GDSC: Algorithms & Data Structures

Vladislav Artiukhov, based on materials of Sergey Kopelevich

February 11, 2024

Contents

1.	Pre	amble	1
	1.1	Credits	2
2 .	Big-	O Notations	3
	2.1	Definitions of $O, o, \Omega, \omega, \Theta$	3
	2.2	Asymptotic types: linear, quadratic, polylog, exponential	3
3.	Bas	ic data structures	4
	3.1	Arrays, doubly linked list, singly linked list	4
	3.2	std::vector and how it works internally	4
	3.3	stack, queue, deque	4
	3.4	Keeping minimum for $O(1)$: min-stack, min-queue implementation	4
4.	Mas	ster Theorem	5
	4.1	Master Theorem	6
	4.2	Generalized Master Theorem	6
	4.3	Algorithm for recurrence relations	6
5.	Am	ortized Analysis	8
	5.1	Definition and general perception of the concept	9
	5.2	Amortized analysis: Potential method	9
6.	Bina	ary Search	11
	6.1	Definition, use cases	12
		6.1.1 Simplest version	12
		6.1.2 Lower bound / Upper bound	12
		6.1.3 STL implementation	13
	6.2	Use of a predicate	13
	6.3	Correctness	14
	6.4	Binary search for functions over R	14

CONTENTS	CONTENTS

7. Ternary Search				
	7.1	Definition, use cases	17	
	7.2	Implementation	18	

1. Preamble

1.1 Credits

The further work is mostly based on the Algorithms & Data Structures course held by Professor Sergey Kopelevich in Higher School of Ecomonics, Saint Petersburg, Applied Mathematics & Computer Science Bachelor's Program, 1-3 semesters, 2021-2022.

The materials:

- 1. SPb HSE, 1st-2nd semesters, Fall 2021/22, Algorithms Lectures Abstract
- 2. SPb HSE, 3rd semester, Fall 2021/22, Algorithms Lectures Abstract

Many thanks to Professor Sergey Kopelevich!

2. Big-O Notations

- **2.1** Definitions of $O, o, \Omega, \omega, \Theta$
- 2.2 Asymptotic types: linear, quadratic, polylog, exponential

For now refer to GDSC Competitive Programming Abstract (topics 1-5), Fall 2023.

3. Basic data structures

- 3.1 Arrays, doubly linked list, singly linked list
- 3.2 std::vector and how it works internally
- 3.3 stack, queue, deque
- 3.4 Keeping minimum for O(1): min-stack, min-queue implementation For now refer to GDSC Competitive Programming Abstract (topics 1-5), Fall 2023.

4. Master Theorem

4.1 Master Theorem

Algorithms that are written in a recursive manner oftentimes utilize *divide-and-conquer* technique which implies devision of the task into smaller subtasks that are processed by further recusive calls of the algorithm; once the subtask is small enough it is considered as a base case and processed manually. Some examples include **Merge sort algorithm**, **Binary search tree traversal**, etc.

For such algorithms we need to define their asymptotics. **Master Theorem** is a generalized method that yields asymptotically tight bounds for divide and conquer algorithms [wiki].

Theorem 4.1. Master Theorem

Consider the following recurrence relation: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ where $f(n) = n^c$ for constants $a > 0, b > 1, c \ge 0$; let $k = \log_b n$ be the recursion depth. Then the following holds:

$$\begin{cases}
T(n) = \Theta(a^k) = \Theta(n^{\log_b a}), & a > b^c \\
T(n) = \Theta(f(n)) = \Theta(n^c), & a < b^c \\
T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \cdot \log n), & a = b^c
\end{cases}$$
(1)

Proof.

$$T(n) = f(n) + a \cdot T(\frac{n}{b}) = f(n) + af(\frac{n}{b}) + a^2 f(\frac{n}{b^2}) + \dots + a^k f(\frac{n}{b^k}) \quad | f(n) = n^c$$

$$T(n) = n^c + a \cdot (\frac{n}{b})^c + a^2 \cdot (\frac{n}{b^2})^c + \dots + a^k \cdot (\frac{n}{b^k})^c$$

$$T(b) = n^c \cdot (1 + \frac{a}{b^c} + (\frac{a}{b^c})^2 + \dots + (\frac{a}{b^c})^k)$$

Let $q = \frac{a}{b^c}$ and $S(q) = 1 + q + ... + q^k$:

- 1. If q = 1: $S(q) = 1 + 1 + ... + 1 = k + 1 = \log_b n + 1 \implies T(n) = \Theta(f(n) \cdot \log n)$.
- 2. If q < 1: S(q) is a geometric progression, thus it is equal to $S(q) = \frac{1-q^{k+1}}{1-q} = const = \Theta(1) \implies T(n) = \Theta(f(n))$.
 - 3. If q > 1: $S(q) = q^k + \frac{q^k 1}{q 1} = \Theta(q^k) \implies T(n) = \Theta(a^k \cdot (\frac{n}{b^k})^c) = \Theta(a^k)$.

Note: f(n) could be $O(n^c)$; it does not violate the proof $(f(n) = O(n^c) = C \cdot n^c)$.

4.2 Generalized Master Theorem

Theorem 4.2. Generalized Master Theorem

In the case of $f(n) = n^c \cdot \log_d n$ Master Theorem still holds:

$$T(n) = a \cdot T(\frac{n}{b}) + n^c \cdot \log_d n, \ a > 0, \ b > 1, \ c \ge 0, \ d \ge 0.$$

$$\begin{cases}
T(n) = \Theta(a^k) = \Theta(n^{\log_b a}), & a > b^c \\
T(n) = \Theta(f(n)) = \Theta(n^c \cdot \log^d n), & a < b^c \\
T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \cdot \log^{d+1} n), & a = b^c
\end{cases}$$
(2)

4.3 Algorithm for recurrence relations

There are also recurrence relations with the following form:

$$T(n) = a_0 \cdot T(n - p_0) + a_1 \cdot T(n - p_1) + \dots + a_k \cdot T(n - p_k)$$
 $a_i, p_i > 0, \sum p_i > 1$

There exists an algorithm of how to find asymptotics for such relations:

Theorem 4.3. Algorithm for recurrence relations

Given T(n) of the above form with the above constants, then the following holds:

 $T(n) = \Theta(\alpha^n)$, such that $\alpha > 1$ and it is the **only root** of the equation: $\alpha^n = a_0 \cdot \alpha^{n-p_0} + ... + a_k \cdot \alpha^{n-p_k}$

Example. Use of Master Theorem

1.
$$T(n) = 4 \cdot T(\frac{n}{2}) + 20 \cdot n^{\frac{3}{2}}$$

$$a = 4, b = 2, c = \frac{3}{2}, f(n) = 20 \cdot n^{\frac{3}{2}} \implies a = 4 > b^c = \sqrt{8} \implies T(n) = \Theta(n^{\log_b a}) = \Theta(n^2).$$

2. Merge sort algorithm recurrence relation: $T(n) = 2 \cdot T(\frac{n}{2}) + C \cdot n^1$

$$a = 2, b = 2, c = 1 \implies a = 4 = b^c = 2^1 \implies T(n) = \Theta(n^1 \cdot \log n)$$

Example. Use of Algorithm for recurrence relations

1.
$$T(n) = T(n-1) + 6 \cdot T(n-2)$$

$$T(n) = \Theta(\alpha)$$
, notice that $\alpha = 3$ satisfies the equation: $3^n = 3^{n-1} + 6 \cdot 3^{n-2}$.

2.
$$T(n) = T(n-1) + T(n-2) + T(n-3)$$

$$1 = \alpha^{-1} + \alpha^{-2} + \alpha^{-3} \implies \alpha \approx 1.839$$

5. Amortized Analysis

5.1 Definition and general perception of the concept

Remember that we were talking about **std::vector** we said that its **push_back** operation works for an average of $\Theta(1)$. It was due to presence of 2 **distinct states**:

- 1. vector has enough capacity to fit the next pushed element.
- 2. vector does not have enough capacity and has to make itself twice bigger (i.e. reallocating a memory buffer of size $2 \cdot N$).

There are definetely more complicated senarios where number of such *interesting states* is much greater, thus we need a unified approach of how to define this average, or **amortized**, time for an operation.

Definition 5.1. The amortized analysis

The amortized analysis is an approach that allows to determine an average running time (time complexity) of operations $o_1, o_2, ..., o_k$ in a sequence S over that sequence S.

There are several methods that are referred to as amortized analysis (wiki). We are going to discuss **Potential method**.

5.2 Amortized analysis: Potential method

Definition 5.2. Potential method

Introduce a **potential function** called $\Phi: \mathbf{S} \to \mathbf{R}_0^+$ where \mathbf{S} is a set of states of the considered data structure and $R_0^+ = [0, +\inf)$, i.e. the potential function maps states of the data structure to some non-negavite values. As an important edge case for the initial state S_{init} : $\Phi(S_{init}) = 0$.

Let o_i be an individual operation within some sequence of operations named Q. Let S_{i-1} be the state of the considered data structure before the execution of the operation o_i and S_i be the state after the execution of o_i . Let Φ be a chosen potential function, then the amortized time for an operation o_i is defined as follows:

$$T_a(o_i) = T_r(o_i) + (\Phi(S_i) - \Phi(S_{i-1}))$$
 where:

- 1. $T_a(o)$ amortized time of the operation.
- 2. $T_r(o)$ real/actual time spent on the operation.

Theorem 5.1. Potential method yields an upper bound

The amortized time of a sequence of operations always yields an **upper bound** of the the real/actual time for the considered sequence of operations, i.e.:

 $\forall O = o_1, o_2, ..., o_n$ be a sequence of operations, define:

- 1. $T_a(O) = \sum_{i=1}^n T_a(o_i)$ amortized time of the sequence O
- 2. $T_r(O) = \sum_{i=1}^n T_r(o_i)$ real time of the sequence O

Then: $T_r(O) \leq T_a(O)$

Proof. As definition for $T_a(O)$ suggests:

$$T_a(O) = \sum_{i=1}^n (T_r(o_i) + \Phi(S_i) - \Phi(S_{i-1})) = T_r(O) + \Phi(S_n) - \Phi(S_0)$$
$$T_a(O) = T_r(O) + \underbrace{\Phi(S_n)}_{\cdot \geq 0} - \underbrace{\Phi(S_0)}_{\cdot = 0} \geq T_r(O)$$

Author: Vladislav Artiukhov

Author: Vladislav Artiukhov

Note: Generally speaking, Φ could be any function that satisfies the constraints but the idea is to find such Φ that would represent the closest upper bound of the real/actual time for the considered sequence of operations.

Example. Amortized analysis for std::vector::push_back operation

1. Analyse push_back operation that expands the vector:

Let $\Phi = 2 \cdot s - N$ where the s is the actual size of a vector and N is its capacity. Remember that the expansion occurs once s == N.

Let's consider a push_back operation that doubles the size of the vector:

- 1. $T_r = s + 1 = N + 1$ because we need to copy all the existing elements in a new buffer + place a new element; here s = N because the extention could only happen once s = N.
 - 2. $\Phi_0 = 2 \cdot s N \ge 0$ value of the potential function before the operation.
 - 3. $\Phi_1 = 2 \cdot (s+1) 2N \ge 0$ value of the potential function after the operation.

Thus, we have:

$$T_a = T_r + \Phi_1 - \Phi_0 = N + 1 + (2s + 2 - 2N - 2s + N) = N + 1 + (2 - N) = N - N + 3 = \Theta(1).$$

2. Analyse push_back operation that does not expand the vector:

Notice that in this case $\Delta \Phi = \Phi_1 - \Phi_0 = const$ and $T_r = const$, thus $T_a = const = \Theta(1)$.

For more examples check the wiki page.

6. Binary Search

6.1 Definition, use cases

6.1.1 Simplest version

Given a sorted array of size n. We need to find and element x in this array for $O(\log n)$:

```
int find(int 1, int r, int x) { // [l,r]
1
2
       // a is sorted in the ascending order
3
       while(1 <= r) {
            int m = (1 + r) / 2;
4
5
            if (a[m] == x) return m;
6
            else if (a[m] < x) l = m + 1;
7
            else r = m - 1;
8
       return -1; // i.e., not found
9
10 |
```

The time complexity is indeed $O(\log n)$ since on each iteration the |r-l| decreases its value in a half $(|r-l| \to \frac{|r-l|}{2})$.

The problem of such an implementation is that if there are multiple occurrences of x in the array, the algorithm will return **some index** in a range $[l_{ans}, r_{ans})$ where $\forall i = l_{ans}, ..., r_{ans} - 1 : a[i] == x$, although we would like to get either of both sides of the range, i.e. either l_{ans} or r_{ans} .

6.1.2 Lower bound / Upper bound

The above problem leads to the following implementations of the binary search algorithm that searches for the forementioned indicies:

```
1. \min i : a_i \geq x, i.e. l_{ans}:
   int lower_bound(int 1, int r, int x) {
1 |
2
       while (r - 1 > 1) {
3
            int m = (1 + r) / 2;
            if (a[m] < x) l = m; // Notice that we keep the invariant: a[l] < x
4
            else r = m; // \Rightarrow a[r] >= x
5
6
7
       // (a[l] < m) \&\& (a[r] >= m) => r is a minimum index
8
       return r;
9 |
  2. \min i : a_i > x, i.e. r_{ans}:
   int upper_bound(int 1, int r, int x) {
1
2
       while(r - 1 > 1) {
3
            int m = (1 + r) / 2;
            if (a[m] > x) r = m;
4
5
            else 1 = m;
6
7
       // Now a[r] > x \Rightarrow l is the last index for which a[l] \ll x
8
       return r;
```


6.1.3 STL implementation

In C++ language we are already provided with the template functions that do the same thing:

```
/* returns iterator (for int* it is a pointer) */
   int i = std::lower_bound(a, a + n, x) - a;
3
   int i = std::upper_bound(a, a + n, x) - a;
4
5
   // For other containers (e.g., std::vector, std::set) that define begin()/end()
       operations use the following:
6
   std::lower_bound(
7
       std::begin(container),
8
       std::end(container),
9
       element
10
     // e.g., for std::vector < T > the return type is <math>std::vector < T > ::iterator, i.e.
       pointer to the element
```

6.2 Use of a predicate

We could abstract the implementation even further via searching for a predicate. Predicate is such a function $f: S \to \{0, 1\}$. Then let's consider the predicate $f(i) = if(a_i < x)then0else1$ - in this case the binary search will find such indicies l and r that satisfy the following:

```
1. l + 1 = r
   2. f(l) = 0 (i.e. a_l < x)
   3. f(r) = 1 (i.e. a_r >= x)
1
   int binary_search(int 1, int r, int x) {
2
       while (r - 1 > 1) {
3
            int m = (1 + r) / 2;
            if (f(m)) r = m; // invariant: a[r] >= x
4
            else 1 = m; // invariant a[l] < x
5
6
7
       return r;
8
9
10
   // If you want to parameterize predicate as well:
11
   // #1: provide a 4th argument as a pointer to a function
   // (see: https://www.cprogramming.com/tutorial/function-pointers.html)
12
   int binary_search(int 1, int r, int x, bool(*f)(int)) {
13
14
       . . .
15
   }
16
17
   // #2: template parameter
18 | template < typename /* or class */ Func>
```

6.3 Correctness

You might already noticed that the functions (arrays are also akin functions, i.e. $a:\{0,1,..,n-1\}:\mathbb{N}$) over which we apply the binary search algorithm are all monotonic functions, i.e. they comply to x < y: f(x) < f(y) (strict monotonically increasing functions; the rest are alike).

Lemma. The binary search algorithm over some range [x, y) is correct iff the considered function f is monotonic over [x, y).

6.4 Binary search for functions over \mathbb{R}

It is possible to use the binary search with real numbers as well. Let's consider a problem of finding square root of x:

Problem statement: Given $x \in \mathbb{R}$. Find a value $y \in \mathbb{R}$ so that $y^2 == x$ (for us it is $|y^2 - x| < \varepsilon$):

```
double my sqrt(double x /* never use 'float' */) {
1 |
2
        double 1 = 0.0:
3
        double r = x + 1;
4
        const dobule EPS = 1e-9; // 10^{-9}
5
6
7
        while(r - 1 > EPS) {
            double m = (r + 1) / 2;
8
9
            // Preserve invariant: l^2 \le x, r^2 > x
10
            if (m*m > x) r = m;
            else 1 = m;
11
12
13
14
       return (1 + r) / 2;
15 || }
```

In the above notice: if 0 < y < 1 then $y^2 < y$, and if $y \ge 1$ then $y^2 \ge 1$. Thus, for 0 < x < 1 the corresponding y is greater than x, i.e. we select r = x + 1.

Example. Root of a polynomial P(x)

Given a polynomial P(x) of **an odd degree**, i.e. $\deg P = 2k + 1$ with the coerfficient for x^{2k+1} be equal to 1. There exists a root $x_0 \in \mathbb{R}$, and we need to find it.

Solution:

We could do that using binary search with any precision ε . First, we need to find points l and r, such that: P(l) < 0 and P(r) > 0 (e.g., $l = -\infty$, $r = +\infty$ - MAX_INT and MIN_INT in C++):

```
1 | for (1 = -1; P(1) >= 0; 1 *= 2);
2 | for (r = 1; P(r) <= 0; r *= 2);
```

And finally the root search:

```
1 | while (r - 1 > EPS) {
2 | double m = (1 + r) / 2;
3 | if (P(m) < 0) 1 = m; // P(l) < 0
else r = m; // P(r) >= 0
```

```
\begin{array}{c|c} 5 \\ 6 \end{array} \qquad \begin{array}{c|c} \mathbf{return} & (\mathbf{1} + \mathbf{r}) \ / \ 2; \end{array}
```

Actually we need exactly $k:=\frac{r-l}{\varepsilon}$ iterations, thus the while-loop could be changed by the for-loop.

7. Ternary Search

7.1 Definition, use cases

Imagine that we need to find a maximum of a function f(x) in the interval [l, r] but now the function is no longer monotonic. Is there a fast way (i.e. as fast as logarithmic asymptotic as in the binary search algorithm) of finding a point x_0 such that $f(x_0) \to \max$?

The answer is ves if our function satisfies some constraint.

Definition 7.1. Ternary search algorithm

Given a function f(x) and a range [l, r] in which the function is <u>unimodal</u> and convex, and we need to find maximum in the range (maximum for convex functions, minimum for concave functions).

Since the function is unimodal over [l, r] the following holds:

- 1. $\forall a, b : l \le a < b \le x_0 : f(a) < f(b)$
- 2. $\forall a, b : x_0 \le a < b \le r : f(a) > f(b)$

Where x_0 is a point where $f(x) = \max$

For the algorithm let's consider two points m_0 and m_1 such that $l < m_0 < m_1 < r$, there are several cases:

- 1. $f(m_0) < f(m_1)$, then the maximum of the function f cannot be located in the interval $[l, m_0]$ since there is an interval $[m_0, r]$ on which there are points where function takes greater values.
- 2. $f(m_0) > f(m_1)$, then the maximum of the function f cannot be located in the interval $[m_1, r]$ since the interval $[l, m_1]$ contains points in which the function takes greater values.
- 3. $f(m_0) = f(m_1)$, in this case the maximum will be located in the interval $[m_0, m_1]$ but for the implementation simplisify this condition branch can be merged with any of the above.

As for the choice of the points m_0 and m_1 we need to select something that would trancate the remaining seraching area in a manner that would give us a logarithmic asymptotic. Let's make m_0 be the first 3rd of the interval and m_1 be the second 3rd of the interval:

1.
$$m_0 = l + \frac{r-l}{3}$$

2. $m_1 = l + 2 \cdot \frac{r-l}{3} = \frac{3l+2r-2l}{3} = \frac{2r+l}{3} = \frac{3r-r+l}{3} = r - \frac{r-l}{3}$

Notice that according to the above statement the searching interval becomes $\frac{2}{3}$ of the initial interval, thus:

$$T(n) = T(\frac{2}{3}n) + 1$$

According to **Master Theorem**:
 $a = 1, b = \frac{2}{3}, c = 0, f(n) = n^c = 1 \implies a = b^c \implies \Theta(n^c \cdot \log n) = \Theta(n^c \cdot \log n) =$

$$a=1,\ b=\tfrac{2}{3}, c=0,\ f(n)=n^c=1 \implies a=b^c \implies \Theta(n^c \cdot \log n)=\Theta(\log n) \implies T(n)=T(\tfrac{2}{3}n)+1=\Theta(\log n)$$

7.2 Implementation

Here is the implementation for a function which is an array:

```
1
   int ternary search(vector<int>& arr) {
2
        // 'arr' is a unimodal function N -> Z
3
        int 1 = 0;
4
        int r = arr.size();
5
6
        while (r - 1 > 2 /* not 1 because m0 = l, m1 = r possible */) {
7
            int m0 = 1 + (r - 1) / 3;
            int m1 = r - (r - 1) / 3;
8
9
            if (arr[m0] < arr[m1]) {</pre>
10
11
                 1 = m0;
12
13
            else {
14
                r = m1;
15
16
        }
17
18
        int ans = 1;
19
          (r < arr.size() && arr[r] > arr[ans]) {
20
21
22
23
24
        return ans;
```

```
25 || }
```

Here is the implementation for a function f over floating-point numbers:

```
int ternary_search(double 1, double r, double (*f)(double)) {
1 \parallel
2
        while (r - 1 > EPS) {
3
             double m0 = 1 + (r - 1) / 3;
             double m1 = r - (r - 1) / 3;
4
5
6
             if (f(m0) < f(m1)) {</pre>
7
                 1 = m0;
8
            }
9
            else {
                 r = m1;
10
11
            }
12
13
14
        return (1 + r) / 2;
15 || }
```