

# Hardware e acesso aos dispositivos

## Sumário

| Capítulo 1              |   |
|-------------------------|---|
| Hardware e Dispositivos |   |
| 1.1. Objetivos          |   |
| 1.2. Mãos a obra        |   |
| Capítulo 2              |   |
| Acesso aos dispositivos | 6 |
| 2.1. Objetivos          | 6 |
| 2.2. Mãos a obra        |   |
| Capítulo 3              |   |
| Gerenciando             | ( |
| 3.1. Objetivos          |   |
| 3.2. Troubleshooting    |   |
|                         |   |
|                         |   |

## Índice de tabelas

# Índice de Figuras

## Capítulo 1

# **Hardware e Dispositivos**

### 1.1. Objetivos

- Iremos aprender de que forma os dispositivos de hardware são mapeados e manipulados no GNU/Linux;
- Para que esse assunto faça mais sentido, primeiramente veremos alguns conceitos sobre arquitetura de computadores e dispositivos de hardware.

#### 1.2. Mãos a obra



Vamos estudar Arquitetura de Computadores e Dispositivos de Hardware

Podemos dividir um computador em 3 partes principais:

- CPU;
- Memória RAM;
- Dispositivos.

A "CPU", muitas vezes denominada como o cérebro do computador, é responsável por executar todo o processamento das informações, que são armazenadas na memória "RAM".

Mas, um computador não tem muita utilidade se não for capaz de se comunicar com o mundo exterior. Um teclado e um monitor, ou uma rede, são exemplos de meios de comunicação. Até mesmo um simples botão (no lugar do teclado) e uma lâmpada (no lugar do monitor) poderiam ser considerados como exemplo. A esses elementos damos o nome de dispositivos de "hardware", e incluem interfaces de rede, controladoras de disco, as próprias unidades de disco, portas seriais, paralelas e USB, apenas para exemplificar.

Arquitetura do computador é o nome que damos à forma como essas 3 coisas são organizadas numa máquina.

A figura a seguir ilustra a arquitetura típica dos "Pcs" →

Ilustração 1: Arquitetura



# Capítulo 2 Acesso aos dispositivos

### 2.1. Objetivos

- Entender como é feito o acesso aos dispositivos;
- Entender como são conhecidos alguns dispositivos.

#### 2.2. Mãos a obra

O acesso aos dados da memória "RAM" é feito de forma rápida e eficiente através de otimizados canais de comunicação. Entretanto, o acesso aos dispositivos é mais lento, e as tecnologias responsáveis por essa função podem ser dividas em duas categorias.

A primeira, chamada "PIO - Programmed Input/Output", envolve a "CPU" na transferência das informações. Para identificar os dispositivos, são associados a eles os chamados endereços de "I/O - Input/Output". Assim, por exemplo, a "COM1" tem o endereço "3F8h", a "LPT1" o endereço "378h". Na verdade, um certo intervalo desses endereços são utilizados para cada dispositivo. Esses endereços podem ser consultados no arquivo "/proc/ioports".

Além desses endereços, em alguns casos temos um interrupção associada a um dispositivo. Isso porque, como são mais lentos que a "CPU", precisam de algum mecanismo para informar à "CPU" de que o trabalho terminou. Do contrário, a "CPU" teria de ficar constantemente consultando o dispositivo para saber quando enviar ou ler o próximo "byte", e consequentemente perdendo tempo.

A cada dispositivo, é associada uma interrupção. Entretanto, o número disponível de interrupções é limitado, e por essa razão, pode faltar alguma e/ou ocorrer os famosos "conflitos de interrupção". As interrupções utilizadas podem ser consultadas no arquivo "/proc/interrupts".

Entretanto, a tecnologia "PIO" limita a velocidade de transferência de dados. Ela é apropriada apenas para dispositivos como teclado, portas seriais e paralelas, unidades antigas de CD-ROM, etc.

Outro problema relacionado a ela é o envolvimento da "CPU". Isso porque, vários ciclos de processamento são perdidos no processo de transferência dos dados, o que se agrava tanto quanto maior for a velocidade dessa transferência.

Para contornar essa situação, foi criado o "DMA Direct Memory Access". Essa tecnologia permite que o dispositivo acesse diretamente a memória "RAM",

escrevendo ou lendo dados, sem interferência da "CPU". Para isso, são utilizados os chamados "canais de DMA", um para cada dispositivo e também uma controladora de "DMA". Os canais utilizados podem ser consultados no arquivo "/proc/dma".

Mas essa tecnologia, desenvolvida para os antigos barramentos "ISA", também ficou ultrapassada, e cedeu lugar ao "Bus Mastering". Nesse caso, o próprio dispositivo faz todo o controle de acesso a memória "RAM", de modo que os canais de "DMA" não são mais necessários. Essa nova tecnologia permitiu o surgimento do "UDMA - "Ultra DMA".



#### Alguns dispositivos legados possuem endereços e interrupções padrões.

| Dispositivos | Nome no Linux | End. Hex  | Int. |
|--------------|---------------|-----------|------|
| COM1         | /dev/ttyS0    | 3 F 8     | 4    |
| COM2         | /dev/ttyS1    | 2 F 8     | 3    |
| COM3         | /dev/ttyS2    | 3,00E+008 | 4    |
| COM4         | /dev/ttyS3    | 2,00E+008 | 3    |
| LPT1         | /dev/lp0      | 378       | 7    |
| LPT2         | /dev/lp1      | 278       | 5    |

# Capítulo 3 Gerenciando

## 3.1. Objetivos

- Visualizar alguns arquivos;
- Entender como funciona os dispositivos.

### 3.2. Troubleshooting



Você já reparou na saída do comando "df"?

Quando trabalhamos com Linux, esquecemos de alguns detalhes, repare na saída do comando:

```
# df -h
```

Repare na saída do comando:

```
udev 10M 112K 9,9M 2% /dev
```

Então, como podemos ver, não é porque o /dev está dentro de "/" que utiliza "ext3" que ele vai ser ext3. O /dev armazena os dispositivos do sistema, seu sistemas de arquivos é o "udev". Uma das diferenças que existem do antigo "DEVFS" para o UDEV que estamos utilizando está na criação de dispositivos. No DEVFS eram criados todos os dispositivos possíveis e imagináveis. Começou a ser utilizado o UDEV a partir da série do kernel 2.6.12.

Veja o kernel que estamos utilizando:

```
# uname -a
```

Veja somente a versão:

```
# uname -r
```

#### Para visualizarmos Kernel e Distro:

# cat /proc/version

#### Para visualizarmos as partições criadas na máquina:

# cat /proc/partitions

#### Para ver as partições montadas:

# cat /proc/mounts

#### Endereços de IO:

# cat /proc/ioports

#### Modelo de processador:

# cat /proc/cpuinfo



Um desafio, gostaria que você descubra o que é "bogomips"!!!



Conhecer os sistemas de arquivos, dispositivos, kernel, são fundamentais para trabalhar com Linux.

#### Para visualizar os sistemas de arquivos:

# cat /proc/filesystems