DSD LAB

Week 6 Assignment Submission

Swamiraju Satya Praveen Varma
200905044
Batch B1
10
1. Write behavioral Verilog code for a negative edge triggered TFF with asynchronous active low reset.
Verilog code:
module lab6q1 (T, Clk, Q, Reset);
input Reset, T, Clk;
output Q;
reg Q;
always @ (negedge Clk or negedge Reset)
if (!Reset)
Q <= 0;
else if (T == 1)
Q <= ~Q;
endmodule

Output Waveform:

2. Write behavioral Verilog code for a positive edge-triggered JKFF with synchronous active high reset.

Verilog code:

```
module lab6q2 (J, K, Clk, Reset, Q);
input J, K, Clk, Reset;
output Q;
reg Q;
always @ (posedge Clk)
if (Reset)
Q <= 0;
else
begin
case({J, K})
2'b00:Q<=Q;
2'b01:Q<=0;
2'b10:Q<=1;
2'b11:Q<=~Q;
```

endcase

end

endmodule

Output Waveform:

- **3.** Design and simulate the following counters
- a) 4-bit ring counter.

Verilog code:

```
module lab6q3a (clk, f);
input clk;
output[3:0] f;
wire[1:0] w;
dff1 stage0 (w[0] ^ w[1], clk, w[1]);
dff1 stage1 (~w[0], clk, w[0]);
dec24 stage2 (w, clk, f);
```

endmodule

```
module dff1 (d, clk, q);
input d;
input clk;
output q;
reg q;
always @ (posedge clk)
begin
q \le d;
end
endmodule
module dec24 (w, en, y);
input[1:0] w;
input en;
output[3:0] y;
reg[3:0] y;
always @ (posedge en)
begin
casex (w)
0:y = 4'b0001;
1:y=4'b0010;
2:y = 4'b0100;
```

```
3:y=4'b1000;
endcase
end
endmodule
```

Output Waveform:

b) 5 bit Johnson counter.

Verilog code:

module lab6q3b (Clk, Q);

input Clk;

output[4:0] Q;

reg[4:0] Q;

always @ (posedge Clk)

```
begin

case (Q)

5'b00000: Q<=5'b10000;

5'b10000: Q<=5'b11000;

5'b11000: Q<=5'b11100;

5'b11100: Q<=5'b11111;

5'b11111: Q<=5'b01111;

5'b01111: Q<=5'b00011;

5'b00011: Q<=5'b00001;

5'b00001: Q<=5'b00000;

endcase

end

endmodule
```

Output Waveform:

THANK YOU!