Introduction to machine learning

Machine learning with Python for finance professionals

From Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

From Wikipedia:

- "Machine learning, a branch of artificial **intelligence**, is about the construction and study of systems that can learn from data."
- "The core of machine learning deals with representation and generalisation..."

From Wikipedia:

- "Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."
- "The core of machine learning deals with representation and generalisation..."
 - representation extracting structure from data
 - **generalisation** making predictions from data

From Wikipedia:

- "Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."
- "The core of machine learning deals with representation and generalisation..."
 - representation extracting structure from data
 - generalisation making predictions from data

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

supervised making predictions

unsupervised extracting structure

supervised making predictions

generalisation

unsupervised extracting structure

representation

supervised making predictions

Υ	÷	X1	÷
	43		51
	63		64
	71		70
	61		63
	81		78
	43		55
	гo		67

supervised making predictions

Υ	÷	X1	÷
	43		51
	63		64
	71		70
	61		63
	81		78
	43		55
	гo		67

unsupervised extracting structure

Types of data

Continuous	Categorical
quantitative	qualitative
e.g. height	e.g. eye colour

	Continuous	Categorical
Supervised	Regression	Classification
Unsupervised	Dimensional reduction	Clustering

	Continuous	Categorical
Supervised	Regression	Classification
Unsupervised	Dimensional reduction	Clustering

Regression example: predicting iPhone sales

- Goal: predict a continuous outcome variable (iPhone sales)
- Supervised problem
 + continuous
 outcome (a.k.a.
 dependent or target
 variable) implies this
 is a regression
 problem

GDP

population

Gini

phone penetration %

GDP growth rate

	Continuous	Categorical
Supervised	Regression	Classification
Unsupervised	Dimensional reduction	Clustering

Classification example: predicting email spam

- Goal: predict a categorical outcome variable (spam or not)
- Supervised problem
 + categorical
 outcome (a.k.a.
 dependent or target
 variable) implies this
 is a classification
 problem

	Continuous	Categorical
Supervised	Regression	Classification
Unsupervised	Dimensional reduction	Clustering

Clustering example: user locations

- Goal: look for patterns or groups
- No groupings are apparent when looking at just longitude

Clustering example: user locations

- Goal: look for patterns or groups
- No groupings are apparent when looking at just longitude
- Clear clusters emerge when we add latitude

Clustering example: user locations

- Goal: look for patterns or groups
- No groupings are apparent when looking at just longitude
- Clear clusters emerge when we add latitude
- Unsupervised problem
 + allocating each data
 point a categorical
 group means this is a
 clustering problem

	Continuous	Categorical
Supervised	Regression	Classification
Unsupervised	Dimensional reduction	Clustering

Dimension reduction example: stock index

Goal: look for patterns or trends

 Hard to discern overall trends across hundreds of stock price movements

Dimension reduction example: stock index

Goal: look for patterns or trends

- Hard to discern overall trends across hundreds of stock price movements
- A stock index is a weighted average of its constituents' prices
- This is a dimensional reduction – we have reduced 500 dimensions down to one

Decision tree for algorithm selection

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

