0.1 The category of cones

Given A, B, V, $W \in C$, cones over A, $B \in C$ form a category $Cone(C, A, B)orCone_C(A, B)$.

A **cone** from *V* to *A* and *B* consists of:

A **cone morphism** from (V, f, g) to (W, h, k) is a \mathcal{C} morphism $V \xrightarrow{r} W$ such that the two triangles, from V through W to A and to B, commute.

f and r; h are equal, as do g and r; k, i.e. r; h = f and r; k = g.

If a diagram commutes, any two paths from one object to another are equal.

Given $r: V \to W$ and $s: W \to X$, composition is the same as composition in C, with the added check for commutativity of the triangles.

i.e. r; s; l = f and r; s; m = g.

$$f = r; h \wedge h = s; l$$

$$\therefore f = r; s; l$$

$$g = r; k \wedge k = s; m$$

$$\therefore g = r; s; l$$

0.2 Product object (categorical product) in a category of cones

A product of A and B is a "terminal cone" over A and B; i.e. a terminal object in $Cone_{\mathcal{C}}(A,B)$.

1

Given **projections** $\Pi_1 = (a, b) \mapsto a$ and $\Pi_2 = (a, b) \mapsto b$

Where Π_1 and Π_2 are called the left and right projections respectively.

To show that there is a unique morphism to $A \times B$, we must prove that such morphism exists, and is unique.

For example, in **Set**:

We start by defining a unique a morphism from V to $A \times B$.

Given $x \in V$, we can define $h = x \mapsto (fx, gx)$, proving such morphism indeed exists.

We also know $\Pi_1(s(x)) = f(x)$ and $\Pi_2(s(x)) = g(x)$ because s is a cone morphism and paths much commute.

Hence, we know s a unique morphism. i.e. $s;\Pi_1=f=h;\Pi_1$ and $s;\Pi_2=g=h;\Pi_2$, \therefore s=h

0.3 The sum of sets

The sum of sets *A* and *B* is defined by a union:

$$A + B = \{ \text{inl } x \mid x \in A \} \cup \{ \text{inr } y \mid y \in B \}$$

where **inl** and **inr** are injective: $\forall x, y.$ **inl** $x \neq$ **inr** y

Thus inl
$$x = (0, x)$$
 and inr $y = (1, y)$

note that this holds, even for A + A or $\mathbb{N} + \mathbb{N}$.

e.g. inl
$$3 \neq \text{inr } 3 \in \mathbb{N} + \mathbb{N}$$

Note: the set of functions $A \to B$ can be written in notation B^A . This is because the number of elements in B^A is m^n where m = size(B), n = size(A).

0.4 The category of cocones

Let A, $B \in C$, a **cocone** over A, B is the dual notion of a **cone**, and defined by the following diagram:

So a morphism from cocone (V, f, g) to cocone (W, h, k) is R and defined by the following diagram:

Composition is defined by the dual concept of composition in cones.

We therefore obtain a category $Cocone_{\mathbb{C}}(A, B)$ of cones over A, B.

0.4.1 Coproducts and initial cones in Set

The **coproduct** (sum defined in section 4.3) A + B is an "initial cone" in $Cocone_{Set}(A, B)$.

To show A + B is initial in $Cocone_{Set}(A, B)$, we must show there is a unique morphism $R : A + B \to V$.

3

To do this, we define a function *s* given $x, y \in A + B$:

$$s = \begin{cases} \mathbf{inl} \ x \mapsto fx \\ \mathbf{inr} \ y \mapsto gy \end{cases}$$

We know *s* is equal to *R*, and hence a unique morphism, because:

- **inl**; *s* and *f* commute
- inr; *s* and *g* commute

Given the diagram commutes, because it's a cone morphism, the morphisms are all equal there is a unique function.

0.4.2 The dual notion

A coproduct in *C* for *A*, *B* is a product in C^{op} for *A*, *B*.

0.5 Generalising from binary to arbitrary

0.5.1 Generalised categorical products

Generalised products are denoted by the **categorical product** of the I indexed family A_i where $i \in I$, and I is a set, countable or uncountable, that indexes the family. These are n-ary products if I is of size n.

This is given by $\prod_{i \in I} (A_i)$, where in composition, commutativity of all triangles formed commute.

 $\forall i \in I . f_i = r; \Pi_i$ in the following diagram:

In **Set**: A way to define general product is:

 $\prod_{i \in I} (A_i) \stackrel{\text{def}}{=}$ the set of functions p with domain I such that $\forall i \in I$. $p_i \in A_i$

Here, the i^{th} projection would be $p \mapsto p i$, i.e. the i^{th} element of p, or applying p to i.

0.5.2 Generalised sum of sets

The **categorical coproduct** of $(A_i)_{i \in I}$ is given by $\sum_{i \in I} A_i = \{(i, a) | i \in I \land a \in A_i\}$

Hence, the categorical product is a big tuple/function, and the categorical coproduct is a big disjoint-union/sum.

Another notation used for coproducts is $\coprod_{i \in I} (A_i)$

0.5.3 Example: product and sum of the empty family

In **Set**, the Π of the empty family ($\emptyset \to A$) is the singleton set, so the set of cardinality of the product is 1.

$$\prod_{\varnothing} = \{ f_{\varnothing} : \varnothing \to \varnothing \} = \{ () \} = 1$$

The sum of the empty family is the empty set.

$$\sum \varnothing = \varnothing$$

0.5.4 Common patterns with monoids

The patterns observed with the product and sum of the empty set are analogous with different monoids.

For instance, for lists:

- $Sum[] = 0 (\mathbb{N}, 0, +)$
- *Product* [] = 1 $(\mathbb{N}, 1, \times)$
- Max[] = 0 ($\mathbb{N}, 0, max$)
- Min [] undefined (infinity if analogous to division by zero, assymptotes, etc.)
- And [] = True (\mathbb{B} , True, \wedge)
- $Or[] = False \quad (\mathbb{B}, False, \vee)$

For these monoids, it is a common pattern that vacuous arguments return the identity as a convention. Note that *Min* is an example of a non-monoid, and thus, can't return the identity, making the function undefined on vacuous arguments.

Thus, if there is a monoid (M, e, *), and we want an n-ary application of * on the elements M, the application must end with e.

Hence, every n-ary application following a monoidal structure returns the identity by convention.