

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

0750570022001011000000 75.570 22 01 11 EX

Espacio para la etiqueta identificativa con el código personal del **estudiante**. Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún material
- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Problema 1

- a) Formalizad las siguientes frases usando la lógica de enunciados. Usad los átomos propuestos.
 - C: Hacer mucho calor
 - V: Comprar un ventilador
 - A: Comprar un aire acondicionado
 - B: Comprar un abanico
 - E: Usar electricidad para refrescarme
 - 1) Solo si no hace mucho calor me compro un abanico y no compro ni un ventilador ni un aire acondicionado

$$B \ ^{\wedge} \ ^{\neg}V \ ^{\wedge} \ ^{\neg}A \rightarrow \ ^{\neg}C$$

2) Solo uso electricidad para refrescarme si hace mucho calor y me compro un ventilador o me compro un aire acondicionado

$$E \rightarrow C \wedge (V \wedge A)$$

3) Si no me compro un ventilador o no me compro un aire acondicionado, no usare electricidad para refrescarme si y solo si no hace mucho calor o tengo abanico

$$\neg V \ ^{\wedge} \neg A \rightarrow (\neg E \rightarrow \neg C \ ^{\vee} B) \ ^{\wedge} (\neg C \ ^{\vee} B \rightarrow \neg E)$$

b) Formaliza las frases que se dan a continuación utilizando, únicamente y exclusivamente, los siguientes predicados atómicos:

Dominio: Un conjunto no vacío J(x): x es una joven promesa

C(x): x es un club D(x): x es de la cantera A(x, y): x alinea y

- 1) No hay ninguna joven promesa que no sea alineada por ningún club $\neg \exists x (J(x)^{\wedge} \forall y (C(y) \rightarrow \neg A(y,x))$
- 2) Hay jóvenes promesas que son alineadas por todos los clubes $\exists x (J(x)^{\wedge} \forall y (C(y) \rightarrow A(y,x))$
- 3) No hay ningún club que no alinee ninguna joven promesa de la cantera.

```
\neg\exists x(\ C(x)^{\wedge}\neg\exists y(J(y)^{\wedge}D(y)^{\wedge}A(x,y))\ ) o també \neg\exists x(\ C(x)^{\wedge}\forall y(J(y)^{\wedge}D(y)\rightarrow\neg A(x,y))\ )
```

4) Hay clubes que alinean todas las jóvenes promesas de la cantera.

 $\exists x (C(x)^{\wedge} \forall y (J(y)^{\wedge}D(y) \rightarrow A(x,y))$

5) No hay ninguna joven promesa de la cantera que sea alineada por todos los clubes. $\neg \exists x (J(x)^{\wedge}D(x)^{\wedge} \forall y (C(y) \rightarrow A(y,x)))$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Problema 2

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Utilizad únicamente las 9 reglas básicas (es decir, no utilizéis ni reglas derivadas ni equivalentes deductivos).

$$\begin{split} & B \rightarrow A \\ & C \ ^{\vee} \neg F \rightarrow B \\ & F \rightarrow R \\ & F \rightarrow G \\ & \therefore \ ^{\vee} \neg A \rightarrow R \ ^{\wedge} G \end{split}$$

Solución:

Problema 3

Indicad aplicando resolución si el siguiente razonamiento es válido, indicad también si las premisas son consistentes.

$$\begin{array}{l} (P \rightarrow Q) \rightarrow \neg R \\ (P \rightarrow R) \rightarrow Q \\ Q \rightarrow R \land S \\ R \rightarrow \neg S \\ \therefore P \land \neg Q \end{array}$$

Solución:

Formas normales

Premisa 1: $(P \rightarrow Q) \rightarrow \neg R = (P \lor \neg R) \land (\neg Q \lor \neg R)$ Premisa 2: $(P \rightarrow R) \rightarrow Q = (P \lor Q) \land (\neg R \lor Q)$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Premisa 3: $Q \rightarrow R ^ S = (\neg Q ^ VR) ^ (\neg Q ^ VS)$ Premisa 4: $R \rightarrow \neg S = \neg R ^ V \neg S$

Negación de la conclusión : $\neg(P \land \neg Q) = \neg P \lor Q$

El conjunto de cláusulas es:

 $\{P \rightarrow R, \neg Q \rightarrow R, P \rightarrow Q, \neg R \rightarrow Q, \neg Q \rightarrow R, \neg Q \rightarrow S, \neg R \rightarrow S, \neg P \rightarrow Q\}$

en negrilla el conjunto de soporte.

Si hacemos resolución:

¬P ^v Q	¬Q ^v R
¬P ^v R	¬R [∨] ¬S
¬P ^v ¬S	¬Q ^v S
$\neg P \lor \neg Q$	¬P ^v Q
¬P	P ^v Q
Q	¬Q ^v R
R	¬Q ^v ¬R
¬Q	Q
•	

Si probamos si las premisas son inconsistentes, tenemos el conjunto de cláusulas: $\{P^{\vee}\neg R, \neg Q^{\vee}\neg R, P^{\vee}Q, \neg R^{\vee}Q, \neg Q^{\vee}R, \neg Q^{\vee}S, \neg R^{\vee}\neg S\}$

No hay ninguna P negada, por tanto podemos eliminar P '¬R i P 'Q y queda el conjunto de cláusulas:

$$\{\neg Q^{\vee} \neg R, \neg R^{\vee} Q, \neg Q^{\vee} R, \neg Q^{\vee} S, \neg R^{\vee} \neg S\}$$

Si intentamos hacer resolución:

¬R ^v ¬S	¬Q ^v S
¬R ^v ¬Q	¬R ^v Q
¬R	¬Q ^v R
¬Q	¬R ^v Q
¬R	Bucle

Podemos eliminar la cláusula ¬R '¬S $\{\neg Q \ ^{\mathsf{v}} \neg R, \ \neg R \ ^{\mathsf{v}} Q, \ \neg Q \ ^{\mathsf{v}} R, \ \neg Q \ ^{\mathsf{v}} S\}$

Ahora no gueda ninguna S negada:

 $\{\neg Q \ ^{\mathsf{v}} \neg \mathsf{R}, \ \neg \mathsf{R} \ ^{\mathsf{v}} \mathsf{Q}, \ \neg \bar{\mathsf{Q}} \ ^{\mathsf{v}} \mathsf{R}\}$

¬Q ^v R	¬Q ^v ¬R (la otra alternativa da un teorema)
¬Q	¬R ^v Q
¬R	¬Q ^v R

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Y si eliminamos la clàusula $\neg Q$ YR tenemos: $\{\neg Q \lor \neg R, \neg R \lor Q\}$

Sin ninguna R afirmada, y por tanto nos queda el conjunto vacío, esto quiere decir que las premisas son consistentes.

Problema 4

¿Cuáles de las siguientes interpretaciones:

son contraejemplos del razonamiento:

$$\forall x R(x), Q(a), \exists y \neg Q(y) : \forall x [R(x) \rightarrow Q(x)]$$
? Justifica tu respuesta.

Solución:

Un contraejemplo tiene que hacer ciertas las premisas y falsa la conclusión.

- La primera interpretación no hace cierta la primera premisa porque en el dominio {1,2} ∀xR(x) equivale a R(1)^R(2) y este enunciado es falso bajo esta interpretación.
- La segunda interpretación no hace cierta la tercera premisa porque en el dominio $\{1,2,3\}$ $\exists y \neg Q(y)$ es equivalente a $\neg Q(1)^{v} \neg Q(2)^{v} \neg Q(3)$ y este enunciado es falso bajo esta interpretación.
- La tercera interpretación no hace cierta la segunda premisa porque Q(a) es equivalente a Q(2) cuando a=2 y en esta interpretación Q(2)=F.
- La cuarta interpretación tampoco hace cierta la primera premisa, que en el dominio {1,2,3} equivale a R(1)^R(2)^R(3), enunciado que es falso bajo esta interpretación.

Ninguna de las interpretaciones dadas es un contraejemplo.

Problema 5 (versión inicial)

Se quiere diseñar un circuito lógico usando únicamente puertas NAND para la expresión: (A• B) [] C

a) Reescribe la fórmula usando únicamente el operador 1.

$$(A \bullet B) \square C = \sim (A \bullet B) + C = \sim \sim (\sim (A \bullet B) + (C \bullet C)) = \sim (\sim \sim (A \bullet B) \bullet \sim (C \bullet C)) = (\sim (A \uparrow B)) \uparrow (C \uparrow C) = [(A \uparrow B) \uparrow (A \uparrow B)] \uparrow (C \uparrow C)$$

b) Comprueba la equivalencia de las dos fórmulas construyendo su tabla de verdad.

Α	В	С	A·B	(A⋅B)□C	(A↑B)	$(A\uparrow B)\uparrow (A\uparrow B)$	(C↑C)	$[(A\uparrow B)\uparrow (A\uparrow B)]\uparrow (C\uparrow C)$
---	---	---	-----	---------	-------	---------------------------------------	-------	---

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

1	1	1	1	1	0	1	0	1
1	1	0	1	0	0	1	1	0
1	0	1	0	1	1	0	0	1
1	0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	0	0	1
0	0	0	0	1	1	0	1	1

Problema 5 (versión corregida)

Se quiere diseñar un circuito lógico usando únicamente puertas NAND para la expresión: (A• B) + C

c) Reescribe la fórmula usando únicamente el operador ↑.

$$(A \bullet B) + C = (A \bullet B) + (C \bullet C) = \sim \sim ((A \bullet B) + (C \bullet C)) = \sim (\sim (A \bullet B) \bullet \sim (C \bullet C)) = (A \uparrow B) \uparrow (C \uparrow C)$$

d) Comprueba la equivalencia de las dos fórmulas construyendo su tabla de verdad.

Α	В	С	A·B	(A·B)+C	(A↑B	(C↑C)	(A↑B) ↑ (C↑C)
)		
1	1	1	1	1	0	0	1
1	1	0	1	1	0	1	1
1	0	1	0	1	1	0	1
1	0	0	0	0	1	1	0
0	1	1	0	1	1	0	1
0	1	0	0	0	1	1	0
0	0	1	0	1	1	0	1
0	0	0	0	0	1	1	0

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	22/01/2011	09:00