Estatística descritiva

Covariância e correlação

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Objetivos da aula

Obter noções básicas de:

- Covariância;
- Correlação.

Até o momento...

Aprendemos a descrever estatisticamente dados que envolve uma variável (análise univariada);

aluno	nota
1	53,21
2	62,33
3	59,35
4	59,63

E se...

... além de termos os dados das notas, temos dados da altura de cada candidato que fez a prova. Que tipo de pergunta podemos fazer?

aluno	nota	altura
1	53,21	1,68
2	62,33	1,62
3	59,35	1,37
4	59,63	1,56

Como se comportariam duas variáveis que se relacionam?

Gráficos de dispersão (matplotlib.pyplot)

import matplotlib.pyplot as plt

```
X = [1,2,3,4,5]

Y = [7,5,2,4,6]
```

```
plt.scatter(X, Y)
plt.grid()
plt.show()
```


Quanto mais alto a pessoa, maiores/menores são as chances dele tirar notas boas?

Em outras palavras, as alturas e as notas dos candidatos relacionam?

Como medir a relação entre as variáveis?

Covariância:

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Como medir a relação entre as variáveis?

- Covariância
- Coeficiente de Correlação

Covariância

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$

Propriedades da Covariância

$$Cov(X,Y) = \frac{\sum (X_i - X)^* (Y_i - Y)}{n}$$

- $-\infty < Cov(X, Y) < +\infty$
- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, C) = 0 se C é uma constante;

Sobre o valor numérico da covariância

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

A unidade da covariância seria: (unidade de X) * (unidade de Y);

Comparar covariância de diferentes pares de variável é difícil, pois se alterarmos a escala, a covariância muda também.

Como remover a escala dos dados? Padronização (normalização)

Sobre o valor numérico da covariância

$$Cov(X,Y) = \frac{\sum (X_i - X)^* (Y_i - Y)}{n}$$

Correlação (p)

$$Correlation = \frac{Cov(x,y)}{\sigma x * \sigma y}$$

Propriedades da correlação

- ρ é a covariância dos dados padronizados de X e Y;
- Adimensional (lida com proporção);
- $-1 < \rho < 1$;

$$Correlation = \frac{Cov(x,y)}{\sigma x * \sigma y}$$

Exercícios do notebook em:

github.com/tetsufmbio/IMD0033/