SVM (Support Vector Machine)

2021.8

Yongjin Jeong, KwangWoon University

[참고] 본 자료에는 책이나 인터넷, 또는 외부 강의자료에서 인용하여 사용한 그림이나 수식들이 있으니 다른 용도로 사용하거나 외부로 유출을 금해 주시기 바랍니다.

- [1] Aurellian Geron, Hands-on Machine Learning with Scikit, Keras, and Tensorflow
- [2] https://www.robots.ox.ac.uk/~az/lectures (Prof. Zisserman's lecture slide)

Linear classification and SVM Classifier

Sensitivity to feature scales

Before Scaling

After Scaling

- Hard margin and Soft margin
 - Hard margin

- Soft margin
 - Large margin and fewer margin violations

Overfitting 가능성

- Quadratic optimization problem subject to linear constraints
 - There is a unique minimum.

SVM is formulated as an optimization:

$$\max_{\mathbf{w}} \frac{2}{||\mathbf{w}||} \text{ subject to } \mathbf{w}^{\top} \mathbf{x}_i + b \overset{\geq}{\leq} 1 \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1 \dots N$$

Or equivalently

$$\min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1$ for $i = 1 \dots N$

- Introduce Slack variables
 - amount of error (hinge loss) from the correct side of hyperplane?

Soft margin

The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i \text{ for } i = 1 \dots N$$

- Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored ightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin
- ullet This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

Hard margin and Soft margin

C = Infinity hard margin

C = 10 Soft margin

SVM Optimization

Constrained optimization problem

 The learning problem is now equivalent to the unconstrained optimization problem over w

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(\mathbf{0}, \mathbf{1} - y_i f(\mathbf{x}_i))$$
regularization loss function

Loss Function

 $\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max(\mathbf{0}, \mathbf{1} - y_i f(\mathbf{x}_i))$ loss function

Points are in three categories:

- 1. $y_i f(x_i) > 1$ Point is outside margin. No contribution to loss
- 2. $y_i f(x_i) = 1$ Point is on margin. No contribution to loss. As in hard margin case.
- 3. $y_i f(x_i) < 1$ Point violates margin constraint. Contributes to loss

Hinge Loss

Hinge loss

- SVM uses "hinge" loss $\max(0, 1 y_i f(\mathbf{x}_i))$
- an approximation to the 0-1 loss

Sub-gradient for Hinge loss

Sub-gradient descent algorithm for SVM

$$C(\mathbf{w}) = \frac{1}{N} \sum_{i}^{N} \left(\frac{\lambda}{2} ||\mathbf{w}||^{2} + \mathcal{L}(\mathbf{x}_{i}, y_{i}; \mathbf{w}) \right)$$

The iterative update is

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - \eta \nabla_{\mathbf{w}_{t}} \mathcal{C}(\mathbf{w}_{t})$$

$$\leftarrow \mathbf{w}_{t} - \eta \frac{1}{N} \sum_{i}^{N} (\lambda \mathbf{w}_{t} + \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{x}_{i}, y_{i}; \mathbf{w}_{t}))$$

where η is the learning rate.

Then each iteration t involves cycling through the training data with the updates:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta(\lambda \mathbf{w}_t - y_i \mathbf{x}_i)$$
 if $y_i f(\mathbf{x}_i) < 1$ $\leftarrow \mathbf{w}_t - \eta \lambda \mathbf{w}_t$ otherwise

Nonlinear SVM Classifier

- Adding features to make a dataset linearly separable
 - Add a second feature $x^2 = (x^2)^2$

Nonlinear SVM Classifier

Linear SVM classifier using polynomial features

Nonlinear SVM Classifier

General (linearly) non-separable data

Use polar coordinates

- Data is linearly separable in polar coordinates
- · Acts non-linearly in original space

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^2$$

Map data to higher dimension

Primal and Dual formulations

N is number of training points, and d is dimension of feature vector \mathbf{x} .

Primal problem: for $\mathbf{w} \in \mathbb{R}^d$

$$\min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i}^{N} \max \left(0, 1 - y_i f(\mathbf{x}_i)\right)$$

Dual problem: for $\alpha \in \mathbb{R}^N$ (stated without proof):

$$\max_{\alpha_i \geq 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k (\mathbf{x}_j^\top \mathbf{x}_k) \text{ subject to } 0 \leq \alpha_i \leq C \text{ for } \forall i, \text{ and } \sum_i \alpha_i y_i = 0$$

- ullet Need to learn d parameters for primal, and N for dual
- If N << d then more efficient to solve for α than ${\bf w}$
- Dual form only involves $(\mathbf{x}_j^{\mathsf{T}}\mathbf{x}_k)$.

Primal and Dual in transformed Feature space

Primal Classifier in transformed feature space

Classifier, with $\mathbf{w} \in \mathbb{R}^D$:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{\Phi}(\mathbf{x}) + b$$

Learning, for $\mathbf{w} \in \mathbb{R}^D$

$$\min_{\mathbf{w} \in \mathbb{R}^D} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$

- Simply map x to $\Phi(x)$ where data is separable
- ullet Solve for ${f w}$ in high dimensional space ${\mathbb R}^D$
- If D >> d then there are many more parameters to learn for w. Can this be avoided?

Dual Classifier in transformed feature space

Classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$$

$$\to f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})^{\top} \Phi(\mathbf{x}) + b$$

Learning:

$$\max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \mathbf{x}_j^{\top} \mathbf{x}_k$$

$$\rightarrow \max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \Phi(\mathbf{x}_j)^{\top} \Phi(\mathbf{x}_k)$$

subject to

$$0 \le \alpha_i \le C$$
 for $\forall i$, and $\sum_i \alpha_i y_i = 0$

Dual Classifier in transformed feature space

- Note, that $\Phi(\mathbf{x})$ only occurs in pairs $\Phi(\mathbf{x}_i)^{\top}\Phi(\mathbf{x}_i)$
- ullet Once the scalar products are computed, only the N dimensional vector $oldsymbol{lpha}$ needs to be learnt; it is not necessary to learn in the D dimensional space, as it is for the primal
- Write $k(\mathbf{x}_j, \mathbf{x}_i) = \Phi(\mathbf{x}_j)^{\top} \Phi(\mathbf{x}_i)$. This is known as a Kernel

Classifier:

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b$$

Learning:

$$\max_{\alpha_i \ge 0} \sum_i \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k k(\mathbf{x}_j, \mathbf{x}_k)$$

subject to

$$0 \le \alpha_i \le C$$
 for $\forall i$, and $\sum_i \alpha_i y_i = 0$

Special transformations

$$\Phi: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \to \mathbb{R}^3$$

$$\Phi(\mathbf{x})^{\top} \Phi(\mathbf{z}) = \begin{pmatrix} x_1^2, x_2^2, \sqrt{2}x_1x_2 \end{pmatrix} \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1z_2 \end{pmatrix}$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\mathbf{x}^{\top} \mathbf{z})^2$$

Kernel Trick

- ullet Classifier can be learnt and applied without explicitly computing $\Phi(x)$
- All that is required is the kernel $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$
- Complexity of learning depends on N (typically it is $O(N^3)$) not on D

Common SVM Kernels

Mercer's Theorem

According to *Mercer's theorem*, if a function $K(\mathbf{a}, \mathbf{b})$ respects a few mathematical conditions called *Mercer's conditions* (K must be continuous, symmetric in its arguments so $K(\mathbf{a}, \mathbf{b}) = K(\mathbf{b}, \mathbf{a})$, etc.), then there exists a function ϕ that maps \mathbf{a} and \mathbf{b} into another space (possibly with much higher dimensions) such that $K(\mathbf{a}, \mathbf{b}) = \phi(\mathbf{a})^T \phi(\mathbf{b})$. So you can use K as a kernel since you know ϕ exists, even if you don't know what ϕ is. In the case of the Gaussian RBF kernel, it can be shown that ϕ actually maps each training instance to an infinite-dimensional space, so it's a good thing you don't need to actually perform the mapping!

Linear:
$$K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b}$$

Polynomial:
$$K(\mathbf{a}, \mathbf{b}) = (\gamma \mathbf{a}^T \mathbf{b} + r)^d$$

Gaussian RBF:
$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma ||\mathbf{a} - \mathbf{b}||^2)$$

Sigmoid:
$$K(\mathbf{a}, \mathbf{b}) = \tanh \left(\gamma \mathbf{a}^T \mathbf{b} + r \right)$$

RBF Kernel SVM Example

$$f(\mathbf{x}) = \sum_{i}^{N} \alpha_{i} y_{i} \exp\left(-||\mathbf{x} - \mathbf{x}_{i}||^{2}/2\sigma^{2}\right) + b$$

$$\sigma = 1.0$$
 $C = \infty$

$$\sigma = 1.0$$
 $C = 100$

Decrease C -> wider (soft) margin

$$\sigma = 0.25$$
 $C = \infty$

$$\sigma = 1.0$$
 $C = 10$

$$\sigma = 0.1$$
 $C = \infty$

Decrease sigma (increase gamma) -> move towards nearest neighbor classifier

SVM classifiers with a polynomial kernel

$$\mathbf{K}(\mathsf{a},\mathsf{b}) = (a \times b + r)^d$$
- a, b: 서로 다른 데이터
- r: polynomial의 coefficient를 결정
- d: polynomial의 차수

Adding Similarity features

- measures how much each instance resembles a particular landmark.
- define the similarity function: Gaussian Radial Basis Function (RBF)

Gaussian RBF Kernel

SVM Regression

- · It also supports linear and nonlinear regression.
- Reverse the object:
 - instead of trying to fit the largest possible street between two classes while limiting margin violations,
 - SVM Regression tries to **fit as many instances as possible** *on* **the street** while limiting margin violations (i.e., instances *off* the street).
 - The width of the street is controlled by a hyperparameter ϵ .

SVM Regression

• SVM regression using 2nd degree polynomial kernel

