Basic Concepts in Machine Learning

Odelia Schwartz Luis Gonzalo Sanchez Giraldo

REU: Computing for Structure 2019

Machine Intelligence

- Adaptive
- Robust
- Model real world and be able to react.
 - Hand coded rules are bound to fail.
 - Ideally, we would like the computer to program itself by showing it how it should behave.

Machine Learning

- Enable computer to figure out how to mimic a desired behavior by example.
- A program is viewed as function with adjustable parameters. The computer tunes the parameters to achieve the desired behavior.

Where is machine learning applied

Quote from Sam Roweis:

"Machine learning is most useful when the structure of the task is not well understood, but can be characterized by a dataset with strong statistical regularities."

 Broad range of application from controlling the expressions in animojis to controlling the fate of entire countries.

Canonical Tasks

- Supervised Learning:
 - Data consist of input-output pairs.
- Unsupervised learning:
 - Only inputs are given. The goal is to find structure and representations of the data
- Reinforcement Learning: (weak supervision)
 - Here, inputs represent the state of the world. The machine can choose from a set of actions and receive rewards accordingly. The goal is to learn to select action sequences that maximize reward over time.

Supervised learning

Data are a set of input-output pairs $(x_i, y_i)_{i=1}^N$ Goal is to find a function that approximates the input output relation as $f(x_i) \approx y_i$

Classification:

Categorize inputs. Outputs are discrete (also finite)

Regression:

Outputs are continuous

Unsupervised Learning

Goal is to find structure and representations of the data $(x_i)_{i=1}^N$

- Clustering: Group data into subsets of similar objects
- Compression: Find an alternative economical representation of the data from which the data can be approximately reconstructed
- Estimating the data distribution: Ideal goal.

Classification

We are given $(x_i, y_i)_{i=1}^N$ pairs. Where y_i are class labels from a set $(c_1, c_2, ..., c_K)$

Clustering

We are given $(x_i)_{i=1}^N$ data points. We want to group these points in to K subsets.

Dimensionality Reduction

Find a compact representation of a set d-dimensional points $(x_i)_{i=1}^N$ by mapping them to a p-dimensional space where p<<d.