Package 'cTMed'

March 22, 2024
Title Continuous Time Mediation
Version 0.0.0.9000
Description Calculates standard errors and confidence intervals for the indirect effect in continuous time mediation models.
<pre>URL https://github.com/jeksterslab/cTMed,</pre>
https://jeksterslab.github.io/cTMed/
<pre>BugReports https://github.com/jeksterslab/cTMed/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
Depends R (>= $3.5.0$)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, numDeriv, parallel
Suggests knitr, rmarkdown, testthat, simStateSpace, expm
RoxygenNote 7.3.1
NeedsCompilation yes
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
R topics documented:
confint.ctmeddelta

2 confint.ctmeddelta

print.ctmedmed summary.ctmeddelta summary.ctmedmc summary.ctmedmed TestPhi TestStable Total	35 36 37 39
summary.ctmeddelta summary.ctmedmc summary.ctmedmed TestPhi	35 36 37 39
summary.ctmeddelta	35 36 37
summary.ctmeddelta	35 36
summary.ctmeddelta	35
1	
print.ctmedmed	33
print.ctmedmcphi	32
print.ctmedmc	31
print.ctmedeffect	29
print.ctmeddelta	28
PosteriorMed	26
plot.ctmedmed	25
plot.ctmedmc	24
plot.ctmeddelta	23
Med	20
MCPhi	18
MCMed	15
Indirect	12
	MCMed MCPhi Med plot.ctmeddelta plot.ctmedmc plot.ctmedmed PosteriorMed print.ctmeddelta print.ctmedeffect print.ctmedemc

confint.ctmeddelta

Delta Method Confidence Intervals

Description

Delta Method Confidence Intervals

Usage

```
## S3 method for class 'ctmeddelta'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class ctmeddelta.

parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

confint.ctmedmc 3

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = x^{*},
 to = v'',
 med = "m"
)
confint(delta)
# Range of time-intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
confint(delta)
```

confint.ctmedmc

Monte Carlo Method Confidence Intervals

Description

Monte Carlo Method Confidence Intervals

Usage

```
## S3 method for class 'ctmedmc'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object

Object of class ctmedmc.

4 confint.ctmedmc

parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a matrix of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m",
 R = 5 \ \text{\#} use a large value for R in actual research
)
confint(mc)
# Range of time-intervals -----
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m",
 R = 5 # use a large value for R in actual research
confint(mc)
```

deboeck2015

deboeck2015

Simulated Data Using Parameters from Deboeck and Preacher 2015

Description

The data was simulated using simStateSpace::SimSSMVARFixed() from a discrete-time vector autoregressive model given by

Usage

deboeck2015

Format

Dataframe with Five Columns:

id Individual ID.

time Time variable.

x X variable.

m M variable.

y Y variable.

Details

$$\mathbf{y}_{i,t} = \boldsymbol{\beta} \mathbf{y}_{i,t-1} + \boldsymbol{\varepsilon}_{i,t}$$

where $\mathbf{y}_{i,t}$ and $\mathbf{y}_{i,t+1}$ represents a vector of observed variables X, M, and Y for individual i at time t and t-1, $\varepsilon_{i,t}$ a vector of normally distributed random noise with mean vector of zero and covariance matrix $\mathbf{\Psi}$ given by

$$m{\Psi} = \left(egin{array}{ccc} 0.10 & 0 & 0 \\ 0 & 0.10 & 0 \\ 0 & 0 & 0.10 \end{array}
ight), \quad {
m and}$$

 β is a matrix of lagged parameters given by

$$\boldsymbol{\beta} = \left(\begin{array}{ccc} 0.70 & 0 & 0 \\ 0.50 & 0.60 & 0 \\ -0.10 & 0.40 & 0.50 \end{array} \right).$$

The mean vector μ_0 and covariance matrix Σ_0 of the initial condition are given by

$$\mu_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, and

$$\Sigma_0 = \left(\begin{array}{ccc} 1 & 0.20 & 0.20 \\ 0.20 & 1 & 0.20 \\ 0.20 & 0.20 & 1 \end{array}\right).$$

6 deboeck2015phi

References

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

deboeck2015phi

Drift Matrix

Description

Parameter estimates and sampling variance-covariance matrix of the continuous-time vector autore-gressive model drift matrix using the data set deboeck2015. The model was fitted using the dynr package.

Usage

deboeck2015phi

Format

List with Two Elements:

dynr Results using the dynr package.

ctsem Results using the ctsem package.

The dynr element is a list with the following elements:

phi The estimated drift matrix Φ .

vcov The estimated sampling variance-covariance matrix of $vec(\Phi)$.

The ctsem element is a list with the following elements:

posterior Posterior distribution.

posterior_phi Posterior distribution of the drift matrix Φ .

phi Posterior mean of the drift matrix Φ .

vcov Posterior variance-covariance matrix of $vec(\Phi)$.

References

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What's for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1), 91. doi:10.32614/rj2019012

DeltaMed 7

Delta Method Sampling Variance-Covariance Matrix for the Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time-Interval or a Range of Time-Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time-interval Δt or a range of time-intervals using the first-order stochastic differential equation model's drift matrix Φ .

Usage

DeltaMed(phi, vcov_phi_vec, delta_t, from, to, med, ncores = NULL)

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
vcov_phi_vec	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$.
delta_t	Vector of positive numbers. Time interval (Δt) .
from	Character string. Name of the independent variable X in phi.
_	

to Character string. Name of the dependent variable Y in phi.

The dependent variable Y in phi.

The dependent variable Y in phi.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when the length of delta_t is long.

Details

See Total(), Direct(), and Indirect() for more details.

Delta Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. By the multivariate central limit theory, the function g using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

8 DeltaMed

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{\boldsymbol{ heta}}\right) pprox \mathcal{N}\left(\mathbf{g}\left(oldsymbol{ heta}
ight), \mathbf{J}\hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight) \mathbf{J}'
ight).$$

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual t. ν denotes a vector of intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used (DeltaMed).

output A list with length of length(delta_t).

Each element in the output list has the following elements:

delta_t Time-interval.

jacobian Jacobian matrix.,

est Estimated total, direct, and indirect effects.,

vcov Sampling variance-covariance matrix of the estimated total, direct, and indirect effects.

DeltaMed 9

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: Direct(), Indirect(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestPhi(), TestStable(), Total()
```

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
DeltaMed(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
# Range of time-intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
# DeltaMed has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
```

10 Direct

plot(delta)

Direct

Direct Effect of X on Y Over a Specific Time-Interval

Description

This function computes the direct effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time-interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

Direct(phi, delta_t, from, to, med)

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.	
delta_t	Numeric. Time interval (Δt).	
from	Character string. Name of the independent variable X in phi.	
to	Character string. Name of the dependent variable Y in phi.	
med	Character vector. Name/s of the mediator variable/s in phi.	

Details

The direct effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} is given by

$$\operatorname{Direct}_{\Delta t_{i,i,\mathbf{m}}} = \exp\left(\Delta t \mathbf{D} \mathbf{\Phi} \mathbf{D}\right)_{i,i}$$

where Φ denotes the drift matrix, \mathbf{D} a diagonal matrix where the diagonal elements corresponding to mediator variables \mathbf{m} are set to zero and the rest to one, i the row index of Y in Φ , j the column index of X in Φ , and Δt the time-interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

Direct 11

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Direct").

output The direct effect.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

Other Continuous Time Mediation Functions: DeltaMed(), Indirect(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestPhi(), TestStable(), Total()

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
```

12 Indirect

```
delta_t <- 1
Direct(
  phi = phi,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m"
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
Direct(
  phi = phi,
  delta_t = delta_t,
  from = "y2",
  to = "y4",
  med = c("y1", "y3")
```

Indirect

Indirect Effect of X on Y Through M Over a Specific Time-Interval

Description

This function computes the indirect effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time-interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

```
Indirect(phi, delta_t, from, to, med)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.

Indirect 13

Details

The indirect effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} over a specific time-interval Δt is given by

where Φ denotes the drift matrix, $\mathbf{D_m}$ a matrix where the off diagonal elements are zeros and the diagonal elements are zero for the index/indices of mediator variables \mathbf{m} and one otherwise, i the row index of Y in Φ , j the column index of X in Φ , and Δt the time-interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual t. ν denotes a vector of intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i,t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i,t}, \quad ext{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}oldsymbol{\eta}_{i,t} = \left(oldsymbol{\iota} + oldsymbol{\Phi}oldsymbol{\eta}_{i,t}
ight)\mathrm{d}t + oldsymbol{\Sigma}^{rac{1}{2}}\mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d} W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Indirect").

output The indirect effect.

Author(s)

Ivan Jacob Agaloos Pesigan

14 Indirect

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

Other Continuous Time Mediation Functions: DeltaMed(), Direct(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestPhi(), TestStable(), Total()

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
Indirect(
  phi = phi,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m"
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
Indirect(
  phi = phi,
  delta_t = delta_t,
  from = "y2",
  to = "y4",
  med = c("y1", "y3")
)
```

MCMed 15

MCMed	Monte Carlo Sampling Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time-Interval or a Range
	of Time-Intervals

Description

This function generates a Monte Carlo method sampling distribution of the total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} at a particular time-interval Δt using the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$.

Usage

```
MCMed(
    phi,
    vcov_phi_vec,
    delta_t,
    from,
    to,
    med,
    R,
    test_phi = TRUE,
    ncores = NULL,
    seed = NULL
)
```

Arguments phi

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
vcov_phi_vec	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$.
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function runs TestPhi() on the generated drift matrix Φ . If the TestPhi() returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until TestPhi() returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.

Details

See Total(), Direct(), and Indirect() for more details.

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i,t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i,t}, \quad ext{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}oldsymbol{\eta}_{i,t} = \left(oldsymbol{\iota} + oldsymbol{\Phi}oldsymbol{\eta}_{i,t}
ight)\mathrm{d}t + oldsymbol{\Sigma}^{rac{1}{2}}\mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedmc which is a list with the following elements:

MCMed 17

```
call Function call.
```

args Function arguments.

fun Function used (MCMed).

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est A vector of total, direct, and indirect effects.

thetahatstar A matrix of Monte Carlo total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCPhi(), Med(), PosteriorMed(), TestPhi(), TestStable(), Total()
```

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
MCMed(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m",
 R = 5 # use a large value for R in actual research
# Range of time-intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
```

18 MCPhi

MCPhi

Generate Random Drift Matrices Using the Monte Carlo Method

Description

This function generates random drift matrices Φ using the Monte Carlo method.

Usage

```
MCPhi(phi, vcov_phi_vec, R, test_phi = TRUE, ncores = NULL, seed = NULL)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
vcov_phi_vec	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$.
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function runs TestPhi() on the generated drift matrix Φ . If the TestPhi() returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until TestPhi() returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.

Details

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

MCPhi 19

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i,t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i,t}, \quad ext{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}
ight)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\boldsymbol{\Theta}^{\frac{1}{2}}\right)\left(\boldsymbol{\Theta}^{\frac{1}{2}}\right)' = \boldsymbol{\Theta}$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i:t} = (\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i:t}) \, \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns a list of simulated drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), Med(), PosteriorMed(), TestPhi(), TestStable(), Total()

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3</pre>
```

20 Med

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
MCPhi(
  phi = phi,
  vcov_phi_vec = 0.1 * diag(9),
  R = 5
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
MCPhi(
  phi = phi,
  vcov_phi_vec = 0.1 * diag(16),
 R = 5,
  test\_phi = FALSE
)
```

Med

Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time-Interval or a Range of Time-Intervals

Description

This function computes the total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time-interval Δt or a range of time-intervals using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

```
Med(phi, delta_t, from, to, med)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ), ph1 should have row and column names pertaining to the variables in the system.
delta_t	Vector of positive numbers. Time interval (Δt) .
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.

Med 21

Details

See Total(), Direct(), and Indirect() for more details.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. ν denotes a vector of intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i.t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i.t}, \quad ext{with} \quad \mathbf{z}_{i.t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\boldsymbol{\Theta}^{\frac{1}{2}}\right)' = \boldsymbol{\Theta}$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedmed which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used (Med).

output A matrix of total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

22 Med

See Also

Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), MCPhi(), PosteriorMed(), TestPhi(), TestStable(), Total()

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
# Specific time-interval ------
Med(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
# Range of time-intervals ------
med <- Med(
 phi = phi,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
)
plot(med)
# Example 2 ------
phi <- matrix(</pre>
 data = c(
   -6, 5.5, 0, 0,
   1.25, -2.5, 5.9, -7.3,
   0, 0, -6, 2.5,
   5, 0, 0, -6
 ),
 nrow = 4
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
```

plot.ctmeddelta 23

```
# Specific time-interval ------
 phi = phi,
 delta_t = 1,
 from = "y2",
 to = "y4",
 med = c("y1", "y3")
# Range of time-intervals ------
med <- Med(</pre>
 phi = phi,
 delta_t = seq(from = 0, to = 5, length.out = 500),
 from = "y2",
 to = "y4",
 med = c("y1", "y3")
)
# Methods -----
# Med has a number of methods including
# print, summary, and plot
print(med)
summary(med)
plot(med)
```

plot.ctmeddelta

Plot Method for an Object of Class ctmeddelta

Description

Plot Method for an Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
plot(x, alpha = 0.05, ...)
```

Arguments

x Object of class ctmeddelta.alpha Numeric. Significance level... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

24 plot.ctmedmc

Examples

plot.ctmedmc

Plot Method for an Object of Class ctmedmc

Description

Plot Method for an Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
plot(x, alpha = 0.05, ...)
```

Arguments

x Object of class ctmedmc.alpha Numeric. Significance level... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov

# Range of time-intervals ------
mc <- MCMed(
   phi = phi,</pre>
```

plot.ctmedmed 25

```
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:20,
from = "x",
to = "y",
med = "m",
R = 5 # use a large value for R in actual research
)
plot(mc)
```

plot.ctmedmed

Plot Method for an Object of Class ctmedmed

Description

Plot Method for an Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed' plot(x, ...)
```

Arguments

x Object of class ctmedmed.

... Additional arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

26 PosteriorMed

```
delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
)
plot(med)
# ------
# Example 2 ------
phi <- matrix(</pre>
 data = c(
  -6, 5.5, 0, 0,
  1.25, -2.5, 5.9, -7.3,
  0, 0, -6, 2.5,
  5, 0, 0, -6
 ),
 nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
# Range of time-intervals ------
med <- Med(
 phi = phi,
 delta_t = seq(from = 0, to = 5, length.out = 500),
 from = "y2",
 to = "y4",
 med = c("y1", "y3")
plot(med)
```

PosteriorMed

Posterior Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time-Interval

Description

This function generates a posterior distribution of the total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} at a particular time-interval Δt using the posterior distribution of the first-order stochastic differential equation model drift matrix Φ .

Usage

```
PosteriorMed(phi, delta_t, from, to, med, ncores = NULL)
```

PosteriorMed 27

Arguments

phi List of numeric matrices. Each element of the list is a sample from the posterior

distribution of the drift matrix (Φ). Each matrix should have row and column

names pertaining to the variables in the system.

delta_t Numeric. Time interval (Δt).

from Character string. Name of the independent variable X in phi. to Character string. Name of the dependent variable Y in phi. med Character vector. Name/s of the mediator variable/s in phi.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when number of replications R is a large value.

Details

See Total(), Direct(), and Indirect() for more details.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used (PosteriorMed).

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est Mean of the posterior distribution of the total, direct, and indirect effects.

thetahatstar Posterior distribution of the total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), MCPhi(), Med(), TestPhi(), TestStable(), Total()
```

28 print.ctmeddelta

Examples

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$ctsem$posterior_phi</pre>
# Specific time-interval ------
PosteriorMed(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
# Range of time-intervals ------
posterior <- PosteriorMed(</pre>
 phi = phi,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
# PosteriorMed has a number of methods including
# print, summary, confint, and plot
print(posterior)
summary(posterior)
confint(posterior, level = 0.95)
plot(posterior)
```

print.ctmeddelta

Print Method for Object of Class ctmeddelta

Description

Print Method for Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

```
x an object of class ctmeddelta.  
alpha Numeric vector. Significance level \alpha.  
digits Integer indicating the number of decimal places to display.  
... further arguments.
```

print.ctmedeffect 29

Value

Returns a matrix of time-interval, estimates, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
print(delta)
# Range of time-intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
)
print(delta)
```

print.ctmedeffect

Print Method for Object of Class ctmedeffect

Description

Print Method for Object of Class ctmedeffect

Usage

```
## S3 method for class 'ctmedeffect'
print(x, digits = 4, ...)
```

30 print.ctmedeffect

Arguments

x an object of class ctmedeffect.digits Integer indicating the number of decimal places to display.... further arguments.

Value

Returns the effects.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
 data = c(
  -0.357, 0.771, -0.450,
  0.0, -0.511, 0.729,
  0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
# Time-Interval of One ------
## Total Effect -----
total_dt <- Total(</pre>
 phi = phi,
 delta_t = delta_t
print(total_dt)
## Direct Effect -------
direct_dt <- Direct(</pre>
 phi = phi,
 delta_t = delta_t,
 from = "x",
 to = "y",
 med = "m"
)
print(direct_dt)
## Indirect Effect ------
indirect_dt <- Indirect(</pre>
 phi = phi,
 delta_t = delta_t,
 from = "x",
 to = "y",
```

print.ctmedmc 31

```
med = "m"
)
print(indirect_dt)
```

print.ctmedmc

Print Method for Object of Class ctmedmc

Description

Print Method for Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

```
x an object of class ctmedmc. alpha Numeric vector. Significance level \alpha. digits Integer indicating the number of decimal places to display. . . . further arguments.
```

Value

Returns a matrix of estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov

# Specific time-interval ------
mc <- MCMed(
   phi = phi,
   vcov_phi_vec = vcov_phi_vec,
   delta_t = 1,
   from = "x",
   to = "y",
   med = "m",
   R = 5 # use a large value for R in actual research</pre>
```

32 print.ctmedmcphi

```
print(mc)

# Range of time-intervals -----
mc <- MCMed(
   phi = phi,
   vcov_phi_vec = vcov_phi_vec,
   delta_t = 1:20,
   from = "x",
   to = "y",
   med = "m",
   R = 5 # use a large value for R in actual research
)
print(mc)</pre>
```

print.ctmedmcphi

Print Method for Object of Class ctmedmcphi

Description

Print Method for Object of Class ctmedmcphi

Usage

```
## S3 method for class 'ctmedmcphi'
print(x, digits = 4, ...)
```

Arguments

x an object of class ctmedmcphi.digits Integer indicating the number of decimal places to display.... further arguments.

Value

Returns the structure of the output.

Author(s)

Ivan Jacob Agaloos Pesigan

print.ctmedmed 33

Examples

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
mc <- MCPhi(
  phi = phi,
    vcov_phi_vec = 0.1 * diag(9),
    R = 5
)
print(mc)</pre>
```

print.ctmedmed

Print Method for Object of Class ctmedmed

Description

Print Method for Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed'
print(x, digits = 4, ...)
```

Arguments

```
x an object of class ctmedmed.digits Integer indicating the number of decimal places to display.... further arguments.
```

Value

Returns a matrix of effects.

Author(s)

Ivan Jacob Agaloos Pesigan

34 print.ctmedmed

```
# ------
# Example 1 ------
# -----
phi <- matrix(</pre>
 data = c(
  -0.357, 0.771, -0.450,
  0.0, -0.511, 0.729,
  0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time-interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
print(med)
# Range of time-intervals ------
med <- Med(
 phi = phi,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
print(med)
# Example 2 ------
phi <- matrix(</pre>
 data = c(
  -6, 5.5, 0, 0,
  1.25, -2.5, 5.9, -7.3,
  0, 0, -6, 2.5,
  5, 0, 0, -6
 ),
 nrow = 4
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
# Specific time-interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
```

summary.ctmeddelta 35

```
from = "y2",
  to = "y4",
  med = c("y1", "y3")
)
print(med)

# Range of time-intervals -----
med <- Med(
  phi = phi,
    delta_t = 1:10,
    from = "y2",
    to = "y4",
    med = c("y1", "y3")
)
print(med)</pre>
```

summary.ctmeddelta

Summary Method for an Object of Class ctmeddelta

Description

Summary Method for an Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
summary(object, alpha = 0.05, ...)
```

Arguments

object Object of class ctmeddelta.

alpha Numeric vector. Significance level α .

... additional arguments.

Value

Returns a matrix of effects, time-interval, estimates, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

36 summary.ctmedmc

Examples

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
summary(delta)
# Range of time-intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
)
summary(delta)
```

summary.ctmedmc

Summary Method for an Object of Class ctmedmc

Description

Summary Method for an Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
summary(object, alpha = 0.05, ...)
```

Arguments

object Object of class ctmedmc.

alpha Numeric vector. Significance level α .

... additional arguments.

Value

Returns a matrix of effects, time-interval, estimates, standard errors, test statistics, p-values, and confidence intervals.

summary.ctmedmed 37

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
data("deboeck2015phi", package = "cTMed")
phi <- deboeck2015phi$dynr$phi
vcov_phi_vec <- deboeck2015phi$dynr$vcov</pre>
# Specific time-interval ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m",
 R = 5 \text{ \# use a large value for } R \text{ in actual research}
)
summary(mc)
# Range of time-intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m",
 R = 5 \text{ \# use a large value for } R \text{ in actual research}
)
summary(mc)
```

summary.ctmedmed

Summary Method for an Object of Class ctmedmed

Description

Summary Method for an Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed'
summary(object, digits = 4, ...)
```

38 summary.ctmedmed

Arguments

object an object of class ctmedmed.
digits Integer indicating the number of decimal places to display.
... further arguments.

Value

Returns a matrix of effects.

Author(s)

Ivan Jacob Agaloos Pesigan

```
# Example 1 ------
# ------
phi <- matrix(</pre>
 data = c(
  -0.357, 0.771, -0.450,
  0.0, -0.511, 0.729,
  0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time-interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
summary(med)
# Range of time-intervals ------
med <- Med(
 phi = phi,
 delta_t = 1:20,
 from = "x",
 to = "y",
 med = "m"
summary(med)
# Example 2 ------
# ------
```

TestPhi 39

```
phi <- matrix(</pre>
 data = c(
   -6, 5.5, 0, 0,
   1.25, -2.5, 5.9, -7.3,
   0, 0, -6, 2.5,
   5, 0, 0, -6
 ),
 nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
# Specific time-interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
 from = "y2",
 to = "y4",
 med = c("y1", "y3")
)
summary(med)
# Range of time-intervals ------
med <- Med(
 phi = phi,
 delta_t = 1:10,
 from = "y2",
 to = "y4",
 med = c("y1", "y3")
summary(med)
```

TestPhi

Test the Drift Matrix

Description

Both have to be true for the function to return TRUE.

- Test that the real part of all eigenvalues of Φ is less than zero.
- Test that the diagonal values of Φ are between 0 to negative inifinity.

Usage

```
TestPhi(phi)
```

Arguments

phi

Numeric matrix. The drift matrix (Φ) .

40 TestStable

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestStable(), Total()
```

Examples

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
TestPhi(phi = phi)
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
TestPhi(phi = phi)
```

TestStable

Test Stability

Description

The function computes the eigenvalues of the input matrix x. It checks if the real part of all eigenvalues is negative. If all eigenvalues have negative real parts, the system is considered stable.

Usage

```
TestStable(x)
```

Arguments

Χ

Numeric matrix.

Total 41

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestPhi(), Total()
```

Examples

```
x <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
TestStable(x)
x <- matrix(
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
TestStable(x)
```

Total

Total Effect Matrix Over a Specific Time-Interval

Description

This function computes the total effects matrix over a specific time-interval Δt using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
Total(phi, delta_t)
```

Arguments

Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.

delta_t Numeric. Time interval (Δt).

42 Total

Details

The total effect matrix over a specific time-interval Δt is given by

$$Total_{\Delta t} = \exp(\Delta t \mathbf{\Phi})$$

where Φ denotes the drift matrix, and Δt the time-interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Total").

output The matrix of total effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

Total 43

See Also

Other Continuous Time Mediation Functions: DeltaMed(), Direct(), Indirect(), MCMed(), MCPhi(), Med(), PosteriorMed(), TestPhi(), TestStable()

```
phi <- matrix(</pre>
  data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
Total(
  phi = phi,
 delta_t = delta_t
phi <- matrix(</pre>
  data = c(
   -6, 5.5, 0, 0,
   1.25, -2.5, 5.9, -7.3,
   0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
Total(
  phi = phi,
  delta_t = delta_t
)
```

Index

* Continuous Time Mediation Functions	plot.ctmedmed, 25
DeltaMed, 7	print.ctmeddelta,28
Direct, 10	print.ctmedeffect, 29
Indirect, 12	print.ctmedmc, 31
MCMed, 15	print.ctmedmcphi, 32
MCPhi, 18	print.ctmedmed, 33
Med, 20	summary.ctmeddelta,35
PosteriorMed, 26	summary.ctmedmc, 36
TestPhi, 39	summary.ctmedmed, 37
TestStable, 40	* test
Total, 41	TestPhi, 39
* cTMed	TestStable, 40
DeltaMed, 7	* uncertainty
Direct, 10	DeltaMed, 7
Indirect, 12	MCMed, 15
MCMed, 15	MCPhi, 18
MCPhi, 18	PosteriorMed, 26
Med, 20	C'tt
PosteriorMed, 26	confint.ctmeddelta, 2
TestPhi, 39	confint.ctmedmc, 3
TestStable, 40	deboeck2015, 4
Total, 41	deboeck2015phi,6
* data	DeltaMed, 7, 11, 14, 17, 19, 22, 27, 40, 41, 43
deboeck2015, 4	Direct, 9, 10, 14, 17, 19, 22, 27, 40, 41, 43
deboeck2015phi, 6	Direct(), 7, 16, 21, 27
* effects	, , , , , , , , , , , , , , , , , , , ,
Direct, 10	Indirect, 9, 11, 12, 17, 19, 22, 27, 40, 41, 43
Indirect, 12	Indirect(), 7, 16, 21, 27
Med, 20	
Total, 41	MCMed, 9, 11, 14, 15, 19, 22, 27, 40, 41, 43
* main	MCPhi, 9, 11, 14, 17, 18, 22, 27, 40, 41, 43
DeltaMed, 7	Med, 9, 11, 14, 17, 19, 20, 27, 40, 41, 43
MCMed, 15	plot.ctmeddelta, 23
Med, 20	plot.ctmedmc, 24
* methods	plot.ctmedmed, 25
confint.ctmeddelta,2	PosteriorMed, 9, 11, 14, 17, 19, 22, 26, 40,
confint.ctmedmc, 3	41, 43
plot.ctmeddelta, 23	print.ctmeddelta, 28
plot.ctmedmc, 24	print.ctmedeffect, 29
1	1

INDEX 45

```
print.ctmedmc, 31
print.ctmedmcphi, 32
print.ctmedmed, 33

simStateSpace::SimSSMVARFixed(), 4
summary.ctmeddelta, 35
summary.ctmedmc, 36
summary.ctmedmed, 37

TestPhi, 9, 11, 14, 17, 19, 22, 27, 39, 41, 43
TestPhi(), 15, 18
TestStable, 9, 11, 14, 17, 19, 22, 27, 40, 40, 43
Total, 9, 11, 14, 17, 19, 22, 27, 40, 41, 41
Total(), 7, 16, 21, 27
```