MATH 2033 HW-9 Due Nov 15.

1. Recall that for every $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, define

$$||x||_{\infty} = \max_{1 \le k \le n} |x_k|.$$

For every $x, y \in \mathbb{R}^n$, define

$$d_{\infty}(x,y) = ||x - y||_{\infty}.$$

Prove that $(\mathbb{R}^n, d_{\infty})$ is a metric space.

- 2. If $1 \le p < q$, show that the unit ball in $\ell^p(\mathbb{R}^n)$ is contained in the unit ball in $\ell^q(\mathbb{R}^n)$.
- 3. Consider a point $x \in \mathbb{R}^2$ that lies outside the unit ball in $\ell^1(\mathbb{R}^2)$ and inside the unit ball in $\ell^\infty(\mathbb{R}^2)$. Is there a p between 1 and ∞ such that $||x||_p = 1$? Do the same problem in \mathbb{R}^n .
- 4. Prove that any subset of a discrete metric space is both open and closed.
- 5. Let $1 \leq p \leq \infty$ be fixed. Find an uncountable number of subsets of $\ell^p(\mathbb{R}^n)$ that are neither open nor closed.