Nome:	RAQUEL RESENDE MILHEIRO PINTO	N.º MEC:	92948
			1

AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes **algoritmos recursivos** – **sem recorrer a funções de arredondamento** (floor e ceil) – e analise o **número de chamadas recursivas** executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, se \ n = 0 \\ T_{1}\left(l\frac{n}{3}J\right) + n, se \ n > 0 \end{cases} \qquad T_{2}(n) = \begin{cases} n, se \ n = 0, 1, 2 \\ T_{2}\left(l\frac{n}{3}J\right) + T_{2}\left(l\frac{n}{3}J\right) + n, se \ n > 2 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, se \ n = 0, 1, 2 \\ 2 * T_{3}\left(\frac{n}{3}\right) + n, se \ n \in m \text{ in the multiplode 3} \end{cases}$$

$$T_{3}\left(l\frac{n}{3}J\right) + T_{3}\left(l\frac{n}{3}J\right) + n, caso \ contrario \end{cases}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\lfloor \frac{n}{3} \rfloor$ e (n+2)/3 é igual a $\lfloor \frac{n}{3} \rfloor$.

- **Preencha a tabela da página seguinte** com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

Para efetuar uma analise melhor e mais facilmente, fiz três gráficos, tendo então estabelecido para a função $T_1(n)$ ordem de complexidade logarítmica $O(\log(n))$, para a função $T_2(n)$ ordem de complexidade linear O(n) e para a função $T_3(n)$ ordem de complexidade logarítmica $O(\log(n))$.

Isto quer dizer que tanto $T_1(n)$ como $T_3(n)$ pertencem quando muito à ordem de complexidade $O(\log(n))$ e que $T_2(n)$ pertence quando muito à ordem de complexidade O(n).

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_1[n]$. Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico.

C(n) = número de invocações sucessivas de $T_1(n)$

 $C(0) = 0 \rightarrow caso base$

Expressão recorrente e dada por:

$$C(n) = \begin{cases} 0, se \ n = 0 \\ C\left(l \frac{n}{3} I\right) + 1, se \ n > 0 \end{cases}$$

 $C(n)=1+C(\lfloor (n/3)\rfloor)=1+1+C(\lfloor (n/3/3)\rfloor)=1+1+1+C(\lfloor n/27\rfloor)$

Para o caso particular de $n=3^k$

$$C\left(I\frac{n}{3}I\right)=C\left(\frac{n}{3}\right)$$
 $C(n)=k+C\left(n/3^{k}\right)$

Se escolher-mos um k para que $n/3^k = 1 = k = \log_3(n)$

 $C(n)=k+C(1)\equiv C(n)=1+\log_3(n)$, logo concluímos que o algoritmo é de complexidade logarítmica, $O(\log_3(n))$.

Este resultado pode ser confirmado pelo Teorema Mestre, pois a = 1, b=3, c=1, $f(n)=1 \rightarrow d=0$, logo $a=b^d\equiv 1=3^o$. Assim verificamos que a complexidade é logarítmica, $O(n^d\log_3(n))=O(n^o\log_3(n))=O(\log_3(n))$.

Através da expressão $C[n]=1+\log_3(n)$ podemos obter o número de chamadas recursivas do algoritmo podemos ver que para:

Comparando a ordem de complexidade estabelecida anteriormente com a ordem de complexidade obtida $O(\log_3(n))$, podemos dizer que esta complexidade é mais específica. A complexidade que obtive aqui não podia ser superior à estabelecia anteriormente, tendo sido verificado.

Tabela:

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	49	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de **complexidade** para esse caso particular. Compare a expressão obtida com a os dados da **tabela**. Sugestão: use o **desenvolvimento telescópico** e confirme o resultado obtido usando o **Teorema Mestre**.

$$C(n)$$
 = número de invocações sucessivas de $T_2(n)$

$$C(0) = C(1) = C(2) = 0 \rightarrow casos base$$

Triângulo de Pascal
$$\rightarrow 2^0 + 2^1 + 2^2 = 2^3 - 1e^{2^1} + 2^2 = 2^3 - 2e^{2^3}$$

Para o caso particular $n=3^k \equiv k = \log_3(n)$

A expressão recorrente é dada por:

$$C(n) = \begin{cases} 0, sen = 0, 1, 2 \\ C\left(\left(\frac{n}{3}I\right) + C\left(\left(\frac{n}{3}I\right) + 2, sen > 2\right) \end{cases}$$

Para este caso particular $n=3^k$ sabemos que $C\left(I\frac{n}{3}I\right)=C\left(I\frac{n}{3}I\right)$ então:

$$C\left(\left[\frac{n}{3}\right]\right) + C\left(\left[\frac{n}{3}\right]\right) + 2 = 2 \times C\left(\frac{n}{3}\right) + 2 \text{ ou seja:}$$

$$C(n) = \begin{cases} 0, sen = 0, 1, 2 \\ C\left(\left[\frac{n}{3}\right]\right]\right) + C\left(\left[\frac{n}{3}\right]\right) + 2, sen > 2 \end{cases} \equiv C(n) = \begin{cases} 0, sen = 0, 1, 2 \\ 2 \times C\left(\frac{n}{3}\right) + 2, sen > 2 \end{cases}$$

$$C(n) = \begin{cases} C(n) = \left\{ C\left(\left(\frac{n}{3}\right)\right) + C\left(\left(\frac{n}{3}\right)\right) + 2, se \ n > 2 \right\} = C(n) = \begin{cases} 0, 3c \ n = 0, 1, 2 \\ 2 \times C\left(\frac{n}{3}\right) + 2, se \ n > 2 \end{cases}$$

Usando o desenvolvimento telescópico temos:

$$C(n) = 2 + 2 \times C(n/3) = 2 + 2(2 + 2(C(n/9))) = 2 + 4 + 4C(n/9) = 2^{1} + 2^{2} + 2^{2}C(n/9) = 2^{1} + 2^{2}C(n/9) = 2^{2} + 2^{2}C(n/9) = 2^{2} + 2^{2}C(n/9) = 2^{2} + 2^{2}C(n/9) = 2$$

$$=2^3-2+2^2C(n/9)=2\times(2^k-1)+2^k(C(n/3^k))$$

 $C(n)=2\times(2^{(\log_3(n))}-1)+2^k\times C(1)=2\times(2^{(\log_3(n))}-1)=2n^{(\log_3(2))}-2$, logo este algoritmo tem ordem de complexidade polinomial $O(n^{(\log_3(2))})$.

Através do Teorema Mestre podemos confirmar este resultado, pois a = 2, b = 3, c = 0, $f(n) = 2 \rightarrow d = 0$, $logo _{a>b^d=2>3^0}$ o que significa que a ordem de complexidade é polinomial $O(n^{(\log_3(2))})$.

Através da expressão $C(n)=2n^{\log_3(2)}-2$ podemos obter o número de chamadas recursivas do algoritmo podemos ver que para:

$$n = 0,1,2 \rightarrow C(0) = C(1) = C(2) = 0$$
 $n = 3 \rightarrow C(3) = 2$ $n = 4 \rightarrow C(4) = 2$ $n = 7 \rightarrow C(7) = 4$ $n = 9 \rightarrow C(9) = 6$ $n = 27 \rightarrow C(27) = 14$

 $n = 18 \rightarrow C(18) = 10 \neq 6$, isto acontece porque 18 não é potência de 3 e porque a expressão calculada é só para valores que sejam potências de 3, pois só ai é que

Comparando a ordem de complexidade estabelecida anteriormente com a ordem de complexidade obtida $O(n^{(\log_3[2])})$, podemos dizer que esta complexidade é mais especifica. A complexidade que obtive aqui não podia ser superior à estabelecia anteriormente, tendo sido verificado.

 Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Como $n^{\lceil \log_3(2) \rceil}$, é uma função suave $(n^{\lceil \log_3(2) \rceil})$ é eventualmente decrescente e $2 \times n^{\lceil \log_3(2) \rceil}$ também pertence a $O(n^{\lceil \log_3(2) \rceil})$, como C(n) é uma função eventualmente não decrescente e como a função $T_2(n)$ tem complexidade polinomial para os valores de n potências de 3 (b = 3) onde $3 \ge 2$, então pela regra da suavidade, concluímos que é possível generalizar a ordem de complexidade que obtivemos anteriormente para todo o n.

• Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_3(n)$.

C(n) = número de invocações sucessivas de $T_3(n)$ Expressão recorrente é dada por:

$$C(n) = \begin{cases} 0, se \ n = 0, 1, 2 \\ 2 \times C\left(\frac{n}{3}\right) + 1, se \ n \ e \ m \ ultiplo \ de \ 3 \end{cases}$$
$$C\left(\left[\frac{n}{3}J\right] + C\left(\left[\frac{n}{3}J\right]\right) + C\left(\left[\frac{n}{3}J\right]\right) + 2, caso \ contr \ ario \end{cases}$$

Considere o caso particular n=3^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$C(0) = C(1) = C(2) = 0 \rightarrow casos base$$

Para o caso particular $n=3^k$ usamos a equação $C(n)=2\times C\left(\frac{n}{3}\right)+1$, pois todas as potências de 3 são múltiplos de 3.

$$C(n)=2\times C(n/3)+1=2(2C(n/9)+1)+1=4\times C(n/9)+2+1=2^kC(n/3^k)+k+1$$

 $C(n)=2^kC(1)+k+1=k+1=\log_3(n)+1$, logo concluímos que o algoritmo é de complexidade logarítmica, $O(\log_3(n))$.

Usando o Teorema Mestre, sabemos que a = 1, b = 3, c = 0, f(n) = 1 \rightarrow d = 0, logo $a=b^d\equiv 1=3^o$. Assim segundo este teorema, concluímos que algoritmo é de complexidade logarítmica, $O(\log_3(n))$, tal como quando usamos o desenvolvimento telescópico.

Através da expressão $C(n) = \log_3(n) + 1$ podemos obter o número de chamadas recursivas mais um (Nº de chamadas +1) do algoritmo podemos ver que para:

recursives mais unificial de chamadas +1) do algoritmo podemos ver qui
$$n = 0,1,2 \rightarrow C(0) = C(1) = C(2) = 0$$
 $n = 3 \rightarrow C(3) = 2 (1+1)$ $n = 9 \rightarrow C(9) = 3 (2+1)$ $n = 27 \rightarrow C(27) = 4 (3+1)$

Podemos ver também que a expressão não é valida para números que não sejam múltiplos de 3 (pois para isso teria de ser usado outro ramo):

 $n = 17 \rightarrow C(17) = 3$ quando devia de ser 5 $n = 22 \rightarrow C(22) = 3$ quando devia de ser 8

Comparando a ordem de complexidade estabelecida anteriormente com a ordem de complexidade obtida $O(\log_3(n))$, podemos dizer que esta complexidade é mais especifica. A complexidade que obtive aqui não podia ser superior à estabelecia anteriormente, tendo sido verificado.

 Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

A ordem de complexidade anterior não se pode generalizar para todo o n, pois para o caso particular $n=3^k$ usamos a equação $C(n)=2\times C\left(\frac{n}{3}\right)+1$. Esta equação só e usada quando n for múltiplo de 3. Para obter a ordem de complexidade para outros casos (n não múltiplo de 3 e n diferente de 0, 1 ou 2) teríamos de usar a equação $C\left(l\frac{n}{3}I\right)+C\left(l\frac{n}{3}I\right)+2$, prosseguindo com o desenvolvimento telescópico ou o Teorema Mestre.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$, podemos observar em relação ao esforço computacional que $T_2(n)$ é majorante $T_3(n)$. Isto significa que a ordem de complexidade de $T_3(n)$ não pode ser superior que à de $T_2(n)$ uma vez que a ordem de complexidade de $T_3(n)$ está limitada pela ordem de complexidade de $T_3(n)$.