for all $i, j, 1 \le i \le m, 1 \le j \le n$. The adjoint A^* of A is the matrix defined such that

$$A^* = \overline{(A^\top)} = (\overline{A})^\top$$
.

Proposition 14.15. Let E be any Hermitian space of finite dimension n, and let $f: E \to E$ be any linear map. The following properties hold:

(1) The linear map $f: E \to E$ is an isometry iff

$$f \circ f^* = f^* \circ f = id.$$

(2) For every orthonormal basis (e_1, \ldots, e_n) of E, if the matrix of f is A, then the matrix of f^* is the adjoint A^* of A, and f is an isometry iff A satisfies the identities

$$A A^* = A^* A = I_n$$

where I_n denotes the identity matrix of order n, iff the columns of A form an orthonormal basis of \mathbb{C}^n , iff the rows of A form an orthonormal basis of \mathbb{C}^n .

Proof. (1) The proof is identical to that of Proposition 12.14 (1).

(2) If (e_1, \ldots, e_n) is an orthonormal basis for E, let $A = (a_{ij})$ be the matrix of f, and let $B = (b_{ij})$ be the matrix of f^* . Since f^* is characterized by

$$f^*(u) \cdot v = u \cdot f(v)$$

for all $u, v \in E$, using the fact that if $w = w_1 e_1 + \cdots + w_n e_n$, we have $w_k = w \cdot e_k$, for all k, $1 \le k \le n$; letting $u = e_i$ and $v = e_j$, we get

$$b_{ji} = f^*(e_i) \cdot e_j = e_i \cdot f(e_j) = \overline{f(e_j) \cdot e_i} = \overline{a_{ij}},$$

for all $i, j, 1 \le i, j \le n$. Thus, $B = A^*$. Now if X and Y are arbitrary matrices over the basis (e_1, \ldots, e_n) , denoting as usual the jth column of X by X^j , and similarly for Y, a simple calculation shows that

$$Y^*X = (X^j \cdot Y^i)_{1 \le i, j \le n}.$$

Then it is immediately verified that if X = Y = A, then $A^*A = AA^* = I_n$ iff the column vectors (A^1, \ldots, A^n) form an orthonormal basis. Thus, from (1), we see that (2) is clear. \square

Proposition 12.14 shows that the inverse of an isometry f is its adjoint f^* . Proposition 12.14 also motivates the following definition.

Definition 14.9. A complex $n \times n$ matrix is a unitary matrix if

$$A A^* = A^* A = I_n$$
.