Bread First Search - Editorial

Robert Cummings / Eliden

May 13, 2021

Sample Input

Good and Bad Edges

Formal Definitions

We will zero-index the vertices. Let d be the distance array after adding edges. We need d[0]=0, d[1]=1, and

$$d[i] \le d[i+1] \le d[i] + 1$$

Formal Definitions

We will zero-index the vertices. Let d be the distance array after adding edges. We need d[0] = 0, d[1] = 1, and

$$d[i] \le d[i+1] \le d[i] + 1$$

Let us direct edges so that $i \to j$ when i < j. The only edge going into j that matters is the earliest one. That is, define $back[j] = min\{k : k \to j\}$, or back[j] = j if the set is empty.

$$d[i] \leq d[back[i]] + 1$$

Dynamic Programming

Let dp[i] be the minimum number of edges added so that the prefix $0, 1, \ldots, i$ is valid, and i is the end of a block. There can be no edges skipping over i's block.

Dynamic Programming

Let dp[i] be the minimum number of edges added so that the prefix $0, 1, \ldots, i$ is valid, and i is the end of a block. There can be no edges skipping over i's block.

We have dp[0] = 0. For i > 0:

$$dp[i] = \min_{\substack{0 \leq j < i \\ \forall k > i: \; back[k] > j}} \left(dp[j] + |\{k \in \{j+1, \dots, i\} : back[k] > j\}|\right)$$

Key Observations

$$dp[i] = \min_{\substack{0 \leq j < i \\ \forall k > i: \ back[k] > j}} \left(dp[j] + |\{k \in \{j+1, \dots, i\}: back[k] > j\}|\right)$$

Naively $O(n^3)$, but we can make observations:

As i increases, the valid js only increase

Key Observations

$$dp[i] = \min_{\substack{0 \le j < i \\ \forall k > i: \ back[k] > j}} (dp[j] + |\{k \in \{j+1, \dots, i\} : \ back[k] > j\}|)$$

Naively $O(n^3)$, but we can make observations:

- ► As *i* increases, the valid *j*s only increase
- ▶ As j increases, the set $\{k \in [j+1,i] : back[k] > j\}$ shrinks

Key Observations

$$dp[i] = \min_{\substack{0 \le j < i \\ \forall k > i: \ back[k] > j}} \left(dp[j] + |\{k \in \{j+1, \dots, i\}: \ back[k] > j\}|\right)$$

Naively $O(n^3)$, but we can make observations:

- As i increases, the valid js only increase
- ▶ As j increases, the set $\{k \in [j+1,i] : back[k] > j\}$ shrinks
- ▶ For i > 0, $dp[i + 1] \le dp[i] + 1$, by using the same j

A Two Pointers Solution

$$dp[i] = \min_{\substack{0 \le j < i \\ \forall k > i: \ back[k] > j}} \left(dp[j] + |\{k \in \{j+1, \dots, i\}: \ back[k] > j\}|\right)$$

To implement this, we increase j < i together, and use

- ▶ $dp[i+1] \le dp[i] + 1$ (for i > 0)
- ▶ $dp[i] \le dp[j] + |\{k \in [j+1, i] : back[k] > j\}$

The set $|\{k \in [j+1, i] : back[k] > j\}$ and its size are efficiently maintained as i and j increase using a boolean array.

The solution runs in O(n+m) time.

Miscellaneous

- ▶ There is also an $O(n \log n)$ solution with a lazy segment tree
- ► I came up with the problem by asking the question before knowing the solution
- ▶ It is a good contest strategy to try all the problems