

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

MATERIAIS E SUAS PROPRIEDADES

✓ Defeitos cristalinos

Prof. Dr. Renata Ayres Rocha

PRINCIPAIS TIPOS DE DEFEITOS CRISTALINOS - Introdução

Cristais reais não são perfeitos e contêm imperfeições (ordem constante com imperfeições)

Defeitos puntiformes: qualquer posição da rede que não é ocupado pelo íon ou átomo apropriado para preservar a periodicidade de longa distância da estrutura

Defeitos lineares: discordâncias, que causam distorções da rede centrada em uma linha

Defeitos planares: imperfeições superficiais em sólidos policristalinos que separam grãos ou domínios de orientações diferentes (ex. contornos de grão e contornos de macla)

Defeitos volumétricos: poros, trincas e inclusões

PRINCIPAIS TIPOS DE DEFEITOS CRISTALINOS - Introdução

Muitas propriedades são fortemente influenciadas pela presença ou ausência destes defeitos

Ex.: Defeitos puntiformes afetam a difusão, condutividade elétrica, condutividade térmica, faixa de estequiometria de um composto

✓ Classificação das imperfeições

Imperfeições cristalinas pontuais (0D) Discordâncias (1D) Defeitos interfaciais ou de fronteira (2D) Defeitos em volume (3D)

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES (Auto)intersticipio (collinia)

(Auto)intersticiais (self-interstitials)

Um átomo autointersticial é um átomo da rede que se localiza em um interstício posição da rede que normalmente não teria um átomo).

- Envolve a falta de um átomo
- São muito menos frequentes do que as lacunas, pois causam grande distorção no reticulado cristalino ao seu redor.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Defeitos em cristais iônicos

A neutralidade elétrica tende a ser respeitada:

Defeito de Schottky: lacuna aniônica + lacuna catiônica Defeito de Frenkel: cátion intersticial + lacuna catiônica

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Antes da difusão

Depois da difusão

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Impurezas

- Não existem metais 100% puros (compostos apenas por um tipo de átomo).
- As técnicas de refino atualmente disponíveis permitem obter metais com um grau de pureza no máximo de 99,9999%.
- 99,9999% \rightarrow 10²² 10²³ átomos de impurezas/m³

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Impurezas

As impurezas podem formar:

- >Solução sólida → < limite de solubilidade
- Segunda fase → > limite de solubilidade

Dependência:

- -Temperatura/Pressão
- -Tipo de impureza
- -Concentração

Ligas (para metais)

-As impurezas (chamadas elementos de liga) podem ser intencionalmente adicionadas com a finalidade de:

- > aumentar a resistência mecânica
- > aumentar a resistência à corrosão
- aumentar a condutividade elétrica

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Termos importantes

Termos importantes

Componente: metais puros e/ou compostos que compõem a liga

Solução Sólida: formada por pelo menos 2 átomos diferentes. Os átomos do soluto ocupam posições substitucionalmente ou intersticialmente na rede cristalina do solvente, que mantém sua estrutura cristalina;

Limite de Solubilidade: concentração máxima de átomos de soluto que pode se dissolver no solvente para formar uma solução sólida;

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Termos importantos

Termos importantes

Fase: porção homogênea de um sistema que tem características físicas e químicas uniformes. Todo material puro ou solução sólida é considerado uma fase;

Sistema Homogêneo: contém uma única fase;
Sistema Heterogêneo: contém mais de uma fase;

Termos para soluções:

- 1- Elemento de liga ou Impureza \rightarrow soluto (< quantidade)
- 2 Matriz ou Hospedeiro → solvente (>quantidade)

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas substitucion i

- - Tamanhos atômicos do soluto e do solvente devem ser semelhantes
 - Mesma estrutura cristalina
 - Eletronegatividades semelhantes

http://intranet.micds.org/upper/science/chem 02/chem text '02/secon dsemester/newchaps/solutionscolligativeprops/files/ch11text.html

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas substitucia i

Regras de Hume-Rothery (permitem estimar se dois metais formam ou não solução sólida substitucional)

1) Tamanho do átomo

Se a "diferença de tamanho" dos elementos é maior que ±15%, as distorções da rede cristalina (devido às tensões) são muito grandes e a solução sólida não será formada.

2) Estrutura Cristalina

Para metais, a solubilidade aumenta se os elementos tiverem a mesma estrutura cristalina.

3) Eletronegatividade

Ligações metálicas são preservadas se existe pouca diferença de de ligações são eletronegatividade, caso contrário outro tipos formados.

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas substitucia i

Solução sólida de Si-Ge

A formação da solução sólida é favorável?

Regra 1

 $r_{si} = 0,117 \text{ nm e } r_{Ge} = 0,122 \text{ nm}$

Regra 2

Ambos apresentam a estrutura cúbica do diamante

Favorável

Favorável

Regra 3

 $E_{si} = 1.90 \text{ e } E_{Ge} = 2.01. \text{ Assim, DE\%} = 5.8$

Favorável

Si e Ge formam solução sólida em um grande intervalo de composições!!!

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Soluções sólidas substitucionais

Cu + Zn= latão Cu = estrutura CFC Zn = estutura CFC R_{cu} = 0,128 nm R_{zn} =0,139 nm

Solubilidade de Zn em Cu: 40%

2019 Rocha Renata

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Soluções sólidas substitucionais

Ligas de Cu + Ni Cu = estrutura CFC Ni = estutura CFC $R_{cu} = 0,128 \text{ nm}$ $R_{Ni} = 0,125 \text{ nm}$

Solubilidade de Cu em Ni: 100%

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas intereticinio

- Os átomos das impurezas preenchem os interstícios que existem entre os hospedeiros.

 Soluções sólidas metálicas: geralmente a razão entre os raios atômicos não pormito, grandos quantidados do átomos do soluto, pois surgam grandos. permite grande quantidade de átomos de soluto, pois surgem grandes 👸 tensões causadas por distorções na rede cristalina.
- do que o efeito de solutos substitucionais.
- átomos) de soluto intersticial. Raramente são encontradas soluções sólidas com mais de 10% (em

Impureza intersticial - Ex.: C em Fe α

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas intereticiais

http://www.rmutphysics.com/charud/scibook/cryst al-structure/Solid%20solution.htm

http://intranet.micds.org/upper/science/chem_02/chem_text_'02/secon dsemester/newchaps/solutionscolligativeprops/files/ch11text.html

CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES Soluções sólidas intereticia:

Interstícios na estrutura CFC:

Razão entre o raio do interstício (r) e o raio do átomo da rede (R):

$$r/R = 0.4142$$
 $r/R = 0.223$

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS PUNTIFORMES

Soluções sólidas intersticiais

Interstícios na estrutura CCC:

Razão entre o raio do interstício (r) e o raio do átomo da rede (R):

$$r/R = 0.15$$
 $r/R = 0.286$

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Discordância em cunha ou aresta (edge dislocation)

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Discordância em cunha

- Envolve um semi-plano extra
- Vetor de Burgers é perpendicular à direção da linha de discordância

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Circuito e vetor de Burgers

A magnitude e a direção da distorção do reticulado associada a uma discordância podem ser expressas em termos do VETOR DE BURGERS, que pode ser determinado pelo CIRCUITO DE BURGERS.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Discordância em hélice ou espiral (screw dislocation)

Tensões de cisalhamento estão associadas aos átomos adjacentes à linha da discordância em hélice.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Discordância em cunha:

- Vetor de Burgers perpendicular à linha de discordância
- Símbolo: **⊥**

(b)

Discordância em hélice:

- Vetor de Burgers paralelo à linha de discordância
- Símbolo: 💍

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Discordâncias mistas

Discordância mista: quando o ângulo entre a linha da discordância e o vetor de Burgers está entre 0 e 90°.

• Cada discordância tem somente um vetor de Burgers!!

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Deformação plástica - Movimento de discordâncias

Formação de um degrau na superfície de um metal pela movimentação de (a) uma discordância em cunha e (b) uma discordância em hélice.

A discordância em cunha anda na direção de aplicação das tensões.

A discordância em hélice anda perpendicularmente à direção de aplicação das tensões

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Deformação plástica - Movimento de discordâncias

Região cisalhada do plano de escorregamento

> Discordância é a fronteira entre a região escorregada e a não escorregada em um cristal.

Uma discordância nunca termina no interior do cristal.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Deformação plástica - Movimento de discordâncias

Discordância mista:

- O vetor de Burgers fornece o módulo e a direção do escorregamento; ele é paralelo à direção do fluxo (ou movimento do material), não sendo necessariamente no mesmo sentido.
- Para que uma discordância se movimente de maneira conservativa é necessário que a linha e o vetor de Burgers estejam contidos no plano de escorregamento.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Deformação plástica - Multiplicação de discordâncias

- ✓Todos os cristais têm discordâncias. Apesar de ser um defeito de nãoequilíbrio termodinâmico, é praticamente impossível criar cristais livres de discordâncias.
- ✓A força necessária para mover uma discordância, chamada força de Peierls-Nabarro, depende muito do tipo de ligação química e da estrutura cristalina dos cristais. Para metais ela é geralmente baixa, mas em cerâmicas seu valor é muito alto, por isso quase não ocorre deformação plástica em cerâmicas.
- ✓ Metais recozidos têm de 10⁵ a 10⁶ cm de discordâncias / cm².
- ✓ Metais deformados plasticamente a frio passam a ter de 10¹⁰ a 10¹² cm/cm2 de discordâncias.
- ✓ Portanto, durante a deformação plástica, além das discordâncias abandonarem o cristal, elas se multiplicam.

Observação de discordâncias

Microscopia eletrônica de transmissão de uma lâmina fina de uma liga metálica contendo discordâncias.

Microscopia óptica de uma liga de cobre. Observam-se pites de corrosão, nos locais onde as discordâncias interceptam a superfície.

DEFEITOS DA ESTRUTURA CRISTALINA – DEFEITOS DE LINHA: DISCORDÂNCIAS

Considerações gerais

- A quantidade e o movimento das discordâncias podem ser controlados pelo grau de deformação (conformação mecânica) e/ou por tratamentos térmicos.
- Com o aumento da temperatura há um aumento na velocidade de deslocamento.
- Impurezas tendem a difundir-se e concentrar-se em torno das discordâncias formando uma atmosfera de impurezas.
- O cisalhamento se dá mais facilmente nos planos de maior densidade atômica, por isso a densidade das mesmas depende da orientação cristalográfica.
- As discordâncias geram lacunas.
- As discordâncias influem nos processos de difusão.

DEFEITOS BIDIMENSIONAIS

Principais tipos

- SUPERFÍCIE EXTERNA: superfície entre o cristal e o meio que o circunda
- CONTORNOS DE GRÃO: contornos entre dois cristais sólidos da mesma fase.
- INTERFACE: contorno entre duas fases diferentes.
- CONTORNO DE MACLA: tipo especial de contorno de grão que separa duas regiões com uma simetria tipo "espelho".
- DEFEITO DE EMPILHAMENTO: ocorre nos materiais quando há uma interrupção na seqüência de empilhamento, por exemplo na seqüência ABCABCABC.... dos planos compactos dos cristais CFC.

DEFEITOS BIDIMENSIONAIS Superfície externo

- É o defeito cristalino que causa maior distúrbio na estrutura e, portanto, apresenta maior energia (livre) por unidade de área (equivalente à tensão superficial)
- A energia está associada com as ligações rompidas ou insatisfeitas.
- A forma externa de cristais está associada a planos de menor energia.
- É mais importante em áreas que lidam com materiais particulados, como a metalurgia do pó e o processamento de materiais cerâmicos, pois nesses casos a quantidade de superfície por unidade de volume passa a ser mais significativa.

DEFEITOS BIDIMENSIONAIS

Superfície externa – ângulo de contato e molhabilidade

Energias de superfície (tensões superficiais) do sólido e do líquido

Equação de Young:

$$\gamma_{SV} = \gamma_{SL} + \gamma_{LV} \cos \theta$$

Energia de interface (tensão interfacial) entre sólido e líquido

DEFEITOS BIDIMENSIONAIS Contorn Contorno de grão (grain boundary)

- Materiais policristalinos são compostos por pequenos cristais, chamados de grãos, com dimensões de poucas dezenas de micrômetros, arranjados de maneira a preencher todo o espaço (sem deixar vazios).
- · Os contornos de grão são as fronteiras que separam os cristais de diferentes orientações em um material policristalino.
- · A região do contorno tem espessura de 2 a 5 distâncias interatômicas e é bastante defeituosa.

Zona de transição do contorno de grão

DEFEITOS BIDIMENSIONAIS

Contorno de grão

Qual é a forma geométrica dos grãos?

 Os grãos têm em média a forma semelhante aos tetracaidecaedros, a mesma estrutura formada por espumas.

• Uma seção de um material policristalino tem em média grãos de forma

hexagonal.

Contorno de subgrão ou contorno de pequeno ângulo (subgrain boundary)

- Um monocristal pode estar subdividido por regiões (subgrãos) com diferenças de orientação menores que 5°. A fronteira entre esses subgrãos chama-se contorno de pequeno ângulo ou subcontorno.
- Os subcontornos podem ser descritos por arranjos de discordâncias.

DEFEITOS BIDIMENSIONAIS Contorno de Contorno de macla ou gêmeo (twin boundary)

• É a fronteira entre duas regiões do cristal que são imagens

espelhadas uma da outra.

DEFEITOS BIDIMENSIONAIS

Contorno de macla

- A maclação mecânica (maclas de deformação) é uma maneira alternativa de deformação plástica, em situações em que o deslizamento de discordâncias é difícil (baixas temperaturas e/ou altas velocidades de deformação.
- As maclas de deformação geralmente têm forma lenticular.

Defeito de empilhamento (stacking fault)

- São defeitos encontrados geralmente em metais CFC e HC.
- Os defeitos de empilhamento são delimitados por discordâncias parciais.
- Quanto maior a EDE (energia de defeito de empilhamento) mais próximas estarão as discordâncias parciais.

$\begin{array}{c ccccc} \Delta & \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta & \Delta \\ \Delta & \nabla B & \Delta \\ \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta \end{array}$		С	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ	ΔB	Δ
Δ Δ Δ Δ Δ Δ Δ Δ	Δ	ΔΑ	
Δ Δ Δ Δ	Δ		(a)
Δ Δ	Δ		Δ
\triangle \triangle \triangle	Δ		Δ
	Δ	ΔC	Δ

В	
ΔΑ	Δ
ΔC	À
VΑ	Δ
∇B	Δ
ΔΑ	$\frac{\Delta}{\Delta}$ (b)
ΔC	Δ (5)
	△A △C ∇A ∇B △A

Defeito de empilhamento (stacking fault)

- São defeitos encontrados geralmente em metais CFC e HC.
- Os defeitos de empilhamento são delimitados por discordâncias parciais.
- Quanto maior a EDE (energia de defeito de empilhamento) mais próximas estarão as discordâncias parciais.

Material	Estrutura	EDE (mJ/m²)
W	CCC	1860
Мо	CCC	1450
Ni	CFC	220
Al	CFC	163
Cu	CFC	62
Latão	CFC	12
Zn	HC	140

DEFEITOS BIDIMENSIONAIS

Interfaces

- · São as fronteiras entre duas fases diferentes.
- Podem ser coerentes (menor energia), semicoerentes e incoerentes (maior energia)

Interfaces coerentes livres de tensões de coerência

DEFEITOS BIDIMENSIONAIS

Interfaces coerentes

Interface coerente com tensões de coerência

DEFEITOS BIDIMENSIONAIS

Interfaces semicoerentes

Interface semicoerente com discordâncias em cunha para ajustar a coerência

DEFEITOS BIDIMENSIONAIS

Interfaces incoerentes

Interface incoerente

DEFEITOS VOLUMÉTRICOS

- Além dos defeitos apresentados nas transparências anteriores, os materiais podem apresentar outros tipos de defeitos, que se apresentam em escalas muito maiores.
- Esses defeitos normalmente são introduzidos nos processos de fabricação, e podem afetar fortemente as propriedades dos produtos.
- Exemplos: INCLUSÕES, POROS, TRINCAS, PRECIPITADOS.

