1. Jordan Canonical Form

1.1. Triangular Form.

Definition. let $T: V \to V$ be a linear operator, a subspace $W \subseteq V$ is said to be invariant under T if $T(W) \subseteq W$

Remark. $\{0\}, V, Ker(T), Im(T), E_{\lambda} \text{ are } T\text{-invarient}$

Definition. Let $T: V \to V$ be a linear operator on a finite dimension vector space, we say that V is triangularizable $\Leftrightarrow \exists$ a order basis $\beta \ni [T]^{\beta}_{\beta}$ is upper triangular

Example(triangularizable matrix)

Consider $\mathbb{F} = =C$, $V = \mathbb{C}^4$, let β be a order basis of V, $\beta = \{e_1, e_2, e_3, e_4\}$

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 1-i & 2 & 0 \\ 0 & 1 & i & 0 \\ 0 & 0 & 1-i & 3+i \\ 0 & 0 & 0 & 1-i \end{bmatrix}$$

Clearly $[T]^{\beta}_{\beta}$ is upper triangular, and let w_i be the subspace of \mathbb{C}^4 spanned by the first i vectors in the standard ordered basis, clearly, $T(w_i) \subseteq w_i = \{ T(w) \mid w \in W \} = Im(T|w)$

Propos 1. Let V be a finite vector space, let $T: V \to V$ be a linear operator and $\beta = \{x_1, \dots, x_n\}$ be a basis for V, then $[T]^{\beta}_{\beta}$ is upper triangle \Leftrightarrow the subspace $w_i = \operatorname{span}(x_1, \dots, x_i)$ is T-invariant.

Proof. It is trivial.

Note that the subspace w_i in **Prop 1** related follow

$$\{0\} \subseteq W_i \subseteq \cdots \subseteq W_{n-1} \subseteq W_n = V$$

we say that w_i forms an hands up sequence of subspaces. On the other hand, a given linear operator can be a upper triangle, we must to construct the \nearrow sequence of T-invariant subspace

$$\{0\} \subseteq W_1 \subseteq \cdots \subseteq W_n$$

 $T|_{w}:W\to W$ is a linear mapping, T_{W} where W is a T-invariant subspace

Propos 2

Let $T: V \to V, W \leq V$ is a T-invariant, where V is a finite dimension vector space. Then the character polynomial of $T|_W$ divides the c.p. of T

Proof. (Thm 5.21 from Friedberg)**not today**

Corollary. Every eigenvalue of $T|_W$ is also an eigenvalue of T, i.e. the eigenvalue of $T|_W$ is a subset of the eigenvalue of T on V,

Review(Diagonal's condition)

Let $T: V \to V$ be a linear operator, where V is a finite dimension vector space, $\lambda_1, \dots, \lambda_n$ are distinct eigenvalues, m_i be the multiplicity of λ_i , as a root number of the c.p. of T, Then

T is diagonal $\Leftrightarrow m_1 + \cdots + m_n = \dim(V), \ dim(E_{\lambda_i}) = m_i$ The proof is Thm. 5.9 \sim Thm. 5.11 from Friedberg It means that

- (1) $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_n}$ (From Exercise 5-2-20 Friberg)
- (2) m_i is algebraic multiplicity, $\dim(E_{\lambda_i})$ is geometric multiplicity.

Theorem (Schur). Let V be a finite dimensional vector space over \mathbb{F} and $T: V \to V$ be an linear operator, then T is triangular \Leftrightarrow the c.p. have $\dim(V)$ roots (counted with multiplicities) in \mathbb{F}

Remark.

- * if $F = \mathbb{C}$ (algebraic closure), then, by the Fundamental theorem of Algebra, every matrix $A \in M_{n \times n}(\mathbb{C})$ can be a triangularized
- * if $F = \mathbb{R}(x^2 + 1 \text{ does not split on } \mathbb{R})$ consider the rotation matrix R_{θ} where $0 < \theta < \pi$

Lemma. Let V be a finite dimensional vector space over \mathbb{F} and T: $V \to V$ be an linear operator, and assume that the characteristic polynomial of T has $n = \dim(V)$ roots in \mathbb{F} . If $W \subsetneq V$ is an invariant subspace under T, then there exists a vector $x \neq 0$ in V such that $x \notin V$ is an invariant subspace under T, then there exists a vector $x \neq 0$ in V such

★ we need to use this lemma to create \nearrow subspaces

Proof. let $\alpha = \{x_1, \dots, x_k\}$ be a basis for W and extend α by adjointing $\alpha' = \{x_{k+1}, \dots, x_n\}$ to form a basis $\beta = \alpha \cup \alpha'$ for V. Let $W' = \text{span}(\alpha')$. Clearly, $V = W \oplus W'$ because we know that the fact that

Let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 , respectively, of a vector space V. If $\beta_1 \cup \beta_2$ is a basis for V, then $V = W_1 \oplus W_2$.

We define a linear operator $P: V \to V$ by

$$P(a_1x_1 + \dots + a_nx_n) = a_1x_1 + \dots + a_kx_k.$$

Clearly, W' = Ker(P), W = Im(P), and $P^2 = P$. Hence P is the projection on W with kernal W'. Moreover I - P is also the projection on W' with kernel W. Since

$$(I - P)(a_1x_1 + \dots + a_nx_n)$$

$$= I(a_1x_1 + \dots + a_nx_n) - P(a_1x_1 + \dots + a_nx_n)$$

$$= a_1x_1 + \dots + a_nx_n - a_1x_1 + \dots + a_kx_k$$

$$= a_{k+1}x_{k+1} + \dots + a_nx_n,$$

 $W = Ker(I-P), \ W' = Im(I-P), \ \text{and} \ (I-P)^2 = (I-P)(I-P) = I-P^2-P+P=I-P^2=I-P.$ If the basis of V is orthonormal (the Grame-Schmidt process), then it is clear that $W' = W^{\perp}$ by theorem 6.7 in Friedbreg. Since V is a finite dimensional vector space, so $(W^{\perp})^{\perp} = W$ for all subspace W of V. It implies that P is an orthogonal projection. Let $S = (I-P) \circ T \equiv (I-P)T$. Since Im(I-P) = W', so $Im(S) \subseteq Im(I-P) = W'$, that is, W' is S-invariant subspace $(S(W') \subseteq W')$. Now, we claim that the set of eigenvalues of $S|_W$ is a subset of the root of eigenvalues of T. Since W is T-invariant (by assumption), so we compute the matrix representation of $[T]_{\beta}^{\beta}$ is the form

$$[T]^{\beta}_{\beta} = \begin{bmatrix} A & B \\ O & C \end{bmatrix}.$$

Clearly, $A = [T|_W]^{\alpha}_{\alpha}$ is $k \times k$ block matrix and $C = [S|_{W'}]^{\alpha'}_{\alpha'}$ is a $(n-k) \times (n-k)$ block matrix. Hence

$$\det(T - \lambda I) = \det(T|_W - \lambda I) \cdot \det(S|_{W'} - \lambda I).$$

From Corollary 1.1, we are done. Since all the eigenvalues of T lie in the field F (: the characteristic polynomial n roots), so by previous discussion, the same is true of all the the eigenvalues of $S|_{W'}$. Then

there exists a nonzero vector x in W' $(x \notin W)$ such that $Sx = \lambda x$, for some $\lambda \in \mathbb{F}$. It implies that

$$(I - P)(Tx) = \lambda x \implies Tx - PTx = \lambda x$$

 $\implies Tx = \lambda x + PTx \in \text{span}(\{x\}) + W.$

Finally, we show that $W + \operatorname{span}(\{x\})$ is T-invariant. For all $y \in W + \operatorname{span}(\{x\})$, there exists $z \in W$ and $\lambda \in F$ such that $y = z + \lambda x$. Then

$$T(y) = T(z + \lambda x) = T(z) + \lambda T(x)$$

= $T(z) + \lambda(x) + \lambda PT(x) \in \text{span}(\{x\}) + W.$

We finish this lemma, and we are going to proof Schur lemma

Proof. (\Rightarrow) T is triangular

 \implies \exists order basis β of $V \implies [T]_{\beta}$ is upper triangular \implies the eigenvalues of T are the diagonal entries in $F \implies$ the c.p. splits

Proof. (\Leftarrow) Suppose the condition holds

let λ be eigenvalues of T, x_i is eigenvector of T correspond with λ , $W_1 = \text{span}(\{x_i\})$

Clearly, W_1 is T-invariant by lemma, $\exists x \notin W, \ x \neq 0 \ni W_1 + \operatorname{span}(\{x_1\})$ is T-invariant.

continue the processes $W_1 \subseteq \cdots \subseteq W_k$ with $W_i = \text{span}(\{x_1, \cdots, x_i\}) \ \forall i$ By lemma, $\exists x_{k+1} \notin W_k \ni W_{k+1} = W_k + \text{span}(x_{k+1})$ is also *T*-invariant \therefore By prop.1, we are done.

Corollary. if $T: V \to V$ is triangular with eigenvalues λ_i and m_i is its multiplicities, then \exists an order basis β for $V \ni [T]_{\beta}$ is upper triangular matrix, and the diagonal entries of $[T]_{\beta}$ are m_1, λ_1 followed by $m_2\lambda_2$'s and so on.

Recall

In Chapter 4, If T is a linear mapping (or matrix) and $p(t) = a_n t^n + a_{n-1} t^{n-1} T^{n-1} + \cdots + a_0$ is a polynomial, we can define a new linear mapping

$$p(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 I$$

Theorem. Let $T: V \to V$ be a linear operator on V which is a finite dimension vector space and $p(t) = \det(T - tI)$ be its c.p Assume

that p(t) has $\dim(V)$ roots in F over which V is defined, then p(T) = 0 (which is a zero transformation on V)

Proof. (Exercise 6-4-16 in Friedber) For all the vector S in some basis of $V \to p(T)(x) = 0$ (scalar), by Schur lemma, \exists order basis $\beta = \{x_1, \dots, x_n\}$ for $V \Longrightarrow w_i = \text{span}(\{x_1, \dots, x_i\})$ $\forall 1 \le i \le n$ is T-invariant, all the eigenvalues of T lie in F, so $p(t) = \pm (t - \lambda) \cdots (t - \lambda_n)$ for some $\lambda_i \in F$ (not necessary distinct), if the factors here are ordered in the same fashion as the diagonal entries of $[T]_{\beta}^{\beta}$, then

$$T(x_i) = \lambda_i x_i + y_{i-1}, \ y_i \in W_{i-1}, \ i \ge 2, \ T(x_1) = \lambda_1 x_1$$

Now, we use the induction on i

- · For i = 1, $p(T)(x_1) = \pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(x_1) = \pm (T - \lambda_2 I) \cdots (I - \lambda_n I)(T - \lambda_1)(x_1) = 0$
- · Suppose that: $p(T)(x_i) = 0, \forall i \leq k$
- · Consider $p(T)(x_{k+1})$, clearly $(T \lambda_1 I) \cdots (T \lambda_k I)$ are needed to end x_i to 0, for $i \leq k$

$$p(T)(x_{k+1}) = I(T - \lambda_1 I) \cdots (T - \lambda_n I)(T - \lambda_{k+1} I)(x_{k+1})$$

= $\pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(y_k) = 0$ By induction, we are done

Suppose that $A \in M_{n \times n}(F)$ if A is invertible, i.e. $\det(A) \neq 0$, consider the c.p. of A

 $\det(A - tI) = (-1)^n t^n + \dots + a_1 t + a_0, \ t = 0 \implies a_0 = \det(A) \neq 0$ by thm 4(Cayley-Hamilton), $p(A) = (-1)^n A^n + \dots + \det(A)I = 0$

$$\left(\frac{-1}{\det(A)}\right)\left((-1)^n A^{n-1} + \dots + a_1 I\right) = A^{-1}$$

1.2. A Canonical form for nilpotent mappings.

We look at the linear operator $N: V \to V$, which only one distinct eigenvalue $\lambda = 0$ with multiplicity n = dim(V), if N is each mapping, then by