О множествах точек на плоскости с целочисленными расстояниями

Н. Н. Авдеев, Е. М. Семёнов

§1. Известна следующая

ТЕОРЕМА 1. Пусть $\{M_1, M_2, ...\}$ — счётное множество точек на плоскости и расстояние $|M_i, M_j| \in \mathbb{N}$ для всех $1 \le i < j < \infty$, где \mathbb{N} — множество натуральных чисел. Тогда найдется такая прямая на плоскости l, что $M_i \in l$ для всех $i \in \mathbb{N}$.

Формулировка теоремы и идея её доказательства приведены в [1], problem 29. Полное доказательство можно найти в [2]. Там же показано, что для любого $n \in \mathbb{N}$ существует такое множество $\{M_1, M_2, ..., M_n\} \subset \mathbb{R}^2$, что $|M_i, M_j| \in \mathbb{N}$ для всех $1 \leq i < j \leq n$ и $M_1, M_2, ..., M_n$ не лежат на прямой. Изучению таких подмножеств посвящена настоящая работа.

Для заданного $n \in \mathbb{N}, n \geqslant 3$ обозначим через C_n множество таких последовательностей $M_1, M_2, ..., M_n \in \mathbb{R}^2$, что $|M_i, M_j| \in \mathbb{N}$ для всех $1 \leqslant i < j \leqslant n$ и $M_1, M_2, ..., M_n$ не принадлежат никакой прямой. Положим

$$F(n) = \min_{A \in C_n} d(A),$$

где d(A) — диаметр A, т. е.

$$d(A) = \max_{x,y \in A} |x,y|.$$

Точную асимптотику последовательности F(n) найти не удалось, получены лишь верхняя и нижняя оценки и найдены F(n) для $3 \le n \le 43$.

§2. Число элементов множества A обозначим через |A|. В [2] была доказана

ЛЕММА 1. Пусть $A = (M_1, M_2, ..., M_n) \in C_n$ для некоторого $n \in \mathbb{N}$ и M_1, M_2, M_3 не принадлежат прямой. Тогда $n \leq (a+1)(b+1)+3$, где $a = |M_1, M_2|$, $b = |M_2, M_3|$.

Аналогичное утверждение справедливо, когда M_1, M_2, M_3 принадлежат некоторой прямой и M_2 лежит между M_1 и M_3 . В этом случае

$$n \le (a+1)(b+1) + 3 + d(A). \tag{1}$$

ЛЕММА 2. Пусть $m \in \mathbb{N}, m \geqslant 4$, последовательность $(M_1, M_2, ..., M_{2m^2+1})$ принадлежит C_{2m^2+1} и содержится в квадрате со стороной d. Тогда $d > \frac{1}{2}m^2$.

Доказательство. Разобьём квадрат со стороной d на m^2 квадратов со стороной $\frac{d}{m}$. Тогда по крайней мере один из маленьких квадратов содержит некоторые три точки исходной последовательности. Без ограничения общности M_1, M_2, M_3 содержатся в квадрате со стороной $\frac{d}{m}$. Поэтому $|M_1, M_2|, |M_2, M_3| \leqslant \frac{d}{m}\sqrt{2}$. В силу (1)

$$2m^2 + 1 \le \left(\frac{d}{m}\sqrt{2} + 1\right)^2 + 3 + d\sqrt{2}.$$

Положим $d = \lambda m^2$. Тогда

И

$$2m^2 + 1 \le \left(\lambda m\sqrt{2} + 1\right)^2 + 3 + \lambda m^2 \sqrt{2}$$

$$0 \leqslant \left(2\lambda^2 + \sqrt{2}\lambda - 2\right)m^2 + 2\sqrt{2}\lambda m + 3.$$

Для $m\geqslant 4$ это неравенство не выполнено, если $\lambda\leqslant \frac{1}{2}$. Поэтому $\lambda>\frac{1}{2}$ и $d>\frac{m^2}{2}$.

Работа выполнена в Воронежском университете при поддержке РНФ, грант 16-11-10125.

С Н. Н. Авдеев, Е. М. Семёнов, 1966

Обозначим через $p_i, i \in \mathbb{N}$ простые числа, начиная с 3. По теореме Чебышева ([3], теорема 325)

$$p_i \leqslant bi \ln(i+1)$$

для некоторого b>0 и всех $i\in\mathbb{N}$. Обозначим

$$A_n = \prod_{i=1}^n p_i, n \in \mathbb{N}.$$

Тогда

$$A_n \leqslant b^n n! \prod_{i=1}^n \ln(i+1)$$

и по формуле Стирлинга

$$A_n < b^n \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{n}\right) \prod_{i=1}^n \ln(i+1) \leqslant \left(\frac{bn \ln(n+1)}{e}\right)^n.$$
 (2)

ТЕОРЕМА 2. Неравенства

$$\max\left(\frac{n-5}{8},1\right) \leqslant F(n) \leqslant \left(\frac{b(1+\log_2 n)\ln(1+\log_2 n)}{e}\right)^{1+\log_2 n},$$

где b — константа из неравенств Чебышева, справедливы для всех $n \in \mathbb{N}, n \geqslant 3$.

Доказательство. Докажем сначала, что $F(2^n) < A_n$ для всех $n \in \mathbb{N}, n \geqslant 3$.

Через S обозначим множество подмножеств $\{1,2,..,n\}$ и каждому $I\in S$ поставим в соответствие числа $c_I=\prod_{c\in I}p_i, b_I=\frac{1}{2}\left(c_I-\frac{A_n}{c_I}\right)$, полагая $c_\varnothing=1$. Так как c_I и $\frac{A_n}{c_I}$ нечётны, то b_I — целые числа.

Рассмотрим подмножество точек на плоскости

$$M_I = \{(b_I, 0), I \in S\}, N = (0, \sqrt{A_n})$$
 (3)

Если $I, J \in S, I \neq J$, то $M_I \neq M_J$. Поэтому множество (3) содержит $2^n + 1$ элементов. Так как

$$|M_I, N| = \left(\frac{1}{4} \left(c_I^2 - 2A_n + \frac{A_n^2}{c_I^2}\right) + A_n\right)^{\frac{1}{2}} =$$

$$= \left(\frac{1}{4} \left(c_I^2 + 2A_n + \frac{A_n^2}{c_I^2}\right)\right)^{\frac{1}{2}} = \frac{c_I + \frac{A_n}{c_I}}{2} \in \mathbb{N},$$

то все расстояния между точками множества (3) есть целые числа. Диаметр множества (3) достигается на паре точек $M_{(1,2,...,n)}$ и M_{\varnothing} , для которых

$$|M_{(1,2,\ldots,n)}, M_{\varnothing}| = \frac{1}{2}(A_n - 1) - \frac{1}{2}(1 - A_n) = A_n - 1 < A_n.$$

Поэтому

$$F(2^n + 1) < A_n.$$

Отсюда, из (2) и монотонности F(n) вытекает, что

$$F(n) \leqslant \left(\frac{b(1+\log_2 n)\ln(1+\log_2 n)}{e}\right)^{1+\log_2 n} \tag{4}$$

для всех $n \in \mathbb{N}$.

Докажем теперь нижнюю оценку. Пусть $(M_1, M_2, ..., M_n) \in C_n$. Найдём такое $m \in \mathbb{N}$, что

$$2m^2 + 1 \le n < 2(m+1)^2 + 1$$
.

Пусть d — сторона минимального квадрата, содержащего все точки $M_i, 1 \leq i \leq m^2 + 1$. Используя монотонность последовательности F(n) и лемму 3, получаем

$$F(n) \geqslant F(2m^2 + 1) \geqslant d \geqslant \frac{1}{2}m^2 > \frac{1}{2}\left(\left(\frac{n-1}{2}\right)^{\frac{1}{2}} - 1\right)^2.$$

Простые оценки показывают, что

$$\frac{1}{2}\left(\left(\frac{n-1}{2}\right)^{\frac{1}{2}}-1\right)\geqslant \frac{n-5}{8}.$$

Для $n \geqslant 17$ отсюда вытекает, что

$$\frac{n-5}{8} < F(n).$$

Для $4 \le n < 17$ значения F(n) были вычислены на ЭВМ (см. далее).

Заметим, что подобная конструкция не позволяет получить верхнюю оценку F(n) в виде полинома. Это вызвано тем, что количество точек в множестве подобного типа (подмножество прямой и точка, на ней не лежащая) ограничено числом $p(2\mu^2)+2$, где μ — расстояние от точки до прямой,

$$p(n) = \max_{1 \leqslant k \leqslant n} D(k),$$

D(k) — количество делителей числа k (дивизор-функция Рамануджана). В [4] (формулы 198-200) показано, что p(n) растёт медленнее степенной функции.

§3. Множество точек $B = \{M_1, M_2, ..., M_n\}$ называется оптимальным, если $B \in C_n$ и d(B) = F(n). Ясно, что любое оптимальное множество определяется с точностью до движения. Пусть $B_n \in C_n$ и оптимально. Пример правильного треугольника со стороной 1 показывает, что F(3) = 1. Для нахождения оптимальных множеств и вычисления F(n) была создана программа, которую удалось реализовать на ЭВМ.

Результаты численного эксперимента.

1. Были вычислены значения F(n) для $4 \le n \le 43$.

Таблина	1.	Значения	F	(n))
$\mathbf{I} \mathbf{A} \mathbf{D}_{i} \mathbf{H} \mathbf{H} \mathbf{A}$	т.		_ \	10	,

\mathbf{n}	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{F}(\mathbf{n})$	1	4	7	8	17	21	29	40	51	63	74
\mathbf{n}	14	15	16	17	18	19	20	21	22	23	24
$\mathbf{F}(\mathbf{n})$	91	104	121	134	153	164	196	212	228	244	272
\mathbf{n}	25	26	27	28	29	30	31	32	33	34	35
$\mathbf{F}(\mathbf{n})$	288	319	332	364	396	437	464	494	524	553	578
	\mathbf{n}	36	37	38	39	40	41	42	43	44	
	F(n)	608	642	667	692	754	816	897	959	>963]

Например,

$$B_4 = \left\{ (0;0); (1;0); (4;0); \left(\frac{1}{2}; \frac{\sqrt{15}}{2}\right) \right\}$$

2. Оптимальные множества не принадлежат целочисленной решётке. Однако координаты любого множества из C_n с точностью до движения имеют вид

$$\left(\left\{\pm\frac{\sqrt{p}}{q}\right\}; \left\{\pm\frac{\sqrt{r}}{s}\right\}\right),\,$$

где $p, q, r, s \in \mathbb{N}$.

И

3. В большинстве случаев оптимальное множество с точностью до движения определяется однозначно. Тем не менее, например, для n=18 имеем два оптимальных набора:

```
\{(0;0); (153;0); (144;0); (130;0); (115;0); (111;0); \\ (104;0); (98;0); (88;0); (76;0); (66;0); (60;0); (53;0); \\ (49;0); (34;0); (20;0); (11;0); (82; \sqrt{2880})\}  \{(0;0); (153;0); (134;0); (121;0); (104;0); (98;0); \\ (93;0); (85;0); (76;0); (69;0); (65;0); (58;0); (49;0); \\ (93;0); (85;0); (76;0); (69;0); (65;0); (58;0); (49;0); \\ (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0); (93;0)
```

 $(41;0);(36;0);(30;0);(13;0);(67;\sqrt{1440})$

- 4. Для $n \geqslant 9$ оптимальное множество имеет вид, описанный в теореме 2: n-1 точек лежат на оси абсцисс с целыми координатами и одна точка не принадлежит оси абсцисс, её вторая координата иррациональна. Для меньших n эта закономерность не выполняется.
- 5. Если $31 \le n \le 42$, то $B_n \subset B_{43}$.
- 6. Время, требуемое для вычисления F(n) разработанными алгоритмами, растёт, как установлено эмпирически, не медленнее, чем n^4 . Так, нахождение F(n) для $n \le 5$ занимает менее секунды, а для вычисления F(41) при известном (вычисленном ранее) F(40) потребовалось больше суток.

Авторы благодарят проф. Ю.А. Брудного за информацию о работе [1] и ценные замечания.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

[1] D.J. Newman, A Problem Seminar, Springer – Verlag, 1982. [2] Е.М. Семенов, С.Н. Уксусов, Аналитическая геометрия на плоскости, Воронежский государственный университет, Воронеж, 2016. [3] А.А. Бухштаб, Теория чисел, М, 1966. [4] Ramanujan S., "Highly composite numbers", Proceedings of the London Mathematical Society, 2, XIV (1915).

Н. Н. Авдеев

Поступило

Bоронежский госуниверситет E-mail: avdeev@math.vsu.ru

Исправленный вариант

Е.М. Семёнов

Воронежский госуниверситет

 $E ext{-}mail: nadezhka_ssm@geophys.vsu.ru}$