2. Definice pravděpodobnosti

2.1. Úvod:

deterministické procesy – náhodné procesy matematická statistika – teorie pravděpodobnosti

2.2. Definice: Náhodný pokus, náhodný jev. Proces, který při opakování dává za stejných podmínek rozdílné výsledky nazýváme *náhodným pokusem*. Různé výsledky náhodného pokusu nazýváme *náhodným jevy*. Množinu všech možných výsledků náhodného pokusu nazýváme *jevovým polem*.

Značení: \mathscr{S} je jevové pole, jeho prvky, náhodné jevy, značíme velkými písmeny, např. A, B, C_k, U, V , a pod.

2.3. Příklad:

- 1. Házíme mincí a sledujeme kdy padne rub a kdy líc. Jevové pole $\mathscr S$ má dva prvky $\{r,l\}$.
 - Provádíme pokus, který má dva možné výsledky. První si označíme jako 0 a druhý jako 1. Jevové pole $\mathcal{S} = \{0,1\}$.
- 2. Házíme hrací kostkou a sledujeme počet ok na horní stěně kostky. Jevové pole má 6 prvků, $\mathscr{S} = \{1, 2, 3, 4, 5, 6\}.$
 - \bullet Náhodně vybereme z množiny n prvků, např. čísel $\{1,2,\ldots,n\}$ jeden prvek, číslo.
- 3. Házíme mincí resp. hrací kostkou, dokud nepadne rub resp. nepadne předepsaný počet ok (šestka). Výsledkem pokusu je počet hodů. Jevové pole má nekonečně mnoho prvků, $\mathscr{S} = \{1, 2, \ldots\}$.
 - Konáme náhodný pokus, dokud se jako jeho výsledek neobjeví daný náhodný jev.

- 4. Házíme n-krát mincí, resp. hrací kostkou a počítáme, kolikrát se v serii hodů objeví rub, resp. padne šestka. Jevové pole obsahuje prvky $\{0,1,2,3,\ldots,n\}$.
 - \bullet Konáme serii n nezávislých náhodných pokusů a sledujeme kolikrát nastal jako výsledek daný náhodný jev.
- 5. Loterie obsahuje N losů a z nich M vyhrává. Zakoupíme n losů a sledujeme na kolik ze zakoupených losů vyhrajeme. Jevové pole $\mathcal{S} = \{0, 1, 2, \dots, min\{n, M\}\}.$ Musí platit $0 \le n \le N$, $0 \le M \le N$.
 - \bullet Máme množinu N prvků a z nich M má sledovanou vlastnost. Náhodně vybereme skupinu n prvků. Ptáme se kolik prvků z vybrané skupiny má sledovanou vlastnost.
- 6. Náhodně volíme číslo z intervalu (0, 1).

$$\mathcal{S} = \{x; \ 0 < x < 1\}.$$

7. Jdeme náhodně na tramvaj a sledujeme dobu čekání.

V některých případech není výsledkem náhodného pokusu jev, který lze popsat jednou veličinou, číslem, ale máme situace je taková, že výsledek má vektorový charakter.

8. Házíme dvěma hracími kostkami a sledujeme počet ok. Jevové pole má charakter uspořádaných dvojic,

$$\mathcal{S} = \{(i, j); \ 1 \le i, j \le 6\}.$$

Struktura jevového pole. Operace s jevy.

Struktura jevového pole je tzv. Booleova algebra, přesněji Booleova $\sigma-$ algebra.

2.4. Definice: Jev jistý a jev nemožný. Jev *jistý* je náhodný jev $U \in \mathcal{S}$, který vždy nastane. Jev *nemožný*, je náhodný jev $V \in \mathcal{S}$, který nikdy nenastane.

2.5. Definice: Jevy opačné. *Opačným jevem* k jevu $A \in \mathscr{S}$ nazýváme náhodný jev $\overline{A} = -A \in \mathscr{S}$, který nastane vždy, když nenastane jev A.

2.6. Věta: Je
$$\overline{U} = V$$
, $\overline{V} = U$ a $\overline{(\overline{A})} = A$.

- **2.7. Definice: Implikace.** Náhodný jev $A \in \mathscr{S}$ má za následek náhodný jev $B \in \mathscr{S}$, jestliže jev B nastane, kdykoliv nastane jev A. Zapisujeme $A \subset B$.
 - **2.8.** Věta: Je vždy $V \subset A \subset U, \ A \in \mathcal{S}$.
- **2.9. Definice: Rovnost náhodných jevů.** Náhodné jevy $A, B \in \mathscr{S}$ se rovnají jestliže je $A \subset B$ a $B \subset A$. Píšeme pak A = B.
- **2.10. Definice: Sjednocení náhodných jevů.** Jsou-li $A, B \in \mathcal{S}$ náhodné jevy, pak jejich *sjednocením* nazýváme jev, který nastane právě když nastane jev A nebo jev B. Označujeme jej symbolem $A \cup B$.
 - 2.11. Věta: Pro náhodné jevy platí:

$$A\cup B=B\cup A;\quad A\cup V=A;\quad A\cup U=U;\quad A\cup \overline{A}=U;$$
asociativní zákon
$$(A\cup B)\cup C=A\cup (B\cup C).$$

- **2.12. Poznámka:** Asociativní zákon platí pro libovolný systém náhodných jevů a nezáleží na pořadí zápisu. Jsou-li $A_i \in \mathscr{S}, \ i \in \alpha$, pak pro jejich sjednocení používáme symbolu $\bigcup A_i$.
- **2.13. Definice:** Průnik náhodných jevů. Jsou-li $A, B \in \mathscr{S}$ náhodné jevy, pak jejich *průnikem* nazýváme jev, který nastane právě když nastanou oba jevy A a B. Tento náhodný jev označujeme symbolem $A \cap B$.
 - 2.14. Věta: Pro náhodné jevy platí:

$$A\cap B=B\cap A;\quad A\cap V=V;\quad A\cap U=A;\quad A\cap \overline{A}=V;$$
asociativní zákon
$$(A\cap B)\cap C=A\cap (B\cap C).$$

- **2.15. Poznámka:** Asociativní zákon platí pro libovolný systém náhodných jevů a nezáleží na pořadí zápisu. Jsou-li $A_i \in \mathscr{S}, \ i \in \alpha$, pak pro jejich průnik používáme symbolu $\bigcap A_i$.
- **2.16. Definice: Rozdíl jevů.** Rozdílem náhodných jevů $A, B \in \mathscr{S}$ nazýváme jev, který nastane právě když nastane jev A a nenastane jev B. Označujeme jej A B.
 - 2.17. Věta: Pro náhodné jevy platí:

$$A - B \neq B - A;$$
 $A - V = A;$ $U - A = \overline{A};$

$$A - \overline{A} = A;$$
 $A - A = V;$

de Morganovy zákony

$$A - (B \cup C) = (A - B) \cap (A - C);$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

Obecně Je-li $\{A_i; i \in \alpha\}$ systém náhodnývh jevů, pak

$$A - \bigcup_{i \in \alpha} A_i = \bigcap_{i \in \alpha} (A - A_i); \qquad A - \bigcap_{i \in \alpha} A_i = \bigcup_{i \in \alpha} (A - A_i).$$

2.18. Definice: Disjunktní jevy. Náhodné jevy $A, B \in \mathcal{S}$, které se navzájem vylučují, tj. $A \cap B = V$, nazýváme *disjunktní*.

Poznámka: Nesmíme zaměňovat jevy disjuktní a jevy nezávislé.

2.19. Definice: Elementární jev. Náhodný jev $E\in \mathscr{S}$ nazýváme $elementárním jevem, jestliže pro každý náhodný je<math display="inline">A\in \mathscr{S}$ je buď $A\cap E=E,$ nebo $A\cap E=V.$

Definice pravděpodobnosti.

Poznámka: Je-li $\mathscr S$ jevové pole, pak pro jeho prvky, jednotlivé náhodné jevy A zavádíme jejich pravděpodobnost P(A) jako míru jejich výskytu.

- **2.21. Definice: Pravděpodobnost.** Je-li $\mathscr S$ jevové pole, pak re-álnou funkci $P:\mathscr S\to \mathbf R$ nazýváme $\mathit{pravděpodobnosti}$, jestliže pro ni platí:
- 1. Pro každý náhodný jev $A \in \mathcal{S}$ je $0 \le P(A) \le 1$.
- 2. P(U) = 1, P(V) = 0.
- 3. $A \subset B \Rightarrow P(A) \leq P(B)$.
- 4. $A \cap B = V \Rightarrow P(A \cup B) = P(A) + P(B)$.
- **2.22.** Věta: Klasická definice pravděpodobnosti. Nechť je jevové pole $\mathcal S$ generováno systémem elementárních jevů E_i , $1 \le i \le n$, takových, že mají stejnou možnost výskytu. Jestliže definujeme funkci P předpisem:

$$P(E_i) = \frac{1}{n},$$

pak je P pravděpodobnost. Potom pro náhodný jev $A\in \mathscr{S}, A=\bigcup\limits_{k=1}^m\,E_{i_k}$ je

$$P(A) = \frac{m}{n}.$$

Poznámka: Statistická definice pravděpodobnosti. Konáme náhodný pokus a m(n) je počet výskytu jevu A po n pokusech. Pak definujeme

$$P(A) = \lim_{n \to \infty} \frac{m(n)}{n}.$$

Poznámka: Vlastnosti pravděpodobnosti jsou shodné s vlastnostmi objemu množin. Z toho vychází tzv. geometrická definice pravděpodobnosti.

2.24. Věta: Geometrická definice pravděpodobnosti. Nechť prvky jevového pole $\mathscr S$ odpovídají podmnožinám omezené množiny $U\in \mathbb R^n$, množina U odpovídá jevu jistému a operace s jevy odpovídají obdobným operacím s množinami. Jestliže si označíme v n-rozměrný objem množiny v $\mathbb R^n$, pak funkce P definovaná předpisem

$$P(A) = \frac{v(A)}{v(U)}$$

má vlastnosti pravděpodobnosti. Takto definovaná pravděpodobnost se nazývá geometrická pravděpodobnost.

Na začátku 20. století uvedl Kolmogorov definici pravděpodobnosti, která všechny předchozí definice v sobě zahrnuje.

- **2.27.** Definice: Booleova σ algebra. Jevové pole $\mathcal S$ je σ algebra, jestliže platí:
 - 1. $U \in \mathcal{S}, V \in \mathcal{S}$.
- 2. Pro náhodné jevy $A, B \in \mathcal{S}$ je $A B \in \mathcal{S}$.
- 3. Pro posloupnost (konečnou či spočetnou) posloupnost náhodných jevů A_i je $\bigcup_i A_i \in \mathscr{S}$ a $\bigcap_i A_i \in \mathscr{S}$.
- **2.28.** Definice: Axiomatická definice pravděpodobnosti. Je-li $\mathscr S$ jevové pole, které je σ -algebrou, pak pravděpodobnost na jevovém poli $\mathscr S$ je reálná funkce, pro kterou platí:
 - 1. Pro každý náhodný jev $A \in \mathcal{S}$ je
- $0 \le P(A) \le 1.$
- 2. P(U) = 1.
- 3. Pro disjunktní náhodné jevy $A,\,B\in\mathscr{S},$

$$(A \cap B = V)$$
, je $P(A \cup B) = P(A) + P(B)$.

- **2.29. Věta: Vlastnosti pravděpodobnosti.** Pravděpodobnost P na jevovém poli $\mathcal S$ má tyto vlastnosti:
- 4. Je-li $A, B \in \mathcal{S}$ a $A \subset B$, pak $P(A) \leq P(B)$. (Monotonie pravděpodobnosti.)

5. Je-li $A, B \in \mathcal{S}$ a $A \subset B$, pak

$$P(B - A) = P(B) - P(A).$$

6. Pro náhodný jev $A \in \mathcal{S}$ je $P(\overline{A}) = 1 - P(A)$. Speciálně P(V) = 0.

7. Pro náhodné jevy $A, B \in \mathscr{S}$ je

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

8. Pro posloupnost (konečnou či spočetnou) po dvou disjunktních jevů $A_i \in \mathcal{S}, 1 \leq i, j,$

 $i \neq j \Rightarrow A_i \cap A_j = V$, pak

$$P(\bigcup_{i} A_{i}) = \sum_{i} P(A_{i}).$$

 $(\sigma-\text{aditivita.})$

9. Jestliže pro posloupnost náhodných jevů $A_i \in \mathcal{S}, \ i \in \mathbb{N}$ platí $A_1 \subset A_2 \subset A_3 \ldots$, pak $P(\bigcup_i A_i) = \lim_{i \to \infty} P(A_i)$. (Spojitost zdola.)

10. Jestliže pro posloupnosť náhodných jevů $A_i \in \mathcal{S}, i \in \mathbf{N}$ platí $A_1 \supset A_2 \supset A_3 \ldots$, pak $P(\bigcap_i A_i) = \lim_{i \to \infty} P(A_i)$. (Spojitost shora.)