源码: https://github.com/marekrei/sequence-labeler

模型第一部分: bilstm+crf部分



## 之前bilstm输出的隐层状态输给CRF,这里多了个d隐层

We include an extra narrow hidden layer on top of the LSTM, which proved to be a useful modification based on development experiments. An additional hidden layer allows the model to detect higher-level feature combinations, while constraining it to be small forces it to focus on more generalisable patterns:

$$d_t = tanh(W_d h_t) (2)$$

where  $W_d$  is a weight matrix between the layers, and the size of  $d_t$  is intentionally kept small.

作者的解释是这样的效果更好,可以捕捉到"更高层"特征且压缩维度,个人猜测是bilstm的 输出仍比较稀疏,之前也有实验表明压缩维度有一定效果。

## 模型第二部分: embedding部分



Figure 2: Left: concatenation-based character architecture. Right: attention-based character architecture. The dotted lines indicate vector concatenation.

$$h^* = [\overrightarrow{h_R^*}; \overleftarrow{h_1^*}] \qquad m = tanh(W_m h^*)$$

这里h1和hr进行concat 然后映射到m

attention部分:

$$z = \sigma(W_z^{(3)} tanh(W_z^{(1)} x + W_z^{(2)} m))$$
  $\tilde{x} = z \cdot x + (1 - z) \cdot m$ 

使用的是无交互的attention加权

字符和词向量训练时的交互:

$$\widetilde{E} = E + \sum_{t=1}^{T} g_t (1 - \cos(m^{(t)}, x_t)) \qquad g_t = \begin{cases} 0, & \text{if } w_t = OOV \\ 1, & \text{otherwise} \end{cases}$$

E为原来的交叉熵,后面这一项是对于out-of-vocabulary的词来说,通过cos值使得字符向量 和词向量更加接近。作者在这里解释对于训练语料未出现的词,词向量的结果还是值得字符 向量去接近的, 反之则效果不佳

## 作者的其他解释:

- 1.优点在于处理OOV词时可以平衡词向量和字符向量的权重,也可以提取部分前后缀特征 (只提取前后缀用CNN也可以)
- 2.参数量少了,相对于concat, attention部分的z维度更小

## 实验结果:

|                | CoNLL00 |       | CoNLL03 |       | PTB-POS |       | FCEPUBLIC |       |
|----------------|---------|-------|---------|-------|---------|-------|-----------|-------|
|                | DEV     | TEST  | DEV     | TEST  | DEV     | TEST  | DEV       | TEST  |
| Word-based     | 91.48   | 91.23 | 86.89   | 79.86 | 96.29   | 96.42 | 46.58     | 41.24 |
| Char concat    | 92.57   | 92.35 | 89.81   | 83.37 | 97.20   | 97.22 | 46.44     | 41.27 |
| Char attention | 92.92   | 92.67 | 89.91   | 84.09 | 97.22   | 97.27 | 47.17     | 41.88 |

|                | BC2GM |       | CHEMDNER |       | JNLPBA |       | GENIA-POS |       |
|----------------|-------|-------|----------|-------|--------|-------|-----------|-------|
|                | DEV   | TEST  | DEV      | TEST  | DEV    | TEST  | DEV       | TEST  |
| Word-based     | 84.07 | 84.21 | 78.63    | 79.74 | 75.46  | 70.75 | 97.55     | 97.39 |
| Char concat    | 87.54 | 87.75 | 82.80    | 83.56 | 76.82  | 72.24 | 98.59     | 98.49 |
| Char attention | 87.98 | 87.99 | 83.75    | 84.53 | 77.38  | 72.70 | 98.67     | 98.60 |

Table 2: Comparison of word-based and character-based sequence labeling architectures on 8 datasets.

The evaluation measure used for each dataset is specified in Section 6.

16年还可以的效果,另外提到了常用的conll2003数据集有其特殊性,90%的state of art是由 于从原来IOB的输出标签扩展到IOBES,使用了考虑词序的嵌入方式