Credit Derivatives

HW2

Sanyueh (Michael) Yao

Due on 2/16/2010

Exercise 1:

(EX1.1)Solve a(.) and b(.) from ZCB:
$$B(t,T) = \exp(-a(T-t) - b(T-t)r_t), t \in [0,T]$$
 under

$$dr_t = k^r (\theta^t - r_t) dt + \beta^r dB_t$$

Process	We can either get a discounted B(t,T) as a Martingale. Then we get the drift as 0. Or we can direct get the risk-neutral of B(t,T) and get drift as r.	
	For $dr_t = k^r(\theta^t - r_t)dt + \beta^r dB_t$, we can replace $\alpha(t, r_t) = k^r(\theta^t - r_t)$ and get	
	$dr_{t} = \alpha(t, r_{t})dt + \beta^{r}dB_{t}$	
Apply Ito's lemma for	$dB(t,T) = df(t,r) = f_t dt + f_r dr_t + \frac{1}{2} f_{rr} d\left\langle r \right\rangle_t < \text{Ref 1} >$	
$\int f(t,r_t)$	$= \left\{ \left(a' + b' r_t \right) \cdot f \right\} dt + \left\{ \left(-b \right) \cdot f \right\} \left(k^r (\theta^t - r_t) dt + \beta^r dB_t \right) + \frac{1}{2} \left\{ b^2 \cdot f \right\} \left(\beta^{2r} dt \right) < \text{Ref 2} >$	
	$= f\left\{ \left(a' + b' r_{t} \right) dt - b \left(\alpha(\bullet) dt + \beta^{r} d\tilde{B}_{t} \right) + \frac{1}{2} b^{2} \left(\left(\beta^{r} \right)^{2} dt \right) \right\}$	
	$= B(t,T)\left\{ \left(a'+b'r_{t}-\alpha\left(\cdot\right)b+\frac{1}{2}b^{2}\beta^{2r}\right)dt-b\cdot\beta^{r}d\tilde{B}_{t}\right\}$	
Drift Term =r	$r_{t} = \left\{ \left(a' + b' r_{t} \right) - b \cdot k^{r} \left(\theta^{t} - r_{t} \right) + \frac{1}{2} b^{2} \left(\beta^{2r} \right) \right\}$	
	$r_{t} = (a' + b' r_{t}) - bk^{r} (\theta^{t} - r_{t}) + \frac{1}{2}b^{2} (\beta^{2r})$	
PDE replace r_i with r	$r = \left(a' + b'r\right) - bk^r(\theta^t - r) + \frac{1}{2}b^2\left(\beta^{2r}\right) \ \forall a(.), b(.) \text{ with terminal value } f(t, r) = 1 \ \forall r, t$	
Get two ODEs:	Collect $r_t: 0 = -1 + b'(T - t) - b(T - t)k^r$, $b(T,T) = 0$	
	Collect other term: $0 = a' - bk^r \theta^t + \frac{1}{2}b^2 \beta^{2r}$, $a(T,T) = 0$	
Solution for a(*) & b(*).	$b(s) = \frac{1}{k'} (1 - b'(s))$ we can guess $b'(s) = e^{-Sk}$ and verify it. So	
Replace T-t=s	$b(T-t) = \frac{1}{k^{r}} \left(1 - e^{-k(T-t)} \right)$	
	we can get $a(T-t) = \frac{\beta^r}{4k^r}b^2(T-t) + \left(\theta - \frac{\beta^2}{2k^2}\right)\left(\left(T-t\right) - b(t,T)\right)$	
<ref 1=""></ref>	$dr_{t} = k^{r}(\theta^{t} - r_{t})dt + \beta^{r}dB_{t}$	
	$d\left\langle r\right\rangle_{t}=\left(\beta^{r}\right)^{2}dt$	
<ref 2=""></ref>	$f_t = (a'(T-t) + b'(T-t)r_t) \cdot f$	
	$f_r = \left(-b(T-t)\right) \cdot f$	
	$f_{rr} = b^2 (T - t) \cdot f$	
Conclusion	$a(T-t) = \frac{\beta^{r^2}}{4k^r} b^2(T-t) + \left(\theta - \frac{\beta^{r^2}}{2k^2}\right) \left(\left(T-t\right) - b(t,T)\right)$	
	$b(T-t) = \frac{1}{k'} \left(1 - e^{-k'(T-t)} \right)$	

(EX1.2) (Closed form for defaultable ZCB) Given state process $dX_t = k^X (\theta^X - X_t) dt + \beta^X dW_t$. predefault intensity is $\lambda_t = \omega r_t + X_t$. And get $\overline{B}(t,T), t \in [0,T]$

Assumption	1. $\{G_{t}\}$: information of default-free market, such as short rate r
	2. $N_t^{(1)}$: std Poisson. $N^{(1)} \perp G$ under Q

- 3. Default time τ = first Jump time of N_t 4. Total Filtration $F_t = G \vee F^N$

	Formula	Note
$\overline{B}(t,T)$ Derived	$= E^{\mathcal{Q}} \left[\exp \left(-\int_{-T}^{T} r(X_u) du \right) 1_{\{T < \tau\}} \mid F_t \right]$	<ref 1=""> Iterated</ref>
Process		<ref 2=""></ref>
	$= E^{\mathcal{Q}} \left[E^{\mathcal{Q}} \left[\exp \left(- \int_{t}^{T} r(X_{u}) du \right) 1_{\{T < \tau\}} F_{t} \vee G_{T} \right] F_{t} \right] $ < Ref 1>	$\left[\exp\left(-\int_{t}^{T}r(X_{u})du\right)$ is
		filtration with Ft
	$= E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} r(X_{u}) du \right) E^{\mathcal{Q}} \left[1_{\{t < \tau\}} \mid F_{t} \vee G_{T} \right] \mid F_{t} \right] $ < Ref 2>	<ref 3=""> Independence lemma:</ref>
	$= E^{Q} \left \exp \left(-\int_{1}^{T} r(X_{u}) du \right) 1_{\{t < \tau\}} \exp \left(-\int_{1}^{T} \lambda(X_{u}) du \right) \right F_{t} \right < \text{Ref 3} >$	$Q(T < \tau \mid F_t \vee G_T)$
		$=Q(Y_T>U\mid F_t\vee G_T)$
	$= E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left\{ r(X_{u}) + \lambda(X_{u}) \right\} du \right) 1_{\{t < \tau\}} \mid F_{t} \right]$	$=1_{\{t<\tau\}}\frac{Y_T}{Y_t}$
	$= 1_{\{t < \tau\}} E^{Q} \left[\exp \left(-\int_{t}^{T} \left\{ r(X_{u}) + \lambda(X_{u}) \right\} du \right) F_{t} \right]$	$=1_{\{t<\tau\}}\exp\left(-\int_{t}^{T}\lambda(X_{u})du\right)$
	$= 1_{\{t < \tau\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left\{ r(X_{u}) + \lambda(X_{u}) \right\} du \right) G_{t} \right] < \text{Ref 4>}$	<ref 4=""> Intuitively, Ft doesn't provide extra useful information for r</ref>
		and λ. So we can change it to Gt
$\lambda_{t} = \omega r_{t} + X_{t}$	$= 1_{\{t < \tau\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left\{ r_{u} + \lambda_{u} + \omega r_{u} + X_{u} \right\} du \right) G_{t} \right]$	<pre><ref 5=""> r and x are driven by independent BW. So we can separate them. This</ref></pre>
	$= 1_{\{t < \tau\}} E^{Q} \left[\exp \left(-\int_{t}^{T} \left\{ \left(1 + \omega \right) r_{u} + X_{u} \right\} du \right) G_{t} \right]$	result from Conditional Independence on jump note page 43
	$= 1_{\{t < \tau\}} E^{Q} \left[\exp \left(-\int_{t}^{T} (1+\omega) r_{u} du \right) G_{t} \right] E^{Q} \left[\exp \left(-\int_{t}^{T} (X_{u}) du \right) G_{t} \right]$	<ref 6=""> m(.), n(.) <ref 7=""> c(.), d(.)</ref></ref>
	$= 1_{\{t < \tau\}} \cdot \exp\left(-m(T-t) - n(T-t)\left(1+\omega\right)r_t\right) \cdot \exp\left(-c(T-t) - d(T-t)x_t\right)$	
<ref 6="">:</ref>	Let $r_t = (1 + \omega)r_t$ into $dr_t = k^r(\theta^t - r_t)dt + \beta^r dB_t$. So	
Scaled	$dr_{t} = (1+\omega)dr_{t}^{'} = k^{r}((1+\omega)\theta^{t} - (1+\omega)r_{t})dt + (1+\omega)\beta^{r}dB_{t}$	
Vasicek (1+w) for r		
(1+W) 101 1	So $\theta^{r'} = (1+\omega)\theta^r$, $\beta^{r'} = (1+\omega)\beta^r$, $k^{r'} = k^r$	
	$m(T-t) = \frac{(1+\omega)\beta^{r_2}}{4k^r} n^2 (T-t) + \left((1+\omega)\theta^r - \frac{\beta^{r_2}}{2k^2} \right) \left((T-t) - m(t,T) \right)$	
	$n(T-t) = \frac{1}{k^r} \left(1 - e^{-k^r (T-t)} \right)$	

: c(.),
and d(.) for x

$$c(T-t) = \frac{\beta^{X2}}{4k^X}b^2(T-t) + \left(\theta - \frac{(\beta^X)^2}{2(k^X)^2}\right)\left((T-t) - b(t,T)\right)$$

$$d(T-t) = \frac{1}{k^X}\left(1 - e^{-k^X(T-t)}\right)$$

Conclusion

If we have no default time at time t-the Q-dynamics.
$$1_{\tau>t} \exp\left(-m(T-t) - n(T-t)\left(1 + \omega\right)r_t - c(T-t) - d(T-t)x_t\right)$$

$$m(.),n(.),c(.),d(.) \text{ are detailed above}$$

HW2

(EX1.3) (Countdown process Simulation) Simulate $Y_t = \exp\left(-\int_0^t \lambda_u du\right)$

- (a) Construct X & r: $dX_t = k^X (\theta^X X_t) dt + \beta^X dW_t$
- **(b)Insert into** $\lambda(X)$, $\lambda: \mathbb{R}^d \to [0,\infty): \lambda_r = wr_r + X_r$
- (c) Construct the countdown process: $Y_t = \exp\left(-\int_0^t \lambda_u du\right)$

```
Note
               % for HW2:Exercise 1.3
Code
               clear all;
               %define underlying parameters
               r0=0.05; Theta_r=0.05; Kappa_r=0.25; Beta_r=0.05;
               Theta_X=0.1; X0=0.1; Kappa_X=0.25; Beta_X=0.05;
               w=1;
               %Maturity
               T=10;
               %Time Steps
               TimeSteps=50*T;
               dt=T/TimeSteps;
               MC_Loops=10000;
               %Initialization
               r=zeros(MC_Loops, TimeSteps);
               X=zeros(MC_Loops,TimeSteps);
               def=zeros(MC_Loops,TimeSteps);
               Y=zeros(MC_Loops, TimeSteps+1);
               Zr=zeros(MC_Loops,TimeSteps+1);
               ZX=zeros(MC_Loops,TimeSteps+1);
               TimeSeries=zeros(1,TimeSteps);
               MC=zeros(1,TimeSteps);
               Ana=zeros(1,TimeSteps);
               %Normal Random Variable
               Zr=randn(MC_Loops,TimeSteps+1);
               ZX=randn(MC_Loops,TimeSteps+1);
               r(:,1)=r0+Kappa_r*(Theta_r-r0)*dt+Beta_r*sqrt(dt)*Zr(:,1);
               X(:,1)=X0+Kappa_X*(Theta_X-X0)*dt+Beta_X*sqrt(dt)*ZX(:,1);
               %Evoluation of r and X
               for i=1:TimeSteps
                   r(:,i+1)=r(:,i)+Kappa_r*(Theta_r-r(:,i))*dt+Beta_r*sqrt(dt)*Zr(:,i+1);
                   X(:,i+1)=X(:,i)+Kappa_X*(Theta_X-X(:,i))*dt+Beta_X*sqrt(dt)*ZX(:,i+1);
```

```
u=rand(MC_Loops,1);
               Y=exp(-dt*(w*cumsum(r,2)+cumsum(X,2)));
               for i=1: TimeSteps
                   def(:,i)=(Y(:,i)<=u);
               tau=dt*(TimeSteps-sum(def,2)+1);
               for i=1: TimeSteps
                   time =i*dt;
                   TimeSeries(1,i)=time;
                    %Simulation Result
                   MC(:,i)=sum(tau<=time)/MC_Loops;</pre>
                    %Analytical Result
                    exact_r=vas_exact(time,r0,Theta_r, Kappa_r, Beta_r);
                    exact_X=vas_exact(time,X0,Theta_X, Kappa_X, Beta_X);
                       %Scaled(1+w) Vasicek Distriubtion
                      rs0=(1+w)*r0;
                      Kappa_rs=Kappa_r;
                       Theta_rs=(1+w)*Theta_r;
                       Beta_rs=(1+w)*Beta_r;
                       exact_rs=vas_exact(time,rs0,Theta_rs, Kappa_rs, Beta_rs);
                    zcb_bar=exact_rs*exact_X;
                    Ana(:,i)=1-zcb_bar/exact_r;
               end
               %Result for Q1.3
               plot(TimeSeries,MC,TimeSeries,Ana);
               xlabel('t (Time)');
               ylabel('Q(tau<t) (Default Probability)');</pre>
               title('Tau Distribution (Default Time)-Case 3: tau in [0,10]');
               legend('Simulated','Analytical','Location','SouthEast');
Function
               function y=vas_exact(T,rt,Theta, Kappa, Beta)
               b=1/Kappa*(1-exp(-Kappa*T));
               a=(Beta*Beta)/(4*Kappa)*b*b+(Theta-Beta*Beta/(2*Kappa*Kappa))*(T-b);
               y=exp(-a-b*rt);
```


(EX1.4) Based on previous result, get $E^{\mathcal{Q}}\Big[au\cdot 1_{\tau\in[0,1]}\Big]$, $E^{\mathcal{Q}}\Big[au\cdot 1_{\tau\in[0,5]}\Big]$, $E^{\mathcal{Q}}\Big[au\cdot 1_{\tau\in[0,10]}\Big]$

NYC

	Numerical Result		
$E^{\mathcal{Q}}\Big[au\cdot 1_{ au\in[0,1]}\Big]$	Expected_Tau- Case 1: tau in [0,1] 0.0693		
$\boxed{E^{\mathcal{Q}}\bigg[\tau\cdot 1_{\tau\in[0,5]}\bigg]}$	Expected_Tau- Case 2: tau in [0,5] 1.0873		
$\boxed{E^{\mathcal{Q}}\Big[\tau\cdot 1_{\tau\in[0,10]}\Big]}$	Expected_Tau- Case 3: tau in [0,10] 2.7548		

(EX1.5) Estimate $\overline{B}(0,T)$ for $T \in \{\frac{1}{12}, \frac{1}{4}, \frac{1}{2}, 1, 2, 5, 10\}$ using MC-Simulation and compare these simulated results with the analytical equivalent result from Q2

```
Note
                       %Result for Q1.5
Code
                      clear all;
                       %define underlying parameters
                      r0=0.05; Theta_r=0.05; Kappa_r=0.25; Beta_r=0.05;
                      Theta_X=0.1; X0=0.1; Kappa_X=0.25; Beta_X=0.05;
                      w=1;
                       %Vectorization
                      Ana_ZCB_bar=zeros(1,7);
                      MC_ZCB_bar=zeros(1,7);
                       % Time Frame
                      TT=[1/12,1/4,1/2,1,2,5,10];
                      %Scaled(1+w) Vasicek Distriubtion
                      rs0=(1+w)*r0;
                      Kappa_rs=Kappa_r;
                      Theta_rs=(1+w)*Theta_r;
                      Beta_rs=(1+w)*Beta_r;
                       for j=1:7
                           T=TT(1,j);
                           %Analytical Result
                            exact_X=vas_exact(T,X0,Theta_X, Kappa_X, Beta_X);
                            exact_rs=vas_exact(T,rs0,Theta_rs, Kappa_rs, Beta_rs);
                           Ana_ZCB_bar(1,j)=exact_X*exact_rs;
                           %MC Result
                           MC_Loops=100;
                           TimeSteps=50*T;
                           dt=T/TimeSteps;
                           ZX=randn(MC_Loops, TimeSteps+1);
                           Zr=randn(MC_Loops, TimeSteps+1);
                           r(:,1)=r0+Kappa_r*(Theta_r-r0)*dt+Beta_r*sqrt(dt)*Zr(:,1);
                           X(:,1)=X0+Kappa_X*(Theta_X-X0)*dt+Beta_X*sqrt(dt)*ZX(:,1);
                           %Evoluation of r and X
                           for i=1:TimeSteps
                               r(:,i+1)=r(:,i)+Kappa_r*(Theta_r-r(:,i))*dt+Beta_r*sqrt(dt)*Zr(:,i+1);
                               X(:,i+1)=X(:,i)+Kappa_X*(Theta_X-X(:,i))*dt+Beta_X*sqrt(dt)*ZX(:,i+1);
```

```
ZCB\_bar=exp(-dt*((1+w)*sum(r,2)+sum(X,2)));
                             MC_ZCB_bar(1,j)=mean(ZCB_bar);
                             MC_ZCB_bar(2,j)=sqrt(var(ZCB_bar)/MC_Loops);
                        end
                        disp('Q1.5:');
                        disp(['Expiries
                                              : ',num2str(TT)]);
                                              : ',num2str(Ana_ZCB_bar)]);
                        disp(['Analytical
                                              ;,num2str(MC_ZCB_bar(1,:))]);
:',num2str(MC_ZCB_bar(2,:))]);
                        disp(['Simulted
                        disp(['Std Error:
01.5:
Expiries
              :0.0833333
                                  0.25
                                                  0.5
                                                                                               5
                                                                                                            10
Analytical
              :0.98347
                                  0.95126
                                                  0.90505
                                                                0.82015
                                                                              0.67817
                                                                                            0.4118
                                                                                                           0.21531
Simulted
              :0.98021
                                  0.94918
                                                  0.90171
                                                                0.81658
                                                                              0.67572
                                                                                            0.41334
                                                                                                           0.21445
              :2.2689e-005
                                  8.4456e-005
                                                  0.00021324
                                                                0.00050122
                                                                              0.0010736
                                                                                            0.0020845
                                                                                                           0.0025389
Std Error:
```

maturity	Analytical solution	Simulated result
1/12	0.98347	0.98021
1/4	0.95126	0.94918
1/2	0.90505	0.90171
1	0.82015	0.81658
2	0.67817	0.67572
5	0.4118	0.41334
10	0.21531	0.21445

(EX1.6) Consider $max\left\{\overline{B}\left(T,S\right)-K,0\right\}$. $T\in\left\{\frac{1}{12},\frac{1}{4},\frac{1}{2},1,2,5,10\right\}$, and S=T+0.5. Strike= $\overline{B}(0,T+0.5)$ price knock out call options using MC-simulation.

- (a) Simulate the state process on [0,T]
- **(b)** Use the analytic expression for $K = \overline{B}(T, S)$

	Note	
Process	1) Draw a uniform U	
	2) Grow an independent path for r & X using MC, calculate Y until either default or maturity	
	3) If not default, at maturity T, use the analytical form for defaultable bond to calculate B_bar(T, T+0.5)	
	with the simulated values of r and X at T	
	4) discount the payoff max(B_bar(T,T+0.5) - K, 0) with simulated value of r at time T back to time 0	
	Run the simulation n times to estimate the knock out option price.	
	%Result for Q1.6	
	clear all;	
	%define underlying parameters	
	r0=0.05; Theta r=0.05; Kappa r=0.25; Beta r=0.05;	
	Theta X=0.1; X0=0.1;Kappa X=0.25; Beta X=0.05;	
	w=1;	
	%Vectorization	
	Ana_ZCB_bar=zeros(1,7);	
	<pre>MC_KO_bar=zeros(1,7);</pre>	
	% Time Frame	
	TT=[1/12,1/4,1/2,1,2,5,10];	
	%Scaled(1+w) Vasicek Distriubtion	
	rs0=(1+w)*r0;	
	Kappa_rs=Kappa_r;	
	Theta_rs=(1+w)*Theta_r;	
	<pre>Beta_rs=(1+w)*Beta_r;</pre>	
	for index=1:7	

```
T=TT(1,index);
                           S=T+0.5;
                           %Analytical Result
                            X_ko=vas_exact(0,S,X0,Theta_X, Kappa_X, Beta_X);
                            rs_ko=vas_exact(0,S,rs0,Theta_rs, Kappa_rs, Beta_rs);
                           K=X_ko*rs_ko;
                           %MC Result
                           MC_Loops=1000;
                           TimeSteps=round(50*T);
                           dt=T/TimeSteps;
                           Zr=randn(MC_Loops, TimeSteps+1);
                           ZX=randn(MC_Loops, TimeSteps+1);
                           r(:,1) = r0 + Kappa_r*(Theta_r-r0)*dt + Beta_r*sqrt(dt)*Zr(:,1);
                           X(:,1)=X0+Kappa_X*(Theta_X-X0)*dt+Beta_X*sqrt(dt)*ZX(:,1);
                           %Evoluation of r and X
                           for i=1:TimeSteps
                               r(:,i+1)=r(:,i)+Kappa_r*(Theta_r-r(:,i))*dt+Beta_r*sqrt(dt)*Zr(:,i+1);
                               \texttt{X(:,i+1)=X(:,i)+Kappa\_X*(Theta\_X-X(:,i))*dt+Beta\_X*sqrt(dt)*ZX(:,i+1);}
                           end
                           u=rand(MC_Loops,1);
                           def=zeros(MC_Loops,TimeSteps);
                           Y=exp(-dt*(w*cumsum(r,2)+cumsum(X,2)));
                           for step=1: TimeSteps
                               def(:,index)=(Y(:,step)<=u);
                           tau=dt*(TimeSteps-sum(def,2)+1);
                           NotDef=tau>T;
                           pv=exp(-dt*sum(r,2));
                           for jj=1:MC_Loops
                               xx=X(jj,TimeSteps);
                               rr=r(jj,TimeSteps);
                               rss=(1+w)*rr;
                               zcb_x_TS=vas_exact(T,S,xx,Theta_rs, Kappa_rs, Beta_rs);
                               zcb_rss_TS=vas_exact(T,S,rss,Theta_rs, Kappa_rs, Beta_rs);
                               zcb_bar_TS(jj,1)=zcb_x_TS*zcb_rss_TS;
                           end
                           option_pv_payoff=NotDef.*pv.*max(0,zcb_bar_TS-K);
                           MC_ko_bar(1,index)=mean(option_pv_payoff);
                           MC_ko_bar(2,index)=sqrt(var(option_pv_payoff)/MC_Loops);
                       disp('Q1.6:');
                       disp(['Matruity
                                            : ',num2str(TT)]);
                       disp(['Simulted
                                            :',num2str(MC_ko_bar(1,:))]);
                       disp(['Std Error:
                                            : ',num2str(MC_ko_bar(2,:))]);
Q1.6:
Maturity
             :0.0833333
                                 0.25
                                               0.5
                                                                                           5
                                                                                                       10
                                               0.077578
                                                                                         0.21088
                                                                                                     0.14674
Simulted
             :0.014945
                                 0.042191
                                                              0.1339
                                                                           0.19814
Std Error:
             :0.00036922
                                 0.00073896
                                               0.0011505
                                                              0.0021359
                                                                           0.0040657
                                                                                         0.0077602
                                                                                                     0.0091606
```

maturity	Strike	Simulated price
1/12	0.88970	0.014945
1/4	0.85486	0.042191
1/2	0.8122	0.077578
1	0.7564	0.1339

2	0.60835	0.19814
5	0.3927	0.21088
10	0.21329	0.14674

(EX1.7) Define the (forward survival) probability measure \overline{Q}^T as for T>0. $\overline{Z}_t^T = \frac{\overline{B}(t,T)}{\overline{B}(0,T)} \exp\left(-\int_0^t r_u du\right)$,

 $\overline{Z}_{\scriptscriptstyle T}^{\scriptscriptstyle T}=rac{d\overline{\mathcal{Q}}^{\scriptscriptstyle T}}{d\mathcal{Q}}$, Compute the Dynamics of (r,X) under $\overline{\mathcal{Q}}^{\scriptscriptstyle T}$

(a) Dynamics of (r,X) or \overline{B} under $\overline{Q}^{\scriptscriptstyle T}$

	Formula	Note
From	$1_{\{t<\tau\}} \cdot \exp\left(-m(T-t) - n(T-t)r_t\right) \cdot \exp\left(-c(T-t) - d(T-t)x_t\right)$ Where $m(T-t) = \frac{(1+\omega)\beta^{r^2}}{r^2} r^2 (T-t) + \frac{(1+\omega)\Omega^r}{r^2} \frac{\beta^{r^2}}{r^2} \left((T-t) - m(T-t)\right)$	We can get the dynamic of (r,X) from here. This is log Normal
	$m(T-t) = \frac{(1+\omega)\beta^{r^2}}{4k^r} n^2 (T-t) + \left((1+\omega)\theta^r - \frac{\beta^{r^2}}{2k^2} \right) \left((T-t) - m(t,T) \right)$ $n(T-t) = \frac{1}{k^r} \left(1 - e^{-k^r (T-t)} \right)$	
	$c(T-t) = \frac{\beta^{X2}}{4k^{X}}b^{2}(T-t) + \left(\theta - \frac{\left(\beta^{X}\right)^{2}}{2\left(k^{X}\right)^{2}}\right)\left(\left(T-t\right) - b(t,T)\right)$ $d(T-t) = \frac{1}{k^{X}}\left(1 - e^{-k^{X}(T-t)}\right)$	
=, _,	, ,	
$\overline{B}(t,T)$	$\left 1_{\{t < \tau\}} \cdot \exp\left(-m(T-t) - n(T-t)\left(1+\omega\right)r_t\right) \cdot \exp\left(-c(T-t) - d(T-t)x_t\right) \right $	Let $a = -(m+c)$
	$= (1 - N_t) \cdot \exp(-m(T - t) - n(T - t)r_t) \cdot \exp(-c(T - t) - d(T - t)x_t)$	$b = -n(T - t)(1 + \omega)$
	$= (1 - N_t) \cdot \exp(a + br_t + hX_t)$	h = -d(T - t)
$d\overline{B}(t,T)$	$= \overline{B}(t_{-},T)(a'dt+b'r_{t}dt+bdr_{t}+h'X_{t}dt+hdX_{t})-\exp(a+br_{t}+hX_{t})dN_{t}$	
	$= \overline{B}(t_{-},T)(f(.)dt + b\beta^{r}dB_{t} + h\beta^{X}dW_{t}) - g(.)$	
Define	$d\overline{Z}_{t}^{T} = \overline{Z}_{t}^{T} \left\{ b\beta^{r} dB_{t}^{Q} + h\beta^{X} dW_{t}^{Q} - g(.) \right\}$	
	$= -\overline{Z}_t^T \left\{ n(T-t) \left(1 + \omega \right) \beta^r dB_t^Q + d(T-t) \beta^X dW_t^Q - g(.) \right\}$	
	$dB_t^{\overline{Q}^{(T)}} = dB_t^{Q} + n(T - t)(1 + \omega)\beta^r dt$	
	$dW_t^{\bar{Q}^{(T)}} = dW_t^Q + d(T - t)\beta^X dt$	

$d\overline{B}(t,T)$	$=1_{\{\tau>t\}}dM_{t}^{(T)}+M_{t}^{(T)}d1+0+\overline{B}(t_{-},T)(-dN_{t})$	
	$= \overline{B}(t_{-},T) \Big[(r_{t} + \lambda_{t}) dt - n(.) \sigma^{B}_{(t,T)} dB_{t} - d(.) \sigma^{W}_{(t,T)} dW_{t} - dN_{t} \Big]$	
$d\overline{B}(t,T)$	$= \overline{B}(t_{-},T) \left[rdt - n(T-t)\beta^{r}d\tilde{B}_{t} - d(T-t)\beta^{X}d\tilde{W}_{t} - d\left(N_{t} - \int_{0}^{t} \lambda_{u}du\right) \right]$	Under Measure Q
	Where $n(T-t) = \frac{1}{k^r} \left(1 - e^{-k^r (T-t)} \right)$, $d(T-t) = \frac{1}{k^x} \left(1 - e^{-k^x (T-t)} \right)$	

(b) Are Q and $\overline{Q}^{\scriptscriptstyle T}$ equivalent Measures?

	Formula	Note
Given	$\overline{Z}_{t}^{T} = \frac{\overline{B}(t,T)}{\overline{B}(0,T)} \exp\left(-\int_{0}^{t} r_{u} du\right)$	
$d\overline{Z}_{t}^{T}$	$=d\frac{\overline{B}(t,T)}{\overline{B}(0,T)S_t^{(0)}}$	
	$= \frac{\overline{B}(t-T)}{\overline{B}(0,T)S_t^{(0)}} \left\{ -\overline{b} \sigma_t^X dW_t^Q - \overline{d} \sigma_t^r dB_t^Q - dN_t + \lambda \left(X_t \right) \right\}$	
	$= \overline{Z}_{t-}^{(T)} \left\{ -\overline{b} \sigma_t^X dW_t^Q - \overline{d} \sigma_t^r dB_t^Q - dN_t + \lambda \left(X_t \right) \right\}$	Under Measure Q^T
	$dW_t^{\overline{Q}^{(T)}} = dW_t^{Q} + \overline{b}(T - t)\sigma_t^X dt = dW_t^{Q} + \overline{b}(T - t)\beta^X dt$	Under Measure Q^T
	$dB_t^{\overline{Q}^{(T)}} = dB_t^Q + \overline{d}(T - t)\sigma_t^r dt = dB_t^Q + \overline{d}(T - t)\beta^r dt$	

NYC

Reason 1	$\lambda_t^{\overline{\mathcal{Q}}^{(T)}} = \lambda_t^{\mathcal{Q}}(1+\varphi_t) = 0$	∴ the sign of $-dN_t$ is negative ∴ $\varphi_t = -1$
Result 1	There is no default. There is no different between default and pre-default.	

Reason 2	$\begin{aligned} & \overline{Q}^{(T)} \left(\tau \leq T \right) = E^{\overline{Q}^{(T)}} \left[1_{T \geq \tau} \right] = E^{\mathcal{Q}} \left[\overline{Z}_{T}^{(T)} \cdot 1_{T \geq \tau} \right] \\ & = E^{\mathcal{Q}} \left[\frac{D(T)}{\overline{B}(0,T)} \cdot 1_{T < \tau} \cdot 1_{T \geq \tau} \right] = \overline{Q}^{(T)} \left(\overline{Z}_{t}^{(T)} = 0 \right) = 0 \end{aligned}$	Under Measure Q^T , there is no default before T
Reason 3	$Q(\tau < T) > 0$	
Reason 4	$Q^{(T)}\left(T < \tau\right) = E^{Q^{(T)}}\left[1_{T < \tau}\right] = E^{Q}\left[Z_{t}^{(T)}1_{T < \tau}\right]$ $= \frac{1}{B(0,T)}E^{Q}\left[\exp\left(-\int_{0}^{T}r(X_{u})du\right)1_{T < \tau}\right]$ $= \frac{\overline{B}(0,T)}{B(0,T)} < 1$	Default actually happen will happen Under Measure $\it Q$
Result 2 ~4	Default actually happen will happen under Measure Q	

Conclusion $| \mathbf{Q}$ and $\overline{\mathcal{Q}}^T$ are NOT equivalent Measures. We don't have $\mathbf{Q} < \overline{\mathcal{Q}}^T$

(EX1.8)

(a) Derive
$$\overline{B}(0,S)\overline{Q}^{S}(\overline{B}(T,S) \geq K) - K\overline{B}(0,T)\overline{Q}^{T}(\overline{B}(T,S) \geq K)$$

❖ Method 1

	Formula	Note
closed form	$E^{Q}\left[\exp\left(-\int_{0}^{T}r(X_{u})du\right)\cdot 1_{\{T<\tau\}}\left(\overline{B}(T,S)-K\right)^{+}\right]$ $=E^{Q}\left[D(T)\cdot 1_{\{T<\tau\}}\left(M_{T}^{(S)}-K\right)^{+}\right]$	$\overline{B}(T,S) = 1_{\{T < \tau\}} \cdot M_T^{(S)}$ $M_T^{(S)} = E^{\mathcal{Q}} \left[\exp \left(-\int_T^S (\lambda_u + r_u) du \right) G_T \right]$
	$= E^{\mathcal{Q}} \left[D(T) \left(M_T^{(S)} - K \right)^+ \cdot E^{\mathcal{Q}} \left[1_{\{T < \tau\}} \mid G_T \right] \right]$ $= E^{\mathcal{Q}} \left[D(T) \left(M_T^{(S)} - K \right)^+ \cdot D^{\lambda}(T) \right]$	$D^{\lambda}(T) = \exp\left(-\int_{0}^{T} (\lambda_{u}) du\right)$

		(=
	$=E^{\mathcal{Q}}\left[D^{R}(T)\left(M_{T}^{(S)}-K\right)^{+}\right]$	$D^{R}(T) = \exp\left(-\int_{0}^{T} (\lambda_{u} + r_{u}) du\right)$
	$=E^{Q^R}\left[\left(M_T^{(S)}-K\right)^+\right]$	(0)
	$=E^{Q^{R}}\left[\left(M(0,T,S)-K\right)^{+}\right]$	<ref 1=""> <ref 2=""></ref></ref>
	$= M_0^{(T)} \left\lceil M(0,T,S)N(d_+) - KN(d) \right\rceil$	<ref 3=""></ref>
<ref 1=""></ref>	$M_T^{(S)} = E^Q \left[\exp\left(-\int_T^S (\lambda_u + r_u) du\right) G_T \right] \text{ here can be treated as ZCB with short rate } \lambda_u + r_u$	
	(1) $M(T,T,S) = M_T^{(S)}$ at time T, spot and forward value are the	e same.
	(2)We don't distribution of $M_T^{(S)}$ but we know the $M(t,T,S)$ =	$\frac{M_t^{(S)}}{M_t^{(T)}}$ is log-Normal in forward measure.
	Log-Normal distribution can help us to link to Black Formula	,
	(3) $dM_t^{(S)} = M_t^{(S)} \left(\left(\lambda_u + r_u \right) dt + \sigma^W(t, s) dW_t + \sigma^B(t, s) dB_t \right)$	
	$=M_{t}^{(S)}\left(rdt+\sigma^{W'}(t,s)dW_{t}^{Q}+\sigma^{B'}(t,s)dB_{t}^{Q}\right)$	
	$M_T^{(S)} = E^{Q} \left[\exp \left(-\int_{T}^{S} (\lambda_u) du \right) G_T \right] + E^{Q} \left[\exp \left(-\int_{T}^{S} (r_u) du \right) G_T \right]$	use product rule to find $\sigma^{W'}(t,s)$
	$\sigma^{B'}(t,s)$	
<ref 2=""></ref>	Check dynamic of $M(t,T,S)$. If its vol is det, then we can apply Black Formula for it.	
	Spot dynamics: $dM^{(T)} = M^{(T)} \left(P d_{T} + P^{T} (A, T) P^{T} d_{T} + P^{X} (A, T) P^{X} d_{T} \right)$	
	$dM_{t}^{(T)} = M_{t}^{(T)} \left(R_{t} dt - b^{r}(t, T) \beta^{r} dB_{t} - b^{X}(t, T) \beta^{X} dW_{t} \right)$ Forward dynamics:	
	Forward dynamics: $ (b^r(t,T) - b^r(t,S)) \beta^r dB $	
	$dM(t,T,S) = M(t,T,S) \begin{pmatrix} \left(b^{r}(t,T) - b^{r}(t,S)\right)\beta^{r}dB_{t} \\ + \left(b^{x}(t,T) - b^{x}(t,S)\right)\beta^{x}dW_{t} \end{pmatrix}$	
	The vol is indeed deterministic, so we can apply Black formula	
<ref 3=""></ref>		
	$N\left(d_{\pm}\right) = \frac{\ln\frac{M\left(0,T,S\right)}{k} + \frac{1}{2}\Sigma}{\sqrt{\Sigma}}$	
	$\Sigma = \int_{0}^{T} \left[\left(b^{r}(t,T) - b^{r}(t,S) \right) \beta^{r} \right]^{2} dt + \int_{0}^{T} \left[\left(b^{X}(t,T) - b^{X}(t,S) \right) \beta^{r} \right]^{2} dt$	
Conclusion	$\overline{B}(0,S)\overline{Q}^{S}(\overline{B}(T,S) \ge K) - K\overline{B}(0,T)\overline{Q}^{T}(\overline{B}(T,S) \ge K)$	
	$= M_0^{(T)} \left[M(0,T,S) N(d_+) - KN(d) \right]$	
	$N(d_{\pm}) = \frac{\ln \frac{M(0,T,S)}{k} + \frac{1}{2}\Sigma}{\sqrt{\Sigma}}$	
	$\Sigma = \int_{0}^{T} \left[\left(b^{r}(t,T) - b^{r}(t,S) \right) \beta^{r} \right]^{2} dt + \int_{0}^{T} \left[\left(b^{X}(t,T) - b^{X}(t,S) \right) \beta^{r} \right]^{2} dt$	dt
	Method 2	·

Method 2

Formula Note

Method 2		1 June als out agovernting
Method 2	$\left[E^{Q} \left[\exp \left(-\int_{0}^{T} r(X_{u}) du \right) \cdot 1_{\{T < \tau\}} \left(\overline{B}(T, S) - K \right)^{+} \right] \right]$	$1_{T< au}$: knock out assumption
	$= \overline{B}(0,T)E^{\mathcal{Q}}\left[\frac{\exp\left(-\int\limits_{0}^{T}r(X_{u})du\right)}{\overline{B}(0,T)}\cdot 1_{\{T<\tau\}}\left(\overline{B}(T,S)-K\right)^{+}\right]$	
	$= \overline{B}(0,T)E^{\overline{Q}^T}\left[\left(\overline{B}(T,S) - K\right)^+\right]$	
	$= \overline{B}(0,T)E^{\overline{Q}^T} \left[\overline{B}(T,S) \cdot 1_{\overline{B}(T,S) \geq K}\right] - K \cdot \overline{B}(0,T)E^{\overline{Q}^T} \left[1_{\overline{B}(T,S) \geq K}\right]$	<ref 1=""></ref>
	$= \overline{B}(0,S) \cdot \overline{Q}^{S} \left(\overline{B}(T,S) \ge K \right) - K \cdot \overline{B}(0,T) E^{\overline{Q}^{T}} \left[1_{\overline{B}(T,S) \ge K} \right]$	
	$= \overline{B}(0,S) \cdot \overline{Q}^{S} \left(\overline{B}(T,S) \ge K \right) - K \cdot B(0,T) \overline{Q}^{T} \left(\overline{B}(T,S) \ge K \right)$	
<ref 1=""></ref>	$\overline{B}(0,T)E^{\overline{Q}^T}\left[\overline{B}(T,S)\cdot 1_{\overline{B}(T,S)\geq K}\right]$	
	$= \overline{B}(0,T)E^{\overline{Q}} \left[\frac{\overline{B}(T,S)}{\overline{B}(0,T)} \cdot \exp \left(-\int_{0}^{T} r_{u} du \right) 1_{\overline{B}(T,S) \geq K} \right]$	
	$= E^{\overline{Q}} \left[E^{\overline{Q}} \left[\overline{B}(S,S) \cdot \exp \left(-\int_{0}^{S} r_{u} du \right) F_{T} \right] \cdot 1_{\overline{B}(T,S) \geq K} \right]$	
	$= E^{\overline{Q}} \left[\overline{B}(S,S) \cdot \exp \left(-\int_{0}^{S} r_{u} du \right) \cdot 1_{\overline{B}(T,S) \geq K} \right]$	
	$= \overline{B}(0,S) \cdot E^{\overline{Q}} \left[\frac{\overline{B}(S,S) \cdot \exp\left(-\int_{0}^{S} r_{u} du\right)}{\overline{B}(0,S)} \cdot 1_{\overline{B}(T,S) \geq K} \right]$	
	$=\overline{B}(0,S)\cdot\overline{Q}^{S}\left(\overline{B}(T,S)\geq K\right)$	
	Because rt and Xt are normal distribution with $\sigma^{X}(t,s)$ is determined as	ministric, so $\overline{B}(T,S)$ is log-normal
	distribution with complicated parameters depending on \overline{a} and closed form solution	\overline{b} . We can use Black Formula to get the

Exercise 2 (Forward CDS and Option on CDS):

Type	90 Strike	110 Strike
Payer	78.9 bps	52.3 bps
Receiver	46 bps	85.2 bps

The options "knock-out" upon a credit even by ABC. Assume the forward duration of a CDS that start one year from now and matures five years from now is 3.526. Using these instruments, how could you create a risky zero coupon bond that matures one year from now? Assume no arbitrage, what would be yield on such a bond?

	Formula	Note
CDS option	$C = E^{\mathcal{Q}} \left[D(1) \cdot 1_{(z_{0})} \left(\overline{S}_{(1)} - K \right)^{+} V_{(1)}^{ann} \right]$	
price: CALL	$C = E \cdot \left[D(1) \cdot 1_{\{\tau > 1\}} \left(S_{(1)} - K \right) \cdot V_{(1)} \right]$	

Use Put Call Parity	$C - P = E^{\mathcal{Q}} \left[D(1) \cdot 1_{\{\tau > 1\}} \left(\overline{S}_{(1)} - K \right) V_{(1)}^{ann} \right]$	
	$= E^{\mathcal{Q}} \left[D(1) \cdot 1_{\{\tau > 1\}} \cdot \overline{S}_{(1)} \cdot V_{(1)}^{ann} \right] - K \cdot E^{\mathcal{Q}} \left[D(1) \cdot 1_{\{\tau > 1\}} K V_{(1)}^{ann} \right]$	
	$= E^{\mathcal{Q}} \left[D(1) \cdot 1_{\{\tau > 1\}} \cdot \overline{S}_{(1)} \cdot V_{(1)}^{ann} \right] - K \cdot V_{(1)}^{ann} \cdot E^{\mathcal{Q}} \left[D(1) \cdot 1_{\{\tau > 1\}} \right]$	${}_st V_{\scriptscriptstyle (1)}^{\it ann} {}^st_{ m l}$ is known at time 0
	$78.9 - 46 = X - 90 * 3.526 \cdot \overline{B}(0,1)(1)$	
	$52.3 - 85.2 = X - 110 * 3.526 \cdot \overline{B}(0,1)(2)$	
From (2)-(1)	$3.29 = 3.526 \cdot \overline{B}(0,1) \Leftrightarrow \overline{B}(0,1) = 0.933069(3)$	
Yield	$\overline{B}(0,1) \cdot (1 + Yield) = 1$	
	\Leftrightarrow Yield = 0.0717	
Conclusion	Yield = 0.0717	

Exercise 3:

Homer picked 10 firms and enter Part I: Sell default protection on the 10 firms through CDS contracts, one for each firm in the basket. Each CDS contract carries a spread of 170 bps. Part II: Buy protection on the first default in the basket (~the equity tranche). i.e the contract provides shelter for the first default among the 10 firms. This contract trades at the spread of 1500 bps.

Homer is trying to convince Marge that this is an excellent deal:

If no firm default, he pockets 200 bps throughout the live of the strategy.

If a firm defaults, Homer will just unwind the remaining 9 CDS contract of Part I in which case Homer pockets 200 bps until the time of the first default. Should Marge be skeptical?

Comment	Yes. Marge should be skeptical.
	(1)We are not sure how the correlation of those 10 firms. If they are highly correlated, after the first default, there might be consecutive default afterwards.
	(2) When we unwind CDS contracts by entering opposite contracts. i.e. go to the market and sell this protection at the prevailing spread to those 10 firms. When we do that, there is no guarantee that the spread you are paying for those 10 firms is the same as before. Therefore, those 200 bps are not guarantee
	(3) The unwinding of the position will increase the counter-party risk into portfolio.

Exercise 4:

Given $G_t = \sigma \left(B_s, W_s\right)_{s \in [0,t]}$ and $F_t = G_t \vee \sigma \left(N_u\right)_{u \in [0,t]}$, where $N_t = 1_{r \leq t}$ CIR for spot rate \mathbf{r} : $dr_t = k^r \left(\theta^r - r_t\right) dt + \beta^r \sqrt{r_t} dB_t$ and state process \mathbf{X} : $dX_t = k^X \left(\theta^X - X_t\right) dt + \beta^X \sqrt{X_t} dW_t$. In the Coxsetting, we model the firm's pre-default intensity as $\lambda_t = \omega r_t + (1-\omega)X_t$ for some weight $\omega \in [0,1]$ (EX4.1) Provided a closed form zero coupon bond $\overline{B}(t,T)$ for this setting.

(a) Part I: Solve a(.) and b(.) from ZCB with CIR: $B(t,T) = \exp(-a(T-t)-b(T-t)r_t), t \in [0,T]$

Solution for a(*) & b(*).
$$a(T-t) = -\frac{2k^r\theta}{\beta^{r^2}} \Big(\log(2h) + \frac{1}{2}(k+h)s - \log\Big[(k+h)(e^{hs}-1) + 2h\Big] \Big)$$

	$b(T-t) = \frac{2(e^{hs}-1)}{2h+(k'+h)(e^{hs}-1)}$
Where	$h \triangleq \sqrt{k^2 + 2\beta^2}$
	$S \triangleq T - t$

HW2

(b) Part II: get $\overline{B}(t,T)$

	Formula
$\overline{B}(t,T)$ Derived Process	$= E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} r(X_{u}) du \right) 1_{\{T < \tau\}} \mid F_{t} \right]$
	$=1_{\{t<\tau\}}E^{\mathcal{Q}}\left[\exp\left(-\int_{t}^{T}\left\{r\left(X_{u}\right)+\lambda\left(X_{u}\right)\right\}du\right) G_{t}\right]$
$\lambda_{t} = \omega r_{t} + (1 - \omega) X_{t}$	$= 1_{\{t < \tau\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left\{ r_{u} + \omega r_{u} + (1 - \omega) X_{u} \right\} du \right) G_{t} \right]$
	$= 1_{\{t < \tau\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left\{ \left(1 + \omega \right) r_{t} + \left(1 - \omega \right) X_{t} \right\} du \right) G_{t} \right]$
	$= 1_{\{t < \tau\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left((1+\omega) r_{u} \right) du \right) G_{t} \right] E^{\mathcal{Q}} \left[\exp \left(-\int_{t}^{T} \left(1-\omega \right) X_{u} du \right) G_{t} \right]$
	$= 1_{\{t < \tau\}} \cdot \exp\left(-a(T-t) - b(T-t)r_t\right) \cdot \exp\left(-c(T-t) - d(T-t)x_t\right) <\text{Ref 1>< Ref 2>}$
<ref 1=""> Scaled (1+w) CIR for r</ref>	Let $r_t = (1+\omega)r_t$ into $dr_t = k^r (\theta^r - r_t)dt + \beta^r \sqrt{r_t} dB_t$. So
	$dr_t' = (1+\omega)dr_t = k^r((1+\omega)\theta^t - (1+\omega)r_t)dt + (1+\omega)\sqrt{r_t}\beta^r dB_t$
	$dr_{t} = k^{r} (\theta^{r'} - r_{t}) dt + \sqrt{r_{t}} \beta^{r'} dB_{t}$
	So $\theta^{r'} = (1+\omega)\theta^r$, $\beta^{r'} = \sqrt{1+\omega}\beta^r$, $k^{r'} = k^r$
	$a(T-t) = -\frac{2k^{r}\theta}{\beta^{r/2}} \left(\log(2h) + \frac{1}{2}(k+h)s - \log[(k+h)(e^{hs} - 1) + 2h] \right)$
	$b(T-t) = \frac{2(e^{hs}-1)}{2h+(k^r+h)(e^{hs}-1)}$
	$h \triangleq \sqrt{k^2 + 2\beta^2} S \triangleq T - t$
<ref 2=""> Scaled (1-w)CIR for X</ref>	Let $X_t' = (1 - \omega)X_t$ into $dX_t = k^x (\theta^x - X_t)dt + \beta^x \sqrt{X_t}dW_t$. So
	$dX_{t} = (1 - \omega) dX_{t} = k^{X} ((1 - \omega) \theta^{t} - (1 - \omega) r_{t}) dt + (1 - \omega) \sqrt{X_{t}} \beta^{X} dW_{t}$
	$dX_{t} = k^{X} (\theta^{X'} - X_{t}) dt + \sqrt{X_{t}} \beta^{X'} dW_{t}$
	So $\theta^{r'} = (1 - \omega)\theta^r$, $\beta^{r'} = \sqrt{1 - \omega}\beta^r$, $k^{r'} = k^r$
	$c(T-t) = -\frac{2k^{x}\theta}{\beta^{x/2}} \left(\log\left(2h\right) + \frac{1}{2}(k+h)s - \log\left[\left(k+h\right)\left(e^{hs}-1\right) + 2h\right] \right)$
	$d(T-t) = \frac{2(e^{hs}-1)}{2h+(k^X+h)(e^{hs}-1)}$

	$h \triangleq \sqrt{k^2 + 2\beta^2} S \triangleq T - t$
Conclusion	$= \exp(-a(T-t) - b(T-t)r_t) \cdot \exp(-c(T-t) - d(T-t)X_t)$
	a,b,c,d are detailed above

$$\begin{aligned} & \textbf{(EX4.2) Show } T \leq T_N \textbf{, } V_T^{\operatorname{Pr}ot} = \left(1 - \pi\right) E^{\mathcal{Q}} \left[\exp\left(-\int_T^\tau r_{\upsilon} d\upsilon\right) \cdot \mathbf{1}_{\tau \in [T, T_N]} \mid F_T \right] \\ &= \mathbf{1}_{\tau > T} \left(1 - \pi\right) E^{\mathcal{Q}} \left[\int_T^{T_N} \lambda_U \exp\left(-\int_T^U \left(r_{\upsilon} + \lambda_{\upsilon}\right) d\upsilon\right) dU \mid G_T \right]. \end{aligned}$$

	Formula	Note
$V_T^{\operatorname{Pr}ot}$	$(1-\pi)E^Q\left[rac{D(au)}{D(T)}1_{\{ au < T_N\}} \mid F_T ight] \cdot 1_{\{ au > T\}}$	
Definition	$= \left(1 - \pi\right) \cdot 1_{\{\tau > T\}} E^{\mathcal{Q}} \left[\frac{D(\tau)}{D(T)} 1_{\tau \in \{T, T_N\}} \mid F_T \right]$	
	$= (1-\pi) \cdot 1_{\{\tau > T\}} E^{\mathcal{Q}} \left[\exp \left(-\int_{T}^{\tau} r_{\nu} d\nu \right) 1_{\tau \in \{T, T_{N}\}} \mid F_{T} \right]$	
	$= (1 - \pi) \cdot 1_{\tau > T} \cdot E^{Q} \left[\int_{T}^{T_{N}} \exp \left(-\int_{T}^{U} (r_{\nu} + \lambda_{\nu}) d\nu \right) \cdot \lambda(X_{U}) du \mid G_{T} \right]$	<ref 1=""></ref>
<ref 1=""></ref>	$P(t,G_T) = P(t,G_t) = -\frac{\partial}{\partial t}Q(\tau > t \mid G_t) = -\frac{\partial}{\partial t}\exp\left(-\int_0^t \lambda(X_u)du\right)$	Conditional density of $ au$
	$=\lambda(X_t)\exp\left(-\int_0^t\lambda(X_v)dv\right)$	
Conclusion	$V_T^{\text{Pr}ot} = (1 - \pi) 1_{\tau > T} E^{Q} \left[\int_{T}^{T_N} \lambda_U \exp \left(-\int_{t}^{T} (\lambda_v + r_v) dv \right) du \mid G_T \right]$	

(EX4.3) Explain how to use the result of question 1 to compute for U≥T:

$$E^{\mathcal{Q}}\left[\lambda_{U}\exp\left(-\int_{T}^{U}(r_{v}+\lambda_{v})d\upsilon\right)|G_{T}\right]$$
. Hint: compute a derivative of the expression you found in question

1. Subsequently, use the ODEs for the CIR to simplify your expression

Formula $ \lambda_{t} = \omega r_{t} + (1 - \omega) X_{t} \\ < \text{Ref 1> r and x are} $ $ E^{Q} \left[\lambda_{U} \exp \left(-\int_{T}^{U} (r_{v} + \lambda_{v}) dv \right) G_{T} \right] $	1. Subsequently, use the ODEs for the CIK to simplify your expression				
$\begin{vmatrix} \lambda_t = \omega r_t + (1 - \omega) X_t \\ < \text{Ref 1> r and x are} \end{vmatrix} E^{\mathcal{Q}} \left[\lambda_U \exp \left(-\int_T^U (r_v + \lambda_v) dv \right) G_T \right]$		Formula			
driven by independent BW. So we can separate them. This result from Conditional Independence on jump note page $ = E^{\mathcal{Q}} \left[\left(\omega r_U + (1-\omega) X_U \right) \exp \left(-\int_T^U (r_v + \omega r_v + (1-\omega) X_v) dv \right) G_T \right] $ $ = E^{\mathcal{Q}} \left[\left(\omega r_U + (1-\omega) X_U \right) \exp \left(-\int_T^U ((1+\omega) r_v + (1-\omega) X_v) dv \right) G_T \right] $	<ref 1=""> r and x are driven by independent BW. So we can separate them. This result from Conditional Independence on</ref>	$= E^{Q} \left[\left(\omega r_{U} + (1 - \omega) X_{U} \right) \exp \left(-\int_{T}^{U} \left(r_{v} + \omega r_{v} + (1 - \omega) X_{v} \right) dv \right) G_{T} \right]$			

	$= E^{\mathcal{Q}} \left[(\omega r_{U}) \exp \left(-\int_{T}^{U} ((1+\omega)r_{v} + (1-\omega)X_{v}) dv \right) G_{T} \right]$
<ref 2=""> <ref 3=""></ref></ref>	$+E^{Q}\left[\left(\left(1-\omega\right)X_{U}\right)\exp\left(-\int_{T}^{U}\left(r_{v}+\omega r_{v}+\left(1-\omega\right)X_{v}\right)d\upsilon\right) G_{T}\right]$
	$= E^{\mathcal{Q}} \left[\left(\omega r_{U} \right) \exp \left(-\int_{T}^{U} \left(\left(1 + \omega \right) r_{v} \right) dv \right) G_{T} \right] \cdot E^{\mathcal{Q}} \left[\exp \left(-\int_{T}^{U} \left(\left(1 - \omega \right) X_{v} \right) dv \right) G_{T} \right]$
	$ \left + E^{\mathcal{Q}} \left[\exp \left(- \int_{T}^{U} ((1+\omega)r_{\upsilon}) d\upsilon \right) G_{T} \cdot E^{\mathcal{Q}} \left[((1-\omega)X_{\upsilon}) \exp \left(- \int_{T}^{U} ((1-\omega)X_{\upsilon}) d\upsilon \right) G_{T} \right] \right] $
	$= 1_{\{t < \tau\}} \cdot \left[\omega \left(a'(T-t) + b'(T-t) \right) \exp \left(-a(T-t) - b(T-t)r_t \right) \right] \cdot \exp \left(-c(T-t) - d(T-t)x_t \right)$
	$+1_{\{t<\tau\}} \cdot \exp\left(-a(T-t)-b(T-t)r_t\right) \cdot \left[\left(c'(T-t)+d'(T-t)\right)\exp\left(-c(T-t)-d(T-t)x_t\right)\right]$
<ref 2=""> PART I:</ref>	
Take Derivative of the expression in	$\left E^{\mathcal{Q}} \left[(\omega r_{U}) \exp \left(-\int_{T}^{U} ((1+\omega)r_{v}) dv \right) G_{T} \right] \cdot E^{\mathcal{Q}} \left[\exp \left(-\int_{T}^{U} ((1-\omega)X_{v}) dv \right) G_{T} \right] \right $
Q1:	$= 1_{\{t < \tau\}} \cdot \left[\omega \frac{\partial}{\partial t} \exp\left(-a(T-t) - b(T-t)r_t\right) \right] \cdot \exp\left(-c(T-t) - d(T-t)x_t\right)$
	$= \frac{\omega}{1+\omega} \Big[\Big(a'(T-t) + b'(T-t)r_t \Big) \exp\Big(-a(T-t) - b(T-t)r_t \Big) \Big] \cdot \exp\Big(-c(T-t) - d(T-t)x_t \Big)$
<ref 3=""> PART II: Take Derivative of the expression in</ref>	$E^{\mathcal{Q}}\left[\exp\left(-\int_{T}^{U}\left((1+\omega)r_{\upsilon}\right)d\upsilon\right) G_{T}\right]\cdot E^{\mathcal{Q}}\left[\left((1-\omega)X_{U}\right)\exp\left(-\int_{T}^{U}\left((1-\omega)X_{\upsilon}\right)d\upsilon\right) G_{T}\right]$
Q1:	$= 1_{\{t < \tau\}} \cdot \exp\left(-a(T-t) - b(T-t)r_t\right) \cdot \left[\left(1 + \omega\right) \frac{\partial}{\partial t} \exp\left(-c(T-t) - d(T-t)x_t\right)\right]$
	$= \exp\left(-a(T-t) - b(T-t)r_t\right) \cdot \left[\left(c'(T-t) + d'(T-t)x_t\right) \exp\left(-c(T-t) - d(T-t)x_t\right)\right]$
Conclusion	$= \frac{\omega}{1+\omega} \left[\left(a'(T-t) + b'(T-t)r_t \right) \exp\left(-a(T-t) - b(T-t)r_t \right) \right] \cdot \exp\left(-c(T-t) - d(T-t)x_t \right)$
	$+\exp\left(-a(T-t)-b(T-t)r_t\right)\cdot\left\lceil\left(c'(T-t)+d'(T-t)x_t\right)\exp\left(-c(T-t)-d(T-t)x_t\right)\right\rceil$
	$a(T-t) = -\frac{2k^{r}\theta}{\beta^{r/2}} \left(\log(2h) + \frac{1}{2}(k+h)s - \log[(k+h)(e^{hs} - 1) + 2h] \right)$
	· ·
	$b(T-t) = \frac{2(e^{hs}-1)}{2h+(k^r+h)(e^{hs}-1)}$
	$c(T-t) = -\frac{2k^{X}\theta}{\beta^{X'2}} \left(\log\left(2h\right) + \frac{1}{2}(k+h)s - \log\left[\left(k+h\right)\left(e^{hs} - 1\right) + 2h\right] \right)$
	$d(T-t) = \frac{2(e^{hs}-1)}{2h+(k^X+h)(e^{hs}-1)}$
	$a'(T-t) = -\frac{2k^r \theta}{\beta^{r'2}} \left(-\frac{1}{2}(k+h) + \frac{(k+h)h(e^{hs})}{(k+h)(e^{hs}-1)+2h} \right)$
	$b'(T-t) = \frac{2(e^{hs}-1)(k+h)he^{hs}}{\left[2h+(k^r+h)(e^{hs}-1)\right]^2} - \frac{2he^{hs}}{2h+(k+h)(e^{hs}-1)}$
	$c'(T-t) = -\frac{2k^{x}\theta}{\beta^{x'2}} \left(-\frac{1}{2}(k+h)s + \frac{(k+h)h(e^{hs})}{(k+h)(e^{hs}-1)+2h} \right)$

	$d'(T-t) = \frac{2(e^{hs}-1)(k+h)he^{hs}}{\left[2h+(k^r+h)(e^{hs}-1)\right]^2} - \frac{2he^{hs}}{2h+(k+h)(e^{hs}-1)}$ $h \triangleq \sqrt{k^2 + 2\beta^2} S \triangleq T - t$	
By changing the order of integration in Question 2, question 3 provides an explicit expression for	$V_T^{\text{Pr}ot} = (1 - \pi) 1_{\tau > T} E^Q \left[\int_{T}^{T_N} \lambda_U \exp\left(-\int_{t}^{T} (\lambda_v + r_v) dv\right) du \mid G_T \right]$	
$V_T^{{ m Pr}ot}$ up to a dU-integral which we can compute numerically	$= (1 - \pi) 1_{\tau > T} \int_{T}^{T_{N}} E^{Q} \left[\lambda_{U} \exp \left(- \int_{t}^{T} (\lambda_{v} + r_{v}) dv \right) G_{T} \right] dU$	

Forward starting CDS (knock out type) that matures two years from today and has payment dates T=3,4,5. Given recovery of 0.4, \overline{S}_2 , the

F2-measurable random variable $V_2^{\it ann} \overline{s}_2 = V_2^{\it prot}$.

(EX4.4) Report the fair forward starting spread such that $E^{Q}\left[\exp\left(-\int_{0}^{2}r_{u}du\right)\left(\overline{s_{2}}-\overline{s}^{*}\right)\right]=0$.

	Formula		
Process	(1) The algorithm from 1.3 will always be the same.		
	(2) Find the constant \overline{s}^* and expression for \overline{s}_2 : from V_2^{ann} and V_2^{prot} from the previous questions.		
	(3) Simulate r and X on [0,2] (just like in problem 1). E.g., to find V^prot_2, where we need r_2 and X_2 and		
	then numerically compute a Riemann integral over [2,5]. This will give you one realization of \overline{s}_2		
	(4) The simulated discount factor is simulated using the same paths for r as you used to get \overline{s}_2		
	(5) There is no payoff at time 2 if there default before time 2.		
About constant \overline{s}^*	It can be shown as $\overline{S}^* = \frac{E^Q \left[\exp(-\int_0^2 r_u du) V_2^{\text{Pr ot}} \right]}{E^Q \left[\exp(-\int_0^2 r_u du) V_2^{\text{Ann}} \right]}$ Simulate independent paths for r and X in [0,2]. At T=2, look at		
	the formula for s* in this question, all random variables inside the expectation are filtration F(2)		
	measurable. Remove the expectation because it's F(2) measurable, then we can conclude $s^* = \overline{s_2}$		
About \overline{s}_2 :	$\overline{\mathit{S}}_2$ is a random variable with a very complicated distribution.		
Code	%Result for Q4.4 clear all;		
	<pre>%define underlying parameters r0=0.05;Theta_r=0.05;Kappa_r=0.25; Beta_r=0.15; Theta_X=0.1; X0=0.1;Kappa_X=0.25; Beta_X=0.15; w=0.5;</pre>		
	<pre>%Maturity T = 2;</pre>		
	<pre>%Time Settings MC_Loops = 10000; TimeSteps = 50 * T; dt = T / TimeSteps;</pre>		
	<pre>%Initiatlization r =zeros(MC_Loops, TimeSteps); X =zeros(MC_Loops, TimeSteps); lambda=zeros(MC_Loops, TimeSteps);</pre>		
	%Independent Ranadom Variables Zr = randn(MC_Loops, TimeSteps); ZX = randn(MC_Loops, TimeSteps+1);		

```
r(:,1) = r0 + Kappa_r * (Theta_r - r0) *dt + Beta_r * sqrt(r0 * dt) * Zr(:,1);
                                                                                                           X(:,1) = X0 + Kappa_X *(Theta_X - X0) *dt + Beta_X *sqrt(X0 * dt) * ZX(:,1);
                                                                                                            % State Evaluation of r and X
                                                                                                           for i = 1:TimeSteps
                                                                                                                              r(:,i+1) = r(:,i) + Kappa_r * (Theta_r - r(:,i)) * dt + Beta_r * sqrt(r(:,i)* dt).* Zr(:,i);
                                                                                                                              pv=exp(-dt*sum(r,2));
                                                                                                           lambda=w*r+(1-w)*X;
                                                                                                           V2ann=real(Vann(w, Kappa_r, Theta_r, Beta_r, r(:, TimeSteps), Kappa_X, Theta_X, Beta_X,
                                                                                                           X(:,TimeSteps)));
                                                                                                           V2prot=real(Vprot(w, Kappa_r, Theta_r, Beta_r, r(:, TimeSteps), Kappa_X, Theta_X, Beta_X,
                                                                                                           X(:,TimeSteps),3));
                                                                                                           SS=mean(pv.*V2prot)/mean(pv.*V2ann)
                                                                                                           disp('Q4.4:');
                                                                                                           disp(['S_Star
                                                                                                                                                                                                  :',num2str(SS)]);
                                                                                                           function x = Vann(w, k1, theta1, beta1, r0, k2, theta2, beta2, x0)
Function
                                                                                                                                                 bl=CIRBond(k1, (1+w)*thetal, sqrt(1+w)*betal, (1+w)*r0, k2, (1-w)*theta2, sqrt(1-w)*theta2, sqrt(1-w
                                                                                                           w)*beta2, (1-w)*x0, 1);
                                                                                                                                                 b2 = CIRBond(k1, (1+w)*theta1, sqrt(1+w)*beta1, (1+w)*r0, k2, (1-w)*theta2, sqrt(1-w)*theta2, sqrt(1
                                                                                                           w)*beta2, (1-w)*x0, 2);
                                                                                                                                                 b3=CIRBond(k1, (1+w)*theta1, sqrt(1+w)*beta1, (1+w)*r0, k2, (1-w)*theta2, sqrt(1-w)*theta2, sqrt(1-w
                                                                                                           w)*beta2, (1-w)*x0, 3);
                                                                                                                                                 x=b1+b2+b3;
                                                                                                           function x = Vprot(w, k1, theta1, beta1, r0, k2, theta2, beta2, x0, dt)
                                                                                                           x1 = CIRBond(k1, (1+w)*theta1, sqrt(1+w)*beta1, (1+w)*r0, k2, (1-w)*theta2, sqrt(1-w)*theta2, sqrt(1
                                                                                                           w)*beta2, (1-w)*x0, dt);
                                                                                                            \exp(-c(T-t)-d(T-t)x_{\cdot})
                                                                                                            theta1=(1+w)*theta1;
                                                                                                           betal=sqrt(1+w)*betal;
                                                                                                            s=dt.;
                                                                                                           h=sqrt(k1^2+2*beta1^2);
                                                                                                           at = -2*k1*theta1/beta1^2*(-0.5*(k1+h)+(k1+h)*h/((k1+h)*(exp(h*dt)-1)+2*h));\\
a'(T-t)
                                                                                                           bt=2*(exp(h*s)-1)*(k1+h)*h*exp(h*s)/(2*h+(k1+h)*(exp(h*s)-1))^2-
b'(T-t)
                                                                                                           2*h*exp(h*dt)/(2*h+(k1+h)*(exp(h*dt)-1));
                                                                                                           x2 = -w/(1+w).*x1.*(at+bt*(1+w).*r0);
                                                                                                           \frac{\partial}{\partial t + \omega} \left[ \left( a'(T-t) + b'(T-t)r_t \right) \exp\left( -a(T-t) - b(T-t)r_t \right) \right] \cdot \exp\left( -c(T-t) - d(T-t)x_t \right)
                                                                                                           theta1=(1-w)*theta2;
                                                                                                           beta1=sqrt(1-w)*beta2;
                                                                                                           h=sqrt(k2^2+2*beta1^2);
c'(T-t)
                                                                                                           at = -2*k2*theta1/beta1^2*(-0.5*(k2+h)+(k2+h)*h/((k2+h)*(exp(h*dt)-1)+2*h));
                                                                                                           bt=2*(exp(h*s)-1)*(k2+h)*h*exp(h*s)/(2*h+(k2+h)*(exp(h*s)-1))^2-
d'(T-t)
                                                                                                           2*h*exp(h*s)/(2*h+(k2+h)*(exp(h*s)-1));
                                                                                                           x4=x1.*(at+bt*(1-w).*x0);
                                                                                                            \exp\left(-a(T-t)-b(T-t)r_{t}\right)\cdot\left[\left(c'(T-t)+d'(T-t)x_{t}\right)\exp\left(-c(T-t)-d(T-t)x_{t}\right)\right]
```

	x=0.6*(x2+x4);	
	$= \frac{\omega}{1+\omega} \Big[\Big(a'(T-t) + b'(T-t)r_t \Big) \exp\Big(-a(T-t) - b(T-t)r_t \Big) \Big] \cdot \exp\Big(-c(T-t) - d(T-t)x_t \Big)$	
	$+\exp(-a(T-t)-b(T-t)r_t)\cdot\left[\left(c'(T-t)+d'(T-t)x_t\right)\exp\left(-c(T-t)-d(T-t)x_t\right)\right]$	
a(T-t)	<pre>function x =cira(k, theta, beta, dt) s=dt; h=sqrt(k^2+2*beta^2); x=-2*k*theta/beta^2*(log(2*h)+0.5*(k+h)*s-log((k+h)*(exp(h*s)-1)+2*h))</pre>	
	$a(T-t) = -\frac{2k^r\theta}{\beta^{r'2}} \left(\log\left(2h\right) + \frac{1}{2}(k+h)s - \log\left[\left(k+h\right)\left(e^{hs}-1\right) + 2h\right] \right) h \triangleq \sqrt{k^2 + 2\beta^2} S \triangleq T - t$	
b(T-t)	function x =cirb(k, theta, beta, dt) s=dt; h=sqrt(k^2+2*beta^2); x=2*(exp(h*s)-1)/(2*h+(k+h)*(exp(h*s)-1)); $b(T-t) = \frac{2(e^{hs}-1)}{2h+(k^r+h)(e^{hs}-1)} h \triangleq \sqrt{k^2+2\beta^2} S \triangleq T-t$	
$\overline{B}(t,T)$ Based on CIR Model		
Result	Q4.4: V2_Prot :0.1079 V2_ann :2.3548 S_Star :0.0454	

(EX4.5) Plot where horizontal axis has varying parameters and vertical axis is the fair forward starting spread \overline{s}^*

	W	$\beta^{\scriptscriptstyle X}$	$oldsymbol{eta}^r$
Set A	0.5	0.15	$\beta^r \in [0.05, 0.5]$
Set B	0.5	$\beta^x \in [0.05, 0.5]$	0.15
Set C	$\omega \in [0.1, 0.9]$	0.15	0.15

```
Formula
                      BETA=[0.05:0.05:0.5];
Case 1: Varying
                      r0=0.05; Theta_r=0.05; X0=0.1; Theta_X=0.1; Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15;
Beta_r
                      Beta_X=0.15; w=0.5;
                      FFS=zeros(1, 10);
                      for i=1:10,
                         betar=BETA(i);
                         V2Prot= real(Vprot(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X,
                      Beta_X, X(:,TimeSteps), 3));
                         V2Ann=real( Vann(w, Kappa_r, Theta_r, Betar, r(:,TimeSteps), Kappa_X, Theta_X, Beta_X,
                      X(:,TimeSteps)) );
                         FFS(i)=mean(pv.*V2Prot)/mean(pv.*V2Ann)
                      plot(BETA, FFS);
                      xlabel('beta [0.05, 0.5]');
                      ylabel('Fair Forward Starting Spread ');
                      title('Case 1: with different Beta number');
```

```
Case 1: Fair Forward Starting Spread with Varing Beta<sub>R</sub>
                             0.05
                             0.04
                             0.03
                           r Forward Starting Spree
                           Fair
                             -0.01
                             -0.02
                             -0.03
0.05
                                              0.25 0.3 0.35
Beta<sub>r</sub> in [0.05, 0.5]
                                       0.15
                                            0.2 0.25
                                                              0.4
                                                                  0.45
                         BETA=[0.05:0.05:0.5];
Case 2: Varying
Beta_X
                         FFS=zeros(1, 10);
                         r0=0.05; Theta_r=0.05; X0=0.1; Theta_X=0.1; Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15;
                         Beta_X=0.15; w=0.5;
                         for i=1:10,
                            Beta_X=BETA(i);
                            V2prot= real(Vprot(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X,
                         Beta_X, X(:,TimeSteps), 3));
                            V2ann=real( Vann(w, kr, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X, Beta_X,
                         X(:,TimeSteps)) );
                             FFS(i)=mean(pv.*V2prot)/mean(pv.*V2Ann)
                         plot(BETA, FFS);
                         xlabel('Beta_X [0.05, 0.5]');
                         ylabel('Fair Forward Starting Spread ');
                         title('Case 2: Varing Beta_X');
                                               Case 2: Varing Beta<sub>X</sub>
                             0.45
                              0.4
                             0.35
                           Fair Forward Starting Spread
                              0.3
                             0.25
                              0.2
                             0.15
                              0.1
                             0.05
                             -0.05
0.05
                                    0.1
                                        0.15
                                             0.2
                                                 0.25 0.3
                                                           0.35
                                                                0.4 0.45
                                                 Beta<sub>X</sub> [0.05, 0.5]
                         %CASE 3: Varying w
CASE 3: Varying W
                         W = [0.1:0.1:0.9];
                         r0=0.05; Theta_r=0.05; X0=0.1; ThetaX=0.1; Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15;
                         Beta_X=0.15; w=0.5;
                         FFS=zeros(1, 9);
                         for i=1:9,
                             w=W(i);
                             V2ann=real(Vann(w, kr, thetar, betar, Rt(:,N), kX, thetaX, betaX, Xt(:,N)));
```


Consider a European call option of the knock-out type on this forward starting CDS, i.e. a payer swaption. The strike spread K* is always taken as the fair forward spread corresponding to the base case parameters from question 4, i.e., K* is always the value you found in question 4 in

the following questions. This contract pays out a time 2 $\left(\overline{s_2} - K^*\right)^+ V_2^{ann}$, which indeed is zero if there has been a default before time 2.

(EX4.6) Report the initial option price, the time zero option price. Plot the option value on the vertical axis against the three sets of variantion from question 5

	Formula		
Given the result	Kstar=0.0454		
from before			
Option with Base Parameters	<pre>V2Prot=real(Vprot(w, kr, Thetar, Betar, r(:,TimeSteps), kX, ThetaX, BetaX, X(:,TimeSteps), 3)); V2Ann=real(Vann(w, kr, Thetar, Betar, r(:,TimeSteps), kX, ThetaX, BetaX, X(:,TimeSteps))); Base_call = mean(Discount.*max(V2Prot./V2Ann-Kstar, 0).*V2Ann) Base_call = 0.0109 + 0.0000i</pre>		

```
Formula
                      Kstar=0.0454; %constant from Q4.
Case 1: Call Price
                      call = zeros(n, 1);
with Varying
                      r0=0.05; Thetar=0.05; X0=0.1; Theta_X=0.1;
                      Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15; Beta_X=0.15; w=0.5;
Beta r
                      BETA=[0.05:0.05:0.5];
                      call=zeros(1, 10);
                      for i = 1:10,
                          betar=BETA(i);
                          V2prot=real(Vprot(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X,
                      Beta_X, X(:,TimeSteps), 3));
                          V2ann=real(Vann(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X, Beta_X,
                      X(:,TimeSteps)));
                          call(i) = mean( pv.*max(V2prot./V2ann-Kstar, 0).*V2Ann );
                      plot(BETA, call);
                      xlabel('Beta_r [0.05, 0.5]');
                      ylabel('CDSO:Call Price');
                      title('Case 1: CDSO: Call Price with Varing Beta_R');
```

```
Case 1: CDSO: Call Price with Varing Beta<sub>R</sub>
                                 x 10<sup>-3</sup>
                               1.6
                               1.4
                             CDSO:Call Price
                               0.8
                               0.6
                               0.4
                               0.2
                                                    0.25
                                          0.15
                                                0.2
                                                          0.3
                                                                     0.4
                                                                         0.45
                                                    Beta<sub>r</sub> [0.05, 0.5]
                          CASE 2: CDSO Call with Varying Beta_X
Case 2: Call Price
                          r0=0.05; Theta_r=0.05; X0=0.1; Theta_X=0.1;
with Varying
                         Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15; Beta_X=0.15; w=0.5;
Beta_X
                         BETA=[0.05:0.05:0.5];
                         call=zeros(1, 10);
                         for i = 1:10,
                              betaX=BETA(i);
                              V2prot=real(Vprot(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X,
                         Beta_X, X(:,TimeSteps), 3));
                              V2ann=real(Vann(w, Kappa_r, Theta_r, Beta_r, r(:,TimSteps), Kappa_X, Theta_X, BetaX,
                         X(:,TimeSteps)));
                              call(i) = mean( pv.*max(V2prot./V2ann-Kstar, 0).*V2Ann );
                         end;
                         plot(BETA, call);
                         xlabel('Beta_X [0.05, 0.5]');
                         ylabel('CDSO:Call Price');
                          title('Case 2: CDSO: Call Price with Varing Beta_X');
                                          Case 2: CDSO: Call Price with Varing Betay
                               0.9
                               0.8
                               0.7
                               0.6
                              0.5
                               0.4
                               0.3
                               0.2
                               0.1
                                     0.1
                                               0.2
                                                    0.25
                                                         0.3
                                                              0.35
                                                                   0.4
                                                                        0.45
                                                  Beta<sub>x</sub> [0.05, 0.5]
                          %CASE 3: CDSO Call with Varying w
Case 3: Call Price
                         W = [0.1:0.1:0.9];
with Varying w
                          call=zeros(1, 9);
                         r0=0.05; Theta_r=0.05; X0=0.1; Theta_X=0.1;
                         Kappa_r=0.25; Kappa_X=0.25; Beta_r=0.15; Beta_X=0.15; w=0.5;
                          for i = 1:9,
                              w=W(i);
                              V2Prot=real(Vprot(w, Kappa_r, Theta_r, Betar, r(:,TimeSteps), Kappa_X, Theta_X, Beta_X,
                         X(:,TimeSteps), 3));
                              V2Ann=real(Vann(w, Kappa_r, Theta_r, Beta_r, r(:,TimeSteps), Kappa_X, Theta_X, Beta_X,
                         X(:,TimeSteps)) );
```


We assume that 2 year forward spread \overline{s}_t^2 satisfies the relation (\overline{s}_t^2 is not squared, but the value of the fair spread at time t, for a forward starting CDS at time 2), where $d\overline{s}_t^2 = \overline{s}_t^2 \sigma^{\overline{s}^2} dW_t^{Q^{ann}}$, where $W_t^{Q^{ann}}$ is a Brownian motion under the swap-measure Q^{ann} , i.e., the measure that uses Vann as numeraire (defaultable). On can prove that is always a Q^{ann} martingale, and here we specialized to the geometric Brownian motion that $\sigma^{\overline{s}^2}$ is a constant.

(EX4.7) Show analytically that we have for K>0 the relation $E^Q \left[\exp \left(-\int_0^2 r_u du \right) (\overline{s_2} - K)^+ V_2^{ann} \right]$ = $V_0^{ann} E^{Q^{ann}} \left[(\overline{s_2} - K)^+ \right]$ and explain how Black's formula can be used to compute the right-hand-side (recall that $\overline{s_2}$ is the fair CDS spread at time2)

Formula
$d\overline{S}_{t}=\overline{S}_{t}^{2}\sigma^{\overline{S}^{2}}dW_{t}^{Q^{ann}}$
$E^{Q}\left[\exp\left(-\int_{0}^{2}r_{u}du\right)\left(\overline{S}_{2}-k\right)^{+}V_{2}^{ann}\right]$
$= E^{Q} \left[V_0^{ann} \exp \left(-\int_0^2 r_u du \right) \left(\overline{S}_2 - k \right)^+ Z_t^{ann} \right]$
$=E^{Q^{ann}}igg[V_0^{ann}ig(\overline{S}_2-kig)^+igg]$
$=V_0^{ann}E^{\mathcal{Q}^{ann}}\left[\left(\overline{S}_2-k ight)^+ ight]$
We have \overline{S}_2 as the fair CDS spread at t=2, \overline{S}_t^2 as the 2 year forward starting spread value $\overline{S}_2 = \overline{S}_2^2$.

Therefore RHS:
$$=V_0^{ann}E^{\mathcal{Q}^{ann}}\left[\left(\overline{S}_2^{\,2}-k
ight)^+
ight]$$

	Time 0	Time t	Time T
CDSO Definition	It is similar to interest rate Swaption, where the payer has the right to enter a swap(pay fix and receive floating) with the fixed rate equals the strike at maturity(of the option).		
	For CDS option, the payer has the right to enter a CDS (pay spread receive protection) with the same spread as strike at maturity of the option, given no default happen before maturity, otherwise it pays nothing.		
Call Option on S _T Under Q Measure	$E^{Q}\left[\exp\left(-\int_{0}^{T}r(X_{u})du\right)\left(S_{T}-K\right)^{+}V_{T}^{ann}\right]>0$		$ (S_T - K)^+ V_T^{ann} $ $= (S_T - K)^+ \sum_{n:T_n > T} \overline{B}(T, T_n) $
	We are dealing non-negative RV, so it > 0		$n:T_n>T$
Use SWAP Measure		$Z_t^{ann} := \frac{\exp\left(-\int_0^t r(X_u)du\right)V_t^{ann}}{V_0^{ann}}$	$rac{dQ^{ann}}{dQ}\coloneqq Z_T^{ann}$
	$E^{Q} \left[Z_{T}^{(ann)} \left(S_{T} - K \right)^{+} \right] V_{0}^{ann}$		
S _T Under	$= E^{Q^{ann}} \left[\left(S_T - K \right)^+ \right] V_0^{ann}$		
Q^{ann}	(1) If $\left(S_{t}\right)_{t\in[0,T]}$ is lognormal under Q^{ann} , we can use Black's formula		
	(2) Claim $\left(S_t\right)_{t\in[0,T]}$ is a Q^{ann} martingale		
Proof of Claim (2)	If (2) is true, $Z_t^{\it ann} S_t$ is a Q martingale		
	$ = \frac{V_t^{ann}S_t}{V_0^{ann}} \exp\left(-\int_0^t r_u du\right) = \frac{(1-\pi)V_t^{prot}}{V_0^{ann}} \exp\left(-\int_0^t r_u du\right) = \frac{(1-\pi)}{V_0^{ann}} \exp\left(-\int_0^t r_u du\right) E^Q \left[\exp\left(-\int_t^\tau r(X_u) du\right) \cdot 1_{\tau \in [T,T_N]} \mid F_t\right] $		
	$=\frac{(1-\pi)}{V_0^{amn}}E^{\mathcal{Q}}\left[\exp\left(-\int_0^\tau r(X_u)du\right)\cdot 1_{\tau\in[T,T_N]}\mid F_t\right]$		
	$dS_t = \sigma_t^S dM_t^Q$		

(EX4.8) Report the implied volatility $\sigma^{\bar{s}^2}$ such that the log-normal model's output agrees with the output of the two factor model for the base case parameters. Subsequential, plot the implied vol on the vertical axies against the variation from question 5. For the plotting paurt, you may be able to find all implied vol values.

	Formula
Option with Base	Base_call =
Parameters	0.0109 + 0.0000i
Implied Vol from	Base_implied vol =
Based Call	0.2319
	$\sigma^{\overline{S}^2} = 0.3414$. Option Price is 0.0351

Formula

