Long-run Average Reward for Markov Decision Processes

Based on a paper at CAV 2017

<u>Pranav Ashok</u>¹, Krishnendu Chatterjee², Przemysław Daca², Jan Křetínský¹ and Tobias Meggendorfer¹ September 19, 2017

¹Technical University of Munich, Germany

²IST Austria

Motivation

Markov Decision Processes (MDPs): standard model for describing systems which display probabilistic + non-deterministic behaviour.

Markov Decision Process (MDPs)

Motivation

- Value Iteration (VI) iterative method for approximating a value fn.
- · Observed to be fast for objectives like reachability
- Challenge: stopping criterion for ε -precise solution
- For long-run average reward, no stopping criterion for general MDPs
- · Exist stopping criteria for subclasses

Contributions

- Disprove conjectured stopping criterion for VI¹
- General solution using VI
- Improve performance using ideas from Machine Learning

¹Not covered in this talk

Given: scheduler (function to resolve non-determinism)

Given: **scheduler** (function to resolve non-determinism)

Reward sequence of trace ρ :

Then, n-step average reward is given by

$$MP_n(\rho)$$
 := $\frac{1}{n} \cdot \sum_{i=1}^n \rho_i$

5

Given: **scheduler** (function to resolve non-determinism)

Reward sequence of trace ρ :

Then, n-step average reward is given by

$$MP_n(\rho)$$
 := $\frac{1}{n} \cdot \sum_{i=1}^n \rho_i$

$$MP_{\pi} := \liminf_{n \to \infty} \mathbb{E}^{\pi} [MP_{n}(\rho)]$$

5

Given: scheduler (function to resolve non-determinism)

Reward sequence of trace ρ :

Then, n-step average reward is given by

$$MP_n(\rho)$$
 := $\frac{1}{n} \cdot \sum_{i=1}^n \rho_i$

$$MP := \sup_{\pi} \liminf_{n \to \infty} \mathbb{E}^{\pi}[MP_n(\rho)]$$

5

Towards a General VI: Communicating MDPs and MECs

Communicating MDP

Maximal End-component (MEC)

Towards a General VI: Only MECs matter

Towards a General VI: Step 1 – MEC-Decomposition

Find all MECs

Towards a General VI: Step 1 – MEC-Decomposition

Find all MECs and run VI on them until ε -convergence

Towards a General VI: Step 2 – Weighted Reachability

Max. mean-payoff =
$$\sup_{\pi} p_1 \cdot \mathbf{4} + p_2 \cdot \mathbf{5} + p_3 \cdot \mathbf{10}$$

Towards a General VI: Step 2 – Weighted Reachability

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{4}{R} + p_2 \frac{5}{R} + p_3 \frac{10}{R}$$

Towards a General VI: Step 2 – Weighted Reachability

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{4}{R} + p_2 \frac{5}{R} + p_3 \frac{10}{R}$$

Mean-payoff reduced to reachability: $P_{max}(\Diamond +)$

Improvement: avoid full state-space exploration

Idea: let sampling guide us to the "important" regions

- · Contribution of the red region is potentially low
- · Not necessary to evaluate red MEC to arepsilon-precision

Improvement: guarantees through sampling

Existing: **BRTDP** approach for reachability^{2,3}

²Bounded Real-Time Dynamic Programming, McMahan et. al., ICML '05

 $^{^3\}mathrm{Verification}$ of Markov Decision Processes using Learning Algorithms, Brazdil et. al., ATVA '14

Improvement: BRTDP leveraged for mean-payoff

- 1. Run BRTDP in search of the + state
- 2. Repeatedly search for MECs amongst the states explored so far

Improvement: collapsing the MEC

Collapse MEC into single state and add special action

Improvement: collapsing the MEC

Collapse MEC into single state and add special action

+: lower/R

?: (upper-lower)/R

Final Algorithm: On-demand Value Iteration (ODV)

- 1. Sample paths like in BRTDP
- 2. When MECs are detected, collapse them but...
- 3. Don't compute MEC value until ε -convergence
- 4. Add transition with probability \propto (U-L) to ? state
- 5. Refine value of MEC only when ? encountered

Summary

We saw two methods which can be used to obtain mean-payoff with guarantees

- 1. Collapse MECs, add transitions to +/- states, run reachability
- 2. **ODV**: Run sampling, collapse on-the-go, refine MEC values on-demand

Benchmarks

Model	States	MECs	LP^1	MEC-VI ²
virus	809	1	0.19	0.05
cs_nfail4	960	176	0.7	0.18
investor	6 688	837	2.8	0.51
phil-nofair5	93 068	1	TO	6.67
rabin4	668 836	1	TO	112.38

- 1. MultiGain, Brazdil et. al. 2015.
- 2. MEC-VI: Straightforward conversion to reachability, then ${\sf VI}$

Benchmarks

On-demand VI better by orders of magnitude depending on topology

Model	States	MEC-VI	ODV	ODV States	ODV MECs
zeroconf(40,10)	3 001 911	МО	5.05	481	3
avoid				582	3
zeroconf(300,15)	4 730 203	MO	16.6	873	3
avoid				5 434	3
sensors(2)	7 860	18.9	20.1	3 281	917
sensors(3)	77 766	2293.0	37.0	10 941	2 301

Value Iteration

VI for Total Rewards

$$V_n(s) = \max_{a} \{r(a) + \sum_{s'} P(s, a, s') V_{n-1}(s')\}$$

Average reward⁴

$$\lim_{n\to\infty}\frac{v_n(s)}{n}~\approx~v_n(s)-v_{n-1}(s)$$

⁴After making the MDP aperiodic