

# Introduction to machine learning?







Machine Learning is the science (and art) of programming computers so they can learn from data.



Machine Learning is the science (and art) of programming computers so they can learn from data.

<u>Arthur Samuel</u> (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.



A computer program is said to **learn** from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improved with experience **E**.

Tom Mitchell, 1998

#### Elements:

- Task T
- Experience E
- Performance measure P

## Detect the dialog act of an utterance

**T:** Classify the dialog act of an utterance

**E:** A set of utterances labeled with their dialog acts

**P:** The fraction of utterances correctly classified

#### Elements:

- Task T
- Experience E
- Performance measure P

#### Filter spam emails

**T:** Classifying emails as spam or not spam

**E:** A set of labelled emails as spam or not spam

**P:** The number (or fraction) of emails correctly classified as spam/not spam

#### Elements:

- Task T
- Experience E
- Performance measure P

#### Self-driving cars

**T:** Drive on public highways using vision sensors

**E:** Sequence of images and steering commands from human drivers

**P:** Average distance traveled before an error





# What part of the elements seem to matter the most?





# What part of the elements seem to matter the most? Answer: The Experience E

- 1. Supervised learning
- 2. Unsupervised learning

Others:

Reinforcement learning, etc



- 1. Supervised learning
- 2. Unsupervised learning

Others: Reinforcement learning, etc Train a model using **labelled** data

Example: image classification, dialog act classification.

- 1. Supervised learning
- 2. Unsupervised learning

Others: Reinforcement learning, etc Train a model using **unlabelled** data

Example: market segmentation, Social network analysis.

- 1. Supervised learning
- 2. Unsupervised learning

#### Others:

Reinforcement learning, etc



Image source: Wikipedia

Example: game of ping pong, chess

In supervised learning, the "right answers" are given.

That is, every data in the dataset has a class label it belongs to.



However, in supervised learning, a problem could take either of the two forms:

- Regreession
- Classification



In supervised learning, there's also need to define features. Features are the characteristics of the instances that the model uses for predictions

## Features for whether an image is a dog or a cat

- Size
- Color

# Features for whether a breast cancer image is benign or malignant

- Age
- Tumor size

In supervised learning, there's also need to define features. Features are the characteristics of the instances that the model uses for predictions

## Features for house price prediction:

- Overall condition of the house
- Neighborhood
- Condition of the basement
- Number of bedrooms
- Construction date
- Number of schools in within 2 km
- Condition of the kitchen

#### **Regression problem - Supervised learning**

In regression problems, predicted valued output are continuous.

An example is a problem of predicting housing prices based on land size, location, etc

ML algorithms include: Linear regression, etc

#### **Regression problem - Supervised learning**

In regression problems, predicted valued output are continuous.

An example is a problem of predicting housing prices based on land size, location, etc



Image source: Wingshore

#### **Regression problem - Supervised learning**

In regression problems, predicted valued output are continuous.

Let's predict the price of a new input value of **1250 ft** 

We plot a linear straight line for this purpose



Image source: Wingshore

#### Classification problem - Supervised learning

In classification problems, predicted valued output are discrete.

An example is a CT scan image for breast cancer as benign or malignant, or classifying emails as spam or not spam.

ML algorithms include: SVM, Logistic regression, KNN, Neural networks, etc

#### **Classification problem - Supervised learning**

In classification problems, predicted valued output are discrete.

An example is a CT scan image for breast cancer as benign or malignant, or classifying emails as spam or not spam.



Image source: mdpi.com

#### **Unsupervised learning (Clustering)**

In unsupervised learning, no answers (class labels) are given.

Here, we tell the program:

"Here is the dataset. Can you find some structure in it?"

Examples include:

Market segmentation, Social network analysis, Astronomical data analysis, etc.

#### **Unsupervised learning (Clustering)**

In unsupervised learning, no answers (class labels) are given.

Examples include:

Market segmentation, Social network analysis, Astronomical data analysis, etc.



Image source: GeeksforGeeks



Any questions?