Numerical Methods

Last time: defin of normed vector space $(V, ||\cdot||)$ and of convergence $x_n - s \times = s ||x_n - x|| \to 0$ Defin: A sequence x_n tending to x converges

linearly if $\exists N \in \mathbb{N}$ and 0 < (< 1) $st. ||x_{n+1} - x|| \le C ||x_n - x||$, $n \ge N$.

(In this rose, $\exists \mathcal{E} > 0$ s.t. $||x_n - x|| \leq \mathcal{E} C^n$, $n \in \mathbb{N}$.)

Note: $0 < c < 1 \Rightarrow c^n \Rightarrow 0$ as $n \Rightarrow \infty$ Exercise: explain the recessarily of $\exists N \in \mathbb{N}$ and (>0)s.t. $||x_{n+1} - x|| \leq c ||x_n - x||^2$ $||x_n + c_n|| \leq c ||x_n - x||^2$

Given $f: \mathbb{R} \to \mathbb{R}$, find $\alpha \in \mathbb{R}$ s.t. $f(\alpha) = 0$.

(an replease any equation $F(\alpha) = G(\alpha)$ in this way by setting $f(\alpha) := F(\alpha) - G(\alpha)$.)

For simple functions (e.g., low order polynamials) we might have a closed form solution. But in general we need a numerical method to generate an approximate solution.

Existence of roots?

Recall Intermediate Value Theorem:

If $f: [a,b] \to \mathbb{R}$ is continuous then f is bounded and attains its bounds, and for every $y \in \mathbb{R}$ s.t. $\min_{x \in G \cap J} f(x) \leqslant y \leqslant \max_{x \in G \cap J} f(x)$ $\exists x \in [a,b] s.t.$ f(x) = y

Corollary: If $f: [a_1b] \to \mathbb{R}$ is continuous and $f(a)f(b) \leqslant 0$ then $J \propto \in [a_1b]$ s.t. $f(\alpha) = 0$.

Proof — see notes.

Note: this gives existence but not uniqueness.

There might be mare than one root in $[a_1b]$.

This leads naturally to a numerical method:

Taylor's Theorem: Let
$$f:(a_1b) \to \mathbb{R}$$
 be k -times differentiable or (a_1b) is some kell. Then for $x_1x_0 \in (a_1b)$ with $x \neq x_0$,

$$f(x) = \sum_{j=0}^k \frac{f^{(j)}(x_0)}{j!} \frac{(x_0 - x_0)^j}{k!} + \mathbb{R}_k(x_0 + x_0) \frac{(x_0 - x_0)^j}{k!} + \mathbb{R}_k(x_0 + x_0) \frac{(x_0 - x_0)^k}{k!} = 0$$
where $\mathbb{R}_k(x_0, x_0) = 0$ $(|x_0 - x_0|^k)$ as $x \to x_0$. $(|x_0 - x_0|^k)$ as $x \to x_0$ assuming $x \neq x \neq x_0$.

If f is $(|x_0 - x_0|^k)$ as $x \to x_0$. $(|x_0 - x_0|^k)$ then $(|x_0 - x_0|^k)$ between x_0 and $x_0 = x_0$. $(|x_0 - x_0|^k)$ then $(|x_0 - x_0|^k)$ for $(|x_0 - x_0|^k)$ then $(|x_0 - x_0|^k)$ for $(|x_0 - x_0|^k)$ then $(|x_0 - x_0|^k)$ for $(|x_0 -$

Suppose we can find $\phi: [a_1b_3 - s_1R - s_1]$. $\phi(x) = x = f(x) = 0$.

Then we say $\phi(x) = x$ is a fixed point reformation of f(x) = 0.

Simple example that always holds: $\phi(x) = x - \beta f(x)$ for any $0 \neq \beta \in \mathbb{R}$.

But 6 ther choices are after possible.

Example: $f(x) = \sin 2x - 1 + 20 = 0$ Two choices are: • $\phi_1(x) = x$ where $\phi_1(x) = 1 - \sin 2x$.
• $\phi_2(x) = x$ where $\phi_2(x) = \frac{1}{2} \arcsin(1-x)$ or [0,2].

we know roots of f lie in this interval f in the f lie in this interval f in the f lie in this interval f in f lie in this interval f in f lie in this interval f lie in the f lie in the f lie in this interval f lie in the f lie in this interval f lie in this

Proof: Let $f(x) = \infty - \phi(x)$. Then since $\phi: [x, y] \rightarrow [x, y]$, $f(a) = a - \phi(a) \leqslant 0$ and $f(y) = b - \phi(b) \gtrsim 0$, so $f(a)f(b) \leqslant 0$,

and by previous corollary $\exists x \in [a,b] \text{ s.t. } f(x) = 0$, i.e. $\phi(x) = x$.

To approximate fixed points we can try the fixed point iteration: $x_{k+1} = \phi(x_k)$, $k \in \mathbb{N}_0$, given some initial guess $x_0 \in [a,b]$.

i.e. $x_0 = \phi(x_0)$, $x_0 = \phi(x_0) = \phi(\phi(x_0))$, etc.

This produces a sequence x_0, x_1, x_2, \dots which we hope conveges to a fixed point of $\phi(x)$.