- (I) $2x 1 = 2\lambda x$
- (II) $2y + 1 = 2\lambda y$
- (III) $2z = 2\lambda z$

Si $\lambda=1$, entonces tendríamos 2x-1=2x, o -1=0, lo que es imposible. Podemos suponer que $\lambda\neq 0$ ya que si $\lambda=0$, solo obtenemos un punto interior como antes. Por tanto, (III) implica que z=0 y

(IV) $x^2 + y^2 = 1$.

Resolviendo (I) y (II) para $x \in y$ obtenemos

- (v) $x = 1/2(1 \lambda)$
- (VI) $y = -1/2(1 \lambda)$

Aplicando (IV) podemos resolver para λ , concretamente $\lambda=1\pm(1/\sqrt{2})$. Así, a partir de (V) y (VI) tenemos que $x=\pm(1/\sqrt{2})$ e $y=\pm(1/\sqrt{2})$; es decir, tenemos cuatro puntos críticos en ∂U . Evaluando f en cada uno de estos puntos, vemos que el valor máximo para f en ∂U es $1+2/\sqrt{2}=1+\sqrt{2}$ y el valor mínimo es $1-\sqrt{2}$. El valor de f en (1/2,-1/2) es -1/2. Comparando estos valores, observamos que $-1/2<1-\sqrt{2}$, por lo que el mínimo absoluto es -1/2, que se alcanza en (1/2,-1/2), y el máximo absoluto es $1+\sqrt{2}$, que se alcanza en $(-1/\sqrt{2},1/\sqrt{2})$.

Dos aplicaciones adicionales

Ahora vamos a ver dos aplicaciones adicionales (a la geometría y la economía) de las técnicas matemáticas desarrolladas en esta sección. Comenzamos con un ejemplo geométrico.

Ejemplo 9

Se considera una curva definida por la ecuación

$$\phi(x,y) = Ax^2 + 2Bxy + Cy^2 - 1 = 0.$$

Hallar la máxima y la mínima distancia de la curva al origen. Estas son las longitudes de los **semiejes mayor** y **menor** de esta cuádrica.

Solución

El problema es equivalente a hallar los valores extremos de $f(x,y) = x^2 + y^2$ sujeta a la condición restrictiva $\phi(x,y) = 0$. Utilizando el método de los multiplicadores de Lagrange, obtenemos las siguientes ecuaciones:

$$2x + \lambda(2Ax + 2By) = 0 \tag{6}$$

$$2y + \lambda(2Bx + 2Cy) = 0 \tag{7}$$

$$Ax^2 + 2Bxy + Cy^2 = 1. (8)$$

Sumando x veces la Ecuación (6) a y veces la Ecuación (7), obtenemos

$$2(x^{2} + y^{2}) + 2\lambda(Ax^{2} + 2Bxy + Cy^{2}) = 0.$$