Design and Analysis of Algorithms

L32: Reliaility Design Dynamic Programming

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec <u>5.8</u>

Example Problem

- Example: consider you need to complete 4 number of assignments successfully to pass the course.
- Each assignment can be attempted any number of times.
- Probability of successful attempt at each assignment $P(a_1) = 0.8$, $P(a_2) = 0.9$, $P(a_3) = 0.85$, $P(a_4) = 0.75$
- Time (hrs) taken per attempt for each assignment $T(a_1) = 3h$, $T(a_2) = 5h$, $T(a_3) = 4h$, $P(a_4) = 2h$
- Total time (hrs) available to you for all 4 assignments
 - 20 hours
- Problem: Define the number of attempts for each assignment so as to increase the pass probability
- Pass probability if each assignment is done only once P(a₁) *P(a₂) *P(a₃) *P(a₄) =0.8*0.9*0.85*0.75=0.459
- Max possible attempts for each assignment $u_1=3$, $u_2=2$, $u_3=2$, $u_4=6$

Example Problem

- Consider the number of attempts for each assignment are represented by n_1 , n_2 , n_3 , n_4 .
- The probability of success of i^{th} assignment is $1 (1-p_i)^{n_i}$
- Ex: Prob of success with 2 attempts for assignment 1 =1- P (failure at both attempts) =1- $(1-P(a_1))*(1-P(a_1))=1-0.2*0.2=0.96$
- The probability of successfullly completing all assignments $\Pi_{1 \le i \le 4} \ (1 (1 p_i)^{n_i})$
- Goal:
 - Maximize $\Pi_{1 \le i \le 4} (1 (1 p_i)^{n_i})$
 - Subject to $\Sigma_{1 \leq i \leq 4} t_i * n_i \leq C$,
 - where c (e.g. =20) is max time available, and
 - time taken per attempt for ith assignment

Reliability Design

- Application: Problem with multiplicative optimization function.
- Problem: Design a system that is composed of n devices connected in series
 - Let r_i be the reliability of device D_i .
 - r_{i} is probability(reliability) that D_{i} will function properly.
 - The reliability of entire system is Πr_1
 - When n is large (e.g. 20),
 - Even if r_i is high e.g. 0.95,
 - The reliability of system is $(0.95)^{20}=0.358$
 - Thus, it is desirable to duplicate the devices
 - Multiple copies of same device parallelly connected
 - So as to increase overall reliability of the system.

Multiple Devices in Parallel

- If device D_{i} with a reliability probability of r_{i} ,
 - Has m_{i} copies connected in parallel, then
 - Probability that all of m_{i} devices will malfunction $(1-r_{i})^{m_{i}}$
- Thus, reliability of machines at stage i is $1 (1 r_i)^{m_i}$
- Example: $r_i=0.95$, $m_i=2$, then reliability is 0.9975
- Assume that reliability at stage i is given by \emptyset_i (m_i)
 - · It may also depend upon switching circuit as well

Reliability Design Problem

- Problem:
 - Use device duplication to maximize reliability
 - Under the constraint of total cost.
- Let $c_i > 0$ be the cost of i^{th} device.
- Let c be the max cost allowed for the system.
- Thus, similar to knapsack problem, we can apply dynamic programming technique to solve reliability design problem

Reliability Design Problem: DP Approach

- Since each $c_i>0$, and $m_i>0$, then
 - Let u_i denotes the max number of ith device
 - Each device has to be used once.
 - $\Sigma_{1 \leq j \leq n} C_j$ is cost of each device using once $C \Sigma_{1 \leq j \leq n} C_j$ is remaining cost after using each device once
 - The max value ui for ith device would be

$$u_{i} = \left[\left(c - \sum_{1 \leq j \leq n} c_{j} + c_{i} \right) / c_{i} \right] = \left(c - \sum_{1 \leq j \neq i \leq n} c_{j} \right) / c_{i}$$

- An optimal solution m₁, m₂, ..., m_n is the result of sequence of decisions.
- Let $f_i(x)$ represents the max value of $\prod_{1 \le j \le i} \emptyset_j(m_j)$ subject to the contraints

$$\Sigma_{1 \leq j \leq i} C_j m_j \leq x$$
, and $1 \leq m_j \leq u_j$, $1 \leq j \leq i$.

• The optimal solution then is $f_n(c)$

Reliability Design Problem: DP Approach

- The last decision for n^{th} device requires m_n to be chosen from $\{1, 2, 3, ..., u_n\}$.
- After the value m_n is chosen,
 - Remaining decisions must be made w.r.t. $c-c_nm_n$.
 - The principle of optimality should be used.
- The recurrence relation becomes

$$f_n(c) = \max_{1 \le m_n \le u_n} \left\{ \phi_n(m_n) f_{n-1}(c - c_n m_n) \right\} \dots (2)$$

• For any $f_{i}(x)$, $i \ge 1$, the generalized equation is

$$f_i(x) = \max_{1 \le m_i \le u_i} \left\{ \phi_i(m_i) f_{i-1}(x - c_i m_i) \right\} \dots (3)$$

Consider 3 devices with their costs and reliabilities as

$$-c_1=30, c_2=15, c_3=20, r_1=0.9, r_2=0.8, r_3=0.5$$

- The max system cost is c=105
- Computation for designing the system:

$$\Sigma c_i = 30+15+20=65$$
 $u_1 = (105-65+30)/30=70/30=2$
 $u_2 = (105-65+15)/15=55/15=3$
 $u_3 = (105-65+20)/20=60/20=3$

- Consider the decision sequence m_1 , m_2 and m_3 .
- Starting from tuple S0={ (1,0)},
 - Compute S^{i} from S^{i-1} by trying out all possible values for m_{i} and combining the results.

- Let S_{j} represent all tuples obtainable from S_{j-1} by choosing $m_{i}=j$.
 - $S_{1} \Rightarrow D_{1}$ is used once, $S_{2} \Rightarrow D_{1}$ is used 2 times, ...
 - Devices $D_1, D_2, ..., D_{i-1}$ are to be used as applicable
- Example, C=105; c_1 =30, c_2 =15, c_3 =20

- Example, C=105; c₁=30, c₂=15, c₃=20
 Devices D₁, D₂,...,D_{i-1} are to be used as applicable
- For device D_1 , $u_1=2$, possible values for m_1 are 1, 2
- For device D_2 , $u_2=3$, possible values for m_2 are 1, 2, 3
- For device D_3 , $u_3=3$, possible values for m_3 are 1, 2, 3

```
S_{1}=\{(0.9,30)\} \quad \#D_{i} \text{ is used once} \\ S_{2}=\{(1-(1-0.1)^{2},30*2)\} \quad \#D_{i} \text{ is used 2 times} \\ =\{(0.99,60)\}_{m_{1}=1,m_{2}=1} \quad m_{1}=2,m_{2}=1 \\ S_{2}=\{(0.9*0.8,30+15), (0.99*0.8,60+15)\} \\ =\{(0.72,45), (0.792,75)\} \quad D_{1} \rightarrow D_{2} \\ S_{2}=\{(0.9*(1-(1-0.2)^{2},30+15*2)_{m_{1}=1},m_{2}=2) \\ =\{(0.9*0.96,30+30)\} =\{(0.864,60)\} \\ m_{1}=2,m_{2}=2 \text{ infeasible}
```

Reliability Design Problem: DP Approach

- Initial value (when no device is used, reliability is 1) $f_0(x) = 1 \ \forall x$, $0 \le x \le c$.
- Let S¹ consists of tuples of the form (f,x), where f=f₁(x)
 S¹= {S¹; 1≤m;≤u;}
- There is at most one tuple for each different x,
 - Results from a sequence of decisions $m_1, ..., m_n$.
- The dominance rule is
 - (f_1, x_1) dominates (f_2, x_2) iff $f_1 \ge f_2$ and $x_1 \le x_2$.
 - Keep the dominant tuple (f_1, x_1) and
 - Discard the dominated tuple (f_2 , x_2) from S^{1} .
 - Because dominant tuple provides higher reliability at lower cost

Continuing

```
S_{3}=\{(0.9*(1-(1-0.2)^{3},30+15*3)
  =\{(0.9*0.992,30+45)\}
  =\{(0.8928,75)\}
                          m_1=2, m_2=3 infeasible
```

The tuple value (0.99*0.992,60+45) = (0.98208,105)is eliminated as left with cost of 0, which is not enough for D_3

• Combining S^{2}_{1} , S^{2}_{2} , and S^{2}_{3} , we get

```
S_{1}=\{(0.72,45), \frac{(0.792,75)}{}
 S_{2}^{2} = \{ (0.864, 60) \}
 S^{2}_{3} = \{ (0.8928, 75) \}
S^2 = \{ (0.72, 45), (0.864, 60), (0.8928, 75) \}
```

The tuple value (0.792,75) is eliminated as it is dominated by (0.864,60) using dominance rule

```
0.864 \ge 0.792, and 60 \le 75
```

 $m_1=1, m_2=1, m_3=1$ • Continuing $S_1 = \{ (0.9*0.8*0.5, 30+15+20) ,$ (0.99*0.8*0.5,30*2+15+20) $m_1=2$, $m_2=1$, $m_3=1$ $(0.9*0.96*0.5,30+15*2+20), m_1=1, m_2=2, m_3=1$ (0.9*0.992*0.5,30+15*3+20) $m_1=1,m_2=3,m_3=1$ $= \{ (0.36, 65), (0.396, 95), (0.432, 80), (0.4464, 95) \}$ $S_{2}=\{(0.9*0.8*0.75,30+15+20*2), m_{1}=1, m_{2}=1, m_{3}=2\}$ (0.9*0.96*0.75,30+15*2+20*2) $m_1=1, m_2=2, m_3=2$ $=\{(0.54,85),(0.648,100)\}$ $S_{3} = \{ (0.9*0.8*0.8*5, 30+15+20*3) \}$ $m_{1}=1, m_{2}=1, m_{3}=3$ $=\{(0.63,105)^*\}$

• Combining S_{1} , S_{2} , and S_{3} , we get

```
S<sup>3</sup>={ (0.36,65), (0.432,80), (0.54,85), (0.648,100) } Note: Other values are dominated.
```

• The best design is (0.648, 100) i.e. $m_1=1$, $m_2=2$, $m_3=2$

Summary

- Understanding reliability
- Reliability in stages
- Overall summary of DP
 - Principle of optimality
 - Multi-stage graphs
 - Transitive closure: Warshall's algorithm
 - All pair shortest path: Floyd's algorithm
 - Optimal binary search trees
 - Knapsack problem
 - Bellman-Ford algorithm
 - Traveling Sales Person problem
 - Reliability design