生活中的物理实验 2

实验报告

卜一楠 PB22071444 PHYS1008A 教室:1204 座位号:5

2023年5月8日

- 1. 选择的实验: 铅笔导线;
- 2. 设计的实验: 在原有实验的基础上进一步探究导电性质与各个参数之间的关系;

E	l录	
1	实验原理	2
2	实验仪器	2
3	实验设计方案	2
	3.1 探究长度不同的痕迹的电阻变化规律	2
	3.2 定量探究痕迹宽度不同时电阻的变化规律	
	3.2.1 实验数据测量表	
	3.3.1 实验数据测量表	
4	分析与讨论	4
_	4.1 误差来源分析	4
	4.2 解决方案	5
5	致谢	5

5

6 附录

实验原理 1

铅笔笔芯的主要成分是黏土和石墨,常用铅笔杆上会标有例如 HB,2B,4B 等的标号,这些 标号代表的是铅笔芯的软硬程度,实际上代表的是笔芯中石墨和黏土的比例不同,石墨越多,则 铅笔芯越软, 画出来的线也越黑, 从标号上看就是 B 数越高, 而 H 数越高, 则笔芯硬, 相对来 讲,就是黏土含量越高。层状石墨材料含有自由电子,含有石墨材料的笔芯可以导电,因此,铅 **笔在白纸上画出来的线是可以导电的。**

因此,在本实验中采取控制变量的方法,可以探究铅笔画线的不同参数对于画出来的线的电 阻的影响。

首先,由电阻率的表达式有:

$$R = \rho \frac{L}{S} = \rho \frac{L}{hd} \tag{1}$$

其中, ρ 为电阻率,L 为痕迹的长度,b 为划线的宽度,d 为划线的厚度。在本实验中,可以通过 改变 L、b、d,探究纸面上的铅笔痕迹是否满足这一关系。

并且,由于 B 数越高,石墨含量越多,而铅笔笔芯导电的原理即为石墨导电,因此可以通过 测量电阻来探究不同型号的铅笔铅芯的电阻率,从而推算石墨含量。

实验仪器 $\mathbf{2}$

白纸、不同参数的铅笔,万用表,电池。

实验设计方案 3

3.1 探究长度不同的痕迹的电阻变化规律

用黑色中性笔在白纸上框定三个 $1cm \times 10cm$ 的区域,并且用 $2B \times 4B \times 6B$ 铅笔将区域中均 匀填色。填色过程中,保持每次填色的力度基本一致,不留白。分别用万用表测量 $\frac{1}{4}$ 长度、 $\frac{1}{2}$ 长 度以及全部长度的电阻值, 并记录。

3.1.1 实验数据测量表

	$\frac{1}{4}L$	$\frac{1}{2}L$	L
2B 铅笔痕迹的电阻值			
4B 铅笔痕迹的电阻值			
6B 铅笔痕迹的电阻值			

表 1: 探究不同宽度的痕迹对电阻的影响

3.2 定量探究痕迹宽度不同时电阻的变化规律

用黑色中性笔在白纸上框定五个分别为 $0.2cm \times 4cm$ 、 $0.4cm \times 4cm$ 、 $0.6cm \times 4cm$ 、 $0.8cm \times 4cm$ 、 $1.0cm \times 4cm$ 的区域, 并且使用 4B 铅笔均匀填充。

分别测量不同宽度的痕迹的电阻,每组测量三次后取平均值作为这一宽度的痕迹的电阻值,如 下表:记录数据后,可通过作图等系列操作探究宽度与电阻值是否满足上述公式(1)中的关系。

3.2.1 实验数据测量表

少年班学院

d/cm	0.2	0.4	0.6	0.8	1.0
第一次测量的电阻值 R_1					
第二次测量的电阻值 R_2					
第三次测量的电阻值 R ₃					

3.3 探究不同铅笔涂层的厚度以及电阻之间的关系

一般可以认为,随着铅笔涂层数目的增加,纸面上的石墨趋于饱和,如图:

图 1: 涂层随画线次数增加的变化示意图

因此,可以假定随着涂层数目增加,d 先是线性增大,随后增加速度逐渐减小至趋于0,d 趋 于某一个最大值。由公式(1),则有R非线性减小,并且有最小值。

对公式 (1) 变形后:

$$\frac{1}{R} = \frac{b}{\rho L}d\tag{2}$$

由于 d 一开始与涂层次数 n 之间的关系是线性的,因此 $\frac{1}{R}$ 和 n 之间存在线性关系。于是可以通 过实验验证这一关系是否成立。

通过测量不同涂层次数的电阻并不断增加涂层次数,直至电阻值趋于固定值。此电阻值即为 最小电阻。此时的涂层厚度即为 d 的最大值,记作 d_{max} 。此时的电阻记为 R_0 .

3.3.1 实验数据测量表

涂层数目 n	1	2	3	•••••	N
HB 铅笔对应的电阻 $/\Omega$					
$_{ m 2B}$ 铅笔对应的电阻 $_{ m I}$ $_{ m C}$					
$_{ m 4B}$ 铅笔对应的电阻 $/\Omega$					
$6B$ 铅笔对应的电阻/ Ω					
$8B$ 铅笔对应的电阻/ Ω					

3.4 探究不同型号的铅笔材料的电阻率随石墨含量的变化

少年班学院

由于实验过程中采用的白纸都是相同的,因此可以假定、铅笔的涂层次数足够多时,不同类 型的铅笔的最大涂层厚度 d_{\max} 是相同的。控制每次涂层的 L、b 不变,于是由公式 (1),有:

$$\rho \propto R$$

并且,由 Costa Sousa 于《Observational Models of Graphite Pencil Materials》一文中给出的不 同铅笔石墨含量的表格:

Pencil Number	Graphite	Clay	Wax
9Н	0.41	0.53	0.05
8H	0.44	0.50	0.05
7H	0.47	0.47	0.05
6H	0.50	0.45	0.05
5H	0.52	0.42	0.05
4H	0.55	0.39	0.05
3H	0.58	0.36	0.05
2H	0.60	0.34	0.05
H	0.63	0.31	0.05
F	0.66	0.28	0.05
HB	0.68	0.26	0.05
В	0.71	0.23	0.05
2B	0.74	0.20	0.05
3B	0.76	0.18	0.05
4B	0.79	0.15	0.05
5B	0.82	0.12	0.05
6B	0.84	0.10	0.05
7B	0.87	0.73	0.05
8B	0.90	0.04	0.05

图 2: 不同型号的铅笔的石墨含量

因此,记铅笔中石墨含量为 ω ,则通过绘制 $R-\omega$ 图,可以大致表现出电阻率随石墨含量的 变化关系。

分析与讨论

4.1 误差来源分析

- 1. 人工涂制造成误差:本次实验中所有铅笔涂的色块均为手工绘制,由于力度等差异会存在较 大的误差;
- 2. 电阻测量点的选取位置造成误差: 选取铅笔色块两端不同的边界点, 测出来的电阻值也会产 生差异;
- 3. 实验 3.4 中的基本假设是不同铅笔的涂层在涂层数目足够多时是相等的, 但实际上由于不同 铅笔的软硬程度不同,这一假设是并不成立的,因此会造成误差;
- 4. 万用表造成误差: 万用表电阻档测量误差较大;

中国科学技术大学物理实验报告

4.2 解决方案

- 1. 采用机器绘制色块, 防止误差; 例如设计简单机床来实现绘图。
- 2. 选取多个测量点,多次测量取平均值减小误差;
- 3. 采取其他方法测定铅芯的电阻率。例如可以取出铅芯后测量其半径,再测量一定长度的电阻, 从而得出电阻率,再分析电阻率与石墨含量的关系;
- 4. 用一个电阻已知的小电阻对万用表进行校准后再使用;

5 致谢

感谢中国科学技术大学物理实验教学中心和王诗琪助教的指导!

6 附录

原始实验记录