Solution Section 2.3 – Present Value of an Annuity Amortization

Exercise

How much should you deposit in an account paying 8% compounded quarterly in order to receive quarterly payments of \$1,000 for the next 4 years?

Solution

Given:
$$PMT = 1,000 \quad r = 8\% = .08, \quad m = 4, \quad t = 4$$

$$i = \frac{r}{m} = \frac{.08}{4} = .02 \quad n = 4(4) = 16$$

$$PV = PMT \frac{1 - (1+i)^{-n}}{i}$$

$$= 1000 \frac{1 - (1+.02)^{-16}}{.02}$$

$$\approx $13,577.71$$

Exercise

You have negotiated a price of \$25,200 for a new truck. Now you must choose between 0% financing for 48 months or a \$3,000 rebate. If you choose the rebate, you can obtain a loan for the balance at 4.5% compounded monthly for 48 months . Which option should you choose?

Solution

0% financing: Given:
$$P = 25,200 \quad r = 0\% = 0, \quad t = 48 \text{ mth}$$

$$\left[PMT_{1} = \frac{25,200}{48} \right] = \$525$$
Rebate: Given: $P = 25,200 \quad Rebate = \$3,000 \quad r = 4.5\% = .045, \quad m = 12 \quad n = t = 48 \text{ mth}$

$$PV = 25,200 - 3,000 = \$22,200$$

$$i = \frac{.045}{12} = .00375$$

$$PMT_{2} = PV \frac{i}{1 - (1 + i)^{-n}}$$

$$= 22,200 \frac{.00375}{1 - 1.00375^{-48}}$$

$$= \$506.24$$

 \Rightarrow Rebate is better and you save 525 - 506.24 = \$18.76 per month Or 18.76 * 48 = \$900.48 (over the loan)

Suppose you have selected a new car to purchase for \$19,500. If the car can be financed over a period of 4 years at an annual rate of 6.9% compounded monthly, how much will your monthly payments be? Construct an amortization table for the first 3 months.

Solution

$$PMT = 19500 \left(\frac{0.069 / 12}{1 - (1 + 0.069 / 12)^{-48}} \right) = 466.05$$

$$19500(0.069 / 12) / (1 - (1 + 0.069 / 12)^{-48}) = 466.05$$

$$I_1 = 19500(0.069/12) = 112.13$$

Pmt #	Pmt Amount	Interest	Reduction	Unpaid Bal.
0				19500
1	466.05	112.13	353.93	19146.08
2	466.05	110.09	355.96	18790.12
3	466.05	108.04	358.01	18432.11

Exercise

Suppose your parents decide to give you \$10,000 to be put in a college trust fund that will be paid in equally quarterly installments over a 5 year period. If you deposit the money into an account paying 1.5% per quarter, how much are the quarterly payments (Assume the account will have a zero balance at the end of period.)

Given:
$$PV = 10,000 \quad r = 1.5\% = .015, \quad m = 4, \quad t = 5$$

$$i = r = .015 \quad n = 4(5) = 20$$

$$PMT = 10,000 \left(\frac{0.015}{1 - (1 + 0.015)^{-20}} \right) = $582.46$$

$$10000(0.015) / (1 - (1 + 0.015)^{^{\circ}} (-) 20)$$

You finally found your dream home. It sells for \$120,000 and can be purchased by paying 10% down and financing the balance at an annual rate of 9.6% compounded monthly.

- a) How much are your payments if you pay monthly for 30 years?
- b) Determine how much would be paid in interest.
- c) Determine the payoff after 100 payments have been made.
- d) Change the rate to 8.4% and the time to 15 years and calculate the payment.
- e) Determine how much would be paid in interest and compare with the previous interest.

Solution

a)
$$PMT = 108000 \left(\frac{0.096/12}{1 - (1 + 0.096/12)^{-360}} \right) = \$916.01$$

b)
$$I_1 = 360(916.01) - 108000 = $221763.60$$

c)
$$PV = 916.01 \left(\frac{1 - (1 + 0.096/12)^{-260}}{0.096/12} \right) = \$100077.71$$

d)
$$PMT = 108000 \left(\frac{0.084/12}{1 - (1 + 0.084/12)^{-180}} \right) = \$1057.20$$

e)
$$I_2 = 180(1057.20) - 108000 = $82296$$

 $I_1 - I_2 = 221763.60 - 82296 = 139467.60$

Exercise

Sharon has found the perfect car for her family (anew mini-van) at a price of \$24,500. She will receive a \$3500 credit toward the purchase by trading in her old Gremlin, and will finance the balance at an annual rate of 4.8% compounded monthly.

- a) How much are her payments if she pays monthly for 5 years?
- b) How long would it take for her to pay off the car paying an extra \$100 per mo., beginning with the first month?

a)
$$PMT = 21000 \left(\frac{0.048/12}{1 - (1 + 0.048/12)^{-60}} \right) = $394.37$$

b)
$$21000 = 494.37 \left(\frac{1 - (1 + 0.048/12)^n}{0.048/12} \right)$$
 Divide both sides by 494.37

$$42.4783 = \frac{1 - (1 + 0.004)^{-n}}{0.004}$$

$$0.1699 = 1 - 1.004^{-n}$$

$$1.004^{-n} = 1 - 0.1699$$

$$1.004^{-n} = 0.8301$$

$$-n \ln 1.004 = \ln 0.8301$$

$$n = -\ln 0.8301 / \ln 1.004 = 46.65 n = -\frac{\ln 0.8301}{\ln 1.004}$$

$$n = 47mo.$$

Money is compounded monthly; it can't be compounded at 46.65 months. Bump to 47mo.

Exercise

Marie has determined that she will need \$5000 per month in retirement over a 30-year period. She has forecasted that her money will earn 7.2% compounded monthly. Marie will spend 25-years working toward this goal investing monthly at an annual rate of 7.2%. How much should Marie's monthly payments be during her working years in order to satisfy her retirement needs? *This is a 2-part problem:* 1st calculate the PV for retirement. Then use that value as FV for working years.

Solution

$$PV = 5000 \left(\frac{1 - (1 + 0.072 / 12)^{-360}}{0.072 / 12} \right) = 736606.78$$

Exercise

American General offers a 10-year ordinary annuity with a guaranteed rate of 6.65% compounded annually. How much should you pay for one of these annuities if you want to receive payments of \$5,000 annually over the 10-year period?

Given:
$$PMT = 5,000 \quad r = 6.65\% = .0665, \quad m = 1, \quad t = 10$$

$$i = \frac{r}{m} = .0665 \quad n = 1(10) = 10$$

$$PV = PMT \frac{1 - (1+i)^{-n}}{i}$$

$$= 5,000 \left(\frac{1 - (1+0.0665)^{-10}}{.0665} \right)$$

$$= $35,693.18$$

American General offers a 7-year ordinary annuity with a guaranteed rate of 6.35% compounded annually. How much should you pay for one of these annuities if you want to receive payments of \$10,000 annually over the 7-year period?

Solution

Given:
$$PMT = 10,000 \quad r = 6.35\% = .0635, \quad m = 1, \quad t = 7$$

$$i = \frac{r}{m} = .0635 \quad n = 7$$

$$PV = PMT \frac{1 - (1+i)^{-n}}{i}$$

$$= 10,000 \left(\frac{1 - (1+0.0635)^{-7}}{.0635} \right)$$

$$= \$55,135.98$$

Exercise

You want to purchase an automobile for \$27,300. The dealer offers you 0% financing for 60 months or a \$5,000 rebate. You can obtain 6.3% financial for 60 months at the local bank. Which option should you choose? Explain.

Solution

0% financing: Given:
$$P = 27,300 \quad r = 0\% = 0, \quad t = 60 \text{ mo}$$

$$|PMT_1| = \frac{27,300}{60} = \$455.00|$$
Rebate: Given: Rebate = \$5,000 \quad r = 6.3\% = .063, \quad n = 60
$$PV = 27,300 - 5,000 = \$22,300. \quad i = \frac{.063}{12}$$

$$PMT_2 = PV \frac{i}{1 - (1+i)^{-n}}$$

$$= 22,300 \frac{\frac{.063}{12}}{1 - (1+\frac{.063}{12})^{-60}}$$

$$22300(.00375 / (1 - (1+.063/12) ^{\circ} (-) 60))$$

 \Rightarrow Rebate is better and you save \$455 - \$434.24 = \$20.76 per month Or 60(20.76) = \$1,245.60 (over the life of the loan)

You want to purchase an automobile for \$28,500. The dealer offers you 0% financing for 60 months or a \$6,000 rebate. You can obtain 6.2% financial for 60 months at the local bank. Which option should you choose? Explain.

Solution

0% financing: Given:
$$P = 28,500$$
 $r = 0\% = 0$, $t = 60$ mo

$$PMT_1 = \frac{28,500}{60} = $475.00$$

Rebate: **Given**: Rebate = \$6,000
$$r = 6.2\% = .062$$
, $n = 60$

$$PV = 28,500 - 6,000 = $22,500. \quad i = \frac{.062}{12}$$

$$PMT_2 = PV \frac{i}{1 - (1+i)^{-n}}$$

$$= 22,500 \frac{\frac{.062}{12}}{1 - (1 + \frac{.062}{12})^{-60}}$$

 \Rightarrow Rebate is better and you save \$475 - \$437.08 = \$37.92 per month

Or
$$60(37.92) = $2,275.20$$
 (over the life of the loan)

Exercise

Construct the amortization schedule for a \$5,000 debt that is to be amortized in eight equal quarterly payments at 2.8% interest per quarter on the unpaid balance.

Given:
$$PV = 5,000$$
 $i = r = 2.8\% = .028$, $n = 8$

$$PMT = PV \frac{i}{1 - (1 + i)^{-n}}$$

$$= 5,000 \frac{.028}{1 - (1 + .028)^{-8}}$$

$$= $706.29$$

Pmt #	Payment	Interest	Reduction	Unpaid Balance
0		\$0		\$5,000.00
1	\$706.29	.028(5000) = \$140.00	706.29 - 140.00 = \$566.29	5000 - 566.29 = \$4,433.71
2	\$706.29	.028(4433.71) = \$124.14	706.29 – 124.14 = \$582.15	4433.71 – 582.15 = \$3,851.56
3	\$706.29	.028(3851.56) = \$107.84	706.29 – 107.84 = \$598.45	3851.56 – 598.45 = \$3,253.11
4	\$706.29	.028(3253.11) = \$91.09	706.29 – 91.09 = \$615.20	3253.11 – 615.20 = \$2,637.91
5	\$706.29	.028(2637.91) = \$73.86	706.29 – 73.86 = \$632.43	2637.91 – 632.43 = \$2,005.48
6	\$706.29	.028(2005.48) = \$56.15	706.29 – 56.15 = \$650.14	2005.48 - 650.14 = \$1,355.34
7	\$706.29	.028(1355.34) = \$37.95	706.29 – 37.95 = \$668.34	1355.34 - 668.34 = \$687.00
8	\$706.29	.028(687) = \$19.24	706.29 – 19.24 = \$687.00	\$0.00
Total	\$5,650.27	\$650.27	\$5,000.00	

Construct the amortization schedule for a \$10,000 debt that is to be amortized in six equal quarterly payments at 2.6% interest per quarter on the unpaid balance.

Given:
$$PV = 10,000$$
 $i = r = 2.6\% = .026$, $n = 6$

$$PMT = PV \frac{i}{1 - (1+i)^{-n}}$$

$$= 10,000 \frac{.026}{1 - (1+.026)^{-6}}$$

$$= $1,821.58$$

Pmt #	Payment	Interest	Reduction	Unpaid Balance
0		\$0		\$10,000.00
1	\$1,821.58	.026(10000) = \$260.00	1821.58 - 260.00 = \$1,561.58	10000 - 1561.58 = \$8,438.42
2	\$1,821.58	.026 (8438.42) = \$219.40	1821.58 - 219.40 = \$1,602.18	8438.42 - 1602.18 = \$6,836.24
3	\$1,821.58	.026(6836.24) = \$177.74	1821.58 – 177.74 = \$1,643.84	6836.24 – 1643.84 = \$5,192.40
4	\$1,821.58	.026(5192.40) = \$135.00	1821.58 - 135.00 = \$1,686.58	5192.40 – 1686.58 = \$3,505.82
5	\$1,821.58	.026(3505.82) = \$91.15	1821.58 - 91.15 = \$1,730.43	3505.82 – 1730.43 = \$1,775.39
6	\$1,821.58	.026(1775.39) = \$46.16	1821.58 – 46.16 = \$1,775.39	\$0.00
Total	\$10,929.45	\$929.45	\$10,000.00	

A loan of \$37,948 with interest at 6.5% compounded annually, to be paid with equal annual payments over 10 years

Given:
$$PV = 37,948$$
. $m = 1$, $i = r = 6.5\% = .065$, $n = 10$

$$PMT = PV \frac{i}{1 - (1 + i)^{-n}}$$

$$= 37,948 \frac{.065}{1 - (1 + .065)^{-10}}$$

$$= $5,278.74$$

Pmt #	Payment	Interest	Reduction	Unpaid Balance
0				\$37,948.00
1	\$5,278.74	\$2,466.62	\$2,812.12	\$35,135.88
2	\$5,278.74	\$2,283.83	\$2,994.91	\$32,140.97
3	\$5,278.74	\$2,089.16	\$3,189.58	\$28,951.40
4	\$5,278.74	\$1,881.84	\$3,396.90	\$25,554.50
5	\$5,278.74	\$1,661.04	\$3,617.70	\$21,936.80
6	\$5,278.74	\$1,425.89	\$3,852.85	\$18,083.95
7	\$5,278.74	\$1,175.46	\$4,103.28	\$13,980.67
8	\$5,278.74	\$908.74	\$4,370.00	\$9,610.67
9	\$5,278.74	\$624.69	\$4,654.05	\$4,956.62
10	\$5,278.74	\$322.18	\$4,956.62	\$0.00
Total	\$52,787.40	\$14,839.40	\$37,948.00	

A loan of \$4,836 with interest at 7.25% compounded semi-annually, to be repaid in 5 years in equal semi-annual payments.

Given:
$$PV = 4,836$$
. $m = 2$, $r = 7.25\% = .0725$, $t = 5$

$$i = \frac{r}{m} = \frac{.0725}{2} = .03625 \quad n = 2(5) = 10$$

$$PMT = PV \frac{i}{1 - (1 + i)^{-n}}$$

$$= 4,836 \frac{.03625}{1 - (1 + .03625)^{-10}}$$

$$= $585.16$$

Pmt #	Payment	Interest	Reduction	Unpaid Balance
0				\$4,836.00
1	\$585.16	\$175.31	\$409.85	\$4,426.15
2	\$585.16	\$160.45	\$424.71	\$4,001.43
3	\$585.16	\$145.05	\$440.11	\$3,561.32
4	\$585.16	\$129.10	\$456.06	\$3,105.26
5	\$585.16	\$112.57	\$472.59	\$2,632.67
6	\$585.16	\$95.43	\$489.73	\$2,142.94
7	\$585.16	\$77.68	\$507.48	\$1,635.46
8	\$585.16	\$59.29	\$525.87	\$1,108.59
9	\$585.16	\$40.22	\$544.94	\$564.65
10	\$585.16	\$20.47	\$564.65	\$0.00
Total	\$5,851.60	\$1,015.60	\$4,836.00	