1. Rank the following functions at ascending order; that is, find an arrangement $f1, f2, \dots, f8$ of the functions satisfying $f1 = O(f2), f2 = O(f3), \dots, f7 = O(f8)$. Briefly show your work for this problem.

The order satisfying f1 = O(f2), f2 = O(f3), \cdots , f7 = O(f8) is:

f1:1
$$=\Theta(n^{\frac{1}{\lg n}})$$

f2: $n^{\frac{1}{\lg n}}$ $=O(n)$
f3: n $=\Theta(2^{\lg n})$
f4: $2^{\lg n}$ $=O(n^2)$
f5: n^2 $=\Theta(n^2+n)$
f6: n^2+n $=O(n^{\lg \lg n})$
f7: $n^{\lg \lg n}$ $=\Theta((\lg n)^{\lg n})$
f8: $(\lg n)^{\lg n}$
or write it as:
 $1=\Theta(n^{\frac{1}{\lg n}}) < n = \Theta(2^{\lg n}) < n^2 = \Theta(n^2+n) < n^{\lg \lg n} = \Theta((\lg n)^{\lg n})$

satisfying
$$1 = O(n^{\frac{1}{\lg n}}), n^{\frac{1}{\lg n}} = O(n), n = O(2^{\lg n}), 2^{\lg n} = O(n^2), n^2 = O(n^2 + n), n^2 + n = O(n^{\lg \lg n}), n^{\lg \lg n} = O((\lg n)^{\lg n})$$

```
proof f1(n)=1 and f2(n)=n^{\frac{1}{\lg n}}:

because \log_b a = \frac{1}{\log_a b} so n^{\frac{1}{\lg n}} = n^{\log_n 2}

because a=b^{\log_b a} so n^{\frac{1}{\lg n}} = n^{\log_n 2} = 2

we have f1(n)=1 and f2(n)=2

we have c_1 = 1, c_2 = 1, n_0 = 1 satisfying 1 = < f1(n) < = f2(n)

so 1 = \Theta(n^{\frac{1}{\lg n}})

or

because \lim_{x \to \infty} \frac{f1(n)}{f2(n)} = \frac{1}{2}

so 1 = \Theta(n^{\frac{1}{\lg n}})
```

proof
$$f2(n) = n^{\frac{1}{\lg n}}$$
 and $f3(n) = n$:

because
$$\log_b a = \frac{1}{\log_a b}$$
 so $n^{\frac{1}{\lg n}} = n^{\log_n 2}$

because
$$a=b^{\log_b a}$$
 so $n^{\frac{1}{\lg n}}=n^{\log_n 2}=2$

because
$$\lim_{x\to\infty} \frac{f2(n)}{f3(n)} = \lim_{x\to\infty} \frac{2}{n} = 0$$

so
$$n^{\frac{1}{\lg n}} = O(n)$$

proof
$$f3(n)=n$$
 and $f4(n)=2^{\lg n}$:

because
$$a=b^{\log_b a}$$
 so $2^{\lg n}=n$

so
$$f3(n)=f4(n)$$
, $n=\Theta(2^{\lg n})$

proof
$$f4(n)=2^{\lg n}$$
 and $f5(n)=n^2$:

because
$$a=b^{\log_b a}$$
 so $2^{\lg n}=n$

because
$$\lim_{x\to\infty} \frac{f4(n)}{f5(n)} = \lim_{x\to\infty} \frac{n}{n^2} = \lim_{x\to\infty} \frac{1}{n} = 0$$

so
$$2^{\lg n} = O(n^2)$$

proof $f5(n)=n^2$ and $f6(n)=n^2+n$:

because we have
$$c_1 = \frac{1}{3}, c_2 = 1, n_0 = 1$$
, $n >= n_0$

$$n >= n_0 = 1 ==> n^2 + n >= n^2$$

$$n >= n_0 = 1 ==> \frac{2}{3}n >= \frac{1}{3} ==> \frac{2}{3}n^2 >= \frac{1}{3}n ==> n^2 >= \frac{1}{3}n^2 + \frac{1}{3}n ==> n^2 >= \frac{1}{3}(n^2 + n)$$

we have while
$$n_0 = 1$$
, $c_1(n^2 + n) \le n^2 \le c_2(n^2 + n)$

so
$$n^2 = \Theta(n^2 + n)$$

or

because
$$\lim_{x \to \infty} \frac{f6(n)}{f5(n)} = \lim_{x \to \infty} \frac{n^2 + n}{n^2} = \lim_{x \to \infty} (\frac{2n+1}{2n}) = \lim_{x \to \infty} (\frac{2}{2}) = 1$$

so
$$n^2 = \Theta(n^2 + n)$$

proof $f5(n)=n^2$ and $f7(n)=n^{\lg\lg n}$:

because we have $c_1 = 4, n_0 = 4$, $n >= n_0$

$$n >= n_0 = 4 ==> \lg n >= 2 ==> \lg n >= \lg 4 ==> 2* \frac{\lg 4}{\lg n} <= 2 ==> \frac{\lg 16}{\lg n} <= 2$$

$$= > \lg(\frac{\lg 16}{\lg n}) <= 1 => \lg \lg 16 - \lg \lg n <= 1 ==> 2 - \lg \lg n <= 1$$

$$= > n^{2 - \lg \lg n} <= n => \frac{n^2}{n^{\lg \lg n}} <= n => n^2 <= c_1 n^{\lg \lg n}$$

we have while $n_0 = 4$,c1=4, $0 <= n^2 <= c_1 n^{\lg \lg n}$

so
$$n^2 = O(n^{\lg \lg n})$$

proof $f7(n)=n^{\lg\lg n}$ and $f8(n)=(\lg n)^{\lg n}$:

because
$$a^{\log_b c} = c^{\log_b a}$$
 so $(\lg n)^{\lg n} = (\log_2 n)^{\log_2 n} = n^{\log_2 \log_2 n} = n^{\lg \lg n}$ so $f7(n) = f8(n)$, $n^{\lg \lg n} = \Theta((\lg n)^{\lg n})$

2. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

class: a	f1,f2	$1, n^{\frac{1}{\lg n}}$
class: n	f3,f4	$n, 2^{\lg n}$
class: p(n)	f5,f6	n^2 , $n^2 + n$
class: $(\lg n)^{\lg n}$	f7,f8	$n^{\lg\lg n}$, $(\lg n)^{\lg n}$