# Package 'geofd'

October 13, 2022

Author Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado

Version 2.0

Index

| <pre><pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es></mateu@mat.uji.es></pedro.delicado@upc.edu></pre>                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintainer Pedro Delicado <pedro.delicado@upc.edu></pedro.delicado@upc.edu>                                                                                                                      |
| Title Spatial Prediction for Function Value Data                                                                                                                                                 |
| <b>Description</b> Kriging based methods are used for predicting functional data (curves) with spatial dependence.                                                                               |
| License GPL-2                                                                                                                                                                                    |
| Depends fda                                                                                                                                                                                      |
| Repository CRAN                                                                                                                                                                                  |
| <b>Date</b> 2020-01-29                                                                                                                                                                           |
| NeedsCompilation no                                                                                                                                                                              |
| <b>Date/Publication</b> 2020-01-29 15:00:02 UTC                                                                                                                                                  |
|                                                                                                                                                                                                  |
| R topics documented:                                                                                                                                                                             |
| geofd-package       2         fit.tracevariog       2         12.norm       4         maritimes.avg       5         maritimes.coords       5         maritimes.data       6         okfd       6 |
| OKIG                                                                                                                                                                                             |

 okfd.cv
 10

 plot.geofd
 12

 trace.variog
 12

**15** 

2 fit.tracevariog

geofd-package

Spatial Prediction for Function Value Data

## **Description**

Kriging based methods are used for predicting functional data (curves) with spatial dependence. Initially the curves are pre-processed by fitting a Fourier or B-splines basis functions. Then the spatial dependence among curves is estimated by means of the trace-variogram function. Finally the parameters for performing prediction by Ordinary Kriging at unsampled locations are estimated by solving a linear system based on the estimated trace-variogram.

#### **Details**

Index:

geofd-package

Spatial prediction for function value data

## Author(s)

Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado <pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es>

Maintainer: Pedro Delicado <pedro.delicado@upc.edu>

fit.tracevariog

Variogram Estimation

#### Description

Fits a parametric model to a empirical variogram and estimates covariance parameters. Aditionally all fitted variogram models are plotted for verification purpose.

#### Usage

## Arguments

emp.trace.vari empirical trace-variogram. An object returned from the trace.variog function. models a character vector of correlation function names used in geoR against which empirical trace variogram will be fitted. sigma2.0 initial value for the covariance parameter  $\sigma^2$  (partial sill).

fit.tracevariog 3

phi. 0 initial value for the covariance parameter  $\phi$  (range).

fix.nugget logical, indicating whether the nugget parameter should be estimated or not.

nugget value for the nugget parameter.

fix.kappa logical, indicating whether the kappa parameter should be estimated or not.

kappa value of the smoothness parameter.

max.dist.variogram

a numerical value defining the maximum distance considered when fitting the

variogram.

#### **Details**

## Variogram models and parameters

When the cov.model parameter is NULL a function determines the optimal model between spherical, exponential gaussian and matern using the received parameters. The arguments sigma2.0 and phi.0 are used as initial values for fitting each variogram model.

The parameters fix.nugget, nugget, fix.kappa, kappa and max.dist.variogram are the same for each variogram model specified in models.

#### Value

A list with the following components:

trace.vari choosed theoretical variogram model

trace.vari.array

vector of all fitted theoretical variogram models

## Author(s)

Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado <pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es>.

## References

Giraldo, R. (2009) *Geostatistical Analysis of Functional Data*. Ph.D. thesis. Universitat Politecnica de Catalunya.

Giraldo, R., Delicado, P. and Mateu, J. (2012) **geofd**: An R package for function-valued geostatistical prediction. Revista Colombiana de Estadistica. 35, 385-407.

4 12.norm

| 12. | norm |
|-----|------|
|     |      |

Calculates L2 norm among functions

## Description

Calculates the integral of the squared differences between functions

## Usage

```
12.norm(s, datafd, M)
```

#### **Arguments**

| S      | number of sites where the original dataset was measured                      |
|--------|------------------------------------------------------------------------------|
| datafd | a functional data object representing a smoothed dataset. See DETAILS below. |
| М      | symmetric matrix defining the roughness penalty for functions expressed in   |
|        | terms of a B-spline or Fourier basis. See DETAILS below.                     |

#### **Details**

#### **Roughness penalty matrix**

This matrix is the output of one of the following functions: fourierpen y bsplinepen. The used function depends upon the smoothing type which is going to be applied.

When the roughness penalty matrix is being calculated, the following considerations are taked in count:

- The differential operator passed as parameter for both four ierpen and bsplinepen is always zero.
- When the selected smooth method is bsplines, the basis object passed to bsplinepen is the output of the function create.bspline.basis using argvals as the rangeval parameter, nbasis as the number of basis functions parameter and the default order of b-splines, which is four, a cubic spline, as the norder parameter.
- When the selected smooth method is fourier, the basis object is the output of the function fourierpen. The parameters rangeval and nbasis are the same as for create.bspline.basis, and the period parameter as the number of observations on each curve.

#### Value

The calculated matrix of squared differences between each observation for each measured site. This matrix has two properties:

- Is symmetric.
- It's diagonal is filled with zeros.

maritimes.avg 5

#### See Also

okfd for doing Ordinary Kriging for function-value data, trace.variog for functional empirical trace variogram calculation, fit.tracevariog for fitting a variogram model in the functional scenario.

maritimes.avg

Moncton averages

## Description

Moncton averages

## Usage

```
data(maritimes.avg)
```

#### **Format**

A matrix with 365 averages.

maritimes.coords

Coordinates of the sites referred by maritimes.data

## **Description**

The geographical coordinates in decimal degrees of 35 weather stations.

## Usage

```
data(maritimes.coords)
```

## **Format**

A matrix with the coordinates of 35 weather stations.

#### **Source**

The coordinates were obtained from the database of geographic coordinate information <a href="http://www.tageo.com">http://www.tageo.com</a>

maritimes.data

Maritime provinces temperatures

## **Description**

Temperature measurements recorded at 35 weather stations located in the Maritime Provinces over a region of Canada consisting of three provinces: Nova Scotia (NS), New Brunswick (NB), and Prince Edward Island (PEI).

## Usage

```
data(maritimes.data)
```

#### **Format**

A matrix with 365 observations on 35 sites.

#### **Details**

This data set contains information of daily temperatures averaged over the years 1960 to 1994 (February 29th combined with February 28th)

## Source

The data for each station were obtained from the Meteorological Service of Canada http://climate.weather.gc.ca

okfd

Function for doing Ordinary Kriging for function-value Data

## **Description**

This function allows to carry out prediction by Ordinary Kriging for function-value data by considering a Fourier or B-splines basis for smoothing the observed data set

## Usage

```
okfd(new.coords, coords, data, smooth.type=NULL, nbasis=max(50,dim(data)[1]),
    argvals=seq(0, 1, len = dim(data)[1]), lambda=0, cov.model=NULL,
    fix.nugget=FALSE, nugget=0, fix.kappa=TRUE,
    kappa=0.5, max.dist.variogram=NULL)
```

#### **Arguments**

|                    | new.coords  | an n x 2 matrix containing the coordinates of the new n sites where functional Kriging has to be done              |
|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------|
|                    | coords      | an s $\times$ 2 matrix containing the coordinates of the n sites where functional data are observed                |
|                    | data        | an m x s matrix with values for the observed functions                                                             |
|                    | smooth.type | a string with the name of smoothing method to be applied to data. Available choices are: "bsplines" and "fourier". |
|                    | nbasis      | a numeric value defining the number of basis functions used to smooth the discrete data set recorded at each site  |
|                    | argvals     | a vector of argument values corresponding to the observations in matrix data                                       |
|                    | lambda      | optional. Penalization parameter for smoothing the observed functions.                                             |
|                    | cov.model   | a string with the name of the correlation function. Default is NULL, see ${\tt DETAILS}$ below.                    |
|                    | fix.nugget  | logical, indicating whether the nugget parameter should be estimated or not.                                       |
|                    | nugget      | value for the nugget parameter.                                                                                    |
|                    | fix.kappa   | logical, indicating whether the kappa parameter should be estimated or not.                                        |
|                    | kappa       | value of the smoothness parameter.                                                                                 |
| max.dist.variogram |             |                                                                                                                    |
|                    |             | a numerical value defining the maximum distance considered when fitting the                                        |

a numerical value defining the maximum distance considered when fitting the variogram.

#### **Details**

This function is a common sequence of the proposed process for doing Ordinary Kriging in the functional scenario, covers from the preparation of the original data and variogram estimation, unto data prediction.

#### Functional data object

This is an object of the class fd it can be created using some functions like Data2fd or smooth.basis, take in count if a penalization parameter is going to be used.

### Penalization parameter

The penalization parameter lambda is used in both smoothing methods. When the selected smooth method is:

- 1. bsplines, the function which uses it is fdPar
- 2. fourier, the function which uses it is Data2fd

## Functional data object

The function which creates the functional data object is determined based on the selected smooth method:

- When it is bsplines, the functional data object must be created using two different functions, fdPar and smooth.basis in order to include the penalization parameter lambda.
- When it is fourier, the functional data object is directly returned by Data2fd because it includes the penalization parameter, the basis object, the argument values and the data, all at the same time.

#### Value

A list with the following components:

coords a matrix containing the coordinates of the sites where functional data are ob-

served.

data a matrix with values for the observed functions.

argvals a vector of argument values corresponding to the observations in matrix data

nbasis a numeric value defining the number of basis functions used to smooth the dis-

crete data set recorded at each site.

lambda penalization parameter for smoothing the observed functions.

new.coords matrix containing the coordinates of the new sites where functional Kriging has

to be done.

emp.trace.vari empirical trace-variogram.

trace.vari choosed theoretical variogram model

new.Eu.d distance matrix among sampling and new sites.

functional.Kriging.weights

functional Kriging weights.

krig.new.data predicted values for the new sites.

pred.var prediction variance.

trace.vari.array

vector of all fitted variogram models.

datafd a functional data object containing a smooth of the data.

## Author(s)

Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado <pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es>.

#### References

Giraldo, R. (2009) *Geostatistical Analysis of Functional Data*. Ph.D. thesis. Universitat Politecnica de Catalunya.

Giraldo, R., Delicado, P. and Mateu, J. (2012) **geofd**: *An R package for function-valued geostatistical prediction*. Revista Colombiana de Estadistica. 35, 385-407.

#### See Also

12.norm for calculating L2 norm among functions, trace.variog for functional empirical trace variogram calculation, fit.tracevariog for fitting a variogram model in the funcional scenario.

## **Examples**

```
# First example: one site prediction using B-splines for smoothing
data(maritimes.avg)
data(maritimes.coords)
data(maritimes.data)
coord.cero <- matrix(c(-64.06, 45.79), nrow=1, ncol=2)
n<-dim(maritimes.data)[1]</pre>
argvals<-seq(1,n, by=1)</pre>
# Prediction by okfd
okfd.res<-okfd(new.coords=coord.cero, coords=maritimes.coords,
              data=maritimes.data, nbasis=65, argvals=argvals,
              fix.nugget=TRUE, kappa=0.7)
# Smoothed and predicted curves, and predicted site average values are plotted
plot(okfd.res$datafd, lty=1, col=8,
    main="Smoothed", xlab="Day", ylab="Temperature (Degrees C)")
lines(okfd.res$argvals, okfd.res$krig.new.data,
      col=1, lwd=2, type="1", lty=1,
      main="Predictions", xlab="Day", ylab="Temperature (Degrees C)")
lines(maritimes.avg, type="p", pch=20,cex=0.5, col=2, lwd=1)
# Second example: multiple sites prediction using Fourier basis functions for smoothing
data(maritimes)
n<-dim(maritimes.data)[1]</pre>
argvals<-seq(1,n, by=1)</pre>
col1<-sample( (min(maritimes.coords[,1])*100):(max(maritimes.coords[,1])*100),</pre>
              10, replace=TRUE)/100
col2<-sample( (min(maritimes.coords[,2])*100):(max(maritimes.coords[,2])*100),</pre>
              10, replace=TRUE)/100
new.coords <- cbind(col1,col2)</pre>
# Prediction by okfd
okfd.res<-okfd(new.coords=new.coords, coords=maritimes.coords,
              data=maritimes.data, smooth.type="fourier",
              nbasis=65, argvals=argvals)
```

10 okfd.cv

```
# The smoothed and predicted curves are plotted
par(mfrow=c(1,2))
plot(okfd.res$datafd, lty=1, col=8,
    main="Smoothed", xlab="Day", ylab="Temperature (Degrees C)")
matplot(okfd.res$argvals, okfd.res$krig.new.data, col=1, lwd=1, type="l", lty=1,
    main="Predictions", xlab="Day", ylab="Temperature (Degrees C)")
```

okfd.cv

Function for doing Cross-Validation analysis for Ordinary Kriging for function-value data

## **Description**

Unreviewed

## Usage

## **Arguments**

| coords       | coordinates of the sites where functional data are observed (dim: s by 2)                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| data         | matrix with values for the observed functions (dim: m by s)                                                                                                      |
| argnames     | a character vector of length three containing: the name of the argument (argvals), a description of the sites (coord), the name of the observed function values. |
| one.model    | logical, indicates whether the cross validation is going to be done just one model or one model for each site. Deafult is TRUE. See details below.               |
| smooth.type  | a string with the name of smoothing method to be applied to data. Available choices are: "bsplines" and "fourier".                                               |
| array.nbasis | array with values for the number of elements in the cubic B-spline basis.                                                                                        |
| argvals      | a set of argument values. (length: m)                                                                                                                            |
| array.lambda | array of penalization parameters for smoothing the observed functions.                                                                                           |
| cov.model    | a string with the name of the correlation function. Default is NULL, see ${\tt DETAILS}$ below.                                                                  |
| fix.nugget   | logical, indicating whether the nugget parameter should be estimated or not.                                                                                     |

okfd.cv 11

nugget value for the nugget parameter.

fix.kappa logical, indicating whether the kappa parameter should be estimated or not.

kappa value of the smoothness parameter.

max.dist.variogram

a numerical value defining the maximum distance considered when fitting the

variogram.

#### **Details**

#### Validation models

The parameter one.model is used to define the models used in the cross validation:

- If it is TRUE, a model and smoothed data are created before the beginning and used inside the cross validation process.
- If it is FALSE, then for each site a model and smoothed data are created and used on each iteration.

#### Value

A list with the following components:

k.opt unreviewed

l.opt unreviewed

krig.cv unreviewed

mse.cv unreviewed

mse.cv.opt unreviewed

fd.models unreviewed

### Author(s)

Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado <pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es>.

### References

Giraldo, R. (2009) *Geostatistical Analysis of Functional Data*. Ph.D. thesis. Universitat Politecnica de Catalunya.

Giraldo, R., Delicado, P. and Mateu, J. (2012) **geofd**: An R package for function-valued geostatistical prediction. Revista Colombiana de Estadistica. 35, 385-407.

12 trace.variog

plot.geofd

Plot Trace Variogram and adjusted models

## Description

This funcion produces a plot of an object of class geofd which contains...

#### Usage

## Arguments

Х

a list containing elements emp.trace.vari and trace.vari.array described below. Typically an object of the class "geofd". If not provided the arguments emp.trace.vari and trace.vari.array must be provided instead.

emp.trace.vari empirical trace-variogram.

trace.vari.array

vector of variogram models.

colors

a character vector of color names used to plot each variogram model. Dimen-

sions must be the same of trace.vari.array.

. . .

graphical arguments to be passed to plot.

trace.variog

Empirical Variograms for function-value data

## Description

Computes empirical trace-variograms using the L2 norm matrix for the semivariance values. Output a variogram cloud.

#### Usage

trace.variog 13

## Arguments

coords an s x 2 matrix containing the coordinates of the n sites where functional data

are observed.

L2 norm among functions.

bin logical, indicating whether the output is the binned variogram.

max.dist a numerical value defining the maximum distance for the variogram.

uvec a vector with values defining the centers of the bins or the number of bins. Only

used when 'bin = TRUE'.

breaks a vector with values defining the variogram binning. Only used when 'bin =

TRUE'.

nugget.tolerance

a numeric value defining the shortest lag distance. Only used when 'bin =

TRUE'.

#### **Details**

**Binned variogram** This is just a visual feature adapted from the cloud variogram and it doesn't have any relation against the fitting of the variogram model or the calculation of the predictions.

#### Value

An object of the class variogram which is a list with the following components:

u a vector with distances.

v a vector with estimated variogram values at distances given in u.

max.dist maximum distance of the variogram.

output.type variogram type.

Eu.d euclidian distance array among sites.

L2norm echoes the 'L2norm' argument.

bins.lim limits defining the interval spanned by each bin. Only returned when 'bin =

TRUE'.

nugget.tolerance

echoes the 'nugget.tolerance' argument.

## Author(s)

Ramon Giraldo <rgiraldoh@unal.edu.co>, Pedro Delicado <pedro.delicado@upc.edu>, Jorge Mateu <mateu@mat.uji.es>.

#### References

Giraldo, R. (2009) *Geostatistical Analysis of Functional Data*. Ph.D. thesis. Universitat Politecnica de Catalunya.

Giraldo, R., Delicado, P. and Mateu, J. (2012) **geofd**: An R package for function-valued geostatistical prediction. Revista Colombiana de Estadistica. 35, 385-407.

14 trace.variog

## **Examples**

```
# First example: creating a binned variogram
# okfd first example
data(maritimes.avg)
data(maritimes.coords)
data(maritimes.data)
coord.cero <- matrix(c(-64.06, 45.79),nrow=1,ncol=2)</pre>
n<-dim(maritimes.data)[1]</pre>
argvals<-seq(1,n, by=1)</pre>
okfd.res<-okfd(new.coords=coord.cero, coords=maritimes.coords,
              data=maritimes.data, nbasis=65, argvals=argvals, fix.nugget=TRUE,
              kappa=0.7)
# Calculating the empiricial trace bin variogram
new.emp.trace.vari <- trace.variog(coords=okfd.res$coords,</pre>
                      L2norm=okfd.res$emp.trace.vari$L2norm, bin=TRUE)
\# The empirical trace cloud variogram is replaced with the trace bin variogram
okfd.res$emp.trace.vari <- new.emp.trace.vari
# The modified okfd result is plotted
plot(okfd.res)
```

## Index

```
* datagen
                                                 geofd.maritimes.coords
    geofd-package, 2
                                                          (maritimes.coords), 5
    okfd, 6
                                                 geofd.maritimes.data(maritimes.data), 6
    okfd.cv, 10
                                                 geofd.okfd (okfd), 6
* datasets
                                                 geofd.okfd.cv (okfd.cv), 10
    maritimes.avg, 5
                                                 geofd.trace.variog(trace.variog), 12
    maritimes.coords, 5
                                                 12. norm, 4, 8
    maritimes.data, 6
* dplot
                                                 maritimes.avg, 5
    plot.geofd, 12
                                                 maritimes.coords, 5
* math
                                                 maritimes.data, 6
    12.norm, 4
* smooth
                                                 okfd, 5, 6
    okfd, 6
                                                 okfd.cv, 10
    okfd.cv, 10
* spatial
                                                 plot, 12
    fit.tracevariog, 2
                                                 plot.geofd, 12
    geofd-package, 2
    okfd, 6
                                                 smooth.basis, 7
    okfd.cv, 10
                                                 trace.variog, 2, 5, 8, 12
    plot.geofd, 12
    trace.variog, 12
bsplinepen, 4
create.bspline.basis,4
Data2fd, 7
fd. 7
fdPar, 7
fit.tracevariog, 2, 5, 8
fourierpen, 4
geofd (geofd-package), 2
geofd-package, 2
geofd.fit.tracevariog
        (fit.tracevariog), 2
geofd.12.norm(12.norm), 4
geofd.maritimes.avg (maritimes.avg), 5
```