Prepas π -internationales_Cycle ingénieur_ Janvier 2021

Première Année Cycle Ingenieur_Epreuve d'Algèbre

Durée: 2 heures

Exercice 1. (5 points).

(1) Déterminer le rang des matrices suivantes:

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & 5 & 6 \\ 0 & 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 & 6 \\ 1 & 4 & 5 & 9 & 10 \\ 1 & 1 & 2 & 3 & 4 \end{bmatrix} et A_{2} = \begin{bmatrix} 1 & 3 & 2 & 4 & 6 \\ 0 & 2 & 1 & 3 & 5 \\ -1 & 1 & 0 & 2 & 4 \\ -2 & 0 & -1 & 1 & 3 \\ -3 & -1 & -2 & 0 & 2 \end{bmatrix}$$

(2) Soient a, b deux réels, on considère la matrice suivante: $B = \begin{pmatrix} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{pmatrix}$.

Montrer que $rang(B) \ge 2$. Pour quelles valeurs de a et b a-t-on rang(B) = 2

Exercice 2. (5 points). On considère la matrice $A = \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}$. On désigne par I_3

la matrice $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ et $\widetilde{0}$ la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

- (1) Calculer A^2 et A^3 .
- (2) Montrer que $A^2 4A + 4I_3 = \widetilde{0}$. En déduire que A est inversible et déterminer son inverse A^{-1} .
- (3) On considère la matrice $M = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -1 & 1 & 0 \end{bmatrix}$. Calculer M^2 et en déduire M^n pour tout $n \geq 2$.
- (4) En remarquant que $A = 2I_3 + M$, calculer A^n .

Exercice 3. (10 points). Soient E et F deux espaces vectoriels sur \mathbb{R} de dimension respectives 3 et 2. Soit $B=(e_1,e_2,e_3)$ une base de E, $C=(\varepsilon_1,\varepsilon_2)$ une base de F et on considère l'application linéaire $f:E\to F$ définie par:

$$\begin{cases} f(e_1) = \varepsilon_1 - \varepsilon_2 \\ f(e_2) = \varepsilon_1 + 2\varepsilon_2 \\ f(e_3) = 2\varepsilon_1 + \varepsilon_2 \end{cases}$$

- (1) Ecrire la matrice A de f relativement aux bases B et C.
- (2) Calculer $f(e_1 + e_2 e_3)$. L'application linéaire f est-elle injective? Justifier clairement votre réponse.
- (3) Sans calculer, déterminer le noyau et l'image de f, préciser une base et la dimension de chaque sous-espace vectoriel de E.
- (4) On pose $a_1 = e_1 + e_2$, $a_2 = e_1 + 2e_2$ et $a_3 = e_1 + e_2 e_3$. Montrer que $B' = (a_1, a_2, a_3)$ est une base de E.
- (5) Ecrire la matrice P de passage de B à B'. Déterminer l'inverse P^{-1} de la matrice P.
- (6) On pose $b_1 = 2\varepsilon_1 + \varepsilon_2$, $b_2 = \varepsilon_1 + \varepsilon_2$. Montrer que b_1 et b_2 sont des vecteurs de Im (f) et que $C' = (b_1, b_2)$ est une base de F.
- (7) Déduire la matrice de passage Q de C à C'. Puis déduire Q^{-1} l'inverse de la matrice Q.

1

- (8) Déterminer la matrice D de f relativement aux bases B' et C'. (9) Etablir une relation entre les matrices A, P, Q et D.