

Mark Scheme (Unused)

January 2022

Pearson Edexcel International Advanced Level in Pure Mathematics P4 (WMA14)
Paper 01

Question	Scheme	Notes	Montra
Number	2 2	2.0002	Marks
1(a)	$\frac{2}{\sqrt{9-2x}} = \frac{2}{3\sqrt{\left(1-\frac{2}{9}x\right)}}$ or $\frac{2}{\sqrt{9-2x}} = 2\left(9-2x\right)^{-\frac{1}{2}} = 2 \times \frac{1}{3}\left(1-\frac{2}{9}x\right)^{-\frac{1}{2}}$	Obtains $\sqrt{9-2x} = 3\sqrt{(1)}$	B1
	$\frac{2}{\sqrt{9-2x}} = 2(9-2x)^{-\frac{1}{2}} = 2 \times \frac{1}{3} \left(1 - \frac{2}{9}x\right)^{-\frac{1}{2}}$ $\left(1 - \frac{2}{9}x\right)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-\frac{2}{9}x\right) + \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)}{2!}\left(-\frac{2}{9}x\right)^2 + \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}{3!}\left(-\frac{2}{9}x\right)^3 + \dots$ M1: Attempts the binomial expansion of $(1 + kx)^n$ to get the third and/or fourth term with an acceptable structure. The correct binomial coefficient must be combined with the correct power of x and the correct power of 2. A1: Correct simplified or unsimplified expansion (NB simplified is $= 1 + \frac{1}{9}x + \frac{1}{54}x^2 + \frac{5}{1458}x^3 + \dots$)		
	,	31 1130	A1
	$\frac{2}{\sqrt{9-2x}} = \frac{2}{3} + \frac{2}{27}x + \frac{1}{81}x^2 + \frac{5}{2187}x^3 + \dots$	All correct	A1
			(5)
(b)	$x = 1 \Rightarrow \frac{2}{\sqrt{9-2}} = \frac{2}{3} + \frac{2}{27} + \frac{1}{81} + \frac{5}{2187} + \dots$ $\Rightarrow \sqrt{7} \approx 2 \div \frac{1652}{2187} \text{ or } 2 \times \frac{2187}{1652} \text{ Substitutes } x = 1 \text{ and divides into 2 or equivalent}$		M1
	= 2.6477	Correct approximation	A1
			(2)
	Alternative for (b):		
	$x = 1 \Rightarrow \frac{2}{\sqrt{9-2}} = \frac{2}{3} + \frac{2}{27} + \frac{1}{81} + \frac{5}{2187} + \dots$ $\frac{2}{\sqrt{7}} = \frac{2\sqrt{7}}{7} \Rightarrow \sqrt{7} \approx \frac{7}{2} \times \frac{1652}{2187}$ Substitutes $x = 1$ and multiplies by $\frac{7}{2}$		M1
	= 2.6438	Correct approximation	A1
			Total 7

Question Number	Scheme	Notes	Marks
2(a)	$\frac{x}{y} = t$	Cao	B1
			(1)
(b)	$y = \frac{\left(\frac{x}{y}\right)^3}{2\left(\frac{x}{y}\right) + 1} \text{ or } x = \frac{\left(\frac{x}{y}\right)^4}{2\left(\frac{x}{y}\right) + 1}$	Uses the y coordinate to obtain y in terms of x and y or uses the x coordinate to obtain x in terms of y and x	M1
	$y = \frac{x^3}{2xy^2 + y^3} \Rightarrow y(2xy^2 + y^3) = x^3$ or $x = \frac{x^4}{2xy^3 + y^4} \Rightarrow x(2xy^3 + y^4) = x^4$ $x^3 - 2xy^3 - y^4 = 0*$	Uses correct algebra to eliminate the fractions	M1
	$x^3 - 2xy^3 - y^4 = 0 *$	Cso	A1*
			(3)
			Total 4

Question Number	Scheme	Notes	Marks
3(a)	$3y^{2} - 11x^{2} + 11xy = 20y - 36x + 28$ $\Rightarrow 6y \frac{dy}{dx} - 22x + 11x \frac{dy}{dx} + 11y = 20 \frac{dy}{dx} - 36$ $M1: y^{2} \rightarrow Ay \frac{dy}{dx}$ $M1: 11xy \rightarrow px \frac{dy}{dx} + qy$ $A1: All correct$		
	$(6y+11x-20)\frac{dy}{dx} = 22x-11y-36 \Rightarrow \frac{dy}{dx} = \dots$ Collects terms in $\frac{dy}{dx}$ (must be 3 and from the appropriate terms) and makes $\frac{dy}{dx}$ the subject		
	$\frac{dy}{dx} = \frac{22x - 11y - 36}{6y + 11x - 20}$	Correct expression or correct equivalent	A1
			(5)
(b)	$x = 4 \Rightarrow 3y^2 - 176 + 44y = 20y - 144 + 28$	Substitutes $x = 4$ into C to obtain a 3TQ in y	M1
	$3y^2 + 24y - 60 = 0 \Rightarrow y = \dots$	Solves for <i>y</i>	M1
	y = -10 (,2)	Correct value	A1
	$(4,-10) \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{88+110-36}{-60+44-20}$	Substitutes $x = 4$ and their negative y into their $\frac{dy}{dx}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9}{2}$	Correct value	A1
			(5)
			Total 10

Question Number	Scheme	Notes	Marks
4(a)	$\frac{4-4x}{x(x-2)^2} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	Correct form for the partial fractions	B1
	$4-4x = A(x-2)^{2} + Bx(x-2) + Cx$ $\Rightarrow A = \dots \text{ or } B = \dots \text{ or } C = \dots$	Uses a correct strategy to find at least one of their constants	M1
	4-4x = 1 - 1 - 2	2 correct constants	A1
	$\frac{4-4x}{x(x-2)^2} \equiv \frac{1}{x} - \frac{1}{x-2} - \frac{2}{(x-2)^2}$	All correct	A1
			(4)
(b)	$\int \left(\frac{1}{x} - \frac{1}{x - 2} - \frac{2}{(x - 2)^2}\right) dx = \ln x - \ln(x - 2) + \frac{2}{x - 2}(+c)$		M1
	M1 for $\int \frac{\alpha}{x} dx = \beta \ln x$ or	M1	
	M1 for $\int \frac{\alpha}{(x-2)^2}$ A1: All α	A1	
	AI. AII		(3)
(c)	$\left[\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right]_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - \ln\left(x - 2\right) + \frac{2}{x - 2}\right)_3^5 = \left(\ln x - 2\right)_3^5 = \left(\ln x$	$(15 - \ln 3 + \frac{2}{3}) - (\ln 3 - \ln 1 + 2)$	M1
	$=\ln\frac{5}{9}$	$-\frac{4}{2}$	
	9 M1: Correct use of limits and reache	3	A1
	A1: Correc	et answer	
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$4+2\lambda = 13+5\mu$ $4-3\lambda = -1+\mu$ $-5+6\lambda = 4-3\mu$	For writing down any 2 of these equations.	M1
	E.g. $4 + 2\lambda = 13 + 5\mu$ $4 - 3\lambda = -1 + \mu$ $\Rightarrow \lambda = \dots \text{ or } \mu = \dots$	Full method for finding λ or μ	M1
	$\lambda = 2, \ \mu = -1$	Both correct values	A1
	$-5+6\lambda = -5+12=7$ $4-3\mu = 4+3=7$ So lines intersect	Shows that the parameters satisfy the third equation and makes a conclusion.	B1
	$\lambda = 2 \to (4+4)\mathbf{i} + (4-6)\mathbf{j} + (-5+12)\mathbf{k}$ or $\mu = -1 \to (13-5)\mathbf{i} + (-1-1)\mathbf{j} + (4+3)\mathbf{k}$	Uses their λ or μ to find A .	M1
	$8\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}$	Correct vector or coordinates	A1
			(6)
(b)	$\begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix} \bullet \begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix} = 10 - 3 - 18 = \sqrt{2^2 + 1}$		M1
	Full attempt at the scalar product b $\cos \theta = \pm \frac{11}{7\sqrt{35}}$	Correct magnitude for $\cos \theta$ (may be	A1
	$7\sqrt{35}$	implied by e.g. $\theta = 105.4$ or 74.6	Al
	<i>θ</i> = 74.6°	Awrt 74.6	A1
			(3)
(c)	$ 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} = \sqrt{2^2 + 3^2 + 6^2} = 7$	Finds the magnitude of the direction of l_1	M1
	$35 \div 7 = 5 \Rightarrow \lambda = 5$ $8\mathbf{i} - 2\mathbf{j} + 7\mathbf{k} \pm 5(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$	Correct strategy for one of the points	M1
	(18,-17,37) or $(-2,13,-23)$	One correct point (ignore labels)	A1
	P(18,-17,37) and $Q(-2,13,-23)$	Correct points with correct labels	A1
		-	(4)
			Total 13

Question Number	Scheme	Notes	Marks	
6 Way 1	$\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x - \frac{1}{3} e^{2x} \sin 3x -$	M1A1		
	A1: Correct exp $\int_{0}^{2x} \cos^{3x} dx = \frac{1}{2} \cos^{2x} \sin^{3} x = \frac{2}{2} \int_{0}^{2x} 1 \cos^{3x} dx$			
	$\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left\{ -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x dx \right\} (+c)$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and obtains } \alpha e^{2x} \cos 3x \pm \beta \int e^{2x} \cos 3x dx$			
	$\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} \int e^{2x} \cos 3x dx (+c)$			
	Fully correct application $\int e^{2x} \cos 3x dx + \frac{4}{3} \int e^{2x} \cos 3x dx = -\frac{4}{3} \int e^{2x} \cos 3x dx$			
	$\int e^{2x} \cos 3x dx + \frac{4}{9} \int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x (+c)$ $\Rightarrow \frac{13}{9} \int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x (+c) \Rightarrow \int e^{2x} \cos 3x dx = \dots$			
	Fully correct strategy for fir			
	$= \frac{3}{13}e^{2x}\sin 3x + \frac{2}{13}e^{2x}\cos 3x + k$ Cao			
			(6)	
Way 2	$\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x - \frac{1}{2} e^{2x} \cos 3x - \frac{1}{2} e^{2x} \cos 3x - \frac{1}{2} e^{2x} \cos 3x + \frac{1}{2} e^{2x} \cos 3x +$			
	M1: For applying parts to obtain $\alpha e^{2x} \cos 3x \pm \beta \int e^{2x} \sin 3x dx (+c)$			
	A1: Correct expression			
	$\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} \sin 3x - \frac{3}{2} \int e^{2x} \cos 3x dx \right\} (+c)$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and obtains } \alpha e^{2x} \sin 3x \pm \beta \int e^{2x} \cos 3x dx$			
	$\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \sin 3x - \frac{9}{4} \int e^{2x} \cos 3x dx (+c)$ Fully correct application of parts twice			
	$\int e^{2x} \cos 3x dx + \frac{9}{4} \int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \sin 3x (+c)$			
	$\Rightarrow \frac{13}{4} \int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \sin 3x (+c) \Rightarrow \int e^{2x} \cos 3x dx = \dots$		M1	
	Fully correct strategy for finding $\int e^{2x} \cos 3x dx$			
	$= \frac{3}{13}e^{2x}\sin 3x + \frac{2}{13}e^{2x}\cos 3x + k$	Cao	A1	

Question Number	Scheme	Notes	Marks
7(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 300 - kV \Rightarrow \int \frac{dV}{300 - kV} = \int \mathrm{d}t$	Correct separation of variables	B1
	$\int \frac{dV}{300 - kV} = -\frac{1}{k} \ln \left(300 - kV \right)$	$\int \frac{dV}{300 - kV} = \alpha \ln \left(300 - kV \right)$	M1
	$-\frac{1}{k}\ln\left(300 - kV\right) = t + c$	Correct equation including a constant of integration	A1
	$-\frac{1}{k}\ln(300 - kV) = t + c \Longrightarrow$	$\ln\left(300 - kV\right) = -kt + d$	M1
	$\Rightarrow 300 - kV$ Correct processing to	$f = e^{-kt+d}$	M1
	$kV = 300 - e^{-kt+d} \Rightarrow V = \frac{300}{k} - Be^{-kt}$		
	$V = \frac{300}{L} + Ae^{-kt} *$	Correct proof	A1*
	Κ		(5)
(b)	$V = 0, t = 0 \Rightarrow 0 = \frac{300}{k} + A \Rightarrow A = -\frac{300}{k}$	Uses $V = 0$ when $t = 0$ to find A in terms of k	M1
	$V = \frac{300}{k} - \frac{300}{k} e^{-kt} \Rightarrow \frac{dV}{dt} = 300e^{-kt}$	$\frac{\mathrm{d}V}{\mathrm{d}t} = \alpha \mathrm{e}^{-kt}$	M1
	$300e^{-10k} = 200 \Rightarrow e^{-10k} = \frac{2}{3} \Rightarrow k = \dots$	Uses $\frac{dV}{dt} = 200$ when $t = 10$ and correct processing to find k	M1
	$k = -\frac{1}{10} \ln \frac{2}{3}$	Oe e.g. $\frac{1}{10} \ln \frac{3}{2}$	A1
	•••		(4)
(b) Way 2	$V = 0, t = 0 \Rightarrow 0 = \frac{300}{k} + A \Rightarrow A = -\frac{300}{k}$	Uses $V = 0$ when $t = 0$ to find A in terms of k	M1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200, t = 10 \Rightarrow 200 = 300 - kV$ $\Rightarrow kV = 100$	Uses $\frac{dV}{dt} = 200$ when $t = 10$ to find a value for kV	M1
	$\Rightarrow kV = 100$ $V = \frac{300}{k} + Ae^{-kt} \Rightarrow kV = 300 - 300e^{-10k}$ $\Rightarrow 100 = 300 - 300e^{-kt} \Rightarrow e^{-10k} = \frac{2}{3} \Rightarrow k = \dots$	Substitutes for kV , kA and $t = 10$ and uses correct processing to find k	M1
	$k = -\frac{1}{10} \ln \frac{2}{3}$	Oe e.g. $\frac{1}{10} \ln \frac{3}{2}$	A1
(c)	$6000 = \frac{3000}{\ln 1.5} - \frac{3000}{\ln 1.5} e^{-\frac{t}{10} \ln 1.5}$		
	$ \ln 1.5 \ln 1.5 $ $ \Rightarrow e^{-\frac{t}{10}\ln 1.5} = 1 - 2\ln 1.5 $	Correct strategy using $V = 6000$ to reach $\alpha t =$	M1
	$\Rightarrow -\frac{t}{10}\ln 1.5 = \ln \left(1 - 2\ln 1.5\right)$		
	<i>t</i> = 41	Correct value	A1
			(2) Total 11
		<u>l</u>	1000111

Question Number	Scheme	Notes	Marks
8	Assume that there exist positive real numbers x and y such $\frac{9x}{y} + \frac{y}{x} < 6$	Starts the proof by contradicting the given statement	B1
	$\frac{9x}{y} + \frac{y}{x} < 6 \Rightarrow 9x^2 + y^2 < 6xy$ as x and y are both positive	Multiplies through by xy	M1
	$\Rightarrow 9x^2 + y^2 - 6xy < 0$ $\Rightarrow (3x - y)^2 < 0$	Reaches a correct contradictory statement	A1
	As x and y are positive real numbers, this is a contradiction and so $\frac{9x}{y} + \frac{y}{x} < 6 \text{ must be incorrect and so}$ $\frac{9x}{y} + \frac{y}{x} \dots 6^*$	Makes a suitable conclusion	A1*
			(4)
			Total 4

Question Number	Scheme	Notes	Marks
9(a)	$V = \pi \int y^2 dx = \pi \int y^2 \frac{dx}{d\theta} d\theta$ $= \pi \int (3\sin\theta - \sin 2\theta)^2 (-5\sin\theta) d\theta$	Applies $V = \pi \int y^2 \frac{dx}{d\theta} d\theta$ with or without the π	M1
	$\int_{0}^{\infty} (2 + \alpha + 2 + \alpha + \alpha)^{2} (-5 + \alpha) d\alpha$	Applies $\sin 2\theta = 2\sin \theta \cos \theta$	M1
	$= \pi \int (3\sin\theta - 2\sin\theta\cos\theta)^2 (-5\sin\theta) d\theta$	Fully correct integral in terms of $\sin \theta$ and $\cos \theta$ only (π not needed)	A1
	$= \pi \int \sin^2 \theta (3 - 2\cos \theta)^2 (-5\sin \theta) d\theta$ $V = -5\pi \int \sin^3 \theta (3 - 2\cos \theta)^2 d\theta$ $V = -5\pi \int_{\pi}^{0} \sin^3 \theta (3 - 2\cos \theta)^2 d\theta$ $V = 5\pi \int_{0}^{\pi} \sin^3 \theta (3 - 2\cos \theta)^2 d\theta^*$	Completes correctly with correct limits and no incorrect statements previously. The factor of π must be present throughout.	A1*
(I-)			(4)
(b)	$u = \cos \theta \Rightarrow V = 5\pi \int \sin^3 \theta (3 - 2u)^2 \frac{\mathrm{d}u}{-\sin \theta}$	Applies the substitution correctly	M1
	$\theta = 0 \Rightarrow u = 1, \ \theta = \pi \Rightarrow u = -1$	Attempts to change θ limits to u limits	M1
	$V = -5\pi \int \sin^2 \theta (3 - 2u)^2 du = -5\pi$ Correct integral in terms	•	A1
	$(1-u^2)(3-2u)^2 = (1-u^2)(9-12u+4u^2)$	Attempt to expand	M1
	$=9-12u-5u^2+12u^3-4u^4$	Correct expansion	A1
	$V = 5\pi \int_{-1}^{1} \left(9 - 12u - 5u^2 + 12u^3 - 4u^4\right) du$		
	$=5\pi \left[9u - 6u^2 - \frac{5u^3}{3} + 3u^4\right]$	J-1	M1
	Integrates and applies th	eir <i>u</i> limits	
	$=\frac{196}{3}\pi$	Cao	A1
			(7)
			Total 11