Boletín

- 1. Calcula las líneas de corriente, la trayectoria de una partícula del fluido y el campo de aceleraciones para los campos de velocidades siguientes:
 - a) Movimiento de traslación rígido: $\vec{v}(t, \vec{r}) = \vec{v}(t)$
 - b) Movimiento de rotación rígido: $\vec{v}(t,\vec{r}) = \vec{\omega}(t) \times \vec{r}$

HOUMIENTO DE TRASLACIÓN RÍCIDO: V(+, T)= V(+)

La velocidad en este caso no depende de la posición, solo del tiempo · las líneas de corriente se calculan a partir de:

$$\lambda = \frac{dx}{vx} = \frac{dy}{vy} = \frac{dz}{vz}$$

las darenos como la 1 de 2 superficies. Para ello, integramos

dos a dos:

$$\int_{x_0}^{x} \frac{dx}{vx} = \int_{y_0}^{y} \frac{dy}{vy}$$
; $\frac{x-x_0}{vx} = \frac{y-y_0}{vy} \implies y = \frac{vy}{vx}(x-x_0) + y_0$
 $vx = \frac{y-y_0}{vx} \implies y = \frac{vy}{vx}(x-x_0) + y_0$

 $\int_{x}^{x_{0}} \frac{dx}{dx} = \int_{\frac{5}{2}}^{\frac{5}{2}} \frac{\Delta + \Delta}{\Delta + \Delta} \Rightarrow \frac{\Delta}{x - x_{0}} \Rightarrow \frac{\Delta}{x - x_{0}}$

Por lo tanto, las líneas de corniente serán la intersección de los planos signientes:

$$\gamma := \begin{cases} \frac{\Lambda^{X}}{\Lambda^{\frac{1}{2}}}(x - x^{0}) + 5^{0} \\ \frac{\Lambda^{X}}{\Lambda^{1}}(x - x^{0}) + \lambda^{0} \end{cases}$$

· Para dar la trajectoria de las partículas, sea o la función

$$\frac{d\vec{\theta}}{dt} = \vec{v} \qquad \qquad \frac{dx}{dt} = v_x ; \frac{dy}{dt} = v_y ; \frac{dz}{dt} = v_z$$

Si nos centramos en el primer caso y luego lo generalizanos.

$$\frac{dx}{dt} = v_x ; \int_{t_0}^{t} dx = \int_{t_0}^{t} v_x(t) dt ; x(t) - x(t_0) = \int_{t_0}^{t} v_x(t) dt \Longrightarrow$$

· Por ultimo cal culamos el campo de acelevaciones cono:

$$\vec{a} = \frac{\vec{D}\vec{v}}{Dt} = \frac{\vec{\partial}\vec{v}}{\vec{\partial}t} + (\vec{v}.\vec{\nabla})\vec{v} \implies (\vec{v}.\vec{\nabla})\vec{v}$$
 nos expresa las derivados de \vec{v} respecto a la posición. Sin embargo, $\vec{v}(\hat{r},t) = \vec{v}(t)$, por lo que este término es molo.

$$\vec{a} = \frac{\vec{D}\vec{v}}{\vec{D}t} = \frac{\vec{D}\vec{v}}{\vec{\partial}t}$$

MOVIMIENTO DE ROTACIÓN RÍCIDO: VI(t, 7) = W(t) ×V

Lo princio que havenos será dar la velocidad en ma forma con la que

· Uneas de corriente

$$\lambda = \frac{dy}{Vy} = \frac{dx}{Vx} = \frac{dz}{Vz}$$
 \Rightarrow integramos dos a dos:

$$\int_{\lambda}^{\lambda_0} \int_{A}^{A} dx = \int_{A}^{\lambda_0} \int_{A}^{\lambda_0} \frac{(A + A - A + A)}{A} = \int_{A}^{\lambda_0} \frac{(A + A - A + A)}{A} = \frac{(A - A + A)}{A} = \frac{(A - A + A)}{A}$$

$$\int_{x}^{x} \frac{dx}{dx} = \int_{x}^{y} \frac{dx}{dx} : \int_{x}^{y} \frac{dx}{dx} = \int_{x}^{y} \frac{dx}{dx} = \int_{x}^{y} \frac{dx}{dx} : \frac{dx}{(x-x_0)} = \frac{(x-x_0)}{(x-x_0)} = \frac{(x-x_0)}{(x-x_0)}$$

$$; z = \frac{(\omega_{yz} - \omega_{zy})}{(\omega_{xy} - \omega_{yx})} \cdot (z - z_0) + x_0$$

LÍNEAS DE CORRIENTE: definidas como la linea to al vector velocidad en un instante dado. Por lo general, se calcular como la 1 de dos superficies

TRAYECTORIAS: do = v (para cada componente)

CARPO DE ACEZERACIONES: a= DV

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

$$\vec{\nabla}(\vec{v}) = \left(\frac{\partial}{\partial x}, \vec{v}, \frac{\partial}{\partial y}, \vec{v}, \frac{\partial}{\partial z}, \vec{v}\right)$$

$$div(\vec{v}) = \vec{v} \cdot \vec{v} = \left(\frac{\partial}{\partial x}, \vec{v} \times + \frac{\partial}{\partial y}, \vec{v} \times + \frac{\partial}{\partial z}, \vec{v} \times + \frac{$$

Las lineas de corriente son las rectas intersección de estos dos planos.

· Trayectoria de una partícula

$$\frac{dx}{dt} = \nabla x = \omega_y z - \omega_z y ; \int_{t_0}^t dx = \int_{t_0}^t (\omega_y z - \omega_z y) dt ; x(t) = x_0 + \int_{t_0}^t (\omega_y z - \omega_z y) dt$$

(Iden con 4, 2)

· Campo de aceleraciones

Campo de acaleraciones caga vector
$$\vec{a} = \frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + (\vec{v}.\vec{\nabla})\vec{v} = \frac{\partial\vec{\omega}(t)\times\vec{v}}{\partial t} + ((\vec{\omega}(t)\times\vec{v}).\vec{\nabla})(\vec{\omega}(t)\times\vec{r})$$

$$\rightarrow \Big((\omega_{y} z - \omega_{z} y) \frac{\partial}{\partial x} + (\omega_{z} x - \omega_{x} z) \frac{\partial}{\partial y} + (\omega_{x} y - \omega_{y} x) \frac{\partial}{\partial z} \Big) \Big((\omega_{y} z - \omega_{z} y) - (\omega_{x} z - \omega_{z} x) + (\omega_{x} y - \omega_{y} x) \Big) = 0$$

= (wyZ - Wzy)(

desamollo

2. Considera el campo de velocidades estacionario

$$\vec{v}(x, y) = x\vec{i} + ky\vec{j}$$

- a) Determina las líneas de corriente para los diferentes valores de k y representalas en un diagrama para los casos (i) k=0; (ii) k=1 y (iii) k=1. In the low definition of the parallel paralle
- b) Determina los movimientos asociados al campo \vec{v} y comprueba que las trayectorias coinciden con las líneas de corriente.
- c) Para el caso k = -1 calcula:
 - El campo de aceleraciones en las descripciones de Euler y de La
 - \bullet Si $c(t,x,y,z)=\beta x^2|y|e^{-t}$ es la concentración de un cierto componente en el fluido, calcula la derivada temporal de la concentración de dicho componente en los diferentes elementos de fluido.

a) las líneas de corriente se calculan como:

$$\int_{x_0}^{x} \frac{dx}{\sqrt{x}} = \int_{y_0}^{y} \frac{dy}{\sqrt{y}}; \quad \int_{x_0}^{x} \frac{dx}{x} = \int_{y_0}^{y} \frac{dy}{y}; \quad \ln\left|\frac{x}{x_0}\right| = \frac{1}{\kappa} \cdot \ln\left|\frac{y}{y_0}\right| \Rightarrow$$

⇒ despejonos y en finción de x (par ser un caso biolimensional ja no hemos de dar las vectas como (1 de planos)

$$\frac{x}{x_0} = \left(\frac{y}{y_0}\right)^{A/K}$$
; $y(x) = \frac{y_0}{x_0 k}$. $x^k = A x^k$

k=0 $y(x)=y_0$ $\forall x \in \mathbb{R} \rightarrow la$ relacidad será mla para el eje y y constante para el eje x. Las líneas de convente parten del origen y se meven con velocidad constante en la dirección de x

K=1 y(x)= 10 x = Ax - movimiento lineal, la velocidad en anhas

componentes será constante. El fluido se desplotavá vadialmente

desde el origen

k= 1 y(x)= y0 x0 x → tendremos líneas de campo con forma hiperbolica con una asintota en x=0

$$K=-1$$
 $y(x)=y_0\cdot x_0\cdot \frac{1}{x} \rightarrow tenducinos líneas de campo con forma hiperboólica con una asíntota en $x=0$.$

b) Primero vemos el caso genérico y luego estroliamos pora cada valor de K.

$$\frac{dx}{dt} = vx = x \implies \int_{t_0}^{t} \frac{\Lambda}{x} dx = \int_{t_0}^{t} dt ; \quad ln\left(\frac{x}{x_0}\right) = t - t_0; \quad x(t) = x_0 \cdot e^{t - t_0}$$

$$\frac{dy}{dt} = vy = ky \implies \int_{t_0}^{t} \frac{\Lambda}{ky} dy = \int_{t_0}^{t} dt ; \quad \frac{\Lambda}{k} ln\left(\frac{y}{y_0}\right) = t - t_0; \quad y(t) = y_0 \cdot e^{(t - t_0) \cdot k}$$

$$k=1$$
 $y(t)=y_0\cdot e^{(t-t_0)}=y_0\cdot \frac{x(t)}{x_0}$

c) i) El campo de aceleraciones en el formalismo de Enler es el que descritaimos con la derivada convectiva.

$$\vec{a} = \frac{\vec{D}\vec{v}}{\vec{D}t} = \frac{\vec{D}\vec{v}}{\vec{v}} + (\vec{v}.\vec{v})\vec{v} = (v_x.\frac{\partial}{\partial x} + v_y\frac{\partial}{\partial y})\vec{v} = (x\frac{\partial}{\partial x} \times + k_y\frac{\partial}{\partial y} \times, x\frac{\partial}{\partial x} \times + k_y\frac{\partial}{\partial y} \times + k_y\frac{\partial y}{\partial y} \times + k_y\frac{\partial}{\partial y} \times + k_y\frac{$$

ii) $c(t,x,y,t) = \beta x^2 |y|e^{-t} \rightarrow derivada temporal en los diferentes elementos$ Tenemos que calcular la derivada convectiva:

$$\frac{Dc}{Dt} = \frac{\partial c}{\partial t} + (\vec{v}. \vec{\nabla})c = -\beta \times^{2} |y|e^{\frac{t}{t}} + (\times \frac{\partial}{\partial x} - y\frac{\partial}{\partial y})c =$$

$$= -\beta \times^{2} |y|e^{\frac{t}{t}} + 2\beta \times^{2} |y|e^{\frac{t}{t}} - y\beta \times^{2} e^{-\frac{t}{t}} = 0 \implies \text{concentración constante}$$

3. Demuestra las siguientes identidades vectoriales

$$\nabla \cdot (f \vec{v}) = \vec{v} \cdot \nabla f + f \nabla \cdot (\vec{v})$$

b)
$$\nabla(\frac{\vec{v}^{\,2}}{2})\,=\,(\vec{v}\cdot\nabla)\vec{v}\,-\,\vec{v}\times(\nabla\times\vec{v})$$

a) V. (gr) = r. TP + PV. (v)

$$\nabla \cdot (f\vec{v}) = \frac{\partial}{\partial x} f\vec{v} + \frac{\partial}{\partial y} f\vec{v} + \frac{\partial}{\partial z} f\vec{v} = \vec{v} \cdot \frac{\partial}{\partial x} f + f\frac{\partial}{\partial x} \vec{v} + \vec{v} \cdot \frac{\partial}{\partial y} f + f\frac{\partial}{\partial z} \vec{v} + \vec{v} \cdot \frac{\partial}{\partial y} f + f\frac{\partial}{\partial z} \vec{v} + \vec{v} \cdot \frac{\partial}{\partial z} f + f\frac{\partial}{\partial z} \vec{v} + f\frac$$

b) $\nabla \left(\frac{\vec{v}^2}{2}\right) = (\vec{v}. \nabla) \vec{v} - \vec{v} \times (\nabla \times \vec{v})$

$$(\vec{v}.\nabla)\vec{v} - \vec{v} \times (\nabla \times \vec{v}) = (\nabla x \frac{\partial}{\partial x} + \nabla y \frac{\partial}{\partial y} + \nabla x \frac{\partial}{\partial z})\vec{v} - \vec{v} \times () =$$

$$(\vec{v}.\nabla)\vec{v} - \vec{v} \times (\nabla \times \vec{v}) = (\nabla x \frac{\partial}{\partial x} + \nabla y \frac{\partial}{\partial y} + \nabla x \frac{\partial}{\partial z})\vec{v} - \vec{v} \times () =$$

$$(\vec{v}.\nabla)\vec{v} - \vec{v} \times (\nabla \times \vec{v}) = (\nabla x \frac{\partial}{\partial x} + \nabla y \frac{\partial}{\partial y} + \nabla x \frac{\partial}{\partial z})\vec{v} - \vec{v} \times () =$$

$$(\vec{v}.\nabla)\vec{v} - \vec{v} \times (\nabla \times \vec{v}) = (\nabla x \frac{\partial}{\partial x} + \nabla y \frac{\partial}{\partial y} + \nabla x \frac{\partial}{\partial z})\vec{v} - \vec{v} \times () =$$

$$(\vec{v}.\nabla)\vec{v} - \vec{v} \times (\nabla x \vec{v}) = (\nabla x \frac{\partial}{\partial x} + \nabla y \frac{\partial}{\partial y} + \nabla x \frac{\partial}{\partial z} + \nabla y \frac{\partial}$$

$$\left(\sqrt{x} \frac{\partial}{\partial x} \vec{\nabla} + \sqrt{y} \frac{\partial}{\partial y} \vec{V} + \sqrt{z} \cdot \frac{\partial}{\partial z} \vec{V} \right) - \left(\sqrt{x} \frac{\partial}{\partial z} \sqrt{x} - \sqrt{x} \frac{\partial}{\partial x} \right) = \frac{2}{3} \frac{1}{3} \frac{1}{$$

- 4. Considera un fluido en equilibrio hidrostático en el seno de un campo gravitatorio en la dirección z, $\vec{g} = -g\vec{k}$ (siendo g una constante positiva).
 - a) Partiendo de la ecuación de Euler, escribe la ecuación de equilibrio hidrostático para estas condiciones
 - b) Si se trata de un fluido incompresible (densidad constante), calcula la dependencia de la presión con
 - c) Si el fluido satisface la ecuación de estado adiabática del tipo: $P=K\rho^{\gamma}$ donde P es la presión, ρ la densidad, y K y γ son dos constantes positivas, calcula la dependencia de la densidad con z y el valor de z para el que la densidad es cero.
- a) la emación de Euler es

$$\rho \frac{\overrightarrow{DV}}{Dt} = -\rho \overrightarrow{g} - \overrightarrow{\nabla P}$$

La condición de equilibrio hichostático es que las fuerzas del gradiente ventical de presión y la gravedad estarn en equilibrio. Tratenaticamente, se expresa como:

Integramos esta emación teniendo en menta que $\hat{g} = -\hat{g}k$ en z $\int_{P_0}^{P} \partial P' = \int_{P_0}^{P} \rho \vec{g} k \, \partial z \implies P = P_0 + \int_{P_0}^{P} \rho k \vec{g} \, \partial z$

b) Si es un fluido incompresible (p=cte), la integral queda de la signiente forma:

P(=) = Po + \int_{20} pkgdz = Po + pkg = Po + pkg (2-20)

c) $P = K p^{\sigma}$; $K, r > 0 \implies$ calcular la dependencia de p con z y el valor de 7 para que sea 7 p=(F) 1/10 - ignal si se integra esto respecto a Py

Volvemos a la condición inicial que hemos impresto. Aliora, P

no depende de
$$\frac{1}{2}$$
 sino de ρ :
$$\frac{\partial P}{\partial z} = -\rho \hat{q} : \frac{\partial P}{\rho} = \frac{K \rho^{3-1} \cdot 7 \cdot 3 \cdot P}{\rho} = k \rho^{3-2} \cdot 7 \cdot 3 \rho = -\tilde{q} \partial z \Rightarrow$$

$$\implies \int_{\rho}^{\infty} K \rho^{3-2} \cdot 7 \cdot 3 \rho = \int_{\frac{1}{2}0}^{z} K g \partial z : K \rho^{3-1} \cdot 7 \int_{\rho}^{z} = + K g (z-z_0) \Rightarrow$$

$$\Rightarrow R \frac{r}{r-1} \left(\rho^{r-1} - \rho_0^{r-1} \right) = -kg \left(z - z_0 \right) ; \ \rho(z) = \left(\frac{kg \left(z - z_0 \right) \cdot \left(r - 1 \right)}{R \cdot r} \right)^{1/r-1} + \rho_0$$

Para que se amle:

$$\rho(z) = 0 \iff \rho_0 = -\left(\frac{\kappa_g(z-z_0)(r-\lambda)}{\kappa \cdot r}\right)^{\Lambda/r-\lambda}; \ \ z = \frac{-\rho_0^{r-\lambda} \cdot \kappa \cdot r}{\kappa \cdot g \cdot (r-\lambda)} + z_0$$

5. Problema de Torricelli: Considera un recipiente lleno de agua con un pequeño agujero en la parte inferior, tal y como se muestra en la figura. Determina la velocidad de salida del fluido por el agujero considerando que se trata de un flujo incompresible, cuasi-estacionario y que el área de la parte superior es mucho mayor que la sección del agujero.

· Flujo incompresible: p=cte, Dr =0 · Flyo wasi - estacionario

· SA > SR

Problema de Torricell

Para dar una expresión de VB, vamos a emplear el Teorena de Bernouilli, seguin el cual:

Aplicando el terrena:

el teorena:

$$\frac{1}{2} \rho \vec{v}^2 + \rho gh + P = cte$$

consideramos $h_B = 0$ y h_A como la

 $\frac{1}{2} \rho a \vec{v}_a^2 + \rho a gh_A + P_A = \frac{1}{2} \rho B \vec{v}_B^2 + \rho gh_B g + P_B$
 $\frac{1}{2} \rho V_a^2 + \rho a h g + P_A = \frac{1}{2} \rho V_b^2 + P_B$
 $\frac{1}{2} \rho V_a^2 + \rho a h g + P_A = \frac{1}{2} \rho V_b^2 + P_B$
 $\frac{1}{2} \rho V_a^2 + \rho a h g + P_A = \frac{1}{2} \rho V_b^2 + P_B$
 $\frac{1}{2} \rho V_b^2 + \rho a h g + P_A = \frac{1}{2} \rho V_b^2 + P_B$
 $\frac{1}{2} \rho V_b^2 + \rho a h g + P_A = \frac{1}{2} \rho V_b^2 + P_B$

& PA = PB = Patro (pto A está en la superficie y B trus + es el punto de salida al exterior)

6. Un venturímetro es un aparato que tiene la forma que se muestra en la figura y que permite medir la velocidad de un fluido a partir de la diferencia de alturas h en los dos tubos que se encuentran uno sobre la sección más ancha y el segundo en la sección más estrecha. Deduce la ecuación de la velocidad en la sección estrecha en función de: h, de la relación entre las dos secciones A_2/A_1 y de la densidad del fluido P. → VZ?

Venturímetro

Volvenos a aplicar el Teorena de Bernoulli:

 $nt = \rho(\vec{V}.A) \implies \rho_1 \vec{V}_1 A_1 = \rho_2 \vec{V}_2 A_2 \implies \vec{V}_1 = \frac{\rho_2 A_2}{\rho_1 A_1} \vec{V}_2 = \frac{A_2}{\rho_2} \vec{V}_2$ 2. Suponemos $l_2 = 0$ como punto de referencia de forma que $l_1 = \Delta h$. 1. CONSERVACIÓN DE FLUJO: nos permite relacionar las velocidades

suponemos fluis incompresible

3. Suponemos la densidad constanté en todos los puntos del fluido, y como ambos puntos se hallan a la misma altura, P1=P2.

$$\frac{1}{2}\vec{\nabla}_{1}^{2} + \rho_{1}gh_{1} + \rho_{1} = \frac{1}{2}\vec{\nabla}_{2}^{2} + \rho_{2}gh_{2} + \rho_{2}$$

$$\frac{1}{2}(\frac{A_{2}}{\Delta_{1}})^{2}\vec{\nabla}_{2}^{2} + \rho_{3}\Delta h = \frac{1}{2}\vec{\nabla}_{2}^{2} \implies \vec{\nabla}_{2}^{2}(\frac{1}{2}(\frac{A_{2}}{\Delta_{1}})^{2} - \frac{1}{2}) = -\rho_{3}\Delta h$$

$$\vec{\nabla}_{2} = \sqrt{\frac{2\rho_{3}\Delta h}{1 - \frac{A_{2}^{2}}{\Delta_{2}^{2}}}$$