Teorija pri matematiki

Jure Slak

Kazalo

KAZALO	2
IZJAVE	5
MNOŽICE	5
PRESLIKAVE	6
RELACIJE	6
NARAVNA ŠTEVILA	6
CELA ŠTEVILA	7
RACIONALNA ŠTEVILA	7
REALNA ŠTEVILA	8
RELACIJA DELJIVOSTI	9
ŠTEVILSKI SESTAVI	
PROCENTNI RAČUN:	
ABSOLUTNA VREDNOST	
INTERVALI	
IZRAZI	11
POTENCE	
Z NARAVNIM EKSPONENTOM	
POTENCE S CELIM EKSPONENTOM	
POTENCE Z RACIONALNIM EKSPONENTOM	12
KORENI	13
LOGARITMI	15
KOORDINATNI SISTEM	
Pravokotni, v ravnini	16
Pravokotni, v prostoru	16
FUNKCIJE	17
LINEARNA FUNKCIJA	
Potenčna funkcija	
PREMIK, RAZTEG FUNKCIJE	
INVERZNA FUNKCIJA	
Korenska funkcija	
Kvadratna funkcija Eksponentna funkcija	
LOGARITEMSKA FUNKCIJA	
KROŽNE FUNKCIJE	
ENAČBE	
LINEARNE ENAČBE	
RAZCEPNE ENAČBE	
KVADRATNE ENAČBE	
VIÉTOVI FORMULI	
KOMPLEKSNE ENAČBE	
EKSPONENTNE ENAČBE	22
LOGARITEMSKE ENAČBE	23

TRIGONOMETRIČNE ENAČBE	
Polinomske enačbe	
NEENAČBE	23
LINEARNA NEENAČBA	23
Kvadratna neenačba	
POLINOMSKA NEENAČBA	22
GEOMETRIJA	24
PODOBNOST	22
Talesovi izreki:	22
IZREKI V PRAVOKOTNEM TRIKOTNIKU	24
KOTNE FUNKCIJE	25
V PRAVOKOTNEM TRIKOTNIKU	25
Кот	
SINUS IN KOSINUS	
TANGENS IN KOTANGENS	
OSNOVNE ZVEZE MED KOTNIMI FUNKCIJAMI	
ADICIJSKI IZREKI	
DVOJNI KOTI	
Polovični koti	
Komplementarni koti	
Suplementarni koti	
Premik za $oldsymbol{\pi}$	
Periode	
Faktorizacija	
Antifaktorizacija	
GRAF FUNKCIJE SINUS IN KOSINUS	
KOT MED PREMICAMA	
VEKTORJI	31
Seštevanje vektorjev	
PRODUKT VEKTORJA S SKALARJEM	
LINEARNA KOMBINACIJA VEKTORJEV	
SKALARNI PRODUKT	
Krajevni vektorji	33
VEKTORSKI PRODUKT	
KOMPLEKSNA ŠTEVILA	35
Seštevanje C šetvil	35
Množenje C števil	35
Konjugirano C število	35
Absolutna vrednost ${\mathbb C}$ števila	
Deljenje C števil	
Enačbe s C števili	
LIKI	36
PLOŠČINA	36
KVADRAT	36
Pravokotnik	36
Paralelogram	36
Trikotnik	
Trapez	37
DELTOID	

Romb	
ENAKOSTRANIČNI TRIKOTNIK	
SINUSNI IZREK	
Kosinusni izrek	39
POLMER VČRTANEGA KROGA	39
HERONOV OBRAZEC	40
Krog	40
TELESA	41
Cavalierjevo načelo	41
Prizma	41
Valj	42
PIRAMIDA	42
Stožec	43
Vrtenine	43
Krogla	43
POLINOMI	45
Seštevanje polinomov	45
Množenje polinomov	45
DELJENJE POLINOMOV	45
HORNERJEV ALGORITEM	45
NIČLE POLINOMA	46
GRAF POLINOMA	47
BISEKCIJA	48
RACIONALNE FUNKCIJE	48

Izjave

Izjava je smiseln povedni stavek, ki mu lahko določimo njegovo vrednost.

Negacija izjave *A* je nova izjava, ni res, da drži *A*, ki je pravilna, če je izjava *A* napačna, oz. obratno.

Konjunkcija izjav A in B je nova izjava A in B, ki je pravilna, ko sta obe izjavi pravilni.

Disjunkcija izjav A in B je nova izjava A ali B, ki je pravilna, ko je pravilna vsaj ena od izjav A in B.

Implikacija izjav *A* in *B* je nova izjava če *A*, potem sledi *B*, ki je napačna samo v primeru, da je prva izjava pravilna, druga pa napačna.

Ekvivalenca izjav *A* in *B* je nova izjava Če *A*, natanko takrat *B*, ki je pravilna, če imata izjavi enako vrednost.

Množice

Množica je skupina elementov, ki jih druži neka skupna lastnost.

Prazna množica je množica brez elementa.

1. **Univerzalna** množica je množica, ki vsebuje vse elemente, ki jih preučujemo.

A je **podmnožica** B, če je vsak element množice A tudi element množice B.

Dve množici sta **enaki**, če imata iste elemente.

Komplement množice *A* je nova množica, ki vsebuje vse elemente, ki niso v množici *A*.

Unija množic *A* in *B* je nova množica, ki vsebuje elemente, ki so v množici *A* ali v množici *B*.

Presek množic *A* in *B* je nova množica, ki vsebuje elemente, ki so v množici *A* in v množici *B*.

Razlika množic *A* in *B* je nova množica, ki vsebuje vse elemente, ki so v prvi množici, v drugi pa ne.

Moč množice je število njenih elementov.

Potenčna množica množice *A* je množica vseh podmnožic množice *A*.

Kartezični produkt množic *A* in *B* je nova množica, ki vsebuje urejene pare, v katerih je prvi element iz 1., drugi element pa iz 2. množice.

Preslikave

Preslikava, ki množico *A* preslika v množico *B*, je predpis, ki vsakemu elementu in množice *A*, priredi natanko določen element iz množice *B*.

Preslikava je **injektivna**, kadar se par različnih elementov iz množice *A* preslika v par različnih elementov množice *B*.

Preslikava je **surjektivna**, kadar je vsak element množice B slika vsaj enega elementa iz množice A.

Preslikava je **bijektivna**, če je injektivna in surjektivna hkrati.

Graf preslikave f je podmnožica kartezičnega produkta $A \times B$

Relacije

Relacija je odnos med elementi neke množice.

Relacija je podmnožica kartezičnega produkta.

Relacija je **refleksivna**, za vsak element v množici velja, da je element v relaciji sam s seboj.

Relacija je **simetrična**, kadar za vsak par elementov velja, če je prvi v relaciji z drugim, je tudi drugi v relaciji s prvim.

Relacija je **tranzitivna**, če za vsako trojico elementov velja, če je prvi v relaciji z drugim in drugi v relaciji s tretjim, potem je tudi prvi v relaciji s tretjim.

6

Relacija je **ekvivalenčna**, če je refleksivna, simetrična in tranzitivna hkrati.

Naravna števila

Komutativnost/zamenjava:

$$a + b = b + a$$
$$a \cdot b = b \cdot a$$

Asociativnost/združevanje:

$$a + (b + c) = (a + b) + c$$
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Distributivnost/razčlenjevanje

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Operacija dvema elementoma priredi nov element.

Pri seštevanju nastopajo členi, pri množenju pa faktorji.

Cela števila

$$\mathbb{Z} = \mathbb{Z}^+ \cup \{0\} \cup \mathbb{Z}^-$$

Vsi zakoni kot za naravna in še

Nevtralni element za seštevanje je 0: a+0=0+a=aNevtralni element za množenje je 1: $a\cdot 1=1\cdot a=a$ Prištevanje nasprotnega elementa: a+(-a)=(-a)+a=0

ali nasprotnost je vzajemna

Zakoni urejenosti:

Za vsak par velja: $a < b \lor a > b \lor a = b$

$$a < b \land b < c \Rightarrow a < c$$

$$a < b \Rightarrow a + c < b + c$$

$$a < b \land c > 0 \Rightarrow ac < bc$$

$$a < b \land c < 0 \Rightarrow ac > bc$$

Racionalna števila

$$\mathbb{Q} = \left\{ \frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0 \right\}$$

Zakoni:

Vsi za cela števila in še:

Množenje z obratno vrednostjo je deljenje oz. Če število množimo z njegovo obratno vrednostjo je rezultat 1.

$$a \cdot a^{-1} = 1$$
 ali **obratnost** je vzajemna

Razširjanje ulomkov: ulomek lahko v števcu in v imenovalcu pomnožimo z istim številom, pa se vrednost ne spremeni

$$\frac{a}{b} = \frac{a \cdot k}{b \cdot k}$$

Seštevanje $\mathbb Q$ števil:

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{cb}{bd} = \frac{ad \pm bc}{bd}$$

Množenje Q števil:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

Vsak ulomek lahko zapišemo z **decimalnim** številom, ki je lahko končno ali periodično.

7

Končna decimalna števila so tista, ki imajo v imenovalcu potenco z osnovo 10 $(\frac{x}{10^n})$

Ulomki, ki jih lahko razširimo tako, da imajo v imenovalcu potenco z osnovo 10, se imenujejo **desetiški** ulomki. V razcepu imajo lahko le 5 in 2.

Urejenost Q števil:

Ulomke lahko predstavimo na številski premici.

Množica $\mathbb Q$ je povsod enako gosta. Med dvema $\mathbb Q$ številoma je vedno še vsaj eno $\mathbb Q$ število.

$$0 < a < b$$
; $a, b \in \mathbb{Q}$;

$$a < \frac{(a+b)}{2} < b$$

Realna števila

To je množica vseh decimalnih števil

$$\sqrt{a} = b \Leftrightarrow a = b^2$$

$$\underline{\text{Dokaz:}} \text{ A: } \sqrt{2} \notin \mathbb{Q}$$
$$\neg A: \sqrt{2} \in \mathbb{Q}$$

$$\sqrt{2} = \frac{p}{q}$$

$$2 = \frac{p^2}{q^2}$$

 $2q^2 = p^2$; kvadrat p je sodo, torej je tudi p sodo; p = 2m

$$2q^2 = (2m)^2$$

$$2q^2 = 4m^2$$

 $q^2 = 2m^2$; kvadrat q je sodo, torej je tudi q sodo; q = 2n

$$(2n)^2 = 2m^2$$
$$4n^2 = 2m^2$$

p je sodo, q je sodo \rightarrow ulomek ni okrajšan; trditev je napačna

$$\neg A = 0 \Rightarrow A = 1;$$

 $\sqrt{2} \notin \mathbb{O} \blacksquare$

Med množico $\mathbb R$ in množico točk na premici obstaja **bijektivna** preslikava.

Relacija deljivosti

Število a deli število b, natanko takrat, ko je št b večkratnik števila a. $a|b \Leftrightarrow b = k \cdot a$; $a, b, k \in \mathbb{N}$

Lastnosti:

- a) Refleksivnost: $a \mid a$
- **b)** Antisimetričnost: $a|b \wedge b|a \Rightarrow a = b$
- c) Tranzitivnost: $a|b \wedge b|c \Rightarrow a|c; a, b, c \in \mathbb{N}$
- **d) Brez imena**: $a|b \wedge a|c \Rightarrow a|(b+c)$
- e) Brez imena: $a|b \wedge a|(b+c) \Rightarrow a|c$

Dokazi:

b)Antisimetričnost

$$a|b \Leftrightarrow b = k_1 \cdot a$$

$$b|a \Leftrightarrow a = k_2 \cdot b; k_1, k_2 \in \mathbb{N}$$

$$a = k_2 \cdot b$$

$$a = k_2 \cdot k_1 \cdot a \Rightarrow k_1 \cdot k_2 = 1 \Rightarrow k_1, k_2 = 1, \text{ker } je \ k_2 = 1 \land k_1 = 1, sledi$$

$$a = k_2 \cdot b \Rightarrow a = b \blacksquare$$

c) Tranzitivnost

$$a|b \Leftrightarrow b = k_1 \cdot a$$

$$a|c \Leftrightarrow c = k_2 \cdot a; k_1, k_2 \in \mathbb{N}$$

$$c = k_2 \cdot b$$

$$c = k_2 \cdot k_1 \cdot a \Rightarrow c = k \cdot a \Rightarrow a \mid c \blacksquare$$

d)Brez imena 1

$$a|b \Rightarrow b = k_1 \cdot a$$

$$a|c \Rightarrow c = k_2 \cdot a; k_1, k_2 \in \mathbb{N}$$

$$b + c = k_1 \cdot a + k_2 \cdot a$$

$$b + c = (k_2 + k_1) \cdot a \Rightarrow b + c = k \cdot a \Rightarrow a | (b + c) \blacksquare$$

e)Brez imena 2

$$a|b \Rightarrow b = k_1 \cdot a$$

$$a|(b+c) \Rightarrow b+c = k_2 \cdot a; k_1, k_2 \in \mathbb{N}$$

$$b + c = k_2 \cdot a$$

$$k_1 \cdot a + c = k_2 \cdot a$$

$$c = k_2 \cdot a - k_1 \cdot a = (k_1 - k_2) \cdot a \Rightarrow c = k \cdot a \Rightarrow a \mid c \blacksquare$$

Kriteriji deljivosti:

$$2|a \Leftrightarrow 2|a_0$$

$$3|a \iff 3|a_0 + a_1 + a_2 + a_3 \dots + a_n$$

$$4|a \Leftrightarrow 4|10a_1 + a_0$$

$$5|a \Leftrightarrow 5|a_0$$

$$8|a \iff 8|100a_2 + 10a_1 + a_0$$

$$9|a \iff 9|a_0 + a_1 + a_2 + a_3 \dots + a_n$$

Praštevila so števila, ki imajo natanko dva delitelja.

Število, ki ima več kot dva različna delitelja je **sestavljeno** število.

Osnovni izrek aritmetike: Vsako število lahko zapišemo kot produkt samih praštevil.

Praštevil je neskončno mnogo.

Osnovi izrek o **deljenju**: $a = k \cdot b + o$ Za vsaki dve števili a in b obstajata natanko določni števili k in o, tako, da velja $a = k \cdot b + o$, $0 \le o < b$

Največji skupni delitelj števil a in b je največje število, ki deli obe števili a in b hkrati. [D(a,b)]

Najmanjši skupni večkratnik dveh števil a in b je število, ki je deljivo z obema številoma a in b hkrati.: v(a,b)

Števili sta si **tuji**, ko je njun največji skupni delitelj enak 1.: $a, b \ tuji \Leftrightarrow D(a, b) = 1$

Velja tudi $D \cdot v = a \cdot b$

Evklidov algoritem je postopek s katerim dobimo D(a, b). Zadnji od nič različen ostanek je D(a, b)

<u>Številski sestavi</u>

Vsako število v **desetiškem** sistemu z osnovo 10 lahko zapišemo v **kateremkoli** sistemu z osnovo *b*.

Poljubno število pomeni:

$$a_n \cdot a_{n-1} \cdot \dots \cdot a_4 \cdot a_3 \cdot a_2 \cdot a_1 \cdot a_0 = a_n \cdot b_n + a_{n-1} \cdot b_{n-1} + \dots + a_2 \cdot b_2 + a_1 \cdot b_1 + a_0 \cdot b_0$$

$$a = \S tevka; \ 0 \le a < b$$

$$b = osnova; \ b \ne 0, b \ne 1$$

Vsako **naravno** število a lahko zapišemo na en sam način v številskem sestavu z osnovo $b, b \in N, b \neq 0 \land b \neq 1$

Procentni račun:

$$1\% = \frac{1}{100} = 1:100 = en \ delež \ celote, ki \ ima \ \mathbf{100} \ delov$$

$$1\%_0 = \frac{1}{1000} = en \ delež \ celote, ki \ ima \ \mathbf{1000} \ delov$$

Absolutna vrednost

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

<u>Lastnosti:</u>

 $|x| \ge 0$

$$|x| = 0 \Leftrightarrow x = 0$$

Grafično predstavlja oddaljenost od izhodišča na številski premici.

 $|xy| = |x| \cdot |y|$ absolutna vrednost produkta je enaka produktu absolutnih vrednosti $|x + y| \le |x| + |y|$ absolutna vrednost vsote je manjša ali enaka vsoti absolutnih vrednosti

Intervali

$$[a,b] = \{x; a \le x \le b; x \in \mathbb{R}\}$$
 – **zaprt** interval $(a,b) = \{x; a < x < b; x \in \mathbb{R}\}$ – **odprt** interval $[a,b), (a,b]$ – **polodprt** in **polzaprt** interval $(-\infty,\infty) = \mathbb{R}$

Izrazi

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2b} + 3ab^{2} + b^{3}$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

$$(a+b)(a-b) = a^{2} - b^{2}$$

$$(a+b)(a^{2} - ab + b^{2}) = a^{3} + b^{3}$$

$$(a-b)(a^{2} + ab + b^{2}) = a^{3} - b^{3}$$

$$x^{2} + (a+b)x + ab = (x+a)(x+b)$$
: Vietovo pravilo
$$a^{n} - b^{n} = (a-b)(a^{n-1} + a^{(n-2)b} + a^{(n-3)b^{2}} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{(n-2)b} + a^{(n-3)b^{2}} - \dots - ab^{n-2} + b^{n-1})$$

Potence

Z naravnim eksponentom

So krajši zapis za množenje več enakih faktorjev

$$a^n = \underbrace{a \cdot a \cdot a \cdot \cdots \cdot a}_{n}$$

$$\frac{\text{Pravila:}}{a^m \cdot a^n} = a^{m+n}$$

$$(a^m)^n = a^{m \cdot n}$$

$$(a \cdot b)^n = a^n \cdot b^n$$

Potence s celim eksponentom

$$n \in \mathbb{N}$$
;

$$a^{n} = \underbrace{a \cdot a \cdot a \cdot \cdots \cdot a}_{n}$$
$$a^{0} = 1$$

$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

Pravila:

Ista kot z **naravnim** eksponentom in še

$$\frac{a^n}{a^m} = a^{n-m}$$

$$\frac{a^n}{h^n} = \left(\frac{a}{h}\right)^n$$

Potence z racionalnim eksponentom

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}; a \in R^+ \cup \{0\}; m \in \mathbb{Z}; n \in \mathbb{Z} \cup \{0\}$$

Pravila:

1.
$$a^{\frac{m}{n}} \cdot a^{\frac{q}{p}} = a^{\frac{mp+qn}{np}}$$

$$a^{\frac{m}{n}} \cdot a^{\frac{q}{p}} = \sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = \sqrt[np]{a^{mp} \cdot a^{qn}} = \sqrt[np]{a^{mp+qn}} = a^{\frac{mp+qn}{np}}$$

$$2. \quad \frac{a^{\frac{m}{n}}}{a^{\frac{q}{n}}} = a^{\frac{mp-qn}{np}}$$

$$\frac{a^{\frac{m}{n}}}{a^{\frac{q}{p}}} = \sqrt[n]{a^{\frac{m}{p}}} = \sqrt[np]{a^{\frac{mp}{qn}}} = \sqrt[np]{a^{mp-qn}} = a^{\frac{mp-qn}{np}}$$

3.
$$\left(a^{\frac{m}{n}}\right)^{\frac{q}{p}} = a^{\frac{mq}{np}}$$
Dokaz:
$$\left(a^{\frac{m}{n}}\right)^{\frac{q}{p}} = \sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[np]{a^{mq}} = a^{\frac{mq}{np}}$$

4.
$$(ab)^{\frac{m}{n}} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}}$$

Dokaz:
$$(ab)^{\frac{m}{n}} = \sqrt[n]{(ab)^m} = \sqrt[n]{a^m \cdot b^m} = \sqrt[n]{a^m} \cdot \sqrt[n]{b^m} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}}$$

5.
$$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \frac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}}$$
Dokaz:
$$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \sqrt[n]{\left(\frac{a}{b}\right)^{m}} = \sqrt[n]{\frac{a^{m}}{b^{m}}} = \frac{\sqrt[n]{a^{m}}}{\sqrt[n]{b^{m}}} = \frac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}}$$

Koreni

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a; a, b \in R^+ \cup \{0\}, n \in \mathbb{Z} - \{0\}$$

Opomba, če $a \in \mathbb{R}^-$
Če je n sodo: ne obstaja
Če je n liho: $\sqrt[n]{a} = -\sqrt[n]{|a|}$

Pravila:

1.
$$\sqrt[n]{a^m} = \sqrt[p]{a^q} \Leftrightarrow mp = qn * \\
\text{Dokaz:} \\
\sqrt[n]{a^m} = \sqrt[p]{a^q} / ^{np} \\
\left(\sqrt[n]{a^m}\right)^{np} = \left(\sqrt[p]{a^q}\right)^{np} \\
\left(a^m\right)^p = \left(a^q\right)^n \\
a^{mp} = a^{qn} \\
mp = qn$$

2.
$$\sqrt[n]{a^m} = \sqrt[nx]{a^{mx}}$$
Dokaz:
$$\sqrt[n]{a^m} = \sqrt[nx]{a^{mx}}$$

$$nmx = mnx; zaradi pravila 1$$

4.
$$\sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = \sqrt[np]{a^{mp+qn}} *$$
Dokaz:
$$\sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = x$$

$$(a^m)^p \cdot (a^q)^n = x^{np}$$

$$a^{mp} \cdot a^{qn} = x^{np}$$

$$a^{mp+qn} = x^{np}$$

$$x = \sqrt[np]{a^{mp+qn}}$$

5.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$
Dokaz:
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = x$$

$$\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^n = x^n$$

$$\frac{\left(\sqrt[n]{a}\right)^n}{\left(\sqrt[n]{b}\right)^n} = x^n$$

$$\frac{a}{b} = x^n$$

$$x = \sqrt[n]{\frac{a}{b}}$$

6.
$$\sqrt[p]{\sqrt[n]{a}} = \sqrt[np]{a}$$
Dokaz:
$$\sqrt[p]{\sqrt[n]{a}} = x$$

$$\sqrt[n]{a} = x^{p}$$

$$a = (x^{p})^{n}$$

$$a = x^{pn}$$

$$x = \sqrt[pn]{a}$$

7.
$$\sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[np]{a^{mq}}$$
Dokaz:
$$\sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[p]{\sqrt[n]{a^{mq}}} = \sqrt[pn]{a^{mq}}; zaradi \ pravil \ 6 \ in \ 8$$

Logaritmi

 $\log_a x = y \Leftrightarrow a^y = x$ Iz definicije izpeljemo:

$$\log_a a = 1$$
$$\log_a 1 = 0$$

$$a^{\log_a x} = x$$

$$\log_a a^y = y$$

1. $\log_a x^n = n \cdot \log_a x$ Logaritem **potence** je enak produktu med eksponentom in logaritmom osnove.

Dokaz:
$$\log_a x^n = \log_a (a^{\log_a x})^n = \log_a (a^{n \cdot \log_a x}) = n \cdot \log_a x$$

2. $\log_a xy = \log_a x + \log_a y$ Logaritem **produkta** je enak vsoti logaritmov posameznih faktorjev.

Dokaz:
$$\log_a xy = \log_a \left(a^{\log_a x} \cdot a^{\log_a y} \right) = \log_a \left(a^{\log_a x + \log_a y} \right) = \log_a x + \log_a y$$

3. $\log_a \frac{x}{y} = \log_a x - \log_a y$ Logaritem **kvocienta** je enak razliki logaritma števca in logaritma imenovalca.

Dokaz:
$$\log_a \frac{x}{y} = \log_a x \cdot y^{-1} = \log_a x + \log_a y^{-1} = \log_a x - \log_a y$$

Prehod na novo osnovo:

$$y = \log_a x$$

$$a^y = x$$

$$\log_b a^y = \log_b x$$

$$y \cdot \log_b a = \log_b x$$

$$y = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{1}{\log_a a}$$

Koordinatni sistem

Pravokotni, v ravnini

x - abcisna os

y – ordinatna os

$$M = \{(x, y), x \in \mathbb{R}, y \in \mathbb{R}\} = \mathbb{R} \cdot \mathbb{R} = \mathbb{R}^2$$

 $x > 0 \land y > 0 - I kvadrant$

 $x < 0 \land y > 0$ – II kvadrant

 $x < 0 \land y < 0$ – III kvadrant

 $x > 0 \land y < 0 - IV kvadrant$

Premice:

 $x = y \rightarrow \text{simetral a lihih kvadrantov};$

 $x = -y \rightarrow \text{simetral a sodih kvadrantov};$

Pas: a < x < b

Razdalja med dvema točkama:

 $A(x_1, y_1)$

 $B(x_2, y_2)$

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$S_{AB} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Ploščina trikotnika:

$$2po = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$$

$$2po = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)$$

$$2po = x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$$

Determinanta: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$

Pravokotni, v prostoru

x - abcisna os

y – ordinatna os

z – aplikatna os

$$M = \{(x,y,z), x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\} = \mathbb{R} \cdot \mathbb{R} \cdot \mathbb{R} = \mathbb{R}^3$$

Formule so enake, samo da vsebujejo še 3. koordinato (dolžina daljice, središče daljice)

16

Težišče trikotnika

$$T_{ABC} = \left(\frac{a_1 + b_1 + c_1}{3}, \frac{a_2 + b_2 + c_2}{3}, \frac{a_3 + b_3 + c_3}{3}\right)$$
, v ravnini le dve koordinati

Funkcije

$$f(x): A \to B$$

Funkcija, ki množico *A* preslika v množico *B* je predpis, ki vsakemu elementu iz množice *A* priredi natanko določen element iz množice *B*.

$$f(x): A \to B; A \subset \mathbb{R}$$

Funkcija je **realna**, če podmnožico realnih števil preslika v realna števila.

Definicijsko območje (D_f) funkcije f je množica realnih števil, za katera lahko predpis izračunamo.

Zaloga vrednosti (Z_f) funkcije je množica realnih števil, ki jih funkcija lahko zavzame.

$$G_f = \{(x, y); x \in Df, y = f(x)\}$$

Definicija injektivne, surjektivne in bijektivne preslikave: glej preslikave

Funkcija je **periodična** natanko takrat ko za vsak x iz D_f velja $f(x + \omega) = f(x)$; $\omega \in \mathbb{R}$ y = f(x) **periodi**čn $a \Leftrightarrow f(x + \omega) = f(x) \ \forall x \in D_f$; $\omega \in \mathbb{R}$ (perioda)

Val periodične funkcije je del funkcije na intervalu $[0, \omega]$.

Lastnosti:

- 1. D_f , Z_f , a je **ničla** funkcije, če je vrednost f(a) enaka 0. **začetna** vrednost: n = f(0)
- 2. $y = f(x)je \ padajoča \Leftrightarrow \forall x_1, x_2 \in D_f : x_1 < x_2 \Rightarrow y_1 > y_2$ funkcija je **padajoča**, če pri vsakem večjem x-u zavzame manjšo vrednost. $y = f(x)je \ naraščajoča \Leftrightarrow \forall x_1, x_2 \in D_f : x_1 < x_2 \Rightarrow y_1 < y_2$ funkcija je **naraščajoča**, če pri vsakem večjem x-u zavzame večjo vrednost.
- 3. y = f(x) je navzgor omejena $\Leftrightarrow \exists M \in \mathbb{R}: f(x) \leq M, \forall x \in D_f$ funkcija je **navzgor omejena** natanko takrat, ko so vse funkcijske vrednosti manjše ali enake od nekega realnega števila M (zgornja meja) y = f(x) je navzdol omejena $\Leftrightarrow \exists m \in \mathbb{R}: f(x) \leq m, \forall x \in D_f$ funkcija je **navzdol omejena** natanko takrat, ko so vse funkcijske vrednosti večje ali enake od nekega realnega števila m (spodnja meja) funkcija je omejena, če je omejena navzgor in nazdol.
- 4. **pol** je realno število, za katerega funkcija ni definirana. Premice, ki označujejo pole so navpične ali vodoravne **asimptote**. To so črte, ki se jim graf približuje.
- 5. funkcija je na nekem območju **konveksna**, če za vsaki dve točki na grafu funkcije velja, da leži graf pod daljico, ki jo določata ti dve točki.

Funkcija je na nekem območju **konkavna**, če za vsaki dve točki na grafu funkcije velja, da leži graf nad daljico, ki jo določata ti dve točki.

6. f(x) je soda $\Leftrightarrow \forall x \in D_f$: f(x) = f(-x)

funkcija y = f(x) je **soda**, če je za vsak x iz $D_f f(x)$ enaka f(-x)

$$f(x)$$
 je liha $\Leftrightarrow \forall x \in D_f: f(-x) = -f(x)$

funkcija
$$y = f(x)$$
 je **liha**, če je za vsak x iz $D_f f(-x)$ enaka – $f(x)$

7. funkcija je na nekem območju **pozitivna**, če je vsaka vrednost funkcije večja od 0 funkcija je na nekem območju **negativna**, če je vsaka vrednost funkcije manjša od 0

Linearna funkcija

$$y = kx + n \rightarrow eksplicitna$$

k = smerni koeficient

n = začetna vrednost

$$ax + by + c = 0 \rightarrow implicitna$$

$$\frac{x}{m} + \frac{y}{n} = 1 \rightarrow \mathbf{odsekovna}$$

snop premic $\rightarrow ////// \rightarrow$ enak k

šop premic $\rightarrow * \rightarrow$ enak n

ničla funkcije je 0 = kx + n

začetna vrednost je y = k0 + n

Potenčna funkcija

Funkcija oblike: $f(x) = x^n$; $n \in \mathbb{Z} - \{0,1\}$

- 1. pozitiven sod eksponent: $y = x^{2n}$; $n \in \mathbb{N}$
- 2. pozitiven lih eksponent: $y = x^{2n+1}$; $n \in \mathbb{N}$
- 3. negativen lih eksponent: $y = x^{-(2n-1)}$; $n \in \mathbb{N}$
- 4. negativen sod eksponent: $y = x^{-2n}$; $n \in \mathbb{N}$

Premik, razteg funkcije

funkcija f(x)

$$\vec{v} = (p,q)$$

$$x' = x - p$$

$$y' = y - q$$

$$y' = a \cdot f(x)$$

$$y - q = a \cdot f(x - p)$$

$$y = a \cdot f(x - p) + q$$

Parameter **a** vpliva na **razteg**, parameter **p** na odmik od y osi (**levo, desno**), parameter **q** pa na odmik od x osi (**gor, dol**).

Inverzna funkcija

Inverzna funkcija funkcijey = f(x) je funkcija $y = f^{-1}(x)$, ki jo dobimo tako, da v prvotni funkciji zamenjamo vlogo odvisne in neodvisne spremenljivke in izrazimo novo odvisno spremenljivko. **Grafično** dobimo graf $f^{-1}(x)$ tako, da graf prvotne funkcije preslikamo čez simetralo lihih kvadrantov y = x. Inverzno funkcijo lahko določimo samo na območjih, kjer je prvotna funkcija injektivna.

Korenska funkcija

$$y = \sqrt[n]{x} \Leftrightarrow x = y^n$$

$$n \text{ je sod: } D_f = \mathbb{R}^+ \cup \{0\}; \ Z_f = \mathbb{R}^+ \cup \{0\}$$

$$n \text{ je lih: } D_f = \mathbb{R}; \ Z_f = \mathbb{R}$$
Slika:
$$-- \dots \sqrt{x}$$

$$-- \dots \sqrt[3]{x}$$

Kvadratna funkcija

Kvadratna funkcija je vsaka funkcija oblike $f(x) = ax^2 + bx + c$; $a, b, c \in \mathbb{R}$, $a \neq 0$ Oblike:

$$f(x) = ax^2 + bx + c$$
: splošna

$$f(x) = a(x - p)^2 + q$$
: temenska, teme $T(p,q)$

$$f(x) = a(x - x_1)(x - x_2)$$
: oblika za ničle, razcep tročlenika

$$p = -\frac{b}{2a}$$

$$q = -\frac{b^2 - 4ac}{4a} = -\frac{D}{4a}$$

$$D = b^2 - 4ac$$

Graf kvadrante funkcije je raztegnjena in premaknjena parabola $y = x^2$. Vsako kvadratno funkcijo v splošni obliki lahko zapišemo tudi v temenski obliki.

Ničle:

$$0 = a(x - p)^{2} + q$$

$$a(x - p)^{2} = -q$$

$$(x - p)^{2} = -\frac{q}{a}$$

$$x - p = \pm \sqrt{-\frac{q}{a}}$$

$$x = p \pm \sqrt{-\frac{q}{a}}$$

$$x = -\frac{b}{2a} \pm \sqrt{-\frac{D}{4a}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{D}}{2a}$$

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Kvadratna funkcija im dve različni realni ničli, če je diskriminanta večja od 0

$$x_1 \neq x_2; x_1, x_2 \in \mathbb{R} \, \check{c}e \, D > 0$$

Eno dvojno realno ničlo, če je diskriminanta enaka 0

$$x_1 = x_2; x_1, x_2 \in \mathbb{R} \ \check{c}e \ D = 0$$

Nobene realne ničle, če je diskriminanta manjša od 0

$$x_1, x_2 \notin \mathbb{R} \check{c}e D < 0$$

Vpliv diskriminante in parametra a na parabolo:

- a > 0
 - 1. D > 0
 - 2. D = 0
 - 3. D < 0
- a < 0
 - 1. D > 0
 - 2. D = 0
 - 3. D < 0

Lega premice in parabole:

- $ax^2 + bx + c = kx + n$
 - 1. D > 0; sekanta
 - 2. D = 0; tangenta
 - 3. D < 0; mimobežnica

Eksponentna funkcija

Vsaka funkcija oblike $f(x) = a^x$, $a \in \mathbb{R}^+ - \{1\}$

1. a > 1

$$D_f = \mathbb{R}, Z_f = \mathbb{R}^+$$
naraščajoča, konveksna

pozitivna, neomejena

2. a < 1

$$D_f = \mathbb{R}, Z_f = \mathbb{R}^+$$

padajoča, konveksna

pozitivna, neomejena

Vodoravna asimptota je abscisna os. Vse eksponentne funkcije grejo skozi točko T(0,1). Vse z osnovo iz enake skupine se razlikujejo le po strmini naraščanja. Lahko jih premikamo ali iztvajamo razteg. $f(x) = b \cdot a^{x-p} + q$

Logaritemska funkcija

 $y = \log_a x \Leftrightarrow a^y = x; a \in \mathbb{R}^+ - \{1\}, x > 0$ **Inverzna** funkcija eksponentni funkciji.

Navpična **asimptota** je ordinatna os. Vse logaritemske funkcije gredo skozi točko T(1,0).

Vse z osnovo iz enake skupine se razlikujejo le po **strmini** naraščanja ali padanja. Lahko jih premikamo ali izvajamo razteg. $f(x) = b \cdot \log_a(x - p) + q$

Krožne funkcije

Krožne funkcije ali arcus funkcije so delni inverzi kotnih funkcij.

$$y = \arcsin x \Leftrightarrow x = \sin y; D_f = [-1,1]; Z_f = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Arcus sinus x je tisti kot, pri katerem je sinus enak x.

$$y = \arccos x \Leftrightarrow x = \cos y$$
; $D_f = [-1, -1]$; $Z_f = [0, \pi]$
Arcus kosinus x je tisti kot, pri katerem je kosinus enak x .

$$y = \arctan x \Leftrightarrow x = \tan y; D_f = \mathbb{R}; Z_f = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Arcus tangens x je tisti kot, pri katerem je tangens enak x.

$$y = \operatorname{arccot} x \Leftrightarrow x = \cot y; D_f = \mathbb{R}; Z_f = (0, \pi)$$

Arcus kotangens x je tisti kot, pri katerem je kotangens enak x.

Enačbe

Linearne enačbe

Vsaka enačba oblike kx + n = 0 ali vsaka enačba, ki jo lahko prevedemo v to obliko.

Na obeh straneh lahko **prištejemo** poljubno število ali izraz.

Na obeh straneh lahko **množimo** z istim številom ki ni 0.

$$k \neq 0 \Rightarrow 1 \text{ rešitev}$$

 $k = 0, n = 0 \Rightarrow \infty \text{ rešitev}$
 $k = 0, n \neq 0 \Rightarrow 0 \text{ rešitev}$

Razcepne enačbe

$$\overline{AB = 0} \Rightarrow A = 0 \lor B = 0$$

Kvadratne enačbe

Kvadratna enačba je vsaka enačba oblike $ax^2 + bx + c = 0$, kjer so $a, b, c \in \mathbb{R}$ in $a \neq 0$ in vsaka enačba ki jo v to obliko lahko prevedemo.

Na obeh straneh lahko prištejemo enako število.

Člene lahko prestavimo iz ene na drugo stran enačaja z nasprotnim predznakom.

Obe strani enačbe lahko množimo s poljubnim od 0 različnim številom.

Kvadratna enačba oblike $ax^2 + bx + c = 0$ sprašuje po ničlah funkcije $f(x) = ax^2 + bx + c$

22

Kvadratna enačba ima:

- 1. Dve različni realni rešitvi, če D > 0
- 2. Eno dvojno realno rešitev, če D = 0
- 3. Dve kompleksni rešitvi, ki sta par konjugiranih števil, če D < 0

$$x_1,x_2\in\mathbb{C}-\mathbb{R},x_2=\overline{x_1}$$

Reševanje lahko s pomočjo substitucije.

Viétovi formuli

Če
$$a = 1$$
 velja:
 $x^2 + ux + v = 0$
 $u = -(x_1 + x_2)$

 $v = x_1 \cdot x_2$

Kompleksne enačbe

Glej kompleksna števila, enačbe

Eksponentne enačbe

1.
$$a^x = a^y \Leftrightarrow x = y$$

2.
$$a^x = 1 \Leftrightarrow x = 0$$

3.
$$a^x = b^x \Leftrightarrow x = 0$$

Trije tipi enačb:

 $2^{2x+3} = 8$ (reševanje s pravili zgoraj), $3^{x+1} - 3^{x-1} = 24$, (reševanje z izpostavljanjem), $2^x - 2^{2x-1} = 4$ (reševanje s substitucijo). Reševanje z logaritmiranjem.

Logaritemske enačbe

Najprej damo vse logaritme na isto osnovo, skrčimo, nato **antilogaritmiramo** ali razrešimo po definiciji in rešimo. Lahko se rešujejo tudi s **substitucijo**.

Trigonometrične enačbe

So enačbe v katerih nastopajo kotne funkcije.

Tipi:

Enostavne: $\sin x = a$; $a \in \mathbb{R}$

Običajno dve neskončni množici rešitev. Slika je priporočljiva.

Homogene: $A \sin x + B \cos x = 0$ in podobne enačbe višjih stopenj

Lahko se deli s $\cos x$ ali $\sin x$, ker ni noben od njiju nič. Vsi členi morajo imeti enako štavilo faktoriov s kotno funkcijo

število faktorjev s kotno funkcijo.

Produkt dveh kotnih funkcij je nič: $AB = 0 \Leftrightarrow A = 0 \lor B = 0$ Uporaba faktorizacije.

Tiste, ki se rešujejo s substitucijo.

Tiste, ki se rešujejo z metodo polovičnih kotov.

Tiste, ki se rešujejo z razčlenjevanjem. Produkt dveh kotnih funkcij v enem členu.

Polinomske enačbe

Vsaka enačba oblike p(x) = 0 ali vsaka enačba, ki jo v tako obliko lahko prevedemo. Rešujemo tako, da damo vse na eno stran in potem iščemo ničle polinoma na tisti strani.

Neenačbe

Linearna neenačba

 $kx + n < 0 \lor kx + n > 0$

Je vsaka enačba te oblike ali enačba ki se jo v to obliko lahko prevedemo. Ko množimo z **negativnim** številom se neenačaj **obrne**!

Kvadratna neenačba

Kvadratna neenačba je vsaka neenačba oblike $ax^2 + bx + c < 0$ ali $ax^2 + bx + c > 0$ ali vsaka neenačba, ki jo v to obliko lahko prevedemo. $a, b, c \in \mathbb{R}, a \neq 0$

Na obeh straneh lahko prištejemo enako število.

Člene lahko prestavimo iz ene na drugo stran neenačaja z nasprotnim predznakom.

Obe strani enačbe lahko množimo s poljubnim od 0 različnim številom, če pomnožimo z negativnim številom se neenačaj obrne.

Rešitev sistema kvadratnih neenačb je presek rešitev posameznih neenačb.

Polinomska neenačba

Vsaka neenačba oblike p(x) < 0 ali p(x) > 0.

Ugotovimo ničle, pomagamo si s skico. Povezava z definicijskim območjem funkcij.

Geometrija

Listi!

Vedet je treba 3 dokaze: $\alpha + \beta + \gamma = 180^{\circ}$, grafično $\alpha' + \beta' + \gamma' = 360^{\circ}$, grafično, računsko $\alpha' = \beta + \nu$, grafično, računsko.

Vse tri izreke je treba lepo znat prebrat.

Dokaz je treba vedet tudi za središčni in obodni kot (grafično) in za Talesov izrek o kotu, ki ima vrh na krožnici kraka pa potekata skozi krajišči polmera=90°(grafično). Tudi ta dva izreka je treba znat lepo prebrat.

Podobnost

Enakoležne stranice so tiste, ki ležijo nasproti istim kotom.

Talesovi izreki:

1. Če sta si trikotnika podobna je razmerje dveh enakoležnih stranic enako razmerju drugih dveh enakoležnih stranic.

$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c} = k$$

2. Če sta si trikotnika podobna, je razmerje stranic prvega trikotnika enako razmerju enakoležnih stranic drugega trikotnika.

 $a:b:c=a_1:b_1:c_1$

3. Če se trikotnika ujemata v kotu in razmerju stranic, ki kot oklepata, sta podobna.

$$p: p_1 = k^2$$

Izreki v pravokotnem trikotniku

Višinski izrek:

$$v_c^2 = a_1 \cdot b_1$$

Evklidov izrek:

$$\overline{a^2 = a_1 \cdot c}$$

$$b^2 = b_1 \cdot c$$

Pitagorov izrek:

$$a^{2} + b^{2} = c^{2}$$
Dokaz:

$$c^{2} = a^{2} + b^{2}$$

$$c^{2} = b_{1} \cdot c + a_{1} \cdot c$$

$$c^{2} = c (a_{1} + b_{1})$$

$$c^{2} = c^{2} \blacksquare$$

Konstrukcije korenov naravnih števil z višinskim in Pitagorovim izrekom je treba znat.

Kotne funkcije

V pravokotnem trikotniku

Sinus kota je enak razmerju med kotu nasprotno kateto in hipotenuzo. $\rightarrow \sin \alpha = \frac{a}{c}$

Kosinus kota je enak razmerju med kotu priležno kateto in hipotenuzo. $\rightarrow \cos \alpha = \frac{b}{c}$

Tangens kota je enak razmerju med kotu nasprotno in priležno kateto. \rightarrow tan $\alpha = \frac{a}{b}$

Kotangens kota je enak razmerju med kotu priležno in nasprotno kateto. $\rightarrow \cot \alpha = \frac{b}{a}$

	sin α	cosα	tan α	cotα
0 °	0	1	0	/
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45 °	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	1	0	/	0

Zveze med kotnimi funkcijami: $\sin^2 \alpha + \cos^2 \alpha = 1$

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\tan \alpha \cdot \cot \alpha = 1$$

$$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

$$\frac{\cos \alpha}{\sin \alpha} = \cot \alpha$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

Dokazi!! Ponavadi dokažeš tako da zamenjaš kotno funkcijo z razmerjem stranic.

Kot

1. **Smer** kota: od prvega k drugemu kraku, vedno krajša pot.

2. Dopuščamo poljubno velike kote

Različne enote:

Razifche enote.		
Stopinje	radiani	
0°	0 rad	
30°	$\frac{\pi}{6}$ rad	
45°	$\frac{\pi}{2}$ rad	
60°	$\frac{\pi}{3}$ rad	
90°	$\frac{\pi}{2}$ rad	
120°	$\frac{2\pi}{3}$ rad	
135°	$\frac{3\pi}{4}$ rad	
150°	$\frac{5\pi}{6}$ rad	
180°	πrad	
360°	2π rad	
	•	

Sinus in kosinus

$$\vec{a} = (a_1, a_2 a_3), \overline{a_0}$$
 ... enotski vektor v smeri \vec{a} $\vec{b} = (b_1, b_2, b_3), \overline{b_0}$... enotski vektor v smeri \vec{b}

Skalarni produkt:
$$\vec{a}\vec{b} = ab\cos\gamma = a_1b_1 + a_2b_2 + a_3b_3$$

Vektorski produkt: $|\vec{a} \times \vec{b}| = ab\sin\gamma$, $|\vec{a} \times \vec{b}| = a$

 $\cos \alpha = \overrightarrow{a_0} \overrightarrow{b_0}$, dolžine enotskih so enake 0

 $\sin \alpha = |\overrightarrow{a_0} \cdot \overrightarrow{b_0}| = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$, prvi dve enaki nič, ker je pravokoten na oba enotska

$$\vec{a} = (1,0)$$
$$\vec{b} = (x, y)$$

$$\cos \alpha = (1,0) \cdot (x,y) = 1x + 0y = x$$

$$\sin \alpha = \begin{vmatrix} 1 & 0 \\ x & y \end{vmatrix} = 1y - 0x = y$$

Kosinus kota, ki ima en krak na pozitivni strani x osi, vrh v izhodišču, je abscisa točke v kateri drugi krak kota seka enotsko krožnico.

Sinus kota, ki ima en krak na pozitivni strani x osi, vrh v izhodišču, je ordinata točke v kateri drugi krak kota seka enotsko krožnico.

Lastnosti:

- 1. $D_{sin} = \mathbb{R}, D_{cos} = \mathbb{R}$
- 2. $Z_{sin} = [-1, 1], Z_{cos} = [-1, 1]$
- 3. Obe sta omejeni (M = 1, m = -1)
- 4. Sinus je **liha**: $\sin(-x) = \sin x$
- 5. Kosinus je **soda**: cos(-x) = cos x

Tangens in kotangens

Tangens kota je enak razmerju med sinusom in kosinusom kota.

$$\tan x = \frac{\sin x}{\cos x}$$

Kotangens kota je enak razmerju med kosinusom in sinusom kota.

$$\cot x = \frac{\cos x}{\sin x}$$

Tangens kota je ordinata točke v katerem drugi krak kota ali njegova nosilka seka tangento na enotsko krožnico v točki (0, 1).

Kotangens kota je abscisa točke v katerem drugi krak kota ali njegova nosilka seka tangento na enotsko krožnico v točki (1,0).

Lastnosti:

$$\overline{1. \quad D_{tan}} = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

2.
$$D_{cot} = \mathbb{R} - \{k\pi; k \in \mathbb{Z}\}$$

3.
$$Z_{tan} = \mathbb{R}$$

4.
$$Z_{cot} = \mathbb{R}$$

5.
$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan x$$

5.
$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan x$$

6. $\cot(-x) = \frac{\cos(-x)}{\sin(-x)} = \frac{\cos x}{-\sin x} = -\cot x$

7. Obe funkciji sta periodični s periodo $\omega = \pi$.

Osnovne zveze med kotnimi funkcijami

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\tan\alpha\cdot\cot\alpha=1$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

Adicijski izreki

$$\cos(\alpha + \beta) = \overline{a_0} \overline{b_0} = (\cos \alpha, -\sin \alpha)(\cos \beta, \sin \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos \beta & \sin \beta \end{vmatrix} = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\tan(x+y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\sin x \cos y + \sin y \cos x : (\cos x \cos y)}{\cos x \cos y - \sin x \sin y : (\cos x \cos y)} =$$

$$= \frac{\frac{\sin x \cos y}{\cos x \cos y} + \frac{\sin y \cos x}{\cos x \cos y}}{\frac{\cos x \cos y}{\cos x \cos y} - \frac{\sin x \sin y}{\cos x \cos y}} = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\cot(x+y) = \frac{\cos(x+y)}{\sin(x+y)} = \frac{\cos x \cos y - \sin x \sin y : (\sin x \sin y)}{\sin x \cos y + \sin y \cos x : (\sin x \sin y)} =$$

$$= \frac{\frac{\cos x \cos y}{\sin x \sin y} - \frac{\sin x \sin y}{\sin x \sin y}}{\frac{\sin x \cos y}{\sin x \sin y}} = \frac{\cot x \cot y - 1}{\cot x + \cot y}$$

$$\cot(x+y) = \frac{\cos x \cos y + \sin x \sin y}{\sin x \sin y}$$

$$\cot(x+y) = \frac{\cos x \cos y + \sin x \sin y}{\sin x \sin y}$$

$$\cot(x+y) = \frac{\cos x \cos y + \sin x \sin y}{\sin x \sin y}$$

$$\cot(x+y) = \frac{\cot x \cot y + \cot y}{1 + \tan x \tan y}$$

$$\cot(x+y) = \frac{\cot x \cot y + 1}{\cot x \cot y}$$

Dvojni koti

$$\frac{\sin 2x = \sin(x + x) = \sin x \cos x + \sin x \cos x = 2 \sin x \cos x}{\cos 2x = \cos(x + x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x}$$

$$\tan 2x = \tan(x + x) = \frac{\tan x + \tan x}{1 - \tan x \tan x} = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\cot 2x = \cot(x + x) = \frac{\cot x \cot x - 1}{\cot x + \cot x} = \frac{1 - \cot^2 x}{2 \cot x}$$

Polovični koti

$$\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$
, po adicijskem
 $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$
 $1 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}$, po osnovni zvezi

Odštejemo zgornji enačbi med seboj

$$1 - \cos x = -2\sin^2\frac{x}{2}$$
$$\sin\frac{x}{2} = \pm\sqrt{\frac{1 - \cos x}{2}}$$

Seštejemo zgornje levi enačbi med seboj

 b_0

α

 $\overrightarrow{a_0}$

$$1 + \cos x = 2\cos^2\frac{x}{2}$$

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1 + \cos x}{2}}$$

Komplementarni koti

Po adicijskih izrekih velja:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

$$\cot\left(\frac{\pi}{2} - x\right) = \tan x$$

Suplementarni koti

Po adicijskih izrekih velja:

$$\sin(\pi - x) = \sin x$$

$$\cos(\pi - x) = -\cos x$$

$$\tan(\pi - x) = -\tan x$$

$$\cot(\pi - x) = -\cot x$$

Premik za π

$$\overline{\sin(x + k\pi)} = (-1)^k \sin x; k \in \mathbb{Z}$$
$$\cos(x + k\pi) = (-1)^k \cos x; k \in \mathbb{Z}$$

Periode

Za definicijo periodične funkcije glej funkcije.

$$\sin(x + 2k\pi) = \sin x$$
; $k \in \mathbb{Z}$

$$\cos(x + 2k\pi) = \cos x$$
; $k \in \mathbb{Z}$

$$tan(x + \pi) = tan x; k \in \mathbb{Z}$$

$$\cot(x+\pi) = \cot x \; ; k \in \mathbb{Z}$$

Faktorizacija

$$\overline{x_1 = \alpha + \beta, x_2 = \alpha - \beta}$$

 $\alpha = \frac{x_1 + x_2}{2}, \beta = \frac{x_1 - x_2}{2}$

$$\sin x_1 + \sin x_2 = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

 $\sin x_1 + \sin x_2 = \sin \alpha \cos \beta + \sin \beta \cos \alpha + \sin \alpha \cos \beta - \sin \beta \cos \alpha$

$$\sin x_1 + \sin x_2 = 2\sin \alpha \cos \beta$$

$$\sin x_1 + \sin x_2 = 2\sin \frac{x_1 + x_2}{2}\cos \frac{x_1 - x_2}{2}$$

$$\sin x_1 - \sin x_2 = 2\sin \frac{x_1 - x_2}{2}\cos \frac{x_1 + x_2}{2}$$

Kosinus izpeljemo podobno

$$\cos x_1 + \cos x_2 = 2\cos \frac{x_1 + x_2}{2}\cos \frac{x_1 - x_2}{2}$$

$$\cos x_1 - \cos x_2 = -2\sin\frac{x_1 + x_2}{2}\sin\frac{x_1 - x_2}{2}$$

$$\tan x \pm \tan y = \frac{\sin x}{\cos x} \pm \frac{\sin y}{\cos y} = \frac{\sin x \cos y + \sin y \cos x}{\cos x \cos y} = \frac{\sin(x \pm y)}{\cos x \cos y}$$
$$\cot x + \cot y = \frac{\cos x}{\sin x} + \frac{\cos y}{\sin y} = \frac{\cos x \sin y + \cos y \sin x}{\sin x \sin y} = \frac{\sin(y \pm x)}{\sin x \sin y}$$

Antifaktorizacija
Ozremo se na 1. in 3. vrstico in v izpeljavi za faktorizacijo vsote sinusov. Opazimo:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\sin\beta$$

$$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

Podobno za produkt kosinusov in sinusov

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)]$$

Graf funkcije sinus in kosinus

Splošna oblika:

$$f(x) = A\sin\omega(x - p) + q$$

A ... amplituda

 ω ... krožna frekvenca (koliko valov na intervalu [0, 2π]) $\vec{v} = (p,q)$, vektor premika

Sinus:

Ničle: $x = k\pi$: $k \in \mathbb{Z}$ Minimumi: $x = \frac{\pi}{2} + 2k\pi$; $k \in \mathbb{Z}$ Maksimumi: $x = -\frac{\pi}{2} + 2k\pi$; $k \in \mathbb{Z}$

Tangens: Ničle: $x = k\pi; k \in \mathbb{Z}$ Poli: $x = \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$

Kosinus:

 $\overline{\text{Ničle: } x = \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$ Minimumi: $x = \pi + 2k\pi$; $k \in \mathbb{Z}$ Maksimumi: $x = 2k\pi$; $k \in \mathbb{Z}$

<u>Kotangens:</u> Ničle: $x = \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$ Poli: $x = k\pi$; $k \in \mathbb{Z}$

Kot med premicama

Naklonski kot premice je pozitiven kot med abscisno osjo in premico. Če je premica vzporedna abscisni osi je kot enak 0.

30

$$k = \frac{y_2 - y_1}{x_2 - x_1} = \tan \alpha$$
; $0 \le \alpha \le 180^\circ$

$$k_1 = \tan \alpha_1$$

$$k_2 = \tan \alpha_2$$

Po izrekih za kote v trikotniku velja:

$$\alpha_1 + \varphi = \alpha_2$$

$$\varphi = \alpha_2 - \alpha_1$$

$$\tan \varphi = \tan(\alpha_2 - \alpha_1)$$

$$\tan \varphi = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2}$$

$$\tan \varphi = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|$$

Vektorji

Vektor je **usmerjena daljica**. Vektor je **urejen par točk** v prostoru.

Vektor $\mathbf{ni\check{c}}$, $\mathbf{\vec{0}}$, je vektor \overline{AA} , ki je točka.

Enotski vektor je vektor z dolžino 1.

Dva vektorja sta **enaka**, če sta enako dolga imata enako smer in sta vzporedna. Enakost vektorjev je **ekvivalenčna** relacija (refleksivna, simetrična in tranzitivna)

V ravnini je toliko različnih vektorjev kot točk

Seštevanje vektorjev

Dva vektorja **seštejemo** tako, da začetno točno 2. vektorja postavimo v začetno točko 1. vektorja. Vsota je vektor, ki se začne v začetni točki 1. vektorja in konča v končni točki 2. vektorja. (paralelogramsko, trikotniško pravilo)

<u>Lastnosti seštevanja:</u>

Komutativnost: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Asociativnost: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + \vec{b} + \vec{c}$

Enota za seštevanje: $\vec{a} + \vec{0} = \vec{a}$

Nasprotni element za seštevanje: $\vec{a} + (-\vec{a}) = \vec{0}$

Dokaz z sliko za komutativnost, asociativnost.

Odštevanje je prištevanje nasprotnega elementa.

Produkt vektorja s skalarjem

Produkt vektorja a s **skalarjem** x je nov vektor, katerega dolžina je enaka produktu dolžine vektorja \vec{a} in absolutne vrednosti skalarja x. Za vektor velja, da je vzporeden vektorju a, če je x pozitiven ima isto smer kot \vec{a} , če je x negativen ima nasprotno, če je x 0, je rezultat vektor $\vec{0}$.

$$|x\vec{a}| = |x| \cdot |\vec{a}|, x \in \mathbb{R}$$

Lastnosti:

 $x(y\vec{a}) = (xy)\vec{a}$: asociativnost v skalarnem faktorju $x\vec{a} + y\vec{a} = (x + y)\vec{a}$: distributivnost v skalarnem faktorju $x(\vec{a} + \vec{b}) = x\vec{a} + x\vec{b}$: distributivnost v vektorskem faktorju

Linearna kombinacija vektorjev

Linearna kombinacija vektorjev \vec{a} in \vec{b} je nov vektor $x\vec{a} + y\vec{b}$; $x, y \in \mathbb{R}$ **Linearna kombinacija** vektorjev $\overline{a_1}$, $\overline{a_2}$, ... $\overline{a_n}$ je nov vektor: $x_1\overline{a_1} + x_2\overline{a_2} + \cdots + x_na_n$; $x_1, x_2, \dots x_n \in \mathbb{R}$

Dva vektorja \vec{a} in \vec{b} sta **neodvisna**, kadar je njun linearna kombinacija enaka nič, samo če sta x in y enaka 0. $x\vec{a} + y\vec{b} = 0 \Leftrightarrow x = y = 0$

Dva vektorja sta **odvisna**, če je njuna linearna kombinacija enaka nič in je vsaj eden od skalarjev različen od 0.

Baza je množica neodvisnih vektorjev v prostoru. Število vektorjev v bazi je enaka dimenziji prostora.

Če imamo v ravnini 2 nekolinearna vektorja lahko vsak drug vektor ravnine napišemo kot linearno kombinacijo danih nekolinearnih vektorjev.

Če imamo v prostoru bazo \vec{a} , \vec{b} , \vec{c} potem lahko vsak vektor prostora napišemo na en sam način kot linearno kombinacijo baznih vektorjev.

Skalarni produkt

Kot φ med dvema vektorjema, ki se začneta v isti točki je manjši od obeh kotov, ki jih vektorja določata.

Skalarni produkt obeh vektorjev je enak produktu dolžin vektorjev z kosinusom vmesnega kota. $\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \varphi$

Lastnosti:

1. **komutativnost**: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ Dokaz: $ab \cos \varphi = ba \cos \varphi$; množenje je komut.

Asociativnost: $\vec{a}(\vec{b}\vec{c}) \neq (\vec{a}\vec{b})\vec{c}$

2. skalarni produkt **pravokotnih** vektorjev je 0: $\vec{a} \perp \vec{b} \Rightarrow \vec{a}\vec{b} = 0$

Dokaz: $\vec{a}\vec{b} = ab \cdot \cos 90^{\circ} = ab \cdot 0 = 0$

3. skalarni produkt vektorja s samim seboj je enak **kvadratu** njegove **dolžine**.

Dokaz: $\vec{a}\vec{a} = aa \cdot \cos 0^{\circ} = aa \cdot 1 = a^{2} \Rightarrow a = \sqrt{\vec{a}\vec{a}}$

4. **homogenost**:
$$x(\vec{a}\vec{b}) = (x\vec{a})\vec{b} = \vec{a}(x\vec{b})$$
 Dokaz:

$$x(\vec{a}\vec{b}) = x \cdot (ab\cos\varphi) = xab \cdot \cos\varphi$$

$$(x\vec{a})\vec{b} = (xa)b \cdot \cos \varphi = xab \cdot \cos \varphi$$

$$\vec{a}(x\vec{b}) = a \cdot \cos \varphi(xb) = xab \cdot \cos \varphi$$
; ker je množenje asociativno

5. **distributivnost**:
$$\vec{a}(\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}$$
 Dokaz:

$$\vec{a}(\vec{b} + \vec{c}) = a \cdot pr_{\vec{a}}(\vec{b} + \vec{c}) = a \cdot (pr_{\vec{a}}\vec{b} + pr_{\vec{a}}\vec{c}) = a \cdot pr_{\vec{a}}\vec{b} + a \cdot pr_{\vec{a}}\vec{c} = \vec{a}\vec{b} + \vec{a}\vec{c}$$

6. skalarni produkt je enak produktu med **pravokotno projekcijo** vektorja \vec{b} na vektor \vec{a} in dolžino vektorja \vec{a} . Dokaz:

$$pr_{\vec{a}}\vec{b} = b \cdot \cos \varphi$$

$$\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \varphi$$

Iz tega sledi:
$$\vec{a}\vec{b} = a \cdot pr_{\vec{a}}\vec{b}$$

Za pravokotno projekcijo velja:

$$pr_{\vec{a}}(x\vec{b}) = x \cdot pr_{\vec{a}}\vec{b} \rightarrow \text{dokaz z sliko}$$

 $pr_{\vec{a}}(\vec{b} + \vec{c}) = pr_{\vec{a}}\vec{b} + pr_{\vec{a}}\vec{c} \rightarrow \text{dokaz z sliko}$

Formula za računanje kota med vektorjema:

$$\cos \varphi = \frac{\vec{a}\vec{b}}{ab} \Rightarrow \varphi = \cos^{-1}\left(\frac{\vec{a}\vec{b}}{ab}\right)$$

Kosinusni izrek:

$$\overline{c^2 = a^2 + b^2 - 2ab \cdot \cos \varphi}$$
 (glej tudi Liki, kosinusni izrek)

Krajevni vektorji

Ortonormirana baza so vektorji $\vec{i}, \vec{j}, \vec{k}$, ki so med sabo paroma pravokotni, ležijo na koordinatnih oseh in so dolgi 1 enoto.

Krajevni vektor do točke A je vektor, ki se začne v izhodišču koordinatnega sistema in se konča v točki A. (Oznaka: $\overrightarrow{r_A}$)

Vsak krajevni vektor lahko zapišemo kot linearno kombinacijo baznih vektorjev, ki jo predstavimo z urejeno trojico – komponente vektorjev. Komponente vektorjev so enake koordinatam točke do katere vektor kaže.

$$A(a_1, a_2, a_3) \rightarrow \overrightarrow{r_A} = a_1 \overrightarrow{\iota} + a_2 \overrightarrow{\jmath} + a_3 \overrightarrow{k} \rightarrow \overrightarrow{r_A} = (a_1, a_2, a_3)$$

Seštevanje

$$\vec{a} + \vec{b} = (a_1, a_2, a_3) + (b_1, b_2, b_3)$$

$$\vec{a} + \vec{b} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} + b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$$

$$\vec{a} + \vec{b} = \vec{\iota}(a_1 + b_1) + \vec{\jmath}(a_2 + b_2) + \vec{k}(a_3 + b_3)$$

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

Vektorje v komponentah seštevamo tako, da seštevamo istoležne komponente.

Množenje s skalarjem

$$x(a_1, a_2, a_3) = (xa_1, xa_2, xa_3)$$

Vektor med točkama A in B

$$\overline{AB} = -\vec{a} + \vec{b}
\overline{AB} = -(a_1, a_2, a_3) + (b_1, b_2, b_3)
\overline{AB} = (-a_1, -a_2 - a_3) + (b_1, b_2, b_3)
\overline{AB} = (b_1 - a_1, b_2 - a_2, b_3 - a_3)$$

Skalarni produkt

$$\begin{split} \vec{a}\vec{b} &= (a_1, a_2, a_3) \cdot (b_1, b_2, b_3) \\ \vec{a}\vec{b} &= (a_1\vec{\imath} + a_2\vec{\jmath} + a_3\vec{k}) \cdot (b_1\vec{\imath} + b_2\vec{\jmath} + b_3\vec{k}) \\ \vec{a}\vec{b} &= a_1\vec{\imath} \cdot b_1\vec{\imath} + a_1\vec{\imath} \cdot b_2\vec{\jmath} + a_1\vec{\imath} \cdot b_3\vec{k} + a_2\vec{\jmath} \cdot b_1\vec{\imath} + a_2\vec{\jmath} \cdot b_2\vec{\jmath} + a_2\vec{\jmath} \cdot b_3\vec{k} + a_3\vec{k} \cdot b_1\vec{\imath} \\ &\quad + a_3\vec{k} \cdot b_2\vec{\jmath} + a_3\vec{k} \cdot b_3\vec{k} \\ \vec{a}\vec{b} &= a_1\vec{\imath} \cdot b_1\vec{\imath} + a_2\vec{\jmath} \cdot b_2\vec{\jmath} + a_3\vec{k} \cdot b_3\vec{k}; ostali \ odpadejo \ ker \ je \ \vec{\imath}\vec{\jmath} = 0, \vec{\imath}\vec{k} = 0, \vec{\jmath}\vec{k} = 0 \\ \vec{a}\vec{b} &= a_1b_1 \cdot \vec{\imath}\vec{\imath} + a_2b_2 \cdot \vec{\jmath}\vec{\jmath} + a_3b_3 \cdot \vec{k}\vec{k}; \ \vec{\imath}\vec{\imath} = |\vec{\imath}|^2 = 1^2 = 1, isto \ za \ \vec{\jmath}, \vec{k} \\ \vec{a}\vec{b} &= a_1b_1 + a_2b_2 + a_3b_3 \end{split}$$

Enotski vektor v smeri danega vektorja

$$\overrightarrow{e_{\vec{a}}} = \frac{\vec{a}}{|\vec{a}|}$$

Vektorski produkt

Je nov vektor $\vec{a} \times \vec{b}$, ki je pravokoten na oba vektorja, njegova dolžina je številsko enaka ploščini paralelograma, ki ga določata vektorja \vec{a} in \vec{b} , usmerjen pa je tako, da je gledano z njegovega konca krajša pot od vektorja \vec{a} do vektorja \vec{b} pozitivna.

$$\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
), za determinanto glej ploščino trikotnika.

Kompleksna števila

Vpeljemo število i.

$$i^2 = -1 \Rightarrow i = \sqrt{-1}; i = imaginarna enota$$

 $\mathbb{C} = \{z; z = x + yi; x \in \mathbb{R}, y \in \mathbb{R}, i = \sqrt{-1}\}$
 $z = x + yi = (x, y) = urejen par$

 $\Re z = realna$ komponenta števila z $\Im z = imaginarna$ komponenta števila z

$$\mathbb{R} = \{ z; z = x + yi; x \in \mathbb{R}, y = 0, i = \sqrt{-1} \}$$

$$\mathcal{I} = \{ z; z = x + yi; x = 0, y \in \mathbb{R}, i = \sqrt{-1} \}$$

Narišemo jih v kompleksni ravnini, ki ima realno in imaginarno os, kot urejene pare (x, y)

<u>Seštevanje C šetvil</u>

$$z = a + bi$$

$$w = c + di$$

$$z + w = (a + bi) + (c + di) = (a + c) + (bi + di) = (a + c) + (b + d)i$$

$$z - w = z + (-w) = (a + bi) + (-c - di) = (a - c) + (b - d)i$$
Rezultat **seštevanja** ali **odštevanja** dveh kompleksnih števil je vedno **kompleksno** število.

Množenje C števil

$$\overline{z = a + bi}$$

$$w = c + di$$

$$z \cdot w = (a + bi)(c + di) = ac + bci + adi + bdi^2 = ac + bci + adi - bd$$

$$= (ac - bd) + (bc + ad)i$$

Rezultat **množenja** kompleksnih števil je vedno **kompleksno** število

$$i^{4n} = (i^4)^n \cdot i^0 = 1 \cdot 1 = 1$$

$$i^{4n+1} = (i^4)^n \cdot i^1 = 1 \cdot i = i$$

$$i^{4n+2} = (i^4)^n \cdot i^2 = 1 \cdot -1 = -1$$

$$i^{4n+3} = (i^4)^n \cdot i^3 = 1 \cdot -i = -i$$

Konjugirano C število

$$z = x + yi$$

$$\bar{z} = x - yi$$

Lastnosti:

- 1. konjugirano C število in prvotno število imata sliki **zrcalni** glede na realno os
- 2. $\bar{z} = z$ (konjugirano število konjugiranega števila z je enako številu z)
- 3. $z \cdot \bar{z} = (x + yi)(x yi) = x^2 + y^2 \ge 0$ (produkt števila in njegove konjugirane vrednosti je enak vsoti kvadratov realne in imaginarne komponente
- 4. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (konjugirana vrednost **vsote** je enaka vsoti konjugiranih vrednosti)
- 5. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ (konjugirana vrednost **produkta** je enaka produktu konjugiranih vrednosti)

Absolutna vrednost C števila

$$|z| = +\sqrt{z \cdot \bar{z}}$$

$$|z| = +\sqrt{x^2 + y^2}$$

Lastnosti:

- 1. |z| **grafično** predstavlja oddaljenost točke od izhodišča kompleksne ravnine
- 2. $|z| \ge 0$; $|z| = 0 \Leftrightarrow z = 0 + 0i$
- 3. $|z_1| \cdot |z_2| = |z_1 \cdot z_2|$ **produkt** absolutnih vrednosti je enak absolutni vrednosti produkta
- 4. $|z_1| + |z_2| \ge |z_1 + z_2|$ vsota absolutnih vrednosti je večja ali enaka absolutni vrednosti vsote (trikotniška neenakost)

Deljenje C števil

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z\overline{z}}; z \neq 0$$

$$w: z = w \cdot z^{-1} = \frac{w}{z} = \frac{w\overline{z}}{z\overline{z}}; z \neq 0$$

Rezultat **deljenja** kompleksnih števil je vedno **kompleksno** število.

Enačbe s C števili

$$\overline{A + Bi = 0} \Leftrightarrow A = 0 \land B = 0$$

Kompleksno število je **enako nič**, če sta obe njegovi komponenti enaki 0.

$$A + Bi = C + Di \Leftrightarrow A = C \land B = D$$

Dve kompleksni števili **sta enaki**, če sta njuni realni in imaginarni komponenti enaki.

Liki

Ploščina

Ploščina je funkcija, ki liku priredi določeno število.

Lastnosti:

- $\overline{1. \ p(L)} \ge 0$
- $2. \quad p\left(^{1}\Box\right) = 1$
- 3. $p(L) = p(L_1) + p(L_2) \Leftrightarrow L = L_1 + L_2 \wedge L_1 \cap L_2 = \emptyset$
- 4. $L_1 \cong L_2 \Leftrightarrow p(L_1) = p(L_2)$

Paralelogram

Pravokotnik

$$p = a \cdot v_a = b \cdot v_b = a \cdot b \cdot \sin \alpha = a \cdot b \cdot \sin \beta$$
$$v_a = b \cdot \sin \alpha, v_b = a \cdot \sin \beta$$

$$\frac{\mathbf{Trikotnik}}{p = \frac{a \cdot v_a}{2} = \frac{b \cdot v_b}{2} = \frac{c \cdot v_c}{2}}$$

$$p = \frac{a \cdot b \cdot \sin \gamma}{2} = \frac{a \cdot c \cdot \sin \beta}{2} = \frac{b \cdot c \cdot \sin \alpha}{2}$$

Trapez
$$p = \frac{(a+c) \cdot v}{2} = (a+c) \cdot \frac{v}{2} = \frac{a+c}{2} \cdot v = s \cdot v$$

$$s = a-x-y \qquad x \qquad c \qquad y$$

$$s = a - x - y$$

$$s = c + x + y$$

$$2s = a + c$$

$$s = \frac{a + c}{2}$$

Deltoid

$$p = \frac{e \cdot f}{2}$$

Romb

$$\overline{p = a \cdot v_a}$$

$$p = \frac{e \cdot f}{2}$$

$$p = a^2 \cdot \sin \alpha = a^2 \cdot \sin \beta$$

Enakostranični trikotnik

$$p = \frac{a \cdot v_a}{2} = \frac{a^2 \sqrt{3}}{4}$$
$$v = \frac{a\sqrt{3}}{2}$$

Sinusni izrek

- Vsakemu trikotniku lahko očrtamo krožnico
- 2. Kot γ je obodni kot
- 3. $\angle ASB = 2\gamma$, ker je središčni kot
- 4. $\triangle ABS \ enakokrak$ $\Rightarrow AD = \frac{c}{2} \land$ $\not ASD = \gamma$
- 5. ΔADS pravokoten, torej veljajo kotne funkcije
- 6. $\sin \gamma = \frac{\frac{c}{2}}{R}$ $\frac{c}{\sin \gamma} = 2R$
- 7. Ponovimo za vse stranice

$$a = 2R \cdot \sin a$$

$$b = 2R \cdot \sin \beta$$

$$c = 2R \cdot \sin \gamma$$

Razmerje med stranico in sinusom nasprotnega kota je konstantno.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Uporaba: 2 kota, 1 stranica ali 2 stranici in en kot, ki ni med njima

$$p = \frac{ab \sin \alpha}{2} = \frac{ac \sin \beta}{2} = \frac{bc \sin \gamma}{2}$$

$$2p = ab \sin \alpha = ac \sin \beta = bc \sin \gamma$$

$$\frac{2p}{abc} = \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin y}{c} = \frac{1}{2R}$$

$$\frac{abc}{2p} = 2R \Rightarrow R = \frac{abc}{4p} \land p = \frac{abc}{4R} \land abc = 4pR$$

Kosinusni izrek
$$c^{2} = \vec{c} \cdot \vec{c}$$

$$c^{2} = (\vec{a} - \vec{b})^{2}$$

$$c^{2} = \vec{a}\vec{a} - 2 \cdot \vec{a}\vec{b} + \vec{b}\vec{b}$$

$$c^{2} = \vec{a}^{2} - 2ab\cos\gamma + b^{2}$$

$$c^{2} = \vec{a}^{2} + b^{2} - 2ab\cos\gamma$$
Ponovimo za vse stranice

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Kvadrat stranice trikotnika je enak vsoti kvadratov drugih dveh stranic zmanjšani za dvakratni produkt teh dveh stranic s kosinusom vmesnega kota.

Uporaba: 2 stranici in kot med njima, vse tri stranice

$$\frac{\textbf{Heronov obrazec}}{p = \frac{b \cdot c \cdot \sin \alpha}{2}} \dots kvadriramo, vse je pozitivno \\ p^2 = \frac{b^2 \cdot c^2 \cdot \sin^2 \alpha}{4} \dots zveza: \sin^2 \alpha + \cos^2 \alpha = 1 \\ p^2 = \frac{b^2c^2(1-\cos^2 \alpha)}{4} \dots razlika kvadratov \\ p^2 = \frac{b^2c^2(1-\cos\alpha)(1+\cos\alpha)}{4} \dots kosinusni izrek: \cos\alpha = \frac{b^2+c^2-a^2}{2bc} \\ p^2 = \frac{b^2c^2\left(1-\frac{b^2+c^2-a^2}{2bc}\right)\left(1+\frac{b^2+c^2-a^2}{2bc}\right)}{4} \dots se znebimo dvojnih ulomkov \\ p^2 = \frac{b^2c^2}{16 \cdot b^2c^2}(2bc-b^2-c^2+a^2)(2bc+b^2+c^2-a^2) \dots sestavimo pop. kvad. \\ p^2 = \frac{1}{16}(a^2-(b-c)^2)((b+c)^2-a^2) \dots razlika kvadratov \\ p^2 = \frac{1}{16}(a-b+c)(a+b-c)(b+c+a)(b+c-a) \\ p^2 = \frac{a+b+c}{2} \cdot \frac{b+c-a}{2} \cdot \frac{a-b+c}{2} \cdot \frac{a+b-c}{2} \dots uporabimo s = \frac{a+b+c}{2} \\ p^2 = s(s-a)(s-b)(s-c) \\ p = \sqrt{s(s-a)(s-b)(s-c)}$$

Uporaba: ploščina trikotnika ko imaš podane vse 3 stranice

Krog

Krog je množica točk v ravnini, ki so r ali manj oddaljene od neke točke v isti ravnini, ki ji pravimo središče.

$$k = \{T; T, S \in \Pi \land d(T, S) \leq r\}$$

Razmerje med obsegom in premerom kroga je **konstantno**. Konstanto se označi s π .

$$o = 2\pi r$$

$$l = \frac{\pi r \alpha}{180^{\circ}} = r\alpha \ (rad)$$

$$p = \pi r^{2}$$

$$p_{iz} = \frac{\pi r^{2} \alpha}{360^{\circ}}$$

$$p_{od} = p_{iz} - p_{\Delta}$$

Telesa

Poznamo okrogla in oglata telesa. Okrogla so med drugim tudi valj, stožec, krogla in vrtenine. Oglata telesa ali poliedre med drugim delimo na pravilne poliedre (platonska telesa), prizme in piramide.

Rob je stičišče dveh ploskev.

Oglišče je stičišče dveh ali več robov.

Površina telesa je seštevek ploščin vseh mejnih ploskev. (za ploščino glej Teorija1, liki) **Volumen** ali prostornina telesa je funkcija, ki telesu priredi določeno število.

Lastnosti:

- 1. $V(T) \ge 0$
- 2. $V(\mathcal{A}) = 1$
- 3. $T_1 \cong T_2 \Rightarrow V(T_1) = V(T_2)$ 4. $T = T_1 \cup T_2 \land T_1 \cap T_2 = \emptyset \Rightarrow V(T_1) = V(T_2)$

Polieder je oglato telo, omejeno s samimi n-kotniki.

Pravilni polieder je polieder ki je omejen samo s skladnimi pravilnimi n-kotniki, v vsakem oglišču pa se stika enako število robov. (tetraeder, heksaeder, oktaeder, dodekaeder, ikozaeder)

Cavalierievo načelo

Dve telesi imata enaki prostornini, če sta ploščinsko enaka poljubna ravninska **preseka** s skupno ravnino, ki je vzporedna ravnini, na kateri sta osnovni ploskvi.

Prizma

Prizma je polieder, ki je omejen z dvema vzporednima n-kotnikoma, v plašču pa ima n paralelogramov. Poznamo poševne in pokončne prizme.

Višina prizme je najkrajša možna razdalja med osnovnicama.

Prizma je **pokončna** če je višina enaka stranskemu robu.

Prizma je **pravilna**, če je sta osnovni ploskvi pravilna n-kotnika in če je pokončna. Prizma je **enakoroba**, če so vsi robovi enako dolgi. (ni nujno pokončna)

$$P = 2 \cdot O + pl$$
$$V = O \cdot v$$

Kvader

Pokončna štiristrana prizma.

$$V = abc$$

$$P = 2ab + 2ac + 2bc$$

Kocka

Pravilna enakoroba štiristrana prizma.

$$V = a^3$$

$$P = 6a^2$$

Vali

Krožni vali je rotacijsko geometrijsko telo, ki nastane z vrtenjem paralelograma okoli ene od njegovih stranic za 360°. os

Poznamo poševen in pokončen valj.

Višina valja je najkrajša razdalja med osnovnicama. Valj je **pokončen**, če je višina enaka stranskemu robu, če ne je poševen.

Površino valja sestavljata dva skladna kroga s polmerom r in paralelogram, katerega osnovnica je enaka obsegu osnovne ploskve, višina pa je enaka višini valja v.

Osni presek pokončnega valja je pravokotnik.

Značilni osni presek valja je tisti, ki vsebuje višino valja.

Pravokotni presek valja je tisti, ki je pravokoten na značilnega in je vedno pravokotnik.

$$P = 20 + pl = 2\pi r^2 + 2\pi rv = 2\pi r(r + v)$$

 $V = 0 \cdot v = \pi r^2 v$

Je valj, pri katerem je **osni presek kvadrat**.

$$v = 2r$$

$$P = 2\pi r(r + v) = 2\pi r(3r) = 6\pi r^2$$

$$V = \pi r^2 v = 2\pi r^3$$

s = v

Piramida

Piramida je množica točk prostora, ki je omejena s ploskvijo, ki je poljuben n-kotnik in plaščem, ki je zgrajen iz n trikotnikov.

Vrh piramide V je oglišče, ki ne meji na osnovno ploskev.

Višina piramide v je najkrajša razdalja med vrhom in ravnino v kateri leži osnovna ploskev.

Poznamo poševne in pokončne piramide. Piramida je **pokončna**, če se vrh piramide projicira v središče n-kotniku očrtanega kroga. Piramida je **pravilna**, če je pokončna in če je osnovna ploskev pravilni n-kotnik. Stranske ploskve so enakokraki trikotniki.

Piramida je enakoroba, če ima vse robove enako dolge.

$$P = O + pl$$

$$V = \frac{0v}{3}$$

 $\alpha = \langle (s, 0) |$ kot med stranskim robom in osnovno ploskvijo

 $\beta = \sphericalangle(v_s, 0)$ kot med stransko in osnovno ploskvijo

Stožec

Krožni stožec je množica točk v prostoru, ki je omejena s ploskvijo, ki je krog in plaščem, ki je unija vseh daljic, ki povezujejo rob osnovne ploskve s poljubno točko, ki ni v isti ravnini kot osnovna ploskev.

Višina stožca v je najkrajša razdalja med vrhom in ravnino v kateri leži osnovna ploskev. **Stranica** stožca s je daljica, ki povezuje vrh stožca s točko na robu osnovne ploskve.

Poznamo **poševen** in **pokončen** stožec. Stožec je **pokončen**, če se vrh projicira v središče osnovne ploskve, če ne je poševen.

Osni presek pokončnega stožca je enakokrak trikotnik

Značilni presek stožca vsebuje višino, **pravokotni** pa je pravokoten na značilnega in je vedno enakokrak trikotnik.

$$V = \frac{0v}{3} = \frac{\pi r^2 v}{3}$$

$$pl = \frac{\pi s^2 \alpha}{360^\circ} = \frac{\pi s \alpha}{180^\circ} \cdot \frac{s}{2} = \frac{l \cdot s}{2} = \frac{2\pi rs}{2} = \pi rs$$

$$P = 0 + pl = \pi r^2 + \pi rs = \pi r(r + s)$$

Enakostranični stožec

Stožec je **enakostraničen**, če je njegov osni presek **enakostraničen trikotnik**.

$$s = 2r$$

$$v = r\sqrt{3}$$

$$P = \pi r(r+s) = 3\pi r^{2}$$

$$V = \frac{\pi r^{2} v}{3} = \frac{\pi r^{3} \sqrt{3}}{3}$$

Vrtenine

Vrtenine so telesa, ki jih dobimo če lik **zavrtimo** za 360° okoli osi vrtenja.

Krogla

Množica točk prostora, ki so **za radij ali manj oddaljene** od izbrane točke, ki ji pravimo **središče**.

43

Katerikoli presek krogle je krog. DOKAZ!?

Volumen polkrogle je po Cavalierjevem načelu enak valju z višino r, ki mu izrežemo največji možen stožec.

$$\frac{V}{2} = \pi r^2 r - \frac{\pi r^2 r}{3}$$

$$V = \frac{4}{3}\pi r^3$$

Površina krogle
$$V = \sum_{i=1}^{\infty} \frac{O_i v}{3}$$

$$V = \frac{v}{3} (\sum_{i=1}^{\infty} O_i)$$

$$V = \frac{v}{3} P, v \doteq r$$

$$P = \frac{3V}{r}$$

$$P = \frac{3 \cdot 4\pi r^3}{3r}$$

$$P = 4\pi r^2$$

Polinomi

Polinom je funkcija oblike

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

 a_0 prosti člen ali svobodni člen

 a_n vodilni koeficient

 $a_n x^n$ vodilni člen

Stopnja polinoma je tista največja potenca x, ki ima poleg sebe neničelni koeficient. Dva polinoma sta **enaka** natanko tedaj, ko imata enaki stopnji in enake koeficiente pri potencah iste stopnje.

Seštevanje polinomov

Dva polinoma seštejemo tako, da seštejemo koeficiente pri potencah istih stopenj. Vsota dveh polinomov je polinom, njegova stopnja pa je manjša ali enaka višji od stopenj sumandov.

Množenje polinomov

Množimo vsakega z vsakim.

Produkt dveh polinomov je polinom, stopnja produkta neničelnih polinomov pa je enaka vsoti stopenj polinomov, ki jih množimo.

Deljenje polinomov

Osnovni izrek o deljenju:

$$p(x) = k(x)q(x) + o(x); \quad st(o(x)) < st(q(x))$$

Za dva polinoma p(x) in q(x) obstajata dva natanko določena polinoma k(x) in o(x), tako da velja p(x) = k(x)q(x) + o(x), pri čemer je stopnja ostanka manjša od stopnje q(x).

Hornerjev algoritem

Hornerjev algoritem je postopek za deljenje polinoma p(x) z linearnim polinomom (x - a).

V prvi vrstici Hornerjeve sheme so koeficienti polinoma p(x). V zadnji vrstici pa so po vrsti koeficienti količnika k(x), ki ima za ena manjšo stopnjo od polinoma p(x). Zadnje število pa je ravno vrednost polinoma pri a(p(a)) oz. ostanek o(x).

$$p(x) = k(x)q(x) + o(x)$$

$$p(a) = k(a)(a-a) + o(a)$$

$$p(a) = o(a)$$

Shema:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_2 x^2 + a_1 x + a_0$$

Ničle polinoma

a je ničla polinoma $\Leftrightarrow p(a) = 0$.

Število a je ničla polinoma natanko takrat, ko je p(x) deljiv z linearnim polinomom

$$(x-a)$$
. $p(a) = 0 \Leftrightarrow p(x) = k(x)(x-a)$

Dokaz:

$$p(x) = k(x)(x - a) + o(x)$$

$$p(x) = k(x)(x - a) + p(a)$$

$$p(x) = k(x)(x - a)$$

Število ničel ne presega stopnje p(x).

Dokaz:

$$st(p(x)) = n$$

$$x_1 \text{ ničla} \Rightarrow p(x) = k_1(x)(x - x_1); st(k_1(x)) = n - 1$$

$$x_2 \text{ ničla} \Rightarrow p(x) = k_2(x)(x - x_1)(x - x_2); st(k_2(x)) = n - 2$$

$$x_n \text{ ničla} \Rightarrow p(x) = k_n(x) \underbrace{(x - x_1)(x - x_2) \cdot \cdots \cdot (x - x_n)}_{n}; \text{ st}(k_n(x)) = 0$$

a je ničla k-te stopnje, če je $p(x) = (x - a)^k \cdot k(x)$

Ničla je enostavna, če ni večkratna.

Osnovni izrek algebre:

Vsak nekonstanten polinom s kompleksnimi koeficienti ima vsaj eno kompleksno ničlo. Posledica:

Polinom stopnje n s kompleksnimi koeficienti ima natanko n kompleksnih ničel. Dokaz:

$$st(p(x)) = n$$

$$x_1 \text{ ničla} \Rightarrow p(x) = k_1(x)(x - x_1)$$

$$st(k_1(x)) = n - 1$$
, torej ima spet vsaj eno kompleksno ničlo.

$$x_2 \text{ ničla} \Rightarrow p(x) = k_2(x)(x - x_1)(x - x_2)$$

$$st(k_2(x)) = n - 2$$
, torej ima spet vsaj eno kompleksno ničlo.

$$x_n \text{ ničla} \Rightarrow p(x) = k_n(x) \underbrace{(x - x_1)(x - x_2) \cdot \dots \cdot (x - x_n)}_{n \text{ ničel}}$$

$$st(k_n(x)) = 0$$
, polinom je konstanten

$$p(x) = c(x - x_1)(x - x_2) \cdot \cdots \cdot (x - x_n)$$

c je pravzaprav vodilni koeficient

Polinom je z ničlami določen do konstante natančno.

Kompleksne ničle polinoma z realnimi koeficienti

Če je ničla polinoma z realnimi koeficienti kompleksno število z = a + bi, potem je ničla tudi konjugirano število $\bar{z} = a - bi$. Dokaz:

p(z) = 0 (za pravila o računanju s konjugiranimi števili glej kompleksna števila)

$$\overline{p(z)} = \overline{0}$$

$$\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} = 0$$

$$\overline{a_n z^n} + \overline{a_{n-1} z^{n-1}} + \dots + \overline{a_1 z} + \overline{a_0} = 0$$

$$a_n \bar{z}^n + a_{n-1} \bar{z}^{n-1} + \dots + a_1 \bar{z} + a_0 = 0$$

$$p(\bar{z}) = 0$$

Kompleksne ničle polinoma z realnimi koeficienti nastopajo v **konjugiranih parih**. Posledica:

Polinom lihe stopnje z realnimi koeficienti ima vsaj eno realno ničlo.

Polinom je **razcepen**, če ga lahko zapišemo kot produkt dveh nekonstantnih polinomov s koeficienti iz iste množice števil kot so koeficienti polinoma p(x).

Cele ničle polinoma s celimi koeficienti

Če je celo število c ničla polinoma s celimi koeficienti, potem je c delitelj svobodnega člena.

$$c \in \mathbb{Z}, p(c) = 0 \Rightarrow c | a_0$$
 Dokaz:
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \cdots a_0 \in \mathbb{Z}$$

$$p(c) = 0; x = c$$

$$0 = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

$$-a_0 = c(a_n c^{n-1} + a_{n-1} c^{n-2} + \dots + a_1)$$

$$-a_0 = c \cdot k; \quad k \in \mathbb{Z}$$

$$c | a_0$$

Racionalne ničle polinoma s celimi koeficienti

Če je okrajšan ulomek $\frac{c}{d}$ ničla polinoma, potem velja, da c deli prosti člen, d pa deli vodilni koeficient.

Dokaz:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \dots a_0 \in \mathbb{Z}, \quad x = \frac{c}{d}$$

$$0 = a_n \left(\frac{c}{d}\right)^n + a_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + a_1 \frac{c}{d} + a_0$$

$$0 = a_n \frac{c^n}{d^n} + a_{n-1} \frac{c^{n-1}}{d^{n-1}} + \dots + a_1 \frac{c}{d} + a_0$$

$$0 = a_n c^n + a_{n-1} c^{n-1} d + \dots + a_1 c d^{n-1} + a_0 d^n$$

$$-a_0 d^n = c(a_n c^{n-1} + a_{n-1} c^{n-2} d + \dots + a_1 d^{n-1})$$

$$-a_0 d^n = c \cdot k; \quad k \in \mathbb{Z}$$

$$c|a_0, ker ne deli d^n saj sta c in d tuji si števili (okrajšan ulomek)$$

Zopet se ozrimo na 4. vrstico zgornje izpeljave, le da tokrat na drugo stran prenesemo vodilni člen.

$$\begin{array}{l} -a_nc^n = a_{n-1}c^{n-1}d + \cdots + a_1cd^{n-1} + a_0d^n \\ -a_nc^n = d(a_{n-1}c^{n-1} + \cdots + a_1cd^{n-2} + a_0d^{n-1}) \\ -a_nc^n = d \cdot k; \quad k \in \mathbb{Z} \\ d|a_n, ker\ ne\ deli\ c^n, saj\ velja\ D(c,d) = 1\ (okrajšan\ ulomek) \end{array}$$

Graf polinoma

$$p: \mathbb{R} \to \mathbb{R}$$

Med dvema zaporednima ničlama vrednost polinoma **ne more spremeniti predznaka**. Vsak polinom z realnimi koeficienti lahko zapišemo kot produkt linearnih faktorjev in

kvadratnih faktorjev, ki imajo diskriminanto negativno.

Vrednost polinoma ohrani predznak pri prehodu čez ničlo **sode** stopnje, spremeni pa ga pri prehodu čez ničlo **lihe** stopnje.

Polinom se pri zelo velikih in zelo majhnih x obnaša tako kot vodilni člen.

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

$$p(x) = a_n x^n \underbrace{\left(\frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n}\right)}_{\text{to so zelo math na *tentla}}$$

Bisekcija

Bisekcija je postopek za iskanje ničel zveznih funkcij. Denimo, da poznamo tak interval [a,b], da je zvezna funkcija $f: \mathbb{R} \to \mathbb{R}$ (polinom) v krajiščih različno predznačena. Potem iz zveznosti sledi, da ima f na intervalu (a,b) vsaj eno ničlo. Če vzamemo sredinsko točko $s=\frac{a+b}{2}$, potem bo, razen, če je f(s)=0, kar pomeni, da smo imeli srečo in zadeli ničlo, na enem izmed intervalov [a,s] ali [s,b] funkcija v krajiščih spet različno predznačena in to vzamemo za nov interval [a;b]. Postopek rekurzivno ponavljamo in v vsakem koraku nadaljujemo z razpolovljenim intervalom, ki zagotovo vsebuje vsaj eno ničlo. Ko je interval dovolj majhen (manjši od želene vrednosti ϵ), končamo in vrnemo točko s sredine intervala kot približek za ničlo funkcije f.

Racionalne funkcije

Racionalna funkcija je vsaka funkcija oblike $f(x) = \frac{p(x)}{q(x)}$, pri čemer je ta ulomek okrajšan. Itd...