0.) Import the Credit Card Fraud Data From CCLE

```
In [3]:
         import pandas as pd
          from google.colab import drive
          import matplotlib.pyplot as plt
          import numpy as np
In [2]: drive.mount('/content/gdrive/', force_remount = True)
         Mounted at /content/gdrive/
In [4]:
         df = pd.read_csv("/content/gdrive/MyDrive/W24ML Code/Data/fraudTest.csv")
In [5]:
         df.head()
Out [5]:
            Unnamed:
                       trans_date_trans_time
                                                        cc_num
                                                                       merchant
                                                                                     category
                                                                                                        first
                                                                                                                 last gender
                                                                                                 amt
                                                                   fraud_Kirlin and
         0
                    0
                          2020-06-21 12:14:25 2291163933867244
                                                                                                2.86
                                                                                                                Elliott
                                                                                  personal_care
                                                                                                         Jeff
                                                                                                                                Da
                                                                                                                           M
                                                                            Sons
                                                                    fraud_Sporer-
                          2020-06-21 12:14:33 3573030041201292
                                                                                  personal_care 29.84 Joanne Williams
                    1
                                                                          Keebler
                                                                 fraud_Swaniawski,
          2
                    2
                          2020-06-21 12:14:53 3598215285024754
                                                                     Nitzsche and
                                                                                 health_fitness 41.28 Ashley
                                                                                                                           F Vale
                                                                                                               Lopez
                                                                           Welch
                                                                                                                                 3
                                                                      fraud_Haley
                                                                                                                                Kı
         3
                    3
                          2020-06-21 12:15:15 3591919803438423
                                                                                     misc_pos 60.05
                                                                                                       Brian Williams
                                                                           Group
                                                                                                                               Mil
                                                                  fraud Johnston-
                          2020-06-21 12:15:17  3526826139003047
                                                                                                 3.19
                                                                                                     Nathan
                                                                                                              Massev
                                                                                         travel
                                                                          Casper
                                                                                                                               Apt
```

5 rows × 23 columns

```
df_select = df[["trans_date_trans_time", "category", "amt", "city_pop", "is_fraud"]]
In [6]:
        df_select["trans_date_trans_time"] = pd.to_datetime(df_select["trans_date_trans_time"])
        df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
        X = pd.get_dummies(df_select, ["category"]).drop(["trans_date_trans_time", "is_fraud"], axis = 1)
        y = df["is_fraud"]
        /var/folders/j8/qj6z29_s2qj2dwzv274nkt9h0000gp/T/ipykernel_20135/2282180580.py:3: SettingWithCopyWarning
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.h
        tml#returning-a-view-versus-a-copy
          df select["trans date trans time"] = pd.to datetime(df select["trans date trans time"])
        /var/folders/j8/qj6z29 s2qj2dwzv274nkt9h0000gp/T/ipykernel 20135/2282180580.py:4: SettingWithCopyWarning
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.h
        tml#returning-a-view-versus-a-copy
          df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
```

1.) Use scikit learn preprocessing to split the data into 70/30 in out of sample

```
In [7]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

In [8]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3)

In [9]: X_test, X_holdout, y_test, y_holdout = train_test_split(X_test, y_test, test_size = .5)
```

```
In [10]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    X_holdout = scaler.transform(X_holdout)
```

2.) Make three sets of training data (Oversample, Undersample and SMOTE)

```
In [13]: from imblearn.over_sampling import RandomOverSampler
    from imblearn.under_sampling import RandomUnderSampler
    from imblearn.over_sampling import SMOTE

In [14]:    ros = RandomOverSampler()
    over_X, over_y = ros.fit_resample(X_train, y_train)

    rus = RandomUnderSampler()
    under_X, under_y = rus.fit_resample(X_train, y_train)

    smote = SMOTE()
    smote_X, smote_y = smote.fit_resample(X_train, y_train)
```

3.) Train three logistic regression models

```
In [15]: from sklearn.linear_model import LogisticRegression
In [16]: over_log = LogisticRegression().fit(over_X, over_y)
    under_log = LogisticRegression().fit(under_X, under_y)
    smote_log = LogisticRegression().fit(smote_X, smote_y)
```

4.) Test the three models

```
In [17]: over_log.score(X_test, y_test)
Out[17]: 0.9051800667002567

In [18]: under_log.score(X_test, y_test)
Out[18]: 0.9072194630389405

In [19]: smote_log.score(X_test, y_test)
Out[19]: 0.9042923294704768

In [20]: # We see SMOTE performing with higher accuracy but is ACCURACY really the best measure - it is not.
```

5.) Which performed best in Out of Sample metrics?

```
In [21]: # Sensitivity here in credit fraud is more important as seen from last class
         from sklearn.metrics import confusion_matrix
In [23]: y_true = y_test
In [24]: y_pred = over_log.predict(X_test)
         cm = confusion_matrix(y_true, y_pred)
         array([[75226, 7830],
Out[24]:
               [ 74, 228]])
In [25]: print("Over Sample Sensitivity: ", cm[1,1] /( cm[1,0] + cm[1,1]))
         Over Sample Sensitivity : 0.7549668874172185
In [26]: y_pred = under_log.predict(X_test)
         cm = confusion_matrix(y_true, y_pred)
         array([[75397, 7659],
Out[26]:
                        227]])
               [ 75,
```

6.) Pick two features and plot the two classes before and after SMOTE.


```
In [ ]: raw_temp = pd.concat([smote_X, smote_y], axis =1)
In [ ]: #plt.scatter(raw_temp[raw_temp["is_fraud"] == 0]["amt"], raw_temp[raw_temp["is_fraud"] == 0]["city_pop"])
    plt.scatter(raw_temp[raw_temp["is_fraud"] == 1]["amt"], raw_temp[raw_temp["is_fraud"] == 1]["city_pop"])
    plt.legend([ "Not Fraud", "Fraud"])
    plt.xlabel("Amount")
    plt.ylabel("Population")

plt.ylabel("Population")

/usr/local/lib/python3.10/dist-packages/IPython/core/pylabtools.py:151: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
    fig.canvas.print figure(bytes io, **kw)
```


In []:

7.) We want to compare oversampling, Undersampling and SMOTE across our 3 models (Logistic Regression, Logistic Regression Lasso and Decision Trees).

Make a dataframe that has a dual index and 9 Rows.

Calculate: Sensitivity, Specificity, Precision, Recall and F1 score. for out of sample data.

Notice any patterns across perfomance for this model. Does one totally out perform the others IE. over/under/smote or does a model perform better DT, Lasso, LR?

Choose what you think is the best model and why. test on Holdout

```
In [45]: for resample_key, resampler in resampling_methods.items():
             resample_X, resample_y = resampler.fit_resample(X_train, y_train)
              for model_key, model in model_configs.items():
                 combined_key = f"{resample_key}_{model_key}"
                 trained_models[combined_key] = model.fit(resample_X, resample_y)
In [46]: trained_models
         {'over_LOG': LogisticRegression(),
Out[46]:
          'over_LASSO': LogisticRegression(C=2.0, penalty='l1', solver='liblinear'),
           'over_DTREE': DecisionTreeClassifier(),
           'under_LOG': LogisticRegression(),
           'under_LASSO': LogisticRegression(C=2.0, penalty='l1', solver='liblinear'),
           'under_DTREE': DecisionTreeClassifier(),
          'smote_LOG': LogisticRegression(),
          'smote_LASSO': LogisticRegression(C=2.0, penalty='l1', solver='liblinear'),
          'smote_DTREE': DecisionTreeClassifier()}
In [66]: from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score
         import pandas as pd
         # Initialize an empty list to store results
         def calc_perf_metric(y_true, y_pred):
             tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
             sensitivity = tp / (tp + fn) # Corrected formula
              specificity = tn / (tn + fp) # Corrected formula
             precision = precision_score(y_true, y_pred)
             recall = recall_score(y_true, y_pred) # Recall is the same as sensitivity
             f1 = f1_score(y_true, y_pred)
              # Return a dictionary of the calculated metrics
              return(sensitivity, specificity, precision, recall, f1)
In [67]: trained_models = {}
         results = []
In [68]: for resample key, resampler in resampling methods.items():
              resample_X, resample_y = resampler.fit_resample(X_train, y_train)
              for model_key, model in model_configs.items():
                 combined_key = f"{resample_key}_{model_key}"
                 m = model.fit(resample_X, resample_y)
                 trained_models[combined_key] = m
                 y_pred = m.predict(X_test)
                 sensitivity,specificity,precision,recall,f1 = calc_perf_metric(y_test, y_pred)
                 results.append({"Model": combined_key,
                                  'sensitivity': sensitivity,
                                  'specificity': specificity,
                                  'precision': precision,
                                  'recall': recall,
                                  'f1_score': f1
                                 })
                 #results.append(calc perf metric(y true, y pred))
In [69]: results df = pd.DataFrame(results)
In [70]: results_df
Out[70]:
                  Model sensitivity specificity precision
                                                        recall
                                                             f1_score
         0
               over_LOG
                         0.751656
                                   0.906750 0.028475 0.751656
                                                             0.054871
                                   0.906786 0.028485
             over_LASSO
                         0.751656
                                                     0.751656 0.054891
          1
         2
              over_DTREE
                                   0.998531 0.577855 0.552980 0.565144
                         0.552980
         3
              under_LOG
                         0.758278
                                   0.875385  0.021647  0.758278  0.042092
                                   under_LASSO
                         0.761589
            under DTREE
                                   0.949528 0.063659 0.943709
                         0.943709
                                                             0.119272
              smote_LOG
                         0.754967
                                   0.907376 0.028784 0.754967 0.055454
         7 smote_LASSO
                         0.754967
                                   0.907376  0.028784  0.754967  0.055454
           smote_DTREE
                         0.725166
                                   0.993896  0.301653  0.725166  0.426070
```

Performance Analysis

1. Sensitivity (Recall):

- The highest sensitivity is observed with the under_DTREE model, indicating it is best at identifying positive cases.
- Both Logistic Regression models (over_LOG, smote_LOG) and the Lasso models show similar sensitivity across
 the resampling methods, suggesting consistency in identifying true positives regardless of the resampling
 strategy.

2. Specificity:

The Decision Tree models (over_DTREE, smote_DTREE) exhibit high specificity, particularly with the
 over DTREE achieving nearly perfect specificity. This indicates strong performance in identifying true negatives.

3. Precision:

• The over_DTREE model significantly outperforms others in precision, which suggests it has the lowest rate of false positives. This is crucial in scenarios where the cost of a false positive is high.

4. F1 Score:

• The smote_DTREE model stands out with the highest F1 score, indicating a balanced performance between precision and recall. This balance is important for achieving overall accuracy.

Pattern Recognition

- **Decision Trees with SMOTE** (smote_DTREE) shows a compelling balance across all metrics, particularly in achieving a high F1 score, which suggests a balanced trade-off between precision and recall.
- Oversampling tends to favor specificity but at the cost of precision, as seen in the over_DTREE model.
- **Undersampling** significantly enhances sensitivity, especially for the Decision Tree model (under_DTREE), making it an excellent choice for applications where missing a positive case (false negative) is critical.
- Logistic Regression models, both standard and with Lasso, display consistency across resampling techniques but do not excel in any particular metric compared to Decision Trees.

Best Model Selection

Considering the balance between all metrics, **Decision Trees with SMOTE (smote_DTREE)** appears to be the best model due to its:

- High sensitivity, ensuring most positive cases are identified.
- Excellent specificity, minimizing false positives.
- Strong F1 score, indicating a balanced precision and recall, making it versatile for various applications.

This model strikes a good balance between identifying positive cases without significantly increasing the false positives, making it a robust choice for many scenarios. Testing this model on a holdout dataset would be the next step to validate its performance on unseen data and ensure its generalizability and effectiveness.

In []: