

Case 1 Consumption Prediction of a detached Residential building

Dataset – Pecan Street Dataport

DATAPORT FROM PECAN STREET

- Location: Austin, Texas
- Time-stamped data including:
- Aggregate consumption
- Appliance-by-appliance consumptions including Air conditioner
- Ambient temperature
- Time-stamped PV generation from buildings: represents solar irradiation

Air conditioner disaggregation results

Correlation investigation and feature selection

Correlation investigation and feature selection

Preprocessing: Features Selection

 $Energy\ consumed(t) = F(Date\ time(t), Hour(t), Temperature(t), IRR(t), RH(t))$

Question:

What other independent variables affect Energy consumed by an Air conditioner?

- 1. Identifying set of all features >> Domain knowledge
- 2. Selecting the best subset >> Correlation (Person, Spearman)
- 3. Learning algorithm >> Performance of the model

A Rapid Introduction to Machine Learning*

*Important Note: This introduction is a simplified presentation directly extracted from

Andrew Ng's Stanford ML course

What is Machine Learning ???

Simple informal Definition (Arthur Samuel)

- ✓ the field of study that gives computers the ability to learn without being explicitly programmed
- **A more accurate definition (Tom Mitchel)**
- ✓ A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- **■** Example: playing checkers.
- \checkmark E = the experience of playing many games of checkers, T = the task of playing checkers.
- \checkmark P = the probability that the program will win the next game.

- Main Machine Learning Categories
- Supervised Learning
- Unsupervised Learning

Machine Learning Categories

Supervised Learning

✓ in supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output. Supervised learning problems are categorized into :

> Regression

- ✓ In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function.
- Example: Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output

Classification

- ✓ In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
- Example: given a picture of tumour we would like to decide whether it is malignant or benign

Machine Learning Categories

Unsupervised learning

- ✓ Unsupervised learning, allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
- ✓ We can derive this structure by clustering the data based on relationships among the variables in the data.
- ✓ With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you.
- Example: (Clustering) Take a collection of 1000 essays written on the US Economy, and find a way to automatically group these essays into a small number that are somehow similar or related by different variables, such as word frequency, sentence length, page count, and so on.

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000	's (y)
-> 2104	460	
1416	232	m= 4:
> 1534	315	
852	178	
•••		J
	~	

Notation:

$$\begin{array}{c} (1) \\ (2) \\ (2) \\ (3) \\ (4) \\$$

How do we represent *h* ?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 \times Shurthard: h(x)$$

Linear regression with one variable. Univariate linear regression.

_	•	•			
11	rai	nı	ng	•	e t
	aı		טיי	,	CL

)'s (y)	Price (\$) in 1000	Size in feet ² (x)
)	460	2104
h M= 47	232	1416
	315	1534
1	178	852
)		

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_{i} 's: Parameters

How to choose θ_i 's ?

Linear Regression: One Variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_1 = 0.5$$

_	•	•			
11	rai	nı	ng	•	e t
	aı		טיי	,	CL

)'s (y)	Price (\$) in 1000	Size in feet ² (x)
)	460	2104
h M= 47	232	1416
	315	1534
1	178	852
)		

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_{i} 's: Parameters

How to choose θ_i 's ?

minimize
$$\frac{1}{2m} \approx \left(h_{\bullet}(x^{(i)}) - y^{(i)}\right)^2$$

$$h_{\bullet}(x^{(i)}) = 0_{\bullet} + \theta_{i}x^{(i)}$$

Idea: Choose $\underline{\theta}_0, \underline{\theta}_1$ so that $\underline{h}_{\theta}(x)$ is close to \underline{y} for our training examples (x,y)

Miximize
$$J(00,01)$$

 $00,01$ Lost function
Queed error faction

J(00,01) = 1 = (ho(x(1))-y(1))

Linear Regression: One Variable

$$J(heta_0, heta_1)$$
 (function of the parameters $heta_0, heta_1$)

Linear Regression: One Variable

Have some function
$$J(\theta_0,\theta_1)$$
 $\mathcal{I}(\Theta_0,\Theta_1)$ $\mathcal{I}(\Theta_0,\Theta_1)$ Want $\min_{\theta_0,\theta_1}J(\theta_0,\theta_1)$ $\max_{\Theta_0,\theta_1}\mathcal{I}(\Theta_0,\dots,\Theta_n)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0$, $\Theta_1 = 0$)
- Keep changing $\underline{\theta}_0,\underline{\theta}_1$ to reduce $\underline{J}(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm
$$\frac{\Im}{\partial \phi_0}\Im(\phi_0,\phi_1)$$
 repeat until convergence $\{$
$$\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta(x^{(i)})-y^{(i)}\right)$$
 update
$$\theta_0 \text{ and } \theta_1$$

$$\theta_1:=\theta_1-\alpha\frac{1}{m}\sum_{i=1}^m\left(h_\theta(x^{(i)})-y^{(i)}\right)\cdot x^{(i)}$$
 simultaneously $\{$

Linear Regression: One Variable

Linear Regression: One Variable

$J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
× 1	×s	×3	**	9	
2104	5	1	45	460	
-> 1416	3	2	40	232 - m= 47	
1534	3	2	30	315	
852	2	1	36	178	
•••		•••			
Notation:	*	1	1	(2) = 14167	
$\rightarrow n$ = number of features $n=4$					
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\rightarrow x_i^{(i)}$ = value of feature i in i^{th} training example.					

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear Regression: Multiple Variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

Tunction:
$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\theta_0, \theta_1, \dots, \theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ (simultaneously update for every $j = 0, \dots, n$)

Linear Regression: Multiple Variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

Tunction:
$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\theta_0, \theta_1, \dots, \theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ (simultaneously update for every $j = 0, \dots, n$)

Linear Regression: Polynomial Regression

Polynomial regression

Choice of features

Linear Regression: But what if we want to try multiple non-linear features!!

$$\frac{\int_{g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})} \\
+\theta_{3}x_{1}x_{2} + \theta_{4}x_{1}^{2}x_{2} \\
+\theta_{5}x_{1}^{3}x_{2} + \overline{\theta_{6}x_{1}x_{2}^{2}} + \dots)$$

$$x_1 =$$
 size $x_2 =$ # bedrooms $x_3 =$ # floors $x_4 =$ age $x_{100} =$

Multiple non-linear features Problem!

First Solution

 \checkmark Let's have a look at what happens in the nature! \rightarrow Human brain!

The "one learning algorithm" hypothesis

Seeing with your tongue

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

Neural Network

$$\rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\rightarrow \Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to

$$\Theta^{(i)} \in \mathbb{R}^{3\times 4} | \text{layer } j+1$$
 $h_{\Theta}(\times)$

$$\Rightarrow a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$
(2)

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

ightharpoonup If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_{j}+1)$. $\varsigma_{j+1} \times (s_{j}+1)$

How to evaluate if our model works well!

Evaluating your hypothesis

Dataset:

Accuracy metrics- Mean squared error and Mean absolute error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} = rac{\sum_{i=1}^{n} |e_i|}{n}. ext{[1]}$$

Accuracy metrics- (R2)

A data set has n values marked $y_1,...,y_n$ (collectively known as y_i or as a vector $y = [y_1,...,y_n]^T$), each associated with a predicted (or modeled) value $f_1,...,f_n$ (known as f_i , or sometimes \hat{y}_i , as a vector f).

If \bar{y} is the mean of the observed data:

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

then the variability of the data set can be measured using three sums of squares formulas:

• The total sum of squares (proportional to the variance of the data):

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2,$$

• The regression sum of squares, also called the explained sum of squares:

$$SS_{ ext{reg}} = \sum_i (f_i - ar{y})^2,$$

• The sum of squares of residuals, also called the residual sum of squares:

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

The most general definition of the coefficient of determination is

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$$