IN THE CLAIMS:

This listing of claims will replace all prior versions and listings of the claims in this application.

1. (Currently amended) A method for preventing passive release of interrupts 1 within a computer system, the computer system having at least one processor for servic-2 ing the interrupts, one or more input/output (I/O) devices configured to issue interrupts, 3 and an I/O bridge having a plurality of ports to which I/O devices are coupled and con-4 figured to interface between the I/O devices and the processor, the method comprising the 5 steps of: 6 asserting an interrupt signal by a subject I/O device coupled to a given port of the 7 I/O bridge; 8 forwarding an interrupt message corresponding to the interrupt signal to the proc-9 essor for servicing; 10 setting an interrupt pending flag in response to assertion of the interrupt signal; 11 in response to the interrupt being serviced, generating a first ordered message, the 12 first ordered message notifying the subject I/O device that the interrupt has been serviced; 13 generating a second ordered message for clearing the interrupt pending flag; 14 sending the first ordered message to the given port of the I/O bridge; 15 sending the second ordered message to the given port of the I/O bridge after the 16 first message has been sent; 17 deasserting the interrupt signal in response to the first message; and 18 clearing the interrupt pending flag at the interrupt file in response to the second 19 ordered message. 20

1	2. (Original) The method of claim 1 further comprising the step of forwarding the
2	first ordered message from the given I/O bridge port to the subject I/O device.
1	3. (Original) The method of claim 2 wherein the step of deasserting the interrupt
2	signal is performed by the subject I/O device following its receipt of the first ordered
3	message.
1	4. (Currently amended) The method of claim 3 wherein one of the ports of the I/C
2	bridge is further includes an interrupt port and the interrupt pending flag is disposed at
3	the interrupt port, the method further comprising the step of forwarding the second or-
4	dered message from the given I/O bridge port to the interrupt port.
1	5. (Original) The method of claim 4 wherein
2	the interrupt pending flag is implemented through a register of the interrupt port;
3	and
4	the second ordered message is a write transaction to the register for clearing the
5	interrupt pending flag.
1	6. (Original) The method of claim 5 further comprising the steps of:
2	periodically collecting a set of information regarding the assertion of interrupt
3	signals by I/O devices; and
4	after the step of clearing the interrupt pending flag, waiting a predetermined time
5	before collecting a next set of information regarding the assertion of interrupt signals.
1	7. (Original) The method of claim 6 wherein the step of periodically collecting is
2	performed through one or more serial data transfer operations.
1	8. (Original) The method of claim 1 wherein the steps of generating the first and
2	second ordered messages are performed by the processor.

1	9. (Original) The method of claim 8 wherein the computer system includes (1) a
2	plurality of processors at least one of which is designated to service interrupts from the
3	subject I/O device, and (2) a plurality of I/O bridges each I/O bridge coupled to a plural-
4	ity of I/O devices configured to assert respective interrupt signals.
1	10. (Not entered)
1	11. (Original) The method of claim 1 wherein the interrupt signals are level sensi-
2	tive interrupts (LSIs).
1	12. (Currently amended) A computer system comprising:
2	a plurality of input/output (I/O) devices configured to assert and deassert respec-
3	tive interrupt signals;
4	at least one processor for servicing interrupts from the I/O devices; and
5	an I/O bridge configured to interface between the I/O devices and the at least one
6	processor, the I/O bridge having a plurality of ports to which the I/O devices are coupled
7	and an interrupt controller configured to detect the assertion and deassertion of the inter-
8	rupt signals, wherein
- 9	- the interrupt controller, in response to assertion of an interrupt signal by a subject
10	I/O device coupled to a given I/O bridge port of the I/O bridge, issues an interrupt mes-
11	sage to the at least one processor and sets an interrupt pending flag;
12	the at least one processor, upon servicing the interrupt, sends first and second or-
13	dered messages to the given port of the I/O bridge, the first ordered message notifying the
14	subject I/O device that the interrupt has been serviced, and the second ordered message
15	clearing the interrupt pending flag;
16	the subject I/O device deasserts the interrupt signal in response to the first mes-
17	sage; and
18	the interrupt pending flag is cleared in response to the second ordered message.

1	13. (Currently amended) The computer system of claim 12 wherein
2 .	one of the ports of the I/O bridge is further includes an interrupt port at which the
3	interrupt controller is disposed, and
4	the given port of the I/O bridge forwards the second ordered message to the inter-
5	rupt port after forwarding the first ordered message to the subject I/O device.
1	14. (Original) The computer system of claim 13 wherein the interrupt port of the
2	I/O bridge includes at least one register at which the interrupt pending flag is imple-
3	mented.
1	15. (Original) The computer system of claim 12 wherein
2	the I/O bridge port includes a read cache for buffering messages received from the
3	at least one processor, and an ordering engine operatively coupled to a read cache, and
4	the ordering engine is configured to release ordered messages buffered in the read
5	cache in the same order as which they were received.
1	16. (Currently amended) The computer system of claim 12 further comprising an
2	interrupt collector having a parallel-load shift register for receiving the interrupt signals
3	from the I/O devices, the <u>parallel-load</u> serial shift register configured to transfer informa-
4	tion indicating the assertion or deassertion of interrupt signals to the interrupt controller
5	through one or more serial shift operations.
1	17. (Original) The computer system of claim 16 wherein
2	the interrupt collector transfers the information in response to a request from the
3	interrupt controller, and
4	the interrupt controller is configured to limit the number of serial shift operations
5	performed by the interrupt collector so as to receive only information associated with in-
6	terrupt signals that have been enabled.

- 18. (Original) The computer system of claim 12 wherein the interrupt signals are
- 2 level sensitive interrupts (LSIs).