Mengfan Long

mengfal@umich.edu | 734-395-2442 | LinkedIn

PROFESSIONAL SUMMARY

• Graduate student with a strong foundation in mathematics, statistics, computer science, and financial econometrics, with experience in research, projects, and internships. Skilled in high-dimensional statistics, reinforcement learning, and applying system-level thinking to quantitative problems.

EDUCATION

University of Michigan

Ann Arbor, MI

Master of Applied Statistics

Expected May 2026

• Rélevant Coursework: Machine Learning, Deep Learning, Reinforcement Learning, Probability Theory, Time Series, Statistical Theory, Stochastic Processes, Data Structures, Optimization.

University of Queensland

Brisbane, QLD

Bachelor of Economics in Econometrics (Honors)

Graduated Nov. 2023

• Honors: First Class Honors (GPA: 3.85/4), Dean's Honor Roll (Top 10%), FitzGerald Scholarship.

Professional Experience

Quantitative Trading Intern

Jul - Sep 2022

Fx Trading Plus

Sydney, Australia

- Designed and fine-tuned statistical and deep learning models (XGBoost, LSTM) for short-term price prediction, improving signal precision and boosting Sharpe ratio by 10%.
- Developed and trained reinforcement learning agents (PPO, DDPG) in FinRL environments to optimize portfolio rebalancing under volatile market regimes, leveraging reward shaping and policy iteration.
- Engineered transformer-based trading systems for dynamic position sizing; deployed latency-efficient inference in C++ with PyTorch bindings, improving risk-adjusted returns by 12%.

Academic Projects

Research Assistant – High-Dimensional Discriminant and Copula Models

Feb - Nov 2023

University of Queensland

Brisbane, Australia

- Proposed and implemented a novel discriminant analysis method for high-dimensional Gaussian mixtures using sparse EM and convex optimization, addressing non-normality and overfitting in classical LDA/QDA.
- Extended the model with **copula-based dependence structures** to capture **nonlinear tail risk** and **marginal-joint separability** using **HD-GMCM** and **Statistical inference**.
- Outperformed sparse LDA and lasso logistic regression on both simulated and real-world datasets, achieving a 15–20% gain in classification accuracy and improved model stability under high-dimensional settings.

Automated Trading System

Apr – Aug 2025 Code Repository

Personal Project

- Architected and built a modular algorithmic trading framework tailored for reinforcement learning strategies, integrating historical backtesting, PnL accounting, and risk-adjusted performance diagnostics.
- Optimized **PPO** and **DDPG** agents for continuous action spaces with customized **reward shaping** (e.g., Sharpe boosting, drawdown regularization), yielding up to 15% gain in Sharpe ratio over rule-based baselines.
- Implemented efficient inference layer with C++/Python bindings, enabling real-time deployment of PyTorch
 models and simulating end-to-end execution under latency and slippage stress tests.

SKILLS SUMMARY

- Computer Science: Machine learning, Deep learning, Reinforcement learning, Data structures and algorithms; Completed 150+hard LeetCode problems covering DP, trees, and graph algorithms.
- Programming & Tools: Python, C++, R, SQL, MATLAB; Experienced with Git, GitHub, LaTeX, Linux, Docker, VSCode, Jupyter, PyTorch, TensorFlow, and Stata.
- Mathematics: Linear algebra, Optimization, Numerical methods, Analysis, copula-based modeling.
- Statistics: Bayesian, Time series, Statistical inference, Probability and Statistical theory, Regression.