How expressive is SQL?

Full programming languages can express all computable functions (C, Java, etc)

Can SQL express all computable queries?

A: YES B: NO

How expressive is SQL?

flight	from	to
	SD SD LA	LA ORD NY

Can SQL express the following query: "Is there a way to get from City1 to City2"?

A: YES B: NO

Limitation of basic SQL

flight	from	to
	SD	LA
	SD	ORD
	LA	NY

"Is there a way to get from City1 to City2"?

Easier:

"Is there a way to get from City1 to City2 by a direct flight?"

$$City1 \longrightarrow City2$$

Easier:

"Is there a way to get from City1 to City2 with at most one stopover?"

select x.from, y.to from flight x, flight y where x.from = 'City1' and x.to = y.from and y.to = 'City2'

Easier:

"Is there a way to get from City1 to City2 with at most two stopovers?"

"Is there a way to get from City1 to City2 with at most k stopovers?"

Need k+1 tuple variables!

"Is there a way to get from City1 to City2 with any number of stopovers?"

Cannot do in basic SQL!

Similar examples

- Parts-components relation:
 - "find all subparts of some given part A"
- Parent/child relation
 - "find all of John's descendants"

More general: transitive closure of a graph

G	A	В	
	a	b	
	c	a	
	b	c	

Find the pairs of nodes <x,y> that are connected by some directed path

a b
a d
a e
b d
b e

Computing transitive closure T of G

"Find the pairs of nodes <a,b> that are connected in G" Same as

"find pairs of nodes <a,b> at distance 1" UNION "find pairs of nodes <a,b> at distance at most 2" UNION

"find pairs of nodes <a,b> at distance at most k" UNION

When to stop? At some point, no new nodes are added. Distance cannot be larger than total number of nodes in G.

Denote by T_k the pairs of nodes at distance at most k

T₁: "find pairs of nodes <a,b> at distance 1" select * from G

 T_k : "find the pairs of nodes <a,b> at distance at most k"

a
$$\xrightarrow{T_{k-1}}$$
 b OR a b

(select * from T_{k-1})

union

(select x.A, y.B from G x, T_{k-1} y

where x.B = y.A)

One solution: extend SQL with recursion (not part of the standard)

create recursive view T as
(select * from G)
union
(select x.A, y.B
from G x, T y
where x.B = y.A)

Semantics:

- 1. Start with empty T
- While T changes {evaluate view with current T; union result with T }

Note: this must terminate, since there are finitely many tuples one can add to T (if no new values are created)

Alternative

with recursive T as
(select * from G)
union
(select x.A, y.B
from G x, T y
where x.B = y.A)
select * from T;

Semantics:

- 1. Start with empty T
- While T changes {evaluate view with current T; union result with T }

Note: this must terminate, since there are finitely many tuples one can add to T (if no new values are created)

Another example

frequents drinker bar

Friends: drinkers who frequent the same bar Find transitive closure of *Friends*

create recursive view T as select f1.drinker as drinker1, f2.drinker as drinker2 from frequents f1, frequents f2 where f1.bar = f2.bar union select t1.drinker1, f2.drinker as drinker 2 from T t1, frequents f1, frequents f2 where t1.drinker2 = f1.drinker and f1.bar = f2.bar

Problematic example

create recursive view T as select A, 0 as N from R union select A, N+1 as N from T

- never terminates
- some systems forbid arithmetic or aggregate functions in selects in recursive definitions

Transitive closure in embedded SQL

```
 \begin{tabular}{lll} \begin{tabular}{lll} $\mathsf{T} := G \\ $\Delta := G$ \\ \hline while $\Delta \neq \Phi$ do \\ & \{ T_{old} = T \\ & T := (select * from T) \\ & union \\ & (select x.A, y.B from G x, T y) \\ & where & x.B = y.A) \\ & \Delta := T - T_{old} & \} \\ \hline Output T \\ \hline \end{tabular}
```


Another way: Embedded SQL

```
 \begin{tabular}{ll} \begin{tabular}{ll} $<\mathbf{pseudo-code}>$\\ $T:=G$\\ $\Delta:=G$\\ \hline while $\Delta\neq\Phi$ do\\ $\{T_{old}=T$\\ $T:=$ (select*from T)$\\ union\\ (select x.A, y.B from $G$ x, $T$ y where $x.B=y.A)\\ $\Delta:=T-T_{old}$ $\} \\ \hline Output $T$ \\ \hline \end{tabular}
```

Converges in diameter(G) iterations (maximum distance between two nodes in G)

Optimization ("semi-naïve" evaluation): use at least one new tuple (from Δ) every time

```
 \begin{array}{l} \text{<pseudo-code>} \\ T := G \\ \Delta := G \\ \text{while } \Delta \neq \Phi \text{ do} \\ \{ T_{old} = T \\ T := (\text{select * from T}) \\ \text{union} \\ (\text{select x.A, y.B from } G \text{ x, } \Delta \text{ y} \\ \text{where } \text{ x.B = y.A}) \\ \Delta := T - T_{old} \ \} \\ \text{Output T} \end{array}
```


Faster convergence (double recursion):

```
\begin{split} T &:= G \\ \Delta &:= G \\ \text{while } \Delta \neq \Phi \text{ do} \\ & \{ \text{ $T_{old} = T$} \\ T &:= \text{ (select * from T)} \\ & \text{union} \\ & \text{ (select x.A, y.B from } \text{ $T$ x, $T$ y} \\ & \text{where } \text{ x.B = y.A)} \\ \Delta &:= T - T_{old} \  \, \} \\ \text{Output T} \end{split}
```

Converges in log(diameter(G)) iterations

Example (focus on computing $\langle a_0, a_8 \rangle$)

$$a_0 \longrightarrow a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow a_4 \longrightarrow a_5 \longrightarrow a_6 \longrightarrow a_7 \longrightarrow a_8$$

Example (focus on computing $< a_0, a_8 >$)

Example (focus on computing $< a_0, a_8 >$)

$$a_0 \longrightarrow a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow a_4 \longrightarrow a_5 \longrightarrow a_6 \longrightarrow a_7 \longrightarrow a_8$$

$$a_0 \longrightarrow a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow a_4 \longrightarrow a_5 \longrightarrow a_6 \longrightarrow a_7 \longrightarrow a_8$$

$$a_0 \longrightarrow a_1 \longrightarrow a_2 \longrightarrow a_3 \longrightarrow a_4 \longrightarrow a_5 \longrightarrow a_6 \longrightarrow a_7 \longrightarrow a_8$$

Optimization ("semi-naïve" evaluation): again, use at least one new tuple every time

```
\begin{split} T &:= G \\ \Delta &:= G \\ \text{while } \Delta \neq \Phi \text{ do} \\ & \{ T_{old} = T \\ T &:= (select * from T) \\ & \text{union} \\ & (select x.A, y.B from $\Delta x, T y$) \\ & \text{where } x.B = y.A) \\ & \text{union} \\ & (select x.A, y.B from $T x, \Delta y$) \\ & \text{where } x.B = y.A) \ \} \\ & \Delta := T - T_{old} \\ & \text{Output T} \end{split}
```