EE263 Autumn 2014–15 Sanjay Lall

Lecture 6 Least-squares applications

- least-squares data fitting
- growing sets of regressors
- system identification
- growing sets of measurements and recursive least-squares

Least-squares data fitting

we are given:

- functions $f_1, \ldots, f_n : S \to \mathbf{R}$, called *regressors* or *basis functions*
- data or measurements (s_i,g_i) , $i=1,\ldots,m$, where $s_i\in S$ and (usually) $m\gg n$

problem: find coefficients $x_1, \ldots, x_n \in \mathbf{R}$ so that

$$x_1 f_1(s_i) + \dots + x_n f_n(s_i) \approx g_i, \quad i = 1, \dots, m$$

i.e., find linear combination of functions that fits data

least-squares fit: choose x to minimize total square fitting error:

$$\sum_{i=1}^{m} (x_1 f_1(s_i) + \dots + x_n f_n(s_i) - g_i)^2$$

- using matrix notation, total square fitting error is $\|Ax g\|^2$, where $A_{ij} = f_j(s_i)$
- hence, least-squares fit is given by

$$x = (A^T A)^{-1} A^T g$$

(assuming A is skinny, full rank)

• corresponding function is

$$f_{\text{lsfit}}(s) = x_1 f_1(s) + \dots + x_n f_n(s)$$

- applications:
 - interpolation, extrapolation, smoothing of data
 - developing simple, approximate model of data

Least-squares polynomial fitting

problem: fit polynomial of degree < n,

$$p(t) = a_0 + a_1t + \dots + a_{n-1}t^{n-1},$$

to data (t_i, y_i) , $i = 1, \ldots, m$

- basis functions are $f_j(t) = t^{j-1}$, $j = 1, \ldots, n$
- matrix A has form $A_{ij} = t_i^{j-1}$

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & & & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{n-1} \end{bmatrix}$$

(called a Vandermonde matrix)

assuming $t_k \neq t_l$ for $k \neq l$ and $m \geq n$, A is full rank:

- suppose Aa = 0
- corresponding polynomial $p(t) = a_0 + \cdots + a_{n-1}t^{n-1}$ vanishes at m points t_1, \ldots, t_m
- ullet by fundamental theorem of algebra p can have no more than n-1 zeros, so p is identically zero, and a=0
- ullet columns of A are independent, i.e., A full rank

Example

- fit $g(t) = 4t/(1+10t^2)$ with polynomial
- m = 100 points between t = 0 & t = 1
- \bullet least-squares fit for degrees 1, 2, 3, 4 have RMS errors .135, .076, .025, .005, respectively

Growing sets of regressors

consider family of least-squares problems

minimize
$$\left\|\sum_{i=1}^{p} x_i a_i - y\right\|$$

for
$$p = 1, \ldots, n$$

 $(a_1, \ldots, a_p \text{ are called } regressors)$

- approximate y by linear combination of a_1, \ldots, a_p
- project y onto span $\{a_1, \ldots, a_p\}$
- regress y on a_1, \ldots, a_p
- as p increases, get better fit, so optimal residual decreases

solution for each $p \leq n$ is given by

$$x_{ls}^{(p)} = (A_p^T A_p)^{-1} A_p^T y = R_p^{-1} Q_p^T y$$

where

• $A_p = [a_1 \cdots a_p] \in \mathbf{R}^{m \times p}$ is the first p columns of A

- $A_p = Q_p R_p$ is the QR factorization of A_p
- $R_p \in \mathbf{R}^{p \times p}$ is the leading $p \times p$ submatrix of R
- $Q_p = [q_1 \cdots q_p]$ is the first p columns of Q

Norm of optimal residual versus p

plot of optimal residual versus p shows how well y can be matched by linear combination of a_1, \ldots, a_p , as function of p

Least-squares system identification

we measure input u(t) and output y(t) for t = 0, ..., N of unknown system

system identification problem: find reasonable model for system based on measured I/O data $u,\ y$

example with scalar u, y (vector u, y readily handled): fit I/O data with moving-average (MA) model with n delays

$$\hat{y}(t) = h_0 u(t) + h_1 u(t-1) + \dots + h_n u(t-n)$$

where $h_0, \ldots, h_n \in \mathbf{R}$

we can write model or predicted output as

$$\begin{bmatrix} \hat{y}(n) \\ \hat{y}(n+1) \\ \vdots \\ \hat{y}(N) \end{bmatrix} = \begin{bmatrix} u(n) & u(n-1) & \cdots & u(0) \\ u(n+1) & u(n) & \cdots & u(1) \\ \vdots & \vdots & & \vdots \\ u(N) & u(N-1) & \cdots & u(N-n) \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_n \end{bmatrix}$$

model prediction error is

$$e = (y(n) - \hat{y}(n), \dots, y(N) - \hat{y}(N))$$

least-squares identification: choose model (i.e., h) that minimizes norm of model prediction error ||e||

 \dots a least-squares problem (with variables h)

Example

for n=7 we obtain MA model with

$$(h_0, \dots, h_7) = (.024, .282, .418, .354, .243, .487, .208, .441)$$

with relative prediction error $\|e\|/\|y\| = 0.37$

Model order selection

question: how large should n be?

- ullet obviously the larger n, the smaller the prediction error on the data used to form the model
- suggests using largest possible model order for smallest prediction error

difficulty: for n too large the *predictive ability* of the model on *other I/O* data (from the same system) becomes worse

Out of sample validation

evaluate model predictive performance on another I/O data set *not used to develop model*

model validation data set:

now check prediction error of models (developed using *modeling data*) on validation data:

plot suggests n=10 is a good choice

for n=50 the actual and predicted outputs on system identification and model validation data are:

loss of predictive ability when n too large is called *model overfit* or overmodeling

Growing sets of measurements

least-squares problem in 'row' form:

minimize
$$||Ax - y||^2 = \sum_{i=1}^{m} (\tilde{a}_i^T x - y_i)^2$$

where \tilde{a}_i^T are the rows of A ($\tilde{a}_i \in \mathbf{R}^n$)

- $x \in \mathbb{R}^n$ is some vector to be estimated
- ullet each pair \tilde{a}_i , y_i corresponds to one measurement
- solution is

$$x_{\rm ls} = \left(\sum_{i=1}^{m} \tilde{a}_i \tilde{a}_i^T\right)^{-1} \sum_{i=1}^{m} y_i \tilde{a}_i$$

• suppose that \tilde{a}_i and y_i become available sequentially, *i.e.*, m increases with time

Recursive least-squares

we can compute
$$x_{\rm ls}(m)=\left(\sum_{i=1}^m \tilde{a}_i\tilde{a}_i^T\right)^{-1}\sum_{i=1}^m y_i\tilde{a}_i$$
 recursively

- initialize $P(0) = 0 \in \mathbf{R}^{n \times n}$, $q(0) = 0 \in \mathbf{R}^n$
- for m = 0, 1, ...,

$$P(m+1) = P(m) + \tilde{a}_{m+1}\tilde{a}_{m+1}^{T} \qquad q(m+1) = q(m) + y_{m+1}\tilde{a}_{m+1}$$

- if P(m) is invertible, we have $x_{ls}(m) = P(m)^{-1}q(m)$
- P(m) is invertible $\iff \tilde{a}_1, \dots, \tilde{a}_m$ span \mathbb{R}^n (so, once P(m) becomes invertible, it stays invertible)

Fast update for recursive least-squares

we can calculate

$$P(m+1)^{-1} = \left(P(m) + \tilde{a}_{m+1}\tilde{a}_{m+1}^T\right)^{-1}$$

efficiently from $P(m)^{-1}$ using the rank one update formula

$$(P + \tilde{a}\tilde{a}^T)^{-1} = P^{-1} - \frac{1}{1 + \tilde{a}^T P^{-1}\tilde{a}} (P^{-1}\tilde{a})(P^{-1}\tilde{a})^T$$

valid when $P=P^T$, and P and $P+\tilde{a}\tilde{a}^T$ are both invertible

- ullet gives an $O(n^2)$ method for computing $P(m+1)^{-1}$ from $P(m)^{-1}$
- standard methods for computing $P(m+1)^{-1}$ from P(m+1) are $O(n^3)$

Verification of rank one update formula

$$(P + \tilde{a}\tilde{a}^{T}) \left(P^{-1} - \frac{1}{1 + \tilde{a}^{T}P^{-1}\tilde{a}} (P^{-1}\tilde{a})(P^{-1}\tilde{a})^{T} \right)$$

$$= I + \tilde{a}\tilde{a}^{T}P^{-1} - \frac{1}{1 + \tilde{a}^{T}P^{-1}\tilde{a}} P(P^{-1}\tilde{a})(P^{-1}\tilde{a})^{T}$$

$$- \frac{1}{1 + \tilde{a}^{T}P^{-1}\tilde{a}} \tilde{a}\tilde{a}^{T}(P^{-1}\tilde{a})(P^{-1}\tilde{a})^{T}$$

$$= I + \tilde{a}\tilde{a}^{T}P^{-1} - \frac{1}{1 + \tilde{a}^{T}P^{-1}\tilde{a}} \tilde{a}\tilde{a}^{T}P^{-1} - \frac{\tilde{a}^{T}P^{-1}\tilde{a}}{1 + \tilde{a}^{T}P^{-1}\tilde{a}} \tilde{a}\tilde{a}^{T}P^{-1}$$

$$= I$$