Conferencia 9 - Relaciones de Recurrencia

April 2, 2024

Teorema. Sean $\{x_n\}$ y $\{y_n\}$ soluciones de la relación de recurrencia $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, entonces $Ax_n + By_n$ $(A, B \in \mathbb{R})$ es solución de la ecuación de recurrencia dada.

Demostración

```
Como \{x_n\} es solución entonces x_n = c_1x_{n-1} + c_2x_{n-2} y Ax_n = Ac_1x_{n-1} + Ac_2x_{n-2} Como \{y_n\} es solución entonces y_n = c_1y_{n-1} + c_2y_{n-2} y By_n = Bc_1Y_{n-1} + Bc_2y_{n-2} Entonces Ax_n + By_n = c_1(Ax_{n-1} + BY_{n-1}) + c_2(Ax_{n-2} + By_{n-2}) luego Ax_n + By_n es solución
```

Teorema. Sean q_1 y q_2 soluciones de la ecuación $x^2-c_1x-c_2=0$ tal que $q_1 \neq q_2 \neq 0$, entonces x_n es solución de la relación $a_n=c_1a_{n-1}+c_2a_{n-2}$ donde $x_n=Aq_1^n+Bq_2^n$

Demostración

Por el Teorema previo se tiene entonces que las sucesiones de la forma x_n son solución

Ahora se debe demostrar que cualquier solución es de esta forma, que es equivalente a demostrar que el sistema siguiente tiene una única solución

$$Aq_1 + Bq_2 = a_1$$

 $Aq_1^2 + Bq_2^2 = a_2$
para ello el determinante debe ser distinto de 0 y se cumple pues
 $q_1q_2^2 - q_2q_1^2 = q_1q_2(q_2 - q_1) \neq 0$

Teorema. Sea $q \in \mathbb{R}$, $q \neq 0$ única raíz de la ecuación $x^2 - c_1x - c_2 = 0$, entonces la sucesión nq^n es solución de la relación de recurrencia $a_n = c_1a_{n-1} + c_2a_{n-2}$

Demostración

$$q$$
es raíz de x^2-c_1x-c2 luego $q^2-c_1q-c2=0$ como q es raíz única por Vieta se tiene que $2q=c_1$ y $q^2=-c_2$ entonces $a_n=2qa_{n-1}-q_2a_{n-2}$ Luego
$$nq^n=2q(n-1)q^{n-1}-q^2(n-2)q^{n-2}$$

$$nq^n=2(n-1)q^n-(n-2)q^n$$

$$nq^n=(2n-2-n+2)q^n$$

$$nq^n=nq^n$$

Teorema. Sea $q \in \mathbb{R}$ raíz de multiplicidad 2 de la ecuación $x^2 - c_1x - c_2 = 0$, entonces x_n es solución de la relación de recurrencia $a_n = c_1a_{n-1} + c_2a_{n-2}$ si y solo si $x_n = Aq^n + Bnq^n$

Demostración Ya se vio que las sucesiones de la forma x_n son solución Ahora se debe demostrar que cualquier solución es de esta forma, que es equivalente a demostrar que el sistema siguiente tiene una única solución

$$Aq + Bq = a_1$$

 $Aq^2 + 2Bq^2 = a_2$
para ello el determinante debe ser distinto de 0 y se cumple pues
 $2q^3 - q^3 = q^3 \neq 0$

Definición. La ecuación característica de la relación de recurrencia $a_n = c_1 a_{n-1} + a - 2 c_{n-2} + \ldots + c_k a_{n-k}$ es de la forma $p(x) = x^k - c_1 x^{k-1} + c_2 x^{k-2} + \ldots + c_k = 0$

Teorema. Si la ecuación característica de la relación de recurrencia homogénea $a_n = c_1 a_{n-1} + a - 2c_{n-2} + \ldots + c_k a_{n-k}$ tiene k raíces distintas, entonces $A_1 q_1^n + A_2 q_2^n + \ldots + A_k q_k^n$ es solución de la relación, donde $q_i 1 \le i \le k$ son raíces de la ecuación característica (p(x)).

Teorema. Sea $q \in \mathbb{R}$ raíz de multiplicidad $t, t \geq 1$, de la ecuación característica de la relación de recurrencia $a_n = c_1 a_{n-1} + a - 2c_{n-2} + \ldots + c_k a_{n-k}$, entonces $q^n, nq^n, n^2q^n, \ldots, n^{t-1}q^n$ son soluciones de la relación de recurrencia.

Teorema. Si la ecuación característica de la relación de recurrencia $a_n = c_1 a_{n-1} + a - 2c_{n-2} + \ldots + c_k a_{n-k}$ tiene raíces q_1, q_2, \ldots, q_t con multiplicidades m_1, m_2, \ldots, m_t , entonces la relación de recurrencia tiene como solución $P_1(n)q_1^n + P_2(n)q_2^n + \ldots + P_t(n)q_t^n$ donde P_i es un polinomio en n de grado m_i

Definición. Una solución particular de una relación de recurrencia es una sucesión que cumple la recurrencia aunque no satisfaga las condiciones iniciales

Teorema. Sea P_n una solución particular de la relación de recurrencia $a_n = c_1 a_{n-1} + a - 2c_{n-2} + \ldots + c_k a_{n-k} + f(n)$ entonces la solución general de la misma es $P_n + H_n$, donde H_n es la solución de la relación homogénea asociada

Solución Particular

Una solución particular P_n se puede encontrar en algunos casos:

1. Si $f(n) = T_k(n)$ (polinomio de grado k) entonces $P_n = Q_k(n)$ (polinomio de grado k), excepto si 1 es raíz característica con multiplicidad s, en cuyo caso $P_n = n^s Q_k(n)$

- 2. Si $f(n)=ca^n, c\in\mathbb{R}$, entonces $P_n=qa^n, q\in\mathbb{R}$, excepto si a es raíz característica con multiplicidad s, en cuyo caso $P_n=n^sqa^n$
- 3. Si $f(n) = a^n T_k(n)$ entonces $P_n = a^n Q_k(n)$ excepto si a es raíz característica con multiplicidad s, en cuyo caso $P_n = n^s a^n Q_k(n)$

Solución General

La solución general se obtiene de la siguiente forma:

- 1. Se calcula la solución general de la ecuación homogénea $a_n = c_1 a_{n-1} + a 2c_{n-2} + \ldots + c_k a_{n-k}$
- 2. Se calcula una soluciín particular P_n de la ecuación $a_n = c_1 a_{n-1} + a 2c_{n-2} + \ldots + c_k a_{n-k} + f(n)$
- 3. La suma de ambas soluciones es una solución general de la ecuación $a_n = c_1 a_{n-1} + a 2c_{n-2} + \ldots + c_k a_{n-k} + f(n)$
- 4. Se obtiene la solución correspondiente a las condiciones iniciales

Ejemplo 1

Sea la recurrencia $a_0 = 5$, $a_1 = 1$, $a_n = a_{n-1} + 6a_{n-2} - 6n^2 + 26n - 25$

La relación homogénea tiene como polinomio característico a $P(x) = x^2 - x - 6$ cuyas raíces son $q_1 = -2q - 2 = 3$ por lo que la solución general de la ecuación es $a_n = A(-2)^n + B3^n$

Como $f(n) = -6n^2 + 26n - 25$ es un polinomio de grado 2 entonces P_n es de grado 2 por lo que se prueba una solución particular de la forma $P_n = an^2 + bn + c$ que sustituida en la relación de recurrencia da una solución a = 1 b = 0 c = 0 por lo que una solución particular es $P_n = n^2$

Entonces la solución general de la no homogénea es $a_n = A(-2)^n + B3^n + n^2$

Cómo las condiciones iniciales son $a_0 = 5 = A + B$ y $a_1 = 1 = -2A + 3B + 1$ entonces A = 3 y B = 2 y la solución de la recurrencia es $a_n = 3(-2)^n + 2 * 3^n + n^2$

Ejemplo 2

Sea la recurrencia lineal $a_0 = 0$, $a_1 = 1$, $a_n = a_{n-1} + 6a_{n-2} + 2^n$

La homogénea tiene como polinomio característico $P(x) = x^2 - x - 6$

cuyas raíces son $q_1 = -2q - 2 = 3$ por lo que la solución general de la ecuación es $a_n = A(-2)^n + B3^n$

Como $f(n) = 2^n$ y b = 2 no es raíz del polinomio característico entonces se puede probar una solución particular de la forma $P_n = c2^n$ que cuando se sustituye en la recurrencia da como solución c = -1 luego una solución particular de la recurrencia es $P_n = -2^n$

Entonces la solución general de la no homogénea es $a_n = A(-2)^n + B3^n - 2^n$ y como las condiciones iniciales son $a_0 = 0 = A + B - 1$ y $A_1 = 1 = -2A + 3B - 2$ entonces A = 0 y B = 1 por lo que la solución de la recurrencia es $a_n = 3^n - 2^n$

Ejemplo 3

Sea la recurrencia lineal $a_0 = 0$, $a_1 = 1$, $a_n = a_{n-1} + 6a_{n-2} + 3^n$

La homogénea tiene como polinomio característico $P(x) = x^2 - x - 6$ cuyas raíces son $q_1 = -2q - 2 = 3$ por lo que la solución general de la ecuación es $a_n = A(-2)^n + B3^n$

cuyas raíces son $q_1 = -2 q - 2 = 3$ por lo que la solución general de la ecuación es $a_n = A(-2)^n + B3^n$

Como $f(n)=3^n$ y b=3 es raíz del polinomio característico con multiplicidad 1 entonces se prueba con una solución particular de la forma $P_n=cn3^n$ que cuando se sustituye en la recurrencia da c=3/5 entonces la solución particular queda $P_n=\frac{n3^{n+1}}{5}$

Entonces la solución general de la no homogénea queda $a_n = A(-2)^n + B3^n + \frac{n3^{n+1}}{5}$ que, evaluando en las condiciones iniciales, queda $a_0 = 0 = A + B$ y $a_1 = 1 = -2A + (\frac{3}{5} + B)3$ luego $A = \frac{4}{25}$ y $B = -\frac{4}{25}$ por tanto la solución de la recurrencia es $a_n = \frac{4}{25}(-2)^n + (\frac{15n-4}{25})3^n$

Ejemplo 4

Sea la recurrencia $a_1=1.\,a_n=2A_{n-1}+1$ (Torres de Hanoi)

La relación homogénea $(a_n=2A_{n-1})$ tiene como polinomio característico P(x)=x-2 cuya raíz es q=2 luego la solución general de la homogénea es $P_n=A2^n$

Entonces se prueba una solución particular de tipo $P_n=c$ que sustituida en la recurrencia da c=-1 luego la solución particular es $P_n=-1$ entonces la solución general de la homogénea es $a_n=A2^n-1$ como la conidición inicial es $a_1=1=2A-1$ entonces A=1 por lo que la solución de la recurrencia es $a_n=2^n-1$

Teorema. Si el término no homogéneo de la relación de recurrencia de orden k es de la forma $P_1(n)S_1^n + P_2(n)S_2^n + \ldots + P_n(n)S_n^n$ entonces hay una solución particular $f_1(n) + f_2(n) + \ldots + f_n(n)$ donde $f_i(n)$ es solución particular de la recurrencia de orden k $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + P_i(n)S_i^n$