

Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного автномного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: <u>ИУК-КФ «Информатики и управления»</u>

КАФЕДРА: ИУК7-КФ «Экология и промышленная безопасность»

Лабораторная работа №5

«ИССЛЕДОВАНИЕ ИСКУССТВЕННОГО ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ» ДИСЦИПЛИНА: «Безопасность жизнедеятельности»

Выполнил: студент гр.ИУК4-62Б ______ (Губин Е.В.)

(подпись) / Ф.И.О.

Проверил: ст. преподаватель (Астахова Л.В)

(подпись) Ф.И.О.

Дата сдачи (защиты):

Результаты сдачи (защиты):

- Бальная оценка:
- Оценка: 5

Цель работы: ознакомиться с основными характеристиками, принципами нормирования, методами замеров и расчётов искусственного освещения.

Производительность труда и качество выпускаемой продукции находятся в прямой зависимости от освещения.

Производственное освещение — неотъемлемый элемент условий трудовой деятельности человека.

При правильно организованном освещении рабочего места обеспечивается сохранность зрения человека и нормальное состояние его нервной системы, а также безопасность в процессе производства.

Свет представляет собой излучения в диапазоне длин волн от 380 до 760 нм. Каждой длине волны соответствует свой цвет от фиолетового (380. ..450 *нм*) до красного (620. ..760 *нм*). На практике приходится иметь дело со светом сложного спектрального состава, состоящим из волн различной длины.

Освещение характеризуется рядом показателей.

• *Световой поток* Φ - поток лучистой энергии. оцениваемый, глазом по световому ощущению. Единица светового потока – *люмен* (лм)

Распространение светового потока в окружающем пространстве обычно неравномерно. Поэтому не достаточно знать только световой поток, нужно знать ещё характеристику распределения светового потока в пространстве, которое характеризуется силой света (I).

- *Сила света* пространственная плотность светового потока, измеряемая в канделах ($\kappa \partial$) $dI = d\Phi/dw$
- *Освещённость E* характеризует поверхностную плотность светового потока на освещаемой поверхности. Единица измерения *люкс* ($n\kappa$). $dE = d\Phi/dS$
- *Яркость L* величина, равная отношению силы света, излучаемого элементом поверхности, к площади проекции этой поверхности на плоскость, перпендикулярную к тому же направлению. $(\kappa \partial/m^2)$ L=I/S*cos a
- I сила света, излучаемая поверхностью в заданном направлении; S площадь поверхности (см²); a-угол к нормали светящейся поверхности.
- Естественное освещение осуществляется за счет прямого и отраженного света неба.
- Искусственное освещение создаётся искусственными источниками света (лампами накаливания или газоразрядными лампами) и подразделяется по назначению на рабочее, аварийное, эвакуационное и охранное.

Виды производственного освещения.

- Искусственное освещение подразделяется по назначению на:
- рабочее,
- аварийное,
- эвакуационное и охранное.

Рабочее освещение следует предусматривать для всех помещений, зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта.

Аварийное - используемое при отключении рабочего освещения для производственных помещений, в которых недопустимо прекращение работ.

Эвакуационное - в местах опасных для прохода людей, в проходах и на лестницах, служащих для эвакуации людей, в числе эвакуирующихся более 50 человек.

Охранное - должно предусматриваться вдоль границ, территорий охраняемых в ночное время

По расположению в пространстве различают следующие системы освещения.

Общее (равномерное или локализованное) - предназначено для равномерного освещения помещена или его части. Комбинированное (общее местное).

- **Местное освещение** стационарное или переносное, для освещения только рабочих поверхностей. Применение только местного освещения запрещается.
- **Комбинированное** общее + местное.
- **■** Комбинированное + естественное = СОВМЕЩЁННОЕ

Для искусственного освещения применяются лампы накаливания и газоразрядные лампы. В лампах накаливания источником света является раскаленная проволока из тугоплавкого металла (вольфрама). Эти лампы дают непрерывный спектр излучения с преобладанием желто-красных лучей по сравнению с естественным светом.

По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ). биспиральные с криптон – ксеноновым наполнением (НБК). зеркальные (Н3).

Газоразрядные лампы бывают низкого и высокого давления. Лампы низкого давления (люминесцентные) - дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), наиболее близкие к естественному свету (ЛЕ), белого цвета (ЛБ), тепло-белого цвета (ЛТБ), холодно белого цвета (ЛХБ) и др.

Лампы высокого и сверхвысокого давления - дуговые ртутные люминесцентные (ДРЛ), с добавкой иодидов металла (ДРИ) и др.

Нормирование освещения

Нормативная освещённость (Ен) рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами (СНиП 23 - 05 - 95)

Нормирование освещённости осуществляется в зависимости от разряда работы, определяемого минимальным объектом различения, фона, контраста, системы освещения. Объект различения - рассматриваемый предмет, отдельная его часть или дефект, которые требуется различать в процессе работы.

■ **Фон** - поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Характеризуется коэффициентом отражения

$$\rho = \Phi_{omp} / \Phi_{na\partial}$$

где Φ_{omp} и $\Phi_{na\partial}$ - соответственно световой поток, отражённый и падающий на поверхность.

Фон считается:

светлым - при коэффициенте отражения поверхности более 0,4; средним - то же, от 0,2 до 0.4;

тёмным - то же, менее 0,2.

■ Контраст объекта различения с фоном определяется отношением абсолютной величины разности между яркостью объекта и фона к яркости фона.

$$K=(L_{\Phi}-L_{\theta})I\Phi$$
,

■ Контраст объекта различения с фоном считается: большим - при К более 0,5 (объект и фон отличаются по яркости); средним - при К от 0,2 до 0,5 (объект и фон заметно отличаются по яркости); малым - при К менее 0,2 (объект и фон мало отличаются по яркости).

Методы расчета искусственного освещения рабочих поверхностей

Метод светового потока — применяется при равномерном расположении светильников и при нормированной горизонтальной освещенности. С помощью этого метода рассчитывают среднюю освещенность поверхности.

Точечный метод — применяется для расчета общего равномерного и локализованного освещения помещений и открытых пространств, а также местного освещения при любом расположении освещаемых поверхностей.

Метод удельной мощности — применяется при расчете общего равномерного освещения, особенно для помещений большой площади. Значение удельной мощности

зависит от: светильников, размещения их в помещениях, мощности и типа ламп, характеристики освещаемого помещения.

Основным методом расчёта общего искусственного освещения является метод коэффициента использования светового потока. При этом методе, определяется необходимый световой поток лампы (Φ ,) или светильника при известном их числе (N), или наоборот определяется N при известном Φ_{π} .

Расчёт ведётся по выражению

$$\Phi_{\pi} = E_{H} \cdot S \cdot Z \cdot K_{3} / N \cdot \eta : \tag{1}$$

где Φ_{H} , - световой поток одного светильника, π_{M} ;

 E_{H} - нормируемая освещённость, $\pi \kappa$;

S - площадь помещения, M^2 ;

Z- коэффициент, учитывающий: отношение средней освещённости к минимальной.

Z = 1,1- для люминесцентных ламп; Z = 1,15- для ламп накаливания;

 K_3 - коэффициент запаса, принимаемый в зависимости от загрязнённости воздуха в помещении по таб. 1 в СНи Π - 23-05-95:

N - число ламп в светильниках (обычно для расчёта задаётся число светильников по условию наивыгоднейшего расположения). Учитывается, что в светильнике может быть несколько ламп.

 η - коэффициент использования светового потока (в долях единиц), определяется по светотехническим таблицам. Он зависит от КПД и кривой распределения света светильника, коэффициентов отражения потолка, стен и пола, высоты подвеса светильника над расчётной поверхностью и индекса помещения, определяемого в зависимости от размеров

$$i=a\cdot b/(h_p\cdot (a+b)), \qquad (2)$$

где a и b - ширина и длина помещения, м;

 h_p - высота подвеса светильника над расчётной поверхностью, м.

Приборы и оборудование

В лабораторной работе используется люксметр Ю-116, предназначенный для измерения освещённости, создаваемой лампами накаливания и естественным светом, источники которого расположены произвольно относительно светоприёмника люксметра; местный светильник с изменением высоты установки.

Переносной фотоэлектрический люксметр предназначен для эксплуатации при температуре окружающего воздуха от -10 до +35С и относительной

влажности до $80\%(20\pm5$ оС). Диапазон измерений κ и общий номинальный коэффициент ослабления применяемых трёх насадок приведены в таб.1 и в примечаниях к таб.1.

Шкалы прибора неравномерные, градуированные в люксах: одна шкала имеет 100 делений, вторая - 30 делений. Отметка "5" шкалы 0-30, отметка "20" шкалы 0-100,

соответствующие начальным значениям диапазонов измерений отмечены точкой.

Люксметр состоит из измерителя люксметра и отдельно фотоэлемента с насадками.

На передней панели измерителя имеются кнопки переключателя и табличка со схемой, связывающей действие кнопок и используемых насадок с диапазонами измерений, приведённых в таб.1.

На боковой панели корпуса измерителя расположена вилка для присоединения селенового фотоэлемента. Селеновый фотоэлемент находится в пластмассовом корпусе и присоединяется к измерителю шнуром с розеткой, обеспечивающей правильную полярность

соединения. Длина шнура 1,5 м.

Светочувствительная поверхность элемента составляет около 30 см². Для уменьшения косинусной погрешности используется насадка фотоэлемента, состоящая из полусферы, выполненной из белой светорассеивающей пластмассы, и непрозрачного кольца. Насадка применяется не самостоятельно, а совместно с одной из трёх других насадок, имеющих обозначение M, P, T.

Порядок проведения работы

Задание 1. Исследование доли общего освещения в комбинированном.

▶ В соответствии с требованиями к комбинированному освещению доля общего должна составлять не менее 10%.

Порядок выполнения:

- ▶ Включить верхние светильники.
- ▶ Зашторить окна.
- ▶ Определить освещённость на рабочем месте.
- ▶ Включить светильник местного освещения.
- ► Замерить освещённость при высоте (h) лампы местного освещения 40.60.80.100.120см.
- ▶ Определить в каждом случае долю общего освещения в %.
- ▶ Полученные результаты измерений занести в табл. 2.
- ▶ Сделать заключение о достаточности доли общего освещения в комбинированном и обеспечении равномерности освещения.

<u>Задание</u> <u>2.</u> Произвести расчет искусственного освещения в помещении конструкторского бюро методом коэффициента использования светового потока по данным табл. 3 (вариант по указанию преподавателя).

Порядок выполнения задания 2

- ▶ Вычислить площадь помещения (по данным таблицы 3).
- ▶ Определить индекс помещения і по формуле (2).
- ▶ По табл. 4 найти значение коэффициента использования светильной установки (n).
- ightharpoonup По нормам освещения (табл.5) выбрать значение $E_{\text{мин}}$, соответствующее выполнению чертёжной работы <u>для общего освещения</u> с учётом разряда, фона и контраста.
- ▶ Значение коэффициента К₃ найти по табл.6.
- ▶ Полученные и заданные значения подставить в формулу (1) и произвести расчёт.
- ► По полученному световому потоку подобрать лампу по табл.7 с соответствующим потоком Ф, мощностью, напряжением и типом светильника.
- ▶ Полученные данные записать в отчет о лабораторной работе.

Основная литература

- 1. Хван, Т.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие /
- Т.А. Хван, П.А. Хван. 11-е изд. Ростов-н/Д: Феникс, 2014. 448 с.: ил., табл. (Высшее образование). Режим доступа: http:

//biblioclub.ru/index.php?page=book&id=271593

- 2. Муравей, Л.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие / под ред. Л.А Муравей. 2-е изд., перераб. и доп. М.: Юнити-Дана, 2015. 431 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=119542
- 3. Арустамов, Э.А. Безопасность жизнедеятельности [Электронный ресурс]: учебник / Э.А. Арустамов, А.Е. Волощенко, Г.В. Гуськов; под ред. Э.А. Арустамова. 19-е изд., перераб. и доп. М.: Издательско-торговая корпорация «Дашков и К°», 2015. 448 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=375807
- 4. Попов, А.А. Производственная безопасность [Электронный ресурс]: учеб. пособие / под ред. А.А. Попова. СПб.: Лань, 2013. 432 с. Режим доступа: http://e.lanbook.com/book/12937

Дополнительная литература

- 1. Виноградов, Д.В. Применение смазочно-охлаждающих технологических средств при резании металлов [Электронный ресурс]: учеб. пособие по курсу «Инструментообеспечение машиностроительных предприятий» Ч. 1: Функциональные действия / Д.В Виноградов— Электрон. дан. М.: МГТУ им. Н.Э. Баумана, 2013. 90 с. Режим доступа: http://e.lanbook.com/book/58525
- 2. Макаров, В.Ф. Современные методы высокоэффективной абразивной обработки жаропрочных сталей и сплавов [Электронный ресурс]: учеб. пособие / В.Ф. Макаров. Электрон. дан. СПб.: Лань, 2013. 320 с. Режим доступа: http://e.lanbook.com/book/32819
- 3. Сибикин, М.Ю. Современное металлообрабатывающее оборудование: справочник [Электронный ресурс] / М.Ю. Сибикин, В.В. Непомилуев, А.Н. Семенов, М.В. Тимофеев. М.: Машиностроение, 2013. 308 с. Режим доступа: http://e.lanbook.com/book/37007
- 4. Суслов, А.Г. Наукоемкие технологии в машиностроении [Электронный ресурс] / А.Г. Суслов, Б.М. Базров, В.Ф. Безъязычный; под ред. А.Г. Суслова. М.: Машиностроение, 2012. 528 с. Режим доступа: http://e.lanbook.com/book/5795
- 5. Кривошеин, Д.А. Основы экологической безопасности производств [Электронный ресурс]: учеб. пособие / Д.А. Кривошеин, В.П. Дмитренко, Н.В. Федотова. СПб: Лань, 2015. 336 с. Режим доступа: http://e.lanbook.com/book/60654

1. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Научная электронная библиотека http://eLIBRARY.RU.
- 2. Электронно-библиотечная система http://e.lanbook.com.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru.
- 4. Электронно-библиотечная система http://biblio-online.ru.
- 5. Электронно-библиотечная система http://iprbookshop.ru

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступая к освоению дисциплины обучающийся должен принимать во внимание следующие положения.

Дисциплина построена по модульному принципу, каждый модуль представляет собой логически завершенный раздел курса.

Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебный заданий, выносимых на самостоятельную проработку.

Практические занятия проводятся для закрепления усвоенной информации, приобретения в основном умений для решения практических задач в предметной области дисциплины. Практические занятия обеспечены методическими указаниями по их выполнению:

Лабораторные работы предназначены для приобретения умений и навыков для решения практических задач в предметной области дисциплины. Лабораторные работы обеспечены методическими указаниями по их выполнению:

1. Астахова Л.В., Сорокина И.В., Шнитко И.Г., Фицуков М.М. Исследование искусственного производственного освещения. Методическое пособие. -М.: Издательство МГТУ им. Н.Э. Баумана, 2009.

приложения

Таблица 1

Таблица 2

Диапазон измерения освещенности в люксах с использованием 2-х шкал и 3-х насадок

Диапазон измерений, лк								
основной		не основной						
Без насадок, с открытым	С насадками							
фотоэлементом	КМ	КР	KT					
5-30	50-300	500-3000	5000-30000					
20-100	200-1000	2000-10000	20000-100000					

Примечание: КМ, КР, КТ – условное обозначение совместно применяемых насадок для создания общего номинального коэффициента ослабления 10, 100, 1000.

Расчет доли общего освещения в комбинированном

Высота подвеса светильника, см	40	60	80	100	120
Освещенность, создаваемая общим освещением			270		
Освещенность комбинированного	750	550	500	450	400

54

58

67

Вывод: при увеличении высоты подвеса освещённость уменьшается, доля общего освещения в комбинированном увеличивается, рассеиваемость увеличивается, выбираем высоту подвеса равную 40см.

36

40

освещения

Доля общего освещения, %

Таблица 3

Варианты заланий для расчета освещения в помещениях

Барі	ианты зад	цапии	1 Дли	расче	1a oc	вещения	в помещ	СПИИЛ		
№ варианта	1	2	3	4	5	6	7	8	9	10
Применяемые светильники	УПМ-5 "Астра 1, 11, 12"	ПКР	ПО-21	УПД	Шар	ПВЛМ- 2x40; 2x80; с лампами ЛБР	ПВЛМ- 1х40; 1х80; с лампами	ЛПО09	ЛПО02- 4x40	ЛПО02- 4x40
Длина помещения А, в м	10	12	18	25	30	10	12	18	25	30
Ширина помещения В, в м	8	10	10	15	20	8	10	10	15	20
Высота подвеса светильника h _p , в м	2	2	3	3	3	2	2	3	3	3
Общее количество светильников, N	10	15	25	45	70	10	15	25	45	70
Поправочный коэффициент, Z	1,2	1,1	1,2	1.1	1,2	1,2	11	1,2	1,1	1,2

 Таблица 4

 Коэффициенты использования светового потока.

	Светильники с лампами накаливания																								
Тип		УПМ-15																							
светиль	,	'Ac		_	1.		1	ПΚΙ)			П	O-2	21			3	УПД	Ī		Шар				
ника		110	12'		٠,								_						1					Т	ļ
Pπ,	70	70	50	30	0	70	70	50	30	0	70	70	50	30	0	70	70	50	30	0	70	70	50	30	0
ρC,	50	50	30	10	0	50	50	30	10	0	50	50	30	10	0	50	50	10	10	0	50	50	30	10	0
ρP,	30	10	10	10	0	30	10	10	10	0	30	10	10	10	0	30	10	10	10	0	30	10	10	10	0
i											η – 1	соэфф	ициен	ты и	споль	зован	ия, %	10-2							
0,5	24	22	20	17	16	18	17	10	9	3	24	23	20	17	11	28	27	23	20	19	16	15	13	8	3
0,6	34	32	26	23	21	23	21	16	13	5	30	28	25	20	14	36	34	28	25	24	20	19	16	12	7
0,7	42	39	34	30	29	25	23	18	15	6	35	31	29	25	17	40	38	33	29	28	24	23	20	16	10
0,8	46	44	38	34	33	30	28	21	19	8	40	38	34	30	22	44	42	36	33	31	27	26	22	18	11
0,9	49	47	41	37	36	32	29	23	20	8	42	39	36	33	23	47	45	39	36	35	30	28	24	20	12
1	51	49	43	39	37	33	31	34	22	9	44	42	38	34	24	50	47	42	39	38	32	30	26	22	13
1,1	53	50	45	41	39	38	33	25	23	9	46	43	39	35	25	52	49	44	41	40	34	32	27	23	14
1,25	56	52	47	43	41	39	37	28	25	10	50	46	41	37	26	57	52	47	44	43	36	34	29	24	15
1,5	60	55	50	46	44	42	39	30	27	10	53	49	44	39	27	61	557	51	47	46	40	36	31	26	16

1,75	63	58	53	48	46	45	42	32	29	11	56	52	46	41	29	65	60	56	50	49	42	38	33	28	17
2	66	60	55	51	49	49	44	34	31	12	59	54	48	44	30	68	62	58	54	52	44	40	35	30	18
2,25	68	62	57	53	51	51	45	35	32	12	61	56	50	45	31	71	64	60	56	55	46	42	36	31	19
2,5	70	64	59	55	53	53	47	36	34	13	63	58	51	47	33	73	65	61	58	57	48	43	38	33	20
3	73	66	62	58	56	56	50	39	36	14	67	60	53	50	35	77	67	64	61	59	51	45	40	36	21
3,5	76	68	64	61	59	58	52	40	37	15	70	62	56	52	37	79	69	66	63	61	53	48	41	38	23
4	78	70	66	62	60	60	53	42	39	15	72	63	57	53	38	81	70	67	64	62	55	49	43	40	25
5	81	73	69	64	62	63	55	43	42	16	74	65	58	56	39	82	72	69	66	64	59	52	46	43	27

Свещенность при различных разрядах зрительной работы для искусственного освещения (СНиП 23-05-95)

Характери-	Наимень-	оты	ой ра-	Контраст		Искусственно вещение	e oc-
стика зри-	ший раз-	ípac	15 HC	объекта различе-		Освещенн	ость, лк
тельной ра- боты	мер объ- екта раз- личения (мм)	Разряд эрительной работы	Подразряд зрительной ра- боты	ния с фо-	Характе- эистика фона	При ком- бинирован- ном освеще- нии	При об- щем ос- вещении
			a	малый	темный	5000-4500	
			б	малый	средний	4000-3500	1250
Наивысшей				средний	темный		1000
точности	Менее 0,15	I	В	малый	светлый	2500	750
	Wienee 0,13	1		средний	средний		
				большой	темный	2000	600
			Γ	средний	светлый	1500	400
				большой	средний	1200	300
			a	малый	темный	4000-3500	
			б	малый	средний	3000	750
				средний	темный	2500	600
Очень	От 0,15 до	II	В	малый	светлый	2000	500
высокой точности	0,3	111		средний	средний		
10 11100111				большой	темный	1500	400
			Γ	средний	светлый	1000	300
				большой	средний		
			a	малый	темный	2000-1500	500-400
			б	малый	средний	1000	300
				средний	темный	750	200
Высокой	От 0,3	III	В	малый	светлый	750	300
точности	до 0,5	1111		средний	средний		
				большой	темный	600	200
			Г	средний	светлый	400	200
				большой	средний		
Средней	Св. 0,5	IV	a	малый	темный	750	300

точности	до 1		б	малый	средний	500	200
				средний	темный		
			В	малый	светлый	400	200
				средний	средний		
				большой	темный		
			Γ	средний	светлый		200
				большой	средний		200
			a	малый	темный	400	300
			б	малый	средний		200
				средний	темный		
Малой	Св. 1		В	малый	светлый		200
точности	до 5	V		средний	средний		
10 1110 0111	Дог			большой	темный		
			Γ	средний	светлый		200
				большой	средний		

Грубая (очень малой точности)	Более 5	VI		Независимо от характеристик фона и контраста объекта с фоном	200
Работа со светящимися материалами и изделиями в горячих цехах	Более 5	VII		Независимо от характеристик фона и контраста объекта с фоном	200
Общее наблюдение за ходом производствен ного процесса: постоянное			a	Независимо от характеристик фона и контраста объекта с фоном	200
периодическое при постоянном пребывании в		VIII	б	Независимо от характеристик фона и контраста объекта с фоном	75
периодическое при периодическом пребывании в помещении			В	Независимо от характеристик фона и контраста объекта с фоном	50
общее наблюдение за инженерными коммуникация-			Г	Независимо от характеристик фона и контраста объекта с фоном	20

Коэффициенты запаса

		Искусственное освещение					
Помещения и территории	Примеры помещений	Коэффициент запаса. К, Количество чисток светильников в год					
		Эксплуатационная группа светильников по приложению Г					
		1-4	5-6	7			
1. Производственные помещения с воздушной средой, содержащей в рабочей зоне: а) св. 5мг/м ³ пыли, дыма,	Агломерационные фабрики, цементные заводы и обрубные отделения литейных цехов	2,0 18	1,7 6	1,6 4			
б) от 1 до 5 мг/м ³ пыли, дыма, копоти	Цехи кузнечные, литейные, мартеновские, сборного железобетона	1,8 6	1,6 4	1,6 2			
в) менее 1 мг/м³ пыли, дыма, копоти	Цехи инструментальные, сборочные, механические, механосборочные, пошивочные	1,5 4	1,4 2	1,4 1			
г) значительные концентрации паров, кислот, щелочей. газов, способных при соприкосновении с влагой образовывать слабые растворы кислот, щелочей, а также обладающих большой коррозирующей способностью	Цехи химических заводов по выработке кислот, щелочей, едких химических реактивов, ядохимикатов, удобрений, цехи гальванических покрытий и различных отраслей промышленности с применением электролиза	1,8 6	1,6 4	1,6 2			
2. Производственные помещения с особым режимом по чистоте воздуха при обслуживании светильников: а) с технического этажа		1,3	-	-			
б) снизу из помещения		1,4 2					

Тип лампы	Мощность, Вт	Световой пото	· · · -
		127	220
HB – 23	15	135	105
HB – 24	25	260	220
НБ – 25	40	490	400
ньк -	40	520	460
НБ -27	60	820	715
НБ – 6	60	.875	790
НБК – 48	100	1560	1350
ΗΓ – 48	100	1630	1450
НБ – 5	150	2300	2000
НГ – 49	150	_	2100
НБ –	200	3200	2800
НГ − 50	200	_	2920
НГ − 51	300	4950	4600
НГ – 53	500	9100	8300
НГ − 54	750	_	13100
НГ − 55	1000	19500	18600
НΓ –	1500	29000	29000

Решение задачи

Условие:

Произвести расчёт искусственного освещения в помещении конструкторского бюро методом коэффициента использования светового потока по данным табл. 1. Конструкторские бюро как, правило, имеют белый потолок (белый цвет имеет наибольшую отражательную способность — значит коэффициент отражения самый высокий) ρ_n =70, светлые стены ρ_c =50, нетёмный пол ρ_p =30. Для работы конструктора, наименьшим объектом различения является точка, размеры которой составляют от 0,3 до 0,5 мм. (вариант по указанию преподавателя).

<u>Дано: (из табл. 1)</u>

Светильник "Астра 1» с лампой накаливания.

a = 10 M

b= 8м

 $\Phi_n = E_n \cdot S \cdot Z \cdot K_3 / N \cdot \eta$ (1)

 $h_p = 2M$

N = 12шт.

Z= 1,1

Найти: Φ_{π} и подобрать лампу

1). Находим площадь освещаемого помещения:

$$S = a \cdot b = 10 * 8 = 80 \text{ m}^2$$

2). По таб. 2 подбираем K_3 – коэффициент запаса. Коэффициент запаса для осветительных установок общего освещения должен приниматься равным

- 1,4 т.к. для работы конструктора подходит помещение с особым режимом по чистоте воздуха при обслуживании светильников снизу из помещения 2 (количество чисток в год) раза в год. (Коэффициент запаса (К₃) расчетный коэффициент, учитывающий снижение КЕО (коэффициента естественного освещения) и освещенности в процессе эксплуатации вследствие загрязнения и старения светопрозрачных заполнений в световых проемах, источников света (ламп) и светильников, а также снижение отражающих свойств поверхностей помещения.)
- 3). По табл. 3 подбираем коэффициент η (коэффициент светового потока в долях единиц), который зависит: от коэффициентов отражения потолка, стен и пола $\rho_{\rm II}$, $\rho_{\rm C}$, $\rho_{\rm P}$, в %, высоты подвеса светильника над расчётной поверхностью h_p и индекса помещения i, определяемого в зависимости от размеров

$$i=a\cdot b/(h_p\cdot (a+b)) = 10 * 8/2 * (10 + 8) = 2,22$$
 (2)

где a и b- ширина и длина помещения, м; h_p - высота подвеса светильника над расчётной поверхностью, м.

В табл. 3 находим в левом верхнем углу коэффициенты отражения. Так как, предположительно, у нас белый потолок (белый цвет имеет наибольшую отражательную способность — значит коэффициент отражения самый высокий) ρ_n =70, светлые стены ρ_c =50, нетёмный пол ρ_p =30. Далее находим на пересечении коэфф-та отражения и индекса помещения (самое близкое - i = 2.25) число равное 68, в шапке *10⁻². Значит η = 0,68.

- 4). По табл. 4 подбираем $E_{\text{норм.}}$ оно зависит от наименьшего объекта различения, от фона и от контраста с фоном. Для работы конструктора, наименьшим объектом различения является точка, размеры которой составляют от 0,3 до 0,5 мм. Находим в табл. 4 в соответствующей колонке эти размеры. Отсюда следует, что для конструктора: характеристика зрительной работы высокой точности, разряд зрительной работы III. Далее переходим к фону, фон средний (лист ватмана бумага бывает и светлее ватмана и темнее). Контраст объекта различения с фоном тоже средний, т.к. чертежи в основном выполняются твёрдо-мягким карандашом (если по серой бумаге твёрдым карандашом контраст малый, если тушью контраст большой). В таблице по одной линеечке находим средний-средний, тогда подразряд зрительной работы в. И в крайней правой колонке освещённость при общем освещении подбираем нормированное освещение $E_{\text{норм.}}$ = 300лк.
- 5). Подставляем в формулу полученные значения:

$$\Phi_{\pi} = E_{\pi} \cdot S \cdot Z \cdot K_{3} / N \cdot \eta = 300 * 80 * 1,1 * 1,4/12 * 0,68 = 4941,2$$
 лм

6). По табл. 5 по рассчитанному значению светового потока Φ_n и напряжению сети равному **220В** выбирается ближайшая стандартная лампа, поток которой не должен отличаться от Φ_n больше чем на -10 - +20% (4447,059 – 59929,14). В нашем случае это будет лампа **НГ-51** (газонаполненная), мощностью **300Вт**. И её световым потоком $\Phi = 4600$ лм.

ОТВЕТ: Выбрана лампа **НГ-51** (газонаполненная), мощностью **300Вт** и световым потоком Φ = **4600лм.**

Технические данные люминесцентных ламп

Тип лампы	Мощно сть Вт	Номинальный световой поток, л/с, после 100 ч горения
ЛБ 4-1(2)	4	100
ЛБ 6-1(2)	6	220
ЛБ 8-3	8	360
ЛДЦ 15-4		500
ЛД 15-4		590
ЛХБ 15-4	15	675
ЛТБ 15-4		700
ЛБ 15-4		760
ЛДЦ 20-4		820
ЛД 20-4		920
ЛХБ 20-4	20	935
ЛТБ 20-4		975
ЛБ 20-4		1180
ЛДЦ304		1450
ЛД 30-4		1640
ЛХБ 30-4	30	1720
ЛТБ 30-4		1720
ЛБ304		2100
ЛДЦ 40-4		2100
ЛДЦ 40-4		2340
ЛДЦ 40-4		2600
ЛДЦ 40-4	40	2580
ЛДЦ 40-4		3000
ЛДЦ 40-1		2000
ЛДЦ 65-4		3050
ЛД 65-4		3570
ЛХБ 65-4	63	3820
ЛТБ 65-4		3980
ЛБ 65-4		4 E 0
ЛДЦ 80-4		3360
ЛД 80-4		4070
ЛХБ 80-4	80	4440
ЛТБ 80-4		4440
ЛБ 80-4		5220
ЛХБ 150	150	8000
ЛБР 4 ЛБР 4-2	4	100 110
ЛБР 40-1 ЛХБР 40	40	2250 2080
ЛБР80-1 ЛХБР 80	80	4160 3160

Дополнительная информация

	Лампы накаливания	Люминесцентные лампы
достоинства	1. Простота и дешивизна в изготовлении. 2. Удобство в эксплуатации. 3. Не надо использовать дополнительные устройства. Компактность. 4. Отработанная утилизация. 5. Изготовление в широком ассортименте на разные мощности и напряжения. 6. Незначительное снижение светового потока к концу срока службы. 7. Полная независимость от условий окружающей среды и от температуры.	 Повышенная световая отдача. Большой срок службы. Близость к спектру естественного света. Относительно малая яркость. Качественная цветопередача. Экономичность. Не влияет на изменение температуры окружающей среды.
недостатки	 Небольшой срок службы. Невысокая светоотдача. Значительное отличие от естественного света. Преобладание жёлто-красного спектра. Искажение цветопередачи. Невозможность использования для работ связанных с оттенками цветов. Неэкономичность. Нагревание окружающей среды. 	1. Пульсация светового потока (ухудшаются условия зрительных работ). 2. Использование дополнительной аппаратуры, сложность схемы включения, что приводит к более высоким затратам на изготовление. 3. Неотработанная утилизация. 4. Большие габаритные размеры. 5. Зависимость характеристик от температуры внешней среды. 6. Значительное снижение светового потока к концу срока службы. 7. Длительность разгорания (инерционность).

Недостаточность освещённости производственного помещения влияет на:

- 1. Сохранность зрения.
- 2. Нормальное состояние нервной системы.
- 3. Безопасность в процессе производства.
- 4. Производительность труда.
- 5. Качество выпускаемой продукции.
- 6. Искажение информации.
- 7. Потерю ориентации работающих.