Suggested code may be subject to a license | 3arii/LogReg-GUI | Abhishek3689/Player_Selection_Prediction | Abhishekjha111/textmassage-classifier | fmakayi/disaster_response_pipeline_project | Abrar # Importing the Libararies

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder

 $from \ sklearn.ensemble \ import \ Random Forest Classifier$

 $from \ sklearn.metrics \ import \ accuracy_score, \ confusion_matrix, \ classification_report, \ precision_score, \ recall_score, \ f1_score$

df = pd.read_csv('Churn_Modelling.csv')

df.head()

→		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1
	4												>

Next steps:

Generate code with df

New interactive sheet

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

Ducu	cordinis (cocar 14 cordinis).							
#	Column	Non-Null Count	Dtype					
0	RowNumber	10000 non-null	int64					
1	CustomerId	10000 non-null	int64					
2	Surname	10000 non-null	object					
3	CreditScore	10000 non-null	int64					
4	Geography	10000 non-null	object					
5	Gender	10000 non-null	object					
6	Age	10000 non-null	int64					
7	Tenure	10000 non-null	int64					
8	Balance	10000 non-null	float64					
9	NumOfProducts	10000 non-null	int64					
10	HasCrCard	10000 non-null	int64					
11	IsActiveMember	10000 non-null	int64					
12	EstimatedSalary	10000 non-null	float64					
13	Exited	10000 non-null	int64					
<pre>dtypes: float64(2), int64(9), object(3)</pre>								
memory usage: 1.1+ MB								

Checking Null Values

df.isnull().sum()

```
₹
                                                    0
                  RowNumber
                                                    0
                   CustomerId
                                                    0
                     Surname
                                                    0
                   CreditScore
                                                    0
                                                    0
                   Geography
                       Gender
                                                    0
                                                    0
                          Age
                        Tenure
                      Balance
                                                    0
              NumOfProducts
                   HasCrCard
                                                    0
              IsActiveMember 0
              EstimatedSalary 0
                        Exited
                                                    0
# Checking Duplicates
df.duplicated().sum()
→▼ 0
# Converting Categorical data into numeric
label_encoder = LabelEncoder()
df['Gender']= label_encoder.fit_transform(df['Gender'])
df = pd.get_dummies(df, columns=['Geography'], drop_first= True)
# Checking the head again for feature selection as per logical understanding of data
# Gender has been changed to 0 & 1
# Geography coulmn has changed too
df.head()
₹
                    RowNumber CustomerId Surname CreditScore Gender
                                                                                                                                                 Age Tenure
                                                                                                                                                                                    Balance NumOfProducts HasCrCard IsActiveMember EstimatedSa
              0
                                                   15634602 Hargrave
                                                                                                                    619
                                                                                                                                                    42
                                                                                                                                                                                            0.00
                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                                1
                                                                                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                                                                                           1013
                                       1
                                                                                                                                           0
                                       2
                                                   15647311
                                                                                      Hill
                                                                                                                    608
                                                                                                                                           0
                                                                                                                                                    41
                                                                                                                                                                                  83807.86
                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                                                                                           1125
              1
                                                                                                                                                                         1
              2
                                       3
                                                   15619304
                                                                                   Onio
                                                                                                                    502
                                                                                                                                           0
                                                                                                                                                    42
                                                                                                                                                                         8
                                                                                                                                                                                159660.80
                                                                                                                                                                                                                                     3
                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                            1139
              3
                                       4
                                                   15701354
                                                                                    Boni
                                                                                                                    699
                                                                                                                                           0
                                                                                                                                                    39
                                                                                                                                                                                            0.00
                                                                                                                                                                                                                                     2
                                                                                                                                                                                                                                                               0
                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                              938
                                                                                                                                                                         1
              4
                                       5
                                                   15737888
                                                                              Mitchell
                                                                                                                    850
                                                                                                                                           0
                                                                                                                                                    43
                                                                                                                                                                              125510.82
                                                                                                                                                                                                                                                                                                                              790
                                                                                                                                                                 New interactive sheet
                                                                                         View recommended plots
                                Generate code with df
  Next steps:
# Feature Selection
features = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Gender', 'Gen
X = df[features]
y = df['Exited']
# Spliting data into testing and training
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

```
# Checking Scaled Values
X_train[:5], X_test[:5]
(array([[ 0.35649971, -0.6557859 , 0.34567966, -1.21847056, 0.80843615, 0.64920267, 0.97481699, 1.36766974, 0.91324755, -0.57638802,
                -0.57946723],
               [-0.20389777, 0.29493847, -0.3483691 , 0.69683765, 0.80843615, 0.64920267, 0.97481699, 1.6612541 , 0.91324755, -0.57638802,
                 1.72572313],
               \hbox{$[-0.96147213,\ -1.41636539,\ -0.69539349,\ 0.61862909,\ -0.91668767,}
                 0.64920267, -1.02583358, -0.25280688, 0.91324755, 1.73494238,
                 -0.57946723],
               [-0.94071667, -1.13114808, 1.38675281, 0.95321202, -0.91668767,
                 0.64920267, -1.02583358, 0.91539272, -1.09499335, -0.57638802,
                -0.57946723],
               [-1.39733684, 1.62595257, 1.38675281, 1.05744869, -0.91668767, -1.54035103, -1.02583358, -1.05960019, 0.91324755, -0.57638802,
                -0.57946723]]),
       \mathsf{array}([[-0.57749609, -0.6557859 \ , \ -0.69539349, \ \ 0.32993735, \ \ 0.80843615,
                \hbox{-1.54035103, -1.02583358, -1.01960511, 0.91324755, -0.57638802,}
                 1.72572313],
               [-0.29729735, 0.3900109, -1.38944225, -1.21847056, 0.80843615, 0.64920267, 0.97481699, 0.79888291, 0.91324755, -0.57638802,
                -0.57946723],
               [-0.52560743, 0.48508334, -0.3483691 , -1.21847056, 0.80843615,
                 0.64920267, -1.02583358, -0.72797953, -1.09499335, 1.73494238,
                -0.57946723],
               \hbox{[-1.51149188, 1.91116988, 1.03972843, 0.68927246, 0.80843615,}
                 0.64920267, \quad 0.97481699, \quad 1.22138664, \quad 0.91324755, \quad -0.57638802,
                 1.72572313],
               [-0.9510944 , -1.13114808, 0.69270405, 0.78283876, -0.91668767, 0.64920267, 0.97481699, 0.24756011, -1.09499335, 1.73494238,
                -0.57946723]]))
# Randomn Forest
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
\rightarrow
                RandomForestClassifier
      RandomForestClassifier(random state=42)
# Predicting
y_pred = model.predict(X_test)
# Confusion Matrix, Accuracy and Classification Report
conf_matrix = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print("Confusion Matrix:")
print(conf matrix)
print("\nAccuracy:", accuracy)
print("\nClassification Report:")
print(classification_rep)
    Confusion Matrix:
     [[1554 53]
      [ 208 185]]
     Accuracy: 0.8695
     Classification Report:
                                   recall f1-score support
                      precision
                  a
                            0.88
                                      0.97
                                                  0.92
                                                              1607
                  1
                            0.78
                                       0.47
                                                   0.59
                                                               393
                                                   0.87
                                                               2000
          accuracy
         macro avg
                           0.83
                                      0.72
                                                   0.75
                                                               2000
     weighted avg
                           0.86
                                       0.87
                                                   0.86
                                                               2000
# Feature Importance
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]
names = [features[i] for i in indices]
```

```
plt.figure(figsize=(10, 6))
plt.title("Feature Importance")
plt.barh(range(X.shape[1]), importances[indices])
plt.yticks(range(X.shape[1]), names)
plt.show
```

```
matplotlib.pyplot.show
def show(*args, **kwargs)

**Auto-show in jupyter notebooks**

The jupyter backends (activated via ``%matplotlib inline``,
    ```%matplotlib notebook``, or ``%matplotlib widget``), call ``show()`` at
the end of every cell by default. Thus, you usually don't have to call it
explicitly there.
```



```
Now lets apply Logistic Regression to compare
```

```
from \ sklearn.linear_model \ import \ LogisticRegression
```

```
Build and Train the Logistic Regression Model
log_reg = LogisticRegression(random_state=42)
log_reg.fit(X_train, y_train)
```

```
Make Predictions
```

y\_pred\_log\_reg = log\_reg.predict(X\_test)

```
Evaluate the model
```

conf\_matrix\_log\_reg = confusion\_matrix(y\_test, y\_pred\_log\_reg)
accuracy\_log\_reg = accuracy\_score(y\_test, y\_pred\_log\_reg)

classification\_rep\_log\_reg = classification\_report(y\_test, y\_pred\_log\_reg)

print("Logistic Regression - Confusion Matrix:")
print(conf\_matrix\_log\_reg)
print("\nLogistic Regression - Accuracy:", accuracy\_log\_reg)
print("\nLogistic Regression - Classification Report:")
print(classification\_rep\_log\_reg)

Logistic Regression - Confusion Matrix:
[[1543 64]
[ 314 79]]

Logistic Regression - Accuracy: 0.811

Logistic Regression - Classification Report:

rogistic ke	gression - cia	ession - Classification Report:				
	precision	recall	f1-score	support		
(	0.83	0.96	0.89	1607		
3	0.55	0.20	0.29	393		
accuracy	/		0.81	2000		
macro av	g 0.69	0.58	0.59	2000		
weighted ava	0.78	0.81	0.77	2000		

```
Now lets apply SVM to compare
from sklearn.svm import SVC
Build and Train the SVM Model
svm_model = SVC(kernel ='linear' ,random_state=42)
svm_model.fit(X_train, y_train)
Make Predictions
y_pred_svm = svm_model.predict(X_test)
Evaluate the SVM Model
accuracy_svm = accuracy_score(y_test, y_pred_svm)
classification_rep_svm = classification_report(y_test, y_pred_svm)
confusion_matrix= confusion_matrix(y_test, y_pred_svm)
print("SVM - Confusion Matrix:")
print(confusion matrix)
print("\nSVM - Accuracy:", accuracy_svm)
print("\nSVM - Classification Report:")
print(classification_rep_svm)
As per the warnings this model was not able to predict properly as for some lables it did not predict any samples.
→ SVM - Confusion Matrix:
 [[1607
 [393
 0]]
 SVM - Accuracy: 0.8035
 SVM - Classification Report:
 precision
 recall f1-score
 support
 a
 1.00
 1607
 0.80
 0.89
 1
 0.00
 0.00
 0.00
 393
 accuracy
 0.80
 2000
 0.50
 macro avg
 0.40
 0.45
 2000
 weighted avg
 0.72
 2000
 /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are i
 _warn_prf(average, modifier, msg_start, len(result))
 /usr/local/lib/python3.10/dist-packages/sklearn/metrics/ classification.py:1471: UndefinedMetricWarning: Precision and F-score are i
 _warn_prf(average, modifier, msg_start, len(result))
 /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are i
 _warn_prf(average, modifier, msg_start, len(result))
 4
Lets try KNN Model Now
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion matrix
Build a model
knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(X_train, y_train)
Make Predictions
y_pred_knn = knn_model.predict(X_test)
Evaluate the model
accuracy_knn = accuracy_score(y_test, y_pred_knn)
class_rep_knn = classification_report(y_test, y_pred_knn)
conf matrix knn= confusion matrix(y test, y pred knn)
print("KNN - Confusion Matrix:")
print(conf_matrix_knn)
print("\nKNN - Accuracy:", accuracy_knn)
print("\nKNN - Classification Report:")
print(class_rep_knn)
 KNN - Confusion Matrix:
 [[1514 93]
 [247 146]]
 KNN - Accuracy: 0.83
 KNN - Classification Report:
 precision
 recall f1-score
 support
 0
 0.86
 0.94
 0.90
 1607
 1
 0.61
 0.37
 0.46
 393
 accuracy
 0.83
 2000
 0.74
 0.66
 0.68
 2000
 macro avg
```

weighted avg 0.81 0.83 0.81 2000

```
Lets apply Gradient Boosting Classifier now
from sklearn.ensemble import GradientBoostingClassifier
Build and Train the Gradient Boosting Classifier
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
gb_model.fit(X_train, y_train)
Make Predictions
y_pred_gb = gb_model.predict(X_test)
Evaluate the model
accuracy_gb = accuracy_score(y_test, y_pred_gb)
classification_rep_gb = classification_report(y_test, y_pred_gb)
confusion_matrix= confusion_matrix(y_test, y_pred_gb)
print("Gradient Boosting - Confusion Matrix:")
print(confusion matrix)
print("\nGradient Boosting - Accuracy:", accuracy_gb)
print("\nGradient Boosting - Classification Report:")
print(classification_rep_gb)
 Gradient Boosting - Confusion Matrix:
 [[1543 64]
 [201 192]]
 Gradient Boosting - Accuracy: 0.8675
 Gradient Boosting - Classification Report:
 precision
 recall f1-score
 support
 0
 0.88
 0.96
 0.92
 1607
 1
 0.75
 0.49
 0.59
 393
 0.87
 2000
 accuracy
 0.82
 0.72
 0.76
 2000
 macro avg
 weighted avg
 0.86
 0.87
 0.86
 2000
Feature Engineering
df = pd.read_csv('Churn_Modelling.csv')
Binary feature for balance
df['Zero_Balance']=(df['Balance']==0).astype(int)
Age Groups
df['Age_Group'] = pd.cut(df['Age'], bins=[18, 25, 35, 45, 55, 65, 75, 85, 95], labels=['18-25', '26-35', '36-45', '46-55', '56-65', '66', '66
Balance to Salary Ratio
df['BSRatio']= df['Balance']/df['EstimatedSalary']
Interaction Feature between Numofproducts and Isactivmember
df['ProductUsage']= df['NumOfProducts']*df['IsActiveMember']
Tenure Grouping
df['Tenure_Group']=pd.cut(df['Tenure'], bins=[0, 2,5,7,10], labels=['0-2', '3-5', '6-7', '8-10'])
label_encoder = LabelEncoder()
df['Gender'] = label_encoder.fit_transform(df['Gender'])
df = pd.get_dummies(df, columns=['Geography'], drop_first= True)
df['Male_Germany']= df['Gender']*df['Geography_Germany']
df['Male_Spain']= df['Gender']*df['Geography_Spain']
df = pd.get_dummies(df, columns=['Age_Group','Tenure_Group'], drop_first= True)
features = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Gender', 'Gen
```

0.78

0.83

0.86

1

accuracy

macro avg

weighted avg

0.47

0.72

0.87

0.59

0.87

0.75

0.86

393

2000

2000

2000

```
9/22/24, 5:12 AM
 Churn Prediction Model - Colab
 X = df[features]
 y = df['Exited']
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 scaler = StandardScaler()
 X_train = scaler.fit_transform(X_train)
 X_test = scaler.transform(X_test)
 model = RandomForestClassifier(n_estimators=100, random_state=42)
 model.fit(X_train, y_train)
 _
 RandomForestClassifier
 RandomForestClassifier(random_state=42)
 from sklearn.metrics import confusion_matrix
 cnf_matrix = confusion_matrix(y_test, y_pred)
 accuracy = accuracy_score(y_test, y_pred)
 classification_rep = classification_report(y_test, y_pred)
 print("Confusion Matrix:")
 print(cnf_matrix)
 print("\nAccuracy:", accuracy)
 print("\nClassification Report:")
 print(classification_rep)
 → Confusion Matrix:
 [[1554 53]
[208 185]]
 Accuracy: 0.8695
 Classification Report:
 precision
 recall f1-score support
 0.88
 0.97
 0.92
 1607
 0
```