Slido: #IAM2024





In cooperation with:











# Highly automated UAS operations: lessons learnt and challenges



Moderator
NATALE DI RUBBO
Drone project manager, EASA



GIOVANNI BARRACO

Director of Regulation and
Research Innovative Mobility
Department, ENAC



STEFAN RONIG

Drone certification
section manager, EASA



**DIEGO FERNÁNDEZ VARELA**Regulatory compliance & certification manager – Europe, Wing

# Workshop title:



Slido: #IAM2024

# Highly automated UAS operations: lessons learnt and challenges

**Goal**: understand when automation can reduce the remote pilot authority and how to make automated operations safe







## Which operations are we considering?



Slido: #IAM2024

### Drone in a box



At least prefight, take off, landing and post flight phases are conducted with no human intervention

# Multiple drones controlled by a single command and control unit



Cruise/aerial work phase phase is conducted with reduced human intervention

## Level of automation



Slido: #IAM2024

**Fully autonomous**: responsibility on the UAS operator and designer



Current operations do not reach the full autonomous yet

Automatic functions

### Questions for the workshop

- How UAS operators and designers should manage automation?
- What are the skills required to the UAS operator personnel?

**Direct control**: remote pilot fully responsible for all phases of the flight



and UAS control

**Automatic flight** = the flight path is pre-loaded before flight.

**Autonomous flight** = the UAS determines the best trajectory by analysing the flight parameters. At may be used. **Not part of this workshop** 

### Levels of automation

Automation levels proposed by JARUS

| Levels | Functions             | Human-<br>Machine Teaming | Aircraft Manoeuvre<br>Control                                                            |
|--------|-----------------------|---------------------------|------------------------------------------------------------------------------------------|
| 0      | Manual operation      | Human led                 | Remote pilot controls flight surfaces                                                    |
| 1      | Assisted operation    | Human-in-the-loop         | Automated functions supporting the remote pilot                                          |
| 2      | Task reduction        | Human-in-the-loop         | Drone capable to complete a flight however the remote pilot is able to take back control |
| 3      | Supervised automation | Human-in/on the-loop      | Machine performs some functions (supervised by human)                                    |
| 4      | High automation       | Human-on-the-loop         | Machine performs most functions (very limited human intervention)                        |
| 5      | Full autonomy         | Human-off-the-loop        | No human intervention possible                                                           |





Slido: #IAM2024



Focus of this panel



#### How Wing's operations look like today

- Highly automated BVLOS operations with aircraft behaving and reacting in a predictable way
- Flights below 120 m AGL, strategically deconflicted from other known aircraft through planning
- 10 km range; 6.5 kg MTOM (including payload)



1. Order and preparation



2. Planning and assignment



3. Automated checks and takeoff



4. Pickup (~7 m above ground)



5. Cruise (~30-40 m above obstacles)



6. Delivery (~7 m above ground)

