Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 9

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul $a = \log_3 2$. Arătați că $\log_3 6 = 1 + a$.
- **5p** 2. Determinați numărul real m, știind că punctul A(0,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m 3$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x+1) \log_2(x+3) = -1$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea {1,2,3,...,30}, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(4,-1). Determinați coordonatele punctului B, știind că O este mijlocul segmentului (AB).
- **5p** | **6.** Calculați cosinusul unghiului A al triunghiului ABC, știind că AB = 5, AC = 6 și BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră sistemul $\begin{cases} x+y+z=1\\ 2x+ay+3z=1\\ 4x+a^2y+9z=1 \end{cases}$, unde $a\in\mathbb{R}$ și se notează cu A matricea sistemului.
- **5p** | **a**) Arătați că det $A = -a^2 + 5a 6$.
- $\mathbf{5p} \mid \mathbf{b}$) Determinați valorile reale ale numărului a pentru care matricea A este inversabilă.
- **5p** | **c**) Pentru a = 1, rezolvați sistemul.
 - **2.** În $\mathbb{Z}_5[X]$ se consideră polinomul $f = mX^5 + nX$, cu $m, n \in \mathbb{Z}_5$.
- **5p a**) Determinați $n \in \mathbb{Z}_5$ pentru care $f(\hat{1}) = m$.
- **5p b**) Pentru $m = \hat{1}$ și $n = \hat{4}$, determinați rădăcinile din \mathbb{Z}_5 ale polinomului f.
- **5p** c) Arătați că, dacă $f(\hat{1}) = f(\hat{2})$, atunci $f(\hat{3}) = f(\hat{4})$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 x 1}{x + 1}$.
- **5p a**) Calculați $f'(x), x \in \mathbb{R} \setminus \{-1\}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x) \cdot \ln x}{x^2 x 1}$
- **5p** c) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = e^x \cdot \sqrt{x+1}$
- **5p** a) Determinați primitivele funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{f(x)}{\sqrt{x+1}}$.
- **5p b)** Calculați $\int_{1}^{2} \sqrt{x+1} \cdot f(x) dx$.
- **5p** c) Calculați aria suprafeței determinate de graficul funcției $h:(0,+\infty) \to \mathbb{R}$, $h(x) = e^{-x} \cdot f(x)$, axa Ox și dreptele de ecuații x = 2 și x = 3.