prelab6 ece486

a

the all-integrator block diagram

b

When $k_c=1$, the ω_c is 18.207028 and phase margin is 15.355966.

As I increase $k_{c{\mbox{\tiny I}}}$ I notice a decrease in the phase margin.

C

d

according to
$$M_p = exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$$
 , we get $\zeta = 0.5169$

according to
$$t_r=\frac{1.2-0.45\zeta+2.6\zeta^2}{\omega_n}$$
 , we get $\omega_n=55.4049$

 $G(s)=rac{3069.702944}{s^2+57.277586*s}$, in which phase margin is 42.9 and crossover frequency is 53.16

I set τ_z to 0.07, τ_p to 0.007, and k_c to 2. And I get phase margin 59.880085, crossover frequency 46.218518, rise time 0.026540, and overshoot 14.779513%.

e

It meets both the bandwidth and the phase margin requirement. But it doesn't meet the overshoot and rise time requirement. The rise time is 0.014917 but the overshoot is 18.292193%.

