0.1. Construction of the spectral sequence. In the sections that follow, let (E, μ, e) be a monoid object and X and Y be objects in $S\mathcal{H}$.

Definition 0.1 ([3, Definition 11.3.1]). An *E-Adams resolution of* Y ($Y_s, W_s; i, j, k$) is a diagram of the form

such that the dashed arrows really stand for (degree -1) maps $k_s: W_s \to \Sigma Y_{s+1}$, and

- (1) There is an isomorphism $Y_0 \cong Y$;
- (2) for each s, the sequence

$$Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{j_s} W_s \xrightarrow{k_s} \Sigma Y_{s+1}$$

is a distinguished triangle;

- (3) W_s is isomorphic to $E \otimes T_s$ for some object T_s in $S\mathcal{H}$;
- (4) $E_*(i_s): E_*(Y_{s+1}) \to E_*(Y_s)$ is zero.

It turns out that every object Y in SH admits a canonical E-Adams resolution:

Definition 0.2. Let \overline{E} be the fiber of the unit map $e: S \to E$ (??). Let $Y_0 := Y$ and $W_0 := E \otimes Y$. For s > 0, define

$$Y_s := \overline{E}^s \otimes Y, \qquad W_s := E \otimes Y_s = E \otimes \overline{E}^s \otimes Y,$$

where \overline{E}^s denotes the s-fold tensor product $\overline{E} \otimes \cdots \otimes \overline{E}$. Then we get fiber sequences

$$Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{j_s} W_s \xrightarrow{k_s} \Sigma Y_{s+1}$$

obtained by applying $-\otimes Y_s$ to the fiber sequence

$$\overline{E} \to S \xrightarrow{e} E \to \Sigma \overline{E}$$
.

We can splice these sequences together to get the canonical Adams-resolution of Y:

Proposition 0.3. The "canonical E-Adams resolution of Y" from Definition 0.2 is in fact an E-Adams resolution of Y, in the sense of Definition 0.1

Proof. By construction, the only thing we need to check is that $E_*(i_s): E_*(Y_{s+1}) \to E_*(Y_s)$ is zero. First, note that since

$$Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{j_s} W_s \xrightarrow{k_s} \Sigma Y_{s+1}$$

is a distinguished triangle and $S\mathcal{H}$ is tensor triangulated, there is a distinguished triangle of the form

$$E \otimes Y_{s+1} \xrightarrow{E \otimes i_s} E \otimes Y_s \xrightarrow{E \otimes j_s} E \otimes W_s \to \Sigma(E \otimes Y_{s+1}).$$

Thus, applying $\pi_*(-) \cong [S, -]_*$ to the triangle yields that the following sequence is exact (see ?? for details):

$$E_*(Y_{s+1}) \xrightarrow{E_*(i_s)} E_*(Y_s) \xrightarrow{E_*(j_s)} E_*(W_s).$$

Now, it is straightforward to verify by how it is constructed that j_s is the map $e \otimes Y_s : Y_s \to E \otimes Y_s = W_s$. Thus, by unitality of μ , we have that $E \otimes j_s : E \otimes Y_s \to E \otimes W_s$ is a split monomorphism, with right inverse $\mu \otimes Y_s : E \otimes W_s = E \otimes E \otimes Y_s \to E \otimes Y_s$. Then since any functor preserves split monomorphisms, it follows that $E_*(j_s) = \pi_*(E \otimes j_s)$ is likewise a split monomorphism, so that in particular $E_*(j_s)$ is injective. Thus im $E_*(i_s) = \ker E_*(j_s) = 0$, so that i_s is indeed the zero map, as desired.

Now, by applying $[X, -]_*$ to an E-Adams resolution of Y, we get an associated unrolled exact couple, and thus a spectral sequence:

Definition 0.4. Suppose we have an E-Adams resolution of Y (Definition 0.1):

$$\cdots \longrightarrow Y_3 \xrightarrow{i_2} Y_2 \xrightarrow{i_1} Y_1 \xrightarrow{i_0} Y_0 = Y$$

$$\downarrow_{j_3} \downarrow_{j_2} \downarrow_{j_2} \downarrow_{j_1} \downarrow_{j_1} \downarrow_{k_0} \downarrow_{j_0} \downarrow_{k_0}$$

$$W_3 \qquad W_2 \qquad W_1 \qquad W_0$$

We can extend this diagram to the right by setting $Y_s = Y$, $W_s = 0$, and $i_s = id_Y$ for s < 0. Then we may apply the functor $[X, -]_*$, and by ??, we obtain the following A-graded unrolled exact couple (??):

$$\cdots \longrightarrow [X, Y_{s+2}]_* \xrightarrow{i_{s+1}} [X, Y_{s+1}]_* \xrightarrow{i_s} [X, Y_s]_* \xrightarrow{i_{s-1}} [X, Y_{s-1}]_* \longrightarrow \cdots$$

$$\downarrow^{j_{s+2}} \xrightarrow{\partial_{s+1}} \downarrow^{j_{s+1}} \xrightarrow{\partial_s} \downarrow^{j_s} \xrightarrow{\partial_{s-1}} \downarrow^{j_{s-1}}$$

$$[X, W_{s+2}]_* [X, W_{s+1}]_* [X, W_s]_* [X, W_{s-1}]_*$$

where here we are being abusive and writing $i_s: [X, Y_{s+1}]_* \to [X, Y_s]_*$ and $j_s: [X, Y_s]_* \to [X, W_s]_*$ to denote the pushforward maps induced by $i_s: Y_{s+1} \to Y_s$ and $j_s: Y_s \to W_s$, respectively. Each i_s , j_s , and ∂_s are A-graded homomorphisms of degrees 0, 0, and -1, respectively.

By ??, we may associate a $\mathbb{Z} \times A$ -graded spectral sequence $r \mapsto (E_r^{*,*}(X,Y), d_r)$ to the above A-graded unrolled exact couple, where d_r has $\mathbb{Z} \times A$ -degree (r, -1). We call this spectral sequence the E-Adams spectral sequence for the computation of $[X,Y]_*$.

For those who would rather not lose themselves in the appendix, we give a brief unravelling of how ?? applies to the present situation. Given some $s \in \mathbb{Z}$ and some $r \geq 1$, we may define the following A-graded subgroups of $[X, W_s]_*$:

$$Z_r^s := \partial_s^{-1}(\operatorname{im}[i^{(r-1)}: [X, Y_{s+r}]_* \to [X, Y_{s+1}]_*])$$

and

$$B_r^s := j_s(\ker[i^{(r-1)}: [X,Y_s]_* \to [X,Y_{s-r+1}]_*]),$$

where we adopt the convention that $i^{(0)}$ is simply the identity. This yields an infinite sequence of inclusions

$$0 = B_1^s \subseteq B_2^s \subseteq B_3^s \subseteq \cdots \subseteq \operatorname{im} j_s = \ker \partial_s \subseteq \cdots \subseteq Z_3^s \subseteq Z_2^s \subseteq Z_1^s = [X, W_s]_*$$

Then for $r \geq 1$, we define E_r^s to be the A-graded quotient group

$$E_r^s := Z_r^s/B_r^s$$
.

Thus taking the direct sum of all the E_r^s 's yields the r^{th} page of the spectral sequence

$$E_r := \bigoplus_{s \in \mathbb{Z}} E_r^s,$$

which is a $\mathbb{Z} \times A$ -graded abelian group.

The differential $d_r: E_r \to E_r$ is a map of $\mathbb{Z} \times A$ -degree $(r, \mathbf{1})$, and is constructed as follows: an element of $E_r^s = Z_r^s/B_r^s$ is a coset represented by some $x \in Z_r^s$, so that $\partial_s(x) = i^{(r-1)}(y)$ for some $y \in [X, Y_{s+r}]_*$. Then we define $d_r([x])$ to be the coset $[j_{s+r}(y)]$ in Z_r^{s+r}/B_r^{s+r} .

In the case r=1, since $B_1^s=0$ and $Z_1^s=[X,W_s]_*$, we have that $E_1^s=[X,W_s]_*$, and given some $x\in E_1^s=[X,W_s]_*$, the differential d_1 is given by $d_1(x)=j_{s+1}(\partial_s(x))$, so that $d_1=j\circ\partial$. Furthermore, since the unrolled exact couple which yields the spectral sequence vanishes on its negative terms, we hav that $E_r^{s,a}(X,Y)=0$ for s<0.

In ??, it is shown in explicit detail that all of these definitions make sense and are well-defined. In particular, it is shown that the differentials are well-defined A-graded homomorphisms, that $d_r \circ d_r = 0$, and that

$$\ker d_r^s / \operatorname{im} d_r^s = \frac{Z_{r+1}^s / B_r^s}{B_{r+1}^s / B_r^s} \cong Z_{r+1}^s / B_{r+1}^s = E_{r+1}^s.$$

Note, we have called the above spectral sequence the E-Adams spectral sequence for the computation of $[X,Y]_*$, even though it was constructed in terms of an E-Adams resolution for Y. We would like to show that, from the E_2 -page onwards, that this spectral sequence is independent (up to isomorphism) of the chosen E-Adams resolution of Y. To start, we prove the following proposition:

Proposition 0.5. [3, Proposition 11.4.1] Suppose we have E-Adams resolutions (Definition 0.1) $(Y_s, W_s; i, j, k)$ and $(Y'_s, W'_s; i', j', k')$ of objects Y and Y' in SH, respectively. Then any arrow $f: Y \to Y'$ in SH induces a homomorphism of unrolled exact couples $(Y_s, W_s; i, j, k) \to (Y'_s, W'_s; i', j', k')$ (??), thus, an induced homomorphism of associated spectral sequences by ??.

Proof. First we need maps $f_s: Y_s \to Y_s'$ and $g_s: W_s \to W_s'$. To start with, define f_0 to be the composition

$$f_0: Y_0 \cong Y \xrightarrow{f} Y' \cong Y'_0.$$

Now, by induction, supposing $f_0, g_0, f_1, g_1, \ldots, f_{s-2}, g_{s-2}, f_{s-1}$ have been defined for some s > 0, consider the following diagram:

Our goal is to construct the dashed arrows so that the diagram commutes.

Proposition 0.6. Suppose we have E-Adams resolutions (Definition 0.1) $(Y_s, W_s; i, j, k)$ and $(Y'_s, W'_s; i', j', k')$ of objects Y and Y' in SH, respectively. Then given an arrow $f: Y \to Y'$ in SH such that $E_*(f): E_*(Y) \to E_*(Y')$ is an isomorphism of A-graded abelian groups, the induced homomorphism of spectral sequences $(E_r(X, Y), d_r) \to (E_r(X, Y'), d_r)$ from Proposition 0.5 is an isomorphism from the E_2 -page onwards.

In particular, the E-Adams spectral sequence for $[X,Y]_*$, from the E_2 -page onwards, does not depend on the choice of E-Adams resolution for Y.

 \square relationship \square relationship relationship \square relationship relatio

As a result of this proposition, we will simply say "the E-Adams spectral sequence for $[X, Y]_*$ " to generally refer to any such spectral sequence induced by any E-Adams resolution of Y.

0.2. **The** E_2 **page.** Now, we would like to characterize the E_2 page of the spectral sequence in terms of something more concrete. Namely, we will characterize the E_2 page in terms of Ext of comodules over the dual E-Steenrod algebra. For a quick review of Ext in an abelian category and derived functors, see ??. The goal of this subsection will be to prove the following theorem:

Theorem 0.7. Let (E, μ, e) be a commutative monoid object, and X and Y objects in SH. Suppose further that:

- E is flat (??) and cellular (??),
- X is cellular and $E_*(X)$ is a graded projective left $\pi_*(E)$ -module (via ??),
- Y is cellular.

Then the non-vanishing entries of the second page of the E-Adams spectral sequence for the computation of $[X,Y]_*$ (Definition 0.4) are the Ext groups of A-graded left comodules over the anticommutative Hopf algebroid structure on the dual E-Steenrod algebra (??), i.e., we have the following isomorphisms for all $s \in \mathbb{N}$ and $a \in A$:

$$E_2^{s,a}(X,Y) \cong \operatorname{Ext}_{E_*(E)}^{s,a+\mathbf{s}}(E_*(X),E_*(Y)) := \operatorname{Ext}_{E_*(E)}^s(E_*(X),E_{*+a+\mathbf{s}}(Y)).$$

Proof. As we have shown above in Proposition 0.6, from the E_2 -page onwards, the E-Adams spectral sequence is independent of choice of E-Adams resolution of Y. Thus, in order to characterize the E_2 page as desired, we may assume we are working with the canonical E-Adams resolution $(Y_s, W_s; i, j, k)$ of Y from Definition 0.2.

By Proposition 0.12 below, for each $s \in \mathbb{N}$ and $a \in A$, $E_2^{s,a}(X,Y)$ is isomorphic to the s^{th} cohomology group of the cochain complex obtained by applying $F := \text{Hom}_{E_*(E)}^{a+s}(E_*(X), -)$ to the complex

$$0 \longrightarrow E_*(W_0) \xrightarrow{E_*(\delta_0)} E_*(\Sigma W_1) \xrightarrow{E_*(\delta_1)} E_*(\Sigma^2 W_2) \xrightarrow{E_*(\delta_2)} E_*(\Sigma^3 W_3) \longrightarrow \cdots$$

Furthermore, by Lemma 0.10, this complex is an F-acyclic resolution of $E_*(Y)$ (??). Thus, since the category of $E_*(E)$ -comodules is an abelian category with enough injectives (??), we have by ?? that

$$E_2^{s,a}(X,Y) \cong R^s \operatorname{Hom}_{E_*(E)}^{a+\mathbf{s}}(E_*(X), -)(E_*(Y)) = \operatorname{Ext}^{s,a+\mathbf{s}}(E_*(X), E_*(Y)),$$

as desired.

We leave it to the reader to unravel what the differential d_2 corresponds to under this identification.

Definition 0.8. Given some (nonnegative integer) $n \in \mathbb{N}$, define natural isomorphisms $\nu_X^n : \Sigma^{\mathbf{n}} X \to \Sigma^n X$ inductively, by setting $\nu_X^0 := \lambda_X$, $\nu_X^1 := \nu_X^{-1}$, and supposing ν_X^{n-1} has been defined for some n > 1, define ν_X^n to be the composition

$$\nu_X^n: \Sigma^{\mathbf{n}}X = S^{\mathbf{n}} \otimes X \xrightarrow{\phi_{\mathbf{n-1},\mathbf{1}} \otimes X} S^{\mathbf{n-1}} \otimes S^{\mathbf{1}} \otimes X \xrightarrow{S^{\mathbf{n-1}} \otimes \nu_X^{-1}} S^{\mathbf{n-1}} \Sigma X \xrightarrow{\nu_{\Sigma X}^{\mathbf{n-1}}} \Sigma^n X.$$

By induction, naturality of ν , and functoriality of $-\otimes -$, these isomorphisms are clearly natural in X.

Lemma 0.9. Let (E, μ, e) be a monoid object and X and Y objects in SH. Further suppose E and Y are cellular. Then for all $s \in \mathbb{Z}$, the objects Y_s and W_s from the canonical E-Adams resolution of Y (Definition 0.2) are cellular.

Proof. Unravelling definitions, for s < 0, $W_s = 0$ and $Y_s = Y$, which are both cellular.¹ For $s \ge 0$, we have $W_s = E \otimes Y_s$, so that by cellularity of E and ??, it suffices to show that Y_s is cellular for $s \ge 0$. We know $Y_0 = Y$ is cellular by definition. For s > 0, Y_s is the tensor product $\overline{E}^s \otimes Y$, where \overline{E} fits into the distinguished triangle

$$\overline{E} \to S \xrightarrow{e} E \to \Sigma \overline{E}$$
.

By the definition of cellularity, \overline{E} is cellular since S and E are. Thus, by the aforementioned lemma, $\overline{E}^s \otimes Y$ is cellular by $\ref{eq:special}$, as it is a tensor product of cellular objects in $\ref{eq:special}$.

Lemma 0.10. Let (E, μ, e) be a flat $(\ref{eq:condition})$ and cellular $(\ref{eq:condition})$ commutative monoid object and X and Y cellular objects in SH, and define Y_s , W_s as in Definition 0.2. In particular, for each $s \in \mathbb{Z}$, we have distinguished triangles

$$Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{j_s} W_s \xrightarrow{k_s} \Sigma Y_{s+1}.$$

Then if $E_*(X)$ is a graded projective (??) left $\pi_*(E)$ -module (via ??) then the sequence

$$0 \to E_*(Y) \xrightarrow{E_*(j_0)} E_*(W_0) \xrightarrow{E_*(\delta_0)} E_*(\Sigma W_1) \xrightarrow{E_*(\delta_1)} E_*(\Sigma^2 W_2) \xrightarrow{E_*(\delta_2)} E_*(\Sigma^3 W_3) \to \cdots$$

is an F-acyclic resolution (??) of $E_*(Y)$ in $E_*(E)$ -CoMod^A for

$$F = \operatorname{Hom}_{E_*(E)}^a(E_*(X), -)$$

for all $a \in A$, where δ_s is the composition

$$\Sigma^s W_s \xrightarrow{\Sigma^s k_s} \Sigma^{s+1} Y_{s+1} \xrightarrow{\Sigma^{s+1} j_{s+1}} \Sigma^{s+1} W_{s+1}$$

Proof. By Lemma 0.9, each W_s is cellular, so that furthermore $\Sigma^s W_s \cong S^s \otimes W_s$ is cellular for each $s \geq 0$, by ??. Thus, the sequence does indeed live in $E_*(E)$ -CoMod^A by ??, as desired. Next, we claim that $E_*(\Sigma^s W_s)$ is an F-acyclic object for each $s \geq 0$, i.e., that

$$\mathrm{Ext}^{n,a}_{E_*(E)}(E_*(X), E_*(\Sigma^s W_s)) = \mathrm{Ext}^n_{E_*(E)}(E_*(X), E_{*+a}(\Sigma^s W_s)) = 0$$

for all n > 0, $s \ge 0$, and $a \in A$. Note that we have an A-graded isomorphism of left $E_*(E)$ -comodules:

$$E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s) = E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s)$$

$$\downarrow^{\Phi_{E,\Sigma^s Y_s}}$$

$$E_*(E \otimes \Sigma^s Y_s)$$

$$\downarrow^{E_*(E \otimes (\nu_{Y_s}^s)^{-1})}$$

$$E_*(E \otimes S^s \otimes Y_s)$$

$$\downarrow^{E_*(\tau \otimes Y_s)}$$

$$E_*(S^s \otimes E \otimes Y_s)$$

$$\downarrow^{E_*(\nu_{E \otimes Y_s}^s)}$$

$$E_*(\Sigma^s (E \otimes Y_s)) = E_*(\Sigma^s W_s)$$

where Φ_{E,Σ^sY} is an A-graded isomorphism of abelian groups by ??, and furthermore an isomorphism of $E_*(E)$ -comodules by ??. Every other arrow is an isomorphism of $E_*(E)$ -comodules by functoriality of $E_*(-): \mathcal{SH}\text{-Cell} \to E_*(E)\text{-CoMod}^A$. Thus, since $E_*(\Sigma^sW_s)$ is isomorphic to

¹0 is cellular because it is the cofiber of the identity on S by axiom TR1 for a triangulated category (??), i.e., there is a distinguished triangle $S \to S \to 0 \to \Sigma S$.

 $E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s)$ in $E_*(E)$ -CoMod^A, and in particular since $\operatorname{Ext}_{E_*(E)}^n(E_*(X), -)$ is a functor, we have

$$\operatorname{Ext}_{E_*(E)}^n(E_*(X), E_{*+a}(\Sigma^s W_s)) \cong \operatorname{Ext}_{E_*(E)}^n(E_*(X), E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s)).$$

Yet, $E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s)$ is a co-free $E_*(E)$ -comodule, in which case since $E_*(X)$ is graded projective as an object in $\pi_*(E)$ -**Mod**^A, we have that

$$\operatorname{Ext}_{E_*(E)}^{n,a}(E_*(X), E_*(E) \otimes_{\pi_*(E)} E_{*+a}(\Sigma^s Y_s)) = 0,$$

by ??.

Finally, it remains to show that the sequence is exact. To that end, first note that by induction on axiom TR4 for a triangulated category and the fact that distinguished triangles are exact (??), the following sequence in \mathcal{SH} is exact (since a sequence clearly remains exact even after changing the signs of its maps):

$$\Sigma^{s}Y_{s} \xrightarrow{\Sigma^{s}j_{s}} \Sigma^{s}W_{s} \xrightarrow{\Sigma^{s}k_{s}} \Sigma^{s+1}Y_{s+1} \xrightarrow{\Sigma^{s+1}i_{s}} \Sigma^{s+1}Y_{s} \xrightarrow{\Sigma^{s+1}j_{s}} \Sigma^{s+1}W_{s}$$

(see ?? for the definition of an exact triangle in an additive category). Furthermore, since SH is tensor triangulated, the sequence remains exact after applying $E \otimes -$ (see ?? for details), so that taking E-homology yields the following exact sequence of homology groups:

$$E_*(\Sigma^s Y_{s+1}) \xrightarrow{E_*(\Sigma^s i_s)} E_*(\Sigma^s Y_s) \xrightarrow{E_*(\Sigma^s j_s)} E_*(\Sigma^s W_s) \xrightarrow{E_*(\Sigma^s k_s)} E_*(\Sigma^{s+1} Y_{s+1}) \xrightarrow{E_*(\Sigma^{s+1} i_s)} E_*(\Sigma^{s+1} Y_s).$$

Then since $E_*(i_s): E_*(Y_{s+1}) \to E_*(Y_s)$ is the zero map (by Proposition 0.3) and we have natural isomorphisms

$$E_*(\Sigma^t X) \xrightarrow{\nu_X^t} E_*(\Sigma^t X) \xrightarrow{t_X^t} E_{*-\mathbf{t}}(X)$$

(the first from Definition 0.8 and the latter from ??), we have that $E_*(\Sigma^t i_s): E_*(\Sigma^t Y_{s+1}) \to E_*(\Sigma^t Y_s)$ is the zero map for all $t \in \mathbb{Z}$, so that in particular the above exact sequence splits to yield the short exact sequence

$$0 \to E_*(\Sigma^s Y_s) \xrightarrow{E_*(\Sigma^s j_s)} E_*(\Sigma^s W_s) \xrightarrow{E_*(\Sigma^s k_s)} E_*(\Sigma^{s+1} Y_{s+1}) \to 0.$$

Then we may splice these sequences together for $s \geq 0$ to yield the following diagram:

$$0 \longrightarrow E_*(Y) \xrightarrow{E_*(j_0)} E_*(W_0) \xrightarrow{E_*(\delta_0)} E_*(\Sigma W_1) \xrightarrow{E_*(\Sigma W_1)} E_*(\Sigma W_1) \xrightarrow{E_*(\Sigma k_1)} E_*(\Sigma^2 W_2) \xrightarrow{E_*(\Sigma^2 j_2)} \cdots$$

$$E_*(\Sigma Y_1) \xrightarrow{E_*(\Sigma^2 Y_2)} E_*(\Sigma^2 Y_2)$$

It follows the top row is exact, as desired.

Lemma 0.11. Let (E, μ, e) be a commutative monoid object, and X and Y objects in SH. Suppose further that:

- E is flat (??) and cellular (??),
- X is cellular and $E_*(X)$ is a graded projective left $\pi_*(E)$ -module (via ??), and
- Y is cellular.

Then the assignment

$$E_*(-): [X, E \otimes Y] \to \operatorname{Hom}_{E_*(E)}(E_*(X), E_*(E \otimes Y)), \qquad f \mapsto E_*(f)$$

induced by the functor $E_*(-): S\mathcal{H}\text{-}\mathbf{Cell} \to E_*(E)\text{-}\mathbf{CoMod}^A$ is an isomorphism of abelian groups.

Proof. Since X is cellular, by ?? we have that $E_*(X)$ is canonically an A-graded left $E_*(E)$ -comodule. Similarly, since E and Y are cellular, we know that $E \otimes Y$ is cellular, so that $E_*(E \otimes Y)$ is also canonically an $E_*(E)$ -comodule. Thus, we have a well-defined assignment

$$[X, E \otimes Y] \xrightarrow{E_*(-)} \operatorname{Hom}_{E_*(E)}(E_*(X), E_*(E \otimes Y)).$$

To see this arrow is an isomorphism, consider the following diagram:

$$[X, E \otimes Y] \xrightarrow{E_*(-)} \operatorname{Hom}_{E_*(E)}(E_*(X), E_*(E \otimes Y))$$

$$\pi_*(\mu \otimes Y) \circ E_*(-) \downarrow \qquad \qquad \uparrow (\Phi_{E,Y})_* \downarrow \qquad \qquad \uparrow (\Phi_{E,Y})_* \downarrow \qquad \qquad \downarrow (\Phi_{E,Y})_* \downarrow \qquad \downarrow (\Phi_{E,Y})_* \downarrow \qquad \qquad \downarrow (\Phi_{E,Y})_* \downarrow (\Phi_{E,Y})_* \downarrow \qquad \qquad \downarrow (\Phi_{E,Y})_* \downarrow (\Phi_{E,Y})_* \downarrow \qquad \qquad \downarrow (\Phi_{E,Y})_* \downarrow (\Phi_{E,Y})_* \downarrow (\Phi_{E,Y})_* \downarrow (\Phi_{E,Y})$$

We know the left vertical map is an isomorphism by $\ref{eq:thmodel}??$, and the bottom horizontal isomorphism is the forgetful-cofree adjunction ($\ref{eq:thmodel}??$) for A-graded left comodules over the dual E-Steenrod algebra. The right vertical arrow is a well-defined isomorphism, as $\Phi_{E,Y}$ is a homomorphism of A-graded left $E_*(E)$ -comodules ($\ref{eq:thmodel}??$), and in fact it is an isomorphism by $\ref{eq:thmodel}?$, since $E_*(E)$ is flat and Y is cellular. Thus in order to see the top arrow is an isomorphism, it suffices to show that the diagram commutes. The left triangle clearly commutes; to see the right triangle commutes, recall that by how the how forgetful-cofree adjunction for left comodules over a Hopf algebroid is defined, that the bottom vertical arrow sends an A-graded homomorphism of left $E_*(E)$ -comodules $\psi: E_*(X) \to E_*(E) \otimes_{\pi_*(E)} E_*(Y)$ to the composition

$$E_*(X) \xrightarrow{\psi} E_*(E) \otimes_{\pi_*(E)} E_*(Y) \xrightarrow{\pi_*(\mu) \otimes E_*(Y)} \pi_*(E) \otimes_{\pi_*(E)} E_*(Y) \xrightarrow{\cong} E_*(Y).$$

Thus, in order to show that this composition equals $\pi_*(\mu \otimes Y) \circ \Phi_{E,Y} \circ \psi$, it suffices to show the following diagram commutes:

$$E_*(E) \otimes_{\pi_*(E)} E_*(Y) \xrightarrow{\pi_*(\mu) \otimes E_*(Y)} \pi_*(E) \otimes_{\pi_*(E)} E_*(Y)$$

$$\downarrow^{\cong}$$

$$E_*(E \otimes Y) \xrightarrow{\pi_*(\mu \otimes Y)} E_*(Y)$$

Since all the arrows here are homomorphisms of abelian groups, in order to show the diagram commutes, it suffices to chase pure homogeneous tensors around. To that end, let $x: S^a \to E \otimes E$ and $y: S^b \to E \otimes Y$, and consider the following diagram exhibiting the two ways to chase $x \otimes y$ around:

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes E \otimes E \otimes Y \xrightarrow{\mu \otimes E \otimes Y} E \otimes E \otimes Y \xrightarrow{E \otimes \mu \otimes Y} \bigoplus_{E \otimes E \otimes Y} \bigoplus_{\mu \otimes Y} E \otimes E \otimes Y$$

The diagram commutes by associtiavity of μ . Thus, we have indeed show that

$$E_*(-): [X, E \otimes Y] \to \operatorname{Hom}_{E_*(E)}(E_*(X), E_*(Y))$$

is an isomorphism of abelian groups.

Proposition 0.12. Let (E, μ, e) be a commutative monoid object, and X and Y objects in SH. Suppose further that:

• E is flat (??) and cellular (??),

- X is cellular, and $E_*(X)$ is a graded projective left $\pi_*(E)$ -module (via $\ref{eq:condition}$), and
- Y is cellular.

Then for all $s \in \mathbb{Z}$ and $a \in A$, the line in the first page of the E-Adams spectral sequence for the computation of $[X,Y]_*$ associated to the canonical E-Adams resolution of Y (Definition 0.2)

$$0 \to E_1^{0,a+\mathbf{s}}(X,Y) \xrightarrow{d_1} E_1^{1,a+\mathbf{s}-\mathbf{1}}(X,Y) \xrightarrow{d_1} E_1^{2,a+\mathbf{s}-\mathbf{2}}(X,Y) \to \cdots \to E_1^{s,a}(X,Y) \to \cdots$$

is isomorphic to the complex obtained by applying $\operatorname{Hom}_{E_*(E)}^{a+s}(E_*(X), -)$ to the complex of A-graded left $E_*(E)$ -comodules

$$0 \to E_*(W_0) \xrightarrow{E_*(\delta_0)} E_*(\Sigma W_1) \xrightarrow{E_*(\delta_1)} E_*(\Sigma^2 W_2) \to \cdots \to E_*(\Sigma^s W_s) \to \cdots$$

from Lemma 0.10.

Proof. By Lemma 0.9, since E and Y are cellular, W_t is as well for each $t \in \mathbb{N}$. Furthermore, for t > 0, we have isomorphisms

$$S^{\mathbf{t}} \otimes W_t \xrightarrow{\nu_{W_t}^t} \Sigma^t W_t$$

and by ??, the object $S^{\mathbf{t}} \otimes W_t$ is cellular since $S^{\mathbf{t}}$ and W_t are. Hence, by ??, the complex

$$0 \to E_*(W_0) \xrightarrow{E_*(\delta_0)} E_*(\Sigma W_1) \xrightarrow{E_*(\delta_1)} E_*(\Sigma^2 W_2) \to \cdots \to E_*(\Sigma^s W_s) \to \cdots$$

actually lives in $E_*(E)$ -CoMod^A, as desired. Now, let $t \in \mathbb{N}$, and consider the following diagram:

$$[X,W_t]_{a+\mathbf{s}-\mathbf{t}} \xleftarrow{s_{X,W_t}^t} [X,\Sigma^tW_t]_{a+\mathbf{s}} \xrightarrow{(\nu_{W_t}^t)_*} [X,\Sigma^tW_t]_{a+\mathbf{s}}$$

$$(k_t)_* \downarrow \qquad (\Sigma^tk_t)_* \qquad \qquad (\Sigma^tk_t)_* \qquad$$

where here the $s_{X,Y}^a:[X,\Sigma^aY]_*\cong[X,Y]_{*-a}$'s are the natural isomorphisms from $\ref{thm:property}$??. By unravelling definitions, we have the top left object is $E_1^{t,a+\mathbf{s-t}}(X,Y)$ and the bottom left object is $E_1^{t+1,a+\mathbf{s-t-1}}$, and the vertical left composition in the above diagram is the differential d_1 between them. The first, second, and fourth rectangles from the top on the left rectangle commute by naturality of the s^a 's. Furthermore, a simple diagram chase and coherence of the ϕ 's $\ref{thm:property}$ yields that the third rectangle on the left commutes. The trapezoids on the right commute by naturality of ν^t and ν^{t+1} . Finally, the middle right triangle commutes by how we defined ν^{t+1} in terms of ν^t .

Now, consider the following diagram:

$$E_{1}^{t,a+\mathbf{s}-\mathbf{t}}(X,Y) \xrightarrow{d_{1}} E_{1}^{t+1,a+\mathbf{s}-\mathbf{t}-\mathbf{1}}(X,Y) \\ (s_{X,W_{t}}^{t})^{-1} \downarrow \qquad \qquad \downarrow (s_{X,W_{t+1}}^{t+1})^{-1} \\ [X,\Sigma^{\mathbf{t}}W_{t}]_{a+\mathbf{s}} \qquad \qquad [X,\Sigma^{\mathbf{t}+\mathbf{1}}W_{t+1}]_{a+\mathbf{s}} \\ (\nu_{W_{t}}^{t})_{*} \downarrow \qquad \qquad \downarrow (\nu_{W_{t+1}}^{t+1})_{*} \\ [X,\Sigma^{t}W_{t}]_{a+\mathbf{s}} \xrightarrow{(\delta_{t})_{*}} [X,\Sigma^{t+1}W_{t+1}]_{a+\mathbf{s}} \\ E_{*}(-) \downarrow \qquad \qquad \downarrow E_{*}(-) \\ \text{Hom}_{E_{*}(E)}(E_{*}(\Sigma^{a+\mathbf{s}}X),E_{*}(\Sigma^{t}W_{t})) \xrightarrow{E_{*}(\delta_{t})} \text{Hom}_{E_{*}(E)}(E_{*}(\Sigma^{a+\mathbf{s}}X),E_{*}(\Sigma^{t+1}W_{t+1})) \\ ((t_{X}^{a+\mathbf{s}})^{-1})^{*} \downarrow \qquad \qquad \downarrow ((t_{X}^{a+\mathbf{s}})^{-1})^{*} \\ \text{Hom}_{E_{*}(E)}(E_{*}(X),E_{*}(\Sigma^{t}W_{t})) \xrightarrow{E_{*}(\delta_{t})} \text{Hom}_{E_{*}(E)}(E_{*}(X),E_{*}(\Sigma^{t+1}W_{t+1}))$$

where here the maps $t_X^{a+\mathbf{s}}: E_*(\Sigma^a) \to E_{*-a}(X)$ are the $E_*(E)$ -comodule isomorphisms from $\ref{totaleq}$. We have just shown the top region commutes. Furthermore, since X and $\Sigma^t W_t$ are cellular for all $t \in \mathbb{N}$, the arrows labelled $E_*(-)$ are well-defined, and they clearly make the middle rectangle commute (a simple diagram chase suffices). The bottom rectangle also clearly commutes, Thus, it suffices to show that the maps labelled $E_*(-)$ are isomorphisms. To that end, consider the following diagram:

$$[X, \Sigma^{t}W_{t}]_{a+\mathbf{s}} \xrightarrow{E_{*}(-)} \operatorname{Hom}_{E_{*}(E)}(E_{*}(\Sigma^{a+\mathbf{s}}X), E_{*}(\Sigma^{t}W_{t}))$$

$$\downarrow^{E_{*}(f)_{*}}$$

$$X, E \otimes \Sigma^{t}Y_{t}]_{a+\mathbf{s}} \xrightarrow{E_{*}(-)} \operatorname{Hom}_{E_{*}(E)}(E_{*}(\Sigma^{a+\mathbf{s}}X), E_{*}(E \otimes \Sigma^{t}Y_{t}))$$

where here $f: \Sigma^t W_t \to E \otimes \Sigma^t Y_t$ is the isomorphism

$$\Sigma^{t}W_{t} \xrightarrow{\nu_{W}^{t}} \Sigma^{t}W_{t} = S^{t} \otimes E \otimes Y_{t} \xrightarrow{\tau \otimes Y_{t}} E \otimes S^{t} \otimes Y_{t} = E \otimes \Sigma^{t}Y_{t}.$$

The bottom horizontal arrow is an isomorphism by Lemma 0.11. Thus, the top horizontal arrow is an isomorphism, as desired. Showing

$$E_*(-): [X, \Sigma^{t+1}W_{t+1}]_{a+\mathbf{s}} \to \mathrm{Hom}_{E_*(E)}(E_*(\Sigma^{a+\mathbf{s}}X), E_*(\Sigma^{t+1}W_{t+1}))$$

is an isomorphism is entirely analogous. Thus, for each $t \in \mathbb{N}$, we have constructed isomorphisms

$$E^{t,a+\mathbf{s}-\mathbf{t}}(X,Y) \xrightarrow{\cong} \operatorname{Hom}_{E_*(E)}^{a+\mathbf{s}}(E_*(X), E_*(\Sigma^t W_t))$$

such that the following diagram commutes:

$$E^{t,a+\mathbf{s}-\mathbf{t}}(X,Y) \xrightarrow{d_1} E^{t+1,a+\mathbf{s}-\mathbf{t}-\mathbf{1}}(X,Y)$$

$$\cong \bigcup_{\Xi_*(E)} (E_*(X), E_*(\Sigma^t W_t)) \xrightarrow{\operatorname{Hom}_{E_*(E)}^{a+\mathbf{s}}(E_*(X), E_*(\delta_t))} \operatorname{Hom}_{E_*(E)}^{a+\mathbf{s}}(E_*(X), E_*(\Sigma^{t+1} W_{t+1}))$$

Hence, we have proven the desired result.

0.3. Convergence of the spectral sequence. Before we can state and prove some convergence results for the spectral sequence we have constructed above, we outline a bit of the theory of nilpotent completion of objects in \mathcal{SH} . Namely, we will outline suitable conditions under which the E-Adams spectral sequence for $[X,Y]_*$ converges to the homotopy groups $[X,Y_E^{\wedge}]_*$, where Y_E^{\wedge} is an E-nilpotent completion of Y. The main reference for this section and the next will be §5–6 in the paper [1] by Bousfield. First, we state some definitions.

Definition 0.13 ([2]). Given an object Y in SH and a monoid object (E, μ, e) an E-completion \widehat{Y} of Y is an object in SH such that:

- (a) There is a map $Y \to \hat{Y}$ inducing an isomorphism in E_* -homology.
- (b) \widehat{Y} has an E-Adams resolution $(\widehat{Y}_s, \widehat{W}_s; i, j, k)$ (Definition 0.1) with holim $\widehat{Y}_s = 0$ (see ?? for the definition of homotopy limits in a triangulated category with products).

Definition 0.14 ([1, pgs. 272–273]). Let (E, μ, e) be a monoid object in $S\mathcal{H}$, and Y any object. Write \overline{E} for the homotopy fiber (??) of the unit $S \xrightarrow{e} E$, so we have a distinguished triangle

$$\overline{E} \to S \xrightarrow{e} E \to \Sigma \overline{E}$$
.

Set $Y_0 := Y$ and $W_0 := Y \otimes E$, and for s > 0 define $Y_s := Y \otimes \overline{E}^s$ and $W_s := Y_s \otimes E$. Then since \mathcal{SH} is tensor triangulated, for each $s \geq 0$ we may tensor the above sequence with Y_s on the right, which yields the following distinguished triangle

$$Y_{s+1} \xrightarrow{i} Y_s \xrightarrow{j} W_s \xrightarrow{k} \Sigma Y_{s+1}$$
.

Then for $s \in \mathbb{N}$, define Y/Y^s to be the cofiber of $i^s : Y_s \to Y_0 = Y$ (so in particular we may take $Y/Y_1 = E \otimes Y$ and $Y/Y_0 = 0$), so we have a distinguished triangle

$$Y_s \xrightarrow{i^s} Y \xrightarrow{b} Y/Y_s \xrightarrow{c} \Sigma Y_s.$$

Then for each $s \ge 0$, by the octahedral axiom (axiom TR5) for a triangulated category applied to the triangles

$$Y_{s+1} \xrightarrow{i} Y_s \xrightarrow{j} W_s \xrightarrow{k} \Sigma Y_{s+1}$$

$$Y_s \xrightarrow{i^s} Y \xrightarrow{b} Y/Y_s \xrightarrow{c} \Sigma Y_s$$

$$Y_{s+1} \xrightarrow{i^{s+1}} Y \xrightarrow{b} Y/Y_{s+1} \xrightarrow{c} \Sigma Y_{s+1},$$

there exists a distinguished triangle

(1)
$$W_s \xrightarrow{p} Y/Y_{s+1} \xrightarrow{q} Y/Y_s \xrightarrow{r} \Sigma W_s.$$

is distinguished and the following diagram commutes:

The triangles from (1) may be spliced together to yield a tower $\{Y/Y_s\}_s$ under Y:

$$Y \longrightarrow \cdots \longrightarrow Y/Y_3 \xrightarrow{q} Y/Y_2 \xrightarrow{q} Y/Y_1 \xrightarrow{q} Y/Y_0 = 0$$

$$\downarrow^r & \downarrow^r & \downarrow^r & \downarrow^r & \downarrow^r \\ W_3 & W_2 & W_1 & W_0$$

where here the dashed arrows are really (degree -1) maps $Y/Y_s \to \Sigma W_s$. The fact that this is a tower under Y follows from diagram $(\ref{eq:constraint})$, which tells us that $Y \xrightarrow{b} Y/Y_s$ factors as $Y \xrightarrow{b} Y/Y_{s+1} \xrightarrow{q} Y/Y_s$. We define the E-nilpotent completion of Y to be the object Y_E^{\wedge} (defined up to non-canonical isomorphism) obtained as the homotopy limit of this tower $(\ref{eq:constraint})$:

$$Y_E^{\wedge} := \operatorname{holim} Y_s / Y.$$

This comes equipped with a map $\alpha: Y \to Y_E^{\wedge}$.

Proposition 0.15. Consider the tower under Y constructed in Definition 0.14:

$$Y \longrightarrow \cdots \longrightarrow Y/Y_3 \xrightarrow{q} Y/Y_2 \xrightarrow{q} Y/Y_1 \xrightarrow{q} Y/Y_0 = 0$$

$$\downarrow^r & \downarrow^p & \downarrow^r & \downarrow^r & \downarrow^r \\ W_3 & W_2 & W_1 & W_0$$

We may extend it to the right by defining $Y/Y_s = W_s = 0$ for s < 0. Then by ??, we may apply the functor $[X, -]_*$ which yields the following A-graded unrolled exact couple (??):

$$\cdots \longrightarrow \begin{bmatrix} X, Y/Y_{s+2} \end{bmatrix}_* \xrightarrow{q} \begin{bmatrix} X, Y/Y_{s+1} \end{bmatrix}_* \xrightarrow{q} \begin{bmatrix} X, Y/Y_s \end{bmatrix}_* \xrightarrow{q} \begin{bmatrix} X, Y/Y_{s-1} \end{bmatrix}_* \longrightarrow \cdots$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{\delta} \qquad$$

Thus by $\ref{thm:property:pro$

Proof. For $s \geq 0$, define

$$f_s: [X, Y/Y_s]_* \xrightarrow{c_*} [X, \Sigma Y_s]_* \xrightarrow{(\nu_{Y_s})_*} [X, \Sigma^1 Y_s]_* \xrightarrow{s_{X, Y_s}^1} [X, Y_s]_{*-1},$$

and for s < 0 let it be the unique map

$$f_s: [X, Y/Y_s]_* = 0 \to [X, Y_s]_{*-1} = [X, Y]_{*-1}.$$

For $s \in \mathbb{Z}$, let

$$g_s := \mathrm{id}_{W_s} : [X, W_s]_* \to [X, W_s]_*.$$

We claim these maps $(f_s, g_s)_s$ define a homomorphism of A-graded unrolled exact couples (??) between the unrolled exact couple given above and that obtained by applying $[X, -]_*$ to the canonical E-Adams resolution. To that end, it suffices to show that the following diagram commutes for all $s \in \mathbb{Z}$:

$$[X, Y/Y_s]_* \longrightarrow [X, Y/Y_{s-1}]_* \longrightarrow [X, W_{s-1}]_{*-1} \longrightarrow [X, Y/Y_s]_{*-1}$$

$$\downarrow f_s \qquad \qquad \qquad \downarrow f_s \qquad \qquad \downarrow f_s$$

$$[X, Y_s]_{*-1} \longrightarrow [X, Y_{s-1}]_{*-1} \longrightarrow [X, W_{s-1}]_{*-1} \longrightarrow [X, Y_s]_{*-2}$$

In the case $s \leq 0$, we know $Y/Y_s = Y/Y_{s-1} = W_{s-1} = 0$, so that the top row is entirely 0, and thus the diagram must commute. In the case s > 0, by unravelling definitions we have that the diagram becomes

$$\begin{bmatrix} [X,Y/Y_s]_* & \xrightarrow{q_*} [X,Y/Y_{s-1}]_* & \xrightarrow{\delta} [X,W_{s-1}]_{*-1} & \xrightarrow{p_*} [X,Y/Y_s]_{*-1} \\ c_* \downarrow & \downarrow c_* & \downarrow c_* \\ [X,\Sigma Y_s]_* & \xrightarrow{\Sigma i_*} [X,\Sigma Y_{s-1}]_* & \xrightarrow{\Sigma j_*} [X,\Sigma W_{s-1}]_* & [X,\Sigma Y_s]_{*-1} \\ (\nu_{Y_s})_* \downarrow & \downarrow (\nu_{Y_{s-1}})_* & \downarrow (\nu_{W_{s-1}})_* \\ [X,\Sigma^1 Y_s]_* & \xrightarrow{\Sigma^1 i_*} [X,\Sigma^1 Y_{s-1}]_* & \xrightarrow{\Sigma^1 j_*} [X,\Sigma^1 W_{s-1}]_* \\ s_{X,Y_s}^1 \downarrow & \downarrow s_{X,Y_{s-1}}^1 & \downarrow s_{X,Y_{s-1}}^1 \\ [X,Y_s]_{*-1} & \xrightarrow{i_*} [X,Y_{s-1}]_{*-1} & \xrightarrow{j_*} [X,W_{s-1}]_{*-1} & \xrightarrow{\partial_*} [X,Y_s]_{*-2} \\ \end{bmatrix}$$

Clearly commutativity of this diagram yields that the given collection of maps define a homomorphism of A-graded unrolled exact couples. Each rectangular region commutes by naturality, as does the middle bottom trapezoidal region. The two regions involving δ and ∂ commute by unravelling how the differential is defined in $\ref{eq:tau}$. Finally, the remaining two regions commute by commutativity of Equation 2.

Thus, we have defined a homomorphism of A-graded unrolled exact couples, so that by $\ref{monomorphism}$ it induces a homomorphism of the associated spectral sequences $\~g$. Further unravelling how this homomorphism of spectral sequences is defined, since the homomorphism of unrolled exact couples is the identity on the $[X,W_s]_*$ terms, it follows that the two spectral sequences are strictly equal.

Remark 0.16. In [1], the *E*-nilpotent completion of *Y* (Definition 0.14) is denoted " $E^{\wedge}Y$ ", while the notation " Y_E^{\wedge} " we use here is standard in the modern literature.

Definition 0.17. Let (E, μ, e) be a monoid object and X and Y two objects in \mathcal{SH} . Then we have an associated E-Adams spectral sequence $(E_r^{*,*}(X,Y), d_r)$ (Definition 0.4) and E-nilpotent completion Y_E^{\wedge} (Definition 0.14). Then we may define a decreasing A-graded filtration of $[X, Y_E^{\wedge}]_*$ by defining

$$F^s[X, Y_E^{\wedge}]_* := \ker \left((\alpha_s)_* : [X, Y_E^{\wedge}]_* \to [X, \overline{E}_{s-1} \otimes Y]_* \right)$$

for s > 0, where α_s is the composition

$$Y_E^{\wedge} \to \prod_{i=0}^{\infty} (\overline{E}_i \otimes Y) \twoheadrightarrow \overline{E}_{s-1} \otimes Y$$

Note that $F^1[X, Y_E^{\wedge}]_* = [X, E \otimes Y]_*$. To see this, it suffices to show that α_1 is the zero map. To see this, note that by how homotopy limits are constructed in $\ref{eq:second}$, we have that the following diagram commutes:

Definition 0.18. Let (E, μ, e) be a monoid object in \mathcal{SH} , and X and Y any objects. Then for all