

K均值聚类算法(附例子)-b站:笔 记鲨

- 1. 快速理解
- 2. 算法步骤
- 3. 实例讲解

- K均值聚类算法 K-Means Clustering Algorithm
 - ▼ 快速理解:
 - 1.有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的居民,于是每个居民到离自己家最近的布道点去

听课。

2.听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的居民的地址,搬到了所有地址的中心地带,并且在海报上更新了自己的布道点的位置。

3.牧师每一次移动不可能离所有人都更近,有的人发现A牧师移动以后自己还不如去B牧师处听课更近,于是每个居民又去了离自己最近的布道点……就这样,牧师每个礼拜更新自己的位置,居民根据自己的情况选择布道点,最终稳定了下来。

图片理解:

K-means convergence to a local minimum.png

using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available,

https://commons.wikimedia.org/wiki/File:K-means_converg ence_to_a_local_minimum.png

。步骤

- 先定义总共有多少个类/簇(cluster)
- 将每个簇心(cluster centers)随机定在一个点上
- 将每个数据点关联到最近簇中心所属的簇上
- 对于每一个簇找到其所有关联点的中心点(取每一个点坐标的平均值)
- 将上述点变为新的**簇心**
- 不停重复,直到每个簇所拥有的点**不变**

▼ 例子

题目:有以下6个点,将A3和A4作为两个簇的初始簇心。问最后的簇的所属情况

	Χ	Y
A1	1	2
A2	1	4
A3	3	1
A4	3	5
A2 A3 A4 A5 A6	5	2
A6	5	4

1.计算每个点到簇心距离(根据距离公式),将距离近的点归为一类

	х	Υ	G1 distance	G2 distance
A1	1	. 2	2.24	3.61
A2	1	. 4	3.61	2.24
A3	3	1	0.00	4.00
A4	3	5	4.00	0.00
A5	5	2	2.24	3.61
A6	5	4	3.61	2.24

2.将蓝色每个点,和紫色每个点的X,Y值分别求平均。获得新的簇心

	х	У
new M1	3.00	1.67
new M2	3.00	4.33

3.计算每个点到簇心的新距离,将距离近的点归为一类

	X	Υ	G1 distance	G2 distance
A1	1	2	2.03	3.07
A2	1	4	3.07	2.03
A3	3	1	0.67	3.33
A4	3	5	3.33	0.67
A5	5	2	2.03	3.07
A6	5	4	3.07	2.03

- 4.由于关联点没有变化,所以之后的计算结果不会改变。停止计算。
- 5. 蓝色簇:A1,A3,A5。紫色簇:A2,A4,A6。

低价高质

名校硕博

名元背景

不想学代码? 不想装环境? 我们可以帮您解决:

机器学习 神经网络 统计分析 自动化程序 量化研究

Spark/Hadoop

关注**笔记鲨**的微信公众号

点击左侧"建立联系"加微信交流

哥伦比亚大学

南加州大学

数据科学

统计科学

金融工程