Chapter 0: Introduction

Jessica Zhang

June 4, 2020

Exercise 0.1. As per the hint, observe that if $y \in G$, then we have y = r(y) + (y - r(y)). Obviously, we have $r(y) \in H$. Moreover, we know that

$$r(y - r(y)) = r(y) - r(r(y)) = 0,$$

and so $y - r(y) \in \ker r$. Thus $G \subseteq H \oplus \ker r$.

The reverse is obviously true, since H and $\ker r$ are both subgroups of G.

Exercise 0.2. Suppose instead that $f: D^1 \to D^1$ has no fixed point. Then consider the continuous map $g: D^1 \to S^0$ given by

$$g(x) = \begin{cases} 1 & \text{if } f(x) < x \\ -1 & \text{if } f(x) > x \end{cases}.$$

Notice that because $f(x) \neq x$ for all x, the function q is well-defined.

Moreover, we know that $f(-1) \neq -1$, since f has no fixed point, and so f(-1) > -1. Thus g(-1) = -1. Similarly, we have g(1) = 1.

Thus we have $g(D^1)=S^0$, which is disconnected. This is a contradiction, so f must have had a fixed point.

Exercise 0.3. Suppose that r is such a retract. Then we have the following commutative diagram:

$$S^{n-1} \xrightarrow{1} S^{n-1}$$

Applying H_{n-1} , we get another commutative diagram:

We know that $H_{n-1}(S^n) = 0$, however, implying that $H_{n-1}(1) = 0$. This contradicts the fact that $H_{n-1}(S^{n-1}) = \mathbb{Z} \neq 0$. Thus the retraction r could not have existed.

Exercise 0.4. Suppose $g: D^n \to X$ is a homeomorphism. Then we know that $g^{-1} \circ f \circ g$ is a continuous map from D^n to itself, and so it has a fixed point x. Then we know that $g^{-1}(f(g(x))) = x$, and so it follows that f(g(x)) = g(x). Thus $g(x) \in X$ is a fixed point of f.