Applied Deep Learning with Tensorflow and PyTorch, Chapter 6

Conv layer vs Dense layer

- Conv Layer vs Dense layer Conv layers require many **fewer parameters** than fully-connected or dense layers.
- CNNs apply a local search for features while a dense layer conducts a global search for features.
- CNNs are **equivariance to translation** means translation invariance in images implies that all patches of an image will be treated in the same manner.

Cross-correlation

```
import torch
from torch import nn

def corr2d(X, K):
   h, w = K.shape
   Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
   for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
        return Y
```

Convolutional Layer in PyTorch

```
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

def forward(self, x):
    return corr2d(x, self.weight) + self.bias
```

Convolutional Layer in TF

The core computation of a two-dimensional convolutional layer is a two-dimensional cross-correlation operation. In its simplest form, this performs a cross-correlation operation on the two-dimensional input data and the kernel, and then adds a bias.

Padding

Padding can increase the height and width of the output. This is often used to give the output the same height and width as the input.

Padding in PyTorch

```
import torch
from torch import nn

def comp_conv2d(conv2d, X):
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    return Y.reshape(Y.shape[2:])

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
```

Padding in TF

```
import tensorflow as tf

def comp_conv2d(conv2d, X):
    X = tf.reshape(X, (1,) + X.shape + (1,))
    Y = conv2d(X)
    return tf.reshape(Y, Y.shape[1:3])

conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same')
X = tf.random.uniform(shape=(8, 8))
comp_conv2d(conv2d, X).shape
```

Stride

The stride can reduce the resolution of the output, for example reducing the height and width of the output to only 1/n of the height and width of the input (n is an integer greater than 1).

Stide in PyTorch

```
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
```

Stide in TF

```
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2)
comp_conv2d(conv2d, X).shape
```

Padding and stride can be used to adjust the dimensionality of the data effectively.

Pooling

Pooling in PyTorch

Pooling in TF

We can specify the padding and stride for the pooling layer.

```
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
```

The pooling layer's number of output channels is the same as the number of input channels.

Multiple Input/Output Channel

```
import torch

def corr2d_multi_in(X, K):
    return sum(corr2d(x, k) for x, k in zip(X, K))

def corr2d_multi_in_out(X, K):
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
```