

Diseño de Albañilería Estructural Entrega Nº3

Código del curso: CI5223-1

Integrantes: Maitane Balsebre

Felipe González

Alonso Carpio

Alejandro Celis

Profesor: Thomas Sturm

Auxiliar: Francisco Cabezas

Fecha de entrega: Viernes 24 de noviembre, 2017

Índice

1.	Introducción	1
2.	Tipos de Muro (Misma Geometría)	2
3.	Metodología	5
	3.1. Verificación Muros a Corte	5
	3.2. Verificación Muros a Axial	6
	3.3. Verificación Muros a Flexión (Diagramas de Interacción)	6
	3.4. Verificación Deformaciones Máximas	8
	3.5. Límitaciones de la Norma	8
4.	Resultados	9
	4.1. Verificación Muros a Corte	9
	4.2. Verificación Muros a Axial	11
	4.3. Verificación Muros a Flexión (Diagramas de Interacción)	14
	4.4. Verificación Deformaciones Máximas	46
	4.5. Límitaciones de la Norma	49
5.	Análisis de Resultados y Conclusiones	50

1. Introducción

En el presente informe tiene por objeto mostrar el diseño de los muros de albañilería armada de un edificio de uso habilitacional, de 3 pisos, con un sistema estructural de muros de albañilería armada ubicada en Melipilla sobre un tipo de suelo C.

El diseño se desarrolla de acuerdo a la norma de albañilería armada Nch 1928 y la norma de diseño sísmico Nch 433. Para esto se definen 16 geometrías que envuelven el total de tipo de muros detallados en el modelo ETABS con sus respectivos piers.

Posteriormente se verifican cada uno de los tipos de muros descritos anteriormente a corte axial y felxión. Además de esto se chequean las deformaciones máximas del edificio y requerimientos varios de la norma Nch 1928. Todo el proceso de como se realizan estas verificaciones se encuentra detallado en la sección de metodología y los valores obtenidos se encuentran tabulados en la sección de resultados.

Cabe destacar que en esta memoria se encuentran solamente detallados el diseño de los elementos de albañilería y no los de hormigón. Además se encuentran adjuntos los planos de diseño del edificio.

Ilustración 1: Esquema lateral del edificio diseñado

Ilustración 2: Esquema en planta del edificio diseñado

2. Tipos de Muro (Misma Geometría)

Tabla 1: Muros con igual geometría

	Tipos de Muro (Geometría)									
Geometría	Piers	Largo [m]	Altura [m]	Espesor [m]						
G1	P112,P113	6.2	0.84	0.14						
G2	P110,P111,P18, P19	6.2	0.84	0.14						
G3	P10, P17	0.93	1.29	0.14						
G4	P11,P16	0.792	1.29	0.14						
G5	P12,P15	1.19	1.29	0.14						
G6	P14, P13	0.32	1.29	0.14						
G7	PB	3.016	2.13	0.14						
G8	PC	2.081	2.13	0.14						
G9	PD	3.016	2.13	0.14						
G10	PE	6.226	2.13	0.14						
G11	P3	2.76	2.13	0.14						
G12	P49	15.73	1.05	0.14						
G13	P48, P47	15.73	1.05	0.14						
G14	P41,P46	1.73	1.29	0.14						
G15	P42, P45	0.99	1.29	0.14						
G16	P43,P44	1.62	1.08	0.14						

Ilustración 3: Esquema distribución Piers Eje 1.

Ilustración 4: Esquema distribución Piers Eje 2.

Ilustración 5: Esquema distribución Piers Eje 4.

Ilustración 6: Esquemas distribución Piers Ejes A y E.

Ilustración 7: Esquemas distribución Piers Ejes D, B, 3 y C.

3. Metodología

3.1. Verificación Muros a Corte

Para verificar los muros a esfuerzos de corte y diseñar las escalerillas que funcionan añadiendo resistencia al corte en el muro, este diseño se realiza mediante las resistencias definidas por norma que especifica dos casos. el primero cuando el muro es capaz de resistir el total de esfuerzo y cuando no.

Resistencia al corte en albañilería τ_0

$$\frac{M}{Vd} = 0 \rightarrow \tau_0 = 0.13 * \sqrt{f'm} < 0.28$$

$$\frac{M}{Vd} = 1 \rightarrow \tau_0 = 0.06 * \sqrt{f'm} < 0.19$$

Resistencia al corte Acero τ_1

$$\frac{M}{Vd} = 0 \rightarrow \tau_1 = 0.27 * \sqrt{f'm} < 0.84$$

$$\frac{M}{Vd} = 1 \rightarrow \tau_1 = 0.13 * \sqrt{f'm} < 0.52$$

Corte solicitante

$$\tau = \frac{V}{t*h}$$

1. Cuando $\tau < \tau_0$

$$\rho_h = 0.0006$$

2. Cuando $\tau_0 < \tau < \tau_1$

$$\rho_h = \frac{1.1 * V}{t * FS * d}$$

3. Cuando $\tau_1 < \tau$

Se necesita agregar mas muros

Con las cuantías horizontales por muros se calcula el numero de hiladas necesarias para el diseño.

$$N_{hiladas} = \frac{A_{escalerrilla}}{\rho_h * Espesor * Escantillon} \leqslant 3$$

3.2. Verificación Muros a Axial

Para la verificación de muros a esfuerzo axial se asume que la albañilería no resiste tracción axial, por lo tanto, se debe colocar armadura para resistirla.

En relación a la compresión axial, se chequea que los muros no excedan Fa, considerando una construcción con inspección especializada.

$$F_a = 0.2f'_m(1 - (h/40t)^3)$$

En donde:

h: es el menor valor entre la longitud de pandeo vertical y la distancia libre entre soportes laterales. t: es el espesor del muro.

3.3. Verificación Muros a Flexión (Diagramas de Interacción)

La verificación de los muros a esfuerzos de flexo-compresión se realiza mediante los diagramas de interacción correspondiente a cada muro, en el cual se comprueba para cada solicitación de compresión y momento, esta es representada como puntos dentro de un plano, y la resistencia del muro esta representado por una envolvente, por lo que se busca es que todos los puntos estén dentro de este diagrama. Para la construcción del diagrama se realiza analizando la sección del muro en diferentes etapas de solicitación, para realizar el calculo se desprecian las barras de refuerzo a compresión en la albañilería.

Los casos estudiados y el desarrollo de estos son los siguientes

1. Caso I:Sección Entera a Compresión el limite superior esta delimitado por las tensiones admisibles de diseño. F_a , Fm = 0.33 f'm

$$N_{max} = Fa * t * b$$

$$M_{N_{max}} = (2 * Fa - 2 * Fm) * b * t * e$$

donde e: excentricidad de la carga

2. Caso II: Sección a compresión sin traicionar las barras de refuerzo En este caso se considera el bloque de compresión de un largo menor que el segmento de muro pero mayor a la distancia hasta la barra a tracción.

$$N_{II} = \frac{Fm * t * d * k}{2}$$

$$M_{II} = N_{II} * e$$

$$con k > 1
con e_m = d(\frac{1+\gamma}{2} + \frac{k}{3})$$

3. Caso III: Compresión en la albañilería y tracción en la barra de refuerzo donde controla la compresión en la albañilería.

En el caso III y IV se cumple el acero esta tracción en la sección y la division de los casos ocurre

en la condicion de balance cuando el acero alcanza la fluecia y la albañileria esta en el limite de compresion.

$$k_b = \frac{n}{n + \frac{F_s}{F_m}}$$

 $con n = \frac{E_s}{E_m}$

$$N_{III} = C_m - T_s$$

$$C_m = \frac{Fm * t * d * k}{2}$$

$$T_s = Fm * t * d * k \frac{\eta * \mu_s(1 - k)}{k}$$

$$M_{III} = Cm * e_m + T_s * e_s$$

$$con e_s = d * \frac{1-\gamma}{2}$$
$$con k_b < k < 1$$

4. Caso IV: Compresión en la albañilería y tracción en la barra de refuerzo donde controla el la fluencia del acero.

$$N_{IV} = C_m - T_s$$

$$C_m = \frac{F_s * t * d}{n} \frac{k^2}{2(1 - k)}$$

$$T_s = F_s * t * d * \mu_s$$

$$M_{IV} = C_m * e_m + T_s * e_s$$

 $con k < k_b$

Tabla 2: Datos Muros de Albañilería

Datos						
Albañil	ería					
f'm [kgf/cm2]	38					
$\rm Em~[kgf/cm2]$	26600					
Acero A44	4-28 H					
Es [kgf/cm2]	2100000					
n	78.947368					

3.4. Verificación Deformaciones Máximas

La relación entre el desplazamiento del centro de masa entre cada piso queda dada por la siguiente expresión:

$$\Delta \text{CM} = \frac{1000}{h} \le 2$$

En donde:

 Δ CM: es el desplazamiento relativo del centro de masa.

h: la altura entre piso.

La relación entre el desplazamiento máximo entre cada piso está dado por la siguiente expresión:

$$\Delta Piso \frac{1000}{h} \le 1 + \Delta \text{CM} = \frac{1000}{h}$$

En donde:

 Δ Piso: es el desplazamiento máximo entre pisos.

3.5. Límitaciones de la Norma.

En el capítulo numero 6 de la Norma NCh1928, se extraen las limitaciones de diseños y requerimientos mínimos que esta recomienda. Respectos a las armaduras de refuerzo se tomaron las siguientes consideraciones, remarcando los puntos más importantes en base a las decisiones que se deben tomar:

- 6.1.1) el diámetro del refuerzo vertical debe ser menor o igual a la mitad de la menor dimensión del hueco donde se ubica.
- 6.1.2)El diámetro de la armadura colocada en el mortero de junta entre hiladas debe ser menor o igual a la mitad del espesor de junta.
- 6.1.3) el espaciamiento entre barras paralelas ubicadas en un mismo hueco, no debe ser menor que el diámetro de las barras, ni menor que 2,5 cm cuando las barras son verticales.
- 6.1.4) Todas las barras deben estar embebidas de relleno o en mortero de junta. Las barras ubicadas en los huecos de las unidades deben tener un recubrimiento mayor o igual que 1 cm, con respecto a la pared interior del tabique o cáscara. Además, en elementos sin protección a la intemperie o en contacto con tierra, se debe usar un recubrimiento mínimo de 5 cm con respecto a la cara exterior del elemento. Sin perjuicio de lo anterior, en ambientes agresivos se deben tomar medidas para garantizar el protección de la armaduras.
- 6.1.5) La longitud de traslapo debe ser mayor o igual que 40 veces el menor diámetro de las barras.
- 6.1.7) En estos casos el diámetro mínimo debe ser 8 mm para la armadura longitudinal del elemento estructural y 4 mm para la armadura transversal.
- 6.4.3.3) El diámetro mínimo de la armadura vertical debe ser 8 mm.
- 6.4.3.4) La máxima separación de la armadura vertical u horizontal no debe ser mayor que seis veces el espesor del muro, ni mayor que 120 cm.
- La armadura vertical mínima en los bordes y en los encuentros de muros debe ser igual a una barra de 12 mm de diámetro.
- Al rededor de los vanos se deben colocar barras verticales de diámetro mayor o igual que 10 mm.

4. Resultados

4.1. Verificación Muros a Corte

Tabla 3: Datos usados para verificar corte

f'm [mpa]	3.8
alto [m]	2.67
espesor [m]	0.14
M/Vd	0.31
escantillon [m]	0.08
FS	14000
numero hilada	3
Qsd [ton]	3.1947
$ au[ton/m^2]$	10.966
Area escalerilla $[m^2]$	2.77E-05

Tabla 4: Resistencia Albañilería y Acero

Resistencia Albañilería	M/vd = 0	0.253
rtesistencia Atbanneria	M/vd = 1	0.117
Rogistoneia Acoro	M/vd = 0	0.526
Resistencia Acero	M/vd = 1	0.253

Tabla 5: Verificación de Corte de muros del piso 1 con su número de hiladas

Story	Pier	V2 [tonf]	M3[tonf m]	d [m]	tau solic	M/Vd	t0 ton/m2	t1 [ton/m2]	rho h	hiladas	N hiladas
1	P10	-2.498	-1.2504	0.862	20.699	0.581	17.418	36.785	0.002	1.521	1
1	P11	-1.7118	1.3821	0.792	15.438	1.019	11.696	25.342	0.001	2.040	2
1	P112	-6.1946	5.1734	6.346	6.972	0.132	23.546	49.041	0.001	4.123	3
1	P113	6.8826	10.1215	6.346	7.747	0.232	22.180	46.308	0.001	4.123	3
1	P12	2.7098	2.1546	1.194	16.211	0.666	16.255	34.459	0.001	4.123	3
1	P13	0.4592	0.1893	0.258	12.713	1.598	11.696	25.342	0.001	2.477	2
1	P14	0.4417	0.1931	0.258	12.229	1.694	11.696	25.342	0.001	2.575	2
1	P15	2.8135	2.1836	1.194	16.831	0.650	16.472	34.893	0.001	1.871	1
1	P16	1.6869	1.3411	0.792	15.214	1.004	11.696	25.342	0.001	2.070	2
1	P17	1.7705	1.059	0.862	14.671	0.694	15.873	33.696	0.001	4.123	3
1	P3	4.2731	11.1917	2.9	10.525	0.903	13.018	27.985	0.001	4.123	3
1	P41	2.765	2.7426	1.666	11.855	0.595	17.217	36.384	0.001	4.123	3
1	P42	2.5575	1.3779	0.993	18.397	0.543	17.938	37.825	0.001	1.712	1
1	P43	4.0191	3.4022	1.625	17.666	0.521	18.233	38.416	0.001	4.123	3
1	P44	4.153	3.303	1.625	18.255	0.489	18.663	39.276	0.001	4.123	3
1	P45	2.4657	1.4096	0.993	17.736	0.576	17.486	36.921	0.001	1.775	1
1	P46	2.8225	2.6688	1.666	12.101	0.568	17.597	37.144	0.001	4.123	3
1	P49	18.1799	36.7533	15.592	8.328	0.130	23.572	49.094	0.001	4.123	3
1	PA	6.7783	19.7894	6.086	7.955	0.480	18.796	39.541	0.001	4.123	3
1	PB	3.92	10.2274	3.088	9.067	0.845	13.813	29.575	0.001	4.123	3
1	PC	3.0447	3.202	2.138	10.172	0.492	18.630	39.208	0.001	4.123	3
1	PD	3.903	10.0744	3.088	9.028	0.836	13.936	29.821	0.001	4.123	3
1	PE	7.1192	19.6377	6.086	8.355	0.453	19.157	40.263	0.001	4.123	3

Tabla 6: Verificación de Corte de muros del piso 2 con su número de hiladas

Story	Pier	V2 [tonf]	M3[tonf m]	d [m]	tau solic	M/Vd	t0 ton/m2	t1 [ton/m2]	rho h	hiladas	N hiladas
2	P10	2.4423	1.4134	0.862	20.238	0.671	16.181	34.310	0.002	1.556	1
2	P11	2.3968	1.8629	0.792	21.616	0.981	11.950	25.850	0.002	1.457	1
2	P110	8.6705	13.444	6.346	9.759	0.244	22.008	45.965	0.001	4.123	3
2	P111	8.3675	11.3219	6.346	9.418	0.213	22.432	46.814	0.001	4.123	3
2	P12	3.1983	2.5462	1.194	19.133	0.667	16.243	34.436	0.002	1.646	1
2	P13	0.7661	0.3415	0.258	21.210	1.728	11.696	25.342	0.002	1.485	1
2	P14	0.843	0.3449	0.258	23.339	1.586	11.696	25.342	0.002	1.349	1
2	P15	3.2504	2.5878	1.194	19.445	0.667	16.243	34.435	0.002	1.619	1
2	P16	2.2575	1.7693	0.792	20.360	0.990	11.838	25.626	0.002	1.547	1
2	P17	2.3612	1.3532	0.862	19.566	0.665	16.269	34.488	0.002	1.609	1
2	P3	3.4782	4.2577	2.9	8.567	0.422	19.582	41.113	0.001	4.123	3
2	P41	3.6698	2.7779	1.666	15.734	0.454	19.142	40.233	0.001	4.123	3
2	P42	2.927	1.675	0.993	21.055	0.576	17.478	36.905	0.002	1.496	1
2	P43	4.283	2.7189	1.625	18.826	0.391	20.011	41.971	0.001	4.123	3
2	P44	4.2824	2.6437	1.625	18.824	0.380	20.158	42.265	0.001	4.123	3
2	P45	2.9197	1.7017	0.993	21.002	0.587	17.333	36.614	0.002	1.499	1
2	P46	3.7993	2.8345	1.666	16.289	0.448	19.231	40.411	0.001	4.123	3
2	P48	20.1446	29.3125	15.592	9.228	0.093	24.068	50.086	0.001	4.123	3
2	PA	7.9516	13.4383	6.086	9.332	0.278	21.552	45.054	0.001	4.123	3
2	PB	4.4799	5.7225	3.088	10.362	0.414	19.697	41.344	0.001	4.123	3
2	PC	3.1947	2.1406	2.138	10.673	0.313	21.065	44.080	0.001	4.123	3
2	PD	4.3242	5.4571	3.088	10.002	0.409	19.765	41.480	0.001	4.123	3
2	PE	8.3727	13.9135	6.086	9.827	0.273	21.616	45.181	0.001	4.123	3

Tabla 7: Verificación de Corte de muros del piso 3 con su número de hiladas

Story	Pier	V2 [tonf]	M3[tonf m]	d [m]	tau solic	M/Vd	t0 ton/m2	t1 [ton/m2]	rho h	hiladas	N hiladas
3	P10	1.6214	0.8073	0.862	13.436	0.578	17.460	36.869	0.001	4.123	3
3	P11	1.3471	1.0881	0.792	12.149	1.020	11.696	25.342	0.001	2.592	2
3	P12	1.7241	1.6434	1.194	10.314	0.798	14.448	30.846	0.001	4.123	3
3	P13	0.5931	0.2978	0.258	16.420	1.946	11.696	25.342	0.001	1.918	1
3	P14	0.7608	0.2956	0.258	21.063	1.506	11.696	25.342	0.002	1.495	1
3	P15	1.762	1.6835	1.194	10.541	0.800	14.422	30.794	0.001	4.123	3
3	P16	1.2959	1.0404	0.792	11.687	1.014	11.696	25.342	0.001	4.123	3
3	P17	1.5733	0.7871	0.862	13.037	0.580	17.422	36.794	0.001	4.123	3
3	P18	4.5644	7.065	6.346	5.138	0.244	22.013	45.976	0.001	4.123	3
3	P19	4.4643	6.2795	6.346	5.025	0.222	22.317	46.584	0.001	4.123	3
3	Р3	1.3788	3.0059	2.9	3.396	0.752	15.084	32.117	0.001	4.123	3
3	P41	2.582	1.8057	1.666	11.070	0.420	19.614	41.177	0.001	4.123	3
3	P42	1.4993	0.7222	0.993	10.785	0.485	18.722	39.394	0.001	4.123	3
3	P43	2.1286	1.0591	1.625	9.356	0.306	21.164	44.276	0.001	4.123	3
3	P44	2.053	1.0355	1.625	9.024	0.310	21.106	44.162	0.001	4.123	3
3	P45	1.528	0.7422	0.993	10.991	0.489	18.667	39.283	0.001	4.123	3
3	P46	2.6609	1.8198	1.666	11.408	0.411	19.740	41.430	0.001	4.123	3
3	P47	9.8489	11.4851	15.592	4.512	0.075	24.321	50.592	0.001	4.123	3
3	Pa	4.3938	5.1616	6.086	5.157	0.193	22.708	47.365	0.001	4.123	3
3	Pb	2.5645	5.9941	3.088	5.932	0.757	15.013	31.976	0.001	4.123	3
3	Pc	2.0694	1.0328	2.138	6.914	0.233	22.156	46.262	0.001	4.123	3
3	Pd	2.4746	5.4709	3.088	5.724	0.716	15.572	33.094	0.001	4.123	3
3	Pe	4.5665	5.3109	6.086	5.359	0.191	22.734	47.417	0.001	4.123	3

4.2. Verificación Muros a Axial

Tabla 8: Verificación de Compresión en los muros del piso $1\,$

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compre- sión
1	P10	-5.1552	-2.498	-1.2504	67.23	0.93	cumple
1	P11	-5.5619	-1.7118	1.3821	67.23	0.792	cumple
1	P112	-22.1285	-6.1946	5.1734	67.23	6.2	cumple
1	P113	-26.1354	6.8826	10.1215	67.23	6.2	cumple
1	P12	-9.7632	2.7098	2.1546	67.23	1.19	cumple
1	P13	-3.2971	0.4592	0.1893	74.08	0.32	cumple
1	P14	-2.8837	0.4417	0.1931	74.08	0.32	cumple
1	P15	-9.755	2.8135	2.1836	74.08	1.19	cumple
1	P16	-5.9995	1.6869	1.3411	74.08	0.792	cumple
1	P17	-5.2849	1.7705	1.059	74.08	0.93	cumple
1	P3	-17.366	4.2731	11.1917	74.08	2.76	cumple
1	P41	-9.6088	2.765	2.7426	74.08	1.73	cumple
1	P42	-6.7078	2.5575	1.3779	74.08	0.99	cumple
1	P43	-11.7221	4.0191	3.4022	74.37	1.62	cumple
1	P44	-11.697	4.153	3.303	74.37	1.62	cumple
1	P45	-6.7253	2.4657	1.4096	67.23	0.99	cumple
1	P46	-9.7319	2.8225	2.6688	74.08	1.73	cumple
1	P49	-65.3247	18.1799	36.7533	74.08	15.73	cumple
1	PA	-32.8121	6.7783	19.7894	74.08	6.226	cumple
1	PB	-17.9781	3.92	10.2274	74.08	3.016	cumple
1	PC	-12.2295	3.0447	3.202	74.08	2.081	cumple
1	PD	-17.8899	3.903	10.0744	74.08	3.016	cumple
1	PE	-36.8957	7.1192	19.6377	74.37	6.226	cumple

Tabla 9: Verificación de Compresión en los muros del piso $2\,$

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compresión
2	P10	3.9069	2.4423	1.4134	69.60	0.93	cumple
2	P11	4.5134	2.3968	1.8629	69.60	0.792	cumple
2	P110	18.8152	8.6705	13.444	69.60	6.2	cumple
2	P111	18.9125	8.3675	11.3219	69.60	6.2	cumple
2	P12	7.4091	3.1983	2.5462	69.60	1.19	cumple
2	P13	3.0962	0.7661	0.3415	74.08	0.32	cumple
2	P14	2.8685	0.843	0.3449	74.08	0.32	cumple
2	P15	7.53	3.2504	2.5878	74.08	1.19	cumple
2	P16	4.6005	2.2575	1.7693	74.08	0.792	cumple
2	P17	3.6719	2.3612	1.3532	74.08	0.93	cumple
2	P3	13.6461	3.4782	4.2577	74.08	2.76	cumple
2	P41	6.9926	3.6698	2.7779	74.08	1.73	cumple
2	P42	5.8611	2.927	1.675	74.08	0.99	cumple
2	P43	9.3482	4.283	2.7189	74.75	1.62	cumple
2	P44	9.3361	4.2824	2.6437	74.75	1.62	cumple
2	P45	5.8275	2.9197	1.7017	69.60	0.99	cumple
2	P46	7.0646	3.7993	2.8345	74.08	1.73	cumple
2	P48	49.4827	20.1446	29.3125	74.08	15.73	cumple
2	PA	27.4781	7.9516	13.4383	74.08	6.226	cumple
2	PB	16.2329	4.4799	5.7225	74.08	3.016	cumple
2	PC	10.9549	3.1947	2.1406	74.08	2.081	cumple
2	PD	16.0318	4.3242	5.4571	74.08	3.016	cumple
2	PE	27.9528	8.3727	13.9135	74.75	6.226	cumple

Tabla 10: Verificación de Compresión en los muros del piso $3\,$

Story	Pier	P [tonf]	V2 [tonf]	M3[tonf m]	Fa [ton/m2]	Largo [m]	Cumple compre- sión
3	P10	-1.3176	1.6214	0.8073	69.60	0.93	cumple
3	P11	-2.4891	1.3471	1.0881	69.60	0.792	cumple
3	P12	-3.9376	1.7241	1.6434	69.60	1.19	cumple
3	P13	-1.5203	0.5931	0.2978	69.60	0.32	cumple
3	P14	-1.3197	0.7608	0.2956	69.60	0.32	cumple
3	P15	-3.965	1.762	1.6835	74.08	1.19	cumple
3	P16	-2.4891	1.2959	1.0404	74.08	0.792	cumple
3	P17	-1.2871	1.5733	0.7871	74.08	0.93	cumple
3	P18	-8.6191	4.5644	7.065	74.08	6.2	cumple
3	P19	-8.6568	4.4643	6.2795	74.08	6.2	cumple
3	P3	-7.3153	1.3788	3.0059	74.08	2.76	cumple
3	P41	-2.5263	2.582	1.8057	74.08	1.73	cumple
3	P42	-3.4407	1.4993	0.7222	74.08	0.99	cumple
3	P43	-3.9449	2.1286	1.0591	74.75	1.62	cumple
3	P44	-3.8991	2.053	1.0355	74.75	1.62	cumple
3	P45	-3.4531	1.528	0.7422	69.60	0.99	cumple
3	P46	-2.5368	2.6609	1.8198	74.08	1.73	cumple
3	P47	-23.1557	9.8489	11.4851	74.08	15.73	cumple
3	PA	-12.2783	4.3938	5.1616	74.08	6.226	cumple
3	PB	-8.2651	2.5645	5.9941	74.08	3.016	cumple
3	PC	-5.2978	2.0694	1.0328	74.08	2.081	cumple
3	PD	-8.1124	2.4746	5.4709	74.08	3.016	cumple
3	PE	-12.4048	4.5665	5.3109	74.75	6.226	cumple

4.3. Verificación Muros a Flexión (Diagramas de Interacción)

Tabla 11: Geometría Muro G1 en el Plano

Geometría	Muro
altura [cm]	84
Largo h [cm]	620
espesor b [cm]	14
d [cm]	613
ď'	7
gamma	0.01142
$\phi \; [\mathrm{mm}]$	12
As	1.1310
mu	0.000132

Ilustración 8: Diagrama de Interacción G1.

Tabla 12: Geometría Muro G1 fuera del Plano

Geometría Muro	
altura [cm]	84
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1
$\phi \text{ [mm]}$	8
As	0.503
mu	0.0008549

Ilustración 9: Diagrama de Interacción G1.

Tabla 13: Geometría Muro G2 en el Plano

Geometría Muro	
altura [cm]	84
Largo h [cm]	620
espesor b [cm]	14
d [cm]	613
ď'	7
gamma	0.01
$\phi \; [\mathrm{mm}]$	12
As	1.131
mu	0.0001318

Ilustración 10: Diagrama de Interacción G2.

Tabla 14: Geometría Muro G2 fuera del Plano

Geometría Muro	
altura [cm]	84
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1
$\phi \ [\mathrm{mm}]$	8
As	0.503
mu	0.0008549

Ilustración 11: Diagrama de Interacción G2.

Tabla 15: Geometría Muro G3 en el Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	93
espesor b [cm]	14
d [cm]	86
ď'	7
gamma	0.081395
As	1.130973
mu	0.000939
mu	0.0008549

Ilustración 12: Diagrama de Interacción G3.

Tabla 16: Geometría Muro fuera del Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
ď'	7
gamma	1.00
$\phi \; [\mathrm{mm}]$	12
As	1.1310
mu	0.0019

Ilustración 13: Diagrama de Interacción G3.

Tabla 17: Geometría Muro G4 en el Plano

Geometría Muro	
129	
79.2	
14	
72.2	
7	
0.10	
12	
1.130973	
0.001119	

Ilustración 14: Diagrama de Interacción G4.

Tabla 18: Geometría Muro G4 fuera del Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	14
espesor b [cm]	79.2
d [cm]	7
ď'	7
gamma	1
$\phi \; [\mathrm{mm}]$	16
As	2.0106
mu	0.0036267

Ilustración 15: Diagrama de Interacción G4.

Tabla 19: Geometría Muro G5 en el Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	119
espesor b [cm]	14
d [cm]	112
ď'	7
gamma	0.0625
$\phi \; [\mathrm{mm}]$	12
As	1.1309734
mu	0.0007213

Ilustración 16: Diagrama de Interacción G5.

Tabla 20: Geometría Muro G5 fuera del Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
ď'	7
gamma	1.00
$\phi \; [\mathrm{mm}]$	16
As	2.010619
mu	0.003419

Ilustración 17: Diagrama de Interacción G5.

Tabla 21: Geometría Muro G6 en el Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	32
espesor b [cm]	14
d [cm]	25
ď'	7
gamma	0.28
$\phi \; [\mathrm{mm}]$	12
As	1.1309734
mu	0.0032314

Ilustración 18: Diagrama de Interacción G6.

Tabla 22: Geometría Muro G6 fuera del Plano

Geometría Muro	
altura [cm]	129
Largo h [cm]	14
espesor b [cm]	32
d [cm]	7
d'	7
gamma	1
$\phi \text{ [mm]}$	8
As	0.502
mu	0.0022411

Ilustración 19: Diagrama de Interacción G6.

Tabla 23: Geometría Muro G7 en el Plano

Geometría Muro	
altura [cm]	213
Largo L [cm]	208
espesor b [cm]	14
d [cm]	201.1
d'	7
gamma	0.03
As	1.1309734
mu	0.0004017
ϕ	12

Ilustración 20: Diagrama de Interacción G7.

Tabla 24: Geometría Muro G7 fuera del Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1.00
As	1.1309734
mu	0.0019234
ϕ	12

Ilustración 21: Diagrama de Interacción G7.

Tabla 25: Geometría Muro G8 en el Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	208.1
espesor b [cm]	14
d [cm]	201.1
d'	7
gamma	0.03
As	1.1309734
mu	0.0004017
ϕ	12

Ilustración 22: Diagrama de Interacción G8.

Tabla 26: Geometría Muro G8 fuera del Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1.00
As	0.502
mu	0.0008537
ϕ	8

Ilustración 23: Diagrama de Interacción G8.

Tabla 27: Geometría Muro G9 en el Plano

Geometría Muro	
altura [cm]	267
Largo h [cm]	302
espesor b [cm]	14
d [cm]	295
d'	7
gamma	0.02
As	1.1309734
mu	0.0002738
ϕ	12

Ilustración 24: Diagrama de Interacción G9.

Tabla 28: Geometría Muro G9 fuera del Plano

Geometría Muro	
altura [cm]	267
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1.00
As	1.1309734
mu	0.0019234
ϕ	12

Ilustración 25: Diagrama de Interacción G9.

Tabla 29: Geometría Muro G10 en el Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	622
espesor b [cm]	14
d [cm]	615
d'	7
gamma	0.01
As	1.1309734
mu	0.0001314
ϕ	12

Ilustración 26: Diagrama de Interacción G10.

Tabla 30: Geometría Muro G10 fuera del Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	14
espesor b [cm]	75
d [cm]	7
d'	7
gamma	1.00
As	1.1309734
mu	0.0021542
ϕ	12

Ilustración 27: Diagrama de Interacción G10.

Tabla 31: Geometría Muro G11 en el Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	276
espesor b [cm]	14
d [cm]	269
d'	7
gamma	0.03
As	1.1309734
mu	0.0003003
ϕ	12

Ilustración 28: Diagrama de Interacción G11.

Tabla 32: Geometría Muro G11 fuera del Plano

Geometría Muro	
altura [cm]	213
Largo h [cm]	14
espesor b [cm]	84
d [cm]	7
d'	7
gamma	1.00
As	0.502
mu	0.0008537
ϕ	8

Ilustración 29: Diagrama de Interacción G11.

Tabla 33: Geometría Muro G12 en el Plano

Geometría Muro				
altura [cm]	105			
Largo h [cm]	1573			
espesor b [cm]	14			
d [cm]	1566			
d'	7			
gamma	0.00			
As	1.1309734			
mu	5.159E-05			
ϕ	12			

Ilustración 30: Diagrama de Interacción G12.

Tabla 34: Geometría Muro G12 fuera del Plano

Geometría Muro				
altura [cm]	105			
Largo h [cm]	14			
espesor b [cm]	84			
d [cm]	7			
d'	7			
gamma	1.00			
As	0.502			
mu	0.0008537			
ϕ	8			

Ilustración 31: Diagrama de Interacción G12.

Tabla 35: Geometría Muro G13 en el Plano

Geometría Muro				
altura [cm]	105			
Largo h [cm]	1573			
espesor b [cm]	14			
d [cm]	1566			
ď,	7			
gamma	0.00			
As	1.1309734			
mu	5.159E-05			
ϕ	12			

Ilustración 32: Diagrama de Interacción G13.

Tabla 36: Geometría Muro G13 fuera del Plano

Geometría Muro				
altura [cm]	105			
Largo h [cm]	14			
espesor b [cm]	84			
d [cm]	7			
d'	7			
gamma	1.00			
As	0.5026548			
mu	0.0008549			
ϕ	8			

Ilustración 33: Diagrama de Interacción G13.

Tabla 37: Geometría Muro G14 en el Plano

Geometría Muro				
altura [cm]	129			
Largo h [cm]	173			
espesor b [cm]	14			
d [cm]	166			
d'	7			
gamma	0.04			
As	0.502			
mu	0.000216			
ϕ	12			

Ilustración 34: Diagrama de Interacción G14.

Tabla 38: Geometría Muro G14 fuera del Plano

Geometría Muro				
altura [cm]	129			
Largo h [cm]	14			
espesor b [cm]	84			
d [cm]	7			
d'	7			
gamma	1.00			
As	2.0106193			
mu	0.0034194			
ϕ	16			

Ilustración 35: Diagrama de Interacción G14.

Tabla 39: Geometría Muro G15 en el Plano

Geometría Muro				
altura [cm]	129			
Largo h [cm]	84			
espesor b [cm]	14			
d [cm]	77			
d'	7			
gamma	0.09			
As	1.1309734			
mu	0.0010491			
$\phi \text{ [mm]}$	12			

Ilustración 36: Diagrama de Interacción G15.

Tabla 40: Geometría Muro G15 fuera del Plano

Geometría Muro				
c—altura [cm]	129			
Largo h [cm]	14			
espesor b [cm]	84			
d [cm]	7			
d'	7			
gamma	1.00			
As	0.7853982			
mu	0.0013357			
ϕ	10			

Ilustración 37: Diagrama de Interacción G15.

Tabla 41: Geometría Muro G16 en el Plano

Geometría Muro				
altura [cm]	108			
Largo h [cm]	162			
espesor b [cm]	14			
d [cm]	155			
d'	7			
gamma	0.05			
As	1.1309734			
mu	0.0005212			
ϕ	12			

Ilustración 38: Diagrama de Interacción G16.

Tabla 42: Geometría Muro G16 fuera del Plano

Geometría Muro				
altura [cm]	108			
Largo h [cm]	14			
espesor b [cm]	84			
d [cm]	7			
d'	7			
gamma	1.00			
As	2.0106193			
mu	0.0034194			
ϕ	16			

Ilustración 39: Diagrama de Interacción G16.

4.4. Verificación Deformaciones Máximas

A continuación se observan los desplazamientos del centro de masa de los pisos del edificio y los desplazamientos máximos entre piso con respecto al sismo en x.

Tabla 43: Desplazamiento centro de masa para el sismo en la dirección x

Piso	Carga	UX [m]	UY[m]	Zk[m]	dCMx[m]	dCMy[m]
1	SX Max	0.0004	2.5E-05	2.48	0	0
2	SX Max	0.0008	5.1E-05	4.81	0.17167	-0.01116
3	SX Max	0.0011	7.1E-05	7.14	0.12961	-0.00858

Gráfico Desplazamiento del Centro de Masa por Piso Sx

Ilustración 40: Desplazamiento centro de masa sismo en x.

Tabla 44: Desplazamiento máximo entre pisos para el sismo en la dirección x

Piso	Carga	Zk[m]	DriftX [m]	Dpx[m]	Dpxlim[m]	DriftY[m]	Dpy	Dpylim
1	SX Max	2.48	0.00017	0.08169	1.00000	0.00004	-0.01803	-1.00000
2	SX Max	4.81	0.00018	0.07597	1.17167	0.00004	-0.01888	-1.01116
3	SX Max	7.14	0.00004	0.01502	1.12961	0.00013	-0.05451	-1.00858

Ilustración 41: Desplazamiento máximo entre pisos sismo en x.

Luego se observan los desplazamientos del centro de masa y máximos entre piso para el sismo en y.

Tabla 45: Desplazamiento centro de masa para el sismo en la dirección y

Piso	Carga	UX [m]	UY[m]	Zk[m]	dCMx[m]	dCMy[m]
1	SY	0.000014	0.000258	2.48	0.00	0.00
2	SY	0.000029	0.000536	4.81	0.006	-0.12
3	SY	0.000040	0.000759	7.14	0.005	-0.10

Gráfico Desplazamiento del Centro de Masa por Piso Sy

Ilustración 42: Desplazamiento centro de masa sismo en y.

Tabla 46: Desplazamiento máximo entre pisos para el sismo en la dirección y

Piso	Carga	Zk[m]	DriftX [m]	Dpx[m]	Dpxlim[m]	DriftY[m]	Dpy	Dpylim
1	SY	2.48	0.00002	0.00858	1.00000	0.00010	-0.04120	-1.00000
2	SY	4.81	0.00003	0.01245	1.00644	0.00012	-0.05021	-1.11931
3	SY	7.14	0.00003	0.01073	1.00472	0.00010	-0.04163	-1.09571

Ilustración 43: Desplazamiento máximo entre pisos sismo en y.

Se destaca que tanto los desplazamientos del centro de masa como los desplazamientos máximos entre piso cumplen con lo especificado por la norma siendo menores a 2/1000 y 1/1000 respectivamente.

4.5. Límitaciones de la Norma

Los límites establecidos en la parte final del capitulo de metología fueron utilizados como parámetro base en el diseño y distribución de la armadura de refuerzo que se colocó.

- La armadura máxima que se puede utlizar en relación al tamaño del orificio del ladrillo que se escoge es de 32 mm de diámetro.
- La escalerilla que se utiliza como armadura horizontal cumple con ser menor a los 5 mm de diámetro que escoge la norma como máximo para este caso.
- El espaciamiento entre centro y centro de barra no debe superar los 84 cm para cumplir plenamente lo sugerido.
- Para los largos de desarrollo de la pata se considero como una función del máximo empuje que produce el fierro sobre el hormigón dependiendo del diámetro de la barra. Además, reuniendo los requerimientos de de empalme y largos de desarrollo se presenta la tabla 47.

Tabla 47: Largos de desarrollo de la pata y el empalme en función del diámetro

Diámetro [mm]	Pata [mm]	Empalme [mm]
8	30	32
10	30	40
12	30	48
16	40	64
18	40	72

5. Análisis de Resultados y Conclusiones

En primer lugar en relación a la verificación de muros a corte se destaca que se diseña para que la armadura de corte absorba el 100 % del corte según lo estipulado en la sección 5.2.5 de la Nch 1982. En este caso se utiliza el corte en el plano, dado que estos son mucho mayores que el corte fuera del plano. Con esto se obtiene la armadura de corte necesaria para cada muro utilizando una escalerilla cada 1, 2 o 3 hiladas según cada muro.

Se puede observar con respecto a la verificación de muros a axial que la tracción es tomada por la armadura y que la compresión axial con inspección especializada cumple para todos los muros. Es importante mencionar que se debe ser cuidadoso con respecto a la inspección que se le haga a los muros, ya que la albañilería depende mucho de la mano de obra, por lo que el supuesto de inspección especializada corresponde a un supuesto bastante fuerte dentro del diseño.

En relación al diseño a flexión de los muros se destaca la utilidad de usar diagramas de interacción dada su forma gráfica y sencilla de mostrar los resultados de cada muro . Se puede ver que todos los muros cumplen con los requerimientos de la norma en su diseño dentro y fuera del plano para cargas estáticas y dinámicas. Con respecto a la consideraciones tomadas para el diseño de los muros se observa que no se consideró la armadura en compresión, asumiendo que la mayoría de este esfuerzo es tomado por la albañilería en sí. Se redujeron las solicitaciones sísmicas en un 50 % según lo indicado en la sección 5.3.2 de la norma Nch1928 . Además es importante destacar que el momento fuera del plano fue tributado en el muro utilizando un espaciamiento máximo de 84 cm.

Finalmente con respecto a las deformaciones máximas del edificio, estas se hicieron utilizando lo establecido en la norma Nch433 según lo especificado en la sección 5.3.4 de la norma de albañilería Nch1928 considerando las solicitaciones sísmicas especificadas , sin ningún tipo de reducción. Se destaca que estas cumplen lo especificado para el desplazamiento del centro de masa y el desplazamiento por piso para el sismo en las direcciones ortogonales x e v.