• Définitions :

	Signification	Exemple
Alphabet	Ensemble fini de lettres	$\Sigma = \{a, b\}$
Mot	Suite finie de lettre	m = abaa
ε	Mot vide (sans lettre)	
Langage	Ensemble de mots	$L = \{\varepsilon, a, baa\}$

 ε est un mot, pas une lettre.

• Opérations sur des mots $u = u_1...u_n$ et $v = v_1...v_p$:

	Définition	Exemple avec $u = ab$ et $v = cbc$
Concaténation	$uv = u_1u_nv_1v_p$	uv = abcbc
Puissance	$u^n = uu$	$u^3 = ababab$
Taille	u = n	u =2

Deux mots sont égaux s'ils ont la même taille et les mêmes lettres.

• Opérations sur des langages $L_1 = \{\varepsilon, ab\}$ et $L_2 = \{b, ab\}$:

	Définition	Exemple
Concaténation	$L_1L_2 =$	$L_1L_2 =$
Concatenation	$\{uv u\in L_1,v\in L_2\}$	$\{b,ab,abb,abab\}$
Puissance	$L^n = \{u^n u \in L\}$	$L_1^2 = \{\varepsilon, ab, abab\}$
Etoile	$L^* = \bigcup L^k$	$L_1^* = \{\varepsilon, ab, abab\}$
	$k \in \mathbb{N}$	

Comme L_1 et L_2 sont des ensembles, on peut aussi considérer $L_1 \cup L_2, L_1 \cap L_2...$

- Les langages réguliers sont tous ceux qu'on peut obtenir avec les règles suivantes :
 - Un langage fini est régulier
 - $-L_1$ et L_2 réguliers $\implies L_1 \cup L_2$ régulier
 - $-L_1$ et L_2 réguliers $\implies L_1L_2$ régulier
 - -L régulier $\implies L^*$ régulier

Exemples: Un alphabet Σ est toujours régulier car fini. $\overline{\Sigma}^*$ est régulier car est l'étoile du langage régulier Σ .

• Une expression régulière est une suite de symboles contenant : lettres, \emptyset , ε , | (union, parfois notée +), *. À chaque expression régulière e on associe un langage L(e).

Exemple: Le langage de l'expression régulière $e = \overline{a^*b \mid \varepsilon \text{ est } L(e)} = (\{a\}^*\{b\}) \cup \{\varepsilon\}.$

• L régulier $\iff \exists$ une expression régulière de langage L.

Exemples de langages réguliers sur $\Sigma = \{a, b\}$:

- 1. Mots contenant au plus un $a: b^*(a|\varepsilon)b^*$.
- 2. Mots de taille $n \equiv 1 \mod 3$: $((a|b)^3)^*(a|b)$.
- 3. Mots contenant un nombre pair de $a:(ab^*a|b)^*$.
- 4. Mots contenant un nombre impair de a: $b^*a(ab^*a|b)^*$.
- Définition possible d'expression régulière en OCaml :

```
type 'a regexp =
    | Vide | Epsilon | L of 'a
    | Union of 'a regexp * 'a regexp
    | Concat of 'a regexp * 'a regexp
    | Etoile of 'a regexp

    (* définition de e ci-dessus *)
let e = Union(Concat(Etoile(a), b), Epsilon)
```

Exemple : déterminer si ε appartient au langage de e.

```
| let rec has_eps e = match e with | Vide | L _ -> false | Epsilon | Etoile _ -> true | Union(e1, e2) -> has_eps e1 || has_eps e2 | Concat(e1, e2) -> has_eps e1 && has_eps e2
```

- Quelques techniques de preuve :
 - Sur des mots : récurrence sur la taille du mot.
 - Pour montrer l'égalité de deux langages : double inclusion ou suite d'équivalences.
 - Pour montrer P(L) pour un langage régulier L: par induction (\approx récurrence), en montrant le cas de base (si L est un langage fini) et les cas d'hérédité $(P(L_1) \wedge P(L_2))$ $\Rightarrow P(L_1L_2), P(L_1) \wedge P(L_2) \Rightarrow P(L_1 \cup L_2), P(L_2)$ $\Rightarrow P(L^*)$.
 - Pour montrer P(e) pour une expression régulière e: par induction, en montrant les cas de base $(P(\emptyset), P(\varepsilon), P(a), \forall a \in \Sigma)$ et les cas d'hérédité $(P(e_1)$ et $P(e_2) \Longrightarrow P(e_1e_2)$ et $P(e_1|e_2), P(e) \Longrightarrow P(e^*)$.

 $\underline{\text{Exemple}}: \text{ Le miroir d'un mot } u = u_1...u_n \text{ est } \widetilde{u} = u_n...u_1 \text{ et le miroir d'un langage } L \text{ est } \widetilde{L} = \{\widetilde{u} | u \in L\}.$

Montrons : L régulier $\Longrightarrow L$ régulier.

On pourrait le montrer par récurrence, mais il est peutêtre plus simple de définir une fonction f(e) qui à une expression régulière e associe une expression régulière pour le miroir de L(e):

- $-f(\emptyset)=\emptyset, f(\varepsilon)=\varepsilon \text{ et } \forall a\in\Sigma, f(a)=a.$
- $-f(e_1e_2)=f(e_2)f(e_1)$ (le miroir de uv est $\widetilde{v}\widetilde{u}$).
- $-f(e_1|e_2) = f(e_1)|f(e_2).$
- $-f(e_1^*) = f(e_1)^*.$

On a bien défini une fonction f telle que, pour toute expression régulière e, f(e) est une expression régulière de $\widetilde{L(e)}$. Donc le miroir d'un langage régulier est régulier.