

2018 인하대 K-MOOC 강의 교재

인류의 그림자, 에너지 바로알기

신 현돈 교수 (<u>hyundon.shin@inha.ac.kr</u>)

인하대학교 에너지자원공학과

2018

2. 화석연료의 변천사

2-1: 화석연료의 등장과 퇴장

에너지는 어디에서 오나

- 석탄, 석유, 가스: 화석연료
- ▶원자력
- 태양광, 풍력, 지열: 재생에너지
- 수소에너지, 연료전지

화석연료 원자력 재생에너지 수소에너지

에너지 유형별 수요

- 석유-석탄-가스 (2015) → 석유-가스-석탄 (2035년)
- 화석연료 비중은 감소하지만 수요량은 지속적으로 증가

Annual demand growth by fuel

에너지원과 사용분야

Data: U.S. Energy Information Administration, 2012

에너지 공룡인 미국의 에너지원

- 석유(37%)-가스(29%)-석탄(14%): 80% (2017)
- 신재생 (11%) 중 바이오매스가 45% 차지

Note: Sum of components may not equal 100% because of independent rounding. Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2018, preliminary data

각 국의 다양한 전력원 구성

- 선진국: 신재생 중심으로 재편
- 중국, 인도: 70% 이상 석탄

화석연료란?

- 유기물이 지하내부에 매장되어 고온고압상태에서 만들어짐
- 고체, 액체, 기체 상태로 존재 가능
 - : 석탄, 석유, 가스
- 현재 전체 에너지원의 대부분 차지

화석연료별의 특성

화석연료와 전력

- 환경문제의 화석연료 vs. 친환경 전력
- 전력의 공급원은 화석연료!

석탄 화력발전

■ 석탄의 이용은 증기기관으로 시작

COAL FIRED POWER STATION

화석연료의 변천사

- Wood- coal- petroleum-gas-?
- 인류의 문명과 산업 발전에 따라 변화

Share of U.S. energy consumption by major sources, 1776-2016

Souce: U.S. Energy Information Administration, Monthly Energy Review, April 2017, preliminary data for 2016

인류와 에너지

- 인류의 역사와 함께 변화
- 깨끗한 재생에너지-화석연료-지속가능에너지

2-2: 화석연료의 종류와 특징

화석연료의 종류

■ 석탄: 고체

■ 석유: 액체

■ 가스: 기체

생산과 수송에 영향

석탄의 생성

- 식물의 매립으로 시작
- 부피가 감소: 1-> 1/5 ->1/2
- 상부 퇴적층의 매몰 심도가 수 백 혹은 수 천 m를 상회하 면 갈탄은 역청탄으로 진화되 면서 탄층의 두께는 갈탄의 1/2로 감소.
- 계속되는 매몰심도의 증가 그리고 구조적인 변형과 열의 첨가는 역청탄을 무 연탄으로 변화시킴.

석탄의 진화와 탄소의 농축

■ 토탄에서 무연탄으로 갈수록 탄소 증가

석탄의 개발과 생산

- 노천채굴과 지하채굴: 직접 접촉해서 생산
- 환경 문제, 안전 문제

석유가스의 생성과 이동

■ 근원암에서 생성(Generation) - 저류암으로 이동 (Migration)

석유 가스 저류층

Key requirements

- Trap
- Cap rock
- Permeable media
 - Oil, gas, water

석유가스의 생산과정

■ 생산 시추- 펌프 - 생산시설 - 파이프 - 정유공장

석유개발의 특징

■ 탐사에서 생산단계로의 **낮은 성공률,** 긴 준비기간, 높은 초기 투자비: 대형화

우리와 가까이 있는 석유가스

- 동력, 열, 원료
 - ▶ 운송, 음식, 에너지, 전기, 건강, 통신

우리 몸 소지품의 70%는 석유에서

I 몸의 70%는 물, 몸의 소지품의 70%는 석유화학제품 1

가스의 운송과 LNG

- Pipeline : 4~48"dia
- Buried at 3~6 ft or surface
- Speed: 40km/hr(gas)

- Wellhead-Pipeline
- Liquefaction
 - Compressed volume:1/600
 - ➤ Cooling @-162 °C
- Shipping-Regasification

가스개발의 특성

■ 개발 및 생산, 운송 및 저장, **제품 및** 시장

화석연료의 특징

- 석탄: 고체, C/H 높음 -> 생산의 어려움 이산화탄소 방출 높음
- 석유: 액체-> 채굴 및 운반 용이
- 가스: 기체, C/H 낮음 -> 채굴용이,
 상대적으로 친환경, 운송 용이 (LNG 비용)

2-3: 화석연료의 유한성과 편재성

석탄 매장량

- 매장량: 1035 billion tone (2017)
- 매장량/생산량 (R/P ratio): 134 yrs (2017)

"(전세계: 37 억 톤/년, 한국: 8600 백 만톤/년)

North America
CIS
Europe
Middle East & Africa
S, & Cent, America

미국: 251 B tone, 러시아: 160 B tone,

호주: 145 B tone, 중국: 139 B tone

(Source: BP Statistical Review, 2018)

석탄 매장량

석탄품질과 가격

세계 석유 매장량 변화추이

■ 매장량: 1.04 T bbls(1992) to 1.7 T bbls (2017)

T (trillion):조

■ 매장량/생산량 (R/P ratio): 30yrs(1980), 43yrs(1991) to 51yrs(2017)

(전세계: 9800만 배럴/일, 한국: 280 만 배럴/일)

(Source: BP Statistical Review, 2014)

석유매장량의 편재성

베네수엘라, 사우디 아라비아, 캐나다, 이란,

이라크

170 B bbl, 5300 km²

기술 개발로 매장량은 증가

■ 매장량: 1.04 T bbls(1992) to 1. 7 T bbls (2016)

T (trillion):조

■ 매장량/생산량 (R/P ratio): 30yrs(1980) to 51yrs(2016)

(Source: BP Statistical Review, 2014)

세계 석유 공급의 집중

세계 석유 소비

- 미국 (19 MM bpd)
- 중국 (10 MM bpd)
- 일본, 인도, 한국

Top ten annual net oil importers, 2013

Note: Estimates of total production less consumption. Does not account for stockbuild. Source: U.S. Energy Information Administration, Short Term Energy Outlook, January 2014.

석유의 판매 및 운송

■ 육상-해상: 오일파워

세계 가스 매장량 변화추이

- 매장량: 4200 Tcf (1992) to 6600 Tcf (2013)
- 매장량/생산량 (R/P ratio): 57yrs (1980), 66yrs (1991), 53yrs (2017) (전세계: 3670 bcm/yr, 한국: 49 bcm/yr)

(Source: BP Statistical Review, 2017)

전세계 셰일 가스 매장량

주요국가 셰일 가스 매장량

Shale gas reserves all over the world

China and the US are potentially the biggest shale gas exporters, with Argentina and Mexico not far behind. (Figures in trillion cubic feet)

China: 1275

USA: 862

Argentina: 774

Mexico: 681

S. Africa: 485

Canada: 388

아시아 - 북미 - 남미 - 아프리카 - 유럽

KRUGER, Graphics 24

세계 가스 유형별 생산 예측

전통 가스자원이 주로 하고 비전통가스

석유의 판매 및 운송

2-4: 화석연료의 용도와 생명력

화석연료의 용도

- 산업혁명이후 석탄으로 시작
- 발전용
- 산업용: 일부 석유화학제품의 원료로 사용
- ▶ 가정용

에너지원 별 사용처

Data: U.S. Energy Information Administration, 2012

한국의 에너지 구성과 화석연료

- 화석연료: 1차 에너지원의 82%
- 용도: 전력, 수공, 산업용, 가정용

석탄의 용도 변화

■ 발전용+석탄액화

에너지 유형별 수요 변동

- 석유-석탄-가스 (2015) → 석유-가스-석탄 (2035년)
- 화석연료 비중은 감소하지만 수요량은 지속적으로 증가

Annual demand growth by fuel

화석연료 없는 삶

■ 에너지 중독, 환경 오염: 불편 감수 필요

우리의 선택은?

안전+환경+경제 ??

WE OFFER 3 KINDS OF SERVICES GOOD - CHEAP - FAST

BUT YOU CAN ONLY PICK TWO

GOOD & CHEAP WON'T BE FAST
FAST & GOOD WON'T BE CHEAP
CHEAP & FAST WON'T BE GOOD

Quality - Cost - Time

화석연료의 변천

- Wood- coal- petroleum-gas-?
- 인류의 문명과 산업 발전에 따라 변화

Share of U.S. energy consumption by major sources, 1776-2016

Souce: U.S. Energy Information Administration, Monthly Energy Review, April 2017, preliminary data for 2016

산업에 따른 에너지의 변천

- 산업혁명이후 석탄으로 시작
- 글로벌 에너지 석유의 등장
- 원자력 에너지
- 가스의 시대
- 재생에너지

