VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV

FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING SERVICES

KVALITA VZDUCHU VE SPORTOVNÍCH ZAŘÍZENÍCH

AIR QUALITY IN SPORTS BUILDINGS

DIPLOMOVÁ PRÁCE

MASTER'S THESIS

AUTOR PRÁCE Bc. PETER FABIAN

AUTHOR

VEDOUCÍ PRÁCE Ing. OLGA RUBINOVÁ, Ph.D.

SUPERVISOR

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program N3607 Stavební inženýrství

Typ studijního programu

Navazující magisterský studijní program s prezenční formou

studia

Studijní obor 3608T001 Pozemní stavby

Pracoviště Ústav technických zařízení budov

ZADÁNÍ DIPLOMOVÉ PRÁCE

Diplomant Bc. Peter Fabian

Název Kvalita vzduchu ve sportovních zařízeních

Vedoucí diplomové práce Ing. Olga Rubinová, Ph.D.

Datum zadání

diplomové práce 31. 3. 2011

Datum odevzdání

diplomové práce 13. 1. 2012

V Brně dne 31. 3. 2011

.....

doc. Ing. Jiří Hirš, CSc. Vedoucí ústavu prof. Ing. Rostislav Drochytka, CSc. Děkan Fakulty stavební VUT

VUT FAST v Brně

Podklady a literatura

- 1. Stavební dokumentace zadané budovy
- 2. Aktuální legislativa ČR
- 3. České i zahraniční technické normy
- 4. Odborná literatura
- 5. Zdroje na internetu

Zásady pro vypracování

Osnova práce dle požadavků FAST. Vlastní text práce:
A. Analýza tématu, cíle a metody řešení
Analýza zadaného tématu, normové a legislativní podklady
Cíl práce, zvolené metody řešení
Aktuální technická řešení v praxi
Teoretické řešení (s využitím fyzikální podstaty dějů)
Experimentální řešení (popis metody a přístrojové techniky)
Řešení využívající výpočetní techniku a modelování

B. Aplikace tématu na zadané budově - koncepční řešení Návrh technického řešení ve 2 až 3 variantách v zadané specializaci (včetně doložených výpočtů) v rozpracovanosti rozšířeného projektu pro stavební povolení: půdorysy v měřítku 1:100, stručná technická zpráva (v tématech zaměřených na energetickou náročnost budou využívány metody energetického auditu a aktuální legislativy)

Ideové řešení navazujících profesí TZB (ZTI, UT, VZT) v zadané budově Hodnocení navržených variant řešení z hlediska vnitřního prostředí, uživatelského komfortu, prostorových nároků, ekonomiky provozu, dopadu na životní prostředí apod.;

C. Experimentální řešení a zpracování výsledků Experiment realizovaný v laboratoři nebo reálné budově postihující zadanou problematiku

Vše bude svázáno pevnou vazbou. Volné dokumenty (metadata, posudky, výsledky obhajoby) budou vloženy do kapsy na předních deskách, výkresy budou poskládány a uloženy jako příloha v kapse na zadní straně desek. Na posledním listě bude vlepeno CD.

Předepsané přílohy

Licenční smlouva o zveřejňování vysokoškolských kvalifikačních prací
Ing. Olga Rubinová, Ph.D.
Vedoucí diplomové práce

LICENČNÍ SMLOUVA

POSKYTOVANÁ K VÝKONU PRÁVA UŽÍT ŠKOLNÍ DÍLO

uzavřená mezi smluvními stranami:

1. Pan/paní

Jméno a příjmení: Bc. Peter Fabian
Bytem:
Narozen/a (datum a místo): 25. 6. 1986
(dále jen "autor")
a
2. Vysoké učení technické v Brně
Fakulta stavební
se sídlem Veveří 331/95, Brno 602 00
jejímž jménem jedná na základě písemného pověření děkanem fakulty:
doc. Ing. Jiří Hirš, CSc.
(dále jen "nabyvatel")
Článek 1 Specifikace školního díla
 Předmětem této smlouvy je vysokoškolská kvalifikační práce (VŠKP): disertační práce diplomová práce bakalářská práce jiná práce, jejíž druh je specifikován jako (dále jen VŠKP nebo dílo)
Název VŠKP: KVALITA VZDUCHU VE SPORTOVNÍCH ZAŘÍZENÍCH Vedoucí/ školitel VŠKP: Ing. OLGA RUBINOVÁ, Ph.D. Ústav: Ústav technických zařízení budov Datum obhajoby VŠKP:
VŠKP odevzdal autor nabyvateli v*:
□ tištěné formě – počet exemplářů 1
□ elektronické formě – počet exemplářů 1
* hodící se zaškrtněte

- 2. Autor prohlašuje, že vytvořil samostatnou vlastní tvůrčí činností dílo shora popsané a specifikované. Autor dále prohlašuje, že při zpracovávání díla se sám nedostal do rozporu s autorským zákonem a předpisy souvisejícími a že je dílo dílem původním.
- 3. Dílo je chráněno jako dílo dle autorského zákona v platném znění.
- 4. Autor potvrzuje, že listinná a elektronická verze díla je identická.

Článek 2 Udělení licenčního oprávnění NESOUHLASÍM

- 1. Autor touto smlouvou poskytuje nabyvateli oprávnění (licenci) k výkonu práva uvedené dílo nevýdělečně užít, archivovat a zpřístupnit ke studijním, výukovým a výzkumným účelům včetně pořizovaní výpisů, opisů a rozmnoženin.
- 2. Licence je poskytována celosvětově, pro celou dobu trvání autorských a majetkových práv k dílu.

3.	Autor souhlasí se zveřejněním díla v databázi přístupné v mezinárodní síti
	 ihned po uzavření této smlouvy
	□ 1 rok po uzavření této smlouvy
	□ 3 roky po uzavření této smlouvy
	□ 5 let po uzavření této smlouvy
	□ 10 let po uzavření této smlouvy
	(z důvodu utajení v něm obsažených informací)

4. Nevýdělečné zveřejňování díla nabyvatelem v souladu s ustanovením § 47b zákona č. 111/ 1998 Sb., v platném znění, nevyžaduje licenci a nabyvatel je k němu povinen a oprávněn ze zákona.

Článek 3 Závěrečná ustanovení

- 1. Smlouva je sepsána ve třech vyhotoveních s platností originálu, přičemž po jednom vyhotovení obdrží autor a nabyvatel, další vyhotovení je vloženo do VŠKP.
- 2. Vztahy mezi smluvními stranami vzniklé a neupravené touto smlouvou se řídí autorským zákonem, občanským zákoníkem, vysokoškolským zákonem, zákonem o archivnictví, v platném znění a popř. dalšími právními předpisy.
- 3. Licenční smlouva byla uzavřena na základě svobodné a pravé vůle smluvních stran, s plným porozuměním jejímu textu i důsledkům, nikoliv v tísni a za nápadně nevýhodných podmínek.
- 4. Licenční smlouva nabývá platnosti a účinnosti dnem jejího podpisu oběma smluvními stranami.

V Brně dne: 2.1.2012.		
Nabyvatel	Autor	

Abstrakt

Práce se zabývá problematikou kvality vnitřního vzduchu a řízením větrání na základě

kvality vnitřního vzduchu. Na základě analýzy koncentrace CO2, tepelně-vlhkostních zisků lze

navrhnout optimální způsob ventilace a omezit nadměrné větrání.

Vhodná aplikace pro budovy s přerušovaným nebo proměnným obsazením osobami a

proměnnou intenzitou činnosti – vhodná aplikace pro multifunkční sportovní haly a podobné

objekty

Popsané systémy jsou v současné době spíše ojedinělé, ale v blízké budoucnosti se

pravděpodobně stanou standardem.

Klíčová slova: Vnitřní kvalita vzduchu, koncentrace CO2, regulace větrání, mikroklima, škodliviny,

sportovní hala

Abstract

The work deals with indoor air quality and ventilation control based on indoor air quality.

Based on the analysis of the concentration of CO2, heat and moisture gains can suggest the

optimal way to reduce excessive ventilation

Adequate applications for buildings with intermittent or variable cast people and variable

intensity activities - suitable applications for multi-sports halls and similar buildings

The described systems are now rather rare, but in the near future are likely to become

standard.

Keywords: Indoor air quality, CO2 concentration, regulation of ventilation, microclimate,

pollutants, sports hall

Bibliografická citace: Fabian, Peter. Kvalita vzduchu ve sportovních zařízeních. Brno: Vysoké

učení technické v Brně, Fakulta stavební, 2012. 115 s. Vedoucí diplomové práce Ing. Olga

Rubinová, Ph.D.

VUT FAST v Brně

Prohlášení						
Prohlašuji, použité, informačr	že jsem diplomovou ní zdroje.	práci zpracoval	samostatně,	a že jsem	uvedl	všechny
V Brně dne	2. 1. 2012					
				podpis auto		
				Bc. Peter F	abian	

Prohlášení o shodě listinné a elektronické formy VŠKP Prohlášení: Prohlašuji, že elektronická forma odevzdané práce je shodná s odevzdanou listinnou formou. V Brně dne 2. 1. 2012 podpis autora Bc. Peter Fabian

Z	ADÁNÍ	DIPLOMOVÉ PRÁCE	2
Α	bstrakt		6
Α	bstract		6
P	rohláše	ní	7
P	rohláše	ní o shodě listinné a elektronické formy VŠKP	8
P	rohláše	ní:	8
Ú	vod		13
T	eoretic	xá část	14
1	Mik	roklima v budovách	15
	1.1	Tepelně-vlhkostní mikroklima	15
	1.1.	Činitelé rozhodující o tepelně vlhkostní pohodě prostředí:	15
	1.1.	2 Hodnocení tepelného stavu prostředí	15
	1.2	Odérové mikroklima	16
	1.3	Toxické mikroklima	16
	1.4	Aerosolové mikroklima	17
	1.5	Mikrobiální mikroklima	17
2	Ško	dliviny v ovzduší	17
3	Kva	lita vzduchu	19
	3.1	Interakce venkovního a vnitřního vzduchu	19
	3.2	Oxid uhličitý	19
	3.2.	1 Proč měřit koncentraci oxidu uhličitého	20
	3.2.	2 Produkce CO2 dýcháním	20
	3.2.	3 Účinky CO ₂ na lidký organizmus	20
4	Tecl	hnické provedení	21
5	Říze	ní intenzity větrání	22
	5.1	Výstupy čidel	22
	5.2	Principy fungování klasické ventilace	23
6	Nor	mové a legislativní požadavky	23
7	Prin	cip Větrání	24
	7.1	Volba vhodné distribuce vzduchu	25

8	Sim	ulační n	nodely	26
	8.1	konce	ntrace CO2	26
	8.1.	1	Postup výpočtu	26
	8.2	Teplot	a vzduchu v místnosti	27
	8.2.	1	Postup výpočtu	27
P	raktická	část		29
9	Dim	enzová	ní větracího zařízení	30
	9.1	Stanov	vení průtoku čerstvého vzduchu – z bilance škodlivin	30
	9.1.		Výpočet potřeby venkovního vzduchu vzhledem ke koncentraci CO ₂	
	9.2	Stanov	vení průtoku přívodního vzduchu V _p	32
	9.3		é poměry	
1	0 Prak	rtická a	plikace	33
Τ,	10.1		objektu	
	10.1	•	z haly	
	10.2		né ztráty	
	10.3	•	ně hmotnostní zátěž	
	10.5	•	é zásady řešení	
	10.5		ní úpravy vzduchu	
	10.7		puce vzduchu	
	10.8		ly kondenzátu	
	10.9		pce	
			Varianta 1 – zápasový režim	
		0.9.1.1	Distribuce vzduchu	
		0.9.1.2	Regulace VZT zařízení	
		0.9.1.3	Průběh koncentrace CO2	
		0.9.1.4	Průběh vlhkosti v hale	
		0.9.1.5	Průběh teplot	
		0.9.1.6	Návrh VZT jednotky	
	10.9		Varianta 1A – tréninkový režim	
		0.9.2.1	Průběh koncentrace CO2	
		0.9.2.2	vstupní hodnoty – stejné jako pro zápasový režim (jiná obsazenost)	
		0.9.2.3	Průběh teplot	
		0.9.2.4	Návrh VZT jednotky	
	10.9		Varianta 2	
		0.9.3.1	Distribuce vzduchu	

1	10.9.3.2 Regulace VZT zařízení	58
1	10.9.3.3 Průběh teplot	60
1	10.9.3.4 Návrh VZT jednotky	60
10.9	9.4 Varianta 3	62
1	10.9.4.1 Distribuce vzduchu	62
1	10.9.4.2 Regulace VZT zařízení	63
1	10.9.4.3 Průběh vlhkosti	64
1	10.9.4.4 Průběh teplot	65
10.10	Vyhodnocení	69
11 Reg	gulace	70
11.1	Popis regulace	71
12 Hlu	ıkové poměry – varianta 2	72
	entální část	
·		
13 Teo	pretický úvod	
13.1	Volba snímače	
13.		
1	13.1.1.1 Princip fungování	
13.		
13.	1.3 Elektroakustická čidla	77
14 Cíl ı	měření, sledované veličiny	77
15 Mě	ricí přístroj	77
15.1	Kontrolní jednotka	78
16 Mě	ření ve sportovní hale	79
16.1	fyzický model (stanoviště)	
16.2	Popis měření	
16.3	Výsledky měření	
16.4	Vyhodnocení měření	
	ření v kanceláři	
17.1	fyzický model (stanoviště)	
17.2	Popis měření	
17.3	Výsledky měření	
17.4	Vyhodnocení měření	87
18 Mě	ření ve venkovním prostředí	87

18.1	fyzický model – stanoviště	87
18.2	Vyhodnocení měření	88
19 Sro	vnání experimentální a výpočetní metody	88
19.1	výpočet koncentrace CO ₂	89
19.2	Vyhodnocení	90
20 Cell	kové vyhodnocení experimentu	90
Závěr		91
Seznam	použitých zdrojů	92
Seznam	použitých zkratek a symbolů	94
Seznam	příloh	96
Přílohy		97
P1 – výp	očet tepelných ztrát (ČSN EN 12831)	98
P2 - výpo	očet tepelné zátěže	99
P3 – Výp	oočty - varianta 1	102
P4 – Výp	oočty - varianta 2	112
P5 – Výn	nočty - varianta 3	114

Úvod

Jedním ze základních požadavků na VZT je dostatečné větrání vzduchem o vysoké kvality. Nadměrné větrání však vede ke zvýšené spotřebě energie. Ve větraných a klimatizovaných prostorech je řízení kvality vzduchu jedním z úsporných opatření. Řízena je intenzita větrání, daná poměrem průtoku větracího venkovního vzduchu a objemu větraného prostoru

Při absenci účinného větrání se zvyšuje vlhkost vzniklá lidskou aktivitou, kvalita vzduchu se rychle zhoršuje, roste koncentrace CO2 a nepříjemných odérů. Bylo ukázáno, že v obytných budovách, kde jsou lidé nejvýznamnějším zdrojem škodlivin, je rozhodující kritérium kvality vnitřního vzduchu koncentrace oxidu uhličitého.

Pokud chceme mít větrání a kvalitu vnitřního prostředí pod kontrolou a nechceme jej ponechat náhodným vlivům (síla větru, rozdíl venkovní a vnitřní teploty) nebo našim nespolehlivým smyslům, musíme použít řízené nucené větrání.

Účelné je řídit intenzitu větrání podle zátěže větraných prostorů škodlivinami, produkovanými přítomnými osobami. Řízením kvality vzduchu výše uvedeným způsobem umožňuje přizpůsobit větrání (průtok venkovního vzduchu) hygienickým požadavkům a tím výrazně snížit spotřebu energie.

13

Teoretická část

1 Mikroklima v budovách

Vnitřní prostředí neboli mikroklima, je omezená část životního prostředí, jehož stav formují agencie představující energetické a hmotnostní toky mezi dvěma prostředími. Dle působících agencií lze interní mikroklima budov dělit na: tepelné, světelné, akustické a na kvalitu vnitřního vzduchu (tj. mikroklima vlhkostní, odérové, aerosolové, toxické, mikrobiální). [5]

Kvalita vzduchu v budově závisí od:

- kvality vnějšího vzduchu,
- objemu vzduchu připadajícího na jednu osobu v místnosti,
- intenzity výměny vzduchu
- množství škodlivin ve vnitřním prostředí budov a to závisí od

přítomnost osob a jejich metabolizmus,
pracovní aktivity lidí
stavebních materiálů a zařizovacích předmětů,
kvalita čištění a údržby interiéru.

1.1 Tepelně-vlhkostní mikroklima

Složka prostředí tvořená tepelnými a vlhkostními toky. Je nejdůležitější složkou pro zajištění vnitřního prostředí budov, především z hlediska zdraví a spokojenosti lidí. Teplota a vlhkost vzduchu se v budovách úzce vzájemně ovlivňují a podmiňují. [2]

1.1.1 Činitelé rozhodující o tepelně vlhkostní pohodě prostředí:

- teplota vzduchu
- teplota okolních ploch event. střední radiační teplota
- rychlost proudění vzduchu v oblasti pobytu člověka
- vlhkost vzduchu
- tepelně izolační vlastnosti oděvu
- tělesná aktivita člověka [1]

1.1.2 Hodnocení tepelného stavu prostředí

Tepelná pohoda je tradičním faktorem hodnocení stavu vnitřního prostředí. Tepelnou pohodu lze charakterizovat jako stav, kdy prostředí odnímá člověku jeho tepelnou produkci v rozmezí jeho termoregulace. Vzhledem k individuálním odchylkám fyziologických funkcí lidí nelze zajistit pocit pohody v místnosti všem lidem. Vždy se vyskytuje přibližně 5 % nespokojených.

Tepelná pohoda prostředí závisí na řadě činitelů, pro zjednodušení hodnocení tepelného stavu prostředí se používají odvozené veličiny zahrnující společný účinek několika činitelů určujících tepelný stav prostředí (např. operativní teplota nebo výsledná teplota) [3]

Pro hodnocení tepelného stavu prostředí se také používá norma ČSN ISO 7730, která hodnotí tepelný stav prostředí pomocí ukazatelů PMV a PPD.

- Ukazatel PMV předpovídá střední tepelný pocit podle sedmistupňové stupnice od
 -3 až +3. Ukazatel PMV je možné vypočíst z energetického výdeje, tepelného odporu použitého oděvu, teploty vzduchu, střední radiační teploty, vlhkosti a rychlosti proudění vzduchu
- Ukazatel PPD předpovídá procentuální podíl osob, které budou nespokojeny s tepelnými podmínkami prostředí. [3]

1.2 Odérové mikroklima

Složka prostředí tvořená odéry - Odéry jsou plynné složky ovzduší vnímané jako vůně nebo zápachy, produkované člověkem nebo jeho činností, příp. uvolňované ze stavebních konstrukcí.

Do interiéru budov vstupují odéry jednak z venku, jednak zevnitř - hlavně z činnosti člověka. V interiéru vzniká při pobytu lidí CO2 a tělesné pachy - antropotoxiny, které jsou obecně indikátorem kvality vnitřního vzduchu. Zvyšování koncentrace odéru zhoršuje významně kvalitu vzduchu.

Odérová složka určuje výměnu vzduchu v interiéru obytného prostředí. Zásadním způsobem lze kvalitu odérového mikroklimatu v budovách ovlivnit pouze dostatečným přívodem čerstvého vzduchu. [2],[7]

1.3 Toxické mikroklima

Složka prostředí tvořená toky plynných toxických látek s patologickými účinky, které exponují subjekt a spoluvytvářejí jeho celkový stav. Charakteristickými jsou zejména oxidy síry (SOx), oxidy dusíku (NOx), oxid uhelnatý (CO), ozon (O3), smog, formaldehyd atd. V interiéru budov je zdravotně nejzávažnějším plynem CO. [7]

1.4 Aerosolové mikroklima

Složka prostředí tvořená aerosolovými toky v ovzduší, které exponují subjekt a spoluvytváří tak jeho celkový stav. Aerosoly rozumíme pevné částice (prachy) nebo kapalné částice (mlhy) rozptýlené v ovzduší.,[2],[7]

1.5 Mikrobiální mikroklima

Je tvořeno mikroby neboli mikroorganismy nacházejícími se v ovzduší - pyly, bakterie, viry, plísně a jejich spory, které exponují subjekt a spoluvytvářejí tak jeho celkový stav. Vážným problémem se v poslední době stávají alergické syndromy na spory různých druhů plísní a pylové částice. Kvalita mikrobiálního mikroklimatu se hodnotí podle únosné koncentrace mikrobů. Dosud nejúčinnějším způsobem, jak snížit mikrobiální koncentrace v ovzduší je filtrace [1],[7]

2 Škodliviny v ovzduší

Látky, které znečišťují vnitřní prostředí, označujeme souhrnně jako škodliviny. Vyskytují se ve všech formách – v plynné, kapalné i tuhé.

Hygienické limity látek v ovzduší pracovišť a způsoby jejich měření stanovuje Nařízení vlády č.361/2007 Sb. Pro plyny, páry a aerosoly uvádí přípustné expoziční limity PEL a nejvyšší přípustné koncentrace NPK–P. [3]

Oxid uhličitý

Oxid uhličitý je nejběžnější škodlivinou ovzduší obytných budov. Jeho koncentrace jsou vždy vyšší v interiérech než ve venkovním prostředí. **Zdrojem tohoto plynu je především člověk**, jeho metabolismus, dýchací a termoregulační pochody. Současně se zvyšující se koncentrací oxidu uhličitého se pak zvyšuje i množství vodní páry v ovzduší a tím i relativní vlhkost vzduchu. Počet osob přítomných v místnosti, velikost prostoru a nedostatečné větrání jsou hlavní příčinou zvyšování koncentrace oxidu uhličitého. [12], [7]

Oxid uhelnatý

Oxid uhelnatý je bezbarvý plyn bez chuti a zápachu, proto i životu nebezpečné zvyšování jeho koncentrací je lidskými smysly nepostřehnutelné. Hlavním zdrojem tohoto plynu ve vnitřním prostředí je nedokonalé spalování - kamna na pevná paliva, plynové spotřebiče bez odtahu, krby,

nevětrané kuchyně s plynovým sporákem. Významným zdrojem CO je také kouření tabákových výrobků. [12]

Oxidy dusíku

Oxid dusičitý a oxid dusnatý se ve vnitřním prostředí mohou nacházet v koncentracích způsobující prokazatelný vliv na zdraví. Základním zdrojem oxidů dusíku jsou emise z automobilové dopravy a ze stacionárních zdrojů spalujících fosilní paliva. Zdrojem ve vnitřním prostředí je používání plynu pro vaření, vytápění a ohřev teplé vody. [12]

Oxidy síry

Kamna na uhlí, kerosin a naftu jsou zdrojem oxidu siřičitého ve vnitřním prostředí, i když převažující komponentou jeho zvýšených koncentrací v bytech je venkovní ovzduší v oblastech s výskytem tepelných elektráren. [12]

Formaldehyd

Formaldehyd je plynná složka, jenž se ve vnitřním prostředí uvolňuje ze stavebních materiálů, kosmetických, čistících a desinfekčních prostředků, nábytku, podlahovin, koberců, tapet a laků. Je obsažen v mnoha mořidlech na dřevo. Formaldehyd je též produktem nedokonalého spalování paliv, tabákového dýmu a meziproduktem fotochemické oxidace uhlovodíku v atmosféře. Venkovní znečištění, zejména z dopravy, nemá na výslednou koncentraci ve vnitřním prostředí významný vliv. Výsledná koncentrace formaldehydu v interiéru závisí značně na teplotě a vlhkosti, na stáří a množství nábytku. [2]

• Organicko - chemické látky

Jsou to sloučeniny schopné za přítomnosti slunečního záření tvořit fotochemické oxidanty reakcí s oxidy dusíku. V naprosté většině jde o tzv. těkavé organické látky (VOC - volatile organic compound). Soubor těchto látek (bez formaldehydu) produkovaných v interiéru člověkem, stavebními materiály a dalšími zařízeními je označován TVOC (the Total of all Volatile Organic Compounds).

Hlavním zdrojem těkavých organických látek v interiérech je kouření, používané čistící prostředky, deodoranty, kosmetické přípravky, osvěžovače vzduchu, vonné oleje, nátěry, barvy a laky, koberce, podlahoviny, fungicidy, desinfekční, deratizační a desinfekční prostředky, rozpouštědla a lepidla při rozsáhlých rekonstrukcích místností či budov. Odstranění organických chemických látek z ovzduší je možné pouze dostatečným větráním. [12]

3 Kvalita vzduchu

Olf udává intenzitu zdroje znečištění ovzduší. Jeden olf je *produkce biologických příměsí* standardním člověkem (koná lehkou činnost kancelářského charakteru, vsedě, při tepelné pohodě, s hygienickým standardem 0,7 koupelí za den). Jiné zdroje znečištění jsou vyjadřovány počtem osob (olfů), které způsobí stejně pociťované znečištění.

Koncentrace škodlivin závisí na mohutnosti zdroje a na intenzitě větrání (na ředění příměsí větráním). Jeden **decipol** je znečištění (koncentrace společně působících nespecifických příměsí), způsobené zdroji o mohutnosti jeden olf při přívodu 10 l/s větracího vzduchu.

Hygienické meze (decipoly) jsou vyjádřitelné statisticky pravděpodobným procentem nespokojených (PD) přítomných osob. Pro běžně branou přípustnou mez 15 % nespokojených je mez znečištění právě jeden decipol. [4]

3.1 Interakce venkovního a vnitřního vzduchu

Kvalita vnitřního vzduchu závisí na kvalitě venkovního ovzduší, neboť do budov přivádíme venkovní vzduch větráním. Větrání venkovním vzduchem sice odvádí škodliviny vzniklé v budově, ale přináší s sebou do interiéru škodliviny z venkovního ovzduší. Zhoršená kvalita vnějšího ovzduší je především výsledek spotřeby energie v dopravě, průmyslu a užívání budov.

Význam má nejen množství přiváděného venkovního vzduchu, ale také jeho kvalita. Přiváděním venkovního vzduchu do budovy dochází k ředění škodlivin vznikajících v interiéru, ale současně jsou venkovní škodliviny dopravovány do budov. Nemusí tedy platit, že intenzivním větráním v silně znečištěných lokalitách dosáhneme vyšší kvality. Na druhou stranu škodliviny vně budovy a škodliviny produkované uvnitř budovy nemusí být stejné a pak by intenzivní větrání bylo přínosné. [3]

3.2 Oxid uhličitý

Jako kriteriální a exaktně měřitelná hodnota se všeobecně udává koncentrace CO₂. Pettenkoferovo kritérium 1000ppm CO₂ (Max von Pettenkofer, 1877) a pro odstranění pocitu vydýchaného vzduchu z produkce tělesných odérů pak dokonce 700ppm CO₂

Nejvýše přípustná hodnota CO₂, která by nikdy neměla být překročena (v průběhu celých 24 h) je koncentrace 1200 ppm (2160 mg/m³), tato hodnota se blíží hodnotě 30 % nespokojených neadaptovaných osob. [3],

Na odstraňování běžných tělesných pachů klasický Pettenkoferův normativ tedy požaduje 25 m3.h-1 na osobu, tato hodnota je stále základní veličinou standardů většiny vyspělých států.

3.2.1 Proč měřit koncentraci oxidu uhličitého

Oxid uhličitý je tedy přirozenou plynnou součástí zemské atmosféry. Koncentrace CO_2 v přírodě je okolo 0.04 % neboli 400 ppm. Vyšší koncentrace CO_2 ve venkovním prostředí se vyskytují v okolí dopravních tepen s vysokým provozem, v okolí průmyslových zón, spaloven apod.

Koncentrace CO₂ slouží jako indikační veličina přítomnosti osob a jako reprezentativní ukazatel znečištění mikroklimatu a velmi dobře koresponduje s počtem lidí pobývajících v těchto uzavřených prostorách. Proto se využívá možnost ventilace na základě spojitého měření koncentrace oxidu uhličitého ve vzduchu.

Zvyšování koncentrace CO₂ ve vzduchu je vždy spojeno s jistým poklesem obsahu kyslíku. Tento pokles však nemá nepříznivý vliv na dýchání.

Bez odpovídající ventilace pak logicky dochází v uzavřených prostorách k nárůstu koncentrace CO₂. Hodnota koncentrace oxidu uhličitého ve vzduchu je tedy možné považovat za důležitý ukazatel kvality vzduchu v uzavřených prostorách. [12]

3.2.2 Produkce CO2 dýcháním

Procesem dýchání dochází ke změně vdechnutého kyslíku na oxid uhličitý, vydechnutý vzduch dospělého člověka obsahuje průměrně okolo 35 000 až 50 000 ppm CO₂ (cca 100x vyšší koncentrace než ve venkovním vzduchu).

- produkce CO2 19 l/h -(EUR 14 449 EN) osoba v klidu
- závisí na energetickém výdeji intenzita dýchání je přímo úměrná energetickému výdeji

3.2.3 Účinky CO₂ na lidký organizmus

Přestože je oxid uhličitý neviditelný a bez zápachu, je jeho zvýšená úroveň zřejmá, protože dochází k únavě a k poklesu schopnosti koncentrace. Zejména v prostorách s větším množstvím lidí, jako jsou na příklad školy, kanceláře, divadla, zdravotnická zařízení, je negativní dopad zvýšené koncentrace CO₂ ve vzduchu velmi patrný.

Koncentrace CO₂ do 5000 ppm nepředstavují vážné nebezpečí pro lidské zdraví. Ovšem podle výzkumů dochází při zvýšené koncentraci CO₂ k ospalosti, letargii, únavě a poklesu schopnosti koncentrace a k nepříjemnému pocitu vydýchaného vzduchu.

cca 350 ppm	úroveň venkovního prostředí
do 1 000 ppm	doporučená úroveň CO2 ve vnitřních prostorách
1 200-1 500 ppm	doporučená maximální úroveň CO2 ve vnitřních prostorách
1 000-2 000 ppm	nastávají příznaky únavy a snižování koncentrace
2 000-5 000 ppm	nastávají možné bolesti hlavy
5 000 ppm	maximální bezpečná koncentrace bez zdravotních rizik
> 5 000 ppm	nevolnost a zvýšený tep
> 15 000 ppm	dýchací potíže
> 40 000 ppm	možná ztráta vědomí

[10]

4 Technické provedení

Pokud chceme mít větrání a kvalitu vnitřního prostředí pod kontrolou a nechceme jej ponechat náhodným vlivům (síla větru, rozdíl venkovní a vnitřní teploty) nebo našim nespolehlivým smyslům, musíme použít řízené nucené větrání. Při použití nuceného větrání budeme mít pod kontrolou jak množství větraného vzduchu, tak dobu větrání

Čidla kvality ovzduší – Q čidla

Čidla kvality ovzduší jsou vhodným indikátorem nespecifického znečištění ovzduší v neprůmyslových objektech. Reaguje na řadu plynů (H, CO, CH - uhlovodíky, alkoholy, estery, benzol, formaldehyd) - látky, které jsou podstatnou součástí VOC (Volatile Organic Components - těkavé organické látky) a také na vodní páru. VOC zahrnují také výpary z materiálů a špatně udržované vzduchotechniky (zejména filtrů). Nereaguje na CO₂, který je inertním plynem. Čidla kvality se cejchují metanem

Čidla Q jsou nejvhodnější v aplikacích, kde se mohou vyskytovat periodicky neobvyklé příměsi, nevázané na přítomnost lidí. Čidla mohou aktivovat alarm nebo spustit filtraci a pod. Tato čidla nemohou zjistit, zda unikající látky jsou jedovaté nebo relativně neškodné. Indikují pouze celkovou změnu koncentrací příměsí. [4]

• Čidla CO₂

Reaguje pouze na CO_2 – pracuje na různých principech. Čidla CO_2 jsou nejvhodnější k regulaci přívodu venkovního vzduchu v neprůmyslových budovách, kde dávky větracího vzduchu na osobu jsou požadovány normami nebo předpisy a musí být dodržovány.

Oba typy čidel mohou působit doplňkově. Např. v budově, kde je větrání řízeno podle CO₂, ve večerních hodinách, kdy je obsazení a větrání budovy velmi malé, začne práce uklízečů. Po zahájení čištění prostředky, na které reaguje čidlo Q, aktivuje se větrání na dobu, za kterou se budova zcela vyvětrá. [4]

5 Řízení intenzity větrání

Regulaci větrání dle kvality vnitřního vzduchu je vhodné navrhnout v objektech s proměnlivou obsazeností během dne, s velkoprostorovými místnostmi – společenské místnosti, kulturní haly, sportovní haly, kiná....

V objektech s přerušovaným nebo proměnným obsazením budovy osobami s proměnnou intenzitou činnosti lze omezit nadměrné větrání a tím dosáhnout úspor energie (na úpravu a na dopravu).

5.1 Výstupy čidel

Čidla všech typů mají obvykle spojitý napěťový výstup (0-10 V) nebo proudový výstup (0-20 / 4-20 mA), pomocí kterého předávají informaci o hodnotě koncentrace CO_2 ve vzduchu nadřízenému ventilačnímu systému.

MaR

Současné technologie dovolují snadno a relativně levně trvale měřit koncentraci CO_2 ve vzduchu a na základě získaných hodnot pak řídit ventilační systémy tak, aby byla zajištěna dobrá kvalita vzduchu. MaR měří s koncentraci CO_2 pro spojité řízení výkonu ventilace

Větrání (přívod venkovního vzduchu) je možné přizpůsobovat stupni znečištění vzduchu přítomností lidí několika způsoby:

- Přerušováním chodu ventilátorů při konstantním průtoku, které může řídit nejjednodušší dvoupolohový regulátor.
- Řízením mísicího poměru venkovního a zpětného vzduchu klapkami.
- Plynulou změnou průtoku přiváděného vzduchu do místností, tj. změnou intenzity výměny vzduchu, při stálém podílu vzduchu venkovního. Směšovací poměr lze měnit např. podle venkovní teploty v rozmezí od hygienického minima v zimním a letním extrému (kdy je v činnosti ohřívač resp. chladič) až do 100 % v přechodném období nebo při nočním vychlazování. Používají se ventilátory s proměnnými otáčkami (frekvenčními měniči nebo změnou napětí).

22

5.2 Principy fungování klasické ventilace

Mnoho ventilačních systémů pracuje na základě časového řízení, to znamená, že je ventilace nastavena na určitý konstantní výkon. Jedná se o větrání s výměnou daného množství kubických metrů vzduchu na jednoho člověka za hodinu, nezávisle na aktuálním počtu lidí ve ventilovaném prostoru. Jednoduše řečeno - v některých případech se větrá nedostatečně, a naopak jindy se ventiluje, i když to není vůbec potřeba. [12]

6 Normové a legislativní požadavky

Požadavky na kvalitu vnitřního prostředí budov upravují platné právní předpisy. Výchozími předpisy jsou následující zákony, vyhlášky, nařízení vlády a normy.

- zákon č. 183/2006. o územním plánování a stavebním řádu (stavební zákon)
- zákon č. 262/2006 Sb., zákoník práce (nahrazuje zákon č. 155/2000 Sb.)
- zákon č. 309/2007 Sb., kterým se upravují další požadavky bezpečnosti a ochrany zdraví při práci v pracovněprávních vztazích a o zajištění bezpečnosti a ochrany zdraví při činnostech nebo poskytování služeb
- vyhláška č. 6/2003 Sb., kterou se stanoví hygienické limity chemických, fyzikálních a biologických ukazatelů pro vnitřní prostředí pobytových místností některých staveb
- nařízení vlády č. 148/2006 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací
- nařízení vlády č. 361/2007 Sb., kterým se stanoví podmínky ochrany zdraví při práci (koncentrace škodlivin)
- CR 1752 (1998) Ventilation for Buildings: Design Criteria for the Indoor Environment.

Požadavky na kvalitu vnitřního prostředí budov jsou obecně dány zákony, jejich podrobnější rozpracování včetně limitů pro jednotlivé faktory pak najdeme v příslušných prováděcích předpisech, tj. nařízeních vlády a vyhláškách.

V oblastech, které právně závaznými předpisy pokryty nejsou, máme ještě k dispozici řadu technických norem - to jsou však pouze doporučení, k jejichž respektování není současným právním systémem nikdo nucen. Z uvedených přehledu vyplývá, že požadavky na jednotlivé faktory vnitřního prostředí budov, především na mikroklima a současně i na větrání nejsou. [20]

7 Princip Větrání

obecná rovnice větrání

$$m\check{s}.d\tau + V_{p}.k_{1}.d\tau - V_{0}.k_{2}.d\tau = O.dk$$

k ₁	koncentrace ve venkovním prostoru	mg/m ³
m _s	zdroj škodliviny	mg/s
0	objem prostoru	m ³
k ₂	koncentrace ve vnitřním prostoru	mg/m³
V _p ,V _o	průtok vzduchu	m³/s

• Obecná rovnice využívaná pro výpočty

$$k_2 = k_1 + (k_0 - k_1) \cdot e^{-\frac{V}{O} \cdot \tau} + \frac{m \check{s}}{V} (1 - e^{-\frac{V}{O} \tau})$$

k ₁	koncentrace ve venkovním prostoru	mg/m ³
m _s	zdroj škodliviny (konst.průtok)	mg/s
0	objem prostoru	m ³
k ₀ ,k ₂	koncentrace ve vnitřním prostoru	mg/m ³
	(k0 na začátku, k2 na konci časového kroku)	
V	průtok vzduchu	m³/s
τ	časový krok	S

Obr. 1 - Princip větrání

Podle uvedeného vztahu o produkci škodlivin je patrné, že průběh koncentrace má exponenciální závislost, která je v době náběhu produkce škodlivin značně ovlivněna objemem místnosti. Kvalita vzduchu v interiéru závisí zejména na kvalitě vnějšího ovzduší, objemu vzduchu, který připadá na osobu v místnosti, výměně vzduchu a množství vzdušných škodlivin. [3]

□ zjednodušená (upravená rovnice) : pro koncentraci ve vnitřním prostoru shodnou s venkovní

$$k_2 = \frac{m\check{s}}{V}(1 - e^{-\frac{V}{O}\tau})$$

□ doba, za kterou je dosažena koncentrace k2

$$\tau = \frac{O}{V} \ln . \frac{m_{s}}{m_{s} - V.k_{2}}$$

□ Průtok, který je potřebný pro udržení maximální úrovně koncentrace

$$V = \frac{m\check{s}}{k_2 - k_1}$$

7.1 Volba vhodné distribuce vzduchu

Místnosti jsou větrány nerovnoměrně. Části prostoru, do kterých se přivádí vyústkami vzduch, jsou větrány větší intenzitou a je v nich koncentrace škodlivin nižší než průměrná. Naopak v nedostatečně větrané části jsou koncentrace vyšší K rozvrstvení škodlivin přispívá také odchylka jejich hustoty od hustoty vzduchu.

Účelné je umístit odsávací otvory do míst zvýšené koncentrace škodlivin a přivádět vzduch do pracovní oblasti větraného prostoru. Přívod vzduchu je nutné navrhnout z hlediska vhodných obrazů proudění.

K posouzení hospodárnosti organizace výměny vzduchu a odvodu škodlivin z větraného prostoru se zavádí stupeň provětrání daný poměrem koncentrací škodlivin v odváděném vzduchu Co a průměrné koncentrace v pracovní oblasti. [2]

$$\eta = \frac{co}{cpo} \le 1$$

Obr. 2 - Účinnosti větrání

8 Simulační modely

Simulace je napodobení nějaké skutečné věci, stavu nebo procesu. Samotný akt simulace něčeho obecně znamená zobrazení některých klíčových vlastností nebo chování vybraných fyzikálních, nebo abstraktních systémů. [18]

Diskrétní simulace jsou charakteristické tím, že se proměnné v modelu mění skokově (nespojitě) pouze nastala-li určitá událost. Model (zjednodušení složité reality) nad kterým simulace probíhá, pak obsahuje chronologicky navazující děje. Díky výsledkům získaným ze simulace můžeme zjišťovat chování složitého dynamického systému, jehož stav se mění v čase, za různých podmínek. [19]

8.1 koncentrace CO2

Použitím PC modelu je též možné zjistit potřebné množství větracího vzduchu na základě znalosti provozu objektu a množství vznikajících škodlivin, kvality vnějšího vzduchu a požadované kvality vzduchu v interiéru. Simulace dále umožňuje také z kvality vnějšího vzduchu a množství větracího vzduchu analyzovat kvalitu vnitřního vzduchu. [3]

8.1.1 Postup výpočtu

Okrajové podmínky (množství větracího vzduchu, přítomnost lidí) jsou nepravidelné. Celodenní cyklus se rozdělí na menší časové úseky, v nichž jsou příslušné toky škodlivin uvažovány jako ustálené. Pro sledovaný časový úsek se stanovuje koncentrace na jeho konci, jež je současně počáteční koncentrace pro úsek následující. [21]

$$k_2 = k_1 + (k_0 - k_1) \cdot e^{-\frac{V}{O} \cdot \tau} + \frac{m \check{s}}{V} (1 - e^{-\frac{V}{O} \tau})$$

Vztah pro výpočet byl popsán v předchozích kapitolách

8.2 Teplota vzduchu v místnosti

Metoda elementárních tepelných bilancí (prof. J.Chyský)

Celý proces je uvažován jako kvasistacionární. To znamená, že ustálený stav nastane, až se po sobě opakuje dostatečný počet zcela stejných dnů při stejných tepelných zátěžích. Konečné teploty v jednom dni se musí shodovat s počátečnými teplotami.

V místnosti jsou stěny, které mají funkci akumulátorů tepla. Na ně dopadá repelný tok sáláním. To je způsobeno jednak sluneční radiaci odraženou oslunňými povrchy a sáláním povrchů, které mají jinou teplotu, než je teplota okolních stěn. Tím se tyto stěny a svým povrchem přenášejí teplo konvekci do vzduchu v místnosti. Větrací vzduch se od všech zdrojů tepla ohřívá a příslušné zisky tepla se převázně větracím vzduchem odvádějí. Stěny jsou v podstatě nahrazeny jedním tepelným odporem a jednou tepelnou kapacitou. Tím se předpokládá, že teploty stěny jsou ve všech hloubkách stejné. Je to idealizace pro řešení nestacionárního vedení tepla v tělesech. Pro ohřev vzduchu se počítá s dalšími menšími zdroji tepla, jako je prostup tepla stěnami a okny, osvětlením a lidmi. [21]

8.2.1 Postup výpočtu

Okrajové i časové podmínky (sluneční svit, teploty větracího vzduchu, přítomnost lidí) jsou zcela nepravidelné, je třeba celodenní cyklus rozdělit na menší časové úseky, v nichž jsou příslušné tepelné toky uvažovány jako ustálené. Pro sledovaný časový úsek se stanovuje teplota na jeho konci, jež je současně počáteční teplotou pro úsek následující. [21]

- volí se teplota tp₀ a dopočte se teplota tv₁
- z teploty tv₁ a tp₀ se vypočte tp₁
- stejným způsobem se pokračuje až do podledního časového úseku cyklu, zněj se vypočte nová hodnota tp₀. Ta se srovná s původně zvolenou tp₀

konstanty pro příslušný časový úsek

$$\begin{split} k_{ai} &= \alpha_k . S - 6.2 v. n_{ii} - \alpha . S_s. v \\ k_b &= M.c / 3600 - 0.5. \alpha_k . S \\ k_c &= M.c / 3600 + 0.5. \alpha_k . S \\ k_{di} &= v. (\sum Q_i + 223. n_{ii} + \alpha . S_s. t_s) \\ k_{ei} &= k_{ai} + 6.2. n_{ii} + \alpha . S_s + k_e. S_e + k_o. S_o + V_A. \rho_A. c_A / 3600 \\ k_{fi} &= 0.5. \alpha_k . S. t p_{(i-1)} + (1-v). (\sum Q_i + 223. n_{ii} + 8. S_s. t p) + k_e. S_e. t_{ri} + k_o. S_o. t_{ei} + t_{xi}. V_A. \rho_A. c_A / 3600 \end{split}$$

teplota vzduchu v čase i

$$t_{vi} = \frac{\alpha_k.S.(k_b.tp_{(i-1)} + k_{di}) + 2k_{fi}.k_c}{2.k_{ei}.k_c - \alpha_k.S.k_{ai}}$$

teplota stěny v čase i

$$t_{pi} = \frac{k_{ai}.t_{vi} + k_b.tp_{(i-1)} + k_{di}}{k_c}$$

• význam symbolů

název	ozn.	jednotka
plošná hmotnost	m	kg/m²
měrná tepelná kapacita akumulač. stěn	С	J/kg/K
podíl sálání na přenosu tepla do povrchu stěny	ν	
součinitel přestupu tepla konvekcí	α_{k}	W/(m ² .K)
celkový součinitel přestupu tepla	α	W/(m ² .K)
hustota vzduchu	ρ_{A}	kg/m³
měrná tepelná kapacita vzduchu	C _A	J/(kg.K)
hmotnost akumulač. stěn	М	kg

Tabulka 1 - význam symbolů - metoda ETB

Praktická část

9 Dimenzování větracího zařízení

Výkon větracího zařízení se stanovuje s přihlédnutím k jeho druhu. Při celkovém větrání je prvořadým cílem vytvořit přívodem vzduchu vhodné podmínky pro pobyt člověka, případně pro technologický proces. Spolu s přívodem čerstvého vzduchu je třeba odvádět vzduch znečistěný škodlivinami, nebo který je nadměrně teplý nebo vlhký. [2]

Vzduchotechnika ve sportovních halách má dvojí úkol: zajišťovat větrání - čistotu vzduchu (výměna vzduchu znehodnoceného za vzduch čerstvý, venkovní) a tepelnou pohodu. Oba tyto úkoly mohou mít různé požadavky na přívod vzduchu. [2]

Nedostatečné dimenzování způsobí, že zařízení nevyhovuje při špičkových zátěžích a předimenzovaná zařízení jsou především zbytečně nákladná. Při dimenzování klimatizačních zařízení je třeba znát tyto údaje:

- Stanovení objemového průtoku venkovního vzduchu Ve podle požadavků na čistotu vzduchu
 - a) **z bilance škodlivin** ve větraném prostoru (případně vlhkostní bilance)
 - b) z dávek vzduchu na osobu objekty s kolísajícím počtem návštěvníků, při jejich omezené délce pobytu. (obchodní domy, sport. haly). V těchto objektech je účelné počítat s maximálním počtem lidí, uvažovat však pouze 20-30 m3/h na osobu. Špičkové zátěže škodlivinami jsou zde jen časově omezené a jsou vyrovnány vzduchovou kapacitou prostoru.
 - c) na základě intenzity výměny venkovního vzduchu. Pro některé druhy místností bez větších zdrojů škodlivin, jako např. šatny, obytné místnosti apod., se navrhují větrací zařízení na základě doporučených hodnot intenzity výměny venkovního vzduchu n, tj. poměru průtoku venkovního vzduchu přiváděného do místnosti k objemu místnosti
- stanovení celkového objemu přiváděného vzduchu V_n
 - a) z tepelné bilance větraného prostoru. Eliminace tepelné zátěže v letním období a úhrada tepelných ztrát v zimním období.
 - b) $V_p = V_e + V_c$

9.1 Stanovení průtoku čerstvého vzduchu – z bilance škodlivin

Výpočet V_e podle množství škodliviny M_{\S} uvolňovaného do větraného prostoru (resp. spotřeby u kyslíku) . Výchozím požadavkem je, aby koncentrace škodliviny v odváděném vzduchu nepřevyšovala přípustnou koncentraci. Bilanční rovnice pro hmotnostní tok škodliviny v ustáleném stavu má tvar [3]

Množství venkovního vzduchu pro udržení relativní vlhkost

produkce vlhkosti	m _š	40 g/h
hustota vzduchu (t=20°C)	ρ	1,205 kg/m3
měrná vlhkost vzduchu v interiéru	Xi	6 g/kg
měrná vlhkost vzduchu v exteriéru	x _e	3,5 g/kg

Tabulka 2 - vstupní hodnoty (výpočet průtoku vzduchu z produkce vlhkosti)

$$V = \frac{m\ddot{s}}{\rho(xi - xe)} = 13.3m^3 / h$$

• Množství venkovního vzduchu vzhledem k potřebě 02

spotřeba kyslíku	m	104,75 l/h
koncentrace kyslíku ve venkovním přiváděném vzduchu	k	20,95%
minimální množství potřebné k dýchání	k _{min}	11%

Tabulka 3 - vstupní hodnoty (výpočet průtoku vzduchu ze spotřeby kyslíku)

$$V = \frac{m}{k - k_{\min}} = 1052l / h = 1.1m^3 / h$$

• Množství venkovního vzduchu vzhledem k produkci CO₂

produkce CO2 dýcháním	m	19 l/h
max. konc. v interiéru ppm dle EN CR 1752 CEN pro třídu "C	k _{max}	1200ppm
koncentrace CO₂ ve venkovním přiváděném vzduchu	k	350ppm

Tabulka 4 - vstupní hodnoty (výpočet průtoku vzduchu z koncentrace CO2)

$$V = \frac{m}{k_{\text{max}} - k} = 22,4m^3 / h$$

Z výše uvedeného vyplívá: v budovách, kde jsou lidé nejvýznamnějším zdrojem škodlivin, je rozhodující kritérium kvality vnitřního vzduchu koncentrace oxidu uhličitého – pokud známe průběh vývinu koncentrace v čase, je to nejpřesnější způsob pro stanovení množství přívodního venkovního vzduchu. [9]

9.1.1 Výpočet potřeby venkovního vzduchu vzhledem ke koncentraci CO₂ Přepočet jednotek:

- 1 mg / I = 556 ppm; 1 ppm = 1,8 mg / m^3 ;
- 1 obj. % = 10000 ppm; 10 obj. % = 100000 ppm;

Při kontinuálním větrání v ustáleném stavu lze vyjádřit množství produkované škodliviny v jednotkách ppm v prostoru. Tuto vypočtenou hodnotu lze porovnat s dovolenou maximální hodnotou. Na základě toho lze také usuzovat na vhodné hodnoty výměny vzduchu s ohledem na konkrétní škodlivinu. Avšak jde jen o výpočet, ve kterém musíme předpokládat kontinuální a neměnný stav produkce CO2 člověkem. Nicméně produkce oxidu uhličitého člověkem je zcela věcí individuální, závislou na tělesné stavbě, věku a aktivitě člověka aj. Pomocí výpočetního vztahu můžeme vypočíst příslušnou hodnotu koncentrace škodliviny v místnosti.

9.2 Stanovení průtoku přívodního vzduchu V_p

Množství přívodního vzduchu vychází z velikosti tepelné zátěže resp. tepelných ztrát a z velikosti zvoleného rozdílu teplot.

Pro teplovzdušné vytápění se volí rozdíl Δt kolem 20K, pro odvod tepelné zátěže se volí Δt kolem 6-8K (záleží na situaci). Rozdíl teplot při neizotermním proudění je dále omezen vhodnými obrazy proudění. K dimenzování se užije způsob, který je pro daný případ rozhodující.

Využití oběhového (cirkulačního) vzduchu

Oběhový vzduch se využívá z 2 důvodů.

- omezení pracovního rozdílu teplot pro léto 6-8K, v zimě 20-30K.
- aby při měnícím se nebo malém přívodu čerstvého vzduchu byly dodrženy obrazy proudění, aby se celý prostor dokonale provětral.

Podíl oběhové vzduchu je účelné omezit na nejmenší možnou hodnotu. Oběhový vzduch zvyšuje náklady na zařízení, náročný na prostory, zhoršuje hlukové poměry, zvyšuje příkony ventilátorů. [2]

9.3 Tlakové poměry

Velikost podtlaku či přetlaku závisí i na těsnosti větraného prostoru vzhledem k okolnímu

prostředí. U netěsných místností s rozměrnými spárami oken, dveří i spárami ve stavební

konstrukci nelze požadovaný podtlak (přetlak) dosáhnout i při vysokých rozdílech v průtocích V_p a

 $\mathbf{V_o}$. V běžných případech obytných, společenských i průmyslových objektů jsou rozdíly hodnot |

V_p - **V**_o | v rozmezí 5 až 15 %. [2]

10 Praktická aplikace

10.1 Popis objektu

Řešený objekt je novostavba, víceúčelová sportovní hala v Brně, určena převážně na

míčové hry. V 3 podlažním objektu se dále nachází i sportovní zázemí pro klub. 1.PP je určeno pro

technické místnosti a garáže.

Provoz haly je nepravidelný. Je možné definovat 2 režimy provozu.

• Tréninkový - hala využívána jenom sportovci.

• Zápasový – hala vyžívána sportovci a ve večerních hodinách i diváky

Venkovní výpočtové parametry

nadmořská výška 215 m n.m.

místo: Brno

zimní parametry venkovního prostředí:

□ výpočtová teplota: -12°C

□ relativní vlhkost: 95%

letní parametry venkovního prostředí:

□ výpočtová teplota: +30°C

☐ Entalpie: 57,8 kJ/kg

Výpočtové parametry vybraných místností

Typ místnosti	Množství nuceně přiváděného vzduchu (resp. výměna vzduchu)	Množství nuceně odváděného vzduchu (resp. výměna vzduchu)	Minimální teplota v místnosti [°C]	Maximální teplota v místnosti [°C]	Relativní vlhkost
sportovní hala	Dle výpočtu	Mírný přetlak	24,5±1,5	22±2	30-70%
kanceláře	50 m ₃ /h/os.	Mírný přetlak	-	24±1	-
restaurace	50 -70 m ₃ /h/os.	Mírný přetlak	-	24±1	-
Schodiště/ chodba		2/h	-	-	-
wc		50 m ₃ /h/mísa	-	-	-
úklid		150 m ₃ /h/výlevka	-	-	-
šatny		20 m ₃ /h/šatní místo	-	-	-
sprcha		150 m ₃ /h	-	-	-
pisoáry		25 m ₃ /h	-	-	-
umývadlo		30 m ₃ /h	-	-	-

Tabulka 5 - Požadavky na výměnu vzduchu a teploty - *podle vyhlášky č. 6/2003 Sb, NV č. 361/2007 Sb, Nařízením vlády č. 178/2001 Sb*

Pozn.: "-" znamená: neřešeno profesi VZT nebo nejsou požadavky na dodržení dané hodnoty

10.2 Provoz haly

Graf 1 - Obsazenost sportovní haly - zápas

Graf 2 - obsazenost sportovní haly - trénink

10.3 Tepelné ztráty

výpočet dle ČSN EN 12 831

hala	HT,ie [W/K] Ht,ij [W/K]		Hi [W/K]		
Hala	478,43 87,66		70,70		
te [°C]	-12,0				
ti [°C]	20				
Qi [W]	15310 2805 2262				
Σ σ [M]	20377				

Tabulka 6 - souhrn tepelných ztrát

10.4 Tepelně hmotnostní zátěž

výpočet dle ČSN 73 05 48

	Typická činnost	Metabolizmus	produkce CO2 dýcháním	teplota v interiéru		
				24 °C		20
Stupeň aktivity				citelné teplo	produkce vlhkosti	produkce vlhkosti
		[W]	[l/h]	[W]	[g/h]	[g/h]
sedící, odpočívající	diváci	120	19	70	72	52
Těžká práce	Atléti	430	70	154	397	348

Tabulka 7 - aktivita osob [11]

Pozn. - Průtok vzduchu plícemi závisí na metabolismu,

čas		vnější	sportovci	diváci	osvětlení	celkem (zápas)	celkem (trénink)	celkem (zápas)	celkem (trénink)
od	do	W	w	W	W	w	W	g/h	g/h
6	7	0	0	0	0	0	0	0	0
7	8	515	0	0	0	515	515	0	0
8	9	1 176	770	0	7 040	8 986	8 986	1987	1987
9	10	1 823	1 848	0	7 040	10 711	10 711	4769	4769
10	11	2 387	1 848	0	7 040	11 275	11 275	4769	4769
11	12	2 839	4 158	0	7 040	14 037	14 037	10731	10731
12	13	3 124	3 080	0	7 040	13 244	13 244	7949	7949
13	14	3 252	2 310	0	7 040	12 602	12 602	5962	5962
14	15	3 251	0	0	3 520	6 771	6 771	0	0
15	16	3 151	1 540	700	7 040	12 431	11 731	4694	3974
16	17	2 835	0	3 500	3 520	9 855	6 355	3600	0
17	18	2 423	3 850	10 500	7 040	23 813	13 313	20736	9936
18	19	1 948	4 620	24 500	7 040	38 108	13 608	37123	11923
19	20	1 469	4 620	31 500	7 040	44 629	13 129	44323	11923
20	21	1 128	462	31 500	3 520	36 610	5 110	33592	1192
21	22	881	0	0	0	881	881	0	0
22	23	659	0	0	0	659	659	0	0
23	24	387	0	0	0	387	387	0	0

Tabulka 8 - souhrn tepelně hmotnostní zátěže - léto

Graf 3 - tepelná zátěž - trénink

Graf 4 - tepelná zátěž - zápas

10.5 Obecné zásady řešení

Úkolem navržených VZT zařízení je zajištění mikroklimatických podmínek v jednotlivých prostorách ve smyslu platných norem, směrnic a předpisů. Zejména se jedná o zajištění předepsané čistoty prostředí, požadovaných mikroklimatických parametrů v určených místnostech, požadovaných výměn vzduchu, úhrad tepelných ztrát v určených místnostech, eliminaci tepelné zátěže, odvod škodlivin do venkovního prostředí...

Sportovní haly jsou využívaný často víceúčelově. Návštěvnost bývá největší ve večerních hodinách, kdy venkovní teplota a sluneční radiace již nedosahují denních extrémů. Charakter tepelné zátěže určuje počet a aktivita přítomných lidí je maximální vnitřní zátěž dána kapacitou hlediště.

Obecná filozofie navrženého řešení vychází z následujících zásad:

- Do všech prostor objektu je nutno přivádět jen takové množství tepla, chladu a čerstvého vzduchu, které zaručí dosažení požadovaných parametrů. Z tohoto důvodu budou navrhovány systémy umožňující flexibilní provoz, reagující nejen na nejúspornější režim, ale i na požadavky provozu budovy.
- ventilátory hlavních VZT zařízení budou vybaveny frekvenčními měniči otáček
- využívání zpětného získávání tepla (deskové výměníky)
- Tréninkové, klubové a administrativní místnosti a ostatní pomocné prostory nejsou využívaný současně a mají proto samostatná zařízení (viz.kompletní řešení projektu VZT v příloze)

10.6 Základní úpravy vzduchu

Filtrace vzduchu: v objektu se jedná o prostory, pro které postačí filtrace jednostupňová. Filtrační komora s jedním stupněm filtrace bude umístěna přímo na vstupu do VZT jednotek a bude mít třídu G4. Na odvodu vzduchu budou před rekuperátory vždy osazeny filtry třídy G4

Cirkulace: U všech zařízení pro halu se bude pracovat dle potřeby s cirkulačním vzduchem.

Ohřev vzduchu: venkovní filtrovaný vzduch (předehřev v rekuperátoru) je ohříván v komoře vodního ohřívače VZT jednotky a to na teplotu přiváděného vzduchu (VZT zajistí krytí tepelných ztrát větráním a prostupem. Vodní ohřívače budou napojeny na rozvod neregulované topné vody 80/60°C, kterou do strojovny přivede profese vytápění. Regulace výměníků bude kvalitativní, tj. přes trojcestný směšovací ventil (oběhové čerpadlo v okruhu výměníku VZT).

Chlazení vzduchu: v letním období je přiváděný vzduch vychlazován na potřebnou přívodní teplotu v přímém děleném výparníku s eliminátorem ve VZT jednotce. Vedle strojovny VZT budou přímo u fasády umístěny vzduchem chlazené kondenzační jednotky, které slouží jako zdroj chladu pro VZT jednotky. Propojení výparníku jednotky s kondenzační jednotkou je řešeno pomocí izolovaných trubek Cu.

vlhčení vzduchu: Vzduch se zvlhčuje v parní komoře. Vyvíječ páry je umístěn ve strojovně.

10.7 Distribuce vzduchu

Sání čerstvého a výfuk znehodnoceného vzduchu z VZT jednotek budou umístěny na fasádě tak, aby nedocházelo ke kontaminaci čerstvého vzduchu vzduchem odpadním.

Systém bude mírně přetlakový, aby se zamezilo infiltraci vzduchu. **Konkrétní distribuce je řešena níže v další kapitole u jednotlivých variant.** Potrubí bude z pozinkovaného plechu.

10.8 Odvody kondenzátu

Odvody kondenzátu od rekuperátorů, chladičů centrálních VZT jednotek, z parní komory (i od vyvíječe páry) a vnitřních klimatizačních jednotek, musí být provedeny přes sifony, nikoli přímo, ale přes vzduchové přerušení přes odkapávací nádobky. Odvody kondenzátu zajistí profese zdravotechnika.

10.9 Koncepce

10.9.1 Varianta 1 – zápasový režim

Větrání, vytápění a chlazení sportovní plochy a hlediště zajišťují 2 oddělené VZT jednotky. Je účelné oddělit klimatizaci hlediště a sportovní plochy a respektovat rozdílné požadavky na mikroklima. U diváků se předpokládá vyšší teplota, naopak pro sportovce je vhodná teplota 15-18°C.

Největší provozní úspory přinese možnost regulovat podíl venkovního vzduchu podle obsazení haly a podle roční doby. Dobrou cirkulaci v prostoru zajití 2-3 násobná výměna

10.9.1.1 Distribuce vzduchu

• zařízení č. 1: Větrání chlazení a vytápění sportovní plocha

Přívod upraveného vzduchu do prostoru sportovní plochy je zajišťován přívodním čtyřhranným respektive kruhovým spiro potrubím ze strojovny VZT pod střechu haly. Z centrální přívodní větve jsou napojeny odbočkami přívodní vířivé nastavitelné regulovatelné vyústky s dlouhým dosahem. Na odbočkách jsou osazeny ruční regulační klapky.

Přívodní elementy

Vířivé anemostaty VDL zabezpečují změnou úhlu výfuku (nastavení lopatek na vyústkách pro proudění izotermní a neizotermní – chlazení/topení je řízeno plynule servopohonem). při chlazení i při vytápění optimální provětrání oblasti pobytu při současném dodržení nároků na komfort. [14]

VDL-A-V-D-E3/400 – 10ks plynulá nastevení lopatek 24V						
průtok	V	1200m3/h				
vytápění	Δt =	+5°C	L _{max} = 10m			
chlazení	Δt	-6°C				
tlaková ztráta	Δр=	64Pa				
Hladina akust. výkonu vyústky	L _{WA}	48dB				

Tabulka 9 - přívodní vířivá vyústka – parametry

Obr. 3 – přívodní vířívá vyústka [14]

Odtah vzduchu - hlavní odváděcí větev je vedena pod střechou na okraji sportovní plochy a hlediště. Odvod vzduchu je řešen přes odváděcí čtyřhranné výustky osazené na potrubí, opatřeny regulaci.

• zařízení č. 2 : Větrání a chlazení prostoru hlediště

Přívod upraveného vzduchu do prostoru hlediště je zajišťován je zajišťován přívodním čtyřhranným potrubím do prostoru pod hledištěm. Tento prostor funguje jako přetlaková komora. Kolem diváku nesmí rychlost vzduchu přesáhnout 0,2 m/s.

Přívodní elementy jsou navrženy velkoplošné vyústky (perforovaný plech) pod sedadly diváků. Na každou vyústku je vhodné osadit ruční regulační klapky pro rovnoměrnou distribuci vzduchu. Princip větrání je zaplavování. Škodliviny jsou teplejší než okolní vzduch, podléhá proto vztlakovým silám. Čerstvý vzduch se přivádí nízkou rychlostí. Znečištěný vzduch se odvádí pod stropem. Kvalita vnitřního vzduchu v pobytové oblasti je tak vyšší, než při klasickém větrání.

velkoplošná vyústka 1500x400, perforovaný plech – 55ks $S_{\text{eff}} = 0,48\text{m}2$						
průtok	V	291m3/h				
vytápění	Δt =	+0°C				
výtoková rychlost	w	0,17 m/s				
chlazení	Δt	-3°C	L = 0,7m			
tlaková ztráta	Δр=	5Pa				
Hladina akust. výkonu vyústky	L _{WA}	15dB				

Tabulka 10 - přívodní velkoplošná vyústka

Odtah vzduchu - hlavní odváděcí větev je vedena pod střechou na okraji haly. Odvod vzduchu je řešen přes odváděcí čtyřhranné výustky osazené na potrubí, opatřeny regulaci.

10.9.1.2 Regulace VZT zařízení

Sportovní hala je provozována ve 2 režimech

Zařízení se reguluje na základě čidel teploty, čidel CO2, čidel vlhkosti (v zimním období)

tréninkový- jenom sportovci

zápasový – sportovci + diváci

VZT zařízení č. 1 : musí fungovat samostatně a být schopno zajistit požadované mikroklima v létě i zimě v hale v době tréninků.

VZT zařízení č. 2: v provozu jenom v zápasovém režimu. Zajišťuje větrání, a chlazení vzduchu.

Obr. 4 - Varianta1 - schéma distribuce vzduchu

10.9.1.3 Průběh koncentrace CO2

objem místnosti	0	8640	m³
koncentrace žkodlivin v přívod Vzduchu		450	ppm
koncentrace škodlivin v přívod. Vzduchu	k ₁	0,81	g/m³
mezní koncentrace škodlivin		1000	ppm
		1,80	g/m3
produkce CO2 dýcháním / produkce tepla		Mš (m³/h/os)	Mš (g/h/os)
diváci sportovci		0,019	34,1
		0,07	125,9

Tabulka 11 - Varianta1(zápasový režim) - Vstupní hodnoty pro výpočet koncentrace CO2

Graf 5- Varianta1(zápasový režim) - průběh koncentrace CO2

maximální hodnota k2	1014ppm
minimální hodnota k2	790ppm
Max průtok čerstvého vzduchu - zař. 1	5000m3/h
Max průtok čerstvého vzduchu - zař. 1	14000m3/h

Tabulka 12 - Varianta1(zápasový režim) - Výstupní hodnoty z výpočtu koncentrace CO2

10.9.1.4 Průběh vlhkosti v hale

• zápas – léto

objem místnosti	0	8640	m³
vlhkost v přívod. Vzduchu	L.	7,4	g/kg
Vilikost v privod. vzduciiu	k ₁	8,51	g/m³
vodní zisky - diváci	Mš	72	(g/h/os)
vodní zisky sportovci	M _š	397	(g/h/os)

Tabulka 13 - Varianta1(zápasový režim) - Vstupní hodnoty pro výpočet RH - léto

Graf 6 - Varianta1(zápasový režim) - průběh RH - léto

maximální hodnota RH	51%
minimální hodnota RH	47%

Tabulka 14 - Varianta1(zápasový režim) - Výstupní hodnoty z výpočtu RH – léto

• zápas – zima

objem místnosti	0	8640	m³	
	k V7T2 (divéci)	3,5	g/kg	
koncentrace škodlivin v přívod. Vzduchu	k₁ - VZT2 (diváci)	4,0250	g/m3	
	k \/7T1 (sport)	3,5	g/kg	
	κ ₁ - ν211 (sport)	4,0250	g/m3	
	k_1 - VZT1 (sport) 4,0250 g, k_1 - exter.			
	κ_1 - exter.	1,7250	g/m³	
vodní zisky - diváci	M _š	52	(g/h/os)	
vodní zisky - sportovci	$M_{\check{s}}$	348	(g/h/os)	

Tabulka 15 - Varianta1(zápasový režim) - Vstupní hodnoty pro výpočet RH – zima

Graf 7 - Varianta1(zápasový režim) - průběh RH – zima

	36%				
	minimální hodnota RH				
zařízení 1	Max průtok čerstvého vzduchu	5000	m³/h		
	Δx - čerstvý vzduch	2,3	g/kg		
	hmotnostní tok páry	13,8	kg/h		
	Max průtok čerstvého vzduchu	14000	m³/h		
zařízení 2	Δx - čerstvý vzduch	2,3	g/kg		
	množství páry	38,4	kg/h		

Tabulka 16 - Varianta1(zápasový režim) - Výstupní hodnoty z výpočtu RH – zima

Hmotnostní tok páry

$$m = Vp.\rho.(x_2 - x_1)$$

10.9.1.5 Průběh teplot

Graf 8 - Varianta1(zápasový režim) - průběh teplot

10.9.1.6 Návrh VZT jednotky

Graf 9 - Varianta1 - VZT jednotka zař.1 - ("sportovci") - letní režim

Graf 10 - Varianta1 - VZT jednotka zař.1 - ("sportovci") - zimní režim

Návrhové parametry - VZT jednotka - zař.č.1.1						
Vp	12000	m³/h				
Ve	5000	m³/h				
Vc	7000	m³/h				
letní provoz		max v 19h				
ti	24	°C				
tp	18,0	°C				
chladící výkon	36	kW				
krytý tepel. Zátěže	25	kW				
zimní provoz						
ti	20	°C				
tp	25,0	°C				
topný výkon	49	kW				
úhrada tepel. ztrát	21	kW				

Tabulka 17 - Varianta1 - VZT jednotka zař.1 - ("sportovci")

HX DIAGRAM ZIMA / LÉTO

Obr. 5 - Varianta1 - VZT jednotka zař.1 - ("sportovci") - HX diagram

HX zima			1	2	3	4	5	6
			е	rek	i	smes.	ohrev	vlh
Teplota	t	°C	-12,0	2,8	20,0	12,9	25	25
rel.vlhkost	j	%	90%	26%	35%	38%	18%	23%
měr. vlhkost	х	g/kg s.v.	1,2	1,2	5,1	3,5	3,5	4,5
Norm. průtok	Vn	m3/h	5 000	5 000	7 000	12 000	12 000	12 000
Předaný výkon	Р	kW		25,1			49	9,7
Odpařené vody	qw	kg/h		0,0		0,0	0,0	13,6

Tabulka 18 - Varianta1 - VZT jednotka zař.1 - ("sportovci") - návrhové hodnoty - zima

HX - léto			1	2	3	4
			е	i	smes	chlaz
Teplota	t	°C	24,8	24,0	24,3	18,0
rel.vlhkost	j	%	40%	50%	46%	59%
měr. vlhkost	х	g/kg s.v.	7,9	9,4	8,8	7,7
Norm. průtok	Vn	m3/h	5 000	7 000	12 000	12 000
Předaný výkon	Р	kW				-36,9
Odpařené vody	qw	kg/h			0,0	-15,5

Tabulka 19 - Varianta1 - VZT jednotka zař. 1 - ("sportovci") - návrhové hodnoty - léto

Odvlhčení v prostoru - zař.č.1

$$m = Vp.\rho.(x_2 - x_1) = \frac{12000}{3600}.1, 2.(9, 4 - 7, 7) = 6.8 g / s = 24480 g / h$$

Graf 11 - Varianta1 - VZT jednotka zař.2 - ("diváci") - letní režim

Návrhové parametry - VZT jednotka - zař.č.2.1							
Vp	16000	n	n³/h				
Ve	14000	n	n³/h				
Vc	2000	n	n³/h				
letní provoz		max	v 17,5h				
ti	24		°C				
tp	21,0	°C					
chladící výkon	49	kW					
krytý tepel. zátěže	17	kW					
zimní provoz (Vp=Ve=14000 m3/h)							
ti	20	°C					
tp	20	°C					
topný výkon	78	kW					
úhrada tepel. ztrát	0	ı	κW				

Tabulka 20 - Varianta1 - VZT jednotka zař.2 - ("diváci")

Obr. 6 - Varianta1 - VZT jednotka zař.2 - ("diváci") - HX diagram

HX zima			1	2	3	4
			е	rek	ohřev	vlh
Teplota	t	°C	-12,0	2,4	20,0	20,0
rel.vlhkost	j	%	90%	27%	8%	24%
měr. vlhkost	х	g/kg s.v.	1,2	1,2	1,2	3,5
Norm. průtok	Vn	m3/h	14 000	14 000	14 000	14 000
Předaný výkon	Р	kW		68,0	83,1	27,0
Odpařené vody	qw	kg/h		0,0	0,0	38,3

Tabulka 21 - Varianta1 - VZT jednotka zař.2 - ("diváci") - návrhové hodnoty - zima

HX - léto			1	2	3	4
			е	i	S	р
Teplota	t	°C	27,9	24,0	27,4	21,0
rel.vlhkost	RH	%	40%	50%	41%	53%
měr. vlhkost	х	g/kg s.v.	9,5	9,4	9,5	8,4
Norm. průtok	Vn	m3/h	14 000	2 000	16 000	16 000
Předaný výkon	Р	kW				-50,6
Odpařené vody	qw	kg/h			0,0	-21,9

Tabulka 22 - Varianta1 - VZT jednotka zař.2 - ("diváci") - návrhové hodnoty – léto

Odvlhčení v prostoru - zař.č.2

$$m = Vp.\rho.(x_2 - x_1) = \frac{16000}{3600}.1, 2.(9, 4 - 8, 4) = 5, 3g / s = 19080 g / h$$

10.9.2 Varianta 1A – tréninkový režim

Mikroklima pro tréninkový režim zabezpečuje pouze VZT jednotka č.1

10.9.2.1 Průběh koncentrace CO2 10.9.2.2 vstupní hodnoty – stejné jako pro zápasový režim (jiná obsazenost)

Graf 12 - Varianta1(tréninkový režim) - průběh koncentrace CO2

Množství přiváděného venkovního vzduchu - sportoviště [m3/h]

----vlhkost v hale (k2)

Graf 13 - Varianta1(tréninkový režim) - průběh RH – zima

10.9.2.3 Průběh teplot

Graf 14 - Varianta1(tréninkový režim) - průběh teplot

10.9.2.4 Návrh VZT jednotky

Graf 15 - Varianta1 (tréninkový režim) - VZT jednotka zař.1 - ("sportovci") - letní režim

Graf 16 - Varianta1 (tréninkový režim) - VZT jednotka zař.1 - ("sportovci") - zimní režim

Návrhové parametry - VZT jedntoka - zař.č.1.1						
Vp	12000 m ³ /					
Ve	5000	m³/h				
Vc	7000	m³/h				
Vo	11000	m³/h				
letní provoz	max	13 h				
ti	24	°C				
te	29,1	°C				
Rh	45%					
tp	20,5 °C					
krytý tepel. Zátěže 15 k\						
zimní provoz						
ti	20 °C					
te	-12 °C					
tp	25,5 °C					
úhrada tepel. ztrát	23,1	kW				

Tabulka 23 - Varianta1 (tréninkový režim)- VZT jednotka zař. 1 - ("sportovci")

10.9.3 Varianta 2

Větrání, vytápění a chlazení sportovní plochy a hlediště zajišťují 2 oddělené VZT jednotky. Je účelné oddělit klimatizaci hlediště a sportovní plochy a respektovat rozdílné požadavky na mikroklima.

Tréninkové, klubové a administrativní místnosti a ostatní pomocné prostory nejsou využívaný současně a mají proto samostatná zařízení (viz.kompletní řešení projektu VZT – v příloze)

10.9.3.1 Distribuce vzduchu

• zařízení č. 1: Větrání chlazení a vytápění sportovní plocha

stejné jako u varianty 1

• zařízení č. 2 : Větrání a chlazení prostoru hlediště

Přívod upraveného vzduchu do prostoru hlediště je zajišťován přívodním čtyřhranným respektive kruhovým spiro potrubím ze strojovny VZT pod střechu haly. Z centrální přívodní větve jsou napojeny odbočkami přívodní vířivé nastavitelné regulovatelné vyústky s dlouhým dosahem

(nastavení lopatek na vyústkách pro proudění izotermní a neizotermní – chlazení/topení je řízeno plynule servopohonem). Na odbočkách jsou osazeny ruční regulační klapky.

Přívodní elementy

Vířivé anemostaty VDL – popis v předchozích kapitolách ve variantě 1

VDL-A-V-D-E3/630 –7ks plynulá nastavení lopatek 24V						
průtok	٧	2000m3/h				
vytápění	Δt =	+0°C	L _{max} = 5,1m			
chlazení	Δt	-4°C				
tlaková ztráta	Δр=	42Pa				
Hladina akust. výkonu vyústky	L _{WA}	48dB				

Tabulka 24 - přívodní vířivá vyústka – parametry

Odtah vzduchu - hlavní odváděcí větev je vedena pod střechou na okraji haly. Odvod vzduchu je řešen přes odváděcí čtyřhranné výustky osazené na potrubí, opatřeny regulaci.

10.9.3.2 Regulace VZT zařízení

Sportovní hala je provozována ve 2 režimech

Zařízení se reguluje základě čidel teploty, čidel CO2, čidel vlhkosti

tréninkový- jenom sportovci

zápasový – sportovci + diváci

VZT zařízení č.1 : musí fungovat samostatně a být schopno zajistit požadované mikroklima v létě i zimě v hale v době tréninků.

VZT zařízení č.2: v provozu jenom v zápasovém režimu. Zajišťuje jenom větrání a přívod čerstvého vzduchu

Obr. 7 - Varianta2 - schéma distribuce vzduchu

10.9.3.3 Průběh teplot

Graf 17 - Varianta2 (zápasový režim) - průběh teplot

10.9.3.4 Návrh VZT jednotky

Graf 18 - Varianta2 - VZT jednotka zař.2 - ("diváci") - letní režim

Návrhové parametry - VZT jednotka - zař.č.2.1						
Vp	14000	m	1 ³ /h			
Ve	14000	m	1 ³ /h			
Vc	0	m	1 ³ /h			
letní provoz (Vp=Ve=14000 m³/ł	1)	max	v 17h			
ti	24	°C				
te	27,9	°C				
tp	20,0	°C				
chladící výkon	53	kW				
krytý tepel. zátěže	20	kW				
zimní provoz (Vp=Ve=14000 m³/h)						
ti	20	°C				
tp	20	°C				
topný výkon	78	kW				
úhrada tepel. ztrát	0	ŀ	¢W			

Tabulka 25 - Varianta2 - VZT jednotka zař.2 - ("diváci")

HX DIAGRAM ZIMA / LÉTO

Obr. 8 - Varianta2 - VZT jednotka zař. 2 - ("diváci") - HX diagram

HX – zima			1	2	3	4
			е	rek	ohřev	vlh
Teplota	t	°C	-12,0	2,4	20,0	20,0
rel.vlhkost	j	%	90%	27%	8%	24%
měr. vlhkost	х	g/kg s.v.	1,2	1,2	1,2	3,5
Norm. průtok	Vn	m3/h	14 000	14 000	14 000	14 000
Předaný výkon	Р	kW		68,0	83,1	27,0
Odpařené vody	qw	kg/h		0,0	0,0	38,3

Tabulka 26 - Varianta2 - VZT jednotka zař.2 - ("diváci") - návrhové hodnoty - zima

HX léto	1	2		
			е	chlaz
Teplota	t	°C	27,9	21,0
rel.vlhkost	j	%	40%	53%
měr. vlhkost	х	g/kg s.v.	9,5	8,3
Norm. průtok	Vn	m3/h	14 000	14 000
Předaný výkon	Р	kW		-47,3
Odpařené vody	qw	kg/h		-20,2

Tabulka 27 - Varianta2 - VZT jednotka zař.2 - ("diváci") - návrhové hodnoty – léto

10.9.4 Varianta 3

Větrání, vytápění a chlazení sportovní plochy a hlediště zajišťuje 1 VZT jednotka.

Tréninkové, klubové a administrativní místnosti a ostatní pomocné prostory nejsou využívaný současně a mají proto samostatná zařízení (viz.kompletní řešení projektu VZT – v příloze)

10.9.4.1 Distribuce vzduchu

zařízení č. 1: Větrání chlazení a vytápění sportovní plocha

Přívod upraveného vzduchu do prostoru sportovní plochy a hlediště je zajišťován přívodním čtyřhranným respektive kruhovým spiro potrubím ze strojovny VZT pod střechu haly. Z centrální přívodní větve jsou napojeny odbočkami přívodní vířivé nastavitelné regulovatelné vyústky s dlouhým dosahem (nastavení lopatek na vyústkách pro proudění izotermní a

neizotermní – chlazení/topení je řízeno plynule servopohonem). Na odbočkách jsou osazeny ruční regulační klapky.

Odtah vzduchu - hlavní odváděcí větev je vedena pod střechou. Odvod vzduchu je řešen přes odváděcí čtyřhranné výustky osazené na potrubí, opatřeny regulaci.

10.9.4.2 Regulace VZT zařízení

Sportovní hala je provozována ve 2 režimech

Zařízení se reguluje základě čidel teploty a čidel CO2

tréninkový- jenom sportovci

zápasový – sportovci + diváci

zápasový režim: vzduch se přivádí normálně všemi vyústkami

tréninkový režim : vzduch se přivádí normálně jenom vyústkami nad sportovní plochou. Větev pro hlediště se uzavře těsnou klapkou se servopohonem.

Obr. 9 - Varianta3 - schéma distribuce vzduchu

Graf 19 - Varianta3(zápasový režim) - průběh RH – zima – bez vlhčení

10.9.4.4 Průběh teplot

Graf 20 - Varianta3(zápasový režim) - průběh teplot

Graf 21 - Varianta3 - VZT jednotka zař. 1 - letní režim

Graf 22 - Varianta3 - VZT jednotka zař. 1 - zimní režim

Návrhové parametry - VZT jedntoka - zař.č.1.1							
Vp	26000		m3/h				
Ve	19000		m3/h				
Vc	7000		m3/h				
letní provoz		max	v 17,5h				
ti	24		°C				
tpmin	19,0						
chladící výkon	85		kW				
krytý tepel. zátěže	46		kW				
zimní provoz							
ti	20		°C				
tp	22,5	°C					
topný výkon	129	129 kW					
úhrada tepel. ztrát	22,75		kW				

Tabulka 28 - Varianta3 - VZT jednotka zař.1

Obr. 10 - Varianta3 - VZT jednotka zař. 1 - HX diagram

HX zima			1	2	3	4	5
			е	rek	i	směs	ohřev
Teplota	t	°C	-12,0	4,0	20,0	8,3	22,5
rel.vlhkost	j	%	90%	24%	35%	33%	13%
měr. vlhkost	х	g/kg s.v.	1,2	1,2	5,1	2,3	2,3
entalpie	h	kJ/kg s.v.	-9,1	7,1	33,2	14,1	28,5
Norm. průtok	Vn	m3/h	19 000	19 000	7 000	26 000	26 000
Předaný výkon	Р	kW		102,6			124,6
Odpařené vody	qw	kg/h		0,0		0,0	0,0

Tabulka 29 - Varianta3 - VZT jednotka zař.1 - návrhové hodnoty - zima

HX léto			1	2	3	4
			е	i	směs	chlaz
Teplota	t	$^{\circ}$	27,9	24,0	26,9	20,0
rel.vlhkost	j	%	40%	50%	42%	56%
měr. vlhkost	х	g/kg s.v.	9,5	9,4	9,5	8,2
entalpie	h	kJ/kg s.v.	52,4	48,2	51,3	41,1
hustota	r	kg/m3	1,15	1,17	1,15	1,18
Předaný výkon	Р	kW				-88,4
Odpařené vody	qw	kg/h			0,0	-38,8

Tabulka 30 - Varianta3 - VZT jednotka zař.1 - návrhové hodnoty - léto

10.10 Vyhodnocení

	Varianta 1	Varianta 2	Varianta 3
	dobrá regulovatelnost	dobrá regulovatelnost	jednoduchost řešení
	přizpůsobeni aktuálním požadavkům	přizpůsobeni aktuálním požadavkům	
výhody	oddělné VZT jednotky pro sportovní plochu a prostor hlediště - respektuje různě požadavky na mikroklima	oddělné VZT jednotky pro sportovní plochu a prostor hlediště - respektuje různě požadavky na mikroklima	
	distribuce vzduchu pod sedadly - lepší kvalita vzduchu v místě pobytu osob	distribuce vzduchu pod sedadly - lepší kvalita vzduchu v místě pobytu osob	
	respektování toku škodlivin	VZT jednotka pro prostor hlediště nemusí pracovat s cirkulačním vzduchem	
	nutnost vytvořit pod sedadly přetlakovou komoru		sportovní plocha a hlediště jsou obsluhované jednou VZT jednotkou
nevýhody	proudění vzduchu z vyústek pod sedadly může některé osoby obtěžovat		nemožnost regulovat teploty zvlášť pro každou zónu
			Velká jednotka - menší pružnost při regulaci
			suchý vzduch (nutno vlhčit)

při plném provozu jsou jednotky varianty z energetického hlediska srovnatelné

Tabulka 31 - Srovnání variant

Jako nejlepší byla vyhodnocena varianta 2 – z hlediska relativní jednoduchosti a dobré pružnosti pří regulaci, při dodržení všech mikroklimatických parametrů.

11 Regulace

Udržet kvalitu vnitřního prostředí prostoru haly na žádaných hodnotách je možné jen automatickým řízením úprav vzduchu.

regulované veličiny

- teplota
- vlhkost
- koncentrace CO2

Principy automatického řízení

Klimatizace je dimenzovaná na extrémní zimní a letní podmínky. Výkonnost není stále naplno využívána. Zátěže se mění během dne i v průběhu roku a zařízení je v ustáleném stavu jen nahodile.

Regulace se uskutečňuje působením změny akční veličiny Y na soustavu, je výstupní veličinou regulátoru a současně vstupní veličinou regulované soustavy (zdvih regulačního ventilu, natočení lopatek...)

- Y akční veličina výstup regulátoru R
- X regulovaná veličina aktuální hodnota
- x_w zjištěná odchylka x_w=X-W
- W žádaná hodnota

Na zjištěnou odchylku musí řídící i řízené zařízení zareagovat tak, že vyvolaným zásahem se odchylka regulované veličiny x_w od její žádané hodnoty W zmenšuje (zpětná vazba).

Systém řízení využívající tohoto principu musí pracovat v uzavřeném obvodu. V řídícím obvodu se měřením zjištěné odchylky x_w vedou regulátorem R zpět k zařízení, jehož výkon se upraví tak, aby se odchylka zmenšila. Výsledek činnosti se opět zjišťuje čidlem Č regulátoru a takto fungují obvod se nazývá regulační.

Regulátor je napojen na regulovanou soustavu čidlem a pohonem regulačního členu na výstupu. [2]

11.1 Popis regulace

•	čidlo teploty v prostoru - řízení teplovodního výměníku (3-cest. ventil) a přímého										
	výparníku (kond. jednotka s invertorem, napojení přes komunikační modul										
	□ ti, zima=cca 20°C										
	□ ti, léto = cca24°C										
• čidlo CO2 - řízení směšovací klapky (Při potřebě cirkulovat vzduch) jinak říz											
	otáček motorů (od 50% výš), jinak spínání VZT jednotky										
	□ Množství venkovního vzduchu nastaveno tak, aby koncentrace C02										
	nepřekročila hranici 1000ppm										

• čidlo vlhkosti - řízení parního zvlhčovače - vlhkost v interiéru v zimě RH_{min}=30%

uzavřou koncové klapky, hlášení poruchových stavů

• další funkce - zabránění chodu obou výměníku současně, při vypnutí jednotky se

12 Hlukové poměry – varianta 2

148/2006 Sb. NAŘÍZENÍ VLÁDY: "O ochraně zdraví před nepříznivými účinky hluku a vibrací". Předepsaná hladina hluku je i s korekcí (+20dB) 70dB – pro sportovní haly.

• Sportovní plocha

ozn.	veličina	Hladiny akustického tlaku a výkonu									
		32	65	125	250	500	1000	2000	4000	8000	L
L _{vv}	Hluk ventilátoru										
L _{vv}	Hladina akustického výkonu ventilátoru	79	84	89	91	89	86	82	76	71	96
	filtr A [dB]	-39	-26	-16	-9	-3	0	1	1	-1	
	součet [dB]	40	58	73	82	86	86	83	77	70	91
	útlum										
	přirozený útlum	6	6	6	6	6	6	6	6	6	
	útlum tlumičem (buňka 200x500/1000)	6	9	12	19	26	28	24	18	10	
	útlum tlumičem (buňka 200x500/1000)	6	9	12	19	26	28	24	18	10	
L _{v1}	Hladina akustického výkonu ve vyústce	22	34	43	38	28	24	29	35	44	48
L _{vy}	Hladina akustického výkonu vyústky	$I = 10 \cdot \log(n)$								48	
К	Korekce na počet vyústek									10	
L _s	Hladina akustického výkonu všech vyústek	$L_S = 10.\log(10^{Lv_1/10} + 10^{Lv_y/10}) + K$									61
Q	směrový činitel									4	
r	vzdálenost od vyústky k posluchači									7,5	
А	pohltivá plocha místnosti	$A = \alpha.S$									200
L _{so}	Hladina akustického tlaku v místě posluchače [dB]	$L_o = L_{v1} + 10 \cdot \log \left(\frac{Q}{4 \cdot \pi \cdot r^2} + \frac{4}{A} \right)$								45	
L _{p,A}	Předepsaná hodnota hladiny akustického tlaku v místnosti [dB]										70

• Hlediště

ozn.	veličina	Hlad	diny a	kusti	ckého	tlaku	a výko	nu			
		32	65	125	250	500	1000	2000	4000	8000	L
L _{vv}	Hluk ventilátoru										
L _{vv}	Hladina akustického výkonu ventilátoru	81	85	87	90	86	82	77	70	64	94
	filtr A [dB]	-39	-26	-16	-9	-3	0	1	1	-1	
	součet [dB]	42	59	71	81	83	82	78	71	63	88
	útlum										
	přirozený útlum	6	6	6	6	6	6	6	6	6	
	útlum tlumičem (buňka 200x500/1000)	6	9	12	19	26	28	24	18	10	
	útlum tlumičem (buňka 200x500/1000)	6	9	12	19	26	28	24	18	10	
L_{v1}	Hladina akustického výkonu ve vyústce	24	35	41	37	25	20	24	29	37	44
L_{vy}	Hladina akustického výkonu vyústky										42
K	Korekce na počet vyústek		$L_k = 1$	10 · lo	$g(n_2)$)	počet v	vyústek	c :	7	8,5
L _s	Hladina akustického výkonu všech vyústek	L_{s}	= 10	o.log	(10^{Lv})	1/10 +	-10 ^{Lvy}	^{/10})+ <i>I</i>	K		55
Q	směrový činitel										4
r	vzdálenost od vyústky k posluchači										4,0
Α	pohltivá plocha místnosti	$A = \alpha.S$						200			
L _{so}	Hladina akustického tlaku v místě posluchače [dB]	$L_o = L_{v1} + 10 \cdot \log \left(\frac{Q}{4 \cdot \pi \cdot r^2} + \frac{4}{A} \right)$					41				
L _{p,A}	Předepsaná hodnota hladiny akustického tlaku v místnosti [dB]										70

Experimentální část

13 Teoretický úvod

13.1 Volba snímače

V objektech občanského nebo administrativního charakteru, kde se předpokládá, že jediným znečišťovatelem vnitřního vzduchu je člověk, nachází vhodné uplatnění snímače CO2. Jeho koncentrace přímo závisí od obsazenosti prostoru lidmi

Snímače směsi plynů se používají v prostorách, kde se předpokládá výskyt různých pachů, mezi které patří cigaretový dým, pachy lidského těla, ale i látky, kterých produkce nezávisí od přítomnosti člověka.

V současnosti se používají snímače, které jsou určeny na měření jedné fyzikální veličiny, nebo kombinované snímače, které monitorují zároveň teplotu, relativní vlhkost, koncentraci CO2, res.směsi plynů, které navzájem působí doplňkově (např. ve sportovní hale kde je přes den velká a časově proměnlivá obsazenost, v tom čase působí snímač CO2 a po ukončení provozu, kdy probíhají čistící práce, reaguje snímač směsi plynů [4],[12]

Jak měřit koncentraci CO₂?

Pro měření koncentrace CO2 ve vzduchu se využívá několik principů. Nejrozšířenější jsou čidla pracující na základě infračervené absorpční metody a dále čidla pracující na elektrochemickém, elektroakustickém principu. Každý princip má své výhody a nevýhody.

13.1.1 Infračervené snímače - Čidla NDIR

Infračervené snímače používají pulzní zdroj infračerveného světla. Infračervený paprsek prochází snímací částí s optickými prvky, vzorkovacím prostorem a po průchodu spektrálním filtrem dopadá na detektor. Nevýhodou infračervených snímačů CO2 je časová nestabilita vysílače infračerveného záření. Jeho stárnutí se kompenzuje různými způsoby.

- žádná kalibrace
- kalibrace po vynesení na čerstvý vzduch (asi 400 ppm CO2)
- použití filtru, který odfiltruje vlnovou délku, jež není ovlivňována přítomností plynů, které se ve vzduchu běžně vyskytují
- Použití 2 vysílacích prvků. Měřicí zdroj infračerveného záření vysílá pulzy s
 periodou přibližně 25 s, referenční zdroj přibližně dvakrát denně. Lze tudíž
 předpokládat, že referenční zdroj nestárne a jeho signálem lze eliminovat drift
 měřicího zdroje.

Čidla sestávají ze zdroje infračerveného záření, světlo-vodné trubice a infračerveného detektoru s příslušným filtrem. Signál z infračerveného detektoru se dále zesiluje a pak se pomocí další elektroniky vyhodnocuje útlum záření a na tomto základě se vypočítá aktuální koncentrace CO_2 ve vzduchu.

Čidla NDIR jsou obecně přesnější, dlouhodoběji stabilnější, měří koncentraci již od nulové hodnoty, mohou měřit i vysoké koncentrace CO2. [12]

13.1.1.1 Princip fungování

Metoda nedisperzního měření útlumu světla v infračervené oblasti (metoda NDIR) je založena na schopnosti některých plynů absorbovat určitou vlnovou délku záření, které přes ně prochází. Tato metoda umožňuje s vysokou citlivostí určit a břit složení plynů, kterých absorpční pásma leží v infračervených pásmech.

Absorpce záření v plynu je popsána Lambert-Beerovým vztahem. Heteroatomární molekuly (např. CO2) interagují s infračerveným zářením, přičemž energie záření, která je molekulami absorbována, způsobí jejich vibrace. Homoatomární molekuly (N2, O2, H2) infračervené záření neabsorbují. Absorpční koeficient je dán rezonanční frekvencí molekul a je pro jednotlivé plyny charakteristický. [17]

$$e^{k.l.d} = \frac{I}{I_0}$$

- k Absorpční součinitel závislý na vlnové délce, druhu plynu a koncentraci
- I Délka dráhy paprsku plynu [m]
- d Koncentrace plynu
- I Intenzita paprsku na vstupu (W/m⁻²)
- I_o Intenzita paprsku na výstupu (W/m⁻²)

13.1.2 Elektrochemická čidla

Tato čidla obvykle sestávají z elektrochemického článku s tuhým elektrolytem. Tento článek je přídavným žhavením vyhříván na pracovní teplotu. Na elektrodách článku dochází k chemickým reakcím, kdy se spotřebovává kyslík a na elektrodách článku vzniká elektromotorická síla. Měřením této elektromotorické síly pomocí speciální elektroniky se pak zjišťuje koncentrace CO2 ve vzduchu.

Hlavní předností těchto čidel je vysoká citlivost a vynikající selektivita na oxid uhličitý. Jsou obvykle levnější než čidla NDIR, ovšem s poněkud nižší životností a přesností, ale stále

dostatečnou pro použití ve ventilační technice. Čidla pracující na elektrochemickém principu pracují až od cca 400 ppm, což vzhledem ke koncentraci ve venkovním vzduchu, která je okolo 360–400ppm, vůbec nevadí. Tato čidla mají obvykle vestavěnou autokalibrační funkci, která zajišťuje automatickou periodickou rekalibraci čidla na čerstvý vzduch.

13.1.3 Elektroakustická čidla

Elektroakustická čidla pracují na principu vyhodnocování změn kmitočtu ultrazvuku v mechanickém rezonátoru. Pomocí elektroniky se vyhodnocuje změna kmitočtu ultrazvukových vln, a na základě závislosti změny kmitočtu na koncentraci CO2 ve vzduchu se určuje aktuální koncentrace CO2. [12]

Hlavní předností těchto čidel je dlouhodobá stabilita bez nutnosti rekalibrace.

14 Cíl měření, sledované veličiny

- **Cílem měření** bylo zjištění kvality vzduchu ve vnitřním prostoru (sportovní hala, kancelář) a ve venkovním prostoru
- Sledovaná veličina: koncentrace CO2 v daném prostředí [ppm]

V místnostech, kde jako zdroj škodlivin jsou lidé, kvalita vzduchu záleží na produkci CO2 dýcháním. Koncentrace CO₂ ve vzduchu velmi dobře koresponduje s počtem lidí pobývajících v těchto uzavřených prostorách (produkce je rozdílná a závislá na druhu lidské činnosti)

Nabízí se tedy možnost řízení výkonu ventilace na základě spojitého měření koncentrace oxidu uhličitého ve vzduchu. Sledování kvality vnitřního vzduchu a její udržování na dobré úrovni je předpokladem pro dobrou pohodu i pro optimalizaci nákladů na provoz ventilačních zařízení.

15 Měřicí přístroj

Základními měřicími prvky pro měření rychlosti proudu vzduchu byla sestavná jednotka od firmy TESTO. Tato jednotka se skládala z kontrolní jednotky testo 350 XL a sondy Sondy CO2. Celá sestava byla ovládána přes PC, pomocí programu Testo Comfort – Software

15.1 Kontrolní jednotka

Kontrolní jednotka 350 XL je ruční měřicí přístroj s jedním volně osaditelným konektorem pro sondy na měření [13]

- teploty,
- vlhkosti
- tlaku
- Proudění vzduchu,
- CO2,
- otáček,
- proudu
- a napětí

Provozní teplota	-5 +45 °C
Sklad. teplota	-20 +50 °C
Typ baterií	4 mikrotužkové AA
Paměť	250000 naměřených hodnot
Hmotnost	850 g
Rozměry	252 x 115 x 58 mm
Životnost	8 hodin

Tabulka 32 - parametry přístroje [13]

Obr. 11 - měřící přístroj

Sonda IAQ

- Dlouhodobé sledovaní vytvořením maximální a střední hodnoty
- Dlouhodobě stabilní 2kanálový infračervený senzor
- Vysoka přesnost, vysoka spolehlivost
- Není zapotřebí periodická kalibrace

Sonda CO2 pro měření kvality vzduchu, sonda 0632 1240

Typ sondy	dvoukanálový infračervený senzor
Měřící rozsah	0 to +9999 ppm CO2
Přesnost ±1 digit	±(50 ppm CO2 ±2% z n.h. (0 až +5000 ppm CO2) ±(100 ppm CO2 ±3% z n.h.) (+5001 až +9999 ppm CO2)
Rozlišeni	1 ppm CO2
Měřená látka	vzduch

Tabulka 33 - parametry sondy CO2 [13]

Obr. 12 - měřící sonda CO2

16 Měření ve sportovní hale

16.1 fyzický model (stanoviště)

parametry haly:

- délka 32 m, šířka 19 m, min. výška 7,5 m;
- povrch hřiště palubovka, rozměry basketbalového hřiště 28x15
- kapacita hlediště 1300 diváků
- primární určení pro basketbal, volejbal

Lokalita:

- Hala Rosnička
- Horákova 7, 616 00 Brno

Víceúčelová hala míčových sportů. V hale Rosnička se pořádají různé exhibice, např. ve veslování na trenažérech, ve stolním tenise, nebo v taekwondu. Hlavní náplní haly je ženský basketbal - oddíl Frisco Brno. Rekonstrukce haly proběhla v roce 2005.

Jihozápadní fasáda na hale je prosklená reflexním sklem. Součástí budovy je i zázemí pro sportovní kluby.

Větrání haly (palubovky a hlediště) je řešeno nuceně společným VZT zařízením. Vzduch je distribuován pomocí dýz pod stropem – odhad vzduchového výkonu je cca 30.000m3/h. Odtah vzduchu z jednoho místa (taky pod stropem)

Obr. 13 - víceúčelová hala míčových sportů [15]

Obr. 14 - víceúčelová hala míčových sportů - phled z místa měření [15]

16.2 Popis měření

Odběrová sonda byla u prováděného experimentu umístěna ve výši dýchací zóny na tribuně, tedy v prostoru, jehož obsah diváci v hale dýchají.

Měření se provádělo v době průběhu zápasu ženské basketbalové ligy. Na hrací ploše se nacházelo 10 sportovců, dalších 10 bylo na střídačce. Počet diváků byl cca 350 lidí.

Všechny naměřené hodnoty obsahu CO2 ve vzduchu byly ukládány do přístroje v 30 sekundových intervalech. Vyhodnocení záznamu naměřených hodnot bylo provedeno s využitím programu Comfort-Software Testo a programu Microsoft Office Excel pro vykreslení časového průběhu koncentrace CO₂ ve vnitřním prostředí.

16.3 Výsledky měření

Graf 23 - výsledky měření - hala

- Bod A zapnutí vzduchotechniky
- Bod B přestávka lidé odcházeli ven, otevírání dveří
- Bod C vypnutí vzduchotechniky

	datum	20.12.2011	
čas	ppm	čas	ppm
16:06:49	736	16:51:19	1037
16:07:19	785	16:51:49	1038
16:07:49	834	16:52:19	1040
16:08:19	880	16:52:49	1041
16:08:49	872	16:53:19	1049
16:09:19	856	16:53:49	1048
16:09:49	845	16:54:19	1048
16:10:19	842	16:54:49	1052
16:10:49	843	16:55:19	1048
16:11:19	856	16:55:49	1058
16:11:49	860	16:56:19	1066
16:12:19	860	16:56:49	1072
16:12:49	853	16:57:19	1072
16:13:19	858	16:57:49	1071
16:13:49	861	16:58:19	1079
16:14:19	871	16:58:49	1084
16:14:49	871	16:59:19	1080
16:15:19	873	16:59:49	1083
16:15:49	877	17:00:19	1087
16:16:19	885	17:00:49	1082
16:16:49	886	17:01:19	1080
16:17:19	881	17:01:49	1093
16:17:49	876	17:02:19	1086
16:18:19	883	17:02:49	1098
16:18:49	881	17:03:19	1106
16:19:19	884	17:03:49	1105
16:19:49	888	17:04:19	1112
16:20:19	929	17:04:49	1108
16:20:49	911	17:05:19	1113
16:21:19	898	17:05:49	1111
16:21:49	903	17:06:19	1109
16:22:19	913	17:06:49	1116
16:22:49	919	17:07:19	1121
16:23:19	918	17:07:49	1137
16:23:49	923	17:08:19	1132
16:24:19	917	17:08:49	1146
16:24:49	918	17:09:19	1141
16:25:19	937	17:09:49	1144
16:25:49	934	17:10:19	1147
16:26:19	929	17:10:49	1146
16:26:49	932	17:11:19	1145
16:27:19	936	17:11:49	1148
16:27:49	947	17:12:19	1158
16:28:19	948	17:12:49	1158
16:28:49	962	17:13:19	1173

16:29:19	964	17:13:49	1154
16:29:49	954	17:14:19	1152
16:30:19	950	17:14:49	1156
16:30:49	966	17:15:19	1191
16:31:19	962	17:15:49	1176
16:31:49	961	17:16:19	1183
16:32:19	974	17:16:49	1184
16:32:49	972	17:17:19	1187
16:33:19	973	17:17:49	1183
16:33:49	981	17:18:19	1185
16:34:19	979	17:18:49	1187
16:34:49	985	17:19:19	1194
16:35:19	986	17:19:49	1191
16:35:49	986	17:20:19	1183
16:36:19	994	17:20:49	1195
16:36:49	991	17:21:19	1198
16:37:19	992	17:21:49	1188
16:37:49	998	17:22:19	1193
16:38:19	997	17:22:49	1195
16:38:49	1004	17:23:19	1188
16:39:19	1010	17:23:49	1206
16:39:49	1003	17:24:19	1221
16:40:19	1014	17:24:49	1209
16:40:49	1020	17:25:19	1212
16:41:19	1028	17:25:49	1215
16:41:49	1031	17:26:19	1221
16:42:19	1034	17:26:49	1228
16:42:49	1026	17:27:19	1233
16:43:19	1034	17:27:49	1228
16:43:49	1032	17:28:19	1236
16:44:19	1041	17:28:49	1231
16:44:49	1040	17:29:19	1240
16:45:19	1033	17:29:49	1244
16:45:49	1027	17:30:19	1236
16:46:19	1042	17:30:49	1241
16:46:49	1030	17:31:19	1235
16:47:19	1031	17:31:49	1248
16:47:49	1031	17:32:19	1254
16:48:19	1032	17:32:49	1250
16:48:49	1032	17:33:19	1254
16:49:19	1030	17:33:49	1302
16:49:49	1026	17:34:19	1310
16:50:19	1037		
16:50:49	1037		

Tabulka 34- naměřené hodnoty

16.4 Vyhodnocení měření

Z grafického průběhu koncentrace CO2 ve vnitřním prostředí je patrné, kdy byla vzduchotechnika v provozu res. pracovalo v režimu ventilačním nebo kombinovaném. Z hlediska kvality vzduchu lze mikroklima v hale hodnotit ještě jako poměrně vyhovující. Hodnoty koncentrace vystoupala na cca 1300ppm. Koncentrace ke konci utkání se zvyšovaly. Při větrání se využívá velkého objemu haly.

Obsazenost haly nebyla ani 50%, takže hodnoty koncentrace CO2 ve vnitřním vzduchu, kdy bude hala plně obsazena se může značně lišit.

17 Měření v kanceláři

17.1 fyzický model (stanoviště)

parametry kanceláře:

- objem 50,6 m3
- běžná obsazenost 2 lidi
- Na jihozápadní fasádě jsou v celé šířce osazena okna s dvojsklem

Lokalita:

Nové Sady 31, Brno

V kanceláři není instalována žádná vzduchotechnika.

17.2 Popis měření

Odběrová sonda byla u prováděného experimentu umístěna ve výši dýchací zóny na stole tak, aby nebyla přímo ovlivňována dýcháním lidí.

Měření se provádělo odpoledne v době, kdy byly v kanceláři 2 lidi, pak v době kdy tam nikdo nebyl. Na měření mělo vliv i otvírání dveří.

Všechny naměřené hodnoty obsahu CO2 ve vzduchu byly ukládány do přístroje v 30 sekundových intervalech. Vyhodnocení záznamu naměřených hodnot bylo provedeno s využitím programu Comfort-Software Testo a programu Microsoft Office Excel pro vykreslení časového průběhu obsahu CO2 ve vnitřním prostředí.

17.3 Výsledky měření

Graf 24 - výsledky měření – kancelář

- Bod A otevření okna
- Bod B přestávka nepřítomnost osob
- Bod C otevření dveří

17.4 Vyhodnocení měření

Z grafického průběhu koncentrace CO2 ve vnitřním prostředí je patrné, kdy se otvíralo okno, kdy kancelář nebyla obsazena a čerstvý vzduch se dostával dovnitř jenom infiltrací. Jako hraniční hodnota, kdy už se i těžko pracovalo, byla stanovena na základě pocitu hodnota koncentrace 1500ppm. Lze konstatovat, že kvalitu vnitřního vzduchu lze udržet v přijatelných mezích dostatečným otevíráním oken. To ale snižuje pohodu lidí (proudění studeného vzduchu).

18 Měření ve venkovním prostředí

18.1 fyzický model – stanoviště

Lokalita:

- ulice Nové Sady, Brno hustý provoz
- ulice Horákova, Brno méně frekventované místo

Popis měření

Proběhlo orientační měření stanovení koncentrace CO2 ve venkovním prostředí. Snažil jsem se provést měření v oblastech v návaznosti na předchozí měření v interiéru.

Odběrová sonda byla u prováděného experimentu umístěna ve výši 1m (držena v ruce).

Všechny naměřené hodnoty obsahu CO2 ve vzduchu byly ukládány do přístroje v 30 sekundových intervalech. Vyhodnocení záznamu naměřených hodnot bylo provedeno s využitím programu Comfort-Software Testo a programu Microsoft Office Excel pro vykreslení časového průběhu obsahu CO2 ve vnitřním prostředí.

Výsledky měření

Lokalita: ul. Horákova					
koncentrace CO2 [ppm]					
max 487					
min 444					
průměr 466					

Tabulka 35 - výsledky měření – exteriér

Lokalita: Nové Sady					
koncentrace CO2 [ppm]					
max 579					
min 507					
průměr 532					

Tabulka 36 - výsledky měření - exteriér

18.2 Vyhodnocení měření

Kolísaní koncentrace CO2 bylo ovlivněno jak větrem, tak provozem aut. Hodnoty koncentrace CO2 byly tedy stanoveny jenom orientačně.

19 Srovnání experimentální a výpočetní metody

Srovnání je provedeno s částí experimentálního měření v kanceláři. Jedná se o sledování poklesu koncentrace při přirozeném větrání - otevření obou křídel okna – časový úsek cca 3minuty větrání

Průtok vzduchu

Pro výpočet průtoku vzduchu se využil následující vztah

$$Vp = \frac{2.\mu.a}{3.\rho_s} \sqrt{\frac{2.\rho_e.\rho_i.(\rho_e - \rho_i).g.b^3}{(\rho_e - \rho_i)^3}}$$

interiér (rh=45%)	te	2	°C
interier (111–43%)	ρе	1,265	kg/m3
exteriér (rh=30%)	ti	24	°C
	ρi	1,166	kg/m3
šířka okna	а	0,95	m
výška okna	b	1,2	m
průtokový součinitel	μ	0,6	
Průtok vzduchu	v	0,22	m3/s

19.1 výpočet koncentrace CO₂

Objem místnosti	0	50,625	m ³
koncentrace CO2 v exteriéry	k_1	532	ppm

čas	průtok čerstvého vzduchu	koncentrace CC [pr	pokles	
	m3/s	naměřená	Δppm	
13:03:25	0,223	1445 1445		
13:03:55	0,223	1402 1335		-114
13:04:25	0,223	1309	-100	
13:04:55	0,223	1075 1148		-87
13:05:25	0,223	1005 1072		-76
13:05:55	0,223	916 1005		-67
13:06:25	0,223	872	-59	
13:06:55	0,223	867	-51	

Tabulka 37 - koncentrace CO2 v místnosti

Pro výpočet poklesu koncentrace se využil následující vztah

$$k2 = k1 + (k0 - k1).e^{-\frac{V}{O}.\tau}$$

- k₂ výslední koncentrace na konci časového kroku
- k₁ koncentrace ve venkovním prostředí (zvolena naměřena v exteriéru)
- koncentrace v místnosti na začátku časového kroku
- V průtok vzduchu
- O objem místnosti
- τ časový krok

Graf 25 - grafický průběh koncentrace CO2

19.2 Vyhodnocení

Lze konstatovat, že naměřené a vypočtené hodnoty se k sobě v rámci možností měření i stanoveni určitých hodnot blíží. (Nepřesnosti jako průtok vzduchu, chyba přístroje, nerovnoměrnost koncentrace v rámci místnosti....)

20 Celkové vyhodnocení experimentu

Byly zjištěny hodnoty CO2 ve 2 místech v interiéry a 2 místech v exteriéru, protože kvalita vnitřního vzduchu závisí i na kvalitě vnějšího ovzduší

Měření v kanceláři bylo provedeno z důvodu sledování změn při větrání a z důvodu stanovení mezní koncentrace z hlediska pocitového. Výsledky ukázaly, že nejefektivnější metoda pro udržení kvality vzduchu na přijatelné úrovni je odpovídající ventilace. Vhodné řešením je řízení větrání buď v závislosti na čase, nebo lépe na základě měření úrovně znečištění vnitřního vzduchu.

Závěr

Cílem této práce bylo seznámit s principy, které se využívají pro udržení kvality vzduchu nejen ve sportovních multifunkčních halách, ale i v objektech s podobným typem provozu.

Použité prvky jsou nejdříve popsány v teoretické části a následně navrženy pro konkrétní případ v části praktické. V experimentální části bylo provedeno měření koncentrace CO2 a ověření vztahu pro výpočet koncentrace.

Provozovat vzduchotechnické zařízení v objektech s proměnlivou obsazeností můžou nastat 2 krajní případy. Zařízení větrá, i když to není potřebné (například dle časového programu) nebo nevětrá, když to potřebné je. Oba krajní případy jsou v dnešní době nevyhovující.

Z toho vyplývá, že zařízení musí větrat jenom v době kdy je to nutné. Tak se dosáhne komfort uživatelů i patřičné energetické úspory na provoz vzduchotechnického zařízení.

Seznam použitých zdrojů

- [1] GEBAUER, Günter ; RUBINOVÁ, Olga; HORKÁ, Helena. *Vzduchotechnika*. 2.vydání. Brno: ERA group, 2007. 262 s. ISBN 978-80-7366-091-8.
- [2] Chyský, J., Hemzal, K. a kol.: Větrání a klimatizace. Technický průvodce. Bolit Brno,1993
- [3] JANOTKOVÁ, Eva. Technika prostředí [online]. Brno : [s.n.], 2010 [cit. 2012-01-10].

 Dostupné z WWW:http://ottp.fme.vutbr.cz/vyuka/technikaprostredi/SylabyTP6.pdf.
- [4] HEMZAL, Karel. Regulace Klimatizace. Praha: Nakladatelství ČVUT, 2007.
- [5] PAPEŽ, Karel a Michal KABRHEL. Kvalita vnitřního prostředí. In: Workshop 2005 VZ "Udržitelná výstavba" [online]. 2005 [cit. 2012-01-10]. Dostupné z: http://www.udrzitelnavystavba.cz/vz04/workshopy2005/02-papez_kabrhel.pdf
- [6] CHYSKÝ, J., Vlhký vzduch. 1977, ISBN 04-239-77
- [7] TZB info: Kvalita vnějšího a vnitřního vzduchu. [online]. 2010 [cit. 2012-01-10].

 Dostupné z: http://vetrani.tzb-info.cz/vnitrni-prostredi/6486-kvalita-vnejsiho-a-vnitrniho-vzduchu
- [8] TZB info: Bytové větrání ve vztahu k produkci CO2, vlhkosti a škodlivin (I). [online]. [cit. 2012-01-10]. Dostupné z: http://www.tzb-info.cz/3029-bytove-vetrani-ve-vztahu-k-produkci-co2-vlhkosti-a-skodlivin-i
- [9] TZB info: Bytové větrání ve vztahu k produkci CO2, vlhkosti a škodlivin (II). [online]. [cit. 2012-01-10]. Dostupné z: http://www.tzb-info.cz/3042-bytove-vetrani-ve-vztahu-k-produkci-co2-vlhkosti-a-skodlivin-ii
- [10] TZB info: Oxid uhličitý utajený nepřítel. [online]. 7.2.2011 [cit. 2012-01-10].
 Dostupné z: http://vetrani.tzb-info.cz/vnitrni-prostredi/7132-oxid-uhlicity-utajeny-nepritel
- [11] Engineeringtoolbox: Persons and Metabolic Heat Gain. [online]. [cit. 2012-01-10].

 Dostupné z: http://www.engineeringtoolbox.com/metabolic-heat-persons-d_706.html
- [12] Protronix: Měření koncentrace CO2 ve vzduchu. www.cidla.cz [online]. 2008 [cit. 2012-01-10]. Dostupné z: http://www.cidla.cz/cz/oxid-uhlicity-co2/principy-mereni-co2.php

- [13] Testo 350-XL kontrolní jednotka. Testo [online]. 2011 [cit. 2012-01-10]. Dostupné z: http://www.testo.cz/online/abaxx?\$part=PORTAL.CZE.SimpleContentDesk&\$event=sh o -from-menu&categoryid=87528907
- [14] Vířivé anemostaty. Trox [online]. 2011 [cit. 2012-01-10]. Dostupné z: http://www.trox.cz/cz/products/air_diffusers/swirl_diffusers/vdl/index.html
- [15] Hala Rosnička [online]. 2010 [cit. 2012-01-10]. Dostupné z: http://dorkybrno.webnode.cz/klub/hala-rosnicka/
- [16] CIC Hřebec [online]. 2011 [cit. 2012-01-10]. Dostupné z: http://www.cic.cz/www/uvodni-stranka
- [17] Beer–Lambert law. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2011 [cit. 2012-01-10]. Dostupné z: http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
- [18] Simulace. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 20011 [cit. 2012-01-10]. Dostupné z: http://cs.wikipedia.org/wiki/Simulace
- [19] Diskrétní simulace. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 20011 [cit. 2012-01-10]. Dostupné z: http://cs.wikipedia.org/wiki/Diskr%C3%A9tn%C3%AD_simulace
- [20] TZB info: Požadavky na kvalitu vnitřního prostředí budov mikroklimatické podmínky a větrání. [online]. 2009 [cit. 2012-01-10]. Dostupné z: http://vetrani.tzb-info.cz/normy-a-pravni-predpisy-vetrani-klimatizace/5593-pozadavky-na-kvalitu-vnitrniho-prostredi-budov-mikroklimaticke-podminky-a-vetrani
- [21] CHYSKÝ, Jaroslav. Výpočet teplot vzduchu v místnosti bez klimatizace v letních podmínkách. *VVI*. **1995**(1).

Seznam použitých zkratek a symbolů

```
VZT – vzduchotechnika
IAQ –indoor air quality – kvalita vnitřního vzduchu
MaR – Měření a regulace
ÚT – Ústřední topení
ZTI – Zdravotně technické instalace
RH – relativní vlhkost
ppm - parts per milion
       měrná tepelná kapacita akumulač. stěn
С
                                                      [J/(kg.K]
       podíl sálání na přenosu tepla do povrchu stěny
                                               [W/(m^2.K)]
αk
       součinitel přestupu tepla konvekcí
                                               [W/(m^2.K)]
α
       celkový součinitel přestupu tepla
ρΑ
       hustota vzduchu
                               [kg/m^3]
cA
       měrná tepelná kapacita vzduchu
                                               [J/(kg.K)]
       hmotnost akumulač. stěn
Μ
                                       [kg]
Q
        tepelný tok [W]
       teplota [ °C ]
t
٧
       objemový průtok vzduchu [ m³/s ]
       měrná vlhkost [g/kg s.v.]
Χ
       relativní vlhkost vzduchu [ % ]
ф
                                              [mg/m^3]
       koncentrace ve venkovním prostoru
k1
       zdroj škodliviny
                               [mg/s]
m_s
       objem prostorum3
0
                                               [mg/m<sup>3</sup>]
       koncentrace ve vnitřním prostoru
k_2
```

časový krok

τ

[s]

- L_{vv} Hladina akustického výkonu [dB]
- L_p Hladina akustického tlaku [dB]

Seznam příloh

- 1. výpočet tepelných ztrát
- 2. výpočet tepelné zátěže
- 3. výpočty varianta 1
 - Výpočet koncentrace CO2
 - Výpočet RH
 - Výpočet průběhu vnitřní teploty
- 4. výpočty varianta 2
 - Výpočet průběhu vnitřní teploty
- 5. výpočty varianta 3
 - Výpočet průběhu vnitřní teploty

Volné přílohy

- 6. Varianta 1
 - výkres
 - technická zpráva, tabulka energii
- 7. Varianta 2
 - výkres
 - technická zpráva, tabulka energii
- 8. Varianta 3
 - výkres
 - technická zpráva, tabulka energii

Přílohy

P1 – výpočet tepelných ztrát (ČSN EN 12831)

	Tepelné ztráty přímo do venkovního prostředí				hala	
Kód	Stavební část	Ak	Uk	ek	Ak.Uk.ek	
Kou	Stavebili cast	m2	W/m2.K	na jedn.	W/K	
S1	Obvodová stěna	317	0,214	1	67,838	
S1	Obvodová stěna	317	0,214	1	67,838	
S 3	Obvodová stěna	377	0,214	1	80,678	
T1	Střecha	1248	0,16	1	199,68	
Ce	lkem stavební části		∑kAK.Uk.ek [W/K]		416,034	
Kód	Tepelný most		Ak	ΔUtb	Ak.ΔUtb	
Kou	repellly illust		m2	W/m2.K	W/K	
S1	Obvodová stěna		317	0	0	
S1	Obvodová stěna		317	0	0	
S 3	Obvodová stěna		377	0	0	
T1	Střecha		1248	0,05	62,4	
Celkem tepelné mosty 62,4						
Celkový součinitel tepelné ztráty přímo do venkovního prostředí						
	:ΣkAk.Uk.ek+ΣAk.ΔUtk		•			

7	TZ do nevytápěných prostorů			20	h	nala		
Kód	Stavelení žást	θj	fij	Ak	Uk	fij.Ak.Uk		
NOU	Stavební část	°C	na jedn.	m2	W/m2.K	W/K		
	Vnitřní stěna	4	0,50	97	0,214	10,379		
	Podlaha	4	0,50	672	0,23	77,28		
	Ht,ij=∑fij.Ak.Uk							

TZ infiltrací			hala			
	Objem místnosti	Vi	m3	9000		
	Výpočtová venkovní teplota	θе	°C	-12		
	Výpočtová vnitřní teplota	θint,j	°C	20		
NA sa Yatu (al ala	Nechráněné otvory	-	na jedn.	1		
Množství vzduchu infiltrací	Intenzita výměny vzduchu při 50 Pa	n50	1/h	1		
iiiiitiaci	Činitel zaclonění	е	na jedn.	0,01		
	Výškový korekční činitel	3	na jedn.	1		
	Množství vzduchu infiltrací	Vinf,i	m3/h	180		
	Návrhový součinitel tepelné ztráty	Hv,i	W/K	60,6		

T7	HT,ie [W/K]	Ht,ij [W/K]	Hi [W/K]			
TZ celkem	478,43	87,66	60,60			
te [°C]		-12,0				
ti [°C]		20				
Qi [W]	15310	2805	1939			
ΣQ [W]	20054					

P2 - výpočet tepelné zátěže

		Tep	pelná zátě	ěž konstruk	cemi		
posur	ı [h]	10	10	10	10	1	
U [W/(r	n2.K)]	0,21	0,21	0,21	0,21	0,16	
d [n	n]	0,25	0,35	0,35	0,35		
pohlti	vost	0,3	0,3	0,3	0,3	0,3	suma
orient	tace	J	S	V	Z	Н	
plocha	[m2]	317	317	377,6	96	992	
ča	S						
od-c	lo	Q	Q	Q	Q	Q	Q
h	h	W	W	W	W	W	W
0	1	504	178	352	9	-936	106
1	2	424	168	340	8	-1127	-187
2	3	344	155	318	4	-1238	-417
3	4	298	146	286	-1	-1270	-541
4	5	238	98	245	-8	-1238	-665
5	6	176	53	202	-16	-955	-540
6	7	127	24	169	-25	-375	-79
7	8	78	-4	135	-33	340	515
8	9	32	-31	103	-42	1114	1176
9	10	-7	-53	77	-48	1854	1823
10	11	-39	-72	54	-54	2498	2387
11	12	-59	-83	41	-57	2997	2839
12	13	-64	-86	37	-58	3295	3124
13	14	-59	-83	41	-57	3409	3252
14	15	-24	-53	90	-54	3292	3251
15	16	28	-10	216	-48	2965	3151
16	17	82	4	311	-42	2479	2835
17	18	189	33	371	-33	1863	2423
18	19	313	68	396	-25	1197	1948
19	20	424	101	392	-16	568	1469
20	21	512	131	366	-8	127	1128
21	22	564	154	323	-1	-159	881
22	23	583	172	344	4	-444	659
23	24	561	180	354	8	-714	387

				Te	pelná zátěž	ž - vnitřní			
čas		počet diváků	celková tepelná zátěž	počet sportovců	celková tepelná zátěž	osvětlení	celkem	celkem (tréninkový režim)	celkem (zápasový režim)
h		ks	W	ks	W	W	W	W	W
0	1	0	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0	0
2	3	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0
4	5	0	0	0	0	0	0	0	0
5	6	0	0	0	0	0	0	0	0
6	7	0	0	0	0	0	0	0	0
7	8	0	0	0	0	0	0	0	0
8	9	0	0	5	770	7040	7810	7810	7810
9	10	0	0	12	1848	7040	8888	8888	8888
10	11	0	0	12	1848	7040	8888	8888	8888
11	12	0	0	27	4158	7040	11198	11198	11198
12	13	0	0	20	3080	7040	10120	10120	10120
13	14	0	0	15	2310	7040	9350	9350	9350
14	15	0	0	0	0	3520	3520	3520	3520
15	16	10	700	10	1540	7040	9280	8580	9280
16	17	50	3500	0	0	3520	7020	3520	7020
17	18	150	10500	25	3850	7040	21390	10890	21390
18	19	350	24500	30	4620	7040	36160	11660	36160
19	20	450	31500	30	4620	7040	43160	11660	43160
20	21	450	31500	3	462	3520	35482	3982	35482
21	22	0	0	0	0	0	0	0	0
22	23	0	0	0	0	0	0	0	0
23	24	0	0	0	0	0	0	0	0

				teplota v interiéru			
			produkce	2	20°C		
Stupeň aktivity	Typická činnost	Metabolizmus	CO2 dýcháním	citelné teplo	produkce vlhkosti	produkce vlhkosti	
		[W]	[l/h]	[W]	[g/h]	[g/h]	
sedící, odpočívající	diváci	120	19	70	72	52	
Těžká práce	Atleti	430	70	154	397	348	

			C	elkem - Te	epelná a hm	notností zá	átěž		
Čá	as	ns vnější sportovo		diváci	osvětlení	celkem (zápas)	celkem (trénink)	celkem (zápas)	celkem (trénink)
od	do	W	W	W	W	W	W	g/h	g/h
6	7	0	0	0	0	0	0	0	0
7	8	515	0	0	0	515	515	0	0
8	9	1 176	770	0	7 040	8 986	8 986	1987	1987
9	10	1 823	1 848	0	7 040	10 711	10 711	4769	4769
10	11	2 387	1 848	0	7 040	11 275	11 275	4769	4769
11	12	2 839	4 158	0	7 040	14 037	14 037	10731	10731
12	13	3 124	3 080	0	7 040	13 244	13 244	7949	7949
13	14	3 252	2 310	0	7 040	12 602	12 602	5962	5962
14	15	3 251	0	0	3 520	6 771	6 771	0	0
15	16	3 151	1 540	700	7 040	12 431	11 731	4694	3974
16	17	2 835	0	3 500	3 520	9 855	6 355	3600	0
17	18	2 423	3 850	10 500	7 040	23 813	13 313	20736	9936
18	19	1 948	4 620	24 500	7 040	38 108	13 608	37123	11923
19	20	1 469	4 620	31 500	7 040	44 629	13 129	44323	11923
20	21	1 128	462	31 500	3 520	36 610	5 110	33592	1192
21	22	881	0	0	0	881	881	0	0
22	23	659	0	0	0	659	659	0	0
23	24	387	0	0	0	387	387	0	0

P3 – Výpočty - varianta 1

3.1 Výpočet koncentrace CO2

vstupní hodnoty

objem místnosti	0	8640	m ³
koncentuose žkodlivie v nžívod Madvehv		450	ppm
koncentrace škodlivin v přívod. Vzduchu	k1	0,81	g/m3
mezní koncentrace škodlivin		1000	ppm
mezin koncentrace skounvin	k2,max	1,80	g/m3
produkce CO2 dýcháním / produkce tepla	Q (W)	Mš (m3/h/os)	Mš (g/h/os)
diváci		0,019	34,17266187
sportovci		0,070	125,90

výstupní hodnoty

• zápasový režim

čas	počet diváků	počet sportovců	produkce CO2 dýcháním Mš	Množství přiváděného venkovního vzduchu V [m3/h]		počáteční koncentrace k0	koncentrace škodlivin v přívod. Vzduchu k1	konce CO místno	2 v	
h	ks		g/h	tribuna	sportoviště	celkem	g/m3	g/m3	g/m3	ppm
8,00	0	5	629,50	0	0	120	1,64	0,81	1,65	918
8,25	0	5	629,50	0	0	120	1,65	0,81	1,67	927
8,50	0	5	629,50	0	0	120	1,67	0,81	1,68	935
8,75	0	5	629,50	0	0	120	1,68	0,81	1,70	944
9,00	0	12	1510,79	0	5000	5120	1,70	0,81	1,62	898
9,25	0	12	1510,79	0	0	120	1,62	0,81	1,66	921
9,50	0	12	1510,79	0	0	120	1,66	0,81	1,70	944
9,75	0	12	1510,79	0	0	120	1,70	0,81	1,74	966
10,00	0	12	1510,79	0	5000	5120	1,74	0,81	1,65	918
10,25	0	12	1510,79	0	0	120	1,65	0,81	1,69	940
10,50	0	12	1510,79	0	0	120	1,69	0,81	1,73	963
10,75	0	12	1510,79	0	0	120	1,73	0,81	1,77	985
11,00	0	27	3399,28	0	5000	5120	1,77	0,81	1,73	962
11,25	0	27	3399,28	0	5000	5120	1,73	0,81	1,70	943
11,50	0	27	3399,28	0	5000	5120	1,70	0,81	1,66	926
11,75	0	27	3399,28	0	5000	5120	1,66	0,81	1,64	911
12,00	0	20	2517,99	0	0	120	1,64	0,81	1,71	950
12,25	0	20	2517,99	0	5000	5120	1,71	0,81	1,65	919
12,50	0	20	2517,99	0	5000	5120	1,65	0,81	1,60	892
12,75	0	20	2517,99	0	5000	5120	1,60	0,81	1,56	869
13,00	0	15	1888,49	0	5000	5120	1,56	0,81	1,51	839

13,25	0	15	1888,49	0	5000	5120	1,51	0,81	1,46	814
13,50	0	15	1888,49	0	5000	5120	1,46	0,81	1,42	792
13,75	0	15	1888,49	0	0	120	1,42	0,81	1,48	821
14,00	0	0	0,00	0	0	120	1,48	0,81	1,47	820
14,25	0	0	0,00	0	0	120	1,47	0,81	1,47	819
14,50	0	0	0,00	0	0	120	1,47	0,81	1,47	817
14,75	0	0	0,00	0	0	120	1,47	0,81	1,47	816
15,00	10	10	1600,72	0	5000	5120	1,47	0,81	1,42	790
15,25	10	10	1600,72	0	3000	120	1,42	0,81	1,46	814
15,50	10	10	1600,72	0	0	120	1,46	0,81	1,51	839
15,75	10	10	1600,72	0	0	120	1,51	0,81	1,55	863
16,00	50	0	1708,63	0	0	120	1,55	0,81	1,60	889
16,25	50	0	1708,63	0	0	120	1,60	0,81	1,65	915
16,50	50	0	1708,63	0	0	120	1,65	0,81	1,69	941
16,75	50	0	1708,63	0	5000	5120	1,69	0,81	1,62	899
17,00	150	25	8273,38	0	5000	5120	1,62	0,81	1,73	961
17,25	150	25	8273,38	0	5000	5120	1,73	0,81	1,82	1014
17,50	150	25	8273,38	14000	5000	19120	1,82	0,81	1,58	877
17,75	150	25	8273,38	0	5000	5120	1,58	0,81	1,69	942
18,00	350	30	15737,41	14000	5000	19120	1,69	0,81	1,67	927
18,25	350	30	15737,41	14000	5000	19120	1,67	0,81	1,65	919
18,50	350	30	15737,41	14000	5000	19120	1,65	0,81	1,64	914
18,75	350	30	15737,41	14000	5000	19120	1,64	0,81	1,64	911
19,00	450	30	19154,68	14000	5000	19120	1,64	0,81	1,71	952
19,25	450	30	19154,68	14000	5000	19120	1,71	0,81	1,75	975
19,50	450	30	19154,68	14000	5000	19120	1,75	0,81	1,78	989
19,75	450	30	19154,68	14000	5000	19120	1,78	0,81	1,79	997
20,00	450	3	15755,40	14000	5000	19120	1,79	0,81	1,72	959
20,25	450	3	15755,40	14000	5000	19120	1,72	0,81	1,69	937
20,50	450	3	15755,40	14000	0	14120	1,69	0,81	1,77	982
20,75	450	3	15755,40	14000	0	14120	1,77	0,81	1,82	1012
21,00	0	0	0,00	0	0	120	1,82	0,81	1,82	1010
21,25	0	0	0,00	0	0	120	1,82	0,81	1,81	1008
21,50	0	0	0,00	0	0	120	1,81	0,81	1,81	1006
21,75	0	0	0,00	0	0	120	1,81	0,81	1,81	1004
22,00	0	0	0,00	0	0	120	1,81	0,81	1,80	1002
22,25	0	0	0,00	0	0	120	1,80	0,81	1,80	1000
22,50	0	0	0,00	0	0	120	1,80	0,81	1,80	998
22,75	0	0	0,00	0	0	120	1,80	0,81	1,79	996
23,00	0	0	0,00	0	0	120	1,79	0,81	1,79	994
23,25	0	0	0,00	0	0	120	1,79	0,81	1,79	992
23,50	0	0	0,00	0	0	120	1,79	0,81	1,78	991
23,75	0	0	0,00	0	0	120	1,78	0,81	1,78	989
24,00	0	0	0,00	0	0	120	1,78	0,81	1,77	987

• tréninkový režim

čas	počet sportovců	produkce CO2 dýcháním Mš	Množství přiváděného venkovního vzduchu V [m3/h]		počáteční koncentrace k0	koncentrace škodlivin v přívod. Vzduchu k1	koncer CO: místno	2 v	
h		g/h	tribuna	sportoviště	celkem	g/m3	g/m3	g/m3	ppm
7,00	0	0,00	0	0	120	1,34	0,81	1,34	743
7,25	0	0,00	0	0	120	1,34	0,81	1,33	742
7,50	0	0,00	0	0	120	1,33	0,81	1,33	741
7,75	0	0,00	0	0	120	1,33	0,81	1,33	740
8,00	5	683,45	0	0	120	1,33	0,81	1,35	750
8,25	5	683,45	0	0	120	1,35	0,81	1,37	760
8,50	5	683,45	0	0	120	1,37	0,81	1,38	770
8,75	5	683,45	0	0	120	1,38	0,81	1,40	780
9,00	12	1640,29	0	5000	5120	1,40	0,81	1,36	759
9,25	12	1640,29	0	0	120	1,36	0,81	1,41	784
9,50	12	1640,29	0	0	120	1,41	0,81	1,46	809
9,75	12	1640,29	0	0	120	1,46	0,81	1,50	834
10,00	12	1640,29	0	5000	5120	1,50	0,81	1,45	806
10,25	12	1640,29	0	0	120	1,45	0,81	1,49	831
10,50	12	1640,29	0	0	120	1,49	0,81	1,54	856
10,75	12	1640,29	0	0	120	1,54	0,81	1,58	881
11,00	27	3690,65	0	5000	5120	1,58	0,81	1,58	877
11,25	27	3690,65	0	5000	5120	1,58	0,81	1,57	873
11,50	27	3690,65	0	5000	5120	1,57	0,81	1,56	870
11,75	27	3690,65	0	5000	5120	1,56	0,81	1,56	867
12,00	20	2733,81	0	0	120	1,56	0,81	1,64	910
12,25	20	2733,81	0	5000	5120	1,64	0,81	1,60	887
12,50	20	2733,81	0	5000	5120	1,60	0,81	1,56	868
12,75	20	2733,81	0	5000	5120	1,56	0,81	1,53	851
13,00	15	2050,36	0	5000	5120	1,53	0,81	1,49	827
13,25	15	2050,36	0	5000	5120	1,49	0,81	1,45	806
13,50	15	2050,36	0	5000	5120	1,45	0,81	1,42	787
13,75	15	2050,36	0	0	120	1,42	0,81	1,47	819
14,00	0	0,00	0	0	120	1,47	0,81	1,47	818
14,25	0	0,00	0	0	120	1,47	0,81	1,47	816
14,50	0	0,00	0	0	120	1,47	0,81	1,47	815
14,75	0	0,00	0	0	120	1,47	0,81	1,46	814
15,00	10	1366,91	0	5000	5120	1,46	0,81	1,41	784
15,25	10	1366,91	0		120	1,41	0,81	1,45	805
15,50	10	1366,91	0	0	120	1,45	0,81	1,49	826
15,75	10	1366,91	0	0	120	1,49	0,81	1,52	846
16,00	0	0,00	0	0	120	1,52	0,81	1,52	845
16,25	0	0,00	0	0	120	1,52	0,81	1,52	844
16,50	0	0,00	0	0	120	1,52	0,81	1,51	842
16,75	0	0,00	0	5000	5120	1,51	0,81	1,42	788

17,00	25	3417,27	0	5000	5120	1,42	0,81	1,43	793
17,25	25	3417,27	0	5000	5120	1,43	0,81	1,43	797
17,50	25	3417,27	0	5000	5120	1,43	0,81	1,44	800
17,75	25	3417,27	0	5000	5120	1,44	0,81	1,44	803
18,00	30	4100,72	0	5000	5120	1,44	0,81	1,47	816
18,25	30	4100,72	0	5000	5120	1,47	0,81	1,49	827
18,50	30	4100,72	0	5000	5120	1,49	0,81	1,50	836
18,75	30	4100,72	0	5000	5120	1,50	0,81	1,52	844
19,00	30	4100,72	0	5000	5120	1,52	0,81	1,53	851
19,25	30	4100,72	0	5000	5120	1,53	0,81	1,54	857
19,50	30	4100,72	0	5000	5120	1,54	0,81	1,55	863
19,75	30	4100,72	0	5000	5120	1,55	0,81	1,56	867
20,00	3	410,07	0	5000	5120	1,56	0,81	1,47	816
20,25	3	410,07	0	5000	5120	1,47	0,81	1,39	772
20,50	3	410,07	0	0	120	1,39	0,81	1,40	777
20,75	3	410,07	0	0	120	1,40	0,81	1,41	782
21,00	0	0,00	0	0	120	1,41	0,81	1,41	781
21,25	0	0,00	0	0	120	1,41	0,81	1,40	780
21,50	0	0,00	0	0	120	1,40	0,81	1,40	779
21,75	0	0,00	0	0	120	1,40	0,81	1,40	778
22,00	0	0,00	0	0	120	1,40	0,81	1,40	777
22,25	0	0,00	0	0	120	1,40	0,81	1,39	776

3.2 Výpočet RH

• zápasový režim - zima

vstupní hodnoty

objem místnosti	0	8640	m^3
	k1 - VZT2 (diváci)	3,5	g/kg
	KI - VZIZ (UIVACI)	4,0250	g/m3
koncentrace škodlivin v přívod. Vzduchu	k1 - VZT1 (sport)	3,5	g/kg
koncentrace skounvin v privou. vzduciiu	KI - VZII (Sport)	4,0250	g/m3
	k1 - exter.	1,2	g/kg
	KI - exter.	1,3800	g/m3
vodní zisky - diváci	Mš	52	(g/h/os)
vodní zisky - sportovci	Mš	348	(g/h/os)

čas	počet diváků	počet sportovců	produkce vlhkosti dýcháním Mš	Množství přiváděného venkovního vzduchu V [m3/h]			počáteční vlhkost (k0)	vlhkost v hale (k2)
h	ks	ks	g/h	diváci	sportovci	celkem	g/m3	RH
7,75	0	0	0,00	0	0	120	5,07	30%
8,00	0	5	1740,00	0	0	120	5,05	30%
8,25	0	5	1740,00	0	0	120	5,09	30%
8,50	0	5	1740,00	0	0	120	5,13	30%
8,75	0	5	1740,00	0	0	120	5,16	31%
9,00	0	12	4176,00	0	5000	5000	5,20	30%
9,25	0	12	4176,00	0	0	120	5,16	31%
9,50	0	12	4176,00	0	0	120	5,26	31%
9,75	0	12	4176,00	0	0	120	5,37	32%
10,00	0	12	4176,00	0	5000	5000	5,48	32%
10,25	0	12	4176,00	0	0	120	5,39	32%
10,50	0	12	4176,00	0	0	120	5,50	33%
10,75	0	12	4176,00	0	0	120	5,61	33%
11,00	0	27	9396,00	0	5000	5000	5,71	34%
11,25	0	27	9396,00	0	5000	5000	5,74	34%
11,50	0	27	9396,00	0	5000	5000	5,76	34%
11,75	0	27	9396,00	0	5000	5000	5,78	34%
12,00	0	20	6960,00	0	0	120	5,80	35%
12,25	0	20	6960,00	0	5000	5000	5,98	35%
12,50	0	20	6960,00	0	5000	5000	5,91	34%
12,75	0	20	6960,00	0	5000	5000	5,84	34%
13,00	0	15	5220,00	0	5000	5000	5,78	33%

13,25	0	15	5220,00	0	5000	5000	5,69	33%
13,50	0	15	5220,00	0	5000	5000	5,60	32%
13,75	0	15	5220,00	0	0	120	5,53	33%
14,00	0	0	0,00	0	0	120	5,67	33%
14,25	0	0	0,00	0	0	120	5,65	33%
14,50	0	0	0,00	0	0	120	5,64	33%
14,75	0	0	0,00	0	0	120	5,62	33%
15,00	10	10	4000,00	0	5000	5000	5,61	32%
15,25	10	10	4000,00	0	0	120	5,50	33%
15,50	10	10	4000,00	0	0	120	5,60	33%
15,75	10	10	4000,00	0	0	120	5,71	34%
16,00	50	0	2600,00	0	0	120	5,81	34%
16,25	50	0	2600,00	0	0	120	5,87	35%
16,50	50	0	2600,00	0	0	120	5,93	35%
16,75	50	0	2600,00	0	5000	5000	5,98	34%
17,00	150	25	16500,00	0	5000	5000	5,79	35%
17,25	150	25	16500,00	0	5000	5000	6,00	36%
17,50	150	25	16500,00	14000	5000	19000	6,18	33%
17,75	150	25	16500,00	0	5000	5120	5,63	34%
18,00	350	30	28640,00	14000	5000	19000	5,86	34%
18,25	350	30	28640,00	14000	5000	19000	5,72	33%
18,50	350	30	28640,00	14000	5000	19000	5,64	33%
18,75	350	30	28640,00	14000	5000	19000	5,59	33%
19,00	450	30	33840,00	14000	5000	19000	5,57	33%
19,25	450	30	33840,00	14000	5000	19000	5,67	34%
19,50	450	30	33840,00	14000	5000	19000	5,73	34%
19,75	450	30	33840,00	14000	5000	19000	5,76	34%
20,00	450	3	24444,00	14000	5000	19000	5,78	33%
20,25	450	3	24444,00	14000	5000	19000	5,58	32%
20,50	450	3	24444,00	14000	0	14000	5,47	33%
20,75	450	3	24444,00	14000	0	14000	5,57	33%
21,00	0	0	0,00	0	0	120	5,64	33%
21,25	0	0	0,00	0	0	120	5,62	33%
21,50	0	0	0,00	0	0	120	5,61	33%
21,75	0	0	0,00	0	0	120	5,59	33%
22,00	0	0	0,00	0	0	120	5,58	33%
22,25	0	0	0,00	0	0	120	5,56	33%
22,50	0	0	0,00	0	0	120	5,55	32%
22,75	0	0	0,00	0	0	120	5,53	32%

• zápasový režim - léto

vstupní hodnoty

objem místnosti	0	8640	m ³
vlhkost v přívod. Vzduchu	k1	7,4	g/kg
Vilikost v privod. vzdučnu	KI	8,5100	g/m3
vodní zisky - diváci	Mš	72	(g/h/os)
vodní zisky sportovci	Mš	397	(g/h/os)

čas	počet diváků	počet sportovců	produkce vlhkosti dýcháním Mš			počáteční vlhkost (k0)	vlhkost v přívod. Vzduchu (k1)	vlhkost v hale (k2)
h	ks		g/h	diváci	sportovci	g/m3	g/m3	RH
7,50	0	0	0,00	0	0	10,39	8,51	47%
7,75	0	0	0,00	0	0	10,38	8,51	47%
8,00	0	5	1985,00	0	0	10,38	8,51	48%
8,25	0	5	1985,00	0	0	10,43	8,51	48%
8,50	0	5	1985,00	0	0	10,48	8,51	48%
8,75	0	5	1985,00	0	0	10,53	8,51	48%
9,00	0	12	4764,00	0	5000	10,58	8,51	48%
9,25	0	12	4764,00	0	0	10,42	8,51	48%
9,50	0	12	4764,00	0	0	10,55	8,51	49%
9,75	0	12	4764,00	0	0	10,68	8,51	49%
10,00	0	12	4764,00	0	5000	10,81	8,51	48%
10,25	0	12	4764,00	0	0	10,63	8,51	49%
10,50	0	12	4764,00	0	0	10,76	8,51	50%
10,75	0	12	4764,00	0	0	10,89	8,51	50%
11,00	0	27	10719,00	0	5000	11,02	8,51	50%
11,25	0	27	10719,00	0	5000	10,96	8,51	50%
11,50	0	27	10719,00	0	5000	10,91	8,51	50%
11,75	0	27	10719,00	0	5000	10,87	8,51	49%
12,00	0	20	7940,00	0	0	10,83	8,51	50%
12,25	0	20	7940,00	0	5000	11,05	8,51	50%
12,50	0	20	7940,00	0	5000	10,92	8,51	49%
12,75	0	20	7940,00	0	5000	10,80	8,51	49%
13,00	0	15	5955,00	0	5000	10,70	8,51	48%
13,25	0	15	5955,00	0	5000	10,56	8,51	48%
13,50	0	15	5955,00	0	5000	10,43	8,51	47%
13,75	0	15	5955,00	0	0	10,33	8,51	48%
14,00	0	0	0,00	0	0	10,50	8,51	48%
14,25	0	0	0,00	0	0	10,49	8,51	48%

14,75 0 0 0,00 0 10,47 8,51 488 15,00 10 10 4690,00 0 5000 10,47 8,51 475 15,25 10 10 4690,00 0 0 10,32 8,51 488 15,50 10 10 4690,00 0 0 10,45 8,51 488 15,75 10 10 4690,00 0 0 10,58 8,51 499 16,00 50 0 3600,00 0 0 10,71 8,51 499 16,25 50 0 3600,00 0 0 10,90 8,51 509 16,50 50 0 3600,00 0 0 10,90 8,51 509 16,50 50 0 3600,00 0 5000 11,00 8,51 509 17,00 150 25 20725,00 0 5000 10,75			I	T	T		I		ı
15,00 10 10 4690,00 0 5000 10,47 8,51 475 15,25 10 10 4690,00 0 0 10,32 8,51 488 15,50 10 10 4690,00 0 0 10,45 8,51 488 15,75 10 10 4690,00 0 0 10,58 8,51 499 16,00 50 0 3600,00 0 0 10,71 8,51 499 16,50 50 0 3600,00 0 0 10,90 8,51 500 16,50 50 0 3600,00 0 0 10,90 8,51 500 16,75 50 0 3600,00 0 5000 11,00 8,51 499 17,00 150 25 20725,00 0 5000 10,75 8,51 500 17,25 150 25 20725,00 0 5000 <td>14,50</td> <td>0</td> <td>0</td> <td>,</td> <td>0</td> <td>0</td> <td>10,48</td> <td>8,51</td> <td>48%</td>	14,50	0	0	,	0	0	10,48	8,51	48%
15,25 10 10 4690,00 0 0 10,32 8,51 488 15,50 10 10 4690,00 0 0 10,45 8,51 488 15,75 10 10 4690,00 0 0 10,58 8,51 499 16,00 50 0 3600,00 0 0 10,71 8,51 499 16,25 50 0 3600,00 0 0 10,90 8,51 500 16,50 50 0 3600,00 0 0 10,90 8,51 500 16,75 50 0 3600,00 0 5000 11,00 8,51 499 17,00 150 25 20725,00 0 5000 10,75 8,51 500 17,25 150 25 20725,00 0 5000 11,00 8,51 499 17,75 150 25 20725,00 0 5000 </td <td>14,75</td> <td>0</td> <td>0</td> <td>0,00</td> <td>0</td> <td>0</td> <td>10,47</td> <td>8,51</td> <td>48%</td>	14,75	0	0	0,00	0	0	10,47	8,51	48%
15,50 10 10 4690,00 0 0 10,45 8,51 488 15,75 10 10 4690,00 0 0 10,58 8,51 499 16,00 50 0 3600,00 0 0 10,71 8,51 509 16,50 50 0 3600,00 0 0 10,90 8,51 509 16,75 50 0 3600,00 0 5000 11,00 8,51 509 16,75 50 0 3600,00 0 5000 11,00 8,51 509 17,00 150 25 20725,00 0 5000 10,75 8,51 509 17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,75 150 25 20725,00 0 5000 10,53 8,51 489 18,00 350 30 37110,00 14000	15,00	10	10	4690,00	0	5000	10,47	8,51	47%
15,75 10 10 4690,00 0 0 10,58 8,51 499 16,00 50 0 3600,00 0 0 10,71 8,51 499 16,25 50 0 3600,00 0 0 10,81 8,51 509 16,50 50 0 3600,00 0 0 10,90 8,51 509 16,75 50 0 3600,00 0 5000 11,00 8,51 509 17,00 150 25 20725,00 0 5000 10,75 8,51 509 17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,75 150 25 20725,00 14000 5000 11,22 8,51 499 18,00 350 30 37110,00 14000 5000 10,53 8,51 499 18,25 350 30 37110,00 14000 </td <td>15,25</td> <td>10</td> <td>10</td> <td>4690,00</td> <td>0</td> <td>0</td> <td>10,32</td> <td>8,51</td> <td>48%</td>	15,25	10	10	4690,00	0	0	10,32	8,51	48%
16,00 50 0 3600,00 0 0 10,71 8,51 499 16,25 50 0 3600,00 0 0 10,81 8,51 509 16,50 50 0 3600,00 0 0 10,90 8,51 509 16,75 50 0 3600,00 0 5000 11,00 8,51 499 17,00 150 25 20725,00 0 5000 10,75 8,51 509 17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,50 150 25 20725,00 0 5000 11,22 8,51 489 18,00 350 30 37110,00 14000 5000 10,53 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,75 350 30 37110,00 14	15,50	10	10	4690,00	0	0	10,45	8,51	48%
16,25 50 0 3600,00 0 0 10,81 8,51 505 16,50 50 0 3600,00 0 0 10,90 8,51 505 16,75 50 0 3600,00 0 5000 11,00 8,51 495 17,00 150 25 20725,00 0 5000 10,75 8,51 505 17,25 150 25 20725,00 0 5000 11,00 8,51 515 17,50 150 25 20725,00 0 5000 11,22 8,51 485 17,75 150 25 20725,00 0 5000 10,53 8,51 495 18,00 350 30 37110,00 14000 5000 10,53 8,51 495 18,25 350 30 37110,00 14000 5000 10,66 8,51 485 18,75 350 30 37110,00	15,75	10	10	4690,00	0	0	10,58	8,51	49%
16,50 50 0 3600,00 0 0 10,90 8,51 50 16,75 50 0 3600,00 0 5000 11,00 8,51 499 17,00 150 25 20725,00 0 5000 10,75 8,51 509 17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,75 150 25 20725,00 14000 5000 10,53 8,51 489 18,00 350 30 37110,00 14000 5000 10,81 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,75 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,57 8,51 489 19,00 450 30 44310	16,00	50	0	3600,00	0	0	10,71	8,51	49%
16,75 50 0 3600,00 0 5000 11,00 8,51 499 17,00 150 25 20725,00 0 5000 10,75 8,51 509 17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,50 150 25 20725,00 14000 5000 10,53 8,51 499 18,00 350 30 37110,00 14000 5000 10,53 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,50 350 30 37110,00 14000 5000 10,66 8,51 489 18,75 350 30 37110,00 14000 5000 10,57 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30	16,25	50	0	3600,00	0	0	10,81	8,51	50%
17,00 150 25 20725,00 0 5000 10,75 8,51 505 17,25 150 25 20725,00 0 5000 11,00 8,51 515 17,50 150 25 20725,00 14000 5000 11,22 8,51 485 17,75 150 25 20725,00 0 5000 10,53 8,51 495 18,00 350 30 37110,00 14000 5000 10,81 8,51 495 18,25 350 30 37110,00 14000 5000 10,66 8,51 485 18,50 350 30 37110,00 14000 5000 10,57 8,51 485 18,75 350 30 37110,00 14000 5000 10,57 8,51 485 19,00 450 30 44310,00 14000 5000 10,49 8,51 495 19,75 450 30	16,50	50	0	3600,00	0	0	10,90	8,51	50%
17,25 150 25 20725,00 0 5000 11,00 8,51 519 17,50 150 25 20725,00 14000 5000 11,22 8,51 488 17,75 150 25 20725,00 0 5000 10,53 8,51 499 18,00 350 30 37110,00 14000 5000 10,81 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,50 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,52 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,55 450 30 44310,00 14000 5000 10,72 8,51 499 20,00 450 3	16,75	50	0	3600,00	0	5000	11,00	8,51	49%
17,50 150 25 20725,00 14000 5000 11,22 8,51 485 17,75 150 25 20725,00 0 5000 10,53 8,51 495 18,00 350 30 37110,00 14000 5000 10,81 8,51 495 18,25 350 30 37110,00 14000 5000 10,66 8,51 485 18,50 350 30 37110,00 14000 5000 10,57 8,51 485 18,75 350 30 37110,00 14000 5000 10,52 8,51 485 19,00 450 30 44310,00 14000 5000 10,49 8,51 485 19,50 450 30 44310,00 14000 5000 10,63 8,51 495 19,75 450 30 44310,00 14000 5000 10,72 8,51 495 20,00 450 3 </td <td>17,00</td> <td>150</td> <td>25</td> <td>20725,00</td> <td>0</td> <td>5000</td> <td>10,75</td> <td>8,51</td> <td>50%</td>	17,00	150	25	20725,00	0	5000	10,75	8,51	50%
17,75 150 25 20725,00 0 5000 10,53 8,51 499 18,00 350 30 37110,00 14000 5000 10,81 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,50 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,52 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,75 450 30 44310,00 14000 5000 10,72 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,50 450 3 <td>17,25</td> <td>150</td> <td>25</td> <td>20725,00</td> <td>0</td> <td>5000</td> <td>11,00</td> <td>8,51</td> <td>51%</td>	17,25	150	25	20725,00	0	5000	11,00	8,51	51%
18,00 350 30 37110,00 14000 5000 10,81 8,51 499 18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,50 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,52 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,75 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,50 450	17,50	150	25	20725,00	14000	5000	11,22	8,51	48%
18,25 350 30 37110,00 14000 5000 10,66 8,51 489 18,50 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,52 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,50 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,76 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,75 450 3	17,75	150	25	20725,00	0	5000	10,53	8,51	49%
18,50 350 30 37110,00 14000 5000 10,57 8,51 489 18,75 350 30 37110,00 14000 5000 10,52 8,51 489 19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,50 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,75 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 <td>18,00</td> <td>350</td> <td>30</td> <td>37110,00</td> <td>14000</td> <td>5000</td> <td>10,81</td> <td>8,51</td> <td>49%</td>	18,00	350	30	37110,00	14000	5000	10,81	8,51	49%
18,75 350 30 37110,00 14000 5000 10,52 8,51 483 19,00 450 30 44310,00 14000 5000 10,49 8,51 483 19,25 450 30 44310,00 14000 5000 10,63 8,51 493 19,50 450 30 44310,00 14000 5000 10,72 8,51 493 19,75 450 30 44310,00 14000 5000 10,76 8,51 493 20,00 450 3 33591,00 14000 5000 10,79 8,51 483 20,25 450 3 33591,00 14000 5000 10,57 8,51 483 20,75 450 3 33591,00 14000 0 10,44 8,51 483 20,75 450 3 33591,00 14000 0 10,59 8,51 493 21,00 0 0 0,00 0 0 10,69 8,51 493 21,25 0 0 0,00 0 0 10,68 8,51 493	18,25	350	30	37110,00	14000	5000	10,66	8,51	48%
19,00 450 30 44310,00 14000 5000 10,49 8,51 489 19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,50 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,75 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0,00 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	18,50	350	30	37110,00	14000	5000	10,57	8,51	48%
19,25 450 30 44310,00 14000 5000 10,63 8,51 499 19,50 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,75 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0,00 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	18,75	350	30	37110,00	14000	5000	10,52	8,51	48%
19,50 450 30 44310,00 14000 5000 10,72 8,51 499 19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,50 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0,00 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	19,00	450	30	44310,00	14000	5000	10,49	8,51	48%
19,75 450 30 44310,00 14000 5000 10,76 8,51 499 20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,50 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0,00 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	19,25	450	30	44310,00	14000	5000	10,63	8,51	49%
20,00 450 3 33591,00 14000 5000 10,79 8,51 489 20,25 450 3 33591,00 14000 5000 10,57 8,51 489 20,50 450 3 33591,00 14000 0 10,44 8,51 489 20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0,00 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	19,50	450	30	44310,00	14000	5000	10,72	8,51	49%
20,25 450 3 33591,00 14000 5000 10,57 8,51 485 20,50 450 3 33591,00 14000 0 10,44 8,51 485 20,75 450 3 33591,00 14000 0 10,59 8,51 495 21,00 0 0 0 0 10,69 8,51 495 21,25 0 0 0,00 0 0 10,68 8,51 495	19,75	450	30	44310,00	14000	5000	10,76	8,51	49%
20,50 450 3 33591,00 14000 0 10,44 8,51 485 20,75 450 3 33591,00 14000 0 10,59 8,51 495 21,00 0 0 0,00 0 0 10,69 8,51 495 21,25 0 0 0,00 0 0 10,68 8,51 495	20,00	450	3	33591,00	14000	5000	10,79	8,51	48%
20,75 450 3 33591,00 14000 0 10,59 8,51 499 21,00 0 0 0 0 10,69 8,51 499 21,25 0 0 0,00 0 0 10,68 8,51 499	20,25	450	3	33591,00	14000	5000	10,57	8,51	48%
21,00 0 0 0,00 0 10,69 8,51 499 21,25 0 0 0,00 0 10,68 8,51 499	20,50	450	3	33591,00	14000	0	10,44	8,51	48%
21,25 0 0 0,00 0 10,68 8,51 499	20,75	450	3	33591,00	14000	0	10,59	8,51	49%
	21,00	0	0	0,00	0	0	10,69	8,51	49%
	21,25	0	0	0,00	0	0	10,68	8,51	49%
21,50 0 0 0,00 0 10,68 8,51 499	21,50	0	0	0,00	0	0	10,68	8,51	49%
21,75 0 0 0,00 0 10,67 8,51 499	21,75	0	0	0,00	0	0	10,67	8,51	49%
22,00 0 0 0,00 0 10,66 8,51 499	22,00	0	0	0,00	0	0	10,66	8,51	49%

3.3 Výpočet průběhu vnitřní teploty

vstupní hodnoty

objem		8640	m3
povrch akumulač. Stěn		400	m2
plošná hmotnost	m	850	kg/m2
měrná teplná kapacita stěn	С	1100	J/kg/K
podíl sálání na přenosu tepla do povrchu stěny	ν	0,1	
součinitel přestupu tepla konvekcí	αk	4	W/(m2.K)
celkový součinitel přestupu tepla	α	8	W/(m2.K)
hustota vzduchu	ρΑ	1,2	kg/m3
měrná tepelná kapacita vzduchu	cA	1010	J/(kg.K)
hmotnost akumulač. Stěn	М	340000	kg

č	as	vnitřní zisky	objemový průtok přiváděného vzduchu	objemový průtok přiváděného vzduchu	venkovní teplota	teplota přiváděného vzduchu	teplota přiváděného vzduchu	vnitřní teplota	teplota povrchu stěny
od	do	Q	VA1	VA2	te	tp1 - sport. Plocha	tp2 - diváci	tv1	tp0
h	h	W	m3/h	m3/h	င	°C	°C	°C	°C
	0								24,1
0	1	0	300	0	16,9	16,9	16,9	23,4	24,1
1	2	0	300	0	16,2	16,2	16,2	23,3	24,1
2	3	0	300	0	16,0	16,0	16,0	23,3	24,1
3	4	0	300	0	16,2	16,2	16,2	23,3	24,1
4	5	0	300	0	16,9	16,9	16,9	23,5	24,0
5	6	0	300	0	18,1	18,1	18,1	23,8	24,0
6	7	0	300	0	19,5	19,5	19,5	24,2	24,0
7	8	0	300	0	21,2	21,2	21,2	24,6	24,1
8	9	7810	12000	0	23,0	21	21	23,5	24,1
9	10	8888	12000	0	24,8	21	21	23,8	24,1
10	11	8888	12000	0	26,5	21	21	23,9	24,1
11	12	11198	12000	0	27,9	20,5	21	24,0	24,1
12	13	10120	12000	0	29,1	20,5	21	23,8	24,1
13	14	9350	12000	0	29,8	20,5	21	23,7	24,1
14	15	3520	12000	0	30,0	22	21	23,8	24,1
15	16	9280	12000	0	29,8	21	21	23,9	24,1
16	17	7020	12000	0	29,1	21	21	23,4	24,1
17	18	21390	12000	16000	27,9	20	20,5	22,8	24,1
18	19	36160	12000	16000	26,5	19	20,5	23,5	24,1
19	20	43160	12000	16000	24,8	18	20,5	23,7	24,1

20	21	35482	12000	16000	23,0	18	21	23,3	24,2
21	22	0	300	0	21,2	21,2	21,2	24,0	24,2
22	23	0	300	0	19,5	19,5	19,5	23,8	24,2
23	24	0	300	0	18,1	18,1	18,1	23,6	24,1

P4 – Výpočty - varianta 2

4.1 Výpočet průběhu vnitřní teploty

vstupní hodnoty

objem		8640	m3
povrch akumulač. Stěn		400	m2
plošná hmotnost	m	850	kg/m2
měrná teplná kapacita stěn	С	1100	J/kg/K
podíl sálání na přenosu tepla do povrchu stěny	ν	0,1	
součinitel přestupu tepla konvekcí	αk	4	W/(m2.K)
celkový součinitel přestupu tepla	α	8	W/(m2.K)
hustota vzduchu	ρΑ	1,2	kg/m3
měrná tepelná kapacita vzduchu	cA	1010	J/(kg.K)
hmotnost akumulač. Stěn	М	340000	kg

ča	as	vnitřní zisky	objemový průtok přiváděného vzduchu	objemový průtok přiváděného vzduchu	venkovní teplota	teplota přiváděného vzduchu	teplota přiváděného vzduchu	vnitřní teplota	teplota povrchu stěny
od	do	Q	VA1	VA2	te	tp1 - sport. Plocha	tp2 - diváci	tv1	tp0
h	h	W	m3/h	m3/h	°C	°C	°C	°C	°C
	0							23,6	24,1
0	1	0	300	0	16,9	16,9	16,9	23,4	24,1
1	2	0	300	0	16,2	16,2	16,2	23,3	24,1
2	3	0	300	0	16,0	16,0	16,0	23,3	24,1
3	4	0	300	0	16,2	16,2	16,2	23,3	24,1
4	5	0	300	0	16,9	16,9	16,9	23,5	24,0
5	6	0	300	0	18,1	18,1	18,1	23,8	24,0
6	7	0	300	0	19,5	19,5	19,5	24,2	24,0
7	8	0	300	0	21,2	21,2	21,2	24,6	24,1
8	9	7810	12000	0	23,0	21	21	23,5	24,1
9	10	8888	12000	0	24,8	21	21	23,8	24,1
10	11	8888	12000	0	26,5	21	21	23,9	24,1
11	12	11198	12000	0	27,9	20,5	21	24,0	24,1
12	13	10120	12000	0	29,1	20,5	21	23,8	24,1
13	14	9350	12000	0	29,8	20,5	21	23,7	24,1
14	15	3520	12000	0	30,0	22	21	23,8	24,1
15	16	9280	12000	0	29,8	21	21	23,9	24,1
16	17	7020	12000	0	29,1	21	21	23,4	24,1
17	18	21390	12000	14000	27,9	20	20	22,7	24,1

18	19	36160	12000	14000	26,5	19	20	23,5	24,1
19	20	43160	12000	14000	24,8	18	20	23,7	24,1
20	21	35482	12000	14000	23,0	18	20	23,0	24,2
21	22	0	300	0	21,2	21,2	21,2	24,0	24,2
22	23	0	300	0	19,5	19,5	19,5	23,8	24,1
23	24	0	300	0	18,1	18,1	18,1	23,6	24,1

P5 – Výpočty - varianta 3

5.1 Výpočet průběhu vnitřní teploty

vstupní hodnoty

objem		8640	m3
povrch akumulač. Stěn		400	m2
plošná hmotnost	m	850	kg/m2
měrná teplná kapacita stěn	С	1100	J/kg/K
podíl sálání na přenosu tepla do povrchu stěny	ν	0,1	
součinitel přestupu tepla konvekcí	αk	4	W/(m2.K)
celkový součinitel přestupu tepla	α	8	W/(m2.K)
hustota vzduchu	ρΑ	1,2	kg/m3
měrná tepelná kapacita vzduchu	cA	1010	J/(kg.K)
hmotnost akumulač. Stěn	М	340000	kg

čas		vnitřní zisky	objemový průtok přiváděného vzduchu	objemový průtok přiváděného vzduchu	venkovní teplota	teplota přiváděného vzduchu	teplota přiváděného vzduchu	vnitřní teplota	teplota povrchu stěny
od	do	Q	VA1	VA2	te	tp1 - sport. Plocha	tp2 - diváci	tv1	tp0
h	h	W	m3/h	m3/h	°C	°C	°C	°C	°C
	0							23,7	24,2
0	1	0	300	0	16,9	16,9	16,9	23,5	24,2
1	2	0	300	0	16,2	16,2	16,2	23,4	24,2
2	3	0	300	0	16,0	16,0	16,0	23,3	24,2
3	4	0	300	0	16,2	16,2	16,2	23,4	24,2
4	5	0	300	0	16,9	16,9	16,9	23,5	24,1
5	6	0	300	0	18,1	18,1	18,1	23,9	24,1
6	7	0	300	0	19,5	19,5	19,5	24,3	24,1
7	8	0	300	0	21,2	21,2	21,2	24,7	24,1
8	9	7810	12000	0	23,0	21	21	23,6	24,1
9	10	8888	12000	0	24,8	21	21	23,8	24,2
10	11	8888	12000	0	26,5	21	21	23,9	24,2
11	12	11198	12000	0	27,9	20,5	27,9	24,0	24,2
12	13	10120	12000	0	29,1	20,5	29,1	23,8	24,2
13	14	9350	12000	0	29,8	20,5	29,8	23,7	24,2
14	15	3520	12000	0	30,0	22	30,0	23,8	24,2
15	16	9280	12000	0	29,8	21	29,8	23,9	24,2
16	17	7020	12000	0	29,1	21	29,1	23,5	24,2

17	18	21390	26000	0	27,9	20	27,9	22,7	24,2
18	19	36160	26000	0	26,5	20	26,5	23,9	24,2
19	20	43160	26000	0	24,8	19	24,8	23,6	24,2
20	21	35482	26000	0	23,0	20	23,0	23,8	24,3
21	22	0	300	0	21,2	21,2	21,2	24,1	24,3
22	23	0	300	0	19,5	19,5	19,5	23,8	24,2
23	24	0	300	0	18,1	18,1	18,1	23,7	24,2