Série d'exercices : Transformations spontanés dans les piles Et production d'énergie

Exercice 1 : On réalise la pile suivante:

Sachant que l'ampèremètre indique une intensité négative.

- 1) Déterminer la polarité de cette pile puis donner sa représentation symbolique conventionnelle.
- 2) Ecrire l'équation de la demi-réaction qui se produit près de chaque électrode puis en déduire l'équation globale de la réaction qui se produit lors du fonctionnement de la pile.
- 3) Quel est le rôle du pont salin?
- 4) Calculer le quotient initial de cette réaction.
- 5) Comment évolue ce quotient de la réaction durant le fonctionnement de la pile?

Exercice 2 Une pile est obtenue en reliant deux demi-piles par une solution gélifiée de chlorure de potassium, $(K^+ + Cl^-)$. Une des demi-piles est constituée d'une lame d'étain plongeant dans une solution de chlorure d'étain (II), telle $(Sn^{2+} + 2 Cl^{-})$, que $[Sn^{2+}] = 0$, 10 mol. L^{-1} ; l'autre est constituée d'une lame de nickel plongeant dans une solution de chlorure de nickel (II), Ni (aq) +2C (aq), telle que $[Ni^{2+}]_i = 0$, 01 mol. L^{-1} . On la branche aux bornes d'une résistance. Soit $K = 8, 9 \cdot 10^{-4}$, la constante d'équilibre à 25 °C associée à la réaction d'équation:

$$Ni^{2+}_{(aq)} + Sn_{(s)} \rightleftharpoons Ni_{(s)} + Sn^{2+}_{(aq)})$$

- 1. Prévoir le sens d'évolution spontanée du système chimique constituant la pile.
- 2. Quelle est la réaction qui a lieu : à l'électrode de nickel ? et . à l'électrode d'étain ?
- 3. Faire un dessin de la pile considérée et y représenter le mouvement des différents porteurs de charge.
- **4.** En déduire la polarité de cette pile et son schéma conventionnel.

Exercice 3 On réalise à la température $25^{\circ}C$ la pile nickel-cadmium composé de deux compartiments liés par un pont salin $(k^+ + Cl^-)$. Le

premier compartiment est composé d'une plaque de nickel plongée dans une $Ni^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$ et le deuxième solution de sulfate de nickel compartiment est composé d'une plaque de cadmium plongée dans une solution de sulfate de cadmium $Cd^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$

Les deux solutions ioniques ont :

- même volume V = 0.2 L.
- même concentration initiale $C = [Cd^{2+}]_i = [Ni^{2+}]_i = 0,1 \text{ mol.} L^{-1}$

Données:

-:
$$1F = 9,65.10^4 \text{ C.mol}^{-1}$$
 $M(Ni) = 58,7 \text{ g·mol}^{-1}$

La constante d'équilibre associée à la réaction est $K = 4,5.10^5$

$$Ni_{(aq)}^{2+}$$
 + $Cd_{(s)}$ $\xrightarrow{\textcircled{\tiny 1}}$ $Cd_{(aq)}^{2+}$ + $Ni_{(s)}$

Partie 1
1- Déterminer le quotient de la réaction $Q_{r,i}$ à l'état initial, et déduire le sens de l'évolution de cette réaction.
2- Déterminer la polarité de la pile en justifiant la réponse.
3- Représenter et nommer sur le montage expérimental ci-dessus : le sens d'électrons et ions dans le pont salin, puis
la nature des plaques et la solution de chaque compartiment.
Partie 2: On laisse la pile fonctionne une durée $\Delta t = 60$ min. La pile débite un courant d'intensité constante $I=0,1A$ 1- Calculer Q la quantité d'électricité débite au cours de son fonctionnement.
2- Dresser le tableau d'avancement au voisinage de la plaque de nickel 3- Montrer que l'avancement de la réaction pendant la durée Δt est $x(t) = 1,86.10^{-3}$ mol
4- Pendant la durée Δt , a- Calculer la variation de la masse de la plaque de nikel Δm (Ni) b-Calculer la variation de la concentration des ions de nikel ΔNi^{2+}
5- Trouver que l'avancement de la réaction à l'état d'équilibre (la pile devient usée) est : $X_{\text{éq}} = \frac{CV(k-1)}{1+k}$
En déduire la quantité d'électrons à l'état d'équilibre : $n(e^-)_{\max}$.

