ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 10 gennaio 2019

Esercizio A

$R_1 = 50 \Omega$	$R_9 = 12 \text{ k}\Omega$	V_{cc} V_{cc} V_{cc} V_{cc}
$R_3 = 18 \text{ k}\Omega$	$R_{10} = 2.9 \text{ k}\Omega$	R_2 R_4 C_2 R_8 R_{11}
$R_4=2350\;\Omega$	$R_{11}=3.5~k\Omega$	R_1 C_1 R_5 R_7 R_{10}
$R_5 = 50 \; \Omega$	$R_{12} = 3 \text{ k}\Omega$	Q_2 R_{13} C_3
$R_6=2\;k\Omega$	$R_{13} = 100 \Omega$	R_3 R_3
$R_7 = 1 \text{ k}\Omega$	$R_{14} = 10 \text{ k}\Omega$	R_{12} R_{14} R_{12} R_{14} R_{14} R_{14} R_{14} R_{15} R_{14} R_{15} R
$R_8 = 10 \text{ k}\Omega$	$V_{\rm CC} = 18 \text{ V}$	n lin

 Q_1 è un transistore MOS a canale p resistivo con $V_T = -1$ V con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V²; Q_2 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₂ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 11 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₂ = 19191 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.53$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A+D}\right)\left(\overline{B} + \overline{C}\,\overline{D} + E\right) + \left(\overline{\overline{A}+D}\right)\left(\overline{C} + E\right) + \overline{A}\left(\overline{B}D + C\overline{E}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 18)

Esercizio C

$R_1 = 200 \ \Omega$	$R_6 = 3400 \Omega$
$R_2 = 800 \ \Omega$	$R_7 = 2000 \Omega$
$R_3 = 200 \Omega$	C = 1 μF
$R_4 = 3800 \ \Omega$	$V_{CC} = 6 \text{ V}$
$R_5 = 600 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = -1$, gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 13300 Hz)