φ:* Cached quotients for fast lookups

Liam Eagen Dario Fiore IMDEA

Ariel Gabizon
Zeta Function Technologies

December 22, 2022

Abstract

We present a protocol for checking the values of a committed polynomial $f(X) \in \mathbb{F}_{< N}[X]$ over a multiplicative subgroup $\mathbb{H} \subset \mathbb{F}$ of size n are contained in a table $\mathfrak{t} \in \mathbb{F}^N$. After an $O(N \log N)$ preprocessing step, the prover algorithm runs in time $O(n \log n)$. Thus, we continue to improve upon the recent breakthrough sequence of results[ZBK+22, PK22, ?, ?] starting from Caulk [ZBK+22], which achieve sublinear complexity in the table size N. The two most recent works in this sequence [?, ?] achieved prover complexity $O(n \cdot \log^2 n)$.

Moreover, \mathfrak{cq} has the following attractive features.

- 1. As in [ZBK⁺22, PK22, ?] our construction relies on homomorphic table commitments, which makes them amenable to vector lookups in the manner described in Section 4 of [GW20].
- 2. As opposed to $[ZBK^+22, PK22, ?, ?]$ the \mathfrak{A} verifier doesn't involve pairings with prover defined \mathbb{G}_2 points, which makes recursive aggregation of proofs more convenient.
- 3. The construction can be altered to a version we call \mathbf{q}^* that loses the mentioned aggregatability, increase preprocessing time to $O(n \cdot N)$, and in return reduce prover complexity to a *linear* number of field and group operations!

1 Introduction

The lookup problem is fundamental to the efficiency of modern zk-SNARKs. Somewhat informally, it asks for a protocol to prove the values of a committed polynomial $\phi(X) \in \mathbb{F}_{< n}[X]$ are contained in a table T of size N of predefined legal values. When the table T corresponds to an operation without an efficient low-degree arithmetization in \mathbb{F} , such a protocol produces significant savings in proof construction time for programs containing the operation. Building on previous work of [BCG⁺18], **plookup** [GW20] was the first to explicitly describe a solution to this problem in the polynomial-IOP context.

^{*}Pronounced "seek you".

plockup described a protocol with prover complexity quasilinear in both n and N. This left the intriguing question of whether the dependence on N could be made *sublinear* after performing a preprocessing step for the table T. Caulk [ZBK+22] answered this question in the affirmative by leveraging bi-linear pairings, achieving a run time of $O(n^2 + n \log N)$. Caulk+ [PK22] improved this to $O(n^2)$ getting rid of the dependence on table size completely.

However, the quadratic dependence on n of these works makes them impractical for a circuit with many lookup gates. We resolve this issue by giving a protocol called \mathfrak{cq} that is quasi-linear in n and has no dependence on N after the preprocessing step.

1.1 Comparison of results

Table 1: Scheme comparison. n = witness size, N = Table size, "Aggregatable" = All prover defined pairing arguments in \mathbb{G}_1

Scheme	Preprocessing	Proof size	Prover Work	Verifier Work	Homomorphic?	Aggregatable?
Caulk [ZBK+22]	$O(N \log N) \mathbb{F}, \mathbb{G}_1$	$14 \mathbb{G}_1, 1 \mathbb{G}_2, 4 \mathbb{F}$	$3n + m - \ell \mathbb{G}_1 \exp,$ $n \mathbb{G}_2 \exp$	$2 \mathbb{G}_1, 1 \mathbb{G}_2$	✓	×
Caulk+ [PK22]	$O(N \log N) \mathbb{F}, \mathbb{G}_1$	$7 \mathbb{G}_1, 1 \mathbb{G}_2, 2 \mathbb{F}$	$18n \mathbb{G}_1 \exp$	4 G ₁ , 2 F	1	Х
Flookup [?]	$O(N \log^2 N) \mathbb{F}, \mathbb{G}_1$	$6 \mathbb{G}_1, 1 \mathbb{G}_2, 4 \mathbb{F}$	$273n \mathbb{G}_1 \exp$	20 G ₁ , 16 F	X	X
baloo [?]	$O(N \log N) \mathbb{F}, \mathbb{G}_1$	$12 \mathbb{G}_1, 1 \mathbb{G}_2, 4 \mathbb{F}$	$8n \mathbb{G}_1 \exp$	6 G₁, 4 F	1	Х
cq	$O(N \log N) \mathbb{F}, \mathbb{G}_1$	$8 \mathbb{G}_1, 4 \mathbb{F}$	$11n + 11a \ \mathbb{G}_1 \ \exp \ ,$ $\approx 54(n+a)\log(n+a) \ \mathbb{F} \ \text{mul}$	$7 \mathbb{G}_1, 6 \mathbb{F}$	✓	1
cq*	$O(N \cdot n) \mathbb{F}, \mathbb{G}_1$	$n+a \mathbb{G}_1, 1 \mathbb{G}_2$	$9n + 9a \ \mathbb{G}_1 \ \exp \ ,$ $\approx 54(n+a)\log(n+a) \ \mathbb{F} \ \text{mul}$	$9 \mathbb{G}_1, 6 \mathbb{F}$	1	×

Table with relative proof size, prover ops, verifier ops proof-size caulk caulk+ flookup baloo 12 \mathbb{G}_1 , 1 \mathbb{G}_2 , 4 \mathbb{F} this work 6 G1, 1 G2

1.2 Technical Overview

The innovation of Caulk While [ZBK+22, PK22, ?, ?] use preprocessing and pairings to extract a subtable of witness size;

Our approach here we use preprocessing and pairings more directly to run an existing lookup protocol - mylookup, in time independent from table size -logarithmic derivative method Let's review this protocol: It relies on the following lemma from [?] that says that $f|_{\mathbb{H}} \in \mathfrak{t}$ if and only if for some $m \in \mathbb{F}^N$

$$\sum_{i \in [N]} \frac{m_i}{X + t_i} = \sum_{i \in [n]} \frac{1}{X + f_i}$$

Roughly, the protocol of [?] checks this identity on a random β , by sending polynomials A and B that agree on \mathbb{V} with the rational function values of the LHS and RHS respectively. Given commitments to A, B we can check the equality holds via various sumcheck techniques, e.g. that descirbed in [BCR⁺19]. The RHS is not a problem because it is a

sum of size n. Interpolating A, and computing its commitment is actually not a problem either, because the number of non-zero values is at most n. So if we precompute the commitments to the Lagrange base of \mathbb{V} we're fine.

The main challenge, and innovation, is to convince the verifier V that A is correctly formed.

This protocol is amenable, because polynomials involved have sparsity depending on witness - For large table problem is computing A that agrees with $m/(\mathfrak{t} + \beta)$ on \mathbb{V}

- Need way to compute A

2 Preliminaries

2.1 Notation:

H- small space V- big space Lagrange bases for big and small space

Aurora lemma

Lemma 2.1. Let $H \subset \mathbb{F}$ be a multiplicative subgroup of size t. For $f \in \mathbb{F}_{< t}[X]$, we have

$$\sum_{a \in H} f(a) = n \cdot a(0)$$

2.2 Idealized verifier checks for algebraic adversaries

We introduce some terminology from [GWC19] to capture analysis in the Algebraic Group Model of Fuchsbauer, Kiltz and Loss[FKL18].

First we say our srs has degree Q if all elements of srs_i are of the form $[f(x)]_i$ for $f \in \mathbb{F}_{\leq Q}[X]$ and uniform $x \in \mathbb{F}$. In the following discussion let us assume we are executing a protocol with a degree Q SRS, and denote by $f_{i,j}$ the corresponding polynomial for the j'th element of srs_i.

Denote by a, b the vectors of \mathbb{F} -elements whose encodings in $\mathbb{G}_1, \mathbb{G}_2$ an algebraic adversary \mathcal{A} outputs during a protocol execution; e.g., the j'th \mathbb{G}_1 element output by \mathcal{A} is $[a_j]_1$.

By a "real pairing check" we mean a check of the form

$$(a \cdot T_1) \cdot (T_2 \cdot b) = 0$$

for some matrices T_1, T_2 over \mathbb{F} . Note that such a check can indeed be done efficiently given the encoded elements and the pairing function $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$.

Given such a "real pairing check", and the adversary \mathcal{A} and protocol execution during which the elements were output, define the corresponding "ideal check" as follows. Since \mathcal{A} is algebraic when he outputs $[a_j]_i$ he also outputs a vector v such that, from linearity, $a_j = \sum v_\ell f_{i,\ell}(x) = R_{i,j}(x)$ for $R_{i,j}(X) := \sum v_\ell f_{i,\ell}(X)$. Denote, for $i \in \{1,2\}$ the vector of polynomials $R_i = (R_{i,j})_j$. The corresponding ideal check, checks as a polynomial identity whether

$$(R_1 \cdot T_1) \cdot (T_2 \cdot R_2) \equiv 0$$

The following lemma is inspired by [FKL18]'s analysis of [Gro16], and tells us that for soundness analysis against algebraic adversaries it suffices to look at ideal checks. Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 2.2. Fix integer Q. The Q-DLOG assumption for $(\mathbb{G}_1, \mathbb{G}_2)$ states that given

$$\left[1\right]_{1},\left[x\right]_{1},\ldots,\left[x^{Q}\right]_{1},\left[1\right]_{2},\left[x\right]_{2},\ldots,\left[x^{Q}\right]_{2}$$

for uniformly chosen $x \in \mathbb{F}$, the probability of an efficient A outputting x is $negl(\lambda)$.

Lemma 2.3. Assume the Q-DLOG for $(\mathbb{G}_1, \mathbb{G}_2)$. Given an algebraic adversary A participating in a protocol with a degree Q SRS, the probability of any real pairing check passing is larger by at most an additive $\operatorname{\mathsf{negl}}(\lambda)$ factor than the probability the corresponding ideal check holds.

AGM - real and ideal pairing checks, agm - real and ideal pairing KZG

2.3 log derivative method

Lemma from mylookup

Lemma 2.4. Given $f \in \mathbb{F}^n$, and $t \in \mathbb{F}^N$, we have $f \subset t$ as sets if and only if for some $m \in \mathbb{F}^N$ the following identity of rational functions holds

$$\sum_{i \in [n]} \frac{1}{X + f_i} = \sum_{i \in [N]} \frac{m_i}{X + t_i}.$$

3 Cached quotients

Notation: In this section and the next we use the following conventions. $\mathbb{V} \subset \mathbb{F}$ denotes a mutliplicative subgroup of order N which is a power of two. We denote by \mathbf{g} a generator of \mathbb{V} . Hence, $\mathbb{V} = \{\mathbf{g}, \mathbf{g}^2, \dots, \mathbf{g}^N = 1\}$. Given $P \in \mathbb{F}[X]$ and integer $i \in [N]$, we denote $P_i := P(\mathbf{g}^i)$. For $i \in [N]$, we denote by $L_i \in \mathbb{F}_{< N}[X]$ the i'th Lagrange polynomial of \mathbb{V} . Thus, $(L_i)_i = 1$ and $(L_i)_j = 0$ for $i \neq j \in [N]$.

For a polynomial $A(X) \in \mathbb{F}_{< N}[X]$, we say it is n-sparse if $A_i \neq 0$ for at most n values $i \in [N]$. The sparse representation of such A consists of the (at most) n pairs (i, A_i) such that $A_i \neq 0$. We denote $\sup(A) := \{i \in [N] | A_i \neq 0\}$.

The main result of this section is a method to compute a commitment to a quotient polynomial - derived from a product with a preprocessed polynomial; in a number of operations depending only on the sparsity of the other polynomial in the product.

The result crucially relies on the following lemma derived from a result of Feist and Khovratovich[FK].

Lemma 3.1. Fix $T \in \mathbb{F}_{< N}[X]$, and a subgroup $\mathbb{V} \subset \mathbb{F}$ of size N. There is an algorithm that given the \mathbb{G}_1 elements $\{[x^i]_1\}_{i\in\{0,\dots,N\}}$ computes for $i\in[N]$, the elements $q_i:=[Q_i(x)]_1$ where $Q_i(X)\in\mathbb{F}[X]$ is such that

$$L_i(X) \cdot T(X) = T_i \cdot L_i(X) + Z_{\mathbb{V}}(X) \cdot Q_i(X)$$

in $O(N \cdot \log N)$ \mathbb{G}_1 operations.

Proof. Recall the definition of the Lagrange polynomial

$$L_i(X) = \frac{Z_{\mathbb{V}}(X)}{Z'_{\mathbb{V}}(\mathbf{g}^i)(X - \mathbf{g}^i)}.$$

Substituting this definition, we can write the quotient $Q_i(X)$ as

$$Q_i(X) = \frac{T(X) - T_i}{Z'_{\mathbb{V}}(\mathbf{g}^i)(X - \mathbf{g}^i)} = Z'_{\mathbb{V}}(\omega^i)^{-1}K_i(X),$$

for $K_i(X) := \frac{T(X) - T_i}{X - \mathbf{g}^i}$. Note that the values $\{[K_i(X)]_1\}_{i \in [N]}$ are exactly the KZG opening proofs of T(X) at the elements of \mathbb{V} . Thus, the algorithm of Feist and Khovratovich [FK, Tom] can be used to compute commitments to all the proofs $[K_i(X)]_1$ in $O(N \log N)$ \mathbb{G}_1 -operations. This works by writing the vector of $[K_i(X)]_1$ as a the product of a matrix with the vector of $[X^i]_1$. This matrix is a DFT matrix times a Toeplitz matrix, both of which have algorithms for evaluating matrix vector products in $O(N \log N)$ operations. Thus, all the KZG proofs can be computed in $O(N \log N)$ field operations and operations in \mathbb{G}_1 .

Finally, the algorithm just needs to scale each $[K_i(X)]_1$ by $Z'_{\mathbb{V}}(\omega^i)$ to compute $[Q_i(X)]_1$. Conveniently, these values admit a very simple description when $Z_{\mathbb{V}}(X) = X^N - 1$ is a group of roots of unity.

$$Z'_{\mathbb{V}}(X)^{-1} = (NX^{N-1})^{-1} \equiv X/N \mod Z_{\mathbb{V}}(X)$$

In total, the prover computes the coefficients of T(X) in $O(N \log N)$ field operations, computes the KZG proofs for $T(\omega^i) = t_i$ in $O(N \log N)$ group operations, and then scales these proofs by ω^i/n in O(N) group operations. In total, this takes $O(N \log N)$ field and group operations in \mathbb{G}_1 .

We're now ready to state the main theorem of this section.

Theorem 3.2. Fix integer parameters $0 \le n \le N$ such that n, N are powers of two. Fix $T \in \mathbb{F}_{< N}[X]$, and a subgroup $\mathbb{V} \subset \mathbb{F}$ of size N. Let $\operatorname{srs} = \left\{ \begin{bmatrix} x^i \end{bmatrix}_1 \right\}_{i \in [0, \dots, N]}$ for some $x \in \mathbb{F}$. There is an algorithm \mathscr{A} that after a preprocessing step of $O(N \log N)$ \mathbb{F} - and \mathbb{G}_1 -operations starting with srs does the following.

Given input $A(X) \in \mathbb{F}_{< N}[X]$ that is n-sparse and given in sparse representation, \mathscr{A} computes in O(n) \mathbb{F} -operations and n \mathbb{G}_1 -operations the element $\mathsf{cm} = [Q(x)]_1$ where $Q \in \mathbb{F}_{< N}[X]$ is such that

$$A(X) \cdot T(X) = Q(X) \cdot Z_{\mathbb{V}}(X) + R(X),$$

for $R(X) \in \mathbb{F}_{< N}[X]$.

Proof. The preprocessing step consists of computing the quotient commitments $[Q_i(X)]_1$ in $O(N \log N)$ operations, as described in Lemma 3.1. As stated in the lemma, for each $i \in [N]$ we have

$$L_i(X) \cdot T(X) = T_i \cdot L_i(X) + Z_{\mathbb{V}}(X) \cdot Q_i(X).$$

By assumption, the polynomial A(X) can be written as a linear combination of at most n summands in the Lagrange basis of \mathbb{V} .

$$A(X) = \sum_{i \in \text{supp}(A)} A_i \cdot L_i(X)$$

Substituting this into the product with T(X), and substituting each of the products $L_i(X)T(X)$ with the appropriate cached quotient $Q_i(X)$ we find

$$A(X)T(X) = \sum_{i \in \text{supp}(A)} A_i \cdot L_i(X)T(X) = \sum_{i \in \text{supp}(A)} A_i \cdot T_i L_i(X) + A_i \cdot Z_{\mathbb{V}}(X)Q_i(X)$$
$$= \sum_{i \in \text{supp}(A)} A_i \cdot T_i L_i(X) + Z_{\mathbb{V}}(X) \cdot \sum_{i \in \text{supp}(A)} A_i \cdot Q_i(X).$$

Observing that the terms of the first sum are all of degree smaller than N, we get that

$$Q(X) = \sum_{i \in \text{supp}(A)} A_i \cdot Q_i(X)$$
$$R(X) = \sum_{i \in \text{supp}(A)} A_i T_i \cdot L_i(X)$$

Hence, commitments to both the quotient Q(X) and remainder R(X) can be computed in at most n group operations as

$$[Q(X)]_1 = \sum_{i \in \text{supp}(A)} A_i \cdot [Q_i(X)]_1$$
$$[R(X)]_1 = \sum_{i \in \text{supp}(A)} A_i T_i \cdot [L_i(X)]_1$$

4 Main protocol

Definition 4.1. \mathcal{R} is all pairs (cm, f) such that cm is a commitment to f and $f|_{\mathbb{H}} \subset T$bla problem is relation is defined only after srs is chosen

4.1 Definitions

Definition 4.2. Ad-hoc dfn of ks protocol for table lookup Relations dependent on srs. Tuple gen, $IsInTable_{\mathbb{H}}$

- $gen(\mathfrak{t}, N) \to srs$
- IsInTable_H an interactive public coin protocol between \mathbf{P} and \mathbf{V} where \mathbf{P} has input $f \in \mathbb{F}_{\leq n}[X]$, \mathbf{V} has $[f(x)]_1$. Both have \mathfrak{t} and $\mathsf{srs.}$ such that
 - Completeness:If $f|_{\mathbb{H}} \subset \mathfrak{t}$ then V outputs acc with probability one.
 - Knowledge soundness in the algebraic group model: For any $\mathfrak{t} \in \mathbb{F}^n$, the probability of any algebraic A to win the following game is $\operatorname{negl}(\lambda)$
 - 1. Let $srs = gen(\mathfrak{t}, N)$.
 - 2. A sends a message cm and values f_1, \ldots, f_n such that cm = $\sum_{i \in [n]} f_i \cdot [L_i(x)]_1$.
 - 3. A and V engage in the protocol $\mathsf{lsInTable}_{\mathbb{H}}(\mathfrak{t},\mathsf{cm})$ with A taking the role of \mathbf{P} .
 - 4. A wins if
 - * **V** outputs acc, and
 - * $f|_{\mathbb{H}} \not\subset \mathfrak{t}$.

Main protocol: Preprocessed inputs: $[Z_{\mathbb{V}}(x)]_2$, $[T(x)]_2$ Input (cm, f) .

Round 1:Committing to the multiplicites vector

- 1. **P** computes poly $m \in \mathbb{F}_{\leq N}[X]$ such that $m_i = \text{number of times } \mathfrak{t}_i$ appears in $f|_{\mathbb{H}}$
- 2. **P** sends $m := [m(x)]_1$.

Round 2:Interpolating the rational identity at a random β ; checking the identity for A using pairings, degree checks for A,B

- 1. V chooses and sends random $\alpha, \beta \in \mathbb{F}$.
- 2. **P** computes $A \in \mathbb{F}_{\langle N}[X]$ such that for $i \in [N]$, $A_i = m_i/(\mathfrak{t}_i + \beta)$.
- 3. **P** sends $a := [A(x)]_1$.
- 4. **P** computes $q_a := [Q_A(x)]_2$ where $Q_A \in \mathbb{F}_{< N}[X]$ is such that

$$A(X)(T(X) + \beta) - m(X) = Q_A(X) \cdot Z_{\mathbb{V}}(X)$$

5. **P** computes $B \in \mathbb{F}_{< n}[X]$ such that for $i \in [n]$, $B_i = 1/(f_i + \beta)$.

- 6. **P** sends $q_b := [B(x)]_1$.
- 7. **P** computes $Q_B(X)$ such that

$$B(X)(f(x) + \beta) - 1 = Q_B(X) \cdot Z_{\mathbb{H}}(X)$$

- 8. **P** computes and sends the value $a_0 := A(0)$.
- 9. **V** sets $b_0 := (N \cdot a_0)/n$.
- 10. **P** computes and sends $p = [P(x)]_1$ where

$$P(X) := A(X) \cdot X^{d-N} + \alpha \cdot B(X) \cdot X^{d-n}.$$

11. V checks that A encodes the correct values:

$$e(\mathbf{a},[T(x)]_2+[\beta]_2)=e(\mathbf{q_a},[Z_{\mathbb{V}}(x)]_2)\cdot e(\mathbf{m},[1]_2)$$

12. V checks that A, B have the appropriate degrees:

$$e\left(\mathsf{a},\left[x^{d-N}\right]_2\right)\cdot e\left(\alpha\cdot\mathsf{b},\left[x^{d-n}\right]_2\right)=e(\mathsf{p},[1]_2).$$

Round 3: Checking the identity for B at random $\gamma \in \mathbb{F}$

- 1. **V** sends random $\gamma, \eta, \zeta \in \mathbb{F}$.
- 2. **P** sends $b_{\gamma} := B(\gamma), f_{\gamma} := f(\gamma)$.
- 3. As part of checking the correctness of B, V computes $Z_{\mathbb{H}}(\gamma) = \gamma^n 1$ and

$$Q_{b,\gamma} := \frac{b_{\gamma} \cdot (f_{\gamma} + \beta) - 1}{Z_{\mathbb{H}}(\gamma)}.$$

- 4. To perform a batched KZG check for the correctness of the values $a_{\gamma}, b_{\gamma}, f_{\gamma}$
 - (a) **V** sends random $\eta \in \mathbb{F}$. **P** and **V** separately compute

$$v := b_{\gamma} + \eta \cdot f_{\gamma} + \eta^2 \cdot Q_{b,\gamma}.$$

(b) **P** computes $\pi_{\gamma} := [h(x)]_1$ for

$$h(X) := \frac{B(X) + \eta \cdot f(X) + \eta^2 \cdot Q_B(X) - v}{X - \gamma}$$

(c) V computes

$$c := b + \eta \cdot f + \eta^2 \cdot q_b$$

and checks that

$$e(c - [v]_1 + \gamma \cdot \pi_{\gamma}, [1]_2) = e(\pi_{\gamma}, [x]_2)$$

- 5. To perform a batched KZG check for the correctness of the values a_0, b_0
 - (a) \mathbf{P} and \mathbf{V} separately compute

$$u := a_0 + \zeta \cdot b_0.$$

(b) **P** computes and sends $\pi_0 := [h_0(x)]_1$ for

$$h_0(X) := \frac{A(X) + \zeta \cdot B(X)}{X}$$

(c) V computes

$$c_0 := a + \zeta b$$

and checks that

$$e(\mathsf{c}_0 - [u]_1, [1]_2) = e(\pi_0, [x]_2)$$

Stats: verifier pairings:5 - pair a with random combination of T and $\begin{bmatrix} x^{d-N} \end{bmatrix}_2$, pair q_a with $Z_{\mathbb{V}}$. pair b with $[d-n]_2$ for degree check. Proof size - 8 \mathbb{G}_1 - a,b,p,m, q_a , q_b π_γ , π_0 4 \mathbb{F} - b_γ , $Q_{b,\gamma}$, f_γ , a_0

Note that we can split p to two proofs and that reduces a verifier pairing

Lemma 4.3. The element q_A in Step 4 can be computed in $n \log n$ \mathbb{G}_2 -operations and $O(n \log n)$ \mathbb{F} -operations

Lemma 4.4. The elements π_0, π_γ can be computed in $2 \cdot n \log n$ \mathbb{G}_1 -operations and $O(n \log n)$ \mathbb{F} -operations

Knowledge soundness proof: Let \mathcal{A} be an efficient algebraic adversary participating in the Knowledge Soundness game from Definition 4.2. We show its probability of winning the game is $\mathsf{negl}(\lambda)$. Let $f \in \mathbb{F}_{< d}[X]$ be the polynomial sent by \mathcal{A} in the first step of the game such that $\mathsf{cm} = [f(x)]_1$. As \mathcal{A} is algebraic, when sending the commitments $\mathsf{m},\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q}_\mathsf{a},\mathsf{q}_\mathsf{b},\pi_\gamma,\pi_0$ during protocol execution it also sends polynomials $m(X),A(X),B(X),P(X),Q_A(X),Q_B(X),h(X),h_0(X)\in\mathbb{F}_{< d}[X]$ such that the former are their corresponding commitments. Let E be the event \mathbf{V} outputs acc . Note that the event that \mathcal{A} wins the game is contained in E. E implies all pairing checks passed. Let E0 be the event that one of the corresponding ideal pairing checks didn't pass. According to Lemma 2.3, $\mathsf{Pr}(E)$ 1 = $\mathsf{negl}(E)$ 2. Given E3 didn't occur, we have

• From step 11

$$A(X)(T(X) + \beta) - M(X) = Q_A(X) \cdot Z_{\mathbb{V}}(X)$$

Which means that for all $i \in [N]$,

$$A_i = \frac{M_i}{T_i + \beta}$$

• From step 12

$$X^{d-N}A(X) + \alpha \cdot X^{d-n}B(X) = P(X),$$

which implies e.w.p. $1/|\mathbb{F}|$ over $\alpha \in \mathbb{F}$, that $\deg(A) < N$ and $\deg(B) < n$.

- From the checks of steps 4c and 5c, e.w.p. $n/|\mathbb{F}|$ over $\eta, \zeta \in \mathbb{F}$ (see e.g. Section 3 of [GWC19] for an expalantion of the correctness of batched KZG [KZG10]). $b_{\gamma} = B(\gamma), Q_{b,\gamma} = Q_B(\gamma), f_{\gamma} = f(\gamma), a_0 = A(0), b_0 = B(0).$
- Which implies by how $Q_{b,\gamma}$ is set in step 3 that e.w.p. $(2n)/|\mathbb{F}|$ over γ

$$B(X) \cdot (f(X) + \beta) = 1 + Q_B(X)Z_{\mathbb{H}}(X),$$

which implies for all $i \in [n]$ that $B(\omega^i) = \frac{1}{f(\omega^i) + \beta}$.

• We know have using Lemma 2.1 that

$$N \cdot a_0 = \sum_{i \in [N]} A_i = \sum_{i \in [N]} \frac{m_i}{T_i + \beta}$$

$$n \cdot b_0 = \sum_{i \in [n]} B(\omega^i) = \sum_{i \in [n]} \frac{1}{f(\omega^i) + \beta}$$

Thus e.w.p. $(n \cdot N)/|\mathbb{F}|$ over $\beta \in \mathbb{F}$, we have that

$$\sum_{i \in [N]} \frac{m_i}{T_i + X} = \sum_{i \in [n]} \frac{1}{f(\omega^i) + X},$$

which implies $f|_{\mathbb{H}} \in \mathfrak{t}$.

In summary, we have shown the event that V outputs acc while $f|_{\mathbb{H}} \not\subset \mathfrak{t}$ is contained in a constant number of events with probability $\mathsf{negl}(\lambda)$; and so \mathfrak{cq} satisfies the knowledge soundness property.

References

- [BCG⁺18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology ASI-ACRYPT 2018 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science, pages 595–626. Springer, 2018.
- [BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in Cryptology EUROCRYPT 2019 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, pages 103-128, 2019.

- [FK] D. Feist and D. Khovratovich. Fast amortized kate proofs.
- [FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In Advances in Cryptology CRYPTO 2018 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages 33–62, 2018.
- [Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology EUROCRYPT 2016 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.
- [GW20] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables. *IACR Cryptol. ePrint Arch.*, page 315, 2020.
- [GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over lagrange-bases for occumenical noninteractive arguments of knowledge. IACR Cryptology ePrint Archive, 2019:953, 2019.
- [KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. pages 177–194, 2010.
- [PK22] J. Posen and A. A. Kattis. Caulk+: Table-independent lookup arguments. 2022.
- [Tom] A. Tomescu. Feist-khovratovich technique for computing kzg proofs fast.
- [ZBK⁺22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin. Caulk: Lookup arguments in sublinear time. *IACR Cryptol.* ePrint Arch., page 621, 2022.