

134518 8 de março de 2016

Grupo de Estudos: Física de Aceleradores

Isabella Stevani

Laboratótrio Nacional de Luz Síncrotron, Campinas, Brasil

Seguindo o livro *The physics of electron storage rings: an introdution* de Matthew Sands [1], este grupo de estudos tem por objetivo estudar e discutir o funcionamento de um acelerador de partículas, desde os elementos que o compõe como os fenômenos físicos que modelam sua dinâmica. Este documento traz anotações e deduções úteis de forma a facilitar o completo entendimento deste assunto.

Sumário

1	Introdução		3
	1.1	Mecanismos básicos	3
	1.2	Efeitos coletivos	4
2	Oscilações Betatron		
	2.1	Sistema de coordenadas	6
	2.2	Campo guia	6
	2.3	Equações de movimento	11
	2.4	Separação do movimento radial	16
	2.5	Trajetórias betatron	18
	2.6	Oscilações betatron pseudo-harmônicas	24
	2.7	Sintonias	32
	2.8	Descrição aproximada das oscilações betatron	35
	2.9	Natureza da função beta	38
	2.10	Perturbação de órbita fechada	38
		Erros de gradiente de campo	38
3	Oscilações em Energia		
	3.1	Órbitas fechadas	39
	3.2	Tamanho da órbita: fator de dilatação	39
4	\mathbf{Am}	ortecimento por Radiação	40
5	Exc	itação por Radiação	41

1 Introdução

1.1 Mecanismos básicos

Para facilitar o entendimento dos processos descritos a seguir, a Figura 1 representa a estrutura física de um anel de armazenamento.

Figura 1: Diagrama esquemático de um anel de armazenamento de elétrons. Retirado de [1].

Um feixe de elétrons é injetado em uma câmara circular em vácuo. Campos magnetostáticos guiam as partículas pela câmara de vácuo. Tais campos são chamados de <u>campos guia</u>. A interação eletromagnética entre o campo guia e os elétrons causa uma aceleração centrípeta do feixe, curvando assim sua trajetória e gerando um <u>órbita fechada</u> desejada e desenhada a partir da escolha criteriosa do campo.

Esse campo guia, além de fechar a trajetória em uma órbita, tem propriedades focalizadoras que fazem com que cada elétron execute oscilações pseudo-harmônicas na transversal, as quais são chamadas de oscilações betatron.

A cada volta, o elétron perde uma pequena parte da sua energia em forma de radiação síncrotron. Esta energia perdida é reposta através de campos elétricos oscilantes no tempo gerados na cavidade de rádio frequência (RF) e que aceleram longitudinalmente o feixe. Essas pequenas variações de perda e ganho da energia dos elétrons causam também oscilações no comprimento de órbita, no período de revolução, e ainda, no instante de chegada τ dos elétrons na cavidade de RF. As oscilações no plano energia- τ são chamadas de oscilações síncrotron (ou oscilações

de fase). Essas oscilações longitudinais dos elétrons são medidas em relação às partículas síncronas, que são definidas como aqueles elétrons idealizados cujas energias, períodos de revolução e fase de chegada à cavidade de RF têm valores nominais.

Existem fases ideais de chegada à cavidade de RF em que o campo elétrico da cavidade é tal que a energia reposta por ele coincide com a energia média perdida pelos elétrons em cada volta. Cada uma destas fases ideais é chamada de <u>fase síncrona</u>. O <u>número harmônico</u> de um anel é definido como sendo a razão inteira entre a frequência de RF e a frequência de revolução dos elétrons. O número harmônico nos dá então o número de fases síncronas que podem ser acomodados no anel. Ao redor de cada uma destas fases síncronas, que são pontos fixos do espaço de fase energia-tau nos quais se situam as partícula síncronas, pode-se ter uma distribuição de elétrons descrevendo oscilações síncrotron. Estas distribuições de elétrons em torno de das fases síncronas são chamadas de pacotes ou <u>bunches</u>. Tipicamente o número harmônico dos anéis assume valor alto, permitindo assim um grande número de bunches e, em consequência, uma corrente de feixe circulante mais intensa.

A perda de energia por radiação síncrotron junto com a compensação gerada pela cavidade de RF causa um lento amortecimento da radiação de todas as amplitudes de oscilação, fazendo com que a trajetória de cada elétron tenda à trajetória do elétron de referência, o qual possui velocidade constante ao longo da órbita ideal.

Amortecimento da radiação não conserva o espaço de fase, então pode-se injetar vários bunches no mesmo anel. O amortecimento de todas as amplitudes de oscilação é efetivamente preso devido à excitação contínua das oscilações por um "ruído" na energia do elétron, que vem do fato da radiação síncrona ser emitida em fótons de energia discreta. Este fenômeno é chamado de flutuação quântica da perda de energia. Em condições estacionárias, um equilíbrio é alcançado entre a excitação quântica e o amortecimento da radiação, levando a uma distribuição estatística estacionária das amplitudes e fases de oscilação dos elétrons em um bunch. O bunch, então, toma forma de uma tira elástica viajante, a qual tem tamanho e forma estacionários, com uma distribuição Gaussiana das amplitudes em cada coordenada transversal e longitudinal (Figura 2).

Para cada coordenada do elétron, existe uma amplitude de oscilação máxima chamada de abertura dinâmica, a qual o elétron não fica mais preso dentro do bunch. A abertura dinâmica para cada coordenada é definida por um obstáculo físico (tamanho da câmara de vácuo, por exemplo) ou por efeitos não-lineares nas forças focalizadoras, gerando trajetórias não-limitadas.

1.2 Efeitos coletivos

Quando há um número suficientemente grande de elétrons em um bunch, as interações entre os elétrons são relevantes (seja entre os elétrons ou entre os

Figura 2: Bunches circulando em um anel de armazenamento. Retirado de [1].

bunches).

- Touschek-effect. Dois elétrons oscilando em um bunch podem transferir um pouco da sua energia de oscilação de uma coordenada transversal para uma longitudinal se sofrerem espalhamento de Coulomb. As novas amplitudes podem estar fora da aceitância em energia, ou aumentar o tamanho do bunch. Esse efeito é relevante em baixas energias (menor que 1 GeV).
- Oscilações coerentes. Cada elétron no feixe produz campos eletromagnéticos na câmara de vácuo que influenciam o movimento dos outros elétrons. Estas interações coletivas podem gerar oscilações coerentes instáveis, em que todos os elétrons de um bunch oscilam num modo coletivo em que a amplitude aumenta exponencialmente com o tempo. Estas oscilações coerentes envolvem tanto a dinâmica transversal quanto a longitudinal, podendo aumentar o tamanho do bunch ou levar à perda de elétrons.

Interferência construtiva dos campos de radiação dos elétrons em um *bunch* talvez gere radiação síncrona coerente, que pode aumentar a perda de energia de cada elétron individualmente. Este efeito não é considerado significante nos anéis de armazenamento mais novos.

Para conseguir a alta densidade de corrente desejada nos anéis de armazenamento, as instabilidades coerentes devem ser suprimidas ou controladas. Os outros efeitos coletivos são combinados com os efeitos individuais para determinar a dimensão do bunch.

2 Oscilações Betatron

2.1 Sistema de coordenadas

É conveniente utilizar um sistema de coordenadas cilíndrico para descrever a trajetória de um elétron dentro do anel de armazenamento (Figura 3), uma vez que é desejado que seu movimento seja circular. Sendo assim, definem-se as coordenadas

- s Coordenada longitudinal, representa a distância entre um ponto de referência na órbita ideal e o ponto mais próximo do elétron nesta mesma órbita.
- x e z Coordenadas transversais, representam os deslocamentos horizontal e vertical com relação à órbita ideal, respectivamente.

Figura 3: Coordenadas para descrever as trajetórias. Retirado de [1].

2.2 Campo guia

Pelo principio da inércia de Newton, um corpo tende a permanecer em movimento retilínio uniforme se não há forças que o obriguem a mudar sua trajetória. Logo, para que o elétron tenha uma órbita circular, é necessário aplicar uma força que mude sua trajetória da forma desejada.

Pela força de Lorentz,

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \tag{2.1}$$

onde q é a carga da partícula em movimento, \vec{E} é o vetor de campo elétrico, \vec{v} é o vetor de velocidade da partícula e \vec{B} é o vetor de campo magnético.

A contribuição referente à força elétrica $(q\vec{E})$ é paralela ao campo elétrico, enquanto a contribuição referente à força magnética $(q(\vec{v} \times \vec{B}))$ é perpendicular ao campo magnético e à velocidade. Devido a este fato, a força magnética não realiza trabalho, uma vez que é perpendicular ao deslocamento da partícula. Logo, a força magnética altera a direção do vetor velocidade – e, por consequência, do movimento da partícula – sem alterar o seu módulo. Apenas a força elétrica pode realizar trabalho.

Desta forma, a fim de desviar a partícula da sua trajetória, aplica-se um campo magnético \vec{B} nos pontos onde ela deve fazer alguma curva, o qual é chamado de campo guia. Com E=0,

$$\vec{F} = q\vec{v} \times \vec{B} \tag{2.2}$$

Espera-se que a órbita ideal ocorra no plano horizontal (z=0) de forma que o campo magnético deve ser puramente vertical em toda a órbita do anel. Considerando o campo magnético simétrico com relação ao plano da órbita ideal e fazendo uma aproximação linear, pode-se escrever a equação do campo magnético através da expansão de Taylor:

$$B_z(s, x, z) = B_0(s) + \left(\frac{\partial B_z}{\partial x}\right)_{0s} x \tag{2.3}$$

$$B_x(s, x, z) = \left(\frac{\partial B_x}{\partial z}\right)_{0s} z \tag{2.4}$$

Pela simetria imposta, aplicando as leis de Maxwell,

$$\frac{\partial B_z}{\partial x} = \frac{\partial B_x}{\partial z} \tag{2.5}$$

Desta forma, as equações (2.3) e (2.4) podem ser reescritas como

$$B_z(s, x, z) = B_0(s) + \left(\frac{\partial B}{\partial x}\right)_{0s} x \tag{2.6}$$

$$B_x(s, x, z) = \left(\frac{\partial B}{\partial x}\right)_{0s} z \tag{2.7}$$

Como o campo é simétrico em relação ao plano da órbita ideal, as variáveis B_0 e $\frac{\partial B}{\partial x}$ possuem apenas componentes verticais, então apenas suas magnitudes são necessárias para descrevê-las completamente e os índices s e z podem ser suprimidos.

Anéis de armazenamento são modelados para operar em uma faixa de valores de energia dos elétrons. Isto é obtido arranjando de forma que os campos magnéticos possam ser variados juntos – sendo parametrizados proporcionalmente à energia de operação desejada. Claramente, se o campo magnético na órbita ideal

é mudado em todo o anel pelo mesmo fator, a órbita ideal será, novamente, uma trajetória possível de um elétron cujo momento é mudado pelo mesmo fator. Variar todos os campos juntos altera muito pouco a energia associada com a órbita ideal. Por essas razões, é conveniente especificar as propriedades do campo guia de uma maneira que seja independente de qualquer energia de operação escolhida, o que é facilmente feito dividindo todos os campos por um fator proporcional à energia associada do elétron, o qual é chamado de rigidez magnética. Desta forma, as propriedades lineares do campo guia podem ser definidas pelas funções

$$G(s) = \frac{ecB_0(s)}{E_0} \tag{2.8}$$

$$K_1(s) = \frac{ec}{E_0} \left(\frac{\partial B}{\partial x} \right)_{0s} \tag{2.9}$$

onde E_0 é a energia nominal, c é a velocidade da luz e e é a carga do elétron. Note que estas funções tem um significado físico bem simples. Neste caso, apenas elétrons ultra-relativísticos são considerados, então sua energia é dada por E = cp. Desta forma, G(s) é apenas o inverso do raio de curvatura $\varrho(s)$ dos elétrons em x = 0 e z = 0 com energia nominal, ou seja,

$$G(s) = \frac{1}{\varrho(s)} \tag{2.10}$$

Demonstração. Como a partícula está rotacionando sobre ação da força de Lorentz, esta força deve ser equivalente a sua força centrípeta. Logo,

$$\frac{mv^2}{\varrho(s)} = q\vec{v} \times \vec{B}$$
$$= evB_0(s)$$

Como o elétron é ultra-relativístico (com velocidade próxima/igual à velocidade da luz), a energia da partícula é dada por

$$E_0^2 = (m_0 c^2)^2 + p^2 c^2$$

onde m_0 é a massa de repouso e p o momento da partícula. Pelo mesmo argumento anterior, $(m_0c^2)^2 \ll c^2p^2$. Desta forma, pode desprezar o termo $(m_0c^2)^2$ e a energia da partícula é dada por

$$E_0 = pc$$
$$= \gamma m_0 c^2$$
$$= mc^2$$

Substituindo,

$$\frac{mv^2}{\varrho(s)} = ecB_0(s)$$

$$\frac{E_0}{\varrho(s)} = ecB_0(s)$$

$$\therefore \frac{1}{\varrho(s)} = \frac{ecB_0(s)}{E_0} = G(s)$$

Desta forma, reescrevendo a equação do campo magnético em função de G(s),

$$B_z(s, x, z) = B_0(s) + \frac{\partial B}{\partial x}x$$
$$= \frac{E_0}{ec}G(s) + \frac{\partial B}{\partial x}x$$

Definindo a função $K_1(s)$ como

$$K_1(s) = \frac{ec}{E_0} \frac{\partial B}{\partial x}$$

tem-se que

$$B_z(s, x, z) = \frac{E_0}{ec}G(s) + \frac{\partial B}{\partial x}x$$
$$= \frac{E_0}{ec}G(s) + \frac{E_0}{ec}K_1(s)x$$
$$= \frac{E_0}{ec}[G(s) + K_1(s)x]$$

Reescrevendo $B_x(s,x,z)$ da mesma forma, as equações do campo magnético são

$$B_z(s, x, z) = \frac{E_0}{ec} [G(s) + K_1(s)x]$$
$$B_x(s, x, z) = \frac{E_0}{ec} K_1(s)z$$

A constante de proporcionalidade $\frac{E_0}{ec}$ é a rigidez magnética do anel de armazenamento. Ela normaliza as equações do campo magnético de forma que este dependa apenas das propriedades da ótica do anel.

Devido à relação entre G(s) e $\varrho(s)$, G(s) é chamada de função de curvatura. A função $K_1(s)$ é a taxa de variação do raio inverso com o deslocamento radial.

As funções G(s) e $K_1(s)$ podem ser arbitrárias, porém devem satisfazer alguns requisitos importantes. Primeiro, G(s) precisa ser tal que esta defina uma órbita fechada (pode-se pensar que G(s) define a órbita ideal, ou que alguma órbita

fechada arbitrária define G(s) de forma única). A variação $d\theta_0$ na direção da tangente à órbita ideal em um intervalo ds é

$$-d\theta_0 = \frac{ds}{\varrho(s)} = G(s)ds \tag{2.11}$$

O ângulo percorrido em uma revolução precisa ser igual a 2π , então G(s) deve satisfazer

$$\int_0^L G(s)ds = 2\pi \tag{2.12}$$

Segundo, tanto G(s) quanto $K_1(s)$ são, necessariamente, funções periódicas de s, devido ao fato de que a coordenada longitudinal s é fisicamente cíclica – retornando ao mesmo ponto da órbita após uma revolução. Dito isso, G(s) e $K_1(s)$ também devem satisfazer

$$\begin{cases}
G(s+L) = G(s) \\
K_1(s+L) = K_1(s)
\end{cases}$$
(2.13)

onde L é o comprimento da órbita. Execeto por estas condições, G(s) e $K_1(s)$ podem ter mais ou menos variações arbitrárias com s.

Apesar das funções do campo guia G e K_1 serem, a princípio, bem gerais, geralmente é conveniente simplificar o design ou a operação de um anel de armazenamento impondo certas restrições nestes aspectos. Por exemplo, a maioria dos anéis de armazenamento são desenhados para ter o mesmo raio de curvatura, diga-se ϱ_0 , em todos os ímãs de curvatura — e sem nenhuma curvatura entre um ímã e outro, ou seja, apenas trechos retos. Este tipo de campo guia é chamado isomagnético. O intuito desta configuração é que o campo magnético sobre a órbita ideal tenha o mesmo valor em todo lugar, exceto onde este é nulo. Então G(s) é uma função dicotômica:

$$G(s) = \begin{cases} G_0 = \frac{1}{\varrho_0}, & \text{no im } \tilde{a} \\ 0, & \text{em todo o resto} \end{cases}$$
 (2.14)

Um campo guia real não pode, claro, ser idealmente isomagnético, já que é fisicamente impossível ter um campo magnético descontínuo. Sempre há uma zona de transição nas bordas do ímã onde o campo vai de zero ao seu valor nominal. A aproximação isomagnética ideal é, entretanto, um tanto quanto adequada no geral.

Apesar de aceleradores e anéis de armazenamento comumente serem construídos com ímãs de curvatura com gradientes radiais de campo, é comum desenvolver campos guia de função separável, ou seja, campos magnéticos em que as funções de focalização e curvatura são atribuídas a elementos magnéticos diferentes. Isto é, o campo guia consiste numa sequência de dipolos (sem gradiente

de campo) e quadrupolos (sem campo na órbita ideal). Pensando nesta configuração, define-se um campo guia de função separável onde as funções G(s) e $K_1(s)$ devem satisfazer a condição

$$G(s)K_1(s) = 0 (2.15)$$

Um pouco de atenção para este fato. Às vezes é conveniente projetar os ímãs de curvatura com faces retangulares. Com este tipo de ímã, a órbita ideal deve entrar ou sair do ímã com um ângulo diferente de 90° em relação à borda do mesmo (Figura 4). Mesmo que o ímã seja plano (sem gradiente radial no ímã), irão existir gradientes radiais nas bordas, onde o campo não é nulo. A equação (2.15) não é satisfeita nas bordas, e um campo guia construído com estes ímãs retangulares – junto com os quadrupolos – não irá satisfazer a definição de função separável, mesmo que ele seja referenciado como tal às vezes. Estes campos ainda podem ser, entretanto, isomagnéticos.

Figura 4: Campo guia com ímã retangular. Retirado de [1].

2.3 Equações de movimento

As equações de movimento descrevem a trajetória de um elétron se movendo próximo da órbita ideal, com uma energia próxima, mas não necessariamente igual, à energia nominal E_0 . O desvio de energia é definido como

$$\epsilon = E - E_0 \tag{2.16}$$

onde E é a energia do elétron.

Para manter a aproximação linear, são considerados apenas pequenas quantidades de x, z e ϵ . Melhor do que tomar o tempo como variável independente, é mais conveniente adotar a coordenada longitudinal s. Assim, derivadas com relação a s serão indicadas daqui pra frente pela notação ('). Por exemplo, $x' = \frac{dx}{ds}$.

Começando a análise pelo movimento radial. Considere um elétron em x movendo-se com inclinação x' (Figura 5). A inclinação é o ângulo entre a direção do movimento do elétron e a tangente à órbita ideal. x' é o ângulo entre a trajetória e a tangente à órbita ideal. Suponha um ângulo θ_0 entre a tangente e uma direção de referência arbitrária e um ângulo θ entre a trajetória e a mesma direção de referência. Logo, $x' = \theta - \theta_0$ e

$$x'' = \frac{d(\theta - \theta_0)}{ds} \tag{2.17}$$

Figura 5: Trajetória de um elétron próxima à órbita ideal. Retirado de [1].

A derivada de θ_0 é, como já foi visto, $\frac{-1}{\varrho_s} = G(s)$ ($\varrho_s = \varrho(s)$). Mas o que é $\frac{d\theta}{ds}$? O rario de curvatura da trajetória é

$$\varrho = \frac{E}{ecB} \tag{2.18}$$

e, em um elemento de caminho $d\ell$ da trajetória, a variação do ângulo é

$$d\theta = -\frac{d\ell}{\rho} = -\frac{ecB}{E}d\ell \tag{2.19}$$

Note que, enquanto o ângulo x' é pequeno – e pode-se sempre assumir isto desde que apenas termos de primeira ordem sejam considerados, que é o caso – um elemento de caminho $d\ell$ da trajetória em x é relacionado com a correspondente variação em s por

$$d\ell = \frac{\varrho_s = x}{\varrho_s} ds = \left(1 + \frac{x}{\varrho_s}\right) ds = (1 + G(s))ds \tag{2.20}$$

Agora, B pode ser descrito por

$$B = B_0 + \frac{\partial B}{\partial x}x = \frac{E_0}{ec}(G + K_1 x)$$
(2.21)

Substituindo as equações (2.20) e (2.21) na equação (2.19) juantamente com $E_0 + \epsilon$ para E – e mantendo apenas termos de primeira ordem – tem-se que

$$d\theta = \left\{ -G - (G^2 + K_1)x + G\frac{\epsilon}{E_0} \right\} ds \tag{2.22}$$

e, portanto,

$$x'' = -(G^2 + K_1)x + G\frac{\epsilon}{E_0}$$
 (2.23)

Demonstração. Pela equação (2.19),

$$d\theta = -\frac{ecB}{E}d\ell$$

$$= -\frac{ecB}{E}(1 + Gx)ds$$

$$= -\frac{ec}{E}\left[\frac{E_0}{ec}(G + K_1x)\right](1 + Gx)ds$$

$$= -\frac{E_0}{E_0 + \epsilon}(G + K_1x)(!_Gx)ds$$

$$= -\frac{E_0}{E_0 + \epsilon}(G + K_1x + G^2x + K_1Gx^2)ds$$

$$= -\frac{E_0}{E_0 + \epsilon}(G + (G^2 + K_1)x + K_1Gx^2)ds$$

Mantendo apenas termos de primeira ordem para continuar com a aproximação linear,

$$d\theta = -\frac{E_0}{E_0 + \epsilon} (G + (G^2 + K_1)x) ds$$

$$= \frac{E_0}{E_0 + \epsilon} (-G - (G^2 + K_1)x) ds$$

$$= \frac{1}{1 + \epsilon/E_0} (-G - (G^2 + K_1)x) ds$$

Como ϵ/E_0 é bem pequeno, pode-se considerar que o termo $\frac{1}{1+\epsilon/E_0}$ é a soma de uma série geométrica. Logo, pode-se expandir este termo em um somatório:

$$d\theta = \left(1 - \frac{\epsilon}{E_0} + \frac{\epsilon^2}{E_0^2} + ...\right) (-G - (G^2 + K_1)x)ds$$

Novamente, mantendo apenas termos de primeira ordem,

$$d\theta = \left(1 - \frac{\epsilon}{E_0}\right) \left(-G - (G^2 + K_1)x\right) ds$$
$$= \left(-G - (G^2 + K_1)x\right) ds + \left(G\left(\frac{\epsilon}{E_0}\right) + (G^2 + K_1)x\left(\frac{\epsilon}{E_0}\right)\right) ds$$

Aplicando novamente o argumento acima,

$$d\theta = \left\{ -G - (G^2 + K_1)x + G\frac{\epsilon}{E_0} \right\} ds$$

Agora, pela equação (2.17),

$$x'' = \frac{d(\theta - \theta_0)}{ds}$$

$$= \frac{\left\{ -G - (G^2 + K_1)x + G\frac{\epsilon}{E_0} \right\} ds - (-G)ds}{ds}$$

$$= -(G^2 + K_1)x + G\frac{\epsilon}{E_0}$$

A equação correspondente para o movimento vertical é

$$z'' = K_1 z \tag{2.24}$$

Demonstração. Para z'', pela força de Lorentz,

$$d\theta = -\frac{d\ell}{\varrho} = +\frac{ecB}{E}d\ell$$

$$= \frac{ecB}{E}d\ell$$

$$= \frac{ecB}{E}(1 + Gx)ds$$

$$= K_1z(1 + Gx)ds$$

$$= (K_1z + GK_1xz)ds$$

Descartando o termo de segunda ordem,

$$d\theta = K_1 z ds$$

Agora, pela equação (2.17),

$$x'' = \frac{d(\theta - \theta_0)}{ds}$$
$$= \frac{K_1 z \, ds}{ds}$$
$$= K_1 z$$

lembrando que $\frac{d\theta_0}{ds} = 0$ porque não há componente vertical nesta variação.

Definindo as funções focalizadoras K_x e K_z como

$$K_x(s) = -G^2(s) - K_1(s) (2.25)$$

$$K_z(s) = +K_1(s)$$
 (2.26)

tem-se que x'' e z'' podem ser descritos como

$$x'' = K_x(s)x + G(s)\frac{\epsilon}{E_0}$$
(2.27)

$$z'' = K_z(s)z \tag{2.28}$$

O termo correspondente à G^2 está "faltando" de K_z devido à consideração de que a órbita ideal está no plano, ou seja, não possui componente vertical. Mais especificamente, G^2 é um termo de força centrífuga, e um termo correspondente apareceria no movimento vertical se a órbita tivesse picos e vales. Anéis de armazenamento possuem, em geral, uma forte focalização. Neste caso, G^2 é bem menor que K_1 , então K_x e K_z são aproximadamente iguais e possuem sinais opostos. Fisicamente, esta diferença de sinal significa que um elemento focalizador que focaliza em x automaticamente desfocaliza em z, e vice-versa.

A equação de movimento em z parece a equação de uma oscilação clássica (força proporcional ao desvio), com um coeficiente de força restauradora variável – a função $K_z(s)$. A equação em x é similar, exceto pela adição de um termo variável proporcional ao desvio de energia ϵ . Nos campos guia que podem ser efetivamente utilizados, as soluções destas equações são, na verdade, oscilatórias, e descrevem oscilações laterais – incluindo as chamadas oscilações betatron – na trajetória do elétron. Estas oscilações são resultado das propriedades focalizadoras do campo guia, as quais caracterizam as funções de focalização K_x e K_z .

Tanto K_x quanto K_z são funções periódicas ao longo do anel, logo

$$\begin{cases}
K(s+L) = K(s)
\end{cases}$$
(2.29)

Por conveniência na construção e no design do anel, este possui uma periodicidade intrínseca. Ou seja, é composta por uma sequência de células magnéticas

idênticas, cada célula sendo constituída por dipolos e quadrupolos. Então, para um anel com células de comprimento ℓ_c ,

$$\begin{cases}
G(s+\ell_c) = G(s) \\
K(s+\ell_c) = K_1(s)
\end{cases}$$
(2.30)

Nota-se que, diferentemente da primeira propriedade, a periodicidade de célula é uma propriedade do design da máquina, não sendo totalmente verdadeira em campos reais devido a imperfeições na construção.

Na Figura 6, a natureza das funções de focalização em uma parte do anel, abrangendo duas células. A Figura 6 (a) mostra o configuração dos dipolos e quadrupolos do anel. Os dipolos são denominados por B e tem um campo uniforme (dB/dx=0). Os quadrupolos não tem campo na órbita ideal $(B_0=0)$ e são denominados por F e D (F para focalizador e D para desfocalizador, ambos com relação ao movimento radial). As Figuras 6 (b) e (c) são as funções de focalização G, K_x e K_z .

Figura 6: Laço magnético e funções de focalização em uma célula de um campo guia em particular. Retirado de [1].

2.4 Separação do movimento radial

É conveniente separar o movimento radial em duas partes: uma parte sendo uma curva fechada deslocada da órbita de design – a órbita de equilíbrio dos

elétrons com desvio de energia – e a outra parte sendo a oscilação transversal em torno desta órbita. Suponha que x seja

$$x = x_{\epsilon} + x_{\beta} \tag{2.31}$$

então certamente a equação (2.27) é satisfeita se as equações

$$x_{\epsilon}'' = K_x(s)x_{\epsilon} + G(s)\frac{\epsilon}{E_0}$$
 (2.32)

$$x_{\beta}'' = K_x(s)x_{\beta} \tag{2.33}$$

forem verdadeiras.

Demonstração. Pela equação (2.31), $x = x_{\epsilon} + x_{\beta}$. Logo,

$$x'' = x''_{\epsilon} + x''_{\beta}$$

$$= K_x(s)x_{\epsilon} + G(s)\frac{\epsilon}{E_0} + K_x(s)x_{\beta}$$

$$= K_x(s)(x_{\epsilon} + x_{\beta}) + G(s)\frac{\epsilon}{E_0}$$

$$= K_x(s)x + G(s)\frac{\epsilon}{E_0}$$

Definindo que $x_{\epsilon}(s)$ é uma função periódica em s com período L, então $x_{\epsilon}(s)$ é a órbita fechada de um elétron com energia $E_0 + \epsilon$ (com $x_{\beta} = 0$), e o movimento radial será a soma do desvio dessa nova órbita de equilíbrio e uma oscilação betatron.

O desvio x_{ϵ} é proporcional ao desvio de energia ϵ . Define-se

$$x_{\epsilon}(s) = \eta(s) \frac{\epsilon}{E_0} \tag{2.34}$$

onde $\eta(s)$ é a função única que satisfaz

$$\begin{cases} \eta'' = K_x(s)\eta + G(s), \\ \eta(0) = \eta(L), \\ \eta'(0) = \eta'(L). \end{cases}$$
 (2.35)

Demonstração. Seja $x_{\epsilon}(s)$ dado pela equação (2.34). Pela equação (2.32),

$$x_{\epsilon}'' = K_x(s)x_{\epsilon} + G(s)\frac{\epsilon}{E_0}$$

$$\left(\eta(s)\frac{\epsilon}{E_0}\right)'' = K_x(s)\eta(s)\frac{\epsilon}{E_0} + G(s)\frac{\epsilon}{E_0}$$

$$\eta(s)''\frac{\epsilon}{E_0} = K_x(s)\eta(s)\frac{\epsilon}{E_0} + G(s)\frac{\epsilon}{E_0}$$

$$\eta'' = K_x(s)\eta + G(s)$$

Denomina-se $\eta(s)$ como sendo a função de órbita fechada, e é uma função que caracteriza o campo guia total do anel. Note que $\eta(s)$ é a solução particular da equação diferencial (2.32) em que a função é periódica com período L e não depende de características do elétron, apenas da ótica do anel.

2.5 Trajetórias betatron

As equações (2.28) e (2.33) descrevem as oscilações betatron vertical e radial, respectivamente. Considerando as aproximações feitas, o movimento em cada coordenada é independente. Logo, como $K_x(s)$ e $K_z(s)$ tem a mesma forma matemática, toma-se a forma representativa

$$x'' = K(s)x \tag{2.36}$$

Lembrando que $K_x(s)$ descreve a oscilação betatron radial de um elétron com energia nominal E_0 e $K_z(s)$ descreve o movimento vertical.

A função de focalização K(s) é definida em cada coordenada s pelo design do anel de armazenamento. Se a posição e a inclinação (x e x') são dadas em alguma coordenada s, os termos subsequentes podem ser obtidos integrando a equação (2.36). Porém, como o campo guia é construído de segmentos magnéticos e K(s) pode ser considerada constante nestes intervalos, pode-se integrar x e x' para cada segmento e juntar estes resultados. Dependendo do valor de K, x é dado por

$$\begin{cases} K < 0 : & x = a \cos(\sqrt{-K}s + b) \\ K = 0 : & x = as + b \\ K > 0 : & x = a \cosh(\sqrt{K}s + b) \end{cases}$$
 (2.37)

onde a e b são constantes em cada segmento e podem ser determinadas pelos valores de x e x' na entrada do segmento (como K é finita em qualquer ponto, x e x' devem ser ambas contínuas em todo ponto – em particular, na junção entre dois segmentos).

Demonstração. A equação (2.36) é uma equação diferencial homogênea de 2^a ordem. Considerando que a função K é uma constante, supõe-se que a solução da EDO é uma exponencial, ou seja, da forma $x=e^{rs}$. Substituindo esta possível solução, tem-se

$$x'' - Kx = 0$$

$$(e^{rs})'' - K(e^{rs}) = 0$$

$$r^2 e^{rs} - K e^{rs} = 0$$

$$(r^2 - K)e^{rs} = 0$$

$$e^{rs} \neq 0 : r^2 - K = 0$$

A equação $r^2-K=0$ é a equação característica da EDO. Resolvendo-a, tem-se $r=\pm\sqrt{K}$, então $x_{1,2}=e^{\pm\sqrt{K}s}$. Agora, existem 3 casos possíveis:

• *K* < 0

Com K < 0, as raízes da equação característica são imaginárias. A solução geral da EDO é, para este caso, $x = c_1 e^{\alpha s} \cos(\beta s) + c_2 e^{\alpha s} \sin(\beta s)$. Como a função seno é apenas a função cosseno com uma diferença de fase, pode-se escrever

$$x = a \cos(\sqrt{-K} + b)$$

• K = 0

A solução geral da EDO é, para este caso, $x = c_1 e^{\sqrt{K}s} + sc_2 e^{-\sqrt{K}s}$. Como K = 0,

$$x = c_1 e^{\sqrt{K}s} + sc_2 e^{-\sqrt{K}s}$$
$$x = c_1 e^{0s} + sc_2 e^{0s}$$
$$x = c_1 + sc_2$$

Renomeando as constantes, x = as + b.

• K > 0

A solução geral da EDO é, para este caso, $x=c_1e^{\sqrt{K}s}+c_2e^{-\sqrt{K}s}$. Fazendo $c_1=c_2=\frac{1}{2},$

$$x = c_1 e^{\sqrt{K}s} + c_2 e^{-\sqrt{K}s}$$
$$x = \frac{e^{\sqrt{K}s} + e^{-\sqrt{K}s}}{2} = \cosh(\sqrt{K}x)$$

Para constantes c_1 e c_2 arbitrárias,

$$x = a \cosh(\sqrt{K}x + b)$$

Concluindo,

$$\begin{cases} K < 0: & x = a \cos(\sqrt{-K}s + b) \\ K = 0: & x = as + b \\ K > 0: & x = a \cosh(\sqrt{K}s + b) \end{cases}$$

Como ilustração, supõe-se uma funçãoi K(s) como a função $K_x(s)$ na Figura 6. Duas possíveis trajetórias estão representadas na Figura 7 (b). A primeira é a trajetória que começa em s_0 com deslocamento unitário $x_0 = 1$ e nenhuma inclinação $x_0' = 0$. A segunda começa com deslocamento nulo $x_0 = 0$ e inclinação unitária $x_0' = 1$. A primeira é chamada de cosinelike trajectory – C e a segunda de sinelike trajectory – S. Seus detalhes dependem da coordenada de referência s_0 e são, em geral, funções não periódicas, mesmo que K(s) seja. Para um anel com trajetórias estáveis, C e S são funções oscilatórias limitadas as quais possuem uma forma diferente a cada revolução.

Figura 7: Função de focalização K(s) e duas trajetórias: a cosine-like trajectory e a sine-like trajectory para uma coordenada de início s_0 . Retirado de [1].

Agora, como a equação (2.36) é linear em x, qualquer combinação linear de C e S também descreve uma trajetória possível para x. Mais que isso, qualquer trajetória pode ser descrita por esta combinação linear. Ou seja,

$$x(s) = C(s, s_0)x_0 + S(s, s_0)x_0'$$
(2.38)

$$x'(s) = C'(s, s_0)x_0 + S'(s, s_0)x'_0$$
(2.39)

onde C' e S' são as derivadas de C e S em relação a s e x_0 e x'_0 são os valores de x e x' em s_0 . É conveniente escrever esta equação na forma matricial:

$$\boldsymbol{x}(s) = \boldsymbol{M}(s, s_0)\boldsymbol{x}(s_0) \tag{2.40}$$

onde

$$\boldsymbol{x}(s) = \begin{bmatrix} x(s) \\ x'(s) \end{bmatrix} \tag{2.41}$$

е

$$\mathbf{M}(s, s_0) = \begin{bmatrix} C(s, s_0) & S(s, s_0) \\ C'(s, s_0) & S'(s, s_0) \end{bmatrix}$$

$$(2.42)$$

 $M(s, s_0)$ é a matriz de transferência de s_0 para s, a qual depende apenas de propriedades do campo guia entre duas coordenadas. A matriz de transferência de um trecho pode ser obtida em termos das matrizes de segmentos deste trecho. Logo, para um s_1 entre s e s_0 ,

$$M(s, s_0) = M(s, s_1)M(s_1, s_0)$$
 (2.43)

Demonstração. Pela definição da equação (2.42),

$$\mathbf{M}(s, s_1) = \begin{bmatrix} C(s, s_1) & S(s, s_1) \\ C'(s, s_1) & S'(s, s_1) \end{bmatrix}$$

e

$$\mathbf{M}(s_1, s_0) = \begin{bmatrix} C(s_1, s_0) & S(s_1, s_0) \\ C'(s_1, s_0) & S'(s_1, s_0) \end{bmatrix}$$

Logo,

$$\begin{aligned} \boldsymbol{M}(s,s_0) &= \boldsymbol{M}(s,s_1) \boldsymbol{M}(s_1,s_0) \\ &= \begin{bmatrix} C(s,s_1) & S(s,s_1) \\ C'(s,s_1) & S'(s,s_1) \end{bmatrix} \begin{bmatrix} C(s_1,s_0) & S(s_1,s_0) \\ C'(s_1,s_0) & S'(s_1,s_0) \end{bmatrix} \\ &= \begin{bmatrix} C(s,s_1)C(s_1,s_0) + S(s,s_1)C'(s_1,s_0) & C(s,s_1)S(s_1,s_0) + S(s,s_1)S'(s_1,s_0) \\ C'(s,s_1)C(s_1,s_0) + S'(s,s_1)C'(s_1,s_0) & C'(s,s_1)S(s_1,s_0) + S'(s,s_1)S'(s_1,s_0) \end{bmatrix} \end{aligned}$$

Considerando que $s_1 = s + \Delta_1$ e $s_0 = s_1 + \Delta_0$, então $(s, s_1) = \Delta_1$ e $(s_1, s_0) = \Delta_0$. Como s_1 é um ponto entre s e s_0 , também tem-se que $(s, s_0) = \Delta_1 + \Delta_0$. Logo,

$$\boldsymbol{M}(\Delta_1)\boldsymbol{M}(\Delta_0) = \begin{bmatrix} C(\Delta_1)C(\Delta_0) + S(\Delta_1)C'(\Delta_0) & C(\Delta_1)S(\Delta_0) + S(\Delta_1)S'(\Delta_0) \\ C'(\Delta_1)C(\Delta_0) + S'(\Delta_1)C'(\Delta_0) & C'(\Delta_1)S(\Delta_0) + S'(\Delta_1)S'(\Delta_0) \end{bmatrix}$$

Sabendo que S' = C e C' = -S,

$$\boldsymbol{M}(\Delta_1)\boldsymbol{M}(\Delta_0) = \begin{bmatrix} C(\Delta_1)C(\Delta_0) - S(\Delta_1)S(\Delta_0) & C(\Delta_1)S(\Delta_0) + S(\Delta_1)C(\Delta_0) \\ -S(\Delta_1)C(\Delta_0) - C(\Delta_1)S(\Delta_0) & -S(\Delta_1)S(\Delta_0) + C(\Delta_1)C(\Delta_0) \end{bmatrix}$$

Por propriedades trigonométricas,

$$[\mathbf{M}(\Delta_{1})\mathbf{M}(\Delta_{0})]_{11} = \frac{1}{2}[C(\Delta_{1} - \Delta_{0}) + C(\Delta_{1} + \Delta_{0})] - \frac{1}{2}[C(\Delta_{1} - \Delta_{0}) - C(\Delta_{1} + \Delta_{0})]$$

$$[\mathbf{M}(\Delta_{1})\mathbf{M}(\Delta_{0})]_{12} = \frac{1}{2}[S(\Delta_{1} + \Delta_{0}) - S(\Delta_{1} - \Delta_{0})] + \frac{1}{2}[S(\Delta_{1} - \Delta_{0}) + S(\Delta_{1} + \Delta_{0})]$$

$$[\mathbf{M}(\Delta_{1})\mathbf{M}(\Delta_{0})]_{21} = -\frac{1}{2}[S(\Delta_{1} - \Delta_{0}) + S(\Delta_{1} + \Delta_{0})] - \frac{1}{2}[S(\Delta_{1} + \Delta_{0}) - S(\Delta_{1} - \Delta_{0})]$$

$$[\mathbf{M}(\Delta_{1})\mathbf{M}(\Delta_{0})]_{22} = -\frac{1}{2}[C(\Delta_{1} - \Delta_{0}) - C(\Delta_{1} + \Delta_{0})] + \frac{1}{2}[C(\Delta_{1} - \Delta_{0}) + C(\Delta_{1} + \Delta_{0})]$$

Simplificando os termos da matriz, tem-se

$$\boldsymbol{M}(\Delta_1)\boldsymbol{M}(\Delta_0) = \begin{bmatrix} C(\Delta_1 + \Delta_0) & S(\Delta_1 + \Delta_0) \\ -S(\Delta_1 + \Delta_0) & C(\Delta_1 + \Delta_0) \end{bmatrix}$$
$$= \begin{bmatrix} C(\Delta_1 + \Delta_0) & S(\Delta_1 + \Delta_0) \\ C'(\Delta_1 + \Delta_0) & S'(\Delta_1 + \Delta_0) \end{bmatrix}$$
$$\boldsymbol{M}(s, s_1)\boldsymbol{M}(s_1, s_0) = \begin{bmatrix} C(s, s_0) & S(s, s_0) \\ C'(s, s_0) & S'(s, s_0) \end{bmatrix} = \boldsymbol{M}(s, s_0)$$

c.q.d.

Para os três casos possíveis de K descritos na equação (2.37),

$$K < 0: \quad \mathbf{M}(s_2, s_1) = \begin{bmatrix} \cos(\sqrt{-K}\ell) & \frac{1}{\sqrt{-K}}\sin(\sqrt{-K}\ell) \\ -\sqrt{-K}\sin(\sqrt{-K}\ell) & \cos(\sqrt{-K}\ell) \end{bmatrix}$$
(2.44)

$$K = 0: \quad \mathbf{M}(s_2, s_1) = \begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix}$$
 (2.45)

$$K > 0: \quad \mathbf{M}(s_2, s_1) = \begin{bmatrix} \cosh(\sqrt{K}\ell) & \frac{1}{\sqrt{K}}\sinh(\sqrt{K}\ell) \\ \sqrt{K}\sinh(\sqrt{K}\ell) & \cosh(\sqrt{K}\ell) \end{bmatrix}$$
(2.46)

onde $\ell = s_2 - s_1$.

Demonstração. Analisando para os três casos de K:

• *K* < 0

Da equação (2.37), tem-se que
$$C(s_2, s_1) = \cos(\sqrt{-K}\ell)$$
. Logo,

$$C'(s_2, s_1) = \frac{d \cos(\sqrt{-K}\ell)}{d\ell} = -\sqrt{-K}\sin(\sqrt{-K}\ell)$$

$$S(s_2, s_1) = \int \cos(\sqrt{-K}\ell)d\ell = \frac{1}{\sqrt{-K}}\sin(\sqrt{-K}\ell)$$

$$\therefore \mathbf{M}(s_2, s_1) = \begin{bmatrix} \cos(\sqrt{-K}\ell) & \frac{1}{\sqrt{-K}}\sin(\sqrt{-K}\ell) \\ -\sqrt{-K}\sin(\sqrt{-K}\ell) & \cos(\sqrt{-K}\ell) \end{bmatrix}$$

• K = 0

Da equação (2.37), tem-se que $C(s_2, s_1) = 1$. Logo,

$$C'(s_2, s_1) = \frac{d \ 1}{d\ell} = 0$$
$$S(s_2, s_1) = \int d\ell = \ell$$
$$\therefore \mathbf{M}(s_2, s_1) = \begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix}$$

• K > 0

Da equação (2.37), tem-se que $C(s_2, s_1) = \cosh(\sqrt{K}\ell)$. Logo,

$$C'(s_2, s_1) = \frac{d \cosh(\sqrt{K}\ell)}{d\ell} = \sqrt{K} \operatorname{senh}(\sqrt{K}\ell)$$
$$S(s_2, s_1) = \int \cosh(\sqrt{K}\ell) d\ell = \frac{1}{\sqrt{K}} \operatorname{senh}(\sqrt{K}\ell)$$
$$\therefore \mathbf{M}(s_2, s_1) = \begin{bmatrix} \cosh(\sqrt{K}\ell) & \frac{1}{\sqrt{K}} \sinh(\sqrt{K}\ell) \\ \sqrt{K} \sinh(\sqrt{K}\ell) & \cosh(\sqrt{K}\ell) \end{bmatrix}$$

A solução geral da equação (2.36) pode ser escrita como

$$x(s) = a\zeta(s)\cos\{\varphi(s) - \upsilon\}$$
 (2.47)

onde $\zeta(s)$ e $\varphi(s)$ são funções especialmente definidas em s com certas propriedades convenientes, e a e v são constantes obtidas pelas condições iniciais, as quais determinam uma trajetória particular. Define-se

$$\varphi(s) = \int_0^s \frac{d\bar{s}}{\zeta^2(\bar{s})} \tag{2.48}$$

Então

$$\varphi'(s) = \frac{1}{\zeta^2} \tag{2.49}$$

e, se $\zeta(s)$ for definida para ser essa função positiva, analítica que satisfaz

$$\zeta'' = K(s)\zeta + \frac{1}{\zeta^3} \tag{2.50}$$

então x(s) da equação (2.47) satisfaz a equação diferencial (2.36).

Demonstração. Seja x(s) dado pela equação (2.47). Então,

$$x' = [a\zeta \cos\{\varphi - v\}]'$$

$$= a[\zeta'\cos(\varphi - v) - \zeta\varphi'\sin(\varphi - v)]$$

$$\therefore x'' = a[\zeta'\cos(\varphi - v) - \zeta\varphi'\sin(\varphi - v)]'$$

$$= a\left[\zeta''\cos(\varphi - v) - \zeta'\varphi'\sin(\varphi - v) - \left(-\frac{\zeta'}{\zeta^2}\sin(\varphi - v) + \frac{\varphi'}{\zeta}\cos(\varphi - v)\right)\right]$$

Pela equação (2.50),

$$x'' = a \left[\left(K\zeta + \frac{1}{\zeta^3} \right) \cos(\varphi - v) - \frac{\zeta'}{\zeta^2} \sin(\varphi - v) + \frac{\zeta'}{\zeta^2} \sin(\varphi - v) - \frac{1}{\zeta^3} \cos(\varphi - v) \right]$$

$$= Ka\zeta \cos(\varphi - v)$$

$$= Kx$$

Assim, pode-se ver que $x(s) = a\zeta(s) \cos{\{\varphi(s) - v\}}$ é solução da equação diferencial (2.36).

Tradicionalmente, define-se a função betatron $\beta(s)$ como

$$\beta(s) = \zeta^2(s) \tag{2.51}$$

então

$$x(s) = a\sqrt{\beta(s)} \cos{\{\varphi(s) - \upsilon\}}$$
 (2.52)

$$\varphi(s) = \int_0^s \frac{d\bar{s}}{\beta(\bar{s})} \tag{2.53}$$

Note que, dada a função de focalização K(s) do anel, $\beta(s)$ pode ser unicamente determinada. Porém, enquanto K(s) é dada em função das propriedades locais do campo guia, a função $\beta(s)$ – ou $\zeta(s)$ depende da configuração total do anel. Por outro lado, uma vez que $\beta(s)$ é conhecida, K(s) pode ser imediatamente determinada pelas suas derivadas locais, mas é $\beta(s)$ que revela de forma mais direta as características significantes da trajetória dos elétrons armazenados.

Lembrando que toda a discussão feita nesta subsseção se aplica tanto no movimento radial quanto no vertical, ou seja, o anel é descrito pelas funções β_x e β_z , as quais são derivadas das funções de focalização K_x e K_z , respectivamente.

2.6 Oscilações betatron pseudo-harmônicas

As equações (2.52) e (2.53) descrevem completamente o caminho realizado pelo elétron. Para ter uma visão completa do movimento do elétron, basta apenas adicionar o fato de que o elétron viaja sempre na velocidade c da luz. Fazendo uma aproximação, é adequado tomar que a coordenada longitudinal s varia simplesmente como

$$s = s_0 + ct \tag{2.54}$$

A forma correta da equação (2.54) será discutida na Seção 2.3.

A função betatron descreve completamente as propriedades laterais de focalização do campo guia. Pela sua natureza, a função betatron deve ser sempre positiva definida, e sua curva tem uma forma semelhante a uma onda. Ela também é periódica ao longo do anel, logo

$$\beta(s+L) = \beta(s) \tag{2.55}$$

A função betatron possui um valor único em cada coordenada s. Se o campo guia é dividido em células idênticas (desconsiderando imperfeições de construção), β terá a mesma simetria.

Conforme o elétron viaja ao redor do anel, ele executa uma oscilação lateral que não é nem harmônica e nem periódica. O movimento é um tipo de onda senoidal (8) distorcida com uma amplitude $a\sqrt{\beta}$ variante, a qual é modulada proporcionalmente à raiz da função betatron e com uma fase $(\varphi - v)$ que avança com s a uma taxa de variação proporcional a $\frac{1}{\beta}$.

Uma importante propriedade do movimento betatron é evidente na 8(d) – em cada coordenada, o desvio x de um elétron em movimento fica sempre abaixo de um valor limitante X(s), o qual é obtido colocando $cos(\varphi - v) = 1$, ou seja,

$$X(s) = a\sqrt{\beta(s)} \tag{2.56}$$

A trajetória completa de um elétron armazenado cairá sempre dentro de um envelope definido por $\pm X(s)$. Segue que a abertura necessária para conter um elétron com uma amplitude de oscilação que varia ao redor do anel varia como X(s). A relação entre a largura do envelope em duas coordenadas s_1 e s_2 é

$$\frac{X_2}{X_1} = \sqrt{\frac{\beta_2}{\beta_1}} \tag{2.57}$$

Para analisar a inclinação da trajetória betatron, ou seja, $x' = \frac{dx}{ds}$, considera-se a derivada da equação (2.52):

$$x' = -\frac{a}{\sqrt{\beta}}sen(\varphi - v) + \frac{\beta'}{2\beta}x \tag{2.58}$$

O primeiro termo vem da mudança de fase, e o segundo da variação de β .

Figura 8: (a) Função betatron. (b) Cosine-like trajectory para s=0. (c) Sine-like trajectory para s=0. (d) Uma trajetória depois de várias revoluções sucessivas. Retirado de [1].

$$\begin{aligned} Demonstraç\~ao. \ &\mathrm{Seja}\ x(s) = a\sqrt{\beta(s)}\ \cos\{\varphi(s) - v\}. \ \mathrm{Logo}, \\ &x' = [a\sqrt{\beta}\ \cos\{\varphi - v\}]' \\ &= a[(\sqrt{\beta})'\cos(\varphi - v) - \sqrt{\beta}\varphi'\sin(\varphi - v)] \\ &= a\left[\frac{\beta'}{2\sqrt{\beta}}\cos(\varphi - v) - \sqrt{\beta}\frac{1}{\beta}\sin(\varphi - v)\right] \\ &= a\left[\frac{\beta'}{2\sqrt{\beta}}\cos(\varphi - v) - \frac{1}{\sqrt{\beta}}\sin(\varphi - v)\right] \\ &= \frac{\beta'}{2\sqrt{\beta}}a\ \cos(\varphi - v) - \frac{a}{\sqrt{\beta}}\sin(\varphi - v) \\ &= \frac{\beta'}{2\beta}a\sqrt{\beta}\ \cos(\varphi - v) - \frac{a}{\sqrt{\beta}}\sin(\varphi - v) \\ &= -\frac{a}{\sqrt{\beta}}\sin(\varphi - v) + \frac{\beta'}{2\beta}x \end{aligned}$$

Note que os zeros de x' – e, portanto, os valores de pico de x – não ocorrem em $cos(\varphi - v) = 1$. Eles ocorrem em

$$tg(\varphi - v) = \frac{\beta'}{2} \tag{2.59}$$

o que significa que

$$\cos(\varphi - \upsilon) = \left[1 + \frac{\beta^{2}}{4}\right]^{-\frac{1}{2}} \tag{2.60}$$

Demonstração. Fazendo x'=0:

$$x' = 0$$

$$-\frac{a}{\sqrt{\beta}}sen(\varphi - v) + \frac{\beta'}{2\beta}x = 0$$

$$\frac{\beta'}{2\beta}x = \frac{a}{\sqrt{\beta}}sen(\varphi - v)$$

$$\frac{\beta'}{2\beta}a\sqrt{\beta}\cos\{\varphi - v\} = \frac{a}{\sqrt{\beta}}sen(\varphi - v)$$

$$\frac{\beta'}{2\beta}\sqrt{\beta}\sqrt{\beta} = \frac{a}{a}\frac{sen(\varphi - v)}{cos(\varphi - v)}$$

$$\frac{\beta'}{2} = tg(\varphi - v)$$

Pela identidade trigonométrica $1 + tg^2(x) = sec^2(x)$,

$$1 + tg^{2}(\varphi - v) = sec^{2}(\varphi - v)$$
$$1 + \left(\frac{\beta'}{2}\right)^{2} = \left(\frac{1}{cos(\varphi - v)}\right)^{2}$$
$$1 + \frac{\beta'^{2}}{4} = \frac{1}{cos^{2}(\varphi - v)}$$
$$cos^{2}(\varphi - v) = \left[1 + \frac{\beta'^{2}}{4}\right]^{-1}$$
$$cos(\varphi - v) = \left[1 + \frac{\beta'^{2}}{4}\right]^{-\frac{1}{2}}$$

 \Box c.q.d.

Se o pico de um ciclo particular de uma oscilação ocorrer em algum s, o valor de pico do desvio será

$$x_{pico} = a\sqrt{\beta} \left[1 + \frac{\beta'^2}{4} \right]^{-\frac{1}{2}} \tag{2.61}$$

Veja a Figura 9.

Figura 9: O máximo de um ciclo particular de uma oscilação betatron. Retirado de [1].

Em uma oscilação harmônica clássica, a amplitude é uma invariante do movimento. Seu quadrado é proporcional à energia da oscilação, e pode ser expresso como uma função quadrática da posição e velocidade instantâneas. O invariante correspondente do oscilador pseudo-harmônico é a constante a, e esta pode ser obtida em termos de x e x' pela equação

$$a^2 = \frac{x^2}{\beta} + \beta \left[x' - \frac{\beta'}{2\beta} x \right]^2 \tag{2.62}$$

Demonstração. Pela equação (2.52),

$$x = a\sqrt{\beta} \cos\{\varphi - v\}$$

$$\frac{x}{a\sqrt{\beta}} = \cos(\varphi - v)$$

$$\left(\frac{x}{a\sqrt{\beta}}\right)^2 = \cos^2(\varphi - v)$$

$$\frac{x^2}{a^2\beta} = \cos^2(\varphi - v)$$

Já pela equação (2.58),

$$x' = -\frac{a}{\sqrt{\beta}} sen(\varphi - v) + \frac{\beta'}{2\beta} x$$

$$x' - \frac{\beta'}{2\beta} x = -\frac{a}{\sqrt{\beta}} sen(\varphi - v)$$

$$\frac{\sqrt{\beta}}{a} \left[x' - \frac{\beta'}{2\beta} x \right] = -sen(\varphi - v)$$

$$\left(\frac{\sqrt{\beta}}{a} \left[x' - \frac{\beta'}{2\beta} x \right] \right)^2 = sen^2(\varphi - v)$$

$$\frac{\beta}{a^2} \left[x' - \frac{\beta'}{2\beta} x \right]^2 = sen^2(\varphi - v)$$

Pela relação trigonométrica $sen^2(x) + cos^2(x) = 1$,

$$sen^{2}(\varphi - \upsilon) + cos^{2}(\varphi - \upsilon) = 1$$
$$\frac{\beta}{a^{2}} \left[x' - \frac{\beta'}{2\beta} x \right]^{2} + \frac{x^{2}}{a^{2}\beta} = 1$$
$$\frac{1}{a^{2}} \left(\beta \left[x' - \frac{\beta'}{2\beta} x \right]^{2} + \frac{x^{2}}{\beta} \right) = 1$$
$$\beta \left[x' - \frac{\beta'}{2\beta} x \right]^{2} + \frac{x^{2}}{\beta} = a^{2}$$

 \Box

Se os valores de x e x' são conhecidos em alguma coordenada, supõe-se s_1 , então a constante a pode ser obtida e todos os valores subsequentes de x e x' podem ser expressos por

$$x = \frac{1}{\sqrt{\beta_1}} \left[x_1^2 + \left(\beta_1 x_1' - \frac{x_1 \beta_1'}{2} \right)^2 \right]^{\frac{1}{2}} \sqrt{\beta} \cos(\varphi - v)$$
 (2.63)

Demonstração. Pela equação (2.62),

$$a^{2} = \frac{x^{2}}{\beta} + \beta \left[x' - \frac{\beta'}{2\beta} x \right]^{2}$$

$$= \frac{1}{\beta} \left(x^{2} + \beta^{2} \left[x' - \frac{\beta'}{2\beta} x \right]^{2} \right)$$

$$= \frac{1}{\beta} \left(x^{2} + \left[\beta x' - \frac{\beta'}{2} x \right]^{2} \right)$$

$$\therefore a = \left[\frac{1}{\beta} \left(x^{2} + \left[\beta x' - \frac{\beta'}{2} x \right]^{2} \right) \right]^{\frac{1}{2}}$$

$$= \frac{1}{\sqrt{\beta}} \left(x^{2} + \left[\beta x' - \frac{\beta'}{2} x \right]^{2} \right)^{\frac{1}{2}}$$

Sejam $x(s_1) = x_1$, $x'(s_1) = x'_1$ e $\beta(s_1) = \beta_1$ os valores de x, x' e β conhecidos no ponto s_1 , então a pode ser determinado com estes valores:

$$a = \frac{1}{\sqrt{\beta_1}} \left(x_1^2 + \left[\beta_1 x_1' - \frac{\beta_1'}{2} x_1 \right]^2 \right)^{\frac{1}{2}}$$

Substituindo o valor de a na equação (2.52),

$$x = a\sqrt{\beta} \cos\{\varphi - v\}$$

$$= \frac{1}{\sqrt{\beta_1}} \left[x_1^2 + \left(\beta_1 x_1' - \frac{x_1 \beta_1'}{2}\right)^2 \right]^{\frac{1}{2}} \sqrt{\beta} \cos(\varphi - v)$$

c.q.d.

A constante de fase v também precisa ser determinada de x e x', e esta pode ser obtida pela equação

$$tg(\varphi_1 - \upsilon) = -\frac{\beta_1 x_1'}{x_1} + \frac{\beta_1'}{2}$$
 (2.64)

onde $\varphi_1 = \varphi(s_1)$.

Demonstração. Já foi deduzido anteriormente que

$$sen(\varphi - \upsilon) = -\frac{\sqrt{\beta}}{a} \left[x' - \frac{\beta'}{2\beta} x \right]$$
$$cos(\varphi - \upsilon) = \frac{x}{a\sqrt{\beta}}$$

Para obter $tg(\varphi - \upsilon)$, basta

$$tg(\varphi - \upsilon) = \frac{sen(\varphi - \upsilon)}{cos(\varphi - \upsilon)}$$

$$= \frac{-\frac{\sqrt{\beta}}{a} \left[x' - \frac{\beta'}{2\beta} x \right]}{\frac{x}{a\sqrt{\beta}}}$$

$$= -\frac{\sqrt{\beta}}{a} \left[x' - \frac{\beta'}{2\beta} x \right] \frac{a\sqrt{\beta}}{x}$$

$$= \frac{\beta}{x} \left[-x' + \frac{\beta'}{2\beta} x \right]$$

$$= -\frac{\beta x'}{x} + \frac{\beta'}{2}$$

$$\therefore tg(\varphi_1 - \upsilon) = -\frac{\beta_1 x'_1}{x_1} + \frac{\beta'_1}{2}$$

Isolando v, pode-se obtê-lo diretamente pela relação

$$tg(\varphi_1 - v) = -\frac{\beta_1 x_1'}{x_1} + \frac{\beta_1'}{2}$$
$$cotg(tg(\varphi_1 - v)) = cotg\left(-\frac{\beta_1 x_1'}{x_1} + \frac{\beta_1'}{2}\right)$$
$$\varphi_1 - v = cotg\left(-\frac{\beta_1 x_1'}{x_1} + \frac{\beta_1'}{2}\right)$$
$$v = \varphi_1 - cotg\left(-\frac{\beta_1 x_1'}{x_1} + \frac{\beta_1'}{2}\right)$$

Para obter o valor máximo X(s) que pode ser alcançado em qualquer s em qualquer revolução subsequente, basta substituir $cos(\varphi - v) = 1$ na equação (2.63):

$$X(s) = \frac{1}{\sqrt{\beta_1}} \left[x_1^2 + \left(\beta_1 x_1' - \frac{x_1 \beta_1'}{2} \right)^2 \right]^{\frac{1}{2}} \sqrt{\beta(s)}$$
 (2.65)

Note que X(s) independe de v.

Geralmente, é esperado que as amplitudes resultantes de distúrbios na trajetória serão menores quanto menor for β . De fato, pode-se considerar que $\frac{1}{\beta}$ é uma medida da "força" da focalização lateral, e que pequenos valores de β são normalmente desejáveis.

2.7 Sintonias

Conforme um elétron completa uma revolução dentro do anel de armazenamento em uma coordenada qualquer s_0 , sua oscilação de fase $(\varphi - v)$ avança de

$$\int_{s_0}^{s_0+L} \frac{ds}{\beta} \tag{2.66}$$

Devido à periodicidade de β , esta integral tem o mesmo valor para qualquer s_0 . Ou seja, em uma revolução completa, a fase da trajetória do elétron é aumentada sempre do mesmo valor. Esse avanço de fase é um fator importante do anel de armazenamento, e é escrito normalmente como $2\pi\nu$, e ν é chamado de número betatron ou sintonia da máquina. Sua definição é

$$\nu = \frac{1}{2\pi} \int_{s}^{s+L} \frac{d\bar{s}}{\beta} = \frac{1}{2\pi} \int_{0}^{L} \frac{ds}{\beta} = \oint \frac{ds}{\beta}$$
 (2.67)

As sintonias das coordenadas x e z – indicadas por ν_x e ν_z – são geralmente diferentes, sendo derivadas das duas funções betatron β_x e β_z . Tanto ν_x quanto ν_z são, tipicamente, números não muito grandes próximos de, mas não exatamente, um quarto de inteiro (2.78 ou 5.15, por exemplo).

Apesar da trajetória betatron ser uma oscilação contorcida não-periódica, se observar uma coordenada fixa ao longo de sucessivas revoluções de um elétron, pode-se concluir que este desvio segue uma forma senoidal. Suponha que esta coordenada fixa é s_0 e as sucessivas passagens do elétron sejam indexadas por $j=0,1,2,3,\ldots$ Também considere φ_0 a fase na passagem 0. Nas passagens seguintes, a fase do movimento irá aumentar de $2\pi\nu$ e, na j-ésima passagem, a fase será

$$2\pi\nu j + \varphi_0 \tag{2.68}$$

e o desvio será

$$x_j = a\sqrt{\beta_0} \cos(2\pi\nu j + \varphi_0) \tag{2.69}$$

onde β_0 é o valor da função β na coordenada s_0 .

A amplitude $a\sqrt{\beta_0}$ é constante, então o desvio, avaliado a cada revolução, varia simplesmente como uma simples oscilação senoidal. Como o tempo de cada revolução é constante (desprezando uma pequena correção proporcional a x), dado por $\frac{L}{c}$, pode-se descrever o tempo t_j da j-ésima passagem como

$$t_j = \frac{L}{c}j\tag{2.70}$$

ou que

$$2\pi j = \omega_r t_j \tag{2.71}$$

onde

$$\omega_r = 2\pi \frac{c}{L} \tag{2.72}$$

é a frequência angular de revolução do elétron. Então a equação (2.69) pode ser reescrita, para qualquer s fixo, como

$$x_s(t_j) = a\sqrt{\beta(s)} \cos(\nu \omega_r t_j + \varphi_{0s})$$
 (2.73)

Demonstração. Pela equação (2.54), $s=s_0+ct.$ Logo, em uma revolução,

$$s - s_0 = ct$$

$$L = ct$$

$$\therefore t = \frac{L}{c}$$

Para a j-ésima revolução,

$$t_j = \frac{L}{c}j$$

Isolando j,

$$j = \frac{c}{L}t_j$$
$$\therefore 2\pi j = 2\pi \frac{c}{L}t_j$$

Definindo $\omega_r = 2\pi \frac{c}{L}$, então

$$2\pi j = \omega_r t_j$$

e, substituindo isto na equação (2.69), tem-se

$$x_j = a\sqrt{\beta_0} \cos(\nu\omega_r t_j + \varphi_0)$$

Considerando o caso de qualquer coordenada s,

$$x_s(t_j) = a\sqrt{\beta(s)} \cos(\nu \omega_r t_j + \varphi_{0s})$$

Quando uma coordenada s em particular é observada, o movimento lateral é indistinguível de uma simples oscilação harmônica na frequência $\nu\omega_r$ – normalmente chamada de frequência betatron.

Observando a equação (2.69), pode-se ver a justificativa para a afirmativa feita na Seção anterior de que, em cada coordenada longitudinal, deve-se esperar que em algum momento x assumirá seu valor máximo $X(s) = a\sqrt{\beta(s)}$. A menos que ν seja um número inteiro ou, ainda mais genérico, a não ser que a diferença entre ν e um inteiro seja uma fração simples – o que torna a não ser exatamente verdade em um anel de armazenamento real – a fase (de módulo 2π) em sucessivas passagens de qualquer ponto fixo irá passar por um grande número de valores entre 0 e 2π antes de se repetir. E o deslocamento irá em algum momento atingir seu valor de pico X em cada coordenada.

O significado mais importante da sintonia ν da máquina é relacionado com a existência de ressonâncias que aparecem se ν assume certos valores. Por exemplo, se ν é um inteiro, a oscilação betatron iria, idealmente, tornar-se ligeiramente periódica – repetindo-se a cada revolução. Entretanto, a menor imperfeição no campo guia irá agir como uma perturbação, a qual é síncrona com a frequência de oscilação. Uma pertubação síncrona leva a uma excitação ressonante da oscilação e a um crescimento exponencial da amplitude. Não haverá oscilação estável. Mais adiante será mostrado que outras ressonâncias ocorrem também quando ν é metade de um inteiro e, se efeitos não-lineares forem considerados, quando a diferença entre ν e um inteiro é qualquer fração simples.

Ressonâncias devem ser, claro, evitadas nas oscilações betatron radial e vertical. Tem-se que ressonâncias de algum tipo podem ocorrer quando ν_x e ν_z satisfazem

$$m\nu_x + n\nu_z = r \tag{2.74}$$

onde m, n e r são inteiros. Efeitos significativos são geralmente observados apenas em ressonâncias de ordem baixa, ou seja, estas em que m, n e r possuem valores baixos entre 0,1,2,3. O ponto de operação de um anel de armazenamento é especificado por ν_x e ν_z e deve ser escolhido de forma a evitar ressonâncias. A relação de ressonância (2.74) define um conjunto de linhas em um diagrama ν_x , ν_z . Algumas delas estão representadas na Figura 10, onde um possível ponto de operação também é indicado.

Para um grupo particular de ressonâncias onde ν_x é igual a ν_z ou a diferença entre eles é um inteiro, haverá um forte acoplamento entre as oscilações horizontal e vertical. Nesta ressonância, a suposição de que as oscilações são completamente independentes não é mais válida e a modelagem do movimento dos elétrons fica mais complicada. Às vezes, um anel de armazenamento pode ser intencionalmente operadora em uma, ou perto de uma, ressonância de acoplamento a fim de aumentar a amplitude de oscilação vertical alimentando-a com a energia vinda da oscilação radial.

Figura 10: Ressonâncias de ordem baixa em um diagrama ν_x , ν_z . Retirado de [1].

Para estar seguro de ressonâncias perigosas, é preciso que o ponto de operação real esteja perto o suficiente do ponto projetado – como pode-se ver na Figura 10. Espera-se que as imperfeições dos ímãs irão causar mudanças em ν proporcionais ao próprio ν . Um anel de armazenamento com uma sintonia grande é propensa a ser uma máquina "sensível". Por este fato, a sintonia normalmente é escolhida entre valores de 2 a 6.

2.8 Descrição aproximada das oscilações betatron

Para diversos propósitos, é conveniente – e suficiente – aproximar o movimento betatron por uma oscilação harmônica simples. Considera-se a oscilação

$$x = A \cos(s/\lambda - v) \tag{2.75}$$

onde χ é constante (o comprimento de onda reduzido). Uma oscilação completa é realizada quando s avança por um comprimento de onda $2\pi\chi$. É claramente conveniente pensar na oscilação pseudo-harmônica da equação (2.52) como apenas uma onda senoidal com um comprimento de onda localmente variável – se a variação de amplitude for ignorada. E, com tanto que β não varie tão abruptamente, pode-se esperar que esta é uma aproximação razoável para o movimento real se a equação (2.75) for utilizada com um χ escolhido apropriadamente. Supõe-se que o número χ 0 seja definido de forma a ser uma constante que dará o mesmo

avanço de fase em uma revolução que a real função β . Isto é, β_n é definido por

$$\int_{0}^{L} \frac{ds}{\beta} = \frac{L}{\beta_n} \tag{2.76}$$

e é chamado de valor típico de β . Então, a oscilação

$$x = A \cos(s/\beta_n + v) \tag{2.77}$$

irá – com $A = a\sqrt{\beta_n}$ – estar de acordo com a trajetória real pelo menos uma vez a cada revolução; e, em particular, irá estar, na média, em fase com a oscilação real. Na Figura 11 estão representadas uma das trajetórias da Figura 8 junto com sua aproximação obetida pela equação (2.75).

Figura 11: Aproximação da trajetória betatron. — trajetória betatron; — — aproximação senoidal. Retirado de [1].

É conveniente lembrar que, pela equação (2.76), $\frac{1}{\beta_n}$ é apenas a média de $\frac{1}{\beta}$ ao redor do anel:

$$\frac{1}{\beta_n} = \left\langle \frac{1}{\beta} \right\rangle \tag{2.78}$$

Pela definição de ν (equação (2.67)), tem-se

$$\frac{L}{\beta_n} = 2\pi\nu \tag{2.79}$$

O raio efetivo de curvatura da órbita é dado por

$$R = \frac{L}{2\pi} \tag{2.80}$$

então pode-se também definir como

$$\beta_n = \frac{R}{\nu} \tag{2.81}$$

Note que β_n não é igual à média de β , apesar de que também não é muito diferente se as ondulações de β não forem muito grandes.

Demonstração. Pela definição de ν e β_n dadas respectivamente pelas equações (2.67) e (2.76),

$$\nu = \frac{1}{2\pi} \int_{0}^{L} \frac{ds}{\beta}$$
$$= \frac{1}{2\pi} \frac{L}{\beta_n}$$
$$\therefore \frac{L}{\beta_n} = 2\pi\nu$$

Mas $R = L/2\pi$. Então,

$$\frac{L}{\beta_n} = 2\pi\nu$$

$$\therefore \beta_n = \frac{L}{2\pi\nu}$$

$$= \frac{R}{\nu}$$

A variação de tempo da trajetória aproximada da equação (2.77) é descrita como

$$x = A \cos(\nu \omega_r t - \nu) \tag{2.82}$$

 $com \ \omega_r = c/R.$

Demonstração. Pela equação (2.77), $x = A \cos(s/\beta_n - v)$. Agora, considerando como 0 a coordenada s de referência, pela equação (2.54):

$$x = A \cos(s/\beta_n - v)$$

= $A \cos(ct/\beta_n - v)$
= $A \cos(vct/R - v)$

Definindo $\omega_r = c/R$, tem-se

$$x = A \cos(\nu \omega_r t - v)$$

c.q.d.

A frequência angular $\nu\omega_r$ é chamada de frequência betatron e será denominada por ω_{β} . Note que, quando a trajetória aproximada é observada em um ponto fixo do anel, sua variação de tempo é indistinguível da trajetória real – basta comparar com a equação (2.73).

A aproximação realizada nesta Seção não é adequada para vários cálculos dos efeitos do anel, mas de fato providencia a única abordagem rastreável para a análise de alguns dos efeitos coletivos que envolvem um número grande de elétrons armazenados.

- 2.9 Natureza da função beta
- 2.10 Perturbação de órbita fechada
- 2.11 Erros de gradiente de campo

- 3 Oscilações em Energia
- 3.1 Órbitas fechadas
- 3.2 Tamanho da órbita: fator de dilatação

4 Amortecimento por Radiação

5 Excitação por Radiação

Referências

1 SANDS, M. The physics of electron storage rings: an introduction. [S.l.]: Stanford Linear Accelerator Center Stanford, CA 94305, 1970.