Zadanie číslo 1 Spojité procesy

Úloha 11 Meranie a aproximácia prevodovej charakteristiky tepelného systému

Obsah

Znenie zadania	3
1. Úloha	4
1.1. Nameraný priebeh tepelného systému	4
Graf 1.1: Priebeh tepelného systému	4
1.2. Prevodová charakteristika tepelného systému	5
1.2.1 Meranie prevodovej charakteristiky	5
Graf 1.2: Prevodová charakteristika systému	6
2. Úloha	7
2.1 Podstata regresnej analýzy	7
2.2 Výpočet odhadovaných parametrov	7
3. Úloha	8
3.1 Aproximácia funkčného vzťahu lineárnou funkciou	8
Graf 3.1: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou lineárnej funkcie	8
3.2 Aproximácia funkčného vzťahu kvadratickou funkciou	
Graf 3.2: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou kvadratickej funkcie	9
3.3 Aproximácia funkčného vzťahu odmocninovou funkciou	10
Graf 3.3: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou odmocninovejfunkcie	. 10
Záver	

Znenie zadania

Meranie a aproximácia prevodovej charakteristiky tepelného systému

Cieľom zadania je osvojiť si postup merania prevodovej charakteristiky systému a jej aproximácie regresnou funkciou.

Uvažujeme laboratórny model tepelného systému podľa obr. 1. pozostávajúci zo sklenenej rúrky, ktorá má na jednom konci pripevnený ventilátor, ktorým je do nej vháňaný vzduch a na druhom konci je otvorená. V rúrke je umiestnená výhrevná špirála a dva snímače teploty. Snímač teploty umiestnený pri výhrevnej špirále je označený T1 a snímač teploty umiestnený pri výstupe z rúrky je označený T2. Ako vstup do systému uvažujeme signál ovládajúci výkon špirály a výstupom je signál z teplotného snímača T2.

Obr. 1. Laboratórny model tepelného systému

Úlohy:

- Odmerajte prevodovú charakteristiku tepelného systému pre rozsah vstupného signálu 0-10 V.
- Naštudujte princíp regresnej analýzy.
- Aproximujte nameranú charakteristiku pomocou nasledovných funkcií:

a)
$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u$$
 lineárna funkcia

b)
$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u + \hat{\theta}_2 u^2$$
 kvadratická funkcia

c)
$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 \sqrt{u}$$
 odmocninová funkcia

Pre každú funkčnú závislosť vypočítajte aj hodnotu účelovej funkcie.

Graficky porovnajte vypočítané funkčné závislosti s nameranou prevodovou charakteristikou.

Vyhodnoťte ktorá funkcia lepšie opisuje nameranú prevodovú charakteristiku.

- Urobte písomné zhrnutie a odôvodnenie dosiahnutých výsledkov.
- Vypracovaný dokument pre laboratórne cvičenie uložte vo formáte pdf pod názvom cv11_Priezvisko1_Priezvisko2 do miesta odovzdania v AIS.

1. Úloha

1.1. Nameraný priebeh tepelného systému

Graf 1.1: Priebeh tepelného systému

Kvôli zlyhaniu predošlého merania, bolo potrebné meranie opakovať. Výsledný graf začína pri teplote približne 53 [°C], pretože medzi meraniami nebol dostatočný čas na ochladenie systému. Ako validné dáta preto považujeme hodnoty od t = 311 [s].

1.2. Prevodová charakteristika tepelného systému

Prevodová charakteristika udáva **funkčnú závislosť ustálených hodnôt** vstupnej veličiny napätia na špirále a výstupnej teploty nameranej na snímači T2.

1.2.1 Meranie prevodovej charakteristiky

Prevodovú charakteristiku sme merali nasledovne:

- 1. Nastavili sme novú hodnotu vstupnej veličiny u.
- 2. Počkali sme na ustálenie výstupnej veličiny T_2 .
- 3. Odčítali sme hodnotu výstupnej veličiny, ktorú môžeme považovať za ustálenú.

Meranie sme opakovali pre 11 rôznych hodnôt vstupnej veličiny u.

Veličina u sa zadávala v [%] z rozsahu 0 - 10 V.

Prevodovú charakteristiku sme namerali v týchto bodoch:

- $t_1 \approx 313 \text{ [s]}, T_{21} \approx 30.4 \text{ [°C]}, u_1 = 0 \text{ [%]}$
- $t_2 \approx 475$ [s], $T_{22} \approx 34.4$ [°C], $u_2 = 10$ [%]
- $t_3 \approx 645$ [s], $T_{23} \approx 38.3$ [°C], $u_3 = 20$ [%]
- $t_4 \approx 807 \text{ [s]}, T_{24} \approx 42.9 \text{ [°C]}, u_4 = 30 \text{ [%]}$
- $t_5 \approx 1001 \text{ [s]}, T_{25} \approx 46.4 \text{ [°C]}, u_5 = 40 \text{ [%]}$
- $t_6 \approx 1197[s], T_{26} \approx 49.4 \ [^{\circ}C], u_6 = 50 \ [\%]$
- $t_7 \approx 1409 \text{ [s]}, T_{27} \approx 52.6 \text{ [°C]}, u_7 = 60 \text{ [%]}$
- $t_8 \approx 1508[s], T_{28} \approx 54.4 \ [^{\circ}C], u_8 = 70 \ [\%]$
- $t_9 \approx 1620[s], T_{29} \approx 54.4 \ [^{\circ}C], u_9 = 80 \ [\%]$
- $t_{10} \approx 2000$ [s], $T_{210} \approx 55$ [°C], $u_{10} = 90$ [%]
- $t_{11} \approx 2150$ [s], $T_{211} \approx 55.6$ [°C], $u_{11} = 100$ [%]

Graf 1.2: Prevodová charakteristika systému

2. Úloha

2.1 Podstata regresnej analýzy

Regresná analýza všeobecne skúma **funkčný vzťah**, podľa ktorého sa mení **závislá premenná** (výstup) *y* v závislosti od **nezávislých veličín** (vstupov).

$$y = F(u, \Theta) + v$$

Pričom Θ je **vektor neznámych parametrov** funkčného vsťahu a v je **náhodne pôsobiaci faktor**

V našom prípade sa snažíme o zistenie neznámeho funkčného vzťahu medzi **vstupnou veličinou** u a **výstupnou veličinou** T_2 . Na zistenie neznámeho funkčného vzťahu použijeme **aproximáciu odhadnutým funkčným vzťahom**.

$$\hat{y} = \hat{F}(u, \hat{\Theta})$$

Kde $\widehat{\Theta}$ je vektor odhadovaných parametrov modelu.

Neznámy funkčný vzťah budeme aproximovať pomocou troch odhadnutých funkčných vzťahov (modelov). Tieto modely majú tvar:

2.2 Výpočet odhadovaných parametrov

Odhadované parametre modelu $\widehat{\Theta}_0$ sa počítajú pomocou Gaussovho vzťahu:

$$\widehat{\Theta}_0 = \left(H^T H \right)^{-1} H^T y$$

Kde *H* je matica vstupných veličín a *y* je vektor ustálených hodnôt.

3. Úloha

3.1 Aproximácia funkčného vzťahu lineárnou funkciou

Aproximačná funkcia: $\hat{y} = \hat{\Theta}_0 + \hat{\Theta}_1 u$

Parametre modelu: $\widehat{\Theta}_0 = (H^T H)^{-1} H^T y$

Matica
$$H = \begin{pmatrix} 1 & 0 \\ 1 & 10 \\ 1 & 20 \\ 1 & 30 \\ 1 & 40 \\ 1 & 50 \\ 1 & 60 \\ 1 & 70 \\ 1 & 80 \\ 1 & 90 \\ 1 & 100 \end{pmatrix}$$

Odchýlka $e = y - H_1 \widehat{\Theta}_0$

Účelová funkcia $Q = \frac{1}{2}e^T e >> Q_1 = 68.5646$

Graf 3.1: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou lineárnej funkcie

3.2 Aproximácia funkčného vzťahu kvadratickou funkciou

Aproximačná funkcia: $\hat{y} = \hat{\Theta}_0 + \hat{\Theta}_1 u + \hat{\Theta}_1 u^2$

Parametre modelu: $\widehat{\Theta}_0 = (H^T H)^{-1} H^T y$

$$\mathsf{Matica}\ H = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 10 & 10^2 \\ 1 & 20 & 20^2 \\ 1 & 30 & 30^2 \\ 1 & 40 & 40^2 \\ 1 & 50 & 50^2 \\ 1 & 60 & 60^2 \\ 1 & 70 & 70^2 \\ 1 & 80 & 80^2 \\ 1 & 90 & 90^2 \\ 1 & 100 & 100^2 \end{pmatrix}$$

Odchýlka $e=y-H_1\widehat{\Theta}_0$ Účelová funkcia $Q=\frac{1}{2}e^Te>>Q_2=3.4857$

Graf 3.2: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou kvadratickej funkcie

3.3 Aproximácia funkčného vzťahu odmocninovou funkciou

Aproximačná funkcia: $\hat{y} = \hat{\Theta}_0 + \hat{\Theta}_1 \sqrt{u}$

Parametre modelu: $\widehat{\Theta}_0 = (H^T H)^{-1} H^T y$

$$\text{Matica H} = \begin{pmatrix} 1 & \sqrt{0} \\ 1 & \sqrt{10} \\ 1 & \sqrt{20} \\ 1 & \sqrt{30} \\ 1 & \sqrt{40} \\ 1 & \sqrt{50} \\ 1 & \sqrt{60} \\ 1 & \sqrt{70} \\ 1 & \sqrt{80} \\ 1 & \sqrt{100} \end{pmatrix}$$

Odchýlka $e=y-H_1\widehat{\Theta}_0$ Účelová funkcia $Q=\frac{1}{2}e^Te>>Q_3=34.9559$

Graf 3.3: Graf prevodovej charakteristiky systému a graf funkčného vzťahu vstupnej a výstupnej veličiny systému aproximovaného pomocou odmocninovej funkcie

Záver

Po odmeraní a vizualizácií prevodovej charakteristiky a zhotovení aproximácií môžeme konštatovať, že na základe vizuálneho porovnania grafov a porovnania hodnôt účelových funkcií $Q_2 < Q_3 < Q_1$, prevodovú charakteristiku nášho systému najlepšie aproximuje odhadnutý funkčný vzťah využívajúci kvadratickú funkciu (tj. Q_2).