

		Critical Numbers
		The critical numbers for a function, to we those numbers, C, in the
		The critical numbers for a function, of a those numbers, C, in the
		f'(c) = 0 or f'(c) DNE (i.e. is undermed)
		A critical point is a point whose x-coordinate is a cortical number and has $y = f(c)$. (ie the point $(c, f(c))$)
		and has y=f(c). (ie the point (c,f(c)))
		polying the lest
		1) locate the critical numbers of falong the number line
		1) locate the critical numbers of falong the number line (i.e. solve fo(x) = 0 and fo(x) AVE)
		I Choose fest points between critical numbers and evaluate
		f'at cach. If f'(x.) >0 then fix increasing
		on the Interval. If f'(Xtest) <0 then f is increasing
	2.9	betomine the interals on which fis increasing and decreasing.
	(4)	$f(x) = 4x^3 - 15x^2 - 72x + 5$; First find the derivative
		$f'(x) = 12x^2 - 30x - 72 = 6(2x^2 - 5x - 12)$
		$5 f'(x) = 0$ possible? les? $f''(x) = 6(2x^2 - 5x - 12)$ = $6(2x + 3)(x - 4) = 0$
<u>-</u> a	8	
	-3/z	This gives us Sinbruls: $ x-3 z $ or $ x-4 =0$ are critical purbos
		This giver us Sintowals: \$\(\sigma - 3/\) \$\(\sigma \)
		(-0,-3/E) (-3/E,4) (4,00) in these intervals to see A the function is Increasing as decreasing along the virtural.
		the function is Increasing as
		decreasing along the Uniterial.
	0	\mathcal{J}

	§5.1: Relative Extrema
	of s. A function has a selective (or local) extremum (plural: extrema) at c if it has either a relative maximum or Minimum, these
/	If C is an enclosint of the domain of I we only consider X in the half open interval that is in the domain
	i.e.) allextrema min
	Relative Maximum of Minimum
·	Let C be a number in the domain of f , then $f(c)$ is a relative (or bead) paximum for f is $\Xi(a,b)$ an open interval containing c st $f(x) < f(c)$; $\forall x \in (a,b)$
•	Likewise f(c) is a local minimum for f if 7 (a,b) containing C ST f(x)>f(c); Ux6(a,b)
•	If a function f has a relative extremum at c, then c is a critical number, or c is an endpoint of the domain.
\ <u></u>	irst Derivative Test
	- Let c be a critical number for a function f. Suppose that fils

continuous on (a, b) and differentiable on (a, b), except possibly at c,

and that c is the only critical number for fin (a/d)

Then the following are true:

(8)
$$f(x) = (5-9x)^{2/3} + 1$$
 Find the derivative?

 $f'(x) = \frac{2}{7} \cdot \frac{1}{7} (5-9x)^{3/2} (-1) = \frac{6}{7(5-9x)^{3/2}}$

Can $f'(x) = 0$? No $\frac{3}{7}$ Can $f'(x)$ be underlined? Les $\frac{3}{7}$

(5-9 $\frac{3}{7}$ = 0 =) 5-9 $\frac{3}{7}$ = $\frac{3}{7}$ (1) $\frac{3}{7}$ $\frac{3}{7}$ (2) $\frac{3}{7}$ $\frac{3}{7}$ (2) $\frac{3}{7}$ (3) $\frac{3}{7}$ (4) $\frac{3}{7}$ (5) $\frac{3}{7}$ (5) $\frac{3}{7}$ (6) $\frac{3}{7}$ (7) $\frac{3}{7}$ (7) $\frac{3}{7}$ (8) $\frac{3}{7}$ (9) $\frac{3}{7}$ (9) $\frac{3}{7}$ (10) $\frac{3}{7}$ (10) $\frac{3}{7}$ (10) $\frac{3}{7}$ (11) $\frac{3}{7}$ (11) $\frac{3}{7}$ (11) $\frac{3}{7}$ (11) $\frac{3}{7}$ (12) $\frac{3}{7}$ (13) $\frac{3}{7}$ (13) $\frac{3}{7}$ (14) $\frac{3}{7}$ (15) $\frac{3}{7}$ (15) $\frac{3}{7}$ (15) $\frac{3}{7}$ (15) $\frac{3}{7}$ (16) $\frac{3}{7}$ (17) $\frac{3}{7}$ (17) $\frac{3}{7}$ (18) $\frac{3}{7}$

§5.3: Higher Derivatives, Concavity, and the Second derivative test Def": If a function, f, has a destrative, f', then the derivative of f', if it exists, is the second derivative of f denoted f": $D_X[f'(x)] = f''(x) = The second desivative of f$ Notation for higher desiratives: The second derivative of y=f(x) can be written as f"(x); dx; or Dx[f(x)] or y or d2 [f(x)] For the 3rd derivative we may write f''(x), but when n > 3 instead of Prime Notation: $f(n)(x) = \frac{d^n x}{dx^n} = D_x f(x) 7$ C.g. find the second and third derivative: $(x) = (x) = 4x^3 + 5x^2 + 6x - 7$ $\Rightarrow f'(x) = |2x^2 + |0x + 6| \Rightarrow f''(x) = 24x + |0| \Rightarrow f''(x) = 24$ (B) $f(x) = (x^{3}-1)^{2} \Rightarrow f'(x) = 2(x^{3}-1)^{6}(3x^{2}) = 6x^{5}-6x^{2}$ $\Rightarrow f''(x) = 30x^{4}-12x \Rightarrow f'''(x) = 120x^{3}-12$ (C) $f(x) = \frac{\int f(x) dx}{\int f(x) dx} = \frac{\int f(x) dx}{\int f(x) dx}$ Find f'(x) $\Rightarrow f'(x) = uv' + u'v = (\ln x)(-e^{-x}) + \frac{1}{x}e^{-x} = -\ln xe + xe$ $f''(x) = u_1 v_1 + u_2 v_2 + u_2 v_2 = (-\ln x)(-e^{-x}) + (-x^{-2})e^{-x}$ $+ x^{-1}(-e^{-x}) + (-x^{-2})e^{-x}$

(P)	Suppose the position of plane relative to the airport is $S(E) = 4t^3 + 3t^2 + 2$ Find velocity and acceleration
	Find velocity and accelesation
	$V(t) = s'(t) = 12t^2 + 6t$
	$V(t) = s'(t) = 12t^2 + 6t$ a(t) = s'(t) = v'(t) = 24t
	The state of the s
_	The first doivative tells us when a tundrion is increasing or decreasing (hence extrema)
-	The second demative gives us the rate of change of the tist derivative
	The second derivative gives us the rate of change of the first derivative (i.e. the rate of change of the velocity is the acceleration")
	So f"(x) 20 =) Specoling up
	So f"(x) 20 =) Speeding up f"(x) 40 => Slowing down
_	In the context of agraph, I"(x) tells us about the slape or "inthection"
	1 Max
	inflection concave of the concave of the concave
	concave downward min integral burnward y
	-Concave downword Spills water" Concave upword "holds water"
	- A point where the concernity of the graph of a function changes
	is known as an inflection point
	int.
	Concave down decreasing moreasing
	decreasing increasing our whole concave down our whole domain
0	

Test for concavity	
	points in the.
Let f be a function with derivatives f and f" existing at all interval (a,b). Then f is concave upward on (a,b) if f	(X) >0
txe(a,b) and concave downward on (a,b) if f"(x) 40	, txe(a,6)
- An inflection point for a function occurs when full	X) = O or fu(x) DNE
Second derivative Test (for extrema)	
Let f"(x) exist on some open intoval containing C and let f'(c)=0	(except possibly citself)
(i) If f"(c) >0 then f(c) is a relative Minimum	f"(x)<0
(2) If f"(c) <0 then f(c) is a relative maximum	Max
B) If f"(c) = 0 or f"(c) DUE then the test	Concave Concave
gives No information about extrana (somust	f. (k) 20
Use first doilatime fest)	Min
e.g. Find all intowals where the function is concave us down word, find all inflection points and reextrema using the second derivative test	pward of elative.
$(A) f(x) = -x^3 - 12x^2 - 45x + 2$	
First find critical Pts:	
$f'(x) = -3x^2 - 24x - 45 = -3(x^2 + 8x + (5) = -3$	(x+5)(x+3)=0
$\Rightarrow \chi_{c} = -3, -5$	
f''(x) = -6x - 24 Now plug in to get extrema: $f''(-3) = -6(-3) - 24 = 18 - 24 < 6 \Rightarrow max 6 = 8 - 3$	(63)
$\int_{-5}^{1}(-5) = -6(-5) - 24 = 30 - 24 > 0 = 0 \text{ min } 6(-5).$	f(25)
	1 (1)

Now we need to find concavity, set I'MX = S f"(x)=0=>-6x-24=0=>X===-4 This gives us intovals to check (+1 X-1) $X_{7}=-5 \Rightarrow f''(-5) = 30-24 > 0$ (concave?) C-4,00) x=0 => f "(0)=0-24 40 (concare down) Since concauty switches we have an inflection point (6) $f(x) = 2e^{-x^2}$ $f'(x) = 2e^{-x^2}(-2x) = -4xe^{-x^2}$ Critical $f'(x) = 0 \Rightarrow -4x(e^{-x^2}) = 0 \Rightarrow \boxed{x=0}$ $\int u(x) = -4 \left[x \left(e^{-x^2} - 2x \right) + 1 \left(e^{-x^2} \right) \right] = -4 e^{-x} \left[1 - 2x^2 \right]$ Plug in Xe to classify extremum: $f''(0) = -4e^{6}(1-67) = -4(0) = 2$ Now check for concavity (1/x) = -4e-x [1-2x] = 0 => 1-2x2=0 = (1+f2x)(1-f2x) > X= + = = 2 x.707

