

# **Computational Fluid Dynamics**

#### Simulation around a hummingbird

Presenter: Rahul Pothanchery

Mat. no.: 239996

#### **Overview**

- Introduction
- Geometry
- Computational mesh
- Models
- Computational results
- Analysis
- Summary



#### Introduction

- Study the flow behaviour around a hummingbird
- Characteristics:

Flow velocity

Pressure

Drag

Lift

Nature is the best engineer



#### **Geometry**

Model dimension: 20 cm

Hummingbirds range from 5 cm - 23 cm









## **Computational Domain**







#### **Computational mesh**

Polyhedral cells Prism cells

Base size - 20 mm No.of Prism layers - 9

No of cells: 2,80,700





# **Computational mesh**





#### **Models**

- Two-Layer All y+ Wall Treatment
- Wall Distance
- Realizable K-Epsilon Two-Layer
- K-Epsilon Turbulence
- Reynolds-Averaged Navier-Stokes
- ❖ Turbulent
- Constant Density
- Gradients
- Segregated Flow
- Steady
- ❖ Gas
- Three Dimensional



Velocity profile for 9 m/s inflow profile





Velocity profile for inflow velocity of 9 m/s





Pressure distribution for inflow velocity of 9 m/s





Velocity profile for inflow velocity of 18 m/s





Velocity profile for inflow velocity of 18 m/s





Pressure distribution for inflow velocity of 18 m/s





# **Analysis**

| Inflow<br>velocity | Frontal Area | Drag<br>Coefficient | Drag force | Lift<br>Coefficient | Lift force |
|--------------------|--------------|---------------------|------------|---------------------|------------|
| 9 m/s              | 0.002152 m²  | 0.538               | 0.06 N     | 0.328               | 0.028 N    |
| 18 m/s             |              | 0.529               | 0.238 N    | 0.327               | 0.114 N    |



#### **Summary**

- Change in velocity not affecting the coefficients much
- Forces increase significantly with velocity
- No much high pressure points
- Aerodynamic structure
- Nature can be a best source for inspiration



# **Thank You**

