Collaborative Search for a Public Good

by

Masha Titova

UC SAN DIEGO

May 2, 2019

Motivation

- ▶ A group of agents often must search for possible solutions to a given problem.
- ► The resulting <u>solution</u>, as well as the <u>information gathered</u> during search, are often a <u>public good</u>.
- Examples of collaborative search for a public good are
 - consumer search,
 - search for investment opportunities,
 - adoption of new technologies,
 - research and development.

Modeling Choices

- ► I extend the sequential search model of Weitzman (1979) to 2 searchers.
- ► Each public good (project) is represented by a **box**:
 - uncertain reward revealed upon paying a search cost.
- ➤ Once the search process is over, the best uncovered project is implemented.

Questions Asked

- ▶ What is the optimal **search order** among risky alternatives?
- ► What are the **incentives to free ride** on colleague's search efforts?
- ► How does collaborative search by a group of people compare to the (socially optimal) individual search?

Preview of the Results

- ► The search order and the stopping rule are that of a social planner:
 - the same project is implemented at the end,
 - the same information is gathered in the same order.
- ► There is delay at each stage of the search process
 - each agent free rides in hopes that her colleague will pay the search cost.
- ▶ Overall, collaborative search is inefficient, but preferred by each individual agent to searching alone.

Literature

Collective Experimentation:

• Bolton and Harris (1999), Keller et al. (2005), Keller and Rady (2010), Bonatti and Rantakari (2016).

What I do: consider a multi-armed bandit and study the order and stopping rule.

▶ Delegation and Approval of Experimentation:

Manso (2011), Lewis (2012), Halac et al. (2016), Guo (2016), McClellan (2019).
 What I do: compare the optimal search by one agent to the optimal search in teams.

► Collaboration in Teams:

Bonatti and Hörner (2011), Campbell et al. (2014), Georgiadis (2015).
 What I do: agents choose the order in which to search and decide when to stop.

▶ Dynamic Provision of Public Goods:

• Fershtman and Nitzan (1991), Marx and Matthews (1991), Admati and Perry (1991), Compte and Jehiel (2004), Kessing (2007), Bowen et al. (2019).

What I do: study search for a public good.

Setup

- 2 players:
 - risk-neutral,
 - maximize the expected present value of the best uncovered reward (free recall),
 - discount time at an exponential rate $\delta = e^{-r\Delta t}$.
- ► Each period, one player is randomly (with prob. 1/2) **chosen** to perform the search.
- ► The game ends if either
 - there are no options left to search among,
 - the players agree unanimously to terminate the search process.

Actions

- \blacktriangleright When player *i* is **chosen**, she can
 - open exactly one box of her choice,
 - do nothing,
 - propose to terminate the game.
- ▶ In the latter case, her **opponent** (player *j*) can
 - accept the offer,
 - reject it.

Public Goods

- ▶ *N* unopened **boxes**. Box $b_k \equiv (c_k, F_k(\cdot))$
 - contains an uncertain reward $x_k \sim F_k(\cdot)$ (independent),
 - *c*_k is the **search cost** paid to learn the contents of the box,
 - the reward is drawn in the following period.
- ▶ Initially, there is a fallback reward $z_0 = 0$.

State Variables

- ▶ At each stage, the **state** $s = (z, \mathcal{B}^c)$ of the problem is
 - the current best option z,
 - e.g. at t = 0 it is $z_0 = 0$;
 - the set of unopened boxes \mathcal{B}^c .

Markov Perfect Equilibrium

- Let $\Phi_i^{ch}(s)$ and $\Phi_i^{op}(s)$ be the **discounted continuation** payoff, depending on player i's role in state s.
- Let $\alpha_i(s) \equiv (\alpha_i^{ch}(s), \alpha_i^{op}(s))$ be a stationary Markov strategy.

A pair of strategies $(\alpha_1(s), \alpha_2(s))$ is an **MPE** if $\forall i, \forall j \neq i, \forall s$

$$\alpha_i^{\mathit{ch}}(s) = \arg\max_{\hat{\alpha}_i^{\mathit{ch}}(s)} \Phi_i^{\mathit{ch}}(s), \quad \alpha_i^{\mathit{op}}(s) = \arg\max_{\hat{\alpha}_i^{\mathit{op}}(s)} \Phi_i^{\mathit{op}}(s)$$

given $(\alpha_2^{ch}(s), \alpha_2^{op}(s))$ and subject to

$$\Phi_i^{ch}(z,\emptyset) = \Phi_i^{op}(z,\emptyset) = z.$$

One Box

Social Planner: Weitzman (1979)

- ► The social planner solves the individual search problem.
- ▶ If there is only one box *left*, the SP opens it iff

$$-c_k + \delta S(z, F_k) \ge z, \tag{SP}$$

where

$$S(z, F_k) \equiv \mathbb{E}\left[\max\{z, x_k\}\right] = z \int_{-\infty}^{z} dF_k(z) + \int_{z}^{+\infty} x dF_k(x).$$

Reservation Value of a Box

▶ Let \bar{z}_k solve

$$-c_k + \delta S(\bar{z}_k, F_k) = \bar{z}_k.$$

▶ Then, it is easy to show that

$$-c_k + \delta S(z, F_k) \ge z \iff \bar{z}_k \ge z.$$
 (SP)

▶ \bar{z}_k is the reservation value of this box b_k that contains all relevant information about this box.

The SP opens box b_k iff **the box is good enough** i.e. when the reservation value of this box is <u>higher than</u> the current best option.

2 agents, 1 box: the Opponent

- ▶ When the opponent receives a termination offer, he can
 - accept, get z immediately,
 - reject, eventually open the box, and get

$$\frac{\delta}{2-\delta} \cdot \left[-c_k + \delta S(z, F_k) \right];$$

$$\Rightarrow \frac{1}{2}\delta + \left(\frac{1}{2}\delta\right)^2 + \dots = \frac{\delta}{2-\delta}$$

▶ the offer is **rejected** if and only if

$$z \le \frac{\delta}{2 - \delta} \cdot \left[-c_k + \delta S(z, F_k) \right] \iff z \le z_k^{IR}.$$
 (IR)

2 agents, 1 box: the Chosen Player

- ▶ Next consider the problem of the **chosen** player.
- ▶ If $z > \bar{z}_k$, proposing termination is strictly dominant
 - this offer is always accepted since $z_k^{IR} < \bar{z}_k$.
- ▶ If $z \le \bar{z}_k$, the chosen player can do better by mixing between
 - opening the box,
 - doing nothing.

The Equilibrium in Mixed Strategies

- ▶ Suppose each player, when chosen, opens the box with prob. π and does nothing with prob. (1π) .
- ▶ In equilibrium, the chosen player must be indifferent btw
 - opening herself: $-c_k + \delta S(z, F_k)$,
 - someone opening it in the future:

- the search cost is paid 1/2 the time in expectation
- π is obtained from the indifference condition.

The Equilibrium

▶ The chosen player

• if $z \leq \bar{z}_k$, opens the box b_k with prob.

$$\pi_k = \begin{cases} \frac{2(1-\delta)}{\delta c_k} \left[-c_k + \delta S(z,F_k) \right] < 1 \text{ if } c_k > S(z,F_k) \cdot \frac{2\delta(1-\delta)}{2-\delta}, \\ 1 \text{ otherwise ,} \end{cases}$$

and does nothing with prob. $1 - \pi_k$;

• if $z > \bar{z}_k$, proposes to terminate the game.

▶ The opponent

- accepts the termination proposal if $z > z_k^{IR}$;
- **rejects** the proposal if $z \leq z_k^{IR}$.

Delay and Welfare Implications

- ▶ On equilibrium path, the box is opened *eventually* if $z \leq \bar{z}_k$
 - this is the socially optimal cutoff.
- ► For *large* search costs, the box is opened with a **delay**
 - whenever $\pi_k < 1$, the chosen player is **free riding**,
 - if Δt is the time interval between periods, then the **expected delay** is $\Delta t \cdot \frac{1-\pi_k}{\pi_k}$.
- ► Each agent pays the search cost 1/2 of the time on average.

Properties of π_k

Higher π means less delay.

- For very low values of c_k , there is no delay because it is strictly dominant to open the box right away.
- ▶ Otherwise, $\pi_k(z)$ is **increasing** and convex in z.

- ▶ **Comparative statics**: $\pi_k(z)$ is **increasing** in the reservation value of the box, i.e. as
 - the search cost c_k decreases,
 - the distribution of rewards gets "better" (in terms of FOSD or MPS).

Social Planner: Optimal Search Protocol

Theorem: Weitzman (1979)

- ▶ **Selection Rule**: if a box is to be opened, it should be that closed box with *highest reservation value*.
- ▶ Stopping Rule: terminate search whenever the best sampled reward exceeds the reservation value of every closed box.

Collaborative Search: Optimal Search Protocol

- $\blacktriangleright \operatorname{Let} \bar{z}_k = \max_{b_l \in \mathcal{B}^c} \bar{z}_l.$
- ► The chosen player
 - if $z \leq \bar{z}_k$, opens the box b_k with prob. $\tilde{\pi}_k \in (0,1]$ and does nothing with prob. $1 \tilde{\pi}_k$;
 - if $z > \bar{z}_k$, proposes to terminate the game.
- ▶ The opponent, upon receiving a termination offer
 - accepts the termination proposal if $z > \tilde{z}_k^{IR}$;
 - rejects the proposal if $z \leq \tilde{z}_k^{IR}$.

Properties of the Equilibrium

- ► The search order and termination rule are myopic
 - only depend on the highest reservation value \bar{z}_k ,
 - socially optimal on the equilibrium path.
- ▶ The prob. of opening the box $\tilde{\pi}_k(s)$ is NOT myopic
 - can only be estimated numerically,
 - known lower bound π_k (from the one box case),
 - less than one for large enough search costs ⇒ delay at each stage of the learning process.

Dynamics of the Delay

- ▶ How does the delay change as they search?
 - The more boxes are opened, the better the uncovered reward, so

$$z \uparrow \Longrightarrow \pi \uparrow$$
 so the delay decreases.

• The more they search, the worse boxes are left so

 $\bar{z}_k \downarrow \Longrightarrow \pi \downarrow$ so the delay increases.

Discussion

- ► All results (probably) still **hold** if
 - there are *N* players,
 - players alternate or are chosen with unequal probability,
 - there is no option to do nothing.
- ▶ The results **do not hold** if players value boxes differently:
 - the best uncovered reward is not a public good,
 - they have different discount factors,
 - players have <u>diferent costs</u> of opening the same box.

Conclusion

- ► This paper examines a model of **sequential search** for a **public good** by a **group of agents**.
- ▶ I find that
 - the search order and stopping rule are socially optimal;
 - delay occurs at every stage of the search process because agents free ride;
 - each agent prefers to search in group rather than by herself.

Bellman Equation for the Social Planner

► The **Bellman equation** is

Properties of π_k

Bellman Equations for 2 Searchers

- Let $\bar{\Phi}_i = 1/2\Phi_i^{ch}(s) + 1/2\Phi_i^{op}(s)$ be the average discounted continuation payoff.
- \blacktriangleright When player *i* is **chosen**, her Bellman equation is

$$\Phi_i^{ch}(s) = \max_{\alpha_i^{ch}} \left\{ \alpha_j^{op}(s) \cdot z, \delta \bar{\Phi}_i(s), \max_{b_k \in \mathcal{B}^c} \left\{ -c_k + \delta \bar{\Phi}_i(s^{-b_k}) \right\} \right\},\,$$

▶ When player *i* is the **opponent**, her Bellman equation is

$$\begin{split} \Phi_i^{op}(s) &= \max_{\alpha_i^{op}} \Big\{ \mathbb{1}_{\{\alpha_j^{ch}(s) = T\}} \cdot r_i \cdot z, \ \delta \bar{\Phi}_i(s') \Big\}, \\ \text{s.t. } s' &= \begin{cases} s & \text{if } \alpha_j^{ch}(s) = T, r_i = 0 \text{ or } \alpha_j^{ch}(s) = \varnothing, \\ s^{-b_k} & \text{if } \alpha_j^{ch}(s) = b_k. \end{cases} \end{split}$$