ESPIONAGE

60's Spy Escape Room

COMP-1698 CW1

Josh Hall-Hems Kestutis Sebelskis Leena Jarvenpaa Mia Lockhart-Miah

Contents

- Introduction
- Research and Planning
 - Inspiration
 - Research
 - Planning
- Designing The Puzzle
- Designing The Functionalities
 - Record Player
 - Headphones
 - Spying Object
 - TV Cabinet
- Building The Puzzle
- Summary

Introduction

- The puzzle is to be part of a larger scale spy villain themed escape room inspired by the 60's.
- It requires multiple players to work as a team.
- Objects used to create the puzzle were existing in the 60's.

Research

and Planning

Inspiration, Espionage

- Practice of spying, normally to obtain political or military information (Britannica, 2021).
- Cold War, between 1946 1991 Soviet Union and United States.
- Russia gifted "The Thing" to United States on 1945. It was not found until 1952 (Crypto Museum, 2015).

Research, 60's items

- 60's objects that show clear functionality between user and item.
- Spying is implied by using a surveillance device; players need to discover that they are being spied on to complete the puzzle.

Koss PRO/4, 1962 Image: https://www.koss.com/history/

60's Philips TV Image: https://www.nfsa.gov.au/latest/colour-tv-part-1

Dansette, 1952 Image: https://www.dansette.com/blog

Planning, Chosen Objects

- The objects were chosen based on their main functionality.
- Affordances create the possibility of action to be taken. Each of these objects affords actions that benefit from behavioural processing skills we have learned previously (Norman, 2013, p.51).
- Objects can be changed as long as they have similar functionalities that afford the same simulations.

Designing the Puzzle

Layout and Connection

Design, The Connection

- Designing a connection between each object.
- Added signifiers offer the players extra guidance.
- Key is to keep signifiers subtle enough, so player can get the rewarding feeling of success when they figure out the connection.

Design, Placement

- The puzzle utilises antiaffordances, such as fixed placing for normally detachable objects (Norman, 2013, pp. 10-13).
- These constraints create unwritten rules (Salen and Zimmerman, 2004)

Final Design

Designing the Functionalities

How each object will be used

Record player

Audio Input

- Only two visible signifiers outside of dust cover, ON and OFF buttons.
 - Red and green leds makes them less ambiguous.
- Dust cover locked in place.
 - Anti-affordance that limits players actions.
- While button is held, the record spins.
 - Signifies that audio output is played.
- Cable on the wall shows the connection to the headphones.

3D Model

Headphones Audio Output

- Headphones provide an audio output.
 - Player can lift them and place them over their ears.
- Audio is played only when record player's ON button is held.
- Box on the wall provides hidden connection to the PC.

3D Model

Spying Object, Audio Input

- A spy villain inspired decorative object.
- The object has an Arduino with an ultrasonic sensor planted in the base.
- The object has no visible signifiers, but it can provide small audio feedback when activated.

TV cabinet

Visual Output

- A 60's style TV cabinet can be used to place a hidden computer monitor that is connected to the PC.
- The TV offers visual feedback. This object does not require additional signifiers as it is not functional for the player.
- FORTRAN IV (Backus, 1962) is used as an inspiration for the text output.

Example code - FORTRAN IV or 66

```
THE TPK ALGORITHM
FORTRAN IV STYLE
DIMENSION A(11)
FUN(T) = SQRT(ABS(T)) + 5.)*T**3
READ (5, 1) A
FORMAT (5F10.2)
DO 10 J = 1, 11
   I = 11 - J
   Y = FUN(A(I+1))
   IF (400.0-Y) 4, 8, 8
       WRITE (6,5) I
       FORMAT (I10, 10H TOO LARGE)
   GO TO 10
       WRITE (6, 9) I, Y
       FORMAT (I10, F12.6)
CONTINUE
STOP
END
```


3D Model

Color Puzzle, Manual Input

- Last piece of this puzzle.
 - Can be the final puzzle or provide a piece to the next puzzle.
- The colour code is given once correct password received by the spying object.
- Once the correct colour sequence is entered, a maglock releases a latch.

Building the Puzzle

Physical Prototypes

Record Player and Headphones

Circuit - First Version

- Original project created for testing the system.
 - Link to the Tinkercad project
- Prototype worked in Tinkercad but not with physical Arduino.

Record Player and Headphones

Circuit - Final Version

Final working virtual prototype.

Link to the Tinkercad project


```
int motorPin = 3;
int ledG = 11;
int ledR = 10;
int motorSpeed = 150; //Recommend min speed 50
int buttonP = 8;
int buttonState = 0:
void setup() {
 Serial.begin(9600);
 pinMode (buttonP, INPUT PULLUP);
 pinMode(ledG,OUTPUT);
 pinMode (ledR, OUTPUT);
void loop() {
 buttonState = digitalRead(buttonP);
 if (buttonState == LOW) {
   analogWrite(motorPin, motorSpeed);
   digitalWrite(ledR.0):
   digitalWrite(ledG.1):
   analogWrite(motorPin, motorSpeed == 0);
   digitalWrite(ledR,1);
   digitalWrite(ledG,0);
  Serial.println(buttonState);
```

Record player and Headphones

Circuit - Built Version

- Arduino Mega 2560
- NPN transistor PN2222
- 3-6V DC Motor
- Button
- Green and Red LED

Record Player and Headphones

Video Demonstration

Record player and Headphones

Evaluation and Further Development

- The vinyl takes some time to stop but sound does not - mixed feedback.
- Stabilising the plate so vinyl can be rotated.

Spying Object and TV,

Circuit - First Version

First virtual project created for testing.


```
#define echoPin 2
#define trigPin 3
const int buzzer = 9;
long duration; int distance; boolean isRecognised; boolean firstDetection;
 pinMode(trigPin, OUTPUT);
 pinMode (echoPin, INPUT);
 Serial.begin(9600);
void loop() {
 pinMode (buzzer, OUTPUT);
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);
 distance = duration * 0.034 / 2;
 //Serial.print("Distance: ");
 //Serial.print(distance);
 //Serial.println(" cm");
 if (distance <= 50)
   Serial.println("True");
   if (firstDetection == true) {
     RecognisePlayer();
 if (distance >= 51)
   firstDetection = true;
   Serial.println("False");
void RecognisePlayer(){
 tone (buzzer, 30);
 delay(10);
 noTone (buzzer);
 delay(100);
 noTone (buzzer);
 firstDetection = false;
```

Spying Object and TV,

Circuit - Final Simplified Version

- Cleaned up version, only the required components kept.
 - Link to the Tinkercad project


```
#define echoPin 2
long duration; int distance;
void setup() (
 pinMode (echoPin, INPUT);
 Serial.begin (9600);
void loop() {
 duration = pulseIn (echoPin, HIGH);
 distance = duration * 0.01 / 1;
 if (distance <= 50)
    Serial.println("true");
  if (distance >= 51)
   Serial.println("false");
```

Spying Object and TV, Unity

```
if (sp.IsOpen)
        sp.ReadLine();
        string value = sp.ReadLine().ToString();
        if (value == "active")
           checkState.text = "RECEIVING : ON";
           if (!busy && ! isPlayed)
               StartCoroutine(PlaySound());
               busy = true;
           playerDetected = true;
       else if (value == "inactive")
           checkState.text = "RECEIVING : OFF";
           isPlayed = false;
           playerDetected = false;
   catch (System.Exception)
```

```
private void DictationRecognizer DictationResult(string text, ConfidenceLevel confidence)
   Debug.LogFormat("Dictation result: {0}", text);
   speechTxt.text += text + " // VALUE NOT RECOGNISED" + "\n":
private void DictationRecognizer DictationHypothesis(string text)
    Debug.LogFormat("Dictation result: {0}", text);
    if (text == "skydance")
       Debug.Log("GetCode");
       recordText.SetActive(false);
       codeText.SetActive(true);
        rState = RecordingState.disabled;
private void DictationRecognizer DictationComplete(DictationCompletionCause cause)
    if (cause != DictationCompletionCause.Complete)
       Debug.LogErrorFormat("Dictation completed unsuccesfully: {0}.", cause);
       rState = RecordingState.waiting;
private void DictationRecognizer DictationError(string error, int hresult)
   Debug.LogErrorFormat("Dictation error: {0}. HResults = {1}.", error, hresult);
    rState = RecordingState.waiting;
```

```
READ INPUT

101 FORMAT
RECEIVE VALUE: RECEIVING : ON
WRITE

+
IDP output window // VALUE NOT RECOGNISED
```

```
READ INPUT

101 FORMAT

RECEIVE VALUE: RECEIVING: OFF

WRITE

+

VALUE RECEIVED =

(CODE), SKY DANCE

BEGIN SEQUENCE +

BLUE, YELLOW,

YELLOW, GREEN,

YELLOW, GREEN,

GREEN, WHITE, WHITE

STOP

END
```

Spying Object and TV,

Video demonstration

Spying Object and TV, Evaluation and Further Development

- Universal Windows Platform (UWP) build version requires further research.
- Consideration using existing speech recognition programmes.
- Consideration of Bluetooth, speakers and microphone.
- Unity's Dictation Recognition outputs the speech as whole sentences which creates delay of feedback (Norman, 2013, p. 23).

Colour Puzzle,

Circuit - Virtual Version

- Virtual project created for testing before actual development.
 - Link to the TinkerCad project


```
// Panel button counter
     int counter = 0;
        // BUTTON 1
114
        if (buttonState1 == LOW)
115
116
          digitalWrite (LED1, HIGH);
118
          if (firstTimeButton1)
119
             counter++;
             firstTimeButton1 = false;
123
185 void MasterButton()
186
      buttonState0 = digitalRead(BUTTON5);
190
     if (buttonState0 == LOW && counter == 6) {
        digitalWrite (LED5, HIGH);
        digitalWrite(LED6, LOW);
        unlocked = true;
194
      if (buttonState0 == LOW && !unlocked) {
        digitalWrite (BUZZER, HIGH);
        tone (BUZZER, 1000);
        delay(500);
        noTone (BUZZER);
        counter = 0;
```

Colour Puzzle,

Circuit - Built Version

- Arduino Mega 2560
- 9V Battery for Arduino
- 12V AC/DC Adaptor
- 12V Electromagnet
- 5V Relay
- LED's
- Tumble Switches
- Piezo / Buzzer

Colour Puzzle,

Video Demonstration

- Locked Box
- Master Button
- Colour Inputs / Switches
- Sound Feedback
- Visual Feedback
- Labelling

Colour Puzzle, Evaluation and Further Development

- Design improvements
- Consider to use a stronger electromagnet
- Add more labelling / instructions
- Consider to add more visual and sound effects

Summary

- All of the individual parts of the puzzle are functional and tie together.
 - Further development by research and resources.
- To determine the required signifiers and difficulty of the puzzle could be done by testing.

Thank You!

Questions?

References

Backus, J. (1957) 'FORTRAN II'. IBM.

Crypto Museum (2015) The Thing. Available at: https://www.cryptomuseum.com/covert/bugs/thing/index.htm (Accessed: 27 March 2021).

J & A Margolin Ltd (1952) Dansette. Available at: https://www.dansette.com/shop?Collection=Record+Players (Accessed: 30 April 2021).

J Sainsbury plc (1932) Bush. Available at: https://www.bush-support.com/ (Accessed: 30 April 2021).

Koninklijke Philips N.V. (2021) Philips TV. Available at: https://www.philips.com/global (Accessed: 30 April 2021).

Koss Corporation (1962) Koss PRO/4. Available at: https://www.koss.com/ (Accessed: 30 April 2021).

NFSA (2021) Colour TV in Australia, Part 1. Available at: https://www.nfsa.gov.au/latest/colour-tv-part-1 (Accessed: 30 April 2021).

Norman, D. (2013) The Design of Everyday Things. London: MIT Press.

Sala, V. (1965) Spy in Your Eye. Italy.

Salen, K. and Zimmerman, E. (2004) Rules of Play - Game Design Fundamentals. Massachusetts: The MIT Press.

Smith, M. (2021) Button Click. London.

The Editors of Encyclopaedia Britannica (2021) *Espionage | international relations | Britannica*. Available at: https://www.britannica.com/topic/espionage (Accessed: 26 April 2021).

References, Ideation images

Arduino (2021) Arduino. Available at: https://store.arduino.cc/ (Accessed: 27 March 2021).

BGImages Australia (2021). HP Computer Museum. Available: http://www.hpmuseum.net/exhibit.php?class=3&cat=34 [Accessed:]

Duckworld (2021). Authentic psychedelic 60's 70's poster. Available: https://www.fiverr.com/duckworld/make-an-authentic-psychedelic-60s-70s-poster-or-banner [Accessed: 18.03. 2021]

Ellenm1 (2010). Console Television Receiver. Available: https://www.flickr.com/photos/ellenm1/4280476270/ [Accessed: 18.03. 2021]

GLS (2021). Lockable Storage Cupboard. https://www.glsed.co.uk/product/furniture/storage/classroom-storage/lockable-storage-cupboard/g1849041 [Accessed: 18.03. 2021]

Igloohome (2021). Smart Padlock. Available: https://www.igloohome.co/products/padlock/ [Accessed: 16.03. 2021]

Kidwell, D. (2020). OSI counterespionage program nabs Soviet spy. Available: https://www.osi.af.mil/News/Features/Display/Article/2186388/osi-counterespionage-program-nabs-soviet-spy/ [Accessed: 18.03. 2021]

Poster Foundry (2021) John F. Kennedy Leadership for the 60's Retro Campaign Available: https://posterfoundry.com/john-f-kennedy-leadership-for-the-60s-retro-campaign-mural-giant-poster-36x54-inch/ [Accessed: 18.03. 2021]

SamuelvintageShop (2021) vintage HONPYTHO Transistor radio, 60's Mid Century Available: https://www.etsy.com/ca/listing/708044093/vintage-hornyphon-transistor-radio-60s [Accessed: 19.03. 2021]

Spy Museum (2021). Shoe with heel transmitter. Available: https://www.spymuseum.org/exhibition-experiences/about-the-collection/collection-highlights/shoe-with-heel-transmitter/ [Accessed: 18.03. 2021]

The Vinyl Factory (2021). The 8 best vintage turntables and what to look out for when buying second hand. Available: https://thevinylfactory.com/features/the-8-best-vintage-turntables-and-what to look out for when buying second hand. Available: https://thevinylfactory.com/features/the-8-best-vintage-turntables-and-what-to-look-out-for-when-buying-second-hand/ [Accessed: 19.03. 2021]

Wikipedia (2021). Computer Monitor. Available: https://en.wikipedia.org/wiki/Computer_monitor [Accessed: 18.03. 2021].