12 Probability

12_02_Conditional Probability and Independence of Events

Suppose A and B are two events in an experiment. The probability that event A occurs given event B occurs is called a **conditional probability**, denoted **P**(**A** | **B**), which is read as "the probability of A given B".

Example. In the experiment of tossing three coins, we define A as the event of getting at least two heads and B as the event of getting one or two tails. Find the probabilities of P(A | B). [Solution] The sample space $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$, the event A = $\{HHH, HHT, HTH, THH\}$, and the event B = $\{HHT, HTH, HTT, THH, THT, TTH\}$. Thus P(A | B) = 3/6 = 1/2. Note that P(A | B) = $(3/8)/(6/8) = P(A \cap B)/P(B)$.

Suppose A and B are two events in an experiment. The probability that event A occurs given event B occurs is called a **conditional probability**, denoted $P(A \mid B)$, which is read as "the probability of A given B". If P(B) > 0, then $P(A \mid B) = P(A \cap B)/P(B)$, further, $P(A \cap B) = P(B) P(A \mid B)$. Also, if P(A) > 0, then $P(B \mid A) = P(B \cap A)/P(A)$. Thus $P(A \cap B) = P(B \cap A) = P(A) P(B \mid A) = P(A) P(B \mid A)$.

Example. The defective rate of a collection of 1000 cellphones is 5%. Draw sequentially two cellphones from that collection without replacement. Find the probability of the second pick is the first time of drawing a non-defective cellphone.

[Solution] Define A as the event of drawing a defective cellphone in the first pick. Define B as the event of drawing a non-defective cellphone in the second pick. We need to find $P(A \cap B)$.

$$P(A \cap B) = P(A) P(B \mid A) = 0.05* (1000 - 1000*0.05)/999 \approx 0.0475.$$

Suppose A and B are two events in an experiment. If P(A) = 0 or P(B) = 0, then A and B are **independent**. If $P(A) \neq 0$ and $P(B) \neq 0$, then that A and B are **independent** is defined by any one of three equivalent conditions below.

[1]
$$P(B | A) = P(B)$$
,

[2]
$$P(A | B) = P(A)$$
,

[3]
$$P(A \cap B) = P(A) P(B)$$
.

Example. Roll a balanced regular tetrahedron with faces labelled as 1, 2, 3, and 4. Find the probability of the event of getting 1 or 2 on faces. Find the probability of the event of getting 1 or 3 on faces. [Solution] Define A as the event of getting face 1 or face 2. Define B as the event of getting face 1 or face 3. Then A \cap B is the event of getting face 1. Note that the sample space is {face 1, face 2, face 3, face 4}. Thus

$$P(A) = 2/4 = 1/2$$
, $P(B) = 2/4 = 1/2$, and $P(A \cap B) = 1/4 = P(A) P(B)$.
Hence event A and event B are independent.