Database Internals

A Deep Dive into How Distributed Data Systems Work

Alex Petrov

Database Internals

by Alex Petrov

Copyright © 2019 Oleksandr Petrov. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mike Loukides
Development Editor: Michele Cronin
Production Editor: Christopher Faucher

Copyeditor: Kim Cofer Proofreader: Sonia Saruba

October 2019: First Edition

Revision History for the First Edition 2019-09-12: First Release

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

See http://oreilly.com/catalog/errata.csp?isbn=9781492040347 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. *Database Internals*, the cover image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher's views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

Table of Contents

Prefac	Preface xiii		
Part I. Storage Engines		—	
1. li	ntroduction and Overview	7	
Ι	DBMS Architecture	8	
N	Memory- Versus Disk-Based DBMS	10	
	Durability in Memory-Based Stores	11	
(Column- Versus Row-Oriented DBMS	12	
	Row-Oriented Data Layout	13	
	Column-Oriented Data Layout	14	
	Distinctions and Optimizations	15	
	Wide Column Stores	15	
Ι	Data Files and Index Files	17	
	Data Files	18	
	Index Files	18	
	Primary Index as an Indirection	20	
	Buffering, Immutability, and Ordering	21	
S	Summary	22	
2. B	3-Tree Basics	25	
F	Binary Search Trees	26	
	Tree Balancing	27	
	Trees for Disk-Based Storage	28	
Ι	Disk-Based Structures	29	
	Hard Disk Drives	30	
	Solid State Drives	30	

	On-Disk Structures	32
	Ubiquitous B-Trees	33
	B-Tree Hierarchy	35
	Separator Keys	36
	B-Tree Lookup Complexity	37
	B-Tree Lookup Algorithm	38
	Counting Keys	38
	B-Tree Node Splits	39
	B-Tree Node Merges	41
	Summary	42
3.	File Formats	45
	Motivation	46
	Binary Encoding	47
	Primitive Types	47
	Strings and Variable-Size Data	49
	Bit-Packed Data: Booleans, Enums, and Flags	49
	General Principles	50
	Page Structure	52
	Slotted Pages	52
	Cell Layout	54
	Combining Cells into Slotted Pages	56
	Managing Variable-Size Data	57
	Versioning	58
	Checksumming	59
	Summary	60
4.	Implementing B-Trees	61
	Page Header	61
	Magic Numbers	62
	Sibling Links	62
	Rightmost Pointers	63
	Node High Keys	64
	Overflow Pages	65
	Binary Search	67
	Binary Search with Indirection Pointers	67
	Propagating Splits and Merges	68
	Breadcrumbs	69
	Rebalancing	70
	Right-Only Appends	71
	Bulk Loading	72
	Compression	73

	Vacuum and Maintenance	74
	Fragmentation Caused by Updates and Deletes	75
	Page Defragmentation	76
	Summary	76
5.	Transaction Processing and Recovery	. 79
	Buffer Management	81
	Caching Semantics	83
	Cache Eviction	83
	Locking Pages in Cache	84
	Page Replacement	85
	Recovery	88
	Log Semantics	90
	Operation Versus Data Log	91
	Steal and Force Policies	91
	ARIES	92
	Concurrency Control	93
	Serializability	94
	Transaction Isolation	95
	Read and Write Anomalies	95
	Isolation Levels	96
	Optimistic Concurrency Control	98
	Multiversion Concurrency Control	99
	Pessimistic Concurrency Control	99
	Lock-Based Concurrency Control	100
	Summary	108
6.	B-Tree Variants	111
	Copy-on-Write	112
	Implementing Copy-on-Write: LMDB	113
	Abstracting Node Updates	113
	Lazy B-Trees	114
	WiredTiger	114
	Lazy-Adaptive Tree	116
	FD-Trees	117
	Fractional Cascading	118
	Logarithmic Runs	119
	Bw-Trees	120
	Update Chains	121
	Taming Concurrency with Compare-and-Swap	121
	Structural Modification Operations	122
	Consolidation and Garbage Collection	123

	Cache-Oblivious B-Trees	124
	van Emde Boas Layout	125
	Summary	127
7.	Log-Structured Storage	129
	LSM Trees	130
	LSM Tree Structure	132
	Updates and Deletes	136
	LSM Tree Lookups	137
	Merge-Iteration	137
	Reconciliation	140
	Maintenance in LSM Trees	141
	Read, Write, and Space Amplification	143
	RUM Conjecture	144
	Implementation Details	145
	Sorted String Tables	145
	Bloom Filters	146
	Skiplist	148
	Disk Access	150
	Compression	151
	Unordered LSM Storage	152
	Bitcask	153
	WiscKey	154
	Concurrency in LSM Trees	155
	Log Stacking	157
	Flash Translation Layer	157
	Filesystem Logging	159
	LLAMA and Mindful Stacking	160
	Open-Channel SSDs	161
	Summary	162
Part	l Conclusion	165
Par	t II. Distributed Systems	
8.	Introduction and Overview.	171
	Concurrent Execution	171
	Shared State in a Distributed System	173
	Fallacies of Distributed Computing	174
	Processing	175
	Clocks and Time	176
		_, 0

	State Consistency	177
	Local and Remote Execution	178
	Need to Handle Failures	178
	Network Partitions and Partial Failures	179
	Cascading Failures	180
	Distributed Systems Abstractions	181
	Links	182
	Two Generals' Problem	187
	FLP Impossibility	189
	System Synchrony	190
	Failure Models	191
	Crash Faults	191
	Omission Faults	192
	Arbitrary Faults	193
	Handling Failures	193
	Summary	193
9.	Failure Detection	195
	Heartbeats and Pings	196
	Timeout-Free Failure Detector	197
	Outsourced Heartbeats	198
	Phi-Accural Failure Detector	199
	Gossip and Failure Detection	200
	Reversing Failure Detection Problem Statement	201
	Summary	202
10.	Leader Election.	205
	Bully Algorithm	207
	Next-In-Line Failover	208
	Candidate/Ordinary Optimization	209
	Invitation Algorithm	210
	Ring Algorithm	211
	Summary	212
11.	Replication and Consistency	215
	Achieving Availability	216
	Infamous CAP	216
	Use CAP Carefully	217
	Harvest and Yield	218
	Shared Memory	219
	Ordering	221
	Consistency Models	222

	Strict Consistency	223
	Linearizability	223
	Sequential Consistency	227
	Causal Consistency	229
	Session Models	233
	Eventual Consistency	234
	Tunable Consistency	235
	Witness Replicas	236
	Strong Eventual Consistency and CRDTs	238
	Summary	240
12.	Anti-Entropy and Dissemination	243
	Read Repair	245
	Digest Reads	246
	Hinted Handoff	246
	Merkle Trees	247
	Bitmap Version Vectors	248
	Gossip Dissemination	250
	Gossip Mechanics	251
	Overlay Networks	251
	Hybrid Gossip	253
	Partial Views	254
	Summary	255
13.	Distributed Transactions	257
	Making Operations Appear Atomic	258
	Two-Phase Commit	259
	Cohort Failures in 2PC	261
	Coordinator Failures in 2PC	262
	Three-Phase Commit	264
	Coordinator Failures in 3PC	265
	Distributed Transactions with Calvin	266
	Distributed Transactions with Spanner	268
	Database Partitioning	270
	Consistent Hashing	271
	Distributed Transactions with Percolator	272
	Coordination Avoidance	275
	Summary	277
14.	Consensus	279
	Broadcast	280
	Atomic Broadcast	281

Virtual Synchrony	282
Zookeeper Atomic Broadcast (ZAB)	283
Paxos	285
Paxos Algorithm	286
Quorums in Paxos	287
Failure Scenarios	288
Multi-Paxos	291
Fast Paxos	292
Egalitarian Paxos	293
Flexible Paxos	296
Generalized Solution to Consensus	297
Raft	300
Leader Role in Raft	302
Failure Scenarios	304
Byzantine Consensus	305
PBFT Algorithm	306
Recovery and Checkpointing	309
Summary	309
Part II Conclusion	313
A. Bibliography	317
ndex	337