Group5_Exp7

AIM: To compute the equivalent circuit parameters of a 3- ϕ induction machine using the no-load and blocked rotor tests.

PROCEDURE:

1.No load Test:

- Open a Blank Model in Simulink
- Select the preset model of Asynchronous Machine with name plate reading (5HP,460V,60Hz,1750rpm)
- Make a circuit as shown in Circuit Diagram in MATLAB section.
- Set the voltage in Three-Phase Programmable voltage source to 460V(rated voltage) and Load Torque(T_m) to 0.
- Take the readings in voltage measurement, Current measurement and Power measurement devices respectively to get V_O, I_O and P_O.

2.Blocked Rotor Test:

- Open a Blank Model in Simulink
- Select the preset model of Asynchronous Machine with name plate reading (5HP,460V,60Hz,1750rpm)
- Make a circuit as shown in Circuit Diagram in MATLAB section.
- Adjust the voltage in Three-Phase Programmable voltage source so as to get Rated Current (I_{rated}) in the current measurement block.
- Also, set the speed of the rotor (w_m) to 0.
- Now, take the readings in voltage measurement, Current measurement and Power measurement devices respectively to get V_{BR}, I_{BR} and P_{BR}.

CIRCUIT DIAGRAM IN MATLAB:

Figure1:Circuit Diagram in simulink for No load test

Figure2:Circuit Diagram in simulink for Blocked Rotor test

Asynchronous Machine (mask) (link) Implements a three-phase asynchronous machine (wound rotor, squirrel cage or double squirrel cage) modeled in a selectable dq reference frame (rotor, stator, or synchronous). Stator and rotor windings are connected in wye to an internal neutral point. Parameters Configuration Load Flow Nominal power, voltage (line-line), and frequency [Pn(VA),Vn(Vrms),fn(Hz)]: [3730 460 60] Stator resistance and inductance Rs(ohm) Lls(H) : [1.115 0.005974] Rotor resistance and inductance [Rr'(ohm) Llr'(H)]: [1.083 0.005974] Mutual inductance Lm (H): 0.2037 Pole pairs p (): 2 Initial conditions [slip, th(deg), ia,ib,ic(A), pha,phb,phc(deg)]: [00000000] Simulate saturation [i(Arms); v(VLL rms)]: , 302.9841135, 428.7778367; 230, 322, 414, 460, 506, 552, 598, 644, 690]

Figure3:Asynchronous Machine Parameters for (5HP,460V,60HZ,1750RPM) model

CALCULATIONS AND RESULTS:

1.Here for this machine, V_{rated}=460V ,N_{rated}=1750rpm,f=50Hz,P=50HP,Pf=cos ϕ =0.85,Efficiency=1

2.We can calculate I_{rated} as

$$I = \frac{P \cdot 745.699872}{\sqrt{3} \cdot V \cdot \cos \varphi \cdot \eta}$$

$$==>I_{rated}=5.50A$$

3.Also,here the net power P_{O} or P_{BR} is the

\Rightarrow P_{net}= Wattmeter1 reading + Wattmeter 2 reading.

4.The stator resistance R_1 =1.115 Ω (Figure3) which is obtained from Machine Parameters.

No toad Values:

Vo	460V
_ Io	3.36A
Po	890-674,9 = 242,1W

Blocked-Rotor Values:

VBR	47.5
$\mathfrak{T}_{\mathcal{B}\mathcal{C}}$	5.50A
PBR	217.8-20.31 = 197.28 W

$$Z_0 = \frac{(V_0/f_3)}{T_0} = \frac{460}{f_3 \cdot (3.36)} = 99,04 \Omega$$

$$R_0 = \frac{P_0/3}{I_0^2} = \frac{24201}{3 \times (3.36)^2} = 7014 \Omega.$$

$$\frac{Z_{BR} = (N_{BR}/\sqrt{s_3})}{T_{BR}} = \frac{47.5}{63 \times 5.5} = 4.98 \Omega$$

$$R_{BR} = \frac{(P_{BR}/3)}{I_{BR}^2} = \frac{197.4}{3(5.5)^2} = 2.17.0$$

$$X_1 + X_2^1 = 4.48 = X_{RP}$$

Taking,
$$X_1 = X_2^1 = \frac{X_{BR}}{2} = 2.24 \, R$$

$$R_{2}' = \left(R_{BR} - R_{1}\right) \left(\frac{X_{m} + X_{2}!}{X_{m}}\right)^{2}$$

$$= \left(2.17 - 1.115\right) \left(\frac{76.47 + 2.24}{76.47}\right)^{2}$$

$$= \left(\frac{R_{2}!}{76.47} - 1.115\right) \left(\frac{76.47 + 2.24}{76.47}\right)^{2}$$

$$Riwf = \frac{\chi_m^2}{R_0 - R_1} = \frac{(76.47)^2}{9.14 - 1.115} = 970.50$$

$$R_{1} = 1.115\Omega, X_{1} = 2.24\Omega, X_{m} = 76.47\Omega,$$

$$R_{1} = 970.52, R_{2}^{1} = 1.11\Omega, X_{2}^{1} = 2.24\Omega$$

OBSERVATIONS:

STATOR IN STAR
OBSERVATIONS
V ₀ =460V
I _O =3.36A
P _o =242.1W
V _{BR} =47.5V
I _{BR} =5.50A
P _{BR} =197.49W

RESULTS AND CONCLUSION:

Rated Voltage and Rated Current

STATOR IN STAR
V _{rated} = 460V
I _{rated} = 5.50A

Here, the voltage is line-to-line voltage and the current is line current.

Z _o =79.04Ω
R _o =7.14Ω
X _O =78.71Ω
Z _{BR} =4.98Ω
R _{BR} =2.17Ω
X _{BR} =4.48Ω
R ₁ =1.115Ω
R' ₂ =1.11Ω
$X_1 = 2.24\Omega$
X' ₂ =2.24Ω
R _i =970.5Ω
X _m =76.47Ω

COMMENTS:

1.We can observe that the calculated values of machine parameters is approximately equal to the actual preset model parameters in Fig(3).

MEMBERS OF TEAM:

- 1. G.Yashwanth Naik EE18BTECH11017
- 2. P.Aashrith EE18BTECH11035