į. S.

(b) M" \(M_0^2C, 2M" \) \(\) = coust; \((M^7)_{\chi} \) \(\) nowagen, \(\) nowagen, \(\) now pacep. M\(\) " Chado exop k nyae. \(\) pacep C wyneborr chipuur u guer. \(\) \(\).

Unelew: $e^{i\lambda Me^{n}} = 1 + i\lambda \cdot \int_{0}^{t} e^{i\lambda Ms^{n}} dMs^{n} - \frac{1}{2} \eta^{2} \int_{0}^{t} e^{i\lambda Ms^{n}} dzMs^{n} > \frac{1}{2} \eta^{2} \int_{0}^{t} e^{i\lambda Ms^{n}} dzMs^{n} = \frac{1}{2} \eta^{2} \int_{0}^{t} e^{i\lambda Ms^{n}} dzMs^{n} dzMs^{n} = \frac{1}{2} \eta^{2} \int_{0}^{t} e^{i\lambda Ms^{n}} dzMs^{n} dzMs^{n}$

Mu mous, nou n >0 nougeuras: $4t = 1 - \frac{1}{2} \lambda^2 \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$, $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$) $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$) $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$) $e^{M_S} = e^{-\frac{1}{2} \lambda^2} \cdot \int_0^t 4s ds$ (5. n $e^{M_S}^n > s$)