Bisimulation, Logics and Metrics for Labelled Markov Processes

Prakash Panangaden
School of Computer Science
McGill University
and
Research Visitor: The Alan Turing Institute

Logic for Data Science Seminar The Alan Turing Institute 8th June 2018

 Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]
- Weak bisimulation. [LICS 02, CONCUR 02]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]
- Weak bisimulation. [LICS 02, CONCUR 02]
- Real time. [QEST 04, JLAP 03,LMCS 06]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]
- Weak bisimulation. [LICS 02, CONCUR 02]
- Real time. [QEST 04, JLAP 03,LMCS 06]
- Metrics for MDPs [UAI 04, 05, QEST 12, AAAI 15, NIPS 15]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]
- Weak bisimulation. [LICS 02, CONCUR 02]
- Real time. [QEST 04, JLAP 03,LMCS 06]
- Metrics for MDPs [UAI 04, 05, QEST 12, AAAI 15, NIPS 15]
- Duality theory [LICS 13, JACM 14, LICS 17]

- Probabilistic bisimulation can be defined for continuous state-space systems. [LICS 97]
- Logical characterization. [LICS 98, Info and Comp 02]
- Metric analogue of bisimulation. [CONCUR 99, TCS 04]
- Approximation of LMPs. [LICS00, Info and Comp 03, CONCUR 05, ICALP 09]
- Weak bisimulation. [LICS 02, CONCUR 02]
- Real time. [QEST 04, JLAP 03,LMCS 06]
- Metrics for MDPs [UAI 04, 05, QEST 12, AAAI 15, NIPS 15]
- Duality theory [LICS 13, JACM 14, LICS 17]
- Quantitative equational logic [LICS 16, 17, 18]

Josée Desharnais

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat, Vincent Danos, Radu Mardare, François Laviolette

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat, Vincent Danos, Radu Mardare, François Laviolette
- Philippe Chaput, Florence Clerc, Nathanaël Fijalkow, Bartek Klin

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat, Vincent Danos, Radu Mardare, François Laviolette
- Philippe Chaput, Florence Clerc, Nathanaël Fijalkow, Bartek Klin
- Doina Precup, Norm Ferns, Gheorghe Comanici, Giorgio Bacci

- Josée Desharnais
- Radha Jagadeesan and Vineet Gupta
- Abbas Edalat, Vincent Danos, Radu Mardare, François Laviolette
- Philippe Chaput, Florence Clerc, Nathanaël Fijalkow, Bartek Klin
- Doina Precup, Norm Ferns, Gheorghe Comanici, Giorgio Bacci
- Dexter Kozen, Kim Larsen, Gordon Plotkin

• A set of states *S*,

- A set of states S,
- a set of *labels* or *actions*, L or A and

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S$$
.

The transitions could be indeterminate (nondeterministic).

- A set of states S,
- a set of labels or actions, L or A and
- a transition relation $\subseteq S \times A \times S$, usually written

$$\rightarrow_a \subseteq S \times S$$
.

The transitions could be indeterminate (nondeterministic).

• We write $s \xrightarrow{a} s'$ for $(s, s') \in \rightarrow_a$.

A simple example

Bisimulation

s and t are states of a labelled transition system. We say s is **bisimilar** to t – written $s \sim t$ – if

$$s \xrightarrow{a} s' \Rightarrow \exists t' \text{ such that } t \xrightarrow{a} t' \text{ and } s' \sim t'$$

and

$$t \xrightarrow{a} t' \Rightarrow \exists s' \text{ such that } s \xrightarrow{a} s' \text{ and } s' \sim t'.$$

• Define *a* (note the indefinite article) bisimulation relation *R* to be an equivalence relation on *S* such that

 Define a (note the indefinite article) bisimulation relation R to be an equivalence relation on S such that

sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt' and vice versa.

- Define a (note the indefinite article) bisimulation relation R to be an equivalence relation on S such that
 - sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt' and vice versa.
- This is not circular; it is a condition on R.

- Define a (note the indefinite article) bisimulation relation R to be an equivalence relation on S such that
 - sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt' and vice versa.
- This is not circular; it is a condition on R.
- We define $s \sim t$ if there is *some* bisimulation relation R with sRt.

- Define a (note the indefinite article) bisimulation relation R to be an equivalence relation on S such that
 - sRt means $\forall a, s \xrightarrow{a} s' \Rightarrow \exists t', t \xrightarrow{a} t'$ with s'Rt' and vice versa.
- This is not circular; it is a condition on R.
- We define $s \sim t$ if there is *some* bisimulation relation *R* with sRt.
- This is the version that is used most often.

An example

An example

•

• Here s_0 and t_0 are not bisimilar.

An example

0

- Here s_0 and t_0 are not bisimilar.
- However s_0 and t_0 can simulate each other!

Define a logic as follows:

Define a logic as follows:

•

$$\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 |\langle a \rangle \phi$$

Define a logic as follows:

0

$$\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 |\langle a \rangle \phi$$

• $s \models \langle a \rangle \varphi$ means that $s \stackrel{a}{\longrightarrow} s'$ and $t \models \varphi$.

Define a logic as follows:

•

$$\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 |\langle a \rangle \phi$$

- $s \models \langle a \rangle \phi$ means that $s \stackrel{a}{\longrightarrow} s'$ and $t \models \phi$.
- We can define a dual to () (written []) by using negation.

Define a logic as follows:

•

$$\phi ::== \mathsf{T} |\neg \phi| \phi_1 \wedge \phi_2 |\langle a \rangle \phi$$

- $s \models \langle a \rangle \varphi$ means that $s \stackrel{a}{\longrightarrow} s'$ and $t \models \varphi$.
- We can define a dual to $\langle \rangle$ (written []) by using negation.
- $s \models [a] \varphi$ means that if s can do an a the resulting state must satisfy φ .

Examples of HM Logic

• *T* is satisfied by any process, *F* is not satisfied by any process.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means s can do an a action.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means s can do an a action.
- $s \models \neg \langle a \rangle T$ or $s \models [a]F$ means s cannot do an a action.

Examples of HM Logic

- *T* is satisfied by any process, *F* is not satisfied by any process.
- $s \models \langle a \rangle T$ means s can do an a action.
- $s \models \neg \langle a \rangle T$ or $s \models [a]F$ means s cannot do an a action.
- $s \models \langle a \rangle (\langle b \rangle T)$ means that s can do an a and then do a b.

The logical characterization theorem

 Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.

The logical characterization theorem

- Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.
- Basic assumption: the processes are finitely-branching (otherwise you need infinitary conjunctions).

The logical characterization theorem

- Two processes are bisimilar if and only if they satisfy the same formulas of HM logic.
- Basic assumption: the processes are finitely-branching (otherwise you need infinitary conjunctions).
- To show that two processes are not bisimilar find a formula on which they disagree.

Consider the processes below:

Consider the processes below:

• $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.

Consider the processes below:

- $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.
- s_0 and t_0 agree on all formulas without negation.

Consider the processes below:

- $s_0 \models \langle a \rangle \neg \langle b \rangle T$ but t_0 does not.
- s_0 and t_0 agree on all formulas without negation.
- Note that [a] has an implicit negation.

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

$$(S, \mathsf{L}, \forall a \in \mathsf{L} \ T_a : S \times S \longrightarrow [0, 1])$$

Discrete probabilistic transition systems

 Just like a labelled transition system with probabilities associated with the transitions.

•

$$(S, \mathsf{L}, \forall a \in \mathsf{L} \ T_a : S \times S \longrightarrow [0, 1])$$

 The model is reactive: All probabilistic data is internal - no probabilities associated with environment behaviour.

Bisimulation for PTS: Larsen and Skou

Consider

Bisimulation for PTS: Larsen and Skou

Consider

• Should s_0 and t_0 be bisimilar?

Bisimulation for PTS: Larsen and Skou

Consider

- Should s_0 and t_0 be bisimilar?
- Yes, but we need to add the probabilities.

The Official Definition

• Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, $A, T_a(s, A) = T_a(s', A)$.

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, $A, T_a(s, A) = T_a(s', A)$.
- The notation $T_a(s, A)$ means "the probability of starting from s and jumping to a state in the set A."

The Official Definition

- Let $S = (S, L, T_a)$ be a PTS. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-equivalence class, $A, T_a(s, A) = T_a(s', A)$.
- The notation T_a(s, A) means "the probability of starting from s and jumping to a state in the set A."
- Two states are bisimilar if there is some bisimulation relation R relating them.

 Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is internal no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a continuum.

Model and reason about systems with *continuous* state spaces or continuous time evolution or both.

• hybrid control systems; e.g. flight management systems.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

The Need for Measure Theory

 Basic fact: There are subsets of R for which no sensible notion of size can be defined.

The Need for Measure Theory

- Basic fact: There are subsets of R for which no sensible notion of size can be defined.
- More precisely, there is no translation-invariant measure defined on all the subsets of the reals.

The Need for Measure Theory

- Basic fact: There are subsets of R for which no sensible notion of size can be defined.
- More precisely, there is no translation-invariant measure defined on all the subsets of the reals.
- Actually there is if you only require finite additivity.

Stochastic Kernels

• A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \longrightarrow [0, 1]$ with (a) $h(s, \cdot): \Sigma \longrightarrow [0, 1]$ a (sub)probability measure and (b) $h(\cdot, A): X \longrightarrow [0, 1]$ a measurable function.

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \longrightarrow [0, 1]$ with (a) $h(s, \cdot): \Sigma \longrightarrow [0, 1]$ a (sub)probability measure and (b) $h(\cdot, A): X \longrightarrow [0, 1]$ a measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations

Stochastic Kernels

- A stochastic kernel (Markov kernel) is a function $h: S \times \Sigma \longrightarrow [0, 1]$ with (a) $h(s, \cdot): \Sigma \longrightarrow [0, 1]$ a (sub)probability measure and (b) $h(\cdot, A): X \longrightarrow [0, 1]$ a measurable function.
- Though apparantly asymmetric, these are the stochastic analogues of binary relations
- and the uncountable generalization of a matrix.

Formal Definition of LMPs

• An LMP is a tuple $(S, \Sigma, \mathsf{L}, \forall \alpha \in \mathsf{L}.\tau_{\alpha})$ where $\tau_{\alpha} : S \times \Sigma \longrightarrow [0, 1]$ is a *transition probability* function such that

Formal Definition of LMPs

- An LMP is a tuple $(S, \Sigma, \mathsf{L}, \forall \alpha \in \mathsf{L}.\tau_{\alpha})$ where $\tau_{\alpha} : S \times \Sigma \to [0, 1]$ is a *transition probability* function such that
- ∀s: S.λA: Σ.τ_α(s, A) is a subprobability measure and
 ∀A: Σ.λs: S.τ_α(s, A) is a measurable function.

Larsen-Skou Bisimulation

• Let $S = (S, i, \Sigma, \tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in A$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s, A) = \tau_a(s', A)$.

Two states are bisimilar if they are related by a bisimulation relation.

Larsen-Skou Bisimulation

- Let $S = (S, i, \Sigma, \tau)$ be a labelled Markov process. An equivalence relation R on S is a **bisimulation** if whenever sRs', with $s, s' \in S$, we have that for all $a \in \mathcal{A}$ and every R-closed measurable set $A \in \Sigma$, $\tau_a(s,A) = \tau_a(s',A)$. Two states are bisimilar if they are related by a bisimulation
- Can be extended to bisimulation between two different LMPs.

relation.

• Two players: spoiler (S) and duplicator (D).

- Two players: spoiler (S) and duplicator (D).
- Duplicator claims x, y are bisimilar.

- Two players: spoiler (S) and duplicator (D).
- Duplicator claims x, y are bisimilar.
- Spoiler exhibits a set C and says C is bisimulation-closed and that $\tau(x,C) \neq \tau(y,C)$. Assume that the inequality holds; it is easy to check

- Two players: spoiler (S) and duplicator (D).
- Duplicator claims x, y are bisimilar.
- Spoiler exhibits a set C and says C is bisimulation-closed and that $\tau(x,C) \neq \tau(y,C)$. Assume that the inequality holds; it is easy to check.
- Duplicator responds by saying that C is not bisimulation-closed and that exhibits $x' \in C$ and $y' \notin C$ and claims that x', y' are bisimilar.

- Two players: spoiler (S) and duplicator (D).
- Duplicator claims x, y are bisimilar.
- Spoiler exhibits a set C and says C is bisimulation-closed and that $\tau(x,C) \neq \tau(y,C)$. Assume that the inequality holds; it is easy to check.
- Duplicator responds by saying that C is not bisimulation-closed and that exhibits $x' \in C$ and $y' \notin C$ and claims that x', y' are bisimilar.
- A player loses when he or she cannot make a move. Note that if C
 is all of the state space, duplicator loses. Duplicator wins if she
 can play forever.

- Two players: spoiler (S) and duplicator (D).
- Duplicator claims x, y are bisimilar.
- Spoiler exhibits a set C and says C is bisimulation-closed and that $\tau(x,C) \neq \tau(y,C)$. Assume that the inequality holds; it is easy to check.
- Duplicator responds by saying that C is not bisimulation-closed and that exhibits $x' \in C$ and $y' \notin C$ and claims that x', y' are bisimilar.
- A player loses when he or she cannot make a move. Note that if C
 is all of the state space, duplicator loses. Duplicator wins if she
 can play forever.
- We prove that x is bisimilar to y iff Duplicator has a winning strategy starting from (x, y).

Logical Characterization

$$\mathcal{L} ::== \mathsf{T} |\varphi_1 \wedge \varphi_2| \langle a \rangle_q \varphi$$

Logical Characterization

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \varphi) \land (\tau_a(s,A) > q).$$

Bisimulation, Logics and Metrics for Labelled I

Logical Characterization

•

$$\mathcal{L} ::== \mathsf{T}|\phi_1 \wedge \phi_2|\langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \varphi) \land (\tau_a(s,A) > q).$$

 \bullet Two systems are bisimilar iff they obey the same formulas of $\mathcal{L}.$ [DEP 1998 LICS, I and C 2002]

That cannot be right?

Two processes that cannot be distinguished without negation. The formula that distinguishes them is $\langle a \rangle (\neg \langle b \rangle \top)$.

But it is!

We add probabilities to the transitions.

But it is!

0

We add probabilities to the transitions.

• If p + q < r or p + q > r we can easily distinguish them.

But it is!

We add probabilities to the transitions.

- If p + q < r or p + q > r we can easily distinguish them.
- If p + q = r and p > 0 then q < r so $\langle a \rangle_r \langle b \rangle_1 \top$ distinguishes them.

A metric-based approximate viewpoint

 Move from equality between processes to distances between processes (Jou and Smolka 1990).

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

A metric-based approximate viewpoint

- Move from equality between processes to distances between processes (Jou and Smolka 1990).
- Formalize distance as a metric:

$$d(s,s) = 0, d(s,t) = d(t,s), d(s,u) \le d(s,t) + d(t,u).$$

Quantitative analogue of an equivalence relation.

• Quantitative measurement of the distinction between processes.

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

 Stability of distance under temporal evolution: "Nearby states stay close forever."

Criteria on Metrics

Soundness:

$$d(s,t) = 0 \Leftrightarrow s,t$$
 are bisimilar

- Stability of distance under temporal evolution: "Nearby states stay close forever."
- Metrics should be computable (efficiently?).

Bisimulation Recalled

Let R be an equivalence relation. R is a bisimulation if: s R t if:

$$(s \longrightarrow P) \Rightarrow [t \longrightarrow Q, P =_R Q]$$

$$(t \longrightarrow Q) \Rightarrow [s \longrightarrow P, P =_R Q]$$

where $P =_R Q$ if

$$(\forall R - \mathsf{closed}\ E)\ P(E) = Q(E)$$

A putative definition of a metric analogue of bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, m(P,Q) < \epsilon$$

A putative definition of a metric analogue of bisimulation

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

• Problem: what is m(P,Q)? — Type mismatch!!

A putative definition of a metric analogue of bisimulation

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- Problem: what is m(P, Q)? Type mismatch!!
- Need a way to lift distances from states to a distances on distributions of states.

Metrics on probability measures on metric spaces.

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

•

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

- Metrics on probability measures on metric spaces.
- M: 1-bounded pseudometrics on states.

•

$$d(\mu, \nu) = \sup_{f} |\int f d\mu - \int f d\nu|, f$$
 1-Lipschitz

Arises in the solution of an LP problem: transshipment.

An LP version for Finite-State Spaces

When state space is finite: Let P, Q be probability distributions. Then:

$$m(P,Q) = \max \sum_{i} (P(s_i) - Q(s_i))a_i$$

subject to:

$$\forall i.0 \leqslant a_i \leqslant 1$$

 $\forall i,j. \ a_i - a_j \leqslant m(s_i, s_j).$

The Dual Form

Dual form from Worrell and van Breugel:

The Dual Form

Dual form from Worrell and van Breugel:

•

$$\min \sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\begin{aligned} \forall i. \sum_{j} l_{ij} + x_i &= P(s_i) \\ \forall j. \sum_{i} l_{ij} + y_j &= Q(s_j) \\ \forall i, j. \ l_{ij}, x_i, y_j &\geqslant 0. \end{aligned}$$

The Dual Form

Dual form from Worrell and van Breugel:

•

$$\min \sum_{i,j} l_{ij} m(s_i, s_j) + \sum_i x_i + \sum_j y_j$$

subject to:

$$\begin{aligned} \forall i. \sum_{j} l_{ij} + x_i &= P(s_i) \\ \forall j. \sum_{i} l_{ij} + y_j &= Q(s_j) \\ \forall i, j. \ l_{ij}, x_i, y_j &\geqslant 0. \end{aligned}$$

 We prove many equations by using the primal form to show one direction and the dual to show the other.

Example

• Let m(s, t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_s, \delta_t) = r$$

Example

• Let m(s,t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_s, \delta_t) = r$$

• Upper bound from dual: Choose $l_{st} = 1$ all other $l_{ij} = 0$. Then

$$\sum_{ij} l_{ij} m(s_i, s_j) = m(s, t) = r.$$

Example

• Let m(s, t) = r < 1. Let $\delta_s(\delta_t)$ be the probability measure concentrated at s(t). Then,

$$m(\delta_s, \delta_t) = r$$

• Upper bound from dual: Choose $l_{st} = 1$ all other $l_{ij} = 0$. Then

$$\sum_{ij} l_{ij} m(s_i, s_j) = m(s, t) = r.$$

• Lower bound from primal: Choose $a_s = 0$, $a_t = r$, all others to match the constraints. Then

$$\sum_{i} (\delta_t(s_i) - \delta_s(s_i))a_i = r.$$

The Importance of the Example

We can *isometrically* embed the original space in the metric space of distributions.

Return from Detour

Summary of detour: Given a metric on states in a metric space, it can be lifted to a metric on probability distributions on states.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

$$t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$$

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s, t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

• The required canonical metric on processes is the least such: ie. the distances are the least possible.

Metric "Bisimulation"

• m is a metric-bisimulation if: $m(s,t) < \epsilon \Rightarrow$:

$$s \longrightarrow P \Rightarrow t \longrightarrow Q, \quad m(P,Q) < \epsilon$$

 $t \longrightarrow Q \Rightarrow s \longrightarrow P, \quad m(P,Q) < \epsilon$

- The required canonical metric on processes is the least such: ie. the distances are the least possible.
- Thm: Canonical least metric exists. Usual fixed-point theory arguments.

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula φ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula φ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

• Define a metric based on how closely the random variables agree.

What about Continuous-State Systems?

Develop a real-valued "modal logic" based on the analogy:

Program Logic	Probabilistic Logic
State s	Distribution μ
Formula φ	Random Variable f
Satisfaction $s \models \phi$	$\int f \mathrm{d}\mu$

- Define a metric based on how closely the random variables agree.
- This metric coincides with the metric based on the Kantorovich metric.

• Metrics seem like a piece of real analysis, where is the logic?

- Metrics seem like a piece of real analysis, where is the logic?
- Quantitative equational logic: $=_{\epsilon}$, approximate equality

- Metrics seem like a piece of real analysis, where is the logic?
- Quantitative equational logic: $=_{\epsilon}$, approximate equality
- Algebras are naturally equipped with a metric

- Metrics seem like a piece of real analysis, where is the logic?
- Quantitative equational logic: $=_{\epsilon}$, approximate equality
- Algebras are naturally equipped with a metric
- Simple equational axioms capture Kantorovich and total variation metrics.

Modal logics are closely related to behavioural equivalence.

- Modal logics are closely related to behavioural equivalence.
- Metrics arise as a natural quantitative relaxation of logic.

- Modal logics are closely related to behavioural equivalence.
- Metrics arise as a natural quantitative relaxation of logic.
- Quantitative equational logic captures metrics.

- Modal logics are closely related to behavioural equivalence.
- Metrics arise as a natural quantitative relaxation of logic.
- Quantitative equational logic captures metrics.
- Metrics and logics: exploring links with neural nets.