Отчёт по лабораторной работе №8

Целочисленная арифметика многократной точности

Студент: Гонсалес Ананина Луис Антонио, 1032175329

Группа: НФИмд-02-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	4
2	Теоретические сведения	5
3	Выполнение работы	7
4	Выводы	12
Сп	писок литературы	13

List of Figures

3.1	Алгоритм1																7
3.2	Алгоритм2																8
3.3	Алгоритм3																9
3.4	Алгоритм4																10
3.5	Алгоритм5																11

1 Цель работы

Цель данной лабораторной работы- изучить теорию и реализовать рассмотренные алгоритмы программно.

2 Теоретические сведения

Целочисленная арифметика многократной точности

Мы считаем, что числа записаны в b-ичной системе счисления, где b — фиксированное натуральное число, b 2. При этом натуральное число, записываемое не более чем n цифрами в b-ичной системе счисления, мы обозначаем u 1 *... u**n* (допуская, что несколько старших разрядов u 1, ..., *u**k* могут равняться нулю). Основание b не всегда равно 2; иногда оно соответствует размеру машинного слова, отведенному под запись обычных целых чисел. В этом случае мы работаем с массивом, содержащим большое целое число[1].

При работе с большими целыми числами удобно хранить знак такого числа в отдельной ячейке или переменной. Если мы хотим, например, перемножить два числа, то знак произведения мы вычисляем отдельно.

Алгоритм А (сложение неотрицательных целых чисел).

Для двух неотрицательных чисел u1 * ... u**n* u v1 * ... v**n* вычисляется их сумма <math>w0 * ... w**n; npu этом w*0 — цифра переноса — всегда равна 0 или 1.

Алгоритм S (вычитание неотрицательных целых чисел).

По двум n-разрядным неотрицательным целым числам $u = u1 \dots unv = v1 * \dots v**n* 0$ вычисляется их разность $w = w1 * \dots w**n* = u - v$.

Замечание: Для того, чтобы в общем случае установить, что u1 * ... u**n* v1 ... vn, надо пройти по цифрам, вычисляя uj * - v**j. Это простая проверка; c ее помощью находится знак разности u - v* в общем случае.

Алгоритм М (умножение неотрицательных целых чисел столбиком).

Для чисел u = u1 * ... u**n* и v = v1 * ... v**m* в системе счисления с основанием

b мы находим их произведение w = uv = w1 * ... w**m+n*.

Алгоритм FM («быстрый столбик»)

- 1 шаг. t := 0.
- **шаг.** (цикл) Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и
- 3 **шаг.** Для i от 0 до s с шагом 1 выполнить присвоение $t := t + un i \cdot vm s + i$.
- 4 **шат.** Присвоить *w**m+n-s* := $t \pmod{b}$ наименьший неотрицательный вычет по модулю $b \pmod{b}$ (опять-таки, это не деление, а чтение записи памяти, если b=2 или b размер машинного слова); t:=[t/b].

3 Выполнение работы

Figure 3.1: Алгоритм1

Figure 3.2: Алгоритм2

Figure 3.3: Алгоритм3

Figure 3.4: Алгоритм4

```
]: # anapumm 5
    u = "12346789"
    n = 7
    v = "56789"
    t = 4
    b = 10
    q = list()
    for j in range(n-t):
        q.append(0)
    r = list()
    for j in range(t):
        r.append(e)

while int(u) >= int(v)*(b**(n-t)):
        q[n-t] = q[n-t] + 1
        u = int(u) + int(v)*(b**(n-t))
    u = str(u)
    for i in range(n, t+1, -1):
        v = str(v)
    if int(u[i]) > int(v[t]):
        q[i-t-1] = b - 1
    else:
        q[i-t-1] = math.floor((int(u[i])*b + int(u[i-1]))/int(v[t]))

while (int(q[i-t-1])*(int(v[t])*b + int(v[t-1])) > int(u[i])*(b**2) + int(u[i-1])*b + int(u[i-2])):
        q[i-t-1] = q[i-t-1] - 1
        u = (int(u) - q[i-t-1]*b**(i-t-1))
        if u < 0:
        u = int(u) + int(v) *(b**(i-t-1))
        [e, 2, 9] -39899091
```

Figure 3.5: Алгоритм5

4 Выводы

В итоге в данной лабораторной работы я изучил теорию и реализовал рассмотренные алгоритмы программно.

Список литературы

1. Дискретное логарифмирование в конечном поле [Электронный ресурс]. Википедия, 2021. URL: https://studfile.net/preview/2439346/page:35/.