\mathbb{R}^n - линейное, Евклидово, нормированное и метрическое пространсво

Опр: 1. $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} = \{ (x_1, \ldots, x_n) \mid x_k \in \mathbb{R} \}$ - упорядоченный набор из n чисел.

Линейное пространство

Операции над наборами:

- (1) Сложение: $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_n, \ldots, x_n + y_n);$
- (2) Умножение на скаляр $\alpha \in \mathbb{R}$: $\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$;

С этими операциями \mathbb{R}^n - линейное, векторное пространство над \mathbb{R} .

Вектора $e_k = (0, \dots, 0, \frac{1}{k}, 0, \dots, 0)$ образуют <u>базис</u> в \mathbb{R}^n , то есть $\forall x \in \mathbb{R}^n$, $x = (x_1, \dots, x_n)$ единственным образом представляется в виде:

$$x = x_1 e_1 + \ldots + x_n e_n$$

где x_k - координаты вектора x.

Евклидово пространство

На $\mathbb{R}^n \times \mathbb{R}^n$ определена функция $x, y \mapsto \langle x, y \rangle \in \mathbb{R}$:

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

где
$$x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n).$$

Свойства этой функции:

- 1) $\langle x, x \rangle \ge 0 \land \langle x, x \rangle = 0 \Leftrightarrow x = 0$ (неотрицательность);
- 2) $\langle x, y \rangle = \langle y, x \rangle$ (симметричность);
- 3) $\langle \alpha x + \beta z, y \rangle = \alpha \langle x, y \rangle + \beta \langle z, y \rangle$ (линейность);

Опр: 2. Если на линейном пространстве (над \mathbb{R}) задана функция $\langle \cdot, \cdot \rangle$, удовлетворяющая свойствам 1), 2) и 3), то такую функцию называют скалярным произведением, а линейное пространство со скаларням произведением называют <u>Евклидовым пространством</u>.

Теорема 1. (неравенство Коши-Буняковского-Шварца-Гёльдера) Справедливо неравенство:

$$|\langle x, y \rangle| < \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}$$

причем если верно равенство $\Leftrightarrow x$ и y - линейно зависимы.

 \square Пусть $t \in \mathbb{R}$, $p(t) = \langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle$.

Рассмотрим случай, когда $y=0 \Rightarrow x,y$ - линейно зависимы $\Rightarrow 0=0+0 \Rightarrow \langle x,0\rangle = \langle x,0\rangle + \langle x,0\rangle \Rightarrow \Rightarrow \langle x,0\rangle = 0 \Rightarrow |0| = 0 \leq \sqrt{\langle x,x\rangle} \cdot 0 = 0 \Rightarrow$ равенство верно. Далее, считаем $y\neq 0 \Rightarrow \langle y,y\rangle \neq 0 \Rightarrow$ имеем квадратный трехчлен.

По свойству 1), $\forall t, \ p(t) \geq 0 \Rightarrow D \leq 0, \ D = 4\langle x,y \rangle^2 - 4\langle x,x \rangle \langle y,y \rangle \leq 0 \Rightarrow \langle x,y \rangle^2 \leq \langle x,x \rangle \langle y,y \rangle \Rightarrow$ извлекаем корень и получаем требуемое неравенство $|\langle x,y \rangle| \leq \sqrt{\langle x,x \rangle \cdot \sqrt{\langle y,y \rangle}}$.

Равенство $\Leftrightarrow D=0 \Leftrightarrow \exists t_0 \colon p(t_0)=0 \Leftrightarrow x+t_0y=0$, т.е. x и y линейно зависимы.

Упр. 1. Свести к \mathbb{R}^2 и использовать школьную математику при доказательстве (скорее всего это про площадь параллелограмма).

Нормированное пространство

Длина или норма вектора $x \in \mathbb{R}^n$: $||x|| = \sqrt{\langle x, x \rangle}$.

Свойства нормы:

- 0) $\|\cdot\|:\mathbb{R}^n\to[0,+\infty);$
- 1) $||x|| = 0 \Leftrightarrow x = 0;$
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- 3) $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника);

$$\square \|x+y\|^2 = \langle x+y, x+y \rangle = \|x\|^2 + 2\langle x,y \rangle + \|y\|^2 \Rightarrow$$
 по неравенству КБ: $\langle x,y \rangle \leq \|x\| \cdot \|y\|$. Тогда:

$$||x + y||^2 = ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2 \Rightarrow ||x + y|| \le ||x|| + ||y||$$

Опр: 3. Линейное пространство (над \mathbb{R}), на котором задана функция $\|\cdot\|$, удовлетворяющая свойствам (0), (1), (2), (3) называется нормированным, а эта функция называется нормой.

Бывает ли так, что понятие норма задано, а скалярное произведение - нет? Всегда ли длину вектора можно задать подходящим скалярным произведением?

Если задана длина вектора, то мы можем выразить скалярное произведение через формулу:

$$\langle x, y \rangle = \frac{1}{2} \Big(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \Big)$$

Но эта формула далеко не всегда будет задавать скалярное произведение. Есть простой критерий для проверки, что норма будет задавать скалярное произведение.

Упр. 2. (Равенство параллелограмма)

Рис. 1: Сумма квадратов диагоналей равна сумме квадратов сторон.

Нормированное пространство - Евклидово, тогда и только тогда, когда выполняется равенство параллелограмма $\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$, доказать равенство при $\|x\| = \sqrt{\langle x, x \rangle}$ (необх. условие).

Нормированные пространства это более широкий класс пространств, чем Евклидовы. В них есть линейная структура, вектора, длины, но нет углов. В Евклидовом пространстве, есть скалярное произведение $\Rightarrow \cos \angle xy \frac{\langle x,y \rangle}{\|x\|\cdot\|y\|} \Rightarrow$ есть углы.

Метрическое пространство

Функция $\rho(x,y) = \|x-y\|$ обладает следующими свойствами:

- 1) $\rho \ge 0, \, \rho(x,y) = 0 \Leftrightarrow x = y$ (неотрицательность);
- 2) $\rho(x,y) = \rho(y,x)$ (симметричность);
- 3) $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ (неравенство треугольника);

$$\Box \quad \rho(x,y) = \|x - y\| = \|(x - z) + (z - y)\| \le \|x - z\| + \|z - y\| = \rho(x,z) + \rho(z,y).$$

Опр: 4. Если на непустом множестве X определена функция $\rho: X \times X \to [0, +\infty)$, удовлетворяющая свойствам 1), 2) и 3), то такая функция называется метрикой, а пара (X, ρ) метрическим пространством.

Переходы: Евклидово пространство ⇒ нормированное пространство ⇒ метрическое пространство - это упрощение структуры. В метрическом пространстве у нас есть только множество и "линейка", чтобы замерять расстояния между точками. Далее мы будем расширяться от понятия метрического пространства к Евклидову.

Примеры метрических пространств:

- (1) \mathbb{R}^n , $\rho(x,y) = \sqrt{\sum_{k=1}^n (x_k y_k)^2}$ метрическое пространство (разбирается в школе). Такакя метрика называется Евклидовой;
- (2) $X \neq \emptyset$, $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$, свойства 1) и 2) будут выполнены, проверим 3):

 \square $\rho(x,y) \le \rho(x,z) + \rho(z,y)$, в худшем случае слева будет 1, при $x \ne y$, если $\rho(x,z) = 0 \Rightarrow x = z$, если $\rho(z,y) = 0 \Rightarrow y = z \Rightarrow x = z = y \Rightarrow \rho(x,y) = 0$, что будет протворечием, если $x \ne y \Rightarrow$ неравенство треугольника выполняется.

Такая метрика называется дискретной;

- (3) \mathbb{R} , $\rho(x,y)=|f(x)-f(y)|$, где f некоторая функция. 2), 3) выполняются. Свойство 1) выполняется, когда $\rho(x,y)=0 \Leftrightarrow f(x)=f(y)\Rightarrow$ функция должна быть инъективной;
- (4) \mathbb{R}^n , $\rho(x,y) = \sum_{k=1}^n |x_k y_k|$ метрическое пространство;
- (5) \mathbb{R}^n , $\rho(x,y) = \max_{1 \le k \le n} |x_k y_k|$, свойства 1) и 2) будут выполнены, проверим 3):

Таким образом это тоже метрическое пространство;

- (6) $\{0,1\}^n = \{\underbrace{(0,1,0,0,1,1,0,\ldots)}_n\}, \, \rho(x,y) = \sum_{k=1}^n |x_k-y_k|$ метрическое пространство. Такая метрика называется расстоянием Хемминга, она указывает в скольких "битах" было различий.
- (7) $X \neq \varnothing, B(X) = \{f \mid f \colon X \to \mathbb{R}, f \text{ ограничена}\}, \rho(f,g) = \sup_x |f(x) g(x)|, \forall f,g \in B(X), B(X) \text{ множество всех ограниченных функций из } X \text{ в } \mathbb{R}.$ Если взять $X = \{1,2,\ldots,n\}$, то это будет частный случай пример (5). Свойства 1), 2) очевидны, остается доказать неравенство треугольника:

 $\Box \quad \forall x \in X, \ |f(x) - g(x)| \leq |f(x) - z(x)| + |z(x) - y(x)| \Rightarrow \forall x \in X, \ |f(x) - g(x)| \leq \sup_x |f(x) - z(x)| + \sup_x |z(x) - y(x)| \Rightarrow \sup_x |f(x) - g(x)| \leq \sup_x |f(x) - z(x)| + \sup_x |z(x) - y(x)|, \ \text{так как справа от } x \text{ ничего не зависело.}$

Опр: 5. Открытым шаром с центром в точке a и радиусом r называется $B(a,r) = \{x \mid \rho(a,x) < r\}$.

Опр: 6. Замкнутым шаром с центром в точке a и радиусом r называется $\overline{B}(a,r)=\{\,x\mid \rho(a,x)\leq r\,\}.$

Пример: \mathbb{R}^2 , $\rho(x,y) = |x_1 - y_1| + |x_2 - y_2|$, нарисуем как выглядит $B(0,1) = \{ (x_1,x_2) \mid |x_1| + |x_2| < 1 \}$:

Рис. 2: Пример открытого шара $B(0,1) = \{ (x_1, x_2) \mid |x_1| + |x_2| < 1 \}.$

Может оказаться, что шар с большим радиусом лежит строго внутри шара малого радиуса.

Пример: Возьмем прямоугольный треугольник $\triangle ABC$. В качестве метрического пространства возьмем его вершины $X = \{A, B, C\}$. Построим два шара $B(C, r) \land B(A, R) \colon R > r \Rightarrow$

$$B(C,r) = \{\,A,B,C\,\} \supsetneq B(A,R) = \{\,A,C\,\}$$

Рис. 3: Пример шара большего радиуса, содержащегося внутри шара меньшего радиуса.