高等数学(下)知识点总结

同济大学数学科学学院济梦助学基地"济梦之翼"项目组

目录

1	向量	代数与空间解析几何	3
	1.1	平面	3
		1.1.1 平面与方程	3
		1.1.2 两平面的夹角以及点到平面的距离	4
	1.2	直线	4
		1.2.1 直线方程	4
		1.2.2 两直线的夹角、直线与平面的夹角	5
		1.2.3 过直线的平面束	6
	1.3	曲面与曲线	6
		1.3.1 曲线的一般方程	6
		1.3.2 曲线的参数方程	6
		1.3.3 空间曲线在坐标面上的投影	6
2	多元		7
_	2.1	·	7
	2.2	偏导数	7
	2.3	全微分	8
	2.4	复合函数求导	8
		隐函数的求导公式	
	2.5		8
		2.5.1 一个方程的情形	8
	0.0	2.5.2 两个方程的情形	9
	2.6	方向导数与梯度	9
	2.7	多元函数微分学的几何应用	9
	2.8	2 7 - 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	10
			10
		2.8.2 条件极值	10

3	重积	只分	11
	3.1	二重积分的性质	11
		3.1.1 二重积分估值不等式	11
		3.1.2 二重积分中值定理	11
	3.2	二重积分的计算	11
		3.2.1 X 型平面区域	11
		3.2.2 Y 型平面区域	11
	3.3	三重积分的计算	12
		3.3.1 坐标投影法 (先一后二法)	12
		3.3.2 截面法 (先二后一法)	12
		3.3.3 三重积分计算的简化	12
		3.3.4 三重积分在柱面坐标系下的计算	13
		3.3.5 三重积分在球面坐标系下的计算	13
4	曲线	。 8积分和曲面积分	14
	4.1	对弧长曲线积分的计算	14
	4.2	对坐标的曲线积分	14
		4.2.1 平面曲线	
		4.2.2 空间曲线	14
	4.3	对曲面的曲面积分	15
		4.3.1 积分方法	15
		4.3.2 格林公式	15
		4.3.3 积分与路径无关	15
	4.4	高斯公式	15
5	无穷	S级数	17
-	5.1		17
	5.2		17
	5.3		18

1 向量代数与空间解析几何

1.1 平面

1.1.1 平面与方程

点法式方程:

设平面 Π , 法向量 \overrightarrow{n} 为垂直于平面 Π 的向量, 点 $M_0(x_0, y_0, z_0)$ 在平面上, 则该平面的方程为:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$
(1)

事实上, 动点 M(x,y,z) 在平面 Π 上 \Leftrightarrow $\overrightarrow{MM_0} \perp \overrightarrow{n}$, 而 $\overrightarrow{MM_0} \perp \overrightarrow{n} \Leftrightarrow \overrightarrow{MM_0} \cdot \overrightarrow{n} = 0$, 又

$$\overrightarrow{MM_0} \cdot \overrightarrow{n} = A(x - x_0) + B(y - y_0) + C(z - z_0)$$
(2)

故得平面 Ⅱ 的方程为

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$
(3)

此方程由平面上的点及法向量确定,故该方程又称为平面的点法式方程.

一般方程:

在点法式方程中,将常数合并,得到方程

$$Ax + By + Cz + D = 0 (4)$$

其中 $\overrightarrow{n} = (A, B, C)$ 为平面的法向量,上述方程即为平面的一般方程. 利用一般方程,可以得到一些特殊平面具有的特征:

- 1. 平面 $\Pi:Ax + By + Cz + D = 0$ 过原点 $\Leftrightarrow D = 0$.
- 2. 平面 $\Pi:Ax + By + Cz + D = 0$ 平行于 z 轴 $\Leftrightarrow C = 0$.
- 3. 平面 $\Pi:Ax + By + Cz + D = 0$ 过 z 轴 $\Leftrightarrow C = D = 0$.

截距式方程:

设平面与 x, y, z 轴依次交于 $P_1(a, 0, 0), P_2(0, b, 0), P_3(0, 0, c)^1$, 设此平面方程为

$$Ax + By + Cz + D = 0, (5)$$

将三个点的坐标代入方程, 即可得知 $A=-\frac{D}{a}, B=-\frac{D}{b}, C=-\frac{D}{c}$, 代入原方程并消去 D, 则得到平面方程:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,\tag{6}$$

此方程即为平面的截距式方程.

 $^{^{1}}a.b.c$ 分别称为平面在三坐标轴上的截距, 此处设 $D \neq 0$.

1.1.2 两平面的夹角以及点到平面的距离

夹角:

以两平面的法向的夹角定义为两平面的夹角2.

设平面 Π_1,Π_2 的方程分别为

$$A_1x + B_1y + C_1z + D_1 = 0, (7)$$

$$A_2x + B_2y + C_2z + D_2 = 0, (8)$$

两平面夹角为 $\theta \in \left[0, \frac{\pi}{2}\right]$, 则

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$
 (9)

由此得到:

两平面垂直 $\Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \Leftrightarrow A_1A_2 + B_1B_2 + C_1C_2 = 0.$ 两平面平行 $\Leftrightarrow \overrightarrow{n_1}//\overrightarrow{n_2} \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$

距离:

点 $M_0(x_0, y_0)$ 到直线 Ax + By + C = 0 的距离为:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}. (10)$$

点 $M_0(x_0, y_0, z_0)$ 到平面 Ax + By + Cz + D = 0 的距离为:

$$d = \frac{|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|}{\overrightarrow{n}} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (11)

1.2 直线

1.2.1 直线方程

直线的对称式方程:

在空间中,设直线上的点为 $P_0(x_0,y_0,z_0)$,方向为 $\overrightarrow{s}=(m,n,p)$,则点 P 在直线上 \Leftrightarrow $\overrightarrow{P_0P}//\overrightarrow{s}$. 由两向量平行的条件,即得:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}. (12)$$

上式即称为直线的对称式方程.

直线的参数方程:

 $^{^{2}}$ 此处"两平面的夹角"不同于高中所学的"二面角",后者表示两个**半平面**的夹角,取值范围为 $[0,\pi]$.

由直线的对称式方程, 令相应的比值为 t, 则有此式即称为直线的参数方程. 其几何意义是: 当 t 取不同值, 对应的是直线上不同的点.

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \\ z = z_0 + pt. \end{cases}$$

$$(13)$$

直线的一般方程:

若设两平面分别为:

$$\Pi_1: A_1 x + B_1 y + C_1 z + D_1 = 0, \tag{14}$$

$$\Pi_2: A_2x + B_2y + C_2z + D_2 = 0. \tag{15}$$

则交线方程为:

$$L: \begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_2 x + B_2 y + C_2 z + D_2 = 0. \end{cases}$$
 (16)

上式称为直线的一般方程. 直线的方向 $\overrightarrow{s} \perp \overrightarrow{n_1}$, 且 $\overrightarrow{s} \perp \overrightarrow{n_2}$, 故 $\overrightarrow{s}//\overrightarrow{n_1} \times \overrightarrow{n_2}$.

1.2.2 两直线的夹角、直线与平面的夹角

两直线的夹角:

两直线的交角定义为两直线方向向量的夹角. 若两直线的方程分别为:

$$L_1: \frac{x - x_1}{m_1} = \frac{y - y_1}{n_1} = \frac{z - z_1}{p_1},\tag{17}$$

$$L_2: \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2} = \frac{z - z_2}{p_2},\tag{18}$$

则夹角 θ 满足:

$$\cos \theta = \frac{|\overrightarrow{s_1} \cdot \overrightarrow{s_2}|}{|\overrightarrow{s_1}| \cdot |\overrightarrow{s_1}|} = \frac{|m_1 m_2 + n_1 n_2 + p_1 p_2|}{\sqrt{m_1^2 + n_1^2 + p_1^2} \cdot \sqrt{m_2^2 + n_2^2 + p_2^2}} \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right). \tag{19}$$

直线与平面的夹角:

直线与它在平面上的投影直线的交角即为直线与平面的夹角.

$$\sin \varphi = \cos \left(\frac{\pi}{2} - \varphi\right) = |\cos \theta| = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}.$$
 (20)

由此得到:

直线与平面平行
$$\Leftrightarrow$$
 $Am + Bn + Cp = 0$,
直线与平面垂直 \Leftrightarrow $\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$.

1.2.3 过直线的平面束

设直线 L 由一般方程

$$L: \begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0, \\ A_2 x + B_2 y + C_2 z + D_2 = 0. \end{cases}$$
 (21)

确定. 对任意 λ , 方程 $A_1x + B_1y + C_1z + D_1 + \lambda(A_2x + B_2y + C_2z + D_2) = 0$ 代表一个过该直线的平面. 并且过该直线的任意平面 (除第二个平面外) 均可由该方程表示. 故称此方程为过该直线的平面束方程.

1.3 曲面与曲线

1.3.1 曲线的一般方程

空间的曲线可视为空间曲面的交线. 设曲线 Γ 由曲面 Σ_1 和 Σ_2 相交而成, Σ_1 和 Σ_2 的方程分别为 F(x,y,z)=0 和 G(x,y,z)=0, 则 Γ 的方程为:

$$\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0. \end{cases}$$
(22)

1.3.2 曲线的参数方程

和直线的参数方程一样,曲线的参数方程也是表达曲线形式的一种重要方式. 参数 t 的不同取值确定了曲线上的不同的点. 曲线 Γ 的参数方程可设为

$$\begin{cases} x = x(t), \\ y = y(t), \\ z = z(t). \end{cases}$$
(23)

1.3.3 空间曲线在坐标面上的投影

设空间曲线为 Γ , 过 Γ 作平行于某坐标轴的柱面, 该柱面与坐标平面的交线即称为曲线在 坐标平面上的投影. 设曲线 Γ 的一般方程为

$$\Gamma: \begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0. \end{cases}$$

$$(24)$$

曲线在 xOy 平面上的投影为:

$$\begin{cases} H(x,y) = 0, \\ z = 0. \end{cases}$$
 (25)

多元函数微分学 2

多元函数基本概念 2.1

二元函数: 设 D 是平面上的一个非空点集, 如果对于每个点 $P(x,y) \in D$, 变量 z 按照一 定法则总有唯一确定的值和它对应, 则称 z 是变量 x,y 的二元函数. 记为 z = f(x,y).

二元函数的极限: 设函数 z = f(x, y) 在 $P_0(x_0, y_0)$ 的附近有定义 (点 P_0 除外), 点 P_0 任一 个邻域内都有使 z 有定义的点 P(x,y) 异于 P_0 , 当点 P 以任意方式趋近于 P_0 时, 函数 f(x,y)相应地趋于一个确定的常数 A, 则称 A 为函数 f(x,y) 当 $(x,y) \rightarrow (x_0,y_0)$ 时的极限, 记做 f(x,y) = A.

二元函数的连续性: 设函数 z = f(x,y) 在点 $P_0(x_0,y_0) \in D$ 的某邻域内有定义, 如果有 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0),$ 则称函数 z=f(x,y) 在点 P_0 处连续. 如果函数 f(x,y) 在区域 D 内每点连续, 则称 f(x,y) 在区域 D 上连续.

二元函数的几何意义: 二元函数的图形是一张曲面.

有界性: 设函数 f(x,y) 在有界闭区域 D 上连续, 则 f(x,y) 在 D 上有界.

最值定理: 设函数 f(x,y) 在有界闭区域 D 上连续, 则 f(x,y) 在 D 上取得最大值和最小 值.

介值定理: 设函数 f(x,y) 在有界闭区域 D 上连续, 则 f(x,y) 必取得介于最大值和最小 值之间的任何值.

2.2偏导数

一元函数的导数: 在一元函数的微积分中, 我们知道, 所谓一元函数的导数是函数增量与

自变量增量的比值的极限,即 $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$. 偏导数: 设函数 z = f(x, y) 在点 (x_0, y_0) 的某领域内有定义,给 x 以增量 Δx ,并使得 $(x_0 + \Delta x, y_0) \in D$,若极限 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 存在,则称此极限为函数 z 在 (x_0, y_0) 对 x 的偏导数,记作 $\frac{\partial z}{\partial x}\Big|_{(x_0, y_0)}$ 或 $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$ 或 $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$ 或 $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$ 。

高阶偏导数: 设函数 z = f(x,y) 在平面区域 D 内处处存在偏导数 $f_x(x,y), f_y(x,y),$ 如果 这两个偏导数仍可偏导, 则称它们的偏导数为函数 z = f(x,y) 的二阶偏导数, 由求导次序可 得到相应的四个二阶偏导:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right),\tag{26}$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right), \tag{27}$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right), \tag{28}$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right). \tag{29}$$

而其中的第二与第三项称为混合偏导.

定理: 如果函数 z=f(x,y) 的两个二阶混合偏导数 $f_{xy}(x,y), f_{yx}(x,y)$ 在区域 D 内连续,那么在该区域内 $f_{xy}(x,y)=f_{yx}(x,y)$.

2.3 全微分

定理 1(可微必要条件): 若函数 z = f(x, y) 在点 (x_0, y_0) 可微, 则

- (1)z = f(x,y) 在点 (x_0, y_0) 处连续;
- (2)z = f(x,y) 在点 (x_0,y_0) 处可偏导, 且有 $A = f_x(x_0,y_0), B = f_y(x_0,y_0)$, 即有

$$dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$
 (30)

定理 2(可微充分条件): 若函数 z = f(x, y) 在点 (x_0, y_0) 具有连续偏导数, 则 z = f(x, y) 在点 (x_0, y_0) 可微.

2.4 复合函数求导

定理 1: 如果函数 $u = \varphi(t), v = \psi(t)$ 都在 t 可导, 函数 z = f(u, v) 在对应点有连续偏导数,则复合函数 $z = f(\varphi(t), \psi(t))$ 在 t 可导,且有

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\partial z}{\partial v}\frac{\mathrm{d}v}{\mathrm{d}t}.$$
 (31)

定理 2: 如果函数 $u=\varphi(x,y),v=\psi(x,y)$ 在点 (x,y) 可微, 函数 z=f(u,v) 在对应点有连续偏导数, 则复合函数 $z=f(\varphi(x,y),\psi(x,y))$ 在点 (x,y) 可微, 且有

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x},\tag{32}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$
 (33)

2.5 隐函数的求导公式

2.5.1 一个方程的情形

• 二元函数 F(x,y) = 0, 有:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x}{F_y},$$

条件:F(x,y) 在 D 内具有连续偏导数, 点 $(x_0,y_0) \in D$, 且 $F(x_0,y_0)=0$, $F_y(x_0,y_0) \neq 0$.

• 三元函数 F(x,y,z) = 0, 有:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z},$$

条件:F(x, y, z) = 0 在 Ω 有连续偏导数, 点 $(x_0, y_0, z_0) \in \Omega$, 且 $F(x_0, y_0, z_0) = 0$, $F_z(x_0, y_0, z_0) \neq 0$.

2.5.2 两个方程的情形

• 三元函数

$$\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0, \end{cases}$$

有:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(x,z)}}{\frac{\partial(F,G)}{\partial(y,z)}}, \frac{\mathrm{d}z}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}}.$$

条件:F(x,y,z),G(x,y,z) 在 Ω 内具有连续偏导数, 点 $(x_0,y_0,z_0) \in \Omega$, 且

$$F(x_0, y_0, z_0) = 0, G(x_0, y_0, z_0) = 0, \frac{\partial(F, G)}{\partial(y, z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix} \neq 0.$$

• 四元函数

$$\begin{cases} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0, \end{cases}$$

有:

$$\frac{\partial u}{\partial x} = -\frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}, \frac{\partial v}{\partial x} = -\frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (u,v)}}, \frac{\partial u}{\partial y} = -\frac{\frac{\partial (F,G)}{\partial (y,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}, \frac{\partial v}{\partial y} = -\frac{\frac{\partial (F,G)}{\partial (u,y)}}{\frac{\partial (F,G)}{\partial (u,v)}}.$$

条件:F(x, y, u, v),G(x, y, u, v) 在包含点 (x_0, y_0, u_0, v_0) 的某区域内具有连续偏导数,且

$$F(x_0, y_0, u_0, v_0) = 0, G(x_0, y_0, u_0, v_0) = 0, \frac{\partial(F, G)}{\partial(u, v)} \Big|_{(x_0, y_0, u_0, v_0)} \neq 0.$$

2.6 方向导数与梯度

定义: 函数 z = f(x, y) 在点 $P(x_0, y_0)$ 处可微, 则该函数在点 P 处的梯度为

$$\operatorname{grad} f(x_0, y_0)(\vec{\boxtimes} \nabla f(x_0, y_0))$$

有 $\nabla f(x_0, y_0) = f_x(x_0, y_0) \overrightarrow{i} + f_y(x_0, y_0) \overrightarrow{j}$.

利用梯度概念, 方向导数的计算公式可以写成 $\left. \frac{\partial f}{\partial l} \right|_{(x_0,y_0)} = \nabla f(x_0,y_0) \cdot \overrightarrow{e_l}$.

2.7 多元函数微分学的几何应用

对于空间曲线 $\Gamma: x = x(t), y = y(t), z = z(t)$ ($\alpha \leq t \leq \beta$, 其中 x(t), y(t) 与 z(t) 都是 可导函数, 如果 x'(t),y'(t),z'(t) 连续且不同时为零, 这时称 Γ 为光滑曲线. 光滑曲线 Γ 在点 $M_0(x_0,y_0,z_0)$ 处的 切向量: $\overrightarrow{\tau}=(x'(t_0),y'(t_0),z'(t_0)).$ 切线方程: $\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}.$

切线方程:
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$
.

法平面: $x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0.$

结合向量代数与解析几何一章的平面与直线方程,通过切向量推导切线与法平面方程.

2.8 多元函数的极值

2.8.1 极大值与极小值

驻点 (或称为临界点): 两个偏导数 $f_x(x,y)$ 及 $f_y(x,y)$ 等于 0 的点.

可疑极值点: 函数 z = f(x,y) 的驻点以及 $f_x(x,y)$ 和 $f_y(x,y)$ 至少有一个不存在的点.

函数有极值的充分条件: 设函数 z = f(x,y) 在包含点 (x_0,y_0) 的区域 D 内有二阶连续偏导数, (x_0,y_0) 是 f(x,y) 的驻点, 记

$$A = f_{xx}(x_0, y_0), B = f_{xy}(x_0, y_0), C = f_{yy}(x_0, y_0),$$
(34)

那么

- $(1)AC B^2 > 0, f(x_0, y_0)$ 是极值, 且当 A > 0 时是极小值, A < 0 时是极大值;
- $(2)AC B^2 < 0, f(x_0, y_0)$ 不是极值;
- $(3)AC B^2 = 0$, 需另作讨论.

2.8.2 条件极值

定义: 带有约束条件的函数极值, 更有实际应用价值. 解决这类问题的基本思路是将条件极值转化为无条件极值来处理.

目标函数:z = f(x, y),

约束方程: $\varphi(x,y)=0$,

求解方法——拉格朗日乘子法:

设函数 f(x,y) 与 $\varphi(x,y)$ 具有连续的偏导数, 作拉格朗日函数

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y), \tag{35}$$

解方程组

$$\begin{cases}
L_x = f_x(x, y) + \lambda \varphi_x(x, y) = 0, \\
L_y = f_y(x, y) + \lambda \varphi_y(x, y) = 0, \\
L_\lambda = \varphi(x, y) = 0.
\end{cases}$$
(36)

方程组的解 (x_0, y_0) 即为目标函数 f(x, y) 在约束条件 $\varphi(x, y) = 0$ 下的可疑极值点. 拉格朗日乘子法还可以推广到二元以上的函数以及多个约束条件的情形.

3 重积分

3.1 二重积分的性质

3.1.1 二重积分估值不等式

设 m, M 是函数 f(x,y) 在 D 上的最大值和最小值, σ 为 D 的面积,则在 D 上

$$m\sigma \leqslant \iint_{D} f(x,y) d\sigma \leqslant M\sigma.$$
 (37)

3.1.2 二重积分中值定理

如果函数 f(x,y) 在 D 上连续, σ 为 D 的面积, 则在 D 上至少存在一点 (ϵ,η) , 使得

$$\iint_{\mathcal{D}} f(x, y) d\sigma = f(\epsilon, \eta) \cdot \sigma. \tag{38}$$

3.2 二重积分的计算

3.2.1 X 型平面区域

若积分区域 $D=\{(x,y)|\varphi_1(x) \leq y \leq \varphi_2(x), a \leq x \leq b\}$, 则

$$\iint_{D} f(x,y) d\sigma = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) dy$$
(39)

3.2.2 Y 型平面区域

$$\iint_{D} f(x,y) d\sigma = \int_{c}^{d} dy \int_{\psi_{1}(x)}^{\psi_{2}(x)} f(x,y) dx$$
(40)

3.3 三重积分的计算

3.3.1 坐标投影法 (先一后二法)

$$\Omega = \{(x, y, z) | z_1(x, y) \leqslant z \leqslant z_2(x, y), (x, y) \in D_{xy} \}$$
(41)

当函数 f(x,y,z) 在 Ω 上连续时,

$$\iiint_{\Omega} f(x, y, z) dV = \iint_{D_{xy}} \left(\int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz \right) dx dy.$$
 (42)

同理, 在 yz, xz 平面上类似.

3.3.2 截面法 (先二后一法)

$$\iiint_{\Omega} f(x, y, z) dV = \int_{p}^{q} \left(\iint_{D_{z}} f(x, y, z) dx dy \right) dz$$
 (43)

3.3.3 三重积分计算的简化

- 一般地, 如果积分区域 Ω 关于 xOy 平面对称:
 - (1) 当被积函数 f(x,y,z) 是关于 z 的奇函数时, 三重积分为 0;
- (2) 当被积函数 f(x,y,z) 是关于 z 的偶函数时, 三重积分为 Ω 在 xOy 平面上方的半个闭区域的三重积分的两倍.

其他情况以此类推.

3.3.4 三重积分在柱面坐标系下的计算

$$\begin{cases} x = \rho \cos \theta, \\ y = \rho \sin \theta, \\ z = z, \end{cases}$$
 (44)

体积微元: $dV = \rho d\theta d\rho dz$,

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\theta d\rho dz.$$
 (45)

3.3.5 三重积分在球面坐标系下的计算

$$\begin{cases} x = r \sin \varphi \cos \theta, \\ y = r \sin \varphi \sin \theta, \\ z = r \cos \varphi, \end{cases}$$
(46)

体积微元: $dV = r^2 \sin \varphi dr d\varphi d\theta$,

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi dr d\varphi d\theta.$$
 (47)

4 曲线积分和曲面积分

4.1 对弧长曲线积分的计算

设 f(x,y) 在曲线弧 L 上有定义,L 的参数方程为:

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad \alpha \leqslant t \leqslant \beta, \tag{48}$$

其中 $\varphi(t),\psi(t)$ 在 $[\alpha,\beta]$ 上有一阶连续导数,则:

$$\int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{\varphi'^{2}(t) + \psi'^{2}(t)} dt.$$
 (49)

几何和物理意义:

- 1. 当 $\rho(x,y)$ 表示 L 的线密度时, $M = \int_{L} \rho(x,y) ds$;
- 2. 曲线弧对 x 轴以及 y 轴的转动惯量 $I_x = \int_I y^2 \rho ds$, $I_y = \int_I x^2 \rho ds$;
- 3. 曲线弧的重心坐标:

$$\bar{x} = \frac{\int x \rho ds}{\int \rho ds}, \bar{y} = \frac{\int y \rho ds}{\int \rho ds}.$$
 (50)

4.2 对坐标的曲线积分

4.2.1 平面曲线

$$L: \begin{cases} x = x(t), \\ y = y(t), \end{cases} \quad t: \alpha \to \beta, \tag{51}$$

其中 x(t),y(t) 具有连续导数, 则:

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} (P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t))dt.$$
 (52)

4.2.2 空间曲线

$$\Gamma: \begin{cases} x = x(t), \\ y = y(t), & t: \alpha \to \beta, \\ z = z(t), \end{cases}$$
 (53)

$$\int_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, x) dz =
\int_{\alpha}^{\beta} (P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)) dt.$$
(54)

4.3 对曲面的曲面积分

4.3.1 积分方法

设曲面 Σ 的方程为 z = z(x, y) 在 xOy 面上的投影区域为 D, 则:

$$\iint_{\Sigma} f(x, y, z) ds = \iint_{D} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dx dy$$
 (55)

4.3.2 格林公式

$$\int_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$
 (56)

- 1. 格林公式的条件:
 - (1) 曲线的封闭性;
 - (2) 闭曲线的正向;
 - $(3)\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial u}$ 在 D 上连续.
- 2. 格林公式反映了闭域 D 上的二重积分与其边界曲线上的曲线积分之间的关系.

4.3.3 积分与路径无关

设函数 P(x,y),Q(x,y) 在单连通区域 D 内具有一阶连续偏导数,则以下四个命题等价:

$$1. \ \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

2. 沿
$$D$$
 中任意光滑闭曲线 L , 有 $\int_L P dx + Q dy = 0$.

3.
$$\int_{L} P dx + Q dy$$
 与路径无关, 其中 $L \neq D$ 中的一有向曲线.

4. 在 D 内是某二元函数的全微分, 即: 存在函数 u, 使得 $\mathrm{d}u(x,y) = P\mathrm{d}x + Q\mathrm{d}y$.

4.4 高斯公式

设空间闭区域 W 由分片光滑的闭曲面 Σ 围成, 函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 W上有一阶连续偏导数, 则有公式:

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dV = \oint_{\Sigma} P dy dz + Q dz dx + R dx dy = \oint_{\Sigma} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma\right) ds$$
(57)

使用高斯公式应注意:

- 1. P,Q,R 是对什么变量求偏导数;
- 2. 是否满足高斯公式的条件:
 - 空间闭区域由分片光滑的闭曲面围成;
 - *P*, *Q*, *R* 有一阶连续偏导数;
- 3. Σ是取闭曲面的外侧;

高斯公式可以理解为三维情况下的格林公式. 沿任意闭曲面的曲面积分为 0 的条件:

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0. \tag{58}$$

5 无穷级数

5.1 敛散性

正项级数收敛的充要条件: 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \Leftrightarrow 部分和序列 $S_n(n=1,2,\dots)$ 有界.

比较审敛法: 设 $\sum\limits_{n=1}^\infty u_n,\sum\limits_{n=1}^\infty v_n$ 是两个正项级数, 且存在 $N\in\mathbb{N}$, 对一切 n>N, 有 $u_k\leqslant kv_n$ (常数 k>0), 则有

(1) 若"大"级数
$$\sum_{n=1}^{\infty} v_n$$
 收敛, 则"小"级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;

(2) 若"小"级数
$$\sum_{n=1}^{\infty} u_n$$
 发散,则"大"级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

比值审敛法 (达朗贝尔判别法): 设 $\sum\limits_{n=1}^{\infty}u_n$ 为正项级数, 且 $\lim\limits_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho$, 则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 $\rho > 1$ 或 $\rho = \infty$ 时, 级数发散.

莱布尼兹判别法: 若交错级数满足条件:

$$(1)u_n > u_{n+1}(n=1,2,\ldots);$$

$$(2)\lim_{n\to\infty}u_n=0.$$

则级数 $\sum_{n=1}^{n\to\infty} (-1)^{n-1} u_n$ 收敛, 且其和 $S_n \leq u_1$, 余项满足 $|r_n| \leq u_{n+1}$.

5.2 幂级数

幂级数的基本概念: 级数 $\sum\limits_{n=0}^{\infty}a_nx^n=a_0+a_1x+\cdots+a_nx^n+\ldots$ 称为幂级数. 并有定理: 设 $\lim\limits_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$,则当 |x|< R 时,幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 绝对收敛,同时称 R 为收敛半径; 当 |x|>R 时, $\sum\limits_{n=0}^{\infty}a_nx^n$ 发散.

幂级数展开:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in (-\infty, +\infty)$$
 (59)

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{n=0}^{\infty} x^n, x \in (-1, 1)$$
 (60)

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}, x \in (-1,1]$$
 (61)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in (-\infty, +\infty)$$
 (62)

5.3 傅里叶级数

函数展开成傅里叶级数:

设 f(x) 是周期为 2π 的周期函数, 且

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (63)

右端级数逐项积分,得

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx (n = 0, 1, ...) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx (n = 1, 2, ...) \end{cases}$$
(64)

收敛定理, 展开定理: 设 f(x) 是周期为 2π 的周期函数, 且满足狄利克雷条件:

- (1) 在一个周期内连续或只有有限个第一间断点;
- (2) 在一个周期内只有有限个极值点;

则 f(x) 的傅里叶级数收敛且有

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \begin{cases} f(x), & x \text{ 为连续点} \\ \frac{f(x^+) + f(x^-)}{2}, & x \text{ 为间断点} \end{cases}$$
(65)

其中 a_n,b_n 为 f(x) 的傅里叶系数.