

Fig. 1

1 MTSLMLLLFAFVQPCASIVEKRCGPIDIRNRPWDIKPQWSKLGDPNEKDLAGQRMVNCT
 61 VVEGSLTISFVLKHKTQAQEEEMHRSLQPRYSQDEFITFPHLREITGTLLVFETEGLVDLR
 121 KIFPNLRVIGGRSLIQHYALIIYRNPDLEIGLDKLSVIRNGGVRIIDNRKLCYTKTIDWK
 181 HLITSSINDVVVDNAAEYAVTETGLMCPRGACEEDKGESKCHYLEEKNQEQQGVERVQSCW
 241 SNTTCQKSCAYDRLLPTKEIGPGCANGDRCHDQCVGCCRNDATAACHACKNVYHKGKC
 301 IEKCDAHLYLLLQRRCVTREQCLQLNPVLSNKTVPIKATAGLCSDKCPDGYQINPDDHRE
 361 CRKCVGKCEIVCEINHVIDTFPKAQAIRLCNIIDGNLTIEIRGKQDSGMASELKDI
 421 FANIHTITGYLLVRQSSPFISLNMFRLRRIEAKSLFRNLYAITYFENPNLKKLFDSTTDLTLD
 481 RGTWSIANNKMLCFKYIKQLMSKLNIPLDPIDQSEGTTNGEKAICEDMAINVSITAVNADS
 541 VFFSWPSFNITDIDQRKFGLYELFFKEVPRIDENMTIEEDRSACVDSWQSVFKQYYETSN
 601 601GEPTPDIFMDIGPRERIRPNTLYAYYVATQMVLHAGAKNGVSKIGFVRTSYYTPDPPTLA
 661 661LAQVDSDAIHITWEAPLQPNGDLTHYTIMWRENEVSPYEEAEKFCTDASTPANRQRTKDP
 721 721KETIVADKPVDIPSSRTVAPTLTMMGHEDQQKTCAATPGCCSCSAIEESEQNKKRPD
 781 781PMSAIESSAFENKLLEVLMPRDTMRVRRSIEDANRVSEELEKAENLGKAPKTLGGKKPL
 841 841IHISKKKPSSSTSTPAFTIASMYALTRKPTTVPGTRIRLYEIYEPLPGSWAINVSALA
 901 901LDNSYVIRNLKHYTLYAISL SACQNMTRVPGASCSISHRAGALKRTKHITDIDKVNLNETIE
 961 961WRFMNNSQQNVNTWDPPTEVNGGIFYVVKLKSVDGSIVMTRCVGAKRGYSTRNQGVLF
 1021 1021QNLADGRYFVSVTATSVHGAGPEAESSDPIVVMTPGFFTVEIILGMLLVFLILMSIAGCI
 1081 1081IYYYIQRVYRGGKVKALSDFMQLNPECVDNKYNADDWELRQDDVVLGQQCGEGSGFKVYL
 1141 1141GTGNVVSLMGDRFGPCAIIKINVDDPASTENLNLYMEANIMKNFKTNFIVQLYGVISTVQ
 1201 1201PAMVVMEMMDLGNLRDYLRSKREDEVFNETDCNFFDIIPRDKFHEWAQICDGMAYLESL
 1261 1261KFCHRDLAARNCMINRDETAKIGDFGMARDLFDYHDQKPSGKRMMPVRWMSPESLKDGF
 1321 1321DSKSDVWSFGVVLYEMVTLGAQPYIGLSNDEVLNYIGMARKVIKKPECCENYWKVMKMC
 1381 1381WRYSPRDRPTFLQLVHLIAAEASPEFRDLSFVLTNDQMILDSEALDDIDDMDNDQV
 1441 1441VEVAPDVENVEVQSDSERRTDSIPLKQFKTIIPPINATTSHSTISIDE TPMKAKQREGSL
 1501 1501DEEV_YALMNHSGGPSDAEVRTYAGGD_YVERDVREN DVPTRRNTGASTSSYTGGGPYCLTN
 1561 1561RGGSNERGAGFGEAVRLTDGVGSGHLNDD_YVEKEISSMDTRRSTGASSSSYGVPTQNWS
 1621 1621GNRGATYYTSKAQQAATAAAAAAAALQQQNGGRGDRLTQLPGTGHQSTRGGQDGD_YIE
 1681 1681TEPKNYRNNGSPSRNGNSRDIFNGRSAFGENEHLIEDNEHHPLV

Fig. 2A

1 ggttaatta cccaagttt agctccaaga gcacacatct gatcgtcgga
 51 ttctactgta ctccccgaaa aaccaacaaa aaacacaagt tttgaacac
 101 ttgtaaatgc agacagaacg atgacgagaa tgaatattgt cagatgtcgg
 151 agacgacaca aaattttgga aaatttgaa gaagagaatc tcggcccgag
 201 ctgctcgctg acgacttcaa caaccgctgc caccgaagct ctcggacaa
 251 ccactgagga tatgaggott aagcagcagc gaagctcgac gctgtccacg
 301 gagcacgata ttgtcgacgg caatcaccac gacgacgagc acatcacaat
 351 gagacggctt cgacttgtca aaaattcgcg gacgcccgt agaacgacgc
 401 ccgattcaag tatggactgc tatgagggaa acccccccattt aaaaaactt
 451 caataaatta ttcttggatt tctaaaaagt catcaatgac gtcattaaatg
 501 cttttactgc tattcgctt tgtacagccg tgtgcctcaa tagtcaaaaa
 551 acgatgcggc ccaatcgata ttgaaatag gccgtggat attaagccgc
 601 aatggtcgaa acttgggtgat ccgaacgaaa aagatttggc tggtcagaga
 651 atggtcaact gcacagtggt ggaagggtcg ctgacaatct catttact
 701 gaaacacaaag acaaaagcac aagaagaaat gcatcgaaatg ctacagccaa
 751 gatattccca agacgaattt atcaactttc cgcatctacg taaaattact
 801 ggaactctgc tcgttttga gactgaagga ttatgtggatt tgcgtaaaat
 851 ttcccaaattt ctcgtgtaa ttggaggccg ttcgctgatt caacactatg
 901 cgctgataat ttatcgaaat ccggatttgg agatcggtct tgacaagctt
 951 tccgttaattt gaaatgggtt tgacggata atcgataatc gaaaactgtg
 1001 ctacacgaaa acgattgatt gaaaacattt gatcaatttct tccatcaacg
 1051 atgttgcgt tgataatgct gccgagtgacg ctgtcaactgaa gactggattt
 1101 atgtgccac gtggagctt cgaagaggat aaaggcgaat caaatgtca
 1151 ttatttggag gaaaagaatc aggaacaagg tgtcgaaaga gttcagagtt
 1201 gttggtcgaa caccacttgc caaaagtctt gtgcattatgat tcgtttctt
 1251 ccaacgaaag aaatcgacc gggatgtgat gcaacggcg atcgatgtca
 1301 cgatcaatgc gtggccgtt gtgagctgtt gaatgatgcc acagcatgcc
 1351 acgcgtgcaaa gaatgtctat cacaaggaa agtgtatcgaa aagtgtgat
 1401 gtcacactgtt accttcttgc tcaacgtcgt tttgtgaccc gtgaggcgtg
 1451 tctgcagctg aatccgggtc tctcgaaacaa aacagtgcctt atcaaggcga
 1501 cggcaggcct ttgctcgat aaatgtcccg atggttatca aatcaacccg
 1551 gatgatcatc gagaatgccc aaaatgcgtt ggcaagtgtg agattgtgt
 1601 cgagatcaat cacgtcatttgc atacgtttcc gaaggcacag gcgatcaggc
 1651 tatgcaatat tattgacgga aatctgacga tcgagattcg cggaaaacag
 1701 gattcggaa tggcgccgat gttgaaggat atatttgcga acattcacac
 1751 gatcacggc tacctttgg tacgtcaatc gtcaccgtt atctcgatg
 1801 acatgttccg gaatttacga cgtattgagg caaagtcaact gttcagaaat
 1851 ctatatgcta tcacaggttt tgaaaatccg aattttaaaa agctattcg
 1901 ttcaacgacg gatttgcgc ttgatcggtt aactgtgtca attgccaata
 1951 acaagatgtt atgcttcaag tatatcaagc agctaattgtc aaagttaaat
 2001 ataccactcg atccgataga tcaatcagaa gggacaaatg gtgagaaggn
 2051 aatctgttag gatatggcaa tcaacgtcgat catcacagcg gtcacacgg
 2101 actcggtctt cttagttgg ccctcatca acattaccgat tataatcg
 2151 cggaaatttc tcggctacga gtccttcttca aaagaagtcc cacgaatcg
 2201 tgagaacatg acgatcgaaag aggatcgaaatg tgcgtgtgtc gattcggtt
 2251 agagtgtctt caaacatgtac tacgagacgt cgaacgggtga accgaccccg
 2301 gacattttta tggatattgg accgcgcgag cgaattcgcc cgaatacgct
 2351 ctacgcgtac tatgtggcgat cgcagatggt ttgtgatgatc ggtgcgaaaga
 2401 acggtgtatc gaagattggt ttgtgatggat cggactacta tacgcctgtat
 2451 cttccgacgt tggcactagc gcaagtcgtat tcggacgctt ttcatattac
 2501 gtggaaagcg cccgtccaaac cgaacggaga cctcacgcatt tacacaat
 2551 tggcgtgtatc gaatgttgcgtt agccgtacg aggaagccga aaagttttgt
 2601 acagatgcaatc gcaccccccgc aaatcgacaa cgcacgaaatg atccgaaaga
 2651 gacgattgtatc gccgataagc cagtcgatcatc tccgtcatca cgtaccgtac
 2701 ctccgacact ttgtgactatg atgggtcactg aagatcgacg gaaaacgtgc

Fig. 2B (sheet 1 of 3)

2751 gctgcaacgc ccggttgttgc ttctgttgc gctatcgaag aatcatcgga
 2801 acagaacaag aagaagcgac cgatccgat gtcggcgatc gaatcatctg
 2851 catttgagaa taagctgttgc gatgagggtt taatgccgag agacacgatg
 2901 cgagtgagac gatcaattga agacgcgaat cgagtcagt aagagttgga
 2951 aaaagctgaa aatttggaa aagctccaaa aactctcggt ggaaagaagc
 3001 cgctgatcca tatttcgaag aagaagccgt cgagcagcag caccacatcc
 3051 acaccggctc caacgatcgc atcaatgtat gccttaacaa ggaaaccgac
 3101 tacgggtgccg ggaacaagga ttccggctcta cgagatctac gaacctttac
 3151 ccggaaagctg ggcgattaat gtatcagctc tggcattgga taatagttat
 3201 gtgatacgaa atttgaagca ttacacactt tatgcgattt ctctatccgc
 3251 gtgccaaaac atgacagttac ccggagcattc ttgctcaata tcccatcgtg
 3301 cgggagcatt gaaacgaaca aaacacatca cagacattga taaagtgttgc
 3351 aatgaaacaa ttgaatggag atttatgaat aatagtcaac aagtcaacgt
 3401 gacgtggat ccaccgactg aagtgaatgg tggaaatattc ggttatgttgc
 3451 taaagcttaa gtcaaaaagtc gatggatcaa ttgttatgac gagatgtgtc
 3501 ggtgcgaaga gaggatattc aacacggaat caggggtgtcc tattccagaa
 3551 tttggccgat ggacgttatt ttgtctcgt aacggcgacc tctgtacacg
 3601 ggcgtggacc ggaagccgaa tcctccgacc caatcgtcgt catgacgcca
 3651 ggcttcttca ctgtggaaat cattctcgcc atgtttctcg tctttttgtat
 3701 tttaatgtca attgcccgtt gtataatcta ctactacatt caagtacgct
 3751 acggaaaaaa atgaaaagct ctatctgact ttatgcaattt gaatcccgaa
 3801 tattgtgtgg acaataagta caatgcagac gattgggagc tacggcagga
 3851 tgatgtgtg ctcggacaac atgtggaga gggatcattt ggaaaagtgt
 3901 accttaggaac tggaaataat gttgtttctc tgatgggtga tcgtttcgga
 3951 ccgtgtctca ttaagattaa ttagatgttgc ccagcgtcga ctgagaatct
 4001 caactatctc atggaagctt atattatgaa gaactttaag actaacttta
 4051 tcgtccaaact gtacggagtt atctctactg tacaaccagc gatggttgtg
 4101 atggaaatgtt tggatcttgg aaatctccgt gactatctcc gatcgaaacg
 4151 cgaagacgaa gtgttcaatg agacggactg caacttttc gacataatcc
 4201 cgaggatata attccatgag tggccgcac agatttgtga tggatggcg
 4251 tacctggagt cgctcaagtt ttgcctatcga gatctcgccg cacgtaattt
 4301 catgataat cgggatgaga ctgtcaagat tggagatttc ggaatggcgc
 4351 gtgatctatt ctatcatgac tattataagc catcgggcaat gcgtatgatg
 4401 cctgttcgat ggtatgtcacc cgagtcgttgc aaagacggaa agtttactc
 4451 gaaatctgtt gtttggagct tcggagttgt tctctatgaa atggttacac
 4501 tcgggtctca gccatatatt gtttggatgat atgatgaggt gttgaattat
 4551 attggaaatgg cccggaaaggt tatcaagaag cccgaatgtt gtgaaaacta
 4601 ttggatataag gtatgaaaaa tttgttggag atactcacct cgggatcgcc
 4651 cgacgttcct ccagctcgat catcttctatg cagctgaagc ttccaccagaa
 4701 ttccggatatt tatcatttttgc cctaaccatg aatcaaatgtt tccttgacga
 4751 ttccagaagca ctggatcttgc atgatattgtt tgatactgat atgaatgatc
 4801 aggttgcga ggtggcaccgc gatgttggaa acgtcgaggt tcagagtgt
 4851 tcggaaacgtc ggaatacggaa ttcaataccg ttggaaacagt ttaagacgat
 4901 ccctccgatc aatgcgacga cgagtcattt gacaatatcg attgatgaga
 4951 caccgatgaa agcgaagcagc cgagaaggat cgctggatgtt ggagtagc
 5001 ttgtatgtt atagtggagg tccgagttgtt gccaatgtt ggcacgtatgc
 5051 tgggtatgtt gattatgtgg agagagatgt tcgagagaat gatgtccaa
 5101 cgcgacgaaa tactggtgca tcaacatcaa gttacacagg tgggtgttcca
 5151 tattgcctaa caaatcgtgg tggttcaat gaacgaggag ccgggttcgg
 5201 tgaagcgtttaactg atgggtttgg aagtggacat ttaaatgatc
 5251 atgattatgt tggaaaatgg atatcatcca tggatacgcgc ccggagcagc
 5301 ggcgcctcga gctcttcata cggtgttccat cagacgaatt ggagtgaaa
 5351 tcgtggtgcc acgtattata cgagtaaagc tcaacaggca gcaactgcag
 5401 cagcagcagc agcagcagct ctccaacacg aacaaaatgg tgggtcgaggc
 5451 gatcgattaa ctcaactacc cggaaactgga catttacaat cgacacgtgg
 5501 tggacaagat ggagattata ttggaaactgaa accgaaaaat tatagaaata

Fig. 2B (sheet 2 of 3)

5551 atggatctcc atcgcgaaaac ggcaaacagcc gtgacatTTT ca=ccggacgt
5601 tcggcttgc gtgaaaatga gcatctaATC gaggataatg agcatacatcc
5651 acttgtctga aaccccccAAA aaatcccGCC tcttaaatta ta=attatct
5701 cccacattat catatctcta cacgaatATC ggatttttt tcagatTTT
5751 tctgaaaaat tctgaataat tttaccccat ttttcaaATC tc=gtatTTT
5801 tttttgttat tacccc

Fig. 2B (sheet 3 of 3)

6/54

Fig. 2C (sheet 1 of 2)

Fig. 2C (sheet 2 of 2)

Fig. 3

Fig. 4

Fig. 5A

Fig. 5B

Domain I

Domain II

Fig. 5C

Fig. 6A

Fig. 6D

Fig. 6B

Fig. 6E

Fig. 6C

Fig. 6F

Fig. 6G

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B

Fig. 10

1 atgaagctaa tagcaacttc tcttctagtt cccgacgagc acacaccgat
 51 gatgtcacca gtgaatacaa ctacaaaagat tctacaacgg agtgttatta
 101 aaatggaaat cccgccatat ttggatccag acagttagga tgatgaccgg
 151 gaagatggtg tcaactaccc ggatccagat ttatttgaca caaaaaaacac
 201 aaatatgacc gagtacgatti tggatgtgtt gaagcttggaa aaaccagcag
 251 tagatgaagc acggaaaaag atcgaagttc ccgacgctag tgcgccgcca
 301 aacaaaattg tagaatattt gatgtattat agaacgttaa aagaaagtga
 351 actcatacaa ctgaatgcgt atcggacaaa acgaaatcga ttatcggtga
 401 acttggtcaa aaacaatattt gatcgaggt tcgaccaaaa agcttgcgag
 451 tccctggta aaaaattgaa ggataagaag aatgatctcc agaacctgat
 501 tgatgtgggtt cttcaaaag gtacaaaata taccgggtgc attacaattc
 551 caaggacact tgatggccgg ttacagggtcc acggaagaaa aggttccct
 601 cacgtagtct atggcaaact gtggagggtt aatgaaatga caaaaaacga
 651 aacgcgtcat gtggaccact gcaaggcacgc atttggaaatg aaaagtgaca
 701 tggtatgcgt gaatccctat cactacgaaa ttgtcattgg aactatgatt
 751 gttgggcaga gggatcatga caatcgagat atgcccgcg cacatcaacg
 801 ctaccacact ccaggtcggc aggatccagt tgacgatatg agtagattta
 851 taccaccgc ttccattcgt ccgcctccga tgaacatgca cacaaggcct
 901 cagcctatgc ctcaacaatt gccttcagtt ggcccaacgt ttgcccattcc
 951 tctcccacat caggcgccac ataaccagg ggttccacat ccgtactcca
 1001 ttgctccaca gaccattac ccgttgaaca tgaacccaaat tccgcaaatg
 1051 ccgcaaatgc cacaatgccc accacctctc catcagggat atgaaatgaa
 1101 tggccgagt tgcttttcag aaaacaacaa tccattccac caaaatcacc
 1151 attataatga tattagccat ccaaataact attcctacga ctgtggccg
 1201 aacttgtacg gtttccaaac tccttatccg gattttcacc atccttcaa
 1251 tcagcaacca caccagccgc cacaactatc acaaaaccat acgtcccaac
 1301 aaggcagtca tcaaccaggg caccaaggc aggtaccgaa tgatccacca
 1351 atttcaagac cagtgttaca accatcaaca gtcacccgg acgtgtccg
 1401 tcggtactgt agacagacat ttggaaatcg attttttgaa ggagaaagtg
 1451 aacaatccgg cgcaataatt cggcttagta acaaattcat tgaagaattt
 1501 gattcgccga tttgtgggtt gacagttgtt cgaccggcga tgacagacgg
 1551 tgagggtttg gagaacatca tgccggaa tgcaccatcat catgacattt
 1601 gcaagttcat tttgaggctc acatcagaaa gtgtacttt ctcaggagag
 1651 gggccagaag ttatgtattt gaaacaaaaa tggggacaa ttgtgtacta
 1701 tgagaaaaat ttgcaaattt gcgagaaaaa atgttcgaga ggaaatttcc
 1751 acgtggatgg cgatttcatt tgctctgaga atcggttacag tctcgactt
 1801 gagccaaatc caatttagaga accagtggcg tttaaagttc gtaaagcaat
 1851 agtggatgga attcgctttt cctacaaaaa agacgggagt gtttggcttc
 1901 aaaaccgcattt gaagtaccgg gtatttgcattt cttctggta tctcgacgag
 1951 caatcaggag gcctaaagaaa ggataaagtg cacaagttt acggatgtgc
 2001 gtctatcaaa acgtttggct tcaacgtttc caaacaatc atcagagacg
 2051 cgcttcttc caagcaaattt gcaacaaatgt acttgcaagg aaaatttgact

Fig. 11A (sheet 1 of 2)

2101 ccgatgaatt atatctacga gaagaagact caggaagagc tgcgaaggaa
2151 agcaacacgc accactgatt cattggccaa gtactgttgc gtccgtgtct
2201 cggtctgcaa aggatttggaa gaagcataacc cagaacgccc gtcaattcat
2251 gattgtccag tttggattga gttgaaaatc aacattgcct acgatttcatt
2301 ggattcaatc tgccagtaca taaccaactg ctgcagccg ctaggaatgg
2351 aagattttgc aaaattggaa atcaacgtca gtgatgacta aatgataact
2401 ttttcactc accctactag atactgatt agtcttattc caaatcatcc
2451 aacgatatac aacttttcc tttgaacttt gcatactatg ttatcacaag
2501 ttccaaggcag tttcaataca aacataggat atgttaacaa cttttgataaa
2551 gaatcaagtt accaactgtt cattgtgagc tttgagctgt atagaaggac
2601 aatgtatccc atacctcaat cttaaatagt catcagtcac tggccccca
2651 ccaattttt cgattcgcat atgtcatata ttgcaccgtg gccctttta
2701 ttgttaacttt taatatattt tcttcccaac ttgtgaatat gattgatgaa
2751 ccaccatttt gagtaataaa tgtattttt gtgg

Fig. 11A (sheet 2 of 2)

1 gtaatcaa at taaaaggaa aaatatta at agtcagagta cacataa atg
 51 ggtgatcatc ataatttaac gggccttccc ggtacccca tccccccaca
 101 gttcaactat tctcagccccg gtaccagcac cggaggccccg ctttatggtg
 151 gaaaacctc tcataggattt gaagatattc ctgatgtaga ggaatatgag
 201 aggaacctgc tcggggctgg agcaggttt aatctgctca atgttagaaaa
 251 tatggcta at gttcccgacg agcacacacc gatgatgtca ccagtgaata
 301 caactacaaa gattctacaa cggagtggtt taaaatgga aatcccgc
 351 tatttggatc cagacagtca ggatgatgac ccggaaagatg gtgtcaacta
 401 cccggatcca gatttattt acacaaaaaa cacaatatg accgagtacg
 451 atttggatgt gttgaagctt ggaaaaaccag cagtagatga agcacggaaa
 501 aagatcgaag ttcccacgc tagtgcgcg ccaaacaaaa ttgtagaata
 551 tttgatgtat tatagaacgt taaaagaaa tgaaactata caactgaatg
 601 cgtatcgac aaaaacgaaat cgattatcg tgaacttggt caaaaacaat
 651 attgatcgag agttcgacca aaaagcttgc gagtccctgg tgaaaaaatt
 701 gaaggataag aagaatgatc tccagaacct gattgatgtg gttcttcaa
 751 aaggtacaaa atataccggt tgcattacaa ttccaaggac acttgatggc
 801 cggttacagg tccacggaaag aaaaggttc cctcacgtag tctatggcaa
 851 actgtggagg tttaatgaaa tgacaaaaaa cgaaacgcgt catgtggacc
 901 actgcaagca cgcatttgcgaa atgaaaatgt acatggatg cgtaatccc
 951 tatcactacg aaattgtcat tggaactatg attgttggc agagggatca
 1001 tgacaatcga gatatgccgc cgccacatca acgctaccac actccaggc
 1051 ggcaggatcc agttgacgat atgagtagat ttataccacc agcttccatt
 1101 cgtccgcctc cgatgaacat gcacacaagg cctcagccta tgcctcaaca
 1151 attgccttca gttggcgcaa cgtttgccttca tcctctccca catcaggcgc
 1201 cacataaccc aggggttca catccgtact ccattgctcc acagacccat
 1251 tacccgttga acatgaaccc aattccgcaa atgcccggaaa tgccacaaat
 1301 gccaccaccc ctccatcagg gatatggaaat gaatggccg agttgcttt
 1351 cagaaaaacaa caatccatc cacaaaaatc accattataa tgatattagc
 1401 catccaaatc actattccca cgactgtggt ccgaacttgt acgggtttcc
 1451 aactccttac ccggattttc accatcctt caatcagcaa ccacaccagc
 1501 cgccacaact atcacaaaac catacgccc aacaaggcag tcatcaacca
 1551 gggcaccaag gtcaggtacc gaatgatcca ccaatttcaa gaccagtgtt
 1601 acaaccatca acagtcaccc tggacgtgtt ccgtcggtac tgttagacaga
 1651 catttggaaa tcgattttt gaaggagaaa gtgaacaatc cggcgcata
 1701 attcggtcta gtaacaaatt cattgaagaa tttgattcgc cgatttgtgg
 1751 tgtgacagtt gttcgaccgc ggatgacaga cggtaggtt ttggagaaca
 1801 tcatgccga agatgcacca tatacatgaca tttgcaagtt cattttgagg
 1851 ctcacatcag aaagtgtaac tttctcagga gagggggccag aagttagtga
 1901 tttgaacgaa aaatggggaa caattgtgtt ctatgagaaa aatttgc
 1951 ttggcgagaa aaaatgttcg agaggaaatt tccacgtggta tggcgattc
 2001 atttgctctg agaatcgatc cagtctcgga cttgagccaa atccaattag
 2051 agaaccagtg gcgtttaaag ttcgtaaagc aatagtggat ggaattcgct

Fig. 11B (sheet 1 of 2)

2101 ttccctacaa aaaagacggg agtgttggc ttcaaaaccg catgaagtac
2151 ccgttatttgcacttctgg gtatctcgac gagcaatcg gaggcctaaa
2201 gaaggataaa gtgcacaaag tttacggatg tgcgtctatc aaaacgttg
2251 gcttcaacgt ttccaaacaa atcatcagag acgcgcttct ttccaagcaa
2301 atggcaacaa tgtacttgca aggaaaattt actccgatga attatatcta
2351 cgagaagaag actcaggaag agctgcgaag ggaagcaaca cgcaccactg
2401 attcattgca caagtactgt tgtgtccgtg tctcgatctg caaaggattt
2451 ggagaagcat acccagaacg cccgtcaatt catgattgtc cagttggat
2501 tgagttgaaa atcaacattt cctacgattt catggattca atctgccagt
2551 acataaccaa ctgcttcgag ccgcgttagaa tgaaagattt tgcaaaattt
2601 ggaatcaacg tcagtgtatca ctaaatgata actttttca ctcaccctac
2651 tagatactga ttttgtctta ttccaaatca tccaaacgata tcaaactttt
2701 tcctttgaac tttgcataact atgttatcac aagttccaag cagttcaat
2751 acaaacatag gatatgttaa caactttga taagaatcaa gttaccaact
2801 gttcattgtg agctttgagc tgtatagaag gacaatgtat cccatacctc
2851 aatcttaat agtcatcagt cactggccc gcaccaattt ttgcatttcg
2901 catatgtcat atattgcacc gtggccctt ttattgtaac tttaatata
2951 ttttcttccc aacttgcata tatgattgtat gaaccaccat tttgagtaat
3001 aaatgtatattt tttgtgg

Fig. 11B (sheet 2 of 2)

1 gtaatcaa at tgtaaaggaa aaatattaat agtcagagta cacataaatg
 51 ggtgatcatc ataatttaac gggccttccc ggtacccca tcccgcacca
 101 gttcaactat tctcagcccg gtaccagcac cggaggcccg ctttatggtg
 151 gaaaaccttc tcattggattt gaagatattt ctgatgtaga ggaatatgag
 201 aggaacctgc tcggggctgg agcagggttt aatctgctca atgttaggaaa
 251 tatggcta at gaatttaaac caataatcac attggacacg aaaccacctc
 301 gtgtatgc caa atgcattt gcattcaatg gcgggttggaa gctaattact
 351 ccgaaaactg aagtcccgaa cgagcacaca ccgatgatgt caccagtggaa
 401 tacaactaca aagattctac aacggagtgg tattaaaatg gaaatcccgc
 451 catatttgg a tccagacagt caggatgatg acccggaa gttgtcaac
 501 tacccggatc cagatttt tgacacaaaa aacacaaaata tgaccgagta
 551 cgatttggat gtgttgaagc ttggaaaacc agcagtagat gaagcacggaa
 601 aaaagatcga agtccccac gctagtgcgc cgccaaacaa aattgttagaa
 651 tattttagt attatagaac gttaaaagaa agtgaactca tacaactgaa
 701 tgcgtatcgg acaaaacgaa atcgattatc gttgaacttgc gtcaaaaaca
 751 atattgatcg agagttcgac caaaaagctt gcgagtcctt ggtaaaaaaa
 801 ttgaaggata agaagaatga tctccagaac ctgattgatg tggttcttc
 851 aaaaggtaca aaatataccg gttgcattac aattccaagg acacttgatg
 901 gccgggttaca ggtccacggaa agaaaaggtt tccctcacgt agtctatggc
 951 aaactgtgg a gtttaatga aatgacacaaaa aacgaaacgc gtcatgtggaa
 1001 ccactgcaag caccatggaa atgaaaag tgacatggta tgcgtgaatc
 1051 cctatcacta cggaaattgtc attggaacta tgattgttgg gcagagggtt
 1101 catgacaatc gagatatgcc gcccacat caacgctacc acactccagg
 1151 tcggcaggat ccagttgacg atatgagtag atttatacca ccagcttcca
 1201 ttcgtccgc tccgatgaac atgcacacaa ggcctcagcc tatgcctcaa
 1251 caattgcctt cagttggcgc aacgtttgc catcctctcc cacatcaggc
 1301 gccacataac ccaggggtt cacatccgtt ctccattgct ccacagaccc
 1351 attaccgtt gaacatgaac ccaattccgc aaatgccgca aatgccacaa
 1401 atgccaccac ctctccatca gggatatgga atgaatggc cgagttgctc
 1451 ttcagaaaaac aacaatccat tccacaaaaa tcaccattat aatgatatta
 1501 gccatccaaa tcactattcc tacgactgtg gtccgaactt gtacgggttt
 1551 ccaactccctt atccggattt tcaccatcct ttcaatcagc aaccacacca
 1601 gcccacaa ctatcacaaa accatacgcc ccaacaaggc agtcatcaac
 1651 cagggcacca aggtcaggta ccgaatgatc caccaatttc aagaccagtg
 1701 ttacaaccat caacagtac cttggacgtt ttccgtcggt actgttagaca
 1751 gacatttgg aatcgatttt ttgaaggaga aagtgaacaa tccggcgca
 1801 taattcggtc tagtaacaaa ttcatgttgc aattttgattt gccgatttgt
 1851 ggtgtgacag ttgttcgacc gcggatgaca gacggtgagg ttttggagaa
 1901 catcatgccg gaagatgcac catatcatga catttgcag ttcattttga
 1951 ggctcacatc agaaaagtgtt actttctcag gagaggggccc agaagtttagt
 2001 gatttgaacg aaaaatgggg aacaattgtt tactatgaga aaaatttgc
 2051 aattggcgag aaaaatgtt cgagaggaaa ttccacgtt gatggcgat

Fig. 11C (sheet 1 of 2)

2101 tcatttgctc tgagaatcgta ctagtctcg gacttgagcc aaatccaatt
2151 agagaaccag tggcgtttaa agttcgtaaa gcaatagtgg atggaattcg
2201 ctttcctac aaaaaagacg ggagtgtttg gcttcaaaac cgcatgaagt
2251 acccggtatt tgtcacttct gggtatctcg acgagcaatc aggaggccta
2301 aagaaggata aagtgcacaa agtttacgga tgtgcgtcta tcaaaaacgtt
2351 tggcttcaac gtttccaaac aaatcatcag agacgcgcgtt ctttccaagc
2401 aaatggcaac aatgtacttg caagaaaaat tgactccgat gaattatatc
2451 tacgagaaga agactcagga agagctgcga agggaaagcaa cacgcaccac
2501 tgattcatttgc gccaagtact gttgtgtccg tgtctcggtc tgcaaaggat
2551 ttggagaagc atacccagaa cggccgtcaa ttcatgatttgc tccagttgg
2601 attgagttga aaatcaacat tgcctacgat ttcatggatt caatctgcc
2651 gtacataacc aactgcttcg agccgctagg aatggaagat tttgcaaaat
2701 tggaaatcaa cgtcagtgtat gactaaatga taactttttt cactcaccc
2751 actagataact gatttagtct tattccaaat catccaacga tatcaaactt
2801 tttcctttaaacttgcata ctatgttatac acaagttcca agcagttca
2851 atacaaacat aggatatgtt aacaactttt gataagaatc aagttaccaa
2901 ctgttcatttgc tgagcttgc gctgtataga aggacaatgtt atcccataacc
2951 tcaatcttta atagtcata gtcactggtc ccgcaccaat ttttgcatt
3001 cgcataatgtc atatattgca ccgtggccct ttttattgtt aacttttaata
3051 tattttcttc ccaacttgc aatatgatttgc atgaaccacc attttgagta
3101 ataaatgtat tttttgtgg

Fig. 11C (sheet 2 of 2)

1 MKLIATSLV PDEHTPMMS P VNTTTKILQR SGIKMEIPPY LDPDSQDDDP
51 EDGVNYPDPD LFDTKNTNMT EYDLDVLKLG KPAVDEARKK IEVPDASAPP
101 NKIVEYLMYY RTLKESELIQ LNAYRTKRNR LSLNLVKNNI DREFDQKACE
151 SLVKKLKD KK NDLQNLIDVV LSKGTYTGC ITIPRTILDGR LQVHGRKGFP
201 HVVYGKLWRF NEMTKNETRH VDHCKHAFEM KSDMVCVNPY HYEIVIGTMI
251 VGQRDHNRD MPPPHQRYHT PGRQDPVDDM SRFIPPASIR PPPMNMHTRP
301 QPMPQQLPSV GATFAHPLPH QAPHNPGVSH PYSIAPQTHY PLNMNPIPQM
351 PQMPQMPPL HQGYGMNGPS CSSENNNPFH QNHHYNDISH PNHYSYDCGP
401 NLYGFPTPY P DFHHPFNQQP HQPPQLSQNH TSQQGSHQPG HQGQVPNDPP
451 ISRPVLQPST VTLDVFRRYC RQTFGNRFFE GESEQSGAI RSSNKFIEEF
501 DSPICGVTVV RPRMTDGEVL ENIMPEDAPY HDICKFILRL TSESVTFSGE
551 GPEVSDLNEK WGTIVYYEKN LQIGEKCSR GNFHVDGGFI CSENRYSLGL
601 EPNPIREPVA FKVRKAIVDG IRFSYKKDGS VWLQNRMKYP VFVTSGYLDE
651 QSGGLKKDKV HKVYGCASIK TFGFNVSQI IRDALLSKQM ATMYLQGKLT
701 PMNYIYEKKT QEELRREATR TTDSSLAKYCC VRVSFCKGFG EAYPERPSIH
751 DCPVWIELKI NIAYDFMDSI CQYITNCFEP LGMEDFAKLG INVSDD

Fig. 12A

1 MGDHHNLTGL PGTSIPPQFN YSQPGTSTGG PLYGGKPSHG LEDIPDVEEY
51 ERNLLGAGAG FNLLNVGNMA NVPDEHTPMM SPVNTTTKIL QRSGIKMEIP
101 PYLDPDSQDD DPEDGVNYPD PDLFDTKNTN MTEYDLDVLK LGKPAVDEAR
151 KKIEVPDASA PPNKIVEYLM YYRTLKESEL IQLNAYRTKR NRLSLNLVKN
201 NIDREFDQKA CESLVKKLKD KKNDLQNLID VVLSKGTKYT GCITIPRTLD
251 GRLQVHGRKG FPHVVYGKLW RFNEMTKNET RHVDHCKHAF EMKSDMVCVN
301 PYHYEIVIGT MIVGQRDHDN RDMPPPHQRY HTPGRQDPVD DMSRFIPPAS
351 IRPPPMNMHT RPQPMPQQLP SVGATFAHPL PHQAPHNPVG SHPYSIAPQT
401 HYPLNMNPIP QMPQMPQMPP PLHQGYGMNG PSCSSENNNP FHQNHHYNDI
451 SHPNHYSYDC GPNLYGFPTP YPDFHHPFNQ QPHQPPQLSQ NHTSQQGSHQ
501 PGHQGQVPND PPISRPVLQP STVTLDVFRR YCRQTFGNRF FEGESEQSGA
551 IIRSSNKFIE EFDSPICGVT VVRPRMTDGE VLENIMPEDA PYHDICKFIL
601 RLTSESVTFS GEGPEVSDLN EKWGTIVYYE KNLQIGEKKC SRGNFHVDGG
651 FICSENRYSL GLEPNPIREP VAFKVRKAIV DGIRFSYKKD GSVWLQNRMK
701 YPVFVTSGYL DEQSGGLKKD KVHKVYGCAS IKTFGFNVSK QIIRDALLSK
751 QMATMYLQGK LTPMNYIYEK KTQEELRREA TRTTDSLAKY CCVRVSFCKG
801 FGEAYPERPS IHDCPVWIEL KINIAYDFMD SICQYITNCF EPLGMEDFAK
851 LGINVSD

Fig. 12B

1 MGDHHNLTGL PGTSIPPQFN YSQPGTSTGG PLYGGKPSHG LEDIPDVEEY
51 ERNLLGAGAG FNLLNVGNMA NEFKPIITLD TKPPRDANKS LAFNGGLKLI
101 TPKTEVPDEH TPMMSPVNTT TKILQRSGIK MEIPPYLDPD SQDDDPEDGV
151 NYPDPDLFDT KNTNMTEYDL DVLKLKGPAV DEARKKIEVP DASAPPNKIV
201 EYLMYYRTLK ESELIQLNAY RTKRNRLSLN LVKNNIDREF DQKACESLVK
251 KLKDKKKNDLQ NLIDVVLSKG TKYTGCITIP RTLDGRLQVH GRKGFPHVY
301 GKLWRFNEMT KNETRHVDHC KHAFEMKSDM VCVNPYHYEI VIGTMIVGQR
351 DHDRNDMPPP HQRYHTPGRQ DPVDDMSRFI PPASIRPPPM NMHTRPQPMP
401 QQLPSVGATF AHPLPHQAPH NPGVSHPYSI APQTHYPLNM NPIPQMPQMP
451 QMPPPLHQGY GMNGPSCSSE NNNPFHQNH YNDISHPNHY SYDCGPNLYG
501 FPTPYPDFHH PFNQQPHQPP QLSQNHTSQQ GSHQPGHQGQ VPNDPPISRP
551 VLQPSTVTLD VFRRYCRQTF GNRFFEGESE QSGAIIRSSN KFIEEFDSPI
601 CGVTVVRPRM TDGEVLENIM PEDAPYHDIC KFILRLTSES VTFSGEGPEV
651 SDLNEKWGTI VYYEKNLQIG EKKCSRGNFH VDGGFICSEN RYSLGLEPNP
701 IREPVAFKVR KAIVDGIRFS YKKDGSVWLQ NRMKYPVFT SGYLDEQSGG
751 LKKDKVHKVY GCASIKTFGF NVSKQIIRDA LLSKQMATMY LQGKLTPMNY
801 IYEKKTQEEL RREATRTTDS LAKYCCVRVS FCKGFGEAYP ERPSIHDCPV
851 WIELKINIAY DFMDSICQYI TNCFEPLGME DFAKLGINV DD

Fig. 12C

ttacacatggccaatgcaacaatacatctatcaggaatcgtcagcaaccattccccatcaccattaaatcaacacaaca
atccgttatcatccaatgcacccatcatcatcaattacccatcatatgcacaactccctcaaccttattgaatctaacatg
acgacgttaacatcttctggcagttccgtggccagttccattggaggcgagctcaatgtctccgtgcgcgtcggt
ctcgaccgctgcaacaattccctcaacagcagcagcagaccgttggtcaaattgcattgtctcatcggtgccttgttcat
ctggcatgacacttggaatgtcacttaatctgtcacaaggcgggtccatgcggaaaaagaagcgttgctgtaag
aagccaaccgatcaattggcacagaagaaaccgaatccatgggtgaggaatccattggatattgcattgcattgcatt
ggaatcgccgcagacggaaggctaaactcaatgagatttataatggttctgtataatattccctactttggagaac
gatctagtcccggaggaggccggatggaaactcgatccgtcacaatctgtctcttattctcggttcatgcatt
cagaatgaaggagccggaaagagactcgtgggttattaatccagatgcaagccagaatgaatccacggcgtacacg
tgaacgatccaataactattgagacgactacaaggctcaactcgaaaaatctggccggagccaaagaagaggataaagg
agagagcattgatggctcccttactcgacacttaatggaaattcgattgcggatcgattcaaaacgatttctcact
ttgtatgatgatgattcaatgcaaggagoatttgataacggttccatcatcttccgtccccgaactcaatcgaaacctc
gattccctggatcgctcggtttctccagctattggaaagtgatattctatgatgatctagaattccatcatgggtt
gcgaatcggttccagcaattccaagtgatattgtttagatgactgatcaaattcgatcgactactcatattgg
ggagttcagattaaggcaggagtcgaagccgattaagacggaaccaattgctccaccaccatcataccacgaggtaac
tgtccgtggatcggtgtcgtcagaatccacttccgaaaattccattgtgccaagcactaacttcaagccaatgccactac
cggtgcctatggaaactatcaaaatggtggataactccaaatcaattggctatcaacatccaaactcatccactgcct
ggaattcaatcggtggattttagctgcacagcatactgtcgcttccatcggttccatattgtgaaaatct
gacacttcccgtcagccactgatggatactatggatgttgcattgatcagacatgagctgagtcagctggagg
agcatattcatttgattttagttaattcttccatttgttccctgggttgcggaaagagagatagcaagcagcga
ggagttgagaaatctccgtctcatcttccaaatccctacccacactcaacgatcatcagccagaccatcaat
attctccaaatttgacgtcgtaattttttcagttttccatccaaactctatttctatttctgtcgatttt
ctttctctcgtaattccaaacacattcatcccgatgcgtcgtaataataataaaatccatctctctcc
cccttaatcgaaatatcgaaaaaccgtttagatttacctcttttctgttttttctctctctcc
tccaggttctacttttaatgtcacccatctttcgctgtaaatttgcatttgcatttgcatttgcatttgcattt
acacattccccatctgtcttttaattgaattttccatccaaacttgcatttgcatttgcatttgcatttgcattt
tcctctttttccctggtagcaatgtctagcgattcttttttttttgcatttgcatttgcatttgcatttgcattt
gaatccctccgtatacacacacacatgtaatctaccctccaaatttactgaaagatgtgatccctctgtctcc
tacaaaacattttgtctgtttgttatattgcaccacgtcgatccaaattaaaccatcgatccctctgt
actttttctcgaaaaatttaacaacacacaaaaatccctccaaatctcgatccatccatcc
gatccccctctacaccagaacagtcgtcaatttcagagaatgatccatccatccatcc
gcttgcattttctctacccctttcattcttgcatttgcatttgcatttgcatttgcatttgcatttgcattt
ttccaaattttctggctatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcattt
tcgtctccctccggccccaatataatttgcactgtatgatgatgatgatgatgatgatgatgatgatgat

Fig. 13B

MMEMLVDQGTDASSASTSTSSVRGADTFMNTPDDVMMNDDMEPIPRDR
CNTWPMRRPQLEPPLNSSPIIHEQIPEEDADLYGSNEQCGQLGGASSNGST
AMLHTPDGSNSHQTSFPSDFRMSESPDDTVSGKTTTRNAWGNMSYAEILI
TTAIMASPEKRLTLAQVYEWMVQNVPYFRDKGDSNSSAGWKNSIRHNLSLH
SRFMRIQNEGAGKSSWWVINPDAKPGMNPRTRERSNTIETTTKAQLEKSR
RGAKKRIKERALM GSLHSTLN GNSIAGS IQTISHDLYDDD S M Q G A F D N V P S
SFRP RTQS NL SIPG SSS RVSPAIGSDIYDDLEF P S W V G E S V P A I P S D I V D R
TDQM RIDATTHIGGVQIKQESKPIKTEPIAPP PSYHE LNS VRG SCA QNPLL
RNPI VP STNF KPMPL PGAY GNY QNGG ITP INWL STS NS S PLPG I QSC GIV A
AQHTVASSS ALPIDLENLTLPDQPLMDTMDV DALIRHELSQAGGQHIHF DL

Fig. 14A

MQQYIYQESSATIPHHHLNQHNNPYHPMHPHQLPHMQQLPQPPLLNLNM TT
LTSSGSSVASSIGGAQCSPCASGSSTAATNSQQQQTVGQMLAASVPCSS
SGMTLGMSLNLSQGGGPMPAKKRCKRKP TDQLAQKKPNPWGEESYS DIIA
KALE SAPDGRLKLNEIYQWFSDNIPYFGERSPEEAGWKNSIRHNLSLHS
RFMRIQNEGAGKSSWWVINPDAKPGMNPRTRERSNTIETTTKAQLEKSR
GAKKRIKERALM GSLHSTLN GNSIAGS IQTISHDLYDDD S M Q G A F D N V P S S
FRP RTQS NL SIPG SSS RVSPAIGSDIYDDLEF P S W V G E S V P A I P S D I V D R T
DQM RIDATTHIGGVQIKQESKPIKTEPIAPP PSYHE LNS VRG SCA QNPLL
NPI VP STNF KPMPL PGAY GNY QNGG ITP INWL STS NS S PLPG I QSC GIV A A
QHTVASSS ALPIDLENLTLPDQPLMDTMDV DALIRHELSQAGGQHIHF DL

Fig. 14B

1 cggaagccat ggagctcgag atctgattgc tggacacgga cggaactccg acgtatctcg
 61 cagatgcattt ttaacattt acatccacaa ctgcaaacga tggtcgagca gtggcaaatg
 121 cgagaacgcc catcgctgga gaccgagaat ggcaaggat cgctgctcct ggaaaatgaa
 181 ggtgtcgag atatcatcac tatgtgtcca ttccggagaag ttatttagtgt agtatttccg
 241 tggtttcttg caaatgtcg aacatcgcta gaaatcaagc tatcagattt caaacatcaa
 301 ctttcgaat tgattgctcc gatgaagtgg ggaacatatt ccgtaaagcc acaggattat
 361 gtgttcagac agttgaataa ttccggcgaa attgaagttt tatttaacga cgatcaaccc
 421 ctgtcgaaat tagagctcca cggcactttc ccaatgcttt ttctctacca acctgatgga
 481 ataaacaggg ataaagaatt aatgagtgtat ataaggcatt gtctaggata ctcactggat
 541 aaactggaag agagcctcga tgaggaactc cgtcaatttc gtgcttctct ctgggctcg
 601 acgaagaaaa cgtgcttgac acgtggactt gagggtacca gtcactacgc gttccccgaa
 661 gaacagtact tgtgtgttgg tgaatcgtgc ccgaaagatt tggaaatcaaa agtcaaggct
 721 gccaagctga gttatcagat gtttggaga aaacgtaaag cgaaatcaa tggagtttgc
 781 gagaaaaatga tgaagatca aattgaattt aatccgaacg aaactccgaa atctctgctt
 841 cacacgtttc tctacgaaat gcgaaaattt gatgtatacg ataccgatga tcctgcagat
 901 gaaggatggt ttcttcaatt ggctggacgt accacgtttt ttacaaatcc agatgtcaaa
 961 cttacgtctt atgatgggtt ccgttcggaa ctggaaagct atcgatgccc tgattcggt
 1021 gttcgccgac aatcactagt cctcaaagac tattgtcgcc caaaaccact ctacgaacca
 1081 cattatgtga gggcacacga acgaaaactt gctctagacg tgctcagcgt gtctatagat
 1141 agcacaccaa aacagagcaa gaacagtgc atggttatga ctgattttcg tccgacagct
 1201 tcactcaaac aagtttcaact ttgggacctt gacgcaatc ttatgatacg gcctgtgaat
 1261 atttctggat tcgattttccc ggccgacgtg gatatgtacg ttcaatcga attcagtgt
 1321 tatgtgggaa cactgacgct ggcataaaaa tctacaacaa aagtgaatgc tcaatttgca
 1381 aaatggaata aggaaatgtt cactttgtat ctatacatga aggatatgcc accatctgca
 1441 gtactcagca ttctgtttt gtacggaaaaa gtgaaattaa aaagtgaaga attcgaagtt
 1501 gtttgggtaa atatgtccct aaccgattgg agagatgaac tacgacaagg acaattttta
 1561 ttccatctgt gggctcctga accgactgcc aatcgttaga ggatcggaga aaatggagca
 1621 aggataggca ccaacgcagc ggttacaatt gaaatctcaa gttatgggt tagattcga
 1681 atgccgagtc aaggacaata cacatatctc gtcaagcacc gaagtactt gacggaaact
 1741 ttgaatatta tgggtgatga ctatgagtcg tgtatcagag atccaggata taagaagctt
 1801 cagatgcttg tcaagaagca tgaatctgga attgtatttag aggaagatga acaacgtcat
 1861 gtctggatgt ggaggagata cattcaaaaag caggagcctg atttgctcat tgtgctctcc
 1921 gaactcgcat ttgtgtggac tgatcgtgag aactttccg agctctatgt gatgcttgc
 1981 aaatggaaac cgccgagtgt ggcagcccg ttgactttgc ttggaaaacg ttgcacggat
 2041 cgtgtgatcc gaaagtttgc agtggagaag ttgaatgagc agctgagccc ggtcacattc
 2101 catctttca tattgcctct catacaggcg ttgaagtacg aaccgcgtgc tcaatcgaa
 2161 gttggaatga tgctcttgac tagagctctc tgcgattatc gaattggaca tcgactttc
 2221 tggctgctcc gtgcagagat tgctcgatgg agagattgtg atctgaaaag tgaagaatat
 2281 cgccgtatct cacttctgat ggaagcttac ctccgtggaa atgaagagca catcaagatc
 2341 atcacccgac aagttgacat gttgtatgag ctacacacgaa tcagcactct tgcataagga
 2401 atgccaaggaaat atgttgctac gatgaaactg cgtgacgagc ttgcgatcgat tagtcataaa
 2461 atgaaaaata tggattctcc actggatcct gtgtacaaac tgggtgaaat gataatcgac
 2521 aaagccatcg tccttaggaag tgcaaaacgt ccgttaatgc ttcaactggaa gaacaaaaat
 2581 ccaaagagtg acctgcacct tccgttctgt gcaatgatct tcaagaatgg agacgatctt
 2641 cgccaggaca tgcttcttcaagttctc gaagttatgg ataacatctg gaaggctgca

Fig. 15 (sheet 1 of 2)

2701 aacattgatt gctgtttgaa cccgtacgca gttcttccaa tgggagaaaat gattggaaatt
2761 attgaagttg tgccctaattg taaaacaata ttcgagattc aagttggAAC aggattcatg
2821 aatacagcag ttccggagtat tgatccttcg tttatgaata agtggattcg gaaacaatgc
2881 ggaattgaag atgaaaagaa gaaaagcaaa aaggactcta cgaaaaatcc catcgaaaag
2941 aagattgata atactcaagc catgaagaaa tattttgaaa gtgtcgatcg attcctatac
3001 tcgtgtgttg gatattcagt tgccacgtac ataatggaa tcaaggatcg tcacagtgtat
3061 aatctgatgc tcactgaaga tggaaaatat gtccacattt atttcggtca cattttggga
3121 cacggaaaga ccaaacttgg gatccagcga gatcgtaac cgtttattct aaccgaacac
3181 tttatgacag tgattcgatc gggttaaatct gtggatggaa attcgatcgatc gctacaaaaaa
3241 ttcaaaacgt tatgcgtcga agcctacgaa gtaatgtgga ataatcgaga tttgttcgtt
3301 tccttgttca ctttgatgct cggaaatggag ttgcctgagc tgtcgacgaa agcggatttg
3361 gatcatttga agaaaaaccct cttctgcaat ggagaaaagca aagaagaagc gagaaagttt
3421 ttcgctggaa tctacgaaga agccttcaat ggatcatggt ctacaaaaac gaattggctc
3481 ttccacgcag tcaaacacta ctga

Fig. 15 (sheet 2 of 2)

1 RKPWSSRSDC WTRTELRRIS QMHVNILHPQ LQTMVEQWQM RERPSLEHEN GKGSLLLNE
 61 GVADIITMCP FGEVISVVFP WFLANVRTSL EIKLSDFKHQ LFELIAPMKW GTYSVKPQDY
 121 VFRQLNNFGE IEVIFNDDQP LSKLELHGTB PMLFLYQPDG INRDKELEMSD ISHCLGYSLD
 181 KLEESLDEEL RQFRASLWAR TKKTCLTRGL EGTSHYAFPE EQYLCVGESC PKDLESKVKA
 241 AKLSYQMFWR KRKAEINGVC EKMMKIQIEF NPNETPKSLL HTFLYEMRKL DVYDTDDPA
 301 EGWFLQLAGR TTFTVNPDVK LTSYDGVRSE LESYRCPGFV VRRQSLVLKD YCRPKPLYEP
 361 HYVRAHERKL ALDVLSVSID STPKQSKNSD MVMTDFRPTA SLKQVSLWDL DANLMIRPVN
 421 ISGFDFPADV DMYVRIEFSV YVGTTLASK STTKVNAQFA KWNKEMYTFD LYMKDMPPSA
 481 VLSIRVLYGK VKLKSEEFEV GWVNMSLTDW RDELRQGQFL FHLWAPEPTA NRSRIGENGA
 541 RIGTNAAVTI EIISYGGRVR MPSQGQYTYL VKHRSTWTET LNIMGDDYES CIRDPGYKLL
 601 QMLVKKHESG IVLEEDEQRH VWMWRRYIQQ QEPDLLIVLS ELAFVWTDRNFSELYVMLE
 661 KWKPSPVAAA LTLLGKRCTD RVIRKFAVEK LNEQLSPVTF HLFILPLIQA LKYEPRAQSE
 721 VGMMMLTRAL CDYRIGHRLF WLLRAEIARL RDCDLKSEYY RRISLLMEAY LRGNEEHIKI
 781 ITRQVDMVDE LTRISTLVKG MPKDVTAMKL RDELRISHK MENMDSPPLDP VYKLGEMIID
 841 KAIVLGSAKR PLMLHWKNKN PKSDLHLPFC AMIFKNGDDL RQDMLVLQVL EVMDNIWKA
 901 NIDCCLNPYA VLPMGEMIGI IEVVPNCKTI FEIQVGTGFM NTAVRSIDPS FMNKWIRKQC
 961 GIEDEKKKS KDSTKNPIEK KIDNTQAMKK YFESVDRFLY SCVGYSVATY IMGIKDRHSD
 1021 NLMLTEDGKY VHIDFGHILG HGKTKLGIQR DRQPFILTEH FMTVIRSGKS VDGNSHELQK
 1081 FKTLCVEAYE VMWNNRDLFV SLFTLMLGME LPELSTKADL DHLKKTIFCN GESKEEARKF
 1141 FAGIYEEAFN GSWSTKTNWL FHAVKHY

Fig. 16

CONVERGENT TGF- β AND INSULIN SIGNALING
ACTIVATE GLUCOSE-BASED METABOLISM GENES

Fig. 17

**IN PHEROMONE, NO TGF β OR INSULIN-LIKE SIGNALS
CAUSES REPRESSION OF ANABOLIC GENES**

Fig. 18

DRUGS THAT INHIBIT DAF-16 OR DAF-3
 (OR PROTEINS IN THE PATHWAY)
 CAN BE DISCOVERED USING REPORTER GENES
 BEARING THEIR COGNATE BINDING SITES

DECODED - DECODED

DRUG CAUSES A DECREASE IN DAF-16 ACTIVITY, ACTIVATING
 THE REPORTER GENE LIKE A DAF-16 MUTANT.
 THIS BYPASSES THE NEED FOR INSULIN

Fig. 19

**DRUGS THAT INHIBIT DAF-3 WILL CURE
THE DIABETES CAUSED BY A LACK OF DAF-7**

Fig. 20

DAF-16a1	1	MMEMLVDDOGTDASSBASTETSSVERFGADTFMNTBDDVMNNDDEPIPRDR
DAF-16b	1	MNDSTDDDFEEPEERGRCAETWEMQYCEESATIPHHHLNQHNNEYHPMHBPHQLPHMOOLPOELLN
FKHR	1	EDAAAGLESAASH
FKHRL1	1	EEAEGESEAAAN
AFX	1	EEDEDDEGGG
DAF-16a1	52	CN..TWEPERFOLEEPEENSEBIIHEQIPEEDADLYGSENEQ..CGOLOGASSNGSTAMEHTPDGSNSNHSOTSEPSDERMSE
DAF-16b	68	LNMTELTSSGSVASSIIGGAQCSPECASGSSTRATBSQQQTVCQMLASVFCBESSGMTEGMWSLENLSQGGGPPPAKRR
FKHR	64	CRKRP..TDOLAOKKENFWGEESYSIDLIAKALESAAPDGRILKNEITYOWFSDNIPYFGERSSPEEAAGWKNSIRHNLSLHSR
FKHRL1	72	GELAQOPRKSSSSRRNAWGNLSSYADLTKAESSEAKRLTSLCIYEWMMVKSVPYFKDGDSNSSAGWKNSIRHNLSLHSR
AFX	10	RAGSAMALGGGSGCTEGSGLLLED..ARYLAAPGQDPGSCPATAAGGLSGGT..QALEQPQOPLP...PFQEGAG
DAF-16a1	127	AIIDLDDEEQSRSPRSCTWPLPRTPEIANQSEPEVEPDLCEKVHTECRSEPI..ELESRISEPAAGE..QPGILCAVT
DAF-16b	148	SEDDTVSGKKTTRNAWGNMSEYAEELITTAIWASPEKRLTQAQVYEWMMVONVPYFRDKGDSENSSAGWKNSIRHNLSLHSR
FKHR	143	CRKRP..TDOLAOKKENFWGEESYSIDLIAKALESAAPDGRILKNEITYOWFSDNIPYFGERSSPEEAAGWKNSIRHNLSLHSR
FKHRL1	143	G..SGQPRK..CISRRNAWGNLSSYADLTRAIESSPDKRLLTSLCIYEWMMVKSVPYFKDGDSNSSAGWKNSIRHNLSLHSR
AFX	86	GPRKG...GSRNAWGNQSYAEEFISOAESAPKRLTQAQVYEWMMVYRVPYFKDGDSNSSAGWKNSIRHNLSLHSR
DAF-16a1	207	EMRIONEGACKSSWWVINPDAKEPGRNPRTRERSNLTETTKAOLEKSRGAKRERALMGSLHSTLNGNSIAGSIQT
DAF-16b	227	EMRIONEGACKSSWWVINPDAKPGNRNPRTRERSNLTETTKAOLEKSRGAKRERALMGSLHSTLNGNSIAGSIQT
FKHR	223	FIRVQNEGTGKSSWWMILNPEG..GKSQKSPRRRAASMDDNNSKFAKSRSRAAKKR...AS..LQSGOECA..GDSPGSQ
FKHRL1	220	FMRVQNEGTGKSSWWMILNDC..GKSQKAPRRRAVSMDNSNKYTKSRGRAAKKR...AA..EQTAPESA..DDSP..SQ
AFX	160	FTKVNHEATGKSSWWMILNPEG..GKSQKAPRRRAASMDDSSKLRLGRSKAPKRK...PSVLEPAPFEGATPTSPVGH
DAF-16a1	287	ISHDLYDDDSMVGAFDNVPESSFRPRTQSNLSPGSSSERVSPAIQSDIYDDL..EFFPSWVGESVPAFSDIVDRTDQMREIDA
DAF-16b	307	ISHDLYDDDSMVGAFDNVPESSFRPRTQSNLSPGSSSERVSPAIQSDIYDDL..EFFPSWVGESVPAFSDIVDRTDQMREIDA
FKHR	292	FSKWPASPGSHSNDDFDNWSTFRPRTSSNAS..TISCRISLSPIM..TEODDLGEGD..VHSMWYPPSAAKMAST..
FKHRL1	288	LSKWPGSPTSRSSDELDAWTDRSRTNSNAS..TVSCRISLPIMASTERDEVQDDDPMLSPMLYSSASLSPSVSKPCTVE
AFX	231	FAKWSGSPCPCSRNRNREEADMMWTERPRTSSNAS..SVSRLSPRSEEV..LAEEIASVSYAGGVIEPTLNGLGLELLDGLN
DAF-16a1	366	TTHICGVQIKQESKPIKTEPIAPPSSYHELNBSVRCGCAQNPILRNPIVPSTNFKPMPLPGAYCNXQNGCITPINWLBSN
DAF-16b	386	TTHICGVQIKQESKPIKTEPIAPPSSYHELNBSVRCGCAQNPILRNPIVPSTNFKPMPLPGAYCNXQNGCITPINWLBSN
FKHR	359	EPLSELISNPENN..ENLDNL..NLLSSPTTSQSSPQTMQQTCPYSEFAP..NTSENNSPSPNYQKYTGQSSMSPEPP
FKHRL1	366	EPRLTDMAGTMNINDGLTENLMDLNDNITLPPSQSPPTGEMQRSSESPEPYTR..GSGLGSPTSSFNSTVFGPSSENSE
AFX	308	ETSSHSSLRSRGESEGFSLQHPGVTGPLETYSSSLFSEPAEGPLSAGEGCCSSSQALEALLTSDEPPADVLMTQVDPPIES
DAF-16a1	446	SBEPLPGQS..CGIIVAAQETVASSBALPIDLENLTIDPLWDTMDVDALIRHELSQAGCQHITHEDL
DAF-16b	466	SSBEPLPGQS..CGIIVAAQETVASSBALPIDLENLTIDPLWDTMDVDALIRHELSQAGCQHITHEDL
FKHR	436	QMPITQDINK..SEYGGMBOYNCAPIGLKELLTSDESEPHNDI..WT PVDPGVAQPNNSRVLCQNV..MMGENSVMBTYGSQ
FKHRL1	445	QSPMOTQENKPATESSMSHY..GNQTLQDLITSDSLSHSDVMMTQSDPLEMNSQASTAVSAONSRRNWLNRNDPLMSFAAC
AFX	388	QABTLLGGLPSH...SKLATGEGLCPKPLEARGESESSLVPTLSMIAAPPVMASAPIKALGTPTPETAAHQDRMP
DAF-16a1	511	-----
DAF-16b	531	-----
FKHR	511	ASHNKMNENPSSH..TEPGEAQCTSAVNGRFLPHTVSTMEMHTSGMNRFTQVTPVCPFLPHPMOMSALGGYESVSSCNGYGR
FKHRL1	523	-----
AFX	464	PNQGSLVN..QNL..LHHQHOTQGALGGSRALNSVSYN..GLSESSSEGSAKHQQCSPEVSQSMQ..TLSDSLGSBLYSTSAN
-----	464	QDLDLDEMYMENTECMDMNIISDLMDGEGLDFNFEPDFE-----

DAF-16a1	511
DAF-16b	531
FKHR	590
FKHRL1	599
AFX	502

MGLLHQEKLPSSDLD. GMFLIEREDCDMESISIRNNDLVDGDTEDNFENDVYENQ. SEPHSVKTTHSWVSQ
LPVMGHEKFPSDLDWENGSLCDMESISIRSELMDADGEDEFDSLISONTVGNETGAKQASSQSWSVPG

FIG. 21A-2

Fork head Domain Alignment (*C. elegans*, human, others)

FIG. 21B

Fig. 22

INJECTION OF DAF-7 BYPASSES OBESITY-INDUCED DEFECTS IN INSULIN-REGULATION OF METABOLISM

Fig. 23

Fig. 24

Comparison of the human AKT protein sequence to the cosmid sequence C12D8, located in the genetic interval where sup(mg144) maps. Numbering in the AKT protein sequence by amino acid residues, and in the cosmid sequence by nucleotide position.

Score = 450 (207.4 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 79/121 (65%), Positives = 97/121 (80%), Frame = +1

325
 Query: 319 EVLEDNDYGRAVDWWGLGVVAMYEMMCGRLPFYNQDHKEKL~~F~~LIMEEIRFPRTLGPEAKS 378
 +VL+D+DYGR VDWNG+GVVAMYEMMCGRLPFY++DH KLFELI+ ++RFP L EA++
 Sbjct: 33685 QVLDDHDYGRCVWWGVGVVAMYEMMCGRLPFYSKDHNL~~F~~LIMAGDLRFP SKLSQEART 33864

Query: 379 LLSGLLKKDPTQRLGGGSEDAKEIMQHREFFANIVWQDVYEKKSPPFKPQVTSETDTRYFD 439
 LL+GLL KDPTQRLGGG EDA EI + FF + W+ Y K++ PP+KP V SETDT YFD
 Sbjct: 33865 LLTGLLVKDPTQRLGGGPEDALEICRADFFRTVDWEATYRKIEEPYKPNVQSETDTSYFD 34047

Score = 256 (118.0 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 48/66 (72%), Positives = 59/66 (89%), Frame = +1

326
 Query: 146 TMNEFFEYLKLLKGKTFGKVILVKEKATGRYYAMKILKKEVIVAKDEVAHTLTENRVLQNS 205
 TM +F++LK+LGKGTGKVL KEK T + YA+KILKK+VI+A++EVAHTLTENRVLQ
 Sbjct: 32314 TMEDFDFLKVLKGKTFGKVILCKEKR~~T~~QKLYAIKILKKDVI~~I~~AREEV~~A~~HTLTENRVLQRC 32493

Query: 206 RHPFLT 211
 +HPFLT
 Sbjct: 32494 KHPFLT 32511

Score = 190 (87.6 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 36/45 (80%), Positives = 37/45 (82%), Frame = +2

327
 Query: 276 KLENLMLDKDGHIKITDFGLCKEGIKDGATMKTFCGTPEYLAPEV 320
 KLENL+LDKGHIKI DFGLCKE I G TFCGTPEYLAPEV
 Sbjct: 33509 KLENLLDKDGHIKIADFGLCKEEISFGDKTSTFCGTPEYLAPEV 33643

Score = 188 (86.7 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 37/57 (64%), Positives = 42/57 (73%), Frame = +3

328
 Query: 209 FLTALKYSFQTHDRLCFVM~~E~~ANGGELFFHLSR~~E~~RVFSEDRARFYGA~~E~~IVSALDYLH 265
 + LKYSFQ LCFVM++ANGGELF H+ + FSE RARFYGA~~E~~IV AL YLH
 Sbjct: 32667 YFQELKYSFQEQHYLCFVMQFANGGELFTHVRKCGTFSEPRARFYGA~~E~~IVLALGYLH 32837

Score = 166 (76.5 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 29/59 (49%), Positives = 42/59 (71%), Frame = +1

329
 Query: 53 NNFSVAQCQLMKTERPRPNTFIIRCLQWTTVIERTFH~~VET~~PEERE~~E~~WATAIQTVADGLX 111
 + F++ Q M E+PRPN F++RCLQWTTVIERTF+ E+ E R+ W AI++++ K
 Sbjct: 31846 STFAIFYFQTMLFEKPRPNMFMRCLQWTTVIERTFYAESAEVRQRWIHAIESISKYK 32022

Score = 134 (61.8 bits), Expect = 5.2e-167, Sum P(8) = 5.2e-167
 Identities = 24/33 (72%), Positives = 30/33 (90%), Frame = +3

330
 Query: 210 LTALKYSFQTHDRLCFVM~~E~~ANGGELFFHLSRE 242
 L LKYSFQT+DRLCFVME+A GG+L++HL+RE
 Sbjct: 33156 LQELKYSFQTNDRLCFVMFAIGGDLYYHNLRE 33254

1. 0 1 2 3 4 5 6 7 8 9 10

Fig. 26A

Fig. 26B

45/54

Fig. 27

	1	15 16	30 31	45 46	60	
1 ZK84.6	-MNSVFTIIFVLCAL	QVAASFRQSFG	---	P SMSEESASMQLLREL	QH--NMME SAHRPMP	54
2 ZK75.1	-MFSFFT-YFLLSAL	LLSASC RQ	-----	P SMDT-SKADRILREI	E----METELENQLS	47
3 ZK1251.2	---	MPPII LVFFLV	LIPASQQY	-----P FSLE-SLN DQIINEE	VI--EYMLENSIRSS	47
4 C06E2	--MIVTLIVFLVIGL	QMAHLSQVSGNNENG	FLNP-FDLSQWSEEI	LHRQYHHHHHHHHGN		57
5 ZK75.2	---	MNAIIFC LLFT	TVTATYEVF	-----G KGIEHRNEHLIINQL	D---IIPVESTPTPN	48
6 ZK75.3	MKLSVVL ALFI IFQL	GAASLMRN	-----W MDFDEKELEHDYDD S	E---IGFHNIHS LMA		51
7 C17C3	-----	-----	-----	MKLLHI F---IIFLLF QSCSN		18
8 F13B12	-----	-----	-----	MYWFRQVYRPS FF--FGFLA ILL LSS		50
9 INSULIN	-----	-----	-----	-----MA LWMLLPLL ALL ALW		17
CONSENSUS	-----	-----	-----	-----		

	61	75 76	90 91	105 106	120	
1 ZK84.6	RARRVPAPGETRACG	RKLISLVM AVCGD-L	CN-----	-----	-----	85
2 ZK75.1	RARRVPA-GEVRACG	RRLLL FVWSTCGE	-P CT-----	-----	-----	77
3 ZK1251.2	RTRRVPDEKKIYRCG	RRIHSYVF AVCGK-A	CE-----	-----	-----	78
4 C06E2	RARRTLETEK IYRCG	RKLYTDVLSACNG-P	CE-----	-----	-----	88
5 ZK75.2	RASRVQK---RLCG	RRLLFMLATCG--E	CD-----	-----	-----	74
6 ZK75.3	RSRRGDK---VKICG	TKVLKMVM VMCGG-E	CS-----	-----	-----	79
7 C17C3	KMCQYSK-KKYKICG	VRALKHMKV YCTR-G	MT-----	-----	-----	48
8 F13B12	PTPSDAS---IRLCG	SRLTTTLLAVCRNQL	CTGLTAFKRSADQSY	APTTRDLFHIHHQQ-		80
9 INSULIN	GDP PAA AFVNQHLCG	SHLVEALYLVCGERG	FFYTPKTRREAEDLQ	VGQVELGGGPAGSL		77
CONSENSUS	-----CG-----C-----	-----	-----	-----		

B CHAIN

C PEPTIDE

	121	135 136	150 151	165 166	180	
1 ZK84.6	-----PQE GK DIA	TECCGNQCSDDYIRS	ACCP-----	112		
2 ZK75.1	-----PQE DMDIA	TVCC T TQCTPSYIKQ	ACCPEK---	106		
3 ZK1251.2	-----SNT EVNIA	SKCC REE CTDD FIRK	Q CCP-----	105		
4 C06E2	-----PGTEQDLS	KLCCGNQCTFVEIRK	ACCADKL--	118		
5 ZK75.2	-----TDS SEDLS	HICC IKQCD VQDIIR	V CCPNSFRK	106		
6 ZK75.3	-----S-TNENIA	TEC CEK MCT MEDIT	KCCPSR---	107		
7 C17C3	-----R-DYG KLL	VTCC SKGCNAIDIQR	ICL-----	73		
8 F13B12	-----KRG GIA	TEC CEK RCSFAYLK T	FCC NQDDN-	109		
9 INSULIN	QPL ALEG SLQ KRG IV	EQ CCTS ICS LYQ LEN	YCN-----	110		
CONSENSUS	-----CC-----C-----	-----C-----C-----	-----			

A CHAIN

Zk75-1	ACGRRELLFV	WSTCGEPCTK	xxQEDMDIAT	YIKQAGC46
Zk84-6	ACGRRKHSYYV	maVggd1cnx	xxqegkdiat	YIrsaC46
Zk1251-2	RCGGRKTYTDV	FAVCGGKACEK	xxSTEVNTAS	FTRKQC46
C06e2	RCGTRKVLKMY	LSACNGPCEX	xxGTQDESK	ETRKAQC46
Zk75-3	ICGSHIVEAI	MVMCGGECSX	xxSTNENIAT	DITTKC46
Zk75-2	ICGSHIVEAI	latcggedtx	xxDSSEDESH	dirvc46
Ins-Human	ICGSHIVEAI	YLVCGERGFX	xxLQKRQIV	QLENYC46
Ins-Rabbit	ICGSHIVEAI	YLvggergffx	xxtpksgiv	Qlenyc46
Ins1-Xenopus	ICGSHIVEAI	YLvggergffx	xxkmkr9iv	Qlenyc46
Ins2-Xenopus	ICGSHIVEAI	YLvggergffx	xxspk9ggiy	Qlenyc46
Ins-Aligator	ICGSHIVEAI	YLvggergffx	xxpkq9ggiy	Qlenyc46
Ins-Elephantfish	ICGAEELVDAL	YfvCGDRGFX	xxAPQTGIVD	RHEMYC46
Igf1-Bovine	ICGAEELVDAL	QFVCGDRGFX	xxapqtgivd	RCFRSCDLA
Igf1-Dog	ICGAEELVDAL	Qfvcgdrgrfx	xxapqsr9iv	ecfrscdlr
Igf2-Horse	ICGGELVDTE	QFVCGDRGFX	xxrrsr9iv	LIFETYC46
Igf2-Human	ICCGSLEADV	SFVCGNRGYK	xxrrsrgiye	QHESYC46
Ilp-Amphioxus	ICCGSEKESNAE	KLVCRGNYNK	xxrrrrgiv	ECFRKSCSIS
Lirp-Locust	YCCGRHLARTH	ADICWEAGVX	xxRRRTRGIV	EFQTYC46
Bxa4-Bommo	YCCGRHLADTE	ADICFGVEKK	xxRGKRGIVD	ECCRPLCSD
Bxb1-Bommo	YCCGRHLADTE	adICpnveyx	xxgkraggyad	VHLSYC46
Bxrpa-Hornworm	YCCGRHLart	adICpnveyx	xxgkraggyad	VHLSYC46
Bxa1-Silkworm	YCCGRRLatm	sfvcdnqyqx	xxgkraggyae	VHKTFC46
Bxa2-Silkworm	YCCGRRLatm	LYVCDNQYQX	xxgkraggyae	e119yc46
Bax3-Silkworm	YCCGRRLatm	lyvcdnqy1x	xxgkraggyae	e119yc46
F13b12	YCCGRRLatm	lyvcdnqy1x	xxgkraggyae	ECFNQCTVQ
Mpi3-Sea snail	YCCGRRLatm	lyvcdnqy1x	xxesrpssiv	ECLIGCTKR
Relaxin-Human	YCCGRRLatm	lyvcdnqy1x	xxrpvyva	SLARYC46
Rlf-Human	YCCGRRLatm	lyvcdnqy1x	vrvccggprwx	d11t1c46

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

AKT-1a	MSMTSLSTKSRR--QEDVVIEGWLHKKG EH IRNWRPRYFMIFNDGALLGFR A KPK E GQPFP E PL
AKT-1b
AKT-2	M..ENAHL Q K..I..S..IL.R.T..S..D..L..
hAkt/PKBa	MSDVAL.K...R.V.KT...LLK..TFI.YKER.QDVDOREA
AKT-1a	NDFMIKDAATM L E E KPRPNMEMVR C LQWTIV I ERTFYA E SAEV R QRW H AI E SIS--K Y KGTN
AKT-1b
AKT-2	N...R...V C LD..I..D..DF..E..QAV..SHNRL..EN A
hAkt/PKBa	N..SVAQCQL.KT.R..T.II..HV.TP.E..EE..TT..QTVADGL.KOE-- mg144 T
AKT-1a	ANPQEELMETNQQPKIDEDSEFAGAAHA I IMGQPSSGHGDNC S IDFRAS M ISIADTSEA A KRD K I
AKT-1b
AKT-2	G.TSMQEED..GN.SGES.VNM-----DAT.TRS.....ESTVMN.DEP E .VPRKNTV
hAkt/PKBa	-----E.EMD-----R.GSPS..SGAE-----EMEV.L.KPKHRV
AKT-1a	TMEDFD L V G K G T F G K V L C K E K R T O KE V A J K L K D V T A RE E VA H T L T E N R V I O RG K H P E
AKT-1b
AKT-2	..D..O..R..SSD..IR..MVVD..S..YA..V..
hAkt/PKBa	..NE..EY..L..V..A..GRY..M..E..V..KD..NSR..
AKT-1a	I T EL K YS F OE O HYL G EV M OFANG G E L TH V R K ---CG T E S EP R AR F Y G A E L V I A G Y L H -RG
AKT-1b	TNDR..E..I..D..YY..LNREVOMNKEG..S..AN..
AKT-2	E..A..VHL..E..LOR..K..A..T..S..I..-BR..
hAkt/PKBa	..A..THDR..EY..F..LSRE..RV..D..S..D..SEK..
AKT-1a	DIVYRDMKLEN L LD K D G H I K I A DF G L G KE E I S F G D K T S E C G T P E V L A P E V L D D H D Y G R C V D W
AKT-1b	S...L...
AKT-2	N...R...T...KY...IE..I..D..S..
hAkt/PKBa	IV...L...M...T...G..KD..ATMK..E..N...A..
AKT-1a	WGVGVVMMYEMMC G RLPFYSKDHNK L FEEL I AGDLRFPSKL S OEART L LT G ILV K DPT T RLGG P
AKT-1b
AKT-2	SA..ENG..TTC..K..NR..P..V..S..ERV..AK..A..
hAkt/PKBa	L..NO..E..LMEET..RT..GP..KS..S..K..K..S..
AKT-1a	EDALEICRADFFRTVDWEATYRK E IEPPYKP N V Q SETDTSYFD N -EFTSQPVQLTPPSRSGALA
AKT-1b
AKT-2	D..R..VS..E..KD.....L..V...F....M.....F..RVRYV..ILLKV----.E.I
hAkt/PKBa	..K..MQHR..AGIV.QHV.E.KLS..F..Q.T.....R..E...A.MITI...DQDDSM E
AKT-1a	TVDEQEEMQSNTQFSFHNV M GSINRIHEASED N EDYDM G Z
AKT-1b
AKT-2
hAkt/PKBa	C...-S.RRPH.P...YSASSTA

Fig. 34

Fig. 35A

attttggtaggttgcacatgaaactttaaaactgaatacgtaatttcaacttacaggtgcgcgaccgagttaccgtatcaccagtcaagaact
 tatggccacaagttttgaaaacgttgactggtaacattgaaatcaagccaccagtctgcacgcctacattccagccacattggcg
 agccggagactactctaacattggcctgtcgagccggacttgcgtatcGTGCCTGTTCCGTTGATGAATTGGAAATGATGCTAGCGCA
 TCACAGGATCAACGTGAGTTGAAGCATTTCCTGCATTAAAAGTTTACCTTGCACGACCAAAATTGAAACTATTAAATTATTGA
 TTCTGATTAACAATGACCAAAAGATTGAACTGACAAAGTGCACATTGACCGACCAAAACAGTTGCACTGACCACCTCTCATTTGCACT
 GACCACCTTCATTGCACTGACCAACTTTCATTTGCACCATCTCTCATTTGCACTGACCAACTTTCATTTGCAATTCTGGCAATGA
 TTCTTTGCATCTACTGATCAAATTGATTCAATTAAATTCTTGACAGTACTATGCCATTCAAGGAGATGCTGATCTGAAAATTC
 TCAATAGTGATAAAATTACTAACCCCTAGAAAGTTCAGACCGTCTACGTGGAACATCCGGAGACCCATTGTTGGAAATTGACCGT
 GAGTGAATTGACCTAATTGGTTATTAAATTATAGACGCCAATCGGAAGGCCAAAAGAACCGGCCGCACGTGGCAGA
 AGCTCGAAGAGCAACGTGCAAAACCCATTCCACATCTCACCAACAACCGCTCATTTGAAACAAGGATATTGGAAAAGAACGGAGGATTG
 TTTGCCAGACGCCGAATGTTCTGTGACCGAAGGACCGCATCTGTACATTGATGTGCGAATCTGTGCTCAAAGGAGAGGTACCATGGAC
 GCCGTGCATGCCAGGTGGAGCTAAAAAACTCGGAACCTTCTTATACATAACGGTAGGTAGAATAATCATAGCTGTCTATCTCATTAGTACTC
 AATGAATTCTGAAATTTCAGCCCAACCGGTCTACTACTTGTGATCTCGAAAAGAACCGAGATGAGTGGTGAAGGCTATCAATG
 ATGTTCCAACCGGTACTCGGTGACTATCGAAAGACTTTAACTCTGGATGGTACGGAAACATTGGCAGCATTATGAAAGAAAAGTCC
 AGAAAGGTATGAATTACTGGAAGGCCCTCACTGAGTTCCAGCAAGTTAGAGTTTATTGAAATTGGCAATTTCATTAGACTTTA
 GAGCCTATTGCTATTGTCAGGTTAAACATTTCAAAAAAATTGAGAAATGCTGAAAAAATTGGAGTGTGACAGTTCTGAATT
 TGAAAATTCTGTTCTCAAAATTGGATTTCAGAGCTGTTGAGATTTCATAATCCTCAAAAGAAATATAGAATTGTTGCTCAACTTT
 TTGTCAAAATTGTTGGACAATTGAGATTCTGGAAAATTTCAAAAAAAGATAATTCTCTAAACAAAATAATTCAAAATGTTCTAAAGGT
 TCTTTATTTCATGCAACTCTAAAATCTCCGTATATTGGAAAGTCTTATGATGTTAGACGGTTAAATTGTTGATGATTTAAATT
 TTTAGGGTGGTCTATAATTGGACCAACCTGTATAATTGACCATGTACATTAGACCCAGTAACAGCATTGGACAC
 CACGCCAACTTATTGACCAACCTAGAACACCTCAATTCTTCTGTTCAAAAAATGATCAACTTGCTGAAAGGAAAATT
 TTTGAGGAAATGATGCGTGAACAGAACGGCGTGCACGCCAAAGAACAGAAAAGGAGGAGAAAAGGCCCTAAAGCCGAGCAAGTGACCAAGAAC
 TTCAATGCAAATGACAAAGAAGTCGCCTGAAGGCTCACCTCCCTCTACTCCCCACAAATCACCATCAAACAAATCACACTTTGTATCATT
 TTGCGTCC

Fig. 35B

MEDLTPTNTSLDTTTNNDTSDREAAPTLNLPTASESENSLSPVTAEDLIAKSIKEGCPKRTSNDMFLQSMGEG
AYSQVFRCREVATDAMFAVKVLQSYLNRRHQKMDAIIREKNILTYLSQECGGHPFVTQLYTHFHDQARIYFVIGLV
ENGDLGESLCHFGSFDMLTSKFFASEILTGLQFLHDNKIVHRDMKPDNVLIQKDGHILITDFGSAQAFGGLQLSQEGFT
DANQASSRSSDSGSPPPTRFYSDEEEENTARRTFVGTLALYVSPEMPLADGDVGPQTDIWGLGCILFQCLAGQPPFRAV
NQYHLLKRIQELDFSPEGFPEEASEIIAKILVRDPSTRITSQELMAHKFFENVWDVNIANIKPPVLHAYIPATFGEPE
EYYSNIGPVEPGLDDRALFRLMNLGNDASASQPSTPSNVEHRGDPFVSEIAPRANSEAENRAARAQKLEEQRVK
NPFHIFTNNSLILKQGYLEKKRGLFARRRMFLTEGPHLLYIDVPNVLKGEVPWTPCMQVELKNSGTFFIHTPNR
VYLYFDLEKKADEWCKAINDVRKRYSTIEKTFNSAMRDGTFGSIYGKKSRKEMMREQKALRRKQEKEKKAL
KAEQVSKKLSMQMDKKSP

Fig. 36

MEDLTPTNTSLDTTTNNDTSDREAAPTLNLPTASESENSLSPVTAEDLIAKSIKEGCPKRTSNDMFLQSMGEG
AYSQVFRCREVATDAMFAVKVLQSYLNRRHQKMDAIIREKNILTYLSQECGGHPFVTQLYTHFHDQARIYFVIGLV
ENGDLGESLCHFGSFDMLTSKFFASEILTGLQFLHDNKIVHRDMKPDNVLIQKDGHILITDFGSAQAFGGLQLSQEGFT
DANQASSRSSDSGSPPPTRFYSDEEVPEENTARRTFVGTLALYVSPEMPLADGDVGPQTDIWGLGCILFQCLAGQPPFRAV
AVNQYHLLKRIQELDFSPEGFPEEASEIIAKILVRDPSTRITSQELMAHKFFENVWDVNIANIKPPVLHAYIPATF
GEPEYYSNIGPVEPGLDDRALFRLMNLGNDASASQPSTFRPSNVEHRGDPFVSEIAPRANSEAENRAARAQKLEE
QRVKNPFHIFTNNSLILKQGYLEKKRGLFARRRMFLTEGPHLLYIDVPNVLKGEVPWTPCMQVELKNSGTFFIH
TPNRVYLYFDLEKKADEWCKAINDVRKRYSTIEKTFNSAMRDGTFGSIYGKKSRKEMMREQKALRRKQEKEEE
KKALKAEQVSKKLSMQMDKKSP

Fig. 37

卷之三

FIG. 38A

FIG. 38B

FIG. 38C

FIG. 38D

FIG. 38E

FIG. 38F

DAF-18

FIG. 39A

DAF-18 48 **I**FRT**A**Y**S**N**R** CRTEYQ**N**IDL **D**CAY**T**TD**R**H **A**IG**P**AT**G**I ANF**E**NSKVQT
PTEN 4 **I**LKE**E**VR**N**K RRY**Q**ED**G**FD**I** DLT**T**YP**N**I **A**M**G**PA**E**RL**E** GV**E**NN**I**DDV

DAF-18 98 Q**O**FFTR**E**CK GNV**K**V**N**TRG GYY**Y**DAD**N**E **G**NY**V**CF**D**MT**D** H**E**PP**S**IE**T**MA
PTEN 54 V**R**ED**S**KE**.K** NH**K**TY**N**LC**A** ERHY**D**TAK**E** CR**A**Q**Y**PF**E**D H**E**PP**O**LE**T**IK

DAF-18 148 PFC**C**REA**K**EW**I** EADD**K**HV**J**AV **H**CKAG**K**G**R**TC VM**I**CA**H**LY**I** YI NF**Y**P**S**PR**Q**IF
PTEN 103 P**F**C**E**DD**D**Q**W**I S**E**DD**N**VA**A** I **H**CKAG**K**G**R**TC VM**I**CA**H**LY**I** HR GKFLKA**Q**EA**E**

DAF-18 198 D**W**Y**S**LI**E**RF**K**N NKG**V**T**I**PS**Q**R RY**I**YY**X**HK**F**R E**R**EN**Y**FL**R** MOL**I**GY**V**ER
PTEN 153 D**Y**GE**V**ER**R**D RY**I**YY**X**SY**Y**LL KN**H**ED**Y**RE**V**A L**I**F**H**KMM**E**ET

DAF-18 248 P**E**K**T**W**E**GG**S**K I**K**VE**V**GNG**S**T I**L**F**K**PD..**E**L I**I**SKSNH**O**RE RAT**W****E**NN**C**DT
PTEN 203 I**E**M**F**SG**G**TCN PQ**F**V**W**CQL**K**V K**I**YSSNNS**G**ET R**E**D**K**FM**Y****E** FF**Q****F****E**P**V****G**D

FIG. 39B

DAF-18 Protein

MVTPPPDVPSTSTRSMARDLQENPNRQPGEPRVSEPYHNSIVERIRHIFRTAVSSNRCRTEYQNIDLDCAYITDRIIAIG
YPATGIEANFRNSKVQTQQFLTRRHGKGNVKVFNLRGYYYDADNFDGNVICFDMDDHPPSLELMAPFCREAKEWEAD
DKHVIAVHCKAGKGRTGVMICALLIYINFYPSPRQILDYYSIIRTKNNKVTIPSQRRIIYYYHKLRERELNYLPLRMQL
IGVYVERPPKTWGGGSKIKVEVGNGSTILFKPDPLIISKSNNHQERATWLNNCDTPNEFDTGEQKYHGFVSKRAYCFMVP
EDAPVFVEGDVRIDIREIGFLKKFSDGKIGHVWFNTMFACDGGLNGGHFEYVDKTQPYIGDDTSIGRKNGMRRNETPMRK
IDPETGNEFESPWQIVNPNGPLEKHITEEQAMENYTNYGMIPPRYTISKILHEKHEKGIVKDDYNDRKLPMGDKSYTESGK
SGDIRGVGGPFEIPYKAEEHVLTFPVYEMDRALKSKDLNNGMKLHVVLRCVDTRDSKMMEKSEVFGNLAFHNESTRRLQA
LTQMNPKWRPEPCAFGSKGAEMHYPPSVRYSSNDGKYNGACSENLVSDFFFEHRNIAVLNRYCRYFYKQRSTSRSRYPRKF
RYCPLIKHHFYIPADTDDVDENGOPFFHSPEHYIKEQEKAAGIENTGPSTGSSAPGTIKKTEASQSDKVKPAT
EDELPPARLPDNVRRFPVVGDFENPEEESEHKTVESIAGFEPLEHLFHESYHPNTAGNMLRDYHTDSEVKIAEQUEAK
AFVDQLLNGQGVLQEFMQFKVPSDNSFADYVTGQAEVFKAQIALLEQSEDFQRVQANAEEVDLEHTLGEAERFGHVVE
ESNGSSKNPKALKTREQMVKETGKDTQKTRNHVLLHLEANHRVQIERRETCELPEDKIPRIAHFSENSFSDSNFDQAI
YL

FIG. 40A

1 ttccaggtac atctactaac ccccaatgg tachtctcct ccagatgtgc caagcacatc
61 gaccaggtcg atggctcgta accttcaaga gaatccaaac cgacaacctg gtgaaccacg
121 tgtgtctgaa ccgtatcaca attcaatcg cgagcggatt cgccatattt ttccggacggc
181 tgtatcttcc aatcggtgtc gcaccgagta cccaaatatc gacctagatt gtgcatastat
241 cacagaccga atcatagcta tcggttatcc agcaacagga atcgaagcga atttccgtaa
301 ctcaaaaagtt caaactcaac aatttctgac caggcggcac ggaaaggcga acgtgaaggt
361 gtttaacctg cgccgtggat actactacga tgccgataac ttgcgtggaa atgttatttg
421 cttcgatatg actgatcatc atccgccag tctcgaatta atggctccgt tttgcagaga
481 ggctaaaggaa tggcttgaag cagacgataa acatgtataa gctgtacact gtaaagctgg
541 aaaaggccgt accggagtga tgatatgtc tcttcgtc tacatcaact tctatccgag
601 cccacgacaa atttcgact actactaat aattcgtaca aaaaacaaca aaggtgtcac
661 aattccatca caacgacgct acatttacta ctaccataag cttcgtgaac gtgagctcaa
721 ctattnacca ttgagaatgc agttgattgg tgtctacgtg gaacggcctc caaagacatg
781 gggtggttgt tcaaagataa aagtggaggt tgaaaatggc tcgacaattt tatttaagcc
841 ggatccttc ataatctcca aatcaaatac tcagcgagag cgtgcgacgt ggctgaacaa
901 ctgtgatacg cctaacgaat tcgacaccgg agagaaaa tatcatggat ttgttccaa
961 gagagcatac tgtttatgg tgccagaaga tgctccagta ttgtcgaag gagatgttcg
1021 tatagacatt cgcaaatcg gatttctcaa aaagtttcg gacggaaaga ttggtcatgt
1081 ttggttcaat acaatgttcg catgtgatgg aggactcaac ggtggacatt tcgagtcgt
1141 agacaaaact cagccgtaca tcggagacga tacatcaatc ggacggaaaa atggaatgcg
1201 aagaaaatgaa acggcgatgc gaaaaattga tccagaaaact ggaaatgaat ttgagtctcc
1261 gtggcaaata gtgaatcctc ctggacttggaaaacatatt acggaggaac aagcaatgg
1321 aaattatacc aattatggca tgattctcc tcgatacacg atcagcaaga ttcttcacga
1381 aaagcatgaa aaaggatcg tcaaggatga ctataatgtat cgtaagctgc caatggaga
1441 caaatcatac acgaaatcag gaaaaagtgg agatattcga ggagtccgtg gtccatttga
1501 gataccatat aaagctgagg aacatgttct cacatttcca gtttatgaaa tggatcgagc
1561 attgaagagt aaagatctta acaacgaaat gaaacttcac ttgttcttc ttgtgttaga
1621 tactcgtgat tcaaaaatgaa tgaaaagag cgaagtgttc ggcaatctgg cattccataa
1681 tgaatcgaca cggaggcttc aacgtgtac tcaaataatc cccaaatggc gacctgaacc
1741 gtgtcggttc ggatccaaag gtgtgaaat gcattaccct ccgtccgttc gatattcaag
1801 caatgatgga aagtataatg gaggctcgag tgagaacctt gtttagcgatt ttttcgagca
1861 cagaaatatt gccgttctta atcgatatttgcgatatttca tacaagcaac gcagtacatc
1921 tcgaagccgt tatccaagaa aattcagata ctgtcctctg atcaagaaaatcatttctacat
1981 tccagctgat accgatgttgc ttgatgaaaaa tgcccaaccg ttcttccact caccagagca
2041 ttacattaaa gaacaggaaa aaatagacgc agagaaaagca gctaaaggaa ttgaaaatac
2101 tggaccaggat acttcaggat caagtgtcc cggaaactatc aagaaaaacgg aagcttcaca
2161 atccgacaag gtgaagccgg caactgaaga cgaacttcct cctgcgaggc taccggataa
2221 tgtgcgaaga ttccctcg tcggcggttga ttgcggaaaat ccggaaagaag aatcgtgtga
2281 acacaaaacc gttagtcaatgacttgcgatatttgcgatatttca tacaagcaac gcagtacatc
2341 ataccatcca aatacggccg gtaacatgtc gcttcaggat tatcacactg attcggaaagt
2401 gaaaatagct gaacaagagg caaaagcctt cgttgcggat ttgcgttgc gacaagggt
2461 attacaagag ttatgaaatc aattcaaaatc accatcgac aattccttttgcgattatgt
2521 aaccggacag gccgaagttt ttaaaggcaca gattgcgttgc gcttcaggat cggaggattt
2581 tcaacgagtt caagcgaatc cagagggat cgttgcgttgc caccatcttgc gtcggatc
2641 tgagcgattt gggcacgttgc tagaagaatc gaatgggttgc tctaaaatc cccaaagccct
2701 gaaaactcga gaacaaatgg tgaaagaaaac tggccaaagac actcagaaga cccgcaatca
2761 tgtgcttcta catttggaaatc ctaatcatcg tgcgttgc gacgtgtccc aacgtgccc

FIG. 40B

2821 ggagctacat ccagaggata aaatcccaag aattgctcat tttccgaaa acagcttc
2881 ggattcgaat ttgtatcaag ctattttattt gtaaacctaa aacaaaactt ttagaagatt
2941 ttcttcttac tgaccctcca atttcagat aattcaatg ttttaagttt tctcttcaaa
3001 gtatcattca ctttctgtat agtgtttgt ttttaacaa actattgttc gattatttg
3061 tatattcata ttatagctct caacttcccg atttccacg tatatatgtt tattttgccg
3121 ggtaaaaat agcaattccc tatgaatgta tcccttcca tctgtttct tactcagaaa
3181 ttgttaattca cattgcgggt catcactaat cctatggct ttaacacaat tctcccataa
3241 attaattgta cttaccaatt tttgtttaa ttattnagat ttgttaacatt gaaattggtg
3301 ataa

FIG. 40B

FIG. 41

ttta

attacccaatttgaggttagcattgctctttcaatcat atg gat tcg ttg ttt cag atg gca tcc gca
M D S L F Q M A S A

atg aag ttt caa tac tac tcg aag aaa gct gct gga aag aca atg tct aat agt gtc tcc
M K F Q Y Y S K K A A G K T M S N S V S

atg tcc agt gac aat cgc atg gag gat ttt aaa cgt cgt ttt cgt cga agt gga tcg tta
M S S D N R M E D F K R R F R R S G S L

gga att cca ttt gtc cca gaa gaa gat gtt aaa caa ctc ttc aca cca act cgt act gtt
G I P F V P E E D V K Q L F T P T R T V

cgt cga gaa gca tct att cgc gaa ggg gat gag gaa gaa gga gta caa att ctc aca ata
R R E A S I R E G D E E G V Q I L T I

att gtc aag tca agt cgt gtt tcg gag gat atc tca aaa atg att gca aac ctc cct gat
I V K S S R V S E D I S K M I A N L P D

cac act cgt atc aaa cat ttg gag act cgt gac agt caa gat gga agt tcc aaa act atg
H T R I K H L E T R D S Q D G S S K T M

gat gtt ctt cta gag att gag ctc ttt cat tat gga aaa caa gaa gca atg gat ctt atg
D V L L E I E L F H Y G K Q E A M D L M

aga ctt aat ggg ctt gat gtt cat gag gtg tca tcg act att cgt cca act gca ata aaa
R L N G L D V H E V S S T I R P T A I K

gag caa tat aca gag cct gta tct gat gat gcg aca acc ggt tct gaa tgg ttt cca aaa
E Q Y T E P G S D D A T T G S E W F P K

agt att tat gat ttg gat att tgt gca aaa aga gtg att atg tat gga gca ggg ctg gac
S I Y D L D I C A K R V I M Y G A G L D

gct gat cat cct ggt ttc aaa gat acc gag tat cgt caa cgt cga atg atg ttt gct gaa
A D H P G F K D T E Y R Q R R M M F A E

ctg gcg ctc aat tac aaa cac ggt gag cca att ccg cga acc gaa tat aca tca tcc gaa
L A L N Y K H G E P I P R T E Y T S S E

cgg aaa act tgg gga att ata tat aga aaa ttg aga gaa ttg cac aaa aag cac gca tgc
R K T W G I I Y R K L R E L H K K H A C

aag cag ttt ctt gat aac ttt gag cta ctg gag aga cat tgt gga tac tcg gaa aat aat
K Q F L D N F E L L E R H C G Y S E N N

att ccg caa cta gaa gat atc tgc aag ttt ttg aaa gca aaa act gga ttc cgt gtt cgc
I P Q L E D I C K F L K A K T G F R V R

FIG. 42

cca gtc gcc gga tac tta tca gct cgt gat ttc ttg gca ggt ctt gca tat cgt gtc ttc
P V A G Y L S A R D F L A G L A Y R V F

tgc actcaa tac gtt cgc cat cat gcc gat cca ttt tac act cca gaa cca gac acc
F C T Q Y V R H H A D P F Y T P E P D T

gtt cac gag ctc atg ggt cac atg gct cta ttc gct gat cca gat ttt gct cag ttt tct
V H E L M G H M A L F A D P D F A Q F S

caa gag att gga tta gct tct ctt gga gca tca gag gaa gat ttg aag aag ctt gca aca
Q E I G L A S L G A S E E D L K K L A T

ctc tac ttc ttt tcc att gaa ttt ggt ctc tcg tct gat gac gct gcc gat tct cca gta
L Y F F S I E F G L S S D D A A D S P V

aaa gaa aat gga tca aat cat gaa aga ttt aaa gta tac gga gca gga ctt ctg agc agt
K E N G S N H E R F K V Y G A G L L S S

gct ggc gag ttg caa cat gcc gtt gag ggt agt gca acc att att cgt ttt gat ccg gat
A G E L Q H A V E G S A T I I R F D P D

cgt gtt gtt gag caa gaa tgt ctc att act act ttc cag tca gcg tat ttc tat act aga
R V V E Q E C L I T T F Q S A Y F Y T R

aat ttt gaa gag gcc cag cag aaa ctc aga atg ttc acc aac aac atg aaa cgt ccc ttc
N F E E A Q Q K L R M F T N N M K R P F

att gtt cgt tac aac cca tac aca gaa agc gtc gaa gtt ctc aac aac tcc cgt tcc att
I V R Y N P Y T E S V E V L N N S R S I

atg ttg gca gtg aac tct ctc cgc tca gac atc aac ctg ctc gcc gga gct ctc cac tac
M L A V N S L R S D I N L L A G A L H Y

atc ctg tag
I L *

FIG. 42

attacccaagtttaggttagcattgctcttcaatcat

atg gat tcg ttg ttt cag atg gca tcc gca atg aag ttt caa tac tac tcg aag aaa gct
M D S L F Q M A S A M K F Q Y Y S K K A

gct gga aag aca atg tct aat agt gtc aaa aac tgg att ccg tgt tcg ccc agt cgc cgg
A G K T M S N S V K N W I P C S P S R R

ata ctt atc agc tcg tga ttt ctt ggc agg tct tgc ata tcg tgt ctt ctg cac tca
I L I S S *

ata cgt tcg cca tca tgc cga tcc att tta cac tcc aga acc aga cac cgt tca cga gct
cat ggg tca cat ggc tct att cgc tga tcc aga ttt tgc tca gtt ttc tca aga gat tgg
att agc ttc tct tgg agc atc aga gga aga ttt gaa gaa gct tgc aac act cta ctt ctt
ttc cat tga att tgg tct ctc gtc tga tga cgc tgc cga ttc tcc agt aaa aga aaa tgg
atc aaa tca tga aag att taa agt ata cgg agc agg act tct gag cag tgc tgg cga gtt
gca aca tgc cgt tga ggg tag tgc aac cat tat tcg ttt tga tcc gga tcg tgt tga
gca aga atg tct cat tac tac ttt cca gtc agc gta ttt cta tac tag aaa ttt tga aga
ggc cca gca gaa act cag aat gtt cac caa cat gaa acg tcc ctt cat tgt tcg tta
caa ccc ata cac aga aag cgt cga agt tct caa caa ctc ccg ttc cat tat gtt ggc agt
gaa ctc tct ccg ctc aga cat caa cct gct cgc cgg agc tct cca cta cat cct gta g

FIG. 43

FIG. 4A

FIG. 44B

FIG. 45A

FIG. 45B

FIG. 44C

C. elegans

Mammals

ATTCGGCATGAGCATGGaGCTTCGAGTCCTAGAGAACACAAAACGTTCCCGGCGAACCTGGGtCTGGACTGCGAC
GAGACTCAAGCGAGTCCGCTGCTGCCGATATCCCCTCACAGTGGACTTTGAGGCTTCGGCTGGGACTGGATCAT
CGCACCTAAGCGCTACAAGGCCAACTACTGCTCCGGCCAGTGGGAGTACATGTCATGCAAAATATCCGCATACC
CATTGGTGAGCAGGCCAATCCAAGAGGTTATGcTGGGCCCTGTTGTACCCCCACCAAGATGTCCCCAATcAAC
TgcTctACTTCAATGACAAGCAGCAGATTATcTACGGCAAGATCCCTGGCATGGTGGATCGCTGTGGcTGCTC
TTAAGGTGGGGATAGAGGATGCCTCCCCACAGACCGTACCCCAGACCCATAGCCcTGCCCAtCCACCGCCTG
ATCCAAACAT

FIG. 47A

Copyright © 2000 by Kluwer Academic Publishers. All rights reserved.

IRHEHGASSPREHKTFFAEPGSGLRRDSSESRCRYPLTVDFEAFGWDWIIAPKRYKANYCSQWEYMFMQKYFHT
HLVQQANPRGYAGPCCTPTKMSPINMLYFNDKQQIIYGKIPLAMVVDRGCS

FIG. 47B