Numerical Methods in Engineering and Applied Science

Lecture 7. Runge–Kutta methods.

The model problem that we consider here is the following **initial value problem**: For a function $\mathbf{f}:[0,T]\times\mathbb{R}^N\to\mathbb{R}^N$ and $\mathbf{u}_0\in\mathbb{R}^N$ find a differentiable function $\mathbf{u}(t)$ such that

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \boldsymbol{f}(t, \boldsymbol{u}(t)), \\ \boldsymbol{u}(0) = \boldsymbol{u}_0. \end{cases}$$
 (1)

Most commonly it describes the **time evolution** of some quantity. The numerical methods for it are called **time stepping** or **time marching** methods. These methods evaluate the numerical solution u^{n+1} at a time instant t_{n+1} using the information from previous time instants t_n , t_{n-1} etc. We consider three groups of such methods:

- Taylor series methods;
- Multistage (Runge-Kutta) methods;
- Multistep methods.

We consider time points

$$t_0 = 0 < t_1 < t_2 < \dots < t_{N-1} < t_N = T.$$
 (2)

If the points are equidistant, we have

$$t_n = nh, \quad \forall n \in \{0, 1, ..., N\},$$
 (3)

where h is the discretization (or integration) step,

$$h = T/N. (4)$$

Our objective is to find values u_n that would approximate $u(t_n)$ such that

$$||\boldsymbol{u}_n - \boldsymbol{u}(t_n)|| \to 0 \quad \text{as} \quad h \to 0.$$
 (5)

Runge–Kutta methods: s-stage one-step methods.

Explicit Euler scheme

$$u_{n+1} = u_n + h f(t_n, u_n) (6)$$

is a *first-order* method.

Improved Euler method (Heun method)

- Stage 1 : $\tilde{u}_{n+1} = u_n + hf(t_n, u_n)$
- Stage 2: $u_{n+1} = u_n + h \frac{f(t_n, u_n) + f(t_{n+1}, \tilde{u}_{n+1})}{2}$

is a *second-order* method.

Note that these scheme have the same form for scalar and for vector ODEs.

Example. Nonlinear pendulum. Absolute error at t = 4P.

The general form of any s-stage Runge–Kutta method can be written as

$$u_{n+1} = u_n + h\Phi(t_n, y_n, h), \text{ where } \Phi(t_n, u_n, h) = \sum_{i=1}^{3} b_i k_i,$$
 (7)

$$k_i = f(t_n + c_i h, \ u_n + h \sum_{j=1}^s a_{i,j} k_j), \quad i = 1, ..., s$$
 (8)

The coefficients can be written in a tabular form $(Butcher\ tableau)$

c_1	$a_{1,1}$	$a_{1,2}$	• • •	$a_{1,s}$
c_2	$a_{2,1}$	$a_{2,2}$	• • •	$a_{2,s}$
:	:	:	٠	:
c_s	$a_{s,1}$	$a_{s,2}$		$a_{s,s}$
	b_1	b_2		b_s

In general, to evaluate $\{k_i\}$, it is necessary to solve a system of s non-linear equations (8). However, if $a_{i,j} = 0$ for all $j \geq i$, the unknowns k_i can be evaluated without solving non-linear equations. If this is the case, the method is called explicit:

c_2	$a_{2,1}$				
c_3	$a_{3,1}$	$a_{3,2}$			
÷	:	:	٠		
c_s	$a_{s,1}$	$a_{s,2}$	•••	$a_{s,s-1}$	
	b_1	b_2		b_{s-1}	b_s

Otherwise, the methode is called *implicit*.

Definition. A Runge-Kutta is *consistent to order* p if its local truncation error (given that $u_n = u(t_n)$) is such that

$$||u(t_{n+1}) - u_{n+1}|| \le Ch^{p+1}, \tag{9}$$

i.e., the first p terms of the Taylor series expansion of the exact solution $u(t_{n+1})$ and numerical solution u_{n+1} coincide. We assumed that the partial derivatives of f(t, u) exist and that they are continuous to order p.

Theorem. Suppose that (9) is satisfied for all $t \in [0, T]$, i.e.,

$$||u(t+h) - u(t) - h\Phi(t, u(t), h)|| \le Ch^{p+1}$$
(10)

and suppose that there exist a neighborhood of the solution where Φ satisfies

$$||\Phi(t,v,h) - \Phi(t,u,h)|| \le \Lambda ||v-u||. \tag{11}$$

Then the global discretization error is bounded by

$$||u(t_N) - u_N|| \le h^p \frac{C}{\Lambda} \left(\exp(\Lambda T) - 1 \right). \tag{12}$$

The Euler method is the only first-order explicit 1-stage Runge-Kutta (RK) method.

The order conditions for 2-stage methods are as follows.

The general form of explicit 2-stage RK methods is

We use Taylor expansion

$$f(t + \alpha h, u + \beta h) = f(t, u) + h \left(\alpha f_t(t, u) + \beta f_u(t, u)\right) + \mathcal{O}(h^2)$$

to obtain

$$k_2 = (f + h(c_2f_t + a_{2,1}ff_u))|_{t=t_n, u=u_n} + \mathcal{O}(h^2).$$

Consequently,

$$u_{n+1} = u_n + h(b_1k_1 + b_2k_2)$$

$$= u_n + hb_1 + hb_2 \left[(f + h(c_2f_t + a_{2,1}ff_u)) |_{t=t_n, u=u_n} + \mathcal{O}(h^2) \right]$$

$$= u_n + h(b_1 + b_2) f(t_n, u_n) + h^2b_2(c_2f_t + a_{2,1}ff_u) |_{t=t_n, u=u_n} + \mathcal{O}(h^3).$$

The local truncation error is

$$R_{n} = u(t_{n+1}) - u_{n+1}$$

$$= \left(u_{n} + hf + \frac{h^{2}}{2}(f_{t} + ff_{u}) + \mathcal{O}(h^{3})\right)_{t=t_{n}, u=u_{n}} - u_{n+1}$$

$$= h(1 - b_{1} - b_{2})f(t_{n}, u_{n})$$

$$+ h^{2}\left[\left(\frac{1}{2} - b_{2}c_{2}\right)f_{t}(t_{n}, u_{n}) + \left(\frac{1}{2} - b_{2}a_{2,1}\right)f(t_{n}, u_{n})f_{u}(t_{n}, u_{n})\right] + \mathcal{O}(h^{3}).$$

In general, the scheme is not consistent: $|R_n| = \mathcal{O}(h)$, i.e., p = 0. To gain consistency and obtain a scheme of order p > 0, the following conditions should be satisfied:

•
$$p = 1 : b_1 + b_2 = 1 \ (\forall a_{2,1}, c_2)$$

•
$$p = 2$$
: $b_1 + b_2 = 1$, $c_2 = a_{2,1}$ and $b_2 a_{2,1} = 1/2$

We define $\theta := b_2 \ (\theta \neq 0)$ and we obtain the coefficients of the 2-stage second-order RK schemes

0	0	0
$1/(2\theta)$	$1/(2\theta)$	0
	$1-\theta$	θ

Two popular choices are

- $\theta = 1/2$: trapezoidal rule
- $\theta = 1$: modified Euler method

Note that no choice of θ can ensure p=3.

Order conditions for 3-stage RK methods General form

$$\begin{cases} k_1 = f(t_n, u_n) & 0 & 0 & 0 \\ k_2 = f(t_n + c_2h, u_n + a_{2,1}k_1h) & c_2 & a_{2,1} & 0 & 0 \\ k_3 = f(t_n + c_3h, u_n + a_{3,1}k_1h + a_{3,2}k_2h) & c_3 & a_{3,1} & a_{3,2} & 0 \\ u_{n+1} = u_n + h(b_1k_1 + b_2k_2 + b_3k_3) & b_1 & b_2 & b_3 \end{cases}$$

We require

$$c_i = \sum_{j=1}^{s} a_{i,j}, \quad i = 1, ..., s \quad (here, s = 3)$$

and we Taylor expand up to order $O(h^4)$.

We obtain the following conditions:

•
$$p = 1 : b_1 + b_2 + b_3 = 1$$

•
$$p = 2$$
: $b_1 + b_2 + b_3 = 1$, $b_2c_2 + b_3c_3 = \frac{1}{2}$

•
$$p = 3$$
: $b_1 + b_2 + b_3 = 1$, $b_2c_2 + b_3c_3 = \frac{1}{2}$, $b_2c_2^2 + b_3c_3^2 = \frac{1}{3}$, $c_2a_{3,2}b_3 = \frac{1}{6}$

Some examples of *third-order* RK methods:

Third-order Heun scheme

0 $\frac{1}{3}$ $\frac{2}{3}$	$\begin{bmatrix} 0 \\ \frac{1}{3} \\ 0 \end{bmatrix}$	0 $\frac{2}{3}$	0
	$\frac{1}{4}$	0	$\frac{3}{4}$

Third-order Kutta scheme

Shu-Osher SSP (strong stability preserving) scheme

$$\tilde{u} = u_n + hf(u_n)
\hat{u} = \frac{3}{4}u_n + \frac{1}{4}\tilde{u} + \frac{1}{4}hf(t+h,\tilde{u})
u_{n+1} = \frac{1}{3}u_n + \frac{2}{3}\hat{u} + \frac{2}{3}hf(t+\frac{h}{2},\hat{u})$$

$$\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{4} \quad 0$$

$$\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{4} \quad 0$$

Since the choice of parameters $a_{i,j}$ is not unique, one can set additional constraints to reduce the memory consumption, improve the stability, etc.

The schemes with s=4 stages have 10 parameters that must satisfy 8 conditions to make the scheme attain its maximum possible order p=4. Some examples of fourth-order, 4-stage RK schemes:

The classical RK scheme

$$\begin{cases} k_{1} = f(t_{n}, u_{n}) \\ k_{2} = f(t_{n} + \frac{1}{2}h, u_{n} + \frac{1}{2}k_{1}h) \\ k_{3} = f(t_{n} + \frac{1}{2}h, u_{n} + \frac{1}{2}k_{2}h) \\ k_{4} = f(t_{n} + h, u_{n} + k_{3}h) \\ u_{n+1} = u_{n} + h(\frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}) \end{cases}$$

$$\frac{1}{\frac{1}{2}} \quad 0$$

$$0 \quad \frac{1}{2} \quad 0$$

$$1 \quad 0 \quad 1 \quad 0$$

$$\frac{1}{2} \quad 0$$

$$1 \quad 0 \quad 1 \quad 0$$

3/8 rule

$$\begin{cases} k_{1} = f(t_{n}, u_{n}) & 0 \\ k_{2} = f(t_{n} + \frac{1}{3}h, u_{n} + \frac{1}{3}k_{1}h) \\ k_{3} = f(t_{n} + \frac{2}{3}h, u_{n} - \frac{1}{3}k_{1}h + k_{2}h) \\ k_{4} = f(t_{n} + h, u_{n} + k_{1}h - k_{2}h + k_{3}h) \\ u_{n+1} = u_{n} + h(\frac{1}{8}k_{1} + \frac{3}{8}k_{2} + \frac{3}{8}k_{3} + \frac{1}{8}k_{4}) \end{cases}$$

$$0$$

$$\frac{\frac{1}{3}}{\frac{3}{3}} \quad 0$$

$$-\frac{1}{3} \quad 1 \quad 0$$

$$1 \quad -1 \quad 1 \quad 0$$

$$\frac{1}{3} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{1}{8}$$

Gill's scheme requires only 3 'registries': u, k and q $u := initial \ value, \quad k := hf(u), \quad u := u + 0.5k, \quad q := k,$ $k := hf(u), \quad u := u + (1 - \sqrt{0.5})(k - q),$ $q := (2 - \sqrt{2})k + (-2 + 3\sqrt{0.5})q,$ $k := hf(u), \quad u := u + (1 + \sqrt{0.5})(k - q),$ $q := (2 + \sqrt{2})k + (-2 - 3\sqrt{0.5})q,$ $k := hf(u), \quad u := u + k/6 - q/3, \quad \rightarrow \text{next step}$

An explicit Runge-Kutta method of order p must have the number of stages greater or equal to s_{min} :

$$egin{array}{c|c|c} Order & p & Rank \ s_{min} \ 1,2,3,4 & 1,2,3,4 (resp.) \ 5 & 6 \ 6 & 7 \ 7 & 9 \ 8 & 11 \ 9 & 12...17 \ 10 & 13...17 \ \end{array}$$

For example, the parameters of a 9-th order method must satisfy 486 algebraic non-linear equations. To construct schemes of order higher than 3, some additional hypotheses are introduced to simplify the problem (see Hairer, Nørsett & Wanner, Solving Ordinary Differential Equations I: Nonstiff problems.)

Example. Solution de of the non-linear pendulum problem using Runge-Kutta methods. Absolute error at time t = 4P, where P is the period of oscillation.

Error control

We have considered so far only methods with the time step h fixed from the beginning. A value of h may be adequate in some regions and too large (or too small) in others. We can use the time step h to control the precision. There are combinations of Runge–Kutta schemes that are particularly suitable for error control.

Example: Runge-Kutta-Fehlberg method

$$k_{1} = f(t_{n}, u_{n})$$

$$k_{2} = f(t_{n} + \frac{1}{4}h, u_{n} + \frac{1}{4}k_{1}h)$$

$$k_{3} = f(t_{n} + \frac{3}{8}h, u_{n} + \frac{3}{32}k_{1}h + \frac{9}{32}k_{2}h)$$

$$k_{4} = f(t_{n} + \frac{12}{13}h, u_{n} + \frac{1932}{2197}k_{1}h - \frac{7200}{2197}k_{2}h + \frac{7296}{2197}k_{3}h)$$

$$k_{5} = f(t_{n} + h, u_{n} + \frac{439}{216}k_{1}h - 8k_{2}h + \frac{3680}{513}k_{3}h - \frac{845}{4104}k_{4}h)$$

$$k_{6} = f(t_{n} + \frac{1}{2}, u_{n} - \frac{8}{27}k_{1}h + 2k_{2}h - \frac{3544}{2565}k_{3}h + \frac{1859}{4104}k_{4}h - \frac{11}{40}k_{5}h)$$

We construct a 4-th order method

$$u_{n+1} = u_n + h\left(\frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5\right) = u_n + h\Phi(t_n, u_n)$$

and a 5-th order method

$$\tilde{u}_{n+1} = u_n + h(\frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6) = u_n + h\tilde{\Phi}(t_n, u_n)$$

The local truncation errors are, respectively

$$u(t_{n+1}) - u_{n+1} = \mathcal{O}(h)^5 = Ah^5 + \mathcal{O}(h^6)$$

and

$$u(t_{n+1}) - \tilde{u}_{n+1} = \mathcal{O}(h^6).$$

We obtain

$$u(t_{n+1}) - u_{n+1} = (\tilde{u}_{n+1} - u_{n+1}) + \mathcal{O}(h^6).$$

We find that the error can be estimated as

$$E = (\tilde{u}_{n+1} - u_{n+1}) = h \left(\frac{1}{360} k_1 - \frac{128}{4275} k_3 - \frac{2197}{75240} k_4 + \frac{1}{50} k_5 + \frac{2}{55} k_6 \right).$$

We also found earlier that $||E|| \leq Ch^5$. We can adjust the time step to ensure $Ch_{opt}^5 = tol$, where

$$tol = Atol + \max(|u_n|, |u_{n+1}|)Rtol.$$

Then the new time step is equal to

$$h_{opt} = h \left(\frac{tol}{E}\right)^{1/5}$$
.

It may be useful to include limiters

$$h_{new} = h \min \left(csmax, \max \left(csmin, \left(cs \frac{tol}{E} \right)^{1/5} \right) \right).$$

with cs = 0.8...0.9, csmax = 1...5.