Nama : Mutiara Novianti

Rambe

NIM: 064002300029

Hari/Tanggal: Kamis/16 Mei 2024

Algoritma dan Pemrograman Dasar

Modul 12

Nama Dosen:

- 1. Abdul Rochman
- 2. Anung B. Ariwibowo

Nama Aslab:

- 1. Nathanael W. (064002100020)
- 2. Adrian Alfajri (064002200009)

MODUL 11: Hashing

Deskripsi Modul : Memahami dan menerapkan ilmu struktur data dan algoritma untuk menyelesaikan masalah yang disajikan dengan menggunakan program berbasis bahasa Python.

No.	Elemen Kompetensi	Indikator Kinerja	Halaman
1.	1 1	Membuat dan memahami sebuah program yang menerapkan struktur data Hashing.	

TEORI SINGKAT

Hash table merupakan salah satu struktur data yang menggunakan fungsi khusus yang dikenal sebagai fungsi hash yang dapat memetakan nilai yang diberikan dengan menggunakan *key* untuk mengakses elemen lebih cepat. Hash table menyimpan beberapa informasi, di mana informasi tersebut memiliki dua komponen utama, yaitu *key* dan *value/data*. Hash table dapat diimplementasikan dengan bantuan array asosiatif.

DAFTAR PERTANYAAN

- 1. Apa yang dimaksud dengan collision?
- 2. Sebutkan cara apa saja yang dapat diterapkan untuk menangani collision!
- 3. Apakah kelebihan dari hash table?

JAWABAN

- 1.
- 2.
- 3.

LAB SETUP

Hal yang harus disiapkan dan dilakukan oleh praktikan untuk menjalankan praktikum modul ini, antara lain:

- 1. Menyiapkan IDE untuk membangun program python (Spyder, Sublime, VSCode, dll);
- 2. Python sudah terinstal dan dapat berjalan dengan baik di laptop masing-masing;
- 3. Menyimpan semua dokumentasi hasil praktikum pada laporan yang sudah disediakan.

ELEMEN KOMPETENSI I

Deskripsi: Mampu membuat program tentang hash table sesuai perintah yang ada.

Kompetensi Dasar: Membuat program yang mengimplementasikan hash table

LATIHAN 1

- 1. Buatlah sebuah program yang mengimplementasikan insert untuk menginput data pada hash table dan display untuk menampilkan isi hash table.
- 2. Setiap program wajib menampilkan nama dan nim di bagian atas program.
- 3. Hash table wajib diisi dengan 5 data, di mana data pertama merupakan nama praktikan dan keynya adalah dua digit terakhir nim.

Misal: Jeff memiliki nim 064001900002, maka keynya adalah 2 dan datanya adalah Jeff.

Output:

```
C:\Windows\System32\cmd.exe

C:\Amel\Semester 6\Aslab\SDA\Code\12>python HashTable.py
0
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (19, 'Rifdah')

C:\Amel\Semester 6\Aslab\SDA\Code\12>
```

LATIHAN 2

1. Tambahkan fungsi search yang dapat digunakan untuk mencari data di dalam hash table dengan menginput key dari data yang ingin dicari.

Output:

```
C:\Windows\System32\cmd.exe
C:\Amel\Semester 6\Aslab\SDA\Code\12>python HashTable.py
0
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (19, 'Rifdah')
Data yang dicari dengan key adalah Louis
C:\Amel\Semester 6\Aslab\SDA\Code\12>
```

LATIHAN 3

1. Tambahkan fungsi delete yang dapat digunakan untuk menghapus data di dalam hash table dengan menginput key dari data yang ingin dihapus

```
C:\Windows\System32\cmd.exe
C:\Amel\Semester 6\Aslab\SDA\Code\12>python HashTable.py
0
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (19, 'Rifdah')

Key 2 deleted
Hash table setelah menghapus data menjadi:
0
1 --> (1, 'Louis')
2
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (19, 'Rifdah')
C:\Amel\Semester 6\Aslab\SDA\Code\12>
```

Source Code

```
LATIHAN.1:
class HashTable:
  def init (self, size):
     self.size = size
     self.table = [None] * size
  def hash function(self, key):
     return key % self.size
  def insert(self, key, value):
     index = self.hash function(key)
     original index = index
     while self.table[index] is not None:
       index = (index + 1) \% self.size
       if index == original index:
          print("Hash table is full")
          return
     self.table[index] = (key, value)
  def display(self):
     for index, item in enumerate(self.table):
       if item is not None:
          print(f"{index} --> {item}")
       else:
          print(f"{index}")
# Menampilkan nama dan NIM praktikan
print("Nama: Mutiara")
print("NIM: 064002300029")
# Ukuran hash table
size = 10
hash table = HashTable(size)
# Data untuk dimasukkan ke dalam hash table
data = \Gamma
  (29, "Mutiara"), # Key berdasarkan dua digit terakhir NIM
  (1, "Louis"),
  (2, "Jeff"),
  (14, "Grace"),
  (25, "Mark")
# Insert data ke dalam hash table
for key, value in data:
```

```
hash table.insert(key, value)
# Display isi hash table
hash table.display()
LATIHAN.2:
class HashTable:
  def __init__(self, size):
     self.size = size
     self.table = [None] * size
  def hash function(self, key):
     return key % self.size
  def insert(self, key, value):
     index = self.hash function(key)
     original index = \overline{i}ndex
     while self.table[index] is not None:
       index = (index + 1) \% self.size
       if index == original index:
          print("Hash table is full")
          return
     self.table[index] = (key, value)
  def search(self, key):
     index = self.hash function(key)
     original index = index
     while self.table[index] is not None:
       if self.table[index][0] == key:
          return self.table[index]
       index = (index + 1) \% self.size
       if index == original index:
          break
     return None
  def display(self):
     for index, item in enumerate(self.table):
       if item is not None:
          print(f''\{index\} \longrightarrow \{item\}'')
       else:
          print(f"{index}")
# Menampilkan nama dan NIM praktikan
print("Nama: Mutiara")
print("NIM: 064002300029")
```

```
# Ukuran hash table
size = 10
hash table = HashTable(size)
# Data untuk dimasukkan ke dalam hash table
data = [
  (29, "Mutiara"), # Key berdasarkan dua digit terakhir NIM
  (1, "Louis"),
  (2, "Jeff"),
  (14, "Grace"),
  (25, "Mark")
# Insert data ke dalam hash table
for key, value in data:
  hash table.insert(key, value)
# Display isi hash table
hash table.display()
# Menerima input kunci dari pengguna untuk pencarian
search key = int(input("\nMasukkan key yang ingin dicari: "))
result = hash table.search(search key)
if result:
  print(f"Data dengan key {search key} ditemukan: {result}")
  print(f"Data dengan key {search key} tidak ditemukan")
LATIHAN.3:
class HashTable:
  def init (self, size):
     \overline{\text{self.size}} = \overline{\text{size}}
     self.table = [None] * size
  def hash function(self, key):
     return key % self.size
  def insert(self, key, value):
     index = self.hash function(key)
     original index = index
     while self.table[index] is not None:
       index = (index + 1) \% self.size
       if index == original index:
```

```
print("Hash table is full")
         return
    self.table[index] = (key, value)
  def search(self, key):
    index = self.hash function(key)
    original index = index
    while self.table[index] is not None:
       if self.table[index][0] == key:
         return self.table[index]
       index = (index + 1) \% self.size
       if index == original index:
         break
    return None
  def delete(self, key):
    index = self.hash function(key)
    original index = index
    while self.table[index] is not None:
       if self.table[index][0] == kev:
         self.table[index] = None
         print(f"Data dengan key {key} telah dihapus")
         return
       index = (index + 1) \% self.size
       if index == original index:
         break
    print(f"Data dengan key {key} tidak ditemukan")
  def display(self):
    for index, item in enumerate(self.table):
       if item is not None:
         print(f"{index} --> {item}")
       else:
         print(f"{index}")
# Menampilkan nama dan NIM praktikan
print("Nama: Mutiara")
print("NIM: 064002300029")
# Ukuran hash table
size = 10
hash table = HashTable(size)
# Data untuk dimasukkan ke dalam hash table
data = [
  (29, "Mutiara"), # Key berdasarkan dua digit terakhir NIM
```

```
(1, "Louis"),
(2, "Jeff"),
(14, "Grace"),
(25, "Mark")
]

# Insert data ke dalam hash table
for key, value in data:
    hash_table.insert(key, value)

# Display isi hash table
hash_table.display()

# Menerima input kunci dari pengguna untuk penghapusan
delete_key = int(input("\nMasukkan key yang ingin dihapus: "))
hash_table.delete(delete_key)

# Display isi hash table setelah penghapusan
print("\nIsi hash table setelah penghapusan:")
hash_table.display()
```

Screenshot

LATIHAN.1:

```
Nama: Mutiara
NIM: 064002300029
0
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (29, 'Mutiara')
```

LATIHAN.2:

```
2 --> (2, 'Jeff')
3
4 --> (14, 'Grace')
5 --> (25, 'Mark')
6
7
8
9 --> (29, 'Mutiara')

Masukkan key yang ingin dicari: 25
Data dengan key 25 ditemukan: (25, 'Mark')
```

```
LATIHAN.3:
Nama: Mutiara
NIM: 064002300029
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
4 --> (14, 'Grace')
5 --> (25, 'Mark')
8
9 --> (29, 'Mutiara')
Masukkan key yang ingin dihapus: 14
Data dengan key 14 telah dihapus
Isi hash table setelah penghapusan:
0
1 --> (1, 'Louis')
2 --> (2, 'Jeff')
5 --> (25, 'Mark')
9 --> (29, 'Mutiara')
```

KESIMPULAN

Buatlah kesimpulan hasil praktikum modul ini!!! (MINIMAL 3 BARIS)

CEKLIST

1. Memahami dan mengimplementasikan hash table pada Python

()

REFERENSI

https://www.programiz.com/dsa/hash-table

https://www.javatpoint.com/hash-table

https://www.guru99.com/hash-table-data-structure.html

https://www.geeksforgeeks.org/implementation-of-hashing-with-chaining-in-python/