Baby Sign Language

Alex To | Aswin Thiruvengadam | Dan Ortiz | Jeffrey Laughman

Why Baby Sign Language?

Baby sign language is comprised of a series of gestures (closely related to ASL) to improve communication between babies and caregivers prior to vocal vocabulary develops. The goal is to reduce crying and tantrums by providing a medium of communication and reducing caregiver guessing.

One of the members of our team is expecting, we wanted to theme our project around babies in celebration of his new family member!

 \equiv

Project objective

Produce a deep learning model which accurately recognizes baby sign language gestures on the edge.

Problems to solve

Model Selection: Gestures have temporal dependencies and require video classifiers

Data Set: Find and generate appropriate quantity of training and test data

Edge Inference: Video inference with limitations of Jetson Nano 4G

Inference Ingestion: Converting streaming input to model requirements

Data Selection

Water

Source: babysignlanguage.com

Poop

Number of Gestures

Gestures used from proof of concept

Median Training Videos per Gesture (Source: Youtube and Home Made)

Transfer learning on model pre-trained on Kinetics-400 dataset Resized Video

224 x 224

as required by Swin-T

Model Selection Image Based

Considered Models:

- CNN (AlexNet/GoogleLeNet)
- Vision Transformer
- Shifted Window Transformer

Area of Concerns:

• May miss gestures due to still images

Video Based

Multiscale Vision Transformer

Area of Concern: Computation and memory requirements

Video Shifted Window

Selected Model

Cloud TrainingConsiderations

Swin-T model

Unwrapping the model code base

Container deployment

Wandb integration

Data source

Youtube data extraction

Data generation

Formatting to fit model

Training time

Single GPU: Tesla T4

Wall relative time: ~30mins

_

Edge InferenceConsiderations

Model Size

Memory limitation on Nano 4G

GPU Computation Limitation

Dockerized environment

GStreamer

Within container functionality

Pipeline with preprocessing

DeepStream integration

Integration

Enabling training on cloud

Jetson inference

Model Results

Top 1 accuracy scores

Training

0.94

Validation

0.94

Test

0.90

on an independent set of videos

Accuracy on test set

 $Sample \ frames \ from \ mislabeled \ clip$

(Note: not all frames were off center)

Top 1 accuracy: 90%

		Predicted label						
		all done	Water	Poop	Dad	Mom		
True	all done	2	0	0	0	0		
	Water	0	2	0	0	0		
	Poop	0	0	2	0	0		
	Dad	0	0	0	2	0		
	Mom	0	1	0	0	1		

Results: Frame rate

Model inference on the cloud and on the Jetson with a constant length video

- 1251 total frames
- Extracted at 30 FPS

* Inference time increased on the Jetson Nano when using FP16. NVIDIA recommendation is to use TensorRT on Jetson Nano for mixed precision

unlabeled

Inference on video file

VM-FP16

Xavier NX - FP16

Nano 4G - FP32

Unsure — Low probability of inference hence actual label has been removed

Inference on webcam

Xavier NX - FP16

Q: Why does labeling look slightly predictive in video?
A: Due to "lag time," we can choose to either view video in lag (as done here, at the action)) or view label in lag

Unsure Low probability of inference hence actual label has been removed

! —> Frames that were missed during inference =

Potential Future work

Further Optimization

Person signing ROI identification, Hardware acceleration/streamlining, GPU memory mapping for lower-memory edge devices (Ex: Baby Monitors)

Special Needs

Expand learning to other visual-based communication use cases (ex: Down Syndrome)

Explore AI For Good Foundation

Have received interest in further research and application for sponsored project

Resources

Original Source Material:

- Paper: https://arxiv.org/pdf/2106.13230.pdf
- Repo: https://github.com/SwinTransformer/Vide o-Swin-Transformer

Project Material:

- Paper: https://docs.google.com/document/d/1kth w4s7_fLTN83xDKdST6W69WBIf2bkFEpB yKBc-2sl/edit
- Repo: https://github.com/atox120/w251_fp

About Video Swin transformer Microsoft Research Asia

Video Swin Shifted Widow

VSWIN starts by generating non-overlapping 3D tokens (Time X Height X Width) from 32 frames. Tokens are combined into non-overlapping windows. As the model progresses through each layer/stage the window is shifted which "introduces connections between neighboring non-overlapping windows in the previous layer and is found to be effective in image classification..."

Video Swin Architecture

Below is the architecture for Video SWIN-T (tiny version) model. As the frame sets progress through the model......

Video Swin

Multi Self-Attention Head

Global attention is infeasible in video processing due to the quadratic scaling with respect to tokens. To resolve this, the VSWIN authors implement the Multi Self Attention Head with 3d Relative Position Bias.

The position information is used as an input into the MSA

Problems to solve

Model Selection: BSL signs include gestures resulting in a temporal element.

Data Set: Find and generate appropriate quantity of training and test data.

Edge Inference: Run video inference on the edge with the limitation of the 4 Gig Jetson Nano.

Inference Ingestion: How to connect the model to the streaming input.

Inference on webcam

Xavier NX - FP16

Unsure — Low probability of inference hence actual label has been removed

! → Frames that were missed during inference =

Data Selection

All Done

Model pre-trained on Kinetic 400

BSL data sources:

- 1. Youtube
- 2. Generated by team

Poop

Water

Mommy

	Water	Mom	Dad	Poop	All done
Train	37	50	45	42	46
Val	9	12	11	10	11
Test*	2	2	2	2	2

*on video clips of person not seen during training or validation

Resized Video

Source: babysignlanguage.com

224 x 224

as required by Swin-T