CS6476 - Office Hours

Matthew Houston 2017-09-20

Agenda

- Hough Transform (once more)
- Exploring Problem Set 3 Techniques
- Important Linear Algebra Functions
- Open Questions

Hough Transform (once more)

- What's the point of problem set 2?

Hough algorithms have been used for over 40 years in computer vision systems

Hough, P.V.C. **Method and means for recognizing complex patterns**, U.S. Patent 3,069,654, Dec. 18, 1962

Garcia-Garrido, M.A. Sotelo, M.A. Martin-Gorostiza E. **Fast traffic sign detection and recognition under changing lighting conditions.** IEEE Intelligent Transportation Systems Conference. 2006

- From problem set 2 we expect students to develop intuition for using hough tools and an understanding of their limitations

Hough Transform (once more)

- How to get good results from Hough Circles?
 - Pay attention to the input quality (filtering is very important)
 - Remember that Hough Circles has built in Canny
 - Set parameters based on multiple input images + algorithm understanding
- Hough isn't a perfect algorithm build algorithms expecting imperfections or use a different technique (which is a nice lead-in to PS3)

Standard gray-scale conversion doesn't show many strong circles

Internal Canny doesn't identify circles on the traffic light

All circles identified by the internal canny are found – others are ignored

Exploring Problem Set 3 Techniques

Images shown (not in order):
Original, Harris,
Minimum Eigenvalue,
Template Matching, Canny

Useful Linear Algebra Functions

- np.linalg.solve: solves systems of equations where the number of equations

matches the number of unknowns

- np.linalg.lstsq: finds least squares solutions to systems of equations

- np.linalg.svd: performs the singular value decomposition

- np.dot: multiplies two matrices

- Finally a common optimization opportunity...
 - If A is a matrix and I have a series of column vectors (x1, x2, x3) which I would like to multiply by A then these two code blocks are equivalent