

Trock: Transformer-based Optical Character Recognition with Pre-trained Models

목차

- Introduction
- TrOCR
- Experiments

Introduction

Optical Character Recognition(OCR)

Introduction

- 기존 Text Recognition 기법
 - Encoder: CNN Backbone + Self-Attention

CNN Backbone : 입력 이미지를 feature map으로 변형시켜주는 부분

• Decoder: Connectionist Temporal Classification(CTC) 사용

Introduction

- Proposed Text Recognition model(TrOCR)
 - End-to-end Transformer based OCR model
 - Encoder Pre-trained image transformer(ViT-style)
 - Decoder Pre-trained text transformer(BERT-style)
 - → 외부 언어 모델 필요 없이 이미지 이해 및 언어 모델링을 위한 대규모 unlabeled data 활용
 - Backbone을 위한 Convolution network 사용 X
 - → 유지보수 쉬움
 - SOTA
 - 인쇄체, 필기체, 길가 속 간판 등과 같은 글자 인식

TrOCR Architecture

Figure 1: The architecture of TrOCR, where an encoder-decoder model is designed with a pre-trained image Transformer as the encoder and a pre-trained text Transformer as the decoder.

- Model Initialization
 - Encoder Initialization
 - DeiT model
 - BEiT model

- Decoder Initialization
 - RoBERTa model
 - MiniLM model

- Task Pipeline
 - •이미지 입력 시 시각적 특징 추출 후 Wordpiece token 예측
 - 추론 시 Decoder
 - [BOS] token 부터 반복적으로 출력 예측
 - 새로 생성된 출력을 다음 입력으로 사용

TrOCR

- Pre-training
 - 대규모(수억 개)의 인쇄된 Textline image 데이터

- Fine-tuning
 - Downstream text recognition tasks
 - Based on Byte Pair Encoding(BPE)
 - SentencePiece

- Data Augmentation
 - Inversion
 - Curving
 - Blur
 - Noise
 - Distortion
 - Rotation

- Data
 - Pre-training Dataset
 - Handwritten Dataset
 - TRDG
 - IIIT-HWS dataset
 - Text Recognition
 - Commercial OCR engines
 - MJSynth(MJ)
 - SynthText(ST)

- Evaluation Metrics
 - SROIE dataset
 - Precision, Recall, F1 Score

- IAM dataset
 - Character Error Rate(CER)
- Scene text dataset
 - Word Accuracy

- Results
 - Architecture Comparison

Encoder	Decoder	Precision	Recall	F1
$\overline{\text{DeiT}_{\text{BASE}}}$	RoBERTa _{BASE}	69.28	69.06	69.17
$BEiT_{\mathrm{BASE}}$	$RoBERTa_{BASE}$	76.45	76.18	76.31
ResNet50	$RoBERTa_{BASE}$	66.74	67.29	67.02
$DeiT_{BASE}$	$RoBERTa_{LARGE}$	77.03	76.53	76.78
$BEiT_{\mathrm{BASE}}$	$RoBERTa_{LARGE}$	79.67	79.06	79.36
ResNet50	$RoBERTa_{LARGE}$	72.54	71.13	71.83

Table 1: Ablation study on the SROIE dataset, where all the models are trained using the SROIE dataset only.

Results

SROIE Task2

Model	Recall	Precision	F1
CRNN	28.71	48.58	36.09
Tesseract OCR	57.50	51.93	54.57
H&H Lab	96.35	96.52	96.43
MSOLab	94.77	94.88	94.82
CLOVA OCR	94.3	94.88	94.59
$\overline{\text{TrOCR}_{ ext{SMALL}}}$	95.89	95.74	95.82
$TrOCR_{BASE}$	96.37	96.31	96.34
$TrOCR_{\mathrm{LARGE}}$	96.59	96.57	96.58

Trocksmall: DeiTsmall + MiniLM

Trocrbase: BEiTbase + Robertalarge

Trocriange + Robertalarge

Table 3: Evaluation results (word-level Precision, Recall, F1) on the SROIE dataset, where the baselines come from the SROIE leaderboard (https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=2).

Results

IAM Handwriting Database

Model	Architecture	Training Data	External LM	CER
(Bluche and Messina 2017)	GCRNN / CTC	Synthetic + IAM	Yes	3.2
(Michael et al. 2019)	LSTM/LSTM w/Attn	IAM	No	4.87
(Wang et al. 2020a)	FCN / GRU	IAM	No	6.4
(Kang et al. 2020)	Transformer w/ CNN	Synthetic + IAM	No	4.67
(Diaz et al. 2021)	S-Attn / CTC	Internal + IAM	No	3.53
(Diaz et al. 2021)	S-Attn / CTC	Internal + IAM	Yes	2.75
(Diaz et al. 2021)	Transformer w/ CNN	Internal + IAM	No	2.96
$\overline{ ext{TrOCR}_{ ext{SMALL}}}$	Transformer	Synthetic + IAM	No	4.22
$TrOCR_{BASE}$	Transformer	Synthetic + IAM	No	3.42
$TrOCR_{LARGE}$	Transformer	Synthetic + IAM	No	2.89

Table 4: Evaluation results (CER) on the IAM Handwriting dataset.

Results

Scene Text Datasets

	Test datasets and # of samples							
	IIIT5k	SVT	I	C13	IC15		SVTP	CUTE
Model	3,000	647	857	1,015	1,811	2,077	645	288
PlugNet (Mou et al. 2020)	94.4	92.3	_	95.0	_	82.2	84.3	85.0
SRN (Yu et al. 2020)	94.8	91.5	95.5	_	82.7	_	85.1	87.8
RobustScanner (Yue et al. 2020)	95.4	89.3	_	94.1	_	79.2	82.9	92.4
TextScanner (Wan et al. 2020)	95.7	92.7	_	94.9	_	83.5	84.8	91.6
AutoSTR (Zhang et al. 2020a)	94.7	90.9	_	94.2	81.8	_	81.7	_
RCEED (Cui et al. 2021)	94.9	91.8	_	_	_	82.2	83.6	91.7
PREN2D (Yan et al. 2021)	95.6	94.0	96.4	_	83.0	_	87.6	91.7
VisionLAN (Wang et al. 2021)	95.8	91.7	95.7	_	83.7	_	86.0	88.5
Bhunia (Bhunia et al. 2021b)	95.2	92.2	_	95.5	_	84.0	85.7	89.7
CVAE-Feed. (Bhunia et al. 2021a)	95.2	_	_	95.7	_	84.6	88.9	89.7
STN-CSTR (Cai, Sun, and Xiong 2021)	94.2	92.3	96.3	94.1	86.1	82.0	86.2	_
ViTSTR-B (Atienza 2021)	88.4	87.7	93.2	92.4	78.5	72.6	81.8	81.3
CRNN (Shi, Bai, and Yao 2016)	84.3	78.9	_	88.8	_	61.5	64.8	61.3
TRBA (Baek, Matsui, and Aizawa 2021)	92.1	88.9	_	93.1	_	74.7	79.5	78.2
ABINet (Fang et al. 2021)	96.2	93.5	97.4	_	86.0	_	89.3	89.2
Diaz (Diaz et al. 2021)	96.8	94.6	96.0	_	80.4	_	_	_
PARSeq _A (Bautista and Atienza 2022)	97.0	93.6	97.0	96.2	86.5	82.9	88.9	92.2
MaskOCR (ViT-B) (Lyu et al. 2022)	95.8	94.7	98.1	-	87.3	-	89.9	89.2
MaskOCR (ViT-L) (Lyu et al. 2022)	96.5	94.1	97.8	-	88.7	-	90.2	92.7
TrOCR _{BASE} (Syn)	90.1	91.0	97.3	96.3	81.1	75.0	90.7	86.8
$TrOCR_{LARGE}$ (Syn)	91.0	93.2	98.3	97.0	84.0	78.0	91.0	89.6
TrOCR _{BASE} (Syn+Benchmark)	93.4	95.2	98.4	97.4	86.9	81.2	92.1	90.6
TrOCR _{LARGE} (Syn+Benchmark)	94.1	96.1	98.4	97.3	88.1	84.1	93.0	95.1

Table 6: Word accuracy on the six benchmark datasets (36-char), where "Syn" indicates the model using synthetic data only and "Syn+Benchmark" indicates the model using synthetic data and benchmark datasets.

- Results
 - Inference Speed

Model	Parameters	Total Sentences	Total Tokens	Time	Speed #Sentences	Speed #Tokens
$\overline{\text{TrOCR}_{ ext{SMALL}}}$	62M	2,915	31,081	348.4s	8.37 sentences/s	89.22 tokens/s
$TrOCR_{\mathrm{BASE}}$	334M	2,915	31,959	633.7s	4.60 sentences/s	50.43 tokens/s
$TrOCR_{LARGE}$	558M	2,915	31,966	666.8s	4.37 sentences/s	47.94 tokens/s

Table 5: Inference time on the IAM Handwriting dataset.

Link

https://github.com/microsoft/unilm/tree /master/trocr