## STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 8: Diagnostics via Residuals

### **Regression Diagnostics**

- also known as model checking
- check if your fitted model is "healthy" or not
- mainly to check if the linear model assumptions are satisfied or not
- up to now, the only tool that you have learnt for model checking is the lack-of-fit test
- we have also looked at some residual plots but they were not that formal
- now we examine the residuals in a more formal way

## Regression Diagnostics: Residuals

- recall:  $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- then  $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta}$ =  $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- define  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$
- f H: hat matrix transforms the data f Y into fitted values  $\hat{f Y}$
- $m{\bullet}$  residuals:  $\hat{\mathbf{e}} = \mathbf{Y} \hat{\mathbf{Y}} = \mathbf{Y} \mathbf{H}\mathbf{Y} = (\mathbf{I} \mathbf{H})\mathbf{Y}$
- idompotent projection matrix

$$H' = H$$
,  $HH = H$ ,  $HX = X$ 

### Difference between ê and e

- assumptions for e (the statistical errors):
- $E(\mathbf{e}) = \mathbf{0}$ ,  $Cov(\mathbf{e}) = \sigma^2 \mathbf{I}$
- with these assumptions, it is easy to show (later)

$$E(\hat{\mathbf{e}}) = \mathbf{0}$$
 and  $Cov(\hat{\mathbf{e}}) = \sigma^2(\mathbf{I} - \mathbf{H})$ 

- note that the variances of  $\hat{e}_i$ 's are not the same
- Let  $h_{ii}$  be the *i*th diagonal element of H
- then  $Var(\hat{e}_i) = \sigma^2(1 h_{ii})$
- also  $\hat{e}_i$ 's are correlated—but we usually ignore this
- if intercept is included,  $\sum_{i=1}^{n} \hat{e}_i = 0$  (check SLR case)

#### The Hat Matrix

- ullet similarly, (I H) is also idompotent
- some direct consequences:

$$(\mathbf{I} - \mathbf{H})\mathbf{X} = \mathbf{0} \Rightarrow \mathrm{E}(\hat{\mathbf{e}}) = \mathbf{0}, \quad \mathbf{H}(\mathbf{I} - \mathbf{H}) = 0$$
 $\mathrm{Cov}(\hat{\mathbf{e}}, \hat{\mathbf{Y}}) = \mathrm{Cov}((\mathbf{I} - \mathbf{H})\mathbf{Y}, \mathbf{H}\mathbf{Y}) = \sigma^2 \mathbf{H}(\mathbf{I} - \mathbf{H}) = \mathbf{0}$ 
 $\mathrm{Cov}(\mathbf{Y}) = \sigma^2 \mathbf{I}, \quad \mathrm{Cov}(\hat{\mathbf{Y}}) = \sigma^2 \mathbf{H}\mathbf{H}' = \sigma^2 \mathbf{H}$ 
 $\mathrm{Cov}(\hat{\mathbf{e}}) = \sigma^2 (\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})' = \sigma^2 (\mathbf{I} - \mathbf{H})$ 
note that  $\mathrm{Cov}(\hat{\mathbf{e}}) = \mathrm{Cov}(\mathbf{Y} - \hat{\mathbf{Y}}) = \mathrm{Cov}(\mathbf{Y}) - \mathrm{Cov}(\hat{\mathbf{Y}})$ 

# Diagonal of the Hat Matrix $h_{ii}$

- Let us look at  $h_{ii}$  more carefully:
- with an intercept, one can show  $\frac{1}{n} \le h_{ii} \le \frac{1}{r_i}$  where  $r_i$  is # of replicates for  $\mathbf{x}_i$
- so, the bigger the  $h_{ii}$ , the smaller the  $Var(\hat{e}_i)$
- what does it mean when  $Var(\hat{e}_i) = 0$ ? only the ith observation itself is used to get  $\hat{y}_i$
- $h_{ii}$  is sometimes called the leverage of the ith observation
- what does a high-leverage observation mean?

## Diagonal of the Hat Matrix $h_{ii}$ - con't

- H is idompotent,  $h_{ii}=h_{ij}^2$ , i.e.,  $h_{ii}(1-h_{ii})=\sum_{j\neq i}h_{ij}^2$
- $\hat{y}_i = \sum_{j=1}^n h_{ij} y_j = h_{ii} y_i + \sum_{j \neq i}^n h_{ij} y_j$
- as  $h_{ii} \to 1$ ,  $\hat{y}_i \to y_i$ ,  $\hat{y}_i$  is mostly determined by  $y_i$  only is this what we want?
- with an intercept, use a centered design matrix (think about SLR case)

$$h_{ii} = \frac{1}{n} + (\mathbf{x}_i - \bar{\mathbf{x}})'(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})$$

- ullet this is the equation of an ellipsoid centered at  $ar{\mathbf{x}}$
- large values of  $h_{ii}$  indicate unusual values for  $\mathbf{x}_i$  (large leverage values  $\neq$  outliers)

# **Large Leverage Values**



FIG. 8.1 Contours of constant leverage in two dimensions.

## When doing WLS

- assumption:  $Var(\mathbf{e}) = \sigma^2 \mathbf{W}^{-1}$ ,  $\mathbf{W}$ : known weights
- ullet then  $\mathbf{H} = \mathbf{W}^{1/2} \mathbf{X} (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} \mathbf{X}' \mathbf{W}^{1/2}$
- fitted values:  $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{Y}$
- residuals may be defined in different ways
- definition 1:  $\hat{e}_i = y_i \hat{y}_i$
- definition 2:  $\hat{e}_i = \sqrt{w_i}(y_i \hat{y}_i)$
- we will use definition 2
- in R: definition 2 is sometimes known as Pearson residuals, or weighted residuals

### When the model is CORRECT...

- let U be any of the terms, or any linear combination of the terms, e.g., fitted value
- then  $E(\hat{e}_i|U_i) = 0$  and  $Var(\hat{e}_i|U_i) = \sigma^2(1 h_{ii})$
- ullet so a plot of residuals against U should have constant mean zero
- and that the variance function of ê is not constant (even if the model is correct)
- the variability will be smaller for large  $h_{ii}$
- so when the model is correct, residual plots should look like null plots

### When the model is INCORRECT

except (a), the rest residuals plots are not null (Fig 8.2)



# **Fuel Consumption Data**





# Fuel Consumption Data - con't

- three possible problematic data points:
  AK (Alaska), WY (Wyoming), DC (District of Columbia)
- WY: large but sparsely populated with a well-developed road system, people tend to drive longer for daily life
- AK: also large and sparsely populated, but road system is not good, people don't drive that much
- DC: compact urban area with good public transit
- ullet WY and AK: possible outliers (more in next chapter) while DC has smaller residuals but unusual values in  ${f x}_i$
- **DC** indeed has high leverage:  $h_{ii} = 0.415$

## **Testing Curvature in Residual Plot**

- sometimes "looking" is not enough
- a simple test for detecting curvature in residual plots
- test  $\hat{e}$  versus U, where U can be any terms, combination of terms, or fitted values:
  - 1. refit the data with the original model +  $U^2$
  - 2. test the significance of the coefficient of  $U^2$
- if U does not depend on any estimated coefficients (like one of the terms), use t-test
- otherwise (like fitted value), use approximate z-test, called "Tukey's test for non-additivity".

### Testing for Curvature - con't

TABLE 8.1 Significance Levels for the Lack-of-Fit Tests for the Residual Plots in Figure 8.5

| Term          | Test Stat. | Pr(>  t ) |
|---------------|------------|-----------|
| Tax           | -1.08      | 0.29      |
| Dlic          | -1.92      | 0.06      |
| Income        | -0.09      | 0.93      |
| log(Miles)    | -1.35      | 0.18      |
| Fitted values | -1.45      | 0.15      |

obtained by R function: residualPlots(...)

### **Nonconstant Variance**

- residual plots often show this issue
- many ways to fix this problem, and you will see two
- one option: do WLS
- it's not the simple case with  $w_i = n_i$  any more, the challenge is how to determine the weights
- another option: variance stabilizing transformation
- our usual model:  $Var(Y|X=\mathbf{x})=\sigma^2$
- now we have  $Var(Y|X = \mathbf{x}) = \sigma^2 g(E(Y|X = \mathbf{x}))$
- ullet where  $g(\cdot)$  is an increasing (or decreasing) function

## Variance Stabilizing Transform

three common transforms:

$$\sqrt{Y}$$
,  $\log(Y)$ ,  $\frac{1}{Y}$ 

- (actually power transform)
- $\log(Y)$ : most common, usually when response is counts or prices
- $\sqrt{Y}$ : mild, when log-transform is too much
- $oldsymbol{ ilde 9}$   $Y^{-1}$ : typically for "time to an event", like "time to heal after surgery"