

Métodos Numéricos para Ingeniería Método de diferencias finitas para la ecuación de onda

Algoritmo del método de diferencias finitas para la ecuación de onda

Para aproximar la solución de la ecuación de onda [1]

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \qquad 0 < x < L, \qquad 0 < t < T,$$

sujeta a las condiciones de frontera

$$u(0,t) = u(L,t) = 0, \quad 0 < t < T,$$

y las condiciones iniciales

$$u(x,0) = f(x), \quad y \quad \frac{\partial u}{\partial t}(x,0) = g(x), \quad \text{para} \quad 0 \le x \le L.$$

ENTRADA extremo L; tiempo máximo T; constante α ; enteros $m \geq 2, N \geq 2$. aproximaciones $w_{i,j}$ a $u(x_i, t_j)$ para cada i = 0, ..., m y j = 0, ..., N. **SALIDA** Paso 1 Sea h = L/m; k = T/N; $\lambda = \alpha k/h$. Para j = 1, ..., N sea $w_{0,j} = 0$; Paso 2 $w_{m,j}=0.$ Paso 3 Sea $w_{0,0} = f(0)$; $w_{m,0} = f(L).$ Paso 4 Para i = 1, ..., m - 1 (Inicialize para t = 0 y t = k.) sea $w_{i,0} = f(ih);$ $w_{i,1} = (1 - \lambda^2) f(ih) + \frac{\lambda^2}{2} [f((i+1)h) + f((i-1)h)] + kg(ih).$ Paso 5 Para j = 1, ..., N - 1 (Realice la multiplicación de matriz.) para i = 1, ..., m - 1sea $w_{i,j+1} = 2(1-\lambda^2) w_{i,j} + \lambda^2 (w_{i+1,j} + w_{i-1,j}) - w_{i,j-1}$. Para $j = 0, \ldots, N$ Paso 6 sea t = jk; para $i = 0, \ldots, m$ sea x = ih; SALIDA $(x, t, w_{i,j})$ Paso 7 PARE. (El procedimiento está completo.)

Problema

Considere la ecuación de onda

$$\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < x < 1, \quad 0 < t < 1;$$
$$u(0,t) = u(1,t) = 0, \quad 0 < t < 1;$$
$$u(x,0) = \sin(\pi x), \quad 0 \le x \le 1;$$
$$\frac{\partial u}{\partial t}(x,0) = 0, \quad 0 \le x \le 1.$$

cuya solución real es

$$u(x,t) = \sin(\pi x)\cos(2\pi t)$$

Actividades

- 1) Implemente el algoritmo del método de diferencias finitas para la ecuación de onda en Python.
- 2) Encuentre una aproximación del problema anterior, usando el algoritmo del método de diferencias finitas para la ecuación de onda.
- 3) Para m = 10 y N = 10, realice una comparación mediante una gráfica 3D entre la solución real y la aproximación obtenida por el método de diferencias finitas para la ecuación de onda.

Bibliografía

- 1. Richard L. Burden, Douglas J. Faires, Annette M. Burden. Análisis Numérico. 10a edición. Cengage Learning. 2017.
- 2. Steven C. Chapra, Raymond P. Canale. Métodos Numéricos para Ingenieros. 5a edición. McGraw-Hill, México. 2007.