Interpolação

Universidade Federal de São João UFSJ

Tópicos

- I. Introdução
- II. Interpolação linear
- III. Interpolação Polinomial
- IV. Interpolação Com Método de Lagrange
- V. Exercícios

Introdução

- Interpolação é o processo de estimar os valores de uma função f para valores de x diferentes de x_0, x_1, \ldots, x_n , sendo estes, os pontos conhecidos da função.
- Objetiva determinar um polinômio interpolador p(n) que possui grau n.
 - Para isto necessita-se de n+1 pontos.

Introdução

- Veja o exemplo abaixo,
 - Deseja-se determinar o valor da f(x) para x = 2. Foi aferido, por meio de experimentos, valores desta função para alguns valores de x. Estes valores são mostrados a seguir

\boldsymbol{x}	0	1.2566	2.5133	3.7699	5.0265	6.2832
f(x)	0	0.3455	0.9045	0.9045	0.3455	0.0000

Como foi esclarecido nem todos
 os pontos são usados para na cons trução do polinômio interpolador,
 escolhe-se sempre os n+1 mais
 próximos

Interpolação linear

- O polinômio Interpolador deve ser do 1º grau, ou seja n=1.
 - São necessários dois pontos.
 - O polinômio interpolador será a reta que une estes dois pontos,

$$p(x) = ax + b$$

Interpolação Polinomial

- Teorema 5.0.1 (Existência e Unicidade) Dado o conjunto de n+1 pontos distintos (x_k, f_k) , k=0,1,...,n. Existe um único polinômio p(x) de grau menor ou igual a n, tal que $p(x_k) = f_k$ para k=0,1,...,n.
- Seja $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$. Para obter os a_i usamos a condição de interpolação $f_k = p(x_k)$ para k = 0,1,2,...,n. Logo, segue que:

$$f_0 = p(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n$$

$$f_1 = p(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n$$

$$\vdots = \vdots = \vdots \qquad \vdots$$

$$f_n = p(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n$$

• Que corresponde ao sistema linear da forma

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$$

6

Interpolação Polinomial

• Exemplo 5.0.1 Determine uma aproximação para f(0.3), usando os dados abaixo.

x_{j}	0.0	0.2	0.4
f_{j}	4	3.84	3.76

• Como se tem três pontos (n + 1 = 3), o grau do polinômio será menor ou igual a dois. Logo

$$p(x) = a_0 + a_1 x + a_2 x^2$$

• Impondo a condição $f_k = p(x_k)$ obtemos:

$$f_0 = 4.00 = p(0.0) = a_0 + a_10.0 + a_20.0^2$$

 $f_1 = 3.84 = p(0.2) = a_0 + a_10.2 + a_20.2^2$
 $f_2 = 3.76 = p(0.4) = a_0 + a_10.4 + a_20.4^2$

• Que equivale ao sistema linear na forma matricial

$$\begin{pmatrix} 1 & 0.0 & 0.00 & | & 4.00 \\ 1 & 0.2 & 0.04 & | & 3.84 \\ 1 & 0.4 & 0.16 & | & 3.76 \end{pmatrix}$$

• A solução deste sistema é $a_0 = 4$, $a_1 = -1$ e $a_2 = 1$, obtendo assim $p(x) = x^2 - x + 4$. Desta forma $f(0.3) \approx p(0.3) = 3.79$

Interpolação Com Método de Lagrange

• Considere o conjunto de n+1 pontos (x_k, f_k) , k=0,1,...,n distintos e o polinômio representado por

$$p_n(x) = f_0 L_0(x) + f_1 L_1(x) + \dots + f_n L_n(x) = \sum_{k=0}^{\infty} f_k L_k(x)$$

 $p_n(x)$ é o polinômio interpolador de f(x) nos pontos $x_0, x_1, ..., x_n$. Os polinômios $L_k(x)$ são chamados de polinômios de Lagrange e estes são obtidos da forma

$$L_k(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{k-1}) (x - x_{k+1}) \cdots (x - x_{n-1}) (x - x_n)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1}) (x_k - x_{k+1}) \cdots (x_k - x_{n-1}) (x_k - x_n)}$$

$$L_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}$$

8

Interpolação Com Método de Lagrange

 f_k

• Exemplo 5.1.1 Considere a tabela de pontos do exemplo anterior x_k 0.0 0.2 0.4

Calculando os $L_k(x)$ temos

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-0.2)(x-0.4)}{(0-0.2)(0-0.4)} = \frac{1}{0.08}(x^2-0.6x+0.08)$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-0)(x-0.4)}{(0.2-0)(0.2-0.4)} = \frac{-1}{0.04}(x^2-0.4x)$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x-0)(x-0.2)}{(0.4-0)(0.4-0.2)} = \frac{1}{0.08}(x^2-2.6x)$$

4

Assim temos que

$$p(x) = x^2 - x + 4$$

Observe que o polinômio é o mesmo obtido pela resolução de sistema. Isto já era esperado, pois o polinômio interpolador é único.

9

UFSJ

3.76

3.84

Exercícios propostos

- Exercícios Propostos Calculo Numérico, Neide Bertoli Franco, Biblioteca Virtual.
- 1)Exemplo 8.1 página 289
- 2)Exemplo 8.2 página 290
- 3) Exemplo 8.3 página 291

Exemplo 8.3

Dada a tabela:

calcular f(0.25), onde $f(x)=xe^{3x}$ usando polinômio de interpolação do 2° grau.

Exercícios propostos

- Exercícios:
- 8.10) Sabendo-se que $\sqrt{1.03} = 1.0149$ e $\sqrt{1.04} = 1.0198$. Determine o valor de $\sqrt{1.035}$, usando interpolação linear. Determine também o erro absoluto e o relativo.
- 8.12 Seja a tabela

x	0	0.1	0.2	0.3	0.4	0.5
f(x)	0	0.0110517	0.0488561	0.1214873	0.2386920	0.4121803
$= x^2 \cdot e^x$						

Usando interpolação linear sobre os pontos adequados, determine f(0.35). Determine também o erro absoluto e o relativo.

11