Benchmarking Differentially Private Synthetic Data Generation Algorithms

Yuchao Tao^{1,3} Ryan McKenna^{1,2} Michael Hay^{1,4} Ashwin Machanavajjhala^{1,3} Gerome Miklau^{1,2}

1 Tumult Labs, USA 2 University of Massachusetts Amherst, USA 3 Duke University, USA 4 Colgate University, USA

Algorithms

Inclusion Criteria

1.	End-to-End DP
2.	Tabular Data

- 3. Selected **Publication Venue** or Library
- 4. Publicly Available Source Code
- 5. No Public Data

Algorithm **Type** Marginal **MWEMPGM** Marginal PrivBayes Marginal DPGAN GAN **DPCTGAN** GAN PATEGAN GAN PATECTGAN GAN Workload Workload **RON-GAUSS**

Marginal-based Algorithms Approximate joint distribution by low-dimensional marginals

Metrics Distribution Similarit Corr Pairwise Correlation Similarity Edge Width: Correlation Classification Accuracy

Datasets									
Name	Records	Cat.	Numeric	Label					
Shopping	12330	9	10	Yes					
Adult	32561	9	6	Yes					
Bank	45211	13	8	Yes					
Census	299285	29	12	Yes					
Car	1728	7	0	Yes					
Mushroom	8124	23	0	Yes					
Scooter	27715	0	5	No					
Epsilor with delta = 1		0.1	1.0	10					

Findings

F1: No algorithm dominates.

		Metric (group)									
Mechanism	GT	Ind	Pair	Corr	F1						
MST	69%	95%	81%	52%	44%						
MWEM-PGM	19%	0%	14%	29%	33%						
PrivBayes	9%	0%	0%	19%	17%						
Kamino	1%	0%	0%	0%	6%						
FEM	0%	0%	0%	0%	0%						
RAP	1%	0%	0%	5%	0%						
PATECTGAN	4%	5%	5%	5%	0%						
DPCTGAN	1%	0%	0%	5%	0%						
RonGauss	0%	0%	0%	0%	0%						
DPGAN	0%	0%	0%	0%	0%						
PATEGAN	0%	0%	0%	0%	0%						
10000000000000000000000000000000000000	0%	0%	0%	0%	0%						

we count an mechanism as optimal if it achieves highest score in average. Here we report the optimal rate stratified by metrics.

F2: Marginal-based approaches are highly ranked

		Metric (group)										
Mechanism	GT	Ind	Pair	Corr	F1							
MST	1.56	1.05	1.24	2.00	2.00							
MWEM-PGM	2.88	2.76	2.62	3.86	2.17							
PrivBayes	4.54	5.43	5.67	3.29	3.67							
Kamino	5.26	4.27	4.93	7.87	3.67							
FEM	4.91	4.30	4.35	5.95	5.06							
RAP	5.94	5.83	5.39	7.17	5.27							
PATECTGAN	6.17	6.45	5.90	4.90	7.65							
DPCTGAN	6.56	6.84	6.68	5.16	7.75							
RonGauss	7.35	7.06	7.11	7.61	7.61							
DPGAN	8.46	9.06	9.44	6.78	8.60							
PATEGAN	8.99	9.85	9.70	7.05	9.41							
venera Deals Ca		مراج المحادث والما										

Average Rank. For a combination of metric, dataset and epsilon, we rank all the mechanisms by their average score. Here we report the average rank stratified by metrics.

F3: Many algorithms fail to preserve individual attribute distributions.

	Mechanism											
Dataset	Indep	MST	PrivBa	MWE	RAP	Kamino	FEM	DPGAN	PATEC	RonGa	DPCT	PATE
Adult	0.98	0.98	0.74	0.95	0.70	0.85	0.76	0.59	0.57	0.59	0.59	0.46
Mushroom	0.99	0.99	0.97	0.95	0.88	0.78	0.78	0.70	0.68	0.68	0.67	0.58

Metric "Ind" at epsilon = 1

F4: Marginal-based algorithms consistently obtain the highest correlation accuracy.

F5: Many algorithms fail to preserve correlations more accurately than independent.

		Mechanism										
Dataset	MST	MWE	PrivBa	Indep	PATEC	DPCT	FEM	RonGa	DPGAN	Kamino	PATE	RAP
Adult	0.71	0.66	0.60	0.53	0.53	0.50	0.49	0.42	0.35	0.09	0.38	0.32
Mushroom	0.36	0.42	0.15	0.13	0.13	0.13	0.18	0.36	0.40	0.38	0.34	0.34

Metric "Corr" at epsilon = 1. Color indicates below (blue) or above (orange) the baseline, independent.

F6: Marginal-based approaches preserve the classification accuracy

F7: GAN-based approaches fail to preserve the classification accuracy better than a simple majority classifier.

	Mechanism												
Dataset	MST	MWE	FEM	PrivBa	RonGa	Kamino	RAP	DPGAN	Indep	PATE	PATEC	DPCT	
Adult	0.63	0.74	0.44	0.66	0.39	0.66	0.55	0.33	0.45	0.35	0.43	0.39	
Mushroom	0.98	0.97	0.90	0.77	0.77	0.76	0.70	0.69	0.50	0.50	0.43	0.36	

Metric "F1" at epsilon = 1. Color indicates below (blue) or above (orange) the baseline, independent

Qualitative Analysis: One-way Marginal

- A higher 1-TVD is better.
- Marginal-based algorithms (MST, MWEM-PGM and PrivBayes) accurately preserve the one-way marginal distributions.
- Many algorithms fail to preserve one-way marginal distributions accurately. For example, at the bottom, DP-CTGAN has 1-TVD 0.5 and visually it has a significant distortion of distribution.

One-way marginal distributions of a single attribute from dataset Adult (marked as Ground Truth) and from sample synthetic datasets generated by all algorithms at epsilon = 1 The metric score is reported at the column 1-TVD, which measures the 1 - total variational distance of the distributions between the ground truth and the one of a synthetic data. Algorithm Independent is to assume all attributes are independent, add Laplace noise to all the one-way marginals and sample each attribute independently.

Qualitative Analysis: Correlation

- A higher CorAcc is better.
- Marginal-based algorithms (MST, MWEM-PGM and PrivBayes; first column) preserve the correlation structure accurately.
- Many algorithms fail to preserve the correlation structure more accurately than the baseline, Independent. For example, at the bottom right, Kamino has CorAcc 0.17 and visually it over-correlate many attribute pairs.

