Homework 2

Andrea Sofia Vallejo Budziszewski

November 2023

Problem 1

Using the method of Lagrange multipliers, solve the following constrained optimization problem:

$$\max xy$$

$$(x, y)$$
s.t. $2x + y = 1$

Indicate the optimal values of x and y as well as the optimal value of the objective.

Answer to problem 1

Lagrangian function is given by:

$$L(x, y, \lambda) = xy + \lambda(2x + y - 1)$$

Critical points of the Lagrangian function by taking the partial derivatives with respect to x, y, and λ and setting them equal to zero:

$$\frac{\partial L}{\partial x} = y + 2\lambda = 0$$

$$\frac{\partial L}{\partial y} = x + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 2x + y - 1 = 0$$

Ssolving equations (1) and (2) for x and y:

From (1) $y = -2\lambda$ (Equation 4)

From $(2)x = -\lambda$ (Equation 5)

Substitute Equations (4) and (5) into Equation (3):

$$2x + y - 1 = 2(-\lambda) + (-2\lambda) - 1 = -3\lambda - 1 = 0$$

Solving for λ :

$$-3\lambda - 1 = 0$$
$$-3\lambda = 1$$
$$\lambda = -\frac{1}{3}$$

Thats the value of λ , now using Equations (4) and (5) to find x and y:

Equation (4): $y = -2\lambda = -2 \cdot \left(-\frac{1}{3}\right) = \frac{2}{3}$ Equation (5): $x = -\lambda = -\left(-\frac{1}{3}\right) = \frac{1}{3}$ So, the optimal values are: $x = \frac{1}{3}$ $y = \frac{2}{3}$

Substitute these values into the objective function:

$$xy = \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right) = \frac{2}{9}$$

The optimal value of the objective function is $\frac{2}{9}$, and the optimal values of x and y are $x=\frac{1}{3}$ and $y = \frac{2}{3}$.

Problem 2

Using the same method, solve the following constrained optimization problem:

$$\min \quad x^2 + 3y^2$$

$$(x,y)$$
 subject to
$$x - y \ge 1$$

Indicate the optimal values of x and y as well as the optimal value of the objective.

Answer to problem 2

The Lagrangian function is given by:

$$L(x, y, \lambda) = x^2 + 3y^2 + \lambda(x - y - 1)$$

Find the critical points of the Lagrangian function:

$$\frac{\partial L}{\partial x} = 2x + \lambda = 0$$

$$\frac{\partial L}{\partial y} = 6y - \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = x - y - 1 = 0$$

Solving equations (1) and (2) for x and y:

From (1): $2x + \lambda = 0$

From (2): $6y - \lambda = 0$

Finding expressions for x and y in terms of λ :

$$x = -\frac{\lambda}{2}$$

$$y = \frac{\lambda}{6}$$

Substitute these expressions into Equation (3):

$$-\frac{\lambda}{2} - \frac{\lambda}{6} - 1 = 0$$

Solve for λ :

$$-\frac{3\lambda}{6} - \frac{\lambda}{6} - 1 = 0$$
$$-\frac{4\lambda}{6} - 1 = 0$$
$$-\frac{2\lambda}{3} - 1 = 0$$
$$-\frac{2\lambda}{3} = 1$$
$$\lambda = -\frac{3}{2}$$

From
$$x = -\frac{\lambda}{2}$$
: $x = -\left(-\frac{3}{2}\right)/2 = \frac{3}{4}$

From
$$y = \frac{\lambda}{6}$$
: $y = \frac{-\frac{3}{2}}{6} = -\frac{1}{4}$

The optimal values are:
$$x = \frac{3}{4} y = -\frac{1}{4}$$

Find their values: From $x=-\frac{\lambda}{2}$: $x=-\left(-\frac{3}{2}\right)/2=\frac{3}{4}$ From $y=\frac{\lambda}{6}$: $y=\frac{-\frac{3}{2}}{6}=-\frac{1}{4}$ The optimal values are: $x=\frac{3}{4}$ $y=-\frac{1}{4}$ Find the optimal value of the objective (x^2+3y^2)

$$x^{2} + 3y^{2} = \left(\frac{3}{4}\right)^{2} + 3\left(-\frac{1}{4}\right)^{2} = \frac{9}{16} + \frac{3}{16} = \frac{12}{16} = \frac{3}{4}$$

The optimal value of the objective function is $\frac{3}{4}$, and the optimal values of x and y are $x = \frac{3}{4}$ and $y = -\frac{1}{4}$.