EC3066D Artificial Intelligence: Theory and Practice

PROGRAMMING ASSIGNMENT

ABHINAV RAJ V B210759EC

I. DATA VISUALIZATION

Write and execute Python scripts to do the followings:

(i) Read CSV file & display information on the dataframe.

Hints: read csv(), info() method

CODE

```
import pandas as pd
import matplotlib.pyplot as plt
titanic_data = pd.read_csv(r"C:\Users\HP\Desktop\AI ASSIGMNET\titanic.csv")
titanic_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
    Column Non-Null Count Dtype
0
   PassengerId 891 non-null int64
    Survived 891 non-null int64
1
   Pclass
2
               891 non-null int64
3
   Name
               891 non-null object
4
               891 non-null object
    Sex
5
                714 non-null
                             float64
    Age
           891 non-null inco.
891 non-null object
891 non-null float6
6
    SibSp
7
   Parch
8
   Ticket
9
10 Cabin
   Fare
               891 non-null float64
11 Embarked 889 non-null
                               object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

(ii) Display first 10 rows of the data.

CODE

titanic_data.head(10)

OUTPUT

(iii) Display first 5 rows of the data having the given columns only.

'PassengerID', 'Name', 'Age', 'Sex'I.

CODE

```
titanic_data[['PassengerId','Name','Age','Sex']].head(5)
```

OUTPUT

In [5]: titanic_data[['PassengerId','Name','Age','Sex']].head(5)
Out[5]:

	Passengerld	Name	Age	Sex
0	1	Braund, Mr. Owen Harris	22.0	male
1	2	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	female
2	3	Heikkinen, Miss. Laina	26.0	female
3	4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	female
4	5	Allen, Mr. William Henry	35.0	male

II. DATA ANALYSIS

For data visualization, the popular packages are Matplotlib and Seaborn. More advanced functionality is available with Seaborn.

Write and execute Python scripts to do the followings:

(i) Plot the count of survived passengers

CODE

```
import seaborn as sns
sns.histplot(titanic_data['Survived'])
```

OUTPUT

```
In [6]: import seaborn as sns
sns.histplot(titanic_data['Survived'])

Out[6]: <Axes: xlabel='Survived', ylabel='Count'>

500
400
200
100
200
100
Survived
Survived
Survived
Survived
Survived
```

(ii) Plot histogram of 'Age' column Hints: hist() method

```
sns.histplot(titanic_data['Age'])
```

```
In [7]: sns.histplot(titanic_data['Age'])
Out[7]: <Axes: xlabel='Age', ylabel='Count'>
```


II. DATAWRANGLING & FEATURE SELECTION

You can easily understand that all the columns (features) in the dataset are not significant for a binary classification problem to classify 'survived' or 'not'. Also, you can see NaN values in the dataset. So, data pre-processing is required here.

Write and execute Python scripts to do the followings:

(i) Drop the following unnecessary columns.

'PassengerID', 'Name', 'Ticket', 'Cabin', 'Embarked'

```
print('Data after preprocessing')
titanic_data.columns
unnecessary_columns = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked']
titanic_data.drop(unnecessary_columns, axis=1, inplace=True)
titanic_data.head(10)
```

```
In [9]: print('Data after preprocessing')
       titanic_data.columns
unnecessary_columns = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked']
       titanic_data.drop(unnecessary_columns, axis=1, inplace=True) titanic_data.head(10)
       Data after preprocessing
Out[9]:
          Survived Pclass Sex Age SibSp Parch
        0 0 3 male 22.0
                                   1 0 7.2500
                     1 female 38.0
                                          0 71.2833
       2 1 3 female 26.0
                                  0 0 7.9250
                     1 female 35.0
        4 0 3 male 35.0
                                         0 8.0500
               0
                    3 male NaN
        6 0 1 male 54.0
                                  0 0 51.8625
               0
                    3 male 2.0
                                          1 21.0750
           1 3 female 27.0 0 2 11.1333
                                          0 30.0708
               1 2 female 14.0
```

(ii) How many 'NaN' entries in 'Age' column? Replace all 'NaN' values in the 'Age' column with mean value of the 'Age' column vector. (Mean value replacement is a popular choice. It will not make a considerable damage to the data distribution in the column vector!). Please round off the mean value to two decimals.

```
n_count=titanic_data['Age'].isna().sum()
print("Number of NaN entries in Age column is",n_count)

mean_age=titanic_data['Age'].mean()
mean_age=round(mean_age,2)
print('Mean age is',mean_age)

titanic_data['Age'].fillna(mean_age,inplace=True)
titanic_data.head(10)
```

```
In [10]: n_count=titanic_data['Age'].isna().sum()
print("Number of NaN entries in Age column is",n_count)
          Number of NaN entries in Age column is 177
In [11]: mean_age=titanic_data['Age'].mean()
    mean_age=round(mean_age,2)
    print('Mean age is',mean_age)
          Mean age is 29.7
In [12]: titanic_data['Age'].fillna(mean_age,inplace=True)
titanic_data.head(10)
Out[12]:
             Survived Pclass Sex Age SibSp Parch
          0 0 3 male 22.0 1 0 7.2500
                                          1 0 71.2833
                         1 female 38.0
                1 3 female 26.0
                                          0 0 7.9250
          4 0 3 male 35.0
                        3 male 29.7
          6 0 1 male 54.0 0 0 51.8625
                   0 3 male 2.0
             1 3 female 27.0 0 2 11.1333
```

(iii) The entries in the 'Sex' column are 'Male' or 'Female'. 'Pclass' can have 1st,2nd,3rd.

We should convert them to numerical values.

CODE

```
titanic_sex=pd.get_dummies(titanic_sex, columns=['Sex'])
titanic_pclass=pd.get_dummies(titanic_pclass, columns=['Pclass'])
titanic_sex.head(5)
titanic_pclass.head(5)
titanic_data2=titanic_data[['Sex','Pclass']]
titanic_data2 = pd.get_dummies(titanic_data2, columns=['Sex', 'Pclass'], drop_first=True)
titanic_data2.head(5)
```

```
In [16]: titanic_sex=pd.get_dummies(titanic_sex, columns=['Sex'])
        titanic_pclass=pd.get_dummies(titanic_pclass, columns=['Pclass'])
        titanic_sex.head(5)
Out[16]:
           Sex_female Sex_male
                 1
           0 1
In [17]: titanic_pclass.head(5)
Out[17]:
           Pclass_1 Pclass_2 Pclass_3
                      0
               0
           0 0
               1
                      0
         4 0 0 1
```

(iv) Concatenate the results of 'Sex' and 'Pclass' from previous step to get the following pre-processed dataset.

CODE

```
conc_titanic_data = pd.concat([titanic_data, titanic_data2], axis=1)
conc_titanic_data.head(5)
```

OUTPUT

```
conc titanic data = pd.concat([titanic data, titanic data2], axis=1)
          conc_titanic_data.head(5)
Out[20]:
              Survived Pclass
                                                         Fare Sex_male Pclass_2 Pclass_3
                                Sex Age SibSp Parch
           0
                    0
                                     22.0
                                                     0
                                                        7.2500
                                                                               0
           1
                     1
                                                     0 71.2833
                                                                      0
                                                                               0
                                                                                        0
                            1 female
                                     38.0
                                                                      0
                                                                               0
                                                     0
                                                        7.9250
                            3 female
                                     26.0
           3
                     1
                                                     0 53.1000
                                                                      0
                                                                               0
                                                                                        0
                            1 female 35.0
                               male 35.0
                                                     0 8.0500
                            3
```

(v) Next, drop 'Pclass' and 'Sex' from the data frame to obtain the following:

```
conc_titanic_data.drop(['Pclass', 'Sex'], axis=1, inplace=True)
conc_titanic_data.head(5)
```

```
In [21]: conc_titanic_data.drop(['Pclass', 'Sex'], axis=1, inplace=True)
          conc_titanic_data.head(5)
Out[21]:
             Survived Age SibSp Parch
                                         Fare Sex_male Pclass_2 Pclass_3
                   0 22.0
                                       7.2500
                   1 38.0
                                    0 71.2833
                                                    0
                                                             0
          2
                                                    0
                                                             0
                   1 26.0
                                    0
                                       7.9250
          3
                   1 35.0
                                    0 53.1000
                                                    0
                                                             0
                   0 35.0
                             0
                                    0 8.0500
```

(vi) We can rename the column names as shown below (for convenience):

CODE

```
conc_titanic_data.columns = ['Survived', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Pclass_1',
    'Pclass_2']
conc_titanic_data.head(5)
```

OUTPUT

```
In [22]: conc_titanic_data.columns = ['Survived', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Pclass_1', 'Pclass_2']
         conc_titanic_data.head(5)
Out[22]:
             Survived Age SibSp Parch
                                         Fare Sex Pclass_1 Pclass_2
                   0 22.0
                                        7.2500
                                                         0
                                    0
                   1 38.0
                                     0 71.2833
                                                         0
          2
                   1 26.0
                                                         0
                              0
                                    0 7.9250
                                                0
          3
                                                         0
                                                                 0
                   1 35.0
                                    0 53.1000
                                                0
                              1
                   0 35.0
                                    0 8.0500
```

CODE

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
zscaling = scaler.fit_transform(titanic_data[['Age','Fare']])
titanic_data[['Age','Fare']] = zscaling
titanic_data.head(5)
```

OUTPUT

(vii) Apply Z-score scaling with StandardScalar if mean and standard deviation are 0 and 1, respectively (optional in this assignment)

```
In [22]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    zscaling = scaler.fit_transform(titanic_data[['Age','Fare']])
    titanic_data[['Age','Fare']] = zscaling
    titanic_data.head(5)
Out[22]:
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
0	0	3	male	-0.592494	1	0	-0.502445
1	1	1	female	0.638776	1	0	0.786845
2	1	3	female	-0.284677	0	0	-0.488854
3	1	1	female	0.407912	1	0	0.420730
4	0	3	male	0.407912	0	0	-0.486337

(vii) Apply Z-score scaling with StandardScalar if mean and standard deviation are 0 and 1, respectively

CODE

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
zscaling = scaler.fit_transform(titanic_data[['Age','Fare']])
titanic_data[['Age','Fare']] = zscaling
titanic_data.head(5)
```

OUTPUT

```
In [22]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    zscaling = scaler.fit_transform(titanic_data[['Age','Fare']])
    titanic_data[['Age','Fare']] = zscaling
    titanic_data.head(5)
```

Out[22]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
0	0	3	male	-0.592494	1	0	-0.502445
1	1	1	female	0.638776	1	0	0.786845
2	1	3	female	-0.284677	0	0	-0.488854
3	1	1	female	0.407912	1	0	0.420730
4	0	3	male	0.407912	0	0	-0.486337

IV. TRAINING & TESTING

Write and execute Python scripts to do the followings:

(i) Make a ratio of 30% and 70% for test and train dataset.

```
import sklearn as sk
from sklearn.model_selection import train_test_split
X = conc_titanic_data.drop('Survived', axis=1)
y = conc_titanic_data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10)
print("Train set size:", len(X_train))
print("Test set size:", len(X_test))
```

```
In [23]: import sklearn as sk
In [24]: from sklearn.model_selection import train_test_split

In [25]: X = conc_titanic_data.drop('Survived', axis=1)
    y = conc_titanic_data['Survived']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10)
    print("Train set size:", len(X_train))
    print("Test set size:", len(X_test))

Train set size: 623
    Test set size: 268
```

- (ii) Apply the following models:
- (a) Logistic regression
- (b) Neural Networks classifier

CODE

```
from sklearn.linear_model import LogisticRegression
log_model = LogisticRegression(max_iter=1000)
log_model.fit(X_train, y_train)
y_log_predicted=log_model.predict(X_test)
from sklearn.neural_network import MLPClassifier
nn_model = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=1000)
nn_model.fit(X_train, y_train)
y_nn_predicted=nn_model.predict(X_test)
```

OUTPUT

```
In [26]: from sklearn.linear_model import LogisticRegression

In [27]: log_model = LogisticRegression(max_iter=1000)
    log_model.fit(X_train, y_train)
    y_log_predicted=log_model.predict(X_test)

In [28]: from sklearn.neural_network import MLPClassifier
    nn_model = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=1000)
    nn_model.fit(X_train, y_train)
    y_nn_predicted=nn_model.predict(X_test)
```

V. PERFORMANCE STUDY

Write and execute Python scripts to do the followings:

(i) Plot confusion matrix.

Logistic Regression

CODE

```
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
log_matrix = confusion_matrix(y_test, y_log_predicted)
plt.figure(figsize=(8, 6))
sns.heatmap(log_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,xticklabels=['Dead',
'Survived'], yticklabels=['Dead', 'Survived'])
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix - Logistic Regression')
plt.show()
```


Neural Network

CODE

(ii) Find Precision, Recall, F1score, and Accuracy.

```
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
log_accuracy = accuracy_score(y_test, y_log_predicted)
log_precision = precision_score(y_test, y_log_predicted)
log_recall = recall_score(y_test, y_log_predicted)
log_f1 = f1_score(y_test, y_log_predicted)

nn_accuracy = accuracy_score(y_test, y_nn_predicted)
nn_precision = precision_score(y_test, y_nn_predicted)
nn_recall = recall_score(y_test, y_nn_predicted)
nn_f1 = f1_score(y_test, y_nn_predicted)

print("Logistic Regression:")
print("Accuracy:", round(log_accuracy, 3))
print("Precision:", round(log_recall, 3))
print("Recall:", round(log_f1, 3))
print("Noural Network:")
print("Accuracy:", round(n_accuracy, 3))
print("Precision:", round(n_precision, 3))
print("Precision:", round(n_precision, 3))
print("Recall:", round(n_precision, 3))
print("Recall:", round(n_precision, 3))
print("F1 Score:", round(nn_f1, 3))
```

```
In [32]: from sklearn.metrics import confusion matrix, accuracy_score, precision_score, recall_score, f1_score

In [38]: log_accuracy = accuracy_score(y_test, y_log_predicted)
log_precision = precision_score(y_test, y_log_predicted)
log_f1 = f1_score(y_test, y_log_predicted)
nn_accuracy = accuracy_score(y_test, y_nn_predicted)
nn_precision = precision_score(y_test, y_nn_predicted)
nn_precision = precision_score(y_test, y_nn_predicted)
nn_f1 = f1_score(y_test, y_nn_predicted)
nn_f1 = f1_score(y_test, y_nn_predicted)
print("Logistic Regression:")
print("Accuracy: ", round(log_accuracy, 3))
print("Recall: ", round(log_f1, 3))
print("Recall: ", round(log_f1, 3))
print("Nnkeural Network: ")
print("Accuracy: ", round(nn_accuracy, 3))
print("Precision: ", round(nn_precision, 3))
print("Recall: ", round(nn_f1, 3))
Logistic Regression:
Accuracy: 0.813
Precision: 0.762
Recall: 0.66
F1 Score: 0.717
```