Spectra, Bohr Model, Heisenberg, Schrodinger and Orbitals

Electrons are waves

CLUE: Chemistry, Life, the Universe & Everything

Where does light come from? And why is it different colors?

How do we see things? Why are they different colors?

Visible spectrum

Light from the sun (white light) can be separated by a prism (Isaac Newton did this first)

Only a very small part of the full e/m spectrum

using the Rydberg Equation – which requires that integers (whole numbers, n) be used for each line in the spectrum – but no theoretical basis

Spectra show light only of specific wavelengths/energies - the **spectrum** of an **element** is the same whether that element is on Earth, in the Sun, or in a galaxy light years away.

CLUE: Chemistry, Life, the Universe & Everything

Niels Bohr

Explained emission and absorption spectra by invoking discrete energy levels - characterized by quantum numbers (n)

Electrons move in ORBITS around nucleus

These orbits have definite energies

So - the energies of electrons in atoms are **quantized**

Photons of electromagnetic energy are emitted from atoms as electrons move from one energy level to another.

Which of the following transitions for an electron in a hydrogen atom would *release* the largest quantum of energy?

B.
$$n = 4 \rightarrow n = 3$$

C.
$$n = 1 \rightarrow n = 4$$

D.
$$n = 2 \rightarrow n = 1$$

Problem

 Bohrs model (electrons moving in defined orbits around nucleus at known energy levels only works for hydrogen) – and there are a lot more elements than that!

Matter is a wave (and a particle)

- **DeBroglie** all matter has wave properties can calculate wavelength $\boldsymbol{\lambda}$
- $\lambda = h/mv$
- Not important for macroscopic objects
- Electrons wavelength λ about the size of atom affects properties

Q1. What is the wavelength of an electron moving at 2.65 x 10 6 m/s λ = h/mv

•Note: Mass of an electron is 9.1×10⁻³¹ kg

• h = $6.626 \times 10^{-34} \text{ J.s}$

•1J = $1Kg.m^2/s^2$

What is the wavelength of a baseball (mass 150 g) travelling at $^{\sim}$ 45 m/s? ($^{\sim}$ 100 mph)

E/m radiation is a wave

Electrons are waves

Quantum Mechanics

- Heisenberg Uncertainty Principle
 - Can't measure accurately both the position and the momentum (or energy or velocity) of a small particle (electron)
- Schrodinger Quantum Mechanics Wave equation - Wave function Ψ - Probability Ψ^2

double slit experiment

temperature disputement of the control of the contr

Models of Hydrogen atom and interactions with light

Quantum numbers and atomic orbitals

