

LITEMAX LF1041

Sunlight Readable 10.4" LCD Display

(1st Edition 3/26/2004)

All information is subject to change without notice.

LITEMAX Electronics Inc.

4F, No.131-3, Lane235, Bau-chiau Rd., Shin-dian City, Taipei County, Taiwan R.O.C.

Tel: 886-2-8919-1858 Fax: 886-2-8919-1300

Homepage: http://www.litemax.com.tw

Contents:

Int	troduction and overview	Р3
Α.	Physical specifications	Р4
В.	Electrical specifications	Р5
	1. Pin assignment	Р5
	2. Absolute maximum ratings	Р6
	3. Electrical characteristics	Р7
	a. Typical operating conditions	Р7
	b. Display color v.s. input data signals	Р8
	c. Input signal timing	Р9
	d. Display position	P10
	e. Backlight driving conditions	P11
C.	Optical specifications	P12
D.	Reliability test items	P14
Ε.	Display quality	P15
F.	Handling precaution	P15
Αp	pendix:	
	Fig.1 LCM outline dimensions	P16
	Fig.2 LCM outline dimensions	P18
	Fig.3 Timing chart	P18
	Li2701 Inverter	D10

INTRODUCTION AND OVERVIEW

This is a product specification that specifies form, fit, and function of the 10.4" TFT LCD monitor and its options. The LF1041 products are a family of high bright LCD monitors intended for use in a variety of industrial and commercial applications. Some of these applications include Car TV, Kiosk, Control Panel, Fish Finder, Marine, POI, Teketing, Aviation, Advertising, Gas Pumps, Signage... The LCD panel for LF1041 has a particularly fast response time of 35ms and consequently very well suited for video applications. The LF1041 is a 10.4" active matrix TFT LCD with a native resolution of 800X600 (SVGA). It has a typical luminance of 1500 nits with a +12VDC input. The video interface is through a standard 15 pin analog input with an integrated On-Screen Display (OSD).

OUTLINE

STRUCTURE AND PRINCIPLE

LF1041 module is composed of the driver LSIs for driving the TFT (Thin Film Transistor) array with an amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure and a backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into the narrow gap between a TFT array glass substrate and a color filter glass substrate.

RGB (Red, Green, and Blue) data signals from a source system are modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn address the individual TFT cells.

Working as an electro-optical switch, each TFT cell regulates transmitted light from the backlight assembly when worked by the data source. Color images are created by regulating the amount of transmitted light through the array of red, green and blue dots.

APPLICATIONS

Car TV, Kiosk, Control Panel, Fish Finder, Marine, POI, Teketing, Aviation, Advertising, Gas Pumps, Signage...

FEATURES

- wide viewing angle
- . Fast response time
- High Contrast Ratio
- LVDS
- Wide color gamut
- . Very hight brightness
- Sunlight Readable

A. Physical specifications

NO.	Item	Specification	Remark
1	Display resolution (pixel)	800(H)×600(V)	
2	Active area (mm)	211.2(H)×158.4(V)	
3	Screen size (inch)	10.4(Diagonal)	
4	Pixel pitch (mm)	0.264(H)×0.264(V)	
5	Color configuration	R. G. B. Vertical stripe	
6	Overall dimension (mm)	243.0(W)×184.0(H)×27.2(D) (typ.)	Note 1
7	Weight (g)	680 ±10	

Note 1: Refer to Fig. 1. & 2.

B. Electrical specifications

1. Pin assignment

(1) Input signal interface

	Symbol	Function	Etc.
1	V _{CC}	+3.3 V power supply	
2	V _{CC}	+3.3 V power supply	
3	GND	Ground	
4	GND	Ground	
5	RxIN0-	LVDS receiver signal channel 0	
6	RxIN0+		
7	GND	Ground	
8	RxIN1-	LVDS receiver signal channel 1	
9	RxIN1+		
10	GND	Ground	
11	RxIN2-	LVDS receiver signal channel 2	
12	RxIN2+		
13	GND	Ground	
14	CKIN-	LVDS receiver signal clock	
15	CKIN+		
16	GND	Ground	
17	NC	No Connection	
18	NC	No Connection	
19	GND	Ground	
20	GND	Ground	

CN1 (20P) connector: HRS DF 19K-20P-1H or compatible

(2) LVDS transmitter/receiver signal mapping

	Symbol	Function			
TxIN0	R0	Red data (LSB)			
TxIN1	R1	Red data			
TxIN2	R2	Red data	6 bit rad display data		
TxIN3	R3	Red data	6 bit red display data		
TxIN4	R4	Red data			
TxIN5	R5	Red data (MSB)			
TxIN6	G0	Green data (LSB)			
TxIN7	G1	Green data			
TxIN8	G2	Green data	C hit areas display data		
TxIN9	G3	Green data	6 bit green display data		
TxIN10	G4	Green data			
TxIN11	G5	Green data (MSB)			
TxIN12	В0	Blue data (LSB)			
TxIN13	B1	Blue data			
TxIN14	B2	Blue data	C hita hiya dianlay data		
TxIN15	В3	Blue data	6 bits blue display data		
TxIN16	B4	Blue data			
TxIN17	B5	Blue data (MSB)			
TxIN18	Hs	Horizontal sync.			
TxIN19	Vs	Vertical sync.			
TxIN20	DE	Data enable			
TxCLKIN	CLK	Clock	Dot clock		

2. Absolute maximum ratings

(GND = 0 V)

Parameter	Symbol	Val	ues	Unit	Remark
i didilictor	Cymbol	Min.	Max.		Kemark
Power voltage	V _{cc}	-0.3	4	V_{DC}	At 25°℃
Input signal voltage	V_{LH}	-0.3	V _{CC} +0.3	V_{DC}	At 25°C
Operating temperature	Тор	0	+50	$^{\circ}\!\mathbb{C}$	Note 1
Storage temperature	T _{ST}	-20	+60	$^{\circ}\!\mathbb{C}$	Note 1

Note 1:The relative humidity must not exceed 90% non-condensing at temperatures of 40 $^{\circ}$ C or less. At temperatures greater than 40 $^{\circ}$ C, the wet bulb temperature must not exceed 39 $^{\circ}$ C. When operate at low temperatures, the brightness of CCFL will drop and the lifetime of CCFL will be reduced.

Note 2:The unit should not be exposed to corrosive chemicals.

3. Electrical characteristics

a. Typical operating conditions

	Item	Symbol	Min.	Тур.	Max.	Unit	Remark	
Power	Input voltage	V _{CC}	3.0	3.3	3.6	V		
supply	Current	I _A	243.7	242	245.2	mArms	Note 4	
voltage	consumption	I _B	255.4	252.1	253.5	mArms	Note 1	
	Inrush current	I _{RUSH}	-	-	1500	mApeak	Note 2	
Internal logic	Low voltage	V _{IL}	0	-	0.3 V _{CC}			
logio	High voltage	V _{IH}	0.7V _{CC}	-	V _{cc}			
Power ripple voltage		V_{RP}	-	-	100	mVp-p		

Note 1:Effective value (mArms) at $V_{CC} = 3.3 \text{ V}/25^{\circ}\text{C}$.

Note 2: Refer to the following power-on condition.

Apply the lamp voltage within the LCD operating range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal.

Caution

The above on/off sequence should be applied to avoid abnormal function in the display. In case of handling:

Make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

b. Display color v.s. input data signals

Display Color v.s. Imp				<i>.</i>			oto c	iana	I (O:	Low	lovo	I 1·	High	lovo	۱۱				
Display	colors	D.F.	D.4	- DO	D0											D 0	D0	D4	D0
	1	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2		G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
colors	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Dorle	0	0	0	0	0 1	1	0	0	0 0	0	0 0	0	0	0	0	0 0	0	0
	Dark ^	U	U	U	U	ı	0	0	0	U	U	U	U	0	U	0	U	0	U
Red																			
grayscale	V buia bt																		
	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2.00.0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1			1						1						ı			
Green grayscale	1																		
graysouro	bright																		
		0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	1									1						l			
grayscale	↓																		
	bright			I												J			
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note: Each basic color can be displayed in 64 gray scales using the 6 bit data signals. By combining the 18-bit data signals(R, G, B), the 262,144 colors can be achieved on the display.

c. Input signal timing

Timing diagrams of input signal are shown in Fig 2.

(1) Timing characteristics of input signals

(a) DE mode

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	Fck	38	40	48	MHz	
Horizontal blanking	Thb1	50	256	500	Clk	
Vertical blanking	Tvb1	10	28	150	Th	

(b) HV mode

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	Fck	38	40	48	MHz	
Hsync period	Th	850	1056	1300	Clk	
Hsync pulse width	Thw	10	128	-	Clk	
Hsync front porch	Thf	15	40	-	Clk	
Hsync back porch	Thb	10	88	-	Clk	
Hsync blanking	Thb1	50	256	500	Clk	
Vsync period	Tv	610	628	750	Th	
Vsync pulse width	Tvw	1	4	-	Th	
Vsync front porch	Tvf	0	1	-	Th	
Vsync blanking	Tvb1	10	28	150	Th	
Hsync/Vsync phase shift	Tvpd	2	320	-	Clk	

Item	Symbol	Value	Unit	Description
Horizontal display start	The	218	Clk	After falling edge of Hsync, counting 218clk, then getting valid data from 219th clk's data.
Vertical display start	Tve	25	Th	After falling edge of Vsync, counting 25th, then getting 26th Th's data.

(2) The timing condition of LVDS

Item	Symbol	Min.	Тур.	Max.	Unit
The differential level	VID	0.1	-	0.6	V
The common mode input voltage	VIC	VID 2	-	$2.4 - \frac{ VID }{2}$	V
The input setup time	tsu1	500	-	-	ps
The input hold time	th1	500	-	-	ps

d. Display position

D(1,1)	D(2,1)	 D(X,1)	 D(799,1)	D(800,1)
D(1,2)	D(2,2)	 D(X,2)	 D(799,2)	D(800,2)
:		 :	 :	:
D(1,Y)	D(2,Y)	 D(X,Y)	 D(799,Y)	D(800,Y)
:		 :	 :	:
D(1,599)	D(2,599)	 D(X,599)	 D(799,599)	D(800,599)
D(1,600)	D(2,600)	 D(X,600)	 D(799,600)	D(800,600)

e. Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp voltage	V _L	-	420	-	Vrms	Note 1
Lamp current	IL	33	36	39	mArms	Note 1
Power consumption	PL	-	25.0	-	W	Note 2
1 ((') (.,	-	-	-	Mana	T=0°C
Lamp starting voltage	Vs	-	1700	-	Vrms	T=25°C
Frequency	FL	50	55	60	KHz	Note 3
Lamp life time	LL	-	50,000	-	Hr	Note 1, 4

- Note 1: $T = 25^{\circ}C$, $I_L = 6mA/Lamp$ (Total 6 lamps)
- Note 2: Inverter should be designed with the characteristic of lamp. When you are designing the inverter, the output voltage of the inverter should comply with the following conditions.
 - (1) The area under the positive and negative cycles of the waveform of the lamp current and lamp voltage should be area symmetric (the symmetric ratio should be larger than 90%).
 - (2) There should not be any spikes in the waveform.
 - (3) The waveform should be sine wave as possible.
 - (4) Lamp current should not exceed the maximum value within the operating Temperature (It is prohibited to over the maximum lamp current even if operated in The non-guaranteed temperature). When lamp current over the maximum value for a long time, it may cause fire. Therefore, it is recommend that the inverter should have the current limited circuit.
- Note 3: Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- Note 4: Brightness (I_L=6mA/Lamp) to be decrease to the 50% of the initial value.

Note 5:

CN2~4 connector (backlight): JST BHR-03VS-1

Pin no.	Symbol	Function	Remark
1	Н	CCFL power supply (H.V.)	Cable color: Pink
2	Н	CCFL power supply (H.V.)	Cable color: Pink

Mating connector: JST SM03(4.0)B-BHS-1-TB

CN5 connector (backlight): JST BHSR-02VS-1

Pin no.	Symbol	Function	Remark
1	L	CCFL power supply (GND)	Cable color: White
2	L	CCFL power supply (GND)	Cable color: Pink

Mating connector: JST SM02B-BHSS-1-TB

C. Optical specifications (Note 1, Note 2)

phodi specimodions (Note 1, Note 2)							
Item	Symbol Condition -		Specification			I I m ! f	Remark
item	Symbol	Condition	Min.	Тур.	Max.	Unit	Kemark
Response time Rising time Falling time	Tr Tf	θ =0°		10 25	20 30	ms	Note 4
Contrast ratio	CR	θ =0°	400	500	-		Note 3,5
Viewing angle Top Bottom Left Right		CR≧10	- - -	40 60 60 60	- - -	deg.	Note 3,6
Brightness	YL	<i>θ</i> =0°	1200	1500	-	nit	Note 3,7,8,9
Color chromaticity(CIE)	Wx	θ=0°	0.290	0.320	0.350		Note 3,8,9
	Wy	0	0.300	0.330	0.360		
	Rx		TBD	TBD	TBD	=	
	Ry		TBD	TBD	TBD		
	Gx		TBD	TBD	TBD		
	Gy		TBD	TBD	TBD		
	Bx		TBD	TBD	TBD		
	Ву		TBD	TBD	TBD		
White uniformity	δw		-	-	1.3		Note 3,9,10

Note 1: Ambient temperature = 25° C.

Note 2: To be measured in dark room after backlight warm up 30 minutes.

Note 3: To be measured with a viewing cone of 1°by Topcon luminance meter BM-5A.

Note 4: Definition of response time:

The output signals of BM-7 are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time means the interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 5. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= $\frac{\text{Luminance on the white raster}}{\text{Luminance on the black raster}}$

Note 6: Definition of viewing angle:

Note 7: Definition of the 5 points (from A to E) on panel, refer to figure as below

Note 8: Definition of brightness: To measure at center point of the screen (C) (After light up 20 minutes)

Note 9: Driving conditions for CCFL: I_L=6 mA, 55KHz Frequency

Note 10: Definition of white uniformity:

 $\delta w = \frac{\text{Maximum Luminance of five points (brightness)}}{\text{Minimum Luminance of five points (brightness)}}$

D. Reliability test items (Tentative)

Test tem	Test Condition	Remark
High temperature storage	60°C, 240Hrs	Note 1, 2, 3
Low temperature storage	-20°ℂ, 240Hrs	Note 1, 2, 3
High temperature & high humidity operation	40°C, 90%RH, 240Hrs (No condensation)	Note 1, 2, 3
High temperature operation	50℃, 240Hrs	Note 1, 2, 3
Low temperature operation	0°ℂ, 240Hrs	Note 1, 2, 3
Electrostatic discharge (non-operation)	150 pF,150 Ω ,10kV,1 second, 9 position on the panel, 10 times each place	Note 3
Vibration (non-operation)	1.5G, $10H_Z \sim 200H_Z \sim 10H_Z$ 30 minutes for each Axis (X, Y, Z)	Note 1, 2, 3
Mechanical shock (non-operation)	50G/20ms, ±X, ±Y, ±Z half-Sin, one time	Note 1, 2, 3
Thermal shock (non-operation)	 -20°C±3°C30minutes 60°C±3°C30minutes 100 cycles Temperature transition time within 5 minutes 	Note 1, 2, 3

Note 1: Evaluation should be tested after storage at room temperature for one hour.

Note 2: There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Note 3: Judgement: 1. Function OK

2. No serious image quality degradation

E. Display quality

The display quality of the color TFT-LCD module should be in compliance with the Litemax's OQC inspection standard.

F. Handling precaution

The Handling of the TFT-LCD should be in compliance with the Litemax's handling principle standard.

Fig.1 LCM outline dimensions (front side)

Fig.2 LCM outline dimensions

Fig.3 Timing chart

1. ENVIRONMENT CHARACTERISTICS:

1-1. All Conditions are at 25 Ambient unless otherwise specified

1-2. Operating Temperature 0 ~~---+55

1-3. Storage Temperature -25 ----+70

1-4. Humidity Operating 95 %

1-5. Humidity Storage 95 %

2. CONNECTOR PIN ASSIGNMENT:

Input : CN4 Output : CN1,CN2,CN3

Model : 2001J-06-RT(90°) Model : SM02(8.0)B-BHS-1-TB

Supplier : ORICH

Supplier . Older						
Pin	Symbol					
1	Vin					
2	Vin					
3	ON/OFF					
4	Brt ADJ(0.0V~5.0V)					
5	GND					
6	GND					

Supplier : JST

Pin	Symbol
1	HV
2	HV

Output : CN5

Model : SM02B-BHSS-1-TB

Supplier : JST

1	RETURN				
2	RETURN				

TEST INSTRUMENT:

1. OSCILLOSCOPE: TDS380 DIGITAL REAL-TIME OSCILLOSCOPE

2. HIGH VOLTAGE PROBE : TEKTRONIX P5100 (1:100)

3. CURRENT PROBE AMPLIFIER: TEKTRONIX AM503B

4. CURRENT PROBE : TEKTRONIX A6302

5. DC POWER SUPPLY: GW GPC-3060D

6. MULTIMETER: FLUKE 45 DUAL DISPLAY

Li 2701 Inverter Page 19

3. SCOPE

3-1 This document defines the requirements for the CCFL inverter of the TFT-LCD panel. This product is compatible with **10" Six Lamp Panel.**

4. ELECTRICAL CHARACTERISTICS

4-1 INPUT Brt. ADJ=0.0V.

PARAMETER	SYMBOL	MIN.	NOM.	MAX.	UNIT	REMARK
INPUT VOLTAGE	Vin	10.8	12.0	13.2	V	
INPUT CURRENT	Iin	1450	1770	2010	mA	RL=70K *6 Vin = 12V
LAMP FREQUENCY	FL(1,2,3)	46	51	56	KHz	Vrmt=0.0V
LAWI TREQUENCT	FL(4,5,6)	46	51	56	KIIZ	V 1 1111-U.U V
OUTPUT CURRENT	Iout(1.2.3)	6.0	6.5	7.0	mA	Vrmt=0.0V
OUTFUT CORRENT	Iout(4.5.6)	6.0	6.5	7.0	ША	V 11111-0.0 V
OPEN OUTPUT VOLTAGE	Vs(1,2,3)		1500		Vrms	Vin=12V
OF EN OUTFUT VOLTAGE	Vs(4,5,6)		1500		V 11115	V 111—12 V
LAMP VOLTAGE	Vout 1,2,3		460		Vrms	Vrmt=0.0V
LAWF VOLTAGE	Vout 4,5,6		460		VIIIIS	v 11111=0.0 v

4-2 INPUT Brt. ADJ=5.0V...

PARAMETER	SYMBOL	MIN.	NOM.	MAX.	UNIT	REMARK
INPUT VOLTAGE	Vin	10.8	12.0	13.2	V	
INPUT CURRENT	Iin	640	830	1050	mA	RL=70K *6 Vin = 12V
LAMP FREQUENCY	FL(1,2,3)	46	51	56	KHz	Vrmt=5.0V
EAWII TREQUERCT	FL(4,5,6)	46	51	56	IXIIZ	V 11111-5.0 V
OUTPUT CURRENT	Iout(1,2,3)	4.0	4.5	5.0	mΛ	Vrmt=5.0V
OUTFUT CORRENT	Iout(4,5,6)	4.0	4.5	5.0	mA	V11111-3.0 V
LAMP VOLTAGE	Vout 1,2,3		310		Vrms	Vrmt=5.0V
LAWIF VOLTAGE	Vout 4,5,6		310		VIIIIS	v 1111t=5.0 v

NOTE: All Conditions are at 25 Ambient unless otherwise specified

Li2701 Inverter Page20

Li2701 Inverter Page21

Li2701 Inverter Page22