5

10

WHAT IS CLAIMED IS:

- 1. A method for controlling excessive proliferation or migration of smooth muscle cells comprising treating said smooth muscle cells with an effective amount of an antagonist of a native ErbB4 receptor.
- 2. The method of claim 1 wherein the control is prevention of excessive proliferation or migration of smooth muscle cells.
- 3. The method of claim 1 wherein the control is inhibition of excessive proliferation or migration of smooth muscle cells.
 - 4. The method of claim 3 wherein said inhibition is total inhibition.
- 5. The method of claim 1 wherein said smooth muscle cells are pyloric smooth muscle cells.
- 6. The method of claim 1 wherein said smooth muscle cells are urinary bladder smooth muscle cells.
- 7. The method of claim 1 wherein said smooth muscle cells are those of an airway passage.
- 8. The method of claim 1 wherein said excessive proliferation or migration of smooth muscle cells results in stenosis.
- 9. The method of claim 1 wherein said smooth muscle cells are vascular smooth muscle cells.
 - 10. The method of claim 9 wherein said vascular smooth muscle cells are human.
- 11. The method of claim 9 wherein said vascular smooth muscle cells are human aortic smooth muscle cells.
- 12. The method of claim 9 wherein said excessive proliferation or migration of smooth muscle cells results in vascular stenosis.
- 13. The method of claim 12 wherein said vascular stenosis is further characterized by excessive proliferation or migration of endothelial cells.
 - 14. The method of claim 13 wherein said stenosis is restenosis.
- 15. The method of claim 1 wherein the ErbB4 receptor antagonist is an immunoadhesin.

10

- 16. The method of claim 15 wherein said immunoadhesin comprises an extracellular domain sequence of a native ErbB4 receptor.
 - 17. The method of claim 16 wherein said native ErbB4 receptor is human.
- 18. The method of claim 17 wherein the native human ErbB4 receptor extracellular domain sequence is fused to an immunoglobulin heavy chain constant region sequence.
 - 19. The method of claim 18 wherein said immunoglobulin is of IgG isotype.
- 20. The method of claim 19 wherein said immunoglobulin is of IgG1, IgG2 or IgG3 isotype.
- 21. The method of claim 19 wherein said immunoadhesin comprises at least one IgG immunoglobulin light chain.
 - 22. The method of claim 1 wherein said antagonist is an antibody.
- 23. The method of claim 22 wherein said antibody is a neutralizing antibody against a native ErbB4 receptor.
- 24. The method of claim 23 wherein said antibody is a chimeric, humanized or human antibody.
 - 25. The method of claim 23 wherein said antibody is glycosylated.
- 26. The method of claim 23 wherein said antibody binds essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- 27. The method of claim 23 wherein said antibody has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).

10

- A method for treating stenosis in a mammalian patient comprising 28. administering to said patient an effective amount of an antagonist of a native mammalian ErbB4 receptor.
 - The method of claim 28 wherein said patient is human. 29.
 - The method of claim 29 wherein said stenosis is vascular stenosis. 30.
 - The method of claim 30 wherein said vascular stenosis is restenosis. 31.
 - The method of claim 28 wherein said antagonist is an immunoadhesin. 32.
- The method of claim 32 wherein said immunoadhesin comprises an 33. extracellular domain sequence of a native human ErbB4 receptor.
- The method of claim 33 wherein said extracellular domain sequence is fused 34. to an immunoglobulin heavy chain constant region sequence.
 - The method of claim 34 wherein said immunoglobulin is of IgG isotype. 35.
 - The method of claim 28 wherein said antagonist is an antibody. 36.
- The method of claim 36 wherein said antibody is a neutralizing antibody 37. against a native human ErbB4 receptor.
- The method of claim 36 wherein said antibody binds essentially the same 38. epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number HER4.3B9.2C9 (ATCC Accession PTA-2826), Number PTA-2829), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- The method of claim 36 wherein said antibody has complementarity 39. determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- The method of claim 28 wherein said antagonist is administered as an 40. injection or infusion.

82

30

5

- 41. The method of claim 28 wherein said treatment additionally reduces hypertension associated with said stenosis.
 - 42. The method of claim 28 wherein said treatment is prevention.
 - 43. The method of claim 28 wherein said stenosis is pyloric stenosis.
- 44. The method of claim 28 wherein said stenosis is thickening of the urinary bladder wall.
- 45. The method of claim 28 wherein said stenosis is part of an obstructive airway disease.
- 46. A method for treating stenosis in a mammalian patient comprising introducing into a cell of said patient a nucleic acid encoding an antagonist of an ErbB4 receptor.
 - 47. The method of claim 46 wherein said patient is human.
 - 48. The method of claim 47 wherein said antagonist is an immunoadhesin.
- 49. The method of claim 48 wherein said immunoadhesin comprises an extracellular domain sequence of a native human ErbB4 receptor fused to an immunoglobulin heavy chain constant region sequence.
 - 50. The method of claim 47 wherein said antagonist is an antibody.
- 51. The method of claim 50 wherein said antibody is a neutralizing antibody against a native ErbB4 receptor.
- 52. The method of claim 51 wherein said antibody is a chimeric, humanized or human antibody.
- 53. The method of claim 51 wherein said antibody binds essentially the same epitope as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- 54. The method of claim 51 wherein said antibody has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession

30

5

10

Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).

- 55. The method of claim 46 wherein said nucleic acid is introduced in vivo.
- 56. The method of claim 46 wherein said nucleic acid is introduced ex vivo.
- 57. A method for treating hypertension associated with vascular stenosis in a mammalian patient, comprising administering to said patient an effective amount of an antagonist of a native mammalian ErbB4 receptor.
 - 58. The method of claim 57 wherein said antagonist is a small molecule.
- 59. A pharmaceutical composition for the treatment of stenosis in a mammalian patient comprising an effective amount of an antagonist of a native mammalian ErbB4 receptor, in admixture with a pharmaceutically acceptable carrier.
- 60. A method for identifying a molecule that inhibits or enhances the proliferation or migration of smooth muscle cells, comprising the steps of:
- (a) contacting a polypeptide comprising an amino acid sequence having at least 85 % sequence identity with the amino acid sequence of the extracellular domain of a native ErbB4 receptor and retaining the ability to control excessive proliferation or migration of smooth muscle cells, with a candidate molecule; and
- (b) determining whether the candidate molecule inhibits or enhances the ability of said polypeptide to control excessive proliferation or migration of smooth muscle cells.
- 61. The method of claim 60 wherein said polypeptide comprises the extracellular domain of a native ErbB4 receptor.
 - 62. The method of claim 61 wherein said receptor is human.
 - 63. The method of claim 61 wherein said polypeptide is an immunoadhesin.
- 64. The method of claim 60 wherein said molecule enhances the ability of said polypeptide to control excessive proliferation or migration of smooth muscle cells.
- 65. The method of claim 64 wherein said molecule is selected from the group consisting of antibodies and small molecules.
- 66. An antibody that binds essentially the same epitope of ErbB4 as an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829),

10

HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).

- 67. An antibody that has complementarity determining region (CDR) residues from an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- 68. An antibody selected from the group consisting of an antibody produced by a hybridoma selected from the group consisting of HER4.10H1.1A1 (ATCC Accession Number PTA-2828), HER4.1C6.A11 (ATCC Accession Number PTA-2829), HER4.3B9.2C9 (ATCC Accession Number PTA-2826), HER4.1A6.5B3 (ATCC Accession Number PTA-2827) and HER4.8B1.2H2 (ATCC Accession Number PTA-2825).
- 69. An antibody that binds essentially the same epitope of ErbB4 bound by an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
- 70. An antibody that has complementarity determining region (CDR) residues from an antibody selected from the group consisting of anti-ErbB4 monoclonal antibodies 4-1440, 4-1460, 4-1473, 4-1492 and 4-1464.
 - 71. An antibody which binds to ErbB4 with high affinity.
- 72. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 100 nM.
 - 73. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 50 nM.
 - 74. The antibody of claim 71 which binds to ErbB4 with a Kd of less than 10 nM.
 - 75. The antibody of claim 71 which is a humanized antibody.
 - 76. The antibody of claim 71 which is a human antibody.
 - 77. The antibody of claim 71 which is an antibody fragment.
 - 78. An antibody which is capable of binding to both ErbB4 and ErbB3.
 - 79. The antibody of claim 78 which binds ErbB4 with high affinity.

- 80. The antibody of claim 78 which binds both ErbB4 and ErbB3 with high affinity.
 - 81. An antibody which binds to ErbB4 and reduces heregulin binding thereto.
 - 82. The antibody of claim 81 which binds ErbB4 with high affinity.
- 83. An antibody which binds to ErbB4 and reduces heregulin-induced tyrosine phosphorylation thereof.
 - 84. The antibody of claim 83 which binds ErbB4 with high affinity.