# Regularização para redução da sobreestimação (overfitting)





# Onde estamos e para onde vamos

Na aula anterior, implementamos o algoritmo de Regressão Logística.

Nesta aula, vamos aprender sobre **sobreestimação**, também conhecida pelo termo *overfitting*, sendo esse um problema comum que nosso modelo pode apresentar em algumas situações.

## Pergunta:

Mas afinal, o que é overfitting?



## Perguntas

① O modelo acima se ajusta bem aos dados?

O modelo subestima ou sobreestima os dados?

#### Termos:

 $underfit = high \ bias \qquad o \qquad O \ modelo \ n\~ao \'e \ capaz \ de \ explicar \ o \ comportamento \ presente \ nos \ dados.$ 



Área da casa [m²]

#### Perguntas



O modelo subestima ou sobreestima os dados?

## Termos:

 $\mbox{\bf Generalização} \quad \rightarrow \qquad \mbox{\'e a capacidade que um modelo tem (ou não) de performar bem para dados não usados durante seu treinamento.}$ 



#### Perguntas

Esse terceiro modelo se ajusta perfeitamente aos dados de treinamento?

Qual seria o valor da função custo  $J(\overrightarrow{w}, b)$  para esse caso?

Qual é o problema com esse modelo então?

O modelo subestima ou sobreestima os dados?

#### Termos:



## Pergunta

Qual dos três modelos acima você escolheria?

## Conclusões

- Modelos muito simples, com poucos parâmetros, podem não ser suficientes para explicar o comportamento presente nos dados
- Por outro lado, modelos muito complexos, com um excesso de parâmetros, podem explicar perfeitamente bem os dados de treinamento, mas não generalizar bem para novos dados

## As mesmas conclusões se aplicam para problemas de classificação



#### Perguntas

- Qual modelo subestima os dados?
- Qual modelo parece super ok?
- 3 Qual modelo sobreestima os dados?

## As mesmas conclusões se aplicam para problemas de classificação



#### Pergunta

Seja  $x_1$ : diâmetro do tumor e  $x_2$ : idade do paciente.

Qual dos três modelos acima você escolheria para estimar a probabilidade de um novo paciente estar ou não com um tumor maligno?

# Quiz

| Our goal when creating a model is to be able to use the model to predict outcomes correctly for <b>new examples</b> . A model which does this is said to <b>generalize</b> well. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When a model fits the training data well but does not work well with new examples that are not in the training set, this is an example of:                                       |
| Overfitting (high variance)  A model that generalizes well (neither high variance nor high bias)  Underfitting (high bias)  None of the above                                    |
|                                                                                                                                                                                  |

Fonte: Machine Learning Specialization, deeplearning.ai, Stanford Online, Coursera.org.

## Opção 1

Colete e utilize mais dados durante o treinamento:



## Observação

Infelizmente, coletar mais dados nem sempre é uma opção.

## Opção 2

Selecione características que podem ser incluídas ou excluídas

| Área da casa [m²] $(x_1)$ | Número de quartos $(x_2)$ | Idade [anos] $(x_3)$ | <br>Distância até mercado ( $x_{100}$ ) | Custo (y) |
|---------------------------|---------------------------|----------------------|-----------------------------------------|-----------|
|                           |                           |                      |                                         |           |

## Observações

- Muitas características + poucos dados podem levar à sobreestimação.
- Use a intuição para selecionar: distância até o mercado mais próximo é de fato importante?
- Desvantagem: Características relevantes podem ser ignoradas (informação relevante perdida).

#### Opcão 3

#### Regularização



Área da casa [m²]

$$f(x) = 28x - 385x^2 + 39x^3 - 174x^4 + 100$$

#### Observações

- ullet Em muitos casos, o overfitting ocorre pois alguns parâmetros do modelo assumem valores muito elevados (exemplo:  $w_4=-174$ )
- Regularização permite que os parâmetros existam, mas gera uma penalização elevada caso eles sejam excessivamente elevados.
- lacktriangle Geralmente, regularizamos apenas os parâmetros  $w_j$  do modelo.
- Regularizar também o parâmetro b geralmente não gera muito impacto.

## Opção 1

Coletar mais dados

## Opção 2

Selecionar as características

## Opção 3

 $\textbf{Regulariza} \tilde{\textbf{cao}} \qquad \rightarrow \qquad \text{Estudaremos agora com mais detalhes como implementar!}$ 

# Quiz

Applying regularization, increasing the number of training examples, or selecting a subset of the most relevant features are methods for...

Addressing overfitting (high variance)

Addressing underfitting (high bias)

Fonte: Machine Learning Specialization, deeplearning.ai, Stanford Online, Coursera.org.

Veremos agora como implementar a Regularização na prática

# Implementando a Regularização

No exemplo abaixo, se escolhermos valores excessivamente grandes para  $w_3$  e  $w_4$  podemos ter overfitting.



Área da casa [m²]

$$f(x) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

#### Pergunta:

O que acontece se estimarmos os parâmetros  $\overrightarrow{w}$ , b por meio da função custo modificada:

$$J(\overrightarrow{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w}, b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right)^2 + 1000 w_3^2 + 1000 w_4^2 \quad ?$$

**OBS:** Note que estamos penalizando valores elevados para  $w_3$  e  $w_4$  multiplicando ambos por um valor escalar elevado e adicionando esses termos à função custo  $J(\overrightarrow{w},b)$ .

## Implementando a Regularização



Área da casa [m²]

$$f(x) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

## Resposta:

- Os parâmetros  $w_3$  e  $w_4$  serão garantidamente pequenos, 0.001 e 0.002 por exemplo.
- Com isso, a chance de overfitting é drasticamente reduzida.
- Por outro lado, w<sub>3</sub> e w<sub>4</sub> ainda permanecem presentes no modelo, contribuindo para que o modelo explique bem os dados.
- lacktriangle Na prática, penalizamos todos os parâmetros  $w_j$  do modelo, para  $j=1,\cdots,n$
- Geralmente isso leva a modelos mais simples, mais suaves e que n\u00e3o sobreestimam os dados.

## Implementando a Regularização (caso geral)

| Área da casa $[m^2](x_1)$ | Número de quartos $(x_2)$ | Idade [anos] $(x_3)$ | <br>Distância até mercado ( $x_{100}$ ) | Custo (y) |
|---------------------------|---------------------------|----------------------|-----------------------------------------|-----------|
|                           |                           |                      |                                         |           |

No caso geral, como não sabemos quais características são mais importantes, penalizamos todos os parâmetros  $w_j$ , usando a função custo:

$$J(\overrightarrow{w},b) = \frac{1}{2m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

- $\lambda$  é chamado de parâmetro de regularização, e é > 0.
- Ao escolhermos  $\lambda = 0$ , eliminamos completamente o efeito da regularização.
- Note que, o primeiro termo da função custo busca adequar o modelo aos dados.
- lacktriangle Enquanto o segundo termo busca manter os parâmetros  $w_i$  pequenos.

# Implementando a Regularização (caso geral)

#### Extremos:





Área da casa [m²]

$$f(x) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$
 
$$f(x) = w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + b$$

#### Função custo com regularização

$$J(\overrightarrow{w},b) = \frac{1}{2m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

#### Perguntas

- Em qual caso acima foi escolhido  $\lambda = 0$ ?
- Em qual caso acima foi escolhido  $\lambda = 10^{10}$ ?

# Quiz

| For a model that includes the regularization parameter $\lambda$ (lambda), increasing $\lambda$ will tend to |
|--------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ Increases the size of the parameters $w_1, w_2, w_n$                                              |
| $igcirc$ Decrease the size of parameters $w_1, w_2, w_n$ .                                                   |
| igcirc Decrease the size of the parameter $b$ .                                                              |
| $\bigcirc$ Increase the size of parameter $b$ .                                                              |
|                                                                                                              |

Fonte: Machine Learning Specialization, deeplearning.ai, Stanford Online, Coursera.org.

Vamos agora resumir como implementar o método do gradiente com regularização tanto para Regressão Linear como também para Regressão Logística

Apenas lembrando que:

- Regressão Linear → Problemas de Regressão (y pode assumir infinitos valores possíveis)
- lacktriangle Regressão Logística ightarrow Problemas de Classificação (y assume apenas um pequeno conjunto de valores)

# Regressão Linear com Regularização (resumo)

## Função custo:

$$J(\overrightarrow{w},b) = \frac{1}{2m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

## Método do Gradiente: repetir

$$\begin{aligned} w_j &= w_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^m \left( f_{\overrightarrow{w},b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j \right] \\ b &= b - \alpha \left[ \frac{1}{m} \sum_{i=1}^m \left( f_{\overrightarrow{w},b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right) \right] \end{aligned}$$

#### Modelo

$$f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Tarefa para casa: Deduzir as derivadas.

# Regressão Logística com Regularização (resumo)

#### Função custo:

$$J(\overrightarrow{w},b) = -\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) + (1-y^{(i)})\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}w_{j}^{2}$$

#### Método do Gradiente: repetir

$$w_{j} = w_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w}, b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j} \right]$$
$$b = b - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w}, b} \left( \overrightarrow{x}^{(i)} \right) - y^{(i)} \right) \right]$$

#### Modelo

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

Tarefa para casa: Deduzir as derivadas.

## De olho no código!

Buscando consolidar nosso conhecimento acerca de regularização, vamos agora implementar novamente o método de regressão logística fazendo as modificações necessárias.

Nome do arquivo que trabalharemos agora:

codigo - Regressão Logística com Regularização.ipynb

Tarefa para casa: Fica como tarefa para casa implementar a regularização no contexto da Regressão Linear.

## Atividade de aula

#### Parte 1

Rode todo o "codigo - Regressão Logística com Regularização.ipynb" sem fazer qualquer tipo de alteração. Certifique-se de que você o compreendeu.

#### Parte 2

- Explique, com as suas próprias palavras, o conceito de overfitting e as possibilidades de resolução desse problema.
- 2 Explique, com as suas próprias palavras, como implementar a regularização no método do gradiente.
- Qual foi a taxa de acerto obtida com o modelo treinado? Explique, com as suas próprias palavras, o que significa essa taxa de acerto.
- Qual seria a taxa de acerto esperada para um modelo com saída 0/1 aleatória?