K-Means Clustering on IRIS Dataset

sepal_length sepal_width petal_length petal_width

3.5

```
In [185]: %matplotlib inline
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
In [186]: | df = pd.read csv("IRIS.csv")
```

species

df.head()

Out[186]:

1	4.9	3.0	1.4	0.2 Iris-setosa
2	4.7	3.2	1.3	0.2 Iris-setosa
3	4.6	3.1	1.5	0.2 Iris-setosa
4	5.0	3.6	1.4	0.2 Iris-setosa

0.2 Iris-setosa

We have object data type so assignment and conversion integer type.

```
In [187]: df['species'].unique()
Out[187]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

In [188]: | df['species'] = df['species'].replace({'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2}) df.head()

188]:						
		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	2	16	2.1	1.5	0.2	0

Data columns (total 5 columns):

dtypes: float64(4), int64(1)

7.900000

4.400000

1.000000

-0.109369

-0.11

memory usage: 5.9 KB

sepal_length 150 non-null float64 sepal width 150 non-null float64 petal length 150 non-null float64

> 150 non-null float64 150 non-null int64

	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
In [189]:	df.int	Eo()				
		'pandas.co			>	

In [190]: df.describe()

petal_width

species

Out[190]: sepal_length sepal_width petal_length petal_width species 150.000000 150.000000 150.000000 150.000000 150.000000 count 3.054000 3.758667 1.000000 5.843333 1.198667 mean 0.828066 0.433594 0.763161 0.819232 1.764420 std 4.300000 min 2.000000 1.000000 0.100000 0.000000 25% 5.100000 2.800000 1.600000 0.300000 0.000000 50% 5.800000 3.000000 4.350000 1.300000 1.000000 6.400000 3.300000 5.100000 75% 1.800000 2.000000

6.900000

sepal_length sepal_width petal_length petal_width

-0.109369

1.000000

0.871754

-0.420516

Out[191]:

In [191]:

max

df.corr()

sepal_width

sepal_length

sepal_length

petal_length	0.871754	-0.420516	1.000000	0.962757	0.949043			
petal_width	0.817954	-0.356544	0.962757	1.000000	0.956464			
species	0.782561	-0.419446	0.949043	0.956464	1.000000			
import seabo								
sns.heatmap(df.corr(),	annot= True)						

2.500000

2.000000

-0.356544 -0.419446

species 0.782561

Out[192]: <matplotlib.axes. subplots.AxesSubplot at 0x211b9c8a780> - 1.00

0.817954

0.87

0.82

0.78

6

Out[193]: <matplotlib.axes. subplots.AxesSubplot at 0x211b9c712e8>

5 petal_length 2 1 2.0 sepal_width In [194]: X = df.iloc[:, [1, 2]].valuesIn [195]: **from sklearn.cluster import** KMeans fig = plt.figure(figsize=(10, 8)) WCSS = []

for i **in** range(1, 11): clf = KMeans(n clusters=i, init='k-means++', max iter=300, n init=10, random state=0) clf.fit(X) WCSS.append(clf.inertia) plt.plot(range(1, 11), WCSS) plt.title('The Elbow Method') plt.ylabel('WCSS') plt.xlabel('Number of Clusters') plt.show() The Elbow Method 500 400

plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], color='green', s=60, label='Cluster 2', edgecolor s='black')

cluster centres plt.scatter(clf.cluster_centers_[:, 0], clf.cluster_centers_[:, 1], color='magenta', s=100, label='Cent roid',edgecolors='black') plt.legend() plt.title('Clusters using KMeans') plt.ylabel('Sepal Width') plt.xlabel('Petal Length') plt.show() Clusters using KMeans Cluster 1 Cluster 2 Centroid 6

