Anticipez les besoins en consommation électrique de bâtiments pour la ville de Seattle

Compétences évaluées

- Mettre en place le modèle d'**apprentissage supervisé** adapté au problème métier
- Transformer les variables pertinentes d'un modèle d'apprentissage supervisé
- Évaluer les **performances** d'un modèle d'apprentissage supervisé
- Adapter les **hyperparamètres** d'un algorithme d'apprentissage supervisé afin de l'améliorer

Plan

Problématique

- I Cleaning
- **II Feature Engineering**
- **III Exploration**
- IV Modélisation
- V Modèle final

Problématique

"Ville neutre en émissions de carbone en 2050 pour les bâtiments non destinés à l'habitation"

- Prédire les émissions de CO2 et la consommation totale d'énergie sans les relevés de consommation annuels coûteux.
- Évaluer l'intérêt de l' "ENERGY STAR Score" dans la prédiction d'émissions de CO2

Étapes pour la modélisation

11 algorithmes:

LinearRegression

Lasso

Ridge

Elastic Net

SVR

Decision Tree Random Forest

> XGBoost AdaBoost GradientBoosting

KnearestNeighbors()

2 modèles:

Y= GHGEmissions(MetricTonsCO2e)

Y = SiteEnergyUse(kBtu)

- **ETAPE 1 Normalisation** des variables numériques
 - **Encodage** des variables catégoriques
 - Passage au log de Y
- **ETAPE 2** Cross Validation Scoring des modèles
- **ETAPE 3 -** Évaluation des performances des modèles après entraînement
 - Plot de la prédiction ŷ versus valeurs y réelles
 - Importance des variables du modèle retenu.
- **ETAPE 4** Grid Seach sur les Hyperparamètres du modèle retenu sans ENERGYSTARScore
 - Grid Seach sur les Hyperparamètres du modèle retenu avec ENERGYSTARScore

I - Cleaning: traitement des lignes

- Suppression des lignes contenant "Multifamily"
- Éviter les doublons sur OSEBuildingID
- Suppression de lignes si la valeur est un NaN ou si la valeur tend vers l'infini ou si la valeur est une valeur aberrante
- Traitement des NaN avec KNN Imputer sur 'ENERGYSTARScore', 'NumberofPropertyUseTypes' et imputation manuelle sur ZipCode

I - Cleaning : traitement des lignes

Traitement des NaN avec **KNN Imputer** sur 'ENERGYSTARScore','NumberofPropertyUseTypes' et **imputation manuelle** sur ZipCode

II - Feature Engineering: traitement des colonnes

Éviter la redondance :

- Suppression des variables telles que SteamUse(kBtu), Electricity(kWh), Electricity(kBtu), NaturalGas(therms), NaturalGas(kBtu).
- Suppression des autres colonnes non utiles
- Création de nouvelles variables telles que Age, NumberofPropertyUseTypes, GFABuildingRate, GFABuildingRate, GFAPerBuilding, GFAPerFloor, harvesine_distance.

Small- and Mid-Sized Office Other Warehouse Large Office	295 191 180 171
Mixed Use Property	104
Retail Store	94
Hotel	76
Worship Facility	72
Distribution Center	51
Medical Office	41
K-12 School	40
Supermarket / Grocery Store	40
Self-Storage Facility	28
Residence Hall	21
Senior Care Community	20
University	17
Refrigerated Warehouse	12
Restaurant	11
Hospital	10
Laboratory	10
Non-Refrigerated Warehouse	2
Restaurant\n	1
Name: PrimaryPropertyType, o	dtype: int64

400 600

BuildingType

1- Analyse Uni variée - variables numériques

Répartition des données d'emissions de CO2 en fonction des coordonnées géographiques

Répartition des données d'emissions de CO2 en fonction des coordonnées géographiques

IV - Modélisation: Cross Validation Scores

R2 - Coefficient de determination SCE / SCT (ANOVA) compris entre [0,1]

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y_{i}})^{2}}{\sum (y_{i} - \bar{y_{i}})^{2}}$$

y_i la valeur du point i

 $\hat{y_i}$ la valeur prédite

 \bar{y} la moyenne empirique des points donnés.

MAE - Mean absolute error

$$MAE = \frac{\sum |(\hat{y_i} - y_i)|}{N}$$

MSE - Mean Squared Error

RMSE - Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum (y_i - \hat{y_i})}{N}}$$

IV - Modélisation: Cross Validation Scores sur le Train

GHGEmissions(MetricTonsCO2e)

* R2: GBR - Gradient Boosting Regressor * MAE: GBR - Gradient Boosting Regressor * MSE: GBR - Gradient Boosting Regressor * RMSE: GBR - Gradient Boosting Regressor

IV - Modélisation: Cross Validation Scores sur le Train

SiteEnergyUse(kBtu)

* R2: GBR - Gradient Boosting Regressor * MAE: GBR - Gradient Boosting Regressor * MSE: GBR - Gradient Boosting Regressor * RMSE: GBR - Gradient Boosting Regressor

IV - Modélisation : Performance sur le Test

GHGEmissions(MetricTonsCO2e):

* R2 : ABR - AdaBoost Regressor car R2_test > R2_train

* MAE : ABR - AdaBoost Regressor car l'écart entre le train et test

est le plus petit

* MSE : ABR - AdaBoost Regressor car l'écart entre le train et test

est le plus petit

* RMSE : **ABR** - AdaBoost Regressor car l'écart entre le train et

test est le plus petit

IV - Modélisation : Performance sur le Test

SiteEnergyUse(kBtu):

* R2: ABR - AdaBoost Regressor car l'écart entre le train et test est le plus petit tout en ayant un R2 pas trop faible

* MAE : **ABR** - AdaBoost Regressor car l'écart entre le train et test est le plus petit

* MSE : **ABR** - AdaBoost Regressor car l'écart entre le train et test est le plus petit

* RMSE : **ABR** - AdaBoost Regressor car l'écart entre le train et test est le plus petit tout en ayant un RMSE pas trop élevé.

En conclusion, même si le GBR obtient de bons résultats, il faut tout de même prendre en condération la **complexité** du modèle rendant celui-ci moins géneralisable aux nouvelles données.

Pour ne pas choisir les extrêmes, j'opterai un modèle qui soit le plus **genéralisable** possible avec des **performances satisfaisantes**.

Nous allons donc séléctionner le modèle AdaBoost Regressor pour prédire la variable SiteEnergyUse et GHGEmissions(MetricTonsCO2e).

GridSearch sans EneryStarScore

GHGEmissions(MetricTonsCO2e)

explained variance: 0.4575

0.4574 MAF: 0.9104 MSE: 1.42

RMSE: 1.1916

AdaBoost Regressor sans EneryStarScore

MAE: 0.9133

R2: 0.4757

RMSE: 1.171

MSE: 1.372

Dans ce cas précis la **GridSearch** n'est pas nécessaire. On garde alors le premier modèle.

GridSearch + EneryStarScore

explained variance: 0.4592

r2: 0.4592 MAE: 0.9131 MSF: 1.4154 RMSE: 1.1897

ENERGYSTARScore améliore que très sensiblement le modèle.

Ce qui corrobore la matrice de corrélation faite dans la première partie : Pélec 01 notebook.

GHGEmissions(MetricTonsCO2e)

Nous allons donc séléctionner le modèle AdaBoost Regressor sans EneryStarScore et sans GridSearch pour prédire la variable GHGEmissions(MetricTonsCO2e).

Nous allons donc séléctionner le modèle AdaBoost Regressor sans EneryStarScore pour prédire la variable SiteEnergyUse(kBtu).

MERCI POUR VOTRE ATTENTION