Groupe IPESUP Année 2022-2023

TD 7 : Suites numériques

Connaître son cours:

- Montrer que toute suite convergente est bornée et donner un exemple d'une suite bornée non convergente.
- Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang.
- Montrer que si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , il en est de même de $(u_n)_n$.
- On suppose que $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ convergent. En déduire que (u_n) converge.
- Montrer que : si $u_n \sim_{+\infty} v_n$ alors $v_n \sim_{+\infty} u_n$.
- Montrer que : si $u_n \sim_{+\infty} v_n$ alors à partir d'un certain rang $u_n \times v_n \ge 0$.

Calculs explicites de suites :

Récurrence d'ordre 1

Exercice 1. (*)

Expliciter la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n+2^n-1$.

Exercice 2. (**)

Calculer en fonction de n le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n^2$

Exercice 3. (**)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0 \in]0,1]$ et par la relation de récurrence

$$u_{n+1} = \frac{u_n}{2} + \frac{(u_n)^2}{4}$$

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Montrer que : $\forall n \in \mathbb{N}, u_n \leq 1$.
- 3. Montrer que la suite est monotone, en déduire ensuite la limite de la suite $(u_n)_{n \in \mathbb{N}}$.

Exercice 4. (****)

On pose $u_1 = 1$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = 1 + \frac{n}{u_n}$. Montrer que $\lim_{n \to +\infty} (u_n - \sqrt{n}) = \frac{1}{2}$.

Récurrence d'ordre 2

Exercice 5. (*)

Déterminer u_n en fonction de n et de ses premiers termes dans chacun des cas suivants :

- 1. $\forall n \in \mathbb{N}, 4u_{n+2} = 4u_{n+1} + 3u_n$.
- 2. $\forall n \in \mathbb{N}, \ \frac{2}{u_{n+2}} = \frac{1}{u_{n+1}} \frac{1}{u_n}.$
- 3. $\forall n \geq 2, u_n = 3u_{n-1} 2u_{n-2} + n$.
- 4. $\forall n \in \mathbb{N}, u_{n+2} 2\cos(\alpha)u_{n+1} + u_n = 0,$ avec $\alpha \in \mathbb{R}$.

Exercice 6. (**)

Calculer en fonction de n le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = 1$, $u_1 = 2$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = \frac{u_{n+1}^6}{u_n^5}$.

Récurrence homographique

Exercice 7. (**)

Déterminer u_n en fonction de n quand la suite u vérifie :

- 1. $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{3-2u_n}$
- 2. $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{4(u_n 1)}{u_n}.$
- 3. $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n+8}{2u_n+1} \text{ et } u_0 = 1.$

Suites convergentes et propriétés :

Définitions et premières propriétés

Exercice 8. (*)

Soient u et v deux suites de réels de [0,1] telles que $\lim_{n\to+\infty} u_n v_n = 1$. Montrer que (u_n) et (v_n) convergent vers 1.

Exercice 9. (**)

Soit f une application injective de \mathbb{N} dans \mathbb{N} . Montrer que $\lim_{n\to+\infty} f(n) = +\infty$.

Exercice 10. (**)

- 1. Soit u une suite de réels strictement positifs. Montrer que si la suite $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers un réel ℓ , alors $(\sqrt[n]{u_n})$ converge et a la même limite.
- 2. Etudier la réciproque.
- 3. Application : limites de
 - (a) $\sqrt[n]{C_{2n}^n}$,
 - (b) $\frac{n}{\sqrt[n]{n!}}$,
 - (c) $\frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$.

Exercice 11. (***) (Lemme de Fekete)

Soit u une suite de réels positifs telle que

$$\forall n, m \in \mathbb{N} \ u_{n+m} \leq u_n + u_m$$

Montrer que la suite $\left(\frac{u_n}{n}\right)_{n>1}$ converge vers

$$l = \inf \left\{ \frac{u_n}{n} : \ n \in \mathbb{N}^* \right\}$$

Exercice 12. (**)

Soit $(u_n)_n$ une suite réelle convergente de limite l.

- 1. Montrer que si $l \notin \mathbb{Z}$, la suite $(\lfloor u_n \rfloor)_n$ converge.
- 2. Dans le cas général, est-ce que $(|u_n|)_n$ est convergente?

Exercice 13. (**)

Étudier la nature des suites suivantes, et déterminer leur limite éventuelle :

$$1. \ u_n = \frac{\ln(n!)}{n}$$

1.
$$u_n = \frac{\ln(n!)}{n}$$
 2. $u_n = \frac{\lfloor nx \rfloor}{n^{\alpha}}$ en fonction de $x, \alpha \in \mathbb{R}$

3.
$$u_n = \frac{1}{n!} \sum_{k=1}^n k!$$

Théorèmes de Cesàro et produit de Cauchy

Exercice 14. (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de Césaro et est monotone, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 15. (***)

Soit $z_1, ..., z_p$ des complexes de module 1 tels que la suite $(z_1^n + ... + z_p^n)_n$ converge vers l sa limite. Montrer que $l \in [0, p]$.

Exercice 16. (***)

Soient (u_n) et (v_n) deux suites réelles convergeant respectivement vers u et v. Montrer que la suite $w_n = \frac{u_0 v_n + \dots + u_n v_0}{n+1}$ converge vers uv.

Relations de comparaison pour les suites :

Exercice 17. (**)

Montrer que

$$\sum_{k=1}^{n} k! \sim_{+\infty} n!.$$

Exercice 18. (**)

Trouver un équivalent le plus simple possible aux suites suivantes:

1.
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

2.
$$v_n = \sqrt{n+1} - \sqrt{n-1}$$

3.
$$w_n = \frac{n^3 - \sqrt{1 + n^2}}{\ln n - 2n^2}$$

1.
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$
 2. $v_n = \sqrt{n+1} - \sqrt{n-1}$ 3. $w_n = \frac{n^3 - \sqrt{1+n^2}}{\ln n - 2n^2}$ 4. $z_n = \sin\left(\frac{1}{\sqrt{n+1}}\right)$.

Exercice 19. (**)

Soit $\gamma > 0$. Le but de l'exercice est de prouver que $e^{\gamma n} = o(n!)$. Pour cela, on pose, pour $n \ge 1$,

$$u_n = e^{\gamma n}$$
 et $v_n = n!$.

1. Démontrer qu'il existe un entier $n_0 \in \mathbb{N}$ tel que, pour tout $n \ge n_0$,

$$\frac{u_{n+1}}{u_n} \le \frac{1}{2} \frac{v_{n+1}}{v_n}$$

2. En déduire qu'il existe une constante C > 0telle que, pour tout $n \ge n_0$, on a

$$u_n \le C \left(\frac{1}{2}\right)^{n-n_0} v_n.$$

3. Conclure.

Suites extraites et propriétés :

Exercice 20. (**)

Pour tout vecteur du plan fixé $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$, on considère la suite définie par récurrence :

$$\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right) = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x_n \\ y_n \end{array}\right)$$

- 1. En partant de $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, représenter les 8 premiers termes de la suite.
- 2. Cette suite est elle convergente?

Exercice 21. (***)

Soit $(u_n)_n$ une suite bornée telle que $u_n + \frac{1}{2}u_{2n} \longrightarrow 1$. Montrer que $(u_n)_n$ converge vers une limite que l'on précisera.

Exercice 22. (***)

Soit $(u_n) = \left(\frac{p_n}{q_n}\right)$ avec $p_n \in \mathbb{Z}$ et $q_n \in \mathbb{N}^*$, une suite de rationnels convergeant vers un irrationnel x. Montrer que les suites $(|p_n|)$ et (q_n) tendent vers $+\infty$ quand n tend vers $+\infty$.

Exercice 23. (***)

1. Donner une suite réelle qui admet (au moins) une suite extraite croissante et (au moins) une suite extraite décroissante et qui ne converge

Propriété 1. (Lemme des pics)

Soit $(u_n)_n$ une suite numérique, bornée. Alors $(u_n)_n$ admet une suite extraite croissante ou une suite extraite décroissante.

2. Soit $(u_n)_n$ une suite réelle.

On note $P = \{ n \in \mathbb{N} \mid \forall m \ge n, u_n \le u_m \}$

- (a) On suppose que P est infini. Montrer qu'on peut extraire de $(u_n)_n$ une suite croissante.
- (b) On suppose que P est fini. Montrer qu'on peut extraire de $(u_n)_n$ une suite décroissante.
- 3. Si $(u_n)_n$ est bornée, montrer qu'elle admet une suite extraite croissante bornée ou une suite extraite décroissante bornée.
- 4. Application. Donner une nouvelle démonstration du théorème de Bolzano-Weierstrass.

Exercices complémentaires:

Exercice 24. (**)

Soit a > 0. On définit la suite $(u_n)_{n \ge 0}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right).$$

On se propose de montrer que (u_n) tend vers \sqrt{a} .

1. Montrer que

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}.$$

- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n\ge 1}$ est décroissante.
- 3. En déduire que la suite (u_n) converge vers \sqrt{a} .
- 4. En utilisant la relation $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a}) \text{ donner une majoration de } u_{n+1} \sqrt{a} \text{ en fonction de } u_n \sqrt{a}.$
- 5. Si $u_1 \sqrt{a} \le k$ et pour $n \ge 1$ montrer que

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$
.

6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Exercice 25. (****)

L'objectif est de montrer qu'il existe une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que la restriction de f à tout intervalle non trivial soit surjective.

Posons, pour tout $x \in \mathbb{R}$, f(x) la limite finie de la suite $(\tan(n!\pi x))_n$ si celle-ci existe, 0 sinon.

- 1. (a) Montrer que, pour tout $r \in \mathbb{Q}$, la fonction f est r-périodique.
 - (b) En déduire la restriction de f à \mathbb{Q} .
- 2. Le but de cette question est de montrer que f est périodique. Soit $y \in \mathbb{R}$.
 - (a) Montrer qu'il existe $x \in [0, 1[$ tel que $y = \tan(\pi x)$.

Notons, pour tout n,

$$u_n = \sum_{k=0}^{n} \frac{\lfloor kx \rfloor}{k!}$$

- (b) Justifier que la suite (u_n) converge. Soit l la limite de cette suite.
- (c) Établir que $n!(l-u_n) \longrightarrow x$.
- 3. En déduire que f(l) = y.
- 4. Montrer le résultat annoncé.