[Objective]

Your model should classifiy of the images into 10 classes $(0\sim9)$.

[Requirements]

- 1. Implement 4-layer perceptron with Pytorch or Tensorflow. (Basic code is provided)
- 2. You should experiment with settings stated in the evaluation report, and report the result of each settings.
- 3. You should attach the plot of the validation dataset accuracy plot.
- 4. You should report the experimental results.
- (all kinds of additional experiments are recommended)

"5!'

[Evaluation report]

MNIST Evaluation Report													
	Batch_size	Activation function	# of layers	Layer size	Epoch	Weight initialization	Optimizer	Learning rate	Weight decay	Dropout	training time	Early stopping epoch	Accuracy
Setting #1	200	ReLU	3	300, 200	30	Х	Adam	0.001	X	0			
Setting #2	200	ReLU	4	200, 200, 200	100	Х	Adam	0.001	X	0			
Setting #3	200	ReLU	4	600, 600, 800	100	X	Adam	0.001	X	0			
Setting #4	200	ReLU	4	200, 200, 200	100	He	Adam	0.001	X	0			
Setting #5	200	ReLU	4	200, 200, 200	100	He	Adadelta	0.001	X	0			
Setting #6	200	ReLU	4	200, 200, 200	100	He	Adam	0.001	O(lambda=0.01)	0			
Setting #7	200	ReLU	4	200, 200, 200	100	He	Adam	0.01	O(lambda=0.01)	0			
Setting #8	200	ReLU	4	200, 200, 200	100	He	Adam	0.01	O(lambda=0.01)	0.2			
additional setting													
Validation	n dataset acc	curacy plot											
	0.111-114				Setting	#2		C-11	ing #3			Setting #4	
	Setting #1				Setting	#2		Sett	.mg #5			Setting #4	
[결과 정리]													
12-10 11													

• Evaluation Criteria

Simplicity	How concisely did you write the code? - 배점 6점 4 Layers: 4점 Weight initializer: 1점 Dropout: 1점 Weight decay: 1점
Performance	How well did the results of the code perform? - 배점 2점 - acc 97.5%이상 달성 시 만점
Brevity and Clarity	How concisely and clearly did you explain the results? - 배점 2점

- Due to : ~ 9.20(Sun)
- Submission: Online submission on blackboard
- Your submission should contain
 - 1) The whole code of your implementation
 - 2) The evaluation report
- You must implement the components yourself!
- File name : StudentID_Name.zip