ORE EXTENSIONS AND POLYCYCLIC GROUP RINGS

ALFRED GOLDIE AND GERHARD MICHLER

This paper studies some aspects of the relationship between a ring R and the extension ring $S = R[x, \alpha]$ obtained by adjoining an indeterminate x subject to the equation

$$xa = a^{\alpha} x, \quad a \in R,$$

where α is an assigned automorphism of the ring R.

In particular, it will be proved that when R is right Noetherian and is a Jacobson ring then S has the same properties. Now S can be localised at powers of the indeterminate x and the ring S_x , so obtained, inherits the same properties. This essentially proves a theorem due to Roseblade [12], that the group ring of a finitely generated polycyclic group over a commutative Jacobson ring is also a Jacobson ring.

Finally, some remarks are added regarding what can be proved for $R[x, \alpha]$, without supposing that R is right Noetherian. Asterisks are added to those results throughout the paper which appear to depend on R being right Noetherian (or some positive weaker condition).

The ring R is supposed to have unit element and be right Noetherian $(\max - r)$. It is a Jacobson ring when each of its prime ideals is an intersection of primitive ideals.

The Ore extension $S = R[x, \alpha]$, where α is an automorphism of R, also has $\max -r$. A typical element of S has the forms

$$f(x) = f_0 + f_1 x + \dots + f_n x^n = f_0 + x f_1^{\alpha^{-1}} + \dots + x^n f_n^{\alpha^{-n}}$$

where $n \ge 0$ and $f_i \in R$. The automorphism is extended to S by setting $x = x^{\alpha}$ so that

$$f^{\alpha}(x) = f_0^{\alpha} + f_1^{\alpha} x + \dots + f_n^{\alpha} x^n.$$

As $xf(x) = f^{\alpha}(x)x$, it follows that xS is an ideal of S.

A right ideal I of R (or of S) is α -invariant (or α -right ideal) when $I \supseteq I^{\alpha}$. Since $I \subseteq I^{\alpha-1} \subseteq I^{\alpha-2}$..., the Noetherian property implies that $I = I^{\alpha}$.

An α -ideal T of S (or of R) is α -prime when $AB \subseteq T$ where A, B are α -ideals implies that either $A \subseteq T$ or $B \subseteq T$. The ring S is an α -prime ring, when 0 is an α -prime ideal.

The following elementary properties are easy to prove and useful.

1. An annihilator ideal of S is an α -ideal.

For let AB = 0, where A, B are ideals of S. Then

$$0 = AxB = xA^{\alpha^{-1}}B = AB^{\alpha}x.$$

Hence $0 = A^{\alpha}B = AB^{\alpha}$, so that an annihilator ideal is α -invariant.

2. Let T be an ideal of S (or R) and N(T), J(T) be the nil (Jacobson) radicals of T. Here N(T) is the inverse image in S of the nil radical N(T)/T of the ring S/T

Received 19 June, 1973.

and J(T) is defined likewise. Clearly $J(T^{\alpha}) = (J(T))^{\alpha}$ and $N(T^{\alpha}) = (N(T))^{\alpha}$. It follows that N(T) and J(T) are α -ideals when T is an α -ideal.

3. Let H be a right ideal of S such that RH = H and $H = H^{\alpha}$. Then H is an ideal of S.

For $xH = H^{\alpha}x = Hx \subseteq H$.

- 4*. An α -prime ideal P of S (or R) is a semi-prime ideal. For $(N(P))^{\rho} \subseteq P$ implies that N(P) = P since N(P) is an α -ideal.
- 5*. An α -prime ideal Q of S (or R) has the form $P \cap P^{\alpha} \cap P^{\alpha^2} \cap ...$, where P is a prime ideal and the intersection is finite.

For Q is a semi-prime ideal and $Q = P_1 \cap ... \cap P_n$, where the P_i are the minimal primes of Q. Clearly $P_i^{\alpha k}$ are also minimal primes of Q and have to be in the list $P_1, ..., P_n$. Grouping together, we have $Q = W_1 \cap ... \cap W_k$, where each W_i has the form $P \cap P^{\alpha} \cap P^{\alpha^2} \cap ...$ (a finite number of terms). Now Q is α -prime, as are the W_i , hence $Q = W_i$, for some index i.

6. When T is an α -ideal of S, then the automorphism α induces naturally an automorphism α in the ring R/T given by $[r+T]^{\alpha} = [r^{\alpha}+T], r \in R$.

Examples

- 1. Let S = R[x], $\alpha = idy$. The main theorem is classical (see Goldman [4]) when R is commutative and may well be known for general R. The proof given here is valid for commutative R, even non-Noetherian.
- 2. Let R be a division ring and $S = R[x, \alpha]$. Then S is a principal right (and left) ideal domain and its structure depends on whether α has infinite or finite order. In the former case S is a primitive ring (but not of finite dimension over its centre) and the only ideals are x^kS , k = 0, 1, 2, ... In the latter case the ideal structure is a little more complicated. (See Jacobson [6; p. 40]).
- 3. $R = F \oplus F$, where F is a field and define $(f_1, f_2)^{\alpha} = (f_2, f_1)$. Note that S is a prime ring but R is only an α -prime ring.
- 4. Let G be a group, H a normal subgroup and G/H be cyclic generator x. The group ring ΦG over a ring Φ can be written as

$$\Phi G = \sum_{i=-\infty}^{\infty} \Phi H x^{i}.$$

Define $\alpha: \Phi H \to \Phi H$ by means of

$$y^{\alpha} = xyx^{-1}; \quad y \in \Phi H.$$

Then $\Phi G = S_X$, where $S = R[x, \alpha]$ and $R = \Phi H$, the subscript X denoting localisation at powers of x. This is of classical form since xS = Sx and the elements of S_X have the form sx^{-k} , $s \in S$, $k \ge 0$.

Set

$$\mathcal{C}'(0)=(c\in R/ca=0,\ a\in R\Rightarrow a=0)$$

$$\mathscr{C}(0) = (c \in R/ac = 0, \quad a \in R \Rightarrow a = 0).$$

When R is a semi-prime ring with max-r we know that $\mathscr{C}'(0) \subseteq \mathscr{C}(0)$. The regular elements of R are in $\mathscr{C}'(0) \cap \mathscr{C}(0) = \mathscr{C}(0)$. In like manner these can be defined relative to an ideal T of R. Thus

$$\mathscr{C}'(T) = (c \in R/ca \in T, a \in R \Rightarrow a \in T)$$

and so on*. Corresponding notation is needed for the ring S and the subscript S is used, thus $\mathscr{C}'_{S}(T)$, when T is an ideal of S.

LEMMA (1.1). Let A be an α -ideal of $S = R[x, \alpha]$. Then

$$\frac{S}{(A \cap R)S} \approx \frac{R}{A \cap R} [x, \alpha].$$

Proof. The isomorphism is

$$[a_0 + a_1 x + ... + a_n x^n + (A \cap R)S] \leftrightarrow [a_0 + (A \cap R)] + [a_1 + (A \cap R)]x + ...$$

LEMMA (1.2). Let P be a prime ideal of S. Then, either

- (i) $x \in P$ and $P = (P \cap R) + xS$, or
- (ii) $x \in \mathscr{C}_{S}(P)$ and $P = P^{\alpha}$.

Proof. When $x \in P$ then (i) is clear. When $x \notin P$ then $xf(x) \in P$ implies that

$$Sxf(x) = xsf(x) \subseteq P$$
.

As P is a prime and $x \notin P$ then $f(x) \in P$. Also $x \in \mathscr{C}_S(P)$.

Now $P^{\alpha}x = xP \subseteq P$ and the primeness of P gives $P^{\alpha} \subseteq P$ and $P^{\alpha} \supseteq P$.

LEMMA (1.3). Let P be a prime ideal of S, such that $P = P^{\alpha}$; then $(P \cap R)$ is an α -prime ideal of R.

Proof. When $x \in P$ then

$$S/P \approx \frac{R}{P \cap R}$$

and $(P \cap R)$ is both prime and α -invariant in R.

When $x \in \mathscr{C}_S(P)$ then $P = P^{\alpha}$. Let A, B be ideals of R with $A = A^{\alpha}$, $B = B^{\alpha}$ and $AB \subseteq (P \cap R)$. Then SB = BS and

$$ASB = ABS \subseteq P$$
.

Thus either $A \subseteq P$ or $B \subseteq P$ and $A \subseteq P \cap R$ or $B \subseteq P \cap R$.

LEMMA (1.4)*. Let R be a semi-prime ring. Then S satisfies the right Ore condition with respect to $\mathcal{C}(0)$.

Proof. Let $c \in \mathcal{C}(0)$ and $f(x) = f_0 + f_1 x + ... + f_n x^n \in S$. Now $d_0 \in \mathcal{C}(0)$ and $b_0 \in R$ exist with $f_0 d_0 = cb_0$. Thus

$$f(x) d_0 = cb_0 + f_1 d_0^{\alpha} x + \dots + f_n d_0^{\alpha^n} x^n.$$

Repetition gives

$$f(x) d_0 d_1^{\alpha^{-1}} \dots d_n^{\alpha^{-n}} = cg(x),$$

say, where $d_i \in \mathcal{C}(0)$ and $g(x) \in S$. As $\mathcal{C}(0)$ is α -invariant the element $d_0 d_1^{\alpha^{-1}} \dots d_n^{\alpha^{-n}}$ is regular and the Ore condition holds.

LEMMA (1.5)*. Let R be an α -prime ring and T be a non-zero α -ideal of R. Then T has a regular element of R.

Proof. Let I be a right ideal of R and $T \cap I = 0$. Then IT = 0. If $I \neq 0$ then $I(T) \neq 0$ and is an α -ideal. Yet R is an α -prime ring. It follows that T is an essential right ideal of R and contains a regular element.

LEMMA (1.6)*. Let R be a semi-prime ring and P be a prime ideal of S such that $P \cap R = 0$. Then $\mathscr{C}(0) \subseteq \mathscr{C}_S(P)$.

Proof. Let $A = (f(x) \in S \mid f(x)c \in P, \text{ some } c \in \mathcal{C}(0))$. Since S has the right Ore condition with respect to $\mathcal{C}(0)$, it follows that A is an ideal. If $A \not\subset P$ then A meets $\mathcal{C}_S(P)$, which contradicts the definition of A with $P \cap R = 0$. Hence $\mathcal{C}(0) \subseteq \mathcal{C}_S(P)$.

Let $c \in \mathcal{C}(0)$ and observe that the ascending sequence $c^{-n}P$, where n=0,1,2,... is stationary from n=k, say. Here $c^{-n}P=(\phi(x)\in S\mid c^n\phi(x)\in P)$. Let $c^k\phi(x)\in P$. By Lemma (1.4) there are $\psi(x)\in S$ and $d\in \mathcal{C}(0)$ such that $\phi(x)d=c\psi(x)$. Then $c^{k+1}\psi(x)\in P$, hence $c^k\psi(x)\in P$, and $c^{k-1}\phi(x)d\in P$. Using the first part of the proof, we deduce that $c^{k-1}\phi(x)\in P$. Hence $c^{-k}P=c^{-k+1}P$ and this type of reduction continued eventually gives $c^{-1}P=P$, so that $c\in \mathcal{C}'_S(P)$ and the lemma is proved.

Let A be an ideal of S. Define $\tau(A)$ to be the set of elements of R which are leading coefficients of elements of A, together with zero. Define $\tau_0(A)$ to be the subset of $\tau(A)$ for polynomials of minimal degree in A. Clearly $\tau(A)$ and $\tau_0(A)$ are ideals of R. Moreover if B is an α -ideal of S then

$$\tau(A) \cap \tau(B) \supseteq \tau(AB) \supseteq \tau(A) \tau(B).$$

LEMMA (1.7). Let P be a prime ideal of S with $P = P^{\alpha}$; then $(P \cap R)S$ is a prime ideal of S.

Proof. As $(P \cap R) = (P \cap R)^{\alpha}$ then $x(P \cap R) = (P \cap R)x$, so that $(P \cap R)S$ is an ideal of S. Using

$$\frac{S}{(P \cap R)S} \approx \frac{R}{P \cap R} [x, \alpha],$$

we can regard R as an α -prime ring, P is prime in S and $P \cap R = 0$, with $S = R[x, \alpha]$. It remains to prove that S is a prime ring.

Let AB = 0, where A, B are ideals of S. Taking A = l(B) and B = r(A), we can suppose that A and B are α -ideals. Their coefficient ideals satisfy

$$0 = \tau(AB) \supseteq \tau(A)\tau(B).$$

As $\tau(A)$ and $\tau(B)$ are α -ideals of the α -prime ring R, either $\tau(A) = 0$ and A = 0, or $\tau(B) = 0$ and B = 0. S is a prime ring.

Lemma (1.7) is essentially due to Jategaonkar [8].

Note that when $x \in P$ it may happen that $P \neq P^{\alpha}$ and the lemma fails because $(P \cap R)S$ is not a left ideal. Thus in Example 2, set $P = xS + F_1$, $R = F_1 \oplus F_2$, $F_1 \approx F_2$, then $F_1S \Rightarrow SF_1$.

LEMMA (1.8). Let P be an α -ideal of S with $P \cap R = 0$, and set $T = \tau_0(P)$. For any $\phi(x) \in S$ and $a \in \tau_0(P)$ there exists $r(x) \in S$ and k > 0 such that

$$\phi(x)a^k \equiv r(x) \pmod{P}$$

where degree r(x) < minimal degree of polynomials in P and also $k < degree \phi(x)$.

Proof. Let $f(x) = a_0 + a_1 x + ... + a_s x^s$ be of minimal degree in P and let $\phi(x) = \phi_0 + \phi_1 x + ... + \phi_n x^n$. Take $n \ge s$. Set

$$\phi(x) a - \phi_n x^{n-s} f(x) = \psi(x).$$

Now degree $\psi(x)$ < degree $\phi(x)$ when $a_s = a^{\alpha^{-s}}$. Make this choice and apply the process again to $\psi(x)$. We obtain an algorithm of the form

$$\phi(x) a^k = \sum_{i=1}^t q_i(x) f_i(x) + r(x)$$

where $f_i(x) \in P$ and $f_i(x) = f(x)^{\alpha^{\nu}}$ for some integer ν dependent on i. The lemma follows.

LEMMA (1.9)*. Let R be an α -prime ring and $f(x) = a_0 + ax + ... + ax^s$, where $a \in \mathcal{C}(0)$ and $\phi(x) \in S$. There exists $b \in \mathcal{C}(0)$ and q(x), $r(x) \in S$ such that

$$\phi(x)b = f(x)q(x) + r(x),$$

where degree r(x) < degree f(x).

Proof. Let $\phi(x) = \phi_0 + \phi_1 x + ... + \phi_n x^n$. There exist $b \in \mathcal{C}(0)$ and $q_{n-s} \in R$ such that $\phi_n b^{\alpha^n} = aq_{n-s}^{\alpha^n}$, using the right Ore condition. Then

$$\phi(x)b - f(x) q_{n-s} x^{n-s} = \psi(x)$$

has degree less than degree $\phi(x)$. The process repeated on $\psi(x)$, and so on, gives the result.

LEMMA $(1.10)^*$. Let P be a prime ideal of the prime ring S such that $P \cap R = 0$; then any ideal properly containing P meets $\mathcal{C}(0)$.

Proof. Certainly $P = P^{\alpha}$ since either $x \notin P$ or P = xS. As $\mathscr{C}(0)$ is a multiplicatively closed set of elements there is a prime ideal $M \supseteq P$ which is maximal among those ideals which do not meet $\mathscr{C}(0)$. Clearly $M = M^{\alpha}$.

Let $f(x) \in P$ be of minimal degree in P and g(x) be of minimal degree in M. Let $M \supseteq P$ and $\phi(x) \in M \cap \mathscr{C}_S(P)$. Now

$$\phi(x)b = g(x)q(x) + r(x),$$

where $b \in \mathscr{C}(0)$ and degree r(x) < degree g(x). Also $b \in \mathscr{C}(0) \subset \mathscr{C}_S(P)$; hence $g(x)q(x) \in \mathscr{C}_S(P)$ and then $g(x) \in \mathscr{C}_S(P)$.

Now, again using the algorithm,

$$f(x)c = g(x)\psi(x) + r(x),$$

where degree $r(x) < \deg g(x)$ and $c \in \mathcal{C}(0)$. Now degree $r(x) < \deg g(x)$ yet $r(x) \in M$. It follows that r(x) = 0 and that

$$degree f(x) = degree g(x) + degree \psi(x),$$

because the highest coefficient of g(x) is regular. However, $g(x)\psi(x) \in P$ and $g(x) \in \mathscr{C}_S(P)$. Hence $\psi(x) \in P$ and so degree $\psi(x) \geqslant \text{degree } f(x)$. Thus degree $g(x) \leqslant 0$ and $M \cap R \neq 0$.

THEOREM (1.11)*. Let R be a Jacobson ring; then $S = R[x, \alpha]$ is a Jacobson ring.

Proof. Let P be a prime ideal of S. If $x \in P$, then

$$S/P \approx \frac{R}{P \cap R}$$
;

hence S/P is a Jacobson ring and P = J(P).

If $x \notin P$, then $P = P^{\alpha}$ and

$$\frac{S}{(P \cap R)S} \approx \frac{R}{P \cap R} [x, \alpha].$$

Replace R by $R/(P \cap R)$ and reduce to the case when S is a prime ring and P is a prime ideal which satisfies $P \cap R = 0$.

Now suppose that P = 0. Let $a(x) = a_0 + a_1 x + ... + a_n x^n \in J(0)$ and $r \in R$; then, for some $\phi(x) \in S$,

$$(1+a(x)r)\phi(x)=1.$$

Comparing constant coefficients gives $(1+a_0 r) \phi_0 = 1$ and $a_0 \in J_R(0)$, the Jacobson radical of R. Hence $a_0 = 0$, n > 0 and a_n is a zero divisor in R. Thus $\tau(J(0))$ has only zero divisors, yet $\tau(J(0))$ is an α -ideal of the α -prime ring R and has a regular element by Lemma (1.5).

It follows that $\tau(J(0)) = 0$ and J(0) = 0.

Now let $P \neq 0$ and $P \cap R = 0$; then again $P = p^{\alpha}$. Suppose that $J(P) \supseteq P$; then $T = J(P) \cap R \neq 0$ by Lemma (1.10). Evidently T and $\tau_0(P)$ are α -ideals.

As R is semi-primitive the set \mathcal{N} , consisting of those primitive ideals Q of R with $T \nsubseteq Q$, is non-empty. Let $Q \in \mathcal{N}$ and Q be the bound of the maximal right ideal

M of R. Choose $a \in T$, $a \notin M$. Then

$$1 = m + ab$$
, $m \in M$, $b \in R$.

Since $a \in J(P)$ there exists $\phi(x)$ such that

$$(1-ab) \phi(x) \equiv 1 \pmod{P}$$
.

Let $c \in \tau_0(P)$ and, using Lemma (1:8), let $\phi(x) c^n \equiv r(x) \pmod{P}$ for some $r(x) \in S$ having degree less than the minimal degree of elements in P. Then $mr(x) - c^n \in P$; consequently $r(x) = r_0$ has degree zero and $mr_0 = c^n$ follows. Thus $c^n \in M$.

Suppose that $c \notin M$, and 1 = ct + m for some $t \in R$. Now $ct \in \tau_0(P)$ and the previous argument for c applies to ct.

Suppose that $(ct)^s \in M$; then

$$(ct)^{s-1} = m(ct)^{s-1} + (ct)^s \in M,$$

so that $(ct)^{s-1} \in M$. Consequently, $ct \in M$, which is a contradiction. It follows that $c \in M$; hence $\tau_0(P) \subseteq M$ and $\tau_0(P) \subseteq Q$. Since R is an α -prime ring we have

$$0 = (\bigcap Q; Q \in \mathcal{N}).$$

Hence $\tau_0(P) = 0$, a contradiction. Hence $J(P) \cap R = 0$ and J(P) = P, which proves the theorem.

THEOREM (1.12)*. Let S_X be obtained from S by localising at the powers of x. Then S_X is a Jacobson ring.

Proof. The automorphism α is taken as extended to S using $x^{\alpha} = x$. Let $\beta = \alpha^{-1}$. Form $T = S[y, \beta]$, where $ys = s^{\beta}y$. Since

$$T(xy-1) = (xy-1)T,$$

it follows that

$$\frac{T}{(xy-1)T} \approx S_X.$$

Now T is a Jacobson ring by Theorem (1.11); hence S_X is a Jacobson ring.

COROLLARY. The group ring of a polycyclic group over a right Noetherian Jacobson ring is a Jacobson ring.

It was proved by Roseblade [13] that the group ring of a polycyclic-by-finite group over a commutative Noetherian Jacobson ring is a Jacobson ring. Our corollary follows by induction from Theorem (1.12) and the observation that, for extension by a finite cycle, the group ring is a factor ring of one for an infinite cycle.

So far we have readily assumed that the ground ring R has max-r, but examination of the methods used shows that they apply to the case when R is any commutative ring and α is the identity automorphism. For an arbitrary ring R with unit the problem still holds some interest, as is shown by the following theorem.

THEOREM (1.13). Let $S = R[x, \alpha]$, where R is any ring with unit. Let \mathscr{P} be the set of prime ideals P of S such that $P \cap R$ is fixed. Then any chain of prime ideals of \mathscr{P} is of finite length.

Proof. Let $x \in P$ then $P = xS + (P \cap R)$ is uniquely defined. Let $x \notin P$; then $P = P^{\alpha}$ and passing to the factor ring

$$\frac{S}{(P \cap R)S} \approx \frac{R}{P \cap R} [x, \alpha]$$

we can assume that $P \cap R = 0$. The ideal $(0) \in \mathcal{P}$ by Lemma (1.7).

Suppose that $P \subseteq Q$ are primes of S such that $P \cap R = Q \cap R = 0$ and the minimal degrees of polynomials in P and Q are equal. Let f(x) be of minimal degree in P and g(x) be likewise in Q, where

$$f(x) = f_0 + f_1 x + \dots + f_n x^n$$
; $g(x) = g_0 + g_1 x + \dots + g_n x^n$.

Then $f(x) g_n^{\alpha^{-n}} = f_n g(x)$ by minimality of degree. Now rg(x), where $r \in R$, is either zero or of minimal degree in Q. Hence $f_n Rg(x) \subseteq P$. Also $g^{\alpha}(x) \in Q$ and so

$$f_n Rxg(x) \subseteq P$$

and so on. Hence $f_n Sg(x) \subseteq P$ with the consequence that $g(x) \in P$, since $f_n \notin P$.

Let P_0 , Q_0 be the sets of polynomials of minimal degree n in P, Q respectively and let P_k , Q_k be the sets of polynomials of degree $\leq (n+k)$ in P, Q respectively. We have proved that $P_0 = Q_0$. Now $P_i = P_i^{\alpha}$ and P_i is an R-submodule of P, with R acting on both sides. Hence $SP_i = P_iS$. Corresponding remarks hold for Q_i . Let $\phi(x) \in Q_i$ but $\phi(x) \notin Q_{i-1}$. Since

$$\phi(x) g_n^{\alpha^{-n}} \equiv \phi_n x^i g(x) \pmod{Q_{i-1}},$$

we have that $\phi(x)g_n^{\alpha^{-n}} \in P$, provided that $P_{i-1} = Q_{i-1}$. Hence $Q_i g_n^{\alpha^{-n}} \subset P$ and so $Q_i S g_n^{\alpha^{-n}} \subseteq P$. Hence $Q_i \subseteq P$ and $Q_i = P_i$. It follows that Q = P.

Let $P_1 \subset P_2 \subset ...$ be a strictly ascending chain of primes with $P_k \cap R = 0$ for k = 1, 2, ... Since the minimal degrees of polynomials must decrease as k increases, the chain is finite and the theorem is proved.

Let Q be maximal in \mathcal{P} . Any α -ideal T of S strictly larger than Q satisfies $T \cap R \neq 0$. For the set of α -ideals K of S such that $K \cap R = 0$ has maximal elements by Zorn's lemma and these are prime ideals, hence lie in \mathcal{P} . Thus if $J(Q) \neq Q$ then $J(Q) \cap R \neq 0$ and the main part of the proof of Theorem (1.12) can be started. It can only be completed, however, when the α -prime ring R is known to be semi-prime so that it can be taken to be semi-primitive. This is not an obstacle when α is the identity and Theorem (1.12) holds in this case. The part when Q = 0 is due to Herstein [5] and the rest may be known.

In Theorem (1.12) a situation is being considered where \mathscr{P} consists only of the zero prime and the maximal primes Q subject to $Q \cap R = 0$. This part depends on Lemma (1.10) and apparently depends on some weak maximum condition for R. However, some special situations lead to the same result.

THEOREM (1.14). Let R be a simple ring with unit. Then $R[x, \alpha]$ is a Jacobson ring.

Proof. The algorithm given in Lemma (1.9) holds with a = b = 1. The ideal of $R[x, \alpha]$ are principal as right ideals and the non-zero members of \mathcal{P} are maximal The main argument of Theorem (1.12) easily applies.

Added in proof. G. Bergmann has now proved that in Theorem (1.13) the length is ≤ 2 .

References

- K. L. Fields, "On the global dimension of skew polynomial rings—an addendum", J. Algebra, 14 (1970), 528-530.
- 2. A. W. Goldie, "Semi-prime rings with maximum condition", Proc. London Math. Soc., 10 (1960), 201-220.
- 3. ——, "Some aspects of ring theory", Bull. London Math Soc., 1 (1969), 129-154.
- 4. O. Goldman, "Hilbert rings and the Hilbert nullstellensatz", Math. Z., 54 (1951), 136-140.
- 5. I. N. Herstein, "Topics in ring theory", Chicago lectures in mathematics, University of Chicago (1969).
- 6. N. Jacobson, "The theory of rings", Amer. Math. Soc. Surveys VI, New York (1943).
- 7. ——, "Structure of rings", Amer. Math. Soc. Colloq. Publ., 37 (1956 and 1964).
- 8. A. V. Jategaonkar, "Skew polynomial rings over semisimple rings", J. Algebra, 19 (1971), 315-328.
- 9. J. Lambek, Lectures on rings and modules (Waltham, 1966).
- 10. D. S. Passman, Infinite group rings (N.Y., 1971).
- J. E. Roseblade, "The integral group rings of hypercentral groups", Bull. London Math. Soc., 3 (1971), 351-355.
- 12. ——, Proceedings of the Racine Conference on groups (Springer).
- 13. ——, "Group rings of polycyclic groups", J. of Pure and Applied Algebra, 3 (1973), 307-328.
- 14. D. Webber, "Ideals and modules of simple Noetherian hereditary rings", J. Algebra, 16 (1970), 239-242.

University of Leeds.

University of Giessen.