Section 5 Discrete & Continuous Random Variable

TA: Yasi Zhang

March 24, 2022

1 Random Variable

1.1 Discrete Random Variable

[Prob (Mass) Function] of a discrete R.V. X is defined as

$$f_X(x) = P(X = x), \ \forall x \in \mathbb{R}$$

Properties of pmf:

(i)
$$0 \le P(X = x) \le 1$$
 for all $x \in \mathbb{R}$.

(ii)
$$\sum_{x} P(X = x) = 1$$
.

Relationship between pmf and cdf:

pmf
$$\rightarrow$$
cdf: $F_X(x) = P(X \le x) = \sum_{y \le x} P(X = y);$

cdf
$$\to$$
pmf: $P(X = x_i) = \begin{cases} F(x_i) & i = 1 \\ F(x_i) - F(x_{i-1}) & i > 1. \end{cases}$

Remark 1 pmf and cdf are in one-to-one correspondence.

1.1.1 Practice

Derive the cdf of X if

$$P(X = x) = \begin{cases} 0.2 & X = 0\\ 0.5 & X = 2\\ 0.3 & X = 8\\ 0 & otherwise \end{cases}$$

1.2 Discrete Distribution Examples

1. Discrete Uniform Distribution

$$P(X = x) = \frac{1}{k}, \ x = 1, 2, \dots, k$$

2. Bernoulli Distribution

$$P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$

Remark 2 Toss a coin and the prob of getting a head (X = 1) is p.

Ber(p): X = 1 head up; X = 0 tail up.

3. Binomial Distribution

$$P(X = x) = C_n^x p^x (1 - p)^{n-x}, \ x = 0, 1, \dots, n$$

Remark 3 Toss a coin n times and the prob of getting a head each time is p.

B(n,p): Number of getting a head. $X=0,1,\ldots,n$

Remark 4 If $Y_1, Y_2, ..., Y_n$ are independent and all follow a Bernoulli distribution Ber(p), then $Y_1 + Y_2 + ... + Y_n$ follows B(n, p).

4. Poisson Distribution

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}, \ \lambda > 0, \ x = 0, 1, 2, \dots$$

1.2.1 Practice

1. Verify that $\sum_{x} P(X = x) = 1$ when X follows Binomial distribution or Poisson distribution.

2. Calculate the probability of getting at least 2 heads in the experiment of tossing a fair coin 10 times.

3. Calculate $P(2 \le X \le 4)$ when X follows Poisson distribution when $\lambda = 1$.

1.2.2 Take-Home Practice

Derive the cdf of the distributions mentioned above.

1.3 Continuous Random Variable

[Prob Density Function] Suppose the (cumulative) distribution function $F_X(x)$ of a continuous R.V. X is absolutely continuous, then there exists a prob density function $f_X(x)$ such that

$$F_X(x) = \int_{-\infty}^x f_X(u) du, \ \forall x \in (-\infty, \infty).$$

Remark 5 Normally, for a C.R.V. X, P(X = x) = 0 for any x.

Therefore, $P(a < X < b) = P(a \le X \le b)$ for a C.R.V X.

Remark 6 An easy way to understand pdf: The magnitude of $f_X(x)$ at each x indicates the probability that X takes values in a small neighborhood of each point x, i.e.

$$P(X \in [x, x + dx]) = f_X(x)dx$$

Properties of pdf:

(i) $f_X(x) \ge 0$ for all $x \in \mathbb{R}$;

(ii)
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
.

Remark 7 Can $f_X(x) > 1$? Yes.

Relationship between pdf and cdf:

pdf \rightarrow cdf: $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(u) du;$

 $\operatorname{cdf} \to \operatorname{pdf}: f_X(x) = \frac{dF_X(x)}{dx}.$

Remark 8 Is $f_X(x)$ unique for a given $F_X(x)$? No!

Is $F_X(x)$ unique for a given $f_X(x)$? Yes!

Again, we emphasize that the fact that P(X = x) = 0 for any given x for a C.R.V. allows us to change the value of the pdf of a continuous random variable X at a single point without altering the distribution of X. For instance, the pdf

$$f_X(x) = \lambda e^{-\lambda x}, \ x > 0$$

can be written as

$$f_X(x) = \lambda e^{-\lambda x}, \ x \ge 0$$

without changing $F_X(x)$ for any x. We observe these two functions differ only at x = 0 and P(X = 0) = 0. More generally, if two pdf's of continuous random variables differ only on a set having probability zero, the two corresponding probability distribution functions are exactly the same. Unlike the continuous random variables, the pmf of a discrete random variable cannot be changed at any point, since a change in such a pmf alters the distribution of probability.

1.3.1 Practice

1. For each of the following, determine the value of c that makes $f_{X}\left(x\right)$ a pdf.

(a)
$$f_X(x) = c(x+1)^2, -1 < x < 1$$

(b)
$$f_X(x) = ce^{-2x}, 0 < x < \infty$$

(c)
$$f_X(x) = c \cos x, 0 < x < \frac{\pi}{2}$$

Remark 9 When the type of $f_X(x)$ (like exponential, triangular, or composite) is given, then $f_X(x)$ can be determined (because we only need to calculate the constant c).

Think about how to derive the c if $f_X(x) = ce^{-x^2/2}$, $x \in \mathbb{R}$.

1.1 Is it possible to construct a pdf $f_X(x)$ from any nonnegative g(x) with a finite integral, i.e. $0 < \int_{\mathbb{R}} g(x) dx < \infty$?

1.2 Is it possible to construct a symmetric pdf $f_X(x)$ from any nonnegative g(x) with a finite integral, i.e. $0 < \int_{\mathbb{R}} g(x) dx < \infty$?

2.

Find $f_{Y}(y)$, the pdf of Y, where

$$F_{Y}(y) = P(Y \le y) = \begin{cases} 1 - \frac{1}{y^{2}}, & 1 \le y < \infty \\ 0 & otherwise. \end{cases}$$

3. Suppose a C.R.V. X has a pdf $f_X(x) = \begin{cases} |x| & for -1 < x < 1 \\ 0 & otherwise \end{cases}$, Find $P(X < \frac{1}{2})$.

1.4 Gaussian Intergral

The Gaussian integral, also known as the Euler-Poisson integral, is the integral of the Gaussian function $f(x) = e^{-x^2}$ over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

Proof:

$$egin{aligned} \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx \, dy &= \int_0^{2\pi} \int_0^\infty e^{-r^2} r \, dr \, d\theta \ &= 2\pi \int_0^\infty r e^{-r^2} \, dr \ &= 2\pi \int_{-\infty}^0 rac{1}{2} e^s \, ds \qquad \qquad s = -r^2 \ &= \pi \int_{-\infty}^0 e^s \, ds \ &= \pi \left(e^0 - e^{-\infty}
ight) \ &= \pi, \end{aligned}$$

In addition,

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy = \left(\int_{\mathbb{R}} e^{-x^2} dx \right) \left(\int_{\mathbb{R}} e^{-y^2} dy \right) = \left(\int_{\mathbb{R}} e^{-x^2} dx \right)^2$$

1.4.1 Practice

Use the result of Gaussian Intergral to calculate

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx$$

$$\int_{-\infty}^{\infty} e^{-x^2/(2\sigma^2)} \, dx$$

$$\int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} dx$$

1.5 Continuous Distribution Examples

1. Uniform Distribution

$$f_X(x) = 1, \ 0 \le x \le 1$$

2. Generalized Uniform Distribution

$$f_X(x) = \frac{1}{b-a}, \ a \le x \le b$$

3. Exponential Distribution

$$f_X(x) = \lambda e^{-\lambda x}, \ x > 0$$

or

$$f_X(x) = \frac{1}{\beta} e^{-x/\beta}, \ x > 0$$

4. Standard Normal Distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x \in \mathbb{R}$$

5. Normal Distribution

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

1.5.1 Practice

Derive the cdf of Uniform distribution, generalized uniform distribution, and exponential distribution.

Remark 10 The cdf of normal distribution does not have analytical form, which means we cannot write it down explicitly.