STATE ToxiCN: A Benchmark for Span-level Target-Aware Toxicity Extraction in Chinese Hate Speech Detection

Zewen Bai · Liang Yang · Shengdi Yin · Junyu Lu · Jingjie Zeng · Haohao Zhu · Yuanyuan Sun · Hongfei Lin

Dalian University of Technology, China dlutbzw@mail.dlut.edu.cn

Abstract & Introduction

Exp.	Post	Target	Argument	Hateful	Group
1	你这头蠢驴,没人会喜欢。 No one will ever like you, you idiot.	你 you	蠢驴 idiot	non-hate	non-hate
2	男同是艾滋高发群体。 Gay people are a high-risk group for HIV.	男同 Gay people	艾滋高发群体 a high-risk group for HIV	hate	LGBTQ, others
3	默我是真的很讨厌。 Silence, I really hate it.	默(黑犬) Slience(black dog)	讨厌 hate	hate	Racism

The proliferation of hate speech has caused significant harm to society. Detection of Chinese hate speech and hateful slang remains limited:

- > Constructed the first Chinese fine-grained span-level dataset, STATE-TOXICN, supporting target-aware toxicity span extraction;
- > We evaluated models' fine-grained detection performance and conducted the first study on Chinese hateful slang, testing large language models' grasp of hate semantics.

Hateful Slang Understanding

Example 1	Example 2
Term: "默" Text: "默我是真的很讨厌。"	Term: "冉闵" Text: "神州不止一个冉闵。"

<u>ShieldGemma-9B:</u> I speculate that '默' (mò) is used in this context to express hatred towards a group associated with silence or stillness. Without more context regarding the speaker's background, it's difficult to determine what they mean by '默'.

<u>DeepSeek-v3:</u> The term '默' (mò) could be a name, nickname, or designation. More context is needed to determine if it has hateful connotations. If '默' refers to a specific group and expresses animosity, it could have hateful undertones.

<u>Human Annotator:</u> The word '默' (mò), meaning 'slience', when spelled out as '黑犬' (hēi quǎn), meaning 'black dog,' is a mergeword used to insult Black people.

ShieldGemma-9B: '冉闵' (Ran Min) could be coded hostility toward: minority ethnic or racial groups (as historically used to express prejudice); political opponents (for demonization); or religious groups (as a veiled expression of intolerance).

<u>DeepSeek-v3:</u> Ran Min of the Sixteen Kingdoms is known for the 'Kill the Hu' order and extreme actions against northern minorities, resulting in numerous deaths. He's seen by some as a national hero, but by others as a tyrant or nationalist.

Human Annotator: Ran Min was the founder of the Ran Wei regime. He led a revolt against the 'Hu' people and issued the 'Kill the Hu' order. He is often used as a symbol of nationalism, and has been used to justify racial discrimination.

We selected two terms with distinct Chinese characteristics as case studies:

Case-1: "默" (mò), a typical "merging word" formed by the characters "黑犬" (hēi quǎn, meaning "black dog"), a unique Chinese linguistic phenomenon.

Case-2: "冉闵" (rǎn mǐn), a hateful slang term rooted in Chinese history and culture, referring to an ancient emperor who massacred ethnic minorities, often used for racial discrimination.

Results show that even high-performing models face significant challenges in understanding Chinese hateful slang with cultural specificity and subtle connotations.

Experiments Results

Model	Target		Argument		T-A Pair		T-A-H Tri.		Quad.		
1.200.02	Hard	Soft	Hard	Soft	Hard	Soft	Hard	Soft	Hard	Soft	
Finetuned Models (with Basic Prompt)											
mT5-base	59.15	70.55	28.63	67.03	23.33	55.90	17.76	43.34	16.60	38.61	
Mistral-7B	62.97	73.69	<u>35.58</u>	70.90	30.55	60.49	26.15	51.01	23.72	45.62	
LLaMA3-8B	64.07	73.74	36.72	70.82	31.64	60.88	27.04	51.62	24.27	46.08	
Qwen2.5-7B	63.96	74.64	35.42	70.36	30.63	60.52	26.51	52.86	23.70	47.03	
ShieldLM-14B-Qwen	63.83	73.45	$-3\overline{4}.\overline{8}0^{-}$	70.23	30.20	59.81	26.18	51.24	23.59	45.58	
ShieldGemma-9B	63.40	<u>74.31</u>	34.40	71.11	29.99	61.51	25.64	<u>52.70</u>	23.49	47.14	
LLM APIs (with Basic Prompt and 2 Examples)											
LLaMA3-70B	30.54	41.03	14.39	47.96	8.16	27.34	6.03	20.70	3.69	11.93	
Qwen2.5-72B	40.94	50.44	21.10	56.36	15.66	39.49	12.48	30.92	8.74	20.29	
Gemini-1.5-Pro	29.80	37.29	18.43	54.96	9.37	26.22	7.71	21.88	5.45	14.81	
Claude-3.5-Sonnet	37.61	50.72	15.45	57.24	9.72	36.16	7.94	29.82	6.29	22.45	
GPT-4o	46.85	58.19	22.64	62.41	17.21	46.41	13.21	35.68	9.00	23.34	
DeepSeek-v3	48.16	59.25	22.79	59.38	18.68	46.40	14.95	37.19	11.48	27.38	

Extract T-A pairs:

Fine-tuning enhances span boundary identification, particularly in T-A pair extraction, with soft-match results showing similar semantic understanding for targets and arguments.

Hate detection & categorization:

Fine-tuned models significantly outperform APIs, especially in T-A pair extraction and simultaneous identification of hate speech and groups.

Experiments Results on Hateful-slang-containing Subset

Model	Target		Argument		T-A Pair		T-A-H Tri.		Quad.	
	Hard	Soft	Hard	Soft	Hard	Soft	Hard	Soft	Hard	Soft
			Finetur	ned Models (with Basic H	Prompt)				
mT5-base	56.832.32	68.332.22	27.17 _{1.46}	64.17 _{2.86}	21.332.00	51.17 _{4.73}	18.17 _{1.46}	44.67 _{1.33}	16.33 _{0.27}	36.17 _{2.44}
Mistral-7B	$61.03_{1.94}$	$72.62_{1.07}$	36.71 _{1.13}	$70.05_{0.85}$	$30.27_{0.28}$	$58.62_{1.87}$	$26.25_{0.10}$	$51.05_{0.04}$	$22.22_{1.50}$	$43.00_{2.62}$
LLaMA3-8B	$61.26_{2.81}$	$72.12_{1.62}$	$35.17_{1.55}$	$70.83_{0.01}$	$28.53_{3.11}$	$59.00_{1.88}$	$24.47_{2.57}$	$51.38_{0.24}$	$19.77_{4.50}$	$42.46_{3.62}$
Qwen2.5-7B	$61.79_{2.17}$	$73.33_{1.31}$	$36.26_{0.82}$	$69.59_{0.77}$	$29.92_{0.71}$	$57.72_{2.80}$	27.64 _{1.13}	53.66 _{0.80}	$22.76_{0.94}$	$45.04_{1.99}$
ShieldLM-14B-Qwen	64.08 _{0.25}	74.48 _{1.03}	34.19 _{0.61}	69.860.37	$\bar{2}8.9\bar{0}_{1.30}$	58.301.51	$\bar{2}5.60_{0.58}$	$5\overline{1.69}_{0.45}$	$\bar{2}1.3\bar{0}_{2.29}$	$\overline{43.60}_{1.98}$
ShieldGemma-9B	$62.50_{0.90}$	$74.35_{ oldsymbol{0.04}}$	$35.71_{1.31}$	$71.10_{\scriptstyle 0.01}$	$29.87_{0.12}$	$60.71_{0.80}$	$26.95_{1.31}$	$55.03_{2.33}$	$23.21_{0.28}$	$46.10_{1.04}$
			LLM APIs (with Basic H	Prompt and 2	2 Examples)				
LLaMA3-70B	30.87 _{0.33}	41.45 _{0.42}	14.80 _{0.41}	46.68 _{1.28}	8.29 _{0.13}	25.38 _{1.96}	7.40 _{1.37}	22.58 _{1.88}	4.72 _{1.03}	13.14 _{1.21}
Qwen2.5-72B	45.58 _{4.64}	54.67 _{4.23}	$22.15_{1.05}$	57.36 _{1.00}	16.77 _{1.11}	41.61 _{2.12}	$12.42_{0.06}$	$30.35_{0.57}$	$8.83_{0.09}$	$19.59_{0.70}$
Gemini-1.5-Pro	$31.52_{1.72}$	$39.07_{1.78}$	$18.94_{0.51}$	54.57 _{0.39}	$9.01_{0.36}$	$27.95_{1.73}$	$8.61_{0.90}$	25.83 _{3.95}	$6.23_{ extbf{0.78}}$	$17.35_{2.54}$
Claude-3.5-Sonnet	$41.45_{3.84}$	54.06 _{3.34}	$15.80_{ extbf{0.35}}$	$55.80_{1.44}$	$10.43_{0.71}$	$36.96_{0.80}$	$9.28_{1.34}$	33.04 _{3.22}	$7.10_{0.81}$	25.22 _{2.77}
GPT-4o	$49.28_{2.43}$	$61.30_{3.11}$	$21.71_{0.93}$	$59.66_{2.75}$	$16.52_{0.69}$	$46.55_{0.14}$	$12.01_{1.20}$	$33.72_{1.96}$	$8.46_{0.54}$	$22.80_{0.54}$
DeepSeek-v3	$52.69_{4.53}$	$64.25_{4.00}$	$23.79_{1.00}$	$62.10_{2.72}$	$19.22_{0.54}$	$50.40_{4.00}$	$16.13_{1.18}$	$42.07_{4.88}$	$11.69_{0.21}$	$30.11_{2.73}$

The results demonstrate that fine-tuned models struggle with hateful slang due to domain knowledge deficiencies, while LLM APIs exhibit superior performance through contextual comprehension. Incorporating API-derived background knowledge into fine-tuned models may enhance performance, though the performance gap remains substantial.

Category	#Posts Qu		ıad. H		teful	Non-hate	
Train	6424 763		31 48		342	2789	
Test	1605	190)2	1221		681	
Total	8029	9533		6063		3470	
Category	Subcatego	ry	Cor	ınt	Perc	entage (%)	
	Gender		166			17.44	
	Race		1232			12.92	
Groups	Region		132			13.88	
	LGBTQ		628			6.59	
	Others		351			3.68	
	Multi-group		866		9.08		
Hateful	Hate		6063			63.60	
Haterur	Non-Hate		347			36.40	
Total	-		9533			100.00	

Statistics of STATE ToxiCN Dataset

Code

Paper