A

Apéndice de tablas

A.1 La función de distribución binomial

La tabla muestra la probabilidad $P(X \leq k) = B(k;n,p)$ de que ocurran máximo k éxitos en n ensayos independientes, cada uno con probabilidad de éxito p.

Estas probabilidades se calculan para $n=5,\ 10,\ 15,\ 20$ y 25.

(a) Tabla binomial para n=5

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,774	0,590	0,328	0,237	0,168	0,078	0,031	0,010	0,002	0,001	0,000	0,000	0,000
1	0,977	0,919	0,737	0,633	0,528	0,337	$0,\!188$	0,087	0,031	0,016	0,007	0,000	0,000
2	0,999	0,991	0,942	0,896	0,837	0,683	0,500	0,317	0,163	0,104	0,058	0,009	0,001
3	1,000	1,000	0,993	0,984	0,969	0,913	0,812	0,663	0,472	0,367	0,263	0,081	0,023
4	1,000	1,000	0,999	0,999	0,998	0,990	0,969	0,922	0,832	0,763	0,672	0,410	0,226
5	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

(b) Probabilidades binomiales acumuladas para n=10

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,599	0,349	0,107	0,056	0,028	0,006	0,001	0,000	0,000	0,000	0,000	0,000	0,000
1	0,914	0,736	0,376	0,244	0,149	0,046	0,011	0,002	0,000	0,000	0,000	0,000	0,000
2	0,988	0,930	0,678	0,526	0,383	0,167	0,055	0,012	0,002	0,000	0,000	0,000	0,000
3	0,999	0,987	0,879	0,776	0,650	0,382	0,172	0,055	0,011	0,004	0,001	0,000	0,000
4	1,000	0,998	0,967	0,922	0,850	0,633	0,377	0,166	0,047	0,020	0,006	0,000	0,000
5	1,000	1,000	0,994	0,980	0,953	0,834	0,623	0,367	$0,\!150$	0,078	0,033	0,002	0,000
6	1,000	1,000	0,999	0,996	0,989	0,945	0,828	0,618	$0,\!350$	0,224	0,121	0,013	0,001
7	1,000	1,000	1,000	1,000	0,998	0,988	0,945	0,833	0,617	0,474	0,322	0,070	0,012
8	1,000	1,000	1,000	1,000	1,000	0,998	0,989	0,954	0,851	0,756	0,624	0,264	0,086
9	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,994	0,972	0,944	0,893	0,651	0,401

(c) Probabilidades binomiales acumuladas para n=15

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,463	0,206	0,305	0,013	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,829	0,549	0,167	0,080	0,035	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,964	0,816	0,398	0,236	0,127	0,027	0,004	0,000	0,000	0,000	0,000	0,000	0,000
3	0,995	0,944	0,648	0,461	0,297	0,091	0,018	0,002	0,000	0,000	0,000	0,000	0,000
4	0,999	0,987	0,836	0,686	0,515	0,217	0,059	0,009	0,001	0,000	0,000	0,000	0,000
5	1,000	0,998	0,939	0,852	0,722	0,403	0,151	0,034	0,004	0,001	0,000	0,000	0,000
6	1,000	1,000	0,982	0,943	0,869	0,610	0,304	0,095	0,015	0,004	0,001	0,000	0,000
7	1,000	1,000	0,996	0,983	0,950	0,787	0,500	0,213	0,050	0,017	0,004	0,000	0,000
8	1,000	1,000	0,999	0,996	0,985	0,905	0,696	0,390	0,131	0,057	0,018	0,000	0,000
9	1,000	1,000	1,000	0,999	0,996	0,966	0,849	0,597	0,278	0,148	0,061	0,002	0,000
10	1,000	1,000	1,000	1,000	0,999	0,991	0,941	0,783	0,485	0,314	0,164	0,013	0,000
11	1,000	1,000	1,000	1,000	1,000	0,998	0,982	0,909	0,703	0,539	0,352	0,056	0,005
12	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,973	0,873	0,764	0,602	0,184	0,036
13	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,995	0,965	0,920	0,833	$0,\!451$	0,171
14	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,995	0,987	0,965	0,794	0,537

(d) Probabilidades binomiales acumuladas para n=20

						p							
k	0,05	0,10	0,20	$0,\!25$	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,358	0,122	0,012	0,003	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,736	0,392	0,069	0,024	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,925	0,677	0,206	0,091	0,035	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000
3	0,984	0,867	0,411	0,225	0,107	0,016	0,001	0,000	0,000	0,000	0,000	0,000	0,000
4	0,997	0,957	0,630	0,415	0,238	0,051	0,006	0,000	0,000	0,000	0,000	0,000	0,000
5	1,000	0,989	0,804	0,617	0,416	$0,\!126$	0,021	0,002	0,000	0,000	0,000	0,000	0,000
6	1,000	0,998	0,913	0,786	0,608	$0,\!250$	0,058	0,006	0,000	0,000	0,000	0,000	0,000
7	1,000	1,000	0,968	0,898	0,772	0,416	0,132	0,021	0,001	0,000	0,000	0,000	0,000
8	1,000	1,000	0,990	0,959	0,887	0,596	0,252	0,057	0,005	0,001	0,000	0,000	0,000
9	1,000	1,000	0,997	0,986	0,952	0,755	0,412	0,128	0,017	0,004	0,001	0,000	0,000
10	1,000	1,000	0,999	0,996	0,983	0,872	0,588	0,245	0,048	0,014	0,003	0,000	0,000
11	1,000	1,000	1,000	0,999	0,995	0,943	0,748	0,404	0,113	0,041	0,010	0,000	0,000
12	1,000	1,000	1,000	1,000	0,999	0,979	0,868	0,584	0,228	0,102	0,032	0,000	0,000
13	1,000	1,000	1,000	1,000	1,000	0,994	0,942	0,750	0,392	0,214	0,087	0,002	0,000
14	1,000	1,000	1,000	1,000	1,000	0,998	0,979	0,874	0,584	0,383	0,196	0,011	0,000
15	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,949	0,762	0,585	$0,\!370$	0,043	0,003
16	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,984	0,893	0,775	0,589	0,133	0,016
17	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,965	0,909	0,794	0,323	0,075
18	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,992	0,976	0,931	0,608	0,264
19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,988	0,878	0,642

(e) Probabilidades binomiales acumuladas para n=25

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,277	0,072	0,004	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,642	0,271	0,027	0,007	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,873	0,537	0,098	0,032	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
3	0,966	0,764	0,234	0,096	0,033	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000
4	0,993	0,902	0,421	0,214	0,090	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000
5	0,999	0,967	0,617	0,378	0,193	0,029	0,002	0,000	0,000	0,000	0,000	0,000	0,000
6	1,000	0,991	0,780	0,561	0,341	0,074	0,007	0,000	0,000	0,000	0,000	0,000	0,000
7	1,000	0,998	0,891	0,727	0,512	0,154	0,022	0,001	0,000	0,000	0,000	0,000	0,000
8	1,000	1,000	0,953	0,851	0,677	0,274	0,054	0,004	0,000	0,000	0,000	0,000	0,000
9	1,000	1,000	0,983	0,929	0,811	0,425	0,115	0,013	0,000	0,000	0,000	0,000	0,000
10	1,000	1,000	0,994	0,970	0,902	0,586	0,212	0,034	0,002	0,000	0,000	0,000	0,000
11	1,000	1,000	0,998	0,980	0,956	0,732	0,345	0,078	0,006	0,001	0,000	0,000	0,000
12	1,000	1,000	1,000	0,997	0,983	0,846	0,500	0,154	0,017	0,003	0,000	0,000	0,000
13	1,000	1,000	1,000	0,999	0,994	0,922	0,655	0,268	0,044	0,020	0,002	0,000	0,000
14	1,000	1,000	1,000	1,000	0,998	0,966	0,788	0,414	0,098	0,030	0,006	0,000	0,000
15	1,000	1,000	1,000	1,000	1,000	0,987	0,885	0,575	0,189	0,071	0,017	0,000	0,000
16	1,000	1,000	1,000	1,000	1,000	0,996	0,946	0,726	0,323	0,149	0,047	0,000	0,000
17	1,000	1,000	1,000	1,000	1,000	0,999	0,978	0,846	0,488	0,273	0,109	0,002	0,000
18	1,000	1,000	1,000	1,000	1,000	1,000	0,993	0,926	0,659	0,439	0,220	0,009	0,000
19	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,971	0,807	0,622	0,383	0,033	0,001
20	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	0,910	0,786	0,579	0,098	0,007
21	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,967	0,904	0,766	0,236	0,034
22	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	0,968	0,902	0,463	0,127
23	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,993	0,973	0,729	0,358
24	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,996	0,928	0,723

A.2 La función de distribución de Poisson

La función tabulada es la función de distribución acumulada

$$P(k; \lambda) = \sum_{k=0}^{n} \binom{n}{k} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

para algunos valores de λ .

(a) Tabla de Poisson para $\lambda \leq 1$

				λ						
k	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0	0,905	0,819	0,741	0,670	0,607	0,549	0,497	0,449	0,407	0,368
1	0,995	0,982	0,963	0,938	0,910	0,878	0,844	0,809	0,772	0,736
2	1,000	0,999	0,996	0,992	0,986	0,977	0,966	0,953	0,937	0,920
3	1,000	1,000	1,000	0,999	0,998	0,997	0,994	0,991	0,987	0,981
4	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,999	0,998	0,996
5	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999
6	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

A.2. La función de distribución de Poisson

(b) Tabla de Poisson para $2 \le \lambda \le 20$

						λ					
k	2	3	4	5	6	7	8	9	10	15	20
0	0,135	0,050	0,018	0,007	0,002	0,001	0,000	0,000	0,000	0,000	0,000
1	0,406	0,199	0,092	0,040	0,017	0,007	0,003	0,001	0,000	0,000	0,000
2	0,677	0,423	0,238	0,125	0,062	0,030	0,014	0,006	0,003	0,000	0,000
3	0,857	0,647	0,433	0,265	0,151	0,082	0,042	0,021	0,010	0,000	0,000
4	0,947	0,815	0,629	0,440	0,285	0,173	0,100	0,055	0,029	0,001	0,000
5	0,983	0,916	0,785	0,616	0,446	0,301	0,191	0,116	0,067	0,003	0,000
6	0,995	0,966	0,889	0,762	0,606	0,450	0,313	0,207	0,130	0,008	0,000
7	0,999	0,988	0,949	0,867	0,744	0,599	0,453	0,324	0,220	0,018	0,001
8	1,000	0,996	0,979	0,932	0,847	0,729	0,593	0,456	0,333	0,037	0,002
9	1,000	0,999	0,992	0,968	0,916	0,830	0,717	0,587	0,458	0,070	0,005
10	1,000	1,000	0,997	0,986	0,957	0,901	0,816	0,706	0,583	0,118	0,011
11	1,000	1,000	0,999	0,995	0,980	0,947	0,888	0,803	0,697	0,185	0,021
12	1,000	1,000	1,000	0,998	0,991	0,973	0,936	0,876	0,792	0,268	0,039
13	1,000	1,000	1,000	0,999	0,996	0,987	0,966	0,926	0,864	0,363	0,066
14	1,000	1,000	1,000	1,000	0,999	0,994	0,983	0,959	0,917	0,466	0,105
15	1,000	1,000	1,000	1,000	0,999	0,998	0,992	0,978	0,951	0,568	0,157
16	1,000	1,000	1,000	1,000	1,000	0,999	0,996	0,989	0,973	0,664	0,221
17	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,995	0,986	0,749	0,297
18	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,998	0,993	0,819	0,381
19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,875	0,470
20	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,917	0,559
21	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,947	0,644
22	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,967	0,721
23	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,981	0,787
24	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,989	0,843
25	1,000	1,000	1,000	0,994	0,970	0,902	0,586	0,212	0,034	0,994	0,888
26	1,000	1,000	1,000	0,998	0,980	0,956	0,732	0,345	0,078	0,997	0,922
27	1,000	1,000	1,000	1,000	0,997	0,983	0,846	0,500	0,154	0,998	0,948
28	1,000	1,000	1,000	1,000	0,999	0,994	0,922	0,655	0,268	0,999	0,966
29	1,000	1,000	1,000	1,000	1,000	0,998	0,966	0,788	0,414	1,000	0,978
30	1,000	1,000	1,000	1,000	1,000	1,000	0,987	0,885	0,575	1,000	0,987
31	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,946	0,726	1,000	0,992
32	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,978	0,846	1,000	0,995
33	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,993	0,926	1,000	0,997
34	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,971	1,000	0,999
35	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	1,000	0,999
36	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	1,000	1,000

A.3 La función de distribución normal estándar

La tabla muestra la probabilidad $P(Z \leq z)$ de que una variable estándar Z sea menor que el número z.

Por ejemplo, la probabilidad de que una variable aleatoria estándar sea menor que 1,96 es $P(Z \le 1,96) = 0,975.$

(a) Áreas para valores negativos de \boldsymbol{Z}

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3.1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
-2,9	0,0019	0,0018	0,0017	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	$0,\!1210$	$0,\!1190$	0,1170
-1,0	$0,\!1587$	$0,\!1562$	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	$0,\!1401$	0,1379
-0,9	0,1841	0,1814	$0,\!1788$	0,1762	$0,\!1736$	0,1711	0,1685	$0,\!1660$	0,1635	0,1611
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	$0,\!2266$	0,2236	$0,\!2206$	0,2177	0,2148
-0,6	$0,\!2743$	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	$0,\!2514$	0,2483	0,2451
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,2	$0,\!4207$	0,4168	0,4129	0,4009	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,1	$0,\!4602$	$0,\!4562$	$0,\!4522$	0,4483	0,4443	0,4404	$0,\!4364$	0,4325	$0,\!4286$	0,4247
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641

(b) Áreas para valores positivos de ${\cal Z}$

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9278	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9948	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9961	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9971	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

A.4 Valores críticos para la distribución t

				α			
ν	0,10	0,05	0,025	0,01	0,005	0,001	0,0005
1	3,078	6,314	12,706	31,821	63,657	318,31	636,620
2	1,886	2,920	4,303	6,965	9,925	22,326	31,598
3	1,638	2,353	3,182	4,541	5,841	10,213	12,924
4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
9	1,383	1.833	2,262	2,821	3,250	4,297	4,781
10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
11	1,363	1,796	2,201	2,718	3,106	4,025	4,437
12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
15	1,341	1,753	2,131	2,602	2,947	3,733	4,073
16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
18	1,330	1,734	2,101	2,552	2,878	3,610	3,922
19	1,328	1,729	2,093	2,539	2,861	3,579	3,883
20	1,325	1,725	2,086	2,528	2,845	3,552	3,850
21	1,323	1,721	2,080	2,518	2,831	3,527	3,819
22	1,321	1,717	2,074	2,508	2,819	3,505	3,795
23	1,319	1,714	2,069	2,500	2,807	3,485	3,767
24	1,318	1,711	2,064	2,492	2,797	3,467	3,745
25	1,316	1,708	2,060	2,485	2,787	3,450	3,725
26	1,315	1,706	2,056	2,479	2,779	3,435	3,707
27	1,314	1,703	2,052	2,473	2,771	3,421	3,690
28	1,313	1,701	2,048	2,467	2,763	3,408	3,674
29	1,311	1,699	2,045	2,462	2,756	3,396	3,659
30	1,310	1,697	2,042	2,457	2,750	3,385	3,646
32	1,309	1,694	2,037	2,449	2,738	3,365	3,622
34	1,307	1,691	2,032	2,441	2,728	3,348	3,601
36	1,306	1,688	2,028	2,434	2,719	3,333	3,582
38	1,304	1,686	2,024	2,429	2,712	3,319	3,566
40	1,303	1,684	2,021	2,423	2,704	3,307	3,551
50	1,299	1,676	2,009	2,403	2,678	3,262	3,496
60	1,296	1.671	2,000	2,390	2,660	3,232	3,460
120	1,282	1,658	1,980	2,358	2,617	3,160	3,373
$\infty(=z)$	1,282	1,645	1,960	2,326	2,576	3,090	3,291

A.5 Distribución chi-cuadrada

					α					
ν	0,995	0,99	0,98	0,975	0,95	0,90	0,80	0,75	0,70	0,50
				0.004		0.04.50	0.0040	0.400	0.4.10	
1	0,000	0,000	0,000	0,001	0,00393	0,0158	0,0642	0,102	0,148	0,4550
2	0,010	0,0201	0,0404	0,0506	0,103	0,211	0,446	0,575	0,713	1,386
3	0,0717	0,115	0,185	0,216	0,352	0,584	1,005	1,213	1,424	2,366
4	0,207	0,297	0,429	0,484	0,711	1,064	1,649	1,923	2,195	3,357
5	0,412 0,676	0,554 0,872	0,752 $1,134$	0,831 $1,237$	1,145 $1,635$	1,610 $2,204$	2,343 $3,070$	2,675 $3,455$	3,000 $3,828$	4,351 $5,348$
6 7	0,070	1,239	1,154 $1,564$	1,690	2,167	2,833	3,822	4,255	4,671	6,346
8	1,344	1,646	2,032	2,180	2,733	3,490	4,594	5,071	5,527	7,344
9	1,735	2,088	2,532	2,700	3,325	4,168	5,380	5,899	6,393	8,343
10	2,156	2,558	3,059	3,247	3,940	4,865	6,179	6,737	7,267	9,342
10	2,100	2,000	0,000	0,211	0,010	1,000	0,110	0,101	1,201	0,012
11	2,603	3,053	3,609	3,816	4,575	5,578	6,989	7,584	8,148	10,341
12	3,074	3,571	4,178	4,404	5,226	6,304	7,807	8,438	9,034	11,340
13	3,565	4,107	4,765	5,009	5,892	7,042	8,634	9,299	9,926	12,340
14	4,075	4,660	5,368	5,629	6,571	7,790	9,467	10,165	10,821	13,339
15	4,601	5,229	5,985	6,262	7,261	8,547	10,307	11,036	11,721	14,339
16	5,142	5,812	6,614	6,908	7,962	9,312	11,152	11,912	12,624	15,338
17	5,697	6,408	7,255	7,564	8,672	10,085	12,002	12,792	13,531	16,338
18	6,844	7,633	8,567	8,907	10,117	11,651	13,716	14,562	15,352	18,338
19	6,844	7,633	8,567	8,907	10,117	11,651	13,716	$14,\!562$	15,352	18,338
20	7,434	8,260	9,237	9,591	10,851	12,443	14,578	15,452	16,266	19,337
21	8,034	8,897	9,915	10,283	11,591	13,240	15,445	16,344	17,182	20,337
22	8,643	9,542	10,600	10,982	12,338	14,041	16,314	17,240	18,101	21,337
23	9,260	10,196	11,293	11,688	13,091	14,848	17,187	18,137	19,021	22,337
24	9,886	10,856	11,992	12,401	13,848	15,659	18,062	19,037	19,943	23,337
25	10,520	11,524	12,692	13,120	14,611	16,473	18,940	19,939	20,867	24,337
26 27	11,160	12,198	13,409	13,844	15,379	17,292	19,820	20,843	21,792	25,336
28	11,808 12,461	12,879 $13,565$	14,125 $14,847$	14,573 $15,308$	16,151 $16,928$	18,114 18,939	20,703 $21,588$	21,749 $22,657$	22,719 $23,647$	26,336 $27,336$
29	13,121	14,256	15,574	16,047	17,708	19,768	21,366 $22,475$	23,567	24,577	28,336
30	13,787	14,953	16,306	16,791	18,493	20,599	23,364	24,478	25,508	29,336
30	10,707	14,300	10,500	10,731	10,430	20,000	25,504	24,410	20,000	23,330
31	14,457	15,655		17,538	19,280	21,433				
32	15,134	16,362		18,291	20,072	22,271				
33	15,815	17,073		19,046	20,866	23,110				
34	16,501	17,789		19,806	21,664	23,952				
35	17,191	18,508		20,569	22,465	24,796				
36	17,887	19,233		21,336	23,269	25,643				
37	18,584	19,960		22,105	24,075	26,492				
38	19,289	20,691		22,878	24,884	27,343				
39	19,994	$21,\!425$		23,654	25695	28,196				
40	20,706	22,164		24,433	26,509	29,050				
39	19,994	21,425		23,654	25695	28,196				

A.5. Distribución chi-cuadrada

(b) Valores críticos $\chi^2_{\alpha}(\nu)$ (continuación)

					α					
ν	0,30	0,25	0,20	0,10	0,05	0,025	0,02	0,01	0,005	0,001
	0,00	-,			-,	0,000				0,00-
1	1,074	1,323	1,642	2,706	3,841	5,024	5,412	6,635	7,879	10,827
2	2,408	2,773	3,219	4,605	5,991	7,378	7,824	9,210	10,597	13,815
3	3,665	4,108	4,642	6,251	7,815	9,348	9,837	11,345	12,838	16,268
4	4,878	5,385	5,989	5,779	9,488	11,143	11,668	13,277	14,860	18,465
5	6,064	6,626	7,289	9,236	11,070	12,832	13,388	15,086	16,750	20,517
	- ,	- , -	.,	-,	,	,	-,	-,	-,	- /
6	7,231	7,841	8,558	10,645	12,592	14,449	15,033	16,812	18,548	22,457
7	8,383	9,037	9,803	12,017	14,067	16,013	16,622	18,475	20,278	24,322
8	9,524	10,219	11,030	13,362	15,507	17,535	18,168	20,090	21,955	26,125
9	10,656	11,389	12,242	14,684	16,919	19,023	19,679	21,666	23,589	27,877
10	11,781	12,549	13,442	15,987	18,307	20,483	21,161	23,209	25,188	29,588
11	12,899	13,701	14,631	17,275	19,675	21,920	22,618	24,725	26,757	31,264
12	14,011	14,845	15,812	18,549	21,026	23,337	24,054	26,217	28,300	32,909
13	15,119	15,984	16,985	19,812	22,362	24,736	25,472	27,688	29,819	34,528
14	16,222	17,117	18,151	21,064	23,685	26,119	26,873	29,141	31,319	36,123
15	17,322	18,245	19,311	22,307	24,996	27,488	28,259	30,578	32,801	37,697
16	18,418	19,369	20,465	23,542	26,296	28,845	29,633	32,000	34,267	39,252
17	19,511	20,489	21,615	24,769	27,587	30,191	30,995	33,409	35,718	40,790
18	20,601	21,605	22,760	25,989	28,869	31,526	32,346	34,805	37,156	42,312
19	21,689	22,718	23,900	27,204	30,144	32,852	33,687	36,191	$38,\!582$	43,820
20	22,775	23,828	25,038	28,412	31,410	34,170	35,020	37,566	39,997	45,315
21	23,858	24,935	26,171	29,615	32,671	35,479	36343	38,932	41,401	46,797
22	24,939	26,039	27,301	30,813	33,924	36,781	37,659	40,289	42,796	48,268
23	26,018	27,141	28,429	32,007	35,172	38,076	38,968	41,638	44,181	49,728
24	27,096	28,241	29,553	33,196	36,415	39,364	40,270	42,980	45,558	51,179
25	28,172	29,339	30,675	34,382	37,652	40,646	$41,\!566$	44,314	46,928	52,620
26	29,246	30,434	31,795	35,563	38,885	41,923	42,856	45,642	48,290	54,052
27	30,319	31,528	32,912	36,741	40,113	43,194	44,140	46,963	49,645	55,476
28	31,391	32,620	34,027	37,916	41,337	44,461	45,419	48,278	50,993	56,893
29	32,461	33,711	35,139	39,087	42,557	45,722	46,693	49,588	52,336	58,302
30	33,530	34,800	36,250	40,256	43,773	46,979	47,962	50,892	53,672	59,703
31				41,422	44,985	48,231		52,190	55,000	
32				42,585	46,194	49,480		$53,\!486$	56,328	
33				43,745	47,400	50,724		54,774	57,646	
34				44,903	48,602	51,966		56,061	58,964	
35				46,059	49,802	53,203		57,340	60,272	
				45 016	FO 00 0	F 4 40=		FO 616	01 501	
36				47,212	50,998	54,437		58,619	61,581	
37				48,363	52,192	55,667		59,891	62,880	
38				49,513	53,384	56,896		61,162	64,181	
39				50,660	54,572	58,119		62,426	65,473	
40				51,805	55,758	59,342		63,691	66,766	

A.6 Valores críticos para la distribución F

(a) Valores críticos $F_{\alpha}(\nu_1,\nu_2)$ para $\alpha=0,05$

					ν_1				
ν_2	1	2	3	4	5	6	7	8	9
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5
2	18,51	19,00	19,16	19,25	19,30	19,33	$19,\!35$	19,37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	$5,\!59$	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
40		0.04	0.44	0.40	0.00	2.02	2.00		o =
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42
20	4,35	3,49	3,10	2,80 $2,87$	2,74 $2,71$	2,60	2,54 $2,51$	2,45	2,39
21	4,32	3,49 $3,47$	3,10 $3,07$	2,84	2,71 $2,68$	2,50 $2,57$	2,31 $2,49$	2,43 $2,42$	2,33
22	4,32 $4,30$	3,44	3,05	2,84 $2,82$	2,66	2,57 $2,55$	2,49 $2,46$	2,42 $2,40$	2,34
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32
24	4,26	3,40	3,01	2,78	2,62	2,50 $2,51$	2,42	2,36	2,30
24	4,20	0,40	0,01	2,10	2,02	2,01	2,42	2,50	2,00
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21
		•	•	•	•	•	•	•	·
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04
120	3,92	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88

A.6. Valores críticos para la distribución F

(b) Valores críticos $F_{\alpha}(\nu_1, \nu_2)$ para $\alpha = 0,05$

					ν_1					
ν_2	10	12	15	20	24	30	40	60	120	∞
1	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
2	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	4,06	4,00	3,94	3,87	384	3,81	3,77	3,74	3,70	3,67
	1,00	1,00	0,01	0,01	501	0,01	0,11	5,11	0,10	0,01
7	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	2,98 $2,85$	2,91 $2,79$	2,85 $2,72$	$\frac{2,77}{2,65}$	2,74 $2,61$	2,70 $2,57$	2,00 $2,53$	2,02 $2,49$	2,38 $2,45$	2,54 $2,40$
12	2,85 $2,75$	2,79	2,72 $2,62$	2,03 $2,54$	2,51	2,37 $2,47$	2,33 $2,43$	2,49 $2,38$	2,45 $2,34$	2,40 $2,30$
12	2,15	2,09	2,02	2,04	2,51	2,41	2,40	2,30	2,54	2,30
13	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
1.0	0.40	0.40	0.05	2.20	2.24	0.10	0.15	0.11	0.00	2.01
16	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	2,30 $2,27$	2,23 $2,20$	2,13 $2,13$	2,07	2,03	1,96	1,94	1,86	1,84	1,76
24	2,27	2,20	2,13 $2,11$	2,03	1,98	1,94	1,89	1,84	1,79	1,73
24	2,20	2,10	2,11	2,00	1,30	1,34	1,03	1,04	1,73	1,75
25	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
26	2,22	2,15	2,07	1,99	1,95	1,90	1,85	1,80	1,75	1,69
27	2,20	2,13	2,06	1,97	1,93	1,88	1,84	1,79	1,73	1,67
0.0	0.10	0.10	0.01	1.00	1.01		1 00	,		1 0=
28	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
29	2,18	2,10	2,03	1,94	1,90	1,85	1,81	1,75	1,70	1,64
30	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,62
40	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,51
60	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
		•	•	*	•	•	*	*	*	*
120	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00

(c) Valores críticos $F_{\alpha}(\nu_1, \nu_2)$ para $\alpha = 0, 01$

					ν_1				
ν_2	1	2	3	4	5	6	7	8	9
1	4052	4999,5	5403	5625	5764	5859	5928	5981	6022
2	98,50	99,00	99,17	99,25	99,30	99,33	99,36	99,37	99,39
3	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27,35
4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66
5	16,26	13,27	12,06	11,39	10,92 $10,97$	10,21 $10,67$	10,46	10,29	10,16
6	13,75	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98
	10,10	10,02	0,10	0,10	0,10	0,11	0,20	0,10	1,00
7	12,25	9,55	8,45	7,85	7,46	7,19	6,99	6,84	6,72
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91
9	10,56	8,02	6,99	$6,\!42$	6,06	5,80	5,61	5,47	5,35
10	10.04	7 50	e ee	F 00	E 64	F 20	F 20	E 06	4.04
10 11	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94
12	9,65	7,21	6,22	5,67	5,32	5,07	4,89	4,74	4,63
12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,39
13	9,07	6,70	5,74	5,21	4,86	4,62	4,44	4,30	4,19
14	8,86	6,51	5,56	5,04	4,69	4,46	4,28	4,14	4,03
15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89
16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3,78
17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68
18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60
19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52
20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,46
21	8,02	5,78	4,87	4,37	4,04	3,81	3,64	3,51	3,40
22	7,95	5,72	4,82	4,31	3,99	3,76	3,59	3,45	3,35
23	7,88	5,66	4,76	4,26	3,94	3,71	$3,\!54$	3,41	3,30
24	7,82	5,61	4,72	4,22	3,90	3,67	3,50	3,36	3,26
25	7,77	5,57	4,68	4,18	3,85	3,63	3,46	3,32	3,22
26	7,72	5,53	4,64	4,14	3,82	3,59	3,42	3,29	3,18
27	7,68	5,49	4,60	4,11	3,78	3,56	3,39	3,26	3,15
	.,00	0,10	1,00	1,11	3,.0	3,30	3,30	0,20	3,13
28	7,64	5,45	4,57	4,07	3,75	3,53	3,36	3,23	3,12
29	7,60	5,42	4,54	4,04	3,73	3,50	3,33	3,20	3,09
30	7,56	5,39	4,51	4,02	3,70	3,47	3,30	3,17	3,07
40	7 91	E 10	4 91	9 0 9	9 51	2 20	9 10	2.00	2 00
60	7,31	5,18	4,31	3,83	3,51	3,29	3,12	2,99	2,89
00	7,08	4,98	4,13	3,65	3,34	3,12	2,95	2,82	2,72
120	6,85	4,79	3,95	3,48	3,17	2,96	2,79	2,66	2,56
∞	6,63	4,61	3,78	3,32	3,02	2,80	2,64	2,51	2,41
		•	•	•	•	•	•	•	•

(d) Valores críticos $F_{\alpha}(\nu_1, \nu_2)$ para $\alpha = 0, 01$

					ν_1					
ν_2	10	12	15	20	24	30	40	60	120	∞
1	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	99,40	99,42	99,43	99,45	99,46	99,47	99,47	99,48	99,49	99,50
3	27,23	27,05	26,87	26,69	26,60	26,50	26,41	26,32	26,22	26,13
4	14,55	14,37	14,20	14,02	13,93	13,84	13,75	13,65	13,56	13,46
5	10,05	9,89	9,72	9,55	9,47	9,38	9,29	9,20	9,11	9,02
6	7,87	7,72	$7,\!56$	7,40	7,31	7,23	7,14	7,06	6,97	6,88
7	6,62	6,47	6,31	6,16	6,07	5,99	5,91	5,82	5,74	5,65
8	5,81	5,67	5,52	$5,\!36$	5,28	5,20	5,12	5,03	4,95	4,86
9	5,26	5,11	4,96	4,81	4,73	4,65	$4,\!57$	4,48	4,40	4,31
	4.05		4 = 0		4.00	4.05		4.00	4.00	0.01
10	4,85	4,71	4,56	4,41	4,33	4,25	4,17	4,08	4,00	3,91
11	4,54	4,40	4,25	4,10	4,02	3,94	3,86	3,78	3,69	3,60
12	4,30	4,16	4,01	3,86	3,78	3,70	3,62	3,54	3,45	3,36
13	4,10	3,96	3,82	3,66	3,59	3,51	9 49	3,34	3,25	9 17
14	,	3,80	,	3,50	,	,	3,43 3,27	,	3,29	3,17
15	3,94 3,80	3,60	$3,66 \\ 3,52$	3,37	3,43 3,29	3,35 3,21	3,27 $3,13$	3,18 3,05	2,96	3,00 2,87
1.0	3,00	5,07	5,52	5,57	5,29	5,21	5,15	3,05	2,90	2,01
16	3,69	3,55	3,41	3,26	3,18	3,10	3,02	2,93	2,84	2,75
17	3,59	3,46	3,31	3,16	3,08	3,00	2,92	2,83	2,75	2,65
18	3,51	3,37	3,23	3,08	3,00	2,92	2,84	2,75	2,66	2,57
	-,	-,	-,	0,00	-,	-,	_,	-,	_, -, -	_, -, -
19	3,43	3,30	3,15	3,00	2,92	2,84	2,76	2,67	2,58	2,49
20	3,37	3,23	3,09	2,94	2,86	2,78	2,69	2,61	2,52	2,42
21	3,31	3,17	3,03	2,88	2,80	2,72	2,64	2,55	2,46	2,36
22	3,26	3,12	2,98	2,83	2,75	2,67	2,58	2,50	2,40	2,31
23	3,21	3,07	2,93	2,78	2,70	2,62	$2,\!54$	2,45	2,35	2,26
24	3,17	3,03	2,89	2,74	2,66	2,58	2,49	2,40	2,31	2,21
25	3,13	2,99	2,85	2,70	2,62	2,54	2,45	2,36	$2,\!27$	2,17
26	3,09	2,96	2,81	2,66	2,58	2,50	2,42	2,33	2,23	2,13
27	3,06	2,93	2,78	2,63	2,55	2,47	2,38	2,29	2,20	2,10
0.0	9.00	0.00	0.75	0.00	0.50	0.44	0.05	0.00	0.17	0.00
28	3,03	2,90	2,75	2,60	2,52	2,44	2,35	2,26	2,17	2,06
29	3,00	2,87	2,73	2,57	2,49	2,41	2,33	2,23	2,14	2,03
30	2,98	2,84	2,70	2,55	2,47	2,39	2,30	2,21	2,11	2,01
40	2,80	2,66	2,52	2,37	2,29	2,20	2,11	2,02	1,92	1,80
60	2,63	2,50	2,32 $2,35$	2,37 $2,20$	2,29 $2,12$	2,20	1,94	1,84	1,92 $1,73$	1,60
	2,00	2,00	2,00	2,20	2,12	2,00	1,04	1,04	1,10	1,00
120	2,47	2,34	2,19	2,03	1,95	1,86	1,76	1,66	1,53	1,38
∞	2,32	2,34 $2,18$	2,13 $2,04$	1,88	1,79	1,70	1,59	1,47	1,33 $1,32$	1,00
	,,,	-,	-,~-	1,00	-,	-,	1,00	-,	-,o -	-,00
	l									

A.7 Resumen de distribuciones muestrales, intervalos de confianza y pruebas de hipótesis

Tabla A.1: Distribución de la media muestral

	¿FORMA DE LA	ξ ES σ ²	¿TAMAÑO DE	¿DISTRIBUCIÓN	¿Z Ó t?
	POBLACIÓN?	CONOCIDA?	LA MUESTRA?	MUESTRAL?	
1.	Normal	Sí	No importa	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
2.		No	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
3.			Pequeño	t de Student,	
			(n < 30)	$\nu = n - 1$	$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
				grados de libertad	, ,
4.	No normal o desconocida	Sí	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
5.			Pequeño	Callejón sin	
			(n < 30)	salida	
6.		No	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
7.			Pequeño $(n < 30)$	Callejón sin salida	

 $Tabla\ A.2:\ Distribución\ de la proporción\ muestral\ y\ de la diferencia de proporciones muestrales$

	¿ESTADÍSTICO?	¿SUPUESTO?	¿DISTRIBUCIÓN MUESTRAL?	¿Z?
1.	Proporción	$n \ge 30$	Normal	$Z = \frac{\overline{p} - p}{\sqrt{p(1-p)}}$
2.	muestral	$np \ge 5, n(1-p) \ge 5$	Normal	$\sqrt{\frac{n}{n}}$
3.	Diferencia de proporciones	$n_1 \ge 30, n_2 \ge 30$	Normal	$Z = \frac{(\overline{p}_1 - \overline{p}_2) - (p_1 - p_2)}{\sqrt{(\overline{p}_1 - \overline{p}_2)}}$
4.	muestrales	$n_1 p_1 \ge 5, \ n_1 (1 - p_1) \ge 5,$ $n_2 p_2 \ge 5, \ n_2 (1 - p_2) \ge 5$	Normal	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

Tabla A.3: Distribución de la diferencias de medias muestrales

	¿FORMA DE LAS POBLA- CIONES?		$ i$ SON σ_1^2 y $ \sigma_2^2 \text{ IGUA-} $ LES?	¿TAMAÑO DE AMBAS MUESTRAS?	¿DISTRIBUCIÓN MUESTRAL?	¿Z Ó t?
1.	No normal	Sí	No importa	Grandes	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
				$n_1 \ge 30, \\ n_2 \ge 30$		γ I 2
2.		No	No importa	Grandes	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{s_1^2} + \frac{s_2^2}{s_2^2}}}$
				$n_1 \ge 30, n_2 \ge 30$		V "1 "2
3.	Normal	Sí	No importa	No importa	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
4.		No	Si	Pequeño	t de Student con	$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}},$
				$n_1 < 30,$ $n_2 < 30$	$\nu = n_1 + n_2 - 2$ grados de libertad	$s^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}$
5.			No	Pequeño $n_1 < 30,$	$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1} + \frac{(s_2^2/n_2)^2}{n_2}}$	$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
				$n_2 < 30$	n_1-1 n_2-1 (redondear al entero más cercano)	$\sqrt{\frac{n_1}{n_1}+n_2}$

Tabla A.4: Distribución de la varianza muestral y de la razón de varianzas muestrales

	¿ESTADÍSTICO?	¿FORMA DE LA	¿DISTRIBUCIÓN	$\xi \chi^2 \circ F$?
		POBLACIÓN?	MUESTRAL?	
1.	Varianza	Normal	Chi-cuadrada con	
	muestral		$\nu = n - 1$ grados de libertad	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$
2.	Razón de varianzas muestrales	Ambas normales	F de Fisher con $ u_1 = n_1 - 1, \nu_2 = n_2 - 1 $ grados de libertad	$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ Regla: $F_{1-\alpha}(a,b) = \frac{1}{F_{\alpha}(b,a)}$

Tabla A.5: Intervalos de confianza para la media poblacional $\,$

	¿FORMA DE LA	ξES $σ$ ²	¿TAMAÑO DE	¿DISTRIBUCIÓN	¿INTERVALO DE
	POBLACIÓN?	CONOCIDA?	LA MUESTRA?	MUESTRAL?	CONFIANZA?
1.	Normal	Sí	No importa	Normal	$\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
2.		No	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{s}{\sqrt{n}}$
3.			Pequeño $(n < 30)$	t de Student, $\nu = n - 1$ grados de libertad	$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$
4.	No normal o	Sí	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
5.	desconocida		Pequeño $(n < 30)$	Callejón sin salida	
6.		No	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{s}{\sqrt{n}}$
7.			Pequeño $(n < 30)$	Callejón sin salida	

Tabla A.6: Intervalos para la proporción poblacional y para la diferencia de proporciones poblacionales

	¿ESTADÍS-	¿SUPUESTOS?	¿DISTR.	¿INTERVALO DE
	TICO?		MUESTRAL?	CONFIANZA?
1.	Proporción	$n \ge 30$	Normal	$\overline{p} - Z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
2.	muestral	$np \geq 5$,	Normal	$p - Z_{\alpha/2}\sqrt{\frac{\alpha}{n}}$
		$n(1-p) \ge 5$		
3.	Diferencia de	$n_1 \ge 30$,	Normal	
	proporciones	$n_2 > 30$		$(\overline{p}_1 - \overline{p}_2) - Z_{\alpha/2} \sqrt{\frac{\overline{p}_1(1 - \overline{p}_1)}{p_1} + \frac{\overline{p}_2(1 - \overline{p}_2)}{p_2}} < p_1 - p_2 < 0$
	muestrales	$n_2 \geq 50$		$(p_1 p_2) Z_{\alpha/2} \bigvee n_1 \mid n_2 \langle p_1 p_2 \rangle \langle p_1 p_2 \rangle$
	muestrares			
4.		$n_1p_1 \ge 5,$	Normal	$<(\overline{p}_1-\overline{p}_2)+Z_{lpha/2}\sqrt{rac{\overline{p}_1(1-\overline{p}_1)}{n_1}}+rac{\overline{p}_2(1-\overline{p}_2)}{n_2}$
		$n_1(1-p_1) \ge 5,$		· ·
		$n_2p_2 \ge 5,$		
		$n_2(1-p_2) \ge 5$		

Tabla A.7: Intervalos de confianza para la diferencias de medias poblacionales $\,$

	¿FORMA DE LAS POBLA- CIONES?			¿TAMAÑO DE LAS MUES- TRAS?	¿DISTRIBUCIÓN MUESTRAL?	¿INTERVALO DE CONFIANZA? (AQUÍ: $\theta := \mu_1 - \mu_2$)
1.	No normal	Sí	No importa	Grandes $(n_1 \ge 30, \\ n_2 \ge 30)$	Normal	$(\overline{x}_{1} - \overline{x}_{2}) - Z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} < \theta < (\overline{x}_{1} - \overline{x}_{2}) + Z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$
2.		No	No importa	Grandes $(n_1 \ge 30, \\ n_2 \ge 30)$	Normal	$(\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \theta < < (\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
3.	Normal	Sí	No importa	No importa	Normal	$(\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \theta <$ $< (\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
4.		No	Si	Pequeño $(n_1 < 30, n_2 < 30)$	t de Student con $ u = n_1 + n_2 - 2$ grados de libertad	$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}} < \theta <$ $< (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}},$ $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
5.			No	Pequeño $(n_1 < 30, \\ n_2 < 30)$	$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$ (redondear al en- (tero más cercano)	$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \theta <$ $< (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Tabla A.8: Intervalos para la varianza poblacional y para la razón de varianzas poblacionales

	¿ESTADÍS-	¿FORMA DE LA	¿DISTRIBUCIÓN	¿INTERVALO DE
	TICO?	POBLACIÓN?	MUESTRAL?	CONFIANZA?
1.	Varianza	Normal	Chi-cuadrada con	
	muestral		$\nu = n - 1$	$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2}}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2}}}$
			grados de libertad	2
2.	Razón de varianzas muestrales	Ambas normales	F de Fisher con $ u_1 = n_1 - 1, \nu_2 = n_2 - 1 $ grados de libertad	$\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{F_{\frac{\alpha}{2}}(\nu_{1},\nu_{2})} < \frac{\sigma_{1}^{2}}{\sigma^{2}} < \frac{s_{1}^{2}}{s_{2}^{2}} \cdot F_{\frac{\alpha}{2}}(\nu_{2},\nu_{1})$ Regla: $F_{1-\alpha}(a,b) = \frac{1}{F_{\alpha}(b,a)}$