CMPE 322/327 - Theory of Computation Week 12: Halting Problem & Reduction

Burak Ekici

May 16-20, 2022

Outline

1 A Quick Recap

2 Halting Problem

Reduction

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

O: finite set of states

- Q: finite set of states

- Q: finite set of states
- \bigcirc Σ : input alphabet

- Q: finite set of states
- \bigcirc Σ : input alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker

- Q: finite set of states
- \bigcirc Σ : input alphabet
- **Solution** $\Gamma \supseteq \Sigma$: tape alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- **5** $\sqcup \in \Gamma \Sigma$: blank symbol

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\vdash \in \Gamma \Sigma$: left endmarker
- $\sqcup \in \Gamma \Sigma$: blank symbol
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: (partial) transition function

- Q: finite set of states
- \bigcirc Σ : input alphabet
- Φ ⊢ ∈ Γ − Σ: left endmarker
- δ: $Q × Γ → Q × Γ × {L, R}$: (partial) transition function
- $S \in Q$: start state

- Q: finite set of states
- **S** $\Gamma \supseteq \Sigma$: tape alphabet
- \bigoplus $\vdash \in \Gamma \Sigma$: left endmarker
- δ: $Q × Γ → Q × Γ × {L, R}$: (partial) transition function
- \emptyset $s \in Q$: start state
- $t \in Q$: accept state

- Q: finite set of states

- Φ ⊢ ∈ Γ − Σ: left endmarker
- $\square \in \Gamma \Sigma$: blank symbol
- δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$: (partial) transition function
- $s \in Q$: start state
- $t \in Q$: accept state
- ① $r \in Q \{t\}$: reject state

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

- Q: finite set of states
- \bigcirc Σ : input alphabet

- δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$: (partial) transition function
- $S \in Q$: start state
- $t \in Q$: accept state
- $r \in Q \{t\}$: reject state

such that

$$\forall a \in \Gamma \ \exists b, c \in \Gamma \ \exists d, e \in \{L, R\}: \ \delta(t, a) = (t, b, d) \ \text{and} \ \delta(r, a) = (r, c, e)$$

Turing machine (TM) is 9-tuple $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ with

- Q: finite set of states
- Σ : input alphabet
- $\Gamma \supseteq \Sigma$: tape alphabet
- $\bigoplus \vdash \in \Gamma \Sigma$: left endmarker
- δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$: (partial) transition function
- $S \in Q$: start state
- $t \in Q$: accept state

such that

$$\forall a \in \Gamma \exists b, c \in \Gamma \exists d, e \in \{L, R\}: \delta(t, a) = (t, b, d) \text{ and } \delta(r, a) = (r, c, e)$$

 $\forall p \in Q \exists g \in Q: \delta(p, \vdash) = (g, \vdash, R)$

halting problem for TMs

instance: TM M, string x

question: does M halt on x?

halting problem for TMs

instance: TM *M*, string *x* question: does *M* halt on *x*?

• uniform halting problem for TMs

instance: TM M

question: does M halt on all inputs?

halting problem for TMs

instance: TM *M*, string *x* question: does *M* halt on *x*?

• uniform halting problem for TMs

instance: TM M

question: does M halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x

question: $x \in L(G)$?

halting problem for TMs

instance: TM *M*, string *x* question: does *M* halt on *x*?

· uniform halting problem for TMs

instance: TM M

question: does M halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x question: $x \in L(G)$?

• equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

halting problem for TMs

instance: TM *M*, string *x* question: does *M* halt on *x*?

uniform halting problem for TMs

instance: TM M

question: does *M* halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x question: $x \in L(G)$?

• equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

Decision Problems as Membership Problems

code instance of problem as string over some alphabet

halting problem for TMs

instance: TM M, string x question: does M halt on x?

uniform halting problem for TMs

instance: TM M

question: does *M* halt on all inputs?

• membership problem for CFGs

instance: CFG G, string x question: $x \in L(G)$?

• equivalence problem for regular expressions

instance: regular expressions α , β

question: $L(\alpha) = L(\beta)$?

Decision Problems as Membership Problems

- code instance of problem as string over some alphabet
- language is set of all strings that correspond to yes instances

 $\mathsf{MP} = \{\mathsf{enc}(M) \# \mathsf{enc}(x) \mid x \in L(M)\}\$

 $\mathsf{MP} = \{ \qquad M \# \qquad x \mid x \in L(M) \}$

 $\mathsf{MP} = \{ \qquad M \# \qquad x \mid x \in L(M) \}$

Theorem (Universal Turing Machine)

 $\exists TM U \text{ such that } L(U) = MP$

 $\mathsf{MP} = \{ \qquad M \# \qquad x \mid x \in L(M) \}$

Theorem (Universal Turing Machine)

 $\exists TM U \text{ such that } L(U) = MP$

universal TM can simulate any TM

MP = { *M* #

 $x \mid x \in L(M)$

Theorem (Universal Turing Machine)

 $\exists \mathsf{TM} \; U \; \mathsf{such} \; \mathsf{that} \; L(U) = \mathsf{MP}$

universal TM can simulate any TM

Corollary

MP is r.e.

How to Prove Undecidability?

- diagonalization
- reduction

 $\Sigma \neq \emptyset \implies 2^{\Sigma^*}$ is uncountable

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

Proof. (Diagonalization)

• suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, \dots\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- · create infinite table

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

$$A_0 \quad A_1 \quad A_2 \quad \cdots$$

$$X_0 \quad \times \quad \checkmark$$

$$X_1 \quad \checkmark \quad \times$$

$$X_2 \quad \times \quad \checkmark$$

$$\vdots \quad \vdots$$

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- create infinite table

$$A_0 \quad A_1 \quad A_2 \quad \cdots$$

$$X_0 \quad \times \quad \checkmark \quad \times$$

$$X_1 \quad \checkmark \quad \times \quad \times$$

$$X_2 \quad \times \quad \checkmark \quad \checkmark$$

$$\vdots \quad \vdots \quad A_0 = \{x_1\} \quad A_1 = \{x_0, x_2, x_7, x_8, \dots\} \quad A_2 = \{x_2, x_5\}$$

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- · create infinite table

$$A_0 \quad A_1 \quad A_2 \quad \cdots$$

$$x_0 \quad \times \quad \checkmark \quad \times$$

$$x_1 \quad \checkmark \quad \times \quad \times$$

$$x_2 \quad \times \quad \checkmark \quad \checkmark$$

$$\vdots \quad \bullet \quad \text{define } B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^*}$$

•
$$A_0 = \{x_1\}$$
 $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$

• define
$$B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^*}$$

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- · create infinite table

$$A_{0} \quad A_{1} \quad A_{2} \quad \cdots$$

$$X_{0} \quad \checkmark \quad \checkmark \quad \times$$

$$X_{1} \quad \checkmark \quad \checkmark \quad \times$$

$$X_{2} \quad \times \quad \checkmark \quad \times$$

$$\vdots \quad \bullet \quad A_{0} = \{X_{1}\} \quad A_{1} = \{X_{0}, X_{2}, X_{7}, X_{$$

•
$$A_0 = \{x_1\}$$
 $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$

• define
$$B = \{x_i \mid x_i \notin A_i\} \in 2^{\sum_{i=1}^{N}}$$

•
$$B \neq A_i \ \forall i$$

$$\Sigma \neq \emptyset \implies 2^{\Sigma^*}$$
 is uncountable

- suppose $2^{\Sigma^*} = \{A_0, A_1, A_2, ...\}$ is countable
- $\Sigma^* = \{x_0, x_1, x_2, ...\}$ is countable
- · create infinite table

$$A_{0} \quad A_{1} \quad A_{2} \quad \cdots$$

$$X_{0} \quad \checkmark \quad \checkmark \quad \times$$

$$X_{1} \quad \checkmark \quad \checkmark \quad \times$$

$$X_{2} \quad \times \quad \checkmark \quad \times$$

$$\vdots \quad \bullet \quad B \neq A_{i} \quad \forall i \quad \checkmark$$

•
$$A_0 = \{x_1\}$$
 $A_1 = \{x_0, x_2, x_7, x_8, \dots\}$ $A_2 = \{x_2, x_5\}$

• define
$$B = \{x_i \mid x_i \notin A_i\} \in 2^{\Sigma^2}$$

Outline

1 A Quick Recap

2 Halting Problem

3 Reduction

halting problem (HP) for TMs is undecidable (not recursive)

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

• suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

- suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive
- HP = L(K) for some total TM K

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

• suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive

- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

• suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive

- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_x \# x$

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

suppose HP = {M # x | TM M halts on input x} is recursive

- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_x \# X$
 - accepts if K rejects and loops if K accepts

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

suppose HP = {M # x | TM M halts on input x} is recursive

- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_X \# X$
 - accepts if K rejects and loops if K accepts
- for all inputs x N halts on $x \iff K$ rejects $M_x \# x$

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

от. (

- suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive
- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_x \# X$
 - accepts if K rejects and loops if K accepts
- for all inputs x N halts on $x \iff K$ rejects $M_x \# x \iff M_x$ does not halt on x

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

- suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive
- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_X \# X$
 - accepts if K rejects and loops if K accepts
- for all inputs x N halts on $x \iff K$ rejects $M_x \# x \iff M_x$ does not halt on x
- N is different from all M_x

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (

• suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive

- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_x \# X$
 - accepts if K rejects and loops if K accepts
- for all inputs x N halts on $x \iff K$ rejects $M_x \# x \iff M_x$ does not halt on x
- N is different from all M_x

halting problem (HP) for TMs is undecidable (not recursive)

Proof. (diagonalization)

- suppose HP = $\{M \# x \mid TM M \text{ halts on input } x\}$ is recursive
- HP = L(K) for some total TM K
- construct TM N that on input x
 - constructs M_x from x
 - runs K on input $M_x \# X$
 - accepts if K rejects and loops if K accepts
- for all inputs x N halts on $x \iff K$ rejects $M_x \# x \iff M_x$ does not halt on x
- *N* is different from all M_X

instance: TM *M*, string *x* question: does *M* accept *x* ?

instance: TM *M*, string *x* question: does *M* accept *x*?

Theorem

membership problem for TMs is undecidable:

 $MP = \{M \# x \mid x \in L(M)\}\$ is not recursive

instance: TM *M*, string *x* question: does *M* accept *x*?

Theorem

membership problem for TMs is undecidable:

$$MP = \{M \# x \mid x \in L(M)\}$$
 is not recursive

membership problem for TMs is semi-decidable (MP is r.e.):

$$MP = L(U)$$

instance: TM *M*, string *x* question: does *M* accept *x*?

Theorem

• membership problem for TMs is undecidable:

$$MP = \{M \# x \mid x \in L(M)\}\$$
 is not recursive

membership problem for TMs is semi-decidable (MP is r.e.):

$$MP = L(U)$$

Proof.

reduction from halting problem for TMs

instance: TM *M*, string *x* question: does *M* accept *x*?

Theorem

membership problem for TMs is undecidable:

$$MP = \{M \# x \mid x \in L(M)\}\$$
 is not recursive

membership problem for TMs is semi-decidable (MP is r.e.):

$$MP = L(U)$$

Proof.

reduction from halting problem for TMs (next section)

Outline

1 A Quick Recap

2 Halting Problem

3 Reduction

(many-one) reduction of set $A \subseteq \Sigma^*$ to set $B \subseteq \Delta^*$ is total computable function $\sigma: \Sigma^* \to \Delta^*$ such that

$$x \in A \iff \sigma(x) \in B$$

(many-one) reduction of set $A \subseteq \Sigma^*$ to set $B \subseteq \Delta^*$ is total computable function $\sigma: \Sigma^* \to \Delta^*$ such that

 $x \in A \iff \sigma(x) \in B$

(many-one) reduction of set $A \subseteq \Sigma^*$ to set $B \subseteq \Delta^*$ is total computable function $\sigma: \Sigma^* \to \Delta^*$ such that

$$x \in A \iff \sigma(x) \in B$$

(many-one) reduction of set $A \subseteq \Sigma^*$ to set $B \subseteq \Delta^*$ is total computable function $\sigma: \Sigma^* \to \Delta^*$ such that

$$x \in A \iff \sigma(x) \in B$$

Notation

 $A \leq_m B$

(many-one) reduction of set $A \subseteq \Sigma^*$ to set $B \subseteq \Delta^*$ is total computable function $\sigma: \Sigma^* \to \Delta^*$ such that

$$x \in A \iff \sigma(x) \in B$$

Notation

$$A \leq_m B$$

$$\sigma: A \to_{\mathsf{m}} B$$

if $A \leq_m B$ and B is r.e. then A is r.e.

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

• $\sigma: A \rightarrow_{\mathsf{m}} B$

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - ① computes $\sigma(x)$

if $A \leq_m B$ and B is r.e. then A is r.e.

- $\sigma: A \rightarrow_m B$
- B = L(M) for some TM M
- construct TM N that on input x

 - 1 computes $\sigma(x)$ 2 runs M on input $\sigma(x)$

if $A \leq_m B$ and B is r.e. then A is r.e.

- $\sigma: A \rightarrow_m B$
- B = L(M) for some TM M
- construct TM N that on input x

 - computes σ(x)
 runs M on input σ(x)
 accepts if M accepts and rejects if M rejects

Halting Problem

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - ① computes $\sigma(x)$
 - 2 runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts $x \iff M$ accepts $\sigma(x)$

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - \bigcirc computes $\sigma(x)$
 - 2 runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts $x \iff M$ accepts $\sigma(x) \iff \sigma(x) \in B$

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - \bigcirc computes $\sigma(x)$
 - 2 runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts $x \iff M$ accepts $\sigma(x) \iff \sigma(x) \in B \iff x \in A$

if $A \leq_m B$ and B is r.e. then A is r.e.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - \bigcirc computes $\sigma(x)$
 - 2 runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts
$$x \iff M$$
 accepts $\sigma(x) \iff \sigma(x) \in B \iff x \in A$

•
$$L(N) = A$$

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - \bigcirc computes $\sigma(x)$
 - 2 runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts
$$x \iff M$$
 accepts $\sigma(x) \iff \sigma(x) \in B \iff x \in A$

• $L(N) = A \implies A \text{ is r.e.}$

if $A \leq_m B$ and B is r.e. then A is r.e.

Proof.

- σ: A →_m B
- B = L(M) for some TM M
- construct TM N that on input x
 - \bigcirc computes $\sigma(x)$
 - \bigcirc runs M on input $\sigma(x)$
 - accepts if M accepts and rejects if M rejects
- for all inputs x

N accepts
$$x \iff M$$
 accepts $\sigma(x) \iff \sigma(x) \in B \iff x \in A$

• $L(N) = A \implies A \text{ is r.e.}$

Theorem (Equivalent)

if $A \leq_m B$ and A is not r.e. then B is not r.e.

if $A \leq_m B$ and B is recursive then A is recursive

if $A \leq_m B$ and B is recursive then A is recursive

if $A \leq_m B$ and B is recursive then A is recursive

- ~ A ≤m ~ B
- B and ~ B are r.e.

if $A \leq_m B$ and B is recursive then A is recursive

- ~ A ≤m ~ B
- B and ~ B are r.e.
- A and ~ A are r.e. (by previous theorem)

if $A \leq_m B$ and B is recursive then A is recursive

- ~ A ≤m ~ B
- B and ~ B are r.e.
- A and ~ A are r.e. (by previous theorem)
- A is recursive

if $A \leq_m B$ and B is recursive then A is recursive

Proof.

- ~ A ≤m ~ B
- B and ~ B are r.e.
- A and ~ A are r.e. (by previous theorem)
- A is recursive

Theorem (Equivalent)

if $A \le B$ and A is not recursive then B is not recursive

 $HP \leq_m MP$

 $HP \leq_m MP$

Proof.

reduction $\sigma: HP \rightarrow_m MP$

 $HP \leq_m MP$

Proof.

reduction $\sigma: HP \rightarrow_m MP$

• σ transforms M # x into N # x

 $HP \leq_m MP$

Proof.

reduction $\sigma: HP \rightarrow_m MP$

- σ transforms M # x into N # x
- TM N is exactly like M but it accepts if M accepts or rejects

 $HP \leq_m MP$

Proof.

reduction $\sigma: HP \rightarrow_m MP$

- σ transforms M # x into N # x
- TM N is exactly like M but it accepts if M accepts or rejects
- $M \# x \in HP \iff M \text{ halts on } x$

 $HP \leq_m MP$

Proof.

reduction σ : HP \rightarrow_m MP

- σ transforms M # x into N # x
- TM N is exactly like M but it accepts if M accepts or rejects
- $M\#x \in HP \iff M \text{ halts on } x$

 \iff **N** accepts x

 $HP \leq_m MP$

Proof.

reduction σ : HP \rightarrow_m MP

- σ transforms M # x into N # x
- TM N is exactly like M but it accepts if M accepts or rejects
- $M\#x \in HP \iff M \text{ halts on } x$

 \iff N accepts x

 \iff **N**# $x \in MP$

 $HP \leq_m MP$

Proof.

reduction σ : HP \rightarrow_m MP

- σ transforms M # x into N # x
- TM N is exactly like M but it accepts if M accepts or rejects
- $M \# x \in HP \iff M \text{ halts on } x$

 \iff **N** accepts x

 \iff **N**# $x \in MP$

 $\iff \sigma(M\#x) \in MP$

1 MP is r.e.

(by corollary in w11.pdf on slide #29)

MP is r.e.

2 HP is not recursive

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

- MP is r.e.
- 2 HP is not recursive
- $A \leq_m B$ and B is r.e \implies A is r.e.

- (by corollary in w11.pdf on slide #29)
 - (by theorem on slide #9)
- (by the first theorem on slides #14 15)

- MP is r.e.
- 2 HP is not recursive
- 3 A \leq_m B and B is r.e \Longrightarrow A is r.e.
- $A \leq_m B$ and B is recursive \implies A is recursive

- (by corollary in w11.pdf on slide #29)
 - (by theorem on slide #9)
- (by the first theorem on slides #14 15)
 - (by the first theorem on slide #16)

- MP is r.e.
- 2 HP is not recursive
- $\mathbf{3}$ A \leq_{m} B and B is r.e \Longrightarrow A is r.e.
- 4 A \leq_m B and B is recursive \implies A is recursive
- \blacksquare HP \leq_m MP

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

(by the first theorem on slides #14 - 15)

(by the first theorem on slide #16)

(by theorem on slides #17 - 18)

MP is r.e.

2 HP is not recursive

3 $A \le_m B$ and B is r.e \implies A is r.e.

4 A ≤_m B and B is recursive \implies A is recursive

 \blacksquare HP \leq_m MP

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

(by the first theorem on slides #14 - 15)

(by the first theorem on slide #16)

(by theorem on slides #17 - 18)

Theorem

MP is not recursive

MP is r.e.

2 HP is not recursive

3 $A \le_m B$ and B is r.e \implies A is r.e.

4 A \leq_{m} B and B is recursive \implies A is recursive

6 HP \leq_m MP

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

(by the first theorem on slides #14 - 15)

(by the first theorem on slide #16)

(by theorem on slides #17 - 18)

Theorem

MP is not recursive

Proof.

by statements 5, contrapositive of 4 and 2

MP is r.e.

2 HP is not recursive

3 A \leq_m B and B is r.e \Longrightarrow A is r.e.

A <_m B and B is recursive ⇒ A is recursive

6 HP \leq_m MP

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

(by the first theorem on slides #14 - 15)

(by the first theorem on slide #16)

(by theorem on slides #17 - 18)

Theorem

MP is not recursive

Proof.

by statements 5, contrapositive of 4 and 2

Theorem

HP is r.e.

MP is r.e.

2 HP is not recursive

3 $A \le_m B$ and B is r.e \implies A is r.e.

 $A <_m B$ and B is recursive \implies A is recursive

 \blacksquare HP \leq_m MP

(by corollary in w11.pdf on slide #29)

(by theorem on slide #9)

(by the first theorem on slides #14 - 15)

(by the first theorem on slide #16)

(by theorem on slides #17 - 18)

Theorem

MP is not recursive

Proof.

by statements 5, contrapositive of 4 and 2

Theorem

HP is r.e.

Proof.

by statements 5, 3 and 1

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A \leq_m B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14-15)

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \Longrightarrow B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN$ and $\sim HP$ is not r.e. $\implies FIN$ is not r.e.

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \Longrightarrow B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN$ and $\sim HP$ is not r.e. $\implies FIN$ is not r.e.

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN$ and True $\implies FIN$ is not r.e.

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \Longrightarrow B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

reduction σ : ~ HP \rightarrow_m FIN

σ transforms M # x into TM N

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

- σ transforms M # x into TM N that
 - erases its input

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

- σ transforms M # x into TM N that
 - erases its input
 - writes x on its tape

Theoren

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

- σ transforms M # x into TM N that
 - erases its input
 - writes x on its tape
 - \bullet runs M on input x

Theoren

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

- σ transforms M # x into TM N that
 - erases its input
 - writes x on its tape
 - \bigcirc runs M on input x
 - \bigcirc accepts if M halts on x

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A \leq_m B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14-15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

reduction σ : ~ HP \rightarrow_m FIN

• σ transforms M # x into TM N that

erases its input

writes x on its tape

 \bullet runs M on input \dot{x}

 \bigcirc accepts if M halts on x

• $M \# x \in {}^{\sim} HP \iff M \text{ does not halt on } x$

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e \implies A is r.e.

• A \leq_m B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14-15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

reduction σ : ~ HP \rightarrow_m FIN

• σ transforms M # x into TM N that

erases its input

writes x on its tape

runs M on input x

 \bigcirc accepts if M halts on x

• $M \# X \in {}^{\sim} HP \iff M \text{ does not halt on } X \iff L(N) = \emptyset$

finiteness problem for TMs is not semi-decidable (is not r.e.):

instance: TM M

question: is L(M) finite?

Proof.

 $A \leq_m B$ and B is r.e. \implies A is r.e.

• A $\leq_{\rm m}$ B and A is not r.e \implies B is not r.e. (by the second theorem on slides #14 – 15)

 $A := \sim HP$

 $B := FIN = \{M \mid L(M) \text{ is finite}\}\$

• $\sim HP \leq_m FIN \implies FIN \text{ is not r.e.}$

reduction σ : ~ HP \rightarrow_m FIN

• σ transforms M # x into TM N that

erases its input

writes x on its tape

 \bigcirc runs M on input x

 \bigcirc accepts if M halts on x

• $M \# x \in {}^{\sim} HP \iff M \text{ does not halt on } x \iff L(N) = \emptyset \iff N \in FIN$

Thanks! & Questions?