Examples of periodic motion. The period T is shown in each case.

Characteristics of Linear S.H.M /

Differential Equation of S.H.M
$$\frac{d^2x}{dt^2} + \omega^2x = 0$$

Displacement $x = A \sin(\omega t + \phi)$

Velocity
$$V = \frac{dx}{dt} = \omega A \cos(\omega t + \phi)$$

Acceleration
$$a = \frac{d^2x}{dt^2} = -\omega^2 A \sin(\omega t + \phi) = -\omega^2 X$$

Graph of X - t

Graph of v - t

Graph of a - t

13. OSCILLATIONS

The location of the particle in SHM at the discrete values t = 0, T/4, T/2, 3T/4, T, 5T/4.

time for simple harmonic motion.

x(t) : Displacement x as a function of time t

: amplitude

: angular frequency $\omega t + \phi$: Phase (time - dependent)

: Phase constant

The meaning of standard symbols in

Time Period Calculation

(1) Force
$$\rightarrow \overrightarrow{F} = -m\omega_x^2 \overrightarrow{x} \text{ or } \overrightarrow{F} = -k\overrightarrow{x}$$
;

$$\left(\omega = \sqrt{\frac{k}{m}} \;\right) \;\; \text{Time period T} = \frac{2\pi}{\omega} = 2\pi \; \sqrt{\frac{m}{k}}$$

K - spring Constant

Energy of Linear S.H.M /

$$\rightarrow P.E \rightarrow U = \frac{1}{2} Kx^2$$

$$\rightarrow K.E \rightarrow KE = \frac{1}{2} K (A^2 - x^2)$$

$$\rightarrow$$
 P.E \rightarrow U = $\frac{1}{2}$ K A² sin² (ω t + φ)

$$\rightarrow$$
 K.E \rightarrow KE= $\frac{1}{2}$ K A² cos²(ω t+ Φ)

Spring Block System /

(i)
$$K_{eq} = K_1 + K_2$$

$$T = 2\pi \sqrt{\frac{m}{k_{...}}}$$

$$T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

(ii)
$$K_{eq} = \frac{K_1 K_2}{K_1 + K_2}$$
;

$$T = 2\pi \sqrt{\frac{m}{k_{eq}}}$$

$$T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

$$T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{K_1 K_2}}$$

Two Blocks Spring System /

Reduced Mass:
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$T = 2\pi \sqrt{\frac{m_1 m_2}{K (m_1 + m_2)}} = 2\pi \sqrt{\frac{\mu}{k}}$$

Simple Pendulum/

$$\alpha = -\frac{\text{mgL}}{I}\theta$$

Time period = $2\pi \sqrt{\frac{\ell}{g}}$

