的导数(或单 侧导数)满足什么条件时 f(x) 的 Fourier 级数在 x_0 点处收敛于什么?
- 3. 写出 Dirichlet 判别法:

7.2.3 Fourier 级数展开

给定 $[0,\pi]$ 上的函数 f(x)

- 2. 写出展开为余弦级数的方式,此时 Fourier 系数是多少?
- 3. 写出周期为 T 的函数 f(x) 的: (1) Fourier 系数 (2) Fourier 级数的表达式

2008-2009 学年数学分析期末试题

3. 设 f(x) 在 $[0,+\infty)$ 上连续且单调减少,记

$$F(x) = x \int_0^x f(t)dt - 2 \int_0^x t f(t)dt, \ x \in [0, +\infty)$$

证明: F(x) 在 $[0,+\infty)$ 上单调增加

- 4. 求心脏线 $r = a(1 + \cos \theta)$ 所围图形的面积.
- 5. 讨论反常积分

$$\int_0^{+\infty} \frac{|\sin x|}{(1+x^2)\sqrt{x^3}} \mathrm{d}x$$

的敛散性

2006-2007 学年数学分析期末试题

- 1. 设 f(x) 在 [a,b] 上连续且 f(x) > 0, $x \in [a,b]$, 令 $F(x) = \int_a^x f(t) dt + \int_b^x \frac{1}{f(t)} dt$, 证明: (1) $F'(x) \ge 2$, $x \in [a,b]$
- (2) F(x) = 0 在 [a,b] 中有且仅有一个实根
- 2. 计算星形线 $x^{2/3} + y^{2/3} = a^{2/3} (a > 0)$ 所围图形的面积

2004-2005 学年数学分析期末试题

1. 计算不定积分:

$$\int \ln^2(x + \sqrt{x^2 + 1}) \mathrm{d}x$$

- 2. 设曲线方程围 $y = \int_0^x \sqrt{\sin 2t} dt$, $0 \le x \le \frac{\pi}{2}$, 求曲线的
- 3. 讨论广义积分 $\int_0^{+\infty} \frac{1}{x^p + x^q} dx$ 的敛散性