Teoría General de Sistemas

Unidad 1: Sistemas y Paradigmas.

Tema: Paradigmas

Docente: Carlos R. P. Tovar

Sobre mi: Carlos Reynaldo Portocarrero Tovar

- Profesional apasionado por la docencia y la investigación científica.
- Docente de la Universidad Tecnológica del Perú (UTP)
- Doctor y Magister de Ciencias en Computación por la Universidad Federal do ABC (UFABC) Brasil.
- Ingeniero en Sistemas e Informática.
- Técnico en Redes y Comunicaciones de datos.
- Líneas de Investigación: Bioinformática y Ciencia de Datos.
- Email: c31644@utp.edu.pe
- Teléfono: +51 987 412 264

Presentación del Sílabo

INICIO Objetivos de la Sesión

Al finalizar la sesión, el estudiante comprenderá el concepto de paradigmas en la Teoría General de Sistemas (TGS), diferenciará el enfoque reduccionista del pensamiento sistémico y aplicará esta distinción para analizar problemas simples en diversos sistemas.

UTILIDAD ¿Por qué estudiar TGS hoy?

- Los problemas actuales son complejos y multidimensionales.
- Ejemplos:
 - Crisis logística global.
 - Ciberseguridad y vulnerabilidades.
 - Impacto de la IA en el empleo.
- **Necesidad:** Pensar en términos de relaciones, no solo partes aisladas.

¿Por qué estudiar TGS hoy?

Rol profesional:

- Base para toma de decisiones.
- Herramienta para diagnóstico organizacional.
- Soporte para diseño de soluciones integrales.

Logro general del curso:

- Utilizar principios del pensamiento sistémico.
- Identificar metodologías y modelos.
- Aplicar soluciones a problemas reales.

TRANSFORMACIÓN ¿Qué es un sistema? Definición

- Conjunto de elementos interrelacionados que trabajan para alcanzar un objetivo común.
- Componentes: entradas, procesos, salidas, retroalimentación.
- Ejemplos: ecosistema, empresa, software.
- Elementos básicos:
 - Entradas (recursos, información, energía).
 - Procesos (transformación de entradas).
 - Salidas (productos, servicios, resultados).
 - Retroalimentación (información para ajuste y mejora).
- Ejemplos: un ecosistema, una empresa, un software.

¿Qué es un sistema? Definición

Propiedades:

• Estructura, emergencia, comunicación, sinergia, homeostasis, equifinalidad, entropía, inmergencia, control y ley de la variedad requerida.

Clasificación:

 Abiertos/cerrados, naturales/artificiales, físicos/abstractos, simples/complejos.

Enfoque reduccionista del método científico:

- **Definición:** Método de análisis que descompone un sistema en sus partes para estudiarlas de manera aislada.
- Características:
 - Divide problemas complejos en problemas más pequeños.
 - Busca relaciones de causa-efecto lineales.
 - Se basa en la medición, control y repetibilidad.
- Ventajas:
 - Claridad en el estudio de fenómenos simples.
 - Permite obtener resultados cuantificables.

Enfoque reduccionista del método científico:

Limitaciones:

- No considera interacciones entre partes.
- Ineficaz para sistemas complejos con retroalimentación y adaptación.
- **Ejemplo:** Diagnosticar una empresa solo revisando el área de ventas sin evaluar su interacción con producción o logística.

Paradigma:

- Conjunto de creencias, valores y técnicas compartidas por una comunidad.
- Patrón de pensamiento que determina cómo abordamos problemas

Ejemplos:

- Enfoque reduccionista (piezas sueltas)
- Enfoque sistémico (piezas conectadas)

Paradigma reduccionista:

- Analiza partes individuales.
- Busca causas lineales.
- Útil en sistemas simples.
- Limitación: no capta la interacción ni complejidad.

Esta foto de Autor desconocido está bajo licencia CC BY

Paradigma sistémico

- Observa el todo y sus interrelaciones.
- Considera retroalimentación, adaptación y cambio.
- Mejor para problemas complejos.

TGS: Antecedentes:

- Propuesta por Ludwig von Bertalanffy en los años 50 como respuesta a las limitaciones del reduccionismo.
- Influenciada por biología, cibernética y teoría de la información.
- Aplicada en diversas disciplinas: ingeniería, administración, ecología, sociología.

Principios de la TGS

- Causalidad.
- Teleología.
- Recursividad.
- Manejo de información.

• * La teleología es una doctrina filosófica que postula que todo en la naturaleza y en la existencia tiene un propósito o fin inherente

Aplicación:

- Modelado de organizaciones.
- Diseño de procesos de negocio.
- Análisis de sistemas sociales y tecnológicos.
- Optimización de cadenas de suministro.

Esta foto de Autor desconocido está bajo licencia CC BY-SA

PRACTICA Ejercicio inicial:

- Piensa en un sistema que uses todos los días (físico, digital o social).
- Identifica sus elementos.
- Describe qué pasaría si uno falla.

Discusión:

- Trabajo en parejas o grupos pequeños.
- Compartir ejemplos en clase.

La red de computadoras

Sistemas biológicos

Actividad

- Buscar un ejemplo de sistema complejo.
- Describir sus elementos y relaciones.
- Explicar cómo un cambio en una parte afecta al todo.

CIERRE Conclusiones

- El pensamiento sistémico es clave para resolver problemas complejos.
- La TGS ofrece un marco para analizar y mejorar sistemas organizacionales.
- La diferencia entre paradigma reduccionista y sistémico será la base de nuestro aprendizaje.

