Computational Content of the Classical Axiom of Countable Choice

Vladimir Ivanov

July 19, 2023

1 The Computational System

Definition 1 (Lambda Terms). Let Var be a countably infinite set of variable names. The notions of free variable and closed term are defined as usual. We define the set Λ_{open} of not necessarily closed lambda terms, and take Λ to be the set of closed terms of Λ_{open} . When we say lambda term, we mean closed lambda term. Λ_{open} is defined as follows

```
\begin{array}{lll} \Lambda_{open} := \mid x \in \mathsf{Var} & & & & \\ \mid \Lambda_{open} \ \Lambda_{open} & & & & \\ \mid \lambda x.\Lambda_{open} & & & & where \ x \in \mathsf{Var} \\ \mid 0 \mid \mathsf{succ} \mid \mathsf{rec}_{\mathbb{N}} & & constructors \ and \ the \ recursor \ for \ \mathbb{N} \\ \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{rec}_{\mathsf{bool}} & & constructors \ and \ the \ recursor \ for \ \mathsf{bool} \\ \mid \Phi & & the \ bar \ recursion \ operator \\ \mid \lambda n.t_n \ where \ (t_n)_{n \in \mathbb{N}} \subseteq \mathbb{N} & when \ applied \ to \ \mathsf{succ}^n 0, \ reduces \ to \ t_n \\ \mid \mathsf{cc} & & call/cc \\ \mid \mathsf{k}_{\pi} & continuation, \ where \ \pi \ is \ a \ stack \\ \end{array}
```

Definition 2 (Prooflike Term). A lambda term is prooflike if it does not contain $\lambda \lambda$..

Definition 3 (Stacks). A stack is a finite list of closed lambda terms. We let Π be the set of all stacks. We write $t \cdot \pi$ for prepending a lambda term to a stack and $\pi \cdot \pi'$ for concatenating two stacks. We write π_{empty} for the empty stack.

Notation 1. Let $\vec{t} \subseteq \Lambda$ and $\vec{\pi} \subseteq \Pi$. We write $\vec{t} \cdot \vec{\pi}$ for $\{t \cdot \pi \mid t \in \vec{t}, \pi \in \vec{\pi}\}$. For $t \in \Lambda$ and $\pi \in \Pi$, we write $t \cdot \vec{\pi}$ for $\{t\} \cdot \vec{\pi}$ and $\vec{t} \cdot \pi$ for $\vec{t} \cdot \{\pi\}$.

Definition 4 (Process). A process is a pair $\langle t \mid \pi \rangle$ of a lambda term and a stack. We write $\Lambda \times \Pi$ for the set of all processes.

Definition 5 (Reduction Relation). The big step reduction relation \succ is the smallost transitive and reflexive relation which staisfies:

$$\langle tu \mid \pi \rangle \succ \langle t \mid u\pi \rangle \\ \langle \lambda x.t \mid u\pi \rangle \succ \langle t[x:=u] \mid \pi \rangle \\ \langle \operatorname{rec}_{\mathbb{N}} \mid t_0 \cdot t_{\operatorname{succ}} \cdot 0 \cdot \pi \rangle \succ \langle t_0 \mid \pi \rangle \\ \langle \operatorname{rec}_{\mathbb{N}} \mid t_0 \cdot t_{\operatorname{succ}} \cdot \operatorname{succ} \ n \cdot \pi \rangle \succ \langle \operatorname{rec}_{\mathbb{N}} \ (t_{\operatorname{succ}} \ t_0) \ t_{\operatorname{succ}} \ n \mid \pi \rangle \\ \langle \operatorname{rec}_{\operatorname{bool}} \mid t_{\operatorname{true}} \cdot t_{\operatorname{false}} \cdot \operatorname{true} \cdot \pi \rangle \succ \langle t_{\operatorname{true}} \mid \pi \rangle \\ \langle \operatorname{rec}_{\operatorname{bool}} \mid t_{\operatorname{true}} \cdot t_{\operatorname{false}} \cdot \operatorname{false} \cdot \pi \rangle \succ \langle t_{\operatorname{false}} \mid \pi \rangle \\ \langle \Phi \mid H \cdot P \cdot C \cdot \overline{k} \cdot \pi \rangle \succ \langle P \ (C; \geq \overline{k} \mapsto H \ (\lambda z. \ \Phi \ H \ P \ \overline{k+1} \ (C; \geq \overline{k} \mapsto z))) \mid \pi \rangle \\ \langle \operatorname{cc} \mid t \cdot \pi \rangle \succ \langle t \mid \mathsf{k}_{\pi} \cdot \pi \rangle \\ \langle \mathsf{k}_{\pi} \mid t \cdot \pi' \rangle \succ \langle t \mid \pi \rangle$$

All the syntactic sugar used in the rule for Φ will be defined in the following subsection.

For $t, u \in \Lambda$, we write $t \succ u$ for $\forall \pi \in \Pi . \langle t \mid \pi \rangle \succ \langle u \mid \pi \rangle$.

1.1 Syntactic Sugar and Special Terms

naturals For $n \in \mathbb{N}$, we write \overline{k} for $\operatorname{succ}^n 0$.

if then else We write if t then u else v for $\mathsf{rec}_{\mathsf{bool}}\ u\ v\ t.$

comparison For $t, u \in \Lambda$, we use $\mathsf{rec}_{\mathbb{N}}$ to define a term $t \leq u$ such that for all $n, m \in \Lambda$

$$\overline{n} \leq \overline{m} \succ \text{true}$$
 if $n \leq m$ $\overline{n} \leq \overline{m} \succ \text{false}$ otherwise

function cons Let $f, t, n \in \Lambda$. Define

$$(f; \geq n \mapsto t) \in \Lambda := \lambda k$$
. if $n \leq k$ then t else f k

This term satisfies, for all $f, t \in \Lambda, n, m \in \mathbb{N}$,

$$(f; \geq \overline{n} \mapsto t) \ \overline{m} \succ f \ \overline{m}$$
 if $m < n$
$$(f; \geq \overline{n} \mapsto t) \ \overline{m} \succ t$$
 if $m \geq n$

We omit parentheses and write $(f; \geq k_1 \mapsto t_1; \geq k_2 \mapsto t_2; \dots; \geq k_n \mapsto t_n)$ for $((\dots((f; \geq k_1 \mapsto t_1); \geq k_2 \mapsto t_2))\dots)); \geq k_n \mapsto t_n)$

2 Realizability

2.1 Logic

We define higher order logic in this section.

types Types are syntactically defined as $\tau, \sigma, \cdots := \mathsf{nat} \mid \mathsf{prop} \mid \tau \to \sigma$

variables For each type τ , take a countably infinite set of variables of this type denoted $x^{\tau}, y^{\tau}, \ldots$ or x, y, \ldots

terms Terms are tied with a type and defined inductively as follows

variable If x^{τ} is a variable of type τ , then x^{τ} is a term of type τ .

abstraction If x^{τ} is a variable of type τ and M is a term of type σ , then $\lambda x^{\tau}.M$ is a term of type $\tau \to \sigma$.

application If M is a term of type $\tau \to \sigma$ and N is a term of type τ , then MN is a term of type σ .

zero 0 is a term of type nat.

successor succ is a term of type $nat \rightarrow nat$.

recursor for naturals For every type τ , recnat_{τ} is a term of type $\tau \to (\text{nat} \to \tau \to \tau) \to \text{nat} \to \tau$.

implication If M and N are terms of type prop, then $M \Rightarrow N$ is a term of type prop.

universal quantification If x^{τ} is a variable of type τ and M is a term of type prop, then $\forall x^{\tau}.M$ is a term of type prop.

dependent universal quantification If x^{nat} is a variable of type nat and M is a formula of type prop , then $\forall^{\mathbb{N}} x.M$ is a formula of type prop .

equality If M and N are terms of type nat, then M = N is a term of type prop (should I define equality for any type?).

top and bottom \top and \bot are formulas of type prop.

As usual, we write $\neg M$ for $M \to \bot$.

2.2 The Realizability Relation

Definition 6 (interpretation of types). The interpretation $[\![\tau]\!]$ of a type τ is a set defined by induction over the syntax of τ by

Definition 7 (valuation). A valuation ρ is a partial function from the set of variables which to each variable of type τ associates an element of the set $[\![\tau]\!]$. We furthermore require that ρ be defined at at most finitely many points.

For a valuation ρ , variable x of type τ , and $y \in [\![\tau]\!]$, we write $\rho; x \mapsto y$ for

$$x' \mapsto \begin{cases} y & \text{if } x' = x \\ \rho(x') & \text{otherwise} \end{cases}.$$
 The empty valuation ρ_{empty} is the valuation defined nowhere.

Definition 8. For $\vec{\pi} \subseteq \Pi$, let

$$\vec{\pi}^{\perp} \subseteq \Lambda = \{ t \in \Lambda \mid \forall \pi \in \vec{\pi}. \langle t \mid \pi \rangle \in \bot \}$$

Definition 9 (interpretation of terms). Let ρ be a valuation. For a term M of type τ such that ρ is defined at all the free variables of M, we define an interpretation $||M||_{\rho}$ by syntactic induction over M as follows

$$\begin{split} \|x\|_{\rho} &:= \rho(x) \\ \|\lambda x^{\tau}.M\|_{\rho} &:= v \in \llbracket \tau \rrbracket \mapsto \|M\|_{\rho; x \mapsto v} \\ \|MN\|_{\rho} &:= \|M\|_{\rho}(\|N\|_{\rho}) \\ \|0\|_{\rho} &:= 0 \\ \|\operatorname{succ}\|_{\rho} &:= n \mapsto n+1 \end{split}$$

$$\begin{split} \|\operatorname{recnat}_{\tau}\|_{\rho} &:= P_{0} \mapsto P_{\operatorname{succ}} \mapsto n \mapsto \begin{cases} P_{0} & \text{if } n = 0 \\ P_{\operatorname{succ}}(\|\operatorname{recnat}_{\tau}\|_{\rho}(P_{0})(P_{\operatorname{succ}})(n-1)) & \text{otherwise} \end{cases} \\ \|M &= N\|_{\rho} &:= \begin{cases} \emptyset & \text{if } \|M\|_{\rho} = \|N\|_{\rho} & \text{in the standard model of } \mathbb{N} \\ \mathcal{P}(\Pi) & \text{otherwise} \end{cases} \\ \|M &\Rightarrow N\|_{\rho} &:= \|M\|_{\rho}^{\perp} \cdot \|N\|_{\rho} \\ \|\forall x^{\tau}.M\|_{\rho} &:= \bigcup_{v \in \llbracket \tau \rrbracket} \|M\|_{\rho, x \mapsto v} \\ \|\forall \mathbb{X}^{\tau}.M\|_{\rho} &:= \bigcup_{n \in \mathbb{N}} \|M\|_{\rho, x \mapsto n} \\ \|\top\|_{\rho} &:= \emptyset \\ \|\bot\|_{\rho} &:= \mathcal{P}(\Pi) \end{split}$$

Notation 2. Let M be a formula, t be a term, and $\vec{\pi} \subset \Pi$. We write $|M|_{\rho}$ for
$$\begin{split} \|M\|_{\rho}^{\perp\!\!\!\perp}, \ t \Vdash_{\rho} M \ \textit{for} \ t \in |M|_{\rho}, \ \textit{and} \ t \Vdash \vec{\pi} \ \textit{for} \ t \in \vec{\pi}^{\perp\!\!\!\perp}. \\ \textit{We write} \ \| \cdot \| \ \textit{for} \ \| \cdot \|_{\rho_{\text{empty}}}, \ | \cdot | \ \textit{for} \ | \cdot |_{\rho_{\text{empty}}}, \ \textit{and} \ \Vdash \textit{for} \ \Vdash_{\rho_{\text{empty}}}. \end{split}$$

2.3**Properties**

Propetry 1. If $t \succ u$ and $u \Vdash_{\rho} M$, then $t \Vdash_{\rho} M$.

Proof. Suppose $t \succ u$ and $u \Vdash_{\rho} M$, that is, $\forall \pi \in ||M||_{\rho}.\langle u \mid \pi \rangle \in \bot$. Let $\pi \in ||M||_{\rho}$, we need to show that $\langle t \mid \pi \rangle \in \bot$. This is true because $\langle t \mid \pi \rangle \succ \langle u \mid \pi \rangle$.

Propetry 2. $t \Vdash_{\rho} M \to N$ if and only if $\forall u \in \Lambda.u \Vdash_{\rho} M \Rightarrow tu \Vdash_{\rho} N$.

Proof.

- \Rightarrow direction Suppose $t \Vdash_{\rho} M \to N$ and let $u \in \Lambda$ be such that $u \Vdash_{\rho} M$. Let $\pi \in ||N||_{\rho}$. We need to show that $\langle tu \mid \pi \rangle \in \bot$. But $\langle tu \mid \pi \rangle \vdash \langle t \mid u\pi \rangle$ and $\langle t \mid u\pi \rangle \in \bot$ since $u\pi \in ||M \to N||_{\rho}$.
- $\Leftarrow \textbf{ direction Suppose } \forall u \in \Lambda.u \Vdash_{\rho} M \Rightarrow tu \Vdash_{\rho} N. \text{ Let } \pi \in \|M \to N\|_{\rho}, \text{ that } \text{ is, } \pi = u \cdot \pi' \text{ for some } u \in |M|_{\rho} \text{ and } \pi' \in \|N\|_{\rho}. \text{ We need to show that } \langle t \mid u \cdot \pi' \rangle \in \mathbb{L}. \text{ It suffices to show that } \langle tu \mid \pi' \rangle \in \mathbb{L}, \text{ which is the case since } tu \Vdash_{\rho} N \text{ and } \pi' \in \|N\|_{\rho}.$

Propetry 3 (Consistency). There is no t, ρ such that $t \Vdash_{\rho} \bot$.

Proof. Suppose for the sake of contradiction that $t \Vdash_{\rho} \bot$. Then, for all $\pi \in \|\bot\|_{\rho} = \mathcal{P}(Pi)$, $\langle t \mid \pi \rangle \in \bot$. We have to take a pole for which this yields to a contradiction.

Propetry 4. If $t \Vdash \bot$ then $t \Vdash F$ for all formula F.

Proof. By consistency, there is no such t, ρ .

Propetry 5. $t \Vdash_{\rho} \forall^{\mathbb{N}} x.M$ if and only if for all $n \in \mathbb{N}$, $t\overline{n} \Vdash_{\rho; x \mapsto \overline{n}} M$.

Proof.

- \Rightarrow direction Suppose $t \Vdash_{\rho} \forall^{\mathbb{N}} x.M$. Let $n \in \mathbb{N}$ and $\pi \in \|M\|_{\rho;x \mapsto \overline{n}}$. We need to show that $\langle t\overline{n} \mid \pi \rangle \in \mathbb{L}$. It suffices to show that $\langle t \mid \overline{n} \cdot \pi \rangle \in \mathbb{L}$, which is the case since $\overline{n} \cdot \pi \in \overline{n} \cdot \|M\|_{\rho;m \mapsto \overline{n}} \subseteq \|M\|_{\rho}$.
- \Leftarrow direction Suppose that for all $n, t\overline{n} \Vdash_{\rho;x\mapsto\overline{n}} M$. Let $n \in \mathbb{N}$ and $\pi \in \|M\|_{\rho;x\mapsto\overline{n}}$. We need to show that $\langle t \mid \overline{n} \cdot \pi \rangle \in \mathbb{L}$. ???

Propetry 6 (Continuity). Let t be a term with one free variable x. Let M be a formula. Let $u_0, u_1, \dots \in \Lambda$. Suppose that $t[x := \lambda \!\!\! \lambda \, n.u_n] \Vdash M$. Then there exists $N \in \mathbb{N}$ such that for all $f \in \Lambda$ such that $\forall n < N$. $f \overline{n} \succ u_n$ we have $t[x := f] \Vdash M$.

3 The Induced Evidenced Frame

Definition 10. Define an evidenced frame by taking

propositions Φ is $\mathcal{P}(\Pi)$

evidence E is the set of prooflike lambda terms.

evidence relation For $\phi_1, \phi_2 \in \Phi$ and $e \in E$, $\phi_1 \stackrel{e}{\to} \phi_2$ if and only if $\forall t \in \Lambda.t \Vdash \phi_1 \Rightarrow et \Vdash \phi_2$.

top $\top = \emptyset$.

conjunction For $\phi_1, \phi_2 \in \Phi$, $\phi_1 \wedge \phi_2$ is $\bigcup_{\phi \in \Phi} (\phi_1^{\perp} \cdot \phi_2^{\perp} \cdot \phi)^{\perp} \cdot \phi$.

universal implication For $\phi_1 \in \Phi$ and $\vec{\phi} \subseteq \Phi$, $\phi_1 \supset \vec{\phi}$ is $\phi_1^{\perp} \cdot \bigcup \vec{\phi}$.

Theorem 1. The evidenced frame defined above is an evidenced frame.

Proof.

reflexivity Take $e_{\mathsf{id}} = \lambda x.x$. If $t \Vdash F$ then $e_{\mathsf{id}} t \Vdash F$ since $e_{\mathsf{id}} t \succ t$.

- top Take $e_{\mathsf{top}} = \lambda x.x$. If $t \Vdash F$ then $e_{\mathsf{top}} t \Vdash \top$ since every lambda term realizes \top , which can be seen by unfolding the definitions of \top and \Vdash .
- **conjunction elimination** Take $e_{\mathsf{fst}} = \lambda t. t(\lambda x. \lambda y. x)$. $\lambda x. \lambda y. x \Vdash \phi_1 \to \phi_2 \to \phi_1$ so $\lambda x. \lambda y. x \Vdash \phi_1^\top \cdot \phi_2^\top \cdot \phi_1$. Thus if $t \Vdash \phi_1 \wedge \phi_2$ we have $t \Vdash (\phi_1 \to \phi_2 \to \phi_1) \to \phi_1$ so $t(\lambda x. \lambda y. x) \Vdash \phi_1$ and thus $e_{\mathsf{fst}} t \Vdash \phi_1$. We do the same thing for e_{snd} .
- **conjunction introduction** Take $\langle |e_1, e_2| \rangle = \lambda t.te_1e_2$. Suppose $e_1 \Vdash \phi_1$ and $e_2 \Vdash \phi_2$. We need to show $\langle |e_1, e_2| \rangle \Vdash \phi_1 \land \phi_2$. Let $\phi \in \Phi$ and $t \Vdash \phi_1 \to \phi_2 \to \phi$. It suffices to show $te_1e_2 \Vdash \phi$, which is the case.
- universal implication introduction Take $\lambda e = \lambda t. \lambda u. e < |t, u| >$. Let $\phi_1, \phi_2 \in \Phi$, $\vec{\phi} \subseteq \Phi$, and $e \in E$ such that $\forall \phi \in \vec{\phi}. \phi_1 \wedge \phi_2 \stackrel{e}{\to} \phi$. We need to show that for all $t \Vdash \phi_1$, $(\lambda e)t \Vdash \phi_1 \supset \vec{\phi}$, that is, for all $u \Vdash \phi_2$ and $\phi \in \vec{\phi}$, $(\lambda e)tu \Vdash \phi$. But $(\lambda e)tu \succ e < |t, u| >$, which concludes since $e \Vdash \phi_1 \wedge \phi_2 \to \phi$ and $< |t, u| > \Vdash \phi_1 \wedge \phi_2$.
- universal quantification elimination Take $e_{\mathsf{eval}} = \lambda t.(e_{\mathsf{fst}}t)(e_{\mathsf{snd}}t)$. Suppose $t \Vdash (\phi_1 \supset \vec{\phi}) \land \phi_1$ and let $\phi \in \vec{\phi}$, we need to show $e_{\mathsf{eval}}t \Vdash \phi$. It suffices to show $(e_{\mathsf{fst}}t)(e_{\mathsf{snd}}t) \Vdash \phi$, which is the case since $e_{\mathsf{fst}}t \Vdash \phi_1^\top \phi$ and $e_{\mathsf{snd}} \Vdash \phi_1$.

4 Realizability of Countable Choice

Throughout this section, let τ be a type. We define

$$AC_{\mathbb{N},\tau} := \forall R^{\mathsf{nat} \to \tau \to \mathsf{prop}}. (\forall n^{\mathsf{nat}}. \neg \forall i^\tau. \neg R(n,i)) \to \neg \forall f^{\mathsf{nat} \to \tau}. \neg \forall n^{\mathsf{nat}}. R(n,f(n))$$

Theorem 2. We have

$$\lambda H. \ \lambda P. \ \Phi \ H \ P \ \overline{0} \ \overline{0} \Vdash AC_{\mathbb{N}, \tau}$$

Proof. Let $R_0 \in \mathcal{P}(\Pi)^{\mathbb{N} \times \llbracket \tau \rrbracket}$. Let $\rho = (\rho_{\mathsf{empty}}; R \mapsto R_0)$. Let

$$H \Vdash_{\rho} \forall n. \neg \forall i. \neg R(n, i)$$
$$P \Vdash_{\rho} \forall f. \neg \forall^{\mathbb{N}} n. R(n, f(n))$$

By propetry 2, it is necessarily and sufficient to show that

$$\Phi H P \overline{0} \overline{0} \Vdash_{\rho} \bot$$

Definition 11 (< k -cache). Let $k \in \mathbb{N}$. A < k -cache is a term $C \in \Lambda$ such that $\forall n < k. \exists i. C \ \overline{n} \Vdash_{\rho} R(n, i)$.

Lemma 1. Let $k \in \mathbb{N}$. Let C be a < k -cache. Suppose that Φ H P C $\overline{k} \not\Vdash_{\rho} \bot$. Then, there exists i_k and $r_k \Vdash_{\rho} R(k, i_k)$ such that Φ H P $(C; \ge \overline{k} \mapsto r_k)$ $\overline{k+1} \not\Vdash_{\rho} \bot$.

Note that $(C; \geq \overline{k} \mapsto r_k)$ is then a < k+1-cache.

Proof. There exist $r_k \in \Lambda$, $i_k \in I$ such that $r_k \Vdash_{\rho} R(k, i_k)$. Indeed, if none did exists, then for all i, any term would realize $\neg R(k, i)$, thus, any term would realize $\forall i. \neg R(k, i)$. Thus, H applied to any term would realize \bot , which contradicts consistency.

Now, suppose that for all r_k, i_k such that $r_k \Vdash_{\rho} R(k, i_k)$,

$$\Phi \ H \ P \ (C; \geq \overline{k} \mapsto r_k) \ \overline{k+1} \Vdash_{\rho} \bot$$

it suffices to find a contradiction. Then, for all i,

$$\lambda z. \ \Phi \ H \ P \ (C; \geq \overline{k} \mapsto z) \ \overline{k+1} \Vdash_{\rho} \neg R(k,i)$$

and so by the hypothesis on H and then by ???,

$$H\ (\lambda z.\ \Phi\ H\ P\ (C;\geq \overline{k}\mapsto z)\ \overline{k+1}\Vdash_{\rho} \neg R(k,i))\Vdash_{\rho}\bot\\ \Vdash_{\rho} R(n,i)\quad \text{for all n and i}$$

Now, by definition of a cache, for all n < k, $C \overline{n} \Vdash_{\rho} R(n, i)$ for some i. Let f(n) be such an i for n < k and be arbitrary for $n \ge k$. Then,

$$(C; \geq \overline{k} \mapsto H \ (\lambda z. \ \Phi \ H \ P \ (C; \geq \overline{k} \mapsto z) \ \overline{k+1} \Vdash_{\rho} \neg R(k,i))) \Vdash_{\rho} \forall^{\mathbb{N}} n. R(n,f(n))$$

since this term applied to n < k realizes R(n, f(n)) by the definition of a cache and this term applied to $n \ge k$ realizes R(n, f(n)) by the previous discussion. Thus,

$$P\left(C;\geq\overline{k}\mapsto H\left(\lambda z.\ \Phi\ H\ P\left(C;\geq\overline{k}\mapsto z\right)\ \overline{k+1}\Vdash_{\rho}\neg R(k,i)\right)\right)\Vdash_{\rho}\forall^{\mathbb{N}}n.R(n,f(n))\Vdash_{\rho}\bot$$

But

$$\Phi \ H \ P \ C \ \overline{k} \succ P \ (C; \geq \overline{k} \mapsto H \ (\lambda z. \ \Phi \ H \ P \ (C; \geq \overline{k} \mapsto z) \ \overline{k+1}))$$

So

$$\Phi H P C \overline{k} \Vdash_{o} \bot$$

which was supposed to not hold.

Now, suppose

$$\Phi H P \overline{0} \overline{0} \not\Vdash_{\rho} \bot$$

it is necessary and sufficient to find a contradiction.

By applying lemma 1 repeatedly, we get a sequence r_0, r_1, \ldots such that each r_n realizes R(n, i) for some i. For each n, take $f_0(n)$ to be such an i.

Then, for all n, $(\lambda n.r_n)\overline{n} \Vdash_{\rho} R(n, f_0(n))$. Thus, $\lambda n.r_n \Vdash_{\rho} \forall^{\mathbb{N}} n.R(n, f_0(n))$ and so

$$P (\lambda n.r_n) \Vdash_{\rho} \bot$$

But then, by continuity, there exists N such that for all C, if $\forall n < N$. $C \overline{n} \succ r_n$ then $P \subset \Vdash_{\rho} \bot$. Thus, taking $C = (\overline{0}; \geq \overline{0} \mapsto r_0; \geq \overline{1} \mapsto r_1; \ldots; \geq \overline{N-1} \mapsto r_{N-1}; \geq \overline{N} \mapsto H \ (\lambda z. \ \Phi \ H \ P \ \overline{N+1} \ (C; \geq \overline{k} \mapsto z)))$, we have $P \subset \Vdash_{\rho} \bot$ since $\forall n < N.C \ \overline{n} \succ r_n$. But $\Phi \ H \ P \ \overline{0} \ \overline{0} \succ P \ C$, so $\Phi \ H \ P \ \overline{0} \ \overline{0} \Vdash_{\rho} \bot$, which was supposed to not hold.

8