COMP2611: Computer Organization

Programs and Numbers

- ☐ You will learn the following in this tutorial:
 - □ the compilation process of computer programs into machine instructions.
 - □ the conversion between binary, decimal and hexadecimal numbers.
 - □ the computer numerical unit prefix.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Programs for MIPS processor

```
swap(int v[], int k)
High-level
language
               lint temp:
                 temp = v[k]:
program
                 v[k] = v[k+1]:
(in C)
                 v[k+1] = temp:
                Compiler
Assembly
              swap:
                   muli $2, $5.4
language
                      $2. $4.$2
                   add
program
                      $15. 0($2)
(for MIPS)
                      $16. 4($2)
                      $16. 0($2)
                   SW
                      $15. 4($2)
                   SW
                   jr
                      $31
                Assembler
          00000000101000010000000000011000
Binary machine
          00000000000110000001100000100001
language
          program
          (for MIPS)
```

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

- □ Numbers can be represented using various bases.
 - □ i.e. base 2, base 10, base 16, etc.
- Decimal numbers are of base 10.
 - \Box For example, $\frac{174_{(10)}}{(10)} = (\frac{1}{100}) + (\frac{7}{100}) + (\frac{4}{100})$
- □ Binary representation (base 2) is the basis of digital data.
 - \Box For example, $18_{(10)} = 10010_{(2)}$
- □ If a number is represented using the base x, each digit of the number can only be one of the values 0, 1, 2, ..., x 1.
- □ For example, a digit of a binary number (called a bit) is either 0 or 1.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

■ We keep on dividing the decimal integer by 2 until the quotient is 0. The remainder at each step corresponds to a digit of the integer in base 2, from the Least Significant Digit (LSD) to the Most Significant Digit (MSD).

- □ The value represented by the i-th bit $\frac{d}{d}$ of a positive binary integer is in fact $\frac{d}{d} \times 2^i$. Note that the Least Significant bit is the 0-th bit.
- Take the integer $ABCD_{(2)}$ as an example, it effectively corresponds to: $ABCD_{(2)} = (Ax2^3) + (Bx2^2) + (Cx2^1) + (Dx2^0)$

2's power	21	2 ²	2 ³	24	2 ⁵	2 ⁶	27	28	2 ⁹	210
value	2	4	8	16	32	64	128	256	512	1024

Question 1: Convert the positive integer 10 $1001_{(2)}$ to the decimal format.

- □ A positive integer of the base t can be represented by a polynomial of t: the i-th digit d of the integer is in fact d x ti.
- \Box Take the integer ABCD_(t) as an example, it effectively corresponds to:

$$ABCD_{(t)} = (A \times t^3) + (B \times t^2) + (C \times t^1) + (D \times t^0)$$

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix Exercises

- □ The binary number system is verbose in that even small numerical values could require long strings of bits to represent.
- Hexadecimal number system is a number system that has a base of 16 (instead of 2).
- □ Under the hexadecimal system, there are 16 possible values for each digit, as shown in the table.

Decimal value	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexa- decimal digit	0	1	2	3	4	5	6	7	80	9	A	В	U	О	Е	F

Converting binary number to hexadecimal

- We just group the binary number into groups of 4 bits, and then each group represents one digit of the corresponding hexadecimal number.
- The conversion can be made immediately by eye inspection.

Converting hexadecimal number to binary

- We just expand each digit of the hexadecimal number into 4 bits, and then the resulting bits from all the digits represent the corresponding binary number.
- □ Again, the conversion can be made immediately by eye inspection.

Question 1: Convert $A7_{(16)}$ to the binary format.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Computer numerical unit prefix

- \Box For representing a number of bits or bytes in computers, the unit prefix Kilo is often used to represent 2¹⁰ (equal to 1024) not 1000.
- \Box For examples, 1 kilobytes = 1024 bytes and 1 kilobits = 1024 bits.
- Similarly, we have the following table for the common prefixes used for bytes and bits:

Unit prefix	Value					
Kilo	2 ¹⁰ (or 1024)					
Mega	2 ²⁰ (or 2 ¹⁰ Kilo)					
Giga	2 ³⁰ (or 2 ¹⁰ Mega)					
Tera	2 ⁴⁰ (or 2 ¹⁰ Giga)					

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Question 1: Convert $176_{(10)}$ to the binary format.

- □ You have learnt:
 - □ the compilation process of computer programs into machine instructions.
 - the conversion between binary, decimal and hexadecimal numbers.
 - the computer numerical unit prefix.