lot pitanja sa prezentacija i odgovori

1. Usporedite prednosti i nedostatke nelicenciranog i licenciranog spektra

a. NELICENCIRANI (2.4 GHz)

- i. Prednosti
 - 1. Lakše postavljanje
 - 2. Veći kapacitet

ii. Nedostaci

- 1. Interferencija
- 2. Zatvoreni prostor smanjuje domet
- 3. Veća potrošnja

b. LICENCIRANI (< 1GHz)

- i. Prednosti
 - 1. Veći domet
 - 2. Manja potrošnja energije
 - 3. Prolazi kroz zidove

ii. Nedostaci

- 1. Manji kapacitet
- 2. Za neke je potrebna dozvola

2. Koje su uobičajene frekvencije ispod 1GHz koje se koriste u IoT-u?

- a. 169 MHz (brojila)
- b. 433 MHz, 868 MHz (EU), 915 MHz (SAD)
- c. 779-787 MHz u Kini

3. Kako je moguće uštediit energiju kod IoT uređaja?

- a. Isključenje pojedinih dijelova uređaja za vrijeme rada ("spavanje")
- b. Bežične komunikacije (troše manje energije)
- c. Optimizirati komponente

4. Navedite i objasnite klase energetskog ograničenja

<u>lme</u>	<u>Vrsta ograničenja</u>	<u>Izvor energije</u>
EO	Ograničenje događajem	Skupljanje energije iz događaja (npr. micanje)
E1	Ograničenje vremenskim periodom	Periodička zamjena ili punjenje (solarno)
E2	Ograničenje životnim vijekom	Nema zamjenjivih baterije (npr. ENC)
E3	Bez ograničenja	Priključeno na napajanje

5. <u>Navedite i objasnite strategije korištenja energije za komunikaciju.</u>

Ime	Strategija	Mogućnost komunikacije
P0	Normalno je isključeno	Ponovno spajanje po potrebi.
		Glavna optimizacija je smanjiti
		energiju ponovnog spajanja
P1	Niska potrošnja	Periodičko isključivanje.
		Povremeno uključivanje u
		mrežu. Potrebno podešavanje
		perioda
P9	Uvijek uključeno	Cijelo vrijeme može
		komunicirati. Optimizacija
		sklopovlja (smanjenje
		frekvencije ili isključivanje
		pojedinih dijelova)

- 6. Navedite 4 mrežne topologije i gdje se koriste
 - a. Zvijezda WiFi oko AP
 - b. Svaki sa svakim (peer-to-peer)
 - c. Stablo
 - d. Mješovita (*mesh*) <u>IEEE 802.15.4</u>
- 7. Navedite 3 tehnologije koje koriste IEEE 802.15.4
 - a. ZigBee
 - b. 6LoWPAN
 - c. ZigBee IP
- 8. <u>Koja je razlika između FDD (full-function device) i RFD (reduced-function device) klasa uređaja u IEEE 802.15.4?</u>
 - a. FFD
 - i. Podržava sve mogućnosti
 - ii. Može primati, slati i usmjeravati pakete
 - iii. Koordinator, usmjeritelji moraju biti FFD
 - b. RFD
 - i. Ograničene mogućnosti
 - ii. Krajnji čvor u mreži
 - iii. Može spavati
 - iv. Može komunicirati samo s FFD-ovima

9. <u>Koja je razlika između sljedeća dva načina rada u IEEE 802.15.4: beacon-mode i non-beacon mode?</u>

a. Beacon-mode

- i. Koordinator upravlja i sinkronizira prijenos podataka
- ii. Svi ostali čvorovi osluškuju beacon i potom koriste CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) za izbjegavanje sudara okvira
- iii. Čvorovi mogu koristiti i pridijeljene vremenske odsječke za prijenos (GTS) koje im je dodijelio koordinator
- iv. čvorovi mogu ući u sleep mode radi smanjenja potrošnje energije

b. Non-beacon-mode

- i. Za komunikaciju od točke do točke
- ii. Čvorovi moraju kontinuirano osluškivati stanje na kanalu

10. Koji algoritam za šifriranje se koristi u IEEE 802.15.4?

a. AES-128

11. <u>Što je ZigBee?</u>

- a. Zigbee je protokol koji se koristi za bežičnu komunikaciju između uređaja
- b. Namijenjen primjenama koje zahtijevaju malu brzinu veze, nisku potrošnju energije, malo kašnjenje, sigurnu komunikaciju
- c. Koristi se kod osobnog zdravlja, upravljanja domom, periferija računala...

12. Koje su funkcije mrežnog sloja u ZigBee?

- a. Pokretanje mreže
- b. Priključivanje i napuštanje mreže
- c. Konfiguracija
- d. Adresiranje
- e. Sinkronizacija
- f. Sigurnost
- g. Usmjeravanje

13. Što je AODV i čemu služi?

- a. Ad Hoc On-Demand Distance Vector Routing
- b. održava tablice usmjeravanja na putu među čvorovima koji žele komunicirati
- c. preplavljivanje porukama route request (RREQ) iz izvorišnog čvora S da bi se otkrio put do odredišta D

14. Koje vrste sigurnosnih ključeva postoje u ZigBeeu i čemu služe?

a. Master ključevi

i. Koriste se za inicijalnu razmjenu tajni između dva uređaj

b. Mrežni ključevi

- i. Osiguravaju mrežu
- ii. Isti ključ imaju svi uređaji u mreži

c. Ključevi poveznice (link)

i. Osiguravaju poruke na aplikacijskoj razini

15. Što je IEEE 802.11ah i koja su mu svojstva?

- a. Varijanta najpoznatijeg bežičnog protokola (WiFi)
- b. Domet do 1km
- c. Maksimalna brzina 100kb/s
- d. Prilagodba za frekvencije ispod 1GHz
- e. PRIMJENA:
 - i. Senzori i brojila
 - ii. Agregacija podataka

16. Koja su osnovna svojstva LPWAN-a?

- a. Mala potrošnja energije
- **b.** Uređaji mogu raditi na baterije
- c. Velike udaljenosti (x km)
- d. Niže frekvencije
- e. Manja brzina prijenosa

17. Čemu služi SigFox?

- a. Za slanje male količine podataka u praskovima (burst)
- b. Alarmi, jednostavna brojila, senzori okoline...

18. Koliko se dnevno podataka može poslati pomoću Sigfoxa?

- a. Do 140 poruka po uređaju
- b. Veličina podataka: 12 okteta (slanje) i 8 okteta (primanje)

19. Kakav je poslovni model Sigfoxa?

- a. Patentirana i zatvorena tehnologija
- b. Koristi nelicencirani pojas

20. Koja je razlika između tehnologija LoRa i LoRaWAN?

- a. LoRa definira fizički sloj
- b. LoRaWAN definira protokol i arhitekturu sustava

21. Od koja 4 elementa se sastoji mrežna arhitektura LoRae?

- *a.* Krajnji čvorovi
- **b.** Gateway
- c. Mrežni poslužitelj
- d. Aplikacijski poslužitelj

22. Objasnite razliku između 3 klase LoRa uređaja.

a. Klasa A

- i. Napajanje baterijama
- ii. Slanje podataka na uređaj je moguće samo nakon uspješnog slanja
- iii. Svi uređaji u mreži podržavaju ovaj način rada

b. Klasa B

- i. Primanje u raspoređenom vremenskom periodu
- ii. Prima signal za sinkronizaciju od GW

c. Klasa C

- i. Kontinuirano ima otvoren prozor za primanje
- ii. Primanje se zaustavlja jedino kada se šalju podaci

23. Objasnite 2 načina aktivacije uređaja u LoRai.

a. Over-the-Air Activation

- i. Temelji se na globalno jedinstvenom identifikatoru
- ii. Poruke se razmjenjuju bežično

b. Activation By Personalization

- i. Dijeljeni ključevi se pohranjuju na krajnji uređaj
- ii. Vrijede samo za specifičnu vezu

24. Čemu služi LTE-M i svojstva CAT M-1?*

- a. Služi za komunikaciju između uređaja
- b. Smanjena je širina pojasa i izlazna snaga
- c. Brzine 375Kbps ili 1Mbps
- d. Za V2V i zvuk

25. Što je NB-loT i koja su mu svojstva?

- a. NB-IoT je tehnologija koja omogućuje velikom broju uređaja slanje podataka tamo gdje nema standardne pokrivenosti mobilnom mrežom
- b. Trajanje baterije 10 godina
- c. Dodatna pokrivenost prostora
- d. Cijena 5 \$
- e. Širina kanala 180kHz
- f. Nema prijenosa zvuka ili videa
- g. Brzina prijenosa 200Kbps

26. Kako se može smjestiti NB-IoT kanal?

- a. Između dva LTE kanala
- b. Na mjestu GSM kanala
- c. Unutar LTE kanala

27. O čemu ovisi odabir neke tehnologije za neko IoT rješenje?

a. Ovisi o tome što želimo postići. Koliko nam je bitna brzina, veličina paketa, cijena uređaja, potrošnja energije....

28. Navedite obilježja različitih kategorija uređaja ograničenih resursa.

a. Kategorija 0

- i. Ograničeni resursi
- ii. Ne implementiraju IP stack i sigurnosne mehanizme

b. Kategorija 1

i. Ne implementiraju IP stack u cijelosti, podržavaju CoAP

c. Kategorija 2

i. Implementiraju IP stack u cijelosti

29. Koja su obilježja mreže ograničenih resursa?

- a. Dugi periodi neaktivnosti čvorova
- b. Ograničena širina pojasa i propusnost
- c. Topologije: zvijezda, mesh, P2P
- d. Pristupne tehnologije: WPAN, BT, LPWA, WiFi

30. Zašto je protokol IP pogodan za umrežavanje uređaja ograničenih resursa?

- a. Jer je jedinstven sloj, neovisan o nižim i višim slojevima IP stacka
- b. Otvoren, skalabilan, stabilan

31. Objasnite što je DODAG

- a. Destination-Oriented DAG
- b. DAG s jednim korijenskim čvorom
- c. svaki čvor održava do tri roditelja koji osiguravaju put do korijena (jedan je preferirani roditelj, tj. preferirani sljedeći skok za rute prema gore prema korijenskom čvoru
- d. Korijenski čvor za RPL zapravo je rubni usmjeritelj koji povezuje mrežu čvorova ograničenih resursa s Interneto

32. Koje vrste čvorova koristi protokol RPL

a. DODAG root

- i. korijenski čvor
- ii. zadužen za inicijalizaciju topologije
- iii. RUBNI USMJERITELJ

b. RPL Router Node

- i. Može generirati i usmjeravati rpl pakete
- ii. Između čvorova root i leaf

c. RPL Leaf Node

- i. uređaj na dnu topologije
- ii. usmjerava samo vlastite pakete prema čvoru roditelju

33. Analizirajte prednosti i nedostatke non-storing modela rada protokola RPL.

- a. Prednosti
 - i. Štedi memoriju i CPU
- **b.** Nedostatci
 - i. Ne znam, treba vidit