§ 6.2 抽样分布

确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.

由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.

一、数理统计中常用分布

(1) 正态分布

$$X_1, X_2, \dots, X_n \stackrel{\textbf{i.i.d.}}{\sim} N(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^{n} a_i X_i \sim N \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right)$$

特别地,

若
$$X_1, X_2, \dots, X_n$$
 i.i.d. $X_i \sim N(\mu, \sigma^2)$

贝
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N \left(\mu, \frac{\sigma^2}{n} \right)$$

标准正态分布的上 α 分位点 z_{α}

$$z_{0.05} = 1.645$$
 $z_{0.025} = 1.96$

$$z_{0.005} = 2.575$$

$$-Z_{\alpha/2} = Z_{1-\alpha/2}$$

(2) $\chi^2(n)$ 分布(n为自由度)

定义设 X_1, X_2, \cdots, X_n 相互独立,

且都服从标准正态分布N(0,1),则

$$\sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

n=1 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

n=2 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

为参数为1/2的指数分布.

一般地自由度为n的 $\chi^2(n)$ 的密度函数为

设地自由度为
$$n$$
 的 $\chi^{2}(n)$ 的密度
$$f(x) = \begin{cases} \frac{1}{\frac{n}{2}} e^{-\frac{x}{2}} x^{\frac{n}{2}-1}, & x > 0 \\ 2^{\frac{n}{2}} \Gamma(\frac{n}{2}) & x \le 0 \end{cases}$$

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

 $\mathbf{c}_{x} > 0$ 时收敛,称为 Γ 函数,具有性质

$$\Gamma(x+1) = x\Gamma(x),$$

$$\Gamma(1) = 1, \ \Gamma(1/2) = \sqrt{\pi}$$

$$\Gamma(n+1) = n! \ (n \in N)$$

$\chi^2(n)$ 分布的性质

1°
$$E\left(\chi^{2}(n)\right) = n, D\left(\chi^{2}(n)\right) = 2n$$

$$2^{\circ}$$
 若 $X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2), X_1, X_2$ 相互独立 则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$

$$3^{\circ}$$
 $n \to \infty$ 时 $\chi^{2}(n) \to$ 正态分布

 $4^{\circ} \chi^{2}(n)$ 分布的上 α 分位点有表可查

例如

$$\chi^2_{0.05}(10) = 18.307$$

$$P\{\chi^2(10) > 18.307\} = 0.05$$

当
$$n$$
充分大时, $\chi^2_{\alpha}(n) \approx \frac{1}{2} (z_{\alpha} + \sqrt{2n-1})^2 \chi^{20.05}(10)$

0.08

0.06

0.04

n=10

 α

证 1 设
$$\chi^2(n) = \sum_{i=1}^n X_i^2$$
 $X_i \sim N(0,1)$ $i = 1,2,\cdots,n$ X_1, X_2, \cdots, X_n 相互独立,

$$D(X_i) = 0, \ D(X_i) = 1, \ E(X_i^2) = 1$$

$$E(\chi^2(n)) = E\left(\sum_{i=1}^n X_i^2\right) = n$$

$$E(X_i^4) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^4 e^{-\frac{x^2}{2}} dx = 3$$

$$D(X_i^2) = E(X_i^4) - E^2(X_i^2) = 2$$

$$D(\chi^2(n)) = D\left(\sum_{i=1}^n X_i^2\right) = 2n$$

(3) t 分布 (Student 分布)

定义 设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, X, Y 相互独立,

$$T = \frac{X}{\sqrt{Y/n}}$$

则T所服从的分布称为自由度为n的t分布,其密度函数为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{\frac{-n+1}{2}} \qquad -\infty < t < +\infty$$

t 分布的图形(红色的是标准正态分布)

t 分布的性质

 $1 \circ f_n(t)$ 是偶函数,

$$n \to \infty, f_n(t) \to \varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

 $2 \circ t$ 分布的上 α 分位数 t_{α} 与双测 α 分位数 $t_{\alpha/2}$ 有表可查

$$P\{T > t_{\alpha}\} = \alpha$$

$$-t_{\alpha} = t_{1-\alpha}$$

$$0.35$$

$$0.25$$

$$0.15$$

$$0.15$$

$$0.05$$

$$0.05$$

$$0.05$$

$$P\{T > 1.8125\} = 0.05 \implies t_{0.05}(10) = 1.8125$$

$$P\{T < -1.8125\} = 0.05$$

$$P\{T > -1.8125\} = 0.95$$

$$\implies t_{0.95}(10) = -1.8125$$

$$P\{T > t_{\alpha/2}\} = \frac{\alpha}{2}$$

$$P\{|T| > t_{\alpha/2}\} = \alpha$$
0.35
0.2
0.2
0.15
0.15
0.05
$$\alpha/2$$
0.10
0.05

$$P\{T > 2.2281\} = 0.025$$

 $P\{|T| > 2.2281\} = 0.05$ $\Rightarrow t_{0.025}(10) = 2.2281$

(4) F分布

定义设 $X \sim \chi^2(n), Y \sim \chi^2(m), X, Y$ 相互独立,

$$F = \frac{X/n}{Y/m}$$

则F所服从的分布称为第一自由度为n,第二自由度为m的F分布,其密度函数为

$$f(t,n,m) = \begin{pmatrix} \Gamma\left(\frac{n+m}{2}\right) \\ \Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right) \\ \Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right) \\ 0, \qquad t \leq 0 \end{pmatrix}$$

$$m = 10, n = 4$$
 $m = 10, n = 10$
 $m = 10, n = 15$

$$m = 4, n = 10$$
 $m = 10, n = 10$
 $m = 15, n = 10$

F 分布的性质

- 1° 若 $F \sim F(n,m)$,则 $\frac{1}{F} \sim F(m,n)$
- 2° F(n,m)的上 α 分位数 $F_{\alpha}(n,m)$ 有表可查:

$$P{F > F_{\alpha}(n,m)} = \alpha$$

例如
$$F_{0.05}(4,5) = 5.19$$

但
$$F_{0.95}(5,4) = ?$$

事实上,

$$F_{1-\alpha}(n,m) = \frac{1}{F_{\alpha}(m,n)}$$

拉
$$F_{0.95}(5,4) = \frac{1}{F_{0.05}(4,5)} = \frac{1}{5.19}$$

例1 证明
$$F_{1-\alpha}(n,m) = \frac{1}{F_{\alpha}(m,n)}$$

if
$$P\{F \ge F_{1-\alpha}(n,m)\} = P\left\{\frac{1}{F} \le \frac{1}{F_{1-\alpha}(n,m)}\right\}$$

$$= 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n,m)}\right\} = 1 - \alpha$$

故
$$P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n,m)}\right\} = \alpha$$
 由于 $\frac{1}{F} \sim F(m,n)$

因而
$$\frac{1}{F_{1-\alpha}(n,m)} = F_{\alpha}(m,n)$$

例2 证明:
$$[t_{1-\frac{\alpha}{2}}(n)]^2 = F_{\alpha}(1,n)$$

证 设 $X \sim t(n), X = \frac{G}{\sqrt{\frac{\chi^2(n)}{n}}}, G \sim N(0,1)$
令 $Y = X^2 = \frac{G^2}{\frac{\chi^2(n)}{2}} = \frac{\frac{\chi^2(1)}{1}}{\frac{\chi^2(n)}{2}} \sim F(1,n)$
因而 $P\{|X| > |t_{1-\frac{\alpha}{2}}(n)|\} = P\{|X| > t_{\frac{\alpha}{2}}(n)\} = \alpha$
 $= P\{X^2 > t_{\frac{\alpha}{2}}^2(n)\} = P\{Y > t_{1-\frac{\alpha}{2}}^2(n)\}$
即 $t_{1-\frac{\alpha}{2}}^2(n) = F_{\alpha}(1,n)$

二、抽样分布定理

() 一个正态总体

设
$$X \sim N(\mu, \sigma^2)$$
 $E(X) = \mu$, $D(X) = \sigma^2$ 总体的样本为(X_1, X_2, \dots, X_n),则

$$\frac{\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)}{\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)}{\frac{\pi}{\sigma^2}} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)}$$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \div \frac{S}{\sigma} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1) \qquad (2)$$

(II) 两个正态总体

设 X_1, X_2, \dots, X_n 是来自正态总体 $X \sim N(\mu_1, \sigma_1^2)$ 的一个简单随机样本

 Y_1, Y_2, \dots, Y_m 是来自正态总体 $Y \sim N(\mu_2, \sigma_2^2)$ 的一个简单随机样本它们相互独立.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\overline{Y} = \frac{1}{m} \sum_{j=1}^{m} Y_{j}$$

$$S_{1}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \quad S_{2}^{2} = \frac{1}{m-1} \sum_{j=1}^{m} (Y_{j} - \overline{Y})^{2}$$

则

$$\frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi^2(n-1) \qquad \frac{(m-1)S_2^2}{\sigma_2^2} \sim \chi^2(m-1)$$

$$\frac{S_1^2}{S_2^2} \sim F(n-1, m-1) \qquad (3)$$

若
$$\sigma_1 = \sigma_2$$
 则 $\frac{S_1^2}{S_2^2} \sim F(n-1, m-1)$

设 X_1, X_2, \dots, X_n 是来自正态总体 $X \sim N(\mu_1, \sigma^2)$

的一个简单随机样本

 Y_1, Y_2, \dots, Y_m 是来自正态总体 $Y \sim N(\mu_2, \sigma^2)$

的一个简单随机样本,它们相互独立.

则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu_1, \frac{\sigma^2}{n})$$
 $\overline{Y} = \frac{1}{m} \sum_{j=1}^{m} Y_j \sim N(\mu_2, \frac{\sigma^2}{m})$

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n} + \frac{\sigma^2}{m})$$

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n} + \frac{\sigma^2}{m})$$

$$\overline{(X - Y) - (\mu_1 - \mu_2)} \sim N(0,1)$$

$$\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}$$

$$\frac{(n-1)S_1^2}{\sigma^2} \sim \chi^2(n-1) \quad \frac{(m-1)S_2^2}{\sigma^2} \sim \chi^2(m-1)$$

$$\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{\sigma^2} \sim \chi^2(n+m-2)$$

$$\overline{X} - \overline{Y}$$
 与 $\frac{(n-1)S_1^2}{\sigma^2} + \frac{(m-1)S_2^2}{\sigma^2}$ 相互独立

$$\frac{(\overline{X} - \overline{Y}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma^{2} + \sigma^{2}}{n} + \frac{\sigma^{2}}{m}}}$$

$$\frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{\sigma^{2}}$$

$$\sqrt{\frac{\sigma^{2} + \sigma^{2}}{n} + \frac{\sigma^{2}}{\sigma^{2}}}$$

$$\sqrt{\frac{n + m - 2}{n}}$$

$$=\frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{1}{n}+\frac{1}{m}}\sqrt{\frac{(n-1)S_{1}^{2}+(m-1)S_{2}^{2}}{n+m-2}}} \sim t(n+m-2)$$

-----(4)

例3 设总体 *X* ~ *N*(72,100),为使样本均值 大于70 的概率不小于 90%,则样本容量

$$n = 42$$

解 设样本容量为n,则 $\overline{X} \sim N(72,\frac{100}{n})$

故
$$P\{\overline{X} > 70\} = 1 - P\{\overline{X} \le 70\} = \mathcal{D}(0.2\sqrt{n})$$

$$\Phi(0.2\sqrt{n}) \ge 0.9$$
 查表得 $0.2\sqrt{n} \ge 1.29$

即 $n \ge 41.6025$ 所以取 n = 42

例4 从正态总体 $X \sim N(\mu, \sigma^2)$ 中,抽取了 n = 20的样本 X_1, X_2, \dots, X_{20}

(1)
$$\nearrow \ P\left\{0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} (X_i - \overline{X})^2 \le 1.76\sigma^2\right\}$$

(2)
$$\Re P\left\{0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right\}$$

解 (1)
$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$$
即
$$\frac{19S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \sim \chi^{2}(19)$$
故
$$P\left\{0.37\sigma^{2} \leq \frac{1}{20} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \leq 1.76\sigma^{2}\right\}$$

$$= P\left\{7.4 \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \leq 35.2\right\}$$

$$= P\left\{\frac{1}{\sigma^{2}} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \geq 7.4\right\} - P\left\{\frac{1}{\sigma^{2}} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \geq 35.2\right\}$$
查表

章表 = 0.99 - 0.01 = 0.98 (P.386)

(2)
$$\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(20)$$

古久
$$P\left\{0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} (X_i - \mu)^2 \le 1.76\sigma^2\right\}$$

$$= P \left\{ 7.4 \le \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \le 35.2 \right\}$$

$$= P \left\{ \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \ge 7.4 \right\} - P \left\{ \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \ge 35.2 \right\}$$

$$= 0.995 - 0.025 = 0.97$$

例5 设X与Y相互独立 , $X \sim N(0,16)$, $Y \sim N(0,9)$, $X_1, X_2, ..., X_9$ 与 $Y_1, Y_2, ..., Y_{16}$ 分别是取自 X 与 Y 的简单随机样本,求统计量

$$\frac{X_{1} + X_{2} + \cdots + X_{9}}{\sqrt{Y_{1}^{2} + Y_{2}^{2} + \cdots + Y_{16}^{2}}}$$

所服从的分布

解
$$X_1 + X_2 + \dots + X_9 \sim N(0, 9 \times 16)$$

$$\frac{1}{3 \times 4} (X_1 + X_2 + \dots + X_9) \sim N(0, 1)$$

$$\frac{1}{3}Y_{i} \sim N(0,1), i = 1,2,\cdots,16$$

$$\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2} \sim \chi^{2}(16)$$

$$\cancel{Mm} \quad \frac{X_{1} + X_{2} + \cdots + X_{9}}{\sqrt{Y_{1}^{2} + Y_{2}^{2} + \cdots + Y_{16}^{2}}}$$

$$= \frac{\frac{1}{3 \times 4} (X_{1} + X_{2} + \cdots + X_{9})}{\sqrt{\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2}}} \sim t(16)$$

例6 设总体 $X \sim N(0,1)$, X_1, X_2, \dots, X_6 为总体X 的样本, $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$ 试确定常数c 使cY 服从 χ^2 分布.

解
$$X_1 + X_2 + X_3 \sim N(0,3)$$
, $X_4 + X_5 + X_6 \sim N(0,3)$
 $\frac{1}{\sqrt{3}}(X_1 + X_2 + X_3)$, $\frac{1}{\sqrt{3}}(X_4 + X_5 + X_6) \sim N(0,1)$
故 $\left[\frac{1}{\sqrt{3}}(X_1 + X_2 + X_3)\right]^2 + \left[\frac{1}{\sqrt{3}}(X_4 + X_5 + X_6)\right]^2$
 $= \frac{1}{3}Y \sim \chi^2(2)$
因此 $c = \frac{1}{3}$

例7 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$

的简单随机样本义 是样本均值,

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \qquad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2,$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, \qquad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

$$S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

则服从自由度为n-1的 t 分布的随机变量为

$$(A) \frac{\overline{X} - \mu}{S_1} \sqrt{n-1}$$

(C)
$$\frac{\overline{X} - \mu}{S_3} \sqrt{n}$$

(B)
$$\frac{X-\mu}{S_2}\sqrt{n-1}$$

(D)
$$\frac{\overline{X} - \mu}{S_4} \sqrt{n}$$

解
$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$
 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$ $\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $\frac{\overline{X} - \mu}{\sqrt{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2}} = \frac{\sqrt{n(n-1)}(\overline{X} - \mu)}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}} \sim t(n-1)$ $\sqrt{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2}$ $n-1$

故应选(B)