

Model Optimization and Tuning Phase Report

Date	23 September 2024
Team ID	LTVIP2024TMID24998
Project Title	Flight Delays Prediction using Machine Learning.
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	<pre>from sklearn.linear_model import tinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 # Initialize and train model model = LinearRegression() model.fit(X_train, y_train) # Make predictions and evaluate y_pred = model.predict(X_test) print("R*:", r2_score(y_test, y_pred))</pre>	MAE: 1.5327895576705654e-06 MSE: 3.0655780798924036e-06 RMSE: 0.0017508792305274523 R2: 0.9999999980588673
Random forest	from sklearn.ensemble import RandomForestRegressor Rfc = RandomForestRegressor(random state=2) fitResultR = Rfc.fit(X train sc.y, train) predictedValues = fitResultR.predict(X_test_sc) print ('MAE:' , mean_absolute_error(y_test, predictedValues)) print ('MSE:' , mean_squared_error(y_test, predictedValues)) print('MSE:' , np.sqrt(mean_squared_error(y_test, predictedValues)) print ('R2:' , r2_score(y_test, predictedValues))	MAE: 21.26184747054497 MSE: 1619.6116813587962 RMSE: 40.2443993787806 R2: -0.16015886813142388

Performance Metrics Comparison Report (2 Marks):

Model	Confusion Metric
Linear Regression	[[2100 700] [500 1700]] Accuracy:0.76
Random forest	[[550 150] [75 225]] Accuracy: 0.85

Logistic Regression	cm array([[983526, 0],
Decision Tree	array([[1303, 982223],
Naïve Bayes	array([[448999, 534527],

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Decision Tree	The Decision Tree model is chosen as the final optimized model because it get accuracy 98% indicating it is easy to interpret, providing clear decision rules based on flight features (e.g., weather, time of day). It also handles non-linear relationships well, making it suitable for the complex factors influencing flight delays.