Experiment-3

Titanic Dataset

```
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
import pandas as pd
import numpy as np
sns.get_dataset_names()
['anagrams',
'anscombe',
'attention',
        'brain_networks',
        'car_crashes',
'diamonds',
        'dots',
'dowjones',
        'exercise',
'flights',
        'fmri',
'geyser',
        'glue',
'healthexp',
        'iris',
        'mpg',
        'penguins',
'planets',
        'seaice',
        'taxis',
        'tips',
        'titanic']
```

df = sns.load_dataset ("titanic")

df

₹		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	s	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third woman		False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	First woman Third man	False True	С	Southampton	yes no	False
	4	0	3	male	35.0	0	0	8.0500	S	Third			NaN	Southampton		True
										 Second						
	886	0	2	male	27.0	0	0	13.0000	S		man	True	NaN	Southampton	no	True
	887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
	888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
	889	1	1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
	890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True

891 rows × 15 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category

```
object
bool
9
    who
                  891 non-null
10
    adult_male
                  891 non-null
                                  category
                  203 non-null
11
    deck
                                  object
                  889 non-null
12
    embark town
13
                  891 non-null
    alive
                                  object
                  891 non-null
14 alone
                                  bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
```

#count plot categorical data
sns.countplot(x="sex", data = df)

df.groupby("sex")["survived"].value_counts()

dtype: int64

sns.countplot(x = "sex", hue = "survived", data = df, palette = "plasma")

 $\verb|sns.countplot(x = "age", hue = "survived", data = df, palette = "plasma")|\\$

<a> <Axes: xlabel='age', ylabel='count'>

sns.kdeplot(x="age", data=df,palette = "plasma")

#KDE plot : Kernel density estimate plot : showing distribution of continuos data sns.kdeplot(x ="age", hue = "survived", data = df, palette = "plasma")

<Axes: xlabel='age', ylabel='Density'>

sns.distplot(df["age"])

<ipython-input-61-eef84e7ff8f0>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df["age"])
<Axes: xlabel='age', ylabel='Density'>

#distribution plot --> similar kde-->probability across other values sns.displot(x = "age", hue="survived", bins= 5, data = df, kde = True)

<seaborn.axisgrid.FacetGrid at 0x787c34caa3d0>

sns.displot(x="age", bins=5, data = df)

#heat Map:
group = df.groupby(['sex', 'survived'])
class_survived = group.size().unstack()
sns.heatmap(class_survived, annot = True, fmt="d")

sns.violinplot(x="sex",y="age",data=df)

<a < style="font-size: smaller;">
<a < style="font-size: smaller;"><a < style="font-size:

 ${\tt sns.violinplot(x="sex", y="age", hue="survived", data = df)}$

#violin plot : distribution of data #show distribution of surival rate according age value sns.violinplot(x = "sex", y = "age", hue = "survived", data = df, split = True)

sns.catplot(x = "embarked", kind = "count", col = "pclass", hue = "survived", data = df)

Iris Dataset

df = sns.load_dataset ("iris")

∑ *						
_		sepai_iengtn	sepai_widtn	petal_length	petal_widtn	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
				•••		
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

sns.countplot(x = "species", data = df)

sns.scatterplot(x="sepal_length", y="sepal_width", data=df)

<a> <Axes: xlabel='sepal_length', ylabel='sepal_width'>

sns.scatterplot(x ="sepal_length", y = "petal_length", hue = "species", data = df)

Axes: xlabel='sepal_length', ylabel='petal_length'>

sns.boxplot (x = "species", y= "petal_length", data =df) #interquartile range: Q3 - Q1 #outliers = 1.5 * IQR


```
sns.boxplot(x = "sepal_length", data = df)
```

</pre


```
sns.boxplot(x = "sepal_width", data = df)
```

Axes: xlabel='sepal_width'>


```
import sklearn
#from sklearn.datasets import load_boston
import pandas as pd
import seaborn as sns
import numpy as np
# Load the dataset
import pandas as pd
\tt df = pd.read\_csv("https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv")
# IQR
Q1= np.percentile (df['sepal_width'], 25, interpolation = 'midpoint')
Q3 = np.percentile (df['sepal_width'], 75, interpolation = 'midpoint')
IQR = Q3 - Q1
print("Old Shape: ", df.shape)
# Upper bound
upper = np. where (df['sepal_width'] >= (Q3+1.5*IQR))
# Lower bound
lower = np.where(df['sepal_width'] <= (Q1-1.5*IQR))
#Removing the Outliers
df.drop(upper[0], inplace=True)
df.drop(lower[0], inplace=True)
print("New Shape: ", df.shape)
sns.boxplot(x='sepal_width', data=df)
```

Old Shape: (150, 5)
New Shape: (146, 5)
<Axes: xlabel='sepal_width'>

df.hist(bins=5)

#pairplot scatter plot (multiple)
sns.pairplot(data = df, hue="species")

import seaborn as sns $\stackrel{\cdot}{\text{import matplotlib.pyplot as plt}}$ import numpy as np
numeric_df = df.select_dtypes(include=[np.number])
corr_matrix = numeric_df.corr()
sns.heatmap(corr_matrix, cmap="RdYlGn", annot=True, fmt="f")


```
#normalization and standarization
#data distribution
#standardize the dataframe
import pandas as pd
#create data frame
df = pd.DataFrame({'y': [8, 12, 15, 14, 19, 23, 25, 29],
                   'x1': [5, 7, 7, 9, 12, 9, 9, 4], 'x2': [11, 8, 10, 6, 6, 5, 9, 12],
                   'x3' :[2, 2, 3, 2, 5, 5, 7, 9]})
#view data frame
```

₹ y x1 x2 x3 8 5 0 11 12 7 8 **2** 15 7 10 3 9 14 6

> 19 12 6 5 23 9 5 5

6 25 9 9 7 4 12

7 29

#standardize the values in each column, rescaling of the data (0-1) #mean, std #v' = v - mean / stddf_new = (df-df.mean())/df.std() #view new data frame print(df_new)

0 -1.418032 -1.078639 1.025393 -0.908151 1 -0.857822 -0.294174 -0.146485 -0.908151 2 -0.437664 -0.294174 0.634767 -0.525772 3 -0.577717 0.490290 -0.927736 -0.908151 4 0.122546 1.666987 -0.927736 0.238987 0.682756 0.490290 -1.318362 0.238987 6 0.962861 0.490290 0.244141 1.003746 7 1.523071 -1.470871 1.416019 1.768505

print(df_new.mean()) print(df_new.std())

0.000000e+00 **→** y x1 2.775558e-17 -1.387779e-17 x2 5.551115e-17 х3 dtype: float64 1.0 x1 1.0 x2 1.0 х3 1.0 dtype: float64

```
#define predictor variable columns df_x=df[['x1', 'x2', 'x3']] #standardize the values for each predictor variable df[['x1', 'x2', 'x3']] = (df_x-df_x.mean())/df_x.std() #view new data frame
```

₹		у	x1	x2	х3
	0	8	-1.078639	1.025393	-0.908151
	1	12	-0.294174	-0.146485	-0.908151
	2	15	-0.294174	0.634767	-0.525772
	3	14	0.490290	-0.927736	-0.908151
	4	19	1.666987	-0.927736	0.238987
	5	23	0.490290	-1.318362	0.238987
	6	25	0.490290	0.244141	1.003746
	7	29	-1.470871	1.416019	1.768505

import pandas as pd
#create DataFrame
df = pd.DataFrame({'points': [25, 12, 15, 14, 19], 'assists': [5, 7, 7, 9, 12], 'rebounds':[11, 8, 10, 6, 6]})
#view DataFrame
print(df)

_		points	assists	rebounds
	0	25	5	11
	1	12	7	8
	2	15	7	10
	3	14	9	6
	4	19	12	6

(df-df.min())/(df.max()-df.min())

→ ▼		points	assists	rebounds
	0	1.000000	0.000000	1.0
	1	0.000000	0.285714	0.4
	2	0.230769	0.285714	0.8
	3	0.153846	0.571429	0.0
	4	0.538462	1.000000	0.0

import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv")
pd.crosstab(index=df['species'], columns=df['sepal_length'], margins = True)

→ *	sepal_length	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0	5.1	5.2	•••	6.9	7.0	7.1	7.2	7.3	7.4	7.6	7.7	7.9	All
	species																					
	setosa	1	3	1	4	2	5	4	8	8	3		0	0	0	0	0	0	0	0	0	50
	versicolor	0	0	0	0	0	0	1	2	1	1		1	1	0	0	0	0	0	0	0	50
	virginica	0	0	0	0	0	0	1	0	0	0		3	0	1	3	1	1	1	4	1	50
	All	1	3	1	4	2	5	6	10	9	4		4	1	1	3	1	1	1	4	1	150

4 rows × 36 columns

Data Distribution using sklearn

```
from sklearn import datasets
from sklearn. preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
# loading the Iris data
iris = datasets.load_iris()
print(iris)
X = iris.data # array for the features
y = iris.target # array for the target
feature_names = iris.feature_names # feature names
target_names = iris.target_names
# target names
```

```
\ensuremath{\text{\#}} spliting the data into training and testing data sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=2020)
X_train

→ {'data': array([[5.1, 3.5, 1.4, 0.2],
             [4.9, 3., 1.4, 0.2],
             [4.7, 3.2, 1.3, 0.2],
             [4.6, 3.1, 1.5, 0.2],
             [5., 3.6, 1.4, 0.2],
             [5.4, 3.9, 1.7, 0.4],
             [4.6, 3.4, 1.4, 0.3],
             [5., 3.4, 1.5, 0.2],
             [4.4, 2.9, 1.4, 0.2],
             [4.9, 3.1, 1.5, 0.1],
             [5.4, 3.7, 1.5, 0.2],
              [4.8, 3.4, 1.6, 0.2],
             [4.8, 3., 1.4, 0.1],
             [4.3, 3. , 1.1, 0.1],
             [5.8, 4., 1.2, 0.2],
             [5.7, 4.4, 1.5, 0.4],
             [5.4, 3.9, 1.3, 0.4],
             [5.1, 3.5, 1.4, 0.3],
             [5.7, 3.8, 1.7, 0.3],
             [5.1, 3.8, 1.5, 0.3],
             [5.4, 3.4, 1.7, 0.2],
             [5.1, 3.7, 1.5, 0.4],
             [4.6, 3.6, 1., 0.2],
             [5.1, 3.3, 1.7, 0.5],
             [4.8, 3.4, 1.9, 0.2],
             [5., 3., 1.6, 0.2],
[5., 3.4, 1.6, 0.4],
             [5.2, 3.5, 1.5, 0.2],
             [5.2, 3.4, 1.4, 0.2],
             [4.7, 3.2, 1.6, 0.2],
             [4.8, 3.1, 1.6, 0.2],
             [5.4, 3.4, 1.5, 0.4],
             [5.2, 4.1, 1.5, 0.1],
             [5.5, 4.2, 1.4, 0.2],
             [4.9, 3.1, 1.5, 0.2],
             [5., 3.2, 1.2, 0.2],
             [5.5, 3.5, 1.3, 0.2],
             [4.9, 3.6, 1.4, 0.1],
             [4.4, 3., 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
             [5., 3.5, 1.3, 0.3],
             [4.5, 2.3, 1.3, 0.3],
             [4.4, 3.2, 1.3, 0.2],
             [5., 3.5, 1.6, 0.6],
             [5.1, 3.8, 1.9, 0.4],
             [4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
             [4.6, 3.2, 1.4, 0.2],
             [5.3, 3.7, 1.5, 0.2],
             [5., 3.3, 1.4, 0.2],
             [7., 3.2, 4.7, 1.4],
             [6.4, 3.2, 4.5, 1.5],
             [6.9, 3.1, 4.9, 1.5],
             [5.5, 2.3, 4., 1.3],
[6.5, 2.8, 4.6, 1.5],
             [5.7, 2.8, 4.5, 1.3],
             [6.3, 3.3, 4.7, 1.6],
             [4.9, 2.4, 3.3, 1. ],
# normalization on partitioned data using sklearn package
normZ = StandardScaler()
X_{train} = normZ.fit_transform(X_train)
X_{test} = normZ.transform(X_{test})
X_train_Z.mean (axis=0)
⇒ array([-1.97672566e-15, 3.88578059e-16, 3.64787565e-17, -9.19899078e-17])
X_train_Z.std (axis=0)
\rightarrow array([1., 1., 1., 1.])
X_test_Z.mean (axis=0)
X_test_Z.std (axis=0)
→ array([0.83359705, 0.85365417, 1.00126802, 0.9868196])
```

#normalization using min_max method
normMinMax = MinMaxScaler()

X_train_MinMax = normMinMax.fit_transform(X_train)
X test MinMax = normMinMax.transform (X test)