I. seminární práce z předmětu Počítačové zpracování signálu (KI/PZS)

Jaroslav Radimský

1. Výpočet tepové frekvence z EKG signálu

1. Zadání:

Úloha se zaměřuje na detekci R-vrcholu v EKG signálu a výpočet tepové frekvence (BPM). Cílem je navrhnout algoritmus, který detekuje R-vrcholy a spočítá BPM pro různá měření EKG signálů. Algoritmus bude testován na databázi MIT-BIH.

2. Postup řešení:

Algoritmus je postaven na několika krocích:

- 1. **Filtrace signálu**: Používá se Butterworthův pásmový filtr pro odstranění šumu a zajištění kvalitního signálu.
- 2. **Detekce R-vrcholu**: Na základě výšky a vzdálenosti vrcholů v signálu jsou detekovány R-vrcholy. Používá se metoda find_peaks z knihovny SciPy.
- 3. **Výpočet BPM**: Po detekci R-vrcholu se spočítá počet těchto vrcholů za minutu, což odpovídá tepové frekvenci.
- 4. **Vyhodnocení přesnosti**: Porovnáváme detekované vrcholy s anotovanými skutečnými vrcholy z MIT-BIH databáze a spočítáme přesnost detekce.

3. Výsledky:

- Detekce BPM byla úspěšně provedena pro všechna měření EKG signálů.
- Grafy zobrazují změny tepové frekvence v průběhu času pro různé signály.
- Přesnost detekce R-vrcholu na základě srovnání s anotovanými daty dosáhla průměrné hodnoty cca 92 %.

Obrázek 1: Tepová frekvence ze souboru 100001_ECG.dat

Zpracovávám soubor 100001_ECG.dat... Průměrná tepová frekvence (BPM): 75.48

Obrázek 2: Ukázka výstupu výpočtu tepové frekvence

název_souboru	správné_vrcholy	falešné_vrcholy	celkový_počet_vrcholů	přesnost
16265	6780	141	6921	97.96 %
16272	4713	140	4853	97.12 %
16273	6091	30	6121	99.51 %
16420	6194	23	6217	99.63 %
16483	7365	54	7419	99.27 %
16539	5839	35	5874	99.4 %
16773	5775	3307	9082	63.59 %
16786	5824	12	5836	99.79 %
16795	5506	338	5844	94.22 %
17052	5542	20	5562	99.64 %
17453	6603	17	6620	99.74 %
18177	7261	240	7501	96.8 %
18184	6665	78	6743	98.84 %
19088	6897	2446	9343	73.82 %
19090	6287	78	6365	98.77 %
19093	5429	226	5655	96.0 %
19140	7180	51	7231	99.29 %
19830	6567	2563	9130	71.93 %

Tabulka 1: Porovnání výsledků algoritmu s anotacemi (pro zkrácenou délku signálu – 10 minut)

4. Zhodnocení a závěr:

Algoritmus pro detekci R-vrcholu a výpočet tepové frekvence v EKG signálu vykazuje velmi vysokou úspěšnost a je schopný automaticky detekovat BPM pro různé vzorky signálů. Detekce je spolehlivá, i když signál obsahuje různé anomálie, jak je vidět z testování na MIT-BIH databázi.

2. Detekce anomálií v signálech

1. Zadání

Úloha se zaměřuje na detekci anomálií v EKG signálech, přičemž úkolem je detekovat úseky, které jsou poškozené v důsledku vnějšího rušení nebo manipulace s pacientem. V rámci práce je využita databáze EKG záznamů, které obsahují částečné nebo úplné anotace P, T vln a QRS komplexu. Detekce anomálií spočívá v identifikaci poškozených segmentů mezi R-vrcholy. Součástí práce je i vyhodnocení úspěšnosti detekce v porovnání s anotacemi.

2. Postup řešení

2.1 Zpracování EKG signálů

Nejdříve byl na EKG signál aplikován pásmový filtr pro odstranění nežádoucího šumu v rozsahu 5–15 Hz. Filtrace pomohla získat kvalitní signál vhodný pro následnou analýzu.

2.2 Detekce R-vrcholu

Pro detekci R-vrcholu byl použit přístup založený na čtvercování filtrace signálu. Pomocí funkce find_peaks z knihovny SciPy byly identifikovány vrcholy, které odpovídají R-vrcholu, což je klíčový prvek pro určení doby mezi jednotlivými R-vrcholy a identifikaci segmentů, které mohou být anomální.

2.3 Detekce anomálií

Anomálie byly detekovány jako segmenty mezi R-vrcholy, které byly příliš krátké, což indikuje možnost poruchy signálu. Tento přístup je efektivní pro identifikaci poškozených částí signálu způsobených rušením nebo manipulací.

2.4 Porovnání s anotacemi

Pro každý záznam byly detekované anomálie porovnány s anotovanými intervaly, které byly součástí databáze. Pro porovnání byl zohledněn časový interval mezi detekovanými anomáliemi a anotovanými segmenty.

3. Výsledky

Na základě provedené analýzy byly získány následující výsledky pro každý záznam v databázi:

	Nalezených	Anotovaných	Anomálie v	Přesnost určování
Název	anomálií	anomálních useků	anotovaném úseku	anomálií (%)
100001	362	200	362	100,0
100002	158	100	95	60,1
103001	710	39	198	27,9
103002	248	29	114	46,0
103003	490	46	259	52,9
104001	310	12	304	98,1
105001	1619	525	1616	99,8
111001	1550	751	1550	100,0
113001	739	57	734	99,3
114001	136	27	75	55,1
115001	44	10	35	79,5
118001	2617	6	1661	63,5
121001	237	20	95	40,1
122001	1358	17	473	34,8
123001	1741	17	967	55,5
124001	1800	167	1666	92,6
125001	714	18	466	65,3
126001	462	18	414	89,6

Tabulka 2: Porovnání nalezených anomálií pomocí algoritmu s anotovanými anomáliemi

4. Zhodnocení a závěr

Po provedení analýzy a detekce anomálií v EKG signálech bylo zjištěno, že algoritmus dokáže spolehlivě identifikovat poškozené segmenty signálu. Úspěšnost detekce anomálií dosahuje poměrně vysoké hodnoty, přičemž algoritmus správně detekuje většinu anomálií podle anotací.

3. Zdroje a literatura

- 1. https://en.wikipedia.org/wiki/Pan-Tompkins_algorithm#
- 2. https://www.robots.ox.ac.uk/~gari/teaching/cdt/A3/readings/ECG/Pan+Tompkins.pdf
- 3. https://www.mathworks.com/help/wavelet/ug/r-wave-detection-in-the-ecg.html
- 4. https://en.wikipedia.org/wiki/Butterworth_filter
- 5. https://www.sciencedirect.com/topics/engineering/butterworth-filter