SUMO Tutorial

Md Tawkir Ahmed

Tongji University (M.Sc. in Traffic Engineering)

Demo Simulation: https://www.traffic-simulation.de/

Lesson 1: Download and Installation and Configuration

1. Download and Installation

Sumo:

- 1. https://eclipse.dev/sumo/
- 2. https://sourceforge.net/projects/sumo/

Netedit:

** the network edit software can be found in the bin folder:

Python:

1. https://www.python.org/downloads/

VScode:

1. https://code.visualstudio.com/download

2. Configuration

Details: https://sumo.dlr.de/docs/Downloads.php

SUMO Documentation: https://sumo.dlr.de/docs/index.html

SUMO Tutorial:

Lesson 2: Simple network build and simulation in SUMO

1. Basic Idea:

In order to perform a very basic simulation in SUMO, it is required to have at least the following elements (files):

- 1. Network (edge, node/junction)
- 2. Route (route A, B)
- 3. Configuration file (not.xml, edg.xml, rou.xml, sumocfg)

1. Using netedit and SUMO Gui:

1. Creating the network in netedit:

3. Demand Generation in netedit:

4. Adding Vehicle

5. Save the Demand (route + vehicle)

e.g., helloWorld.rou.xml

Do not close the netedit yet

6. Visualizing in sumo-gui:

From neteidit: go to Edit -> Open in sumo-gui (Ctrl + T). This will open sumo-gui and load our recently created network and demand files.

Save in the sumo file as helloWorld.sumocfg

Now you can close netedit if you wish.

**set to at least 80 ms, as otherwise the simulation would happen very quickly and we would not be able to see our only vehicle in our tiny network

7. Start the Simulation

2. Using Sumo code to create it:

1. Nodes:

<nodes>

$$<$$
node id="2" x="+250.0" y="0.0" />

$$<$$
node id="3" x="+251.0" y="0.0" $/>$

</nodes>

Save: hello.nod.xml

2. Edges:

<edges>

$$<$$
edge from="1" id="1to2" to="2" $/>$

</edges>

Save: hello.edg.xml

3. Connect nodes and edges:

netconvert --node-files=hello.nod.xml --edge-files=hello.edg.xml --output-file=hello.net.xml

**The two files need to be present in the same folder then right click on your mouse and click 'open terminal'

4. Routes and Traffic Characteristics:

```
<routes>
  <vType accel="1.0" decel="5.0" id="Car" length="2.0" maxSpeed="100.0" sigma="0.0" />
  <route id="route0" edges="1to2 out"/>
  <vehicle depart="1" id="veh0" route="route0" type="Car" />
  </routes>
```

Save: hello.rou.xml

Save: hello.sumocfg

5. Configuration: Connect Net and Route file

Open the sumo soft and open the hello.sumocfg and run simulation

Lesson 3: Complex Network creation using Netedit

Aim: use of basic application and essential functions of SUMO for traffic analysis using an example network.

1. Specifications:

Origin: 4

Destination: 4

Intersection: unsignalized

Intersection number: 2

Lane: Outbound traffic: 3

2. Traffic Rules and Regulation:

1. Allowed traffic movements on each lane are restricted

2. U-term behaviors are prohibited at all intersections

3. Traffic priority: eastbound & westbound

3. Network Layout:

4. Data Preparation:

node name	x-coordinate	y-coordinate
91	-1000.0	+1000.0
92	-1000.0	0.0
93	+3000.0	0.0
94	+3000.0	+1000.0
911	-500.0	+1000.0
912	-500.0	0.0
913	+2500.0	0.0
914	+2500.0	+1000.0
1	0.0	+1000.0
2	0.0	0.0
3	+1000.0	0.0
4	+2000.0	0.0
5	+2000.0	+1000.0
6	+1000.0	+1000.0

5. Example Network Creation

Step 1: create 91 to 911 network

Two Way Route Creation

Step 2: Edit the information

Step 3: Edge Connection Modification:

Step 4: Priority of Each Nodes:

The default priority is 1 so need to change

Select: Ctrl + Left Click

De-select: Ctrl + Left Click

Step 5: Traffic Demand

Vehicle type: Cars A, B, C, and D

Driving perfectness: 50%

Origin-Destination: 30s

Ratio: 15:00 to 15:15

Vehicle type	Max. acceleration(m/s)	Max. deceleration(m/s)	Length(m)	Max. speed(m/s)
Car A	3.0	6.0	5.0	50.0
Car B	2.0	6.0	7.5	50.0
Car C	1.0	5.0	5.0	40.0
Car D	1.0	5.0	7.5	30.0

^{*}for real-world simulation the data must take from a field traffic survey

Using Sumo Code:

```
<vType accel="1.0" decel="5.0" id="CarD" length="7.5" minGap="2.5" maxSpeed="30.0"</pre>
sigma="0.5" />
 <route id="route01" edges="D2 L2 L12 L10 L7 D7"/>
 <route id="route02" edges="D2 L2 L12 L15 L18 L5 D5"/>
 <route id="route03" edges="D2 L2 L12 L15 L13 L3 D3"/>
 <route id="route04" edges="D4 L4 L14 L18 L5 D5"/>
 <route id="route05" edges="D4 L4 L14 L16 L10 L7 D7"/>
 <route id="route06" edges="D4 L4 L14 L16 L11 L1 D1"/>
 <route id="route07" edges="D6 L6 L17 L13 L3 D3"/>
 <route id="route08" edges="D6 L6 L17 L16 L11 L1 D1"/>
 <route id="route09" edges="D6 L6 L17 L16 L10 L7 D7"/>
 <route id="route10" edges="D8 L8 L9 L11 L1 D1"/>
 <route id="route11" edges="D8 L8 L9 L15 L13 L3 D3"/>
 <route id="route12" edges="D8 L8 L9 L15 L18 L5 D5"/>
 <vehicle depart="54000" id="veh0" route="route01" type="CarA" color="1,0,0" />
 <vehicle depart="54000" id="veh1" route="route02" type="CarA" />
 <vehicle depart="54000" id="veh2" route="route03" type="CarA" />
 <vehicle depart="54000" id="veh3" route="route04" type="CarA" />
 <vehicle depart="54000" id="veh4" route="route05" type="CarA" />
 <vehicle depart="54000" id="veh5" route="route06" type="CarA" />
 <vehicle depart="54000" id="veh6" route="route07" type="CarA" />
 <vehicle depart="54000" id="veh7" route="route08" type="CarA" />
 <vehicle depart="54000" id="veh8" route="route09" type="CarA" />
 <vehicle depart="54000" id="veh9" route="route10" type="CarA" />
 <vehicle depart="54000" id="veh10" route="route11" type="CarA" />
 <vehicle depart="54000" id="veh11" route="route12" type="CarA" />
 <vehicle depart="54000" id="veh12" route="route01" type="CarB" color="1,0,0" />
 <vehicle depart="54000" id="veh13" route="route02" type="CarB" />
 <vehicle depart="54000" id="veh14" route="route03" type="CarB" />
 <vehicle depart="54000" id="veh15" route="route04" type="CarB" />
 <vehicle depart="54000" id="veh16" route="route05" type="CarB" />
 <vehicle depart="54000" id="veh17" route="route06" type="CarB" />
 <vehicle depart="54000" id="veh18" route="route07" type="CarB" />
</routes>
```

Save: quickstart.rou.xml

Code Explanation:

Sigma: driver imperfection in deriving: 0 to 1: 50% means the driver has 50% chance to drive unusual behavior

Depart: in second the depart time

Color: 1,0,0=red, 0,1,0=green, 0,0,1=blue

Combined with sumo file:

```
<end value="54900"/>
  </time>
  <time-to-teleport value="-1"/>
</configuration>
```

Save: quickstart.sumocfg

Explanation:

Duration: 54000-54900=900 sec= 15 min simulation

Time-to-teleport: to disable the automatic removal of vehicles with wait for long in front of an

intersection.

Step 6: Run in sumo GUI sumo –c quickstart.sumocfg

Output scenario

Delay: 100 sec

Lesson 4: Shared Mobility: Bus, Taxi (Public Transport)

Main Topic: Vehicle-creation, Bus stops, taxi-reservations and pick up

https://sumo.dlr.de/docs/Tutorials/TaxiService.html

1. Network Cration and modification

2. Create Sidewalk

3. Creating Bus Stop

1. Remove the lane:

2. Turn a vehicle lane into a pedestrian lane:

3. Make a Connection

4. Create Pedestrian Route

*Create the vehicle route like pedestrian

5. Creating Pedestrian and Taxi/Bus Demand

I got an error but I do not know how to solve it

Shortcut:

e= creating edge

i= inspection mode

m=move edge

4. Route and Vehicle type distributions:

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#:~:text=first %20route%20file.-,Route%20and%20vehicle%20type%20distributions,-%23

5. Stops and waypoints:

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#:~:text=files%20with%20sumo-,Stops%20and%20waypoints,-%23

Lesson 5: Micro mobility: cycle, motorcycle | pedestrian

C. Pedestrian Lane and crossing: sumo 2022

https://www.youtube.com/watch?v=3J5KqOPT2qI&list=PLy7t4z5SYNaQVVuKmGVz8ET_oOTXLk6J-

D. Micro-Mobility: Cycle, Motorcycle, etc.

https://www.youtube.com/watch?v=3J5KqOPT2qI&list=PLy7t4z5SYNaQVVuKmGVz8ET oOTXLk6J-

Lesson 6: Traffic Sign, Street light, furniture

E. Street light: sumo 2021

F. Street Furniture: Tree, Bench

Lesson 7: Building Highway and Expressway/Freeway

1. Highway/Expressway:

1. Network Creation

Lane Speed: 36.11m/s ~ 130 km/h

1/2: Entry/Exit: 100 m 3. Long Edge: 2000 m

2. Traffic Demand

Vehicle type: heterogeneous

- many normal passenger cars
- some trucks
- a few coaches
- a few sporty passenger cars (higher desired travelling speed, less dawdling)

Speed Distribution/Car-Following/Lane-Changing Models:
https://sumo.dlr.de/docs/Definition of Vehicles%2C Vehicle Types%2C and Routes.html#speed distribut ions

Actual Speed = max Speed * speed Factor

Max speed: maximum speed of a vehicle

Speed factor: how fact a vehicle can travel compare with the maximum speed. The value greater than 1 will make the vehicle faster than their specified max speed and the value lower than 1 means the vehicle is traveling less than the max speed.

Speed Dev: standard deviation for the vehicle speed adding some randomness to the vehicle speed

Sigma: the roughness of driving, the value can be between 0 to 1. 1 means the higher skilled driver and 0 means the driver is new.

Code:

```
<vType id="coach" vClass="coach" maxSpeed="30" speedFactor="1" speedDev="0.05" />
    <flow id="normal" type="normal_car" begin="0" end="5000" number="5000" from="entry" to="</pre>
exit" departSpeed="avg" departLane="best" />
   <flow id="sporty" type="sporty_car" begin="0" end="5000" number="300" from="entry" to="e</pre>
xit" departSpeed="avg" departLane="best" />
    <flow id="coach" type="coach" begin="0" end="5000" number="300" from="entry" to="exit" d</pre>
epartSpeed="avg" departLane="best" />
   <flow id="trailer" type="trailer" begin="0" end="5000" number="700" from="entry" to="exi</pre>
t" departSpeed="avg" departLane="best" />
</routes>
Sumocfg (autobahn.sumocfg)
<configuration>
   <input>
       <net-file value="autobahn.net.xml"/>
       <route-files value="autobahn.rou.xml"/>
   </input>
</configuration>
```

3. Output: 200 sec

2. Ramp:

create ramp, > https://sumo.dlr.de/docs/Simulation/Motorways.html

Definition: Ramps usually merge into the main road via an acceleration lane. This acceleration lane opens up where the ramp enters the motorway and is modelled as a dead-end lane (no outgoing connection). This forces on-ramp vehicles to change lanes in order to continue their route.

1.Weaving/diverting/Merging area

Lesson 8: Traffic Light/Signal Controlling

A. Traffic Light:****

https://sumo.dlr.de/docs/Simulation/Traffic Lights.html

Traffic light: https://sumo.dlr.de/docs/Tutorials/TraCI4Traffic Lights.html

Ped Crossing: https://sumo.dlr.de/docs/Tutorials/TraCIPedCrossing.html

https://mathpretty.com/14088.html

https://salonirk11.medium.com/the-sumo-traffic-

d9cc11bf817d#:~:text=A%20traffic%20signal%20in%20our%20simulated%20environment%20Cars,if%20it%20is%20grey%20the%20signal%20is%20green.

Conference: 2019; vehicle trajectory

Traffic light: green, red, yellow

By default, all traffic lights are generated with a fixed cycle and a cycle time of 90s.

the green phases usually have a duration of 31s.

Code	Notion	Meaning
<pre><additional> <tllogic id="0" offset="0" programid="my program" type="static"></tllogic></additional></pre>	GGgg	
<pre><pre></pre></pre> <pre><pre><pre><pre><pre>critogic id= 0 program= my_program= offset= 0 type= static / </pre><pre><pre><pre><pre>cphase duration="31" state="GGggrrrrGGggrrrr"/></pre></pre></pre></pre></pre></pre></pre></pre>		
<pre><phase duration="5" state="yyggrrrryyggrrrr"></phase></pre>		
<pre><phase duration="6" state="rrGGrrrrrGGrrrr"></phase> <phase duration="5" state="rryyrrrrryyrrrr"></phase></pre>		
<pre><phase duration="31" state="rrrrGGggrrrrGGgg"></phase></pre>		
<pre><phase duration="5" state="rrrryyggrrrryygg"></phase></pre>		
<pre><phase duration="6" state="rrrrrrGGrrrrrrGG"></phase> <phase duration="5" state="rrrrryyrrrrrryy"></phase></pre>		
<pre></pre>		

Character	GUI Color	Description
r		'red light' for a signal - vehicles must stop
у		'amber (yellow) light' for a signal - vehicles will start to decelerate if far away from the junction, otherwise they pass
g		'green light' for a signal, no priority - vehicles may pass the junction if no vehicle uses a higher priorised foe stream, otherwise they decelerate for letting it pass. They always decelerate on approach until they are within the configured visibility distance
G		'green light' for a signal, priority - vehicles may pass the junction
s		'green right-turn arrow' requires stopping - vehicles may pass the junction if no vehicle uses a higher priorised foe stream. They always stop before passing. This is only generated for junction type traffic_light_right_on_red.
u		'red+yellow light' for a signal, may be used to indicate upcoming green phase but vehicles may not drive yet (shown as orange in the gui)
o		'off - blinking' signal is switched off, blinking light indicates vehicles have to yield
О		'off - no signal' signal is switched off, vehicles have the right of way

Example: traffic light with the current state "GrGr". The leftmost letter "G" encodes the green light for link 0, followed by red for link 1, green for link 2 and red for link 3. The link numbers are enabled via

Traffic Light and Left Hand Rule:

 $\underline{https://www.youtube.com/watch?v=37J27c9}\underline{rIo\&list=PLgIPH6KYX7xDPmxkvuZ4XtnAXEX4eTRIE\&\underline{index=5}}$

B. Traffic Sign***

Lesson 10: Traffic Models

Sumo 2019 – conf.

Sumo 2023 – plotting tools

Car Following models:

Car-Following Models section:

https://sumo.dlr.de/docs/Definition of Vehicles%2C Vehicle Types%2C and Routes.html

Lane-Changing Models:

Lane-Changing Models:

https://sumo.dlr.de/docs/Definition of Vehicles%2C Vehicle Types%2C and Routes.html

Lesson 11: Traffic Safety Study: Collision

https://sumo.dlr.de/docs/Simulation/Safety.html

Collision parameters in Caar Following models:

Read: Car-Following Model Parameters

https://sumo.dlr.de/docs/Definition of Vehicles%2C Vehicle Types%2C and Routes.html

Lesson 12: CAV Simulation: Omnet

```
CAV
```

```
<vehicle id="ego" depart="0" route="r0">
   <param key="carFollowModel.ignoreIDs" value="foe1 foe2"/>
   <param key="carFollowModel.ignoreTypes" value="bikeType"/>
</vehicle>
```

*see Transient carFollowModel Parameters

Lesson 13: Work with open street map

1. Download

Requirement: SUMO, Python

OSM Web Wizard is essentially a collection of python script located: All Programs -> SUMO -> OSM Web Wizard

1. Open Anaconda Prompt (Anaconda3/r-mincon)

2. It will open a map in a browser

^{**}taking large network need large time for simulation. Hence choose small network

3. Demand Generation

4. Road-Type Selection

5. Generate Scenario:

6. View Map in SUMO

Click Generate Scenario > then you get the new map

**make sure the anaconda prompt open and active/connected

7. File source:

.netccfg > network file, osm> sumo file

8. Add route and vehicle following previous lesson and run it for 120 second

2. Network Editing

See sumo conference 2020

- A. Delete the unnecessary network by selecting and deleting
- B. Change the lane number in intersection
- C. Change the geometry: move the object

D. Edit Crossing: delete or install

Conference 2022

3. Edit Traffic Light

Static traffic light and dynamic traffic light** all road is not actuated so see and change

A. Change the status of traffic light: static vs dynamic

B. Edit the traffic cycle/ Change color of the particular signal $\,$

Conf 2022

4. Traffic

Fastest routes w/o traffic

A. Edge Count: Traffic Flow create from real-world counting data

Step 1: define edges

Step 2: Create traffic count

Step 3: apply the count by clicking in street map network

Step 4: run simulation

B. Turning Count: to create traffic data

C. Select Traffic Analysis Zone (TAZ)

Conference 2021: time 29

5. Pedestrian Crossing

A. Create Pedestrian Crossing

Conf 22, time 40

B. Create Pedestrian Traffic

Conf 22, time 48

*match the network with the real world and open street map can be different

Edit and join junction: 2022 conference

C. Bicycle Traffic

Conf 23, time 22

6. Mode Sharing: Taxi Fleet (stop in any site using TraCl/Netedit)

*stop and go: make flow disruption

7. Traffic Parking

Conf 22, time 50

Lesson 9: Visualize simulation results

Sumo Conf 2023, time 44

A. Summary Statistics

B. Recolor the road networkConf 23, time 50

Lesson 14: Work with python: TraCl package