Eric Blohm (000511-3030) 1

Restricted Boltzmann Machine

The learning rate was set to 0.006, k to 10, batch size to 100, and training was performed over 1500 epochs. These parameters offered a good balance across all hidden neuron configurations. A lower learning rate improved performance for M=4,8 but had a negative impact on M=1,2. The number of epochs ensured M=4,8 accurately reproduced the target distribution, while k was selected to guarantee the system "forgot" prior states and avoided dependence on earlier dynamics. Reducing k degraded the quality of distribution approximation. The batch size allowed for an appropriate representation of the target training distribution, approximately [1/4, 0, 0, 1/4, 0, 1/4, 1/4, 0].

For sampling, I initialized the visible states randomly, ran the dynamics for k steps, sampled the updated states, and repeated this process 10,000 times. I converted the 10,000 binary states to decimal indices, counted their frequencies, and computed the Kullback-Leibler divergence, as illustrated in Figure 1. The results validate the accuracy of the reproduced distribution, as shown in Table 1.

M (Hidden Neurons)	D_{KL}	D_{KL} -bound
1	0.69874	0.69315
2	0.17378	0.34657
4	0.00652	0.0
8	0.00243	0.0

Table 1: Comparison of D_{KL} and D_{KL} -bound for different values of M (hidden neurons). The plot of these values is represented in Figure 1.

Figure 1: The figure represents the Kullback-Leibler divergence (D_{KL}) as a function of hidden neurons (M). The estimated upper bound (Green), and the value calculated after sampling (Orange).

Restricted Boltzmann Machine

Eric Blohm

October 7, 2024

Here is the Python code for the Restricted Boltzmann Machine:

```
import numpy as np
1
2
   import matplotlib.pyplot as plt
3
4
5
   def sample_patterns_equal_prob(batch_size, patterns):
 6
           pattern_indices = np.random.choice(len(
               patterns), size=batch_size, p=[0.25, 0.25,
               0.25, 0.25])
            mini_batch = np.array([patterns[idx] for idx
7
               in pattern_indices])
8
            return mini_batch
9
10
11
   def p_boltzmann(b):
12
       denominator = 1+np.exp(-2*b)
13
       return 1/denominator
14
15
16
   def compute_delta_w(eta, b_i_h_0, v_0, b_i_h, v, w):
17
       delta_w = w.copy()
18
       for m in range(0,len(w)):
19
            for n in range(0,len(w[0])):
20
                term1 = np.tanh(b_i_h_0[m])*v_0[n]
21
                term2 = np.tanh(b_i_h[m])*v[n]
22
                delta_w[m][n] = eta*(term1 - term2)
23
       return delta_w
24
25
26
   def compute_delta_theta_v(eta, v_0, v, theta_v):
27
       delta_theta_v = np.zeros(len(theta_v))
28
       for n in range(0,len(theta_v)):
29
            delta_theta_v[n] = -eta*(v_0[n]-v[n])
30
       return delta_theta_v
```

```
31
32
33
   def compute_delta_theta_h(eta, b_i_h_0, b_i_h, theta_h
34
       delta_theta_h = np.zeros(len(theta_h))
35
       for m in range(0,len(theta_h)):
36
            term1 = np.tanh(b_i_h_0[m])
37
            term2 = np.tanh(b_i_h[m])
38
            delta_theta_h[m] = -eta*(term1-term2)
39
       return delta_theta_h
40
41
42
43
   def train_RBM(M,eta,k,epochs,batch_size): #,patterns)
44
45
       PD = np.array([0.25, 0, 0.25, 0.25, 0.25,
           0])
46
       ### Init ###
47
       #patterns that have a 1/4 probability to be
48
           sampled, used for training
49
       patterns = np.array([[-1,-1,-1],
50
                             [-1,1,1],
51
                             [1,-1,1],
52
                             [1,1,-1]
53
54
       variance = 1/ np.maximum(3,M)
55
       std = np.sqrt(variance)
56
       w = np.random.normal(0, std, size=(M,3))
57
58
       theta_v = np.zeros(3)
59
       theta_h = np.zeros(M)
60
       v = np.zeros(3)
       h = np.zeros(M)
61
62
       ############
63
64
65
66
       energies = []
67
       all_samples = []
68
69
       for epoch in range(0, epochs):
70
71
            ### Init weights and thresholds ###
72
            delta_w = np.zeros((M,3))
73
            delta_theta_v = np.zeros(3)
```

```
74
           delta_theta_h = np.zeros(M)
75
           76
77
           ### Sample from patterns with equal prob ###
78
           mini_batch = sample_patterns_equal_prob(
              batch_size,patterns)
79
           80
81
           for sample in mini_batch:
82
               all_samples.append(sample)
83
84
           for mu, pattern in enumerate(mini_batch):
85
               v = pattern.copy()
86
               v_0 = v.copy()
87
               b_i_h_0 = np.zeros(M)
88
89
               ### Calculate b_i^h(0) and update all
                  hidden neurons h_i(0) ###
90
               for i in range(0,len(b_i_h_0)):
91
                  b_{i_h_0[i]} = np.dot(w[i], v_0)-theta_h[
92
                  r = np.random.rand()
93
                  p_B = p_boltzmann(b_i_h_0[i])
94
                  if(r < p_B):
95
                      h[i] = 1
96
                  else:
97
                      h[i] = -1
98
                  99
               b_i_h = b_i_h_0.copy()
100
               b_j_v = np.zeros(3)
101
               for step in range(0,k):
102
                  ### update visible neurons ###
103
                  for j in range (0,3):
104
                      b_{j_v[j]} = np.dot(h, w[:,j]) -
                         theta_v[j]
105
                      p_B_v = p_boltzmann(b_j_v[j])
106
                      r = np.random.rand()
107
                      if(r < p_B_v):</pre>
108
                          v[j] = 1
109
                      else:
110
                          v[j] = -1
111
                  ###############################
112
113
                  ### update hidden neurons ###
```

```
114
                     for i in range(0,M):
                          b_i_h[i] = np.dot(w[i],v)-theta_h[
115
116
                          p_B_h = p_boltzmann(b_i_h[i])
117
                          r = np.random.rand()
118
                          if(r < p_B_h):</pre>
119
                              h[i] = 1
120
                          else:
121
                              h[i] = -1
122
                     #################################
123
                 ### calculate delta_w ###
124
                 for m in range(0,M):
125
                     for n in range (0,3):
126
                          delta_w[m][n] += eta* ( np.tanh(
                             b_{i_h_0[m]} v_0[n] - np.tanh(
                             b_i_h[m])*v[n])
127
                 ###########################
128
129
                 ### calculate delta_theta_v ###
130
                 for n in range (0,3):
131
                      delta_theta_v[n] = eta*(v_0[n]-v[n])
                 ####################################
132
133
134
                 ## calculate delta_theta_h ###
135
                 for m in range(0, M):
136
                     delta_theta_h[m] -= eta*(np.tanh(
                         b_i_h_0[m])-np.tanh(b_i_h[m]))
137
                 ###################################
138
139
             ### update values ###
140
             w += delta_w
141
             theta_h += delta_theta_h
142
             theta_v += delta_theta_v
             #######################
143
144
145
             ### Monitor energy function ###
146
             H = compute_energy_function(w, h, v , theta_v,
                 theta_h)
147
             energies.append(H)
148
149
        tmp_freq = compute_frequencies(all_samples)
150
        print("training distribution: ", tmp_freq)
151
152
        ### Monitor energy function ###
153
        epoch_range = np.arange(epochs)
154
        plt.plot(epoch_range, energies, marker='o', color='
```

```
green', markersize=1, linestyle='-')
155
        plt.title(f'Energy of training, M={M}')
156
        plt.xlabel('Epochs')
157
        plt.ylabel('Energy')
158
        plt.grid()
159
        plt.tight_layout()
160
        plt.show()
161
162
        return w, theta_h, theta_v
163
164
    def D_kl_bound(M):
165
        #number of inputs
166
        expression = 3 - int(np.log2(M+1)) - ((M+1)/(2**)
167
            int(np.log2(M+1))))
168
        if M < (2**(N-1) - 1):
169
             return np.log(2)*expression
170
        elif M >= (2**(N-1) - 1):
171
172
             return np.log(2)*0
173
174
175
    def D_kl(PD,PB):
176
        sum = 0
        for mu in range (0,len(PD)):
177
178
             if(PB[mu] > 0 \text{ and } PD[mu] > 0):
179
                 #print("PB^mu: ", PB[mu], ", ", "PD^mu: ",
                      PD[mu])
180
                 sum+= PD[mu]* np.log(PD[mu]/PB[mu])
181
        return sum
182
183
    #convert binary number to decimal index, then
       increment.
184
    def compute_frequencies(samples):
185
        n_patterns = 2**len(samples[0])
186
        PB = np.zeros(n_patterns)
187
188
        len_non_filled = 0
189
190
        for pattern in samples:
191
             #in case samples array is not full.
192
             if(np.array_equal(pattern, [0,0,0])):
193
                 continue
194
             else:
195
                 len_non_filled +=1
196
```

```
197
             #convert to 0 and 1 bits
198
             binary_pattern = []
199
             for bit in pattern:
200
                 if bit == 1:
201
                     binary_pattern.append(1)
202
                 else:
203
                     binary_pattern.append(0)
204
205
             # convert binary pattern to decimal index
206
             idx = 0
207
             n_bits = len(samples[0])
208
             for i,bit in enumerate(binary_pattern):
209
                 idx += bit * (2**(n_bits-i-1))
             #print("Index: ", idx)
210
211
            PB[idx] +=1
212
        #normalize
213
        PB = PB/len_non_filled
214
        return PB
215
216
217
    def compute_energy_function(w, h, v , theta_v, theta_h
       ):
218
        term1_sum1 = 0
219
        for i in range(0,len(h)):
220
             term1_sum2 = 0
221
             for j in range(0,len(v)):
222
                 term1_sum2 += w[i][j]*h[i]*v[j]
223
             term1_sum1 += term1_sum2
224
225
        term2_sum = 0
226
        for j in range(0,len(theta_v)):
227
             term2_sum += theta_v[j]*v[j]
228
229
        term3_sum = 0
230
        for i in range(0,len(theta_h)):
231
             term3_sum += theta_h[i]*h[i]
232
233
        return -term1_sum1 + term2_sum + term3_sum
234
235
    def main():
236
237
        ### Init ###
238
        \# pattern = 0.25 for index 0,3,5,6, used when
            sampling
239
        all_patterns = np.array([[-1,-1,-1],
240
                                   [-1,-1, 1],
```

```
241
                                    [-1, 1, -1],
242
                                   [-1, 1, 1],
243
                                   [1, -1, -1],
244
                                   [1, -1, 1],
245
                                    [1, 1, -1],
246
                                   [1, 1, 1]])
247
        M_{values} = [1, 2, 4, 8]
248
        d_kl_bound_values = []
249
        d_kl_values = []
250
        eta = 0.006
251
        k = 10
252
        batch_size = 100
253
        epochs = 1500
254
        # sample using the dynamincs in the CD_k algorithm
255
256
        num_iterations = 10000
257
        max_T = 10
258
        print(f"Sampling: num_iterations={num_iterations},
             T = \{ max_T \} " \}
        #########
259
260
261
        for M in M_values:
262
             print("_____")
263
             print(f"Training configuration: M={M} | eta={
                eta} | k={k} | batch_size={batch_size} |
                epochs = { epochs } ")
264
265
             w, theta_h, theta_v = train_RBM(M,eta,k,epochs
                ,batch_size)
266
             print(f"\n w={w} | theta_h={theta_h} |
                theta_v={theta_v}")
267
268
             PD = np.array([0.25, 0, 0, 0.25, 0, 0.25,
                0.25, 0])
269
270
             h = np.zeros(M)
271
272
             samples = np.zeros((num_iterations,3))
273
274
             for step in range(0,num_iterations):
275
                 v = all_patterns[np.random.randint(
                    all_patterns.shape[0])].copy()
276
                 b_j_v = np.zeros(len(v))
277
                 b_i_h = np.zeros(len(h))
278
```

```
279
                 for T in range(0,max_T):
280
                      ### update hidden neurons ###
281
                     for i in range(0,M):
282
                          b_i_h[i] = np.dot(w[i],v)-theta_h[
283
                          p_B_h = p_boltzmann(b_i_h[i])
284
                          r = np.random.rand()
285
                          if(r < p_B_h):
286
                              h[i] = 1
287
                          else:
288
                              h[i] = -1
289
                     ##############################
290
291
                     ### update visible neurons ###
292
                     for j in range (0,3):
293
                          b_j_v[j] = np.dot(h,w[:,j]-theta_v
                             [j])
294
                          p_B_v = p_boltzmann(b_j_v[j])
295
                          r = np.random.rand()
296
                          if(r < p_B_v):
297
                              v[j] = 1
298
                          else:
299
                              v[j] = -1
300
                     ################################
301
302
303
                 samples[step] = v
304
305
                 #Implement early stopping since i need
                    different "num_iterations" for
                    different M. modulo 10 for performance
                    reasons
                 if(step % 10 == 0):
306
307
                     tmp = compute_frequencies(samples)
308
                     print(f"runtime PD: {tmp}, iteration:
                         {step}")
309
310
311
             print(f"Results:\nM={M}")
312
             PB = compute_frequencies(samples)
313
             print("PB: ", PB, "sum =", np.sum(PB))
             print("PD: ", PD)
314
315
             d_kl_bound = D_kl_bound(M)
316
317
             d_kl_bound_values.append(d_kl_bound)
318
```

```
319
            d_kl = D_kl(PD,PB)
320
            d_kl_values.append(d_kl)
321
            print(f"D_KL: {d_kl}, D_KL_bound: {d_kl_bound}
               ")
            print("_____")
322
323
        print("D_KL: " ,d_kl_values,", ", "D_KL_bound: ",
324
            d_kl_bound_values)
325
326
        plt.plot(M_values,d_kl_bound_values,marker='o',
           color='green', markersize=4, linestyle='-',
           label='Bound')
        plt.plot(M_values,d_kl_values,marker='o', color='
327
           orange', markersize=4, linestyle='--',label='
           True value')
328
        plt.title('Kullback-Leibler divergence bound vs
           true value')
329
        plt.xlabel('Number of hidden neurons (M)')
330
        plt.ylabel('D_KL')
331
        plt.grid()
332
        plt.legend()
333
        plt.tight_layout()
334
        plt.show()
335
336
337
338
   if __name__ == "__main__":
339
        main()
```

Perceptron with one hidden layer

Eric Blohm

October 1, 2024

Here is the Python code for the perception with one hidden layer:

```
import pandas as pd
1
   import numpy as np
2
3
   import matplotlib.pyplot as plt
4
   #data has the input in the first two elements and
5
      output on the third.
6
   def GetInputOutput(data):
7
       input = []
8
       output = []
9
       for row in data:
10
            input.append([row[0],row[1]])
            output.append(row[2])
11
       return np.array(input),np.array(output)
12
13
14
15
   def getCSV(file):
16
       df = pd.read_csv(file,header=None)
17
       data_list = df.values.tolist()
18
       input, output = GetInputOutput(data_list)
19
       return input, output
20
21
22
   def init_w_theta(M):
23
       # between input and hidden
24
       # 1/2 from the number of inputs
25
       variance = 1/2
26
       standard_dev = np.sqrt(variance)
27
       theta_j = np.zeros(M)
28
       w_jk = np.random.normal(0, standard_dev, size=(M
           ,2))
29
30
       # between hidden and output
31
       variance_h = 1/M
```

```
32
       standard_dev_h = np.sqrt(variance_h)
33
       theta = 0
       w_j = np.random.normal(0, standard_dev_h, size=(M)
34
35
       return w_jk, w_j, theta_j, theta
36
37
38
   def compute_hidden_output(w_jk,theta_j,input):
39
       b_j = np.dot(w_jk, input.T) - theta_j.T
40
       return np.tanh(b_j)
41
42
43
   def compute_network_output(w_j, theta, hidden_output, mu)
44
       sum = 0
45
       for j in range(0,len(w_j)):
46
            sum += w_j[j]*hidden_output[mu][j]
47
       B_i = sum - theta
48
       return np.tanh(B_i)
49
50
51
   def back_prop(output_error, w_j, hidden_output,
      hidden_error):
52
       for m in range(0,len(w_j)):
53
            hidden_error[m] = output_error * w_j[m]* (1-
               hidden_output[m]**2)
54
       return hidden_error
55
56
57
   def get_delta_w(input, hidden_output, hidden_error,
       output_error,eta, mini_batch,M):
58
       delta_w_j = np.zeros(M)
59
       #Delta_m, V_n. m = 1 only 1 output per pattern
60
       for n in range(0,len(hidden_output[0])):
            for mu in range(0,mini_batch):
61
62
                delta_w_j[n]+= output_error[mu]*
                   hidden_output[mu][n]
63
64
65
       delta_w_jk = np.zeros((M,len(input[0])))
66
       #m is every hidden neuron.
67
       for m in range(0,len(hidden_error[0])):
68
            #n is x_1 and x_2
69
            for n in range(0,len(input[0])):
70
                for mu in range(0,mini_batch):
71
                    delta_w_jk[m][n] += hidden_error[mu][m
```

```
]*input[mu][n]
72
73
        return eta*delta_w_jk, eta*delta_w_j
74
75
76
    def get_delta_theta(output_error, hidden_error, eta,
       mini_batch,M):
77
        delta_theta = 0
78
        #m = 1
79
        for mu in range(0,mini_batch):
80
            delta_theta += output_error[mu]
81
82
        delta_theta_j = np.zeros(M)
83
        for m in range(0,len(hidden_error[0])):
84
            for mu in range(0,mini_batch):
85
                 delta_theta_j[m] += hidden_error[mu][m]
86
87
        return -eta*delta_theta_j, -eta*delta_theta
88
89
    def compute_classification_error(output, target):
90
91
        sum = 0
92
        for mu in range(0,len(target)):
93
            sum+= np.abs((np.sign(output[mu])-target[mu]))
94
        return (1/(2*len(target)))*sum
95
96
97
    def compute_energy_function(output, target):
98
        sum = 0
99
        for mu in range(0,len(target)):
100
            sum += (target[mu]-output[mu])**2
101
        return 0.5*sum
102
103
104
    def save_values(weights_jk,weights_j,threshold_1,
       threshold_2):
105
        df = pd.DataFrame(weights_jk)
106
        df.to_csv('w1.csv', index=False,header=False)
107
108
        df = pd.DataFrame(weights_j)
109
        df.to_csv('w2.csv',index=False, header=False)
110
111
        df = pd.DataFrame(threshold_1)
112
        df.to_csv('t1.csv',index=False, header=False)
113
114
        df = pd.DataFrame([threshold_2])
```

```
115
       df.to_csv('t2.csv',index=False, header=False)
116
117
118
   def main():
119
120
       ##### configuration #####
121
       M = 10
122
       epochsMax = 500
123
       batch_size = 64
124
       eta = 0.01
125
       ############################
126
127
       ### Retrieve data ###
128
       input, target = getCSV('training_set.csv')
       input_validation,target_validation = getCSV('
129
          validation_set.csv')
130
       #####################
131
132
       #### Center and normalize data ####
133
       input_mean = np.mean(input, axis=0)
134
       input_std = np.std(input, axis=0)
135
       ## Normalize based in training metrics
136
       input = (input - input_mean) / input_std
137
       input_validation = (input_validation - input_mean)
           / input_std
138
       139
140
       ### initialize weights and thresholds ###
141
       w_jk,w_j,theta_j,theta = init_w_theta(M)
142
       143
144
145
       ## used for plotting ##
146
       c_train_list = np.zeros(epochsMax)
147
       c_validate_list = np.zeros(epochsMax)
       ##########################
148
149
150
       for epoch in range(0,epochsMax):
151
           ### Shuffle the input data and targets ###
152
           indices = np.arange(len(input))
153
           np.random.shuffle(indices)
154
           input = input[indices]
155
           target = target[indices]
           156
157
158
           #### Create mini batches #####
```

```
159
            for start in range(0, len(input), batch_size):
160
                 end = start + batch_size
161
                 mini_batch = input[start:end]
                 target_batch = target[start:end]
162
163
164
                 ### Initialize outputs for the mini-batch
165
                 hidden_output = np.zeros((len(mini_batch),
166
                 output = np.zeros(len(mini_batch))
167
                 output_error = np.zeros(len(mini_batch))
168
                 hidden_error = np.zeros((len(mini_batch), M
                    ))
169
170
                 #### for each pattern in mini batch
171
                 for mu in range(0,len(mini_batch)):
172
                     #only one layer
                     ##### Feed forward #####
173
174
                     hidden_output[mu] =
                        compute_hidden_output(w_jk,theta_j,
                        mini_batch[mu])
175
                     output[mu] = compute_network_output(
                        w_j, theta, hidden_output, mu)
176
                     #######################
177
178
                     ##### back propagation #####
179
                     output_error[mu] = (target_batch[mu]-
                        output[mu])*(1-output[mu]**2)
180
                     for m in range(0,len(w_j)):
181
                         hidden_error[mu][m] = output_error
                             [mu] * w_j[m]* (1-hidden_output
                             [mu][m]**2)
182
                     #################################
183
184
                 ##### Update weights #####
185
                 #print(f"\n-Weights_jk before update: {
                    w_jk}, \nWeights_j before update: {w_j
                    1")
186
                 delta_w_jk, delta_w_j = get_delta_w(
                    mini_batch,hidden_output,hidden_error,
                    output_error,eta, len(mini_batch),M)
187
                 w_jk+= delta_w_jk
188
                 w_j += delta_w_j
189
190
                 delta_theta_j,delta_theta =
                    get_delta_theta(output_error,
```

```
hidden_error,eta, len(mini_batch),M)
191
               theta_j += delta_theta_j
192
               theta += delta_theta
193
               ################################
194
195
           ### validate during training and early stop
196
           hidden_output_validate = np.zeros((len(
               input_validation),M))
197
           output_validate = np.zeros(len())
              input_validation))
198
           for mu in range(0,len(input_validation)):
199
               hidden_output_validate[mu] =
                  compute_hidden_output(w_jk,theta_j,
                  input_validation[mu])
200
               output_validate[mu] =
                  compute_network_output(w_j, theta,
                  hidden_output_validate,mu)
201
               202
203
           ## Compute classification error and energy
              function. ##
204
           c = compute_classification_error(
              output_validate,target_validation)
205
           H_validate = compute_energy_function(
              output_validate,target_validation)
206
           print("C:", c*100, ", Energy function: ",
              H_validate)
207
           c_validate_list[epoch] = c*100
208
           if (c < 0.12):
209
               break
210
               211
212
       #if stopped early, retrieve all no negative
213
       c_validate_list = c_validate_list[c_validate_list
          > 0]
214
215
       ## create list for plotting ##
216
       epochs = np.arange(len(c_validate_list))
217
218
       ## plot Validation classification error ##
```

```
219
       plt.plot(epochs, c_validate_list, marker='o',
          color='green', markersize=4, linestyle='-')
220
       plt.title('Validation Classification Error')
221
       plt.xlabel('Epochs')
       plt.ylabel('c_validate')
222
223
       plt.grid()
224
225
       plt.tight_layout()
226
       plt.show()
227
       #
          228
229
       ### Validate network after training ###
230
       hidden_output_validate = np.zeros((len(
          input_validation),M))
231
       output_validate = np.zeros(len(input_validation))
232
       for mu in range(0,len(input_validation)):
233
           hidden_output_validate[mu] =
              compute_hidden_output(w_jk,theta_j,
              input_validation[mu])
234
           output_validate[mu] = compute_network_output(
              w_j, theta, hidden_output_validate, mu)
235
       c = compute_classification_error(output_validate,
          target_validation)
236
       H_validate = compute_energy_function(
          output_validate, target_validation)
237
       print("C:", c*100, ", Energy function: ",
          H_validate)
238
       239
240
       ### save the weights and thresholds to csv files
          ###
241
       #save_values(w_jk,w_j,theta_j,theta)
242
          243
244
245
   if __name__ == "__main__":
246
       main()
```