CoEDSaC = Exam 15
Part / - Modulation
1. Single-phase analogue PWM technique.
- A reference signal is generated and compared with a triangular carrier wave
H. Dridge
Reference Sipolar PWM.
July Va July Su
2 - Discontinuous PWM (DPWM) II
open allows reducing the average switching, which is particular sullable for high power inverters.
Considering similar switching Srequency (some carrier frequency), DPWM gives a 1/3 reduction
of the awage switching Siequency thus reducing switching losses by 33%Implementation DPWM:
Reserver 1
6 Min Common Med
(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

CoEDSaC - Exam 15

3- An electric drive switches from motor to generator

- What happens with the OC - link

- Energy will build upt in the capacitor,
if no precantion is taken and the
capacitor limit are exceeded, this will
damage the inverter

-Reason
-This is caused by the fact that the motor is operating in generator, mode-

- Limit the phenomena of 1.3

- Dissipative braking

- L. A resistor is set in parallel with
the DC-link capacitor to dissipate
the energy.

- Regenerative braking

L. A 4-Quadrant inverter is used
to deliver energy back to the
grid.

)

	CoEDSaC	Exam	15	

5 · C	omparison of	Adjustable	treque	ency Drives.
	PWM	Square 1	Nave	CS1
Power Sactor S.p. 5/21	Uses a Capacitor, thus a smaller PF angle. Fuster control	Mses a (tor, thus smaller PF angle Thyristor course re	apall-	Uses on inductor, (V) where the motor alreadis induction
Torque Pulsation	Fast switching > Small U & 1 ripples.	Slow switch > Larger V ripples CX 1	alno l	thyrister can only be lurned off when 1=0, i.e. only once per Sondamental.
Regent	Needs a financial from Quadrant inverter is supplied by grid.			Has a large inductor, which can store a larger amount of energy then the OC-link capacites
P	Shorts the DC-link ()			the current is limited by the inductor (VI
Open Circuit protection	Current slops Slowing Is No consequence			Drenvoltage, course by the energy stored in the inductor Coment can't Change instant nions
Size and weight	Physically Smaller than than t	>		Large Inductor
Multi Mutor Capability	Vollarge distributed equally across raphible motors Some voltage on each	}		Current depends on the load, whent divides
Ride- through capability	fast Control,	Slow Switchin		Slow response. Lythe large L can compressite

CoEDSaD - Exam 15 PMSM Part 2 A 6-pole surface Mounted PMSM 2.1 - dq reservace France a leads d with 90° electrical > 90% repeter 2.2 - Torque eq. - Torque expressed by da inductances and currents Te = 3 p () mpm 1q + (Ld-Lq)idiq) Il Since Surface Mounted, Ld-Lq Te: 3 p (Ampmig) - Determination of d- and of axis unrunt references for FOC idires = 0 ignes can be found either by X(Vres - W) Pl - Throngh a speed loop or through a torque reference: igines = 3 P Ampro

CoEDSaC Exam 16 2.6 - Step The motor is running at 1000 - up = 0,2 , k; = 10 A new speed reference of 1100 pm is introduced: - The change in q-current reference command for the next o,1 s: 19, red, int = (1100 - 1000) -0, 2 = 20 A, at 1=0 ig, red, Sincl = (1100 - 1000) 0, 2 +1050 100 dt = 120 A at to,

COEPSaC - Exam 15
Part 3 - Induction Motor 1 - Rotational Speed Supply = 50 Hz
- Rotor field Wriel = Ws - Wse , Wse = 5. Ws So if 15 = 0 (No-Slip, i.e. no load) Uriel = 50.277 = 314, 15 rad/s
- Stator Sield: Ws = 50 +1z - 27 = 314, 15 rad/s
- Alr gab Sield: Vse Vs - Writel So if 5=0
wsc = 0 rad/s. 2 - Rotor Flux Oriented Field Oriented Control - Torque eq. 2 = \frac{3}{2} p \frac{Lm}{Lr} \ln (\bar{i}_{qds} \cdot \lambda_q dr), \[\begin{align*} \left[Since \lambda_q dr \lambda dr \lambda r \lambda r \end{align*}
Z. Zp Ln (iqs xr)

CoEDSa C - Exam 15 3 - RFO FOC - Derive an expression linking votor Slux magnetude and stater d-axis current: As Nar = 0 and Nar = Nr From rolor side: Adr = Lir ide + Lm (lds + ide), Lir + Lm = Lr Ar : Lr + Lm ids and 0 = Rriar +p ldr This (1+ Lr p) Ar = Lmids ids 2 L/n s +/ - Step FV = 1 5 5 Lm + Lm = Lm 1 > 5+00 3.5 Lm =

CoFOSaC - Exam 4 - Types of FOC: - Rotor - Slux oriented simplest - Motor Parameters needed - Pr. Rs., Lis, Lir, Lm, P Nor, Naso: Lecture 1, slide 14