배열과 구조

- * 자료구조의 구분
- 선형(linear) 과 비선형(non-linear)으로 구분한다.
- 자료구조내의 요소들이 순차적인 형식이면 선형, 아니면 비선형.
- 선형자료구조에는 배열과 연결 리스트가 있다.
- 배열: 순차적 메모리 주소에 의하여 요소들간의 관계를 표현하는 구조
- 연결리스트: 포인터를 사용하여 요소들간의 관계를 표현
- 비선형 자료구조: 트리(tree) 와 그래프(graph)

1. 배열의 특징

- 연속적 기억장소의 집합
- 대부분의 언어에서 제공하는 가장 단순한 구조적 자료형
- 동일한 자료형 (Same data type for elements)
- 선언시 크기지정. 크기보다 많은양의 자료 저장 => overflow
- 정적 자료형 (compile 시 크기를 알아야 하고, 실행 되는 동안 크기가 변하지 않는다)
- Set of mappings between index and values; <index, value>

장점: 이해 쉽고, 사용하기 편함, 자료저장이 용이(예: A[4]=10)

단점: 동일한 자료만 저장, 미리 크기 선언(필요이상 크기 선언시, 공간낭비, 많은 자료이동으로 삽입 삭제 느림.

Structure Array

Objects: index의 각 값에 대하여 집합 item에 속한 한 값이 존재하는 <index, value>쌍의 집합. index는 일차원/다차원의 유한 순서 집합.

Functions: $\Sigma \in A \subset Array$, $i \in index$, $x \in item$, j, $size \in integer$

Array Create(j, list)::= return j차원의 배열. list는 i번째 원소가i번째 차원의 크기인 j-tuple이며 item들은 정의되지 않았음.

Item Retrieve(A, i)::= if $(i \subseteq index)$

return 배열 A의 인덱스 i 값과 관련된 항목. else return 에러.

Array Store(A, i, x)::= if ($i \in index$)
return 새로운 쌍< i, x>가 삽입된 배열 A.
else return 에러.

end Array

• 배열의 연산

- i. length n
- ii. reading $(R \Rightarrow L, L \Rightarrow R)$
- iii. retrieve ith element, $0 \le i < n$
- iv. update i^{th} element's value, $0 \le i < n$
- v. insertion (i 번째 위치, 0 ≤i≤n)
- vi. deletion (i 번째 항목, 0 si<n)

• 배열 프로그램의 예 (ex. C언어)

```
#define MAX SIZE 100
 float sum(float [], int);
 float input[MAX_SIZE], answer;
 int i;
void main(void) {
for (i = 0; i < MAX\_SIZE; i++)
   input[i] = i;
   answer = sum(input, MAX_SIZE);
   printf("The sum is: %f\n", answer);
}
float sum(float list[], int n) {
 int i:
        tempsum = 0;
 float
 for (i = 0; i < n; i++) tempsum += list[i];
 return tempsum;
```

2. 순서 리스트의 표현

- * 메모리(기억장소) 표현
- 1) 순차 사상(sequential mapping)
 - 물리적 접근성 (arrays)
- 2) 비순차 사상(non-sequential mapping)
 - 비연속적 기억장소 위치 (링크드 리스트)

- 기호 다항식의 조작

$$A(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0x^0$$

 ax^e $a: coefficient <math>a_n >= 0$

e: exponent – unique

x: variable x

- 차수(degree): 다항식에서 가장 큰 지수

* 다항식의 표현 (I): 지수들을 내림차순으로 정돈

$$A = (n, a_n, a_{n-1}, \ldots, a_1, a_0)$$

degree of A n+1 coefficients

$$typedef\,struct\,\{$$

int expon;

float coef[max_degree];

} polynomial;

a : polynomial, n < MAX_DEGREE

$$a.expon = n$$

$$a.coef[i] = a_{n-i}, 0 \le i \le n$$

예) $3x^4 + 5x^2 + 6x + 4$ 의 경우 A = (4, 3, 0, 5, 6, 4)

expon						4					
coef	0	0	0	0	0	0	3	0	5	6	4
	10	9	8	7	6	5	4	3	2	1	0

문제점)
$$A(x) = x^{1000} + 1$$
 : n = 1000
A = (1000, 1, 0,..., 0, 1) : 1002 elements

* 다항식의 표현 (11)

$$A(x) = b_{m-1}x^{em-1} + b_{m-2}x^{em-2} + \dots + b_{o}x^{e0}$$

$$Where b_{i} \neq 0, 0 \leq i \leq m-1, e_{m-1} > e_{m-2} > \dots > e_{o} \geq 0$$

$$A = (m, e_{m-1}, b_{m-1}, e_{m-2}, b_{m-2}, \dots, e_{0}, b_{0})$$

$$no. of non-zero terms$$

$$| A(x) = x^{4} + 10x^{3} + 3x^{2} + 1 \qquad A = (4, 4, 1, 3, 10, 2, 3, 0, 1)$$

$$A(x) = x^{1000} + 1 \qquad A = (2, 1000, 1, 0, 1)$$

coef	3	5	6	4	
expon	4	2	1	0	

$$A(x) = 2x^{1000} + 1$$

B(x) = $x^4 + 10x^3 + 3x^2 + 1$

	starta	finisha	star	tb	finish	nb \	avail	
2226	✓	₹				4	A	
coef	2	1	1	10	3	1		
_	1000	0	4	3	2	0		
exp						_		
	0	1	2	3	4	5	6	/

$$startA = 0$$
, $finishA = 1$, $startB = 2$, $finishB = 5$, $Avail = 6$

$$A(x)$$
: $\langle starta, finisha \rangle$

다항식 덧셈 D = A + B

void padd (int starta, int finisha, int startb, int finishb, int *startd, int *finishd);

while (starta <= finisha && startb <= finishb)

case -1: /* a의 expon이 b의 expon보다 작은 경우 */
attach(terms[startb].coef, terms[startb].expon);
startb++; break;

```
case 0: /* 지수가 같은 경우 */
           coefficient= terms[starta].coef + terms[startb].coef;
           if(coefficient)
               attach(coefficient, terms[starta].expon);
               starta++; startb++; break;
    case 1: /* a의 expon이 b의 expon보다 큰 경우 */
          attach(terms[starta].coef, terms[starta].expon);
          starta++;
   }
/* A(x)의 나머지 항들을 첨가한다 */
  for(; starta <= finisha; starta++)</pre>
       attach(terms[starta].coef, terms[starta].expon);
/* B(x)의 나머지 항들을 첨가한다 */
 for(; startb <= finishb; startb++)</pre>
       attach(terms[startb].coef,terms[startb].expon);
 *finishd = avail-1;
void attach(float coefficient, int exponent)
{ /* 새 항을 다항식에 첨가한다. */
   if (avail >= MAX_TERMS) {
       fprintf(stderr, "다항식에 항이 너무 많다."):
        exit(1):
   terms[avail++].coef = coefficient;
   terms[avail++].expon = exponent;
}
```

• <u>알고리즘 padd 의 분석 :</u>

- m, n (>0): 각각 A와 B의 0이 아닌 항의 수
- while 루프
 - . 각 반복마다 starta, startb 또는 둘 다 값이 증가
 - . 반복 종료 -> starta <= finisha && startb <= finishb
 - . 반복 횟수 ≤ m+n-1
 - ∴ 연산시간 = *O*(n+m)

• 문제점

 $avail = MAX_TERMS$?

⇒ 불필요한 다항식 제거후 배열 끝에 연속적인 가용공간 생성 - 데이타 이동시간

3. 희소행렬 (Sparse Matrix)

1) 개요

 $m \times n \ matrix \ A \equiv A[MAX_ROWS][MAX_COLS]$

[number of non-zero elements / total elements] << small

- 효율적 기억장소 사상
 - i) <i, j, value>: 3-tuples (triples)
 - ii) no. of rows
 - iii) no. of columns
 - iv) no. of non-zero elements
 - v) ordering (column major or row major)

• sparse matrix (row major)

	O	1	2	3	4	5
0	15	0 11 0 0	0	22	0	-15
1	0	11	3	0	0	0
2	0	0	0	-6	0	0
3	0	0	0 0	0	0	0
5	91	0	0	0	0	0
J	0	0	28	0	0	0

(row) (col) (value)

6	6	8
0	0	15
0	3	22
0	5	-15
1	1	11
1	2	3
2	3	-6
4	0	91
5	2	28

Sparse Matrix 'a'

• sparse matrix (column major) (row) (col) (value)

6	6	8
0	0	15
0	4	91
1	1	11
2	1	3
2 2 3	5	28
3	0	22
3	2	-6
5	0	-15

Sparse Matrix 'b'

• <u>희소 행렬의 전치 (Transpose)</u>

```
void transpose( SMarray a[], SMarray b[])
/* a 를 전치시켜 b 를 생성, 예:(0,3,22) -> (3,0,22) */
  int i, j, currentb;
   b[0].row = a[0].col;
   b[0].col = a[0].row;
   b[0].value = a[0].value;
  if (a[0].value > 0) { /* 0 이 아닌 행렬 */
    currentb = 1;
    for (i =0; i <a[0].col; i++) /* a 에서 열별로 전치*/
      for (j = 1; j \le a[0].value; j++)
           /* 현재의 열로부터 원소를 찾는다. */
           if (a[j].col ==i) {
             /*현재 열에 있는 원소를 b에 첨가 */
             b[currentb].row = a[j].col;
             b[currentb].col = a[j].row;
             b[currentb].value=a[i].value;
             currentb++;
 }
```