A.03.02 – Processos Politrópicos

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-04-03 14h53m04s

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

P é a pressão do sistema

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

- P é a pressão do sistema
- v é o volume específico do sistema

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

- P é a pressão do sistema
- *v* é o volume específico do sistema
- *n* é o expoente politrópico

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

A equação é utilizada na forma:

$$P_1v_1^n = P_2v_2^n$$

Onde:

- P é a pressão do sistema
- v é o volume específico do sistema
- *n* é o expoente politrópico

• Contrário a processos de propriedade constante

- Contrário a processos de propriedade constante
- Um parâmetro de processo, *n* é mantido constante

- Contrário a processos de propriedade constante
- Um parâmetro de processo, *n* é mantido constante
- em processos politrópicos.

$$Pv^n = \text{const.}$$

$$Pv^n = c_1$$

イロト イプト イミト イミト

$$\log\left(Pv^n=c_1\right) \rightarrow$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow$$

40 + 40 + 43 + 43 +

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log(Pn) \log v = c_2 \rightarrow$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log Pn \log v = c_2 \rightarrow \log P = c_2 - n \log v \rightarrow$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log(Pn) \log v = c_2 \rightarrow \log(Pn) \log v = c_2 \rightarrow \log(Pn) \log v \rightarrow \log(Pn) \log(Pn$$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7^a *Edição*. Seção 4-1.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

