Profesor: Natham Aguirre

Ayudante: Francisco Rubio (fvrubio@uc.cl)

Ayudantía 3

Series y su convergencia

Criterios de convergencia de series

1) Criterio P

La serie p, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si p > 1 y divergente si $p \le 1$.

2) Prueba de la divergencia

LA PRUEBA DE LA DIVERGENCIA Si $\lim_{n\to\infty} a_n$ no existe o si $\lim_{n\to\infty} a_n \neq 0$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.

3) Prueba de la integral

PRUEBA DE LA INTEGRAL Suponga que f es una función continua, positiva y decreciente en $[1, \infty)$ y sea $a_n = f(n)$. En tal caso la serie $\sum_{n=1}^{\infty} a_n$ es convergente si y sólo si la integral impropia $\int_{1}^{\infty} f(x) dx$ es convergente. En otras palabras:

- (i) Si $\int_{1}^{\infty} f(x) dx$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
- (ii) Si $\int_{1}^{\infty} f(x) dx$ es divergente, entonces $\sum_{n=1}^{\infty} a_n$ es divergente.

4) Prueba por coomparación

PRUEBA POR COMPARACIÓN Suponga que $\sum a_n$ y $\sum b_n$ son series con términos positivos.

- (i) Si Σb_n es convergente y $a_n \le b_n$ para toda n, entonces Σa_n es convergente.
- (ii) Si $\sum b_n$ es divergente y $a_n \ge b_n$ para toda n, entonces $\sum a_n$ es divergente.

5) Prueba por coomparación al límite

PRUEBA POR COMPARACIÓN EN EL LÍMITE Suponga que Σa_n y Σb_n son series con términos positivos. Si

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

donde c es un número finito y c>0, en seguida ambas series convergen o ambas divergen.

Ejercicios

Ejercicio 1. Sea $a_n = \frac{3n}{2n+1}$ para todo $n \ge 1$. Analice la convergencia de $\sum_{n>1} a_n$.

Ejercicio 2. Analice la convergencia de las siguiente serie. En caso que exista calcule su respectivo límite.

$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}.$$

Ejercicio 3. Analice la convergencia de las siguientes series númericas.

$$\sum_{n\geq 1} \frac{e^n}{n^2}, \qquad \sum_{n\geq 1} \ln\left(\frac{n}{n+1}\right).$$

Ejercicio 4. Si la n -ésima suma parcial de una serie $\sum_{n=1}^{\infty} a_n$ es $s_n = \frac{n-1}{n+1}$ determine a_n y $\sum_{n=1}^{\infty} a_n$

Ejercicio 5. Demuestre que si $a_n > 0$ y $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\sum_{n=1}^{\infty} \ln(1 + a_n)$ es convergente

Ejercicio 6. Determine el valor de $c \in \mathbb{R}$ tal que

$$\sum_{n=0}^{\infty} \frac{1}{(1+c)^n} = 3$$

Ejercicio 7. Analice la convergencia de la siguiente serie

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^3}$$

Ejercicio 8. Analice la convergencia de la siguiente integral

$$\int_0^1 \frac{\operatorname{sen}(x)}{x^{3/2}(1-x)^{2/3}}, dx$$