

	S'.	ľUĽ	EN	TL	D N	O							

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

EEM1026 – ENGINEERING MATHEMATICS II (ME / TE / RE)

27 OCTOBER 2018 2.30 p.m. – 4.30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENTS:

- 1. This exam paper consists of 6 pages (including cover page) with 4 Questions only.
- 2. Attempt all the questions. All questions carry equal marks and the distribution of marks for each question is given.
- 2. Please write all your answers in the Answer Booklet provided. Show all relevant steps to obtain maximum marks.
- 3. Only NON-PROGRAMMABLE calculator is allowed.

Question 1

(a) By using the method of undetermined coefficients, solve the following inhomogeneous differential equation.

$$y$$
" $-2y' + y = 5e^{3x} + 4x$

[11 marks]

(b) Consider the solution of y''-4xy'+2y=0 in the form of power series in x about $x_0=0$, i.e., $y=\sum_{n=0}^{\infty}c_nx^n$. Find the first six nonzero terms of this series solution. [14 marks]

Question 2

- (a) A random sample of 80 van owners in the east coast of Peninsula Malaysia shows that a van owners is driven on average 1500 km/month with a standard deviation of 115 km. Assume the distribution of measurements to be approximately normal. Based on this statement,
- (i) Construct a 95% confidence interval for the average number of kilometres is driven monthly. [6 marks]
- (ii) What will the conclusion of part (i) if the possible error of estimated average number of kilometres to be 1500 km/month? [1 mark]
- (b) The average lifetime of batteries of a certain brand is 150 days. Does this indicate that the average lifetime of batteries is superior to the lifetime of a random sample of 9 batteries, which are 154, 159, 162, 142, 148, 149, 156, 153 and 146? Use a 0.01 level of significance and assume that the lifetime of batteries is normal distributed. [9 marks]
- (c) Solve the following difference equation: $6y_{k+2} - 4y_{k+1} - 2y_k = 3 \quad ; \quad y_0 = 0, y_1 = 1.$

[9 marks]

Continued...

Question 3

(a) Solve the following initial-value problem by Laplace transform

$$y'' + 2y' + y = e^{2t}$$
, $y(0) = 0$ and $y'(0) = 1$. [12 marks]

(b) Find the Fourier transform of

$$f(t) = \begin{cases} 1+t, & -1 \le t \le 0\\ 1-t, & 0 \le t \le 1\\ 0, & otherwise. \end{cases}$$
 [13 marks]

Question 4

(a) By method of separation of variables, solve the wave equation for the vibration of string stretched between the points x = 0 and x = l, which subject to following boundary condition.

PDE:
$$u_{xx} = \frac{1}{9}u_{tt}$$

BCs: $u(0,t) = 0$, $u(l,t) = 0$ for $t \ge 0$.
IC: $u_{t}(x,0) = 0$ for $0 \le x \le l$.
and $u(x,0) = f(x) = \begin{cases} x, & \text{for } 0 \le x \le \frac{1}{2}l \\ l - x, & \text{for } \frac{1}{2}l \le x \le l \end{cases}$

[20 marks]

(b) Discuss following equation is parabolic, hyperbolic or elliptic.

$$u_{xx} + 2u_{xy} + \alpha u_{tt} = 0$$

For various values of constant α .

[5 marks]

Continued...

APPENDIX Table I: Laplace transform for some of function f(t)

f(t)	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1/s}{1/s^2}$
1	1/s
t	1/s ²
$t^{n}(n = 1, 2, 3,)$ e^{at}	$n!/s^{n+1}$
e ^{at}	1
	s-a
te^{at}	1
	$\overline{(s-a)^2}$
t ⁿ⁻¹ e ^{at}	$\frac{(n-1)!}{(s-a)^n}$, $n=1,2,$
cos at	$\frac{s}{s^2 + a^2}$
sin at	$\frac{a}{s^2 + a^2}$
cosh at	$\frac{s}{s^2-a^2}$
sinh at	$\frac{a}{s^2-a^2}$
u(t-a)	$\frac{a}{s^2 + a^2}$ $\frac{s}{s^2 - a^2}$ $\frac{a}{s^2 - a^2}$ $\frac{a}{s^2 - a^2}$ $\frac{e^{-as}}{s}, a \ge 0$
f(t-a) u(t-a)	
$f(t) \delta(t-a)$	$e^{-as} L(f)$ $e^{-as} f(a)$
$f(t-a) u(t-a)$ $f(t) \delta(t-a)$ $f'(t)$	$s\mathcal{L}(f) - f(0)$
f''(t)	$s^2 \mathcal{L}(f) - s f(0) - f'(0)$

Continued....

4/6

LLT

Table II: Table of Fourier Transform

f(x)	$F(w) = F\{f(x)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$
$\frac{1}{x^2 + a^2} \ (a > 0)$	$\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$
$H(x) e^{-ax} \left(\text{Re } a > 0 \right)$	$\frac{1}{\sqrt{2\pi}} \frac{1}{(a+iw)}$
$H(-x) e^{-ax}$ (Re $a > 0$)	$\frac{1}{\sqrt{2\pi}} \frac{1}{(a-iw)}$
$e^{-a x } \ (a>0)$	$\frac{1}{\sqrt{2\pi}} \frac{2a}{(w^2 + a^2)}$
e^{-x^2}	$\frac{1}{\sqrt{2}}e^{-\frac{w^2}{4}}$
$\frac{1}{2a\sqrt{\pi}}e^{\frac{x^2}{(2a)^2}} \ (a>0)$	$\frac{1}{\sqrt{2\pi}}e^{-a^2w^2}$
$\frac{1}{\sqrt{ x }}$	$\frac{1}{\sqrt{ w }}$
$e^{-a\frac{ x }{\sqrt{2}}}\sin\left(\frac{a}{\sqrt{2}} x +\frac{\pi}{4}\right)(a>0)$	$\frac{1}{\sqrt{2\pi}} \frac{2a^3}{(a^4 + w^4)}$
H(x+a)-H(x-a)	$\frac{1}{\sqrt{2\pi}} \frac{2\sin aw}{w}$
$\delta(x-a)$	$\frac{1}{\sqrt{2\pi}}e^{-iaw}$

Continued....

Table III: Table of z- Transform.

$\{x_k\}$	F(z)
e^{-ak}	$\frac{z}{z - e^{-a}}, z > e^{-a}$
a^k	$\frac{z}{z-a}, z > a $
ka ^k	$\frac{az}{(z-a)^2}$
k^2a^k	$\frac{az(z+a)}{(z-a)^3}$
$Z\{x_{k+1}\}$	$z Z\{x_k\}$ - zx_0
$Z\{x_{k+2}\}$	$z^2 Z\{x_k\} - z^2 x_0 - z x_1$

End of paper.

LLT 6/6