

MEDIDAS CON SIGNO

ALAN REYES-FIGUEROA TEORÍA DE LA MEDIDA E INTEGRACIÓN

(AULA 27) 10.MAYO.2023

Estudiamos una generalización del concepto de medida positiva, al caso cuando la medida toma valores positivos y negativos.

Definición

Sea (X, A) un espacio mesurable. Una **medida con signo** en (X, A) es una función $\nu: A \to \overline{\mathbb{R}}$ tal que:

i)
$$\nu(\varnothing) = 0$$
,

ii)
$$\nu$$
 es σ -aditiva, $\nu(\bigcup_{k>1} E_k) = \sum_{k>1} \nu(E_k)$.

iii) ν toma a lo sumo uno de los valores $+\infty$ ó $-\infty$.

Obs! La igualdad en (ii) debe entenderse como sigue:

Si
$$\left|\nu\left(\bigcup_{k\geq 1}E_k\right)\right|<+\infty$$
, entonces la serie $\sum_{k\geq 1}\nu(E_k)$ en (ii) converge absolutamente; y si

$$u\Big(\bigcup_{k\geq 1} E_k\Big) = \pm \infty$$
, entonces la serie converge (en sentido extendido) a $+\infty$ ó $-\infty$.

Diremos que ν es **finita** si $|\nu(E)| < +\infty$, para todo $A \in A$.

Diremos que es σ -finita si existe una sucesión de elementos mesurables $\{E_k\}_{k\geq 1}\subseteq \mathcal{A}$, tal que $E_k\nearrow X$ y $|\nu(E_k)|<+\infty$, para todo $k\geq 1$.

Teorema

Sea (X, A) un espacio mesurable, y $\nu : A \to \overline{\mathbb{R}}$ una medida con signo.

i) Si E, F \in A son tales que E \subseteq F y $|\nu(F)| < +\infty$, entonces

$$\nu(\mathsf{F} - \mathsf{E}) = \nu(\mathsf{F}) - \nu(\mathsf{E}).$$

ii) Si $\{E_n\}_{n\geq 1}\subseteq \mathcal{A}$ es una secuencia monótona de conjuntos mesurables $(E_n\nearrow E)$ ó $E_n\searrow E)$ y existe y $|\nu(E_1)|<+\infty$, entonces

$$\nu(\lim_{n\to\infty}E_n)=\nu(E)=\lim_{n\to\infty}\nu(E_n).$$

Prueba: La parte (i) se sigue del hecho que ν es aditiva. Basta hacer $E_1 = E$, $E_2 = F - E$, y $E_k = \emptyset$, para $k \ge 2$. Luego,

$$\nu(F) = \nu\Big(\bigcup_{k>1} E_k\Big) = \sum_{k>1} \nu(E_k) = \nu(E) + \nu(F - E).$$

Si alguno o ambos sumandos fuesen infinitos, entonces $\nu(F)$ sería infinito también, por lo que necesariamente ambos sumandos son finitos. De ahí que $\nu(F-E)=\nu(F)-\nu(E)$.

Mostramos ahora la parte (ii). Usando (i), la demostración es idéntica a las del la continuidad inferior y superior para medidas positivas, salvo que los límites no son necesariamente monótonos. Asimismo, la condición $|\nu({\it E}_1)|<+\infty$ es sólo necesaria para el caso decreciente. \Box

Ejemplo 1: Sean $\mu_1, \mu_2 : \mathcal{A} \to \overline{\mathbb{R}}$ medidas positivas, con alguna de ellas μ_1 ó μ_2 finita. Entonces, la función $\nu : \mathcal{A} \to \overline{\mathbb{R}}$ dada por

$$\nu(A) = \mu_1(A) - \mu_2(A)$$
, para $A \in \mathcal{A}$,

es una medida con signo. Si ambas μ_1 y μ_2 son finitas, entonces ν es también finita.

Ejemplo 2: Sea $\mu:\mathcal{A}\to\overline{\mathbb{R}}$ una medida positiva, y sea $f\in L^1(X)$. Definimos $\nu:\mathcal{A}\to\overline{\mathbb{R}}$ mediante $\nu(\mathsf{A})=\int_{\mathsf{v}}\!f\,d\mu,\ \ \mathsf{para}\ \mathsf{A}\in\mathcal{A}.$

Entonces, ν es una medida con signo, y es finita.

Observe que si $\mu_1(A)=\int_A f^+ d\mu$ y $\mu_2(A)=\int_A f^- d\mu$, entonces μ_1 y μ_2 son medidas finitas y $\nu=\mu_1-\mu_2$.

Probaremos que toda medida con signo es siempre la diferencia de dos medidas, con alguna de ellas finita.

Definición

Sea (X, A) un espacio mesurable, y $\nu : A \to \overline{\mathbb{R}}$ una medida con signo sobre A.

- i) Un conjunto $A \in A$ es **positivo** para ν si $\nu(E) \ge 0$, para todo $E \subseteq A$, $E \in A$.
- ii) Un conjunto $B \in A$ es **negativo** para ν si $\nu(E) \le 0$, para todo $E \subseteq B$, $E \in A$.
- iii) Un conjunto N \in \mathcal{A} es **nulo** para ν si ν (E) = 0, para todo E \subseteq N, E \in \mathcal{A} .

Proposición

• Si A es positivo para ν , entonces $\nu\big|_{\mathcal{A}\cap \mathcal{A}}:\mathcal{A}\cap \mathcal{A}\to\overline{\mathbb{R}}$ define una medida en $(\mathcal{A},\mathcal{A}\cap \mathcal{A})$. Análogamente, si B es positivo para ν , entonces $-\nu\big|_{\mathcal{A}\cap \mathcal{B}}:\mathcal{A}\cap \mathcal{B}\to\overline{\mathbb{R}}$ define una medida en $(\mathcal{B},\mathcal{A}\cap \mathcal{B})$.

- Todo subconjunto mesurable de un conjunto positivo, negativo y nulo para ν es positivo, negativo o nulo para ν , respectivamente.
- N es nulo para $\nu \iff N$ es positivo y negativo para ν .

Ejemplo: En el ejemplo anterior, si $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ una medida positiva, $f \in L^1(X)$, y $\nu: \mathcal{A} \to \overline{\mathbb{R}}$ es dada por $\nu(E) = \int_F f \, d\mu, \ \ \text{para} \ E \in \mathcal{A}.$

 J_E Consideremos. $A = \{ \mathbf{x} \in X : f(\mathbf{x}) > 0 \}, B = \{ \mathbf{x} \in X : f(\mathbf{x}) < 0 \}, N = \{ \mathbf{x} \in X : f(\mathbf{x}) < 0 \}$

Consideremos, $A = \{\mathbf{x} \in X : f(\mathbf{x}) \ge 0\}$, $B = \{\mathbf{x} \in X : f(\mathbf{x}) \le 0\}$, $N = \{\mathbf{x} \in X : f(\mathbf{x}) = 0\}$. Todos son conjuntos ν -mesurables, y A es positivo, B es negativo, B es nulo.

Lema

Sea (X,\mathcal{A}) espacio mesurable y $\nu:\mathcal{A}\to\overline{\mathbb{R}}$ una medida con signo. Sea $\{A_n\}_{n\geq 1}\subseteq\mathcal{A}$ una secuencia de conjuntos positivos para ν . Entonces, $A=\bigcup_n A_n$ es positivo para ν . (Análogamente para conjuntos negativos, y conjuntos nulos para ν).

Prueba: Hacemos la prueba para el caso positivo. Los otros dos casos se prueban de forma similar.

Como $A_1 \cup A_2 = (A_1 - A_2) \cup (A_1 \cap A_2) \cup (A_2 - A_1)$, y estos tres últimos subconjuntos son positivos para ν , entonces para cualquier subconjunto $E \subseteq A_1 \cup A_2$, vale

$$\nu(E) = \nu(E \cap (A_1 - A_2)) + \nu(E \cap A_1 \cap A_2) + \nu(E \cap (A_2 - A_1)) \ge 0.$$

Por inducción, se sigue que toda unión finita $C_k = \bigcup_{k=1}^n A_k$ es un conjunto positivo para ν . La secuencia $\{C_k\}$ es ascendente, así para $E \subseteq A$, tenemos que $C_k \cap E \nearrow A \cap E = E$.

Por continuidad superior, $\nu(E) = \lim_k \nu(C_k \cap E) \geq 0$. Así, A es positivo para ν . \square

Teorema (Teorema de Descomposición de Hahn)

Sea (X, \mathcal{A}) espacio mesurable y $\nu : \mathcal{A} \to \overline{\mathbb{R}}$ una medida con signo. Entonces, existen conjuntos mesurables $A, B \in \mathcal{A}$ (no necesariamente únicos), tales que $X = A \cup B$, A es positivo para ν , y B es negativo para ν .

Prueba: Como ν toma a lo sumo un valor extendido, podemos suponer que $-\infty < \nu \le +\infty$.

Definamos $\beta=\inf\{\nu(B): Bes \ negativo \ para \ \nu\}$, y hallamos una secuencia $\{B_n\}_{n\geq 1}\subseteq \mathcal{A}$ de conjunto negativos para los cuales

$$\beta = \lim_{n \to \infty} \nu(B_n).$$

Del lema, $B = \bigcup_{n \ge 1} B_n$ es negativo para ν , y por definición de β , se tiene que $\beta \le \nu(B)$. Por otro lado, $B_n \subseteq B$ y $B - B_n$ es negativo, así que -o.2cm

$$\nu(\mathsf{B}) = \nu(\mathsf{B}_\mathsf{n}) + \nu(\mathsf{B} - \mathsf{B}_\mathsf{n}) \le \nu(\mathsf{B}_\mathsf{n}) \implies \nu(\mathsf{B}) \le \lim_{n \to \infty} \nu(\mathsf{B}_\mathsf{n}) = \beta.$$

Esto muestra que $\beta = \nu(B) \in (-\infty, 0]$.

Sea A = X - B. Basta mostrar que A es positivo para ν . Supongamos que no lo es. Entonces, existe un subconjunto mesurable $E_0 \subseteq A$, $E_0 \in A$ tal que $\nu(E_0) < o$.

 $E_{\rm o}$ no puede ser negativo para ν , pues si lo fuera entonces $B \cup E_{\rm o}$ sería negativo y $\nu(B \cup E_{\rm o}) = \beta + \nu(E_{\rm o}) < \beta$, contrario a la definición de β . Así, $E_{\rm o}$ contiene un subconjunto mesurable de medida positiva. Sea $k_1 \in \mathbb{N}$ el menor natural tal que $E_{\rm o}$ contiene un subconjunto $E_1 \in \mathcal{A}$ con $\nu(E_1) \geq \frac{1}{k_1}$.

Como
$$|\nu(E_0)|=-\nu(E_0)<+\infty$$
 y $E_1\subset E_0$, se tiene que $\nu(E_1)<+\infty$, y por sustractividad
$$\nu(E_0-E_1)=\nu(E_0)-\nu(E_1)\leq \nu(E_0)-\frac{1}{k_1}<0.$$

Repitiendo el argumento usado para E_0 , ahora para $E_0 - E_1$ concluimos que $E_0 - E_1$ no puede ser negativo para ν y definimos k_2 como el menor natural tal que $E_0 - E_1$ contiene un subconjunto $E_2 \in \mathcal{A}$ con $\nu(E_2) \geq \frac{1}{k_2}$.

De manera inductiva, hallamos subconjuntos disjuntos $E_1, E_2, \dots E_n \in \mathcal{A}$ contenidos en E_0 tales que $\nu(E_j) \geq \frac{1}{k_i}, \quad j=1,2,\dots,n,$

con k_j el menor natural tal que $E_{\rm o} - \bigcup_{t=1}^j E_t$ contiene algún subconjunto de medida $\geq \frac{1}{k_j}$.

Por
$$\sigma$$
-aditividad

$$\sum_{j\geq 1}\frac{1}{k_j}\leq \sum_{j\geq 1}\nu(E_j)=\nu\Big(\bigcup_{j\geq 1}E_j\Big)<+\infty.$$

((pues $\bigcup_j E_j \subseteq E_0$ y $|\nu(E_0 E)| < +\infty$), por lo que necesariamente $k_j \to \infty$, cuando $j \to \infty$.

Sea $F_0 = E_0 - \bigcup_{j \geq 1} E_j$. Entonces, si $F \subseteq F_0$, con $F_0 \in \mathcal{A}$, se tiene que $\nu(F) \leq 0$, pues $\nu(F) > 0$, existe $\ell \in \mathbb{N}$ tal que $\nu(F) \geq \frac{1}{\ell}$ y como $F \subseteq E_0 - \bigcup_{j \geq 1} E_j$, se sigue de la definición de k_j , que $k_j \leq \ell$, $\forall j$, lo cual no es posible, con lo que se prueba que F_0 es negativo para ν y ajeno a B, asi que, $B \cup F_0$ es negativo para ν y $\nu(B \cup F_0) < \beta$, contradiciendo la definición de β . Portanto, A es positivo para ν . \square

La descomposición $X = A \cup B$ se llama una **descomposición de Hahn** para ν , y se denota por $(A \mid B)$.

Teorema

Sean $(A_1 \mid B_1)$ y $(A_2 \mid B_2)$ descomposiciones de Hahn para ν . Entonces, éstas son ν -esencialmente iguales en el sentido que $A_1 \triangle A_2$ y $B_1 \triangle B_2$. son ν -nulos.

Prueba: Sea $E \subseteq A_1 \triangle A_2$, $E \in \mathcal{A}$. Entonces

$$\nu(E) = \nu(E \cap (A_1 - A_2)) + \nu(E \cap (A_2 - A_1)).$$

Como $E \cap (A_1 - A_2) \subseteq A_1$ y $E \cap (A_2 - A_1) \subseteq A_2$, se sigue que $\nu(E) \ge 0$.

Por otro lado, como $E \cap (A_1 - A_2) \subseteq B_2$ y $E \cap (A_2 - A_1) \subseteq B_1$, se sigue que $\nu(E) \neq 0$.

Esto muestra que $\nu(E)=$ o, y portanto, $A_1\triangle A_2$ es nulo para ν . Similar para $B_1\triangle B_2$. \square

Dada una medida con signo ν , es posible construir a partir de cualquier descomposición de Hahn (A | B) para ν , dos medidas ν^+ y ν^- (alguna de ellas finita), tales que $\nu=\nu^++\nu^-$.

Teorema (Teorema de Descomposición de Jordan)

Sea (X,\mathcal{A}) espacio mesurable y $\nu:\mathcal{A}\to\overline{\mathbb{R}}$ una medida con signo. Entonces, existen dos medidas $\nu^+,\nu^-:\mathcal{A}\to\overline{\mathbb{R}}$, positivas, alguna de ellas finita, tales que $\nu=\nu^++\nu^-$. ν^+ y ν^- se llaman la **variación positiva** y la **variación negativa** de ν , respectivamente.

Prueba: Sea $(A\mid B)$ una descomposición de Hahn para ν . Definimos $\nu^+,\nu^-:\mathcal{A}\to\overline{\mathbb{R}}$ por

$$\nu^+(E) = \nu(E \cap A), \qquad \nu^-(E) = -\nu(E \cap B), \qquad \text{para } E \in \mathcal{A}.$$

Como A es positivo para ν y B es negativo para ν , entonces ν^+, ν^- son funciones no-negativas, $\nu^+(\varnothing) = \nu^-(\varnothing) = o$ y ν^+, ν^- son σ -aditivas, por ser contracciones de ν . Portanto, ν^+, ν^- son medidas positivas sobre $\mathcal A$.

Sea $E \in \mathcal{A}$ arbitrario. Entonces

$$\nu(\mathsf{E}) = \nu(\mathsf{E} \cap \mathsf{X}) + \nu(\mathsf{E} \cap (\mathsf{A} \cup \mathsf{B})) = \nu(\mathsf{E} \cap \mathsf{A}) + \nu(\mathsf{E} \cap \mathsf{B}) = \nu^+(\mathsf{E}) - \nu^-(\mathsf{E}).$$

En el caso $\nu(E)=+\infty$, entonces $\nu(E\cap B)>-\infty$, y $\nu^+(E)=\nu(E\cap A)=+\infty$, ν^- es finita. Análogamente, si $\nu(E)=-\infty$, entonces $\nu^-(E)=+\infty$ y ν^+ es finita. \square

Obs! La descomposición de Jordan $\nu=\nu^+-\nu^-$, independe de la descomposición de Hahn para ν .

Definición

ea (X, \mathcal{A}) un espacio mesurable y $\nu : \mathcal{A} \to \overline{\mathbb{R}}$ una medida con signo, entonces la medida $\nu^+ + \nu^- : \mathcal{A} \to \overline{\mathbb{R}}$ se llama la **variación total** de ν , y se denota por $|\nu|$.

Algunas propiedades de las medidas ν^+ , ν^- y $|\nu|$, asociadas a la medida con signo ν son:

- $-\nu^-(E) \le \nu(E) \le \nu^+(E)$, $\forall E \in \mathcal{A}$.
- $|\nu(E)| \leq |\nu|(E), \forall E \in \mathcal{A}$.
- $N \in \mathcal{A}$ es nulo para ν , si y sólo si, $|\nu|(N) = 0$.

Ejemplo

Ejemplo: En el ejemplo anterior, donde $\nu(E) = \int_E f \, d\mu$, tenemos:

$$A = \{ \mathbf{x} \in X : \ (\mathbf{x}) \ge 0 \}, \qquad B = \{ \mathbf{x} \in X : \ f(\mathbf{x}) < 0 \}.$$

Entonces

$$u^+(E) = \int_E f^+ d\mu,$$

$$\nu^-(E) = \int_E f^- d\mu,$$

$$|\nu|(E) = \int_E |f| d\mu.$$

para todo $E \in A$.

