TEORÍA GENERAL DE SISTEMAS Un poco de historia

Dado que el carácter fundamental de la materia viva es su organización, la investigación usual de las partes y los procesos aislados no pueden arrojar una completa explicación del fenómeno vital. Esta investigación no nos da ninguna información sobre la coordinación de las partes de los procesos.

Lwdinvg V. Bertalanfy¹

Cuando se habla acerca del origen de la Teoría General de Sistemas (TGS) debemos inmediatamente mencionar a Lwdinvg Vogn Bertalanfy, pionero en esta área de estudio y a quién se le atribuye el haberla enunciado.

Bertalanfy, biólogo de profesión, encontraba que no era suficiente el paradigma reduccionista para explicar fenómenos de los seres vivos, por lo cual empezó a realizar estudios a partir de la organización existente en dichos seres, contemplando entonces la idea de sistema como un conjunto organizado de elementos donde era tan importante la organización como los elementos mismos. Para él, era vital la consideración del organismo como un todo o sistema y consideraba que el objetivo principal de las ciencias biológicas era el descubrimiento de los principios de organización en los diversos niveles².

Estas ideas, fueron presentadas finalmente después de la Segunda Guerra Mundial, y como el mismo Bertalanfy indica, fue una sorpresa para él, que aquellas ideas

¹Bertalanfy Ludwig Von. Teoría General de los Sistemas. Fundamentos, desarrollos, aplicaciones. Fondo de Cultura Económica. México. 1995.

² Ibid.

coincidieran con líneas de pensamiento que venían desarrollando otros científicos de la época. De manera que, la teoría general de sistemas no era entonces una tendencia aislada y propia de dicho autor, sino que se venía convirtiendo en una nueva corriente del pensamiento moderno³.

Según Bertalanfy, «existen modelos, principios y leyes aplicables a sistemas generalizados o a sus subclases, sin importar su particular género, la naturaleza de sus elementos componentes y las relaciones o "fuerzas" que imperen entre ellos. Parece legítimo pedir una teoría no ya de sistemas de clase más o menos especial, sino de principios universales aplicables a los sistemas en general»⁴ De aquí, podríamos decir, que surgió la Teoría General de Sistemas como nueva disciplina, buscando encontrar los principios existentes en los sistemas que pueden ser aplicados a todos ellos.

A partir de esto, varios interesados en el tema conformaron lo que ellos denominaron la Sociedad para la Investigación General de los Sistemas, promovida por Rapaport, Ralph Gerard, Boulding y Bertalanfy, quienes se encontraron en el primer año del *Center for Advanced Study in the Behavioral Sciencies* (Palo Alto) y además, ya venían trabajando en ideas similares acerca de una teoría que definiera el comportamiento general de los diferentes sistemas.

Para fortalecer tal concepción de un sistema general, han surgido algunos avances que es importante mencionar:

•.....

La cibernética, ciencia que estudia los mecanismos de comunicación y control existentes en las personas y las máquinas. A partir de los mecanismos de realimentación, estudia el comportamiento auto controlado de los sistemas.

Según Heinz von Foerster «lo que distingue la noción de cibernética de otras, es el hecho fascinante de que en ella se piensa circularmente, no linealmente»⁵.

• La teoría de la información, que estudia la información y todo lo relacionado con ella: canales, comprensión de los datos, criptografía y otros. La información

³ Ibid.

⁴ Ibid.

⁵ Foerster Heinz von. Sistémica elemental desde un punto de vista superior. Colección bordes de vida. Fondo editorial Universidad EAFIT. Medellín. 2002.

es tratada como magnitud física y para caracterizar la información de una secuencia de símbolos se utiliza la entropía. Se parte de la idea de que los canales no son ideales, aunque muchas veces se idealicen las no linealidades, para estudiar distintos métodos para enviar información o la cantidad de información útil que se puede enviar a través de un canal⁶.

• La teoría de los juegos, cuyo objetivo es el análisis de los comportamientos estratégicos de los jugadores. En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al igual que en los juegos, su resultado depende de la conjunción de decisiones de diferentes agentes o jugadores. Se dice de un comportamiento que es estratégico cuando se adopta teniendo en cuenta la influencia conjunta sobre el resultado propio y ajeno de las decisiones propias y ajenas.

La Teoría de Juegos ha alcanzado un alto grado de sofisticación matemática y ha mostrado una gran versatilidad en la resolución de problemas⁷.

- La teoría de la decisión, referida al estudio de los procesos de toma de decisiones desde una perspectiva racional. En este contexto, todos los seres vivos se enfrentan al problema de toma de decisiones; pero a medida que aumenta la complejidad del ser vivo, aumenta la complejidad de las decisiones que debe tomar; por tanto, el nivel mayor de complejidad en la toma de decisiones estará en las organizaciones sociales⁸.
- La topología o matemáticas relacionales, se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad,

⁶ Tomado de http://es.wikipedia.org/wiki/Teoria de la informacion. Julio 13 de 2005.

⁷ Introducción a la teoría de juegos, disponible en http://www.eumed.net/cursecon/juegos/ Julio 13 de 2005.

⁸ Las organizaciones sociales se consideran en un nivel mayor de complejidad que el ser humano, dado que éstas están conformadas por las personas y las relaciones que se dan entre ellas. Este punto se mencionará cuándo se presente la jerarquía de los sistemas.

y lo que se requiere es que la transformación y su inversa sean ambas continuas. También se incluye el análisis de grafos y de nudos⁹.

• El análisis factorial, es una técnica que consiste en resumir la información contenida en una matriz de datos con V variables. Para ello se identifican un reducido número de factores F, siendo el número de factores menor que el número de variables. Los factores representan a las variables originales, con una pérdida mínima de información.

El modelo matemático del análisis factorial es parecido al de la regresión múltiple. Cada variable se expresa como una combinación lineal de factores no directamente observables¹⁰.

• La teoría general de los sistemas, que busca en el sentido más estricto, derivar, partiendo de una definición general de «sistema» como complejo de componentes interactuantes, conceptos característicos de totalidades organizadas, tales como interacción, suma, mecanización, centralización, competencia, finalidad y otros¹¹ y aplicarlos a fenómenos concretos.¹²

Todas estas disciplinas han contribuido y fortalecido los conceptos iniciales enunciados por Bertalanfy en la búsqueda de una Teoría General de los Sistemas.

Este apartado no pretende agotar todos los acontecimientos y aportes en el campo de la TGS, por el contrario, es solamente un abrebocas en el desarrollo histórico de la misma, pero para efectos del presente documento, no se continuará ahondando en este particular. A continuación, se presentan los conceptos más importantes relacionados con los sistemas.

⁹ Macho Stadler Marta. Qué es la topología. Revista Sigma No 20, pp 63-77. 2003.

¹⁰ Cuesta M y Herrero F. Introducción al Análisis Factorial. www.psico.uniovi.es Dpto_Psicologia/metodos/tutor.1/indice.html. Julio 13 /2005.

¹¹ Estos conceptos se tratarán en el siguiente apartado.

¹² Ibid.