Лекция 10. Классификация поверхностей второго порядка.

Теорема.

Для любой поверхности второго порядка Ф существует такое движение поверхности, в результате которого уравнение поверхности Ф совпадёт с одним из перечисленных в следующей таблице.

одним из перечисленных в следу Поверхность	Её каноническое
-	уравнение
1. Эллипсоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$
2. Мнимый эллипсоид (Ø)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1,$
3. Мнимый конус (точка)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0,$
4. Двуполостной гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1,$
5. Однополосной гиперболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$
6. Конус	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0,$
7. Эллиптический параболоид	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z,$
8. Гиперболический параболоид	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z,$
9. Эллиптический цилиндр	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$
10.Мнимый эллиптический цилиндр	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1,$
11.Пара мнимых плоскостей, пересекающихся по действительной прямой	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0,$
12. Гиперболический цилиндр	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$
13.Пара пересекающихся плоскостей	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0,$
14.Параболический цилиндр	$x^2 = 2py$
15.Пара параллельных плоскостей	$x^2 = a^2$

16.Пара совпадающих	$x^2 = 0$
плоскостей	
17. Пара мнимых параллельных	$x^2 = -a^2$
плоскостей	

Доказательство. Примеры.