

Team 0: Growable Space Habitat
Robert Dye
Justin Blankenhorn
Andrew Yang
Adam Pameron

Sponsor: Dr. John Lusher II, Dr. Hope Rising

TA: Rohith Kumar

Project Summary

- Current space operations require constant resupply

 – Costly (\$20,000 per kg)

 – Inefficient and wasteful
- Long term space missions need a sustainable food source
- Project provides electrical infrastructure for a selfsustaining system capable of recycling agricultural products

Project/Subsystem Overview

Major Project Changes Since Last Time

Power Management:

 Finalize 1 complete system by end of semester

User Interface:

Converted to firebase

AI/Data Processing:

 Only working on baby spinach, no oyster mushroom

Microcontroller:

 Finalize 1 complete system by end of semester

Project Timeline

Milestone	Expected Time			
Obtain significant data for charging of battery pack	September 9			
Order BMS PCB	September 9			
Order MCU PCB	September 9			
Integrate Raspberry Pi and 5 MCUs	September 17			
Integrate all sensors	September 23			
Solder all BMS PCB components	October 12			
Solder all MCU PCB components	October 14			
Finalize and debug all BMS connections	October 23			
Integrate Raspberry Pi and Database	October 30			
Retrieve Baby Spinach Data from Horticulture Team and create CNN Model	October 30			
Finalize and debug all sensors	October 30			

- Create binary classifier using Convolutional Neural Network (CNN) Model
 - Baby Spinach
 - Oyster Mushroom
- Collect sensor data from 5 microcontrollers
- Send sensor data to database

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Perform data augmentation with data set Grayscale Vertical Flip Gaussian Blur Shearing Even number of data Request data from I2C with oxygen sensor Send trend data to Firebase Database	 Waiting for Horticulture Team to fully grow Healthy and Nitrogen Deficient Baby Spinach to collect images [est. October] Send images to Firebase database Interfacing with microcontrollers using serial communication to request data, and validate all sensors data is collected and accurate Build application code to repeat all routines (classify, request data, send data) at a set time

Al/Data Processing Subsystem - Parameters

Adam Pameron

Modified LeNet Architecture

- Send oxygen data to Firebase
 - Time
 - Concentration

Power Management

Robert Dye

- Provide power to PCBs that house the microcontrollers as well as the pi that will be used to control AI subsystem
- BMS monitoring
- Charging

Power Management

Robert Dye

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Performed extensive testing on battery and solar panel with smaller loads Ordered PCB 	 Perform same tests with a heavier load Solder Components on PCB once it arrives Help MCU subsystem

Power Management

Robert Dye

- 200 Peripherals modularized between 5 microcontrollers
- 20 Oxygen, 20 CO2, 20 NO2, 20 Methane, 20 Ethylene, 20 Carbon monoxide, 12 Temp/Humidity, 4 water level, 4 water flow sensors
- 9 types of sensors using I2C, UART, Analog, or digital communication
- 38 solenoids and 26 fans controlled using GPIO + switching circuit

Accomplishments since last presentation	Ongoing progress/problems and plans until the next presentation
 Redesigned MCU PCB Verified Oxygen I2C sensor operation Ordered new MOSFET for solenoid switching 	 Verify Temperature/Humidity I2C sensor operation Verify UART sensor operation Implement PWM logic for water flow sensor Design op-amp circuit and verify analog sensor operation Design I2C multiplexer circuit for fan and solenoid switching

Andrew Yang

Expected Result from Arduino

Result from Microchip Dev Board

User Interface

- Display Data from MCU sensors on app
- Visualize sensor values over time
- Display camera pictures on app

User Interface

Justin Blankenhorn

Accomplishments since last presen tation	Ongoing progress/problems and plans until the next presentation
 Established connection between Android Studio and Firebase App Set up Firebase database sensor data display on app for 3 MCU units 	 Add display from other MCU units Display images to app using firebase Develop graphs for sensor data over time

0

 \triangleleft

User Interface

Justin Blankenhorn

 \triangleleft

0

Parts Ordering Status

Susbsytem	Item	Quantity Price	
AI/ Data Processing Subsystem	Raspberry Pi 4 8GB Kit	1	\$169.95
	Arducam IMX519 Quad-Camera Kit	1	\$169.99
	Arducam Camera Case and Mini Tripod	4	\$11.99
Power Management Subsystem	100 watt solar panel	2	\$100
	BQ78350DBTR-R1A Fuel Guage	10	\$4.00
	BQ7693000DBT Battery Monitor	10	\$4.00
	14.8V 13Ah Battery Pack	6	\$194.00
	DC Power Supply	1	N/A
	Victron MPPT Controller	1	\$137
	DROK Buck Converter	10	\$14.00
	РСВ	5	\$63.64
Control Unit Subsystem	PIC32MZ2025DAK176-V/2J	10	\$19.58
	Gravity: Electrochemical Oxygen Sensor	10	\$43.12
	004-0-0053 CO2 Sensor	8	\$53.36
	110-507 NO2 Sensor	4	\$20.00
	IR33BC Methane Sensor	4	\$262.63
	ME3-C2H4 Ethylene Sensor	8	\$91.95
	SEN0485 Liquid Level Sensor	8	\$9.90
	SEN0227 Temperature/Humidity Sensor	8	\$22.50
	110-102 CO Sensor	8	\$20.00
	PCB	5	\$126.37
	PG164140 Pickit4 Programmer	2	\$65.32
	Mini solenoid	4	\$12.49
	NF-A4x10 5V Fan	8	\$13.95
	Water Flow Sensor	4	\$10.99
	2N7000 N-MOS	2	\$5.50
	BS170 N-MOS	2	\$7.25
User Interface	Android EL 6C Cell Phone	1	\$73.00

Total \$6,832.78

Execution & Plan

THANK YOU!