Notes on MATH 535 Fall 2025

Derek Zeng*

October 14, 2025

Contents

Lecture 1: Topology on Metric Spaces	2
Lecture 2: Topology	3
Lecture 3: Continuous Map	5
Lecture 4: Topological Basis	7
Lecture 5-6: Homeomorphisms, Product/Coproduct Topology	9
Lectur 7: Open and Closed Maps, Quotient Topology	12
Lecture 8-9: Limit Points and Sequences	14
Lecture 9: Interier and Boundary	16
Lecture 10: Limit of Nets	17
Lecture 11-12: Compactness	18
Lecture 13: Compactness and Net Converges	21
Lecture 14: Compactness of Metric Space	22
Lecture 15-16: Compactness of Product Space (Tychonoff Theorem)	24
Lecture 17-18: Connectedness and Path Connectedness	27

 $^{*{\}tt derek6@illinois.edu}$

Lecture 1: Topology on Metric Spaces

Definition 1 (Euclidean distance). The Euclidean distance $\forall x, y \in \mathbb{R}^n$ is given by

$$d(x,y) := \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2} \tag{0.1}$$

The generalization of the idea of distance in \mathbb{R} gives the general definition of metric space.

Definition 2 (Metric space). A set X is said to be a metric space if there exists a map $d: X \times X \to \mathbb{R}$ such that $\forall x, y, z \in X$

- 1. (Symmetry) d(x,y) = d(y,x)
- 2. (Nondegenrate) $d(x,y) \ge 0$, and $d(x,y) = 0 \iff x = y$
- 3. (Triangule inequality) $d(x,y) + d(y,z) \ge d(x,z)$

The map d is said to be a metric on X

Definition 3 (Open ball). The open ball in the metric space (X, d) of radius r at $x \in X$ is $B_r := \{y \in X | d(x, y) < r\}$.

For open balls, we have the following lemma.

Lemma. Let (X,d) be a metric space for some $x \in X$ and $r \in [0,\infty)$, consider open ball $B_r(x)$. Then $\forall y \in B : \exists \rho > 0 : B_{\rho}(y) \subseteq B_r(x)$.

Proof. Since $y \in B_r(x)$, $d(x,y) \le r$. Let $\rho = r - d(x,y) \ge 0$. Then take arbitrarily $z \in B_\rho(y)$, $d(y,z) \le \rho = r - d(x,y)$, which implies $d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \rho = r$. Thus, $z \in B_r(x)$. Thus, $B_\rho(y) \subseteq B_r(x)$.

The lemma inspires the following definition.

Definition 4 (Open set in metric space). A subset $U \subseteq X$ is open if $\forall x \in U : \exists r > 0 : B_r(x) \subseteq U$.

An obvious result of this definition is that \emptyset , X, and any open ball in X are open.

Lemma. Let (X, d) be a metric space, we have the following results:

- 1. If $U, V \subseteq X$ is open, then $U \cap V$ is open.
- 2. If $\{U_{\alpha}\}_{{\alpha}\in A}$ is an arbitrary collection of open sets, then $\bigcup_{{\alpha}\in A}U_{\alpha}$ is open.

Proof. HW1 Problem 1. \Box

The properties of these properties can be generalized to the following. idea of an abstract topology.

Lecture 2: Topology

Definition 5 (Topological space). A topological space (X, \mathcal{T}_X) is a set X with a topology $\mathcal{T}_X \subseteq \mathcal{P}(X)$ such that

- 1. $\emptyset, X \in \mathcal{T}_X$
- 2. For some index set I and $\alpha \in I$, $\forall U_{\alpha} \in \mathcal{T}_X : \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}_X$
- 3. $\forall U, V \in \mathcal{T}_X : U \cap V \in \mathcal{T}_X$

The element of \mathcal{T}_X is called opensets.

Definition 6 (Claosed Sets). A subset $C \subseteq X$ of the topological space (X, \mathcal{T}) is said to be closed if $X \setminus C \in \mathcal{T}$.

Remark. A set can be open and closed at the same time, and can also be neither open nor closed.

Metrc on any metrc space induces a topology which contains all open sets in the sense of a metric space. An important example is the standard topology in Euclidean space:

Definition 7 (Standard Topology on \mathbb{R}). The standard topology $\mathcal{T}_{\text{standard}}$ on \mathbb{R}^n is topology induced by the Euclidean metric.

Also, for any nonempty set X has two trivial topologies.

Definition 8 (Trivial Topologies). The trivial topology on the nonempty set X is given by

- The indiscrete topology of X is defined by $\mathcal{T}_{\min} := \{\emptyset, X\}.$
- The discrete topology of X is defined by $\mathcal{T}_{\max} := \mathcal{P}(X)$.

Lemma. The discrete topology is the metric topology given by the metric $d: X \times X \to [0, +\infty)$,

$$d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases} \tag{0.2}$$

Proof. Check the open ball given by this metric: $B_1(x) := \{y \in X | d(x,y) < 1\} = \{x\}$. Thus, it is obvious that the metric gives the discrete topology.

Definition 9 (Hausdorff). A topological space (X, \mathcal{T}) is Hausdorff if $\forall x, y \in X : \exists U, V \in \mathcal{T}$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

Lemma. All metric spaces are Hausdorff.

Proof. Take $x, y \in X$ such that $x \neq y$, then r = d(x, y) > 0. Take $\rho = \frac{r}{2}$. If $B_{\rho}(x) \cap B_{\rho}(y) \neq \emptyset$, $\exists z \in X$ such that d(x, z) < r/2 and d(y, z) < r/2. However, that indecates d(x, z) + d(y, z) < d(x, y), which controdicts with triangle inequality. Thus, $B_{\rho}(x) \cap B_{\rho}(y) = \emptyset$

Remark. Not all topologies can be induced by a metric. A counterexample is given by the following topology called the cofinite topology on \mathbb{R} : $\mathcal{T} := \{\emptyset\} \cup \{U \subseteq \mathbb{R}\}$ such that $\mathbb{R} \setminus U$ is finite. Check this is a topology:

- $\emptyset \in \mathcal{T}$ and $\mathbb{R} \in \mathcal{T}$ since $\mathbb{R} \backslash \mathbb{R} = \emptyset$ is finite
- $\forall U, V \in \mathcal{T}$, $\mathbb{R} \setminus (U \cap V) = (\mathbb{R} \setminus U) \cup (\mathbb{R} \setminus V)$. Since both U and V are finite, $\mathbb{R} \setminus (U \cap V)$ is finite. So $U \cap V \in \mathcal{T}$
- If $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \mathcal{T},\ U_{\alpha}\neq\emptyset$.

$$\mathbb{R} \setminus \left(\bigcup_{\alpha \in A} U_{\alpha}\right) = \bigcap_{\alpha \in A} (\mathbb{R} \setminus U_{\alpha})$$

Since the intersection of finite sets are always finite, $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$.

Thus, \mathcal{T} is a topology.

Lemma. No metric on \mathbb{R} gives a cofinite topology \mathcal{T}

Proof. The space is not Hausdorff.

Theorem 1 (Defined Topology via Closed Sets). We can defined the topology on set X vis the collection of all closed subsets in X, denote as \mathcal{T}^c , which satisfy:

- $\bullet \ \emptyset, X \in \mathcal{T}^c$
- $\forall C_1, C_2 \in \mathcal{T}^c \implies C_1 \cap C_2 \in \mathcal{T}^c$
- $\forall \{C_{\alpha}\}_{\alpha \in A} \subseteq \mathcal{T}^c : \bigcap_{\alpha \in A} C_{\alpha} \in \mathcal{T}^c$

Proof. HW1.

Example. There are two important counterexamples to show the infinite intersection of open sets and the infinite union of closed sets may not be open/closed.

- $\bullet \bigcap_{n \in N} \left(\frac{1}{n}, \frac{1}{n} \right) = \{0\}$
- $\bigcup_{n \in N} \left[\frac{1}{n}, 2 \frac{1}{n} \right] = (0, 2)$

Lecture 3: Continuous Map

Recall that $f: \mathbb{R} \to \mathbb{R}$ is continuous if

$$\forall \epsilon > 0 : \exists \delta > 0 : (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon)$$

And the absolute value is a metric on \mathbb{R} . For more general metric spaces, we have the following definition:

Definition 10 (Continuous Map between Metric Spaces). let (X, d_X) and (Y, d_Y) be metric spaces, then the map $f: X \to Y$ is continuous if

$$\forall \epsilon > 0 : \exists \delta > 0 : (d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \epsilon)$$

Definition 11 (Continuous Map between Topological Spaces). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, then the map $f: X \to Y$ is continuous if $\forall U \in \mathcal{T}_Y : f^{-1}(U) \in \mathcal{T}_X$

Lemma. The definitions of continuity in metric space are equivalent to $B_{\epsilon}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$.

Proof. For a continuous map $f: X \to Y$, by the definition of continuous in a metric space, $x \in B_{\delta}(x_0) \iff f(x) \in B_{\epsilon}(f(x_0))$, then $x \in f^{-1}(B_{\epsilon}(f(x_0)))$.

Theorem 2. The two definitions of continuity above are consistent.

Proof. (Metric Continuous \Rightarrow Topological Continuous) If $f: X \to Y$ is metric continuous, then suppose $U \in \mathcal{T}_x$, $f^{-1}(U) \neq \emptyset$, $f^{-1}(U)$ is an open set. By the fact that U is open, $\forall f(x_0) \in U$, $\exists \epsilon > 0 : B_{\epsilon}(f(x_0)) \subseteq U$. Since f is metric continuous, by the lemma, $B_{\epsilon}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0))) \subseteq f^{-1}(U)$. Thus, $f^{-1}(U)$ continuous, f is topological continuous.

(Metric Continuous \Leftarrow Topological Continuous) Suppose $\forall U \in \mathcal{T}_Y, f^{-1}(U) \in \mathcal{T}_x$. Let $x_0 \in X, \forall \epsilon > 0$, then $B_{\epsilon}(f(x_0)) \subseteq Y$ is open. By assumption $f^{-1}(B_{\epsilon}(f(x_0)))$ is open in X, which implies $\forall x_0 \in f^{-1}(B_{\epsilon}(f(x_0))) : \exists \delta > 0 : B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$. By the lemma, f is metric continuous.

Now, suppose X has two topologies \mathcal{T}_1 and \mathcal{T}_2 .

Definition 12 (Coaser Topology and Finer Topology). If $\mathcal{T}_1 \subseteq \mathcal{T}_2$,

- \mathcal{T}_1 is smaller/coaser/weaker than \mathcal{T}_2 .
- \mathcal{T}_2 is bigger/finer/stronger than \mathcal{T}_1 .

Lemma. Let (X, \mathcal{T}_X) be a topological space, $Y \subseteq X$. Then $\mathcal{T}_Y := \{U \subset Y | \exists \tilde{U} \in \mathcal{T}_X, U = Y \cap \tilde{U}\}$ is the coarsest topology on Y such that the inclusion map $i: Y \to X$, i(y) = y is continuous.

Proof. First, we check the this is indeed a topology.

- $\emptyset = Y \cap \emptyset \in \mathcal{T}_{\mathcal{Y}}$, and $Y = Y \cap X \in \mathcal{T}_{Y}$
- $\forall U, V \in \mathcal{T}_Y : \exists \bar{U}, \bar{V} \in \mathcal{T}_X : U = Y \cap \bar{U}, V = Y \cap \bar{V}$ which implies

$$U \cap V = (Y \cap \bar{U}) \cap (Y \cap \bar{V}) = Y \cap (\bar{U} \cap \bar{V})$$

since $\bar{U}, \bar{V} \in \mathcal{T}_X, U \cap V \in \mathcal{T}_Y$.

• Given $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \mathcal{T}_Y: \forall {\alpha}\in A: \exists \bar{U}_{\alpha}\in \mathcal{T}_X: U_{\alpha}=Y\cap \bar{U}_{\alpha}, \text{ then }$

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} (\bar{U}_{\alpha} \cap Y) = \left(\bigcup_{\alpha \in A} \bar{U}_{\alpha}\right) \cap Y$$

by the fact that $\bigcup_{\alpha \in A} \bar{U}_{\alpha} \in \mathcal{T}_X$, $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}_Y$.

Thus, the subset topology \mathcal{T}_Y is indeed a topology. Then, we need to show that it is the smallest topology that makes the inclusion map $i = \mathrm{Id}\big|_Y : Y \to X$ to be continuous. [Derek: finish the proof]

Lecture 4: Topological Basis

Definition 13 (Topological Basis). Given a topological space (X, \mathcal{T}_X) , a basis is a subset $\mathcal{B} \subseteq \mathcal{T}_X$ such that

$$\forall U \in \mathcal{T}_X : \exists \{B_i\}_{i \in I} \subseteq \mathcal{B} : U = \bigcup_{i \in I} B_i$$

Example. An basis for \mathbb{R}^n with standard topology, is the set of all open balls in \mathbb{R}^n .

Lemma. Consider maps between topological spaces $f: X \to Y$ and $g: Y \to Z$. f, g continuous implies $g \circ f$ continuous.

Proof. By the continuity of g, $\forall U \subseteq Z$ open, $g^{-1}(U) \subseteq Y$ open; and by the continuity of f, since $g^{-1}(U)$ is open, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \subseteq X$ is open. Thus, $f \circ g$ is continuous.

Lemma. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, \mathcal{B} is a basis for \mathcal{T}_Y . Then the following propositions are equivalent:

- 1. $f: X \to Y$ continuous.
- 2. $\forall B \in \mathcal{B} : f^{-1}(B) \in \mathcal{T}_X$

Proof. $(1 \Rightarrow 2)$ Trivial.

 $(2 \Rightarrow 1)$ Suppose $\forall B \in \mathcal{B} : f^{-1}(B)$ open, then for any $U \in \mathcal{T}_Y : \exists \{B_i\}_{i \in I} \subset \mathcal{B} : U = \bigcup_{i \in I} B_i$

$$f^{-1}(U) = \bigcup_{i \in I} f^{-1}(B) \in \mathcal{T}_X$$

Thus, $f: X \to Y$ continuous.

Theorem 3. Let $\mathcal{B} \subseteq \mathcal{P}(X)$ satisfy the following conditions

- 1. $\bigcup \mathcal{B} = X$
- 2. $\forall B_1, B_2 \in \mathcal{B}$ then $B_1 \cap B_2$ is a union of elements of \mathcal{B}

Then, $\mathcal{T} := \{U \subseteq X | U = \bigcup \mathcal{A}\}$ for some $\mathcal{A} \subseteq \mathcal{B}$ is a topology on X generated by the basis \mathcal{B} .

Proof. To ensure \mathcal{B} is a basis, we first need to check that \mathcal{T} is a topology.

- $\emptyset = \bigcup \emptyset \in \mathcal{T}, X = \bigcup \mathcal{B} \in \mathcal{T}$
- $\forall U, V \in \mathcal{T} : \exists \mathcal{B}_1, \mathcal{B}_2 \subseteq \mathcal{B} : U = \bigcup \mathcal{B}_1, V = \bigcup \mathcal{B}_2$. Then

$$U \cap V = \bigcup (\mathcal{B}_1 \cap \mathcal{B}_2)$$

By the second condition, it is still being the union of element in \mathcal{B} . Thus $U \cap V \in \mathcal{T}$

• $\forall \{U_{\alpha}\}_{{\alpha}\in A}\subseteq \mathcal{T}: \forall U_{\alpha}\in \{U_{\alpha}\}_{{\alpha}\in A}: \exists B_{\alpha}:\subseteq \mathcal{B}.$ Then

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup \left(\bigcup_{\alpha \in A} \mathcal{B}_{\alpha}\right)$$

By the second assuption, $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$.

Thus, \mathcal{T} is indeed a topology and generated by the basis \mathcal{B} .

Definition 14 (Subbasis). Let (X, \mathcal{T}) be a topological space, the subset $S \subseteq \mathcal{T}$ is a subbasis of \mathcal{T} if $\forall U \in \mathcal{T}$ is a union of finite intersections of elements in S. Then,

$$\mathcal{B} = \left\{ \bigcap_{i=1}^{k} s_{a_i} | k \in \mathbb{N}, s_{a_i} \in S \right\}$$

is a basis of \mathcal{T} .

Corollary 1. Let X be a set, $S \subseteq \mathcal{P}(X)$. If $\bigcup S = X$. Then exists a unique coarsest topology \mathcal{T}_S that contains S such that S is the subbasis of \mathcal{T}_S .

Lecture 5-6: Homeomorphisms, Product/Coproduct Topology

Definition 15 (Homeomorphism). A continuous map $f: X \to Y$ is a homeomorphism if f is bijective and has a continuous inverse $f^{-1}: Y \to X$. The topological spaces X, Y are said to be homeomorphic.

Remark. f continuous does not imply f^{-1} continuous. An example is given by taking $I = (0, 2\pi]$ with the inherent topology from \mathbb{R} and considering the map

$$f: [0, 2\pi) \to S^1$$

 $\theta \mapsto (\cos \theta, \sin \theta)$

is continuous (we already proved that the inherent topology is the coarsest topology such that the inclusion map is continuous). However, the inverse is not continuous since the preimage of $[0, \pi/2)$ is the curve between (1,0) (included) and (0,1) (not included). This arc is not open on S^1 .

Definition 16 (Categorical Product). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, then given any maps $f_X : Z \to X$, $f_Y : Z \to Y$ on set $Z, f : Z \to X \times Y$ is the unique map such that we consider the projection

$$p_X: X \times Y \to Y,$$
 $p_Y: X \times Y \to Y$ $(x, y) \mapsto x$ $(x, y) \mapsto y$

we have $p_x \circ f = f_X$ and $p_Y \circ f = f_Y$, i.e. the following diagram commutes:

Definition 17 (Product Topology). The product topology $\mathcal{T}_{X\times Y}$ is the coarsest topology on $X\times Y$ that

- p_X, p_Y continuous
- For topological space (Z, \mathcal{T}_Z) , and the following continuous map

$$f_X: (Z, \mathcal{T}_Z) \to (X, \mathcal{T}_X)$$
 (0.3)

$$f_Y: (Z, \mathcal{T}_Z) \to (Y, \mathcal{T}_Y)$$
 (0.4)

The unique map $f = (f_X, f_Y)$ is continuous.

The construction of product topology is the following process. Notice that the preimage of the projection is given by

$$\forall U \in \mathcal{T}_X : p_X^{-1}(U) = U \times Y$$
$$\forall V \in \mathcal{T}_Y : p_Y^{-1}(V) = X \times V$$

Thus, a subbasis of the space is given by

$$S = \{U \times Y | U \in \mathcal{T}_X\} \cup \{X \times V | V \in \mathcal{T}_Y\}$$

Then a basis is given by

$$\mathcal{B} = \{U \times V | U \in \mathcal{T}_X, V \in \mathcal{T}_Y\}$$

Proposition 1. Under the topology given by the basis above, the projection p_X, p_Y and the unique map $f = (f_X, f_Y)$ are continuous for any continuous map f_X, f_Y .

Proof. [Derek: finish the proof]

Definition 18 (Arbitrary Product Space). Let $\{X_{\alpha}\}_{\alpha\in A}$ be a collection of sets, there exists a set $\prod_{\alpha\in A}X_{\alpha}$ and a collection of maps $\{p_{\beta}:\prod_{\alpha\in A}X_{\alpha}\to X_{\beta}|\beta\in A\}$ such that for all $Z\in\underline{\mathbf{Set}}$ and any collection $\{f_{\beta}:Z\to X_{\beta}|\beta\in A\}$, $\exists!f:Z\to\prod_{\alpha\in A}X_{\alpha}$ such that $p_{\beta}\circ f=f_{\beta}$.

To construct a topology on this arbitrary product, take

$$\prod_{\alpha \in A} X_{\alpha} = \left\{ g : A \to \bigcup_{\alpha \in A} X_{\alpha} | g(\alpha) \in X_{\alpha} \right\}$$

and $p_{\beta}(g) = g(\beta)$. In general, take $g_{\alpha} := g(\alpha), \{g_{\alpha}\}_{\alpha \in A} = g \in \prod_{\alpha \in A} X_{\alpha}$

Theorem 4 (Product Topology). Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in A}$ be a collection of topological spaces, then $\exists \mathcal{T}_{\text{prod}}$ be a topology on $\prod_{\alpha \in A} X_{\alpha}$ such that

- $p_{\beta}: (\prod_{\alpha \in A} X_{\alpha}, \mathcal{T}_{\text{prod}}) \to (X_{\beta}, \mathcal{T}_{\beta})$ is continuous for any $\beta \in A$
- for any topological space (Z, \mathcal{T}_Z) and the collection of continuous maps $\{f_\alpha : (Z, \mathcal{T}_Z) \to (X_\alpha, \mathcal{T}_\alpha)\}$, the unique map

$$f: (Z, \mathcal{T}_Z) \to \left(\prod_{\alpha \in A} X_{\alpha}, \mathcal{T}_{\text{prob}}\right)$$

is continuous.

Proof. Let $S = \{p_{\alpha}^{-1}(U_{\alpha}) | \alpha \in A, U_{\alpha} \in \mathcal{T}_{\alpha}\}$, the following claims are true

- $(x_{\alpha})_{\alpha \in A} \in p_{\beta}^{-1}(U_{\alpha}) \iff x_{\beta} \in U \quad \forall \beta \in A$
- $\bigcup S = \prod_{\alpha \in A} X_{\alpha}$

Thus, S is a subbasis of a topology \mathcal{T}_{prod} . Then, given $\alpha_q, \ldots, \alpha_n \in A$, $U_\alpha \in \mathcal{T}_\alpha$, $\forall i \in \{1, \ldots, n\}$, the set of

$$\bigcap_{i} p_{\alpha_i}^{-1}(U_{\alpha_i})$$

with $\{X_{\alpha}|\alpha\in A, X_{\alpha_i}\in U_{\alpha_i}\}$ is a basis of \mathcal{T} . Then, $\forall\beta\in A, p_{\beta}$ is obviously continuous. With the topological space (Z, \mathcal{T}_Z) and the collection of continuous maps $\{f_{\alpha}: (Z, \mathcal{T}_Z) \to (X_{\alpha}, \mathcal{T}_{\alpha})\}$, the

$$f^{-1}(p_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \dots \cap p_{\alpha_n}^{-1}(U_{\alpha_n})) = \bigcap_{i=1}^n f^{-1}(p_{\alpha_i}^{-1}(U_{\alpha_i}))$$
$$= \bigcap_{i=1}^n f_{\alpha_i}^{-1}(U_{\alpha_i}) \quad \text{is open}$$

Thus, the function f is continuous.

With reversing all arrows in the definition of product (taking the dual category), we obtain the coproduct.

Definition 19 (Coproduct/Disjoint Union). The coproduct of X_1 , X_2 is defined by the following commutative diagram:

An explicit construction is given by $\coprod_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (X_{\alpha} \times \{\alpha\})$, where the inclusion map is given by $i_{\alpha}(x) = (x, \alpha) \forall \alpha \in X_{\alpha}$.

$$f: \bigcup_{\alpha \in A} (X_{\alpha} \times \{\alpha\}) \to Z$$
$$(x, \alpha) \mapsto f_{\alpha}(x)$$

Definition 20 (Coproduct Topology). The coproduct topology is given by letting $U \cap X_{\alpha}$ open in $X_{\alpha} \forall \alpha \in A$. The topology is then given by

$$S = \left\{ \prod_{\alpha \in A} U_{\alpha} | U_{\alpha} \in X_{\alpha} \text{ open} \right\}$$

Theorem 5. Under coproduct topology, inclusion maps are continuous and for the collection of continuous maps. $\{h_{\alpha}: X_{\alpha} \to Z\}$, the induced map

$$h: \left(\coprod_{\alpha \in A} X_{\alpha}, \mathcal{T}_{\text{coprod}}\right) \to (Z, \mathcal{T}_{Z})$$

such that $h \circ i_{\alpha} = h_{\alpha}$.

Lectur 7: Open and Closed Maps, Quotient Topology

Definition 21 (Open/Closed Maps). The continuous map $f: X \to Y$ is open (closed) if the image of open (closed) sets is open (closed)

Theorem 6. Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in A}$ is a collection of topological spaces, then $\forall \beta \in A$

$$p_{\beta} \prod_{\alpha \in A} X_{\alpha} \to X_{\eta}$$

is an open map.

We shall prove the theorem using the following lemma:

Lemma. The continuous map $f: X \to Y$ is open if for a basis $\mathcal{B}_X \subset \mathcal{T}_X$, $\forall B \in \mathcal{B}_X$, $f(B) \in \mathcal{T}_Y$

Proof. The proof is simple.

Then, we can prove the theorem.

Proof. As a basis, consider $\mathcal{B} = \{p_{\alpha_q}^{-1}(U_{\alpha_1}) \cap \cdots \cap p_{\alpha_n}^{-1}(U_{\alpha_n}) | \forall U_{\alpha_i} \in \mathcal{T}_{\alpha_1} \}$. With $(x_{\alpha})_{\alpha \in A}$, $p_{\beta}((x_{\alpha})_{\alpha \in A}) = x_{\beta}$. Thus,

$$p_\beta\Big(\bigcap_{1\leq i\leq r}p_\alpha^{-1}(U_{\alpha_i})\Big)=\bigcap_{1\leq i\leq r}U_i \text{ open }$$

Thus, the projection is an open map.

However, in general, the projection is not closed.

A quotient map is on the equivalence relation \sim on X is given by

$$q: X \to X/\sim$$

$$x \mapsto [x]$$

and for any $f: X \to Z$, if $x \sim x' \implies f(x) = f(x')$, there exists a unique map $\bar{f}: X/ \sim Z$ such that $\bar{f}([x]) = f(x)$.

Definition 22 (Quotient Topology). Let (X, \mathcal{T}_X) be a topological space, a quotient topology is the topology such that

- The quotient map $q: X \to X/\sim$ is continuous
- For any continuous map $f: X \to Z$, the unique map \bar{f} is continuous.

Here is a construction of quotient topology. Consider the following construction:

$$\mathcal{T}_{\text{quot}} = \left\{ U \subseteq X / \sim |q^{-1}(U) \in \mathcal{T}_X \right\}$$

Proposition 2. \mathcal{T}_{quot} is a topology on X/\sim

Proof. First of all, $\emptyset, X/\sim \in \mathcal{T}_{\text{quot}}$ is obvious. For $U, V \in \mathcal{T}_{\text{quot}}$, i.e., $q^{-1}(U), q^{-1}(V) \in \mathcal{T}_X$. By the fact $q^{-1}(U \cap V) = q^{-1}(U) \cap q^{-1}(V) \in \mathcal{T}_X$, $U \cap V \in \mathcal{T}_{\text{quot}}$. In the same way, $\mathcal{T}_{\text{quot}}$ also meets the union property. \square

Proposition 3. The construction satisfies the universal property.

Proof. $f: X \to Z$ continuous, constant on equivalent class. Then, $f = \bar{f} \circ q$ and $\forall W \subseteq Z$ open,

$$f^{-1}(W) = q^{-1}(f^{-1}(W))$$

since f continuous, q continuous by construction, \bar{f} is continuous.

A generalization is given by considering the topological space (X, \mathcal{T}_X) ,

$$q:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$$

such that $\forall U \subset Y : q^{-1}(U)$ is open, then $U \in \mathcal{T}_Y$ (q continuous, as a corollary).

Definition 23 (Level Sets of q). A level set (fiber) of q is $q^{-1}(Y)$ for $y \in Y$.

Lecture 8: Limit Points and Sequences

Definition 24 (Neighborhood). Let (X, \mathcal{T}_X) be a topological space. A neighborhood of point $p \in X$ is a set $N \subseteq X$ that contains x such that $\exists U \in \mathcal{T}_X$ with $x \in U \subseteq N \subseteq X$.

Definition 25 (Limite Points). Let (X, \mathcal{T}_X) be a topological space, $A \subseteq X$. $x \in X$ is a limit point of A if $\forall N$ neighborhood of $x, N \cap A \setminus \{x\} \neq \emptyset$.

$$A' := \{ \text{Limit points of } A \}$$

As an example, $A = [0,1) \cup \{2\}$, every point in [0,1] is a limit point of A. However, 2 is not a limit point of A.

Definition 26 (Closure). Let $A \subseteq X$, the closure of A is the smallest closed subset in X containing A, denoted as \bar{A} .

Lemma. \bar{A} exists and is unique.

Proof. If C and D are both closures of A, then C, D are both closed sets containing A. Thus, $C \subseteq D$ and $D \subseteq C$, which means C = D.

Let \mathcal{C} be the set of all closed sets containing A,

$$\bar{A} = \bigcap_{C \in \mathcal{C}} C$$

it is obvious that \bar{A} is the closure.

It is obvious that if A is closed, then $\bar{A} = A$.

Lemma. The closure of a set $A \subseteq X$ always be

$$\bar{A} = A \cup A'$$

where A' is the set of the limit points of A.

Proof. (HW 3) $x \notin A \cup A' \iff \exists N_x : N_x \cap A = \emptyset$, where N_x is a neighborhood of x.

With the proposition above, to prove the lemma, it is sufficient to prove that $x \notin A \iff \exists N_x : N_x \cap A = \emptyset$, where N_x .

- $(\Rightarrow) x \notin \bar{A}$ then $x \in X \setminus \bar{A}$. Let $N_x = X \setminus \bar{A}$ and $N_x \cap A = \emptyset$, thus x is not a limit point of A.
- (\Leftarrow) Suppose $\exists N_x$ neighborhood of x such that $N_x \cap A = \emptyset$, then $\exists U$ open in X such that $x \in U \subseteq N_x$ and $A \subset X \setminus U$, that means $\bar{A} \subseteq X \setminus U$. Since $x \in U$, $x \notin \bar{A}$.

Definition 27 (Sequence). A sequence $\{x_n\}_{n\in\mathbb{N}}$ is a map $\mathbb{N}\to X$ and $n\mapsto x_n$. $\{x_n\}$ converges to $y\in X$ if $\forall W$ neighborhood of $y,\ \exists N\in\mathbb{N}: (n\geq N\implies x_n\in W)$, we say that y is the limit of the sequence $\{x_n\}$, denoted as $x_n\to y$.

Remark. Generally, the following propositions are not true:

• Limits of convergent sequences are unoique A conterexample is given by $X = \{a, b, c\}$ and $\mathcal{T} = \{\{a, b\}, \{c, b\}, \{b\}, \emptyset, X\}$. Consider $x_n = b \,\forall n \in N$. However, every open sets in X containing a are all contains b. Thus x_n always in a neighborhood of a. Thus, $x_n \to a$. • $\forall A \subseteq X : \forall y \in \overline{A} : \exists \{a_n\}$ sequence in A such that $a_n \to y$. Another conterexample is that $\mathbb{R}^{\mathbb{N}}$, the space of all sequence in \mathbb{R} with box topology generate by $\mathcal{B} := \{\prod_{i \in \mathbb{N}} U_i | U_i \subseteq \mathbb{R} \text{ open} \}$. Consider the sequence that $n \mapsto 0$. Since $0 \in U_i \subset \mathbb{R} \text{ open}$, $\exists \epsilon_i > 0 : (-\epsilon_i, \epsilon_i) \subseteq U_i$ which means

$$\prod_{i} (-\epsilon_i, \epsilon_i) \subseteq U_i$$

since $(-\epsilon_i, \epsilon_i) \cap (0, +\infty) \neq \emptyset$. Given W be any neighborhood of 0 in box topology,

$$\emptyset \neq U \cap A \subseteq W \cap A \implies 0 \in \bar{A}$$

Given any $\{a_n\} \subseteq A$, $a_n = \{a_{n,k}\}_{k \in \mathbb{N}}$.

$$U = \prod_{n \in \mathbb{N}} a_{n,n}$$

since $a_{n,n} \notin (-a_{n,n}, a_{n,n})$, $a_n \notin U \forall n$, then no sequence converges to 0.

Proposition 4. Suppose $A \subseteq X$ subset, $\{a_n\}$ is a sequence with $a_n \to y$. Then $y \in \bar{A}$.

Proof. Since $x_n \to y$, then $\exists N \in \mathbb{N} : x_N \in W$, where W is a neighborhood of y. Since W contains $x_N \in A$, $W \cap A \neq \emptyset$.

Definition 28 (Neighborhood Basis). A neighborhood basis \mathcal{B}_x at point $x \in X$ is a collection of neighborhoods of x, such that $\forall N \subseteq X$ is a neighborhood of x, $\exists B \in \mathcal{B}_x : B \subseteq N$

Definition 29 (First-Countable). X is first countable if every point has a countable neighborhood basis.

Proposition 5. Metric spaces are all first countable.

Proposition 6. X satisfies $\forall A \subseteq X : \forall y \in \bar{A} : \exists \{a_n\}$ sequence in A such that $a_n \to y$ if and only if X first-countable

Proof. Consider the countable neighborhood basis $\{N_i\}_{i\in\mathbb{N}}$ of $y\in X$, replace N_1 with $N_1\cap\cdots\cap N_i$. Then $N_1\supseteq N_2\supseteq\cdots$ and since $y\in \bar{A},\ N_i\cap\bar{A}\neq\emptyset \forall i$. Choose $a_i\in N_i\cap\bar{A}$ m then it is obvious that $a_i\to y$.

Lecture 9: Interier and Boundary

Definition 30 (Interior). Let X be a topological space, int A is the largest open set contained by A. In other words, $U \subseteq A$ open implies $U \subseteq \text{int} A$

Proposition 7. The interior exists and is unique for any subset of X.

Proof. Same with closure.

Proposition 8. For any set $A \subseteq X$

- $X \setminus \operatorname{int} A = \overline{X \setminus A}$
- $X \setminus \overline{A} = X \setminus \operatorname{int} A$

Proof. HW

Proposition 9. For any set $A \subseteq X$

- $A \subseteq B \implies \text{int} A \subseteq \text{int} B, \ \overline{A} \subset \overline{B}$
- $\overline{\overline{A}} = \overline{A}$, int(intA) = intA
- $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- $int(A \cap B) = intA \cap intB$

Proof. Obvious. \Box

A counterexample of $\operatorname{int} A \cup \operatorname{int} B \neq \operatorname{int} (A \cup B)$. Let A = [0, 1] and B = [1, 2]

$$int A \cup int B = (0,1) \cup (0,2)$$
$$int (A \cup B) = (0,2)$$

Definition 31 (Boundary). The boundary of $A \subseteq X$ is given by

$$\partial A = \overline{A} \cap \overline{X \backslash A}$$

An example is given by $X = \mathbb{R}$, the boundary of rational numbers is given by

$$\partial \mathbb{Q} = \overline{\mathbb{Q}} \cap \overline{\mathbb{R} \backslash \mathbb{Q}} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

Proposition 10. Let $A \subseteq X$, then

- $\overline{A} = A \cup \partial A$
- $int A = A \backslash \partial A$
- $X = int A \cup \partial A \cup int(X \setminus A)$

Proof. Follows from set theory.

Lecture 10: Limit of Nets

Definition 32 (Preorder Sets). A preorder on a set Λ is a relation \leq such that

- Reflexive $\lambda \leq \lambda \ \forall \lambda \in \Lambda$
- Transitive $\lambda_1 \leq \lambda_2, \lambda_2 \leq \lambda_3 \implies \lambda_1 \leq \lambda_3$

Remark. It is sufficient to have $\lambda \leq \mu$ and $\mu \leq \lambda$ such that $\mu \neq \lambda$ in this case.

Definition 33 (Directed Set). A directed set is a preorder (Λ, \leq) such that $\forall \lambda_1, \lambda_2 \in \Lambda : \exists \lambda_3 \in \Lambda : \lambda_1 \leq \lambda_3, \lambda_2 \leq \lambda_3$

Definition 34 (Net). A net $(x_{\lambda})_{{\lambda}\in\Lambda}$ in a set X is a function $x:\Lambda\to X$ where Λ is a directed set.

Definition 35 (Convergent). A net $(x_{\lambda})_{{\lambda} \in \Lambda}$ in a topological space converges to $y \in X$ if $\forall W \subseteq X$ is the neighborhood of y, $\exists \lambda_0 \in \Lambda$ such that $\lambda_0 \leq \lambda \implies x_{\lambda} \in W$, denoted by $x_{\lambda} \to y$. x_{λ} converges if it has a limit.

Proposition 11. Let $A \subseteq X$ and $y \in \overline{A}$ if and only if $\exists (x_{\lambda})$ net in A such that $x_{\lambda} \to y$.

Proof. (\Leftarrow) $z \in \overline{A}$ iff $\forall N_z$ neighborhood of z, $N_z \cap A \neq \emptyset$. Suppose $x_n \to y$ in $\forall \lambda : x_\lambda \in A$, since $\forall N_y$ neighborhood of y, $W \cap A \supseteq W \cap \{x_\lambda | \lambda \in A\} \neq \emptyset$, then $y \in \overline{A}$.

(⇒) Suppose $y \in \overline{A}$, then let Λ be the set of the neighborhoods of y ordered by the reverse inclusion, i.e., $N_1 \leq N_2$ iff $N_1 \supseteq N_2$. Then, simply by the definition of closure, $\forall N \in \Lambda$, $N \cap A \neq \emptyset$. For each $N \in \Lambda$, choose $x_N \in N \cap A$. If W is a neighborhood of y, take $N \in \Lambda$ such that $x_N \in N \subseteq W$, $N \geq W$, thus, $x_N \to y$. \square

Proposition 12. $f: X \to Y$ is continuous $\iff \forall (x_{\lambda}) \text{ nets such that } x_{\lambda} \to w, \text{ then } f(x_{\lambda}) \to f(w) \text{ in } y.$

Proof. (\Rightarrow) Suppose $x_{\lambda} \to w$, $f: X \to Y$ continuous. Let U be a neighborhood of f(w) in Y, then $f^{-1}(U)$ is a neighborhood of w in X. By the definition of convergence, $\exists \lambda_0 \in \Lambda: \lambda_0 \leq \lambda \implies x_{\lambda} \in f^{-1}(U)$, then $f(x_{\lambda}) \in U$. However, that means $f(x_{\lambda}) \to f(w)$.

(\Leftarrow) We shall prove by contradiction. Suppose f is not continuous, $\exists V \subseteq Y$ open such that $K = f^{-1}(V)$ is not open. Since K is not open, $K \setminus \inf K$ is not empty. Let $\Lambda = \{\text{Neighborhood of } w : N_1 \leq N_2 \iff N_1 \supseteq N_2\}$. Since $w \in K \setminus \inf K$, $\forall U \in \Lambda : U \setminus K \neq \emptyset$. Given $U \in \Lambda$, choose $x_U \in U \setminus K = U \setminus f^{-1}(U)$, then $f(x_u) \notin V$ but $f(w) \in V$. Thus, $f(x_U) \not\to f(w)$. If N is a neighborhood of W, take $\inf N$ that is open and is also an element in Λ . $\forall U \in \Lambda$ such that $\inf N \leq U$, then $x_U \in U \subseteq N$, which means $x_U \to w$.

Proposition 13. The limit of nets in X is unique \iff X is Hausdorff.

Proof. (\Rightarrow) Suppose X is Hausdorff, consider net (x_{λ}) be a net in X and $x_{\lambda} \to a$ as well as $x_{\lambda} \to b$. Suppose $a \neq b$, then $\exists U, V \subseteq X$ be open sets containing a, b, and $U \cap V = \emptyset$. However, $\exists \lambda_1, \lambda_2 \in \Lambda$ such that $\lambda \geq \lambda_1 \implies x_{\lambda} \in U$ and $\lambda_2 \implies x_{\lambda} \in V$, that means $\exists \lambda_3 \in \Lambda$ that is greater than both λ_1 and λ_2 , then $x_{\lambda_3} \in U \cap V$, contradicting Hausdorff.

(\Leftarrow) We shall prove bu contrapositive. Suppose X is not Hausdorff, then $\exists a,b\in X$ such that any $U,V\subseteq X$ neighborhood of a,b are not disjoint. Take the set

$$\Lambda = \{(U, V) \in \mathcal{T}_X \times \mathcal{T}_X | a \in U, b \in V, U \cap V \neq \emptyset\}$$

then we can pick $x_{U,V} \in U \cap V$, take $(W,O) \in \Lambda : \exists (U,V) \in \Lambda : (W,O) \leq (U,V)$ and $x_{U,V} \in U \cap V$. Thus, $x \to a$ and $x \to b$, the limit is not unique.

Lecture 11-12: Compactness

Definition 36 (Cover). Let X be a topological space. A cover of X is a collection of subsets of X, $\{U_{\alpha}\}_{{\alpha}\in A}$, such that $\bigcup_{{\alpha}\in A}=X$. An open cover is a cover such that all the elements are open. A subcover is a subset of the cover that still covers X.

Definition 37 (Compactness). X is compact \iff if every open cover has a finite subcover.

Proposition 14. $Y \subseteq X$ is compact $\iff \forall \{U_{\alpha}\}_{\alpha \in A}$ collection of open subsets of X such that $\bigcup_{\alpha} U_{\alpha} \supseteq Y$, $\exists n > 0 : a_1, \ldots, a_n \in A : U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \supseteq Y$.

Proof. (\Rightarrow) By the given setting, suppose Y is compact, an open cover of Y in subset topology is $\{Y \cap U_{\alpha}\}_{{\alpha} \in A}$. Thus,

$$Y = (Y \cap U_{\alpha_1}) \cup \cdots \cup (Y \cap U_{\alpha_n}) \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

gives a finite subcover of Y.

 (\Rightarrow) Suppose $Y\subseteq\bigcup\{V_{\alpha}\}_{{\alpha}\in A}$ where $\{V_{\alpha}\}_{{\alpha}\in A}$ is the collection of open sets given in the setting, then take $U_{\alpha}=Y\cap V_{\alpha}$ and it is easy to see that

$$Y = U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

Thus, Y is compact.

Proposition 15. The image of a compact set under a continuous map is compact.

Proof. Let X compact, $f: X \to Y$ continuous. Let $\{U_{\alpha}\}_{{\alpha} \in A}$ be a collection of open sets such that $\bigcup_{{\alpha} \in A} U_{\alpha} \supseteq f(X)$. By the continuity, $f^{-1}(U_{\alpha}) = V_{\alpha}$ is open and

$$\bigcup_{\alpha \in A} U_{\alpha} \supseteq f(X) \implies \bigcup_{\alpha \in A} V_{\alpha} = X$$

i.e. $\{V_{\alpha}\}_{{\alpha}\in A}$ is an open cover of X. By the compactness of X, we can find some finite subcover $\{V_{\alpha_1},\ldots,V_{\alpha_n}\}$. The image of the subcover also covers the image of X. Thus, by the previous lemma, f(X) is compact.

Proposition 16. X compact, $C \subseteq X$ closed $\implies C$ compact

Note that the converse of this proposition is false.

Proposition 17. A compact subset of a Hausdorff space is always closed.

Proof. Let X be Hausdorff and $C \subseteq X$ compact. To show that C is closed, it is sufficient to show that $C = \overline{C}$, i.e., $\forall x \in X \backslash C : \exists$ open neighborhood $U \ni x : U \cap C = \emptyset$. $\forall c \in C, \exists U_c \ni x \text{ and } V_c \ni c$ be open neighborhoods of x and c such that $U_c \cap V_c = \emptyset$. Then, $C \subseteq \bigcup_{c \in C} V_c$. Since C is compact, we have a finite subcover $C \subseteq V_{c_1} \cup \cdots \cup V_{c_n}$ for some $n \in \mathbb{N}$. Then,

$$\left(\bigcap_{i=i}^{n} U_{c_i}\right) \cap V_{c_k} = \emptyset$$

Then, $\bigcap_{i=i}^{n} U_{c_i}$ is an open neighborhood of x that is disjoint with C.

A fact is that $[0,1] \in \mathbb{R}$ is compact, this simple fact gives several strong consequences that

• $S^1 \cong \mathbb{R}/\mathbb{Z}$ is compact

Proof. Consider $i:[0,1] \hookrightarrow \mathbb{R}$ and $\pi:\mathbb{R} \to \mathbb{R}/\mathbb{Z}$, are both continuous, and $\pi \circ i$ is surjective. Thus, by the lemma, \mathbb{R}/\mathbb{Z} is compact.

Then, we need to prove that $S^1 \cong \mathbb{R}/\mathbb{Z}$. Consider $f: \mathbb{R} \to S^1$ such that $f(x) = e^{2\pi i x}$. Since

$$e^{2\pi i x_1} = e^{2\pi i x_2} \implies x_1 - x_2 \in \mathbb{Z}$$

The map f has the same fiber of quotient map. Thus, $S^1 \cong \mathbb{R}/\mathbb{Z}$.

• $[a, b] \in \mathbb{R}$ ia compact

Then we prove that [0,1] is compact

Theorem 7 (Meine-Bolzano-Weierstrass). [0, 1] is compact

Proof. We shall prove by contradiction. Suppose [0,1] is not compact, then exists an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ has no finite subcover. Then, either [0,1/2] or [1/2,1] cannot be covered by finitely many elements in $\{U_{\alpha}\}_{{\alpha}\in A}$. W.O.L.G, let $I_0=[1/2,1]$ cannot be covered by finitely many elements in the cover. Repeating this process, we generate a nested interval sequence

$$I_0 \supseteq I_1 = [a_1, b_1] \supseteq I_2 = [a_2, b_2] \supseteq \cdots$$

Which I_n has length $1/2^n$, which indicates that the upper and lower bounds of the sequence converge. $a_n \to a$, $b_n \to b$, since the length of the sequence $\lim_{n\to\infty} 1/2^n = 0$, a = b. Thus,

$$\bigcap_{n=1}^{\infty} I_n = c$$

Since [0,1] is covered by $\{U_{\alpha}\}_{{\alpha}\in A}$, $\exists \beta\in A:c\in U_{\beta}$. Since U_{β} open, then $\exists \epsilon>0:(c-\epsilon,c+\epsilon)\subseteq U_{\beta}$. Since $[a_n,b_n]\to\{c\}$, $\exists N\in\mathbb{N}:[a_N,b_N]\subseteq(c-\epsilon,c+\epsilon)$. Thus, we reach the contradiction that $[a_n,b_n]$ cannot be covered by finite many elements in $\{U_{\alpha}\}_{{\alpha}\in A}$. Hence, we proved that [0,1] is compact.

Lemma (Tube). Let X and Y be topological spaces, where Y is compact. $x_0 \in X$, $U \subseteq X \times Y$ with $\{x_0\} \times Y \subseteq U$. Then $\exists V \ni x_0$ open neighborhood of x_0 such that $V \times Y \subseteq U$.

Proof. $\forall y \in Y, \exists V_y$ open nerghborhood of x, W_y open neighborhood of y, such that $V_y \times W_y \subseteq U$. $\{W_y\}_{y \in Y}$ is an open cover of Y, since Y compact, then it si sufficent to pick $y_1, \ldots, y_n \in Y$ such tath $W_{y_1} \cup \cdots \cup W_{y_n} = Y$. Since $V_{y_1} \cap \cdots \cap V_{y_n} = V$ contains x is a finite intersection of open sets, which is still open. Thus, $V \times Y \subseteq U$

Corollary 2. The product of two compact sets is compact.

Inductively, a finite product of compact sets is compact.

Definition 38 (Bounded). $X \subseteq \mathbb{R}^n$ is bounded if $\exists M > 0$ such that $X \subseteq [-M, M]^n$.

Consequently, the compactness in \mathbb{R}^n is fully discribed by the following theorem:

Theorem 8 (Heine-Borel). In $(\mathbb{R}^n, \mathcal{T}_{standard})$, a subset $K \subseteq \mathbb{R}^n$ is compact $\iff K$ is closed and bounded.

Proof. (\Rightarrow) suppose $K \subseteq \mathbb{R}^n$ is compact. Then since \mathbb{R}^n Hausdorff, K is closed (HW4). Since

$$\mathbb{R}^n = \bigcup_{k>0} B_k(0)$$

and K is compact, K has been covered by only a finite number of open balls. Thus, take the maximum radius ρ , K is bounded in $[-\rho, \rho]^n$.

(\Leftarrow) K bounded, $K \subseteq [-M, M]^n$, since K is closed in \mathbb{R}^n K is closed in $[-M, M]^n$ with subset topology. Thus, by the fact that closed sets in a compact space are compact, $[-M, M]^n$ compact $\Longrightarrow K$ compact. \square

Proposition 18. A real-valued continuous function on a compact set X achieves a max and a min.

Proof. By continuity, f(X) is compact, then f(X) is closed and bounded. Then, $\alpha = \inf f(X)$ and $\alpha = \sup f(X)$ exists. Since f(X) closed, $\alpha, \beta \in f(X)$.

Lecture 13: Compactness and Net Converges

Definition 39 (Finite Intersection Property). $\{C_{\alpha}\}_{{\alpha}\in A}$ is a collection of subsets of X, it has the finite intersection property (FIP) iff $\forall \alpha_1, \ldots, \alpha_n \in A : \bigcap_{i=1}^n C_{\alpha_i} \neq \emptyset$.

Proposition 19. X is compact \iff for every collection of closed sets $\{C_{\alpha}\}_{{\alpha}\in A}$ with the finite intersection property (that is, $\bigcap_{{\alpha}\in F} C_{\alpha} \neq \emptyset$ for every finite $F\subseteq A$), one has $\bigcap_{{\alpha}\in A} C_{\alpha} \neq \emptyset$.

Proof. (\Rightarrow) Assume X is compact and let $\{C_{\alpha}\}_{{\alpha}\in A}$ be closed sets with the finite intersection property. Suppose, for contradiction, that $\bigcap_{{\alpha}\in A} C_{\alpha}=\emptyset$. Then the open sets $U_{\alpha}=X\setminus C_{\alpha}$ cover X. By compactness there exist α_1,\ldots,α_n such that $X=\bigcup_{i=1}^n U_{\alpha_i}$. Hence $\bigcap_{i=1}^n C_{\alpha_i}=X\setminus\bigcup_{i=1}^n U_{\alpha_i}=\emptyset$, contradicting the finite intersection property. Therefore $\bigcap_{{\alpha}\in A} C_{\alpha}\neq\emptyset$.

(\Leftarrow) Assume that every collection of closed sets with the finite intersection property has a nonempty intersection. Let $\{U_i\}_{i\in I}$ be an open cover of X. If it had no finite subcover, then for every finite $F \subseteq I$, $\bigcup_{i\in F} U_i \neq X$, so $\bigcap_{i\in F} (X\setminus U_i) \neq \emptyset$. Set $C_i = X\setminus U_i$. Each C_i is closed, and $\{C_i\}_{i\in I}$ has the finite intersection property. By the hypothesis, $\bigcap_{i\in I} C_i \neq \emptyset$, which means $X\setminus \bigcup_{i\in I} U_i \neq \emptyset$, contradicting that $\{U_i\}_{i\in I}$ covers X. Therefore, there is a finite subcover, and X is compact. □

Definition 40 (Cluster Point). Let $(x_{\lambda})_{{\lambda} \in \Lambda}$ be a net in X, then $p \in X$ is a cluster point if $\forall W$ neighborhood of $p, \forall \lambda_0 \in \Lambda : \exists \lambda \in \Lambda$ with $\lambda_0 < \lambda$ and $x_{\lambda} \in W$.

An example is that $X = \mathbb{R}$, $x_n = (-1)^n$, then p = -1, 1 be both cluster points.

Definition 41 (Subnet). A subnet $(x_{\lambda_{\mu}})_{\mu \in M}$, $\varphi : M \to \Lambda$, $\varphi(\mu) = \lambda_{\mu}$ satisfies

- $\mu_1 \le \mu_2 \implies \lambda_{\mu_1} \le \lambda_{\mu_2}$
- $\forall \lambda \in \Lambda : \exists \mu \in M : \lambda \leq \lambda_{\mu}$

Proposition 20. $p \in X$ is a cluster point of $(x_{\lambda})_{{\lambda} \in \Lambda}$ if there exists a subnet that converges to p

Proof.

Definition 42 (λ_0 -Tail). The λ_0 -tail of a net $(x_\lambda)_{\lambda \in \Lambda}$ is $\Gamma_{\lambda_0} := \{x_\lambda | \lambda_0 \le \lambda\}$

Proposition 21. $\{\Gamma_{\lambda}\}_{{\lambda}\in\Lambda}$ has FIP

Proof.

Theorem 9. X is compact \iff every net in X has cluster point.

Proof. (\Rightarrow) Suppose $(x_{\lambda})_{\lambda \in \Lambda}$ is a net in compact X. Consider $\{\Gamma_{\lambda}\}_{\lambda \in \Lambda}$ has FIP, so does $\{\overline{\Gamma_{\lambda}}\}_{\lambda \in \Lambda}$. Since X compact, then $\bigcap_{\lambda \in \Lambda} \overline{\Gamma_{\lambda}} \neq \emptyset$. Take $p \in \bigcap_{\lambda \in \Lambda} \overline{\Gamma_{\lambda}} \neq \emptyset$, then $\forall \lambda \in \Lambda : p \in \overline{\Gamma_{\lambda}}$ Thus, $\forall W$ neighborhood of p, $\forall \lambda \in \Lambda, W \cap \Gamma_{\lambda} = \emptyset$. TGya, $\forall \lambda \in \Lambda \exists \lambda' \in \Lambda : \lambda \leq \lambda' : x_{\lambda'} \in W$. Which means p is a cluster point. (\Leftarrow) Suppose any net in X has a cluster point. C be the collection of closed subsets with FIP. Then take C to be the collection of finite intersections of C. then $\forall G \in C$ is nonempty. Take $x_G \subseteq C$, get a net $(x_G)_{G \in C}$, this net has cluster point C. Then ∇C neighborhood of C is nonempty. Take C is C if C is and C if C is C in C is C in C

Lecture 14: Compactness of Metric Space

Definition 43. Let (X,d) be a metric space, $Y \subseteq X$. The diameter of Y is defined by

$$diam(Y) := \sup\{d(y_1, y_2) | y_1, t_2 \in Y\}$$

Proposition 22 (Lebeague Lemma). Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be a open cover of a compact metric space (X,d). Then $\exists \delta > 0$ such that $\forall Y \subseteq X$, $\operatorname{diam}(Y) < \delta \implies \exists \alpha^* \in A : Y \subseteq U_{\alpha^*}$.

Proof. For all $x \in X$, $\exists \alpha(x)$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ open, $\exists B_{2\epsilon(x)}(x) \subseteq U_{\alpha(x)}$. Then $X = \bigcup_{x \in X} B_{2\epsilon(x)}(x)$, which generate a open cover of X. X compact $\Longrightarrow \exists \{x_1, \ldots, x_n\} \subseteq X : X = B_{2\epsilon(x_1)}(x_1) \cup \cdots \cup B_{2\epsilon(x_n)}(x_n)$. Let $\delta = \min\{\epsilon(x_i) | i = 1, \ldots, n\}$. Sippose $Y \subseteq X$ such that $\dim(Y) < \delta$. Claim that $Y \subseteq U_{\alpha(x_i)}$. $\exists 1 \le i \le n : Y \cap B_{\epsilon(x_i)}(x_i) = \emptyset$. Take $U_{\alpha(x_i)}$, $\forall y \in Y$, $d(y_0, y) \le \dim(Y) \le \delta \le \epsilon(x_i)$. Thus, $d(x_i, y) \le d(x_i, y_0) + d(y_0, y) \le 2\epsilon(x)$. Thus, $Y \subseteq B_{2\epsilon(x_i)}(x_i) \subseteq U_{\alpha(x_i)}$.

Definition 44 (Cauchy Sequence). A sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy if $\forall \epsilon > 0 : \exists N \in \mathbb{N} : (n, m > N \implies d(x_n, x_m) < \epsilon)$

Definition 45 (Completeness). A metric space (X, d) is complete if every Cauchy sequence converges.

Definition 46 (Totally Bounded). (X, d) totally bounded if $\forall r \in [0, +\infty) : X = \bigcup_{i=1}^n B_r(x_i)$.

Theorem 10. (X,d) is a metric, then the following propositions are equivalent:

- 1. (X, \mathcal{T}_d) compact
- 2. Every sequence has a convergent subsequence in (X,d)
- 3. (X,d) is complete and totally bounded.

Proof. $(1 \Rightarrow 2)$ Suppose (X, \mathcal{T}_d) is compact but $\forall y \in X : \exists U_y$ open neighborhood of y such that $x_n \in U_y$ for only finitely many $n \in N$. $\{U_y\}_{y \in X}$ is an open cover of X, it has a finite sub cover. Thus, \mathbb{N} is finite since that indicates x_n has finite terms in X, which leads to a contradiction.

 $(2 \Rightarrow 3)$ Suppose $(x_k)_{k \in \mathbb{N}}$ is Cauchy, then $(x_n)_{n \in \mathbb{N}}$ has a convergent subsequence converges to x_{∞} . Thus, $x_n \to x_{\infty}$. Thus, X is complete. Suppose $\exists \epsilon > 0$ such that X cannot be covered by finitely many ϵ -balls. Then, for some $x_0 \in X$,

$$\exists x_1 \in X \backslash B_{\epsilon}(x_0) : \exists x_2 \in X \backslash (\bigcup_{i=0}^1 B_{\epsilon}(x_i)) : \dots : \exists x_n \in X \backslash (\bigcup_{i=0}^{n-1} B_{\epsilon}(x_i)) : \dots$$

The sequence x_i defined in this way has no convergent subsequence.

 $(3 \Rightarrow 1)$ Suppose X is complete and totally bounded, suppose the open cover $\{U_{\alpha}\}_{{\alpha} \in A}$ has no finite subcover. Since X is totally bounded, \exists a cover by finitely many balls of radius 1. Then, for some $x_0 \in X$, $\exists x_1$ such taht $B_{1/2}(x_1) \cap B_1(x_0) = \emptyset$. Repeat this process, we get a sequence $(x_n)_{n \in \mathbb{N}}$ such taht $B_{1/2^n}(x_n) \cap B_{1/2^{n-1}}(x_{n-1}) = \emptyset$. That means,

$$d(x_n, x_n + k) \le d(x_n, x_{n+1}) + \dots + d(x_{n-k+1}, x_{n-k})$$

$$\le \frac{1}{2^{n-1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^k} \right) \le \frac{1}{2^{n-2}}$$

Which means $(x_n)_{n\in\mathbb{N}}$ is Cauchy. Since X complete, $x_n\to y\in X$, which implies $y\in U_{\alpha_0}\in\{U_\alpha\}_{\alpha\in A}$. Thus, $\exists r>0: B_r(y)\subseteq U_{\alpha_0}$. Since $x_n\to y, \ x_n\in B_n(y)\implies B_{1/2^n}\subseteq U_{\alpha_0}$ which leads to a contradiction. \square

Lecture 15-16: Compactness of Product Space (Tychonoff Theorem)

Definition 47 (Filter). A filter on X (set) is a nonempty collection \mathcal{F} of subsets on X such that

- $\emptyset \notin \mathcal{F}$
- $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$
- $A \in \mathcal{F} : A \subseteq B \implies B \in \mathcal{F}$

The filter on X is just a collection of "large subsets" in X. Here is an example: if X is a nonempty set, $\{X\}$ is a filter.

If X is a topological space, $x_0 \in X$, then $N_{x_0} := \{All \text{ neighborhoods of } X\}$ is a filter called the neighborhood filter.

Any filter has FIP.

Definition 48 (Filter Base). A nonempty subset $\mathcal{B} \subseteq \mathcal{F}$ is a filter base for \mathcal{F} if $\forall F \in \mathcal{F} : \exists B \in \mathcal{B} : B \subseteq \mathcal{F}$.

The neighborhood basis \mathcal{B}_x of x is a filter basis of the neighborhood filter N_x .

Proposition 23. $\mathcal{B} \in \mathcal{F}$ is a filter base if:

- $\mathcal{B} \neq \emptyset$
- $\forall B \in \mathcal{B} : B \neq \emptyset$
- $\forall B_1, B_2 \in \mathcal{B} : \exists B_3 \in \mathcal{B} : B_3 \subseteq B_1 \cap B_2$

Proposition 24. $\mathcal{B} \subseteq \mathcal{P}(X)$ be a filter basis $\mathcal{B} \neq \emptyset$. If $\forall B_1, B_2 \in \mathcal{B}$, if $B_1 \cap B_2 \neq \emptyset : \exists B_3 \in \mathcal{B} \in B_1 \cap B_2$. Then $\mathcal{F} = \{F \subseteq X | \exists B \in \mathcal{B} \text{ such that } V \subseteq F\}$ is a filter, and \mathcal{B} is a filter base.

Proof. HW5

Corollary 3. Let X be a set, $S \in \mathcal{P}(X)$ is a nonempty collection of subsets of X with FIP, then $\mathcal{B} = \{\text{finite intersection of sets in } S\}$. Satisfies the proposition above, and $\exists \mathcal{F} \text{ filter such that } S \subseteq \mathcal{F}$

Definition 49. The smallest filter that contains $\mathcal S$ is the filter generates by $\mathcal S$

Lemma. Let $f: X \to Y$ be a function, and \mathcal{F} be a filter in X. Then $f_*\mathcal{F} = \{A \subseteq Y | f^{-1}(A) \in \mathcal{F}\}$ is a filter in Y

Proof. Easy. \Box

Definition 50 (Filter Converges). Let X be a topological space, \mathcal{F} filter on X, $x \in X$. \mathcal{F} converges to x ($\mathcal{F} \to x$) if $\forall W$ neighborhood of x, $W \in \mathcal{F}$

Proposition 25. $f: X \to Y$ continuous, $\mathcal{F} \to x$ filter. Then $f_*\mathcal{F} \to f(x)$

Proof. Easy \Box

Definition 51 (Ultrafilter). A filter \mathcal{U} on X is an ultrafilter if $\forall \mathcal{F}$ filter on X, $\mathcal{F} \subseteq \mathcal{U} \implies \mathcal{U} = \mathcal{F}$ (i.e., \mathcal{F} is a maximum filter).

To show the existence of ultrafilter, we need the axiom of choice.

Definition 52 (Chain). Let (S, \leq) be a partially ordered set, $A \subseteq S$ is a chain in S if (A, \leq) is totally ordered. An upper bound of $A \subset S$ is an element $d \in S$ such that $\forall a \in A : a \leq d$.

Theorem 11 (Zorn's Lemma). Let (S, \leq) be a partially ordered set. Suppose every chain in S has an upper bound, then S has a maximal element.

Proof. IDK

Theorem 12 (Existance of Ultrafilter). Every filter \mathcal{F}_0 on X is contained by an ultrafilter.

Proof. Let $S = \{ \mathcal{F} \text{ filters on } X \mid \mathcal{F}_0 \subseteq \mathcal{F} \}$. S is partially ordered by inclusion. Then, it is enough to show that $\mathcal{F} = \bigcup_{\alpha \in A} \mathcal{F}_{\alpha}$ the arbitrary union of filters is still a filter.

- $\emptyset \notin \mathcal{F}_{\alpha} \implies \mathcal{F}$
- $\forall A, B \in \mathcal{F}$, then $\exists \alpha_1, \alpha_2 \in A$ such that $A \in \mathcal{F}_{\alpha_1}$ and $B \in \mathcal{F}_{\alpha_2}$. $\{\mathcal{F}_{\alpha}\}$ is a chain, suppose $\mathcal{F}_{\alpha_1} \subseteq \mathcal{F}_{\alpha_2}$, then $A \cap B \in \mathcal{F}_{\alpha_2} \subseteq \mathcal{F}$
- If $A \in F_{\alpha}$, $A \subseteq B$, then $B \in \mathcal{F}_{\alpha} \subseteq \mathcal{F}$.

Thus, \mathcal{F} is a filter and ultrafilter exists.

Proposition 26. \mathcal{U} is an ultrafilter on $X \iff \forall A \subseteq X : A \in \mathcal{U}$ or $X \setminus A \in \mathcal{U}$

Proof. (\Rightarrow) If $A \in X$, $A \notin U$, then consider $\mathcal{U} \cup \{A\}$, since it is not a filter (\mathcal{U} maximal), then $\mathcal{U} \cup \{A\}$ has no FIP. Which mean $\exists B \in \mathcal{U} : A \cap B = \emptyset$. Thus, $B \subseteq X \setminus A \Longrightarrow X \setminus A \in \mathcal{U}$.

Suppose $A \subseteq U$ and $X \setminus A \in U$ and U maximal, thus, $A \cap (X \setminus A) = \emptyset \in \mathcal{U}$, which leads to the contradiction. \square

Proposition 27. \mathcal{U} ultrafilter on X. Suppose $X = Y_1 \cup \cdots \cup Y_n$ for some $n, Y_1, \ldots, Y_n \subseteq X$. Then $\exists k : Y_k \in \mathcal{U}$

Proof. Prove by contradiction. Suppose $Y_1, \ldots, Y_n \notin \mathcal{U}$. Then $X \setminus Y_i \in \mathcal{U} \ \forall i$. Thus,

$$X \setminus \left(\bigcup_{i=1}^{n} Y_i\right) = \emptyset \in \mathcal{U}$$

Which leads to a contradiction.

Proposition 28. X is compact \iff Every ultrafilter converges.

Proof. (\Rightarrow) Suppose X is compact, suppose $\forall x \in X : \exists U_x \ni x$ be an open neighborhood of x such that for an ultrafilter \mathcal{U} , U_x is not contained in the elements of \mathcal{U} . Suppose $\{U_x\}$ is the set of open neighborhood of point $x \in X$, then we can find finite $\{U_{x_1}, \ldots, U_{x_n}\}$ be a finite subcover (by the conpactness). Then the previous statement given that there is some U_{x_k} contained by the element of \mathcal{U} , which leads to a contradiction. (\Leftarrow) Suppose every ultrafilter converges in X. Let \mathcal{C} be a collection of closed sets with FIP. Then it is sufficient to prove the statement by showing that $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$. A finite intersection of elements in \mathcal{C} forms a filter \mathcal{F}

such that $\mathcal{C} \subseteq \mathcal{F}$. Then there is an ultrafilter \mathcal{U} with $\mathcal{C} \subseteq \mathcal{U}$. By assumption, $\mathcal{U} \to x$ for some $x \in X$. Thus, $\forall W$ open neighborhood of $x, W \in \mathcal{U}$, then since C and W both in the ultrafilter, $C \cap W \in \mathcal{U}$, thus $C \cap W \neq \emptyset$. Which means $\forall C \in \mathcal{C} : x \in C$.

Lemma. Let $X = \prod_{\alpha \in A} X_{\alpha}$ and \mathcal{F} is a filter on X. Then \mathcal{F} converges $\iff \pi_{\alpha*}\mathcal{F}$ converges in $X_{\alpha} \, \forall \alpha$.

Proof. (\Rightarrow) By the continuity of π_{α} , it is easy to show.

 (\Leftarrow) SIppose $\pi_{\alpha*}\mathcal{F} \to \pi_{\alpha}(x) \ \forall \alpha$. Let W be a neighborhood of $x \in X$. $\exists V$ neighborhood of x in X with $X \subseteq W$ such that $V = \bigcap_{i=1}^k \pi_{\alpha_i}^{-1}(V_i)$, where $V_i \subseteq X_{\alpha_i}$. Thus, $\pi_{\alpha_1}(x) \in V_i$. By the definition of converges, then $V_i \in \pi_{\alpha*} \mathcal{F} \ \forall i \implies \pi_{\alpha_i}^{-1}(V_i) \in \mathcal{F} \ \forall i$. $\implies V \in \mathcal{F}$. By definition of filter, $W \in \mathcal{F}$, thus, $\mathcal{F} \to x$.

Lemma. $f_i: X \to Y$ continuous, \mathcal{U} ultrafilter on X, $f_*\mathcal{U}$ ultrafilter on Y

Proof. $A \subseteq Y$ be arbitrary nonempty, then either $f^{-1}(A)$ or $f^{-1}(X \setminus A)$ in \mathcal{U} . Thus, the image satisfies the same relation.

Theorem 13 (Tychonoff Theorem). $\{X_{\alpha}\}_{{\alpha}\in A}$ familty of comptact sets. Then $X=\prod_{{\alpha}\in A}X_{\alpha}$ comp-

Proof. Let \mathcal{U} be an ultrafilter on X, then $\pi_{\alpha*}\mathcal{U}$ is an ultrafilter on X_{α} . Since X_{α} comptact, then $\pi_{\alpha*}\mathcal{U}$ convergent on X_{α} . Thus, \mathcal{U} converges on X.

Lecture 17-18: Connectedness and Path Connectedness

Definition 53 (Connected Space). X is connected if $X = U \cup V$, $U \cap V = \emptyset$ and open $\implies U = \emptyset$ or $V = \emptyset$.

Equivalently, X connected \iff X has not clopen subsets except X and \emptyset .

Example: $(\mathbb{Q}, \mathcal{T}_{\text{subspace}})$ is not connected.

Theorem 14. [0,1] is connected.

Proof. Suppose $[0,1] = U \cup V$ with U,V open and disjoint. W.O.L.G, $0 \in U$. Let $S = \{x \in [0,1] | [0,x] \subseteq U\}$. U open and $0 \in U$, i.e., $\exists r > 0 : [0,r) \subseteq U$, then $[0,r/2] \in S$ and S is nonempty. Let $c = \sup S$. If $y \in [0,c)$, then $y \le c = \sup S$ and $\exists y \le z < \sup S$ such that $[0,y] \subseteq [o,z] \subseteq U$ which means $y \in X$. Moreover, if $c \notin U$, then $c \in V$, then $\exists \delta > 0 : (c - \delta, c + \delta) \subseteq V$, thus, $(c - \delta)/2 \in [0,c) \subseteq V$ and $(c - \delta)/2 \in V$ contradict with $U \cap V = \emptyset$. Thus, $[0,c] \subseteq U$. If $c \ne 1$, then $(c - \epsilon, c + \epsilon) \subseteq U$, then $c + \epsilon/2 \in S$ contradict with $c = \sup S$. Thus, c = 1 and c = [0,1], $c = \emptyset$.

Proposition 29. X connected $\iff \forall Y$ discrete space, any continuous function $f: X \to Y$ is constant

Proof. (\Rightarrow) With X connected and Y discrete, then $\forall y \in Y : f^{-1}(y)$ is both open and closed. if $f^{-1}(y) \neq \emptyset$, then $f^{-1}(y) = X$.

(\Leftarrow) Suppose X is not continuous, then $\exists U, V$ disjoint clopen subsets of X such that $X = U \cup V$. Then, $f: X \to \{-1, 1\}$ such that f(U) = -1 and f(V) = 1 is continuous.

Proposition 30. $f: X \to Z$ continuous and X is connected, then f(X) connected with subspace topology in Z.

Proof. Let Y be descrete, $g: f(X) \to Y$ continuous. Then $g \circ f: X \to Y$. Since X is connected, then $g \circ f$ is constant and thus $g: f(X) \to Y$ is constant and by the previous proposition, f(X) is connected.

Proposition 31. $\{X_i\}_{i\in I}$ is a collection of connected subset of Z such that $X_i \cap X_j \neq \emptyset \ \forall i,j \in I$. Then

$$X = \bigcup_{i \in I} X_i$$

Is connected.

Proof. Take Y discrete, then take $g: X \to Y$ continuous. Since tach X_i connected, $g|_{X_i}$ is constant. Since $X_i \cap X_j \neq \emptyset \ \forall i, j \in I$, then g is contant. By the previous proposition, X is connected.

Corollary 4. \mathbb{R} is connected.

Proposition 32. Suppose $A \subseteq X$ is connected, then $A \subseteq E \subseteq \bar{A}$. Then E is connected.

Proof. Suppose $V,W\subseteq F,\ E=V\cup W$ and $V,\ W$ disjoint closed. Since V,W closed, then $\exists \tilde{V},\tilde{W}$ closed in X with $V=\tilde{V}\cap E$ and $W=\tilde{W}\cap E$. Then $A\cap V=A\cap (\tilde{V}\cap E)=A\cap \tilde{V},$ similarly, $A\cap W=A\cap \tilde{W}$. Thus, $A\cap V,\ A\cap W$ are closed. Also, $A=A\cap E=(A\cap V)\cup (A\cap W)$ is the disjoint union of two closed sets. Since A connected, then $A\cap W=\emptyset$. Then $A=A\subseteq \tilde{V},$ since \tilde{V} closed, then $\bar{A}\subseteq \tilde{V},$ then, $E\subseteq \tilde{V}$. Hence,

$$W = E \cap \tilde{W} = (E \cap \tilde{V}) \cap (E \cap \tilde{W}) = V \cap W = 0$$

Thus, E is connected.

Theorem 15 (Intermediate Value). X connected, $f: X \to \mathbb{R}$ continuous. $\forall a, b \in X: f(a) < f(b)$. Then $\forall c \in (f(a), f(b)): \exists x \in X: f(x) = c$

Proof. By contradiction. $\exists c \in (f(a), f(b)) : \nexists x \in X : f(x) = c$. Then $X = f^{-1}(\mathbb{R}) = f^{-1}(\mathbb{R} \setminus \{c\})$ and by continuoity, $f^{-1}((-\infty, c)), f^{-1}((c, +\infty))$ are two open, disjoint subsets whose union is X, which contradicts with the connectedness of X.

Consider the equivlance relation \sim such that

$$x \sim y \iff \exists A \subseteq X : x, y \in A \text{ and } A \text{ connected}$$

This is obviously an equivalent relation.

Definition 54 (Connected Components). A connected component is an element of X/\sim

Remark. Connected components does not need be open.

Proposition 33. The following statements are true

- Connected components are connected and closed.
- $Y \subseteq X$, Y connected $\implies \exists C$ connected component such that $Y \subseteq C$.

Proof. Easy. \Box

Definition 55 (Path Connected). A path is a continuous map $\gamma : [0,1] \to X$, it is from x to y if $\gamma(0) = x$ and $\gamma(1) = y$. X is path-connected if

$$\forall x,y \in X: \exists \gamma: I \to X$$
 path from x to y

Theorem 16. Conder the map $f: \mathbb{R} \to \mathbb{R}^2$ defined by $f(x) = (x, \sin(1/x))$. Take $A = f(\mathbb{R})$, then \bar{A} is connected but not path connected.

Proof. Suppose \bar{A} is path connected, then $\exists \gamma: [0,1] \to A$ continuous such that $\gamma(0)=(0,0), \ \gamma(1) \in A$. $\bar{A} \setminus A = \{0\} \times [-1,1]$ is closed in $\mathbb{R}^2 \implies \gamma^{-1}(\bar{A} \setminus A)$ closed in [0,1]. Take $d=\sup(\gamma^{-1}(\bar{A} \setminus A))$, since

 $d \in \gamma(\bar{A} \setminus A), \ \gamma(d, 1) \in A$. Now, take $\gamma(t) = (x(t), y(t))$ for some continuous x, y. For t > d, $\gamma(t) \in A$, i.e., $y(t) = \sin(1/x(t))$. $(x(d), y(d)) \in \bar{A} \setminus A$ implies x(d) = 0. Since $x(t) \to x(d)$ when $x \to d$, take sequence $t_n \in [d, 1]$ with $t_n \to d$, then it is sufficient to take $x(t_n) = 1/(\pi/2 + \pi n)$ for n sufficiently large. With the choice of x, the corresponding y coordinates is just $y(t_n) = \sin(\pi/2 + n\pi) = (-1)^n$ and the continutiy implies $\lim_{n \to \infty} y(t_n)$ converges, which leads to contradiction.

Proposition 34. Path connected space are connected.

Proof. Suppose X path connected, then $\forall x \in X : \forall y \in X : \exists \gamma : [0,1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. By the connectedness of [0,1], $\gamma([0,1])$ connected. By the fact that the choice of x,y are arbitrary in X, X is connected.

Definition 56 (Locally Path-Connected). X is locally path-connected if $\forall x \in X$, $\exists U \subseteq X$ neighborhood of x, there is a path connected neighborhood V of x such that $x \in V \subseteq U$.

Given the relation

 $x \sim y \iff$ exists path between x and y.

Definition 57. The element of X/\sim is called path component.

Proposition 35. X locally path connected, then the path components are open.

Proof. Take $x \in X$, $P = \{y \in X | \text{exist path connecting } x \text{ and } y\}$. Then by the locally path connecteddness, $\exists V_y \text{ path connected neighborhood of } y \text{ such that } \forall z \in V_y : z \in P \text{ and thus, } V_y \in P.$ So P is open in X. \square

Theorem 17. X connected, locally path-connected \iff X is path connected.

Proof. Let P be path component of X. If $P \neq X$, X has other path components that has union Q, since path components are open, both P,Q clopen can non empty. Thus, X not connected, which cause contradiction. \square