FJFI ČVUT V Praze

Sonar

Michal Červeňák
dátum merania: 05.12. 2016
skupina: 4
Klacifikaco:

1 Pracovní úkol

- 1. DU: V domácí přípravě spočítejte úhel prvních pěti maxim dle vztahu (6) pro 1, 2 a 5 štěrbin, znáte-li mřížkovou konstantu $d=3\,\mathrm{cm}$, šířku štěrbiny a = 1 cm a frekvenci vlnění $f=40\,\mathrm{kHz}$. Tvar difrakčního obrazce graficky znázorněte.
- 2. Změřte velikost přijímaného signálu v závislosti na úhlu mezi přijímačem a kolmicí k odrazové ploše. Výsledky zpracujte tabulkově i graficky a ověřte, zda-li platí zákon odrazu pro ultrazvukové vlny. Měření proved'te pro 3 různé pevně zvolené úhly dopadu.
- 3. Změřte rychlost zvuku ve vzduchu. Proveď te alespoň deset měření při různých vzdálenostech vysílače od přijímače a výsledky zpracujte statisticky. Porovnejte váš výsledek se vztahem (3).
- 4. Změřte alespo n pět vzdáleností odrazové plochy od vysílače/přijímače pomocí ultrazvukových vln (princip sonaru). Porovnejte vzdálenosti měřené sonarem a měčítkem. Použijte vámi experimentálně stanovenou rychlost zvuku z úkolu 2.
- 5. Proměřte závislost intenzity zvukového signálu po průchodu zvukových vln soustavou štěrbin pro N (počet štěrbin) = 1,2,5. Výsledky zpracujte graficky a okomentujte v protokolu.
- 6. Změřte Dopplerův jev pro dvě rychlosti vozíčku pro jeden případ (přijímač klid nebo přijímač pohyb) a porovnejte vyýsledky s teoretickými výpočty. Měření proveďte pro ka zdou rychlost minimálné 5-krát.

2 Pomôcky

Generátor 40 kHz vln, zesilovač, 1 mikrofon, dvoukanálový digitální osciloskop, čítač Tesla, odrazová kovová deska, laboratorní stojan, parabolický odrýžeč, difrakční mřížka s nastavitelným počtem šterbin, elektický vozíček s nastavitelnou rychlostí pojezdu, pojezdová lavice s měřítkem (2 ks), stopky, výsuvné měřítko 50 cm, úhloměr, kabely, sada držákuů pro mikrofony

3 Teória

Závislosť rýchlosti zvuku \boldsymbol{v}_z vzduchu od teploty Tod nám vyjadruje vzťah

$$v_z = 331.3\sqrt{1 + \frac{T}{273.15}}. (1)$$

K výpočtu rýchlosti zvuku v_z pomocou zvukových vĺn, pre priame usporiadanie použijeme vzťah

$$v_z = \frac{s}{t} \,, \tag{2}$$

kde s je vzdialenosť vysielaču a prijímaču signálu, v prípade odrazu signálu od prekážky vzorec transformujeme

$$v_z = \frac{2s}{t} \,, \tag{3}$$

za predpokladu, že vysielač a prijímač je umiestnený v rovnakej vzdialenosti s od odrazovej plochy a t je v oboch prípadoch čas.

Pre výpočet rýchlosti vozíku môžeme použiť vzťah z klasickej mechaniky

$$v = \frac{s}{t}, \tag{4}$$

Pre pozorovanie zmeny pozorovanej frekvencie f pri pohybe vozíku rýchlosťou v pričom zdroj vysiela signál o frekvencií f_0 platí podľa Dopplerova javu vzťah

$$f = \frac{v_z \pm v}{v_z} f_0 \,, \tag{5}$$

kde v_z je rýchlosť zvuku.

Pre teoretickú závislosť difrakčného obrazca môžeme odvodiť vzťah

$$I = I_0 \left(\frac{\sin(\alpha)\sin(N\beta)}{\alpha N \cdot \sin(\beta)} \right)^2 ,$$
$$\alpha = \frac{\pi}{\lambda} d\sin(\vartheta) ,$$
$$\beta = \frac{\pi}{\lambda} a\sin(\vartheta) ,$$

kde d je mriežková konštanta a a je šírka štrbiny a vlnová dĺžka $\lambda = 0{,}0083\,\mathrm{m}.$

3.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{6}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(7)

pričom n je počet meraní.

Obr. 1: Závislosť amplitúdy napätia U od rozdielu uhlu $\Delta\sigma$, pri stálom umiestnení vysielaču s dopadovým uhlom $\sigma_v=45\deg$

4 Postup merania

- 1. Podľa schémy Obr. 1 [1] boli všetky súčiastky pripojené o odkúšané.
- 2. Pre 3 rôzne uhly bola odmeraná amplitúda napätia na osciloskope.
- 3. Obvod bol prepojený na Obr. [1] a bola domeraná rýchlosť zvuku priamo a odrazom.
- 4. Mikrofón bol presunutý do aparatúry a odmerané hodnoty napätia pre 1,2,5 štrbín.
- 5. Náslende bol mikrofón presunutý na vozíček a bol meraný doplerov jav.
- 6. Pre jazdu vpred a vzad bola odemeraná rýchlosť vozíčku.

5 Výsledky merania

5.1 Úloha 1.

V tabuľke Tab. 1 sú zaznamenané odmerané hodnoty amplitúdy napätie U na rozdiely uhlu prijímača a vysielača $\Delta \sigma$. A vynesené do grafu Obr. 1.

5.2 Úloha 2.

V tabuľke Tab. 2. sú zaznamenané hodnoty vzdialenosti vysielaču a prijímaču x k dobe oneskorenia signálu na osciloskope t pre usporiadanie na priamo.

U[mV]	$\varphi_v[\deg]$	$\varphi_p[\deg]$	$\Delta \varphi_v[\deg]$
36.4	40	130	90
34.5	40	130	90
35.9	40	130	90
36.1	40	130	90
35.3	40	130	90
25.0	40	110	70
24.2	40	110	70
24.7	40	110	70
22.7	40	110	70
22.7	40	110	70
13.8	40	90	50
14.0	40	90	50
14.8	40	90	50
12.8	40	90	50
14.4	40	90	50

Tab. 1: Namerané hodnoty napätia U na uhle prijímača φ_p , vysielača φ_v

Z týchto hodnôt bola vypočítaná podľa vzťahov 6 a 2 rýchlosť zvuku $v_v = (384.9 \pm 48.5)~{\rm m\cdot s^{-1}}$

5.3 Úloha 3

V tabuľke Tab. 3. sú zaznamenané hodnoty vzdialenosti vysielaču a prijímaču lk dobe oneskorenia signálu na osciloskope t pre meranie s odrazom od prekážky. Z týchto hodnôt bola vypočítaná podľa vzťahov 6 a 2 rýchlosť zvuku $v_z=$ = $(320,1\pm78,2)~{\rm m\cdot s^{-1}}$

5.4 Úloha 4.

Do grafov Obr. 2, Obr. 3 a Obr. 4. Boli postupne namerané dáta pre jedno- dv-e a päť-štrbínové difrakčné obrazce.

5.5 Úloha 5.

V tabuľke Tab. 4 sú zaznamenané merania rýchlosti vozíku, pričom sme pri výpočet považovali rýchlosť za konštantnú a teda $a=\infty$. Rýchlosť vozíku podľa vzťahu 6 a 4 vyšla pre pohyb vpred $v_p=(0,25\pm0,02)$ m/s. a pre pohyb vzad $v_z=(0,20\pm0,01)$ m/s

V tabuľke Tab. 5 sú zaznamenané hodnoty počtu impulzov pre pohyb vozíka vpred f_v vzad f_z a pri státí na mieste. f_s . Z týchto hodnôt boli vypočítané za pomoci vzťahu 6 príšerné hodnoty

$$f_s = (39.2 \pm 0.005) \text{ kHz},$$

 $f_v = (38.6 \pm 0.19) \text{ kHz},$
 $f_z = (38.4 \pm 0.15) \text{ kHz}.$

Obr. 2: Difrakčný obrazec pre 1 štrbinu, v porovnaní s teoretickou závislosťou. Kde U/U_0 je relatívny úbytok napätia a ϑ je pozorovaný uhol.

Obr. 3: Difrakčný obrazec pre 2 štrbiny, v porovnaní s teoretickou závislosťou. Kde U/U_0 je relatívny úbytok napätia a ϑ je pozorovaný uhol.

$T[\nu s]$	x[cm]
100	0
330	8.5
280	6.7
240	5.5
210	5
190	4
170	3
440	11
460	12
680	20

Tab. 2: Namerané hodnoty vzdialenosti vysielaču a prijímaču \boldsymbol{x} a doba oneskorenia signálu T

$T[\nu s]$	x[cm]
9	640
3.2	740
37.2	2300
32	2000
28	1700
25	1600
23	1400
20	1200
18	1100
98	6000

Tab. 3: Namerané hodnoty vzdialenosti prekážky a vysielači \boldsymbol{x} a doba oneskorenia signálu T

Z rýchlosti a smeru vozíku môžeme za pomoci vzťahu 5 určiť predpokladané posuny frekvencií pri pohybe pre pohyb v pred $f_v=39,2\,\mathrm{MHz}$ a pre pohyb vzad $f_z=38,6\,\mathrm{kHz}$.

6 Diskusia

6.1 Úloha 1.

Podľa nameraných dát jasne vidíme, že najväčšiu intenzitu sme dosiahli pre uhol 90 deg. Však z túto hranicu sme nepokračovali a teda nemáme dáta aj pre uhly väčšie kde by sme mali pozorovať opäť znižovanie intenzity.

6.2 Úloha 2. a 3.

Pri týchto častiach sme dostali priamym meraním a meraním s odrazom hodnoty rýchlosti zvuku $v_v = (384.9 \pm 48.5) \; \mathrm{m \cdot s^{-1}} \; \mathrm{a} \; v_z = (320.1 \pm 78.2) \; \mathrm{m \cdot s^{-1}}.$ Oproti hodnote vypočítanej podľa kde sme sa $v = 345 \, \mathrm{m \cdot s^{-1}} \; \mathrm{s}$ oboma nameranými hodnotami vrámci chyby vošli. hlavný zdroj chýb, ktorý je oneskorenie

Obr. 4: Difrakčný obrazec pre 5 štrbín, v porovnaní s teoretickou závislosťou. Kde U/U_0 je relatívny úbytok napätia a ϑ je pozorovaný uhol.

s[cm]	$t_v[s]$	$t_z[s]$
90	3.3	4.4
90	3.4	4.8
90	3.7	4.6
90	3.7	4.8
90	3.8	4.4

Tab. 4: Namerané hodnoty dráhy svozíčku na čase pre jazdu vpred t_v a vzad $t_z.$

prístrojov a to hlavne u merania malých vzdialeností a zároveň, ťažko určiteľný začiatok hrany signálu na osciloskope.

6.3 Úloha 4.

Pri tejto úlohe bolo niekoľko závažných problémov ktoré ovplyvnili presnosť experimentu. Hlavný zdroj problému bolo odhadnuť body, kde sa nachádza maximum alebo minimum. Hodnoty na osciloskope aj skákali a teda pri odčítaní sa niekedy líšili aj o pol rádu. Toto meranie by som jednoznačne nepovažoval za presné.

6.4 Úloha 5.

V poslednej časti jasne vidíme, že sme "vyvrátili" Doplera. Hlavným dôvodom, tohoto výsledku je chyba čítača, ktorý nezachytával, všetky impulzy v momente keď bol vozíček ďalej od zdroja. Pri zisťovaní rýchlosti vozíku sme spravili

$f_s[{ m MHz}]$	$f_v[\mathrm{kHz}]$	$f_z[\mathrm{kHz}]$
39, 17	38.84	38.34
39.16	38.57	38.10
39.17	38.73	38.47
39.17	38.44	38.47
39.16	38.37	38.41

Tab. 5: Namerané hodnoty prejdutej dráhy svozíčku a časy pre jazdu vpred t_v a vzad $t_z.$

navyše viacero aproximácii napr., že vozík zrýchľuje nekonečne rýchlo na svoju maximálnu rýchlosť alebo, že sa baterky nevybíjajú

7 Záver

Pomocou priameho a merania a merania odrazom bola rýchlosti zvuku určená postupne ako $v_z=(384.9\pm48.5)~{\rm m\cdot s^{-1}}$ a $v_z=(320.1\pm78.2)~{\rm m\cdot s^{-1}}$.

Reference

[1] Sonar [cit. 8.12.2016]Dostupné po prihlásení z Kurz: Fyzikální praktikum I:https://praktikum.fjfi.cvut.cz/pluginfile.php/4334/mod_resource/content/9/12-sonar-20161014.pdf