	20	te
	tworial 1 Forday	
	Ser relationship election	
Ano-1	1) Asymptotic notations are make	
THAT I	notations with an	ematical
	complexen of an allower	tell the
1	input is very large.	when the
		-
1	types of asymptotic notations:-	
	(2) (2)	
	1) Big - Oh (O) -> It gives "tight" up	eper bound.
	2) Big - Ohmega (I) -> It gives Hig	Ly" Oniver Music
	a surregue (25) / 2 grees rig	Company of Berna
	3) & theta (19) -> It gives ' trant'	eser and
	3) @ theta (0) -> It give 'tiget' u	wood with
	1900	awre sie
	4) small - Oh (0) -> # gives lepper	bound.
47		
	5) small ohmega (w) + H gives low	wer bound.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 2	0/100)	
Ans-2)	O(logn)	
1	T(n) - 2T(n-1) $n > 0$	
Am-3)	I(n) = SI(n)	
	$T(1) = 1 \qquad \qquad n < -0$	200
	By forward susstitution:	화는 1 · · · · · · · · · · · · · · · · · ·
		10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m
	T(n) = 3T(n-1)	
	T(0) = 1 T(1) = 3T(1-1) = 3T(0) = 3	1 h
	T(1) 2 31 11 1)	

int 1=1, S=1; Ans-5) while (S(=n) J++; 1-13-16-10-15 S= S+ 1; print ("#"); =) (1)+ (1+2)+ (1+2+3) + (1+2+3+4)+--6n (m+1) (n+2) =) 0(m3) Ans-6, 1, 2, 3, 4, 5, 6, 7, 8, 9 TC = 0 (Vn) 0 (n)·logn·logn = 0 (n logn logn) T(n) = T(n-3) + n2

Scanned with CamScanner