Université Larbi Ben M'Hidi, Oum El Bouaghi

Faculté des Sciences Exactes et Sciences de la Nature et de la Vie Département de Mathématiques et Informatique

Première année Master Mathématiques appliquées

Année Universitaire 2018/2019 (S2) Jeudi 05/09/2019 (10:15-11:45)

Matière: Statistique Inférentielle) Examen

Exercice 1. On considère le modèle (la structure) statistique suivant(e) $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \{P_{\alpha} : \alpha > 0\})^n$ avec P_{α} est la loi de probabilité donnée par:

$$P_{\alpha}\left(X=x\right) = \frac{\alpha^{x}e^{-\frac{\alpha}{4}}}{x!4^{x}}.$$

- 1. Montrer que ce modèle appartient à la famille exponentielle. En déduire une statistique exhaustive T pour α .
- **2.** Montrer que T est une statistique exhaustive (utiliser la définition).
- $\bf 3.$ Calculer l'information de Fisher contenue dans l'échantillon, et celle contenue dans T.Commenter le résultat.
- 4. Montrer que T est une statistique complète (utiliser la définition).
- 5. La statistique T est-elle minimale? Justifier.
- **X6.** Calculer l'information de Kullback.

Exercice 2. On considère le modèle (la structure) statistique suivant(e) $(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+), \{P_\theta : \theta > 0\})^n$ avec P_{θ} est la loi de probabilité donnée par la densité:

$$f(x) = \frac{x}{2\theta} \exp\left(-\frac{x^2}{4\theta}\right).$$

- 1. Déterminer l'estimateur $\widehat{\theta}_n^M$ de θ par la méthode des moments. 2. Calculer le biais de $\widehat{\theta}_n^M$. $\widehat{\theta}_n^M$ est-il consistant?
- 3. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\boldsymbol{\theta}}_n^{MV}$ de $\boldsymbol{\theta}$.
- 4. $\widehat{\theta}_n^{MV}$ est-il sans biais? que peut-on dire de sa consistance. $\widehat{\theta}_n^{MV}$ est-il efficace?
- 5. Déterminer la loi limite de $\sqrt{n} \left(\widehat{\theta}_n^M \theta \right)$.
- **6.** Quelle est la loi de $\sqrt{n} \left(\widehat{\theta}_n^{MV} \theta \right)$ quand $n \to +\infty$.
- 7. En termes de l'échantillon, donner un intervalle de confiance au niveau 95% pour θ (utiliser $\widehat{\theta}_n^{MV}$).

Application:
$$\sum_{i=1}^{120} x_i^2 = 912$$
.

Bonne Chance Dr. BENKHELIFA