1 Measure Theory: Assignment Two - Constructing new measurable functions from old measurable functions

This sheet is all about building new measurable functions from existing measurable functions. Throughout this sheet we consider functions taking values in \mathbb{R} . We are interested in their measurability with respect to the Borel σ -algebra.

Question 1.1. Suppose that f is a measurable function. Show that -f and λf are both measurable functions, where λ is a strictly positive contant.

Answer:
$$(-f)^{-1}((-\infty,b]) = f^{-1}([-b,\infty))$$
 which is measurable as $[-b,\infty)$ is a Borel set. Similarly, $(\lambda f)^{-1}((-\infty,b]) = f^{-1}((-\infty,b/\lambda])$ which is also measurable. 2 marks

Question 1.2. Suppose that f_1 and f_2 are measurable. Show that $f_1 \vee f_2 = \min\{f_1, f_2\}$ is also measurable.

Answer: We look at the set $\{x : \min\{f_1(x), f_2(x)\} \leq b\}$ this is equal to $\{x : f_1(x) \leq b\} \cup \{x : f_2(x) \leq b\}$. Since both f_1 and f_2 are measurable this set will be measurable. Therefore $\min\{f_1, f_2\}$ is measurable. 3 marks

Question 1.3. Suppose that f_1, f_2, f_3, \ldots is a sequence of measurable functions. Show that $\inf_n f_n$ is also a measurable function. Use this to show that $\sup_n f_n$ is a measurable function as well.

Answer: let $f(x) = \inf\{f_n(x)\}$ then we have $f^{-1}((-\infty,b)) = \{x : f(x) < b\} = \{x : f_n(x) < b\}$ for some $n\} = \bigcup_n \{x : f_n(x) < b\}$. Since f_n is measurable for every n $f^{-1}((-\infty,b))$ is the countable union of measurable sets so measurable. The corresponding result with supremums follows from the fact that $\sup_n \{f_n\} = -\inf_n \{-f_n\}$. Note that in order to use inf we had to work with $(-\infty,b)$. 5 Marks \square

Question 1.4. Again let f_1, f_2, f_3, \ldots be a sequence of measurbale functions. Show that $\limsup_n f_n$ and $\liminf_n f_n$ are both measurable functions. Why does this mean that $\lim_n f_n$ will be a measurble function if it exists.

Answer: Let us write $f(x) = \liminf_n f_n(x)$. Then $f^{-1}((-\infty, b)) = \{x : \liminf_n f_n(x) < b\} = \{x : \forall m \text{ s.t } \inf_{n \geq m} f_n(x) < b\} = \bigcap_m \bigcup_{n \geq m} \{x : f_n(x) < b\}$. Therefore we have written this set as a countable union of measurable sets, so it is measurable. 5 marks

Question 1.5. Suppose that f is a measurable function, show that f^2 is measurable.

Answer: The set $\{x: f(x)^2 \le b\} = \{x: -\sqrt{b} \le f(x) \le \sqrt{b}\}$ which is measurable. 2 marks

Question 1.6. Use the previous question to show that if f_1 an f_2 are measurable the f_1f_2 is also measurable.

Answer: By the previous part f_1^2, f_2^2 and $(f_1 + f_2)^2$ are all measurable. Therfore $f_1 f_2 = \frac{1}{2}((f_1 + f_2)^2 - f_1^2 - f_2^2)$ is measurable. 3 marks

Question 1.7. Let f be a measurable function with f > 0 everywhere. Show that 1/f is also measurable.

Answer: $(1/f)^{-1}((-\infty,b])=\{x:1/f(x)\leq b\}=\{x:f(x)\geq 1/b\}=f^{-1}([1/b,\infty))$ so this set is a measurable set therefore 1/f is measurable. 5 marks