SupervisedLearning_LogisticRegression

October 10, 2016

Original notebook

You'll need to install a new module we haven't used before: Statsmodels.

```
pip3 install statsmodels
  Already included
In [1]: # Data Imports
        import numpy as np
        import pandas as pd
        from pandas import Series, DataFrame
        # Math
        import math
        # Plot imports
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set_style('whitegrid')
        %matplotlib inline
        # Machine Learning Imports
        from sklearn.linear_model import LogisticRegression
        from sklearn.cross_validation import train_test_split
        # For evaluating our ML results
        from sklearn import metrics
        # Dataset Import
        import statsmodels.api as sm
In [2]: # Logistic Function
        def logistic(t):
            return 1.0 / (1 + math.exp((-1.0)*t))
        # Set t from -6 to 6 ( 500 elements, linearly spaced)
        t = np.linspace(-6, 6, 500)
```

```
# Set up y values (using list comprehension)
y = np.array([logistic(ele) for ele in t])

# Plot
plt.plot(t,y)
plt.title(' Logistic Function ')
```

Out[2]: <matplotlib.text.Text at 0xb8a8c18>

Out[3]:	rate_marriage	age	yrs_married	children	religious	educ	occupation
0	3.0	32.0	9.0	3.0	3.0	17.0	2.0
1	3.0	27.0	13.0	3.0	1.0	14.0	3.0
2	4.0	22.0	2.5	0.0	1.0	16.0	3.0
3	4.0	37.0	16.5	4.0	3.0	16.0	5.0
4	5.0	27.0	9.0	1.0	1.0	14.0	3.0

```
occupation_husb affairs
0 5.0 0.111111
1 4.0 3.230769
2 5.0 1.400000
```

```
4
                        4.0 4.666666
In [4]: # Create check function
        def affair_check(x):
            if x != 0:
                return 1
            else:
                 return 0
        # Apply to DataFrame
        df['Had_Affair'] = df['affairs'].apply(affair_check)
        #Let's go ahead and see the result!
        # DataFrame Check
        df
                               age yrs_married children religious
Out [4]:
              rate_marriage
                                                                        educ occupat:
                                                        3.0
        0
                         3.0
                              32.0
                                             9.0
                                                                    3.0
                                                                        17.0
        1
                         3.0
                              27.0
                                            13.0
                                                        3.0
                                                                   1.0
                                                                         14.0
        2
                         4.0
                              22.0
                                             2.5
                                                        0.0
                                                                   1.0
                                                                        16.0
        3
                         4.0
                              37.0
                                            16.5
                                                        4.0
                                                                   3.0
                                                                        16.0
                         5.0
                              27.0
                                             9.0
                                                                   1.0
        4
                                                        1.0
                                                                         14.0
        5
                                                                         14.0
                         4.0
                              27.0
                                             9.0
                                                        0.0
                                                                   2.0
        6
                         5.0
                              37.0
                                            23.0
                                                        5.5
                                                                   2.0
                                                                        12.0
        7
                         5.0
                              37.0
                                            23.0
                                                        5.5
                                                                   2.0
                                                                        12.0
        8
                         3.0
                              22.0
                                             2.5
                                                        0.0
                                                                   2.0
                                                                        12.0
        9
                         3.0
                             27.0
                                             6.0
                                                        0.0
                                                                   1.0
                                                                        16.0
        10
                         2.0
                              27.0
                                             6.0
                                                        2.0
                                                                   1.0
                                                                        16.0
                         5.0
                              27.0
                                             6.0
                                                        2.0
                                                                   3.0
                                                                        14.0
        11
        12
                         3.0
                              37.0
                                            16.5
                                                        5.5
                                                                   1.0
                                                                        12.0
        13
                         5.0
                              27.0
                                             6.0
                                                        0.0
                                                                   2.0
                                                                        14.0
        14
                         4.0
                              22.0
                                             6.0
                                                        1.0
                                                                   1.0
                                                                        14.0
        15
                         4.0
                              37.0
                                             9.0
                                                                   2.0
                                                        2.0
                                                                        14.0
        16
                         4.0
                             27.0
                                             6.0
                                                        1.0
                                                                   1.0
                                                                        12.0
        17
                         1.0
                              37.0
                                            23.0
                                                        5.5
                                                                   4.0
                                                                        14.0
                         2.0
                              42.0
                                            23.0
                                                        2.0
                                                                   2.0
        18
                                                                        20.0
        19
                         4.0
                              37.0
                                             6.0
                                                        0.0
                                                                   2.0
                                                                        16.0
        20
                         5.0
                              22.0
                                             2.5
                                                        0.0
                                                                   2.0
                                                                         14.0
        21
                         3.0
                              37.0
                                            16.5
                                                        5.5
                                                                   2.0
                                                                         9.0
        2.2
                         3.0
                              42.0
                                            23.0
                                                        5.5
                                                                   3.0
                                                                        12.0
        23
                         2.0
                             27.0
                                             9.0
                                                        2.0
                                                                   4.0
                                                                        20.0
        24
                         4.0
                              27.0
                                             6.0
                                                        1.0
                                                                   2.0
                                                                        12.0
        25
                         5.0
                              27.0
                                             2.5
                                                        0.0
                                                                   3.0
                                                                        16.0
        26
                         2.0 27.0
                                             6.0
                                                        2.0
                                                                   2.0
                                                                        12.0
        27
                         5.0
                              37.0
                                            13.0
                                                        1.0
                                                                   3.0
                                                                        12.0
        28
                         2.0
                              32.0
                                            16.5
                                                        2.0
                                                                   2.0
                                                                        12.0
        29
                         3.0 27.0
                                             6.0
                                                                        14.0
                                                        1.0
                                                                   1.0
```

5.0 0.727273

3

6336		42.0	23.0	4.0	3.0	14.0
6337		27.0	6.0		4.0	
				0.0		14.0
6338		42.0	23.0	2.0	3.0	12.0
6339	4.0	32.0	13.0	3.0	3.0	16.0
6340	5.0	27.0	13.0	3.0	3.0	16.0
6341	5.0	27.0	9.0	1.0	2.0	14.0
6342		22.0	2.5	0.0	2.0	16.0
6343		17.5	2.5	0.0	4.0	12.0
6344		32.0	16.5	2.0	2.0	12.0
6345		27.0	9.0	1.0	3.0	12.0
6346		22.0	2.5	0.0	4.0	14.0
6347	5.0	22.0	2.5	1.0	2.0	12.0
6348	5.0	27.0	0.5	0.0	4.0	20.0
6349	5.0	37.0	16.5	3.0	3.0	14.0
6350	5.0	32.0	13.0	2.0	4.0	14.0
6351	4.0	22.0	0.5	0.0	2.0	16.0
6352		42.0	23.0	2.0	4.0	12.0
6353		22.0	2.5	2.0	2.0	14.0
6354		42.0	23.0	4.0	4.0	12.0
6355		27.0	6.0	0.0	3.0	12.0
6356		32.0	13.0	3.0	3.0	12.0
6357		32.0	13.0	4.0	2.0	14.0
6358		27.0	6.0	2.0	4.0	14.0
6359		22.0	2.5	0.0	3.0	16.0
6360		22.0	2.5	0.0	2.0	14.0
6361	5.0	32.0	13.0	2.0	3.0	17.0
6362	4.0	32.0	13.0	1.0	1.0	16.0
6363	5.0	22.0	2.5	0.0	2.0	14.0
6364	5.0	32.0	6.0	1.0	3.0	14.0
6365	4.0	22.0	2.5	0.0	2.0	16.0
	occupation_husb	affairs	Had_Affaiı	<u>-</u>		
0	5.0	0.111111	1	L		
1	4.0	3.230769	1	L		
2	5.0		1			
3	5.0	0.727273	1			
4	4.0	4.666666	- 1			
5	4.0	4.666666	- 1			
6						
	4.0	0.852174	1			
7	3.0	1.826086	1			
8	3.0		1			
9	5.0	1.333333	1			
10	5.0		1			
11	5.0	2.041666	1	L		
12	3.0	0.484848	1	L		
13	2.0	2.000000	1	L		
14	4.0	3.266665	1	L		

15	6.0	1.361111	1
16	5.0	2.000000	1
17	2.0	1.826086	1
18	4.0	1.826086	1
19	4.0	2.041666	1
20	4.0	7.839996	1
21	2.0	2.545454	1
22	4.0	0.532609	1
23	4.0	0.622222	1
24	4.0	0.583333	1
25	1.0	4.799999	1
26	5.0	0.166667	1
27	4.0	0.615385	1
28	2.0	1.187878	1
29	6.0	11.199999	1
	4 0		• •
6336	4.0	0.000000	0
6337	4.0	0.000000	0
6338	2.0	0.000000	0
6339	2.0	0.000000	0
6340	2.0	0.000000	0
6341	5.0	0.000000	0
6342	1.0	0.000000	0
6343	5.0	0.000000	0
6344 6345	4.0 5.0	0.000000	0
6346	2.0	0.000000	0
6347	2.0	0.000000	0
6348	4.0	0.000000	0
6349	5.0	0.000000	0
6350	6.0	0.000000	0
6351	1.0	0.000000	0
6352	2.0	0.000000	0
6353	5.0	0.000000	0
6354	5.0	0.000000	0
6355	4.0	0.000000	0
6356	5.0	0.000000	0
6357	4.0	0.00000	0
6358	1.0	0.00000	0
6359	5.0	0.00000	0
6360	3.0	0.000000	0
6361	3.0	0.00000	0
6362	5.0	0.00000	0
6363	1.0	0.00000	0
6364	4.0	0.000000	0
6365	4.0	0.000000	0

[6366 rows x 10 columns]

```
Out [5]:
                     rate_marriage
                                           age yrs_married
                                                             children
                                                                       religious
        Had Affair
                          4.329701
                                                   7.989335
                                                             1.238813
                                                                         2.504521
        0
                                    28.390679
                          3.647345
        1
                                    30.537019
                                                  11.152460
                                                             1.728933
                                                                         2.261568
                                occupation occupation_husb
                                                               affairs
        Had_Affair
        0
                    14.322977
                                  3.405286
                                                    3.833758
                                                              0.000000
        1
                    13.972236
                                  3.463712
                                                    3.884559
                                                              2.187243
```

Out [25]: <seaborn.axisgrid.FacetGrid at 0x77ec898>

Let's take a quick look at the results

occ_dummies.head()

#hus_occ_dummies.head()

Out[13]:	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	3.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 1	4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	24 25 26 27	0.0 0.0 0.0	0.0 0.0 1.0 0.0	0.0 0.0 0.0	0.0 1.0 0.0 0.0	1.0 0.0 0.0	0.0 0.0 0.0
	28 29	0.0	0.0	0.0	1.0	0.0	0.0
	6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0	0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

```
6350
              0.0
                   0.0
                        1.0
                             0.0
                                   0.0
                                       0.0
         6351
               0.0
                   0.0
                        1.0
                             0.0
                                  0.0
                                       0.0
         6352
               0.0
                    0.0
                         1.0
                             0.0
                                   0.0
                                       0.0
                    0.0
         6353
               0.0
                              0.0
                                   0.0
                         1.0
                                       0.0
         6354
               0.0
                    0.0
                         1.0
                              0.0
                                   0.0
         6355
               0.0
                    0.0
                         1.0
                              0.0
                                   0.0
         6356
               0.0
                    0.0
                         1.0
                              0.0
                                   0.0
         6357
               0.0
                        0.0
                             1.0
                    0.0
                                   0.0
                                       0.0
         6358
               0.0
                    0.0
                        1.0
                             0.0
                                  0.0
                                       0.0
         6359
               0.0
                         0.0
                    0.0
                              0.0
                                   1.0
                                       0.0
         6360
               0.0
                    0.0
                         1.0
                              0.0
                                   0.0 0.0
         6361
               0.0
                   0.0
                        0.0
                             1.0
                                  0.0
                    0.0
                        0.0
         6362
               0.0
                              0.0
                                   1.0
         6363
               0.0
                    0.0
                         1.0
                             0.0
                                   0.0 0.0
         6364
               0.0
                   0.0
                        1.0
                             0.0
                                   0.0
                                       0.0
         6365
               0.0
                   1.0
                        0.0
                             0.0
                                  0.0 0.0
         [6366 rows x 6 columns]
In [15]: # Create column names for the new DataFrames
         occ_dummies.columns = ['occ1','occ2','occ3','occ4','occ5','occ6']
         hus_occ_dummies.columns = ['hocc1','hocc2','hocc3','hocc4','hocc5','hocc6
         # Set X as new DataFrame without the occupation columns or the Y target
         X = df.drop(['occupation','occupation_husb','Had_Affair'],axis=1)
         # Concat the dummy DataFrames Together
         dummies = pd.concat([occ_dummies,hus_occ_dummies],axis=1)
         # Now Concat the X DataFrame with the dummy variables
         X = pd.concat([X,dummies],axis=1)
         # Preview of Result
         X.head()
Out [15]:
                           age yrs_married children religious educ
                                                                           affairs
            rate_marriage
                      3.0
                          32.0
                                                    3.0
                                                               3.0 17.0 0.111111
         0
                                         9.0
                          27.0
                      3.0
                                                               1.0 14.0
         1
                                        13.0
                                                    3.0
                                                                          3.230769
         2
                      4.0
                          22.0
                                         2.5
                                                    0.0
                                                               1.0
                                                                   16.0
                                                                          1.400000
         3
                      4.0
                          37.0
                                        16.5
                                                    4.0
                                                               3.0 16.0 0.727273
         4
                      5.0 27.0
                                         9.0
                                                    1.0
                                                               1.0 14.0 4.666666
            occ1 occ2 occ3 occ4
                                   occ5 occ6 hocc1
                                                       hocc2
                                                               hocc3 hocc4
                                                                             hocc5
             0.0
                   1.0
                               0.0
                                           0.0
                                                   0.0
                                                                 0.0
                                                                        0.0
                                                                               1.0
                         0.0
                                     0.0
                                                          0.0
         0
         1
             0.0
                   0.0
                         1.0
                               0.0
                                     0.0
                                           0.0
                                                   0.0
                                                          0.0
                                                                 0.0
                                                                        1.0
                                                                               0.0
         2
             0.0
                   0.0
                         1.0
                               0.0
                                     0.0
                                           0.0
                                                   0.0
                                                          0.0
                                                                 0.0
                                                                        0.0
                                                                               1.0
             0.0
                   0.0
                         0.0
                               0.0
                                     1.0
                                           0.0
                                                                 0.0
                                                                        0.0
                                                   0.0
                                                          0.0
                                                                               1.0
```

6349

0.0

0.0

0.0

0.0 1.0 0.0

```
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                      1.0
                                                                             0.0
           hocc6
         0
             0.0
              0.0
         1
         2
              0.0
         3
             0.0
              0.0
In [16]: # Set Y as Target class, Had Affair
        Y = df.Had_Affair
         # Preview
         Y.head()
Out[16]: 0
         1
              1
         2
             1
         3
             1
         Name: Had_Affair, dtype: int64
In [17]: # Dropping one column of each dummy variable set to avoid multicollinearia
         X = X.drop('occ1',axis=1)
         X = X.drop('hocc1',axis=1)
         # Drop affairs column so Y target makes sense
         X = X.drop('affairs',axis=1)
         # PReview
         X.head()
         #In order to use the Y with SciKit Learn, we need to set it as a 1-D array
         # Flatten array
         Y = np.ravel(Y)
         # Check result
Out[17]: array([1, 1, 1, ..., 0, 0, 0], dtype=int64)
In [19]: #Let's start by initiating the model!
         # Create LogisticRegression model
         log_model = LogisticRegression()
         # Fit our data
         log_model.fit(X,Y)
```

```
# Check our accuracy
         log_model.score(X,Y)
Out[19]: 0.72588752748978946
In [20]: # Check percentage of women that had affairs
         Y.mean()
Out [20]: 0.32249450204209867
In [21]: # Use zip to bring the column names and the np.transpose function to bring
         coeff_df = DataFrame(zip(X.columns, np.transpose(log_model.coef_)))
                                                  Traceback (most recent call last)
        TypeError
        <ipython-input-21-13fbffd0779d> in <module>()
          1 # Use zip to bring the column names and the np.transpose function to be
    ----> 2 coeff_df = DataFrame(zip(X.columns, np.transpose(log_model.coef_)))
        c:\Python\WinPython-64bit-3.4.4.4Qt5\python-3.4.4.amd64\lib\site-packages\r
                            mgr = self._init_dict({}, index, columns, dtype=dtype)
        281
        282
                    elif isinstance(data, collections. Iterator):
    --> 283
                        raise TypeError("data argument can't be an iterator")
        284
                    else:
        285
                        try:
        TypeError: data argument can't be an iterator
In [22]: # Split the data
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y)
         # Make a new log_model
         log_model2 = LogisticRegression()
         # Now fit the new model
         log_model2.fit(X_train, Y_train)
Out[22]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tru
                   intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                   penalty='12', random_state=None, solver='liblinear', tol=0.0001,
                   verbose=0, warm_start=False)
```