CSC405 Microprocessor

8086 Microprocessor

Modes of Operation

8086 – Pin Diagram

- > 8086 operates in 2 modes:
 - i. Minimum Mode
 - ii. Maximum Mode
- The minimum mode is used for a small system with a single processor
- The maximum mode is for medium size to large systems with 2 or more processors.

8086 – Functional Pin Diagram

8086 – Pin Configuration

Pin Definitions:

- 1) Supply pins (3 pins)
- 2) Clock related pins (3 pins)
- 3) Address & Data pins (21 pins)
- 4) Interrupt pins (2 pins)
- 5) Other Control pins (3 pins)
- 6) Mode Multiplexed signals (8 pins)

8086 – Pin Configuration

Pin Definitions:

Mode Multiplexed signals (8 pins)

MIN Mode	MIN Mode
HOLD	DT/R
HLDA	M/IO
WR	ALE
DEN	INTA

8086 – Pin Configuration

Pin Definitions:

Mode Multiplexed signals (8 pins)

MAX Mode	
$\overline{RQ_0}/G\overline{J_0}$	
RQ_1/GT_1	
LOCK	
S ₀	

8086

Some common components of 8086 circuit in MIN or MAX mode are:

- 1. 8282: (8 bit) Octal Latch
- 2. 8286: (8 bit) Octal bus Transreceiver
- 3. 8284: Clock Generator.
- 4. 8288: Bus Controller

Microprocessor

8282: (8 – bit) Octal Latch

8282: 8 bit latch

- The address data bus AD15-ADO is time multiplexed
- multiplexed with S₃ -S₄
- Also BHE & S7 is multiplexed.
- The address bus and the BHE signal are demultiplexed using the ALE signal and then latched into 8282

8282: 8 bit latch

- > The high ALE asserts the STB of 8282, It enables the external latches to store the address.
- Thus to get the 20 bit address (A0-A7, A8-A15,A16-A19) and the BHE signal, 3 8282's are read (8 bit latch & 21 lines, so 3 latches read).

8286: (8 – bit) Octal bus Transreceiver

8286: Octal trans-receiver (Transmitters & Receivers)

- i. Contains fully parallel 8 bit bus trans-receiver. ∴ 2 transceivers are required as data bus is 16 bits.
- ii. Tri-state (high impedance outputs)
- iii. / Acts as bidirectional buffer and increases the driving capacity of the data bus.
- iv. It is enabled when OE is low

T controls the direction of flow of data

 $T = 1 \longrightarrow data$ is transmitted

 $T = 0 \longrightarrow data is received$

8086 – Demultiplexing Address and Data Bus

8284: Clock Generator

8284: Clock Generator & Driver

- i. Provides CLOCK (C LK) signal, a train of pulses at a constant frequency
- ii. It synchronizes the READY (RDY) signal which indicates that an interface is ready for data.
- iii. Also synchronizes the RESET (RST) signal which is used to initialize the system
- iv. 2 ways:

EFI - (External Frequency Input)

X1,X2 –Oscillator Clock Input)

Clock Input selection

 $F/\overline{C} = 1 \longrightarrow \text{clock given through EFI}$

 $F/\overline{C} = 0 \longrightarrow \text{clock given through Crystal}$

(Oscillator inputs X1,X2 pins)

8086 - Minimum Mode Minimum System Block Diagram

Read M/Cycle in Min Mode

Microprocessor

Write M/Cycle in Min Mode

Microprocessor

8086			
D:n	Мс	ode	
Pin	Minimum	Maximum	
31	HOLD	RQ/GT0	
30	HLDA	RQ/GT1	
29	WR	LOCK <u>S2</u> <u>S1</u> S0	
28	м/ 10	<u>52</u>	
27	DT/R	<u>\$1</u>	
26	DEN	<u>5</u> 0	
25	ALE	QS0	
24	ĪNTA	QS1	

Microprocessor Dr. Gauri Shukla

23

8288: Bus Controller

8086: Operating Modes

When the Minimum mode operation is selected, the <u>8086</u> provides all control signals needed to implement the memory and I/O interface.

While in Maximum mode operation, the <u>8288 provides all</u> <u>control signals</u> needed to implement the memory and I/O interface.

•

- i. It is used in maximum mode configuration
- ii. It accepts the CLK signal along with S_0 , S_1 , S_2
- iii. It generates the command, control & timing signals at its output

Microprocessor

Microprocessor

CEN	IOB	AEN	Description
/ 1	1	X	I//O bus Mode; all control lines enabled; MCE/PDEN = PDEN
1	Ο	1	System Bus Mode but all control signals disabled the bus is busy i.e. controlled by another bus master
1	Ο	0	System Bus Mode, all control signals active; the bus is free for use; MCE/PDEN = MCE
0	X	X	All command outputs and DEN and PDEN outputs are disabled

► MCE: master cascade enable

CEN: Command Enable

PDEN: Peripheral Data Enable

AEN: address enable

Microprocessor

Intended for the 8288 bus controller

S	2	$\overline{S_1}$	S ₀	Processor State
0	/	0	0	Interrupt acknowledge
0		0	1	I/O Read
0		X	0	I/O Write
0		1	1	Halt
/1		0	0	code access
1		0	1	Memory Read
1		1	0	Memory Write
1		1	1	passive

8086 – Maximum Mode Maximum System Block Diagram

8086 – Queue Operation

Queue Status

QS ₁	QS ₀	Current Instruction
0	Ø	NOP
0	1	First byte of Opcode from Queue
1	Ø	Empty the queue
1	1	Subsequent byte from Queue.

Write M/Cycle in Max Mode

Comparison between Min and Max mode