Problem A. 1

Time limit 2000 ms
Mem limit 65536 kB
OS Windows

Given a number N and an array A of N numbers. Determine if the number X exists in array A or **not** and print its position (**o-index**).

Note: *X* may be found once or more than once and may not be found.

Input

First line contains a number $N(1 \le N \le 10^5)$ number of elements.

Second line contains N numbers $(0 \le A_i \le 10^9)$.

Third line contains a number $X(0 \le X \le 10^9)$.

Output

Print the **position** of X in the first time you find it. If it doesn't **exist** print **-1**.

Input	Output
3 3 0 1 0	1

Input	Output
5	-1
1 3 0 4 5 10	

doYouKnowBasic? Dec 15, 2024

Input	Output
4 2 3 2 1 2	0

Problem B. 2

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N and an array A of N numbers. Print the array after doing the following operations:

- Replace every **positive** number by 1.
- Replace every **negative** number by 2.

Input

First line contains a number $N(2 \le N \le 1000)$ number of elements.

Second line contains N numbers ($-10^5 \le A_i \le 10^5$).

Output

Print the array after the **replacement** and it's values separated by space.

Input	Output
5 1 -2 0 3 4	1 2 0 1 1

Problem C. 3

Time limit 2000 ms
Mem limit 65536 kB
OS Windows

Given a number N and an array A of N numbers. Print the **absolute summation** of these numbers.

absolute value: means to remove any negative sign in front of a number.

$$EX: |-5| = 5, |7| = 7$$

Input

First line contains a number $N(1 \le N \le 10^5)$ number of elements.

Second line contains N numbers ($-10^9 \le A_i \le 10^9$).

Output

Print the **absolute summation** of these numbers.

Examples

Input	Output
4 7 2 1 3	13

Input	Output
3 -1 2 -3	2

Note

Second Example:

-1 + 2 + -3 = -2 and it absolute is 2 so the answer is 2.

Problem D. 4

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N and an array A of N numbers. Determine if it's **palindrome** or **not**.

Note:

An array is called **palindrome** if it reads the same backward and forward, for example, arrays { 1 } and { 1,2,3,2,1 } are **palindromes**, while arrays { 1,12 } and { 4,7,5,4 } are **not**.

Input

First line contains a number N ($1 \le N \le 10^5$) number of elements.

Second line contains N numbers $(1 \le A_i \le 10^9)$.

Output

Print "YES" (without quotes) if A is a palindrome array, otherwise, print "NO" (without quotes).

Input	Output
5 1 3 2 3 1	YES

Input	Output
4 1 2 3 4	NO

Problem E. 5

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N. Print first N numbers of the **Fibonacci** sequence.

Note: In order to create the **Fibonacci** sequence use the following function:

- fib(1) = 0.
- fib(2) = 1.
- fib(n) = fib(n-1) + fib(n-2).

Input

Only one line containing a number $N(1 \le N \le 45)$.

Output

Print the first N numbers from the $\bf Fibonacci$ Sequence .

Examples

Input	Output
7	0 1 1 2 3 5 8

Note

For more information visit Fibonacci: https://www.mathsisfun.com/numbers/fibonacci-sequence.html.

Problem F. 6

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N and an array A of N numbers. Print all array **positions** that store a number less than or equal to **10** and the **number stored** in that position.

Input

First line contains a number $N(2 \le N \le 1000)$ number of elements.

Second line contains N numbers ($-10^5 \le A_i \le 10^5$).

it's guaranteed that there is at least one number in array less than or equal to 10.

Output

For each number in the array that is equal to or less than **10** print a single line contains "A[i] = X", where **i** is the **position** in the array and X is the number **stored** in the **position**.

Input	Output
5 1 2 100 0 30	A[0] = 1 $A[1] = 2$ $A[3] = 0$

Problem G. 7

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a string *S*. Print the **origin string** if it's **not too long** otherwise, print the **special abbreviation**.

Note: The string is called **too long**, if its length is strictly more than **10** characters. If the string is **too long** then you have to print the string in the following manner:

- Print the first character in the string.
- Print number of characters between the first and the last characters.
- Print the **last** character in the string.

For example: "localization" will be "l10n", and "internationalization" will be "i18n".

Input

The first line contains a number $T(1 \le T \le 100)$ number of test cases.

Each of the *T* following lines contains a string S ($1 \le |S| \le 100$) where |S| is the length of the string.

It's guaranteed that *S* contains only lowercase Latin letters.

Output

For each test case, print the result string.

Input	Output
4 word localization internationalization pneumonoultramicroscopicsilicovolcanoconi osis	word l10n i18n p43s

Problem H. 8

Time limit 1000 ms
Mem limit 65536 kB
OS Windows

Given a number N and an array A of N numbers. Print the numbers after **sorting** them.

Note:

- Don't use built-in-functions.
- try to solve it with bubble sort algorithm or Selection Sort.
- for more information watch: https://www.youtube.com/watch?v=EnodMqJuQEo.

Input

First line contains a number N (o < N < 10^3) number of elements.

Second line contains *N* numbers (- $100 \le A_i \le 100$).

Output

Print the numbers after **sorting** them.

Input	Output
3 3 1 2	1 2 3

Input	Output
4	2 3 5 7
5 2 7 3	

Problem I. 9

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N and an array A of N numbers. Print the smallest possible result of A_i + A_j + j - i, where $\mathbf{1} \leq \mathbf{i} < \mathbf{j} \leq N$.

Input

The first line contains a number $T(1 \le T \le 100)$ number of test cases.

Each test case contains two lines:

- The first line consists a number N ($2 \le N \le 100$) number of elements.
- The second line contains *N* numbers ($10^6 \le A_i \le 10^6$).

Output

For each test case print a single line contains **the smallest** possible sum for the corresponding test case.

Examples

Input	Output
1	7
4	
4 20 1 9 4	

Note

First Case:

All possibles (i,j) where (1 \leq i < j \leq N) are :

i = 1, j = 2 then result = $a_1 + a_2 + j - i = 20 + 1 + 2 - 1 = 22$.

i = 1, j = 3 then result = $a_1 + a_3 + j - i = 20 + 9 + 3 - 1 = 31$.

i = 1, j = 4 then result = $a_1 + a_4 + j - i = 20 + 4 + 4 - 1 = 27$.

 $\mathbf{i}=\mathbf{2}$, $\mathbf{j}=\mathbf{3}$ then result = $a_2+a_3+\mathbf{j}-\mathbf{i}=\mathbf{1}+\mathbf{9}+\mathbf{3}-\mathbf{2}=\mathbf{11}.$

 $\mathbf{i}=\mathbf{2}$, $\mathbf{j}=\mathbf{4}$ then result = $a_2+a_4+\mathbf{j}-\mathbf{i}=\mathbf{1}+\mathbf{4}+\mathbf{4}-\mathbf{2}=7$.

i = 3, j = 4 then result = $a_3 + a_4 + j - i = 9 + 4 + 4 - 3 = 14$.

So the smallest possible result is 7.

Problem J. 10

Time limit 2000 ms

Mem limit 65536 kB

OS Windows

Given a string *S*. Determine whether this string is **Good** or **Bad**.

Note: The string is **Good** if and only if it has "**010**" or "**101**" as one of its sub-strings and it's not necessary to have both of them.

A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not.

Input

The first line contains a number $T(1 \le T \le 100)$ number of test cases.

Each of the *T* following lines contains a string $S(1 \le |S| \le 10^5)$ where |S| is the length of the string.

It's guaranteed that S contains only '1s' and '0s'.

Output

For each test case, print "Good" if the string is Good otherwise, print "Bad".

Examples

Input	Output
2 11111110 101010101010	Bad Good

Note

Example case 1:

The string doesn't contain **010** or **101** as sub-strings.

Example case 2:

The string contains both ${\bf 010}$ and ${\bf 101}$ as sub-strings.

Problem K. 11

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

A sub-array of array is an array composed from a contiguous block of the original array's elements.

In other words A sub-array A[i-j], where $(1 \le i \le j \le N)$, is a sequence of integers A_i , A_{i+1} , ..., A_j .

For Example:

IF array = [1,6,3,7] then the **subarrays** are [1], [6], [3], [7], [1,6], [6,3], [3,7], [1,6,3,7].

Something like [1,3] would not be a sub-array as it's not a contiguous subsection of the original array.

Given a number N and an array A of N numbers. Print the **maximum** number of every subarray separated by space.

Input

First line contains a number $T(1 \le T \le 5)$ number of test cases.

Each test case contains two lines:

- First line contains a number N ($1 \le N \le 100$) number of elements.
- Second line contains *N* numbers ($10^5 \le A_i \le 10^5$).

Output

For each test case print a single line contains the **maximum** number of every sub-array separated by space.

print the answer in any order.

Examples

Input	Output
2 4 1 6 3 7 3 3 1 2	1 6 3 7 6 6 7 6 7 7 3 3 3 1 2 2

Note

First Case:

All Sub arrays are:

- Sub-array [1] it maximum number is 1.
- Sub-array [6] it maximum number is 6.
- Sub-array [3] it maximum number is 3.
- Sub-array [7] it maximum number is 7.
- Sub-array [1,6] it maximum number is 6.
- Sub-array [6,3] it maximum number is 6.
- Sub-array [3,7] it maximum number is 7.
- Sub-array [1,6,3] it maximum number is 6.
- Sub-array [6,3,7] it maximum number is 7.
- Sub-array [1,6,3,7] it maximum number is 7.

so the maximum numbers are [1,6,3,7,6,6,7,6] you can print them in any order.

Problem L. 12

Time limit 2000 ms
Mem limit 65536 kB
OS Windows

Given a string *S*. Determine how many times does each letter **occurred** in *S*.

Input

Only one line contains the string S ($1 \le |S| \le 10^7$) where |S| is the length of the string and it consists of only **lowercase** English letters.

Output

For each character that appears in S, print a single line that contains the following format: "X: Y" where X is the letter and Y is the number of times that letter X occurred in S.

Note: you must print letters in **ascending** order.

Input	Output
aaabbc	a : 3 b : 2 c : 1

Input	Output
regff	e:1 f:2 g:1 r:1

Problem M. 13

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a name S. Print "Hello, (name)" without parentheses.

Input

Only one line containing a string *S*.

Output

Print "Hello," without quotes, then print name.

Input	Output
programmer	Hello, programmer

Problem N. 14

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a string *S*. Determine whether *S* is **Palindrome** or **not**

Note: A string is said to be a **palindrome** if **the reverse** of the string is **same** as the string. For example, "abba" is **palindrome**, but "abbc" is not **palindrome**.

Input

Only one line contains a string S ($1 \le |S| \le 1000$) where |S| is the length of the string and it consists of **lowercase** letters only.

Output

Print "YES" if the string is palindrome, otherwise print "NO".

Input	Output
abba	YES

Input	Output
icpcassiut	NO

Input	Output
mam	YES

Problem O. 15

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N. Print a face down right angled triangle that has N rows.

For more clarification see the example below.

Input

Only one line containing a number $N(1 \le N \le 99)$.

Output

Print the answer according to the required above.

Examples

Input	Output
4	****

	**
	*

Note

Don't print any extra spaces after symbol " * ".

Problem P. 16

Time limit 2000 ms

Mem limit 65536 kB

OS Windows

Given a number *N*. Print the **factorial** of number *N*.

Input

First line contains a number T ($1 \le T \le 15$) number of test cases.

Next T lines will contain a number $N(0 \le N \le 20)$

Output

For each test case print a single line contains the **factorial** of *N*.

Examples

Input	Output
2	120
5	6
3	

Note

Factorial, in mathematics, the product of all positive integers less than or equal to a given positive integer and denoted by that integer and an exclamation point.

Thus, factorial seven is written 7!, meaning 1*2*3*4*5*6*7 = 5040.

Factorial zero is defined as equal to 1.

In first test case for N = 5, 5! = 1 * 2 * 3 * 4 * 5 = 120 so the answer is 120.

In Second test case for N = 3, 3! = 1 * 2 * 3 = 6 so the answer is 6.

Problem Q. 17

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given N numbers. Count how many of these values are even, odd, positive and negative.

Input

First line contains one number $N(1 \le N \le 10^3)$ number of values.

Second line contains *N* numbers $(-10^5 \le X_i \le 10^5)$.

Output

Print four lines with the following format:

First Line: "Even: X", where X is the number of **even** numbers in the given input.

Second Line: "Odd: X", where X is the number of **odd** numbers in the given input.

Third Line: "Positive: X", where X is the number of **positive** numbers in the given input.

Fourth Line: "Negative: X", where X is the number of **negative** numbers in the given input.

Examples

Input	Output
5 -5 0 -3 -4 12	Even: 3 Odd: 2 Positive: 1 Negative: 3

Note

First Example:

Even Numbers are: 0, -4, 12

Odd Numbers are: -5, -3

Positive Numbers are: 12

Negative Numbers are: -5, -3, -4

Problem R. 18

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N. Print a left angled triangle that has N rows.

For more clarification see the example below.

Input

Only one line containing a number $N(1 \le N \le 99)$.

Output

Print the answer according to the required above.

Examples

Output
*
**

Note

Don't print any extra spaces after symbol " * ".

Problem S. 19

Time limit 1000 ms

Mem limit 262144 kB

OS Windows

Given a number N. Print a pyramid that has N rows.

For more clarification see the example below.

Input

Only one line containing a number $N(1 \le N \le 99)$.

Output

Print the answer according to the required above.

Examples

Input	Output
4	*

Note

Don't print any extra spaces after symbol " * ".

Problem T. 20

Time limit 3000 ms
Mem limit 65536 kB
OS Windows

Given a number X. Determine if the number is **prime** or **not**

Note:

A **prime** number is a number that is greater than **1** and has only two factors which are **1** and **itself**.

In other words: prime number divisible only by 1 and itself.

Be careful that 1 is not prime.

The first few **prime** numbers are

2	3 5	7	11	13	17
19	23	29	31	37	41
43	47	53	59	61	67
71	73	79	83	89	97

Input

Only one line containing a number $X(2 \le X \le 10^5)$.

Output

print "YES" if the number is **prime** and "NO" otherwise.

Examples

Input	Output
7	YES

Input	Output
15	NO

Note

First Example:

7 is prime because it is not divisible by **2,3,4,5,6**, and only divisible by **1** and itself, so the answer is **YES**.

Second Example:

15 not is prime because it is divisible by **3**,**5**, so the answer is **NO**.