PUISSANCE & RACINE

EPREUVE N°1

DATE: 10 octobre NOM: Brosseni

CLASSE : MG PA

DOCUMENT AUTORISE: Aucun

Justifiez tous vos calculs

TEMPS: 45 min

POINTS: 4 120

Présentation :

NOTE: 2 /6

Résoudre les 5 opérations en donnant la réponse sous les deux formes suivantes:

A : Réponse sans exposant négatif

B : Réponse sans dénominateur

	DONNEES	A	В
1)	$(2x^3y^{-2})^3 =$	8x9 y 6 8x9 (Grige 8x 46)	82°y-6
2)	$\left(\frac{1}{4}x^{0}y + \frac{1}{5}x^{2}y^{0}\right) = \sqrt{\frac{1}{4}x^{0}} - \sqrt{\frac{1}{6}}$	Cornige", 50	5y(4x2)-1
3)	$[(n^{-1})^{-2}]^{-4} = \tilde{n}^{-2}$	Grigo: A	n-8 V
4)	$\left(\frac{2}{9}z^4 + 7\lambda \alpha^2\right)^0 \div 2y^{-2} =$	1 ms 2 2 1 ms	Corrige 0,5g2
5)	$\frac{(a^{3} \cdot y^{-2} \cdot z^{4})^{2}}{(a^{-2} \cdot y^{4} \cdot z^{-1})^{3}} = \frac{2^{6} \cdot y^{-9} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{3}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - \frac{2^{6} \cdot y^{-7} \cdot z^{6}}{2^{6} \cdot y^{-7} \cdot z^{6}} - 2$	25.58 25.58	> arzu yu -8

Résoudre les 5 opérations en donnant la réponse sous les deux formes suivantes:

A : Réponse sans exposant fractionnaire

B: Réponse sans radical

	DONNEES			
1)	DONNEES		Α	В
"	\$\sqrt{1\$\sqrt{a^6}} = \$\sqrt{4} \qqqqq		36/a	a 1
/		Corrigé :	> 1/a =	Da 10
(2)	$\left[\frac{p^{0} \cdot p^{-5}}{p^{-8}}\right]^{\frac{1}{3}} = \left(p^{-13}\right)^{\frac{1}{3}} = \frac{3}{\sqrt{p^{-13}}}$		3 3	6-13) 3
3)		Grige 5	6-5/3-0-5/8 0-8/3-0-3-8	P8-5 / 50
11	$\frac{\sqrt[3]{16} \cdot \sqrt[3]{4}}{\sqrt[5]{16} \cdot \sqrt[5]{2}} = \frac{\sqrt[3]{6^{\circ}}}{\sqrt[5]{32}} = \frac{\sqrt[3]{6}}{2}$		21	2
4)	$\sqrt[np]{\frac{a^p}{b^n}} = \frac{a}{b}$		MP 32	a b
5)		Parrige	, a no	= 970,670
5)	$2.\sqrt{\frac{1}{45}}.3.\sqrt{\frac{3}{4}}.4.\sqrt{80} =$		011 7 3	648
/	2, 12, 3, 3, 4, 9 = 24, 3	3 11 =	L16, 45:09	240
	- 15 - 2 14 15 - 218 1-	13-7- VI	11 2 11 6	00 / 1

 $\frac{74}{9} \qquad \frac{2}{1} \frac{716}{8} \cdot \frac{3}{15} \frac{1}{2} - \frac{698}{8} \cdot \frac{1}{30} - \frac{698}{240}$