Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[[trimethyl(4-sulfanylphenyl)-azanium] [(chloridocadmate)-di-μ-chlorido]]

Xiao-Yan Tanga and Jian-Ping Langb*

^aCollege of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, Jiangsu, People's Republic of China, and ^bKey Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical Engineering, Suzhou Uinversity, Suzhou 215123, Jiangsu, People's Republic of China Correspondence e-mail: chemxytang@hotmail.com

Received 29 September 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 223 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.026; wR factor = 0.069; data-to-parameter ratio = 18.2.

The title compound, $\{(C_9H_{14}NS)[CdCl_3]\}_n$, consists of a linear $[CdCl_3]_n^{n-}$ polyanion and a trimethyl(4-sulfanylphenyl)azanium cation. The Cd^{II} atom is pentacoordinated by four μ_2 -Cl atoms and one terminal Cl atom in a trigonal-bipyramidal geometry. The trigonal-bipyramidal units are linked by two opposite shared faces, giving rise to infinite $[CdCl_3]_n$ chains parallel to the a axis. The cations surround the chain and are linked to them by $S-H\cdots Cl$ and $C-H\cdots Cl$ hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis of trimethylammoniumphenyl-4-thiol hexafluoridophosphate, see: DePamphilis *et al.* (1974).

Experimental

Crystal data (C₉H₁₄NS)[CdCl₃]

 $M_r=387.04$

Monoclinic, $P2_1/c$ Z=4 Mo $K\alpha$ radiation b=20.971 (4) Å $\mu=2.31~{\rm mm}^{-1}$ c=9.1613 (18) Å $T=223~{\rm K}$ $\beta=103.96$ (3)° V=1364.9 (5) Å³

Data collection

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.026 & 137 \ {\rm parameters} \\ WR(F^2) = 0.069 & {\rm H-atom\ parameters\ constrained} \\ S = 1.11 & \Delta\rho_{\rm max} = 0.56\ {\rm e\ \mathring{A}^{-3}} \\ 2491\ {\rm reflections} & \Delta\rho_{\rm min} = -0.79\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$\begin{array}{c} S1 - H1 \cdots Cl1^{i} \\ C8 - H8B \cdots Cl2^{ii} \end{array}$	1.20	2.55	3.746	180
	0.97	2.72	3.640 (3)	158

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) x - 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province of China (No.11KJB150001) and a start-up grant from Changshu Institute of Technology (No. ky2009069).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5241).

References

DePamphilis, B. V., Averill, B. A., Herskovitz, T., Que, L. & Holm, R. H. (1974). J. Am. Chem. Soc. 96, 4159–4167.

Rigaku/MSC (2001). CrystalClear. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.

Rigaku/MSC (2004). CrystalStructure. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary m	aterials	

Acta Cryst. (2011). E67, m1883 [doi:10.1107/S1600536811050513]

catena-Poly[[trimethyl(4-sulfanylphenyl)azanium] [(chloridocadmate)-di-\mu-chlorido]]

X.-Y. Tang and J.-P. Lang

Experimental

The synthesis of trimethylammoniumphenyl-4-thiol hexafluorophosphate was according to the literature procedure (De-Pamphilis *et al.*, 1974). To a suspension containing TabHPF₆ (0.125 mg, 0.4 mmol) in MeOH (15 ml) was added Et₃N (0.5 ml). The resulting colorless solution was then treated with a solution of CdCl₂·2.5H₂O (0.091 g, 0.4 mmol) in MeOH (10 ml). The mixture was stirred at room temperature for 1 h and treated with HCl to adjust the pH to 3, and then filtered. Diethyl ether (20 ml) was allowed to diffuse onto the filtrate. After standing it at ambient temperature for one week, colorless block crystals of (I) were formed. Yield: 0.100 g (65% based on Cd). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis, found: C, 27.52; H, 3.31; N, 4.02%. calculated. for C₉H₁₄NSCdCl₃: C, 27.93; H, 3.65; N, 3.62%.

Refinement

Carbon-bond H atoms were positioned geometrically (C—H = 0.94 Å for methylene group and C—H = 0.97 Å for methylene group), and were included in the refinement in the riding mode approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ for methylene group and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$ for methylene group. The H atom attached to atom S1 was located in a difference Fourier map and refined isotropically without constraints with $U_{\rm iso}({\rm H})$ values fixed at $1.2 U_{\rm eq}({\rm S})$].

Figures

Fig. 1. *ORTEP* plot of complex (I) at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Fig. 2. One dimensional structure formed by S—H···Cl interactions.

Fig. 3. Three dimensional networks formed by S—H···Cl and C—H···Cl interactions.

catena-Poly[[trimethyl(4-sulfanylphenyl)azanium] [(chloridocadmate)-di-µ-chlorido]]

Crystal data

 $(C_9H_{14}NS)[CdCl_3]$ F(000) = 760

 $M_r = 387.04$ $D_x = 1.883 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc Cell parameters from 3007 reflections

 a = 7.3207 (15) Å $\theta = 3.0 - 25.4^{\circ}$

 b = 20.971 (4) Å $\mu = 2.31 \text{ mm}^{-1}$

 c = 9.1613 (18) Å T = 223 K

 $\beta = 103.96 (3)^{\circ}$ Block, colorless

 $V = 1364.9 (5) \text{ Å}^3$ $0.50 \times 0.30 \times 0.20 \text{ mm}$

Z = 4

Data collection

Rigaku Mercury diffractometer 2491 independent reflections

Radiation source: fine-focus sealed tube 2424 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.027$

θ_{max} = 25.4°, θ_{min} = 3.0°

Absorption correction: multi-scan (CrystalClear; Rigaku/MSC2001) $h = -8 \rightarrow 7$ $T_{\min} = 0.442, T_{\max} = 0.635 \qquad k = -22 \rightarrow 25$ 12984 measured reflections $l = -11 \rightarrow 11$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full Hydrogen site location: inferred from neighbouring

sites

 $R[F^2 > 2\sigma(F^2)] = 0.026$ H-atom parameters constrained

 $wR(F^2) = 0.069$ $w = 1/[\sigma^2(F_0^2) + (0.038P)^2 + 0.9902P]$

where $P = (F_0^2 + 2F_c^2)/3$

S = 1.11 $(\Delta/\sigma)_{max} < 0.001$ 2491 reflections $\Delta\rho_{max} = 0.56 \text{ e Å}^{-3}$

137 parameters $\Delta \rho_{min} = -0.79 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct

methods

Extinction coefficient: 0.0059 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}^*/U_{\rm eq}$
Cd1	0.73386 (3)	0.993777 (10)	0.92593 (2)	0.02485 (11)
Cl1	0.95247 (10)	1.08537 (3)	0.99446 (8)	0.02873 (17)
C12	0.68785 (10)	0.96938 (3)	0.66114 (7)	0.03076 (18)
C13	0.59419 (8)	0.93630(3)	1.11069 (7)	0.03094 (18)
S1	0.67638 (8)	0.79389 (3)	0.84461 (7)	0.0484(2)
H1	0.7952	0.8326	0.8962	0.058*
C1	0.5039 (4)	0.74912 (14)	0.9045 (3)	0.0285 (6)
C2	0.3807 (4)	0.77654 (14)	0.9805(3)	0.0319 (6)
H2	0.3876	0.8205	1.0016	0.038*
C3	0.2478 (4)	0.73917 (14)	1.0253 (3)	0.0303 (6)
Н3	0.1638	0.7577	1.0760	0.036*
C4	0.2392 (4)	0.67468 (13)	0.9952(3)	0.0238 (6)
C5	0.3603 (4)	0.64695 (14)	0.9182 (3)	0.0278 (6)
H5	0.3540	0.6030	0.8977	0.033*
C6	0.4898 (4)	0.68458 (14)	0.8721 (3)	0.0301 (6)
Н6	0.5700	0.6662	0.8177	0.036*
C7	0.2022 (4)	0.58027 (15)	1.1450 (4)	0.0350(7)
H7A	0.2689	0.5534	1.0889	0.053*
H7B	0.1119	0.5548	1.1813	0.053*
H7C	0.2914	0.5991	1.2297	0.053*
C8	-0.0195 (4)	0.66781 (15)	1.1295 (3)	0.0342 (7)
H8A	0.0607	0.6878	1.2174	0.051*
H8B	-0.1042	0.6381	1.1610	0.051*
H8C	-0.0922	0.7003	1.0654	0.051*
C9	-0.0285 (4)	0.60310 (16)	0.9076 (3)	0.0357 (7)
H9A	-0.0869	0.6365	0.8389	0.054*
Н9В	-0.1251	0.5785	0.9381	0.054*
Н9С	0.0436	0.5754	0.8578	0.054*
N1	0.1003 (3)	0.63245 (11)	1.0439 (2)	0.0250 (5)

Atomic displacement parameters (\mathring{A}^2)							
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cd1	0.02433 (16)	0.02926 (16)	0.02258 (16)	-0.00438 (7)	0.00880 (10)	-0.00082 (7)	
C11	0.0240(3)	0.0261 (4)	0.0358 (4)	-0.0021 (3)	0.0065 (3)	-0.0020(3)	
C12	0.0328 (4)	0.0364 (4)	0.0230(3)	0.0030(3)	0.0066(3)	-0.0025 (3)	
C13	0.0280(4)	0.0330 (4)	0.0359 (4)	0.0061 (3)	0.0157(3)	0.0131 (3)	
S1	0.0499 (5)	0.0405 (5)	0.0632 (6)	-0.0145 (4)	0.0301 (4)	0.0025 (4)	
C1	0.0287 (15)	0.0301 (15)	0.0267 (14)	-0.0036 (11)	0.0066 (11)	0.0032 (11)	
C2	0.0352 (16)	0.0247 (15)	0.0366 (16)	-0.0010 (12)	0.0105 (12)	-0.0012 (12)	
C3	0.0336 (16)	0.0282 (16)	0.0322 (15)	0.0008 (12)	0.0141 (12)	-0.0046 (12)	
C4	0.0220 (13)	0.0257 (14)	0.0240 (14)	-0.0025 (11)	0.0065 (10)	0.0012 (11)	
C5	0.0310 (15)	0.0246 (15)	0.0297 (15)	-0.0001 (11)	0.0112 (12)	-0.0034 (11)	
C6	0.0296 (15)	0.0310 (16)	0.0337 (16)	0.0005 (12)	0.0152 (12)	-0.0025 (12)	
C7	0.0374 (17)	0.0319 (17)	0.0379 (17)	0.0022 (13)	0.0133 (13)	0.0094 (13)	
C8	0.0333 (16)	0.0372 (17)	0.0377 (17)	-0.0009(13)	0.0197 (13)	-0.0029 (13)	
C9	0.0304 (16)	0.0440 (18)	0.0339 (16)	-0.0111 (13)	0.0101 (12)	-0.0082 (13)	
N1	0.0265 (12)	0.0262 (12)	0.0245 (11)	-0.0007 (9)	0.0102 (9)	0.0000 (9)	
Geometric para	meters (Å, °)						
Cd1—Cl2		2.4219 (8)	C4—	N1	1.496	5 (3)	
Cd1—Cl1		2.4819 (8)	C5—		1.375		
Cd1—Cl3		2.4896 (7)	C5—		0.940		
Cd1—Cl3 ⁱ		2.7643 (7)	C6—	Н6	0.940	00	
Cd1—Cl1 ⁱⁱ		2.7842 (9)	C7—	N1	1.509	9 (4)	
Cl1—Cd1 ⁱⁱ		2.7842 (9)	C7—	H7A	0.970	00	
Cl3—Cd1 ⁱ		2.7643 (7)	C7—	H7B	0.970	00	
S1—C1		1.764(3)	C7—	Н7С	0.970	00	
S1—H1		1.1999	C8—	N1	1.505	5 (4)	
C1—C6		1.384 (4)	C8—	H8A	0.970	00	
C1—C2		1.390 (4)	C8—	H8B	0.970	00	
C2—C3		1.386 (4)	C8—	H8C	0.970	00	
C2—H2		0.9400	C9—	N1	1.503	3 (4)	
C3—C4		1.379 (4)	C9—	H9A	0.970		
C3—H3		0.9400	C9—	Н9В	0.970	00	
C4—C5		1.387 (4)	C9—	Н9С	0.970	00	
C12—Cd1—C11		110.02 (3)		C6—C1	121.1		
C12—Cd1—C13		126.73 (3)		C6—H6	119.4	ļ	
C11—Cd1—C13		123.24 (3)	C1—	C6—H6	119.4	ļ	
C12—Cd1—C13 ⁱ		94.80 (3)	N1—	C7—H7A	109.5	5	
Cl1—Cd1—Cl3 ⁱ		96.23 (3)	N1—	С7—Н7В	109.5	5	
Cl3—Cd1—Cl3 ⁱ		81.49 (3)	H7A-	— С7 — Н7В	109.5	5	
Cl2—Cd1—Cl1 ⁱⁱ	i	92.47 (3)	N1—	С7—Н7С	109.5	5	
Cl1—Cd1—Cl1 ⁱⁱ	i	87.38 (3)	H7A-	— С7 — Н7С	109.5	5	
Cl3—Cd1—Cl1 ⁱⁱ	i	88.93 (3)	H7B-	– С7 – Н7С	109.5	5	

Cl3 ⁱ —Cd1—Cl1 ⁱⁱ	170.23 (2)	N1—C8—H8A	109.5
Cd1—Cl1—Cd1 ⁱⁱ	92.62 (3)	N1—C8—H8B	109.5
Cd1—Cl3—Cd1 ⁱ	98.51 (3)	H8A—C8—H8B	109.5
C1—S1—H1	138.0	N1—C8—H8C	109.5
C6—C1—C2	119.2 (3)	H8A—C8—H8C	109.5
C6—C1—S1	118.4 (2)	H8B—C8—H8C	109.5
C2—C1—S1	122.4 (2)	N1—C9—H9A	109.5
C3—C2—C1	120.1 (3)	N1—C9—H9B	109.5
C3—C2—H2	120.0	Н9А—С9—Н9В	109.5
C1—C2—H2	120.0	N1—C9—H9C	109.5
C4—C3—C2	119.8 (3)	H9A—C9—H9C	109.5
C4—C3—H3	120.1	H9B—C9—H9C	109.5
C2—C3—H3	120.1	C4—N1—C9	109.2 (2)
C3—C4—C5	120.6 (3)	C4—N1—C8	112.8 (2)
C3—C4—N1	121.5 (2)	C9—N1—C8	107.9 (2)
C5—C4—N1	117.9 (2)	C4—N1—C7	109.9 (2)
C6—C5—C4	119.2 (3)	C9—N1—C7	109.3 (2)
C6—C5—H5	120.4	C8—N1—C7	107.6 (2)
C4—C5—H5	120.4		

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
S1—H1····Cl1 ⁱⁱ	1.20	2.55	3.746	180.
C8—H8B···Cl2 ⁱⁱⁱ	0.97	2.72	3.640(3)	158.

Symmetry codes: (ii) -x+2, -y+2, -z+2; (iii) x-1, -y+3/2, z+1/2.

Fig. 1

Fig. 2

Fig. 3

