Informe Técnico – Pipeline de Calidad y Métricas COVID-19

Autor: Edisson Ariel Guamán Parra

Proyecto Final Python – 2025

1. Arquitectura del pipeline

El pipeline fue implementado en **Dagster** siguiendo un enfoque de orquestación basado en *assets* y *asset checks*.

- Se consumen los datos abiertos de Our World in Data (OWID) sobre la pandemia de COVID-19.
- El flujo se compone de múltiples pasos: lectura, filtrado, limpieza, validación, cálculo de métricas y exportación de reportes.
- Se diseñaron dos trabajos principales:
 - lectura_chequeos: encargado de cargar los datos crudos y aplicar validaciones de entrada.
 - o procesar_datos: encargado de filtrar, limpiar, calcular métricas epidemiológicas y generar un reporte consolidado.

2. Assets creados y diseño

Principales assets

- datos_crudos / datos_procesar: lectura directa del CSV OWID.
- datos_filtrados_ecuador_spain: selección de países de interés (Ecuador y España).
- datos_limpios_ecuador_spain: eliminación de nulos en new_cases y people vaccinated.
- datos_esenciales_ecuador_spain: columnas clave para análisis (location, date, casos, vacunados, población).
- **metrica incidencia 7d**: incidencia acumulada a 7 días por 100,000 habitantes.
- **metrica_factor_crec_7d**: ratio de crecimiento semanal de casos (comparación entre ventanas consecutivas).

• reporte_excel_covid: consolidación de resultados en un archivo Excel con tres hojas.

Justificación de diseño

- Se usó un patrón modular: cada transformación corresponde a un asset reutilizable.
- Se separaron validaciones de entrada y salida en asset checks, para asegurar calidad en todo el pipeline.
- Se eligió Ecuador y España como países comparativos para reducir volumen de datos y obtener insights claros.

3. Decisiones de validación

Entrada

- **Regla 1 Columnas clave no nulas:** asegura que location, date y population estén completos, evitando inconsistencias de registros sin país o fecha.
- Regla 2 Muertes totales no negativas: valida que total_deaths no tenga valores nulos ni negativos, lo que sería ilógico epidemiológicamente.

Salida

- Regla 3 Sin duplicados en datos esenciales: evita duplicidad de registros por paísfecha.
- Regla 4 Incidencia 7d en rango válido: se asegura que la incidencia acumulada no sea negativa ni supere valores extremos (2000 casos por 100k hab.).

4. Descubrimientos relevantes

- Se detectaron valores nulos en muertes (total_deaths) en algunos países y fechas. Esto refleja que ciertos gobiernos no reportaron datos completos.
- En Ecuador y España, las series de new_cases y people_vaccinated presentan lagunas temporales (días sin registro).
- Se observaron **ventanas de alta incidencia** en España durante 2021 y en Ecuador durante el primer semestre de 2020.
- El **factor de crecimiento** evidencia periodos donde los contagios crecían aceleradamente (factor > 1.5) y otros donde decrecían (factor < 1).

5. Consideraciones de arquitectura

- **Pandas** fue seleccionado como motor principal por su facilidad para manipular DataFrames y su integración nativa con Dagster.
- **DuckDB** no fue necesario, ya que el volumen de datos (~200 MB) es manejable en memoria.
- **Soda Core** (framework de validación externa) fue descartado en favor de los *asset checks* nativos de Dagster, que integran mejor los reportes de calidad con el pipeline.

6. Resultados

Métricas implementadas

Métrica	Descripción
Incidencia 7d	Casos promedio diarios por 100,000 habitantes en ventana móvil de 7 días.
Factor de crecimiento	Razón entre los casos de una semana y la semana anterior.

Interpretación:

- Valores de **incidencia altos** indican presión sobre el sistema de salud.
- Un factor > 1 señala expansión de la pandemia, mientras que < 1 indica reducción de contagios.

Resumen de control de calidad

ı	nombre_regla	estado	filas_afectadas	notas
(columnas_clave_no_nulas	OK	0	Sin problemas
t	cotal_deaths_no_negativos	ERROR	> 0	Existen nulos o negativos en muertes
(check_duplicados_esenciales	OK	0	Sin duplicados detectados
(check_incidencia_7d_validos	ОК	0	Incidencia dentro de rangos esperados

7. Conclusión

El pipeline implementado en Dagster cumple con los objetivos de:

- 1. Ingesta confiable de datos de OWID.
- 2. **Limpieza y validación automática** mediante *asset checks*.
- 3. **Generación de métricas epidemiológicas clave** (incidencia y factor de crecimiento).
- 4. Reporte consolidado en Excel para análisis exploratorio.

La arquitectura propuesta es modular, escalable y permite incorporar más países o validaciones en el futuro.