Optimization in Machine Learning

Optimization Problems Other optimization problems

Learning goals

- Discrete / feature selection
- Black-box / hyperparameter optimization
- Noisy
- Multi-objective

OTHER CLASSES OF OPTIMIZATION PROBLEMS

So far: "nice" (un)constrained problems:

- ullet Problem defined on continuous domain ${\cal S}$
- Analytical objectives (and constraints)

Other characteristics:

- ullet Discrete domain ${\cal S}$
- f black-box: Objective not available in analytical form computer program to evaluate
- f **noisy**: Objective can be queried but evaluations are noisy $f(\mathbf{x}) = f_{\text{true}}(\mathbf{x}) + \epsilon$, $\epsilon \sim F$
- f expensive: Single query takes time / resources
- f multi-objective: $f(\mathbf{x}) : \mathcal{S} \to \mathbb{R}^m$, $f(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_m(\mathbf{x}))$

These make the problem typically much harder to solve!

EXAMPLE 1: BEST SUBSET SELECTION

Let
$$\mathcal{D} = \left(\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right)_{1 \leq i \leq n}, \mathbf{x}^{(i)} \in \mathbb{R}^{p}$$
. Fit LM based on best feature subset.

$$\min_{\boldsymbol{\theta} \in \Theta} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^2, ||\boldsymbol{\theta}||_0 \leq k$$

Problem characteristics:

- White-box: Objective available in analytical form
- Discrete: S is mixed continuous and discrete
- Constrained

The problem is even **NP-hard** (Bin et al., 1997, The Minimum Feature Subset Selection Problem)!

▶ Click for source

EXAMPLE 2: WRAPPER FEATURE SELECTION

Subset sel. can be generalized to any learner \mathcal{I} using only features \boldsymbol{s} :

$$\min_{\boldsymbol{s} \in \{0,1\}^p} \widehat{\mathsf{GE}} \big(\mathcal{I}, \mathcal{J}, \rho, \boldsymbol{s} \big),$$

 $\widehat{\mathsf{GE}}$ general. err. with metric ho and estim. with resampling splits $\mathcal J$

Problem characteristics:

- black box eval by program
- \bullet \mathcal{S} is discrete / binary
- expensive1 eval: 1 or multiple ERM(s)!
- noisy uses data / resampling
- NB: Less features can be better in prediction (overfitting)

EXAMPLE 3: FEATURE SEL. (MULTIOBJECTIVE)

Feature selection is usually inherently multi-objective, with model sparsity as a 2nd trade-off target:

$$\min_{\mathbf{s} \in \{0,1\}^p} \left(\widehat{\mathsf{GE}}(\mathcal{I}, \mathcal{J}, \rho, \mathbf{s}), \sum_{i=1}^p s_i \right).$$

 $\widehat{\mathsf{GE}}$ general. err. with metric ho and estim. with resampling splits $\mathcal J$

- Multiobjective
- black box eval by program
- S is discrete / binary
- expensive1 eval: 1 or multiple ERM(s)!
- noisy uses data / resampling

EXAMPLE 4: HYPERPARAMETER OPTIMIZATION

- Learner \mathcal{I} usually configurable by hyperparameters $\lambda \in \Lambda$
- Find best HP configuration λ^*

$$\lambda^* \in \arg\min_{\lambda \in \Lambda} c(\lambda) = \arg\min\widehat{\mathsf{GE}}(\mathcal{I}, \mathcal{J}, \rho, \lambda)$$

 $\widehat{\mathsf{GE}}$ general. err. with metric ho and estim. with resampling splits $\mathcal J$

EXAMPLE 4: HYPERPARAMETER OPTIMIZATION

Solving

$$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} c(\lambda)$$

is very challenging:

- c black box eval by progrmm
- expensive1 eval: 1 or multiple ERM(s)!
- noisy uses data / resampling
- the search space Λ might be mixed continuous, integer, categ. or hierarchical

