Практическое задание к уроку 4 Урок 4. Предел функции. Часть 1

② Question

Предложить пример функции, не имеющей предела в нуле и в бесконечности.

Привести пример функции, не имеющей предела в точке, но определенной в ней.

Question

Исследовать функцию $f(x) = x^3 - x^2$ по плану:

- а. Область задания и область значений.
- b. Нули функции и их кратность.
- с. Отрезки знакопостоянства.
- d. Интервалы монотонности.
- е. Четность функции.
- f. Ограниченность.
- g. Периодичность.

а) Область задания и область значений. Функция определена и непрерывна на всей числовой прямой: $D(f)=\mathbb{R}$. Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции: $E(f)=\mathbb{R}$ – тоже любое действительное число.

b) **Нули функции и их кратность.**

Сначала найдём точку пересечения графика с осью ординат. Необходимо вычислить значение функции при $x=0:y=f(0)=0-0=0,\,x=1:y=f(1)=1-1=0$ Уравнение имеет 2 действительных корня: x=0,x=1.

с) Отрезки знакопостоянства. На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:

d) **Интервалы монотонности.**

Исследуем первую производную: $\frac{\partial (x^3-x^2)}{\partial x}=3x^2-2x\Longrightarrow 3x^2-2x=0\Longrightarrow x=0; x=\frac{2}{3}$ Данное уравнение имеет два действительных корня. Отложим их на числовой прямой и определим знаки производной:

В точке $x=\frac{2}{3}$ функция достигает минимума, а в точке x=0 максимума.

X	$(-\infty,0)$	0	$\left(0,\frac{2}{3}\right)$	$\frac{2}{3}$	$\left(\frac{2}{3},\infty\right)$
f'(x)	+	0	-	0	+
f(x)	介	0	\	$-\frac{4}{27}$	\uparrow

Исследуем вторую производную: $\frac{\partial (3x^2-2x)}{\partial x}=6x-2\Longrightarrow 6x-2=0\Longrightarrow x=\frac{1}{3}$ Определим знаки производной:

X	$\left(-\infty, \frac{1}{3}\right)$	$\frac{1}{3}$	$\left(\frac{1}{3},\infty\right)$
f"(x)	-	0	+
f(x)	\cap	$-\frac{2}{27}$	U

е) Четность функции. Проверим на четность/нечетность:

$$f(-x)=(-x)^3-(-x)^2=-x^3-x^2\Longrightarrow f(-x)
eq f(x), f(-x)
eq -f(x),$$
 значит, данная функция не является чётной или нечётной.

f) Ограниченность. Выясним, как ведёт себя функция на бесконечности:

Вертикальные асимптоты отсутствуют.

$$\lim_{x o\pm\infty}\left(x^3-x^2
ight)=\pm\infty\Longrightarrow$$
 Нет горизонтальных асимптот.

Наклонная асимптота имеет вид y=kx+b, где:

$$k=\lim_{x o\infty}rac{f(x)}{x}$$
; $b=\lim_{x o\infty}(f(x)-kx)$

Найдем k:

$$k=\lim_{x o\infty}rac{x^3-x^2}{x}=\lim_{x o\infty}x^2-x=\infty$$

Аналогично $k=\lim_{x \to -\infty} rac{x^3-x^2}{x}=\lim_{x \to -\infty} x^2-x=\infty.$ Наклонных асимптот нет.

Таким образом, функция неограниченная – не ограничена сверху и не ограничена снизу.

g) Периодичность. Функция непериодическая.

② Question

Найти предел:

$$\lim_{x o 0} rac{3x^3 - 2x^2}{4x^2} = \lim_{x o 0} rac{rac{3x^3}{x^2} - rac{2x^2}{x^2}}{rac{4x^2}{x^2}} = \lim_{x o 0} rac{3x - 2}{4} = rac{1}{2}$$

$$\lim_{x o 0}rac{\sqrt{1+x}-1}{\sqrt[3]{x+1}-1}=\left(\sqrt[n]{x+1}-1\simrac{1}{n}x
ight)=rac{rac{x}{2}}{rac{x}{3}}=rac{3}{2}$$

$$\lim_{x \to \infty} (\frac{x+3}{x})^{4x+1} = (\lim_{x \to a} u(x)^{v(x)} = e^{\lim_{x \to a} (u(x)-1)v(x)}) = \lim_{x \to \infty} ((\frac{x+3}{x}-1)(4x+1)) = \lim_{x \to \infty} (3(\frac{1}{x}+4)) = 12 \Longrightarrow \lim_{x \to \infty} (\frac{x+3}{x})^{4x+1} = e^{12}$$

$$\lim_{x \to 0} \frac{\sin(2x)}{4x} \sim \lim_{x \to 0} \frac{2x}{4x} = \frac{1}{2}$$
 $\lim_{x \to 0} \frac{x}{\sin(x)} \sim \lim_{x \to 0} \frac{x}{x} = 1$
 $\lim_{x \to 0} \frac{x}{\arcsin(x)} \sim \lim_{x \to 0} \frac{x}{x} = 1$

$$\lim_{x \to \infty} (\frac{4x+3}{4x-3})^{6x} = (\lim_{x \to a} u(x)^{v(x)} = e^{\lim_{x \to a} (u(x)-1)v(x)}) = \lim_{x \to \infty} (6(\frac{4x+3}{4x-3}-1)x) = \lim_{x \to \infty} (\frac{36x}{4x-3}) = 9 \Longrightarrow \lim_{x \to \infty} (\frac{4x+3}{4x-3})^{6x} = e^9$$

$$\begin{split} &\lim_{x\to\infty} \frac{\sin(x) + \ln x}{x} = \lim_{x\to\infty} \left(\frac{\sin(x)}{x} + \frac{\ln(x)}{x} \right) \Longrightarrow \\ &\left(\lim_{x\to\infty} \frac{\ln(x)}{x} = \lim_{x\to\infty} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} x} = \lim_{x\to\infty} \frac{\frac{1}{x}}{1} = \lim_{x\to\infty} \frac{1}{x} = 0 \right) = 0 + 0 = 0 \end{split}$$

$$\lim_{x o 0} rac{\sin(x) + \ln x}{x} = \lim_{x o 0} \left(rac{\sin(x)}{x} + rac{\ln(x)}{x}
ight) \Longrightarrow (\sin(x) \sim x; \lim_{x o 0} rac{\sin(x)}{x} = 1) \Longrightarrow$$
 $(\lim_{x o 0} rac{\ln(x)}{x} = \lim_{x o 0} rac{rac{d}{dx} \ln(x)}{x} = \lim_{x o 0} rac{rac{1}{x}}{1} = \lim_{x o 0} rac{1}{x} = \infty) = 0 + \infty \to \text{не существует}$

 $\ln(x)$ не определена при $x\leq 0$, и поэтому предел не существует, так как $\ln(x)$ не стремится к какому-либо конечному значению при $x\to 0$.