

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

Course Title	Computer Organization and Software Systems		
Course No(s)	SS ZG516		
Credit Units	5 (1 + 2 + 2) Unit split between Class Hours + Lab/Design/Fieldwork + Student preparation respectively; each unit translates to 32 hours		
Course Author	Lucy J Gudino / Chandra Shekhar		
Version No	3.0		
Date	17/08/2022		

Course Objectives

No	Course Objective	
CO1	Introduce students to systems aspects (i.e. Computer Organization and Operating Systems) involved in software development	
CO2	Equip the student to understand the computer architectural and operating systems related issues that affect the performance and nature of a software	
CO3	To prepare students to be in a position to evaluate/correlate high level software performance based on its system level features (i.e. architectural and operating systems)	

Text Book(s)

T1	Stallings William, <i>Computer Organization & Architecture</i> , Pearson Education, 10 th Ed. 2013	
T2	A Silberschatz, Abraham and others, <i>Operating Systems Concepts</i> , Wiley Student Edition, 9 th Ed.	

Reference Book(s) & other resources

R1	Patterson, David A & J L Hennenssy, <i>Computer Organization and Design – The Hardware/Software Interface</i> , Elsevier, Revised 4th Ed.
R2	Randal E. Bryant, David R. O'Hallaron, <i>Computer Systems – A Programmer's Perspective</i> , Pearson, 2 nd Ed, 2016.
R3	Kai Hwang and Briggs, <i>Computer Architecture and Parallel Processing</i> , Tata McGrawHill Edition
R4	Stallings, <i>Operating Systems: Internals and Design Principles</i> , International Edition, Pearson Education, 2013 (Pearson Online)

Modular Content Structure

1. Introduction to Computer Systems

- 1.1. Hardware Organization of a uniprocessor computer
 - 1.1.1. Basic uniprocessor Architecture
 - 1.1.2. Instruction Cycle State Diagram
- 1.2. Operating System role in Managing Hardware
 - 1.2.1. Running a Hello Program
 - 1.2.2. Processes, Threads, Virtual Memory, Files
- 1.3. Performance Assessment
 - 1.3.1. MIPS Rate
 - 1.3.2. Amdahl's Law

2. Computer Organization and Design : Memory Organization

- 2.1. Internal Memory
 - 2.1.1. Semiconductor Main Memory (SRAM and DRAM)
 - 2.1.2. DDR DRAM
 - 2.1.3. Error Correction Hamming Code
- 2.2. External Memory
 - 2.2.1. Magnetic Disk (Not in very detail)
 - 2.2.2. RAID
 - 2.2.3. SSD Solid State Memory Technologies (Types)

3. Computer Organization and Design: Cache Memory Organization

- 3.1. Locality
 - 3.1.1. Locality of Reference to Program Data
 - 3.1.2. Locality of instruction fetches
- 3.2. Memory Hierarchy
- 3.3. Cache Memories
 - 3.3.1. Generic Cache Memory Organization
 - 3.3.2. Direct-Mapped Caches
 - 3.3.3. Fully Associative Caches
 - 3.3.4. Set Associative Caches
 - 3.3.5. Issues with Writes
 - 3.3.6. Performance Impact of Cache Parameters
 - 3.3.7. Writing Cache friendly Codes
 - 3.3.8. Replacement Algorithms
- 3.4. Processing: In-memory vs. (from) secondary storage vs over the network

4. Computer Organization and Design : Central Processing Unit (4 hrs)

- 4.1. Computer Architecture and Organization
 - 4.1.1. Von-Neumann Architecture vs Harvard Architecture
 - 4.1.2. RISC Vs CISC
 - 4.1.2.1. Machine Instruction Characteristics
 - 4.1.2.2. Types of Operands, Operations and Addressing Modes
 - 4.1.2.3. Instruction Formats
 - 4.1.2.4. Hardwired vs microprogrammed control unit
 - 4.1.3. Case study: MIPS Single cycle implementation
- 4.2. Pipeline
 - 4.2.1. Overview of pipeline
 - 4.2.2. Hazards: Resource. Data and Control Hazards
 - 4.2.3. Hazards Mitigation
 - 4.2.4. Pipeline job scheduling

5. Process Management

- 5.1. Concept of Process
- 5.2. Process State Diagram
- 5.3. Operations on Processes: Process creation and termination examples
- 5.4. Process vs. Threads
- 5.5. Process Scheduling criteria
- 5.6. Process Scheduling Algorithms -FCFS, SJF, Priority, RR, Multilevel Queue, Multilevel Feedback Queue

6. Process Coordination

- 6.1. The Critical section problem and Peterson's Solution
- 6.2. Semaphores
- 6.3. Deadlock:
 - 6.3.1. System Model
 - 6.3.2. Deadlock Characterization
- 6.4. Methods of Handling Deadlocks
 - 6.4.1 Deadlock Prevention
 - 6.4.2 Deadlock Avoidance: Banker's Algorithm
 - 6.4.3 Deadlock Detection
 - 6.4.4 Recovery from Deadlock

7. Memory Management

- 7.1. Memory-Management Strategies
- 7.2. Paging
- 7.3. Segmentation
- 7.4. Virtual-Memory
- 7.5. Demand Paging
- 7.6. Page Replacement Algorithms: FIFO, Optimal, LRU, and LFU

8. Optimizing Program Performance

- 8.1. Capabilities and Limitations of Optimizing Compilers
- 8.2. Expressing Program Performance
- 8.3. Eliminating Loop Inefficiencies
- 8.4. Reducing Procedure Calls
- 8.5. Eliminating Unneeded Memory References
- 8.6. Understanding Modern Processors
- 8.7. Loop Unrolling
- 8.8. Enhancing Parallelism

9. Parallel and distributed systems

9.1. Motivation for parallel Processing

- 9.2. Flynn's classification
- 9.3. Parallel Processing Models
- 9.4. Shared memory vs distributed Memory
- 9.5. Memory Hierarchy in parallel Systems
- 9.6. Impact of Memory Hierarchy on performance
 - **9.6.1.** Shared memory and memory contention
 - **9.6.2.** Communication Cost
 - **9.6.3.** Locality
- 9.7. Memory Hierarchy in distributed systems

Learning Outcomes:

No	Learning Outcomes
LO1	Students will apply the knowledge of performance metrics to find the performance of systems.
LO2	Students will Examine different computer architectures and hardware
LO3	Students will Analyse and Compare of process management concepts including scheduling, synchronization ,deadlocks
LO4	Students will Examine multithreading and system resources sharing among the users
LO5	Students will Analyse and Compare various memory management techniques
LO6	Students will apply different code optimization techniques
LO7	Students will Investigate high performance architecture design

Part B: Contact Session Plan

Academic Term SEM II, 2019-20		
Course Title Computer Organization and Software Systems		
Course No SS *ZG516		
Lead Instructor	Dr. Lucy J Gudino	
Instructors	Prof. Chandrashekar R K, Prof. Pruthvi Kumar, Prof. Sarma, Prof. Balamurali Shankar.	

Course Contents

Sl. No.	Conta ct Hour #	List of Topic Title (from content structure in Part A)	Topic # (from content structure in Part A)	Text/Ref Book/extern al resource
1	1-2	Introduction to Computer Systems Hardware Organization of a uniprocessor computer (T1: 3.1, 3.2) Basic uniprocessor Architecture Instruction Cycle State Diagram Operating System role in Managing Hardware (T1: 8.1) Running a Hello Program (R2: 1.2) Processes, Threads, Virtual Memory, Files (Class Notes) *Performance Assessment (R1: 1.4, T1: 2.3) MIPS Rate Amdahl's Law * to be covered in tutorial	1.1-1.3	T1, R1, R2
2	3-4	Computer Organization and Design: Memory Organization Internal Memory (T1: 5.1 – 5.3) Semiconductor Main Memory (SRAM and DRAM) DDR – DRAM Error Correction – Hamming Code External Memory (T1: 6.1) Magnetic Disk (Not in very detail)	1.5, 2.1	Class Notes, T1, R2
3	5-6	Computer Organization and Design: Memory Organization (Contd) • External Memory (T1: 6.2, 6.3) • RAID • SSD - Solid State Memory Technologies (Types) Computer Organization and Design: Cache Memory Organization • Locality (Class Notes) • Locality of Reference to Program Data • Locality of instruction fetches • Memory Hierarchy (T1: 4.1) • Cache Memories (T1: 4.2, 4.3) • Generic Cache Memory Organization • Direct Mapped Cache (T1: 4.3)	2.2, 3.1, 3.2, 3.3 (3.3.1)	T1

		T	I	ı
4	7-8	Cache Memory Organization and Design: Cache Memory Organization Cache Memories (Contd) Fully Associative Cache (T1: 4.3) Set Associative Caches (T1: 4.3) Issues with Writes (T1: 4.3) Performance Impact of Cache Parameters (T1: 4.3)	3.3.2 – 3.3.6	T1, R2
5	9-10	Cache Memory Organization (Contd) Cache Memories (Contd) Writing Cache friendly Codes (R2: 6.5) Replacement Algorithms (Class Notes) Processing: In-memory vs. (from) secondary storage vs over the network (Class Notes) Computer Organization and Design: Central Processing Unit Computer Architecture and Organization Von-Neumann Architecture vs Harvard Architecture (Class Notes) CISC (T1: 12.1 – 12.5, 13.1 – 13.4) Machine Instruction Characteristics, Types of Operands, Types of Operations, Addressing Modes, Instruction Formats * Problem Solving: Cache Memory and Replacement Algorithms (Class Notes) * to be covered in tutorial	3.3.7- 3.3.8, 3.4 4.1 (4.1.1 -4.1.2)	T1
6	11-12	Computer Organization and Design: Central Processing Unit (Contd) CISC (R1: Selected topics from Chapter 2 and Chapter 4, and Class Notes) Machine Instruction Characteristics, Types of Operands, Types of Operands, Types of Operations, Addressing Modes, Instruction Formats Hardwired vs microprogrammed control unit (Selected topics from T1: Ch 20 and 21	4.1 (4.1.2- 4.1.3)	R1, T1
7	13-14	Computer Organization and Design :	4.1.3	T1, R1
		I	1	1

8	15-16	Central Processing Unit (contd) • Case study: MIPS Single cycle implementation (Selected topics from R1) • Pipeline (T1: 14.4) ○ Overview of pipeline ○ Resource Hazard ○ Data Hazard : Forwarding versus Stalling Computer Organization and Design : Central Processing Unit (contd) • Pipeline (T1: 14.4) ○ Control Hazard ○ Pipeline job scheduling	4.2	T1
		(Class Notes)		
		MID SEM EXAMINATION		
9	17-18	Process Management (T2: 3.1-3.3, 4.1, 6.1-6.3)	5.1-5.6	T2
10	19-20	Process Management (Contd) (T2: 6.3) • Process Scheduling Algorithms - Priority, RR, Multilevel Queue, Multilevel Feedback Queue Process Coordination • The Critical section problem and Peterson's Solution (T2: 5.1-5.3) • Semaphores (T2: 5.6) *Problems — Scheduling Algorithm, semaphores to be covered in tutorial	5.6, 6.1, 6.2	T2
11	21-22	Process Coordination (T2: 7.1, 7.2) • Deadlock:	6.3	T2

П			I	I
12	23-24	Memory Management (T2: 8.1, 8.3, 8.4, 8.5, 9.1,9.2) • Memory-Management Strategies • Paging • Segmentation • Virtual-Memory • Demand Paging *Problems – Memory Management to be covered in tutorial	7.1 – 7.5	T2
13	25-26	Memory Management (Contd) (T2: 9.1-9.4) • Page Replacement Algorithms: FIFO, Optimal, LRU and LFU Optimizing Program Performance (R2: 5.1:5.5) • Capabilities and Limitations of Optimizing Compilers • Expressing Program Performance	7.6 8.1, 8.2	T2, R2
14	27-28	Optimizing Program Performance (R2: 5.1:5.5) • Eliminating Loop Inefficiencies • Reducing Procedure Calls • Eliminating Unneeded Memory References • Understanding Modern Processors • Loop Unrolling • Enhancing Parallelism	8.3-8.8	R2
15	29-30	Parallel and distributed systems (Selected topics from R3) • Motivation for parallel Processing • Flynn's classification • Parallel Processing Models • Shared memory vs distributed Memory	9.1-9.4	R3
16	31-32	Parallel and distributed systems (Selected topics from R3) • Memory Hierarchy in parallel Systems • Impact of Memory Hierarchy on performance • Shared memory and memory contention • Communication Cost • Locality • Memory Hierarchy in distributed systems Comprehensive Examination	9.5-9.6	R3

Evaluation Scheme

Evaluation Component	Name (Quiz, Lab, Project, Midterm exam, End semester exam, etc)	Type (Open book, Closed book, Online, etc.)	Weight	Duration	Day, Date, Session, Time
EC – 1	Quizzes / Assignment	Online	5+25%	NA	To be announced
EC – 2	Mid-term Exam	Closed book	30%	-	To be announced
EC - 3	End Semester Exam	Open book	40%	-	To be announced

Note - Evaluation components can be tailored depending on the proposed model.

Important Information

Syllabus for Mid-Semester Test (Closed Book): Topics in Weeks 1-8 (1-18 Hours) Syllabus for Comprehensive Exam (Open Book): All topics given in plan of study

Evaluation Guidelines:

- 1. EC-1 consists of either two Assignments or three Quizzes. Announcements regarding the same will be made in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.