Segunda Prova - Integração

Semestre 2018/2 - Prof. Ricardo M. S. Rosa

8 de novembro de 2018

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: Determine os conjuntos $\liminf_{n\to\infty} E_n$ e $\limsup_{n\to\infty} E_n$ da sequência de conjuntos

$$E_n = \bigcup_{j=1,\dots,n} \left(2j - 1 - \max\{(-1)^n, 0\} - \frac{1}{n^2}, 2j - \max\{(-1)^n, 0\} + \frac{1}{n^2} \right), \quad n \in \mathbb{N}.$$

Resposta: $\lim \inf_{n\to\infty} E_n = \mathbb{N}$ e $\limsup_{n\to\infty} E_n = [0,\infty)$. Podemos escrever $E_n = \bigcup I_j^n$, com $I_j^n = [2j-1,2j] - \max\{(-1)^n,0\} + (-1/n^2,1/n^2)$. O intervalo $(-1/n^2,1/n^2)$ converge para $\{0\}$. Os intervalos $[2j-1,2j] - \max\{(-1)^n,0\}$ ficam alternando e crescendo em número com n, tendo apenas os inteiros positivos em comum (gerando o liminf) e com a sua união convergindo para $[0,\infty)$ (gerando o limsup).

Alternativamente, bastam alguns gráficos com poucos n's para se (e me) convencer das respostas indicadas.

2º: Questão: Considere uma função $f:\mathbb{R}\to\mathbb{R}$ e suponha que, para toda função contínua e limitada $\varphi:\mathbb{R}\to\mathbb{R}$, a função composta $\varphi\circ f$ seja mensurável. Mostre que f também é mensurável.

Resposta: Para quaisquer números reais $\lambda < \nu$, considere a função contínua e limitada $\varphi_{\nu,\lambda}(s) = \lambda$, se $s < \lambda$, $\varphi(s) = s$, se $\lambda \le s \le \nu$ e $\varphi(s) = \nu$, se $s > \nu$, e observe que $\{f \in (\lambda, \nu)\} = \{\varphi_{\lambda,\nu} \circ f \in (\lambda, \nu)\}$, que é mensurável pela hipótese em $\varphi_{\lambda,\nu} \circ f$. Isso mostra que a pré-imagem, por f, de qualquer intervalo finito da forma (λ, ν) é mensurável. Como f é finita, isso nos dá que f é mensurável.

Ou, observe que $f_n(x) = \max\{-n, \min\{n, f(x)\}\}$ é mensurável, por ser a composição da função $\varphi_{-n,n}$ com f, e converge pontualmente para f, de modo que f é mensurável por ser o limite pontual de funções mensuráveis.

3º Questão: Seja $f: \mathbb{R} \times [0,1] \to \mathbb{R}$ uma função limitada tal que $x \mapsto f(t,x)$ é Lebesgue mensurável em [0,1], para todo $t \in \mathbb{R}$, e $t \mapsto f(t,x)$ é contínua em \mathbb{R} , para quase todo $x \in [0,1]$. Mostre que a função

$$F(t) = \int_0^1 f(t, x) \, \mathrm{d}x$$

está bem definida e é contínua em todo $t \in \mathbb{R}$.

Resposta: Para cada $t \in \mathbb{R}$, como $x \mapsto f(t, x)$ é Lebesgue mensurável e limitada, segue que também é integrável, logo F(t) está bem definida. Para F ser contínua em um

 $t \in \mathbb{R}$ arbitrário, basta que $F(t_n) \to F(t)$, para qualquer seguência $t_n \to t$. Para uma tal sequência $(t_n)_n$, temos $f(t_n,x) \to f(t,x)$, para quase todo $x \in [0,1]$. Definindo $f_n(x) = f(t_n,x)$ e $f_\infty(x) = f(t,x)$, temos a sequência de funções $(f_n)_n$ convergindo quase sempre para f_∞ . Além disso, |f(t,x)| é limitada, digamos $|f(t,x)| \leq M$, $\forall t \in \mathbb{R}, \ \forall x \in [0,1]$, para algum M>0. Como o intervalo I=[0,1] é limitado, isso significa que $(f_n)_n$ é uma sequência de funções uniformemente limitada em n pela função integrável g(x) = M. Assim, podemos aplicar o Teorema da Convergência Dominada de Lebesgue para deduzir que $\int_I f_n \to \int_I f_\infty$. Em outras palavras, $F(t_n) \to F(t)$, o que completa a demonstração.

4º Questão: Seja $f:[0,1] \to \mathbb{R}$ uma função absolutamente contínua e estritamente positiva, i.e. f(x) > 0, para todo $0 \le x \le 1$. Mostre que g = 1/f é absolutamente contínua em [0,1], com $g' = -f'/f^2$ quase sempre.

Resposta: Como f é absolutamente contínua, ela é, em particular, contínua. Portanto, sendo estritamente positiva no compacto [0,1], ela assume um mínimo estritamente positivo em [0,1], i.e. existe $\lambda>0$ tal que $f(x)\geq\lambda,\ \forall x\in[0,1]$. Agora, dados $(\alpha_j,\beta_j)_{j=1}^k$ em [0,1], com $\alpha_j<\beta_j$, escrevemos

$$\sum_{j=1}^{k} |g(\beta_j) - g(\alpha_j)| = \sum_{j=1}^{k} \left| \frac{1}{f(\beta_j)} - \frac{1}{f(\alpha_j)} \right| = \sum_{j=1}^{k} \left| \frac{f(\alpha_j) - f(\beta_j)}{f(\beta_j) f(\alpha_j)} \right|$$

$$\leq \frac{1}{\lambda^2} \sum_{j=1}^{k} |f(\beta_j) - f(\alpha_j)|.$$

Como f é absolutamente contínua, dado $\varepsilon > 0$, existe $\delta > 0$ tal que, se $\sum_{j=1}^k (\beta_j - \alpha_j) < \delta$, temos $\sum_{j=1}^k |f(\beta_j) - f(\alpha_j)| < \lambda^2 \varepsilon$, de modo que $\sum_{j=1}^k |g(\beta_j) - g(\alpha_j)| \le \varepsilon$, mostrando que g é absolutamente contínua. Finalmente, como f é absolutamente contínua, a sua derivada f' existe quase sempre e, onde existe, temos

$$g'(t) = \lim_{h \to 0} \left(\frac{1}{f(t+h)} - \frac{1}{f(t)} \right) \frac{1}{h} = \lim_{h \to 0} \left(\frac{f(t) - f(t+h)}{(f(t+h)f(t))} \right) \frac{1}{h}$$
$$= -\lim_{h \to 0} \left(\left(\frac{f(t+h) - f(t)}{h} \right) \left(\frac{1}{f(t+h)f(t)} \right) \right) = -\frac{f'(t)}{f(t)^2},$$

portanto, quase sempre, $g' = -f'/f^2$.