the nervous system: introduction and cell types

neuron

- different parts
 - cell body <- contains nucleus
 - dendrites coming of the cell body
 - axon $<\!\!$ taking information away : when meets cell body is initial segment
- type of glial cells
 - schwann cells: peripheral nervous system
 - * support axons of neurons
 - * wrap around axon segments
 - * electrical insulation
 - oligodendrocytes
 - * send several processes
 - * myelinates several axons
 - * in a way similar job that schwann cell
 - * electrical insulation
 - peripheral nervous system
 - * schwann
 - central nervous system
 - * oligodendrocytes
 - astrocytes
 - * support neurons
 - microglial cells -immune cells of central nervous system

membrane potentials

- changes of charges in either side of the membrane
- electrochemical gradient
 - gradient of electrical charged particles
 - set by atp pump
 - outside: Na+ (+); inside: K+ (+), more sodium in the outside
 - negative membrane potential
 - * more negative charge inside
- equilibrium potential
 - potassium leaves the cell -> more negative inside: negative membrane potential
 - potassium diffuses down chemical concentration
 - inside becomes more negative
 - now electrical gradient is strong and pushes potassium inside
 - when potassium input/output is equal: equilibrium potential for potassium
 - sodium: 60mV
 - potassium: -90mV . resting membrane potential

- ATP
 - * 3 na+ out; 2 k+ in; negative membrane potential
- leak channels
 - * determine the resting membrane potential
 - * more potassium leak channels, less sodium leak channels
- changes in membrane potential
 - polarized: difference in charge (negative)
 - depolarization: less polarized, less negative
 - overshoot: more positive inside, reversal of polarity
 - hyperpolarization: more negative than resting potential
 - repolarizing: becoming more negative but still above resting potential
- graded potential
 - change in membrane dependent in stimulus strength
 - membrane potential decay over distance and time

how to calculate the equilibrium potential

- membrane potential: voltage difference between the inside and the outside of a cell
 - major mobile ions are K+, Na+ and Cl-
 - affected by the different concentration
 - permeability of the plasma membrane to each ion
 - permeability to K+'is super high in the membrane
 - * concentration of K+ will determine the resting memebrane potential
- nernst equation
 - formula that describes how the equilibrium potential for an ion is influenced by its concentration gradient across the plasma membrane

action potentials

- voltage gated na+ and k+ channels
 - membrane depolarization gates them
 - Na+ fast
 - * inactive and closed states
 - K+ slow
 - * inactive state
- unidirectional propagation of AP
 - move one way because of the absolute refractory period of the voltage gates na+ channel

integration of signals

- dendrites: ligand gates ion channels, graded potentials
- cell body (soma): ligand gated ion channels; graded potentials

• axon: voltage gated channels, lowest threshold for initiating an action potential, "integrative zone"

saltatory conduction

- large diameter, myelinated axons transmit action potential very rapidly
- voltage gated channels are concentrated at the nodes
- $\bullet\,$ inactivation of voltage gated na+ channels in sures uni-directional propagation along the axon