Imię i nazwisko: Piotr Nowak

Nr indeksu: 248995

Termin: Wtorek nieparzysty godz. 14

Sprawozdanie

1. Cel ćwiczenia

Celem ćwiczenia było wyliczenie nastaw regulatora dla piecyka, za pomocą metody Kupfmullera oraz za pomocą metody Strejca.

2. Wyznaczenie nastaw regulatora

2.1 Wyliczanie nastaw dla ogrzewania

Kupfmuller:

Z wykresu odczytano, że T_0 =30s, T= 390s oraz k=4,5. Za pomocą algorytmu QDR wyliczono nastawy regulatora o wartościach kp=3,47, ki=0,0048 oraz kd=4,33.

Strejc:

Z wykresu odczytano, że T_1 =30s, T_2 = 390s oraz k=4,5. Z tabeli Siparta odczytano n=2 oraz T=124,9354.

Na podstawie tabeli adaptacyjnej Siparta wyliczono, że kp=0.2222 oraz ki=0.0270. Trzeba zastosować regulator PI a nie PID, ponieważ dla obliczonego **n** nie można wyliczyć danych dla regulatora PID.

Tab.8.10. Nastawy obliczane przez regulator SIPART DR24 w trybie adaptacji.

	Кр	Tn	Tv
Regulator PI			
$R(s) = K_p(1 + \frac{1}{T_n s})$	$\frac{1}{4k} \frac{n+2}{n-1}$	$\frac{T}{3}(n+2)$	
Regulator PID			
$R(s) = K_p (1 + \frac{1}{T_n s} + T_v s)$	$\frac{1}{16k} \frac{7n+16}{n-2}$	$\frac{T}{15}(7n+16)$	$T\frac{n^2+4n+3}{7n+16}$

2.2 Wyliczanie nastaw dla oziębiania

Kupfmuller

Z wykresu odczytano, że T_0 =15s, T= 255s oraz k=4,94. Za pomocą algorytmu QDR wyliczono nastawy regulatora o wartościach kp=4,13, ki=0,0081 oraz kd=1,82.

Strejc

Z wykresu odczytano, że T₁ =15s, T₂= 255s oraz k=4,94. Z tabeli Siparta odczytano n=2 oraz T=73,5052.

Na podstawie tabeli adaptacyjnej Siparta wyliczono, że kp=0.2024 oraz ki=0.0504. Trzeba zastosować regulator PI a nie PID, ponieważ dla obliczonego **n** nie można wyliczyć danych dla regulatora PID, tak samo jak w przypadku ogrzewania.

3. Reakcje obiektu na zakłócenia

Po modelu Kupfmullera

Po modelu Strejca

4. Wnioski

Otrzymane wyniki nastaw regulatora nie są dokładnymi, lecz jedynie przybliżonymi wartościami najlepszych nastaw. Jest to spowodowane niedokładnością odczytu danych z wykresów przedstawiających charakterystykę zarówno grzałki jak i chłodzenia naszego piecyka. Pomimo przybliżonych wartości, można zauważyć, że zarówno nastawy wyliczone za pomocą metody Kupfmullera jak i Strejca doprowadzają do tego, że temperatura w piecyku dochodzi do stanu równowagi, co oznacza, że obliczenia są poprawne.