R. V. COLLEGE OF ENGINEERING, BANGALORE-560059

(Autonomous Institution Affiliated to VTU, Belgaum)

A Project Report On

"MULTIVARIATE PREDICTIVE MODEL FOR WIND POWER USING ANN"

Submitted By:

TEJASVI C M	1RV10EE015
DHINESH KUMAR	1RV10EE017
RAJANANDA KISHORE G	1RV10EE040
SOHAN RAI UDUPI	1RV10EE049

Under the Guidance of:

V. Prema

Asst. Professor

Department of Electrical and Electronics Engineering
R. V. College of Engineering
Bengaluru-560059

In partial fulfillment for the award of degree of Bachelor of Engineering

in

ELECTRICAL AND ELECTRONICS ENGINEERING 2014

R. V. COLLEGE OF ENGINEERING, BANGALORE-560059

(Autonomous Institution Affiliated to VTU, Belgaum)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CERTIFICATE

Certified that the project work titled "MULTIVARIATE PREDICTIVE MODEL FOR WIND POWER USING ANN" is a work carried out by Tejasvi C M (1RV10EE015), Dhinesh Kumar (1RV10EE017), Rajananda Kishore G (1RV10EE040), Sohan Rai Udupi (1RV10EE049), who are the bonafide students of R.V. College of Engineering, Bengaluru, in partial fulfillment for the award of degree of Bachelor of Engineering in Electrical and Electronics Engineering of Visvesvaraya Technological University, Belgaum during the year 2013-2014. It is certified that all corrections/ suggestions indicated for the internal assessment have been incorporated in the report deposited in the departmental library. The project report has been approved as it satisfies the academic requirements in respect of project work prescribed by the institution for the said degree.

V. Prema

Asst. Professor
Dept. of EEE
R. V. College of Engineering

Dr. R. Jaypal

Professor & Head
Dept. of EEE
R.V. College of Engineering

Dr. B. S. Satyanarayana

Principal
R. V. College of Engineering

External Viva

Name of Examiners	Signature with Dat	
1.		
2.		

DECLARATION

We, Tejasvi C M (1RV10EE015), Dhinesh Kumar (1RV10EE017), Rajananda Kishore G (1RV10EE040), Sohan Rai Udupi (1RV10EE049), the students of Eighth Semester B.E, Electrical and Electronics Engineering, R.V. College of Engineering, Bengaluru, hereby declare that the project titled "Multivariate Predictive model for Wind power using ANN" has been carried out by us and submitted in the partial fulfillment for the award of degree of Bachelor of Engineering in Electrical and Electronics Engineering. We do declare that this work is not carried out by any other students for the award of degree in any other branch.

Place: Bengaluru 1. Tejeasvi C M

Date:
2. Dhinesh Kumar

3. Rajananda Kishore G

4. Sohan Rai Udupi

ACKNOWLEDGEMENT

Our project was the result of the encouragement of many people who helped in shaping it, provided feedback, direction and valuable support. It is with hearty gratitude that we acknowledge their contribution to our project.

Firstly, we wish to thank our internal project guide **Prof. V Prema**, Dept. of EEE, RVCE for her immeasurable help and words of wisdom, and for never letting our commitment levels dip.

We would like to thank **Prof. K Uma Rao**, **PhD** Dept. of EEE, RVCE for her invaluable inputs and helping us navigate the difficulties faced with ease.

We would like to thank our head of the department, **Dr. R Jaypal**, Dept. of EEE, RVCE for his constant guidance and being a constant motivator

We also thank **Prof. B.S. Satyanarayana**, **PhD** Principal, RVCE who's been inspirational and has always been encouraging us to come up with new ideas and implement them.

We would also **Dr. Suresh H Jangamshetty**, Dept of EEE, Basaveshwar Engineering college, Bagalkot for providing us with the wind data without which this project would not have been possible.

ABSTRACT

The energy demand of the world is rising exponentially. As fossil fuels, the principal sources of energy are fast depleting, researchers are focusing their attention to renewable energy sources. The primary consideration in this subject viz. wind energy sources poses their own challenges to researchers, an essential component being their stochastic nature.

Considering the fact that wind generation shows typical behavioral patterns, with time varying, seasonal and trend pattern in its generation, predictive models would be effective in forecasting the possible generation. This would help the operators to be prepared for the load demand, without over or under estimating the generation capabilities of the generation sources. Accurate short term wind speed prediction for wind power farms is crucial if wind power is to be a stable source of power. For typical wind turbines, power output varies as a cube of wind speed over a significant portion of the power curve. Therefore small improvements in the wind speed will contribute much larger improvements in the wind power forecast. The purpose of this thesis is to show the different prediction possibilities in wind speed by using the artificial neural network for the time shift wind speed prediction. A methodology to forecast wind speed and wind power for every 10 minutes of the next 24 hours is developed. Information regarding wind speed, humidity, temperature and wind direction is obtained from Bagalkot wind farm. The collected data was then normalized so as to include a larger data set.

An error calculation was also carried out in order to evaluate the performance of the suggested ANN prediction tool and to show the improvement of errors with the different approaches. The error calculations are encouraging with a best root mean square error of 2.09 m/s for a 24 hour ahead forecast.

Table of contents

Abstract	Iv
List of figures	X
List of tables	Ix
List of symbols, acronyms and nomenclature	Viii
1. Introduction	1
1.1 Wind Power Prediction	7
1.2 Available tools	8
1.3 Advantages of Artificial Neural Network	9
1.4 Motivation	9
1.5 Objectives	10
2.	11
2.1 Prediction models	11
2.1.1 Univariate prediction model	11
2.1.2 Multivariate model	11
2.2 Input data	12
3. Artificial Neural Networks	13
3.1 History of ANN	13
3.2 Benefits of ANN	14
3.3 Biological Model	15

3.4 Structure of ANN: Mathematical model of a neuron	16
3.5 Network Architectures	17
3.6 Back propagation algorithm	20
3.7 Learning process	21
3.8 Different training algorithms	24
3.8.1 Levenberg-Marquardt backpropagation algorithm	24
3.8.2 Bayesian regulation backpropagation algorithm	25
3.8.3 Scaled conjugate gradient backpropagation algorithm	26
3.8.4 Conjugate gradient backpropagation with Ploak-Ribiere updates	27
3.9 ANN input	28
3.10 Information flow in an ANN	30
3.11 Building the artificial neural network	30
4. Univariate wind speed prediction model	32
4.1 Linear model	32
4.2 Nonlinear model	33
4.3 Nonlinear single step ahead model	34
4.4 Result	36
4.5 Nonlinear multistep ahead model	38
4.6 Result	40
5. Multivariate wind speed prediction model	43
5.1 Matlab code	43
5.2 Result	46

	5.3 Data normalization	48
	5.4 Python	48
	5.4.1 Python code	49
	5.4.2 Example	51
	5.5 Multivariate model for one day ahead prediction	52
6.	Training algorithm	53
	6.1 Levenberg-Marquardt algorithm	53
	6.2 Polak-Ribiére Conjugate Gradient algorithm	54
	6.3 Scaled Conjugate Gradient algorithm	54
	6.4 Bayesian Regularization algorithm	55
7.	Power generation	57
8.	Results and discussions	58
	8.1 Univariate single step ahead model	58
	8.2 Univariate multi step ahead model	58
	8.3 Multivariate multi step ahead models	59
	8.3.1 Neural network model with wind direction as external input	59
	8.3.2 Neural network model with air temperature as external input	61
	8.3.3 Neural network model with relative humidity as external input	62
	8.4 Comparison of the average wind speed plots	64

8.5 Power generation	64
8.5.1 Multivariate model with wind speed and direction as inputs	64
8.5.2 Multivariate model with wind speed and temperature as inputs	65
8.5.3 Multivariate model with wind speed and humidity as inputs	65
8.6 Comparison of MSE, RMSE and MAPE	66
9. Conclusion and future scope	67
9.1 Conclusions	67
9.2 Future scope	67
References	67
Appendix A Univariate single step ahead code	73
Appendix B Univariate multi step ahead prediction code	75
Appendix C Multivariate multi step ahead prediction code	76
Appendix D Python code for normalizing data	78
Appendix E Power generation values	79

LIST OF SYMBOLS, ACRONYMS AND NOMENCLATURE

WPP : Wind Power Prediction

NWP : Numerical Weather Prediction

ANN : Artificial Neural Network

LMS :Least Mean Square

NAR : Nonlinear Auto Regressive

NARX: Nonlinear Auto Regressive with Exogenous input

BPA :Back Propagation Algorithm

MSE : Mean Square Error

RMSE: Root Mean Square Error

MAPE : Mean Absolute Percentage Error

LIST OF TABLES

	Names of tables	Page no
Table 1.1	Cost estimation	2
Table 5.1	Example of data normalization	51
Table 6.1	Comparison of errors	55
Table 7.1	Comparison of MSE, RMSE and MAPE	66

LIST OF FIGURES

Figure	Name of figures	Page no
1.1	Types of renewable energy resources	1
1.2	Log sigmoid transfer function	5
1.3	Tan sigmoid transfer function	6
1.4	Linear transfer function	6
3.1	Block diagram of human nervous system	15
3.2	Schematic diagram of a biological neuron	16
3.3	Mathematical model of ANN	17
3.4	Single layer feed forward network	18
3.5	Multilayer feed forward network	19
3.6	Recurrent network	19
3.7	Three layer neural networks with two inputs and single output	21
3.8	Flowchart showing working of BPA	23
3.9	Information flow in an ANN	30
4.1	Univariate system with random weights	36
4.2	Optimum validation	37
4.3	Univarite system without delays	37
4.4	Single step ahead prediction output	38
4.5	NAR neural network	41
4.6	NAR neural network using closed loops	41
4.7	Validation performance	41
4.8	Plot of prediction along with the validation series	42
5.1	NARX neural network	46
5.2	NARX neural network using close loop function	46
5.3	Validation performance	47
5.4	Model predictions along with validation series	47
5.5	Plot of one day ahead forecast	52
6.1	Prediction using Levenberg-Marquardt algorithm	53
6.2	Prediction using Polak-Ribiére Conjugate Gradient algorithm	54
6.3	Prediction using Scaled Conjugate Gradient algorithm	54
6.4	Prediction using Bayesian Regularization algorithm	55

7.1	Plot of one day ahead power forecast	57
8.1	Plot of univariate single step prediction model	58
8.2	Plot of univariate multi step prediction model	59
8.3	Plot from multivariate wind direction model	60
8.4	Moving average plot of multivariate wind direction model	60
8.5	Plot from multivariate air temperature model	61
8.6	Moving average plot of multivariate air temperature model	62
8.7	Plot from multivariate relative humidity model	63
8.8	Moving average plot of multivariate relative humidity model	63
8.9	Comparison of moving average plots of all three models	64
8.10	Plot of wind power for multivariate wind direction model	65
8.11	Plot of wind power for multivariate relative humidity model	65