# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

# Лабораторная работа Измерение скорости звука в воздухе

Выполнили: Федоров Марк - экспериментатор Черней Кирилл - руководитель Иван Потылицын- программист от бога Ерёмин Константин - программист

#### Оглавление

| 1. | Введение                                              | 3 |
|----|-------------------------------------------------------|---|
|    | 1.1. Цели                                             |   |
|    | 1.2. Задачи                                           |   |
| 2. | Теория                                                | 3 |
|    | 2.1. Термины и определения                            | 3 |
|    | 2.2. Физическая система                               |   |
|    | 2.3. Экспериментальная установка                      | 5 |
| 3. | Программа и методика измерений                        |   |
|    | 3.1. Методика измерений                               |   |
|    | 3.2. Программа эксперимента                           |   |
| 4. | Обработка данных                                      |   |
|    | 4.1. Методика обработки данных                        |   |
|    | 4.2. Методика нахождения концентрации СО2             |   |
| 5. | Код программы                                         |   |
|    | 5.1. Скрипт эксперимента                              |   |
|    | 5.1.1. Скрипт обработки данных                        |   |
|    | 5.2. Функции                                          |   |
| 6. | Эксперимент                                           |   |
|    | 6.1. Экспериментальные точки на аналитическом графике |   |
| 7. | Результаты                                            |   |
|    | Итоги лабораторной работы                             |   |

#### 1. Введение

#### 1.1. Цели

Определить концентрацию углекислого газа в выдыхаемом человеком воздухе, при помощи расчетов и измерений скорости звука с использованием элементов программирования, графического пакета и компьютерного осциллографа.

#### 1.2. Задачи

- 1. Измерить скорость звука в обычном воздухе и в воздухе, выдыхаемом из лёгких
- 2. Получить аналитическую зависимость концентрации углекислого газа от скорости звука.
- 3. Рассчитать концентрацию углекислого газа в обычном воздухе и в воздухе, выдыхаемом из лёгких.
- 4. Построить график зависимости скорости звука от концентрации углекислого газа.

#### 2. Теория

#### 2.1. Термины и определения

Скорость распространения малых возмущений в среде называется скоростью звука. Выражение для скорости звука не может быть получено из элементарных соображений и требует решения уравнений сохранения массы, импульса и энергии совместно с уравнением состояния среды, для которой делается расчет. Чтобы не загружать описание лабораторной работы приведем конечный вид уравнения, получаемого в приближении идеального газа:

$$a^2 = \frac{\gamma P}{\rho} = \frac{\gamma RT}{\mu} \tag{1}$$

где a — скорость звука,  $\gamma$  — показатель адиабаты,  $\mu$  — молекулярная масса, R — универсальная газовая постоянная 8.314~Дж/град, T — температура.

#### 2.2. Физическая система

Воздух удобно представить как смесь трех газов (по объему: азот - 78.1%, кислород - 21%, аргон - 0.9%) с добавками паров воды и углекислого газа. Количество паров воды при комнатных условиях близко к 1%, количество углекислого газа сильно зависит от конкретных условий, но, как правило, не превышает 1% по объему, а в стандартной атмосфере принимается равным 0.03%.

Химический состав осушённого воздуха

| Вещество       | Обозначение     | По объёму, % | По массе, % |
|----------------|-----------------|--------------|-------------|
| Азот           | $N_2$           | 78,084       | 75,5        |
| Кислород       | $O_2$           | 20,946       | 23,15       |
| Аргон          | Ar              | 0,934        | 1,292       |
| Углекислый газ | $CO_2$          | 0,03         | 0,046       |
| Неон           | Ne              | 0,001818     | 0,0014      |
| Криптон        | Kr              | 0,000114     | 0,003       |
| Метан          | CH <sub>4</sub> | 0,0002       | 0,000084    |
| Гелий          | He              | 0,000524     | 0,000073    |
| Водород        | $H_2$           | 0,0005       | 0,00008     |
| Ксенон         | Xe              | 0,0000087    | 0,00004     |

Поскольку в данной работе предлагается достаточно точное определение скорости звука, будем учитывать азот, кислород, аргон и углекислый газ при расчете по формуле(1), считая  $N_2$ - $O_2$ -Ar как один газ, также в комнате газ имеет определённую влажность, то есть помимо всех газов из таблицы, в составе присутствует вода. Важным замечанием для нас является то, что

отношение долей газов из таблицы википедии сохранится. Поэтому справедливы следующие формулы:

Хн2О - Доля водяного пара

$$X_{H2O} = P_{\text{H.II}} * \varphi / P_{\text{atm}}$$
 (2)

 $P_{\text{атм}}$  — атмосферное давление

$$X_{j}=(1-X_{H2O})X_{j(cyxoro)}$$

$$\tag{3}$$

 $X_i$  - искомая доля некоторого элемента

 $X_{i(cyxoro)}$  - берется из таблицы

Показатель адиабаты для смеси газов рассчитывается следующим образом:

$$\gamma = \frac{C_p}{C_v} = \frac{\sum_i \quad \mu_i C_{pi} x_i}{\sum_i \quad \mu_i C_{vi} x_i} \tag{4}$$

Молекулярная масса ( $\mu$ ):

$$\mu = \sum_{i} \quad \mu_{i} x_{i} \tag{5}$$

где  $x_i$  — объёмная (мольная) доля или относительное число молекул данного сорта (сорта под номером i). Разумеется, обязательно должно выполняться равенство:

$$\sum_i x_i = 1$$

При анализе свойств комнатного воздуха можно ограничиться учетом следующих компонент: cmecb ( $N_2$ ,  $O_2$ , Ar),  $H_2O$  u  $CO_2$ .

В таблице 1 приведены  $C_p$  и  $C_v$ , для этих газов:

Таблица 1

| газ                                | , г   | $C_{p(20}{}^{\mathrm{o}}\mathrm{C})$ | $C_{\nu(20}{}^{ m o}{ m C})$ |
|------------------------------------|-------|--------------------------------------|------------------------------|
| N <sub>2</sub> +O <sub>2</sub> +Ar | 28,97 | 1,0036                               | 0,7166                       |
| HO <sub>2</sub>                    | 18,01 | 1,863                                | 1,403                        |
| $CO_2$                             | 44,01 | 0,838                                | 0,249                        |

Смесь  $N_2$ ,  $O_2$ , Ar в пропорции, соответствующей воздуху, можно учитывать как один газ, а  $H_2O$  и  $CO_2$  прибавляются к этой смеси.

#### 2.3. Экспериментальная установка

Экспериментальная установка состоит из квадратной толстостенной металлической трубки и регистрирующей аппаратуры(два датчика и плата с микроконтроллером).

Акустическая волна создается хлопком в ладоши.

Преобразование волн давления в электрический сигнал осуществляется двумя микрофонами, расстояние между которыми 1158 мм.

#### 3. План и методика измерений

#### 3.1. Методика измерений

Хлопок создаёт в трубке звуковую волну, которая фиксируется двумя датчиками, расположенными на расстоянии друг от друга. С помощью АЦП звуковой сигнал преобразуется в цифровой, далее с помощью малинки строится график, и определяется время между пиками сигнала с первого и второго датчиков. Зная расстояние между датчиками, можно найти скорость звука. Потом, используя формулы

#### 3.2. План эксперимента(описание)

- 1. Подготовить и настроить малинку и плату с микроконтроллером( позвать Потылицына)
- 2. При помощи термогигрометра измерить температуру и относительную влажность
- 3. Измерение скорости звука в воздухе
  - 3.1 . Хлопнуть в ладоши у первого конца трубки
  - 3.2. Сохранить полученные данные для дальнейшей работы с ними
- 4. Измерение скорости звука в в воздухе, выдыхаемом из лёгких
  - 4.1. Закрыть первый конец трубки магнитом
  - 4.2. Выдохнуть воздух из лёгких через трубку от кальяна в установку
  - 4.3. Освободить первый конец трубки от магнита
  - 4.4. Произвести хлопок у первого конца трубки
  - 4.5. Сохранить полученные данные для дальнейшей работы с ними

#### 4. Обработка данных

# 4.1. Методика обработки данных и нахождение концентрации CO<sub>2</sub>

Отталкиваясь от подобия полученных графиков приводим их к одинаковой амплитуде и совмещаем параллельным переносом. Полученное смещение - это и есть время за которое звук проходит расстояние от первого до второго датчика. Зная расстояние и время, мы находим

скорость. Зная скорость, имея формулы 1-5 находим концентрации, учитывая все нюансы .С помощью функций библиотек numpy и matplotlib строится график зависимости скорости звука при концентрации углекислого газа от 0% до 5%.



Рис. 1 Графики

# 5. Эксперимент



Рис. 2 Установка



Рис. 3 — Трубка от кальяна

создаем возмущение, ударив в ладоши, тем самым запуская процесс измерения. См фото установки

# 5.1. Экспериментальные точки на аналитическом графике



#### 6. Результаты

Скорость звука до выдоха 345.67 м/с

Скорость звука после выдоха 343.21 м/с

Полученное значение концентрации углекислого газа в воздухе — 1.15%.

Полученное значение концентрации углекислого газа в выдыхаемом воздухе — 4.42%.

### 7. Итоги лабораторной работы

В ходе лабораторной работе с помощью измерений скорости звука в обычном воздухе и в выдыхаемом человеком воздухе углекислого газа были найдены концентрация углекислого газа и зависимость скорости звука от концентрации углекислого газа в каждом случае.