

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Clustering I

CS 422 vgurbani@iit.edu

- Computing distances:
 - Euclidean distance (Minkowski, R=2)
 - Manhattan distance (Minkowski, R=1)
 - Jaccard similarity measure
 - Cosine similarity measure

Used for document data; covered later

CS 422 vgurbani@iit.edu

When do we stop?

When do we stop?

Does K-Means always converge?

How to choose the initial centroids?

- Random selection of initial centroids may lead to sub-optimal

clustering.

All three initial centroids randomly distributed. Leads to suboptimal solution.

All three initial random centroids in one natural cluster. Leads to good solution.

Clustering: Bisecting K-means

- Goal: Form best (optimal) clusters.
- Simple idea: to obtain K clusters, split the set of all points into two clusters, select one of the clusters to split, and so on until you have K clusters.
 - Which cluster to split?
 - The largest one, or
 - The one with largest error (SSE), or
 - ...

Clustering: Bisecting K-means

Algorithm 8.2 Bisecting K-means algorithm.

- Initialize the list of clusters to contain the cluster consisting of all points.
- 2: repeat
- Remove a cluster from the list of clusters.
- 4: {Perform several "trial" bisections of the chosen cluster.}
- 5: for i = 1 to number of trials do
- Bisect the selected cluster using basic K-means.
- 7: end for
- 8: Select the two clusters from the bisection with the lowest total SSE.
- Add these two clusters to the list of clusters.
- 10: **until** Until the list of clusters contains K clusters.

- How to choose the k in K-Means?
 - See kmeans-how-many-clusters.r

Within cluster sum of squares is the SSE we saw earlier. We want the total within cluster sum of squares to be minimal.

Cluster analysis

How do we evaluate the goodness of fit of clustering?

 Clustering should exhibit low intra-cluster SS (also called cohesion) and high inter-cluster SS (also called

separation).

Metrics of interest:

- Within cluster SS
- Total SS
- Between SS
- Variance explained

Cluster analysis

Within cluster SS

- Sum of squares of each point in the cluster to the cluster centroid: $\sum_{x \in C_i} Dist(c_i, x)^2$, where C_i is cluster i and c_i is centroid of cluster i

Total SS

 Sum of squares of each point in the dataset to the global cluster mean:

 $\sum_{x\in D} Dist(C_g,x)^2$, where C_g is global cluster mean, and D is the clustering dataset

Between SS

 Total SS - total within cluster SS, where total within cluster SS =

$$\sum_{j=1}^{\infty} \sum_{x \in C_j} Dist(c_j, x)^2, \text{ where k is number of clusters, } C_j \text{ is cluster j, and } c_j \text{ is centroid of cluster j} \\ \text{CS 422} \\ \text{vgurbani@iit.edu}$$

Cluster analysis

Variance

- Between SS / Total SS (between 0.0 and 1.0)
- The higher this ratio, the more variance is explained by the clusters.

Clustering: R implementation

- Clustering in R:
 - Package: cluster, factoextra
 - How to cluster, or using R's clustering libraries.
 - Visualizing the clusters.
 - Why scale (standardize)?
 - See cluster-and-scaling.r

- K-means does not handle outliers gracefully; it will try to include these in a cluster.
 - Outlier detection and removal prior to K-means can help.
- What is the right value of k?
- K-means has problems when clusters are of differing...

K-means: differing sizes.

K-means: differing densities.

K-means: problem with non-globular formations.

Complexity

- Space: O((m+K)n), m = number of observations, and n = number of attributes, K = number of clusters.
- Time: O(I*K*m*n), I = number of iterations required to converge.

Additional issues:

- Empty clusters.
- Outliers may lead to higher SSE and nonrepresentative cluster centroids.

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Clustering II

CS 422 vgurbani@iit.edu

- Inspired by the area of taxonomy, where hierarchical structures are common and elements under the same hierarchy automatically constitute a cluster.
- Unlike K-means, does not require us to choose k a-priori. Both an advantage and disadvantage.
- Two approaches:
 - Agglomerative (bottom-up): Each point starts off as an individual cluster, and at each step, merge closest pairs of clusters. (Need cluster proximity metric.)
 - Divisive: All points in one cluster, at each step, split a cluster until singleton clusters of individual points remain. (Which cluster to split and how to do the splitting.)

- Depicted as tree-like structure called Dendrograms.
- Y-axis labeled with the proximity between clusters.
- Look for closest cluster (in terms, say, squared distance), and join them. And continue until one cluster left.

Source: TESL, 2e

45 data points in 2-D. 3 distinct classes, shown in separate colors. However, we treat the class labels as unknown and seek to cluster the observations to discover classes from the data.

Note: We can play around with K to get required clustering. K can vary from 1 to 45, in which case each point is a cluster.

CS 422 vgurbani@iit.edu

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

- Compute the proximity matrix, if necessary.
- 2: repeat
- Merge the closest two clusters.
- 4: Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: **until** Only one cluster remains.

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.

- Compute the proximity matrix, if necessary.
- 2: repeat
- 3: Merge the closest two clusters.
- 4: Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: **until** Only one cluster remains.

How should this *merge* be done? In other words, how do we define proximity between clusters so that the two closest ones are merged?

Hierarchical clustering: Updating the proximity matrix

	1	2	3	4	5	6	7
1	0						
2	3367	0					
3	1610	2330	0				
4	1678	4016	2601	0			
5	1061	3408	1543	1482	0		
6	731	2897	1414	2063	1450	0	
7	1560	4008	2518	214	1359	1980	0

Hierarchical clustering: Updating the proximity matrix

	1	2	3	4	5	6	7
1	0						
2	3367	0					
3	1610	2330	0				
4	1678	4016	2601	0			
5	1061	3408	1543	1482	0		
6	731	2897	1414	2063	1450	0	
7	1560	4008	2518	214	1359	1980	0

Merge closest two clusters. Merging strategy: MIN (single link)

the proximity matrix

	1	2	3	4,7	5	6
1	0					
2	3367	0				
3	1610	2330	0			
4,7	1560	4008	2518	0		
5	1061	3408	1543	1359	0	
6	731	2897	1414	1980	1450	0

$$D({4,7} \rightarrow {1}) = min(D({4} \rightarrow {1}), D({7} \rightarrow {1}))$$

= min(1678, 1560) = 1560

$$D({4,7} \rightarrow {5}) = min(D({4} \rightarrow {5}), D({7} \rightarrow {5}))$$

= min(1482, 1359) = 1359

$$D({4,7} \rightarrow {6}) = min(D({4} \rightarrow {6}), D({7} \rightarrow {6}))$$

= $min(2063, 1980) = 1980$

the proximity matrix

	1	2	3	4,7	5	6
1	0					
2	3367	0				
3	1610	2330	0			
4,7	1560	4008	2518	0		
5	1061	3408	1543	1359	0	
6	731	2897	1414	1980	1450	0

Merge closest two clusters.

	1,6	2	3	4,7	5
1,6	0				
2	2897	0			
3	1414	2330	0		
4,7	1560	4008	2518	0	
5	1061	3408	1543	1359	0

$$D(\{1,6\} \rightarrow \{2\}) = min(D(\{1\} \rightarrow \{2\}), D(\{6\} \rightarrow \{2\}))$$

= min(3367, 2897) = 2897
...
 $D(\{1,6\} \rightarrow \{5\}) = min(D(\{1\} \rightarrow \{5\}), D(\{6\} \rightarrow \{5\}))$
= min(1061, 1450) = 1061

$$\begin{array}{c} \dots \\ D(\{1,6\} \rightarrow \{4,7\}) = min(D(\{1\} \rightarrow \{4\}), \ D(\{1\} \rightarrow \{7\}), \\ D(\{6\} \rightarrow \{4\}, \ D(\{6\} \rightarrow \{7\})) \\ = min(1678, \ 1560, \ 2063, \ 1980) = 1560 \end{array}$$

...

the proximity matrix

	1,6	2	3	4,7	5
1,6	0				
2	2897	0			
3	1414	2330	0		
4,7	1560	4008	2518	0	
5	1061	3408	1543	1359	0

Merge closest two clusters.

Hierarchical clustering: Updating the proximity matrix

	1,6,5	2	3	4,7
1,6,5	0			
2	2897	0		
3	1414	2330	0	
4,7	1359	4008	2518	0

$$D(\{1,6,5\} \rightarrow \{2\}) = min(D(\{1\} \rightarrow \{2\}), D(\{6\} \rightarrow \{2\}), D(\{5\} \rightarrow \{2\}))$$

= $min(3367, 2897, 3408) = 2897$

$$\begin{array}{c} D(\{1,6,5\} \rightarrow \{4,7\}) = min(D(\{1\} \rightarrow \{4\}),\ D(\{6\} \rightarrow \{4\}),\ D(\{5\} \rightarrow \{4\}),\\ D(\{1\} \rightarrow \{7\}),\ D(\{6\} \rightarrow \{7\}),\ D(\{5\} \rightarrow \{7\}))\\ = min(1678,\ 2063,\ 1482,\ 1560,\ 1980,\ 1359) = 1359 \end{array}$$

. . .

the proximity matrix

	1,6,5	2	3	4,7
1,6,5	0			
2	2897	0		
3	1414	2330	0	
4,7	1359	4008	2518	0

Merge closest two clusters.

the proximity matrix

	1,6,5,4,7	2	3
1,6,5,4,7	0		
2	2897	0	
3	1414	2330	0

 $D(\{1,6,5,4,7\} \rightarrow \{2\}) = min(D(\{1\} \rightarrow \{2\}), D(\{6\} \rightarrow \{2\}), D(\{5\} \rightarrow \{2\}), D(\{4\} \rightarrow \{2\}), D(\{7\} \rightarrow \{2\}))$ = min(3367, 2897, 3408, 4016, 4008) = 2897

 $D(\{1,6,5,4,7\} \rightarrow \{3\}) = min(D(\{1\} \rightarrow \{3\}), D(\{6\} \rightarrow \{3\}), D(\{5\} \rightarrow \{3\}), D(\{4\} \rightarrow \{3\}), D(\{7\} \rightarrow \{3\}))$ = min(1610, 1414, 1543, 2601, 2518) = 1414

the proximity matrix

	1,6,5,4,7	2	3
1,6,5,4,7	0		
2	2897	0	
3	1414	2330	0

$$D(\{1,6,5,4,7\} \rightarrow \{2\}) = min(D(\{1\} \rightarrow \{2\}), D(\{6\} \rightarrow \{2\}), D(\{5\} \rightarrow \{2\}), D(\{4\} \rightarrow \{2\}), D(\{7\} \rightarrow \{2\}))$$

= min(3367, 2897, 3408, 4016, 4008) = 2897

$$D(\{1,6,5,4,7\} \rightarrow \{3\}) = min(D(\{1\} \rightarrow \{3\}), D(\{6\} \rightarrow \{3\}), D(\{5\} \rightarrow \{3\}), D(\{4\} \rightarrow \{3\}), D(\{7\} \rightarrow \{3\})) = min(1610, 1414, 1543, 2601, 2518) = 1414$$

the proximity matrix

Merge closest two clusters.

1,6,5,4,7,3,2

0

Merge closest two clusters...until only one cluster remains.

Hierarchical clustering: Updating the proximity matrix

 For complete linkage and group average, proceed as before except update the proximity matrix using MAX and AVG, respectively.

Hierarchical clustering: Complexity

Space complexity:

- m is number of data points; storage required: $1/2m^2$ => $O(m^2)$.

Time complexity:

- m is the number of data points; $O(m^2)$ required for computing the proximity matrix.
- If distances from each cluster to all other clusters are stored in a heap, overall time required for hierarchical clustering is O(m² log m).

Hierarchical clustering: Practical issues

- Scaling matters if attributes are wide ranges.
- What dissimilarity measure should be used?
 - Minkowski with different values for R (Euclidean, ...)
 - Correlation-based
- What type of linkage to use?
- How many clusters to choose? Difficult problem as there is no agreed upon method. Sometimes the domain expert helps, other times study the data.
- Merging decisions are final (unlike k-means where observations may belong to different centroids over time).

Hierarchical clustering: Using as a supervised learning method

- Even though clustering in general is considered an unsupervised learning method, it can be used in supervised learning mode.
- Cluster indicate a class label and each object in a certain cluster belongs to that class.
- Error measures for supervised clustering are the same as classification.
- Code: hclust-iris.r

Density-based clustering: dbscan

 K-means and hierarchical clustering do not gracefully handle non-globular clusters as

shown on the left.

 They will find clusters, but the resulting clusters may not be what we need.

Density-based clustering: Miscellaneous

• Hierarchical clustering do on globular data:

Observations:

- Hierarchical clustering is not able to eliminate what would be called "noise" points in DBSCAN. So these become part of a cluster.
- With 5 clusters hierarchical clustering is unable to discern the two nested clusters. It considers them as one.

Code: hierarchical-clustering-globular-data.Rmd