

Solid blue line -Transcription Factor – influences transcription

Orange dotted lines - Splicing Factor – influences splicing

Figure 1: Gene interaction network

1. (7 points) We consider a hypothetical regulatory network (see Figure 1) where proteins A and B modulate the expression of genes A and B via two distinct interaction routes labeled (I) and (II). It is important to note that the modulation can happen either via route (I) or (II), meaning, if protein A works via route (I), protein B also works via route (I) and vice-versa.

Two total-RNA sequencing experiments have been performed to ascertain which regulatory route is active in two different cell types.

- (a) The first total-RNA sequencing experiment for mRNA B generated an abundance of the sequence "AGCGC." Based on this sequence presented, your tasks are as follows,
- (i) Identify the regulatory route (I or II) through which gene regulation occurs, inferring from the sequence presented. Hint: The classification of the total-RNA sequence data is to be carried out using the Viterbi algorithm, employing the transition probabilities, emission probabilities, and initial state probabilities specified in Tables 1, 2, and 3, respectively.
- (ii) Develop a gene regulation model for the inferred route. This model should quantify the dynamic interactions between protein levels and gene expression using the appropriate model: either an ordinary differential equation (ODE) formulation or SDEVelo formulation that incorporates Hill

kinetics (hint: the choice of formulation may depend on the observed mRNA status). Parameter values for these models are given in Tables 4 and 5, respectively.

- (iii) Plot the time evolution of mRNA A and mRNA B concentrations.
- (iv) Generate a subspace plot of the protein dynamics (i.e., a phase-plane plot showing the dynamics of Protein A versus Protein B).
- (b) The second total-RNA sequencing experiment for mRNA B yielded an abundance of the sequence "AUUAU." Based on this sequence presented, your tasks are as follows,
- (i) Identify the regulatory route (I or II) through which gene regulation occurs, inferring from the sequence presented. Hint: The classification of the total-RNA sequence data is to be carried out using the Viterbi algorithm, employing the transition probabilities, emission probabilities, and initial state probabilities specified in Tables 1, 2, and 3, respectively.
- (ii) Develop a gene regulation model for the inferred route. This model should quantify the dynamic interactions between protein levels and gene expression using the appropriate model: either an ordinary differential equation (ODE) formulation or SDEVelo formulation that incorporates Hill kinetics (hint: the choice of formulation may depend on the observed mRNA status). Parameter values for these models are given in Tables 4 and 5, respectively.
- (iii) Plot the time evolution of mRNA A and mRNA B concentrations.
- (iv) Generate a subspace plot of the protein dynamics (i.e., a phase-plane plot showing the dynamics of Protein A versus Protein B).
- (c) Now compare the protein subspace plots from (a) and (b) and describe the dynamic behaviours observed in these plots.

Table 1:

| Transition probabilities | Exon | Intron |
|--------------------------|------|--------|
| Exon                     | 0.9  | 0.1    |
| Intron                   | 0.2  | 0.8    |

Table 2:

| Emission<br>Probabilities | A    | U    | G    | С    |
|---------------------------|------|------|------|------|
| Exon                      | 0.25 | 0.25 | 0.25 | 0.25 |
| Intron                    | 0.4  | 0.4  | 0.05 | 0.15 |

# Table 3:

# Initial Probabilities ∏(Exon)=0.5 ∏(Intron) = 0.5

### Table 4:

| SDEVelo                                |
|----------------------------------------|
| parameters                             |
| $a_A = 1.0 s$                          |
| $a_B = 0.25 \text{ s}$                 |
| b <sub>A</sub> = 0.0005                |
| b <sub>B</sub> = 0.0005                |
| c <sub>A</sub> = 2.0 Ms <sup>-1</sup>  |
| $c_B = 0.5 \text{ Ms}^{-1}$            |
| $\beta_A = 2.35 \text{ s}^{-1}$        |
| $\beta_B = 2.35 \text{ s}^{-1}$        |
| $\gamma_A = 1.0 \text{ s}^{-1}$        |
| $\gamma_{\rm B} = 1.0 \; {\rm s}^{-1}$ |
| $n_A = n_B = 3$                        |
| $\theta_{A} = 0.21 \text{ M}$          |
| $\theta_{B} = 0.21 \text{ M}$          |
| $k_{PA} = 1.0 \text{ s}^{-1}$          |
| $k_{PB} = 1.0 \text{ s}^{-1}$          |
| $m_A = 2.35 \text{ s}^{-1}$            |
| $m_B = 2.35 \text{ s}^{-1}$            |
| $\delta_{PA} = 1.0 \text{ s}^{-1}$     |
| $\delta_{PA} = 1.0 \text{ s}^{-1}$     |
| $\sigma_{1A} = 0.05 \text{ Ms}^{-1/2}$ |
| $\sigma_{2A} = 0.05 \text{ Ms}^{-1/2}$ |
| $\sigma_{1B} = 0.05 \text{ Ms}^{-1/2}$ |
| $\sigma_{2B} = 0.05 \text{ Ms}^{-1/2}$ |
| Initial                                |
| concentration of                       |
| unspliced mRNA                         |
| A (pre mRNA)=<br>0.8 M                 |
| Initial                                |
| concentration of                       |
| unspliced mRNA                         |

B (pre mRNA) = 0.8 M Initial concentration of protein A = 0.8 Initial concentration of protein B = 0.8 Μ Initial concentration of spliced mRNA A = 0.8 MInitial concentration of spliced mRNA B = 0.8 M

### Table 5:

| ODE parameters                                                                              |
|---------------------------------------------------------------------------------------------|
| m <sub>A</sub> =2.35 s <sup>-1</sup> # max Transcription rate of Gene A                     |
| m <sub>B</sub> =2.35 s <sup>-1</sup> # max Transcription rate of Gene B                     |
| $\gamma_A = 1 \text{ s}^{-1} \text{ # mRNA A deg rate}$                                     |
| $\gamma_B = 1 \text{ s}^{-1} \text{# mRNA B deg rate}$                                      |
| $k_{PA} = 1.0 \text{ s}^{-1}$ # Translation rate of Protein A                               |
| k <sub>PB</sub> = 1.0 s <sup>-1</sup> # Translation rate of Protein B                       |
| $\theta_A$ = 0.21 M # expression threshold Protein_A binding                                |
| $\theta_B$ = 0.21 M # expression threshold for Protein_B binding                            |
| $n_A = 3$ # Hill coefficient for Protein <sub>A</sub> (increased for stronger nonlinearity) |
| $n_B = 3$ # Hill coefficient for Protein <sub>B</sub> (increased for stronger nonlinearity) |
| $\delta_{PA}$ = 1.0 s <sup>-1</sup> # Degradation rate of Protein <sub>A</sub>              |
| $\delta_{PB}$ = 1.0 s <sup>-1</sup> # Degradation rate of Protein <sub>B</sub>              |
| Initial concentration of mRNA A = 0.8 M                                                     |
| Initial concentration of mRNA B = 0.8 M                                                     |
| Initial concentration of protein A = 0.8 M                                                  |
| Initial concentration of protein B = 0.8 M                                                  |

# 2. (3 points) Consider the system below,

$$\frac{dx}{dt} = \alpha x - \beta x y$$

$$\frac{dy}{dt} = -\gamma y + \delta x y$$

Here x is concentration of a metabolite, y is concentration of an enzyme.

- a) Abstracting the underling gene regulatory dynamics what would be your explanations for the above system of equations? Hint: take each term in the equations apart and explain what they imply
- b) Carry out a stability analysis for,  $\alpha=2, \beta=1.1, \gamma=1$  and  $\delta=0.9, x(0)=1, y(0)=0.5$
- c) Plot the stream plot with equilibrium point and nullclines