Canonical Research Designs I: Difference-in-Differences III:

Paul Goldsmith-Pinkham

March 28, 2023

Today's Topics

- Complications that arise in DiD:
 - 1. continuous treatments
 - 2. multiple treatments
 - 3. random timing
 - 4. Covariates + time-varying covariates
- Checklist of what you need to consider

Continuous treatment

- Recall that estimating treatment effects with random assignment and continuous treatments was data hungry, but doable
- Without random assignment, and unconstrained heterogeneity, the challenge is more complicated
- First, consider what the estimand of interest is. Note that with potential outcomes, we now have $Y_i(D_i)$ with D_i multivalued.
- So what is the contrast of interest?

$$ATT(d|d) = E(Y_i(d) - Y_i(0)|D_i = d)$$
 (1)

$$ACRT(d|d) = \frac{\partial E(Y_i(I)|D_i = d)}{\partial I} \bigg|_{I=d}$$
 (2)

Continuous treatment - Estimand

- How do these differ? Consider their interpretations:
 - ATT: effect relative to baseline of zero effect
 - ACRT: effect of marginally increasing treatment, evaluted at a given point (can integrate too!)
- Key point in DiD vs. RCT: these are *conditional* on treatment status, which is not random!
- Can we move between these? Consider comparing two ATTs in 2 period diff-in-diff, assuming standard parallel trends:

$$ATT(d|d) - ATT(d'|d') = (E[\Delta Y|D = d] - E[\Delta Y|D = 0])$$

$$- (E[\Delta Y|D = d'] - E[\Delta Y|D = 0])$$

$$= E[\Delta Y|D = d] - E[\Delta Y|D = d']$$

$$= E[\Delta Y(d) - \Delta Y(d')|D = d] + ATT(d'|d) - ATT(d'|d')$$

Continuous treatment - challenge

Continuous treatment - challenge

Continuous treatment – stronger assumption about heterogeneity

- "Strong" parallel trends assumption: $E(\Delta Y_i(d)) = E(\Delta Y_i(d)|D_i = d)$
- No selection bias "on average"
- Effectively assuming some kind of homogeneity in the treatment across groups

Multiple Treatments in Diff-in-diff

- Hull (2018) and deChaisemartin and D'hautefeuille (2022) are relevant cites
- One "easy" context that this shows up (Hull 2018) is "mover" designs
 - I move from city i to city j if my move was random, can we use it to understand the effect of city j?
 - Without strong additional assumptions, challenging to interpret coefficients from standard TWFE

$$Y_{it} = \alpha_i + \tau_t + \sum_{j \neq 0} \beta_j D_{ijt} + \epsilon_{it}$$
 (3)

- Consider 2 period case, and use first differences:

$$\Delta Y_i = \tau + \sum_{i \neq 0} \beta_i \Delta D_{ij} + \Delta \epsilon_i \tag{4}$$

- Recall Goldsmith-Pinkham, Hull and Kolesar (2022) – multiple treatments (ΔD_{ij}) is potentially contaminated and negative weighted.

Random Timing in Diff-in-Diff

- Athey and Imbens (2022) take design-based approach to diff-in-diff
 - What does this mean? Can consider a well-defined propensity scores for the treatment
 - Focus on staggered adoption with binary treatment
 - Since treamtent is absorbing, this simplifies problem into "when did I get the treatment (if ever)?"
- E.g. define a propensity score: $Pr(A_i = a)$ over when the assignment occurs.
- Key question: who is the relevant counterfactual group?

Three key assumptions (not testable!)

- 1. Random assignment (can make this happen by design)
- 2. No anticipation (we assume this already)
- 3. Invariance to history $(1_{a \le t}(Y_{it}(a) Y_{it}(1)) = 0)$ (no causal effect of an early adotpion vs. a later adoption on outcome as long as adoption occured before or on period t)

Efficiency in estimating staggered random roll-out

- Roth and Sant'anna (2023) show that it is much more efficient to condition on lagged outcomes over using standard diff-in-diff in staggered roll-outs
- E.g. Consider the class of estimators:

$$\hat{\theta}_{\beta} = (\overline{Y}_{22} - \overline{Y}_{2\infty}) - \beta(\overline{Y}_{12} - \overline{Y}_{1\infty}) \tag{5}$$

Did is the special case of $\beta = 1$.

- We want to put more weight on this setting when the lagged outcomes are more predictive, and less when it is not!
 - Intuition is similar to synthetic controls

Covariates

 With time-invariant covariates that treatment does not affect, controlling for covariates is conditional parallel trends assumption

$$E(Y_{i,2}(0) - Y_{i,1}(0)|D_i = 1, X_i) = E(Y_{i,2}(0) - Y_{i,1}(0)|D_i = 0, X_i)$$
 (6)

- However, this isn't enough to satisfy this TWFE regression approach in two periods:

$$Y_{it} = \alpha_i + \phi_t + 1(t=2)D_i\beta + X_i1(t=2)\gamma + \epsilon_{it}$$
(7)

Why? (consider age)

- Even worse, if covariates affected by treatment, this is a form of collider bias!
 - Should be very careful about time-varying covariates

Checklist

- First, consider the treatment features of your setup
 - What is your treatment? Binary or continuous?
 - Single or multiple?
 - Absorbing or not?
 - How many treated units? Single or many?
 - How many interventions? Single or staggered timing?
- Second, consider the relevant identifying assumptions for your condition
- Third, what tests are feasible in your setting?
- Fourth, what estimates do you want?
- Fifth, what relaxations of assumptions can you make?

Treatment features

- If treatment is binary or only a few values, easy to consider the simple case
 - Particularly helps if it's absorbing!
- If continuous and/or not absorbing, need to worry about many more homogeneity assumptions
- First order of business define your estimand.
 - What treatment do you care about?
- Can you simplify the problem in some way if it's more complex?

Assumptions

- Write out carefully in math and then words what assumptions you need
 - Parallel trends (with or without covariates)?
 - No anticipation?
 - Others?
- If you know your estimand, much easier to know what you need
- Do you need to construct your estimator using lagged outcomes, e.g. synthetic control?

Testable assumptions

- What is testable? Pre-trends can be useful, but underpowered
- If using random timing, not much is testable
 - But could look for balance across timing groups in exogeneous features

What estimates do you want?

- Do you need a long run effect? Short-run?
 - Long-run effect relies heavily on parametric extrapolation. Is it plausible?
- Are you studying ATTs? CATTs? ACRTs?

Relaxation of assumptions?

- What group comparaisons are you making for parallel trends?
- Could you assume random timing instead of parallel trends?
- Could you condition on lagged outcomes?