Two-step multi-spectral registration via key-point detector and gradient similarity.

Application to agronomic scenes for proxy-sensing.

Vayssade Jehan-Antoine January 5, 2020

jehan-antoine.vayssade@inra.fr

Material

Figure 1: AIRPHEN camera

- interferential filter centered at 450/570/675/710/730/850 nm
- focal lens is 8 mm for all wavelength
- raw resolution 1280×960 px with 12 bit of precision.
- internal GPS antenna (3D position)

1

Data

Two dataset was taken, one for calibration, one for evaluation.

Figure 2: false color reconstruction of each acquisiton height (18) for calibration dataset, from 1.2 to 5 meter.

Affine correction

Affine Calibration, translation part

Figure 3: Translation factor from detected chessboard to "virtual" center chessboard at each acquisition height, xmax=30, ymax=77

Affine Calibration, rotation&scale part

Figure 4: Rotation and scale factor from detected chessboard to "virtual" center chessboard at each acquisition height (precision depend on height but we can notice that these factor are likely invariant)

Affine Correction

From that calibration a new affine matrix are build:

- For X, Y factors an equation are fit ¹ and the height from the GPS are used to get the nearest correction
 - $t = \alpha h^3 + \beta h^2 + \theta h + \gamma$
- For A, B, C, D the values at the most accurate height are used

Each spectral band is warped using the corresponding affine transformation. And a crop are applied.

¹Levenberg-Marquardt with linear least squares regression

Perspective correction (refinement)

Gradient transform for keypoint detection

To optimize the search of specific keypoint such as gradient break, each spectral band are transformed :

- normalizing using Gaussian blur I/(G+1)*255
- gradient is computed with the sum of absolute Sharr filter
- normalization using CLAHE to locally improve their intensity

Keypoint detector (9)

- (ORB) Oriented FAST and Rotated BRIEF
- (AKAZE) Fast explicit diffusion for accelerated features in nonlinear scale spaces
- (KAZE) A novel multi-scale 2D feature detection and description algorithm in nonlinear scale spaces
- (BRISK) Binary robust invariant scalable key-points
- (AGAST) Adaptive and generic corner detection based on the accelerated segment test
- (MSER) maximally stable extremal regions
- (SURF) Speed-Up Robust Features
- (FAST) FAST Algorithm for Corner Detection
- (GFTT) Good Features To Track

Perspective correction via Keypoint

Figure 5: Bruteforce keypoint matching in normalized gradient and filtering (570nm left & 850nm right)

Results

Figure 6: Performance evaluation with 570nm as reference