# **ELECTROSTATIQUE 1**

| 1. La charge, l'électricité |                                                                |                            |
|-----------------------------|----------------------------------------------------------------|----------------------------|
| 1.1.                        | Effet des charges électriques                                  | 4                          |
| 1.2.                        | Propriétés des charges                                         | 4                          |
| 2. Int                      | eraction électrique                                            | 5                          |
| 2.1.                        | Loi de Coulomb                                                 | 5                          |
| 2.2.                        | Principe de superposition                                      | 8                          |
| 2.3.                        | Exemples                                                       | 9                          |
| 3. Le                       | champ électrique                                               | 10                         |
| 3.1.                        | Charge ponctuelle                                              | 10                         |
| 3.2.                        | Système de n charges discrètes                                 | 11                         |
| 3.3.                        | Exemple                                                        | 12                         |
| 4. Le                       | potentiel électrique                                           | 13                         |
| 4.1.                        | • Potentiel créé par une charge q                              | 13                         |
| 4.2.                        | <ul> <li>Potentiel créé par un système de n charges</li> </ul> | 13                         |
| 4.3.                        | Relation entre potentiel et champ électrique                   | 14                         |
| 4.4.                        | Exemples:                                                      | 16                         |
| 5. En                       | ergie potentielle d'interaction                                | 17                         |
| 5.1.                        | Cas d'une source ponctuelle                                    | 17                         |
| 5.2.                        | Energie potentielle d'un système de charges                    | 18                         |
| <i>5.3</i> .                | Exemple                                                        | 19                         |
| 6. Dip                      | pôle électrostatique                                           | 20                         |
| 6.1.                        | Préambule                                                      | 20                         |
| 6.2.                        | Définition                                                     | Erreur! Signet non défini. |
| 6.3.                        | Dipôle moléculaire                                             | 22                         |
| 6.4.                        | Moment dipolaire induit                                        | 22                         |
| 6.5.                        | Calcul du potentiel créé par un dipôle                         | 23                         |
| 6.6.                        | Exemple : dipôle dans un champ uniforme.                       | 24                         |

#### **PREAMBULE**

- L'électromagnétique = une "branche" de la physique :
  - → L'univers = une succession d'assemblages
  - → Ces assemblages sont dus à des interactions

| forces de gravitation<br>(dues à la masse)      | la plus familière et la plus visuelle longue portée $(1/r^2)$ , faible intensité toujours attractive         |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| forces électromagnétiques<br>(dues à la charge) | longue portée (1/r²), forte intensité (10 <sup>40</sup> fois lus que la gravitation) attractive ou répulsive |
| - forces nucléaires<br>(dues à la couleur)      | faible portée (1/r <sup>7</sup> )  2 types : forte et faible physique nucléaire                              |

les forces électromagnétiques sont responsables de presque tous les phénomènes qui se produisent à notre échelle

- L'électrostatique : interaction entre corps chargés :
  - au repos
     en mouvement uniforme
     en mouvement quelconque
     → électrostatique
     magnétostatique
     électromagnétique

# 1. La charge, l'électricité

#### • On ne peut définir la charge que :

- par l'effet qu'elle produit
- par ses propriétés

#### • Qu'est-ce qu'on entend par 'particule chargée' ?

#### - Les particules :

| Particules | Charge                     | Masse                         |
|------------|----------------------------|-------------------------------|
| proton     | + 1,62 10 <sup>-19</sup> C | $1672 \ 10^{-30} \mathrm{kg}$ |
| électron   | - 1,62 10 <sup>-19</sup> C | 0,911 10 <sup>-30</sup> kg    |

#### - <u>La matière électrisée</u> (corps chargé)

En général, la matière est neutre  $\rightarrow$  mais elle peut être électrisée :

- ionisation : le nbre d'électrons est modifié (perte ou gain)
- **polarisation** : modification de la répartition des charges

#### • Définition :

*charge ponctuelle* = particule ou corps chargé dont les dimensions sont négligeables devant la distance d'interaction.

#### 1.1. Effet des charges électriques

- Mise en évidence expérimentale :
  - 2 types d'effet : attractif répulsif
  - effet à longue portée
  - effet 10<sup>40</sup> fois plus important que la gravitation

## 1.2. Propriétés des charges

- Quantification de la charge : (Millikan 1868 1953)
  - Au début du siècle : électricité = fluide
  - Découverte de la structure atomique :
    - → idée de la quantification de la charge
  - découverte de l'électron → Thomson en 1897
  - charge de l'électron  $\rightarrow$  Millikan (e = 1.62  $10^{-19}$  C)
  - charge du proton : exactement l'opposée de celle de l'é

## • Conservation de la charge :

## 'la charge totale d'un système isolé est constante'

- aucun échange de matière avec l'extérieur

#### Exemple:

- désintégration d'un neutron :  $n \rightarrow e + p + neutrino$
- materialisation d'un photon :  $\gamma \rightarrow e^- + e^+$

# 2. <u>Interaction électrique</u>

#### 2.1. Loi de Coulomb

- L'interaction est caractérisée par une intensité et une direction → représentation vectorielle
- Coulomb, grâce à son pendule de torsion, va quantifier cette interaction



- 2 charges  $q_1$  et  $q_2$ 



-  $\vec{u}_{12}$  un vecteur unitaire dirigé de  $1 \rightarrow 2$ 

- r la distance qui sépare les 2 charges.

 $\vec{F}_{12}$  est la force produite par  $q_1$  et qui agit sur  $q_2$ :

$$\vec{F}_{12} = K. \frac{q_1 q_2}{r^2} . \vec{u}_{12} = -\vec{F}_{21}$$

SM1-MIAS1 5 U.P.F. Tahiti

$$\vec{F}_{12} = K. \frac{q_1 q_2}{r^2} . \vec{u}_{12} = -\vec{F}_{21}$$

$$|K| > 0$$
  
 $|r^2| > 0$   $\Rightarrow$  c'est le produit  $|q_1| = q_2$  qui donne le sens de  $|\vec{F}_{12}|$   
 $|\vec{u}_{12}|$  constant

 ${
m q}_1{
m q}_2>0\Rightarrow {ec F}_{12}$ a le même sens que  ${ec u}_{12}$ 





 $q_1q_2 < 0 \Rightarrow \vec{F}_{12}$ a le sens opposé à  $\vec{u}_{12}$ 

## **Unités: MKSA**

F Newton  $\rightarrow$  défini en mécanique

r en mètre  $\rightarrow$  défini en mécanique

q en Coulomb  $\rightarrow$  défini à partir du courant :  $q = \int i \cdot dt$ 

→ 
$$K = \frac{1}{4\pi\epsilon_0} = 8,9875.10^9 \text{ S.I.}$$
 →  $K \approx 9.10^9 \text{ SI}$ 

 $\rightarrow$   $\varepsilon_{\theta}$  est la permittivité du vide  $\rightarrow$   $\varepsilon_{\theta}$  = 8,854 .  $10^{-12}$ 

SM1-MIAS1 6 U.P.F. Tahiti

Finalement:

$$\vec{F}_{12} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} . \vec{u}_{12}$$

#### **REMARQUES**

- 1 La loi de Coulomb s'applique à 2 charges ponctuelles
- 2 La loi de Coulomb s'applique à 2 charges ponctuelles placées <u>dans le vide</u>
  - $\Rightarrow$  Un milieu matériel va modifier la valeur de  $\varepsilon_0$ :

| Air ≈ Vide               | Eau              | Verre           | Silicium         |
|--------------------------|------------------|-----------------|------------------|
| $oldsymbol{arepsilon}_0$ | $79  \epsilon_0$ | $9  \epsilon_0$ | $12  \epsilon_0$ |

**EXEMPLE**: interaction entre un proton et un électron

Modèle de Bohr (atome d'hydrogène)

proton au repos + électron animé d'une vitesse  $\vec{v}$ 

$$\vec{F}_e = \frac{-e^2}{4\pi\varepsilon_0 r^2} \cdot \vec{N}$$
et  $\vec{\gamma} = \frac{v^2}{r} \vec{N}$ 

or 
$$\vec{F} = m_e \vec{\gamma} \implies v = \sqrt{\frac{1}{4\pi\varepsilon_0 m_e r}} \cdot e = 2.1 \ 10^6 \, m/s$$

## 2.2. Principe de superposition

La force avec laquelle interagissent deux charges n'est pas affectée par la présence d'une troisième charge

# 1ère configuration:

$$\vec{F}_{21} = K. \frac{q_1 q_2}{r_{12}^2} . \vec{u}_{21}$$



# 2<sup>ème</sup> configuration:

$$\vec{F}_{31} = K. \frac{q_1 q_2}{r_{13}^2} . \vec{u}_{31}$$

$$q_{1} \bullet \qquad \qquad r_{13} \qquad \qquad q_{3} \bullet \leftarrow \infty \rightarrow \bullet q_{2}$$

# 3<sup>ème</sup> configuration:

$$\overrightarrow{F} = \overrightarrow{F}_{21} + \overrightarrow{F}_{31}$$



D'une manière plus générale :

$$\vec{F} = \sum_{i} \vec{F}_{i1}$$

→ loi de Coulomb et principe de superposition

→ base de l'électrostatique

## 2.3. Exemples

4.1 Pendule chargé  $\rightarrow$  angle  $\alpha$  de déviation à l'équilibre?





- angle  $\alpha$  ?
- force sur A?
- valeur de q?

A.N.: m = 0.1g;  $\ell = 10 \text{cm}$ ; d = 1 cm;  $\alpha = 5^{\circ}$ 

# 4.2 Equilibre des forces



- Force sur la boule M?
- Equilibre ?

# 3. Le champ électrique

#### 3.1. Charge ponctuelle

- on considère de nouveau le système de 2 charges q<sub>1</sub>, q<sub>2</sub>
- on exprime  $\vec{F}_{12}$  à l'aide d'un nouveau vecteur :

$$\vec{F}_{12} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \cdot \vec{u}_{12} = q_2 \cdot \frac{q_1}{4\pi \varepsilon_0 r^2} \cdot \vec{u}_{12} = q_2 \vec{E}$$

 $\vec{E}_1$  représente le champ électrique créé par la charge  $q_1$ 

$$\vec{E} = \frac{q_1}{4\pi\varepsilon_0 r^2}.\vec{u}_{12}$$

la charge q<sub>1</sub> perturbe son environnement...

...le champ  $\vec{E}_1$  caractérise cette perturbation



Si on place une charge q en M elle subit la force :

$$\vec{F} = q\vec{E}(M)$$

SM1-MIAS1 10 U.P.F. Tahiti

## 3.2. Système de *n* charges discrètes

ensemble de charges  $q_1$ ,  $q_2$ ,  $q_3$ , ...,  $q_n$  placées en des points  $M_1$ ,  $M_2$ , ...,  $M_n$ 

Action de ce système sur une charge  $q_0$  placée en M(x, y, z)?

$$\vec{F} = \sum_{i=1}^{i=n} \frac{q_0 q_i}{4\pi \varepsilon_0 r_{0i}^2} \cdot \vec{u}_{0i} \implies \vec{F} = q_0 \cdot \sum_{i=1}^{i=n} \frac{q_i}{4\pi \varepsilon_0 r_{0i}^2} \cdot \vec{u}_{0i}$$

$$\Rightarrow \vec{F} = q_0 \cdot \sum_{i=1}^{i=n} \vec{E}_i$$

$$\Rightarrow \vec{F} = q_0 \cdot \vec{E}$$

 $ightarrow ec{E}$  est le champ électrique (ou électrostatique)

du système de charges  $q_1, q_2,...,q_n$ .

$$\vec{E}(x, y, z) = \sum_{i=1}^{i=n} \frac{q_i}{4\pi \varepsilon_0 r_{0i}^2} \cdot \vec{u}_{0i}$$

système de charges  $q_1,...,q_n$  = LA SOURCE du champ électrique

# 3.3. Exemple

4 charges q placées aux 4 coins d'un carré imaginaire de côté a.

Champ électrique en M sur l'axe Ox?

(axe <u>l</u> au plan du carré et passant par son centre).



SM1-MIAS1 12 U.P.F. Tahiti

# 4. Le potentiel électrique

On peut caractériser la perturbation du milieu due à la présence de charges électriques par une fonction scalaire :

## le potentiel électrostatique V(x,y,z)

#### 4.1. • Potentiel créé par une charge q

le potentiel en un point M, situé à la distance r de la charge q est :

$$V(M) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

#### 4.2. • Potentiel créé par un système de *n* charges

le potentiel en un point M créé par ensemble de charges  $q_1, q_2, q_3, ..., q_n$  placées en des points  $M_1, M_2, ..., M_n$  est :

$$V(M) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{r_i}$$

$$r_i = \overline{M_i M}$$

#### 4.3. Relation entre potentiel et champ électrique

Champ électrique ≡ variation du potentiel dans l'espace

$$\vec{E} = -g \overrightarrow{radV}$$

définition

$$\begin{array}{c|cccc}
\hline
\frac{\partial V}{\partial x} & E_x = -\frac{\partial V}{\partial x} \\
\hline
\frac{\partial V}{\partial y} & \Rightarrow \vec{E} : E_y = -\frac{\partial V}{\partial y} \\
\hline
\frac{\partial V}{\partial z} & E_z = -\frac{\partial V}{\partial z}
\end{array}$$

SM1-MIAS1 14 U.P.F. Tahiti

#### Relation "inverse":

#### • fonction potentiel

Si dans l'espace règne un champ électrique  $\vec{E}(x, y, z)$  la fonction **potentiel** en un point M(x,y,z) s'écrit :

$$V(M) = -\int \vec{E} . d\vec{\ell}$$

où  $d\vec{\ell}$  est le vecteur "déplacement élémentaire" :  $d\vec{\ell}$  : dz

$$\Rightarrow \qquad \vec{E} \cdot d\vec{\ell} = E_x.dx + E_y.dy + E_z.dz$$

$$\Rightarrow$$
  $V(M) = -\int E_x . dx + E_y . dy + E_z . dz$ 

Le calcul de V(M) fera apparaître une constante d'intégration :

⇒ le potentiel n'est défini qu'à une constante près

#### • Différence de potentiels

La différence de potentiels entre les points  $P_1$  et  $P_2$  s'écrit :

$$\Delta V = V_{P_1 P_2} = -\int_{P_1}^{P_2} \vec{E} . d\vec{\ell} = -(V_{P_2} V_{P_1})$$

REM : pas de constante d'intégration

#### 4.4. Exemples:

#### 1. Champ électrique entre 2 plans chargés

- On montre que le champ électrique entre les 2 plans est homogène
- Par convention  $\vec{E}$  est dirigé du + vers le :

ici  $\vec{E}$  est donc suivant -Ax:  $\Rightarrow$   $\vec{E} = -E\vec{i}$ 



$$V_A = V_B (>V_A)$$

• Potentiel en M(x):

$$V(M) = -\int \vec{E} \cdot d\vec{\ell} = E \cdot x + K$$
or  $V(x = 0) = V_A$   $\Rightarrow$   $V(M) = E \cdot x + V_A$ 

• Différence de potentiels entre les plaques :

$$V_{AB} = -\int_{A}^{B} \vec{E}.d\vec{\ell} = \int_{A}^{B} E.dx \implies V_{AB} = E.d$$

2. un système de charges engendre :  $V(x,y,z) = 3x^2-y^3$ 

$$E_{x} = -\frac{\partial V}{\partial x} = -6x$$

$$\vec{E}: \quad E_{y} = -\frac{\partial V}{\partial y} = 3y \quad \Rightarrow \quad \vec{E} = -6x\vec{i} + 3y\vec{j}$$

$$E_{z} = -\frac{\partial V}{\partial z} = 0$$

SM1-MIAS1 16 U.P.F. Tahiti

#### **Energie potentielle d'interaction 5.**

#### 5.1. Cas d'une source ponctuelle

**Energie** : capacité d'un système à fournir un travail

**Travail**: produit d'une force par le déplacement qu'elle engendre

On considère - un espace repéré par (Oxyz)

- un champ électrique  $\vec{E}(x,y,z)$ 

- une distribution de potentiels V(x,y,z)

l'énergie potentielle d'une charge q placée en M(x,y,z) est :

$$U_P = qV(x,y,z)$$

#### 5.2. Cas d'une source ponctuelle

source du champ = charge ponctuelle  $q_1 \rightarrow V_1(x,y,z)$  connue

 $\rightarrow$  l'énergie potentielle d'une charge  $q_2$  placée en M(x,y,z) est :

$$U_{P}(q_{2}) = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q_{1}q_{2}}{r_{12}}$$

#### REMARQUE:

l'énergie potentielle de la charge  $q_1$  dans le champ créé par  $q_2$ :

$$U_P(q_1) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_2 q_1}{r_{21}} = U_P(q_2)$$

On choisit d'écrire : 
$$U_P = \frac{1}{2} (q_1 V_2 + q_2 V_1)$$

SM1-MIAS1 17 U.P.F. Tahiti

## 5.3. Energie potentielle d'un système de charges

Quelle énergie faut-il dépenser pour constituer le système de *n* charges ?

énergie totale du système de charges :

$$U_{P} = \frac{1}{2} \sum_{i} q_{i} \left( \sum_{j \neq i} \frac{1}{4\pi \varepsilon_{0}} \cdot \frac{q_{j}}{r_{ij}} \right)$$

ou encore

$$U_P = \frac{1}{2} \sum_i q_i V_i$$

$$V_i = \text{pot. au pt } P_i$$

## 5.4. Exemple

Chaîne quasi infinie d'ions régulièrement alignés Chaque ion a un degré d'ionisation est de 1



- potentiel en O (sans l'ion) ? développement de la fonction  $ln(1+x)=x-x^2/2+x^3/3-...$
- énergie potentielle de l'ion placé en O?
- énergie totale ?

# Dipôle électrostatique

#### 6.1. Préambule

#### On considère:

- un ensemble de charges  $q_i$  (+ et -)
- placées en des points  $A_i$ ,
- dans un volume fini,
- au voisinage d'un point O,



et 1 point M tel que :

$$\overrightarrow{OM} = r\overrightarrow{u}_i$$

$$OM = r >> OA = r$$

et 
$$OM = r >> OA_i = a_i$$



Potentiel 
$$V(M)$$
 ?:  $V(M) = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{i} \frac{q_i}{r_i}$ 

Si  $\sum_{i} q_i = 0$  le problème se traite d'une façon particulière :

dipôle électrique

# 6.2. Moment dipolaire

Si  $\sum_{i} q_{i} = 0$  on remplace le système de charges par 2 charges en N et P



## On considère:

- un système de 2 charges +q et -q

$$-a = PN << PM \text{ ou } NM$$

$$-q \quad a \quad +q$$

On définit : le moment dipolaire = le vecteur  $\vec{p}$  défini par :

$$\vec{p} = q \, \overrightarrow{NP}$$

#### On note:

- le moment dipolaire s'exprime en *C.m.* 

## 6.3. Dipôle moléculaire

## Molécule à forte symétrie :

barycentre des charges  $+ \leftrightarrow$  barycentre des charges -



Molécule dans le cas général :

les 2 barycentres sont distincts, ⇒ molécules polaires

 $\rightarrow$  sont assimilables à des dipôles de moment dipolaire  $\vec{p}$ 

**p** s'exprime alors en *debye* (D) : 1 D = 1/3 .  $10^{-29}$  C.m.

#### Exemple:

Anhydride chlorhydrique



Eau



#### 6.4. Moment dipolaire induit

Un champ électrique appliqué à une molécule non polaire

#### $\rightarrow$ moment dipolaire induit



# 6.5. Calcul du potentiel créé par un dipôle

potentiel en M? Dipôle *NP* 

- coordonnées polaires
- origine en O milieu de NP
- droite NP = origine des angles

Définition du potentiel :

$$V = \frac{q}{4\pi\varepsilon_0} \cdot \left(\frac{1}{PM} - \frac{1}{NM}\right)$$



Dans le cas d'un dipôle : OM = r >> a

$$\Rightarrow PM \approx r - (a/2)\cos\theta$$

$$\Rightarrow PM \approx r(1 - (a/2r)\cos\theta)$$

$$\Rightarrow NM \approx r(1 - (a/2r)\cos\theta)$$

$$\Rightarrow NM \approx r + (a/2)\cos\theta \Rightarrow NM \approx r(1 + (a/2r)\cos\theta)$$

$$Taylor: (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} + \dots \quad si \ x << 1 \Longrightarrow D.L.$$

ici 
$$a/r \ll 1$$
  $\Rightarrow$   $V = \frac{q}{4\pi\epsilon_0} \cdot \frac{a\cos\theta}{r^2}$  (D.L. au 1<sup>er</sup> ordre)

en introduisant p le moment dipolaire, on peut écrire :

$$V = \frac{1}{4\pi\varepsilon_0} \cdot \frac{p\cos\theta}{r^2} \quad \text{soit} \quad \vec{V} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{\vec{p} \cdot \vec{u}}{r^2}$$

où *u* est le vecteur unitaire porté par *OM*.



## **6.6. Exemple :** dipôle dans un champ uniforme.

- ullet champ électrostatique uniforme  $ec{E}_{\!\scriptscriptstyle 1} = E_0 ec{i}$
- potentiel du plan yOz (x = 0):  $V = V_0$
- ullet On place alors en  ${\it O}$  un dipôle de moment  $ec{p}=pec{i}$



- potentiel V en un point M de coordonnées  $(r, \theta)$ ?
- de quoi se compose l'équipotentielle  $V = V_0$ ?
- champ électrostatique total *E* ?