Matemática IV Espacios Vectoriales

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniera Mecánica

2018

Contenido

- Noción de Espacio Vectorial
- Subespacios
- Subespacios Fundamentales
- Independencia lineal
- Base y dimensin
- Suma directa
- Bibliografía

Definición Espacio Vectorial (V, K, +, .)

Sea K un cuerpo de escalares (\mathbb{R} ó \mathbb{C}), V un conjunto de objetos (llamados vectores), " + " una función (llamada adición) que asocia a cada par de vectores \mathbf{x} e \mathbf{y} de V un nuevo vector $\mathbf{x} + \mathbf{y}$ de V (llamado suma de \mathbf{x} e \mathbf{y}), y "." una función (multiplicación escalar) que asocia a cada escalar k de K y cada vector \mathbf{x} de V un vector $k\mathbf{x}$ de V (producto de k y \mathbf{x}). Se dice que V es un espacio vectorial sobre K si se verifican las siguientes propiedades para todo \mathbf{x} , \mathbf{y} , \mathbf{z} de V y todo k_1 , k_2 de K

- 1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ (la adición es conmutativa);
- 2. $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ (la adición es asociativa);
- 3. Existe un único elemento $\mathbf{0}$ de V (vector nulo) tal que $\mathbf{x} + \mathbf{0} = \mathbf{x}$;
- 4. Para cada \mathbf{x} de V existe un único elemento $-\mathbf{x}$ de V (elemento opuesto), tal que $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$;
- 5. $1\mathbf{x} = \mathbf{x}$, (1 es el elemento identidad del cuerpo K);
- 6. $(k_1k_2)\mathbf{x} = k_1(k_2\mathbf{x});$
- 7. $k(\mathbf{x} + \mathbf{y}) = k\mathbf{x} + k\mathbf{y}$;
- 8. $(k_1 + k_2)\mathbf{x} = k_1\mathbf{x} + k_2\mathbf{x}$.

Ejemplos

- a. El espacio de las n-uplas K^n , en particular \mathbb{R}^n y \mathbb{C}^n $(K^n, K, +, .); \quad \mathbf{x} = (x_1, x_2, ..., x_n) \in K^n; \quad x_i \in K, i = 1, ..., n.$ $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n); \quad k\mathbf{x} = (kx_1, kx_2, ..., kx_n).$
- b. El espacio de matrices $m \times n$, $K^{m \times n}$.
- c. El espacio de funciones de un conjunto en cuerpo.
- d. El espacio de los polinomios sobre el cuerpo. $f: K \to K$ tal que $f(x) = a_n x^n + ... + a_1 x + a_0$; donde $a_n, ..., a_0 \in K$.
- e. El espacio $(\mathbb{C}^n, \mathbb{R}, +, .)$ (ojo!! este es distinto a $\mathbb{C}^n := (\mathbb{C}^n, \mathbb{C}, +, .)$).
- f. El espacio \mathbb{R}^{∞} (espacio de sucesiones de números reales)

Subespacios Vectoriales

Definición

Sea V un espacio vectorial sobre el cuerpo K. Un subespacio de V es un subconjunto W de V, que con las operaciones de adición y multiplicación escalar es él mismo un espacio vectorial.

Teorema

Un subconjunto no vacío W de V es un subespacio de V si, y solo si, se cumplen las propiedades:

- Para todo par de vectores \mathbf{x} , \mathbf{y} de W, la suma $\mathbf{x} + \mathbf{y}$ está en W.
- Para todo vector x de W y todo escalar k de K, producto kx está en W.

Observación: El vector nulo siempre está en el subespacio.

El menor subespacio posible de V (en sentido de \subset)es?

El mayor subespacio posible de V es?

Definición

Un vector \mathbf{x} de V se dice que es combinación lineal de los vectores $\mathbf{x}_1, ..., \mathbf{x}_n$ si existen escalares $k_1, ..., k_n$ de K tales que

$$\mathbf{x} = k_1 \mathbf{x}_1 + ... + k_n \mathbf{x}_n = \sum_{i=1}^n k_i \mathbf{x}_i$$

Observación:

- Un subespacio vectorial contiene a todas las combinaciones lineales de sus elementos.
- Dados n vectores x₁, ..., x_n de un espacio vectorial V, el menor subespacio que contiene a dichos vectores es el conjunto de todas las combinaciones lineales de dichos vectores.

$$W = \bigcap_{\{\mathbf{x}_1,...,\mathbf{x}_n\} \subset S} S = \langle \mathbf{x}_1,...,\mathbf{x}_n \rangle = \{\mathbf{w} \in V : \mathbf{w} = k_1 \mathbf{x}_1 + ... + k_n \mathbf{x}_n \}$$

y se dice que W es el subespacio generado por $\mathbf{x}_1, ..., \mathbf{x}_n$.

Ejemplos de Subespacios

- \mathbb{R} es un subespacio de \mathbb{R}^2 identificando $x \in \mathbb{R}$ con $(x, 0) \in \mathbb{R}^2$.
- El espacio de los polinomios sobre un cuerpo K como subespacio de las funciones de K en K.
- El conjunto de las matrices simétricas $n \times n$ como subespacio de las matrices $n \times n$ sobre un cuerpo K
- El conjunto de las matrices Hermíticas (Hermitianas o Autoadjuntas) $n \times n$ como subespacio de las matrices $n \times n$. Matriz ajdunta de $A \rightarrow A^*(A^H) := \bar{A}^T$

A Hermítica
$$\iff$$
 $A = A^*$

Tarea: Escribe en forma genérica una matriz Hermítica 2×2 .

• C[a, b]; L[a, b]; $L^2[a, b]$ son subespacios del conjunto de las funciones reales definidas en el intervalo [a, b].

Subespacios Fundamentales

Sea A una matriz $m \times n$, al sistema lineal de ecuaciones Ax = b se le asocian 4 subespacios fundamentales:

C(A): Espacio Columna de A
 Es el espacio generado por todas las columnas de A.

$$\mathbf{C}(A) := \langle \mathbf{a}(\bullet, 1); ...; \mathbf{a}(\bullet, n) \rangle$$

De quién es subespacio?

Propiedad

El sistema Ax = b es resoluble si b puede expresarse como combinación lineal de las columnas de A, e.d.

$$Ax = b$$
 es resoluble $\Leftrightarrow b \in \mathbf{C}(A)$.

Subespacios Fundamentales

- N(A): Espacio Nulo de A
 Es el espacio solución del sistema homogéneo Ax = 0.
 De quién es subespacio?
- C(A^T): Espacio Fila de A
 Es el espacio generado por todas las filas de A (o columnas de A^T).

$$\mathbf{C}(A^T) := \langle \mathbf{a}(1, \bullet); ...; \mathbf{a}(n, \bullet) \rangle$$

De quién es subespacio?

N(A^T): Espacio Nulo Izquierdo de A
 Es el espacio solución del sistema homogéneo A^Ty = 0 (Espacio nulo de A^T).

 De quién es subespacio?

Independencia lineal

Sea S un subconjunto de un espacio vectorial V (sobre un cuerpo K, decimos que S es linealmente dependiente si existen vectores distintos $\mathbf{x}_1, ..., \mathbf{x}_n$ de S y escalares $k_1, ..., k_n$ de K, no todos nulos, tales que

$$k_1\mathbf{x}_1+...+k_n\mathbf{x}_n=\mathbf{0}.$$

Un conjunto que no es linealmente dependiente se dice linealmente independiente, y si adems *S* es un conjunto finito se dice que sus vectores son linealmente independientes.

E.d.
$$S = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$$
 es l.i. si, y solo si, (completar)

Definición (Base)

Una base de un e.v. V es un conjunto linealmente independiente de V que genera el espacio V.

El espacio V es de dimensin finita si tiene una base finita.

Ejemplo:

•
$$K$$
 cuerpo; $V=K^n$; $S=\{\mathbf{e}_1,...,\mathbf{e}_n\}$, donde
$$\begin{aligned} \mathbf{e}_1&=(1,0,...,0)\\ \mathbf{e}_2&=(0,1,0,...,0)\\ &\vdots\\ \mathbf{e}_n&=(0,...,0,1) \end{aligned}$$

Entonces S es una base de K^n (Base canónica).

• $A \in \mathbb{R}^{m \times n}$ una matriz inversible. $S = \{\mathbf{a}(\bullet, 1); ...; \mathbf{a}(\bullet, n)\}$ es un base de $\mathbf{C}(A) = \mathbb{R}^m$.

Teorema

Sea V un e.v. generado por un conjunto finito de n vectores, entonces todo subconjunto linealmente independiente de V es finito y no contiene ms de n vectores.

Corolario

Si V es un e.v. de dimensin finita, entonces todas las bases de V tienen la misma cantidad de elementos.

Así podemos definir la dimensión de un espacio vectorial de dimensión finita como el número de vectores de su base. El subespacio trivial ($S = \{0\}$) tiene dimensin 0.

Corolario

Sea V es un e.v. de dimensin finita y n = dim(V), entonces

- a. Cualquier subconjunto de V con ms de n vectores es linealmente dependiente.
- b. No hay un subconjunto de V con menos de n vectores que genere a V.

Suma de conjuntos

Sean W_1 y W_2 subconjuntos no vacíos de un espacio vectorial V, llamamos suma de conjuntos y lo denotamos $W_1 + W_2$ a:

$$W_1 + W_2 := \{ \mathbf{w}_1 + \mathbf{w}_2 \in V : \mathbf{w}_1 \in W_1 \land \mathbf{w}_2 \in W_2 \}.$$

• Si W_1 y W_2 son subespacios de V entonces $W_1 + W_2$ es un subespacio de V.

Definición (Suma Directa)

Si W_1 y W_2 son subespacios de un espacio vectorial V y $W_1 \cap W_2 = \{0\}$ llamamos suma directa de W_1 y W_2 a la suma $W_1 + W_2$ y la denotamos por

$$W_1 \oplus W_2$$

Ejemplo: Sea V el espacio vectorial de las funciones $f: \mathbb{R} \to \mathbb{R}$, sea V_p el conjunto de las funciones pares y V_i el conjunto de las funciones impares. Entonces V_p y V_i son subespacios de V, $V = V_p + V_i$ y $V_p \cap V_i = \{0\}$. Es decir $V = V_p \oplus V_i$.

Propiedad

Sean W_1 y W_2 subespacios de V tales que $W_1 + W_2 = V$ y $W_1 \cap W_2 = \{0\}$ Entonces para todo $\mathbf{x} \in V$ existen únicos vectores $\mathbf{w}_1 \in W_1$ y $\mathbf{w}_2 \in W_2$ tales que $\mathbf{x} = \mathbf{w}_1 + \mathbf{w}_2$

Lema

Si W_1 y W_2 son subespacios de V de dimensión finita, entonces $W_1 + W_2$ es de dimensin finita y

$$dimW_1 + dimW_2 = dim(W_1 \cap W_2) + dim(W_1 + W_2)$$

En Particular $\dim W_1 + \dim W_2 = \dim (W_1 \oplus W_2).$

Bibliografía

- Strang, G. Algebra lineal y sus aplicaciones, 4a Ed, Thomson, 2006.
- Hoffman, K., Kunze, R. Algebra Lineal. 1Ed, Prentice-Hall Hispanoamericana, S. A. 1973.

GRACIAS POR SU ATENCIÓN!!

