

CODEGETY-GWBN-VESIT

63/14/5/11/9/11/9/12/9/45

Category Code: C1

Problem Statement Title: DigiKisan - AI & GIS based Smart

Farming

Team Name: CodeYodha

Institute Name: Vivekanand Education Society's Institute of Technology

DATA COLLECTION & ANALYSIS

- GIS MAPPING FOR LAND ANALYSIS
- **WEATHER & SOIL DATA INTEGRATION USING IOT & APIS**
- MACHINE LEARNING FOR PREDICTIONS

COMMUNITY-DRIVEN FARMING SOLUTIONS

- FORUM FOR KNOWLEDGE SHARING & **ISSUE RESOLUTION**
- HINDI-ENGLISH LANGUAGE SUPPORT FOR ACCESSIBILITY

AI-POWERED CROP & **IRRIGATION ADVISORY**

- **CROP RECOMMENDATIONS BASED ON** SOIL, CLIMATE & PAST YIELD
- **FUZZY LOGIC FOR SMART IRRIGATION SCHEDULING**

MARKET INTEGRATION & DECISION SUPPORT

- **REAL-TIME CROP PRICES & BUYER** CONNECTIONS
- **AI-POWERED ALERTS FOR PEST OUTBREAKS & WEATHER RISKS**

77

WHY AND HOW IT WAS IMPLEMENTED

WHY: TRADITIONAL FARMING RELIES ON EXPERIENCE RATHER THAN DATA-DRIVEN INSIGHTS, LEADING TO INEFFICIENCIES IN CROP SELECTION, SOIL HEALTH MANAGEMENT, AND IRRIGATION PLANNING.

HOW: DIGIKISAN INTEGRATES IOT SENSORS, APIS, AND GIS-BASED MAPPING TO COLLECT DATA ON SOIL MOISTURE, WEATHER CONDITIONS, AND PAST CROP YIELDS. THIS DATA IS ANALYZED USING MACHINE LEARNING (ML) FOR PREDICTIONS AND DECISION-MAKING.

DATA COLLECTION & ANALYSIS

TECH STACK

66

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

• MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)

 CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA

• IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

TECH STACK

64

- FORUM DEVELOPMENT: NODE.JS, POSTGRESQL
- CHATBOT (FASAL AI): NLP-BASED
 CHATBOT USING PYTHON (NLTK, GPT
 MODELS)
- MULTILINGUAL SUPPORT: HINDI-ENGLISH ENABLED CHATBOT

CURRENT PROGRESS

66

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS
 API, OPENWEATHER API, NASA EARTH
 DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

FEEDBACK BY MENTOR

66

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS
 API, OPENWEATHER API, NASA EARTH
 DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

WHY AND HOW IT WAS IMPLEMENTED

WHY: FARMERS STRUGGLE WITH MARKET ACCESS, PRICING, AND BUYER CONNECTIONS.

77

HOW: DIGIKISAN PROVIDES REAL-TIME CROP PRICES AND NEAREST BUYER CONNECTIONS. AI-POWERED ALERTS NOTIFY FARMERS OF POTENTIAL MARKET FLUCTUATIONS.

TECH STACK

- 66
 - MARKET DATA INTEGRATION: APIS FOR REAL-TIME PRICE UPDATES
 - BUYER-SELLER MATCHING: POSTGRESQL DATABASE & AI-DRIVEN ANALYTICS
 - BLOCKCHAIN (FUTURE INTEGRATION): PLANNED FOR DIRECT TRANSACTIONS.

CURRENT PROGRESS

- 66
 - MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
 - CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA
 - IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

FEEDBACK BY MENTOR

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

- 66
- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS
 API, OPENWEATHER API, NASA EARTH
 DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

THE DIGIKISAN AI CHATBOT IS DESIGNED TO ASSIST FARMERS IN THEIR NATIVE LANGUAGES, MAKING SMART FARMING ACCESSIBLE AND USER-FRIENDLY.

OUR MULTILINGUAL CHATBOT

नेक लह. नयी पहलात

GIS

DIGIKISAN INTEGRATES GEOGRAPHIC INFORMATION SYSTEM (GIS) TECHNOLOGY TO PROVIDE PRECISION FARMING SOLUTIONS USING REAL-TIME GEOSPATIAL DATA.

GEOGRAPHIC INFORMATION SYSTEM

FIS

THE FUZZY INFERENCE SYSTEM (FIS) IN DIGIKISAN HELPS FARMERS MAKE SMART, DATA-DRIVEN DECISIONS BY ANALYZING MULTIPLE FACTORS SUCH AS SOIL HEALTH, WEATHER CONDITIONS, AND CROP REQUIREMENTS.

FUZZY INFERENCE SYSTEM

TECH STACK

66

- NLP MODELS: GPT-BASED AI MODELS
- LANGUAGES: HINDI & ENGLISH (EXPANDING TO MORE)
- INTEGRATION: WHATSAPP & WEB-BASED CHATBOT

CURRENT PROGRESS

66

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS
 API, OPENWEATHER API, NASA EARTH
 DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

FEEDBACK BY MENTOR

66

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

WHY AND HOW IT WAS IMPLEMENTED

WHY: GIS ENABLES PRECISION FARMING BY MAPPING SOIL QUALITY, IRRIGATION NEEDS, AND CLIMATE TRENDS.

44

HOW: INTEGRATED GIS TO GENERATE REAL-TIME FARM MAPS, CROP SUITABILITY ZONES, AND WATER USAGE PATTERNS.

77

TECH STACK

44

- GIS SOFTWARE: POSTGRESQL (POSTGIS), QGIS
- MAPPING APIS: GOOGLE MAPS, NASA EARTH DATA

CURRENT PROGRESS

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

FEEDBACK BY MENTOR

66

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

WHY AND HOW IT WAS IMPLEMENTED

WHY: TRADITIONAL DECISION-MAKING STRUGGLES WITH UNCERTAINTY IN FARMING VARIABLES.

77

66

HOW: IMPLEMENTED FIS-BASED DECISION-MAKING FOR CROP SELECTION AND IRRIGATION.

TECH STACK

- GIS SOFTWARE: POSTGRESQL (POSTGIS), QGIS
- MAPPING APIS: GOOGLE MAPS, NASA **EARTH DATA**

CURRENT PROGRESS

- FUZZY LOGIC TOOLS: MATLAB, PYTHON
- (SCIKIT-FUZZY)
 REAL-TIME DATA INPUT: IOT-BASED SOIL & WEATHER SENSORS

FEEDBACK BY MENTOR

66

- FRONTEND: REACT.JS, TAILWIND CSS
- BACKEND: NODE.JS, EXPRESS.JS
- DATABASE: POSTGRESQL WITH POSTGIS FOR GEOSPATIAL DATA

·

- MACHINE LEARNING: PYTHON (SCIKIT-LEARN, TENSORFLOW)
- CLOUD & API SERVICES: GOOGLE MAPS API, OPENWEATHER API, NASA EARTH DATA
- IOT & SENSORS: SOIL MOISTURE SENSORS, WEATHER MONITORING DEVICES

FRONTEND (USER INTERFACE)

- REACT.JS USED FOR BUILDING A DYNAMIC AND INTERACTIVE USER INTERFACE.
- TAILWIND CSS PROVIDES A RESPONSIVE AND CUSTOMIZABLE DESIGN FOR A CLEAN UI/UX. WHY IT WAS CHOSEN?
- 1. FAST RENDERING: REACT'S VIRTUAL DOM IMPROVES PERFORMANCE.
- 2. REUSABLE COMPONENTS: MAKES DEVELOPMENT MODULAR AND SCALABLE.
- 3. USER-FRIENDLY DESIGN: TAILWIND HELPS CREATE A MOBILE-RESPONSIVE UI FOR FARMERS.

BACKEND (SERVER-SIDE LOGIC)

- NODE.JS + EXPRESS.JS HANDLES API REQUESTS, AUTHENTICATION, AND BUSINESS LOGIC.
- RESTFUL APIS ENABLE COMMUNICATION BETWEEN FRONTEND AND BACKEND.
 WHY IT WAS CHOSEN?
- 1. SCALABILITY: HANDLES LARGE AMOUNTS OF USER REQUESTS EFFICIENTLY.
- 2. FAST & LIGHTWEIGHT: USES ASYNCHRONOUS PROGRAMMING FOR BETTER PERFORMANCE.

DATABASE (STORAGE & RETRIEVAL)

- POSTGRESQL A RELATIONAL DATABASE USED FOR STRUCTURED DATA STORAGE.
- POSTGIS A POSTGRESQL EXTENSION FOR HANDLING GIS (GEOSPATIAL) DATA.
 WHY IT WAS CHOSEN?
- 1. SUPPORTS COMPLEX QUERIES: IDEAL FOR HANDLING LARGE AGRICULTURAL DATASETS.
- 2. GEOSPATIAL CAPABILITIES: ESSENTIAL FOR GISBASED PRECISION FARMING.

TECHNOLOGY USED:

- PYTHON PRIMARY LANGUAGE FOR AI MODELS.
- SCIKIT-LEARN USED FOR PREDICTIVE ANALYTICS AND CLASSIFICATION MODELS.
- TENSORFLOW USED FOR DEEP LEARNING MODELS (E.G., CROP DISEASE DETECTION).
- NLTK & GPT NATURAL LANGUAGE PROCESSING (NLP) TOOLS FOR THE FASAL AI CHATBOT.

WHY IT WAS CHOSEN?

- 1. POWERFUL ML LIBRARIES: PYTHON'S ECOSYSTEM IS BEST FOR DATA SCIENCE.
- 2. OPTIMIZED PREDICTIONS: TENSORFLOW PROVIDES ACCURATE AIDRIVEN FARMING INSIGHTS.
- 3. MULTILINGUAL NLP: HELPS CREATE THE CHATBOT FOR FARMERS IN REGIONAL LANGUAGES.

- GOOGLE MAPS API FOR FARM MAPPING AND GEOSPATIAL ANALYSIS.
- NASA EARTH DATA API PROVIDES CLIMATE AND SOIL INFORMATION.
- QGIS OPEN-SOURCE GIS TOOL FOR DATA VISUALIZATION.
 WHY IT WAS CHOSEN?
- 1. REAL-TIME MAPPING: PROVIDES PRECISION FARMING RECOMMENDATIONS.
- 2. LAND SUITABILITY ANALYSIS: HELPS OPTIMIZE CROP SELECTION.

TECHNOLOGY USED:

- IOT SENSORS FOR REAL-TIME SOIL MOISTURE AND WEATHER DATA.
- GOOGLE FIREBASE FOR REAL-TIME ALERTS AND NOTIFICATIONS.
- OPENWEATHER API FETCHES WEATHER FORECASTS FOR PREDICTIVE ANALYTICS.

WHY IT WAS CHOSEN?

- 1. REAL-TIME MONITORING: HELPS FARMERS RECEIVE INSTANT ALERTS.
- 2. REMOTE ACCESSIBILITY: CLOUD-BASED ARCHITECTURE MAKES DATA ACCESSIBLE ANYWHERE.

USE CASE

- REGISTER & LOGIN FARMERS SIGN UP VIA OTP AND ENTER FARM DETAILS. (TECH: FIREBASE, POSTGRESQL) 2. FARM DATA COLLECTION – IOT SENSORS, WEATHER APIS, AND MARKET DATA ARE COLLECTED. (TECH: OPENWEATHER
- AI-POWERED ADVISORY FARMERS ASK THE FASAL AI CHATBOT FOR CROP & IRRIGATION ADVICE. (TECH:
- TENSORFLOW, NLP, FUZZY LOGIC)
- COMMUNITY SUPPORT FARMERS JOIN FORUMS TO DISCUSS PROBLEMS & GET EXPERT HELP. (TECH: NODE.JS,
- MARKET INTEGRATION REAL-TIME CROP PRICES & AI-DRIVEN SELLING RECOMMENDATIONS. (TECH: MARKET APIS, AI, BLOCKCHAIN - FUTURE)
- SMART ALERTS FARMERS RECEIVE IRRIGATION, PRICE, & WEATHER NOTIFICATIONS. (TECH: FIREBASE, 6.

RESULT: BETTER FARMING DECISIONS, HIGHER PROFITS, AND IMPROVED SUSTAINABILITY! 🚀


```
Soil Health Analysis: {'ndvi_mean': {'type': 'Image', 'bands': [{'id': 'NDVI' Weather Data: {'coord': {'lon': -74.006, 'lat': 40.7128}, 'weather': [{'id':
```


Researches and references

GIS-BASED SOIL PROFILE AND GEOMORPHOLOGY MAP,
HIGHLIGHTING DIVERSE LANDFORMS FOR SUSTAINABLE
AGRICULTURE, IRRIGATION PLANNING, AND ENVIRONMENTAL

MANAGEMENT.

Reference: Apat, Shraban & Mishra, Jyotirmaya & Padhy, Dr. Neelamadhab & Raju, Srujan. (2023). An Artificial Intelligence-based Crop Recommendation System using Machine Learning. Journal of Scientific & Industrial Research. 82. 558-567. 10.56042/jsir.v82i05.1092.

HISTOGRAMS TO ANALYZE RAINFALL, TEMPERATURE, AND MACRONUTRIENT DISTRIBUTION IN RICE FIELDS DURING TWO SEASONS (KHARIF AND RABI) IN THE REGION USED FOR MACHINE LEARNING IMPLEMENTATION

EXPANDING AI MODELS

ADD SUPPORT FOR MORE CROPS AND SPECIFIC PEST/DISEASE DETECTION MODELS.

GOVERNMENT & NGO COLLABORATION

PARTNERING WITH AGRICULTURAL AGENCIES TO PROMOTE AI ADOPTION IN FARMING.

BLOCKCHAIN-BASED MARKET PLATFORM

DIRECT FARMER-TO-BUYER TRANSACTIONS ENSURING FAIR PRICING.

MULTILINGUAL SUPPORT

VOICE & TEXT-BASED AI CHATBOT IN REGIONAL LANGUAGES FOR BETTER FARMER ACCESSIBILITY.

IOT-BASED AUTOMATED IRRIGATION

INTEGRATING AI WITH SMART IRRIGATION SYSTEMS THAT AUTO-REGULATE WATER SUPPLY.

OBJECTIVE:

DEVELOP A DECENTRALIZED, FAIR-TRADE PLATFORM WHERE FARMERS SELL CROPS DIRECTLY TO BUYERS, REDUCING MIDDLEMEN EXPLOITATION.

IMPLEMENTATION PLAN:

- CREATE A BLOCKCHAIN-POWERED TRANSACTION SYSTEM.
- FARMERS LIST THEIR PRODUCE WITH TRANSPARENT PRICING.
- BUYERS PLACE ORDERS WITH SMART CONTRACTS, ENSURING SECURE PAYMENTS.

OBJECTIVE:

DEVELOP A DECENTRALIZED, FAIR-TRADE PLATFORM WHERE FARMERS SELL CROPS DIRECTLY TO BUYERS, REDUCING MIDDLEMEN EXPLOITATION.

- CREATE A BLOCKCHAIN-POWERED TRANSACTION SYSTEM.
- FARMERS LIST THEIR PRODUCE WITH TRANSPARENT PRICING.
- BUYERS PLACE ORDERS WITH SMART CONTRACTS, ENSURING SECURE PAYMENTS.

OBJECTIVE:

ENABLE FARMERS TO EASILY ACCESS GOVERNMENT SUBSIDIES, LOANS, AND SCHEMES BY INTEGRATING DIGIKISAN WITH OFFICIAL PORTALS.

- DEVELOP AN AUTOMATED SCHEME RECOMMENDER BASED ON FARMER PROFILE DATA.
- PROVIDE DIGITAL APPLICATION ASSISTANCE FOR SCHEMES.
- PARTNER WITH NGOS & AGRICULTURAL DEPARTMENTS TO INCREASE AI ADOPTION.

OBJECTIVE:

EXPAND THE FASAL AI CHATBOT TO SUPPORT REGIONAL LANGUAGES AND VOICE COMMANDS, MAKING IT ACCESSIBLE FOR ALL FARMERS.

- IMPLEMENT VOICE-TO-TEXT NLP FOR NON-LITERATE FARMERS.
- ADD SUPPORT FOR HINDI, MARATHI, TAMIL, TELUGU, AND OTHER LANGUAGES.
- IMPROVE CONTEXTUAL AI LEARNING FOR BETTER RESPONSES.

OBJECTIVE:

INTEGRATE IOT-POWERED SMART IRRIGATION SYSTEMS THAT OPTIMIZE WATER USAGE BASED ON REAL-TIME WEATHER AND SOIL CONDITIONS.

- DEPLOY IOT SOIL MOISTURE SENSORS IN FARMS.
- USE AI TO CALCULATE IRRIGATION NEEDS AND AUTOMATICALLY TRIGGER WATERING SYSTEMS.
- COMBINE REAL-TIME WEATHER DATA TO AVOID UNNECESSARY IRRIGATION.