

Materiały diagnostyczne z matematyki poziom podstawowy

czerwiec 2011

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiały diagnostyczne przygotowała **Agata Siwik** we współpracy z nauczycielami matematyki szkół ponadgimnazjalnych:

Ewa Zietek

Nauczyciel V Liceum Ogólnokształcącego im. Wspólnej Europy w Olsztynie Nauczyciel Technikum nr 6 w Zespole Szkół Elektronicznych i Telekomunikacyjnych w Olsztynie

Irena Jakóbowska

Nauczyciel VI Liceum Ogólnokształcącego im. G. Narutowicza w Olsztynie Wicedyrektor VI Liceum Ogólnokształcącego im. G. Narutowicza w Olsztynie

Elżbieta Guziejko

Nauczyciel Liceum Ogólnokształcącego im. Jana Kochanowskiego w Olecku

Ewa Olszewska

Nauczyciel Technikum w Zespole Szkół Handlowo-Ekonomicznych im. M. Kopernika w Białymstoku Dyrektor Liceum Ogólnokształcącego Wschodnioeuropejskiego Instytutu Gospodarki w Białymstoku

Andrzej Gołota

Nauczyciel Technikum w Zespole Szkół Mechanicznych w Elblagu

Konsultant ds. matematyki Warmińsko-Mazurskiego Ośrodka Doskonalenia Nauczycieli w Elblągu

Jan Žukowski

Nauczyciel I Liceum Ogólnokształcące im. M. Konopnickiej w Suwałkach

Doradca metodyczny Centrum Doskonalenia Nauczycieli i Kształcenia Ustawicznego w Suwałkach

Odpowiedzi do zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13
odpowiedź	A	A	D	C	В	В	В	C	C	C	A	В	В

Schemat punktowania zadań otwartych

Zadanie 14. (2 pkt)

Dwa okręgi o środkach S_1 i S_2 są styczne zewnętrznie w punkcie A. Poprowadzono prostą styczną do obu okręgów odpowiednio w punktach B i C (patrz rysunek). Wykaż, że kąt BAC jest prosty.

 S_1

I sposób rozwiązania

Odcinki S_1B i S_2C są równoległe, bo styczna do obu okręgów jest prostopadła do promieni poprowadzonych do punktów styczności, stąd $| \langle BS_1A | + | \langle AS_2C | = 180^{\circ}$.

Miara kąta środkowego w okręgu jest dwukrotnie większa od miary kąta dopisanego opartego na tym samym łuku, więc $| < CBA | = \frac{1}{2} | < BS_1 A |$ oraz $| < BCA | = \frac{1}{2} | < CS_2 A |$ stąd wynika, że $| < CBA | + | < BCA | = 90^\circ$.

Suma miar kątów wewnętrznych trójkąta jest równa 180°, zatem $| < BAC | = 90^{\circ}$.

Schemat oceniania I sposób rozwiązania

• zauważy, że odcinki S_1B i S_2C są równoległe oraz wykorzysta twierdzenie, że miara kąta środkowego w okręgu jest dwukrotnie większa od miary kąta dopisanego opartego na tym samym łuku. Wystarczy, że zapisze np.: $| \ll BS_1A | + | \ll AS_2C | = 180^\circ$ i $| \ll CBA | = \frac{1}{2} | \ll BS_1A |$ oraz $| \ll BCA | = \frac{1}{2} | \ll CS_2A |$.

• przeprowadzi pełne rozumowanie np.: zapisze że, $| \angle CBA | + | \angle BCA | = 90^{\circ}$, więc $| \angle BAC | = 90^{\circ}$.

II sposób rozwiązania

Trójkąty BS_1A i CS_2A są równoramienne. Zatem $| \langle S_1BA | = | \langle S_1AB | = \alpha$ oraz $| \langle CAS_2 | = | \langle ACS_2 | = \beta$.

Odcinki S_1B i S_2C są prostopadłe do stycznej, stąd $| \angle ABC | = 90^\circ - \alpha$, $| \angle BCA | = 90^\circ - \beta$. Niech $| \angle BAC | = \gamma$.

Kąty *ABC*, *BCA* i *BAC* są kątami wewnętrznymi trójkąta *BAC*, więc $90^{\circ} - \alpha + 90^{\circ} - \beta + \gamma = 180^{\circ}$, stąd $\alpha + \beta = \gamma$.

Kąt S_1AS_2 jest półpełny, więc $| \sphericalangle S_1AS_2 | = 180^\circ = \alpha + \gamma + \beta$, stąd $2\gamma = 180^\circ$ czyli $\gamma = | \sphericalangle BAC | = 90^\circ$.

Schemat oceniania II sposób rozwiązania

• zauważy, że odcinki S_1B i S_2C są prostopadłe do stycznej, trójkąty BS_1A i CS_2A są równoramienne i zapisze zależność $90^\circ - \alpha + 90^\circ - \beta + \gamma = 180^\circ$.

• zapisze, że $| \ll S_1 A S_2 | = 180^\circ = \alpha + \gamma + \beta$ i obliczy miarę kąta BAC: $| \ll BAC | = 90^\circ$.

III sposób rozwiązania

Trójkąty S_1AB i AS_2C są równoramienne. Zatem $| \not \prec S_1AB | = | \not \prec S_1BA | = \alpha$ oraz $| \not \prec S_2AC | = | \not \prec ACS_2 | = \beta$.

Kąty S_1AB , S_1BA , BS_1A są kątami wewnętrznymi trójkąta S_1AB , więc $| < BS_1A | = 180^\circ - 2\alpha$. Czworokąt S_1S_2CB jest trapezem więc $| < AS_2C | = 2\alpha$.

Suma miar kątów trójkąta AS_2C jest równa:

 $| \angle AS_2C | + | \angle S_2AC | + | \angle ACS_2 | = 2\alpha + \beta + \beta = 180^\circ$, stad $2\alpha + 2\beta = 180^\circ$, wiec $\alpha + \beta = 90^\circ$. Kat S_1AS_2 jest półpełny wiec $| \angle BAC | + \alpha + \beta = 180^\circ$, zatem $| \angle BAC | = 90^\circ$.

Schemat oceniania III sposób rozwiązania

• zauważy, że trójkąty S_1AB i AS_2C są równoramienne, zapisze $| \sphericalangle S_1AB | = | \sphericalangle S_1BA |$ i $| \sphericalangle S_2AC | = | \sphericalangle ACS_2 |$ i $| \sphericalangle BS_1A | = 180^\circ - 2\alpha$ oraz zauważy, że czworokąt S_1S_2CB jest trapezem więc $| \sphericalangle AS_2C | = 2\alpha$.

Zdający otrzymuje2 punkty gdy:

• zapisze, że suma kątów trójkąta AS_2C jest równa: $2\alpha + 2\beta = 180^\circ$, więc $\alpha + \beta = 90^\circ$ i kąt S_1AS_2 jest półpełny więc , zatem $| \ll BAC | = 90^\circ$.

Zadanie 15. (2 pkt)

Trójkąt ABC jest prostokątny. W trójkącie tym miara kąta BAC jest równa 90°, |AB| = a + 3, |AC| = a + 4, |BC| = 2a - 5. Oblicz długości boków tego trójkąta.

Rozwiazanie

Z twierdzenia Pitagorasa otrzymujemy równanie

$$(a+3)^2 + (a+4)^2 = (2a-5)^2$$
 i $a > 2,5$

Po przekształceniach otrzymujemy równanie

$$2a^2 - 34a = 0$$
.

Wtedy $a_1 = 0$ (sprzeczne z założeniem) oraz $a_2 = 17$.

Obliczamy długości boków tego trójkąta: |AB| = 20, |AC| = 21, |BC| = 29.

Schemat oceniania

• rozwiąże równanie $(a+3)^2 + (a+4)^2 = (2a-5)^2$: a=17 i na tym poprzestanie lub dalej popełnia błędy.

• obliczy długości boków |AB| = 20, |AC| = 21, |BC| = 29.

<u>Uwagi</u>

- 1. Jeżeli zdający popełni błąd rachunkowy przy rozwiązywaniu równania kwadratowego i konsekwentnie do popełnionego błędu obliczy długości boków tego trójkąta, to za całe rozwiązanie otrzymuje 1 punkt.
- 2. Jeżeli zdający błędnie zapisze równanie kwadratowe, to za całe zadanie otrzymuje 0 punktów.

Zadanie 16. (2 pkt)

Zbadaj, czy istnieje taki kąt ostry α , dla którego $\cos \alpha = \frac{2\sqrt{6}}{7}$ i $tg\alpha = \frac{1}{2}$. Odpowiedź uzasadnij.

I sposób rozwiązania

Rysujemy trójkat prostokatny i wprowadzamy oznaczenia np.:

 $2\sqrt{6}x$ - długość przyprostokatnej leżącej przy kącie α

7x - długość przeciwprostokatnej

c - długość przyprostokątnej leżącej naprzeciw kąta α

Z twierdzenia Pitagorasa otrzymujemy równanie: $(2\sqrt{6}x)^2 + c^2 = (7x)^2$.

Wtedy c = 5x.

Z definicji funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym otrzymujemy:

$$tg\alpha = \frac{5x}{2\sqrt{6}x} = \frac{5}{2\sqrt{6}}.$$

Z treści zadania wynika, że $tg\alpha = \frac{1}{2}$.

Otrzymujemy sprzeczność, zatem nie istnieje taki kąt α .

II sposób rozwiązania

Rysujemy trójkąt prostokątny i wprowadzamy oznaczenia np.:

x - długość przyprostokątnej leżącej naprzeciw kąta α

2x - długość przyprostokątnej leżącej przy kącie α

c - długość przeciwprostokątnej

Z twierdzenia Pitagorasa otrzymujemy równanie: $(2x)^2 + x^2 = c^2$. Wtedy $c = \sqrt{5}x$.

Z definicji funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym otrzymujemy:

$$\cos x = \frac{2x}{\sqrt{5}x} = \frac{2\sqrt{5}}{5}$$

Z treści zadania wynika, że $\cos x = \frac{2\sqrt{6}}{7}$.

Otrzymaliśmy sprzeczność, zatem nie istnieje taki kąt α .

Schemat oceniania I i II sposobu rozwiązania

• zaznaczy kąt α w trójkącie prostokątnym i wyznaczy długości jego boków w zależności od współczynnika proporcjonalności np.: 5x, $2\sqrt{6}x$, 7x lub x, 2x, $\sqrt{5}x$ i na tym poprzestanie lub dalej popełnia błędy.

Uwaga

Zdający może przyjąć współczynnik proporcjonalności równy 1.

Zdający otrzymuje2 punkty gdy:

• obliczy $tg\alpha = \frac{5}{2\sqrt{6}}$, porówna z wartością podaną w treści zadania i stwierdzi, że taki kat nie istnieje.

albo

• obliczy $\cos \alpha = \frac{2\sqrt{5}}{5}$, porówna z wartością podaną w treści zadania i stwierdzi, że taki kąt nie istnieje.

III sposób rozwiązania

Korzystamy z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$, otrzymujemy: $\sin^2 \alpha + \left(\frac{2\sqrt{6}}{7}\right)^2 = 1$, a stąd $\sin \alpha = \frac{5}{7}$. (α kąt ostry ($\sin \alpha > 0$)).

Korzystamy ze związku między funkcjami trygonometrycznymi tego samego kąta

$$tg\alpha = \frac{\sin \alpha}{\cos \alpha}$$
, otrzymujemy $tg\alpha = \frac{\frac{5}{7}}{\frac{2\sqrt{6}}{7}} = \frac{5}{2\sqrt{6}} = \frac{5\sqrt{6}}{12}$.

Z treści zadania wynika, że $tg\alpha = \frac{1}{2}$.

Otrzymujemy sprzeczność, zatem nie istnieje taki kąt α .

IV sposób rozwiązania

Korzystamy ze związku między funkcjami trygonometrycznymi tego samego kąta $tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, otrzymujemy $\sin\alpha=\frac{\sqrt{6}}{7}$.

Korzystamy z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$, otrzymujemy: $\left(\frac{\sqrt{6}}{7}\right)^2 + \left(\frac{2\sqrt{6}}{7}\right)^2 = \frac{30}{49} \neq 1$.

Otrzymujemy sprzeczność, zatem nie istnieje taki kąt α .

Schemat oceniania III i IV sposobu rozwiązania

• obliczy wartość $\sin \alpha = \frac{5}{7}$ korzystając ze związku $\sin^2 \alpha + \cos^2 \alpha = 1$ i na tym poprzestanie lub dalej popełnia błędy.

albo

• obliczy wartość $\sin \alpha = \frac{\sqrt{6}}{7}$ korzystając ze związku $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ i na tym poprzestanie lub dalej popełnia błędy.

• obliczy $tg\alpha = \frac{5}{2\sqrt{6}}$ (gdy $\sin\alpha = \frac{5}{7}$), porówna z wartością podaną w treści zadania i stwierdzi, że taki kąt nie istnieje.

albo

• podstawi wartość $\sin \alpha = \frac{\sqrt{6}}{7}$ do związku $\sin^2 \alpha + \cos^2 \alpha = 1$ i stwierdzi, że taki kąt nie istnieje.

V sposób rozwiązania

Dla $\cos \alpha = \frac{2\sqrt{6}}{7}$ odczytujemy z tablic trygonometrycznych przybliżoną miarę kąta: $\alpha \approx 46^{\circ}$ (akceptujemy $\alpha \approx 45^{\circ}$).

Dla tg $\alpha = \frac{1}{2}$ odczytujemy z tablic trygonometrycznych przybliżoną miarę kąta: $\alpha \approx 27^{\circ}$ (akceptujemy $\alpha \approx 26^{\circ}$).

Otrzymane wyniki (różne miary kąta α w tym samym trójkącie) pozwalają stwierdzić, że taki kąt nie istnieje.

Schemat oceniania V sposobu rozwiązania

• odczyta z tablic przybliżoną wartość kąta dla $\cos \alpha = \frac{2\sqrt{6}}{7}$: $\alpha \approx 46^\circ$ (akceptujemy $\alpha \approx 45^\circ$) i na tym zakończy lub dalej popełnia błędy

albo

• odczyta z tablic przybliżoną wartość kąta dla $tg\alpha = \frac{1}{2}$: $\alpha \approx 27^{\circ}$ (akceptujemy $\alpha \approx 26^{\circ}$) i na tym zakończy lub dalej popełnia błędy.

• dla wyznaczonej wartości kąta α (gdy $\cos\alpha = \frac{2\sqrt{6}}{7}$) odczyta z tablic wartość $tg\alpha$, porówna ją z wartością podaną w treści zadania i stwierdzi, że taki kąt nie istnieje.

albo

• dla wyznaczonej wartości kąta α (gdy $tg\alpha = \frac{1}{2}$) odczyta z tablic wartość $\cos\alpha$, porówna ją z wartością podaną w treści zadania i stwierdzi, że taki kąt nie istnieje.

<u>Uwagi</u>

- 1. Wszystkie rozwiązania, w których zdający błędnie zaznaczy kąt α w przedstawionym przez siebie rysunku i z tego korzysta oceniamy na **0 punktów**.
- 2. Jeśli zdający narysuje dwa trójkąty prostokątne, oznaczy długości boków odpowiednio: 5, 2√6, 7 i 1, 2, √5 (lub na jednym z nich zaznaczy długości boków obu trójkątów) bez współczynnika proporcjonalności i stwierdzi, że boki mają różną długość, zatem nie istnieje taki kąt, to otrzymuje **0 punktów.** W takim przypadku wymagamy udowodnienia, że boki takich trójkątów nie są proporcjonalne.
- 3. Jeśli zdający nie odrzuci odpowiedzi ujemnej, to otrzymuje 1 punkt.

Zadanie 17. (2 pkt)

Ciąg geometryczny (a_n) określony jest wzorem $a_n = -2 \cdot 3^{n+1}$. Oblicz iloraz tego ciągu oraz sumę czterech początkowych wyrazów tego ciągu.

Rozwiązanie

Obliczamy iloraz ciągu
$$(a_n)$$
: $q = \frac{a_{n+1}}{a_n} = \frac{-2 \cdot 3^{n+2}}{-2 \cdot 3^{n+1}} = 3$

Obliczamy pierwszy wyraz ciągu (a_n) : $a_1 = -2 \cdot 3^2 = -18$.

Obliczamy sumę czterech początkowych wyrazów tego ciągu wykorzystując wzór na sumę n początkowych wyrazów ciągu geometrycznego $S_n = a_1 \cdot \frac{1-q^n}{1-q}$:

$$S_4 = -18 \cdot \frac{3^4 - 1}{3 - 1} = -18 \cdot 40 = -720$$
.

<u>Uwaga</u>

Zdający może obliczyć sumę ciągu geometrycznego wykorzystując wzór: $S_4 = a_1 + a_1 \cdot q + a_1 \cdot q^2 + a_1 \cdot q^3 = -18 \cdot \left(1 + 3 + 3^2 + 3^3\right) = -720 \text{ lub}$ $S_4 = a_1 + a_2 + a_3 + a_4, \quad \text{gdzie} \quad a_1 = -2 \cdot 3^2 = -18, \quad a_2 = -2 \cdot 3^3 = -54, \quad a_3 = -2 \cdot 3^4 = -162,$ $a_4 = -2 \cdot 3^5 = -486.$

Schemat oceniania

• obliczy $a_1 = -18$ i obliczy iloraz ciągu (a_n) : q = 3 i na tym zakończy lub dalej popełnia błędy.

albo

• obliczy $a_1=-18$, $a_2=-54$, $a_3=-162$, $a_4=-486$ i na tym zakończy lub dalej popełnia błędy.

• iloraz tego ciągu oraz sumę czterech początkowych wyrazów tego ciągu.

Uwagi

- 1. Jeżeli zdający popełni błąd rachunkowy przy obliczaniu pierwszego wyrazu lub ilorazu tego ciągu i konsekwentnie rozwiąże zadanie do końca, to za całe rozwiązanie otrzymuje **1 punkt**.
- 2. Jeżeli zdający popełni jeden błąd rachunkowy przy obliczaniu czterech pierwszych wyrazów tego ciągu i konsekwentnie rozwiąże zadanie do końca, to za całe rozwiązanie otrzymuje **1 punkt**.

Zadanie 18. (4 pkt)

Dany jest trójkąt równoboczny ABC, w którym wysokości przecinają się w punkcie o współrzędnych S = (1,3). Jeden z wierzchołków tego trójkąta ma współrzędne A = (-1,5). Oblicz pole i obwód tego trójkąta.

I sposób rozwiązania

Rysujemy trójkąt równoboczny ABC i wprowadzamy oznaczenia np.:

Korzystamy z własności trójkąta równobocznego i zapisujemy : $|AS| = \frac{2}{3}|AD|$,

$$|AD| = h = \frac{a\sqrt{3}}{2}.$$

Obliczamy
$$|AS| = \sqrt{(1+1)^2 + (3-5)^2} = \sqrt{8} = 2\sqrt{2}$$
, zatem $\frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = 2\sqrt{2}$ stąd $a = 2\sqrt{6}$.

Obliczamy pole trójkąta:
$$P = \frac{a^2\sqrt{3}}{4} = \frac{(2\sqrt{6})^2\sqrt{3}}{4} = 6\sqrt{3}$$
.

Obliczamy obwód trójkąta: $O = 3a = 3 \cdot 2\sqrt{6} = 6\sqrt{6}$.

Schemat oceniania I sposobu rozwiązania

• obliczenie długości odcinka $|AS| = 2\sqrt{2}$.

Rozwiązanie, w którym jest istotny postęp......2 punkty

• zauważenie, że $|AS| = \frac{2}{3}h$ i zapisanie równości $\frac{a\sqrt{3}}{3} = 2\sqrt{2}$.

albo

• obliczenie wysokości $h = \frac{a\sqrt{3}}{2} = 3\sqrt{2}$.

Pokonanie zasadniczych trudności zadania3 punkty

• obliczenie długości boku trójkąta równobocznego: $a = 2\sqrt{6}$.

Rozwiązanie pełne4 punkty

Obliczenie pola i obwodu trójkąta równobocznego: $P = \frac{a^2 \sqrt{3}}{4} = 6\sqrt{3}$, $O = 6\sqrt{6}$.

II sposób rozwiązania

Obliczamy długość odcinka $|AS| = \sqrt{4+4} = 2\sqrt{2}$.

Z trójkąta AFS obliczamy długość boku AF: $\cos 30^\circ = \frac{|AF|}{|AS|}$, stąd $|AF| = 2\sqrt{2} \cdot \frac{\sqrt{3}}{2} = \sqrt{6}$.

Obliczamy długość boku trójkata: $a = 2 \cdot |AF| = 2\sqrt{6}$.

Obliczamy pole trójkąta: $P = \frac{a^2 \sqrt{3}}{4} = \frac{(2\sqrt{6})^2 \sqrt{3}}{4} = 6\sqrt{3}$

Obliczamy obwód trójkąta: $O = 3a = 3 \cdot 2\sqrt{6} = 6\sqrt{6}$.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania.....1punkt

• obliczenie długości odcinka $|AS| = 2\sqrt{2}$.

Rozwiązanie, w którym jest istotny postęp......2punkty

■ zauważenie, że trójkąt $| \ll SAF | = 30^{\circ}$ i zapisanie $\cos 30^{\circ} = \frac{|AF|}{|AS|}$.

Pokonanie zasadniczych trudności zadania.....3punkty

• obliczenie długości boku trójkąta równobocznego: $a = 2|AF| = 2\sqrt{6}$.

Rozwiązanie pełne.....4 punkty

Obliczenie pola i obwodu trójkąta równobocznego: $P = \frac{a^2 \sqrt{3}}{4} = 6\sqrt{3}$, $O = 6\sqrt{6}$.

III sposób rozwiązania

Punkt S jest środkiem okręgu opisanego na trójkącie równobocznym. Punkt A należy do tego okręgu.

Korzystamy z równania okręgu i otrzymujemy: $(-1-1)^2 + (5-3)^2 = r^2$, stąd $r^2 = 8$, zatem $r = 2\sqrt{2}$.

Obliczamy długość boku trójkąta: $r = \left| AS \right| = \frac{2}{3}h = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2}$, zatem $a = 2\sqrt{6}$.

Obliczamy pole trójkąta: $P = \frac{a^2 \sqrt{3}}{4} = \frac{(2\sqrt{6})^2 \sqrt{3}}{4} = 6\sqrt{3}$.

Obliczamy obwód trójkąta: $O = 3a = 3 \cdot 2\sqrt{6} = 6\sqrt{6}$.

Uwaga

Zdający może obliczyć wysokość trójkąta równobocznego $h=3\sqrt{2}$, następnie obliczyć długość boku trójkąta z twierdzenia Pitagorasa lub z własności trójkąta prostokątnego o kątach ostrych 30° i 60°.

Schemat oceniania III sposobu rozwiązania

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania.....1punkt

• obliczenie długości promienia okręgu opisanego na trójkącie równobocznym: $r=2\sqrt{2}$.

Uwaga

Zdający może przedstawić wynik w postaci $r = \sqrt{8}$.

Rozwiązanie, w którym jest istotny postęp......2punkty

• Zauważenie, że $r = \frac{2}{3}h$ i zapisanie równości $\frac{a\sqrt{3}}{3} = 2\sqrt{2}$.

Pokonanie zasadniczych trudności zadania.....3punkty

• Obliczenie długości boku trójkąta równobocznego: $a = 2\sqrt{6}$.

Rozwiązanie pełne......4 punkty

Obliczenie pola i obwodu trójkąta równobocznego: $P = \frac{a^2 \sqrt{3}}{4} = 6\sqrt{3}$, $O = 6\sqrt{6}$.

<u>Uwagi</u>

- 1. Jeśli zdający popełni błąd rachunkowy i konsekwentnie do popełnionego błędu rozwiąże zadanie, to przyznajemy **3 punkty.**
- 2. Jeśli zdający przyjmie, że S jest środkiem wysokości trójkąta równobocznego $\left(\left|AS\right|=\frac{1}{2}h\right)$, to za całe rozwiązanie przyznajemy **1 punkt** (za obliczenie $\left|AS\right|$).

Zadanie 19. (5 pkt)

Dwie prostokątne działki rekreacyjne mają taką samą powierzchnię równą 310 m². Długość drugiej działki jest o 4,8 m krótsza od długości pierwszej, a szerokość o 3 m dłuższa od szerokości pierwszej. Podaj wymiary działki o mniejszym obwodzie.

Rozwiazanie

Przyjmujemy oznaczenia np.: x, y - wymiary I działki: x - długość, y - szerokość Zapisujemy układ równań:

$$\begin{cases} x \cdot y = 310 \\ (x-4,8) \cdot (y+3) = 310 \end{cases}$$

Przekształcamy drugie równanie w sposób równoważny: $x \cdot y + 3x - 4, 8y - 14, 4 = 310$, podstawiamy do tego równania $x \cdot y = 310$ i wyznaczamy z tego równania niewiadomą x: x = 1, 6y + 4, 8.

Wyznaczoną wartość x podstawiamy do pierwszego równania $(1,6y+4,8) \cdot y = 310$ i doprowadzamy to równanie do postaci: $1,6y^2+4,8y-310=0$, które ma dwa rozwiązania $y_1 = -15,5$ (nie spełnia warunków zadania) i $y_2 = 12,5$.

Zatem, jeżeli y = 12,5, to x = 24,8 i wtedy działka I ma wymiary: 24,8 m x 12,5 m, zaś działka II: 20 m x 15,5 m.

Obliczamy obwód I działki: $2 \cdot 24.8 + 2 \cdot 12.5 = 74.6 \text{ m}$.

Obliczamy obwód II działki: $2 \cdot 20 + 2 \cdot 15, 5 = 71 \text{ m}$.

Zapisujemy odpowiedź: Działka o mniejszym obwodzie ma wymiary: 20 m x 15,5 m.

albo

Przyjmujemy oznaczenia np.: x, y - wymiary II działki: x - długość, y - szerokość Zapisujemy układ równań:

$$\begin{cases} x \cdot y = 310 \\ (x+4,8) \cdot (y-3) = 310 \end{cases}$$

Przekształcamy drugie równanie w sposób równoważny: $x \cdot y - 3x + 4,8y - 14,4 = 310$, podstawiamy do tego równania $x \cdot y = 310$ i wyznaczamy z tego równania niewiadomą x: x = 1,6y - 4,8.

Wyznaczoną wartość x podstawiamy do pierwszego równania $(1,6y-4,8) \cdot y = 310$ i doprowadzamy to równanie do postaci: $1,6y^2-4,8y-310=0$, które ma dwa rozwiązania $y_1 = 15,5$ i $y_2 = -12,5$ (nie spełnia warunków zadania).

Zatem, jeżeli y = 15, 5, to x = 20 i wtedy działka II ma wymiary: 20 m x 15, 5 m, zaś działka II: 24, 8 m x 12, 5 m.

Obliczamy obwód II działki: $2 \cdot 20 + 2 \cdot 15, 5 = 71 \text{ m}$.

Obliczamy obwód I działki: $2 \cdot 24.8 + 2 \cdot 12.5 = 74.6 \text{ m}$.

Zapisujemy odpowiedź: Działka o mniejszym obwodzie ma wymiary: 20 m x 15,5 m.

Schemat oceniania

• wprowadzenie oznaczeń, np.: x, y - wymiary I działki i zapisanie równania $(x-4,8)\cdot(y+3)=310$.

albo

• wprowadzenie oznaczeń, np.: x, y - wymiary II działki i zapisanie równania $(x+4,8)\cdot(y-3)=310$.

Uwaga

Nie wymagamy opisania oznaczeń literowych, jeżeli z rozwiązania można wywnioskować, że zdający poprawnie je stosuje.

Zapisanie układu równań z niewiadomymi x i y, np.:

$$\begin{cases} x \cdot y = 310 \\ (x-4,8) \cdot (y+3) = 310 \end{cases}$$
, gdzie x, y - wymiary I działki

albo

$$\begin{cases} x \cdot y = 310 \\ (x+4,8) \cdot (y-3) = 310 \end{cases}$$
, gdzie x, y - wymiary II działki

Uwaga

Zdający nie musi zapisywać układu równań, może od razu zapisać równanie z jedną niewiadomą.

Zapisanie równania z jedną niewiadomą x lub y, np:

$$1,6y^2 + 4,8y - 310 = 0$$
, gdzie $y -$ szerokość I działki

albo

$$x^2 - 4.8x - 496 = 0$$
, gdzie x, - długość I działki

albo

$$1,6y^2 - 4,8y - 310 = 0$$
, gdzie y - szerokość II działki

albo

 $x^2 + 4.8x - 496 = 0$, gdzie x, - długość II działki

Rozwiązanie prawie całkowite4 pkt

• rozwiązanie równania kwadratowego z niewiadomą y: y = 12,5 i obliczenie długości I działki: x = 24,8.

albo

• rozwiązanie równania kwadratowego z niewiadomą x: x = 24,8 i obliczenie szerokości I działki: y = 12,5.

albo

• rozwiązanie równania kwadratowego z niewiadomą y: y = 15,5 i obliczenie długości II działki: x = 20.

albo

• rozwiązanie równania kwadratowego z niewiadomą x: x = 20 i obliczenie szerokości II działki: y = 15, 5.

Rozwiązanie równania z niewiadomą x lub y z błędem rachunkowym i konsekwentne rozwiązanie zadania do końca.

Rozwiązanie pełne 5 pkt

Podanie wymiarów działki o mniejszym obwodzie: 20 m x 15,5 m.

Uwagi

- 1. Jeżeli zdający **podaje** (bez obliczeń) odpowiedź: wymiary działki o mniejszym obwodzie, to: 20 m x 15,5 m, otrzymuje **0 punktów**.
- 2. Jeżeli zdający od razu zapisze i uzasadni, że obwód drugiej działki jest mniejszy i na tym poprzestanie, otrzymuje **1 punkt.** np.:

$$O_1 = 2 \cdot (x+y)$$
 i $O_2 = 2 \cdot (x+3+y-4,8) = 2 \cdot (x+y-1,8)$, zatem $O_1 > O_2$.