Properties of Determinants

Michael Brodskiy

Professor: Lynn Knight

February 24, 2021

- If **A** and **B** are square matrices of order n, then $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$
- All row operations are extended to columns
- Let $(\mathbf{A}) = n$ and c be a scalar, then $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$
- **A** is invertible iff the determinant of $\mathbf{A} \neq 0$
- Fundamental Theorem (version II)
 - 1. If **A** is an $n \times n$ matrix, then the following conditions are equivalent:
 - (a) A is invertible
 - (b) Ax = B has a unique solution for any nx1 column matrix B
 - (c) $\mathbf{A}x = 0$ has only trivial solution x = 0
 - (d) $\mathbf{A} \ \widetilde{R} \mathbf{I}_n$
 - (e) ${\bf A}$ can be written as a product of elementary matrices
 - (f) $\det(\mathbf{A}) \neq 0$