Morphological Image Processing

C.-C. Jay Kuo

University of Southern California

Introduction

What Is Morphology?

- Morph: shape
- Morphology: study of shapes
- In the context of image processing
 - Input: binary images
 - Output: processed binary images
 - Denoising
 - Thinning
 - Etc.

Example

- Essential shape of an image
 - It has nothing to do with the stroke width

B	$\mathbf{B}_{_{3}}$	8	$\mathcal{R}_{\frac{5}{5}}$	
B	\mathbf{B}	\mathfrak{B}	B	
B	\mathcal{B}_{13}	B	B ₁₅	****
B	\mathcal{A}_{18}	B	B	
B	B	b	25	
B	B 28	B	30	
	2 7 8 12 8 17 8 12 8 17 8 18 22 8	2 3 PB 7 8 PB 12 13 PB 13 PB 14 PB 15 PB 16 PB 17 PB 18 PB 18 PB 19 P	2 3 4 B B B 7 8 9 B B B 12 B B 13 B B 14 B B 19 B B 22 23 24 B B B B B B B B B	2 3 4 5 B B B B 7 8 9 10 B B B B 12 B B B 15 B B B 17 18 B B 19 20 B B B 22 23 24 25 B B B B B B B B

Morphological Processing

- Some objects contain shapes formed by line segments, arcs and curves
- Applications
 - Optical character recognition (OCR)
 - Fingerprint recognition
 - Shape retrieval
 - Etc.

MPEG-7 Shape Dataset

Binary Image Connectivity

- 1: object pixel (black)
- 0: background pixel (white)
- 4-connectivity:
 - A pixel is 4-connected if its value is the same as one (or more) of its four nearest neighbors
- 8-connectivity:
 - A pixel is 8-connected if its value is the same as one (or more) of its eight nearest neighbors

Example

Object Counting

- How many objects in the last example?
 - 4-connectivity rule
 - No. of objects: 4
 - No. of background regions: 2
 - 8-connectivity rule
 - No. of objects: 1
 - No. of background regions: 1
 - Hybrid connectivity rule
 - 8-connectivity for objects and 4-connectivity for background
 - No. of objects: 1
 - No. of background regions: 2

Another Connectivity Measure: Bond

- Side connectivity: 2 pts.
- Corner connectivity: 1 pt.
- Bond= 2 x (no. of the same side neighbors)
 - + 1 x (no. of the same corner neighbors)
- Example:

Basic Morphological Filters

Hit or Miss Morphological Filters

- Use an odd-size mask (typically 3x3) to scan a binary image
- Pre-define a set of hit masks
- If the underlying patch pattern matches one of the hit masks, it is called a "hit". Otherwise, it is called a "miss"
- Action:
 - Hit -> take action on the central pixel (usually, change 0 to 1, change 1 to 0)
 - Miss -> no action on the central pixel (copy the central pixel value to the same location of the output image)

Hit

Simple Filter

Advanced Filter

Miss

Example: Isolated Dots Removal

Isolated black dots can be viewed as noise in black/white images

Mask Design

Mathematical Representation of Morphological Filters

Logical Expression of Noise Removal Filter

Simple Morphological Filters

Additive Filters

• Action: Converting "0" (white, background) in the input image to "1" (black, foreground) in the output image

Subtractive Filters

 Action: Converting "1" (black, foreground) in the input image to "0" (white, background) in the output image

Example of Additive Filters (1)

• Interior Fill

Example of Additive Filters (2)

Diagonal Fill

Example of Additive Filters (3)

Bridge

Example of Additive Filters (4)

- Eight-Neighbor Dilation
 - Goal: grow the size of an object

any of 8 neighbors is "me"

Example of Subtractive Filters (1)

Isolated pixel removal

Example of Subtractive Filters (2)

Spur removal

Example of Subtractive Filters (3)

• Interior Pixel Removal

Overall Effect of Interior Pixel Removal

Input Image

Output Image

Advanced Morphological Filters

Advanced Morphological Filters

- Three subtractive filters
 - Shrinking
 - Thinning
 - Skeletonizing
- One additive filter
 - Thickening

Examples (1)

Examples (2)

Examples (3)

Examples (4)

One-Stage Filter Design

• If we adopt the single-stage hit-or-miss filter solution, the filter size has to be of 5x5=25

Two-Stage Filter Design

• To simplify the design process, we decompose the one-stage 5x5 filter to two stages in cascade, where each stage consists of a 3x3 filter

Purpose of 1st Stage Design

M(j,k)=0. X is lut

a considerate

for evagure.

Purpose of 2nd Stage Design (1)

Purpose of 2nd Stage Design (2)

First Stage (or M) Hit Masks (1)

TABLE 14.3-1. Shrink, Thin and Skeletonize Conditional Mark Patterns [M = 1] if hit]

Pratt	'S	Book
Page	4	33

Table	Bon	d										Pa	itter	n														
		0	0	1	1	0	0	0	0	0	0	0	0															
S	1	0	1	0	0	1	0	0	1	0	0	1	0															
		0	0	0	0	0	0	1	0	0	0	0	1															
		0	0	0	0	1	0	0	0	0	0	0	0															
S	2	0	1	1	0	1	0	1	1	0	0	1	0															
		0	0	0	0	0	0	0	0	0	0	1	0															
1																												
		0	0	1	0	1	1	1	1	0	1	0	0	C) ()	0	()	0	0	0	0	0		0	0	0
S	3	0	1	1	0	1	0	0	1	0	1	1	0	1		1	0	()	1	0	0	1	0		0	1	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	()	0	1		1	0	0	1	1		0	0	1
		0	1	0	0	1	0	0	0	0	0	0	0															
ΓK	4	0	1	1	1	1	0	1	1	0	0	1	1															
		0	0	0	0	0	0	0	1	0	0	1	0															
		0	0	1	1	1	1	1	0	0	0	0	0															
STK	4	0	1	1	0	1	0	1	1	0	0	1	0												(C)	\bigcirc	nt	inue
		0	0	1	0	0	0	1	0	0	1	1	1												, υ	.	11	iiiuc

First Stage (or M) Hit Masks (2)

				1	1	0	0		l	0	C)	1	1	0	0	1														
	ST	5	(0	1	1	0]	l	1	1		1	0	0	1	1														
			(0	0	0	0	()	1	0	()	0	0	1	0														
Pratt's Book			(0	1	1	1	1	l	0	0	()	0	0	0	0														
Page 433	ST	5	(0	1	1	1	1	l	0	1	1	l	0	0	1	1														
			(0	0	0	0	()	0	1	j	l	0	0	1	1														
				1	1	0	0	1		1																					
	ST	6	(0	1	1	1	1		0																					
			(0	0	1	1	()	0																					
			54	1	1	1	0	1		1	1	1		1	1	1	0	1	0	0	0	0	0	0	0)	0	0	0	1	1
	STK	6	()	1	1	0	1		1	1	1		0	1	1	0	1	1	0	1	1	0	0	1		1	0	1	1	
			()	0	0	0	0)	1	0	()	0	1	0	0	1	1	0	1	1	1	1	1		1	0	1	1	

(Continued)

First Stage (or M) Hit Masks (3)

TABLE 14.3-1. (Continued)

Pratt's Book

Page 433

Table	Bond													Patte	ern	1									
		1	1	1	1	1	1	1	0	0	0	0	1												
STK	7	0	1	1	1	1	0	1	1	0	0	1	1												
		0	0	1	1	0	0	1	1	1	1	1	1												
		0	1	1	1	1	1	1	1	0	0	0	0												
STK	8	0	1	1	1	1	1	1	1	0	1	1	1												
		0	1	1	0	0	0	1	1	0	1	1	1												
		1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	
STK	9	0	1	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	
		0	1	1	1	1	1	1	0	0	0	0	1	1	1	0	1	1	1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	1	0	1												
STK	10	0	1	1	1	1	1	1	1	0	1	1	1												
		1	1	1	1	0	1	1	1	1	1	1	1												
		1	1	1	1	1	1	1	1	0	0	1	1												
K	11	1	1	1	1	1	1	1	1	1	1	1	1												
		0	1	1	1	1	0	1	1	1	1	1	1												

Second Stage (or P) Hit Masks for Shrinking and Thinning (1)

TABLE 14.3-2. Shrink and Thin Unconditional Mark Patterns $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1$ if hit]^a

Pratt's Book Page 435

					Pat	ttern		
Spur	1	Single 4	-connecti	on				
$0 \ 0 \ M$	M00	0 0 0	0 0 0					
0 M0	0 M0	0 M0	0 MM					
0 0 0	0 0 0	0 M0	0 0 0					
L Cluste	er							
$0 \ 0 \ M$	0 MM	MM0	M0 0	0 0 0	0 0 0	0 0 0	0 0 0	
0 MM	0 M0	0 M0	MM0	MM0	0 M0	0 M0	0 MM	
0 0 0	0 0 0	0 0 0	0 0 0	M0 0	MM0	0 MM	$0 \ 0 \ M$	
4-Conne	ected offse	et						
0 MM	MM0	0 M0	$0 \ 0 \ M$					
MM0	0 MM	0 MM	0 MM					
0 0 0	0 0 0	0 0 M	0 <i>M</i> 0					
Spur cor	ner cluste	er						
0 A M	MB 0	$0 \ 0 \ M$	M00					
0 MB	AM0	AM0	0 MB					
M00	$0 \ 0 \ M$	MB 0	0 A M					(Continued)

Second Stage (or P) Hit Masks for Shrinking and Thinning (2)

MMD

MMD

DDD

Pratt's Book Page 435

```
Tee branch
```

```
DM0
     0 MD
           0 \ 0 \ D
                 D00
                       DMD
                             0 M0
                                  0 M0
                                        DMD
MMM
     MMM
           MMM
                 MMM
                       MM0
                             MM0
                                  0 MM
                                        0 MM
D00
     0 \ 0 \ D
           0 MD
                DM0
                       0 M0
                             DMD
                                  DMD
```

Vee branch

```
MDM MDC
        CBA ADM
DMD
    DMB
        DMD
             BMD
ABC
   MDA
        MDM CDM
```

Diagonal branch

```
DM0
     0 MD
          D \cap M
                M0D
0 MM
     MM0
          MM0
                0 MM
M0D
     D0M0MD
               DM0
```

 $^{{}^{}a}A \cup B \cup C = 1$ $D = 0 \cup 1$ $A \cup B = 1$.

P-Hit Masks for Skeletonizing (1)

TABLE 14.3-3. Skeletonize Unconditional Mark Patterns $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1 \text{ if hit}]^a$

					Pat	tern					
Spur	9										
0	0	0	0	0	0	0	0	M	M	0	0
0	M	0	0	M	0	0	M	0	0	M	0
0	0	M	M	0	0	0	0	0	0	0	0
Singl	le 4-co	nnection									
0	0	0	0	0	0	0	0	0	0	M	0
0	M	0	0	M	M	M	M	0	0	M	0
0	M	0	0	0	0	0	0	0	0	0	0
L cor	mer										
0	M	0	0	M	0	0	0	0	0	0	0
0	M	M	M	M	0	0	M	M	M	M	0
0	0	0	0	0	0	0	M	0	0	M	0
Com	er clus	ter									
M	M	D	D	D	D						
M	M	D	D	M	M						
D	D	D	D	M	M						(Continu
er s											(Contini

P-Hit Masks for Skeletonizing (2)

Tee b	ranch										
D	M	D	D	M	D	D	D	D	D	M	D
M	M	M	M	M	D	M	M	M	D	M	M
D	D	D	D	M	D	D	M	D	D	M	D
Vee t	oranch										
M	D	M	M	D	C	C	B	A	A	D	M
D	M	D	D	M	B	D	M	D	B	M	D
A	B	C	M	D	A	M	D	M	C	D	M
Diago	onal b	ranch									
D	M	0	0	M	D	D	0	M	M	0	D
0	M	M	M	M	0	M	M	0	0	M	M
M	0	D	D	0	M	0	M	D	D	M	0
Ocu-											

 $^{^{}a}A \cup B \cup C = 1$ $D = 0 \cup 1$.

Why Two-Stage Design?

Consider the following two cases:

Iteration #1, M Filters

Iteration #1, P Filters

• No hit P filters - erasure is allowed

• Results:

Iteration #2, M Filters

Iteration #2, P Filters

- No hit P filters in case (1) erasure is allowed
- One hit P filter in case (2) erasure in left M position is inhibited
- Results:

No more change in future iterations

Iterative Application of Shrinking Filters Until Convergence

(a) Four iterations

(b) Thirteen iterations

Iterative Application of Thinning Filters Until Convergence

(a) Four iterations

(b) Eight iterations

Iterative Application of Skeletonizing Filters Until Convergence

Implementation of Morphological Filters

- Check filter type and bond number filter
- Center pixel always takes value "1" (if it is "0", skip)
- Encode the eight neighbors with a binary sequence (bit-string)
- Begin with East, counter-clockwise
 - 11000000, 01100000, 00110000, 00011000
 - 00001100, 00000110, 00000011, 10000001

Image-Set-Based Morphology

Example: Universal Set, Object Set and Complement Set

Object Set A

Complement of Object Set A

Example: Image Reflection

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Image Reflection, Union and Intersection

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Two Image Sets

A1 A2

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Union of Two Image Sets

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Intersection and Differences of Two Image Sets

Green: Intersection of A1 and A2

Red: A2-A1

White: A1-A2

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: XOR

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Object Dilation

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Object Erosion

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Opening

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Closing

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Example: Boundary Extraction

Credit: https://www.cis.rit.edu/class/simg782.old/lec_morphology.html

Morphological Filter Design with Structuring Elements

Object: Set A, Structuring Element: Set B

Example of Structuring Elements

Erosion with Structuring Element

Use the center of SE to scan the object image If hit, include the center pixel in the output image

Dilation with Structuring Element

Use the center of SE to scan the object image Include the union of the two in the output image

Erosion and Dilation with Structuring Element

Erosion Effect

Erosion can split apart joined objects

Dilation Effect

Dilation can repair breaks

Dilation can repair intrusions

Opening

– The opening of image f by structuring element s, denoted $f \circ s$ is simply an erosion followed by a dilation

$$f \circ s = (f \ominus s) \oplus s$$

A disk-shaped SE is used

Examples of Opening (1)

Examples of Opening (2)

Closing

 The closing of image f by structuring element s, denoted f • s is simply a dilation followed by an erosion.

$$f \cdot s = (f \oplus s) \ominus s$$
 A disk-shaped SE is used

Original shape After dilation After erosion (closing)

Examples of Closing (1)

Examples of Closing (2)

Qualitative Description of Opening and Closing

Opening

 Smooth the contour of an object, break narrow isthmuses and eliminate thin protrusions

Closing

 Fuse narrow breaks and long thin gulfs, eliminate small holes and fill gaps in the contours