

Algorithms of Scientific Computing

FFT on Real Data

Michael Bader Technical University of Munich

Summer 2022

DFT and Symmetry – Agenda

	INPUT		TRANSFORM
real symmetry	$f_n \in \mathbb{R}$	\rightarrow	Real DFT (RDFT)
even symmetry	$f_n = f_{-n}$	\rightarrow	Discrete Cosine Transform (DCT)
odd symmetry	$f_n = -f_{-n}$	\rightarrow	Discrete Sine Transform (DST)
"QUARTER-WAVE"	INPUT		TRANSFORM
even symmetry	$f_n = f_{-n-1}$	\rightarrow	QW-DCT
odd symmetry	$f_n = -f_{-n-1}$	\rightarrow	QW-DST

Real-valued DFT (RDFT)

Consider real-valued input data $f_n \in \mathbb{R}$, i.e.: $f_n^* := \overline{f_n} = f_n$, then:

$$F_{k} = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_{n} e^{-i2\pi nk/N} = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_{n} \left(\cos \left(\frac{2\pi nk}{N} \right) - i \sin \left(\frac{2\pi nk}{N} \right) \right).$$

Properties:

- Re $\{F_k\} = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_n \cos\left(\frac{2\pi nk}{N}\right)$, Im $\{F_k\} = -\frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_n \sin\left(\frac{2\pi nk}{N}\right)$
- only N independent, real coefficients necessary, since:

$$F_{k}^{*} = \frac{1}{N} \sum f_{n}^{*} \left\{ \omega_{N}^{-nk} \right\}^{*} = \frac{1}{N} \sum f_{n} \omega_{N}^{-n(-k)} = F_{-k}$$

Recall:
$$\left\{\omega_N^{-nk}\right\}^* = \left\{e^{-i2\pi_nk/N}\right\}^* = \cos(-2\pi nk/N) - i\sin(-2\pi nk/N)$$

= $\cos(2\pi nk/N) + i\sin(2\pi nk/N) = \cdots = \omega_N^{nk}$

Real DFT (2)

Map *N* values to *N* coefficients (and vice versa):

$$\begin{cases} f_{-\frac{N}{2}+1}, \dots, & f_0, & \dots, & f_{\frac{N}{2}} \end{cases}$$

$$\mathsf{DFT} \quad \Downarrow \quad \Uparrow \quad \mathsf{IDFT}$$

$$\begin{cases} F_0, \mathsf{Re}\{F_1\}, \mathsf{Im}\{F_1\}, & \dots, & \mathsf{Re}\{F_{\frac{N}{2}-1}\}, \mathsf{Im}\{F_{\frac{N}{2}-1}\}, F_{\frac{N}{2}} \end{cases}$$

Note: real and imaginary parts of F_{-k} correspond to those of F_k

Real DFT (3)

Situation:

- only *N* real input values (as all *N* imaginary parts are 0)
- only N independent, real output values (coefficient components) due to symmetry $F_{-k} = F_k^*$

Wanted → new transformation:

N real input values $\rightarrow N$ distinct real coefficient components

Hence: Insert symmetry $F_{-k} = F_k^*$ in IDFT!

Real DFT (4)

Definition of "Real discrete Fourier transform" (RDFT)

formulation 1

$$F_k = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_n \left(\cos \left(\frac{2\pi nk}{N} \right) - i \sin \left(\frac{2\pi nk}{N} \right) \right) \; , k = 0, \ldots, \frac{N}{2}$$

formulation 2

$$Re\{F_{k}\} = \frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_{n} \cos\left(\frac{2\pi nk}{N}\right), k = 0, \dots, \frac{N}{2}$$

$$Im\{F_{k}\} = -\frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_{n} \sin\left(\frac{2\pi nk}{N}\right), k = 1, \dots, \frac{N}{2} - 1$$

Inverse Real DFT

Goal: compute a real representation of the DFT (i.e., no $e^{-i2\pi nk/N}$).

We start with an input vector (Fourier coefficients) of length 2N, then:

$$f_{n} = \sum_{k=-N+1}^{N} F_{k} e^{i2\pi nk/2N}$$

$$= F_{0} + \sum_{k=1}^{N-1} \left(F_{k} e^{i2\pi nk/2N} + F_{-k} e^{-i2\pi nk/2N} \right) + F_{N} e^{i2\pi nN/2N}$$

$$= F_{0} + \sum_{k=1}^{N-1} \left(F_{k} e^{i2\pi nk/2N} + \left\{ F_{k} e^{i2\pi nk/2N} \right\}^{*} \right) + F_{N} e^{i\pi n}$$

$$= F_{0} + 2 \sum_{k=1}^{N-1} \operatorname{Re} \left\{ F_{k} e^{i2\pi nk/2N} \right\} + F_{N} e^{i\pi n}$$

$$= F_{0} + 2 \sum_{k=1}^{N-1} \left(\operatorname{Re} \{ F_{k} \} \cos \left(\frac{\pi nk}{N} \right) - \operatorname{Im} \{ F_{k} \} \sin \left(\frac{\pi nk}{N} \right) \right) + F_{N} \cos (\pi n)$$

Inverse Real DFT (2)

Set $a_k := 2 \operatorname{Re}\{F_k\}$ and $b_k := -2 \operatorname{Im}\{F_k\}$ (but $a_0 := \operatorname{Re}\{F_0\}$ and $a_N := \operatorname{Re}\{F_N\}$) to get :

$$f_n = a_0 + \sum_{k=1}^{N-1} \left(a_k \cos\left(\frac{\pi nk}{N}\right) + b_k \sin\left(\frac{\pi nk}{N}\right) \right) + a_N \cos(\pi n)$$

"Real inverse discrete Fourier transform"

Using the (real-valued) formula for F_k :

$$a_k = \frac{1}{N} \sum_{n=-N+1}^{N} f_n \cos\left(\frac{\pi nk}{N}\right), \qquad b_k = \frac{1}{N} \sum_{n=-N+1}^{N} f_n \sin\left(\frac{\pi nk}{N}\right)$$

but:
$$a_0 = \frac{1}{2N} \sum \dots$$
 and $a_N = \frac{1}{2N} \sum \dots$

Inverse Real DFT – Compare with Textbooks

Alternate (probably more frequent) notation in textbooks:

Set $a_k := 2 \operatorname{Re}\{F_k\}$ and $b_k := -2 \operatorname{Im}\{F_k\}$ to get

$$f_n = \frac{1}{2}a_0 + \sum_{k=1}^{N-1} \left(a_k \cos \left(\frac{\pi nk}{N} \right) + b_k \sin \left(\frac{\pi nk}{N} \right) \right) + \frac{1}{2}a_N \cos \left(\pi n \right)$$

Using the (real-valued) formula for F_k :

$$a_k = \frac{1}{N} \sum_{n=-N+1}^{N} f_n \cos\left(\frac{\pi nk}{N}\right), \qquad b_k = \frac{1}{N} \sum_{n=-N+1}^{N} f_n \sin\left(\frac{\pi nk}{N}\right)$$

Differences:

- no extra definition of a₀ and a_N
- but factors $\frac{1}{2}$ in formula for $f_n \to \text{not}$ as nicely related to interpolation

Real-valued Trigonometric Interpolation

Interpretation of the real DFT as an interpolation problem:

2N ansatz functions:

$$g_k(x) := \cos(kx)$$
 $k = 0,..., N$
 $h_k(x) := \sin(kx)$ $k = 1,..., N-1$

- 2N supporting points: $x_n := \frac{2\pi n}{2N} = \frac{\pi n}{N}$ $n = -N + 1, \dots, N$
- 2N interpolation conditions:

$$f_n = a_0 + \sum_{k=1}^{N-1} \left(a_k \cos\left(\frac{\pi nk}{N}\right) + b_k \sin\left(\frac{\pi nk}{N}\right) \right) + a_N \cos(\pi n)$$

(cmp. exercises)

Fast Real DFT

Computation of a real-valued DFT using complex FFT is inefficient:

- N redundant components computed (symmetry)
- complex arithmetics with lots of real/imaginary parts being 0

Possibilities to improve the efficiency:

- 1. compute two real DFTs from one complex FFT
- compute a real DFT of length 2N from one complex FFT of length N
- 3. "compact" real FFT use symmetry of the data directly in the algorithm

Two Real DFTs from one complex FFT

Idea: for real-valued g_n and h_n , compute DFT of $f_n := g_n + ih_n$:

$$F_k = \frac{1}{N} \sum_n (g_n + ih_n) \omega_N^{-nk}$$

Comparison with coefficients G_k and H_k of the two real DFTs:

$$G_k = \frac{1}{N} \sum_n g_n \omega_N^{-nk} \qquad H_k = \frac{1}{N} \sum_n h_n \omega_N^{-nk}$$

Due to linearity of the Fourier transform:

$$F_k = G_k + iH_k$$

Two Real DFTs from one complex FFT (2)

Since g_n and h_n are real data, we have the following symmetry:

$$G_k = G_{-k}^* \qquad H_k = H_{-k}^* .$$

Hence, we get for F_{-k}^* :

$$F_{-k}^* = (G_{-k} + iH_{-k})^* = (G_{-k}^* + i^*H_{-k}^*) = G_k - iH_k$$
.

Together with $F_k = G_k + iH_k$, we obtain

$$G_k = \frac{1}{2} (F_k + F_{-k}^*)$$
 and $H_k = -\frac{i}{2} (F_k - F_{-k}^*)$.

Two real DFTs from one complex FFT – Algorithm

Algorithm to compute two real DFTs:

- (1) set $f_n := g_n + ih_n$
- (2) compute F_k from FFT (using a library, e.g.)
- (3) compute G_k and H_k according to

$$G_k = \frac{1}{2} (F_k + F_{-k}^*)$$
 and $H_k = -\frac{i}{2} (F_k - F_{-k}^*)$

⇒ "half" the costs compared to using complex FFT

but: additional operations for pre- and postprocessing

Real DFT of length 2N from complex FFT of length N

Compute DFT of a real-valued vector (f_{-N+1}, \dots, f_N) :

$$F_k = \frac{1}{2N} \sum_{-N+1}^{N} f_n \omega_{2N}^{-nk}$$
 for $k = -\frac{N}{2} + 1, \dots, \frac{N}{2}$

Split up in $g_n := f_{2n}$ and $h_n := f_{2n-1}$; leads to butterfly scheme:

$$\begin{aligned} F_k &= \frac{1}{2} \left(G_k + \omega_{2N}^k H_k \right) \;, \\ F_{k\pm N} &= \frac{1}{2} \left(G_k - \omega_{2N}^k H_k \right) \end{aligned}$$

for $k = -\frac{N}{2} + 1, \dots, \frac{N}{2}$, respectively.

Real 2N-DFT from complex N-FFT

Now: compute G_k and H_k (two real DFTs) from one complex FFT \rightarrow applied to $z_n := g_n + ih_n = f_{2n} + if_{2n-1}$:

$$G_k = \frac{1}{2} \left(Z_k + Z_{-k}^* \right)$$
 and $H_k = -\frac{i}{2} \left(Z_k - Z_{-k}^* \right)$

Combine both schemes to:

$$\begin{array}{rcl} F_k & = & \frac{1}{4} Z_k \left(1 - i \omega_{2N}^k \right) + \frac{1}{4} Z_{-k}^* \left(1 + i \omega_{2N}^k \right), & k = 0, \dots, \frac{N}{2} \\ F_{k+N} & = & \frac{1}{4} Z_k \left(1 + i \omega_{2N}^k \right) + \frac{1}{4} Z_{-k}^* \left(1 - i \omega_{2N}^k \right), & k = -\frac{N}{2} + 1, \dots, 0 \end{array}$$

Real 2N-DFT from complex N-FFT – Algorithm

Algorithm for a real 2N-DFT:

- (1) set $z_n := f_{2n} + if_{2n-1}$
- (2) compute Z_k from FFT applied on z_n (using a library, e.g.)
- (3) compute F_k according to

$$F_{k} = \frac{1}{4} Z_{k} \left(1 - i \omega_{2N}^{k} \right) + \frac{1}{4} Z_{-k}^{*} \left(1 + i \omega_{2N}^{k} \right), \qquad k = 0, \dots, \frac{N}{2}$$

$$F_{k+N} = \frac{1}{4} Z_{k} \left(1 + i \omega_{2N}^{k} \right) + \frac{1}{4} Z_{-k}^{*} \left(1 - i \omega_{2N}^{k} \right), \qquad k = -\frac{N}{2} + 1, \dots, 0$$

⇒ Complexity determined by complex N-FFT

plus: additional operations for pre- and postprocessing

Compact Real FFT

Compute DFT of a real-valued vector (f_{-N+1}, \dots, f_N) :

$$F_k = \frac{1}{2N} \sum_{-N+1}^{N} f_n \omega_{2N}^{-nk}$$
 for $k = 0, ..., N$

Split up in $g_n := f_{2n}$ and $h_n := f_{2n-1}$; leads to butterfly scheme:

$$egin{array}{lcl} F_k & = & rac{1}{2} \left(G_k + \omega_{2N}^k H_k
ight) & & ext{for } k = 0, \dots, rac{N}{2} \; , \\ F_{k+N} & = & rac{1}{2} \left(G_k - \omega_{2N}^k H_k
ight) & & ext{for } k = -rac{N}{2} + 1, \dots, 0 \; \; . \end{array}$$

 G_k and H_k are coefficients of a real-valued DFT of length N; hence:

$$G_k = G_{-k}^*$$
 and $H_k = H_{-k}^*$ for $k = 0, ..., \frac{N}{2} - 1$

Compact Real-valued FFT (2)

Use symmetry of G_k and H_k for the computation of F_k :

$$\begin{array}{rcl} F_k & = & \frac{1}{2} \left(G_k + \omega_{2N}^k H_k \right) & \text{ für } k = 0, \dots, \frac{N}{2} \; , \\ F_{N-k} & = & \frac{1}{2} \left(G_{-k} - \omega_{2N}^{-k} H_{-k} \right) \\ & = & \frac{1}{2} \left(G_k - \omega_{2N}^k H_k \right)^* & \text{ for } k = 0, \dots, \frac{N}{2} - 1 \end{array}$$

 \Rightarrow Computation of F_k (for $k=0,\ldots,N$) reduced to the computation of G_k and H_k (for $k=0,\ldots,\frac{N}{2}$, respectively).

"Edson's algorithm" (1968)