2023-09-16

(2014 四川) 14. 设 $m \in R$, 过定点 A 的动直线 x + my = 0 和过定点 B 的动直线 mx - y - m + 3 = 0 交于点 P(x, y), 则 $|PA| \cdot |PB|$ 的最大值是______5

 $key: A(0,0), B(1,3), \perp PA \perp Pb, : \mid PA \mid \cdot \mid PB \mid \leq \frac{\mid AB \mid^2}{2} = 5$

(2018 江苏) 12. 在平面直角坐标系 xOy 中,A 为直线 l: y = 2x 上在第一象限内的点, B(5,0) ,以 AB

为直径的圆 C 与直线 l 交于另一点 D. 若 $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$,则点 A 的横坐标为 . 3

 $key: AB \bot CD, AD \bot BD, ∴ △ADB$ 是等腰直角三角形,

(2015 福建) 5. 已知 $\triangle ABC$ 为等腰直角三角形, |CA| = |CB| , |AB| = 4 , O 为 AB 中点,动点 P 满足条件: $|PO|^2 = |PA| \cdot |PB|$,则线段 CP 长的最小值为(B) A. $\sqrt{3}$ B. 2 C. $\sqrt{5}$ D. 4 key: 建系如图,则A(-2,0), B(2,0), C(0,2), 设P(x,y),

則
$$|PO|^2 = x^2 + y^2 = \sqrt{[(x+2)^2 + y^2][(x-2)^2 + y^2]} \Leftrightarrow (x^2 + y^2)^2 = (x^2 + y^2 + 4)^2 - 16x^2$$

 $\Leftrightarrow x^2 - y^2 = 2$, : $|CP| = \sqrt{x^2 + (y-2)^2} = \sqrt{2y^2 - 4y + 4} \ge 2$, 此时 $P(\pm\sqrt{3},1)$

(2016浙江) 在 $\triangle ABC$ 中, $B = \frac{\pi}{4}, C = \frac{5\pi}{12}, AC = 2\sqrt{6}, AC$ 的中点为D,若长度为3的线段PQ(点PC) 点的左侧

在直线
$$BC$$
上滑动,则 $AP + DQ$ 的最小值为______. $\frac{\sqrt{30} + 3\sqrt{10}}{2}$

$$key: \frac{AB}{\sin\frac{5\pi}{12}} = \frac{2\sqrt{6}}{\frac{\sqrt{2}}{2}}$$
 $\stackrel{\text{(4)}}{=} AB = 3\sqrt{2} + \sqrt{6}, |BC| = 6$

取*AB*的中点*E*,则*DE* / / *PQ*, :: *DQ* + *AP* = *PE* + *PA* $\geq \frac{\sqrt{30} + 3\sqrt{10}}{2}$

(2021浙江竞赛)9.已知 $\triangle ABC$ 三个顶点的坐标为A(0,0), B(7,0), C(3,4),过点 $(6-2\sqrt{2},3-\sqrt{2})$ 的直线分别

与线段
$$AC$$
, BC 交于 P , Q .若 $S_{\triangle PQC} = \frac{14}{3}$, 则 $|CP| + |CQ| = _____$.

9.key:
$$l_{AC}$$
: $4x - 3y = 0$; l_{BC} : $x + y - 7 = 0$

$$\therefore d_{M \to l_{CA}} = \frac{|4(6 - 2\sqrt{2}) - 3(3 - \sqrt{2})|}{5} = 3 - \sqrt{2}$$

$$d_{M \to l_{BC}} = \frac{|9 - 3\sqrt{2} - 7|}{\sqrt{2}} = 3 - \sqrt{2}$$
, ∴ CM 时 $\angle PCQ$ 的平分线

$$t_0 = |\overrightarrow{CM}| = \sqrt{20 - 10\sqrt{2}}, \cos 2\alpha = \frac{\sqrt{2}}{10}, \sin \alpha = \sqrt{\frac{1 - \frac{\sqrt{2}}{10}}{2}} = \sqrt{\frac{10 - \sqrt{2}}{20}}, \text{ If } \frac{1}{2}t_1t_0 \sin \alpha + \frac{1}{2}t_2t_0 \sin \alpha = \frac{1}{2}t_1t_1 \sin 2\alpha = \frac{14}{3}t_1t_1 \sin \alpha = \frac{1}{2}t_1t_1 \sin \alpha = \frac{14}{3}t_1t_1 \sin \alpha = \frac{14}{3}t_1 \sin \alpha = \frac{14}t_1 \sin \alpha = \frac{14}{3}t_1 \sin \alpha = \frac{14}{3}t_1 \sin \alpha = \frac{14}{3}t_1 \sin \alpha$$

得
$$t_1 + t_2 = \frac{\frac{28}{3}}{t_0 \sin \alpha} = \frac{28}{3} \cdot \frac{1}{\sqrt{(20 - 10\sqrt{2}) \cdot \frac{10 - \sqrt{2}}{20}}} = \frac{4(3 + \sqrt{2})}{3}$$

(13 浙江竞赛) 设二次函数 $f(x) = ax^2 + (2b+1)x - a - 2(a,b \in R, a \neq 0)$ 在[3,4] 上至少有一个零点,

1

2023-09-16

则
$$a^2 + b^2$$
 的最小值为 () A. $\frac{1}{100}$ B. $\frac{1}{10}$

) A.
$$\frac{1}{100}$$

B.
$$\frac{1}{10}$$

C.
$$\frac{4}{289}$$

C.
$$\frac{4}{289}$$
 D. $\frac{1}{(2\sqrt{5}+4)^2}$

 $key: ax^2 + (2b+1)x - a - 2 = 0 \Leftrightarrow (x^2-1)a + 2x \cdot b + x - 2 = 0$ 表示直线

$$\therefore a^2 + b^2 \ge \left(\frac{|x-2|}{\sqrt{(x^2-1)^2 + 4x^2}}\right)^2 = \left(\frac{x-2}{x^2+1}\right)^2 (\stackrel{\triangle}{\Rightarrow} t = x - 2 \in [1,2])$$

(201901 学考) 25.设 $a \in R$,已知函数 $f(x) = |x^2| + \frac{1}{r} + |x^2| + |x^2| + |x^2| + |x| + |x$

有实数解,则 a^2+b^2 的最小值为

key1:(变量转换)设方程f(x) = b - 8的解为 α ,设 $g(\alpha) = \max\{2\alpha^2 + 8, \frac{2}{|\alpha|}\} + 8$

则
$$\alpha a - b + g(\alpha) = 0$$
, $\therefore a^2 + b^2 \ge \left(\frac{g(\alpha)}{\sqrt{1 + \alpha^2}}\right)^2$

当
$$|\alpha|$$
 ≥ 1 时 $,\frac{g(\alpha)}{\sqrt{\alpha^2+1}}=2\sqrt{\alpha^2+1}+\frac{6}{\sqrt{\alpha^2+1}}\ge 4\sqrt{3}$ (当且仅当 $\alpha=\pm\sqrt{2}$ 时取 $=$)

当
$$|\alpha| \le 1$$
时, $\frac{g(\alpha)}{\sqrt{\alpha^2+1}} = (\frac{2}{|\alpha|}+8) \cdot \frac{1}{\sqrt{\alpha^2+1}} \ge 5\sqrt{2}$ (当且仅当 $\alpha=\pm 1$ 时取 $=$), $\therefore a^2+b^2$ 的最小值为48

(1906学考)已知函数f(x)是定义在R上的偶函数,且在 $[0,+\infty)$ 上单调递增.若对任意 $x \in R$,不等式

 $f(a+|x-b|) \ge f(|x|-2|x-1|)$ 恒成立,则 $2a^2 + b^2$ 的最小值是

key:原不等式 ⇔|a+|x-b|≥||x|-2|x-1|,如图,

则有 $b+a \ge 2$, 令 $u = \sqrt{2}a, b = v$,

则有
$$\frac{u}{\sqrt{2}} + v \ge 2$$
, $\therefore 2a^2 + b^2 = (\sqrt{u^2 + v^2})^2 \ge (\frac{2}{\sqrt{1 + \frac{1}{2}}})^2 = \frac{8}{3}$

变式: 若关于 x, y 的方程组 $\begin{cases} mx + y = 1 \\ x + v = n \end{cases}$ 在 $x \in [1,2]$ 上有解,则 $m^2 + n^2$ 的最小值为 ______.

$$key: mx - x = 1 - n \mathbb{E}[1xm + n - x - 1] = 0 (x \in [1, 2]), \therefore m^2 + n^2 \ge (\frac{x+1}{\sqrt{x^2+1}}) \ge \frac{9}{5}$$

一、直线与圆

1.圆的定义:到定点的距离为定长、

到两定点的距离之比为常数、

对边固定的定角顶点的轨迹

(15竞赛) 已知向量 \vec{a} , \vec{b} 的夹角为 $\frac{\pi}{3}$, $|\vec{a} - \vec{b}| = 5$, 向量 $\vec{c} - \vec{a}$, $|\vec{c} - \vec{b}|$ 的夹角为 $\frac{2\pi}{3}$, $|\vec{c} - \vec{a}| = 2\sqrt{3}$, 则 $\vec{a} \cdot \vec{c}$ 的最大值为_.

2

(201906学考) 已知四面体ABCD中,棱BC, AD所在直线所成的角为 60° , 且BC = 2, AD = 3, $\angle ACD = 120^{\circ}$,

则四面体ABCD的体积的最大值是 () $A.\frac{\sqrt{3}}{2}$ $B.\frac{\sqrt{3}}{4}$ $C.\frac{9}{4}$ $D.\frac{3}{4}$ D

(21012福建) 已知圆 $C:(x-2)^2+(y-2)^2=m$,点A(4,6),B(s,t).

- (1) 若3s-4t=-12,且直线AB被圆C截得的弦长为4,求m的值;
- (2) 若s,t为正整数,且圆C上任意一点到A的距离与到点B的距离之比为定值 $\lambda(\lambda > 1)$,求m的值.

解: (1) 由
$$l_{AB}$$
: $\frac{x-4}{s-4} = \frac{y-6}{t-6} = \frac{y-6}{\frac{3}{4}s-3} = \frac{4(y-6)}{3(s-4)}$ 即 $3x-4y+12=0$

$$\begin{array}{c}
C \\
B \\
C
\\
C
\\
C
\\
C
\\
C
\\
X$$

$$\therefore AB被圆C截得的弦长为2\sqrt{m^2 - (\frac{6-8+12}{5})^2} = 4得m = 8$$

$$key2$$
:由 C,A,B 三点共线得 $\frac{t-2}{s-2} = \frac{6-2}{4-2} = 2$ 即 $t = 2s-2$ 代入圆 C 得 $s = 2 \pm \sqrt{\frac{m}{5}}$,且 $2 < s < 4, s \in N^*$

∴
$$s = 3$$
, 且. $\frac{4 - (2 + \sqrt{\frac{m}{5}})}{2 + \sqrt{\frac{m}{5}} - 3} = \frac{4 - (2 - \sqrt{\frac{m}{5}})}{3 - (2 - \sqrt{\frac{m}{5}})}$ $\rightleftarrows m = 10$

(201407学考)在平面直角坐标系xOy中,点A(-1,0), B(1,0),设曲线C上的任意一点P满足

 $|PA|=\lambda |PB|(\lambda>0, \mathbb{L}\lambda\neq 1).(I)$ 求曲线C的方程,并指出形状;

(II) 对 λ 的两个不同取值 λ_1, λ_2 ,记对应的曲线为 C_1, C_2 .(i) 若曲线 C_1, C_2 关于某直线对称,求 $\lambda_1 \cdot \lambda_2$;

(ii) 若 $\lambda_2 > \lambda_1 > 1$,判断两曲线的位置关系,并说明理由.

解:(I) 由 $|PA| = \lambda |PB| (\lambda > 0, \mathbb{L}\lambda \neq 1)$ 得 $(x+1)^2 + y^2 = \lambda^2 ((x-1)^2 + y^2)$

$$\mathbb{SP}(1-\lambda^2)x^2 + (1-\lambda^2)y^2 + 2(1+\lambda^2)x + 1 - \lambda^2 = 0,$$

:.曲线*C*得方程为:
$$(x + \frac{1 + \lambda^2}{1 - \lambda^2})^2 + y^2 = (\frac{2\lambda}{1 - \lambda^2})^2$$
,曲线*C*是圆

(II) (i)由(I)得:
$$\left|\frac{\lambda_1}{1-\lambda_2^2}\right|=\left|\frac{\lambda_2}{1-\lambda_2^2}\right|$$
, $\therefore \lambda_1 \lambda_2 = 1$

$$(\text{ ii }) \because \lambda_2 > \lambda_1 > 1, \\ \therefore (\lambda_2 - 1)(\lambda_1 - 1) = \lambda_1 \lambda_2 - \lambda_2 - \lambda_1 + 1 > 0 \\ \boxtimes \lambda_2 \lambda_1 + 1 > \lambda_2 + \lambda_1, \\$$

$$|r_2 - r_1| = \frac{2\lambda_2}{\lambda_2^2 - 1} - \frac{2\lambda_1}{\lambda_1^2 - 1} = \frac{2(\lambda_2 - \lambda_1)(\lambda_1\lambda_2 + 1)}{(\lambda_2^2 - 1)(\lambda_1^2 - 1)} > |C_1C_2|$$
, ... 两曲线内含

$$(\because \lambda_2 > \lambda_1 > 1 \therefore (\lambda_2 + 1)(\lambda_1 - 1) = \lambda_1 \lambda_2 - \lambda_2 + \lambda_1 - 1 > 0 \\ \exists \Box \lambda_2 \lambda_1 - 1 > \lambda_2 - \lambda_1, \quad r_1 + r_2 = \frac{2\lambda_2}{\lambda_2^2 - 1} + \frac{2\lambda_1}{\lambda_1^2 - 1} = \frac{2(\lambda_1 + \lambda_2)(\lambda_1 \lambda_2 - 1)}{(\lambda_2^2 - 1)(\lambda_1^2 - 1)} > |C_1 C_2||$$

(2015湖北)如图,圆C与x轴切于点T(1,0),与y轴正半轴交于A、B(B在A的上方),且|AB|= 2

则圆C的标准方程为_____; $(x-1)^2 + (y-\sqrt{2})^2 = 2$

若过点A任作一条直线与圆 $O: x^2 + y^2 = 1$ 相交于M, N两点,下列三个结论: ① $\frac{|NA|}{|NB|} = \frac{|MA|}{|MB|}$;

②
$$\frac{|NB|}{|NA|} - \frac{|MA|}{|MB|} = 2$$
; ③ $\frac{|NB|}{|NA|} + \frac{|MA|}{|MB|} = 2\sqrt{2}$.其中正确结论的序号是_____. ①②③

$$key: C: (x-1)^2 + (y-\sqrt{2})^2 = 2$$
, $A(0, \sqrt{2}-1), B(0, \sqrt{2}+1)$,

$$\mathbb{Q}(\sqrt{2}+1)|QA|=|QB| \Leftrightarrow (\sqrt{2}+1)^2[x^2+(y-\sqrt{2}+1)^2]=x^2+(y-\sqrt{2}-1)^2$$

 $\mathbb{R} x^2 + y^2 = 1$

$$\therefore \frac{|NA|}{|NB|} = \sqrt{2} - 1 = \frac{|MA|}{|MB|}, \frac{|NB|}{|NA|} - \frac{|MA|}{|MB|} = \sqrt{2} + 1 - (\sqrt{2} - 1) = 2,$$

$$\frac{|NB|}{|NA|} + \frac{|MA|}{|MB|} = \sqrt{2} + 1 + \sqrt{2} - 1 = 2\sqrt{2}$$
, ∴ ①②③都对

2.圆方程:
$$\begin{cases} 标准方程:(x-a)^2 + (y-b)^2 = R^2 \\ -般方程: x^2 + y^2 + Dx + Ey + F = 0 \end{cases}$$

二元二次方程 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ 表示的曲线的必要条件:

2023-09-16

圆: $A = C \neq 0, B = 0$

椭圆: $\Delta = B^2 - 4AC < 0$

抛物线: $\Delta = 0$

双曲线: $\Delta < 0$

3.直线与圆的位置关系

「相交
$$d < R($$
弦长 $l = 2\sqrt{R^2 - d^2}$)

极线: $x_0 x + y_0 y = R^2$

相离:d>R

相交弦定理: $PA \cdot PB = PC \cdot PD$

切割线定理: $PO^2 = PA \cdot PB$

(2015 湖南)) 8.已知点 A,B,C 在圆 $x^2+y^2=1$ 上运动,且 $AB\perp BC$,若点 P 的坐标为 (2,0) ,则 | $\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$ | 的最大值为(B) A.6 B.7 C.8 D.9

(2016 年上海)已知线段 AB、CD 的长分别为 a、b(a,b>0). 若线段 AB、CD 分别在 x 轴、y 轴上滑动,且使得 A、B、C、D 四点共圆,则这些圆的圆心轨迹方程为___4 x^2 $-4y^2$ $-a^2$ $+b^2$ =0 ____

(2012A) 如图,在平面直角坐标系xOy中,菱形ABCD的边长为4,且|OB|=|OD|=6.

- (1) 求证:|OA|·|OC|为定值;
- (2) 当点A在半圆 $(x-2)^2 + y^2 = 4(2 \le x \le 4)$ 上运动,求点C的轨迹.

2012kev:(1):ABCD为菱形, :: $\triangle OAB \cong \triangle OAD$, $\triangle ABC \cong \triangle ADC$, :: O,A,C三点共线,

 $||OA| \cdot ||OC| = (|OK| - |AK|)(|OK| + |KC|)$

 $\therefore x = 5(-5 \le y \le 5), \therefore C$ 的轨迹是以M(5, -5), N(5, 5)为端点的线段

变式 1 (1) ① $Rt \triangle ABC$ 中,AB = 2,AC = 1,C为直角项点,若A、B分别在x、y轴的正半轴上滑动,则 AB的中点P的轨迹是 _______,以O为圆心,半径为1的圆在第一象限的圆弧;

$$key: \angle COA = \angle CBA, :.$$
 C的轨迹是线段 $y = \sqrt{3}x(\frac{\sqrt{3}}{2} < x \le \sqrt{3})$

2023-09-16

②已知 $\triangle ABC$ 中,AB边是长度为2a的定线段,且 $\angle ACB = \frac{2\pi}{2}$,则C点的轨迹为_

key: 圆心 AB的中垂线上,且AB的距离为 $\frac{a}{\sqrt{2}}$,半径为 $\frac{2a}{\sqrt{2}}$ 的两段优弧

③如图,已知A(-1,0)与点B(1,0),C是圆 $x^2 + y^2 = 1$ 上的动点,联结BC并延长之点D,使得|CD| = |BC|, 则AC与OD的交点P的轨迹方程为_

key1: P是 $\triangle ABD$ 的重心,设P(x, y), 则 $\begin{cases} \frac{2x_C}{3} + \frac{-1}{3} = x \\ \frac{2y_C}{3} = y \end{cases}$ $\begin{cases} x_C = \frac{1}{2}(3x+1) \\ y_C = \frac{3}{2}y \end{cases}$

$$\therefore \frac{1}{4} (3x+1)^2 + (\frac{3}{2}y)^2 = 1 \mathbb{H}[(x+\frac{1}{3})^2 + y^2] = \frac{4}{9}$$

key2:作PE//CO,则 $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AO}$,且 $|\overrightarrow{PE}| = \frac{2}{3}$,则 $E(-\frac{1}{3},0)$

:. 点*P*的轨迹方程为 $(x + \frac{1}{2})^2 + y^2 = \frac{4}{9}$

(2) ①已知圆 $O: x^2 + y^2 = 4$ 上两动点P, Q满足 $\angle POQ = 60^\circ$,点A(1,0),则 $\triangle APQ$ 的重心 的轨迹方程为 ...

 $key: |GB| = \frac{2}{3} |OH| (G(x, y))$ 为重心),则 $(x - \frac{1}{3})^2 + y^2 = \frac{4}{3}$

②已知圆 $C: x^2 + y^2 = 4$,点M在直线l: y = 2上,过点M作圆C的切线切圆C于点A,点B(0,2),则 ΔMAB 的垂心的轨迹方程为_

key: 设垂心为H,则OAHB为菱形,:| $HB \models 2$,: $x^2 + (y-2)^2 = 4(x \neq 0)$

① 已知长为1的线段AB在直线l: y=1上滑动,则 ΔOAB 的外心的轨迹方程为

$$key: \frac{1}{4} + (1 - y)^2 = x^2 + y^2 \exists \exists x^2 = \frac{5}{4} - 2y$$

(3) 已知点A(-1,0), B(1,0), Q为 $\triangle ABC$ 的外心,且 $\overrightarrow{CG} + 2\overrightarrow{OG} = \overrightarrow{0}$, $\overrightarrow{QG} / / \overrightarrow{AB}$, 则点C的轨迹方程为

$$key$$
: 设 $C(x, y)$, 则 $G(\frac{x}{3}, \frac{y}{3})$, $Q(0, \frac{y}{3})$, $\therefore 1 + \frac{y^2}{9} = x^2 + \frac{4}{9}y^2$ 即 $x^2 + \frac{1}{3}y^2 = 1(y \neq 0)$

(4) 已知 $\triangle OBC$ 的三个顶点为O(0,0)、B(1,0)、C(b,c), F、H分别为 $\triangle OBC$ 的外心与垂心,若

 \overrightarrow{FH} / \overrightarrow{OB} ,则顶点C的轨迹方程为,

key1:由己知得 $F(\frac{1}{2},t),H(b,t)$

key2:由F,G,H共线(欧拉线),且 $\overrightarrow{FG} = \frac{1}{2}\overrightarrow{GH}$,

设
$$C(x, y)$$
,则 $G(\frac{1+x}{3}, \frac{y}{3})$, $H(x, \frac{y}{3})$, $F(\frac{1}{2}, \frac{y}{3})$, $\therefore \frac{\frac{y}{3} - \frac{y}{2}}{\frac{1}{2} - \frac{x}{2}} \cdot \frac{y}{x} = -1$ 即 $3x^2 - y^2 - 3x = 0$ ($y \neq 0$)

5

2023-09-16

(2007 上海)已知圆 $M:(x-1)^2+(y-3)^2=4$,过x 轴上的点P(a,0) 存在圆M 的割线PBA,使得PA=BA,

则点 P 的横坐标 a 的取值范围是 $. 1-3\sqrt{3} \le a \le 1+3\sqrt{3}$

$$key : |PM|^2 - |PN|^2 = |PM|^2 - 9|AN|^2 = 4 - |AN|^2$$

得
$$(a-1)^2 + 9 = |PM|^2 = 4 + 2|AB|^2 \le 36$$
得 $1 - 3\sqrt{3} < a < 1 + 3\sqrt{3}$

(2009 新疆)13.已知 P 是圆 $(x-2)^2+(y-2)^2=1$ 上一动点,向量 \overline{OP} 依逆时针方向旋转 90°得到向量 \overline{OS} , 又点P关于A(3,0)的对称点为T,求 $|\overrightarrow{TS}|$ 的取值范围.

解: 设
$$P(2 + \cos \theta, 2 + \sin \theta)$$
,则 $S(-2 - \sin \theta, 2 + \cos \theta)$, 且 $T(4 - \cos \theta, -2 - \sin \theta)$ 则 $|\overrightarrow{TS}| = \sqrt{(6 + \sin \theta - \cos \theta)^2 + (4 + \sin \theta + \cos \theta)^2} = \sqrt{54 + 20 \sin \theta - 4 \cos \theta}$ $\in [\sqrt{54 - 2\sqrt{4 \times 26}}, \sqrt{54 + 2\sqrt{4 \times 26}}] = [2\sqrt{13} - \sqrt{2}, 2\sqrt{13} + \sqrt{2}]$

(2011甘肃) 4. 在平面直角坐标系中,已知点 A(1,2) 和 B(4,1). 圆 $x^2 + y^2 = 25$ 上的动点 P(x,y) 与 A,B 形

成三角形,则三角形
$$ABP$$
 的面积的最大值为______. $\frac{7+5\sqrt{10}}{2}$

(2016 年陕西) 已知直线 $l: y = \sqrt{3}x + 4$, 动圆 $\odot O: x^2 + y^2 = r^2 (1 < r < 2)$, 菱形 ABCD 的一个内角为 60°, 顶点 $A \setminus B$ 在直线 $l \perp$, 顶点 $C \setminus D$ 在 $\bigcirc O$ 上. 当 r 变化时, 求菱形 ABCD 的面积 S 的取值范围. key:由直线l的倾斜角为60°,:: $AC \perp x$ 轴,

设
$$l_{CD}$$
: $y = \sqrt{3}x + m$, 则有 $|CD| = 2\sqrt{r^2 - \frac{m^2}{4}}$, 且 $|CD| \sin 60^\circ = \sqrt{3r^2 - \frac{3m^2}{4}} = \frac{|4 - m|}{2}$

 $∴ 3r^2 = 4 - 2m + m^2 ∈ (3,12)$ (0,1) ∪ (1,4)

$$\therefore S = \frac{\sqrt{3}}{2} |CD|^2 = 2\sqrt{3}(r^2 - \frac{m^2}{4}) = \frac{\sqrt{3}}{6}(m-4)^2 \in (0, \frac{3\sqrt{3}}{2}) \cup (\frac{3\sqrt{3}}{2}, 6\sqrt{3})$$

