Online Appendices: Partial ownership, financial constraint, and FDI $\,$

Tadashi Ito, and Michael Ryan and Ayumu Tanaka t

Updated: March 26, 2023

^{*}Gakushuin University. Address: Faculty of International Social Sciences, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan. E-mail: tadashi.itoATgakushuin.ac.jp

 $^{^\}dagger Western$ Michigan University. Address: Department of Economics, Western Michigan University, 1903 W. Michigan Ave Kalamazoo, MI 49008, USA. ORCID: 0000-0001-9381-3112. E-mail: michael.ryan@wmich.edu

[‡]Aoyama Gakuin University, RIETI, Kyoto University. Address: College of Economics, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan. E-mail: tanaka-ayumu@rieti.go.jp

Appendices

A TFP estimation

We estimate the parent firms' production functions based on the DBJ data. Using the methods of Levinsohn and Petrin (2003) and Ackerberg et al. (2015) to estimate the production functions, we obtained insignificant coefficients for the production functions in major industries. Therefore, we employ the method of Wooldridge (2009) to estimate production functions, using the approach of Rovigatti and Mollisi (2018), namely "prodest" add-on of Stata. We find that the method of Wooldridge (2009) works well with our data. We estimate industry-specific production functions for large industries, whereas we had to estimate the production function for the economy as a whole for small industries because we obtained insignificant coefficients of the production function for these small industries owing to the small number of observations. We use value-added as the output variable, the number of workers, and total fixed assets as inputs. Moreover, we utilize intermediate inputs as proxy variables. We deflated nominal variables, such as the value added by the GDP deflator from the World Bank's World Development *Indicators.* Following Pavenik (2002), we subtract the reference firm's log productivity in the base year from that of each firm. This satisfies the transitivity and insensitivity of the measurement unit.

B List of host countries

 $\textbf{Table 1:} \ \textbf{N.} \ \textbf{of} \ \textbf{Newly} \ \textbf{established} \ \textbf{subsidiaries} \ \textbf{in} \ \textbf{OECD} \ \textbf{Countries}$

Code	Name	1989–1993	1994–2003	2004-2016	Total
AUS	Australia	8	10	1	19
AUT	Austria	0	0	1	1
BEL	Belgium	9	3	5	17
CAN	Canada	11	9	7	27
CHE	Switzerland	1	1	3	5
COL	Colombia	0	0	1	1
CZE	Czech Republic	0	14	10	24
$_{ m DEU}$	Germany	18	11	22	51
DNK	Denmark	1	0	0	1
ESP	Spain	4	6	3	13
FIN	Finland	1	0	0	1
FRA	France	13	13	10	36
GBR	United Kingdom	41	29	8	78
HUN	Hungary	3	7	2	12
IRL	Ireland	2	3	2	7
ISL	Iceland	1	0	0	1
ISR	Israel	3	0	0	3
ITA	Italy	8	7	8	23
KOR	Korea, Rep.	22	57	45	124
LUX	Luxembourg	1	1	0	2
MEX	Mexico	7	4	46	57
NLD	Netherlands	7	5	5	17
NOR	Norway	1	1	0	2
NZL	New Zealand	3	2	1	6
POL	Poland	0	6	8	14
SVK	Slovak Republic	0	1	2	3
SWE	Sweden	1	4	1	6
TUR	Turkey	0	3	5	8
USA	United States	120	131	58	309
ALL	All (29)	286	328	254	868

Table 2: N. of Newly established subsidiaries in Non-OECD Countries

Code	Name	1989–1993	1994-2003	2004-2016	Total	
ARG	Argentina	1	3	0	4	
$_{\mathrm{BGD}}$	Bangladesh	0	0	2	2	
BHR	Bahrain	0	0	1	1	
BRA	Brazil	4	14	21	39	
CHN	China	124	778	606	1508	
EGY	Egypt, Arab Rep.	0	0	1	1	
IDN	Indonesia	44	97	88	229	
IND	India	7	37	71	115	
IRN	Iran, Islamic Rep.	1	1	0	2	
KAZ	Kazakhstan	0	0	1	1	
KEN	Kenya	0	0	2	2	
KHM	Cambodia	0	0	4	4	
LAO	Lao PDR	0	0	1	1	
MAC	Macao SAR, China	0	1	0	1	
MMR	Myanmar	0	0	3	3	
MYS	Malaysia	69	55	25	149	
PAK	Pakistan	1	0	1	2	
PAN	Panama	2	0	0	2	
$_{\mathrm{PHL}}$	Philippines	17	56	15	88	
ROU	Romania	0	0	1	1	
RUS	Russian Federation	1	2	8	11	
$_{\mathrm{SAU}}$	Saudi Arabia	0	0	7	7	
$_{\rm SGP}$	Singapore	17	29	12	58	
SLB	Solomon Islands	0	0	1	1	
THA	Thailand	87	176	131	394	
TWN	Taiwan	27	49	26	102	
VEN	Venezuela, RB	1	1	0	2	
VNM	Vietnam	1	47	97	145	
ZAF	South Africa	0	3	1	4	
ALL	All (29)	404	1349	1126	2879	

Table 3: Average ownership ratio in OECD Countries

Code	Name	1989–1993	1994–2003	2004-2016	Average
AUS	Australia	.81	.78	.76	.79
AUT	Austria			.5	.5
BEL	Belgium	.71	1	1	.85
CAN	Canada	.83	.74	.98	.84
$_{\mathrm{CHE}}$	Switzerland	1	.51	.84	.8
COL	Colombia			.7	.7
CZE	Czech Republic		.91	.86	.89
$_{ m DEU}$	Germany	.72	.83	.92	.83
DNK	Denmark	1			1
ESP	Spain	.56	.67	.57	.61
FIN	Finland	.42			.42
FRA	France	.81	.7	1	.82
GBR	United Kingdom	.72	.78	1	.77
HUN	Hungary	.36	.84	.75	.7
IRL	Ireland	1	1	1	1
ISL	Iceland	.5			.5
ISR	Israel	.53			.53
ITA	Italy	.53	.62	.92	.7
KOR	Korea, Rep.	.51	.62	.75	.65
LUX	Luxembourg	.5	.5		.5
MEX	Mexico	.62	.73	.86	.82
NLD	Netherlands	.75	.8	.9	.81
NOR	Norway	.33	.2		.27
NZL	New Zealand	.63	.76	.5	.65
POL	Poland		.84	.92	.89
SVK	Slovak Republic		1	1	1
SWE	Sweden	.45	.58	1	.63
TUR	Turkey		.63	.62	.63
USA	United States	.73	.81	.94	.8
ALL	All (29)	.7	.76	.87	.77

 $\textbf{Table 4:} \ \, \textbf{Average ownership ratio in Non-OECD Countries}$

Code	Name	1989–1993	1994-2003	2004-2016	Average	
ARG	Argentina	.25	.51		.44	
$_{\mathrm{BGD}}$	Bangladesh			.55	.55	
$_{\mathrm{BHR}}$	Bahrain			.49	.49	
BRA	Brazil	.58	.8	.84	.8	
$_{\rm CHN}$	China	.52	.63	.77	.68	
EGY	Egypt, Arab Rep.			1	1	
IDN	Indonesia	.53	.65	.73	.66	
IND	India	.39	.62	.74	.68	
IRN	Iran, Islamic Rep.	.5	.44		.47	
KAZ	Kazakhstan			1	1	
KEN	Kenya			.8	.8	
KHM	Cambodia			.92	.93	
LAO	Lao PDR			.86	.86	
MAC	Macao SAR, China		.5		.5	
MMR	Myanmar			.72	.72	
MYS	Malaysia	.77	.76	.81	.77	
PAK	Pakistan	.51		.35	.43	
PAN	Panama	.5			.5	
$_{\mathrm{PHL}}$	Philippines	.68	.86	.85	.83	
ROU	Romania			1	1	
RUS	Russian Federation	.25	.47	.83	.71	
SAU	Saudi Arabia			.48	.48	
SGP	Singapore	.76	.84	.97	.84	
SLB	Solomon Islands			1	1	
THA	Thailand	.52	.61	.84	.66	
TWN	Taiwan	.57	.76	.84	.73	
VEN	Venezuela, RB	.25	1		.63	
VNM	Vietnam	.6	.67	.91	.83	
ZAF	South Africa		.57	.85	.64	
ALL	All (29)	.58	.66	.79	.7	

C Non-manufacturing subsidiaries

In the main text, we analyze only foreign manufacturing subsidiaries owned by Japanese manufacturing firms. However, Japanese manufacturing firms have non-manufacturing foreign subsidiaries. Table 5 describes the sector distribution of foreign subsidiaries owned by Japanese manufacturing firms. Manufacturing subsidiaries account for approximately 60%, whereas wholesale and retail subsidiaries account for approximately 22%. Service subsidiaries account for approximately 12%.

Table 5: Sector Distribution of Subsidiaries

	(1) Freq.	Percent
Agriculture, Mining	44	0.7
Manufacturing	3747	59.6
Wholesale	1330	21.1
Retail	90	1.4
Service, Others	762	12.1
HeadQuarter	318	5.1
Total	6291	100.0

In Table 6, we estimate the equations by sector to which foreign subsidiaries belong. Firm productivity, TFP, is positive and significant for wholesale/retail but insignificant for services. The parent firms' financial constraints and debt ratios are negatively significant for services but insignificant for wholesale/retail. The top bank ratio of the parent firms is insignificant in all non-manufacturing sectors. The intangibles ratio is negatively significant for services but insignificant for wholesale/retail. Overall, we find large sectoral heterogeneity. At the same time, our main results on manufacturing subsidiaries are close to those for all sectors the last column of Table 6 displays.

The results in Table 6 suggest that parent firm TFP affects FDI in wholesale/retail and debt ratios affect FDI in services, similar to manufacturing FDI. However, the top banks' influence on FDI disappears for non-manufacturing investments. This may be because these investments are viewed as less risky than manufacturing subsidiaries. They are typically smaller in size (both in total assets and employment), resulting in lower fixed establishment costs and marginal operational costs while often being established to provide services and facilitate exports. Establishing these subsidiaries may be less costly for the parent firm, requiring less funding and investment from its main lending (and owning) bank.

Table 6: Fractional logit results by subsidiary industry

	Wholesale Retail	Service	Total
log TFP (t-2)	6.719*** [1.935]	-2.829 [2.106]	1.909** [0.871]
Debt ratio (t-2)	0.146 [0.411]	-0.847* [0.506]	-0.731*** [0.169]
Top bank ratio (t-2)	3.610 [2.319]	1.798 [2.268]	-0.700 [0.784]
Intangibles ratio (t-2)	2.635 [4.722]	-6.403*** [2.291]	1.441 [2.059]
Observations Mean of Dep. Var. Country FE	1310 0.882 YES	722 0.858 YES	5853 0.781 YES
Parent Induiestry FE Year FE	$_{ m YES}$	$_{ m YES}$	YES YES

Robust standard errors are clustered by parent firm. Dep. var.: Parent firms' ownership ratio of foreign subsidiaries (t). * p < 0.1, ** p < 0.05, *** p < 0.01

References

- Ackerberg, Daniel A, Kevin Caves, and Garth Frazer, "Identification Properties of Recent Production Function Estimators," *Econometrica*, 2015, 83 (6), 2411–2451.
- **Levinsohn, James and Amil Petrin**, "Estimating production functions using inputs to control for unobservables," *The Review of Economic Studies*, 2003, 70 (2), 317–341.
- **Pavcnik, Nina**, "Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants," *The Review of Economic Studies*, 2002, 69 (1), 245–276.
- Rovigatti, Gabriele and Vincenzo Mollisi, "Theory and practice of total-factor productivity estimation: The control function approach using Stata," *The Stata Journal*, 2018, 18 (3), 618–662.
- Wooldridge, Jeffrey M, "On estimating firm-level production functions using proxy variables to control for unobservables," *Economics Letters*, 2009, 104 (3), 112–114.