Introduction to Audio Content Analysis

Module 3.1: Feature Extraction — Statistical Features

alexander lerch

introduction

overview

corresponding textbook section

Chapter 3 — Instantaneous Features: pp. 35-41

- lecture content
 - introduction to statistical features
 - mean
 - variance and standard deviation
 - quantiles
- learning objectives
 - give examples of where statistical features can be used
 - describe the meaning of the introduced statistical features

introduction

overview

corresponding textbook section

Chapter 3 — Instantaneous Features: pp. 35–41

- lecture content
 - introduction to statistical features
 - mean
 - variance and standard deviation
 - quantiles
- learning objectives
 - give examples of where statistical features can be used
 - describe the meaning of the introduced statistical features

statistical features introduction

- statistical features are...
 - numerical descriptors of statistical properties of the signal or its PDF
 - general features that are not audio-related
- usage
 - often not directly applied to audio signal but to feature representations of it

statistical features arithmetic mean

Georgia Center for Music Tech College of Design

• from signal x:

$$\mu_{\mathsf{x}}(n) = \frac{1}{\mathcal{K}} \sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)} \mathsf{x}(i)$$

• from distribution n

$$\mu_{x}(n) = \sum_{x=0}^{\infty} x \cdot p_{x}(x)$$

a from uppermalized distribution of

$$\mu_{x}(n) = \frac{\sum_{x=-\infty}^{\infty} x \cdot d_{x}(x)}{\sum_{x=-\infty}^{\infty} d_{x}(x)}$$

statistical features arithmetic mean

Georgia Center for Music Tech College of Design

• from signal x:

$$\mu_{\mathsf{x}}(n) = \frac{1}{\mathcal{K}} \sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)} \mathsf{x}(i)$$

• from distribution p_x :

$$\mu_{x}(n) = \sum_{x}^{\infty} x \cdot p_{x}(x)$$

a from unnormalized distribution d

$$\mu_{x}(n) = \frac{\sum_{x=-\infty}^{\infty} x \cdot d_{x}(x)}{\sum_{x=-\infty}^{\infty} d_{x}(x)}$$

statistical features arithmetic mean

Georgia | **Center for Music** Tech | Technology College of Design

• from signal x:

$$\mu_{\mathsf{x}}(n) = \frac{1}{\mathcal{K}} \sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)} \mathsf{x}(i)$$

• from distribution p_{\vee} :

$$\mu_x(n) = \sum_{x=0}^{\infty} x \cdot p_x(x)$$

• from unnormalized distribution d_x :

$$\mu_{x}(n) = \frac{\sum_{x=-\infty}^{\infty} x \cdot d_{x}(x)}{\sum_{x=-\infty}^{\infty} d_{x}(x)}$$

 $x=-\infty$

statistical features geometric & harmonic mean

Georgia Center for Music Tech College of Design

geometric mean

$$M_{x}(0,n) = \sqrt[K]{\prod_{i=i_{s}(n)}^{i_{e}(n)} x(i)}$$

$$= \exp\left(\frac{1}{K} \sum_{i=i_{s}(n)}^{i_{e}(n)} \log[x(i)]\right)$$

harmonic mean

$$M_{x}(-1,n) = \frac{\mathcal{K}}{\sum\limits_{i=i,(n)}^{i_{\mathbf{e}}(n)} 1/x(i)}$$

statistical features geometric & harmonic mean

Georgia Center for Music Tech Technology

geometric mean

$$M_{x}(0,n) = \sqrt[K]{\prod_{i=i_{s}(n)}^{i_{e}(n)} x(i)}$$

$$= \exp\left(\frac{1}{K} \sum_{i=i_{s}(n)}^{i_{e}(n)} \log[x(i)]\right)$$

harmonic mean

$$M_{x}(-1,n) = rac{\mathcal{K}}{\sum\limits_{i=i_{\mathrm{s}}(n)}^{1/x(i)}}$$

generalized mean

Georgia Center for Music Tech Technology College of Design

generalized mean

$$M_{\mathsf{x}}(\beta, n) = \sqrt[\beta]{\frac{1}{\mathcal{K}} \sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)} \mathsf{x}^{\beta}(i)}$$

- ullet eta=1: arithmetic mear
- p = 2: quadratic mean
- ullet eta=-1: harmonic mear
- $\beta \to 0$: geometric mean
- $\beta \to -\infty$: minimum
- $\beta \to \infty$: maximum

Georgia Center for Music Tech College of Pesign

generalized mean

generalized mean

$$M_{\mathsf{x}}(\beta,n) = \sqrt[\beta]{rac{1}{\mathcal{K}}\sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)} \mathsf{x}^{\beta}(i)}$$

- $\beta = 1$: arithmetic mean
- $\beta = 2$: quadratic mean
- $\beta = -1$: harmonic mean
- $\beta \rightarrow 0$: geometric mean
- $\beta \to -\infty$: minimum
- $\beta \to \infty$: maximum

statistical features — centroid

Georgia Center for Music Tech College of Design

centroid: center of gravity

$$v_{\mathrm{C}}(n) = \frac{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \left(i-i_{\mathrm{s}}(n)\right) \cdot x(i)}{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} x(i)}$$

statistical features — centroid

Georgia Center for Music Tech College of Design

centroid: center of gravity

$$v_{\mathrm{C}}(n) = rac{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \left(i-i_{\mathrm{s}}(n)
ight) \cdot x(i)}{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} x(i)}$$

Why does this look familiar?

statistical features — centroid

Georgia Center for Music Tech College of Design

centroid: center of gravity

$$v_{\mathrm{C}}(n) = rac{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \left(i-i_{\mathrm{s}}(n)
ight) \cdot x(i)}{\sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} x(i)}$$

Why does this look familiar?

 \rightarrow compare arithmetic mean

variance & standard deviation

Georgia Center for Music Tech College of Design

measure of *spread* of the signal around its mean

- variance
 - from signal block:

$$\sigma_{\scriptscriptstyle X}^2(n) = rac{1}{\mathcal{K}} \sum_{i=i_{\scriptscriptstyle \mathrm{S}}(n)}^{i_{\scriptscriptstyle \mathrm{C}}(n)} ig(x(i) - \mu_{\scriptscriptstyle X}(n) ig)^2$$

fuene distribution

$$\sigma_x^2(n) = \sum_{x=0}^{\infty} (x - \mu_x)^2 \cdot p_x(x)$$

a atau dayah dayaatia

$$\sigma_{x}(n) = \sqrt{\sigma_{x}^{2}(n)}$$

variance & standard deviation

Georgia Center for Music Tech Tech College of Design

measure of *spread* of the signal around its mean

- variance
 - from signal block:

$$\sigma_{\scriptscriptstyle X}^2(n) = rac{1}{\mathcal{K}} \sum_{i=i_{\scriptscriptstyle S}(n)}^{i_{\scriptscriptstyle \rm E}(n)} ig(x(i) - \mu_{\scriptscriptstyle X}(n)ig)^2$$

• from distribution:

$$\sigma_x^2(n) = \sum_{x=0}^{\infty} (x - \mu_x)^2 \cdot p_x(x)$$

standard doviation

$$\sigma_{\mathsf{x}}(n) = \sqrt{\sigma_{\mathsf{x}}^2(n)}$$

variance & standard deviation

Georgia Center for Music Tech College of Design

measure of spread of the signal around its mean

- variance
 - from signal block:

$$\sigma_{\scriptscriptstyle X}^2(n) = rac{1}{\mathcal{K}} \sum_{i=i_{\scriptscriptstyle S}(n)}^{i_{\scriptscriptstyle \rm E}(n)} ig(x(i) - \mu_{\scriptscriptstyle X}(n)ig)^2$$

• from distribution:

$$\sigma_x^2(n) = \sum_{x=0}^{\infty} (x - \mu_x)^2 \cdot p_x(x)$$

standard deviation

$$\sigma_{\mathsf{x}}(\mathsf{n}) = \sqrt{\sigma_{\mathsf{x}}^2(\mathsf{n})}$$

statistical features quantiles & quantile ranges

Georgia Center for Music Tech College of Design

dividing the PDF into (equal sized) subsets

$$Q_{\mathrm{X}}(c_{p}) = \operatorname{argmin}\left(F_{\mathrm{X}}(x) \leq c_{p}\right)$$
 with $F_{\mathrm{X}}(x) = \int\limits_{-\infty}^{x} p_{\mathrm{x}}(y) \, dy$

statistical features quantile examples

Georgia Center for Music Tech Techology

median

$$Q_{\rm X}(0.5) = \operatorname{argmin} (F_{\rm X}(x) \le 0.5)$$

- quartiles: $Q_X(0.25)$, $Q_X(0.5)$, and $Q_X \times (0.75)$
- quantile range, e.g.

$$\Delta Q_{\rm X}(0.9) = Q_{\rm X}(0.95) - Q_{\rm X}(0.05)$$

summary

lecture content

statistical features

- summarize technical signal characteristics in few numerical values
- may be used on a time domain, frequency domain, or feature domain signal

feature description

- mean: average value
- variance and standard deviation: measure of expected deviation from the mean
- quantiles: numerical pdf shape description

