Discrete Mathematics and Algorithms

(CSE611)

Lecture No: 5

Prepared by

Anu Agrawal(201306636)

Prerna Gupta(201306643)

Sanjeev kumar(201306647)

Deepak Jiwal(201306662)

on

Topic: Functions

16 August 2013

1 One to One or Injective Functions

A function f: X -> Y is called 1-1, if each element in the co-domain Y is the image of atmost one element in the domain X.

In other words,

if $a, b \in X$ with $a \neq b$

then f(a) = f(b)

or equivalently if f(a) = f(b) then a = b

2 Onto or Surjective Functions

A function f: X - > Y is called onto, if each element in the co-domain Y is the image of at lest one element in the domain X.

In other words,

For all $b \in Y$, there exist $a \in X$, such that f(a) = b.

3 Bijective Functions

A function f: X -> Y is called bijective, if it is one-one and onto.

Remark: Let f: X -> Y be one-one then

Im(f) subset Y

then, f: X - > Im(f) is a bijective function

Lemma 1. If f: X -> Y, is one-one and X,Y are finite sets having same number of elements then f is bijective.

4 Identity Functions

The identity function $1_s: S - > S$ maps each element $x \in S$ (Domain) onto itself.

5 Equality of Functions

Let f:A->B and g:A->B be two functions, then f=g, iff f(x)=g(x), for all $x\in A$.

6 Composite Functions

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions

then the composite function is defined as

 $g \circ f : A \longrightarrow C$ is defined as

$$(g \circ f)(a) = g[f(a)]$$
 for all $a \in A$

Lemma 2. Let $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ be three functions. Whenever the composite involved are defined, composition of function always obeys the following law:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

Proof:

$$((h \circ g) \circ f)(x) = (h \circ g) \circ (f(x))$$

h[g(f(x))]

$$((h \circ g) \circ f)(x) = h[(g \circ f)(x)]$$

h[g(f(x))]

Theorem 3. (Identity Law) Let f: S->T be a function and $1_s: S->S, 1_s: T->T$ are the identity functions respectively.

Then,
$$f.1_s = 1_t.f = f$$

Proof. RTP:

(I)
$$f.1_s = f$$

(II)
$$1_t \cdot f = f$$

(I) Let $s \in S$

Then,

$$f.1_s(s) = f[1_s(s)]$$

$$= f(s)$$
, since $1_s(s) = s$, for all $s \in S$

It implies $f.1_s = f$

(II) Let
$$s \in S$$

Then,

$$(1_t \cdot f)(s) = 1_t(f(s))$$

= f(s), It implies $1_t \cdot f = f$

7 Characteristic Function

Any set S which is a subset of a set U can be associated with a function called it's Characteristic function.

 $e_s: U - > \{0, 1\}$ defined by

In other words if $S \subset Uu_1, u_2, u_3....u_n$ then,

 $e_s: u -> 0, 1$ is defined as

$$e_s(u_i) = \begin{cases} 1, u_i \in S \\ 0, u_i \notin S \end{cases}$$

Example:

Let U = 1,2,3,....,10 and

 $S = 4,7,9 \subset U$

Define

$$e_s: U - > \{0, 1\}$$

$$e_s(2) = 0, 2 \notin S$$

$$e_s(7) = 1, 7 \in S$$

 $e_s(12) = undefined$, as 12 not $\in U$

8 Inverse of function

Let f:S->T and g:T->S be two functions such that

$$g\circ f=1_S=f\circ g$$

where 'o' is the left composition

'o' is the right composition

Then g is called "left invertible" f of w.r.t 'o' and g is called "right invertible" of f w.r.t 'o'

Definition 1. A function which has a two-sided inverse is called "invertible".

A function is "invertible" if it is bijective.

Theorem 4.

a.) A function is left-invertible iff it is injective.

b.) A function is right-invertible iff it is surjective.

Proof. a.) Let $f: A \rightarrow B$ be left-invertible.

RTP:

f is 1-1

By definition, there exist $g: B \rightarrow A$ such that

$$g \circ f = 1_A$$

Let $f(x_1)=f(x_2)$, for x_1 , x_2 belongs to A.

Now,

$$g[f(x_1)] = g[f(x_2)]$$

$$=> (g \circ f)(x_1) = (g \circ f)(x_2)$$

$$=>1_A(x_1)=1_A(x_2)$$

$$=> x_1 = x_2$$

therefore, $f: A \rightarrow B$ is 1-1.

Proof. a.) Let f : A -> B be 1-1.

RTP:

f is left-invertible.

Since f is 1-1,

$$f(x_1) = f(x_2)$$

$$=>x_1=x_2 \text{ for all } x_1$$
 , $x_2\in A$

Let g: B -> A be a function

Construction of g:

for all $S \in A$,

Let
$$f(s) = t \in B$$

$$g(t) = \begin{cases} s, iff, f(s) = t \in B \\ s_1, iff, t \notin I_m(f) \text{ for all } t \in B \end{cases}$$

Therefore $(g \circ f)(s) = g[f(s)]$

= g(t)

= s, for all $s \in A$

$$=> (g \circ f)(s) = 1_A(s), s \in A => g \circ f = 1_A$$

Corollary 5. A function $f: A \rightarrow B$ is a bijection iff it has both a left-inverse and a right inverse.

9 Problem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

(I) If f and g are both injective, then prove that gof is injective too.

Proof. Given $f: A \rightarrow B$ is injective and $g: B \rightarrow C$ is injective.

RTP:

 $g \circ f : A - > C$ is also injective.

Let
$$x_1,x_2\in A$$
 such that $x_1\neq x_2$
$$x_1\neq x_2=>f(x_1)\neq f(x_2)\text{, since f is injective.}$$
 $f(x_1)=y_1\in B$ and $f(x_2)=y_2\in B$

$$=> y_1 \neq y_2$$

$$=> g(y_1 \neq g(y_2)), \text{ since g is injective.} => g[f(x_1)] \neq g[f(x_2)]$$

$$=> (g \circ f)(x_1) \neq (g \circ f)(x_2) \text{ by definition of gof.}$$

$$=> g \circ f \text{ is also injective.}$$