ECMT3150: The Econometrics of Financial Markets

2a. Conditional Heteroskedastic Models

Simon Kwok University of Sydney

Semester 1, 2021

Outline

- 1. Stylized Facts of Stock Returns and Volatility
- 2. Testing for ARCH Effect
- 3. ARCH/GARCH Model
 - 3.1 Model Structure
 - 3.2 ARMA Representation
 - 3.3 Volatility Forecast
 - 3.4 Model Estimation
 - 3.5 Model Diagnostics
- 4. Some Extensions
 - 4.1 IGARCH
 - 4.2 GARCH-M
 - 4.3 EGARCH
 - 4.4 TGARCH
 - 4.5 SV

Volatility

Q: What is Volatility?

- Volatility is a measure of the degree of asset price/market fluctuation.
- Volatility is high during more turbulent periods/market crashes, and low during quiet or booming periods.

Q: Why do should we care about Volatility?

- It is important for pricing options and other financial derivatives.
- VIX volatility index is being traded on CBOE in the form of futures.

Some Stylized Facts

daily

Q: What are some stylized facts about stock returns?

- Stock return has mean that is close to zero.
- ____> ► Stock return tends to be serially uncorrelated. 1

Q: What are some stylized facts about volatility?

- Volatility is not directly observable.
- Volatility level of stock price typically goes up fast and then decays slowly over time.
- Volatility clustering: volatility level is autocorrelated, i.e., high volatility periods tend to cluster together (and similarly for effect low volatility periods).
 - Leverage effect: volatility level tends to be inversely associated with price changes.

¹This is not true for high frequency data, however.

Model Structure

 (P_t) asset price at time t.

 r_t log-return of the asset at time t, given by

$$r_t = \log(P_t) - \log(P_{t-1}).$$

Let \mathcal{F}_{t-1} be the information set at time t-1. The conditional mean and variance of r_t are:

$$\underbrace{\frac{\mu_{t}}{\sigma_{t}^{2}}}_{t} = E(r_{t}|\mathcal{F}_{t-1}), \qquad (1)$$

$$\underbrace{\sigma_{t}^{2}}_{t} = Var(r_{t}|\mathcal{F}_{t-1}) = E[(r_{t} - \mu_{t})^{2}|\mathcal{F}_{t-1}]. \qquad (2)$$

We need a parametric model to describe the evolution of μ_t and σ_{\star}^2 over time.

Let $a_t = r_t - \mu_t$. The dynamic regression model is:

$$r_t = \mu_t + a_t$$
.

The error a_t may exhibit *conditional* heteroskedasticity, so that $\sigma_t^2 := Var(a_t | \mathcal{F}_{t-1})$ is not a constant over t.

Model Structure

$$\frac{\mu_t}{\longrightarrow} = E(r_t | \mathcal{F}_{t-1}) \qquad \qquad \qquad \underbrace{t}_{-1} \qquad \qquad \qquad \qquad \qquad \\
= \phi_0 + \phi_1 r_{t-1} + \dots + \phi_{p-1} r_{p-1} \qquad \qquad \qquad \qquad \qquad \end{aligned}$$

Sometimes we may want to include additional (weakly) exogenous regressors x_t as well:

$$\begin{array}{ll}
\mu_t &=& \underline{E(r_t|\mathcal{F}_{t-1},\mathbf{x}_t)} \\
&=& \phi_0 + \phi_1 r_t + \cdots + \phi_p + \gamma' \mathbf{x}_t
\end{array}$$

A popular class of models for σ_t^2 is the (generalized) autoregressive conditional heteroskedasticity model, or (GARCH) model.

Testing for ARCH Effect

Let $\hat{a}_t = r_t - \hat{\mu}_t$ be the residuals from the dynamic regression model. Cond. Mean

Q: How to check for conditional heterosked asticity (ARCH effect)?

A: Two approaches, both require choosing a maximum lag order m for testing.

- Ljung-Box test Q(m) on $\{\hat{a}_t^2\}$ (McLeod-Li 1983)).
- Lagrange multiplier (LM) test (Engle (1982)). Carry out an F test in the linear regression (t = m + 1, ..., T)

$$\hat{a}_t^2 = \alpha_0 + \alpha_1 \hat{a}_{t-1}^2 + \dots + \alpha_m \hat{a}_{t-m}^2 + e_t.$$
 (3)

We want to test $\underline{H_0: \alpha_i = 0}$ for all i = 1, ..., m vs $\underline{H_a: \alpha_i \neq 0}$ for some i = 1, ..., m.

Define the restricted and unrestricted sums of squared residuals:

 $SSR_r = \sum_{t=1}^T (\hat{a}_t^2 - \overline{\hat{a}^2})^2$ and $SSR_{ur} = \sum_{t=1}^T \hat{e}_t^2$, where $\overline{\hat{a}^2} = \frac{1}{T} \sum_{t=1}^T \hat{a}_t^2$, and \hat{e} is the residuals from regression (3).

The F test statistic is

$$F = \frac{(SSR_r - SSR_{ur})/m}{SSR_{ur}/(T - 2m - 1)},$$

ARCH Model

$$a_t \sim \frac{ARCH(m)}{model}$$
 if $a_t = \sigma_t \varepsilon_t$,

where $\varepsilon_t \sim iid(0,1)$ (i.e., iid with mean 0 and variance 1), and

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2$$
proxy for $v = \{a_i, c_i\}$
at $t = i$.

 $\sigma_t^2 = Var(a_t | \mathcal{F}_{t-1})$ is interpreted as the conditional variance at time t given the history.

time t given the history. Vola. clustering.

If a_t is weakly stationary, the unconditional (long-run) variance $\sigma^2 := Var(a_t)$ exists. We may take unconditional expectations on both sides of (4) and solve for σ^2 :

$$\sigma^2 = \frac{\alpha_0}{1 - \sum_{i=1}^m \alpha_i}.$$

The necessary condition for the existence of σ^2 is $\sum_{i=1}^m \alpha_i < 1$.

GARCH Model

 $a_t \sim \textit{GARCH}(\textit{m}, \textit{s})$ if

M_t = 0 (hence pure GARCH modul)⁽⁵⁾

where $\varepsilon_t \sim iid(0,1)$, and

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{i=1}^s \beta_i \sigma_{t-i}^2.$$
 (6)

If a_t is weakly stationary, the unconditional (long-run) variance exists and is equal to:

$$\underline{\sigma^2} = \frac{\alpha_0}{1 - \sum_{i=1}^m \alpha_i - \sum_{i=1}^s \beta_i}.$$
 (7)

The necessary condition for the existence of σ^2 is

$$\sum_{i=1}^{m} \alpha_i + \sum_{i=1}^{s} \beta_i < 1. \tag{8}$$

ARMA Representation of Squared Errors GARCH (m/5).

Let
$$\eta_t = a_t^2 - \sigma_t^2$$
. Recall that $\sigma_t^2 = Var(a_t | \mathcal{F}_{t-1}) = \underline{E(a_t^2 | \mathcal{F}_{t-1})}$, so we see that $\eta_t = a_t^2 - E(a_t^2 | \mathcal{F}_{t-1})$.

Ex: Show that $\eta_{\,t} \sim {\it mds}$, i.e., $E(\eta_{\,t}|\mathcal{F}_{\it s}) = 0$ for all t>s.

We may then rewrite (6) as follows:

$$\frac{a_{t}^{2} - \eta_{t}}{a_{t}^{2}} = \alpha_{0} + \sum_{i=1}^{m} \alpha_{i} a_{t-i}^{2} + \sum_{i=1}^{s} \beta_{i} (a_{t-i}^{2} - \eta_{t-i})$$

$$\frac{a_{t}^{2} - \eta_{t}}{a_{t}^{2}} = \alpha_{0} + \sum_{i=1}^{max(m,s)} (\alpha_{i} + \beta_{i}) a_{t-i}^{2} + \eta_{t} - \sum_{i=1}^{s} \beta_{i} \eta_{t-i}. (9)$$

In (9), we adopt the convention that $\alpha_i=0$ for i>m, and $\beta_i=0$ for i>s.

Interpretation: The squared innovation $a_t^2 \sim A\underline{RMA}(\max(m,s),s)$ with mds errors η_t .

GARCH Volatility Forecasting

At the forecast origin
$$t$$
, the 1-step ahead forecast of σ_{t+1}^2 is GARCH)
$$\frac{\hat{\sigma}_t^2(1)}{\hat{\sigma}_t^2(1)} = \underbrace{E(\sigma_{t+1}^2|\mathcal{F}_t)}_{\text{csince}} (\text{see p.20 of slides 1}) \qquad \text{assurtion.}$$
 Optimized
$$= \underbrace{\sigma_{t+1}^2}_{\text{out}} (\text{since } \sigma_{t+1}^2 \text{ is measurable to } \mathcal{F}_t) \\ = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t+1-i}^2 + \sum_{i=1}^s \beta_i \sigma_{t+1-i}^2 \qquad \text{from (6)}.$$
 Q: What is the ℓ -step ahead forecast of $\sigma_{t+\ell}^2$?
$$\mathcal{F}_t(1) = \underbrace{E(\sigma_{t+1}^2|\mathcal{F}_t)}_{\text{cut}} + \underbrace{\mathcal{F}_t}_{\text{cut}} + \underbrace{\mathcal{F}_t}_{\text{cut}}$$

GARCH Volatility Forecasting

A: First, using (5), rewrite the recursive equation (6) as $\alpha_0 + \sum_{i=1}^{m} \alpha_i \sigma_{t+\ell-i}^2 \varepsilon_{t+\ell-i}^2 + \sum_{i=1}^{s} \beta_i \sigma_{t+\ell-i}^2 + \sum_{i=1}^{s} \alpha_i \sigma_{t+\ell-i}^2 - \sum_{i=1}^{s} \alpha_i \sigma_{t+\ell-i}^2$ $\alpha_0 + \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) \sigma_{t+\ell-i}^2 + \sum_{i=1}^{m} \alpha_i \sigma_{t+\ell-i}^2 (\varepsilon_{t+\ell-i}^2 - 1).$ Then, take expectations conditional on \mathcal{F}_t , and note that and at time t+l-i [(2212-i) = Var(2+12-i) = 1

GARCH Volatility Forecasting

The ℓ -step ahead forecast of $\sigma_{t+\ell}^2$ is thus given by $E(\sigma_{t+\ell}^2 | \mathcal{F}_t) = \sum_{m=1}^{\infty} (\alpha_i + \beta_i) \hat{\sigma}_t^2(\ell-i) + \sum_{i=\ell}^{\infty} \alpha_i (a_{t+\ell-i}^2 - \sigma_{t+\ell-i}^2)$.

We adopt the convention that $\hat{\sigma}_t^2(\ell-i) = \sigma_{t+\ell-i}^2$ if $\ell-i \leq 0$. The last summation is gone if $\ell > m$.

E.g.: For the $\underline{GARCH}(1,1)$ model (i.e., m=s=1), the ℓ -step ahead forecast of $\sigma_{t+\ell}^2$ is:

$$\frac{\hat{\sigma}_t^2(\ell)}{\ell} = \left\{ \begin{array}{ll} \alpha_0 + \alpha_1 a_t^2 + \beta_1 \sigma_t^2 & \text{if } \ell = 1, \\ \alpha_0 + (\alpha_1 + \beta_1) \hat{\sigma}_t^2(\ell - 1) & \text{if } \ell > 1. \\ & & \ell = 1, \\ & \ell =$$

Q: What happens to $v_t(t)$ as $t \to \infty$. A: If $\sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1$, then $\hat{\sigma}_t^2(\ell)$ converges to the long-run variance $\alpha_0 \left/ \left[1 - \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) \right] \right.$

Properties of GARCH(1,1) Model

The GARCH(1,1) model is given by
$$r_t = \mu_t + a_t,$$

$$\begin{cases} a_t = \sigma_t \varepsilon_t, \\ \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2, \end{cases}$$

with $\alpha_1, \beta_1 > 0$ and $\alpha_1 + \beta_1 < 1$, ε_t is iid noise with $E(\varepsilon_t) = 0$, and $Var(\varepsilon_t) = E(\varepsilon_t^2) = 1$. By (1) and (2), μ_t and σ_t^2 are measurable with respect to the information set \mathcal{F}_{t-1} . Since $\mathcal{F}_t = 0$ We assume for now that r_t is covariance stationary (so that its first two unconditional moments are constant over time).

Conditional Mean and Variance of GARCH(1,1)

Q: What are the conditional mean and variance of r_t ?

$$\begin{split} \underline{E(r_t|\mathcal{F}_{t-1})} &= & E(\mu_t + a_t|\mathcal{F}_{t-1}) \\ &= & \mu_t + E(a_t|\mathcal{F}_{t-1}) \\ &= & \mu_t + \sigma_t E(\varepsilon_t|\mathcal{F}_{t-1}) \\ &= & \mu_t + \sigma_t E(\varepsilon_t) \\ &= & \mu_t. \end{split}$$

$$\begin{aligned} Var(r_{t}|\mathcal{F}_{t-1}) &=& E[(r_{t} - \mu_{t})^{2}|\mathcal{F}_{t-1}] \\ \vdots &=& E(a_{t}^{2}|\mathcal{F}_{t-1}) \\ \vdots &=& E(\sigma_{t}^{2}\varepsilon_{t}^{2}|\mathcal{F}_{t-1}) \\ &=& \sigma_{t}^{2}E(\varepsilon_{t}^{2}|\mathcal{F}_{t-1}) \\ &=& \sigma_{t}^{2}E(\varepsilon_{t}^{2}) = \sigma_{t}^{2} \\ &=& (\alpha_{0} + \alpha_{1}a_{t-1}^{2} + \beta_{1}\sigma_{t-1}^{2}) \times 1 \\ &=& \alpha_{0} + \alpha_{1}a_{t-1}^{2} + \beta_{1}\frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2}}. \end{aligned}$$

Unconditional Variance of GARCH(1,1)

Q: What is the unconditional variance of r_t ?

E(rt) = E(Mt) uncond. mean

A: By the law of total variance,

$$\begin{array}{lll} \textit{Var}(\textit{r}_{t}) & = & \textit{E}[\textit{Var}(\textit{r}_{t}|\mathcal{F}_{t-1})] + \textit{Var}[\textit{E}(\textit{r}_{t}|\mathcal{F}_{t-1})] \\ & = & \textit{E}(\alpha_{0} + \alpha_{1}a_{t-1}^{2} + \beta_{1}\sigma_{t-1}^{2}) + \textit{Var}(\mu_{t}) \\ & = & \alpha_{0} + \alpha_{1}\textit{E}(a_{t-1}^{2}) + \beta_{1}\textit{E}(\sigma_{t-1}^{2}) + 0 \\ & = & \alpha_{0} + \alpha_{1}\textit{Var}(\textit{r}_{t-1}) + \beta_{1}\textit{E}(\sigma_{t-1}^{2}). \end{array}$$

By the stationarity of r_t , $Var(r_t) = Var(r_{t-1})$, i.e., the variance is constant over t. Also,

$$\begin{array}{rcl} \textit{Var}(\textit{r}_t) & = & \textit{E}(\textit{a}_t^2) \\ & = & \textit{E}[\sigma_t^2\textit{E}(\varepsilon_t^2|\mathcal{F}_{t-1})] \\ & = & \textit{E}(\sigma_t^2\textit{E}(\varepsilon_t^2)) \\ & = & \textit{E}(\sigma_t^2). \end{array}$$

By letting $V := Var(r_t) = Var(r_{t-1}) = E(\sigma_t^2)$, we have

$$V = \alpha_0 + \alpha_1 V + \beta_1 V.$$

Provided that $|\alpha_1 + \beta_1| < 1$, the solution exists, and is equal to

$$V := Var(r_t) = \frac{\alpha_0}{1 - \alpha_1 - \beta_1}.$$

Unconditional Kurtosis of GARCH(1,1)

Assume further that r_t is stationary up to the fourth moment, that $E(\varepsilon_t^4)$ exists, and $E(\varepsilon_t^4)=3+K_{\varepsilon}$ (i.e., K_{ε} is the excess kurtosis of ε_t).

Q: What is the unconditional excess kurtosis of r_t ?

A: We start with the conditional fourth central moment of r_t

$$\begin{split} & E[(r_t - \mu_t)^4 | \mathcal{F}_{t-1}] \\ &= E(a_t^4 | \mathcal{F}_{t-1}) \\ &= E(\sigma_t^4 \varepsilon_t^4 | \mathcal{F}_{t-1}) \\ &= \sigma_t^4 E(\varepsilon_t^4) \\ &= (\alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2)^2 (3 + K_{\varepsilon}) \\ &= (\alpha_0^2 + \alpha_1^2 a_{t-1}^4 + \beta_1^2 \sigma_{t-1}^4 + 2\alpha_0 \alpha_1 a_{t-1}^2 + 2\alpha_0 \beta_1 \sigma_{t-1}^2 + 2\alpha_1 \beta_1 a_{t-1}^2 \sigma_{t-1}^2) (3 + K_{\varepsilon}). \end{split}$$

Let us then work out the unconditional fourth moment of a_t

$$E(\underline{a_{t}^{4}}) = E[(r_{t} - \mu_{t})^{4}]$$

$$= (3 + K_{\varepsilon})[\alpha_{0}^{2} + \alpha_{1}^{2}E(a_{t-1}^{4}) + \beta_{1}^{2}E(\sigma_{t-1}^{4})$$

$$+2\alpha_{0}\alpha_{1}E(a_{t-1}^{2}) + 2\alpha_{0}\beta_{1}E(\sigma_{t-1}^{2}) + 2\alpha_{1}\beta_{1}E(a_{t-1}^{2}\sigma_{t-1}^{2})].$$
(10)

Unconditional Kurtosis of GARCH(1,1)

By iterated expectations, the last expectation can be simplified as follows

$$E(a_{t-1}^2\sigma_{t-1}^2) = E[E(a_{t-1}^2\sigma_{t-1}^2|\mathcal{F}_{t-2})]$$

$$= E[\sigma_{t-1}^2E(a_{t-1}^2|\mathcal{F}_{t-2})]$$

$$= E[\sigma_{t-1}^2E(\sigma_{t-1}^2\varepsilon_{t-1}^2|\mathcal{F}_{t-2})]$$

$$= E[\sigma_{t-1}^4E(\varepsilon_{t-1}^2)] = E(\sigma_{t-1}^4).$$

By stationarity in the fourth moment, we have $E(a_t^4)=E(a_{t-1}^4)$. By iterated expectations,

$$E(a_t^4) = E(\sigma_t^4 \varepsilon_t^4) = E[\sigma_t^4 E(\varepsilon_t^4 | \mathcal{F}_{t-1})]$$

=
$$E[\sigma_t^4 E(\varepsilon_t^4)] = E(\sigma_t^4)(3 + K_{\varepsilon}),$$

so that $E(\sigma_t^4)=E(a_t^4)/(3+K_{\scriptscriptstyle E}).$ We can simplify (10) as follows

$$E(a_t^4) = (3 + K_{\varepsilon})[\alpha_0^2 + \alpha_1^2 E(a_t^4)] + (\beta_1^2 + 2\alpha_1 \beta_1) E(a_t^4) + (3 + K_{\varepsilon})(2\alpha_0 \alpha_1 + 2\alpha_0 \beta_1) E(a_t^2).$$

Together with the fact that $Var(r_t)=E(a_t^2)=E(\sigma_t^2)=\frac{\alpha_0}{1-\alpha_1-\beta_1}$, we may then solve for $E(a_t^4)$:

$$[1 - (3 + K_c)\alpha_1^2 - \beta_1^2 - 2\alpha_1\beta_1]E(a_t^4) = (3 + K_c)[\alpha_0^2 + 2\alpha_0(\alpha_1 + \beta_1)E(a_t^2)].$$

so that

$$E(a_t^4) = \frac{(3 + \mathcal{K}_{\epsilon})[\alpha_0^2 + \frac{2\alpha_0^2(\alpha_1 + \beta_1)}{1 - \alpha_1 - \beta_1}]}{1 - (3 + \mathcal{K}_{\epsilon})\alpha_1^2 - \beta_1^2 - 2\alpha_1\beta_1} = \frac{\alpha_0^2(3 + \mathcal{K}_{\epsilon})(1 + \alpha_1 + \beta_1)}{(1 - \alpha_1 - \beta_1)[1 - 2\alpha_1^2 - \mathcal{K}_{\epsilon}\alpha_1^2 - (\alpha_1 + \beta_1)^2]}.$$

$$_{18/19}$$

Unconditional Kurtosis of GARCH(1,1)

 $E[(X-n)^4]=3$

The unconditional kurtosis of r_t is thus

tional kurtosis of
$$r_t$$
 is thus $X \sim N(0, 1)$ $X = 0$

$$\frac{E[(r_t - \mu_t)^4]}{\{E[(r_t - \mu_t)^2]\}^2} = \frac{(3 + K_{\varepsilon})(1 + \alpha_1 + \beta_1)(1 - \alpha_1 - \beta_1)}{1 - 2\alpha_1^2 - K_{\varepsilon}\alpha_1^2 - (\alpha_1 + \beta_1)^2} \text{ excess kur}$$

$$= \frac{[1 - (\alpha_1 + \beta_1)^2](3 + K_{\varepsilon})}{1 - 2\alpha_1^2 - K_{\varepsilon}\alpha_1^2 - (\alpha_1 + \beta_1)^2}. := [(X - \mu_t)^4] - 3.$$

By simple algebra, the unconditional excess kurtosis is given by

$$(K_r := \frac{E[(r_t - \mu_t)^4]}{\{E[(r_t - \mu_t)^2]\}^2} - 3 = \frac{6\alpha_1^2 + (K_{\varepsilon}[1 - (\alpha_1 + \beta_1)^2 + 3\alpha_1^2])}{1 - 2\alpha_1^2 - K_{\varepsilon}\alpha_1^2 - (\alpha_1 + \beta_1)^2} > 0$$

We see that K_r is zero if $\alpha_1=0$ and $K_\epsilon=0$. In other words, the ARCH parameter α_1 and the excess kurtosis of ε_t contribute to the fat-tailedness of the unconditional distribution of the log-return r_t .