Data Mining and Statistics for Decision Making

Stéphane Tufféry

University of Rennes, France
Translated by Rod Riesco

Contents

Pre	eface		xvii
Fo	rewor	d	XX
Foi	rewor	d from the French language edition	xxiii
Lis	t of tr	rademarks	xxv
I	Overv	view of data mining	1
	1.1	What is data mining?	l
	1.2	What is data mining used for?	4
		1.2.1 Data mining in different sectors	4
		1.2.2 Data mining in different applications	8
	1.3	Data mining and statistics	11
	1.4	Data mining and information technology	12
	1.5	Data mining and protection of personal data	16
	1.6	Implementation of data mining	23
2	The d	levelopment of a data mining study	25
	2.1	Defining the aims	26
	2.2	Listing the existing data	26
	2.3	Collecting the data	27
	2.4	Exploring and preparing the data	30
	2.5	Population segmentation	33
	2.6	Drawing up and validating predictive models	35
	2.7	Synthesizing predictive models of different segments	36
	2.8	Iteration of the preceding steps	37
	2.9	Deploying the models	37
	2.10	Training the model users	38
	2.11	Monitoring the models	38
	2.12	Enriching the models	40
	2.13	Remarks	41
	2.14	Life cycle of a model	41
	2.15	Costs of a pilot project	41
3		exploration and preparation	43
	3.1	The different types of data	43
	3.2	Examining the distribution of variables	44
	3.3	Detection of rare or missing values	45
	3.4	Detection of aberrant values	49
	3.5	Detection of extreme values	52

viii CONTENTS

	3.6	Tests of	f normality	52
	3.7	Homoso	cedasticity and heteroscedasticity	58
	3.8	Detection	on of the most discriminating variables	59
		3.8.1	Qualitative, discrete or binned independent variables	60
		3.8.2	Continuous independent variables	62
		3.8.3	Details of single-factor non-parametric tests	65
		3.8.4	ODS and automated selection of discriminating	
			variables	70
	3.9	Transfo	rmation of variables	73
	3.10	Choosir	ng ranges of values of binned variables	74
	3.11	Creating	g new variables	81
	3.12	Detection	ng interactions	82
	3.13	Automa	atic variable selection	85
	3.14	Detection	on of collinearity	86
	3.15	Samplir	ıg	89
		3.15.1	Using sampling	89
		3.15.2	Random sampling methods	90
4	Using	commerc	cial data	93
	4.1	Data us	ed in commercial applications	93
		4.1.1	Data on transactions and RFM data	93
		4.1.2	Data on products and contracts	94
		4.1.3	Lifetimes	94
		4.1.4	Data on channels	96
		4.1.5	Relational, attitudinal and psychographic data	96
		4.1.6	Sociodemographic data	97
		4.1.7	When data are unavailable	97
		4.1.8	Technical data	98
	4.2	Special	data	98
		4.2.1	Geodemographic data	98
		4.2.2	Profitability	105
	4.3	Data us	ed by business sector	106
		4.3.1	Data used in banking	106
		4.3.2	Data used in insurance	108
		4.3.3	Data used in telephony	108
		4.3.4	Data used in mail order	109
5	Statist	ical and d	data mining software	111
	5.1	Types o	of data mining and statistical software	111
	5.2	Essentia	al characteristics of the software	114
		5.2.1	Points of comparison	114
		5.2.2	Methods implemented	115
		5.2.3	Data preparation functions	116
		5.2.4	Other functions	116
		5.2.5	Technical characteristics	117
	5.3	The ma	in software packages	117
		5.3.1	Overview	117

				CONTENTS	ix
		5.3.2	IBM SPSS		119
		5.3.3	SAS		122
		5.3.4	R		124
		5.3.5	Some elements of the R language		133
	5.4	Compari	son of R, SAS and IBM SPSS		136
	5.5	How to 1	reduce processing time		164
6	An ou	tline of da	ta mining methods		167
	6.1		ation of the methods		167
	6.2	Compari	son of the methods		174
7	Factor	analysis			175
	7.1		component analysis		175
		7.1.1	Introduction		175
		7.1.2	Representation of variables		181
		7.1.3	Representation of individuals		185
		7.1.4	Use of PCA		187
		7.1.5	Choosing the number of factor axes		189
		7.1.6	Summary		192
	7.2	Variants	of principal component analysis		192
		7.2.1	PCA with rotation		192
		7.2.2	PCA of ranks		193
		7.2.3	PCA on qualitative variables		194
	7.3	_	ndence analysis		194
		7.3.1	Introduction		194
		7.3.2	Implementing CA with IBM SPSS Statistics		197
	7.4		correspondence analysis		201
		7.4.1	Introduction		201
		7.4.2	Review of CA and MCA		205
		7.4.3	Implementing MCA and CA with SAS		207
8	Neural	networks			217
	8.1	General i	information on neural networks		217
	8.2		of a neural network		220
	8.3	Choosing	the learning sample		221
	8.4	Some em	pirical rules for network design		222
	8.5		malization		223
		8.5.1	Continuous variables		223
		8.5.2	Discrete variables		223
		8.5.3	Qualitative variables		224
	8.6	_	algorithms		224
	8.7		n neural networks		224
		8.7.1	The multilayer perceptron		225
		8.7.2	The radial basis function network		227
		8.7.3	The Kohonen network		231

x CONTENTS

Cluste	er analysis	3	235
9.1		on of clustering	235
9.2		itions of clustering	236
9.3		exity of clustering	236
9.4	-	ing structures	237
	9.4.1	Structure of the data to be clustered	237
	9.4.2	Structure of the resulting clusters	237
9.5		nethodological considerations	238
	9.5.1	The optimum number of clusters	238
	9.5.2	The use of certain types of variables	238
	9.5.3	The use of illustrative variables	239
	9.5.4	Evaluating the quality of clustering	239
	9.5.5	Interpreting the resulting clusters	240
	9.5.6	The criteria for correct clustering	242
9.6		rison of factor analysis and clustering	242
9.7	-	cluster and between-cluster sum of squares	243
9.8		ements of clustering quality	244
2.0	9.8.1	All types of clustering	245
	9.8.2	Agglomerative hierarchical clustering	246
9.9		ning methods	247
7.7	9.9.1	The moving centres method	247
	9.9.2	k-means and dynamic clouds	248
	9.9.3	Processing qualitative data	249
	9.9.4	k-medoids and their variants	249
	9.9.5	Advantages of the partitioning methods	250
	9.9.6	Disadvantages of the partitioning methods	251
	9.9.7	Sensitivity to the choice of initial centres	251
9.10		nerative hierarchical clustering	253
7.10	9.10.1	Introduction	253
	9.10.2	The main distances used	253 254
	9.10.2	Density estimation methods	258
	9.10.3	Advantages of agglomerative hierarchical clustering	259
	9.10.4	Disadvantages of agglomerative hierarchical clustering	261
9.11		clustering methods	261
9.11	9.11.1	Introduction	261
	9.11.1	Illustration using SAS Software	262
9.12		clustering	202
9.12	9.12.1		
	9.12.1	Advantages Disadvantages	272 272
9.13		ing by similarity aggregation	272
2.13	9.13.1	Principle of relational analysis	273
	9.13.1	Implementing clustering by similarity aggregation	273 274
	9.13.2	Example of use of the R amap package	274
	9.13.3	Advantages of clustering by similarity aggregation	273 277
	9.13.4		
9.14		Disadvantages of clustering by similarity aggregation ing of numeric variables	278
9.15		ew of clustering methods	278 286
2.13	O ACT AT	or createring memora	∠00

			CONTENT	S xi
10	Assoc	iation ana	dysis	287
	10.1	Principl	· ·	287
	10.2	Using ta	axonomy	291
	10.3	Using s	upplementary variables	292
	10.4	Applica	itions	292
	10.5	Exampl	e of use	294
11	Classi	fication as	nd prediction methods	301
	11.1	Introduc		301
	11.2	Inductiv	e and transductive methods	302
	11.3	Overvie	w of classification and prediction methods	304
		11.3.1	The qualities expected from a classification and prediction	
			method	304
		11.3.2	Generalizability	305
		11.3.3	1 ,	308
		11.3.4	Overfitting	310
	11.4		cation by decision tree	313
		11.4.1	Principle of the decision trees	313
		11.4.2	Definitions – the first step in creating the tree	313
		11.4.3	Splitting criterion	316
		11.4.4	Distribution among nodes – the second step in creating	210
			the tree	318
		11.4.5	Pruning – the third step in creating the tree	319
		11.4.6	A pitfall to avoid	320
		11.4.7	The CART, C5.0 and CHAID trees	321 327
		11.4.8	Advantages of decision trees	328
	11.5	11.4.9	Disadvantages of decision trees on by decision tree	330
	11.5		cation by discriminant analysis	332
	11.0	11.6.1	The problem	332
		11.6.1	Geometric descriptive discriminant analysis (discriminant	332
		11.0.2	factor analysis)	333
		11.6.3	Geometric predictive discriminant analysis	338
		11.6.4	Probabilistic discriminant analysis	342
		11.6.5	Measurements of the quality of the model	345
		11.6.6	Syntax of discriminant analysis in SAS	350
		11.6.7	Discriminant analysis on qualitative variables	
		11.0.7	(DISQUAL Method)	352
		11.6.8	Advantages of discriminant analysis	354
		11.6.9	Disadvantages of discriminant analysis	354
	11.7		on by linear regression	355
		11.7.1	Simple linear regression	356
		11.7.2	Multiple linear regression and regularized regression	359
		11.7.3	Tests in linear regression	365
		11.7.4	Tests on residuals	371

11.7.5

11.7.6

The influence of observations

Example of linear regression

375

377

	11.7.7	Further details of the SAS linear regression syntax	383
	11.7.8	Problems of collinearity in linear regression: an example	
		using R	387
	11.7.9	Problems of collinearity in linear regression:	
		diagnosis and solutions	394
	11.7.10	PLS regression	397
	11.7.11	Handling regularized regression with SAS and R	400
	11.7.12	Robust regression	430
	11.7.13	The general linear model	434
11.8	Classific	ation by logistic regression	437
	11.8.1	Principles of binary logistic regression	437
	11.8.2	Logit, probit and log-log logistic regressions	441
	11.8.3	Odds ratios	443
	11.8.4	Illustration of division into categories	445
	11.8.5	Estimating the parameters	446
	11.8.6	Deviance and quality measurement in a model	449
	11.8.7	Complete separation in logistic regression	453
	11.8.8	Statistical tests in logistic regression	454
	11.8.9	Effect of division into categories and choice	
		of the reference category	458
	11.8.10	Effect of collinearity	459
	11.8.11	The effect of sampling on logit regression	460
	11.8.12	The syntax of logistic regression in SAS Software	461
	11.8.13	An example of modelling by logistic regression	463
	11.8.14	Logistic regression with R	474
	11.8.15	Advantages of logistic regression	477
	11.8.16	Advantages of the logit model compared with probit	478
	11.8.17	Disadvantages of logistic regression	478
11.9	Develop	ments in logistic regression	479
	11.9.1	Logistic regression on individuals with different weights	479
	11.9.2	Logistic regression with correlated data	479
	11.9.3	Ordinal logistic regression	482
	11.9.4	Multinomial logistic regression	482
	11.9.5	PLS logistic regression	483
	11.9.6	The generalized linear model	484
	11.9.7	Poisson regression	487
	11.9.8	The generalized additive model	491
11.10	Bayesia	n methods	492
	11.10.1	The naive Bayesian classifier	492
	11.10.2	Bayesian networks	497
11.11	Classific	eation and prediction by neural networks	499
	11.11.1	Advantages of neural networks	499
	11.11.2	Disadvantages of neural networks	500
11.12	Classific	eation by support vector machines	501
	11.12.1	Introduction to SVMs	501
	11.12.2	Example	506
	11.12.3	Advantages of SVMs	508
	11.12.4	Disadvantages of SVMs	508

		CONTENTS	xiii
	11.13	Prediction by genetic algorithms	510
		11.13.1 Random generation of initial rules	511
		11.13.2 Selecting the best rules	512
		11.13.3 Generating new rules	512
		11.13.4 End of the algorithm	513
		11.13.5 Applications of genetic algorithms	513
		11.13.6 Disadvantages of genetic algorithms	514
	11.14	Improving the performance of a predictive model	514
	11.15	Bootstrapping and ensemble methods	516
		11.15.1 Bootstrapping	516
		11.15.2 Bagging	518
		11.15.3 Boosting	521
		11.15.4 Some applications	528
		11.15.5 Conclusion	532
	11.16	Using classification and prediction methods	534
		11.16.1 Choosing the modelling methods	534
		11.16.2 The training phase of a model	537
		11.16.3 Reject inference	539
		11.16.4 The test phase of a model	540
		11.16.5 The ROC curve, the lift curve and the Gini index	542
		11.16.6 The classification table of a model	551
		11.16.7 The validation phase of a model	553
		11.16.8 The application phase of a model	553
12	An apr	olication of data mining: scoring	555
	12.1	The different types of score	555
	12.2	Using propensity scores and risk scores	556
	12.3	Methodology	558
		12.3.1 Determining the objectives	558
		12.3.2 Data inventory and preparation	559
		12.3.3 Creating the analysis base	559
		12.3.4 Developing a predictive model	561
		12.3.5 Using the score	561
		12.3.6 Deploying the score	562
		12.3.7 Monitoring the available tools	562
	12.4	Implementing a strategic score	562
	12.5	Implementing an operational score	563
	12.6	Scoring solutions used in a business	564
		12.6.1 In-house or outsourced?	564
		12.6.2 Generic or personalized score	567
		12.6.3 Summary of the possible solutions	567
	12.7	An example of credit scoring (data preparation)	567
	12.8	An example of credit scoring (modelling by logistic regression)	594
	12.9	An example of credit scoring (modelling by DISQUAL discriminant	
		analysis)	604
	12.10	A brief history of credit scoring	615
	Refere	nces	616

13	Factor	s for success in a data mining project	617
	13.1	The subject	617
	13.2	The people	618
	13.3	The data	618
	13.4	The IT systems	619
	13.5	The business culture	620
	13.6	Data mining: eight common misconceptions	621
		13.6.1 No <i>a priori</i> knowledge is needed	621
		13.6.2 No specialist staff are needed	621
		13.6.3 No statisticians are needed ('you can just press a button')	622
		13.6.4 Data mining will reveal unbelievable wonders	622
		13.6.5 Data mining is revolutionary	623
		13.6.6 You must use all the available data	623
		13.6.7 You must always sample	623
		13.6.8 You must never sample	623
	13.7	Return on investment	624
14	Text n	nining	627
	14.1	Definition of text mining	627
	14.2	Text sources used	629
	14.3	Using text mining	629
	14.4	Information retrieval	630
		14.4.1 Linguistic analysis	630
		14.4.2 Application of statistics and data mining	633
		14.4.3 Suitable methods	633
	14.5	Information extraction	635
		14.5.1 Principles of information extraction	635
		14.5.2 Example of application: transcription of business	
		interviews	635
	14.6	Multi-type data mining	636
15	Web n	nining	637
	15.1	The aims of web mining	637
	15.2	Global analyses	638
		15.2.1 What can they be used for?	638
		15.2.2 The structure of the log file	638
		15.2.3 Using the log file	639
	15.3	Individual analyses	641
	15.4	Personal analysis	642
Αp	pendix	A Elements of statistics	645
	A.1	A brief history	645
		A.1.1 A few dates	645
		A.1.2 From statisticsto data mining	645
	A.2	Elements of statistics	648
		A.2.1 Statistical characteristics	648

		CONTENTS	χV
	A.2.2	Box and whisker plot	649
	A.2.3	Hypothesis testing	649
	A.2.4	Asymptotic, exact, parametric and non-parametric tests	652
	A.2.5	Confidence interval for a mean: student's t test	652
	A.2.6	Confidence interval of a frequency (or proportion)	654
	A.2.7	The relationship between two continuous variables:	
		the linear correlation coefficient	656
	A.2.8	The relationship between two numeric or ordinal variables:	
		Spearman's rank correlation coefficient and Kendall's tau	657
	A.2.9	The relationship between n sets of several continuous	
		or binary variables: canonical correlation analysis	658
	A.2.10	The relationship between two nominal variables:	
		the χ^2 test	659
	A.2.11	Example of use of the χ^2 test	660
	A.2.12	The relationship between two nominal variables: Cramér's	
		coefficient	661
	A.2.13	The relationship between a nominal variable	
		and a numeric variable: the variance test	
		(one-way ANOVA test)	662
	A.2.14	The cox semi-parametric survival model	664
A.3	Statistic	cal tables	665
	A.3.1	Table of the standard normal distribution	665
	A.3.2	Table of student's t distribution	665
	A.3.3	Chi-Square table	666
	A.3.4	Table of the Fisher-Snedecor distribution at the 0.05	
		significance level	667
	A 3.5	Table of the Fisher-Spedecor distribution at the 0.10	

	673	
Appendix E	B Further reading	675
B.I	Statistics and data analysis	675
B.2	Data mining and statistical learning	678
B.3	Text mining	680
B.4	Web mining	680
B.5	R software	680
B.6	SAS software	681
B.7	IBM SPSS software	682
B.8	Websites	682

685

Index