## Kurs Bio144: Datenanalyse in der Biologie

Stefanie Muff & Owen L. Petchey

Week 3: Multiple linear regression 9./10. March 2017

## Overview (todo: check)

- Checking the assumptions of linear regression
- Tukey-Anscombe diagram, QQ-plot, leverage plot
- Multiple predictors  $x_1, x_2, \ldots, x_p$
- R<sup>2</sup> in multiple linear regression
- t-tests, F-tests and p-values
- Transformation of variables

## **Course material covered today**

- Chapters 3.1, 3.2a-q of Lineare Regression
- Chapters 4.1 4.2f, 4.3a-e of Lineare Regression
- Chapter 11.2 in Statistische Datenanalyse

## Recap of last week I

• The linear regression model for the data  $\mathbf{y} = (y_1, \dots, y_n)$  given  $\mathbf{x} = (x_1, \dots, x_n)$  is

$$y_i = \alpha + \beta x_i + e_i$$
,  $e_i \sim N(0, \sigma_e^2)$  independent.

- Estimate the parameters  $\alpha$ ,  $\beta$  and  $\sigma_e^2$  by least squares.
- The estimated parameters  $\hat{\alpha}$ ,  $\hat{\beta}$  contain uncertainty and are normally distributed around the true values.
- Use the knowledge about the distribution to formulate statistical tests, such as: Is  $\beta = 0$ ?
- All this is done automatically by R:

```
> summary(r.bodyfat)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.984368 2.7689004 -9.745518 3.921511e-19
bmi 1.818778 0.1083411 16.787522 2.063854e-42
```

## Recap of last week II

• Confidence and prediction ranges:



## Recap of last week III

Remember: The assumption in linear regression is that the residuals follow a  $N(0, \sigma_e^2)$  distribution, implying that :

- a) The expected value of  $e_i$  is 0:  $E(e_i) = 0$ .
- b) All  $e_i$  have the same variance:  $Var(e_i) = \sigma_e^2$ .
- c) The  $e_i$  are normally distributed.
- d) The  $e_i$  are independent of each other.

We started to do some residual analysis using the Tukey-Anscombe plot and the Histogram of the residuals  $R_i$ .



Stefanie Muff Week 2: Simple linear regression Page 6

## Another useful diagnostic plot: The QQ-plot

Usually, not the histogram of the residuals is plotted, but the so-called quantile-quantile (QQ) plot. The quantiles of the observed distribution are plotted against the quantiles of the respective theoretical (normal) distribution:

- > qqnorm(r.bodyfat\$residuals)
- > qqline(r.bodyfat\$residuals)



If the points lie approximately on a straight line, the data is fairly normally distributed.

This is often "tested" by eye, and needs some experience.

Please read "Quantil-Quantil-Diagramme", Chapter 11.2., p.258-261, in "Statistische Datenenalyse" by W. Stahel (Mat183 literature).

It gives a very nice and intuitive description of QQ diagrams!



The idea is that, for each observed point, theoretical quantiles are plotted against the sample quantiles.

Multiple linear regression

## **Bodyfat example**

We have so far modelled bodyfat in dependence of bmi, that is:  $(bodyfat)_i = \alpha + \beta \cdot bmi_i + e_i$ .

However, other predictors might also be relevant for an accurate prediction of bodyfat.

**Examples:** Age, neck fat (Nackenfalte), hip circumference, abdomen circumference etc.



Week 2: Simple linear regression

#### Or again the pairs plot:

#### > pairs(d.bodyfat)



## Multiple linear regression model

The idea is simple: just extend the linear model by additional predictors.

• Given several influence factors  $x_i^{(1)}, \ldots, x_i^{(m)}$ , the straightforward extension of the simple linear model is

$$y_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \ldots + \beta_2 x_i^{(m)} + e_i$$
  
with  $e_i \sim N(0, \sigma_e^2)$ .

• The parameters of this model are  $\beta = (\beta_0, \beta_1, \dots, \beta_m)$  and  $\sigma_e^2$ .

The components of  $\beta$  are again estimated using the **least squares** method. Basically, the idea is (again) to minimize

$$\sum_{i=1}^{n} r_i^2$$

with

$$r_i = y_i - (\beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \ldots + \beta_2 x_i^{(m)})$$

It is a bit more complicated than for simple linear regression, see Sections 3.3 and 3.4 of the Stahel script.

Some **linear algebra** is needed to understand these sections, but we do not look into this for the moment. (It will come later in week 6.)

## Multiple linear regression for bodyfat

Let us regress the proportion (%) of bodyfat (from last week) to the predictors **bmi** and **age** simultaneously. The model thus is given as

$$\begin{array}{lll} (\textit{bodyfat})_i & = & \beta_0 + \beta_1 \cdot \textit{bmi}_i + \beta_2 \cdot \textit{age}_i + e_i \ , \\ & \text{with} & e_i & \sim & \mathsf{N}(0, \sigma_e^2) \ . \end{array}$$

Before we estimate the parameters, let us ask the questions that we intend to answer:

- Does the ensemble of all covariates explain a relevant part of the variability of the response?
- 2 If yes, which influence variables are good predictors of bodyfat?
- How good is the overall model fit?

#### Multiple linear regression with R

Let's now fit the model with R, and quickly glance at the output:

```
> r.bodvfatM <- lm(bodvfat ~ bmi + age .d.bodvfat)
> summary(r.bodyfatM)
Call:
lm(formula = bodyfat ~ bmi + age, data = d.bodyfat)
Residuals:
    Min
          10 Median 30
                                    May
-12.0415 -3.8725 -0.1237 3.9193 12.6599
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -31,25451 2,78973 -11,203 < 2e-16 ***
          1.75257 0.10449 16.773 < 2e-16 ***
bmi
    0.13268 0.02732 4.857 2.15e-06 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.329 on 240 degrees of freedom
Multiple R-squared: 0.5803, Adjusted R-squared: 0.5768
F-statistic: 165.9 on 2 and 240 DF, p-value: < 2.2e-16
```

## Model checking

Before we look at the results, we have to check if the modelling assumptions are fulfilled:



This seems ok, so continue with answering questions 1-3.

# Question 1: Does the model have some explanatory power?

To answer question 1, we need to perform a so-called *F*-test. The results of the test are displayed in the final line of the regression summary. Here, it says:

F-statistic: 165.9 on 2 and 240 DF, p-value: < 2.2e-16

So apparently (and we already suspected that) the model has some explanatory power.

\*The F-statistic and -test is briefly recaptured in 3.1.f) of the Stahel script, but see also Mat183 chapter 6.2.5. It uses the fact that

$$\frac{SSQ^{(R)}/m}{SSQ^{(E)}/(n-p)} \sim F_{m,n-p}$$

follows an F-distribution (df() in R) with m and (n-p) degrees of freedom, where m are the number of variables, n the number of data points, p the number of  $\beta$ -parameters (typically m+1).  $SSQ^{(E)} = \sum_{i=1}^n R_i^2$  is the squared sum of the residuals, and  $SSQ^{(R)} = SSQ^{(Y)} - SSQ^{(E)}$  with  $SSQ^{(y)} = \sum_{i=1}^n (y_i - \overline{y})^2$ .

#### Question 2: Which variables influence the response?

#### > summary(r.bodyfatM)\$coef

```
| Estimate Std. Error | t value | Pr(>|t|) | (Intercept) -31.2545057 2.78973238 -11.203406 1.039096e-23 | bmi | 1.7525705 0.10448723 | 16.773060 2.600646e-42 | age | 0.1326767 0.02731582 | 4.857137 2.149482e-06
```

To answer this question, again look at the *t*-tests, for which the *p*-values are given in the final column. Each *p*-value refers to the test for the null hypothesis  $\beta_0^{(j)} = 0$  for covariate  $x^{(j)}$ .

As in simple linear regression, the T-statistic for the j-th covariate is calculated as

$$T_{j} = \frac{\hat{\beta}_{j} - \beta_{j_{0}}}{\mathsf{se}^{(\beta_{j})}} \quad \underbrace{=}_{\mathsf{if} \, \beta_{j_{n}} = 0} \quad \frac{\hat{\beta}_{j}}{\mathsf{se}^{(\beta_{j})}} \,, \tag{1}$$

with  $se^{(\beta_j)}$  given in the second column of the regression output.

Therefore: A "small" *p*-value indicates that the variable is relevant in the model.

Here, we have

- p < 0.001 for bmi
- p < 0.001 for age

Thus both, bmi and age seem to have some predictive power for bodyfat.

#### !However!:

The p-value and T-statistics should only be used as a **rough guide** for the "significance" of the coefficients.

For illustration, let us extend the model a bit more, including also neck, hip and abdomen:

```
> r.bodyfatM2 <- lm(bodyfat ~ bmi + age + neck + hip + abdomen,d.bodyfat)
> summary(r.bodyfatM2)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.74964673 7.29830233 -1.0618424 2.893881e-01
bmi 0.42647368 0.23132902 1.8435805 6.649276e-02
age 0.01457356 0.02782994 0.5236649 6.010010e-01
neck -0.80206081 0.19096606 -4.2000177 3.779800e-05
hip -0.31764315 0.10751209 -2.9544876 3.447492e-03
abdomen 0.83909391 0.08417902 9.9678702 9.035870e-20
```

It is now much less clear what the influences of age (p = 0.60) and bmi (p = 0.06) are.

Basically, the problem is that the variables in the model are correlated and therefore explain similar aspects of % bodyfat.

This problem is at the heart of many confusions of regression analysis, and we will talk about such issues later in the course

## Question 3: How good is the overall model fit?

To answer this question, we can look at the multiple  $R^2$  (see Stahel 3.1.h). It is a generalized version of  $R^2$  for simple linear regression:

 $R^2$  for multiple linear regression is defined as the squared correlation between  $(y_1, \ldots, y_n)$  and  $(\hat{y}_1, \ldots, \hat{y}_n)$ , where the  $\hat{y}$  are the fitted values

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x^{(1)} + \ldots + \hat{\beta}_m x^{(m)}$$



 $R^2$  is also called the *coefficient of determination* or "Bestimmtheitsmass", because it measures the proportion of the reponse's variability that is explained by the ensemble of all covariates:

$$R^2 = SSQ^{(R)}/SSQ^{(Y)} = 1 - SSQ^{(E)}/SSQ^{(Y)}$$

#### Remembering that

total variability = explained variability + residual variability

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$SSQ^{(Y)} = SSQ^{(R)} + SSQ^{(E)}$$



Let us look at the  $R^2$ s from the three bodyfat models (model 1:  $y \sim bmi$  model 2:  $y \sim bmi + age$  model 3:  $y \sim bmi + age + neck + hip + abdomen$ ):

- Γ17 0.5390391
- [1] 0.5802956
- [1] 0.718497

The models thus explain 54 %, 58 % and 72 % of the total variability of y.

It thus seems that larger models are "better". However,  $R^2$  does always increase when new variables are included, but this does not mean that the model is more reasonable.

Model selection is a topic that will be treated in more detail later in this course.

#### Adjusted $R^2$

When the sample size n is small with respect to the number of variables m included in the model, an adjusted  $R^2$  gives a better (or "fairer", i.e. unbiased) estimation of the actual variability that is explained by the covariates:

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-m-1}$$

#### Interpretation of the coefficients

Apart from model checking and thinking about questions 1-3, it is probably even **more important to understand what you see**. Look at the output and ask yourself:

What does the regression output actually mean?

|           | Coefficent | 95%-confidence interval | <i>p</i> -value |
|-----------|------------|-------------------------|-----------------|
| Intercept | -31.25     | from -36.75 to -25.76   | < 0.0001        |
| bmi       | 1.75       | from 1.55 to 1.96       | < 0.0001        |
| age       | 0.13       | from 0.08 to 0.19       | < 0.0001        |

Table: Parameter estimates of model 3.

Task in teams: Interpret the coefficients, 95% CIs and *p*-values.

#### **Example: Catheter Data**

Catheter length (y) for heart surgeries depending on two characteristic variables  $x^{(1)}$  and  $x^{(2)}$  of the patients. Aim: estimate y from  $x^{(1)}$  and  $x^{(2)}$  (n=12). Regression results:

|           | Coefficent | 95%-confidence interval | <i>p</i> -value |
|-----------|------------|-------------------------|-----------------|
| Intercept | 21.09      | from 1.25 to 40.93      | 0.04            |
| ×1        | 0.077      | from -0.25 to 0.40      | 0.61            |
| ×2        | 0.43       | from -0.41 to 1.26      | 0.28            |

with  $R^2 = 0.81$ ,  $R_a^2 = 0.76$ , p-value of the F-test p = 0.0006, and diagnostic residual plots



Stefanie Muff

Week 2: Simple linear regression

- Are the modelling assumptions fulfilled?
- ② Does the model have some predictive power?
- Which variable(s) influence(s) the response?
- 4 How good is the overall fit of the model?
- Interpretation of the results?

Also look at the regression table when using  $x^{(1)}$  and  $x^{(2)}$  alone:

|           | Coefficent | 95%-confidence interval | <i>p</i> -value |
|-----------|------------|-------------------------|-----------------|
| Intercept | 12.13      | from 2.66 to 21.59      | 0.017           |
| ×1        | 0.24       | from 0.15 to 0.33       | 0.0002          |

|           | Coefficent | 95%-confidence interval | <i>p</i> -value |
|-----------|------------|-------------------------|-----------------|
| Intercept | 25.63      | from 21.16 to 30.09     | < 0.0001        |
| x2        | 0.62       | from 0.40 to 0.83       | < 0.0001        |

#### > pairs(d.cath)



Note that  $x^{(1)}$  and  $x^{(2)}$  are highly correlated!

## **Binary covariates**

So far, the covariates x were always continuous.

However, in our regression models there are no restrictions assumed with respect to the x variables.

One very frequent data type of covariates are **binary** variables, that is, variables that can only attain values 0 or 1.

See section 3.2c of the Stahel script:

If the binary variable x is the only variable in the model  $y_i = \beta_0 + \beta_1 x_i + e_i$ , the model has only two predicted outcomes

$$y_i = \begin{cases} \beta_0 + e_i & \text{if } x_i = 0\\ \beta_0 + \beta_1 + e_i & \text{if } x_i = 1 \end{cases}$$

## **Example: Smoking variable in Hg Study**

For the 59 mothers in the Hg study, check if their smoking status (0=n0,1=yes) influences the Hg-concentration in the urin.

We fit the following linear regression model:

$$\log(\textit{Hg}_{\textit{urin}})_{i} = \beta_{0} + \beta_{1} \cdot x_{i}^{(1)} + \beta_{2} \cdot x_{i}^{(2)} + \beta_{3} \cdot x_{i}^{(3)} + e_{i} \; ,$$

#### Where

- $log(Hg_{urin})_i$  is the urine mercury concentration.
- $x^{(1)}$  is the binary smoking indicator (0/1).
- $x^{(2)}$  the number of amalgam fillings.
- $x^{(3)}$  the monthly number of marine fish meals.

(Remember from week 1 that the log of Hg concentrations is needed to obtain useful distributions.)

The results table is given as follows:

|           | Coefficent | 95%-confidence interval | <i>p</i> -value |
|-----------|------------|-------------------------|-----------------|
| Intercept | -1.01      | from -1.22 to -0.80     | < 0.0001        |
| smoking   | 0.22       | from -0.06 to 0.50      | 0.12            |
| amalgam   | 0.092      | from 0.05 to 0.14       | 0.0001          |
| fish      | 0.032      | from 0.01 to 0.06       | 0.015           |

There is some weak (p = 0.12) indication that smokers have a slightly increased Hg concentration in their body.

In principle, we have now – at the same time – fitted **two models:**one for smokers and one for non-smokers, assuming that the slopes of the other covariates are the same for both groups.

Smokers: 
$$y_i = -1.01 + 0.22 + 0.092 \cdot amalgam_i + 0.032 \cdot fish_i + e_i$$
  
Non-smokers:  $y_i = -1.01 + 0.092 \cdot amalgam_i + 0.032 \cdot fish_i + e_i$ 

...and for completeness, again a short check of the modelling assumptions:



It seems ok, apart from one point that could be categorized as an outlier. We ignore it for the moment.

## **Categorical covariates**

An even more general (Stahel 3.2e)