AN 3.2 - 1 Funktion und Stammfunktion - OA - BIFIE

1. Die Abbildung zeigt den Graphen einer Polynomfunktion f.

Zeichne den Graphen einer Stammfunktion F der Funktion f in die Abbildung ein!

AN 3.2

Die Aufgabe gilt als richtig gelöst, wenn der Graph der Funktion F im gesamten dargestellten Bereich monton wachsend dargestellt wird und an der Stelle 2 einen deutlich erkennbaren Sattelpunkt aufweist.

AN 3.2 - 2 Graph der ersten Ableitungsfunktion - MC - BIFIE

2. Gegeben ist der Graph der Funktion f.

_____/1

AN 3.2

Welche der nachstehenden Abbildungen beschreibt den Graphen der ersten Ableitungsfunktion der Funktion f? Kreuze die zutreffende Abbildung an!

AN~3.2 - 3 Funktion - Ableitungsfunktion - MC - BIFIE

3. In der untenstehenden Abbildung ist der Graph der Ableitungsfunktion f' einer Funktion f dargestellt.

AN 3.2

Kreuze die beiden zutreffenden Aussagen an!

Jede Funktion f mit der Ableitungsfunktion f' hat an der Stelle x_5 eine horizontale Tangente.	
Es gibt eine Funktion f mit der Ableitungsfunktion f' , deren Graph durch den Punkt $P=(0/0)$ verläuft.	
Jede Funktion f mit der Ableitungsfunktion f' ist im Intervall $[x_1; x_2]$ streng monoton fallend.	
Jede Funktion f mit der Ableitungsfunktion f' ist im Intervall $[x_3; x_4]$ streng monoton steigend.	
Die Funktionswerte $f(x)$ jeder Funktion f mit der Ableitungsfunktion f' sind für $x \in [x_3; x_5]$ stets positiv.	

AN 3.2 - 4 Gleiche Ableitungsfunktion - OA - BIFIE

4. In der unten stehenden Abbildung ist der Graph der Funktion g dargestellt. ____/1 Zeichen im vorgegebenen Koordinatensystem den Graphen einer Funktion f ($f \neq g$) ein, die die gleiche Ableitungsfunktion wie die Funktion g hat!

Die Aufgabe gilt nur dann als richtig gelöst, wenn der Graph von f erkennbar durch eine Verschiebung in Richtung der y-Achse aus dem Graphen von g entsteht.

AN 3.2 - 5 Stammfunktion erkennen - MC - BIFIE

5. Gegeben sind die Funktion f und g und die Konstante $a \in \mathbb{R}^+$.

Les gilt der Zusammenhang g'(x) = f'(x).

AN 3.2

Kreuze die beiden zutreffenden Aussagen an!

f ist eine Stammfunktion von g .	
g ist eine Stammfunktion von f .	\boxtimes
g-a ist eine Stammfunktion von f .	\boxtimes
f + a ist eine Stammfunktion von g .	
$a \cdot g$ ist eine Stammfunktion von f .	

AN 3.2 - 6 Eigenschaften der Ableitungsfunktion - OA - BIFIE - Kompetenzcheck 2016

6. In der nachstehenden Tabelle sind Funktionswerte einer Polynomfunktion f dritten Grades sowie ihrer Ableitungsfunktionen f' und f'' angegeben.

AN 3.2

x	0	1	2	3	4
f(x)	-2	2	0	-2	2
f'(x)	9	0	-3	0	9
f''(x)	-12	-6	0	6	12

Gib an, an welchen Stellen des Intervalls (0;4) die Funktion f jedenfalls lokale Extremstellen besitzt.

Die Stellen $x_1 = 1$ und $x_2 = 3$ sind lokale Extremstellen der Funktion f.

AN 3.2 - 7 Funktionen und Ableitungsfunktionen - ZO - Matura 2015/16 - Haupttermin

7. Links sind die Graphen von vier Polynomfunktionen (f_1, f_2, f_3, f_4) abgebildet, _____/1 rechts die Graphen sechs weiterer Funktionen $(g_1, g_2, g_3, g_4, g_5, g_6)$. AN 3.2

Ordnen Sie den Polynomfunktionen f_1 bis f_4 ihre jeweilige Ableitungsfunktion aus den Funktionen g_1 bis g_6 (aus A bis F) zu.

AN 3.2 - 8 Zusammenhang zwischen Funktion und Ableitungsfunktion - LT - Matura 2014/15 - Haupttermin

8. In der folgenden Abbildung ist der Graph einer Polynomfunktion f dargestellt:

AN 3.2

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

_______.

1)	
im Intervall $[-1;1]$ negativ	
im Intervall $[-1;1]$ gleich null	
im Intervall $[-1;1]$ positiv	

2	
f hat im Intervall $[-1; 1]$ eine Nullstelle	
f ist im Intervall $[-1;1]$ streng monoton steigend	\boxtimes
f hat im Intervall $[-1; 1]$ eine Wendestelle	

AN 3.2 - 9 Stammfunktion einer konstanten Funktion - OA

- Matura 2014/15 - Nebentermin 1

9. In der nachstehenden Abbildung ist der Graph einer konstanten Funktion f _____/1 dargestellt. AN 3.2

Der Graph einer Stammfunktion F von f verläuft durch den Punkt P=(1|1). Zeichne den Graphen der Stammfunktion F im nachstehenden Koordinatensystem.

Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn die lineare Stammfunktion F durch den Punkt P=(1|1) verläuft und die Steigung -2 hat.

AN 3.2 - 10 Eigenschaften der Ableitungsfunktion einer Polynomfunktion 3. Grades - OA - Matura 2014/15 - Nebentermin 2

10. Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f dritten Grades. Die Koordinaten der hervorgehobenen Punkte des Graphen der AN 3.2 Funktion sind ganzzahlig.

Welche der folgenden Aussagen treffen auf die Ableitungsfunktion f' der Funktion f zu? Kreuze die beiden zutreffenden Aussagen an.

Die Funktionswerte der Funktion f' sind im Intervall $(0;2)$ negativ.	\boxtimes
Die Funktion f' ist im Intervall $(-1;0)$ streng monoton steigend.	
Die Funktion f' hat an der Stelle $x=2$ eine Wendestelle.	
Die Funktion f' hat an der Stelle $x=1$ ein lokales Maximum.	
Die Funktion f' hat an der Stelle $x=0$ eine Nullstelle.	×

AN 3.2 - 11 Graphen von Ableitungsfunktionen - MC - Matura 2015/16 - Nebentermin 1

11. In den unten stehenden Abbildungen sind jeweils die Graphen der Funktionen ---/1 f, g und h dargestellt. AN 3.2

In einer der sechs Abbildungen ist g die erste Ableitung von f und h die zweite Ableitung von f. Kreuze diese Abbildung an.

AN 3.2 - 12 Eigenschaften der zweiten Ableitung - MC - Matura NT 2 15/16

12. Gegeben sind die Graphen von fünf reellen Funktionen.

____/1

Für welche der angegebenen Funktionen gilt f''(x) > 0 im Intervall [-1; 1]? AN 3.2 Kreuze die beiden zutreffenden Graphen an!

AN 3.2 - 13 Ableitung - OA - Matura 2013/14 1. Nebentermin

13. In der nachstehenden Abbildung ist der Graph der 1. Ableitungsfunktion f' _____/1 einer Polynomfunktion f dargestellt. AN 3.2

Bestimme, an welchen Stellen die Funktion f im Intervall (-5;5) jedenfalls lokale Extrema hat! Die für die Bestimmung relevanten Punkte mit ganzzahligen Koordinaten können der Abbildung entnommen werden.

An den Stellen $x_1 = -4$ und $x_2 = 4$ hat f lokale Extrema.

AN 3.2 - 14 Grafisch differenzieren - OA - Matura 2016/17 - Haupttermin

14. Gegeben ist der Graph einer Polynomfunktion dritten Grades f.

____/1

AN 3.2

Skizziere in der gegebenen Grafik den Graphen der Ableitungsfunktion f' im Intervall $[x_1; x_2]$ und markiere gegebenenfalls die Nullstellen!

Lösungsschlüssel:

Ein Punkt für eine korrekte Darstellung der Ableitungsfunktion f'. Der Graph der Funktion f' muss erkennbar die Form einer nach oben offenen Parabel haben und die x-Achse an den beiden Stellen schneiden, bei denen die Funktion f die Extremstellen hat. Der Graph einer entsprechenden Funktion f', der über das Intervall $[x_1; x_2]$ hinaus gezeichnet ist, ist ebenfalls als richtig zu werten.

AN 3.2 - 15 Differenzieren einer Exponentialfunktion - OA - Matura NT 116/17

15. Gegeben ist eine Funktion f mit $f(x) = e^{\lambda \cdot x}$ mit $\lambda \in \mathbb{R}$. _____/1

Die nachstehende Abbildung zeigt die Graphen der Funktion f und ihrer Ableitungsfunktion f'.

Gib den Wert des Parameters λ an!

 $\lambda = -0.5$

Toleranzintervall: [-0.55; -0.45]