Devoir 1 MCMC

Aminata Ndiaye

28 September 2022

1 Exercice 3.3

On utilise l'estimateur de Monte Carlo classique. Soit (Z_1, \dots, Z_n) des variables aléatoires iid de loi $\mathcal{N}(0,1)$ Un estimateur sans biais de P(Z > 2.5)est :

$$\hat{h}_n = \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{Z_k > 2.5}$$

En prenant $n = 10^5$, on obtient $\hat{h}_n = 0,00598$ en faisant l'application numérique. En appliquant le TCL, on a que :

$$\frac{\hat{h}_n \mathbb{E}[\hat{h}_n]}{\sqrt{var[\hat{h}_n]}} \sim \mathcal{N}(0, 1)$$

On en déduit que :

 $\mathbb{P}\left(\left|\frac{\hat{h}_n - \mathbb{E}[\hat{h}_n]}{\sqrt{var[\hat{h}_n]}}\right| \le q_{1-\frac{\alpha}{2}}\right) \underset{n \to \infty}{\longrightarrow} 1 - \alpha$

Or

$$\sqrt{var[\hat{h}_n]} = \frac{1}{n}var[\mathbb{1}_{Z_k > 2.5}]$$

 $\mathbb{1}_{Z_k>2.5}\sim\mathcal{B}(p)$ et a pour variance p(1-p) qui est une fonction en p qui atteint son maximum en $\frac{1}{4}$ On veut une précision de l'orde de 10^{-3} . On pose $\varepsilon=0,0001$ On cherche donc n tel que :

$$q_{1-\frac{\alpha}{2}}\frac{\sqrt{var[\hat{h}_n]}}{\sqrt{n}} = \varepsilon$$

Grâce à la majoration de la variance que nous avons établie avant, on a : $n = \frac{4(q_{1-\frac{\alpha}{2}})^2}{\varepsilon^2}$ En faisant l'application numérique avec $\alpha = 0.05$, on a : n = 1536583528.

On procède de la même manière avec (X_1, \dots, X_n) des variables aléatoires iid de loi $\mathcal{G}(1,1)$. pour estimer P(X > 5.3).

En prenant $n = 10^5$, on obtient $\hat{h}_n = 0.00516$ en faisant l'application numérique. On on trouve n = 5443132651, pour avoir 3 décimales de précision.

2 Exercice 4.5

On sait que l'estimateur de Monte Carlo classique converge vers $\mathbb{E}[h(X)]$ grâce à la loi des grands nombres. Montrons que $\frac{1}{M} \sum_{i=1}^{M} \mathbb{E}[h(X)|Y_i]$ converge également vers $\mathbb{E}[h(X)]$.

$$\mathbb{E}\left[\frac{1}{M}\sum_{i=1}^{M}\mathbb{E}[h(X)|Y_i]\right] = \frac{1}{M}\sum_{i=1}^{M}\mathbb{E}\left[\mathbb{E}[h(X)|Y_i]\right]$$

$$= \mathbb{E}\left[\mathbb{E}[h(X)|Y_i]\right] \text{ car les } Y_i \text{ sont iid}$$

$$= \mathbb{E}[h(X)] \text{ Propriété de l'espérance conditionnelle}$$

Par la loi des grands nombres on obtient la convergence de l'estimateur :

$$\frac{1}{M} \sum_{i=1}^{M} \mathbb{E}[h(X)|Y_i] \longrightarrow \mathbb{E}[h(X)] \ p.s$$

(Voir code R) Dans cette seconde partie, on va générer les variables aléatoires X_i et Y_i . Pour générer les variables

-On génère les Y_i

-puis on génère $X_i|Y_i$

1. $X|y \sim \mathcal{P}(y), Y \sim \mathcal{G}a(a,b)$

On a que $\mathbb{E}[X|Y] = y$. On a donc $\frac{1}{M} \sum_{i=1}^{M} \mathbb{E}[h(X)|Y_i] = \frac{1}{M} \sum_{i=1}^{M} \mathbb{E}[Y_i]$ En faisant l'application numérique avec a = 1 et b = 2. On obtient :

- 0.473 pour l'estimateur de Monte Carlo classique avec une variance de 0.71
- 0.482 pour l'estimateur de Monte Carlo classique avec une variance de 0.25
- 2. $X|y \sim \mathcal{N}(0,y), Y \sim \mathcal{G}a(a,b)$

On a que $\mathbb{E}[X|Y]=0$. On a donc $\frac{1}{M}\sum_{i=1}^{M}\mathbb{E}[h(X)|Y_i]=0$ En faisant l'application numérique avec a=1 et b=2. On obtient :

- 0.005 pour l'estimateur de Monte Carlo classique avec une variance de 0.37
- 0 pour l'estimateur de Monte Carlo classique avec une variance de 0
- 3. $X|y \sim \mathcal{B}(1,y), Y \sim \mathcal{B}e(a,b)$

On a que $\mathbb{E}[X|Y] = Y$. On a donc $\frac{1}{M} \sum_{i=1}^{M} \mathbb{E}[h(X)|Y_i] = \frac{1}{M} \sum_{i=1}^{M} Y_i$ En faisant l'application numérique avec a = 1 et b = 2. On obtient :

- 0.329 pour l'estimateur de Monte Carlo classique avec une variance de 0.22
- 0.325 pour l'estimateur de Monte Carlo classique avec une variance de 0.05

De manière générale on remarque que la variance de l'estimateur de Rao-Blackwell est bien inférieure à celle de la méthode de Monte Carlo classique. Ce qui est cohérent.

3 Exercice 3.4

'Soit $X \sim \mathcal{N}(0, \sigma^2)$. Calculons $\mathbb{E}[e^{-X^2}]$

$$\mathbb{E}[e^{-X^2}] = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2} e^{-\frac{x^2}{2\sigma^2}} dx$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2(2\sigma^2+1)}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\sigma^2+1}} \underbrace{\int_{\mathbb{R}} \frac{\sqrt{2\sigma^2+1}}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{\frac{2\sigma^2}{2\sigma^2+1}}} dx}_{=1 \text{ car densit\'e d'une } \mathcal{N}\left(0, \frac{\sigma^2}{2\sigma^2+1}\right)$$

$$= \frac{1}{\sqrt{2\sigma^2+1}}$$

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$. Calculons $\mathbb{E}[e^{-X^2}]$.

$$\begin{split} \mathbb{E}[e^{-X^2}] &= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \\ &= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2(2\sigma^2+1)+2-\mu^2}{2\sigma^2}} dx \\ &= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2+\frac{2\mu x}{2\sigma^2+1}-\frac{\mu^2}{2^2+1}}{\frac{2\sigma^2}{2\sigma^2+1}}} dx \\ &= e^{\frac{\mu^2}{2\sigma^2(2\sigma^2+1)}-\frac{\mu^2}{2\sigma^2}} \frac{1}{\sqrt{2\sigma^2+1}} \int_{\mathbb{R}} \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\frac{\mu}{2\sigma^2+1})^2}{2\sigma^2+1}} dx}_{=1 \text{ car densit\'e d'une } \mathcal{N}\left(\frac{\mu}{2\sigma^2+1},\frac{\sigma^2}{2\sigma^2+1}\right)} \\ &= \frac{1}{\sqrt{2\sigma^2+1}} e^{-\frac{\mu^2}{2\sigma^2+1}} \end{split}$$