

Text Technologies for Data Science INFR11145

Comparing Text Corpora (2)

Instructor:

Assignment Project Exam Help

11-Nov-2020

https://powcoder.com

Add WeChat powcoder

LDA Overview

https://powcoder.com

https://powcoder.com

Latent Add We Chat powcoder

- Let's start with a very simple model
- We will work our way up to the full LDA model

Unigram Model

w is a word
N words in a document
M documents in a corpus
w is a vector of words (i.e. doc)

 $p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$.

Assignment Project Exam Help 7

Steve Wilson, TTDS 2020/2021

https://powcoder.com

Probability Wie Chatran weader

$$p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n).$$

Compute the probability of the example sentence.

"My dog barked at another dog."

word	my	at	dog	another	barked
probability	.1	.1	.05	.04	.03

8

Unigram Model...

- What is the point of making these models more complex?
- Why not just use the basic unigram model for everything?
- Remember:
 - Higher text probability doesn't imply a better model
 - We want to accurately describe the data
 - > higher probability for real documents, lower probability for noise

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

https://powcoder.com

Mixture dd We Chat powcoder

z is the topic of a document

$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z).$$

Figure from Blei et al 2003

10

THE UNIVERSITY of EDINBURGH

Probability with Mixture of Unigrams

$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z).$$

p(z=pets) = .6, p(z=vehicles) = .4

- Compute the probability of the sentence.
- Ignore stopwords: "my", "after", "the"

"My dog chased after the bus."

word	cat	dog	chased	car	bus
P(w z=pets)	.2	.3	.1	.01	.01
P(w z=vehicles)	.01	.01	.1	.3	.2

Assignment Project Exam Help 11

Steve Wilson, TTDS 2020/2021

11 https://p/

https://powcoder.com

Probabildic Watchstrpawcondering

d is a document ID

$$P(d, w) = \sum_{z \in Z} P(z)P(w \mid z)P(d \mid z)$$

Figure from Blei et al 2003

12

Steve Wilson, TTDS 2020/2021

THE UNIVERSITY of EDINBURGH

Probability with pLSI $P(d, w) = \sum_{z \in Z} P(z)P(w \mid z)P(d \mid z)$

"The cat sat down."

p(z=t1) .5 p(z=t2) .5 p(d | z=t1) .6 p(d | z=t2) .4

Stopword = "The"

word	cat	sat	down	car	broke
p(w z=t1)	.2	.1	.05	.01	.1
p(w z=t2)	.01	.05	.1	.3	.1

Assignment Project Exam Help 1

Steve Wilson, TTDS 2020/2021

13

THE UNIVERSITY of EDINBURGH

https://powcoder.com

14

$$p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta) = p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta),$$
Figure from Blei et al 2003

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

Steve Wilson, 11DS 2020/2021

15

https://powcoder.com

Probability Wie Chat powcoder

$$\underline{p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)} = p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta),$$

topic	t1	t2
p(z=topic θ)	.6	.4

"Fish swam by a submerged submarine."

Stopwords = ["a", "by"] \mathbf{z} = [t1, t1, t2, t2] $p(\theta|\alpha)$ = .7

word	fish	swam	submerged	submarine
p(w z=t1, β)	.2	.1	.001	.05
p(w z=t2, β)	.01	.02	.1	.3

Latent Dirichlet Allocation

$$p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta) = p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta),$$

$$p(\mathbf{w} | \alpha, \beta) = \int p(\theta | \alpha) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n | \theta) p(w_n | z_n, \beta) \right) d\theta.$$

$$P(D|\alpha,\beta) = \prod_{d} \int p(\theta_d|\alpha) \left(\prod_{d} \sum_{d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn}|\beta) \right) d\theta_d.$$
Assignment Prefect Exam Help

Steve Wilson, TTDS 2020/2021

https://powcoder.com

Mode Add We Chat powcoder

- Want to learn the model parameters
- Exact inference becomes intractable

Model Inference

- Instead, use an approximate method such as:
 - Gibbs sampling
 - Variational Inference

Assignment Project Exam Help 19

Steve Wilson, TTDS 2020/2021

19

https://powcoder.com

Gibbs Add We Chat powcoder

Want to learn Φ , θ given a set of documents D

 Φ = topic-word probabilities

 θ = document-topic probabilities

20

Gibbs Sampling for LDA

Want to learn Φ , θ given a set of documents D

- 1.Randomly initialize Φ, θ
- 2. Repeat until convergence:
 - a. Sample a new topic assignment for every word in every document
 - b. Use newly sampled topics to update Φ and θ

Assignment Project Exam Help 21

Steve Wilson, TTDS 2020/2021

21 1

https://powcoder.com

Gibbs Add We Chat powcoder

Green eggs and ham. Ham and green peppers. Ham and cheese.

	green	eggs	and	ham	peppers	cheese
t1	.1	.4	.05	.1	.05	.3
t2	.05	.15	.1	.2	.4	.1

	s1	s2	s3
t1	.5	.2	.4
t2	.5	.8	.6

Random initialization.

Gibbs Sampling for LDA

Green eggs and ham. Ham and green peppers. Ham and cheese.

	green	eggs	and	ham	peppers	cheese
t1	.1	.4	.05	.1	.05	.3
t2	.05	.15	.1	.2	.4	.1

	s1	s2	s3
t1	.5	.2	.4

Green eggs and ham.

Ham and green peppers.

Ham and cheese.

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

23

https://powcoder.com

Gibbs Add We Chat powcoder

Green eggs and ham. Ham and green peppers. Ham and cheese.

		green	eggs	and	ham	peppers	cheese
t1	L	1/6	1/6	1/6	1/6	1/6	1/6
t2	2	1/5	0/5	2/5	2/5	0/5	0/5

Green eggs and ham. Ham and green peppers. Ham and cheese.

	s1	s2	s3
t1	2/4	2/4	2/3
t2	2/4	2/4	1/3

Gibbs Sampling for LDA

[Repeat until convergence or max iterations]

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

https://powcoder.com

Add WeChat powcoder

Topic Modeling Examples

าat do s	tudents look for in a professo		
Topic	Sample words		
Approachability	prof, fair, clear, helpful, teaching, approachable, nice, organized, ex-		
••	tremely, friendly, super, amazing		
Clarity	understand, hard, homework, office, material, clear, helpful, problems,		
	explains, accent, questions, extremely		
Course Logistics	book, study, boring, extra, nice, credit, lot, hard, attendance, make,		
	fine, attention, pay, mandatory		
Enthusiasm	teaching, passionate, awesome, enthusiastic, professors, loves, cares,		
	wonderful, fantastic, passion		
Expectations	hard, work, time, lot, comments, tough, expects, worst, stuff, avoid,		
	horrible, classes		
Helpfulness	helpful, nice, recommend, cares, super, understanding, kind, extremely,		
	effort, sweet, friendly, approachable		
Humor	guy, funny, fun, awesome, cool, entertaining, humor, hilarious, jokes,		
	stories, love, hot, enjoyable		
Interestingness	interesting, material, recommend, lecturer, engaging, classes, knowl-		
	edgeable, enjoyed, loved, topics		
Readings/ Discus-	readings, papers, writing, ta, interesting, discussions, grader, essays,		
sions	boring, books, participation		
Study Material	exams, notes, questions, material, textbook, hard, slides, study, answer,		

https://powcoder.com

Azab, Mihalcea, and Abernathy, 2016

Steve Wilson, TTDS 2020/2021

27

THE UNIVERSITY of EDINBURGH

Annotation + Classification

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

Sieve Wilson, 11DS 2020/ 2021

31

https://powcoder.com

Annotaldd Wie Chattpowcoder

- Method 1: Traditional Supervised Learning
 - Annotate representative samples
 - Train a classifier
 - · Apply to rest of data
- Method 2: Transfer Learning
 - Find another large, but similar dataset
 - Train a classifier on that dataset
 - Optionally: fine-tune classifier to your smaller dataset
 - Apply to rest of your data

After Classification

- Which features are most relevant for each class?
- What are common words/topics for each class?
- How do predicted classes relate to other variables?
- More about text classification coming up next week!

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

33

https://powcoder.com

wrap-Add WeChat powcoder

- · Content analysis background
- Word-level differences
- Dictionaries and Lexica
- Topic modeling
- Annotation + classification

THE UNIVERSITY
of EDINBURGH

Readings

- Manning: IR book section 13.5
- "Probabilistic Topic Models" by David Blei

Assignment Project Exam Help

Steve Wilson, TTDS 2020/2021

35

https://powcoder.com

Add WeChat powcoder