Optimizing Deep Searches for Gravitional waves from Binary Coalescance

Alexander H. Nitz¹, Joshua L. Willis², Ian W. Harry⁴, Andrew Lundren³, Tito Dal Canton³, Larne Pekowsky¹, Duncan A. Brown¹

- ¹ Syracuse University, Syracuse, NY 13244, USA
- ² Abilene Christian University, Box 27963, Abilene, TX 79699, USA
- 3 Max Planck Institut für Gravitationsphysik, Callinstrasse 38, D-30167 Hannover, Germany
- 4 Max Planck Institut für Gravitationsphysik, Am Muehlenberg 1, D-14476 Potsdam, Germany

Abstract.

- 1. Introduction
- 2. Methods of the Inspiral Search

Stuff.. [1]

3. Improvements to the Search Algorithms

- 3.1. Opportunistic Chisq
- 3.2. Heirarchical FFT

4. Implementation Techniques

- 4.1. Implementation on CPUs
- 4.2. Implementation on NVIDIA GPUs
- 4.3. Implementation on Intel MICs

5. Sub-component Benchmarks

- 5.1. Various GPUs
- 5.2. Various CPUs/MIC
- 6. In-situ benchmarks
- 7. Conclusions
- 8. Acknowledgments
- [1] Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D.E. Creighton. FINDCHIRP: An Algorithm for detection of gravitational waves from inspiraling compact binaries. *Phys. Rev.*, D85:122006, 2012.