PROVA FINAL DE TERMODINÂMICA

Prof. Frederico W. Tavares

- 1) (40 Ptos) Uma mistura contendo 30%, em mols, de n-octano (1), 40% de tetrametil-metano (2) e o restante de polipropileno escoa numa tubulação industrial a 3 bar. Sabendo-se que o polipropileno pode ser considerado muito "pesado" (para fins práticos, ele tem pressão de vapor zero na faixa de temperatura do problema), que o comportamento da fase líquida é bem descrito com o modelo de Margules, e que as pressões de vapor dos componentes 1 e 2 puros são $\ln P_1^{SAT}(bar) = 9.32 - 3120/(T - 63.6)$ e $\ln P_2^{SAT}(bar) = 9.25 - 3342/(T - 57.6)$, onde T é em Kelvin, determine:
- a) a entropia e o calor de mistura para uma mistura equimolar dos três componentes a 300 K e 1 bar;
- b) a maior temperatura da tubulação para que a corrente não apresente fase vapor;

Sabe-se que: modelo de Margules: $\ln \gamma_i = \sum_{i \neq i} A_{ij} x_j - \frac{G^E}{RT}$, sendo $\frac{G^E}{RT} = \frac{1}{2} \sum_i \sum_i A_{ij} x_i x_j$. Os parâmetros do modelo de

Margules **não dependem** da temperatura e valem $A_{12} = A_{21} = 0$, $A_{13} = A_{31} = 1,0$ e $A_{23} = A_{32} = 1,0$

2) (30 Ptos) Uma mistura de 50% (em mols) de A e 50% de inerte I entra num reator, onde as seguintes reações ocorrem a 400 K e 5 atm: $A(g) \Leftrightarrow B(g)$ e 2 B (g) \Leftrightarrow 2 D (g). Considerando o comportamento de gás ideal e os dados de energias livres de Gibbs e calores de formação dos componentes a 300 K e 1 atm, no estado de referência de gás ideal para todos os compostos.

Compostos	ΔG_f^0 (cal/gmol)	ΔH_f^0 (cal/gmol)		
A	200	4000		
В	200	3000		
D	150	3000		
I	200	1000		

- a) calcule a composição de equilíbrio da fase gasosa na saída do reator.
- b) Calcule o calor envolvido no reator sabendo que a corrente de alimentação entra a 400 K.
- 3) (30 Ptos) Duas correntes de água, corrente 1 (10 lbm/s de líquido 5 psia e 102 ⁰F) e corrente 2 (x lbm/s nas condições de 5 psia e 300 ⁰F), são misturadas em um trocador de calor de contato direto, produzindo uma corrente 3 (contendo 5% de líquido). A corrente 3 passa por um compressor (com eficiência de 80%) e produz uma corrente 4 a 20 psia. Encontre as propriedades termodinâmicas (T, P, H e S) das correntes e calcule a potência elétrica gasta no processo.

ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE,	DEG F 250	300	350	400	450	500
(101.74)	V U H S	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445	511.9 1147.1 1241.8 2.1722	541.7 1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162.24)	V U H S	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9054	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	V UHS	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	V H S	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9265
15 (213.03)	V H S	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	SHUS	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320		20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7805	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921

$$\begin{split} y_{i}P &= x_{i}\gamma_{i}P_{i}^{SAT} & \hat{a}_{i} &= \hat{f}_{i} / \\ \Delta S_{n}^{VAP} &= 8,0 + 1,897 \ln(T_{n}) \\ dH &= C_{p}dT + [V - T\left(\frac{\partial V}{\partial T}\right)_{p}]dP \end{split} \qquad K = exp\left(\frac{-\Delta G^{0}}{RT}\right) = \prod_{i} \hat{a}_{i}^{\nu_{i}} \qquad \left(\frac{\partial \frac{G}{T}}{\partial T}\right)_{p} = -\frac{H}{T^{2}} \qquad R = 1,987 \frac{cal}{gmolK}$$

$$\Delta S_{n}^{VAP} = 8.0 + 1.897 \ln(T_{n}) \quad dH = C_{p} dT + \left[V - T \left(\frac{\partial V}{\partial T}\right)_{p}\right] dP \qquad dS = C_{p} d \ln T - \left(\frac{\partial V}{\partial T}\right)_{p} dP$$

$$\frac{d(mU)_S}{dt} = \sum_{i}^{entradas} \overset{\bullet}{m}_i (H_i + \frac{v_i^2}{2} + gz_j) - \sum_{i}^{saidas} \overset{\bullet}{m}_i (H_i + \frac{v_i^2}{2} + gz_i) + \overset{\bullet}{Q} + \overset{\bullet}{W}$$