TP4 Eycon - Laou-Hap Bagur	Pt		A E	С	D Note	
I. Signaux						
1 Donner le nom de chacun des signaux.	0.5	A				-
2 Donner la transformée de Laplace s1(p) et s2(p) de chacun des signaux.	0,5 0,5	В		-	0,37	
	0,5	ь		-	0,37	
Proposer un enregistrement de la mesure x et la consigne w, qui fournisse une erreur conforme au signal 1. On n'agira que sur la mesure x.	1	Α			:	L
II. Régulation proportionnelle						
Régler le PID pour une régulation avec un gain A=1 et un décalage de bande Y0=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	Α			0,!	5
Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			:	L
3 Exprimer la réponse obtenue y1(t) en fonction de s1(t) et s2(t).	1	В			0,7!	5
4 Justifier la réponse Y1(p) obtenue en utilisant la transformée de Laplace.	1	С			0,3!	5
Régler le PID pour une régulation avec un gain A=2 et un décalage de bande FF_PID=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	А			0,!	5
Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	А			:	L
7 Exprimer la réponse obtenue y2(t) en fonction de s1(t) et s2(t).	1	В			0,7	5
8 Justifier la réponse Y2(p) obtenue en utilisant la transformée de Laplace.	1	С			0,3!	5
III. Régulation proportionnelle intégrale						
1 Régler le PID pour une régulation avec un gain A=1 et un temps intégral ti=10s.	0,5	Α			0,!	5
Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			:	L
3 Exprimer la réponse obtenue y3(t) en fonction de s1(t) et s2(t).	1	В			0,7	
4 Justifier la réponse Y3(p) obtenue en utilisant la transformée de Laplace.	1	С			0,3!	
5 Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s.	0,5	Α			0,!	
Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			:	
7 Quelle est la structure du régulateur PI ? Justifier votre réponse.	1	Α				
8 Quelle peut être la structure du régulateur PID ?	1	В			0.7	
9 Exprimer la réponse obtenue y4(t) en fonction de s1(t) et s2(t).	1	В			0,7	
10 Justifier la réponse Y4(p) obtenue en utilisant la transformée de Laplace.	1	С			0,3!	
IV. Régulation proportionnelle intégrale dérivée						
1 Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s et un temps dérivé td=10s.	0,5	Α			0,!	5
Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			:	
Justifier pourquoi la réponse Y4(p) obtenue n'est pas une composition de S1(p) et S2(p) en utilisant la transformée de Laplace.	1	С			0,3!	5
4 Déduire de y4(t) la structure du régulateur. On fera apparaître toutes les constructions.	1	С			0,3!	5
		te : 1	6,22	5/2	1,5	

TP4 EYCON

1) Donner le nom de chacun des signaux

Échelon

2) Donner la transformée de Laplace $s_1(p)$ et $s_2(p)$ de chacun des signaux

 $s_1(p) : 1/p$ $s_2(p) : 1/p^2$

3) Proposer un enregistrement de la mesure x et la consigne w, qui fournisse une erreur conforme au signal 1. On n'agira que sur la mesure x.

II. Régulation proportionnelle

2) Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.

3) Exprimer la réponse obtenue $y_1(t)$ en fonction de $s_1(t)$ et $s_2(t)$.

 $y_1(t) = 1$ car c'est un échelon.

4) Justifier la réponse Y₁(p) obtenue en utilisant la transformée de Laplace.

$$Y_1(p) = 1/p$$

5) Régler le PID pour une régulation avec un gain A=2 et un décalage de bande Y₀=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.

XP	50.0	%
FF_PID	0.0	%

6) Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.

7) Exprimer la réponse obtenue $y_2(t)$ en fonction de $s_1(t)$ et $s_2(t)$.

$$y_2(t) = 2$$

8) Justifier la réponse $Y_2(p)$ obtenue en utilisant la transformée de Laplace.

$$Y_2(p) = 2/p$$

III. Régulation proportionnelle intégrale

1) Régler le PID pour une régulation avec un gain A=1 et un temps intégral ti=10s.

XP	100.0	%
TI	10.00	

2) Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.

3) Exprimer la réponse obtenue $y_3(t)$ en fonction de $s_1(t)$ et $s_2(t)$.

$$y_3(t) = 1 + t$$

4) Justifier la réponse Y₃(p) obtenue en utilisant la transformée de Laplace.

$$Y_3(p) = 1/p + 1/p^2$$

5) Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s.

XP	50.0	%
TI	10.00	

6) Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.

7) Quelle est la structure du régulateur PI ? Justifier votre réponse.

On constate que dés lors que le gain est multiplié par 2, l'échelon est multiplié par 2 et l'amplitude de la courbe est multiplié par 2

(en 1s on augmente de 2% avec un gain de 2) c'est donc de la forme A*Delta on a donc une structure série.

8) Quelle peut être la structure du régulateur PID ?

Régulateur Mixte (Toutes les maquettes de la salle ont une structure mixte).

- 9) Exprimer la réponse obtenue $y_4(t)$ en fonction de $s_1(t)$ et $s_2(t)$. $y_4(t) = 2 + 2t$
 - 10) Justifier la réponse $\mathbf{Y}_4(\mathbf{p})$ obtenue en utilisant la transformée de Laplace

$$Y_{\Delta}(p) = 2/p + 2/p^2$$

IV. Régulation proportionnelle intégrale dérivée

1) Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s et un temps dérivé td=10s.

XP	50.0	%
TI	10.00	
TD	10.00	

2) Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal On n'agira que sur la mesure x.

3) Justifier pourquoi la réponse $Y_4(p)$ obtenue n'est pas une composition de $S_1(p)$ et $S_2(p)$ en utilisant la transformée de Laplace.

Cela ne peut pas être une composition de $S_1(p)$ et $S_2(p)$ car l'allure de la courbe ne ressemble pas à celle d'un échelon (pas d'échelon) ou d'une rampe (la courbe fluctue).

4) Déduire de y₄(t) la structure du régulateur. On fera apparaître toutes les constructions. Structure n'est pas mixte A*delta différent de delta p et delta i donc parallèle.