Introduction to Mathematical Programming IE406

Lecture 4

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 2.2-2.4

The Two Crude Petroleum Example Revisited

- Recall the Two Crude Petroleum example.
- We showed graphically that the optimal solution was an extreme point.
- How did we figure out the coordinates of the optimal point?

Binding Constraints

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$.

Definition 1. If a vector \hat{x} satisfies $a_i^{\top} \hat{x} = b_i$, then we say the corresponding constraint is binding at \hat{x} .

Theorem 1. Let $\hat{x} \in \mathbb{R}^n$ be given and let $I = \{i \mid a_i^{\top} \hat{x} = b_i\}$ represent the set of constraints that are binding at \hat{x} . Then the following are equivalent:

- There exist n vectors in the set $\{a_i \mid i \in I\}$ that are linearly independent.
- The span of the vectors $\{a_i \mid i \in I\}$ is \mathbb{R}^n .
- The system of equations $a_i^\top x = b_i, i \in I, x \in \mathbb{R}^n$ has the unique solution \hat{x} .

If the vectors $\{a_j \mid j \in J\}$ for some $J \subseteq [1, m]$ are linearly independent, we will say that the corresponding constraints are also linearly independent.

Basic Solutions

Consider a polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$ and let $\hat{x} \in \mathbb{R}^n$ be given.

Definition 2. The vector \hat{x} is a basic solution with respect to \mathcal{P} if there exist n linearly independent, binding constraints at \hat{x} .

Definition 3. If \hat{x} is a basic solution and $\hat{x} \in \mathcal{P}$, then \hat{x} is a basic feasible solution.

Theorem 2. If \mathcal{P} is nonempty and $\hat{x} \in \mathcal{P}$, then the following are equivalent:

- \hat{x} is a vertex.
- ullet \hat{x} is an extreme point.
- \hat{x} is a basic feasible solution.

Adjacent Basic Solutions

- Two distinct basic solutions x and y are adjacent if there are n-1 linearly independent constraints that are binding at both x and y.
- If two adjacent basic solutions are also feasible, then the line connecting them is called an *edge* of the polyhedron.
- Note that the first algorithms we will study move through the polyhedron along its edges.

Some Observations

Note the immediate consequences of the previous results:

Polyhedra in Standard Form

- For the next few slides, we consider the standard form polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}.$
- Recall that the feasible region of any linear program can be expressed equivalently in this form.
- We will assume that the rows of A are linearly independent $\Rightarrow m \leq n$.
- Later, we will show that any polyhedron in standard form can be represented in this way.
- What does a basic feasible solution look like here?

Basic Feasible Solutions in Standard Form

- In standard form, the equations are always binding.
- To obtain a basic solution, we must set n-m of the variables to zero (why?).
- We must also end up with a set of linearly independent constraints.
- Therefore, the variables we pick cannot be arbitrary.

Theorem 3. Consider a polyhedron \mathcal{P} in standard form with m linearly independent constraints. A vector $\hat{x} \in \mathbb{R}^n$ is a basic solution with respect to \mathcal{P} if and only if $A\hat{x} = b$ and there exist indices $B(1), \ldots, B(m)$ such that:

- The columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent, and
- If $i \neq B(1), \ldots, B(m)$, then $\hat{x}_i = 0$.

Basic Feasible Solutions in Standard Form

• As a consequence of the previous theorem, we now know how to construct basic solutions for polyhedra in standard form.

_

_

• If the resulting solution is also nonnegative, then it is a basic feasible solution.

Some Terminology

- If \hat{x} is a basic solution, then $\hat{x}_{B(1)}, \ldots, \hat{x}_{B(m)}$ are the *basic variables*.
- The columns $A_{B(1)}, \ldots, A_{B(m)}$ are called the *basic columns*.
- Since they are linearly independent, these columns form a *basis* for \mathbb{R}^m .
- A set of basic columns form a basis matrix, denoted B. So we have,

$$B = [A_{B(1)} \ A_{B(2)} \cdots A_{B(m)}], \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix}$$

Basic Solutions and Bases

- Given a basis matrix B, the values of the basic variables are obtained by solving $Bx_B = b$, whose unique solution is $x_B = B^{-1}b$.
- However, multiple bases can give the same basic solution.
- Two bases are adjacent if they differ in only one basic column.
- Two basic solutions are adjacent if and only if they can be obtained from two adjacent bases (proof is homework).

The Full Row Rank Assumption

Theorem 4. Let $\mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$ for some $A \in \mathbb{R}^{m \times n}$ with rank(A) = k. If rows $a_{i_1}^{\top}, a_{i_2}^{\top}, \dots, a_{i_k}^{\top}$ are linearly independent, then

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid a_{i_1}^\top x = b_{i_1}, a_{i_2}^\top x = b_{i_2}, \dots, a_{i_k}^\top x = b_{i_k}, x \ge 0 \}.$$

Notes:

Degeneracy

Definition 4. A basic solution \hat{x} is called degenerate if more than n of the constraints are binding at \hat{x} .

Notes: