Homework 1

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: September 6, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Prove Corollary 1 in section 1.2 of [FIS] (page 11).
- 2. Prove Corollary 2 in section 1.2 of [FIS] (page 12).
- 3. Let $V = \{(x_1, x_2) : x_1, x_2 \in \mathbb{R}\}$. Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ be vectors in V, and $c \in \mathbb{R}$. Define $x + y = (x_1 + y_1, x_2 + y_2)$ and $cx = (cx_1, c^2x_2)$. Is V a vector space over \mathbb{R} ? Justify your answer.
- 4. Let V, W be vector spaces over \mathbb{R} . Define the product of $V \times W$ by

$$V \times W = \{(v, w) : v \in V, w \in W\}.$$

For $(v_1, w_1), (v_2, w_2) \in V \times W$ and $c \in \mathbb{R}$, define

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), c(v_1, w_1) = (cv_1, cw_1).$$

Show that $V \times W$ is a vector space over \mathbb{R} .

- 5. Let $M_{m \times n}(\mathbb{R})$ be the set of all $m \times n$ matrices with real entries. Prove the following.
 - (a) $(aA + bB)^t = aA^t + bB^t$ for any $a, b \in \mathbb{R}$ and $A, B \in M_{m \times n}(\mathbb{R})$, where $m, n \in \mathbb{N}$.
 - (b) $\operatorname{tr}(aA+bB)=a\operatorname{tr}(A)+b\operatorname{tr}(B)$ for any $a,b\in\mathbb{R}$ and $A,B\in M_{n\times n}(\mathbb{R})$, where $n\in\mathbb{N}$.
- 6. Determine whether the following sets are subspaces of \mathbb{R}^3 under the operation of addition and scalar multiplication defined on \mathbb{R}^3 . Justify you answer.
 - (a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y z = 0\}.$
 - (b) $W_2 = \{(x, y, z) \in \mathbb{R}^3 : x = y 3z + 1\}.$
 - (c) $W_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z\}.$
 - (d) $W_4 = \{(x, y, z) \in \mathbb{R}^3 : x = 2y, y = -z\}.$
- 7. Let $F_0(\mathbb{R})$ be the set of all functions $f: \mathbb{R} \to \mathbb{R}$ such that f(0) = 0. Define addition and scalar multiplication by (f+g)(x) = f(x) + g(x) and (cf)(x) = cf(x) for any $f, g \in F_0(\mathbb{R})$, $x, c \in \mathbb{R}$. Show that $F_0(\mathbb{R})$ is a vector space over \mathbb{R} .
- 8. Let W_1, W_2 be subspaces of a vector space V over \mathbb{R} . Show that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 9. Let W_1, W_2 be subspaces of a vector space V over \mathbb{R} . Define

$$W_1 + W_2 = \{x + y : x \in W_1, y \in W_2\}.$$

- (a) Show that $W_1 + W_2$ is a subspace of V.
- (b) Let U be a subspace of V and $W_1, W_2 \subseteq U$. Show that $W_1 + W_2 \leq U$. (This implies that $W_1 + W_2$ is the smallest subspace of V containing W_1 and W_2 .)
- 10. Let V be a vector space over \mathbb{R} . We say that V is the direct sum of W_1 and W_2 if $W_1, W_2 \leq V$, $W_1 \cap W_2 = \{0\}$, and $W_1 + W_2 = V$. We denote by $V = W_1 \oplus W_2$. Let $W_1, W_2 \leq V$. Show that $V = W_1 \oplus W_2$ if and only if every $x \in V$ can be uniquely written as $x = x_1 + x_2$ for $x_1 \in W_1$ and $x_2 \in W_2$.