Vectors in \mathbb{R}^n

Recall

Vectors in
$$\mathbb{R}^n = \{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \ x_i \in \mathbb{R} \}$$

Vectors in $\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \ x_i \in \mathbb{R} \right\}$ We can also work with $\mathbb{C}^n = \left\{ \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \ z_i \in \mathbb{C} \right\}$

1.5 Dot Product

Definition

Let
$$\overrightarrow{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . We define their **dot product** by

$$\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Theorem 1.1: Property 1.5.3

1.
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}$$

$$2. \ \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

3.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \overrightarrow{w} + \overrightarrow{v} \overrightarrow{w}$$

4.
$$(\overrightarrow{u} \cdot \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{v} \cdot (\overrightarrow{u} \cdot \overrightarrow{w})$$

5.
$$\overrightarrow{v} \cdot \overrightarrow{v} \ge 0$$

Geometry in \mathbb{R}^2

Definition

The **length** of the vector $\overrightarrow{v} \in \mathbb{R}^n$ is $||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}}$

Aside: In \mathbb{R}^1 :

$$||\overrightarrow{v}|| = ||[v_1]|| = \sqrt{v_1^2} = |v|$$

Theorem 1.2: Properties of Length

1.
$$||\overrightarrow{0}|| = 0$$

2.
$$||c \cdot \overrightarrow{v}|| = |c| \cdot ||\overrightarrow{v}||$$

3.
$$||\overrightarrow{v} + \overrightarrow{u}|| \neq ||\overrightarrow{v}|| + ||\overrightarrow{u}||$$

$$4. ||\overrightarrow{v} + \overrightarrow{u}|| \le ||\overrightarrow{v}|| + ||\overrightarrow{u}||$$

Importance of dot product: It gives angles between vectors in \mathbb{R}^2 !

Definition

 $\overrightarrow{v} \in \mathbb{R}^n$ is a **unit vector** if $||\overrightarrow{v} = 1||$

Definition

When $\overrightarrow{v} \in \mathbb{R}^n$ is a non-zero vector, we can produce a unit vector

$$\hat{v} = \frac{\overrightarrow{v}}{||\overrightarrow{v}||}$$

in the direction of \overrightarrow{v} by scaling \overrightarrow{v} . This process is called normalization.

Definition

Let \overrightarrow{v} and \overrightarrow{u} be non-zero vectors in \mathbb{R}^n . The angle θ , in radians $(0 \le \theta \pi)$, between \overrightarrow{u} and \overrightarrow{v} is such that

$$\overrightarrow{v} \cdot \overrightarrow{u} = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cos \theta$$
, that is $\theta = \arccos(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{v}|| \cdot ||\overrightarrow{u}||})$

Example

Problem: Given 2 vectors, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ find θ .

Solution:

$$\cos \theta = \frac{\begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{\| \begin{bmatrix} 0 \\ 1 \end{bmatrix} \| \cdot \| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \|}$$
$$= \frac{0}{1} = 0$$
$$\theta = \frac{\pi}{2}$$

Definition

Let $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$. We say \overrightarrow{u} and \overrightarrow{v} are perpendicular (or orthogonal) if $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Example

Problem: Find a non-zero vector in \mathbb{R}^2 that is orthogonal to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Solution: $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$

Example

Problem: Find a non-zero vector perpendicular to $\begin{bmatrix} a \\ b \end{bmatrix}$

Solution:

$$\begin{bmatrix} -b \\ a \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= -ba + ab$$
$$= 0$$

Therefore, $\begin{bmatrix} -b \\ a \end{bmatrix}$ is a solution.