

01 Background

(02) Methodology

(03) Experiment

04 Conclusion

(05) Final proposal

Background

- Long sequence time-series forecasting (LSTF) is crucial across many domains
- How to enhance the prediction capacity of LSTF?
 - Long-range alignment ability
 - Efficient operations on long sequence inputs and outputs

Problems of Transformer

- The quadratic computation of self-attention $O(L^2)$
 - → ProbSparse self-attention O(LlogL)
- The memory bottleneck in stacking layers for long inputs
 - → Self-attention distilling operation
- The speed plunge in predicting long outputs
 - → Generative-style decoder

How does self-attention work?

- Self-attention: Consider the context to get relevance.
 - [NIPS 2017] Attention is all you need!
- Give a sequence of data, return a sequence of corresponding attention score.

Ref: 李宏毅 ML2021 slides

How does self-attention work?

- The canonical self-attention in is defined based on the tuple inputs.
 - o query, key and value (That is, we have to learned the weight W^q , W^k , W^v)

Ref: 李宏毅 ML2021 slides

How does self-attention work?

Ref: 李宏毅 ML2021 slides

- Performs the scaled dot-product as $A(Q, K, V) = Softmax\left(\frac{QK^T}{\sqrt{d}}\right)V$
 - \circ where $Q \in \mathbb{R}^{L_Q \times d}$, $K \in \mathbb{R}^{L_K \times d}$, $V \in \mathbb{R}^{L_V \times d}$ and d is the input dimension

softmax

G

Problem

Query Sparsity Measurement

- Self-attention probability has potential **sparsity** and also **long tail distribution**.
 - We want to find out "Active" Query.

Query Sparsity Measurement

How to find out dominant dot product pairs

$$\text{Use KL-divergence.} \\ \mathcal{A}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \sum_{j} \frac{k(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{l} k(\mathbf{q}_i, \mathbf{k}_l)} \mathbf{v}_j = \mathbb{E}_{p(\mathbf{k}_j | \mathbf{q}_i)}[\mathbf{v}_j]$$

$$q(\mathbf{k}_j|\mathbf{q}_i) = 1/L_K$$
 uniform distribution

$$KL(q||p) = \ln \sum_{l=1}^{L_K} e^{\mathbf{q}_i \mathbf{k}_l^{\top} / \sqrt{d}} - \frac{1}{L_K} \sum_{j=1}^{L_K} \mathbf{q}_i \mathbf{k}_j^{\top} / \sqrt{d} - \ln L_K$$

Get Top-u queries to calculate self-attention

How to reduce time & space complexity?

- Calcaute all dot-product pairs to find "active query". $ightarrow {\it O}(L^2)$ NO!!
- Since long tail distribution, we only need to randomly sample $c \cdot \ln L$ keys
 - Active query is high-correlated with other keys.
 - Authors investigate vanilla Transformer on ETT dataset

sample $c \cdot \ln L$ keys

Algorithm 1 ProbSparse self-attention

Require: Tensor $\mathbf{Q} \in \mathbb{R}^{m \times d}$, $\mathbf{K} \in \mathbb{R}^{n \times d}$, $\mathbf{V} \in \mathbb{R}^{n \times d}$

- 1: **print** set hyperparameter c, $u = c \ln m$ and $U = m \ln n$
- 2: randomly select U dot-product pairs from K as \bar{K}
- $O(L \ln L)$ 3: set the sample score $\bar{\mathbf{S}} = \mathbf{Q}\bar{\mathbf{K}}^{\mathsf{T}}$
 - 4: compute the measurement $M = \max(\bar{S}) \max(\bar{S})$ by row
 - 5: set Top-u queries under M as \mathbf{Q}
- $O(L \ln L)$ 6: set $\mathbf{S}_1 = \operatorname{softmax}(\bar{\mathbf{Q}}\mathbf{K}^{\top}/\sqrt{d}) \cdot \mathbf{V}$
 - 7: set $\mathbf{S}_0 = \text{mean}(\mathbf{V})$
 - 8: set $S = \{S_1, S_0\}$ by their original rows accordingly

Ensure: self-attention feature map **S**.

Input

Encoder

• Probsparse self-attention

Distilling

- Stack more attention blocks can get more detail features.
- Problem: the memory usage is $O(J \cdot L^2)$ if stack J layers
- Solution: Distilling operation

• Distilling operation to privilege the superior ones with dominating features

$$\mathbf{X}_{j+1}^t = \text{MaxPool}\left(\text{ELU}(\text{Conv1d}([\mathbf{X}_j^t]_{AB}))\right)$$

$$\mathbf{X}_{j+1}^t = \text{MaxPool}\left(\text{ELU}\left(\text{Conv1d}([\mathbf{X}_j^t]_{AB})\right)\right)$$

• Enhance the robustness of the distilling operation

Decoder

• One Forward Procedure

Use shorter input sequence(groundtruth) instead of specific flag as "start token" in decoder.

$$\mathbf{X}_{ ext{de}}^t = ext{Concat}(\mathbf{X}_{ ext{token}}^t, \mathbf{X}_{\mathbf{0}}^t) \in \mathbb{R}^{(L_{ ext{token}} + L_y) imes d_{ ext{model}}}$$

Decoder

• One Forward Procedure

$$\mathbf{X}_{\text{de}}^t = \text{Concat}(\mathbf{X}_{\text{token}}^t, \mathbf{X}_{\mathbf{0}}^t) \in \mathbb{R}^{(L_{\text{token}} + L_y) \times d_{\text{model}}}$$

Predicit 7-day temperature, x_{tocken}^t = the 5 days before the forecasted time point.

Experiment

- 1. Electricity Transformer Temperature(ETT)
- 2. Electricity Consuming Load (ECL)
- 3. Weather

Station	Date	Latitude	Longitude	SeaLevelPressure	WindDirection	WindSpeed	WetBulbTemperature	
2907099999	1903-01-01T08:00:00	64.3333333	23.45	29.8	90	9	3	
2907099999	1903-01-01T15:00:00	64.3333333	23.45	29.78	90	14	4	
2907099999	1903-01-01T22:00:00	64.3333333	23.45	29.65	50	26	10	•
2907099999	1903-01-02T08:00:00	64.3333333	23.45	29.61	360	45	13	
2907099999	1903-01-02T15:00:00	64.3333333	23.45	29.65	340	36	11	

All dataset will undergo univariate and multivariate time-series forecasting.

Experiment

• Univariate

Me	thods	Informer	Informer [†]	LogTrans	Reformer	LSTMa	DeepAR	ARIMA	Prophet
M	etric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTh	24	0.098 0.247	0.092 0.246	0.103 0.259	0.222 0.389	0.114 0.272	0.107 0.280	0.108 0.284	0.115 0.275
	48	0.158 0.319	0.161 0.322	0.167 0.328	0.284 0.445	0.193 0.358	0.162 0.327	0.175 0.424	0.168 0.330
	168	0.183 0.346	0.187 0.355	0.207 0.375	1.522 1.191	0.236 0.392	0.239 0.422	0.396 0.504	1.224 0.763
	336	0.222 0.387	0.215 0.369	0.230 0.398	1.860 1.124	0.590 0.698	0.445 0.552	0.468 0.593	1.549 1.820
	720	0.269 0.435	0.257 0.421	0.273 0.463	2.112 1.436	0.683 0.768	0.658 0.707	0.659 0.766	2.735 3.253
$ETTh_2$	24	0.093 0.240	0.099 0.241	0.102 0.255	0.263 0.437	0.155 0.307	0.098 0.263	3.554 0.445	0.199 0.381
	48	0.155 0.314	0.159 0.317	0.169 0.348	0.458 0.545	0.190 0.348	0.163 0.341	3.190 0.474	0.304 0.462
	168	0.232 0.389	0.235 0.390	0.246 0.422	1.029 0.879	0.385 0.514	0.255 0.414	2.800 0.595	2.145 1.068
	336	0.263 0.417	0.258 0.423	0.267 0.437	1.668 1.228	0.558 0.606	0.604 0.607	2.753 0.738	2.096 2.543
	720	0.277 0.431	0.285 0.442	0.303 0.493	2.030 1.721	0.640 0.681	0.429 0.580	2.878 1.044	3.355 4.664
$ETTm_1$	24	0.030 0.137	0.034 0.160	0.065 0.202	0.095 0.228	0.121 0.233	0.091 0.243	0.090 0.206	0.120 0.290
	48	0.069 0.203	0.066 0.194	0.078 0.220	0.249 0.390	0.305 0.411	0.219 0.362	0.179 0.306	0.133 0.305
	96	0.194 0.372	0.187 0.384	0.199 0.386	0.920 0.767	0.287 0.420	0.364 0.496	0.272 0.399	0.194 0.396
	288	0.401 0.554	0.409 0.548	0.411 0.572	1.108 1.245	0.524 0.584	0.948 0.795	0.462 0.558	0.452 0.574
	672	0.512 0.644	0.519 0.665	0.598 0.702	1.793 1.528	1.064 0.873	2.437 1.352	0.639 0.697	2.747 1.174
Weather	24	0.117 0.251	0.119 0.256	0.136 0.279	0.231 0.401	0.131 0.254	0.128 0.274	0.219 0.355	0.302 0.433
	48	0.178 0.318	0.185 0.316	0.206 0.356	0.328 0.423	0.190 0.334	0.203 0.353	0.273 0.409	0.445 0.536
	168	0.266 0.398	0.269 0.404	0.309 0.439	0.654 0.634	0.341 0.448	0.293 0.451	0.503 0.599	2.441 1.142
	336	0.297 0.416	0.310 0.422	0.359 0.484	1.792 1.093	0.456 0.554	0.585 0.644	0.728 0.730	1.987 2.468
	720	0.359 0.466	0.361 0.471	0.388 0.499	2.087 1.534	0.866 0.809	0.499 0.596	1.062 0.943	3.859 1.144
ECL	48	0.239 0.359	0.238 0.368	0.280 0.429	0.971 0.884	0.493 0.539	0.204 0.357	0.879 0.764	0.524 0.595
	168	0.447 0.503	0.442 0.514	0.454 0.529	1.671 1.587	0.723 0.655	0.315 0.436	1.032 0.833	2.725 1.273
	336	0.489 0.528	0.501 0.552	0.514 0.563	3.528 2.196	1.212 0.898	0.414 0.519	1.136 0.876	2.246 3.077
	720	0.540 0.571	0.543 0.578	0.558 0.609	4.891 4.047	1.511 0.966	0.563 0.595	1.251 0.933	4.243 1.415
	960	0.582 0.608	0.594 0.638	0.624 0.645	7.019 5.105	1.545 1.006	0.657 0.683	1.370 0.982	6.901 4.264
C	ount	32	12	0	0	0	6	0	0

• Multivariate

Me	thods	Informer		Informer [†]		LogTrans		Reformer		LSTMa		LSTnet	
Me	etric	MSE	MAL	MSL	MAL	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh	24	0.577	0.549	0.620	0.577	0.686	0.604	0.991	0.754	0.650	0.624	1.293	0.901
	48	0.685	0.625	0.692	0.671	0.766	0.757	1.313	0.906	0.702	0.675	1.456	0.960
	168	0.931	0.752	0.947	0.797	1.002	0.846	1.824	1.138	1.212	0.867	1.997	1.214
	336	1.128	0.873	1.094	0.813	1.362	0.952	2.117	1.280	1.424	0.994	2.655	1.369
	720	1.215	0.896	1.241	0.917	1.397	1.291	2.415	1.520	1.960	1.322	2.143	1.380
ETTh ₂	24	0.720	0.665	0.753	0.727	0.828	0.750	1.531	1.613	1.143	0.813	2.742	1.457
	48	1.457	1.001	1.461	1.077	1.806	1.034	1.871	1.735	1.671	1.221	3.567	1.687
	168	3.489	1.515	3.485	1.612	4.070	1.681	4.660	1.846	4.117	1.674	3.242	2.513
	336	2.723	1.340	2.626	1.285	3.875	1.763	4.028	1.688	3.434	1.549	2.544	2.591
	720	3.467	1.473	3.548	1.495	3.913	1.552	5.381	2.015	3.963	1.788	4.625	3.709
$ETTm_1$	24	0.323	0.369	0.306	0.371	0.419	0.412	0.724	0.607	0.621	0.629	1.968	1.170
	48	0.494	0.503	0.465	0.470	0.507	0.583	1.098	0.777	1.392	0.939	1.999	1.215
	96	0.678	0.614	0.681	0.612	0.768	0.792	1.433	0.945	1.339	0.913	2.762	1.542
	288	1.056	0.786	1.162	0.879	1.462	1.320	1.820	1.094	1.740	1.124	1.257	2.076
	672	1.192	0.926	1.231	1.103	1.669	1.461	2.187	1.232	2.736	1.555	1.917	2.941
Weather	24	0.335	0.381	0.349	0.397	0.435	0.477	0.655	0.583	0.546	0.570	0.615	0.545
	48	0.395	0.459	0.386	0.433	0.426	0.495	0.729	0.666	0.829	0.677	0.660	0.589
	168	0.608	0.567	0.613	0.582	0.727	0.671	1.318	0.855	1.038	0.835	0.748	0.647
	336	0.702	0.620	0.707	0.634	0.754	0.670	1.930	1.167	1.657	1.059	0.782	0.683
	720	0.831	0.731	0.834	0.741	0.885	0.773	2.726	1.575	1.536	1.109	0.851	0.757
ECL	48	0.344	0.393	0.334	0.399	0.355	0.418	1.404	0.999	0.486	0.572	0.369	0.445
	168	0.368	0.424	0.353	0.420	0.368	0.432	1.515	1.069	0.574	0.602	0.394	0.476
	336	0.381	0.431	0.381	0.439	0.373	0.439	1.601	1.104	0.886	0.795	0.419	0.477
	720	0.406	0.443	0.391	0.438	0.409	0.454	2.009	1.170	1.676	1.095	0.556	0.565
	960	0.460	0.548	0.492	0.550	0.477	0.589	2.141	1.387	1.591	1.128	0.605	0.599
Co	ount] 3	13	1	4		1		0	()	1 1	2

Experiment

• Time consumption

Training time:

Inference time:

Conclusion

Conclusion

- Reduce time complexity → ProbSparse self-attention
- Reduce memory usage → ProbSparse self-attention

& Self-attention distilling operation

• Reduce inference time → Generative style decoder

- Dataset: Stock
- We want to predict companies' closing returns given stock features.

S&P 500

+54.17 (+1.30%)

- o Date
- o Open
- o High
- o Low
- Closing
- Volume
- Univariate

Date	Open	High	Low	Close	Adj Close	Volume
2020/2/6	30.99	31.56	29.56	30	30	2552630
2020/2/7	29.75	31.75	29.71	30.92	30.92	357500
2020/2/10	31.8	32	31	31.89	31.89	229510
2020/2/11	31.94	33.23	31.93	32.87	32.87	286300

Nasdag

+328.69 (+1.00%)

12,975.69

+277.59 (+2.19%)

Russell 2000

+18.42 (+1.05%)

Crude Oil

+1.04(+1.45%)

- Problem: How to determine replicas of the main stack with halving inputs?
 - the first half, the second half or random selection?

- Feature combination of the low-layer and high-level features
 - High-layer features contain more semantic information.
 - Low-layer features contain more detail information.

❖ [2019] Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a

- How is stock dataset different from other dataset?
 - Stock prices are flutuated in every day.
 - Stocks in the same sector share a similar trend even though their prices are perturbed randomly in a short-term manner
 - Especially, stocks are highly correlated in a bull market (market index).
- How can we efficiently correlate multiple stocks for accurate stock movement prediction?

- Expand input dimension: concatenate market index information as input
- Multi-Level Context Aggregation: $\mathbf{h}_u^m = \mathbf{h}_u^c + \beta \mathbf{h}^i$

[KDD'21] Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with

- Embedding method
 - Informer: Local Position Embedding + Global Learnable Stamp Embedding

Hyperparameter

- o input sequence length of encoder: 64
- o start token length: 40
- prediction sequence length: 5
- o num of encoder layers: 5,
- o num of decoder layers: 1,
- o training epoch: 20
- o loss function: MSE
- learning rate: 1e-4 (decaying to 0.7x every epoch)
- o batch size: 32
- o early stopping patience: 5 (If validation data loss isn't smaller than before five times, then stop.)
- o dropout: 0.05

• Predicted Pfizer's (PFE) stock using Johnson & Johnson's (JNJ), with a negative beta of -0.1128, indicating an inverse relationship due to industry competition.

Predict PFE with NASDAQ

Predict PFE with JNJ

• Comparative analysis between the stocks and the overall market index (NASDAQ).

1. JPMorgan (JPM) for Finance

Predict JPM

Predict JPM with NASDAQ

• Comparative analysis between the stocks and the overall market index (NASDAQ).

2. Drive Shack (DS) for Entertainment

Predict DS with NASDAQ

• Comparative analysis between the stocks and the overall market index (NASDAQ).

3. ExxonMobil (XOM) for Energy

Predict XOM

Predict XOM with NASDAQ

• Comparative analysis between the stocks and the overall market index (NASDAQ).

4. Pfizer (PFE) for Pharmaceuticals

Predict PFE

Predict PFE with NASDAQ

