Prelab 3, Analog Integrated Circuits

Ole Jansen, Kaya Runge, Finn Rautenberg, 06.01.2023, Lübeck

1) Simple Cascode

1a) Circuit

1b) DC bias point simulation

NAME MODEL ID VGS VDS VBS VTH VDSAT Lin0/Sat1 if ir TAU GM GDS GMB CBD CBS CGSOV CGDOV	M_M3 nmcs_tsmc 1.00E-05 4.56E-01 0.00E+00 3.28E-01 1.30E-01 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 1.07E-04 1.64E-06 9.34E-06 0.00E+00 0.00E+00 6.05E-16	M_M1 nmos_tsmc	M_M4 nmos_tsmc 1.00E-05 4.49E-01 1.04E+00 0.00E+00 3.28E-01 1.25E-01 -1.00E+00 -1.00E+00 0.13E-06 9.88E-06 0.00E+00 0.00E+00 0.00E+00	M_M2 nmos_tsmc 1.00E-05 4.56E-01 4.63E-01 0.00E+00 3.28E-01 1.30E-01 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 0.07E-04 1.63E-06 9.35E-06 0.00E+00 0.00E+00 6.05E-16
CGSOV	6.05E-16	6.05E-16	6.05E-16	6.05E-16
CGDOV CGBOV CGS CGD CGB	2.50E-16 2.50E-17 9.85E-16 0.00E+00 0.00E+00	0.05E-16 2.50E-17 9.85E-16 0.00E+00 0.00E+00	0.05E-16 2.50E-17 9.85E-16 0.00E+00 0.00E+00	0.05E-16 2.50E-17 9.85E-16 0.00E+00 0.00E+00

All FETs are in saturation due to $V_{GS} > V_{TH}$ and $V_{DS} > V_{DSAT} = V_{OV}$

1c) Calculation

$$V_{biasTop} = 2 * V_{GS} =$$
$$2 * 456mV = 912mV$$

$$V_{D4,sat,min} \ge 2V_{GS} - V_{TH} = 2 * 456mV - 328mV = 584mV$$

2) Wide-swing Cascode

2a) Circuit

2b) DC bias point simulation

NAME	M M1	м мз	M M2	M_M4	M M5	NAME	M M6
MODEL	nmos tsmc	MODEL	nmos_tsmc				
ID	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	ID	1.00E-05
VGS	4.63E-01	4.58E-01	4.63E-01	4.46E-01	4.56E-01	VGS	5.93E-01
VDS	1.35E-01	3.28E-01	1.47E-01	1.35E+00	4.56E-01	VDS	1.38E-01
VBS	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	VBS	0.00E+00
VTH	3.28E-01	3.28E-01	3.28E-01	3.28E-01	3.28E-01	VTH	3.28E-01
VDSAT	1.35E-01	1.31E-01	1.35E-01	1.24E-01	1 30E-01	VDSAT	2.08E-01
Lin0/Sat1	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	Lin0/Sat1	-1.00E+00
if	-1 00E+00	-1 00E+00	-1.00E+00	-1.00E+00	-1 00E+00	if	-1.00E+00
ir	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	-1.00E+00	1r	-1.00E+00
TAU	-1 00E+00	-1 00E+00	-1.00E+00	-1.00E+00	-1 00E+00	TAU	-1.00E+00
GM	9.92E-05	1.05E-04	1.00E-04	1.15E-04	1.07E-04	GM	4.25E-05
GDS	4.19E-06	1.98E-06	3.81E-06	9.95E-07	1.64E-06	GDS	3.36E-05
GMB	8.69E-06	9.17E-06	8.76E-06	1.01E-05	9.34E-06	GMB	3.80E-06
CBD	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	CBD	0.00E+00
CBS	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	CBS	0.00E+00
CGSOV	6.05E-16	6.05E-16	6.05E-16	6.05E-16	6.05E-16	CGSOV	2.64E-16
CGDOV	6.05E-16	6.05E-16	6.05E-16	6.05E-16	6.05E-16	CGDOV	2.64E-16
CGBOV	2.50E-17	2.50E-17	2.50E-17	2.50E-17	2.50E-17	CGBOV	2.50E-17
CGS	9.85E-16	9.85E-16	9.85E-16	9.85E-16	9.85E-16	CGS	3.35E-16
CGD	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	CGD	2.83E-16
CGB	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	CGB	0.00E+00
<u> </u>							

All FETs are in saturation due to $V_{GS} > V_{TH}$ and $V_{DS} > V_{DSAT} = V_{OV}$, except M6 which is tuned to result in $V_{BiasTop,min} = 593mV$

2c) Calculation

$$V_{BiasTop,min} \ge 2V_{OD} + V_{TH} = 2 * 124mV + 328mV = 576mV$$

$$V_{D4,sat,min} \ge 2V_{OD} = 2 * 124mV = 248mV$$

Figure 1: I_D4 in relation to V_D4 at DC Sweep (green: simple Cascode, red: wide-swing Cascode)

3) Comparison simple and wide-swing Cascode

Design	L	W	W_{M6}	V_{Bias}	$V_{BiasTop,min}$	$I_{D4,sat}$ simulation	$V_{D4,sat,min}$ theory
Simple	250 nm	1 μm	-	911 mV	912 mV	9,988 μA (@584 mV)	584 mV
Wide-swing	250 nm	1 μm	450 nm	593 mV	576 mV	9,959 μA (@284 mV)	284 mV

The wide-swing Cascode is able to operate at 284 mV less then the simple Cascode at 584 mV, which is a 300mV improvement. If the saturation voltage $V_{BiasTop} = V_{BiasTop,min}$ this difference should even increase. M6 has been modified to 450 nm, which is a none modulo 250 nm width, which is forbidden. The bias voltage is reached but M6 isn't in saturation which may cause changes at other environmental parameters.