Problem

In both parts, provide an analysis of the time complexity of your algorithm.

- a. Show that EQDFA ? P.
- **b.** Say that a language A is **star-closed** if A = A*. Give a polynomial time algorithm to test whether a DFA recognizes a star-closed language. (Note that *EQ*_{NFA} is not known to be in P.)

Step-by-step solution

Step 1 of 6

The given details are as follows:

$$EQ_{DFA} \in P$$

Where P is a class of language and EQ represents a deterministic finite automata (DFA).

Comment

Step 2 of 6

Consider E and $Q_{\text{be two }DFA}$, then a third DFA C can be constructed, which is defined as follows:

$$L(C) = \left(L(E) \cap \overline{L(Q)}\right) \cup \left(L(Q) \cap \overline{L(E)}\right)$$

Here, first the intersection of the language recognized by the *DFA E* and the complement of the language recognized by the *DFA Q* takes place and then its union takes place with the intersection of the language recognized by the *DFA Q* and the complement of the language recognized by the *DFA E*.

- \cdot In the process of DFA $\,^{\,C}$ construction, interchanging in accepting state can be used for complement operation.
- It is already known that, polynomial time can be taken in intersection and union operations. So, it can be said that "the polynomial time required finishing all the construction procedure".

Comment

Step 3 of 6

Algorithm:

L="On input ":

1. w will be run by L

2. If
$$L(C) = \varnothing$$
 (NULL) or $L(E) = L(Q)$ is accepted.

Else it is rejected.

Comment

Step 4 of 6

Now testing is performed on L(C) and check that where it becomes NULL. In other words, $L(C) = \varnothing_{\text{ or }} L(E) = L(Q)$.

- Now suppose, k= the number of states of C (polynomial size of E and Q), then it is already known that "the number of step 2 $\leq n$ and every step 2 takes a cost less than n^2 . Hence, it can be said that," $L(C)=\varnothing$ is polynomial".
- Therefore, a Turing machine is obtained which decide a polynomial time is used to run $^{EQ_{DEA}}$. In other words, it can be said that, " $^{EQ_{DEA}} \in P$ ".
- Hence, the time complexity of the algorithm is $O(n^2)$ because both *DFA E* and Q take O(n) time so, the total time is $O(n) \times O(n) = O(n^2)$.

Step 5 of 6	
b)	
	star-closed if $A = A^*$. An algorithm can be provided, which is used to test whether a DFA recognizes a star-closed by the following algorithm:
ullet For a given language A , s	suppose T be the Turing machine which decides it in polynomial in time.
Now a Turing machine T' i	s constructed which is used to decide the star closed of the given language $\it A$ in polynomial time.
T'="On input ":	
1. s will be run by T	
2. If T is accepted, reject.	Else it is rejected, accepted."
	Step 6 of 6
Here, T' is used to decide	the star of the language $\it A$. Since T runs on polynomial time, then T' will also be run on polynomial time.
Therefore, the above descri	bes that "DFA recognized a star-closed language".
	uage A can be (E) or an input for any number of times possible. Let, the input string k-times possible, thus for each input
time complexities are differe	ent and consider upper bound time $O(1) \times O(2) \times \dots \times O(n^k) = O(n^k)$
So, the total time complexity	
So, the total time complexity	vior kilmes is Viv.
Comment	