

Chapter 4 Combinational Logic

FIGURE 4.1Block diagram of combinational circuit

Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs \rightarrow the outputs *at any time*!

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & Logical Op

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Binary Adder

Design a logic circuit that adds two binary digits (bit).

Y	X	$F_2=C(Y,X)=YX$	$F_1=S(Y,X)=Y'X+YX'$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder: Just 2 bits: X+Y

Design a logic circuit that adds two binary numbers!

$$X_{2}X_{1}$$
+ $Y_{2}Y_{1}$
C $S_{2}S_{1}$

Y ₂	Y ₁	X_2	X ₁	$C(Y_1, Y_2, X_2, X_1)$	$S_2(Y_1, Y_2, X_2, X_1)$	$S_1(Y_1, Y_2, X_2, X_1)$
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

$$X_{2}X_{1}$$
+ $Y_{2}Y_{1}$
C $S_{2}S_{1}$

Design a logic circuit that adds two binary digits (bit) and a carry bit.

C_{p}	Y	X	$C = \sum m(3,5,6,7)$	$S = \sum m(1,2,4,7)$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \sum m(1,2,4,7)$$

				Χ	
	\	00	01	11	10
()	O_{m_0}	1 m ₁	0 m ₃	1 m ₂
Cp	1	1 m ₄	0 m ₅	1 m ₇	0 m ₆

		17		7 \
(—	Σm	$I \rightarrow$	5 h	/
	/	しし ,	\mathcal{O}_{i}	, /)
		, ,	, ,	

		Y	Χ	
	00	01	11	10
0	O m _o	0 m₁	1 m ₃	0 m ₂
C _p 1	$0 \atop m_4$	1 m ₅	1 m ₇	1 m ₆

$$S = \sum m(1,2,4,7)$$

YX					
		00	01	11	10
	0	O_{m_0}	1 m ₁	0 m ₃	1 m ₂
C _p	1	1 m ₄	O m ₅	1 m ₇	0 m ₆

$$S=C'_pY'X+C'_pYX'+C_pY'X'+C_pYX$$

$$S = \sum m(1,2,4,7)$$

	YX				
		00	01	11	10
()	om O	1 M ₁	O m ₃	1 m ₂
C _p	1	1 m ₄	O m ₅	1 m ₇	0 m ₆

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$S = \sum m(1,2,4,7)$$

	YX				
		00	01	11	10
	0	O m _o	1 m ₁	O m³	1 m ₂
Ср	1	1 m ₄	O m ₅	1 m ₇	0 m ₆

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$S = \sum m(1,2,4,7)$$

$$S=C'_{p}Y'X+C'_{p}YX'+C_{p}Y'X'+C_{p}YX$$

$$=C'_{p}(Y'X+YX')+C_{p}(Y'X'+YX)$$

$$=C'_{p}(X \oplus Y)+C_{p}(Y'X'+YX)$$

$$=C'_{p}(X \oplus Y)+C_{p}(X \odot Y)$$

$$S = \sum m(1,2,4,7)$$

	YX				
	00	01	11	10	
0	O m _o	1 m ₁	O m³	1 m ₂	
C _p 1	1 m ₄	O m ₅	1 m ₇	0 m ₆	

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \odot Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$(X \bigoplus Y)' = (Y'X+YX')'$$

$$= (Y'X)'(YX')'$$

$$= (Y+X')(Y'+X)$$

$$= YY'+YX+X'Y'+X'X'$$

$$= 0+YX+X'Y'+0$$

$$= YX+X'Y'$$

$$= Y \bigcirc X$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \odot Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$= C_{p} \oplus \alpha$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$= C_{p} \oplus \alpha$$

$$= C_{p} \oplus \alpha$$

$$= C_{p} \oplus \alpha$$

$$S = \sum_{p} m(1,2,4,7)$$

$$S = C_{p} \oplus (X \oplus Y)$$

	YX					
		00	01	11	10	
	0	o _m	1 m ₁	O m ₃	1 m ₂	
Ср	1	1 m ₄	O m ₅	1 m ₇	0 m ₆	

is associative, we can drop (). But let's keep them!

$$C = \sum m(3,5,6,7)$$

$$C = YX + C_pX + C_pY$$

Design a logic circuit that adds two binary numbers!

74LS83 pinout

 $\begin{array}{lll} \text{Vcc} & 5.5 \text{V max, 5V Typical} \\ \text{A}_1 - \text{A}_4 & \text{Operand A Inputs} \\ \text{B}_1 - \text{B}_4 & \text{Operand B Inputs} \\ \text{C}_0 & \text{Carry Input} \\ \text{Sum Outputs (Note b)} \\ \text{C}_4 & \text{Carry Output (Note b)} \end{array}$

eBay > Business & Industrial > Electrical Equipment & Supplies > Other Electrical Equipment & Supplies

Share

74283 - 74F283N 4-Bit Binary Full Adder w/ Fast Carry, DIP-16

C \$6.55

+ C \$4.89 Shipping

Get it by **Tue**, **Nov 10 - Tue**, **Nov 17** from Havre-aux-Maisons, QC, Canada

- · New condition
- · 30 day returns Buyer pays return shipping |

Return policy

Read seller's description

See details

vedge23 (3476)
100.0% Positive feedback
Contact seller

Binary Adder

Does it matter we have signed or unsigned binary numbers?

Justify your answer.

Arithmatic & Logical Op

Binary Adder, **Binary Subtractor**, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Binary Subtractor

Signed-2's-Complement

X - Y

 $X_n X_{n-1} ... X_2 X_1 - Y_n Y_{n-1} ... Y_2 Y_1$ Subtraction in Signed-2's-Complement X + 2's-comp(Y)

X + 1's-comp(Y) + 1

⁻ bitwise

$$X + Y' + 1$$

bitwise

$$X + Y'' + (C_0 = 1)$$

A ? 0 = AA ? 1 = A' $A \oplus 0 = A$ $A \oplus 1 = A'$

M=0 → Adder
M=1 → Subtractor

Overflow

Signed-2's-Complement

Signed-2's-Complement

Truth Table

Y4	Y3	Y2	Y1	X4	X3	X2	X1	С	OVF
4-Bit Adder							?		

Y3	Y2	Y1	X3	X2	X1	С	OVF
3-Bit Adder							

Y2	Y1	X2	X1	С	OVF
	?				

Signed-2's-Complement

Using Prior Knowledge

Signed-2's-Complement

(I)

Subtraction \rightarrow Addition with 2's Comp.

Signed-2's-Complement

(II)

Sum of Positive Numbers \rightarrow Negative: OVF=1 Sum of Negative Numbers \rightarrow Positive: OVF=1

Signed-2's-Complement

(III)

Binary System > The most significant bit > Sign

Base-r in Radix Complement

rⁿ⁻¹ rⁿ⁻² rⁿ⁻³ ... r² r¹ r⁰

0 <=

Positive

Numbers

 $<= (r^n - 1) \div 2$

Base-2: 0,111,...,111

Base-4: 1,333,...,333

Base-8: 3,777,...,777

Base-10: 4,999,...,999

Base-16: 7,FFF,...,FFF

Number System

Nothing to do!

Base-r in Radix Complement rn-1rn-2 rn-3 r^0 $(r^n-1)\div 2 + 1 < =$ Negative $<= (r^n - 1)$ **Numbers** Base-2: 1,000,...,000 Base-4: 2,000,...,000 Number Base-8: 4,000,...,000 System Base-10: 5,000,...,000 Base-16: 8,000,...,000

We see positive number, but we interpret negative! = -(r's comp. (#)) = -((r-1)'s comp. (#) + 1)

Either was addition originally
Or was subtraction and became addition with 2's-comp

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=1 S_{3}S_{2}S_{1}$$

$$C_{3}=1 C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4=0 S_{4}=1 S_{3}S_{2}S_{1}$$

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=0 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=? S_{3}S_{2}S_{1}$$

S₄ is guaranteed to be correct in signed-2's-comp. Don't believe it, try!

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=? S_{3}S_{2}S_{1}$$

S₄ is guaranteed to be correct in signed-2's-comp. Don't believe it, try!

$$C_{3}C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4 S_{4}=0 S_{3}S_{2}S_{1}$$

$$C_{3}=0 C_{2}C_{1}C_{0}$$

$$X_{4}=1 X_{3}X_{2}X_{1}$$

$$+ Y_{4}=1 Y_{3}Y_{2}Y_{1}$$

$$C4=1 S_{4}=0 S_{3}S_{2}S_{1}$$

Design a logic circuit that detects overflow?

Signed-2's-Complement

OVF =
$$C'_4C_3 + C_4C'_3 = C_4 \oplus C_3$$

M=0 → Adder
M=1 → Subtractor

Binary Adder | Subtractor | Overflow Unsigned?