Reg. No.:

Name

TERM END EXAMINATIONS (TEE) – December 2021								
Programme	: B.Tech – BCE, BCG	Semester	:	Fall 2021-22				
Course Name	: Operating System	Course Code	:	CSE3003				
Faculty Name	: Dr. Abha Trivedi	Slot / Class No	:	B21+B22+B23/0437				
Time	: 1½ hours	Max. Marks	:	50				

Answer ALL the Questions

Q. No. Question Description Marks

PART - A (30 Marks)

1 (a) How can you relate "Operating System" with a "Toy Shop Manager"? Present your (10) understanding based on different services provided by the OS.

OR

- (b) Apply your understanding to show the CPU switching sequence between two processes (10) (P1 and P2) with the help of a neat and clear diagram. Also, illustrate the use of PCB during the switching process.
- 2 (a) Why is deadlock state more critical than starvation? Also, illustrate Resource Allocation (10) Graph: (2+4+4)
 - a) with a cycle and deadlock
 - b) with a cycle but no deadlock.

OR

- (b) You are using dynamic contiguous memory allocation with a memory user space of (10) 2000K. These are the processes P1=430K, P2=312K, P3=517K, P4=95K and P5=226 K arrived. Allocation should be done in the given order of arrival. Answer the following:
 - a) Show the allocation and leftover memory space.

3

b) P6=200K arrived, can it be allocated? If yes where and how much will be the leftover memory space now.

3

2

2

- c) Let's say, P2 and P5 left (emptied the location). P7=150K arrived, where it can be accommodated among all the free spaces if using First Fit, Best Fit and Worst Fit? (Show separate diagram for each)
- d) After allocation done in (c), with whichever scheme, if P8=325K arrived will it lead to internal fragmentation or external fragmentation? Justify.

3	(a)	The queue of requests for the disk access with 200 tracks by the processes is:	(10)				
		80, 180, 22, 163, 112, 50, 11, 135					
		Current head position is 70. What is the total head movement needed to satisfy the					
requests for the following Scheduling algorithms SSTF and C-LOOK (for C-LOO head initiate its movement towards the increasing track number)?							
		OR					
	(b)	Distinguish among the following:	(10)				
		i) Reposition, Delete and Truncate file operations	5				
		ii) Single level, Two level and Tree Directory structures	5				

PART - B (20 Marks)

4 Given table shows the state of system at certain time t,

Process	Max			Allocation			Available			
	Α	В	C	Α	В	C	Α	В	C	
P0	3	2	2	1	0	1	2	1	3	
P1	4	5	1	1	3	0				
P2	2	1	6	0	1	4				
P3	8	0	3	4	0	2				
P4	0	7	4	0	2	1				

	Using Banker's algorithm, answer the following questions: A. How many resources of type A, B and C are there? B. What are the contents of need matrix? C. Find if the system is in safe state at time <i>t</i> ? If it is, find the safe sequence					
5	Assuming there are 4 frames and the page reference string is	(10)				
	3 2 1 3 4 1 6 2 4 3 4 2 1 4 5					
	Compute number of page faults and number of hits with the following page replacement algorithms: LRU and Optimal. Also, give the hit ratio and page fault ratio.					

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$