Vector Space, Subspace, Column space, Nullspace, dan Complete Solution

> Tutorial TVM Pertemuan 05

Vector space

• Sebuah vector space \mathbf{R}^n terdiri dari seluruh vektor kolom yang mempunyai \mathbf{n} komponen.

• Contoh:

Beberapa vektor kolom beserta vector space nya

$$\begin{bmatrix} 4 \\ \pi \end{bmatrix}$$
 is in \mathbf{R}^2 , $(1, 1, 0, 1, 1)$ is in \mathbf{R}^5 , $\begin{bmatrix} 1+i \\ 1-i \end{bmatrix}$ is in \mathbf{C}^2 .

Vector space

Ada apa saja di vector space R² dan R³?

- R^{2} (bidang 2 dimensi)
- Garis yang melewati origin (1 dimensi)
- Origin (zero vector)

- R^{3} . (ruang 3 dimensi)
- Bidang yang melewati origin (2 dimensi)
- Garis yang melewati origin (1 dimensi)
- Origin (zero vector)

Subspace

 Sebuah subset dari vector space yang memenuhi syarat dari vector space itu sendiri. Bisa disebut juga "Vector space di dalam vector space".

Contoh:

Jadi misal kita punya 3-dimensional-spaces \mathbb{R}^3 . Lalu kita buat suatu bidang \mathbb{R}^2 yang memotong origin (0, 0, 0). Terus kita buat 2 buah vektor di bidang \mathbb{R}^2 tersebut, dan kita jumlahkan kedua vektornya

Apa yang terjadi?

Hasil jumlahan vektornya masih berada di bidang \mathbb{R}^2 tersebut.

Subspace

- Bidang tersebut tampak seperti R². Akan tetapi sebenarnya masih di R³, karena letaknya di 3-dimensional-spaces.
- Contohnya begini, misal kita punya:

$$v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \operatorname{dan} w = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
 akan membentuk bidang.

- Nah, bidang tersebut masih termasuk R³ karena jumlah komponen vektornya ada 3.
- Jadi bidang tersebut merupakan subspace dari seluruh vector space R³

Column space

Subspace yang terbentuk dari **seluruh kombinasi linear** dari vektor kolom

 Untuk matriks A ukuran m x n, maka tiap kolom terletak di R^m dan column space dari A (C(A)) adalah subspace dari R^m

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 1 & 5 \end{bmatrix}$$

$$u \quad v \quad w$$

$$C(A) = c_1 \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Kolom ketiga tidak independen (merupakan kombinasi linear dari kolom 1 dan 2

Terus apa hubungannya sama linear equation Ax = b?

C(A) ada di R^4

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

Column space merupakan nilai **b** yang memungkinkan agar persamaan **Ax** = **b** memiliki penyelesaian (solvable)

Contoh

Ax is
$$\begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 which is $x_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$.

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = b is solvable when b is on that plane. Then b is a combination of the columns.

Nullspace

Seluruh solusi dari Ax = 0

Subspace nullspace, N(A), ada di Rⁿ dengan n adalah banyak kolom dari
 A atau banyak komponen pada vektor x

Dapat dicari dengan menggunakan cara eliminasi

- Eliminasi
 - a. Ordinary echelon form(U)
 - b. Reduced row echelon form (**R**)
- Tentukan pivot dan free variables
- 3. Cari special solution
 - a. Berikan nilai 1 dan 0 secara bergantian ke free variable
 - b. Lakukan back substitution
- 4. Cari linear combination dari semua special solution

$$A = \begin{bmatrix} 1 & 1 & -4 & 2 \\ 1 & 2 & -4 & 1 \\ 1 & 3 & -4 & 0 \\ 1 & 1 & -4 & 2 \end{bmatrix} \xrightarrow{R2 = R2 - R1} \begin{bmatrix} 1 & 1 & -4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R3 = R3 - R2}$$

Matriks U, Ordinary echelon form

- Bisa disederhanakan lagi jadi Reduced row echelon form, dengan syarat: komponen di atas dan di bawah pivot harus 0 dan pivot bernilai 1

$$\begin{bmatrix} 1 & 1 & -4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

U

R memiliki:

- Free column = 2 (col 3, col 4)
- Free variables = $2(x_3, x_4)$
- Pivot column = 2 (col 1, col 2)
- Pivot variables = $2(x_1, x_2)$
- Rank = jumlah pivot column= jumlah pivot variable= 2
- Jumlah special solution
 = jumlah kolom (n) rank (r)
 = 4 2
 = 2

$$\begin{bmatrix} 1 & 0 & -4 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Dalam bentuk persamaan

$$\begin{bmatrix} 1 & 0 & -4 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Dalam bentuk persamaan
$$x_1 - 4x_3 + 3x_4 = 0$$

$$x_2 - x_4 = 0$$

Buat
$$x_3 = 1 dan x_4 = 0$$

$$x_1 - 4(1) + 3(0) = 0$$

$$x_2 - 0 = 0$$

$$x_1 = 4$$

$$r_2 = 0$$

Buat
$$x_3 = 0$$
 dan $x_4 = 1$

$$x_2 - 1 = 0$$

$$x_2 = 0$$
 $x_1 - 4(0) + 3(1) = 0$

$$x_2 = 1$$
$$x_1 = -3$$

Special solution 1 =
$$\begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Special solution 2 =
$$\begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -4 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 Special solution 1 =
$$\begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 Special solution 2 =
$$\begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

N(A) adalah subspace hasil kombinasi linear dari special solution yang didapat

$$N(A) = c_1 \begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Dalam Blok Matriks

$$\begin{bmatrix} 1 & 0 & -4 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$

$$N = \begin{bmatrix} -F \\ I \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Special solution 1

Special solution 2

Solusi lengkap dari Ax=b, dirumuskan dengan:

$$x_{complete} = x_{particular} + x_{nullspace}$$

menyelesaikan menyelesaikan persamaan $Ax_p = b$ menyelesaikan persamaan $Ax_p = 0$

Kok bisa? Logikanya dari mana?

$$Ax_p = b$$

$$Ax_n = 0$$

$$A(x_p + x_n) = b$$

- 1. Cari x_p
 - a. Eliminasi
 - b. Tentukan pivot dan free variable
 - c. Buat semua free variable bernilai 0
 - d. Lakukan back substitution
- Cari x_n
 Sama seperti mencari nullspace
- 3. Jumlahkan x_p dan x_n

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

1. Cari particular solution x_n

$$\begin{bmatrix}
1 & 2 & 2 & 2 & 1 \\
2 & 4 & 6 & 8 & 5 \\
3 & 6 & 8 & 10 & 6
\end{bmatrix}
\xrightarrow{R2 = R2 - 2R1}
\begin{bmatrix}
1 & 2 & 2 & 2 & 1 \\
0 & 0 & 2 & 4 & 3 \\
0 & 0 & 2 & 4 & 3
\end{bmatrix}
\xrightarrow{R3 = R3 - R2}$$

$$\begin{bmatrix}
1 & 2 & 0 & -2 & -2 \\
0 & 0 & 1 & 2 & 3/2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{1/2*R2}
\begin{bmatrix}
1 & 2 & 0 & -2 & -2 \\
0 & 0 & 2 & 4 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{R1 = R1 - R2}
\begin{bmatrix}
1 & 2 & 2 & 2 & 1 \\
0 & 0 & 2 & 4 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
[R | c]

Find the **complete solution** to this Ax=b equation

Complete Solution

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

Cari particular solution x

Persamaannya menjadi:

$$x_1 + 2x_2 - 2x_4 = -2$$
$$x_3 + 2x_4 = \frac{3}{2}$$

pivot column

Bukan subspace! Hanya vektor biasa!

$$x_p = \begin{bmatrix} 0 \\ 3/2 \\ 0 \end{bmatrix}$$

Set free variable, $x_2 = 0$, $x_4 = 0$

$$\begin{vmatrix} 0 & x_1 + 2(0) - 2(0) = -2 & x_1 = -2 \\ 3/2 & x_3 + 2(0) = 3/2 & x_3 = 3/2 \end{vmatrix}$$

$$x_3 + 2(0) = \frac{3}{2}$$

$$x_3 = \frac{3}{2}$$

2. Cari x_n (nullspace dari A)

$$R = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Karena x_2 dan x_4 adl free variable, maka...

Set
$$x_2 = 1, x_4 = 0$$

$$x_1 + 2(1) - 2(0) = 0$$
 $x_1 = -2$

$$x_3 + 2(0) = 0$$

$$x_3 = 0$$

Find the **complete solution** to this Ax=b equation

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

Persamaannya menjadi:

$$x_1 + 2x_2 - 2x_4 = 0$$

$$x_3 + 2x_4 = 0$$

Set
$$x_2 = 0, x_4 = 1$$

$$x_1 + 2(0) - 2(1) = 0$$
 $x_1 = 2$

$$x_3 + 2(1) = 0$$

$$x_3 = -2$$

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

2. Cari x (nullspace dari A)

special solution
$$1 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$$
 special solution $2 = \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}$

$$x_n = c_1 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix}$$

3. Cari complete solution, x

$$x_{p} = \begin{bmatrix} -2\\0\\3/2\\0 \end{bmatrix} \qquad x_{n} = c_{1} \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_{2} \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}$$
$$x = \begin{bmatrix} -2\\0\\3/2\\2 \end{bmatrix} + c_{1} \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_{2} \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}$$

Ga Sempat Kuis Tutorial Minggu Lalu?

Akan ada Kuis susulan Pukul 14.30 WIB ya di akhir tutorial

Selesai

Silakan bergabung di kelas kecil masing-masing untuk latihan soal

Exercise 1

1

$$matrix A = \begin{bmatrix} 10 & 5 & 15 & 30 & 10 \\ 15 & 10 & 5 & 30 & 10 \\ 15 & 10 & 15 & 20 & 20 \end{bmatrix}$$

- 1. What is the most obvious basis of **C(A)**?
- 2. Find the dimension of C(A)!
- 3. Find the 3 vectors of **C(A)** and the linear combinations of the basis to obtain those vectors
- 4. What is the geometry of **C(A)**?

Exercise 2

$$matrix A = \begin{bmatrix} 10 & 5 & 15 & 30 & 10 \\ 15 & 10 & 5 & 30 & 10 \\ 15 & 10 & 15 & 20 & 20 \end{bmatrix}$$

- 1. Find rref of matrix A!
- 2. Determine the pivot variables and pivot columns!
- 3. Find the free variables and free columns!
- 4. Find the rank of matrix A!

Exercise 3

$$2x + y - t = 1$$
$$y + 2z + t = -1$$
$$2x + 3y + 4z = 0$$

- a. Convert into Ax=b!
- b. Find all of the sub-spaces for the column space C(A)!
- c. Convert A into Reduced Row Echelon Form Rref!
- d. What is spanned by the Null-space of A N(A)!
- e. Find the complete solution of point a!

Pembahasan

Bukti Presensi Pakai Latihan Soal ya Link: s.id/PresensiTutorTVM5

Solution No 1

 Basis yang paling jelas dari C(A) adalah pivot columns dari matrix A yaitu kolom ke-1, ke-2, dan ke-3. Sehingga basis yang paling jelas untuk C(A) adalah

$$\begin{bmatrix} 10\\15\\15 \end{bmatrix}; \begin{bmatrix} 5\\10\\10 \end{bmatrix}; dan \begin{bmatrix} 15\\5\\15 \end{bmatrix}$$

2. Dimensi dari C(A) adalah jumlah vektor pada basis C(A) yaitu 3.

3. Tiga vektor di C(A) dapat diperoleh dengan mencari 3 sembarang kominasi linear dari basis C(A) dengan persamaan:

$$c\begin{bmatrix}10\\15\\15\end{bmatrix} + d\begin{bmatrix}5\\10\\10\end{bmatrix} + e\begin{bmatrix}15\\5\\15\end{bmatrix}; c, d, e \in bilangan Real$$

i. Jika c=0, d=1, e=1, maka vektornya

$$0\begin{bmatrix} 10\\15\\15 \end{bmatrix} + 1\begin{bmatrix} 5\\10\\10 \end{bmatrix} + 1\begin{bmatrix} 15\\5\\15 \end{bmatrix} = \begin{bmatrix} 20\\15\\25 \end{bmatrix}$$

ii. Jika c=1, d=0, e=1, maka vektornya

$$1 \begin{bmatrix} 10 \\ 15 \\ 15 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ 10 \\ 10 \end{bmatrix} + 1 \begin{bmatrix} 15 \\ 5 \\ 15 \end{bmatrix} = \begin{bmatrix} 25 \\ 20 \\ 30 \end{bmatrix}$$

iii. Jika c=1, d=1, e=0, maka vektornya

$$1 \begin{bmatrix} 10 \\ 15 \\ 15 \end{bmatrix} + 1 \begin{bmatrix} 5 \\ 10 \\ 10 \end{bmatrix} + 0 \begin{bmatrix} 15 \\ 5 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 25 \\ 25 \end{bmatrix}$$

dalam R^3

4. Geometri C(A) berupa sebuah plane (bidang) berdimensi tiga di

Solution No 2

1.

[10 5 15 30 10] 15 10 5 30 10 15 10 15 20 20]	$R_2 = R_2 - \frac{3}{2}R_1$ $R_3 = R_3 - \frac{3}{2}R_1$
$\begin{bmatrix} 10 & 5 & 15 & 30 & 10 \\ 0 & \frac{5}{2} & -\frac{35}{2} & -15 & -5 \\ 0 & \frac{5}{2} & -\frac{15}{2} & -25 & 5 \end{bmatrix}$	$R_1 = \frac{1}{10}R_1$
$\begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} & 3 & 1 \\ 0 & \frac{5}{2} & -\frac{35}{2} & -15 & -5 \\ 0 & \frac{5}{2} & -\frac{15}{2} & -25 & 5 \end{bmatrix}$	$R_1 = R_1 - \frac{1}{5}R_2$ $R_3 = R_3 - R_2$
$\begin{bmatrix} 1 & 0 & 5 & 6 & 2 \\ 0 & \frac{5}{2} & -\frac{35}{2} & -15 & -5 \\ 0 & 0 & 10 & -10 & 10 \end{bmatrix}$	$R_2 = \frac{2}{5}R_2$

$$\begin{bmatrix} 1 & 0 & 5 & 6 & 2 \\ 0 & 1 & -7 & -6 & -2 \\ 0 & 0 & 10 & -10 & 10 \end{bmatrix}$$

$$R_1 = R_1 - \frac{1}{2}R_3$$

$$R_2 = R_2 + \frac{7}{10}R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 11 & -3 \\ 0 & 1 & 0 & -13 & 5 \\ 0 & 0 & 10 & -10 & 10 \end{bmatrix}$$

$$R_3 = \frac{1}{10}R_3$$

$$rref(A) = \begin{bmatrix} 1 & 0 & 0 & 11 & -3 \\ 0 & 1 & 0 & -13 & 5 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}$$

3. Free variables : x_4 , x_5 dan Free Columns : Kolom 4, kolom 5

kolom 3

4. Rank = 3

2. Pivot variables : x_1 , x_2 , x_3 dan Pivot Columns : Kolom 1, kolom 2,

Solution 3

a. Ax=b dapat ditulis juga sebagai berikut.

$$\begin{bmatrix} 2 & 1 & 0 & -1 \\ 0 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

b. Dapat ditentukan sebagai berikut.

$$\begin{bmatrix} 2 & 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & 1 & \vdots & -1 \\ 2 & 3 & 4 & 1 & \vdots & 0 \end{bmatrix} \xrightarrow{-R1+R3=R3} \begin{bmatrix} 2 & 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & 1 & \vdots & -1 \\ 0 & 2 & 4 & 2 & \vdots & -1 \end{bmatrix} \xrightarrow{-2R2+R3=R3} \begin{bmatrix} 2 & 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & 1 & \vdots & -1 \\ 0 & 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & 1 & \vdots & -1 \\ 0 & 0 & 0 & 0 & \vdots & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R1=R1} \begin{bmatrix} \mathbf{1} & 1/2 & 0 & -1/2 & \vdots & 1/2 \\ 0 & \mathbf{1} & 2 & 1 & \vdots & -1 \\ 0 & 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$$

Karena hanya memiliki 2 pivot maka matriks tidak full column rank sehingga column space merupakan

kombinasi linear dari
$$C(A) = A \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} + B \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

c. Dapat ditentukan sebagai berikut.

$$R = Rref(A)$$

dengan menggunakan hasil b diperoleh
$$\begin{bmatrix} \mathbf{1} & 1/2 & 0 & -1/2 \\ 0 & \mathbf{1} & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Yang dibold adalah pivot, elemen diatasnya harus 0. oleh karena itu

$$\begin{bmatrix} \mathbf{1} & 1/2 & 0 & -1/2 \\ 0 & \mathbf{1} & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2}R2 + R1 = R1} \begin{bmatrix} \mathbf{1} & 0 & -1 & -1 \\ 0 & \mathbf{1} & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Sehingga $R = \begin{bmatrix} \mathbf{1} & 0 & -1 & -1 \\ 0 & \mathbf{1} & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

d. Dapat ditentukan sebagai berikut.

$$N(A) = echelon form \begin{bmatrix} 2 & 1 & 0 & -1 \\ 0 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$
 dari perhitungan sebelumnya diperoleh

$$N(A) = \begin{bmatrix} \mathbf{1} & 1/2 & 0 & -1/2 & \vdots & 0 \\ 0 & \mathbf{1} & 2 & 1 & \vdots & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$

dari hasil ecehelon form diperoleh bahwa terdapat 2 free column maka terdapat 2 free variables yaitu z dan t dimana dalam kasus ini terdapat special choice yaitu saat t = 1, y = 0 dan t = 0, y = 1. Oleh karena itu diperoleh

bahwa Nullspace nya berupa bidang yaitu N(A) =
$$A \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix} + B \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

Complete solution: Ax=b dalam augmented matriknya diperoleh $\begin{bmatrix} 1 & 1/2 & 0 & -1/2 & \vdots & 1/2 \\ 0 & 1 & 2 & 1 & \vdots & -1 \\ 0 & 0 & 0 & 0 & \vdots & 1 \end{bmatrix}$ sehingga dapat dismpulkan bahwa matriks not solvable karena baris ke 3 tidak sama dengan 0 (0 = 1) sehingga has no solution maka complete solution nya tidak ada

Dapat ditentukan sebagai berikut.

Selesai

Janlup Presensi!

Ikut Kuis Susulan?

Stay dulu ya!

Soal (Susulan) – 20 menit

Soal 2 (Susulan):

$$2s - t + u + 5v = -4$$

 $3t + u - 2v - 5w = 7$
 $4s - 5u + 10v = 5$
 $2u + 2v + 5w = -1$
 $5s - 3t - 4v - 8w = 16$

Cari solusi dari persamaan di atas menggunakan metode

- a. Eliminasi Gauss-Jordan
- b. Faktorisasi LU
- c. Cari invers matriks A dari persamaan Ax = b persamaan di atas.