rebmix: Finite Mixture Modeling, Clustering & Classification

Marko Nagode

June 9, 2017

Abstract

The **rebmix** package provides R functions for random univariate and multivariate finite mixture model generation, estimation, clustering and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, binomial, Poisson or Dirac parametric families.

1 Introduction

To cite the REBMIX algorithm please refer to (Nagode and Fajdiga, 2011a,b; Nagode, 2015). For theoretical backgrounds please upload also http://doi.org/10.5963/JA00302001.

2 What's new in version 2.9.2

Circular von Mises parametric family is added and further debugging is done in version 2.9.2. Version 2.9.1 is further debugged version 2.8.4. The R code is extended and rewritten in S4 class system. The background C code is extended and rewritten as object-oriented C++ code, too. The package can easier be extended to other parametric families. Multivariate normal mixtures with unrestricted variance-covariance matrices are added. Clustering is added and classification is improved.

3 Examples

To illustrate the use of the REBMIX algorithm, univariate and multivariate datasets are considered. The **rebmix** is loaded and the prompt before starting new page is set to TRUE.

```
R> library("rebmix")
R> devAskNewPage(ask = TRUE)
```

3.1 Gamma datasets

Three gamma mixtures are considered (Wiper et al., 2001). The first has four well-separated components with means 2, 4, 6 and 8, respectively

$$\begin{array}{lll} \theta_1 = 1/100 & \beta_1 = 200 & n_1 = 100 \\ \theta_2 = 1/100 & \beta_2 = 400 & n_2 = 100 \\ \theta_3 = 1/100 & \beta_3 = 600 & n_3 = 100 \\ \theta_4 = 1/100 & \beta_4 = 800 & n_4 = 100. \end{array}$$

The second has equal means but different variances and weights

$$\theta_1 = 1/27$$
 $\beta_1 = 9$ $n_1 = 40$
 $\theta_2 = 1/270$ $\beta_2 = 90$ $n_2 = 360$.

The third is a mixture of a rather diffuse component with mean 6 and two lower weighted components with smaller variances and means of 2 and 10, respectively

$$\begin{array}{lll} \theta_1 = 1/20 & \beta_1 = 40 & n_1 = 80 \\ \theta_2 = 1 & \beta_2 = 6 & n_2 = 240 \\ \theta_3 = 1/20 & \beta_3 = 200 & n_3 = 80. \end{array}$$

3.1.1 Finite mixture generation

```
R> n <- c(100, 100, 100, 100)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/100, 1/100, 1/100, 1/100, 1/100), theta2.1 = c(200, 400, 600, 800))

R> gamma1 <- RNGMIX(Dataset.name = "gamma1", n = n, Theta = Theta)

R> n <- c(40, 360)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/27, 1/270), theta2.1 = c(9, 90))

R> gamma2 <- RNGMIX(Dataset.name = "gamma2", n = n, Theta = Theta)

R> n <- c(80, 240, 80)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/20, 1, 1/20), theta2.1 = c(40, 6, 200))

R> gamma3 <- RNGMIX(Dataset.name = "gamma3", rseed = -4, n = n, Theta = Theta)
```

3.1.2 Finite mixture estimation

```
R> gamma1est <- REBMIX(Dataset = gamma1@Dataset, Preprocessing = "Parzen window",
+ cmax = 8, Criterion = c("AIC", "BIC"), pdf = "gamma")
R> gamma2est <- REBMIX(Dataset = gamma2@Dataset, Preprocessing = "histogram",
+ cmax = 8, Criterion = "BIC", pdf = "gamma")
R> gamma3est <- REBMIX(Dataset = gamma3@Dataset, Preprocessing = "histogram",
+ cmax = 8, Criterion = "BIC", pdf = "gamma", K = 23:27)</pre>
```

3.1.3 Plot method

R > plot(gamma3est, pos = 1, what = c("den", "dis"), ncol = 2, npts = 1000)

Figure 1: Gamma 3 dataset. Empirical density (circles) and predictive gamma mixture density in black solid line.

3.1.4 Summary and coef methods

R> summary(gamma2est)

```
Dataset Preprocessing Criterion c v/k \, IC logL M 1 gamma2 histogram \, BIC 2 22 -1345 688 5 Maximum logL = 688 at pos = 1.
```

R> coef(gamma1est, pos = 2)

```
w 0.25 0.25 0.25 0.25
theta1.1 0.01027
theta1.2 0.00921
theta1.3 0.00873
theta1.4 0.01116
theta2.1 195
theta2.2 437
theta2.3 915
theta2.4 536
3.1.5
     Bootstrap methods
R> gamma3boot <- boot(x = gamma3est, pos = 1, Bootstrap = "p", B = 10)
R> gamma3boot
An object of class "REBMIX.boot"
Slot "c":
 [1] 5 3 3 4 4 4 3 3 3 3
Slot "c.se":
[1] 0.707
Slot "c.cv":
[1] 0.202
Slot "c.mode":
[1] 3
Slot "c.prob":
[1] 0.6
R> summary(gamma3boot)
     comp1 comp2 comp3
w.cv 0.114 0.209 0.152
theta1.1.cv 0.432
theta1.2.cv 0.650
theta1.3.cv 0.581
theta2.1.cv 0.330
theta2.2.cv 0.811
theta2.3.cv 0.875
Mode probability = 0.6 at c = 3 components.
```

3.2 Poisson dataset

comp1 comp2 comp3 comp4

Dataset consists of n = 600 two dimensional observations obtained by generating data points separately from each of three Poisson distributions. The component dataset sizes and parameters, which are those studied in Ma et al. (2009), are displayed below

$$\theta_1 = (3, 2)^{\top}$$
 $n_1 = 200$
 $\theta_2 = (9, 10)^{\top}$
 $n_2 = 200$
 $\theta_3 = (15, 16)^{\top}$
 $n_3 = 200$

For the dataset Ma et al. (2009) conduct 100 experiments by selecting different initial values of the mixing proportions. In all the cases, the adaptive gradient BYY learning algorithm leads to the

correct model selection, i.e., finally allocating the correct number of Poissons for the dataset. In the meantime, it also results in an estimate for each parameter in the original or true Poisson mixture which generated the dataset. As the dataset of Ma et al. (2009) can not exactly be reproduced, 10 datasets are generated with random seeds $r_{\rm seed}$ ranging from -1 to -10.

3.2.1 Finite mixture generation

```
R> n <- c(200, 200, 200)

R> Theta <- list(pdf1 = rep("Poisson", 2), theta1.1 = c(3, 2), theta2.1 = c(NA, NA), pdf2 = rep("Poisson", 2), theta1.2 = c(9, 10), theta2.2 = c(NA, NA), pdf3 = rep("Poisson", 2), theta1.3 = c(15, 16), theta2.3 = c(NA, NA))

R> poisson <- RNGMIX(Dataset.name = paste("Poisson_", 1:10, sep = ""), n = n, Theta = Theta)
```

3.2.2 Finite mixture estimation

```
R> poissonest <- REBMIX(Dataset = poisson@Dataset, Preprocessing = "histogram",
+ cmax = 10, Criterion = "MDL5", pdf = rep("Poisson", 2), K = 1)</pre>
```

3.2.3 Plot method

```
R> plot(poissonest, pos = 9, what = c("dens", "marg", "IC", "D", + "logL"), nrow = 2, ncol = 3, npts = 1000)
```


Figure 2: Poisson dataset. Empirical densities (coloured large circles), predictive multivariate Poisson-Poisson mixture density (coloured small circles), empirical densities (circles), predictive univariate marginal Poisson mixture densities and progress charts (solid line).

3.2.4 Clustering

R> poissonclu <- RCLRMIX(x = poissonest, pos = 9, Zt = poisson@Zt) R> plot(poissonclu)

Figure 3: Poisson dataset. Predictive cluster membership (coloured circles), error (black circles).

3.2.5 Summary and coef methods

R> summary(poissonest)

```
Dataset Preprocessing Criterion c v/k
                                                IC logL M
1
    Poisson_1
                  histogram
                                  MDL5 3
                                            1 7091 -3418 8
2
    Poisson_2
                  histogram
                                  MDL5 2
                                            1 7180 -3510 5
                                  MDL5 2
                                            1 7086 -3463 5
3
    Poisson_3
                  histogram
4
    Poisson_4
                  histogram
                                  MDL5 3
                                            1 7021 -3383 8
5
    Poisson_5
                  histogram
                                  MDL5 3
                                            1 6994 -3369 8
6
    Poisson_6
                  histogram
                                  MDL5 3
                                            1 7042 -3393 8
7
    Poisson_7
                  histogram
                                  MDL5 2
                                            1 7239 -3540 5
8
    Poisson_8
                                  MDL5 3
                                            1 7041 -3392 8
                  histogram
    Poisson_9
                  histogram
                                  MDL5 3
                                            1 7026 -3385 8
                                            1 7096 -3468 5
10 Poisson_10
                  histogram
                                  MDL5 2
Maximum logL = -3369 at pos = 5.
```

R> coef(poissonest, pos = 9)

```
comp1 comp2 comp3
w 0.335 0.25 0.415
1 2
```

```
theta1.1 2.93 2.01
theta1.2 8.25 9.31
theta1.3 13.98 15.46
1 2
theta2.1 0 0
theta2.2 0 0
theta2.3 0 0
```

3.3 Multivariate normal wreath dataset

A wreath dataset (Fraley et al., 2005) consist of 1000 observations drawn from a 14-component normal mixture in which the covariances of the components have the same size and shape but differ in orientation.

R> data("wreath", package = "mclust")

3.3.1 Finite mixture estimation

3.3.2 Plot method

R> plot(wreathest)

Dataset = dataset1, Preprocessing = histogram, Restraints = loose, c_{max} = 20, a_r = 0.1, c_{max} = 14, c_{max} = 29, BIC = 11099, log L = -5263.

Figure 4: Dataset wreath. Empirical densities (coloured circles), predictive multivariate normal mixture density (coloured lines).

3.3.3 Clustering

R> wreathclu <- RCLRMIX(model = "RCLRMVNORM", x = wreathest)
R> plot(wreathclu, s = 14)

Figure 5: Dataset wreath. Predictive cluster membership (coloured circles).

3.3.4 Summary and coef methods

R> summary(wreathest)

```
Dataset Preprocessing Criterion c v/k IC logL M 1 dataset1 histogram BIC 14 29 11099 -5263 83 Maximum logL = -5263 at pos = 1.
```

R> coef(wreathest)

```
comp1 comp2 comp3 comp4 comp5 comp6 comp7 comp8 comp9 comp10 comp11
w 0.0774 0.0826 0.0726 0.0805 0.0674 0.0744 0.0774 0.0704 0.0694 0.0634 0.0714
  comp12 comp13 comp14
w 0.0664 0.0654 0.0614
              1
theta1.1
          10.23 12.7299
theta1.2
          10.24 -12.8179
theta1.3
          9.79
                 4.6669
theta1.4
          16.37
                  0.0677
         -6.81
theta1.5
                 -8.4055
theta1.6 -11.21 -0.1061
theta1.7
           9.88 -4.7306
```

```
theta1.8 -14.72
                  6.9759
theta1.9 2.36 -10.5851
theta1.10 -7.02
                 8.6304
theta1.11
         2.43 10.6755
theta1.12 -3.63 -15.8787
theta1.13 -15.00 -7.0478
theta1.14 -3.57 15.9776
           1-1
                  1-2
                         2-1
                              2-2
theta2.1 0.499 0.371 0.371 1.428
theta2.2 0.583 -0.298 -0.298 1.204
theta2.3 1.417 -0.379 -0.379 0.600
theta2.4 0.971 -0.522 -0.522 0.813
theta2.5 1.079 0.457 0.457 0.708
theta2.6 1.024 0.445 0.445 0.892
theta2.7 0.778 0.487 0.487 1.496
theta2.8 1.010 -0.501 -0.501 1.325
theta2.9 1.340 0.135 0.135 0.633
theta2.10 1.045 0.689 0.689 1.337
theta2.11 0.922 -0.583 -0.583 1.335
theta2.12 0.719 -0.500 -0.500 1.790
theta2.13 1.180 0.454 0.454 1.050
theta2.14 1.565 0.283 0.283 0.805
```

3.3.5 Summary method

R> summary(wreathclu)

Number of clusters	1	2	3	4	5
From cluster	6	12	2	8	10
To cluster	1	1	1	6	8
Entropy	1.22e-15	6.07e-04	4.02e-03	7.76e-03	1.77e-02
Entropy decrease	0.000607	0.003413	0.003745	0.009900	0.013698
Number of clusters	6	7	8	9	10
From cluster	3	5	11	9	7
To cluster	1	2	3	5	2
Entropy	3.14e-02	4.51e-02	6.40e-02	9.09e-02	1.37e-01
Entropy decrease	0.013737	0.018915	0.026899	0.045971	0.069077
Number of clusters	11	12	13		
From cluster	4	13	14		
To cluster	3	6	11		
Entropy	2.06e-01	2.99e-01	5.02e-01		
Entropy decrease	0.093445	0.202256	0.317101		

3.4 Multivariate normal ex4.1 dataset

A ex4.1 dataset (Baudry et al., 2010; Fraley et al., 2016) consist of 600 two dimensional observations.

R> data("Baudry_etal_2010_JCGS_examples", package = "mclust")

3.4.1 Finite mixture estimation

3.4.2 Plot method

R> plot(ex4.1est, pos = 1, what = c("dens"), nrow = 1, ncol = 1)

Dataset = dataset1, Preprocessing = Parzen window, Restraints = loose, c_{max} = 10, a_r = 0.1, c = 7, v = 14, AIC = 4049, log L = -1983.

Figure 6: Dataset ex4.1. Empirical densities (coloured circles), predictive multivariate normal mixture density (coloured lines).

3.4.3 Clustering

R> ex4.1clu <- RCLRMIX(model = "RCLRMVNORM", x = ex4.1est)R> plot(ex4.1clu)

Figure 7: Dataset ex4.1. Predictive cluster membership (coloured circles).

3.4.4 Summary method

R> summary(ex4.1est)

Dataset Preprocessing Criterion c v/k IC logL M

```
1 dataset1 Parzen window AIC 7 14 4049 -1983 41 Maximum logL = -1983 at pos = 1.
```

3.5 Multivariate iris dataset

1

2

1

2

1

1

13

0

The well known set of iris data as collected originally by Anderson (1936) and first analysed by Fisher (1936) is considered here. It is available at Asuncion and Newman (2007) consisting of the measurements of the length and width of both sepals and petals of 50 plants for each of the three types of iris species setosa, versicolor and virginica. The iris dataset is loaded, split into three subsets for the three classes and the Class column is removed.

```
R> data("iris")
R> levels(iris[["Class"]])
[1] "iris-setosa"
                      "iris-versicolor" "iris-virginica"
R> set.seed(5)
R> Iris <- split(p = 0.75, Dataset = iris, class = 5)
     Finite mixture estimation
R> irisest <- REBMIX(model = "REBMVNORM", Dataset = Iris@train,</pre>
       Preprocessing = "Parzen window", cmax = 10, Criterion = "ICL-BIC")
      Classification
3.5.2
R> iriscla <- RCLSMIX(model = "RCLSMVNORM", x = list(irisest), Dataset = Iris@test,
       Zt = Iris@Zt)
     Show and summary methods
R> iriscla
An object of class "RCLSMVNORM"
Slot "CM":
     1 2 3
  1 13 0 0
  2 0 13 0
  3 0 2 11
Slot "Error":
[1] 0.0513
Slot "Precision":
[1] 1.000 1.000 0.846
Slot "Sensitivity":
[1] 1.000 0.867 1.000
Slot "Specificity":
[1] 1.000 1.083 0.929
Slot "Chunks":
[1] 1
R> summary(iriscla)
  Test Predictive Frequency
```

3	3	1	0
4	1	2	0
5	2	2	13
6	3	2	2
7	1	3	0
8	2	3	0
9	3	3	11
Error = 0.0513.			

3.5.4 Plot method

R> plot(iriscla, nrow = 3, ncol = 2)

Figure 8: Dataset iris. Predictive class membership (coloured circles), error (black circles).

3.6 Multivariate adult dataset

The adult dataset containing 48842 instances with 16 continuous, binary and discrete variables was extracted from the census bureau database Asuncion and Newman (2007). Extraction was done by Barry Becker from the 1994 census bureau database. The adult dataset is loaded, complete cases are extracted and levels are replaced with numbers.

```
R> data("adult")
R> adult <- adult[complete.cases(adult), ]</pre>
```

```
R> adult <- as.data.frame(data.matrix(adult))</pre>
```

Numbers of unique values for variables are determined and displayed.

```
R> cmax <- unlist(lapply(apply(adult[, c(-1, -16)], 2, unique),
+ length))
R> cmax
```

Age	Workclass	Fnlwgt	Education	Education.Num
74	7	26741	16	16
Marital.Status	Occupation	Relationship	Race	Sex
7	14	6	5	2
Capital.Gain	Capital.Loss	Hours.Per.Week	Native.Country	
121	97	96	41	

The dataset is split into train and test subsets for the two incomes and the Type and Income columns are removed.

```
R> Adult <- split(p = list(type = 1, train = 2, test = 1), Dataset = adult,
+ class = 16)</pre>
```

3.6.1 Finite mixture estimation

Number of components, component weights and component parameters are estimated assuming that the variables are independent for the set of chunks $y_{1j}, y_{2j}, \ldots, y_{14j}$.

3.6.2 Classification

The class membership prediction is based upon the best first search algorithm.

```
R> adultcla <- BFSMIX(x = adultest, Dataset = Adult@test, Zt = Adult@Zt)
```

3.6.3 Show and summary methods

```
R> adultcla
```

```
An object of class "RCLSMIX" Slot "CM":
```

```
1 2
1 10649 711
2 1397 2303

Slot "Error":
[1] 0.14

Slot "Precision":
[1] 0.937 0.622

Slot "Sensitivity":
[1] 0.884 0.764

Slot "Specificity":
[1] 1.228 0.943

Slot "Chunks":
[1] 11 12 4 8 1
```

R> summary(adultcla)

	Test	Predictive	Frequency	
1	1	1	10649	
2	2	1	1397	
3	1	2	711	
4	2	2	2303	
Error = 0.14.				

3.6.4 Plot method

R> plot(adultcla, nrow = 5, ncol = 2)

Figure 9: Dataset adult. Predictive class membership (coloured circles), error (black circles).

4 Summary

The users of the rebmix package are kindly encouraged to inform the author about bugs and wishes.

References

E. Anderson. The species problem in iris. Annals of the Missouri Botanical Garden, 23(3):457-509, 1936. doi: 10.2307/2394164.

- A. Asuncion and D. J. Newman. Uci machine learning repository, 2007. URL http://archive.ics.uci.edu/ml.
- J. P. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. *Journal of Computational and Graphical Statistics*, 19(2):332–353, 2010. doi: 10.1198/jcgs.2010.08111.
- R. A. Fisher. The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7(3): 179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x.
- C. Fraley, A. Raftery, and R. Wehrens. Incremental model-based clustering for large datasets with small clusters. *Journal of Computational and Graphical Statistics*, 14(3):529–546, 2005. doi: 10.1198/106186005X59603.
- C. Fraley, A. E. Raftery, L. Scrucca, T. B. Murphy, and M. Fop. mclust: Normal Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation, 2016. URL http://CRAN.R-project.org/package=mclust. R package version 5.1.
- J. Ma, J. Liu, and Z. Ren. Parameter estimation of poisson mixture with automated model selection through by harmony learning. *Pattern Recognition*, 42(11):2659–2670, 2009. doi: 10.1016/j.patcog. 2009.03.029.
- M. Nagode. Finite mixture modeling via rebmix. *Journal of Algorithms and Optimization*, 3(2):14–28, 2015. doi: 10.5963/JAO0302001.
- M. Nagode and M. Fajdiga. The rebmix algorithm for the univariate finite mixture estimation. Communications in Statistics Theory and Methods, 40(5):876–892, 2011a. doi: 10.1080/03610920903480890.
- M. Nagode and M. Fajdiga. The rebmix algorithm for the multivariate finite mixture estimation. Communications in Statistics Theory and Methods, 40(11):2022–2034, 2011b. doi: 10.1080/03610921003725788.
- M. Wiper, D. R. Insua, and F. Ruggeri. Mixtures of gamma distributions with applications. *Journal of Computational and Graphical Statistics*, 10(3):440–454, 2001. URL http://www.jstor.org/stable/1391098.

Marko Nagode University of Ljubljana Faculty of Mechanical Engineering Aškerčeva 6 1000 Ljubljana Slovenia Marko.Nagode@fs.uni-lj.si.