

Affordanzen, Constraints, Mapping, Metaphern

Ilhan Aslan, Chi Tai Dang, Björn Bittner, Katrin Janowski, Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Ökologische Wahrnehmungstheorien

begründet auf Gibson's Studien zur Wahrnehmung von Räumlichkeit ("Aviaten Studies"):

- a) Die Umwelt bietet eine enorme Menge an Informationen, die die Wahrnehmung des Menschen beeinflussen und von ihm sehr effizient analysiert werden können.
- b) Auch die Berücksichtigung der Aktivitäten anderer Lebewesen bietet wichtige Informationen über die Umgebung.
- c) Analyse der artenspezifischen Wahrnehmung der Umwelt der jeweils berücksichtigten Lebewesen

Grundlage

Affordanzen, Constraints, Metaphern und Mapping

berücksichtigen Wissen aus der realen Welt, um dieses in der virtuellen Welt anzuwenden!

- sind wichtige Hilfsmittel, um Systeme einfach bedienbar zu machen
- > reduzieren Lernphasen
- > reduzieren Fehler
- > reduzieren Frust des Nutzers

 Dasselbe Objekt stellt für unterschiedliche Lebewesen aufgrund ihrer k\u00f6rperlichen Eigenschaften und F\u00e4higkeiten unterschiedliche Angebote und Aktionen bereit:

Affordanzen

- wahrgenommene Eigenschaft von Objekten, die andeuten, wie man sie nutzt
- Aktionen, die durch das Design von Objekten vorgeschlagen werden

Beispiele für sehr starke Affordanzen

Blockieren von Affordanzen

- "An affordance is something of both actual and perceived properties, therefore context is relevant" (L. Terrenghi)
- Ein Kippschalter hat die Affordanz zwischen verschiedenen Stellungen gekippt zu werden
 - Tatsächlich: Zwei einrastende Stellungen
 - Wahrgenommen: in Richtung drücken
- Ein Drehverschluss am Wasserhahn hat die Affordanz gedreht zu werden
 - Tatsächlich: Auf verschiedene Höhen drehbar
 - Wahrgenommen: Greifen, Drehen

Terrenghi, 2007

Problem: Fehlende oder wenig offensichtliche Affordanzen

Formulierte Absicht klar:

- Tür öffnen
- Wasserhahn öffnen

Kein Designelement, das Aktion anbietet.

Tatsächliche Funktionalität muss erlernt werden.

Affordanzen können von Erfahrung, Wissen oder Kultur abhängig sein.

Affordanzen in der HCI

3D Knöpfe stimulieren zum Klicken

- Stimuliert nicht zum Klicken
- Es muss erlernt werden, welche Objekte klickbar sind und welche nicht.

Papier ermöglicht (engl. afford) folgende Aktionen:

- Drehen
- Verschieben/Übergeben
- In Ordner Einheften/Verschieben
- Stapeln

Vorteile:

- Intuitive Benutzbarkeit durch gutes Design
- Einsparen von Beschriftungen
 - Design, das Beschriftungen benötigt, ist oft nicht optimal bzw. schlecht

Nachteile:

- Einschränkungen bei komplexen, abstrakten Funktionen, wenn keine einfachen "physischen" Affordanzen möglich sind
- Physische Aktion klar, aber welche Bedeutung hat sie?

Metaphern

Metaphern

Vererben bekannter Sachverhalte bzw. Eigenschaften bekannter Objekte auf neue Objekte, die den bekannten Objekten strukturell hinreichend ähnlich sind.

Metaphern für

Explorer und digitale Ordner

Metaphern in der HCI Darstellungen und ihre Inspiration

Inspiration: Linse/Lupe

Inspiration: Schreibtisch

Metaphern in der HCI Darstellungen und ihre Inspiration

Inspiration: Schaltbilder/Fahrpläne

http://www.youtube.com/watch?v=6jhoWsHwU7w
https://www.youtube.com/watch?v=eqcmPJ-oVL0

DynaWall

Toss-It

Inspiration: Versetzbare Wandelemente

i-LAND: An interactive Landscape for Creativity and Innovation, Streitz N.A. et al, CHI'99

Inspiration: Werfen von Objekten

Toss-It: Intuitive Information Transfer Techniques for Mobile Devices, Yatani K. et al, CHI'05

- Virtual Force Metaphor
 - Druck und Druckpunkt als Aspekt der Interaktion

Figure 3. Virtual force. (a) Less contact means smaller force. (b) More contact means larger force. (c) Types of forces.

- Virtual Force Metaphor
 - Drehungen und beidhändige Interaktionen

Figure 4. (a) Dragging and rotating. (b) Anchored movement.

Weitere Metaphern (Papier)

- Zerreißen zum Teilen von Informationen
- Einwerfen in Briefkastenschlitz zum Verschicken

Kopieren bzw. Verschieben von Daten zwischen verschiedenen Interaktionsgeräten:

Tablet -> Tablet

Tablet -> Surface

Display -> Tablet

Darstellungs- und Interaktionsmetaphern

- erleichterten Verständnis und Handhabung digitaler Daten
- Beispiel:
 - Dokument => Datei
 - Dokument in Papierkorb werfen => Datei löschen
- Mögliche Schlussfolgerung:
 - Aktionen mit physikalischen Dokumenten sind im übertragenen Sinn auch mit Dateien möglich.

Vorteile von Metaphern:

- weniger Anlernzeit und Hilfestellungen nötig
- besseres Erinnerungsvermögen (Stichwort: kognitive Ökonomie)
- vermeintliche Vertrautheit kann Einstiegsbarriere herabsetzen

Probleme:

- Metaphern können Innovationen hemmen
 - eingeschränkte Funktionalität (keine weiteren nützlichen Eigenschaften in Objektwelt)
 - Fortführung sub-optimaler Designs
 - keine Entwicklung neuer konzeptueller Modelle
- Erzwungener "Umweg" über die Metapher beim Aufbau eines mentalen Modells
 - Beispiel: Kind muss erst lernen, was ein Schreibtisch ist, bevor es die Struktur der Windows-Oberfläche versteht.
 - teilweise unpassende Abbildungen (z.B. Papierkorb auf dem Schreibtisch)

Probleme:

- Zu wörtlich ausgelegte Metaphern
- Überbeanspruchung von Metaphern
- Ineffizienz (umständliche Bedienung)
- Unübersichtlichkeit
- Konflikt mit anerkannten Designprinzipien

- Probleme:
 - Gefahr der Überschätzung:"Agent versteht alles"

inkompatible konzeptuelle Modelle: Papierkorb als Ordner

Zusammenspiel Affordanzen und Metaphern

Affordanzen

- Verdeutlichen die Aktionsmöglichkeiten eines Objektes
- Nutzer erkennt sofort wie man das Objekt benutzt/bedient.
- Beispiel: Button => Nutzung durch Drücken

Welche Funktion hat der Button?

- ➤ Text und Icon
- ➤ Am besten mittels Metaphern!

Kann man mit dem Objekt interagieren und falls ja, wie?

- Nutzung einer Affordanz!
- Objekt als Button darstellen

Metaphern

- Verdeutlichen die Bedeutung bzw. Funktion eines Objektes
- Nutzer erkennt sofort was das Objekt bewirkt
- Beispiel: Icon einer <u>Diskette</u> => Speichern

Hinweis: Metaphern können auch veralten.

Metapher oder Affordanz?

Bedingungen (Constraints)

Constraints

Einschränkungen (engl. Constraints) einer Affordanz, die ein Objekt zur Verfügung stellt

Arten von Constraints:

- Physikalische Constraints
- Semantische Constraints
- Kulturelle Constraints
- Logische Constraints

Physikalische Constraints

- natürliche Einschränkungen basierend auf Form und Größe
 - Verdeutlichen die richtige Verwendung eines Objektes

Zeigen (physikalische) Grenzen auf

Idealerweise vor Ausführung einer Aktion sichtbar

Semantische Constraints

- Wissen und Erfahrung erlaubt eine Bedeutung für spezielle Objekte
 - Bedeutungen erzeugen semantische Constraints für Elemente
 - Beispiel: Motorradfahrer sitzen nach vorne gerichtet auf dem Motorrad

Eine neue Adresse eingeben

Beispiel:

- Namen bestehen aus Buchstaben
- Postleitzahlen bestehen aus Ziffern
- Adresse besteht aus...

Vor- und Nachname:	
Firmenname: (optional)	Straße, Postfach, Firmenname, c/o; für Packstationsadressen: Postnummer Bitte beachten Sie: Zahlung auf Rechnung gilt nur für Privatkunden, nicht fü Firmen und Institutionen.
Straße und Hausnummer:	Abkürzungen wie "Str." sind möglich. Für Packstationsadressen: Packstation mit Nummer, z.B. "Packstation 105"
Stadt:	
Bundesland/Kanton: (optional)	
Postleitzahl:	
Land	Deutschland ▼
Telefonnummer für Rückfragen:	34

Kulturelle Constraints

- Konventionen oder Erfahrungen
 - Basierend auf kulturelles Verhalten
 - Basierend auf Gewohnheiten
 - Können zwischen Kulturen variieren
- Idiome bzw. Deutungen:

rot = Gefahr, grün = Alles ok/Gehen

Beispiel: Leserichtung -> Positionierung wichtiger Informationen

Kulturelle Constraints

- Computerikonen
 - Abfallbehälter und Briefkästen sehen von Land zu Land unterschiedlich aus
 - Sun's E-Mail-Icon wurde von einigen Leuten nicht erkannt.

- Schwierig, einige Gewohnheiten zu ändern
 - Metrisches System
 - QWERTZ vs. QWERTY Tastatur
 - Mac vs. Windows: Touch-Pads bzw. Maus

Logische Constraints

- Schlussfolgerungen,
 - die logisch sind und "den meisten Sinn ergeben"
 - die Alternativen ausschließen (z.B. durch Constraints aller Art)
- Beispiel: Bausatz -> Alle Teile sollen verbraucht werden!

Beispiel: Herd

Eindeutige Zuordnung (Mapping)

Fazit: Constraints

Je mehr Constraints, desto weniger Möglichkeiten für Fehler

Appointment	
General Attendees Notes Planner	
When	
Start: 8:30AM ∰ Wed 5 /14 /97 ▼ ☐ All day	
End: 4:30 PM ♣ Wed 5 /14 /97 ▼	
■ May 1997 ■	
Description: SMTWTFS	
Smart Technology Sen 27 28 29 30 1 2 3	
4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18 19 20 21 22 23 24	
25 26 27 28 29 30 31	
1 2 3 4 5 6 7 <u>Where:</u>	

Constraints

Puzzle

- Semantische Constraints?
- Logische Constraints?
- Physikalische Constraints?

Zwischenfazit

- Metapher
 - Helfen die Bedeutung eines Objektes sehr schnell zu erkennen
- Affordanzen
 - Helfen die Interaktionsmöglichkeiten eines Objektes zu erkennen
- Constraints
 - Helfen die Interaktionsmöglichkeiten eines Objektes sinnvoll einzugrenzen
- Auf was wirkt sich aber die Interaktion mit dem Objekt aus?
 - Welche Datei wird bei einem Klick auf den Speichern-Button gespeichert?
 - Welches Licht geht an, wenn ich den Lichtschalter betätige?
- Eine passende Abbildung (engl. Mapping) zwischen Aktion und Reaktion ist nötig!

Abbildungen (Mappings)

Verbindung zwischen Bedienelement und realer Auswirkung

 Gute Abbildungen sind natürlich und intuitiv und nutzen physikalische und kulturelle Analogien

Zweck:

- Sofortiges Verständnis
- Einfachere Bedienung
- Einfaches Erinnern
- Reduzierter kognitiver Aufwand
- Anwendbar auf:
 - Aktionen (Ausführung)
 - Feedback (Evaluation)

24 Möglichkeiten

links

links

rechts

2 Möglichkeiten pro Seite4 Möglichkeiten insgesamt

Direktes Mapping möglich!!

Beschriftungen nötig

rechts

Gedächtnis wird unnötig beansprucht

Gutes Mapping

physikalische Analogien

Lampen

Pixel = Fenster

Fahrtrichtung

Sitz bzw. Lehne

kulturelle Analogien

Gutes Mapping auf additive
 Dimensionen möglich (Mengen,
 Temperatur, Lautstärke...)

 Probleme bei substitutiven Dimensionen (z.B. Farbe)

kulturelle Analogien

Interaktionsrichtung

- Von oben nach unten?
- Von links nach rechts?

Beispiel: Fahrkartenautomat

- Erst Geld einwerfen, dann auswählen?
- Erst auswählen und dann Geld einwerfen?
- Nach Beendigung der Aktion fällt unten eine Fahrkarte aus dem Automaten

Affordanzen und Abbildungen

BMW iDrive

Audi MMI

Beispiel für gutes Design

Affordanzen

- Augen für Finger
- Schließen der Schere zum Schneiden

Constraints

- Großes Auge für mehrere Finger
- Kleines Auge für Daumen
- Das Papier muss zwischen die Klingen
- Mapping/Abbildungen
 - Zwischen Augen und Fingern, eingeschränkt durch Erscheinung
- Umgang wird schnell erlernt
- Konzeptuelles Modell (Funktionsweise) ist klar

Beispiel für schlechtes Design

- Affordanzen
 - Zwei Druckknöpfe
- Constraints und Abbildungen unklar
 - Keine sichtbare Beziehung zwischen Druckknöpfen und dem was passiert, wenn man sie betätigt

Lernprozess erforderlich, nicht offensichtlich

Zusammenfassung

- Erstellt ein gutes konzeptuelles Modell, das Nutzern hilft, Folgen von Aktionen zu antizipieren
- 2. Macht Gebrauch von Affordanzen, Metaphern, Abbildungen und Constraints, um Nutzern beim Aufbau eines mentalen Modells zu helfen.
- 3. Beziehungen zwischen Nutzerintentionen, erforderlichen Aktionen und deren Auswirkungen sollten plausibel und konsistent sein.