数Ⅰ

図がと計画	
	- /

· 1 @

- 三角比 --- 三角形の大きさに関係なく、角度のの大きさだけで決まる辺の比 Sin (正弦)、cos (糸弦)、tan (正接)の3つがある。

三角比の表

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0.0000	1.0000	0.0000	45°	0.7071	0.7071	1.0000
1"	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355
2°	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724
3°	0.0523	0.9986	0.0524	48°	0.7431	0.6691	1.1106
4°	0.0698	0.9976	0.0699	49"	0.7547	0.6561	1.1504
5"	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918
6"	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799
8°	0.1392	0.9903	0.1405	53°	0.7986	0.6018	1.3270
9°	0.1564	0.9877	0.1584	54"	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399
13°	0.2250	0.9744	0.2309	58"	0.8480	0.5299	1.6003
14"	0.2419	0.9703	0.2493	59°	0.8572	0.5150	1.6643
15°	0.2588	0.9659	0.2679	60°	0.8660	0.5000	1.7321
16°	0.2756	0.9613	0.2867	61°	0.8746	0.4848	1.8040
17°	0.2924	0.9563	0.3057	62°	0.8829	0.4695	1.8807
18°	0.3090	0.9511	0.3249	63"	0.8910	0.4540	1.9626
19°	0.3256	0.9455	0.3443	64"	0.8988	0.4384	2.0503
20°	0.3420	0.9397	0.3640	65°	0.9063	0.4226	2.1445
21°	0.3584	0.9336	0.3839	66°	0.9135	0.4067	2.2460
22°	0.3746	0.9272	0.4040	67"	0.9205	0.3907	2.3559
23°	0.3907	0.9205	0.4245	68° 69°	0.9272	0.3746	2.4751
24°	0.4067	0.9135	0.4452	100000	0.9336	0.3584	2.6051
25°	0.4226	0.9063	0.4663	70°	0.9397	0.3420	2.7475
26°	0.4384	0.8988	0.4877 0.5095	71° 72°	0.9455	0.3256	2.9042 3.0777
27°	0.4540	0.8910 0.8829	0.5095	73*	0.9511	0.3090	3.0777
28° 29°	0.4848	0.8746	0.5543	74"	0.9563	0.2924	3.4874
30°	0.5000	0.8660	0.5774	75°	0.9659	0.2588	3.7321
31°	0.5150	0.8572	0.6009	76°	0.9703	0.2300	4.0108
31 32°	0.5150	0.8572	0.6009	77*	0.9703	0.2419	4.0108
32°	0.5299	0.8387	0.6494	78"	0.9744	0.2230	4.7046
34°	0.5592	0.8290	0.6745	79°	0.9816	0.1908	5.1446
35°	0.5736	0.8192	0.7002	80"	0.9848	0.1736	5,6713
36°	0.5878	0.8090	0.7265	81°	0.9877	0.1564	6.3138
37°	0.6018	0.7986	0.7536	82*	0.9903	0.1392	7.1154
38°	0.6157	0.7880	0.7813	83*	0.9925	0.1219	8.1443
39"	0.6293	0.7771	0.8098	84°	0.9945	0.1045	9.5144
40°	0.6428	0.7660	0.8391	85°	0.9962	0.0872	11.430
41°	0.6561	0.7547	0.8693	86°	0.9976	0.0698	14.300
42°	0.6691	0.7431	0.9004	87"	0.9986	0.0523	19.081
43°	0.6820	0.7314	0.9325	88"	0.9994	0.0349	28.636
44"	0.6947	0.7193	0.9657	89°	0.9998	0.0175	57.290
45°	0.7071	0.7071	1.0000	90°	1.0000	0.0000	なし

練習 次の旭で二、3 (1) sin 12° 次の値を三角比の表から求めよ。

(1)
$$\sin 12^{\circ}$$
 (2) $\cos 48^{\circ}$

$$(2)$$
 $\cos 48^\circ$

(1)
$$\sin \theta = \frac{2}{5} = 0.4$$
 (2) $\tan \theta = \frac{1}{2} = 0.5$
 $\theta = 24^{\circ}$ $\theta = 27^{\circ}$

地上からの高さ20mの地点Aで

地上の場所Bを見下ろしたら, そ の角は右の図のように水平面に対 して32°であった。Bは、Aの真 下の地点Cから何m離れているか。 1m未満を四捨五入して求めよ。

= 32,006

	1	•	~	_	

32 m

=	32		

.用	比	O)	表	

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0.0000	1.0000	0.0000	45°	0.7071	0.7071	1.0000
1"	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355
2"	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724
3°	0.0523	0.9986	0.0524	48°	0.7431	0.6691	1.1106
4"	0.0698	0.9976	0.0699	49°	0.7547	0.6561	1.1504
5"	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918
6"	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799
8°	0.1392	0.9903	0.1405	53"	0.7986	0.6018	1.3270
9°	0.1564	0.9877	0.1584	54"	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399
13°	0.2250	0.9744	0.2309	58	0.8480	0.5299	1.6003
14°	0.2419	0.9703	0.2493	59"	0.8572	0.5150	1.6643
15°	0.2588	0.9659	0.2679	60°	0.8660	0.5000	1.7321
16°	0.2756	0.9613	0.2867	61°	0.8746	0.4848	1.8040
17°	0.2924	0.9563	0.3057	62°	0.8829	0.4695	1.8807
18°	0.3090	0.9511	0.3249	63"	0.8910	0.4540	1.9626
19"	0.3256	0.9455	0.3443	64"	0.8988	0.4384	2.0503
20°	0.3420	0.9397	0.3640	65°	0.9063	0.4226	2.1445
21°	0.3584	0.9336	0.3839	66°	0.9135	0.4067	2.2460
22°	0.3746	0.9272	0.4040	67°	0.9205	0.3907	2.3559
23°	0.3907	0.9205	0.4245	68"	0.9272	0.3746	2.4751
24°	0.4067	0.9135	0.4452	69°	0.9336	0.3584	2.6051
25°		0.9063		70 71°			
26°	0.4384	0.8988	0.4877 0.5095	71 72°	0.9455	0.3256	2.9042 3.0777
27° 28°	0.4540	0.8829	0.5317	73*	0.9563	0.3090	3.2709
29	0.4848	0.8746	0.5543	74"	0.9503	0.2756	3.4874
30°	0.5000	0.8660	0.5774	75°	0.9659	0.2588	3.7321
31°	0.5150	0.8572	0.6009	76°	0.9703	0.2419	4.0108
32°	0.5299	0.8480	0.6249	77"	0.9744	0.2250	4.3315
33°	0.5446	0.8387	0.6494	78"	0.9781	0.2079	4.7046
34°	0.5592	0.8290	0.6745	79°	0.9816	0.1908	5.1446
35°	0.5736	0.8192	0.7002	80°	0.9848	0.1736	5.6713
36°	0.5878	0.8090	0.7265	81"	0.9877	0.1564	6.3138
37°	0.6018	0.7986	0.7536	82*	0.9903	0.1392	7.1154
38°	0.6157	0.7880	0.7813	83*	0.9925	0.1219	8.1443
39"	0.6293	0.7771	0.8098	84°	0.9945	0.1045	9.5144
40°	0.6428	0.7660	0.8391	85°	0.9962	0.0872	11.430
41°	0.6561	0.7547	0.8693	86°	0.9976	0.0698	14.300
42°	0.6691	0.7431	0.9004	87"	0.9986	0.0523	19.081
43°	0.6820	0.7314	0.9325	88"	0.9994	0.0349	28.636
44"	0.6947	0.7193	0.9657	89°	0.9998	0.0175	57.290
45°	0.7071	0.7071	1.0000	90°	1.0000	0.0000	なし

座標を用いた三角比の定義

右の図のように、座標平面上で、原点 〇を中心とする半径 r の半円をかき、こ

の半円とx軸の正の部分との交点をAと する。 $0^{\circ} \leq \theta \leq 180^{\circ}$ の範囲にある θ に対し

 $T. \angle AOP = \theta$ となる点Pをこの半円 上にとり、点Pの座標を(x, y)とする。

このとき、 θの三角比を次の式で定義 する。

$\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$

〈注意〉 $\theta = 90^{\circ}$ のときは x = 0 であるから, $\tan \theta \left(= \frac{y}{x} \right)$ は定義されない。し たがって、 $\tan \theta$ と書いたときには $\theta = 90^{\circ}$ であるものとする。

P(x, y)

P(x, y)

0°. 90°. 180° の三角比については、次のようになる。

θ	0°	90°	180°	y ,	
$\sin \theta$	sin 0°=0	sin 90°=1	sin 180°=0	90° (0), r)
$\cos \theta$	cos 0°=1	cos 90°=0	cos 180°=−1	180°	0°x
$\tan \theta$	tan 0°=0		tan 180°=0	(-r, 0) O	(r, 0)

次の角の正弦、余弦、正接の値を、下の図などを用いて求めよ。 練習 **11** (1) 135° (2) 150° r= にとると. r= $c \geq 3 \geq .$ 点Pの座標は「 点Pの座標は 150° (1) (2)

取習
$$0^\circ \le \theta \le 180^\circ$$
 とする。 $\sin \theta$, $\cos \theta$, $\tan \theta$ のうち、 1 つが次の値をとるとき、他の 2 つの値を求めよ。
$$(1) \cos \theta = -\frac{1}{3} \qquad (2) \tan \theta = -2$$

650<0 tonz sin 0 >0. tan 0 <0

$$\cos \theta = -\frac{1}{3} \qquad (2) \quad \tan \theta = -$$

sin 0 + cos 0= | F1)

 $\sin^2\theta + \left(-\frac{1}{3}\right)^2 = \frac{1}{3}$

sin 0 = 1 - 9

 $\sin^2\theta = \frac{8}{9}$

sin 0 > 0 =1

 $\sin \theta = \frac{2\sqrt{2}}{2}$

(1)

 $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$

 $\tan \theta = \frac{2\sqrt{2}}{3} : -2\sqrt{2}$ $-\frac{1}{3}$

 $\sin \theta = \frac{2\sqrt{2}}{3}$, $\tan \theta = -2\sqrt{2}$

 $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$

 $|+(-2)^2 = \frac{1}{\omega s^2 \theta}$

 $us \theta = \frac{1}{5}$

650 < OF)

ws 0= - 15

tan 0 < 0 tanz sin 0 > 0, cos 0 < 0

tano: Sino Fi)

sin 0 = tan 0 cos 0

; /

 $s:n\theta = \frac{2}{\sqrt{5}}$. $\omega s\theta = -\frac{1}{\sqrt{5}}$

 $z - 2 \cdot \left(-\frac{1}{\sqrt{5}}\right)$

練習 次のような ニュー (1) $c = \sqrt{2}$, $B = 30^\circ$, $C = 45^\circ$ のとき b(2) a = 2, $A = 45^{\circ}$, $C = 120^{\circ}$ のとき c(1) 正弦定理より (2) 正弦定理より Sin120° Sin 45° C + S!n | 20° = 2 + Sin 45° b = sin 30° = \(\sigma = \sin 45°

 $c = \frac{\sqrt{3}}{2} = 2 = \frac{1}{\sqrt{2}}$ $6 = \frac{1}{2} = \sqrt{2} = \frac{1}{\sqrt{2}}$

 $C \times \frac{2}{\sqrt{3}} = 2 \times \frac{\sqrt{2}}{\sqrt{3}}$ $C = 2\sqrt{2} \times \frac{\sqrt{3}}{3}$

c = 16

 $b \times \frac{2}{1} = \sqrt{2} \times \frac{\sqrt{2}}{1}$

次のような △ABC において、指定されたものを求めよ。

AB= 2100

AB > 0 F1/

AB = 10 \(\sqrt{2} \)

$$AB^{2} = 2500 + 1600 - 2 \times 50 \times 40 \times \frac{1}{2}$$

$$40 \times \frac{1}{2}$$

次のような
$$\triangle$$
ABC において、指定されたものを求めよ。 $(1) \ a = \sqrt{7}, \ b = 1, \ c = 2\sqrt{3} \ \text{のとき} A$ $(2) \ a = 1, \ b = \sqrt{5}, \ c = \sqrt{2} \ \text{のとき} B$ $(1) \ a = 9, \ b = 3\sqrt{2}, \ c = 7$ $(2) \ a = \sqrt{7}, \ b = \sqrt{6}, \ c = 2$ $(1) \ \hat{x}$ まな定 王里 より $(1) \ \hat{x}$ まな定 王里 より $(1) \ \hat{x}$ まな定 王里 より $(1) \ \hat{x}$ まなに $($

(1)
$$\hat{x}$$
 \hat{z} $\hat{z$

$$\frac{2bc}{2 \cdot 1 \cdot 2\sqrt{3}} = \frac{2ca}{2ca} = \frac{2c$$

$$\cos A = \frac{\int_{1}^{2} + (2\sqrt{3})^{2} - (\sqrt{1})^{2}}{2 \cdot 1 \cdot 2\sqrt{3}} \cos B = \frac{(\sqrt{2})^{2} + (-(\sqrt{5})^{2})}{2 \cdot \sqrt{2} \cdot 1} = \frac{\partial}{\partial x^{2}} + \frac{\partial}{\partial x^{2$$

$$SA = \frac{1^{2} + (2\sqrt{3})^{2} - (\sqrt{11})^{2}}{2 \cdot 1 \cdot 2\sqrt{3}} cos B = \frac{(\sqrt{2})^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (^{2} - (\sqrt{15})^{2})}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}}{2 \cdot \sqrt{2} \cdot 1} cos B = \frac{1^{2} + (\sqrt{15})^{2}$$

$$a = \frac{2 \cdot 1 \cdot 2 \cdot \overline{3}}{6 \cdot 13} = \frac{2 \cdot 12 \cdot \overline{1}}{2 \cdot 12} = \frac{1}{12} = \frac{1$$

$$SA = \frac{6}{4\sqrt{3}}$$
: $\frac{\sqrt{3}}{2}$ $\cos B = \frac{-2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$ A は 全色角 A は 全色角

$$osA = \frac{6}{4\sqrt{3}} : \frac{3}{2} \quad osB = \frac{-2}{2\sqrt{2}} : -\frac{1}{\sqrt{2}} \quad A = 1$$

$$osA = \frac{6}{4\sqrt{3}} : \frac{3}{2} \quad osB = \frac{-2}{2\sqrt{2}} : -\frac{1}{\sqrt{2}} \quad A = 1$$

$$SA = \frac{1}{4\sqrt{3}} \cdot \frac{1}{2}$$

$$O' \leq \beta \leq 180' \text{ F}'$$

$$0SA = \frac{1}{4\sqrt{3}} \cdot \frac{1}{2}$$

$$0' \leq A \leq 180^{\circ} F'$$

$$0^{\circ} \leq A \leq 180^{\circ} F'$$
 $0^{\circ} \leq \beta \leq 180^{\circ} F'$

$$0^{\circ} \leq A \leq 180^{\circ} \text{ F'}$$

$$A = 30^{\circ}$$

$$B = 135^{\circ}$$

三角形の面積

次のような
$$\triangle$$
ABC の面積 S を求めよ。
(1) $b = 10$, $c = 8$, $A = 45^{\circ}$ (2) $a = 6$, $c = 5$, $B = 150^{\circ}$ (3) 1 辺の長さが a の正三角形 ABC

(1) $S = \frac{1}{2} \times 10 \times 8 \times S$ in $45^{\circ} = \frac{1}{2} \times 10 \times 8 \times \frac{\sqrt{2}}{2} = 20\sqrt{2}$

(2) $S = \frac{1}{2} \times 6 \times 5 \times \sin 150^{\circ} = \frac{1}{2} \times 6 \times 5 \times \frac{1}{2} = \frac{15}{2}$

13) $S = \frac{1}{2} \times a \times a \times s : n 60^{\circ} = \frac{1}{2} \times a \times a \times \frac{13}{2} = \frac{13}{4} a^{2}$

次のような
$$\triangle$$
ABC の面積 S を求めよ。
(1) $b=10$, $c=8$, $A=45^\circ$ (2) $a=6$, $c=5$, $B=150^\circ$ (3) 1 辺の長さが a の正三角形 ABC

3 辺の長さが次のような
$$\triangle$$
ABC の面積 S を求めよ。
(1) $a=8$, $b=5$, $c=7$ (2) $a=13$, $b=14$, $c=15$

3 辺の長さが次のような △ABC の面積S を求めよ。

1)
$$x = \frac{5^2 + 7^2 - 8^2}{2 \cdot 5 \cdot 7} = \frac{1}{7}$$
(2) $x = \frac{5^2 + 7^2 - 8^2}{2 \cdot 5 \cdot 7} = \frac{1}{7}$
(2) $x = \frac{5^2 + 7^2 - 8^2}{2 \cdot 14 \cdot 15} = \frac{1}{5}$

$$2.14.15$$

S: $n^2A + cos^2A = | F'|$

$$\sin^2 A = 1 - (\frac{3}{5}) = \frac{16}{25}$$

s:n A 7 0 F1)

 $sin A = \sqrt{\frac{16}{25}} = \frac{4}{5}$

 $S = \frac{1}{2} \times 14 \times 15 \times \frac{4}{5} = 84$

$$-\left(\frac{3}{5}\right)$$

$$\sin^2 A = 1 - \cos^2 A$$

$$u = 0, \ b = 3, \ c = 1$$

s:n2A+cos2A= | F)

 $\sin^2 A = |-\cos^2 A|$

Sin A 7 O FY

 $s:nA = \sqrt{\frac{48}{49}} = \frac{4\sqrt{3}}{7}$

 $S = \frac{1}{2} \times 5 \times 7 \times \frac{4\sqrt{3}}{7} = 10\sqrt{3}$

 $\sin^2 A = 1 - (\frac{1}{17}) = \frac{48}{48}$

押習 円に内接する四角N ABCD の面積S を求めよ。 $\angle B = 60^\circ$ のとき、四角形 ABCD の面積S円に内接する四角形 ABCD において、AB=5、BC=4、CD=4、

円に内持する四角形の文才角の和は180°なので

また、四角形ABCDの対す角線を31くと下図になる。

 $(\sqrt{21})^2 = AD^2 + 4^2 - 2 \times AD \times 4 \times (-\frac{1}{2})$ $AD^{2} + 4AD - 5 = 0$ (AD+5)(AD-1)=0

S = ABC + AACD

AABCについて余まな定ま里から

AACDについて余まな宝里より

AC > 0 =1) AC = 21

AC = 5 + 4 - 2 × 5 × 4 × 60° = 21

AC2 = AD2 + CD2 - 2 x AD x CD x cos 120°

AD70F1) AD= 1

S = 613

 $=\frac{1}{2} \times 4 \times 5 \times \sin 60^{\circ} + \frac{1}{2} \times 4 \times 1 \times \sin 120^{\circ} - 6\sqrt{3}$

$$S = \frac{1}{2} \times 3 \times 2 \times \frac{15}{4} = \frac{3\sqrt{15}}{4}$$

 $r = \frac{3\sqrt{15}}{4} \times \frac{2}{9} = \frac{\sqrt{15}}{6}$

余弦定理より

sin A + cos A = | F")

sin A > 0 Fi

SINA = 15

 $\sin^2 A = 1 - \cos^2 A = 1 - (-\frac{1}{4})^2 = \frac{15}{16}$

半径ァを求めよ。

練習 **32**

$$\Delta$$
ABC の面積 S は $2s=a+b+c$ とすると $S=\sqrt{s(s-a)(s-b)(s-c)}$ 3辺の長さが 7 , 8 , 13 である三角形の面積 S を求めよ。 $S=\sqrt{4}$ (4 - 13 から $S=\sqrt{4}$ (14 - 7) (14 - 8) (14 - 13) $S=\sqrt{4}$ (14 - 13)

$$S = \sqrt{(4 \cdot (14 - 7)(14 - 8)(14 - 13)} = 14\sqrt{3}$$

S = 14 \(\bar{3} \)

5=14

は30°であった。図において、気球Pの高
75
 100 m 100 B 100 $^{$

$$BH = \frac{100}{\sin 45^{\circ}} \times \sin 60^{\circ}$$

ΔPBHについて

$$\frac{PH}{BH} = \tan 30^{\circ}$$

$$PH = BH \times \tan 30^{\circ}$$

$$PH = 50\sqrt{6} \times \frac{1}{\sqrt{3}} = 50\sqrt{2}$$

BH =
$$100 \div \sin 45^{\circ} \times \sin 60^{\circ}$$

BH = $100 \div \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} = 100 \times \sqrt{2} \times \frac{\sqrt{3}}{2} = 50\sqrt{6}$

右の図のように. AB = 6, AD = 4, AE = 3である直方体 ABCD-EFGH がある。 \triangle DEG の面積Sを求めよ。 三平方の定理まり $DE = AD + AE^{2} = 4^{2} + 3^{2} = 25$ DE>UIY AD=FG=4 DE = 5 $DG^{2} = CG^{2} + DC^{2} = 3^{2} + 6^{2} = 45$ DG>OFY

 $S = \frac{1}{2} \times 3\sqrt{5} \times 2\sqrt{13} \times \frac{59}{\sqrt{5}} = 3\sqrt{59}$ E6 > 0 5 1) $EG = 2\sqrt{13}$

S = 3 59

DG = 315

AE = CG = 3 S:nLDGE70FY S:n L D G E = 59 $EG^{2} = EF + FG^{2} = 6 + 4 = 52$

 $\omega_{\text{SLDGE}} = \frac{(3\sqrt{5})^{2} + (2\sqrt{13})^{2} - 5^{2}}{2 \cdot 3\sqrt{5} \cdot 2\sqrt{13}}$ Sin LDGE + cos LDGE = 1 $S!n^2LDGE = 1-\omega s^2LDGE = \frac{59}{65}$

余3玄定王里より 直方体の性質から AB = DC = EF = 6

PA=PB=PC=3, AB=BC=CA=4 である三角錐 PABC の体 積 Vを求めよ。 △ABCについて正弦定理より $\frac{2}{\text{Sin }60^{\circ}}: 2 \div \text{Sin }60^{\circ}: 2 \div \frac{\sqrt{3}}{2}: 2 \times \frac{2}{\sqrt{3}}: \frac{4\sqrt{3}}{3}$ △PAHについて三天の定理より AH + PH = PA = $PH^{2} = PA - AH^{2} = 3 - \left(\frac{4\sqrt{3}}{2}\right)^{2} = \frac{33}{0}$ PH > 0 FY PH = 133 $V = S \times PH \times \frac{1}{3} = \frac{1}{2} \times 4 \times 4 \times \sin 60^{\circ} \times \frac{133}{3} \times \frac{1}{3} = \frac{1}{3}$