Minimum Spanning Tree Algorithm (MST)

Rafael G. Nagel

2018-06-22

Outline

Introdução

Explicação do algoritmo (Kruskal)

Código

Conclusões

Aplicações¹ e problema

- Geralmente aplicações associadas a otimização em redes
 - ▶ telefone
 - elétrica
 - ► hidráulica
 - ► TV a cabo
 - caminhos
- Outras aplicações indiretas
 - aprendizagem de características para verificação facial em tempo real (?)
 - caminhos de máximo gargalos

¹https:

Condições para aplicação do algoritmo

- ▶ grafo com arestas de pesos positivos (> 0)
- arestas não-direcionadas
- encontrar um conjunto de arestas que somadas tenha um peso mínimo e que conecte todos os vértices
- número de arestas que se deseja:

```
arestas = número de vértices - 1
```

Algoritmos que implementam MST²

- 1. algoritmo de Kruskal
- 2. algoritmo de Prim
- 3. algoritmo de Boruvka

- por que Kruskal?
 - mais fácil de aplicar e compreender

Visão geral

- 1. ordena-se as arestas por peso crescemente
- pega-se uma aresta e verifica-se se ao adicioná-la no grafo final (MST) um ciclo será formado
 - ▶ se ciclo formado, então descarta-se a aresta (do MST)
 - se não forma ciclo, adicione-a ao grafo (MST)
- 3. repita o passo 2. até: arestas = vértices 1

Como checar se um grafo formou um ciclo?

- algoritmo Union-find³
 - baseia-se no uso temporário de um vetor para salvar os pais dos vértices sendo inseridos.

Passo a passo com um exemplo⁴

greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/>

⁴https://www.geeksforgeeks.org/

Grafo ordenado por arestas (crescemente)

weight	src	dst
1	7	6
2	8	2
2 2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	2 4
10	5	4
11	1	7
14	3	5

pega-se os vértices da lista ordenada e tenta-se inserir cada um

... sem ciclos até agora.

... ao incluir 8-6 forma-se um ciclo. Portanto não inclua essa aresta.

repita até: arestas = vértices - 1

Complexidade

relembrando os passos:

- 1. ordenar grafo crescentemente (qsort \rightarrow O(nlogn))
- 2. aplicar algoritmo MST (Kruskal)
 - 2.1 para cada aresta da lista ordenada:
 - 2.1.1 inclua-a no grafo MST
 - 2.1.2 checa-se se *ciclo formado*; se sim remove essa aresta (algoritmo find-union)

complexidade do algoritmo Kruskal

- ▶ O find-union é O(n) no presente trabalho
 - poderíamos melhorar isso para O(logn) usando union by Rank or Height⁵

Complexidade

Considerar o pior caso

► Toda vez que um vértices é adicionado no grafo, podemos ter:

Assim, número de arestas no pior caso é:

$$approx v^2$$
 quando $a o\infty$

Porém, essa implementação:

$$O(e \times \log e) + O(e \times O(v))$$

$$O(e \times \log e + v^2 \times v)$$

$$O(e \times \log v + v^3)$$

Complexidade

Supondo a implementação com: union-find = O(logn)

$$O(e \times \log e) + O(e \times \log v)$$

$$e = v^{2} \rightarrow \log e = \log v^{2} = 2 \times \log v \approx \log v$$

$$\vdots$$

$$O(e \times (\log v + \log v)) = O(e \times 2 \times \log v)$$

$$\vdots$$

$$O(e \times \log v)$$

Código

Estruturas

- ► grafo
- vertice
- lista
- ▶ nó

funções (extras)

- hasCycle()
- union()
- ► find()
- grafo_remove_ultima_aresta()
- compara_arestas()
 - ▶ usada no *qsort* da *lib c*
- outras menos importante
 - e.g. grafo_get_arestas_arr()

Conclusões

 Ao invés de criar novas estruturas ou módulos, adicionou-se membros às estruturas e novas funções aos módulos.

Como checar adição duplicada de vértices sem ser O(n)?

- Essa questão aparece quando adiciona-se arestas ao gráfo (MST) para checar se há ciclos
- Assim, essa complexidade tem mais um fator v:

$$O(e \times \log v + v^4)$$

Por fim: algoritmo Kruskal é muito mais fácil de implementar:

Tradeoffs: Complexidade vs. Tempo de código

