Graph Theory Fall 2021

Assignment 8

Due at 5:00 pm on Friday, December 10

There's only one question, with four parts.

Let G be a graph having Laplacian matrix

Recall that the eigenvalues of L will take the form

$$0=\lambda_1\leq\lambda_2\leq\lambda_3\leq\lambda_4\leq\lambda_5\leq\lambda_6\leq\lambda_7\leq\lambda_8\leq\lambda_9\leq\lambda_{10}$$

We will associate with each eigenvalue λ_i its corresponding eigenvector \mathbf{v}_i . For instance,

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}; \ \lambda_{1} = 0.$$

- A. Use a matrix calculator to find λ_2 and λ_3 together with eigenvectors \mathbf{v}_2 and \mathbf{v}_3 . You're on the right track if your values of λ_2 and λ_3 are about 0.875 and 1, respectively. Also, check that the entries of \mathbf{v}_2 and \mathbf{v}_3 sum to 0 (this is a consequence of the eigenvectors corresponding to different eigenvalues of L being orthogonal.)
- B. Let

$$\mathbf{x} = \frac{1}{\sqrt{\mathbf{v}_2 \cdot \mathbf{v}_2}} \, \mathbf{v}_2 \text{ and } \mathbf{y} = \frac{1}{\sqrt{\mathbf{v}_3 \cdot \mathbf{v}_3}} \, \mathbf{v}_3;$$

these vectors **x** and **y** are unit vectors.

Letting x_i and y_i be the i^{th} coordinates of ${\bf x}$ and ${\bf y}$, respectively, plot the points

$$(x_1, y_1), (x_2, y_2), \dots, (x_{10}, y_{10})$$

in \mathbb{R}^2 and for each edge ij of G, draw the segment joining (x_i, y_i) to (x_j, y_j) .

The result should be a "nice" drawing of G in the sense that adjacent vertices are drawn close together.

- C. Do the same process in part A to find λ_9 and λ_{10} along with corresponding eigenvectors \mathbf{v}_9 and \mathbf{v}_{10} . You should expect λ_9 and λ_{10} to be about 5 and 5.76, respectively.
- D. Repeat the process in part B where

$$\mathbf{x} = \frac{1}{\sqrt{\mathbf{v}_9 \cdot \mathbf{v}_9}} \ \mathbf{v}_9 \ \text{and} \ \mathbf{y} = \frac{1}{\sqrt{\mathbf{v}_{10} \cdot \mathbf{v}_{10}}} \ \mathbf{v}_{10}.$$

This time, the resulting drawing should have adjacent vertices drawn far apart and so vertices that are drawn close together could be assigned the same color in a graph coloring. This should give you an indication of the chromatic number of G. What is this number?