

Exemple 1 Soit f la fonction définie sur $\mathbb{R}\setminus\{3\}$ par $f(x)=\sin\left(\frac{\frac{\pi}{2}x+1}{x+3}\right)$. On va déterminer la limite de f en $+\infty$ en plusieurs étapes :

1. Déterminer la limite en $+\infty$ de la fonction $\frac{\frac{\pi}{2}x+1}{x+3}$ en faisant une levée d'indétermination.

On a:

$$\lim_{x \to +\infty} \frac{\pi}{2} x + 1 = +\infty$$

$$\lim_{x \to +\infty} x + 3 = +\infty$$

$$donc \lim_{x \to +\infty} \frac{\frac{\pi}{2} x + 1}{x + 3} \text{ est du type } \frac{+\infty}{+\infty}$$

On factorise par x au numérateur et au dénominateur car c'est le mônome de plus haut de degré :

$$\frac{\frac{\pi}{2}x+1}{x+3} = \frac{x\left(\frac{\pi}{2} + \frac{1}{x}\right)}{x\left(1 + \frac{3}{x}\right)} = \frac{\frac{\pi}{2} + \frac{1}{x}}{1 + \frac{3}{x}}$$

$$or \lim_{x \to +\infty} \frac{\pi}{2} + \frac{1}{x} = \frac{\pi}{2}$$

$$\lim_{x \to +\infty} 1 + \frac{3}{x} = 1$$

$$donc \lim_{x \to +\infty} \frac{\frac{\pi}{2}x+1}{x+3} = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{2}$$

Cette fonction a une asymptote d'équation $y = \frac{\pi}{2}$ en $+\infty$.

2. Déterminer la limite de $\sin(u)$ quand u tend vers $\frac{\pi}{2}$. On a :

$$\lim_{u \to \frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) = 1$$

3. En déduire la limite de f(x) quand x tend vers $+\infty$. On a:

$$g(x) = \frac{\frac{\pi}{2}x + 1}{x + 3}$$

$$\lim_{x \to +\infty} g(x) = \frac{\pi}{2}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sin(g(x)) = \lim_{u \to \frac{\pi}{2}} \sin(u) = 1$$

Cette fonction a une asymptote d'équation y = 1 *en* $+\infty$.

Exemple 2 Soit g la fonction définie $\sup \mathbb{R} \setminus \{2\}$ par $g(x) = \frac{1}{1 + \frac{1}{x-2}}$. On va déterminer la limite de g en 2 en plusieurs étapes :

1. Déterminer la limite en 2^+ et 2^- de la fonction $1 + \frac{1}{x-2}$. On a:

$$\lim_{x \to 2^{+}} 1 + \frac{1}{x - 2} = 1 + \frac{1}{0^{+}} = +\infty$$
$$\lim_{x \to 2^{-}} 1 + \frac{1}{x - 2} = 1 + \frac{1}{0^{-}} = -\infty$$

2. Déterminer la limite de $\frac{1}{u}$ quand u tend vers $+\infty$ et quand u tend vers $-\infty$.

$$\lim_{u \to +\infty} \frac{1}{u} = \frac{1}{+\infty} = 0$$
$$\lim_{u \to -\infty} \frac{1}{u} = \frac{1}{-\infty} = 0$$

3. En déduire la limite de g(x) quand x tend vers 2. On pose :

$$h(x) = 1 + \frac{1}{x - 2}$$

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} \frac{1}{h(x)} = \lim_{u \to +\infty} \frac{1}{u} = 0$$

$$\lim_{x \to 2^-} g(x) = \lim_{x \to 2^-} \frac{1}{h(x)} = \lim_{u \to -\infty} \frac{1}{u} = 0$$

La fonction g(x) a pour limite 0 en 2.

A priori, elle n'était pas définie en x = 2 mais on vient de montrer qu'elle avait une limite finie en x = 2: on peut la prolonger en x = 2 par 0.