Presentazione

Intro: Cos'è Open Targets Genetics?

Open Target Genetics è l'ultima release della piattaforma Open Targets: una partnership tra pubblico e privato che utilizza i dati genetici e genomici umani per l'identificazione sistematica e la prioritizzazione dei bersagli farmacologici.

Ma come lo fa questa piattaforma e perché in maniera così innovativa da risultare in una menzione in NAR?

La maggior parte delle varianti, individuate attraverso i GWAS, si trova nella parte non codificante del genoma: ciò suggerisce che tali varianti vadano ad intaccare tratti complessi, alterando l'espressione dei geni vicini, attraverso meccanismi di regolazione, e influenzando in maniera significativa le malattie studiate dai GWAS. Identificare un gene causale è difficile poiché bisogna integrare dati dai GWAS con dati di trascrittomica, proteomica ed epigenomica prendendo in considerazione un'ampia tipologia cellulare o tissutale. In assenza di un portale già esistente che consenta di rispondere sistematicamente a un'ampia gamma di domande biologiche, è stato costruito OTG sulla base della tecnologia più recente per consentire di aggiungere e sfogliare facilmente i dati.

Come funziona?

Q

Le pagine del database organizzano i risultati, ottenuti dall'applicazione di diverse pipeline, in 4 sezioni: Study, Lead Variant, Tag Vhe vediamo qui: Studio, Lead e Tag Variants e Gene. La ricerca però può essere effettuata tramite tre campi: Studio, Variante o Gene. Queste si collegano a 2 pagine interne molto importanti, che vedremo poi come sono fatte.

Ricerca per Studio

Iniziamo la ricerca a partire dallo studio per:

- Visualizzare i loci associati a un tratto nello studio selezionato
- Identificare i geni prioritari implicati funzionalmente da ciascun locus
- Visualizzare il 95% di set credibili (se disponibili) e proxy in ogni locus

Ricerca per Variante

Iniziamo la ricerca a partire dalla variante per:

- Identificare un elenco classificato di geni funzionalmente implicati dalla variante
- Visualizzare e analizzare i dati funzionali mediante i quali i geni sono assegnati a questa variante
- Visualizzare i risultati PheWAS per la variante nella biobanca britannica
- Visualizzare la struttura del collegamento intorno alla variante

O Ricerca per Gene

0

Iniziamo la ricerca a partire dal gene per:

- Identificare i loci che implicano funzionalmente un gene
- Collegarti a informazioni dettagliate sul gene e sui farmaci che lo prendono di mira
- Identificare in quali tratti questo gene può svolgere un ruolo, in base alle varianti a cui è assegnato

Parte di Aurelia sulle Pipeline

Video

Study

Cercando tramite lo studio, abbiamo per prima cosa il **Summary** con info generali (come l'ID e la grandezza dello studio).

La parte più importante però è il **Manhattan Plot**, che rappresenta i *loci associati indipendentemente* che superano il livello di significatività (la linea rossa) dei GWAS: l'asse delle x sono i **cromosomi**.

Sotto troviamo la **tabella riassuntiva**, coni dettagli completi dei locus, in cui ogni riga è una **variant lead**.

Compare Studies

Identifichiamo rapidamente i **loci sovrapposti** (possiamo selezionare anche più studi da confrontare).

I loci condivisi sono segnati in rosso e dettagliati nella tabella sottostante.

Variant

La ricerca per variante si può fare tramite il suo **Locus** oppure tramite il suo **ID Ensembl** (nome).

La prima tabella **Assigned Genes**, mi mostra quali sono i geni <u>funzionalmente implicati</u> da questa variante.

Sotto abbiamo un **plot dei PheWAS associati**, in cui ogni triangolo rappresenta l'associazione della variante a un tratto, con uno studio relativo. Infine ho due tabelle molto importanti:

- La prima mi dice quali lead variant hanno questa variante come Tag
- La seconda mi dice quali varianti tag sono associate a questa variante come lead

Gene

Sopra abbiamo sempre le informazioni, a cui subito sotto si aggiungono tutti i collegamenti al resto della piattaforma Open Target.

La prima tabella degli Studi Associati al gene è ordinata secondo lo score assegnato dalla pipeline L2G, mentre sotto l'altra tabella ci mostra quelli associati tramite la pipeline di colocalizzazione.

Entrambe associano quindi lo studio al fenotipo.

Parte di Aurelia sul video