

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ	
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

Анализ и оптимиз систем обработки		
Студент <u>ИУ5-35Б</u> (Группа)	(Подпись, дата)	Т.М. Шакиров (И.О.Фамилия)
Руководитель курсовой работы	(Подпись, дата)	<u>Г.И. Афанасьев</u> (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ Заведующий кафедрой ИУ5
	Заведующий кафедрой
на выполнение	А Н И Е курсовой работы
по дисциплине <u>Архитектура автоматизировані</u> Студент группы <u>ИУ5-35Б</u>	ных систем обработки информации и управления
	ур Маратович имя, отчество) втоматизированных систем обработки информации и
Направленность КР (учебная, исследовательская, <u>УЧЕБНАЯ</u> Источник тематики (кафедра, предприятие, НИР)	
График выполнения работы: 25% к <u>3</u> нед., 50%	к <u>9</u> нед., 75% к <u>12</u> нед., 100% к <u>15</u> нед.
мационно-логический граф системы. Провести де	ки графа системы. Упорядочить по уровням инфоркомпозицию топологической структуры системы. ы. Определить структурно-топологические характе-
Оформление курсовой работы: Расчетно-пояснительная записка на <u>31</u> листах	к формата А4.
Дата выдачи задания « <u>04</u> » <u>сентября</u>	_ 2023 г.
Руководитель курсовой работы Студент	Г.И. Афанасьев (Подпись, дата) (И.О.Фамилия) Т.М. Шакиров (Подпись, дата) (И.О.Фамилия)

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на

кафедре.

Содержание	
Задача №1	4
1.1 Представление системы с помощью матрицы смежности	5
1.2 Представление системы с помощью матрицы инциденций	6
1.3 Множественное представление системы	7
1.4 Определение цепи, пути, цикла и контура в заданной системе	7
1.5 Степень вершин и полустепени исхода и захода	8
Задача №2	9
2.1 Решение с помощью алгоритма упорядочивания	10
2.2 Решение задачи с помощью матрицы инциденций	15
Задача № 3	16
3.1 Определение сильносвязанных графов	17
Задача № 4	19
4.1 Матрица смежности А:	20
4.2 Исследование информационного графа	23
4.3 Общий вывод:	27
Задача №5	27
5.1 Условие связанности всех элементов в структуре	28
5.2 Структурная избыточность R	29
5.3 Среднеквадратичное отклонение ε^2	
5.4 Структурная компактность	29
5.5 Степень централизации в структуре ү	30
5.6 Вывол	30

Задача №1

Формулировка задачи:

Разработать формализованное представление системы. Формализованное представление включает в себя: представление системы с помощью графа, матрицы смежности, матрицы инциденций, множественное представление. Выделить цепи, пути циклы, контура; вычислить степени вершин, полустепени исходов и заходов. Если какие-то элементы отсутствуют, то написать, что их нет.

Решение задачи:

Представление системы с помощью графа.

Рассматриваемая система в виде графа:

Puc. 1

1.1 Представление системы с помощью матрицы смежности

Для ориентированного графа, представляемого на рис. 1 составим матрицу смежности $\|a_{ij}\|$, $i,j=\overline{1,n}$, где n-число вершин графа. Она представлена в таблице 1. Таблица 1.

j	1	2	3	4	5	6	7	8	9	10
1		1	1							
2								1		
3				1	1					
4					1					
5						1				
6	1	1						1		
7					1					
8							1		1	
9										1
10	1	1								

Puc. 1.1

1.2 Представление системы с помощью матрицы инциденций

Для графа, представленного на рис.1.1 матрица инциденций $\|b_{ij}\|$, $i=\overline{1,n}$, $j=\overline{1,m}$, где n- число вершин, m- число рёбер, выглядит следующим образом:

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1				-1	-1	1									
2							-1	-1	-1	1						
3	-1	1		1												
4		-1	1													
5			-1	-1							1	-1				
6					1			1			-1		1			
7												1		-1		
8										-1			-1	1	1	
9															-1	1

_										
	10			1		1				-1

1.3 Множественное представление системы

Множество правых инциденций для рассматриваемой структуры:

- G(1) = (2, 3)
- G(2) = (8)
- G(3) = (4, 5)
- G(4) = (5)
- G(5) = (6)
- G(6) = (1, 2, 8)
- G(7) = (5)
- G(8) = (7, 9)
- G(9) = (10)
- G(10) = (1, 2)

Множество левых инциденций для рассматриваемой структуры:

- $G(1)^{-1} = (6, 10)$
- $G(2)^{-1} = (1, 6, 10)$
- $G(3)^{-1} = (1)$
- $G(4)^{-1} = (3)$
- $G(5)^{-1} = (3, 4, 7)$
- $G(6)^{-1} = (5)$
- $G(7)^{-1} = (8)$
- $G(8)^{-1} = (2, 6)$
- $G(9)^{-1} = (8)$
- $G(10)^{-1} = (9)$

1.4 Определение цепи, пути, цикла и контура в заданной системе

Понятия *цепь* и *цикл* обычно используются для описания неориентированных графов, а мы имеем ориентированный граф, поэтому представим, что граф на рис. 1.1 является неориентированным.

№ вершины	Цепь	Цикл
1	(1, 2, 10)	(1, 3, 5, 6, 1)

2	(2, 8, 6, 5)	(2, 10, 9, 8, 2)
3	(3, 5, 7)	(3, 5, 4, 3)
4	(4, 3, 1, 2)	(4, 5, 6, 1, 3, 4)
5	(5, 7, 8, 9)	(5, 3, 1, 2, 6, 5)
6	(6, 8, 2, 10)	(6, 2, 10, 1, 6)
7	(7, 8, 9, 10)	(7, 5, 3, 1, 6, 8, 7)
8	(8, 6, 5, 4)	(8, 9, 10, 2, 6, 8)
9	(9, 10, 1, 6)	(9, 10, 2, 6, 8, 9)
10	(10, 1, 6, 5)	(10, 2, 1, 10)

Рассмотрим *пути* и контура графа на рис. 1.1, считая граф ориентированным.

№ вершины	Путь	Контур
1	(1, 2, 8, 7)	(1, 3, 5, 6, 1)
2	(2, 8, 7, 5)	(2, 8, 9, 10, 2)
3	(3, 5, 6, 8)	(3, 5, 6, 1, 3)
4	(4, 5, 6, 2)	(4, 5, 6, 1, 3, 4)
5	(5, 6, 1, 2, 8)	(5, 6, 8, 7, 5)
6	(6, 8, 9, 10, 1)	(6, 2, 8, 7, 5, 6)
7	(7, 5, 6, 1)	(7, 5, 6, 8, 7)
8	(8, 7, 5, 6, 1)	(8, 9, 10, 2, 8)
9	(9, 10, 1, 3, 4)	(9, 10, 2, 8, 9)
10	(10, 1, 2, 8, 7)	(10, 2, 8, 9,10)

1.5 Степень вершин и полустепени исхода и захода

Так как понятие степень вершин применяется только для неориентированного графа, то будем считать наш граф таковым.

$$\rho(1)=4;\ \rho(2)=4;\ \rho(3)=3;\ \rho(4)=2;\ \rho(5)=4;\ \rho(6)=4;\ \rho(7)=2;\ \rho(8)=4;\ \rho(9)=2;$$

$$\rho(10)=3.$$

Вычислим полустепени исхода и захода для графа на рис. 1.1:

$$\begin{split} &\rho^{+}(1)=2;\, \rho^{+}(2)=1;\, \rho^{+}(3)=2;\, \rho^{+}(4)=1;\, \rho^{+}(5)=1;\, \rho^{+}(6)=3;\, \rho^{+}(7)=1;\, \rho^{+}(8)=2;\, \rho^{+}(9)\\ &=1;\, \rho^{+}(10)=2. \end{split}$$

$$\begin{split} &\rho^-(1)=2; \, \rho^-(2)=3; \, \rho^-(3)=1; \, \rho^-(4)=1; \, \rho^-(5)=3; \, \rho^-(6)=1; \, \rho^-(7)=1; \, \rho^-(8)=2; \, \rho^-(9)\\ &=1; \, \rho^-(10)=1. \end{split}$$

Сумма полустепеней исхода для графа на рис. 1.1

$$\sum \rho^+(i) = 2 + 1 + 2 + 1 + 1 + 3 + 1 + 2 + 1 + 2 = 16$$

Сумма полустепеней захода для графа на рис. 1.1

$$\sum \rho^{-}(i) = 2 + 3 + 1 + 1 + 3 + 1 + 1 + 2 + 1 + 1 = 16$$

Вывод: число полустепеней исхода и захода равны и равны числу дуг в графе, считая граф ориентированным.

Полная степень вершин графа

$$m = 0.5 * \sum \rho(i) = 0.5 * (4 + 4 + 3 + 2 + 4 + 4 + 2 + 4 + 2 + 3) = 0.5 * 32 = 16$$

(верно и равно количеству рёбер в графе, считая граф ориентированным)

Задача №2

Формулировка задачи:

В результате анализа некоторой организационной системы был получен неупорядоченный граф информационно-логической взаимосвязи между задачами, рассматриваемыми в этой системе (см. рис. 2). Необходимо определить, в какой последовательности следует решать указанные задачи, решение каких задач можно начинать одновременно, сколько тактов следует хранить в памяти системы, результаты этих задач. Убедиться, что матрица смежности упорядоченного графа оказалась треугольной. Анализ исходного графа провести:

- а) с помощью алгоритма упорядочивания.
- б) с помощью матрицы инциденций.

Puc. 2

Решение задачи:

2.1 Решение с помощью алгоритма упорядочивания

Матрица смежности представлена в таблице 2.

Таблица 2.

j	1	2	3	4	5	6	7	8	9	10
1							1			1
2	1				1	1				
3				1		1				
4							1	1		
5			1							
6				1			1			
7									1	
8									1	1
9										1

10					

Составим следующую таблицу и будем заполнять её по мере исследования неупорядоченного графа с помощью алгоритма упорядочивания:

Подмножество уровня	Условия включения	Включаемые вершины	Новая нумерация
N_0	$G(i)^{-1} = \emptyset$	(2)	(1)
N_1	$G(i)^{-1} \in N_0$	(1, 5)	(2, 3)
N_2	$G(i)^{-1} \in (N_0 \cup N_1)$	(3)	(4)
N ₃	$G(i)^{-1} \in (N_0 U N_1 U N_2)$	(6)	(5)
N ₄	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3)$	(4)	(6)
N ₅	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3 \cup N_4)$	(7, 8)	(7, 8)
N_6	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3 \cup N_4 \cup N_5)$	(9)	(9)
N ₇	$G(i)^{-1} \in (N_0 \cup N_1 \cup N_2 \cup N_3 \cup N_4 \cup U \cup N_5 \cup N_6)$	(10)	(10)

Множество левых инциденций:

$$G(1)^{-1} = (2)$$

$$G(2)^{-1} = \emptyset$$

$$G(3)^{-1} = (5)$$

$$G(4)^{-1} = (3, 6)$$

$$G(5)^{-1} = (2)$$

$$G(6)^{-1} = (2, 3)$$

$$G(7)^{-1} = (1, 4, 6)$$

$$G(8)^{-1} = (4)$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (1, 8, 9)$$

Находим вершину нулевого уровня N_0 : 2 и удаляем её. Получаем:

$$G(1)^{-1} = \emptyset$$

$$G(3)^{-1} = (5)$$

$$G(4)^{-1} = (3, 6)$$

$$G(5)^{-1} = \emptyset$$

$$G(6)^{-1} = (3)$$

$$G(7)^{-1} = (1, 4, 6)$$

$$G(8)^{-1} = (4)$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (1, 8, 9)$$

Вершины, для которых множество левых инциденций стало пустым: 1, 5. Они являются вершинами первого уровня N_1 . Продолжаем для второго уровня N_2 . Исключаем из оставшегося множества левых инциденций вершины 1, 5.

$$G(3)^{-1} = \emptyset$$

$$G(4)^{-1} = (3, 6)$$

$$G(6)^{-1} = (3)$$

$$G(7)^{-1} = (4, 6)$$

$$G(8)^{-1} = (4)$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (8, 9)$$

Теперь множество левых инциденций стало пустым для вершины 3. Она является вершиной второго уровня N_2 . Продолжаем для уровня N_3 . Исключаем вершину 3.

$$G(4)^{-1} = (6)$$

$$G(6)^{-1} = \emptyset$$

$$G(7)^{-1} = (4, 6)$$

$$G(8)^{-1} = (4)$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (8, 9)$$

Теперь множество левых инциденций стало пустым для вершины 6. Она является вершиной третьего уровня N_3 . Продолжаем для уровня N_4 . Исключаем вершину 6.

$$G(4)^{-1} = \emptyset$$

$$G(7)^{-1} = (4)$$

$$G(8)^{-1} = (4)$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (8, 9)$$

Вершина, для которой множество левых инциденций стало пустым: 4. Она является вершиной четвёртого уровня N_4 . Продолжаем для пятого уровня N_5 . Исключаем из оставшегося множества левых инциденций вершину 4.

$$G(7)^{-1} = \emptyset$$

$$G(8)^{-1} = \emptyset$$

$$G(9)^{-1} = (7, 8)$$

$$G(10)^{-1} = (8, 9)$$

Теперь множество левых инциденций стало пустым для вершин 7, 8. Они являются вершинами пятого уровня N_5 . Продолжаем для уровня N_6 . Исключаем вершины 7, 8.

$$G(9)^{-1} = \emptyset$$

$$G(10)^{-1} = (9)$$

Вершина, для которой множество левых инциденций стало пустым: 9. Она является вершиной шестого уровня N_6 . Продолжаем для седьмого уровня N_7 . Исключаем из оставшегося множества левых инциденций вершину 9.

$$G(10)^{-1} = \emptyset$$

Следовательно, вершина 10 – вершина седьмого уровня N_7 .

Размешаем перенумерованные вершины по уровням:

Puc. 2.1

Таблица смежности для полученного упорядоченного графа:

j	1	2	3	4	5	6	7	8	9	10
1	•	1	1		1					
2		•		1						
3			•				1			1
4				•	1	1				
5					•	1	1			
6						•	1	1		
7							•		1	
8								•		1
9									•	1
10										•

Данная матрица является треугольной, что и требовалось получить.

2.2 Решение задачи с помощью матрицы инциденций

Заполним следующую таблицу на основе матрицы инциденций:

Уро-	Порядок	j																
	вычёр-		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
вень	кивания	i \																
1	2	1										1	1			-1		
0	1	2												1	1	1		
2	3	3					-1	1	1									
4	5	4			1	1		-1		-1								
1	2	5					1								-1			
3	4	6							-1	1	1			-1				
5	6	7	1			-1					-1		-1					
5	6	8		1	-1												1	
6	7	9	-1	-1														1
7	8	10										-1					-1	-1

Из матрицы инциденций вычёркиваем строки, состоящие из 0 и (+)1 и столбцы с (+)1 в вычеркнутых строках.

Порядок вычёркивания: 1 2 3 4 5 6 7 8

Соответствующие уровни: 0 1 2 3 4 5 6 7

Получившийся упорядоченный граф соответствует графу, изображённому на рис. 2.1, а его матрица смежности, соответственно, тоже является треугольной. Вывод: в начале 1-ого такта работы система должна решать задачу 2. Результат решения надо хранить в памяти системы 3 такта. В начале 2-ого такта должны

быть решены 1 и 5 задачи. Результаты их решения должны храниться в памяти 3 такта. На 3-ем такте работы система должна решать задачу 3. Результаты её решения должны хранится 2 такта. На 4-ом такте работы система должна решать

задачу 6. Её решение следует хранить 2 такта. На 5-ом такте работы система должна решать задачу 4. Её решение следует хранить 3 такт. В ходе 6-ого такта работы система должна решать задачи 7 и 8. Результаты их решения должны храниться в памяти 3 такта. В ходе 7 такта система должна решать задачу 9. Её решения хранятся 1 такт. Последней решается задача 10.

Задача № 3

Формулировка задачи:

Пусть пункты обработки информации в распределённой автоматизированной системе обмениваются данными в соответствии с графом, представленным на рис.3. Возникла необходимость в сокращении числа этих пунктов.

Puc. 3

Решение задачи:

При решении данной задачи не будет учитываться функциональная сторона анализа (т. е. производительность, надёжность и т. п.), будут учитываться только структурные свойства схемы.

3.1 Определение сильносвязанных графов

Полагая, что i = 1, определяем R(i) (достижимое множество) и Q(i) (контрдостижимое множество). Получаем (рис. 3.1):

$$R(1) = (1, 2, 3, 4, 5, 7, 8)$$

$$Q(1) = (1, 2, 3, 4, 6)$$

Тогда получаем, что множество вершин пространства, содержащего вершину 1:

$$V_1 = R(1) \cap Q(1) = (1, 2, 3, 4)$$

Puc. 3.1

Для i = 5 (рис. 3.2):

$$R(5) = (5, 7, 8)$$

$$Q(5) = (5, 6, 7, 8, 9, 10)$$

$$V_2 = R(5) \cap Q(5) = (5, 7, 8)$$

Puc. 3.2

Для i = 6 (рис. 3.3):

$$R(6) = (6, 9, 10)$$

$$Q(6) = (6, 9, 10)$$

 $V_3 = R(6) \cap Q(6) = (6, 9, 10)$

Puc. 3.3

Определяем входные и выходные связи. Поставим структурное обозначение:

Puc. 3.4

Теперь получаем сильно связанные области $V_1,\,V_2,\,V_3$:

Puc. 3.5

Задача № 4

Формулировка задачи:

Пусть схеме движения оперативной отчётности в подсистеме оперативного управления соответствует информационный граф, представленный на рис. 4. Необходимо формально выявить все свойства данного информационного графа.

Puc. 4

4.1 Матрица смежности А:

j i	1	2	3	4	5	6	7	8	9	10	σ_{i}
1				1	1	1					3
2				1	1						2
3					1	1	1			1	4
4					1			1			2
5								1	1		2
6										1	1
7						1			1	1	3
8									1		1
9										1	1
10											0
$\sigma_{\rm j}$	0	0	0	2	4	3	1	2	3	4	

Возведём матрицу смежности A в степень $\lambda = 2$, т.е. определим A^2 .

j i	1	2	3	4	5	6	7	8	9	10	$\sigma_{\rm i}$
1					1			2	1	1	5

2					1			2	1		4
3						1		1	2	2	6
4								1	2		3
5									1	1	2
6											0
7										2	2
8										1	1
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	2	1	0	6	7	7	

Возведём матрицу смежности A в степень $\lambda = 3$, т.е. определим A^3 .

j i	1	2	3	4	5	6	7	8	9	10	σ_{i}
1								1	3	1	5
2								1	3	1	5
3									1	3	4
4									1	2	3
5										1	1
6											0
7											0
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	0	0	2	8	8	

Возведем матрицу смежности A в степень $\lambda = 4$, т.е. определим A^4 .

	j	1	2	3	4	5	6	7	8	9	10	$\sigma_{\rm i}$
--	---	---	---	---	---	---	---	---	---	---	----	------------------

1									1	3	4
2									1	3	4
3										1	1
4										1	1
5											0
6											0
7											0
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	0	0	0	2	8	

Возведем матрицу смежности A в степень $\lambda = 5$, т.е. определим A^5 .

j	1	2	3	4	5	6	7	8	9	10	σ_{i}
1										1	1
2										1	1
3											0
4											0
5											0
6											0
7											0
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	0	0	0	0	2	

Возведем матрицу смежности A в степень $\lambda = 6$, т.е. определим A^6 .

j	1	2	3	4	5	6	7	8	9	10	σ_{i}
	J										

i											
1											0
2											0
3											0
4											0
5											0
6											0
7											0
8											0
9											0
10											0
$\sigma_{\rm j}$	0	0	0	0	0	0	0	0	0	0	

Матрица A^6 является нулевой. Составим систему достижимости A_{Σ} .

j i	1	2	3	4	5	6	7	8	9	10
1				1	2	1		3	5	6
2				1	2			3	5	5
3					1	2	1	1	3	7
4					1			2	3	3
5								1	2	2
6										1
7						1			1	3
8									1	1
9										1
10										
$\sigma_{\rm j}$	0	0	0	2	6	4	1	10	20	29

4.2 Исследование информационного графа

1. Определение порядка элементов:

Определим элементы нулевого порядка. Для этого полагаем, что $\pi_j = 0$ и записываем соотношения, которым должны удовлетворять элементы нулевого уровня:

$$\begin{cases} \sigma_{j} \ (\lambda=0) > 0 \\ \sigma_{j} \ (\lambda=1) = 0 \end{cases}$$
 Для A^{0} : $j=1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10$ Для A^{1} : $j=1,\,2,\,3$

Получаем, что элементы 1, 2, 3 – нулевого уровня. Это соответствует упорядоченной матрице.

Определим элементы первого порядка. Для этого полагаем, что $\pi_j = 1$ и записываем соотношения, которым должны удовлетворять элементы первого уровня:

$$\begin{cases} \sigma_{j} \ (\lambda=1)>0 \\ \sigma_{j} \ (\lambda=2)=0 \end{cases}$$
 Для A^{1} : $j=4,\,5,\,6,\,7,\,8,\,9,\,10$
Для A^{2} : $j=1,\,2,\,3,\,4,\,7$

Получаем, что элементы 4, 7 – первого уровня. Это соответствует упорядоченной матрице.

Определим элементы второго порядка. Для этого полагаем, что $\pi_j = 2$ и записываем соотношения, которым должны удовлетворять элементы второго уровня:

$$\begin{cases} \sigma_{j} \ (\lambda = 2) > 0 \\ \sigma_{j} \ (\lambda = 3) = 0 \end{cases}$$
 Для A^{2} : $j = 5, 6, 8, 9, 10$
Для A^{3} : $j = 1, 2, 3, 4, 5, 6, 7$

Получаем, что элементы 5, 6 – второго уровня. Это соответствует упорядоченной матрице.

Определим элементы третьего порядка. Для этого полагаем, что $\pi_j = 3$ и записываем соотношения, которым должны удовлетворять элементы третьего уровня:

$$\begin{cases} \sigma_j \ (\lambda = 3) > 0 \\ \sigma_j \ (\lambda = 4) = 0 \end{cases}$$

Для
$$A^3$$
: $j = 8, 9, 10$

Для
$$A^4$$
: $j = 1, 2, 3, 4, 5, 6, 7, 8$

Получаем, что элемент 8 – третьего уровня. Это соответствует нашей упорядоченной матрице.

Определим элементы четвёртого порядка. Для этого полагаем, что $\pi_j = 4$ и записываем соотношения, которым должны удовлетворять элементы четвёртого уровня:

$$\begin{cases} \sigma_j \ (\lambda = 4) > 0 \\ \sigma_j \ (\lambda = 5) = 0 \end{cases}$$

Для
$$A^4$$
: $j = 9, 10$

Для
$$A^5$$
: $j = 1, 2, 3, 4, 5, 6, 7, 8, 9$

Получаем, что элемент 9 – четвёртого уровня. Это соответствует нашей упорядоченной матрице.

Определим элементы пятого порядка. Для этого полагаем, что $\pi_j = 5$ и записываем соотношения, которым должны удовлетворять элементы пятого уровня:

$$\begin{cases} \sigma_{j} (\lambda = 5) > 0 \\ \sigma_{j} (\lambda = 6) = 0 \end{cases}$$

Для
$$A^5$$
: $j = 10$

Для
$$A^6$$
: $j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$

Получаем, что элемент 10 – пятого уровня. Это соответствует нашей упорядоченной матрице.

2. Определение "тактности" информационного графа:

Для определения "тактности" воспользуемся соотношением $N=max(\pi_j)$.

$$N = 5$$

Данная схема является пятитактной.

3. Определение контуров в анализируемом графе:

Поскольку на главных диагоналях ни одной из матриц ненулевые элементы отсутствуют, контуров в анализируемом графе нет.

4. Определение входных элементов потока:

Для этого обращаемся к матрице смежности A и выписываем из неё элементы, для которых $\sigma_i(\lambda=1)=0$.

Отсюда следует, что: j=1, 2, 3. Таким образом, элементы X_1, X_2, X_3 — **входные** элементы. Обратимся, например, к восьмому элементу матрицы смежности X_9 . Для этого элемента имеем: $\sigma_8(\lambda=1)=2$. Это означает, что для формирования элемента X_8 используется два других элемента.

5. Определение выходных элементов потока:

Обращаемся к матрице смежности A и находим строки, где $\sigma_i(\lambda = 1) = 0$. Получаем, что X_6 , X_8 , X_{10} – **выходные элементы**. Рассмотрим, к примеру, элемент X_4 . Для этого элемента имеем: $\sigma_3(\lambda = 1) = 4$. Значит, элемент X_4 используется для формирования четырёх других элементов.

6. Определение висящих вершин

Из анализа матрицы смежности следует, что ситуация, когда $[\sigma_i(\lambda=1)=$ $=\sigma_j(\lambda=1)=0$; i=j] отсутствует, следовательно, висящих вершин в нашем графе нет.

7. Определение путей длиной λ:

Пусть, например, нас интересует путь длиной 2. Тогда полагаем $\lambda = 2$ и, следовательно, обращаемся к матрице A^{λ} . Рассмотрим элемент $A_{28}(\lambda = 2) = 2$. Это означает, что между элементами X_2 и X_8 существует два пути длиной 2.

8. Определение всевозможной длины между двумя элементами:

Обратимся к матрице достижимости A_{Σ} и рассмотрим, например, элемент этой матрицы $A_{36}(\Sigma)=2$. Это означает, что между элементами X_3 и X_6 всего существует два пути различной длины. Таким образом, элемент матрицы A^{λ} указывает число путей длиной λ , а элемент матрицы A_{Σ} указывает все пути, не различая их по длине.

9. Определение номера такта, после которого в памяти системы может быть "погашен" данный элемент:

Обратимся к матрице смежности и рассмотрим, например, строчку, связанную с элементом X_2 . Она участвует в формировании элементов X_4 , X_5 . Из этой же матрицы следует, что $\pi_4 = 2$, $\pi_5 = 3$, значит $\tau_2 = 3$.

10. Определение числа тактов хранения анализируемого элемента:

Найдем число тактов хранения для 2-ого элемента. Для этого используем соотношение: $t_2 = \tau_2 - \pi_2$. Получаем $t_2 = 3 - 0 = 3$, т.е. элемент необходимо хранить 3 такта.

4.3 Общий вывод:

Рассмотрим столбцы матрицы достижимости A_{Σ} . Обратим внимание на столбцы, соответствующие выходным элементам. Одним из наиболее "загруженных" цифрами является элемент X_8 . Из этого столбца следует, что в формировании этого элемента участвуют элементы X_1 , X_2 , X_3 , X_4 , X_5 , причем элементы X_1 и X_2 трижды, а X_4 дважды. Наличие в столбце соответствующего элементу X_8 матрицы A_{Σ} большого числа элементов указывает на сложность формирования элемента X_8 , что в свою очередь указывает на необходимость содержательного экономического анализа с целью попытки упрощения данного фрагмента этого графа.

Задача №5

Формулировка задачи:

Для анализа системы, представленной в виде графа на рис. 5, необходимо оценить количественно качество структуры системы и её элементов с позиций общесистемного подхода.

 $\it Puc.~5$ Для данной структуры составим матрицу смежности A.

j i	1	2	3	4	5	6	7	8	9	10
1		1	1							
2	1		1	1						
3	1	1								
4		1			1	1				
5				1						
6				1			1			1
7						1		1		
8							1		1	1
9								1		
10						1		1		

5.1 Условие связанности всех элементов в структуре

Для неориентированных графов связность всех элементов в структуре соответствует выполнению следующего условия:

$$0,5~\Sigma\Sigma a_{ij} \geq n-1$$

 Γ де a_{ij} – элемент матрицы смежности, а n – число вершин в ней. В нашем случае имеем:

$$0.5 \cdot 22 > 9$$

Следовательно, данный граф – связный.

5.2 Структурная избыточность R

Где m — число ребер, n — число вершин. В данной структуре n=10, m=11. R = $(0.5 \Sigma a_{ii}) \cdot 1/(n-1) - 1 = m/(n-1) - 1$

В данной структуре
$$n = 10$$
, $m = 11$. $R = 11/9 - 1 = 2/9 > 0$

Поскольку R > 0, то в данной системе *присутствует структурная избыточность*.

5.3 Среднеквадратичное отклонение ε^2

Так как в системе присутствует структурная избыточность, необходимо учесть неравномерность распределения связей ε^2 . Введем обозначение: ρ_i — степень вершины — число ребер, инцидентных вершине і. Справедливо следующее соотношение:

$$m = 0.5 \Sigma(\rho_i)$$

При равномерном распределении связей все: ρ_i будут одинаковы, т.е.: $\Sigma(\rho_i)=n\rho,$ отсюда: $\rho=2m/n.$

Отклонение равно разности $(\rho_i - \overline{\rho})$. $\epsilon^2 = \Sigma (\rho_i - \rho)^2$

Или, учитывая предыдущие соотношения:

$$\epsilon^2 = \Sigma(\rho_i)^2 - 4m^2/n$$

Для данной системы:

$$\epsilon^2 = 2^2 + 3^2 + 2^2 + 3^2 + 1^2 + 3^2 + 2^2 + 3^2 + 1^2 + 2^2 - 4 \times 11^2 / 10 = 54 - 48, 4 = 5, 6$$

5.4 Структурная компактность

Пусть d_{ij} — минимальная длина пути из i-ой вершины в j-ую. Структурная компактность:

$$Q = \sum \sum d_{ij} (i \neq j)$$

Сумма всех минимальных цепей.

$$\sum d_{1j} = 1 + 3 + 1 + 5 + 3 + 6 + 4 + 2 + 4 \ (j \neq 1) = 29$$

$$\sum d_{2j} = 1 + 1 + 2 + 4 + 2 + 5 + 3 + 1 + 3 \ (j \neq 2) = 22$$

$$\sum d_{3j} = 1 + 3 + 1 + 5 + 3 + 6 + 4 + 2 + 4 \ (j \neq 3) = 29$$

$$\sum d_{4j} = 2 + 2 + 1 + 1 + 3 + 1 + 4 + 2 + 2 \ (j \neq 4) = 18$$

$$\sum d_{5j} = 3 + 3 + 2 + 2 + 4 + 5 + 3 + 1 + 3 \ (j \neq 5) = 26$$

$$\sum d_{6j} = 3 + 3 + 2 + 2 + 2 + 2 + 3 + 1 + 1 + 1 \; (j \neq 6) = 18$$

$$\sum d_{7j} = 4 + 4 + 1 + 3 + 1 + 3 + 2 + 2 + 2 \ (j \neq 7) = 22$$

$$\sum d_{8j} = 5 + 5 + 2 + 4 + 4 + 1 + 1 + 3 + 1 \ (j \neq 8) = 26$$

$$\sum d_{9i} = 6 + 6 + 3 + 5 + 1 + 5 + 2 + 4 + 2 \ (i \neq 9) = 24$$

$$\sum d_{10j} = 4 + 4 + 1 + 3 + 1 + 3 + 2 + 2 + 2 \ (j \neq 10) = 22$$

$$Q = 236$$

$$Q_{\text{oth}} = Q/Q_{\text{oth}} - 1$$

$$\Gamma$$
де $Q_{\text{отн}} = n(n-1) (Q - для полного графа) $Q_{\text{отн}} = 236/(10 \times 9) - 1 = 73/45 = 1,6(2)$$

5.5 Степень централизации в структуре у

$$\gamma = (n-1) (2z_{max} - n)/((n-2) z_{max})$$
 Где $z_{max} = Q/(2 \Sigma d_{ij})_{min}$

Подставляя числовые значения, получаем:

$$z_{\text{max}} = 236/(2 \cdot 18) = 59/9 = 6,(5)$$

$$\gamma = (9 \times (2 \times 6, (5) - 10))/(8 \times 6, (5)) = 63/118 \approx 0,5339$$

5.6 Вывод

Таким образом, мы провели рассмотрение заданной структуры и вычислили ее основные структурно-топологическое характеристики. Эти характеристики имеют следующие числовые значения:

• Структурная избыточность R = 2/9

Так как этот параметр отражает превышение общего числа связей над общим необходимым числом связей, то чем ближе он к 0, тем лучше. Следовательно, найденное значение показывает, что потенциально рассмотренная система не обладает высокой надежностью из-за относительно небольшого значения параметра R.

• Среднеквадратичное отклонение $\varepsilon^2 = 5.6$

Так как этот параметр характеризует недоиспользованные возможности заданной структуры, то чем он меньше, тем лучше. Следовательно, связи распределены неравномерно.

• Структурная компактность Q=236; Q_{отн.} =1,6(2)

Следовательно, система не обладает высокой надежностью из-за высокого значения относительного показателя структурной компактности.

- Диаметр структуры d = 6
- Степень централизации в структуре $\gamma = 0.5339$

Индекс центральности γ больше только относительно кольцевой структуры, что показывает, что связи и элементы распределены со средней равномерностью.