作业三: 网络层层课后作业

姓名: 邱姜铭 学号: 22122861

1. 写出下列缩略语的英文全称和中文含义

- CIDR: Classless Inter-Domain Routing 无类域间路由
- IP: Internet Protocol 互联网协议
- ICMP: Internet Control Message Protocol 互联网控制报文协议
- IGMP: Internet Group Management Protocol 互联网组管理协议
- ARP: Address Resolution Protocol 地址解析协议
- RARP: Reverse Address Resolution Protocol 反向地址解析协议
- RIP: Routing Information Protocol 路由信息协议
- OSPF: Open Shortest Path First 开放最短路径优先
- IGP: Interior Gateway Protocol 内部网关协议
- BGP: Border Gateway Protocol 边界网关协议
- NAT: Network Address Translation 网络地址转换
- TTL: Time To Live 存活时间

2. 找出不能分配给主机的 IP 地址, 并说明原因:

A: 131.107.256.80

B: 231.222.0.11

C: 126.0.0.0

D: 198.121.254.255

E: 202.117.34.32

- A: 不能分配给主机,因为第三个字段超出了0-255的范围。
- B: 不能分配给主机,这个地址属于D类,是一个多播地址。
- C: 不能分配给主机,这个地址主机部分全为 0,是网络地址。
- D: 不能分配给主机,这个地址主机部分全为 1,是广播地址。
- E: 可以分配给主机。

3. 网络 193.1.1.0,子网掩码是 255.255.255.224。问: 这个子网掩码可划 分几个子网,每个子网的子网地址和主机 IP 地址范围是什么?

子网掩码 255.255.255.224 可以表示为二进制: 111111111.11111111111111111111111100000, 有 5 位 用于主机部分。

所以有 3 位用于子网部分,可以划分 $2^3 = 8$ 个子网。

每个子网的子网地址范围是 32 个 IP 地址, 主机 IP 地址范围是 30 个 IP 地址。

子网	主机 IP 地址范围
193.1.1.0	193.1.1.1 - 193.1.1.30
193.1.1.32	193.1.1.33 - 193.1.1.62
193.1.1.64	193.1.1.65 - 193.1.1.94
193.1.1.96	193.1.1.97 - 193.1.1.126
193.1.1.128	193.1.1.129 - 193.1.1.158
193.1.1.160	193.1.1.161 - 193.1.1.190
193.1.1.192	193.1.1.193 - 193.1.1.222
193.1.1.224	193.1.1.225 - 193.1.1.254

4.设备路由器建立了如下转发表:

前缀匹配	下一跳
192.4.153.0/26	R_3
128.96.39.0/25	接口 m₀
128.96.39.128/25	接口 m ₁
128.96.40.0/25	R_2
192.4.153.0/26	R ₃
* (默认)	R ₄

现共收到 5 个分组, 其目的地址分别为:

- (1) 128.96.39.10
- (2) 128.96.40.12
- (3) 128.96.40.151
- (4) 192.4.153.17
- (5) 192.4.153.90

试分别计算其下一跳。

目的地址	最长前缀匹配	下一跳
128.96.39.10	128.96.39.0/25	接口 m _o
128.96.40.12	128.96.40.0/25	R_2
128.96.40.151	128.96.40.0/25	R_2
192.4.153.17	192.4.153.0/26	R_3
192.4.153.90	默认	R ₄

5. 某单位分配到一个地址块 129.250/16。该单位有 4000 台机器,平均分布在 16 个不同的地点,试给每个地点分配一个地址块,并算出每个地址块中 IP 地址的最小值和最大值。

地点	地址块	起始 IP 地址	结束 IP 地址
1	129.250.0.0/20	129.250.0.0	129.250.15.255
2	129.250.16.0/20	129.250.16.0	129.250.31.255
3	129.250.32.0/20	129.250.32.0	129.250.47.255
4	129.250.48.0/20	129.250.48.0	129.250.63.255
5	129.250.64.0/20	129.250.64.0	129.250.79.255
6	129.250.80.0/20	129.250.80.0	129.250.95.255
7	129.250.96.0/20	129.250.96.0	129.250.111.255
8	129.250.112.0/20	129.250.112.0	129.250.127.255
9	129.250.128.0/20	129.250.128.0	129.250.143.255
10	129.250.144.0/20	129.250.144.0	129.250.159.255
11	129.250.160.0/20	129.250.160.0	129.250.175.255
12	129.250.176.0/20	129.250.176.0	129.250.191.255
13	129.250.192.0/20	129.250.192.0	129.250.207.255
14	129.250.208.0/20	129.250.208.0	129.250.223.255
15	129.250.224.0/20	129.250.224.0	129.250.239.255
16	129.250.240.0/20	129.250.240.0	129.250.255.255

6. 一个数据报长度为 4000 字节(固定首部长度)。现在经过一个网络传送,但此网络能传送的最大数据长度为 1500 字节。试问应当划分为几个短些的数据报片? 各数据报片的分段字段长度,片偏移字段和 MF 标志应为何值?

片次	数据长度 (字节)	总长度 (字节)	片偏移 (8 字节单位)	MF 标志
1	1480	1500	0	1
2	1480	1500	185	1
3	1020	1040	370	0

7. 一个大公司有一个总部和三个下属部门。公司分配到的网络前缀是 192.77.33/24。公司的网络布局如图 4-78 所示。总部共有 5 个局域网,其中的 $LAN_1 \sim LAN_4$ 都连接到路由器 R_1 上, R_1 再通过 LAN_5 与路由器 R_2 相连。 R_2 和远地的三个部门的局域网 $LAN_6 \sim LAN_8$ 通过广域网相连。每个局域网旁边标明的数字是局域网上的主机数。试给每一个局域网分配一个合适的网络前缀。

图 4-78 习题 4-26 的图

局域网	主机数	所需最小 IP 地址数	所需网络掩码
LAN ₁	50	52	/26(64 个地址)
LAN ₂	10	12	/28(16 个地址)
LAN ₃	28	30	/27(32 个地址)
LAN ₄	10	12	/28(16 个地址)
LAN ₅	4	6	/29 (8 个地址)
LAN ₆	20	22	/27(32 个地址)
LAN ₇	20	22	/27(32 个地址)
LAN ₈	25	27	/27(32 个地址)

局域网	主机数	分配的子网	IP 地址范围
LAN ₁	50	192.77.33.0/26	192.77.33.0 ~ 192.77.33.63
LAN ₂	10	192.77.33.64/28	192.77.33.64 ~ 192.77.33.79
LAN ₃	28	192.77.33.80/27	192.77.33.80 ~ 192.77.33.111
LAN ₄	10	192.77.33.112/28	192.77.33.112 ~ 192.77.33.127
LAN ₅	4	192.77.33.128/29	192.77.33.128 ~ 192.77.33.135
LAN ₆	20	192.77.33.136/27	192.77.33.136 ~ 192.77.33.167
LAN ₇	20	192.77.33.168/27	192.77.33.168 ~ 192.77.33.199
LAN ₈	25	192.77.33.200/27	192.77.33.200 ~ 192.77.33.231

8. 某单位分配到一个地址块 136.23.12.64/26。现在需要进一步划分为 4 个一样大的子网。试问:

- (1) 每个子网的网络前缀有多长?
- (2) 每一个子网中有多少个地址?
- (3) 每一个子网的地址块是什么?
- (4) 每一个子网可分配给主机使用的最小地址和最大地址是什么?
 - 1. 每个子网的网络前缀: /28
 - 2. 每个子网有 16 个 IP 地址
 - 3. 每个子网的地址块:

○ 子网 1: 136.23.12.64/28, 范围: 136.23.12.64 ~ 136.23.12.79

○ 子网 2: 136.23.12.80/28, 范围: 136.23.12.80 ~ 136.23.12.95

○ 子网 3: 136.23.12.96/28, 范围: 136.23.12.96 ~ 136.23.12.111

○ 子网 4: 136.23.12.112/28, 范围: 136.23.12.112 ~ 136.23.12.127

4. 每个子网可分配给主机使用的最小和最大地址:

○ 子网 1: 136.23.12.65 ~ 136.23.12.78

○ 子网 2: 136.23.12.81 ~ 136.23.12.94

○ 子网 3: 136.23.12.97 ~ 136.23.12.110

○ 子网 4: 136.23.12.113 ~ 136.23.12.126

9. 假定网络中的路由器 B 的路由表有如下项目

目的网络	距离	下一跳路由器
N ₁	7	A
N ₂	2	С
N ₆	8	F
N ₈	4	E
N ₉	4	F

现在 B 收到从 C 发来的路由信息

目的网络	距离
N ₂	4
N_3	8
N ₆	4
N ₈	3
N_9	5

试求出路由器 B 更新后的路由表。

增加跳数后的路由表如下:

目的网络	距离	下一跳路由器
N_2	5	С
N_3	9	С
N ₆	5	С
N ₈	4	С
N ₉	6	С

 N_1 : 没有新的信息,不变 N_2 : 相同的下一跳,替换

N₃: 新路由信息,增加

 N_6 : 不同的下一跳,新跳数更小,替换 N_8 : 不同的下一跳,新跳数相同,不变 N_9 : 不同的下一跳,新跳数更大,不变

目的网络	距离	下一跳路由器
N ₁	7	A
N ₂	5	С
N ₃	9	С
N ₆	5	С
N ₈	4	Е
N ₉	4	F