Lecture 1: Review of Differential Topology

Yannis Bähni

University of Augsburg

yannis.baehni@math.uni-augsburg.de

April 15, 2021

Sheaves

Definition (Presheaf)

Let \mathcal{C} be a category and X a topological space. A *presheaf on* X *with values in* \mathcal{C} is a contravariant functor $\mathcal{O}(X) \to \mathcal{C}$, where $\mathcal{O}(X)$ denotes the poset category of open subsets of X.

Definition (Sheaf)

Let X be a topological space. A **sheaf on** X is defined to be a presheaf

$$F: \mathcal{O}(X) \to \mathsf{Vect}$$

satisfying the following *gluing condition* for all $U \in \mathcal{O}(X)$.

Given any open cover $(U_{\alpha})_{\alpha \in A}$ of U together with $f_{\alpha} \in F(U_{\alpha})$ for all $\alpha \in A$ such that

$$f_{\alpha}|_{U_{\alpha}\cap U_{\beta}} = f_{\beta}|_{U_{\alpha}\cap U_{\beta}} \quad \forall \alpha, \beta \in A,$$

then there exists a unique $f \in F(U)$ such that $f|_{U_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$.

Let $\pi: E \to M^n$ be a smooth vector bundle. Then

$$\Gamma_E : \mathcal{O}(M) \to \mathsf{Vect}, \qquad \Gamma_E(U) := \Gamma(U, E)$$

is a sheaf on M. In this talk we will focus on the sheaves

$$\mathcal{T}_M := \bigoplus_{k,l \ge 0} \mathcal{T}_M^{k,l}$$
 and $\Omega_M := \bigoplus_{0 \le k \le n} \Omega_M^k$

on M, the total sheaf of tensor fields on M and the total sheaf of differential forms on M, respectively, where

$$\mathcal{T}_{M}^{k,l} := \Gamma_{T^{(k,l)}TM} \quad \text{and} \quad \Omega_{M}^{k} := \Gamma_{\Omega^{k}(M)}.$$

More concretely, for every $U \in \mathcal{O}(M)$ there is a canonical identification between $\Omega_M^k(U)$ and alternating $C^{\infty}(U)$ -multilinear maps

$$\underbrace{\mathfrak{X}(U)\times\cdots\times\mathfrak{X}(U)}_{k}\to C^{\infty}(U)$$

and likewise between $\mathcal{T}_{M}^{k,l}(U)$ and $C^{\infty}(U)$ -multilinear maps

$$\underbrace{\Omega^1(U) \times \cdots \times \Omega^1(U)}_{k} \times \underbrace{\mathfrak{X}(U) \times \cdots \times \mathfrak{X}(U)}_{l} \to C^{\infty}(U).$$

The Lie Derivative

The Lie derivative generalises the directional derivative of a function to arbitrary tensor fields on a smooth manifold. Let M be a smooth manifold and $A \in \mathcal{T}^{k,l}(M)$. Then for any $X \in \mathfrak{X}(M)$ we define the *Lie derivative of* A with respect to X to be the tensor field $\mathcal{L}_X A \in \mathcal{T}^{k,l}(M)$ given by

$$\mathcal{L}_X A := \frac{d}{dt} \bigg|_{t=0} \theta_t^* A.$$

Definition (Tensor Derivation)

A *tensor derivation on a smooth manifold M* is defined to be a sheaf morphism $\mathcal{D}: \mathcal{T}_M \to \mathcal{T}_M$ that preserves type and satisfies:

- For all $U \in \mathcal{O}(M)$, \mathcal{D}_U commutes with all contractions of $\mathcal{T}_M(U)$.
- For all $U \in \mathcal{O}(M)$, \mathcal{D}_U is a derivation, that is

$$\mathcal{D}_U(A \otimes B) = \mathcal{D}_U A \otimes B + A \otimes \mathcal{D}_U B$$

holds for all $A, B \in \mathcal{T}(U)$.

Lemma (Contraction Lemma)

Let \mathcal{D} be a tensor derivation, $U \in \mathcal{O}(M)$ and $A \in \mathcal{T}^{k,l}(U)$. Then for all $\omega^1, \ldots, \omega^k \in \Omega^1(U)$ and $X_1, \ldots, X_l \in \mathfrak{X}(U)$ we have that

$$\mathcal{D}_{U}(A)\left(\omega^{1},\ldots,\omega^{k},X_{1},\ldots,X_{l}\right) = \mathcal{D}_{U}\left(A\left(\omega^{1},\ldots,\omega^{k},X_{1},\ldots,X_{l}\right)\right)$$
$$-\sum_{i=1}^{k}A\left(\omega^{1},\ldots,\mathcal{D}_{U}\left(\omega^{i}\right),\ldots,\omega^{k},X_{1},\ldots,X_{l}\right)$$
$$-\sum_{i=1}^{l}A\left(\omega^{1},\ldots,\omega^{k},X_{1},\ldots,\mathcal{D}_{U}(X_{i}),\ldots,X_{l}\right).$$

Theorem.

Let \mathcal{D} and \mathcal{D}' be two tensor derivations on a smooth manifold which agree on functions and vector fields. Then $\mathcal{D} = \mathcal{D}'$.

By theorem 5 the Lie derivative is the unique tensor derivation such that

$$\mathcal{L}_X f = X f$$
 and $\mathcal{L}_X Y = [X, Y]$

for all $f \in C^{\infty}(M)$ and $X, Y \in \mathfrak{X}(M)$.

The Exterior Differential

Definition

Let M be a smooth manifold and $l \in \mathbb{Z}$. A graded derivation of degree l on M is defined to be a sheaf morphism $\mathcal{D} : \Omega_M \to \Omega_M$ satisfying:

- If $\omega \in \Omega^k(U)$, then $\mathcal{D}_U(\omega) \in \Omega^{k+l}(U)$.
- If $\omega \in \Omega^k(U)$ and $\eta \in \Omega(U)$, then

$$\mathcal{D}_U(\omega \wedge \eta) = \mathcal{D}_U(\omega) \wedge \eta + (-1)^{kl} \omega \wedge \mathcal{D}_U(\eta).$$

Lemma

Let M be a smooth manifold and $X \in \mathfrak{X}(M)$. Then the Lie derivative \mathcal{L}_X is a graded derivation of degree 0.

Theorem

Let M be a smooth manifold and suppose that \mathcal{D} and \mathcal{D}' are two graded derivations on M of the same degree which coincide on functions and exact 1-forms. Then $\mathcal{D} = \mathcal{D}'$.

Theorem (The Exterior Differential)

Let M be a smooth manifold. Then there exists a unique graded derivation $d: \Omega_M \to \Omega_M$ of degree 1 such that

$$d_U(f) = df$$
 and $d \circ d = 0$

holds for all $f \in C^{\infty}(U)$. This graded derivation is called the **exterior** differential.

Cartan's Magic Formula

Theorem (Cartan's Magic Formula)

Let M be a smooth manifold and $X \in \mathfrak{X}(M)$. Then

$$\mathcal{L}_X = d \circ i_X + i_X \circ d.$$

Fisherman's Formula

Theorem (Fisherman's Formula)

Let M be a smooth manifold and suppose that $X: I \times M \to TM$ is a time-dependent vector field with time-dependent flow $\psi: \mathcal{D} \to M$. Then

$$\frac{d}{dt}\psi_t^*\omega = \psi_t^* \mathcal{L}_{X_t}\omega \qquad \forall \omega \in \Omega_M.$$

The Tangent-Cotangent Bundle Isomorphism

Definition (Nondegenerate Bilinear Form)

Let V be a finite-dimensional real vector space. A skew-symmetric bilinear form $\omega: V \times V \to \mathbb{R}$ is said to be **nondegenerate**, iff the map $\widehat{\omega}: V \to V^*$ defined by $\widehat{\omega}(v) := i_v \omega$ is an isomorphism.

Lemma

Let V be a finite-dimensional real vector space and $\omega: V \times V \to \mathbb{R}$ skew-symmetric. Then the following statements are equivalent:

- ω is symplectic.
- With respect to any basis for V, the matrix representing $\hat{\omega}$ is invertible.
- If $\omega(v, u) = 0$ for all $u \in V$, then v = 0.
- If $v \neq 0$, then there exists some $u \in V$ such that $\omega(v, u) \neq 0$.
- The matrix representing ω in any basis of V is invertible.

Theorem (Tangent-Cotangent Bundle Isomorphism)

Let M be a smooth manifold and $\omega \in \Omega^2(M)$ nondegenerate. Define

$$\widehat{\omega}:TM\to T^*M,\qquad \widehat{\omega}(v)(w):=\omega_x(v,w)$$

for all $x \in M$ and $v, w \in T_xM$. Then $\hat{\omega}$ is a bundle isomorphism. The morphism $\hat{\omega}$ is called the **tangent-cotangent bundle isomorphism**.

Lemma

Let M be a smooth manifold, $\omega \in \Omega^2(M)$ nondegenerate and $\lambda \in \Omega^1(M)$. Then there exists a unique vector field $X \in \mathfrak{X}(M)$ such that

$$i_X\omega=\lambda$$
.