Solution Section 3.1 – Inverse Functions

Exercise

Find the inverse relation of the given set: $A = \{(-2, 2), (1, -1), (0, 4), (1, 3)\}$

Solution

$$A^{-1} = \{(2, -2), (-1, 1), (4, 0), (3, 1)\}$$

Exercise

Find the inverse relation of the given set: $B = \{(1, -1), (2, -2), (3, -3), (4, -4)\}$

Solution

$$B^{-1} = \{(-1, 1), (-2, 2), (-3, 3), (-4, 4)\}$$

Exercise

Find the inverse relation of the given set: $C = \{(a, -a), (b, -b), (c, -c)\}$

Solution

$$C^{-1} = \left\{ \left(-a, a\right), \left(-b, b\right), \left(-c, c\right) \right\}$$

Exercise

Find the inverse relation of the given set: $D = \{(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)\}$

Solution

$$D^{-1} = \{ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4) \}$$

Exercise

Find the inverse relation of the given set: $E = \{(-a, a), (-b, b), (-c, c), (-d, d)\}$

$$E^{-1} = \{(a, -a), (b, -b), (c, -c), (d, -d)\}$$

Determine whether the function is one-to-one: f(x) = 3x - 7

Solution

$$f(a) = f(b)$$

$$3a - 7 = 3b - 7$$

$$3a = 3b - 7 + 7$$

$$3a = 3b$$
Divide both sides by 3
$$a = b$$

.. The function is one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = x^2 - 9$

Solution

$$1 \neq -1$$

$$1^{2} - 9 \neq (-1)^{2} - 9$$

$$-8 = -8 \rightarrow \text{ Contradict the definition}$$

$$f(a) = f(b)$$

$$a^{2} - 9 = b^{2} - 9$$

$$a^{2} = b^{2}$$

$$a = \pm b$$

∴ The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = \sqrt{x}$

Solution

$$f(a) = f(b)$$

$$\sqrt{a} = \sqrt{b}$$

$$(\sqrt{a})^2 = (\sqrt{b})^2$$
Square both sides
$$a = b$$

.. The function is one-to-one

Determine whether the function is one-to-one:

$$f(x) = \sqrt[3]{x}$$

Solution

$$f(a) = f(b)$$

$$\sqrt[3]{a} = \sqrt[3]{b}$$

$$(\sqrt[3]{a})^3 = (\sqrt[3]{b})^3$$
cube both sides
$$a = b$$

∴ The function is one-to-one

Exercise

Determine whether the function is one-to-one:

$$f(x) = |x|$$

Solution

$$1 \neq -1$$

$$|1| \neq |-1|$$

$$1 \neq 1 \text{ (false)}$$

.. The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one $f(x) = \frac{2}{x+3}$

Solution

$$f(a) = f(b)$$

$$\frac{2}{a+3} = \frac{2}{b+3}$$

$$2(b+3) = 2(a+3)$$

$$b+3 = a+3$$

$$a = b$$

$$f \text{ is one-to-one}$$

Exercise

Determine whether the function is one-to-one $f(x) = (x-2)^3$

$$f(\mathbf{a}) = f(\mathbf{b})$$

$$(a-2)^3 = (b-2)^3$$

$$[(a-2)^3]^{1/3} = [(b-2)^3]^{1/3}$$

$$a-2=b-2$$

$$a=b$$

Add 2 on both sides

∴ Function is one-to-one

Exercise

Determine whether the function is one-to-one $y = x^2 + 2$

Solution

$$f(a) = f(b)$$

$$a^{2} + 2 = b^{2} + 2$$

$$a^{2} = b^{2}$$

$$a = \pm \sqrt{b^{2}}$$
Subtract 2

: Function is *not* a one-to-one

The inverse function doesn't exist.

Exercise

Determine whether the function is one-to-one $f(x) = \frac{x+1}{x-3}$

Solution

$$f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$(a+1)(b-3) = (b+1)(a-3)$$

$$ab-3a+b-3 = ab-3b+a-3$$

$$-4a = -4b$$

$$a = b$$
Cross multiplication
$$Divide by -4$$

∴ Function is one-to-one

Given that f(x) = 5x + 8, use composition of functions to show that $f^{-1}(x) = \frac{x - 8}{5}$

Solution

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

$$= f^{-1}(5x+8)$$

$$= \frac{(5x+8)-8}{5}$$

$$= \frac{5x+8-8}{5}$$

$$= \frac{5x}{5}$$

$$= x$$

$$(f \circ f^{-1})(x) = f(f^{-1}(x))$$

$$= f^{-1}(\frac{x-8}{5})$$

$$= 5(\frac{x-8}{5}) + 8$$

$$= x-8+8$$

$$= x$$

Exercise

Given the function $f(x) = (x+8)^3$

- a) Find $f^{-1}(x)$
- b) Graph f and f^{-1} in the same rectangular coordinate system
- c) Find the domain and the range of f and f^{-1}

Solution

a)
$$y = (x+8)^3$$
 Replace $f(x)$ with y

$$x = (y+8)^3$$
 Interchange x and y

$$(x)^{1/3} = ((y+8)^3)^{1/3}$$

$$x^{1/3} = y+8$$
 Subtract 8 from both sides.
$$f^{-1}(x) = x^{1/3} - 8$$

b)

c) Domain of
$$f = \text{Range of } f^{-1}: (-\infty, \infty)$$

Range of $f = \text{Domain of } f^{-1}: (-\infty, \infty)$

Prove that f(x) and g(x) are inverse functions of each other f(x) = 4x; $g(x) = \frac{x}{4}$

Solution

$$f(g(x)) = f\left(\frac{x}{4}\right)$$

$$= 4\left(\frac{x}{4}\right)$$

$$= x \mid$$

$$g(f(x)) = g(4x)$$

$$= \frac{4x}{4}$$

$$= x \mid$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 2x; $g(x) = \frac{1}{2x}$

$$f(g(x)) = f(\frac{1}{2x})$$

$$= 2\left(\frac{1}{2x}\right)$$
$$= \frac{1}{x} \mid \neq x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 4x - 1; $g(x) = \frac{x+1}{4}$

Solution

$$f(g(x)) = f\left(\frac{x+1}{4}\right)$$

$$= 4\left(\frac{x+1}{4}\right) - 1$$

$$= x + 1 - 1$$

$$= x$$

$$g(f(x)) = g(4x - 1)$$

$$= \frac{4x - 1 + 1}{4}$$

$$= \frac{4x}{4}$$

$$= x \mid$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{1}{2}x - \frac{3}{2}$; g(x) = 2x + 3

$$f(g(x)) = f(2x+3)$$

$$= \frac{1}{2}(2x+3) - \frac{3}{2}$$

$$= x + \frac{3}{2} - \frac{3}{2}$$

$$= x$$

$$g(f(x)) = g(\frac{1}{2}x - \frac{3}{2})$$

$$= 2(\frac{1}{2}x - \frac{3}{2}) + 3$$

$$= x - 3 + 3$$

$$=x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = -\frac{1}{2}x - \frac{1}{2}$; g(x) = -2x + 1

Solution

$$f(g(x)) = f(-2x+1)$$

$$= -\frac{1}{2}(-2x+1) - \frac{1}{2}$$

$$= x - \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{x} - 1 \qquad \neq x$$

 \therefore f(x) and g(x) are **not** inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 3x + 2; $g(x) = \frac{1}{3}(x - 2)$

Solution

$$f(g(x)) = f\left(\frac{x-2}{3}\right)$$

$$= 3\left(\frac{x-2}{3}\right) + 2$$

$$= x-2+2$$

$$= x$$

$$g(f(x)) = g(3x+2)$$

$$= \frac{1}{3}(3x+2-2)$$

$$= \frac{1}{3}(3x)$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{5}{x+3}$;

$$f(x) = \frac{5}{x+3}$$
; $g(x) = \frac{5}{x} - 3$

Solution

$$f(g(x)) = f\left(\frac{5}{x} - 3\right)$$

$$= \frac{5}{\frac{5}{x} - 3 + 3}$$

$$= \frac{5}{\frac{5}{x}}$$

$$= 5\frac{x}{5}$$

$$= x \rfloor$$

$$g(f(x)) = g\left(\frac{5}{x + 3}\right)$$

$$= \frac{5}{\frac{5}{x + 3}} - 3$$

$$= 5\left(\frac{x + 3}{5}\right) - 3$$

$$= x + 3 - 3$$

= x

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{2x}{x+1}$; $g(x) = \frac{-x}{x-2}$

Solution

$$f(g(x)) = f\left(\frac{-x}{x-2}\right)$$

$$= 2\left(\frac{-x}{x-2}\right) \frac{1}{\frac{-x}{x-2} + 1}$$

$$= \left(\frac{-2x}{x-2}\right) \frac{x-2}{-x+x-2}$$

$$= \frac{-2x}{-2}$$

$$= x \rfloor$$

$$g(f(x)) = g\left(\frac{2x}{x+1}\right)$$

9

$$= -\left(\frac{2x}{x+1}\right) \frac{1}{\frac{2x}{x+1} - 2}$$

$$= -\left(\frac{2x}{x+1}\right) \frac{x+1}{2x - 2x - 2}$$

$$= \frac{-2x}{-2}$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = \frac{3x}{x-1}$; $g(x) = \frac{x}{x-3}$

Solution

$$f(g(x)) = f\left(\frac{x}{x-3}\right)$$

$$= 3\left(\frac{x}{x-3}\right) \frac{1}{\frac{x}{x-3} - 1}$$

$$= \left(\frac{3x}{x-3}\right) \frac{x-3}{x-x+3}$$

$$= \frac{3x}{3}$$

$$= x$$

$$g(f(x)) = g\left(\frac{3x}{x-1}\right)$$

$$= \left(\frac{3x}{x-1}\right) \frac{1}{\frac{3x}{x-1} - 3}$$

$$= \left(\frac{3x}{x-1}\right) \frac{x-1}{3x-3x+3}$$

$$= \frac{3x}{3}$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 + 2$; $g(x) = \sqrt[3]{x-2}$

$$f(g(x)) = f(\sqrt[3]{x-2})$$

$$= (\sqrt[3]{x-2})^3 + 2$$

$$= x-2+2$$

$$= x \rfloor$$

$$g(f(x)) = g(x^3+2)$$

$$= \sqrt[3]{x^3} + 2-2$$

$$= \sqrt[3]{x^3}$$

$$= x \rfloor$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = (x+4)^3$; $g(x) = \sqrt[3]{x} - 4$ Solution

$$f(g(x)) = f(\sqrt[3]{x} - 4)$$

$$= (\sqrt[3]{x} - 4 + 4)^3$$

$$= (\sqrt[3]{x})^3$$

$$= x \rfloor$$

$$g(f(x)) = g((x+4)^3)$$

$$= \sqrt[3]{(x+4)^3} - 4$$

$$= x + 4 - 4$$

$$= x \rfloor$$

f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 - 1$; $g(x) = \sqrt[3]{x+1}$

$$f(g(x)) = f(\sqrt[3]{x+1})$$

$$= \left(\sqrt[3]{x+1}\right)^3 - 1$$

$$= x+1-1$$

$$= x$$

$$g(f(x)) = g(x^3 - 1)$$

$$= \sqrt[3]{x^3 - 1 + 1}$$

$$= \sqrt[3]{x^3}$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other f(x) = 3x - 2; $g(x) = \frac{x+2}{3}$

$$f(x) = 3x - 2;$$
 $g(x) = \frac{x+2}{3}$

Solution

$$f(g(x)) = f\left(\frac{x+2}{3}\right)$$
$$= 3\left(\frac{x+2}{3}\right) - 2$$
$$= x + 2 - 2$$
$$= x$$

$$g(f(x)) = g(3x-2)$$

$$= \frac{3x-2+2}{3}$$

$$= \frac{3x}{x}$$

$$= x \mid$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Prove that f(x) and g(x) are inverse functions of each other

$$f(x) = x^2 + 5, x \le 0$$
 $g(x) = -\sqrt{x-5}, x \ge 5$

$$f(g(x)) = f(-\sqrt{x-5})$$
$$= (-\sqrt{x-5})^2 + 5$$

$$= x - 5 + 5$$

$$= x$$

$$g(f(x)) = g(x^2 + 5)$$

$$= -\sqrt{x^2 + 5 - 5}$$

$$= -\sqrt{x^2}$$

$$= -|x| \quad x \le 0$$

$$= -(-x)$$

$$= x$$

Exercise

Prove that f(x) and g(x) are inverse functions of each other $f(x) = x^3 - 4$; $g(x) = \sqrt[3]{x+4}$

$$f(x) = x^3 - 4; \quad g(x) = \sqrt[3]{x + 4}$$

Solution

$$f(g(x)) = f(\sqrt[3]{x+4})$$

$$= (\sqrt[3]{x+4})^3 - 4$$

$$= x+4-4$$

$$= x$$

$$g(f(x)) = g(x^3 - 4)$$

$$= \sqrt[3]{x^3 - 4 + 4}$$

$$= \sqrt[3]{x^3}$$

$$= x$$

 \therefore f(x) and g(x) are inverse functions to each other

Exercise

Find the inverse of $f(x) = (x-2)^3$

$$y = (x - 2)^3$$

$$x = (y - 2)^3$$

$$x^{1/3} = \left[\left(y - 2 \right)^3 \right]^{1/3}$$

$$x^{1/3} = y - 2$$

$$\sqrt[3]{x} + 2 = y$$

$$f^{-1}(x) = \sqrt[3]{x} + 2$$

Find the inverse of $f(x) = \frac{x+1}{x-3}$

Solution

$$y = \frac{x+1}{x-3}$$

$$x = \frac{y+1}{y-3}$$

$$x(y-3) = y+1$$

$$xy - 3x = y + 1$$

$$xy - y = 3x + 1$$

$$y(x-1) = 3x + 1$$

$$f^{-1}(x) = \frac{3x+1}{x-1}$$

Exercise

Find the inverse of $f(x) = \frac{2x+1}{x-3}$

$$y = \frac{2x+1}{x-3}$$

$$x = \frac{2y+1}{y-3}$$

$$xy - 3x = 2y + 1$$

$$y(x-2) = 3x+1$$

$$f^{-1}(x) = \frac{3x+1}{x-2}$$

Determine the domain and range of f^{-1} : $f(x) = -\frac{2}{x-1}$ (*Hint*: first find the domain and range of f)

Solution

$$x-1 \neq 0 \Longrightarrow x \neq 1$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{1\}$ $(-\infty, 1) \cup (1, \infty)$

Domain of
$$f^{-1}$$
 = Range of $f: \mathbb{R} - \{0\}$ $(-\infty, 0) \cup (0, \infty)$

Exercise

Determine the domain and range of f^{-1} : $f(x) = \frac{5}{x+3}$ (*Hint*: first find the domain and range of f)

Solution

Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \{0\}$$
 $\left(-\infty, 0\right) \cup \left(0, \infty\right)$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{-3\}$ $\left(-\infty, -3\right) \cup \left(-3, \infty\right)$

Exercise

Determine the domain and range of f^{-1} : $f(x) = \frac{4x+5}{3x-8}$ (*Hint*: first find the domain and range of f)

Solution

Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{8}{3} \right\} \qquad \left(-\infty, \frac{8}{3} \right) \cup \left(\frac{8}{3}, \infty \right)$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \left\{ \frac{4}{3} \right\}$ $\left(-\infty, \frac{4}{3} \right) \cup \left(\frac{4}{3}, \infty \right)$

Exercise

For the given function $f(x) = \frac{2x}{x-1}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a)$$
 $f(a) = f(b)$

$$\frac{2a}{a-1} = \frac{2b}{b-1}$$

$$2ab - 2a = 2ab - 2b$$

$$-2a = -2b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

$$b) \quad y = \frac{2x}{x-1}$$
$$x = \frac{2y}{y-1}$$

$$xy - x = 2y$$

$$(x-2)y = x$$

$$y = \frac{x}{x-2} = f^{-1}(x)$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$

Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{2\}$

Exercise

For the given function $f(x) = \frac{x}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a$$
) $f(a) = f(b)$

$$\frac{a}{a-2} = \frac{b}{b-2}$$

$$ab - 2a = ab - 2b$$

$$-2a = -2b$$

$$\underline{a} = \underline{b}$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{x}{x-2}$$

$$x = \frac{y}{y-2}$$

$$xy - 2x = y$$

$$(x-1)y = 2x$$

$$f^{-1}(x) = \frac{2x}{x-1}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{2\}$ Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise

For the given function $f(x) = \frac{x+1}{x-1}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{a+1}{a-1} = \frac{b+1}{b-1}$$

$$ab-a+b-1 = ab-b+a-1$$

$$-2a = -2b$$

$$a = b \mid \checkmark$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{x+1}{x-1}$$

 $x = \frac{y+1}{y-1}$
 $xy - x = y+1$
 $(x-1)y = x+1$
 $f^{-1}(x) = \frac{x+1}{x-1}$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$ Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise
$$f(x) = \frac{2x+1}{x+3}$$

For the given function

a) Is f(x) one-to-one function

- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

- a) f(a) = f(b) $\frac{2a+1}{a+3} = \frac{2b+1}{b+3}$ 2ab+6a+b+3=2ab+6b+a+3 5a = 5b a = b
 - \therefore f(x) is one-to-one function.
- b) $y = \frac{2x+1}{x+3}$ $x = \frac{2y+1}{y+3}$ xy + 3x = 2y+1 (x-2)y = -3x+1 $f^{-1}(x) = \frac{-3x+1}{x-2}$
- c) Domain of $f^{-1}(x) = \text{Range of } f(x)$: $\mathbb{R} \{-3\}$ Range of $f^{-1}(x) = \text{Domain of } f(x)$: $\mathbb{R} \{2\}$

Exercise

For the given function $f(x) = \frac{3x - 1}{x - 2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

- a) f(a) = f(b) $\frac{3a-1}{a-2} = \frac{3b-1}{b-2}$ 3ab-6a-b+2 = 3ab-6b-a+2 -5a = -5b a = b
 - \therefore f(x) is one-to-one function.

b)
$$y = \frac{3x-1}{x-2}$$

 $x = \frac{3y-1}{y-2}$
 $xy - 2x = 3y - 1$
 $(x-3)y = 2x - 1$

$$f^{-1}(x) = \frac{2x - 1}{x - 3}$$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x): \mathbb{R} - \{2\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{3\}$$

For the given function $f(x) = \frac{3x - 2}{x + 4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{3a-2}{a+4} = \frac{3b-2}{b+4}$$

$$3ab+12a-2b-8 = 3ab+12b-2a-8$$

$$14a = 14b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{3x - 2}{x + 4}$$

 $x = \frac{3y - 2}{y + 4}$
 $xy + 4x = 3y - 2$
 $(x - 3)y = -4x - 2$
 $f^{-1}(x) = \frac{-4x - 2}{x - 3}$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x): \underline{\mathbb{R} - \{-4\}}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \boxed{\mathbb{R} - \{3\}}$$

For the given function $f(x) = \frac{-3x - 2}{x + 4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{-3a-2}{a+4} = \frac{-3b-2}{b+4}$$

$$-3ab-12a-2b-8 = -3ab-12b-2a-8$$

$$-10a = -10b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{-3x - 2}{x + 4}$$

 $x = \frac{-3y - 2}{y + 4}$
 $xy + 4x = -3y - 2$
 $(x + 3)y = -4x - 2$

$$f^{-1}(x) = \frac{-4x - 2}{x + 3}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{-4\}$

Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{-3\}$

Exercise

For the given function $f(x) = \sqrt{x-1}$ $x \ge 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

 $\sqrt{a-1} = \sqrt{b-1}$

$$\left(\sqrt{a-1}\right)^2 = \left(\sqrt{b-1}\right)^2$$

$$a-1=b-1$$

$$\underline{a}=\underline{b}$$

 \therefore f(x) is one-to-one function.

b)
$$y = \sqrt{x-1}$$

$$x = \sqrt{y-1}$$

$$x^2 = y-1$$

$$y = x^2 + 1$$

$$f^{-1}(x) = x^2 + 1 \quad x \ge 0$$

c) Domain of
$$f(x) = \text{Range of } f^{-1}(x)$$
: $[1, \infty)$

Range of
$$f(x) = \text{Domain of } f^{-1}(x)$$
: $[0, \infty)$

Exercise

For the given function $f(x) = \sqrt{2-x}$ $x \le 2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\sqrt{2-a} = \sqrt{2-b}$$

$$(\sqrt{2-a})^2 = (\sqrt{2-b})^2$$

$$2-a = 2-b$$

$$a = b \mid \checkmark$$

f(x) is one-to-one function.

$$b) \quad y = \sqrt{2 - x}$$

$$x = \sqrt{2 - y}$$

$$x^2 = 2 - y$$

$$y = 2 - x^2$$

$$f^{-1}(x) = 2 - x^2 \quad x \ge 0$$

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $(-\infty, 2]$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[0, \infty)$

Exercise

For the given function $f(x) = x^2 + 4x$ $x \ge -2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$x_{vertex} = -\frac{4}{2}$$
$$= -2$$

$$f(-2) = 4 - 8$$
$$= -4$$

 $Vertex = \begin{pmatrix} -2, & -4 \end{pmatrix}$

- a) Since, f(x) is a restricted function with $x \ge -2$. x = -2 is the line symmetry, therefore; f(x) is one-to-one function.
- b) $y = x^2 + 4x$ $x = y^2 + 4y$ $y^2 + 4y - x = 0$ $y = \frac{-4 \pm \sqrt{16 + 4x}}{2}$ $= \frac{-4 \pm 2\sqrt{4 + x}}{2}$ $= -2 + \sqrt{x + 4}$ $f^{-1}(x) = -2 + \sqrt{x + 4}$ $x \ge 0$

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $[-2, \infty)$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[-4, \infty)$

For the given function f(x) = 3x + 5

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$3a + 5 = 3b + 5$$

$$3a = 3b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 3x + 5$$

$$x = 3y + 5$$

$$x - 5 = 3y$$

$$\frac{x-5}{3} = y$$

$$f^{-1}(x) = \frac{x-5}{3}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = \frac{1}{3x - 2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(\mathbf{a}) = f(\mathbf{b})$$

$$\frac{1}{3a-2} = \frac{1}{3b-2}$$

$$3b - 2 = 3a - 2$$

$$3b = 3a$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

Interchange x and y

Solve for y

b)
$$y = \frac{1}{3x - 2}$$

$$x = \frac{1}{3y - 2}$$

Interchange x and y

$$x(3y-2)=1$$

Solve for y

$$3xy - 2x = 1$$

$$3xy = 1 + 2x$$

$$f^{-1}(x) = \frac{1+2x}{3x}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{2}{3} \right\}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{0\}$

Exercise

For the given function $f(x) = \frac{3x+2}{2x-5}$

a) Is
$$f(x)$$
 one-to-one function

b) Find
$$f^{-1}(x)$$
, if it exists

c) Find the domain and range of
$$f(x)$$
 and $f^{-1}(x)$

Solution

$$a) \quad f(\mathbf{a}) = f(\mathbf{b})$$

$$\frac{3a+2}{2a-5} = \frac{3b+2}{2b-5}$$

$$6ab - 15a + 4b - 10 = 6ab - 15b + 4a - 10$$

$$19a = 19b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{3x+2}{2x-5}$$

$$x = \frac{3y+2}{2y-5}$$

Interchange x and y

$$2xy - 5x = 2y + 2$$

Solve for y

$$(2x-3)y = 5x + 2$$

$$f^{-1}(x) = \frac{5x+2}{2x-3}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{5}{2} \right\}$$

Range of
$$f^{-1} = \text{Domain of } f : \mathbb{R} - \left\{ \frac{3}{2} \right\}$$

For the given function $f(x) = \frac{4x}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{4a}{a-2} = \frac{4b}{b-2}$$

$$4ab - 8a = 4ab - 8b$$

$$-8a = -8b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

$$b) \quad y = \frac{4x}{x-2}$$

$$x = \frac{4y}{y-2}$$

$$xy - 2x = 4y$$

$$(x-4) y = 2x$$

$$f^{-1}(x) = \frac{2x}{x-4}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \{2\}$$

Range of $f^{-1} = \text{Domain of } f : \mathbb{R} - \{4\}$

Exercise

For the given function $f(x) = 2 - 3x^2$; $x \le 0$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$
$$2 - 3a^{2} = 2 - 3b^{2}$$
$$-3a^{2} = -3b^{2}$$
$$a^{2} = b^{2}$$
$$a = b \text{ since } x \le 0$$

: f(x) is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 2-3x^2$$

 $x = 2-3y^2$
 $3y^2 = 2-x$
 $y^2 = \frac{2-x}{3}$
 $f^{-1}(x) = -\sqrt{\frac{2-x}{3}}$ Since $x < 0$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = 2x^3 - 5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$
$$2a^3 - 5 = 2b^3 - 5$$
$$a^3 = b^3$$
$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

$$b) \quad y = 2x^3 - 5$$

$$y + 5 = 2x^3$$

$$\frac{y + 5}{2} = x^3$$

$$x = \sqrt[3]{\frac{y + 5}{2}}$$

$$f^{-1}(x) = \sqrt[3]{\frac{x + 5}{2}}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

For the given function $f(x) = \sqrt{3-x}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$\left(\sqrt{3-a}\right)^2 = \left(\sqrt{3-b}\right)^2$$

$$3 - a = 3 - b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

$$b) \quad y = \sqrt{3-x} \qquad \qquad y \ge 0$$

$$v \geq 0$$

$$y = \sqrt{3 - x}$$

$$y^2 = 3 - x$$

$$x = 3 - y^2$$

$$x \geq 0$$

$$f^{-1}(x) = 3 - x^2$$

c) Domain of f^{-1} = Range of $f: (-\infty, 3]$

Range of f^{-1} = Domain of $f: [0, \infty)$

Exercise

For the given function $f(x) = \sqrt[3]{x} + 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a)$$
 $f(a) = f(b)$

$$\sqrt[3]{a} + 1 = \sqrt[3]{b} + 1$$

$$\left(\sqrt[3]{a}\right)^3 = \left(\sqrt[3]{b}\right)^3$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \sqrt[3]{x} + 1$$

$$y = \sqrt[3]{x} + 1$$

$$y - 1 = \sqrt[3]{x}$$

$$(y - 1)^3 = x$$

$$f^{-1}(x) = (x - 1)^3$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

Exercise

For the given function $f(x) = (x^3 + 1)^5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$\left(a^3 + 1\right)^5 = \left(b^3 + 1\right)^5$$

$$a^3 + 1 = b^3 + 1$$

$$a^3 = b^3$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = (x^3 + 1)^5$$

$$y = \left(x^3 + 1\right)^5$$

$$\sqrt[5]{y} = x^3 + 1$$

$$\sqrt[5]{y} - 1 = x^3$$

$$x = \sqrt[3]{\sqrt[5]{y} - 1}$$

$$f^{-1}(x) = \sqrt[3]{\sqrt[5]{x} - 1}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

For the given function $f(x) = x^2 - 6x$; $x \ge 3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

 $a^2 - 6a = b^2 - 6b$
 $a^2 - b^2 = 6a - 6b$
 $(a - b)(a + b) = 6(a - b)$
 $a = b$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = x^2 - 6x$$

 $x^2 - 6x - y = 0$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-y)}}{2(1)}$$

$$= \frac{6 \pm 4\sqrt{9 + y}}{2}$$

$$= 3 \pm \sqrt{9 + y}$$

Since
$$x \ge 3 \Rightarrow$$
 we can select $x = 3 + \sqrt{y+9}$

$$\therefore f^{-1}(x) = 3 + \sqrt{x+9}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} : \geq 3$$

Range of $f^{-1} = \text{Domain of } f : \geq -9$

Exercise

For the given function $f(x) = (x-2)^3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

 $(a-2)^3 = (b-2)^3$
 $a-2 = b-2$

$$a = b$$

: f(x) is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = (x-2)^3$$

 $x = (y-2)^3$
 $x^{1/3} = \left[(y-2)^3 \right]^{1/3}$
 $x^{1/3} = y-2$
 $\sqrt[3]{x} + 2 = y$
 $\therefore f^{-1}(x) = \sqrt[3]{x} + 2$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

Exercise

For the given function $f(x) = \frac{x+1}{x-3}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$ab - 3a + b - 3 = ab - 3b + a - 3$$

$$-4a = -4b$$

$$a = b$$

:
$$f(x)$$
 is **1-1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{x+1}{x-3}$$

 $x = \frac{y+1}{y-3}$
 $x(y-3) = y+1$
 $xy-3x = y+1$
 $xy - y = 3x+1$
 $y(x-1) = 3x+1$

$$y = \frac{3x+1}{x-1} = f^{-1}(x)$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} - \{3\}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R} - \{1\}$

Exercise

For the given function $f(x) = \frac{2x+1}{x-3}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a)$$
 $f(a) = f(b)$

$$\frac{2a+1}{a-3} = \frac{2b+1}{b-3}$$

$$2ab - 6a + b - 3 = 2ab - 6b + a - 3$$

$$-7a = -7b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{2x+1}{x-3}$$

$$x = \frac{2y+1}{y-3}$$

$$xy - 3x = 2y + 1$$

$$y(x-2) = 3x + 1$$

$$y = \frac{3x+1}{x-2} = f^{-1}(x)$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} - \{3\}$

Range of f^{-1} = Domain of $f: \mathbb{R} - \{2\}$

The function w(x) = 2x + 24 can be used to convert a U.S. women's shoe size into an Italian women's shoe size. Determine the function $w^{-1}(x)$ that can use to convert an Italian women's shoe size to its equivalent U.S. shoe size.

Solution

$$x = 2w^{-1}\left(x\right) + 24$$

$$2w^{-1}(x) = x - 24$$

$$w^{-1}(x) = \frac{1}{2}x - 12$$

Exercise

The function m(x) = 1.3x - 4.7 can be used to convert a U.S. men's shoe size into an U.K. women's shoe size. Determine the function $m^{-1}(x)$ that can used to convert an U.K. men's shoe size to its equivalent U.S. shoe size.

Solution

$$x = 1.3m^{-1}(x) - 4.7$$

$$1.3m^{-1}(x) = x + 4.7$$

$$\frac{13}{10}m^{-1}(x) = x + \frac{47}{10}$$

$$m^{-1}(x) = \frac{10}{13}x + \frac{47}{13}$$

$$w^{-1}(x) = \frac{1}{2}x - 12$$

Exercise

A catering service use the function $c(x) = \frac{300 + 12x}{x}$ to determine the amount, in *dollars*, it charges per person for a sit-down dinner, where x is the number of people in attendance.

- a) Find c(30) and explain what it represents
- b) Find $c^{-1}(x)$
- c) Use $c^{-1}(x)$ to determine how many people attended a dinner for which the cost per person was \$15.00

a)
$$c(30) = \frac{300 + 12(30)}{30}$$

= $\frac{30 + 36}{3}$
= $\frac{66}{3}$
= \$22

Catering service will charge \$22 per person to a sit-down dinner.

b)
$$cx = 300 + 12x$$

 $(c-12)x = 300$
 $c^{-1}(x) = \frac{300}{x-12}$

c)
$$c^{-1}(15) = \frac{300}{15 - 12}$$

= $\frac{300}{3}$
= 100 |

Exercise

A landscaping service use the function $c(x) = \frac{600 + 140x}{x}$ to determine the amount, in *dollars*, it charges per tree to deliver, where x is the number of trees.

- a) Find c(5) and explain what it represents
- b) Find $c^{-1}(x)$
- c) Use $c^{-1}(x)$ to determine how many trees were delivered for which the cost per tree was \$160.00

Solution

d)
$$c(5) = \frac{600 + 140(5)}{5}$$

= $\frac{1,300}{5}$
= $\frac{$260}{}$

Landscaping service will charge \$260 per tree to deliver.

e)
$$y = \frac{600 + 140x}{x}$$

 $x = \frac{600 + 140y}{y}$
 $xy = 600 + 140y$
 $(x - 140)y = 600$

$$c^{-1}(x) = \frac{600}{x - 140}$$

$$c^{-1}(x) = \frac{600}{x - 140}$$

$$f) \quad c^{-1}(160) = \frac{600}{160 - 140}$$

$$= \frac{600}{20}$$

$$= 30$$