

Unit - I 1.7 Electrostatics

Dr.Santhosh.T.K.

Progress Through Quality Education

Syllabus

UNIT – I 10 Periods

Introduction and Basic Concepts: Concept of Potential difference, voltage, current - Fundamental linear passive and active elements to their functional current-voltage relation - Terminology and symbols in order to describe electric networks - Concept of work, power energy and conversion of energy- Principle of batteries and application.

Principles of Electrostatics: Electrostatic field - electric field intensity - electric field strength - absolute permittivity - relative permittivity - capacitor composite - dielectric capacitors - capacitors in series & parallel - energy stored in capacitors - charging and discharging of capacitors.

Progress Through Quality Education

2

The Electric Field

Between two charged bodies there is a force, F, of attraction or repulsion:

We don't understand why; we can only say this is what happens.

We can think of a charged body as *changing the nature of the space surrounding it*.

Progress Through Quality Education

Direction of the Electric Field

We draw the number of arrows proportional to the charge...more charge, more arrows. Say the charges are in " μ Coulombs" (that's micro-coulombs, or 10^{-6} Coulombs)

Progress Through Quality Education

7

Direction of the Electric Field

When charges get near each other, these fields interact

For unlike charges, the arrows go from the positive charge to the negative charge:

Progress Through Quality Education

For like particles the arrows are repelled:

The field arrows never cross in either case

Progress Through Quality Education

9

Electric Field Intensity (Cont'd)

It becomes convenient to define electric field intensity **E**₁ or force per unit charge as:

$$\mathbf{E}_1 = \frac{\mathbf{F}_{12}}{Q_2}$$

This field from charge Q_1 fixed at origin results from the force vector $\mathbf{F_{12}}$ for any arbitrarily chosen value of $\mathbf{Q_2}$

Progress Through Quality Education

Electric Field Intensity (Cont'd)

Coulomb's law can be rewritten as

$$E = \frac{Q}{4\pi\varepsilon_0 |\mathbf{R}|^2} \mathbf{a}_R$$

E = F = 9 411 EN2

to find the electric field intensity at any point in space resulting from a fixed charge Q.

Progress Through Quality Education

Find **E** at (0,3,4) m in cartesian coordinates due to a point charge Q = 0.5μ C at the origin.

Solution to Example 2

$$R = 3a_y + 4a_z$$
 $a_R = (3a_y + 4a_z)/5$
 $R = 5$ $= 0.6a_y + 0.8a_z$

$$E = \frac{0.5 \times 10^{-6}}{4\pi \left(10^{-9} / 36\pi\right) \left(5\right)^{2}} \left(0.6a_{y} + 0.8a_{z}\right)$$

Thus [E] = 180V/m in the direction $a_R = 0.6a_y + 0.8a_z$

Progress Through Quality Education

Electric Field Intensity (Cont'd)

If there are N charges, $Q_1, Q_2 \dots Q_N$ located respectively at point with position vectors $\underline{r_1, r_2 \dots r_N}$ the electric field intensity at point r is:

$$\mathbf{E} = \frac{Q_1}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_1|^2} \frac{(\mathbf{r} - \mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|} + ... \frac{Q_N}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{r}_N|^2} \frac{(\mathbf{r} - \mathbf{r}_N)}{|\mathbf{r} - \mathbf{r}_N|}$$

$$E = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{N} \frac{Q_k(\mathbf{r} - \mathbf{r}_k)}{|\mathbf{r} - \mathbf{r}_k|^3}$$

Progress Through Quality Education

16

SASTRA Superposition of forces from two charges

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Progress Through Quality Education

Superposition of forces from two charges

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Consider effect of each charge separately:

Progress Through Quality Education

SASTRA Superposition of forces from two charges

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Take each charge in turn:

Progress Through Quality Education

Superposition of forces from two charges

Blue charges fixed , negative, equal charge (-q)

What is force on positive red charge +q?

Create vector sum:

Progress Through Quality Education

10

Superposition of forces from two charges

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Find resultant:

When a number of charges are present, the total force on a given charge is equal to the vector sum of the forces due to the remaining other charges on the given charge.

Progress Through Quality Education

Just as we defined a gravitational field, we define an "electric field" in a similar manner:

$$F = \frac{GmM}{r^2}$$

$$mg = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

This is the gravitational field (Earth = 9.8 m/s^2 or 9.8 N/kg)

Progress Through Quality Education

23

Just as we defined a gravitational field, we define an "electric field" in a similar manner:

$$F = \frac{GmM}{r^2}$$

$$mg = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

$$F = \frac{k|qQ|}{r^2}$$

$$q(?) = \frac{k|qQ|}{r^2}$$

$$E = \frac{F}{V}$$

$$F = VF$$

This is the gravitational field (Earth = $9.8 \text{ m/s}^2 \text{ or } 9.8 \text{ N/kg}$)

Progress Through Quality Education

Just as we defined a gravitational field, we define an "electric field" in a similar manner:

$$F = \frac{GmM}{r^2}$$

$$mg = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

$$F = \frac{k|qQ|}{r^2}$$

$$\underline{q(E)} = \frac{k|qQ|}{r^2}$$

This is the gravitational field (Earth = 9.8 m/s^2 or 9.8 N/kg)

Progress Through Quality Education

25

Just as we defined a gravitational field, we define an "electric field" in a similar manner:

$$F = \frac{GmM}{r^2}$$

$$mg = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

$$F = \frac{k|qQ|}{r^2}$$

$$q(E) = \frac{k|qQ|}{r^2}$$

$$E = \frac{k|Q|}{r^2}$$
Field

This is the gravitational field (Earth = $9.8 \text{ m/s}^2 \text{ or } 9.8 \text{ N/kg}$)

Progress Through Quality Education

The general equation for an ELECTRIC FIELD is:

$$E = \frac{k|Q|}{r^2}$$

$$\frac{Newtons}{Coulomb} = \frac{N}{C}$$

(compare this to the equation for the gravitational field)

Progress Through Quality Education

27

Notice that for gravity,

$$F = mg$$

We see that in electrostatics, F = qE

$$F = \frac{GmM}{r^2}$$

$$mg = \frac{GmM}{r^2}$$

$$g = \frac{GM}{r^2}$$

$$F = \frac{k|qQ|}{r^2}$$

$$q(E) = \frac{k|qQ|}{r^2}$$

$$E = \frac{k|Q|}{r^2}$$

Progress Through Quality Education

