Самостоятельный проект

- Задача-провести анализ и подготовить план действий по удержанию клиентов:
 - научиться прогнозировать вероятность оттока (на уровне следующего месяца) для каждого клиента:
 - сформировать типичные портреты клиентов: выделить несколько наиболее ярких групп и охарактеризовать их основные свойства;
 - проанализировать основные признаки, наиболее сильно влияющие на отток;
 - сформулировать основные выводы и разработать рекомендации по повышению качества работы с клиентами:
 - 1) выделить целевые группы клиентов;
 - 2) предложить меры по снижению оттока;
 - 3) определить другие особенности взаимодействия с клиентами.

```
In [1]:
         #загружаем необходимые библиотеки
         import pandas as pd
         import matplotlib.pyplot as plt
         from plotly import graph objects as go
         import plotly.express as px
         import plotly.io as pio
         pio.templates.default = "plotly_white"
         import numpy as np
         import seaborn as sns
         import itertools
         from sklearn.metrics import silhouette_score
         from sklearn.cluster import KMeans
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,mean_absol
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import Lasso, Ridge,LogisticRegression
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClass
         import matplotlib.pyplot as plt
         from scipy.cluster.hierarchy import dendrogram, linkage
         sns.set(style="whitegrid")
         colors =["#ef476f","#ffd166","#06d6a0","#118ab2","#073b4c"]
         sns.set_palette(sns.color_palette(colors))
         import re
         from scipy import stats as st
         import math as mth
         import warnings
         warnings.filterwarnings('ignore')
In [2]:
         #Загружаем данные:
         df = pd.read_csv('/datasets/gym_churn.csv')
```

Проведем исследовательский анализ данных (EDA)

```
In [3]: #Выведем 5 строк датафрейма: df.head()
```

Out[3]:		gender	Near_Location	Partner	Promo_friends	Phone	Contract_period	Group_visits	Age	Avg_additional_ch
	0	1	1	1	1	0	6	1	29	
	1	0	1	0	0	1	12	1	31	

```
gender Near_Location Partner Promo_friends Phone Contract_period Group_visits Age Avg_additional_ch
        2
                0
                             1
                                     1
                                                                                       28
        3
                0
                             1
                                     1
                                                  1
                                                                       12
                                                                                   1
                                                                                       33
                                                         1
                                                                                   0
        4
                1
                             1
                                     1
                                                  1
                                                         1
                                                                        1
                                                                                       26
In [4]:
         #Выведем размер
         print(df.shape)
        (4000, 14)
In [5]:
         # Получаем информацию:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4000 entries, 0 to 3999
        Data columns (total 14 columns):
            Column
                                                 Non-Null Count Dtype
         #
        ---
         0
             gender
                                                 4000 non-null int64
         1
             Near_Location
                                                 4000 non-null int64
             Partner
                                                 4000 non-null int64
         3
             Promo_friends
                                                 4000 non-null int64
         4
             Phone
                                                 4000 non-null int64
         5
             Contract_period
                                                 4000 non-null int64
         6
             Group_visits
                                                 4000 non-null int64
         7
                                                 4000 non-null
                                                                int64
             Avg additional charges total
                                                 4000 non-null float64
             Month_to_end_contract
                                                 4000 non-null float64
         10 Lifetime
                                                 4000 non-null
                                                                int64
         11 Avg class frequency total
                                                 4000 non-null
                                                                float64
         12 Avg_class_frequency_current_month 4000 non-null
                                                                 float64
                                                 4000 non-null
                                                                 int64
        dtypes: float64(4), int64(10)
        memory usage: 437.6 KB
```

- Имеем столбцы:
 - 1 gender пол
 - 2 Near_Location проживание или работа в районе, где находится фитнес-центр
 - 3 Partner информация о работодателе клиента
 - 4 Promo_friends факт первоначальной записи в рамках акции «приведи друга»
 - 5 Phone наличие контактного телефона
 - 6 Contract_period длительность текущего действующего абонемента (месяц, 6 месяцев, год)
 - 7 Group_visits факт посещения групповых занятий
 - 8 Age возраст
 - 9 Avg_additional_charges_total суммарная выручка от других услуг фитнес-центра: кафе, спорттовары, косметический и массажный салон
 - 10 Month_to_end_contract срок до окончания текущего действующего абонемента (в месяцах)
 - 11 Lifetime время с момента первого обращения в фитнес-центр (в месяцах)
 - 12 Avg_class_frequency_total средняя частота посещений в неделю за все время с начала действия абонемента
 - 13 Avg_class_frequency_current_month средняя частота посещений в неделю за предыдущий месяц
 - 14 Churn факт оттока в текущем месяце.

Имеем датафрейм в 4000 строк, 14 столбцов. Тип данных - int64(10), float64(4)

Предобработка данных

```
# Названия столбцов:
          df.columns
 Out[6]: Index(['gender', 'Near Location', 'Partner', 'Promo friends', 'Phone',
                 Contract period', 'Group visits', 'Age',
                 'Avg_additional_charges_total', 'Month_to_end_contract', 'Lifetime',
                 'Avg_class_frequency_total', 'Avg_class_frequency_current_month',
                 'Churn'],
                dtype='object')
 In [7]:
          #переведем в нижний регистр
          df.columns = df.columns.str.lower()
 In [8]:
          # Проверим:
          df.columns
 Out[8]: Index(['gender', 'near_location', 'partner', 'promo_friends', 'phone',
                  contract_period', 'group_visits', 'age',
                 'avg_additional_charges_total', 'month_to_end_contract', 'lifetime',
                 'avg_class_frequency_total', 'avg_class_frequency_current_month',
                 'churn'],
                dtype='object')
 In [9]:
          # проверим на дубликаты
          df.duplicated(subset=['gender', 'near_location', 'partner', 'promo_friends', 'phone','contract_
                  'avg_additional_charges_total', 'month_to_end_contract', 'lifetime',
                  'avg_class_frequency_total', 'avg_class_frequency_current_month',
                  'churn']).sum()
 Out[9]: 0
         Дубликатов не обнаружено.
In [10]:
          # проверим на пропуски
          df.isna().sum()
                                               0
Out[10]: gender
                                               0
         near_location
         partner
                                               0
         promo_friends
                                               0
                                               0
         phone
         contract_period
                                               0
                                               0
         group_visits
                                               0
         avg_additional_charges_total
                                               0
                                               0
         month_to_end_contract
         lifetime
                                               0
         avg_class_frequency_total
                                               0
                                               0
         avg_class_frequency_current_month
                                               0
         churn
         dtype: int64
         Пропусков не обнаружено.
In [11]:
          # Переименуем некоторые столбцы для удобства:
          df = df.rename(columns={'avg_class_frequency_current_month':'a_month'})
          df = df.rename(columns={'avg_class_frequency_total':'a_total'})
          df = df.rename(columns={'avg_additional_charges_total':'a_charges'})
          df = df.rename(columns={'month_to_end_contract':'month_end'})
          df = df.rename(columns={'contract_period':'period'})
In [12]:
          df.head()
```

]:		gender	near_location	partner	promo_friends	phone	period	group_visits	age	a_charges	month_end	lif
	0	1	1	1	1	0	6	1	29	14.227470	5.0	
	1	0	1	0	0	1	12	1	31	113.202938	12.0	
	2	0	1	1	0	1	1	0	28	129.448479	1.0	
	3	0	1	1	1	1	12	1	33	62.669863	12.0	
	4	1	1	1	1	1	1	0	26	198.362265	1.0	
	4								_	1		

Вывод.

- В процессе предобработки:
 - привели к нижнему регистру текстовые данные в столбцах
 - проверили на дубли и отсутствующие значения
 - переименовали некоторые столбцы.
- Тип данных в каждой колонке числовые. Дубликатов нет. Пропущенных значений нет.
- Данные не имеют временную структуру.

EDA. Формулировка гипотез.

In [13]:

Out[12]

Изучим средние значения и стандартные отклонения: df.describe()

Out[13]:

	gender	near_location	partner	promo_friends	phone	period	group_visits	а
count	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.000000	4000.0000
mean	0.510250	0.845250	0.486750	0.308500	0.903500	4.681250	0.412250	29.1842
std	0.499957	0.361711	0.499887	0.461932	0.295313	4.549706	0.492301	3.2583
min	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	18.0000
25%	0.000000	1.000000	0.000000	0.000000	1.000000	1.000000	0.000000	27.0000
50%	1.000000	1.000000	0.000000	0.000000	1.000000	1.000000	0.000000	29.0000
75%	1.000000	1.000000	1.000000	1.000000	1.000000	6.000000	1.000000	31.0000
max	1.000000	1.000000	1.000000	1.000000	1.000000	12.000000	1.000000	41.0000
4								•

- -Вывод из использования функции describe:
 - Мужчин и женщин в фитнес-клубе одинаковое количество
 - Больше тех кто проживает вблизи фитнеса 85%
 - Почти половина клиентов сотрудники компаний-партнеров
 - 30 % приводят друзья
 - 90 % пользователей оставляют свой номер телефона
 - в основном абонемент покупают на 6 месяцев
 - более 41% посещают груповые занятия
 - основной возраст клиентов 29 лет, самому молодому 18 лет, самому старшему 41 год.
 - в среднем дополнительные покупки делают на 146 у.е., медианное значение 136 у.е.
 - среднее количество месяцев посещения 3,7
 - среднее количество посещений в неделю за все время практически совпадает с количеством за текущий месяц и составляет ~2 посещения в неделю

- средний отток составляет 26 %
- у переменных довольно разные по величине стандартные отклонения, их возможно нужно будет стандартизировать перед обучением.

```
In [14]:
# Разделим посетителей на оставшихся и отток и построим графики:
    ottok = df.groupby('churn').mean()
    live = ottok.transpose()
    live
```

Out[14]:	churn	0	1
	gender	0.510037	0.510839
	near_location	0.873086	0.768143
	partner	0.534195	0.355325
	promo_friends	0.353522	0.183789
	phone	0.903709	0.902922
	period	5.747193	1.728558
	group_visits	0.464103	0.268615
	age	29.976523	26.989632
	a_charges	158.445715	115.082899
	month_end	5.283089	1.662582
	lifetime	4.711807	0.990575
	a_total	2.024876	1.474995

• Вывод:

- Среди тех кто остался, больше всего тех, кто:
 - живет рядом

a_month 2.027882 1.044546

- сотрудник компании-партнера
- пришел с другом/друзьями
- давно (около полугода) в клубе
- посещает групповые занятия
- кто постарше
- кто больше тратит на доп.услуги
- у кого до конца абонемента еще полгода
- у постоянных клиентов (кто давно в клубе)
- посещает фитнес от 2-х раз в неделю

```
In [15]:
    live.columns = ['exist', 'churn']
    live.plot(kind='barh',figsize=(15, 7), fontsize=15)
    plt.show()
```


Вывод:

- соотношение отток оставшиеся более заметны в колонках: "Покупки", "Длительность текущего действующего абонемента", "Срок до окончания текущего действующего абонемента", "Время с момента первого обращения в фитнес-центр"
- в остальных колонках наименее заметно

Построим столбчатые гистограммы

```
for column in df.columns:
    plt.figure(figsize=(5, 5))
    df.groupby('churn')[column]
    sns.distplot(df[column])
    plt.title(column)
    plt.show()
```



```
In [17]:
    for column in df.columns:
        plt.figure(figsize=(8, 8))
        sns.boxplot(x = 'churn', y = df[column], data = df)
        plt.xlabel("Отток")
        plt.ylabel("Посещений в неделю")
        plt.show()
```



```
0.8
          Посещений в неделю
             0.6
             0.4
             0.2
             0.0
                                                                     1
                                                 Отток
           # Посмотрим на средние значения признаков:
           df.groupby('churn')[column].agg('count').describe()
Out[18]: count
                        2.000000
                    2000.000000
          mean
          std
                    1327.946535
          min
                    1061.000000
          25%
                    1530.500000
          50%
                    2000.000000
                    2469.500000
          75%
                    2939.000000
          Name: churn, dtype: float64
```

for column in ['gender', 'near_location', 'partner', 'promo_friends', 'period']:

sns.countplot(x = df[column], hue='churn', data=df)

plt.figure(figsize=(5, 5))

plt.title(column)

plt.show()

1.0

In [18]:

In [19]:

- Вывод:
 - отток не зависит от пола, одинаков у мужчин и женщин
 - отток зависит от расположения- среди приезжих доля покинувших очень велика
 - доля покинувших среди клиентов фирм- партнеров значительно меньше
 - среди пришедших по промо-коду доля покинувших незначительна
 - наибольшее число покинувших у клиентов с месячным абонементом, с годовым близка к 0

Построим графики распределения признаков.

```
In [20]:
# Диаграммы распределения признаков для тех, кто ушёл (отток) и тех, кто остался (не попали в с
for col in df.drop('churn', axis = 1).columns:
    sns.scatterplot(x=df['churn'], y=df[col])
    plt.show()
```


Построим матрицу корреляций и отобразим её.

```
In [21]: #Вычисляем матрицу корреляций cm = df.corr() plt.figure(figsize = (10,10)) sns.heatmap(cm, annot=True, square=True)#Ваш код здесь plt.show()
```


Выводы:

- По графикам можно сделать выводы об оставшихся и оттоке:
 - отток почти не зависит от пола;
 - большинство посетителей проживает поблизости;
 - посетители, котрые могут получать скидки на абонемент от работодателей, чаще остаются;
 - среди ушедших большинство имело месячный абонемент.У оставшихся на 6 мес и 12 мес;
 - среди ушедших большинство одиночки, у оставшихся много групповых занятий;
 - среди ушедших большинство 26-28 лет,у оставшихся около 30;
 - суммарную выручку от других услуг дают почти одинаковую;
 - большинство уходит в первый месяц, оставшиеся посещают до 6 мес и более;
 - средняя частота посещения в неделю за весь период около 2 раз;
 - средняя частота посещения в неделю за предыдущий месяц различается. У ушедших около 1 раза, у оставшихся около 2.5 раз;
- Признаки наиболее сильно коррелирующие с целевой переменной (отток):
 - средняя частота посещения в неделю за предыдущий месяц;
 - возраст;
 - время с момента первого обращения в фитнес-центр;
- Признаки наиболее сильно коррелирующие между собой:
 - срок до окончания текущего действующего абонемента и длительность текущего действующего абонемента;
 - средняя частота посещений в неделю за предыдущий месяц и средняя частота посещений в неделю за все время с начала действия абонемента;
- Каких то ярких выбросов и перекосов не наблюдается. На этих данных можно строить модель. Но предварительно нужно удалить сильно коррелирующие столбцы.

```
In [22]: #y∂αлим столбцы
df1=df.drop(['month_end','a_total'],axis = 1)
```

Построим модель прогнозирования оттока клиентов

Разделим наши данные на признаки (матрица X) и целевую переменную (у)

```
In [23]:
           #разделим наши данные на признаки (матрица Х) и целевую переменную (у)
           X = df1.drop('churn', axis = 1)
           y = df1['churn']
           #разделяем модель на обучающую и валидационную выборки
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
           #создадим объект класса StandardScaler и применим его к обучающей выборке
           scaler = StandardScaler()
           scaler.fit(X_train)
           #обучаем scaler и одновременно трансформируем матрицу для обучающей выборки
           X_train_st = scaler. fit_transform(X_train)
           print(X_train_st[:5])
           #применяем стандартизацию к матрице признаков для тестовой выборки
           X_test_st = scaler.transform(X_test)
          [[-1.01511421 0.4175068 1.03175391 1.4800097 0.31628211 1.60502986
            -0.84769226  0.57944798  0.37161711  1.12734972  1.61822807]
            \begin{bmatrix} -1.01511421 & 0.4175068 & -0.96922337 & -0.67567125 & 0.31628211 & -0.81299073 \end{bmatrix} 
            -0.84769226  0.27046055  -1.09697378  5.88138322  -0.01340886]
           [ 0.98511083  0.4175068  1.03175391 -0.67567125  0.31628211  1.60502986
            -0.84769226 -0.65650171 -1.18374157 0.3350108 -0.80541199]
            \begin{bmatrix} -1.01511421 & 0.4175068 & 1.03175391 & 1.4800097 & 0.31628211 & 0.28610954 \end{bmatrix} 
            -0.84769226 -0.96548914 -0.95158829 1.39146269 0.64605224]
            \begin{bmatrix} -1.01511421 & 0.4175068 & -0.96922337 & -0.67567125 & -3.16173427 & -0.81299073 \end{bmatrix} 
            -0.84769226 -0.03852687 0.97190435 0.07089783 -0.16038147]]
```

регрессией и случайным лесом.

Зададим список моделей и напишем цикл, который выводит метрики по списку моделей

```
In [24]:
          # Для логистической регрессии
          models = [
              LogisticRegression()
          # функция, которая вычисляет МАРЕ
          def mape(y_true, y_pred):
              y_error = y_true - y_pred
              y_error_abs = [abs(i) for i in y_error]
              perc error abs = y error abs / y true
              mape = perc error abs.sum() / len(y true)
              return mape
          # функция, которая принимает на вход модель и данные и выводит метрики
          def make prediction(m, X train, y train, X test, y test):
              model = m
              model.fit(X_train, y_train)
              y pred = model.predict(X test)
              print(
                   'MAE:{:.2f} MSE:{:.2f} MAPE:{:.2f} R2:{:.2f} '.format(
                      mean_absolute_error(y_test, y_pred),
                      mean_squared_error(y_test, y_pred),
                      mape(y_test, y_pred),
                      r2_score(y_test, y_pred),
                  )
              )
          # напишем цикл, который выводит метрики по списку моделей
          for i in models:
              print(i)
              make_prediction(i, X_train, y_train, X_test, y_test)
         LogisticRegression()
         MAE:0.12 MSE:0.12 MAPE:inf R2:0.34
In [25]:
          #Для случайного леса
          models = [
              RandomForestClassifier()
          rf model = RandomForestClassifier(n estimators = 100, random state = 0) # Ваш код здесь
          # обучим модель случайного леса
          rf_model.fit(X_train, y_train)
          # воспользуемся уже обученной моделью, чтобы сделать прогнозы
          rf predictions = rf model.predict(X test)# Ваш код здесь
          rf_probabilities = rf_model.predict_proba(X_test)[:, 1]# Ваш код здесь
          # выведем все метрики
          for i in models:
              make_prediction(i, X_train, y_train, X_test, y_test)
         RandomForestClassifier()
         MAE:0.11 MSE:0.11 MAPE:inf R2:0.42
```

Оценим метрики accuracy, precision и recall для обеих моделей на валидационной выборке

```
In [26]: # зададим алгоритм для нашей модели логистической регрессии
model = LogisticRegression(random_state=0)
# обучим модель
model.fit(X_train_st,y_train)
```

```
#воспользуемся уже обученной моделью, чтобы сделать прогнозы
predictions = model.predict(X_test_st)
probabilities = model.predict_proba(X_test_st)[:,1]
# выведем значения predictions и probabilities на экран
print('Accuracy: {:.2f}'.format(accuracy_score(y_test, predictions)))
print('Precision: {:.2f}'.format(precision_score (y_test, predictions)))
print('Recall: {:.2f}'.format(recall_score (y_test, predictions)))
```

Accuracy: 0.90 Precision: 0.79 Recall: 0.82

```
In [27]:

# зададим алгоритм для новой модели на основе алгоритма случайного леса

rf_model = RandomForestClassifier(n_estimators = 100, random_state = 0) # Ваш код здесь

rf_model.fit(X_train_st, y_train)# обучим модель случайного леса

# воспользуемся уже обученной моделью, чтобы сделать прогнозы

rf_predictions = rf_model.predict(X_test_st)

rf_probabilities =rf_model.predict_proba(X_test_st)[:, 1]

# выведем значения predictions u probabilities на экран

print('Accuracy: {:.2f}'.format(accuracy_score(y_test, rf_predictions)))

print('Precision: {:.2f}'.format(precision_score (y_test, rf_predictions)))

print('Recall: {:.2f}'.format(recall_score (y_test, rf_predictions)))
```

Accuracy: 0.90 Precision: 0.81 Recall: 0.75

Вывод:

- у моделей логистической регрессии и случайного леса разница между precision и recall довольна ощутимая.
- У одной модели выше recall нужно выбирать ее, если у клуба достаточно ресурсов на удержание, и есть потребность удержать всех-всех клиентов.
- У дугой модели выше precision. ее нужно выбирать при ограниченных ресурсах и желании тратить их только на склонных с большой вероятностью к оттоку клиентов.

Обучим финальные модели и получим метрики классификации на основе значений прогнозного класса

```
In [28]: # обучим финальную модель
final_model = RandomForestRegressor( random_state = 0)
final_model.fit(X_train, y_train)
y_pred = final_model.predict(X_test)

In [29]: # создадим датафрейм с именами признаков и их важностью и выведем его по убыванию важности
fi_df = pd.DataFrame(data={'feature': X.columns, 'importance': final_model.feature_importances}
```

fi_df.sort_values('importance', ascending=False)

Out[29]:		feature	importance
	9	lifetime	0.376948
	10	a_month	0.205809
	5	period	0.121373
	8	a_charges	0.121324
	7	age	0.107472
	6	group_visits	0.014927
	3	promo_friends	0.012737
	0	gender	0.012571

```
2
                             0.010339
                   partner
               near_location
                             0.009955
                             0.006545
                    phone
In [30]:
           # обучим финальную модель
          final model = LogisticRegression( random state = 0)
          final_model.fit(X_train, y_train)
          y pred = final model.predict(X test)
In [31]:
          # создадим датафрейм с именами признаков и их важностью и выведем его по убыванию важности
          fi_df = pd.DataFrame(data={'feature': X.columns, 'coeff': final_model.coef_[0]})
          fi_df.sort_values('coeff', ascending=False)
Out[31]:
                   feature
                              coeff
```

```
1.935312
           phone
1
    near_location
                    0.677119
2
                   0.289962
          partner
0
                   0.239127
          gender
8
       a_charges
                  -0.007292
7
                  -0.108212
          period
                  -0.244443
6
                  -0.785333
      group_visits
   promo_friends
                  -0.982862
9
         lifetime
                  -1.207597
        a month -1.223977
```

feature importance

Вывод:

• исходя из анализа данных датафреймов, выбираем модель "Случайный лес", т.к. по важности признаков он более отвечает исследованию.

Сделаем кластеризацию клиентов

Стандартизируем данные

```
-0.83749845 -0.36349436 -0.1815923 -0.46008079 -0.02901851]
1.19403206 1.17120844 -0.87472237 -0.46008079 1.51045005]
[ 0.97970588  0.42788074  1.02686062  1.49716101  0.32681319 -0.8092194
 -0.83749845 -0.97737548 0.5336998 -0.19332863 -0.61454183]
[ \ 0.97970588 \ \ 0.42788074 \ \ -0.973842 \ \ \ \ -0.66793083 \ \ 0.32681319 \ \ -0.8092194
 1.19403206 1.478149
                         3.15330097 -0.19332863 0.82634551]
[ 0.97970588  0.42788074  1.02686062  1.49716101 -3.05985201
                                                           0.28989014
 1.19403206    0.86426788   -0.54676556   -0.46008079   -0.46525669]
 \begin{bmatrix} -1.0207145 & 0.42788074 & -0.973842 & -0.66793083 & 0.32681319 & -0.8092194 \end{bmatrix} 
 -0.83749845    0.25038676    0.73531552    -0.99358511    -0.68168915]
1.19403206 -1.89819716 -1.05387243 -0.72683295 -0.67224189]
 \begin{bmatrix} -1.0207145 & 0.42788074 & -0.973842 & -0.66793083 & 0.32681319 & -0.8092194 \end{bmatrix} 
 -0.83749845   0.55732732   -0.84731033   1.94068865   0.17507634]]
```

Построим матрицу расстояний и нарисуем дендрограмму

```
In [34]:

# Построим матрицу расстояний функцией Linkage()
linked = linkage(x_sc, method = 'ward')

# Дендрограмма
plt.figure(figsize=(15, 10))
dendrogram(linked, orientation='top')
plt.title('Hierarchial clustering')
plt.show()
```


Предложенное оптимальное число кластеров 4 — четыре разные цвета на графике

Обучим модель кластеризации на основании алгоритма K-Means и спрогнозируем кластеры клиентов

```
In [35]: # задаём модель k_means с числом кластеров 5
km = KMeans(n_clusters = 5, random_state=0)
# прогнозируем кластеры для наблюдений
labels = km.fit_predict(x_sc)
df['cluster_km'] = labels
```

Посчитаем кластеры

```
In [36]: # Отсортируем кластеры по убыванию.
df.cluster_km.value_counts()

Out[36]: 2 1064
3 1007
0 985
1 558
```

Name: cluster_km, dtype: int64

Вывод:

Out[38]:

386

- самый многочисленный 2 кластер 1064 чел
- самый маленький 4 386 чел.

Посчитаем метрику силуэта для нашей кластеризации

```
In [37]: # посчитаем метрику силуэта для нашей кластеризации print('Silhouette_score: {:.2f}'.format(silhouette_score(x_sc, labels)))

Silhouette_score: 0.14
```

Значение метрики силуэта принимает значения от -1 до 1. Чем ближе к 1, тем качественнее кластеризация.

Средние значения признаков для кластеров

```
In [38]: # Средние значения признаков для кластеров df.groupby('cluster_km').mean().T
```

cluster_km	0	1	2	3	4
gender	0.496447	0.500000	0.500940	0.534260	0.523316
near_location	0.995939	0.000000	1.000000	0.996028	0.862694
partner	0.892386	0.489247	0.217105	0.379345	0.471503
promo_friends	1.000000	0.078853	0.072368	0.009930	0.305699
phone	1.000000	1.000000	1.000000	1.000000	0.000000
period	6.922843	2.994624	2.010338	6.208540	4.777202
group_visits	0.524873	0.232975	0.277256	0.538232	0.427461
age	29.606091	28.679211	27.583647	30.699106	29.297927
a_charges	153.424651	137.125763	119.339956	176.259567	144.208179
month_end	6.332995	2.818996	1.941729	5.650447	4.466321
lifetime	4.283249	2.974910	1.922932	5.415094	3.940415
a_total	1.962217	1.764122	1.451098	2.322960	1.854211
a_month	1.919520	1.597146	1.203319	2.324220	1.723967
churn	0.119797	0.403226	0.563910	0.014896	0.266839

- Выводы из средних значений признаков для кластеров:
 - по полу кластеры почти не отличаются,в 0 доля мужчин минимальна,в 3 их больше
 - во 2 кластере живущих рядом 100%, в 1 все приезжие

- в 0 больше из фирм- партнеров более 89%, во 2 минимальна около 22%
- в 0 кластере больше пришедших по акции "друзья" 100%, в 3 всего около 1%
- самая большая длительность текущего действующего абонемента в 0 кластере почти 7 мес.
- самая маленькая длительность текущего действующего абонемента во 2 2 мес
- меньше всего групповых занятий в 1 кластере 23%
- больше всего групповых занятий в 3 кластере более 53%
- по возрасту кластеры почти не отличаются, во 2 чуть меньше, в 3 чуть больше
- меньше всех покупок совершают во 2 кластере, больше в 3
- срок до окончания текущего действующего абонемента самый большой в 0 кластере более 6 мес, самый маленький во 2 кластере менее 2 мес
- в кластере 2 собрались новички время с момента первого обращения в фитнес-центр менее 2 мес
- в кластере 3 старожилы время с момента первого обращения в фитнес-центр более 5 мес
- в кластере 3 самые мотивированные здесь значительно больше средняя частота посещений в неделю
- в кластере 2 минимальное посещение занятий 1.2 в неделю
- отток в текущем месяце больше во 2 кластере более 56%, минимальный в 3 менее 1.5%

Построим диаграммы для признаков кластеров

```
for column in ['gender', 'near_location', 'partner', 'promo_friends', 'period', 'month_end']:
    plt.figure(figsize=(5, 5))
    sns.countplot(x = df[column], hue='cluster_km', data=df)
    plt.title(column)
    plt.show()
```


• Выводы:

- по полу кластеры почти не различаются. в 3 меньше женщин
- клиенты 1 кластера преимущественно приезжие, 0,2и3 местные
- меньше всего от фирм- партнеров во 2 и 3 кластере, в 1 их большинство
- меньше всего по акции пришли клиенты 1,2 и 3 кластеров, в 0 их большинство
- длительность текущего действующего абонемента:
 - самая короткая во 2 кластере
 - самая большая в 0 и 3 кластерах
- месячных абонементов больше во 2 и 1 кластере, годовых в 0 и 3

```
for cluster in df['cluster_km'].unique():
    sns.distplot(df.query('cluster_km ==@cluster')['a_month'],label = cluster)
    plt.legend(title = 'Κластер')
    plt.show()
```



```
for cluster in df['cluster_km'].unique():
    sns.distplot(df.query('cluster_km ==@cluster')['age'],label = cluster)
    plt.legend(title = 'Κластер')
    plt.show()
```



```
for cluster in df['cluster_km'].unique():
    sns.distplot(df.query('cluster_km ==@cluster')['lifetime'],label = cluster)
    plt.legend(title = 'Κπαcτep')
    plt.show()
```



```
for cluster in df['cluster_km'].unique():
    sns.distplot(df.query('cluster_km ==@cluster')['a_charges'],label = cluster)
```

```
plt.legend(title = 'Кластер')
plt.show()
```



```
for cluster in df['cluster_km'].unique():
    sns.distplot(df.query('cluster_km ==@cluster')['month_end'],label = cluster)
    plt.legend(title = 'Κπαςτερ')
    plt.show()
```


• Вывод:

- в 3 кластере больше посещений занятий в неделю, во 2 минимально
- самые возрастные в 3, самые молодые во 2
- во 2 кластере минимальное время с момента первого обращения в фитнес-центр
- количество покупок больше в 3 кластере, но сумма меньше, во 2 наоборот- покупок больше, сумма меньше
- во 2 меньше срок до окончания текущего действующего абонемента

Построим ящики с усами

```
for column in ['age', 'a_charges', 'lifetime', 'a_month', 'month_end']:
    plt.figure(figsize=(5, 5))
    sns.boxplot(x = 'cluster_km', y = df[column], data = df)
    plt.show()
```


Выводы:

- средний медианный возраст ниже у клиентов во 2 кластере
- они же совершают меньше покупок
- время с момента первого обращения в фитнес-центр меньше у 2 кластера
- больше всего занятий в неделю у 1 кластера, меньше у 2
- срок до окончания текущего действующего абонемента больше в 0 и 3 кластерах

Посчитаем долю оттока для каждого кластера

```
In [46]:
# Для каждого полученного кластера посчитайте долю оттока
df['cluster_km'] = labels
df.groupby('cluster_km').agg({'churn':'mean'})
```

Out[46]:

churn

cluster_km

- **0** 0.119797
- 1 0.403226
- **2** 0.563910
- **3** 0.014896

churn

cluster km

- 4 0.266839
- Вывод:
 - самый верный 3 кластер- минимальная доля оттока менее 1.5%
 - самый ненадежный 2 кластер- более 56%

Выводы и базовые рекомендации по работе с клиентами

Выводы

- Надежные кластеры 0 и 3
- Самые лучшие показатели в 0 кластере:
 - жители района
 - сотрудники компаний-партнеров
 - занимаются с друзьями
 - большая длительность действующего абонемента
 - групповые занятия
 - совершают много покупок
 - большое время с момента первого обращения в фитнес-центр
 - среднее число занятий в неделю
 - небольшой отток.
- Самый ненадежный 2:
 - хуже по всем показателям.

Рекомендации по работе с клиентами

- Нам необходимо:
 - Поддерживать и мотивировать "хорошие кластеры"
 - Глубже сегментировать оттекающих, к каждому сегменту тестировать индивидуальные предложения
 - Выстроить предиктивную систему аналитики и действовать не после оттока, а до него.
 - Привлечение новых клиентов по акции "приведи друга"
 - Активная реклама клуба в районе его расположения
 - Повышение вовлеченности на групповых занятиях (например внедрение элементов геймификации), поощрение их посещения
 - Расширение программы привлечения сотрудников компаний-партнеров и списка самих партнеров