Exercise 1

Solution:

a) Assuming High input = $V_{DD} = 5 V$ & Low input = 0 V, we assume, D_A will be off & D_B will be on for (1,0).

Verification: Voltage across
$$D_A$$
, $V_{D_A} = (V_o - I_A \times R_A - V_A)$
= $(0.743 - 0 - 5) = -4.267 < 0.6 V$

Voltage across D_B , $V_{D_B} = 0.7$

Also, the output voltage is lower than that of the high input.

b) For (O,1), D_A will be on & D_B will be off. However, since R_A & R_B are same, V_O will be the same. Now,

$$I_{DD} = I_{DA} + I_{DB} = \frac{V_0 - V_A - 0.7}{R_A} + 0 = \frac{0.743 - 0 - 0.7}{1} = 0.043 \text{ mA}$$

Note: This is also the current that is flowing through R_A .

c) Both diodes will be on in this case.

So,
$$I_{DD} = I_{DA} + I_{DB} = \frac{V_o - V_A - 0.7}{R_A} + \frac{V_o - V_B - 0.7}{R_B}$$

$$\rightarrow \frac{V_{DD} - V_o}{R_{DD}} = \frac{V_o - 0 - 0.7}{1} + \frac{V_o - 0 - 0.7}{2} \rightarrow \frac{5 - V_o}{100} = \frac{3(V_o - 0.7)}{2} \rightarrow V_o = 0.728 V$$

$$I_{DA} = \frac{V_0 - 0.7}{R_A} = \frac{0.728 - 0.7}{1} = 0.028 \ mA$$

$$I_{DB} = \frac{V_0 - 0.7}{R_B} = \frac{0.7228 - 0.7}{2} = 0.014 \ mA$$

d) Voltage of the node between $D_B \& R_B = V_B + 0.7 = 0 + 0.7 = 0.7 V$

Exercise 2

Solution:

From **Exercise 1**, we found that the output voltage for (1,0) & (0,1) is 0.743V. The other case when the output voltage will be low is (0,0). For this, KCL gives,

$$I_{DD} = I_{DA} + I_{DB} \rightarrow \frac{V_{DD} - V_o}{R_{DD}} = \frac{V_o - V_A - 0.7}{R_A} + \frac{V_o - V_B - 0.7}{R_B}$$
$$\rightarrow \frac{5 - V_o}{100} = \frac{V_o - 0.7}{1} + \frac{V_o - 0.7}{1} \rightarrow V_o = 0.721 V$$

Thus the lower threshold voltage of output for the AND gate = $\max(V_{o_{0,0}}, V_{o_{0,1}}, V_{o_{1,0}})$

$$= \max(0.721, 0.743, 0.743) = 0.743 V$$

Exercise 3

Solution:

Step 1:

Case	DA	DB
0,0	Off	Off
0,1	Off	On
1,0	On	Off
1,1	On	On

(0,0):

Step 2:

$$I_{DA} = I_{DB} = 0$$

 $\therefore I_o = I_{DA} + I_{DB} = 0$

$$V_A = V_B = 0.2 V$$

Both I_{DA} & I_{DB} flows from their respective sources to the ground.

Step 3:

$$P = (V_A - 0) \times I_{DA} + (V_B - 0) \times I_{DB}$$

$$\therefore P_{0,0} = (0.2 - 0) \times 0 + (0.2 - 0) \times 0 = 0 W$$

(0,1):

Step 2:

$$I_{DA} = 0$$
, $I_{DB} = \frac{V_B - 0.7}{250 + 100 \times 10^3} = \frac{5 - 0.7}{100250} = 42.9 \ \mu A$
 $V_A = 0.2 \ V$, $V_B = 5 \ V$

Step 3:

$$P = (V_A - 0) \times I_{DA} + (V_B - 0) \times I_{DB}$$

$$\therefore P_{0,1} = (0.2 - 0) \times 0 + (5 - 0) \times 42.9 =$$

214.5 \(\mu W \)

(1,0) can be found similarly. Note that both the diode branches have the same resistances & input voltages. Hence, the result for (1,0) will be the same as (0,1). If those were not the same, the results would differ.

(1,1):

Exercise 4

Solution:

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

b) Output voltage is high for the last 5 rows of input in the truth table.

Case (0,1,1):

 D_A , D_B & D_C all are of f, D_1 on

Hence, KCL at the output voltage node of the AND gate, $V_{o(and)}$ gives,

$$I_{R2} = I_{DB} + I_{DC} + I_{R1} \rightarrow \frac{5 - V_{o(and)}}{100} = 0 + 0 + \frac{V_{o(and)} - V_{Y} - 0.7}{1}$$

 $\rightarrow 101 V_{o(and)} - 100 V_{Y} = 75$

KCL at Y gives,

$$I_{R1} + I_A = I_{R_o} \rightarrow \frac{V_{o(and)} - V_Y - 0.7}{1} = \frac{V_Y - 0}{100} \rightarrow 100V_{o(and)} - 101V_Y = 70$$

Solving the two equations, $V_{o(and)} = 2.86 V$, $V_Y = 2.14 V$

Case (1,0,0):

 D_A , $D_B \& D_C$ all are on, D_1 can be assumed of f (since output of AND gate is low) KCL at AND gate output node,

$$I_{R2} = I_{DB} + I_{DC} \rightarrow \frac{5 - V_{o(and)}}{100} = \frac{V_{o(and)} - 0 - 0.7}{1} \times 2 \rightarrow V_{o(and)} = 0.721 V$$

KCL at Y,

$$I_{RA} = I_{R_o} \rightarrow \frac{5 - V_Y}{1} = \frac{V_Y - 0}{100} \rightarrow V_Y = 4.95 V$$

Case (1,0,1):

 D_A , D_B on, D_C of f, D_1 can be assumed of f (since output of AND gate is low)

KCL at AND gate output node,

$$I_{R2} = I_{DB} + I_{DC} \rightarrow \frac{5 - V_{o(and)}}{100} = \frac{V_{o(and)} - 0 - 0.7}{1} \rightarrow V_{o(and)} = 0.742 V$$

KCL at Y,

$$I_{RA} = I_{R_o} \rightarrow \frac{5 - V_Y - 0.7}{1} = \frac{V_Y - 0}{100} \rightarrow V_Y = 4.25 V$$

Case (1,1,0): Same as Case (1,0,1)

Case (1,1,1):

 D_A , D_1 on, all other diodes are of f

KCL at Y,

$$I_{RA} + I_{R1} = I_{R_o} \rightarrow \frac{5 - V_Y - 0.7}{1} + \frac{5 - V_Y - 0.7}{101} = \frac{V_Y - 0}{100} \rightarrow V_Y = 4.25 V$$

$$\therefore V_{o(and)} = 5 - I_{R1} \times 100 = 5 - \frac{5 - 4.94 - 0.7}{101} \times 100 = 4.96 V$$

Thus, the higher threshold of output voltage = $min(V_V \ of \ all \ high \ output \ cases) = 2.14 \ V$

Output voltage is low for the first 3 rows of input in the truth table.

Case (0,0,0):

 D_A of f, $D_B \& D_C$ on, D_1 can be assumed of f

(since the output of thte AND gate is low)

KCL at AND gate output node,

$$I_{R2} = I_{DB} + I_{DC} \rightarrow \frac{5 - V_{o(and)}}{100} = \frac{V_{o(and)} - 0 - 0.7}{1} \times 2 \rightarrow V_{o(and)} = 0.721 V$$

 $V_Y = 0$ (since all diode branches connected to Y are open)

Case (0,0,1):

 D_A off, D_B on, D_C off, D_1 can be assumed off

KCL at AND gate output node,

$$I_{R2} = I_{DB} + I_{DC} \rightarrow \frac{5 - V_{o(and)}}{100} = \frac{V_{o(and)} - 0 - 0.7}{1} \rightarrow V_{o(and)} = 0.742 V$$

 $V_Y = 0$ (for the same reason as previous case)

Case (0,1,0): Same as Case (0,0,1)

Thus, lower threshold of output voltage = $max(V_Y \ of \ all \ low \ output \ cases)$ = $0\ V$

c) Power dissipation of all cases:

Case (0,0,0):

$$P_{0,0,0} = (5-0) \times I_{R2} = 5 \times \frac{5-0.721}{100} = 0.214 \text{ mW}$$

Case (0,0,1):

$$P_{0,0,1} = (5-0) \times I_{R2} = 5 \times \frac{5-0.742}{100} = 0.213 \text{ mW}$$

Case (0,1,0): Same as Case (0,0,1).

Case (0,1,1):

$$P_{0,1,1} = (5-0) \times I_{R2} = 5 \times \frac{5-2.86}{100} = 0.107 \ mW$$

Case (1,0,0):

$$P_{1,0,0} = (5-0) \times I_{R2} + (5-0) \times I_{RA} = 5 \times \left(\frac{5-0.721}{100} + \frac{5-4.95}{1}\right) = 0.464 \ mW$$

Case (1,0,1):

$$P_{1,0,1} = (5-0) \times I_{R2} + (5-0) \times I_{RA} = 5 \times \left(\frac{5-0.742}{100} + \frac{5-4.25}{1}\right) = 3.963 \text{ mW}$$

Case (1,1,0): Same as Case (1,1,0).

Case (1,1,1):

$$P_{1,1,1} = (5-0) \times I_{R1} + (5-0) \times I_{RA} = 5 \times \left(\frac{4.96 - 4.25 - 0.7}{1} + \frac{5 - 4.25}{1}\right) = 3.8 \ mW$$

 \therefore Maximum Power Dissipation, $P_{max} = 3.8 \text{ mW}$

 $\therefore Average\ Power\ Dissipation, P_{avg} = \frac{0.214 + 0.213 \times 2 + 0.107 + 3.963 + 0.463 \times 2 + 3.8}{8}$

 $= 1.18 \ mW$