(测试时间: 8:00-11:30)

题目名称	比大小	染色	质因数分解	滑冰
题目类型	传统型	传统型	传统型	传统型
目录	lexi	paint	prime	shortest
可执行文件	lexi	paint	prime	shortest
输入文件名	lexi.in	paint.in	prime.in	shortest.in
输出文件名	lexi.out	paint.out	prime.out	shortest.out
每个测试点时限	1.0秒	1.0秒	3.0秒	1.0秒
内存限制	256M	256M	256M	256M
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

提交源程序文件名

对于C++语言 lexi.cpp qift.cpp taxi.cpp score.cpp
--

二、注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是O。
- 3、结果比较方式:全文比较(过滤行末空格及文末回车)。
- 4、本次测试需要使用文件读写。

2025模拟测试 (8)

1、比大小 (lexi.cpp)

【题目描述】

给定两个由大、小写字母组成的长度均为n的字符串a,b,现要求比较a,b的大小,比较方式为:

- 忽略大小写字母之间的差异。
- 按顺序从1到n枚举a,b的每个位置。
- 若a,b在这一位上含有相同字母,则继续枚举下一位。
- 若枚举到在某一位上*a*,*b*含有不同的字母,则比较*a*,*b*这一位置上字母的大小,较小字母代表的字符串较小,然后停止枚举。
- 如果不存在上述位置,则a,b相等。

【输入格式】lexi.in

输入分两行,每行一个字符串,第一行为a,第二行为b。(注意没有给出n)

【输出格式】lexi.out

若a,b相等,输出0,若a较小,输出-1,若a较大,输出1。

样例输入1	样例输出1
Aaaa	0
aaAa	

1<=n<=100

2、染色 (paint.cpp

【题目描述】

空地上有n个位置,每一个位置i上堆有 a_i 个 1×1 的小方块,你每一次可以执行以下两个操作之一:

- 选择一个*i*,将位置*i*上的所有方块染色一次。
- 选择h,l,r,若从l到r的位置**均有**不少于h个方块,则将这些位置上 \underline{M} 下往上数的第h个方块染色一次。

求让所有方块至少被染色一次需要的最少操作次数。

【输入格式】paint.in

第一行一个整数n,代表位置的个数。

第二行有n个整数,第i个整数 a_i 代表位置i上堆的方块数量。

【输出格式】paint.out

输出一个整数,代表最少的操作次数。

样例输入	样例输出
5	3
2 2 1 2 1	

【样例解释】

先用操作二染色所有位置最下方的一个方块,再分别染色位置(1,2)和(4)的从下往上数的第二个方块。

【数据范围】

对于 40%的数据有限制条件: 对于任意不相同的i,j有 $a_i \neq a_j$ 。

对于 100%的数据: $1 \le n \le 5000, 1 \le a_i \le 10^9$

3、质因数分解 (prime.cpp)

【题目描述】

给定n个质数 $p_1, p_2, ..., p_n$,定义好数为所有质因数均为 $p_1, p_2, ..., p_n$ 其中之一的数。给定k,请求出第k小的好数。 保证答案小于 10^{18} 。

【输入格式】prime.in

第一行一个整数,代表n。

第二行有n个用空格隔开的整数,代表 $p_1, p_2, ..., p_n$ 。

第三行一个整数,代表k。

【输出格式】prime.out

一行一个数,代表第k小的好数。

输入样例	输出样例
3	8
2 3 5	
7	

【样例解释】

满足条件的好数为1,2,3,4,5,6,8,第7个为8。 注意1也是好数。

【数据范围】

对于 50%的数据, $1 \le n \le 8$

对于 100%的数据, $1 \le n \le 16,1 < p_i \le 97,1 \le k \le 10^9$

4、滑冰 (shortest.cpp)

【题目描述】

在企鹅国,企鹅们是通过滑冰出行的。每次滑冰需要选择一个营地作为起点,一个营地作为终点,然后从营地 $A(a_x,a_y)$ 滑到营地 $B(b_x,b_y)$ 需要的时间是 $min\{|a_x-b_x|,|a_y-b_y|\}$ 。

现在企鹅豆豆在1号营地,他需要赶到N号营地参加活动,他想知道他最少需要花费多少时间?

可能存在营地重合的情况。

【输入格式】shortest.in

第一行一个整数n,代表营地个数;接下来n行,每行2个数字 x_i, y_i ,表示一个营地的坐标;

【输出格式】shortest.out

输出一个整数表示需要的最少时间。

【输入样例】

5

2 2

1 1

4 5

7 1

6 7

【输出样例】

2

【样例说明】

从营地1先到达营地4,花费1单位时间。 再从营地4到达营地5,花费1单位时间。

【数据范围】

对于 5%的数据, $x_i = y_i$ 。

对于 30%的数据, $n \leq 1000$ 。

对于另外 35%的数据, x_i, y_i 均单调不减。

对于 100%的数据, $1 \le n \le 2 \times 10^5$, $0 \le x_i, y_i \le 10^9$ 。