Exercises for the lecture

Fundamentals of Simulation Methods

WS 2016/17

Lecturers: Frauke Gräter and Rüdiger Pakmor

Exercise sheet 6 (due date: Dec 1, 2016, 11:59pm)

Multigrid solver for linear systems

1) Galerkin coarse grid approximation (15 points)

Consider the one-dimensional problem

$$\frac{\partial^2 \Phi}{\partial x^2} = 4\pi G \rho(x),\tag{1}$$

which we want to solve using a multigrid accelerated iterative method on a (periodic) grid of size N=8 with spacing h. The problem can be rephrased in the form

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{2}$$

where $\boldsymbol{x} = \Phi$ and $\boldsymbol{b} = 4\pi G \rho h^2$ are vectors of size N and A is an $N \times N$ matrix. Given the operator

$$\mathbf{A}^{(\mathbf{h})} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 & 1\\ 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0\\ & & & \dots & & & \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1\\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$
(3)

on the finest grid level (N = 8), find the operator $\mathbf{A^{(2h)}}$ on the next coarser grid level (N = 4, spacing 2h). In order to do so, carry out the following steps:

a) Find the prolongation and restriction operators

$$\mathbf{I_{(2h)}^{(h)}}: x_{2i}^{(h)} = x_i^{(2h)}, x_{2i+1}^{(h)} = \frac{1}{2} \left(x_i^{(2h)} + x_{i+1}^{(2h)} \right)$$
(4)

$$\mathbf{I_{(h)}^{(2h)}}: x_i^{(2h)} = \frac{1}{4} \left(x_{2i-1}^{(h)} + 2x_{2i}^{(h)} + x_{2i+1}^{(h)} \right)$$
 (5)

in matrix form. Hint: $\mathbf{I_{(2h)}^{(h)}x^{(h)}} = \mathbf{x^{(2h)}}$ and vice versa.

- b) Now calculate the operator on the coarse grid using the Galerkin coarse grid approximation: $\mathbf{A^{(2h)}} = \mathbf{I^{(2h)}_{(h)}} \mathbf{A^{(h)}} \mathbf{I^{(h)}_{(2h)}}$.
- c) Compare the result to an operator obtained by direct discretization on the coarse grid.

2) Iteratively solving Poisson's equation (35 points)

(a) Suppose we want to solve for the gravitational potential Φ on a periodic mesh on a square-shaped domain $[0, L]^2$ (with L = 1.0 for definiteness) with $N \times N$ cells, for the mass density distribution

$$\rho(\mathbf{r}) = \rho_0 \,\mathrm{e}^{-\frac{\mathbf{r}^2}{2\eta^2}},\tag{6}$$

where $\eta = 0.1L$ is the spread of the mass spike, and $\rho_0 = 10$. Discretization of the Poisson equation gives an iteration rule where the left-hand side gives the updated values in terms of the old values on the right-hand side, in the form

$$x_{i,j}^{(n+1)} = \frac{1}{4} (x_{i-1,j}^{(n)} + x_{i+1,j}^{(n)} + x_{i,j-1}^{(n)} + x_{i,j+1}^{(n)} - b_{i,j}).$$
 (7)

where $x_{i,j} = \Phi_{i,j}$ and $b_{i,j} = 4\pi G h^2 \rho_{i,j} - \bar{b}$. This can be readily used for Jacobi or Gauss-Seidel iteration schemes. Write a function

jacobi_step(x[], b[], N)

that replaces the input array $x[\]$ with a correspondingly updated array after one iteration step.

(b) To characterize the current error in the solution, write a function that calculates the residual

$$r_{i,j} = b_{i,j} - (\mathbf{A}\mathbf{x})_{i,j}. \tag{8}$$

Also, write a function that computes the norm

$$S = \left[\sum_{j,k} r_{j,k}^2\right]^{1/2} \tag{9}$$

of this vector and returns it. We can use S as a simple measure of the overall error.

- (c) Now specialize to the case of N=256 and write a routine that suitably initializes the density field, with the density peak placed in the center of the box. Set the initial guess for the potential to $\mathbf{x}=0$. Carefully think about how to initialize the array \mathbf{b} (for a periodic system, equation 2 is only solvable for $\langle \mathbf{b} \rangle = 0$ because the matrix \mathbf{A} is singular, therefore \bar{b} has to be chosen appropriately). Now add a loop that calls the Jacobi iteration $N_{\text{steps}}=2000$ times, and after each step, determines the norm of the residual. You may use the C- or Python template on the Moodle site and fill in the missing parts in order to reduce the coding work, or write everything from scratch if you prefer. Make a plot of the decay of the log of this residual as a function of step number. What do you expect to get for $\sum_{i,j} \Phi$?
- (d) Now produce a second version of your program in which the Jacobi iteration is replaced by Gauss-Seidel iteration where new values for elements of \mathbf{x} are used as soon as they become available, replacing any old value in the array.

- (e) Change the Gauss-Seidel scheme to a red-black Gauss-Seidel iteration, i.e. you first update the red cells in a chess-board pattern overlaid over the mesh, then the black cells in a second pass. Produce a common plot of the decay rates of the residual for N_{steps} steps with the three iteration variants considered thus far. Interpret the results. The red-black scheme result will perhaps disappoint you at first what's going on?
- (f) We now solve the problem with multigrid acceleration. First, write a function that carries out a restriction step of a 2D mesh with dimension $N \times N$ (where N is a power of 2) onto a coarser mesh with dimension $N/2 \times N/2$. Make each point in the coarser mesh a weighted average of neighboring points, according to the stencil

$$\begin{bmatrix}
\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{16} & \frac{1}{8} & \frac{1}{16}
\end{bmatrix}.$$
(10)

Give this function a calling signature

do_restrict(N, fine[], NN, coarse[])

(only NN = N/2 is allowed when calling this function).

(g) Next, write a function that carries out a prolongation step of a 2D mesh of dimension $N \times N$ onto a finer mesh of dimension $2N \times 2N$. Each point in the coarser mesh is additively injected into the finer mesh with weights

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix} . \tag{11}$$

Note that points of the fine mesh that see a coarse point with weight 1/4 will get contributions from 4 coarse points in total, similarly for the points with weight 1/2, while the fine-mesh point with weight 1 simply inherits the value of one of the coarse mesh points. Give this function a calling signature

do_prolong(NN, coarse[], N, fine[])

(again, only NN = N/2 is allowed when calling this function).

(h) Now write a function

that carries out a V-cycle multigrid iteration on the current solution vector. The steps of the function should be

- 1. Do a Gauss-Seidel step.
- 2. Calculate the residuum.
- 3. Restrict the residuum to a coarser mesh N' = N/2, and scale it by a factor of 4 to effectively take care of the $1/h \to 1/(2h)$ scaling of the differential operator (whose explicit form we leave invariant, for simplicity).

- 4. Call do_v_cycle recursively for the coarser mesh, with a zero error vector as starting guess for x, and the coarsened residual for b.
- 5. Now prolong the returned error vector to the fine mesh N.
- 6. Add this to the current solution vector on the fine mesh.
- 7. Do another Gauss-Seidel step.

Steps 2-6 are only done provided N > 4. To simplify the coding, you may use one of the code templates provided on the Moodle site.

(i) Finally, solve the original problem by repeatedly calling your V-cycle iteration. Again, plot the residual as a function of the number of steps taken, and compare with the results obtained earlier for plain Jacobi and Gauss-Seidel iteration.