Bresenham's circle drawing algorithm.

Bresenham's algorithm is also used for circle drawing. It is known as *Bresenham's circle drawing algorithm*. It helps us to draw a circle. In this algorithm, we will select the closest pixel position to complete the arc.

Let's say if current pixel coordinates are (x_k, y_k) . Then, we need to find out our next pixel (x_{k+1}, y_{k+1}) .

Further, choices are the pixels at positions (x_k+1, y_k) and (x_k+1, y_k-1) .

Equation of Circle with Radius r

$$(x-h)^2 + (y-k)^2 = r^2$$

If origin is the center of circle put (h=0, k=0)

$$x^2 + y^2 = r^2$$
 (Pythagoras theorem)

Here it needs to be decided whether to select N or S.

As
$$x^2 + y^2 = r^2$$
 (Pythagoras theorem)

For pixel N this distance is

$$D(N)=(x_k+1)^2+(y_k)^2$$

For pixel S this distance is

$$D(S)=(x_k+1)^2+(y_k-1)^2$$

However, The distance between actual circle and the centre is r.

Actually squaring is done just to avoid square root calculations.

$$E(N) = {D(N)}^2 - r^2$$

Also, $E(S) = {D(S)}^2 - r^2$

The value of E(N) will always be positive because N is out-side the circle and the value of E(S) will always be negative because S is inside the circle.

Now, lets calculate decision parameter D_k in a simpler way, $D_k = E(N) + E(S)$

CASE 1:

If $D_k < 0$, it implies E(S)>E(N), since E(S) is negative, that again implies that point N is closer to the circle than point S. So pixel N is our next pixel. (x_k+1, y_k)

CASE 2:

If $D_k > 0$ means E(N) > E(S) and since E(N) is positive, that again implies that point S is closer to the circle than point N. So pixel S is our next pixel. (x_k+1, y_k-1) .

Calculating Decision parameter

Now lets derive Dk

 $D_k = (x_k+1)^2 + (y_k)^2 - r^2 + (x_k+1)^2 + (y_k-1)^2 - r^2$ which can also be written as,

=
$$2(x_k + 1)^2 + (y_k)^2 + (y_k - 1)^2 - 2r^2$$
 —— (i)

Now lets find D_{k+1} also,

So, Replacing every k with k+1

$$D_{k+1} = 2(x_{k+1} + 1)^2 + (y_{k+1})^2 + (y_{k+1} - 1)^2 - 2r^2$$

(Replacing x_{k+1} with $x_k + 1$ but now we can't replace y_{k+1} because we don't know the exact value of y_k)

=
$$2(x_k+1+1)^2 + (y_{k+1})^2 + (y_{k+1}-1)^2 - 2r^2$$
 which can also be written as

=
$$2(x_k+2)^2 + (y_{k+1})^2 + (y_{k+1}-1)^2 - 2r^2$$
 —— (ii)

Calculating Decision parameter for next pixel

Now to find out the decision parameter of next pixel i.e. D_{k+1} We need to find

$$D_{k+1} - D_k = (ii) - (i)$$

$$= 2(x_k+2)^2 + (y_{k+1})^2 + (y_{k+1}-1)^2 - 2r^2$$

$$- [2(x_k+1)^2 + (y_k)^2 + (y_k-1)^2 - 2r^2]$$
 Simplify further,
$$= 2(x_k)^2 + 8x_k + 8 + (y_{k+1})^2 + (y_{k+1})^2 - 2y_{k+1} + 1 - 2r^2$$

$$- 2(x_k)^2 - 4x_k - 2 - (y_k)^2 - (y_k)^2 + 2y_k - 1 + 2r^2$$
 Then we get,
$$= 4x_k + 2(y_{k+1})^2 - 2y_{k+1} - 2(y_k)^2 + 2y_k + 6$$

$$\mathbf{D}_{k+1} = \mathbf{D}_k + 4x_k + 2(y_{k+1})^2 - 2y_{k+1} - 2(y_k)^2 + 2y_k + 6 \qquad \qquad --- (iii)$$

If $(D_k < 0)$ then we will choose N point as discussed i.e. (x_k+1,y_k)

Then, $y_{k+1} = y_k$, putting y_k in (iii) in place of y_{k+1} So, we get $D_{k+1} = D_k + 4x_k + 2(y_k)^2 - 2y_k - 2(y_k)^2 + 2y_k + 6$ = $D_k + 4x_k + 6$

If $(D_k > 0)$ then we will choose S point i.e. (x_k+1,y_k-1)

$$y_{k+1} = y_k$$
-1putting y_k -1in (*iii*) in place of y_{k+1}
Hence, $D_{k+1} = D_k + 4x_k + 2(y_k - 1)^2 - 2(y_k - 1) - 2(y_k)^2 + 2y_k + 6$
 $= D_k + 4x_k + 2(y_k)^2 + 2 - 4y_k - 2y_k + 2 - 2(y_k)^2 + 2y_k + 6$ So now we get,
 $= D_k + 4x_k - 4y_k + 10$
 $= D_k + 4(x_k - y_k) + 10$

Initial decision Parameter

Take starting point (0,r), value of y is r

Putting (0,r) in eq (i)

$$D_k = 2(x_k + 1)^2 + (y_k)^2 + (y_k - 1)^2 - 2r^2$$
So,
$$D_0 = 2(0 + 1)^2 + r^2 + (r - 1)^2 - 2r^2$$

$$= 2 + r^2 + r^2 + 1 - 2r - 2r^2$$
 Simplifying further we get,

$$= 3-2r$$

Question

Given the centre point coordinates (0, 0) and radius as 8, generate all the points to form a circle.

Solution-

Given-

- Centre Coordinates of Circle $(X_0, Y_0) = (0, 0)$
- Radius of Circle = 8

Step-01:

Assign the starting point coordinates (X₀, Y₀) as-

•
$$X_0 = 0$$

•
$$Y_0 = R = 8$$

Step-02:

Calculate the value of initial decision parameter Po as-

$$P_0 = 3 - 2 \times R$$

$$P_0 = 3 - 2 \times 8$$

$$P_0 = -13$$

Step-03:

As P_{initial} < 0, so case-01 is satisfied.

Thus,

$$\bullet X_{k+1} = X_k + 1 = 0 + 1 = 1$$

•
$$Y_{k+1} = Y_k = 8$$

$$\bullet P_{k+1} = P_k + 4 \times X_{k+1} + 6 = -13 + (4 \times 1) + 6 = -3$$

Step-04:

This step is not applicable here as the given centre point coordinates is (0, 0).

Step-05:

Step-03 is executed similarly until $X_{k+1} >= Y_{k+1}$ as follows-

Pk	P _{k+1}	(X _{k+1} , Y _{k+1})	
		(0, 8)	
-13	-3	(1, 8)	
-3	11	(2, 8)	
11	5	(3, 7)	
5	7	(4, 6)	
7		(5, 5)	