Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

Alberto Bietti Julien Mairal

Inria, Grenoble

Journées SMAI-MODE 2018, Autrans

Success of deep convolutional networks

$$\min_{f \in \mathcal{F}} \underbrace{\frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i))}_{\text{empirical risk}} + \underbrace{\lambda \Omega(f)}_{\text{regularization}}$$

- Neural networks: $f(x) = W_{n+1}\sigma(W_n\sigma(W_{n-1}...\sigma(W_2\sigma(W_1x))...))$
- Convolutional structure in the linear operations W_k

Success of deep convolutional networks

Convolutional Neural Networks (CNNs):

- Capture multi-scale and compositional structure in natural signals
- Provide some invariance
- Model local stationarity
- State-of-the-art in many applications

Understanding deep convolutional representations

- Are they stable to deformations?
- How can we achieve invariance to transformation groups?
- Do they preserve signal information?
- How can we measure model complexity?

A kernel perspective

Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Non-linear function $f \in \mathcal{H}$ becomes linear: $f(x) = \langle f, \Phi(x) \rangle$
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle$

A kernel perspective

Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Non-linear function $f \in \mathcal{H}$ becomes linear: $f(x) = \langle f, \Phi(x) \rangle$
- Learning with a positive definite kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$
- CKN kernels (Mairal, 2016) satisfy:

$$f(x) = W_{n+1}\sigma(W_n\sigma(W_{n-1}...\sigma(W_2\sigma(W_1x))...)) = \langle f, \Phi(x) \rangle$$

A kernel perspective

Why? Separate learning from representation: $f(x) = \langle f, \Phi(x) \rangle$

- $\Phi(x)$: CNN **architecture** (stability, invariance, signal preservation)
- ullet f: CNN **model**, learning, generalization through RKHS norm $\|f\|$

$$|f(x) - f(x')| \le ||f|| \cdot ||\Phi(x) - \Phi(x')||$$

- ||f|| controls both stability and generalization!
 - ightarrow discriminating small deformations requires large $\|f\|$
 - \rightarrow learning stable functions is "easier"

Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

Model Complexity and Generalization

- $x_0: \Omega \to \mathcal{H}_0$: initial (**continuous**) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$

- $x_0: \Omega \to \mathcal{H}_0$: initial (**continuous**) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$
- $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$P_k x_{k-1}$$

▶ P_k : **patch extraction** operator, extract small patch of feature map x_{k-1} around each point u

- $x_0: \Omega \to \mathcal{H}_0$: initial (**continuous**) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$
- $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$M_k P_k x_{k-1}$$

- ▶ P_k : **patch extraction** operator, extract small patch of feature map x_{k-1} around each point u
- ▶ M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$

- $x_0: \Omega \to \mathcal{H}_0$: initial (**continuous**) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$
- $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}$$

- ▶ P_k : **patch extraction** operator, extract small patch of feature map x_{k-1} around each point u
- ▶ M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$
- ▶ A_k : (linear, Gaussian) **pooling** operator at scale σ_k

Patch extraction operator P_k

$$P_k x_{k-1}(u) := (v \in S_k \mapsto x_{k-1}(u+v)) \in \mathcal{P}_k = \mathcal{H}_{k-1}^{S_k}$$

Patch extraction operator P_k

$$P_k x_{k-1}(u) := (v \in S_k \mapsto x_{k-1}(u+v)) \in \mathcal{P}_k = \mathcal{H}_{k-1}^{S_k}$$

- S_k : patch shape, e.g. box
- P_k is linear, and preserves the norm: $||P_k x_{k-1}|| = ||x_{k-1}||$

Non-linear mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k (P_k x_{k-1}(u)) \in \mathcal{H}_k$$

$$M_k P_k x_{k-1} : \Omega \to \mathcal{H}_k$$

$$M_k P_k x_{k-1}(v) = \varphi_k (P_k x_{k-1}(v)) \in \mathcal{H}_k$$

$$\text{non-linear mapping}$$

$$P_k x_{k-1} : \Omega \to \mathcal{H}_{k-1}$$

Non-linear mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k (P_k x_{k-1}(u)) \in \mathcal{H}_k$$

- $\varphi_k: \mathcal{P}_k \to \mathcal{H}_k$ pointwise non-linearity on patches (kernel map)
- We assume **non-expansivity**: for $z, z' \in \mathcal{P}_k$

$$\|\varphi_k(z)\| \le \|z\|$$
 and $\|\varphi_k(z) - \varphi_k(z')\| \le \|z - z'\|$

• M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$

$$||M_k x|| \le ||x||$$
 and $||M_k x - M_k x'|| \le ||x - x'||$

Non-linear mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k (P_k x_{k-1}(u)) \in \mathcal{H}_k$$

- $\varphi_k : \mathcal{P}_k \to \mathcal{H}_k$ pointwise non-linearity on patches
- We assume: for $z, z' \in \mathcal{P}_k$

$$\|\varphi_k(z)\| \le \rho_k \|z\|$$
 and $\|\varphi_k(z) - \varphi_k(z')\| \le \rho_k \|z - z'\|$

• M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$

$$||M_k x|| \le \rho_k ||x||$$
 and $||M_k x - M_k x'|| \le \rho_k ||x - x'||$

• (can think instead: $\varphi_k(z) = \text{ReLU}(W_k z)$, ρ_k -**Lipschitz** with $\rho_k = ||W_k||$)

φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$K_k(z, z') = ||z|| ||z'|| \kappa_k \left(\frac{\langle z, z' \rangle}{||z|| ||z'||} \right) = \langle \varphi_k(z), \varphi_k(z') \rangle.$$

- $\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$
- Commonly used for hierarchical kernels
- $\|\varphi_k(z)\| = K_k(z,z)^{1/2} = \|z\|$
- $\|\varphi_k(z) \varphi_k(z')\| \le \|z z'\|$ if $\kappa'_k(1) \le 1$
- mon-expansive

φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$K_k(z, z') = ||z|| ||z'|| \kappa_k \left(\frac{\langle z, z' \rangle}{||z|| ||z'||} \right) = \langle \varphi_k(z), \varphi_k(z') \rangle.$$

- $\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$
- Commonly used for hierarchical kernels
- $\|\varphi_k(z)\| = K_k(z,z)^{1/2} = \|z\|$
- $\|\varphi_k(z) \varphi_k(z')\| \le \|z z'\|$ if $\kappa'_k(1) \le 1$
- mon-expansive
- Examples:
 - $\kappa_{\text{exp}}(\langle z, z' \rangle) = e^{\langle z, z' \rangle 1}$ (Gaussian kernel on the sphere)

 φ_k from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

φ_k from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

- Approximate $\varphi_k(z)$ by **projection** on $span(\varphi_k(z_1), \dots, \varphi_k(z_p))$ (Nystrom)
- Leads to **tractable**, *p*-dimensional representation $\psi_k(z)$
- Norm is preserved, and projection is non-expansive:

$$\|\psi_k(z) - \psi_k(z')\| = \|\Pi_k \varphi_k(z) - \Pi_k \varphi_k(z')\|$$

$$\leq \|\varphi_k(z) - \varphi_k(z')\| \leq \|z - z'\|$$

• Anchor points z_1, \ldots, z_p (\approx filters) can be **learned from data** (K-means or backprop)

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u - v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u - v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

- h_{σ_k} : pooling filter at scale σ_k
- $h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$ with h(u) Gaussian
- linear, non-expansive operator: $||A_k|| \le 1$

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

- h_{σ_k} : pooling filter at scale σ_k
- $h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$ with h(u) Gaussian
- linear, non-expansive operator: $||A_k|| \le 1$
- ullet In practice: **discretization**, sampling at resolution σ_k after pooling
- ullet Recovery with kernels possible when subsampling \leq patch size

Recap: P_k , M_k , A_k

Multilayer construction

$$x_n := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \, \cdots \, A_1 M_1 P_1 x_0 \; \in \; L^2(\Omega, \mathcal{H}_n)$$

• S_k , σ_k grow exponentially in practice (i.e. fixed with subsampling)

Multilayer construction

$$x_n := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n)$$

- S_k , σ_k grow exponentially in practice (i.e. fixed with subsampling)
- x_0 is typically a **discrete** signal aquired with physical device
 - Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator (anti-aliasing)

Multilayer construction

$$x_n := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n)$$

- S_k , σ_k grow exponentially in practice (i.e. fixed with subsampling)
- x₀ is typically a **discrete** signal aquired with physical device
 - Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator (anti-aliasing)
- Prediction layer: e.g. linear
 - $ightharpoonup f(x_0) = \langle w, x_n \rangle$
 - "linear kernel" $\mathcal{K}(x_0, x_0') = \langle x_n, x_n' \rangle = \int_{\Omega} \langle x_n(u), x_n'(u) \rangle du$

Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

Model Complexity and Generalization

Stability to deformations: definitions

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations

Stability to deformations: definitions

• Representation $\Phi(\cdot)$ is **stable** (Mallat, 2012) if:

$$\|\Phi(L_{\tau}x) - \Phi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation
- $C_2 \rightarrow 0$: translation invariance

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

• Translation: $L_c x(u) = x(u-c)$

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Translation: $L_c x(u) = x(u-c)$
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$

$$\|\Phi(L_{c}x) - \Phi(x)\| = \|L_{c}\Phi(x) - \Phi(x)\|$$

$$\leq \|L_{c}A_{n} - A_{n}\| \cdot \|x\|$$

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Translation: $L_c x(u) = x(u-c)$
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$

$$\|\Phi(L_c x) - \Phi(x)\| = \|L_c \Phi(x) - \Phi(x)\|$$

 $\leq \|L_c A_n - A_n\| \cdot \|x\|$

• Mallat (2012): $\|L_{\tau}A_n - A_n\| \leq \frac{C_2}{\sigma_n} \|\tau\|_{\infty}$

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Translation: $L_c x(u) = x(u-c)$
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$

$$\|\Phi(L_c x) - \Phi(x)\| = \|L_c \Phi(x) - \Phi(x)\|$$

 $\leq \|L_c A_n - A_n\| \cdot \|x\|$

• Mallat (2012): $||L_c A_n - A_n|| \le \frac{C_2}{\sigma_n} c$

Warmup: translation invariance

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Translation: $L_c x(u) = x(u-c)$
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$

$$\|\Phi(L_c x) - \Phi(x)\| = \|L_c \Phi(x) - \Phi(x)\|$$

 $\leq \|L_c A_n - A_n\| \cdot \|x\|$

- Mallat (2012): $||L_c A_n A_n|| \le \frac{C_2}{\sigma_n} c$
- Group invariance (e.g., rotations) with different construction
 - Group equivariance in P_k, A_k
 - ► Global pooling on the group at last layer

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

• Patch extraction P_k and pooling A_k do not commute with $L_{\tau}!$

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Patch extraction P_k and pooling A_k do not commute with $L_{\tau}!$
- $||A_k L_\tau L_\tau A_k|| \le C_1 ||\nabla \tau||_{\infty}$ (from Mallat, 2012)

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ (from Mallat, 2012)

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x.$$

- Patch extraction P_k and pooling A_k do not commute with $L_{\tau}!$
- $||[A_k, L_\tau]|| \le C_1 ||\nabla \tau||_{\infty}$ (from Mallat, 2012)
- But: $[P_k, L_\tau]$ is **unstable** at high frequencies!

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ (from Mallat, 2012)
- But: $[P_k, L_\tau]$ is **unstable** at high frequencies!
- Adapt to current layer resolution, patch size controlled by σ_{k-1} :

$$||[P_k A_{k-1}, L_{\tau}]|| \le C_{1,\kappa} ||\nabla \tau||_{\infty} \qquad \sup_{u \in S_k} |u| \le \kappa \sigma_{k-1}$$

Representation:

$$\Phi_n(x) := A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_\tau]|| \le C_1 ||\nabla \tau||_{\infty}$ (from Mallat, 2012)
- But: $[P_k, L_\tau]$ is **unstable** at high frequencies!
- Adapt to **current layer resolution**, patch size controlled by σ_{k-1} :

$$||[P_k A_{k-1}, L_{\tau}]|| \le C_{1,\kappa} ||\nabla \tau||_{\infty} \qquad \sup_{u \in S_k} |u| \le \kappa \sigma_{k-1}$$

• $C_{1,\kappa}$ grows as $\kappa^{d+1} \implies$ more stable with **small patches** (e.g., 3x3, VGG et al.)

Stability to deformations: final result

Theorem

If
$$\|\nabla \tau\|_{\infty} \leq 1/2$$
,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \leq \left(C_{1,\kappa}(n+1)\|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|$$

 Suggests several layers with small patches and subsampling for stability + signal preservation

Stability to deformations: final result

Theorem

If
$$\|\nabla \tau\|_{\infty} \leq 1/2$$
,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \leq \prod_k \rho_k \left(C_{1,\kappa} \left(\frac{n}{n} + 1 \right) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty} \right) \|x\|$$

- ullet Suggests several layers with small patches and subsampling for stability + signal preservation
- (for generic CNNs, multiply by $\prod_k \rho_k = \prod_k \|W_k\|$)

Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

Model Complexity and Generalization

RKHS of patch kernels K_k

$$K_k(z,z') = \|z\| \|z'\| \kappa \left(\frac{\langle z,z' \rangle}{\|z\| \|z'\|} \right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j$$

RKHS contains homogeneous functions:

$$f: z \mapsto ||z||\sigma(\langle g, z \rangle / ||z||)$$

Homogeneous version of (Zhang et al., 2016, 2017)

RKHS of patch kernels K_k

$$K_k(z,z') = \|z\| \|z'\| \kappa \left(\frac{\langle z,z' \rangle}{\|z\| \|z'\|} \right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j$$

RKHS contains homogeneous functions:

$$f: z \mapsto ||z|| \sigma(\langle g, z \rangle / ||z||)$$

- Smooth activations: $\sigma(u) = \sum_{j=0}^{\infty} a_j u^j$
- Norm: $\|f\|_{\mathcal{H}_k}^2 \leq C_\sigma^2(\|g\|^2) = \sum_{j=0}^\infty \frac{a_j^2}{b_j} \|g\|^2 < \infty$

Homogeneous version of (Zhang et al., 2016, 2017)

RKHS of patch kernels K_k

Examples:

- $\sigma(u) = u$ (linear): $C^2_{\sigma}(\lambda^2) = O(\lambda^2)$
- $\sigma(u) = u^p$ (polynomial): $C^2_{\sigma}(\lambda^2) = O(\lambda^{2p})$
- $\sigma \approx \sin$, sigmoid, smooth ReLU: $C_{\sigma}^{2}(\lambda^{2}) = O(e^{c\lambda^{2}})$

Constructing a CNN in the RKHS $\mathcal{H}_{\mathcal{K}}$

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- ullet "Homogeneous" activations σ
- ullet The CNN can be constructed hierarchically in ${\cal H}_{\cal K}$
- Norm:

$$||f_{\sigma}||^{2} \leq ||W_{n+1}||_{2}^{2} C_{\sigma}^{2}(||W_{n}||_{2}^{2} C_{\sigma}^{2}(||W_{n-1}||_{2}^{2} C_{\sigma}^{2}(...)))$$

Constructing a CNN in the RKHS $\mathcal{H}_{\mathcal{K}}$

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- ullet "Homogeneous" activations σ
- ullet The CNN can be constructed hierarchically in ${\cal H}_{\cal K}$
- Norm (linear layers):

$$||f_{\sigma}||^{2} \leq ||W_{n+1}||_{2}^{2} \cdot ||W_{n}||_{2}^{2} \cdot ||W_{n-1}||_{2}^{2} \dots ||W_{1}||_{2}^{2}$$

Linear layers: product of spectral norms

Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{ f \in \mathcal{H}_{\mathcal{K}}, \|f\| \leq B \} \implies \mathsf{Rad}_n(\mathcal{F}_B) \leq O\left(\frac{BR}{\sqrt{N}}\right)$$

Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{ f \in \mathcal{H}_{\mathcal{K}}, \|f\| \leq B \} \implies \mathsf{Rad}_n(\mathcal{F}_B) \leq O\left(\frac{BR}{\sqrt{N}}\right)$$

- Leads to margin bound $O(\|\hat{f}_n\|R/\gamma\sqrt{N})$ for a learned CNN \hat{f}_N with margin (confidence) $\gamma>0$
- Related to recent generalization bounds for neural networks based on **product of spectral norms** (*e.g.*, Bartlett et al., 2017)

Deep convolutional representations: conclusions

Study of generic properties

- Deformation stability with small patches, adapted to resolution
- ullet Signal preservation when subsampling \leq patch size
- Group invariance by changing patch extraction and pooling

Deep convolutional representations: conclusions

Study of generic properties

- Deformation stability with small patches, adapted to resolution
- ullet Signal preservation when subsampling \leq patch size
- Group invariance by changing patch extraction and pooling

Applies to learned models

- Same quantity ||f|| controls stability and generalization:
 - "higher capacity" is needed to discriminate small deformations
 - ► Learning is "easier" with stable functions
- Questions:
 - ► Better regularization?
 - ► How does SGD control capacity in CNNs?

Al Summer School in Grenoble! July 2-6

PAISS - https://project.inria.fr/paiss/

References I

- P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks. *arXiv preprint arXiv:1706.08498*, 2017.
- T. Cohen and M. Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning (ICML)*, 2016.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2016.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10):1331–1398, 2012.
- Y. Zhang, J. D. Lee, and M. I. Jordan. ℓ_1 -regularized neural networks are improperly learnable in polynomial time. In *International Conference on Machine Learning (ICML)*, 2016.
- Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In *International Conference on Machine Learning (ICML)*, 2017.

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

• Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if subsampling $s_k \leq \mathsf{patch}$ size

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

- Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if subsampling $s_k \leq$ patch size
- How? Kernels! Recover patches with linear functions (contained in RKHS)

$$\langle f_w, M_k P_k x(u) \rangle = f_w(P_k x(u)) = \langle w, P_k x(u) \rangle$$

Signal recovery: example in 1D

Beyond the translation group

- Global invariance to other groups? (rotations, reflections, roto-translations, ...)
- Group action $L_g x(u) = x(g^{-1}u)$
- ullet Equivariance in inner layers + (global) pooling in last layer
- Similar construction to (Cohen and Welling, 2016)

G-equivariant layer construction

- Feature maps x(u) defined on $u \in G$ (G: locally compact group)
- Patch extraction:

$$Px(u) = (x(uv))_{v \in S}$$

- Non-linear mapping: equivariant because pointwise!
- **Pooling** (μ : left-invariant Haar measure):

$$Ax(u) = \int_G x(uv)h(v)d\mu(v) = \int_G x(v)h(u^{-1}v)d\mu(v)$$

Group invariance and stability

- Stability analysis should work on "compact Lie groups" (similar to Mallat, 2012), e.g., rotations only
- For more complex groups (e.g., roto-translations):
 - ► Stability only w.r.t. subgroup (translations) is enough?
 - ► Inner layers: only pool on translation group
 - ► Last layer: global pooling on rotations
 - ► Cohen and Welling (2016): rotation pooling in inner layers hurts performance on Rotated MNIST