

Projet 7 Développez une preuve de concept

Février 2021

Sommaire

- 1. Introduction
- 2. Etat de l'art: EfficientNet
- 3. Jeu de données et modèle de baseline
- 4. EfficientNet: implémentation et paramétrage
- 5. Analyse des résultats
- 6. Comparaison avec la baseline
- 7. Meilleur modèle EfficientNet
- 8. Conclusion

Introduction

- Le monde informatique évolue constemment, il faut savoir d'adapter en s'informant sur les nouveaux modèles existants.
- Les réseaux de neurones convolutifs ne cessent de s'améliorer.
- J'ai choisi de reprendre le projet 6 Classez des images à l'aide d'algorithmes de Deep Learning:
 - Données: Stanford Dog Dataset
 - Meilleur modèle du projet sert de baseline
- Ce projet va me permettre de découvrir de nouveaux réseaux de neurones convolutifs ainsi que mieux comprendre leur fonctionnement.

Etat de l'art: EfficientNet

EfficientNet

- Groupe de réseau de neurones convolutifs:
 EfficientNet-B0 --> EfficientNet-B7
 - Projet: EfficientNet-B0 --> EfficientNet-B4
- International Conference on Machine Learning juin 2019
- Très performant sur différentes données

Compound method scaling

Augmenter les 3 dimensions proportionnellement

Etat de l'art: EfficientNet

- Augmenter des dimensions pour améliorer la performance
- Technique communément utilisée: Augmentation arbitraire une ou plusieurs des 3 dimensions
- Technique de EfficientNet: Augmenter les trois dimensions de manière proportionnelle

Architecture d'un CNN

Augmentation de différentes dimensions

Jeu de données et modèle de baseline

Jeu de données:

Stanford Dog Dataset: 120 classes

• 20 580 images

Train et validation: 120 classes

• Train: 9609 images

Validation: 2401 images

Test: 120 classes

• 8580 images

Modèle de baseline:

InceptionV3: troisième édition du Google's Inception Convolutional Neural Network

Extraction de features

Précision train: 85,94 %

Précision test: 79,33 %

Transfert Learning

- Différentes architectures (modèles plus détaillés: voir rapport)
- Kaggle RU et Kaggle VS: fine tuning partiel avec différents initialiseurs
- Epochs = 40 et batch size = 40
- Optimiseur = Adam et learning rate = 0,0001
- EfficientNet-B0

Meilleurs performances: Kaggle VarianceScaling:

• précision $\approx 60\%$

Kaggle VarianceScaling

```
def tl effnet 1(model, nb classes):
initializer = VarianceScaling(scale=0.1, mode='fan in', distribution='uniform')
x = model.output
x = GlobalAveragePooling2D()(x)
\# x = Dropout(rate = .2)(x)
x = BatchNormalization()(x)
x = Dense(1280, activation='relu', kernel initializer=glorot uniform(3), bias initializer='zeros')(x)
\# x = Dropout(rate = .2)(x)
x = BatchNormalization()(x)
predictions = Dense(nb_classes, activation='softmax', kernel_initializer=initializer, bias_initializer='zeros')(x)
new_model = tf.keras.Model(inputs=model.input, outputs=predictions)
#for layer in new_model.layers:
    layer.trainable = True
for layer in new_model.layers[-2:]:
    layer.trainable = True
new_model.summary()
return new model
```

Paramétrage:

Optimiseurs:

- 5 optimiseurs
- Epoch = 40
- Batch size = 40

Résultat:

- Adadelta et RMSprop meilleure précision
- Uniquement Adam apprend

Paramétrage: EfficientNet-B0 --> EfficientNet-B4

- Nombre d'epochs:
 - 40, 80, 100
- Taille de batch :
 - 40,80
- Learning rate:
 - 1e-2, 1e-3, 1e-4, 1e-6
- Callbacks
 - EarlyStopping
 - ReduceLROnPlateau

Meilleurs paramètres:

- 80 epochs
- Batch size = 40 ou 80
- Learning rate = 0,0001
- Callbacks: ReduceLROnPlateau

Analyse des résultats

Résultats pour 40 epochs et 40 de batch size

Modèle	Optimiseurs	Learning rate	Précision	Temps en s.	
EficientNet-B0	Adam	0.0001	0,2705	207	Augmentation du nombre
EficientNet-B1	Adam	0.0001	0,3304	287	d'epoch:
EficientNet-B2	Adam	0.0001	0,3285	299	pas d'amélioration de la précision
EficientNet-B3	Adam	0.0001	0,5286	368	precision
EficientNet-B4	Adam	0.0001	0,3573	463	

Meilleur précision:

- 1. EfficientNet-B3
- 2. EfficientNet-B4

EfficientNet-B4 > EfficientNet-B3 ?

- Variantes plus grandes ≠ meilleures performances
 - moins de données
 - moins de classe
- Plus EfficientNet grand, plus difficile à paramétrer.

Analyse des résultats

	Modèle	Epoch	Batch size	Précision train	Précision validation
Α	EfficientNet-B3	80	40	0,9132	0,8281
В	EfficientNet-B3	100	80	0,8717	0,8906
С	EfficientNet-B4	100	40	0,8511	0,8750
D	EfficientNet-B4	100	80	0,8312	0,8750

Perte et précision sur données test :

A: Résultat: [0.5082215070724487, 0.8503900170326233]

B: Résultat: [0.7371186017990112, 0.824077308177948]

C: Résultat: [0.7219782471656799, 0.8211666345596313]

D: Résultat: [0.6364232897758484, 0.8269879817962646]

2 modèles sélectionnés

Suite:

- Observation des courbes d'apprentissage
- Comparaison avec la précision baseline

Comparaison avec la baseline

Baseline: InceptionV3

- Batch size = 40
- Extraction de features
- No callbacks
- Précision = 79,33%

EfficientNet-B3

- Batch size = 40
- Fine tuning partiel
- ReduceLROnPlateau
- Précision = 85,04%

EfficientNet-B4

- Batch size = 80
- Fine tuning partiel
- ReduceLROnPlateau
- Précision = 82,70%

Meilleur modèle EfficientNet

Le meilleur modèle EfficientNet:

EfficientNet-B3 - Kaggle VarianceScaling - Optimiseur: Adam - Batch size: 40

Précision: 91,32% Temps: 36,05 min

Evaluation sur data set de test:

Résultat: [0.5082215070724487, 0.8503900170326233]

Précision = 85,03%

Conclusion

- Avec EfficientNet-B3 on obtient une meilleure précision que le modèle baseline InceptionV3: 85,03% contre 79,33%.
- Les courbes d'apprentissages de EfficientNet-B3 ne sont pas très stables.

Conclusion

- Nouvelles modifications pouvant améliorer la performances de EfficientNet:
 - Augmentation linéaire de la valeur de Dropout lors du fine-tuning partiel
 - Définir drop_connect_rate pour controler la valeur du drop out
 - Freeze la couche BatchNormalization
 - Petit batch size pour accroitre la précision de la validation

- Dans le plan prévisionnel de travail, je voulais tester également EfficientNet-B5. Ce modèle ayant un très grand nombre de paramètres (35 millions sans transfert learning), je n'ai pas pu l'éxecuter.
- Ce projet m'a permis:
 - D'améliorer mes compétences de recherches
 - De me familiariser encore plus avec les réseaux de neurones convolutifs

Ressources trouvables dans le rapport