COMP110: Principles of Computing

11: Numerical Methods

Research Journal

Peer review tomorrow!

Representing numbers

Powers of 10

$$10^{6} = 1 \underbrace{000000}_{6 \text{ zeroes}}$$

$$10^{1} = 10$$

$$10^{0} = 1$$

$$10^{-1} = 0.1$$

$$10^{-6} = 0. \underbrace{00000}_{5 \text{ zeroes}} 1$$

Scientific notation

- A way of writing very large and very small numbers
- $a \times 10^b$, where
 - a (1 < |a| < 10) is the **mantissa**
 - (a is a positive or negative number with a single non-zero digit before the decimal point)
 - b (an integer) is the exponent
- ► E.g. 1 light year = 9.461×10^{15} metres
- ► E.g. Planck's constant = 6.626×10^{-34} joules
- ► Socrative FALCOMPED

Scientific notation in code

Instead of writing $\times 10$, write \bigcirc (no spaces)

```
lightYear = 9.461e15
plancksConstant = 6.626e-34
```

Floating point numbers

- Similar to scientific notation, but base 2 (binary)
- ► +mantissa × 2^{exponent}
- ► Sign is stored as a single bit: 0 = +, 1 = -
- Mantissa is a binary number with a 1 before the point;
 only the digits after the point are stored
- Exponent is a signed integer, stored with a bias

IEEE 754 floating point formats

Туре	Sign	Exponent	Mantissa	Total
Single precision	1 bit	8 bits	23 bits	32 bits
Double precision	1 bit	11 bits	52 bits	64 bits

Exponent is stored with a bias:

- ► Single precision: store exponent + 127
- ► Double precision: store exponent + 1023
- Python uses double precision
- ▶ Other languages have float (single) and double types

Example

0 10000001 101000000000000000000000

- ► Exponent: 129 127 = 2
- ► Mantissa: binary 1.101
- ► $1 + \frac{1}{2} + \frac{1}{8} = 1.625$
- ► $1.625 \times 2^2 = 6.5$
- ► Alternatively: $1.101 \times 2^2 = 110.1$
- $\blacktriangleright = 4 + 2 + \frac{1}{2} = 6.5$

Socrative FALCOMPED

What is the value of this number expressed in IEEE 754 single precision format?

0 10000010 010110000000000000000000

You have **5 minutes**, and you **may** use a calculator! (Unless your calculator does IEEE 754 conversion...)

Precision of floating point numbers

- ► Precision varies by magnitude
- Numbers near 0 can be stored more accurately than numbers further from 0
- ► Analogy: in scientific notation with 3 decimal places
 - ▶ Around 3.142×10^{0} : can represent a difference of 0.001
 - Around 3.142×10^3 : can represent a difference of 1
 - Around 3.142 × 10⁶: can represent a difference of 1000

Range of floating point numbers

/ 1	Smallest value	Largest value
Single precision		$\pm 3.403 \times 10^{38}$
Double precision	$\pm 2.225 \times 10^{-308}$	$\pm 1.798 \times 10^{308}$

Rounding errors

- Many numbers cannot be represented exactly in IEEE float
 - Similar to how decimal notation cannot exactly represent $\frac{1}{3} = 0.3333333...$ or $\frac{1}{7} = 0.142857...$
- ▶ Decimal: can represent $\frac{a}{b}$ exactly iff $b = 2^m 5^n$
- ▶ Binary: can represent $\frac{a}{b}$ exactly iff $b = 2^n$
- ► In particular, IEEE float can't represent $\frac{1}{10} = 0.1$ exactly!
- This can lead to rounding errors with some calculations
 - ▶ E.g. according to Python, $0.1 + 0.2 0.3 = 5.551 \times 10^{-17}$

Testing for equality

- Due to rounding errors, using == or != with floating point numbers is almost always a bad idea
- ► E.g. in Python, 0.1 + 0.2 == 0.3 evaluates to False
- Better to check for approximate equality: calculate the difference between the numbers, and check that it's smaller than some threshold

```
THRESHOLD = 1e-5
def is_approx_equal(a, b):
    return abs(b - a) < THRESHOLD</pre>
```

Decimal types

- ► Python (and other languages) provide a decimal type
- Uses base 10 rather than base 2, so avoids some of the gotchas with IEEE float
- ... however not natively supported by the CPU, hence much slower