Tremblements de Terre, Ondes, MHS et Calcul Avancé

Philippe Laporte^{1,2,3}

¹Université de Montréal

This manuscript was compiled on September 21, 2024

Abstract

Ce court document reprend l'exemple vu en classe des ondes sismiques et discute de certaines notions reliées au matériel du cours, mais non discutées en détails.

Keywords: Ondes, Mouvement Harmonique Simple, Géologie, Dérivées Partielles

E-mail address: philippe.laporte@clg.qc.ca

Received: 21 septembre 2024

Rho LaTeX Class @ This document is licensed under Creative Commons CC BY 4.0.

1. Mise en Contexte

T n tremblement de terre cause une onde sismique. Si l'onde se déplace à 8 km/s et cause une augmentation du niveau du sol de 4 cm, quelle est la fonction d'onde et la vitesse verticale maximale d'un point sur la trajectoire de l'onde sismique? Supposons que la

- longueur d'onde soit de 8 km. Dans cet exemple, il faudra supposer que l'onde sismique peut être
- modélisée par une onde sur une corde.
- Par simplicité, nous supposerons également que $\phi=0$ et que l'onde
- va vers la gauche.

2. Fonction d'onde

Tel que vu en classe, la fonction d'onde d'une telle onde est

$$y(x,t) = 0.04\sin(7.86 \cdot 10^{-4}x + 2\pi t) \tag{1}$$

3. Vitesse Verticale

En général, en physique, la vitesse v d'un objet peut être décrite

comme étant

$$v = \frac{\mathrm{d}y}{\mathrm{d}t},\tag{2}$$

- où y(t) est la position de l'objet à l'instant t.
- L'équation 3 est valide pour une fonction à une variable. Lorsque
- l'équation a plusieurs variables, par y(x, t), comme dans l'équation 1,
- alors la vitesse v sera donnée par

$$v = \frac{\partial y}{\partial t},\tag{3}$$

- où ∂ est l'opérateur de dérivée partielle.
- Une dérivée partielle est la façon de dérivée une fonction ayant 21
- plusieurs variables. La technique est très similaire à celle utilisée en 22
- calcul différentiel à une variable, avec une petite distinction: toutes 23
- les autres variables ou constantes qui ne sont pas celles d'intérêt sont 24
- considérées comme constante. Cela signifie, par exemple, que la
- dérivée $\frac{\partial y}{\partial t}$ considérera toutes les autres variables de y, sauf t, comme
- étant des constantes.
- Plus précisément, pour trouver la dérivée partielle de la fonction 1,

qui donnera la vitesse verticale d'un point sur la «corde»:

$$v_{y}(x,t) = \frac{\partial y}{\partial t}$$

$$= \frac{\partial}{\partial t} \left[0.04 \sin \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \right]$$

$$= 0.04 \frac{\partial}{\partial t} \left[\sin \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \right] \quad (\text{car } 0.04 \text{ est une cste})$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \frac{\partial}{\partial t} \left(7.86 \cdot 10^{-4} x + 2\pi t \right)$$

$$\quad (\text{par dérivée en chaîne})$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \left[\frac{\partial}{\partial t} \left(7.86 \cdot 10^{-4} x \right) + \frac{\partial}{\partial t} \left(2\pi t \right) \right]$$

$$\quad (\text{par règle de la somme})$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \left[7.86 \cdot 10^{-4} \frac{\partial}{\partial t} \left(x \right) + \frac{\partial}{\partial t} \left(2\pi t \right) \right]$$

$$\quad (\text{car } 7.86 \cdot 10^{-4} \text{ est une cste})$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \left[7.86 \cdot 10^{-4} \frac{\partial}{\partial t} \left(x \right) + 2\pi \frac{\partial}{\partial t} \left(t \right) \right]$$

$$\quad (\text{car } 2\pi \text{ est une cste})$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) \left[7.86 \cdot 10^{-4} \cdot 0 + 2\pi \frac{\partial}{\partial t} \left(t \right) \right]$$

$$\quad (\text{car } x \text{ est une cste} \left(\text{dérivée en } t \right) \right)$$

$$= 0.04 \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right) 2\pi \cdot 1$$

$$\quad (\text{car dérivée de } t \text{ par rapport à } t \text{ est } 1 \text{ (règle de l'exposant)} \right)$$

$$= 0.04 \cdot 2\pi \cos \left(7.86 \cdot 10^{-4} x + 2\pi t \right)$$

$$v_y(x,t) = \frac{8\pi}{100} \cos(7.86 \cdot 10^{-4} x + 2\pi t)$$
 (4)

33

34

35

37

40

41

42

1-2

L'équation 4 donne la vitesse verticale sur la corde en chaque point!

4. Vitesse Verticale Maximale

Maintenant, nous voulons la vitesse verticale maximale. Pour y arriver, il faut trouver la valeur maximale de la fonction 4. Deux possibilités s'offrent à nous: faire de l'analyse de fonction ou utiliser une technique sournoise. Pour l'analyse de fonction, il faudrait faire comme en calcul différentiel; la difficulté est qu'il y a maintenant deux variables, soient x et t.

L'autre approche sera d'utiliser une technique ratoureuse: ce sera la méthode que nous prendrons. L'avantage sera que nous n'aurons pas à faire un gros calcul. Le désavantage sera une réponse où nous ne connaîtrons pas les valeurs de x et y.

²Collège Lionel-Groulx

³Cégep André-Laurendeau

- La fonction $v_v(x, t)$ est maximale lorsque la valeur du cosinus est de 1.
- A ce moment, la vitesse est simplement de $v_{y,\mathrm{max}} = 0.08\pi \approx 0.25 \,\mathrm{m/s}$
- ou de 25 cm/s. Cela signifie que le niveau du sol aura une vitese max-
- imale de 25 cm/s. Pour un batiment qui y est attaché, cela représente
- souvent une force exercée plus grande que son intégrité physique:
- cela implique de gros dommages.

49 5. Mouvement Harmonique Simple d'un Point Quelconque

- Maintenant, considérons un point fixe sur la corde représentant la
- trajectoire de l'onde sismique. Ce point a une certaine position en x.
- 52 Si nous ne considérons que ce points, alors x sera fixe et sera comme
- une constante. Appelons ce point d'intérêt x_0 .
- \dot{A} ce point, la position y du point est

$$y(x_0, t) = 0.04 \sin \left(7.86 \cdot 10^{-4} x_0 + 2\pi t\right) \tag{5}$$

Puisque x_0 et 7.86 · 10^{-4} sont des constantes, leur produit est une constante. Appelons cette constante ϕ_1 :

$$\phi_1 = 7.86 \cdot 10^{-4} \cdot x_0.$$

La fonction 5 peut alors être réécrite comme

$$y(t) = 0.04 \sin(2\pi t + \phi_1) \tag{6}$$

- L'équation 6 correspond exactement à celle d'un **Mouvement Har**-
- 57 **monique Simple** (MHS)! Cela signifie qu'un point fixe le long de
- $_{\rm 58}$ $\,$ l'onde réagit comme un MHS. Donc, chaque point le long de la corde
- 59 (ou de l'onde sismique) agit comme un petit système bloc-ressort.

6. Bonus: Constante de Phase

- Que serait-il arriver si nous avions dit que $\phi \neq 0$, soit que la constante
- de phase n'était pas 0?
- À ce moment, l'équation 1 serait devenue

$$y(x,t) = 0.04\sin(7.86 \cdot 10^{-4}x + 2\pi t + \phi), \tag{7}$$

1'équation 4 serait devenue

$$v_y(x,t) = \frac{8\pi}{100} \cos\left(7.86 \cdot 10^{-4} x + 2\pi t + \phi\right) \tag{8}$$

- et la vitesse maximale serait la même, puisque le ϕ ne fait que changer
- la phase des sinus et cosinus, mais pas son amplitude.
- ⁶⁷ Chaque point x_0 de la corde continuerait d'agir comme un petit sys-
- tème bloc-ressort, mais avec

$$y(t) = 0.04 \sin(2\pi t + \phi_2),$$
 (9)

- 69 où $\phi_2 = \phi + \phi_1 = \phi + \omega x_0$.
- $_{70}\,$ $\,$ La constante de phase ne change donc pas grand chose à la plupart
- des comportements de l'onde. En pratique, sauf lorsque donnée, c'est
- ⁷² la raison pour laquelle nous pouvons l'ignorer assez calmement.

73 7. Déclaration

- Ce document a été créé avec le template rho-class de LATEX, développé
- et créé par Guillermo Jimenez et Eduardo Garcia, sous une licence
- 76 Creative Commons CC BY 4.0.