

Contents

Int	troduction	5
	How to contribute	5
\mathbf{Sc}	holar	15
	Connecting to Scholar	15
	Resources	17
Ur	nix	19
	Getting started	19
	Standard utilities	19
	Piping & Redirection	33
	Emacs	36
	Nano	36
	Vim	36
	Writing scripts	36
SÇ	m QL	37
\mathbf{R}		73
	Getting started	73
	Variables	73
	Logical operators	77
	Lists & Vectors	79
	Basic R functions	85
	Data.frames	107
	Reading & Writing data	111
		113
		116
	Writing functions	118
	Plotting	
	RMarkdown	
		167
	data.table	

4 CONTENTS

Scraping	. 170
shiny	. 170
Python	171
Getting started	. 171
Lists & Tuples	
Dicts	
Control flow	
Writing functions	. 173
Reading & Writing data	
numpy	
scipy	
pandas	
Jupyter notebooks	. 173
Writing scripts	
Scraping	
Plotting	
Classes	
tensorflow	. 173
pytorch	. 173
Tools	175
Docker	
Tableau	
GitHub	
VPNs	
FAQs	189
How do I connect to Scholar from off-campus?	
Is there an advantage to using the ThinLinc client rather than the	
ThinLinc web client?	
GitHub Classroom is not working – can't authorize the account	
In Scholar, on RStudio, my font size looks weird or my cursor is offse	
I'm unable to type into the terminal in RStudio	. 190
I'm unable to connect to RStudio Server	
RStudio initialization error	. 190
RStudio crashes when loading a package	. 190
RStudio license expired	. 190
RStudio is taking a long time to open	. 191
How can you run a line of R code in RStudio without clicking the "Run"	,
button?	. 191
My R session freezes	. 191
White screen issue when loading RStudio	
Scholar is slow	
There are no menus in Scholar	. 193
Firefox in Scholar won't open because multiple instances running	. 193

CONTENTS 5

How to transfer files between your computer and Scholar	194
ThinLinc app says you can't create any more sessions	196
How to install ThinLinc on my computer	196
Forgot my password or password not working with ThinLinc	197
Jupyter Notebook download error with IE	197
Jupyter Notebook kernel dying	197
Python kernel not working, Jupyter Notebook won't save	198
Installing my_package for Python	198
Displaying multiple images after a single Jupyter Notebook Python	
code cell	198
RMarkdown "Error: option error has NULL value" when knitting"	
How do you create an RMarkdown file?	
Problems building an RMarkdown document on Scholar	
How can I use SQL in RMarkdown?	
Problems installing ggmap	201
Error: object_name is not found	202
Zoom in on ggmap	202
Find the latitude and longitude of a location	202
Problems saving work as a PDF in R on Scholar	202
What is a good resource to better understand HTML?	203
Is there a style guide for R code?	203
Is there a guide for best practices using R?	203
Tips for using Jupyter notebooks	203
What is my username on Scholar?	203
How to submit homework to GitHub without using Firefox?	204
How and why would I need to "escape a character"?	204
How can I fix the error "Illegal byte sequence" when using a UNIX	
utility like cut?	204
D ' /	005
Projects Templates	205
Submissions	
STAT 19000	
STAT 39000	201
Think Summer 2020	361
Project	361
	00=
Contributors	367

6 CONTENTS

Introduction

This book contains a collection of examples that students can use to reinforce topics learned in The Data Mine seminar. It is an excellent resource for students to learn what they need to know in order to solve The Data Mine projects.

How to contribute

Contributing to this book is simple:

Small changes and additions

If you have a small change or addition you'd like to make to the book, the easiest way to quickly contribute would be the following method.

- 1. Navigate to the page or section that needs to be edited
- 2. Click on the "Edit" button towards the upper left side of the page:

- 3. You'll be presented with the respective RMarkdown file. Make your modifications.
- 4. In the "Commit changes" box, select the radio button that says *Create a new branch* for this commit and start a pull request. Give your pull request a title and a detailed description. Name the new branch, and click on "Propose file change".
- 5. You've successfully submitted a pull request. Our team will review and merge the request shortly thereafter.

8 INTRODUCTION

Larger changes or additions

If you have larger changes or additions you'd like to make to the book, the easiest way is to edit the contents of the book on your local machine.

Using git in the terminal

- 1. Setup git following the directions here.
- 2. Start by opening up a terminal and configuring git to work with GitHub.
- 3. Navigate to the directory in which you would like to clone the-examples-book repository. For example, if I wanted to clone the repository in my ~/projects folder, I'd first execute: cd ~/projects.
- 4. Clone the repository. In this example, let's assume I've cloned the repository into my ~/projects folder.
- 5. Navigate into the project folder:

```
cd ~/projects/the-examples-book
```

6. At this point in time your current branch should be the master branch. You can verify by running:

```
git branch
```

Note: The highlighted branch starting with "*" is the current branch.

or if you'd like just the name of the branch:

```
git rev-parse --abbrev-ref HEAD
```

- 7. Create a new branch with whatever name you'd like, and check that branch out. For example, fix-spelling-errors-01.
- 8. Open up RStudio. In the "Files" tab in RStudio, navigate to the repository. In this example, we would navigate to /Users/kamstut/Documents/GitHub/the-examples-book. Click on the "More" dropdown and select "Set As Working Directory".
- If you do not already have renv installed, install it by running the following commands in the console:

```
install.packages("renv")
```

10. Restore the environment by running the following commands in the console:

```
reny::restore()
```

11. In order to compile this book, you must have LaTeX installed. The easiest way to accomplish this is to run the following in the R console:

```
install.packages("tinytex")
library(tinytex)
tinytex::install_tinytex()
```

- 12. In addition, make sure to install both pandoc and pandoc-citeproc by following the instructions here.
- 13. Modify the .Rmd files to your liking.
- 14. Click the "Knit" button to compile the book. The resulting "book" is within the "docs" folder.

Important note: If at any point in time you receive an error saying something similar to "there is no package called my_package, simply install the missing package, and try to knit again:

```
install.packages("my_package")
library(my_package)
```

- 15. To test the book out, navigate to the "docs" folder and open the index.html in the browser of your choice.
- 16. When you are happy with the modifications you've made, commit your changes to the repository.
- 17. You can continue to make modifications and commit your changes locally. When you are ready, you can push your branch to the remote repository (github.com).
- 18. At this point in time, you can confirm that the branch has been successfully pushed to github.com by navigating to the repository on github, and click on the "branches" tab:

19. Next, create a pull request. Note that a "Pull Request" is a GitHub-specific concept. You cannot create a pull request using git. Navigate to the repository https://github.com/thedatamine/the-examples-book, and you should see a message asking if you'd like to create a pull request:

10 INTRODUCTION

- 20. Leave a detailed comment about what you've modified or added to the book. You can click on "Preview" to see what your comment will look like. GitHub's markdown applies here. Once satisfied, click "Create pull request".
- 21. At this point in time, the repository owners will receive a notification and will check and potentially merge the changes into the master branch.

Using GitHub Desktop

- 1. Setup GitHub Desktop following the directions here.
- 2. When you are presented with the following screen, select "Clone a Repository from the Internet...":

Let's get started!

Add a repository to GitHub Desktop to start collaborating

3. Click on the "URL" tab:

12 INTRODUCTION

- 4. In the first field, enter "TheDataMine/the-examples-book". This is the repository for this book.
- 5. In the second field, enter the location in which you'd like the repository to be cloned to. In this example, the repository will be cloned into /Users/kamstut/Documents/GitHub. The result will be a new folder called the-examples-book in /Users/kamstut/Documents/GitHub.
- 6. Click "Clone".
- 7. Upon completion, you will be presented with a screen similar to this:

- 8. At this point in time, your current branch will be the master branch. Create a new branch with whatever name you'd like. For example, fix-spelling-errors-01.
- 9. Open up RStudio. In the "Files" tab in RStudio, navigate to the repository. In this example, we would navigate to /Users/kamstut/Documents/GitHub/the-examples-book. Click on the "More" dropdown and select "Set As Working Directory".
- 10. If you do not already have **renv** installed, install it by running the following commands in the console:

```
install.packages("renv")
```

11. Restore the environment by running the following commands in the console:

```
renv::restore()
```

12. In order to compile this book, you must have LaTeX installed. The easiest way to accomplish this is to run the following in the R console:

```
install.packages("tinytex")
library(tinytex)
tinytex::install_tinytex()
```

- 13. In addition, make sure to install both pandoc and pandoc-citeproc by following the instructions here.
- 14. Modify the .Rmd files to your liking.
- 15. Click the "Knit" button to compile the book. The resulting "book" is

14 INTRODUCTION

within the "docs" folder.

Important note: If at any point in time you receive an error saying something similar to "there is no package called my_package, simply install the missing package, and try to knit again:

```
install.packages("my_package")
library(my_package)
```

- 16. To test the book out, navigate to the "docs" folder and open the index.html in the browser of your choice.
- 17. When you are happy with the modifications you've made, commit your changes to the repository.
- 18. You can continue to make modifications and commit your changes locally. When you are ready, you can publish your branch:

19. Upon publishing your branch, within GitHub Desktop, you'll be presented with the option to create a pull request:

20. At this point in time, the repository owners will receive a notification and will check and potentially merge the changes into the master branch.

16 INTRODUCTION

Scholar

Connecting to Scholar

ThinLinc web client

- Open a browser and navigating to https://desktop.scholar.rcac.purdue.ed u/.
- 2. Login with your Purdue Career Account credentials (using BoilerKey, namely, your 4 digit code, then a comma, and then a Boilerkey numerical sequence).
- 3. Congratulations, you should now be connected to Scholar using the Thin-Linc web client.

ThinLinc client

1. Navigate to https://www.cendio.com/thinlinc/download, and download the ThinLinc client application for your operating system.

- 2. Install and launch the ThinLinc client: Enter username and password to connect.
- 3. Enter your Purdue Career Account information (using BoilerKey, namely, your 4 digit code, then a comma, and then a Boilerkey numerical sequence),

18 SCHOLAR

as well as the server: desktop.scholar.rcac.purdue.edu.

4. Click on "Options..." and fill out the "Screen" tab as shown below: ThinLinc Client Options Options Local Devices Screen Optimization Security Size of Session 0800 x 600 Ourrent monitor ○ 1024 x 768 All monitors 1280 x 1024 Work area (maximized) ○ 1600 x 1200 O 1024 x 768 Resize remote session to the local window Full screen mode Enable full screen mode over all monitors Cancel OK

5. Click "OK" and then "Connect". Make sure you are connected to Purdue's VPN using AnyConnect before clicking "Connect"!

7. Congratulations, you are now successfully connected to Scholar using the ThinLinc client.

RESOURCES 19

NOTE: If you do accidentally get stuck in full screen mode, the F8 key will help you to escape.

NOTE: The very first time that you log onto Scholar, you will have an option of "use default config" or "one empty panel". PLEASE choose the "use default config".

SSH

Windows

MacOS

Linux

JupyterHub

- 1. Open a browser and navigate to https://notebook.scholar.rcac.purdue.edu/.
- 2. Enter your Purdue Career Account credentials (using BoilerKey, namely, your 4 digit code, then a comma, and then a Boilerkey numerical sequence).
- 3. Congratulations, you should now be able to create and run Jupyter notebooks on Scholar!

RStudio Server

- 1. Open a browser and navigate to https://rstudio.scholar.rcac.purdue.edu/.
- 2. Enter your Purdue Career Account credentials (using BoilerKey, namely, your 4 digit code, then a comma, and then a Boilerkey numerical sequence).
- 3. Congratulations, you should now be able to create and run R scripts on Scholar!

Resources

20 SCHOLAR

Unix

Getting started

Standard utilities

man

man stand for manual and is a command which presents all of the information you need in order to use a command. To use man simply execute man <command> where command is the command for which you want to read the manual.

You can scroll up by typing "k" or the up arrow. You can scroll down by typing "j" or the down arrow. To exit the man pages, type "q" (for quit).

How do I show the man pages for the wc utility?

Click here for solution

man wc

~ & . & ..

- ~ represents the location which is in the environment variable \$HOME. If you change \$HOME, ~ also changes. As you are navigating directories, to jump to the most previously visited directory, you can run ~-. For example, if you navigate to /home/\$USER/projects/project1/output, then to /home/\$USER, and you'd like to jump directly back to /home/\$USER/projects/project1/output, simply run ~-. ~- is simply a reference to the location stored in \$OLDPWD.
- . represents the current working directory. For example, if you are in your home directory /home/\$USER, . means "in this directory", and ./some_file.txt would represent a file named some_file.txt which is in your home directory /home/\$USER.
- .. represents the parent directory. For example, /home is the parent directory of /home/\$USER. If you are currently in /home/\$USER/projects and you want to access some file in the home directory, you could do ../some_file.txt.

../some_file.txt is called a *relative* path as it is *relative* to your current location. If we accessed ../some_file.txt from the home directory, this would be different than accessing ../some_file.txt from a different directory./home/\$USER/some_file.txt is an *absolute* or *full* path of a file some_file.txt.

If I am in the directory /home/kamstut/projects directory, what is the *relative* path to /home/mdw/?

Click here for solution

```
../../mdw
```

If I am in the directory /home/kamstut/projects/project1, what is the absolute path to the file ../../scripts/runthis.sh?

Click here for solution

/home/kamstut/scripts/runthis.sh

How can I navigate to my \$HOME directory?

Click here for solution

```
cd
cd ~
cd $HOME
cd /home/$USER
```

cat

cat stands for concatenate and print files. It is an extremely useful tool that prints the entire contents of a file by default. This is especially useful when we want to quickly check to see what is inside of a file. It can be used as a tool to output the contents of a file and immediately pipe the contents to another tool for some sort of analysis if the other tool doesn't natively support reading the contents from the file.

A similar, but alternative UNIX command that incrementally shows the contents of the file is called less. less starts at the top of the file and scrolls through the rest of the file as the user pages down.

head

head is a simple utility that displays the first n lines of a file, or input.

How do I show the first 5 lines of a file called input.txt?

Click here for solution

```
head -n5 input.txt

Alternatively:
cat input.txt | head -n5
```

tail

tail is a similar utility to head, that displays the last n lines of a file, or input.

How do I show the last 5 lines of a file called input.txt?

Click here for solution

```
tail -n5 input.txt
```

Alternatively:

```
cat input.txt | tail -n5
```

ls

ls is a utility that lists files and folders. By default, ls will list the files and folders in your current working directory. To list files in a certain directory, simply provide the directory to ls as the first argument.

How do I list the files in my \$HOME directory?

Click here for solution

```
ls $HOME
# or
ls ~
```

How do I list the files in the directory /home/\$USER/projects?

Click here for solution

```
ls /home/$USER/projects
```

How do I list all files and folders, including hidden files and folders in /home/\$USER/projects?

Click here for solution

```
ls -a /home/$USER/projects
```

How do I list all files and folders in /home/\$USER/projects in a list format, including information like permissions, filesize, etc?

Click here for solution

```
ls -1 /home/$USER/projects
```

How do I list all files and folders, including hidden files and folders in /home/\$USER/projects in a list format, including information like permissions, filesize, etc?

Click here for solution

```
ls -la /home/$USER/projects
# or
ls -al /home/$USER/projects
# or
ls -l -a /home/$USER/projects
```

ср

cp is a utility used for copying files an folders from one location to another.

How do I copy /home/\$USER/some_file.txt to /home/\$USER/projects/same_file.txt?

Click here for solution

```
cp /home/$USER/some_file.txt /home/$USER/projects/same_file.txt

# If currently in /home/$USER
cd $HOME
cp some_file.txt projects/same_file.txt

# If currently in /home/$USER/projects
cd $HOME/projects
cp ../some_file.txt .
```

mv

mv very similar to cp, but rather than copy a file, mv moves the file. Moving a file removes it from its old location and places it in the new location.

How do I move /home/\$USER/some_file.txt to /home/\$USER/projects/same_file.txt?

Click here for solution

```
mv /home/$USER/some_file.txt /home/$USER/projects/same_file.txt
# If currently in /home/$USER
cd $HOME
mv some_file.txt projects/same_file.txt
# If currently in /home/$USER/projects
cd $HOME/projects
mv ../some_file.txt .
```

pwd

pwd stands for print working directory and it does just that – it prints the current working directory to standard output.

type

type is a useful command to find the location of some command, or whether the command is an alias, function, or something else.

Where is the file that is executed when I type 1s?

Click here for solution

```
type 1s
```

ls is /bin/ls

uniq

uniq reads the lines of a specified input file and compares each adjacent line and returns each unique line. Repeated lines in the input will not be detected if they are not adjacent. What this means is you must sort prior to using uniq if you want to ensure you have no duplicates.

WC

You can think of wc as standing for "word count". wc displays the number of lines, words, and bytes from the input file.

How do I count the number of lines of an input file called input.txt?

Click here for solution

```
wc -l input.txt
```

How do I count the number of characters of an input file called $\mathtt{input.txt}$?

Click here for solution

wc -m input.txt

How do I count the number of words of an input file called input.txt?

Click here for solution

```
wc -w input.txt
```

ssh

mosh

scp

cut

cut is a tool to cut out parts of a line based on position/character/delimiter/etc and directing the output to stdout. It is particularly useful to get a certain column of data.

How do I get the first column of a csv file called 'office.csv'?

Click here for solution

```
cut -d, -f1 office.csv
```

How do I get the first and third column of a csv file called 'office.csv'?

Click here for solution

```
cut -d, -f1,3 office.csv
```

How do I get the first and third column of a file with columns separated by the "|" character?

Click here for solution

```
cut -d '|' -f1,3 office.csv
```

awk

awk is a powerful programming language that specializes in processing and manipulating text data.

In awk, a command looks something like this:

```
awk -F, 'BEGIN{ } { } END{ }'
```

The delimiter is specified with the -F option (in this case our delimiter is a comma). The BEGIN chunk is run only once at the start of execution. The middle chunk is run once per line of the file. The END chunk is run only once, at the end of execution.

The BEGIN and END portions are always optional.

The variables: \$1, \$2, \$3, etc., refer to the 1st, 2nd, and 3rd fields in a line of data. For example, the following would print the 4th field of every row in a csv file:

```
awk -F, '{print $4}'
```

\$0 represents the entire row.

awk is very powerful. We can achieve the same effect as using cut:

```
head 5000_products.csv | cut -d, -f3
# or
head 5000_products.csv | awk -F, '{print $3}'
```

Examples

How do I print only rows where the DAYOFWEEK is 5? Click here for solution

```
head metadata.csv | awk -F, '{if ($3 == 5) {print $0}}'
```

```
## 01/01/2015,,5,0,0,1,2015,CHRISTMAS PEAK,0,5,nyd,1,,,,0,0,CHRISTMAS PEAK,73.02,59.81,66.41,,0, ## 01/08/2015,,5,7,1,1,2015,CHRISTMAS,8,0,,0,,marwk,,0,1,CHRISTMAS,59.44,38.7,49.07,,0,,0,,0,,0,
```

How do I print the first, fourth, and fifth columns of rows where the DAYOFWEEK is 5? Click here for solution

```
head metadata.csv | awk -F, '{if ($3 == 5) {print $1, $4, $5}}'

## 01/01/2015 0 0

## 01/08/2015 7 1
```

How do I print only rows where DAYOFWEEK is 5 OR YEAR is 2015? Click here for solution

```
head metadata.csv | awk -F, '{if ($3 == 5 \mid | $7 == 2015) {print $0}}'
```

```
## 01/01/2015,,5,0,0,1,2015,CHRISTMAS PEAK,0,5,nyd,1,,,,0,0,CHRISTMAS PEAK,73.02,59.81,66.41,,0,
```

01/02/2015,,6,1,0,1,2015,CHRISTMAS,2,5,,0,,,,0,0,CHRISTMAS,78,60.72,69.36,,0,,0,

```
## 01/03/2015,,7,2,0,1,2015,CHRISTMAS,3,0,,0,,,,0,0,CHRISTMAS,83.12,67.31,75.22,,0,,0,
## 01/04/2015,,1,3,1,1,2015,CHRISTMAS,4,0,,0,,,,0,0,CHRISTMAS,83.93,67.97,75.95,,0,,0,
## 01/05/2015,,2,4,1,1,2015,CHRISTMAS,5,0,,0,,,,0,0,CHRISTMAS,72.3,56.89,64.6,,0,,0,,0
## 01/06/2015,,3,5,1,1,2015,CHRISTMAS,6,0,,0,,,,0,0,CHRISTMAS,77.67,54.88,66.28,,0,,0,
## 01/07/2015,,4,6,1,1,2015,CHRISTMAS,7,0,,0,,marwk,,0,1,CHRISTMAS,67.24,48.56,57.9,,0
## 01/08/2015,,5,7,1,1,2015,CHRISTMAS,8,0,,0,,marwk,,0,1,CHRISTMAS,59.44,38.7,49.07,,0
## 01/09/2015,,6,8,1,1,2015,CHRISTMAS,9,0,,0,,marwk,,0,1,CHRISTMAS,54.89,45.37,50.13,,
How do I print only rows where DAYOFWEEK is 5 AND YEAR is 2015?
Click here for solution
head metadata.csv | awk -F, '{if ($3 == 5 && $7 == 2015) {print $0}}'
## 01/01/2015,,5,0,0,1,2015,CHRISTMAS PEAK,0,5,nyd,1,,,,0,0,CHRISTMAS PEAK,73.02,59.81
## 01/08/2015,,5,7,1,1,2015,CHRISTMAS,8,0,,0,,marwk,,0,1,CHRISTMAS,59.44,38.7,49.07,,0
How do I get the average of values in a column containing the max
temperature, WDWMAXTEMP? Click here for solution
# Here NR represents the number of rows
head metadata.csv | awk -F, '{sum = sum + $19}END{print "Average max temp: " sum/NR}'
# Or alternatively we could track the number of rows as we go
head metadata.csv | awk -F, '{sum = sum + $19; count++}END{print "Average max temp: " :
## Average max temp: 64.961
## Average max temp: 64.961
How do I get counts of each unique value in a column, SEASON? Click
here for solution
cat metadata.csv | awk -F, '{seasons[$8]++}END{for (season in seasons) {print season, season in seasons}
## SEPTEMBER LOW 140
## COLUMBUS DAY 20
## PRESIDENTS WEEK 55
## WINTER 222
## THANKSGIVING 60
## SUMMER BREAK 236
## FALL 212
## SPRING 490
## MARDI GRAS 15
## CHRISTMAS 245
## CHRISTMAS PEAK 176
## HALLOWEEN 26
## JULY 4TH 25
```

```
## MEMORIAL DAY 20
## EASTER 95
## JERSEY WEEK 50
## SEASON 1
## MARTIN LUTHER KING JUNIOR DAY 45
```

sed

grep

It is very simple to get started searching for patterns in files using grep.

How do I search for lines with the word "Exact" in the file located /home/john/report.txt?

Click here for solution

```
grep Exact /home/john/report.txt
# or
grep "Exact" "/home/john/report.txt"
```

How do I search for lines with the word "Exact" or "exact" in the file located /home/john/report.txt?

Click here for solution

```
# The -i option means that the text we are searching for is
# not case-sensitive. So the following lines will match
# lines that contain "Exact" or "exact" or "ExAcT".
grep -i Exact /home/john/report.txt
# or
grep -i "Exact" "/home/john/report.txt"
```

How do I search for lines with a string containing multiple words, like "how do I"?

Click here for solution

```
# The -i option means that the text we are searching for is
# not case-sensitive. So the following lines will match
# lines that contain "Exact" or "exact" or "ExAcT".

# By adding quotes, we are able to search for the entire
# string "how do i". Without the quotes this would only
```

```
# search for "how".
grep -i "how do i" /home/john/report.txt
```

How do I search for lines with the word "Exact" or "exact" in the files in the folder and all sub-folders located /home/john/?

Click here for solution

```
# The -R option means to search recursively in the folder
# /home/john. A recursive search means that it will search
# all folders and sub-folders starting with /home/john.
grep -Ri Exact /home/john
```

How do I search for the lines that don't contain the words "Exact" or "exact" in the folder and all sub-folders located /home/john/?

Click here for solution

```
# The -v option means to search for an inverted match.

# In this case it means search for all lines of text

# where the word "exact" is not found.

grep -Rvi Exact /home/john
```

How do I search for lines where one or more of the words "first" or "second" appears in the current folder and all sub-folders?

Click here for solution

```
# The "|" character in grep is the logical OR operator.
# If we do not escape the "|" character with a preceding
# "\" grep searches for the literal string "first|second"
# instead of "first" OR "second".
grep -Ri "first\|second".
```

How do I search for lines that begin with the word "Exact" (case insensitive) in the folder and all sub-folders located in the current directory?

Click here for solution The " $^{\circ}$ " is called an anchor and indicates the start of a line.

```
grep -Ri "^Exact" .
```

How do I search for lines that end with the word "Exact" (case insensitive) in the files in the current folder and all sub-folders?

Click here for solution The "\$" is called an anchor and indicates the end of a line.

```
grep -Ri "Exact$" .
```

How do I search for lines that contain only the word "Exact" (case insensitive) in the files in the current folder and all sub-folders?

Click here for solution

grep -i ".*"

```
grep -Ri "^Exact$" .
```

How do I search for strings or sub-strings where the first character could be anything, but the next two characters are "at"? For example: "cat", "bat", "hat", "rat", "pat", "mat", etc.

Click here for solution The "." is a wildcard, meaning it matches any character (including spaces).

```
grep -Ri ".at" .
```

How do I search for zero or one of, zero or more of, one or more of, exactly n of a certain character using grep and regular expressions?

Click here for solution "*" stands for 0+ of the previous character. "+" stands for 1+ of the previous character. "?" stands for 0 or 1 of the previous character. " $\{n\}$ " stands for exactly n of the previous character.

```
# Matches any lines with text like "cat", "bat", "hat", "rat", "pat", "mat", etc.
# Does NOT match "at", but does match " at". The "." indicates a single character.
grep -i ".at" .

# Matches any lines with text like "cat", "bat", "hat", "rat", "pat", "mat", etc.
# Matches "at" as well as " at". The "." followed by the "?" means
# O or 1 of any character.
grep -i ".?at" .

# Matches any lines with any amount of text followed by "at".
grep -i ".*at" .

# Only matches words that end in "at": "bat", "cat", "spat", "at". Does not match "spatula".
grep -i ".*at$" .

# Matches lines that contain consecutive "e"'s.
grep -i ".*e{2}.*" .

# Matches any line. O+ of the previous character, which in this case is the wildcard "."
# that represents any character. So O+ of any character.
```

Resources

Regex Tester

https://regex101.com/ is an excellent tool that helps you quickly test and better understand writing regular expressions. It allows you to test four different "flavors" or regular expressions: PCRE (PHP), ECMAScript (JavaScript), Python, and Golang. regex101 also provides a library of useful, pre-made regular expressions.

Lookahead and Lookbehinds

This is an excellent resource to better understand positive and negative lookahead and lookbehind operations using grep.

ripgrep

ripgrep is a "line-oriented search tool that recursively searches your current directory for a regex pattern." You can read about why you may want to use ripgrep here. Generally, ripgrep is frequently faster than grep. If you are working with code it has sane defaults (respects .gitignore). You can easily search for specific types of files.

How do I exclude a filetype when searching for foo in my_directory? Click here for solution

```
# exclude javascript (.js) files
rg -Tjs foo my_directory

# exclude r (.r) files
rg -Tr foo my_directory

# exclude Python (.py) files
rg -Tpy foo my_directory
```

How do I search for a particular filetype when searching for foo in my_directory? Click here for solution

```
# search javascript (.js) files
rg -tjs foo my_directory

# search r (.r) files
rg -tr foo my_directory

# search Python (.py) files
rg -tpy foo my_directory
```

How do I search for a specific word, where the word isn't part of another word? Click here for solution

this is roughly equivalent to putting \b before and after all search patterns in grep \b rg \b foo my_directory

How do I replace every match foo in my_directory with the text given, bar, when printing results? Click here for solution

rg foo my_directory -r bar

How do I trim whitespace from the beginning and ending of each printed line? Click here for solution

rg foo my_directory --trim

How do I follow symbolic links when searching a directory, my_directory? Click here for solution

rg -L foo my_directory

find

find is an aptly named tool that traverses directories and searches for files.

Examples

How do I find a file named foo.txt in the current working directory or subdirectories? Click here for solution

find . -name foo.txt

How do I find a file named foo.txt or Foo.txt or FoO.txt (i.e. ignoring case) in the current working directory or subdirectories? Click here for solution

find . -iname foo.txt

or

find . -i -name foo.txt

How do I find a directory named foo in the current working directory or subdirectories? Click here for solution

find . -type d -name foo

How do I find all of the Python files in the current working directory or subdirectories? Click here for solution

```
find . -name "*.py"
```

How do I find files over 1gb in size in the current working directory or subdirectories? Click here for solution

```
find . -size +1G
```

How do I find files under 10mb in size in the current working directory or subdirectories? Click here for solution

```
find . -size -10M
```

less

less is a utility that opens a page of text from a file and allows the user to scroll forward or backward in the file using "j" and "k" keys or down and up arrows. less does not read the entire file into memory at once, and is therefore faster when loading large files.

How do I display the contents of a file, foo.txt?

Click here for solution

```
less foo.txt
```

How do I scroll up and down in less?

Click here for solution To scroll down use "j" or the down arrow. To scroll up use "k" or the up arrow.

How do I exit less?

Click here for solution Press the "q" key on your keyboard.

sort

sort is a utility that sorts lines of text.

Examples

How do I sort a csv, test.csv alphabetically by the 18th column? Click here for solution

```
# the r option sorts ascending
sort -t, -k18,18 test.csv
```

How do I sort a csv, test.csv alphabetically by the 18th column, and then in descending order by the 4th column? Click here for solution

```
sort -t, -k18,18 -k4,4r test.csv
```

git

See here.

Piping & Redirection

Redirection is the act of writing standard input (stdin) or standard output (stdout) or standard error (stderr) somewhere else. stdin, stdout, and stderr all have numeric representations of 0, 1, & 2 respectively.

Redirection

Examples

For the following examples we use the example file redirection.txt. The contents of which are:

```
## This is a simple file with some text.
## It has a couple of lines of text.
## Here is some more.
```

How do I redirect text from a command like 1s to a file like redirection.txt, completely overwriting any text already within redirection.txt? Click here for solution

```
# Save the stdout from the ls command to redirection.txt
ls > redirection.txt

# The new contents of redirection.txt
head redirection.txt

## 01-scholar.Rmd
## 02-unix.Rmd
## 03-sql.Rmd
## 04-r.Rmd
## 05-python.Rmd
## 06-tools.Rmd
## 07-faqs.Rmd
## 07-faqs.Rmd
## 09-think-summer-2020.Rmd
## 10-contributors.Rmd
```

How do I redirect text from a command like 1s to a file like redirection.txt, without overwriting any text, but rather appending the text to the end of the file? Click here for solution

```
\# Append the stdout from the ls command to the end of redirection.txt ls >> redirection.txt
```

head redirection.txt

```
## This is a simple file with some text.
## It has a couple of lines of text.
## Here is some more.
## 01-scholar.Rmd
## 02-unix.Rmd
## 03-sql.Rmd
## 04-r.Rmd
## 05-python.Rmd
## 06-tools.Rmd
## 07-fags.Rmd
```

How can I redirect text from a file to be used as stdin for another program or command? Click here for solution

```
# Let's count the number of words in redirection.txt wc -w < redirection.txt
```

How can I use multiple redirects in a single line? Click here for solution

```
# Here we count the number of words in redirection.txt and then
# save that value to value.txt.
wc -w < redirection.txt > value.txt
head value.txt
## 20
```

Piping

Piping is the act of taking the output of one or more commands and making the output the input of another command. This is accomplished using the "|" character.

Examples

For the following examples we use the example file piping.txt. The contents of which are:

```
## apples, oranges, grapes
## pears, apples, peaches,
## celery, carrots, peanuts
## fruits, vegetables, ok
```

How can I use the output from a grep command to another command? Click here for solution

```
grep -i "p\{2\}" piping.txt | wc -w
## 6
```

How can I chain multiple commands together? Click here for solution

```
# Get the third column of piping.txt and
# get all lines that end in "s" and sort
# the words in reverse order, and append
# to a file called food.txt.
cut -d, -f3 piping.txt | grep -i ".*s$" | sort -r > food.txt
```

Resources

Intro to I/O Redirection

A quick introduction to stdin, stdout, stderr, redirection, and piping.

38 UNIX

Emacs

Nano

 \mathbf{Vim}

Writing scripts

\mathbf{SQL}

RDBMS

SQL in R

Examples

Please see here for a variety of examples demonstrating using SQL within R.

SQL in Python

Examples

The following examples use the lahman.db sqlite database.

Display the first 10 ballparks in the ballparks table.

```
SELECT * FROM parks LIMIT 10;
```

Table 1: Displaying records 1 - 10

ID	parkalias	parkkey	parkname	city
1	NA	ALB01	Riverside Park	Albany
2	NA	ALT01	Columbia Park	Altoon
3	Edison Field; Anaheim Stadium	ANA01	Angel Stadium of Anaheim	Anahe
4	NA	ARL01	Arlington Stadium	Arling
5	The Ballpark in Arlington; Ameriquest Fl	ARL02	Rangers Ballpark in Arlington	Arling
6	NA	ATL01	Atlanta-Fulton County Stadium	Atlant
7	NA	ATL02	Turner Field	Atlant
8	NA	ATL03	Suntrust Park	Atlant
9	NA	BAL01	Madison Avenue Grounds	Baltim
10	NA	BAL02	Newington Park	Baltim

Table 2: Displaying records 1 - 10

franchName
Altoona Mountain City
Philadelphia Athletics
Buffalo Bisons
Buffalo Bisons
Baltimore Orioles
Baltimore Terrapins
Baltimore Monumentals
Boston Reds
Brooklyn Gladiators
Boston Reds

Make a list of the names of all of the inactive teams in baseball history.

Click here for solution

Remove the LIMIT 10 for full results.

SELECT franchName FROM teamsfranchises WHERE active=='N' LIMIT 10;

Find the player with the most Runs Batted In (RBIs) in a season in queries. In the first query find the playerID of the player with the most RBIs. In the second query find the player's name in the people table.

Click here for solution

In addition to his RBI record, Hack Wilson also held the NL home run record for a long time as well with 56. In 1999, Manny Ramirez tried to pursue the

Table 3: 1 records

playerID wilsoha01

Table 4: 1 records

playerID andersp01

RBI record, but only was able to accrue 165 RBIs.

```
-- Find the playerID

SELECT playerID FROM batting WHERE RBI==191;

-- Display the name

SELECT nameFirst, nameLast FROM people WHERE playerID=='wilsoha01';
```

Who was the manager of the 1976 "Big Red Machine" (CIN)? Complete this in 2 queries.

Click here for solution

The "Big Red Machine" was a famous nickname for the dominant Cincinnati Reds of the early 1970s. Many of its team members are Hall of Famers, including their manager, Sparky Anderson.

```
SELECT playerID FROM managers
WHERE yearID==1976 AND teamID=='CIN';
SELECT nameFirst, nameLast FROM people
WHERE playerID=='andersp01';
```

Make a list of the teamIDs that were managed by Tony LaRussa. Complete this in 2 queries.

Click here for solution

Tony LaRussa is very well known for being a manager that was involved in baseball for a very long time. He won the World Series with the St. Louis Cardinals and the Oakland Athletics.

```
SELECT playerID FROM people WHERE nameLast=='LaRussa' AND nameFirst=='Tony';

SELECT DISTINCT teamID FROM managers WHERE playerID=='larusto01';
```

Table 5: 1 records

playerID larusto01

Table 6: 1 records

playerID fieldce01

What was Cecil Fielder's salary in 1987? Display the teamID with the salary.

Click here for solution

Cecil Fielder was a power hitting DH in the 1980s and 1990s. His son, Prince Fielder, played in the major leagues as well.

```
SELECT playerID FROM people
  WHERE nameFirst=='Cecil' AND nameLast=='Fielder';

SELECT teamID, salary FROM salaries
  WHERE playerID=='fieldce01' AND yearID==1987;
```

Make a list of all the teams who have lost a World Series (WS) since 1990. Put the list in ascending order by yearID.

Click here for solution

```
SELECT teamIDloser, yearID FROM seriespost
WHERE yearID >= 1990 AND round=='WS'
ORDER BY yearID ASC LIMIT 10;
```

Let's find out about Cal Ripken, Jr. What was his height and weight? Did he bat right or left handed? When did he play his final game? Find all of this information in one query.

Click here for solution

Cal Ripken, Jr's nickname is the "Iron Man" of baseball due to the fact that he started in 2,632 straight games. That means in just over 16 seasons, Cal Ripken, Jr. never missed a game!

```
SELECT height, weight, bats, finalgame FROM people
WHERE nameFirst=='Cal' AND nameLast=='Ripken'
AND deathState IS NULL;
```

Table 7: Displaying records 1 - 10

teamIDloser	yearID
OAK	1990
ATL	1991
ATL	1992
PHI	1993
CLE	1995
ATL	1996
CLE	1997
SDN	1998
ATL	1999
NYN	2000

Table 8: 1 records

height	weight	bats	finalGame
76	200	R	2001-10-06

Select all the playerIDs and yearIDs of the players who were inducted in the hall of fame and voted in by the Veterans committee, between 1990 and 2000. Put the list in descending order.

Click here for solution

The veterans committee in the Hall of Fame voting process place players in the Hall of Fame that are forgotten by the writers, fans, etc. This is a way for players to recognize who they think were the greatest players of all time, or are skipped over for a variety of reasons. This is one reason why there is a lot of scrutiny in the process for how players are selected to the baseball hall of fame.

```
SELECT playerID, yearID FROM halloffame
WHERE votedBy=='Veterans' AND inducted=='Y'
AND yearID BETWEEN 1990 AND 2000
ORDER BY yearID DESC LIMIT 10;
```

Get a list of the attendance by season of the Toronto Blue Jays (TOR). What season was the highest attendance?

Click here for solution

The Toronto Blue Jays were the 1993 season's World Series champion. This means that, yes, a non-USA team has won the World Series for baseball!

```
SELECT yearkey, attendance FROM homegames
WHERE teamkey=='TOR'
```

Table 9: Displaying records 1 - 10

playerID	yearid
andersp01	2000
mcphebi01	2000
steartu99	2000
cepedor01	1999
chylane99	1999
seleefr99	1999
willijo99	1999
davisge01	1998
dobyla01	1998
macphle99	1998

Table 10: Displaying records 1 - 10

attendance
4057747
4028318
4001526
3884384
3392099
3203886
2907949
2826445
2794891
2778459

ORDER BY attendance DESC LIMIT 10;

How many different leagues have represented Major League Baseball over time?

Click here for solution

Major League Baseball has had several leagues that have been represented in its history. There are only two current leagues: National League and the American League.

SELECT DISTINCT league FROM leagues;

Find the teams that have won the World Series.

Table 11: 8 records

league
American Association
American League
Federal League
Major League
National Association
National League
Players' League
Union Association

Table 12: Displaying records 1 - 10

yearID
1884
1886
1887
1888
1889
1903
1905
1906
1907
1908

```
SELECT teamID, yearID FROM teams WHERE WSWin=='Y' LIMIT 10;
```

List the top 10 season win totals of teams. Include the yearID and teamID.

Click here for solution

```
SELECT teamID, yearID, W FROM teams ORDER BY W DESC LIMIT 10;
```

List the pitchers with their teamID, wins (W), and losses (L) that threw complete games (CG) in the 1995 season. Include their number of complete games as well.

```
SELECT playerID, teamID, W, L, CG FROM pitching
WHERE CG > 0 AND yearID==1995
ORDER BY W DESC LIMIT 10;
```

Table 13: Displaying records 1 - 10 $\,$

teamID	yearID	W
CHN	1906	116
SEA	2001	116
NYA	1998	114
CLE	1954	111
PIT	1909	110
NYA	1927	110
NYA	1961	109
BAL	1969	109
BAL	1970	108
CIN	1975	108

Table 14: Displaying records 1 - 10

playerID	teamID	W	L	$\overline{\text{CG}}$
maddugr01	ATL	19	2	10
mussimi01	BAL	19	9	7
johnsra05	SEA	18	2	6
schoupe01	CIN	18	7	2
martira02	LAN	17	7	4
rogerke01	TEX	17	7	3
glavito02	ATL	16	7	3
hershor01	CLE	16	6	1
nagych01	CLE	16	6	2
wakefti01	BOS	16	8	6

Table 15: 1 records

playerID suzukic01

Table 16: 1 records

playerID riverma01

Get a printout of the Hits (H), and home runs (HR) of Ichiro Suzuki's career. Do this is in two queries. In the first query, find Ichiro Suzuki's playerID. In the second one list the teamID, yearID, hits and home runs.

Click here for solution

Ichiro Suzuki is regarded as one of the greatest hitters of all time because of his prowess in both American and Japanese professional baseball.

```
SELECT playerID FROM people
  WHERE nameFirst=='Ichiro' AND nameLast=='Suzuki';

SELECT teamID, yearID, H, HR FROM batting
  WHERE playerID=='suzukic01';
```

How many walks (BB) and strikeouts (SO) did Mariano Rivera achieve in the playoffs? Which year did Mariano Rivera give up the most post-season walks?

Click here for solution

More men have walked on the moon than have scored a run on Mariano Rivera in a playoff game. Mariano Rivera made the hall of fame in 2019.

```
SELECT playerID FROM people
WHERE nameFirst=='Mariano' AND nameLast=='Rivera';

SELECT yearID, teamID, BB, SO FROM pitchingpost
WHERE playerID=='riverma01'
ORDER BY BB DESC;
```

Find the pitcher with most strikeouts (S0), and the batter that struck out the most in the 2014 season. Get the first and last name of the pitcher and batter, respectively.

48

Table 17: Displaying records 1 - 10

playerID	SO
klubeco01	269
scherma01	252
hernafe02	248
cuetojo01	242
strasst01	242
kershcl01	239
bumgama01	219
salech01	208
greinza01	207
kenneia01	207

Corey Kluber is a two-time AL Cy Young winner. He is well known for his two-seam fastball that is difficult to hit.

```
SELECT playerID, SO FROM pitching
WHERE yearID==2014
ORDER BY SO DESC
LIMIT(10);

SELECT playerID, SO FROM batting
WHERE yearID==2014
ORDER BY SO DESC
LIMIT(10);

SELECT nameFirst, nameLast FROM people
WHERE playerID=="klubeco01" OR playerID=="howarry01";
```

How many different teams did Bartolo Colon pitch for?

Click here for solution

Bartolo Colon is a well-known journeyman pitcher in baseball. He has pitched with a lot of teams, but it wasn't until he played for the New York Mets when he needed to come to the plate. He had a weird batting stance that is funny to watch. He even hit a home run one season!

```
SELECT playerID FROM people
  WHERE nameFirst=='Bartolo' AND nameLast=='Colon';

SELECT DISTINCT teamID FROM pitching
  WHERE playerID=='colonba01';
```

Table 18: 1 records

playerID	
colonba01	

Table 19: 1 records

playerID
bauertr01

How many times did Trevor Bauer come to bat (AB) in 2016? How many hits (H) did he get?

Click here for solution

Trevor Bauer is much more known for his pitching than he is known for hitting. This is common for pitchers, as many are not very good at hitting.

```
SELECT playerID FROM people
WHERE nameFirst=="Trevor" AND nameLast=="Bauer";

SELECT AB, H FROM batting
WHERE playerID=="bauertr01" AND yearID=="2016";
```

Let's compare Mike Trout and Giancarlo Stanton by season. Who has hit more RBIs in a season? Who has been caught stealing (CS) more in a season?

Click here for solution

Mike Trout and Giancarlo Stanton are considered two of the of the best hitters in Major League Baseball for very different reasons. Trout is an all-around player known for being indispensible, where Stanton is known as a power hitter.

```
SELECT playerID, nameFirst, nameLast FROM people
WHERE (nameFirst=='Giancarlo' AND nameLast=='Stanton')
OR (nameFirst=='Mike' AND nameLast=='Trout');

SELECT playerID, yearID, teamID, RBI, CS FROM batting
WHERE playerID=='stantmi03' OR playerID=='troutmi01'
ORDER BY RBI DESC LIMIT 1;
```

Table 20: 1 records

AB	Н
5	0

Table 21: 2 records

playerID	nameFirst	nameLast
stantmi03	Giancarlo	Stanton
troutmi01	Mike	Trout

Table 22: 1 records

playerID	yearID	teamID	RBI	CS
stantmi03	2017	MIA	132	2

```
SELECT playerID, yearID, teamID, RBI, CS FROM batting
WHERE playerID=='stantmi03' OR playerID=='troutmi01'
ORDER BY CS DESC LIMIT 1;
```

Make a list of players who walked (BB) more than they struck out (S0) between 1980 and 1985. Of these players, who walked the most? Use the BETWEEN command in this queries. Use a second query to get the player's first and last name.

Click here for solution

```
SELECT playerID, yearID, teamID, BB, SO FROM batting
   WHERE BB > SO LIMIT 10;
SELECT nameFirst, nameLast FROM people WHERE playerID=='randowi01';
```

How many different NL catchers (C) won gold glove winners between 1990 and 2000?

Click here for solution

There were 6 different catchers.

```
SELECT DISTINCT playerID FROM awardsplayers
WHERE awardID=='Gold Glove' AND notes=='C'
AND lgID=='NL' AND yearID BETWEEN 1990 AND 2000;
```

Table 23: 1 records

playerID	yearID	teamID	RBI	CS
troutmi01	2013	LAA	97	7

Table 24: Displaying records 1 - 10 $\,$

playerID	yearID	teamID	BB	SO
addybo01	1871	RC1	4	0
ansonca01	1871	RC1	2	1
barkeal01	1871	RC1	1	0
barnero01	1871	BS1	13	1
battijo01	1871	CL1	1	0
bealsto01	1871	WS3	2	0
bellast01	1871	TRO	9	2
berthha01	1871	WS3	4	2
biermch01	1871	FW1	1	0
birdge01	1871	RC1	3	2

Table 25: 1 records

nameFirst	nameLast
Willie	Randolph

Table 26: 6 records

playerID
santibe01
pagnoto01
manwaki01
johnsch04
liebemi01
mathemi01

Table 27: Displaying records 1 - 10

yearID	E
2000	17
2001	14
2005	14
2000	12
2002	9
2004	8
2001	7
2004	7
2004	5
2000	4
	2000 2001 2005 2000 2002 2004 2001 2004 2004

Table 28: 1 records

nameFirst	nameLast
Mike	Cameron

How many different 3rd Basemen played for the Seattle Mariners between 2000 and 2005? Who had the most Errors?

Click here for solution

```
SELECT DISTINCT playerID, yearID, E FROM fielding WHERE
yearID BETWEEN 2000 AND 2005 AND teamID=='SEA'
AND POS=='3B'
ORDER BY E DESC LIMIT 10;

SELECT nameFirst, nameLast FROM people
WHERE playerID=='camermi01';
```

Craig Biggio was more known for his play at second base over his major league baseball career, but he didn't always play second base. What seasons did Craig Biggio play Catcher?

```
SELECT playerID FROM people
  WHERE nameFirst=='Craig' AND nameLast=='Biggio';

SELECT teamID, yearID, POS FROM fielding
  WHERE playerID=='biggicr01' AND POS=='C';
```

Table 29: 1 records

playerID	
biggicr01	

Table 30: 5 records

teamID	yearID	POS
HOU	1988	С
HOU	1989	С
HOU	1990	С
HOU	1991	С
HOU	2007	С

Find the teams that have won the World Series that represented the National League. Display the list with the yearID and teamID in ascending order.

Click here for solution

```
SELECT teamID, yearID FROM teams
WHERE WSWin=='Y' AND lgID=='NL'
ORDER BY yearID ASC LIMIT 10;
```

List the pitchers that threw at least one complete game (CG) in the 1995 season. Please include the wins and losses of the top 10 pitchers. Use the playerID of the pitcher who threw the most complete games to find out the name of the pitcher that had the most complete games.

Click here for solution

```
SELECT playerID, W, L, CG FROM pitching
WHERE CG > 0 AND yearID==1995
ORDER BY CG DESC
LIMIT 10;

SELECT nameFirst, nameLast FROM people
WHERE playerID=='maddugr01';
```

Who was the most recent player manager?

```
SELECT playerID, yearID FROM managers
WHERE plyrMgr=='Y'
ORDER BY yearID DESC LIMIT 10;
```

Table 31: Displaying records 1 - 10

teamID	yearID
PRO	1884
DTN	1887
NY1	1888
NY1	1889
NY1	1905
CHN	1907
CHN	1908
PIT	1909
BSN	1914
CIN	1919

Table 32: Displaying records 1-10

playerID	W	L	CG
maddugr01	19	2	10
mcdowja01	15	10	8
ericksc01	9	4	7
leitema01	10	12	7
mussimi01	19	9	7
johnsra05	18	2	6
valdeis01	13	11	6
wakefti01	16	8	6
coneda01	9	6	5
fernaal01	12	8	5

Table 33: 1 records

nameFirst	nameLast
Greg	Maddux

Table 34: Displaying records 1 - 10

playerID	yearID
rosepe01	1986
rosepe01	1985
rosepe01	1984
kessido01	1979
torrejo01	1977
robinfr02	1976
robinfr02	1975
tappeel01	1962
bauerha01	1961
hemusso01	1959

Table 35: 1 records

nameFirst	nameLast
Pete	Rose

SELECT nameFirst, nameLast FROM people WHERE playerID=='rosepe01';

Get the at-bats, homeruns, stolen bases for Roberto Clemente by year in ascending order.

Click here for solution

Roberto Clemente is known as being a leader for the Pittsburgh Pirates. He died in a 1972 plane crash on a humanitarian mission to Puerto Rico, where he grew up.

```
SELECT playerID FROM people
WHERE nameFirst=='Roberto' AND nameLast=='Clemente';

SELECT yearID,AB,HR,SB FROM battingpost
WHERE playerID=='clemero01'
ORDER BY yearID ASC;
```

Table 36: 1 records

playerID clemero01

Table 37: 5 records

yearID	AB	HR	SB
1960	29	0	0
1970	14	0	0
1971	18	0	0
1971	29	2	0
1972	17	1	0

Table 38: 1 records

playerID	
lasorto01	

Get a list of distinct World Series winners from the years Tom Lasorda managed the Los Angeles Dodgers (LAN). First find the years Tom Lasorda was the manager of the Los Angeles Dodgers, and then find the distinct teams that won a World Series in that time frame.

Click here for solution

```
SELECT playerID FROM people
WHERE nameFirst=='Tom' AND nameLast=='Lasorda';

SELECT yearID FROM managers
WHERE playerID=='lasorto01' LIMIT 10;

SELECT DISTINCT teamID FROM teams
WHERE WSWin=='Y' AND yearID BETWEEN 1976 AND 1996;
```

Which teams did Kenny Lofton steal more than 20 bases in a season after the year 2000?

Click here for solution

```
SELECT playerID FROM people
WHERE nameFirst=='Kenny' AND nameLast=='Lofton';

SELECT teamID, yearID, SB FROM batting
WHERE playerID=='loftoke01' AND SB > 20
AND yearID >2000;
```

How much did the Tampa Bay Rays (TBL) pay Wade Boggs in 1998? Who paid Boggs the most in a season during his career?

Table 39: Displaying records 1 - 10

yearID
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Table 40: Displaying records 1 - $10\,$

teamID
CIN
NYA
PIT
PHI
LAN
SLN
BAL
DET
KCA
NYN

Table 41: 1 records

playerID
loftoke01

Table 42: 4 records

teamID	yearID	SB
CHA	2002	22
PHI	2005	22
LAN	2006	32
TEX	2007	21

Table 43: 1 records

playerID	
boggswa01	

Table 44: 1 records

teamID	yearID	salary
TBA	1998	1150000

```
SELECT playerID FROM people
WHERE nameFirst=='Wade' AND nameLast=='Boggs';

SELECT teamID, yearID, salary FROM salaries
WHERE playerID=='boggswa01'
AND yearID==1998;

SELECT teamID, yearID, salary FROM salaries
WHERE playerID=='boggswa01'
ORDER BY salary DESC LIMIT 10;
```

Click here for solution

```
SELECT teamID, yearID, W, L, HR, HRA, attendance FROM teams
WHERE teamID=='DET' AND (WSWin=='Y' OR LgWin=='Y');
```

The standings you would find in a newspaper often have Wins and Losses in order of most to least wins. There are often other numbers that are involved like winning percentage, and other team statistics, but we won't deal with that for now. Get the NL East Standings in 2015.

Click here for solution

```
SELECT teamID, W, L FROM teams
WHERE divID=='E' AND lgID=='NL'
AND yearID==2015
ORDER BY teamrank ASC;
```

Make a list of the teams, wins, losses, years for NL East teams that have won the World Series. Which team had the most wins?

Table 45: Displaying records 1 - 10

teamID	yearID	salary
NYA	1995	4724316
NYA	1994	3200000
NYA	1993	2950000
BOS	1991	2750000
BOS	1992	2700000
NYA	1996	2050000
NYA	1997	2000000
BOS	1990	1900000
BOS	1989	1850000
BOS	1987	1675000

Table 46: Displaying records 1 - 10

teamID	yearID	W	L	HR	HRA	attendance
DET	1907	92	58	11	8	297079
DET	1908	90	63	19	12	436199
DET	1909	98	54	19	16	490490
DET	1934	101	53	74	86	919161
DET	1935	93	58	106	78	1034929
DET	1940	90	64	134	102	1112693
DET	1945	88	65	77	48	1280341
DET	1968	103	59	185	129	2031847
DET	1984	104	58	187	130	2704794
DET	2006	95	67	203	160	2595937

Table 47: 5 records

teamID	W	L
NYN	90	72
WAS	83	79
MIA	71	91
ATL	67	95
PHI	63	99

Table 48: Displaying records 1 - 10

teamID	yearID	W	L
NYN	1986	108	54
NYN	1969	100	62
PIT	1979	98	64
PIT	1971	97	65
WAS	2019	93	69
SLN	1982	92	70
FLO	1997	92	70
PHI	2008	92	70
PHI	1980	91	71
FLO	2003	91	71

Table 49: Displaying records 1 - 10

playerID	teamID	yearID	W	L
mackco01	PHA	1931	107	45
mccarjo99	NYA	1932	107	47
mccarjo99	NYA	1939	106	45
southbi01	SLN	1942	106	48
southbi01	SLN	1943	105	49
southbi01	SLN	1944	105	49
durocle01	BRO	1942	104	50
cronijo01	BOS	1946	104	50
mccarjo99	NYA	1942	103	51
mackco01	PHA	1930	102	52

```
SELECT teamID, yearID, W, L FROM teams
WHERE lgID=='NL' AND divID=='E' AND WSWin=='Y'
ORDER BY W DESC;
```

Get a list of the playerIDs of managers who won more games than they lost between 1930 and 1950. Get the manager's name, and the name of the team of the manager with the most wins on the list.

```
SELECT playerID, teamID, yearID, W, L FROM managers
   WHERE yearID BETWEEN 1930 AND 1950 AND W > L
   ORDER BY W DESC LIMIT 10;

SELECT nameFirst, nameLast FROM people
   WHERE playerID=='mackco01';
```

Table 50: 1 records

nameFirst	nameLast
Connie	Mack

Table 51: 1 records

franchName	
Philadelphia Athletics	

```
SELECT franchName FROM teamsfranchises
WHERE franchID=='PHA';
```

Get the top 5 seasons from Florida Teams (Florida Marlins, Tampa Bay Rays, and Miami Marlins) in attendance. How many have occured since 2000?

Click here for solution

Florida baseball teams are not known for their attendance for a variety of reasons. Both MLB franchises play in domed fields, but usually do not draw large crowds.

```
SELECT franchID, franchName FROM teamsfranchises

WHERE franchName=='Tampa Bay Rays'
OR franchName=='Florida Marlins';

SELECT teamID, yearID, attendance FROM teams
WHERE franchID=='TBD' OR franchID=='FLA'
ORDER BY attendance DESC LIMIT 10;
```

What pitcher has thrown the most Shutouts (SHO) in the AL since 2010? What about the NL? Please get their first and last names respectively.

```
SELECT playerID, teamID, yearID, SHO FROM pitching
WHERE yearID>2010 AND lgID=='NL'
ORDER BY SHO DESC LIMIT 10;
```

Table 52: 2 records

franchID	franchName
FLA	Florida Marlins
TBD	Tampa Bay Rays

Table 53: Displaying records 1 - 10

teamID	yearID	attendance
FLO	1993	3064847
TBA	1998	2506293
FLO	1997	2364387
MIA	2012	2219444
FLO	1994	1937467
TBA	2009	1874962
FLO	2005	1852608
TBA	2010	1843445
TBA	2008	1811986
MIA	2015	1752235

Table 54: Displaying records 1 - 10

playerID	teamID	yearID	SHO
leecl02	PHI	2011	6
dickera01	NYN	2012	3
alvarhe01	MIA	2014	3
wainwad01	SLN	2014	3
arrieja01	CHN	2015	3
kershcl01	LAN	2015	3
scherma01	WAS	2015	3
kershcl01	LAN	2016	3
carpech01	SLN	2011	2
garcija02	SLN	2011	2

```
SELECT playerID,teamID, yearID, SHO FROM pitching
  WHERE yearID>2010 AND lgID=='AL'
  ORDER BY SHO DESC LIMIT 10;

SELECT nameFirst, nameLast FROM people
  WHERE playerID=='leecl02' OR playerID=='hernafe02';
```

The following examples use the ${\tt chinook.db}$ sqlite database.

dbListTables(chinook)

```
## [1] "advisors" "albums" "artists" "customers"
## [5] "employees" "genres" "invoice_items" "invoices"
## [9] "media_types" "playlist_track" "playlists" "sqlite_sequence"
## [13] "sqlite_stat1" "students" "tracks"
```

Table 55: Displaying records 1 - $10\,$

playerID	teamID	yearID	SHO
hernafe02	SEA	2012	5
hollade01	TEX	2011	4
shielja02	TBA	2011	4
harenda01	LAA	2011	3
vargaja01	SEA	2011	3
morrobr01	TOR	2012	3
colonba01	OAK	2013	3
masteju01	CLE	2013	3
porceri01	DET	2014	3
klubeco01	CLE	2017	3

Table 56: 2 records

nameFirst	nameLast
Felix	Hernandez
Cliff	Lee

How do I select all of the rows of a table called employees?

Click here for solution

SELECT * FROM employees;

How do I select the first 5 rows of a table called employees?

Click here for solution

SELECT * FROM employees LIMIT 5;

Table 57: 8 records

EmployeeId	LastName	FirstName	Title	ReportsTo	BirthDate	HireDate
1	Adams	Andrew	General Manager	NA	1962-02-18 00:00:00	2002-08-14 00:0
2	Edwards	Nancy	Sales Manager	1	1958-12-08 00:00:00	2002-05-01 00:0
3	Peacock	Jane	Sales Support Agent	2	1973-08-29 00:00:00	2002-04-01 00:0
4	Park	Margaret	Sales Support Agent	2	1947-09-19 00:00:00	2003-05-03 00:0
5	Johnson	Steve	Sales Support Agent	2	1965-03-03 00:00:00	2003-10-17 00:0
6	Mitchell	Michael	IT Manager	1	1973-07-01 00:00:00	2003-10-17 00:0
7	King	Robert	IT Staff	6	1970-05-29 00:00:00	2004-01-02 00:0
8	Callahan	Laura	IT Staff	6	1968-01-09 00:00:00	2004-03-04 00:0

Table 58: 5 records

EmployeeId	LastName	FirstName	Title	ReportsTo	BirthDate	Hi
1	Adams	Andrew	General Manager	NA	1962-02-18 00:00:00	200
2	Edwards	Nancy	Sales Manager	1	1958-12-08 00:00:00	200
3	Peacock	Jane	Sales Support Agent	2	1973-08-29 00:00:00	200
4	Park	Margaret	Sales Support Agent	2	1947-09-19 00:00:00	200
5	Johnson	Steve	Sales Support Agent	2	1965-03-03 00:00:00	200

Table 59: 8 records

LastName	FirstName
Adams	Andrew
Edwards	Nancy
Peacock	Jane
Park	Margaret
Johnson	Steve
Mitchell	Michael
King	Robert
Callahan	Laura

How do I select specific rows of a table called employees?

Click here for solution

SELECT LastName, FirstName FROM employees;

You can switch the order in which the columns are displayed as well:

SELECT FirstName, LastName FROM employees;

Table 60: 8 records

FirstName	LastName
Andrew	Adams
Nancy	Edwards
Jane	Peacock
Margaret	Park
Steve	Johnson
Michael	Mitchell
Robert	King
Laura	Callahan

Table 61: 5 records

Title
General Manager
Sales Manager
Sales Support Agent
IT Manager
IT Staff

Table 62: 1 records

EmployeeId	LastName	FirstName	Title	ReportsTo	BirthDate	HireDate
5	Johnson	Steve	Sales Support Agent	2	1965-03-03 00:00:00	2003-10-17 00:0

How do I select only unique values from a column?

Click here for solution

```
SELECT DISTINCT Title FROM employees;
```

How can I filter that match a certain criteria?

Click here for solution

Select only employees with a FirstName "Steve":

```
SELECT * FROM employees WHERE FirstName='Steve';
```

Select only employees with FirstName "Steve" OR FirstName "Laura":

```
SELECT * FROM employees WHERE FirstName='Steve' OR FirstName='Laura';
```

Select only employees with FirstName "Steve" AND LastName "Laura":

```
SELECT * FROM employees WHERE FirstName='Steve' AND LastName='Laura';
```

As expected, there are no results! There is nobody with the full name "Steve Laura".

Table 63: 2 records

EmployeeId	LastName	FirstName	Title	ReportsTo	BirthDate	HireDate
5	Johnson	Steve	Sales Support Agent	2	1965-03-03 00:00:00	2003-10-17 00:0
8	Callahan	Laura	IT Staff	6	1968-01-09 00:00:00	2004-03-04 00:0

Table 64: 0 records

EmployeeId	LastName	FirstName	Title	ReportsTo	BirthDate	HireDate	Address	City

Table 65: Displaying records 1 - 10

Tra	ckId	Name	AlbumId	MediaTypeId	GenreId	Compo
1		For Those About To Rock (We Salute You)	1	1	1	Angus
2		Balls to the Wall	2	2	1	NA
3		Fast As a Shark	3	2	1	F. Balt
4		Restless and Wild	3	2	1	F. Balt
5		Princess of the Dawn	3	2	1	Deaffy
6		Put The Finger On You	1	1	1	Angus
7		Let's Get It Up	1	1	1	Angus
8		Inject The Venom	1	1	1	Angus
9		Snowballed	1	1	1	Angus
10		Evil Walks	1	1	1	Angus

List the first 10 tracks from the tracks table.

Click here for solution

```
SELECT * FROM tracks LIMIT 10;
```

How many rows or records are in the table named tracks?

Click here for solution

```
SELECT COUNT(*) FROM tracks;
```

Are there any artists with the names: "Elis Regina", "Seu Jorge", or "The Beatles"?

Click here for solution

```
SELECT * FROM artists WHERE Name='Elis Regina' OR Name='Seu Jorge' OR Name='The Beatle
```

What albums did the artist with ArtistId of 41 make?

Table 66: 1 records

COUNT(*)
3503

Table 67: 2 records

ArtistId	Name
41	Elis Regina
193	Seu Jorge

Table 68: 1 records

AlbumId	Title	ArtistId
71	Elis Regina-Minha História	41

```
SELECT * FROM albums WHERE ArtistId=41;
```

What are the tracks of the album with AlbumId of 71? Order the results from most Milliseconds to least.

Click here for solution

```
SELECT * FROM tracks WHERE AlbumId=71 ORDER BY Milliseconds DESC;
```

What are the tracks of the album with AlbumId of 71? Order the results from longest to shortest and convert Milliseconds to seconds. Use aliasing to name the calculated field Seconds.

Click here for solution

```
SELECT Milliseconds/1000.0 AS Seconds, * FROM tracks WHERE AlbumId=71 ORDER BY Seconds DESC;
```

What are the tracks that are at least 250 seconds long?

Click here for solution

```
SELECT Milliseconds/1000.0 AS Seconds, * FROM tracks WHERE Seconds >= 250;
```

What are the tracks that are between 250 and 300 seconds long?

Click here for solution

```
SELECT Milliseconds/1000.0 AS Seconds, * FROM tracks WHERE Seconds BETWEEN 250 AND 300 ORDER BY S
```

What is the GenreId of the genre with name Pop?

```
SELECT GenreId FROM genres WHERE Name='Pop';
```

Table 69: Displaying records 1 - 10

TrackId	Name	AlbumId	MediaTypeId	GenreId	Composer	Milliseconds
890	Aprendendo A Jogar	71	1	7	NA	290664
886	Saudosa Maloca	71	1	7	NA	278125
880	Dois Pra Lá, Dois Pra Cá	71	1	7	NA	263026
887	As Aparências Enganam	71	1	7	NA	247379
882	Romaria	71	1	7	NA	242834
883	Alô, Alô, Marciano	71	1	7	NA	241397
889	Maria Rosa	71	1	7	NA	232803
877	O Bêbado e a Equilibrista	71	1	7	NA	223059
884	Me Deixas Louca	71	1	7	NA	214831
878	O Mestre-Sala dos Mares	71	1	7	NA	186226

Table 70: Displaying records 1 - 10

Seconds	TrackId	Name	AlbumId	MediaTypeId	GenreId	Composer	N
290.664	890	Aprendendo A Jogar	71	1	7	NA	
278.125	886	Saudosa Maloca	71	1	7	NA	
263.026	880	Dois Pra Lá, Dois Pra Cá	71	1	7	NA	
247.379	887	As Aparências Enganam	71	1	7	NA	
242.834	882	Romaria	71	1	7	NA	
241.397	883	Alô, Alô, Marciano	71	1	7	NA	
232.803	889	Maria Rosa	71	1	7	NA	
223.059	877	O Bêbado e a Equilibrista	71	1	7	NA	
214.831	884	Me Deixas Louca	71	1	7	NA	
186.226	878	O Mestre-Sala dos Mares	71	1	7	NA	

Table 71: Displaying records 1 - 10

Seconds	TrackId	Name	AlbumId	MediaTypeId	GenreI
343.719	1	For Those About To Rock (We Salute You)	1	1	
342.562	2	Balls to the Wall	2	2	
252.051	4	Restless and Wild	3	2	
375.418	5	Princess of the Dawn	3	2	
263.497	10	Evil Walks	1	1	
263.288	12	Breaking The Rules	1	1	
270.863	14	Spellbound	1	1	
331.180	15	Go Down	4	1	
366.654	17	Let There Be Rock	4	1	
267.728	18	Bad Boy Boogie	4	1	

Table 72: Displaying records 1 - 10

Seconds	TrackId	Name	AlbumId	Me
250.017	1992	Lithium	163	
250.031	3421	Nimrod (Adagio) from Variations On an Original Theme, Op. 36 "Enigma"	290	
250.070	2090	Romance Ideal	169	
250.122	2451	Ela Desapareceu	199	
250.226	2184	Thumbing My Way	180	
250.253	2728	Pulse	220	
250.357	974	Edge Of The World	77	
250.462	1530	Sem Sentido	123	
250.565	3371	Wooden Jesus	269	
250.697	2504	Real Love	202	

Table 73: 1 records

GenreI	ī
)

What is the average length (in seconds) of a track with genre "Pop"?

Click here for solution

SELECT AVG(Milliseconds/1000.0) AS avg FROM tracks WHERE genreId=9;

What is the longest Bossa Nova track (in seconds)?

Click here for solution

What is the GenreId of Bossa Nova?

SELECT GenreId FROM genres WHERE Name='Bossa Nova';

SELECT *, MAX(Milliseconds/1000.0) AS Seconds FROM tracks WHERE genreId=11;

Get the average price per hour for Bossa Nova music (genreId of 11).

Table 74: 1 records

avg
229.0341

Table 75: 1 records

GenreId 11

Table 76: 1 records

TrackId	Name	AlbumId	MediaTypeId	GenreId	Composer	Milliseconds	E
646	Samba Da Bênção	52	1	11	NA	409965	1349

SELECT AVG(UnitPrice/Milliseconds/1000.0/3600) AS 'Price per Hour' FROM tracks WHERE ge

Get the average time (in seconds) for tracks by genre.

Click here for solution

SELECT genreId, AVG(Milliseconds/1000.0) AS 'Average seconds per track' FROM tracks GR

We can use an INNER JOIN to get the name of each genre as well. {#sql-innerjoin}

join}
SELECT g.Name, track_time.'Average seconds per track' FROM genres AS g INNER JOIN (SEL

What is the average price per track for each genre?

Click here for solution

SELECT genreId, AVG(UnitPrice) AS 'Average seconds per track' FROM tracks GROUP BY gen

What is the average number of tracks per album?

Click here for solution

SELECT AVG(trackCount) FROM (SELECT COUNT(*) AS trackCount FROM tracks GROUP BY albumI-

What is the average number of tracks per album per genre?

Click here for solution

Table 77: 1 records

Price per Hour

Table 78: Displaying records 1 - 10

GenreId	Average seconds per track
1	283.9100
2	291.7554
3	309.7494
4	234.3538
5	134.6435
6	270.3598
7	232.8593
8	247.1778
9	229.0341
10	244.3709

Table 79: Displaying records 1 - $10\,$

Name	Average seconds per track
Sci Fi & Fantasy	2911.7830
Science Fiction	2625.5491
Drama	2575.2838
TV Shows	2145.0410
Comedy	1585.2637
Metal	309.7494
Electronica/Dance	302.9858
Heavy Metal	297.4529
Classical	293.8676
Jazz	291.7554

Table 80: Displaying records 1 - 10

$\operatorname{GenreId}$	Average seconds per track
1	0.99
2	0.99
3	0.99
4	0.99
5	0.99
6	0.99
7	0.99
8	0.99
9	0.99
10	0.99

Table 81: 1 records

AVG(trackCount)
10.0951

Table 82: Displaying records 1 - 10

genreId	AVG(trackCount)
1	11.41379
2	10.00000
3	10.90625
4	14.43478
5	12.00000
6	13.85714
7	14.81579
8	15.00000
9	16.00000
10	10.75000

SELECT genreId, AVG(trackCount) FROM (SELECT genreId, COUNT(*) AS trackCount FROM trackSELECT Name, avg_track_count.'Average Track Count' FROM genres AS g INNER JOIN (SELECT

The following examples us the lahman.db sqlite database.

dbListTables(lahman)

```
[1] "allstarfull"
                               "appearances"
                                                     "awardsmanagers"
   [4] "awardsplayers"
                               "awardssharemanagers" "awardsshareplayers"
##
                               "battingpost"
##
   [7] "batting"
                                                     "collegeplaying"
## [10] "divisions"
                               "fielding"
                                                     "fieldingof"
## [13] "fieldingofsplit"
                               "fieldingpost"
                                                     "halloffame"
## [16] "homegames"
                               "leagues"
                                                     "managers"
## [19] "managershalf"
                               "parks"
                                                     "people"
## [22] "pitching"
                               "pitchingpost"
                                                     "salaries"
                               "seriespost"
## [25] "schools"
                                                     "teams"
## [28] "teamsfranchises"
                               "teamshalf"
```

Table 83: Displaying records 1 - 10

Name	Average Track Count
Rock	11.41379
Jazz	10.00000
Metal	10.90625
Alternative & Punk	14.43478
Rock And Roll	12.00000
Blues	13.85714
Latin	14.81579
Reggae	15.00000
Pop	16.00000
Soundtrack	10.75000

SQL

\mathbf{R}

Getting started

Variables

NA

NA stands for not available and, in general, represents a missing value or a lack of data.

How do I tell if a value is NA?

Click here for solution

```
# Test if value is NA.
value <- NA
is.na(value)

## [1] TRUE

# Does is.nan return TRUE for NA?
is.nan(value)

## [1] FALSE</pre>
```

NaN

NaN stands for not a number and, in general, is used for arithmetic purposes, for example, the result of 0/0.

How do I tell if a value is NaN?

```
# Test if a value is NaN.
value <- NaN
is.nan(value)</pre>
```

```
## [1] TRUE
value <- 0/0
is.nan(value)
## [1] TRUE
# Does is.na return TRUE for NaN?
is.na(value)
## [1] TRUE</pre>
```

NULL

NULL represents the null object, and is often returned when we have undefined values.

How do I tell if a value is NULL?

Click here for solution

```
# Test if a value is NaN.
value <- NULL
is.null(value)

## [1] TRUE
class(value)

## [1] "NULL"

# Does is.na return TRUE for NULL?
is.na(value)

## logical(0)</pre>
```

Dates

Date is a class which allows you to perform special operations like subtraction, where the number of days between dates are returned. Or addition, where you can add 30 to a Date and a Date is returned where the value is 30 days in the future.

You will usually need to specify the format argument based on the format of your date strings. For example, if you had a string 07/05/1990, the format would be: %m/%d/%Y. If your string was 31–12–90, the format would be %d-%m-%y. Replace %d, %m, %Y, and %y according to your date strings. A full list of formats can be found here.

How do I convert a string "07/05/1990" to a Date?

VARIABLES 77

```
my_string <- "07/05/1990"
my_date <- as.Date(my_string, format="%m/%d/%Y")
my_date
## [1] "1990-07-05"</pre>
```

How do I convert a string "31-12-1990" to a Date?

Click here for solution

```
my_string <- "31-12-1990"
my_date <- as.Date(my_string, format="%d-%m-%Y")
my_date</pre>
```

```
## [1] "1990-12-31"
```

How do I convert a string "12-31-1990" to a Date?

Click here for solution

```
my_string <- "12-31-1990"
my_date <- as.Date(my_string, format="%m-%d-%Y")
my_date</pre>
```

```
## [1] "1990-12-31"
```

How do I convert a string "31121990" to a Date?

Click here for solution

```
my_string <- "31121990"
my_date <- as.Date(my_string, format="%d%m%Y")
my_date</pre>
```

```
## [1] "1990-12-31"
```

Factors

A factor is R's way of representing a categorical variable. Each factor is essentially a numeric value with an associated name. They are a useful when a vector has only a few different values it could be, like "Male" and "Female" or "A", "B", or "C".

How do I test whether or not a value is a factor?

```
test_factor <- factor("Male")
is.factor(test_factor)</pre>
```

```
## [1] TRUE

test_factor_vec <- factor(c("Male", "Female", "Female"))
is.factor(test_factor_vec)

## [1] TRUE</pre>
```

How do I convert a vector of strings to a vector of factors?

Click here for solution

```
vec <- c("Male", "Female", "Female")
vec <- factor(c("Male", "Female", "Female"))</pre>
```

How do I get the unique values a factor could hold, also known as levels?

Click here for solution

```
vec <- factor(c("Male", "Female", "Female"))
levels(vec)</pre>
```

```
## [1] "Female" "Male"
```

How can I rename the levels of a vector of factors?

```
Click here for solution
```

Levels: M F

```
vec <- factor(c("Male", "Female", "Female"))
levels(vec)

## [1] "Female" "Male"

levels(vec) <- c("F", "M")
vec

## [1] M F F

## Levels: F M

# Be careful! Order matters, this is wrong:
vec <- factor(c("Male", "Female", "Female"))
levels(vec)

## [1] "Female" "Male"
levels(vec) <- c("M", "F")
vec

## [1] F M M</pre>
```

Logical operators

Logical operators are symbols that can be used within R to compare values or vectors of values.

Operator	Description
<	less than
<=	less than or equal to
>	greater than
>=	greater than or equal to
==	equal to
! =	not equal to
! x	negation, not x
хІу	x OR y
x&y	x AND y

Examples

What are the values in a vector, vec that are greater than 5?

Click here for solution

```
vec <- 1:10
vec > 5
```

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

What are the values in a vector, vec that are greater than or equal to 5?

Click here for solution

```
vec <- 1:10
vec >= 5
```

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

What are the values in a vector, vec that are less than 5?

Click here for solution

```
vec <- 1:10
vec < 5
```

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

What are the values in a vector, vec that are less than or equal to 5?

```
vec <- 1:10
vec <= 5
```

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

What are the values in a vector that are greater than 7 OR less than or equal to 2?

Click here for solution

```
vec <- 1:10
vec > 7 | vec <=2</pre>
```

[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

What are the values in a vector that are greater than 3 AND less than 6?

Click here for solution

```
vec <- 1:10
vec > 3 & vec < 6
```

[1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

How do I get the values in list1 that are in list2?

Click here for solution

```
list1 <- c("this", "is", "a", "test")
list2 <- c("this", "a", "exam")
list1[list1 %in% list2]</pre>
```

```
## [1] "this" "a"
```

How do I get the values in list1 that are not in list2?

Click here for solution

```
list1 <- c("this", "is", "a", "test")
list2 <- c("this", "a", "exam")
list1[!(list1 %in% list2)]</pre>
```

```
## [1] "is" "test"
```

How can I get the number of values in a vector that are greater than 5?

```
vec <- 1:10
sum(vec>5)

## [1] 5

# Note, you do not need to do:
length(vec[vec>5])

## [1] 5

# because TRUE==1 and FALSE==0 in R
TRUE==1

## [1] TRUE

FALSE==0

## [1] TRUE
```

Resources

Operators Summary

A quick list of the various operators with a few simple examples.

Lists & Vectors

A vector contains values that are all the same type. The following are some examples of vectors:

```
# A logical vector
lvec <- c(F, T, TRUE, FALSE)
class(lvec)

## [1] "logical"

# A numeric vector
nvec <- c(1,2,3,4)
class(nvec)

## [1] "numeric"

# A character vector
cvec <- c("this", "is", "a", "test")
class(cvec)</pre>
```

[1] "character"

As soon as you try to mix and match types, elements are coerced to the simplest type required to represent all the data.

The order of representation is:

```
logical, numeric, character, list
For example:
class(c(F, 1, 2))
## [1] "numeric"
class(c(F, 1, 2, "ok"))
## [1] "character"
class(c(F, 1, 2, "ok", list(1, 2, "ok")))
## [1] "list"
Lists are vectors that can contain any class of data. For example:
list(TRUE, 1, 2, "OK", c(1,2,3))
## [[1]]
## [1] TRUE
##
## [[2]]
## [1] 1
##
## [[3]]
## [1] 2
##
## [[4]]
## [1] "OK"
##
## [[5]]
## [1] 1 2 3
With lists, there are 3 ways you can index.
my_list <- list(TRUE, 1, 2, "OK", c(1,2,3), list("OK", 1,2, F))</pre>
# The first way is with single square brackets [].
# This will always return a list, even if the content
# only has 1 component.
class(my_list[1:2])
## [1] "list"
class(my_list[3])
## [1] "list"
# The second way is with double brackets [[]].
# This will return the content itself. If the
```

```
# content is something other than a list it will
# return the value itself.
class(my_list[[1]])
## [1] "logical"
class(my_list[[3]])
## [1] "numeric"
# Of course, if the value is a list itself, it will
# remain a list.
class(my_list[[6]])
## [1] "list"
# The third way is using $ to extract a single, named variable.
# We need to add names first! $ is like the double bracket,
# in that it will return the simplest form.
my_list <- list(first=TRUE, second=1, third=2, fourth="OK", embedded_vector=c(1,2,3), embedded_list(second=1,2,3)
my_list$first
## [1] TRUE
my_list$embedded_list
## [[1]]
## [1] "OK"
##
## [[2]]
## [1] 1
##
## [[3]]
## [1] 2
##
## [[4]]
## [1] FALSE
How do get the type of a vector?
Click here for solution
my\_vector \leftarrow c(0, 1, 2)
typeof(my_vector)
## [1] "double"
```

How do I convert a character vector to a numeric?

```
my_character_vector <- c('1','2','3','4')
as.numeric(my_character_vector)
## [1] 1 2 3 4</pre>
```

How do I convert a numeric vector to a character?

Click here for solution

```
my_numeric_vector <- c(1,2,3,4)
as.character(my_numeric_vector)
## [1] "1" "2" "3" "4"</pre>
```

Indexing

Indexing enables us to access a subset of the elements in vectors and lists. There are three types of indexing: positional/numeric, logical, and reference/named.

You can create a named vector and a named list easily:

```
my_vec <- 1:5
names(my_vec) <- c('a','b','c','d','e')</pre>
my_list <- list(1,2,3,4,5)</pre>
names(my_list) <- c('a','b','c','d','e')</pre>
my_list2 \leftarrow list('a' = 1, 'b' = 2, 'c' = 3, 'd' = 4, 'e' = 5)
# Numeric (positional) indexing:
my_vec[1:2]
## a b
## 1 2
my_vec[c(1,3)]
## a c
## 1 3
my_list[1:2]
## $a
## [1] 1
##
## $b
## [1] 2
my_list[c(1,3)]
```

```
## $a
## [1] 1
##
## $c
## [1] 3
# Logical indexing:
my_vec[c(T, F, T, F, F)]
## a c
## 1 3
my_list[c(T, F, T, F, F)]
## $a
## [1] 1
##
## $c
## [1] 3
# Named (reference) indexing:
# if there are named values:
my_vec[c("a", "c")]
## a c
## 1 3
my_list[c("a", "c")]
## $a
## [1] 1
##
## $c
## [1] 3
```

Examples

How can I get the first 2 values of a vector named my_vec? Click here for solution

```
my_vec <- c(1, 13, 2, 9)
names(my_vec) <- c('cat', 'dog','snake', 'otter')
my_vec[1:2]
## cat dog
## 1 13</pre>
```

How can I get the values that are greater than 2? Click here for solution

```
my_vec[my_vec>2]
## dog otter
## 13 9
```

How can I get the values greater than 5 and smaller than 10? Click here for solution

```
my_vec[my_vec > 5 & my_vec < 10]
## otter
## 9</pre>
```

How can I get the values greater than 10 or smaller than 3? Click here for solution

```
my_vec[my_vec > 10 | my_vec < 3]
## cat dog snake
## 1 13 2</pre>
```

How can I get the values for "otter" and "dog"? Click here for solution

```
my_vec[c('otter','dog')]
## otter dog
```

```
## otter dog
## 9 13
```

Recycling

Often operations in R on two or more vectors require them to be the same length. When R encounters vectors with different lengths, it automatically repeats (recycles) the shorter vector until the length of the vectors is the same.

Examples

Given two numeric vectors with different lengths, add them elementwise.

```
x <- c(1,2,3)
y <- c(0,1)
x+y
```

```
## Warning in x + y: longer object length is not a multiple of shorter object
## length
## [1] 1 3 3
```

Basic R functions

all

all returns a logical value (TRUE or FALSE) if all values in a vector are TRUE.

Examples

Are all values in x positive? Click here for solution

```
x <- c(1, 2, 3, 4, 8, -1, 7, 3, 4, -2, 1, 3)
all(x>0) # FALSE
```

[1] FALSE

any

all returns a logical value (TRUE or FALSE) if any values in a vector are TRUE.

Examples

Are any values in x positive? Click here for solution

```
x \leftarrow c(1, 2, 3, 4, 8, -1, 7, 3, 4, -2, 1, 3)
any(x>0) # TRUE
```

[1] TRUE

all.equal

all.equal compares two objects and tests if they are "nearly equal" (up to some provided tolerance).

Examples

Is π equal to 3.14? Click here for solution

```
all.equal(pi, 3.14) # FALSE
```

[1] "Mean relative difference: 0.0005069574"

Is π equal to 3.14 if our tolerance is 2 decimal cases? Click here for solution

```
all.equal(pi, 3.14, tol=0.01) # TRUE
```

[1] TRUE

88

Are the vectors x and y equal? Click here for solution

```
x <- 1:5
y <- c('1', '2', '3', '4', '5')
all.equal(x, y) # difference in type (numeric vs. character)
## [1] "Modes: numeric, character"
## [2] "target is numeric, current is character"
all.equal(x, as.numeric(y)) # TRUE
## [1] TRUE</pre>
```

dim

dim returns the dimensions of a matrix or data.frame. The first value is the rows, the second is columns.

Examples

How many dimensions does the data.frame dat have? Click here for solution

```
dat <- data.frame("col1"=c(1,2,3), "col2"=c("a", "b", "c"))
dim(dat) # 3 rows and 2 columns
## [1] 3 2</pre>
```

length

length allows you to get or set the length of an object in R (for which a method has been defined).

How do I get how many values are in a vector?

Click here for solution

```
# Create a vector of length 5
my_vector <- c(1,2,3,4,5)

# Calculate the length of my_vector
length(my_vector)</pre>
```

```
## [1] 5
```

rep

rep is short for replicate. rep accepts some object, x, and up to three additional arguments: times, length.out, and each. times is the number of non-negative times to repeat the whole object x. length.out specifies the end length you

want the result to be. rep will repeat the values in x as many times as it takes to reach the provided length.out. each repeats each element in x the number of times specified by each.

Examples

How do I repeat values in a vector 3 times? Click here for solution

```
vec <- c(1,2,3)
rep(vec, 3)

## [1] 1 2 3 1 2 3 1 2 3

# or

rep(vec, times=3)

## [1] 1 2 3 1 2 3 1 2 3</pre>
```

How do I repeat the values in a vector enough times to be the same length as another vector? Click here for solution

```
vec <- c(1,2,3)
other_vec <- c(1,2,2,2,2,2,2,8)
rep(vec, length.out=length(other_vec))

## [1] 1 2 3 1 2 3 1 2

# Note that if the end goal is to do something
# like add the two vectors, this can be done
# using recycling.
rep(vec, length.out=length(other_vec)) + other_vec

## [1] 2 4 5 3 4 5 3 10

vec + other_vec

## Warning in vec + other_vec: longer object length is not a multiple of shorter
## object length
## [1] 2 4 5 3 4 5 3 10</pre>
```

How can I repeat each value inside a vector a certain amount of times? Click here for solution

```
vec <- c(1,2,3)
rep(vec, each=3)
## [1] 1 1 1 2 2 2 3 3 3</pre>
```

How can I repeat the values in one vector based on the values in another vector? Click here for solution

```
vec <- c(1,2,3)
rep_by <- c(3,2,1)
rep(vec, times=rep_by)
## [1] 1 1 1 2 2 3</pre>
```

rbind and cbind

rbind and cbind append objects (vectors, matrices or data.frames) as rows (rbind) or as columns (cbind).

Examples

How do I combine 3 vectors into a matrix? Click here for solution

```
x < -1:10
y <- 11:20
z <- 10:1
# combining them as rows
rbind(x,y,z)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## x
        1
             2
                   3
                        4
                             5
                                   6
                                        7
                                             8
                                                   9
## y
       11
            12
                  13
                       14
                             15
                                  16
                                       17
                                            18
                                                  19
                                                        20
## z
       10
             9
                        7
                             6
                                   5
                                        4
                                             3
                                                   2
                                                         1
dim(rbind(x,y,z))
## [1] 3 10
# combining them as columns
cbind(x,y,z)
##
          х у
##
    [1,]
          1 11 10
##
    [2,]
          2 12
                9
    [3,]
##
          3 13
                8
##
    [4,]
          4 14
                 7
##
    [5,]
          5 15
                6
                5
##
    [6,]
          6 16
##
    [7,]
          7 17
                4
    [8,]
          8 18
                3
##
         9 19
##
    [9,]
                2
## [10,] 10 20 1
```

```
dim(cbind(x,y,z))
## [1] 10 3
```

How do I add a vector as a column to a matrix? Click here for solution

```
x <- 1:10
my_mat <- matrix(1:20, ncol=2)

my_mat <- cbind(my_mat, x)
dim(my_mat)</pre>
```

[1] 10 3

How do I append new rows to a matrix? Click here for solution

```
my_mat1 <- matrix(20:1, ncol=2)
my_mat2 <- matrix(1:20, ncol=2)

my_mat <- rbind(my_mat1, my_mat2)
dim(my_mat)</pre>
```

[1] 20 2

which, which.max, which.min

which enables you to find the position of the elements that are TRUE in a logical vector.

which.max and which.min finds the location of the maximum and minimum, respectively, of a numeric (or logical) vector.

Examples

Given a numeric vector, return the index of the maximum value. Click here for solution

```
x <- c(1,-10, 2,4,-3,9,2,-2,4,8)
which.max(x)

## [1] 6
# which.max is just shorthand for:
which(x==max(x))</pre>
```

[1] 6

Given a vector, return the index of the positive values. Click here for solution

```
x <- c(1,-10, 2,4,-3,9,2,-2,4,8)
which(x>0)
## [1] 1 3 4 6 7 9 10
```

Given a matrix, return the indexes (row and column) of the positive values. Click here for solution

```
x <- matrix(c(1,-10, 2,4,-3,9,2,-2,4,8), ncol=2)
which(x>0, arr.ind = TRUE)

## row col
## [1,] 1 1
```

[3,] 4 1 ## [4,] 1 2 ## [5,] 2 2 ## [6,] 4 2

3 1

[2,]

[7,] 5 2

grep, grepl, etc.

grep allows you to use regular expressions to search for a pattern in a string or character vector, and returns the index where there is a match.

grepl performs the same operation but rather than returning indices, returns a vector of logical TRUE or FALSE values.

Examples

Given a character vector, return the index of any words ending in "s". Click here for solution

```
grep("*.s$", c("waffle", "waffles", "pancake", "pancakes"))
## [1] 2 4
```

Given a character vector, return a vector of the same length where each element is TRUE if there was a match for any word ending in "s", and 'FALSE otherwise. Click here for solution

```
grepl("*.s$", c("waffle", "waffles", "pancake", "pancakes"))
## [1] FALSE TRUE FALSE TRUE
```

sum

sum is a function that calculates the sum of a vector of values.

Examples

How do I get the sum of the values in a vector?

Click here for solution

```
sum(c(1,3,2,10,4))
```

[1] 20

How do I get the sum of the values in a vector when some of the values are: NA, NaN?

Click here for solution

```
sum(c(1,2,3,NaN), na.rm=T)

## [1] 6

sum(c(1,2,3,NA), na.rm=T)

## [1] 6

sum(c(1,2,NA,NaN,4), na.rm=T)

## [1] 7
```

mean

mean is a function that calculates the average of a vector of values.

How do I get the average of a vector of values?

Click here for solution

```
mean(c(1,2,3,4))
```

[1] 2.5

How do I get the average of a vector of values when some of the values are: NA, NaN?

Click here for solution

Many R functions have the na.rm argument available. This argument is "a logical value indicating whether NA values should be stripped before the computation proceeds."

```
mean(c(1,2,3,NaN), na.rm=T)
## [1] 2
mean(c(1,2,3,NA), na.rm=T)
## [1] 2
mean(c(1,2,NA,NaN,4), na.rm=T)
## [1] 2.333333
var
var is a function that calculate the variance of a vector of values.
How do I get the variance of a vector of values?
Click here for solution
var(c(1,2,3,4))
## [1] 1.666667
How do I get the variance of a vector of values when some of the
values are: NA, NaN?
Click here for solution
var(c(1,2,3,NaN), na.rm=T)
## [1] 1
var(c(1,2,3,NA), na.rm=T)
## [1] 1
var(c(1,2,NA,NaN,4), na.rm=T)
## [1] 2.333333
How do I get the standard deviation of a vector of values?
Click here for solution
The standard deviation is equal to the square root of the variance.
sqrt(var(c(1,2,3,NaN), na.rm=T))
## [1] 1
sqrt(var(c(1,2,3,NA), na.rm=T))
```

```
## [1] 1
sqrt(var(c(1,2,NA,NaN,4), na.rm=T))
## [1] 1.527525
```

colSums and rowSums

 ${\tt colSums}$ and ${\tt rowSums}$ calculates row and column sums for numeric matrices or data.frames.

Examples

How do I get the sum of the values for every column in a data frame?

Click here for solution

```
# First 6 values in mtcars
head(mtcars)
##
                    mpg cyl disp hp drat
                                             wt qsec vs am gear carb
## Mazda RX4
                          6 160 110 3.90 2.620 16.46
                    21.0
## Mazda RX4 Wag
                          6 160 110 3.90 2.875 17.02
                    21.0
                                                      0
                                                                   4
                    22.8
                         4 108 93 3.85 2.320 18.61 1 1
## Datsun 710
                                                                   1
## Hornet 4 Drive
                    21.4 6 258 110 3.08 3.215 19.44 1 0
                                                                  1
## Hornet Sportabout 18.7
                         8 360 175 3.15 3.440 17.02 0 0
                                                                   2
                         6 225 105 2.76 3.460 20.22 1 0
## Valiant
                    18.1
                                                                   1
# For every column, sum of all rows:
colSums(mtcars)
##
                       disp
                                         drat
                                                          qsec
       mpg
                cyl
                                  hp
                                                   wt
                                                                     VS
## 642.900 198.000 7383.100 4694.000 115.090 102.952 571.160
                                                                 14.000
                       carb
##
        am
               gear
    13.000 118.000
                      90.000
```

How do I get the sum of the values for every row in a data frame?

```
# First 6 values in mtcars
head(mtcars)
```

```
##
                    mpg cyl disp hp drat
                                          wt qsec vs am gear carb
## Mazda RX4
                         6 160 110 3.90 2.620 16.46
                   21.0
## Mazda RX4 Wag
                   21.0
                        6 160 110 3.90 2.875 17.02
                        4 108 93 3.85 2.320 18.61
## Datsun 710
                   22.8
                                                                1
## Hornet 4 Drive
                   21.4 6 258 110 3.08 3.215 19.44 1 0
                                                           3
                                                                1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
                                                           3
                                                                2
## Valiant
                   18.1 6 225 105 2.76 3.460 20.22 1 0 3
                                                                1
```

For every row, sum of all columns: rowSums(mtcars) ## Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive ## 328.980 329.795 259.580 426.135 ## Hornet Sportabout Valiant Duster 360 Merc 240D ## 590.310 385.540 656.920 270.980 ## Merc 230 Merc 280 Merc 280C Merc 450SE ## 299.570 350.460 349.660 510.740 ## Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental 511.500 728.560 ## 509.850 726.644 ## Fiat 128 Honda Civic Chrysler Imperial Toyota Corolla ## 725.695 213.850 195.165 206.955 ## Toyota Corona Dodge Challenger AMC Javelin Camaro Z28 ## 273.775 519.650 506.085 646.280 ## Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa

208.215

379.590

Ferrari Dino

272.570

694.710

Maserati Bora

273.683

288.890

Volvo 142E

colMeans and rowMeans

631.175

670.690

Ford Pantera L

colMeans and rowMeans calculates row and column means for numeric matrices or data.frames.

Examples

##

##

##

Examples

How do I get the mean for every column in a data frame?

```
# First 6 values in mtcars
head(mtcars)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                             6
                                160 110 3.90 2.620 16.46
## Mazda RX4 Wag
                     21.0
                             6
                                160 110 3.90 2.875 17.02
                                                           0
                                                                   4
                                                                         4
## Datsun 710
                                108 93 3.85 2.320 18.61
                                                                        1
                     22.8
                             4
## Hornet 4 Drive
                     21.4
                             6
                                258 110 3.08 3.215 19.44
                                                                   3
                                                                        1
## Hornet Sportabout 18.7
                                360 175 3.15 3.440 17.02
                                                                        2
                             8
                                                           0
                                                              0
                                                                   3
## Valiant
                      18.1
                                225 105 2.76 3.460 20.22
                                                                         1
# Mean of each column
colMeans(mtcars)
```

```
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
```

```
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
```

How do I get the mean for every row in a data frame?

Click here for solution

```
# First 6 values in mtcars
head(mtcars)
```

```
##
                     mpg cyl disp hp drat
                                             wt qsec vs am gear carb
## Mazda RX4
                    21.0
                              160 110 3.90 2.620 16.46
                                                      0
                                                          1
## Mazda RX4 Wag
                    21.0
                              160 110 3.90 2.875 17.02
## Datsun 710
                    22.8
                           4
                              108 93 3.85 2.320 18.61
                                                       1 1
                                                                    1
## Hornet 4 Drive
                    21.4
                           6
                              258 110 3.08 3.215 19.44
                                                               3
                                                                    1
                                                               3
                                                                    2
## Hornet Sportabout 18.7
                              360 175 3.15 3.440 17.02
                           8
## Valiant
                    18.1
                           6 225 105 2.76 3.460 20.22
```

```
# Mean of each row
rowMeans(mtcars)
```

##	Mazda RX4	Mazda RX4 Wag	Datsun 710	Hornet 4 Drive
##	29.90727	29.98136	23.59818	38.73955
##	Hornet Sportabout	Valiant	Duster 360	Merc 240D
##	53.66455	35.04909	59.72000	24.63455
##	Merc 230	Merc 280	Merc 280C	Merc 450SE
##	27.23364	31.86000	31.78727	46.43091
##	Merc 450SL	Merc 450SLC	Cadillac Fleetwood	Lincoln Continental
##	46.50000	46.35000	66.23273	66.05855
##	Chrysler Imperial	Fiat 128	Honda Civic	Toyota Corolla
##	65.97227	19.44091	17.74227	18.81409
##	Toyota Corona	Dodge Challenger	AMC Javelin	Camaro Z28
##	24.88864	47.24091	46.00773	58.75273
##	Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Europa
##	57.37955	18.92864	24.77909	24.88027
##	Ford Pantera L	Ferrari Dino	Maserati Bora	Volvo 142E
##	60.97182	34.50818	63.15545	26.26273

unique

unique "returns a vector, data frame, or array like x but with duplicate elements/rows removed.

Given a vector of values, how do I return a vector of values with all duplicates removed?

```
vec <- c(1, 2, 3, 3, 4, 5, 5, 6)
unique(vec)</pre>
```

```
## [1] 1 2 3 4 5 6
```

summary

summary shows summary statistics for a vector, or for every column in a data.frame and/or matrix. The summary statistics shown are: minimum value, maximum value, first and third quartiles, mean and median.

Examples

How do I get summary statistics for a vector?

Click here for solution

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 8.25 15.50 15.50 22.75 30.00
```

How do I get summary statistics for every column in a data frame?

```
## First 6 values in mtcars
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear ca
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
```

```
## Mazda RX4 Wag
                     21.0
                            6
                               160 110 3.90 2.875 17.02
                                                                        4
## Datsun 710
                     22.8
                            4
                               108 93 3.85 2.320 18.61
                                                          1
                                                                   4
                                                                        1
## Hornet 4 Drive
                     21.4
                               258 110 3.08 3.215 19.44
## Hornet Sportabout 18.7
                                                                        2
                               360 175 3.15 3.440 17.02
                                                                   3
                            8
                                                          0
                                                             0
## Valiant
                     18.1
                               225 105 2.76 3.460 20.22
```

```
# Mean of each column
summary(mtcars)
```

```
##
                            \operatorname{cyl}
                                              disp
                                                                 hp
          mpg
##
                              :4.000
                                              : 71.1
                                                                  : 52.0
    \mathtt{Min}.
           :10.40
                      Min.
                                        Min.
                                                          Min.
                      1st Qu.:4.000
##
    1st Qu.:15.43
                                        1st Qu.:120.8
                                                          1st Qu.: 96.5
##
    Median :19.20
                      Median :6.000
                                        Median :196.3
                                                          Median :123.0
##
    Mean
            :20.09
                              :6.188
                                        Mean
                                                :230.7
                                                          Mean
                                                                  :146.7
                      Mean
##
    3rd Qu.:22.80
                      3rd Qu.:8.000
                                        3rd Qu.:326.0
                                                          3rd Qu.:180.0
            :33.90
                              :8.000
                                                :472.0
                                                                  :335.0
##
    Max.
                      Max.
                                        {\tt Max.}
                                                          Max.
##
         drat
                                              qsec
                                                                 ٧s
                                        Min.
##
    Min.
            :2.760
                      Min. :1.513
                                                :14.50
                                                          Min.
                                                                  :0.0000
```

```
##
    1st Qu.:3.080
                    1st Qu.:2.581
                                     1st Qu.:16.89
                                                      1st Qu.:0.0000
    Median :3.695
                    Median :3.325
                                     Median :17.71
                                                      Median :0.0000
##
           :3.597
                           :3.217
                                                             :0.4375
   Mean
                    Mean
                                     Mean
                                            :17.85
                                                      Mean
##
    3rd Qu.:3.920
                    3rd Qu.:3.610
                                     3rd Qu.:18.90
                                                      3rd Qu.:1.0000
##
   {\tt Max.}
           :4.930
                    {\tt Max.}
                            :5.424
                                     {\tt Max.}
                                             :22.90
                                                      Max.
                                                             :1.0000
##
          am
                           gear
                                           carb
## Min.
                             :3.000
                                              :1.000
           :0.0000
                     Min.
                                      Min.
## 1st Qu.:0.0000
                     1st Qu.:3.000
                                      1st Qu.:2.000
##
    Median :0.0000
                     Median :4.000
                                      Median :2.000
## Mean
           :0.4062
                           :3.688
                                      Mean
                                              :2.812
                     Mean
##
  3rd Qu.:1.0000
                     3rd Qu.:4.000
                                      3rd Qu.:4.000
## Max.
           :1.0000
                     Max.
                             :5.000
                                      Max.
                                              :8.000
```

order and sort

sort allows you to arrange (or partially arrange) a vector into ascending or descending order.

order returns the position of each element of a vector in ascending (or descending order).

Examples

Given a vector, arrange it in a ascending order. Click here for solution

```
x <- c(1,3,2,10,4)
sort(x)
```

```
## [1] 1 2 3 4 10
```

Given a vector, arrange it in a descending order. Click here for solution

```
x <- c(1,3,2,10,4)
sort(x, decreasing = TRUE)
```

```
## [1] 10 4 3 2 1
```

Given a character vector, arrange it in ascending order. Click here for solution

```
sort(c("waffle", "pancake", "eggs", "bacon"))
## [1] "bacon" "eggs" "pancake" "waffle"
```

Given a matrix, arrange it in ascending order using the first column. Click here for solution

```
my_mat <- matrix(c(1,5,0, 2, 10, 1, 2, 8, 9, 1,0,2), ncol=3)
my_mat[order(my_mat[,1]),]</pre>
```

100

```
## [,1] [,2] [,3]
## [1,] 0 2 0
## [2,] 1 10 9
## [3,] 2 8 2
## [4,] 5 1 1
```

paste and paste0

paste is a useful function to "concatenate vectors after converting to character." paste0 is a shorthand function where the sep argument is "".

How do I concatenate two vectors, element-wise, with a comma in between values from each vector?

Click here for solution

```
vector1 <- c("one", "three", "five")
vector2 <- c("two", "four", "six")
paste(vector1, vector2, sep=",")</pre>
```

```
## [1] "one,two" "three,four" "five,six"
```

How do I paste together two strings?

Click here for solution

```
paste0("abra", "kadabra")
```

```
## [1] "abrakadabra"
```

How do I paste together three strings?

Click here for solution

```
paste0("abra", "kadabra", "alakazam")
```

```
## [1] "abrakadabraalakazam"
```

head and tail

head returns the first n (default is 6) parts of a vector, matrix, table, data.frame or function. For vectors, head shows the first 6 values, for matrices, tables and data.frame, head shows the first 6 rows, and for functions the first 6 rows of code.

tail returns the last n (default is 6) parts of a vector, matrix, table, data.frame or function.

Examples

```
How do I get the first 6 rows of a data.frame? Click here for solution head(df)
```

How do I get the first 10 rows of a data.frame? Click here for solution head(df, 10)

How do I get the last 6 rows of a data.frame? Click here for solution tail(df)

How do I get the last 8 rows of a data.frame? Click here for solution

```
tail(df, 8)
```

str

str stands for *structure*. str gives you a glimpse at the variable of interest.

How do I get the number of columns or features in a data.frame?

Click here for solution

As you can see, there are 9 rows or obs. (short for observations), and 29 variables (which can be referred to as columns or features).

```
str(df)
```

names

names is a function that returns the names of a an object. This includes the typical data structures: vectors, lists, and data.frames. By default, names will return the column names of a data.frame, not the row names.

Examples

How do I get the column names of a data.frame? Click here for solution

```
# Get the column names of a data.frame
names(df)
## [1] "cat_1" "cat_2" "ok" "other"
```

How do I get the names of a list? Click here for solution

```
# Get the names of a list
names(list(col1=c(1,2,3), col2=c(987)))

## [1] "col1" "col2"
```

How do I get the names of a vector? Click here for solution

```
# Get the names of a vector
names(c(val1=1, val2=2, val3=3))
```

```
## [1] "val1" "val2" "val3"
```

How do I change the column names of a data.frame? Click here for solution

```
## 3 3 7 FALSE third
```

colnames & rownames

colnames is the same as names but specifies the column names. rownames is the same as names but specifies the row names.

table & prop.table

table is a function used to build a contingency table of counts of various factors.

prop.table is a function that accepts the output of table and rather than returning counts, returns conditional proportions.

Examples

How do I get a count of the number of students in each year in our grades data.frame? Click here for solution

```
##
## freshman junior senior sophomore
## 1 4 2 3
```

How do I get the precentages of students in each year in our grades data.frame? Click here for solution

```
prop.table(table(grades$year))

##

## freshman junior senior sophomore
## 0.1 0.4 0.2 0.3
```

How do I get a count of the number of students in each year by sex in our grades data.frame? Click here for solution

```
table(grades$year, grades$sex)
```

```
## ## F M ## freshman 0 1 ## junior 2 2 ## senior 1 1 ## sophomore 1 2
```

How do I get the precentages of students in each year by sex in our grades data.frame? Click here for solution

```
##
## F M
## junior 0.2 0.2
## senior 0.1 0.1
## sophomore 0.1 0.2
```

cut

cut breaks a vector x into factors specified by the argument breaks. cut is particularly useful to break Date data into categories like "Q1", "Q2", or 1998, 1999, 2000, etc.

You can find more useful information by running ?cut.POSIXt.

Examples

How can I create a new column in a data.frame df that is a factor based on the year? Click here for solution

```
df$year <- cut(df$times, breaks="year")
str(df)

## 'data.frame': 24 obs. of 3 variables:
## $ times: POSIXct, format: "2020-06-01 06:00:00" "2020-07-01 06:00:00" ...
## $ value: int 34 64 70 87 2 89 35 44 66 78 ...
## $ year : Factor w/ 3 levels "2020-01-01","2021-01-01",..: 1 1 1 1 1 1 2 2 2 ...</pre>
```

How can I create a new column in a data frame df that is a factor based on the quarter? Click here for solution

```
df$quarter <- cut(df$times, breaks="quarter")
str(df)

## 'data.frame': 24 obs. of 4 variables:
## $ times : POSIXct, format: "2020-06-01 06:00:00" "2020-07-01 06:00:00" ...
## $ value : int 34 64 70 87 2 89 35 44 66 78 ...
## $ year : Factor w/ 3 levels "2020-01-01","2021-01-01",..: 1 1 1 1 1 1 1 2 2 2 ..
## $ quarter: Factor w/ 9 levels "2020-04-01","2020-07-01",..: 1 2 2 2 3 3 3 4 4 4 ...</pre>
```

How can I create a new column in a data frame df that is a factor based on every 2 weeks? Click here for solution

```
df$biweekly <- cut(df$times, breaks="2 weeks")</pre>
```

subset

subset is a function that helps you take subsets of data. By default, subset removes NA rows, so use with care. subset does not perform any operation that can't be accomplished by indexing, but can sometimes be easier to read.

Where we would normally write something like:

```
grades[grades$year=="junior" | grades$sex=="M",]$grade
## [1] 100 75 74 69 88 99 90 92
We can instead do:
subset(grades, year=="junior" | sex=="M", select=grade)
##
      grade
## 1
        100
## 3
         75
         74
## 4
## 6
         69
## 7
         88
## 8
         99
## 9
         90
## 10
         92
```

But be careful, if we replace a grade with an NA, it will be removed by subset:

```
grades$sex[8] <- NA
subset(grades, year=="junior" | sex=="M", select=grade)</pre>
```

```
##
      grade
## 1
         100
## 3
          75
## 4
          74
## 6
          69
## 7
          88
## 9
          90
## 10
          92
```

Whereas indexing will not unless you specify to:

```
grades[grades$year=="junior" | grades$sex=="M",]$grade
## [1] 100 75 74 69 88 NA 90 92
```

merge

merge is a function that can be used to combine data.frames by row names, or more commonly, by column names. merge can replicate the join operations in SQL. The documentation is quite clear, and a useful resource: ?merge.

Examples

Consider the data.frame's books and authors:

```
books
##
      id
                                               title author_id rating
## 1
       1
             Harry Potter and the Sorcerer's Stone
                                                                  4.47
## 2
                                                                  4.43
       2
           Harry Potter and the Chamber of Secrets
## 3
          Harry Potter and the Prisoner of Azkaban
                                                                  4.57
## 4
       4
               Harry Potter and the Goblet of Fire
                                                              1
                                                                  4.56
## 5
       5 Harry Potter and the Order of the Phoenix
                                                              1
                                                                  4.50
## 6
            Harry Potter and the Half Blood Prince
                                                              1
                                                                  4.57
       6
## 7
       7
              Harry Potter and the Deathly Hallows
                                                                  4.62
## 8
       8
                                   The Way of Kings
                                                              2
                                                                  4.64
## 9
       9
                                      The Book Thief
                                                              3
                                                                  4.37
## 10 10
                               The Eye of the World
                                                                  4.18
authors
##
      id
                              name avg_rating
## 1
                      J.K. Rowling
                                          4.46
       1
## 2
                Brandon Sanderson
                                          4.39
## 3
                      Markus Zusak
                                          4.34
       3
## 4
       4
                     Robert Jordan
                                          4.18
## 5
       5
                   Agatha Christie
                                          4.00
## 6
                         Alex Kava
                                          4.02
       6
## 7
       7
            Nassim Nicholas Taleb
                                          3.99
## 8
                       Neil Gaiman
                                          4.13
       8
## 9
       9
                     Stieg Larsson
                                          4.16
## 10 10 Antoine de Saint-Exupéry
                                          4.30
```

How do I merge the author information from authors based on author_id in books and id in authors, keeping only information from authors and books where there is a match? Click here for solution

```
# In SQL this is referred to as an INNER JOIN.
merge(books, authors, by.x="author_id", by.y="id", all=F)
```

```
##
      author_id id
                                                         title rating
## 1
              1
                       Harry Potter and the Sorcerer's Stone
                                                                 4.47
## 2
              1
                 2
                     Harry Potter and the Chamber of Secrets
                                                                 4.43
                    Harry Potter and the Prisoner of Azkaban
## 3
                                                                 4.57
## 4
              1
                 4
                         Harry Potter and the Goblet of Fire
                                                                 4.56
## 5
              1
                 5 Harry Potter and the Order of the Phoenix
                                                                 4.50
## 6
              1
                6
                      Harry Potter and the Half Blood Prince
                                                                 4.57
## 7
              1
                 7
                        Harry Potter and the Deathly Hallows
                                                                 4.62
## 8
              2 8
                                             The Way of Kings
                                                                 4.64
## 9
              3 9
                                               The Book Thief
                                                                 4.37
```

```
## 10
              4 10
                                          The Eye of the World
                                                                  4.18
##
                    name avg_rating
## 1
           J.K. Rowling
                               4.46
## 2
                               4.46
           J.K. Rowling
## 3
                               4.46
           J.K. Rowling
## 4
           J.K. Rowling
                               4.46
## 5
           J.K. Rowling
                               4.46
## 6
           J.K. Rowling
                               4.46
## 7
           J.K. Rowling
                               4.46
## 8
      Brandon Sanderson
                               4.39
## 9
           Markus Zusak
                               4.34
## 10
          Robert Jordan
                               4.18
```

How do I merge the author information from authors based on author_id in books and id in authors, keeping all information from authors regardless of whether or not there is match? Click here for solution

```
merge(books, authors, by.x="author_id", by.y="id", all.y=T)
```

```
##
      author_id id
                                                          title rating
## 1
              1 1
                        Harry Potter and the Sorcerer's Stone
                                                                  4.47
## 2
                 2
                      Harry Potter and the Chamber of Secrets
                                                                  4.43
              1
## 3
                 3
                     Harry Potter and the Prisoner of Azkaban
                                                                  4.57
              1
## 4
                 4
              1
                          Harry Potter and the Goblet of Fire
                                                                  4.56
## 5
                  5 Harry Potter and the Order of the Phoenix
                                                                  4.50
              1
## 6
              1
                 6
                       Harry Potter and the Half Blood Prince
                                                                  4.57
## 7
                 7
              1
                         Harry Potter and the Deathly Hallows
                                                                  4.62
## 8
              2
                 8
                                              The Way of Kings
                                                                  4.64
## 9
              3 9
                                                The Book Thief
                                                                  4.37
## 10
              4 10
                                          The Eye of the World
                                                                  4.18
              5 NA
## 11
                                                           <NA>
                                                                    NA
## 12
              6 NA
                                                           <NA>
                                                                    NA
## 13
              7 NA
                                                           <NA>
                                                                    NA
## 14
              8 NA
                                                           <NA>
                                                                    NA
## 15
              9 NA
                                                           <NA>
                                                                    NA
## 16
             10 NA
                                                           <NA>
                                                                    NA
##
                           name avg_rating
## 1
                  J.K. Rowling
                                       4.46
## 2
                  J.K. Rowling
                                       4.46
## 3
                  J.K. Rowling
                                       4.46
## 4
                  J.K. Rowling
                                       4.46
## 5
                  J.K. Rowling
                                       4.46
## 6
                  J.K. Rowling
                                       4.46
## 7
                   J.K. Rowling
                                       4.46
## 8
             Brandon Sanderson
                                       4.39
```

108

```
## 9
                   Markus Zusak
                                       4.34
## 10
                  Robert Jordan
                                       4.18
## 11
                                       4.00
                Agatha Christie
## 12
                                       4.02
                      Alex Kava
## 13
         Nassim Nicholas Taleb
                                       3.99
## 14
                    Neil Gaiman
                                       4.13
## 15
                  Stieg Larsson
                                       4.16
## 16 Antoine de Saint-Exupéry
                                       4.30
merge(authors, books, by.x="id", by.y="author_id", all.x=T)
##
      id
                               name avg_rating id.y
## 1
                      J.K. Rowling
                                          4.46
## 2
                                          4.46
       1
                      J.K. Rowling
                                                   2
## 3
                      J.K. Rowling
                                          4.46
                                                   3
       1
## 4
       1
                      J.K. Rowling
                                          4.46
                                                   4
## 5
                      J.K. Rowling
                                          4.46
                                                   5
## 6
                                                   6
                      J.K. Rowling
                                          4.46
       1
## 7
                                                   7
       1
                      J.K. Rowling
                                          4.46
## 8
       2
                 Brandon Sanderson
                                          4.39
                                                   8
## 9
                      Markus Zusak
                                          4.34
       3
                                                   9
## 10
                     Robert Jordan
                                          4.18
       4
                                                  10
## 11
                                          4.00
       5
                   Agatha Christie
                                                  NA
## 12
                                          4.02
       6
                         Alex Kava
                                                  NA
## 13
       7
            Nassim Nicholas Taleb
                                          3.99
                                                  NA
## 14
       8
                       Neil Gaiman
                                          4.13
                                                  NA
## 15
                     Stieg Larsson
                                          4.16
                                                  NΑ
       9
                                          4.30
## 16 10 Antoine de Saint-Exupéry
                                                  NA
##
                                             title rating
## 1
          Harry Potter and the Sorcerer's Stone
                                                     4.47
        Harry Potter and the Chamber of Secrets
## 2
                                                     4.43
## 3
       Harry Potter and the Prisoner of Azkaban
                                                     4.57
## 4
            Harry Potter and the Goblet of Fire
                                                     4.56
## 5
      Harry Potter and the Order of the Phoenix
                                                     4.50
## 6
         Harry Potter and the Half Blood Prince
                                                     4.57
## 7
           Harry Potter and the Deathly Hallows
                                                     4.62
## 8
                                 The Way of Kings
                                                     4.64
## 9
                                   The Book Thief
                                                     4.37
## 10
                             The Eye of the World
                                                     4.18
## 11
                                              <NA>
                                                       NA
## 12
                                              <NA>
                                                       NA
## 13
                                              <NA>
                                                       NA
## 14
                                              <NA>
                                                       NA
## 15
                                              <NA>
                                                       NA
```

DATA.FRAMES 109

16 <NA> NA

Data.frames

row3

3

7 FALSE third

Data.frames are one of the primary data structure used very frequently when working in R. Data.frames are tables of same-sized, named columns, where each column has a single type.

You can create a data.frame easily:

```
 df \leftarrow data.frame(cat_1=c(1,2,3), cat_2=c(9,8,7), ok=c(T, T, F), other=c("first", "second", "third head(df) )
```

```
## cat_1 cat_2 ok other
## 1 1 9 TRUE first
## 2 2 8 TRUE second
## 3 3 7 FALSE third
```

Regular indexing rules apply as well. This is how you index rows. Pay close attention to the trailing comma:

```
# Numeric indexing on rows:
df[1:2,]
     cat_1 cat_2 ok other
## 1
               9 TRUE first
         1
## 2
         2
               8 TRUE second
df[c(1,3),]
                    ok other
##
     cat_1 cat_2
## 1
               9 TRUE first
         1
         3
               7 FALSE third
# Logical indexing on rows:
df[c(T,F,T),]
##
     cat_1 cat_2
                    ok other
## 1
               9 TRUE first
         1
## 3
               7 FALSE third
# Named indexing on rows only works
# if there are named rows:
row.names(df) <- c("row1", "row2", "row3")</pre>
df[c("row1", "row3"),]
##
                       ok other
        cat_1 cat_2
## row1
          1 9 TRUE first
```

By default, if you don't include the comma in the square brackets, you are indexing the column:

```
df[c("cat_1", "ok")]
##
        cat_1
               ok
           1 TRUE
## row1
## row2
            2 TRUE
## row3
            3 FALSE
To index columns, place expressions after the first comma:
# Numeric indexing on columns:
df[, 1]
## [1] 1 2 3
df[, c(1,3)]
##
        cat_1
                 ok
## row1
           1 TRUE
## row2
            2 TRUE
## row3
            3 FALSE
# Logical indexing on columns:
df[, c(T, F, F, F)]
## [1] 1 2 3
# Named indexing on columns.
# This is the more typical method of
# column indexing:
df$cat_1
## [1] 1 2 3
# Another way to do named indexing on columns:
df[,c("cat_1", "ok")]
##
        cat_1
                 ok
## row1
            1 TRUE
## row2
            2 TRUE
## row3
            3 FALSE
Of course, you can index on columns and rows:
# Numeric indexing on columns and rows:
df[1:2, 1]
## [1] 1 2
df[1:2, c(1,3)]
```

DATA.FRAMES 111

##

here for solution

cat_1 cat_2

2

1

8

df[,1:2]

##

1

2

3

cat_1 ok

```
## row1
            1 TRUE
## row2
            2 TRUE
# Logical indexing on columns and rows:
df[c(T,F,T), c(T, F, F, F)]
## [1] 1 3
# Named indexing on columns and rows.
# This is the more typical method of
# column indexing:
df$cat_1[c(T,F,T)]
## [1] 1 3
\# Another way to do named indexing on columns and rows:
row.names(df) <- c("row1", "row2", "row3")</pre>
df[c("row1", "row3"),c("cat_1", "ok")]
##
        cat_1
           1 TRUE
## row1
## row3
            3 FALSE
Examples
How can I get the first 2 rows of a data frame named df? Click here
for solution
df <- data.frame(cat_1=c(1,2,3), cat_2=c(9,8,7), ok=c(T, T, F), other=c("first", "second", "third
df [1:2,]
     cat_1 cat_2 ok other
              9 TRUE first
## 1
        1
## 2
         2
               8 TRUE second
How can I get the first 2 columns of a data.frame named df? Click
```

How can I get the rows where values in the column named cat_1 are greater than 2? Click here for solution

How can I get the rows where values in the column named cat_1 are greater than 2 and the values in the column named cat_2 are less than 9? Click here for solution

```
df[df$cat_1 > 2 & df$cat_2 < 9,]
## cat_1 cat_2 ok other
## 3 3 7 FALSE third</pre>
```

How can I get the rows where values in the column named cat_1 are greater than 2 or the values in the column named cat_2 are less than 9? Click here for solution

How do I sample n rows randomly from a data.frame called df? Click here for solution

```
df[sample(nrow(df), n),]
```

Alternatively you could use the sample_n function from the package dplyr: sample_n(df, n)

How can I get only columns whose names start with "cat_"? Click here for solution

```
df <- data.frame(cat_1=c(1,2,3), cat_2=c(9,8,7), ok=c(T, T, F), other=c("first", "secondf[, grep("^cat_", names(df))]</pre>
```

```
## cat_1 cat_2
## 1 1 9
## 2 2 8
## 3 3 7
```

Reading & Writing data

Examples

How do I read a csv file called grades.csv into a data.frame?

Click here for solution

```
dat <- read.csv("./grades.csv")</pre>
head(dat)
##
     grade
                 year
       100
## 1
               junior
## 2
        99 sophomore
        75 sophomore
## 4
        74 sophomore
## 5
        44
               senior
## 6
        69
               junior
```

How do I read a csv file called grades2.csv where instead of being comma-separated, it is semi-colon-separated, into a data.frame?

Click here for solution

44

69

senior

junior

5

6

```
dat <- read.csv("./grades_semi.csv", sep=";")
head(dat)

## grade year
## 1 100 junior
## 2 99 sophomore
## 3 75 sophomore
## 4 74 sophomore</pre>
```

How do I prevent R from reading in strings as factors when using a function like read.csv?

Click here for solution In R 4.0+, strings are not read in as factors, so you do not need to do anything special. For R < 4.0, use stringsAsFactors.

```
dat <- read.csv("./grades.csv", stringsAsFactors=F)
head(dat)</pre>
```

```
## grade year
## 1 100 junior
## 2 99 sophomore
## 3 75 sophomore
## 4 74 sophomore
## 5 44 senior
```

```
## 6 69 junior
```

How do I specify the type of 1 or more columns when reading in a csy file?

Click here for solution

```
dat <- read.csv("./grades.csv", colClasses=c("grade"="character", "year"="factor"))
str(dat)

## 'data.frame': 10 obs. of 2 variables:
## $ grade: chr "100" "99" "75" "74" ...
## $ year : Factor w/ 4 levels "freshman", "junior",..: 2 4 4 4 3 2 2 3 1 2</pre>
```

Given a list of csv files with the same columns, how can I read them in and combine them into a single dataframe?

Click here for solution

```
# We want to read in grades.csv, grades2.csv, and grades3.csv
# into a single dataframe.

list_of_files <- c("grades.csv", "grades2.csv", "grades3.csv")

results <- data.frame()
for (file in list_of_files) {
   dat <- read.csv(file)
   results <- rbind(results, dat)
}
dim(results)</pre>
```

[1] 32 2

How do I create a data frame with comma-separated data that I've copied onto my clipboard?

Click here for solution

```
# For mac
dat <- read.delim(pipe("pbpaste"),header=F,sep=",")
# For windows
dat <- read.table("clipboard",header=F,sep=",")</pre>
```

CONTROL FLOW 115

Control flow

If/else statements

If, else if, and else statements are methods for controlling whether or not an operation is performed based on the result of some expression.

How do I print "Success!" if my expression evaluates to TRUE, and "Failure!" otherwise?

Click here for solution

```
# Randomly assign either TRUE or FALSE to t_or_f.
t_or_f <- sample(c(TRUE,FALSE),1)</pre>
if (t or f == TRUE) {
  # If t_or_f is TRUE, print success
 print("Success!")
} else {
  # Otherwise, print failure
  print("Failure!")
}
## [1] "Failure!"
# You don't need to put the full expression.
# This is the same thing because t_or_f
# is already TRUE or FALSE.
# TRUE == TRUE evaluates to TRUE and
# FALSE == TRUE evaluates to FALSE.
if (t_or_f) {
```

```
## [1] "Failure!"
```

} else {

print("Success!")

print("Failure!")

If t_or_f is TRUE, print success

Otherwise, print failure

How do I print "Success!" if my expression evaluates to TRUE, "Failure!" if my expression evaluates to FALSE, and "Huh?" otherwise?

Click here for solution

```
# Randomly assign either TRUE or FALSE to t_or_f.
t_or_f <- sample(c(TRUE, FALSE, "Something else"),1)
if (t_or_f == TRUE) {</pre>
```

```
# If t_or_f is TRUE, print success
  print("Success!")
} else if (t_or_f == FALSE) {
  # If t_or_f is FALSE, print failure
  print("Failure!")
} else {
  # Otherwise print huh
  print("Huh?")
}
## [1] "Failure!"
# In this case you need the full expression because
# "Something else" does not evaluate to TRUE or FALSE
# which will cause an error as the if and else if
# statements expect a result of TRUE or FALSE.
if (t_or_f == TRUE) {
  # If t_or_f is TRUE, print success
  print("Success!")
} else if (t_or_f == FALSE) {
  \# If t_{or_f} is FALSE, print failure
  print("Failure!")
} else {
  # Otherwise print huh
  print("Huh?")
}
```

[1] "Failure!"

For loops

For loops allow us to execute similar code over and over again until we've looped through all of the elements. They are useful for performing the same operation to an entire vector of input, for example.

Using the suite of apply functions is more common in R. It is often said that the apply suite of function are much faster than for loops in R. While this used to be the case, this is no longer true.

Examples

How do I loop through every value in a vector and print the value? Click here for solution

```
for (i in 1:10) {
    # In the first iteration of the loop,
    # i will be 1. The next, i will be 2.
# Etc.
```

CONTROL FLOW 117

print(i)

```
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
How do I break out of a loop before it finishes? Click here for solution
for (i in 1:10) {
 if (i==7) {
    # When i==7, we will exit the loop.
 }
 print(i)
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
How do I loop through a vector of names? Click here for solution
friends <- c("Phoebe", "Ross", "Rachel", "Chandler", "Joey", "Monica")</pre>
my string <- "So no one told you life was gonna be this way, "
for (friend in friends) {
  print(paste0(my_string, friend, "!"))
## [1] "So no one told you life was gonna be this way, Phoebe!"
## [1] "So no one told you life was gonna be this way, Ross!"
## [1] "So no one told you life was gonna be this way, Rachel!"
## [1] "So no one told you life was gonna be this way, Chandler!"
## [1] "So no one told you life was gonna be this way, Joey!"
## [1] "So no one told you life was gonna be this way, Monica!"
```

How do I skip a loop if some expression evaluates to TRUE? Click here for solution

```
friends <- c("Phoebe", "Ross", "Mike", "Rachel", "Chandler", "Joey", "Monica")
my_string <- "So no one told you life was gonna be this way, "</pre>
for (friend in friends) {
  if (friend == "Mike") {
    # next, skips over the rest of the code for this loop
    # and continues to the next element
    next
  }
  print(paste0(my_string, friend, "!"))
}
## [1] "So no one told you life was gonna be this way, Phoebe!"
## [1] "So no one told you life was gonna be this way, Ross!"
## [1] "So no one told you life was gonna be this way, Rachel!"
## [1] "So no one told you life was gonna be this way, Chandler!"
## [1] "So no one told you life was gonna be this way, Joey!"
## [1] "So no one told you life was gonna be this way, Monica!"
```

Apply functions

Examples

apply

lapply

lapply is a function that applies a function FUN to each element in a vector or list, and returns a list.

How do I get the mean value of each vector in our list, my_list, in another list? Click here for solution

```
lapply(my_list, mean)
## $pages
```

```
## [1] 3
##
## $words
## [1] 30
##
## $letters
## [1] 300
```

sapply

sapply is very similar to lapply, however, where lapply always returns a list, sapply will simplify the output of applying the function FUN to each element.

If you recall, when accessing an element in a list using single brackets my_list[1], the result will always return a list. If you access an element with double brackets my_list[[1]], R will attempt to simplify the result. This is analogous to lapply and sapply.

How do I get the mean value of each vector in our list, my_list, but rather than the result being a list, put the results in the simplest form? Click here for solution

```
sapply(my_list, mean)

## pages words letters
## 3 30 300
```

tapply

tapply is described in the documentation as a way to "apply a function to each cell of a ragged array, that is to each (non-empty) group of values given by a unique combination of the levels of certain factors." This is not a very useful description.

An alternative way to think about tapply, is as a function that allows you to calculate or apply function to data1 when data1 is grouped by data2.

```
tapply(data1, data2, function)
```

A concrete example would be getting the *mean* (function) grade (data1) when grade (data1) is grouped by year (data2):

grades

```
year
##
      grade
## 1
        100
                junior
## 2
         99 sophomore
## 3
         75 sophomore
## 4
         74 sophomore
## 5
         44
                senior
## 6
         69
                junior
## 7
         88
                junior
## 8
         99
                senior
## 9
         90
             freshman
## 10
         92
                junior
tapply(grades$grade, grades$year, mean)
```

```
## freshman junior senior sophomore
## 90.00000 87.25000 71.50000 82.66667
```

If your function (in this case *mean*), requires extra arguments, you can pass those by name to tapply. This is what the ... argument in tapply is for. For example, if we want our *mean* function to remove na's prior to calculating a mean we could do the following:

```
tapply(grades$grade, grades$year, mean, na.rm=T)

## freshman junior senior sophomore
## 90.00000 87.25000 71.50000 82.66667
```

Writing functions

In a nutshell, a function is a set of instructions or actions packaged together in a single definition or unit. Typically, function accept 0 or more *arguments* as input, and returns 0 or more results as output. The following is an example of a function in R:

```
# word_count is a function that accepts a sentence as an argument,
# strips punctuation and extra space, and returns the number of
# words in the sentence.
Word_count <- function(sentence) {
    # strip punctuation and save into an auxiliary variable
    aux <- gsub('[[:punct:]]+','', sentence)

# split the sentence by space and remove extra spaces
    result <- sum(unlist(strsplit(aux, " ")) != "")
    return(result)
}
test_sentence <- "this is a sentence, with 7 words."
word_count(test_sentence)</pre>
```

[1] 7

The function is named word_count. The function has a single parameter named sentence. The function returns a single value, result, which is the number of words in the provided sentence. test_sentence is the argument to word_count. An argument is the actual value passed to the function. We pass values to functions – this just means we use the values as arguments to the function. The parameter, sentence, is the name shown in the function definition.

Functions can have helper functions. A helper function is a function defined and used within another function in order to reduce complexity or make the task at hand more clear. For example, we could have written the previous function differently:

```
# word_count is a function that accepts a sentence as an argument,
# strips punctuation and extra space, and returns the number of
# words in the sentence.
word_count <- function(sentence) {</pre>
  # a helper function that takes care of removing
  # punctuation and extra spaces.
  split_and_clean <- function(sentence) {</pre>
    # strip punctuation and save into an auxiliary variable
    aux <- gsub('[[:punct:]]+','', sentence)</pre>
    # remove extra spaces
    aux <- unlist(strsplit(aux, " "))</pre>
    return(aux[aux!=""])
  # return the length of the sentence
  result <- length(split_and_clean(sentence))</pre>
  return(result)
test_sentence <- "this is a sentence, with 7 words."</pre>
word_count(test_sentence)
```

[1] 7

Here, our helper function is named split_and_clean. If you try to call split_and_clean outside of word_count, you will get an error. split_and_clean is defined within the scope of word_count and is not available outside that scope. In this example, word_count is the *caller*, the function that *calls* the other function, split_and_clean. The other function, split_and_clean, can be referred to as the callee.

In R functions can be passed to other functions as arguments. In general, functions that accept another function as an argument or return functions, are called higher order functions. Some examples of higher order functions in R are sapply, lapply, tapply, Map, and Reduce. The function passed as an argument, is often referred to as a *callback function*, as the *caller* is expected to call back (execute) the argument at a later point in time.

. . .

The ellipsis . . . in R can be used to pass an unknown number of arguments to a function. For example, if you look at the documentation for sapply (?sapply), you will see the following in the usage section:

```
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
```

In the arguments section, it says the ellipsis are "optional arguments to FUN". sapply uses the ellipsis as a vehicle to pass an unknown number of arguments to the callback function. In practice, this could look something like:

```
dims <- function(..., sort=F) {</pre>
  args <- list(...)</pre>
  arg_names <- names(args)</pre>
 results <- lapply(args, dim)
  if (is.null(arg_names) | sort==FALSE) {
    # arguments not passed with a name
    return(results)
  }
 return(results[order(names(results))])
dims(grades)
## [[1]]
## [1] 10 2
dims(grades, my_mat)
## [[1]]
## [1] 10 2
##
## [[2]]
## [1] 4 3
dims(xyz=grades, abc=my_mat)
## $xyz
## [1] 10 2
##
## $abc
## [1] 4 3
dims(xyz=grades, abc=my_mat, sort=T)
## $abc
## [1] 4 3
##
## $xyz
## [1] 10 2
```

Here, dims accepts any number of data.frame-like objects, ..., and a logical

value indicating whether or not to sort the list by names. As you can see, if arguments are passed to dims with names, those names can be accessed within dims via names(list(...)).

Plotting

barplot

barplot is a function that creates a barplot. Barplots are used to display categorical data. The following is an example of plotting some data from the precip dataset.

barplot(precip[1:10])

As you can see, the x-axis labels are bad. What if we turn the labels to be vertical?

```
barplot(precip[1:10], las=2)
```

124

Much better, however, some of the longer names go off of the plot. Let's fix this:

par(oma=c(3,0,0,0)) # oma stands for outer margins. We increase the bottom margin to 3
barplot(precip[1:10], las=2)

This is even better, however, it would be nice to have a title and axis label(s).

par(oma=c(3,0,0,0)) # oma stands for outer margins. We increase the bottom margin to 3. barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain")

Average Precipitation

We are getting there. Let's add some color.

par(oma=c(3,0,0,0)) # oma stands for outer margins. We increase the bottom margin to 3.
barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain", col="blue")

Average Precipitation

What if we want different colors for the different cities?

```
library(RColorBrewer)
par(oma=c(3,0,0,0)) # oma stands for outer margins. We increase the bottom margin to 3
colors <- brewer.pal(10, "Set3")
barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain", col=</pre>
```


What if instead of x-axis labels, we want to use a legend?

```
library(RColorBrewer)
par(oma=c(0,0,0,0)) # oma stands for outer margins. We increase the bottom margin to 3
colors <- brewer.pal(10, "Set3")
barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain", col=</pre>
```


Pretty good, but now we don't need so much space at the bottom, and we need to make space for that legend. We use xlim to increase the x-axis, and args.legend to move the position of the legend along the x and y axes.

```
library(RColorBrewer)
colors <- brewer.pal(10, "Set3")
barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain", col=colors, leg</pre>
```

Average Precipitation

It's looking good, let's remove the box around the legend:

```
library(RColorBrewer)
colors <- brewer.pal(10, "Set3")
barplot(precip[1:10], las=2, main="Average Precipitation", ylab="Inches of rain", col=colors, leg</pre>
```

128

Average Precipitation

boxplot

boxplot is a function that creates a box and whisker plot, given some grouped data. The following is an example using the trees dataset.

First, we break our data into groups based on height.

```
dat <- trees
dat$size <- cut(trees$Height, breaks=c(0,76,100))
levels(dat$size) <- c("short", "tall")</pre>
```

Next, we start with a box plot:

boxplot(dat\$Girth ~ dat\$size)

Qat\$Girth ~ dat\$size

Let's spruce things up with proper labels:

boxplot(dat\$Girth ~ dat\$size, main="Tree girth", ylab="Girth in Inches", names=c("Short", "Tall")

Tree girth

Let's add color:

boxplot(dat\$Girth ~ dat\$size, main="Tree girth", ylab="Girth in Inches", names=c("Short", "Tall")

Tree girth

pie

pie is a function that creates a piechart.pie charts are used to display categorical data. The following is an example using the USPersonalExpenditure dataset.

First, let's get the mean expenditure:

```
# Quick look at data:
USPersonalExpenditure
```

```
## Food and Tobacco 22.200 44.500 59.60 73.2 86.80
## Household Operation 10.500 15.500 29.00 36.5 46.20
## Medical and Health 3.530 5.760 9.71 14.0 21.10
## Personal Care 1.040 1.980 2.45 3.4 5.40
## Private Education 0.341 0.974 1.80 2.6 3.64

# Mean expenditure
expenditure <- rowMeans(USPersonalExpenditure)
```

Now, we can create our pie chart.

```
pie(expenditure)
```


Let's use some different colors!

```
pie(expenditure, col = c("#8E6F3E", "#1c5253", "#23395b", "#6F727B", "#F97B64"))
```


Let's add the percentages next to the names. To do so, we must first get those values:

```
# calculating percentages
expenditure_percentage <- 100*expenditure/sum(expenditure)
# rounding percentages to 2 decimal places
expenditure_percentage <- round(expenditure_percentage, 2)
# combining names with percentages
expenditure_names <- pasteO(names(expenditure), " (", expenditure_percentage, "%)")
# creating new labels
pie(expenditure, labels = expenditure_names, col = c("#8E6F3E", "#1c5253","#23395b","#6F727B", "#</pre>
```


Let's add a title:

```
pie(expenditure, labels = expenditure_names, col = c("#8E6F3E", "#1c5253", "#23395b", "#6F727B", "#
```

Mean US expenditure from 1940 to 1960

dotchart

dotchart draws a Cleveland dot plot.

Fun Fact: Dr. Cleveland is a Distinguished Professor in the Statistics department at Purdue University!

The following is an example using the built-in ${\tt HairEyeColor}$ dataset.

First, let's consider only individuals with black hair.

```
# Selecting only individuals with black hair
black_hair = HairEyeColor[1,,]
# Summing both Male and Female.
black_hair = rowSums(black_hair)
```

Now we can create our dotchart.

```
dotchart(black_hair)
```


Let's add a title, and labels to the x-axis and the y-axis.

dotchart(black_hair, main='Eye color for individuals with black hair', xlab='Count', ylab='Eye color

Eye color for individuals with black hair

That's better. Let's arrange the data in an ascending manner.

```
# re-ordering the data
black_hair <- sort(black_hair)
dotchart(black_hair, main='Eye color for individuals with black hair', xlab='Count', ylab='Eye color</pre>
```

Eye color for individuals with black hair

How about some color?

dotchart(black_hair, main='Eye color for individuals with black hair', xlab='Count', y

Eye color for individuals with black hair

plot

plot is a generic plotting function. It creates scatter plots as well as line plots. The argument type allows you to define the type of plot that should be drawn.

Most common types are "p" for points (default), "l" for lines, and "b" for both.

Scatter plots

Below is an example using the built-in Orange dataset.

plot(Orange\$age, Orange\$circumference)

200 8 0

The labels for x-axis and y-axis can be improved!

plot(Orange\$age, Orange\$circumference, xlab='Tree age', ylab='Tree circumference')

We can also add a title.

plot(Orange\$age, Orange\$circumference, xlab='Tree age', ylab='Tree circumference', main

Growth of orange trees

The argument pch specifies what symbol to use when plotting. pch set at "21" enables us to have colored circles. We can specify both the border and fill colors. Let's give it a try.

plot(Orange\$age, Orange\$circumference, xlab='Tree age', ylab='Tree circumference', mail

Growth of orange trees

How about coloring the points based on the tree?

plot(Orange\$age, Orange\$circumference, xlab='Tree age', ylab='Tree circumference', main='Growth orange\$age, Orange\$circumference

Growth of orange trees

Line plots

Below is an example using the built-in Orange dataset.

plot(Orange\$age, Orange\$circumference, type='l')

Let's fix the title and axes labels.

plot(Orange\$age, Orange\$circumference, type='l', xlab='Tree age', ylab='Tree circumference

Growth of orange trees

lty is an argument that allows us to change the linetype. This is the equivalent version of pch for lines. There 7 options: "blank", "solid", "dashed", "dotted", "dotdash", "longdash", and "twodash".

plot(Orange\$age, Orange\$circumference, type='l', xlab='Tree age', ylab='Tree circumference, type='l', xlab='Tree age', ylab='Tree age', ylab='T

Growth of orange trees

We can also modify the thickness of the lines using the argument lwd. Below is an example.

plot(Orange\$age, Orange\$circumference, type='l', xlab='Tree age', ylab='Tree circumference', main

Growth of orange trees

lines

 ${\tt lines}$ draws additional lines to an existing graphic. For example, let's add lines to our orange scatter plot.

```
# Original chart
plot(Orange$age, Orange$circumference, xlab='Tree age', ylab='Tree circumference', main='Growth orange$
# Adding lines
lines(Orange$age, Orange$circumference)
```

140

Growth of orange trees

The lines are too strong. It will probably be nicer to have them in a different type, such as "dotted".

```
# Original chart
plot(Orange$age, Orange$circumference, xlab='Tree age', ylab='Tree circumference', main
# Adding lines
lines(Orange$age, Orange$circumference, lty='dotted')
```

Growth of orange trees

Note that we could continue to add lines. For example, suppose we now want to add the average orange growth line.

```
# Original chart
plot(Orange$age, Orange$circumference, xlab='Tree age', ylab='Tree

# Adding lines
lines(Orange$age, Orange$circumference, lty='dotted')

# Getting average growth
avg_growth <- tapply(Orange$circumference, Orange$age, mean)

# Adding the average growth line
lines(unique(Orange$age), avg_growth, col='tomato', lwd=2.5)</pre>
```

Growth of orange trees

We can add lines to any plot. Here is an example adding lines to a barplot.

```
# Original chart
par(oma=c(3,0,0,0))
barplot(precip[1:10], las=2)

# Adding a dot-dash vertical line
lines(0:12, rep(20,13), lty='longdash')
```


points

points draws points on an existing graphic. For example, let's add the points to the line plot we did earlier.

```
# Original chart
plot(Orange$age, Orange$circumference, type='l', xlab='Tree age', ylab='Tree circumference', main
# Adding points
points(Orange$age, Orange$circumference)
```

Growth of orange trees

It's hard to see the points. It would help to have the lines be dark grey, and have the points be colored.

```
# Original chart with grey lines
plot(Orange$age, Orange$circumference, type='l', xlab='Tree age', ylab='Tree circumference', main
# Adding points
points(Orange$age, Orange$circumference, pch=20, col='tomato')
```

Growth of orange trees

Much better!

Similar to lines, we can add points to any plot. Here is an example adding lines to a barplot.

```
# Original chart
par(oma=c(3,0,0,0))
barplot(precip[1:10], las=2)

# Adding a dot-dash vertical line
x_values <- seq(1,10, length=10) + seq(-.3,1.5,length=10) # adjusting x positions
points(x_values, precip[1:10], pch=21, bg='steelblue')</pre>
```


abline

abline is similar to the lines function. Below are some examples.

Let's add a Y=X line (with intercept=0 and slope=1).

```
# Original chart
plot(cars$speed, cars$dist, xlab="Speed (mph)", ylab="Stopping distance (ft)")
# Adding Y=X line
abline(a=0, b=1) # a = intercept, b=slope
     120
                                                                       0
     100
Stopping distance (ft)
                                                                       0
                                                     0
     80
                                          0
                                                                       0
                                                                 0
     9
                                                           8
     40
                             0 0 0
                                          0
                                       0
                                0
                                            00
                                       0
                                         0
     20
                     0
                                 0
            0
     0
               5
                             10
                                            15
                                                           20
                                                                          25
                                     Speed (mph)
```

146

Let's add a horizontal line at 60.

```
# Original chart
plot(cars$speed, cars$dist, xlab="Speed (mph)", ylab="Stopping distance (ft)")
# Adding a dotted horizontal line
abline(h=60, lty='dotted')
```


Let's add a vertical line at 15.

```
# Original chart
plot(cars$speed, cars$dist, xlab="Speed (mph)", ylab="Stopping distance (ft)")
# Adding a dot-dash vertical line
abline(v=15, lty='dotdash')
```


As with lines and points, we can continue to add ablines.

```
# Original chart
plot(cars$speed, cars$dist, xlab="Speed (mph)", ylab="Stopping distance (ft)")

# Adding Y=X line
abline(a=0, b=1) # a = intercept, b=slope

# Adding a dotted horizontal line
abline(h=60, lty='dotted')

# Adding a dot-dash vertical line
abline(v=15, lty='dotdash')
```


As lines and points we can add ablines to any plot. Here is an example adding lines to a dotchart.

```
# Original chart
dotchart(black_hair, main='Eye color for individuals with black hair', xlab='Count', y
# Adding a dot-dash vertical line
abline(v=15, lty='dotdash')
```

Eye color for individuals with black hair

text

text enables us to add texts to our plots. Similarly to points,lines, and abline we can add text to any plot. For the example below, we will focus on scatter plots and the built-in dataset mtcars.

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Text with some additional comments
# x and y enables us to select a location
text(x=29,y=460,'Note a downward trend')
```


How about making it italicized? We can change the font using the font argument. It takes 4 values: 1 or plain, 2 or bold, 3 or italic, 4 and bold-italic.

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Text with some additional comments
text(x=29,y=460,'Note a downward trend', font=3)
```


How about we add labels that show what cars are some (or all) of these points? We can do this using the argument labels.

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', ;

# Text with some additional comments
text(x=29,y=460,'Note a downward trend', font=3)

# Selecting some cars
subset_mtcars <- subset(mtcars, ((mpg>18&mpg<20)&disp>300))
# Label to some cars
text(x=subset_mtcars$mpg,y=subset_mtcars$disp,labels=row.names(subset_mtcars))
```


We can definitely improve the location of these labels. Let's add some offset to the x-axis. We can do this two ways:

- 1. Literally add an offset to x, or
- 2. Use the adj argument.

Below is the example for option (1).

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Text with some additional comments
text(x=29,y=460,'Note a downward trend', font=3)
# Label to some cars with an offset to x-axis
text(x=subset_mtcars$mpg+4.5,y=subset_mtcars$disp,labels=row.names(subset_mtcars))
```


Below is the example for option (2).

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)',
# Text with some additional comments
text(x=29,y=460,'Note a downward trend', font=3)
# Label to some cars
text(x=subset_mtcars$mpg,y=subset_mtcars$disp,labels=row.names(subset_mtcars), adj=-0.
```


Could we decrease the size of the labels?

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Text with some additional comments
text(x=29,y=460,'Note a downward trend', font=3)
# Label to some cars
text(x=subset_mtcars$mpg,y=subset_mtcars$disp,labels=row.names(subset_mtcars), adj=-0.1, cex=.8)
```


mtext

mtext is similar to the text function. However, it enables you to write in one of the four margins of the plot. Below is an example using the built-in mtcars dataset.

```
# Original chart
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Adding text to the top margin:
mtext("Data from 1974 Motor Trend US magazine", font=3, cex=.7) # Recall that `cex` controls the
```

154

Motor trend car results

legend

The legend function enables us to add legends to plots. The example below uses the built-in dataset iris. The scatter plot below colors the data based on the flower's species.

Original chart, colors are based on species
plot(iris\$Sepal.Length, iris\$Sepal.Width, xlab='Sepal length', ylab='Sepal width', pch

Let's create a legend for this plot to make it clear what the colors represent.

```
# Original chart, colors are based on species
plot(iris$Sepal.Length, iris$Sepal.Width, xlab='Sepal length', ylab='Sepal width', pch=21, bg=iri
# Adding a legend:
legend("topright", legend=unique(iris$Species), col=1:3, pc=20)
```


We can improve the look of the legend by making the points bigger, and removing the box.

156

What if we made the legend's text smaller and italicized?

par

par allows us to set several graphical parameters. Among the many parameters that can be set, some of the most commonly used ones are mfrow, mfcol, mar, and oma. mfrow and mfcol enables us to create a layout for plots, so that we can include several graphs side by side. mar and oma set margins using the following form c(bottom, left, top, right). oma looks at outer margins.

Note that you can set several parameters all at once.

mfrow, mfcol

The example below uses the built-in data mtcars. mfrow and mfcol takes vector of the form c(nr, nc), where nr represents the number of rows and nc the number of columns.

```
par(mfrow=c(2,3)) # two rows, three columns
# Plot #1
plot(mtcars$mpg, mtcars$disp, xlab='Miles/(US) gallon', ylab='Displacement (cu.in.)', pch=21, bg=
# Plot #2
boxplot(mtcars$wt, xlab='Weight (1000 lbs)', col='steelblue',main='Plot 2')
# Plot #3
barplot(table(mtcars$vs), col=c('tomato',"#23395b"), xlab='Engine', names.arg = c('V-shaped', 'St
# Plot #4
dotchart(mtcars$mpg, pch=21, bg="#43418A", xlim=c(10, 42), xlab='Miles/(US) gallon', main='Plot 4
text(mtcars$mpg[c(1:2, 31:32)], c(1:2, 31:32), labels=row.names(mtcars)[c(1:2, 31:32)], adj = -.2
# Plot #5
pie(table(mtcars$am), labels=c('Automatic', 'Manual'), main='Plot 5')
# Plot #6
boxplot(mtcars$hp ~mtcars$am, names=c("Automatic", "Manual"), xlab='Transmission', ylab='Horsepower's property of the property of the plot #6
boxplot(mtcars$hp ~mtcars$am, names=c("Automatic", "Manual"), xlab='Transmission', ylab='Horsepower's property of the plot #6
```

158

mar, oma

The example below uses the built-in data iris.

Remove all margins.

Add larger margins on the bottom and left side.

How do these margins look set on two plots side by side?

```
par(mar=c(4,6,2,2), mfrow=c(1,2))
# First plot
plot(iris$Sepal.Length, iris$Sepal.Width, xlab='Sepal length', ylab='Sepal width', pch=21, bg=iri
# Adding a legend:
legend("topright", legend=unique(iris$Species), col=1:3, pc=20,
      cex = .9, # text size
       text.font=3, # italic text
       pt.cex = 1.5, # changing just the point size
       bty='n') # removing box
# Second plot
plot(iris$Petal.Length, iris$Petal.Width, xlab='Petal length', ylab='Peta width', pch=21, bg=iris
# Adding a legend:
legend("bottomright", legend=unique(iris$Species), col=1:3, pc=20,
       cex = .9, # text size
       text.font=3, # italic text
       pt.cex = 1.5, # changing just the point size
       bty='n') # removing box
```


Doesn't look very good. Let's try setting smaller margins. Note that the default values for mar are mar=c(5.1, 4.1, 4.1, 2.1).

```
par(mar=c(4, 4, 2, 1), mfrow=c(1,2))
# First plot
plot(iris$Sepal.Length, iris$Sepal.Width, xlab='Sepal length', ylab='Sepal width', pch
# Adding a legend:
legend("topright", legend=unique(iris$Species), col=1:3, pc=20,
       cex = .9, # text size
       text.font=3, # italic text
      pt.cex = 1.5, # changing just the point size
      bty='n') # removing box
# Second plot
plot(iris$Petal.Length, iris$Petal.Width, xlab='Petal length', ylab='Peta width', pch=
# Adding a legend:
legend("bottomright", legend=unique(iris$Species), col=1:3, pc=20,
       cex = .9, # text size
      text.font=3, # italic text
      pt.cex = 1.5, # changing just the point size
      bty='n') # removing box
```


Perhaps we don't need two legends. How about we increase the margins (outer and usual) for top and bottom to include legend at the bottom, and a join title at the top?

Results for 3 species of iris flowers

plot_usmap

ggplot

ggmap

ggmap is an excellent package that provides a suite of functions that, among other things, allows you to map spatial data on top of static maps.

Getting started

To install ggmap, simply run install.packages("ggmap"). To load the library, run library(ggmap). When first using this package, you may notice you need an API key to get access to certain functionality. Follow the directions here to get an API key. It should looks somethings like: mQkzTpiaLYjPqXQBotesgif3EfGL2dbrNVOrogg.

Once you've acquired the API key, you have two options:

1. Register ggmap with Google for the current session:

```
library(ggmap)
register_google(key="mQkzTpiaLYjPqXQBotesgif3EfGL2dbrNVOrogg")
```

2. Register ggmap with Google, persistently through sessions:

```
library(ggmap)
register_google(key="mQkzTpiaLYjPqXQBotesgif3EfGL2dbrNVOrogg", write=TRUE)
```

Note that if you choose option (2), your API key will be saved within your ~/.Renviron.

RMARKDOWN 165

Examples

How do I get a map of West Lafayette? Click here for solution

```
map <- get_map(location="West Lafayette")
ggmap(map)</pre>
```

How do I zoom in and out on a map of West Lafayette? Click here for solution

```
# zoom way out
map <- get_map(location="West Lafayette", zoom=1)
ggmap(map)

# zoom in
map <- get_map(location="West Lafayette", zoom=12)
ggmap(map)</pre>
```

How do I add Latitude and Longitude points to a map of Purdue University? Click here for solution

```
points_to_add <- data.frame(latitude=c(40.433663, 40.432104, 40.428486), longitude=c(-86.916584,
map <- get_map(location="Purdue University", zoom=14)
ggmap(map) + geom_point(data = points_to_add, aes(x = longitude, y = latitude))</pre>
```

RMarkdown

To install RMarkdown simply run the following:

```
install.packages("rmarkdown")
```

Projects in The Data Mine are all written in RMarkdown. You can download the RMarkdown file by clicking on the link at the top of each project page. Each file should end in the "Rmd" which is the file extension commonly associated with RMarkdown files.

You can find an exemplary RMarkdown file here:

https://raw.githubusercontent.com/TheDataMine/the-examples-book/master/files/rmarkdown.Rmd

If you open this file in RStudio, and click on the "Knit" button in the upper left hand corner of IDE, you will get the resulting HTML file. Open this file in the web browser of your choice and compare and contrast the syntax in the rmarkdown.Rmd file and resulting output. Play around with the file, make modifications, and re-knit to gain a better understanding of the syntax. Note that similar input/output examples are shown in the RMarkdown Cheatsheet.

Code chunks

Code chunks are sections within an RMarkdown file where you can write, display, and optionally evaluate code from a variety of languages:

```
##
    [1] "awk"
                        "bash"
                                       "coffee"
                                                      "gawk"
                                                                     "groovy"
##
   [6] "haskell"
                       "lein"
                                       "mysql"
                                                      "node"
                                                                     "octave"
## [11] "perl"
                                       "Rscript"
                                                      "ruby"
                                                                     "sas"
                       "psql"
                                       "sh"
                                                      "stata"
                                                                     "zsh"
## [16] "scala"
                        "sed"
                                       "tikz"
                                                      "dot"
                                                                     "c"
## [21] "highlight"
                       "Rcpp"
## [26] "cc"
                       "fortran"
                                       "fortran95"
                                                      "asy"
                                                                     "cat"
## [31] "asis"
                       "stan"
                                       "block"
                                                      "block2"
                                                                     "js"
                       "sql"
                                       "go"
                                                      "python"
                                                                     "julia"
## [36] "css"
## [41] "sass"
                       "scss"
                                       "theorem"
                                                      "lemma"
                                                                     "corollary"
                                                      "example"
## [46] "proposition"
                       "conjecture"
                                       "definition"
                                                                     "exercise"
## [51] "proof"
                        "remark"
                                       "solution"
```

The syntax is simple:

For example:

```
"\{r, echo=TRUE}
my_variable <- c(1,2,3)
my_variable</pre>
```

Which will render like:

```
my_variable <- c(1,2,3)
my_variable</pre>
```

```
## [1] 1 2 3
```

You can find a list of chunk options here.

How do I run a code chunk but not display the code above the results?

Click here for solution

```
"``{r, echo=FALSE}
my_variable <- c(1,2,3)
my_variable</pre>
```

How do I include a code chunk without evaluating the code itself?

Click here for solution

RMARKDOWN 167

```
my_variable <- c(1,2,3)
my_variable</pre>
```

How do I prevent warning messages from being displayed?

Click here for solution

```
"\{r, warning=FALSE}
my_variable <- c(1,2,3)
my_variable</pre>
```

How do I prevent error messages from being displayed?

Click here for solution

```
"" {r, error=FALSE}
my_variable <- c(1,2,3)
my_variable</pre>
```

How do I run a code chunk, but not include the chunk in the final output?

Click here for solution

```
fr, include=FALSE}
my_variable <- c(1,2,3)
my_variable</pre>
```

How do I render a figure from a chunk?

Click here for solution

```
my_variable <- c(1,2,3)
plot(my_variable)</pre>
```

How do I create a set of slides using RMarkdown?

Click here for solution Please see the example Rmarkdown file here.

You can change the slide format by changing the yaml header to any of: ioslides_presentation, slidy_presentation, or beamer_presentation.

By default all first and second level headers (# and ##, respectively) will create a new slide. To manually create a new slide, you can use ***.

Resources

RMarkdown Cheatsheet

An excellent quick reference for RMarkdown syntax.

RMarkdown Reference

A thorough reference manual showing markdown input and expected output. Gives descriptions of the various chunk options, as well as output options.

RStudio RMarkdown Lessons

A set of lessons detailing the ins and outs of RMarkdown.

Markdown Tutorial

RMarkdown uses Markdown syntax for its text. This is a good, interactive tutorial to learn the basics of Markdown. This tutorial is available in multiple languages.

RMarkdown Gallery

This gallery highlights a variety of reproducible and interactive RMarkdown documents. An excellent resource to see the power of RMarkdown.

RMarkdown Chapter

This is a chapter from Hadley Wickham's excellent R for Data Science book that details important parts of RMarkdown.

RMarkdown in RStudio

This is a nice article that introduces RMarkdown, and guides the user through creating their own interactive document using RMarkdown in RStudio.

Reproducible Research

This is another good resource that introduces RMarkdown. Plenty of helpful pictures and screenshots.

TIDYVERSE 169

Tidyverse

```
piping
glimpse
filter
arrange
mutate
group_by
```

str_extract and str_extract_all

str_extract and str_extract_all are useful functions from the stringr package. You can install the package by running:

```
install.packages("stringr")
```

str_extract extracts the text which matches the provided regular expression or pattern. Note that this differs from grep in a major way. grep simply returns the index in which a pattern match was found. str_extract returns the actual matching text. Note that grep typically returns the entire line where a match was found. str_extract returns only the part of the line or text that matches the pattern.

For example:

```
text <- c("cat", "mat", "spat", "spatula", "gnat")

# All 5 "lines" of text were a match.
grep(".*at", text)

## [1] 1 2 3 4 5

text <- c("cat", "mat", "spat", "spatula", "gnat")
stringr::str_extract(text, ".*at")

## [1] "cat" "mat" "spat" "spat" "gnat"</pre>
```

As you can see, although all 5 words match our pattern and would be returned by grep, str_extract only returns the actual text that matches the pattern. In this case "spatula" is *not* a "full" match – the pattern ".*at" only captures the "spat" part of "spatula". In order to capture the rest of the word you would need to add something like ".*" to the end of the pattern:

One final note is that you must double-escape certain characters in patterns because R treats backslashes as escape values for character constants (stackoverflow). For example, to write $\$ we must first escape the $\$, so we write $\$ is true for many character which would normally only be preceded by a single $\$.

Examples

How can I extract the text between parenthesis in a vector of texts? Click here for solution

```
text <- c("this is easy for (you)", "there (are) challenging ones", "text is (really a
# Search for a literal "(", followed by any amount of any text other than more parenth
stringr::str_extract(text, "\\([^()]*\\)")
## [1] "(you)"
                          "(are)"
                                              "(really awesome)"
To get all matches, not just the first match:
text <- c("this is easy for (you)", "there (are) challenging ones", "text is (really a
# Search for a literal "(", followed by any amount of any text (.*), followed by a lit
stringr::str_extract_all(text, "\\([^()]*\\)")
## [[1]]
## [1] "(you)"
##
## [[2]]
## [1] "(are)"
##
## [[3]]
## [1] "(really awesome)" "(ok?)"
```

lubridate

lubridate is a fantastic package that makes the typical tasks one would perform on dates, that much easier.

How do I convert a string "07/05/1990" to a Date?

Click here for solution

```
library(lubridate)
dat <- "07/05/1990"
dat <- mdy(dat)
class(dat)
## [1] "Date"</pre>
```

TIDYVERSE 171

How do I convert a string "31-12-1990" to a Date?

```
Click here for solution
```

```
my_string <- "31-12-1990"
dat <- dmy(my_string)
dat</pre>
```

```
## [1] "1990-12-31" class(dat)
```

[1] "Date"

How do I convert a string "31121990" to a Date?

Click here for solution

```
my_string <- "31121990"
my_date <- dmy(my_string)
my_date</pre>
```

```
## [1] "1990-12-31"
class(my_date)
```

[1] "Date"

How do I extract the day, week, month, quarter, and year from a Date?

Click here for solution

```
my_date <- dmy("31121990")
day(my_date)</pre>
```

```
## [1] 31
week(my_date)
```

```
## [1] 53
month(my_date)
```

```
## [1] 12
quarter(my_date)
```

```
## [1] 4
year(my_date)
```

[1] 1990

Resources

Lubridate Cheatsheet

A comprehensive cheatsheet on lubridate. Excellent resource to immediately begin using lubridate.

data.table

SQL in R

Scraping

shiny

Rendering images

Python

Getting started

Python on Scholar

Each year we provide students with a working Python kernel that students are able to select and use from within https://notebook.scholar.rcac.purdue.edu/ as well as within an Rmarkdown document in https://rstudio.scholar.rcac.purdue.edu/. We ask that students use this kernel when completing all Python-related questions for the course. This ensures version consistency for Python and all packages that students will use during the academic year. In addition, this enables staff to quickly modify the Python environment for all students should the need arise.

Let's configure this so every time you access https://notebook.scholar.rcac.purdue.edu/ or https://rstudio.scholar.rcac.purdue.edu/, you will have access to the proper kernel, and the default version of python is correct. Navigate to https://rstudio.scholar.rcac.purdue.edu/, and login using your Purdue credentials. In the menu, click Tools > Shell....

You should be presented with a shell towards the bottom left. Click within the shell, and type the following followed by pressing Enter or Return:

/class/datamine/apps/runme

After executing the script, in the menu, click Session > Restart R.

In order to run Python within https://rstudio.scholar.rcac.purdue.edu/, log in to https://rstudio.scholar.rcac.purdue.edu/ and run the following in the Console or in an R code chunk:

```
datamine_py()
install.packages("reticulate")
```

The function datamine_py "activates" the Python environment we have setup for the course. Any time you want to use our environment, simply run the R function at the beginning of any R Session, *prior* to running anything Python code chunks.

174 PYTHON

To test if the Python environment is working within https://rstudio.scholar.rcac.purdue.edu/, run the following in a Python code chunk:

```
import sys
print(sys.executable)
```

The python executable should be located in the appropriate folder in the following path: /class/datamine/apps/python/.

The runme script also adds a kernel to the list of kernels shown in https://notebook.scholar.rcac.purdue.edu/.

To test if the kernel is available and working, navigate to https://notebook.s cholar.rcac.purdue.edu/, login, click on New, and select the kernel matching the current year. For example, you would select f2020-s2021 for the 2020-2021 academic year. Once the notebook has launched, you can confirm the version of Python by running the following in a code cell:

```
import sys
print(sys.executable)
```

The python executable should be located in the appropriate folder in the following path: /class/datamine/apps/python/.

If you already have a a Jupyter notebook running at https://notebook.scholar.r cac.purdue.edu/, you may need to refresh in order for the kernel to appear as an option in Kernel > Change Kernel.

If you would like to use the Python environment that is put together for this class, from within a terminal on Scholar, run the following:

```
source /class/datamine/apps/python.sh
```

This will load the environment and python will launch our environment's interpreter.

LISTS & TUPLES 175

Lists & Tuples

Dicts

Control flow

Writing functions

Reading & Writing data

numpy

scipy

pandas

Jupyter notebooks

Writing scripts

argparse

Scraping

Plotting

matplotlib

Resources

plotly

plotnine

pygal

seaborn

bokeh

Classes

tensorflow

pytorch

176 PYTHON

Tools

Docker

Tableau

GitHub

Overview

GitHub is a git repository hosting service. There are other, less well known repository hosting services such as: GitLab, Bitbucket, and Gitea. git itself is a free and open source version-control system for tracking changes in source code during software development.¹

git

Install

1. Follow the instructions here to install git onto your machine.

Configure git

1. Run the following commands:

```
git config --global user.name "You name here"
git config --global user.email "your_email@example.com"
```

2. Next, you need to authenticate with GitHub. Create a public/private keypair:

```
ssh-keygen -t rsa -C "your_email@example.com"
```

This creates two files:

```
~/.ssh/id_rsa -your private key
```

¹https://en.wikipedia.org/wiki/Git

178 TOOLS

and

~/.ssh/id_rsa.pub -your public key

- 3. Copy your **public** key to your clipboard.
- 4. Navigate and sign in to https://github.com.
- 5. Go here, and click "New SSH key".
- 6. Name the key whatever you'd like in the "Title" field. Usually, I put the name of the computer I'm using.
- 7. Paste the key in the "Key" field, and click "Add SSH key".
- 8. At this point in time you should be good to go. Verify by running the following in your terminal:

```
ssh -T git@github.com
```

You should receive a message like:

Hi username! You've successfully authenticated, but Github does not provide shell access.

Clone a repository

If you've followed the directions here to configure git with SSH:

1. Open a terminal and navigate into the folder in which you'd like to clone the repository. For example, let's say I would like to clone this book's repository into my ~/projects folder:

```
cd ~/projects
```

2. Next, run the following command:

```
git clone git@github.com:TheDataMine/the-examples-book.git
```

3. At this point in time, you should have a new folder called the-examples-book inside your ~/projects folder.

Commit changes to a repository

Creating a commit is simple:

1. Navigate into your project repository folder. For example, let's assume our repository lives: ~/projects/the-examples-book.

```
cd ~/projects/the-examples-book
```

- 2. Modify the repository files as you would like, saving the changes.
- 3. Create your commit, with an accompanying message:

```
git commit -m "Fixed minor spelling error."
```

GITHUB 179

Fetch remote changes

1. Navigate to the local repository. For example, let's assume our repository lives: ~/projects/the-examples-book.

cd ~/projects/the-examples-book

2. Fetch and pull the changes:

```
git fetch
git pull
```

Push local commits to the remote origin

- 1. First fetch any remote changes.
- 2. Then run the following commands:

```
git push
```

Create a new branch

To create a new branch based off of the master branch do the following.

1. Checkout the master branch:

```
git checkout master
```

2. Create a new branch named fix-spelling-errors-01 based off of the master branch and check the new fix-spelling-errors-01 branch out:

```
git checkout -b fix-spelling-errors-01
```

Publish your branch to GitHub

If your current local branch is not present on its remote origin, git push will publish the branch to GitHub.

Create a pull request

After publishing a local branch to GitHub, in order to create a pull request, simply navigate to the following link:

https://github.com/my_organization/my_repo/pull/new/my_branch_name

Replace my_organization with the username or organization name. For example: the datamine.

Replace my_repo with the name of the repository. For example: the-examples-book.

Replace my_branch_name with the name of the branch you would like to have merged into the master branch. For example: fix-spelling-errors-01.

So at the end, using our examples, you would navigate to:

180 TOOLS

https://github.com/TheDataMine/the-examples-book/pull/new/fix-spelling-errors-01

Fill out the information, and click "Create pull request".

GitHub Desktop

Install

- 1. Follow the excellent directions here to install GitHub Desktop.
- 2. Upon the launch of the application, you should be presented with a screen similar to this:

3. Click on "Sign in to GitHub.com. 4. Enter your GitHub credentials in the following screen:

GITHUB 181

5. Continue the sign in process. You will eventually be presented with a screen to select a repository. Congratulations! You've successfully installed GitHub Desktop.

Commit changes to a repository

1. First, make a change to to a file within the repository. In this example, I added a contributor named John Smith:

TOOLS TOOLS

2. In the lower left-hand corner of the GUI, add a Commit title and description. Concise and detailed titles and descriptions are best. Click "Commit to name-of-branch" in this case, our branch name is fix-spelling-errors-01.

3. At this point in time the Commit is only local (on your machine). In order to update the remote respository (on GitHub), you'll need to publish your branch.

If your branch is already published (present on github.com), you'll need to push your local commits to the remote origin (which is the remote fix-spelling-errors-01 branch in this case) by clicking on the "Push origin" button:

GITHUB 183

Push local commits to the remote origin

1. If you have commits that are ready to be pushed to the remote origin (github.com), you'll be presented with a screen similar to this:

TOOLS TOOLS

2. Simply click on the "Push origin" button in order to push your local commits to the remote origin (which is in this case, a remote branch called fix-spelling-errors-01):

3. You can verify that the changes have been made by navigating to the branch on github.com, and checking the commit history.

Create a new branch

1. In GitHub Desktop, click on the "Current Branch" dropdown:

GITHUB 185

2. Click on the "New Branch" button:

186 TOOLS

GITHUB 187

When presented with the following screen, ensure that your new branch will be based on the master branch:

4. Type whatever name you'd like to give the new branch. In this case, we are calling it fix-spelling-errors-01. Click "Create Branch". 5. Your current branch should now be fix-spelling-errors-01 or whatever name you entered in step (4). You can see this in the dropdown:

Publish your branch to GitHub

1. If the branch you created is not already present remotely, you'll have a button available to you that says "Publish Branch". Clicking this button will push the branch to the remote repository (on github.com):

TOOLS TOOLS

2. You can confirm that the branch has been successfully pushed to github.com by navigating to the repository on github, and clicking on the "branches" tab:

Create a pull request

1. If the branch you are working on is already published remotely, and the remote repository and local repository are both up to date, you will be presented with a screen similar to this:

GITHUB 189

Note that if your local repository is ahead of the remote repository, you will instead be presented with a screen similar to this:

You will first need to push your local commits to the origin (which is the remote fix-spelling-errors-01 branch in this case) by clicking on the "Push origin"

190 TOOLS

button.

2. Click the "Create Pull Request" button. This will open up a tab in your browser:

3. Leave a detailed comment about what you've modified or added to the book. You can click on "Preview" to see what your comment will look like. GitHub's markdown applies here. Once satisfied, click "Create pull request".

Resources

GitHub glossary:

An excellent resource to understand git and GitHub specific terminology.

Learn git branching:

An interactive game that teaches you about git branching.

VPNs

FAQs

How do I connect to Scholar from off-campus?

There are a variety of ways to connect to Scholar from off-campus. You can use the ThinLinc web client, or connect using the ThinLinc client application. If you just want to use Jupyter notebooks, you can use JupyterHub. If you just want to use RStudio, you can use RStudio Server.

Is there an advantage to using the ThinLinc client rather than the ThinLinc web client?

Yes. Although it is marginally more difficult to connect with, the ThinLinc client allows the user to copy and paste directly from their native operating system. So for example, if you have an RStudio session opened on your MacBook, you can directly copy and paste code onto Scholar using the ThinLinc client. You are unable to do this via the ThinLinc web client.

Additionally, using the ThinLinc client allows audio to work properly.

GitHub Classroom is not working – can't authorize the account.

This is usually a browser issue. GitHub Classroom does not work well with Microsoft Edge or Internet Explorer. Try Firefox or Safari or Chrome.

In Scholar, on RStudio, my font size looks weird or my cursor is offset.

In scholar, navigate to Tools > Global Options > Appearance. You can change your font, including the size and the color scheme. The default, by the way, is the RStudio theme Modern, font size 10, and the Editor theme Textmate. Make your desired changes, and then click the Apply button.

I'm unable to type into the terminal in RStudio.

Try opening a new terminal, try clearing the terminal buffer, or interrupting the current terminal. All these options come from a menu that will pop up when you hit the small down arrow next to the words "Terminal 1" (it might be another number depending on how many terminals are open) which is on the left side right above the terminal in RStudio.

I'm unable to connect to RStudio Server.

Try closing it, clearing your cookies, and using the original link: https://rstudio.scholar.racac.purdue.edu/, or for ease of scrolling, try https://desktop.scholar.rcac.purdue.edu, and open up RStudio from within the ThinLinc web client.

RStudio initialization error.

- 1. Navigate to https://desktop.scholar.rcac.purdue.edu/ and login using your Purdue Career Account credentials.
- 2. Open a terminal (not RStudio, but rather, a terminal).
- 3. Run the following commands:

/class/datamine/apps/fix_rstudio_initialization_error

This script cycles through the frontends (except the current frontend) and kills all of your user processes. At the end, the script kills the user processes on your current frontend, causing you to lose your connection. Once this is complete and you reconnect to Scholar, there should no longer be any lingering processes that prevent you from logging in.

RStudio crashes when loading a package.

Follow the directions under rstudio initialization error.

RStudio license expired.

If you are getting this message on a Saturday night, this is due to the Scholar frontends rebooting. Orphan processes are cleaned up and memory reclaimed. This process can cause a disruption in the communication that RStudio needs to do. This disruption is interpreted as a licensing issue. Simply wait and try again the next day.

RStudio is taking a long time to open.

It is possible that you saved a large .RData file the last time that you closed RStudio. (It is OK to avoid saving the .RData file, for this reason.) If you did save your .RData file, and you want to remove it now, you can do the following:

- 1. Inside RStudio, select the Terminal (located near the Console; do not use the Console itself).
- Inside the Terminal, type: cd so that you will be working in your home directory. You can double-check this by typing: pwd and it should show you that you are working in /home/mdw (but of course mdw will be whatever your username is).
- 3. Type: rm .RData (be sure to put a space between rm and .RData).

Now your R workspace should be fresh when you log out of RStudio (by clicking the log out button in the upper-right-hand corner of RStudio). In other words, next time, you will not have old variables hanging around, from a previous session. Now your RStudio should load more quickly at the beginning.

How can you run a line of R code in RStudio without clicking the "Run" button?

- 1. Click anywhere on the line (you do not need to highlight the line, and you do not need to click at the start or end of the line; anywhere on the line is ok).
- 2. Type the "Control" and "Return" keys together to run that line.

My R session freezes.

- 1. Log out of Scholar.
- 2. Log back into Scholar using the ThinLinc client.

Before entering your password in ThinLinc, be sure to click on the "End Existing Session" option in the ThinLinc window (to the left of where you type your password). This will resent your Scholar session.

White screen issue when loading RStudio.

- 1. Log in to Scholar.
- 2. Open a terminal (click the black box at the bottom of the screen).
- 3. Run the following commands:

```
# Note: You can use -fe01, -fe02, ..., -fe06 instead of -fe00.
# Until you find one that works.
ssh -Y scholar-fe00
```

```
module load rstudio rstudio
```

4. When Scholar is reset, load RStudio by opening a terminal and running the following commands:

```
ml gcc
ml rstudio
rstudio
```

Scholar is slow.

Possibility one:

Most of the files we use in this class would require dozens of seconds to load using read.csv() in R.

Here is another trick to save you some time in data import:

- 1. Read only the first, say, 10000 rows of data (see instructions below), and complete your code using the smaller dataset. The code works for the subset of data should also work for the complete data. **This output is not your final answer!**
- 2. Once you complete the code, read in the entire dataset, and run the code to RStudio. You may even close the ThinLinc after submitting the code as long as you do not close your RStudio window. Closing RStudio will stop your code from running. It is also highly recommended to save your code prior to running it.
- 3. Some time (e.g., a few hours) later, you can come back and check your output. Scholar is a computing facility that is always on, and thus you can leave it do the work.

How do you read the first 10000 rows then? For example, we usually use the following line of code to read all of the election data:

```
myDF <- read.csv('/class/datamine/data/election/itcont2020.txt')</pre>
```

Now, with an additional parameter **nrows**, you can decide how many rows to read:

```
myDF_short <- read.csv('/class/datamine/data/election/itcont2020.txt', nrows = 10000)</pre>
```

Possibility two:

You could be close to using 100% of your quota on scholar.

- 1. Log into Scholar using the ThinLinc client.
- 2. Open a terminal, and run the following command: myquota.

Important note: It will ask for your Purdue password (but won't show it to you as you type). If your quota is at or near 100%, you will need to delete some of your files on Scholar. A healthy server needs < 80% full.

There are no menus in Scholar.

Although this is a less common problem, it can happen if you accidentally selected "one empty panel" when you first logged into Scholar. To fix this, do as follows:

- Open a terminal by clicking on the Home icon it looks like a house –. This
 will open a window in the File Manager. Then, choose from the menu in
 File Manager window: File > Open Terminal Here.
- 2. Run **exactly** the following command in the terminal:
- cp /etc/xdg/xfce4/panel/default.xml ~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-panel.xml
 - 3. Log out of Scholar. As this can be hard without menus, run in the terminal:

```
killall -9 -u $USER
```

Running the command above will kill your session. When youd log back in, the menu system will work properly.

Firefox in Scholar won't open because multiple instances running.

The easy fix:

- 1. Open your File Browser in Scholar.
- 2. Choose the Option View > Show Hidden Files.
- 3. Inside your home directory, throw away the directory .mozilla.

Now your Firefox should load.

More complicated fix (if the easy fix doesn't work):

1. Open a terminal, and run the following commands:

```
cd ~/.mozilla/firefox
rm profiles.ini
```

Alternatively, you can run rm -rf ./mozilla.

Important note: Make sure that you don't leave a space after the period. The period needs to be directly next to the slash.

2. Log out of Scholar.

3. Log back into Scholar using the ThinLinc client. When logging in, after you type your password in ThinLinc, but before you press the "Connect" button, make sure that you check the box "End Existing Session".

How to transfer files between your computer and Scholar.

Solution 1: email

Attach the files in an e-mail to yourself. To do so inside Scholar, use the browser to log on to your e-mail client (located in the dock and the icon looks like a blue-and-green picture of the globe).

Solution 2: use scp

To send a file from your computer to Scholar:

- 1. Open a terminal.
- 2. Go to the directory where you have the file you want to transfer using the command with updated directory location /directory/with/file/to/send

cd /directory/with/file/to/send

3. Run the following command with the corresponding filename, username, and where/to/put/filename directory

scp filename username@scholar.rcac.purdue.edu:/where/to/put/filename

Example: Dr. Ward wants to transfer the file titled my_file.txt to a folder in his main directory called my_folder, he would run:

scp my_file.txt mdw@scholar.rcac.purdue.edu:/my_folder/my_file.txt

To send a file from Scholar to your computer:

- 1. Open a terminal.
- 2. Run the following command with the corresponding file/to/send/filename, username, and where/to/put/filename directory:

scp username@scholar.rcac.purdue.edu:/file/to/send/filename /where/to/put

Example: If Dr. Ward wants to transfer the file titled my_file.txt located in a folder named my_folder_in_scholar to a folder in his personal computer called my_folder in his main directory, he would run:

scp mdw@scholar.rcac.purdue.edu:/my_folder/my_file.txt /my_folder/my_file.txt

Solution 3: use FileZilla

1. Download and install the FileZilla Client onto your personal computer. FileZilla uses sftp ([S]SH [F]ile [T]ransfer [P]rotocol) to transfer files to

HOW TO TRANSFER FILES BETWEEN YOUR COMPUTER AND SCHOLAR.197

and from Scholar.

2. To connect to Scholar from FileZilla, enter the following information and click "Quickconnect":

Host: scholar.rcac.purdue.edu

Username: <your_scholar_username> (For example, Dr. Ward's would be mdw. See here.)

Password: <your scholar password>

Port: 22

After clicking "Quickconnect" you may be asked something similar to the following:

Select "OK" and establish the connection.

3. The files on the left-hand side are your local computer's files. The files on the right-hand side are the files in Scholar. To download files from Scholar, right click the file(s) on the Scholar side (right-hand side) and click "Download". To upload files to Scholar, right click the file(s) on your local machine (left-hand side) and click "Upload".

Solution 4: use SFTP

On windows:

- 1. Open your start menu and click on cmd.
- 2. Type: sftp username@scholar.rcac.purdue.edu (replace "username" with your username).
- 3. Once connected, follow the documentation from RCAC to transfer files.

On mac:

- 1. Open a terminal.
- 2. Type: sftp username@scholar.rcac.purdue.edu (replace "username" with your username).
- 3. Once connected, follow the documentation from RCAC to transfer files.

ThinLinc app says you can't create any more sessions.

You will need to close any other sessions that you are running and start a new one. To do so, click on a little box under the password, over on the left-hand side, which says "End existing session".

How to install ThinLinc on my computer.

See here.

Forgot my password or password not working with ThinLinc.

First, ensure you are typing it correctly by typing it somewhere you can see, and copying and pasting the password back into ThinLinc. Remember that Scholar wants your Career Account credentials, not the Boiler Key.

If you are using the app version of ThinLinc, try using the web version or Jupyter.

If the steps above do not work, you need to change your Career Account password. To do so:

- 1. Go to Secure Purdue.
- 2. Click on the option "Change your password".
- 3. After logging in, search for the link "Change Password" that "Allows you to change your Purdue Career Account password".

Jupyter Notebook download error with IE.

Please note that Internet Explorer is **not** a recommended browser. If still want to use Explorer, make sure you download the notebook as "All Files" (or something similar). That is, we need to allow the browser to save in its natural format, and not to convert the notebook when it downloads the file.

Jupyter Notebook kernel dying.

- Make sure you are using the R 3.6 (Scholar) kernel.
- Make sure you are using https://notebook.scholar.rcac.purdue.edu and not https://notebook.brown.rcac.purdue.edu. (Use Scholar instead of Brown.)
- Try clicking Kernel > Shutdown, and then reconnect the kernel.
- If one particular Jupyter Notebook template gives you this error, then create a new R 3.6 (Scholar) file.
- Try re-running the code from an earlier project that you had set up and working using Jupyter Notebooks.
- One student needed to re-run the setup command one time in the terminal:

source /class/datamine/data/examples/setup.sh

- You could be close to using 100% of your quota on scholar.
- 1. Log into Scholar using the ThinLinc client.
- 2. Open a terminal, and run the following command: myquota.

Important note: It will ask for your Purdue password (but won't show it to you as you type). If your quota is at or near 100%, you will need to delete some of your files on Scholar. A healthy server needs < 80% full, aim for that.

Python kernel not working, Jupyter Notebook won't save.

- 1. Navigate to https://notebook.scholar.rcac.purdue.edu/, and login.
- 2. Click on the "Running" tab and shutdown all running kernels.
- 3. Log into Scholar using the ThinLinc client.
- 4. Open a terminal, and run the following commands:

```
pip uninstall tornado(
/class/datamine/data/examples/setup2.sh
```

- 5. Go back to https://notebook.scholar.rcac.purdue.edu/, click on "Control Panel" in the upper right hand corner.
- 6. Click the "Stop My Server" button, followed by the green "My Server" button.

Installing my_package for Python

Do **not** install packages in Scholar using:

```
pip install my_package
```

pip install my_package --user

We've tried to provide you with a ready-made kernel with every package you would want or need. If you need a newer version of some package, or need a package not available in the kernel, please send us a message indicating what you need. Depending on the situation we may point you to create your own kernel.

Displaying multiple images after a single Jupyter Notebook Python code cell.

Sometimes it may be convenient to have several images displayed after a single Jupyter cell. For example, if you want to have side-by-side images or graphs for comparison. The following code allows you to place figures side-by-side or in a grid.

Note you will need the included import statement at the very top of the notebook.

```
import matplotlib.pyplot as plt
number_of_plots = 2
fig, axs = plt.subplots(number_of_plots)
fig.suptitle('Vertically stacked subplots', fontsize=12)
axs[0].plot(x, y)
axs[1].imshow(img)
plt.show()
number_of_plots = 3
fig, axs = plt.subplots(1,number_of_plots)
fig.suptitle('Horizontally stacked subplots', fontsize=12)
axs[0].plot(x, y)
axs[1].imshow(img)
axs[2].imshow(img2)
plt.show()
number_of_plots_vertical = 2
number_of_plots_horizontal = 2
#2x2 = 4 total plots
fig, axs = plt.subplots(number_of_plots_vertical,number_of_plots_horizontal)
fig.suptitle('Grid of subplots', fontsize=12)
axs[0][0].plot(x, y) # top left
axs[0][1].imshow(img) # top right
axs[1][0].imshow(img2) # bottom left
axs[1][1].plot(a, b) # bottom right
plt.show()
```

RMarkdown "Error: option error has NULL value" when knitting".

This error message occurs when using the RStudio available on Scholar via ThinLinc, and running a code chunk in RMarkdown by clicking the green "play" button (Run Current Chunk). Do *not* click on the green triangle "play" button. Instead, knit the entire document, using the "knit" button that looks like a ball of yarn with a knitting needle on it.

How do you create an RMarkdown file?

Any text file with the .Rmd file extension can be opened and knitted into a PDF (or other format). If you'd like to create an RMarkdown file in RStudio, you can do so.

- 1. Open an RStudio session.
- 2. Click on File > New File > RMarkdown....
- 3. You may put R code into the R blocks (the grey sections of the document), and put any comments into the white sections in between.

This is an excellent guide to RMarkdown, and this is a cheatsheet to get you up and running quickly.

Problems building an RMarkdown document on Scholar.

If you are having problems building an RMarkdown document on Scholar, try the following:

- Dump the previously loaded modules.
- 1. Open up a terminal.
- 2. Run the following commands:

```
module purge
ml gcc
ml rstudio
rstudio
```

This will purge (remove) previously loaded modules.

- Remove your R directory:
- 1. Open up a terminal.
- 2. Run the following commands:

```
cd ~
rm -rf R
```

This will force the removal of your R directory. It will remove your old R libraries. They will reload the newest versions if you install them again, and as you use them.

This is recommended, especially at the start of the academic year.

If your R is taking a long time to open, see here.

How can I use SQL in RMarkdown?

When you use SQL in RMarkdown you can highlight the code in code chunks just like R by writing "sql" instead of "r" in the brackets:

```
```sql
SELECT * FROM table;
```

```
You will notice that all the SQL code chunks provided in the template have the option 'eval=F'. To actually _run_ SQL inside RMarkdown see [here]().

You can read about the different languages that can be displayed in RMarkdown here: https://bookdown.org/yihui/rmarkdown/language-engines.html.

Copy/paste from terminal inside RStudio to RMarkdown.

If you're using the terminal inside the Scholar RStudio at https://rstudio.scholar.rcac.purdue.ed Alternatively, use the Edit/Copy from the menu in the terminal.

How do I render an image in a `shiny` app?

There are a variety of ways to render an image in an RShiny app. See [here](#r-shiny-render-image ## The package `my_package` is not found.

The package might not be installed. Try running:

''`r
install.packages("ggmap")

Note that if you have already run this on ThinLinc, there is no need to do it again.
```

## Problems installing ggmap.

Two possible fixes:

library(ggmap)

1. Open a terminal and run:

```
rm -rf ~/R
```

Another possibility is that the library is not loaded, try running:

After that, re-open RStudio and re-install ggmap:

```
install.packages("ggmap")

Don't forget to load the package as well
library(ggmap)
```

2. Open a terminal and run:

```
module load gcc/5.2.0
```

After that, restart all RStudio processes.

## Error: object\_name is not found

In R if you try to reference an object that does not yet exist, you will receive this error. For example:

```
my_list <- c(1, 2, 3)
mylist</pre>
```

In this example you will receive the error Error: object 'mylist' not found. The reason is mylist doesn't exist, we only created my\_list.

## Zoom in on ggmap.

Run the following code in R:

```
?get_googlemap
```

Under the arguments section you will see the argument <code>zoom</code> and can read about what values it can accept. For the zoom level , a map with <code>zoom=9</code> would not even show the entire state of California. Try different integers. Larger integers "zoom in" and smaller integers "zoom out".

## Find the latitude and longitude of a location.

- 1. Install the ggmap package.
- 2. Run the following lines of code to retrieve latitude and longitude of a location:

```
as.numeric(geocode("London"))
```

Replace "London" with the name of your chosen location.

## Problems saving work as a PDF in R on Scholar.

Make sure you are saving to your own working directory:

```
getwd()
```

This should result in something like: /home/<username>/... where <username> is your username. Read this to find your username.

If you don't see your username anywhere the the resulting path, instead try:

#### WHAT IS A GOOD RESOURCE TO BETTER UNDERSTAND HTML? 205

1. Specifying a different directory:

```
dev.print(pdf, "/home/<username>/Desktop/project4map.pdf")
```

Make sure you replace <username> with your username.

2. Try setting your working directory before saving:

```
setwd("/home/<username>/Desktop")
```

Make sure you replace <username> with your username.

## What is a good resource to better understand HTML?

https://www.geeksforgeeks.org/html-course-structure-of-an-html-document/

## Is there a style guide for R code?

https://style.tidyverse.org/

## Is there a guide for best practices using R?

https://www.r-bloggers.com/r-code-best-practices/

- 1. Comment what you are going to do.
- 2. Code what did you do?
- 3. Comment on the output what did you get?

## Tips for using Jupyter notebooks.

See here.

## What is my username on Scholar?

To find your username on Scholar:

- 1. Open a terminal.
- 2. Execute the following code:

echo \$USER

# How to submit homework to GitHub without using Firefox?

You can submit homework to GitHub without using Firefox by using git in a terminal. You can read more about git here.

## How and why would I need to "escape a character"?

You would need to escape a character any time when you have a command or piece of code where you would like to represent a character literally, but that character has been reserved for some other use. For example, if I wanted to use grep to search for the \$ character, literally, I would need to escape that character as its purpose has been reserved as an indicator or anchor for the end of the line.

```
grep -i "\$50.00" some_file.txt
```

Without the  $\setminus$  this code would not work as intended. Another example would be if you wanted to write out 10\*10\*10 = 1000 in markdown. If you don't escape the asterisks, the result may be rendered as 101010 = 1000, which is clearly not what was intended. For this reason, we would type out:

```
10 \times 10 \times 10 = 1000
```

Which would then have its intended effect.

# How can I fix the error "Illegal byte sequence" when using a UNIX utility like cut?

Often times this is due to your input having illegal, non-utf-8 values. You can find all lines with illegal values by running:

```
grep -axv '.*' file
```

To fix this issue, you can remove the illegal values by running:

```
iconv -c -t UTF-8 < old_file > new_file
```

## **Projects**

## **Templates**

Our course project template can be found here, or on Scholar:

/class/datamine/apps/templates/project\_template.Rmd

Students in STAT 19000, 29000, and 39000 are to use this as a template for all project submissions. The template includes a code chunk that "activates" our Python environment, and adjusts some default settings. In addition, it provides examples on how to include solutions for Python, R, Bash, and SQL. Every question should be clearly marked with a third-level header (using 3 #s) followed by Question X where X is the question number. Sections for question solutions should be added or removed based on the number of questions in the given project. All code chunks are to be run and solutions displayed for the compiled PDF submission.

Any format or template related questions should be asked in Piazza.

## **Submissions**

Unless otherwise specified, all projects will need 1-3 submitted files:

- 1. A compiled PDF with all code and output.
- 2. If it is a project containing R code, a .R file containing all of the R code.
- 3. If it is a project containing Python code, a .py file containing all of the Python code.

## STAT 19000

## Project 1

**Motivation:** In this project we are going to jump head first into The Data Mine. We will load datasets into the R environment, and introduce some core

208 PROJECTS

programming concepts like variables, vectors, types, etc. As we will be "living" primarily in an IDE called RStudio, we will take some time to learn how to connect to it, configure it, and run code.

**Context:** This is our first project as a part of The Data Mine. We will get situated, configure the environment we will be using throughout our time with The Data Mine, and jump straight into working with data!

Scope: r, rstudio, Scholar

### Learning objectives:

- Utilize other Scholar resources: rstudio.scholar.rcac.purdue.edu, notebook.scholar.rcac.purdue.edu, desktop.scholar.rcac.purdue.edu, etc.
- Install R and setting up a working environment.
- Explain and demonstrate: positional, named, and logical indexing.
- Read and write basic (csv) data.

Make sure to read about, and use the template found here, and the important information about projects submissions here.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/disney/splash\_mountain.csv

#### Questions

1. Read the webpage here. Scholar is the computing cluster you will be using throughout the semester, and your time with The Data Mine. Each *node* is an individual machine with CPUs and memory (RAM). How many *cores* and how much *memory* is available, in total, for our 7 frontend nodes? How about for the sub-clusters? How much is available on your computer or laptop?

- A sentence explaining how much memory and how many cores your personal computer has.
- A sentence explaining how much memory and how many cores the 7 frontends have combined.
- A sentence explaining how much memory and how many cores the 28 sub-clusters have combined.
- 2. Navigate and login to https://rstudio.scholar.rcac.purdue.ed u using your Purdue Career Account credentials (and Boilerkey).

STAT 19000 209

This is an instance of RStudio Server running on a Scholar frontend! Frontends are labeled. So, for example, scholar-fe01.rcac.purdue.edu is frontend #1. In the lower left hand side of the RStudio screen, you should be able to see a tab labeled "Console". You can run R code by typing after the > and pressing enter. Check which frontend you are logged in on by running the following in the "Console" tab: system("hostname"). Which frontend are you in? Relevant topics: running R code

### Item(s) to submit:

- The # of the frontend your RStudio Server session is running on.
- 3. From within RStudio, we can run every type of code that you will need to run throughout your time with The Data Mine: Python, R, Bash, SQL, etc. We've created a script for you to run to help configure settings. These settings will allow us to better serve you during the semester. Follow the directions here. Once complete, in RStudio (https://rstudio.scholar.rcac.purdue.edu), click on Session > Restart R. Once fully restarted, there should be a message that is printed in your "Console" tab. What does the message say?

## Item(s) to submit:

- The sentence that is printed in the RStudio "Console".
- 4. Projects in The Data Mine should all be submitted using our template found here or on Scholar (/class/datamine/apps/templates/project\_template.Rmd). At the beginning of every project, the first step should be downloading and/or copying and pasting the template into a .Rmd file in RStudio. Copy and paste the project template into a new RMarkdown file named project01.Rmd. Code chunks are parts of the RMarkdown file that contains code. You can identify what type of code a code chunk contains by looking at the engine in the curly braces "{" and "}". How many of each type of code chunk are in our default template? Hint: You can read about the template here.

- A list containing the type of code chunk (r, Python, sql, etc), and how many of each code chunks our default template contains.
- 5. Fill out the project template, replacing the default information with your own. If a category is not applicable to you, put N/A. This template provides examples of how to run each "type" of code we will run in this course. Look for the second R code

210 PROJECTS

chunk, and run it by clicking the tiny green play button in the upper right hand corner of the code chunk. What is the output?

### Item(s) to submit:

- The output from running the R code chunk.
- 6. In question (1) we answered questions about CPUs and RAM for the Scholar cluster. To do so, we needed to perform some arithmetic. Instead of using a calculator (or paper), write these calculations using R. Replace the content of the second R code chunk in our template with your calculations. Relevant topics: templates

## Item(s) to submit:

• The R code chunk with your calculations, and output.

dat <- read.csv("/class/datamine/data/disney/splash\_mountain.csv")</pre>

7. In (6) we got to see how you can type out arithmetic and R will calculate the result for you. One constant throughout the semester will be loading datasets into R. Load our dataset into R by running the following code: Confirm the dataset has been read in by running the head function on it. head prints the first few rows of data:

#### head(dat)

dat is a variable which contains our data! We can name this variable anything we want, we do *not* have to name it dat. Run our code to read in our dataset, this time, instead of naming our resulting dataset dat, name it splash\_mountain. Place all of your code into a new R code chunk under a new level 3 header (i.e. ### Question 7).

Relevant topics: reading data in R

- Code used to answer this question in a code chunk in our template.
- Output of head.
- 8. Let's pretend we are now done with our project. We've written some R code, maybe added some text explaining what we did, and we are ready to turn things in. For this course, we will turn in a variety of work, depending on the project. We will always require a PDF which contains text, code, and code output. Normally we would erase any code chunks from the template that are not used, however,

STAT 19000 211

for this project just keep that content. This PDF is generated by "Knitting" a PDF. In addition, if the project uses R code, you will need to copy and paste R code into an R script (file ending with .R). If you are submitting Python code too, you will need to copy and paste Python code into a Python script (file ending with .py). Let's practice. Compile your project to a PDF, create an R script and copy and paste all of your R code from your RMarkdown file (.Rmd), to a new file called project01.R. Include only the R code you wrote. Follow the directions in Brightspace to upload and submit your RMarkdown file, compiled PDF, and R script. Relevant topics: templates

## Item(s) to submit:

- Resulting knitted PDF.
- project01.R script containing all of your code from your R chunks in the .Rmd file.

## Project 2

**Motivation:** The R environment is a powerful tool to perform data analysis. R is a tool that is often compared to Python. Both have their advantages and disadvantages, and both are worth learning. In this project we will dive in head first and learn the basics while solving data-driven problems.

Context: Last project we set the stage for the rest of the semester. We got some familiarity with our project templates, and modified and ran some R code. In this project, we will continue to use R within RStudio to solve problems. Soon you will see how powerful R is and why it is often a more effective tool to use than spreadsheets.

**Scope:** r, vectors, indexing, recycling

#### Learning objectives:

- List the differences between lists, vectors, factors, and data.frames, and when to use each.
- Explain and demonstrate: positional, named, and logical indexing.
- Read and write basic (csv) data.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Explain what "recycling" is in R and predict behavior of provided statements.

212 PROJECTS

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/disney/metadata.csv

A public sample of the data can be found here: /class/datamine/data/disney/metadata.csv

### Questions

1. Use the read.csv function to load our dataset into a data.frame called meta. Note that read.csv by default loads data into a data.frame. We will learn about data.frames later, for now, print the first few rows of meta. Relevant topics: reading data in r, head

### Item(s) to submit:

• R code used to solve the problem in an R code chunk.

our vec <- meta\$WDWMAXTEMP

2. We've provided you with R code below that will extract a column of our data.frame into a vector. What is the first value in the vector? What is the 50th value in the vector? That type of data is in the vector? Relevant topics: indexing in r, type, creating variables

## Item(s) to submit:

- R code used to solve the problem in an R code chunk.
- The values of the first, and 50th element in the vector.
- The type of data in the vector.
- 3. You can access many elements in a vector at the same time. Create three new vectors named: first50, last50, and mix. first50 should contain the first 50 values of our our\_vec vector, and last50 should contain the last 50 values. mix should contain the sum of each element of first50 being added to each element of last50. Hint: Make sure that first50 and last50 are the same length. If you get a warning message that reads "longer object length is not a multiple of shorter object length", you've done something wrong.

Relevant topics: indexing in r, creating variables, length

- R code used to solve this problem.
- The head of each of the three vectors.

STAT 19000 213

4. In (3) we were able to rapidly add values together from two different vectors. Both vectors were the same size, hence, it was obvious which elements in each vector were added together. Create a new vector called hot which contains only the values which are greater than or equal to 80 (our vector contains max temperatures for days at Disney World). How many elements are in hot? Calculate the sum of hot and first50, do we get a warning? Read this and then explain what is going on. Relevant topics: logical indexing, length, recycling

## Item(s) to submit:

- R code used to solve this problem.
- 1-2 sentences explaining what is happening when we are adding two vectors of different lengths.
- 5. Given what we learned in (4) how would we double every odd value in hot, and cut in half every even value in hot, in a single line of R code? Relevant topics: recycling

### Item(s) to submit:

- R code used to solve this problem.
- head of the result.

```
min_temp <- meta$WDWMINTEMP
mean_temp <- meta$WDWMEANTEMP
max_temp <- meta$WDWMAXTEMP</pre>
```

6. Run the code below in order to extract the min\_temp, max\_temp, and mean\_temp vectors from our data.frame. Are the vectors all the same length? Create a new vector called meanminmax that contains the average of the min\_temp and max\_temp, element-wise. Calculate the absolute average difference between the mean\_temp vector, and the meanminmax vector. What is the index of the largest difference between mean\_temp and meanminmax? If you replace INDEX with the index you found, you will get information about the day: meta[INDEX,]. What is the largest difference between the mean\_temp and meanminmax vectors? Explain whether or not that surprises you.

```
dat <- table(meta$SEASON)
names(dat) <- tolower(names(dat))
par(mar=c(1,8,1,1))
barplot(dat, main="Seasons", xlab="Number of Days in Each Season", las=2, horiz=TRUE, cex.names=</pre>
```

214 PROJECTS

```
dat <- tapply(meta$WDWMEANTEMP, meta$DAYOFYEAR, mean, na.rm=T)
seasons <- tapply(meta$SEASON, meta$DAYOFYEAR, function(x) unique(x)[1])</pre>
pal <- c("#4E79A7", "#F28E2B", "#A0CBE8", "#FFBE7D", "#59A14F", "#8CD17D", "#B6992D",
colors <- factor(seasons)</pre>
levels(colors) <- pal</pre>
par(oma=c(7,0,0,0), xpd=NA)
barplot(dat, main="Average Temperature", xlab="Jan 1 (Day 0) - Dec 31 (Day 365)", ylab
legend(-65, -50, legend=levels(factor(seasons)), lwd=5, col=pal, ncol=3, cex=0.8, box.
library(ggplot2)
library(tidyverse)
summary_temperatures <- meta %>%
 select(MONTHOFYEAR, WDWMAXTEMP: WDWMEANTEMP) %>%
 group_by(MONTHOFYEAR) %>%
 summarise_all(mean, na.rm=T)
ggplot(summary_temperatures, aes(x=MONTHOFYEAR)) +
 geom_ribbon(aes(ymin = WDWMINTEMP, ymax = WDWMAXTEMP), fill = "#ceb888", alpha=.5)
 geom_line(aes(y = WDWMEANTEMP), col="#5D8AA8") +
 geom_point(aes(y = WDWMEANTEMP), pch=21,fill = "#5D8AA8", size=2) +
 theme classic() +
 labs(x = 'Month', y = 'Temperature', title = 'Average temperature range') +
 scale x continuous(breaks=1:12, labels=month.abb)
```

7. The following code creates three graphics. The first two are created just using some core R functions, and the last is created using a package called ggplot. We will learn more about all of these things later on. For now, pick your favorite graphic, and write 1-2 sentences explaining why it is your favorite, what could be improved, and include any interesting observations (if any).

## Project 3

Motivation: data.frames are the primary data structure you will work with when using R. It is important to understand how to insert, retrieve, and update data in a data.frame.

**Context:** In the previous project we got our feet wet, and ran our first R code, and learned about accessing data inside vectors. In this project we will continue to reinforce what we've already learned and introduce a new, flexible data structure called data.frames.

Scope: r, data.frames, recycling, factors

STAT 19000 215

#### Learning objectives:

• Explain what "recycling" is in R and predict behavior of provided statements.

- Explain and demonstrate how R handles missing data: NA, NaN, NULL, etc.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- List the differences between lists, vectors, factors, and data.frames, and when to use each.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/disney

#### Questions

1. Read the dataset /class/datamine/data/disney/metadata.csv into a data.frame called meta. Read the dataset /class/datamine/data/disney/splash\_mountain.csv into a data.frame called splash\_mountain. How many columns, or features are in each dataset? How many rows or observations? Relevant topics: str

#### Item(s) to include:

- R code used to solve the problem.
- How many columns or features in each dataset?
- 2. Splash Mountain is a fan favorite ride at Disney World's Magic Kingdom theme park. splash\_mountain contains a series of dates and datetimes. For each datetime, splash\_mountain contains a posted minimum wait time, SPOSTMIN, and an actual minimum wait time, SPOSTMIN. What is the average minimum posted wait time for Splash Mountain? What is the standard deviation? Based on the fact that SPOSTMIN represents the posted minimum wait time for our ride, does our mean and standard deviation make sense? Explain. Hint: If you got NA or NaN as a result, see here.

Relevant topics: mean, var, NA, NaN

216 PROJECTS

### Item(s) to submit:

- R code used to solve this problem.
- The results of running the R code.
- 1-2 sentences explaining why or why not the results make sense.

3. In (2) we got some peculiar values for the mean and standard deviation. If you read the "attractions" tab in the file /class/datamine/data/disney/touringplans\_data\_dictionary.xlsx, you will find that -999 is used as a value in SPOSTMIN and SACTMIN to indicate the ride as being closed. Recalculate the mean and standard deviation of SPOSTMIN, excluding values that are -999. Does this seem to have fixed our problem? Relevant topics: NA, mean, var, indexing, which

## Item(s) to submit:

- R code used to solve this problem.
- The result of running the R code.
- A statement indicating whether or not the value look reasonable now.
- 4. SPOSTMIN and SACTMIN aren't the greatest feature/column names. An outsider looking at the data.frame wouldn't be able to immediately get the gist of what they represent. Change SPOSTMIN to posted\_min\_wait\_time and SACTMIN to actual\_wait\_time. Hint: You can always use hard-coded integers to change names manually, however, if you use which, you can get the index of the column name that you would like to change. For data.frames like meta, this is a lot more efficient than manually counting which column is the one with a certain name.

Relevant topics: colnames, which

- R code used to solve the problem.
- The output from executing names(splash\_mountain) or colnames(splash\_mountain).
- 5. Use the cut function to create a new vector called quarter that breaks the date column up by quarter. Use the labels argument in the factor function to label the quarters "q1", "q2", ..., "qX" where X is the last quarter. Add quarter as a column named quarter in splash\_mountain. How many Hint: If you have 2 years of data, this will result in 8 quarters: "q1", ..., "q8".

Hint: I can generate sequential data using seq and paste0:

```
paste0("item", seq(1, 5))
[1] "item1" "item2" "item3" "item4" "item5"
```

Relevant topics: cut, dates, factor, paste0, seq, length, unique

# Item(s) to submit:

- R code used to solve the problem.
- The head and tail of splash\_mountain.

# Project 4

**Motivation:** Control flow is (roughtly) the order in which instructions are executed. We can execute certain tasks or code *if* certain requirements are met using if/else statements. In addition, we can perform operations many times in a loop using for loops. While these are important concepts to grasp, R differs from other programming languages in that operations are usually vectorized and there is little to no need to write loops.

**Context:** We are gaining familiarity working in RStudio and writing R code. In this project we introduce and practice using control flow in R.

Scope: r, data.frames, recycling, factors, if/else, for

#### Learning objectives:

- Explain what "recycling" is in R and predict behavior of provided statements.
- Explain and demonstrate how R handles missing data: NA, NaN, NULL, etc.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- $\bullet\,$  Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- List the differences between lists, vectors, factors, and data.frames, and when to use each.
- Demonstrate a working knowledge of control flow in r: if/else statements, while loops, etc.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/disney

#### Questions

1. In previous project we calculated the mean and standard deviation of the SPOSTMIN (posted minimum wait time). These are vectorized operations (we will learn more about this next project). Instead of using mean, use a loop to calculate the mean, just like the previous project. Do not use sum either. Hint: Remember, if a value is NA, we don't want to include it.

**Hint:** Remember, if a value is -999, it means the ride is closed, we don't want to include it.

**Note:** This exercise should make you appreciate the variety of useful functions R has to offer!

Relevant topics: for loops, if/else statements, is.na

#### Item(s) to submit:

- R code used to solve the problem.
- The mean posted wait time.
- 2. Choose one of the .csv files containing data for a ride. Use read.csv to load the file into a data.frame named ride\_name where "ride\_name" is the name of the ride you chose. Use a for loop to loop through the ride file and add a new column called status. status should contain a string whose value is either "open", or "closed". If SPOSTMIN or SACTMIN is -999, classify the row as "closed". Otherwise, classify the row as "open". After status is added to your data.frame, convert the column to a factor. Hint: If you want to access two columns at once from a data.frame, you can do: splash\_mountain[i, c("SPOSTMIN", "SACTMIN")].

Relevant topics: any, for loops, if/else statements, nrow

- R code used to solve the problem.
- The output from running str on ride name.
- 3. Typically you want to avoid using for loops (or even apply functions) when they aren't needed. Instead you can use vectorized operations and indexing. Repeat (2) without using any for loops or apply

functions. Which method was faster? Hint: To have multiple conditions within the which statement, use | for logical OR and & for logical AND.

**Hint:** You can start by assigning every value in **status** as "open", and then change the correct values to "closed".

Relevant topics: which

#### Item(s) to submit:

- R code used to solve the problem.
- The output from running str on ride name.
- 4. Create a pie chart for open vs. closed for splash\_mountain.csv. First, use the table command to get a count of each status. Use the resulting table as input to the pie function. Make sure to give your pie chart a title that somehow indicates the ride to the audience. Relevant topics: pie, table

# Item(s) to submit:

- R code used to solve the problem.
- The resulting plot displayed as output in the RMarkdown.

```
ride_names <- c("splash_mountain", "soarin", "pirates_of_caribbean", "expedition_everest", "flight
ride_files <- paste0(c("/class/datamine/data/disney/"), ride_names, ".csv")</pre>
```

5. Loop through the vector of files we've provided below, and create a pie chart of open vs closed for each ride. Place all 6 resulting pie charts on the same image. Make sure to give each pie chart a title that somehow indicates the ride. Hint: To place all of the resulting pie charts in the same image, prior to running the for loop, run par(mfrow=c(2,3)).

Relevant topics: for loop, read.csv, pie, table

- R code used to solve the problem.
- The resulting plot displayed as output in the RMarkdown.

Project 5			

**Motivation:** As briefly mentioned in project 4, R differs from other programming languages in that *typically* you will want to avoid using for loops, and instead use vectorized functions and the apply suite. In this project we will demonstrate some basic vectorized operations, and how they are better to use than loops.

**Context:** While it was important to stop and learn about looping and if/else statements, in this project, we will explore the R way of doing things.

**Scope:** r, data.frames, recycling, factors, if/else, for

# Learning objectives:

- Explain what "recycling" is in R and predict behavior of provided statements.
- Explain and demonstrate how R handles missing data: NA, NaN, NULL, etc.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- List the differences between lists, vectors, factors, and data.frames, and when to use each.
- Demonstrate a working knowledge of control flow in r: if/else statements, while loops, etc.
- Demonstrate how apply functions are generally faster than using loops.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/fars

To get more information on the dataset, see here.

#### Questions

1. The fars dataset contains a series of folders labeled by year. In each folder there is (at least) ACCIDENT.CSV, PERSON.CSV, and VEHICLE.CSV. If you take a peek at ACCIDENT.CSV you'll notice that the year isn't complete. Either add a new YEAR column with the full year, or fix the variable some other way. Use a loop, and rbind to create a data.frame called accidents. As you are looping through each of the years (from [1975, 1981]), make sure to fix the YEAR. Relevant topics: rbind, for loops, read.csv

#### Item(s) to submit:

- R code used to solve the problem.
- The result of unique(accidents\$year).

2. How many accidents are there where 1+ drunk drivers were involved in an accident with a school bus? Hint: Look at the variables DRUNK\_DR and SCH\_BUS.

Relevant topics: table

#### Item(s) to submit:

- R code used to solve the problem.
- The result/answer itself.

3. For accidents involving 1+ drunk drivers and a school bus, how many happened in each of the 7 years? Which year had the most qualifying accidents? Relevant topics: table, which, indexing

# Item(s) to submit:

- R code used to solve the problem.
- The results.
- Which year had the most qualifying accidents.
- 4. Calculate the mean number of motorists involved in an accident (PERSON) with i drunk drivers for i in 0 through 6. Hint: It is OK that there are no accidents involving just 5 drunk drivers.

Relevant topics: for loops, mean, indexing

- R code used to solve the problem.
- The output from running your code.
- 5. Perhaps we have a theory that there are more accidents in cold weather months for Indiana and states around Indiana. Create a barplot that shows the number of accidents by STATE by month (MONTH). First, filter out all data where STATE is not one of: Indiana (18), Illinois (17), Ohio (39), or Michigan (26). What months have the most accidents? Are you surprised by these results? Explain why or why not? Relevant topics: %in%, barplot

#### Item(s) to submit:

- R code used to solve the problem.
- The output (plot) from running your code.
- 1-2 sentences explaining which month(s) have the most accidents and whether or not this surprises you.

# 6. (optional) Spruce up your plot from (5). Do any of the following:

- add vibrant (and preferably colorblind friendly) colors to your plot
- add a title
- add a legend
- add month names or abbreviations instead of numbers

**Hint:** Here is a resource to get you started.

# Item(s) to submit:

- R code used to solve the problem.
- The output (plot) from running your code.

Project 6	

Motivation: tapply is a powerful function that allows us to group data, and perform calculations on that data in bulk. The "apply suite" of functions provide a fast way of performing operations that would normally require the use of loops. Typically, when writing R code, you will want to use an "apply suite" function rather than a for loop.

**Context:** The past couple of projects have studied the use of loops and/or vectorized operations. In this project, we will introduce a function called tapply from the "apply suite" of functions in R.

Scope: r, for, tapply

Learning objectives:

- Explain what "recycling" is in R and predict behavior of provided statements.
- Explain and demonstrate how R handles missing data: NA, NaN, NULL, etc.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- List the differences between lists, vectors, factors, and data.frames, and when to use each.
- Demonstrate a working knowledge of control flow in r: if/else statements, while loops, etc.
- Demonstrate how apply functions are generally faster than using loops.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/fars/7581.csv

Calculate the number of deaths where there was a drunk driver vs when no drunk driver.

Which state has the most drunk drivers?

# Questions

1. The dataset, /class/datamine/data/fars/7581.csv is the result of question 1 from the previous project. Load up the dataset into a data.frame named dat. In the previous project's question 4, we asked you to calculate the mean number of motorists involved in an accident (PERSON) with i drunk drivers for i in 0 through 6. Solve this question using tapply instead. Which method did you prefer and why? Relevant topics: tapply, mean

- R code used to solve the problem.
- The output/solution.
- 2. Use /class/datamine/data/states.csv to map STATE codes to the names of states. Hints:
  - Make sure to first remove states from states.csv that are not in STATE, save the resulting vector as substate.

 Create an auxiliary variable containing the STATE vector converted to a factor.

- Reorder substate by code using the order function.
- Use the levels function to set the levels of our auxiliary variable to the reordered substate.

 ${f Note:}$  In the next project, we will learn a much more effective way to accomplish this!

Relevant topics: as.factor, order, levels, %in%

# Item(s) to submit:

- R code used to solve the problem.
- head of dat.

3. In the previous project, we calculated how many accidents occured in 4 selected states, each month. If we wanted to extend this to every state, there would be more steps involved. tapply is a perfect fit for such a question. Use tapply to calculate the number of accidents (each row/observation is an accident) by month (MONTH) for each state (STATE). Which state has the most accidents? Relevant topics: tapply

# Item(s) to submit:

- R code used to solve the problem.
- The entire output.
- Which state has the most wrecks.

4. Use tapply to calculate the percentage of accidents during snowy weather and rainy weather. Use the following image to help you:

1975- 1979	1980- 1981	1982- 2006	2007- 2009	2010- 2012	2013- Later	
1				1	1	Clear
	1					Normal
		1	0			No Adverse Atmospheric Conditions
				0	0	No Additional Atmospheric Conditions
			1			Clear/Cloud (No Adverse Conditions)
2	2			2	2	Rain
		2	2			Rain (Mist)
3	3					Sleet
		3	3			Sleet (Hail)
				3		Sleet, Hail (Freezing Rain or Drizzle)
					3	Sleet, Hail
4	4	4		4	4	Snow
			4			Snow or Blowing Snow
	5	5				Fog
			5	5	5	Fog, Smog, Smoke
		6				Rain and Fog
			6	6	6	Severe Crosswinds
		7				Sleet and Fog
			7	7	7	Blowing Sand, Soil, Dirt
	8	8				Other: Smog, Smoke, Blowing Sand or Dust
			8	8	8	Other
7				10	10	Cloudy
				11	11	Blowing Snow
					12	Freezing Rain or Drizzle
				98	98	Not Reported
9	9	9	9	99	99	Unknown /
						Reported as Unknown (Since 2018)

**Hint:** You can solve this using tapply twice, or, you can wrap the two conditions you'd like to group by in a list by using the list function. We will learn more about lists later, however, a list is essentially a vector containing various types rather than a single type.

Relevant topics: tapply, list

# Item(s) to submit:

- R code used to solve the problem.
- The percentage of accidents during snowy weather.
- The percentage of accidents during rainy weather.

```
res <- tapply(dat$STATE, list(dat$STATE, dat$DRUNK_DR > 0), length)
mean(res[,2]/(res[,2]+res[,1]))
```

5. According to https://www.nhtsa.gov/risky-driving/drunk-driving, around 33% of all traffic crash fatalities in the US involve drunk drivers. Jimbob just learned to use tapply, and is bound and determined to use it all of the time. He wanted to see if he

can confirm a similar number as https://www.nhtsa.gov using our /class/datamine/data/fars/7581.csv dataset. Examine his code, explain what he is doing wrong, and come up with a *much* simpler solution. Can you confirm the statement from https://www.nhtsa.gov? Relevant topics: tapply

#### Item(s) to submit:

- 1-2 sentences explaining what Jimbob is doing wrong.
- The *much* simpler solution to solve the problem.
- Does your solution and result match the findings from https://www.nhtsa.gov?

6. Let's put (some of) Jimbob's work to good use, after all, his result, res is interesting. Create a data frame named myDF with a column named state or states, which contains the state names (which you can get from the row.names of res), and a column named percent with the percentage of drunk driving accidents in the associated state. Once complete, generate a map using the code below. Relevant topics: data frame, tapply

#### Item(s) to submit:

- R code used to solve the problem.
- The resulting plot.

# Project 7

Motivation: Three bread-and-butter functions that are a part of the base R are: subset, merge, and split. subset provides a more natural way to filter and select data from a data.frame. split is a useful function that splits a dataset based on one or more factors. merge brings the principals of combining data that SQL uses, to R.

Context: We've been getting comfortable working with data in within the R environment. Now we are going to expand our toolset with three useful functions, all the while gaining experience and practice wrangling data!

Scope: r, subset, merge, split, tapply

#### Learning objectives:

- Gain proficiency using split, merge, and subset.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Demonstrate how to use tapply to solve data-driven problems.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/goodreads/csv

#### Questions

1. Load up the following three datasets goodreads\_books.csv, goodreads\_book\_authors.csv, and goodreads\_interactions.csv into three data.frames books, authors, and interactions respectively. Read in only 1 million rows of the goodreads\_interactions.csv. How many columns and rows are in each dataset? Relevant topics: read.csv, dim

#### Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 2. We want to figure out how book size (num\_pages) is associated with various metrics. First, let's create a vector called book\_size, that categorizes books into 4 categories based on num\_pages: small (up to 250 pages), medium (250-500 pages), large (500-1000 pages), huge (1000+ pages). Relevant topics: cut

- R code used to solve the problem.
- The result of table(book\_size).

3. Use tapply to calculate the mean average\_rating, text\_reviews\_count, and publication\_year by book\_size. Did any of the result surprise you? Why or why not? Relevant topics: tapply

# Item(s) to submit:

- R code used to solve the problem.
- The output from running the R code.
- 4. Notice in (3) every time we used tapply we were re-splitting the data each time. Use split to partition the data containing only the following 3 columns: average\_rating, text\_reviews\_count, and publication\_year, by book\_size. Save the result as books\_by\_size. What class is the result? lapply is a function that allows you to loop over each item in a list and apply a function. Use lapply and colMeans to perform the same calculation as in (3). Relevant topics: lapply, split, colMeans, indexing

#### Item(s) to submit:

- R code used to solve the problem.
- The copy and pasted output from running the code.

```
en_books <- books[books$language_code %in% c("en-US", "en-CA", "en-GB", "eng", "en", "en",
```

5. We are working with a lot more data than we really want right now. You were provided with the following code to filter out non-English books and only keep columns of interest. Write out the equivalent code using subset instead of indexing, and save the result to res. Do the dimensions (using dim) of the subset version and the version below match? Why or why not? Hint: If the dimensions don't match, take a look at NA values for the variables used to subset our data.

Relevant topics: indexing, subset, NA, %in%

- R code used to solve the problem.
- Do the dimensions match?
- 1-2 sentences explaining why or why not.
- 6. We now have a nice and tidy subset of data, res. It would be really nice to get some information on the author (especially the name!). We can find that information in authors! In the previous project, we had a similar issue with the states names (in question 2). There is a *much*

better way to solve these types of problems. Use the merge function to combine res and authors in a way which appends all information from author when there is a match in res. Relevant topics: merge

# Item(s) to submit:

- R code used to solve the problem.
- The dim of the newly merged data.frame.

7. Look at the names of the resulting data.frame. Notice that there are two values for ratings\_count and two values for average\_rating. The names that have an appended x are those values from the first argument to merge, and the names that have an appended y, are those values from the second argument to merge. Rename these columns to indicate if they refer to a book, or an author. Hint: For example, ratings\_count.x could be ratings\_count\_book or ratings\_count\_author.

Relevant topics: names

#### Item(s) to submit:

- R code used to solve the problem.
- The names of the new data.frame.
- 8. For an author of your choice (that is in the dataset), find the author's highest rated book. Do you agree? Relevant topics: indexing, subset, which, max

#### Item(s) to submit:

- R code used to solve the problem.
- The title of the highest rated book (from your author).
- 1-2 sentences explaining why or why not you agree with it being the highest rated book from that author.

Project 8

**Motivation:** A key component to writing efficient code is writing functions. Functions allow us to repeat and reuse coding steps that we used previously, over and over again. If you find you are repeating code over and over, a function may be a good way to reduce lots of lines of code!

Context: We've been learning about and using functions all year! Now we are going to learn more about some of the terminology and components of a

function, as you will certainly need to be able to write your own functions soon.

Scope: r, functions

#### Learning objectives:

- Gain proficiency using split, merge, and subset.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Demonstrate how to use tapply to solve data-driven problems.
- Comprehend what a function is, and the components of a function in R.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/goodreads/csv

#### Questions

```
A function that, given a string (description), returns the string
without any punctuation.
strip_punctuation <- function(description) {
 # Use regular expressions to identify punctuation.
 # Replace identified punctuation with an empty string ''.
 desc_no_punc <- gsub('[[:punct:]]+', '', description)
 # Return the result
 return(desc_no_punc)
}</pre>
```

- 1. Read in the same data, in the same way as the previous project (with the same names). We've provided you with the function below. How many arguments does the function have? Name all of the arguments. What is the name of the function? Replace the description column in our books data.frame with the same information, but with stripped punctuation using the function provided. Hint: Since gsub accepts a vector of values, you can pass an entire vector to strip\_punctuation.
- 2. Now its time to write your own function. We want to write a function that counts the words in a string. There are already functions that do this, however, we want to write our own. We plan to use this on our non-punctuated descriptions. Begin by using the

strsplit function to split a string by spaces. An examples string is: test\_string <- "This is a test string with no punctuation". Use test\_string to test out your code. If you counted the words shown in your results, would it be an accurate count? Why or why not? Relevant topics: strsplit

#### Item(s) to submit:

- R code used to solve the problem.
- 1-2 sentences explaining why or why not your count would be accurate.
- 3. Fix the issue in (3), using which. You may need to unlist the strsplit result first. After you've accomplished this, you can count the remaining words! Relevant topics: which

# Item(s) to submit:

- R code used to solve the problem (including counting the words).
- 4. We are finally to the point where we have code from questions (2) and (3) that we think we may want to use many times. Write a function called count\_words which, given a string, description, returns the number of words in description. Test out count\_words on the description from the second row of books. How many words are in the description? Relevant topics: functions, unlist, indexing, strsplit

#### Item(s) to submit:

- R code used to solve the problem.
- The result of using the function on the description from the second row of books.
- 5. Practice makes perfect! Write a function of your own design that is intended on being used with one of our datasets. Test it out and share the results. Note: You could even pass (as an argument) one of our datasets to your function and calculate a cool statistic or something like that! Maybe your function makes a plot? Who knows?

Relevant topics: functions

- R code used to solve the problem.
- An example (with output) of using your newly created function.

# Project 9

**Motivation:** A key component to writing efficient code is writing functions. Functions allow us to repeat and reuse coding steps that we used previously, over and over again. If you find you are repeating code over and over, a function may be a good way to reduce lots of lines of code!

**Context:** We've been learning about and using functions all year! Now we are going to learn more about some of the terminology and components of a function, as you will certainly need to be able to write your own functions soon.

Scope: r, functions

#### Learning objectives:

- Gain proficiency using split, merge, and subset.
- Demonstrate the ability to use the following functions to solve datadriven problem(s): mean, var, table, cut, paste, rep, seq, sort, order, length, unique, etc.
- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Demonstrate how to use tapply to solve data-driven problems.
- Comprehend what a function is, and the components of a function in R.

# Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/goodreads/csv

#### Questions

```
books <- read.csv("/class/datamine/data/goodreads/csv/goodreads_books.csv")
authors <- read.csv("/class/datamine/data/goodreads/csv/goodreads_book_authors.csv")
fun_plot <- function(book_id, display_cover=T) {
 library(imager)
 get_author_name <- function(author_id){
 return(authors[authors$author_id==author_id,'name'])
 }

 book_info <- books[books$book_id==book_id,]
 all_books_by_author <- books[books$author_id==book_info$author_id,]
 author_name <- get_author_name(book_info$author_id)</pre>
```

```
img_url <- book_info$image_url
img <- load.image(img_url)

if(display_cover){
 par(mfrow=c(1,2))
 plot(img, axes=FALSE)
}

plot(all_books_by_author$num_pages, all_books_by_author$average_rating, ylim=c(0,5.1),
 pch=21, bg='grey80',
 xlab='Number of pages', ylab='Average rating', main=paste('Books by', author_name))
points(book_info$num_pages, book_info$average_rating,pch=21, bg='orange', cex=1.5)
}</pre>
```

1. We've provided you with a function below. How many arguments does the function have, and what are their names? You can get a book\_id from the URL of a goodreads book's webpage. For example, the book\_id from https://www.goodreads.com/book/show/17332218-words-of-radiance#, is 17332218. Another example is https://www.goodreads.com/book/show/157993.The\_Little\_Prince?from\_s earch=true&from\_srp=true&qid=JJGqUK9Vp9&rank=1, with a book\_id of 157993. Find 2 or 3 book\_ids and test out the function until you get a success or two. Explain in words, what the function is doing, and what options you have. Relevant topics: functions

#### Item(s) to submit:

- How many arguments does the function have, and what are their names?
- The result of using the function on 2-3 book\_ids.
- 1-2 sentences explaining what the function does (generally), and what (if any) options the function provides you with.
- 2. You may have encountered a situation where the book\_id was not in our dataset, and hence, didn't get plotted. When writing functions, it is usually best to try and foresee issues like this and have the function fail gracefully, instead of showing some ugly (and sometimes unclear) warning. Add a check at the beginning of our function that checks for the book\_id, and if it does not exist, prints "Book ID not found.", and exits the function. Test it out on book\_id=123. Hint: Run ?stop to see if that is a function that may be useful.

Relevant topics: functions, if/else, stop

#### Item(s) to submit:

- R code with your new and improved function.
- The results from fun\_plot(123).
- The results from fun\_plot(19063).

3. You may have noticed a function *inside* our fun\_plot function. It looks like it accepts an author\_id and returns the name of the author. Try running get\_author\_name(6252), does it work? Read this and explain in 1-2 sentences what you think is happening. Relevant topics: scoping

#### Item(s) to submit:

- The results from get\_author\_name(6252).
- 1-2 sentences explaining what is happening.
- 4. Our fun\_plot requires that the datasets books and authors have been loaded exactly right (and with the correct names) in the environment. By including objects outside of our function's scope, within our function (in this case books and authors) it leaves our fun\_plot function prone to errors, as any changes to those objects may break our function. Fix this by making the datasets (books and authors) arguments in the function, and modifying our function accordingly to run based on those arguments. Revelant topics: functions, read.csv, scoping

# Item(s) to submit:

- R code with your new and improved function.
- An example using the updated function.
- 5. Write your own custom function. Make sure your function includes at least 2 arguments. If you access one of our datasets from within your function (which you definitely should do), use what you learned in (4), to avoid future errors dealing with scoping. Your function could output a cool plot, interesting tidbits of information, or anything else you can think of. Get creative and make a function that is fun to use! Relevant topics: scoping, functions

- R code used to solve the problem.
- Examples using your function with included output.

# Project 10

**Motivation:** Functions are powerful. They are building blocks to more complex programs and behavior. In fact, there is an entire programming paradigm based on functions called functional programming. In this project, we will learn to apply functions to entire vectors of data using sapply.

**Context:** We've just taken some time to learn about and create functions. One of the more common "next steps" after creating a function is to use it on a series of data, like a vector. sapply is one of the best ways to do this in R.

Scope: r, sapply, functions

# Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/okcupid/filtered

#### Questions

1. Load up the the following datasets into data.frames named users and questions, respectively: /class/datamine/data/okcupid/filtered/users.csv, /class/datamine/okcupid/filtered/questions.csv. This is data from users on OkCupid, on online dating app. In your own words, explain what each file contains and how they are related – its always a good idea to poke around the data to get a better understanding of how things are structured! Hint: Be careful, just because a file ends in .csv, does not mean it is comma-separated.

Relevant topics: read.csv

- R code used to solve the problem.
- 1-2 sentences describing what each file contains and how they are related.

2. grep is an incredibly powerful tool available to us in R. We will learn more about grep in the future, but for now, know that a simple application of grep is to find a word in a string. In R, grep is vectorized and can be applied to an entire vector of strings. Use grep to find a question that references "google". What is the question? Hint: If at first you don't succeed, run ?grep and check out the ignore.case argument.

Relevant topics: grep

# Item(s) to submit:

- R code used to solve the problem.
- The text of the question that references Google.

3. In (2) we found a pretty interesting question. What is the percentage of users that Google someone before the first date? Does the proportion change by gender (as defined by gender2)? How about by gender\_orientation? Hint: If you look at the question column for this question, you should notice that this column is a factor with two possible answers: "No. Why spoil the mystery?" and "Yes. Knowledge is power!". If you start by creating a function that calculates the percentage of people who answer each question, you could use tapply in combination with this function to break the answer down by gender.

Relevant topics: functions, tapply, table, prop.table

#### Item(s) to submit:

- R code used to solve this problem.
- The results of running the code.
- Written answers to the questions.

```
count_words <- function(description) {
 split_desc <- unlist(strsplit(description, " "))
 return(length(split_desc[which(split_desc != "")]))
}</pre>
```

4. In project (8) we created a function called count\_words. Use this function and sapply to create a vector with the length (in words) of the questions. Call the new column of data question\_length, and add the column to our data.frame. Hint: questions\$text is a factor. Use as.character to convert the factor to a character before passing it to count\_words.

Relevant topics: sapply

# Item(s) to submit:

- R code used to solve this problem.
- The result of str(questions).

5. Write a function called number\_of\_options that accepts the dataset, and a question key (for example q484) and counts the number of answer options that the question has. Although each question has 4 option columns, not every column is filled. Consider an option empty if it is NA or blank. What percentage of questions have 1, 2, 3, and 4 options? Add this data to a new column in our questions dataset called number\_options. Hint: Use sapply to apply your function to every id in the vector (questions\$X).

**Hint:** The way sapply works is the first argument is by default the first argument to your function, the second argument is the function you want applied, and after that you can specify arguments by name.

Relevant topics: table, prop.table, sapply, functions, if/else, indexing, is.na

# Item(s) to submit:

- R code used to solve this problem.
- The results of the running the code.

6. Does it appear that there is an association between the length of the question and whether or not users answered the question? Assume NA means "unanswered". First create a function called percent\_answered that, given a vector, returns the percentage of values that are not NA. Use percent\_answered and sapply to calculate the percentage of users who answer each question. Plot this result, against the length of the questions. Hint: length\_of\_questions <-questions\$question\_length[grep("^q", questions\$X)]

**Hint:** Use the same trick we used in the previous hint, to subset our users data.frame before using sapply to apply percent\_answered. grep("^q", questions\$X) returns the column index of every column that starts with "q".

Relevant topics: sapply, is.na, length, grep, plot

- R code used to solve this problem.
- The plot.
- Whether or not you think there may or may not be an association between question length and whether or not the question is answered.

7. Lots of questions are asked in this dataset. Explore the dataset, and either calculate an interesting statistic/result using sapply, or generate a graphic (with good x-axis and/or y-axis labels, main labels, legends, etc.), or both! Write 1-2 sentences about your analysis and/or graphic, and explain what you thought you'd find, and what you actually discovered. Relevant topics: plotting, functions, sapply

#### Item(s) to submit:

- R code used to solve this problem.
- The results from running your code.
- 1-2 sentences about your analysis and/or graphic, and explain what you thought you'd find, and what you actually discovered.

Project 11		

Motivation: The ability to understand a problem, know what tools are available to you, and select the right tools to get the job done, takes practice. In this project we will use what you've learned so far this semester to solve data-driven problems. In previous projects, we've directed you towards certain tools. In this project, there will be less direction, and you will have the freedom to choose the tools you'd like.

**Context:** You've learned lots this semester about the R environment. You now have experience using a very balanced "portfolio" of R tools. We will practice using these tools on a set of economic data from Zillow.

#### Scope: r

#### Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.
- Comprehend what a function is, and the components of a function in R.
- Demonstrate the ability to use nested apply functions to solve a data-driven problem.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/zillow

#### Questions

1. Read /class/datamine/data/zillow/Zip\_time\_series.csv into a data.frame called zipc. Look at the RegionName column. It is supposed to be a 5-digit zip code. Either fix the column by writing a function and applying it to the column, or take the time to read the read.csv documentation by running ?read.csv and use an argument to make sure that column is not read in as an integer (which is why zip codes starting with 0 lose the leading 0 when being read in). Relevant topics: read.csv, sapply, functions, strrep, nchar

#### Item(s) to submit:

- R code used to solve the problem.
- head of the RegionName column.
- 2. One might assume that the owner of a house tends to value that house more than the buyer. If that was the case, perhaps the median listing price (the price which the seller puts the house on the market, or ask price) would be higher than the ZHVI (Zillow Home Value Index essentially an estimate of the home value). For those rows where both MedianListingPrice\_AllHomes and ZHVI\_AllHomes have non-NA values, on average how much higher or lower is the median listing price? Can you think of any other reasons why this may be? Relevant topics: mean

#### Item(s) to submit:

- R code used to solve the problem.
- The result itself and 1-2 sentences talking about whether or not you can think of any other reasons that may explain the result.
- 3. Convert the Date column to a date using as.Date. How many years of data do we have in this dataset? Create a line plot with lines for the average MedianListingPrice\_AllHomes and average ZHVI\_AllHomes by year. Hint: For a nice addition, add a dotted vertical line on year 2008 near the housing crisis:

```
abline(v="2008", lty="dotted")
```

Relevant topics: cut, as.Date, tapply, plot, lines, legend

#### Item(s) to submit:

- R code used to solve the problem.
- The results of running the code.

4. Read /class/datamine/data/zillow/State\_time\_series.csv into a data.frame called states. Calculate the average median listing price by state, and create a map using plot\_usmap from the usmaps package that shows the average median price by state. Hint: Look at the solution to question 6 in project 6 for an example using plot\_usmap. You can change scales::percent to scales::dollar when dealing with dollar data.

**Hint:** In order for plot\_usmap to work, you must name the column containing states' names to "state".

**Hint:** To split words like "OhSoCool" into "Oh So Cool", try this: trimws(gsub('([[:upper:]])', '\\1', "OhSoCool")). This will be useful as you'll need to correct the RegionName column at some point in time. Notice that this will not completely fix "DistrictofColumbia". You will need to fix that one manually.

5. Read /class/datamine/data/zillow/County\_time\_series.csv into a data.frame named counties. Choose a state (or states) that you would like to "dig down" into county-level data for, and create a plot (or plots) like in (4) that show some interesting statistic by county. You can choose average median listing price if you so desire, however, you don't need to! There are other cool data! Hint: Make sure that you remember to aggregate your data by date so the plot renders correctly.

Hint: plot\_usmap looks for a column named fips. Make sure to rename the RegionName column to fips prior to passing the data.frame to plot\_usmap.

# Project 12

**Motivation:** In the previous project you were forced to do a little bit of date manipulation. Dates *can* be very difficult to work with, regardless of the language you are using. **lubridate** is a package within the famous tidyverse, that greatly simplifies some of the most common tasks one needs to perform with date data.

Context: We've been reviewing topics learned this semester. In this project we will continue solving data-driven problems, wrangling data, and creating graphics. We will introduce a tidyverse package that adds great stand-alone value when working with dates.

Scope: r

## Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.
- Demostrate the ability to create basic graphs with default settings.
- Demonstratre the ability to modify axes labels and titles.
- Incorporate legends using legend().
- Demonstrate the ability to customize a plot (color, shape/linetype).
- Convert strings to dates, and format dates using the lubridate package.

#### Questions

#### library(lubridate)

1. Let's continue our exploration of the Zillow time series data. A useful package for dealing with dates is called lubridate. This is part of the famous tidyverse suite of packages. Run the code below to load it. Read the /class/datamine/data/zillow/State\_time\_series.csv dataset into a data.frame named states. What class and type is the column Date? Relevant topics: class, typeof

# Item(s) to submit:

- R code used to solve the question.
- class and typeof column Date.
- 2. Convert column Date to a corresponding date format using lubridate. Check that you correctly transformed it by checking its class like we did in (1). Compare and contrast this method of conversion with the solution you came up with for question (3) in the previous project. Which method do you prefer? Hint: Take a look at the following functions from lubridate: ymd, mdy, dym.

Relevant topics: dates, lubridate

- R code used to solve the question.
- class of modified column Date.
- 1-2 sentences stating which method you prefer (if any) and why.

3. Create 3 new columns in state called year, month, day\_of\_week (Sun-Sat) using lubridate. Get the frequency table for your newly created columns. Do we have the same amount of data for all years, for all months, and for all days of the week? We did something similar in question (3) in the previous project – specifically, we broke each date down by year. Which method do you prefer and why? Hint: Take a look at functions month, year, day, wday.

Hint: You may find the argument of label in wday useful.

Relevant topics: dates, lubridate

#### Item(s) to submit:

- R code used to solve the question.
- Frequency table for newly created columns.
- 1-2 sentences answering whether or not we have the same amount of data for all years, months, and days of the week.
- 1-2 sentences stating which method you prefer (if any) and why.
- 4. Is there a better month or set of months to put your house on the market? Use tapply to compare the average DaysOnZillow\_AllHomes for all months. Make a barplot showing our results. Make sure your barplot includes "all of the fixings" (title, labeled axes, legend if necessary, etc. Make it look good.). Relevant topics: tapply, barplot

Hint: If you want to have the month's abbreviation in your plot, you may find both the month.abb object and the argument names.arg in barplot useful.

- R code used to solve the question.
- The barplot of DaysOnZillow\_AllHomes for all months.
- 1-2 sentences answering the question "Is there a better time to put your house on the market?" based on your results.
- 5. Filter the states data to contain only years from 2010+ and called it states2010plus. Make a lineplot showing the average DaysOnZillow\_AllHomes by Date using states2008plus data. Can you spot any trends? Write 1-2 sentences explaining what (if any) trends you see. Relevant topics: subset, tapply, plot

# Item(s) to submit:

- R code used to solve the question.
- The time series lineplot for DaysOnZillow\_AllHomes per date.
- 1-2 sentences commenting on the patterns found in the plot, and your impressions of it.

6. Do homes sell faster in certain states? For the the following states: 'California', 'Indiana', 'NewYork' and 'Florida', make a lineplot for DaysOnZillow\_AllHomes by Date with one line per state. Make sure to use states2010plus dataset. Make sure to have each state line colored differently, and to add a legend to your plot. Examine the plot and write 1-2 sentences about any observations you have. Hint: You may want to use the lines function to add the lines for different state.

**Hint:** Make sure to fix the y-axis limits using the ylim argument in plot to properly show all four lines.

**Hint:** You may find the argument col useful to change the color of your line.

**Hint:** To make your legend fit, consider using the states abbreviation, and the arguments ncol and cex of the legend function.

Relevant topics: subset, indexing, plot, lines

#### Item(s) to submit:

- R code used to solve the question.
- The time series line plot for  ${\tt DaysOnZillow\_AllHomes}$  per date for the 4 states.
- 1-2 sentences commenting on the patterns found in the plot, and your answer to the question "Do homes sell faster than in certain states rather than others?".

# Project 13

Motivation: Its important to be able to lookup and understand the documentation of a new function. You may have looked up the documentation of functions like paste0 or sapply, and noticed that in the "usage" section, one of the arguments is an ellipsis (...). Well, unless you understand what this does, its hard to really get it. In this project, we will experiment with ellipsis, and write our own function that utilizes one.

Context: We've learned about, used, and written functions in many projects this semester. In this project, we will utilize some of the less-known features of

functions.

Scope: r, functions

#### Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.
- Demostrate the ability to create basic graphs with default settings.
- Demonstratre the ability to modify axes labels and titles.
- Incorporate legends using legend().
- Demonstrate the ability to customize a plot (color, shape/linetype).
- Convert strings to dates, and format dates using the lubridate package.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/beer/

# Questions

1. Read /class/datamine/data/beer/beers.csv into a data.frame named beers. Read /class/datamine/data/beer/breweries.csv into a data.frame named breweries. Read /class/datamine/data/beer/reviews.csv into a data.frame named reviews. Hint: Wow! reviews.csv is a large file. Luckily, we will now introduce a function that is part of the famous data.table package called fread. fread is much faster than read.csv. It reads the data into a class called data.table. We will learn more about this later on. For now, convert the data.table into a data.frame by wrapping the result of fread in the data.frame function.

microbenchmark(read.csv("/class/datamine/data/beer/reviews.csv", nrows=100000), data.f:

Relevant topics: fread, data.frame

#### Item(s) to submit:

• R code used to solve the problem.

2. Take some time to explore the datasets. Like many datasets, our data is broken into 3 "tables". What columns connect each table? How many breweries in breweries don't have an associated beer in beers? How many beers in beers don't have an associated brewery in breweries? Relevant topics: names, %in%, logical operators, unique

# Item(s) to submit:

- R code used to solve the problem.
- A description of columns which connect each of the files.
- How many breweries don't have an associated beer in beers.
- How many beers don't have an associated brewery in breweries.
- 3. Run ?sapply and look at the usage section for sapply. If you look at the description for the ... argument, you'll see it is "optional arguments to FUN". What this means is you can specify additional input for the function you are passing to sapply. One example would be passing T to na.rm in the mean function: sapply(dat, mean, na.rm=T). Use sapply and the strsplit function to separate the types of breweries (types) by commas. Use another sapply to loop through your results and count the number of types for each brewery. Be sure to name your final results n\_types. What is the average amount of services (n\_types) breweries in IN and MI offer? Does that surprise you? Note: When you have one sapply inside of another, or one loop inside of another, or an if/else statement inside of another, this is commonly referred to as nesting. So when Googling, you can type "nested sapply" or "nested if statements", etc.

Relevant topics: ..., sapply, strplit, %in%, mean

- R code used to solve the question.
- 1-2 sentences answering the average amount of services breweries in Indiana and Michigan offer, and commenting on this answer.
- 4. Write a function called compare\_beers that accepts a function FUN, and any number of vectors of beer ids. compare\_beers should cycle through each group of beer\_ids, compute FUN on the subset of reviews, and print "Group X: some\_score" where X is the number 1+,

and some\_score is the result of applying FUN on the subset of data. Example:

```
compare_beers(reviews, median, c(271781), c(125646, 82352))
```

Fake output:

Group 1: 16 Group 2: 2.3

Relevant topics: ..., %in%, indexing, paste0, for loops

# Item(s) to submit:

- R code used to solve the problem.
- The result from running the provided example.
- 5. Beer wars! IN and MI against AZ and CO. Use the function in (4) to compare beer\_id from each group of states. Make a cool plot of some sort. Be sure to comment on your plot. Hint: Create a vector of beer\_ids per group before passing it to your function from (3).

Relevant topics: ..., %in%, indexing, paste0, for loops

#### Item(s) to submit:

- R code used to solve the problem.
- The result from running the your function.
- The resulting plot.
- 1-2 sentecens commenting on your plot.

Project 14

**Motivation:** Functions are the building blocks of more complex programming. It's vital that you understand how to read and write functions. In this project we will incrementally build and improve upon a function designed to recommend a beer. Note that you will not be winning any awards for this recommendation system, it is just for fun!

**Context:** One of the main focuses throughout the semester has been on functions, and for good reason. In this project we will continue to exercise our R skills and build up our recommender function.

Scope: r, functions

Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/beer/

# Questions

1. Read /class/datamine/data/beer/beers.csv into a data.frame named beers. Read /class/datamine/data/beer/breweries.csv into a data.frame named breweries. Read /class/datamine/data/beer/reviews.csv into a data.frame named reviews. As in the previous project, make sure you used the fread function from data.table package, and convert the data.table to a data.frame. We want to create a very basic beer recommender. We will start simple. Create a function called recommend\_a\_beer that takes as input my\_beer\_id (a single value) and returns a vector of beer\_ids from the same style. Test your function on 2093. Hint: Make sure you do not include the given my beer id from your recommended beer vector.

**Hint:** You may find the function **setdiff** useful. Run the example below to get an idea of what it does.

Note: You will not win any awards for this recommendation system!

```
x <- c('a','b','b','c')
y <- c('c','b','d','e','f')
setdiff(x,y)

[1] "a"
setdiff(y,x)

[1] "d" "e" "f"</pre>
```

Relevant topics: fread, data.frame, function

- R code used to solve the problem.
- Length of result from recommend\_a\_beer(2093).
- The result of 2093 %in% recommend\_a\_beer(2093).

2. That is a lot of beer recommendations! Let's try to narrow it down. Include an argument in your function called min\_score with default value of 4.5. Our recommender will only recommend beer\_ids with at least one score of at least min\_score. Test your improved beer recommender with the same beer\_id from (1). Hint: Note that now we need to look at both beers and reviews datasets.

Relevant topics: %in%, unique, subset/indexing

#### Item(s) to submit:

- R code used to solve the problem.
- Length of result from recommend\_a\_beer(2093).
- 3. There is still room for improvement (obviously) for our beer recommender. Include a new argument in your function called same\_brewery\_only with default value FALSE. This argument will determine whether or not our beer recommender will return only beers from the same brewery. Test our newly improved beer recommender with the same beer\_id from (1) with same\_brewery\_only set as TRUE. Hint: You may find the function intersect useful. Run the example below to get an idea of what it does.

```
x <- c('a','b','b','c')
y <- c('c','b','d','e','f')
intersect(x,y)
[1] "b" "c"
intersect(y,x)
[1] "c" "b"</pre>
```

Relevant topics: if/else, subset, intersect, indexing

- R code used to solve the problem.
- Length of result from recommend\_a\_beer(2093, same\_brewery\_only=TRUE).
- 4. Oops! Bad idea! Maybe including only beers from the same brewery is not the best option. Add an argument to our beer recommender named type. If type=style our recommender will recommend beers based on the style as we did in (3). If type=reviewers, our recommender will recommend beers based on reviewers with "similar taste". Select reviewers that have a min\_score for the given beer id (my\_beer\_id). For those reviewers, find the beer\_ids for other beers

that these reviewers have given a score of at least min\_score. These beer\_ids are the ones our recommender will return. Be sure to test our improved recommender on the same beer\_id as in (1)-(3). Relevant topics: if, subset, %in%, setdiff, unique

#### Item(s) to submit:

- R code used to solve the problem.
- Length of result from recommend\_a\_beer(2093, type="reviewers").
- 5. Let's try to narrow down the recommendations. Include an argument called abv\_range that indicates the abv range we would like the recommended beers to be at. Set abv\_range default value to NULL so that if a user does not specify the abv\_range our recommender does not consider it. Test our recommender for beer\_id 2093, with abv\_range = c(8.9,9.1) and min\_score=4.9. Hint: You may find the function is.null useful.

Relevant topics: if, >=, <=, intersect

#### Item(s) to submit:

- R code used to solve the problem.
- Length of result from recommend\_a\_beer(2093, abv\_range=c(8.9, 9.1), type="reviewers", min\_score=4.9).
- 6. Play with our recommend\_a\_beer function. Include another feature to it. Some ideas are: putting a limit on the number of beer\_ids we will return, error catching (what if we don't have reviews for a given beer\_id?), including a plot to the output, returning beer names instead of ids or new arguments to decide what beer\_ids to recommend. Be creative and have fun!

- R code used to solve the problem.
- The result from running the improved recommend\_a\_beer function showcasing your improvements to it.
- 1-2 sentecens commenting on what you decided to include and why.

Project 15		

**Motivation:** Some people say it takes 20 hours to learn a skill, some say 10,000 hours. What is certain is it definitely takes time. In this project we will explore an interesting dataset and exercise some of the skills learned the semester.

Context: This is the final project of the semester. We sincerely hope that you've learned something, and, if you haven't, we hope we've provided you with first hand experience digging through data.

# Scope: r

#### Learning objectives:

- Read and write basic (csv) data.
- Explain and demonstrate: positional, named, and logical indexing.
- Utilize apply functions in order to solve a data-driven problem.
- Gain proficiency using split, merge, and subset.

#### Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/donerschoose/

#### Questions

1. Read the data /class/datamine/data/donerschoose/Projects.csv into a data.frame called projects. Make sure you use the function you learned in Project 13 – fread function from data.table package – to read the data. Don't forget to then convert the data.table into a data.frame. Let's do an initial exploration of this data. What types of projects (Project.Type) are there? How many resource categories (Project.Resource.Category) are there? Hint: If a column name has a space in it, surround the name in backticks 'to access it. See the example below. Note that you should convert your data.table to a data.frame, and as a result, the column names should not have spaces.

projects\$`Project Type`

Relevant topics: fread, unique, length

- R code used to solve the question.
- 1-2 sentences containing the project's types and how many resource categories are in the dataset.
- 2. Create two new variables in projects, the number of days a project's lasted and the number of days until the project

was fully funded. Name those variables project\_duration and time\_until\_funded, respectively. To calculate them use the project's posted date (Project.Posted.Date), expiration date (Project.Expiration.Date), and fully funded date (Project.Fully.Funded.Date). What are the shortest and longest times until a project is fully funded? For consistency check, see if we have any negative project's duration. If so, how many? Hint: You may find the argument units in difftime useful.

**Hint:** Be sure to pay attention to the order of operations of difftime.

**Hint:** Note that if you used fread function from data.table you will not need to convert the columns as date.

**Hint:** It is *not* required that you use difftime.

Relevant topics: difftime, lubridate

#### Item(s) to submit:

- R code used to solve the question.
- Shortest and longest times until a project is fully funded.
- 1-2 sentences answering whether we have if we have negative project's duration, and if so how many.
- 3. As you noted in (2) there may be some project's with negative duration time. As we may have some concerns for the data regarding these projects, filter the projects data to exclude the projects with negative duration, and call this filtered data selected\_projects. With that filtered data, make a dotchart for mean time until the project is fully funded (time\_until\_funded) for the various resource categories (Project.Resource.Category). Make sure to comment on your results. Are they surprising? Could there be another variable influencing this result? If so, name at least one. Hint: You will first need to average the time until project your for the different categories before making your plot.

**Hint:** To make your dotchart look nicer, you may want to first order the average time until fully funded before passing it to dotchart. In addition, consider reducing the y-axis font size using the argument cex.

Relevant topics: indexing, subset, tapply, dotchart

#### Item(s) to submit:

- R code used to solve the question.
- Resulting barplot.
- 1-2 sentences commenting on your plot. Make sure to mention whether you are surprised or not by the results. Don't forget to add if you think there could be more factors influencing your answer, and if so, be sure to give examples.

4. Read /class/datamine/data/donerschoose/Schools.csv into a data.frame called schools. Combine selected\_projects and schools by School.ID keeping only School.IDs present in both datasets. Name the combined data.frame selected\_projects. Use the newly combined data to determine the percentage of already fully funded projects (Project.Current.Status) for schools in West Lafayette, IN. In addition, determine the state (School.State) with the highest number of projects. Be sure to specify the number of projects this state has. Hint: West Lafayette, IN zip codes are 47906 and 47907.

Relevant topics: fread, read.csv, subset, indexing, merge, table, prop.table, which.max

# Item(s) to submit:

- R code used to solve the question.
- 1-2 sentences answering the percentage of already fully funded projects for schools in West Lafayette, IN, the state with the highest number of projects, and the number of projects this state has.
- 5. Using the combined selected\_projects data, get the school(s) (School.Name), city/cities (School.City) and state(s) (School.State) for the teacher with the highest percentage of fully funded projects (Project.Current.Status). Hint: There are many ways to solve this problem. For example, one option to get the teacher's ID is to create a variable indicating whether or not the project is fully funded and use tapply. Another option is to create prop.table and select the corresponding column/row.

**Hint:** Note that each row in the data corresponds to a unique project ID.

Hint: Once you have the teacher's ID, consider filtering projects to contain only rows for which the corresponding teacher's ID is in, and only the columns we are interested in: School.Name, School.City, and School.State. Then, you can get the unique values in this shortened data.

**Hint:** To get only certain columns when subetting, you may find the argument select from subset useful.

Relevant topics: indexing, which, max, subset, unique, row.names (if using table), names (if using tapply)

#### Item(s) to submit:

- R code used to solve the question.
- 1-2 sentences answering the percentage of already fully funded projects for schools in West Lafayette, IN, the state with the highest amount of projects, and the number of projects this state has.

## STAT 29000

## Project 1

**Motivation:** In this project we will jump right into an R review. In this project we are going to break one larger data-wrangling problem into discrete parts. There is a slight emphasis on writing functions and dealing with strings. At the end of this project we will have greatly simplified a dataset, making it easy to dig into.

**Context:** We just started the semester and are digging into a large dataset, and in doing so, reviewing R concepts we've previously learned.

**Scope:** data wrangling in R, functions

## Learning objectives:

- Comprehend what a function is, and the components of a function in R
- Read and write basic (csv) data.
- Utilize apply functions in order to solve a data-driven problem.

Make sure to read about, and use the template found here, and the important information about projects submissions here.

You can find useful examples that walk you through relevant material in The Examples Book:

https://the data mine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account

credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

#### help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

#### Reduce

Occasionally this will be less useful as the resulting code will be code that calls  $\mathfrak c$  code we can't see. Other times it will allow you to understand the function better.

#### Dataset:

#### /class/datamine/data/airbnb

Often times (maybe even the majority of the time) data doesn't come in one nice file or database. Explore the datasets in /class/datamine/data/airbnb.

1. You may have noted that, for each country, city, and date we can find 3 files: calendar.csv.gz, listings.csv.gz, and reviews.csv.gz (for now, we will ignore all files in the "visualisations" folders). Let's take a look at the data in each of the three types of files. Pick a country, city and date, and read the first 50 rows of each of the 3 datasets. Provide 1-2 sentences explaining the type of information found in each, and what variable(s) could be used to join them. Hint: read.csv has an argument to select the number of rows we want to read.

- Chunk of code used to read the first 50 rows of each dataset.
- 1-2 sentences briefly describing the information contained in each dataset.
- Name(s) of variable(s) that could be used to join them.

To read a compressed csv, simply use the read.csv function:

dat <- read.csv("/class/datamine/data/airbnb/brazil/rj/rio-de-janeiro/2019-06-19/data/calendar.cs
head(dat)</pre>

Let's work towards getting this data into an easier format to analyze. From now on, we will focus on the listings.csv.gz datasets.

- 2. Write a function called get\_paths\_for\_country, that, given a string with the country name, returns a vector with the full paths for all listings.csv.gz files, starting with /class/datamine/data/airbnb/....

  Some example output from get\_paths\_for\_country("united-states"):
  - [1] "/class/datamine/data/airbnb/united-states/ca/los-angeles/2019-07-08/data/listings.csv.gz"
  - [2] "/class/datamine/data/airbnb/united-states/ca/oakland/2019-07-13/data/listings.csv.gz"
  - [3] "/class/datamine/data/airbnb/united-states/ca/pacific-grove/2019-07-01/data/listings.csv.gz
- [4] "/class/datamine/data/airbnb/united-states/ca/san-diego/2019-07-14/data/listings.csv.gz"
- [5] "/class/datamine/data/airbnb/united-states/ca/san-francisco/2019-07-08/data/listings.csv.gz'

Hint: list.files is useful with the recursive=T option.

**Hint:** To exclude "visualisations" folders, try: grep("visualisations", ..., invert=T).

#### Item(s) to submit:

- Chunk of code for your get\_paths\_for\_country function.
- 3. Write a function called get\_data\_for\_country that, given a string with the country name, returns a data.frames containing the all listings data for that country. Use your previously written function to help you. Hint: Use stringAsFactors=F in the read.csv function.

Hint: Use do.call(rbind, stofdataframes>) to combine a list of dataframes into a single dataframe.

Relevant topics: rbind, lapply, function

- Chunk of code for your get\_data\_for\_country function.
- 4. Use your get\_data\_for\_country to get the data for a country of your choice, and make sure to name the data.frame listings. Take a look at the following columns: host\_is\_superhost, host\_has\_profile\_pic, host\_identity\_verified, and is\_location\_exact. What is the data type for each column? Is there a more appropriate type for them? If so, which type would you recommend? Hint: Remember, there are a

six types of vectors: logical, integer, double, character, complex, and raw. To see the vector data types of you can use typeof or str. The function typeof will return the type, while str will return more information. See some examples below:

```
Using typeof
typeof(letters)

[1] "character"

typeof(1:10)

[1] "integer"

Using str

str(letters)

chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" ...

str(1:10)

int [1:10] 1 2 3 4 5 6 7 8 9 10
```

5. Write a function called transform\_column that, given a column similar to the ones in (4) (more or less, lowercase "t"s and "f"s) transforms it to your suggested vector type in (4). Note that NA values for these columns appear as blank (""), and we need to be careful when transforming the data. Test your function on column host\_is\_superhost. Relevant topics: toupper, as.logical

#### Item(s) to submit:

- Chunk of code for your transform column function.
- Type of transform\_column(listings\$host\_is\_superhost).
- 6. Before we can use your function, we need to determine which columns are similar to host\_is\_superhost (i.e., lowercase "t"s and "f"s) and need transformation. Create a function named should\_be\_transformed that, given a column, determines (returns TRUE or FALSE) if it contains only "t", "f", and "" values. Use your newly created function to create a vector named columns\_to\_transform which contains all columns we want to transform using the function in (5). How many columns are in this format? Relevant topics: unique, %in%, all, sapply, which

- Chunk of code for your should\_be\_transformed function.
- Chunk of code used to obtain columns\_to\_transform.

7. Apply your function transform\_column to all columns in columns\_to\_transform in your listings data. Make sure it worked by checking the type of columns id and instant\_bookable. Note that the column id should have the same type as before. Relevant topics: apply

#### Item(s) to submit:

- Chunk of code to get your new listings data.
- Type of columns id and instant\_bookable.
- 8. Now that we have organized and cleaned our data, let's explore it! Based on your listings data, if you are looking at an instant bookable listing (where instant\_bookable is TRUE), would you expect the location to be exact (where is\_location\_exact is TRUE)? Why or why not? Hint: Make a frequency table, and see how many instant bookable listings have exact location.

Relevant topics: table

## Item(s) to submit:

- Chunk of code to get a frequency table.
- 1-2 sentences explaining whether or not we would expect the location to be exact if we were looking at a instant bookable listing.

Project 2

Motivation: The ability to quickly reproduce an analysis is important. It is often necessary that other individuals will need to be able to understand and reproduce an analysis. This concept is so important there are classes solely on reproducible research! In fact, there are papers that investigate and highlight the lack of reproducibility in various fields. If you are interested in reading about this topic, a good place to start is the paper titled "Why Most Published Research Findings Are False", by John Ioannidis (2005).

Context: Making your work reproducible is extremely important. We will focus on the computational part of reproducibility. We will learn RMarkdown to document your analyses so others can easily understand and reproduce the computations that led to your conclusions. Pay close attention as future project templates will be RMarkdown templates.

**Scope:** Understand Markdown, RMarkdown, and how to use it to make your data analysis reproducible.

#### Learning objectives:

• Use Markdown syntax within an Rmarkdown document to achieve various text transformations.

 Use RMarkdown code chunks to display and/or run snippets of code.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

## help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

## Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

1. Make the following text (including the asterisks) bold: This needs to be \*\*very\*\* bold. Make the following text (including the underscores) italicized: This needs to be \_very\_ italicized. Important note: Surround your answer in 4 backticks. This will allow you to display the markdown without having the markdown "take effect". For example:

```
Some *marked* **up** text.
```

**Hint:** Be sure to check out the Rmarkdown Cheatsheet and our section on Rmarkdown in the book.

**Note:** Rmarkdown is essentially Markdown + the ability to run and display code chunks. In this question, we are actually using Markdown within Rmarkdown!

Relevant topics: rmarkdown, escaping characters

#### Item(s) to submit:

- 2 lines of markdown text, surrounded by 4 backticks. Note that when compiled, this text will be unmodified, regular text.
- 2. Create an unordered list of your top 3 favorite academic interests (some examples could include: machine learning, operating systems, forensic accounting, etc.). Create another *ordered* list that ranks your academic interests in order of most interested to least interested. Hint: You can learn what ordered and unordered lists are here.

**Note:** Similar to (1a), in this question we are dealing with Markdown. If we were to copy and paste the solution to this problem in a Markdown editor, it would be the same result as when we Knit it here.

Relevant topics: rmarkdown

## Item(s) to submit:

- Create the lists, this time don't surround your code in backticks. Note that when compiled, this text will appear as nice, formatted lists.
- 3. Browse https://www.linkedin.com/ and read some profiles. Pay special attention to accounts with an "About" section. Write your own personal "About" section using Markdown. Include the following:
  - A header (your choice of size) that says "About".
  - The text of your personal "About" section that you would feel comfortable uploading to linkedin, including at least 1 link.

Relevant topics: rmarkdown

#### Item(s) to submit:

• Create the described profile, don't surround your code in backticks.

4. Your co-worker wrote a report, and has asked you to beautify it. Knowing Rmarkdown, you agreed. Spruce up the report below. At a minimum:

- Make the title pronounced.
- Make all links appear as a word or words, rather than the long-form URL.
- Organize all code into code chunks where code and output are displayed. If the output is really long, just display the code.
- Make the calls to the library function and the install.packages function be evaluated but not displayed.
- Make sure all warnings and errors that may eventually occur, do not appear in the final document.

Feel free to make any other changes that make the report more visually pleasing.

```
```{r install-packages}
install.packages("ggplot2", repos = "http://cran.us.r-project.org")
library(ggplot2)
```{r declare-variable, eval=FALSE}
my_variable \leftarrow c(1,2,3)
All About the Iris Dataset
This paper goes into detail about the `iris` dataset that is built into r. You can fin-
data()
The iris dataset has 5 columns. You can get the names of the columns by running the fo
names(iris)
Alternatively, you could just run the following code:
iris
The second option provides more detail about the dataset.
According to https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html the
An iris is a really pretty flower. You can see a picture of one here:
https://www.gardenia.net/storage/app/public/guides/detail/83847060_m0ptimized.jpg
```

In summary. I really like irises, and there is a dataset in r called `iris`.

Relevant topics: rmarkdown

## Item(s) to submit:

• Spruce up the "document", and place it all under the Question 4 header in your template.

5. Create a plot using a built-in dataset like iris, mtcars, or Titanic, and display the plot using a code chunk. Make sure the code used to generate the plot is hidden. Include a descriptive caption for the image. Make sure to use an RMarkdown chunk option to create the caption. Relevant topics: rmarkdown, plotting in r

#### Item(s) to submit:

• Code chunk under that creates and displays a plot using a built-in dataset like iris, mtcars, or Titanic.

```
```{r install-packages}
plot(my_variable)
```

6. Insert the following code chunk under the Question 6 header in your template. Try knitting the document. Something should go wrong. Fix the problem and knit again. If another problem appears, fix it. What was the first problem? What was the second problem? Hint: Take a close look at the name we give our code chunk.

Hint: Take a look at the code chunk where my_variable is declared.

Relevant topics: rmarkdown

Item(s) to submit:

- The modified version of the inserted code that fixes both problems.
- A sentence explaining what the first problem was.
- A sentence explaining what the second problem was.

Project 3

Motivation: The ability to navigate a shell, like bash, and use some of its powerful tools, is very useful. The number of disciplines utilizing data in new ways is ever-growing, and as such, it is very likely that many of you will eventually

encounter a scenario where knowing your way around a terminal will be useful. We want to expose you to some of the most useful bash tools, help you navigate a filesystem, and even run bash tools from within an RMarkdown file in RStudio.

Context: At this point in time, you will each have varying levels of familiarity with Scholar. In this project we will learn how to use the terminal to navigate a UNIX-like system, experiment with various useful commands, and learn how to execute bash commands from within RStudio in an RMarkdown file.

Scope: bash, RStudio

Learning objectives:

- Distinguish differences in /home, /scratch, and /class.
- Navigating UNIX via a terminal: ls, pwd, cd, ., .., ~, etc.
- Analyzing file in a UNIX filesystem: wc, du, cat, head, tail, etc.
- Creating and destroying files and folder in UNIX: scp, rm, touch, cp, mv, mkdir, rmdir, etc.
- Utilize other Scholar resources: rstudio.scholar.rcac.purdue.edu, notebook.scholar.rcac.purdue.edu, desktop.scholar.rcac.purdue.edu, etc.
- Use man to read and learn about UNIX utilities.
- Run bash commands from within and RMarkdown file in RStudio.

There are a variety of ways to connect to Scholar. In this class, we will *primarily* connect to RStudio Server by opening a browser and navigating to https://rstudio.scholar.rcac.purdue.edu/, entering credentials, and using the excellent RStudio interface.

- 1. Navigate to https://rstudio.scholar.rcac.purdue.edu/ and login. Take some time to click around and explore this tool. We will be writing and running Python, R, SQL, and bash all from within this interface. Navigate to Tools > Global Options Explore this interface and make at least 2 modifications. List what you changed. Here are some changes Kevin likes:
 - Uncheck "Restore .Rdata into workspace at startup".
 - Change tab width 4.
 - Check "Soft-wrap R source files".
 - Check "Highlight selected line".
 - Check "Strip trailing horizontal whitespace when saving".
 - Uncheck "Show margin".

Item(s) to submit:

• List of modifications you made to your Global Options.

2. There are four primary panes, each with various tabs. In one of the panes there will be a tab labeled "Terminal". Click on that tab. This terminal by default will run a bash shell right within Scholar, the same as if you connected to Scholar using ThinLinc, and opened a terminal. Very convenient! What is the default directory of your bash shell? In our list of relevant topics, we've included links to a variety of UNIX commands that may help you solve this problem. Some of the tools are super simple to use, and some are a little bit more difficult. Hint: Start by reading the section on man. man stands for manual, and you can find the "official" documentation for the command by typing man <command_of_interest>. For example:

```
# read the manual for the `man` command # use "k" or the up arrow to scroll up, "j" or the down arrow to scroll down man man
```

Relevant topics: man, cd, pwd, ls, ~, ..., .

Item(s) to submit:

- The full filepath of default directory (home directory). Ex: Kevin's is: /home/kamstut
- The bash code used to show your home directory or current working directory when the bash shell is first launched.
- 3. Learning to navigate away from our home directory to other folders, and back again, is vital. Perform the following actions, in order:
 - Write a single command to navigate to the folder containing our full datasets: /class/datamine/data.
 - Write a command to confirm you are in the correct folder.
 - Write a command to list the files and directories within the data directory.
 - What are the names of the files? Write another command to return back to your home directory.
 - Write a command to confirm you are in the correct folder.

Note: / is commonly referred to as the root directory in a linux/unix filesystem. Think of it as a folder that contains *every* other folder in the computer. /home is a folder within the root directory. /home/kamstut is the full filepath of Kevin's home directory. There is a folder home inside the root directory. Inside home is another folder named kamstut which is Kevin's home directory.

Relevant topics: man, cd, pwd, ls, ~, .., .

Item(s) to submit:

- Command used to navigate to the data directory.
- Command used to confirm you are in the data directory.
- Command used to list files and folders.
- List of files and folders in the data directory.
- Command used to navigate back to the home directory.
- Command used to confirm you are in the home directory.
- 4. Let's learn about two more important concepts. the current working directory, or the directory displayed when you run pwd. Unlike pwd you can use this when navigating the filesystem! So, for example, if you wanted to see the contents of a file called my file.txt that lives in /home/kamstut (so, a full path of /home/kamstut/my_file.txt), and you are currently in /home/kamstut, you could run: cat ./my file.txt. .. represents the parent folder or the folder in which your current folder is contained. So let's say I was in /home/kamstut/projects/ and I wanted to get the contents of the file /home/kamstut/my_file.txt. You could do: cat ../my_file.txt. When you navigate a directory tree using ., .., and ~ you create paths that are called relative paths because they are relative to your current directory. Alternatively, a full path or (absolute path) is the path starting from the root directory. So /home/kamstut/my_file.txt is the absolute path for my_file.txt and ../my_file.txt is a relative path. Perform the following actions, in order:
 - Write a single command to navigate to the data directory.
 - Write a single command to navigate back to your home directory using a *relative* path. Do not use ~ or plain cd.

Relevant topics: man, cd, pwd, ls, ~, .., .

- Command used to navigate to the data directory.
- Command used to navigate back to your home directory that uses a *relative* path.
- 5. In Scholar, when you want to deal with *really* large amounts of data, you want to access scratch (you can read more here). Your scratch directory on Scholar is located here: /scratch/scholar/\$USER. \$USER is an environment variable containing your username. Test it out: echo /scratch/scholar/\$USER. Perform the following actions:
 - Navigate to your scratch directory.
 - Confirm you are in the correct location.

- Execute myquota.
- Find the location of the myquota bash script.
- Output the first 5 and last 5 lines of the bash script.
- Count the number of lines in the bash script.
- How many kilobytes is the script?

Hint: You could use each of the commands in the relevant topics once.

Hint: Commands often have *options*. Options are features of the program that you can trigger specifically. You can see the *options* of a command in the DESCRIPTION section of the man pages. For example: man wc. You can see -m, -1, and -w are all options for wc. To test this out:

```
# using the default wc command. "/class/datamine/data/flights/1987.csv" is the first "argument" g
wc /class/datamine/data/flights/1987.csv
# to count the lines, use the -l option
wc -l /class/datamine/data/flights/1987.csv
# to count the words, use the -w option
wc -w /class/datamine/data/flights/1987.csv
# you can combine options as well
wc -w -l /class/datamine/data/flights/1987.csv
# some people like to use a single tack `-`
wc -wl /class/datamine/data/flights/1987.csv
# order doesn't matter
wc -lw /class/datamine/data/flights/1987.csv
```

Hint: The -h option for the du command is useful.

Relevant topics: cd, pwd, type, head, tail, wc, du

Item(s) to submit:

- Command used to navigate to your scratch directory.
- Command used to confirm your location.
- Output of myquota.
- Command used to find the location of the myquota script.
- Absolute path of the myquota script.
- Command used to output the first 5 lines of the myquota script.
- Command used to output the last 5 lines of the myquota script.
- Command used to find the number of lines in the myquota script.
- Number of lines in the script.
- Command used to find out how many kilobytes the script is.
- Number of kilobytes that the script takes up.

6. Perform the following operations:

• Navigate to your scratch directory.

• Copy and paste the file: /class/datamine/data/flights/1987.csv to your current directory (scratch).

- Create a new directory called my_test_dir in your scratch folder.
- Move the file you copied to your scratch directory, into your new folder.
- Use touch to create an empty file named im_empty.txt in your scratch folder.
- Remove the directory my_test_dir and the contents of the directory.
- Remove the im_empty.txt file.

Hint: rmdir may not be able to do what you think, instead, check out the options for rm using man rm.

Relevant topics: cd, cp, mv, mkdir, touch, rmdir, rm

Item(s) to submit:

- Command used to navigate to your scratch directory.
- Command used to copy the file, /class/datamine/data/flights/1987.csv to your current directory (scratch).
- Command used to create a new directory called my_test_dir in your scratch folder.
- Command used to move the file you copied earlier 1987.csv into your new my_test_dir folder.
- Command used to create an empty file named im_empty.txt in your scratch folder.
- Command used to remove the directory and the contents of the directory my_test_dir.
- Command used to remove the im_empty.txt file.

Project 4

Motivation: The need to search files and datasets based on the text held within is common during various parts of the data wrangling process. grep is an extremely powerful UNIX tool that allows you to do so using regular expressions. Regular expressions are a structured method for searching for specified patterns. Regular expressions can be very complicated, even professionals can make critical mistakes. With that being said, learning some of the basics is an incredible tool that will come in handy regardless of the language you are working in.

Context: We've just begun to learn the basics of navigating a file system in UNIX using various terminal commands. Now we will go into more depth with one of the most useful command line tools, grep, and experiment with regular expressions using grep, R, and later on, Python.

Scope: grep, regular expression basics, utilizing regular expression tools in R and Python

Learning objectives:

- Use grep to search for patterns within a dataset.
- Use cut to section off and slice up data from the command line.
- Use wc to count the number of lines of input.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls ${\tt c}$ code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/movies_and_tv/the_office_dialogue.csv

A public sample of the data can be found here: the office dialogue.csv

Answers to questions should all be answered using the full dataset located on Scholar. You may use the public samples of data to experiment with your solutions prior to running them using the full dataset.

grep stands for (g)lobally search for a (r)egular (e)xpression and (p)rint matching lines. As such, to best demonstrate grep, we will be using it with textual data. You can read about and see examples of grep here.

1. Login to Scholar and use grep to find the dataset we will use this project. The dataset we will use is the only dataset to have the text "bears. beets. battlestar galactica.". What is the name of the dataset and where is it located? Relevant topics: *grep*

Item(s) to submit:

- The grep command used to find the dataset.
- The name and location in Scholar of the dataset.
- Use grep and grep1 within R to solve a data-driven problem.
- 2. grep prints the line that the text you are searching for appears in. In project 3 we learned a UNIX command to quickly print the first n lines from a file. Use this command to get the headers for the dataset. As you can see, each line in the tv show is a row in the dataset. You can count to see which column the various bits of data live in. Write a line of UNIX commands that searches for "bears. beets. battlestar galactica." and, rather than printing the entire line, prints only the character who speaks the line, as well as the line itself.

Hint: The result if you were to search for "bears. beets. battlestar galactica." should be:

"Jim", "Fact. Bears eat beets. Bears. Beets. Battlestar Galactica."

Hint: One method to solve this problem would be to pipe the output from grep to cut.

Relevant topics: cut, grep

- The line of UNIX commands used to perform the operation.
- 3. This particular dataset happens to be very small. You could imagine a scenario where the file is many gigabytes and not easy to load completely into R or Python. We are interested in learning what makes Jim and Pam tick as a couple. Use a line of UNIX commands

to create a new dataset called jim_and_pam.csv. Include only lines that are spoken by either Jim or Pam, or reference Jim or Pam in any way. Include only the following columns: episode_name, character, text, text_w_direction, and air_date. How many rows of data are in the new file? How many megabytes is the new file (to the nearest 1/10th of a megabyte)? Hint: Redirection.

Hint: It is OK if you get an erroneous line where the word "jim" or "pam" appears as a part of another word.

Relevant topics: cut, grep, ls, wc, redirection

Item(s) to submit:

- The line of UNIX commands used to create the new file.
- The number of rows of data in the new file, and the accompanying UNIX command used to find this out.
- The number of megabytes (to the nearest 1/10th of a megabyte) that the new file has, and the accompanying UNIX command used to find this out.
- 4. Find all lines where either Jim/Pam/Michael/Dwight's name is followed by an exclamation mark. Use only 1 "!" within your regular expression. How many lines are there? Relevant topics: *grep*

Item(s) to submit:

- The UNIX command(s) used to solve this problem.
- The number of lines where either Jim/Pam/Michael/Dwight's name is followed by an exclamation mark.
- 5. Find all lines that contain the text "that's what" followed by any amount of any text and then "said". How many lines are there? Relevant topics: *grep*

Item(s) to submit:

- The UNIX command used to solve this problem.
- The number of lines that contain the text "that's what" followed by any amount of text and then "said".

Regular expressions are really a useful semi language-agnostic tool. What this means is regardless of the programming language your are using, there will be some package that allows you to use regular expressions. In fact, we can use them in both R and Python! This can be particularly useful when dealing with strings. Load up the dataset you discovered in (1) using read.csv. Name the resulting data.frame dat.

6. The text_w_direction column in dat contains the characters' lines with inserted direction that helps characters know what to do as they are reciting the lines. Direction is shown between square brackets "[" "]". Create a new column called has_direction that is set to TRUE if the text_w_direction column has direction, and FALSE otherwise. Use regular expressions and the grepl function in R to accomplish this. Hint: Make sure all opening brackets "[" have a corresponding closing bracket "]".

Hint: Think of the pattern as any line that has a [, followed by any amount of any text, followed by a], followed by any amount of any text.

Relevant topics: grep, grepl

Item(s) to submit:

• The R code used to solve this problem.

7. Modify your regular expression in (7) to find lines with 2 or more sets of direction. For example, the following line has 2 directions: dat\$text_w_direction[2789]. How many lines have more than 2 directions? How many have more than 5?

```
This is a line with [emphasize this] only 1 direction!

This is a line with [emphasize this] 2 sets of direction, do you see the difference [si
```

In (6), your solution may have found a match in both lines. In this question we want it to find only lines with 2+ directions, so the first line would not be a match.

Relevant topics: length, grep

Item(s) to submit:

- The R code used to solve this problem.
- How many lines have > 2 directions?
- How many lines have > 5 directions?

```
This is a line with [emphasize this] only 1 direction!

This is a line with [emphasize this] 2 sets of direction, do you see the difference [st
```

8. Use the str_extract_all function from the stringr package to extract the direction(s) as well as the text between direction(s) from each line. Put the strings in a new column called direction. In this question, your solution may have extracted:

[emphasize this]
[emphasize this] 2 sets of direction, do you see the difference [shrug]

This is ok.

Note: If you capture text between two sets of direction, this is ok. For example, if we capture "[this] is a [test]" from "if we capture [this] is a [test]", this is ok.

Relevant topics: $str_extract_all$

Item(s) to submit:

• The R code used to solve this problem.

Project 5

Motivation: Becoming comfortable stringing together commands and getting used to navigating files in a terminal is important for every data scientist to do. By learning the basics of a few useful tools, you will have the ability to quickly understand and manipulate files in a way which is just not possible using tools like Microsoft Office, Google Sheets, etc.

Context: We've been using UNIX tools in a terminal to solve a variety of problems. In this project we will continue to solve problems by combining a variety of tools using a form of redirection called piping.

Scope: grep, regular expression basics, UNIX utilities, redirection, piping

Learning objectives:

- Use cut to section off and slice up data from the command line.
- Use piping to string UNIX commands together.
- Use sort and it's options to sort data in different ways.
- Use head to isolate n lines of output.
- Use wc to summarize the number of lines in a file or in output.
- Use uniq to filter out non-unique lines.
- Use grep to search files effectively.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/amazon/amazon_fine_food_reviews.csv

A public sample of the data can be found here: amazon_fine_food_reviews.csv

Answers to questions should all be answered using the full dataset located on Scholar. You may use the public samples of data to experiment with your solutions prior to running them using the full dataset.

Questions

1. What is the Id of the most helpful review if we consider the review with highest HelpfulnessNumerator to be an indicator of helpfulness (higher is more helpful)? Relevant topics: cut, sort, head, piping

- Line of UNIX commands used to solve the problem.
- The Id of the most helpful review.

2. What proportion of all Summarys are unique? Use two lines of UNIX commands to find the answer. Relevant topics: cut, uniq, sort, wc, piping

Item(s) to submit:

- Two lines of UNIX commands used to solve the problem.
- The ratio of unique Summary's.
- 3. Use a simple UNIX command to create a frequency table of Score. Relevant topics: [cut]#cut, uniq, sort, piping

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- The frequency table.
- 4. Who is the user with the highest number of reviews? There are two columns you could use to answer this question, but which column do you think would be most appropriate and why? Hint: You may need to pipe the output to sort multiple times.

Hint: To create the frequency table, read through the man pages for uniq. Man pages are the "manual" pages for UNIX commands. You can read through the man pages for uniq by running the following:

man uniq

Relevant topics: cut, uniq, sort, head, piping, man

Item(s) to submit:

- $\bullet\,$ The line of UNIX commands used to solve the problem.
- The frequency table.
- 5. Anecdotally, there seems to be a tendency to leave reviews when we feel strongly (either positive or negative) about a product. For the user with the highest number of reviews, would you say that they follow this pattern of extremes? Let's consider 5 star reviews to be strongly positive and 1 star reviews to be strongly negative. Let's consider anything in between neither strongly positive nor negative. Hint: You may find the solution to problem (3) useful.

Relevant topics: cut, uniq, sort, grep, piping

Item(s) to submit:

• The line of UNIX commands used to solve the problem.

6. We want to compare the most helpful review with a Score of 5 with the most helpful review with a Score of 1. Use UNIX commands to calculate these values. Write down the ProductId of both reviews. In the case of a tie, write down all ProductId's to get full credit. In this case we are considering the most helpful review to be the review with the highest HelpfulnessNumerator. Hint: You can use multiple lines to solve this problem.

Relevant topics: sort, head, piping

Item(s) to submit:

- The lines of UNIX commands used to solve the problem.
- ProductId's of both requested reviews.
- 7. Using the ProductId's from the previous question, create a new dataset called reviews.csv which contains the ProductId's and Score of all reviews with the corresponding ProductId's. Relevant topics: grep, redirection

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- 8. Use R to load up reviews.csv into a new data.frame called dat. Create a histogram for each products' Score. Compare the most helpful review Score with the Score's given in the histogram. Based on this comparison, decide (anecdotally) whether you think people found the review helpful because the product is overrated, underrated, or correctly reviewed by the masses. Relevant topics: read.csv, hist

- R code used to create the histograms.
- 3 histograms, 1 for each ProductId.
- 1-2 sentences explaining whether or not you think people found the review helpful because the produce is overrated, underrated, or correctly reviewed, and why.

Project 6

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.

Dataset:

The following questions will use the dataset found here or in Scholar:

/class/datamine/data/flights/subset/YYYY.csv

An example from 1987 data can be found here or in Scholar:

/class/datamine/data/flights/subset/1987.csv

Questions

1. In previous projects we learned how to get a single column of data from a csv file. Write 1 line of UNIX commands to print the 17th column, the Origin, from 1987.csv. Write another line, this time using awk to do the same thing. Which one do you prefer, and why? Relevant topics: cut, awk

- One line of UNIX commands to solve the problem without using awk.
- One line of UNIX commands to solve the problem using awk.
- 1-2 sentences describing which method you prefer and why.

2. Write a bash script that accepts a year (1987, 1988, etc.) and a column n and returns the nth column of the associated year of data. Relevant topics: awk, bash scripts

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- 3. How many flights came into Indianapolis (IND) in 2008? First solve this problem without using awk, then solve this problem using only awk. Relevant topics: cut, grep, wc, awk, piping

Item(s) to submit:

- One line of UNIX commands to solve the problem *without* using
- One line of UNIX commands to solve the problem using awk.
- The number of flights that came into Indianapolis (IND) in 2008.
- 4. Do you expect the number of unique origins and destinations to be the same? Find out using any command line tool you'd like. Are they indeed the same? How many unique values do we have per category (Origin, Dest)? Relevant topics: cut, sort, uniq, wc, awk

Item(s) to submit:

- 1-2 sentences explaining whether or not you expect the number of unique origins and destinations to be the same.
- The UNIX command(s) used to figure out if the number of unique origins and destinations are the same.
- The number of unique values per category (Origin, Dest).
- 5. In (4) we found that there are not the same number of unique Origin's as Dest's. Find the IATA airport code for all Origin's that dont appear in a Dest and all Dest's that don't appear in an Origin. Hint: https://www.tutorialspoint.com/unix_commands/comm.html

Relevant topics: comm, cut, sort, uniq, redirection

- The line(s) of UNIX command(s) used to answer the question.
- The list of Origins that don't appear in Dest.
- The list of Dests that don't appear in Origin.

6. What was the average number of flights in 2008 per unique Origin with the Dest of "IND"? How does "PHX" (as a unique Origin) compare to the average? Hint: You manually do the average calculation by dividing the result from (3) by the number of unique Origin's that have a Dest of "IND".

Relevant topics: awk, sort, grep, wc

Item(s) to submit:

- The average number of flights in 2008 per unique Origin with the Dest of "IND".
- 1-2 sentences explaining how "PHX" compares (as a unique Origin) to the average?

1987, 12345 1988, 44

7. Write a bash script that takes a year and IATA airport code and returns the year, and the total number of flights to and from the given airport. Example rows may look like: Run the script with inputs: 1991 and ORD. Include the output in your submission.

Relevant topics: bash scripts, cut, piping, grep, wc

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The output of the script given 1991 and ORD as inputs.

Project 7

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At

first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.

Dataset:

The following questions will use the dataset found in Scholar: /class/datamine/data/flights/subset/Y

An example of the data for the year 1987 can be found here.

Sometimes if you are about to dig into a dataset, it is good to quickly do some sanity checks early on to make sure the data is what you expect it to be.

1. Write a line of code that prints a list of the unique values in the DayOfWeek column. Write a line of code that prints a list of the unique values in the DayOfMonth column. Write a line of code that prints a list of the unique values in the Month column. Use the 1987.csv dataset. Are the results what you expected? Relevant topics: cut, sort

Item(s) to submit:

- 3 lines of code used to get a list of unique values for the chosen columns
- 1-2 sentences explaining whether or not the results are what you expected.
- 2. Our files should have 29 columns. Write a line of code that prints any lines in a file that do not have 29 columns. Test it on 1987.csv, were there any rows without 29 columns? Relevant topics: awk

- Line of code used to solve the problem.
- 1-2 sentences explaining whether or not there were any rows without 29 columns.
- 3. Write a bash script that, given a "begin" year and "end" year, cycles through the associated files and prints any lines that do *not* have 29 columns. Relevant topics: awk, bash scripts

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The results of running your bash scripts from year 1987 to 2008.

4. awk is a really good tool to quickly get some data and manipulate it a little bit. For example, let's see the number of kilometers and miles traveled in 1990. To convert from miles to kilometers, simply multiply by 1.609344. Example output:

Miles: 12345

Kilometers: 19867.35168

Relevant topics: awk, piping

Item(s) to submit:

- The code used to solve the problem.
- The results of running the code.

5. Use awk to calculate the number of DepDelay minutes by DayOfWeek. Use 2007.csv. Example output:

DayOfWeek: 0 1: 1234567 2: 1234567 3: 1234567 4: 1234567 5: 1234567

6: 1234567 7: 1234567

1. 1254501

Note: 1 is Monday.

Relevant topics: awk, sort, piping

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.

6. It wouldn't be fair to compare the total DepDelay minutes by DayOfWeek as the number of flights may vary. One way to take this into account is to instead calculate an average. Modify (5) to calculate the average number of DepDelay minutes by the number of flights per DayOfWeek. Use 2007.csv. Example output:

DayOfWeek: 0
1: 1.234567
2: 1.234567
3: 1.234567
4: 1.234567
5: 1.234567
6: 1.234567
7: 1.234567

Relevant topics: awk, sort, piping

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.
- 7. As a quick follow-up, *slightly* modify (6) to perform the same calculation for ArrDelay. Do the ArrDelays and DepDelays appear to have the highest delays on the same day? Use 2007.csv. Example output:

DayOfWeek: 0
1: 1.234567
2: 1.234567
3: 1.234567
4: 1.234567
5: 1.234567
6: 1.234567
7: 1.234567

Relevant topics: awk, sort, piping

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.
- 1-2 sentences explaining whether or not the ArrDelays and DepDelays appear to have the highest delays on the same day.

Project 8

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues

with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.

Dataset:

The following questions will use the dataset found in Scholar: /class/datamine/data/flights/subset/YYYY.csv

An example of the data for the year 1987 can be found here.

Let's say we have a theory that there are more flights on the weekend days (Friday, Saturday, Sunday) than the rest of the days, on average. We can use awk to quickly check it out and see if maybe this looks like something that is true!

1. Write a line of awk code that, prints the number of flights on the weekend days, followed by the number of flights on the weekdays for the flights during 2008. Relevant topics: awk

- Line of awk code that solves the problem.
- The result: the number of flights on the weekend days, followed by the number of flights on the weekdays for the flights during 2008.
- 2. Note that in (1), we are comparing 3 days to 4! Write a line of awk code that, prints the average number of flights on a weekend day, followed by the average number of flights on the weekdays. Continue to use data for 2008. Relevant topics: awk

Item(s) to submit:

- Line of awk code that solves the problem.
- The result: the average number of flights on the weekend days, followed by the average number of flights on the weekdays for the flights during 2008.

We want to look to see if there may be some truth to the whole "snow bird" concept where people will travel to warmer states like Florida and Arizona during the Winter. Let's use the tools we've learned to explore this a little bit.

head airports.csv

3. Take a look at airports.csv. In particular run the following: Notice how all of the non-numeric text is surrounded by quotes. The surrounding quotes would need to be escaped for any comparison within awk. This is messy and we would prefer to create a new file called new_airports.csv without any quotes. Write a line of code to do this.

Hint: You could use gsub within awk to replace "" with ".

Hint: If you leave out the column number argument to gsub it will apply the substitution to every field in every column.

Relevant topics: awk, redirection

Item(s) to submit:

- Line of awk code used to create the new dataset.
- 4. Write a line of commands that create a new dataset called az_fl_airports.txt that contains a list of airport codes for all airports from both Arizona (AZ) and Florida (FL). Use the file we created in (3),new_airports.csv. Relevant topics: awk

- The line of UNIX commands to create an array called airports.
- 5. Wow! In (4) we discovered a lot of airports! How many airports are there? Did you expect this? Use a line of bash code to answer this question. Relevant topics: echo, wc, piping

Item(s) to submit:

- Line of UNIX commands used to solve the problem.
- The number of airports.
- 1-2 sentences explaining whether you expected this result and why or why not.

6. Create a new dataset that contains all of the data for flights into or out of Florida and Arizona using 2008.csv, use the newly created dataset, az_fl_airports.txt in (4) to do so. Hint: https://unix.stack exchange.com/questions/293684/basic-grep-awk-help-extracting-all-lines-containing-a-list-of-terms-from-one-f

Relevant topics: grep

Item(s) to submit:

- Line of UNIX commands used to solve the problem.
- 7. Now that you have code to complete (6), write a bash script that accepts the start year, end year, and filename containing airport codes (az_fl_airports.txt), and outputs the data for flights into or out of any of the airports listed in the provided filename containing airport codes using all of the years of data in the provided range. Run the bash script to create a new file called az_fl_flights.csv. Relevant topics: bash scripts, grep, for loop, redirection

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The line of UNIX code you used to execute the script and create the new dataset.

Project 9

Motivation: Structured Query Language (SQL) is a language used for querying and manipulating data in a database. SQL can handle much larger amounts of data than R and Python can alone. SQL is incredibly powerful. In fact, cloudflare, a billion dollar company, had much of its starting infrastructure built on top of a Postgresql database (per this thread on hackernews). Learning SQL is well worth your time!

Context: There are a multitude of RDBMSs (relational database management systems). Among the most popular are: MySQL, MariaDB, Postgresql, and SQLite. As we've spent much of this semester in the terminal, we will start in the terminal using SQLite.

Scope: SQL, sqlite

Learning objectives:

- Explain the advantages and disadvantages of using a database over a tool like a spreadsheet.
- Describe basic database concepts like: rdbms, tables, indexes, fields, query, clause.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/lahman/lahman.db

Questions

1. Connect to RStudio Server https://rstudio.scholar.rcac.purdue.edu, and navigate to the terminal and access the Lahman database. How many tables are available? Hint: To connect to the database, do the following:

sqlite3 /class/datamine/data/lahman/lahman.db

Relevant topics: sqlite3

Item(s) to submit:

- How many tables are available in the Lahman database?
- The sqlite3 commands used to figure out how many tables are available.
- 2. Some people like to try to visit all 30 MLB ballparks in their lifetime. Use SQL commands to get a list of parks and the cities they're located in. For your final answer, limit the output to 10 records/rows. Note: There may be more than 30 parks in your result, this is ok. For long results, you can limit the number of printed results using the LIMIT clause.

Hint: Make sure you take a look at the data dictionary for the table and column names.

Hint: To see the header row as a part of each query result, run the following:

Relevant topics: SELECT, FROM, LIMIT

Item(s) to submit:

.headers on

- SQL code used to solve the problem.
- The first 10 results of the query.
- 3. There is nothing more exciting to witness than a home run hit by a batter. It's impressive if a player hits more than 40 in a season. Find the hitters who have hit 60 or more home runs (HR) in a season. List their playerID, yearID, home run total, and the teamID they played for. Hint: There are 8 occurrences of home runs greater than 60.

Hint: The batting table is where you should look for this question.

Relevant topics: SELECT, FROM, LIMIT

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 4. Make a list of players born on your birth day (don't worry about the year). Display their first names, last names, and birth year. Order the list descending by their birth year. Hint: The people table is where you should look for this question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 5. Get the Cleveland (CLE) Pitching Roster from the 2016 season (playerID, W, L, SO). Order the pitchers by number of Strikeouts (SO). Hint: The pitching table is where you should look for this question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT

Note: Examples that utilize the relevant topics in this problem can be found here

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 6. Find the top 10 team total of Errors between 1960 and 1970. Display their Win and Loss totals too. What is the name of the 3rd place team? Hint: The BETWEEN clause is useful here.

Hint: It is OK to use multiple queries to answer the question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 7. Find the playerID for Bob Lemon. What year and team was he on when he pitched the most wins (use table pitching)? What year and team did he win the most games as a manager (use table managers)? Hint: It is OK to use multiple queries to answer the question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.

Project 10	

Motivation: Although SQL syntax may still feel unnatural and foreign, with more practice it *will* start to make more sense. The ability to read and write SQL queries is a bread-and-butter skill for anyone working with data.

Context: We are in the second of a series of projects that focus on learning the basics of SQL. In this project, we will continue to harden our understanding of SQL syntax, and introduce common SQL functions like AVG, MIN, and MAX.

Scope: SQL, sqlite

Learning objectives:

- Explain the advantages and disadvantages of using a database over a tool like a spreadsheet.
- Describe basic database concepts like: rdbms, tables, indexes, fields, query, clause.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.
- Utilize SQL functions like min, max, avg, sum, and count to solve data-driven problems.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/lahman/lahman.db

Questions

```
host <- "scholar-db.rcac.purdue.edu"
dbname <- "lahmandb"
user <- "lahman_user"
password <- "HitAHOmerun"
head(dbGetQuery(con, "SHOW tables;"))</pre>
```

1. Connect to RStudio Server https://rstudio.scholar.rcac.purdue.edu, and, rather than navigating to the terminal like we did in the previous project, instead, create a connection to our MariaDB lahman database using the RMariaDB package in R, and the credentials below. Confirm the connection by running the following code chunk: Hint: In the example provided, the variable con is the connection. Change con to whatever you name the result of dbConnect.

Relevant topics: RMariaDB, dbConnect, dbGetQuery

- R code used to solve the problem.
- Output from running your (potentially modified) head(dbGetQuery(con, "SHOW tables;")).

2. Find Corey Kluber's totals for his career. Include his strikeouts (S0), walks (BB), and his Strikeouts to Walks ratio. A Strikeout to Walks ratio is calculated by this equation: $\frac{Strikeouts}{Walks}$. Important note: In our project template, we show 2 primary ways to run SQL queries from within R/RMarkdown. In question 5, we wrap our queries in R code. In question 6, we use the database connection, con, to run SQL queries directly within an SQL code chunk. In this project, we will just use the first method as it has the advantage of having the result of the query ready to be used within our R environment. Important note: Questions in this project need to be solved using SQL when possible. You will not receive credit for a question if you use sum in R rather than SUM in SQL.

Relevant topics: dbGetQuery, SUM, SELECT, FROM, WHERE

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 3. How many times has Giancarlo Stanton struck out in years in which he played for "MIA" or "FLO"? Relevant topics: dbGetQuery, AND/OR, COUNT, SUM

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 4. Calculate the Batting Average of batters between 2000 and 2010, with more than 300 at-bats (ABs). List the top 5 batting averages next to the playerID (with team and year). Batting Averages are calculated as $\frac{H}{AB}$. Relevant topics: dbGetQuery, ORDER BY, BETWEEEN

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 5. How many unique players have hit > 50 home runs (HR) in a season? Hint: If you view DISTINCT as being paired with SELECT, instead, think of it as being paired with one of the fields you are selecting.

Relevant topics: dbGetQuery, DISTINCT, COUNT

289 STAT 29000

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.

6. How many players are members of the 40/40 club? These are players that have stolen more than 40 bases (SB) and hit more than 40 home runs (HR). Relevant topics: dbGetQuery, AND/OR, DISTINCT, COUNT

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 7. Find the number of unique players that attended Purdue University. Start by finding the schoolID for Purdue and then find the number of players who played there. Who had more? Purdue or IU? Use the information you have in the database, and the power of R to create a misleading graphic that makes Purdue look better than IU, even if just at first glance. Make sure you label the graphic. Hint: You can mess with the scale of the y-axis. You could (potentially) filter the data to start from a certain year or be between two dates.

Hint: To find IU's id, try the following query: SELECT schoolID FROM schools WHERE name_full LIKE '%indiana%';.

Relevant topics: dbGetQuery, plotting in R, COUNT

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.

Project 11

Motivation: Being able to use results of queries as tables in new queries (also

known as writing sub-queries), and calculating values like MIN, MAX, and AVG in aggregate are key skills to have in order to write more complex queries. In this project we will learn about aliasing, writing sub-queries, and calculating aggregate values.

Context: We are in the middle of a series of projects focused on working with databases and SQL. In this project we introduce aliasing, sub-queries, and

calculating aggregate values using a much larger dataset!

Scope: sql, sql in R

Learning objectives:

• Demonstrate the ability to interact with popular database management systems within R.

- Solve data-driven problems using a combination of SQL and R.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.
- Showcase the ability to filter, alias, and write subqueries.
- Perform grouping and aggregate data using group by and the following functions: count, max, sum, avg, like, having. Explain when to use having, and when to use where.

Dataset

The following questions will use the elections database and the following database found in Scholar:

/class/datamine/data/election/itcontYYYY.txt (for example, data for year 1980 would be /class/datamine/data/electionitcont1980.txt)

A public sample of the data can be found here

Up until now, you've been working with a neatly organized database containing baseball data. As fantastic as this database is, it would be trivial to load up the entire database in R or Python and do your analysis using merge-like functions. Now, we are going to deal with a much larger set of data.

Questions

1. Approximately how large was the lahman database (use the sqlite database in Scholar: /class/datamine/data/lahman/lahman.db)? Use UNIX utilities you've learned about this semester to write a line of code to return the amount of data (in MB) in the elections folder /class/datamine/data/election/. How much data (in MB) is there? The data in that folder has been added to the elections database in the elections table. Write a SQL query that returns how many rows of data are in the database?

Hint: This will take some time! Be patient.

Relevant topics: sql, sql in R, awk, ls

STAT 29000 291

Item(s) to submit:

- Approximate size of the lahman database in mb.
- Line of code (bash/awk) to calculate the size (in mb) of the entire elections dataset in /class/datamine/data/election.
- The size of the elections data in mb.
- SQL query used to find the number of rows of data in the elections table in the elections database.
- The number of rows in the elections table in the elections database.
- 2. Write a SQL query using the LIKE command to find a unique list of zip_codes that start with "479". How many unique zip_codes are there that begin with "479"? Hint: Make sure you only select zip_codes.

Relevant topics: sql, like

Item(s) to submit:

- SQL queries used to answer the question.
- The first 5 results from running the query.
- 3. Write a SQL query that counts the number of donations (rows) that are from Indiana. How many donations are from Indiana? Rewrite the query and create an *alias* for our field so it doesn't read COUNT(*) but rather Indiana Donations. Relevant topics: sql, where, aliasing

Item(s) to submit:

- SQL query used to answer the question.
- The result of the SQL query.

+-----+ | Donations | +-----+ | IN: 1111778 | +-----+

4. Rewrite the query in (3) so the result is displayed like the following: Hint: Use CONCAT and aliasing to accomplish this.

Relevant topics: sql, aliasing, concat

Item(s) to submit:

• SQL query used to answer the question.

5. In (2) we wrote a query that returns a unique list of zip_codes that start with "479". In (3) we wrote a query that counts the number of donations that are from Indiana. Use our query from (2) as a subquery to find how many donations come from areas with zip_codes starting with "479". What percent of donations in Indiana come from said zip_codes? Relevant topics: sql, aliasing, subqueries

Item(s) to submit:

- SQL queries used to answer the question.
- The percentage of donations from Indiana from zip_codes starting with "479".

6. In (3) we wrote a query that counts the number of donations that are from Indiana. When running queries like this, a natural "next question" is to ask the same question about another state. SQL gives us the ability to calculate functions in aggregate when grouping by a certain column. Write a SQL query that returns the state, number of donations from each state, the sum of the donations (transaction_amt). Which 5 states gave the most donations (highest count)? Order you result from most to least. Hint: You may want to create an alias in order to sort.

Relevant topics: sql, group by

Item(s) to submit:

- SQL query used to answer the question.
- Which 5 states gave the most donations?

Project 12		

Motivation: Databases are comprised of many tables. It is imperative that we learn how to combine data from multiple tables using queries. To do so we perform joins! In this project we will explore learn about and practice using joins on a database containing bike trip information from the Bay Area Bike Share.

Context: We've introduced a variety of SQL commands that let you filter and extract information from a database in an systematic way. In this project we will introduce joins, a powerful method to combine data from different tables.

Scope: SQL, sqlite, joins

Learning objectives:

STAT 29000 293

- Briefly explain the differences between left and inner join and demonstrate the ability to use the join statements to solve a data-driven problem.
- Perform grouping and aggregate data using group by and the following functions: count, max, sum, avg, like, having.
- Showcase the ability to filter, alias, and write subqueries.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/bay_area_bike_share/bay_area_bike_share.db

A public sample of the data can be found here.

Questions

```
SELECT * FROM users AS u INNER JOIN dorms AS d ON u.dorm=d.id;
```

1. There are a variety of ways to join data using SQL. With that being said, if you are able to understand and use a LEFT JOIN and INNER JOIN, you can perform *all* of the other types of joins (RIGHT JOIN, FULL OUTER JOIN). Given the following two tables, use RMarkdown to display the result of performing the following query as a table: users:

$\overline{\mathrm{id}}$	first_name	last_name	dorm
1	Alice	Smith	1
2	Bob	Johnson	2
3	Susan	Marques	3
4	Amare	Keita	3
5	Kristen	Lakehold	4

dorms:

id	name	capacity	address
1	Windsor Halls	NULL	Windsor Halls, West Lafayette, IN, 47906
2	Cary Quadrangle	1200	1016 W Stadium Ave, West Lafayette, IN 47906
3	Hillenbrand Hall	NULL	1301 3rd Street, West Lafayette, IN 47906

Relevant topics: sql, inner join

Item(s) to submit:

• RMarkdown table displaying the result of performing the following query as a table.

SELECT * FROM users AS u LEFT JOIN dorms AS d ON u.dorm=d.id;

2. Using the same two tables from (1), use RMarkdown to display the result of performing the following query as a table. Explain the difference between an INNER JOIN and LEFT JOIN. Relevant topics: sql, left join

Item(s) to submit:

- RMarkdown table displaying the result of performing the following query as a table.
- 1-2 sentences explaining (in your own words) what the difference between and INNER and LEFT JOIN is.
- 3. Aliases can be created for tables, fields, and even results of aggregate functions (like MIN, MAX, COUNT, AVG, etc.). In addition, you can combine fields using the sqlite concatenate operator || (see here). Write a query that returns the first 5 records of information from the station table formatted in the following way: (id) name @ (lat, long)

For example:

(84) Ryland Park @ (37.342725,-121.895617)

Relevant topics: aliasing, concat

Item(s) to submit:

- SQL query used to solve this problem.
- The first 5 records of information from the station table.
- 4. There is a variety of interesting weather information in the weather table. Write a query that finds the average mean_temperature_f by zip_code. Which is on average the warmest zip_code? Use aliases to format the result in the following way:

Zip Code|Avg Temperature 94041|61.3808219178082

Relevant topics: aliasing, group by, avg

STAT 29000 295

Item(s) to submit:

- SQL query used to solve this problem.
- The results of the query copy and pasted.

5. From (4) we can see that there are only 5 zip_codes with weather information. How many unique zip_codes do we have in the trip table? Write a query that finds the number of unique zip_codes in the trip table. Write another query that lists the zip_code and count of the number of times the zip_code appears. If we had originally assumed that the zip_code was related to the location of the trip itself, we were wrong. Can you think of a likely explanation? Relevant topics: group by, count

Item(s) to submit:

- SQL queries used to solve this problem.
- 1-2 sentences explaining what a possible explanation for the zip_codes could be.
- 6. In (4) we wrote a query that finds the average mean_temperature_f by zip_code. What if we want to tack on to our results information from each row in the station table based on the zip_codes? To do, use an INNER JOIN. INNER JOIN combines tables based on specified fields, and returns only rows where there is a match in both the "left" and "right" tables. Hint: Use the query from (4) as a sub query within your solution.

Relevant topics: inner join, subqueries, aliasing

Item(s) to submit:

- SQL query used to solve this problem.
- 7. In (5) we eluded that the zip_codes in the trip table aren't very consistent. Users can enter a zip code when using the app. This means that zip_code can be from anywhere in the world! With that being said, if the zip_code is one of the 5 zip_codes for which we have weather data (from question 4), we can add that weather information to matching rows of the trip table. In (6) we used an INNER JOIN to append some weather information to each row in the station table. For this question, write a query that performs an INNER JOIN and appends weather data from the weather table to the trip data from the trip table. Limit your solution to 5 lines. Hint: You will want to wrap your dates and datetimes in sqlite's date function prior to comparison.

Important note: Notice that the weather data has about 1 row of weather information for each date and each zip code. This means you may have to join your data based on multiple constraints instead of just 1 like in (6).

Relevant topics: inner join, aliasing

Item(s) to submit:

- SQL query used to solve this problem.
- First 5 lines of output.

Project 13

Motivation: Databases you will work with won't necessarily come organized in the way that you like. Getting really comfortable writing longer queries where you have to perform many joins, alias fields and tables, and aggregate results, is important. In addition, gaining some familiarity with terms like *primary key*, and *foreign key* will prove useful when you need to search for help online. In this project we will write some more complicated queries with a fun database. Proper preparation prevents poor performance, and that means practice!

Context: We are towards the end of a series of projects that give you an opportunity to practice using SQL. In this project, we will reinforce topics you've already learned, with a focus on subqueries and joins.

Scope: SQL, sqlite

Learning objectives:

- Write and run SQL queries in sqlite on real-world data.
- Identify primary and foreign keys in a SQL table.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/movies_and_tv/imdb.db

A public sample of the data can be found here.

Questions

1. A primary key is a field in a table which uniquely identifies a row in the table. Primary keys must be unique values, and this is enforced at the database level. A foreign key is a field whose value

STAT 29000 297

matches a primary key in a different table. A table can have 0-1 primary key, but it can have 0+ foreign keys. Examine the titles table. Do you think there are any primary keys? How about foreign keys? Relevant topics: primary key, foreign key

Item(s) to submit:

- List any primary or foreign keys in the titles table.
- 2. Examine the episodes table. Based on observation and the column names, do you think there are any primary keys? How about foreign keys? Relevant topics: primary key, foreign key

Item(s) to submit:

• List any primary or foreign keys in the episodes table.

If you paste a title_id to the end of the following url, it will pull up the page for the title. For example, https://www.imdb.com/title/tt0413573 leads to the page for the TV series Grey's Anatomy.

3. Write a query to confirm that the title_id tt0413573 does indeed belong to Grey's Anatomy. Relevant topics: select, where

Item(s) to submit:

- SQL query used to solve the problem in a code chunk.
- Output of the query.
- 4. The episode_title_id column in the episodes table references titles of individual episodes of a tv series. The show_title_id references the titles of the show itself. With that in mind, write a query that gets a list of all of the episodes and titles of Grey's Anatomy. Relevant topics: inner join

Item(s) to submit:

• SQL query used to solve the problem in a code chunk.

```
SELECT * FROM titles WHERE title_id='<title id here>';
```

5. Like we explained in (3), you can find the title_id of a tv show, a tv show episodes, or a movie by browsing imdb.com and getting the title_id directly from the url. Browse imdb.com and find your favorite tv show. Get the title_id from the url and run the following

query to confirm that the tv show is in our database: Make sure to replace "<title id here>" with the title_id of your favorite show. If your show does not appear, or has only a single season, pick another show until you find one we have in our database with multiple seasons.

Item(s) to submit:

- The title_id of your favorite tv show.
- The output from running the provided (modified) query.
- 6. We want to write a query that returns the title and rating of the highest rated episode of the tv show you chose in (5). In order to do so, first write a query that returns a list of episode_title_ids (found in the episodes table), with the primary_title (found in the titles table) of the episode. Relevant topics: inner join, aliasing

Item(s) to submit:

- SQL query used to solve the problem in a code chunk.
- The first 5 results from your query.
- 7. Write a query that adds the rating to the end of each episode. To do so, use the query you wrote in (6) as a subquery. Was this also your favorite episode? Relevant topics: inner join, aliasing, subqueries, desc, limit, order by

Note: Various helpful examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL query used to solve the problem in a code chunk.
- The episode_title_id, primary_title, and rating of the top rated episode from the tv series from (5).
- A statement saying whether it is also your favorite episode.

Project 14	

Motivation: As we learned earlier in the semester, bash scripts are a powerful tool when you need to perform repeated tasks in a UNIX-like system. In addition, sometimes preprocessing data using UNIX tools prior to analysis in R or Python is useful. Ample practice is integral to becoming proficient with these tools. As such, we will be reviewing topics learned earlier in the semester.

STAT 29000 299

Context: We've just ended a series of projects focused on SQL. In this project we will begin to review topics learned throughout the semester, starting writing bash scripts using the various UNIX tools we learned about.

Scope: awk, UNIX utilities, bash scripts, fread

Learning objectives:

- Navigating UNIX via a terminal: ls, pwd, cd, ., .., ~, etc.
- Analyzing file in a UNIX filesystem: wc, du, cat, head, tail, etc.
- Creating and destroying files and folder in UNIX: scp, rm, touch, cp, mv, mkdir, rmdir, etc.
- Use grep to search files effectively.
- Use cut to section off data from the command line.
- Use piping to string UNIX commands together.
- Use awk for data extraction, and preprocessing.
- Create bash scripts to automate a process or processes.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/forest

To read more about the two files from this dataset that you will be working with:

PLOTSNAP.csv:

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/plot-level-data-gathered-through-forest/metadata#fields

TREE.csv:

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/tree-level-data-gathered-through-forest/metadata

AND

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/tree-level-data-gathered-through-forest/data

Questions

1. Take a look at at PLOTSNAP.csv. Write a line of awk code that displays the STATECD followed by the number of rows with that STATECD. Relevant topics: awk

Item(s) to submit:

- Code used to solve the problem.
- Count of the following STATECDs: 1, 2, 4, 5, 6

2. Unfortunately, there isn't a very accessible list available that shows which state each STATECD represents. This is no problem for us though, the dataset has LAT and LON! Write some bash that prints just the STATECD, LAT, and LON. Note: There are 92 columns in our dataset: awk -F, 'NR==1{print NF}' PLOTSNAP.csv. To create a list of STATECD to state, we only really need STATECD, LAT, and LON. Keeping the other 89 variables will keep our data at 2.1gb.

Relevant topics: cut, awk

Item(s) to submit:

- Code used to solve the problem.
- The output of your code piped to head.
- 3. fread is a "Fast and Friendly File Finagler". It is part of the very popular data.table package in R. We will learn more about this package next semester. For now, read the documentation here and use the cmd argument in conjunction with your bash code from (2) to preprocess data prior to reading it into a data.table in your R environment. Relevant topics: fread

Item(s) to submit:

- Code used to solve the problem.
- The head of the resulting data.table.
- 4. Follow the directions here to install ggmap and get an API key. There are over 4 million rows in our dataset we do *not* want to hit Google's API that many times, nor would that work. Instead, do the following:
 - Unless you feel comfortable using data.table, convert your data.table to a data.frame:

my_dataframe <- data.frame(my_datatable)</pre>

- Calculate the average LAT and LON for each STATECD, and call the new data.frame dat.
- For each row in dat, run a reverse geocode and append the state to a new column called ADDRESS.

STAT 29000 301

Hint: To calculate the average LAT and LON for each STATECD, you could use the sqldf package to run SQL queries on your data.frame.

Hint: To get the address, given LAT and LON:

```
geo <- revgeocode(c(-86.916576, 40.433663), output = "address")
geo</pre>
```

Hint: mapply is a useful apply function to use to solve this problem.

Important note: It is okay to get NA's for some of the addresses.

Relevant topics: ggmap, functions, sqldf

Item(s) to submit:

- Code used to solve the problem.
- The head of the resulting data.frame.

Project 15

Motivation: We've done a lot of work with SQL this semester. Let's review concepts in this project and mix and match R, Python, and SQL to solve data-driven problems.

Context: In this project, we will reinforce topics you've already learned, with a focus on SQL.

Scope: SQL, sqlite, R, Python

Learning objectives:

- Write and run SQL queries in sqlite on real-world data.
- Use SQL from within R and Python.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/movies_and_tv/imdb.db

A public sample of the data can be found here.

In this project we want to offer the flexibility of using your choice of R and/or Python. To keep things as consistent as possible, please use Rmarkdown on https://rstudio.scholar.rcac.purdue.edu/. See here to learn how to run Python in this environment.

Questions

1. What is the first year where our database has > 1000 titles? Use the premiered column in the titles table as our year. What year has the most titles? Relevant topics: count, group by, order by, desc

Item(s) to submit:

- 1 or more SQL queries used to answer the questions.
- What year is the first year to have > 1000 titles?
- What year has the most titles?
- 2. How many, and what are the unique types from the titles table? From the year from (1) with the most titles, how many titles of each

Item(s) to submit:

- 1 or more SQL queries used to answer the questions.
- How many and what are the unique types from the titles table?
- A list of type and and count for the year (premiered) 2017.

type are there?

F.R.I.E.N.D.S is a popular tv show. They have an interesting naming convention for the names of their episodes. They all begin with the text "The One ...". There are 6 primary characters in the show: Chandler, Joey, Monica, Phoebe, Rachel, and Ross. Let's use SQL and R to take a look at how many times each characters' names appear in the title of the episodes.

3. Write a query that gets the episode_title_id, primary_title, rating, and votes, of all of the episodes of Friends (title_id is tt0108778). Hint: You can slightly modify the solution to question (7) in project 13.

Relevant topics: inner join, subqueries, aliasing

Item(s) to submit:

- SQL query used to answer the question.
- First 5 results of the query.

The next couple of questions should be complete in the same language. You can use either R or Python, but you must use the same for both questions.

4. Now that you have a working query, connect to the database and run the query to get the data into an R or pandas data frame. In previous projects, we learned how to used regular expressions to search for text. For each character, how many episodes primary_titles contained their name? Relevant topics: SQL in R, SQL in Python, grep

Item(s) to submit:

- R or Python code in a code chunk that was used to find the solution.
- The solution pasted below the code chunk.

5. Create a graphic showing our results in (2) using your favorite package. Make sure the plot has a good title, x-label, y-label, and try to incorporate some of the following colors: #273c8b, #bd253a, #016f7c, #f56934, #016c5a, #9055b1, #eaab37. Relevant topics: plotting

Item(s) to submit:

- The R or Python code used to generate the graphic.
- The graphic in a png or jpg/jpeg format.

6. Use any combination of SQL, R, and Python you'd like in order to find which of the following 3 genres has the highest average rating for movies (see type column from titles table): Romance, Comedy, Animation. In the titles table, you can find the genres in the genres column. There may be some overlap (i.e. a movie may have more than one genre), this is ok. To query rows which have the genre Action as one of its genres:

```
SELECT * FROM titles WHERE genres LIKE '%action%';
```

Relevant topics: like, inner join

Item(s) to submit:

- Any code you used to solve the problem in a code chunk.
- The average rating of each of the genres listed for movies.

STAT 39000

Project 1

Motivation: In this project we will jump right into an R review. In this project we are going to break one larger data-wrangling problem into discrete parts. There is a slight emphasis on writing functions and dealing with strings. At the end of this project we will have greatly simplified a dataset, making it easy to dig into.

Context: We just started the semester and are digging into a large dataset, and in doing so, reviewing R concepts we've previously learned.

Scope: data wrangling in R, functions

Learning objectives:

- Comprehend what a function is, and the components of a function in R.
- Read and write basic (csv) data.
- Utilize apply functions in order to solve a data-driven problem.

Make sure to read about, and use the template found here, and the important information about projects submissions here.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/airbnb

Often times (maybe even the majority of the time) data doesn't come in one nice file or database. Explore the datasets in /class/datamine/data/airbnb.

Questions

1. You may have noted that, for each country, city, and date we can find 3 files: calendar.csv.gz, listings.csv.gz, and reviews.csv.gz (for now, we will ignore all files in the "visualisations" folders). Let's take a look at the data in each of the three types of files. Pick a country, city and date, and read the first 50 rows of each of the 3 datasets. Provide 1-2 sentences explaining the type of information found in each, and what variable(s) could be used to join them. Hint: read.csv has an argument to select the number of rows we want to read.

Item(s) to submit:

- Chunk of code used to read the first 50 rows of each dataset.
- 1-2 sentences briefly describing the information contained in each dataset.
- Name(s) of variable(s) that could be used to join them.

To read a compressed csv, simply use the read.csv function:

dat <- read.csv("/class/datamine/data/airbnb/brazil/rj/rio-de-janeiro/2019-06-19/data/calendar.cs
head(dat)</pre>

Let's work towards getting this data into an easier format to analyze. From now on, we will focus on the listings.csv.gz datasets.

- 2. Write a function called get_paths_for_country, that, given a string with the country name, returns a vector with the full paths for all listings.csv.gz files, starting with /class/datamine/data/airbnb/.... Some example output from get_paths_for_country("united-states"):
 - [1] "/class/datamine/data/airbnb/united-states/ca/los-angeles/2019-07-08/data/listings.csv.gz"
 - $\label{lem:class} \begin{tabular}{ll} [2] & "/class/datamine/data/airbnb/united-states/ca/oakland/2019-07-13/data/listings.csv.gz" & [2]$
 - [3] "/class/datamine/data/airbnb/united-states/ca/pacific-grove/2019-07-01/data/listings.csv.gz
 - [4] "/class/datamine/data/airbnb/united-states/ca/san-diego/2019-07-14/data/listings.csv.gz"
 - [5] "/class/datamine/data/airbnb/united-states/ca/san-francisco/2019-07-08/data/listings.csv.gz
- Hint: list.files is useful with the recursive=T option.

Hint: To exclude "visualisations" folders, try: grep("visualisations", ...,
invert=T).

Item(s) to submit:

• Chunk of code for your get_paths_for_country function.

3. Write a function called get_data_for_country that, given a string with the country name, returns a data.frames containing the all listings data for that country. Use your previously written function to help you. Hint: Use stringAsFactors=F in the read.csv function.

Hint: Use do.call(rbind, <listofdataframes>) to combine a list of dataframes into a single dataframe.

Relevant topics: rbind, lapply, function

Item(s) to submit:

- Chunk of code for your get_data_for_country function.
- 4. Use your get_data_for_country to get the data for a country of your choice, and make sure to name the data.frame listings. Take a look at the following columns: host_is_superhost, host_has_profile_pic, host_identity_verified, and is_location_exact. What is the data type for each column? Is there a more appropriate type for them? If so, which type would you recommend? Hint: Remember, there are a six types of vectors: logical, integer, double, character, complex, and raw. To see the vector data types of you can use typeof or str. The function typeof will return the type, while str will return more information. See some examples below:

```
# Using typeof
typeof(letters)

## [1] "character"
typeof(1:10)

## [1] "integer"

# Using str
str(letters)

## chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" ...
str(1:10)
```

5. Write a function called transform_column that, given a column similar to the ones in (4) (more or less, lowercase "t"s and "f"s)

int [1:10] 1 2 3 4 5 6 7 8 9 10

transforms it to your suggested vector type in (4). Note that NA values for these columns appear as blank (""), and we need to be careful when transforming the data. Test your function on column host_is_superhost. Relevant topics: toupper, as.logical

Item(s) to submit:

- Chunk of code for your transform_column function.
- Type of transform_column(listings\$host_is_superhost).

6. Before we can use your function, we need to determine which columns are similar to host_is_superhost (i.e., lowercase "t"s and "f"s) and need transformation. Create a function named should_be_transformed that, given a column, determines (returns TRUE or FALSE) if it contains only "t", "f", and "" values. Use your newly created function to create a vector named columns_to_transform which contains all columns we want to transform using the function in (5). How many columns are in this format? Relevant topics: unique, %in%, all, sapply, which

Item(s) to submit:

- Chunk of code for your should_be_transformed function.
- Chunk of code used to obtain columns_to_transform.
- 7. Apply your function transform_column to all columns in columns_to_transform in your listings data. Make sure it worked by checking the type of columns id and instant_bookable. Note that the column id should have the same type as before. Relevant topics: apply

Item(s) to submit:

- Chunk of code to get your new listings data.
- Type of columns id and instant_bookable.
- 8. Now that we have organized and cleaned our data, let's explore it! Based on your listings data, if you are looking at an instant bookable listing (where instant_bookable is TRUE), would you expect the location to be exact (where is_location_exact is TRUE)? Why or why not? Hint: Make a frequency table, and see how many instant bookable listings have exact location.

Relevant topics: table

Item(s) to submit:

- Chunk of code to get a frequency table.
- 1-2 sentences explaining whether or not we would expect the location to be exact if we were looking at a instant bookable listing.

9. Create a histogram for response rates (host_response_rate) for super hosts (where host_is_superhost is TRUE). If your listings do not contain any super hosts, load data from a different country. Note that we first need to convert host_response_rate from a character containing "%" signs to a numeric variable. Relevant topics: gsub, as.numeric

Item(s) to submit:

- Chunk of code used to answer the question.
- Histogram of response rates for super hosts.

Project 2			
	_		

Motivation: The ability to quickly reproduce an analysis is important. It is often necessary that other individuals will need to be able to understand and reproduce an analysis. This concept is so important there are classes solely on reproducible research! In fact, there are papers that investigate and highlight the lack of reproducibility in various fields. If you are interested in reading about this topic, a good place to start is the paper titled "Why Most Published Research Findings Are False", by John Ioannidis (2005).

Context: Making your work reproducible is extremely important. We will focus on the computational part of reproducibility. We will learn RMarkdown to document your analyses so others can easily understand and reproduce the computations that led to your conclusions. Pay close attention as future project templates will be RMarkdown templates.

Scope: Understand Markdown, RMarkdown, and how to use it to make your data analysis reproducible.

Learning objectives:

- Use Markdown syntax within an Rmarkdown document to achieve various text transformations.
- Use RMarkdown code chunks to display and/or run snippets of code.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

```
help(package=ggplot2)
```

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

1. Make the following text (including the asterisks) bold: This needs to be **very** bold. Make the following text (including the underscores) italicized: This needs to be _very_ italicized. Important note: Surround your answer in 4 backticks. This will allow you to display the markdown without having the markdown "take effect". For example:

```
Some *marked* **up** text.
```

Hint: Be sure to check out the Rmarkdown Cheatsheet and our section on Rmarkdown in the book.

Note: Rmarkdown is essentially Markdown + the ability to run and display code chunks. In this question, we are actually using Markdown within Rmarkdown!

Relevant topics: rmarkdown, escaping characters

Item(s) to submit:

- 2 lines of markdown text, surrounded by 4 backticks. Note that when compiled, this text will be unmodified, regular text.
- 2. Create an unordered list of your top 3 favorite academic interests (some examples could include: machine learning, operating systems, forensic accounting, etc.). Create another *ordered* list that ranks your academic interests in order of most interested to least interested. Hint: You can learn what ordered and unordered lists are here.

Note: Similar to (1a), in this question we are dealing with Markdown. If we were to copy and paste the solution to this problem in a Markdown editor, it would be the same result as when we Knit it here.

Relevant topics: rmarkdown

Item(s) to submit:

- Create the lists, this time don't surround your code in backticks. Note that when compiled, this text will appear as nice, formatted lists.
- 3. Browse https://www.linkedin.com/ and read some profiles. Pay special attention to accounts with an "About" section. Write your own personal "About" section using Markdown. Include the following:
 - A header (your choice of size) that says "About".
 - The text of your personal "About" section that you would feel comfortable uploading to linkedin, including at least 1 link.

Relevant topics: rmarkdown

Item(s) to submit:

- Create the described profile under (3) in the stat29000project02template.Rmd file.
- 4. LaTeX is a powerful editing tool where you can create beautifully formatted equations and formulas. Replicate the equation found here as closely as possible. Hint: Lookup "latex mid" and "latex frac".

Item(s) to submit:

• Replicate the equation using LaTeX under the Question 4 header in your template.

5. Your co-worker wrote a report, and has asked you to beautify it. Knowing Rmarkdown, you agreed. Spruce up the report below. At a minimum:

- Make the title pronounced.
- Make all links appear as a word or words, rather than the long-form URL.
- Organize all code into code chunks where code and output are displayed. If the output is really long, just display the code.
- Make the calls to the library function and the install.packages function be evaluated but not displayed.
- Make sure all warnings and errors that may eventually occur, do not appear
 in the final document.

Feel free to make any other changes that make the report more visually pleasing.

The second option provides more detail about the dataset.

```
'``{r install-packages}
install.packages("ggplot2", repos = "http://cran.us.r-project.org")
library(ggplot2)
'``{r declare-variable, eval=FALSE}
my_variable <- c(1,2,3)

All About the Iris Dataset
This paper goes into detail about the `iris` dataset that is built into r. You can find a list of data()
The iris dataset has 5 columns. You can get the names of the columns by running the following cod names(iris)
Alternatively, you could just run the following code:
iris</pre>
```

According to https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html there is anoth

An iris is a really pretty flower. You can see a picture of one here:

https://www.gardenia.net/storage/app/public/guides/detail/83847060_mOptimized.jpg

In summary. I really like irises, and there is a dataset in r called `iris`.

Relevant topics: rmarkdown

Item(s) to submit:

- Spruce up the "document", and place it all under the Question 4 header in your template.
- 6. Create a plot using a built-in dataset like iris, mtcars, or Titanic, and display the plot using a code chunk. Make sure the code used to generate the plot is hidden. Include a descriptive caption for the image. Make sure to use an RMarkdown chunk option to create the caption. Relevant topics: rmarkdown, plotting in r

Item(s) to submit:

• Code chunk under (5) that creates and displays a plot using a built-in dataset like iris, mtcars, or Titanic.

```
[r install-packages]
plot(my_variable)
```

7. Insert the following code chunks under the Question 7 header in your template. Try knitting the document. Something should go wrong. Fix the problem and knit again. If another problem appears, fix it. What was the first problem? What was the second problem? Hint: Take a close look at the name we give our code chunk.

Hint: Take a look at the code chunk where my_variable is declared.

Relevant topics: rmarkdown

Item(s) to submit:

- The modified version of the inserted code that fixes both problems.
- A sentence explaining what the first problem was.
- A sentence explaining what the second problem was.

8. RMarkdown is also an excellent tool to create a slide deck. Use the information here or here to convert your solutions into a slide deck rather than the regular PDF. You may experiment with slidy, ioslides or beamer, however, make your final set of solutions use beamer as the output is a PDF. Make any needed modifications to make the solutions knit into a well-organized slide deck (For example, include slide breaks and make sure the contents are shown completely.). Modify (2) so the bullets are incrementally presented as the slides progress. Important note: For this question, we want you to submit the modified version of the inserted

Relevant topics: rmarkdown

l	tem	(\mathbf{s})	t	O	\mathbf{su}	bı	mit	t:

• The modified version of the solutions in beamer slide form.

Project 3

Motivation: The ability to navigate a shell, like bash, and use some of its powerful tools, is very useful. The number of disciplines utilizing data in new ways is ever-growing, and as such, it is very likely that many of you will eventually encounter a scenario where knowing your way around a terminal will be useful. We want to expose you to some of the most useful bash tools, help you navigate a filesystem, and even run bash tools from within an RMarkdown file in RStudio.

Context: At this point in time, you will each have varying levels of familiarity with Scholar. In this project we will learn how to use the terminal to navigate a UNIX-like system, experiment with various useful commands, and learn how to execute bash commands from within RStudio in an RMarkdown file.

Scope: bash, RStudio

Learning objectives:

- Distinguish differences in /home, /scratch, and /class.
- Navigating UNIX via a terminal: ls, pwd, cd, ., .., ~, etc.
- Analyzing file in a UNIX filesystem: wc, du, cat, head, tail, etc.
- Creating and destroying files and folder in UNIX: scp, rm, touch, cp, mv, mkdir, rmdir, etc.
- Utilize other Scholar resources: rstudio.scholar.rcac.purdue.edu, notebook.scholar.rcac.purdue.edu, desktop.scholar.rcac.purdue.edu, etc.
- Use man to read and learn about UNIX utilities.
- Run bash commands from within and RMarkdown file in RStudio.

There are a variety of ways to connect to Scholar. In this class, we will *primarily* connect to RStudio Server by opening a browser and navigating to https://rstudio.scholar.rcac.purdue.edu/, entering credentials, and using the excellent RStudio interface.

- 1. Navigate to https://rstudio.scholar.rcac.purdue.edu/ and login. Take some time to click around and explore this tool. We will be writing and running Python, R, SQL, and bash all from within this interface. Navigate to Tools > Global Options Explore this interface and make at least 2 modifications. List what you changed. Here are some changes Kevin likes:
 - Uncheck "Restore .Rdata into workspace at startup".
 - Change tab width 4.
 - Check "Soft-wrap R source files".
 - Check "Highlight selected line".
 - Check "Strip trailing horizontal whitespace when saving".
 - Uncheck "Show margin".

Item(s) to submit:

- List of modifications you made to your Global Options.
- 2. There are four primary panes, each with various tabs. In one of the panes there will be a tab labeled "Terminal". Click on that tab. This terminal by default will run a bash shell right within Scholar, the same as if you connected to Scholar using ThinLinc, and opened a terminal. Very convenient! What is the default directory of your bash shell? In our list of relevant topics, we've included links to a variety of UNIX commands that may help you solve this problem. Some of the tools are super simple to use, and some are a little bit more difficult. Hint: Start by reading the section on man. man stands for manual, and you can find the "official" documentation for the command by typing man <command_of_interest>. For example:

```
# read the manual for the `man` command # use "k" or the up arrow to scroll up, "j" or the down arrow to scroll down man man
```

Relevant topics: man, cd, pwd, ls, \sim , ..., .

Item(s) to submit:

- The full filepath of default directory (home directory). Ex: Kevin's is: /home/kamstut
- The bash code used to show your home directory or current working directory when the bash shell is first launched.

3. Learning to navigate away from our home directory to other folders, and back again, is vital. Perform the following actions, in order:

- Write a single command to navigate to the folder containing our full datasets: /class/datamine/data.
- Write a command to confirm you are in the correct folder.
- Write a command to list the files and directories within the data directory.
- What are the names of the files? Write another command to return back to your home directory.
- Write a command to confirm you are in the correct folder.

Note: / is commonly referred to as the root directory in a linux/unix filesystem. Think of it as a folder that contains *every* other folder in the computer. /home is a folder within the root directory. /home/kamstut is the full filepath of Kevin's home directory. There is a folder home inside the root directory. Inside home is another folder named kamstut which is Kevin's home directory.

Relevant topics: man, cd, pwd, ls, ~, .., .

Item(s) to submit:

- Command used to navigate to the data directory.
- Command used to confirm you are in the data directory.
- Command used to list files and folders.
- List of files and folders in the data directory.
- Command used to navigate back to the home directory.
- Command used to confirm you are in the home directory.
- 4. Let's learn about two more important concepts. . refers to the current working directory, or the directory displayed when you run pwd. Unlike pwd you can use this when navigating the filesystem! So, for example, if you wanted to see the contents of a file called my_file.txt that lives in /home/kamstut (so, a full path of /home/kamstut/my_file.txt), and you are currently in /home/kamstut,

you could run: cat ./my_file.txt... represents the parent folder or the folder in which your current folder is contained. So let's say I was in /home/kamstut/projects/ and I wanted to get the contents of the file /home/kamstut/my_file.txt. You could do: cat ../my_file.txt. When you navigate a directory tree using ., .., and ~ you create paths that are called relative paths because they are relative to your current directory. Alternatively, a full path or (absolute path) is the path starting from the root directory. So /home/kamstut/my_file.txt is the absolute path for my_file.txt and ../my_file.txt is a relative path. Perform the following actions, in order:

- Write a single command to navigate to the data directory.
- Write a single command to navigate back to your home directory using a *relative* path. Do not use ~ or plain cd.

Relevant topics: man, cd, pwd, ls, \sim , ..., .

Item(s) to submit:

- Command used to navigate to the data directory.
- Command used to navigate back to your home directory that uses a *relative* path.
- 5. In Scholar, when you want to deal with *really* large amounts of data, you want to access scratch (you can read more here). Your scratch directory on Scholar is located here: /scratch/scholar/\$USER. \$USER is an environment variable containing your username. Test it out: echo /scratch/scholar/\$USER. Perform the following actions:
 - Navigate to your scratch directory.
 - Confirm you are in the correct location.
 - Execute myquota.
 - Find the location of the myquota bash script.
 - Output the first 5 and last 5 lines of the bash script.
 - Count the number of lines in the bash script.
 - How many kilobytes is the script?

Hint: You could use each of the commands in the relevant topics once.

Hint: Commands often have *options*. Options are features of the program that you can trigger specifically. You can see the *options* of a command in the DESCRIPTION section of the man pages. For example: man wc. You can see -m, -1, and -w are all options for wc. To test this out:

```
# using the default wc command. "/class/datamine/data/flights/1987.csv" is the first "
wc /class/datamine/data/flights/1987.csv
# to count the lines, use the -l option
wc -l /class/datamine/data/flights/1987.csv
```

```
# to count the words, use the -w option
wc -w /class/datamine/data/flights/1987.csv
# you can combine options as well
wc -w -l /class/datamine/data/flights/1987.csv
# some people like to use a single tack `-`
wc -wl /class/datamine/data/flights/1987.csv
# order doesn't matter
wc -lw /class/datamine/data/flights/1987.csv
```

Hint: The -h option for the du command is useful.

Relevant topics: cd, pwd, type, head, tail, wc, du

Item(s) to submit:

- Command used to navigate to your scratch directory.
- Command used to confirm your location.
- Output of myquota.
- Command used to find the location of the myquota script.
- Absolute path of the myquota script.
- Command used to output the first 5 lines of the myquota script.
- Command used to output the last 5 lines of the myquota script.
- Command used to find the number of lines in the myquota script.
- Number of lines in the script.
- Command used to find out how many kilobytes the script is.
- Number of kilobytes that the script takes up.

6. Perform the following operations:

- Navigate to your scratch directory.
- Copy and paste the file: /class/datamine/data/flights/1987.csv to your current directory (scratch).
- Create a new directory called my_test_dir in your scratch folder.
- Move the file you copied to your scratch directory, into your new folder.
- Use touch to create an empty file named im_empty.txt in your scratch folder
- Remove the directory my_test_dir and the contents of the directory.
- Remove the im_empty.txt file.

Hint: rmdir may not be able to do what you think, instead, check out the options for rm using man rm.

Relevant topics: cd, cp, mv, mkdir, touch, rmdir, rm

Item(s) to submit:

- Command used to navigate to your scratch directory.
- Command used to copy the file, /class/datamine/data/flights/1987.csv to your current directory (scratch).
- Command used to create a new directory called my_test_dir in your scratch folder.
- Command used to move the file you copied earlier 1987.csv into your new my_test_dir folder.
- Command used to create an empty file named im_empty.txt in your scratch folder.
- Command used to remove the directory and the contents of the directory my_test_dir.
- Command used to remove the im_empty.txt file.

Project 4

Motivation: The need to search files and datasets based on the text held within is common during various parts of the data wrangling process. grep is an extremely powerful UNIX tool that allows you to do so using regular expressions. Regular expressions are a structured method for searching for specified patterns. Regular expressions can be very complicated, even professionals can make critical mistakes. With that being said, learning some of the basics is an incredible tool that will come in handy regardless of the language you are working in.

Context: We've just begun to learn the basics of navigating a file system in UNIX using various terminal commands. Now we will go into more depth with one of the most useful command line tools, grep, and experiment with regular expressions using grep, R, and later on, Python.

Scope: grep, regular expression basics, utilizing regular expression tools in R and Python

Learning objectives:

- Use grep to search for patterns within a dataset.
- Use cut to section off and slice up data from the command line.
- Use wc to count the number of lines of input.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/movies_and_tv/the_office_dialogue.csv

A public sample of the data can be found here: the_office_dialogue.csv

Answers to questions should all be answered using the full dataset located on Scholar. You may use the public samples of data to experiment with your solutions prior to running them using the full dataset.

grep stands for (g)lobally search for a (r)egular (e)xpression and (p)rint matching lines. As such, to best demonstrate grep, we will be using it with textual data. You can read about and see examples of grep here.

1. Login to Scholar and use grep to find the dataset we will use this project. The dataset we will use is the only dataset to have the text "bears. beets. battlestar galactica.". What is the name of the dataset and where is it located? Relevant topics: grep

Item(s) to submit:

- The grep command used to find the dataset.
- The name and location in Scholar of the dataset.
- Use grep and grep1 within R to solve a data-driven problem.

2. grep prints the line that the text you are searching for appears in. In project 3 we learned a UNIX command to quickly print the first n lines from a file. Use this command to get the headers for the dataset. As you can see, each line in the tv show is a row in the dataset. You can count to see which column the various bits of data live in. Write a line of UNIX commands that searches for "bears. beets. battlestar galactica." and, rather than printing the entire line, prints only the character who speaks the line, as well as the line itself.

Hint: The result if you were to search for "bears. beets. battlestar galactica." should be:

"Jim", "Fact. Bears eat beets. Bears. Beets. Battlestar Galactica."

Hint: One method to solve this problem would be to pipe the output from grep to cut.

Relevant topics: cut, grep

Item(s) to submit:

- The line of UNIX commands used to perform the operation.
- 3. This particular dataset happens to be very small. You could imagine a scenario where the file is many gigabytes and not easy to load completely into R or Python. We are interested in learning what makes Jim and Pam tick as a couple. Use a line of UNIX commands to create a new dataset called jim_and_pam.csv. Include only lines that are spoken by either Jim or Pam, or reference Jim or Pam in any way. Include only the following columns: episode_name, character, text, text_w_direction, and air_date. How many rows of data are in the new file? How many megabytes is the new file (to the nearest 1/10th of a megabyte)? Hint: Redirection.

Hint: It is OK if you get an erroneous line where the word "jim" or "pam" appears as a part of another word.

Relevant topics: cut, grep, ls, wc, redirection

Item(s) to submit:

- The line of UNIX commands used to create the new file.
- The number of rows of data in the new file, and the accompanying UNIX command used to find this out.
- The number of megabytes (to the nearest 1/10th of a megabyte) that the new file has, and the accompanying UNIX command used to find this out.
- 4. Find all lines where either Jim/Pam/Michael/Dwight's name is followed by an exclamation mark. Use only 1 "!" within your regular expression. How many lines are there? Relevant topics: grep

Item(s) to submit:

- The UNIX command(s) used to solve this problem.
- The number of lines where either Jim/Pam/Michael/Dwight's name is followed by an exclamation mark.
- 5. Find all lines that contain the text "that's what" followed by any amount of any text and then "said". How many lines are there? Relevant topics: grep

Item(s) to submit:

- The UNIX command used to solve this problem.
- The number of lines that contain the text "that's what" followed by any amount of text and then "said".
- 6. Find all of the lines where Pam is called "Beesley" instead of "Pam" or "Pam Beesley". Hint: A negative lookbehind would be one way to solve this.

Relevant topics: grep

Item(s) to submit:

• The UNIX command used to solve this problem.

Regular expressions are really a useful semi language-agnostic tool. What this means is regardless of the programming language your are using, there will be some package that allows you to use regular expressions. In fact, we can use them in both R and Python! This can be particularly useful when dealing with strings. Load up the dataset you discovered in (1) using read.csv. Name the resulting data.frame dat.

7. The text_w_direction column in dat contains the characters' lines with inserted direction that helps characters know what to do as they are reciting the lines. Direction is shown between square brackets "[" "]". Create a new column called has_direction that is set to TRUE if the text_w_direction column has direction, and FALSE otherwise. Use regular expressions and the grepl function in R to accomplish this. Hint: Make sure all opening brackets "[" have a corresponding closing bracket "]".

Hint: Think of the pattern as any line that has a [, followed by any amount of any text, followed by a], followed by any amount of any text.

Relevant topics: grep, grepl

Item(s) to submit:

• The R code used to solve this problem.

8. Modify your regular expression in (7) to find lines with 2 or more sets of direction. For example, the following line has 2 directions: dat\$text_w_direction[2789]. How many lines have more than 2 directions? How many have more than 5?

```
This is a line with [emphasize this] only 1 direction!

This is a line with [emphasize this] 2 sets of direction, do you see the difference [si
```

In (7), your solution may have found a match in both lines. In this question we want it to find only lines with 2+ directions, so the first line would not be a match.

Relevant topics: length, grep

Item(s) to submit:

- The R code used to solve this problem.
- How many lines have > 2 directions?
- How many lines have > 5 directions?

```
This is a line with [emphasize this] only 1 direction!

This is a line with [emphasize this] 2 sets of direction, do you see the difference [st
```

9. Use the str_extract_all function from the stringr package to extract the direction(s) as well as the text between direction(s) from each line. Put the strings in a new column called direction. In this question, your solution may have extracted:

```
[emphasize this]
[emphasize this] 2 sets of direction, do you see the difference [shrug]
```

This is ok.

Note: If you capture text between two sets of direction, this is ok. For example, if we capture "[this] is a [test]" from "if we capture [this] is a [test]", this is ok.

Relevant topics: str_extract_all

Item(s) to submit:

• The R code used to solve this problem.

```
dat$direction_correct[747]
```

```
This is a line with [emphasize this] only 1 direction!

This is a line with [emphasize this] 2 sets of direction, do you see the difference [shrug].
```

10. Repeat (9) but this time make sure you only capture the brackets and text within the brackets. Save the results in a new column called direction_correct. You can test to see if it is working by running the following code: In (7), your solution may have extracted:

```
[emphasize this]
[emphasize this] 2 sets of direction, do you see the difference [shrug]
```

This is ok for (7). In this question, however, we want to fix this to only extract:

```
[emphasize this]
[emphasize this] [shrug]
```

Hint: This regular expression will be hard to read.

Hint: The pattern we want is: literal opening bracket, followed by 0+ of any character other than the literal [or literal], followed by a literal closing bracket.

Relevant topics: $str_extract_all$

```
Item(s) to submit:The R code used to solve this problem.
```

Project 5

Motivation: Becoming comfortable stringing together commands and getting used to navigating files in a terminal is important for every data scientist to do. By learning the basics of a few useful tools, you will have the ability to quickly understand and manipulate files in a way which is just not possible using tools like Microsoft Office, Google Sheets, etc.

Context: We've been using UNIX tools in a terminal to solve a variety of problems. In this project we will continue to solve problems by combining a variety of tools using a form of redirection called piping.

Scope: grep, regular expression basics, UNIX utilities, redirection, piping

Learning objectives:

- Use cut to section off and slice up data from the command line.
- Use piping to string UNIX commands together.
- Use sort and it's options to sort data in different ways.
- Use head to isolate n lines of output.
- Use wc to summarize the number of lines in a file or in output.
- Use uniq to filter out non-unique lines.
- Use grep to search files effectively.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.schola r.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name

without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/amazon/amazon_fine_food_reviews.csv

A public sample of the data can be found here: amazon_fine_food_reviews.csv

Answers to questions should all be answered using the full dataset located on Scholar. You may use the public samples of data to experiment with your solutions prior to running them using the full dataset.

Questions

1. What is the Id of the most helpful review if we consider the review with highest HelpfulnessNumerator to be an indicator of helpfulness (higher is more helpful)? Relevant topics: cut, sort, head, piping

Item(s) to submit:

- Line of UNIX commands used to solve the problem.
- The Id of the most helpful review.
- 2. What proportion of all Summarys are unique? Use two lines of UNIX commands to find the answer. Relevant topics: cut, uniq, sort, wc, piping

Item(s) to submit:

- Two lines of UNIX commands used to solve the problem.
- The ratio of unique Summary's.
- 3. Use a simple UNIX command to create a frequency table of Score. Relevant topics: cut, uniq, sort, piping

- The line of UNIX commands used to solve the problem.
- The frequency table.

4. Who is the user with the highest number of reviews? There are two columns you could use to answer this question, but which column do you think would be most appropriate and why? Hint: You may need to pipe the output to sort multiple times.

Hint: To create the frequency table, read through the man pages for uniq. Man pages are the "manual" pages for UNIX commands. You can read through the man pages for uniq by running the following:

man uniq

Relevant topics: cut, uniq, sort, head, piping, man

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- The frequency table.
- 5. Anecdotally, there seems to be a tendency to leave reviews when we feel strongly (either positive or negative) about a product. For the user with the highest number of reviews, would you say that they follow this pattern of extremes? Let's consider 5 star reviews to be strongly positive and 1 star reviews to be strongly negative. Let's consider anything in between neither strongly positive nor negative. Hint: You may find the solution to problem (3) useful.

Relevant topics: cut, uniq, sort, grep, piping

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- 6. We want to compare the most helpful review with a Score of 5 with the most helpful review with a Score of 1. Use UNIX commands to calculate these values. Write down the ProductId of both reviews. In the case of a tie, write down all ProductId's to get full credit. In this case we are considering the most helpful review to be the review with the highest HelpfulnessNumerator. Hint: You can use multiple lines to solve this problem.

Relevant topics: sort, head, piping

- The lines of UNIX commands used to solve the problem.
- ProductId's of both requested reviews.

7. Using the ProductId's from the previous question, create a new dataset called reviews.csv which contains the ProductId's and Score of all reviews with the corresponding ProductId's. Relevant topics: cut, grep, redirection

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- 8. If we didn't use cut prior to searching for the ProductId's in (7), we would get unwanted results. Modify the solution to (7) and explore. What is happening? Relevant topics: cat, grep, redirection

Item(s) to submit:

- The line of UNIX commands used to solve the problem.
- 1-2 sentences explaining why we need to use cut first.
- 1-2 sentences explaining whether or not you think people found the review helpful because the produce is overrated, underrated, or correctly reviewed, and why.
- 9. Use R to load up reviews.csv into a new data.frame called dat. Create a histogram for each products' Score. Compare the most helpful review Score with the Score's given in the histogram. Based on this comparison, decide (anecdotally) whether you think people found the review helpful because the product is overrated, underrated, or correctly reviewed by the masses. Relevant topics: read.csv, hist

Item(s) to submit:

- R code used to create the histograms.
- 3 histograms, 1 for each ProductId.

Project 6

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.
- Use output created from the terminal to create a plot using R.

Dataset:

The following questions will use the dataset found in Scholar: /class/datamine/data/flights/subset/Y

An example of the data for the year 1987 can be found here.

Questions

1. In previous projects we learned how to get a single column of data from a csv file. Write 1 line of UNIX commands to print the 17th column, the Origin, from 1987.csv. Write another line, this time using awk to do the same thing. Which one do you prefer, and why? Relevant topics: cut, awk

Item(s) to submit:

- One line of UNIX commands to solve the problem without using awk.
- One line of UNIX commands to solve the problem using awk.
- 1-2 sentences describing which method you prefer and why.
- 2. Write a bash script that accepts a year (1987, 1988, etc.) and a column n and returns the nth column of the associated year of data. Relevant topics: awk, bash scripts

Item(s) to submit:

• The content of your bash script (starting with "#!/bin/bash") in a code chunk.

3. How many flights came into Indianapolis (IND) in 2008? First solve this problem without using awk, then solve this problem using only awk. Relevant topics: cut, grep, wc, awk, piping

Item(s) to submit:

- One line of UNIX commands to solve the problem without using
- One line of UNIX commands to solve the problem using awk.
- The number of flights that came into Indianapolis (IND) in 2008.
- 4. Do you expect the number of unique origins and destinations to be the same? Find out using any command line tool you'd like. Are they indeed the same? How many unique values do we have per category (Origin, Dest)? Relevant topics: cut, sort, uniq, wc, awk

Item(s) to submit:

- 1-2 sentences explaining whether or not you expect the number of unique origins and destinations to be the same.
- The UNIX command(s) used to figure out if the number of unique origins and destinations are the same.
- The number of unique values per category (Origin, Dest).
- 5. In (4) we found that there are not the same number of unique Origin's as Dest's. Find the IATA airport code for all Origin's that dont appear in a Dest and all Dest's that don't appear in an Origin. Hint: https://www.tutorialspoint.com/unix commands/comm.htm

Relevant topics: comm, cut, sort, uniq, redirection

Item(s) to submit:

- The line(s) of UNIX command(s) used to answer the question.
- The list of Origins that don't appear in Dest.
- The list of Dests that don't appear in Origin.
- 6. What was the average number of flights in 2008 per unique Origin with the Dest of "IND"? How does "PHX" (as a unique Origin) compare to the average? Hint: You manually do the average calculation by dividing the result from (3) by the number of unique Origin's that have a Dest of "IND".

Relevant topics: awk, sort, grep, wc

Item(s) to submit:

- The average number of flights in 2008 per unique Origin with the Dest of "IND".
- 1-2 sentences explaining how "PHX" compares (as a unique Origin) to the average?

```
1987, 12345
1988, 44
```

7. Write a bash script that takes a year and IATA airport code and returns the year, and the total number of flights to and from the given airport. Example rows may look like: Run the script with inputs: 1991 and ORD. Include the output in your submission.

Relevant topics: bash scripts, cut, piping, grep, wc

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The output of the script given 1991 and ORD as inputs.
- 8. Pick your favorite airport and get its IATA airport code. Write a bash script that, given the first year, last year, and airport code, runs the bash script from (7) for all years in the provided range for your given airport, or loops through all of the files for the given airport, appending all of the data to a new file called my_airport.csv. Relevant topics: bash scripts, cut, grep, wc, for loops, echo, redirection

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- 9. In R, load my_airport.csv and create a line plot showing the year-by-year change. Label your x-axis "Year", your y-axis "Num Flights", and your title the name of the IATA airport code. Write 1-2 sentences with your observations. Relevant topics: read.csv, lines

Item(s) to submit:

• Line chart showing year-by-year change in flights into and out of the chosen airport.

- R code used to create the chart.
- 1-2 sentences with your observations.

Project 7			

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.

Dataset:

The following questions will use the dataset found in Scholar:

/class/datamine/data/flights/subset/YYYY.csv

An example of the data for the year 1987 can be found here.

Sometimes if you are about to dig into a dataset, it is good to quickly do some sanity checks early on to make sure the data is what you expect it to be.

Questions

1. Write a line of code that prints a list of the unique values in the DayOfWeek column. Write a line of code that prints a list of the unique

values in the DayOfMonth column. Write a line of code that prints a list of the unique values in the Month column. Use the 1987.csv dataset. Are the results what you expected? Relevant topics: cut, sort

Item(s) to submit:

- 3 lines of code used to get a list of unique values for the chosen columns
- 1-2 sentences explaining whether or not the results are what you expected.
- 2. Our files should have 29 columns. Write a line of code that prints any lines in a file that do *not* have 29 columns. Test it on 1987.csv, were there any rows without 29 columns? Relevant topics: awk

Item(s) to submit:

- Line of code used to solve the problem.
- 1-2 sentences explaining whether or not there were any rows without 29 columns.
- 3. Write a bash script that, given a "begin" year and "end" year, cycles through the associated files and prints any lines that do *not* have 29 columns. Relevant topics: awk, bash scripts

Item(s) to submit:

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The results of running your bash scripts from year 1987 to 2008.
- 4. awk is a really good tool to quickly get some data and manipulate it a little bit. For example, let's see the number of kilometers and miles traveled in 1990. To convert from miles to kilometers, simply multiply by 1.609344. Example output:

Miles: 12345

Kilometers: 19867.35168

Relevant topics: awk, piping

- The code used to solve the problem.
- The results of running the code.

5. Use awk to calculate the number of DepDelay minutes by DayOfWeek. Use 2007.csv. Example output:

```
DayOfWeek: 0
1: 1234567
2: 1234567
3: 1234567
4: 1234567
5: 1234567
6: 1234567
7: 1234567
```

Note: 1 is Monday.

Relevant topics: awk, sort, piping

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.

6. It wouldn't be fair to compare the total DepDelay minutes by DayOfWeek as the number of flights may vary. One way to take this into account is to instead calculate an average. Modify (5) to calculate the average number of DepDelay minutes by the number of flights per DayOfWeek. Use 2007.csv. Example output:

```
DayOfWeek: 0
1: 1.234567
2: 1.234567
3: 1.234567
4: 1.234567
5: 1.234567
6: 1.234567
7: 1.234567
```

Relevant topics: awk, sort, piping

- The code used to solve the problem.
- The output from running the code.
- 7. As a quick follow-up, *slightly* modify (6) to perform the same calculation for ArrDelay. Do the ArrDelays and DepDelays appear to have the highest delays on the same day? Use 2007.csv. Example output:

DayOfWeek: 0
1: 1.234567
2: 1.234567
3: 1.234567
4: 1.234567
5: 1.234567
6: 1.234567
7: 1.234567

Relevant topics: awk, sort, piping

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.
- 1-2 sentences explaining whether or not the ArrDelays and DepDelays appear to have the highest delays on the same day.
- 8. Anyone who has flown knows how frustrating it can be waiting for takeoff, or deboarding the aircraft. These roughly translate to TaxiOut and TaxiIn respectively. If you were to fly into or out of IND what is your expected total taxi time? Use 2007.csv. Note: Taxi times are in minutes.

Relevant topics: awk, grep

Item(s) to submit:

- The code used to solve the problem.
- The output from running the code.
- 9. What are the IATA airport codes of the 5 airports with the greatest total taxi time for 2007? Show the total taxi time for each. Example output:

DayOfWeek: 0
IND: 1234567
IND: 1234567
IND: 1234567
IND: 1234567
IND: 1234567

Relevant topics: awk, head, sort

Item(s) to submit:

• The code used to solve the problem.

• The output from running the code.

Project 8

Motivation: A bash script is a powerful tool to perform repeated tasks. RCAC uses bash scripts to automate a variety of tasks. In fact, we use bash scripts on Scholar to do things like link Python kernels to your account, fix potential issues with Firefox, etc. awk is a programming language designed for text processing. The combination of these tools can be really powerful and useful for a variety of quick tasks.

Context: This is the first part in a series of projects that are designed to exercise skills around UNIX utilities, with a focus on writing bash scripts and awk. You will get the opportunity to manipulate data without leaving the terminal. At first it may seem overwhelming, however, with just a little practice you will be able to accomplish data wrangling tasks really efficiently.

Scope: awk, UNIX utilities, bash scripts

Learning objectives:

- Use awk to process and manipulate textual data.
- Use piping and redirection within the terminal to pass around data between utilities.

Dataset:

The following questions will use the dataset found in Scholar:

/class/datamine/data/flights/subset/YYYY.csv

An example of the data for the year 1987 can be found here.

Let's say we have a theory that there are more flights on the weekend days (Friday, Saturday, Sunday) than the rest of the days, on average. We can use awk to quickly check it out and see if maybe this looks like something that is true!

1. Write a line of awk code that, prints the number of flights on the weekend days, followed by the number of flights on the weekdays for the flights during 2008. Relevant topics: awk

Item(s) to submit:

- Line of awk code that solves the problem.
- The result: the number of flights on the weekend days, followed by the number of flights on the weekdays for the flights during 2008.

2. Note that in (1), we are comparing 3 days to 4! Write a line of awk code that, prints the average number of flights on a weekend day, followed by the average number of flights on the weekdays. Continue to use data for 2008. Relevant topics: awk

Item(s) to submit:

- Line of awk code that solves the problem.
- The result: the average number of flights on the weekend days, followed by the average number of flights on the weekdays for the flights during 2008.

We want to look to see if there may be some truth to the whole "snow bird" concept where people will travel to warmer states like Florida and Arizona during the Winter. Let's use the tools we've learned to explore this a little bit.

head airports.csv

3. Take a look at airports.csv. In particular run the following: Notice how all of the non-numeric text is surrounded by quotes. The surrounding quotes would need to be escaped for any comparison within awk. This is messy and we would prefer to create a new file called new_airports.csv without any quotes. Write a line of code to do this.

Hint: You could use gsub within awk to replace "" with ".

Hint: If you leave out the column number argument to **gsub** it will apply the substitution to every field in every column.

Relevant topics: awk, redirection

- Line of awk code used to create the new dataset.
- 4. Write a line of commands that create a new dataset called az_fl_airports.txt that contains a list of airport codes for all airports from both Arizona (AZ) and Florida (FL). Use the file we created in (3),new_airports.csv. Relevant topics: awk

Item(s) to submit:

• The line of UNIX commands to create an array called airports.

5. Wow! In (4) we discovered a lot of airports! How many airports are there? Did you expect this? Use a line of bash code to answer this question. Relevant topics: echo, wc, piping

Item(s) to submit:

- Line of UNIX commands used to solve the problem.
- The number of airports.
- 1-2 sentences explaining whether you expected this result and why or why not.
- 6. Create a new dataset that contains all of the data for flights into or out of Florida and Arizona using 2008.csv, use the newly created dataset, az_fl_airports.txt in (4) to do so. Hint: https://unix.stackexchange.com/questions/293684/basic-grep-awk-help-extracting-all-lines-containing-a-list-of-terms-from-one-f

Relevant topics: grep

Item(s) to submit:

- Line of UNIX commands used to solve the problem.
- 7. Now that you have code to complete (6), write a bash script that accepts the start year, end year, and filename containing airport codes (az_fl_airports.txt), and outputs the data for flights into or out of any of the airports listed in the provided filename containing airport codes using all of the years of data in the provided range. Run the bash script to create a new file called az_fl_flights.csv. Relevant topics: bash scripts, grep, for loop, redirection

- The content of your bash script (starting with "#!/bin/bash") in a code chunk.
- The line of UNIX code you used to execute the script and create the new dataset.
- 8. Use the newly created az_fl_flights.csv dataset to calculate the total number of flights into and out of both states by month, and by year, for a total of 3 columns (year, month, flights). Export this

information to a new file called snowbirds.csv. Relevant topics: awk, redirection

Item(s) to submit:

- The line of awk code used to create the new dataset, snowbirds.csv.
- 9. Load up your newly created dataset and use either R or Python (or some other tool) to create a graphic that illustrates whether or not we believe the "snowbird effect" effects flights. Include a description of your graph, as well as your (anecdotal) conclusion.

Item(s) to submit:

- Code used to create the visualization in a code chunk.
- The generated plot as either a png or jpg/jpeg.
- 1-2 sentences describing your plot and your conclusion.

Project 9			

Motivation: Structured Query Language (SQL) is a language used for querying and manipulating data in a database. SQL can handle much larger amounts of data than R and Python can alone. SQL is incredibly powerful. In fact, cloudflare, a billion dollar company, had much of its starting infrastructure built on top of a Postgresql database (per this thread on hackernews). Learning SQL is *well* worth your time!

Context: There are a multitude of RDBMSs (relational database management systems). Among the most popular are: MySQL, MariaDB, Postgresql, and SQLite. As we've spent much of this semester in the terminal, we will start in the terminal using SQLite.

Scope: SQL, sqlite

Learning objectives:

- Explain the advantages and disadvantages of using a database over a tool like a spreadsheet.
- Describe basic database concepts like: rdbms, tables, indexes, fields, query, clause.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.

Dataset:

The following questions will use the dataset found in Scholar:

/class/datamine/data/lahman/lahman.db

Questions

1. Connect to RStudio Server https://rstudio.scholar.rcac.purdue.edu, and navigate to the terminal and access the Lahman database. How many tables are available? Hint: To connect to the database, do the following:

sqlite3 /class/datamine/data/lahman/lahman.db

Relevant topics: sqlite3

Item(s) to submit:

- How many tables are available in the Lahman database?
- The sqlite3 commands used to figure out how many tables are available.
- 2. Some people like to try to visit all 30 MLB ballparks in their lifetime. Use SQL commands to get a list of parks and the cities they're located in. For your final answer, limit the output to 10 records/rows. Note: There may be more than 30 parks in your result, this is ok. For long results, you can limit the number of printed results using the LIMIT clause.

Hint: Make sure you take a look at the data dictionary for the table and column names

Hint: To see the header row as a part of each query result, run the following:

.headers on

Relevant topics: SELECT, FROM, LIMIT

- SQL code used to solve the problem.
- The first 10 results of the query.
- 3. There is nothing more exciting to witness than a home run hit by a batter. It's impressive if a player hits more than 40 in a season. Find the hitters who have hit 60 or more home runs (HR) in a season. List their playerID, yearID, home run total, and the teamID they played for. Hint: There are 8 occurrences of home runs greater than 60.

Hint: The batting table is where you should look for this question.

Relevant topics: SELECT, FROM, LIMIT

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 4. Make a list of players born on your birth day (don't worry about the year). Display their first names, last names, and birth year. Order the list descending by their birth year. Hint: The people table is where you should look for this question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 5. Get the Cleveland (CLE) Pitching Roster from the 2016 season (playerID, W, L, SO). Order the pitchers by number of Strikeouts (SO). Hint: The pitching table is where you should look for this question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 6. Find the top 10 team total of Errors between 1960 and 1970. Display their Win and Loss totals too. What is the name of the 3rd place team? Hint: The BETWEEN clause is useful here.

Hint: It is OK to use multiple queries to answer the question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.

7. Find the playerID for Bob Lemon. What year and team was he on when he pitched the most wins (use table pitching)? What year and team did he win the most games as a manager (use table managers)? Hint: It is OK to use multiple queries to answer the question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 8. Find the AL West (use lgID and divID to specify AL West) home run (HR), walk (BB), and stolen base (SB) totals by team between 2000 and 2010. Which team led in each category in the decade? Hint: It is OK to use multiple queries to answer the question.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.
- 9. Get a list of the following by year: wins (W), losses (L), Home Runs Hit (HR), homeruns allowed (HRA), and attendance for the Detroit Tigers when appearing in a World Series (WSWin) or when league champion (LgWin). Hint: Be careful with the order of operations for AND and OR. Remember you can force order of operations using parentheses.

Relevant topics: SELECT, FROM, WHERE, AND, ORDER BY, DESC, LIMIT, BETWEEN

Note: Examples that utilize the relevant topics in this problem can be found here.

Item(s) to submit:

- SQL code used to solve the problem.
- The first 10 results of the query.

Project 10

Motivation: Although SQL syntax may still feel unnatural and foreign, with more practice it *will* start to make more sense. The ability to read and write SQL queries is a bread-and-butter skill for anyone working with data.

Context: We are in the second of a series of projects that focus on learning the basics of SQL. In this project, we will continue to harden our understanding of SQL syntax, and introduce common SQL functions like AVG, MIN, and MAX.

Scope: SQL, sqlite

Learning objectives:

- Explain the advantages and disadvantages of using a database over a tool like a spreadsheet.
- Describe basic database concepts like: rdbms, tables, indexes, fields, query, clause.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.
- Utilize SQL functions like min, max, avg, sum, and count to solve data-driven problems.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/lahman/lahman.db

Questions

```
host <- "scholar-db.rcac.purdue.edu"
dbname <- "lahmandb"
user <- "lahman_user"
password <- "HitAHOmerun"
head(dbGetQuery(con, "SHOW tables;"))</pre>
```

1. Connect to RStudio Server https://rstudio.scholar.rcac.purdue.edu, and, rather than navigating to the terminal like we did in the previous project, instead, create a connection to our MariaDB lahman database using the RMariaDB package in R, and the credentials below. Confirm the connection by running the following code chunk: Hint: In the example provided, the variable con is the connection. Change con to whatever you name the result of dbConnect.

Relevant topics: RMariaDB, dbConnect, dbGetQuery

Item(s) to submit:

- R code used to solve the problem.
- Output from running your (potentially modified) head(dbGetQuery(con, "SHOW tables;")).
- 2. Find Corey Kluber's totals for his career. Include his strikeouts (S0), walks (BB), and his Strikeouts to Walks ratio. A Strikeout to Walks ratio is calculated by this equation: $\frac{Strikeouts}{Walks}$. Important note: In our project template, we show 2 primary ways to run SQL queries from within R/RMarkdown. In question 5, we wrap our queries in R code. In question 6, we use the database connection, con, to run SQL queries directly within an SQL code chunk. In this project, we will just use the first method as it has the advantage of having the result of the query ready to be used within our R environment.

Important note: Questions in this project need to be solved using SQL when possible. You will not receive credit for a question if you use sum in R rather than SUM in SQL.

Relevant topics: dbGetQuery, SUM, SELECT, FROM, WHERE

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 3. How many times has Giancarlo Stanton struck out in years in which he played for "MIA" or "FLO"? Relevant topics: dbGetQuery, AND/OR, COUNT, SUM

- R code used to solve the problem.
- The result of running the R code.

4. Calculate the Batting Average of batters between 2000 and 2010, with more than 300 at-bats (ABs). List the top 5 batting averages next to the playerID (with team and year). Batting Averages are calculated as $\frac{H}{AB}$. Relevant topics: dbGetQuery, ORDER BY, BETWEEEN

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 5. How many unique players have hit > 50 home runs (HR) in a season? Hint: If you view DISTINCT as being paired with SELECT, instead, think of it as being paired with one of the fields you are selecting.

Relevant topics: dbGetQuery, DISTINCT, COUNT

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 6. How many players are members of the 40/40 club? These are players that have stolen more than 40 bases (SB) and hit more than 40 home runs (HR). Relevant topics: <code>dbGetQuery</code>, <code>AND/OR</code>, <code>DISTINCT</code>, <code>COUNT</code>

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.
- 7. Find the number of unique players that attended Purdue University. Start by finding the schoolID for Purdue and then find the number of players who played there. Who had more? Purdue or IU? Use the information you have in the database, and the power of R to create a misleading graphic that makes Purdue look better than IU, even if just at first glance. Make sure you label the graphic. Hint: You can mess with the scale of the y-axis. You could (potentially) filter the data to start from a certain year or be between two dates.

Hint: To find IU's id, try the following query: SELECT schoolID FROM schools
WHERE name_full LIKE '%indiana%';.

Relevant topics: dbGetQuery, plotting in R, COUNT

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.

8. Use R, SQL and the lahman database to create an interesting infographic. For those of you who are not baseball fans, try doing a Google image search for "baseball plots" for inspiration. Make sure the plot is polished, has appropriate labels, color, etc. Relevant topics: SQL, plotting in R

Item(s) to submit:

- R code used to solve the problem.
- The result of running the R code.

Project 11

Motivation: Being able to use results of queries as tables in new queries (also known as writing sub-queries), and calculating values like MIN, MAX, and AVG in aggregate are key skills to have in order to write more complex queries. In this project we will learn about aliasing, writing sub-queries, and calculating aggregate values.

Context: We are in the middle of a series of projects focused on working with databases and SQL. In this project we introduce aliasing, sub-queries, and calculating aggregate values using a much larger dataset!

Scope: sql, sql in R

Learning objectives:

- Demonstrate the ability to interact with popular database management systems within R.
- Solve data-driven problems using a combination of SQL and R.
- Basic clauses: select, order by, limit, desc, asc, count, where, from, etc.
- Showcase the ability to filter, alias, and write subqueries.
- Perform grouping and aggregate data using group by and the following functions: count, max, sum, avg, like, having. Explain when to use having, and when to use where.

Dataset

elections database & /class/datamine/data/election/itcontYYYY.txt (for example, data for year 1980 would be /class/datamine/data/electionitcont1980.txt)

A public sample of the data can be found here:

https://www.datadepot.rcac.purdue.edu/datamine/data/election/itcontYYYY.txt (for example, data for year 1980 would be https://www.datadepot.rcac.purdue.edu/datamine/data/election/itcont1980.txt)

Up until now, you've been working with a neatly organized database containing baseball data. As fantastic as this database is, it would be trivial to load up the entire database in R or Python and do your analysis using merge-like functions. Now, we are going to deal with a much larger set of data.

1. Approximately how large was the lahman database (use the sqlite database in Scholar: /class/datamine/data/lahman/lahman.db)? Use UNIX utilities you've learned about this semester to write a line of code to return the amount of data (in MB) in the elections folder /class/datamine/data/election/. How much data (in MB) is there? The data in that folder has been added to the elections database in the elections table. Write a SQL query that returns how many rows of data are in the database?

Hint: This will take some time! Be patient.

Relevant topics: sql, sql in R, awk, ls

Item(s) to submit:

- Approximate size of the lahman database in mb.
- Line of code (bash/awk) to calculate the size (in mb) of the entire elections dataset in /class/datamine/data/election.
- The size of the elections data in mb.
- SQL query used to find the number of rows of data in the elections table in the elections database.
- The number of rows in the elections table in the elections database.
- 2. Write a SQL query using the LIKE command to find a unique list of zip_codes that start with "479". How many unique zip_codes are there that begin with "479"? Hint: Make sure you only select zip_codes.

Relevant topics: sql, like

Item(s) to submit:

- SQL queries used to answer the question.
- The first 5 results from running the query.

3. Write a SQL query that counts the number of donations (rows) that are from Indiana. How many donations are from Indiana? Rewrite the query and create an *alias* for our field so it doesn't read COUNT(*) but rather Indiana Donations. Relevant topics: sql, where, aliasing

Item(s) to submit:

- SQL query used to answer the question.
- The result of the SQL query.

```
+-----+
| Donations |
+-----+
| IN: 1111778 |
+-----+
```

4. Rewrite the query in (3) so the result is displayed like the following: Hint: Use CONCAT and aliasing to accomplish this.

Relevant topics: sql, aliasing, concat

Item(s) to submit:

- SQL query used to answer the question.
- 5. In (2) we wrote a query that returns a unique list of zip_codes that start with "479". In (3) we wrote a query that counts the number of donations that are from Indiana. Use our query from (2) as a subquery to find how many donations come from areas with zip_codes starting with "479". What percent of donations in Indiana come from said zip_codes? Relevant topics: sql, aliasing, subqueries

- SQL queries used to answer the question.
- The percentage of donations from Indiana from zip_codes starting with "479".
- 6. In (3) we wrote a query that counts the number of donations that are from Indiana. When running queries like this, a natural

"next question" is to ask the same question about another state. SQL gives us the ability to calculate functions in aggregate when grouping by a certain column. Write a SQL query that returns the state, number of donations from each state, the sum of the donations (transaction_amt). Which 5 states gave the most donations (highest count)? Order you result from most to least. Hint: You may want to create an alias in order to sort.

Relevant topics: sql, group by

Item(s) to submit:

- SQL query used to answer the question.
- Which 5 states gave the most donations?
- 7. Write a query that gets the number of donations, and sum of donations, by year, for Indiana. Create one or more graphics that highlights the year-by-year changes. Write a short 1-2 sentences explaining your graphic(s). Relevant topics: sql in R, group by

Item(s) to submit:

- SQL query used to answer the question.
- R code used to create your graphic(s).
- 1 or more graphics in png/jpeg format.
- 1-2 sentences summarizing your graphic(s).

Project 12		

Motivation: Databases are comprised of many tables. It is imperative that we learn how to combine data from multiple tables using queries. To do so we perform joins! In this project we will explore learn about and practice using joins on a database containing bike trip information from the Bay Area Bike Share.

Context: We've introduced a variety of SQL commands that let you filter and extract information from a database in an systematic way. In this project we will introduce joins, a powerful method to combine data from different tables.

Scope: SQL, sqlite, joins

Learning objectives:

- Briefly explain the differences between left and inner join and demonstrate the ability to use the join statements to solve a data-driven problem.
- Perform grouping and aggregate data using group by and the following functions: count, max, sum, avg, like, having.
- Showcase the ability to filter, alias, and write subqueries.

Dataset

The following questions will use the dataset found in Scholar:

/class/datamine/data/bay_area_bike_share/bay_area_bike_share.db

A public sample of the data can be found here

Questions

```
SELECT * FROM users AS u INNER JOIN dorms AS d ON u.dorm=d.id;
```

1. There are a variety of ways to join data using SQL. With that being said, if you are able to understand and use a LEFT JOIN and INNER JOIN, you can perform *all* of the other types of joins (RIGHT JOIN, FULL OUTER JOIN). Given the following two tables, use RMarkdown to display the result of performing the following query as a table: users:

$\overline{\mathrm{id}}$	first_name	last_name	dorm
1	Alice	Smith	1
2	Bob	Johnson	2
3	Susan	Marques	3
4	Amare	Keita	3
5	Kristen	Lakehold	4

dorms:

id	name	capacity	address
1	Windsor Halls	NULL	Windsor Halls, West Lafayette, IN, 47906
2	Cary Quadrangle	1200	1016 W Stadium Ave, West Lafayette, IN 47906
3	Hillenbrand Hall	NULL	1301 3rd Street, West Lafayette, IN 47906

Relevant topics: sql, inner join

Item(s) to submit:

• RMarkdown table displaying the result of performing the following query as a table.

SELECT * FROM users AS u LEFT JOIN dorms AS d ON u.dorm=d.id;

2. Using the same two tables from (1), use RMarkdown to display the result of performing the following query as a table. Explain the difference between an INNER JOIN and LEFT JOIN. Relevant topics: sql, left join

Item(s) to submit:

- RMarkdown table displaying the result of performing the following query as a table.
- 1-2 sentences explaining (in your own words) what the difference between and INNER and LEFT JOIN is.
- 3. Aliases can be created for tables, fields, and even results of aggregate functions (like MIN, MAX, COUNT, AVG, etc.). In addition, you can combine fields using the sqlite concatenate operator || (see here). Write a query that returns the first 5 records of information from the station table formatted in the following way: (id) name @ (lat, long)

For example:

(84) Ryland Park @ (37.342725,-121.895617)

Relevant topics: aliasing, concat

Item(s) to submit:

- SQL query used to solve this problem.
- The first 5 records of information from the station table.
- 4. There is a variety of interesting weather information in the weather table. Write a query that finds the average mean_temperature_f by zip_code. Which is on average the warmest zip_code? Use aliases to format the result in the following way:

Zip Code|Avg Temperature 94041|61.3808219178082

Relevant topics: aliasing, group by, avg

Item(s) to submit:

- SQL query used to solve this problem.
- The results of the query copy and pasted.

5. From (4) we can see that there are only 5 zip_codes with weather information. How many unique zip_codes do we have in the trip table? Write a query that finds the number of unique zip_codes in the trip table. Write another query that lists the zip_code and count of the number of times the zip_code appears. If we had originally assumed that the zip_code was related to the location of the trip itself, we were wrong. Can you think of a likely explanation? Relevant topics: group by, count

Item(s) to submit:

- SQL queries used to solve this problem.
- 1-2 sentences explaining what a possible explanation for the zip_codes could be.
- 6. In (4) we wrote a query that finds the average mean_temperature_f by zip_code. What if we want to tack on to our results information from each row in the station table based on the zip_codes? To do, use an INNER JOIN. INNER JOIN combines tables based on specified fields, and returns only rows where there is a match in both the "left" and "right" tables. Hint: Use the query from (4) as a sub query within your solution.

Relevant topics: inner join, subqueries, aliasing

- SQL query used to solve this problem.
- 7. In (5) we eluded that the zip_codes in the trip table aren't very consistent. Users can enter a zip code when using the app. This means that zip_code can be from anywhere in the world! With that being said, if the zip_code is one of the 5 zip_codes for which we have weather data (from question 4), we can add that weather information to matching rows of the trip table. In (6) we used an INNER JOIN to append some weather information to each row in the station table. For this question, write a query that performs an INNER JOIN and appends weather data from the weather table to the trip data from the trip table. Limit your solution to 5 lines. Hint: You will want to wrap your dates and datetimes in sqlite's date function prior to comparison.

Important note: Notice that the weather data has about 1 row of weather information for each date and each zip code. This means you may have to join your data based on multiple constraints instead of just 1 like in (6).

Relevant topics: inner join, aliasing

Item(s) to submit:

- SQL query used to solve this problem.
- First 5 lines of output.

8. How many rows are in the result from (7) (when not limiting to 5 lines)? How many rows are in the trip table? As you can see, a large proportion of the data from the trip table did not match the data from the weather table, and therefore was removed from the result. What if we want to keep all of the data from the trip table and add on data from the weather table if we have a match? Write a query to accomplish this. How many rows are in the result?

Item(s) to submit:

- SQL query used to find how many rows from the result in (7).
- The number of rows in the result of (7).
- SQL query to find how many rows are in the trip table.
- The number of rows in the trip table.
- SQL query to keep all of the data from the trip table and add on matching data from the weather table when available.
- The number of rows in the result.

Project 13

Motivation: Databases you will work with won't necessarily come organized in the way that you like. Getting really comfortable writing longer queries where you have to perform many joins, alias fields and tables, and aggregate results, is important. In addition, gaining some familiarity with terms like *primary key*, and *foreign key* will prove useful when you need to search for help online. In this project we will write some more complicated queries with a fun database. Proper preparation prevents poor performance, and that means practice!

Context: We are towards the end of a series of projects that give you an opportunity to practice using SQL. In this project, we will reinforce topics you've already learned, with a focus on subqueries and joins.

Scope: SQL, sqlite

Learning objectives:

- Write and run SQL queries in sqlite on real-world data.
- Identify primary and foreign keys in a SQL table.

Dataset

/class/datamine/data/movies_and_tv/imdb.db

A public sample of the data can be found here.

Questions

1. A primary key is a field in a table which uniquely identifies a row in the table. Primary keys *must* be unique values, and this is enforced at the database level. A foreign key is a field whose value matches a primary key in a different table. A table can have 0-1 primary key, but it can have 0+ foreign keys. Examine the titles table. Do you think there are any primary keys? How about foreign keys? Relevant topics: primary key, foreign key

Item(s) to submit:

- List any primary or foreign keys in the episodes table.
- 2. Examine the episodes table. Based on observation and the column names, do you think there are any primary keys? How about foreign keys? Relevant topics: primary key, foreign key

Item(s) to submit:

• List any primary or foreign keys in the episodes table.

If you paste a title_id to the end of the following url, it will pull up the page for the title. For example, https://www.imdb.com/title/tt0413573 leads to the page for the TV series Grey's Anatomy.

3. Write a query to confirm that the title_id tt0413573 does indeed belong to Grey's Anatomy. Relevant topics: select, where

- SQL query used to solve the problem in a code chunk.
- Output of the query.

4. The episode_title_id column in the episodes table references titles of individual episodes of a tv series. The show_title_id references the titles of the show itself. With that in mind, write a query that gets a list of all of the episodes and titles of Grey's Anatomy. Relevant topics: inner join

Item(s) to submit:

• SQL query used to solve the problem in a code chunk.

```
SELECT * FROM titles WHERE title id='<title id here>';
```

5. Like we explained in (3), you can find the title_id of a tv show, a tv show episodes, or a movie by browsing imdb.com and getting the title_id directly from the url. Browse imdb.com and find your favorite tv show. Get the title_id from the url and run the following query to confirm that the tv show is in our database: Make sure to replace "<title id here>" with the title_id of your favorite show. If your show does not appear, or has only a single season, pick another show until you find one we have in our database with multiple seasons.

Item(s) to submit:

- The title_id of your favorite tv show.
- The output from running the provided (modified) query.
- 6. We want to write a query that returns the title and rating of the highest rated episode of the tv show you chose in (5). In order to do so, first write a query that returns a list of episode_title_ids (found in the episodes table), with the primary_title (found in the titles table) of the episode. Relevant topics: inner join, aliasing

- SQL query used to solve the problem in a code chunk.
- The first 5 results from your query.
- 7. Write a query that adds the rating to the end of each episode. To do so, use the query you wrote in (6) as a subquery. Was this also your favorite episode? Relevant topics: inner join, aliasing, subqueries, desc, limit, order by

Item(s) to submit:

- SQL query used to solve the problem in a code chunk.
- The episode_title_id, primary_title, and rating of the top rated episode from the tv series from (5).
- A statement saying whether it is also your favorite episode.

8. Write a query that returns the season_number (from the episodes table), and average rating (from the ratings table) for each season. Write another query that only returns the season number and rating for the highest rated season. Consider the highest rated season the season with the highest average. Relevant topics: inner join, aliasing, group by, having, avg

Item(s) to submit:

- The 2 SQL queries used to solve the problems in a code chunk.
- 9. Write a query that returns the primary_title, and rating of the highest rated episode per season for your tv show from (5). Relevant topics: max, subqueries, group by, having, inner join, aliasing

Item(s) to submit:

- The SQL query used to solve the problem.
- The output from your query.
- 1-2 sentences explaining whether or not you agree.

Project 14			

Motivation: As we learned earlier in the semester, bash scripts are a powerful tool when you need to perform repeated tasks in a UNIX-like system. In addition, sometimes preprocessing data using UNIX tools prior to analysis in R or Python is useful. Ample practice is integral to becoming proficient with these tools. As such, we will be reviewing topics learned earlier in the semester.

Context: We've just ended a series of projects focused on SQL. In this project we will begin to review topics learned throughout the semester, starting writing bash scripts using the various UNIX tools we learned about.

Scope: awk, UNIX utilities, bash scripts, fread

Learning objectives:

- Navigating UNIX via a terminal: ls, pwd, cd, ., .., ~, etc.
- Analyzing file in a UNIX filesystem: wc, du, cat, head, tail, etc.
- Creating and destroying files and folder in UNIX: scp, rm, touch, cp, mv, mkdir, rmdir, etc.
- Use grep to search files effectively.
- Use cut to section off data from the command line.
- Use piping to string UNIX commands together.
- Use awk for data extraction, and preprocessing.
- Create bash scripts to automate a process or processes.

Dataset:

The following questions will use the dataset found in Scholar:

/class/datamine/data/forest

To read more about the two files from this dataset that you will be working with:

PLOTSNAP.csv:

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/plot-level-data-gathered-through-forest/metadat a#fields

TREE.csv:

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/tree-level-data-gathered-through-forest/metadata

AND

https://www.uvm.edu/femc/data/archive/project/federal-forest-inventory-analysis-data-for/dataset/tree-level-data-gathered-through-forest/data

Questions

1. Take a look at at PLOTSNAP.csv. Write a line of awk code that displays the STATECD followed by the number of rows with that STATECD. Relevant topics: awk

- Code used to solve the problem.
- Count of the following STATECDs: 1, 2, 4, 5, 6
- 2. Unfortunately, there isn't a very accessible list available that shows which state each STATECD represents. This is no problem for us though, the dataset has LAT and LON! Write some bash that prints just the STATECD, LAT, and LON. Note: There are 92 columns in our dataset: awk

-F, 'NR==1{print NF}' PLOTSNAP.csv. To create a list of STATECD to state, we only really need STATECD, LAT, and LON. Keeping the other 89 variables will keep our data at 2.1gb.

Relevant topics: cut, awk

Item(s) to submit:

- Code used to solve the problem.
- The output of your code piped to head.
- 3. fread is a "Fast and Friendly File Finagler". It is part of the very popular data.table package in R. We will learn more about this package next semester. For now, read the documentation here and use the cmd argument in conjunction with your bash code from (2) to preprocess data prior to reading it into a data.table in your R environment. Relevant topics: fread

Item(s) to submit:

- Code used to solve the problem.
- The head of the resulting data.table.
- 4. Follow the directions here to install ggmap and get an API key. There are over 4 million rows in our dataset we do *not* want to hit Google's API that many times, nor would that work. Instead, do the following:
 - Unless you feel comfortable using data.table, convert your data.table to a data.frame:

```
my_dataframe <- data.frame(my_datatable)</pre>
```

- Calculate the average LAT and LON for each STATECD, and call the new data.frame dat.
- For each row in dat, run a reverse geocode and append the state to a new column called ADDRESS.

Hint: To calculate the average LAT and LON for each STATECD, you could use the sqldf package to run SQL queries on your data.frame.

Hint: To get the address, given LAT and LON:

```
geo <- revgeocode(c(-86.916576, 40.433663), output = "address")
geo</pre>
```

Hint: mapply is a useful apply function to use to solve this problem.

Important note: It is okay to get NA's for some of the addresses.

Relevant topics: ggmap, functions, sqldf

Item(s) to submit:

- Code used to solve the problem.
- The head of the resulting data.frame.

```
library(ggmap)
map <- get_map(location="United States", zoom=3)
ggmap(map)</pre>
```

5. Use the geom_point function to add our latitude and longitude data to a map. Use the following code to create the initial map: Hint: See here for an example of adding points to a map.

Relevant topics: ggmap

Item(s) to submit:

- Code used to create the map.
- The map itself as output from running the code chunk.
- 6. Write a bash script that accepts at least 1 argument, and performs a useful task using at least 1 dataset from the forest folder in /class/datamine/data/forest. An example of a useful task could be printing a report of summary statistics for the data. Feel free to get creative. Note that tasks must be non-trivial a bash script that counts the number of lines in a file is *not* appropriate. Make sure to properly document (via comments) what your bash script does. If you are in STAT 39000 ensure that your script returns columnar data with appropriate separating characters (for example a csv). Relevant topics: bash scripts, awk, unix utilities

- The content of your bash script starting from #!/bin/bash.
- Example output from running your script as intended.
- A description of what your script does.
- 7. fread is a "Fast and Friendly File Finagler". It is part of the very popular data.table package in R. We will learn more about this package next semester. For now, read the documentation here and use the cmd argument in conjunction with your script from (4) to preprocess data prior to reading it into a data.table in your R environment. Relevant topics: fread

Item(s) to submit:

• The R code used to read in and preprocess your data using your bash script from (3).

• The head of the resulting data.table.

Project 15

Motivation: We've done a lot of work with SQL this semester. Let's review concepts in this project and mix and match R, Python, and SQL to solve data-driven problems.

Context: In this project, we will reinforce topics you've already learned, with a focus on SQL.

Scope: SQL, sqlite, R, Python

Learning objectives:

- Write and run SQL queries in sqlite on real-world data.
- Use SQL from within R and Python.

Dataset

/class/datamine/data/movies_and_tv/imdb.db

A public sample of the data can be found here.

In this project we want to offer the flexibility of using your choice of R and/or Python. To keep things as consistent as possible, please use Rmarkdown on https://rstudio.scholar.rcac.purdue.edu/. See here to learn how to run Python in this environment.

F.R.I.E.N.D.S is a popular tv show. They have an interesting naming convention for the names of their episodes. They all begin with the text "The One \dots ". There are 6 primary characters in the show: Chandler, Joey, Monica, Phoebe, Rachel, and Ross. Let's use SQL and R to take a look at how many times each characters' names appear in the title of the episodes.

Questions

1. Write a query that gets the episode_title_id, primary_title, rating, and votes, of all of the episodes of Friends (title_id is tt0108778). Hint: You can slightly modify the solution to question (7) in project 13.

Relevant topics: inner join, subqueries, aliasing

Item(s) to submit:

- SQL query used to answer the question.
- First 5 results of the query.

The next couple of questions should be complete in the same language. You can use either R or Python, but you must use the same for both questions.

2. Now that you have a working query, connect to the database and run the query to get the data into an R or pandas data frame. In previous projects, we learned how to used regular expressions to search for text. For each character, how many episodes primary_titles contained their name? Relevant topics: SQL in R, SQL in Python, grep

Item(s) to submit:

- R or Python code in a code chunk that was used to find the solution.
- The solution pasted below the code chunk.
- 3. Create a graphic showing our results in (2) using your favorite package. Make sure the plot has a good title, x-label, y-label, and try to incorporate some of the following colors: #273c8b, #bd253a, #016f7c, #f56934, #016c5a, #9055b1, #eaab37. Relevant topics: plotting

Item(s) to submit:

- The R or Python code used to generate the graphic.
- The graphic in a png or jpg/jpeg format.
- 4. Use any combination of SQL, R, and Python you'd like in order to find which of the following 3 genres has the highest average rating for movies (see type column from titles table): Romance, Comedy, Animation. In the titles table, you can find the genres in the genres column. There may be some overlap (i.e. a movie may have more than one genre), this is ok. To query rows which have the genre Action as one of its genres:

```
SELECT * FROM titles WHERE genres LIKE '%action%';
```

Relevant topics: like, inner join

Item(s) to submit:

- Any code you used to solve the problem in a code chunk.
- The average rating of each of the genres listed for movies.

5. Write a function called top_episode in R or in Python which accepts the path to the imdb.db database, as well as the title_id of a tv series (for example, "tt0108778" or "tt1266020"), and returns the season_number, episode_number, primary_title, and rating of the highest rated episode in the series. Test it out on some of your favorite series, and share the results. Relevant topics: functions, inner join, order by

- Any code you used to solve the problem in a code chunk.
- The results for at least 3 of your favorite tv series.

Think Summer 2020

${f Project}$		

Submission

Students need to submit an RMarkdown file with all of the required code and output by Wednesday, July 8th at 12:00 PM EST through Gradescope inside Brightspace.

You can find an Rmarkdown template which you can modify and use a starting point for your project here, and the resulting, compiled PDF here.

Motivation: SQL is an incredibly powerful tool that allows you to process and filter massive amounts of data – amounts of data where tools like spreadsheets start to fail. You can perform SQL queries directly within the R environment, and doing so allows you to quickly perform ad-hoc analyses.

Context: This project is specially designed for Purdue University's Think Summer program, in conjunction with Purdue University's integrative data science initiative, The Data Mine.

Scope: SQL, SQL in R Learning objectives:

- Demonstrate the ability to interact with popular database management systems within R.
- Solve data-driven problems using a combination of SQL and R.
- Use basic SQL commands: select, order by, limit, desc, asc, count, where, from.
- Perform grouping and aggregate data using group by and the following functions: count, max, sum, avg, like, having.

You can find useful examples that walk you through relevant material in The Examples Book:

https://thedatamine.github.io/the-examples-book

It is highly recommended to read through, search, and explore these examples to help solve problems in this project.

Important note: It is highly recommended that you use https://rstudio.scholar.rcac.purdue.edu/. Simply click on the link and login using your Purdue account credentials. Use another system at your own risk. The version of RStudio on https://desktop.scholar.rcac.purdue.edu/ (which uses ThinLinc), is 99.9.9, and is known to have some strange issues when running code chunks.

Don't forget the very useful documentation shortcut?. To use, simply type? in the console, followed by the name of the function you are interested in.

You can also look for package documentation by using help(package=PACKAGENAME), so for example, to see the documentation for the package ggplot2, we could run:

help(package=ggplot2)

Sometimes it can be helpful to see the source code of a defined function. A function is any chunk of organized code that is used to perform an operation. Source code is the underlying R or c or c++ code that is used to create the function. To see the source code of a defined function, type the function's name without the (). For example, if we were curious about what the function Reduce does, we could run:

Reduce

Occasionally this will be less useful as the resulting code will be code that calls c code we can't see. Other times it will allow you to understand the function better.

Dataset

The following questions will use the imdb database found in Scholar. The credentials to the database are:

Username: imdb_user
Password: movie\$Rkool

This database has 6 tables, namely:

akas, crew, episodes, people, ratings, and titles.

To connect to the database from a terminal in Scholar, execute the following:

mysql -u imdb_user -h scholar-db.rcac.purdue.edu -p

You will be asked for the password. Type the provided password and press enter. Note that it will look like nothing is being typed as you type, this is OK, you are indeed typing the password.

To connect to the database from Rstudio, open a browser and navigate to https://rstudio.scholar.rcac.purdue.edu/, and login using your Purdue Career Account credentials.

To establish a connection with the MySQL database within Rstudio, run the following:

```
install.packages("RMariaDB")
library(RMariaDB)

host <- "scholar-db.rcac.purdue.edu"
user <- "imdb_user"
password <- "movie$Rkool"
database <- "imdb"

db <- dbConnect(RMariaDB::MariaDB(), host=host, db=database, user=user, password=password)</pre>
```

After running the code above, you should be successfully connected to the database. From here, you can either use the package RMariaDB to query our database:

```
result <- dbGetQuery(db, "SELECT * FROM titles LIMIT 5;")</pre>
```

Or you can execute SQL directly in an Rmarkdown file. For example, copy and paste the following code chunks in an RMarkdown file:

This code chunk initiates a connection to the database.

```
install.packages("RMariaDB")
library(RMariaDB)

host <- "scholar-db.rcac.purdue.edu"
user <- "imdb_user"
password <- "movie$Rkool"
database <- "imdb"

db <- dbConnect(RMariaDB::MariaDB(), host=host, db=database, user=user, password=password)</pre>
```

This code chunk demonstrates how to run SQL queries from within R.

```
```{r}
result <- dbGetQuery(db, "SELECT * FROM titles LIMIT 5;")
```</pre>
```

This code chunk demonstrates how to use the SQL connection to run SQL queries directly within a code chunk.

```
```{sql, connection=db}
SELECT * FROM titles LIMIT 5;
...
```

1. Explore the 6 tables. State an interesting fact (of your choice) that you find about at least one of the tables. Relevant topics: sql, sql in R

#### Item(s) to submit:

- A sentence describing at least 1 interesting fact about at least one of the tables.
- 2. Find the title\_id, rating, and number of votes for all movies that received at least 2 million votes. Hint: Use the ratings table.

Relevant topics: sql, sql in R

#### Item(s) to submit:

- SQL query used to solve this problem.
- Output from running the SQL query.
- 3. Now use the information you found, about the movies that received at least 2 million votes, to identify the titles of these movies, using the titles table. Hint: You will probably recognize the names of these movies.

Relevant topics: sql, sql in R

#### Item(s) to submit:

- SQL query used to solve this problem.
- Output from running the SQL query.
- 4. Find the names, birth years, and death years, for all actors and actresses who lived more than 115 years. Hint: You can use this clause in your SQL query:

```
WHERE died - born > 115
```

Relevant topics: sql, sql in R

- SQL query used to solve this problem.
- Output from running the SQL query.

5. In the titles table, the genres column specifies the genre of each movie. Use the COUNT function to find how many movies of each genre occur in the database. Hint: You can use the same strategy from the SUM of transactions examples in the election database. Just use COUNT instead of SUM.

Relevant topics: sql, sql in R

#### Item(s) to submit:

- SQL query used to solve this problem.
- 6. In the titles table, the premiered column specifies the year that a movie was premiered. Use the COUNT function to find how many movies premiered in each year in the database. Relevant topics: sql, sql in R

#### Item(s) to submit:

- SQL query used to solve this problem.
- 7. One movie has a strange premiere year. Which movie is this? Relevant topics:  $sql,\ sql\ in\ R$

#### Item(s) to submit:

- SQL query used to solve this problem.
- Output from running the SQL query.
- 8. Make a dotchart that shows how many movies premiered in each year since the year 2000. Relevant topics: sql, sql in R

#### Item(s) to submit:

- SQL query used to gather the data used in the dotchart.
- A dotchart that shows how many movies premiered in each year since the year 2000, in png or jpg/jpeg format.
- 9. The title 'The Awakening' has been used very often! How many times has this been used as a title? Relevant topics: sql, sql in R

- SQL query used to solve this problem.
- Output from running the SQL query.

10. Investigate all of the occurrences of these titles called 'The Awakening'. Find an interesting fact about the entries with these titles. Relevant topics: sql, sql in R

- $\bullet~$  SQL query used to solve this problem.
- Output from running the SQL query.
- 1-2 sentences describing the interesting fact you found about the entries with these titles.

# Contributors

We are extremely thankful for all of our contributors! Get your name added to the list by making a contribution.