BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 34 713.1

Anmeldetag:

30. Juli 2002

Anmelder/Inhaber:

Siemens Audiologische Technik GmbH,

Erlangen/DE

Bezeichnung:

Hörhilfegerät mit einer Spannungsquelle

IPC:

H 04 R 25/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Juli 2003

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Beschreibung

Hörhilfegerät mit einer Spannungsquelle

Die Erfindung betrifft ein Hörhilfegerät mit einem Hörhilfegerätegehäuse und einer Spannungsquelle mit einem Spannungsquellengehäuse, wobei die Spannungsquelle zur Belüftung in dem Spannungsquellengehäuse wenigstens eine Belüftungsöffnung aufweist.

10

Als Spannungsquelle zur Spannungsversorgung von Hörhilfegeräten werden häufig Zink-Luft-Batterien eingesetzt. Diese Batterien benötigen zur chemischen Reaktion Sauerstoff, so dass eine Belüftung der Batterien erforderlich ist. Hierfür weisen die Batteriegehäuse jeweils wenigstens eine Belüftungsöffnung auf. Üblicherweise sind in dem Gehäuse einer Zink-Luft-Batterie jedoch mehrere Belüftungsöffnungen vorhanden.

20

Damit der Sauerstoff in die im Hörhilfegerät eingesetzten Batterie gelangen kann ist auch in dem Gehäuse des Hörhilfegerätes wenigstens eine Belüftungsöffnung vorgesehen. In der Regel reichen hierfür die in dem Gehäuse vorhandenen Undichtigkeiten aus, so dass keine speziellen Belüftungsöffnungen erforderlich sind.

25

30

35

•

Zink-Luft-Batterien unterliegen einer starken Selbstentladung, die jedoch unterbunden werden kann, solange die Belüftung der Batterien verhindert wird. Daher sind Zink-Luft-Batterien zur Lagerung zumeist mit einem Aufkleber versehen, der der die Belüftungsöffnungen verschließt und einen Gasaustausch mit der Umgebungsluft, insbesondere einen Sauerstoffeintritt in die Batterien, verhindert. Bei einer neuen und unverbrauchten Batterie wird dieser Aufkleber dann erst unmittelbar vor dem Einsetzen der Batterie in das Hörhilfegerät entfernt.

Wird ein Hörhilfegerät mit eingesetzter Batterie eine Zeit lang nicht verwendet, so muss zum Verhindern der Selbstentladung die Batterie wieder aus dem Hörhilfegerät entfernt und die Belüftungsöffnung der Batterie verschlossen werden. Dann kommen innerhalb kurzer Zeit die chemischen Prozesse innerhalb der Batterie wieder zum Stillstand und die Selbstentladung ist unterbunden. Nachteilig bei dieser Vorgehensweise ist, dass die Batterie sehr häufig aus dem Hörhilfegerät entnommen und wieder eingesetzt werden muss, insbesondere dann, wenn das betreffende Hörhilfegerät nicht dauerhaft getragen wird.

20

5

10

Aufgabe der vorliegenden Erfindung ist es, die Selbstentladung bei einer in ein Hörhilfegerät eingesetzten Batterie zu verhindern.

Diese Aufgabe wird bei einem Hörhilfegerät mit einem Hörhilfegerätegehäuse und einer Spannungsquelle mit einem Spannungsquellengehäuse, wobei die Spannungsquelle zur Belüftung in dem Spannungsquellengehäuse wenigstens eine Belüftungsöffnung aufweist, dadurch gelöst, dass das Hörhilfegerät Mittel zum Ermöglichen oder Verhindern der Belüftung der Spannungsquelle umfasst.

30

35

Die Erfindung bietet den Vorteil, dass durch das Verhindern der Belüftung der Spannungsquelle die Selbstentladung der Spannungsquelle weitgehend unterbunden wird, ohne dass hierzu die Spannungsquelle aus dem Hörhilfegerät entnommen und luftdicht verschlossen werden muss. Die Spannungsquelle kann damit in dem Hörhilfegerät verbleiben, auch wenn dieses eine Zeitlang nicht benutzt wird.

Bei einer Ausführungsform der Erfindung ist vorgesehen, direkt die bzw. jede Belüftungsöffnung der in das Hörhilfegerät eingesetzten Spannungsquelle zu verschließen, so dass die chemischen Prozesse innerhalb der Spannungsquelle zum Still-

stand kommen und die Selbstentladung der Spannungsquelle bei ausgeschaltetem Hörhilfegerät verhindert wird.

Ein Hörhilfegerät gemäß der Erfindung umfasst vorteilhaft wenigstens ein relativ zum Spannungsquellengehäuse bewegbares Dichtelement, das in einer ersten Position die Belüftungsöffnung verschließt und in einer zweiten Position die Belüftungsöffnung freigibt. Ebenso kann auch das Dichtelement fest in dem Hörhilfegerätegehäuse verankert sein und die Spannungsquelle wird in den genannten Bewegungsrichtungen relativ zu dem Dichtelement bewegt.

Vorzugsweise ist das Dichtelement zum Verschließen einer Spannungsquelle mit mehreren Belüftungsöffnungen so ausgebildet, dass ein einstückiges Dichtelement alle Belüftungsöffnungen der Spannungsquelle gleichzeitig öffnen und verschließen kann. Das Dichtelement kann seitlich über die Belüftungsöffnungen geschwenkt oder geschoben werden. Ferner ist es möglich, dass das Dichtelement zum Verschließen der Belüftungsöffnungen senkrecht auf diese zubewegt bzw. davon abgehoben wird.

Bei einer Weiterbildung der Erfindung umfassen die Mittel zum Öffnen oder Verschließen der Belüftungsöffnung der Spannungsquelle ein Schwenk- oder ein Schiebeelement, das von dem Hörgeräteträger betätigbar ist. Vorzugsweise ist das Schwenk- oder Schiebeelement an der jeweiligen Unterseite mit einer Dichtung versehen, die über die Belüftungsöffnung geführt wird und diese abdichtet. So kann durch Betätigung des Schwenk- oder Schiebeelementes die Belüftungsöffnung verschlossen oder freigegeben werden. Auch eine indirekte Verbindung zwischen dem von dem Hörgeräteträger betätigbaren Schwenk- oder Schiebeelement und einem Dichtelement zum Öffnen oder Verschließen der Belüftungsöffnungen ist möglich. Beispielsweise kann so bei Betätigung des Schwenk- oder Schiebeelements das Dichtelement mittels eines Federantriebs

über die Belüftungsöffnung geschoben werden.

Bei einer vorteilhaften Weiterbildung der Erfindung sind die Mittel zum Öffnen oder Verschließen der Belüftungsöffnung mit einem von dem Hörgeräteträger betätigbaren Ein-/Ausschalter für das Hörhilfegerät derart verbunden, dass die Belüftungs-öffnungen bei ausgeschaltetem Hörhilfegerät verschlossen und bei eingeschaltetem Hörhilfegerät geöffnet sind. Auch hierbei besteht vorzugsweise eine mechanische Verbindung zwischen dem Ein-/Ausschalter für das Hörhilfegerät und dem Dichtelement zum Öffnen oder Verschließen der Belüftungsöffnung.

15

20

30

10

Eine alternative Ausführungsform sieht Mittel zum automatischen Öffnen und Verschließen der oder jeder Belüftungsöffnung vor. So kann mittels eines elektrischen und/oder magnetischen Miniaturantriebs die Belüftungsöffnung beim Einschalten des Hörhilfegerät geöffnet und beim Ausschalten geschlossen werden.

Bei einer bevorzugten Weiterbildung der Erfindung ist die Spannungsquelle in einer dreh- oder schwenkbar mit dem Hörhilfegerät verbundenen Batterielade angeordnet. In der geschlossenen Position der Batterielade ist die oder jede Belüftungsöffnung der Spannungsquelle geöffnet. Ferner ist eine zweite, vorzugsweise rastbare Stellung der Batterielade vorgesehen, bei der die Belüftungsöffnung verschlossen ist und bei der die Spannungsquelle nicht aus dem Hörhilfegerät entnommen werden kann. Schließlich ist in einer dritten Stellung die Batterielade geöffnet und die Spannungsquelle daraus entnehmbar. Vorzugsweise wirkt die so ausgebildete Batterielade gleichzeitig als Ein-/Ausschalter für das Hörhilfegerät. In der ersten Stellung der Batterielade ist das Hörhilfegerät eingeschaltet, in der zweiten und dritten Stellung ausgeschaltet.

Bei einer anderen Ausführungsform der Erfindung ist die Spannungsquelle innerhalb des Hörhilfegerätes in einem Batteriefach gekapselt angeordnet, d.h. luftdicht abgegrenzt gegenüber dem verbleibenden Innenraum des Hörhilfegerätes und gegenüber der das Hörhilfegerät umgebenden Luft. Ein Luftaustausch mit der Umgebungsluft kann so bei eingesetzter Spannungsquelle nur über eine in dem Hörhilfegerät vorhandene Belüftungseinrichtung erfolgen, die eine Öffnung von dem Batteriefach durch das Hörhilfegerätegehäuse nach außen schafft. Diese Verbindung kann gemäß der Erfindung vorteilhaft durch Mittel zum Ermöglichen oder Verhindern der Belüftung des Batteriefachs auch unterbrochen werden.

10

5

15

20

Zum Öffnen oder Verschließen der Belüftungseinrichtung umfasst das Hörhilfegerät vorzugsweise ein von dem Träger des Hörhilfegerätes betätigbares Dichtelement. Die Belüftungseinrichtung kann als Öffnung im Gehäuse des Hörhilfegerätes ausgebildet sein, die mittels des Dichtelementes geöffnet oder verschlossen werden kann. Weiterhin ist es möglich, dass von der Spannungsquelle ein Belüftungskanal zum Gehäuse des Hörhilfegerätes führt und in einer Gehäuseöffnung mündet. Dann kann das Dichtelement auch direkt auf diesen Belüftungskanal einwirken und diesen an geeigneter Stelle öffnen oder verschließen. Das Dichtelement ist vorzugsweise als Schwenk- oder Schiebeelement ausgebildet, das durch eine Schwenk- oder

25

rät, insbesondere in Verbindung mit einem Belüftungskanal zur Belüftung der Spannungsquelle, auch ein Ventil umfassen, das in geöffneter Stellung ebenfalls den Belüftungskanal freigibt und in geschlossener Stellung den Belüftungskanal verschließt.

Schiebebewegung die Belüftungsöffnung bzw. den Belüftungskanal verschließt oder freigibt. Weiterhin kann das Hörhilfege-

30

35

Bei einer Weiterbildung der Erfindung ist die Spannungsquelle in einer dreh- oder schwenkbar mit dem Hörhilfegerät verbundenen Batterielade angeordnet, die derart mit Dichtungselementen versehen ist, dass diese in einer bestimmten Position der Batterielade relativ zum Hörhilfegerätegehäuse die Spannungsquelle zumindest im Wesentlichen luftdicht umschließt. Vorzugsweise dient auch diese Batterielade zum Ein- und Aus-

schalten des Hörhilfegerätes. In einer ersten Position ist die Batterielade geschlossen und das Hörhilfegerät eingeschaltet. Ferner erfolgt ein Gasaustausch zwischen der in der Batterielade angeordneten Spannungsquelle und der das Hörhilfegerät umgebenden Luft, insbesondere ein Sauerstoffeintritt in die Spannungsquelle. In einer zweiten, vorzugsweise rastbaren Position ist das Hörhilfegerät ausgeschaltet und die Spannungsquelle gegenüber ihrer Umgebung gemäß der Erfindung gekapselt, wobei eine vorhandene Belüftungsöffnung bzw. ein Belüftungskanal verschlossen ist. In einer dritten Position ist die Batterielade geöffnet und die Spannungsquelle kann entnommen werden.

iq.

5

10

Ebenso wie bei der genannten Weiterbildung mit einer Batterielade mit mehreren unterschiedlichen Funktionen, je nach deren Stellung relativ zum Hörhilfegerätegehäuse, kann auch bei den Ausführungsformen mit einem Schwenk- oder Schiebeelement das Schwenk- oder Schiebeelement gleichsam als Ein-/Ausschalter für das Hörhilfegerät ausgebildet sein. Durch Betätigen des Ein- oder Ausschalters wird dann auch die Belüftung der Spannungsquelle ermöglicht oder unterbunden. Vorzugsweise werden durch Betätigen eines Schwenk- oder Schiebeelementes zum Öffnen und Schließen von Kontakten zum Ein- oder Ausschalten des Hörhilfegerätes gleichsam direkt auch Belüftungsöffnungen geöffnet oder geschlossen.

! 25 //

20

Eine andere Variante der Erfindung sieht vor, dass die Mittel zum Öffnen oder Verschließen der Belüftungseinrichtung nicht direkt (mechanisch) mit dem Ein-/Ausschalter verbunden sind. Zum Öffnen oder Verschließen der Belüftungseinrichtung weist das Hörhilfegerät bei dieser Ausführungsform elektrische und/oder magnetische Miniaturantriebe auf, die durch Betätigung des Ein-/Ausschalters die Belüftungseinrichtung automatisch öffnen oder verschließen.

35

30

Eine weitere Ausführungsform der Erfindung sieht eine Dichteinrichtung vor, die die oder jede Belüftungsöffnung der

Spannungsquelle wenigstens im Wesentlichen luftdicht umschließt. Diese Ausführungsform ist insbesondere bei Spannungsquellen mit mehreren Belüftungsöffnungen vorteilhaft, bei der die Dichteinrichtung am äußeren Rand der Spannungsquelle ansetzt und somit alle Belüftungsöffnungen der Spannungsquelle gemeinsam umschließt. Die Dichteinrichtung sieht weiterhin eine der Batterie abgewandte Öffnung vor, die geöffnet oder verschlossen werden kann und somit eine Belüftung der Spannungsquelle ermöglicht oder verhindert. Auch bei dieser Ausführungsform sind wieder verschiedene Möglichkeiten zum Öffnen oder Verschließen zuletzt genannter Öffnung möglich. So kann auch hierbei vorteilhaft ein Schwenk- oder Schiebeelement oder ein Ventil verwendet werden. Auch hierbei sind die Mittel zum Öffnen und Verschließen der Öffnung vorzugsweise mit dem Ein-/Ausschalter für das Hörhilfegerät verknüpft. So kann einerseits eine direkte mechanische Verbindung bestehen, es können aber auch durch Betätigung des Ein-/Ausschalters Mittel zum automatischen Öffnen oder Verschließen der Öffnung vorhanden sein.

20

5

10

15

Auch bei dieser Ausführungsform sieht eine Variante eine dreh- oder schwenkbar mit dem Hörhilfegerät verbundene Batterielade vor, innerhalb der die Spannungsquelle angeordnet ist. Auch hierbei ist die Batterielade vorteilhaft gleichsam als Ein- oder Ausschalter für das Hörhilfegerät ausgebildet und gibt bei eingeschaltetem Hörhilfegerät die Öffnung in der Dichteinrichtung frei bzw. verschließt diese bei ausgeschaltetem Hörhilfegerät.

7

25

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich an der nachfolgenden Beschreibung von Ausführungsbeispielen. Es zeigen:

Figur 1 ein Hinter dem Ohr tragbares Hörhilfegerät mit einer Batterielade, in der eine Batterie mit Belüftungsöffnungen angeordnet ist,

Figur 2 im Schnitt einen Teilbereich des Hörhilfegerätes gemäß Figur 1 in eingeschaltetem Zustand und mit geöffneten Belüftungsöffnungen,

5 Figur 3 im Schnitt einen Teilbereich des Hörhilfegerätes gemäß Figur 1 in ausgeschaltetem Zustand und mit geschlossenen Belüftungsöffnungen,

Figur 4 ein Hinter dem Ohr tragbares Hörhilfegerät mit einem 10 Dichtelement zum Öffnen oder Verschließen der Belüftungsöffnungen der Batterie,

Figur 5 ein Hinter dem Ohr tragbares Hörhilfegerät mit einer gekapselten Batteriekammer und mit einer Belüftungseinrichtung,

Figur 6 ein Hinter dem Ohr tragbares Hörhilfegerät mit einer gekapselten Batteriekammer, einem Belüftungskanal und einem Ventil,

20

Figur 7 ein in dem Ohr tragbares Hörhilfegerät mit einem als Schwenkelement ausgebildeten Ein- /Ausschalter und

) [2!

30

35

Figur 8 im Schnitt einen Teilbereich eines Hinter dem Ohr tragbaren Hörhilfegerätes mit einem Dichtelement.

Figur 1 zeigt in schematischer, stark vereinfachter Darstellung ein Hinter dem Ohr tragbares Hörhilfegerät (HdO) 1 mit einem Mikrofon 2 zur Aufnahme eines akustischen Eingangssignals und Wandlung in ein elektrisches Signal. Zur Weiterverarbeitung und Verstärkung des elektrischen Ausgangssignals des Mikrofons ist dieses einer Signalverarbeitungseinheit 3 zugeführt. Schließlich wird das verarbeitete und verstärkte Signal zur Rückverwandlung in ein akustisches Signal einem Hörer 4 zugeführt. Das akustische Ausgangssignal des Hörers wird mittels eines Schallkanals 5 und eines Schallschlauches

(nicht dargestellt) in den Gehörgang eines Hörgeräteträgers abgegeben.

Die elektrischen Komponenten des Hinter dem Ohr tragbares Hörhilfegerätes 1 sind zur Spannungsversorgung mit einer Batterie 6 verbunden. Diese befindet sich in einer schwenkbar mit dem Hinter dem Ohr tragbaren Hörhilfegerät 1 verbundenen Batterielade 7. Zum Schwenken der Batterielade 7 umfasst diese ein Scharnier 8 sowie ein Betätigungselement 9. Die Batterielade 7 dient sowohl zum Einsetzen und Herausnehmen der Batterie in einer geöffneten Position der Batterielade 7 als auch zum Ein- und Ausschalten des Hörhilfegerätes. Hierfür kann die Batterielade 7 eine zweite verrastbare Position einnehmen (gestrichelte Linie in Figur 1), in der das Hörhilfegerät ausgeschaltet ist, die Spannungsquelle aber nicht entnommen werden kann. Zum Herausnehmen der Batterie 6 wird diese mit der Batterielade 7 aus dem Gehäuse des Hörhilfegerätes 1 geschwenkt.

In Figur 1 befindet sich die Batterielade 7 in der geschlossenen Stellung (durchgezogene Linie). In dieser Stellung ist die Batterie 6 zur Spannungsversorgung der elektrischen Komponenten des Hörhilfegerätes 1 kontaktiert. Zwischen der Batterie 6 und dem Gehäuse des Hörhilfegerätes 1 sind Belüftungskanäle zur Belüftung der Batterie angeordnet, die in den Belüftungsöffnungen im Hörhilfegerätegehäuse 10A-10G münden. Somit kann beim Betrieb des Hörhilfegerätes 1 ein Gasaustausch zwischen der Batterie 6 und der das Hörhilfegerät 1 umgebenden Luft erfolgen.

Figur 2 zeigt ebenfalls in schematischer, stark vereinfachter Darstellung das untere Gehäuseende des Hörhilfegerätes 1 gemäß Figur 1, in dem die Batterie 6 in einer Batterielade 7 angeordnet ist. Zur elektrischen Kontaktierung der Batterie 6 weist das Hörhilfegerät 1 elektrische Kontaktelemente 11A und 11B auf. In der gezeigten Position der Batterielade 7 liegen die elektrischen Kontaktelemente 11A und 11B an dem Gehäuse

12 der Batterie an. Das Hörhilfegerät 1 ist damit eingeschaltet. Zum Ablauf der chemischen Prozesse im Inneren der Batterie 6 ist ein Gasaustausch mit der das Hörhilfegerät 1 umgebenden Luft erforderlich. Hierfür befinden sich in dem Gehäuse 12 der Batterie 6 Belüftungsöffnungen 13A-13G, von denen aus Figur 2 jedoch nur die Belüftungsöffnungen 13A, 13D und 13G ersichtlich sind. Die Anzahl und Anordnung der Belüftungsöffnungen in dem Gehäuse 12 der Batterie 6 entspricht der Anzahl und Anordnung der Belüftungsöffnungen 10A-10G in dem Gehäuse des Hörhilfegerätes 1 gemäß Figur 1. Der geschnittenen Darstellung gemäß Figur 2 sind daher nur die oben genannten Belüftungsöffnungen zu entnehmen.

Bei geschlossener Batterielade 7 liegt an der Gehäuseseite des Gehäuses 12 der Batterie 6 mit den Belüftungsöffnungen 13A-13G eine Dichtung 14 dichtend an. Die Dichtung 14 ist mit Öffnungen 14A-14G versehen, die über Belüftungskanäle 15A-15G zu den Belüftungsöffnungen 10A-10G in dem Gehäuse des Hörhilfegerätes 1 fortgesetzt sind. Somit kann in der gezeigten Position der Batterie 6 in dem Hörhilfegerät 1 ein Gasaustausch zwischen der Batterie 6 und der das Hörhilfegerät 1 umgebenden Luft erfolgen.

Gewöhnlich ist das Gehäuse eines Hörhilfegerätes nicht luftdicht geschlossen, so dass bei einer alternativen Variante der Erfindung (nicht dargestellt) auf die Belüftungsöffnungen 10A-10G in dem Gehäuse des Hörhilfegerätes sowie die Belüftungskanäle 15A-15G zwischen der Dichtung 14 und den Belüftungsöffnungen 10A-10G verzichtet werden kann.

Figur 3 zeigt die gleiche Anordnung wie Figur 2, jedoch bei ausgeschaltetem Hörhilfegerät 1. In dieser Schaltposition ist die Batterielade 7 ein Stückweit um die Achse 8 geschwenkt und in dieser zweiten rastbaren Position der Batterielade 7 verrastet. Das elektrische Kontaktelement 11A liegt in der gezeigten Position der Batterielade 7 nicht mehr an dem Gehäuse 12 der Batterie 6 an, wodurch die elektrische Span-

nungsversorgung unterbrochen und das Hörhilfegerät 1 ausgeschaltet ist. Die Batterie 6 befindet sich in dieser Schaltposition zumindest im Wesentlichen noch innerhalb des Gehäuses des Hörhilfegerätes 1 und kann in dieser Schaltposition auch nicht daraus entnommen werden. Wie aus Figur 3 ersichtlich ist, befinden sich die Belüftungsöffnungen 13A-13G im Gehäuse 12 der Batterie 6 nicht mehr wie in Figur 2 über den Öffnungen 14A-14G in der Dichtung 14, so dass der Gasaustausch unterbunden ist und die chemischen Prozesse innerhalb der Batterie 6 zum Stillstand kommen. Eine Selbstentladung der Batterie 6 wird dadurch verhindert.

5

10

15

Ein weiteres Ausführungsbeispiel der Erfindung zeigt Figur 4. Auch bei diesem Ausführungsbeispiel handelt es sich um ein Hinter dem Ohr tragbares Hörhilfegerät 20 mit einem Mikrofon 21, einer Signalverarbeitungseinheit 22, einem Hörer 23 sowie einem Schallkanal 24. Die Wirkungsweise des in Figur 4 gezeigten Hörhilfegerätes entspricht der des Hörhilfegerätes gemäß Figur 1.

20

25

30

35

Im Unterschied zu dem Ausführungsbeispiel gemäß den Figuren 1 bis 3 ist bei dem Hörhilfegerät gemäß Figur 4 jedoch ein separater Ein-/Ausschalter 25 vorgesehen, der nicht über die Batterielade betätigt wird. Bei dem Ein-/Ausschalter 25 sind die beiden Schaltpositionen "ON" und "OFF" möglich. Fest mit dem Ein-/Ausschalter 25 verbunden ist ein verschiebbares Dichtelement 26, das zwischen einer Batterie 27 und dem Hörgerätegehäuse angeordnet ist und bei in dem Hörhilfegerät befindlicher Batterie 27 gegen diese gedrückt wird. Weiterhin weist das Dichtelement Öffnungen 28A-28G auf, die im eingeschalteten Zustand des Hörgerätes über Belüftungsöffnungen 29A-29G der Batterie 27 liegen und somit eine Verbindung zwischen den Belüftungsöffnungen 29A-29G der Batterie 27 und Belüftungsöffnungen im Hörgerätegehäuse (nicht dargestellt) schaffen. Die Belüftungsöffnungen im Hörhilfegerätegehäuse ergeben sich in der Regel aus den bereits vorhandenen Undichtigkeiten des Hörhilfegerätegehäuses, so dass hierfür keine

gesonderten Einrichtungen vorzusehen sind. Wird der Ein-/Ausschalter des Hörhilfegerätes in die "OFF"-Stellung gebracht, so werden dadurch die Belüftungsöffnungen 29A-29G der Batterie 27 verschlossen. Ein Gasaustausch mit der das Hörhilfegerät umgebenden Luft kann somit nicht mehr erfolgen und die Selbstentladung der Batterie 27 ist gestoppt.

Auch bei dem weiteren Ausführungsbeispiel gemäß Figur 5 handelt es sich um ein Hinter dem Ohr tragbares Hörhilfegerät (HdO) 30 mit einem Mikrofon 31, einer Signalverarbeitungseinheit 32, einem Hörer 33 und einem Schallkanal 34 mit der zu Figur 1 aufgezeigten Wirkungsweise. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 1 umfasst das Hörhilfegerät 30 gemäß Figur 5 jedoch einen Ein- /Ausschalter 35 zum Einund Ausschalten des Hörhilfegerätes 30. Der Ein- /Ausschalter 35 ist als betätigbares Schiebeelement mit zwei Schaltpositionen ausgebildet. In der Schaltposition "ON" ist das Hörhilfegerät 30 eingeschaltet und in der Schaltposition "OFF" ist das Hörhilfegerät 30 ausgeschaltet.

20

30

35

5

10

15

Ein weiterer Unterschied zu den bislang aufgezeigten Ausführungsbeispielen liegt darin, dass das Hörhilfegerät 30 eine zumindest im Wesentlichen luftdicht verschließbare (gekapselte) Batteriekammer 36 umfasst, in der die Batterie 37 zur Spannungsversorgung des Hörhilfegerätes 30 angeordnet ist. Zur Kapselung ist die Batteriekammer 36 vorzugsweise in dem Übergangsbereich zum Hörhilfegerätegehäuse mit Dichtelementen (nicht dargestellt) versehen. Weiterhin ist gemäß der Erfindung zur Belüftung der Batterie 37 ein Belüftungskanal 38 vorgesehen, der in der Batteriekammer 36 beginnt und in eine Belüftungsöffnung 38A mündet. Je nach der augenblicklichen Schaltstellung des Ein- /Ausschalters 35 ist die Belüftungsöffnung 38A geöffnet (Schaltstellung "ON") oder verschlossen (Schaltstellung "OFF"). Vorteilhaft befindet sich an der Unterseite des Ein- /Ausschalters 35 eine Dichtung 35A, die die Belüftungsöffnung 38A in der Schaltposition "OFF" luftdicht verschließt.

Auch bei dem folgenden Ausführungsbeispiel gemäß Figur 6 handelt es sich um ein Hinter dem Ohr tragbares Hörhilfegerät 30' mit einem Mikrofon 31', einer Signalverarbeitungseinheit 32', einem Hörer 33' sowie einem Schallkanal 34'. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 5 umfasst das Hörhilfegerät 30' gemäß Figur 6 jedoch einen MTO- Schalter 35' zum Bedienen des Hörhilfegerätes 30'. In der Schaltposition "M" ist das Hörhilfegerät 30' eingeschaltet und die Signalaufnahme erfolgt über das Mikrofon 31'. In der Schaltposition "T" ist das Hörhilfegerät 30' ebenfalls eingeschaltet, die Signalaufnahme erfolgt jedoch nicht über das Mikrofon 31', sondern induktiv über eine Telefonspule (nicht dargestellt). In der Schaltposition "O" ist das Hörhilfegerät 30' ausgeschaltet.

Auch das Hörhilfegerät 30' weist in einer luftdicht verschließbaren Batteriekammer 36' eine Batterie 37' zur Spannungsversorgung des Hörhilfegerätes 30' auf. Zur Belüftung der Batterie 37' ist gemäß der Erfindung ein Belüftungskanal 38' vorgesehen, der in der Batteriekammer 36' beginnt und in eine Belüftungsöffnung 38A' im Gehäuse des Hörhilfegerätes 30' mündet. Im Unterschied zum Ausführungsbeispiel gemäß Figur 5 befindet sich im Ausführungsbeispiel gemäß Figur 6 in dem Belüftungskanal 38' ein Ventil 38B' zum Öffnen oder Verschließen des Belüftungskanals 38'. Das Ventil 38B' ist mit einem elektrischen Miniaturantrieb 39' verbunden, der das Ventil 38B' in den Schaltstellungen "M" sowie "T" des MTOSchalters 35' im geöffneten Zustand hält und bei ausgeschaltetem Hörhilfegerät 30' (Schaltstellung "O") das Ventil 38B' in seine geschlossene Position bewegt.

Ein weiteres Ausführungsbeispiel der Erfindung zeigt Figur 7. Anders als bei den vorausgehenden Ausführungsbeispielen handelt es sich hierbei um ein in dem Ohr tragbares Hörhilfegerät (IdO) 40. Dabei sind in der Figur 7 jeweils nur die für die Erfindung wesentlichen Komponenten des in dem Ohr tragba-

10

15

20

30

res Hörhilfegerätes 40 dargestellt. So umfasst auch dieses eine innerhalb des Hörhilfegerätes 40 in einem Batteriefach 41 angeordnete Batterie 42, die über einen Batteriedeckel 43 im Gehäuse des in dem Ohr tragbaren Hörhilfegerätes 40 zugänglich ist. Auch bei diesem Ausführungsbeispiel ist das Batteriefach gegenüber dem verbleibenden Innenraum des Hörhilfegerätes 40 sowie gegenüber der das Hörhilfegerät 40 umgebenden Luft abgedichtet, so dass eine Belüftung der Batterie nur über eine dafür vorgesehene Belüftungseinrichtung erfolgen kann. Hierzu umfasst das in dem Ohr tragbare Hörhilfegerät 40 in dem Ausführungsbeispiel gemäß Figur 7 zwischen der Batterie 42 und einer Belüftungsöffnung 44 im Gehäuse des Hörhilfegerätes 40 einen Belüftungskanal 45. Über den Belüftungskanal 45 und die Belüftungsöffnung 44 kann ein Gasaustausch zwischen der Batterie 42 und der das Hörhilfegerät 40 umgebenden Luft erfolgen. Damit auch hierbei ein Gasaustausch nur bei eingeschaltetem Hörhilfegerät 40 stattfindet, ist ein Ein-/Ausschalter 46 des Hörhilfegerätes 40 als Schwenkelement ausgebildet, das in der eingeschalteten Schaltposition (ON) des Hörhilfegerätes 40, wie in der Figur 7 dargestellt, die Belüftungsöffnung 44 freigibt. Wird der Ein-/Ausschalter 46 des Hörhilfegerätes 40 in die ausgeschaltete Schaltposition (OFF) bewegt, so schiebt sich dieser über die Belüftungsöffnung 44 und verschließt diese damit gleichsam. Der Gasaustausch zwischen der Batterie 42 und der das Hörhilfegerät 40 umgebenden Luft ist somit unterbunden und die Selbstentladung der Batterie 42 gestoppt. Das Hörhilfegerät 40 kann dann in diesem Zustand auch über eine längere Zeit unbenutzt bleiben, ohne dass dabei die Batterie 42 aus dem Hörhilfegerät 40 entnommen und verschlossen werden muss, um eine Selbstentladung zu verhindern. Das Hörhilfegerät 40 kann dann durch Betätigung des Ein-/Ausschalters 46 auch nach längerer Nichtbenutzung jederzeit sofort wieder eingeschaltet werden.

35 Ein anderes Ausführungsbeispiel der Erfindung zeigt Figur 8. Wie vorausgehende Ausführungsbeispiele so zeigt auch dieses einen Ausschnitt aus dem unteren Bereich eines Hinter dem Ohr

10

15

20

30

tragbaren Hörhilfegerätes (HdO) 50, in dem eine Batterie 51 mit einem Gehäuse 52 zur Spannungsversorgung angebracht ist. Zur Spannungsversorgung ist das Gehäuse 52 der Batterie 51 mit Kontaktelementen 53A und 53B verbunden. Weiterhin sind zur Belüftung der Batterie 51 in dem Gehäuse 52 Belüftungsöffnungen 54A-54C vorhanden. Darüber hinaus ist eine Dichteinrichtung vorgesehen, mittels derer die Belüftung der Batterie 51 ermöglicht oder verhindert werden kann. Anders als in vorausgehenden Ausführungsbeispielen umschließt hierbei ein Dichtelement 55 alle Belüftungsöffnungen 54A-54C gemeinsam. Hierzu liegt das Dichtelement 55 lediglich am äußeren Rand der Batterie 51 an, so dass die Belüftungsöffnungen 54A-54C unter einer Art "dichtenden Glocke" liegen. Dies ist insbesondere deshalb vorteilhaft, da hierbei die Anzahl und Anordnung der Belüftungsöffnungen in dem Batteriegehäuse 52 unerheblich sind. Das Dichtelement 55 ist fest im Hörhilfegerät verankert, und die Batterie 51 wird beim Öffnen einer Batterielade 56 aus dem Hörhilfegerät 50 heraus geschwenkt bzw. beim Schließen der Batterielade 56 in das Hörhilfegerät 50 hinein geschwenkt und dabei über das Dichtelement 55 geführt.

Zum Ermöglichen oder Verhindern der Belüftung der Batterie 51 gemäß der Erfindung ist das Dichtelement 55 mit einem Belüftungskanal 57 verbunden, der einen Luftaustausch zwischen dem von dem Dichtelement 55 und der Batterie 51 eingeschlossenen Volumen und der das Hörhilfegerät umgebenden Luft ermöglicht. Darüber hinaus kann eine von dem Belüftungskanal nach außen weisende Belüftungsöffnung 58 der Belüftungseinrichtung beim Ausschalten des Hörhilfegerätes 50 geschlossen werden. Hierzu wird ein betätigbarer Ein- /Ausschalter 59, an dessen Unterseite eine Dichtung 60 angeordnet ist, von der Position "ON" (eingeschaltetes Hörhilfegerät 50) in die Position "OFF" (ausgeschaltetes Hörhilfegerät) bewegt.

Zusammenfassend wird festgehalten:
Die bei Hörhilfegeräten (1, 20, 30, 40, 50) zur Spannungsversorgung verwendeten Batterien (6, 27, 37, 37', 51) unterlie-

gen einer Selbstentladung. Diese ist insbesondere bei einer Zink-Luft-Batterie verhältnismäßig hoch. Für den Ablauf chemischer Prozesse in der Zink-Luft-Batterie ist Sauerstoff erforderlich, der von außen über die Umgebungsluft zugeführt wird. Die Erfindung sieht Mittel vor, durch die ein Gasaustausch zwischen der Batterie (6, 27, 37, 37', 51) und der Umgebungsluft bei in das Hörhilfegerät (1, 20, 30, 40, 50) eingesetzter Batterie (6, 27, 37, 37', 51) verhindert werden kann. Ist die Sauerstoffzufuhr zur Batterie gestoppt, so kommt auch der Selbstentladungsprozess zum Stillstand. Zum Unterbinden der Selbstentladung muss daher die Batterie (6, 27, 37, 37', 51) nicht aus dem Hörhilfegerät (1, 20, 30, 40, 50) entnommen werden und das Hörhilfegerät (1, 20, 30, 40, 50) bleibt auch nach längerer Nichtbenutzung sofort einsatzbereit.

10

30

Patentansprüche

- 1. Hörhilfegerät (1, 20, 30, 40, 50) mit einem Hörhilfegerätegehäuse und einer Spannungsquelle (6, 27, 37, 37', 51) mit einem Spannungsquellengehäuse (12, 52), wobei die Spannungsquelle (6, 27, 37, 37', 51) zur Belüftung in dem Spannungsquellengehäuse (12, 52) wenigstens eine Belüftungsöffnung (13A-13G, 29A-29G, 54A-54C) aufweist, dad urch gekennzeich hnet, dass das Hörhilfegerät (1, 20, 30, 40, 50) Mittel zum Ermöglichen oder Verhindern der Belüftung der Spannungsquelle (6, 27, 37, 37', 51) umfasst.
- 2. Hörhilfegerät nach Anspruch 1, dad urch gekennzeich net, dass das Hörhilfegerät (1; 20) Mittel zum Öffnen oder Verschließen der Belüftungsöffnung (13A-13G; 29A-29G) der Spannungsquelle (6; 27) umfasst.
- 3. Hörhilfegerät nach Anspruch 2, dad urch gekennzeichnet, dass die Mittel zum Öffnen 20 oder Verschließen der Belüftungsöffnung (13A-13G; 29A-29G) wenigstens ein relativ zu der Spannungsquelle (6; 27) bewegbares Dichtelement (14; 26) umfassen, das in einer ersten Position die Belüftungsöffnung (13A-13G; 29A-29G) verschließt und in einer zweiten Position die Belüftungsöffnung (13A-13G; 29A-29G) freigibt.
 - 4. Hörhilfegerät nach Anspruch 2 oder 3, dad urch gekennzeich net, dass die Mittel zum Öffnen oder Verschließen der Belüftungsöffnung (13A-13G; 29A-29G) ein Schwenk- oder Schiebeelement umfassen.
- 5. Hörhilfegerät nach einem der Ansprüche 2 bis 4,
 d a d u r c h g e k e n n z e i c h n e t, dass die
 Mittel zum Öffnen oder Verschließen der Belüftungsöffnung

 (13A-13G; 29A-29G) mit einem Ein-/Ausschalter (25) für das
 Hörhilfegerät (1; 20) derart verbunden sind, dass die Belüftungsöffnung (13A-13G; 29A-29G) bei ausgeschaltetem Hörhilfe-

gerät (1; 20) verschlossen und bei eingeschaltetem Hörhilfegerät (1; 20) geöffnet ist.

- 6. Hörhilfegerät nach einem der Ansprüche 1 bis 5,
- 5 dadurch gekennzeichnet, dass die Spannungsquelle (6) in einer dreh- oder schwenkbar mit dem Hörhilfegerät (1) verbundenen Batterielade (7) angeordnet ist und durch die Dreh- oder Schwenkbewegung der Batterielade (7) die Belüftungsöffnung (13A-13G) der Spannungsquelle (6) zu
- 10 öffnen oder zu verschließen ist.
- k di

15

- 7. Hörhilfegerät nach Anspruch 6, dadurch gekennzeichnet, dass das Hörhilfegerät (1) durch die Dreh- oder Schwenkbewegung der Batterielade (7) ein- oder ausschaltbar ist.
- 8. Hörhilfegerät nach Anspruch 1, dadurch gekennzeichnet, dass das Hörhilfegerät (30; 30'; 40) ein Batteriefach (36; 36'; 41) zur Aufnahme der Span-
- 20 nungsquelle (37; 37'; 4) umfasst, das wenigstens im Wesentlichen luftdicht verschließbar ist.
 - 9. Hörhilfegerät nach Anspruch 8, dad urch gekennzeich net, dass dem Batteriefach (36; 36'; 41) eine Belüftungseinrichtung mit Mitteln zum Ermöglichen oder Verhindern der Belüftung des Batteriefachs (36; 36'; 41) zugeordnet ist.
- 10. Hörhilfegerät nach Anspruch 9, dadurch
 30 gekennzeich tung wenigstens ein einstellbares Dichtelement umfasst.
- 11. Hörhilfegerät nach Anspruch 10, dad urch gekennzeichnet, dass das Dichtelement als35 Schwenk- oder Schiebeelement ausgebildet ist.

- 12. Hörhilfegerät nach Anspruch 10, dad urch gekennzeichnet, dass das Dichtelement als Ventil (38B') ausgebildet ist.
- 13. Hörhilfegerät nach einem der Ansprüche 8 bis 12, dad urch gekennzeich net, dass ein Ein-/Ausschalter (35; 45) für das Hörhilfegerät (30;40) als Dichtelement ausgebildet oder mit dem Dichtelement verbunden ist.

14. Hörhilfegerät nach Anspruch 13, dadurch gekennzeich net, dass das Dichtelement mittels des Ein-/Ausschalters automatisch einstellbar ist.

- 15. Hörhilfegerät nach einem der Ansprüche 8 bis 14,
 d a d u r c h g e k e n n z e i c h n e t, dass die
 Spannungsquelle (27; 37; 37'; 42) in einer dreh- oder
 schwenkbar mit dem Hörhilfegerät (30; 30'; 40) verbundenen
 Batterielade (36; 36'; 41) angeordnet ist und mittels der

 20 Dreh- oder Schwenkbewegung die Batterielade (36; 36'; 41) zu
- 20 Dreh- oder Schwenkbewegung die Batterielade (36; 36'; 41) zu öffnen oder wenigstens im Wesentlichen luftdicht zu verschließen ist.

16. Hörhilfegerät nach Anspruch 15, dad urch gekennzeichnet, dass mittels der Dreh- oder Schwenkbewegung das Hörhilfegerät ein- oder ausschaltbar ist, wobei die Batterielade bei eingeschaltetem Hörhilfegerät luftdurchlässig und bei ausgeschaltetem Hörhilfegerät wenigstens im Wesentlichen luftdicht geschlossen ist.

30

35

17. Hörhilfegerät nach Anspruch 1, dad urch ge-ken nzeich net, dass die Belüftungsöffnung (54A-54C) der Spannungsquelle 51 von einer Dichteinrichtung (55) mit wenigstens einer verschließbaren Öffnung (58) umschlossen ist, wobei das Hörhilfegerät (50) Mittel zum Öffnen oder Verschließen der Öffnung (58) umfasst.

30

- 18. Hörhilfegerät nach Anspruch 17, dad urch gekennzeich net, dass die Mittel zum Öffnen oder Verschließen der Öffnung (58) ein Schwenk- oder Schiebeelement (59) umfassen.
- 19. Hörhilfegerät nach Anspruch 17, dadurch gekennzeichnet, dass die Mittel zum Öffnen oder Verschließen der Öffnung ein Ventil umfassen.
- 10 20. Hörhilfegerät nach einem der Ansprüche 17 bis 19,
 d a d u r c h g e k e n n z e i c h n e t, dass die
 Mittel zum Öffnen oder Verschließen der Öffnung (58) einen
 Ein-/Ausschalter (59) für das Hörhilfegerät (50) umfassen.
- 15 21. Hörhilfegerät nach Anspruch 20, dadurch gekennzeich net, dass die Öffnung durch Betätigen des Ein-/Ausschalters automatisch zu öffnen oder zu verschließen ist.
- 22. Hörhilfegerät nach einem der Ansprüche 17 bis 21,
 d a d u r c h g e k e n n z e i c h n e t, dass die
 Spannungsquelle (51) in einer dreh- oder schwenkbar mit dem
 Hörhilfegerät (50) verbundenen Batterielade (56) angeordnet
 ist und mittels der Dreh- oder Schwenkbewegung die Öffnung
 (58) zu öffnen oder zu verschließen ist.
 - 23. Hörhilfegerät nach Anspruch 22, dadurch gekennzeich net, dass mittels der Dreh- oder Schwenkbewegung das Hörhilfegerät ein- oder ausschaltbar ist, wobei die Öffnung bei eingeschaltetem Hörhilfegerät offen und bei ausgeschaltetem Hörhilfegerät geschlossen ist.

Die bei Hörhilfegeräten (1, 20, 30, 40, 50) zur Spannungsver-

Zusammenfassung

Hörhilfegerät mit einer Spannungsquelle

- sorgung verwendeten Batterien (6, 27, 37, 37', 51) unterliegen einer Selbstentladung. Diese ist insbesondere bei einer Zink-Luft-Batterie verhältnismäßig hoch. Für den Ablauf chemischer Prozesse in der Zink-Luft-Batterie ist Sauerstoff erforderlich, der von außen über die Umgebungsluft zugeführt wird. Die Erfindung sieht Mittel vor, durch die ein Gasaustausch zwischen der Batterie (6, 27, 37, 37', 51) und der Umgebungsluft bei in das Hörhilfegerät (1, 20, 30, 40, 50) eingesetzter Batterie (6, 27, 37, 37', 51) verhindert werden kann. Ist die Sauerstoffzufuhr zur Batterie gestoppt, so kommt auch der Selbstentladungsprozess zum Stillstand. Zum
- 20 50) bleibt auch nach längerer Nichtbenutzung sofort einsatzbereit.

Unterbinden der Selbstentladung muss daher die Batterie (6, 27, 37, 37', 51) nicht aus dem Hörhilfegerät (1, 20, 30, 40, 50) entnommen werden und das Hörhilfegerät (1, 20, 30, 40,

Figur 2

Fig 4

Fig 7

