1ο Φυλλάδιο Ασκήσεων - Δακτύλιοι και Πρότυπα

Αναστάσιος Φράγκος: ΑΜ 1112201900239

Κυριακή, 07 Νοεμβρίου 2021

Συμβολισμοί - Παρατηρήσεις

- **1.** Έστω $(R,+,\cdot)$ μια αλγεβρική δομή με πράξεις 'πρόσθεσης' και 'πολλαπλασιασμού'. Για κάθε $\emptyset \neq X \subseteq R$, ορίζουμε $(X) := \{r \cdot x \in R \mid (r,x) \in R \times X\}$. Εάν ειδικότερα το X αποτελείται από αριθμήσιμο πλήθος στοιχείων x_1,x_2,x_3,\cdots , τότε συμβολίζουμε $(x_1,x_2,x_3,\cdots) := (X)$. Εάν το X είναι κενό, κάνουμε την παραδοχή $(\emptyset) := \{0_R\}$.
- **2.** $gcd(m,n) = \{d \mid d \text{ είναι μέγιστος κοινός διαιρέτης των } m,n\}.$
- **3.** $\mathbb{C}:=\mathbb{R}^2$.
- **4.** $[n] := [1, n] \cap \mathbb{N}$.
- **5.** Έστω R δακτύλιος και $A, B \subseteq R$. Ορίζουμε:

$$A \cdot B := \Big\{ \sum_{(s,t) \in I} a_s b_t \ \big| \ a_s \in A, \ b_t \in B, \ I \subseteq |A| \times |B| \Big\}$$

Επίσης, για $A \subseteq R$, $b \in R$, ορίζουμε $A \cdot b := A \cdot \{b\}$, $b \cdot A := \{b\} \cdot A$.

Άσκηση 1 Θεωρούμε τον δακτύλιο $\mathbb{Z}[i]$.

- i. Βρείτε ένα $d \in \mathbb{Z}[i]$ με $d \in \gcd(a,b)$, όπου $a = (4+i)^2 \cdot (1+2i), b = -16+13i$. Στη συνέχεια, βρείτε κάθε τέτοιο d.
- ii. Δείξτε ότι οι δακτύλιοι $\mathbb{Z}^{[i]}/_{(1+2i)}$ και \mathbb{Z}_5 είναι ισόμορφοι.
- iii. Αληθεύει ότι ο δακτύλιος $\mathbb{Z}[i]/_{(d)}$, όπου $d=(4+i)\cdot(1+2i)$, είναι ισόμορφος με ευθύ γινόμενο σωμάτων;
- iv. Πόσα μηδενοδύναμα στοιχεία έχει ο δακτύλιος του προηγούμενου ερωτήματος;

$$(4+i) \cdot (1+2i)^2 = (4,1)(1,2)^2$$

$$= (4,1)(1-4,2+2)$$

$$= (4,1)(-3,4)$$

$$= (-12-4,16-3)$$

$$= (-16,13)$$

$$= -16+13i$$

Κάθε άλλος μέγιστος κοινός διαιρέτης \tilde{d} είναι συντροφικός του d, αφού αν $\tilde{d} \in \gcd(a,b)$, τότε $\tilde{d}|d$ και επειδή $d \in \gcd(a,b)$ έπεται $d|\tilde{d}$. Το σύνολο λοιπόν των μεγίστων κοινών διαιρετών είναι το $\gcd(a,b) = U(\mathbb{Z}[i])d = \{\pm d, \pm i \cdot d\}$.

[ii.] Λήμμα 1.1: Έστω $a,b\in\mathbb{Z}$ τέτοιοι ώστε $1\in\gcd(a,b)$. Θεωρούμε τις διοφαντικές εξίσωσεις για $k\in\mathbb{Z}$:

$$ax + by = ck, \ c \in \mathbb{R}$$

Εάν για k=1 μια της βιύση είναι η $(x_0,y_0)\neq (0,0)$, τότε κάθε άββη βιύση (x,y) καθεμίας από τις διοφαντικές εξισώσεις, μπορεί να γραφεί στην μορφή $(\tilde{x},\tilde{y})\cdot (x_0,y_0)$, για $(\tilde{x},\tilde{y})\in \mathbb{Z}[i]$.

Απόδειξη: Εφόσον $1 \in \gcd(a,b)$ υπάρχει μια λύση $(x_0,y_0) \neq (0,0)$ της διοφαντικής εξίσωσης με k=1.

Για τυχαίο λοιπόν $k \in \mathbb{Z}$, η $k(x_0,y_0)$ αποτελεί λύση της k-οστής διοφαντικής εξίσωσης. Η γενική λοιπόν μορφή των λύσεων θα είναι:

$$x = kx_0 + bt$$
, $y = ky_0 - at$ yia $t \in \mathbb{Z}$

Δείχνοντας ότι για κάθε $(x,y)=(kx_0+bt,\ ky_0-at)$ υπάρχει $(\tilde{x},\tilde{y})\in\mathbb{Z}[i]$ τέτοιο ώστε $(x,y)=(\tilde{x},\tilde{y})\cdot(x_0,y_0)$, θα έχουμε ουσιαστικά αποδείξει το ζητούμενο.

Η ύπαρξη αυτή ισοδυναμεί με ύπαρξη λύσης του συστήματος, ως προς \tilde{x}, \tilde{y} :

$$\tilde{x}x_0 - \tilde{y}y_0 = kx_0 + bt$$

$$\tilde{x}y_0 + \tilde{y}x_0 = ky_0 - at$$

Το τελευταίο έχει πάντοτε λύση, αφού:

$$\begin{vmatrix} x_0 & -y_0 \\ y_0 & x_0 \end{vmatrix} = x_0^2 + y_0^2 > 0$$

<u>Λύση:</u> Αρχικά θα αναζητήσουμε μια γραμμική απεικόνιση $\varphi:\mathbb{C}\to\mathbb{R}$ η οποία θα μηδενίζεται στο 1+2i. Μια τέτοια απεικόνιση είναι η:

$$\varphi : \varphi(x,y) = x + 2y$$

Έπειτα ορίζουμε την απεικόνιση $\psi: \mathbb{Z}[i] \to \mathbb{Z}_5$:

$$\psi: \psi(x,y) = \varphi|_{\mathbb{Z}[i]}(x,y) + (5)$$

και παρατηρούμε ότι και αυτή είναι ομομορφισμός, με πυρήνα $\ker \psi = (1+2i)$. Το ότι ο πυρήνας είναι πράγματι το εν λόγω σύνολο προκύπτει από το **Λήμμα 1.1**. Η ψ είναι ομομορφισμός διότι:

- $\bullet \ \ \varphi \big((x,y) + (z,w) \big) = x + z + 2(y+w) + (\lozenge) \big) = \big[x + 2y + (\lozenge) \big] + \big[z + 2w + (\lozenge) \big] = \varphi (x,y) + \varphi (z,w).$
- $\varphi((x,y)(z,w)) = xz 4yw + 2(yz + xw) + (5) = xz + yw + 2(yz + xw) + (5) = \varphi(x,y) \cdot \varphi(z,w)$.

Επιπλέον, η ψ είναι επί του \mathbb{Z}_5 , αφού $\psi([5] \times \{0\}) = \mathbb{Z}_5$, επομένως είναι και επιμορφισμός.

Τα αποτελέσματα αυτά δίνουν ουσιαστικά το ζητούμενο, αφού από το 1° θεώρημα ισομορφισμών:

$$\mathbb{Z}[i] /_{\ker \psi} \simeq \psi(\mathbb{Z}[i]) \Rightarrow \mathbb{Z}[i] /_{(1+2i)} \simeq \mathbb{Z}_5$$

 $\overline{\text{iii.}}$ Λύση: Τα στοιχεία 4+i και 1+2i είναι ανάγωγα στο $\mathbb{Z}[i]$, αφού |4+i|=17, |1+2i|=5 και οι 17,5 είναι πρώτοι αριθμοί. Εφόσον λοιπόν είναι ανάγωγα, το Κινέζικο θεώρημα υπολοίπων δίνει:

$$\mathbb{Z}[i] \Big/_{\text{(d)}} = \mathbb{Z}[i] \Big/_{\text{((4+i)(1+2i))}} \simeq \left[\mathbb{Z}[i] \Big/_{\text{(4+i)}} \right] \oplus \left[\mathbb{Z}[i] \Big/_{\text{(1+2i)}} \right]$$

Ο δακτύλιος $\mathbb{Z}^{[i]}/_{(1+2i)}$ είναι σώμα, αφού είναι ισόμορφος του \mathbb{Z}_5 , το οποίο είναι σώμα. Θα δείξουμε ότι ο δακτύλιος $\mathbb{Z}^{[i]}/_{(4+i)}$ είναι ισόμορφος του \mathbb{Z}_{17} , κι επομένως είναι κι αυτός σώμα, αφού ο \mathbb{Z}_{17} είναι σώμα. Με αυτό θα έχουμε ουσιαστικά δείξει ότι ο $\mathbb{Z}^{[i]}/_{(d)}$ είναι ευθύ γινόμενο δύο σωμάτων.

Αναζητήτούμε μια γραμμική απεικόνιση $\varphi:\mathbb{C}\to\mathbb{R}$ η οποία θα μηδενίζεται στο 4+i. Μια τέτοια απεικόνιση είναι η:

$$\varphi:\varphi(x,y)=x-4y$$

Έπειτα ορίζουμε την απεικόνιση $\psi: \mathbb{Z}[i] \to \mathbb{Z}_{17}$:

$$\psi: \psi(x,y) = \varphi|_{\mathbb{Z}[i]}(x,y) + (17)$$

και παρατηρούμε ότι και αυτή είναι ομομορφισμός, με πυρήνα $\ker \psi = (4+i)$. Το ότι ο πυρήνας είναι πράγματι το εν λόγω σύνολο προκύπτει από το **Λήμμα 1.1**. Η ψ είναι ομομορφισμός διότι:

- $\bullet \ \varphi \big((x,y) + (z,w) \big) = x + z + 4(y+w) + (17) = \big[x + 4y + (17) \big] + \big[z + 4w + (17) \big] = \varphi(x,y) + \varphi(z,w).$
- $\varphi((x,y)(z,w)) = xz yw 4(yz + xw) + (17) = xz + 16yw 4(yz + xw) + (17) = \varphi(x,y) \cdot \varphi(z,w)$.

Δ

П

Επιπλέον, η ψ είναι επί του \mathbb{Z}_{17} , αφού $\psi([17] \times \{0\}) = \mathbb{Z}_{17}$, επομένως είναι και επιμορφισμός.

Τα αποτελέσματα αυτά δίνουν ουσιαστικά το ζητούμενο, αφού από το 1° θεώρημα ισομορφισμών:

$$\mathbb{Z}[i] \Big/_{\ker \psi} \simeq \psi(\mathbb{Z}[i]) \Rightarrow \ \mathbb{Z}[i] \Big/_{\left(\!\!\left\{4+i\right\}\!\!\right)} \simeq \mathbb{Z}_{17}$$

 $ilde{ ext{iv.}}$ $ilde{\Lambda}$ ύση: Θα προσδιορίσουμε τον πληθάριθμο $\# ext{Ann}_{\mathbb{Z}[i]}\left(\left.\mathbb{Z}[i]\middle/_{(\![d]\!]}
ight)$. Παρατηρούμε ότι:

$$\mathbb{Z}d\subseteq \mathrm{Ann}_{\mathbb{Z}[i]}\left(\left.\mathbb{Z}[i]\middle/_{\emptyset d\emptyset}
ight)$$

αφού
$$\forall k \in \mathbb{Z}, \ \forall x + (d) \in \ ^{\mathbb{Z}[i]} /_{(d)} : \ (kd)(x + (d)) = kdx + (d) = \mathbf{0}_{\mathbb{Z}[i]} /_{(d)}$$

Αυτό μας δείχνει ότι το πλήθος των στοιχείων του μηδενιστή είναι άπειρο.

Άσκηση 2 Δείξτε ότι η περιοχή $\mathbb{Z}[i\sqrt{2}]$ είναι ευκλείδεια ως προς τη συνάρτηση $\varphi(z)=|z|^2,\;z\in\mathbb{C}.$

 $\underline{\text{Λύση:}}$ Έστω $a,b\in\mathbb{Z}[i\sqrt{2}]$. Εάν υπάρχει $c\in\mathbb{Z}[i\sqrt{2}]$ τέτοιο ώστε b=ac, τότε $\varphi(b)=b\bar{b}=ac\cdot \overline{ac}=a\bar{a}\cdot c\bar{c}=a\bar{a}\cdot c\bar{c}=a\bar{a}\cdot$

Σε διαφορετική περίπτωση, θεωρούμε στο σύνηθες καρτεσιανό επίπεδο, τον μιγαδικό αριθμό $\frac{b}{a}$ (με $a\neq 0$). Ο αριθμός αυτός δεν είναι σε κάποια κορυφή της μορφής $(k,m\sqrt{2}), (k,m)\in\mathbb{Z}^2$, είναι όμως σίγουρα σε κάποιο παραλληλόγραμο κορυφών $A=(x,y\sqrt{2}), \ B=(x+1,y\sqrt{2}), \ \Gamma=\left(x,(y+1)\sqrt{2}\right), \ \Delta=\left(x+1,(y+1)\sqrt{2}\right).$ Θεωρούμε K το σημείο τομής των διαγωνίων $A\Delta$ και $B\Gamma$, και παρατηρούμε ότι ο αριθμός $\frac{b}{a}$ ανήκει σε ένα από τα τρίγωνα ABK, $BK\Delta$, $AK\Gamma$, $\Gamma K\Delta$, ή στις πλευρές αυτών. Τότε όμως, ο αριθμός $\frac{b}{a}$ απέχει το πολύ $|A\Delta|=\frac{\sqrt{3}}{2}$ από την κοντυνότερή του κορυφή στο παραλληλόγραμμο. Έστω $q=(x_q,y_q\sqrt{2}), \ (x_q,y_q)\in\mathbb{Z}^2$ να είναι αυτή η κοντυνότερη κορυφή. Θεωρούμε τον μιγαδικό αριθμό r=b-aq και παρατηρούμε ότι b=aq+r. Επιπλέον:

$$\varphi(r) = |r|^2 = |b - aq|^2 = |a|^2 \cdot \left| \frac{b}{a} - q \right|^2 \le |a|^2 \cdot \frac{3}{4} < |a|^2 = \varphi(a)$$

Αυτό αποδεικνύει ότι η περιοχή $\mathbb{Z}[i\sqrt{2}]$ είναι ευκλείδεια ως προς τη συνάρτηση $\varphi(z).$

Άσκηση 3 Θεωρούμε την περιοχή $R = \mathbb{Z}[i\sqrt{2}].$

- i. Δείξτε ότι $U(R) = {\pm 1}$.
- ii. Συμπληρώστε και αποδείξτε την πρόταση: 'Εάν p είναι πρώτος τέτοιος ώστε δεν υπάρχουν ακέραιοι x, y με $p = x^2 + 2y^2$, τότε στο R το στοιχείο είναι '.
- iii. Ποιά από τα στοιχεία $23, 17, 3 + 2i\sqrt{2}$ είναι ανάγωγα στο R;
- iv. Αφού διαβάσετε τις σελίδες 225-226 από το $[B\Delta EMT]^a$, διατυπώστε (χωρίς απόδειξη) μια εικασία που εμπλέκει $\mod 8$ και που απαντάει στο ερώτημα: 'ποιοί πρώτοι παραμένουν ανάγωγα στοιχεία στο R;'
- ν. Βρείτε ένα m ώστε $^R/_{(1+i\sqrt{2})}\simeq \mathbb{Z}_m.$
- vi. Αληθεύει ότι ο δακτύλιος $^R/_I$ είναι πεπερασμένος, για κάθε μη μηδενικό ιδεώδες I του R;

[i.] $\underline{\mathit{Λύση}}^1$ Έστω $(a,b\sqrt{2})\in\mathbb{Z}[i\sqrt{2}]$. Εάν το στοιχείο αυτό είναι αντιστρέψιμο, τότε θα υπάρχει αριθμός $(c,d\sqrt{2})\in\mathbb{Z}[i\sqrt{2}]$ τέτοιος ώστε $(a,b\sqrt{2})\cdot(c,d\sqrt{2})=(1,0)$. Ισοδύναμα:

$$(1,0) = (a, b\sqrt{2}) \cdot (c, d\sqrt{2})$$
$$= (ac - 2bd, bc\sqrt{2} + ad\sqrt{2})$$
$$\Rightarrow ac - 2bd = 1, (bc + ad)\sqrt{2} = 0$$

Από την δεύτερη σχέση έπεται ότι bc=-ad. Εάν c=0, τότε από την πρώτη σχέση, -2bd=1. Αυτό είναι αδύνατον, αφού $b,d\in\mathbb{Z}$. Κατ' επέκταση, $c\neq 0$ και $b=-\frac{ad}{c}$. Με αντικατάσταση στην ac-2bd=1, μπορεί να ληφθεί ότι:

$$ac + 2d\frac{ad}{c} = 1 \Rightarrow ac^2 + 2ad^2 = c \Rightarrow a(c^2 + 2d^2) = c$$

Εάν $a,d\neq 0$ τότε $|a(c^2+2d^2)|>|c|$, οπότε a=0 ή d=0. Αν a=0 τότε c=0 (το οποίο αποδείξαμε ότι δεν γίνεται), οπότε αναγκαστικά d=0. Για $d=0,a\neq 0$, η ποσότητα ac^2 γίνεται (κατ' απόλυτη τιμή) μεγαλύτερη του c, εάν έστω κι ένα από τα a,c δεν είναι ± 1 .

Τελικά έχουμε δείξει ότι $a, c \in \{\pm 1\}$, και κατεπέκταση, $U(\mathbb{Z}[i\sqrt{2}]) = \{(\pm 1, 0)\} = \{\pm 1\}$.

 $\fbox{ii.}$ Δύση: Έστω p ένας πρώτος αριθμός για τον οποίον δεν υπάρχουν $x,y\in\mathbb{Z}$ τέτοιοι ώστε $p=x^2+2y^2$. Τότε το p είναι ανάγωγο. Πράγματι, εάν το p δεν ήταν ανάγωγο στο $\mathbb{Z}[i\sqrt{2}]$, τότε θα υπήρχαν $(a,b\sqrt{2}),\ (c,d\sqrt{2})\in\mathbb{Z}[i\sqrt{2}]$ τέτοια ώστε:

$$p = (a, b\sqrt{2}) \cdot (c, d\sqrt{2})$$
$$|p|^2 = (a^2 + 2b^2) \cdot (c^2 + 2d^2)$$
$$p^2 \mid (a^2 + 2b^2) \cdot (c^2 + 2d^2)$$

Επειδή το p είναι πρώτος, $p=a^2+2b^2$ και $p=c^2+2d^2$. Σε κάθε περίπτωση, για $x=a,\ y=b$ ή $x=c,\ y=d$, η υπόθεση της μορφής του p δεν ισχύει. Αυτό είναι άτοπο, και συνεπώς το p είναι ανάγωγο.

Το 17 δεν είναι ανάγωγο, αφού γράφεται στη μορφή $17 = 3^2 + 2 \cdot 2^2$.

Το $3+2i\sqrt{2}$ είναι ανάγωγο, κι αυτό θα το αποδείξουμε μέσω του γενικότερου αποτελέσματος: "Κάθε στοιχείο $z\in\mathbb{Z}[i\sqrt{2}]$ τέτοιο ώστε ο αριθμός $|z|^2$ να είναι πρώτος, είναι ανάγωγο στο $\mathbb{Z}[i\sqrt{2}]$ ". Πράγματι, εάν ο z δεν ήταν ανάγωγο, τότε θα μπορούσε να αναπαρασταθεί στην μορφή z=xy, όπου τα x και y δεν είναι αντιστρέψιμα. Από αυτό προκύπτει ότι $|z|^2=|x|^2\cdot|y|^2$. Επειδή ο αριθμός $|z|^2$ είναι πρώτος, κάποιο από τα x,y έχει μέτρο 1.

^αΒάρσος, Δεριζιώτης, Εμμανουήλ, Μαλιάκας, Ταλέλλη: *Μια εισαγωγή στην 'Αβιγεβρα*, Γ' έκδοση, Εκδόσεις 'Σοφία', 2012.

 $^{^{1}}$ Απλούστερα θα μπορούσε να είχε παρθεί το μέτρο του $(a,b\sqrt{2})\cdot(c,d\sqrt{2})=(1,0).$

Υποθέτουμε χωρίς βλάβη της γενικότητας ότι $|x|=1\Rightarrow x\in\{\pm 1\}$. Αυτό είναι άτοπο, αφού τότε το x θα ήταν αντιστρέψιμο. Αποδεικνύεται λοιπόν ο εν λόγω ισχυρισμός και κατ' επέκταση το $3+2i\sqrt{2}$ είναι ανάγωγο, αφού ο $3^2+2\cdot 2^2=17$ είναι πρώτος.

iv. Λύση: Έστω p > 2 πρώτος:

 $p\neq a^2+2b^2 \ \text{για κάθε} \ a,b\in \mathbb{Z}$ $p \ \text{aνάγωγο στο} \ \mathbb{Z}[i\sqrt{2}] \ \longleftarrow \ p\equiv -1 \ \dot{\eta} \ -3 \ \bmod 8$

v. Λύση: Έστω $\varphi: \mathbb{Z}[i\sqrt{2}] \to \mathbb{Z}_3$ η απεικόνιση που ορίζεται ως:

$$\varphi: \varphi(x,y) = x + y\sqrt{2} + (3)$$

Η φ είναι ομομορφισμός, αφού:

- $\varphi((x,y) + (z,w)) = x + z + (y+w)\sqrt{2} + (3) = [x + y\sqrt{2} + (3)] + [z + w\sqrt{2} + (3)] = \varphi(x,y) + \varphi(z,w).$
- $\bullet \ \varphi \big((x,y)(z,w) \big) = xz 2yw + (yz + xw)\sqrt{2} + (3) = xz + yw + (yz + xw)\sqrt{2} + (3) = \varphi(x,y) \cdot \varphi(z,w).$

Η φ είναι επίσης επιμορφισμός $\mathbb{Z}[i\sqrt{2}] \to \mathbb{Z}_3$, αφού $\varphi([3] \times \{0\}) = \mathbb{Z}_3$. Επειδή $\ker \varphi = (1+i\sqrt{2})$, από το $1^{\rm o}$ θεώρημα ισομορφισμών έπεται ότι:

$$\mathbb{Z}[i\sqrt{2}] \Big/ (1+i\sqrt{2}) \simeq \mathbb{Z}_3$$

νι. Λήμμα 3.1: Κάθε ευκβείδεια περιοχή είναι περιοχή κυρίων ιδεωδών.

Απόδειξη: Έστω I ένα ιδεώδες της ευκλειδείου περιοχής R και φ η αντίστοιχη συνάρτηση που καθιστά την περιοχή ευκλείδεια. Ισχυριζόμαστε ότι το στοιχείο $\lambda \neq 0$ για το οποίο η φ παίρνει ελάχιστη τιμη ($\varphi(\lambda) = \min \varphi(I - \{0\})$) παράγει το ιδεώδες.

Πράγματι, εάν προς άτοπο υπήρχε στοιχείο $s \in I - (|\lambda|)$, τότε θα υπήρχαν $q, r \in R$ τέτοια ώστε:

$$s = q\lambda + r$$
, με $\varphi(\lambda) > \varphi(r)$

Επειδή $s, \lambda \in I$, το $0 \neq r = s - q\lambda$ είναι στοιχείο του ιδεώδους. Αυτό είναι άτοπο, αφού τότε στο λ η φ δεν παίρνει ελάχιστη τιμή. Οπότε $I - (\![\lambda]\!] = \emptyset \Rightarrow I = (\![\lambda]\!]$.

Λήμμα 3.2: Για κάθε ευκβείδεια περιοχή R (με αντίστοιχη συνάρτηση φ) και για κάθε ιδεωδες I αυτής, το R-πρότυπο $R/_I$ είναι κυκβικό.

Απόδειξη: Αναγράφουμε το $R/_I$ σε τέτοια μορφή, έτσι ώστε κάθε του στοιχείο να είναι γραμμένο ως a+I, όπου $\varphi(a)=\min\{\varphi(x)\mid x\in a+I\}$. Επιλέγουμε από τις κλάσεις αυτήν την $\mu+I$ για την οποία ισχύει $\varphi(\mu)=\min\left\{\varphi(x)\mid x+I\in R/_I\right\}$, και υποθέτουμε προς άτοπο ότι υπάρχει κλάση s+I τέτοια ώστε:

$$s + I \not\in (\mu + I)$$

Παρατηρούμε τότε ότι υπάρχουν $q,r\in R$ με την ιδιότητα:

$$s = q\mu + r \Rightarrow s + I = (q\mu + r) + I \Rightarrow r + I \in R/I$$

Αυτό είναι άτοπο, από τον ορισμό της $\mu + I$. Κατ' επέκταση:

$$R/I = (\mu + I)$$

 Λ ύση: Από το **Λήμμα 3.2**, για κάθε ιδεώδες I, το σύνολο $\mathbb{Z}[i\sqrt{2}]/I$ μπορεί ισοδύναμα να γραφεί στη μορφή:

$$\mathbb{Z}[i\sqrt{2}]\Big/_I = (\mu + I)$$

 \triangle

Δ

για κάποια κλάση $\mu+I$. Από το **Λήμμα 3.1**, το ιδεώδες I γράφεται στη μορφή $I=\{\lambda\}$. Κάθε τυχαίο λοιπόν στοιχείο του $\mathbb{Z}[i\sqrt{2}]/I$, έστω x+I, είναι της μορφής:

$$x+I=k\mu+(\lambda), \text{ yid } k\in\mathbb{Z}[i\sqrt{2}]$$

Επειδή υπάρχουν μόνο πεπερασμένοι αριθμοί των οποίων η εικόνα μέσω της φ γίνεται μικρότερη του $\varphi(\lambda)$, τα προηγούμενα δείχνουν ότι το σύνολο $\mathbb{Z}[i\sqrt{2}]/I$ είναι πεπερασμένο.

Άσκηση 4 Έστω R μια περιοχή κυρίων ιδεωδών και $a,b\in R$. Δείξτε ότι αν $(\!(a\!)\!)+(\!(b\!)\!)=R$, τότε για κάθε $n\in\mathbb{N}$ ισχύει $(\!(a^n\!)\!)+(\!(b^n\!)\!)=R$.

Λήμμα 4.1: Έστω R μια περιοχή κυρίων ιδεωδών. Ισχύει ότι:

$$(\!(a)\!)+(\!(b)\!)=(\!(d)\!),\ \text{\'amou}\ d\in\gcd(a,b)$$

Απόδειξη: Πράγματι, το (a) + (b) είναι ιδεώδες και η περιοχή R είναι περιοχή κυρίων ιδεωδών. Επομένως, υπάρχει $d \in R \gcd(a,b)$ τέτοιος ώστε (a) + (b) = (d).

Ισχυριζόμαστε ότι $d\in\gcd(a,b)$. Πράγματι, αν $c|a,\ c|b,$ τότε c|f για κάθε $f\in R\gcd(a,b)$. Επομένως, c|d, και το ζητούμενο αποδεικνύεται.

<u>Λύση:</u> Εφόσον $(a^n) + (b^n) = R = (1)$, από το **Λήμμα 4.1** έπεται ότι $1 \in \gcd(a,b)$. Κατ' επέκταση, τα a,b γράφονται ως γινόμενα αναγώγων, έτσι ώστε τα ανάγωγα του πρώτου να συνηστούν ξένο σύνολο με το αντίστοιχο σύνολο των αναγώγων του δεύτερου. Υποθέτουμε ότι:

$$a=\sigma\cdot\prod_i p_i,\ b=\tau\cdot\prod_j q_j,$$
 όπου $\sigma,\tau\in U(R)$ και p_i,q_j είναι ανάγωγα.

Εφόσον κάθε περιοχή είναι αντιμεταθετικός δακτύλιος, ισοδύναμα μπορούμε να γράψουμε:

$$a^n = \left[\sigma \cdot \prod_i p_i, \right]^n = \sigma^n \cdot \prod_i p_i^n \text{ каз } b^n = \left[\tau \cdot \prod_j q_j, \right]^n = \tau^n \cdot \prod_j q_j^n$$

και να παρατηρήσουμε ότι η εν λόγω γραφή εξασφαλίζει ότι τα a^n , b^n δεν έχουν μη τετριμμένο (αντιστρέψιμο) κοινό διαιρέτη. Οπότε, $1\in\gcd(a^n,b^n)$, και από το **Λήμμα 4.1**, $(a^n)+(b^n)=(1)=R$. Αυτό αποδεικνύει το ζητούμενο αποτέλεσμα.

Άσκηση 5 Εξετάστε ποιές από τις ακόλουθες προτάσεις αληθεύουν:

- i. Αν R είναι περιοχή μοναδικής παραγοντοποίησης και $a,b\in R$ είναι ανάγωγα, μη συντροφικά, τότε υπάρχουν $r,s\in R$ τέτοια ώστε ra+sb=1.
- ii. Αν R είναι περιοχή κυρίων ιδεωδών και $a,b\in R$ είναι ανάγωγα, μη συντροφικά, τότε υπάρχουν $r,s\in R$ τέτοια ώστε ra+sb=1.
- iii. Κάθε υποδακτύλιος περιοχής μοναδικής παραγοντοποίησης είναι περιοχή μοναδικής παραγοντοποίησης.
- iv. Κάθε υποδακτύλιος περιοχής κυρίων ιδεωδών είναι περιοχή κυρίων ιδεωδών.
- ν. Κάθε πηλίκο περιοχών κυρίων ιδεωδών είναι περιοχή κυρίων ιδεωδών.

ι. Λύση: Ο ισχυρισμός δεν ισχύει, αφού στην περιοχή $\mathbb{Z}[x]$ τα στοιχεία x, 2 δεν έχουν γραμμικό συνδυασμό που να δίνει μονάδα². Πράγματι, αν τέτοιος συνδυασμός (έστω a(x)x + b(x)2 = 1) υπήρχε, τότε ο σταθερός του όρος θα ήταν πολλαπλάσιο του 2 (άτοπο).

[ii.] <u>Λύση:</u> Εάν τα στοιχεία $a,\ b$ είναι ανάγωγα και μη συντροφικά, τότε $1\in\gcd(a,b)$. Από το **Λήμμα 4.1**,

²Εννοείται ότι x:=id(x) και $\mathbf{1}_{\mathbb{Z}[x]}(x):=\mathbf{1}_{\mathbb{Z}}$.

(a) + (b) = (1), οπότε υπάρχει γραμμικός συνδιασμός $σa + τb \in (a) + (b)$ τέτοιος ώστε σa + τb = 1.

iii. Λύση: Το σώμα $\mathbb C$ είναι περιοχή μοναδικής παραγοντοποίησης με τετριμμένο τρόπο:

- "Κάθε $a \in \mathbb{C}$, $a \neq 0$, $a \notin U(\mathbb{C})$ γράφεται ως γινόμενο αναγώγων": Τέτοιο a δεν υπάρχει, οπότε ισχύει τετριμμένα (ισχύει για το κενό σύνολο).
- "Εάν $p_1 \cdot \ldots \cdot p_n = q_1 \cdot \ldots \cdot q_n$ τότε υπάρχει αναδιάταξη $s \in S_n$ τέτοια ώστε κάθε p_i , $q_{s(i)}$ να είναι συντροφικά": Δεν υπάρχουν τέτοιες γραφές στο $\mathbb C$, οπότε και πάλι ισχύει τετριμμένα (ισχύει για το κενό σύνολο).

Εν γένει, κάθε σώμα είναι περιοχή μοναδικής παραγοντοποίησης, και τα επιχειρήματα για την απόδειξη αυτού του ισχυρισμού είναι εντελώς ανάλογα.

Ο υποδακτύλιος $\mathbb{Z}[i\sqrt{5}]$ κατ' αρχάς είναι υποδακτύλιος του \mathbb{C} , αφού:

- $\forall x, y \in \mathbb{Z}[i\sqrt{5}], \ x y \in \mathbb{Z}[i\sqrt{5}]$
- $\forall x, y \in \mathbb{Z}[i\sqrt{5}], xy \in \mathbb{Z}[i\sqrt{5}]$
- $1 = 1 + 0i\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$

Εϊναι περιοχή, αφού ο πολλαπλασιασμός είναι αντιμεταθετικός και $xy=0 \Leftrightarrow 0 \in \{x,y\}$.

Επίσης δεν είναι περιοχή μοναδικής παραγοντοποίησης, αφού $6=2\cdot 3=(1+i\sqrt{5})(1-i\sqrt{5})$ και τα στοιχεία $2,\ 3,\ 1+i\sqrt{5},\ 1-i\sqrt{5}$ είναι ανάγωγα.

[iv.] $\underline{\Lambda \dot{\nu} \sigma \eta}$: Ο ισχυρισμός δεν αληθεύει, αφού η περιοχή $\mathbb{R}[x]$ είναι περιοχή κυρίων ιδεωδών, ο δακτύλιος $\mathbb{Z}[x]$ είναι υποδακτύλιος του $\mathbb{R}[x]$ (και μάλιστα υποπεριοχή), και τέλος ο $\mathbb{Z}[x]$ δεν είνα περιοχή κυρίων ιδεωδών.

Ο $\mathbb{Z}[x]$ είναι υποπεριοχή του $\mathbb{R}[x]$, αφού:

- $\forall x, y \in \mathbb{Z}[x], \ x y \in \mathbb{Z}[x]$
- $\forall x, y \in \mathbb{Z}[x], xy \in \mathbb{Z}[x]$
- $1 \in \mathbb{Z}[x]$
- Ο πολλαπλασιασμός είναι αντιμεταθετικός
- $xy = 0 \Leftrightarrow 0 \in \{x, y\}$

Ο $\mathbb{Z}[x]$ δεν είναι περιοχή κυρίων ιδεωδών, αφού το ιδεώδες (x,2) δεν είναι κύριο. Το (x,2) δεν είναι κύριο διότι αν ήταν, θα υπήρχε $\delta \in \mathbb{Z}[x]$ τέτοιο ώστε:

$$(x,2) = (\delta) \Rightarrow \delta/2, \ \delta/x$$

Επειδή $\delta|2,\ \delta\in\{\pm 1,\pm 2\}$. Εάν $\delta=\pm 1$, τότε $1\in(\delta)-(x,2)=\emptyset$ (άτοπο). Εάν $\delta=\pm 2$, τότε $3x\in(x,2)-(\delta)=\emptyset$ (και πάλι άτοπο).

ν. Η βύση αυτή έγινε με τη βοήθεια της φοιτήτριας Τσουτσουβοπούβου Εβευθερίας'.

 $\underline{\text{Λύση:}}$ Έστω R,Q δύο περιοχές κυρίων ιδεωδών και η αντίστοιχη περιοχή-πηλίκο R/Q. Εάν I είναι τυχόν ιδεώδες του R/Q, θα δείξουμε ότι το I είναι κύριο.

Θεωρούμε το σύνολο $J=\bigcup I=\bigcup_{s\in I}s$ και παρατηρούμε ότι αυτό είναι ιδεώδες του R, αφού:

- $\forall x, y \in J : x + Q y + Q = x y + Q \in I \Rightarrow x y \in J$
- $\forall r \in R, \ x \in J : (r+Q)(x+Q) = rx + Q \in I \Rightarrow rx \in J$

Το R είναι περιοχή κυρίων ιδεωδών, επομένως υπάρχει $\rho \in R$ τέτοιο ώστε $J \in (\rho)$.

Ισχυριζόμαστε ότι $I=(\rho+Q)$. Πράγματι, κατ' αρχάς παρατηρούμε ότι $\rho\in J\Rightarrow \rho+Q\in I$. Επιπλέον, κάθε κλάση r+Q στο I μπορεί να πάρει την ισοδύναμη μορφή $r+Q=k\rho+Q$ (για κάποιο $k\in R$), επομένως $I\subseteq (\rho+Q)$. Τα δύο προηγούμενα δίνουν το ζητούμενο, ότι δηλαδή $I=(\rho+Q)$.

Το Ι είναι λοιπόν κύριο ιδεώδες.

Άσκηση 6 $\,$ Δείξτε ότι το $\mathbb{Z}-$ πρότυπο $\mathbb{Q}/_{\mathbb{Z}}$ δεν είναι πεπερασμένα παραγόμενο.

 $\frac{\mathit{Λύση:}}{\left\{\frac{a_i}{b_i} + \mathbb{Z} \mid i \in [n]\right\}}.$ Εστω προς άτοπο ότι το \mathbb{Z} -πρότυπο $\mathbb{Q}/_{\mathbb{Z}}$ είναι πεπερασμένα παραγόμενο, και μάλιστα από το σύνολο

Έστω $\mathcal{B} = \prod_{i \in [n]} b_i$. Θεωρούμε:

$$\mu = \min \left\lceil \left(\mathcal{B} \left\{ \frac{a_i}{b_i} \mid i \in [n] \right\} \right) \cap \mathbb{N} \right\rceil$$

('Οβια αυτά ευτός του πβιαισίου δευ χρειάζονται στην απόδειξη - είναι για περαιτέρω κατανόηση της μορφής του μ.)

Ο φυσικός αριθμός μ είναι (ο μοναδικός θετικός) μέγιστος κοινός διαιρέτης των ακεραίων του $\mathcal{B}\left\{\frac{a_i}{b_i} \mid i \in [n]\right\}$. Αυτό διότι, εφαρμόζοντας διαδοχικά το **Λήμμα 4.1**, ο μέγιστος κοινός διαιρέτης των στοιχείων του $\mathcal{B}\left\{\frac{a_i}{b_i} \mid i \in [n]\right\}$

γράφεται ως γραμμικός συνδυασμός των ίδιων. Επειδή τα ± 1 είναι αντιστρέψιμα στους ακεραίους, μπορεί να υπάρξει πάντοτε θετικός μέγιστος κοινός διαιρέτης δ . Παρατηρούμε ότι κάθε γραφή:

$$0 < c = \sum_{k \in \mathcal{B}\left\{a_i/_{b_i} \;\middle|\; i \in [n]
ight\}} kx_k$$
, για τα διάφορα $x_k \in \mathbb{Z}$

διαιρείται από το δ , αφού καθένα από τα k διαιρείται από το δ . Κατ' επέκταση, $\delta|c\Rightarrow\delta\leq c$ και ο μέγιστος κοινός διαιρέτης δ ταυτίζεται του μ .

Θεωρούμε τώρα την κλάση $\frac{\mu}{2\mathcal{B}}+\mathbb{Z}$ και παρατηρούμε ότι αυτή δεν μπορεί να παραχθεί από το $\left\{\frac{a_i}{b_i}+\mathbb{Z}\;\middle|\;i\in[n]\right\}$. Πράγματι, αν μπορούσε:

$$\frac{\mu}{2\mathcal{B}} = \sum_{k \in \left\{a_i/_{b_i} \mid i \in [n]\right\}} kx_k \Rightarrow \mu = \sum_{k \in \left\{a_i/_{b_i} \mid i \in [n]\right\}} 2[\mathcal{B}k]x_k$$

το μ θα ήταν πολλαπλάσιο του 2. Κατ' επέκταση:

$$\frac{\mu}{2} = \sum_{k \in \left\{a_i/b_i \mid i \in [n]\right\}} [\mathcal{B}k] x_k = \sum_{\mathcal{B}k \in \mathcal{B}\left\{a_i/b_i \mid i \in [n]\right\}} [\mathcal{B}k] x_k$$

το $0<\frac{\mu}{2}<\mu$ ανήκει στο σύνολο στο οποίο το μ είναι ελάχιστο. Αυτό είναι άτοπο, και το ζητούμενο αποδεικνύεται.

Άσκηση 7 Έστω M,N δύο R-πρότυπα και $A\leq M,\ B\leq N$. Δείξτε ότι $A\oplus B\leq M\oplus N$ και επιπλέον:

$${}^{M \,\oplus\, N} \big/_{A \,\oplus\, B} \simeq \left[{}^{M} \big/_{A}\right] \oplus \left[{}^{N} \big/_{B}\right]$$

<u>Λύση:</u> Αρχικά θα δείξουμε ότι $A \oplus B \leq M \oplus N$. Προφανώς, ο πολλαπλασιασμός εδώ θα οριστεί με τον φυσικό τρόπο, κατά συντεταγμένες: (a,b)(c,d)=(ac,bd).

ullet Η $A\oplus B$ είναι υποομάδα της $M\oplus N$, αφού:

$$\forall (a,b), (c,d) \in A \oplus B : (a,b) - (c,d) = (a-c, b-d) \in A \oplus B$$

όπου το τελευταίο 'ανήκειν' προκύπτει από το γεγονός ότι τα A, B είναι ομάδες.

• Για κάθε $(a,b) \in A \oplus B$ και για κάθε $(r,r') \in M \oplus N$, το στοιχείο (r,r')(a,b) ανήκει στο $A \oplus B$:

$$(r,r')(a,b)=(ra,r'b)\in A\oplus B$$
, αφού τα A,B είναι υποπρότυπα των M,N

Έχουμε λοιπόν δείξει ότι το $A\oplus B$ είναι υποπρότυπο του $M\oplus N$.

Στην συνέχεια θα δείξουμε τον ισομορφισμό των προτύπων ως $R \oplus R$ -πρότυπα, αλλά η διαδικασία για να δείξει κανείς ότι τα πρότυπα είναι ισόμορφα και ως R-πρότυπα είναι εντελώς ανάλογη.

Θεωρούμε φ τον ομομορφισμό $\varphi:M\oplus N\to \left[{}^M/{}_A\right]\oplus \left[{}^N/{}_B\right]$ που ορίζεται ως:

$$\varphi : \varphi(x, y) = (x + A, y + B)$$

Η φ είναι πράγματι ομομορφισμός, αφού:

- Fig $(x,y), (z,w) \in M \oplus N$: $\varphi \big((x,y) + (z,w) \big) = \varphi (x+z,y+w) = (x+z+A,y+w+B) = (x+A,y+B) + (z+A,y+B) = \varphi (x,y) + \varphi (z,w)$
- Fig. $(r,s) \in R \oplus R, \ (x,y) \in M \oplus N$: $\varphi \big((r,s) \cdot (x,y) \big) = \varphi (rx+sy) = (rx+A,sy+B) = (r,s) \cdot (x+A,y+B) = (r,s) \cdot \varphi (x,y)$

Ο πυρήνας $\ker \psi$ είναι ακριβώς το σύνολο $A \oplus B$, αφού $(x,y) \in \ker \psi \Leftrightarrow (x+A,y+B) = (0,0) \Leftrightarrow x \in A, \ y \in B \Leftrightarrow (x,y) \in A \oplus B$.

Η φ είναι επί, αφού για κάθε $(s,t)\in {M/A}\oplus {N/B}$, εάν x και y είναι αντιπρόσωποι των s και t αντίστοιχα, τότε $\varphi(x,y)=(s,t)$.

Από το 1° θεώρημα ισομορφισμών έπεται το ζητούμενο:

$${}^{M \,\oplus\, N} \Big/_{\ker\varphi} \simeq \operatorname{Im}\,\varphi \Rightarrow \left. {}^{M \,\oplus\, N} \Big/_{A \,\oplus\, B} \simeq \left[{}^{M} \Big/_{A} \right] \oplus \left[{}^{N} \Big/_{B} \right]$$

Άσκηση 8 Ένα μη μηδενικό R-πρότυπο M λέγεται aπ β ϕ εάν τα μόνα του υποπρότυπα είναι το $\{0\}$ και το M.

- Δείξτε ότι κάθε απλό πρότυπο είναι κυκλικό.
- ii. Δείξτε ότι τα απλά $\mathbb{Z}-$ πρότυπα είναι ως προς τον ισομορφισμό τα \mathbb{Z}_p , όπου p πρώτος. Δώστε παράδειγμα κυκλικού προτύπου που δεν είναι απλό.
- iii. Αληθεύει ότι ο δακτύλιος $\mathbb{Q}[x]$ έχει απλό $\mathbb{Q}[x]$ –υποπρότυπο;
- iv. Αν το M είναι απλό R-πρότυπο, τότε κάθε μη μηδενικός ομομορφισμός προτύπων $f:M\to M$ είναι ισομορφισμός.

Έστω $m \in M$. Το σύνολο $R \cdot m$ είναι υποπρότυπο του M, αφού (συνοπτικά):

- Για κάθε $am, bm \in R \cdot m : am bm = (a b)m \in R \cdot m$ (αφού το M είναι πρότυπο).
- Για κάθε $am \in R \cdot m, \ c \in R : cam = (ca)m \in R \cdot m$ (αφού το M είναι πρότυπο).

Επειδή το M είναι απλό πρότυπο, $R\cdot m=M$, και το ζητούμενο αποδεικνύεται.

[ii.] **Λήμμα 8.1:** Έστω G, H δύο ισόμορφα R-πρότυπα. Εάν A είναι ένα υποπρότυπο του G, υπάρχει B υποπρότυπο του H, ισόμορφο του A.

Απόδειξη: Εφόσον τα πρότυπα G,H είναι ισόμορφα, υπάρχει ισομορφισμός $\varphi:G\to H$. Θα αποδείξουμε επιπλέον ότι αν $\{{\bf 0}_G\} \neq A \neq G$, το $\varphi(A)$ είναι υποπρότυπο του H, το οποίο δεν είναι κανένα από τα $\{{\bf 0}_H\},\ H$. Το τελευταίο δεν χρειάζεται πουθενά στην απόδειξη, θα χρειαστεί όμως στις ασκήσεις. Οπότε το αποδεικνύουμε.

Το $\varphi(A)$ είναι ισόμορφο του A υποπρότυπο, αφού η $\varphi|_A:A\to \varphi(A)$ είναι ισομορφισμός και επιπλέον:

- Για κάθε $b, \tilde{b} \in \varphi(A)$, υπάρχουν $a, \tilde{a} \in A$ τέτοια ώστε $\varphi(a) = b, \ \varphi(\tilde{a}) = \tilde{b}$. Επομένως, $b \tilde{b} = \varphi(a) \varphi(\tilde{a}) = \varphi(a \tilde{a}) \in \varphi(A)$, αφού $a \tilde{a} \in A$ (το A είναι πρότυπο, άρα και ομάδα).
- Για κάθε $b=\varphi(a)\in \varphi(A)$ και $r\in R$, ισχύει ότι $rb=r\varphi(a)=\varphi(ra)\in \varphi(A)$, αφού $ra\in A$ (το A είναι πρότυπο).

-

Το $\varphi(A)$ δεν είναι κανένα από τα $\{\mathbf{0}_H\}$, H, μιας και αν το αντίθετο συνέβαινε, $A=\varphi^{-1}(\{\mathbf{0}_H\})=\{\mathbf{0}_G\}$ (άτοπο) και αντίστοιχα $\varphi^{-1}(H) = G$ (και πάλι άτοπο).

Λύση: Για κάθε $m \in M$ θεωρούμε την απεικόνιση $\varphi_m : \mathbb{Z} \to (m)$ που ορίζεται ως:

$$\varphi_m: x \mapsto xm$$

Από το 1° θεώρημα ισομορφισμών έχουμε ότι:

$$\mathbb{Z}/\ker\varphi_m\simeq (m)$$

και από το **Λήμμα 8.1**, αρκεί να μελετηθούν τα απλά υποπρότυπα της μορφής $\mathbb{Z}/_{\ker \varphi_m}$ για να προσδιοριστούν τα απλά υποπρότυπα του M.

Επειδή η περιοχή $\mathbb Z$ είναι περιοχή κυρίων ιδεωδών, για κάθε συνάρτηση φ_m , υπάρχει $n_m \in \mathbb Z$ τέτοιο ώστε $\ker \varphi_m = (n_m)$. Κατ' επέκταση:

$$\mathbb{Z}/\ker \varphi_m = \mathbb{Z}_{n_m}$$

Ισχυριζόμαστε ότι το υποπρότυπο \mathbb{Z}_{n_m} είναι απλό εάν και μόνο αν ο αριθμός n_m είναι πρώτος. Πράγματι, εάν το \mathbb{Z}_{n_m} είναι απλό, για κάθε $x + \mathbb{Z} \cdot n_m \in \mathbb{Z}_{n_m}$:

$$\mathbb{Z}_{n_m}\cdot(1+\mathbb{Z}\cdot n_m)=\mathbb{Z}_{n_m}\cdot(x+\mathbb{Z}\cdot n_m)\Leftrightarrow 1+\mathbb{Z}\cdot n_m=(y+\mathbb{Z}\cdot n_m)(x+\mathbb{Z}\cdot n_m),$$
 για κάποιο $y+\mathbb{Z}\cdot n_m\in\mathbb{Z}_{n_m}$

Αυτό ουσιαστικά δείχνει ότι κάθε στοιχείο του υποπροτύπου \mathbb{Z}_{n_m} έχει αντίστροφο, δηλαδή το \mathbb{Z}_{n_m} είναι σώμα. Έπεται πλέον ότι ο αριθμός n_m είναι πρώτος, κι επειδή όλες οι ισοδυναμίες που χρησιμοποιήσαμε αντιστρέφονται, ο ισχυρισμός αποδεικνύεται.

Συνεπώς κάθε απλό \mathbb{Z} -υποπρότυπο του M είναι ισόμορφο με κάποιο \mathbb{Z}_p , όπου p πρώτος.

Ένα παράδειγμα ενός κυκλικού προτύπου που δεν είναι απλό είναι το $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. Είναι πράγματι πρότυπο, αφού είναι αβελιανή ομάδα κλειστή ως προς τον εξωτερικό $\mathbb{Z}-$ πολλαπλασιασμό, και είναι πράγματι κυκλική αφού $\mathbb{Z}_2 \oplus \mathbb{Z}_3 = ((1,1)) = ((1,2))$. Το $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ δεν είναι απλό, αφού το $\mathbb{Z}_2 \oplus \{0\}$ είναι πρότυπο ($\mathbb{Z}_2 \oplus \{0\} \simeq \mathbb{Z}_2$) και μάλιστα υποπρότυπο του $\mathbb{Z}_2 \oplus \mathbb{Z}_3$.

 $oxdot{iii.}$ Λύση I^η : Προς άτοπο υποθέτουμε ότι υπάρχει απλό υποπρότυπο N του $\mathbb{Q}[x]$. Θα δείξουμε ότι το $N\cdot x$ είναι υποτρότυπο του N, και κατ' επέκταση $N \cdot x = N$, αφού το N είναι απλό. Πράγματι:

- Έστω $\tilde{n}, \tilde{\nu}$ δύο στοιχεία του $N \cdot x$. Εξ' ορισμού του $N \cdot x$, υπάρχουν $n, \nu \in N$ τέτοια ώστε $\tilde{n} = nx$, $\tilde{\nu} = \nu x$. Επομένως, $\tilde{n} - \tilde{\nu} = nx - \nu x = (n - \nu)x \in N \cdot x$, αφού $n - \nu \in N$ (το N είναι υποπρότυπο).
- ullet Έστω $\tilde{n}\in N,\ h\in \mathbb{Q}[x]$. Και πάλι είναι δυνατόν να βρεθεί $n\in N$ τέτοιο ώστε $\tilde{n}=nx$, εξ' ορισμού του N. Επομένως, $h \cdot \tilde{n} = h \cdot nx = (h \cdot n)x \in N \cdot x$, αφού $h \cdot n \in N$ (το N είναι υποπρότυπο).

Οπότε το $N \cdot x$ είναι υποπρότυπο του N.

Θεωρούμε $\tilde{\eta} \in N$ ένα μη μηδενικό πολυώνυμο με ελάχιστο βαθμό. Εφόσον $N=N\cdot x$, το $\tilde{\eta}$ ανήκει στο $N\cdot x$, κι άρα γράφεται στην μορφή $\eta\cdot x$, για κάποιο μη μηδενικό $\eta\in N$. Επειδή όμως $\deg\eta<\deg\tilde{\eta}$, το $\tilde{\eta}$ δεν είναι στοιχείο ελαχίστου βαθμού στο N. Αυτό είναι άτοπο, και συνεπώς αποδεικνύεται ότι δεν υπάρχουν απλά υποπρότυπα του $\mathbb{Q}[x]$.

Λύση 2^{η} - γιατί δεν είχα πειστεί με το πρώτο αποτέβεσμα: Υποθέτουμε προς άτοπο ότι υπάρχει απλό υποπρότυπο N του $\mathbb{Q}[x]$. Σύμφωνα με την απόδειξη του υποερωτήματος i., εάν n είναι ένα στοιχείο του N, τότε $N=\mathbb{Q}[x]\cdot n$. Εφόσον $N=\mathbb{Q}[x]\cdot n$ μπορούμε να θεωρήσουμε $qn,\ q\in\mathbb{Q}[x]$ ένα οποιοδήποτε στοιχείο του N, και ισοδύναμα να παραστήσουμε το N ως $N=\mathbb{Q}[x]\cdot (qn)$. Επειδή $n\in N=\mathbb{Q}[x]\cdot (qn)$, υπάρχει $g\in\mathbb{Q}[x]$ τέτοιο ώστε $gqn=n\Rightarrow gq=1\Rightarrow q\in U(\mathbb{Q}[x])$. Αυτό ουσιαστικά μας δείχνει ότι κάθε (μη μηδενικό) στοιχείο qn του συνόλου N γράφεται στην μορφή $qn, q \in U(\mathbb{Q}[x])$, κι επομένως $N = U(\mathbb{Q}[x]) \cdot n \cup \{0\}$. Αυτό είναι άτοπο, αφού $U(\mathbb{Q}[x]) \neq \mathbb{Q}[x] - \{0\}.$

[iv] Λύση: Έστω f:M o M ένας ομομορφισμός προτύπων. Ο πυρήνας $\ker f$ είναι υποπρότυπο του M, αφού:

- $0 \in \ker f$
- Για κάθε $a,b \in \ker f$: $f(a-b) = f(a) f(b) = 0 \Rightarrow a-b \in \ker f$

П

 \triangle

П

П

• Για κάθε $a \in \ker f$, $r \in M$: $f(ra) = rf(a) = 0 \Rightarrow ra \in \ker f$

Εφόσον το M είναι απλό πρότυπο, $\ker f = \{0\}$ ή $\ker f = M$. Η δεύτερη περίπτωση δεν μπορεί να ισχύει, αφού ο ομομορφισμός υποτέθηκε μη μηδενικός, επομένως η πρώτη αληθεύει. Σε αυτήν την περίπτωση, η f είναι 1-1.

Από το $1^{
m o}$ θεώρημα ισομορφισμών έχουμε ότι $M/_{\{0\}}\simeq f(M)$, κι επειδή $M/_{\{0\}}\simeq M$ (μέσω του τετριμμένου ισομορφισμού $x+\{0\}\mapsto x$), θα πρέπει $M\simeq f(M)$. Επειδή $M\le M$ και $M\simeq f(M)$, από το **Λήμμα 8.1**, το f(M) είναι υποπρότυπο του M. Επειδή το M είναι απλό και η f μη μηδενική, f(M)=M. Ισοδύναμα, η fείναι επί του M.

Με αυτά έχουμε δείξει ότι η f είναι ισομορφισμός $M \to M$.

Άσκηση 9 Έστω M,N δύο R-πρότυπα τέτοια ώστε ${
m Ann}_R M + {
m Ann}_R N = R$. Δείξτε ότι κάθε ομομορφισμός προτύπων $M \to N$ είναι ο μηδενικός.

 Λ ύση: Εφόσον ${
m Ann}_R M+{
m Ann}_R N=R$, υπάρχουν $s\in {
m Ann}_R M,\ t\in {
m Ann}_R N$ τέτοια ώστε ${f 1}_R=s+t$. Έστω τώρα $\varphi:M\to N$ ένας τυχαίος ομομορφισμός. Για κάθε $x\in M$ παρατηρούμε ότι:

$$\varphi(x) = \varphi(\mathbf{1}_R x) = \varphi(sx + tx) = \varphi(sx) + t\varphi(x)$$

Επειδή $x \in M$, $sx = \mathbf{0}_R$ και επειδή $\varphi(x) \in N$, $t\varphi(x) = \mathbf{0}_R$. Κατ' επέκταση, $\varphi(x) = \mathbf{0}_R \Rightarrow \varphi = \mathbf{0}_{(M \to N)}$.

Άσκηση 10 Έστω $\mathbb K$ ένα σώμα και V ένας $\mathbb K-$ διανυσματικός χώρος με $\dim V<\infty.$

$$\dim \left[V \middle/_{U} \right] = \dim V - \dim U$$

 $\dim \left[V \middle/_U \right] = \dim V - \dim U$ ii. Αν $U,W \leq V$, δείξτε (χρησιμοποιώντας το ${\bf 2}^{\rm o}$ θεώρημα ισομορφισμών προτύπων) ότι:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

oxdots. oxdots oΜάλιστα έχει πεπερασμένη διάσταση, αφού ο V έχει πεπερασμένη διάσταση. Έστω λοιπόν $\vec{u}=(u_1,\cdots,u_n)$ μια διατεταγμένη βάση του U. Η βάση \vec{u} του U μπορεί να επεκταθεί κατάλληλα σε βάση \vec{v} του V, η οποία θα έχει την μορφή $\vec{v}=(u_1,\cdots,u_n,v_1,\cdots,v_m)$. Παρατηρούμε ότι κάθε στοιχείο $x+U\in V/U$ γράφεται στην μορφή:

$$x + U = \sum_{i \in [n]} (k_i \cdot u_i) + \sum_{i \in [m]} (h_i \cdot v_i) + U = \sum_{i \in [m]} (h_i \cdot v_i) + U, \ k_i, h_i \in \mathbb{K}$$

κι επομένως τα στοιχεία $v_i + U, \ i \in [m]$ παράγουν τον χώρο πηλίκο. Ισχυριζόμαστε ότι είναι επιπλέον γραμμικώς ανεξάρτητα. Πράγματι:

$$\sum_{i \in [m]} (h_i \cdot v_i + U) = 0 \Rightarrow \sum_{i \in [m]} h_i \cdot v_i + U = 0 \Rightarrow \sum_{i \in [m]} h_i \cdot v_i = \sum_{j \in [n]} k_j \cdot u_j \Rightarrow \sum_{i \in [m]} h_i \cdot v_i + \sum_{j \in [n]} (-k_j) \cdot u_j = 0$$

Επειδή η \vec{v} είναι βάση, τα στοιχεία της είναι γραμμικός ανεξάρτητα και κατ' επέκταση $h_i = -k_i = 0$ για κάθε $i \in [m], \ j \in [n]$. Από αυτό έπεται η γραμμική ανεξαρτησία των $v_i + U$. Ακόμη, όλα τα στοιχεία της μορφής $v_i + U$ απαιτούνται για να παραχθεί ο χώρος πηλίκο (αφού όλα τους ανήκουν στον χώρο και είναι ανά δύο διαφορετικά), κι επομένως η $\vec{n}=(v_1,\cdots,v_m)$ αποτελεί μια βάση του χώρου πηλίκο.

Έπεται πλέον ότι:

$$\dim \left[V \middle/_{U} \right] = m = (n+m) - n = \dim V - \dim U$$

ii. Λύση: Σύμφωνα με το 2° θεώρημα ισομορφισμών προτύπων:

$$U+W/_W \simeq U/_{U\cap W}$$

Επειδή ο V είναι διανυσματικός χώρος, τα U και W είναι υπόχωροι του V, και μάλιστα πεπερασμένης διάστασης (αφού ο V είναι πεπερασμένης διάστασης). Επομένως το αποτέλεσμα του ερωτήματος \mathbf{i} . αληθεύει:

$$\dim(U+W)-\dim W=\dim \left[U+W \middle/_{W} \right]=\dim \left[U \middle/_{U\cap W} \right]=\dim U-\dim(U\cap W)$$

και άρα:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W)$$

Άσκηση 11 Έστω V ένας \mathbb{R} -διανυσματικός χώρος με διατεταγμένη βάση $\vec{\beta}=(v_1,v_2,v_3)$ και $\alpha:V\to V$ γραμμική απεικόνιση με πίνακα A ως προς την πορηγούμενη βάση:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Να βρεθούν όλα τα $\mathbb{R}[x]$ -υποπρότυπα του V.

 Λ ύση: Θα μελετηθούν ουσιαστικά οι $\alpha-$ αναλλοίωτοι υπόχωροι U του V (εννοείται ως προς τη βάση).

Γνωρίζουμε ότι ένας υπόχώρος U της μορφής (u) είναι α -αναλλοίωτος εάν και μόνο αν το u είναι ιδιοδιάνυσμα του α . Προσωρινά λοιπόν η μελέτη θα περιοριστεί στην εύρεση των ιδιοδιανυσμάτων του A.

Το χαρακτηριστικό πολυώνυμο του A είναι ακριβώς το:

$$\mathcal{X}_A(\lambda) = (\lambda - 2)^2 (\lambda - 1)^2$$

επομένως οι ιδιοτιμές του A είναι οι 1, 2.

Για $\lambda = 1$, τα ιδιοδιανύσματα v = (x, y, z) είναι τα:

$$Av = v \Rightarrow \begin{pmatrix} 2x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow v = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix}$$

Για $\lambda = 2$, τα ιδιοδιανύσματα v = (x, y, z) είναι τα:

$$Av = 2v \Rightarrow \begin{pmatrix} 2x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} \Rightarrow v = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$

Έστω G ένα σύνολο ιδιοδιανυσμάτων του A. Παρατηρούμε ότι ο χώρος (G) είναι α -αναλλοίωτος, αφού η α είναι γραμμική. Επειδή τα ιδιοδιανύσματα του A παράγουν κάθε υπόχωρο του V, κάθε υπόχωρος του V είναι α -αναλλοίωτος.

Ουσιαστικά η απόδειξη σε αυτό το σημείο τελειώνει, αφού κάθε $\alpha-$ αναλλοίωτος υπόχωρος U είναι υπόχωρος του V.

 \approx \square

Άσκηση 12 Έστω $\mathbb K$ σώμα. Θεωρούμε τον δακτύλιο $R=M_{2\times 2}(\mathbb K)$ και το R-πρότυπο $V=M_{2\times 1}(\mathbb K)=\left\{inom{x}{y} \mid x,y\in\mathbb K\right\}$. Εδώ ο εξωτερικός πολλαπλασιασμός ορίζεται ως $R\times V\ni (A,X)\mapsto AX\in V$. Δείξτε τα εξής:

- i. Ως R-πρότυπο, το V είναι απλό.
- ii. Ω ς R-πρότυπα, $R \simeq V \oplus V$.
- iii. Από το ερώτημα i., το V παράγεται από το $v=\begin{pmatrix}1\\0\end{pmatrix}$. Δείξτε ότι $\mathrm{Ann}_R(V)\neq\mathrm{Ann}_R(v)$.
- iv. Δείξτε ότι κάθε απλό R-πρότυπο είναι ισόμορφο με το V.

 \triangle

Λήμμα 12.1: Εάν ένα πρότυπο R είναι διαιρετικός δακτύ β ιος, τότε κάθε κυκ β ικό R-πρότυπο είναι απ β ό.

Απόδειξη: Έστω ότι το R είναι διαιρετικός δακτύλιος, και κατ' επέκτασην ότι $R=U(R)\cup\{0\}$. Έστω επίσης $M=R\cdot m$ ένα κυκλικό R-πρότυπο και S ένα (μη μηδενικό) υποπρότυπο του M. Εφόσον $S\leq M$, θα πρέπει για κάθε στοιχείο $s\in S$ να ισχύει $s\in M\Rightarrow s=t\cdot m$, για αντίστοιχα $t\in R-\{0\}$. Επειδή το R είναι διαιρετικός δακτύλιος, υπάρχει ο αντίστροφος του t και συνεπώς $m=t^{-1}\cdot s\Rightarrow m\in S$. Εφόσον $m\in S$, το S υποπρότυπο και το M κυκλικό, $M\subseteq S$. Ο άλλος εγκλεισμός είναι προφανής, οπότε ουσιαστικά έχουμε δείξει ότι M=S. Κάθε λοιπόν υποπρότυπο του M είναι είτε το $\{0\}$ είτε το M, κι άρα το M είναι απλό.

 $\begin{tabular}{ll} \hline {
m i.} & $\Lambda \dot{\nu} \sigma \eta$: (Συνοπτικά) Ορίζουμε μια σχέση ισοδυναμιας (<math>\sim$) στο R τέτοια ώστε:

- Για κάθε $x \in R$ τέτοιο ώστε $\det x \neq 0$, $[x/\sim] = \{x\}$
- $\bullet \left[\mathbf{0}_{2\times 2}/_{\sim} \right] = \{x \mid \det x = 0\}$

και παρατηρούμε ότι εξ' ορισμού ο $R/_{\sim}$ καθίσταται διαιρετικός δακτύλιος.

Το V είναι κυκλικό $R/_{\sim}$ -πρότυπο και μάλιστα παράγεται από το $v=\begin{pmatrix}1\\0\end{pmatrix}$. Σύμφωνα με το **Λήμμα 12.1**, το V είναι απλό.

Το V ως R-πρότυπο είναι απλό. Πράγματι, έστω S ένα R-υποπρότυπο του V. Το S (όπως και το V) ορίζει $R/_{\sim}$ -πρότυπο S, το οποίο είναι υποπρότυπο του V:

$$\bullet \ \binom{a}{b} - \binom{c}{d} = \binom{a-c}{b-d}$$

$$\bullet \ \ \mathrm{Ean} \ \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0, \ \mathrm{tote} \ \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ \\ & & \\ & & \\ \end{pmatrix} \sim \ \end{bmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

• Eán
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$$
, tóte $\begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ \sim \end{bmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Επειδή το τελευταίο είναι απλό, $S=\{0\}$ ή S=V. Αυτή είναι ισότητα μεταξύ συνόλων (πλέον), επομένως δείχνεται έτσι ότι το V είναι απλό ως R-πρότυπο.

ίι. Λύση: (Συνοπτικά) Η συνάρτηση:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \left(\begin{pmatrix} a \\ c \end{pmatrix}, \, \begin{pmatrix} b \\ d \end{pmatrix} \right)$$

είναι ισομορφισμός, εάν ο πολλαπλασιασμός στο $V\oplus V$ οριστεί ως:

$$(x,y) \cdot (z,w) = ((x,y)z,(x,y)w)$$

 $\boxed{\hbox{iii.}} \ \underline{\mathit{Λύση:}} \ (\text{Συνοπτικά}) \ \mathrm{Ann}_R(V) = \{0\} \ \text{enώ} \ \mathrm{Ann}_R(v) \supset \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$

∼ ⊢

 \approx \square

$$xm \mapsto xs, \ x \in R$$

είναι ισομορφισμός.

≈ □