EECS 331 Homework 2 Sylvia Wang , Yongchi Zhang

Histogram of different pixels

- Maximum gain
 - o (50,50)

0 (100,200)

o (500,700)

o (10,60)

o (200,300)

• Minimum gain

o (50,50)

o (100,200)

o (500,700)

o (200,300)

In the maximum gain setting, the color distribution of the given pixel looks uneven, but it's much more consistent in the minimum gain setting.

A few of the Original Images:

t=0

t=49

Mean (of 50 images):

• Maximum gain

• Minimun gain

Variance (of 50 images):

• Maximun gain

• Minimun gain

The average variance for each mean value:

• Maximun gain

➣ fit a line to the plotted data

camera gain g = 0.0008ADC noise variance ${}^{6}I_{ADC}^{2} = -0.0740$

• Minimum gain

➣ fit a line to the plotted data

camera gain g = -0.0175 ADC noise variance $\sigma_{ADC}^2 = 6.3179$

• The read noise variance σ_{read}^2 :

$$\sigma_i^2 = (\phi_i \cdot t)g^2 + \sigma_{read}^2 \cdot g^2 + \sigma_{ADC}$$
 (4)

$$= \mu_i \cdot g + \sigma_{read}^2 \cdot g^2 + \sigma_{ADC}^2$$
 (5)

Max:

Min:

$$2 = 98 * (-0.0175) + \sigma_{read}^{2} * (-0.0175)^{2} + 6.3179$$

$$=> \sigma_{read}^2 = 1206.5$$

Plot the SNR as a function of mean pixel value:

Maximun gain

Minimun gain

The max value of SNR of the mean pixel value is related to a constant slope.