Rjesenje:

△CDH - pravougli △ => KDHC = 90° - *DCH (1) △ABD - pravougli △ => KABD = 90° - *BAD (2)

(3) *BAD = \$ DCH (uglovi s normalnim kracina)

$$AB = CH$$
 $ABD = 4CHD (2bog (1), (2), (3))$

USU _> DABD = DCHD -> AD=CD

Kako je AD=CD => AACD je jedrakokraki pravougli A, pa je

*ACD = *DAC = 45°.

[212] Kroz središte M osnovice AB jednakokrakog $\triangle ABC$ prolazi prava koja siječe p(A,C) i p(B,C) u tačkama P i Q redom, tako da je P-M-Q. Dokazati oba je PQ >AB.

Riesenje:

*Bet gubitka opštosti pretpostavimo da prava, koja prolazi kroz središte M osnovice AB, siječe prave p(A,C) i p(B,C) u tačkama PiQ tako da vrijedi

A-P-C i C-B-Q.

* Na pp[A,B) odreolimo 'tačku N tako da je A-B-N i BN = BM, (1)

a na pp[8,a) tacku p, tako da

(2) BR = AP * Posmatrajino DAPH i DBP, N: AP = BP1 _ unakrsmi }

*MAP = *MBC = *NBP1 DAPM = DBNP, = MP=NP, LABC j. kraki AM = MB = BN * *ABQ je spoljašnji ugao jedrakokrakog DABC (*ABC = *BAC -ostar), pa zaključujemo da KABQ - tupi i da | ★ABQ > ★ABC (4) Otuda, u unutrašnjosti *ABQ postoji prava koja ishodi iz tjemena B i koja siječe duž MQ u tački P' takva da $| \neq ABP' = \neq ABC. |$ (5) * Posmatrajmo DAMP i DMBP!

*AMP = *BMP' (unalersni uglori) >>

*MAP (5) *MBP'

* XBP'Q je spoljašnji za AMBP', pa je reći od dva unutrarinja njemu nexusjedna ugla u smsp', tj. vryedi

*BP'Q > *MBP' (5) * MBC

a *MBC je spoljašnji za AMBQ i vrijedi

(8) *MBC > *MQB

12 (4) i (8) slijedi

(9) *BP'Q > *MQB M-P'Q *P'QB

* Kako naspram vedeg ugla u troughu leži veda stranica, to iz (9) za DBP'a vryedi

BQ > BP (6) AP (2) BP1 .

* Primijetimo da *MBP, = *ABQ, j 2609 (4) je *MBP, tupi kako je *MBP, spojasnji ugao AMBP, slijedi da

*MAQ > *MBP, -tup => *MAQ -tupi (11)

Stranica naspram tupog ugla u trouglu je najveda stranica u trouglu, pa zbog (11) je

MQ > MP

(12)

* Konatno,

12 (*) i (**) vryedi

PQ > AB .

III. U jednakokrakom △ABC simetrala kraka BC siječe osnovicu AB u tački D tako da je A-D-B. Neka je na pravoj p(C,D) tačka E takva da je CE≅AD i C-D-E. Dokazati da je △DBE jednakokrater

SBC - simetrala kraka BC

SBC NBC = 1 K => BK = KC

ABC - j:kraki => *ABC = *BAC = L

* Posmadrajmo ABKD i ACKD

BK = KC

\$BKD = 90° = 4CKD

SUS

**BKD = 90° = 4CKD

DK = DK $\Delta BKD \cong \Delta CKD \Longrightarrow KCD = *KBD = \lambda$ (1)

$$CE = AD$$
 (pp. 2adatka)

 $+BCE = + KCD \stackrel{(1)}{=} L = + CAD$
 $BC = AC$
 $BC = AC$
 SUS
 $\Rightarrow ACBE \stackrel{\sim}{=} AACD$
 $\Rightarrow BE = CD$

(2

12 (1) i (2) $BE \stackrel{(2)}{=} CD \stackrel{(1)}{=} DB \implies \Delta DBE jednakokraki trougao.$

1214.] Neka je M proizvolyna tačka simetrale spoljašnjeg ugla kod tjemena C AABC. Dokazati da je MA+MB > CA + CB.

Dokaz:

Na pp[B,c) odredimo tacku D tako da je B-C-D i AC≅CD.

Tada je:

BD = BC+CD = BC + AC (1)

* Posmatrajmo DACM i DDCM: $AC = CD \quad (prema izboru tacke D) \quad =)$ $ACM = \#DCM \quad (pp[C,M) polovi \#ACD)$ CM = CM

DACM = DDCM => [MA = MD] (2)

* U ABMD vryjedi

MD+MB > BD .

MR > RN (3)

* 12 (1), (2), (3) slijedi MA+MB > BC+AC.