

STM32 Fundamentals: Hands-on Workshop Series Module 1

Quick Intro...

Esakki Raja

Masters in Embedded Systems

Semiconductor, Medical, Industrial

Udhaydhithan Pa
Masters in Embedded Systems
Automotive, Medical, Industrial

Course Work

- Basics and ARM Cortex-M Architecture
- STM32 Peripherals Overview (GPIO, ADC, Timers, UART, SPI, I2C)
- Writing and Configuring GPIO Drivers
- ADC Driver Development (Single and Multi-Channel)
- Timer Driver Development (PWM, Delays, Interrupts)
- UART Driver Development (Communication and Debugging)
- SPI and I2C Driver Development (Communication Protocols)
- Debugging and Optimizing Embedded Drivers

Learning Outcome

- Understand Microcontroller Fundamentals
- Master STM32 Architecture and Peripherals
- Develop Embedded Drivers
- Implement Advanced Debugging Techniques
- Use Development Tools Efficiently
- Apply Knowledge to Real-World Projects

Before We Start...

Enigma Machine – Birth Of Complex Machines

Where do we use embedded...

" Embedded systems are customized computing solutions crafted for specific tasks within larger devices, ensuring real-time operation and efficient execution of functions through dedicated hardware and software."

The Evolution & Moore's Law

MOORE'S LAW

"Transistor density on integrated circuits doubles about every two years." *

Transistor

1960s TTL Quad Gate **Transistors**

Characteristics of Embedded Systems

Real-time Operation

Memory Constraints

Power Constraints

Dependability and Reliability

Into Microcontroller

- Central Processing Unit (CPU)
- Memory (RAM, ROM, Flash)
- Input/Output Ports
- Peripherals (ADC, Timers, PWM)

Old School – 8051 Architecture

ATMega 328P - Arduino

What is Cortex?

"Cortex" refers to a family of processors designed by ARM Holdings.

- Cortex-A Series: Designed for high-performance applications, such as smartphones and tablets, with advanced features like out-of-order execution.
- Cortex-R Series: Tailored for real-time systems, like automotive control and industrial applications, prioritizing predictability and reliability.
- 3. **Cortex-M Series:** Optimized for microcontroller and low-power embedded applications, commonly used in IoT devices, sensors, and other powersensitive applications.

What is Cortex?

A Little Dive-in

ARM Architecture

- Harvard Architecture:
- 32-bit RISC Architecture:
- Pipeline Architecture:
- Thumb and Thumb-2 Instruction Sets:
- Low Power Features:
- Interrupt Handling:
- Memory Protection Unit (MPU):
- Floating-Point Unit (FPU):
- Debugging and Trace Support:
- Peripheral Integration:

What is Pipeline

Difference Between Architecture

ARM & It's Memory

Flash Memory (Program Storage):

- Starting address: 0x0800 0000
- Ending address: Varies based on the microcontroller model, determined by the Flash size.

SRAM (Data Storage):

- Starting address: It depends on the specific microcontroller model and its memory configuration.
- Ending address: Varies based on the microcontroller model, determined by the SRAM size.

System Memory (Bootloader Memory - Optional):

- Starting address: 0x1FFF 0000
- Ending address: 0x1FFF FFFF

Peripheral and Register Memory:

 Addresses vary based on the specific peripherals used in the microcontroller. For example, GPIO registers, USART registers, etc.

EEPROM (if available):

- Starting address: Varies; not all STM32 microcontrollers have EEPROM.
- Ending address: Varies based on the EEPROM size.

ARM Thumb 1

- Purpose: Reduces code size, ideal for memory-limited systems.
- Instruction Length: 16-bit instructions.
- Key Points:
 - More compact than ARM (32-bit instructions).
 - Fewer operations and registers.
 - Suitable for simple applications with limited functionality.

ARM Thumb 2

- Purpose: Combines the benefits of Thumb (16-bit) and ARM (32-bit).
- Instruction Length: Mix of 16-bit and 32-bit instructions.
- Key Features:
 - Supports both 16-bit and 32-bit instructions for flexibility.
 - Improved Performance: Allows complex operations with 32-bit instructions while maintaining compactness.
 - Backward Compatible: Works with older Thumb code.