Q.NO

1.A

1.B

1.C

1.D

1.E

2

2.A

2.B

Koneru Lakshmaiah Education Foundation

(Critegory -1, Deemed to be University estd. u/s. 3 of the UGC Act. 1955)

Accredited by NAAC as 'A++' - Approved by AICTE - ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200, www.klef.ac.in, www.klef.edu.in, www.kluniversity.in Admin Off., 29-36-38, Museum Road, Governosper, Vijayawada - 520 002, Ph. +91 - 868 - 3500122, 2576129

ACADEMIC YEAR 2023-24 - ODD SEMESTER 22A'D2001A - DATA DRIVEN ARTIFICIAL INTELLIGENT SYSTEMS End Semester Exam [QUESTION PAPER SET 3] TIME: 3 HOURS MAX MARKS: 100 M QUESTION DESCRIPTION CO SECTION - A [ANS.WER ALL QUESTIONS] COI-BTL Answer all Questions [5 X 2 = 10 M] Convert the following statement into first order logic: (1) Rohan is intelligent and hardworking. (2) Ritika is a doctor or Engineer. CO1 BTL-2 Compare and contrast different types of machine learning. CO2 BTL-2 Explain the role of the "weights" in an artificial neural network. CO3 BTL-2 List the importance of Principal Component Analysis (PCA). CO4 BTL-2 Explain the fundamental purpose of a recurrent neural network (RNN) in the context of sequential data. CO5 BTL-2 SECTION - B [ANSWER ALL QUESTIONS] Answer all Questions [5X 6 = 30 M] Illustrates various types of Agents in Al. BTL-2 CO1 Discuss the forward and backward chaining in Artificial Intelligence

	and backward chaining in Artificial intelligence.	COZ	BIL-2
2.C	Compare and contrast between artificial and biological neuron in artificial neural network.	соз	BTL-2
2 .D	Describe the key stages of the Data Science Life Cycle, including data collection, data cleaning, exploratory data analysis (EDA), feature engineering, model building, and model evaluation. Explain the significance of each stage in the process.	CO4	BTL-2
2.E	Explain the architecture of a Recurrent Neural Network (RNN). Discuss its key components and how they enable the network to handle sequential data effectively. Provide a diagram to illustrate your answer	CO5	BTL-2
SECTION	ON – C [ANSWER Q3 OR Q4]		

	effectively. Provide a diagram to illustrate your answer		
SECTIO	DN – C [ANSWER Q3 OR Q4]		
3	Answer all Questions [7M + 5M = 12 M]		
3.A	Illustrate Map colouring problem for a set of 3 colours {R, G, B} using forward checking technique. The figure is given below.	CO1	BTL-3
3.B	Outline the concept of Constraint Satisfaction Problem (CSP). Apply the CSP	CO1	BTL-2

OR

logic to solve the following crypt arithmetic problem. SEND + MORE = MONEY

4	Answer	all Ques	ions [7M +	+ 5M = 12 N	<u>л</u> 1					
1 1	Discuss	the dif	ference b	etween a	tautole	nov and	a contr	radiction in		<
4.A	proposit	ional log	ic. Provide	an example	e of each	gy and	a conti	adiction in	CO1	BIL
4.B	Develop	a detaile	ed algorith	m for the	simple H	ill Climb	ing algorit	hm. Discuss		011
	irz innira	uons and	i propose s	strategies t	o overco	me these	e limitatio	ns.	CO1	BTL-2
SECTIO	ON - DIAN	SWER C	(5 OR Q6]							-
5	Answer	all Quest	ions [7M +	5M = 12 N	N]					
5.A	Harry.	(D=T) P(D 0.998	Burglar David	y B Alarm	E Earth	hquake	T 0.00 F 0.999 P(A=T) P(0.94 0 0.95 0 0.69 0 0.999 0	-	CO2	BTL-3
	Find the maximally specific hypothesis for the following table using Find S algorithm.									
	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy Sport	CO2	BTL-2
	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes		
5.B	2	Sunny	Warm	High	Strong	Warm	Same	Yes		
	3	Rainy	Cold	High	Strong	Warm	Change	No		
	4	Sunny	Warm	High	Strong	Cool	Change	No		
	5	Sunny	Warm	High	Strong	Warm	Same	No		
	6	Rainy	Cold	High	Strong	Warm	Change	No		
	7	Sunny	Warm	High	Strong	Cool	Change	Yes		
				Į.	OR					
6	Answer al	I Questi	ons (7M +	5M = 12 N	VI)					
	Compare	and con	trast the h	vpothesis	space re	presenta	ations used	d in the Find-	603	BTL-3
6.A	Compare and contrast the hypothesis space representations used in the Find- S and Candidate Elimination algorithms. How do these representations							resentations	CO2	611-3
1	impact their respective learning capabilities?									
6.B	Discuss the Directed Acyclic Graph (DAG) and Conditional Probability Table						CO2	BTL-2		
6.В	(CPT) with									
	N - E [A.NS									
ECTIO.	_		one [7M +	5M = 12 M	M]					
7	Answer a	II Questi	OUP [) IAL A				la offe ace	ociated with		pTI-2
				of the con	ctraints	and trad	le-offs ass	ociated with del training,	CO3	BTL-3

Page 2 of 3

	demonstrating a practical understanding of their specific roles and impact on		
	enhancing classification performance.		
	Explain the architecture of a typical feedforward neural network, including		-
7.B	and might layer, finden layers, and output layer provide a diagram to	03	BTL-2
	illustrate your answer.	.05	0162
	OR		
8	Answer all Questions [7M + 5M = 12 M]		
	Analyze the complex mechanisms of convolutional neural networks (CNNs)		
8.A	and their pivotal role in image recognition by evaluating the significance of	CO3	BTL-3
	features like convolutional layers and their contribution to determining patterns within visual data.	505	
	Explain the concept of an activation function in the context of ANNs. For the		
	network shown in figure, calculate the net input to the output neuron Y.		
	X1 = 0.6		
	0.3		
		503	BTL-2
8.8	X2 = 0.4	CO3	DIL-2
	0.7		
	X3 = 0.8 - 0.5		
SECTIO	ON - F [ANSWER 9 OR Q10]		
9	Answer all Questions [7M + 5M = 12 M]		
	Examine why the k-means clustering method is sensitive to outliers,		
	explaining that it calculates cluster centers based on average values, making	CO4	BTL-4
9.A	it influenced by extreme data points and potentially leading to less accurate	004	010
	groupings.		
9.B	Summarize FIVE applications of NLP in details.	CO4	BTL-2
	OR		
10	Answer all Questions [7M + 5M = 12 M]		
	Analyze the working principle of k-NN classification algorithm with a suitable		
10.A	example. Analyze the impact of using an even value for k in the k-NN	CO4	BTL-4
	algorithm on decision boundaries.	1	
100	Explain the use of pie charts, bar charts, line charts, scatter plots, and maps	CO4	BTL-2
10.B	in visualizing various aspects of complex datasets.		
ECTIC	N – F [ANSWER 11 OR Q12]	-	_
11	Answer all Questions [7M + 5M = 12 M]	-	
	Demonstrate the concept of adversarial search in Al. What are Minimax and	i	-
11.A	Alpha-Beta pruning techniques, and how are they used in adversarial search	n COS	BTL-
	algorithms?		
	Discuss the classification techniques ID3, CART, and ADABOOST Classifier in	COS	BTL-
11.B	machine learning.		
	OR		
12	Answer all Questions [7M + 5M = 12 M]		-
	Examine why alpha-beta pruning is better than the minimax approach i	n	
12.A	games, highlighting how it quickly skips unnecessary branches in the gam	e CO	5 BTL-
	tree, making decisions faster and using fewer computations.		E DTI
12.B	Discuss the architecture of recurrent neural networks.	CO	5 BTL-
	*** END OF QUESTION PAPER ***		

*** END OF QUESTION PAPER