Methodology, Ethics and Practice of Data Privacy

实验二

Lan Zhang

School of Computer Science and Technology University of Science and Technology of China Spring 2021

Part 1

横向联邦学习简要介绍

横向联邦学习的一种实现

Client 端

- 1. 每个client 在自己的模型上训练local epoch轮。
- 2. 求解local epoch轮中参数的模型更新信息Δw
- 3. 将Δw上传到server端
- 6. 获取更新后的模型作为自己的模型。

横向联邦学习中的隐私问题

模型更新会泄露用户数据集信息

Figure 3: The visualization showing the deep leakage on images from MNIST [22], CIFAR-100 [21], SVHN [28] and LFW [14] respectively. Our algorithm fully recovers the four images while previous work only succeeds on simple images with clean backgrounds.

Part 2

差分隐私机制在联邦学习中的应用

DP SGD in centralized model

Stochastic gradient decent (SGD)

Differentially Private SGD (DP SGD)

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang: Deep Learning with Differential Privacy. ACM Conference on Computer and Communications Security 2016: 308-318

DP SGD in centralized model

Algorithm 1 Differentially private SGD (Outline)

Input: Examples $\{x_1,\ldots,x_N\}$, loss function $\mathcal{L}(\theta)$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_i)$. Parameters: learning rate η_t , noise scale σ , group size L, gradient norm bound C.

Initialize θ_0 randomly

for $t \in [T]$ do

Take a random sample L_t with sampling probability L/N

Compute gradient

For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$

Clip gradient

$$ar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i)/\max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$$
Add noise
 $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L}\left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I})\right)$

$$\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$$

Descent

$$\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$$

Output θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Abadi, Martin, et al. "Deep learning with differential privacy."

Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.

DP SGD in federated model

• 为了保护每个client的模型更新信息,对于每一个epoch

Server端

- 4. 收到来自client的梯度[Δw_1 , Δw_2 , ..., Δw_k]
 - 5. 聚合本地模型更新 $\Delta w_{avg} = \frac{\sum_{i=1}^{k} \Delta w_i}{k}$,更新上一轮全局模型,并发送给client

$$w_{t+1} = w_t + \frac{1}{k} \left(\sum_{i=0}^k \Delta w^i \right)$$
 $\Rightarrow w_{t+1} = w_t + \frac{1}{k} \left(\sum_{i=0}^k \Delta w^i / \max(1, \frac{||\Delta w^i||_2}{C}) + N(0, \sigma^2 C^2 I) \right)$

 w_{t+1} 指更新后的模型参数, w_t 指原有的模型参数,k是指client数量, Δw^i 是指用户i上传的模型更新, σ 是高斯机制中的参数,C是模型更新的截断值,I是单位矩阵

高斯机制中的 σ 与 (ϵ, δ) – DP的关系

当 σ 满足以下定理时,添加高斯机制满足(ϵ , δ) – DP

Theorem 3.22. Let $\varepsilon \in (0,1)$ be arbitrary. For $c^2 > 2\ln(1.25/\delta)$, the Gaussian Mechanism with parameter $\sigma \geq c\Delta_2(f)/\varepsilon$ is (ε, δ) -differentially private.

$$\sigma \ge \sqrt{2\ln\left(\frac{1.25}{\delta}\right)} * \frac{C}{\epsilon}$$
 (1)

TODO

》 基本内容

- 在原有代码框架上添加上述DP机制
- 代码正确,关键部分有注释
- 实验说明参数 σ , C 对模型准确度的影响,并计算对应的 ϵ 值($\delta=10^{-3}$)
- 实验报告 (关键代码截图以及说明)

>> 附加内容

- 为了保证模型的可用性, σ 取值较小,此时由公式(1)可能计算出 $\epsilon \geq 1$,不满足定理3.22的条件,因此无法由此定理证明满足DP。
- 请调研当 $\epsilon \geq 1$ 时,如何证明此机制满足DP;或调研是否存在其他机制可解决此问题。

Part 3

同态加密算法在联邦学习中的应用

Paillier 同态加密简介

» 加法同态加密

- 加密情况下,仍然可以计算两个信息的和
- given encryption of m_1 and m_2 , one can compute the encryption of $m_1 + m_2$. $E(m_1) \oplus E(m_2) = E(m_1 + m_2)$

» Paillier: 一种基于公钥系统的加法同态和乘法半同台加密系统

• 密钥生成

随机并且独立选择两个**相同位数**大质数p,q.计算n = pq 当 $p \neq q$ 时,欧拉函数 $\lambda = \phi(n) = (p-1)(q-1)$. 当p = q时,欧拉函数 $\lambda = \phi(n) = q(q-1)$. 选择一个整数 $g = n + 1, \mu = \phi(n)^{-1} mod n$ (μ 有可能不存在,需要重新生成). 公钥为(n,g),私钥为 (λ,μ) .

加密

消息 $m(0 \le m \le n)$ 选择随机数r满足0 < r < n且 $r \in \mathbb{Z}_n^*$ (i.e.,保证gcd(r,n) = 1) 计算密文 $c = g^m \cdot r^n mod n^2$

Paillier 同态加密简介

- » Paillier: 一种基于公钥系统的加法同态加密系统
 - 解密 密文 $c \in \mathbb{Z}_{n^2}^*$ 明文 $m = L(c^{\lambda} mod \ n^2) \cdot \mu \ mod \ n$, 其中 $L(x) = \lfloor \frac{x-1}{n} \rfloor$, 表示n除 x-1的商取下整
 - 密文加法 $Dec(Enc(m_1, r_1) \cdot Enc(m_2, r_2) \mod n^2) = m_1 + m_2 \mod n$
 - 与明文常数加法 $Dec(E(m_1, r_1) \cdot g^{m_2} mod n^2) = m_1 + m_2 mod n$
 - 与明文常数乘法 $Dec(Enc(m_1, r_1)^k mod n^2) = km_1 mod n$

Paillier 在横向联邦学习中的应用

• 为了保护client的模型更新信息,对于每一个epoch

Server端

- 4. 收到来自client的加密模型更新信息 $[enc(\Delta w_i)]$
 - 5. 利用同态加密,聚合各个梯度

$$\Delta w_{avg} = \sum_{\{i=1\}}^{k} enc(\Delta w_i) \times \frac{1}{k}$$

6. 将Δw_{ava}发送给各个client

Client 端

- 1. 每个client 在自己的模型上训练local_epoch轮。
- 2. 求解local_epoch轮中参数的更新 Δw (默认client学习率公开且一致的情况下,可以用w new-w old代替)
- 3. 利用同态加密,将加密之后的 $enc(\Delta w)$ 上传到server端
- 7. 利用收到的 Δw_{avg} ,更新自己的模型参数

Part2 实验内容

》 任务1: 了解paillier原理

- 使用gmpy2库填充paillier.py中enc, dec, enc_add enc_add_const和enc_mul_const函数,验证结果的正确性。
- 测试密钥长度为1024位 (二进制) 时,长度10-1000bits整数加法, 验证其结果是否正确,并合理测试运行时间。

>> 任务2: paillier + federal learning

 为了防止server端获得client端的梯度和模型参数,使用paillier对 于上传的模型更新进行加密和解密运算,并且实现在加密情况下的 梯度聚合操作。

》 实验要求:

- 任务1,实现结果正确,代码清晰
- 任务2, 实现结果正确, 说明实现方法。对比模型在minst上的训练时间。

推荐实验工具

- » Python 3.7及以上
- » gmpy2库
 - https://www.lfd.uci.edu/~gohlke/pythonlibs/#gmpy提供了gmpy2- 2.0.8- cp37- cp37m- win_amd64.whl以及支持其他python>3.4版本的的gmpy2库
 - 将whl文件下载到本地,并使用

Eg: (python -m) pip install gmpy2- 2.0.8- cp37- cp37m- win_amd64.whl

进行安装

- https://gmpy2.readthedocs.io/en/latest/mpfr.html gmpy2 的documentation
- 有可能会使用到的函数: mpz, powmod, invert, is_prime, random_state, mpz_urandomb, rint_round, log2, gcd

推荐实验工具

- » python-paillier库
 - Python-paillier库的文档

https://python-paillier.readthedocs.io/en/stable/index.html

pip install phe

>> 说明:

- 对于任务1,要求掌握paillier的原理,因此不能直接使用phe库进行加解密。
- gmpy2库和phe库也不是必须的,同学们可以自行选择语言和 实现方法。
- Paillier如何应用在浮点数上,实验不要求掌握,可以直接使用现有的paillier的库进行实现

实验中用到的参数和数据

- 数据集 mnist, 使用torchvision.dataset 提供mnist数据集
- 每个client的网络结构

```
class CNNMnist(nn.Module):
   def init (self, args):
       super(CNNMnist, self). init ()
       self.conv1 = nn.Conv2d(args.num channels, 10, kernel size=5)
       self.conv2 = nn.Conv2d(10, 20, kernel size=5)
       self.conv2 drop = nn.Dropout2d()
       self.fc1 = nn.Linear(320, 50)
       self.fc2 = nn.Linear(50, args.num classes)
   def forward(self, x):
       x = F.relu(F.max pool2d(self.conv1(x), 2))
       x = F.relu(F.max pool2d(self.conv2 drop(self.conv2(x)), 2))
       x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3])
       x = F.relu(self.fc1(x))
       x = F.dropout(x, training=self.training)
       x = self.fc2(x)
       return x
```

• Client数量,学习率等超参数:在options.py中定义

实验分数占比和截止日期

- Part 1
 - 基本内容 32'
 - 附加内容 8'
- Part 2
 - 任务1 30'
 - 任务2 30'
- 》 截止日期
 - 7.1号

THANKS!

Any questions?

