3 Differential Equations Problem Sheet

1. For arbitrary constants c_1 , c_2 , c_3 , c_4 find the differential equations satisfied by y when:

a.
$$y = c_1 x + \frac{2}{c_1}$$
 Ans: $x(y')^2 - yy' + 2 = 0$

b.
$$y = (c_1 + c_2 x) e^{-\lambda x}$$
 Ans: $y'' + 2\lambda y' + \lambda^2 y = 0$

c.
$$y = c_1 \sin \rho x + c_2 \cos \rho x + c_3 \sinh \rho x + c_4 \cosh \rho x$$
 Ans: $y^{(4)} = \rho^4 y$

2. Solve the following differential equations/I.V.P.'s

b.
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
 $y = 1$, $x = 0$ Ans: $y = \frac{1+x}{1-x}$

d.
$$(1-y)^2 \frac{dy}{dx} + (1+x^2)y = 0$$
 Ans: $x + \frac{x^3}{3} = -\log y + 2y - 1$

$$\frac{1}{2}y^2 + c$$

e.
$$x \frac{dy}{dx} + 3y = 8x^5$$
 Ans: $y = x^5 + \frac{c}{x^3}$

f.
$$\frac{dy}{dx} - 2y \tan x = x^2 \sec^2 x$$
 when $x = 0$ and $y = 0$ Ans: $y = \frac{x^3}{3} \sec^2 x$

g.
$$\sin x \frac{dy}{dx} + 2y \cos x = \cos x$$
 Ans: $y = \frac{1}{2} + k \csc^2 x$

h.
$$(x+1)y' - 2y = 3(x+1)^3$$
 Ans: $y = (3x+c)(x+1)^2$

- 3. Solve the 2nd order equations
 - **a.** $\frac{d^2y}{dx^2} = 2y^3 + 8y$ where y = 2, y' = -8 when $x = \frac{\pi}{4}$ Ans: $y = 2\tan\left(\frac{3\pi}{4} 2x\right)$
 - **b.** $\frac{d^2y}{dx^2} + 2x\left(\frac{dy}{dx}\right)^2 = 0$ where y = 0, y' = 1 when x = 0 Ans: $y = \arctan x$.
- 4. For each of the following constant coefficient differential equations,

$$y'' + by' + cy = g(x)$$

find the complimentary function and state which function you would use to try and find a Particular Solution by the method of undetermined coefficients.

- **a.** $b=3, \quad c=2, \quad g(x)=e^{5x}$ Ans: C.F: $y=Ae^{-2x}+Be^{-x}$ PS $y=Ce^{5x}$.
- **b.** b = 1, c = -6, $g(x) = 2e^{2x} + \sin 3x$ Ans: C.F: $y = Ae^{-3x} + Be^{2x}$ PS: $y_1 = Cxe^{2x}$, because 2 is a root of the A.E. $y_2 = (D\sin 3x + E\cos 3x)$.
- **c.** b = 7, c = 0, $g(x) = 4x^2 + x + 2$ Ans: C.F: $y = A + Be^{-7x}$ PS $y = (p_2x^2 + p_1x + p_0)x$ because 0 is a root of the A.E.
- **d.** $b = 1, \ c = 1, \ g(x) = 2e^{-x}$ Ans: C.F: $y = e^{-x/2} \left(A \sin \frac{\sqrt{3}}{2} x + B \cos \frac{\sqrt{3}}{2} x \right)$ PS $y = Ce^{-x}$.
- **e.** $b=4, c=4, g(x)=3e^{-2x}+2e^{3x}+\sin x$ Ans: C.F: $y=e^{-2x}(A+Bx)$ PS $y_1=Cx^2e^{-2x}$ because -2 is a two fold root of the A.E, $y_2=De^{3x}, y_3=(E\sin x+F\cos x)$.
- 5. By converting the Euler equation

$$x^{2}y''(x) - 2xy'(x) + 2y(x) = 4x^{3}$$

to a constant coefficient problem show that the solution is given by

$$y\left(x\right) = Ax + Bx^2 + 2x^3.$$