Алгорритм Евклида, Идеалы и прочее

Определение 1. *Наибольшим общим делителем* набора многочленов A_1 , A_2 , . . . A_n называется такой их общий делитель, который делится на любой другой их общий делитель.

Замечание. а) Наибольший общий делитель определен с точностью до умножения на константу. Иногда константу подбирают так, чтобы многочлен был *приведенным*, т.е. его старший коэффициент равнялся 1.

- б) Для данного определения не очевидно существование такого многочлена. Мы докажем его двумя способами.
- в) Из данного определения следует, что наибольший общий делитель является делителем наибольшей степени.

Определение 2. Пусть K — коммутативное кольцо. Подмножество $I \subseteq K$ называется идеалом, если I замкнуто относительно сложения и произведение любого элемента из $a \in K$ на любой элемент $b \in I$ принадлежит $ab \in I$.

- 1. Даны два целых числа a_1, a_2, \ldots, a_n . Рассмотрим множество I это все числа вида $a_1k_1 + \ldots + a_nk_n$. Докажите, что
- а) если $c \in I$ и $d \in I$, то $c + d \in I$, $c d \in I$, $cn \in I$ (иными словами I идеал);
- б) если $c \in I$ и $d \in I$, то остаток от деления c на d принадлежит I;
- в) пусть e самое маленькое положительное число в I, тогда если $c \in I$, то c : e (в частности покажите отсюда, что e является общим делителем a_1, a_2, \ldots, a_n);
- г) пусть $m = (a_1, a_2, \dots, a_n)$, тогда если $c \in I$, то c : m; д) докажите, что e = m; Иными словами мы доказали, что m представим в виде $a_1k_1 + \dots + a_nk_n$.
- **2.** Для данных многочленов $A_1, A_2, \ldots A_n$ обозначим через I множество многочленов представимых в виде $A_1X_1 + A_2X_2 + \cdots + A_nX_n$, где X_i произвольные многочлены. Пусть D многочлен наименьшей степени в множестве I. а) Докажите, что I идеал.
- б) Докажите, что для любого M из $I, M \\\vdots D$.
- в) Докажите, что D является наибольшим общим делителем $A_1, A_2, \dots A_n$.

Определение 3. Пусть K — коммутативное кольцо. Идеал I называется главным, если существет такой элемент $a \in I$ такой, что любой элемент из I делится на a.

- **3.** Докажите, что в кольце а) целых чисел;б) кольце многочленов над полем K[x] любой идеал главный.в) Привидите пример идеала в K[x,y], который не является главным.
- **4.** Пусть число α является корнем некоторого многочлена с рациональными коэффициентами ("является алгебраическим числом"). Тогда все многочлены с рациональными коэффициентами, обращающиеся в ноль в точке α кратны некоторому одному многочлену с рациональными коэффициентами.

Определение 4. *Алгоритмом Евклида* для многочленов A и B называется последовательность делений с остатком:

$$A = BQ_1 + R_1,$$

 $B = R_1Q_2 + R_2;$
...
 $R_{n-2} = R_{n-1}Q_n + R_n;$
 $R_{n-1} = R_nQ_{n+1}.$

Последний ненулевой остаток R_n называется результатом работы алгоритма $Ee\kappa \Lambda u\partial a$.

- **5.** Докажиет, что результат алгоритма Евклида является НОДом многочленов A и B. Докажите, что существуют такие многочлены g, h, что $Ag + Bh = R_n$.
- **6 (Китайская теорема об остатках для многочленов).** Пусть g_1, \ldots, g_n попарно взаимнопростые многочлены и r_1, \ldots, r_n произвольный набор многочленов. Тогда существует многочлен f такой, что

$$\begin{cases} f \equiv r_1 \\ f \equiv r_2 \\ \dots \\ f \equiv r_n \end{cases}$$

Любые такие многочлены f и f' сравнимы $f \equiv f'$.

7. а) Рассмотрим набор взаимнопростых натуральных чисел b_1, b_2, \ldots, b_n больших 1 и чсило $|a| < b_1 b_2 \ldots b_n$. Докажите, что существуют целые числа $|c_1| < b_1, \ldots, |c_n| < b_n$, что выполнено равенство

$$\frac{a}{b_1 b_2 \dots b_n} = \frac{c_1}{b_1} + \dots + \frac{c_n}{b_n}.$$

- б) Сформулируйте обобщение этого результата для многочленов и докажите его.
- **8.** Напоминание, уравнение прямой, проходящей через точки z_1, z_2 выглядит так

$$\frac{z_1-z}{z_2-z} = \frac{\overline{z_1-z}}{\overline{z_2-z}}$$

Вспомнив, как доказывается эта формула, напишите уравнение прямой, проходящей через точку z_3 и перпендикулярной вектору z_1-z_2 .

9. Упростите выражение

$$\cos \alpha + \cos 2\alpha + \ldots + \cos n\alpha + i \sin \alpha + i \sin 2\alpha + \ldots + i \sin n\alpha$$
.

И найдите $\cos \alpha + \cos 2\alpha + \ldots + \cos n\alpha$.