Please Add Your Name and Email to the google sheet:

https://docs.google.com/spreadsheets/d/ 1KeARd5uDzs5ZBTWhtMEhYm2l4ZzQXMcBpcjRQTbLRel/edit?usp=sharing

(So I can send you the class materials)

Python and Machine Learning

By Craig Sakuma

Introductions

Craig Sakuma

- Founder of QuantSprout
- Instructor at General Assembly
- MBA from Wharton
- B.Eng from Northwestern University

Fun Fact

Developed a novelty BBQ product that was featured in USA Today

Class Introductions

- Name
- What's your job?
- How do you plan to apply skills from the bootcamp?
- Fun Fact

Course Structure

- Lectures on topics
 - Interaction is good
 - Feel free to ask questions
 - If there's not enough time to cover questions, we'll put it in a parking lot for after class
- Hands on exercises
 - Pair programming
 - Mix up partners

Objectives for Class

- Get strong foundation of Python and Machine Learning
- Immediately use skills at work
- Remove barriers/frustration
- Develop skills to be self-sufficient after class
 - Learn and explore new topics
 - Troubleshoot problems

Course Outline

Day 1

- Overview of Data Science
- Intro to Pandas / Exploring Data
- Cleaning Data
- Classification Algorithms

Day 2

- Cross-validation
- Regression Algorithms
- Regularization

What is Data Science?

Data Science is OSEMN (Awesome)

Obtain Data

Scrub Data

Explore

Model Algorithms

i<u>N</u>terpret Results

80%

20%

Majority of time is spent data munging

Why Python?

- Readability
- Flexibility
- Supports multiple programming paradigms
 - Procedural
 - Functional
 - Object oriented

Libraries of Tools for Data Analysis

Enter code here

and returns results

Add more code blocks

Jupyter Python for Data Science (autosaved)

Set Up for Jupyter Notebooks

- Create a folder on your Desktop Called "python_ml"
- Copy the files from Slack into the folder
- Launch jupyter notebook

Intro to Pandas

- Primary objects in Pandas are DataFrames
- DataFrames are like tables
 - Contain rows and columns of data
 - Columns have names
 - Rows have index values
- Pandas has easy functions for importing and exporting data
 - CSV files
 - Excel spreadsheets
 - SQL queries

Data Cleaning

- Missing Values
 - Identify Missing Values
 - Drop Values
 - Impute Values
 - Zero
 - Mean
- Categorical Data
 - Convert Text to Numbers
 - Encode Labels as Boolean Variables

What is Machine Learning?

"A field of study that gives computers the ability to learn without being explicitly programmed." (1959)

- Arthur Samuel, Al Pioneer

Supervised vs. Unsupervised

Supervised

- Requires truth set of data for training algorithms
- Examples:
 - Forecasting sales
 - Classifying spam

Unsupervised

- Autonomous algorithm that requires no training
- Examples:
 - Cluster analysis
 - Anomaly detection

Machine Learning Categories

	Continuous	Categorical	
Supervised	Regression	Classification	
Unsupervised	Dimension Reduction	Clustering	

Clustering

Clustering

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

Supervised Training

- Training Set
 - Data used to create coefficients for model
 - For example, data set used to create a linear regression
- Test Set
 - Data used to measure performance of trained model

Training Set

Age	Sex	Pclass	Survived?	
25	Male	3	FALSE	
17	Female	1	TRUE	Classes
40	Male	2	FALSE	(target)
9	Female	2	TRUE	

Independent Variables (features)

Data Science Process

Underfitting and Overfitting

Cross-validation

Split Data Set

- Separate the data into two groups
- Use part of data to train the model
- Use trained model to predict out come for test data
- Compare predictions with actual results

Measure model performance on accuracy of predictions

Classification Algorithms

- Logistic Regression
- Naive-Bayes
- Decision Trees
- Support Vector Machines
- Neural Networks
- K-Nearest Neighbors
- Random Forest

K Nearest Neighbors

Suppose you want to predict the white dot

- 1. Pick a value for k
- 2.Find colors of the k nearest neighbors
- 3.Assign the most common color

KNN Considerations

- Scaling of Data has large impact on algorithm (normalization is frequently used)
- Adjust the parameters of the algorithm
 - Number of neighbors
 - Treat data points uniformly or weighted by distance
- Can become computationally expensive at large scale

Evaluating Algorithms

- Model performance will vary based on how you split the data into training and testing groups
- Taking an average of the model performance across different splits improves the measurement

KFold Cross-validation

K-Folds Cross-validation

Data Set

Sample 1

Sample

Sample 3

Sample 4

Sample

Sample 1

Sample

Sample 3

Sample 4

Sample

Test

Train

- Separate the data into K groups (e.g., 5)
- Each group maintains the same samples for all tests
- Train and test K times
- Sample group for test changes for each test

Every Data Point Is Tested Once

K-Folds Cross-validation

Sample 3 3 Sample Sample Sample Sample Sample 4 4 4 4 Sample Sample Sample Sample Sample Score #2 Score #3 Score #4 Score #1 Score #5

Data Normalization

- Technique for adjusting the scale of data
- Calculate mean and standard deviation of all samples for each variable
- Subtract the mean and divide by the standard deviation

Is This a Decision Tree?

Decision Trees

- Trees consist of:
 - Nodes (questions)
 - Branches (answers)
 - Leaves (end points)
- Acyclic flows in one direction
- No split is necessary when all records are from same class

Decision Trees

- Algorithm selects optimal node that creates the largest increase in purity
- Decision trees are susceptible to overfitting
- Techniques for preventing overfitting
 - Minimum number of records for leaf
 - Maximum depth for branches
- One technique is to purposely overfit, but manually prune branches

Random Forest

- Ensemble algorithm (mix of many models)
- Collection of decision trees
- Evaluates predictions from many models and selects the most common classification
- Features are randomly selected for each decision tree
- Bagging (Bootstrap Aggregating) is also applied to each tree
 - Sample of the data set is used for training
 - Samples are drawn with replacement

Why Random Forest Is Popular?

- Add all your data and algorithm will prioritize
- Not susceptible to overfitting
- Doesn't require normalization
- Solid performance in wide range of applications

Kaggle

Data prediction competitions

Kaggle

- Create an account
- Find "Titanic: Machine Learning from Disaster"
- Submission Instructions:

"You should submit a csv file with exactly 418 entries plus a header row. This must have exactly 2 columns: Passengerld (which can be sorted in any order), and Survived which contains your binary predictions: 1 for survived, 0 for did not."

Make Predictions

- Train your machine learning algorithm with training data
- Read the test.csv file
- Clean test data
- Predict outcomes for test data
- Convert predictions into a DataFrame
- Save DataFrame as a CSV file (remember to exclude the index)
- Submit predictions to Kaggle site

Types of Regression Models

- Linear
 - Ordinary Least Squares
 - Generalized Linear Models
- Regularized Models
 - Ridge
 - Lasso
 - Elastic Net

Types of Regression Models

- Non-linear
 - Logistic
 - Polynomial
- Trees
 - Random Forest
 - Gradient Boosted Trees
- Autoregression

Data Exploration

Model Selection

Feature Selection

- Visualization of data
- Data cleaning
- Correlation between features and target
- Correlation between different features
- Outlier detection

Data Exploration

Model Selection

Feature Selection

- Linear vs. Nonlinear
- Regularization
- Evaluate model prerequisites

Data Exploration

Model Selection

Feature Selection

- Under vs. Overfitting
- Feature Engineering
- Data Transformations
- Forward and Backward Stepwise Selection
- Multicollinearity

Data Exploration

Model Selection

Feature Selection

- Root Mean Square Error
- R-squared
- Residual Analysis
- Statistical Significance of Coefficients
- Crossvalidation

Simple Linear Regression

- y dependent variable (target)
- x independent variable (feature)
- m slope (change in y for each unit change in x)
- b intercept with y axis

Ordinary Least Squares (OLS)

- Algorithm to estimate coefficients of linear model (slope m and intercept b)
- Coefficients are adjusted to minimize an error term
- Error term is calculated by summing the square of the distance between the predictions and the actual data points

$$y = mx + b$$

OLS Requirements

 Linear relationship between independent and dependent variables

OLS Requirements

- Error terms has population mean of zero
- Independent variables are uncorrelated with error terms
- Error terms are uncorrelated with each other

OLS Requirements

- No independent variable is a perfect linear function of other explanatory variables
- Error term has constant variance (no heteroscedasticity)

Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$$

- Standard deviation of residuals
- Metric for model accuracy
- Measurement in units of dependent variable

R-squared

$$R^2 \equiv 1 - rac{SS_{ ext{res}}}{SS_{ ext{tot}}}$$

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2$$

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2$$

- Coefficient of determination
- Metric for model fit
- Proportion of variance in dependent variable that is predictable from independent variable
- Range: 0.0 ~ 1.0

Outliers

- Not representative of population
- Skew calculation of coefficients
- Data visualization for detection

Overfitting

- Error term from unobserved random variable / noise
- Simplify models (reduce features) to avoid overfitting
- Overfit models can misinterpret noise as a signal

Multicollinearity

- Independent variables are correlated
- Coefficients can swing wildly and become sensitive to small changes in model
- Difficult to interpret and trust coefficients
- p-values can become untrustworthy and hard to validate statistical significance of coefficients

Regularized Models

- Models add penalties to complexity
- Naturally reduces overfitting
- Helpful for selecting features from large feature set
- Try Lasso model and Ridge Regression

Next Steps

- Practice, Practice
 - Find a fun project
 - Kaggle Competitions
 - Pair programming buddy
- Join a Python Meetup
 - San Francisco Python recommend
 Project Night event
 - Bay Area Python Interest Group (BayPIGgies)

yelp.com/biz/quantsprout-san-francisco

