TRINITY COLLEGE DUBLIN THE UNIVERSITY OF DUBLIN

Faculty of Engineering, Mathematics and Science School of Computer Science & Statistics

BA (Mod) JS MSISS, JS-SS MATHS & TSM

Trinity Term 2015

Multivariate Linear Analysis

Monday 11th May 2015

Luce Lower

14:00-16:00

Prof. Brett Houlding and Prof. John Quigley (External Examiner)

Instructions to Candidates:

Marks are awarded for the best two question solutions.

Materials permitted for this examination:

• Non-programmable calculators are permitted for this examination.

5

Question 1

The location, depth and magnitude of 50 significant seismic events that have occurred near Fiji since 1964 are recorded.

Variable	Description
lat	Latitude of event.
long	Longitude of event.
depth	Depth of event (km).
mag	Richter magnitude of event.

Summary statistics are given at the end of the question. Geo-physicists are interested in determining if there exist groups of seismic events that exhibit similar properties. A Cluster Analysis was performed to establish if groups existed within the data. Outputs from three hierarchical cluster analyses and from a k-Means clustering are given after the question statements.

- a) Describe the hierarchical clustering methods, making reference to the term "linkage", and compare the output from the three hierarchical clustering methods.
 [6 marks]
- b) Provide a description of the k-Means clustering algorithm and describe what type of cluster structure k-Means clustering is effective at finding.

[5 marks]

c) Provide an analysis description of the k-Means clustering output. In particular, describe what the numerical summaries tell us about the clusters for an appropriate value of k. Justify your choice of k.

[8 marks]

Question 1 continues on next page.....

......Question 1 continued from previous page.

d) Give a brief account on the use of standardization and data reduction in conjunction with cluster analysis methods.

[3 marks]

e) Describe a real problem in which a clustering algorithm, rather than any other statistical technique, would offer an appropriate solution.

[3 Marks]

Material for this Question in subsequent pages.

Summary Statistics:

Variable	Mean	Standard Deviation
lat	-21.46	4.77
long	181.9	4.19
depth	306.2	222.3
mag	4.58	0.43

Matrix plot of lat, long, depth and mag

Hierarchical Clustering

Dendrogram with Complete Linkage and Euclidean Distance

Observation

Dendrogram with Average Linkage and Euclidean Distance

Observation

Dendrogram with Single Linkage and Euclidean Distance

Observation

K-Means Clustering

Number of clusters: 1

	Number of Obs.	WSS	Avg Dist to Centroid
Cluster 1	50	2423669	204.97
Sum	50	2423669	

Cluster Centroids:

	Cluster 1	Total Data
lat	-21.47	-21.47
long	181.91	181.91
depth	306.2	306.2
maq	4.58	4.58

Distance Between Cluster Centroids:

Cluster 1 Cluster 1 0.00

Number of clusters: 2

	Number of Obs.	WSS	Avg Dist to Centroid
Cluster 1	21	76121	46.77
Cluster 2	29	197092	72.82
Sum	50	273213	

Cluster Centroids:

	Cluster 1	Cluster 2	Total Data
lat	-20.45	-22.20	-21.47
long	181.20	182.43	181.91
depth	549.90	129.72	306.2
mag	4.50	4.64	4.58

Distance Between Cluster Centroids:

		Cluster 1	Cluster 2
Cluster	1	0.00	420.19
Cluster	2	420.19	0.00

Number of clusters: 3

	Number of Obs.	WSS	Avg Dist to Centroid
Cluster 1	11	35539	48.11
Cluster 2	19	21744	28.31
Cluster 3	20	44361	37.99
Sum	50	101644	

Cluster Centroids:

	Cluster 1	Cluster 2	Cluster 3	Total Data
lat	-22.73	-21.70	-20.55	-21.47
long	181.31	183.07	181.14	181.91
depth	244.81	76.05	558.60	306.2
mag	4.59	4.68	4.49	4.58

Distance Between Cluster Centroids:

		Cluster 1	Cluster 2	Cluster 3
Cluster	1	0.00	168.78	313.79
Cluster	2	168.78	0.00	482.55
Cluster	3	313.79	482.55	0.00

Number of clusters: 4

	Number of Obs.	WSS	Avg Dist to Centroid
Cluster 1	6	11196	31.60
Cluster 2	10	16588	37.53
Cluster 3	15	11505	23.89
Cluster 4	19	21744	28.31
Sum	50	61034	

Cluster Centroids:

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Total Data
lat	-21.59	-23.15	-20.00	-21.70	-21.70
long	181.47	181.21	181.10	183.07	183.07
depth	470.12	231.70	581.80	76.05	76.06
mag	4.45	4.57	4.53	4.78	4.68

Distance Between Cluster Centroids:

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
Cluster 1	0.00	238.47	111.65	394.12
Cluster 2	238.47	0.00	350.11	155.67
Cluster 3	111.65	76.05	0.00	505.75
Cluster 4	394.12	155.67	505.75	0.00

Total within group sum of squares vs number of clusters

Page 8 of 14

Question 2

Data were recorded on measurements of 100 specimens for each of 2 species of Crab (with 50 for each sex of each species). Initial statistics for the covariance and mean of the data is provided after the question, as is the output from two principal components analyses applied on the numeric (body measurement) variables of the data.

Variable	Description
SP	Indicator variable (1 for Blue species and 0 for Orange species).
SEX	Indicator variable (1 for Male and 0 for Female).
FL.	Frontal lobe size (mm).
RW	Rear width (mm).
CL	Carapace length (mm).
CW	Carapace width (mm).
BD	Body depth (mm).

a) Provide a brief description on the benefits of Dimension Reduction as a statistical technique.

[3 marks]

b) Describe the pros and cons of both types of principal components analysis that are given in the subsequent pages.

[4 marks]

c) Making reference to either of the principal components outputs provided, explain the interpretation of the standard deviation row and how the values are generated.

[6 marks]

d) Provide an explanation for the remaining output of the principal component analysis that was considered in part c) and explain any conclusions found with reference to the Crab data.

[6 marks]

Question 2 continues on next page.....

.....Question 2 continued from previous page.

e) Describe an alternative dimension reduction technique that could be applied for this data and explain its difference to principal components analysis.

[6 marks]

Material for this Question in subsequent pages.

Summary statistics

Overall Mean: FL RW CL CW BD 15.6 12.7 32.1 36.4 14.0

Overall Covariance Matrix:

	FL	RW	CL	CW	BD
FL	12.2	8.2	24.4	26.6	11.8
RW	8.2	6.6	16.4	18.2	7.8
CL	24.4	16.4	50.7	55.8	24.0
CW	26.6	18.2	55.8	62.0	26.1
BD	11.8	7.8	24.0	26.1	11.7

Mean by sex and species:

SI	?	SI	$\mathcal{I}X$	FL	RW	CL	CW	BD
1	(Blue)	1	(M)	14.8	11.7	32.0	36.8	13.4
1	(Blue)	0	(F)	13.2	12.1	28.1	32.6	11.8
0	(Orange)	1	(M)	16.6	12.2	33.7	37.2	15.3
0	(Orange)	0	(F)	17.6	14.8	34.6	39.0	15.6

Covariance Matrix by species:

Blue Species:

	FL	RW	CL	CW	BD
FL	9.1	6.2	20.7	23.6	9.2
RW	6.2	5.2	14.1	16.2	6.3
CL	20.7	14.1	47.6	54.2	21.0
CW	23.6	16.2	54.2	61.9	24.0
BD	9.2	6.3	21.0	24.0	9.4

Orange Species:

	FL	RW	CL	CW	BD
FL	10.7	7.7	21.9	24.5	10.1
RW	7.7	6.8	15.4	17.7	7.1
CL	21.9	15.4	45.8	50.8	21.2
CW	24.5	17.7	50.8	56.9	23.5
BD	10.1	7.1	21.2	23.5	9.9

Principal Components applied on the Covariance Matrix:

Rotation:				•		
		PC1	PC2	PC3	PC4	PC5
	FL RW	0.29 0.20	0.32 0.86	-0.51 0.41	0.73 -0.15	0.12 -0.14
	CL		-0.20	-0.18	-0.14	-0.74
	CW	0.66	-0.29	0.49	0.13	0.47
	BD	0.28	0.16	-0.55	-0.63	0.44
Importance	of c	omponents:				
-		PC1	PC2	PC3	PC4	PC5
St. Dev.		11.9	1.1	1.0	0.4	0.3
Prop. Var. Cum. Prop.		0.982 0.982	0.00906 0.99153		0.00094 0.99946	0.0005 1
cum. rrop.		0.502	0.55155	0.55051	0.55540	_
Principal Co	mpone	nts applied on	the Correlation	on Matrix:		
Principal Co	mpone	nts applied or	the Correlation	on Matrix:		
_		PC1	PC2	PC3	PC4	PC5
_	FL	PC1 0.45	PC2 0.14	PC3 0.53	0.70	0.10
_	FL RW	PC1 0.45 0.43	PC2 0.14 -0.90	PC3 0.53 -0.01	0.70 -0.08	0.10 -0.05
_	FL	PC1 0.45 0.43 0.45	PC2 0.14	PC3 0.53	0.70	0.10
_	FL RW CL	PC1 0.45 0.43 0.45	PC2 0.14 -0.90 0.27	PC3 0.53 -0.01 -0.31	0.70 -0.08 -0.01	0.10 -0.05 -0.79
Rotation:	FL RW CL CW BD	PC1 0.45 0.43 0.45 0.45	PC2 0.14 -0.90 0.27 0.18	PC3 0.53 -0.01 -0.31 -0.65	0.70 -0.08 -0.01 0.09	0.10 -0.05 -0.79 0.57
_	FL RW CL CW BD	PC1 0.45 0.43 0.45 0.45	PC2 0.14 -0.90 0.27 0.18	PC3 0.53 -0.01 -0.31 -0.65	0.70 -0.08 -0.01 0.09	0.10 -0.05 -0.79 0.57
Rotation: Importance St. Dev.	FL RW CL CW BD	PC1 0.45 0.43 0.45 0.45 0.45 0.45 omponents: PC1 2.19	PC2 0.14 -0.90 0.27 0.18 0.26	PC3 0.53 -0.01 -0.31 -0.65 0.44 PC3 0.22	0.70 -0.08 -0.01 0.09 -0.71 PC4 0.11	0.10 -0.05 -0.79 0.57 0.18
Rotation:	FL RW CL CW BD	PC1 0.45 0.43 0.45 0.45 0.45 0.45	PC2 0.14 -0.90 0.27 0.18 0.26	PC3 0.53 -0.01 -0.31 -0.65 0.44	0.70 -0.08 -0.01 0.09 -0.71	0.10 -0.05 -0.79 0.57 0.18

Question 3

Data were recorded on the survival status of 765 passengers of the Titanic.

Logistic regression was used to determine if *PClass*, *Age*, and *Sex* is a good predictor of survival status. Output from the logistic regression is given after the question.

Variable	Description
PClass	Binary: 1=1st Passenger Class, 0=2nd or 3rd Passenger Class.
Age	Age in years.
Sex	Binary: 0=Female, 1=Male
Survived	Binary: 1=Yes, 0=No.

a) Provide a motivation for the use of logistic regression, rather than linear regression, for these data.

[3 marks]

b) Explain what the output from the logistic regression tells us about the relationship in this model between *PClass*, *Age*, and *Sex*, and whether the passenger survived the Titanic.

[6 marks]

c) Give the formula for the probability of Survived=1 that results from the logistic model. Use this formula along with the output from the logistic regression to predict the probability that a female from 1st passenger class who was aged 20 years would survive.

[6 marks]

d) For data with only binary entries, explain the Simple Matching (Hamming) and Jaccard dissimilarity measures (you should provide and explain the relevant formulas). Give a motivation for using the Jaccard measure instead of the Hamming measure.

[4 marks]

Question 3 continues on next page......

......Question 3 continued from previous page.

e) For data $\mathbf{x}^T = (x_1, x_2, \dots, x_m)$, $\mathbf{y}^T = (y_1, y_2, \dots, y_m)$, and $\mathbf{z}^T = (z_1, z_2, \dots, z_m)$, give the definition of the Maximum dissimilarity measure and show how this measure satisfies the common dissimilarity properties of non-negativity, symmetry, and the triangle inequality.

[6 marks]

Output from logistic regression

Call:

glm(formula=Survived~., family = binomial(logit), data=Titanic)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.6406	-0.6052	-0.4648	0.7792	2.2699

Coefficients:

26VI	2.500514	0.174055	13.301	` 20 10	
Sex1	-2.580914	0 194033	-13.301	< 2e-16	* * *
PClass1	1.895242	0.236271	8.021	1.04e-15	* * *
Age	-0.034331	0.007433	-4.619	3.86e-06	***
(Intercept)	1.628748	0.248278	6.560	5.37e-11	***
	Estimate	Std. Error	z value	Pr(> z)	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1025.57 on 755 degrees of freedom Residual deviance: 723.15 on 752 degrees of freedom

AIC: 731.15

Number of Fisher Scoring iterations: 4