Weeklysubmission-9

1.

Absolute

II tempo oggi in Piacenza Martedì, 03 Dicembre 2019										
	13:00	14:00	16:00	18:00	20:00	21:00	22:00			
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun			
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C			
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C			
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm			
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %			
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa			
Intensità del vento	15 km/h	14 km/h	9 km/h	9 km/h	7 km/h	8 km/h	8 km/h			
Direzione del vento	←¬	\leftarrow	\leftarrow	\leftarrow	>	>	>			
	E	E	E	E	SE	SE	SE			
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %			
Punto di rugiada	3°C	3°C	3°C	1°C	-1°C	0°C	-1°C			
Nuvole	21 %	13 %	42 %	15 %	2 %	3 %	3 %			
Nuvole basse	11 %	7 %	42 %	15 %	2 %	3 %	3 %			
Nuvole medie	18 %	12 %	2 %	0 %	1 %	0 %	0 %			
Nuvole alte	0 %	0 %	0 %	0 %	0 %	0 %	0 %			

03/12/19, 18:00,

Temperature: 6 °C

Relative humidity: 70% P=1026 hPa= 102.6 kPa

Aula A volume=10m*20m*3 m

Absolute Humidity: 0. 642 $\frac{Kg_{vapour}}{kg_{dryAir}}$

Wet-bulb temperature: 4 $^{\circ}C$ The mass of water vapour:3 kg

Absolute Humidity:

 $\phi = \frac{m_v}{m_g} \quad {\longrightarrow} \ m_g the \ mass \ of \ water \ at \ sat \ condition$

From Steam tables I can find the saturation pressure of water 6 C = 0.0093 bar = 0.93 kPa

$$\phi = \frac{m_v}{m_a} = \frac{P_v}{P_a} \longrightarrow P_g = P_{sat}6 \text{ °C} = 0.93 \text{ kPa}$$

$$\phi = \frac{P_v}{P_g} \Rightarrow P_V = \phi \times P_g = 0.7 * 0.93 = 0.651 \text{ kPa}$$

$$partial \ pressure \ of \ dry \ air: \ P_a = P - P_v$$

$$= 100 \text{ kPa} - 0.651 \text{ kPa} = 99.349 \text{ kPa}$$

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{102.6}{99.349} = 0.642 \frac{Kg_{vapour}}{kg_{dryAir}}$$

The mass of water vapour

for ideal gases :
$$m = \frac{PV}{R_{sp.}T}$$

for air :
$$m_a = \frac{P_a V_a}{R_a T}$$

From the table

$$R_a$$
= 0.287, R_v = 0.4615

$$m_a = \frac{99.349 * (10 * 20 * 3)}{0.287 * (273 + 6)} = 744.4 \text{ kg}$$

$$m_v = \frac{0.651 * (10 * 20 * 3)}{0.4615 * (273 + 6)} = 3 \text{ kg}$$

2.

								BRINDIS	I, Italy						WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and H	lumidificat	ion Design C	onditions												
					Hum	idification D	P.MCDB and	HD			Coldest mon	H WSMCD	Ω	Mews	/PCWD		
	Coldest Heating DB 99.6% 99% 99% 0.4%																
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	ws	MCDB	ws	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	umidification	on, and Enth	alpy Design	Condition	\$										
	Hottest	Hottest												MCWS		i .	
	Month	Month DB Bosses											WB 2	%	to 0.4		
	4-1	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB		MCDB	MCWS	PCWD	į.
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	())	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific		CDB and HF	₹						y/MCDB			Hours	i .
		0.4%			1%			2%			4%		%		%	8 to 4 &	i .
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	į.
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Innual Desi	gn Conditi	ons													
	Evtr	eme Annual	ws	Extreme			Annual DB						Values of E.				i
	Max			ean	Standard			years		years		years	n=50		i .		
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Internal Gains

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 \; N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 \; W$$

Infiltration

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

Good quality -
$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$

Exposed surface = Wall area +roof area

$$A_{es} = 200 + 144 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \ cm^2$$

$$\begin{split} IDF_{heating} &= 0.073 \frac{L}{s. \ cm^2} \\ IDF_{cooling} &= 0.032 \frac{L}{s. \ cm^2} \end{split}$$

Table 5 Typical IDF Values, L/(s·cm²)

Н,			ting Dependent			Cooling Design Temperature, °C					
m	-40	-30	-20	-10	0	10	30	35	40		
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040		
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043		
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049		
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055		
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061		
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068		
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074		

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF = 481.6 * 0.073 = 35.16 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF = 481.6 * 0.033 = 15.89 \frac{L}{s}$$

Ventilation

$$\begin{split} \dot{V}_{ventilation} &= 0.05 \, A_{cf} + 3.5 \, (N_{br} + 1) \\ &= 0.05*200 + 3.5* \, 2 = 17 \, \text{ L/S} \\ \dot{V}_{inf-ventilation_{heating}} &= 35.16 + 17 = 52.16 \, \text{L/s} \\ \dot{V}_{inf-ventilation_{cooling}} &= 15.89 + 17 = 32.89 \, \text{L/s} \end{split}$$