

01. 프로젝트 개요

02. 프로젝트 팀 구성 및 역할

03. 프로젝트 수행절차 및 방법

04. 프로젝트 수행 경과

05. 자체 평가 의견

06. 마무리

01-1. 프로젝트 개요

30~40대 당뇨병 인지ㆍ치료ㆍ조절 낮아 관리 필요

당뇨병 유병자 인지 • 치료는 지속 개선…조절 수준은 정체

첨부1) https://www.yakup.com/news/index.html?mode=view&cat=11&nid=288779 첨부2) 대한당뇨병학회

01

프로젝트 선정 이유

- 20대~40대 젊은 층에서 당뇨병 환자 증가
- 당뇨병 주요 영향 요인 분석 및 위험도 예측
- 조기 인지 및 치료 지원으로 예방과 건강 증진 목표

01-2. 프로젝트 개요

01

프로젝트 내용

- 머신러닝 기반 당뇨병 예측 및 시각화
- 예측 유형: 이진 분류 (0: 비당뇨, 1: 당뇨)

02

활용 장비 및 재료

- Python
- Pandas, Scikit-learn,
 XGBoost,
 RandomForest,
 Streamlit 등

03

프로젝트 구조

- 의료현장 지원을 위한 조기 예측 도구 구축 목적
- 의료 데이터를 기반으로 당뇨병 유무 예측

02. 프로젝트 팀 구성 및 역할

박주호 김정현

임현주

팀장

- 데이터 수집
- 전처리 및 모델 학습
- PPT 작성

팀원

- 데이터 수집
- 전처리 및 모델 학습
- PPT 작성

팀원

- 데이터 수집
- 전처리 및 모델 학습
- PPT 작성

03. 프로젝트 수행 절차 및 방법

프로젝트 사전 기획 및 수행 과정

	4/2 ~ 5/2	5/2 ~ 5/9	비고
사전 기획			주제 선정
데이터 수집			데이터 선정
데이터 전처리			데이터 정제 및 정규화
모델링			모형 구현
서비스 구축			최적화 오류 수정
발표 자료 작성			PPT 작성

04. 프로젝트 수행 경과

데이터 수집

• Kaggle 데이터셋 수집

데이터 전처리

- 결측치/이상치 처리
- 범주형 변환, 파생 변수 생성
- 특성 스케일링

탐색적 데이터 분석 (EDA)

- 당뇨병 유무에 따른 변수 차이 분석
- 상관관계 히트맵

모델 정확도 향상

- 데이터 수준
- 모델링 수준
- 피처 엔지니어링 수준

모델 평가 및 비교

• 결과 비교표

Streamlit 활용

• 웹 배포

04. 프로젝트 수행 경과 데이터 수집

- 출처: Kaggle (Diabetes Dataset 기반)
- 샘플 수: 10,000개 (원본 100,000개 중 일부 발췌)
- 분석 목적: 당뇨병 예측을 위한 주요 건강 지표 분석

import pandas as pd
data = pd.read_csv("diabest_cut.csv")

04. 프로젝트 수행 경과 데이터 수집

설명
환자의 나이 (세)
체질량지수 (BMI = kg/m²), 비만 여부 판단 지표
당화혈색소 수치 (%), 3개월 평균 혈당을 반영하는 지표
혈당 수치 (mg/dL), 당뇨 진단 및 관리에 사 용 됨
고혈압 여부 (0: 없음, 1: 있음)
심장병 병력 여부 (0: 없음, 1: 있음)
흡연 이력 (never, former, current 등 → 수치형으로 인코딩됨)
성별 (0: 여성, 1: 남성 등으로 인코딩됨)
당뇨병 여부 (0: 비당뇨, 1: 당뇨)

04. 프로젝트 수행 경과 데이터 전처리

결측값 처리

- bmi, age 변수에 평균값으로 대체
- 결측치로 인한 학습 오류 방지

```
data['bmi'] = data['bmi'].fillna(data['bmi'].mean())
data['age'] = data['age'].fillna(data['age'].mean())
```

범주형 변수 인코딩

- gender, smoking_history → Label Encoding
- 문자열을 수치형으로 변환하여 모델 학습 가능하게 함

```
le = LabelEncoder()
data['gender'] = le.fit_transform(data['gender'])
data['smoking_history'] = le.fit_transform(data['smoking_history'])
```

04. 프로젝트 수행 경과 데이터 전처리

파생 변수 생성

- diabetes_risk: BMI≥30 또는 HbA1c≥6.5 → 당뇨 고위험
- high_glucose_risk: 혈당 ≥180 → 고혈당 위험

```
data['diabetes_risk'] =
  ((data['bmi'] >= 30) | (data['HbA1c_level'] >= 6.5)).astype(int)
  data['high_glucose_risk'] =
  (data['blood_glucose_level'] >= 180).astype(int)
```

04. 프로젝트 수행 경과 발생에에

상관 관계 분석 (히트맵)

```
plt.figure(figsize=(12, 10))
corr_matrix = data.corr()
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f",
linewidths=0.5)
plt.title("변수 간 상관관계 히트맵")
plt.show()
```

04. 프로젝트 수행 경과 탈색(EDA)

상관 관계 분석 (당뇨병 여부)

- BMI(0.22)는 약한 상관 관계를 보이지만, 비만일 수록 당뇨병 발생과 관련이 깊음
- HbA1c_level(0.42)는 높은 상관 관계
- **혈당 수치(0.42)**와 높은 상관관계
- 연령(0.25)은 다른 변수들과 약한 상관 관계를 보이지만, 나이가 들수록 당뇨 위험이 증가하는 경향으로 보임

04. 프로젝트 수행 경과 탈색(태양)

당뇨병 유무에 따른 BMI 분포 (막대그래프)

```
plt.figure(figsize=(8, 6))
sns.barplot(x='diabetes', y='bmi', data=data, palette="Set2")
plt.title("당뇨병 유무에 따른 BMI 차이")
plt.xlabel("당뇨 여부 (0: 비당뇨, 1: 당뇨)")
plt.ylabel("BMI 평균")
plt.show()
```

04. 프로젝트 수행 경과 발생에에

당뇨병 유무에 따른 BMI 분석 결과

- BMI가 32(kg/m²) 이상인 사람들의 평균이 당뇨병 유무가 1인 그룹에서 더 높게 나타남
- BMI가 32(kg/m²) 이상인 사람일수록 당뇨병에 걸릴 확률이 높다는 의미

04. 프로젝트 수행 경과 발생에의

당뇨병 유무에 따른 HbA1c_level 분포 (막대그래프)

```
plt.figure(figsize=(8, 6))
sns.barplot(x='diabetes', y='HbA1c_level', data=data, palette="Set2")
plt.title("당뇨병 유무에 따른 HbA1c_level 차이")
plt.xlabel("당뇨 여부 (0: 비당뇨, 1: 당뇨)")
plt.ylabel("HbA1c_level 평균")
plt.show()
```

04. 프로젝트 수행 경과 발생에에

당뇨병 유무에 따른 HbA1c 분석 결과

- HbA1c가 6.99(%) 이상인 사람들의 평균이 당뇨병 유무가 1인 그룹에서 더 높게 나타남
- HbA1c가 6.99(%) 이상인 사람일수록 당뇨병에 걸릴 확률이 높다는 의미

04. 프로젝트 수행 경과 발생에 병

당뇨병 유무에 따른 blood_glucose_level 분포 (막대그래프)

```
plt.figure(figsize=(8, 6))
sns.barplot(x='diabetes', y='blood_glucose_level', data=data, palette="Set2")
plt.title("당뇨병 유무에 따른 혈당 수치(blood_glucose_level) 차이")
plt.xlabel("당뇨 여부 (0: 비당뇨, 1: 당뇨)")
plt.ylabel("혈당 수치 평균")
plt.show()
```

04. 프로젝트 수행 경과 발생에에

당뇨병 유무에 따른 blood_glucose_level 분석 결과

- 혈당 수치가 166.06(mg/dL) 이상인 사람들의 평균이 당뇨병 유무가 1인 그룹에서 더 높게 나타남
- 혈당 수치가 166(mg/dL) 이상인 사람일수록 당뇨병에 걸릴 확률이 높다는 의미

04. 프로젝트 수행 경과 발생에에

당뇨병 유무에 따른 age 분포 (막대그래프)

```
plt.figure(figsize=(8, 6))
sns.barplot(x='diabetes', y='age', data=data, palette="Set2")
plt.title("당뇨병 유무에 따른 나이 차이")
plt.xlabel("당뇨 여부 (0: 비당뇨, 1: 당뇨)")
plt.ylabel("나이 평균")
plt.show()
```

04. 프로젝트 수행 경과 발생에에 보이다.

당뇨병 유무에 따른 age 분석 결과

- 연령대가 60세 이상인 사람들의 평균이 당뇨병 유무가 1인 그룹에서 더 높게 나타남
- 연령대가 60세 이상인 사람일수록 당뇨병에 걸릴 확률이 높다는 의미

모델 정확도 개선 전 데이터 준비

• 특성과 타겟 분리

```
X = data.drop(columns=['diabetes'])
y = data['diabetes']
```

• 데이터 분할

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

데이터 수준

• 스케일링

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

• 클래스 불균형 해결

```
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train_scaled, y_train)
```

모델링 수준

• 로지스틱 회귀 (Logistic Regression)

log_model = LogisticRegression(max_iter=1000, random_state=42)

• 랜덤 포레스트 (Random Forest)

rf_model = RandomForestClassifier(random_state=42)

XGBoost (eXtreme Gradient Boosting)

xgb_model = XGBClassifier(random_state=42)

모델링 수준

• 교차 검증

```
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
for model, name in zip([log_model, rf_model, xgb_model], ['Logistic', 'Random Forest',
'XGBoost']):
  scores = []
  for train_idx, val_idx in skf.split(X_train_resampled, y_train_resampled):
     model.fit(X_train_resampled[train_idx], y_train_resampled[train_idx])
     pred = model.predict(X_train_resampled[val_idx])
     acc = accuracy_score(y_train_resampled[val_idx], pred)
     scores.append(acc)
```

모델링 수준

• 하이퍼파라미터 튜닝(GridSearchCV)

```
param_grid = {'n_estimators': [100, 200], 'max_depth': [3, 5, 7]}
grid = GridSearchCV(rf_model, param_grid, cv=3, scoring='accuracy')
grid.fit(X_train_resampled, y_train_resampled)
```

모델링 수준

앙상블 모델 활용 (Voting)

• 앙상블 모델 활용 (Stacking)

```
stacking = StackingClassifier(
        estimators=[('lr', log_model),
        ('rf', grid.best_estimator_)],
        final_estimator=XGBClassifier
        (random_state=42), cv=3)
stacking.fit(X_train_resampled,
y_train_resampled)
stack_pred = stacking.predict(X_test_scaled)
```

피처 엔지니어링 수준

• 상관성 낮은 변수 제거

```
corr_matrix = data.corr()
low_corr_features = corr_matrix['diabetes'][abs(corr_matrix['diabetes'])
< 0.05].index.tolist()
print("제거된 변수:", low_corr_features)
data_reduced = data.drop(columns=low_corr_features)
```

• 결과

제거된 변수: ['gender']

04. 프로젝트 수행 경과 모델평가및비교

모델별 정확도 (Accuracy)

• XGBoost의 정확도가 가장 높은 것을 알 수있음

04. 프로젝트 수행 경과 모델평가및비교

성능 요약 보고서 (classification_report)

로	지스틱 회국	1				랜덤 포레스트	<u>=</u>				XGBoost				
		precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
	비당뇨	0.992	0.903	0.945	1836.000	비당뇨	0.979	0.981	0.980	1836.000	비당뇨	0.978	0.987	0.983	1836.000
	당뇨	0.457	0.915	0.610	164.000	당뇨	0.781	0.762	0.772	164.000	당뇨	0.844	0.756	0.797	164.000
	accuracy	0.904	0.904	0.904	0.904	accuracy	0.963	0.963	0.963	0.963	accuracy	0.968	0.968	0.968	0.968
	macro avg	0.724	0.909	0.778	2000.000	macro avg	0.880	0.872	0.876	2000.000	macro avg	0.911	0.872	0.890	2000.000
W	eighted avg	0.948	0.904	0.918	2000.000	weighted avg	0.963	0.963	0.963	2000.000	weighted avg	0.967	0.968	0.968	2000.000

• 당뇨 예측 성능에서는 랜덤 포레스트와 XGBoost가 우수하며, 로지스틱 회귀는 당뇨 예측에서 성능이 떨어짐

04. 프로젝트 수행 경과 모델평가및비교

혼동 행렬 (confusion_matrix)

• 비당뇨 예측에서는 모든 모델이 높은 정확도를 보였고, 특히 XGBoost가 당뇨 예측에서 가장 우수한 성능을 나타냄

04. 프로젝트 수행 경과

Streamlit 앱 개발

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

'비당뇨'인 사용자 데이터

'**당뇨**'인 사용자 데이터

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

데이터 탐색 예측 결과 모델 성능 인사이트 요약

📊 데이터 탐색 (EDA)

데이터 샘플

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_
0	0	80	0	1	2	25.19	6.6	
1	0	54	0	0	2	27.32	6.6	
2	1	28	0	0	2	27.32	5.7	
3	0	36	0	0	0	23.45	5	
4	1	76	1	1	0	20.14	4.8	

EDA 설명

- 이 섹션에서는 각 변수의 분포를 살펴보고, 데이터 간 상관 관계를 분석하여 당뇨병의 위험 요인을 이해합니다.
- 데이터의 주요 변수에 대한 시각화 및 인사이트를 제공합니다.

 ☑ 변수별 시각화 보기
 ✓

 ☑ 변수별 시각화 보기
 ✓

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

비당뇨 사용자 입력 데이터 결과

XGBoost 모델이 비당뇨를 정확하게 예측

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

당뇨 사용자 입력 데이터 결과

모든 모델이 당뇨를 정확하게 예측

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

ROC 곡선 결과 해석

빨간 선(AUC)이 1에 가까울수록 우수한 모델임을 나타내는데 위 그래프의 AUC는 0.9759로 거의 완벽에 가까운 분류 능력을 보여줌

sidebar: 사용자 입력

탭 1: 데이터 탐색

탭 2: 예측 결과

탭 3: 모델 성능 시각화

탭 4: 인사이트 및 요약

📊 당뇨 예측 시스템

데이터 탐색 예측 결과 모델 성능 인사이트 요약

Q 인사이트 요약

- HbA1c 수치, BMI, 혈당 수치가 높을수록 당뇨 확률이 증가합니다.
- **흡연 이력**은 간접적으로 당뇨와 관련이 있을 수 있습니다.
- XGBoost 모델이 전반적으로 가장 높은 성능을 보였습니다.

04. 프로젝트 수행 경과

Streamlit 앱 시연

05. 자체 평가 의견

당화혈색소(HbA1c) 수치 예측 시스템 구축

당화혈색소 수치를 병원에 가지 않고도 쉽게 예측할 수 있도록, 비의료 환경에서도 활용 가능한 머신러닝 기반 모델을 추가로 구축하고자 함.

서비스 다각화 계획

당뇨병 예측 시스템 구축에 그치지 않고, 당뇨병과 밀접한 관련이 있는 고혈압, 심혈관질환 등 만성질환 예측 기능까지 확장하여, 통합적인 만성질환 관리 및 예방이 가능한 시스템으로 발전시키고자 함.

A

감사합니다

