PROGRAMACIÓN DINÁMICA

ALBERTO VERDEJO

• $\binom{n}{r}$ es el número de subconjuntos de cardinal r que tiene un conjunto de n elementos.

Implementación recursiva

$$\binom{n}{r} = \begin{cases} 1 & \text{si } r = 0 \ \lor \ r = n \\ \binom{n-1}{r-1} + \binom{n-1}{r} & \text{si } 0 < r < n \end{cases}$$

```
int num_combi(int i, int j) {
   if (j == 0 || j == i)
      return 1;
   else
      return num_combi(i-1, j-1) + num_combi(i-1, j);
}
```

Implementación recursiva, solapamiento de subproblemas

Implementación recursiva, solapamiento de subproblemas

Número de veces que se calcula $\binom{i}{j}$ para calcular $\binom{10}{5}$.

	- /,	5	4	3	2	1	0		
	10	1	///	\sim	77		13		
	9	/ 1	1					En general,	
	8	1	2	1					
	7	1	3	3	1			$2\binom{n}{n}-1$ términos	
j	6	1	4	6	4	1		$\frac{2}{r}$ - r terrinos	
	5	1	5	10	10	5	1		
	4		5	15	20	15	5	(-, 1)(-, -, 1) 1	
	3			15	35	35	15	(r+1)(n-r+1)-1	
	2				35	70	35	términos distintos	
	1					70	70	terrinos distintos	

Programación dinámica

- Utilización de una tabla (array multidimensional) donde se almacenan los resultados a subproblemas ya resueltos.
- La tabla tiene tantas dimensiones como argumentos tiene la recurrencia.
- ► El tamaño de cada dimensión coincide con los valores que puede tomar el argumento correspondiente.
- Cada subproblema se asocia a una posición de la tabla.

Tabla para los números combinatorios

- ► Mantiene el diseño recursivo.
- La función recibe como parámetro de entrada/salida, la tabla donde se almacenan las soluciones a subproblemas ya resueltos.
- Antes de resolver de manera recursiva un subproblema, se mira en la tabla por si ya se hubiera resuelto.
- ► Tras resolver un subproblema recursivo, su solución se almacena en la tabla.
- Necesidad de saber si un subproblema está resuelto o no.


```
int num_combi(int i, int j, Matriz<int> & C) {
   if (j == 0 || j == i) return 1;
   else if (C[i][j] != -1) return C[i][j];
   else {
     C[i][j] = num\_combi(i-1, j-1, C) + num\_combi(i-1, j, C);
      return C[i][j];
   Matriz<int> C(n+1, r+1, -1);
   cout << num_combi(n, r, C) << '\n';</pre>
```

- Cambiar el orden en el que se resuelve los subproblemas.
- Comenzar por resolver todos los subproblemas más pequeños que se puedan necesitar, para ir combinándolos hasta llegar a resolver el problema original.
- Los subproblemas se van resolviendo recorriéndolos de menor a mayor tamaño.
- ► Todos los posibles subproblemas de tamaño menor tienen que ser resueltos antes de resolver uno de tamaño mayor.

	0	1	2		r
0	1	0	0		0
1	1	1	0		0
2	1	2	1		0
•	•	•	•		
n	1	n	$\binom{n}{2}$	•••	$\binom{n}{r}$

```
int pascal(int n, int r) {
   Matriz<int> C(n+1, r+1, 0);
   C[0][0] = 1;
   for (int i = 1; i <= n; ++i) {
     C[i][0] = 1;
      for (int j = 1; j <= r; ++j)
          C[i][j] = C[i-1][j-1] + C[i-1][j];
   return C[n][r];
                         \binom{i}{j} = \binom{i-1}{j-1} + \binom{i-1}{j}
```

► Reducción del espacio necesario para la tabla.

Actualización sobre el propio vector.


```
int pascal2(int n, int r) {
   vector<int> C(r+1,0);
   C[0] = 1;
    for (int i = 1; i <= n; ++i)
      for (int j = r; j >= 1; --j)
           C[j] = C[j-1] + C[j];
    return C[r];\(\)
                   \binom{i}{j} \stackrel{\backslash}{=} \binom{i-1}{j-1} + \binom{i-1}{j}
```

