МФТИ

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ФИЗИЧЕСКИМ МЕТОДАМ ИССЛЕДОВАНИЙ

7 CEMECTP

Спектроскопия элекстронного парамагнитного резонанса

Выполнили: Калашников Павел

Сударкина Светлана

Октябрь 2020

Содержание

1	Цели работы		3
2	Теоретическая часть		3
	2.1	Физические основы ЭПР	3
	2.2	Структура линий ЭПР спектра	4
	2.3	Скорость поглощения энергии при ЭПР	5
	2.4	Уширение линий и релаксационные процессы	6
3	Обработка результатов		8
	3.1	Исследование влияния амплитуды высокочастотной модуляции на вид спектров ЭПР	8
	3.2		
	3.3		
	3.4	Исследование влияния уровня диэлектрических потерь на вид спектров ЭПР	
	9.5		
4	3.5 B. r	Исследование формы линии	17 1 7
4	ъы	виды	T (

1 Цели работы

- Исследование сверхтонкой структуры спектров электронного парамагнитного резонанса (ЭПР).
- Измерение скорости спин-спинового обмена в растворах и кристаллах.
- Исследование влияния амплитуды высокочастотной модуляции и уровня диэлектрических потерь на вид спектров ЭПР.

2 Теоретическая часть

2.1 Физические основы ЭПР

Метод электронного парамагнитного резонанса применяется для исследования парамагнитных центров и их окружения в веществе. Электронный парамагнитный резонанс — избирательное поглощение энергии излучения системой парамагнитных частиц во внешнем магнитном поле. В квантовой теории проекция орбитального момента импульса на заданную ось ОZ может принимать лишь дискретные значения:

$$l_z = m_l \cdot \hbar, m_l = 0, \pm 1, ..., \pm l, l^2 = l(l+1)\hbar^2$$

Орбитальный магнитный момент электрона:

$$\mu_l = \sqrt{l(l+1)} \cdot \beta, \beta = \frac{e\hbar}{2mc} = 9,274 \cdot 10^{-21} \frac{\text{3pr}}{\Gamma c}$$

где β – магнетон Бора.

Полный механический момент электрона J=S+L складывается из его спинового и орбитального моментов. Для большинства радикалов необходимо рассматривать только спиновый момент, в то время как орбитальный практически «заморожен». Спин-орбитальное взаимодействие (взаимодействие спинового и орбитального моментов электрона) является возмущением, смешивающим волновые функции основного состояния с волновыми функциями возбужденных орбитальных состояний радикала, что приводит к отклонению величин g-факторов радикалов от чисто спинового значения q_s :

$$g = g_s \left(1 - \frac{a\lambda_{SL}}{\Delta E} \right)$$

где ΔE — расщепление между основным и ближайшим по энергии орбитальным состоянием, участвующим в орбитальном движении; а — множитель, который зависит от природы парамагнитного центра и ориентации его по отношению к внешнему магнитному полю. Таким образом, по величине g-фактора можно судить о структуре орбиталей исследуемой молекулы. Для определенности далее будем рассматривать частицы с чисто спиновым парамагнетизмом (J=S,L=0). При включении внешнего магнитного поля H_0 появляется выделенное направление, вдоль которого ориентируются магнитные моменты частиц. Тогда, с учетом спинового квантования, энергия будет выглядеть как:

$$E = g\beta H_0 m_s$$

Согласно правилам отбора, возможны лишь такие переходы, при ко- торых $\Delta m_J = \pm 1$, что приводит к возможности переходов с энергией:

$$h\nu = \Delta E = q\beta H_0$$

Если ядро атома также обладает магнитным моментом (имеет ненулевой спин), структура линий ЭПР спектра становится более сложной.

2.2 Структура линий ЭПР спектра

При достаточно больших внешних полях энергия взаимодействия магнитного момента электронной оболочки с этим полем будет больше, чем энергия взаимодействия с магнитным моментом ядра. Это приведёт к «разрыву» связи ядра и электронной оболочки, т.е. магнитные моменты ядра и электронной оболочки будут ориентироваться во внешнем магнитном поле независимо друг от друга. В таком случае на электрон будет действовать локальное магнитное поле $H_0 + \Delta H$ — дополнительное магнитное поле, созданное ядром. Такое взаимодействие магнитных моментов электрона и ядра приводит к изменению условия резонанса и носит название сверхтонкого взаимодействия (СТВ).

Например, в случае атома водорода $(I=\frac{1}{2})$ возможны две ориентации спина ядра: со- и противонаправленное с вектором внешнего магнитного поля. Следовательно, возможны два значения локального поля, в котором может находиться электрон, и в спектре возникают две линии сверхтонкой структуры. Расстояние между ними называют константой сверхтонкого взаимодействия (a).

Электроны различных атомов будут находиться в магнитных полях, создаваемых ядрами, имеющих 2I+1 различных значений. Условие резонанса при плавном изменении внешнего магнитного поля будет выполняться для электронов 2I+1 раз, т.е. произойдёт расщепление линии поглощения. В том случае, когда мы имеем дело с многоатомным радикалом с суммарным спином $S=\frac{1}{2}$, локальное магнитное будет определяться суммарным действием нескольких близлежащих ядер. Расщепление поле будет происходить при взаимодействии электрона со всеми магнитными ядрами в молекуле, вероятность нахождения электрона вблизи которых отлична от нуля. Общую энергию системы в этом случае можно записать в виде суммы энергий электрона и ядер во внешнем поле и энергии сверхтонкого взаимодействия:

$$E = g\beta H_0 m_s - \sum g_i \beta_{\text{яд}} H_0 m_i + \sum g\beta a_i m_s m_i$$

2.3 Скорость поглощения энергии при ЭПР

Одним из важных применений метода ЭПР является определение числа парамагнитных частиц в образце по величине поглощаемой при резонансе мощности электромагнитной энергии. Заселённости уровней в отсутствие поглощения энергии будут определяться константами скорости спонтанных (безызлучательных) переходов K_1 и K_2 :

$$\frac{N_2}{N_1} = \frac{K_1}{K_2} = e^{-\frac{\Delta E}{kT}}$$

где N_1 и N_2 – число частиц на каждом из подуровней. При Т \sim 300 К и Н \sim 3000 Э будет выполняться:

$$\frac{\Delta E}{kT} \sim 10^{-3}$$

Тогда при разложении в ряд получим:

$$\frac{N_2}{N_1} = 1 - \frac{\Delta E}{kT}$$

Под действием радиочастотного магнитного поля возникают вынужденные (индуцированные) переходы между уровнями с разным спином. Вероятности таких переходов (в единицу времени) сверху вниз и снизу

вверх одинаковы, кроме того, они пропорциональны квадрату напряженности переменного магнитного поля.

Энергия, поглощяемая в единицу времени, будет определяться соотношением:

$$W = \Delta E \cdot K_{ind}(N_1 - N_2) = \frac{(\Delta E)^2}{kT} \cdot \frac{N}{2} \cdot \frac{Kind}{1 + \frac{K_{ind}}{K_1}}$$

Из этого выражения следует, что скорость поглощения энергии пропорциональна числу парамагнитных частиц N . Этот факт позволяет оценивать число парамагнитных частиц в образце путём измерения мощности поглощения при ЭПР.

2.4 Уширение линий и релаксационные процессы

Ширина линии поглощения и ширина уровня энергии связаны со временем жизни частицы на определенном уровне энергии соотношением неопределенностей:

$$\delta\omega\sim 1$$
 или $\delta E\cdot \tau\sim \hbar$

Время жизни τ определяется релаксационными процессами, происходящими при взаимодействии спинов друг с другом и с другими степенями свободы системы (с так называемой решёткой, вне зависимости от наличия реальной кристаллической решетки). Существуют два типа релаксации. Первый – продольная релаксация, то есть релаксация продольной намагниченности образца к её равновесному значению вдоль внешнего постоянного магнитного поля: $M_z \to M_0$. Энергия из спиновой системы при этом передается в решётку. Поэтому такую релаксацию называют также спин-решёточной. Скорость релаксации характеризуют временем продольной релаксации T_1 , за которое продольная компонента намагниченности спиновой системы уменьшается в е раз. Второй тип – поперечная релаксация. Она приводит к обнулению поперечных компонент вектора намагниченности образца $M_x, M_y \to 0$. В отличие от продольной, в ходе поперечной релаксации энергия спиновой системы не изменяется. Поскольку взаимодействие спинов с решёткой также приводит к расфазировке прецессии магнитных моментов, оно также вносит вклад в процесс поперечной релаксации, наравне со спин-спиновой:

$$\frac{1}{T_2} = \frac{1}{T_1} + \frac{1}{\tau_{ss}} > \frac{1}{T_1}$$

Таким образом, $T_2 < T_1$. T_2 ограничивает время жизни спинового состояния и определяет ширину резонансных линий $\delta\omega$. Выражая ширину линии в единицах магнитного поля, получим следующее соотношение:

$$\delta H[\Im] = \frac{\delta \omega}{\gamma} = 5 \cdot 10^{-8} \frac{1}{T_2[c]}$$

Уширение линий за счёт спин-спинового взаимодействия может быть уменьшено путём уменьшения концентрации парамагнитных частиц. При столкновении двух парамагнитных частиц в растворе между ними возникает обменное взаимодействие (если электронные оболочки неспаренных электронов перекрываются), при котором частица 1 приобретает спиновое состояние частицы 2, а частица 2 приобретает спиновое состояние частицы 1. Скорость спинового обмена пропорциональна частоте двойных соударений парамагнитных частиц, т.е. пропорциональна концентрации С [моль/л] парамагнитных частиц в растворе:

$$\frac{1}{\tau_e} = K_e \cdot C$$

где K_e – константа спинового обмена. В результате обмена спин электрона может оказаться в другом маг- нитном окружении.

Пусть $\Delta\omega$ — разница резонансных частот при различном магнитном окружении в отсутствии спинового обмена. В случае медленного обмена $\frac{1}{\tau_e} << \Delta\omega$ расщепление линии на отдельные компоненты сохранится, но при этом сократится время пребывания электрона m_e в состоянии с тем или иным магнитным окружением. В соответствии с соотношением неопределённости это приведёт к уширению каждой из компонент расщеплённой линии:

$$\delta H = \frac{1}{\gamma \tau_e} = K_e \cdot C \cdot \frac{1}{\gamma}$$

3 Обработка результатов

3.1 Исследование влияния амплитуды высокочастотной модуляции на вид спектров ЭПР

В ходе работы был получен спектр ДФПГ при нескольких амплитудах модуляции магнитного поля путём изменения величины тока в модуляционных катушках. Из графика следует, что с увеличением амплитуды модуляции амплитуда сигнала и расстояние между экстремумами увеличивается.

Рис. 1: Спектры ДФПГ при разных амплитудах модуляции

Построим зависимость полуширины линий поглошения δH от величины тока модуляции:

Рис. 2: Зависимость полуширины пиков от амплитуды модуляции

Таблица 1: Полуширина линий поглощения ДФПГ при различных токах модуляции

I, A	δH , Э
0.05	1.3 ± 0.1
0.25	1.35 ± 0.1
0.5	1.4 ± 0.1
0.75	1.45 ± 0.1
1	1.6 ± 0.1
1.25	1.75 ± 0.1
1.5	1.9 ± 0.1

Оценим максимально достижимую для данного прибора амплитуду модуляции постоянного магнитного поля:

$$\delta H = k \cdot I + b$$

Максимальная амплитуда модуляции $\delta H(0) = {\rm b.}$

Максимальная амплитуда модуляции оказалась равна (1.22 ± 0.08) Э.

3.2 Исследование скорости спинового обмена в растворах и кристаллах

Исследование в растворах. Были зарегистрированы спектры ЭПР при разных концентрациях соли Mn^{2+} :

Рис. 3: Зависимость вида спектра от концентрации марганца

Построим зависимость полуширины линий поглошения δH от концентрации раствора:

Рис. 4: Зависимость полуширины пика от концентрации марганца

Таблица 2: Рассчитанные величины при различных концентрациях раствора

9637
7333
6713
28325
06773
27328
2

По углу ее наклона оценим константу спинового обмена K_e и частоту столкновения парамагнитных частиц в растворах:

$$\delta H = K_e \cdot C \cdot \frac{1}{\gamma}$$

Пусть k — наклон графика $\delta H(\mathbf{C})$. Тогда K_e считаем так:

$$K_e = k \cdot \gamma$$

$$\gamma = 17.6 \cdot 10^6 \Im^{-1} c^{-1}, \ k = 16.3 \frac{\Im}{M}$$

$$\mathbf{K_e} = (3 \pm 0.2) \cdot 10^8 \frac{1}{\mathbf{M} \cdot \mathbf{c}}$$

Частота столкновения $\frac{1}{\tau_e}$:

$$\frac{1}{\tau_e} = K_e \cdot C$$

Результаты занесены в таблицу 2.

Построим график зависимости поглощения энергии СВЧ-поля от концентрации раствора:

Рис. 5: Зависимость поглощения энергии поля от концентрации раствора

S расчитывается по формуле:

$$S \sim Y'_{max} (\Delta H_{max})^2$$

Результаты занесены в таблицу 2.

Исследование в кристаллах.

Был зарегистрирован спектр порошка соли Mn^{2+} :

В растворе наблюдаем случай медленного спинового обмена. Скорость обмена увеличивается линейно с увеличением концентрации, что можно заметить, сравнив изменение полуширины линии поглощения с увеличением концентрации раствора. Для кристаллического марганца имеем случай быстрого спинового обмена, т.к. имеем только одну среднюю линию, что справедливо для быстрого спинового обмена.

3.3 Исследование сверхтонкой структуры спектров ЭПР

Определение константы сверхтонкого взаимодействия: Была определена константа сверхтонкого взаимодействия а. Пользуясь свойством эквидистантности линий ЭПР, измерили расстояние между соседними максимумами производной, которое равно константе сверхтонкого взаимодействия а ≈ 100 Э.

Исследование спектра ЭПР порошка мела: На графике можно увидеть 6 линий поглощения. Причиной этого является ядро со спином 5/2.

В $CaCO_3$ может быть одно ядро со спином $5/2-O^{17}$. Доля кислорода-17 в природе— 0.038%.

3.4 Исследование влияния уровня диэлектрических потерь на вид спектров ЭПР.

Проведём сравнение спектров ЭПР растворов (а–в), поместив их на один график:

- а) в капилляре;
- б) в пробирке, сохраняя ту же высоту столба жидкости, что и в пункте a);
- в) в пробирке, сохраняя то же количество парамагнитных центров, что и в пункте а) при таком же объеме, как в пункте б)

Уровень диамагнитных потерь:

- а) наименьший, сигнал наиболее чёткий.
- b) большой. В пробирке должно быть больше парамагнитных центров, но амплитуда сигнала уменьшается вследствие увеличения диаметра сосуда с образцом.
- c) большой, потому что число парамагнитных центров осталось тем же, а амплитуда сигнала уменьшилась также из-за увеличения диаметра сосуда c образцом.

3.5 Исследование формы линии

Посмотрим еще раз на форму линий для растворов высокой и низкой концентрации:

Можно сделать вывод, что при малых концентрациях спектр лучше описывается лоренцовой формой кривой, а при повышении концентрации форма спектра приближается к гауссовой.

4 Выводы

- 1. Было исследовано влияние имплитуды высокочастотной модуляции на вид спектров ЭПР. С увеличением амплитуды модуляции амплитуда сигнала и расстояние между экстремумами увеличивается. Максимально достижимая амплитуда модуляции оказалась равна (1.22±0.08)Э.
- 2. Была исследована скорость спинового обмена в растворах и кристаллах. Увеличение концентрации раствора Mn^{2+} увеличивает скорость спинового обмена, уширяя пики и делая их более форму более приближенной к гауссовой, в то время как при уменьшении концентрации пики

начинают принимать форму лоренцевых контуров. Константа спинового обмена приняла значение $K_e=(3\pm0.2)\cdot 10^8 \frac{1}{M\cdot c}$, также была оценена частота столкновений для различных концентраций (Табл. 2).

- 3. Была определена константа сверхтонкого взаимодействия для раствора Mn^{2+} : $a\approx 100$ Э.
- 4. Было продемонстрировано ухудшение сигнала при сильном разбавлении и увеличении объёма образца.
- 5. Было установлено, что при высоких концентрациях форма линии была гауссовой, но при её уменьшении начинала отклоняться в сторону лоренцевской.