

4	Supervised learning: Linear Regression: Model representation for single variable, Single variable Cost Function, Gradient Decent for Linear Regression, Multivariable model representation, Multivariable cost function, Gradient Decent in practice, Normal Equation and non-invertibility Logistic Regression: Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimization, Multi-classification (One vs. All), Problem of Over fitting, Regularization Classification Problems: Support Vector Machines: Optimization Objective, Large Margin Classifiers, Kernels, SVM practical considerations, Decision Tree classifier	
5	Neural Networks and Unsupervised learning Neural Networks: Non-linear Hypothesis, Biological Neurons, Model representation, Intuition for Neural Networks, Multiclass classification, Cost Function, Back Propagation Algorithm, Back Propagation Intuition, Weights initialization, Neural Network Training Unsupervised learning: Unsupervised learning introduction, Types of clustering algorithms, k-Means clustering Algorithm, Optimization objective, Random Initialization, Choosing number of clusters.	9

Lab Assignments

Sr No.	Contents	Workload in Hrs	
		Lab	
1	Write a Program to Implement Breadth First Search / Depth First Search	2	
2	Write a Program to Implement A* Algorithm for 8 puzzle problem	4	
3	Study of Prolog programming language and Its function. Write Simple Facts for the statements using PROLOG	2	
4	Write a program to implement a logistic regression for a given dataset, e. g. titanic dataset / pima Indian diabetes database	2	
5	Write a program to implement SVM classifier, compare with decision tree algorithm	4	
6	Write a program to implement Naïve Bayes classifier / neural network classifier	4	
7	Write a program to implement anyone clustering algorithm such as k- means clustering algorithm on a given data	4	
8	Mini Project	4	

MIT-WPU
Approved by
Academic Council
0 8 JUN 2023
Date...../.../

Price.

Dr. Dinesh Seth Dean

COURSE STRUCTURE

Course Code	CET4032B				
Course Category	Program Core				
Course Title	Security Management and Cyber La		r Laws		
Teaching Scheme and Credits	Lecture	Tutorial	Laboratory	Credits	
Weekly load hrs.	03 hrs/ week	01 hr /week	-	03+01=04	

Pre-requisites:

- Software Engineering and Testing
- Information and Cybersecurity

Course Objectives:

- 1. Knowledge (i) To understand the basics of security management.
 - (ii) To introduce security management models.
- 2. Skills
- (i) To understand the importance of security planning and contingencies.
- (ii) To learn about the legal frameworks.
- 3. Attitude (i) To explore critical understanding of cyber law for Cyber-crimes.

Course Outcomes

After completion of this course students will be able to-

- 1. Describe and identify security policy framework, legal and moral implication and best practices in security management
- 2. Describe the need for and development of information security policies, and identify guidelines and models for writing policies
- 3. Design detailed enterprise wide security auditing plans and processes
- 4. Demonstrate a critical understanding of the Cyber law with respect to Indian IT/Act 2008

Course Contents:

- Introduction to Security Management
- Planning for Security and Contingencies
- Implementing Security Management
- Legal Framework
- Cyber law for Cyber Crimes

Learning Resources:

Here are some text and reference books that will be recommended for the course.

Text Books

- 1. Principles of Information Security, Michael E. Whitman, Herbert J. Mattord
- 2. Cyber Security, understanding cybercrimes, computer forensics and legal perspectives by Nina Godbole, and Sunit Belapure, WILEY Publication (2011), ISBN: 9788126521791.

MIT-WPU Approved by Academic Council

Date JUN 2023

Dr. Dinesh Seth

Dean

Reference Books

- 1. Sennewald, C., and Baillie, C. (2011). Effective Security Management. Elsevier Publication.
- 2. Handbook of Information Security Management, Micki Krause, Harold F. Tipton, Isc2 Press.
- 3. Information Security Policies, Procedures, and Standards A Practitioner's Reference by Douglas Landoll. CRC Press, 2016 ISBN: 1482-24589-2
- 4. Cyber Crime Manual by Bibhas Chatterjee, Lawman Publication
- 5. Jonthan Rosenoer, Cyber Law, Springer, New York, (1997)

Supplementary Reading

- 1. Power Point Slides
- 2. Case Study
- 3. Practice Assignments

Web Resources

- 1. http://www.iso.org/iso/home/standards/management-standards/iso27001.htm
- 2. http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf

Pedagogy:

- PPTs
- Practical Demos
- Videos
- Expert lectures
- Workshop/Audit reports
- Co Teacher Scheme

Assessment Scheme

Class Continuous Assessment: 60 Marks

Midterm Exam	Component 1	Component 2	Component 3
15 Marks	15 Marks	15 Marks	15 Marks

Lab Continuous Assessment (LCA): NA

Term End Examination: 40 marks

MIT-WPU Approved by Academic Council

0 8 JUN 2023

Dr. Dinesh Seth