Pontuações: 3

Dada a função: s: 3
$$f(x)=e^{0.7x}-x^2-0.5$$

- Quantos zeros tem a função? 3
- 2. A maior raiz real positiva encontra-se no intervalo [3,5] ▼ ✓

3. Pretendemos determinar o valor da menor raiz real, com uma casa decimal exacta, usando o método da bissecção sucessiva.

a	b	m	f(a)	f(b)	f(m)
-1.000	0.000	-0.5 ✓	-1,003	0.5	-0.0453119
-0.5 ✓	falta valor	-0.25 ✓	-0.0453119	0,5	0.276957
-0.5 ✓	-0,25	-0.375			

- 4. Os cálculos permitem apresentar os resultados com quantas casas decimais exactas? falta valor
- 5. Qual é o valor do erro absoluto cometido na última iteração? 0,25

Considere o seguinte sistema:

Pontuações: 3

$$\begin{cases} x^2 - y - a = 0 \\ -x + y^2 - b = 0 \end{cases}$$

Usando os seguintes valores para os parâmetros

а	b
1.2	0.5

Calcule du as iterações pelo método de Newton, partindo do ponto dado.

x _n	y _n
1.10000	1.10000
1,82604	1,60729
1,6443	1,4707

5 Foi escrito o seguinte código em c++ para resolver um problema de cálculo de raíz. Pontuações: 1

```
#include <iostream>
#include <cmath>
using namespace std;
double f (double x, double a)
 return pow (x, 3) - a;
double df(double x)
  return 3*x*x;
 int main()
 double indep, x_ant, x, guess;
cout << "a=? "<< "x0=? ";
cin >> indep >> guess;
x = guess;
do {
    x_ant = x;
    x = x_ant - (f(x_ant, indep)/df(x_ant));
    cout << "teraccao: " << i << " -> " << x << endi;
i++;
}while (x - x_ant > 0.001 || x_ant - x > 0.001);
system ("PAUSE");
return 0;
```

Com base neste responda às seguintes perguntas:

Qual é o método implementado? Método da tangente 🔻 🗸

4 Dado o seguinte sistema de equações lineares:

Pontuações: 2

```
\begin{cases} 0.50000x_1 + 0.33333x_2 + 0.25000x_3 + 0.20000x_4 &= 0.00000\\ 0.33333x_1 + 0.25000x_2 + 0.20000x_3 + 0.16667x_4 &= 0.10000\\ 0.25000x_1 + 0.20000x_2 + 0.16667x_3 + 0.14286x_4 &= 0.20000\\ 0.20000x_1 + 0.16667x_2 + 0.14286x_3 + 0.12500x_4 &= 0.00000 \end{cases}
```

e a respectiva solução, calcule os resíduos:

Inc ógnita	Solução	Resíduo
$x_1 =$	308.31575	4e-7
$x_2 =$	-2268.24132	-0.02202
$x_3 =$	4466.38001	0.00631
$x_4 =$	-2573.4	0.00742

 ${f 5}$ Um analista numérico identificou os seguintes intervalos como contendo cada um uma raíz de uma dada função y=f(x).

Pontuações: ²Propõe-se agora aplicar o método de Picard Peano, usando a expressão recursiva

$$x_{n+1} \leftarrow \cot(x_n) \sin(3x_n) - 4.9$$

Qual ou quais dos intervalos identificados adoptaria como sendo o melhor para o estabelecimento de um guess para arranque do processo i terativo?

Escolha pelo menos uma resposta	V	1. [4.5,5.1] ✓
		2. Não sei, não respondo. 🗶
		3.[3.8,4.0] x
	\checkmark	4. [2.6 , 2.8] X
		5. Nenhum dos intervalos apresentados 🗶
		6. [6.4, 7.3] x
		7. [5.4, 5.6] x

Basta verificar em que intervalos as condições de convergência do método se verificam: $|g'(x)| \leq 1$