Constants Needed

GaAs material parameters:

Band gap energy at 300 K: $E_G = 1.42 \text{ eV}$

Electron affinity: $\chi = 4.07 \text{ eV}$

Relative permittivity: $\varepsilon_s/\varepsilon_o = 12.9$

Effective mass: Electron: $m_e^* = 0.067 m_o$ Hole: $m_h^* = 0.47 m_o$

Mobility: Electron: $\mu_n = 8500 \text{ cm}^2/\text{V} \cdot \text{s}$ Hole: $\mu_p = 400 \text{ cm}^2/\text{V} \cdot \text{s}$

Diffusion coefficient: Electron: $D_n = 200 \text{ cm}^2/\text{s}$ Hole: $D_p = 10 \text{ cm}^2/\text{s}$

GaP material parameters

Band gap energy at 300 K: $E_G = 2.3 \text{ eV}$

Effective mass: Electron: $m_e^* = 0.12m_o$ Hole: $m_h^* = 0.5m_o$

Si material parameters

Band gap energy at 300 K: $E_G = 1.12 \text{ eV}$

Effective mass: Electron: $m_e^* = m_o$ Hole: $m_h^* = 0.7m_o$

Physical Constants:

Permittivity of vacuum: $\epsilon_o = 8.85~x~10^{\text{-}14}~F/cm$

Permeability of free space $\mu_{0}=4\pi \times 10^{-7}$ Henry/meter

Planck's constant: $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ Speed of light: $c = 3.0 \times 10^{10} \text{ cm/s}$

Electronic charge: $q = 1.60 \times 10^{-19} \, C$ Electron rest mass: $m_o = 9.11 \times 10^{-31} \, kg$

Boltzmann constant: $k_B = 1.38 \times 10^{-23} \text{ J/K}$ Thermal energy at 300 K: $k_B T = 0.0259 \text{ eV}$

Energy conversion: $1 \text{ eV} = 1.60 \text{ x } 10^{-19} \text{ J}$

Thermal voltage (at T = 300 K) $V_t = \frac{kT}{q}$ 25.86 milliVolt

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

<u>Integral tables:</u>

$$\int_0^\infty \sqrt{x} e^{-nx} dx = \frac{1}{2n} \sqrt{\frac{\pi}{n}} \qquad \qquad \int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{n}}$$

$$\int_0^\infty \frac{e^{-nx}}{\sqrt{x}} dx = \sqrt{\frac{\pi}{n}}$$