Network Calculus Tests – Feed Forward Network Settings

Version 2.0 beta (2015-Jul-11)

 \bigodot Steffen Bondorf 2013 - 2015, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons Attribution-ShareAlike 4.0. See http://creativecommons.org/licenses/by-sa/4.0/

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems (DISCO) Lab* at the University of Kaiserslautern.
- Naming of the individual network settings depicts the name of the according functional test for the DiscoDNC.
- The naming scheme used in this document is detailed in NetworkCalculus NamingScheme.pdf.
- Arrival bounds for PmooArrivalBound.java and analyses using them are listed only if results differ from PbooArrivalBound_Concatenation.java.

Changelog:

Version 1.1 (2014-Dec-30):

- Streamlined the PMOO left-over latency $T_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f}$ computation.
- Adaption to naming scheme version 1.1.

Version 2.0 beta (2015-Jul-11):

- Rework of Arrival Bounds documentation
 - Parameters: see DiscoDNC's computeArrivalBounds(Server server, Set<Flow> flows_to_bound, Flow flow_of_interest).
 - Bounding arrivals moved to the analysis requiring the specific bounds if they differ between flows of interest (may cause duplication).
 - The algebraic derivations is included within many tabular bounding procedures. They are adapted to PbooArrivalBound_Concatenation.java, yet, in contrast to the current DiscoDNC code, they may reuse known results.
- The naming scheme was slightly updated to include sets of servers $\mathbb S$ and sets of Flows $\mathbb F$.
- Minor consistency fixes for variable names.

 $^{^{1}} http://disco.cs.uni-kl.de/index.php/projects/disco-dnc$

$FeedForward_1SC_3Flows_1AC_3Paths$

$$S = \{s_0, s_1, s_2, s_3\}$$
 with

$$\beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{s_3} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \ i \in \{0,1,2\}$$

$$\mathbb{F} = \{f_0, f_1, f_2\} \text{ with }$$

$$\alpha^{f_0} = \alpha^{f_1} = \alpha^{f_2} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, \ n \in \{0, 1, 2\}$$

Total Flow Analysis

Arrival Bounds

$(s_1, \{f_0\}, \emptyset) =: \alpha_{s_1}^{f_0}$) 1	FIFO Multiplexing	Arbitrary Multiplexing	
	($\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0}$		
$lpha_{s_0}^{x(f_0)}$		=	$=\gamma_{0.0}$	
	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$		_ R	
$= \beta_{R_{s_0}^{1.0.f_0}, T_{s_0}^{1.0}}$	$= \beta_{R_{s_0}^{1.o.f_0}, T_{s_0}^{1.o.f_0}}$		$=\beta_{s_0}=\beta_{20,20}$	
$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0}$	$r_{s_1}^{f_0}$		=5	
$= \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$		=	$\alpha^{f_0}\left(T^{\mathrm{l.o.}}\right)$	
$r_{s_1}^{j_0},b_{s_1}^{j_0}$	$b_{s_1}^{f_0}, b_{s_1}^{f_0} \mid b_{s_1}^{f_0}$		$= 5 \cdot 20 + 25$	
			125	
	=	=	$\gamma_{5,125}$	

$(s_{3}, \{f_{1}\}, \emptyset) =: \alpha_{s_{3}}^{f_{1}}$ $(s_{1}, \{f_{2}\}, \emptyset) =: \alpha_{s_{1}}^{f_{2}}$ $=: \alpha_{s_{i}}^{f_{n}} \text{ with } (n, i) \in \{(1, 3), (2, 1)\}$		FIFO Multiplexing Arbitrary Multiplexing	
		$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.}f_n}$	
$\alpha_{s_2}^{x(f_n)}$			$=\gamma_{5,25}$
$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_n)}$	$R_{s_2}^{\mathrm{l.o.}f_n}$	$ \left[R_{s_2} - r_{s_2}^{x(f_n)} \right]^+ = 20 - 5 $ $ = 15 $	
$= \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$		$\beta_{s_2} = b_{s_2}^{x(f)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_n)}$
	$T_{s_2}^{\mathrm{l.o.}f_n}$	$20 \cdot \left[t - 20\right]^+ =$	$25 20 \cdot [t - 20]^{+} = 5 \cdot t + 25$
		t = 21	4
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.} f_n}$	$r_{s_i}^{f_n}$		= 5
$= \gamma_{r_{s_i}^{f_n}, b_{s_i}^{f_n}}$		$= \alpha^{f_n}(T_{s_2}^{\text{l.o.}f_n})$	$= \alpha^{f_n}(T_{s_2}^{\text{l.o.}f_n})$
	$b_{s_i}^{f_n}$	$= 5 \cdot 21\frac{1}{4} + 25$	$= 5 \cdot 28\frac{1}{3} + 25$
		$=$ $131\frac{1}{4}$	$=$ $166\frac{2}{3}$
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$

$(s_3, \{f_0\}, \emptyset) =: \alpha_{s_3}^{f_0}$		FIFO Multiplexing	Arbitrary Multiplexing		
	$\alpha_{s_3}^{f_0}$ =	$= \alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}j}\right)$	$= \alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0}\right)$		
		(reuse of previous resu	lt)		
	=	$= \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} \oslash \beta_{s_1}^{\text{l.o}}$	$\cdot f_0$		
	=	= $\alpha_{s_1}^{f_0} \oslash \beta_{s_1}^{\mathrm{l.o}}$	$.f_0$		
$lpha_{s_1}^{x(f_0)}$		$=\alpha_{s_1}^{f_2} = \gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_1}^{f_2} = \gamma_{5,166\frac{2}{3}}$		
$al.o.fo$ $a = x(f_0)$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$R_{s_1} - r_{s_2}^x$	(f_0) = $20-5$		
$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$ r_{s_1} $		= 15		
$= \beta_{R_{s_1}^{1.0.f_0}, T_{s_1}^{1.0.f_0}}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$		
	$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 166 \frac{2}{3}$		
		$t = 26\frac{9}{16}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$ $t = 37 \frac{7}{8}$		
	=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{8}}$		
$lpha_{s_1}^{f_0}$		$=\gamma_{5,125}$			
$\alpha_{s_3}^{f_0} = \alpha^{f_0} \oslash \beta_{s_1}^{\text{l.o.} f_0}$	$r_{s_3}^{f_0}$		=5		
$= \gamma_{r_{s_3}^{f_0}, b_{s_3}^{f_0}}$		$= \alpha_{s_1}^{f_0} \left(T_{s_1}^{\text{l.o.} f_0} \right)$	$= \alpha_{s_1}^{f_0} \left(T_{s_1}^{\text{l.o.}f_0} \right)$		
1 83,083	$b_{s_3}^{f_0}$	$= 5 \cdot 26 \frac{9}{16} + 125$	$= 5 \cdot 37\frac{7}{8} + 125$		
		$= 257\frac{13}{16}$	$=$ $313\frac{8}{9}$		
	=	$=\gamma_{5,257\frac{13}{16}}$	$=\gamma_{5,313\frac{8}{9}}$		

Analysis

Т	rFA	FIFO Multiplexing	Arbitrary Multiplexing
	α_{s_0}	$=\alpha_{s_0}^{f_0}=\gamma_{5,25}$	
s_0		$\beta_{s_0} = b_{s_0}$	FIFO per micro flow
	D. f.	$20 \cdot [t - 20]^{+} = 25$	$\beta_{s_0} = b_{s_0}$
	$D_{s_0}^{f_0}$		$20 \cdot [t - 20]^+ = 25$
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$
	D fo	$\alpha_{s_0}\left(T_{s_0}\right) =$	
	$B_{s_0}^{f_0}$	=	125
		$= \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_2}$	$= \qquad \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_2}$
	α_{s_1}	$= \gamma_{5,125} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,125} + \gamma_{5,166\frac{2}{3}}$
s_1		$= \gamma_{10,256\frac{1}{4}} \\ \beta_{s_1} = b_{s_1}$	$= \gamma_{10,291\frac{2}{3}}$ $\beta_{s_1} = \alpha_{s_1}$
			$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^+ = 256\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 291\frac{2}{3}$
		$t = 32\frac{13}{16}$ $\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 256\frac{1}{4}$	$t - 69\frac{1}{2}$
		(T) 10 20 + 250 ¹	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 291 \frac{2}{3}$
	$B_{s_1}^{f_0}$		$\alpha_{s_1}(I_{s_1}) = 10 \cdot 20 + 291\frac{1}{3}$
	31	$=$ $456\frac{1}{4}$	$=$ 491 $\frac{3}{3}$
		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$
	α_{s_3}	$= \gamma_{5,257\frac{13}{16}} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,313\frac{8}{9}} + \gamma_{5,166\frac{2}{3}}$
s_3		$= \gamma_{10,389\frac{1}{16}} $ $\beta_{s_3} = b_{s_3}$	$= \gamma_{10,480\frac{5}{9}}$
			$\beta_{s_3} = \alpha_{s_3}$
	$D_{s_3}^{f_0}$	$20 \cdot [t - 20]^+ = 389 \frac{1}{16}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 480 \frac{5}{9}$
	03	$t = 39\frac{29}{64}$	5
		$t = 39\frac{64}{64}$	$t = 88\frac{9}{90}$
	$B_{s_3}^{f_0}$	$\alpha_{s_3}(T_{s_3}) = 10 \cdot 20 + 389 \frac{1}{16}$	$\alpha_{s_3}(T_{s_3}) = 10 \cdot 20 + 480\frac{5}{9}$
	D_{s_3}	$=$ $589\frac{1}{16}$	$=$ $680\frac{5}{9}$
	<u> </u>	$= \sum_{s_i} D_{s_i}^{f_0}$	$= \sum_{s_i} D_{s_i}^{f_0}$
	D^{f_0}	$i = \overline{\{0,1,3\}}$	$i = \overline{\{0,1,3\}}$
		$=$ $93\frac{33}{64}$	$=$ $178\frac{17}{36}$
7	$\mathbf{p}f_0$	$= \max_{i=\{0,1,3\}} B_{s_i}^{f_0}$	$= \max_{i=\{0,1,3\}} B_{s_i}^{f_0}$
	\mathbf{B}^{f_0}	$=$ $589\frac{1}{16}$	$=$ $680\frac{5}{9}$

Separate Flow Analysis and PMOO Analysis

Arrival Bounds

$(s_3, \{f_1\}, f_0) =: \alpha_{s_3}^{f_1} (s_1, \{f_2\}, f_0) =: \alpha_{s_1}^{f_2} =: \alpha_{s_i}^{f_n} \text{ with } (n, i) \in \{(1, 3), (2, 1)\}$		FIFO Multiplexing	Arbitrary Multiplexing
		$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.}f_n}$	
$\alpha_{s_2}^{x(f_n)}$		=	$\gamma_{5,25}$
$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_n)}$	$R_{s_2}^{\mathrm{l.o.}f_n}$	$\left[R_{s_2} - r_{s_2}^{x(f)}\right]$	$\begin{bmatrix} x \gamma_{5,25} \\ x_n \end{bmatrix}^+ = 20 - 5$
$= \beta_{R_{s_2}^{1.0.f_n}, T_{s_2}^{1.0.f_n}}$		$\beta = h^{x(f_n)}$	$= 15$ $\beta_{s_2} = \alpha_{s_2}^{x(f_n)}$
	gelo f	$\beta_{s_2} = \delta_{s_2}$ $20 \cdot [t - 20]^+ - 25$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 25$
	$T_{s_2}^{n.o.j_n}$	1	1
		$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$
	=	$=\beta_{15,21\frac{1}{4}}$	$= \beta_{15,28\frac{1}{3}}$
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.} f_n}$	$r_{s_i}^{f_n}$	l .	=5
$= \gamma_{r_{s_i}^{f_n}, b_{s_i}^{f_n}}$		$= \alpha^{f_n} \left(T_{s_2}^{\text{l.o.} f_n} \right)$	$= \alpha^{f_n} \left(T_{s_2}^{\text{l.o.} f_n} \right)$
	$b_{s_i}^{f_n}$	$= 5 \cdot 21\frac{1}{4} + 25$	$= 5 \cdot 28\frac{1}{3} + 25$
		$=$ $131\frac{1}{4}$	$=$ $166\frac{2}{3}$
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$

Remark:

In this network setting, we have $(s_3, \{f_1\}, f_0) = (s_3, \{f_1\}, \emptyset)$ and $(s_1, \{f_2\}, f_0) = (s_1, \{f_2\}, \emptyset)$ because neither (cross-)flow f_1 nor f_2 interferes with the flow of interest f_0 on multiple consecutive hops.

Analyses

	SFA		FIFO Multiplexing	Arbitrary Multiplexing
s_0	$lpha_{s_0}^{x(f_0)}$		$=\gamma_{0,0}$	
30	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$ $\alpha_{s_1}^{x(f_0)}$		$=\beta$	20,20
	$\alpha_{s_1}^{x(f_0)}$		$=\alpha_{s_1}^{f_2}=\gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_1}^{f_2} = \gamma_{5,166\frac{2}{3}}$
s_1	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$\left[R_{s_1} - r_{s_1}^{x(f_0)} \right]$	$\begin{bmatrix} + & 20 - 5 \end{bmatrix}$
		01		= 15
	$= \beta_{R_{s_1}^{\text{l.o.}f_0}, T_{s_1}^{\text{l.o.}f_0}}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 166\frac{2}{3}$
			$t = 26\frac{9}{16}$	$t = 37\frac{7}{9}$
		=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{9}}$
	$\alpha_{s_3}^{x(f_0)}$		$=\alpha_{s_3}^{f_1} = \gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_3}^{f_1} = \gamma_{5,166\frac{2}{3}}$
s_3	$\beta_{s_3}^{\text{l.o.}f_0} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_0)}$	$R_{s_3}^{\mathrm{l.o.}f_0}$	$\left[R_{s_3} - r_{s_3}^{x(f_0)}\right]$	$\begin{bmatrix} + \\ 20 - 5 \end{bmatrix}$
	$= \beta_{R_{s_3}^{1.0.f_0}, T_{s_3}^{1.0.f_0}}$		$a = a x(f_0)$	= 15
	R_{s_3} R_{s_3} R_{s_3}		$\beta_{s_3} = b_{s_3}^{x(f_0)}$	$\beta_{s_3} = \alpha_{s_3}^{x(f_0)}$
		$T_{s_3}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$
			$t = 26\frac{9}{16}$	$t = 37\frac{7}{9}$
		=	$= \beta_{15,26\frac{9}{16}}$	$= \beta_{15,37\frac{7}{9}}$
	$\beta_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.} f_0} = \beta_{R_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.} f_0}, T_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.}}, T_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.}}}$	f_0	$= \bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.}f_0}$	$= \bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.}f_0}$
	$\langle s_0, s_1, s_3 \rangle$, $\langle s_0, s_1, s_3 \rangle$, $\langle s_0, s_1, s_3 \rangle$	$\langle s_1, s_3 \rangle$		
			$= \beta_{15,73\frac{1}{8}}$ $\beta_{\langle s_0,s_1,s_3\rangle}^{\text{l.o.}f_0} = b^{f_0}$	$= \beta_{15,95\frac{5}{9}} \beta_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$15 \cdot \left[t - 73 \frac{1}{8} \right]^+ = 25$	$15 \cdot \left[t - 95 \frac{5}{9} \right]^+ = 25$
			$t = 74 \frac{19}{24}$ $\alpha^{f_0} \left(T_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.} f_0} \right) = 5 \cdot 73 \frac{1}{8} + 25$	$t = 97\frac{2}{9}$
	B^{f_0}		, ,	$t = 97\frac{2}{9}$ $\alpha^{f_0}\left(T^{\text{l.o.}f_0}_{\langle s_0, s_1, s_3\rangle}\right) = 5 \cdot 95\frac{5}{9} + 25$
	B_{so}		$= 390\frac{5}{8}$	$=$ $502\frac{7}{9}$

PMOO		Arbitrary Multiplexing
s_0	$\frac{\alpha_{s_0}^{x(f_0)}}{\alpha_{s_0}^{\bar{x}(f_0)}}$	$=\gamma_{0,0}$
s_1	$\frac{\alpha_{s_1}^{x(f_0)}}{\alpha_{s_1}^{\bar{x}(f_0)}}$	$=\alpha_{s_1}^{f_2}=\gamma_{5,166\frac{2}{3}}$
s_3	$\frac{\alpha_{s_3}^{x(f_0)}}{\alpha_{s_3}^{\bar{x}(f_0)}}$	$=\alpha_{s_3}^{f_1}=\gamma_{5,166\frac{2}{3}}$
$\beta^{\text{l.o.}f_0}_{\langle s_0,s_1,s_3\rangle} = \beta_{R^{\text{l.o.}f_0}_{\langle s_0,s_1,s_3\rangle}, T^{\text{l.o.}f_0}_{\langle s_0,s_1,s_3\rangle}}$	$R^{\text{l.o.}f_0}_{\langle s_0, s_1, s_3 \rangle}$	$= \bigwedge_{i \in \{0,1,3\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$ $= (20 - 5) \wedge (20 - 5) \wedge (20 - 5)$ $= 15$
		$= \sum_{i \in \{0,1,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$ $= 20 + \frac{0 + 0 \cdot 20}{15} + 20 + \frac{166\frac{2}{3} + 5 \cdot 20}{15} + 20 + \frac{166\frac{2}{3} + 5 \cdot 20}{15}$
	$T_{\langle s_0, s_1, s_3 \rangle}^{\mathrm{l.o.} f_0}$	$= 20 + \frac{15}{15} + 20 + \frac{3}{15} + 20 + \frac{3}{15}$ $= 60 + \frac{533\frac{1}{3}}{15}$ $= 95\frac{5}{9}$
	=	$=\beta_{15,95}$ $=\beta_{15,95}$
D^{f_0}		$=\beta_{15,95\frac{5}{9}}$ $\beta_{\langle s_0,s_1,s_3\rangle}^{\text{l.o.}f_0} = b^{f_0}$ $15 \cdot \left[t - 95\frac{5}{9}\right]^+ = 25$ $t = 97\frac{2}{9}$
B^{f_0}		$t = 97\frac{2}{9}$ $\alpha^{f_0} \left(T_{\langle s_0, s_1, s_3 \rangle}^{\text{l.o.} f_0} \right) = 5 \cdot 95\frac{5}{9} + 25$ $= 502\frac{7}{9}$

Total Flow Analysis

Arrival Bounds

$(s_{3}, \{f_{1}\}, \emptyset) =: \alpha_{s_{3}}^{f_{1}}$ $(s_{1}, \{f_{2}\}, \emptyset) =: \alpha_{s_{1}}^{f_{2}}$ $=: \alpha_{s_{i}}^{f_{n}} \text{ with } (n, i) \in \{(1, 3), (2, 1)\}$		FIFO Multiplexing	Arbitrary Multiplexing
	C	$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.}f_n}$	
$\alpha_{s_2}^{x(f_n)}$		=	$\gamma_{5,25}$
$\rho_{s_2} - \rho_{s_2} \cup \alpha_{s_2}$	$R_{s_2}^{\mathrm{l.o.}f_n}$	$ = \gamma_{5,25} $ $ \left[R_{s_2} - r_{s_2}^{x(f_n)} \right]^+ = 20 - 5 $	
$= \beta_{R_{s_2}^{\text{l.o.}f_n}, T_{s_2}^{\text{l.o.}f_n}}$		$\beta_{s_2} = b_{s_2}^{x(f_n)} \qquad \qquad \beta_{s_2} = \alpha$	
	$T_{s_2}^{\mathrm{l.o.}f_n}$	$20 \cdot \left[t - 20\right]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$
	92	$t = 21\frac{1}{4}$	ა
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.} f_n}$	$r_{s_i}^{f_n}$	= 5	
$= \gamma_{r_{s_i}^{f_n}, b_{s_i}^{f_n}}$		$= \alpha^{f_n} \left(T_{s_2}^{\text{l.o.} f_n} \right)$	$= \alpha^{f_n} \left(T_{s_2}^{\text{l.o.} f_n} \right)$
	$b_{s_i}^{f_n}$	$= 5 \cdot 21 \frac{1}{4} + 25$	$= 5 \cdot 28\frac{1}{3} + 25$
		$=$ $131\frac{1}{4}$	$=$ $166\frac{2}{3}$
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$

$(s_3, \{f_0\}, \emptyset) \eqqcolon \alpha_{s_3}^{f_0}$		FIFO Multiplexing	Arbitrary Multiplexing
	$\alpha_{s_3}^{f_0} =$	$\alpha^{f_0} \oslash \left(\beta_{s_0}^{\mathrm{l.o.}f_0} \otimes \beta_{s_1}^{\mathrm{l.o.}f_0}\right)$	
$lpha_{s_0}^{x(f_0)}$			$=\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$)	ρ	9
$= \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$		$=\rho$	$\beta_{s_0} = \beta_{20,20}$
$lpha_{s_1}^{x(f_0)}$		$= \alpha_{s_1}^{f_2} = \gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_1}^{f_2} = \gamma_{5,166\frac{2}{3}}$
$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$\left[R_{s_1} - r_{s_1}^x\right]$	$\binom{(f_0)}{1}^+ = 20 - 5$
$= \beta_{R_{s_1}^{\text{l.o.}f_0}, T_{s_1}^{\text{l.o.}f_0}}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$= 15$ $\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$
	$T_{s_1}^{\mathrm{l.o.}f_0}$	±	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$
		$t = 26\frac{9}{16}$	$t = 37\frac{7}{8}$
	=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{8}}$
$\beta_{s_0}^{\mathrm{l.o.}f_0} \otimes \beta_{s_1}^{\mathrm{l.o.}f_0} = \beta_{\langle s_0, s_1}^{\mathrm{l.o.}f_0}$		$= \beta_{20,20} \otimes \beta_{15,26\frac{9}{16}}$	$= \beta_{20,20} \otimes \beta_{15,37\frac{7}{8}}$
$\beta_{s_0} \circ \otimes \beta_{s_1} \circ = \beta_{\langle s_0, s_1 \rangle}$,	$=$ $\beta_{15,46\frac{9}{16}}$	$=$ $\beta_{15,57\frac{7}{8}}$
f f (alo f alo f)	$r_{s_3}^{f_0}$		= 5
$\alpha_{s_3}^{f_0} = \alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0}\right)$		$= \alpha_{s_1}^{f_0} \left(T_{\langle s_0, s_1 \rangle}^{\text{l.o.} f_0} \right)$	$= \alpha_{s_1}^{f_0} \left(T_{\langle s_0, s_1 \rangle}^{\text{l.o.} f_0} \right)$
	$b_{s_3}^{f_0}$	$= 5 \cdot 46 \frac{9}{16} + 25$	$= 5 \cdot 57\frac{7}{8} + 25$
		$=$ $257\frac{13}{16}$	$=$ $313\frac{8}{9}$
	=	$=\gamma_{5,257\frac{13}{16}}$	$=\gamma_{5,313\frac{8}{9}}$

Remark:

 ${\tt PmooArrivalBound.java}$ will have the same result as ${\tt PbooArrivalBound_Concatenation.java}$ because f_0 does not have cross-traffic interfering on multiple consecutive hops.

Analysis

TFA		FIFO Multiplexing	Arbitrary Multiplexing
		= ($\alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_2}$
	α_{s_2}	$= \gamma_5,$	$_{25}+\gamma_{5,25}$
s_2		=	$\gamma_{10,50}$
		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_1}$	$20 \cdot \left[t - 20\right]^+ = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$
		$t = 22\frac{1}{2}$ $\alpha_{s_2}(T_{s_2}) =$	t = 45
	$B_{s_2}^{f_1}$	$\alpha_{s_2}\left(\widehat{T}_{s_2}\right) =$	$20 \cdot 10 + 50$
	D_{s_2}	=	250
		$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$
	α_{s_3}	$= \gamma_{5,257\frac{13}{16}} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,313\frac{8}{9}} + \gamma_{5,166\frac{2}{3}}$
s_3		$= \gamma_{10,389\frac{1}{16}} \\ \beta_{s_3} = b_{s_3}$	$= \gamma_{10,480\frac{5}{9}}$
			$\beta_{s_3} = \alpha_{s_3}$
	$D_{s_3}^{f_1}$	$20 \cdot [t - 20]^+ = 389 \frac{1}{16}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 480 \frac{5}{9}$
		$t = 39\frac{29}{64}$	$t = 88\frac{5}{90}$
	$B_{s_3}^{f_1}$	$\alpha_{s_3}(T_{s_3}) = 10 \cdot 20 + 389 \frac{1}{16}$	$t = 88\frac{5}{90}$ $\alpha_{s_3}(T_{s_3}) = 10 \cdot 20 + 480\frac{5}{9}$
	D_{s_3}	$=$ $589\frac{1}{16}$	$=$ $680\frac{5}{9}$
		3	$\sum_{i=1}^{3} D_{i}^{f_{i}}$
1	D^{f_1}	$= \sum_{i=2} D_{s_i}^{f_1}$	$=\sum_{i=2} D_{s_i}^{f_1}$
		$= 61\frac{61}{64}$	$=$ $185\frac{5}{9}$
1	\mathbb{B}^{f_1}	$= \max_{i=\{2,3\}} B_{s_i}^{f_1}$	$= \max_{i=\{2,3\}} B_{s_i}^{f_1}$
	٠,٠	$= 589\frac{1}{16}$	$=$ $680\frac{5}{9}$

Separate Flow Analysis and PMOO Analysis

Arrival Bounds

$(s_1, \{f_2\}, \emptyset) =: \alpha_{s_1}^{f_2}$		FIFO Multiplexing	Arbitrary Multiplexing	
		$\alpha_{s_1}^{f_2} = \alpha^{f_2} \oslash \beta_{s_2}^{\text{l.o.}f_2}$		
$\alpha_{s_2}^{x(f_2)}$		=	$\gamma_{5,25}$	
$\beta_{s_2}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_2)}$	$\beta_{s_0}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_0}^{x(f_2)} R_{s_2}^{\text{l.o.}f_n}$		$\left[R_{s_2} - r_{s_2}^{x(f_2)} \right]^+ = 20 - 5$	
$= \beta_{R_{s_2}^{1.o.f_2}, T_{s_2}^{1.o.f_2}}$		$\beta_{s_2} = b_{s_2}^{x(f_2)}$	$= 15$ $\beta_{s_2} = \alpha_{s_2}^{x(f_2)}$	
	$T_{s_2}^{\mathrm{l.o.}f_n}$	$20 \cdot \left[t - 20\right]^+ = 25$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 25$	
		$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$	
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
$\alpha_{s_1}^{f_2} = \alpha^{f_2} \oslash \beta_{s_2}^{\text{l.o.} f_2}$	$r_{s_1}^{f_2}$		= 5	
$= \gamma_{r_{s_1}^{f_2}, b_{s_1}^{f_2}} = \gamma_{r_{s_1}^{f_2}, b_{s_1}^{f_2}}$		$= \alpha^{f_2} \left(T_{s_2}^{\text{l.o.} f_2} \right)$	$= \alpha^{f_2} \left(T_{s_2}^{\text{l.o.} f_2} \right)$	
, s ₁ , s ₁	$b_{s_1}^{f_2}$	$= 5 \cdot 21\frac{1}{4} + 25$	$= 5 \cdot 28 \frac{1}{3} + 25$	
		$=$ $131\frac{1}{4}$	$=$ $166\frac{2}{3}$	
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$	

$(s_3, \{f_0\}, \emptyset) \eqqcolon \alpha_{s_3}^{f_0}$		FIFO Multiplexing	Arbitrary Multiplexing
	$\alpha_{s_3}^{f_0} =$	$\alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0}\right)$	
$lpha_{s_0}^{x(f_0)}$			$=\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$		ρ	9
$=\beta_{R_{s_0}^{1.0.f_0}, T_{s_0}^{1.0.f_0}}$ $\alpha_{s_1}^{x(f_0)}$		$= \beta$	$s_0 = \beta_{20,20}$
$\alpha_{s_1}^{x(f_0)}$		$=\alpha_{s_1}^{f_2} = \gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_1}^{f_2} = \gamma_{5,166\frac{2}{3}}$
$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$\left[R_{s_1} - r_{s_1}^x\right]$	$\binom{(f_0)}{1}^+ = 20 - 5$
$= \beta_{R_{s_1}^{\text{l.o.}f_0}, T_{s_1}^{\text{l.o.}f_0}}$		2 t m(f)	= 15
$R_{s_1}^{n.o.j_0}, T_{s_1}^{n.o.j_0}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	1
	$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$
		$t = 26\frac{9}{16}$	$t = 37\frac{7}{8}$
	=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{8}}$
$\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0} = \beta_{\langle s_0, s_1}^{\text{l.o.}f_0}$		$= \beta_{20,20} \otimes \beta_{15,26\frac{9}{16}}$	$= \beta_{20,20} \otimes \beta_{15,37\frac{7}{8}}$
$\rho_{s_0} \otimes \rho_{s_1} = \rho_{\langle s_0, s_1 \rangle}$		$=$ $\beta_{15,46\frac{9}{16}}$	$=$ $\beta_{15,57\frac{7}{8}}$
	$r_{s_3}^{f_0}$	$= \alpha_{s_1}^{f_0} \left(T_{\langle s_0, s_1 \rangle}^{\text{l.o.} f_0} \right)$	=5
$\alpha_{s_3}^{J_0} = \alpha^{J_0} \oslash \left(\beta_{s_0}^{\text{I.o.} f_0} \otimes \beta_{s_1}^{\text{I.o.} f_0}\right)$	$\alpha_{s_3}^{f_0} = \alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0}\right)$		$= \alpha_{s_1}^{f_0} \left(T_{\langle s_0, s_1 \rangle}^{\text{l.o.} f_0} \right)$
	$b_{s_3}^{f_0}$	$= 5 \cdot 46 \frac{9}{16} + 25$	$= 5 \cdot 57\frac{7}{8} + 25$
		$= 257\frac{13}{16}$	$=$ $313\frac{8}{9}$
Pomark:	=	$=\gamma_{5,257\frac{13}{16}}$	$=\gamma_{5,313\frac{8}{9}}$

Remark:

 $\label{lower_possible} {\tt PmooArrivalBound_Concatenation.java} \ because \ f_0 \ does \ not \ have \ cross-traffic interfering \ on \ multiple \ consecutive \ hops.$

SFA			FIFO Multiplexing	Arbitrary Multiplexing
6	$lpha_{s_2}^{x(f_1)}$		$=\alpha^{f_2}=\gamma_{5,25}$	
s_2	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^x$	(f_1)	— B	— β .
	$= \beta_{R_{s_2}^{\text{l.o.}f_1}, T_{s_2}^{\text{l.}}}$	o.f ₁	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	$\alpha_{s_3}^{x(f_1)} = \alpha_{s_3}^{f_0}$		$=\gamma_{5,257\frac{13}{16}}$	$=\gamma_{5,313\frac{8}{9}}$
s_3	$\beta_{s_3}^{\text{l.o.}f_1} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_1)}$	$R_{s_3}^{\mathrm{l.o.}f_1}$	$\left[R_{s_3} - r_{s_3}^{x(f_1)}\right]$	= 20 - 5
	$= \beta_{R_{s_3}^{1.0.f_1}, T_{s_3}^{1.0.f_1}}$		$\beta_{s_3} = b_{s_3}^{x(f_1)}$	$= 15$ $\beta_{s_3} = \alpha_{s_3}^{x(f_1)}$
		$T_{s_3}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^{+} = 257 \frac{13}{16}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 313 \frac{8}{9}$
			$t = 32\frac{57}{64}$	$t = 47\frac{16}{27}$
		=	$=\beta_{15,32\frac{57}{64}}$	$= \beta_{15,47\frac{16}{27}}$
	$\beta_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} = \beta_{R_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1}, T_{\langle s_2, s_5 \rangle}^{\text{l.o.} f_1}}$	3>	$= \bigotimes_{i=2}^{3} \beta_{s_i}^{\text{l.o.} f_1}$	$= \bigotimes_{i=2}^{3} \beta_{s_i}^{\text{l.o.} f_1}$
			$= \beta_{15,54\frac{9}{64}} \beta_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} = b^{f_1}$	$= \beta_{15,75\frac{25}{27}} \beta_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} = b^{f_1}$
D^{f_1}			$15 \cdot \left[t - 54 \frac{9}{64}\right]^+ = 25$	$15 \cdot \left[t - 75 \frac{25}{27} \right]^+ = 25$
			$t = 55\frac{155}{192}$	$t = 77\frac{16}{27}$
B^{f_1}			$t = 55 \frac{155}{192}$ $\alpha^{f_1} \left(T_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} \right) = 5 \cdot 54 \frac{9}{64} + 25$	$t = 77 \frac{16}{27}$ $\alpha^{f_1} \left(T_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} \right) = 5 \cdot 75 \frac{25}{27} + 25$
			$=$ $295\frac{45}{64}$	$=$ $404\frac{17}{27}$

PMOO		Arbitrary Multiplexing
s_2	$\frac{\alpha_{s_2}^{x(f_1)}}{\alpha_{s_2}^{\bar{x}(f_1)}}$	$=lpha_{s_2}^{f_2}=\gamma_{5,25}$
s_3	$\begin{array}{c} \alpha_{s_3}^{x(f_1)} \\ \alpha_{s_3}^{\bar{x}(f_1)} \end{array}$	$=\alpha_{s_3}^{f_0}=\gamma_{5,313\frac{8}{9}}$
$\beta_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} = \beta_{R_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1}, T_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1}}$	$R^{\mathrm{l.o.}f_1}_{\langle s_2,s_3 angle}$	$= \bigwedge_{i \in \{2,3\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$ $= (20 - 5) \wedge (20 - 5)$ $= 15$
		$= \sum_{i \in \{2,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{x(f_1)} \cdot T_{s_i}}{R_{\text{e}2e}^{\text{l.o.}f_1}} \right)$
	$T_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1}$	$= 20 + \frac{25 + 5 \cdot 20}{15} + 20 + \frac{313\frac{8}{9} + 5 \cdot 20}{15}$
		$= 40 + \frac{538\frac{8}{9}}{15} \\ = 75\frac{25}{27}$
	=	
D^{f_1}		$= \beta_{15,75\frac{25}{27}}$ $\beta_{\langle s_2, s_3 \rangle}^{\text{l.o.}f_1} = b^{f_1}$ $15 \cdot \left[t - 75\frac{25}{27} \right]^+ = 25$
		$t = 77 \frac{16}{27}$ $\alpha^{f_1} \left(T_{\langle s_2, s_3 \rangle}^{1.0.f_1} \right) = 5 \cdot 75 \frac{25}{27} + 25$
B^{f_1}		$\alpha^{f_1} \left(T_{\langle s_2, s_3 \rangle}^{\text{l.o.} f_1} \right) = 5 \cdot 75 \frac{25}{27} + 25$ $= 404 \frac{17}{27}$

Total Flow Analysis

Arrival Bounds

$(s_1, \{f_0\}, \emptyset) =: \alpha_{s_1}^{f_0}$		FIFO Multiplexing	Arbitrary Multiplexing
		$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0}$	
$\alpha_{s_0}^{x(f_0)}$		$=\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(s_0)}$	f_0)	$=\beta_{s_0}=\beta_{20,20}$	
$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.} f_0}$	$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} $		=5
			$\alpha^{f_0}\left(T_{s_0}^{\mathrm{l.o.}}\right)$
$b_{s_1}^{f_0}, b_{s_1}^{f_0} \mid b_{s_1}^{f_0}$		$= 5 \cdot 20 + 25$	
			125
	=	=	$\gamma_{5,125}$

$(s_1, \{f_2\}, \emptyset) =: \alpha_s^f$	2 1	FIFO Multiplexing	Arbitrary Multiplexing			
$lpha_{s_1}^{f_2}=lpha^{f_2}\oslasheta_{s_2}^{\mathrm{l.o.}f_2}$						
$lpha_{s_2}^{x(f_2)}$		α^{f_1}	$=\gamma_{5,25}$			
$\beta_{s_2}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_2)}$	$R_{s_2}^{\mathrm{l.o.}f_2}$	$\alpha^{f_1} = \gamma_{5,25}$ $\left[R_{s_2} - r_{s_2}^{x(f_2)} \right]^+ = 20 - 5$				
_ =	- 2		= 15			
$= \beta_{R_{s_2}^{1.0.f_2}, T_{s_2}^{1.0.f_2}}$		$\beta_{s_2} = b_{s_2}^{x(f_2)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_2)}$			
	$T_{s_2}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$			
	_	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$			
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$			
$\alpha_{s_1}^{f_2} = \alpha^{f_2} \oslash \beta_{s_2}^{\text{l.o.}f_2}$	$r_{s_1}^{f_2}$	=5				
$= \gamma_{r_{s_1}^{f_2}, b_{s_1}^{f_2}} = \gamma_{r_{s_1}^{f_2}, b_{s_1}^{f_2}}$		$= \alpha^{f_2} \left(T_{s_2}^{\text{l.o.} f_2} \right)$	$= \alpha^{f_2} \left(T_{s_2}^{\text{l.o.} f_2} \right)$			
$r_{s_1}^{r_{s_1}}, b_{s_1}^{r_{s_1}}$	$b_{s_1}^{f_2}$	$= 5 \cdot 21\frac{1}{4} + 25$	$= 5 \cdot 28\frac{1}{3} + 25$			
		$=$ $131\frac{1}{4}$	$=$ $166\frac{2}{3}$			
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$			

Analysis

Г	FA	FIFO Multiplexing	Arbitrary Multiplexing	
		=	$\alpha^{f_1} + \alpha^{f_2}$	
	α_{s_2}		$_{,25}+\gamma_{5,25}$	
s_2	3.32	=	$\gamma_{10,50}$	
		$\beta_{s_2} = b_{s_2}$		
	Df_2	$20 \cdot [t - 20]^+ = 50$	$\beta_{s_2} = \alpha_{s_2}$	
	$D_{s_2}^{f_2}$		$20 \cdot [t - 20]^+ = 10 \cdot t + 50$	
		$t = 22\frac{1}{2}$ $\alpha_{s_2}\left(T_{s_2}\right) =$	t = 45	
	$B_{s_2}^{f_2}$	$\alpha_{s_2}\left(T_{s_2}\right) =$	$= 20 \cdot 10 + 50$	
	D_{s_2}	=	250	
		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	
	α_{s_3}	$= \gamma_{5,125} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,125} + \gamma_{5,166\frac{2}{3}}$	
s_1		$= \gamma_{10,256\frac{1}{4}}$	$= \gamma_{10,291\frac{2}{3}}$ $\beta_{s_1} = \alpha_{s_1}$	
		$= \gamma_{10,256\frac{1}{4}} \\ \beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$	
	$D_{s_1}^{f_2}$	$20 \cdot [t - 20]^+ = 256 \frac{1}{4}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 291\frac{2}{3}$	
		$t = 32\frac{13}{16}$	$t = \frac{69\frac{1}{6}}{\alpha_{s_1}(T_{s_1})} = 10 \cdot 20 + 291\frac{2}{3}$ $= 491\frac{2}{3}$	
	$B_{s_1}^{f_2}$	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 256\frac{1}{4}$	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 291\frac{2}{3}$	
		$=$ $456\frac{1}{4}$	$=$ $491\frac{2}{3}$	
		$=$ $\sum_{i=1}^{2} D^{f_2}$	<u> </u>	
1	\mathcal{O}^{f_2}	$= \sum_{i=1}^{n} D_{s_i}^{f_2}$	$= \sum_{i=1}^{n} D_{s_i}^{f_2}$	
		$= 55\frac{5}{16}$	$= 114\frac{1}{6}$	
1	\mathbb{B}^{f_2}	$= \max_{i=\{1,2\}} B_{s_i}^{f_2}$	$= \max_{i=\{1,2\}} B_{s_i}^{f_2}$	
		$= 456\frac{1}{4}$	$=$ $491\frac{2}{3}$	

Separate Flow Analysis and PMOO Analysis

Arrival Bounds

$(s_1, \{f_0\}, f_2) =: \alpha_{s_1}^{f_0}$		FIFO Multiplexing	Arbitrary Multiplexing				
	$lpha_{s_1}^{f_0}=lpha^{f_0}\oslasheta_{s_0}^{\mathrm{l.o.}f_0}$						
$\alpha_{s_0}^{x(f_0)}$		$=\gamma_{0,0}$					
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$		$=\beta_{s_0}$	$\beta = \beta_{20,20}$				
$r^{f_0}_{s_1}$			= 5				
$\alpha_{s_1}^{J_0} = \alpha^{J_0} \oslash \beta_{s_0}^{\text{I.O.}J_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$		$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}}\right)$				
$\mid b_{s_1}^{f_0} \mid$		= 5	$5 \cdot 20 + 25$				
		=	125				
	=	=	$\gamma_{5,125}$				

Analyses

	SFA			FIFO Multiplexing Arbitrary Multiplexing	
0.	$lpha_{s_2}^{x(f_2)}$		$=\alpha^{f_1}=\gamma_{5,25}$		
s_2	$\beta_{s_2}^{\mathrm{l.o.}f_2}$	$= \beta_{s_2} \ominus \alpha_{s_2}^{x(f)}$	1)	$= \beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
		$\alpha_{s_1}^{x(f_2)}$		$= \alpha_{s_1}^{f_0} =$	$= \gamma_{5,125}$
$ s_1 $	$\beta_{s}^{\text{l.o.}f_2} = \beta_{s}^{\text{l.o.}f_2}$	$eta_{s_1} \ominus lpha_{s_1}^{x(f_2)}$	$R_{s_1}^{\mathrm{l.o.}f_2}$	$\left[R_{s_1} - r_{s_1}^{x(f_2)}\right]$	= 20 - 5
		$\{R_{s_1}^{\text{l.o.}f_2}, T_{s_1}^{\text{l.o.}f_2}\}$		0 1	= 15
	,	R_{s_1} -, I_{s_1} -		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_2)}$
			$T_{s_1}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t - 20]^+ = 5 \cdot t + 125$
				$t = 26\frac{1}{4}$	t = 35
			=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$
	$\beta_{\langle s_2, s_1 \rangle}^{\text{l.o.} f_2} = \beta_{R_{\langle s_2, s_1 \rangle}^{\text{l.o.} f_2}, T_{\langle s_2, s_1 \rangle}^{\text{l.o.} f_2}}$			$= \bigotimes_{i=1}^{2} \beta_{s_i}^{\text{l.o.} f_2}$	$= \bigotimes_{i=1}^{2} \beta_{s_i}^{\text{l.o.} f_2}$
		(\$2,\$1) (\$2,\$1	. /	$= \beta_{15,47\frac{1}{2}} = \beta_{15,63\frac{1}{3}}$	
				. 626	$\beta_{\text{e2e}}^{\text{l.o.}f_2} = b^{f_2}$
	D^{f_2}			$15 \cdot \left[t - 47\frac{1}{2}\right]^+ = 25$	$15 \cdot \left[t - 63 \frac{1}{3} \right]^+ = 25$
				$t = 49\frac{1}{6}$	t = 65
	B^{f_2}			$\alpha^{f_2}\left(T_{\text{e2e}}^{\text{l.o.}f_2}\right) = 5 \cdot 47\frac{1}{2} + 25$	$\alpha^{f_2} \left(T_{\text{e2e}}^{\text{l.o.} f_2} \right) = 5 \cdot 63 \frac{1}{3} + 25$
	D*-			$=$ $262\frac{1}{2}$	$= 341\frac{2}{3}$

PMOO		Arbitrary Multiplexing
s_2	$\begin{array}{c c} \alpha_{s_2}^{x(f_2)} \\ \hline \alpha_{s_2}^{\bar{x}(f_2)} \end{array}$	$=\alpha^{f_1}=\gamma_{5,25}$
s_1	$\begin{array}{c} \alpha_{s_1}^{x(f_2)} \\ \alpha_{s_1}^{\bar{x}(f_2)} \end{array}$	$=lpha_{s_{1}}^{f_{0}}=\gamma_{5,125}$
$\beta_{\langle s_2, s_1 \rangle}^{\text{l.o.}f_2} = \beta_{R_{\langle s_2, s_1 \rangle}^{\text{l.o.}f_2}, T_{\langle s_2, s_1 \rangle}^{\text{l.o.}f_2}}$	$R^{\mathrm{l.o.}f_2}_{\langle s_2,s_1 \rangle}$	$= \bigwedge_{i \in \{2,1\}} \left(R_{s_i} - r_{s_i}^{x(f_2)} \right)$ $= (20 - 5) \wedge (20 - 5)$ $= 15$
	$T_{\langle s_2, s_1 \rangle}^{\text{l.o.}f_2}$	$= \sum_{i \in \{2,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_2)} + r_{s_i}^{x(f_2)} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.} f_2}} \right)$ $= 20 + \frac{25 + 5 \cdot 20}{15} + 20 + \frac{125 + 5 \cdot 20}{15}$ $= 40 + \frac{350}{15}$ $= 63\frac{1}{3}$
	=	
D^{f_2}	1	$= \beta_{15,63\frac{1}{3}}$ $\beta_{\langle s_2, s_1 \rangle}^{\text{l.o.}f_2} = b^{f_2}$ $15 \cdot \left[t - 63\frac{1}{3} \right]^+ = 25$ $t = 65$
B^{f_2}		$\alpha^{f_2} \left(T_{\langle s_2, s_1 \rangle}^{\text{l.o.} f_2} \right) = 5 \cdot 63 \frac{1}{3} + 25$ $= 341 \frac{2}{3}$

$FeedForward_1SC_4Flows_1AC_4Paths$

$$S = \{s_0, s_1, s_2, s_3\}$$
 with

$$\beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{s_3} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \ i \in \{0,1,2,3\}$$

$$\mathbb{F} = \{f_0, f_1, f_2, f_3\}$$
 with

$$\alpha^{f_n} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, \ n \in \{0, 1, 2, 3\}$$

Arrival Bounds

$(s_0, \{f_3\}, \emptyset) =:$ $(s_1, \{f_2\}, \emptyset) =:$ $(s_3, \{f_1\}, \emptyset) =:$ $=: \alpha_{s_i}^{f_n} \text{ with } (n, i) \in \{(3, 0)\}$	$\begin{array}{l} \alpha_{s_0}^{f_3} \\ \alpha_{s_0}^{f_2} \\ \alpha_{s_1}^{f_2} \\ \alpha_{s_3}^{f_1} \\ \beta_{s_3}^{f_1} \\ \beta_{s_3}^{f_1} \end{array}$	FIFO Multiplexing Arbitrary Multiplexi		
		$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.}f_n}$		
$\alpha_{s_2}^{x(f_n)}$		$=\gamma_{5,25}+\gamma_{5,5}$	$\gamma_{25} = \gamma_{10,50}$	
$\beta_{s_2}^{\text{l.o.}f_n} = \beta_{s_2} \ominus \alpha^{x(f_n)}$	$R_{s_2}^{\text{l.o.}f_n}$	$ \left[R_{s_2} - r_{s_2}^{x(f_n)} \right]^+ = 20 - 5 \\ = 15 $		
$= \beta_{R_{s_2}^{l.o.f_n}, T_{s_2}^{l.o.f_n}}$		$\beta_{s_2} = b_{s_2}^{x(f_n)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_n)}$	
	$T_{s_2}^{\mathrm{l.o.}f_n}$	$20 \cdot \left[t - 20\right]^{+} = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$	
		$t = 22\frac{1}{2}$	t = 45	
	=	$=\beta_{10,22\frac{1}{2}} = \beta_{10,45}$		
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_2}^{\text{l.o.} f_n}$	$r_{s_i}^{f_n}$	= 5		
	$b_{s_i}^{f_n}$	$\alpha^{f_n}\left(T_{s_2}^{\text{l.o.}f_n}\right) = 5 \cdot 22\frac{1}{2} + 25 = 137\frac{1}{2}$	$\alpha^{f_n} \left(T_{s_2}^{\text{l.o.} f_n} \right) = 5 \cdot 45 + 25 = 250$	
$= \gamma_{r_{s_i}^{f_n}, b_{s_i}^{f_n}} = \qquad \qquad$		$= \gamma_{5,137\frac{1}{2}} = \gamma_{5,250}$		

$(s_3, \{f_0\}, \emptyset) = \alpha_s^{f_0}$) L	FIFO Multiplexing	Arbitrary Multiplexing				
$lpha_{s_1}^{f_0}=lpha^{f_0}\oslasheta_{s_0}^{\mathrm{l.o.}f_0}$							
$\frac{\alpha_{s_0}^{f_0}}{\alpha_{s_0}^{x(f_0)}}$		$= \alpha^{f_0}$:					
$\alpha_{s_0}^{x(f_0)}$		$=\alpha_{s_0}^{f_3}=\gamma_{5,137\frac{1}{2}}$	$=lpha_{s_0}^{f_3}=\gamma_{5,250}$				
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$\left[R_{s_0} - r_{s_0}^{x(f_0)}\right]^+ = 20 - 5$					
$= \beta_{R_{s_0}^{1.0.f_0}, T_{s_0}^{1.0.f_0}}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	= 15				
1650 ,150			$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$				
	$T_{s_0}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 137\frac{1}{2}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$				
		$t = 26\frac{7}{8}$	$t = 43\frac{1}{3}$				
	=	$=\beta_{15,26\frac{7}{8}}$	$=\beta_{15,43\frac{1}{3}}$				
$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0}$	$\begin{array}{c c} r_{s_1}^{f_0} \\ b_{s_1}^{f_0} \end{array}$		5				
$b_{s_1}^{f_0}$		$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_0}\right) = 5 \cdot 26\frac{7}{8} + 25 = 159\frac{3}{8}$	$\alpha^{f_0} \left(T_{s_0}^{\text{l.o.}f_0} \right) = 5 \cdot 43\frac{1}{3} + 25 = 241\frac{2}{3}$				
$= \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	=	$=\gamma_{5,159\frac{3}{8}}$	$=\gamma_{5,241\frac{2}{3}}$				

$(s_3, \{f_0\}, \emptyset) = \alpha_{s_3}^{f_0}$)	FIFO Multiplexing	Arbitrary Multiplexing
		$\alpha_{s_3}^{f_0} = \alpha^{f_0} \oslash \left(\beta_{s_0}^{\text{l.o.}f_0} \otimes \beta_{s_1}^{\text{l.o.}f_0}\right)$	
		(reuse of previous result)	
		$= \qquad \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} \oslash \beta_{s_1}^{\text{l.o.}f_0}$	
		$= \qquad \qquad \alpha_{s_1}^{f_0} \oslash \beta_{s_1}^{\text{l.o.}f_0}$	
$lpha_{s_1}^{f_0}$		$=\gamma_{5,159\frac{3}{8}}$	$=\gamma_{5,241\frac{2}{3}}$
$\alpha_{s_1}^{x(f_0)}$		$=\alpha_{s_1}^{f_2}=\gamma_{5,137\frac{1}{2}}$	$=lpha_{s_1}^{f_2}=\gamma_{5,250}$
$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \otimes \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$\left[R_{s_1} - r_{s_1}^{x(f_0)} \right]$	= 20 - 5
	01		= 15
$= \beta_{R_{s_1}^{1.o.f_0}, T_{s_1}^{1.o.f_0}}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \qquad \alpha_{s_1}^{x(f_0)}$
	$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 137\frac{1}{2}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$
		$t = 26\frac{7}{8}$	$t = 43\frac{1}{3}$
	=	$=\beta_{15,26\frac{7}{8}}$	$=\beta_{15,43\frac{1}{3}}$
$\alpha_{s_3}^{f_0} = \alpha_{s_1}^{f_0} \oslash \beta_{s_1}^{\text{l.o.}f_0}$	$egin{array}{c} r_{s_3}^{f_0} \ b_{s_3}^{f_0} \end{array}$	$ {\alpha_{s_1}^{f_0} \left(T_{s_1}^{\text{l.o.}f_0} \right) = 5 \cdot 26\frac{7}{8} + 159\frac{3}{8} = 293\frac{3}{4} } $	$ \begin{array}{l} 5 \\ \alpha_{s_1}^{f_0} \left(T_{s_1}^{\text{I.o.}f_0} \right) = 5 \cdot 43 \frac{1}{3} + 241 \frac{2}{3} = 458 \frac{1}{3} \end{array} $
$= \qquad \gamma_{r_{s_3}^{f_0}, b_{s_3}^{f_0}}$	=	$ \frac{\alpha_{s_1}(x_{s_1}) - \sigma_{208} + 195_8 - 255_4}{= \gamma_{5,293\frac{3}{4}}} $	$ \frac{\alpha_{s_1}(x_{s_1}) - \sigma_{453} + 24x_3 - 45\sigma_3}{= \gamma_{5,458\frac{1}{3}}} $

PbooArrivalBound_Concatenation.java							
$lpha_{s_3}^{f_3} = \qquad lpha^{f_3} \oslash \left(eta_{s_2}^{\mathrm{l.o.}f_3} \otimes eta_{s_0}^{\mathrm{l.o.}f_3} ight)$							
(reuse of previous result)							
	$= \alpha^{f_3} \oslash \beta_{s_2}^{\text{l.o.}f_3} \oslash \beta_{s_0}^{\text{l.o.}f_3}$						
	$= \qquad \qquad \alpha_{c}^{f_3} \oslash eta_{c}^{\mathrm{l.o.}f_3}$						
$\alpha_{s_0}^{x(f_3)}$			$=\alpha^{f_0}=\gamma_{5,25}$				
$\beta_{s_0}^{\text{l.o.}f_3} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_3)}$	$R_{s_0}^{\mathrm{l.o.}f_3}$	$\Big[R_s$	$= \alpha^{f_0} = \gamma_{5,25}$ $\left[R_{s_0} - r_{s_0}^{x(f_3)} \right]^+ = 20 - 5$				
$= \beta_{R_{s_0}^{1.0.f_3}, T_{s_0}^{1.0.f_3}}$		$\beta_{so} = b^{f_0}$	$= 15$ $\beta_{so} = \alpha^{f_0}$				
R_{s_0} , I_{s_0}		$\beta_{s_0} = b^{f_0} 20 \cdot [t - 20]^+ = 25$	7 30				
	$T_{s_0}^{\mathrm{l.o.}f_3}$		$20 \cdot [t - 20]^+ = 5 \cdot t + 25$				
			$t = 28\frac{1}{3}$				
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$				
$lpha_{s_0}^{f_3}$		$=\gamma_{5,137\frac{1}{2}}$	$=\gamma_{5,250}$				
$\alpha_{s_3}^{f_3} = \alpha_{s_0}^{f_3} \oslash \beta_{s_0}^{\text{l.o.}f_3}$	$r_{s_3}^{f_3}$	=5					
$= \gamma_{r_{s_2}^{f_3}, b_{s_2}^{f_3}} = \gamma_{r_{s_2}^{f_3}, b_{s_2}^{f_3}}$	33 30 7 30		$= \alpha_{s_0}^{f_3} \left(T_{s_0}^{\text{l.o.} f_3} \right)$				
7783,683	$b_{s_3}^{f_3}$	$= 5 \cdot 21\frac{1}{4} + 137\frac{1}{2}$	$= \alpha_{s_0}^{f_3} \left(T_{s_0}^{\text{l.o.}f_3} \right)$ $= 5 \cdot 28 \frac{1}{3} + 250$				
		$=$ $243\frac{3}{4}$	$=$ $391\frac{2}{3}$				
	=	$=\gamma_{5,243\frac{3}{4}}$	$=\gamma_{5,391\frac{2}{3}}$				

FIFO Multiplexing

Arbitrary Multiplexing

 $(s_3, \{f_3\}, \emptyset) = \alpha_{s_3}^{f_3}$

PmooArrivalBound.java			
		$\alpha_{s_3}^{f_3} = \alpha^{f_3} \oslash \beta_{\langle s_2, s_0 \rangle}^{\text{l.o.} f_3}$	
s_2	$\begin{array}{c c} \alpha_{s_2}^{x(f_3)} \\ \hline \alpha_{s_2}^{\bar{x}(f_3)} \\ \hline \alpha_{s_2}^{x} \end{array}$		$= \alpha^{f_1} + \alpha^{f_2} = \gamma_{5,25} + \gamma_{5,25}$
s_0	$\begin{array}{c} \alpha_{s_0}^{x(f_3)} \\ \hline \alpha_{s_0}^{\bar{x}(f_3)} \end{array}$		$= \alpha^{f_0} = \gamma_{5,25}^{\gamma_{105}}$
$\beta_{\langle s_2, s_0 \rangle}^{\text{l.o.}f_3} = \beta_{R_{\langle s_2, s_0 \rangle}^{\text{l.o.}f_3}, T_{\langle s_2, s_0 \rangle}^{\text{l.o.}f_3}}$	$R^{\text{l.o.}f_3}_{\langle s_2, s_0 \rangle}$		$= \bigwedge_{i \in \{2,0\}} \left(R_{s_i} - r_{s_i}^{x(f_3)} \right)$ $= (20 - 10) \wedge (20 - 5)$ $= 10$
	$T_{\langle s_2, s_0 \rangle}^{\mathrm{l.o.}f_3}$		$= \sum_{i \in \{2,0\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_3)} + r_{s_i}^{x(f_3)} \cdot T_{s_i}}{R_{\langle s_2, s_0 \rangle}^{\text{l.o.} f_3}} \right)$ $= 20 + \frac{50 + 10 \cdot 20}{10} + 20 + \frac{25 + 5 \cdot 20}{10}$ $= 77 \frac{1}{2}$
	=		$= \beta_{10,77\frac{1}{2}}$
$\alpha_{s_3}^{f_3} = \alpha^{f_3} \oslash \beta_{\langle s_2, s_0 \rangle}^{\text{l.o.} f_3}$	$r_{s_3}^{f_3}$		$= 5$ $= \alpha^{f_3}(T_{\langle s_2, s_0 \rangle}^{\text{l.o.} f_3})$
	$b_{s_3}^{f_3}$		$= 5 \cdot 77\frac{1}{2} + 25$
			$=$ $412\frac{1}{2}$
	=		$=\gamma_{5,412\frac{1}{2}}$

Total Flow Analysis

Analysis

T	`FA	FIFO Multiplexing	Arbitrary Multiplexing	
		PbooArrivalBound_C	oncatenation.java	PmooArrivalBound.java
		$= \qquad \qquad \alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_3}$	=	$\alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_3}$
	α_{s_0}	$= \gamma_{5,25} + \gamma_{5,137\frac{1}{2}}$	$= \gamma_{5}$	$_{25} + \gamma_{5,250}$
s_0	-0	_	=	$\gamma_{10,275}$
		$= \gamma_{10,162\frac{1}{2}} \\ \beta_{s_0} = b_{s_0}$	β	
		1		- 0
	$D_{s_0}^{f_0}$	$20 \cdot [t - 20]^+ = 162\frac{1}{2}$		$= 10 \cdot t + 275$
		$t = 28\frac{1}{8}$	t	$=$ $67\frac{1}{2}$
	_	$\alpha_{s_0}(T_{s_0}) = 10 \cdot 20 + 162\frac{1}{2}$	$\alpha_{c_{\sigma}}(T_{c_{\sigma}}) =$	$10 \cdot 20 + 275$
	$B_{s_0}^{f_0}$	<u> </u>	=	475
		$= 262\frac{1}{2}$ $= \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_2}$		
		$= \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_2}$	=	$\alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_2}$
	α_{s_1}	$= \gamma_{5,159\frac{3}{8}} + \gamma_{5,137\frac{1}{2}}$	$=$ $\gamma_{5,24}$	$_{11\frac{2}{3}}+\gamma_{5,250}$
s_1			=	$\gamma_{10,491\frac{2}{2}}$
		$= \frac{\gamma_{10,296\frac{7}{8}}}{\beta_{s_1} = b_{s_1}}$	_ · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} \gamma_{10,491\frac{2}{3}} \\ = \alpha_{s_1} \end{array}$
	Df_0	$20 \cdot [t-20]^+ = 296\frac{7}{9}$	$20 \cdot [t-20]^+$	$= 10 \cdot t + 491\frac{2}{3}$
	$D_{s_1}^{f_0}$			9
		$t = 34\frac{27}{32}$	t =	$=$ $89\frac{1}{6}$
	_ f	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 296\frac{7}{8}$	$\alpha_{s_1}\left(T_{s_1}\right) =$	$= 89\frac{1}{6}$ $10 \cdot 20 + 491\frac{2}{3}$
	$B_{s_1}^{f_0}$	406		$\overline{2}$
		$=$ $496\frac{7}{8}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$	$691\frac{2}{3}$
		$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$
	α_{s_3}	$= \gamma_{5,293\frac{3}{4}} + \gamma_{5,137\frac{1}{2}} + \gamma_{5,243\frac{3}{4}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250} + \gamma_{5,391\frac{2}{3}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250} + \gamma_{5,412\frac{1}{2}}$
s_3		$=$ $\gamma_{15,675}$	$= \gamma_{15,1100}$	$= \gamma_{15,1120\frac{5}{6}}$ $\beta_{s_3} = \alpha_{s_3}$
		$\beta_{s_3} = b_{s_3}$	$\beta_{s_3} = \alpha_{s_3}$	
	$D_{s_3}^{f_0}$	$20 \cdot [t - 20]^+ = 675$	$20 \cdot [t - 20]^{+} = 15 \cdot t + 1100$	$20 \cdot [t - 20]^{+} = 15 \cdot t + 1120 \frac{5}{6}$
	$\mid \mathcal{L}_{s_3} \mid$	$t = 53\frac{3}{4}$	t = 300	I
		$\iota = 53\frac{1}{4}$	ι – 300	$t = 304\frac{1}{6}$
	D_{f_0}	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 675$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1100$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1120\frac{5}{6}$
	$B_{s_3}^{f_0}$	= 975	= 1400	$=$ $1420\frac{5}{6}$
1	\mathcal{D}^{f_0}	$D_{s_0}^{f_0} + D_{s_1}^{f_0} + D_{s_3}^{f_0} = 116\frac{23}{32}$	$D^{f_0} + D^{f_0} + D^{f_0} = 456\frac{2}{}$	$D_{s_0}^{f_0} + D_{s_1}^{f_0} + D_{s_3}^{f_0} = 460\frac{5}{6}$
	\mathbf{B}^{f_0}	$\max \left\{ B_{s_0}^{f_0}, B_{s_1}^{f_0}, B_{s_2}^{f_0} \right\} = 975$	$D_{s_0}^{f_0} + D_{s_1}^{f_0} + D_{s_3}^{f_0} = 456\frac{2}{3}$ $\max \left\{ B_{s_0}^{f_0}, B_{s_1}^{f_0}, B_{s_3}^{f_0} \right\} = 1400$	$\max\left\{B_{s_0}^{f_0}, B_{s_1}^{f_0}, B_{s_3}^{f_0}\right\} = 1420\frac{5}{6}$
		(0, 01, 03)	0 0 01 03)	(0, 01, 03)

Separate Flow Analysis and PMOO Analysis

Analyses

PbooArrivalBound_Concatenation.java

	SFA	J	FIFO Multiplexing	Arbitrary Multiplexing
	$lpha_{s_0}^{x(f_0)}$		$=\alpha_{s_0}^{f_3}=\gamma_{5,137\frac{1}{2}}$	$= \alpha_{s_0}^{f_3} = \gamma_{5,250}$
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_3)}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\begin{bmatrix} f_0 \end{bmatrix}^{\dagger} = 15$
	$= \beta_{R_{s_0}^{1.0.f_0}, T_{s_0}^{1.0.f_0}}$			$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
	· ·	$T_{s_0}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 137\frac{1}{2}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$
			$t = 26\frac{7}{8}$	$t = 43\frac{1}{3}$
		=	$=\beta_{15,26\frac{7}{8}}$	$=\beta_{15,43\frac{1}{3}}$
	$lpha_{s_1}^{x(f_0)}$		$=\alpha_{s_1}^{f_1}=\gamma_{5,137\frac{1}{2}}$	$= \alpha_{s_1}^{f_1} = \gamma_{5,250}$
s_1	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	$R_{s_1} - r_{s_1}^{x(\cdot)}$	$\begin{bmatrix} f_0 \end{bmatrix}^+ = 15$
	$= \beta_{R_{s_1}^{1.0.f_0}, T_{s_1}^{1.0.f_0}}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)} $
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 137\frac{1}{2}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$
			$t = 26\frac{7}{8}$	$t = 43\frac{1}{3}$
		=	$=\beta_{15,26\frac{7}{8}}$	$= \beta_{15,43\frac{1}{3}} $ $= \alpha_{s_3}^{f_3} + \alpha_{s_3}^{f_3}$
	(1)		$= \alpha_{s_3}^{f_2} + \alpha_{s_3}^{f_3}$	$= \alpha_{s_3}^{f_2} + \alpha_{s_3}^{f_3}$
	$lpha_{s_3}^{x(f_0)}$		$= \gamma_{5,137\frac{1}{2}} + \gamma_{5,243\frac{3}{4}}$	$= \gamma_{5,250} + \gamma_{5,391\frac{2}{3}}$
s_3			$= \gamma_{10,381\frac{1}{4}}$	$= \gamma_{10,641\frac{2}{3}}$
	$\beta_{s_3}^{\text{l.o.}f_0} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_0)}$	$R_{s_3}^{\mathrm{l.o.}f_0}$	$ \begin{cases} R_{s_3} - r_{s_3}^{x_1} \\ \beta_{s_3} = b_{s_3}^{x_1(f_0)} \end{cases} $	f_0 = 10
	$= \beta_{R_{s_3}^{1.o.f_0}, T_{s_3}^{1.o.f_0}}$		$\beta_{s_3} = b_{s_3}^{x(f_0)}$	$\beta_{s_3} = \alpha_{s_3}^{x(f_0)}$
		$T_{s_3}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 381\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 641 \frac{2}{3}$
			$t = 39 \frac{1}{16}$ $= \beta_{10,39\frac{1}{16}}$ $\bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.}f_0} = \beta_{10,92\frac{13}{16}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$	$t = 104\frac{1}{6}$
		=	$= \beta_{10,39\frac{1}{16}}$	$=\beta_{10,104\frac{1}{6}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		$\bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{10,92\frac{13}{16}}$	$= \beta_{10,104\frac{1}{6}}$ $\bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.}f_0} = \beta_{10,190\frac{5}{6}}$ $\beta_{e2e}^{\text{l.o.}f_0} = b^{f_0}$
			$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = b^{f_0}$	$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$10 \cdot \left[t - 92\frac{13}{16}\right]^+ = 25$	$10 \cdot \left[t - 190\frac{5}{6}\right]^+ = 25$
			$t = 95\frac{5}{16}$	$t = 193\frac{1}{3}$
B^{f_0}		$t = 95 \frac{5}{16}$ $\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 92 \frac{13}{16} + 25$	$\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 190 \frac{5}{6} + 25$	
			$=$ $489\frac{1}{16}$	$=$ $979\frac{1}{6}$

PmooArrivalBound.java

Pr	mooArrivalBound.java		
	SFA		Arbitrary Multiplexing
	$lpha_{s_0}^{x(f_0)}$		$= \alpha_{s_0}^{f_3} = \gamma_{5,250}$
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_3)}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$= \alpha_{s_0}^{f_3} = \gamma_{5,250}$ $\begin{bmatrix} R_{s_0} - r_{s_0}^{x(f_0)} \end{bmatrix}^+ = 15$ $\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
	$= \beta_{R_{s_0}^{1.o.f_0}, T_{s_0}^{1.o.f_0}}$		$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
		$T_{s_0}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$
			$t = 43\frac{1}{3}$
		=	$=\beta_{15,43\frac{1}{3}}$
	$\alpha_{s_1}^{x(f_0)} = \alpha_{s_1}^{f_1}$		$=\gamma_{5,250}$
s_1	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$	$R_{s_1}^{\mathrm{l.o.}f_0}$	
	$= \beta_{R_{s_1}^{1.0.f_0}, T_{s_1}^{1.0.f_0}}$		$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 250$
		•	$t = 43\frac{1}{3}$
		=	$=\beta_{15,43\frac{1}{3}}$
	$\alpha_{s_3}^{x(f_0)} = \alpha_{s_3}^{f_2} + \alpha_{s_3}^{f_3}$	3	$= \gamma_{5,250} + \gamma_{5,412\frac{1}{2}} = \gamma_{10,662\frac{1}{2}}$
s_3	$eta_{s_3}^{\mathrm{l.o.}f_0} = eta_{s_3} \ominus lpha_{s_3}^{x(f_0)}$	$R_{s_3}^{\mathrm{l.o.}f_0}$	$ \begin{bmatrix} R_{s_3} - r_{s_3}^{x(f_0)} \end{bmatrix}^+ = 10 $ $ \beta_{s_3} = \alpha_{s_3}^{x(f_0)} $
	$= \beta_{R_{s_3}^{1.0.f_0}, T_{s_3}^{1.0.f_0}}$		4
	, and the second	$T_{s_3}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 662 \frac{1}{2}$
			$t = 106\frac{1}{4}$
		=	$=\beta_{10,106\frac{1}{4}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		$= \beta_{10,106\frac{1}{4}}$ $\bigotimes_{i=\{0,1,3\}} \beta_{s_i}^{\text{l.o.}f_0} = \beta_{10,192\frac{11}{12}}$ $\beta_{e2e}^{\text{l.o.}f_0} = b^{f_0}$
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$10 \cdot \left[t - 192 \frac{11}{12} \right]^{+} = 25$
			$t = 195\frac{5}{12}$
	B^{f_0}		$t = 195 \frac{5}{12}$ $\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 192 \frac{11}{12} + 25$
			$=$ $989\frac{7}{12}$

PbooArrivalBound_Concatenation.java

PhooarrivalBound_Concaten		Arbitrary Multiplexing
1 1/100		montally muniplexing
	$\alpha_{s_0}^{x(f_0)}$	af_3
s_0	$\alpha_{s_0}^{\bar{x}(f_0)}$	$=\alpha_{s_0}^{f_3}=\gamma_{5,250}$
	$x(f_0)$	
s_1	$\alpha_{s_1}^{x(f_0)}$	$=lpha_{s_1}^{f_2}=\gamma_{5,250}$
91	$\alpha_{s_1}^{\bar{x}(f_0)}$	$-\alpha_{s_1} - \gamma_{5,250}$
	01	$= \qquad \qquad lpha_{s_3}^{f_2} + lpha_{s_3}^{f_3}$
	(f)	
	$\alpha_{s_3}^{x(f_0)}$	$= \gamma_{5,250} + \gamma_{5,391\frac{2}{3}}$
s_3		~
	=(f)	$= \qquad \qquad \gamma_{5,641\frac{2}{3}}$
	$\alpha_{s_3}^{\bar{x}(f_0)}$	
		Λ $\langle p = x(f_0) \rangle$
		$= \qquad \qquad \bigwedge \qquad \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$
	$R_{\mathrm{e2e}}^{\mathrm{l.o.}f_0}$	$i \in \{0,1,3\}$
$al.o.f_0$	$n_{ m e2e}$	$= (20-5) \wedge (20-5) \wedge (20-10)$
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		
		$ = \frac{10}{\sum_{i \in \{0,1,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.}f_0}} \right) } $
		$\sum \int_{\mathbf{r}_{s}} b_{s_{i}}^{\bar{x}(f_{0})} + r_{s_{i}}^{x(f_{0})} \cdot T_{s_{i}} \setminus 1$
		$=$ $\left[T_{s_i} + \frac{t}{D_{l.o.f_0}}\right]$
		$_{i\in \{0,1,3\}}$ \ $R_{\mathrm{e}2\mathrm{e}}$
		250 ± 5.20 250 ± 5.20 $641^{\frac{2}{3}} \pm 10.20$
	$T^{\text{l.o.}f_0}$	$= 20 + \frac{250 + 5 \cdot 20}{10} + 20 + \frac{250 + 5 \cdot 20}{10} + 20 + \frac{641\frac{2}{3} + 10 \cdot 20}{10}$
	¹ e2e	10 10 10
		$= 60 + \frac{1541\frac{2}{3}}{10}$
		$=$ $00 + \frac{10}{10}$
		21.4
		$=$ 214 $\frac{1}{6}$
	=	$=\beta_{10.214}$
	1	$= \beta_{10,214\frac{1}{6}}$ $\beta_{e^{2}e}^{\text{l.o.}f_{0}} = b^{f_{0}}$
		. 626
		$10 \cdot \left[t - 214 \frac{1}{6} \right]^+ = 25$
D^{f_0}		$10 \cdot t - 214\frac{1}{6} = 25$
		$t = 216^{\frac{2}{-}}$
		$t = 216\frac{2}{3}$ $\alpha^{f_0} \left(T_{\text{e}2\text{e}}^{\text{l.o.}f_0} \right) = 5 \cdot 214\frac{1}{6} + 25$
B^{f_0}		$\alpha^{f_0}\left(T_{222}^{\text{l.o.}f_0}\right) = 5 \cdot 214^{\frac{1}{2}} + 25$
		, , ,
		$= 1095\frac{5}{6}$
		$-\frac{1050-6}{6}$

PmooArrivalBound.java

PMOO		Arbitrary Multiplexing
s_0	$\frac{\alpha_{s_0}^{x(f_0)}}{\alpha_{s_0}^{\bar{x}(f_0)}}$	$=lpha_{s_0}^{f_3}=\gamma_{5,250}$
s_1	$\alpha_{s_1}^{x(f_0)}$ $\alpha_{s_1}^{\bar{x}(f_0)}$	$= \alpha_{s_1}^{f_2} = \gamma_{5,250}$
s_3	$\alpha_{s_3}^{x(f_0)}$	$= \alpha_{s_3}^{f_2} + \alpha_{s_3}^{f_3}$ $= \gamma_{5,250} + \gamma_{5,412\frac{1}{2}}$ $= \gamma_{10,662\frac{1}{2}}$
	$\alpha_{s_3}^{\bar{x}(f_0)}$	/10,662 2
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$R_{ m e2e}^{ m l.o.}f_0$	$= \bigwedge_{i \in \{0,1,3\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$ $= (20 - 5) \wedge (20 - 5) \wedge (20 - 10)$ $= 10$
		$= \sum_{i \in \{0,1,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e}2\text{e}}^{\text{l.o.}f_0}} \right)$
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_0}$	$= 20 + \frac{250 + 5 \cdot 20}{10} + 20 + \frac{250 + 5 \cdot 20}{10} + 20 + \frac{662\frac{1}{2} + 10 \cdot 20}{10}$
		$= 60 + \frac{1462\frac{1}{2}}{10}$
		$=$ $216\frac{1}{4}$
	=	$= \beta_{10,216\frac{1}{4}}$ $\beta_{e2e}^{\text{I.o.}f_0} = b^{f_0}$
D^{f_0}		$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = b^{f_0}$ $10 \cdot \left[t - 216\frac{1}{4}\right]^+ = 25$
		$t = 218\frac{3}{4}$ $\alpha^{f_0}\left(T_{\text{e2e}}^{\text{l.o.}f_0}\right) = 5 \cdot 216\frac{1}{4} + 25$
B^{f_0}		$\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 216 \frac{1}{4} + 25$ $= 1106 \frac{1}{4}$

Total Flow Analysis

Analysis

 ${\tt PbooArrivalBound_Concatenation.java}$

		FIFO Multiplexing	Arbitrary Multiplexing
		$\alpha_{s_3}^{f_3} = \alpha_s^f$	$a_{2}^{1} + \alpha_{s_{2}}^{J2} + \alpha_{s_{2}}^{J3}$
	α_{s_2}	$=$ $\gamma_{5,25}$ \dashv	$+\gamma_{5,25} + \gamma_{5,25}$
s_2		=	$\gamma_{15,75}$
		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_1}$	$20 \cdot \left[t - 20\right]^+ = 75$	$20 \cdot [t - 20]^+ = 15 \cdot t + 75$
	_	$t = 23\frac{3}{4}$	t = 95
	Df_1	$\alpha_{s_2}\left(T_{s_2}\right) =$	$15 \cdot 20 + 75$
	$B_{s_2}^{f_1}$	=	375
		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$
	α_{s_3}	$= \gamma_{5,137\frac{1}{2}} + \gamma_{5,293\frac{3}{4}} + \gamma_{5,243\frac{3}{4}}$	$= \gamma_{5,250} + \gamma_{5,458\frac{1}{3}} + \gamma_{5,391\frac{2}{3}}$
s_3		$= \gamma_{15,675}$	$= \gamma_{15,1100}$
		$\beta_{s_3} = b_{s_3}$	$\beta_{s_3} = \alpha_{s_3}$
	$D_{s_3}^{f_1}$	$20 \cdot [t - 20]^+ = 675$	$20 \cdot [t - 20]^+ = 15 \cdot t + 1100$
		$t = 53\frac{3}{4}$	t = 300
	$\mathbf{p}f_1$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 675$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1100$
	$B_{s_3}^{f_1}$	= 975	= 1400
	\mathcal{I}^{f_1}	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 77\frac{1}{2}$	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 395$
I	3^{f_1}	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 77\frac{1}{2}$ $\max \left\{ B_{s_2}^{f_1}, B_{s_3}^{f_1} \right\} = 975$	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 395$ $\max \left\{ B_{s_2}^{f_1}, B_{s_3}^{f_1} \right\} = 1400$

PmooArrivalBound.iava

P	${\tt PmooArrivalBound.java}$				
Г	ΓFA	Arbitrary Multiplexing			
s_2	α_{s_2}	$\alpha_{s_3}^{f_3} = \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_2} + \alpha_{s_2}^{f_3}$ $= \gamma_{5,25} + \gamma_{5,25} + \gamma_{5,25}$ $= \gamma_{15,75}$			
	$D_{s_2}^{f_1}$	$\beta_{s_2} = \alpha_{s_2}$ $20 \cdot [t - 20]^+ = 15 \cdot t + 75$ $t = 95$			
	$B_{s_2}^{f_1}$	$\alpha_{s_2}(T_{s_2}) = 15 \cdot 20 + 75$ $= 375$			
s_3	α_{s_3}	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$ $= \gamma_{5,250} + \gamma_{5,458\frac{1}{3}} + \gamma_{5,412\frac{1}{2}}$ $= \gamma_{15,1120\frac{5}{6}}$			
	$D_{s_3}^{f_1}$	$\beta_{s_3} = \alpha_{s_3}$ $20 \cdot [t - 20]^+ = 15 \cdot t + 1120 \frac{5}{6}$ $t = 304 \frac{1}{6}$			
	$B_{s_3}^{f_1}$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1120 \frac{5}{6}$ $= 1420 \frac{5}{6}$			
	D^{f_1}	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 399\frac{1}{6}$			
1	3^{f_1}	$D_{s_2}^{f_1} + D_{s_3}^{f_1} = 399\frac{1}{6}$ $\max \left\{ B_{s_2}^{f_1}, B_{s_3}^{f_1} \right\} = 1420\frac{5}{6}$			

Separate Flow Analysis and PMOO Analysis

Analyses

PbooArrivalBound_Concatenation.java

	SFA		FIFO Multiplexing	Arbitrary Multiplexing
s_2	$lpha_{s_2}^{x(f_1)}$			$x_{s_2}^{f_2} + \alpha_{s_2}^{f_3}$ $x_{s_2}^{f_2} + \alpha_{s_2}^{f_3}$
	,		=	$\gamma_{10,50}$
	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f)}$	1)	$=\beta_{10,22\frac{1}{2}}$	$=\beta_{10,45}$
	(0)		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_3}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_3}$
	$\alpha_{s_3}^{x(f_1)}$		$= \gamma_{5,293\frac{3}{4}} + \gamma_{5,243\frac{3}{4}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,391\frac{2}{3}}$
s_3			$= \gamma_{10,537\frac{1}{3}}$	$= \gamma_{10,850}$
	$\beta_{s_3}^{\text{l.o.}f_1} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_1)}$	$R_{s_3}^{\mathrm{l.o.}f_1}$	$\left[R_{s_3} - r_{s_3}^{x(}\right]$	$\begin{bmatrix} f_1 \end{bmatrix}^+ = 10$
	$\beta_{s_3}^{\text{l.o.}f_1} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_1)} = \beta_{R_{s_3}^{\text{l.o.}f_1}, T_{s_3}^{\text{l.o.}f_1}}$		$\beta_{s_3} = b_{s_3}^{x(f_1)}$	$\beta_{s_3} = \alpha_{s_3}^{x(f_1)}$
		$T_{s_3}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 537\frac{1}{2}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 850$
			$t = 46\frac{7}{8}$	t = 125
=		$=\beta_{10,46\frac{7}{8}}$	$=\beta_{10,125}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$		$\bigotimes_{i=2}^{3} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{10,69\frac{3}{8}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{1}} = b^{f_{1}}$	$\bigotimes_{i=2}^{3} \beta_{s_i}^{\text{l.o.} f_1} = \beta_{10,170}$
				$eta_{ ext{e2e}}^{ ext{l.o.}f_1} = b^{f_1}$
	D^{f_1}		$10 \cdot \left[t - 69 \frac{3}{8} \right]^+ = 25$	$10 \cdot [t - 170]^+ = 25$
			$t = 172\frac{1}{2}$	
	B^{f_1}		$t = 71\frac{7}{8}$ $\alpha^{f_1} \left(T_{\text{e2e}}^{\text{l.o.}f_1} \right) = 5 \cdot 69\frac{3}{8} + 25$	$\alpha^{f_1}\left(T_{\text{e2e}}^{\text{l.o.}f_1}\right) = 5 \cdot 170 + 25$
			$= 371\frac{7}{8}$	= 875

PmooArrivalBound.java

	SFA		Arbitrary Multiplexing
			$= \alpha_{s_2}^{f_2} + \alpha_{s_2}^{f_3}$
$ s_2 $	$lpha_{s_2}^{x(f_1)}$		$= \gamma_{5,25} + \gamma_{5,25}$
			$= \gamma_{10,50}$
	$\beta_{s_2}^{\mathbf{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f)}$	1)	$=\beta_{10,45}$
			$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_3}$
	$lpha_{s_3}^{x(f_1)}$		$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,412\frac{1}{2}}$
s_3			$= \gamma_{10,870\frac{5}{6}}$
	$\beta_{s_3}^{\mathbf{l.o.}f_1} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_1)}$	$R_{s_3}^{\mathbf{l.o.}f_1}$	$= \gamma_{10,870\frac{5}{6}}$ $\left[R_{s_3} - r_{s_3}^{x(f_1)}\right]^+ = 10$ $\beta_{s_3} = \alpha_{s_3}^{x(f_1)}$
	$= \beta_{R_{s_3}^{\mathbf{l.o.}f_1}, T_{s_3}^{\mathbf{l.o.}f_1}}$		
	-5 / -5	$T_{s_3}^{\mathbf{l.o.}f_1}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 870 \frac{5}{6}$
			$t = 127\frac{1}{12}$
		=	$= \beta_{10,127\frac{1}{12}}$
	$eta_{\mathbf{e}\mathbf{2e}}^{\mathbf{l.o.}f_1} = eta_{R_{\mathbf{e}\mathbf{2e}}^{\mathbf{l.o.}f_1}, T_{\mathbf{e}\mathbf{2e}}^{\mathbf{l.o.}f_1}}$		$\bigotimes_{i=2}^{3} \beta_{s_{i}}^{\text{l.o.} f_{1}} = \beta_{10,172\frac{1}{12}}$ $\beta_{\mathbf{e2e}}^{\text{l.o.} f_{1}} = b^{f_{1}}$
			$eta_{\mathbf{e}\mathbf{2e}}^{\mathbf{l.o.}f_1} = b^{f_1}$
	D^{f_1}		$10 \cdot \left[t - 172 \frac{1}{12} \right]^+ = 25$
			$t = 174 \frac{7}{12}$ $\alpha^{f_1} \left(T_{\mathbf{e}2\mathbf{e}}^{\mathbf{l.o.}f_1} \right) = 5 \cdot 172 \frac{1}{12} + 25$
	B^{f_1}		
			$=$ $885\frac{5}{12}$

PbooArrivalBound_Concatenation.java

PMOOATTIVALBOUNG_CONCATEN		
PMOO		Arbitrary Multiplexing
	$x(f_1)$	$= \alpha_{s_2}^{f_2} + \alpha_{s_2}^{f_3}$
s_2	$\alpha_{s_2}^{x(f_1)}$	$= \gamma_{5,25} + \gamma_{5,25}$
	$\alpha_{s_2}^{\bar{x}(f_1)}$	$= \gamma_{10,50}$
	02	$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_3}$
s_3	$\alpha_{s_3}^{x(f_1)}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,391\frac{2}{3}}$
	$\alpha_{s_3}^{\bar{x}(f_1)}$	$= \gamma_{10,850}$
	α_{s_3}	
		$= \bigwedge_{i \in \{2,3\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	$R_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}}$	$= (20 - 10) \wedge (20 - 10)$
$R_{\text{e2e}}^{\text{r.o.},j_1}, T_{\text{e2e}}^{\text{r.o.},j_1}$		= 10
		$= \sum_{i \in \{2,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{x(f_1)} \cdot T_{s_i}}{R_{\text{e}2e}^{\text{l.o.}f_1}} \right)$
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}}$	10 10
		$= 40 + \frac{1300}{10}$
		= 170
	=	
	L	$= \beta_{10,170}$ $\beta_{\text{e}2\text{e}}^{\text{l.o.}f_1} = b^{f_1}$
D^{f_1}		$10 \cdot [t - 170]^+ = 25$
		$t = 172\frac{1}{2}$
B^{f_1}		$\alpha^{f_1}\left(T_{\text{e2e}}^{\text{l.o.}f_1}\right) = 5 \cdot 170 + 25$
		= 875

PmooArrivalBound.java

PmooArrivalBound.	java	A 1 1 2 2 5 1 1 1 1
PMOO		Arbitrary Multiplexing
s_2	$\alpha_{s_2}^{x(f_1)}$	$= \alpha_{s_2}^{f_2} + \alpha_{s_2}^{f_3} = \gamma_{5,25} + \gamma_{5,25}$
- 2	$\alpha_{s_2}^{\bar{x}(f_1)}$	$=$ $\gamma_{10,50}$
s_3	$\alpha_{s_3}^{x(f_1)}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_3} = \gamma_{5,458\frac{1}{3}} + \gamma_{5,412\frac{1}{2}}$
~3	$\alpha_{s_3}^{\bar{x}(f_1)}$	$= \gamma_{10,870\frac{5}{6}}$
	$R_{ m e2e}^{{ m l.o.}f_1}$	$= \bigwedge_{i \in \{2,3\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	n _{e2e}	$= (20 - 10) \wedge (20 - 10)$ $= 10$
		$= \frac{10}{\sum_{i \in \{2,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{x(f_1)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_1}} \right)}$
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}}$	
		$= 40 + \frac{1320\frac{5}{6}}{10}$
		$=$ 172 $\frac{1}{12}$
	=	$=\beta_{10,172\frac{1}{12}}$
		$= \beta_{10,172\frac{1}{12}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
D^{f_1}		$10 \cdot \left[t - 172 \frac{1}{12} \right]^+ = 25$
		$t = 174\frac{7}{12}$
B^{f_1}		$t = 174 \frac{7}{12}$ $\alpha^{f_1} \left(T_{\text{e2e}}^{\text{l.o.}f_1} \right) = 5 \cdot 172 \frac{1}{12} + 25$
		$=$ $885\frac{5}{12}$

Total Flow Analysis

Analysis

Γ	TFA	FIFO Multiplexing	Arbitrary Multiplexing				
		$=$ α_s^f	$\frac{f_2}{2} + \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_3}$				
	α_{s_2}	$= \gamma_{5,25} + \gamma_{5,25} + \gamma_{5,25}$					
s_2		=	$\gamma_{15,75}$				
		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$				
	$D_{s_2}^{f_2}$	$20 \cdot [t - 20]^+ = 75$	$20 \cdot [t - 20]^+ = 15 \cdot t + 75$				
		$t = 23\frac{3}{4}$ $\alpha_{s_2}(T_{s_2}) =$	t = 95				
	$B_{s_2}^{f_2}$	$\alpha_{s_2}\left(T_{s_2}\right) =$	$15 \cdot 20 + 75$				
	D_{s_2}	= 375					
		$= \alpha_{s_1}^{f_2} + \alpha_{s_1}^{f_0}$	$= \qquad \qquad \alpha_{s_1}^{f_2} + \alpha_{s_1}^{f_0}$				
	α_{s_1}	$= \gamma_{5,137\frac{1}{2}} + \gamma_{5,159\frac{3}{8}}$	$= \gamma_{5,250} + \gamma_{5,241\frac{2}{3}}$				
s_1		$= \gamma_{10,296\frac{7}{8}}$	$= \gamma_{10,491\frac{2}{3}}$				
		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$				
	$D_{s_1}^{f_2}$	$20 \cdot [t - 20]^+ = 296\frac{7}{8}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 491\frac{2}{3}$				
		$t = 34\frac{27}{32}$	$t = 89\frac{1}{6}$				
	$\mathbf{p}f_2$	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 296\frac{7}{8}$	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 491\frac{2}{3}$				
	$B_{s_1}^{f_2}$	$=$ $496\frac{7}{8}$	$t = 89\frac{1}{6}$ $\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 491\frac{2}{3}$ $= 691\frac{2}{3}$				
	D^{f_2}	$D_{s_2}^{f_2} + D_{s_1}^{f_2} = 58\frac{19}{32}$ $\max \left\{ B_{s_2}^{f_2}, B_{s_1}^{f_2} \right\} = 496\frac{7}{8}$	$D_{s_2}^{f_2} + D_{s_1}^{f_2} = 184\frac{1}{6}$ $\max \left\{ B_{s_2}^{f_2}, B_{s_1}^{f_2} \right\} = 691\frac{2}{3}$				
1	\mathbb{B}^{f_2}	$\max\left\{B_{s_2}^{f_2}, B_{s_1}^{f_2}\right\} = 496\frac{7}{8}$	$\max\left\{B_{s_2}^{f_2}, B_{s_1}^{f_2}\right\} = 691\frac{2}{3}$				

Separate Flow Analysis and PMOO Analysis

Analyses

SFA			FIFO Multiplexing	Arbitrary Multiplexing
s_2	$lpha_{s_2}^{x(f_2)}$			$\frac{f_1}{g_2} + \alpha_{g_2}^{f_3}$ 5 + $\gamma_{5,25}$ $\gamma_{10,50}$
	$\beta_{s_2}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_2}^{x(j)}$	$f_2)$	$=\beta_{10,22\frac{1}{2}}$	$=\beta_{10,45}$
	$lpha_{s_1}^{x(f_2)}$		$=lpha_{s_1}^{f_0}=\gamma_{5,159\frac{3}{8}}$	$=\alpha_{s_1}^{f_0} = \gamma_{5,241\frac{2}{3}}$
s_1	$eta_{s_1}^{\mathrm{l.o.}f_2} = eta_{s_1} \ominus lpha_{s_1}^{x(f_2)}$	$R_{s_1}^{\mathrm{l.o.}f_2}$	$\left[R_{s_2} - r_{s_2}^{x(\cdot)}\right]$	
	$= \beta_{R_{s_1}^{1.0.f_2}, T_{s_1}^{1.0.f_2}}$		$\beta_{s_1} = b_{s_1}^{x(f_2)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_2)}$
		$T_{s_1}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 159\frac{3}{8}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 241 \frac{2}{3}$
			$t = 27\frac{31}{32}$	$t = 42\frac{7}{9}$
		=	$=\beta_{10,27\frac{31}{32}}$	$=\beta_{10,42\frac{7}{9}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_2} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_2}, T_{\text{e2e}}^{\text{l.o.}f_2}}$		$\bigotimes_{i=1}^{2} \beta_{s_{i}}^{\text{l.o.}f_{2}} = \beta_{10,50\frac{15}{32}}$ $\beta_{\text{e}2e}^{\text{l.o.}f_{2}} = b^{f_{2}}$	$\bigotimes_{i=1}^{2} \beta_{s_{i}}^{\text{l.o.}f_{2}} = \beta_{10,87\frac{7}{9}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{2}} = b^{f_{2}}$
	V20 V20			
D^{f_2}			$10 \cdot \left[t - 50 \frac{15}{32} \right]^+ = 25$	$10 \cdot \left[t - 87\frac{7}{9} \right]^+ = 25$
			$t = 52\frac{31}{32}$ $\alpha^{f_2} \left(T_{\text{e2e}}^{\text{l.o.}f_2} \right) = 5 \cdot 50\frac{15}{32} + 25$	$t = 90\frac{5}{18}$
	B^{f_2}		$\alpha^{f_2} \left(T_{\text{e2e}}^{\text{l.o.}f_2} \right) = 5 \cdot 50 \frac{15}{32} + 25$	$\alpha^{f_2}\left(T_{\text{e2e}}^{\text{l.o.}f_2}\right) = 5 \cdot 87\frac{7}{9} + 25$
			$=$ $277\frac{11}{32}$	$=$ $463\frac{8}{9}$

PMOO		Arbitrary Multiplexing
		$= \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_3}$
	$\alpha_{s_2}^{x(f_2)}$	$= \gamma_{5,25} + \gamma_{5,25}$
s_2	3.32	$= \gamma_{10,50}$
	$\alpha_{s_2}^{\bar{x}(f_2)}$	- /10,50
	$\alpha_{s_1}^{x(f_2)}$,
s_1	$\alpha_{s_1}^{\bar{x}(f_2)}$	$=\alpha_{s_1}^{f_0} = \gamma_{5,241\frac{2}{3}}$
	us ₁	Λ $\langle P \rangle = r(f_0) \rangle$
		$= \bigwedge_{i \in \{2,1\}} \left(R_{s_i} - r_{s_i}^{x(f_2)} \right)$
lo f	$R_{\mathrm{e2e}}^{\mathrm{l.o.}f_{2}}$	$= (20-10) \wedge (20-5)$
$\beta_{\text{e2e}}^{\text{l.o.}f_2} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_2}, T_{\text{e2e}}^{\text{l.o.}f_2}}$		` ' ` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
		$= 10$ $/ x(f_2) + x(f_2) = 1$
		$= \frac{10}{\sum_{i \in \{2,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_2)} + r_{s_i}^{x(f_2)} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.}f_2}} \right)}$
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_2}$	$= 20 + \frac{50 + 10 \cdot 20}{10} + 20 + \frac{241\frac{2}{3} + 5 \cdot 20}{10}$
		$= 40 + \frac{591\frac{2}{3}}{10}$
		$=$ 99 $\frac{1}{6}$
	=	$=\beta_{10,99\frac{1}{6}}$
	1	$= \beta_{10,99\frac{1}{6}}$ $\beta_{e^{2}e}^{1.0.f_{2}} = b^{f_{2}}$
D^{f_2}		$10 \cdot \left[t - 99\frac{1}{6} \right] = 25$
		t = 101 ²
		$t = \frac{101-3}{3}$
B^{f_2}		$t = 101\frac{2}{3}$ $\alpha^{f_2} \left(T_{\text{e2e}}^{\text{l.o.}f_2} \right) = 5 \cdot 99\frac{1}{6} + 25$
		$= 520\frac{5}{6}$

Total Flow Analysis

Analysis

 ${\tt PbooArrivalBound_Concatenation.java}$

TFA		FIFO Multiplexing	Arbitrary	Multiplexing
_	111	PbooArrivalBound_C	PmooArrivalBound.java	
			$= \alpha_{s_2}^{f_3} + \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_2}$	J
	0.			
s_2	α_{s_2}		$= \gamma_{5,25} + \gamma_{5,25} + \gamma_{5,25}$	
32		0 1	$=$ $\gamma_{15,75}$	
		$\beta_{s_2} = b_{s_2}$	eta_{s_2}	$=$ α_{s_2}
	$D_{s_2}^{f_3}$	$20 \cdot [t - 20]^+ = 75$	$20 \cdot [t-20]^+$	$= 15 \cdot t + 75$
		$t = 23\frac{3}{4}$	t	= 95
	$B_{s_2}^{f_3}$	4	$\alpha_{s_2}(T_{s_2}) = 15 \cdot 20 + 75$	
	D_{s_2}		= 375	
		$= \alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_3}$	=	$\alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_3}$
	α_{s_0}	$= \gamma_{5,25} + \gamma_{5,137\frac{1}{2}}$	$= \gamma_{5,5}$	$_{25} + \gamma_{5,250}$
s_0		$= \gamma_{10,162\frac{1}{2}} \\ \beta_{s_0} = b_{s_0}$	=	$\gamma_{10,275}$
		$\beta_{s_0} = b_{s_0}$	eta_{s_0}	$=$ α_{s_0}
	$D_{s_0}^{f_3}$	$20 \cdot [t-20]^+ = 162\frac{1}{2}$	$20 \cdot [t-20]^+$	$= 10 \cdot t + 275$
	$\sum s_0$	<u>Z</u>	+	$=$ $67\frac{1}{2}$
		$t = 28\frac{1}{8}$	· ·	$=$ $07\frac{1}{2}$
	D fo	$\alpha_{s_0}(T_{s_0}) = 10 \cdot 20 + 162\frac{1}{2}$	$\alpha_{s_0}\left(T_{s_0}\right) =$	$10 \cdot 20 + 275$
	$B_{s_0}^{f_3}$	$-262^{\bar{1}}$	=	475
		$= 262\frac{1}{2}$ $= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$		
		$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1} + \alpha_{s_3}^{f_3}$
	α_{s_3}	$= \gamma_{5,293\frac{3}{4}} + \gamma_{5,137\frac{1}{2}} + \gamma_{5,243\frac{3}{4}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250} + \gamma_{5,391\frac{2}{3}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250} + \gamma_{5,412\frac{1}{2}}$
s_3		$= \gamma_{15,675}$	$= \gamma_{15,1100}$	$= \gamma_{15,1120\frac{5}{6}}$ $\beta_{s_3} = \alpha_{s_3}$
		$\beta_{s_3} = b_{s_3}$	$\beta_{s_3} = \alpha_{s_3}$	
	$D_{s_3}^{f_3}$	$20 \cdot [t - 20]^+ = 675$	$20 \cdot [t - 20]^{+} = 15 \cdot t + 1100$	$20 \cdot [t - 20]^{+} = 15 \cdot t + 1120 \frac{5}{6}$
	$\sum s_3$	$t = 53\frac{3}{4}$	$t = \frac{20 \cdot \left[t - 20 \right]}{t} = \frac{10 \cdot t + 1100}{300}$	_
		t = 004	<i>v</i> - 3 00	$t = 304\frac{1}{6}$
	D_{f_2}	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 675$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1100$	$\alpha_{s_3}(T_{s_3}) = 15 \cdot 20 + 1120 \frac{5}{6}$
	$B_{s_3}^{f_3}$	= 975	= 1400	$=$ $1420\frac{5}{6}$
	\mathcal{D}^{f_3}	$D_{s_2}^{f_3} + D_{s_0}^{f_3} + D_{s_3}^{f_3} = 105\frac{5}{8}$	$D^{f_3} + D^{f_3} + D^{f_3} = 462\frac{1}{5}$	$D_{s_2}^{f_3} + D_{s_0}^{f_3} + D_{s_3}^{f_3} = 466\frac{2}{3}$
	\mathbf{B}^{f_3}	$\max\left\{B_{s_2}^{f_3}, B_{s_0}^{f_3}, B_{s_3}^{f_3}\right\} = 975$	$D_{s_2}^{f_3} + D_{s_0}^{f_3} + D_{s_3}^{f_3} = 462\frac{1}{2}$ $\max \left\{ B_{s_2}^{f_3}, B_{s_0}^{f_3}, B_{s_3}^{f_3} \right\} = 1400$	$\max\left\{B_{s_2}^{f_3}, B_{s_0}^{f_3}, B_{s_3}^{f_3}\right\} = 1420\frac{5}{6}$
		(02 / 00 / 03)	(02 / 00 / 03)	(02 / 00 / 03) 0

Separate Flow Analysis and PMOO Analysis

Analyses

SFA			FIFO Multiplexing	Arbitrary Multiplexing
	$lpha_{s_2}^{x(f_3)}$			$ \begin{array}{c} \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_2} \\ \alpha_{5} + \gamma_{5,25} \end{array} $
s_2	αs_2		= 73,2	$\gamma_{10,50}$
	$\beta_{s_2}^{\text{l.o.}f_3} = \beta_{s_2} \ominus \alpha_{s_2}^{x(\cdot)}$	f ₃)	$=\beta_{10,22\frac{1}{2}}$	$=\beta_{10,45}$
s_0	$\alpha_{s_0}^{x(f_3)}$	<i>(</i>)	$= \alpha_{s_0}^{f_0}$	$=\gamma_{5,25}$
	$\beta_{s_0}^{\text{l.o.}f_3} = \beta_{s_0} \ominus \alpha_{s_0}^{x(t)}$	J3)	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	(2)		$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	$= \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$
	$lpha_{s_3}^{x(f_3)}$		$= \gamma_{5,293\frac{3}{4}} + \gamma_{5,137\frac{1}{2}}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250}$
s_3		1	$= \gamma_{10,431\frac{1}{4}}$	$= \gamma_{10,708\frac{1}{3}}$
	$\beta_{s_3}^{\text{l.o.}f_3} = \beta_{s_3} \ominus \alpha_{s_3}^{x(f_3)}$	$R_{s_3}^{\mathrm{l.o.}f_3}$		$[f_3]$ = 10
	$= \beta_{R_{s_3}^{1.0.f_3}, T_{s_3}^{1.0.f_3}}$		$\beta_{s_3} = b_{s_3}^{x(f_3)}$	$\beta_{s_3} = \alpha_{s_3}^{x(f_3)}$
	-33	$T_{s_3}^{\mathrm{l.o.}f_3}$	$20 \cdot [t - 20]^+ = 431\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 708 \frac{1}{3}$
			$t = 41 \frac{9}{16}$ $= \beta_{10,41 \frac{9}{16}}$	$t = 110\frac{5}{6}$
		=	$=\beta_{10,41\frac{9}{16}}$	$= \beta_{10,110\frac{5}{6}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_3} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_3}, T_{\text{e2e}}^{\text{l.o.}f_3}}$		$\bigotimes_{i=\{2,0,3\}} \beta_{s_i}^{\text{l.o.}f_3} = \beta_{10,85\frac{5}{16}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_3} = b^{f_3}$	$\bigotimes_{i=\{2,0,3\}} \beta_{s_i}^{\text{l.o.}f_3} = \beta_{10,184\frac{1}{6}}$ $\beta_{e2e}^{\text{l.o.}f_3} = b^{f_3}$
				1
	D^{f_3}		$10 \cdot \left[t - 85\frac{5}{16}\right]^+ = 25$	$10 \cdot \left[t - 184\frac{1}{6}\right]^+ = 25$
			$t = 87 \frac{13}{16}$ $\alpha^{f_3} \left(T_{\text{e}2\text{e}}^{\text{l.o.}f_3} \right) = 5 \cdot 85 \frac{5}{16} + 25$	$t = 186\frac{2}{3}$ $\alpha^{f_3} \left(T_{\text{e2e}}^{\text{l.o.}f_3} \right) = 5 \cdot 184\frac{1}{6} + 25$
	B^{f_3}			
			$=$ $451\frac{9}{16}$	$=$ $945\frac{5}{6}$

PMOO		Arbitrary Multiplexing	
	(a)	$= \qquad lpha_{s_2}^{f_1} + lpha_{s_2}^{f_2}$	
s_2	$\alpha_{s_2}^{x(f_3)}$	$= \gamma_{5,25} + \gamma_{5,25}$	
_	$\bar{x}(f_2)$	$=$ $\gamma_{10,50}$	
	$\begin{array}{c} \alpha_{s_2}^{\bar{x}(f_3)} \\ \alpha_{s_0}^{x(f_3)} \end{array}$		
s_0	$\frac{\alpha_{s_0}}{\alpha_{s_0}^{\bar{x}(f_3)}}$	$=lpha_{s_0}^{f_0}=\gamma_{5,25}$	
		$= \qquad \qquad \alpha_{s_3}^{f_0} + \alpha_{s_3}^{f_1}$	
s_3	$\alpha_{s_3}^{x(f_3)}$	$= \gamma_{5,458\frac{1}{3}} + \gamma_{5,250}$	
	=(f)	$= \gamma_{10,708\frac{1}{3}}$	
	$\alpha_{s_3}^{\bar{x}(f_3)}$		
		$= \bigwedge \left(R_{s_i} - r_{s_i}^{x(f_3)} \right)$	
lof	$R_{ m e2e}^{{ m l.o.}f_3}$	$i \in \{2,0,3\}$ $= (20-10) \land (20-5) \land (20-10)$	
$\beta_{\text{e2e}}^{\text{l.o.}f_3} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_3}, T_{\text{e2e}}^{\text{l.o.}f_3}}$		10	
		$\sum \int_{T_{s_i}} b_{s_i}^{\bar{x}(f_3)} + r_{s_i}^{x(f_3)} \cdot T_{s_i}$	
		$= \sum_{i \in \{2,0,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_3)} + r_{s_i}^{x(f_3)} \cdot T_{s_i}}{R_{\text{e}2\text{e}}^{\text{l.o.}f_3}} \right)$	
	$T_{ m e2e}^{{ m l.o.}f_3}$	$= 20 + \frac{50 + 10 \cdot 20}{10} + 20 + \frac{25 + 5 \cdot 20}{10} + 20 + \frac{708\frac{1}{3} + 10 \cdot 20}{10}$	
	e2e	$\frac{1283\frac{1}{3}}{12}$	
		1	
		$=$ 188 $\frac{1}{3}$	
	=	$= \beta_{10,188\frac{1}{3}}$ $\beta_{e2e}^{\text{l.o.}f_3} = b^{f_3}$	
D^{f_3}		$10 \cdot \left[t - 188 \frac{1}{3} \right]^+ = 25$	
		$t = 190\frac{5}{6}$ $\alpha^{f_3} \left(T_{\text{e2e}}^{\text{l.o.}f_3} \right) = 5 \cdot 188\frac{1}{3} + 25$	
B^{f_3}		,	
		$=$ $966\frac{2}{3}$	

${\bf FeedForward_1SC_2Flows_1AC_2Paths}$

$$\begin{split} \mathbb{S} &= \{s_0, s_1, s_2\} \ \text{with} \\ & \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i}, T_{s_i}} = \beta_{20, 20}, \ i \in \{0, 1, 2\} \end{split}$$

$$\mathbb{F} = \{f_0, f_1\} \ \text{with} \\ & \alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5, 25}, \ n \in \{0, 1\} \end{split}$$

Flow f_0

Total Flow Analysis

Arrival Bounds

$(s_1, \{f_1\}, \emptyset) =: \alpha_s^f$ $(s_2, \{f_0\}, \emptyset) =: \alpha_s^f$ $=: \alpha_{s_i}^{f_n} \text{ with } (n, i) \in \{(1, 1, 1, 1)\}$	0	FIFO Multiplexing	Arbitrary Multiplexing	
		$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_0}^{\text{l.o.}f_n}$		
$\alpha_{s_0}^{x(f_n)}$		$=\gamma$	75,25	
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_n)}$	$R_{s_0}^{\mathrm{l.o.}f_n}$		15	
$= \beta_{-1} \circ f - 1 \circ f$		$\beta_{s_0} = b_{s_0}^{x(f_n)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_n)}$	
$= \beta_{R_{s_0}^{1,o,f_n}, T_{s_0}^{1,o,f_n}}$	$T_{s_0}^{\text{l.o.}f_n}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
	30	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$	
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_0}^{\text{l.o.} f_n}$	$r_{s_i}^{f_n}$	= 5		
$= \gamma_{r_{s_i}^{f_n}, b_{s_i}^{f_n}}$	$b_{s_i}^{f_n}$	$\alpha^{f_0} \left(T_{s_0}^{1.o.f_n} \right) = 5 \cdot 21 \frac{1}{4} + 25$	$\alpha^{f_0} \left(T_{s_0}^{\text{l.o.} f_n} \right) = 5 \cdot 28 \frac{1}{3} + 25$	
	σ_{s_i}	$=$ $131\frac{1}{4}$	$= 166\frac{2}{3}$	
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$	

$(s_2, \{f_1\}, \emptyset) =: \alpha_s^f$	1	FIFO Multiple	exing	Arbitrary Multiplexing	
		$\alpha_{s_2}^{f_1} = \alpha^{f_1} \oslash (\beta)$	$\beta_{s_0}^{\mathrm{l.o.}f_1}\otimes\beta_{s_1}^{\mathrm{l.o.}f_2}$	1)	
		(reuse of pr	revious resu	lt)	
		$=$ $\alpha^{f_1} \oslash \beta$	$\beta_{s_0}^{\mathrm{l.o.}f_1} \oslash \beta_{s_1}^{\mathrm{l.o}}$	f_1	
		=	$\alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o}}$	f_1	
$\alpha_{s_1}^{x(f_1)}$		$=\gamma_{0,0}$			
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f)}$	1)	$=\beta_{s_1} = \beta_{20,20}$			
$\alpha_{s_1}^{f_1}$		$=\gamma_{5,131\frac{1}{4}}$		$=\gamma_{5,166\frac{2}{3}}$	
$\alpha_{s_2}^{f_1} = \alpha^{f_1} \oslash \beta_{s_1}^{\text{l.o.} f_1}$	$r_{s_2}^{f_1}$		=		
$= \gamma_{r_{s_2}^{f_1}, b_{s_2}^{f_1}}$	L f 1	$\alpha^{f_0} \left(T_{s_0}^{\text{l.o.} f_0} \right) = 5 \cdot$	$20 + 131\frac{1}{4}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_0}\right) = 5 \cdot 20 + 166$	$\frac{2}{3}$
	$0_{s_2}^{j_1}$	=	$231\frac{1}{4}$	= 266	
	=	$=\gamma_{5,231\frac{1}{4}}$		$=\gamma_{5,266\frac{2}{3}}$	

Remark:

 ${\tt PmooArrivalBound.java}$ will have the same result as ${\tt PbooArrivalBound_Concatenation.java}$ because f_0 does not have cross-traffic interfering on multiple consecutive hops.

Analysis

Γ	rFA	FIFO Multiplexing	Arbitrary Multiplexing					
		=	$\alpha^{f_0} + \alpha^{f_1}$					
	α_{s_0}	$= \gamma_5$	$_{,25} + \gamma_{5,25}$					
s_0		=	$\gamma_{10,50}$					
		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$					
	$D_{s_0}^{f_0}$	$20 \cdot [t - 20]^+ = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$					
	$\sum s_0$	$t = 22^{1}$						
		$t = 22\frac{1}{2}$ $\alpha_{s_0}(T_{s_0}) =$	10.20 + 50					
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(I_{s_0}) =$	* ' *'					
	00	=	250					
		$= \alpha_{s_2}^{f_0} + \alpha_{s_2}^{f_1}$	$= \alpha_{s_2}^{f_0} + \alpha_{s_2}^{f_1}$					
	α_{s_2}	$= \ \gamma_{5,231\frac{1}{4}} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,266\frac{2}{3}} + \gamma_{5,166\frac{2}{3}}$					
s_2		$= \gamma_{10,362\frac{1}{2}}$	$= \gamma_{10,433\frac{1}{3}}$					
		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$					
	$D_{s_2}^{f_0}$	$20 \cdot [t - 20]^+ = 362\frac{1}{2}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 433\frac{1}{3}$					
	02	t _ 20 ¹	1					
		$t = 38\frac{1}{8}$	$t = 83\frac{1}{3}$					
	$B_{s_2}^{f_0}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 362\frac{1}{2}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 433\frac{1}{3}$					
	$D_{s_2}^{\circ}$	$= 562\frac{1}{2}$	$=$ $633\frac{1}{3}$					
	D^{f_0}	$\sum_{i=\{0,2\}} D_{s_i}^{f_0} = 60\frac{5}{8}$	$\sum_{i=\{0,2\}} D_{s_i}^{f_0} = 128\frac{1}{3}$					
	\mathbf{B}^{f_0}	$\sum_{i=\{0,2\}} D_{s_i}^{f_0} = 60\frac{5}{8}$ $\max_{i=\{0,2\}} B_{s_i}^{f_0} = 562\frac{1}{2}$	$\sum_{i=\{0,2\}} D_{s_i}^{f_0} = 128\frac{1}{3}$ $\max_{i=\{0,2\}} B_{s_i}^{f_0} = 633\frac{1}{3}$					

Separate Flow Analysis and PMOO Analysis

Arrival Bounds

$(s_2, \{f_1\}, f_0) =: \alpha_{s_2}^{f_1}$		FIFO Multiplexing	Arbitrary Multiplexing			
	$lpha_{s_2}^{f_1} = lpha^{f_1} \oslash \left(eta_{s_0}^{\mathrm{l.o.}f_1} \otimes eta_{s_1}^{\mathrm{l.o.}f_1} ight)$					
$lpha_{s_0}^{x(f_0)}$		= 7	/5,25			
$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)}$	$R_{s_0}^{\mathrm{l.o.}f_1}$	=	15			
$= \beta_{R_{s_0}^{1.0.f_1}, T_{s_0}^{1.0.f_1}}$		$\beta_{s_0} = b_{s_0}^{x(f_1)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_1)}$			
R_{s_0} I_{s_0}	$T_{s_0}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$			
	-0	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$			
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$			
$\alpha_{s_1}^{x(f_1)}$		$=\gamma_{0,0}$				
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)}$		$=\beta_{s_1} = \beta_{20,20}$				
$\beta_{s_0}^{\text{l.o.}f_1} \otimes \beta_{s_1}^{\text{l.o.}f_1} = \beta$	$ s_0 s_$	$= \beta_{s_0}^{\mathrm{l.o.}f_1} \otimes \beta_{s_1}$	$= \beta_{s_0}^{\text{l.o.}f_1} \otimes \beta_{s_1}$			
00 01		$= \beta_{15,21\frac{1}{4}} \otimes \beta_{20,20}$	$= \beta_{15,28\frac{1}{3}} \otimes \beta_{20,20}$			
$= \beta_{R_{\langle s_0, s_1 \rangle}^{1.0.f_1}, T}$	$\langle s_0, s_1 \rangle$	$=$ $\beta_{15,41\frac{1}{4}}$	$=$ $\beta_{15,48\frac{1}{3}}$			
$\alpha_{s_2}^{f_1} = \alpha^{f_1} \oslash \left(\beta_{s_0}^{\text{l.o.}f_1} \otimes \beta_{s_1}^{\text{l.o.}f_1}\right)$	$\alpha_{s_2}^{f_1} = \alpha^{f_1} \oslash \left(\beta_{s_0}^{\text{l.o.}f_1} \otimes \beta_{s_1}^{\text{l.o.}f_1}\right) r_{\langle s_0, s_1 \rangle}^{f_1}$		5			
$= \qquad \qquad \gamma_{r^{f_1}_{\langle s_0,s_1\rangle},b^{f_1}_{\langle s_0,s_1\rangle}}$	$= \qquad \qquad \gamma_{r^{f_1}_{\langle s_0,s_1\rangle},b^{f_1}_{\langle s_0,s_1\rangle}} \left \begin{array}{c} b^{f_1}_{\langle s_0,s_1\rangle} \end{array} \right $		$\alpha^{f_1}\left(T_{\langle s_0, s_1\rangle}^{\text{l.o.}f_1}\right) = 5 \cdot 48\frac{1}{3} + 25$			
	$\langle s_0, s_1 \rangle$	$=$ $231\frac{1}{4}$	$= 266\frac{2}{3}$			
	=	$=\gamma_{5,231\frac{1}{4}}$	$=\gamma_{5,266\frac{2}{3}}$			
Remark:						

Remark:

 ${\tt PmooArrivalBound.java}$ will have the same result as ${\tt PbooArrivalBound_Concatenation.java}$ because f_0 does not have cross-traffic interfering on multiple consecutive hops.

SFA			FIFO Multiplexing	Arbitrary Multiplexing
	$lpha_{s_0}^{x(f_0)}$		$= \alpha$	$\alpha^{f_1} = \gamma_{5,25}$
s_0	$eta_{s_0}^{\mathrm{l.o.}f_0} = eta_{s_0} \ominus lpha_{s_0}^{x(f_0)}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	R_{s_0} –	$r_{s_0}^{x(f_0)}\Big]^+ = 15$
	$= \beta_{R_{s_0}^{1.o.f_0}, T_{s_0}^{1.o.f_0}}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
	- 30	$T_{s_0}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$
		v	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	$lpha_{s_2}^{x(f_0)}$		$=\gamma_{5,231\frac{1}{4}}$	$=\gamma_{5,266\frac{2}{3}}$
s_2	$\beta_{s_2}^{\text{l.o.}f_0} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_0)}$	$R_{s_2}^{\mathrm{l.o.}f_0}$	R_{s_2} $-$	
	$= \beta_{R_{s_2}^{1.0.f_0}, T_{s_2}^{1.0.f_0}}$		$\beta_{s_2} = b_{s_2}^{x(f_0)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_0)}$
	2 2	$T_{s_2}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 231\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 266 \frac{2}{3}$
			$t = 31\frac{9}{16}$	$t = 44\frac{4}{9}$
		=	$=\beta_{15,31\frac{9}{16}}$	$=\beta_{15,44\frac{4}{9}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		$\bigotimes_{i=\{0,2\}} \beta_{s_i}^{\text{l.o.}f_0} = \beta_{15,52\frac{13}{16}}$ $\beta_{\text{e.2e}}^{\text{l.o.}f_0} = b^{f_0}$	$\bigotimes_{i=\{0,2\}} \beta_{s_i}^{\text{l.o.}f_0} = \beta_{15,72\frac{7}{9}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
				$eta_{ ext{e}2 ext{e}}^{ ext{l.o.}f_0} = b^{f_0}$
D^{f_0}			$15 \cdot \left[t - 52 \frac{13}{16} \right]^+ = 25$	$5 \qquad 15 \cdot \left[t - 72 \frac{7}{9} \right]^+ = 25 \qquad $
			$t = 54\frac{23}{48}$	$t = 74\frac{4}{9}$
B^{f_0}			$t = 54 \frac{23}{48}$ $\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 52 \frac{13}{16} + $	$25 \alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 72 \frac{7}{9} + 25$
			= 289	$\frac{1}{16}$ = $388\frac{8}{9}$

PMOO		Arbitrary Multiplexing
s_0	$\frac{\alpha_{s_0}^{x(f_0)}}{\alpha_{s_0}^{\bar{x}(f_0)}}$	$=\gamma_{5,25}$
s_2	$\frac{\alpha_{s_2}^{x(f_0)}}{\alpha_{s_2}^{\bar{x}(f_0)}}$	$=\gamma_{5,266\frac{2}{3}}$
$eta_{ m e2e}^{ m l.o.}f_0 = eta_{R_{ m e2e}^{ m l.o.}f_0, T_{ m e2e}^{ m l.o.}f_0}$	$R_{ m e2e}^{{ m l.o.}f_0}$	$= \bigwedge_{i \in \{0,2\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$ $= (20 - 5) \wedge (20 - 5)$ $= 15$
		$= \sum_{i \in \{0,2\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$
	$T_{ m e2e}^{{ m l.o.}f_0}$	
		$= 40 + \frac{491\frac{2}{3}}{15}$
		$=$ $72\frac{7}{9}$
	=	$=\beta_{15,72\frac{7}{9}}$
D^{f_0}		$= \beta_{15,72\frac{7}{9}}$ $\beta_{\text{e2e}}^{\text{1.o.}f_0} = b^{f_0}$ $15 \cdot \left[t - 72\frac{7}{9}\right]^+ = 25$
		$t = 74\frac{4}{9}$ $\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.}f_0} \right) = 5 \cdot 72\frac{7}{9} + 25$
B^{f_0}		$\alpha^{f_0} \left(T_{\text{e2e}}^{\text{l.o.} f_0} \right) = 5 \cdot 72 \frac{7}{9} + 25$ $= 388 \frac{8}{9}$

Total Flow Analysis

Arrival Bounds

$(s_1, \{f_1\}, \emptyset) := \alpha_s^f$ $(s_2, \{f_0\}, \emptyset) := \alpha_s^f$ $=: \alpha_{s_i}^{f_n} \text{ with } (n, i) \in \{(1, 1)\}$	0	FIFO Multiplexing Arbitrary Multiple		
$lpha_{s_i}^{f_n} = lpha^{f_n} \oslash eta_{s_0}^{\mathrm{l.o.}f_n}$				
$\alpha_{s_0}^{x(f_n)}$		$=\gamma_{5,25}$		
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_n)}$	$R_{s_0}^{\mathrm{l.o.}f_n}$		= 15	
$= \beta_{R_{s_0}^{1.0.f_n}, T_{s_0}^{1.0.f_n}}$		$\beta_{s_0} = b_{s_0}^{x(f_n)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_n)}$	
R_{s_0} , R_{s_0}	$T_{s_0}^{\mathrm{l.o.}f_n}$	$20 \cdot \left[t - 20\right]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
		$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$	
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
$r_{s_i}^{f_n}$		=5		
$\alpha_{s_i}^{f_n} = \alpha^{f_n} \oslash \beta_{s_0}^{\text{l.o.} f_n}$	$\begin{array}{c c} r_{s_i}^{f_n} \\ b_{s_i}^{f_n} \end{array}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_n}\right) = 131\frac{1}{4}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_n}\right) = 166\frac{2}{3}$	
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$	

$(s_2, \{f_1\}, \emptyset) \eqqcolon \alpha_{s_2}^{f_1}$		FIFO Multiplexing	Arbitrary Multiplexing
$\alpha_{s_2}^{f_1} = \alpha^{f_1} \oslash \left(\beta_{s_0}^{\text{l.o.}f_1} \otimes \beta_{s_1}^{\text{l.o.}f_1}\right) = \alpha^{f_1} \oslash \beta_{s_0}^{\text{l.o.}f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1} = \alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1}$			
$\alpha_{s_1}^{x(f_1)}$		$=\gamma_{0,0}$	
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)}$		$=\beta_{s_1} = \beta_{20,20}$	
$\alpha_{s_1}^{f_1}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
$\alpha_{s_2}^{f_1} = \alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1} \frac{r_{s_2}^{f_1}}{h_1^{f_1}}$		=5	
	$b_{s_2}^{f_1}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_0}\right) = 231\frac{1}{4}$	$\alpha^{f_0}(T_{s_0}^{\text{l.o.}f_0}) = 266\frac{2}{3}$
$= \alpha^{f_1} \oslash \beta_{s_1}^{\text{l.o.} f_1}$	=	$=\gamma_{5,231\frac{1}{4}}$	$=\gamma_{5,266\frac{2}{3}}$

Remark:

 $\label{lem:pmooArrivalBound_Concatenation.java} PmooArrivalBound_Concatenation.java because \ f_1 \ does \ not \ have \ cross-traffic interfering \ on \ multiple \ consecutive \ hops.$

Analysis

TFA		FIFO Multiplexing	Arbitrary Multiplexing		
α_{s_0}		$= \alpha^{f_0} + \alpha^{f_1} = \gamma_{5,25} + \gamma_{5,25} = \gamma_{10,50}$			
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$		
	$D_{s_0}^{f_0}$	$20 \cdot [t - 20]^+ = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$		
		$t = 22\frac{1}{2}$ $\alpha_{s_0}\left(T_{s_0}\right) =$	t = 45		
	$\mathbf{p}f_0$	$\alpha_{s_0}\left(\tilde{T}_{s_0}\right) =$	$10 \cdot 20 + 50$		
	$B_{s_0}^{f_0}$	=	= 250		
	α_{s_1}	$=\alpha_{s_1}^{f_1} = \gamma_{5,131\frac{1}{4}}$	$=\alpha_{s_1}^{f_1} = \gamma_{5,166\frac{2}{3}}$		
s_1		$\beta_{s_1} = b_{s_1}$	FIFO per micro flow		
			$\beta_{s_1} = b_{s_1}$		
	$D_{s_1}^{f_1}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^+ = 166\frac{2}{3}$		
		$t = 26\frac{9}{16}$	9		
		10	$t = 28\frac{1}{3}$		
	$B_{s_1}^{f_1}$	$\alpha_{s_1}(T_{s_1}) = 5 \cdot 20 + 131\frac{1}{4}$	$\alpha_{s_1}(T_{s_1}) = 5 \cdot 20 + 166\frac{2}{3}$		
	$D_{s_1}^{j_1}$	$=$ $231\frac{1}{4}$	$=$ $266\frac{2}{3}$		
		$= \alpha_{s_2}^{f_0} + \alpha_{s_2}^{f_1}$	$= \alpha_{s_2}^{f_0} + \alpha_{s_2}^{f_1}$		
	α_{s_2}	$= \gamma_{5,231\frac{1}{4}} + \gamma_{5,131\frac{1}{4}}$	$= \gamma_{5,266\frac{2}{3}} + \gamma_{5,166\frac{2}{3}}$		
s_2		$= \gamma_{10,362\frac{1}{2}} \\ \beta_{s_2} = b_{s_2}$	$= \gamma_{10,433\frac{1}{3}}$ $\beta_{s_2} = \alpha_{s_2}$		
		$\beta_{s_2} = b_{s_2}$	4		
	$D_{s_2}^{f_1}$	$20 \cdot [t - 20]^+ = 362\frac{1}{2}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 433 \frac{1}{3}$		
		$t = 38\frac{1}{8}$	$t = 83\frac{1}{3}$		
	$\mathbf{R}f_1$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 362\frac{1}{2}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 433\frac{1}{3}$		
	$B_{s_2}^{f_1}$	$= 562\frac{1}{2}$	$=$ $633\frac{1}{3}$		
	$)^{f_1}$	$\sum_{i=0}^{2} \beta_{s_i}^{f_1} = 87 \frac{3}{16} $ $\max_{i=0}^{2} B_{s_i}^{f_1} = 562 \frac{1}{2}$	$\sum_{i=0}^{2} \beta_{s_i}^{f_1} = 156\frac{2}{3}$ $\max_{i=0}^{2} B_{s_i}^{f_1} = 633\frac{1}{3}$		
I	3^{f_1}	$\max_{i=0}^{2} B_{s_i}^{f_1} = 562\frac{1}{2}$	$\max_{i=0}^{2} B_{s_i}^{f_1} = 633\frac{1}{3}$		

Separate Flow Analysis and PMOO Analysis

Arrival Bounds

$(s_2, \{f_0\}, \emptyset) =: \alpha_s^{f_0}$	0	FIFO Multiplexing	Arbitrary Multiplexing		
	$lpha_{s_2}^{f_0}=lpha^{f_0}\oslasheta_{s_0}^{ ext{l.o.}f_0}$				
$\alpha_{s_0}^{x(f_0)}$		$=\gamma_{5,25}$			
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} R_{s_0}^{\text{l.o.}}$		= 15			
$= \beta_{R_{s_0}^{1.0.f_0}, T_{s_0}^{1.0.f_0}}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$		
$R_{s_0}^{-30}, T_{s_0}^{-30}$	$T_{s_0}^{\text{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$		
		$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$		
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$		
$\alpha_{s_2}^{f_0} = \alpha^{f_0} \oslash \beta_{s_2}^{\text{l.o.}f_0} \qquad \frac{r_{s_2}^{f_0}}{b^{f_0}}$		= 5			
$= \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.} f_0}$	$\begin{array}{c c} r_{s_2}^{f_0} \\ b_{s_2}^{f_0} \end{array}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_0}\right) = 131\frac{1}{4}$	$\alpha^{f_0}\left(T_{s_0}^{\text{l.o.}f_0}\right) = 166\frac{2}{3}$		
$= \alpha^{s_0} \oslash \beta_{s_2}^{s_3}$	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$		

Remark:

 $\label{lower_pmoder_pmoder_pmoder_pmoder} \because f_1 does not have cross-traffic interfering on multiple consecutive hops. \\$

Analyses

SFA		FIFO Multiplexing	Arbitrary Multiplexing	
$lpha_{s_0}^{x(f_1)}$		$=\alpha^{f_0}=\gamma_{5,25}$		
s_0	$x(f_{\bullet})$	$R_{s_0}^{\mathrm{l.o.}f_1}$	$R_{s_0} - r_{s_0}^{x(j)}$	
	$\beta_{s_0}^{\mathrm{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)}$		$\beta_{s_0} = b_{s_0}^{x(f_1)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_1)}$
		$T_{s_0}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 25$	$\beta_{s_0} = \alpha_{s_0}^{x(f_1)}$ $20 \cdot [t - 20]^+ = 5 \cdot t + 25$ $t - 28 \frac{1}{2}$
		Ů	t — 21 ₄	1 203
		=	$= \beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
s_1	$\alpha_{s_1}^{x(f_1)}$, .	$=\gamma_{0,0}$	
	$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)}$		$= \beta_{s_1} = \beta_{20,20}$	
	$lpha_{s_2}^{x(f_1)}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
s_2		$R_{s_2}^{\mathrm{l.o.}f_1}$	$ \begin{cases} R_{s_2} - r_{s_2}^{x(f)} \\ \beta_{s_2} = b_{s_2}^{x(f_1)} \end{cases} $	f_{1}) $= 15$
	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)}$		$\beta_{s_2} = b_{s_2}^{x(f_1)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_1)}$
		$T_{s_2}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$
			$t = 26\frac{9}{16}$	$t = 37\frac{7}{9}$
		=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{9}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f}}$	1	$\bigotimes_{i=0}^{2} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{15,67\frac{13}{16}}$ $\beta_{e^{2}e}^{\text{l.o.}f_{1}} = b^{f_{1}}$	$\bigotimes_{i=0}^{2} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{15,86\frac{1}{9}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{1}} = b^{f_{1}}$
			. 626	
	D^{f_1}		$15 \cdot \left[t - 67\frac{13}{16}\right]^+ = 25$	$15 \cdot \left[t - 86 \frac{1}{9} \right]^+ = 25$
		$t = 69 \frac{23}{48}$ $\alpha^{f_1} \left(T_{\text{e2e}}^{\text{l.o.}f_1} \right) = 5 \cdot 67 \frac{13}{16} + 25$	$t = 87\frac{7}{9}$	
B^{f_1}		$\alpha^{f_1} \left(T_{\text{e2e}}^{\text{l.o.}f_1} \right) = 5 \cdot 67 \frac{13}{16} + 25$		
	_		$= 364\frac{1}{16}$	$=$ $455\frac{5}{9}$

PMOO		Arbitrary Multiplexing	
s_0	$\begin{array}{c c} \alpha_{s_0}^{x(f_1)} \\ \hline \alpha_{s_0}^{\bar{x}(f_1)} \end{array}$	$=\gamma_{5,25}$	
s_1	$\frac{\alpha_{s_0}^{x(f_1)}}{\alpha_{s_0}^{\bar{x}(f_1)}}$	$=\gamma_{0,0}$	
s_2	$\begin{array}{c} \alpha_{s_2}^{x(f_1)} \\ \hline \alpha_{s_2}^{\bar{x}(f_1)} \end{array}$	$=\gamma_{5,166\frac{2}{3}}$	
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	$R_{ m e2e}^{ m l.o.}$	$= \bigwedge_{i \in \{0,1,2\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$ $= (20 - 5) \wedge (20 - 0) \wedge (20 - 5)$ $= 15$	
		$= \sum_{i \in \{0,1,2\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{x(f_1)} \cdot T_{s_i}}{R_{\text{e}2e}^{\text{l.o.}f_1}} \right)$	
	$T_{ m e2e}^{{ m l.o.}f_3}$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
=		$= \beta_{15,86\frac{1}{9}}$ $\beta_{e^{2}e}^{\text{l.o.}f_{1}} = b^{f_{1}}$	
D^{f_1}		$15 \cdot \left[t - 86\frac{1}{9}\right]^+ = 25$	
B^{f_1}		$t = 87\frac{7}{9}$ $\alpha^{f_1} \left(T_{\text{e2e}}^{\text{l.o.}f_1} \right) = 5 \cdot 86\frac{1}{9} + 25$ $= 455\frac{5}{9}$	