Topologie et normes.

Coralie RENAULT

1^{er} février 2015

Exercice

La fonction suivante a-t-elle une limite en (0,0)?

$$h:(x,y)\in\mathbb{R}^2\setminus(0,0)\mapsto \frac{xy+y^3}{x^2+y^2}$$

Exercice

La fonction suivante a-t-elle une limite en (0,0)?

$$h:(x,y)\in\mathbb{R}^2\setminus(0,0)\mapsto\mapsto\frac{x^2y}{x^4+y^2}$$

Exercice

Soit $f:(x,y)\in\mathbb{R}^2\setminus(0,0)\mapsto\frac{x^2y}{x^2+y^2}$ et f(0,0)=0 est-elle continue?

Exercice

Soient $f_1, \ldots, f_n : [0, 1] \to \mathbb{R}$ continues.

A quelle condition l'application

$$N: (x_1, \dots, x_n) \mapsto ||x_1 f_1 + \dots + x_n f_n||_{\infty}$$

définit-elle une norme sur \mathbb{R}^n ?

Exercice

Soit H un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.

a) Justifier l'existence de

$$a = \inf \left\{ x \in H/x > 0 \right\}$$

- b) On suppose a > 0. Etablir $a \in H$ puis $H = a\mathbb{Z}$.
- c) On suppose a = 0. Etablir que H est dense dans \mathbb{R} .

Exercice

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang.

a) Montrer que $\mathbb{R}^{(\mathbb{N})}$ est une partie dense de l'espace des suites sommables normé par

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$

b) $\mathbb{R}^{(\mathbb{N})}$ est-il une partie dense de l'espace des suites bornées normé par

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n| ?$$

Exercice

On note $E = \mathcal{C}^1([0,1], \mathbb{R})$.

a) Pour $f \in E$, on pose

$$N(f) = |f(0)| + ||f'||_{\infty}$$

Montrer que N est une norme sur E.

b) Pour $f \in E$, on pose

$$N'(f) = ||f||_{\infty} + ||f'||_{\infty}$$

On vérifie aisément que N' est une norme sur E. Montrer qu'elle est équivalente à N.

c) Les normes N et N' sont elles équivalentes à $\|.\|_{\infty}$?

Exercice

Soient l'espace $E = \{ f \in \mathcal{C}^1([0,1], \mathbb{R})/f(0) = 0 \}$ et N_1, N_2 les applications définies sur E par

$$N_1(f) = ||f'||_{\infty}$$
 et $N_2(f) = ||f + f'||_{\infty}$

- a) Montrer que N_1 et N_2 définissent des normes sur E.
- b) Montrer que les normes sont équivalentes.

Exercice

Sur $\mathbb{R}[X]$ on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- a) Montrer que N_1 et N_2 sont deux normes sur $\mathbb{R}[X]$.
- b) Les normes N_1 et N_2 sont-elles équivalentes?

Exercice

Soient $E = \mathcal{C}([0,1], \mathbb{R})$ et E^+ l'ensemble des fonctions de E qui sont positives et ne s'annulent qu'un nombre fini de fois. Pour toute fonction $\varphi \in E^+$ et pour toute fonction $f \in E$ on pose

$$||f||_{\varphi} = \int_0^1 |f(t)| \, \varphi(t) \, \mathrm{d}t$$

- a) Montrer que $\| . \|_{\varphi}$ est une norme sur E
- b) Montrer que si φ_1 et φ_2 sont deux applications strictement positives de E^+ alors les normes associées sont équivalentes.
- c) Les normes $\|\,.\,\|_x$ et $\|\,.\,\|_{x^2}$ sont elles équivalentes ?

Exercice

Soient $E = \mathcal{C}([0,1], \mathbb{R})$ normé par $\|.\|_{\infty}$ et la partie

$$A = \left\{ f \in E/f(0) = 0 \text{ et } \int_0^1 f(t) \, \mathrm{d}t \geqslant 1 \right\}$$

- a) Montrer que A est une partie fermée.
- b) Vérifier que

$$\forall f \in A, ||f||_{\infty} > 1$$

c) Calculer la distance de la fonction nulle à la partie A.

Exercice

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $\|.\|_{\infty}$.

Montrons que l'application $u: f \mapsto u(f)$ où u(f)(x) = f(0) + x(f(1) - f(0)) est un endomorphisme continu de E.

Exercice

Soit E un espace vectoriel normé et f une forme linéire non nulle. Montrer que f est continue ssi son noyau est fermé.

Exercice

Soit $f:I\to\mathbb{R}$ convexe. Montrer que si $a\in I$ est un minimum local de f alors a est un minimum global.

Exercice

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ dérivable, concave et vérifiant $f(0) \ge 0$. Montrer que f est sous-additive i.e.

$$\forall x, y \in \mathbb{R}^+, f(x+y) \leqslant f(x) + f(y)$$

Exercice

Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.