

Aula 1 - Introdução da disciplina e histórico da área

Disciplina: Princípios de Comunicação

Professor: Daniel Gueter

Disciplina: Princípios de Comunicação

Assuntos a serem abordados:

- Histórico dos sistemas de comunicações
- Classificação de sinais
- Série e transformada de Fourier
- Filtros ideais e práticos

- Modulação de sinais
- Tipos de Modulações
- Teorema da Amostragem

Disciplina: Princípios de Comunicação

Bibliografias Básicas:

- 1. HAYKIN, S.; MOHER, M. Introdução aos Sistemas de Comunicação. Porto Alegre: Bookman / Grupo A, 2008.
- 2. HAYKIN, S.; MOHER, M. **Sistemas de Comunicação.** Porto Alegre: Bookman / Grupo A, 2011.
- 3. LATHI, B. P.; DING, Z. **Sistemas de Comunicação Analógicas e Digitais Modernas.** Rio de Janeiro: LTC / Grupo Gen, 2012.

Metodologia e Avaliações

As aulas serão compostas por apresentações em Power Point, exercícios, vídeos, simulações e atividades.

Os critérios de avaliação e a sua respectiva composição na média final são:

Avaliação	Pontos na Média
Prova física e presencial	6
Prova virtual – AVA (?)	2
Trabalho bimestral e atividades em sala	2

Cronograma

06/05 – Aula 1 - Introdução da disciplina e histórico da área

13/05 – Aula 2

20/05 – Aula 3

27/05 – Aula 4

03/06 – Aula 5

10/06 - Aula 6

17/06 – Prova

24/06 – Exame (Prova substitutiva)

Telégrafo

- Em 1844, a primeira mensagem por um telégrafo elétrico é transmitida entre duas cidades dos Estados Unidos.
- Esta mensagem foi transmitida em Código Morse, o qual se baseia em apenas dois estados: ligado e desligado, variando a duração dos estados.
- Por essas razões, o Código Morse é um espécie de primórdios de um código digital, e é o único modo de modulação facilmente compreendido por seres humanos sem um computador.

Primeiro telégrafo elétrico – com fio

Rádio

- Em 1864, o físico e matemático James Clerk Maxwell deduziu a existência de ondas de rádio nas suas teorias relativas ao eletromagnetismo.
- Em 1887, as ondas de rádio são confirmadas experimentalmente por Heirich Hertz.
- Em 1894, Oliver Lodge realizou a primeira comunicação sem fio a uma distância de 137 metros.
- Em 1901, Guglielmo Marconi recebeu no Canadá um sinal de rádio enviado da Inglaterra, marcando oficialmente o começo da comunicação de rádio.
- Em 1933, Edwin H. Armstrong demonstrou o conceito de modulação em frequência (FM).

Rádio

Guglielmo Marconi com o primeiro rádio

Rádio

Tipos de radiação eletromagnética: todas viajam na velocidade da luz, e o que as separa é a frequência

Telefone

- Em 1856, Antonio Meucci construiu o primeiro telefone.
- Em 1875, Alexander Graham Bell obteu a patente do telefone e foi considerado o inventor do telefone até 2002, tornando a transmissão de fala em tempo real através da codificação elétrica.

Primeiro telefone de Alexander Graham Bell

Televisão

• Em 1928, Philo T. Farnsworth inventou o primeiro sistema televisivo totalmente eletrônico

Philo T. Farnsworth e seu sistema televisivo

Sinais de Satélite

• Em 1957, a antiga União Soviética enviou sinais do seu satélite Sputnik I por 21 dias.

Satélite Sputnik I

Internet

- A internet como rede de computadores começou a ser desenvolvida a partir de 1950 pelos EUA para fins militares.
- Em 1971, foi colocada em serviço a rede de computadores chamada de ARPANET, financiada pelo Departamento de Defesa dos EUA.
- Em 1985, a ARPENET foi renomeada para Internet.
- Em 1990, foi criado um software de interface de hipermídia para a Internet, chamado de World Wide Web.

Histórico das Comunicações

Histórico das Comunicações

Histórico das Comunicações

O que todos os meios de comunicação tem em comum?

Todos transmitem um sinal!

Segundo Alan V. Oppenheim em seu livro Sinais e Sistemas (2010):

"Sinais são funções de uma ou mais variáveis independentes, que contêm informações sobre o comportamento ou natureza de algum fenômeno."

- Um sinal pode ser definido como um conjunto de dados ou informações.
- Pela ótica matemática, o sinal é representado por uma função de uma variável independente, geralmente representada pelo tempo (t).

Função de variável independente t: x(t)

Sinal de tensão senoidal de um gerador – V(t)

Sinal de áudio com amplitude de tensão ou pressão - V(t) ou P(t)

Exemplo de sinais:

Sinal	Função	Descrição
Tensão Elétrica	V(t)	Tensão em volts variando no tempo (ex.: tomada CA, saída de um gerador).
Corrente Elétrica	I(t)	Corrente em amperes variando no tempo (ex.: circuito AC).
Sinal de Áudio	P(t) ou V(t)	Pressão sonora (Pascal) ou tensão elétrica equivalente (Volts) no tempo.
Eletrocardiograma (ECG)	V(t)	Potencial elétrico cardíaco em milivolts (mV) em função do tempo.
Sinal de Temperatura	T(t)	Temperatura em °C ou Kelvin (K) variando no tempo (ex.: termopar).
Onda Luminosa (Intensidade)	L(t)	Intensidade luminosa (lux ou W/m²) variando no tempo.
Sinal de Pressão	P(t)	Pressão em Pascal (Pa) ou bar em função do tempo (ex.: sensor hidráulico).
Sinal de Aceleração	a(t)	Aceleração em m/s² medida por um acelerômetro.
Sinal de Rádio (RF)	V(t) ou E(t)	Amplitude de onda eletromagnética em Volts (V) ou intensidade de campo elétrico (V/m) no tempo.

Objetivo da Matéria

Entender os princípios de um sistema de comunicação, genericamente descrito pela imagem abaixo:

Elementos genéricos de um sistema de comunicação

Sinais contínuos ou discretos no tempo

- Contínuos: Sinais que para qualquer instante, ou seja, qualquer valor de t, teremos um valor de x.
 - Exemplo: Variação de corrente de um motor.
- **Discretos:** Sinais que em **determinados instantes**, ou seja, **valores específicos de** *t*, teremos um valor de *x*.
 - Exemplo: Média de temperatura diária no mês de maio.

Sinal contínuo (esquerda) e sinal discreto (direita)

Sinais analógicos ou digitais

- Analógicos: Sinais onde o valor de x pode assumir infinitos valores.
 - Exemplo: Velocidade de um carro.
- Digitais: Sinais onde o valor de x pode assumir determinados patamares de valores ("níveis").
 - Exemplo: Status de um botão ligado ou desligado (0 ou 1).

Sinal analógico (esquerda) e sinal digital (direita)

(a) Analógico, contínuo no tempo / (b) Digital, contínuo no tempo / (c) Analógico, discreto no tempo / (d) Digital, discreto no tempo

Sinais periódicos ou aperiódicos

- Periódicos: Sinais que tem um padrão que se repete a cada período T.
 - Matematicamente: x(t + T) = x(t) para todo valor de t
 - Exemplo: Tensão em senoide da tomada.
- Aperiódicos: Sinais que não são periódicos, ou seja, não seguem um padrão.

Sinais periódicos

Sinal aperiódico

Sinais determinísticos ou aleatórios

- Determinísticos: Sinais que podem ser modelados, ou seja, existe uma função ou equação (regra) para determinar o valor de x.
- Aleatórios: Sinais que não podem ser modelados por uma função ou equação, podendo apenas ser descrito por modelos de probabilidade.

Sinal determinístico (esquerda) e sinal aleatório (direita)

Sinais causais ou não causais

- Causais: Sinais onde x só apresenta valores diferentes de 0 a partir de t = 0, ou seja, só começa a partir de t = 0.
- Não causais: Sinais que começam antes de t = 0 e se estendem até valores positivos de t (t>0).

Sinal causal (esquerda) e sinal não-causal (direita)

Sinais pares e impares

- Pares: Sinais com simetria referente ao eixo das ordenadas, ou seja, espelhados no eixo vertical.
 - Matematicamente: x(t) = x(-t)
- Impares: Sinais com simetria referente ao eixo das abcissas e das ordenadas, ou seja, espelhados no eixo vertical e horizontal.
 - Matematicamente: x(t) = -x(-t)

Sinal par (esquerda) e sinal ímpar (direita)