

# HLK-LD2410 人体存在感应模组 说明书



版本: V1.02 修改日期: 2022-6-8 版权所有@深圳市海凌科电子有限公司



## 目 录

| 1  |     | 产品简介                                  | 3  |
|----|-----|---------------------------------------|----|
| 2  |     | 产品特点和优势                               | 4  |
|    | 2.1 | 1 特点                                  | 4  |
|    | 2.2 | 2 方案优势                                | 5  |
| 3  |     | 应用场景                                  | 6  |
| 4  |     | 硬件说明                                  | 7  |
|    | 4.1 | 1 外形尺寸                                | 7  |
|    | 4.2 | 2 引脚定义                                | 7  |
| 5  |     | 使用和配置                                 |    |
|    | 5.1 | 1 典型应用电路                              |    |
|    |     | 2 配置参数的作用                             |    |
|    |     | 3 可视化配置工具说明                           |    |
|    |     | 4 安装方式和感应范围                           |    |
|    |     | 5 安装条件                                |    |
| 6  |     | 性能和电气参数                               |    |
| 7  |     | 天线罩设计指南                               |    |
|    | 7.1 | 1 天线罩对毫米波传感器性能的影响                     |    |
|    |     | 2 天线罩的设计原则                            |    |
|    |     | 3 常见材料                                |    |
| 8  | ,   | 修订记录                                  |    |
| 9  |     | 技术支持和联络方式                             |    |
|    |     | 12112191117120                        |    |
|    |     | 图表索引                                  |    |
|    |     |                                       | _  |
|    |     | 引脚定义表性能和电气参数表                         |    |
|    |     | <u> </u>                              |    |
| 1× | ,   | //··································· | ±- |
| 冬  | 1   | 使用方式图示                                | 3  |
| 图  | 2   | 毫米波雷达方案和其他方案对比                        | 5  |
| 冬  | 3   | 应用场景                                  | 6  |
|    |     | 模块实物图                                 |    |
|    |     | 模块尺寸图                                 |    |
|    |     | 模块引脚定义图                               |    |
|    |     | 挂顶安装示意图                               |    |
|    |     | 探测氾围示息图(挂坝局度3木)<br>挂壁安装示意图            |    |
|    |     | 13至文表小总国<br>0 探测范围示意图(挂壁高度1.5米)       |    |
|    |     | 1                                     | 13 |

## 1 产品简介

LD2410是海凌科电子开发的一款高灵敏度的24GHz人体存在状态感应模组。其工作原理是利用 FMCW调频连续波,对设定空间内的人体目标进行探测,结合雷达信号处理、精确人体感应算法,实现高 灵敏度的人体存在状态感应,可识别运动和静止状态下的人体,并可计算出目标的距离等辅助信息。

本产品主要应用在室内场景,感知区域内是否有运动或者微动的人体,实时输出检测结果。最远感应 距离可达5米,距离分辨率0.75m。提供可视化的配置工具,可轻松配置感应距离范围、不同区间的感应 灵敏度和无人延时时间等,适应不同的具体应用需求。

支持 GPIO 和 UART 输出,即插即用,可灵活应用于不同的智能场景和终端产品。





图 1 使用方式图示



## 2 产品特点和优势

#### 2.1 特点

- 即插即用,简易装配方式
- 最远感应距离为可达5米
- 探测角度大,覆盖范围可达±60度
- 区间内准确识别,支持感应范围划分,屏蔽区间外干扰
- 多级智能调参,满足场景变化需求
- 可视化调试和配置工具
- 小巧简化,最小尺寸仅为 7mmx35mm
- 支持挂顶、挂壁等多种安装方式
- 24GHz ISM 频段,可通过 FCC 和 CE 频谱法规认证
- 5~12V宽电压供电
- 极致性价比之选



#### 2.2 方案优势

• 好

一般

- 弱

LD2410人体感应模组采用24GHz毫米波雷达传感器技术,和其他方案对比,在人体感应应用上有着明显的优势:

- 1.除了对运动人体感应灵敏外,对于传统方案无法识别的静止、微动、坐卧人体也都可灵敏感应到;
- 2.有良好的环境适应性,感应效果不受温度、亮度、湿度和光线波动等周围环境影响;
- 3.有良好的外壳穿透性,可隐藏在外壳里面工作,无需在产品表面开孔,提高了产品美观度;
- 4.可灵活配置最远感应距离和每个距离门上的灵敏度,实现灵活精细的个性化配置;

|               | 红外方案 | 视觉方案 | 超声波 | 激光雷达 | 毫米波雷达 |
|---------------|------|------|-----|------|-------|
| 应用灵活性         |      |      |     |      |       |
| 抵抗环境影响(天气光线等) |      |      |     |      |       |
| 侦测速度          |      |      |     |      |       |
| 侦测准确度         | •    |      |     | •    |       |
| 分辨率           | •    |      |     | •    | •     |
| 方向性           | •    |      |     |      | •     |
| 侦测距离          |      |      |     | •    | •     |
| 穿透材料能力        | •    |      |     | •    | •     |
| 尺寸            | •    |      | •   | •    | •     |
| 成本            |      |      |     |      |       |

图 2 毫米波雷达方案和其他方案对比

## 3 应用场景

LD2410人体感应模组对运动、微动和站立、坐卧的人体均可进行探测识别,支持多级调参,可广泛应用于 AIoT 各种场景,常用类型如下

#### ● 人体感应灯控

感知所在空间是否有人存在,自动控制灯光,如公共场所照明设备、各类感应灯、球泡灯等。

#### ● 广告屏等设备的人体感应唤醒

人来自动开启,无人自动休眠节电,信息投放更精准高效

#### ● 生命安全防护

UV灯工作保护,防止UV灯在周边有人时开启对人身造成伤害 危险场所自动检测告警,防止有人进入特定高危空间,如煤矿爆破的进制人员进入的高危场所

#### ● 智能家电

房间内长时间无人, 电视空调等电器自动关闭, 节能又安全

#### ● 智能安防

对指定范围内有人侵入、逗留等的检测识别



图 3 应用场景

## 4 硬件说明

#### 4.1 外形尺寸





图 5 模块尺寸图

模块尺寸大小:7mmx35mm,硬件预留 5 个插针孔(出厂默认不配插针)插针孔孔径0.6mm,引脚间距1.27mm。

#### 4.2 引脚定义



图 6 模块引脚定义图

| 引脚 | 符号      | 名称     | 功能                             |
|----|---------|--------|--------------------------------|
| 1  | OUT     | 目标状态输出 | 检测到有人体存在:输出高电平<br>无人体存在:输出低电平  |
| 2  | UART_Tx | 串口Tx   | 串口Tx引脚                         |
| 3  | UART_Rx | 串口Rx   | 串口Rx引脚                         |
| 4  | GND     | 电源地    | 电源地                            |
| 5  | VCC     | 电源输入   | 供电输入<br>5V ( 可接受5V ~ 12V电压供电 ) |

表 1 引脚定义表

### 5 使用和配置

#### 5.1 典型应用电路

LD2410模组直接通过一个IO引脚输出检测到的目标状态(有人高电平,无人低电平),同时也可通过串口按照规定的协议进行检测结果数据的输出,串口输出数据中包含有目标状态和距离辅助信息等,用户可根据具体应用场景灵活使用。

模块IO电平为3.3V。串口默认波特率 256000 , 1 停止位 , 无奇偶校验位。

#### 5.2 配置参数的作用

用户可通过LD2410的串口给模块修改配置参数,来适应不同的应用需求,配置内容掉电不丢失。可配置的参数包括如下几个:

#### 最远探测距离

设置最远可探测的距离,只有在此最远距离内出现的人体目标才会被探测到并输出结果。 以距离门为单位进行设置,每个距离门为0.75m。

包括运动探测最远距离门和静止探测最远距离门,可设置范围为1~8,如设置最远距离门为2,则只有在1.5m内有人体存在才会有效探测到并输出结果。

#### 灵敏度

探测到的目标能量值(范围0~100)大于灵敏度值时才会判定为目标存在,否则忽略。

灵敏度值可设置范围0~100。每个距离门可独立设置灵敏度,即可对不同距离范围内的探测进行精准调节,局部精准探测或对特定区域干扰源的过滤。

另外如果将某个距离门的灵敏度设置为100时,可达到不识别此距离门下目标的效果。例如将距离门3和距离门4的灵敏度设置为20,其他距离门的灵敏度都设置为100,则可实现仅对距离模块 1.5~3m范围内的人体进行探测。

#### 无人持续时间

雷达在输出从有人到无人的结果中,会持续一段时间上报有人,若在此时间段雷达测试范围内持续无人,雷达上报无人;若在此时间段雷达检测到有人,则重刷新此时间,单位秒。相当于无人延时时间,人离开后,保持无人超过此持续时间后才会输出状态为无人。



#### 5.3 可视化配置工具说明

为便于用户快速高效的对模块进行测试和配置,提供了PC端的上位机配置工具,用户可使用此工具软件连接模块的串口,对模块进行参数读取和配置,也可接收模块上报的探测结果数据,并进行实时的可视化展示,极大的方便的了用户的使用。

#### 上位机工具使用方法:

- 1.用USB转串口工具正确连接模组串口;
- 2.上位机工具中选中对应的串口号,设置波特率25600,选中工程模式,点击连接设备;
- 3.连接成功后,点击开始按钮,右侧图形界面会显示检测结果和数据;
- 4.在连接上后,未点击开始按钮时,或者开始后点击停止,可对模式参数信息进行读取或设置;

注意:点击开始后不能对参数进行读取和配置,需停止后才可进行配置。

#### 上位机工具的界面和常用功能如下图:





圆球为目标状态输出指示:红色代表有人为运动目标,紫色代表有人为静止目标; 绿色代表无人



绿色代表每个距离门上设置的灵敏度的值 红色代表每个距离门上当前的目标能量值

#### 5.4 安装方式和感应范围



#### 图 7 挂顶安装示意图



(距离单位:米,角度单位:度)

图 8 探测范围示意图(挂顶高度3米)



(距离单位:米,角度单位:度)

图 9 挂壁安装示意图



图 10 探测范围示意图(挂壁高度1.5米)



#### 5.5 安装条件

#### 确认最小安装间隙

如果雷达需要安装外壳,则外壳必须在24GHz有良好的透波特性,不能含有金属材质或对电磁波有屏蔽作用的材料。

#### 安装环境要求

本产品需要安装在合适的环境中,如在以下环境中使用,检测效果将受到影响:

- 感应区域内存在持续运动的非人物体,如动物,持续摆动的窗帘、正对出风口的大株绿植等
- 感应区域内存在大面积的强反射物,强反射物正对雷达天线会造成干扰
- 挂壁安装时,需要考虑室内顶部的空调,电风扇等外部的干扰因素

#### 安装时注意事项

- 尽量保证雷达天线正对要检测的区域,且天线四周开阔无遮挡
- 要保证传感器的安装位置牢固、稳定, 雷达本身的晃动将影响检测效果
- 要保证雷达的背面不会有物体运动或震动。由于雷达波具有穿透性,天线信号背瓣可能会检测到 雷达背面的运动物体。可以采用金属屏蔽罩或者金属背板,对雷达背瓣进行屏蔽,减弱雷达背面 物体造成的影响
- 雷达理论距离精度是在物理分辨率为0.75米的基础上通过特殊算法处理得到的结果,由于目标的体型,状态,RCS等不同,目标距离精度会有波动;同时最远距离也会稍有波动

## 6 性能和电气参数

| - 14-14-69              | 24GHz~ 24.25GHz    |  |  |
|-------------------------|--------------------|--|--|
| 工作频段                    | 符合 FCC、 CE、无委会认证标准 |  |  |
| 工作电压                    | 5V (可接受5V~12V电压供电) |  |  |
| 平均工作电流                  | 80 mA              |  |  |
| <b>调制方式</b> FMCW        |                    |  |  |
|                         | 一个GPIO, IO电平3.3V   |  |  |
| 接口                      | 一个UART             |  |  |
| 目标应用                    | 人体存在感应             |  |  |
| 探测距离                    | 0.75m~6m,可调        |  |  |
| 探测角度                    | ±60 °              |  |  |
| 距离分辨率                   | 0.75m              |  |  |
| .ta.it∓####             | 250MHz             |  |  |
| 扫频带宽                    | 符合 FCC、 CE、无委会认证标准 |  |  |
| 环境温度                    | -40 ~ 85℃          |  |  |
| <b>外形尺寸</b> 7mm x 35 mm |                    |  |  |

表 2 性能和电气参数表



图 11 模块工作电流实测数据

## 7 天线罩设计指南

#### 7.1 天线罩对毫米波传感器性能的影响

- 雷达波在天线罩边界上发生反射
  - 使得雷达辐射或接收的总功率有所损耗
  - 反射波进入接收通道,影响发射、接收通道之间的隔离度
  - 反射可能使天线的驻波变差,进一步影响天线增益
- 雷达波在介质中传播会发生损耗,理论上来说频率越高损耗会越大
- 电磁波在穿过介质时会产生一定程度的折射
  - 影响天线的辐射方向图,进而影响传感器的覆盖范围

#### 7.2 天线罩的设计原则

- 天线罩的结构形状
  - 表面光滑平整,厚度均匀一致。如平面或者球面,不能凹凸不平
  - 若有表面涂层,不能含有金属或导电的材料
  - 在天线正上方,天线罩面与天线平面保持平行



- 理想的高度是空气中电磁波半波长的整数倍
- $H = \frac{m}{2} * \frac{c_0}{f}$  , 其中m为正整数 ,  $c_0$ 为真空光速 , f为工作中心频率
- 比如, 24.125GHz中心频率, 其在空气中的半波长约6.2mm

#### · 天线罩的厚度D

- 理想的厚度是介质中电磁波半波长的整数倍
- $D = \frac{m}{2} * \frac{c_0}{f\sqrt{\epsilon_r}}$ , 其中m为正整数,  $\epsilon_r$ 为天线罩材质的相对介电常数
- 比如某ABS材料 $\epsilon_r=2.5$ ,其半波长约3.92mm

#### 7.3 常见材料

- 设计之前, 先了解天线罩的材质和电气特性
  - 右表仅供参考,实际值请与供应商确认
- 天线到天线罩内表面的的高度H
  - 在空间允许时,优先推荐1倍或1.5倍波长
  - 比如,对应24.125GHz推荐12.4或18.6mm
  - 误差控制: ±1.2mm

#### • 天线罩的厚度D

- 推荐半波长,误差控制±20%
- 如不能满足半波长的厚度要求
- 推荐使用低 $\epsilon r$ 的材料
- 厚度推荐1/8波长或更薄



介质

#### 常见材料特性 (基于24.125GHz)

| 介质       | $\epsilon_r$ 典型值 | 半波长 (mm) | 1/8波长 (mm) | 1/10波长 (mm) |
|----------|------------------|----------|------------|-------------|
| 空气       | 1.00             | 6.20     | 1.55       | 1.24        |
| ABS1     | 1.50             | 5.06     | 1.27       | 1.01        |
| ABS2     | 2.50             | 3.92     | 0.98       | 0.78        |
| PC材料     | 3.00             | 3.58     | 0.89       | 0.72        |
| PMMA亚克力1 | 2.00             | 4.38     | 1.10       | 0.88        |
| PMMA亚克力2 | 5.00             | 2.77     | 0.69       | 0.55        |
| PVC硬     | 4.00             | 3.10     | 0.78       | 0.62        |
| PVC软     | 8.00             | 2.19     | 0.55       | 0.44        |
| 高密度PE    | 2.40             | 4.00     | 1.00       | 0.80        |
| 低密度PE    | 2.30             | 4.09     | 1.02       | 0.82        |
| 石英玻璃     | 5                | 2.77     | 0.69       | 0.55        |

表 3 天线罩常见材料特性

• 不均匀材料或多层组合材料对雷达性能的影响,建议在设计时进行实验调整

## 8 修订记录

| 日期        | 版本   | 修改内容 |
|-----------|------|------|
| 2022-5-26 | 1.01 | 测试版本 |
| 2022-6-8  | 1.02 | 完善数据 |

## 9 技术支持和联络方式



## 深圳市海凌科电子有限公司

地址: 深圳市龙华区民治街道民治社区1970科技园1栋301

电话: 0755-23152658/83575155

网址: www.hlktech.com

