

Agenda

- motivation
- Data Exploration
- •Model Results/Comparison
- model Walkthrough
- Conclusion

Why do we care who wins?

Sports Betting Companies

Sport betting laws by state

Data Exploration

Source

UFC-Fight historical data from 1993 to 2021

(by RAJEEV WARRIER, Kaggle)

- Our preprocessed data set contains 5902 rows and 99 features
- Each row represents a single fight between two fighters
- The fighters are represented as Red or Blue
- We start with 99 features relating to fighter's physical and other characteristics

- ∆ge
- height
- Weight
- Reach
- Stance/Style
- StrikesLanded in
- careerStrikes
 - Received in
 - career
- Wins

- Losses
- Draws
- Knockdowns
- Takedowns
- Headshots
- Body shots
- Distance Strikes
- Significant Strikes
- Title Bout
- Control Time
- ETC....

Predictor Variable: Fight Winner

- The dependent variable is imbalanced
 - Red-side winner: 3979 67.42%
 - Blue-side winner: 192332.58%

Correlation Matrix

- 0.8

- 0.0

- Correlation matrix used to look at X variable relationships
- Identify highly correlated attributes
- Helped with later Feature Selection

K-means Clustering

- WCSS For a given number of clusters K, this value represents a mathematical distance of sample to the cluster center, we want to minimize this value
- As seen from the right, this unsupervised method groups data into many clusters instead of our Y label, which groups it into 2 groups...Red or Blue

	KNA	70	RF	naive Bayes	Logistic Regression
Accuracy:	67.02%	60.64%	67.48%	68.94%	66.00%
True Positive Rate:	98.33%	70.65%	89.13%	85.40%	66.80%
True Negative Rate:	1.91%	39.83%	22.43%	34.20%	64.30%

Model Walkthrough

K Nearest Neighbor
Decision Tree & Random Forest
Logistic Regression (Feature Selection & PCΔ)
Gaussian Naïve Bayes

K Nearest Neighbor

- Use 10-fold Cross Validation to find the optimal number of neighbors
 - Optimal Neighbor: 91

Accuracy: 67.02%

True Positive Rate: 98.33%True Negative Rate: 1.91%

Decision Tree Classification

Accuracy: 60.64%

True Positive Rate: 70.65%

True Negative Rate: 39.83%

Decision Tree Graph

Random Forest Classification

 Created from 100 small decision trees to improve the performance

Accuracy: 67.47%

True Positive Rate: 89.13%

True Negative Rate: 22.43%

Random Forest Classification

- Top 10 important features:
 - Red & Blue Fighter's Stance
 - Weight Class
 - Red & Blue Fighter's Age
 - Red Fighter's Average Significant
 Strike by opponent
 - Blue Fighter's Distance Strikes landed
 - Red & Blue Fighter's Reach(arm span) in Centimeters
 - Red Fighter's Control Time

Feature Importance

Dimensionality Reduction

Feature Selection

- Optimal number of features: 24
- Average cross-validation score: 0.703
 - Title fight
 - Age
 - Stance
 - Significant strikes
 - Knockdowns
 - Takedowns

Dimensionality Reduction Principal Component Analysis

50 principal components → 90% variance

Logistic Regression

Dealing with Imbalanced data

G-means → optimal threshold

Logistic Regression Classification Results

Feature Selection -

Accuracy: 66.0%

True Positive Rate: 66.8%

True Negative Rate: 64.3%

Principal Components -

Accuracy: 66.1%

True Positive Rate: 65.7%

True Negative Rate: 66.9%

Gaussian Naive Bayes

Independent variables

Normally distributed

P(Observations | Red)*P(Red)VS.

P(Observations | Blue)*P(Blue)

Accuracy: 68.94%

True Positive Rate: 85.4%

True Negative Rate: 34.2%

- We chose a data set that would be fun and engaging
- Things to Note from EDA:
 - Imbalanced Dataset
 - Large number of features
- Best Model: Logistic Regression
 - Important Features: Age, Stance, Significant Strikes
- Things Learned:
 - Accuracy rate is not high, attributes relating to fighters may not be the only determinants of fight outcomes
 - Using Threshold analysis to seek balance between TPR and FPR helped us get a better model
- Future Works:
 - We may need to further fine tune our models such as Decision Tree for better performance
 - We want to look at other types of features and their effects on fight outcomes, i.e. Judges who scored fights, coach information, Team information. In more recent months, other characteristic like a fighter's fame can often sway decisions (as famous fighters can make the UFC promotion more money).