Patent claims

1. A compound of formula

$$\begin{array}{c} R_{5} \\ R_{6} \end{array} N - A_{1} + \begin{array}{c} (R_{4})_{k} \\ D \end{array} - A_{2} - T - A_{3} - W - A_{4} - Q + \begin{array}{c} R_{2} \\ R_{2} \end{array} \qquad (I),$$

wherein

 A_1 , A_2 and A_3 are each independently of the others a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

 A_4 is a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

D is CH or N;

W is O, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)- $\stackrel{/}{N}$ R₈- or -NR₈-C(=O)-;

T is a bond, O, NH, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₈- or -NR₈-C(=O)-;

Q is O, NR₇, S, SO or SO₂;

Y is O, NR7, S, SO or SO2;

X₁ and X₂ are each independently of the other fluorine, chlorine or bromine;

 R_1 , R_2 and R_3 are each independently of the others H, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 -alkoxycarbonyl or C_2 - C_6 haloalkenyloxy; the substituents R_3 being independent of one another when m is 2;

 R_4 is H, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkoxycarbonyl or C_2 - C_6 haloalkenyloxy; the substituents R_4 being independent of one another when k is greater than 1;

 R_5 is H, CN, OH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, $-C(=O)R_9$, $-C(=S)R_9$, phenyl, benzyl; or phenyl, phenylcarbonyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, cyano and nitro;

 R_6 is H, CN, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, $-C(=O)R_9$, $-C(=S)R_9$, phenyl, benzyl; or phenyl, phenylcarbonyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, cyano and nitro; or

 R_5 and R_6 together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH_2 group may have been replaced by O, S or NR_{10} , and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl; or

 R_6 is -C(=O)R₉ or -C(=S)R₉, and R₅ and R₉ together form a three- to eight-membered, straight-chain or branched alkylene bridge wherein a CH₂ group may have been replaced by O, S or NR₁₀, and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl and C₁-C₃haloalkyl; or

 R_5 and R_6 are each independently of the other -C(=O)R $_9$ or -C(=S)R $_9$, and the two R $_9$ together form a two- to eight-membered, straight-chain or branched alkylene bridge wherein a CH $_2$ group may have been replaced by O, S or NR $_{10}$, and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C $_3$ -C $_8$ -cycloalkyl, C $_3$ -C $_8$ cycloalkyl-C $_1$ -C $_8$ alkyl and C $_1$ -C $_3$ haloalkyl;

 R_7 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 -alkylcarbonyl or C_3 - C_8 cycloalkyl;

 R_8 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 -alkylcarbonyl or C_3 - C_8 cycloalkyl;

 R_9 is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by

from one to three identical or different substituents selected from halogen, CN, nitro, C_1 - C_6 -alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, C_2 - C_6 alkoxy, C_1 - C_6 alkoxy,

 R_{10} is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 -alkylcarbonyl or C_3 - C_8 cycloalkyl;

k, when D is nitrogen, is 1, 2 or 3; or, when D is CH, is 1, 2, 3 or 4; and m is 1 or 2;

and, where applicable, a possible E/Z isomer, E/Z isomeric mixture and/or tautomer thereof, in each case in free form or in salt form.

- 2. A compound according to claim 1 of formula (I) in free form.
- 3. A compound according to either claim 1 or claim 2 of formula (I) wherein X_1 and X_2 are chlorine or bromine.
- 4. A pesticidal composition which comprises as active ingredient at least one compound according to claim 1 of formula (I), in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- A process for the preparation of a composition as described in claim 4 which comprises intimately mixing the active ingredient with the adjuvant(s).
- 6. A method of controlling pests which comprises applying a pesticidal composition as described in claim 4 to the pests or to the locus thereof.
- 7. Use of a compound according to any one of claims 1 to 3 of formula (I), in free form or, where applicable, in agrochemically acceptable salt form, in the preparation of a composition as described in claim 4.