$$P(10)$$
 — адические числа

1. Для любого k существует ровно 4 k-значных последовательности цифр, таких, что квадрат любого числа, заканчивающегося такой последовательностью, тоже заканчивается такой последовательностью.

Замечание. Заметим, что из двух нетривиальных последовательностей одна заканчивается на 5 (обозначим её x_k), а другая на 6 (y_k) .

- **2.** Покажите, что x_k последовательность, состоящая из последних k цифр числа x_{k-1}^2 .
- 3. Покажите, что y_k последовательность, состоящая из последних k цифр числа y_{k-1}^5 .

Замечание. Получается, что x_k и y_k получаются из x_{k-1} и y_{k-1} приписыванием слева одной цифры. Если не остановить этот процесс приписывания цифр, мы получим, кроме двух тривиальных бесконечных последовательностей 000...000 и 000...001 ещё две нетривиальные: ... 8212890625 и ... 1787109376. Обозначим их X и Y соответственно.

Определение 1. Бесконечные влево последовательности десятичных цифр назовём 10-адическими числами.

Определение 2. Бесконечные влево последовательности остатков при делении на p назовём p-адическими числами.

- 4. Найдите:
- a) $\dots 325325325 + \dots 73737373$
- б) ... 325325325+... 89898989
- в) ... 3333333² (5 последних цифр и принцип нахождения).
- г) -1 (10-адическое число, дающее $0=\ldots 000$ при сложении с числом 1).
- **5.** а) Покажите, что XY = 0.
- б) Докажите, что X + Y = 1.
- в) Для простого p найдите критерий существования обратного элемента к элементу x (xy = 1).
- **6.** Покажите, что X-Y является решением уравнения $x^3=x$.
- 7. а) При m = 2k уравнение $x^m = x$ имеет ровно четыре решения;
- б) При m=4k-1 уравнение $x^m=x$ имеет ровно девять решений;
- в) При m=4k+1 уравнение $x^m=x$ имеет ровно пятнадцать решений в 10-адических числах.