1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	田紅	科目机学	
長庚大學期中、期末考試答案 ——學年度第一學期一考一美工		學號 ⁹	·7·{·14
$\frac{(1)}{(1)} \stackrel{\mathcal{C}}{\underset{x \mapsto 0}{\longrightarrow}} (\chi_{1}, i_{0}; \frac{1}{r_{0}}) \cdot C_{\chi}^{\prime\prime} (\frac{1}{r_{0}}) (\frac{1}{r_{0}})^{1-\chi}$	(2) n.p. H = 10 1/0=1		
f(+) = 0.3487 f(+) = 0.0015	(3) E = N-p · (1-p) = /0 × 10	13-9	
fa(1) = 0.3874 fx(6)=0.6001	5- 12 = 07481	-	
fx(2) = 0.1937 fx(7) = 8.748e - 06	~ 10		
fx(3) = 0.0574 fx(8) = 3.645 e-0)			
fx(4)= u 0 12 fx(1)= 9e-09 fx(4)= u 0 12 fx(1)= 1e-10			
(4) Suffre Clas Chod -> fy(0) = 0.33.5	fy(5) = 6.398e - 4		fy(10) = 5.171e-1
1166	fy(1)= 3.1e-5		
19(1) = 0,000 19(1) = 0,000	Ty(1)=8.144e-7		
- 17(3) = 0.0518	fy(8) = 1.0411e - 8		
fy (4) = 0.0076	fy(9) = 5, 1992e-11		
	7 7 7 111		
(5)	1-200 - LD4110 - X		
14(1) = 1, 10,14	4(x) = 1.04112 - 8		
	1/21/- 22111	+1	
(5) 期望道 堅持掌章 與 放下放回無關			
E(1)+ (4) C() + 1+ (848) = 1.848)			
(4)			
(9)			
(4) h-700			
(4)	p(x,H)=MeH		
(1- h) px (1-p) xx = n(n-1) (n-2) ()			

$ \frac{h - 2 \times d}{h - 2 \times d} = \frac{h - 2 \times d}{h $
(請翻面繼續作答)

【禁	
结,	長庚大學期中、期末考試答案用紙 #=
題樣語	
74 74	(2)
((1) f(w) = P(Nv, 1) = -2-1/100 = 3.9917 e-159
	(>) E(n]. Xt=/0x 1=/00
	M-62 = 100 52 = 1007 5 = 100 = 10
	E[W]+ std(W)= pout 10= 10
-	P(W> 120) = 1.9819
	(5) 接受,国为在现置中的学袋生不代表每一天都会袋生,因此就学能分布的机
	和面之 王均一天后在一边火災是合理的、火災可能在某一段期間很重
	中,也可能一段時間內都未發生,從長這來看可看作手均一天發一次火災。
(3)	
(1) ho more than 5% detective

	中,也可能	一段時間內	郁末發生,	处衣逐外有。)	有个年刊一大	変 ・ 火火火。
'3]						
(1-)	p(x=10)= (than 4/2 detection 100/16) (0.05/° (0.9	5)90			
(2.)	A begin , a correct sample ;	colad suspect clasm. 5 1.6715X/0-2	the claim probability and ever	is it correct	10 defective 00000 only	desuming Her in