Metric Spaces Fall 2020 Lecture Notes

Lectures by Claudio Morales

August 27, 2021

1 Theory of Functions

Definition 1.1. (Image of a Set). Let $A \subseteq X$. Then

$$f(A) = \{ y \in Y : y = f(x) \text{ for some } x \in A \} \text{ and } f^{-1}(G) = \{ x \in X : f(x) \in G \}$$

Definition 1.2. (Point in the Inverse or Image). Let $f: X \Rightarrow Y$ be a function between two topological spaces. Then for subsets $A \subseteq X$ and $G \subseteq Y$,

$$y \in f(A) \Leftrightarrow y = f(x) \text{ for some } x \in A$$

$$x \in f^{-1}(G) \Leftrightarrow f(x) \in G$$

Theorem 1. Let X, Y be nonempty sets and let $f: X \to Y$. Then,

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $A \subseteq B \Rightarrow f(A) \subseteq f(B)$
- 3. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 4. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 5. $f(A \cap B) \subseteq f(A) \cap f(B)$
- 6. $f^{-1}(\mathbb{C}A) = \mathbb{C}(f^{-1}(A))$
- 7. $f(\mathbb{C}A)$??? $\mathbb{C}(f(A))$ (this is an open question)

Proof. Proof here.

Definition 1.3. (Injective). $f: X \to Y$ is injective if $\forall x_1, x_2 \in X$, where $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. This is equivalent to say that for all $x_1, x_2 \in X$, such that

$$f(x) = f(y) \Rightarrow x_1 = x_2.$$

Theorem 2. f is injective if and only if $f(A \cap B) = f(A) \cap f(B)$, for all $A, B \subseteq X$

Proof. Proof here.
$$\Box$$

Definition 1.4. (Surjective). A function $f: X \to Y$ is surjective if every $y \in Y$ has at least one preimage in X.

Theorem 3. Let $f: X \to Y$. Then,

1.
$$f(f^{-1}(B)) \subseteq B$$
, for every $B \subseteq Y$

- 2. $A \subseteq f^{-1}(f(A))$, for every $A \subseteq X$
- 3. f is injective $\Leftrightarrow A = f^{-1}(f(A))$, for every $A \subseteq X$
- 4. f is surjective $\Leftrightarrow f(f^{-1}(B)) = B$, for every $B \subseteq Y$

Proof. Proof here. \Box

2 Distance and Metric Spaces

Definition 2.1. Let X be a nonempty set, and let $d: X \times X \to \mathbb{R}$. We say that d is a metric for X if the following holds:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if x = y
- 2. d(x,y) = d(y,x) for all $x, y \in X$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

The pair (X, d) is called a metric space.

Definition 2.2. Let (X,d) be a metric space and let A be a subset of X. A is said to be bounded if there exists r > 0 such that

$$d(x, x_0) \le r \text{ for all } x \in A \text{ and some } x_0 \in X.$$

Examples:

1. Let X be a nonempty set. Define

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

- 2. d(x,y) = |x-y| is a metric for \mathbb{R}
- 3. Let $X = \mathbb{R}^n$. Define

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{1/2}.$$

2.1 Space of Sequences

- 4. Let X be the space of bounded sequences
 - 1. $l^{\infty} = \{\{x_k\} : \{x_k\} \text{ is bounded}\}\$ with the metric of supremum, defined as follows:

$$d(s,t) = \sup_{k} \{|s_k - t_k|\}.$$

2. $l^2 = \{\{x_k\} : \sum_{k=1}^{\infty} |x_k|^2 < \infty\}$ with the metric defined as:

$$d(s,t) = \sum_{k=1}^{\infty} |s_k - t_k|^2.$$

3. $l^1 = \{\{x_k\} : \sum_{k=1}^{\infty} |x_k| < \infty\}$ with the metric defined as:

$$d(s,t) = \sum_{k=1}^{\infty} |s_k - t_k|.$$

5. $C[a,b]=\{f:[a,b]\to\mathbb{R}\mid f \text{ is continuous}\}$ is a metric space under the following metric:

$$d(f,g) = \sup_{t \in [a,b]} \{ |f(t) - g(t)| \}.$$

Learning Activity: Show that the addition and scalar multiplication for each one these spaces is well-defined.

3 Topology

3.1 Topological Basics

3.1.1 Definition/Motivation

Definition 3.1. (Topology)

Let $X \neq \phi$. Let $\mathcal{T} \subset 2^X$. Further, Suppose the following.

- 1.) $\{X, \phi\} \subset \mathcal{T}$.
- 2.) $\{G_{\alpha}\}_{{\alpha}\in\mathscr{A}}\subset\mathcal{T}\implies\bigcup_{{\alpha}\in\mathscr{A}}G_{\alpha}\in\mathcal{T}$
- 3.) $\{G_i\}_{i=1}^n \subset \mathcal{T} \implies \bigcap_{i=1}^n G_i \in \mathcal{T}$

Then we call \mathcal{T} a Topology on X and we call the pair (X, \mathcal{T}) a topological space If $U \in \mathcal{T}$, we call U an Open Set.

Examples 1. $X = \{0, 1\}$

 $\mathcal{T}_1 = \{\emptyset, X\}$ is a topology for X, the indiscrete topology.

 $\mathcal{T}_2 = \{\emptyset, X, \{0\}, \{1\}\}\$ is a topology for X, the **discrete topology**.

 $\mathcal{T}_3 = \{\emptyset, X, \{0\}\}\$ is a topology for X, the **Sierpinski topology**.

Theorem 4. Let (X,d) be a metric space. Then the collection

$$\mathcal{T} = \{G : G \text{ is open}\} \text{ is a topology for } X$$

known as the topology induced by the metric, and denoted by $\mathcal{T}(d)$.

Proof. Done in class.

Definition 3.2. (Neighborhood)

Let (X, \mathcal{T}) be a topological space. Let $x \in X$. A **neighborhood** of X is a set U_x such that $x \in U_x \in \mathcal{T}$.

Notation: A set U_x or V_y means $x \in U_x \in \mathcal{T}$ or $y \in V_y \in \mathcal{T}$ respectively.

The Purpose of Topology as a study is to determine what properties of spaces are preserved under continuous mappings. This motivates the following definition.

3.1.2 Accumulation point

Definition 3.3. (Accumulation Point)

Let (X,\mathcal{T}) be a topological space. Let $A \subset X$. A point $x \in X$ is said to be an accumulation point of A if

$$(\forall U_x)(U_x \cap A \setminus \{x\} \neq \phi)$$

We denote the set of accumulation points of A with A'.

Learning Activities: 1. Negate definition of accumulation point.

- 2. Create examples with finite, as well as infinite, number of accumulation points.
- 3. Build an example of an infinite bounded set of \mathbb{R}^2 with no accumulation points.

Definition 3.4. (Closed set)

Let (X, \mathcal{T}) be a topological space. A set F is said to be a Closed set if $F' \subset F$.

Learning Activity: Make up nontrivial examples of closed sets in \mathbb{R} , as well as, \mathbb{R}^2 .

Theorem 5. (Closed characterization)

Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. Then

 $A \text{ is closed} \iff \mathbb{C}A \in \mathcal{T}.$

Proof. (\Rightarrow). Let $p \in \mathbb{C}A$

Proof. (\Leftarrow) Let $p \in A'$

Proposition 3.1. (Closed Union/ Closed intersection)

Let (X,τ) $\{S_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ be a collection of closed sets in X. Then the following hold

- 1.) $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is closed
- 2.) Finite unions of elements of $\{S_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ are closed.

Proof. De Morgan's Law

Proposition 3.2. Let (X, \mathcal{T}) be a topological space. Let $G \subset X$. Then

$$G \in \mathcal{T} \iff (\forall x \in G)(\exists U_x \subset G)$$

Proof. (\Rightarrow) Obvious

Proof. (\Leftarrow) Write G