Segundo Examen Parcial: Junio 2023

Nombre:	Reg.:
---------	-------

Para aprobar el examen deberá realizar correctamente al menos el 55% del mismo

Punto 1 (35 puntos)

Considere la siguiente tabla de datos. Se pide:

- a) Describa el teorema de Weierstrass y por qué es relevante en los conceptos de interpolación numérica.
- b) Obtenga el polinomio interpolante de newton que pase por todos los puntos dados y utilícelo para aproximar F(9.0) y F(18.0)
- c) Grafique el spline que solamente pasa por los puntos (2.5,0.0013) y (17.5,0.9987). Como se compara el resultado de la estimación de F(9.0) con el encontrado en el punto (b)?

Х	F(X)
2.5	0.0013
4.375	0.0122
6.25	0.0668
8.125	0.2266
10.00	0.50
11.875	0.7734
13.75	0.9332
15.625	0.9878
17.5	0.9987

Punto 2 (20 puntos)

Dada la siguiente tabla de valores correspondientes a una función, se pide estimar el valor de la derivada segunda evaluada en x=1.2. Se solicita:

- a) Encontrar el valor solicitado aplicando la fórmula que considere más apropiada para ello, explicando su decisión.
- b) Mencione que supuestos se requieren al momento de realizar la estimación en (a).

X	f(x)	f'(x)	f'''(x)
1.00	0.800	5.047	20.845
1.20	2.099	8.103	28.760
1.40	4.118	12.319	39.681
1.60	7.133	18.136	54.749

Punto 3 (30 puntos)

Tome el precio de la acción ajustada al 05/06/2023 de las siguientes compañías: "The Coca-Cola Company", "PepsiCo, Inc." Y "Johnson & Johnson". Teniendo en cuenta la siguiente volatilidad y rendimiento esperado y suponiendo que el precio sigue un Movimiento Geométrico Browniano se pide:

[Nota]: para los precios de las acciones se debe utilizar el paquete "quantmod". Deberán correr el siguiente código para obtener la serie de precios: getSymbols("PEP", auto.assign = TRUE, src = "yahoo") en el caso de PepsiCo.

Ticker	μ	σ
КО	0.110	0.170
PEP	0.150	0.200
JNJ	0.200	0.240

- a) Realice 2000 simulaciones de caminos de precios de la compañía "PEP" por un plazo de 18 meses con 540 número de "time-steps" (Δt=540/T). Almacene dicha simulación en una matriz (o data frame). Grafique un histograma de los precios finales simulados y calcule la Media y el Desvío Estándar al final del plazo.
- b) Con los resultados del punto anterior, grafique todos los caminos simulados con colores al azar. Incluya con línea gruesa de color negro el camino del valor esperado y con líneas gruesas de color rojo el camino de un Intervalo de Confianza con 95% de probabilidad.

		Analisis Numerico (Prof. Speranza Mauro)	
Facultad de Ciencias Económicas – UBA Segundo Examen Parcial: Junio 202	Facultad de Ciencias Económicas – UB <i>l</i>		Segundo Examen Parcial: Junio 2023

Nombre:	Reg.:
c) Simular de manera independiente (con un horizonte de un año) los p	recios de los tres activos. Generar una muestra de 5.000 precios
de cada activo. Estime el precio esperado y un intervalo de 95% para	el precio (percentiles 2.5 y 97.5) de cada uno. *Se pide solo el
precio final.	

Punto 4 (15 puntos)

Calcular la probabilidad P(S>240) sabiendo que S se distribuye normalmente con media 300 y varianza 675. Utilizar el método Simpson compuesto.