极坐标解平面问题

极坐标与直角坐标的转换关系

坐标	直角坐标(x,y)	极坐标 (r,θ)	
坐标关系	$\begin{cases} x = r cos \theta \\ y = r sin \theta \end{cases}$	$\begin{cases} r^2 = x^2 + y^2 \\ \theta = \arctan\left(\frac{y}{x}\right) \end{cases}$	
	$\begin{cases} \frac{\partial r}{\partial x} = \frac{x}{r} = \cos\theta \\ \frac{\partial r}{\partial y} = \frac{y}{r} = \sin\theta \end{cases};$	$\begin{cases} \frac{\partial \theta}{\partial x} = -\frac{y}{r^2} = -\frac{\sin \theta}{r} \\ \frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r} \end{cases}$	
一次偏导的关系	$\begin{cases} \frac{\partial}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta} = \cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial y} = \frac{\partial r}{\partial y} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial y} \frac{\partial}{\partial \theta} = \sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r} \frac{\partial}{\partial \theta} \end{cases}$		
	$[\beta] = \begin{bmatrix} \cos\theta & -s \\ \sin\theta & c\theta \end{bmatrix}$ 变换: $\begin{cases} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \end{cases} = [\beta] \begin{cases} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{cases}$		
二次偏导的关系	$\begin{cases} \frac{\partial^2}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial}{\partial x} = \cos^2 \theta \frac{\partial^2}{\partial r} \\ \frac{\partial^2}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \sin^2 \theta \frac{\partial^2}{\partial r} \\ \frac{\partial^2}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial}{\partial y} = \frac{\sin 2\theta}{2} \frac{\partial}{\partial r} \end{cases}$	$\frac{\frac{\partial^{2}}{\partial r^{2}} - \frac{\sin 2\theta}{r} \frac{\partial^{2}}{\partial r \partial \theta} + \frac{\sin^{2}\theta}{r} \frac{\partial}{\partial r} + \frac{\sin 2\theta}{r^{2}} \frac{\partial}{\partial \theta} + \frac{\sin^{2}\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}}{\frac{\partial^{2}}{\partial r^{2}} + \frac{\sin 2\theta}{r} \frac{\partial^{2}}{\partial r^{2}} + \frac{\cos^{2}\theta}{r} \frac{\partial}{\partial r} - \frac{\sin 2\theta}{r^{2}} \frac{\partial}{\partial \theta} + \frac{\cos^{2}\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}}{\frac{\partial^{2}}{\partial r^{2}} + \frac{\cos 2\theta}{r} \frac{\partial^{2}}{\partial r \partial \theta} - \frac{\sin 2\theta}{r} \frac{\partial}{\partial r} - \frac{\cos 2\theta}{r^{2}} \frac{\partial}{\partial \theta} - \frac{\sin 2\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}}{\frac{\partial^{2}}{\partial r^{2}} + \frac{\cos 2\theta}{r} \frac{\partial^{2}}{\partial r^{2}} - \frac{\sin 2\theta}{r} \frac{\partial}{\partial \theta} - \frac{\cos 2\theta}{r^{2}} \frac{\partial}{\partial \theta} - \frac{\sin 2\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}}$	
调和算子	$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$	$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$	
双调和算子	$\nabla^2 \nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{2}{2} \frac{\partial^4}{\partial x^2 \partial y^2} \right)$	$\nabla^2 \nabla^2 = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)$	

基本量间关系

	直角坐标(x,y)	极坐标 (r,θ)	平面轴对称问题(r)
位移	$\mathbf{u}(u,v)$ $\mathbf{u}(u_r,u_\theta)$ $\begin{Bmatrix} u \\ v \end{Bmatrix} = [\beta]^{-1} \begin{Bmatrix} u_r \\ u_\theta \end{Bmatrix} \qquad \begin{Bmatrix} u_r \\ u_\theta \end{Bmatrix} = [\beta] \begin{Bmatrix} u \\ v \end{Bmatrix}$		$\boldsymbol{u}(u_r, \boldsymbol{0})$
	$[\boldsymbol{\sigma}] = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix}$	$\left[oldsymbol{\sigma} ight] = \left[egin{matrix} \sigma_r & au_{r heta} \ au_{ heta r} & \sigma_{ heta} \ ag{0.00000000000000000000000000000000000$	$egin{aligned} [\sigma] = egin{bmatrix} \sigma_r & 0 \ 0 & \sigma_{ heta} \end{bmatrix} \end{aligned}$
应力	$\begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix} = [\beta] \begin{bmatrix} \sigma_r & \tau_{r\theta} \\ \tau_{\theta r} & \sigma_{\theta} \end{bmatrix} [\beta]^T$	$\begin{bmatrix} \sigma_r & \tau_{r\theta} \\ \tau_{\theta r} & \sigma_{\theta} \end{bmatrix} = [\beta]^T \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix} [\beta]$	
	$\begin{cases} \sigma_{x} = \frac{\sigma_{r} + \sigma_{\theta}}{2} + \frac{\sigma_{r} - \sigma_{\theta}}{2} \cos 2\theta - \tau_{r\theta} \sin 2\theta \\ \sigma_{y} = \frac{\sigma_{r} + \sigma_{\theta}}{2} - \frac{\sigma_{r} - \sigma_{\theta}}{2} \cos 2\theta + \tau_{r\theta} \sin 2\theta \\ \tau_{xy} = \frac{\sigma_{r} - \sigma_{\theta}}{2} \sin 2\theta + \tau_{r\theta} \cos 2\theta \end{cases}$	$\begin{cases} \sigma_r = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} cos2\theta - \tau_{xy} sin2\theta \\ \sigma_\theta = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} cos2\theta + \tau_{xy} sin2\theta \\ \tau_{r\theta} = \frac{\sigma_x - \sigma_y}{2} sin2\theta + \tau_{xy} cos2\theta \end{cases}$	
应变	同上	同上	$[\varepsilon] = \begin{bmatrix} \varepsilon_r & 0 \\ 0 & \varepsilon_{\theta} \end{bmatrix}$
应力函数	$\phi(x,y)$	$\phi(r, heta)$	$\phi(r)$

基本方程和边界条件间的关系

	直角坐标(x,y)	极坐标 (r,θ)	平面轴对称问题(r)
平衡方程	$\begin{cases} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + F_x = 0 \\ \frac{\partial \tau_{xy}}{\partial xy} + \frac{\partial \sigma_y}{\partial y} + F_y = 0 \end{cases}$	$\begin{cases} \frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial r} + \frac{\sigma_r - \sigma_{\theta}}{r} + F_r = 0 \\ \frac{\partial \tau_{\theta r}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + 2 \frac{\tau_{r\theta}}{r} + F_{\theta} = 0 \end{cases}$	$\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} + F_r = 0$
几何方程	$\begin{cases} \varepsilon_{x} = \frac{\partial u}{\partial x} \\ \varepsilon_{y} = \frac{\partial v}{\partial y} \\ \varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \end{cases}$	$\begin{cases} \varepsilon_r = \frac{\partial u_r}{\partial r} \\ \varepsilon_\theta = \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \\ \gamma_{r\theta} = \frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} \end{cases}$	$\begin{cases} \varepsilon_r = \frac{du_r}{dr} \\ \varepsilon_\theta = \frac{u_r}{r} \\ \gamma_{r\theta} = 0 \end{cases}$
本构方程	4.7-4.8	$arepsilon_{r} = rac{1}{E^{*}}(\sigma_{r} - v^{*}\sigma_{ heta})$ $\sigma_{r} = rac{2G^{*}}{1-v^{*}}(arepsilon_{r} + v^{*}arepsilon_{ heta})$ $arepsilon_{ heta} = rac{1}{E^{*}}(\sigma_{ heta} - v^{*}\sigma_{r})$ 或 $\sigma_{ heta} = rac{2G^{*}}{1-v^{*}}(arepsilon_{ heta} + v^{*}arepsilon_{r})$ $\gamma_{r\theta} = rac{1}{G^{*}}\tau_{r\theta}$ $\tau_{r\theta} = G^{*}\gamma_{r\theta}$ 轴向分量: 平面应力: $\left\{ \begin{split} arepsilon_{z} = -rac{v}{E}(\sigma_{r} + \sigma_{ heta}) & \mp \text{mDD} \end{split} \right.$ $\left\{ \begin{split} arepsilon_{z} = 0 & \varepsilon_{z} = 0 \\ \sigma_{z} = v(\sigma_{r} + \sigma_{ heta}) \end{split} \right.$	$egin{aligned} arepsilon_r &= rac{1}{E^*} (\sigma_r - v^* \sigma_{ heta}) & \sigma_r &= rac{2G^*}{1-v^*} (arepsilon_r + v^* arepsilon_{ heta}) \ arepsilon_{ heta} &= rac{1}{E^*} (\sigma_{ heta} - v^* \sigma_r) & arphi & \sigma_{ heta} &= rac{2G^*}{1-v^*} (arepsilon_{ heta} + v^* arepsilon_r) \ \gamma_{r heta} &= au_{r heta} &= 0 \ & & \gamma_{r heta} &= au_{r heta} &= 0 \ & & & \forall r &= au_{r heta} &= 0 \ & & \forall r &= au_{r heta} &= 0 \ & & \forall r &= au_{r heta} &= au_{r heta} &= 0 \ & & \sigma_z &= au_{r heta} &= au_{$
协调方程	4.10(平面应变)	$\frac{\partial^{2} \varepsilon_{\theta}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \varepsilon_{r}}{\partial \theta^{2}} - \frac{1}{r} \frac{\partial^{2} \gamma_{r\theta}}{\partial r \partial \theta} + \frac{2}{r} \frac{\partial \varepsilon_{\theta}}{\partial r} - \frac{1}{r^{2}} \frac{\partial \varepsilon_{r}}{\partial r} - \frac{1}{r^{2}} \frac{\partial \gamma_{r\theta}}{\partial \theta} = 0$	$\frac{\partial^2 \varepsilon_{\theta}}{\partial r^2} + \frac{2}{r} \frac{\partial \varepsilon_{\theta}}{\partial r} - \frac{1}{r^2} \frac{\partial \varepsilon_{r}}{\partial r} = 0$

双调和方程	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{2}{2} \frac{\partial^4}{\partial x^2 \partial y^2}\right) \phi = 0$	$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\phi = 0$	$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d^2}{d\theta^2}\right)\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d^2}{d\theta^2}\right)\phi = \frac{d^4\phi}{dr^4} + \frac{2}{r}\frac{d^3\phi}{dr^3} - \frac{1}{r^2}\frac{d^2\phi}{dr^2} + \frac{1}{r^3}\frac{d\phi}{dr} = 0$	
应力公式	$\begin{cases} \sigma_x = \frac{\partial^2 \phi}{\partial y^2} \\ \sigma_y = \frac{\partial^2 \phi}{\partial x^2} \\ \tau_x = -\frac{\partial^2 \phi}{\partial x \partial y} \end{cases}$	$\begin{cases} \sigma_r = \frac{1}{r} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} \\ \sigma_{\theta} = \frac{\partial^2 \phi}{\partial r^2} \\ \tau_{r\theta} = \frac{1}{r^2} \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \frac{\partial^2 \phi}{\partial \theta \partial r} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta} \right) \end{cases}$	$\begin{cases} \sigma_r = \frac{1}{r} \frac{\partial \phi}{\partial r} \\ \sigma_{\theta} = \frac{\partial^2 \phi}{\partial r^2} \\ \tau_{r\theta} = 0 \end{cases}$ $\phi = Alnr + Br^2 lnr + Cr^2 + D$	
	应力第一不变量与坐标系无关: $I_1 = \sigma_x + \sigma_y = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \phi = \nabla^2 \phi = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}\right) \phi = \sigma_r + \sigma_\theta$			
边界条件	上 在 Γ_u 上: $\begin{cases} u_x = \bar{u}_y \\ u_y = \bar{u}_y \end{cases}$ $ \text{在} \Gamma_\sigma \text{L}: \begin{cases} \sigma_x \cos(v, e_x) + \tau_{r\theta} \cos \\ \tau_{xy} \cos(v, e_x) + \sigma_y \cos \end{cases} $	$ \begin{array}{c} $	上 在 Γ_u 上: $u_r = \overline{u}_r$ 上: $\sigma_r = \overline{T}_r$	

平面轴对称问题解的具体形式

解的形式	系数	简化解的形式	
$\begin{cases} \sigma_r = \frac{A}{r^2} + B(1 + 2lnr) + 2C \\ \sigma_{\theta} = -\frac{A}{r^2} + B(3 + 2lnr) + 2C \\ \tau_{r\theta} = \frac{\sigma_x - \sigma_y}{2} sin2\theta + \tau_{xy} cos2\theta \end{cases}$	$r)+2C$ $nr)+2C$ A 、 B 、 C π 向闭合圆/环域,位移单值要求: $B=0$;		$\begin{cases} \sigma_r = \frac{A}{r^2} + 2C \\ \sigma_\theta = -\frac{A}{r^2} + 2C \\ \tau_{r\theta} = 0 \end{cases}$
$\begin{cases} \varepsilon_{r} = \frac{1}{E^{*}} \left[\frac{(1+v^{*})A}{r^{2}} + (1-3v^{*})B + 2(1-v^{*})Blnr + 2(1-v) \right] C \\ \varepsilon_{\theta} = \frac{1}{E^{*}} \left[-\frac{(1+v^{*})A}{r^{2}} + (3-v^{*})B + 2(1-v^{*})Blnr + 2(1-v)C \right] \\ \gamma_{r\theta} = 0 \end{cases}$	A、B、C	对于实心圆域,还要求 A = 0;	$\begin{cases} \varepsilon_r = C_1 - \frac{C_2}{r^2} \\ \varepsilon_\theta = C_1 + \frac{C_2}{r^2} \\ \gamma_{r\theta} = 0 \end{cases}$
$\begin{cases} u_r = \frac{1}{E^*} \left[\frac{-A(1+v^*)}{r} + 2(1-v^*)Brlnr - (1+v^*)Br + 2(1-v^*)Cr \right] \\ u_\theta = \frac{4Br\theta}{E^*} + Hr + Kcos\theta - Isin\theta \end{cases}$	A、B、C、H、K、I,并与θ相关	限制原点刚体位移: I=K=0; 限 制刚体转动: H=0;	$\begin{cases} u_r = C_1 r + \frac{C_2}{r} \\ u_\theta = 0 \end{cases}$ $C_1 = 2C \frac{1-v}{E}; C_2 = -A \frac{1+v}{E}$