Decorated Para for linear quadratic regulators

Riu Rodríguez Sakamoto

Mathematically Structured Programming group, Department of Computer and Information Sciences, University of Strathclyde

> riu.rodriguez-sakamoto@strath.ac.uk riurodsak@gmail.com

> > BCTCS, Strathclyde 15 April, 2025

Motivation

Dynamical systems in control theory are defined over a fixed state space. 'Flows' are monoids generated by transition functions.

- Can we generalize monoids to categories?
- Algebraic approach to dependent action spaces, state spaces changing over time, etc.

Case study:

Linear quadratic regulators

Linear quadratic regulators: The monoid

Problem: Find a control law $k: X \to U$ in **FVec**_R that given a immediate cost function $\ell = \begin{pmatrix} Q & S^{\top} \\ S & P \end{pmatrix}$ minimises for all $x_0 \in X$ the accumulated cost

$$J(x_0) = \sum_{i} \ell(x_i, u_i) \qquad \text{s.t. } \begin{cases} x_{i+1} = f(x_i, u_i) = Ax_i + Bu_i \\ u_i = k(x_i) \end{cases}$$

Solution: Discrete algebraic Riccati equation ("linear algebra version of the Bellman equation"):

$$P_{i} = \min_{u_{i}} \left\{ \ell(x_{i}, u_{i}) + (Ax_{i} + Bu_{i})^{\top} P_{i+1} (Ax_{i} + Bu_{i}) \right\}$$

$$= Q + A^{\top} P_{i+1} A - (S^{\top} + A^{\top} P_{i+1} B) (R + B^{\top} P_{i+1} B)^{-1} (S + B^{\top} P_{i+1} A)$$

- P_i : Cost matrix in step i (present)
- P_{i+1} : Cost matrix in step i+1 (future)
- Optimal control law: $k = -(R + B^\top P_{i+1}B)^{-1}(S + B^\top P_{i+1}A)$

Linear quadratic regulators: Categorically

- Linear dynamics: $f: V \to W$ in $\mathbf{FVec}_{\mathbb{R}}$.
- Quadratic costs: Quadratic forms (symmetric matrices) in the set

$$\begin{aligned} \mathsf{Sym}(V) &= \left\{ \begin{array}{l} q: V \to \mathbb{R} \\ \mathsf{s.t.} \ \forall \alpha \in \mathbb{R}. \forall u, v \in V. q(\alpha v) = \alpha^2 q(v) \\ q(u+v) - q(u) - q(v) \ \mathsf{is \ bilinear} \end{array} \right\} \\ &= \left\{ \begin{array}{l} Q: V^* \otimes V \\ \mathsf{s.t.} \ \forall \alpha \in \mathbb{R}. \forall v \in V. \ (\alpha v)^\top Q(\alpha v) = \alpha^2 v^\top Qv \end{array} \right\} \end{aligned}$$

Costs are always positive (positive semi-definite matrices)

$$\mathsf{Sym}_+(V) = \left\{q \in \mathsf{Sym}(V) \mid \forall v \in V. q(v) \geq 0\right\} = \left\{Q \in \mathsf{Sym}(V) \mid \forall v \in V. v^\top Q v \geq 0\right\}$$

Sym(V): **FVec**_{\mathbb{R}} pointwise addition (p+q)(v)=p(v)+q(v)scalar multiplication $k \cdot a(v) = a(kv)$

 $\operatorname{\mathsf{Sym}}_{\perp}(V):\operatorname{\mathsf{SMod}}_{\mathbb{R}^{+}}$ positive cone of $\operatorname{\mathsf{Sym}}(V)$

 $\operatorname{\mathsf{Sym}}_+(V):\operatorname{\mathbf{SMod}}^{\leq}_{\mathbb{R}_+}$ Löwner order (partial order, no least upper bounds)

A < B if B - A is pos. semi-definite $\forall v \in V.v^{\top}(B-A)v > 0$

Sym(V): **FVec**_{\mathbb{R}} pointwise addition (p+q)(v)=p(v)+q(v)scalar multiplication $k \cdot q(v) = q(kv)$

 $\operatorname{\mathsf{Sym}}_{\perp}(V):\operatorname{\mathsf{SMod}}_{\mathbb{R}^{+}}$ positive cone of $\operatorname{\mathsf{Sym}}(V)$

 $\operatorname{\mathsf{Sym}}_{\perp}(V):\operatorname{\mathbf{SMod}}_{\mathbb{D}}^{\leq}$ Löwner order (partial order, no least upper bounds)

$$A \leq B$$
 if $B - A$ is pos. semi-definite $\forall v \in V.v^{\top}(B - A)v \geq 0$

$$\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- $\bullet \; \mathsf{Sym}_+ : \mathbf{FVec}^{\mathsf{op}}_{\mathbb{R}} \to \mathbf{SMod}^{\leq}_{\mathbb{R}+}$
 - ▶ On morphisms $f: V \to W$, $\operatorname{Sym}_+(f) := f^\top(-)f: \operatorname{Sym}_+(W) \to \operatorname{Sym}(V)$ is linear (semimodule hom) and preserves order
 - 'Linear' or 'quantified' version of $\mathcal{P}: \mathbf{Set}^{\mathsf{op}} \to \mathbf{Pos}$

¹David I. Spivak. "Generalized Lens Categories via functors $C^{op} \rightarrow Cat$ ". In: (Feb. 2020). arXiv: 1908.02202 [math.CT].

- $\bullet \; \mathsf{Sym}_+ : \mathbf{FVec}^{\mathsf{op}}_{\mathbb{R}} \to \mathbf{SMod}^{\leq}_{\mathbb{R}+}$
 - ▶ On morphisms $f: V \to W$, $\operatorname{Sym}_+(f) := f^\top(-)f: \operatorname{Sym}_+(W) \to \operatorname{Sym}(V)$ is linear (semimodule hom) and preserves order
 - 'Linear' or 'quantified' version of $\mathcal{P}:\mathbf{Set}^{\mathsf{op}}\to\mathbf{Pos}$
- ullet Fibrational: $\mathsf{Sym}_+: \mathbf{FVec}^\mathsf{op}_\mathbb{R} o \mathbf{SMod}^\leq_{\mathbb{R}^+} \hookrightarrow \mathbf{Cat}$
 - ▶ Grothendieck construction $\int Sym_+$ (aka. F-lenses¹):
 - ★ objects $(V : \mathbf{FVec}, P : \mathsf{Sym}_+(V))$
 - * morphisms $(V, P) \rightarrow (W, Q)$ are $f: V \rightarrow W$ s.t. $P \leq f^{\top}Qf$

¹David I. Spivak. "Generalized Lens Categories via functors $C^{op} \rightarrow Cat$ ". In: (Feb. 2020). arXiv: 1908.02202 [math.CT].

Constraints via Lagrangians pullbacks

Lagrangian approach

Given a cost matrix $P_X \in \text{Sym}_+(X)$, the state(s) $x \in X$ that minimise the cost $x^\top P_X x$ are given by the null space $\operatorname{argmin}_x x^\top P x = \ker(P)$.

Given dynamics $f: X \to Y$ (matrix A) and cost functions $P_X \in \text{Sym}_+(X)$, $P_Y \in \text{Sym}_+(Y)$, the *delayed rewards* problem is:

$$\operatorname{argmin}_{x \in X} \ J(x) = x^{\top} P_X x + y^{\top} P_Y y$$

s.t. $y = Ax$

Constraints via Lagrangians pullbacks

Lagrangian approach

Given a cost matrix $P_X \in \text{Sym}_+(X)$, the state(s) $x \in X$ that minimise the cost $x^\top P_X x$ are given by the null space $\operatorname{argmin}_x x^\top P x = \ker(P)$.

Given dynamics $f: X \to Y$ (matrix A) and cost functions $P_X \in \text{Sym}_+(X)$, $P_Y \in \text{Sym}_+(Y)$, the *delayed rewards* problem is:

$$\operatorname{argmin}_{x \in X} \ J(x) = x^{\top} P_X x + y^{\top} P_Y y$$

s.t. $y = Ax$

Define
$$\mathcal{L}(x,\lambda,y) = J(x,y) + \lambda^{\top}(Ax - y)$$
. Then $\operatorname{argmin}_{(x,\lambda,y)}\{J(x) \mid y = f(x)\} = \ker(\nabla \mathcal{L})$.

$$\begin{array}{ll} \partial_{x}\mathcal{L}(x,\lambda,y) = 0 \\ \partial_{\lambda}\mathcal{L}(x,\lambda,y) = 0 \\ \partial_{y}\mathcal{L}(x,\lambda,y) = 0 \end{array} \qquad \begin{bmatrix} P_{X} & A^{\top} \\ A & 0 & -I \\ -I & P_{Y} \end{bmatrix} \begin{bmatrix} x \\ \lambda \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Constraints via Lagrangians pullbacks

Pullback approach

Let (X, P_X) and (Y, P_Y) be objects of $\int \operatorname{Sym}_+$. The cartesian lift of $f: X \to Y$ determines $(X, f^\top P_Y f)$.

$$\pi_X \circ \ker(\nabla \mathcal{L}) = \ker(P_X + f^\top P_Y f)$$

This circumvents differentiation of \mathcal{L} and the introduction of Lagrange multipliers in the Gaussian elimination algorithm, giving the optimal x^* directly.

Parametrised categories

For monoidal $(\mathcal{C}, \otimes, I)$, Para (\mathcal{C}) has objects of \mathcal{C} and morphisms $X \to Y$ are $f: X \otimes U \to Y$. For cartesian $(\mathcal{C}, \times, 1)$, **Para** (\mathcal{C}) is related² to **Span** (\mathcal{C}) where a morphism $X \to Y$ is $X \stackrel{\pi_X}{\rightleftharpoons} X \times II \stackrel{f}{\Rightarrow} Y$

Example

Linear controlled dynamical systems are $X \stackrel{\pi_X}{\leftarrow} X \oplus U \stackrel{f}{\rightarrow} Y$ in Span(FVec_D) \cong LinSpan_D.

Decorated Para

As a variation on decorated cospans³:

Definition

Let $(\mathcal{C}, \otimes, I)$ be a symmetric monoidal category with a comonoid object $(1, \Delta), (\mathcal{D}, +, 0)$ a symmetric monoidal category with pullbacks, and $(F,\phi):(\mathcal{D},+,0)^{\mathrm{op}}\to(\mathcal{C},\otimes,I)$ a lax monoidal contravariant functor. The category FSpan of F-decorated spans consists of

- ullet Objects of ${\mathcal D}$
- Morphisms $X \to Y$ are equiv. classes of spans $X \stackrel{I}{\leftarrow} N \stackrel{r}{\rightarrow} Y$ and 'structure elements' $s: 1 \rightarrow FN$
- Composition: Spans by pullback. Structure elements by:

$$1 \xrightarrow{\Delta} 1 \otimes 1 \xrightarrow{s \otimes t} FN \otimes FM \xrightarrow{\psi_{N,M}} F(N+M) \xrightarrow{F[\pi_N,\pi_M]} F(N+_YM)$$

³Brendan Fong. "The Algebra of Open and Interconnected Systems". PhD thesis. University of Oxford, 2016. DOI: 10.48550/ARXIV.1609.05382. 4 D > 4 D > 4 D > 4 D > 4 D >

Decorated Para

Example

For $\operatorname{Sym}_+: (\mathbf{FVec}_{\mathbb{R}}, \oplus, \mathbb{R}^0) \to (\mathbf{SMod}_{\mathbb{R}^+}^{\leq}, \oplus, \emptyset)$, the category $\operatorname{Sym}_+ \mathbf{Span}$ with comonoid object (\mathbb{R}, Δ) consists of

- Objects: State spaces $X : \mathbf{FVec}_{\mathbb{R}}$
- Morphisms: $X \stackrel{\pi_X}{\leftarrow} X \oplus U \stackrel{f}{\rightarrow} Y$ and a cost matrix P_{XU} : $\operatorname{Sym}_+(X \oplus U)$, denoted $(\pi_X, f, P_{XU}) : X \rightarrow Y$.
- Identity: X = X = X and 0_X : $Sym_+(X)$.

The functorial Riccati equation

Recall the discrete algebraic Riccati equation (DARE)

$$P_i = Q + A^{\top} P_{i+1} A - (S^{\top} + A^{\top} P_{i+1} B) (R + B^{\top} P_{i+1} B)^{-1} (S + B^{\top} P_{i+1} A)$$

Theorem

The discrete algebraic Riccati equation defines a functor DARE : $(Sym_+ Span)^{op} \to Mfd_{\infty}$.

- It's smooth
- Preserves identity:

$$DARE(id_X, id_X, 0_X)(P_X) = 0_X + id_X^\top P_X id_X = P_X$$

• Preserves compositionality (by Gaussian elimination...):

$$\mathrm{DARE}(\pi_X, f, P_{XU}) \circ \mathrm{DARE}(\pi_Y, g, P_{YV})(P_Z) = \mathrm{DARE}(g \circ (f \oplus 1_V), P_{\mathrm{gr}(f)V})(P_Z)$$

Decorated Para for linear quadratic regulators

Riu Rodríguez Sakamoto

Mathematically Structured Programming group, Department of Computer and Information Sciences, University of Strathclyde

> riu.rodriguez-sakamoto@strath.ac.uk riurodsak@gmail.com

> > BCTCS, Strathclyde 15 April, 2025

> > > Thank you!

