열 충격에 의해 발생한 LPMS 거짓경보신호 저감 연구

LPMS 팀

장준영

목 차

 1

 LPMS 신호처리 과정

2 **연구 배경 및 선행연구 분석** 3 **제안 및 방법**

4 열 충격신호 경향 & 신규 로직 제안

> 5 **알고리즘**

6 **시뮬레이션 설정**

7 시뮬레이션 & 현장테스트 결과

> 8 **의문점**

LPMS 신호처리 과정

가속도계

• 충격신호 측정

LPMS Alarm Unit

- 측정된 신호의 단기&장 기 이동평균 계산.
- 기준값 초과 여부 판단.
- 초과했다고 판단할 경 우, LPAU으로 값 보냄.

LPMS Alarm Processor

- 충격신호 배경신호의 RMS 비율 평가.
- 주파수 성분 평가.
- 충격신호의 감쇠 속도 평가.
- 센서 채널 간의 지연시 간 평가.
- 충격신호 피크 성분의 상대 크기 평가.
- 충격신호의 발생 횟수.

분석컴퓨터

- 발생한 충격신호 축적 된 데이터를 비교하여 질량 추정.
- 경보 발생.

연구 배경 및 선행연구 분석

배경

- 충격신호 감지 -> 판별 알고리즘 -> 경보신호 발생.
- 문제: 기존 내부 알고리즘으로는 다양한 거짓 신호들을 효과적으로 걸러내기 어려움.
- 다량의 거짓경보 신호들 -> 운전원 부담 가중.

선행연구 분석

- 충격파의 전파특성 분석.
- 주파수 지표를 통한 경보신호 진위여부 판단.
- 시간 주파수 분석기법 도입.
- 특정 채널들의 이벤트 신호 특성 개별 분석.
- 단점: 복잡한 수식계산 + 운전원 부담 여전히 존재.

제안 및 방법

제안안

"(열팽창&수축에 의한) 거짓경보신호들을 저감하자."

방법

열팽창&수축에 의해 발생하는 신호들의 특성을 반영한 로직을 LPAP에 추가.

열 충격신호 경향 & 신규 로직 제안

열 충격신호 경향 분석

- 열 충격: 2개 이상 구역의 채널에서 동시 감지.
- 이물질 충격: 1개 구역 채널에서만 감지.
- 이유: 최초 충격발생 위치로부터 10ft(약 3m) 내에 에너지 90% 손실.

신규 로직(알고리즘)

- 채널에 구역 할당.
- 동시에 여러 구역에서 신호 감지 -> 거짓신호로 분류.
- Zone flag 합산.

알고리즘

Ch. flag

Fig. 6 Channel flag algorithm

Zone flag

Fig. 7 Zone flag algorithm

Alarming

시뮬레이션 설정

Table 2 Simulation scenarios

Scenario	RV bottom	RV top	SG 1	SG 2
1	101	-	-	-
2	101	103	-	-
3	-	103 104	107 108	-
4	101 102	-	105 107	-
5	101	103	107	-
6	101	103	107	111

시뮬레이션 & 현장테스트 결과

시뮬레이션: 1번 제외한 모든 경우에 대해, 경보신호 억제 성공. 현장테스트: 24번의 경보신호 중 15개 억제 성공.

시뮬레이션

제안된 구역상관성시험을 활용하면 현재 시스템에서 운용중인 신호처리 방법만을 활용하여 추가적인 복잡한 계산절차 없이 시나리오 1번을 제외한 모든 시나리오들에서 효과적으로 경보신호가 억제되었다.

현장테스트

의문점

시뮬레이션 관련

"1번 제외한 모든 경우에 대해 정확한 동작 성공"

신규 로직 적용 이전에는 어떤 결과가 나왔는가?

현장 테스트 관련

"24개 경보신호 중 15개를 억제하는 데 성공"

24개 경보신호가 모두 거짓경보신호인가?