Afstand mellem linje og punkt

Vi kan bruge projektioner af vektorer til at bestemme afstanden mellem et punkt P og en linje l i planen. Det er ikke umiddelbart klart ud fra formlen at det er projektioner, vi bruger, men det vil ses af beviset. Afstanden findes ved følgende sætning.

Sætning 0.1 (Afstand mellem punkt og linje). Har vi et punkt $Q(x_1, y_1)$ og en linje l givet ved ligningen

$$ax + by + c = 0,$$

så~kan~vi~bestemme~afstanden~mellem~l~og~Q~ved

$$dist(Q, l) = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Bevis. Vi vælger et punkt $P(x_0, y_0)$ på l. Da l har ligningen

$$ax + by + c = 0,$$

må der gælde, at

$$ax_0 + by_0 + c = 0,$$

' og derfor har vi et udtryk for c givet ved

$$c = -ax_0 + by_0$$
.

Vektoren \overrightarrow{PQ} er givet ved

$$\overrightarrow{PQ} = \begin{pmatrix} x_1 - x_0 \\ y_1 - y_0. \end{pmatrix}$$

Vi har en normalvektor til l givet ved

$$\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Vi bemærker nu, at længden af projektionen $\overrightarrow{PQ_{\vec{n}}}$ må være afstanden fra l til Q. Vi bestemmer derfor længden af denne projektion:

$$\left| \overrightarrow{PQn} \right| = \frac{|\overrightarrow{PQn} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$$

$$= \frac{\left| \begin{pmatrix} x_1 - x_0 \\ y_1 - y_0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} \right|}{\left| \begin{pmatrix} a \\ b \end{pmatrix} \right|}$$

$$= \frac{|a(x_1 - x_0) + b(y_1 - y_0)|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|ax_1 + by_1 - ax_0 - by_0|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|ax_1 + by_1 + c|}{a^2 + b^2}.$$

Eksempel 0.2. Vi skal bestemme afstanden fra punktet P(1,1) til linjen med ligningen 4(x-1) + 3(y+1) = 0. Vi starter med at hæve parenteserne i ligningen:

$$4(x-1) + 3(y+1) = 0 \Leftrightarrow 4x + 3y - 1 = 0.$$

Vi kan nu bruge formlen for afstand mellem punkt og linje og får:

$$dist(P, l) = \frac{|4 \cdot 1 + 3 \cdot 1 - 1|}{\sqrt{3^2 + 4^2}}$$
$$= \frac{6}{5},$$

hvilket er afstanden fra punktet P til linjen l.

Eksempel 0.3. Vi skal bestemme k, så punktet P(4,k) og linjen l med ligningen

$$2x - 4y - 3 = 0$$

har afstand 1. Vi bruger afstandsformlen og får

$$\operatorname{dist}(P, l) = \frac{|2 \cdot 4 - 4 \cdot k - 3|}{\sqrt{2^2 + 4^2}|} = \frac{|5 - 4k|}{\sqrt{20}} = 1.$$

Vi løser denne ligning og får, at $k \approx 0.63$.

Opgave 1

Bestem afstanden mellem linjen l med ligningen

$$-1(x+4) + 3(y-1) = 0$$

og følgende punkter:

$$1) (-1,1)$$

3)
$$(\sqrt{2}, \sqrt{2})$$

$$4) (-5,6)$$

6)
$$\left(-\frac{1}{2},2\right)$$

Tegn desuden situationen i Geogebra og tjek, at du har fundet den korrekte afstand.

Opgave 2

i) Bestem k, så afstanden mellem linjen givet ved

$$x - 5y + 10 = 0$$

og punktet P(k,1) har afstand 4. Start med at tegne det i Geogebra.

ii) Bestem b, så l med ligningen

$$y = 2x + b,$$

og punktet P(1,1) har afstand 5. Start med at tegne i Geogebra.

Opgave 3

Aflevering