Matemática Discreta I

Lista de Exercícios

1. Verifique se as relações dadas satisfazem as propriedades reflexiva, simétrica, transitiva, antissimétrica.

(a)
$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y \in \text{par } \}$$
 (e) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 0\}$

(e)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 0\}$$

(b)
$$R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x+y \text{ \'e impar } \}$$
 (f) $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} : xy \neq 0\}$

(f)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : xy \neq 0\}$$

(c)
$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x^2 + y^2 = 1\}$$
 (g) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \neq y\}$

(g)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \neq y\}$$

(d)
$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x = 1\}$$

(h)
$$R = \{(X, Y) \in \wp(\mathbb{N}) \times \wp(\mathbb{N}) \mid X \cap Y = \emptyset \}$$

2. Seja R a relação em \mathbb{Z} definida por $a R b \Leftrightarrow 5$ divide a - b. Prove que R é uma relação de equivalência em \mathbb{Z} . Em seguida, considere a relação de equivalência R dada acima restrita ao conjunto

$$A = \{-7, -5, -4, -2, -1, 2, 3, 4, 5, 6, 8, 10, 12\}$$

e determine o conjunto quociente A/R.

- 3. Seja $A = \{1, 2, 3, 4\}$ e seja o subconjunto $E = \{1, 3\}$ de A. Defina a relação \sim em $\wp(A)$ por $X \sim Y \Leftrightarrow X \cup E = Y \cup E.$
 - (a) Mostre que R é uma relação de equivalência em $\wp(A)$.
 - (b) Determine o conjunto quociente $\wp(A)/\sim$.
- 4. Sejam $A = \{1, 2, 3, 4, 5\}$ e $S = \{(1, 2), (3, 2), (4, 5), (2, 2)\} \subset A \times A$. Apresente uma relação de equivalência R em A tal que $S \subset R$ e $R \cap \{(1,4),(1,5)\} = \emptyset$. Determine também o conjunto quociente A/R.
- (a) Seja X um conjunto não-vazio. Em $\wp(X)$, defina a relação: $A \bowtie B$ se, e somente se, $A \subset B$. Mostre que \preceq é uma relação de ordem em $\wp(X)$.
 - (b) Seja $X = \{a, b, c, d\}$ e considere a relação \preceq (dada no item anterior) em $A = \wp(X)$. Faça um diagrama de linha para representar \preceq . Considerando $B = \{\{a\}, \{a, b\}, \{a, c\}\}, \{a, c\}\}$ determine $LS_A(B)$, $LI_A(B)$ e encontre, se possível, máximo e mínimo deste conjunto.

- 6. Considere o conjunto \mathbb{N}^* dos naturais ordenado pela divisibilidade, isto é, pela relação R dada por $R = \{(x, y) \in \mathbb{N}^* \times \mathbb{N}^* : x \text{ divide } y \}.$
 - (a) Mostre que R é uma relação de ordem e mostre que R não é uma relação de ordem total.
 - (b) Dado o conjunto $A = \{2, 3, 5, 15, 30\}$, determine, se existirem, o supremo, o ínfimo, o mínimo e o máximo de A.
 - (c) Faça um diagrama restrito ao conjunto $B = \{4, 6, 9, 12, 18, 24, 36, 81\}$ e encontre, se possível, mínimo, máximo, supremo e ínfimo deste conjunto B.
- 7. Seja A o conjunto dos números naturais divisores de 30, isto é, $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$. Considere a relação de ordem $R = \{(x, y) \in A \times A : x \text{ divide } y\}$.
 - (a) Faça um diagrama de linha para representar a relação R em A;
 - (b) Determine todos os limitantes inferiores de {6, 10};
 - (c) Determine todos os limitantes superiores de {6, 10};
 - (d) Determine o ínfimo e o supremo de {6, 10};
 - (e) Determine, caso existam, o mínimo e o máximo de $\{2,6,10\}$.
- 8. O diagrama abaixo representa uma relação de ordem R sobre $A = \{a, b, c, d, e, f, g, h, i, j\}$.

Considere $B = \{d, e\}$. Determine o conjunto dos limitantes superiores, dos limitantes inferiores, o supremo, o ínfimo, o máximo e o mínimo de B.

- 9. Dados os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{-1, 0, 1, 2\}$, considere as relações:
 - (a) $\{(1,0),(2,1),(3,-1),(4,2)\}$
 - (b) $\{(1,0),(2,-1),(3,2)\}$

- (c) $\{(1,0),(2,0),(3,-1),(4,1)\}$
- (d) $\{(1,0),(2,1),(3,-1),(2,1)\}$
- (e) $\{(1,-1),(2,1),(3,0),(4,2)\}$

Diga quais delas definem uma função $f:A\to B$. Para cada uma dessas funções, verifique se é injetora/sobrejetora.

- 10. Mostre que cada função abaixo é bijetora e encontre sua inversa.
 - (a) $f: \{1, 2, 3, 4\} \to \{1, 4, 9, 16\}$, dada por $f(x) = x^2$.
 - (b) $f: \mathbb{Z} \to \mathbb{Z}$, definida por f(x) = x 9.
 - (c) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, dada por f(x, y) = (y, x)
 - (d) $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = 5x + 8.
 - (e) $f: A \to A \times \{a\}$, dada por f(x) = (x, a).
- 11. Considere $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ e $g: \mathbb{R} \setminus \{0\} \to \mathbb{R} \times \mathbb{R}$ as funções definidas por

$$f(x) = \frac{1}{x}$$

$$g(x) = \begin{cases} (x, x) & \text{se } x > 0 \\ (1, x^2) & \text{se } x < 0 \end{cases}$$

- (a) Mostre que g não é injetora, nem sobrejetora.
- (b) Mostre que f é bijetora e determine sua inversa f^{-1}
- (c) Determine a função composta $g\circ f$, dizendo qual é seu domínio e contradomínio.
- 12. Seja $A = \{2, 3, 4, 5, 6, 10\}$ e considere as funções

$$f: \mathbb{Z} \to \mathbb{Z}, \qquad g: \{-1, -2, -3, 1, 4, 9\} \to A, \qquad h: A \to \mathbb{Z} \times \mathbb{Z}$$

dadas por f(x) = x + 15, g(x) = |x| + 1 e h(x) = (2x, 3x + 1).

- (a) Mostre que g não é injetora. A função g é sobrejetora?
- (b) Mostre que f é bijetora e determine sua inversa f^{-1} .
- (c) Determine a função composta $h \circ g$, dizendo qual é seu domínio e contradomínio. Calcule $(h \circ g)(-1)$.

3