Ashy Prinia

Barn Swallow

 $F_{\text{Welch}}(2, 35.78) = 75.18, p = 1.54e-13, \widehat{\omega_p^2} = 0.79, \text{Cl}_{95\%}[0.68, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -20.61, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.57, Cl_{95\%}^{HDI} [0.44, 0.67], r_{Cauchy}^{JZS} = 0.71$

Black-rumped Flameback

 $F_{\text{Welch}}(2, 35.42) = 37.59, p = 1.75\text{e-09}, \widehat{\omega_p^2} = 0.66, \text{Cl}_{95\%}[0.49, 1.00], n_{\text{obs}} = 60$

Blyth's Reed Warbler

 $F_{\text{Welch}}(2, 34.61) = 11.07, p = 1.92e-04, \widehat{\omega_p^2} = 0.35, \text{Cl}_{95\%}[0.13, 1.00], n_{\text{obs}} = 60$

Cinereous Tit

Common lora

 $F_{\text{Welch}}(2, 34.47) = 0.82, p = 0.45, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$

 $log_e(BF_{01}) = 1.33, \widehat{R^2}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.08], r_{Cauchy}^{JZS} = 0.71$

Common Tailorbird

Gray Wagtail

 $F_{\text{Welch}}(2, 36.34) = 3.04, p = 0.06, \widehat{\omega_p^2} = 0.09, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.03-Pairwise test: Games-Howell, Bars shown: significant 0.02-Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.01 - $\widehat{\mu}_{mean} = 9.19e-03$ $\widehat{\mu}_{mean} = 7.33e-03$ 19⁰00 (n = 20) **Time Period** 20²1 (n = 20) 1850 (n = 20) $log_{e}(BF_{01}) = -0.45, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.04, Cl_{95\%}^{HDI} [0.00, 0.20], r_{Cauchy}^{JZS} = 0.71$

Gray-bellied Cuckoo

 $F_{\text{Welch}}(2, 33.48) = 43.36, p = 5.09e-10, \widehat{\omega_p^2} = 0.70, \text{Cl}_{95\%}[0.54, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -10.79$, $\widehat{R^{2}}_{Bayesian}^{posterior} = 0.38$, $Cl_{95\%}^{HDI}$ [0.21, 0.52], $r_{Cauchy}^{JZS} = 0.71$

Greater Coucal $F_{\text{Welch}}(2, 35.35) = 0.13, p = 0.88, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.025 0.020 Pairwise test: Games-Howell, Bars shown: significant Relative Abundance 0.010 $\widehat{\widehat{\mu}_{mean}} = 9.96e-03$ $\widehat{\mu}_{mean} = 9.61e-03$ $\widehat{\mu}_{mean} = 9.36e-03$ 0.005

> 19⁰00 (n = 20) Time Period

18⁵0 (n = 20) 20²1 (n = 20)

House Sparrow $F_{\text{Welch}}(2, 33.26) = 1.07, p = 0.35, \widehat{\omega_p^2} = 4.04e-03, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.100-0.075 Relative Abundance 0.025 $\widehat{\mu}_{mean} = 9.19e-03$

0.000

18⁵0 (n = 20)

Indian Golden Oriole

 $F_{\text{Welch}}(2, 35.44) = 57.03, p = 8.37e-12, \widehat{\omega_p^2} = 0.74, \text{Cl}_{95\%}[0.61, 1.00], n_{\text{obs}} = 60$

Jungle Myna

 $F_{\text{Welch}}(2, 31.42) = 0.28, p = 0.76, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$

Large-billed Crow

 $F_{\text{Welch}}(2, 30.31) = 11.32, p = 2.13e-04, \widehat{\omega_p^2} = 0.38, \text{Cl}_{95\%}[0.14, 1.00], n_{\text{obs}} = 60$ $p_{Holm-adj.} = 1.11e-03$ $p_{\text{Holm-adj.}} = 1.11e-03$ 0.15-Pairwise test: Games-Howell, Bars shown: significant Relative Abundance 0.05- $\widehat{\mu}_{mean} = 0.05$ $\widehat{\mu}_{\text{mean}} = 9.60 \text{e-} 03$ 0.00 19⁰00 (n = 20) **Time Period** 2021 (n = 20) 1850 (n = 20)

 $log_{e}(BF_{01}) = -11.97$, $\widehat{R^{2}}_{Bayesian}^{posterior} = 0.41$, $Cl_{95\%}^{HDI}$ [0.24, 0.54], $r_{Cauchy}^{JZS} = 0.71$

Purple Sunbird

 $F_{\text{Welch}}(2, 34.93) = 2.25, p = 0.12, \widehat{\omega_p^2} = 0.06, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$ 0.020 Pairwise test: Games-Howell, Bars shown: significant Relative Abundance $\widehat{\mu}_{mean} = 0.01$ 0.010 $\widehat{\mu}_{\text{mean}} = 7.77\text{e-}03$ 0.005 0 19⁰⁰ (n = 20) **Time Period** 2021 (n = 20) 18⁵0 (n = 20) $log_{e}(BF_{01}) = 0.03, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.17], r_{Cauchy}^{JZS} = 0.71$

Red-vented Bulbul

 $F_{\text{Welch}}(2, 29.95) = 0.28, p = 0.76, \widehat{\omega_p^2} = 0.00, \text{Cl}_{95\%}[0.00, 1.00], n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = 2.45, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.00, Cl_{95\%}^{HDI} [0.00, 0.01], r_{Cauchy}^{JZS} = 0.71$

Red-whiskered Bulbul $F_{\text{Welch}}(2, 30.1) = 34.86, p = 1.46e-08, \widehat{\omega_p^2} = 0.67, \text{Cl}_{95\%} [0.49, 1.00], n_{\text{obs}} = 60$

Scaly-breasted Munia

 $F_{\text{Welch}}(2,31.81) = 49.67, p = 1.64e-10, \widehat{\omega_p^2} = 0.74, \text{Cl}_{95\%}[0.59, 1.00], n_{\text{obs}} = 60$

Spotted Dove

 $F_{\text{Welch}}(2, 30.83) = 4.90, p = 0.01, \widehat{\omega_p^2} = 0.19, \text{Cl}_{95\%} \text{ [4.91e-03, 1.00]}, n_{\text{obs}} = 60$

 $log_{e}(BF_{01}) = -4.52, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.22, Cl_{95\%}^{HDI} [0.06, 0.37], r_{Cauchy}^{JZS} = 0.71$