Algebra

$$V = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$W = \begin{bmatrix} Sim(x) e^{x} | mx \end{bmatrix}$$

Matrizes

Matrizes

Aula 1

Introdução à Matrizes Tipos especiais de Matrizes

Aula 2

Operação com Matrizes:

Adição

Aula 3

Operações com Matrizes:

Multiplicação por escalar

Aula 4

Operações com Matrizes:

Transposição

Aula 5

Operações com Matrizes:

Multiplicação de Matrizes

Tópico especial

Processos aleatórios:

cadeias de Markov

Tabela

	Prova 1	Prova 2	Prova 3
Claudia	9	7	3
Manuel	7	8	7
Rebeca	4	6	8

Matriz

Matrizes

Definição

- Matriz = Tabela
- linhas x colunas

$$A_{mgn} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \\ m \times n \end{bmatrix}$$

$$= \begin{bmatrix} a_{ij} \\ m$$

Os elementos de matriz podem ser números reais ou complexos, funções, ou ainda outras matrizes.

Igualdade de matrizes

$$A_{m_{x_n}} = [a_{ij}]_{m_{x_n}}$$
 $B_{n_{x_s}} = [b_{ij}]_{n_{x_s}}$

$$A = B$$
) se

•
$$a_{ij} = b_i$$

Tipos especiais de matrizes

$$(m = n)$$
 $A_{m \times m}$
 $\times \begin{bmatrix} 2 & 0 \\ 9 & 3 \end{bmatrix} \begin{bmatrix} 1 & 9 & 8 \\ 9 & 0 & 7 \\ 5 & 1 & 1 \end{bmatrix}$

$$(\mathbf{n} = 1) \quad A_{m \times 1}$$

$$= \mathbf{x} \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \quad \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix}$$

Matriz Linha

$$(m=1)$$
 $A_{1\times m}$
 E_{X} : $[X \mid Y \mid Z]$
 $[f(x), g(x)]$

Matriz diagonal Matriz identidade

Ex:
$$I_3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 $I_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Matriz simétrica

$$(m = m) \qquad \alpha_{ij} = \alpha_{ji}$$

$$Ex: \begin{bmatrix} 1 & -3 & 0 \\ -3 & 1 & 5 \\ 0 & 5 & 4 \end{bmatrix} \begin{bmatrix} \alpha & b \\ b & c \end{bmatrix}$$

Matriz adjunta e matriz transposta serão vistas em outra aula.

Matriz triangular superior

$$(m=n)ea_{ij}=0$$
 para $i>j$

Ex:
$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 7 & 5 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 1 & 4 & 8 & x \\ 0 & 1 & 5 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Ex:
$$\begin{bmatrix} 7 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 3 & 6 & 0 \\ 5 & 4 & 9 & 6 \end{bmatrix} \begin{bmatrix} a & 0 \\ d & c \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 3 & 9 \end{bmatrix}$$

Matriz triangular inferior (m=m) e aij=0 para i<j

$$\begin{array}{c|c} \mathbf{x} & \mathbf{x} &$$

Livro texto

Quer ajudar esse projeto?

1NTy29unKJrTAjmfYYN6cJbKDsg6gxrXPQ

LesPNmLwZAARqGuZ9HqPQnR6YXyXRV8YTh