

Factorizar un polinomio significa expresarlo como producto de polinomios irreducibles. Para ello se utilizan los llamados casos de factoreo.

Clase 0 Casos de Factoreo

Factor común

$$P(x) = 3x^{2} + 6x^{7} - 12x^{5}$$

$$P(x) = 3x^{2} + 2.3x^{2}x^{5} - 3.4.x^{2}x^{3}$$

$$P(x) = 3x^{2} (1 + 2x^{5} - 4x^{3})$$

MCD: máximo común divisor

Factores comunes elevados al MENOR exponente

Ejemplo:

$$A(x) = x^3 - 2x^5$$

$$B(x) = 3x^2 + 9x$$

$$C(x) = -2x^5 + 10x^3 + 8x^4$$

Factor común por grupos

$$P(x) = x^3 + 5x^2 - 4x - 20$$

$$P(x) = (x^3 + 5x^2) + (-4x - 20)$$

$$P(x) = x^{2}(x+5) + (-4)(x+5)$$

$$P(x) = (x+5)(x^2-4)$$

Formamos dos grupos. Entre ambos +

En cada grupo extraemos FC

Si los () son iguales, volvemos a extraer factor común

Si los () son distintos, debemos cambiar de método

Ejemplo:

$$A(x) = x^5 - 3x^2 + 2x^3 - 6$$

$$B(x) = 8x^5 + 4x^2 + 10x^3 + 5$$

Polinomios de grado dos Completos

$$A(x) = 3x^2 - 5x - 2$$

Se aplica Fórmula resolvente para hallar sus raíces

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$P(x) = a(x - x_1)(x - x_2)$$

$$B(x) = 5x^2 - 5x - 30$$

$$\underbrace{(a+b)^2}_{Cuadrado\ de\ un\ binomio} = \underbrace{a^2 + 2.a.b + b^2}_{Trinomio\ cuadrado\ perfecto}$$

Ejemplo:

$$x^2 - 4x + 4 =$$

$$Verif = 2ab =$$

$$x^2 + 6x + 9 =$$

$$Verif = 2ab =$$

$$x^2 - 8x + 16 =$$

$$Verif = 2ab =$$

$$\underbrace{(a+b)^3}_{Cubo\ de\ un\ binomio} = \underbrace{a^3 + \overbrace{3.a^2.b}^{Verif} + \overbrace{3.a.b^2 + b^3}^{Verif}}_{Cuatrinomio\ cubo\ perfecto}$$

<u>Ejemplo</u>

$$x^3 + 6x^2 + 12x + 8 =$$

Verif
$$1 = 3$$
. a^2 . $b =$

$$Verif2 = 3. a. b^2 =$$

$$x^3 - 12x^2 + 48x - 64 =$$

$$Verif1 = 3.a^2.b =$$

$$Verif2 = 3. a. b^2 =$$

$$x^3 - 6x^2 - 12x + 8 =$$

$$Verif1 = 3.a^2.b =$$

$$Verif2 = 3. a. b^2 =$$

$$(a + b).(a - b) = \underbrace{a^2 - b^2}_{diferencia de cuadrados}$$

<u>Ejemplo</u>

$$x^2 - 9 =$$

$$x^2 - 4 =$$

$$x^2 - 5 =$$

$$P(x) = 2x^3 - 5x^2 - 4x + 3$$

$$Q(x) = x^3 + 2x^2 - 5x - 6$$

Teorema de Gauss

Permite hallar las raíces racionales de un polinomio

P(x) siguiendo la siguiente regla:

1) Hallar los divisores del término independiente (p)

$$div() = { }$$

2) Hallar los divisores del Coeficiente principal (q)

$$div()=\{$$

3) El conjunto de posibles raíces (a) será el cociente entre cada divisor del término independiente y cada divisor del coeficiente principal ($a = \frac{p}{a}$)

$$a = \{$$

- 4) Evaluar cada posible raíz (a) en el polinomio, si:
 - $P(a) = 0 \Rightarrow a \ es \ raiz \ divido \ P(x) \ por \ x a$ mediante **Regla de Ruffini**
 - $P(a) \neq 0 \Rightarrow a \text{ no es } raiz \text{ volver a 4}$
 - Si al probar con todos los valores obtenidos en
 3) no encontramos ninguno que anule P(x), entonces P(x) no tiene raíces racionales

Ejercicios integradores

Expresar como producto aplicando todos los casos de factoreo posibles. Indicar los ceros del polinomio.

$$A(x) = 2x^3 - 18x$$

$$B(x) = x^4 - 2x^3 + x^2$$

$$C(x) = x^3 + x^2 - 9x - 9$$

INSTITUTO NACIONAL SUPERIOR DEL PROFESORADO TÉCNICO

$$D(x) = x^3 + 7x^2 - 6x - 72$$

$$E(x) = x^4 - 5x^{32} + 2x^2 + 8x$$

Parte 3