

Vandana M LDepartment of Computer Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Basic Efficiency Classes Problems based on Asymptotic notations

Slides courtesy of **Anany Levitin**

Vandana M L

Department of Computer Science & Engineering

Design and Analysis of Algorithms Basic Efficiency Classes

Class	Name	Example	
1	constant	Best case for sequential search	
log n	logarithmic	Binary Search	
n	linear	Worst case for sequential search	
n log n	n-log-n	Mergesort	
n ²	quadratic	Bubble Sort	
n ³	cubic	Matrix Multiplication	
2 ⁿ	exponential	Subset generation	
n!	factorial	TSP using exhaustive search	

Basic Efficiency Classes

Basic Efficiency Classes

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic notations


```
f(n)=30+2 g(n)=n
        3042 € O(4)
 Fcn) < cq(n) for some
              * nZho
5 FLM) 608(4)
3n+2 5cm
Let c= 4
3n+2 <4 m
 n=1
            n=3
5 44
            11<17
  3n+2 54n
=> 34+2 € O(n)
```

```
345 F -201)
PLN) 2 CELLY FOR SOME
             -VEC
            * us No
  F(n) + 12 (n)
 3n+2 > cn
  Let C=1
  3n+2 2n
           4:3
     D=2
Nz I
           1173
             m 21
    3h+26-2(h)
```

```
3n+2 + D(n)
CIBON < FINT < Cagent
                   Au Jha
             no2= 2
  Nor =1
  40 max (no, 402) = 2
 C1=1 C2 =4
                no=2
  3n+2 E0(n)
             FUNT EDZUMI
                 6 va)
          => FLMI E O gLM
```


THANK YOU

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu