1	(a)	Length, mass and temperature are all SI base quantities.	
		State two other SI base quantities.	
		1	
		2	 2]
	(b)	The acceleration of free fall g may be determined from an oscillating pendulum using the equation	ne
		$g = \frac{4\pi^2 l}{T^2}$	
		where l is the length of the pendulum and T is the period of oscillation.	
		In an experiment, the measured values for an oscillating pendulum are	
		$l = 1.50 \text{m} \pm 2\%$ and $T = 2.48 \text{s} \pm 3\%$.	
		(i) Calculate the acceleration of free fall g.	
		$g = \mbox{m} {\rm s}^{-2} \; [$ (ii) Determine the percentage uncertainty in g .	1]
		percentage uncertainty = % [-
		(iii) your answers in (b)(i) and (b)(ii) to determine the absolute uncertainty of the calculated value of g.	ne
		absolute uncertainty = ms ⁻² [[Total:	-

- 2 A dolphin is swimming under water at a constant speed of 4.50 m s⁻¹.
 - (a) The dolphin emits a sound as it swims directly towards a stationary submerged diver. The frequency of the sound heard by the diver is $9560\,\mathrm{Hz}$. The speed of sound in the water is $1510\,\mathrm{m\,s^{-1}}$.

Determine the frequency, to three significant figures, of the sound emitted by the dolphin.

(b) The dolphin strikes the bottom of a floating ball so that the ball rises vertically upwards from the surface of the water, as illustrated in Fig. 2.1.

Fig. 2.1

The ball leaves the water surface with speed $5.6 \,\mathrm{m\,s^{-1}}$.

Assume that air resistance is negligible.

(i) Calculate the maximum height reached by the ball above the surface of the water.

(ii) The ball leaves the water at time t = 0 and reaches its maximum height at time t = T.

On Fig. 2.2, sketch a graph to show the variation of the speed of the ball with time t from t = 0 to t = T. Numerical values are **not** required.

Fig. 2.2

[1]

(iii) The mass of the ball is 0.45 kg.

your answer in **(b)(i)** to calculate the change in gravitational potential energy of the ball as it rises from the surface of the water to its maximum height.

	change in gravitational potential energy =
(iv)	State and explain the variation in the magnitude of the acceleration of the ball as it falls back towards the surface of the water if air resistance is not negligible.

[Total: 9]

3	(a)	Stat	te what is meant by work done.
			[1]
	(b)	A sk	kier is pulled along horizontal ground by a wire attached to a kite, as shown in Fig. 3.1.
			speed $4.4 \mathrm{m s^{-1}}$ 140 N
			skier 30° ground
			Fig. 3.1 (not to scale)
			skier moves in a straight line along the ground with a constant speed of $4.4\mathrm{ms^{-1}}$. The is at an angle of 30° to the horizontal. The tension in the wire is $140\mathrm{N}$.
		(i)	Calculate the work done by the tension to move the skier for a time of 30 s.
			work done = J [3]
		(ii)	The weight of the skier is 860 N. The vertical component of the tension in the wire and the weight of the skier combine so that the skier exerts a downward pressure on the ground of 2400 Pa.
			Determine the total area of the skis in contact with the ground.

(iii) The wire attached to the kite is uniform. The stress in the wire is $9.6 \times 10^6 \, \text{Pa}$. Calculate the diameter of the wire.

(c) The variation with extension x of the tension F in the wire in (b) is shown in Fig. 3.2.

Fig. 3.2

A gust of wind increases the tension in the wire from 140 N to 210 N.

Calculate the change in the strain energy stored in the wire.

(a)		a pro	ogressive wave, state what is meant by:
	(i)	the	wavelength
			[1]
	(::)	٠	
	(ii)	tne	amplitude.
			[1]
(b)	A b	eam	of red laser light is incident normally on a diffraction grating.
	(i)		raction of the light waves occurs at each slit of the grating. The light waves emerging n the slits are coherent.
		Ехр	lain what is meant by:
		1.	diffraction
			[1]
		2.	coherent.
		۷.	conerent.
			[1]

(ii) The wavelength of the laser light is 650 nm. The angle between the **third** order diffraction maxima is 68°, as illustrated in Fig. 4.1.

Fig. 4.1 (not to scale)

	d = m [3]
(iii)	The red laser light is replaced with blue laser light.
	State and explain the change, if any, to the angle between the third order diffraction maxima.
	[2]
	[Total: 9]

Calculate the separation d between the centres of adjacent slits of the grating.

5	(a)	Define the <i>ohm</i> .
		[1]
	(b)	A wire has a resistance of 1.8Ω . The wire has a uniform cross-sectional area of 0.38mm^2 and is made of metal of resistivity $9.6\times10^{-7}\Omega\text{m}$.
		Calculate the length of the wire.
		length = m [3]
	(c)	A resistor X of resistance 1.8 Ω is connected to a resistor Y of resistance 0.60 Ω and a battery P, as shown in Fig. 5.1.
		1.2 V .
		P P
		1.8 Ω 0.60 Ω X Y
		Fig. 5.1
		The battery P has an electromotive force (e.m.f.) of 1.2V and negligible internal resistance.
		(i) Explain, in terms of energy, why the potential difference (p.d.) across resistor X is less than the e.m.f. of the battery.
		(ii) Coloulate the natential difference covers resistan V
		(ii) Calculate the potential difference across resistor X.

(d) Another battery Q of e.m.f. 1.2V and negligible internal resistance is now connected into the circuit of Fig. 5.1 to produce the new circuit shown in Fig. 5.2.

Fig. 5.2

State whether the addition of battery Q causes the current to decrease, increase or remain the same in:

- (ii) battery P. [1]
- (e) The circuit shown in Fig. 5.2 is modified to produce the new circuit shown in Fig. 5.3.

Fig. 5.3

Calculate:

(i) the total resistance of the two resistors connected in parallel

resistance = Ω [1]

(ii) the current in resistor Y.

current = A [2]

[Total: 12]

A uniform electric field is produced between two parallel metal plates. The electric field strength is $1.4 \times 10^4 N C^{-1}$. The potential difference between the plates is $350 V$.		
) Calculate the separation of the plates.	(a) Ca	
separation = m [2]		
) A nucleus of mass $8.3 \times 10^{-27} \mathrm{kg}$ is now placed in the electric field. The electric force acting on the nucleus is $6.7 \times 10^{-15} \mathrm{N}$.	(b) An	
(i) Calculate the charge on the nucleus in terms of e, where e is the elementary charge.	(i)	
$\mbox{charge = } \dots \qquad \qquad e \ [3]$ (ii) Calculate the mass, in u, of the nucleus.	(ii)	
mass = u [1] (iii) your answers in (b)(i) and (b)(ii) to determine the number of neutrons in the nucleus.	(iii)	
number =[1]		

7	(a)	Stat	te and explain whether a neutron is a fundamental particle.
			[1]
	(b)	A pı	roton in a stationary nucleus decays.
		(i)	State the two leptons that are produced by the decay.
			[2]
		(ii)	Part of the energy released by the decay is given to the two leptons.
			State two possible forms of the remainder of the released energy.
			[2]
			[Total: 5]