

Discrete time crystal on a diamond quantum simulator under a zero magnetic field

Naoya Egawa^{1*}, Joji Nasu¹ Department of Physics, Graduate school of Science, Tohoku Univ. 1

Background and motivation

Hybrid spin register in diamond

A nitrogen-vacancy (NV) center with surrounding nuclear spins: promising platform for quantum information technology

Motivation

Diamond quantum simulators are possible both under high field and under zero field The zero-field register becomes a simulator with extended degrees of freedom due to the electron spin level structure

Our research

We propose a new type of discrete time crystal which consists of a spin-1 central electron system coupled with spin-1/2 nuclear spins under a zero magnetic field

NV center under a zero magnetic field

Model: zero-field NV center

$$H = \underbrace{D_0 S_z^2}_{\text{zero-field splitting}} + \underbrace{\sum_{i} A_{zz}^{(i)} S_z \otimes I_z^{(i)}}_{\text{e-c hyperfine int.}} + \underbrace{\sum_{i,j} C_{zz}^{(ij)} I_z^{(i)} \otimes I_z^{(j)}}_{\text{c-c hyperfine int.}}$$

Carbon-13 **Electron Spin** (spin-1) Carbon

Nuclear Spins(spin-1/2) Nitrogen Nuclear Spin(spin-1)

*we neglected nitrogen nuclear spin terms S: electron spin, I: nuclear spin, $D_0 \sim 2.8 \text{ GHz}$, $A_{zz} = O(\text{kHz})$, $C_{zz} = O(\text{Hz})$

Electron Spin: microwave control \sim ns, $T_2^{\rm DD} \sim 1$ sec, optical init. & readout

Nuclear Spin: quantum memory $T_2^{\rm DD}$ ~ 1min,

init. & readout via electron spin

C. E. Bradley et al., Phys. Rev. X 9, 031045 (2019)

Electron spin control Y. Sekiguchi et al., Nat Commun 7, 11668 (2016)

Degenerate levels behave as a qubit by introducing an ancillary level

Nuclear spin control

Floquet Hamiltonian engineering

Discrete time crystal (DTC)

D. V. Else et al., Phys. Rev. Lett. 117, 090402 (2016) N. Y. Yao et al., Phys. Rev. Lett. 118, 030401 (2017)

DTC is a nonequilibrium phase of matter with a Floquet Hamiltonian H(t) = H(t+T)which satisfies

1. Time translation symmetry breaking

Existence of a local observable that respond at nT (for integer n>1)

2. Rigidity

Robustness of the response period against perturbations

Zero-field discrete time crystal

2T-DTC

Nuclear spin magnetization dynamics

Color bar: The number of Floquet cycles which $|\langle \psi_{\rm init} | \psi(nT) \rangle|^2 > 0.95$ $A_{zz}^{(l)} \sim [0, 2A_{zz}]$ (uniform)

Property 1

Rigidity and fidelity are significantly enhanced by local electron spin echo, which influences the macroscopic behavior by strong $A_{zz} = O(kHz)$

3T-DTC

Property 2

Zero-field DTC makes possible to switch the periodicity by the local spin operation

Origin of the enhanced rigidity

• 2T DTC, switch off

$$H_{\text{eff,2T}} = \sum_{i,j} C_{zz}^{(ij)} I_z^{(i)} \otimes I_z^{(j)} + \sum_i \frac{\epsilon_c}{\tau} \left(\cos A_{zz}^{(i)} \tau + \sin A_{zz}^{(i)} \tau \right) I_x^{(i)}$$

• 2T DTC, switch on

The error term is significantly suppressed when A_{zz} takes sufficiently large value

$$H_{\text{eff,2T}} = \sum_{i} A_{zz}^{(i)} S_z \otimes I_z^{(i)} - \sum_{i} \epsilon_c A_{zz}^{(i)} S_z \otimes I_y^{(i)} - \sum_{i} \epsilon_c A_{zz}^{(i)} \cot(A_{zz}\tau) I_x^{(i)}$$