Homework 1: Complex Numbers

MATH 3160 Miguel Gomez

Completed: August 22, 2025

Problem 1: Complex Number Reduction

Reduce each of these to a real number:

(a)
$$\frac{1+2i}{3-4i} + \frac{2-i}{5i}$$

$$\frac{1+2i}{3-4i} + \frac{2-i}{5i} = \frac{(1+2i)(3+4i)}{(3-4i)(3+4i)} + \frac{(2-i)(-5i)}{(5i)(-5i)} = \frac{(1+2i)(3+4i)}{9-16i^2} + \frac{(2-i)(-5i)}{-25i^2} = \frac{(3+4i+6i+8i^2)}{9-16i^2} + \frac{(-10i+5i^2)}{-25i^2} = \frac{(3+4i+6i-8)}{25} + \frac{(-10i-5)}{25} = \frac{(3+4i+6i-8)}{25} + \frac{(-10i-5)}{25} = \frac{(-5+10i)}{25} + \frac{(-10i-5)}{25} = \frac{(-5-5+10i-10i)}{25} = -\frac{2}{5}$$

(b)
$$\frac{5i}{(1-i)(2-i)(3-i)}$$

$$\frac{5i}{(1-i)(2-i)(3-i)} = \frac{5i}{(2-i-2i+i^2)(3-i)} = \frac{5i}{(1-3i)(3-i)} = \frac{5i}{(1-3i)(3-i)} = \frac{5i}{-10i} = -\frac{1}{2}$$

(c)
$$(1-i)^4$$

 ${\rm Math}~3160-{\rm HW}~1$ ${\rm Miguel~Gomez}$

Problem 2: Vector Addition and Subtraction

Locate the numbers $z_1 + z_2$ and $z_1 - z_2$ vectorially by drawing a graph when:

(a)
$$z_1 = 2i$$
, $z_2 = 2/3 - i$

(b)
$$z_1 = -\sqrt{3} + i$$
, $z_2 = \sqrt{3}$

(c)
$$z_1 = (3, 1), z_2 = (1, 4)$$

(d)
$$z_1 = x_1 + iy_1, z_2 = x_1 - iy_1$$

Math 3160 – HW 1 Miguel Gomez

Problem 3: Geometric Sets in the Complex Plane

In each case, sketch the set of points determined by the given condition:

(a)
$$|z - 1 + i| = 1$$

(b)
$$|z + i| \le 3$$

(c)
$$|z - 4i| \ge 4$$

Hint: Note that for any two complex numbers z_1, z_2 , the absolute value $|z_1 - z_2|$ is the distance between z_1 and z_2 in the complex plane.

 ${\rm Math}~3160-{\rm HW}~1$ ${\rm Miguel~Gomez}$

Problem 4: Principal Arguments

Find the principal argument Arg(z) when:

(a)
$$z = \frac{i}{-2-2i}$$

(b)
$$z = (\sqrt{3} - i)^6$$

Show your work.

 $Math\ 3160-HW\ 1$ Miguel Gomez

Problem 5: Argument Properties

For any two non-zero complex numbers z_1, z_2 , show that any angle θ in the set $\arg(z_1 z_2)$ can be written as

$$\theta = \theta_1 + \theta_2$$

where $\theta_1 \in \arg(z_1)$ and $\theta_2 \in \arg(z_2)$. Also find an example where the principal argument $\operatorname{Arg}(z_1 z_2)$ is not equal to $\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$.

 ${\rm Math}~3160-{\rm HW}~1$ ${\rm Miguel~Gomez}$

Problem 6: Principal Argument Addition

Show that if $Re(z_1) > 0$ and $Re(z_2) > 0$, then $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$. Use polar form of z_1 and z_2 to do so.