Trabalho Prático 2: SURPRESA NA PROVA

Fábio Dayrell Ferreira Martins Rosa

dayrell@dcc.ufmg.br

Departamento de Ciência da Computação – Universidade Federal de Minas Gerais

Resumo: este relatório descreve a implementação de um programa do tipo NP-Completo. A solução foi feita utilizando a representação de grafos por matrizes de adjacências alocadas dinamicamente. O trabalho permitiu praticar o uso dos itens solicitados: (1) modularização; (2) alocação dinâmica de memória; (3) compilação do código através da ferramenta makefile; (4) solução ótima/exata de problemas do tipo NP-Completo; (5) solução aproximada/heurística de problemas do tipo NP-Completo.

1. INTRODUÇÃO

Esta documentação descreve a implementação da solução do problema de encontrar o maior conjunto de alunos que não marcaram nenhuma resposta igual em uma prova. Para isso, serão disponibilizadas na entrada a lista de todos os alunos que marcaram cada resposta.

O restante deste relatório está organizado da seguinte forma:

- Seção 2: detalhes de implementação;
- Seção 3: análise de complexidade das principais funções;
- Seção 4: análise experimental e demais testes realizados durante o desenvolvimento do programa;
- Seção 5: conclusão sobre o trabalho;
- Seção 6: referencias bibliográficas.

2. IMPLEMENTAÇÃO

A solução para o problema foi implementada através de um grafo não direcionado, representado por uma matriz de duas dimensões alocada dinamicamente. Nessa matriz, as linhas de *i* a *j* representam os alunos e as colunas de *k* a *l* representam as respostas. Caso o aluno *i* tenha marcado a resposta *k*, a posição *Matriz[i][k]* receberá o valor inteiro 1. Caso contrário, o valor será 0. Desse modo, só existirão arestas ligando os alunos às respostas.

O exemplo dado na especificação gerou o seguinte grafo e a seguinte matriz:

No lado esquerdo estão os alunos de 'a' a 'e' e do lado direito estão as respostas de 'f' a 'm'. As arestas indicam que um determinado aluno marcou uma determinada resposta.

	01	02	03	04	05	06	07	08
01	1	0	0	1	0	0	1	1
02	0	1	0	0	0	0	0	0
03	0	0	1	0	1	1	0	0
04	1	0	1	1	1	0	0	1
05	1	1	0	0	1	1	1	0

Como pode ser visto acima, as matrizes terão dimensão A*R, onde A é o número de alunos e R é o número de opções de respostas.

Solução exata:

Para se obter uma solução exata para esse problema é necessário testar todos os conjuntos possíveis de alunos e verificar se em cada um desses conjuntos existem apenas alunos que não responderam respostas iguais e, por esse motivo, a complexidade de tempo de execução do programa será exponencial.

As funções relacionadas à solução exata estão no arquivo funcoesOtimo.c e serão listadas abaixo.

A função *reiniciaVetor* recebe um vetor V do tamanho do número de opções de respostas (que também é o número de colunas da matriz) e insere o inteiro θ em todas as suas posições.

O vetor \boldsymbol{V} é essencial para testar se algum dos conjuntos de alunos marcou apenas respostas diferentes.

A função *preencheConjuntoVertices* recebe a matriz que representa o grafo, o número de opções de respostas, o número de um aluno e o vetor V já citado acima.

Esse vetor V é inicializado com 0 em todas posições a cada conjunto de alunos gerado. Para cada resposta i marcada por um aluno k, é adicionado o inteiro 1 na posição i do vetor. Se já existe o inteiro 1 numa posição a qual eu irei adicionar o inteiro 1, isso significa que outro aluno já marcou essa opção, logo, esse conjunto não é válido.

Por exemplo: foi gerado o conjunto de alunos AB. A marcou as opções 1 e 2, já B marcou as respostas 3 e 4. Na primeira chamada dessa função, o vetor \mathbf{V} será inicialmente 0000, já na segunda chamada ele será 1100 e ao término dessa chamada ele será 1111 e será considerado um conjunto válido, já que nenhum aluno marcou respostas iguais e de tamanho 2.

Já se o aluno A marcou as opções 1, 2, 3 e o aluno B marcou as opções 3 e 4, o programa detectará que o conjunto AB é inválido, já que na segunda chamada da função o vetor \mathbf{V} será 1110 e, ao tentar adicionar o inteiro 1 na posição 3 do vetor ocorrerá um erro, já que ela já está preenchida com 1.

A função *verificaConjunto* gera todos os conjuntos de alunos possíveis e aplica as funções citadas acima a cada um a fim de encontrar o maior conjunto válido, ou seja, o maior conjunto no qual nenhum aluno marcou opções iguais.

A imagem abaixo mostra um conjunto válido no exemplo dado na especificação e que já foi citado acima:

No exemplo, os alunos a, b e c formam um conjunto válido, já que eles não marcaram nenhuma resposta igual. Eles também formam o maior conjunto válido.

Solução aproximada:

Como a solução exata possui tempo de execução exponencial, ele se tornará inviável a partir de um determinado número de alunos. Por isso, é importante apresentar uma solução aproximada para o problema que apresente não necessariamente a solução exata, mas sim uma suficientemente boa.

As funções relacionadas à solução aproximada estão no arquivo funções Heuristica.c e serão listadas abaixo.

A função *verificaQuantidadedeRespostas* recebe um vetor **V2** do tamanho do número de alunos e as informações relacionadas ao grafo. Cada posição *i* do vetor **V2** será preenchida com a quantidade de respostas marcadas pelo aluno *i*.

A função *escolheMenor* recebe o vetor **V2** e as informações relacionadas ao grafo. Ela retorna o índice do aluno que respondeu menos respostas, mas, antes disso, muda o número de respostas desse aluno para -1, de modo que ele não será escolhido na próxima vez que essa função for chamada.

A função *verificaEPreencheVetor* recebe o índice **i** de um aluno, o vetor **V3**, que funciona de maneira semelhante ao vetor **V** já citado anteriormente, e as informações relacionadas ao grafo. Essa função verifica se o aluno **i** possui respostas iguais a de outros alunos que já foram adicionadas ao conjunto. Caso não possua, as respostas marcadas por esse aluno são adicionadas ao vetor **V3** e a função retorna o inteiro 0. Caso contrário, a função apenas retorna 1.

A função *verificaConjunto* aplica as funções citadas acima. Um *while* repete o A vezes, onde A é o número de alunos. A cada repetição, é escolhido o aluno que marcou menos opções através da função *escolheMenor* e, depois, esse aluno é enviado para a função *verificaEPreencheVetor*. Caso essa função retorne 0, o tamanho do conjunto é incrementado.

Essa solução aproximada foi implementada baseada no fato de que alunos que marcaram um número menor de respostas possuem uma probabilidade maior de não terem marcado respostas iguais.

Leitura de dados e construção do grafo

O programa principal (*main*) lê o número de instâncias, alunos e respostas. Um *while* dentro da *main* irá criar um grafo e aplicar as funções para cada instância do arquivo de entrada.

Funções e estruturas de grafo

No arquivo *grafo.c* estão as duas funções relativas à construção da matriz que representará os grafos.

A função *inicializaGrafo* simplesmente preenche uma matriz de dimensão (número de vértices) * (número de vértices) com o número 0 em todas as posições.

A função **preencheGrafo** pega a matriz gerada pela função anterior e insere o número 1 nas posições onde existem arestas. Para isso, os vértices que possuem uma aresta entre eles são lidos no arquivo de entrada.

Também é importante ressaltar que os arquivos de texto devem possuir um n ou r em cada quebra de linha para que todas as linhas das opções de respostas sejam lidas corretamente. No entanto, esse é o padrão para arquivos de texto gerados no Mac, Windows ou Linux, portanto isso não deve gerar problemas na leitura dos arquivos.

3. ANÁLISE DE COMPLEXIDADE

Α	Alunos		
R	Opções		
	de		
	Respostas		

Funções relacionadas ao algoritmo exato

A função *reiniciaVetor* e *preencheConjuntoVertices* possuem complexidade de tempo O(R), já que apenas preenchem um vetor de tamanho R. A complexidade de espaço também é O(R).

Já a função *verificaConjuntos* possui complexidade de tempo $O(2^{A*}R)$, já que o primeiro *for* repete 2^A vezes e o *for* interno se repete R vezes. A complexidade de espaço é O(A*R+R), já que essa função usa uma matriz de tamanho A*R e um vetor de tamanho R.

Desse modo, a complexidade do programa com a solução exata possui complexidade de tempo $O(2^{A*}R)$.

Funções relacionadas ao algoritmo aproximado

A função *verificaEPreencheVetor* possui complexidade de tempo O(R), já que preenche um vetor de tamanho R. Já a *escolheMenor* tem complexidade de tempo O(A), já que preenche percorre uma das linhas da matriz. A função *verificaQuantidadeDeRespostas* percorre toda a matriz, então possui complexidade de tempo O(A*R).

A complexidade de tempo da função *verificaConjunto* é O(R+A*A*R), já que, logo no início da função é preenchido um vetor de tamanho R e, logo depois, as funções *escolheMenor* e *verificaEPreencheVetor* são chamadas A vezes.

Desse modo, a complexidade de tempo do programa com o algoritmo aproximado é $O(A^{2*}R)$.

4. ANÁLISE EXPERIMENTAL

Ambiente utilizado

• Processador: Intel Core i5, 2,5 GHz;

Memória: 10 GB, 1600 MHz, DDR3;

• Sistema operacional: Mac OS X, versão 10.9.1;

• Compilador: GCC.

Compilação

O programa deve ser compilado através do terminal através do comando *make*, que irá gerar um executável chamado *tp2*.

De modo alternativo, é possível digitar apenas *make run-e, ou make run-h* no terminal para que o executável do algoritmo exato, ou o aproximado, respectivamente, seja gerado e compilado, gerando automaticamente a saída do programa.

Execução

A execução do programa tem como parâmetros:

- Um arquivo de entrada;
- Um arquivo de saída.

O comando de execução do programa é da forma: ./tp2e input.txt output.txt ou ./tp2h input.txt output.txt.

Ou então, os programas poderão ser executado com os comandos make run-e e make run-h.

Experimentos

Na imagem abaixo é possível ver um experimento do algoritmo exato onde o número de alunos é aumentado.

No eixo X está o número de alunos e no eixo Y o tempo de execução em segundos. A linha vermelha é o tempo de execução do programa. Já a linha verde é a função $f(x)=(x^*2^x)/15000000$ e foi adicionada para mostrar que o tempo de execução do programa realmente possui tempo de execução exponencial.

No gráfico abaixo é possível ver o tempo de execução do algoritmo aproximada quando variamos o número de alunos e deixamos o número de opções de respostas fixo, em seguida está o gráfico do tempo de execução quando variamos o número de opções e fixamos o número de alunos.

É possível constatar que a complexidade de tempo desse algoritmo é realmente O(A²*R), já que o gráfico do tempo de execução de quando se varia o número de alunos torna-se semelhante a um gráfico de uma função quadrática e quando obtemos o gráfico do tempo de execução de quando se varia o número de opções de respostas obtemos um gráfico de uma função de parece ser linear.

De fato, a função $f(x)=10*x^2$ irá crescer muito mais rápido do que a função $f(z)=10^2*z$, como pode ser visto no gráfico abaixo.

5. CONCLUSÕES

Neste trabalho, foi descrita a implementação de uma solução exata e outra solução aproximada de um problema do tipo NP-Completo. É importante criar soluções heurísticas para problemas do tipo NP-Completo, já que o tempo de execução da solução exata torna-se inviável a partir de um certo número de entradas. Mesmo que a solução heurística não retorne valor exatos, ela pode ser usada, já que, caso ela seja feita de uma maneira inteligente, a margem de erro do resultado será pequena.

Após a conclusão do trabalho, foi constatado que o problema poderia ser modelado como um Conjunto Independente. No entanto, optei por não modificar o código, uma vez que a solução para encontrar um Conjunto Independente é semelhante à solução feita por mim.

6. REFERÊNCIAS BIBLIOGRÁFICAS

¹ Livro Projeto de Algoritmos, Nívio Ziviani, 3^a edição.