安徽大学 2019—2020 学年第一学期 《高等数学 A (一)》期中考试试卷 时间 120 分钟) (闭卷

- 一、选择题 (每小题 2 分, 共 10 分)
- 1. 设数列 {x_n}, 下列命题**不正确**的是()

(A) 若
$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$$
, 则 $\lim_{n\to\infty} x_n = a$ 存在

(B) 若
$$\lim_{n\to\infty} x_n = a$$
 存在,则 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$

(C) 若
$$\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a$$
,则 $\lim_{n\to\infty} x_n = a$ 存在

(D) 若
$$\lim_{n\to\infty} x_n = a$$
 , 则 $\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n+1} = a$ 存在

- 2. 当 $x\to 0$ 时,函数 $f(x) = \frac{1}{x^2} \sin \frac{1}{x}$ 是(
 - (A) 无穷小

(B) 无穷大

(C) 有界, 但不是无穷小

(D) 无界, 但不是无穷大

3. 设
$$f(x) = \begin{cases} (x-1)\arctan\frac{1}{x^2-1}, & x \neq \pm 1, \\ 0, & x = \pm 1, \end{cases}$$
 则函数 $f(x)$ ()

- (A) 在x=-1处连续, 在x=1处间断 (B) 在x=-1处间断, 在x=1处连续
- (C) 在x=-1, 在x=1 处都连续 (D) 在x=-1, 在x=1 处都间断
- 4. 设 f(x) 在 x=0 处连续,则下列错误的是()

 - (A) $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0 (B) $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 f(0)=0

 - (C) $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0) 存在 (D) $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 f'(0) 存在
- 5. 己知函数 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当n为大于 2 的正整数时,
- f(x)的n阶导数 $f^{(n)}(x)$ 为()
- (A) $[f(x)]^{2n}$
- (B) $n[f(x)]^{n+1}$ (C) $n![f(x)]^{n+1}$ (D) $n![f(x)]^{2n}$

- 二、填空题(每小题2分,共10分)
- 6. 设 a_1, a_2, \dots, a_n 是 n 个正数,则 $\lim_{n \to \infty} (a_1^n + a_2^n + \dots + a_n^n)^{\frac{1}{n}} = 1$
- 7. 已知当 $x\to 0$ 时, $(1-ax^2)^{\frac{1}{2}}-1$ 与 $\ln(\cos x)$ 是等价的无穷小,则a=

8. 若极限 $\lim_{x\to 0} \left(\frac{1}{1+e^{\frac{1}{x}}} + \lambda \mathbf{x}\right)$ 存在,其中 [x] 表示不超过 x 的最大整数,则

9. 己知
$$f(x) = (x-1)(x-2)\cdots(x-2020)$$
,则 $f'(1) = ______$

10. 若
$$f(t) = \lim_{x \to \infty} t \left(1 + \frac{1}{x} \right)^{\alpha}$$
 , 则 $df(t) =$ _______.

三、计算题 (每小题 9 分, 共 63 分)

11. 己知 $a_1 = 2$, $a_{n+1} = \sqrt{2 + a_n}$ $(n = 1, 2, \cdots)$, 证明: 数列 $\{a_n\}$ 极限存在,并求此极限值.

12. 数列
$$\{x_n\}$$
 的通项 $x_n = \frac{1}{2n^2+1} + \frac{2}{2n^2+2} + \dots + \frac{n}{2n^2+n}$,求 $\lim_{n \to \infty} x_n$.

13. 计算极限
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x \ln(1+x^2)}$$

14.
$$\exists \lim_{x\to 0} \frac{f(x)}{1-\cos x} = 4$$
, $\Re \lim_{x\to 0} \left(1+\frac{f(x)}{x}\right)^{\frac{1}{x}}$.

15. 已知 $f'(x) = ae^x$ (a > 0 且为常数), 求反函数的二阶导数.

16. 设
$$y = y(x)$$
 是由 $xy + e^y = x + 1$ 确定的隐函数, 求 $y''(0)$ 的值.

17. 求曲线
$$\begin{cases} x = t^2 + 2t \\ y = \ln(1+t) \end{cases}$$
 上与直线 $8x + y = 1$ 垂直的切线方程.

四、分析题 (每小题 10分, 共10分)

18. 确定常数
$$a$$
 , b , 使得 $f(x) = \begin{cases} x^2 + ax + b, & x < 1, \\ \frac{1}{x}, & x \ge 1, \end{cases}$ 在 $x = 1$ 点处可导.

五、证明题 (每小题 7分, 共 7分)

19. 设函数u(x), v(x)均可导, 利用**导数定义**证明

$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)$$
.