Cálculo II.

1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2018-19. DEPARTAMENTO DE MATEMÁTICAS

Hoja 8

Curvas. Integrales de línea. Fórmula de Green

- 1.- Hallar el vector tangente (normalizado) a la trayectoria $\gamma(t) = (t^2, t^3)$ en el punto (1, -1). Escribir la ecuación de la recta tangente correspondiente. ¿Existe la recta tangente en el punto (0,0)?
- 2.- Para las siguientes trayectorias, hallar la velocidad, la rapidez (es decir, la longitud del vector velocidad), la aceleración y la ecuación de la recta tangente en el punto correspondiente al valor de t dado:

(a)
$$\gamma(t) = (e^{-t} \sin t, e^{-t} \cos t), \quad t = 2\pi.$$
 (b) $\sigma(t) = (e^{-2t} \sin(2t), e^{-2t} \cos(2t), e^{-2t}), \quad t = \frac{\pi}{2}.$

- 3.- Hallar la longitud de la curva en el intervalo indicado:
 - (a) $\sigma(s) = (s, 4s, s^2), 0 \le s \le 4$.
 - (b) $\sigma(u) = (e^{-u} \cos u, e^{-u} \sin u), 0 \le u < +\infty.$
- 4.- Dibujar el arco de cicloide descrito por $x=R(t-\sin t),\ y=R(1-\cos t),\ {\rm con}\ 0\le t\le 2\pi$ y hallar su longitud.
- 5.- Hallar la longitud del arco de hipocicloide descrito por $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, $0 \le t \le \pi/2$.
- 6.- Calcular la longitud de la curva:

$$\sigma(t) = \begin{cases} \left(\cos t, \sin t, 3t\right) & \text{si } 0 \le t \le \pi, \\ \left(-1, -t + \pi, 3t\right) & \text{si } \pi \le t \le 2\pi. \end{cases}$$

- 7.- Dada la curva γ mediante las ecuaciones paramétricas $x=t\cos t,\ y=t\sin t,\ z=t,\ 0\leq t\leq 2\pi,$ calcúlese la integral $\int_{\gamma}z\,ds;$
- 8.- Dibujar la curva descrita por la trayectoria σ dada por $\sigma(t)=(\text{sen }t,\cos t,t),\, 0\leq t\leq \pi,\, y$ hallar la integral $\int_{\sigma}f\,ds,\, d\text{onde }f(x,y,z)=x+y+z.$
- 9.- Hallar la integral $\int_{\Gamma} F(x,y) \cdot ds$ del campo vectorial F a lo largo de la curva orientada Γ que se indica. Dibujar en cada caso el camino de integración.
 - (a) $F(x,y) = (x^2 + y^2, x^2 y^2)$, a lo largo de la curva y = 1 |1 x| desde (0,0) hasta (2,0).
 - (b) F(x,y)=(x+y,x-y), siendo Γ la elipse $b^2x^2+a^2y^2=a^2b^2$ recorrida en sentido antihorario.
- 10.- Para cada $(x,y) \in \mathbb{R}^2$ sea F(x,y) el vector unitario que apunta desde (x,y) hacia el origen de coordenadas. Calcular el trabajo que realiza el campo F para desplazar una partícula desde la posición (2a,0) hasta (0,0) a lo largo de la semicircunferencia superior de $(x-a)^2+y^2=a^2$.
- 11.- Calcular la integral $\int_{\Gamma} y \, dx + x^2 \, dy$, cuando Γ es la curva :

(a)
$$x^2 + y^2 = ax$$
 (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

recorrida en el sentido antihorario.

12.- Hallar el trabajo que realiza el campo $F(x,y) = (y^2 + x^3, x^4)$ al recorrer el contorno del cuadrado $[0,1] \times [0,1]$ en sentido antihorario.

1

13.- Dados los puntos A=(2,0), B=(1,-1), C=(0,-1) y D=(0,0) en \mathbb{R}^2 , sea Γ el camino formado por el arco AB de la circunferencia de centro (1,0) y radio 1, y los segmentos de recta BC, CD, y DA.

Calcular el valor de la integral $\int_{\Gamma} (x^4 - x^3 e^x - y) dx + (x - y \arctan y) dy$, con Γ orientada en sentido horario.

- 14.- Para cada uno de los siguientes campos vectoriales F(x,y) definidos en \mathbb{R}^2 , determinar si son gradientes de algún potencial $f: \mathbb{R}^2 \to \mathbb{R}$. En caso afirmativo, calcular el potencial f.
 - (a) $F(x,y) = (3x^2y, x^3)$
- (b) $F(x,y) = (\sin y y \sin x + x, \cos x + x \cos y + y)$
- (a) $F(x,y) = (3x^2y, x^3)$ (b) $F(x,y) = (\sin y y \sin x + x, \cos x + x \cos y + x)$ (c) $F(x,y) = (2xe^y + y, x^2e^y + x 2y)$ (d) $F(x,y) = (\sin(xy) + xy\cos(xy), x^2\cos(xy))$
- 15.- Evaluar $\int_{\Gamma} (2x^3 y^3) dx + (x^3 + y^3) dy$, donde Γ es el círculo unidad orientado en el sentido antihorario.
- 16.- Verificar el teorema de Green para el campo (P,Q) con $P(x,y)=2\,x^3-y^3$ y $Q(x,y)=x^3+y^3$ y la región anular (corona) $a^2\leq x^2+y^2\leq 4\,a^2$.
- 17.- Sea A el área del recinto acotado por una curva γ de clase C^1 , simple y cerrada en el plano y orientada en sentido antihorario. Calcular la integral de línea $\int_{\mathcal{X}} x \, dy - 4y \, dx$ en función de A.