범죄 멈춰!

Capstone 23

- 1. 프로젝트 개발 목표
- 2. 프로젝트 배경
- 3. 프로젝트 기대 효과
- 4. 주요 기능
- 5. 실행 흐름

목차

- 6. 이상 행동 검출 AI & 데모 영상
- 7. 진행된 사항
- 8. 개발 일정

1. 프로젝트 개발 목표

● **이상 행동(ex.폭행)을 감지**하는 지능형 CCTV 시스템을 구현합니다.

• 시스템은 이상 행동을 감지하면 관리자에게 실시간으로 알림을 전송합니다.

• 관리자는 실시간 CCTV 영상을 볼 수 있고, 이상 행동이 발생한 구간의 영상을 열람 할 수 있습니다.

2. 프로젝트 배경

실시간 대응이 미흡한 기존 CCTV 시스템

대부분의 CCTV는 영상을 녹화하여 사후(事後)증거로만 활용되는 경우가 대다수입니다. 관제 인력이 없는 일반 CCTV의 경우 더욱 그렇습니다.

CCTV 대수 대비 부족한 관제 인력

통합관제센터 연도별 CCTV 및 관제요원 증가추세

(단위: 대수, 명)

5년간 CCTV 관제 대수는 **90%** 증가한 반면 전체 요원 인원은 **48%** 증가에 그쳤습니다. 1) —

					(= 11 11 11)
구분	2015년	2016년	2017년	2018년	2019년
CCTV관제 대수	120,628	153,809	187,743	222,875	229,869
관제요원 인원	1,968	2,255	2,674	2,841	2,918

행전안전부 기준, 관제요원 1인당 적정 모니터 대수는 50대인데, 162개소 1인당 CCTV 모니터 평균 관리 대수는 271.88대 입니다.²⁾

- 1) CCTV 통합관제센터 운영실태 및 개선방안(입법 ·정책보고서 Vol. 29, 2019)
- 2) 행정안전부,「지자체 영상정보처리기기 통합관제센터 구축 및 운영 규정」

육안 관제의 한계

연속적으로 영상을 감시한지 12분을 넘으면, 감시자는 현장의 움직임을 45%까지 놓치며, 22분 이상 쳐다보면 95%까지 빠뜨린다"³⁾

"경비원은 모니터 하나를 20분까지만 관제할 수 있으며, 그 후에는 의미 있는 물체들을 놓친다"⁴⁾

3) T. Ainsworth, Buyer Beware, In Security Oz, vol. 19, pp. 18-26, (2002).

4) 시큐리티월드, 2009

영상 용량으로 인한 보관 기간 한계

근래의 고화질 CCTV는 고용량이라 오래 보관하지 못합니다.

이상 행동이 감지된 구간만을 따로 저장한다면

보관 기간으로 인한 증거 확보의 어려움을 개선 할 수 있습니다.

[완전범죄는 없다] CCTV 영 상 확보 골든타임은 '1주일'

입력 2017.11.14 04:40

고화질 신형 1주일 간격 자동 삭제 구형은 한달 저장되나 화질 떨어져 개인건물 CCTV 열람 협조 절실 영장 기다리다 단서 지워지기도

3. 프로젝트 기대 효과

● 실시간 알림 기능으로 CCTV 관리자가 위험한 상황(폭행)을 신속하게 파악하도록 보조 할 수 있습니다.

개인용 CCTV는 전문 관제 인력이 없더라도 위험 상황을 알림 받아 범죄를 사전에 대응 할 수 있습니다.

- 사후(事後)에 이상 행동 검출 동영상으로 분류되어 저장된 영상을 바탕으로
 CCTV 관리자가 전체 영상을 보지 않고 과거의 이상 행동 영상을 조회 할 수 있습니다.
- 전체 녹화 동영상을 삭제하더라도, 이상 행동이 감지된 구간들은 상대적으로 작은 용량을 차지해 증거 확보에 도움이 될 수 있습니다.

4. 주요 기능

이상 행동이 감지되면 관리자에게 알림 전송

이상 행동으로 분류된 영상을 따로 저장하여 열람 편의성 제공 (전체 영상 역시 조회 가능)

CCTV 영상 실시간 모니터링 5. 실행 흐름

이상 행동 검출 시나리오

- 1. 카메라 영상을 Al Server로 전송
- 2. Al Server에서 해당 영상에 이상 행동이 있는지 검사 후 검출시 Web Server로 알림
- 3. Web Server는 사용자에게 알림을 보내고, 사용자는 Web Browser에 접속해 해당 알림에 대한 영상을 확인

영상 열람

- 1. 카메라 영상을 Web Server로 전송
- 2. Web Server가 저장소에 영상을 저장하고 스트리밍 서비스 제공
- 3. 사용자는 Web Browser에 접속해 실시간 CCTV 영상이나 저장된 영상 확인

6. 이상 행동 검출 AI & 데모 영상

AI 모델 소개

- 행동 인식에 특화된 인공지능 모델(slowFast 5))을 사용합니다.
 - 이 모델은 사람의 시신경을 모방하여 만들어 졌습니다.
 - 배경 정보와 행동 정보를 검출하는 두개의 네트워크에서 계산된 정보를 종합하여 영상 속 행동을 판단합니다.
- Al Hub에서 제공하는 공공 데이터셋 중 이상 행동 CCTV 영상 Al데이터 로 학습을 진행했습니다.
- 현재 구현된 인공지능이 분류 하는 상황은 이상 행동(abnormal, 폭력)과 그렇지 않은 정상 행동(normal)입니다.

이상 상황-1(abnormal, 폭력)

이상 상황-2(abnormal, 폭력)

정상 상황(normal)

7. 진행된 사항

1) 폭행 상황을 검출 할 수 있는 인공지능 모델 학습 및 테스트

2) 카메라 영상을 Web Server로 전송하는 기능

8. 개발 일정

No	내용	4月	5月
1	CCTV 원본 영상, 이상 행동 검출 영상을 저장소에 저장 기능 구현		
2	이상 행동 검출 정보(검출 행동, 시각, 영상 파일 이름 등)를 Database에 저장 기능 구현		
3	객체 인식 AI를 추가해 연산 효율성 개선 및 기능 추가		
4	공공 데이터 셋에 존재하는 오분류된 데이터셋 정제		
5	이상 행동 검출시 사용자에게 알림 기능 추가		
6	UI 개선, 시스템 통합 및 테스트		

팀원 역할

이름	담당	수행 역할	
박건희(팀장)	Server, DB	벡엔드 구축 및 기획 총괄	
김소망	Board, Web Front	스트리밍 및 웹 페이지 구현	
임태현	Al	데이터셋 구축, 모델 학습	
함윤석	Al	데이터셋 구축, 모델 학습	

감사합니다.

보조 자료

멘토링 내용

Q1) 영상에서 2인 이상의 사람이 검출 될 때만 Al server로 영상을 전송해서 행동 인식에 소비되는 컴퓨팅 자원 소비를 줄이고 싶은데 이 아이디어는 어떤가요?

A1) 좋은 것 같아요. HW 성능을 고려하면, Face Detection 같은 가벼운 모델을 사용하는 것을 추천합니다.

-> 적합한 경량 인공지능 모델을 찾고 적용하여 2인 이상의 사람이 검출되는 영상을 전송할 계획입니다.

멘토링 내용

- Q2) 인공지능 학습 결과 정확도가 낮고 Loss가 수렴하지 않습니다. 원인을 알 수 있을까요?
- A2) Loss의 양상을 봤을 때 학습률(Learning Rate)이 너무 큰것 같습니다. 학습률을 조금씩 낮춰가며 테스트 해보세요.
- Q3) 저희 컴퓨터 사양이 좋지 않아 모델의 모든 파라미터를 학습시킬수 없는 상황입니다. 따라서모델의 일부분만 학습중입니다. 하지만 이로 인해 낮은 정확도를 보입니다. 혹시 좋은 해결 방법이 있을까요?
- A3) 공유해준 자료를 보니 FC층만 가중치 갱신이 일어나는 것 같습니다. 학습시간은 줄일 수 있지만 정확도는 보장 할 수 없지요. BackBone에서 FC층에 가까운 층은 가중치 갱신을 할 수 있도록 설정 후 학습을 진행해보세요. 학습시간은 조금 늘겠지만 정확도는 증가할거에요.
- 위 답변 내용을 바탕으로 정확도 개선(60%->85%)에 성공 했습니다.

