

Projet:

Étude acoustique de la salle Isadora

Elisa BELHASSEN DEMOEN - Azal LE BAGOUSSE

M1 Acoustique 2023-2024 Encadrants : François Ollivier, Antoine Hajczak

Introduction

Sommaire de l'étude:

Schéma salle Isadora/salle de classe adjacente

- 1) Plan d'expérience -> mesures d'indices en salle (slide 3->6)
- 2) Modélisation/simulation sur Catt Acoustics (slide 7->8)
- 3) Préconisations/solutions pour améliorer la salle acoustiquement (slide 9)

Normes, grandeurs et matériel

- NF S31-080: Niveau de performances acoustiques
- ISO 3382-1: 2009 Acoustique Mesurage des paramètres acoustiques des salles

$$L = 20 \log(\frac{p_{eff}}{p_{ref}}) \, (\text{dB})$$

$$Tr = \frac{0.16 \times V}{A} \, ^{\rm (s)}$$

$$A = \sum_{i} S_i \alpha_i = S \times \alpha_m \quad \text{(m²)}$$

$$DnT = L1 - L2$$
 (dB)

source sonore↑

Plan d'expérience

- Mesures en salle Isadora (section SPL, TR) : salle de réception (1)
- + salle de classe adjacente (Absorption, Isolement) : salle d'émission (2)

125 - 250 - 500 - 1000 - 2000 - 4000 (+ 5000) Hz

- Mesures du :
- Niveaux **Lp/**L2 (+Bruit de fond **Bp/**B2) (dB)
- **TR** (T30 et T20) → **2 méthodes**: bruit interrompu et impulsion (s)
- **Isolement**: **DnT** → mesures de L2 (Isa), L1 (classe)
- **Absorption** : α \rightarrow mesures de L2 (Isa), TR2 (Isa), L1 (classe)

Salle de classe adjacente

Disposition pour <u>isolem. + absorp.</u>

crd.: ISO-3382-1:2019

Mesures et exploitation

-Temps de réverbération par bruit interrompu et par impulsion en fonction des fréquences:

NF-S31-080
$$\rightarrow$$
 0,6 < Tr \leq 0,8s \rightarrow minimum 35 dB

-Isolement aux bruits intérieurs:

Calcul de l'affaiblissement D=L1-L2

|--|

f(Hz)

125

250

500

1000

2000

5000

4000

Mesures et exploitation

-Indice de transmission de la parole (STI = Speech Transmission Index) :

-Absorption d'un des murs (mur droit) :

calcul absorption

Surface équiv abs	18.01	15.67	26.36	22.36	26.54	27.45	37.55
Coeff abs moy	0.06	0.05	0.08	0.07	0.08	0.09	0.1
Coeff abs moy en %	6	5	8	7	8	9	10
f(Hz)	125	250	500	1000	2000	4000	5000

Modélisation - Catt

Première modélisation sur Catt Acoustics

Courbes du TR simulé et mesuré - version 1

Dernière modélisation (finale) sur Catt Acoustics

Courbes du TR simulé et mesuré - version 2

Modélisation - Catt

Cartographie SPL simulé à 1kHz (Catt)

Cartographie STI - disposition cours n*1

Cartographie T30 simulé à 1kHz (Catt)

Cartographie STI - disposition cours n*2

Préconisations

Barre de seuil →

Balai de porte→

Porte isolante→

← Panneaux en mousse

Conclusion

Salle Isadora

Salle de classe adjacente

Bibliographie

- Jean-Dominique POLACK, Acoustique des espaces clos, février 2020
- Régis MARCHIANO, Support de cours d'acoustique générale de M1, 2021
- https://www.pro-isophony.fr/definition-temps-de-reverberation-tr
- https://www.siniat.fr/fr-fr/projets/conseils-experts/145876/reglementation-acoustique-des-b atiments/
- https://www.iso.org/fr/standard/40979.html
- https://www.nti-audio.com/fr/applications/les-systemes-devacuation-vocale-sev/intelligibilit e-de-la-parole-sti