Application 1 Réducteur – Corrigé

Exercice 1 – Calcul de l'inertie équivalente d'un train simple

On donne un train d'engrenages simple avec Z_1 , Z_{21} , Z_{23} et Z_3 le nombre de dents des roues dentées. On nomme k_1 le rapport du train de S_1 et S_2 avec $k_1 = \frac{\omega(2/0)}{\omega(1/0)}$ et k_2 le rapport de S_2 et S_3 avec $k_2 = \frac{\omega(3/0)}{\omega(2/0)}$.

On applique en entrée, sur l'arbre 1, un couple moteur $C_m \overrightarrow{z_0}$ destiné à entraîner une charge, sur l'arbre 3, modélisée par un couple résistant $C_r \overrightarrow{z_0}$

On rappelle que pour les engrenages à denture droite d=mz avec d le diamètre primitif, m le module, z le nombre de dents du pignon. $\omega(1/0)$, $\omega(2/0)$ et $\omega(3/0)$ sont les vitesses de rotation de S_1 , S_2 et S_3 autour des axes $\left(O_1, \overrightarrow{x_g}\right)$, $\left(O_2, \overrightarrow{x_g}\right)$ et $\left(O_3, \overrightarrow{x_g}\right)$. Le repère galiléen \mathcal{R}_g est lié au solide S_0 . Les liaisons pivots sont supposées parfaites. Les moments d'inertie sont définies aux centres de masse $G_1 = O_1$, $G_2 = O_2$ et $G_3 = O_3$ associées aux solides S_1 , S_2 et S_3 suivant l'axe $\overrightarrow{z_0}$ sont de notés J_1 , J_2 et J_3 .

Le train d'engrenage est entrainé par un couple moteur C_m agissant sur la liaison pivot entre 1 et 0. Une poulie de rayon R est placée sur l'extrémité droite de l'arbre 3. Une charge de masse M y est suspendue.

Question 1 Déterminer le rapport de réduction du train d'engrenages.

Question 2 Déterminer l'inertie équivalente du réducteur seul ramené à l'axe moteur.

Question 3 Déterminer l'inertie équivalente de l'ensemble réducteur et charge ramené à l'arbre moteur.

Question 4 Déterminer la relation entre le couple d'entrée et le couple de sortie du réducteur.

Question 5 Déterminer la relation entre le couple d'entrée, les grandeurs inertielles et l'accélération de l'arbre 1.

D'après C. Gamelon & P. Dubois.

C1-05

C2-08

C2-09

