2022-2023 MP2I

19. Fractions rationnelles

Exercice 1. © Trouver une relation de Bezout (dans $\mathbb{R}[X]$) entre les polynômes $X^3 + 1$ et $X^4 + 1$ puis tous les polynômes U et V de $\mathbb{R}[X]$ vérifiant $(X^3 + 1)U + (X^4 + 1)V = 1$.

Exercice 2. (m) Calculer le pgcd de $P(X) = X^n - 1$ et $Q(X) = X^p - 1$ où n et p sont deux entiers de pgcd d.

Exercice 3. (c) Déterminer les $P \in \mathbb{C}[X]$ divisibles par $X^2 - 1$ et $X^3 + 1$.

Exercice 4. (m) Décomposer en éléments simples sur $\mathbb{C}(X)$ les fractions rationnelles suivantes :

1)
$$F_1 = \frac{3}{X^3 - 1}$$
.

2)
$$F_2 = \frac{X^3 - 1}{(X - 2)^2}$$
.

3)
$$F_3 = \frac{10X^3}{(X^2+1)(X^2-4)}$$
.

4)
$$F_4 = \frac{X^2 - 2}{(X - 1)^2(X^2 + 1)}$$
.

Exercice 5. (m) Décomposer en éléments simples sur $\mathbb{C}(X)$ les fractions rationnelles suivantes :

1)
$$F_1 = \frac{X^3 - 1}{(X - 1)(X - 2)(X - 3)}$$

2)
$$F_2 = \frac{X^3 + X^2 + X - 1}{X(X - 1)(X + 1)(X^2 + X + 1)}$$
.

3)
$$F_3 = \frac{(X^2 + 4)^2}{(X^2 + 1)(X^2 - 2)^2}$$
.

4)
$$F_4 = \frac{1}{X^4(1-2X)}$$
.

Exercice 6. (m) Décomposer en éléments simples sur $\mathbb{R}(X)$ les fractions rationnelles suivantes :

1)
$$F_1 = \frac{X^3 + X}{(X^2 + X + 1)^2}$$
.

2)
$$F_2 = \frac{X^2 + X + 1}{(X - 1)^2 (X + 1)^2}$$
.

3)
$$F_3 = \frac{X^5}{X^4 + 1}$$
.

4)
$$F_4 = \frac{X}{(X-2)^2(X+1)(X^2+1)}$$
.

5)
$$F_5 = \frac{X^3 + 1}{(X^2 + 1)(X^2 + X + 1)}$$
.

Exercice 7. (m) Calculer les dérivées n-ièmes de $f(x) = \frac{1}{(x-a)(x-b)}$ (où $a \neq b$ sont des réels) et de $g(x) = \arctan(x)$.

Exercice 8. (m) Simplifier les sommes suivantes et déterminer leurs limites quand n tend vers l'infini :

$$S_1 = \sum_{k=1}^n \frac{1}{k(k+1)}$$
 et $S_2 = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.

Exercice 9. (i) Déterminer les fractions rationnelles $F \in \mathbb{C}(X)$ telles que F(X+1) = F(X).

Exercice 10. (m) En comparant au préalable f(z), f(jz) et $f(j^2z)$, décomposer sur $\mathbb C$ la fraction :

$$f(z) = \frac{1}{(z^3 - 1)^2}.$$

Exercice 11. (i) Soit $P \in \mathbb{C}[X]$ n'admettant que des racines simples non nulles x_1, x_2, \ldots, x_p . Montrer que :

$$\sum_{i=1}^{p} \frac{1}{x_i P'(x_i)} = -\frac{1}{P(0)}.$$

Exercice 12. (i) Soit P un polynôme scindé à racines simples non nulles. On note a_1, \ldots, a_n ses racines. Montrer que :

$$\sum_{k=1}^{n} \frac{1}{a_k} = -\frac{P'(0)}{P(0)} \text{ et } \sum_{k=1}^{n} \frac{1}{a_k^2} = \frac{P'(0)^2 - P(0)P''(0)}{P(0)^2}.$$

Exercice 13. (*) On pose $P = (X - z_1) \dots (X - z_n)$ où z_1, z_2, \dots, z_n sont des complexes deux à deux distincts. On pose $F = \frac{1}{P^2}$. Décomposer F en éléments simples.

On exprimera les coefficients en fonction des $P'(z_i)$ et de $P''(z_i)$.

Exercice 14. (*) Soit P un polynôme scindé à racines simples sur \mathbb{R} . On note x_1, \ldots, x_n ses racines. Montrer que :

$$\sum_{k=1}^{n} \frac{P''(x_k)}{P'(x_k)} = 0.$$

Exercice 15. (*) Théorème de Gauss-Lucas. Soit $P \in \mathbb{C}[X]$ de degré $n \geq 1$ et z_1, z_2, \ldots, z_n les racines (pas forcément distinctes) de P.

En considérant le développement en éléments simples de P'/P, montrer que les racines de P' sont dans l'enveloppe convexe des racines de P, c'est à dire qu'elles peuvent s'exprimer comme des barveentres à poids positifs des racines de P.

Autrement dit, toutes les racines α_j de P' peuvent s'écrire sous la forme $\alpha_j = \sum_{k=1}^n \lambda_k z_k$ avec les λ_k réels positifs et vérifiant $\sum_{k=1}^n \lambda_k = 1$.