On the attractor of Piecewise Linear Iterated Function Systems

Dániel Prokaj Joint with K. Simon

Alfréd Rényi Institute of Mathematics

Bedlewo, 16 May 2023

Self-similar IFS
$$S = \{S_1, S_2, S_3\}$$

 $\mathcal{F} = \{f_1, f_2, f_3\}$

Preliminaries

Main Results

Proof of Main Theorem I

Proof of Main Theorem II

Let $\mathcal{F} = \{f_k\}_{k=1}^m$ be a finite list of strict contractions on \mathbb{R} . We call it Iterated Function system (IFS). The attractor $\Lambda^{\mathcal{F}}$ of the IFS \mathcal{F} is the unique non-empty compact set

(1)
$$\Lambda^{\mathcal{F}} = \bigcup_{k=1}^{m} f_k(\Lambda^{\mathcal{F}}).$$

Let $I^{\mathcal{F}}$ be the smallest non-empty compact interval such that $f_i(I^{\mathcal{F}}) \subset I^{\mathcal{F}}$ for all $i \in [m] := \{1, \dots, m\}$.

(2)
$$\Lambda^{\mathcal{F}} = \bigcap_{n=1}^{\infty} \bigcup_{(i_1,\dots,i_n) \in [m]^n} I_{i_1\dots i_n}^{\mathcal{F}},$$

where $I_{i_1...i_n}^{\mathcal{F}} := f_{i_1...i_n}(I^{\mathcal{F}})$ are the cylinder intervals, and we use the common shorthand notation $f_{i_1...i_n} := f_{i_1} \circ \cdots \circ f_{i_n}$.

(3)
$$\Phi^{\mathcal{F}}(s) := \limsup_{n \to \infty} \frac{1}{n} \log \sum_{i_1 \dots i_n} |I_{i_1 \dots i_n}^{\mathcal{F}}|^s.$$

It is easy to see that we can obtain $\Phi^{\mathcal{F}}(s)$ above as a special case of the non-additive upper capacity topological pressure introduced by Barreira in [1, p. 5]. $s \mapsto \Phi^{\mathcal{F}}(s)$ is strictly decreasing, continuous, $\Phi^{\mathcal{F}}(0) = \log m$ and tends to $-\infty$ as $s \to \infty$. So, the zero of $\Phi^{\mathcal{F}}(s)$ is well defined

$$s_{\mathcal{F}} := (\Phi^{\mathcal{F}})^{-1}(0).$$

(5)
$$\overline{\dim}_{\mathbf{B}} \Lambda^{\mathcal{F}} \leqslant \min \{1, s_{\mathcal{F}}\}.$$

lf

$$\mathcal{F} = \{ f_k(x) = \frac{\mathbf{r_k}}{\mathbf{r_k}} \cdot x + t_k \}_{k=1}^m$$

is self-similar then $s_{\mathcal{F}}$ is the similarity dimension. That is in the self-similar case

$$\sum_{k=1}^{\infty} r_k^{s_{\mathcal{F}}} = 1.$$

We can thus say that $s_{\mathcal{F}}$ is a generalization of the similarity dimension.

The natural projection

The points of the attractor Λ are coded by the elements of the symbolic space Σ

$$\Sigma := \{ \mathbf{i} = (i_1, i_2, \dots) : i_k \in [m] \},$$

where we write $[m]:=\{1,\dots,m\}$ by the natural coding (or natural projection) $\Pi:\Sigma\to\Lambda$

(7)
$$\Pi^{\mathcal{F}}(\mathbf{i}) := \lim_{n \to \infty} f_{i_1 \dots i_n}(x) = \bigcap_{n=1}^{\infty} I_{i_1 \dots i_n}^{\mathcal{F}},$$

where $x \in \Lambda$ is arbitrary. Clearly, $\Pi^{\mathcal{F}}(\Sigma) = \Lambda$.

Let

$$\mathcal{A} := \{(k, i) : k \in [m], i \in [l(k) + 1]\}, \ \rho := \max_{(k, j) \in \mathcal{A}} \rho_{k, j}.$$

We say that \mathcal{F} is small if

- $\rho < \frac{1}{2}$, when all functions of \mathcal{F} are injective,
- $\rho < \frac{1}{3}$, otherwise.

Fix a type $\ell = (l(1), \ldots, l(m)) \in \mathbb{N}^m$. $\mathfrak{R}^{\ell}_{small}$ is the set of vectors

$$\rho = (\rho_{1,1}, \dots, \rho_{1,l(1)+1}, \dots \rho_{m,1}, \dots, \rho_{m,l(1)+1}) \in ((-1,1)\setminus\{0\})^{L+m}$$

for which conditions (a) and (b) hold. That is \mathcal{F} is small if the vector of the slopes of \mathcal{F} satisfies $\rho_{\mathcal{F}} \in \mathfrak{R}^{\ell}_{\mathrm{small}}$. A CPLIFS \mathcal{F} is uniquely determined by the triple of vectors $(\rho, \mathfrak{b}, \tau)$, where

$$\mathfrak{b} = (\underbrace{b_{1,1}, \dots, b_{1,l(1)}}_{L^1}, \underbrace{b_{2,1}, \dots, b_{2,l(2)}}_{L^2}, \dots, \underbrace{b_{m,1}, \dots, b_{m,l(m)}}_{L^m}) \in \mathfrak{B}^{\boldsymbol{\ell}} \subset \mathbb{R}^L,$$

 $\mathfrak{B}^{\ell} := \{ \mathbf{x} \in \mathbb{R}^L : x_i < x_j \text{ if } i < j \text{ and } \exists k \in [m] \text{ with } i, j \in L^k \}.$

$$\boldsymbol{\tau} := (\tau_1, \ldots, \tau_m) \in \mathbb{R}^m$$
.

<u>Terminology</u>: Let \mathfrak{P} be a property that makes sense for every CPLIFS. Fix a contraction vector $\boldsymbol{\rho} \in \mathfrak{R}^{\boldsymbol{\ell}}_{small}$. We consider the (exceptional) set of those $(\mathfrak{b}, \boldsymbol{\tau}) \in \mathfrak{B}^{\boldsymbol{\ell}} \times \mathbb{R}^m \subset \mathbb{R}^{L+m}$ such that for the associated CPLIFS $\mathcal{F}^{(\mathfrak{b}, \boldsymbol{\tau}, \boldsymbol{\rho})}$ property \mathfrak{P} does <u>not</u> hold: (8)

$$E_{m{\ell}}^{m{
ho}} =: \left\{ (m{\mathfrak{b}}, m{ au}) \in \mathfrak{B}^{m{\ell}} imes \mathbb{R}^m : \mathcal{F}^{(m{\mathfrak{b}}, m{ au}, m{
ho})} ext{ does not have property } \mathfrak{P}
ight\}.$$

We say that property \$\mathbb{Y}\$ holds \(\dot{\dim}_{P}\text{-typically}\) if for all type

 $\ell = (l(1), \dots, l(m))$ and for all $\rho \in \mathfrak{R}^{\ell}_{small}$ we have (9) $\dim_{\mathbf{P}} E^{\rho}_{\ell} < L + m,$

where
$$\boldsymbol{\ell} = (l(1), \dots, l(m))$$
 and $L = \sum_{k=1}^{m} l(k)$ as above.

We always fix a $\rho \in \mathfrak{R}^{\boldsymbol{\ell}}_{small}$ and consider $(\mathfrak{b}, \boldsymbol{\tau}) \in \mathfrak{B}^{\boldsymbol{\ell}} \times \mathbb{R}^m$ as parameters. So, our parameter space is L+m dimensional.

Definition 1.1

For a CPLIFS ${\cal F}$ the generated self-similar IFS

$$S_{\mathcal{F}} = \{S_a(x) = \rho_a x + t_a\}_{a \in \mathcal{A}}$$

consists of those similarity mappings on \mathbb{R} whose graph coincide with the graph of f_k for some $k \in [m]$ on some interval of linearity $J_{k,i}$, $i \in l(k)+1$ of f_k . That IFS

$$S_a|_{J_{k,i}} = f_k|_{J_{k,i}}$$
 if $a = (k,i) \in \mathcal{A}$.

The generated self-similar IFS

Definition 1.2

We say that a small CPLIFS \mathcal{F} is regular if its attractor $\Lambda_{\mathcal{F}}$ does not contain any of the breaking points.

For a regular CPLIFS $\mathcal F$ there is a smallest N such that (10) there are no breaking points in $\bigcup I_{i_1...i_N}$.

 $i_1...i_N$

Then we say that \mathcal{F} is regular of order N.

Preliminaries

Main Results

Proof of Main Theorem I

Proof of Main Theorem II

Theorem 2.1 (Main Theorem I)

For a \dim_{P} -typical small CPLIFS ${\mathcal F}$ we have

(11)
$$\dim_{\mathbf{H}} \Lambda^{\mathcal{F}} = \dim_{\mathbf{B}} \Lambda^{\mathcal{F}} = \min\{1, s_{\mathcal{F}}\}.$$

To prove this result we verify the following theorem. Theorem 2.2

Let F be a regular CPLIFS for which the generated self-similar IFS satisfies the Exponential Separation Condition (ESC). Then

(12)
$$\dim_{\mathbf{H}} \Lambda^{\mathcal{F}} = \dim_{\mathbf{B}} \Lambda^{\mathcal{F}} = \min\{1, s_{\mathcal{F}}\}.$$

Theorem 2.3 (Main Theorem II)

Fix a type ℓ and a small slope vector $\boldsymbol{\rho}$ with positive entries. For \mathcal{L}_{m+L} -almost every $(\mathfrak{b}, \boldsymbol{\tau}) \in \mathfrak{B}^{\ell} \times \mathbb{R}^m$ we have

(13)
$$s_{\mathcal{F}} > 1 \implies \mathcal{L}_1(\Lambda^{(\mathfrak{b},\tau)}) > 0,$$

where $\Lambda^{(\mathfrak{b},\tau)}$ denotes the attractor of $\mathcal{F}^{(\varrho,\mathfrak{b},\tau)}$.

Preliminaries

Main Results

Proof of Main Theorem I

Proof of Main Theorem II

The distance of two similarity mappings $g_1(x) = r_1x + \tau_1$ and $g_2(x) = r_2x + \tau_2$, $r_1, r_2 \in (-1, 1) \setminus \{0\}$, on \mathbb{R} .

(14)
$$\operatorname{dist}(g_1, g_2) := \begin{cases} |\tau_1 - \tau_2|, & \text{if } r_1 = r_2; \\ \infty, & \text{otherwise.} \end{cases}$$

Definition 3.1

Given a self-similar IFS $\mathcal{S} = \{S_k(x)\}_{k=1}^M$ on \mathbb{R} . We say that \mathcal{F} satisfies the Exponential Separation Condition (ESC) if there exists a c>0 and a strictly increasing sequence of natural numbers $\{n_\ell\}_{\ell=1}^\infty$ such that

 $\operatorname{dist}(S_{\overline{\imath}}, S_{\overline{\jmath}}) \geqslant c^{n_{\ell}}$ for all ℓ and for all $\overline{\imath}, \overline{\jmath} \in \{1, \dots, M\}^{n_{\ell}}, \ \overline{\imath} \neq \overline{\jmath}$.

Theorem 3.2 (Hochman [2] and Jordan, Rapaport [4]) Let S be a self-similar IFS on the line as above. We assume that S

Let $\mathcal S$ be a self-similar IFS on the line as above. We assume that $\mathcal S$ satisfies the so called Exponential Separation Condition (ESC).

(a) If
$$\mu$$
 is a self simar measure then $\dim_{\mathrm{H}} \Pi_* \mu = \min \left\{ 1, \frac{h_{\mu}}{\chi(\mu)} \right\}$.

- **(b)** $\dim_{\mathrm{H}} \Lambda = \min\{1, s\}$, where s is the similarity dimension.
- (c) If μ is an ergodic invariant probability measure then $\dim_{\mathrm{H}} \Pi_* \mu = \min \left\{ 1, \frac{h_\mu}{\chi(\mu)} \right\}.$

Fix a vector of contractions $\mathbf{r} := (r_1, \dots, r_M) \in ((-1, 1) \setminus \{0\})^M$. For a $\mathbf{t} := (t_1, \dots, t_M) \in \mathbb{R}^M$ we consider the self-similar IFS associated to the vector of translations \mathbf{t} :

$$S^{t} := \{S_{k}(x) = r_{k}x + t_{k}\}_{k=1}^{M}.$$

The following theorem was proved in [3, Theorem 1.10]
Theorem 3.3 (Multiparameter Hochman Theorem)

(15)
$$\dim_{\mathbf{P}} \{ t \in \mathbb{R}^M : S^t \text{ does not satisfy the ESC } \} = M - 1.$$

Lemma 3.4

Let \mathcal{F} be a CPLIFS, and let $\mathcal{S}_{\mathcal{F}}$ be the generated self-similar IFS. As above let $\mathbf{t} := (t_a)_{a \in \mathcal{A}} \in \mathbb{R}^{L+m}$ be the vector formed from the translation part of the generated self-similar IFS $\mathcal{S}_{\mathcal{F}}$. There is a non-singular linear transformation $F: \mathfrak{B}^{\ell} \times \mathbb{R}^m \to \mathbb{R}^{L+m}$ which depends only on ρ such that

$$F_{\rho}(\mathfrak{b}, \boldsymbol{\tau}) = \boldsymbol{t}.$$

This implies that an assertion holds for packing dimension typical \mathcal{F} if and only if it holds for packing dimension typical generated self-similar system $\mathcal{S}_{\mathcal{F}}$.

Proof of Main Theorem I

The Multiparameter Hochman Theorem implies that ESC is a $\dim_{\rm P}-typical$ property of self-similar systems. Combined with Lemma 3.4 we obtain that the generated self-similar IFS of a typical CPLIFS satisfies the ESC .

The same can be proved for regularity:

Proposition 3.5

A $\dim_{\mathbb{P}}$ -typical small CPLIFS is regular.

This proposition can be proved by a transversality like argument, we use the restrictions on the slopes here.

Proof of Theorem 2.2 in steps

- First we associate a self-similar IFS S_F to every $\mathcal{F} \in \text{CPLIFS}_{\ell,N}$ which is the relevant subsystem of $\mathcal{S}_{\mathcal{F}}^N$, that consists of all N-fold iterations of functions in $\mathcal{S}_{\mathcal{F}}$.
- ▶ Then, we construct a graph-directed self-similar IFS $\mathcal{F}^{\mathcal{G}}$ such that
 - The functions of F^G are elements of the associated IFS S_F.
 The attractor Λ^{FG} of this self-similar GDIFS coincides with Λ^F.

Proof of Theorem 2.2 in steps (Cont.)

Let ν be the Markov measure defined by a stochastic matrix made from the slopes of the functions in $\mathcal{F}^{\mathcal{G}}$. We show that

$$\frac{h_{\mu}}{\chi(\mu)} = s_{\mathcal{F}}.$$

Finally we apply Jordan-Rapaport Theorem for this measure, to show that $s_{\mathcal{F}}$ is also a lower bound.

Preliminaries

Main Results

Proof of Main Theorem I

Proof of Main Theorem II

Let $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ be a directed graph, and define the family of self-similar graph directed iterated function systems $\mathcal{F}^{\mathbf{t}} := \{f_e(x) = \lambda_e x + t_e\}_{e \in \mathcal{E}}$ parametrized by the vector of translations \mathbf{t} . We will use the following result on GDIFSs.

Theorem 4.1 (Keane, Simon, Solomyak, 2003)

Suppose that \mathcal{G} is strongly connected and $\lambda_e > 0$ for all $e \in \mathcal{E}$. Set $N = |\mathcal{E}|$. Then, for \mathcal{L}_N -almost every $\mathbf{t} \in \mathbb{R}$ we have

(a)
$$\dim_{\mathrm{H}} \Lambda = \min\{1, s_{\mathcal{F}}\},$$

(b) if $s_{\mathcal{F}} > 1$, then $\mathcal{L}_1(\Lambda^{\mathbf{t}}) > 0$.

Let $\mathcal{T}^{\rho} \subset \mathfrak{B}^{\ell} \times \mathbb{R}^{m}$ be the set of those $(\mathfrak{b}, \boldsymbol{\tau})$ parameters for which the associated CPLIFS $\mathcal{F}^{(\mathfrak{b}, \boldsymbol{\tau})}$ is regular.

By Proposition 3.5, \mathcal{T}^{ρ} has total Lebesgue measure. Thus, it is enough to prove the theorem for $(\mathfrak{b}, \tau) \in \mathcal{T}^{\rho}$.

Observe that for each $(\mathfrak{b}, \boldsymbol{\tau}) \in \mathcal{T}^{\boldsymbol{\tau}}$ there exists a closed neighbourhood $\mathcal{T}^{\boldsymbol{\tau}}_{(\mathfrak{b}, \boldsymbol{\tau})}$ such that

(16)
$$\forall (\widehat{\mathfrak{b}}, \widehat{\boldsymbol{\tau}}) \in \mathcal{T}^{\boldsymbol{\tau}}_{(\mathfrak{b}, \boldsymbol{\tau})} : \mathcal{G}^{(\widehat{\mathfrak{b}}, \widehat{\boldsymbol{\tau}})} \equiv \mathcal{G}^{(\mathfrak{b}, \boldsymbol{\tau})},$$

where $\mathcal{G}^{(\hat{\mathfrak{b}}, \hat{m{ au}})}$ is the directed graph of the associated GDIFS of $\mathcal{F}^{(\hat{\mathfrak{b}}, \hat{m{ au}})}$.

The result follows from Theorem 4.1 and Lemma 3.4.

Thank you for your attention!

References

[1] Luis M Barreira.

A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems.

Francisc Theory and Dynamical Systems, 16(5):871–928, 1996

Ergodic Theory and Dynamical Systems, 16(5):871–928, 1996.

[2] Michael Hochman.

On self-similar sets with overlaps and inverse theorems for entropy.

Annals of Mathematics, pages 773-822, 2014.

[3] Michael Hochman.

On self-similar sets with overlaps and inverse theorems for entropy in \mathbb{R}^d , 2015.

References (cont.)

[4] Thomas Jordan and Ariel Rapaport.
Dimension of ergodic measures projected onto self-similar sets with overlaps.

Proceedings of the London Mathematical Society, 2020.