Definition 1. μ_n, μ probability measures on $(E, \mathcal{B}(E))$, where (E, ρ) is a metric space. We say that $\mu_n \implies \mu$, that is μ_n converges in law/in distribution/weakly to μ , iff $\forall_{f \in C_b(E)} \int_E f d\mu_n \rightarrow \int_E f d\mu$.

Theorem 2. The following are equivalent:

- 1. $\mu_n \implies \mu$,
- 2. \forall_f if f is uniformly continuous and bounded on E, then $\int_E f d\mu_n \to \int f d\mu$,
- 3. $\forall_{G \subset E \text{ open}} \liminf_{n \to \infty} \mu_n(G) \geqslant \mu(G),$
- 4. $\forall_{F \subset E \ closed} \limsup_{n \to \infty} \mu_n(F) \leq \mu(F),$
- 5. $\forall_{A \in \mathcal{B}(E)} \ \mu(\partial A) = 0 \implies \lim_{n \to \infty} \mu_n(A) = \mu(A).$

Definition 3. μ probability measure on \mathbb{R}^d , then its distribution function is $F_{\mu}(t) = \mu((-\infty, t_1] \times \ldots \times (-\infty, t_n]).$

Theorem 4. $\mu_n \implies \mu \text{ iff } \forall_t \text{ if } F_\mu \text{ is continuous at } t, \text{ then } \lim_{n \to \infty} F_{\mu_n}(t) = F_\mu(t).$

Lemma 5. μ_n , μ probability measures on $(E, \mathcal{B}(E))$, \mathcal{A} a π -system of Borel sets (i.e. $\forall_{A,B\in\mathcal{A}}A\cap B\in\mathcal{A}$) such that any open set in E is a union of at most countably many sets in \mathcal{A} , and $\forall_{A\in\mathcal{A}}\mu_n(A)\to\mu(A)$, then $\mu_n\Longrightarrow\mu$.

Proposition 6. μ_n, μ probability measures on \mathbb{R}^d , then $\mu_n \implies \mu$ iff $\forall_{f \in C_c(\mathbb{R}^d)} \int_E f \, d\mu_n \rightarrow \int_E f \, d\mu$.

Definition 7. X_n, X random variables with values in metric space (E, ρ) , then X_n converges to X in law (or in distribution, or weakly) iff $\mu_{X_n} \implies \mu_X$. We write $X_n \stackrel{\mathcal{L}}{\longrightarrow} X$ or $X_n \stackrel{d}{\longrightarrow} X$ or $X_n \stackrel{d}{\longrightarrow} X$.

Remark 8. $\int_{E} f(t) \mu_{X}(t) = \mathbb{E}f(X)$, so $X_{n} \implies X$ iff $\forall_{f \in C_{b}(E)} \mathbb{E}f(X_{n}) \to \mathbb{E}f(X)$.

Remark 9. X_n and X may be defined on distinct spaces.

Remark 10. X_n may have the same law and be very different.

Remark 11. Convergence in probability implies convergence in law, but not conversely.

Proposition 12. X_n, Y_n, X random variables with values in $(E, \rho), X_n \Longrightarrow X$, $\rho(X_n, Y_n) \xrightarrow{\mathbb{P}} 0$. Then $Y_n \Longrightarrow X$.

Corollary 13. $Y_n \xrightarrow{\mathbb{P}} X$ implies $Y_n \implies X$.

Definition 14. $\{\mu_i\}_{i\in I}$ a family of probability measures on (E,ρ) , we say that this family is tight iff $\forall_{\varepsilon>0}\exists_{K \text{ compact in } E}\forall_{i\in I}\mu_i(K)\geqslant 1-\varepsilon$.

Definition 15. $\{X_i\}$ tight iff $\{\mu_{X_i}\}$ tight.

Example 16. $E = \mathbb{R}, \mu_n = \delta_n$ not tight.

Remark 17. $E = \mathbb{R}, \{\mu_i\} \text{ tight iff } \forall_{\varepsilon>0} \exists_M \forall_{i\in I} \mu_i([-M, M]) \geqslant 1 - \varepsilon.$

Remark 18. X_i random variables in \mathbb{R} , p > 0, $\sup_i \mathbb{E}|X_i|^p < \infty \implies \{X_i\}_{i \in I}$ is tight.

Theorem 19 (Prokhorov). $\{\mu_i\}_{i\in I}$ probability measures on \mathbb{R}^d . This family is tight iff for any sequence of measures μ_k in the family one may choose a weakly convergent subsequence μ_{k_l} .

Definition 1 (characteristic function). $\varphi_{\mu}(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} d\mu(x)$ $\varphi_X(t) = \varphi_{\mu_X}(t) = \mathbb{E}e^{i\langle t, x \rangle}$

Proposition 2. $\varphi_X(0) = 1$ and $|\varphi_X(t)| \leq 1, t \in \mathbb{R}^d$

Proposition 3. φ_X uniformly continuous on \mathbb{R}^d .

Proposition 4. φ_X is a nonnegatively determined function on \mathbb{R}^d .

Theorem 5 (Bochner). A function $\varphi : \mathbb{R}^d \to \mathbb{C}$ is a characteristic function of a random d-dimensional vector iff $\varphi(0) = 1$, φ is continuous and φ is nonnegatively determined, i.e. $(\varphi(t_i - t_j))_{i,j}$ is nonnegatively determined for any t_i 's.

Proposition 6. $\varphi_{AX+b}(t) = e^{i\langle b,t\rangle} \varphi_X(A^T t)$, in particular $\varphi_{-X}(t) = \varphi_X(-t) = \overline{\varphi_X(t)}$.

Proposition 7. X real random variable, if $\mathbb{E}|X|^k < \infty$, $k \in \mathbb{Z}_+$, then $\varphi_X \in C^k(\mathbb{R})$ and $\varphi_X^{(k)}(t) = i^k \mathbb{E} X^k e^{itX}$.

Remark 8. Existence of φ_X' does not imply $\mathbb{E}|X| < \infty$.

Proposition 9. If μ, ν probability measures on \mathbb{R}^d such that $\varphi_{\mu} = \varphi_{\nu}$, then $\mu = \nu$.

Proposition 10. X_1, \ldots, X_n independent random d-dimensional variables, then $\varphi_{X_1+\ldots+X_n}(t) = \varphi_{X_1}(t)\ldots\varphi_{X_n}(t)$.

Theorem 1. $\varphi_{\mathcal{N}(0,1)}(t) = e^{-\frac{t^2}{2}}$ $\varphi_{\mathcal{N}(a,\sigma^2)}(t) = e^{ita - \frac{t^2\sigma^2}{2}}$

Theorem 2. X random variable in \mathbb{R}^d , $\mathbb{E}|X_1|^{k_1} \dots |X_d|^{k_d} < \infty$, then $\frac{\partial^{k_1}}{\partial t_1^{k_1}} \dots \frac{\partial^{k_d}}{\partial t_d^{k_d}} \varphi_X(t)$ exists and equals $i^{|k|} \mathbb{E} X_1^{k_1} \dots X_d^{k_d}$.

Remark 3. X_1, \ldots, X_d independent, then $\varphi_{X_1+\ldots+X_d}(t) = \varphi_{X_1}(t) \ldots \varphi_{X_d}(t)$, but opposite is not true in general.

Theorem 4. X_1, \ldots, X_d independent iff $\forall_{t \in \mathbb{R}^d} \varphi_{(X_1, \ldots, X_d)}(t) = \varphi_{X_1}(t_1) \ldots \varphi_{X_d}(t_d)$.

Theorem 5 (Lévy-Cramer). 1. If μ_n , μ probability measures on \mathbb{R}^d and $\mu_n \implies \mu$, then $\forall_{t \in \mathbb{R}^d} \varphi_{\mu_n}(t) \to \varphi_{\mu}(t)$.

2. If μ_n probability measure on \mathbb{R}^d and there exists function $\varphi : \mathbb{R}^d \to \mathbb{C}$ such that $\forall_{t \in \mathbb{R}^d} \varphi_{\mu_n}(t) \to \varphi(t)$ and φ is continuous at 0, then there exists a probability measure μ on \mathbb{R}^d such that $\varphi = \varphi_{\mu}$ and $\mu_n \Longrightarrow \mu$.

Corollary 6. $\mu_n \implies \mu \text{ iff } \varphi_{\mu_n} \to \varphi_{\mu} \text{ pointwise.}$

Theorem 7 (Inverse Fourier Theorem). Suppose that μ is a probability measure on \mathbb{R}^d and $\varphi_{\mu} \in L^1(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^d} |\varphi_{\mu}(x)| dx < \infty$, then μ has the density g given by the formula

$$g(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \varphi_{\mu}(t) e^{-i\langle t, x \rangle} dt.$$

Theorem 1 (Lévy-Cramer simplified). $X_n \implies X$ iff $\varphi_{X_n} \to \varphi_X$ pointwise.

Corollary 2. X_n, X are random vectors in \mathbb{R}^d , then $X_n \implies X$ iff $\forall_{t \in \mathbb{R}^d} \langle t, X_n \rangle \implies \langle t, X \rangle$.

Remark 3. We know $X \sim \mathcal{N}(a, \sigma^2)$, for which $\varphi_{\mathcal{N}(a, \sigma^2)}(t) = e^{ita - \frac{\sigma^2}{2}t^2}$ and $X \sim a + \sigma Y$ for $Y \sim \mathcal{N}(0, 1)$.

Definition 4 (canonical Gaussian distribution). The canonical d-dimensional Gaussian distribution on \mathbb{R}^d is the probability measure γ_d with the density $\frac{d\gamma_d(x)}{dx} = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|x|^2}{2}}$.

Equivalently, we say that a d-dimensional random vector X has the canonical Gaussian distribution if $X \sim \gamma_d$, i.e. X_1, \ldots, X_d are independent with $\mathcal{N}(0, 1)$ -distribution. We write $X \sim \gamma_d$ or $X \sim \mathcal{N}(0, I_d)$.

Definition 5 (pushforward). μ – a measure on \mathbb{R}^m , $F : \mathbb{R}^m \to \mathbb{R}^d$ measurable, $F_{\#}\mu$ – a pushforward of μ is the measure on \mathbb{R}^d given by $F_{\#}\mu(A) = \mu(F^{-1}(A))$.

Definition 6 (Gaussian vector). A probability measure μ on \mathbb{R}^d is called *Gaussian* or *normal* iff there exists affine $U: \mathbb{R}^m \to \mathbb{R}^d$ such that $\mu = U_{\#}\gamma_m$.

A d-dimensional random vector X is called Gaussian if its law is Gaussian, i.e. $X \sim UY$, $Y \sim \gamma_m$.

Remark 7. $X \sim UY = AY + b$, then $\mathbb{E}X = b$, $Cov(X) = AA^T$.

Remark 8. $X \sim AY + b$, then $\varphi_X(t) = e^{i\langle \mathbb{E}X, t \rangle - \frac{\langle \text{Cov}(x)t, t \rangle}{2}}$

Definition 9 (Gaussian again). We say that a random d-dimensional vector X (respectively, a probability measure μ on \mathbb{R}^d) is Gaussian iff $\varphi_X(t) = e^{i\langle b,t \rangle - \frac{\langle Ct,t \rangle}{2}}$, where $b \in \mathbb{R}^d$, $C \in M_{d \times d}$, $C = C^T$, $C \ge 0$.

Proposition 10. These definitions are equivalent.

Corollary 11. Every d-dimensional Gaussian vector is an affine image of d-dimensional canonical Gaussian vector.

Remark 12. Equivalently, $\langle t, X \rangle$ is Gaussian for any $t \in \mathbb{R}^d$.

Corollary 13. $X_1 \sim \mathcal{N}(b_1, C_1), X_2 \sim \mathcal{N}(b_2, C_2)$ independent Gaussian, then $X_1 + X_2 \sim \mathcal{N}(b_1 + b_2, C_1 + C_2)$ also Gaussian.

Corollary 14. Affine image of a Gaussian vector is a Gaussian vector.

Remark 15. $X \sim \mathcal{N}(b, C)$ has the density iff $\det(C) \neq 0$ and then $g(x) = \frac{1}{(2\pi)^{\frac{d}{2}} \sqrt{\det C}} e^{-\frac{\langle C^{-1}(x-b), \langle x-b \rangle \rangle}{2}}$.

Theorem 16. If X is a Gaussian vector in \mathbb{R}^d , then coordinates of X are independent iff they are uncorrelated (i.e. X_1, \ldots, X_d independent iff $Cov(X_j, X_k) = 0$ for $j \neq k$).

Remark 17. In the theorem it is important that the whole vector is Gaussian, not only its coordinates!

Theorem 18 (CTL in the iid case). X_1, X_2, \ldots iid random variables, $\mathbb{E}X_1 = a$, $Var(X_1) = \sigma^2 \in (0, \infty)$, then $\frac{X_1 + \ldots + X_n - na}{\sqrt{n}\sigma} \implies \mathcal{N}(0, 1)$.

Theorem 1 (CTL in the iid case). X_1, X_2, \ldots iid random variables, $\mathbb{E}X_1 = a$, $Var(X_1) = \sigma^2 \in (0, \infty)$, then $\frac{X_1 + \ldots + X_n - na}{\sqrt{n}\sigma} \implies \mathcal{N}(0, 1)$.

Corollary 2 (de Moivre-Laplace). $X_n \sim \text{Bin}(n,p)$, then $\frac{X_n - np}{\sqrt{np(1-p)}} \implies \mathcal{N}(0,1)$.

Definition 3 (triangular array). $(X_{n,k})_{n=1,2,...;1 \le k \le k_n}$ is a triangular array of random variables if $\forall_n X_{n,1}, \ldots, X_{n,k_n}$ are independent.

Theorem 4 (CLT – Lindeberg's version). $(X_{n,k})$ a triangular array, $S_n = X_{n,1} + \ldots + X_{n,k_n}$,

- 1. $\mathbb{E}S_n \to m$
- 2. $Var(S_n) \to \sigma^2$
- 3. Lindeberg's condition: $\forall_{\varepsilon>0} \sum_{k=1}^{k_n} \mathbb{E}\left(|X_{n,k} \mathbb{E}X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k} \mathbb{E}X_{n,k}| > \varepsilon\}}\right) \to 0$

Then $S_n \implies \mathcal{N}(m, \sigma^2)$.

Lemma 5. Lindeberg's condition implies

- $\forall_{t>0} \lim_{n\to\infty} \mathbb{P}(\max_{1\leq k\leq k_n} |X_{n,k}| \geqslant t) = 0,$
- $\lim_{n\to\infty} \max_{1\leqslant k\leqslant k_n} \operatorname{Var}(X_{n,k}) \to 0.$

Theorem 6 (Feller). Suppose that $(X_{n,k})$ is a triangular array, $\sum_{k=1}^{k_n} \mathbb{E} X_{n,k} \to m$,

 $\sum_{k=1}^{k_n} \operatorname{Var}(X_{n,k}) \to \sigma^2, \text{ and } S_n = \sum_{k=1}^{k_n} X_{n,k} \implies \mathcal{N}(m,\sigma^2), \text{ then if } \max_{1 \leqslant k \leqslant k_n} \operatorname{Var}(X_{n,k}) \to 0, \text{ then } Lideberg's \ condition is satisfied.}$

Theorem 1 (CLT Lindeberg-Levy). Let $(X_{n,k})$ be a triangular array, $\sum_{k=1}^{k_n} X_{n,k} \to m$, $\sum_{k=1}^{k_n} \operatorname{Var}(X_{n,k}) \to \sigma^2$, and Lindeberg's condition be satisfied:

$$\forall_{\varepsilon>0} \sum_{k=1}^{k_n} \mathbb{E}|X_{n,k} - \mathbb{E}X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k} - \mathbb{E}X_{n,k}| > \varepsilon\}} \to 0.$$

Then

$$S_n = \sum_{k=1}^{k_n} X_{n,k} \implies \mathcal{N}(m, \sigma^2).$$

Proposition 2. For X_1, X_2, \ldots iid, $\operatorname{Var}(X_1) < \infty$, array $X_{n,k} = \frac{X_k - \mathbb{E}X_k}{\sqrt{n}}$ satisfies Lindeberg's condition.

Proposition 3 (Lyapunov condition). Lyapunov's condition

$$\exists_{\delta>0} \sum_{k=1}^{k_n} \mathbb{E}|X_{n,k} - \mathbb{E}X_{n,k}|^{2+\delta} \to 0$$

implies Lindeberg's condition (under CLT's assumptions about \mathbb{E} and Var of sums).

Corollary 4. For $\sum \mathbb{E} X_{n,k} \to 0, \sum \text{Var}(X_{n,k}) \to 1$, it follows that

$$\sup_{t} \left| \mathbb{P} \left(\sum X_{n,k} \leqslant t \right) - \phi(t) \right| \to 0,$$

and in particular $\mathbb{P}(\sum X_{n,k} \leqslant t) \to \phi(t) = \mathbb{P}(\mathcal{N}(0,1) \leqslant t)$.

Theorem 5 (Berny-Esseen). X_1, X_2, \ldots, X_n independent, $\mathbb{E}X_i = 0, \sum_{k=1}^n \text{Var}(X_k) = 1$, then

$$\left| \mathbb{P}\left(\sum_{k=1}^{n} X_k \leqslant t \right) - \phi(t) \right| \leqslant C_1 \sum_{k=1}^{n} \mathbb{E}|X_k|^3.$$

Corollary 6. In particular, for X_1, \ldots, X_n iid, $\mathbb{E}X_1 = m$, $Var(X_1) = \sigma^2$, we have

$$\left| \mathbb{P}\left(\frac{\sum_{k=1}^{n} X_k - nm}{\sqrt{n}\sigma} \leqslant t \right) - \phi(t) \right| \leqslant C_2 \sum_{k=1}^{n} \mathbb{E}\left| \frac{X_k - \mathbb{E}X_k}{\sqrt{n}\sigma} \right|^3 = C_2 \frac{\mathbb{E}|X_1 - \mathbb{E}X_1|^3}{\sqrt{n}\sigma^3}.$$

Remark 7. Obviously $C_2 \leqslant C_1$, it is known that $C_1, C_2 \geqslant \frac{\sqrt{10}+e}{6\sqrt{2\pi}} \approx 0.4097$, and also $C_1 \leqslant 0.56, C_2 \leqslant 0.4748$.

Example 8 (de Moivre-Laplace). $S_n \sim \text{Bin}(n,p), \left| \mathbb{P}(S_n \leqslant t) - \phi\left(\frac{t-np}{\sqrt{np(1-p)}}\right) \right| \leqslant C_2 \frac{p^2 + (1-p)^2}{\sqrt{np(1-p)}}.$

Definition 9. $\mathcal{G} \subset \mathcal{F}$ a σ -field, X random variable, $\mathbb{E}|X| < \infty$, then $Z = \mathbb{E}(X|\mathcal{G})$ is a random variable such that it is \mathcal{G} -measurable, $\forall_{A \in \mathcal{G}} \mathbb{E}(Z\mathbb{1}_A) = \mathbb{E}(X\mathbb{1}_A)$.

Proposition 10. The above exists and is unique up to a set of probability 0.

Proposition 11. Y random variable, X measurable with respect to $\sigma(Y)$, then X = h(Y) for some Borel function h.

Definition 12. $\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y))$ for X,Y random variables, $\mathbb{E}|X| < \infty$.

Example 1. (X,Y) has density $g_{(X,Y)}(x,y)$. Then

$$\mathbb{E}(X|Y) = \varphi(y) = \frac{\int xg(x,y) \, dx}{\int g(x,y) \, dx}.$$

Proposition 2. Conditional Expected Value is linear.

Proposition 3. $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}X$

Proposition 4. $X_1 \geqslant X_2 \implies \mathbb{E}(X_1|\mathcal{G}) \geqslant \mathbb{E}(X_2|\mathcal{G})$ almost surely.

Proposition 5. $|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}(|X||\mathcal{G})$ a.s., in particular CEV is a contraction in L^1 because $\mathbb{E}|\mathbb{E}(X|\mathcal{G})| \leq \mathbb{E}|X|$.

Proposition 6. X is \mathcal{G} -measurable, then $\mathbb{E}(X|\mathcal{G}) = X$ a.s.

Proposition 7. $X \perp Y \Longrightarrow \mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$ a.s. In particular $\mathbb{E}(X|\{\varnothing,\Omega\}) = \mathbb{E}X$.

Proposition 8 (Lebesgue monotone convergence thm). $0 \leq X_n \nearrow X$, X_n, X integrable, then $\mathbb{E}(X_n|\mathcal{G}) \nearrow \mathbb{E}(X|\mathcal{G})$ a.s.

Proposition 9 (Lebesgue dominated convergence thm). $|X_n| \leq Y$, $\mathbb{E}Y < \infty$, $X_n \to X$ a.s., then $\lim_{n\to\infty} \mathbb{E}(X_n|\mathcal{G}) = \mathbb{E}(X|\mathcal{G})$ a.s.

Proposition 10 (Fatou lemma). X_n integrable, then $\liminf_{n\to\infty} \mathbb{E}(X_n|\mathcal{G}) \geqslant \mathbb{E}\left(\liminf_{n\to\infty} X_n \middle| \mathcal{G}\right)$.

Proposition 11. X is \mathcal{G} -measurable, $\mathbb{E}|Y| < \infty$, $\mathbb{E}|XY| < \infty$, then $\mathbb{E}(XY|\mathcal{G}) = X\mathbb{E}(Y|\mathcal{G})$ a.s.

Proposition 12. X integrable, $\mathcal{G}_1 \subset \mathcal{G}_2$, then $\mathbb{E}(X|\mathcal{G}_1) = \mathbb{E}(\mathbb{E}(X|\mathcal{G}_2)|\mathcal{G}_1) = \mathbb{E}(\mathbb{E}(X|\mathcal{G}_1)|\mathcal{G}_2)$.

Proposition 13 (Jensen inequality). $\varphi : \mathbb{R} \to \mathbb{R}$ convex, $\mathbb{E}|X| < \infty$, $\mathbb{E}|\varphi(X)| < \infty$, then $\mathbb{E}(\varphi(X)|\mathcal{G}) \geqslant \varphi(\mathbb{E}(X|\mathcal{G}))$.

In particular $\mathbb{E}\varphi(X) \geqslant \varphi(\mathbb{E}X)$.

Corollary 14. $\mathbb{E}|X|^p < \infty$, $p \ge 1$, then $|\mathbb{E}(X|\mathcal{G})|^p \le \mathbb{E}(|X|^p|\mathcal{G})$. In particular $\mathbb{E}(\bullet|\mathcal{G})$ is a contraction in L^p .

Filtrations and stopping times $T \subset \mathbb{Z}$

Definition 15 (filtration). A filtration is a sequence of σ -bodies $(\mathcal{F}_t)_{t \in T}$ such that $\mathcal{F}_t \subset \mathcal{F}$ and $\mathcal{F}_t \subset \mathcal{F}_s$ for t < s.

Definition 16 (stopping time). A stopping time with respect to filtration $(\mathcal{F}_t)_{t\in T}$ is a random variable $\tau:\Omega\to T\cup\{\infty\}$ such that $\forall_{t\in T}\{\tau\leqslant t\}\in\mathcal{F}_t$.

Proposition 17. $\tau: \Omega \to T \cup \{\infty\}$ is a stopping time iff $\forall_{t \in T} \{\tau = t\} \in \mathcal{F}_t$.

Definition 1 (filtration). $(\mathcal{F}_t)_T$, for T a segment in \mathbb{Z} , is a *filtration*, if $\mathcal{F}_t \subset \mathcal{F}$ is a σ -body and $\forall_{t \leq s} \mathcal{F}_t \subset \mathcal{F}_s$.

Definition 2 (stopping time). $\tau: \Omega \to T \cup \{\infty\}$ is a *stopping time*, if $\forall_{t \in T} \{\tau \leq t\} \in \mathcal{F}_t$ ($\iff \forall_{t \in T} \{\tau = t\} \in \mathcal{F}_t\}$).

Definition 3. Let (\mathcal{F}_t) be a filtration, τ be a stopping time, then define

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leqslant t \} \in \mathcal{F}_t \}.$$

Proposition 4. $\mathcal{F}_{\tau} = \{A \in \mathcal{F} : A \cap \{\tau = t\} \in \mathcal{F}_t\}.$

Proposition 5. τ_1, τ_2 stopping times, then $\tau_1 \wedge \tau_2 = \min(\tau_1, \tau_2)$ and $\tau_1 \vee \tau_2 = \max(\tau_1, \tau_2)$ are too.

 $\tau = t$ is a stopping time.

 $\tau_1 \leqslant \tau_2 \ stopping \ times \implies \mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$

 τ jest \mathcal{F}_{τ} -mierzalne.

Definition 6 (adapted process). $(X_t)_{t\in T}$ is adapted to the filtration $(\mathcal{F}_t)_{t\in T}$ or just (\mathcal{F}_t) -adapted, if $\forall_t \ X_t$ is \mathcal{F}_t -measurable.

Proposition 7. (\mathcal{F}_t) filtration, (X_t) is (\mathcal{F}_t) -adapted, τ a stopping time, then $\tau < \infty \implies X_{\tau}$ is \mathcal{F}_{τ} -measurable.

More generally, X_{τ} is \mathcal{F}_{τ} -measurable on the set $\{\tau < \infty\}$, i.e. $\forall_{B \in \mathcal{B}(\mathbb{R})} \{X_{\tau} \in B\} \cap \{t < \infty\} \in \mathcal{F}_{\tau}$.

Definition 8 (martingale). (X_t) is a martingale (resp. submartingale, supermartingale) with respect to a foltration (\mathcal{F}_t) , if

- $\forall_{t \in T} X_t$ is \mathcal{F}_t -measurable,
- $\forall_{t \in T} \mathbb{E} |X_t| < \infty$,
- $\forall_{s \leq t, s, t \in T} \mathbb{E}(X_t | \mathcal{F}_s) = X_s \text{ a.s. (resp.} \geq , \leq).$

Remark 9. X_t is a martingale iff it is both a submartingale and a supermartingale.

Remark 10. (X_t) is a (\mathcal{F}_t) -martingale if X_t is \mathcal{F}_t -measurable, integrable and $\forall_{s < t, A \in \mathcal{F}_s} \mathbb{E}(X_s \mathbb{1}_A) = \mathbb{E}(X_t \mathbb{1}_A)$ (resp. \leq for submartingale, \geq for supermartingale).

Remark 11. For T a segment in \mathbb{Z} , (X_t) is (\mathcal{F}_t) -martingale iff X_t is \mathcal{F}_t -measurable, $\mathbb{E}|X_t| < \infty$, $\mathbb{E}(X_{s+1}|\mathcal{F}_s) = X_s$ a.s. (resp. \geqslant for submartingale, \leqslant for supermartingale).

Remark 12. X_t submartingale iff $-X_t$ supermartingale.

Remark 13. X_t, Y_t are \mathcal{F}_t -martingales, then $aX_t + bY_t$ also (for submartingale take $a, b \ge 0$).

Definition 14. $(\mathcal{F}_n)_{n\geqslant 0}$ filtration generated by $(X_1,X_2,\ldots), \mathcal{F}_0=\{\varnothing,\Omega\}, \mathcal{F}_n=\sigma(X_1,\ldots,X_n).$

Fact 15. $X_1, X_2, ...$ independent random variables, $S_0 = 0, S_n = X_1 + ... + X_n, (\mathcal{F}_n)$ filtration generated by (X_n) .

Then S_n is a martingale iff X_n are integrable and $\mathbb{E}X_n = 0$ (\geqslant for submartingale, \leqslant for supermartingale).

Fact 16. X integrable random variable, (\mathcal{F}_t) filtration, $X_t = \mathbb{E}(X|\mathcal{F}_t)$ is a (\mathcal{F}_t) -martingale.

Fact 17. (X_t) is a (\mathcal{F}_t) -martingale, $\varphi : \mathbb{R} \to \mathbb{R}$ convex, $\mathbb{E}|\varphi(X_t)| < \infty$, then $(\varphi(X_t), \mathcal{F}_t)$ is a submartingale.

Corollary 18. (X_t, \mathcal{F}_t) a martingale, $p \ge 1$, $\mathbb{E}|X_t|^p < \infty$, then $(|X_t|^p, \mathcal{F}_t)$ is a submartingale.

Corollary 19. (X_t, \mathcal{F}_t) submartingale, then $(X_t \vee a, \mathcal{F}_t)$ submartingale.

Corollary 20. (X_t, \mathcal{F}_t) martingale, then (X_t^+, \mathcal{F}_t) and (X_t^-, \mathcal{F}_t) submartingales (where $Y^+ = Y \wedge 0, Y^- = (-Y) \wedge 0$).

Fact 21 (martingale transformation). (X_n, \mathcal{F}_n) martingale, let $Y_n = X_0 + V_1(X_1 - X_0) + V_2(X_2 - X_1) + \ldots + V_n(X_n - X_{n-1})$ for V_n being (\mathcal{F}_{n-1}) -measurable and bounded, then (Y_n, \mathcal{F}_n) is a martingale.

Stwierdzenie 1. X_k jest \mathcal{F}_k -adaptowalny, τ moment zatrzymania, wtedy X_{τ} jest \mathcal{F}_{τ} -mierzalne na $\{\tau < \infty\}$.

Twierdzenie 2 (Doob optional sampling). $(X_n, \mathcal{F}_n)_{n\geqslant 0}$ (nad, pod)martyngał, $\tau_1 \leqslant \tau_2 \leqslant N < \infty$ dwa momenty zatrzymania. Wtedy $(X_{\tau_i}, \mathcal{F}_{\tau_i})$ jest (nad, pod)martyngałem, tzn. $\mathbb{E}(X_{\tau_2}|\mathcal{F}_{\tau_1})(\leqslant, \geqslant) = X_{\tau_1}$ p.n. W szczególności $\mathbb{E}X_{\tau_2}(\leqslant, \geqslant) = \mathbb{E}X_{\tau_1}$.

Uwaga 3. Założenie $\tau_2 \leq N < \infty$ jest kluczowe!

Twierdzenie 4 (tożsamość Walda). $X_1, X_2, \ldots iid$, $\mathbb{E}|X_1| < \infty$, $S_0 = 0$, $S_n = X_1 + \ldots + X_n$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, τ moment zatrzymania względem \mathcal{F}_n taki, że $\mathbb{E}\tau < \infty$. Wtedy $\mathbb{E}S_{\tau} = \mathbb{E}\tau \mathbb{E}X_1$.

Fakt 5. S_n jak wyżej, $a \in \mathbb{Z}$, $\tau_a = \inf\{n : S_n = a\}$. Wówczas $\tau_a < \infty$ p.n., czyli symetryczne błądzenie losowe na \mathbb{Z} z prawdopodobieństwem 1 odwiedza każdy punkt \mathbb{Z} .

Twierdzenie 6 (o zbieżności p.n. dla martyngałów). $(X_n, \mathcal{F}_n)_{n\geqslant 0}$ nadmartyngał taki, że $\sup_n \mathbb{E} X_n^- < \infty$. Wówczas $X = \lim_{n\to\infty} X_n$ istnieje p.n. oraz $\mathbb{E} |X| < \infty$.

Poniższe służą dowodowi twierdzenia.

Fakt 7. (x_n) ciąg, wtedy lim x_n istnieje w szerszym sensie (tzn. być może jest nieskończona) wtw, gdy $\forall_{a < b, a, b \in \mathbb{Q}} U_a^b((x_n)) < \infty$, gdzie U_a^b to liczba przejść w górę przez przedział [a, b] dla ciągu (x_n) .

Lemat 8. $(X_n)_{n=0}^m$ nadmartyngał, $U_a^b(m)$ liczba przejść przez [a,b] dla (X_n) do chwili m. Wtedy $\mathbb{E} U_a^b(m) \leqslant \frac{1}{b-a} \mathbb{E} (X_m-a)^- \leqslant \frac{1}{b-a} (\mathbb{E} X_m^- + a^+)$

Fakt 9. Dla nadmartyngału $(X_n)_{n\geqslant 0}$ NWSR:

- $\sup_n \mathbb{E}|X_n| < \infty$,
- $\bullet \ \sup_n \mathbb{E} X_n^- < \infty,$
- $\lim_n \mathbb{E} X_n^- < \infty$.

Twierdzenie 1. X_n nadmartyngał, $\sup_n \mathbb{E} X_n^- < \infty$, wtedy $X_n \to X$ p.n. oraz $\mathbb{E} |X| < \infty$.

Wniosek 2. X_n podmartyngał, sup $\mathbb{E}X_n^+ < \infty$, to $X_n \to X$ p.n. i $\mathbb{E}|X| < \infty$.

Wniosek 3. Każdy nieujemny nadmartyngał i niedodatni podmartyngał jest zbieżny p.n.

Nierówności maksymalne Dooba

Twierdzenie 4. (M_k) martyngał, to:

•
$$\mathbb{P}\left(\max_{1 \leq k \leq n} |M_k| \geqslant t\right) \leqslant \frac{1}{t} \mathbb{E}|M_n| \mathbb{1}_{\left\{\max_{1 \leq k \leq n} |M_k| \geqslant t\right\}} \leqslant \frac{1}{t} \mathbb{E}|M_n|,$$

•
$$p > 1$$
, $\mathbb{E} \max_{1 \le k \le n} |M_k|^p \le \left(\frac{p}{p-1}\right)^n \mathbb{E} |M_n|^p$.

Wniosek 5. $(M_k)_{k\geqslant 1}$ martyngał, wtedy

•
$$t > 0$$
, $\mathbb{P}\left(\sup_{k \geqslant 1} |M_k| \geqslant t\right) \leqslant \frac{1}{t} \sup_{k \geqslant 1} \mathbb{E}|M_k|$,

Uwaga 6. Dla (M_k) podmartyngału lub nadmartyngału też są odpowiednie nierówności maksymalne (np. w notatkach http://mst.mimuw.edu.pl/lecture.php?lecture=rp2&part=Ch5).

Jednostajna całkowalność zmiennych losowych

Definicja 7. $(X_i)_{i\in I}$ rodzina zmiennych losowych jest jednostajnie całkowalna, jeśli $\lim_{C\to\infty}\sup_i \mathbb{E}|X_i|\mathbb{1}_{\{|X_i|\geqslant C\}}=0.$

Fakt 8. (X_i) jest jednostajnie całkowalna wtw, gdy spełnione są dwa warunki:

- $\sup_{i} \mathbb{E}|X_{i}| < \infty$,
- $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{i\in I} \mathbb{P}(A) \leqslant \delta \implies \mathbb{E}|X_i| \mathbb{1}_A \leqslant \varepsilon$.

Przykład 9. $\mathbb{E}|X| < \infty \implies \{X\}$ jest jednostajnie całkowalna (z tw. Lebesgue'a o zbieżności zmajoryzowanej).

Przykład 10. $\mathbb{E}\sup_{i}|X_{i}|<\infty \implies \{(X_{i})_{i\in I}\}$ jest jednostajnie całkowalna.

Twierdzenie 11. p > 0, $\{|X_n|^p\}$ jednostajnie całkowalna, $X_n \xrightarrow{\mathbb{P}} X$, to $X_n \to X$ w L^p , czyli $\mathbb{E}|X_n - X|^p \to 0$.

Twierdzenie 12. (M_n, \mathcal{F}_n) martyngał, NWSR:

- 1. $\{M_n\}_{n\geq 0}$ jednostajnie całkowalna,
- 2. M_n zbieżny w L^1 (czyli $\exists_M \mathbb{E} |M_n M| \to 0$),
- 3. M_n jest prawostronnie domknięty (czyli \exists_M , M całkowalne, $M_n = \mathbb{E}(M|\mathcal{F}_n)$),
- 4. $\exists_{M_{\infty}}, \ \mathcal{F}_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)$ -mierzalna, $M_{n} = \mathbb{E}(M_{\infty}|\mathcal{F}_{n}) \ p.n.$

Ponadto wtedy $M_n \to M_\infty$ p.n. i w L^1 .

Wniosek 13 (tw. Levy'ego). X całkowalna, (\mathcal{F}_n) filtracja, $\mathcal{F}_{\infty} = \sigma (\bigcup_{n=1}^{\infty} \mathcal{F}_n)$, $\mathbb{E}(X|\mathcal{F}_n) \to \mathbb{E}(X|\mathcal{F}_{\infty})$ p.n. i w L^1 .

Wniosek 14 (prawo 0-1 Kołmogorowa). X_1, X_2, \ldots niezależne, $A \in \mathcal{F} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots)$, wówczas $\mathbb{P}(A) \in \{0, 1\}$.

Twierdzenie 1 (zbieżność w L^1). (M_n, \mathcal{F}_n) martyngał, NWSR:

- a) $\{M_n\}_{n\geqslant 0}$ jednostajnie całkowalna,
- b) M_n zbieżny w L^1 (czyli $\exists_M \mathbb{E} |M_n M| \to 0$),
- c) M_n jest prawostronnie domknięty (czyli $\exists_M M$ całkowalne, $M_n = \mathbb{E}(M|\mathcal{F}_n)$),
- c') $\exists_{M_{\infty}} \mathcal{F}_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)$ -mierzalna, $M_{n} = \mathbb{E}(M_{\infty}|\mathcal{F}_{n})$ p.n.. Ponadto wtedy $M_{n} \to M_{\infty}$ p.n. $i \ w \ L^{1}$.

Twierdzenie 2 (zbieżność w L^p). (M_n, \mathcal{F}_n) martyngał, p > 1, $\forall_n \mathbb{E} |M_n|^p < \infty$, NWSR:

- a) $\sup_n \mathbb{E}|M_n|^p < \infty$,
- b) $\{|M_n|^p\}_n$ jednostajnie całkowalna,
- c) M_n zbieżny w L^p (czyli $\exists_M \mathbb{E} |M|^p < \infty, \mathbb{E} |M_n M|^p \to 0$),
- d) M_n jest prawostronnie domknięty przez zmienną z L^p (czyli $\exists_M \mathbb{E}|M|^p < \infty, \forall_n \mathbb{E}(M|\mathcal{F}_n) = M_n$),
- d') $\exists_M \mathcal{F}_{\infty}$ -mierzalna, $\mathbb{E}|M_{\infty}| < \infty, \forall_n \mathbb{E}(M_{\infty}|\mathcal{F}_n) = M_n$. Ponadto wtedy $M_n \to M_{\infty}$ p.n. $i \ w \ L^p$.

Uwaga 3. Istnieje martyngał jednostajnie całkowalny $(M_n)_{n\geqslant 0}$ taki, że $\sup_n \mathbb{E}|M_n|=\infty$.

Łańcuchy Markowa

E – skończona lub przeliczalna przestrzeń stanów.

Definicja 4 (łańcuch Markowa). Proces $(X_n)_{n\geqslant 0}$ o wartościach w skończonej lub przeliczalnej przestrzeni E nazywamy lańcuchem Markowa, jeśli zachodzi warunek $\mathbb{P}(X_{n+1}=a_{n+1}|X_n=a_n,\ldots,X_0=a_0)=\mathbb{P}(X_{n+1}=a_{n+1}|X_n=a_n)$ o ile $\mathbb{P}(X_n=a_n,\ldots,X_0=a_0)>0$.

Przykład 5. X_0, X_1, X_2, \ldots niezależne, to (X_n) ł.M.

Przykład 6. X_0, X_1, \ldots niezależne, to $(S_n = X_n + S_{n-1})$ ł.M.

Przykład 7. Bładzenie po wierzchołkach.

Definicja 8 (macierz przejścia). X_n jest ł.M., macierzą przejścia w n-tym kroku $(P_n(a,b))_{a,b\in E}$ nazywamy macierz elementów $P_n(a,b) = \mathbb{P}(X_n = b|X_{n-1} = a)$ o ile $\mathbb{P}(X_{n-1} = a) > 0$.

Uwaga 9. P_n macierz przejścia w n-tym kroku, $\mathbb{P}(X_{n-1}=a)>0$, wtedy

- $\forall_b P_n(a,b) \geqslant 0$,
- $\sum_{b} P_n(a,b) = 1$.

Definicja 10 (macierz stochastyczna). Macierz $P = (p(a,b))_{a,b \in E}$ nazywamy stochastyczną, jeśli $\forall_{a,b}p(a,b) \geq 0$ oraz $\forall_a \sum_b p(a,b) = 1$.

Definicja 11 (jednorodny ł. M.). Łańcuch Markowa (X_n) nazywamy jednorodnym z macierzą przejścia P = (p(a,b)), jeśli $\forall_{n,a,b} \mathbb{P}(X_n = b | X_{n-1} = a) = p(a,b)$ o ile $\mathbb{P}(X_{n-1} = a) > 0$.

Przykład 12. X_0, X_1, \ldots niezależne, (X_n) jednorodny ł.M. wtw, gdy X_n mają jednakowy rozkład.

Przykład 13. X_i niezalezne, $(S_n = X_0 + \ldots + X_n)$ jednorodny wtw, gdy X_n mają jednakowy rozkład.

Przykład 14. Błądzenie losowe po trójkące, błądzenie losowe na $\{-a, \ldots, b\}$ z odbiciem lub pochłanianiem są jednorodne.

Definicja 15 (rozkład początkowy). Rozkładem początkowym ł.M. $(X_n)_{n\geqslant 0}$ nazywamy rozkład X_0 , czyli ciąg $(\pi_a)_{a\in E}$ taki, że $\mathbb{P}(X_0=a)=\pi_a$.

Fakt 16. P = (p(a, b)) macierz stochastyczna, $\Pi = (\pi_a)$ rozkład na E. (X_n) jest (jednorodnym) ł.M. o macierzy przejścia P i rozkładzie poczatkowym Π wtw, gdy $\mathbb{P}(X_0 = a_0, \dots, X_n = a_n) = \pi_{a_0} p(a_0, a_1) \cdot \dots \cdot p(a_{n-1}, a_n)$.

Twierdzenie 17 (o istnieniu ł.M.). $\Pi = (\pi_a)_{a \in E}$ dowolny rozkład na E, $P = (p(a,b))_{a,b \in E}$ macierz stochastyczna na E, wówczas istnieje (jednorodny) ł.M. o rozkładzie początkowym Π i macierzy przejścia P.

Definicja 1. $\mathbb{P}_x(A) = \mathbb{P}(A|X_0 = x)$ o ile $\mathbb{P}(X_0 = x) > 0$.

Fakt 2. (X_n) jednorodny ł.M. na $(\Omega, \mathcal{F}, \mathbb{P})$ z macierzą przejścia P taką, że $\mathbb{P}(X_0 = x) > 0$. Wtedy względem \mathbb{P}_x , $(X_n)_{n\geqslant 0}$ jest jednorodnym ł. M. z macierzą przejścia P, o rozkładzie poczatkowym δ_x , tzn. $\mathbb{P}_x(X_0 = x) = \delta_x(x) = 1$.

Definicja 3. Π układ probabilistyczny na E, wtedy $P_{\Pi}(A) = \sum_{x} \pi_{x} \mathbb{P}_{x}$.

Fakt 4. (X_n) j.ł.M. w $(\Omega, \mathcal{F}, \mathbb{P})$ taki, że $\forall_x \mathbb{P}(X_n = x) > 0$. Wtedy dla każdego rozkładu Π na E ciąg (X_n) jest j.ł.M. względem \mathbb{P}_{Π} z macierzą przejścia P i rozkładem początkowym Π .

Fakt 5. $(X_n)_{n\geq 0}$ j.ł.M. z macierzą przejścia P, wtedy

- $\mathbb{P}_x(X_1 = x_1, \dots, X_n = x_n) = p_{xx_1} p_{x_1 x_2} \cdot \dots \cdot p_{x_{n-1} x_n}$
- $\mathbb{P}_x(X_1 = x_1, \dots, X_{n+m} = x_{n+m})$ = $\mathbb{P}_x(X_1 = x_1, \dots, X_n = x_n) \cdot \mathbb{P}_{x_n}(X_1 = x_{n+1}, \dots, X_m = x_{n+m}),$
- $\forall_{I \subset E^{n-1}, J \subset E^m} \mathbb{P}_x((X_1, \dots, X_{n-1}) \in I, X_n = x_n, (X_{n+1}, \dots, X_{n+m}) \in J)$ = $\mathbb{P}_x((X_1, \dots, X_{n-1}) \in I, X_n = x_n) \cdot \mathbb{P}_{x_n}((X_1, \dots, X_m) \in J).$

Definicja 6 (macierz przejścia w n krokach). $P(n) = (p_{x,y}(n))$, gdzie $p_{x,y}(n) = \mathbb{P}(X_n = y | X_0 = x) = \mathbb{P}_x(X_n = y)$.

Uwaga 7. $p_{x,y}(n+m) = \sum_{z} p_{x,z}(n) p_{z,y}(m)$.

 $Uwaga \ 8. \ P(0) = P^0 = Id$

Uwaga 9. $f_{x,y}(n) = \mathbb{P}_x(X_1 \neq y, \dots, X_{n-1} \neq y, X_n = y),$ wtedy $p_{x,y}(n) = \sum_{m=1}^n f_{x,y}(m) p_{y,y}(n-m).$

Klasyfikacja stanów

Definicja 10. A. Ze stanu x da się dojść do stanu y, ozn. $x \to y$, jeśli $\exists_{n \geqslant 0} p_{x,y}(n) > 0$.

- B. Stany x, y się komunikujq, jesli $x \to y$ oraz $y \to x$.
- C. Ł.M. jest nieprzywiedlny, jeśli każde dwa stany się komunikują.
- D. Stan x jest nieistotny, jeśli $\exists_y x \to y \land y \nrightarrow x$.
- E. Stan x jest pochłaniający, jeśli $p_{x,x} = 1$.
- F. Zbiór stanów $C \subset E$ jest zamknięty, jeśli $\forall_{x \in C} x \to y \implies y \in C$.

Stany chwilowe i powracające

Definicja 11.
$$F_{x,y} = \sum_{n=1}^{\infty} f_{x,y}(n) = \sum_{n \ge 1} \mathbb{P}_x (\exists_{n \ge 1} X_n = y).$$

Definicja 12. Mówimy, że stan x jest:

- a) chwilowy, jeśli $F_{xx} < 1$,
- b) powracający, jeśli $F_{xx} = 1$.

 $Uwaga \ 13. \ x \to y, y \to z \implies x \to z.$

Uwaga 14. \leftrightarrow to relacja równoważności.

Uwaga 15. C zamkniety, to można rozpatrywać ł.M. o zbiorze stanów C.

Uwaga 16. Ł.M. jest nieprzywiedlny wtw, gdy jedyne zamknięte zbiory to \varnothing , E.

Definicja 17 (liczba wizyt w stanie x). $N_x = \sum_{n=1}^{\infty} \mathbb{1}_{\{X_n = X\}}$

Fakt 18. Dla
$$k \geqslant 1$$
, $\mathbb{P}_x(N_y \geqslant k) = F_{xy}F_{yy}^{k-1}$.

Wniosek 19. Jeśli x chwilowy, to $\mathbb{P}_x(N_x = \infty) = 0$, czyli $\mathbb{P}_x(N_x < \infty) = 1$.

Wniosek 20. Jeśli x powracający, to $\mathbb{P}_x(N_x = \infty) = 1$.

Twierdzenie 21 (kryterium powracalności). $Stan\ x\ jest$ powracający $wtw,\ gdy\ \sum_n p_{xx}(n) = \infty.$ $Stan\ x\ jest$ chwilowy $wtw,\ gdy\ \sum_n p_{xx}(n) < \infty.$

Fakt 22.
$$\sum_{n} p_{xx}(n) = \frac{1}{1 - F_{xx}}$$

Wniosek 1. Jeśli $x \leftrightarrow y$, to x powracający wtw, gdy y powracający.

Definicja 2 (chwilowy/powracający nieprzywiedlny ł.M.). Jeśli ł.M. jest nieprzywiedlny, to albo wszystkie stany są chwilowe (ł.M. jest *chwilowy*), albo wszystkie stany są powracające (ł.M. jest *powracający*).

Fakt 3. (X_n) powracający nieprzywiedlny ł.M., wówczas $\forall_{x,y} F_{xy} = 1$.

Wniosek 4. Nieprzywiedlny powracający ł.M. o dowolnym rozkładzie początkowym odwiedza każdy stan z prawdopodobieństwem 1, tzn. $\mathbb{P}_{\Pi} (\forall_{y \in E} \exists_n X_n = y) = 1$.

Przykład 5. W notatkach są przykłady.

Okresowość ł.M.

Definicja 6 (okres). $x \in E$, okresem stanu $x \in E$ nazywamy liczbę $o(x) = \text{NWD}\{n \ge 1 : p_{x,x}(n) = 0\}$

Fakt 7. $x \leftrightarrow y \implies o(x) = o(y)$

Wniosek 8. Jeśli ł.M. jest nieprzywiedlny, to wszystkie stany mają ten sam okres.

Definicja 9 (okres). (X_n) nieprzywiedly ł.M. *Okresem* takiego łańcucha nazywamy okres dowolnego jego stanu.

Mówimy, że łańcuch jest *okresowy*, jeśli ma okres większy niż 1, a *nieokresowy*, jeśli ma okres równy 1.

Fakt 10. Jeśli nieprzywiedlny ł.M. jest nieokresowy, to $\forall_{x,y} \exists_{n_0} \forall_{n \geq n_0} p_{x,y}(n) > 0$.

Wniosek 11. Dla nieprzywiedlnego nieokresowego ł.M. o skończonej przestrzeni stanów E istnieje n_0 takie, że $\forall_{n \geq n_0} \forall_{x,y} p_{x,y}(n) > 0$.

Rozkłady stacjonarne

Definicja 12. Rozkład probabilistyczny $\Pi = (\pi_x)_{x \in E}$ nazywamy stacjonarnym dla ł.M. o macierzy przejścia $P = (p_{x,y})_{x,y \in E}$, jeśli $\forall_x \mathbb{P}_{\Pi}(X_1 = x) = \pi_x$.

Fakt 1. Π rozkład stacjonarny wtw, gdy $\Pi = \Pi P$, tj. $\forall_x \pi_x = \sum_{y \in E} \pi_y p_{y,x}$.

Uwaga 2. Jeśli II stacjonarny, to $\forall_x \mathbb{P}_{\Pi}(X_n = x) = \pi_x$.

Twierdzenie 3. Jeśli przestrzeń stanów jest skończona, to istnieje rozkład stacjonarny.

Twierdzenie 4 (ergodyczne dla skończonej przestrzeni stanów). $(X_n)_{n>0}$ *l.M. nieokresowy*, $nieprzywiedlny, o macierzy przejścia P i rozkładzie stacjonarnym <math>\Pi$. Wówczas

$$\forall_{x,y\in E} \lim_{n\to\infty} p_{x,y}(n) = \pi_y,$$

a nawet $\exists_{C<\infty,\gamma<1}|p_{x,y}(n)-\pi_y|\leqslant C\cdot\gamma^n$.

Twierdzenie 5. Rozkład stacjonarny w nieprzywiedlnym ł.M. jest jednoznaczny.

Stwierdzenie 6. Skończony nieprzywiedlny ł.M., Π rozkład stacjonarny. Wtedy $\forall_x \pi_x > 0$ oraz

$$\forall_x \pi_x = \frac{1}{\mu_x}, \quad \mu_x = \mathbb{E}t_x = \mathbb{E}\inf\{n \geqslant 1 : X_n = n\}.$$

Definicja 7 (częstość przebywania w zbiorze). $\nu_A(n) = \frac{1}{n} \#\{1 \leqslant k \leqslant n : x_k \in A\}$

Twierdzenie 8 (ergodyczne znowu). (X_n) nieprzywiedlny nieokresowy l.M. o skończonej przestrzeni stanów i dowolnym rozkładzie początkowym, wtedy $\forall_{A \subset E} \lim_{n \to \infty} \nu_n(A) = \sum_{x \in A} \pi_x$ p.n., $qdzie \Pi$ to rozkład stacjonarny.

Twierdzenie 9 (ergodyczne ogólne). (X_n) nieprzywiedlny nieodwracalny l.M., dla którego istnieje rozkład stacjonarny Π . Wówczas

- (i) $\prod jest \ jedyny \ i \ \forall_{x,y} \lim_{n\to\infty} p_{x,y}(n) = \pi_y$,
- (ii) l.M. jest powracający, $\forall_x \pi_x > 0$, $\pi_x = \frac{1}{\mu_x}$, $\mu_x = \mathbb{E}_x \inf\{n \ge 1 : X_n = x\}$,
- (iii) $\forall_{A \subset E} \lim_{n \to \infty} \nu_n(A) = \Pi(A) = \sum_{x \in A} \pi_x \ p.n.$

Definicja 10 (prawdopodobieństwo dojścia z x do F). $p_F(x) = \mathbb{P}_x (\exists_{n \ge 0} X_n \in F)$

Definicja 11 (czas oczekiwania na dojście). $m_F(x) = \mathbb{E}_x \inf\{n \ge 0 : X_n \in F\}$

Fakt 12. p_F, m_F spełniają układ równań (o jednoznacznym rozwiązaniu dla $|E| < +\infty$):

$$\begin{cases} p_F(x) = 1 & \forall_{x \in F} \\ p_F(x) = 0 & x \nrightarrow F(\iff \forall_{y \in F, n} p_{xy}(n) = 0) \\ p_F(x) = \sum_{y \in F} p_{xy} p_F(y) & \forall_{x \notin F} \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \forall_{x \in F} \\ m_F(x) = \infty & p_F(x) < 1 \\ m_F(x) = 1 + \sum_{y \in F} p_{xy} m_F(y) & \forall_{x \notin F} \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \forall_{x \in F} \\ m_F(x) = \infty & p_F(x) < 1 \\ m_F(x) = 1 + \sum_{y \in F} p_{xy} m_F(y) & \forall_{x \notin F} \end{cases}$$