

یادگیری عمیق

مدرس: محمدرضا محمدی زمستان ۱۴۰۱

شبكههاي عصبى كانولوشني

Convolutional Neural Networks

گسترش مرز (Padding)

سی از هر لایه کانولوشنی، عرض بازنمایی یک واحد کمتر از عرض هسته در هر لایه کوچک می و $w_0 = w_i - w_k + 1$

(zero-padding) به لایه ورودی است (w_k-1) به اندازه مورد نیاز • یک راه پرکاربرد افزودن صفر به اندازه مورد نیاز

طراحى شبكههاى كانولوشني

- تصاویر بزرگتر (از CIFAR) و مسائل پیچیده تر، باعث می شود از شبکه های بزرگتری استفاده کنیم
 - ورودی بزرگتر: از گامهای بیشتری استفاده می کنیم

• به طور معمول، عمق نقشههای ویژگی به تدریج در شبکه افزایش مییابد، در حالیکه اندازه نقشههای ویژگی کاهش مییابد

شىكە LeNet-5

• شبکه LeNet-5 در سال ۱۹۹۸ برای شناسایی اعداد و حروف دستنویس پیشنهاد شد

• این شبکه تنها دارای ۵ لایه آموزشی است: ۲ لایه کانولوشنی و ۳ لایه کاملا متصل

- در بخش کانولوشنی، از تابع Sigmoid و ادغام میانگین استفاده شده است

- در لایههای FC میانی از تابع Sigmoid و در لایه انتهایی از تابع Gaussian استفاده شده است

شىكە LeNet-5

```
FC (10)
       FC (84)
      FC (120)
2 × 2 AvgPool, stride 2
   5 × 5 Conv (16)
2 × 2 AvaPool, stride 2
5 x 5 Conv (6), pad 2
   Image (28 × 28)
```

```
• شبکه LeNet-5 در سال ۱۹۹۸ برای شناسایی اعداد و حروف دستنویس پیشنهاد شد
 • این شبکه تنها دارای ۵ لایه آموزشی است: ۲ لایه کانولوشنی و ۳ لایه کاملا متصل
                - در بخش کانولوشنی، از تابع Sigmoid و ادغام میانگین استفاده شده است
 - در لایههای FC میانی از تابع Sigmoid و در لایه انتهایی از تابع Gaussian استفاده شده است
   net = nn.Sequential(
        nn.Conv2d(1, 6, kernel size=5, padding=2), nn.Sigmoid(),
        nn.AvgPool2d(kernel size=2, stride=2),
        nn.Conv2d(6, 16, kernel size=5), nn.Sigmoid(),
        nn.AvgPool2d(kernel size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
        nn.Linear(120, 84), nn.Sigmoid(),
        nn.Linear(84, 10))
```

شبكههاي عصبي كانولوشني مدرن

Modern Convolutional Neural Networks

نتایج ILSVRC

AlexNet

- در الگوریتمهای بینایی کامپیوتر رقیب، معمولا ابتدا از تصویر ویژگیهای دستساز استخراج میشوند
- با توسعه سختافزارها و مجموعهدادههای بزرگ، یادگیری ویژگی توسط شبکههای کانولوشنی عمیق نتایج بسیار خوبی بدست آوردند

AlexNet

• شبکه AlexNet یک شبکه دارای ۸ لایه آموزشی است که در سال ۲۰۱۲ پیشنهاد شد و توانست خطای top-5 در چالش ILSVRC'12 را به ۱۵.۳٪ کاهش دهد

• استفاده از Dropout ،ReLU و دادهافزایی نیز در عملکرد AlexNet موثر بودهاند

• به دلیل محدودیت سختافزار، به صورت موازی روی دو GPU پیادهسازی شده بود

یادگیری بازنمایی

تا سال ۲۰۱۲، بازنماییهای جدید از تصاویر معمولا به صورت دستساز طراحی میشدند
 رویکرد دیگر طراحی مدلهایی است که پارامترهای آنها قابل آموزش است و میتواند
 بازنمایی مناسب برای حل مسئله را یاد بگیرد

- ۹۶ فیلتر ۳×۱۱×۱۱ لایه نخست:
- توصیفگرهای سطح پائین تصویر
- در لایههای بالاتر، ساختارهای پیچیدهتر و بزرگتری مانند چشم تشخیص داده میشوند

17

نتایج ILSVRC

- مشابه با AlexNet دو بخش کانولوشنی و کاملا متصل دارد
- بلوک سازنده پایه CNNهای کلاسیک دنبالهای از لایههای زیر
 - لايههاى كانولوشني
 - توابع غيرخطي
 - لايه ادغام

VGG block

AlexNet

FC (1000)

FC (4096)

FC (4096)

3 × 3 MaxPool, stride 2

3 × 3 Conv (384), pad 1

3 × 3 Conv (384), pad 1

3 × 3 Conv (384), pad 1

3 × 3 MaxPool, stride 2

5 × 5 Conv (256), pad 2

3 × 3 MaxPool, stride 2

11 × 11 Conv (96), stride 4


```
• در هر بلوک، تعداد فیلترها و تعداد کانالهای خروجی قابل تنظیم است
```

• از پنج بلوک استفاده کرده است

```
VGG
FC (1000)
FC (4096)
FC (4096)
```

```
VGG11: conv arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
VGG16: conv arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512))
VGG19: conv arch = ((2, 64), (2, 128), (4, 256), (4, 512), (4, 512))
def vgg(conv arch):
    conv blks = []
    in channels = 1
    # The convolutional part
    for (num convs, out channels) in conv arch:
        conv blks.append(vgg block(num convs, in channels, out channels))
        in channels = out channels
    return nn.Sequential (
        *conv blks, nn.Flatten(),
        # The fully-connected part
        nn.Linear(out channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))
net = vgg(conv arch)
```

- معماری VGG در سال ۲۰۱۴ تیم دوم مسابقه ILSVRC'14 شد
 - فیلترهای کوچکتر و لایههای بیشتر
 - در این معماری ابعاد تمام فیلترها ۳×۳ با گام ۱ است

		Softmax
		FC 1000
		FC 4096
	Softmax	FC 4096
	FC 1000	Pool
	FC 4096	3x3 conv, 512
	FC 4096	3x3 conv, 512
	Pool	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
	3x3 conv, 512	Pool
	3x3 conv, 512	3x3 conv, 512
	Pool	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
Softmax	3x3 conv, 512	3x3 conv, 512
FC 1000	3x3 conv, 512	Pool
FC 4096	Pool	3x3 conv, 256
FC 4096	3x3 conv, 256	3x3 conv, 256
Pool	3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256	3x3 conv, 256
3x3 conv, 384	Pool	Pool
Pool	3x3 conv. 128	3x3 conv. 128

AlexNet

VGG16

Input

VGG19

GoogLeNet

- شبکه GoogLeNet برنده مسابقه ILSVRC'14 با خطای ۶.۷٪ شد
- یکی از تمرکزهای مقاله پرداختن به این سوال بود که بهترین اندازه برای کرنلهای کانولوشنی چند است؟
- DEEPER DEEPER
- فیلترهای همعرض (موازی) تحت عنوان Inception Module معرفی شدند
 - کانولوشنهای دارای ابعاد مختلف و ادغام
 - سپس، خروجی تمام فیلترها به هم الحاق میشوند (در عمق)
 - در این ساختار عمق نقشهها حتما زیاد میشود

GoogLeNet

- برای کاهش عمق و ترکیب آنها میتوان از فیلترهای ۱×۱ استفاده کرد
- در معماری GoogLeNet از چندین بلوک GoogLeNet استفاده شده است
- برای بهبود جریان گرادیان، دو دستهبند کمکی در لایههای میانی شبکه قرار داده شده بود که امروزه با توجه به الگوریتمهای یادگیری جدیدتر چندان ضروری نیست
 - به منظور کاهش پارامترها، از GAP استفاده کرده است
 - در این مثال ادغام ۷×۷

FC

Global AvgPool

Global Average Pooling

- بر خلاف لایه Flatten، تعداد پارامترهای مدل را بسیار کاهش میدهد
- شبکه GoogLeNet با ۲۲ لایه حدود ۶.۸ میلیون پارامتر دارد در حالیکه AlexNet با ۸ لایه دارای ۶۰ میلیون و VGG با ۱۹ لایه دارای نزدیک به ۱۴۰ میلیون پارامتر است

