1	2	3	4	Calificación

APELLIDO Y NOMBRE: LIBRETA:

Cálculo Avanzado - 1° Cuatrimestre 2020 2° Parcial (04/08/2020)

1. Sea $(f_n)_{n\in\mathbb{N}}: \mathbb{R} \to \mathbb{R}$ una sucesión de funciones continuas que cumple que para todo $q \in \mathbb{Q}$ $(f_n(q))_{n\in\mathbb{N}}$ es una sucesión no acotada. Probar que existe $x \in \mathbb{R} - \mathbb{Q}$ tal que $(f_n(x))_{n\in\mathbb{N}}$ es no acotada.

Sugerencia: Considerar los conjuntos

$$F_k = \{x \in \mathbb{R} \mid f_n(x) \le k \forall n \in \mathbb{N}\}$$

y usar el teorema de Baire.

- 2. Sea (X, d) un espacio métrico compacto que cumple lo siguiente:
 - (*) para todo para de puntos $x, y \in X$ y $\varepsilon > 0$ existe una sucesión de puntos $x_0, \ldots, x_n \in X$ de manera que $x = x_0, y = x_n$ y $d(x_k, x_{k+1}) < \varepsilon$ para todo $0 \le k < n$.
 - (a) Probar que X es conexo (Sugerencia: escribir al espacio como unión de dos cerrados disjuntos).
 - (b) Dar un ejemplo de un espacio métrico que cumpla (♣) y no sea conexo.
- 3. Sea $T: (\ell_1, \|\cdot\|_1) \to (\ell_\infty, \|\cdot\|_\infty)$ dada por $T((a_n)_{n\in\mathbb{N}}) = (S_1, S_2, \dots, S_N, \dots)$ con $S_N = \sum_{k=1}^N a_k$. Porbar que T es lineal, continua y calcular $\|T\|$.
- 4. Sea $f_n(x) = xe^{-nx^2}$.
 - (a) Calcular el límite puntual de f_n y probar que la convergencia es uniforme sobre $\mathbb R$
 - (b) Probar que la serie de término general f_n converge uniformemente en cualquier intervalo de la forma de $[a, +\infty)$ pero no en $(0, +\infty)$.

Puede usar cómo ciertos los resultados de las guías prácticas y vistos en la teórica.