

Introdução a Redes Neurais

Marlon Sproesser Mathias

Deep learning

Aula 4

Keras

- Como construir uma RNA
- Tipos de redes

O que é Deep Learning

- Mais de uma camada oculta
- Qual diferença isso faz?

Eduardo Lobo Lustosa Cabral Adaptado de Andrew Ng, deeplearning.ai

O que é Deep Learning

- Mais de uma camada oculta
- Qual diferença isso faz?
- Feature Engineering

Por que Deep Learning

Aumenta a expressividade da rede, mesmo com poucos neurônios

Exemplo:

 $y = x \text{ XOR } x_2 \text{ XOR } x_3 \text{ XOR } \dots \text{ XOR } x_n$

Eduardo Lobo Lustosa Cabral

Estrutura de uma RNA profunda

Eduardo Lobo Lustosa Cabral

Eduardo Lobo Lustosa Cabral

E o backpropagation?

O que precisa ser definido?

- Estrutura da rede
- Função de perda
- Método de otimização
- Dados de treino, validação e teste

Estrutura da rede

- Quantas camadas
- Número de neurônios
- Quais tipos de camada
- Funções de ativação

Função de perda

- Qual o tipo de treinamento?
- Quais são os dados a serem reproduzidos?
- Que tipo de erro é mais grave?

Método de otimização

- Mínimos locais?
- Memória
- Custo computacional
- https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

Dados de treino, validação e teste

- Tamanho do conjunto de dados
- Possibilidade de *overfit*
- Possibilidade de fazer data augmetation

Base de dados "Boston Housing"

Exemplo com Keras

Problema de regressão

Chollet, F. Deep Learning with Python, Manning Shelter Island Editor, 2018.

Boston Housing dataset

CRIM	per capita crime rate by town								
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.								
INDUS	proportion of non-retail business acres per town								
CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)								
NOX	nitric oxides concentration (parts per 10 million)								
RM	average number of rooms per dwelling								
AGE	proportion of owner-occupied units built prior to 1940								
DIS	weighted distances to five Boston employment centres								
RAD	index of accessibility to radial highways								
TAX	full-value property-tax rate per \$10,000								
PTRATIO	pupil-teacher ratio by town								
В	1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town								
LSTAT	% lower status of the population								
MEDV	Median value of owner-occupied homes in \$1000's								

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

Boston Housing dataset

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7

Trabalho 2

Classificação de imagens usando **MLP**