introduzione a Bitcoin e alle criptovalute digitali

P.Bertoni

4 luglio 2014

Tabella Contenuti

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- 3 Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Criptovaluta

specifiche sul protocollo

Problema

implementare una valuta economica

- sicura
- basata su informatica
- decentralizzata
- distribuita

Criptovaluta

specifiche sulle transazioni

Problema

trasmettere transazioni di valuta tra enti

- pubbliche
- anonime ⇒ tra indirizzi, non tra utenti
- autenticate
- non ripudiabili
- irreversibili

registrate in una sorta di storico globale

Transazione T

idea astratta

- unica modalità di circolazione della valuta
- atto tra N mittenti e M destinatari
- gli enti sono indirizzi, non persone!
- ullet utenti incoraggiati a usare un indirizzo unico \forall loro ${\mathfrak T}$
- T paragonabile a un assegno
 "si certifica che, in data t,
 {x} ha versato tot \(\beta \) a {y}, che ora ne \(\beta \) proprietario."

gestione del resto

- $y' \in \{y\}$ destinatari, indirizzo controllato da chi emette $\mathfrak T$
- diversi resti frammentati sono riuniti come molteplici mittenti

Criptovaluta

specifiche sull'affidabilità

Problema

progettare un algoritmo di mining per convalidare transazioni

- trattabile da decidere
- intrattabile da risolvere
- dipendente da lista transazioni in attesa

motivazione a partecipare al mining

- ricompense
 - immediate
 - durevoli
- o complessità lavoro onesto ≡ complessità disonesto
- ma Pr[successo lavoro disonesto] → 0

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Differenze con valute tradizionali

ontologia

esplicita: come unità fisiche

implicita: in funzione di transazione

fiducia nell'accettazione di moneta

difficoltà di contraffazione

possibilità di furto o smarrimento

gettone fisico

chiave privata di firma digitale

fiducia nel protocollo di supporto ente nazionale o sovranazionale

modello formale di sicurezza

i primordi: eCash [Chaum]

sistema di firma digitale a conoscenza zero

Scenario (e.g. voto digitale)

- sia m plaintext, A il suo autore e F il firmatario
- A ≠ F
- firma classica: $S(m, K_{PR}^A)$
- firma *cieca*: $S^B(f(m), K_{PR}^F)$
- F non può calcolare m data f(m)

Algoritmo

- A estrae nonce x
- 2 A calcola e invia $\tilde{m} = f(m, x)$ messaggio blinded
- F calcola e invia $\tilde{s} = S(\tilde{m}, K_{PR}^F) \equiv S^B(f(m), K_{PR}^F)$
- A calcola $s = f^{-1}(\tilde{s}.\tilde{m}, x)$ firma valida

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Curve Ellittiche

- varietà abeliane
- curve algebriche piane definite da:

$$y^2 = x^3 + ax + b$$

• non singolari: $4a^3 + 27b^2 \neq 0$

Theorem (Hasse)

sia \mathbb{F}_q il campo di Galois di ordine q sia $\mathscr{E}=\mathscr{E}_{(a,b)}(\mathbb{F}_q)$ una curva ellittica su \mathbb{F}_q

⇒ l'ordine del campo finito usato governa la difficoltà

Curve Ellittiche

legge di gruppo

$$R = P + Q \triangleq (x_R, -y_R) :$$

$$\begin{cases} y_R = y_P + s(x_R - y_P) \\ x_R = \begin{cases} s^2 - 2x_P & s = \frac{3x_P^2 - p}{2y_P} \\ s^2 - x_P - x_Q & s = \frac{y_P - y_Q}{x_P - x_Q} \end{cases} : x_P = x_Q$$

$$R = P \times p \triangleq P + P + \dots + P \qquad n \text{ volte}$$

Curve Ellittiche

problema matematico

$$(\mathscr{E}_{(a,b)}(\mathbb{F}_q),+)$$
 è un gruppo abeliano

- chiusura
- associatività
- identità
- invertibilità
- commutatività

Problema: trovare $d \in [1, n-1]$, dati

- $\mathscr{E} = \mathscr{E}_{(a,b)}(\mathbb{F}_q)$
- $G \in \mathscr{E}$: $\langle G \rangle = \mathscr{E}$
- n = o(G): $G \times n = O = P_{\infty}$, n primo
- P ∈ E
- \bullet $Q = P \times d$

Funzioni di Hash

- $h: \mathbb{Z} \to \mathbb{Z}_n$ non iniettiva, *i.e.* one-way
- resistenza a
 - preimmagine \rightarrow ricerca *bruta* è $O(2^n)$
 - ullet collisioni deboli o " " "
 - collisioni forti \rightarrow birthday: ricerca bruta è $O(2^{n/2}) \ll O(2^n)$
- usate soprattutto per
 - autenticazione
 - integrità
- spesso viene firmato il digest d = h(m) anzichè m nei sistemi di autenticazione e non ripudio
- insieme ai salt prevengono attacchi dizionario

Alberi di Merkle

- ullet foglie \leftrightarrow transazioni
- altri nodi ↔ hash dei loro figli
- dimostrare che una foglia ∈ albero: O(log₂ N)
- usando una lista: $O(N) \gg O(\log_2 N)$
- protegge integrità transazioni
- nati per firme one time di Lamport
- Bitcoin: $hash_n = SHA_{256}(SHA_{256}(\mathcal{L}_n|\mathcal{R}_n))$

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Transazione T

struttura dati

- ogni mittente appone la propria firma
- $\sum_{i}^{N} \mathbb{B}_{i}^{in} \geq \sum_{i}^{M} \mathbb{B}_{i}^{out}$
 - $\mathfrak{T}^{ID} = h(\mathfrak{T})$
 - timestamp t
 - $\forall i$ indirizzo di input \mathfrak{I}_{i}^{in}
 - somma trasferita Bin
 - chiave K_{i,in}^{PB}
 - indice $p: \mathfrak{I}_{i}^{in} = \mathfrak{I}_{p}^{rout}$
 - $\mathfrak{T}_{-1}^{D} = h(\mathfrak{T}_{-1})$ precedente
 - firma $S_i(h(\mathfrak{T}_{-1}, K_{j,out}^{PB}))$

- $\forall j$ indirizzo di output \mathfrak{I}_{i}^{out}
- somma ricevuta \mathbb{B}_i^{out}
- chiave $K_{j,out}^{PB}$

Header

- hash del blocco \mathfrak{B}_{i-1}
- MerkleTree di $\{\mathfrak{T}\}_{\mathfrak{B}}$
- · timestamp corrente
- target z (vedi dopo)
- nonce x
- titolare T di coinbase (vedi dopo)
- durante mining di B, campi continuamente modificati
- B descrive la propria proof of work
 - input: header di B
 - funzione hash: SHA₂₅₆(SHA₂₅₆(·))

Payload

• lista transazioni $\{\mathfrak{T}\}_{\mathfrak{B}}$

Transazioni → Blocchi

generazione nuova transazione

- broadcastata nella rete tramite protocollo flooding
- ogni miner può includerla nel suo pool
- $oldsymbol{3}$ invalida fino a risoluzione del ${\mathfrak B}$ ove viene inserita
- a quel punto chi l'ha ancora in pool la rimuove

Blocchi → Blockchain

generazione catena di blocchi

- ullet hash dei blocchi precedenti \sim puntatori di una lista
- a ritroso si giunge al ${\mathfrak B}$ di *genesi*

Motivazione all'utilizzo

transazioni Coinbase &

- ∀B, ∃! C
- inputs: ∅
- outputs: miners che han risolto 33
- ricompensa
 - 50 B iniziali [2009]
 - dimezzata ogni 210K blocchi risolti
- inflazione
 - dettata solo da mining
 - limitata

Motivazione all'utilizzo

fees $\mathfrak F$ sulle transazioni

\forall transazione \mathfrak{T}

•
$$\mathfrak{F} = \sum_{i}^{N} \mathbb{B}_{i}^{in} - \sum_{i}^{M} \mathbb{B}_{i}^{out} \geq 0$$

- \bullet spetta a miners che risolvono $\mathfrak{B}\ni\mathfrak{T}$
- lacktriangle mai obbligatoria, ma... miners mai obbligati ad aggiungere $\mathfrak T$ a proprio pool di lavoro
- ⇒ fees incentivi per
 - ullet velocizzare validazione di ${\mathfrak T}$
 - mining costante nonostante decrescita coinbase rewards

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

ECDSA

inizializzazione

Alice: scelta dei parametri pubblici

- (a, b): $4a^3 + 27b^2 \neq 0$

Alice: generazione coppia chiavi

Bob: verifica validità di Q_A ricevuta

- $Q_A \in \mathscr{E}$
- $Q_A \times n = O$

ECDSA firma digitale

Alice: firma del messaggio m

- $\bullet \leftarrow \operatorname{hash}(m)$
- $k \leftarrow \text{rand} \in [1, n] \subset \mathbb{N}$

- **6** if r = 0 goto 2
- **4** if s = 0 goto 2
- \bullet return (r, s)

ECDSA verifica firma

Bob: verifica firma (r, s) di m

$$(r, s) \in [1, n-1] \times [1, n-1]$$

$$e \leftarrow \text{hash}(m)$$

6 ok
$$\Leftrightarrow r \equiv x_1 \mod n$$

SHA-256

Secure Hash Algoritm 256 bit

- $^{256}/_{2} = 128$ bit di sicurezza \Rightarrow collisioni non ancora trovate
- $len(m) \le 2^{64} 1$

- padding: $len(m|0...) \equiv 448 \mod 512$
- padding con 64 bit di len(m)
- **3** *N* blocchi da 512 bit: $B^{(1)}, ... B^{(N)}$

4

$$H^{(i)} \triangleq H^{(i-1)} + C_{B^{(i)}}(H^{(i-1)})$$

3 ritorna $d = H^{(N)}$

Figura: funzione di compressione C

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Firma digitale

attacco base: rottura DLOG

- $|d_{ECC}| = 256$ bit $\simeq |d_{RSA}| = 3072$ bit
- $q \simeq 10^{77}$, $n \simeq 10^{69}$, $\mathscr{E} : y^2 = x^3 + 0x + 7$ [Koblitz]
- Meet in the middle [Shank]: $\Omega(\sqrt{q})$
- nonce k dev'essere confidenziale: $d = r^{-1}(ks e)$
- Replay attack: nonce deve tale
 - a) $r_1 = r_2 = r$, $k_1 = k_2 = k$
 - b) $s_1 \equiv k^{-1}(e_1 + dr) \mod n$, $s_2 \equiv k^{-1}(e_2 + dr) \mod n$
 - c) ... $k(s_1 s_2) \equiv (e_1 e_2) \mod n$
 - d) $m_1 \neq m_2 \Rightarrow (s_1 s_2) \neq 0 \Rightarrow k \equiv (s_1 s_2)^{-1} (e_1 e_2) \mod n$
- malleability: $(r, s) \equiv (r, -s \mod n)$ \Rightarrow proposta: costringere $s < \frac{n}{2}$

metodo Hashcash

- nato per contrastare spam, DoS: serve un'operazione onerosa
- facile verificare che il messaggio è soluzione di problema difficile
- brute force unica tecnica risolutiva
- Problema: dati $h: \mathbb{Z} \to \mathbb{Z}_n, m, z \leq n$, trovare nonce x:

$$d = h(m|x) < T_z = 2^{n-z+1}$$

i.e. digest ha z zeri non significativi (parametro target)

$$\Pr[d < T_z | Z = z] = \frac{1}{2^z} \Rightarrow O(2^z)$$

ullet problema risolto \Leftrightarrow blocco ${\mathfrak B}$ risolto \Leftrightarrow $\{{\mathfrak T}\}_{{\mathfrak B}}$ convalidate

exempli gratia: z = 15

$$\label{eq:hash} \begin{split} & \text{hash("helloworld"|001)} = 9002381300129484192947128 \\ & \vdots & \vdots \\ & \text{hash("helloworld"|034)} = 0000834716283947104512438 \\ & \vdots & \vdots \\ & \text{hash("helloworld"|415)} = 0000000000000000000083201 \end{split}$$

n.b. gambler's fallacy

$$\forall t_1, t_2 \ \Pr(Z = z, T = t_1) = \Pr(Z = z, T = t_2)$$

adattamento target

- target z_i ricalcolato ogni 2016 blocchi risolti \sim 2 settimane
- $\bullet \ \Delta_i \leftarrow t_i t_{i-1}$
- $\Delta_i \leftarrow \text{clip}(\Delta_i, 0.5, 8)$
- $z_{i+1} \leftarrow z_i \frac{\Delta_i}{2}$
- z ∝ Δ ⇒ soluzioni veloci abbassano target i.e. generazione problemi più difficili, vv.
- blocco risolto mediamente ogni 10 minuti

sicurezza di SHA256

in teoria...

• preimage attack attack: $O(2^{256})$

• birthday attack: $O(2^{256/2})$

...in pratica

Metodo	Attacco	Iterazioni	Complessità
deterministico	collisione	24	2 ^{28.5}
meet in the middle	preimmagine	42	$2^{248.4}$
differenziale	pseudo collisione	46	2 ¹⁷⁸
biclique	preimmagine	45	2 ^{255.5}

prevenzione double spending

per spendere due volte la stessa T occorre

- ullet modificarne gli output $\Rightarrow \mathfrak{T}$ stessa $\Rightarrow \mathfrak{B}$ di appartenenza
- ullet ricalcolare nonce x per ${\mathfrak B}$ modificato
- modifica $\mathfrak{B} \Rightarrow$ modifica di *N* blocchi successivi
- ricalcolare N nonces ⇒ risolvere N problemi esponenziali

forking

- risolto imponendo aggiunta a ramo più lungo
- sotto ipotesi web of trust sopravviverà il ramo corretto

Web of trust

dato un pool di miners ${\mathfrak M}$ con capacità di calcolo $\mathscr{C}_{{\mathfrak M}}$ $\left[{{
m GH/s}} \right]$

$$\Pr[\mathfrak{M} \text{ risolva blocco}] \propto \frac{\mathscr{C}_{\mathfrak{M}}}{\mathscr{C}_{\Omega}}$$

 \Rightarrow Bitcoin funziona solo se $\mathscr{C}_{\Theta} \geq$ 50% \mathscr{C}_{Ω}

se
$$\exists~\mathfrak{M}_{\overline{\Theta}}$$
 pool disonesto: $\mathscr{C}_{\mathfrak{M}_{\overline{\Theta}}} \geq$ 50% \mathscr{C}_{Ω}

- \Rightarrow catena più lunga comanderebbe \Rightarrow crollo fiducia \Rightarrow crollo valore
 - no motivazione di lucro diretto
 - ma no difesa contro nemici abbastanza potenti e motivati

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

attacco alla firma digitale

unico modo per forgiare #: usare quelli di qualcuno

- il problema di forgiare dal nulla non ha senso
- ullet occorre appropriarsi di $K_{PR} \Rightarrow$ rompere ECDSA

se quantum computers implementati

- rottura ECDSA può diventare facile
- inversione SHA₂₅₆ resta *difficile*
- indirizzi $\Im = SHA_{256}(SHA_{256}(K_{PB}))$
 - ottenere K_{PB} dal solo \Im è difficile
 - ma se è nota il sistema è rotto

caso di studio: Mt.GoX [2014]

prima del crollo

exchange

- web service di scambio valute fiat con ₿
- 2011: compromissione account interno al perimetro ⇒ furto ₿
- 2013: Blockchain fork in rami con regole diverse
 ⇒ MtGox sospende transazioni

malleabilità

- $\mathfrak{T}^{ID} \triangleq h(\mathfrak{T}), \quad S \in \mathfrak{T}$
- codice MtGox non controlla la validità del formato di S
- problema ∈ implementazione, ∉ protocollo B
- ∃ altri sistemi migliori per proprio storico ⇒ immunità

caso di studio: Mt.GoX [2014]

il crollo: attacco delle transazioni mutanti

frode di Eve ai danni di MtGox

- M invia ∑ a E dopo legittima richiesta prelievo
- ② E ritocca $S(\mathfrak{T})$ prima della sua conferma
- ora $\exists \tilde{\mathfrak{T}} \equiv \mathfrak{T}$, ma $h(\tilde{\mathfrak{T}}) \neq h(\mathfrak{T}) \Rightarrow \tilde{\mathfrak{T}}^{D} \neq \mathfrak{T}^{D}$
- diffusa da E e confermata prima di
- 5 non confermata perchè T invalido
- M controlla il suo storico: 5 non è stata accettata
- M costretto a inviare T come rimborso

DDoS

- M riceve tante transazioni mutanti
- grande sovraccarico, persino se c'è resistenza a frode
- lacktriangle latenza nelle risposte \Rightarrow incertezza \Rightarrow speculazione

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

rete transazioni ${\mathscr T}$

rete utenti imperfetta $\tilde{\mathscr{U}}$

rete utenti \mathcal{U} , rete ancella \mathscr{A}

integrazione con informazioni esterne

- dimensione $\propto |\{K_{PB}\}|$ utente

contenuto

- Introduzione
 - Problema
 - Caratteristiche di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

tipologia transazione

- lenta, e.g. acquisto ticket eventi
 - ⇒ sicurezza offerta dal mining
- *veloce*, *e.g.* pagamento in negozio
 - \Rightarrow Karame: \exists possibilità di double spending
 - tempi scambio [s] ≪ tempi validazione [min]
 - Bitcoin segue tecnica dello struzzo
 - problema limitato in gravità ma non risolto

garantire validità nel caso veloce

ipotesi

hosts

- A peer disonesto
- H complici di A
- V vendor onesto

transazioni

- \(\mathbf{T}_V\): acquisto regolare
- \$\mathbf{I}_A\$: recupero fraudolento

ipotesi

- A conosce indirizzo IP di V
- capacità di calcolo di A trascurabile

$$\bullet \ \mathfrak{I}_{V}^{in} = \mathfrak{I}_{A}^{in} \in A$$

•
$$V \ni \mathfrak{I}_{V}^{out} \neq \mathfrak{I}_{A}^{out} \in A$$

• implementazioni clients: plain vanilla

idea di massima

- T_V, T_A inviate contemporaneamente
 ⇒ incluse nello stesso pool
- se ∑, ∑' condividono inputs
 ⇒ non ammesse nello stesso pool
- ullet inclusa solo la prima ${\mathfrak T}$ ad arrivare
 - \Rightarrow
- \$\mathcal{T}_A\$ da validare rapidamente
- \(\mathbf{I}_V\) sarà smentita dalla rete

1^a condizione: connessione diretta

V riceve prima \mathfrak{T}_V di \mathfrak{T}_A

oppure V includerebbe prima \mathfrak{T}_A nel pool

- A conosce IP di V
- client accetta sempre nuove connessioni < 125 max
- A comunica con H
 - senza latenza
 - privatamente
- H non comunica con V
- A invia

 - ② ∑_A a H

Figura: analisi del momento propizio

2ª condizione: diffusione manipolata

 \mathfrak{T}_A inclusa in blockchain (*i.e.* confermata) prima di \mathfrak{T}_V oppure \mathfrak{T}_A non potrebbe seguire \mathfrak{T}_V in blockchain

- H, V probabilmente lontani $\Rightarrow \mathfrak{T}_A, \mathfrak{T}_V$ broadcastate finchè \int ogni peer include $\mathfrak{T}_A \dot{\vee} \mathfrak{T}_V$ in proprio pool $\mathfrak{T}_A \vee \mathfrak{T}_V$ è confermata
- $\Pr[\tau_A < \tau_V] \propto \eta_A/\eta_V$ governabile in due modi
 - invio di ∑_A precede invio di ∑_V
 - H aiutano A diffondendo \mathfrak{T}_A e filtrando \mathfrak{T}_V
- ulteriori ipotesi
 - \exists istante ove \mathfrak{T}_A , \mathfrak{T}_V convivono
 - $\forall \varepsilon$ p.a.p., $\Pr[\tau_A \sim secs] \cup \Pr[\tau_V \sim secs] < \varepsilon$
 - η_A , η_V non scambiano blocchi risolti $\Rightarrow \tau_A$, τ_V indipendenti

probabilità di successo

 $\Pr[\text{successo in un tempo } \delta t] \sim \text{Bernoulli}(\eta, p)$

- η = numero di peers coinvolti
- $p = \Pr[\text{peer generi un } \mathfrak{B} \text{ in } \delta t]$

Figura: Pr[successo | $\delta t = 10s$, $\eta = 6 \cdot 10^4$]