Apuntes Metnum

October 8, 2023

Gian

1 Elementos del álgebra lineal	5
1.1 Vectores	6
1.1.1 Suma	6
1.1.2 Multiplicación por escalares	6
1.1.3 Producto interno	6
1.1.4 Combinación Lineal	6
1.1.5 Base vectorial	7
1.2 Matrices	8
1.2.1 Suma	8
1.2.2 Producto por escalares	8
1.2.3 Producto de matrices	8
1.2.4 Rango de una matriz	9
1.2.5 Determinante de una matriz	9
1.2.6 Espacio imagen	9
1.2.7 Espacio nulo	9
1.2.8 Matriz inversa	10
1.2.9 Matriz traspuesta	11
1.2.10 Submatriz principal	11
1.2.11 Matrices especiales	11
2 Sistema de ecuaciones lineales	15
2.1 Definición	16
2.2 Resolución	17
2.2.1 Sistemas de ecuaciones diagonales	
2.2.2 Sistemas de ecuaciones triangulares	
2.3 Sistemas de ecuaciones generales	19
2.3.1 Eliminación gaussiana	
2.3.2 Eliminación Gaussiana con pivoteo	19
3 Factorización LU	21
3.1 Objetivo	22
3.2 Método	23
3.3 Propiedades	26
3.4 Factorización PLU	33
4 Normas vectoriales y matriciales	35
4.1 Normas vectoriales	36
4.2 Normas matriciales	37
4.2.2 Cota del error	38
5 Factorización de Cholesky	39
5.1 Matrices Simétricas Definidas Positivas	40
5.2 Método	45
5.2.1 Algoritmo	45
6 Factorización QR	
6.1 Marices Ortogonales	48
6.1.1 Métodos	48

6.2 Método de Givens	50
6.2.1 Rotaciones de Givens	50
6.2.2 Factorización QR en el plano $(2 imes 2)$	50
6.2.3 Factorización en $\mathbb{R}^{n imes n}$	50
6.3 Método de Householder	53
6.3.1 Reflexiones de Householder	
6.3.2 Factorización en el plano $ig(2 imes2ig)$	54
6.3.3 Factorización en $\mathbb{R}^{n \times n}$	
6.4 Propiedades	56
7 Factorización SVD	57
7.1 Autovalores	58
7.1.1 Disco de Gershgorin	62
7.1.2 Matriz semejantes	
7.1.3 Propiedades de autovalores	66
7.2 Métodos para calcular autovalores	71
7.2.1 Método de la potencia	71
7.2.2 Método de la deflación	71
7.3 Descomposición en valores singulares (SVD)	72
7.3.1 Método	72
7.3.2 Demostración	72
7.3.3 Propiedades	74
8 Métodos iterativos para sistemas de ecuaciones lineales	76
8.1 Introducción	77
8.1.1 Método de Jacobi	77
8.1.2 Método de Gauss-Seidel	78
8.2 Análisis de convergencia	80
8.2.1 Matriz convergente	
8.2.2 Teorema de convergencia	
8.2.3 Cota del error	
9 Bibliografía	
9.1 Videos de clases	
9.2 Enlaces	87
9.3 Libros	

1.1 Vectores

Un **vector es un conjunto ordenado de números reales**, que se pueden representar como una lista de números. Por ejemplo, el vector $v \in \mathbb{R}^n$ se puede representar como v = (1, 2, 3).

1.1.1 Suma

Para sumar dos vectores, se suman las componentes correspondientes:

$$w = v + u$$
 con $w_i = v_i + u_i$ para $i = 1, 2, 3, ..., n$

La suma de vectores es conmutativa y asociativa.

1.1.2 Multiplicación por escalares

Los vectores se pueden **multiplicar por escalares**: Sea $\alpha \in \mathbb{R}$ y $v \in \mathbb{R}^n$, entonces $\alpha \cdot v = (\alpha \cdot v_1, \alpha \cdot v_2, ..., \alpha \cdot v_n)$ para

1.1.3 Producto interno

El **producto interno** de dos vectores $v, u \in \mathbb{R}^n$ se define como:

$$v \cdot u = \sum_{i=1}^n v_i u_i = \|v\| \; \|u\| \cos heta$$

donde θ es el angulo entre v y u

Graficamente, el producto interno se puede interpretar como la **proyección** de un vector sobre otro.

1.1.4 Combinación Lineal

Una **combinación lineal** w de vectores $v_1, v_2, ..., v_n$ es un vector de la forma

$$w = \sum_{i=1}^n lpha_i v_i \; \; \mathrm{con} \; lpha_i \in \mathbb{R}^n$$

Decimos que v_1 , v_2 , ..., v_n son **linealmente independientes** si la única combinación lineal que da el vector nulo es la trivial, es decir, si $\alpha_1=\alpha_2=...=\alpha_n=0$.

En cambio, si existe una combinación lineal no trivial (algún $\alpha_i \neq 0$) que da el vector nulo, entonces los vectores son **linealmente dependientes**.

Nombramos **espacio generado** por un conjunto de vectores $v_1,v_2,...,v_n$ al conjunto de todas las combinaciones lineales de esos vectores:

$$S = \left\{ x \in \mathbb{R}^n \; \; ext{tal que } x = \sum_{i=1}^n lpha_i v_i
ight\}$$

y su **dimensión** es la cantidad máxima de vectores linealmente independientes que lo generan.

1.1.5 Base vectorial

Una **base vectorial** B es un conjunto de vectores linealmente independientes que generan un espacio vectorial. En otras palabras, B es una base de S si todos los vectores $v \in S$ se pueden escribir como una combinación lineal de los vectores de B.

1.2 Matrices

Una matriz es un **arreglo rectangular de números reales**. Por ejemplo, la matriz $A \in \mathbb{R}^{m \times n}$ se puede representar como:

$$A = egin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \ a_{21} & a_{22} & ... & a_{2n} \ dots & dots & \ddots & dots \ a_{i1} & a_{i2} & ... & a_{\epsilon} \ dots & dots & dots & dots \ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$$

1.2.1 Suma

Sean $A, B \in \mathbb{R}^{m \times n}$, entonces $A + B = C \in \mathbb{R}^{m \times n}$, donde $C_{ij} = A_{ij} + B_{ij}$.

$$A+B=egin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & ... & a_{1n}+b_{1n} \ a_{21}+b_{21} & a_{22}+b_{22} & ... & a_{2n}+b_{2n} \ dots & dots & \ddots & dots \ a_{i1}+b_{i1} & a_{i2}+b_{i2} & ... & a_{ec{\epsilon}}+b_{in} \ dots & dots & dots & dots \ a_{m1}+b_{m1} & a_{m2}+b_{m2} & ... & a_{mn}+b_{mn} \end{bmatrix}$$

La suma de matrices es conmutativa y asociativa.

Notar que para poder sumar dos matrices, **deben tener la misma dimen**sión.

1.2.2 Producto por escalares

Sean $A \in \mathbb{R}^{m imes n}$ y $lpha \in \mathbb{R}$, entonces $lpha A = B \in \mathbb{R}^{m imes n}$, donde $B_{ij} = lpha A_{ij}$.

$$oldsymbol{lpha} A = egin{bmatrix} oldsymbol{lpha} a_{11} & oldsymbol{lpha} a_{12} & \dots & oldsymbol{lpha} a_{1n} \ oldsymbol{lpha} a_{21} & oldsymbol{lpha} a_{22} & \dots & oldsymbol{lpha} a_{2n} \ dots & dots & \ddots & dots \ oldsymbol{lpha} a_{i1} & oldsymbol{lpha} a_{i2} & \dots & oldsymbol{lpha} a_{\epsilon} \ dots & dots & dots & dots \ oldsymbol{lpha} a_{m1} & oldsymbol{lpha} a_{m2} & \dots & oldsymbol{lpha} a_{mn} \end{bmatrix}$$

1.2.3 Producto de matrices

Sean $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times p}$, entonces $AB = C \in \mathbb{R}^{m \times p}$, donde

$$C_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

$$AB = \begin{bmatrix} \sum_{k=1}^{n} a_{1k}b_{k1} & \sum_{k=1}^{n} a_{1k}b_{k2} & \dots & \sum_{k=1}^{n} a_{1k}b_{kp} \\ \sum_{k=1}^{n} a_{2k}b_{k1} & \sum_{k=1}^{n} a_{2k}b_{k2} & \dots & \sum_{k=1}^{n} a_{2k}b_{kp} \\ \vdots & & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{ik}b_{k1} & \sum_{k=1}^{n} a_{ik}b_{k2} & \dots & \sum_{k=1}^{n} a_{ik}b_{kp} \\ \vdots & & \vdots & \vdots & \vdots \\ \sum_{k=1}^{n} a_{mk}b_{k1} & \sum_{k=1}^{n} a_{mk}b_{k2} & \dots & \sum_{k=1}^{n} a_{mk}b_{kp} \end{bmatrix}$$

1.2.4 Rango de una matriz

El rango de una matriz $A \in \mathbb{R}^{m \times n}$ es la cantidad máxima de columnas linealmente independientes que tiene.

1.2.5 Determinante de una matriz

El **determinante** $\det(A)$ de una matriz $A \in \mathbb{R}^{n \times n}$ es un **número real** que se calcula como:

$$\det(A) = \sum_{i=1}^{n} \left(-1\right)^{i+j} a_{ij} \det\left(A_{ij}\right) \ \text{ para cualquier } j \in \{1,2,...,n\}$$

donde A_{ij} es la matriz que se obtiene de A al eliminar la fila i y la columna j. Graficamente, **es el área del paralelogramo que forman las filas de** A. En un espacio, el determinante es el volumen del paralelepípedo correspondiente.

1.2.6 Espacio imagen

El **espacio imagen** de una matriz $A \in \mathbb{R}^{m \times n}$ es el conjunto de todos los vectores $b \in \mathbb{R}^m$ que se pueden escribir como b = Ax para algún $x \in \mathbb{R}^n$.

$$Im(A) = \{b \in \mathbb{R}^m \ \text{ tal que } b = Ax \ \text{ para alg\'un } x \in \mathbb{R}^n\}$$

Los vectores $b \in Im(A)$ son combinaciones lineales de las columnas de A.

1.2.7 Espacio nulo

El **espacio nulo** de una matriz $A \in \mathbb{R}^{m \times n}$ es el conjunto de todos los vectores $x \in \mathbb{R}^n$ tales que Ax = 0

$$\mathbf{Nu}(A) = \{x \in \mathbb{R}^n \ \text{ tal que } Ax = 0\}$$

Propiedad

 $\operatorname{Nu}(A) \neq \{0\} \Leftrightarrow \operatorname{las}$ columnas de A son linealmente dependientes

Propiedad

$$Im(A) \bigoplus Nu(A) = \mathbb{R}^m$$

1.2.8 Matriz inversa

Sea $A \in \mathbb{R}^{n \times n}$, entonces A es **inversible** si existe una matriz $A^{-1} \in \mathbb{R}^{n \times n}$ tal que

$$AA^{-1} = A^{-1}A = I$$

Propiedad

A es inversible $\Leftrightarrow \operatorname{rang}(A) = n \Leftrightarrow \det(A) \neq 0$

Cuando A es inversible, decimos que A es una matriz no singular

Propiedad

La **inversa de un matriz diagonal** (si existe), es una **matriz diagonal**.

Propiedad

La inversa de un matriz triangular superior (si existe), es una matriz triangular superior.

Analogamente, la inversa de un matriz triangular inferior (si existe), es una matriz triangular inferior.

1.2.9 Matriz traspuesta

La **matriz traspuesta** de una matriz $A \in \mathbb{R}^{m \times n}$ es la matriz $A^T \in \mathbb{R}^{n \times m}$ tal que

$$A_{ij}^T = A_{ji}$$

.

Propiedad

$$egin{aligned} ig(A^Tig)^T &= A \ ig(A+Big)^T &= A^T + B^T \ ig(ABig)^T &= B^TA^T \ ig(A^{-1}ig)^T &= ig(A^Tig)^{-1} \end{aligned}$$

1.2.10 Submatriz principal

Una **submatriz principal** de una matriz $A \in \mathbb{R}^{m \times n}$ de orden k es una matriz $A^{(k)}$ que se obtiene de A al eliminar las ultimas m-k filas y las ultimas n-k columnas. Por ejemplo, si

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

entonces:

$$A^{(2)} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \quad A^{(3)} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad A^{(4)} = egin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

1.2.11 Matrices especiales

Matriz Identidad

La **matriz identidad** $I \in \mathbb{R}^{n \times n}$ es la matriz cuadrada que tiene 1 en la diagonal y 0 en el resto de las posiciones:

$$I = egin{bmatrix} 1 & 0 & ... & 0 \ 0 & 1 & ... & 0 \ dots & dots & \ddots & dots \ 0 & 0 & ... & 1 \end{bmatrix}$$

Matriz diagonal

Una matriz diagonal $D \in \mathbb{R}^{n \times n}$ es una matriz cuadrada que tiene 0 en todas las posiciones excepto en la diagonal:

$$D = egin{bmatrix} d_{11} & 0 & ... & 0 \ 0 & d_{22} & ... & 0 \ dots & dots & \ddots & dots \ 0 & 0 & ... & d_{nn} \end{bmatrix}$$

Matriz triangular superior

Una matriz triangular superior $U \in \mathbb{R}^{n \times n}$ es una matriz cuadrada que tiene 0 en todas las posiciones por debajo de la diagonal:

$$U = egin{bmatrix} u_{11} & u_{12} & ... & u_{1n} \ 0 & u_{22} & ... & u_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & ... & u_{nn} \end{bmatrix}$$

Matriz triangular inferior

Una matriz triangular inferior $L \in \mathbb{R}^{n \times n}$ es una matriz cuadrada que tiene 0 en todas las posiciones por encima de la diagonal:

$$L = egin{bmatrix} l_{11} & 0 & ... & 0 \ l_{21} & l_{22} & ... & 0 \ dots & dots & \ddots & dots \ l_{n1} & l_{n2} & ... & l_{nn} \end{bmatrix}$$

Propiedad

El **producto de dos matrices triangulares superiores** es una matriz **triangular superior**.

Analogamente, el **producto de dos matrices triangulares inferiores** es una **matriz triangular inferior**.

Matriz estrictamente diagonal dominante

Una matriz $A \in \mathbb{R}^{n \times n}$ es **estrictamente diagonal dominante** si para todo $i \in \{1, 2, ..., n\}$ se cumple que

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^n |a_{ij}|$$

Matriz de permutación

Una matriz de permutación $P \in \mathbb{R}^{n \times n}$ es una matriz que se obtiene de la matriz identidad $I \in \mathbb{R}^{n \times n}$ al intercambiar dos o más filas (o columnas) de I.

Al multiplicar una matriz $A \in \mathbb{R}^{m \times n}$ por una matriz de permutación $P \in \mathbb{R}^{n \times n}$, se obtiene:

$$P = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix} \quad PA = egin{bmatrix} - & \operatorname{fila}_2(A) & - \ - & \operatorname{fila}_4(A) & - \ - & \operatorname{fila}_3(A) & - \ - & \operatorname{fila}_1(A) & - \end{bmatrix}$$

$$AP = egin{bmatrix} \mid & \mid & \mid & \mid \\ \operatorname{col}_4(A) & \operatorname{col}_2(A) & \operatorname{col}_3(A) & \operatorname{col}_1(A) \\ \mid & \mid & \mid & \mid \end{pmatrix}$$

Matriz elemental (tipo 1)

Una matriz elemental (tipo 1) es la matriz identidad con una fila multiplicada por un escalar no nulo:

$$E = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & lpha & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad EA = egin{bmatrix} - & \operatorname{fila}_1(A) & - \ - & lpha \operatorname{fila}_2(A) & - \ - & \operatorname{fila}_3(A) & - \ - & \operatorname{fila}_4(A) & - \end{bmatrix}$$

$$AE = egin{bmatrix} \mid & \mid & \mid & \mid \\ lpha \operatorname{col}_{\mathbf{2}}(A) & \operatorname{col}_{\mathbf{1}}(A) & \operatorname{col}_{\mathbf{3}}(A) & \operatorname{col}_{\mathbf{4}}(A) \\ \mid & \mid & \mid & \mid \end{bmatrix}$$

Matriz elemental (tipo 2)

Una matriz elemental (tipo 2) es la matriz identidad con un elemento no nulo fuera de la diagonal:

$$E = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ lpha & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad EA = egin{bmatrix} - & ext{fila}_1(A) & - \ - & ext{fila}_2(A) & - \ - & ext{fila}_3(A) + lpha & ext{fila}_1(A) & - \ - & ext{fila}_4(A) & - \ \end{bmatrix} \ AE = egin{bmatrix} | & | & | & | & | \ \cot_1(A) + lpha & \cot_3(A) & \cot_2(A) & \cot_3(A) & \cot_4(A) \ | & | & | & | & | \ \end{bmatrix}$$

2.1 Definición

Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales que se deben cumplir simultáneamente.

$$egin{aligned} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \ &dots \ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m \end{aligned}$$

Podemos armar una matriz $A \in \mathbb{R}^{m \times n}$ con los coeficientes de las incógnitas, un vector $x \in \mathbb{R}^n$ con las incógnitas y un vector $b \in \mathbb{R}^m$ con los resultados de las ecuaciones:

$$A = egin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \ a_{21} & a_{22} & ... & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix} \quad x = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \quad b = egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix}$$

Entonces, el sistema de ecuaciones lineales se puede representar como una operación matricial, en la que se busca encontrar el vector x que cumple

$$Ax = b$$

.

Si $b \notin Im(A)$ entonces el sistema no tiene solución.

Si $b \in Im(A)$ entonces:

- Si $\operatorname{rang}(A) = n$ entonces el sistema tiene una única solución.
- ullet Si ${
 m rang}(A) < n$ entonces el sistema tiene infinitas soluciones.

Sistemas equivalentes

Sean $A, B \in \mathbb{R}^{n \times n}$, y $b, d \in \mathbb{R}^n$, entonces Ax = b y Bx = d son sistemas equivalentes si tienen el mismo conjunto de soluciones.

2.2 Resolución

2.2.1 Sistemas de ecuaciones diagonales

Sea $A \in \mathbb{R}^{n \times n}$ una matriz diagonal y $b \in \mathbb{R}^n$, entonces Ax = b es un **sistema** de ecuaciones diagonales y se puede resolver despejando cada incógnita por separado:

$$a_{11}x_1 = b_1$$

 $a_{22}x_2 = b_2$
 \vdots
 $a_{nn}x_n = b_n$

• Si $a_{ii} \neq 0$ para todo $i \in \{1,2,...,n\}$, el sistema **tiene única solución** y

$$oldsymbol{x_i} = rac{oldsymbol{b_i}}{oldsymbol{a_{ii}}}$$

- Si $a_{ii}=0$ para algún $i\in\{1,2,...,n\}$:
 - ullet Si $b_i=0$ entonces el sistema **tiene infinitas soluciones**.
 - Si $b_i \neq 0$ entonces el sistema **no tiene solución**.

2.2.2 Sistemas de ecuaciones triangulares

Backward Substitution

Sea $A \in \mathbb{R}^{n \times n}$ una **matriz triangular superior** y $b \in \mathbb{R}^n$, entonces Ax = b es un sistema de ecuaciones triangulares de la forma:

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\ a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\ a_{33}x_3 + \ldots + a_{3n}x_n &= b_3 \\ &\vdots \\ a_{nn}x_n &= b_n \end{aligned}$$

• Si $a_{ii} \neq 0$ para todo $i \in \{1, 2, ..., n\}$, el sistema tiene una única solución y se puede resolver usando backward substitution:

$$egin{aligned} x_n &= rac{b_n}{a_{nn}} \ x_{n-1} &= rac{b_{n-1} - a_{n-1n} x_n}{a_{n-1n-1}} \ &dots \ x_i &= rac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}} \ &dots \ x_1 &= rac{b_1 - \sum_{j=2}^n a_{1j} x_j}{a_{11}} \end{aligned}$$

Esté método tiene **complejidad** $\mathcal{O}(n^2)$.

- Si $a_{ii}=0$ para algún $i\in\{1,2,...,n\}$:
 - Ejecutamos el algoritmo de backward substitution hasta llegar a la fila i. Osea que obtenemos los valores para $x_n, x_{n-1}, ..., x_{i+1}$.
 - Comos todos estos valores son conocidos, simplemente hacemos la cuenta $\mathrm{fila}_i(A)x$.
 - Si b_i es el valor que obtenemos, entonces el sistema tiene infinitas soluciones.
 - Si no lo es, entonces el sistema no tiene solución.

Forward Substituion

Sea $A \in \mathbb{R}^{n \times n}$ una **matriz triangular inferior** y $b \in \mathbb{R}^n$, entonces Ax = b es un sistema de ecuaciones triangulares que se resuelve de forma similar al los sistemas triangulares superiores, la única diferencia es que se resuelve de arriba hacía abajo:

$$\begin{aligned} a_{11}x_1 &= b_1\\ a_{21}x_1 + a_{22}x_2 &= b_2\\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3\\ &\vdots\\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n &= b_n \end{aligned}$$

2.3 Sistemas de ecuaciones generales

2.3.1 Eliminación gaussiana

Sea $A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$, entonces usaremos el **método de eliminación gaussiana** para transformar el sistema original en un **sistema equivalente** que sea más fácil de resolver. En particular, vamos a transformar el sistema Ax = b en uno de la forma Ux = c, donde U es una **matriz triangular superior**.

Para esto, se aplican las siguientes operaciones elementales:

- Multiplicar una fila por un escalar no nulo usando una matriz elemental (tipo 1).
- Intercambiar dos filas usando una matriz de permutación.
- Sumar una fila multiplicada por un escalar no nulo a otra fila usando una matriz elemental (tipo 2).

Debemos aplicar estas operaciones de forma tal que al final del proceso obtengamos un sistema de ecuaciones triangular superior. Para esto, vamos a aplicar el siguiente esquema:

```
\begin{array}{c|c} \hline \textbf{Eliminaci\'onGaussiana}(A : \mathsf{Matriz}) : \\ \textbf{1} & \mathbf{Para} \ i \leftarrow 1 \ \mathsf{a} \ n \ \mathsf{hacer} \\ \textbf{2} & \mathbf{Para} \ j \leftarrow i + 1 \ a \ n \ \mathsf{hacer} \\ \textbf{3} & m_{ij} = \frac{a_{ji}}{a_{ii}} \\ \textbf{4} & \mathrm{fila}_j(A) = \mathrm{fila}_j(A) - m_{ij} \ \mathrm{fila}_i(A) \\ \textbf{5} & \mathbf{Fin} \\ \textbf{6} & \mathbf{Fin} \\ \end{array}
```

La version mostrada **asume que** $a_{ii} \neq 0$ para todo $i \in \{1, 2, ..., n\}$, en todo momento.

Propiedad

El algoritmo propuesto tiene complejidad $\mathcal{O}(n^3)$.

2.3.2 Eliminación Gaussiana con pivoteo

Si en alguna iteración, nos encontramos con que $a_{ii}=\mathbf{0}$ entonces pueden darse dos posibles situaciones:

- $a_{ji}=0$ para todo $j\in\{i+1,i+2,...,n\}$: En este caso, la fila i es nula, y podemos pasar a la siguiente iteración.
- Existe algún $j \in \{i+1, i+2, ..., n\}$ tal que $a_{ji} \neq 0$: En este caso, **intercambiamos la fila i con la fila j**, y continuamos con el algoritmo.

En la práctica debemos tener en cuenta que **los números de coma flotante tienen precisión finita** por lo que debemos elegir de manera cuidadosa el pivote. Usaremos dos estrategias para esto:

- **Pivoteo parcial**: En cada iteración, elegimos entre las filas i, i+1, ..., n aquella que tiene el mayor valor absoluto en la columna i. Luego, intercambiamos la fila i con la fila elegida.
- **Pivoteo completo**: En cada iteración, buscamos la celda que tiene el mayor valor absoluto entre todas las filas i, i+1, ..., n y todas las columnas i, i+1, ..., n. Luego, intercambiamos la fila i con la fila de la celda elegida, y la columna i con la columna de la celda elegida.

3.1 Objetivo

Resolver varios sistemas de ecuaciones lineales con Eliminación Gaussiana tiene complejidad $\mathcal{O}(n^3)$ por cada uno. Existen técnicas de factorización de matrices que nos permiten mejorar esta complejidad.

La **factorización LU** de una matriz $A \in \mathbb{R}^{n \times n}$ es una factorización de la forma A = LU, donde L es una **matriz triangular inferior** y U es una **matriz triangular superior**.

Podemos usar esta factorización para resolver el sistema Ax=b de la siguiente forma:

- Factorizamos A = LU: Entonces $Ax = b \Leftrightarrow LUx = b$.
- Definimos y = Ux: Entonces podemos resolver Ly = b usando **forward** substitution.
- ullet Luego, resolvemos el sistema Ux=y usando **backward substitution**.

Osea que resolvemos dos sistemas triangulares, lo cual tiene **complejidad** $\mathcal{O}(n^2)$ **por cada uno**. Hay que ver cuanto nos cuesta factorizar A.

3.2 Método

Sea $A \in \mathbb{R}^{n \times n}$, supongamos que aplicamos eliminación gaussiana y se verifica que $a_{ii} \neq 0$ para todo $i \in \{1, 2, ..., n\}$.

Sea E la matriz elemental (tipo 2) que representa la **primer operación de la eliminación gaussiana**:

$$E = egin{bmatrix} 1 & 0 & 0 & ... & 0 \ -m_{21} & 1 & 0 & ... & 0 \ 0 & 0 & 1 & ... & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & ... & 1 \end{bmatrix}$$

Vemos que $EA = A_1$ representa la operación

$$fila_2(A) = fila_2(A) - m_{21} fila_1(A)$$

. Podemos juntar todas las matrices elementales (tipo 2) que representan las operaciones que anulan todos los elementos por debajo de la diagonal, y obtener una matriz M_1 :

$$M_1 = egin{bmatrix} 1 & 0 & 0 & \dots & 0 \ -m_{21} & 1 & 0 & \dots & 0 \ -m_{31} & 0 & 1 & \dots & 0 \ dots & dots & dots & dots & dots \ -m_{n1} & 0 & 0 & \dots & 1 \end{bmatrix}$$

.

Entonces $M^1A=A^1$ donde A^1 es la matriz que se obtiene de A al aplicar el primer paso de eliminación gaussiana.

De la misma manera, podemos definir M^i como la matriz que representa las operaciones que anulan todos los elementos por debajo de la diagonal en la columna i:

$$M^i = egin{bmatrix} 1 & ... & 0 & 0 & ... & 0 \ dots & \ddots & dots & dots \ 0 & ... & 1 & 0 & ... & 1 \ 0 & ... & -m_{i+1} & 1 & ... & 0 \ dots & dots & dots & \ddots & dots \ 0 & ... & -m_{ni} & 0 & ... & 1 \end{bmatrix}$$

Entonces $M^iA^{i-1}=A^i$ donde A^i es la matriz que se obtiene de A al aplicar el paso i de eliminación gaussiana.

Luego, podemos pensar al proceso de eliminación gaussiana como una secuencia de multiplicaciones de matrices: Sea $U \in \mathbb{R}^{n \times n}$ la matriz triangular superior que se obtiene de aplicar eliminación gaussiana a A, entonces:

$$U = M^n M^{n-1} ... M^2 M^1 A$$

Propiedad

Sea $I \in \mathbb{R}^{n \times n}$ la matriz identidad, e_i el vector que tiene 1 en la posición i y 0 en el resto, y $m_i = [0,...,m_{i+1i},...,m_{ni}]$, entonces:

$$M^i = I - m_i^t e_i$$

Propiedad

 M^i es una matriz **triangular inferior** con 1 en la diagonal.

Propiedad

 M^i es **inversible** y su inversa es

$$(\boldsymbol{M^i})^{-1} = \boldsymbol{I} + \boldsymbol{m_i^t}\boldsymbol{e_i}$$

Demostración

$$\begin{split} \boldsymbol{M_i}(\boldsymbol{M_i})^t &= (\boldsymbol{I} - \boldsymbol{m_i^t}\boldsymbol{e_i})(\boldsymbol{I} + \boldsymbol{m_i^t}\boldsymbol{e_i}) \\ &= \boldsymbol{I} + \boldsymbol{m_i^t}\boldsymbol{e_i} - \boldsymbol{m_i^t}\boldsymbol{e_i} - \boldsymbol{m_i^t}\boldsymbol{e_i} \boldsymbol{m_i^t}\boldsymbol{e_i} \\ &= \boldsymbol{I} - \boldsymbol{m_i^t}\boldsymbol{e_i} \boldsymbol{m_i^t}\boldsymbol{e_i} \end{split}$$

Pero $e_im_i^t=0$ porque e_i tiene 0 en todas las posiciones salvo en la i y m_i^t tiene 0 en todas las posiciones hasta la posición i. Entonces $e_im_i^t=0$:

$$\boldsymbol{I} - \boldsymbol{m_i^t} \boldsymbol{e_i} \boldsymbol{m_i^t} \boldsymbol{e_i} = \boldsymbol{I} - \boldsymbol{m_i^t} \boldsymbol{0} \boldsymbol{e_i} = \boldsymbol{I}$$

Como habiamos dicho que $U=M^nM^{n-1}...M^2M^1A$ y ahora sabemos que M^i es inversible para todo $i=\{1,...,n\}$, entonces:

$$A = (M^1)^{-1} (M^2)^{-1} ... (M^n)^{-1} U$$

Entonces, si definimos $L = (M^1)^{-1} (M^2)^{-1} ... (M^n)^{-1}$, tenemos que A = LU obtenemos la factorización LU de A asociada a la eliminación gaussiana.

¡Cuidado!

La factorización LU no siempre existe. Si en algún paso de la eliminación gaussiana, nos encontramos con que $a_{ii}=0$ para algún $i\in\{1,2,...,n\}$, entonces la factorización LU no existe.

3.3 Propiedades

Propiedad

Si $A \in \mathbb{R}^{n \times n}$ es no singular y tiene factorización LU, entonces esa factorización es única.

Demostración

Supongamos que existen al menos dos factorizaciones LU de A: $A=L_1U_1$ y $A=L_2U_2$.

Como A es inversible, entonces U_1 y U_2 son inversibles. Además, las inversas son tambien triangulares superiores. Tanto L_1 como L_2 son triangulares inferiores con 1 en la diagonal. Entonces, partiendo de las dos factorizaciones:

$$\begin{split} L_1U_1 &= L_2U_2\\ L_1^{-1}L_1U_1 &= L_1^{-1}L_2U_2\\ U_1 &= L_1^{-1}L_2U_2\\ U_1U_2^{-1} &= L_1^{-1}L_2U_2U_2^{-1}\\ U_1U_2^{-1} &= L_1^{-1}L_2\end{split}$$

 $U_1U_2^{-1}$ es una matriz triangular superior por ser producto de dos matrices triangulares superiores. $L_1^{-1}L_2$ es una matriz triangular inferior por ser producto de dos matrices triangulares inferiores.

Como $D=U_1U_2^{-1}=L_1^{-1}L_2$ entonces D necesariamente tiene que ser una matriz diagonal.

Tambien sabemos que $L_1^{-1}L_2$ tiene 1 en la diagonal. Entonces D=I.

Luego, $U_1U_2^{-1}=I$ y $U_1=U_2$. Entonces $L_1=L_2$. \blacksquare

Propiedad

Sea $A \in \mathbb{R}^{n imes n}$ no singular.

A tiene factorización LU

 \Leftrightarrow

todas sus matrices principales son no singulares

Demostración

 \Rightarrow) Si A es no signular y tiene factorización LU, tanto L como U son no singulares. Los elementos de la diagona de L son todos 1 y los elementos de la diagonal de U son todos no nulos. Las submatrices principales de L son tambien triangulares con 1 en la diagonal, por lo tanto son no singulares. Las submatrices principales de U son triangulares superiores con elementos no nulos en la diagonal, por lo tanto son no singulares.

Como A=LU, entonces las submatriz de orden k de A es el resultado del producto de la submatriz de orden k de L y la submatriz de orden k de U. Como ambas son no singulares, entonces la submatriz de orden k de A tambien es no singular.

 \Leftarrow) Demostramos por inducción en la dimensión de la matriz A.

• Caso base: n=2

Como a_{11} no es nulo por ser la submatriz principal de orden 1 de A, entonces el primer (y único) paso de la eliminación Gaussiana se puede realizar sin inconvenientes y se encuentra la factorización LU.

• Paso inductivo: Supongamos que vale para matrices de imensión 2n y veamos que vale para matrices de orden n+1.

Consideremos $A \in \mathbb{R}^{(n+1) \times (n+1)}$ con todas sus submatrices principales no singulares. Veamos que A tiene factorización LU.

Si escribimos A como:

$$A = egin{bmatrix} A^{(n)} & c_{n+1} \ f^t_{n+11} & a_{n+1n+1} \end{bmatrix}$$

 $\text{donde } A^{(n)} \in \mathbb{R}^{n \times n} \text{, } c_{n+1} \in \mathbb{R}^n \text{, } f_{n+11} \in \mathbb{R}^n \text{ y } a_{n+1n+1} \in \mathbb{R}.$

Como todas las submatrices principales de A son no singulares, entonces $A^{(n)}$ y todas sus submatrices principales son no singulares. Entonces, por hipótesis inductiva, $A^{(n)}$ tiene factorización LU. Sea $A^{(n)} = L^{(n)}U^{(n)}$.

Propongamos una factorización LU para A, se resaltan los valores que necesitamos calcular:

$$A = \begin{bmatrix} A^{(n)} & c_{n+1} \\ f_{n+1}^t & a_{n+1,n+1} \end{bmatrix} = \begin{bmatrix} L^{(n)} & 0 \\ l_{n+11}^t & 1 \end{bmatrix} \begin{bmatrix} U^{(n)} & u_{n+1} \\ 0 & u_{n+1,n+1} \end{bmatrix}$$

Realizando el producto en bloques, tenemos que verificar que:

1.
$$A^{(n)} = L^{(n)}U^{(n)}$$

Se pueden calcular usando eliminación gaussiana ya que es la factorización LU de $A^{(n)}.$

2.
$$c_{n+1} = L^{(n)}u_{n+1}$$

Como $L^{(n)}$ es no signular, entonces este sistema tiene solución y es única, por lo que es posible determinar u_{n+1} .

3.
$$f_{n+1}^t = l_{n+1}^t U^{(n)}$$

La matriz $U^{(n)}$ es no singular ya que $A^{(n)}$ es no singular, por lo tanto el tercer sistema tambien tiene solución y es única, por lo que es posible determinar l_{n+1}^t .

4.
$$a_{n+1} = l_{n+1}^t u_{n+1} + u_{n+1,n+1}$$

Como l_{n+11}^t y u_{n+1} son conocidos, entonces es posible determinar univocamente $u_{n+1,n+1}.$

Concluimos entonces que A tiene factorización LU, ya que todos los sistemas propuestos tienen solución y es única.

Propiedad

Si $A \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces A tiene factorización LU.

Demostración

Vamos a demostrar que A es no singular y que todas sus submatrices principales son no singulares. De esta manera, estamos en condiciones de aplicar la propiedad anterior y concluir que A tiene factorización LU.

• A es no singular: Supongamos que A es singular, entonces existe $x \in \mathbb{R}^n$, $x \neq 0$ tal que Ax = 0.

Como $x \neq 0$, entonces tiene una coordenada con máximo valor absoluto, o dicho de otra manera existe $k_0 \in \{1, 2, ..., n\}$ tal que

$$\left|x_{k_0}\right| = \max_{j=1\dots n} \! \left|x_j\right|$$

 $\mathsf{con}\left|x_{k_0}
ight|
eq 0.$

Consideremos la ecuación k_0 del sistema Ax = 0:

$$\sum_{j=1}^n a_{k_0j}x_j=0$$

Separamos el término k_0 :

$$\sum_{\substack{j=1\\j\neq k_0}}^n a_{k_0j}x_j + a_{k_0k_0}x_{k_0} = 0$$

Pasamos restando:

$$\sum_{\substack{j=1 \ j
eq k_0}}^n a_{k_0 j} x_j = -a_{k_0 k_0} x_{k_0}$$

Tomamos valor absoluto, como $\left|-a_{k_0k_0}x_{k_0}
ight|=\left|a_{k_0k_0}
ight|\left|x_{k_0}
ight|$:

$$\left|\sum_{\substack{j=1\j
eq k_0}}^n a_{k_0j}x_j
ight|=\left|a_{k_0k_0}
ight|\left|x_{k_0}
ight|$$

Aplicamos desigualdad triangular al lado izquierdo de la equación:

$$\left|\sum_{\substack{j=1\j
eq k_0}}^n\left|a_{k_0j}x_j
ight|\geq\left|\sum_{\substack{j=1\j
eq k_0}}^na_{k_0j}x_j
ight|=\left|a_{k_0k_0}
ight|\left|x_{k_0}
ight|$$

Entonces:

$$\sum_{\substack{j=1\j
eq k_0}}^n \left|a_{k_0j}x_j
ight| \geq \left|a_{k_0k_0}
ight| \left|x_{k_0}
ight|$$

Pasamos $\left|x_{k_0}\right|$ dividiendo:

$$\sum_{\substack{j=1\ j
eq k_0}}^n rac{\left|a_{k_0 j}
ight|\left|x_j
ight|}{\left|x_{k_0}
ight|} \geq \left|a_{k_0 k_0}
ight|$$

Pero $\left|x_{j}\right| \leq \left|x_{k_{0}}\right|$ para todo $j \in \{1,2,...,n\}$, entonces $\frac{\left|x_{j}\right|}{\left|x_{k_{0}}\right|} \leq 1$:

$$\sum_{\substack{j=1\\j\neq k_0}}^{n} \left|a_{k_0 j}\right| \left|x_j\right| \geq \sum_{\substack{j=1\\j\neq k_0}}^{n} \frac{|a_{k_0 j}| \; |x_j|}{\left|x_{k_0}\right|} \geq \left|a_{k_0 k_0}\right|$$

Entonces:

$$\sum_{\substack{j=1\j
eq k_0}}^n \left|a_{k_0 j}
ight| \left|x_j
ight| \geq \left|a_{k_0 k_0}
ight|$$

Pero A es estrictamente diagonal dominante, entonces $\left|a_{k_0k_0}\right|>\sum_{\substack{j=1\\j\neq k_0}}^n\left|a_{k_0j}\right|$ por lo que llegamos a una contradicción. Entonces A es no singular. \blacksquare

Demostración alternativa

Vamos a desmostrar que es posible realizar el primer paso de la eliminación Gaussiana y que la matriz conformada por las filas $\mathbf{2}$ a n y columnas $\mathbf{2}$ a n es estrictamente diagonal dominante. De esta manera, podremos afirmar que la eliminación Gaussiana se puede aplicar sin inconvenientes y por lo tanto existe la factorización LU.

• Primer paso de la eliminación Gaussiana: Como A es estrictamente diagonal dominante, entonces podemos afirmar que $a_{11} \neq 0$. Entonces, el primer paso de la eliminación Gaussiana es:

$${ ilde F}_i = F_i - rac{a_{i1}}{a_{11}} F_1
ightarrow { ilde a}_{ij} = a_{ij} - rac{a_{i1}}{a_{11}} a_{1j}$$

 La parte de la matriz que queda por triangular es estrictamente diagonal dominante: Tenemos que ver que

$$egin{aligned} ilde{a}_{ii} & \geq \sum_{\substack{j=2 \ j
eq i}}^{n} & | ilde{a}_{ij}| \; \; ext{para todo} \; i \in \{2,3,...,n\} \end{aligned}$$

.

Analicemos el término de la sumatoria:

$$\sum_{\substack{j=2\ j
eq i}}^n ig| ilde{a}_{ij} ig| = \sum_{\substack{j=2\ j
eq i}}^n ig| a_{ij} - rac{a_{i1}}{a_{11}} a_{1j} ig|$$

Aplicando la desigualdad triangular, tenemos:

$$\begin{split} \sum_{j=2}^{n} & |\tilde{a}_{ij}| = \sum_{j=2}^{n} \left| a_{ij} - \frac{a_{i1}}{a_{11}} a_{1j} \right| \leq \sum_{j=2}^{n} \left(\left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} a_{1j} \right| \right) \\ & \sum_{j=2}^{n} \left| \tilde{a}_{ij} \right| \leq \sum_{j\neq i}^{n} \left(\left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} a_{1j} \right| \right) \\ & \sum_{j=2}^{n} \left| \tilde{a}_{ij} \right| \leq \sum_{j=2}^{n} \left(\left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} a_{1j} \right| \right) = \sum_{j=2}^{n} \left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} \right| \sum_{j=2}^{n} \left| a_{1j} \right| \\ & \sum_{j=2}^{n} \left| \tilde{a}_{ij} \right| \leq \sum_{j=2}^{n} \left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} \right| \sum_{j=2}^{n} a_{1j} \\ & \sum_{j\neq i}^{n} \left| \tilde{a}_{ij} \right| \leq \sum_{j=2}^{n} \left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} \right| \sum_{j=2}^{n} a_{1j} \end{split}$$

Como A es estrictamente diagonal dominante, entonces

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^n \bigl|a_{ij}\bigr| \Rightarrow |a_{ii}| - |a_{i1}| > \sum_{\substack{j=2\\j\neq i}}^n \bigl|a_{1j}\bigr|$$

Entonces, remplazamos en la desigualdad anterior:

$$\begin{split} \sum_{j=2}^{n} \left| a_{ij} \right| + \left| \frac{a_{i1}}{a_{11}} \right| \sum_{j=2}^{n} a_{1j} < |a_{ii}| - |a_{i1}| + \left| \frac{a_{i1}}{a_{11}} \right| (|a_{11}| - |a_{1i}|) \\ \sum_{j=2}^{n} \left| \tilde{a}_{ij} \right| < |a_{ii}| - |a_{i1}| + \left| \frac{a_{i1}}{a_{11}} \right| (|a_{11}| - |a_{1i}|) \\ \sum_{j=2}^{n} \left| \tilde{a}_{ij} \right| < |a_{ii}| - |a_{i1}| + \left| \frac{a_{i1}}{a_{11}} \right| |a_{11}| - \left| \frac{a_{i1}}{a_{11}} \right| |a_{1i}| \end{split}$$

$$\sum_{\substack{j=2\j
eq i}}^n ig| ilde{a}_{ij}ig| < |a_{ii}| - |a_{i1}| + |a_{i1}| - igg|rac{a_{i1}}{a_{11}}igg||a_{1i}|$$

$$\sum_{\substack{j=2\\j\neq i}}^n \bigl|\tilde{a}_{ij}\bigr| < |a_{ii}| - \biggl|\frac{a_{i1}}{a_{11}}\biggr| |a_{1i}|$$

$$\sum_{\substack{j=2\i
eq i}}^n \! \left| ilde{a}_{ij}
ight| \leq \left| a_{ii} - rac{a_{i1}}{a_{11}} a_{1i}
ight| = \left| ilde{a}_{ii}
ight|$$

Concluimos entonces que la matriz conformada por las filas 2 a n y columnas 2 a n que resulta del primer paso de eliminación Gaussiana es estrictamente diagonal dominante por lo que exist efactorización LU. \blacksquare

3.4 Factorización PLU

En caso de que la factorización LU no exista, podemos usar **pivoteo parcial** para obtener una factorización PLU que es una factorización LU la **matriz original con sus filas permutadas**:

$$PA = LU$$

Propiedad

Toda matriz $A \in \mathbb{R}^{n \times n}$ tiene factorización PLU.

Demostración

Si aplicamos eliminación Gaussiana con pivoteo parcial, aplicando permutaciones cuando sea necesario por la presencia de elementos nulos en la diagonal durante el proceso, se obtiene el siguiente producto de matrices:

$$M^{n-1}P^{n-1}M^{n-2}P^{n-2}...M^{i}P^{i}...M^{2}P^{2}M^{1}P^{1}A=U$$

donde $M^i=I-m^t_ie_i$ y P^i es una matriz de permutación que indican los intercambios realziados entre las filas.

Tenemos que encontrar una forma de llegar desde esta ecuación hasta una ecuación de la forma PA = LU

Como cada P^i es una matriz de permutación entre filas, entonces P^i es no singular y su inversa es ella misma. Osea que $P^iP^i=I$. Podemos agregar entonces los siguientes terminos a la ecuación, sin modificar su resultado:

$$M^{n-1}P^{n-1}M^{n-2}P^{n-1}P^{n-1}P^{n-2}...P^{i+2}...P^{n-1}P^{n-1}...P^{i+1}P^{i}\\...M^{2}P^{3}...P^{n-1}P^{n-1}...P^{3}P^{2}M^{1}P^{2}...P^{n-1}P^{n-1}...P^{2}P^{1}A=U$$

Notemos ahora $\widetilde{M}^i=(P^{n-1}...P^{i+2}P^{i+1}M^{i(P^{i+1}...P^{n-1})}$, entonces tenemos que:

$$M^{n-1}\widetilde{M}^{n-2}...\widetilde{M}^{i}...\widetilde{M}^{2}\widetilde{M}^{1}(P^{n-1}...P^{2}P^{1})A=U$$

Veamos que estructura tiene \widetilde{M}^i :

$$\begin{split} \widetilde{M}^i &= \left(P^{n-1}...P^{i+2}P^{i+1}\right) (I - m_i^t e_i) \left(P^{i+1}...P^{n-1}\right) \\ &= \left(P^{n-1}...P^{i+2}P^{i+1}\right) I \left(P^{i+1}...P^{n-1}\right) \\ &- \left(P^{n-1}...P^{i+2}P^{i+1}\right) \left(m_i^t e_i\right) \left(P^{i+1}...P^{n-1}\right) \\ &= I - \left(P^{n-1}...P^{i+2}P^{i+1}\right) (m_i^t e_i) \left(P^{i+1}...P^{n-1}\right) \end{split}$$

Como $P^{i+1}...P^{n-1}$ son matrices de permutación que realizan intercambiamos entre las filas i+1 a n, entonces $e_i(P^{i+1}...P^{n-1})=e_i$.

Además nombremos $\widetilde{m}_i = \left(P^{n-1}...P^{i+2}P^{i+1}\right)m_i^t$ al entonces tenemos que:

$$\widetilde{M}^i = I - \widetilde{m}_i^t e_i$$

Entonces, vemos que \widetilde{M}^i son matrices triangules inferiores con 1 en la diagonal. Además, como $P^{n-1}...P^{i+2}P^{i+1}$ son matrices de permutación, entonces \widetilde{M}^i son no singulares. Por lo que, podemos escribir:

$$(P^{n-1}...P^2P^1)A = \left(\widetilde{M}^1\right)^{-1} \left(\widetilde{M}^2\right)^{-1}...\left(\widetilde{M}^i\right)^{-1} U$$

Definimos $L=\left(\widetilde{M}^1\right)^{-1}\left(\widetilde{M}^2\right)^{-1}...\left(\widetilde{M}^i\right)^{-1}$ y $P=P^{n-1}...P^2P^1$, entonces:

$$PA = LU \blacksquare$$

4.1 Normas vectoriales

Una **norma vectorial** es una función $f:\mathbb{R}^n \to \mathbb{R}$ que cumple las siguientes propiedades:

- f(x)>0 para todo $x
 eq 0 \in \mathbb{R}^n$
- $f(x) = 0 \Leftrightarrow x = 0$
- $f(lpha x) = |lpha| \; f(x)$ para todo $lpha \in \mathbb{R}$ y $x \in \mathbb{R}^n$
- $f(x+y) \leq f(x) + f(y)$ para todo $x,y \in \mathbb{R}^n$

Norma I (norma Manhattan)

$$\|x\|_1 = \sum_{i=1}^n \lvert x_i \rvert$$

Norma 2 (norma Euclídea)

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Normap

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{rac{1}{p}}$$

Norma infinito

$$\|x\|_{\inf} = \max_{\{1 \leq i \leq n\}} \lvert x_i \rvert$$

4.2 Normas matriciales

Una **norma matricial** es una función $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ que cumple las siguientes propiedades:

- f(A) > 0 para todo $A \neq 0 \in \mathbb{R}^{m \times n}$
- $f(A) = 0 \Leftrightarrow A = 0$
- ullet $f(lpha A) = |lpha| \; f(A)$ para todo $lpha \in \mathbb{R}$ y $A \in \mathbb{R}^{m imes n}$
- $f(A+B) \leq f(A) + f(B)$ para todo $A, B \in \mathbb{R}^{m \times n}$

Adicionalmente, si f cumple que $f(AB) \leq f(A)f(B)$ para todo $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times p}$ entonces diremos que f es una **norma submultiplicativa**.

Norma de Frobenius

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

Normas matficiales inducidas

Sean f_1 una norma vectorial definida en \mathbb{R}^m y f_2 una norma vectorial definida en \mathbb{R}^n , entonces la función $F:\mathbb{R}^{m\times n}$ es una **norma inducida** si:

$$F(A) = \max_{x \neq 0} \frac{f_1(Ax)}{f_2(x)} = \max_{x: f_2(x) = 1} f_1(Ax)$$

Número de condición

Sea $A \in \mathbb{R}^{n \times n}$ una matriz no singular y $\|.\|$ una norma matricial. Se define el **número de condición** de A como:

$$\kappa(A) = \|A\| \; \|A^{-1}\|$$

Propiedad

Si $\|.\|$ es una norma matricial inducida, entonces $\kappa(I)=1.$

Propiedad

Si $\|.\|$ es una norma submultiplicativa, entonces $\kappa(A) \geq 1$

4.2.2 Cota del error

Si $A\in\mathbb{R}^{n\times n}$ matriz no singular y $\|.\|$ una norma matricial inducida. Sea ilde x una solución aproximada de Ax=b con $b\neq 0$ y sea A ilde x= ilde b entonces:

$$\frac{\parallel \boldsymbol{x} - \tilde{\boldsymbol{x}} \parallel}{\parallel \boldsymbol{x} \parallel} \leq \parallel \boldsymbol{A}^- \boldsymbol{1} \parallel \frac{\parallel \boldsymbol{b} - \tilde{\boldsymbol{b}} \parallel}{\parallel \boldsymbol{b} \parallel}$$

5.1 Matrices Simétricas Definidas Positivas

Sea $A \in R^{\{n \times n\}}$ una matriz cuadrada, se dice que es **simétrica definida positiva (SDP)** si:

- $A = A^T$ (es simétrica)
- $x^TAx > 0$ para todo $x \in R^n$ con $x \neq 0$ (es definida positiva)

Propiedad

Si A es SDP, entonces A es no singular.

Demostración

Supongamos que A es SDP y singular. Entonces existe $x \neq 0 \in \mathbb{R}^n$ tal que Ax=0. Entonces $x^TAx=0$ lo cual es absurdo pues contradice la definición de SDP \blacksquare

Propiedad

Si A es SDP, entonces $a_{ii}>0$ para todo i=1,2,...,n.

Demostración

Sea e_i el i —ésimo vector canónico. Entonces $e_i^TAe_i=a_{ii}>0$ pues A es SDP \blacksquare

Propiedad

Si ${m A}$ es SDP, todas sus submatrices principales son SDP.

Demostración

Sea $A^{(k)}$ la submatriz principal de A de orden k. Tenemos que ver que cumple con las dos condiciones de SDP:

$$\bullet \ \boldsymbol{A^{(k)}} = \left(\boldsymbol{A^{(k)}}\right)^T$$

$$a_{oldsymbol{i}oldsymbol{j}}^{(oldsymbol{k})}=a_{oldsymbol{i}oldsymbol{j}}=a_{oldsymbol{j}oldsymbol{i}}=\left(a_{oldsymbol{j}oldsymbol{i}}^{(oldsymbol{k})}
ight)$$

• $x^TA^{(k)}x>0$ para todo $x\in R^k$ con x
eq 0

Supongamos que esto no sucede, entonces existe $\bar{x}\neq 0\in R^k$ tal que $\bar{x}^TA^{(k)}\bar{x}=0$. Armemos un vector $x\in R^n$ tal que $x=(\bar{x},0,...,0)$. Entonces:

$$egin{aligned} m{x^T}m{A}m{x} &= [ar{m{x}^t} \;\; m{0} \;\; ... \;\; m{0} egin{bmatrix} m{A^{(k)}} &* \;\; ... \;\; * \ * &* \;\; ... \;\; * \ dots &: \;\; ... \;\; dots \ * &* \;\; ... \;\; * \ \end{bmatrix} egin{bmatrix} ar{m{x}} \ m{0} \ dots \ m{0} \ \end{bmatrix} \ &= [ar{m{x}^t} \;\; m{0} \;\; ... \;\; m{0} \end{bmatrix} egin{bmatrix} m{A^{(k)}}ar{m{x}} \ dots \ &: \ \ddots \ \end{bmatrix} = m{x^t}m{A^{(k)}}m{x} \leq m{0} \end{aligned}$$

Entonces $x^tAx \leq 0$, lo cual es absurdo pued A era una matriz SDP. Entonces $A^{(k)}$ cumple con ambas condiciones y es SDP \blacksquare

Propiedad

A es SDP $\Leftrightarrow \forall B \in R^{n \times n}$ no singular vale que B^TAB es SDP.

Demostración

Supongamos que A es SDP. Entonces tenemos que ver que B^TAB cumple las condiciones de SDP:

•
$$B^TAB = \left(B^TAB\right)^T$$

$$\left(B^TAB\right)^t = \left(\left(B^TA\right)B\right)^T = B^T\left(B^TA\right)^T = B^TA^TB$$

Como $A^T = A$, queda:

$$(B^TAB)^t = B^TA^TB = B^TAB$$

• $x^TB^TABx>0$ para todo $x\in R^n$ con x
eq 0Sea $x
eq 0\in \mathbb{R}^n$, entonces:

$$\boldsymbol{x^T}\boldsymbol{B^T}\boldsymbol{A}\boldsymbol{B}\boldsymbol{x} = \left(\boldsymbol{B}\boldsymbol{x}\right)^T\boldsymbol{A}(\boldsymbol{B}\boldsymbol{x})$$

Si nombramos y=Bx, entonces $y\neq 0$ pues B es no singular y $x\neq 0$. Entonces resulta $x^TB^TABx=y^TAy>0$ pues A es SDP. Luego B^TAB es SDP \blacksquare

Propiedad

Si A es SDP, entonces la submatriz conformada por las filas 2 a n y las columnas 2 a n despues del primer paso de la eliminación gaussiana es SDP.

Demostración

Sea M_1 la matriz asociada al primer paso de la eliminación gaussiana y $\tilde{A}\in\mathbb{R}^{n-1\times n-1}$ conformada por las filas 2 a n y las columnas 2 a n de M_1A .

Realicemos el producto $M_1AM_1^T$:

$$egin{aligned} M_1AM_1^T &= egin{bmatrix} 1 & 0 & \dots & 0 \ -rac{a_{21}}{a_{11}} & 1 & \dots & 0 \ dots & dots & \ddots & dots \ -rac{a_{n1}}{a_{11}} & 0 & \dots & 1 \end{bmatrix} A egin{bmatrix} 1 & -rac{a_{21}}{a_{11}} & \dots & -rac{a_{n1}}{a_{11}} \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \ &= egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ 0 & ilde{A} & \end{bmatrix} egin{bmatrix} 1 & -rac{a_{21}}{a_{11}} & \dots & -rac{a_{n1}}{a_{11}} \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 \ 0 & ilde{A} & 0 \ 0 & ilde{A} & 0 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 \ 0 & ilde{A} & 0 \ 0 & ilde{A} & 0 \end{bmatrix} \ &= egin{bmatrix} 1 & -rac{a_{21}}{a_{11}} & \dots & -rac{a_{n1}}{a_{11}} \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 \ 0 & ilde{A} & 0 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 \ 0 & ilde{A} & 0 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 \ 0 & ilde{A} & 0 \end{bmatrix} \ &= egin{bmatrix} a_{11} & 0 & 0 & \dots & 1 \ 0 & ilde{A} & 0 & \dots & 1 \ 0 & 0 & \dots & 1 \ 0 & 0 & ilde{A} & \dots & 0 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 1 \ 0 & 0 & ilde{A} & \dots & 0 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 0 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 0 \ 0 & 0 & \dots & 1 \ 0 & 0 & \dots & 0 \ 0 & \dots & 0 & \dots & 0 \ 0 & 0 & \dots & 0 \ 0 & \dots & 0 & \dots & 0 \ 0 & 0 & \dots$$

Por la propiedad anterior, podemos afirmar que $M_1AM_1^T$ es SDP. Entonces \tilde{A} es SDP

Corolario

Si A es SDP, entonces tiene factorización LU.

Corolario

Si A es SDP, entonces se puede aplicar el **método de eliminación** gaussiana sin pivoteo.

Propiedad

Sea $A \in \mathbb{R}^{n imes m}$, entonces $A^t A$ es una matriz semidefinida positiva.

Demostración

Sea $x \in \mathbb{R}^m$, entonces:

$$x^tA^tAx = \left(Ax\right)^tAx = \|Ax\|^2 \geq 0$$

5.2 Método

Sea $A \in \mathbb{R}^{\{n \times n\}}$ una matriz SDP. Entonces existe una única matriz triangular inferior L tal que $A = LL^T$.

Como A tiene factorización LU

$$A = LU \Rightarrow A^t = (LU)^t = U^t L^t$$

Además como es SDP, $A^t = A \Rightarrow U^t L^t = LU$

Como L es triangular inferior con 1s en la diagonal y L^t es triangular superior con 1s en la diagonal, ambas son inversibles. Entonces:

$$egin{aligned} LU &= U^t L^t \Rightarrow L^{-1} LU = L^{-1} U^t L^t \Rightarrow U = L^{-1} U^t L^t \ &\Rightarrow U ig(L^tig)^{-1} = L^{-1} U^t L^t ig(L^tig)^{-1} \ &\Rightarrow U ig(L^tig)^{-1} = L^{-1} U^t \end{aligned}$$

 $U(L^t)^{-1}$ es triangular superior pues ambas matrices son triangulares superiores. Además $L^{-1}U^t$ es triangular inferior pues ambas matrices son triangulares inferiores. Por lo tanto, la igualdad a la que llegamos solo se puede dar si ambas matrices son diagonales:

$$U(L^t)^{-1} = L^{-1}U^t = D$$
 matriz diagonal

Además, podemos escribir U como:

$$U = DL^t$$

Entonces $A = LU = LDL^t$

Sea ahora $x \neq 0$ tal que $L^t x = e_i$. Entonces:

$$0 < x^t A x = x^t L D L^t x = \left(L^t x\right)^t D (L^t x) = e_i^t D e_i = d_{ii}$$

Esto implica que todos los elementos de la diagonal son distintos de cero, por lo tanto ${\it D}$ es no singular. Además:

$$D = \sqrt{D}\sqrt{D}$$

donde \sqrt{D} es la matriz diagonal con la raíz cuadrada de los elementos de D en la diagonal. Entonces:

$$A = LDL^t = L\sqrt{D}\sqrt{D}L^t = \left(L\sqrt{D}
ight)\!\left(L\sqrt{D}
ight)^t = ilde{L} ilde{L}^t$$

5.2.1 Algoritmo

El algoritmo para calcular la factorización de Cholesky es el siguiente:

Si l_{ij} son los elementos de L y a_{ij} son los elementos de A, entonces:

$\underline{\mathsf{Cholesky}}(\boldsymbol{A}\!\!:\!\mathsf{Matriz})\!\!:$

$$l_{11} = \sqrt{a_{11}}$$
 Para $j \leftarrow 2$ a n hacer

l
$$l_{11}=\sqrt{a_{11}}$$
 Para $j\leftarrow 2$ a n hacer $l_{j1}=rac{a_{j1}}{l_{11}}$ Para $i\leftarrow 2$ a $n-1$ hacer

3
$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$

4 Para
$$j \leftarrow i+1$$
 a n hacer

5
$$l_{ji} = rac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}$$

7
$$l_{nn} = \sqrt{a_{nn} - \sum_{k=1}^{n-1} l_{nk}^2}$$

6.1 Marices Ortogonales

Sea $Q \in \mathbb{R}^{n imes n}$, Q es **ortogonales** si y solo si $QQ^T = Q^TQ = I$

Propiedad

Sea $Q \in \mathbb{R}^{n imes n}$ ortogonal, entonces $\|\operatorname{col}_i(Q)\|_2 = 1$ para todo i = 1...n

Propiedad

Sea $Q \in \mathbb{R}^{n imes n}$ ortogonal, entonces $\|\operatorname{fila}_i(Q)\|_2 = 1$ para todo i = 1...n

Propiedad

Sea $Q \in \mathbb{R}^{n imes n}$ ortogonal, entonces $\|Q\|_2 = 1$

Propiedad

Sea $\mathbf{Q} \in \mathbb{R}^{n imes n}$ ortogonal, entonces $\kappa(\mathbf{Q}) = \mathbf{1}$

Propiedad

Sea $Q \in \mathbb{R}^{n imes n}$ ortogonal y $x \in \mathbb{R}^n$ entonces $\|Qx\|_2 = \|x\|_2$

Propiedad

Sea $Q, R \in \mathbb{R}^{n imes n}$ ortogonales entonces QR es ortogonal

6.1.1 Métodos

Sea $A\in\mathbb{R}^{n\times n}$, $Q\in\mathbb{R}^{n\times n}$ ortogonal y $R\in\mathbb{R}^{n\times n}$ triangular superior tal que A=QR

Entonces podemos resolver el sistema de ecuaciones Ax=b de la siguiente manera:

$$Ax=b\Rightarrow QRx=b\Rightarrow Q^tQRx=Q^tb\Rightarrow Rx=Q^tb$$

Entonces podemos resolver el sistema $Rx=Q^tb$ en $\mathcal{O}(n^2)$ operaciones.

Veamos como obtener Q y R usando dos métodos distintos: **Método de Givens** y **Método de Householder**.

6.2 Método de Givens

6.2.1 Rotaciones de Givens

Dado un angulo heta definimos la transformación lineal $W:\mathbb{R}^2 o \mathbb{R}^2$ que rota al vector θ grados en el sentido horario:

$$m{W} = egin{bmatrix} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{bmatrix}$$

Entonces W es ortogonal y $\|Wx\|_2 = \|x\|_2$ para todo $x \in \mathbb{R}^2$.

Sean $ilde{x}, ilde{y}\in\mathbb{R}^2$ tal que

$$ilde{y} = egin{bmatrix} \| ilde{x}\|_2 \ 0 \end{bmatrix}$$

Queremos encontrar W tal que $W\tilde{x}=\tilde{y}$. Proponemos:

$$oldsymbol{W} = egin{bmatrix} rac{ ilde{x}_1}{\| ilde{x}\|_2} & rac{ ilde{x}_2}{\| ilde{x}\|_2} \ -rac{ ilde{x}_2}{\| ilde{x}\|_2} & rac{ ilde{x}_1}{\| ilde{x}\|_2} \end{bmatrix}$$

6.2.2 Factorización QR en el plano (2 imes 2)

Si $A \in \mathbb{R}^{2 imes 2}$ y tomamos

$$ilde{x} = \operatorname{col}_1(A) egin{bmatrix} a_{11} \ a_{21} \end{bmatrix} \qquad ilde{y} = egin{bmatrix} \| ilde{x}\|_2 \ 0 \end{bmatrix}$$

entonces podemos armar $W \in \mathbb{R}^{2 imes 2}$ tal que $W ilde{x} = ilde{y}$. Además:

$$WA = egin{bmatrix} \| ilde{x}\|_2 & * \ 0 & * \end{bmatrix} = R \Rightarrow WA = R \Rightarrow W^tWA = W^tR \Rightarrow A = W^tR$$

Si renombramos $W^t = Q$ entonces A = QR.

6.2.3 Factorización en $\mathbb{R}^{n \times n}$

Tenemos que ver como adapatar este proceso a más dimensiones. Sean $A \in \mathbb{R}^{n imes n}$, nuestro primer objetivo es anular el elemento a_{21} . Sabemos que si tomamos un vector

$$\tilde{x} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

entonces existe $W \in \mathbb{R}^{2 \times 2}$ tal que

$$oldsymbol{W} ilde{oldsymbol{x}} = egin{bmatrix} \| ilde{oldsymbol{x}}\|_{oldsymbol{2}} \ 0 \end{bmatrix}$$

.

Vamos a inventar una matriz $W_{12} \in \mathbb{R}^{n \times n}$ que realize esta misma operación sobre A. Definimos entonces $W_{12} \in \mathbb{R}^{n \times n}$ como:

$$W_{12} = egin{bmatrix} w_{11} & w_{12} & 0 & \dots & 0 \ w_{21} & w_{22} & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \Rightarrow W_{12}A = egin{bmatrix} * & * & \dots & * \ 0 & * & \dots & * \ a_{31} & a_{32} & \dots & a_{3n} \ dots & dots & \dots & dots \ a_{n1} & a_{n2} & \dots & dots \ a_{nn} \end{bmatrix} = A^1$$

Ahora queremos anular el elemento a_{31} , para eso vamos a usar una matriz $W_{23} \in \mathbb{R}^{n \times n}$ que realize esta misma operación sobre A^1 . Nuestro nuevo es

$$\tilde{x} = \begin{bmatrix} a_{11} \\ a_{31} \end{bmatrix}$$

y nuestro nuevo $W \in \mathbb{R}^{2 imes 2}$ tal que

$$oldsymbol{W} ilde{oldsymbol{x}} = egin{bmatrix} \| ilde{oldsymbol{x}}\|_{oldsymbol{2}} \ 0 \end{bmatrix}$$

.

Definimos entonces $W_{13} \in \mathbb{R}^{n \times n}$ como:

$$W_{23} = egin{bmatrix} w_{11} & 0 & w_{12} & ... & 0 \ 0 & 1 & ... & 0 \ w_{21} & 0 & w_{22} & ... & 0 \ 0 & 0 & 0 & ... & 1 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & ... & 0 \ \end{bmatrix} \Rightarrow W_{23}A^1 = egin{bmatrix} * & * & * & * & * \ 0 & * & ... & * \ 0 &$$

Podemos repetir este proceso, por cada elemento que queremos anular: Supongamos que queremos anular el elemento a_{ij} , entonces elegimos

$$ilde{x} = egin{bmatrix} a_{ii} \ a_{ij} \end{bmatrix}$$

y $W \in \mathbb{R}^{2 imes 2}$ tal que

$$oldsymbol{W} ilde{oldsymbol{x}} = egin{bmatrix} \| ilde{oldsymbol{x}}\|_{oldsymbol{2}} \ oldsymbol{0} \end{bmatrix}$$

y definimos $W_{ij} \in \mathbb{R}^{n \times n}$ como:

$$W_{ij} = egin{bmatrix} 1 & ... & 0 & ... & 0 & ... & 0 \ dots & \ddots & dots & ... & dots & ... & dots \ 0 & ... & oldsymbol{w_{ii}} & ... & oldsymbol{w_{ij}} & ... & 0 \ dots & \ddots & dots & \ddots & dots & ... & dots \ 0 & ... & oldsymbol{w_{ji}} & ... & oldsymbol{w_{jj}} & ... & 0 \ dots & \ddots & dots & \ddots & dots & \ddots & dots \ 0 & ... & 0 & ... & 0 & ... & 1 \end{bmatrix}$$

En las coordenadas resaltadas, ubicamos los elementos de W.

Tras realizar este proceso n-1 veces, obtenemos una matriz $R \in \mathbb{R}^{n \times n}$ triangular superior:

$$W_{n-1n}W_{n-2n}W_{n-2n-1}...W_{1n}...W_{12}A=R$$

Ademas como cada W_{ij} es ortogonal, entonces es inversible y podemos armar una matriz $Q \in \mathbb{R}^{n imes n}$ tal que:

$$Q = W_{12}^t ... W_{1n}^t ... W_{n-2n-1}^t W_{n-2n}^t W_{n-1n}^t$$

Luego:

$$A = QR$$

Propiedad

Ejecutar el método de Givens sobre una matriz $A \in \mathbb{R}^{n \times n}$ cuesta $\mathcal{O}(\frac{4}{3}n^3)$ operaciones

6.3 Método de Householder

6.3.1 Reflexiones de Householder

Dado tres vectores $u, v \in \mathbb{R}^2$ ortogonales entre si y $\tilde{x} \in \mathbb{R}^2$.Buscamos la transformación lineal $H: \mathbb{R}^n \to \mathbb{R}^n$ que refleja al vector x respecto del plano definido por u y v:

Esta matriz debe cumplir las siguientes condiciones:

$$1. \, \boldsymbol{H}\boldsymbol{u} = -\boldsymbol{u}$$

2.
$$Hv = v$$

3.
$$H\tilde{x} = \tilde{y}$$

Como u y v son ortogonales, forman una base de \mathbb{R}^2 , entonces podemos escribir \tilde{x} como combinación lineal de u y v:

$$\tilde{x} = \alpha v + \beta u$$

Además, la reflexion de \tilde{x} respecto del plano definido por u y v se puede escribir como $\tilde{y} = \alpha v - \beta u$.

Entonces, si remplazamos \tilde{y} en la ecuación $H\tilde{x}=\tilde{y}$ obtenemos que:

$$egin{aligned} H ilde x &= ilde y \ &= lpha v - eta u \ &= lpha v + eta u - eta u - eta u \ &= lpha v + eta u - eta u \ &= lpha v + eta u - 2eta u \ &= ilde x - 2eta u \ &= I ilde x - W ilde x \ &= lpha M ilde x \ &= (I - W) ilde x \end{aligned}$$

Entonces $\pmb{H} = \pmb{I} - \pmb{W}$. Ahora tenemos que encontrar \pmb{W} . Como $\tilde{\pmb{x}} = \alpha \pmb{v} + \beta \pmb{u}$ entonces:

Por ahora, asumamos por simplicidad que $\|u\|_2=1$. Sea

$$oldsymbol{P} = uu^t = egin{bmatrix} u_1^2 & u_1u_2 \ u_1u_2 & u_2^2 \end{bmatrix}$$

Entonce *P* es simétrica y cumple las siguientes propiedades:

$$ullet$$
 $\mathbb{P}^{oldsymbol{t}}=oldsymbol{P}$

•
$$PP^t = P$$

- Pu = u
- Pv = 0

Entonces, si tomamos W = 2P entonces Wu = 2Pu = 2u.

Finalmente, H = I - 2P.

Propiedad

H es simétrica y ortogonal

Propiedad

Sean $\tilde{x}, \tilde{y} \in \mathbb{R}^n$ tal que $\|x\|_2 = \|y\|_2$ entonces existe una reflexión H tal que $H\tilde{x} = \tilde{y}$:

$$oldsymbol{H} = oldsymbol{I} - oldsymbol{2} rac{{(ilde{oldsymbol{x}} - ilde{oldsymbol{y}})(ilde{oldsymbol{x}} - ilde{oldsymbol{y}})^t}{\| ilde{oldsymbol{x}} - ilde{oldsymbol{y}}\|_{oldsymbol{2}}^2}$$

6.3.2 Factorización en el plano (2×2)

Sea $A \in \mathbb{R}^{1 \times 2}$ buscamos una reflexión H tal que HA resulte en una matriz triangular. Tomemos

$$\tilde{x} = \operatorname{col}_1(A) = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \qquad \tilde{y} = \begin{bmatrix} \|\tilde{x}\|_2 \\ 0 \end{bmatrix}$$

Entonces, por la propiedad anterior, existe una reflexión H tal que $H\tilde{x}=\tilde{y}$. Entonces:

$$HA = egin{bmatrix} \| ilde{x}\|_2 & * \ 0 & * \end{bmatrix} = R \Rightarrow HA = R \Rightarrow H^tHA = H^tR \Rightarrow A = H^tR$$

Como H^t es ortogonal, podemos renombrar $H^t=Q$ y entonces A=QR.

6.3.3 Factorización en $\mathbb{R}^{n \times n}$

Se puede extender el mismo concepto a múltiples dimensiones. En este caso, nuestro primer objetivo es anular todos los elementos de la primer fila por debajo de la diagonal. Para eso, tomamos

$$ilde{x} = \operatorname{col}_1(A) = egin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{n1} \end{bmatrix} \qquad ilde{y} = egin{bmatrix} \| ilde{x}\|_2 \\ 0 \\ dots \\ 0 \end{bmatrix}$$

y buscamos una reflexión H_1 tal que $H_1 \tilde{x} = \tilde{y}$.

Por la misma propiedad anterior, existe una reflexión H_1 tal que $H_1 \tilde{x} = \tilde{y}$. Entonces:

$$H_1 A = egin{bmatrix} \| ilde{x} \|_2 & * & \dots & * \ 0 & * & \dots & * \ dots & dots & \dots & dots \ 0 & * & \dots & * \end{bmatrix} = A^1$$

En los siguientes paso, buscamos ${\cal H}_2$ tal que ${\cal H}_2 A^1$ anule todos los elementos de la segunda fila por debajo de la diagonal.

En cada paso, buscamos la reflexión ${\cal H}_i$ que permite anular las entradas de la fila i por debajo de la diagonal.

Al final del proceso, obtenemos una secuencia de productos matriciales que nos permiten obtener una matriz $R \in \mathbb{R}^{n \times n}$ triangular superior:

$$H_nH_{n-1}...H_1A=R$$

Además, como cada H_i es ortogonal, entonces es inversible y podemos armar una matriz $Q \in \mathbb{R}^{n \times n}$ tal que:

$$Q = H_1^t H_2^t ... H_{n-1}^t$$

6.4 Propiedades

Propiedad

Ejecutar el método de Householder sobre una matriz $A \in \mathbb{R}^{n \times n}$ cuesta $\mathcal{O}(\frac{2}{3}n^3)$ operaciones

Propiedad

Sea $A\in\mathbb{R}^{n imes n}$, A no singular. Existen únicas $Q\in\mathbb{R}^{n imes n}$ ortogonal y $R\in\mathbb{R}^{n imes n}$ triangular superior tal que A=QR

7.1 Autovalores

Sea $A\in\mathbb{C}^{n\times n}$, $\lambda\in\mathbb{C}$ es **autovalor de** A si y solo si existe $v\in\mathbb{C}^n$ tal que $v\neq 0$ y

$$Av = \lambda v$$

Si λ es autovalor de A, entonces v es **autovector asociado a** λ .

Vamos a llamar radio espectral de A al número

$$\rho(A) = \max\{|\lambda| : \lambda \text{ es autovalor de } A\}$$

Propiedad

 $A - \lambda I$ es una matriz singular (no inversible)

Vamos a definir el **polinomio característico** de A como:

$$P(\lambda) = \det(A - \lambda I)$$

Propiedad

 λ es autovalor de A si y solo si es raiz de $P(\lambda)$ (si $P(\lambda) = 0$)

Propiedad

A tiene n autovalores, algunos pueden tener multiplicidad mayor a 1 (pueden estar repetidos)

Propiedad

Si v es autovector entonces αv también es autovector.

Propiedad

Si λ es autovalor de $A \Rightarrow \lambda - \alpha$ es autovalor de $A - \alpha I$.

Demostración

$$(A - \alpha I)v = Av - \alpha v = \lambda v - \alpha v = (\lambda - \alpha)v$$

Propiedad

Si λ es autovalor de A y v autovector de asociado, entonces $(\lambda)^{(k)}$ es autovalor de $A^{(k)}$ y v es autovector asociado.

Demostración

Vamos a demostrar por inducción en k:

- Caso base (k=1): $Av=\lambda v\Rightarrow A^1v=\lambda_1v$ por definición de autovector.
- Paso inductivo: Supongamos que vale para k, entonces $A^kv=\lambda^kv$. Queremos ver que $A^{k+1}v=\lambda^{k+1}v$.

$$A^{k+1}v = A^k(Av) = A^k(\lambda v) = \lambda A^k v$$

Por hipótesis inductiva $A^k v = \lambda^k v$ entonces

$$\lambda A^k v = \lambda \lambda^k v = \lambda^{k+1} v$$
 $lacksquare$

Propiedad

Sea $Q \in \mathbb{R}^{n \times n}$ una matriz ortogonal, entonces sus autovalores reales son 1 o -1

Demostración

Por ser Q ortogonal, sabeemos que $\|Av\|_2 = \|v\|_2$. Supongamos que v es autovector asociado a λ entonces $Av = \lambda v$ y $\|Av\|_2 = \|\lambda v\|_2 = |\lambda| \ \|v\|_2$. Entonces $|\lambda| = 1$

Propiedad

Si $\lambda_1, \lambda_2, ..., \lambda^n$ son los autovalores distintos con autovalores asociados $v^1, v^2, ..., v^n$ son linealmente independientes.

Demostración

Vamos a demostrar por inducción en k:

- ullet Caso base (k=1): es válido ya que v_1 no es el vector nulo.
- **Paso inductivo:** Supongamos que vale para k, entonces $v^1, v^2, ..., v^k$ son linealmente independientes. Queremos ver que $v^1, v^2, ..., v^{k+1}$ tambien lo son.

Supongamos que no, entonces v^{k+1} se puede escribir como combinación lineal de $v^1, v^2, ..., v^k$:

$$v^{k+1} = \sum_{i=1}^k c_i v^i$$

Los coeficientes c_i no son todos nulos ya que $v^{k+1} \neq 0$ por definición de autovector.

Multiplicando por A a ambos lados de la igualdad queda:

$$Av^{k+1} = \lambda^{k+1}v^{k+1}$$

V

$$\hat{A} \sum_{i=1}^k c_i v^i = \sum_{i=1}^k c_i A v^i = \sum_{i=1}^k c_i \lambda^i v^i$$

Osea que:

$$\lambda^{k+1}v^{k+1} = \sum_{i=1}^k c_i\lambda^iv^i$$

Por otro lado, si multiplicamos la igualdad original por λ^{k+1} queda:

$$\lambda^{k+1} v^{k+1} = \lambda^{k+1} \sum_{i=1}^k c_i v^i = \sum_{i=1}^k c_i \lambda^{k+1} v^i$$

Entonces podemos combinar las igualdades y nos queda:

$$egin{aligned} \sum_{i=1}^k c_i \lambda^i v^i &= \sum_{i=1}^k c_i \lambda^{k+1} v^i \ \Rightarrow \sum_{i=1}^k c_i \lambda^i v^i - \sum_{i=1}^k c_i \lambda^{k+1} v^i &= 0 \ \Rightarrow \sum_{i=1}^k c_i ig(\lambda^i - \lambda^{k+1} ig) v^i &= 0 \end{aligned}$$

Ahora, como $v^1,v^2,...,v^k$ son linealmente independientes (por hipotesis induvtiva), la única manera de que esta combinación lineal resulte en el vector nulo es que $c_{j(\lambda^j-\lambda^{k+1})}=0$ para todo j=1...k.

Sabemos que existe algún $c_j \neq 0$, lo que implica que para ese j tiene que valer que $\lambda^j - \lambda^{k+1} = 0 \Rightarrow \lambda^j = \lambda^{k+1}$, lo cual es una contradicción ya que por hipótesis $\lambda_1, \lambda_2, ..., \lambda^n$ son distintos.

Propiedad

A y A^t tienen los **mismos autovalores**

Demostración

Sabemos que los autovalores de A son las raíces del polinomio característico $P(\lambda) = \det(A - \lambda I)$. Además sabemos que la determinante de una matriz y su traspuesta son iguales, entonces

$$\det(A-\lambda I) = \det \left(\left(A-\lambda I\right)^t \right) = \det(A^t-\lambda I)$$

Entonces el polinomio característico de A y A^t es el mismo y sus raíces también lo son.

7.1.1 Disco de Gershgorin

Sea $A \in \mathbb{C}^{n imes n}$ y

$$r_i = \sum_{\substack{k=1 \ k
eq i}}^n \lvert a_{\{ik\}}
vert$$

definimos el disco de Gershgorin

$$D_i = \{x \in \mathbb{C} : |x - a_{ii}| \le r_i\}$$

Propiedad

Sea λ autovalor de A entonces $\lambda \in D_i$ para algún i=1,2,...,n

Demostración

Sea v el autovector asociado a λ . Como $v \neq 0$ entonces

$$\|v\|_{\infty} = \max_{1 \leq i \leq n} |v_i| \neq 0$$

Sea k_0 el índice de una coordenada de v tal que $\|v\|_\infty = \left|v_{k_0}\right|$. Sabemos que $Av = \lambda v$. En particular, considerando la fila k_0 de A, tenemos que:

$$\sum_{j=1}^n a_{k_0j} v_j = \lambda v_{k_0}$$

Separando de la sumatoria el término k_0 :

$$a_{m{k}_0m{k}_0}v_{m{k}_0} + \sum_{m{j}=1 \ j
eq m{k}_0}^n a_{m{k}_0m{j}}v_{m{j}} = m{\lambda}v_{m{k}_0}$$

$$\Rightarrow \sum_{\substack{j=1\\ j \neq k_0}}^n a_{k_0 j} v_j = \lambda v_{k_0} - a_{k_0 k_0} v_{k_0} = \big(\lambda - a_{k_0 k_0}\big) v_{k_0}$$

Si tomamos módulo a ambos lados de la igualdad nos queda:

$$|\sum_{\substack{j=1\\j\neq k_0}}^n a_{k_0j}v_j| = |\lambda - a_{k_0k_0}|\ |v_{k_0}| = |\lambda - a_{k_0k_0}|\ \|v\|_{\infty}$$

$$\Rightarrow \sum_{\substack{j=1\\j\neq k_0}}^n |a_{k_0j}v_j| \geq |\lambda - a_{k_0k_0}| \ |v_{k_0}|$$

Como $|v_{k_0}|
eq 0$ podemos pasar dividiendo y nos queda:

$$\sum_{\substack{j=1\\j\neq k_0}}^n |a_{k_0j}| \; \frac{|v_j|}{|v_{k_0}|} \geq |\lambda - a_{k_0k_0}|$$

Como $\|v\|_{\infty} = \left|v_{k_0}\right|$ entonces $rac{|v_j|}{|v_{k_0}|} \leq 1$ y por lo tanto:

$$\sum_{\substack{j=1\\j\neq k_0}}^n |a_{k_0j}| \geq \sum_{\substack{j=1\\j\neq k_0}}^n |a_{k_0j}| \; \frac{|v_j|}{|v_{k_0}|} \geq |\lambda - a_{k_0k_0}|$$

Luego λ cumple la condición para pertenecer a D

Propiedad

Si $M=D_{i_1}\cup D_{i_2}\cup ...\cup D_{i_k}$ es disjunto con la unión de los restantes discos D_i entonces hay exactamente m autovalores de A (contados con su multiplicidad) en M.

7.1.2 Matriz semejantes

Sean $A,B,C\in\mathbb{C}^{n\times n}$ son matrices semejantes si existe $P\in\mathbb{C}^{n\times n}$ matriz inversible, tal que:

$$A = P^{-1}BP$$

Propiedad

Si A y B son semejantes entonces **tienen los mismos autovalores**

Demostración

Sea λ autovalor de A y v autovector asociado. Queremos ver que λ es autovalor de B. Sabemos que

$$Av = \lambda v$$

Multiplicando a ambos lados por P^{-1} nos queda:

$$P^{-1}Av = \lambda P^{-1}v$$

Como A y B son semejantes:

$$P^{-1}PBP^{-1}v = \lambda P^{-1}v$$
$$\Rightarrow BP^{-1}v = \lambda P^{-1}v$$

Como P es inversible y $v\neq 0$, entonces $P^{-1}v\neq 0$ y por lo tanto λ Si nombramos $u=P^{-1}v$ entonces $Bu=\lambda u$ podemos concluir que λ es autovalor de B y u su autovector asociado \blacksquare

Diagonalización por semenjanza

Dada $A \in \mathbb{C}^{n \times n}$, A es **diagonizable por semejanza** si es semejante a una matriz diagonal.

Propiedad

A es diagonizable por semejanza si y solo si sus autovectores forman una base.

Demostración

 \Rightarrow) Si A es diagonizable por semejanza, entonces existe P matriz inversible tal que $A=PDP^{-1}$. Por la propiedad anterior, D tiene los mismos autovalores que A. Además si v es autovector de D, entonces Pv es autovector de A.

Los autovectores de una matriz diagonal son los vectores canónicos $e_1,e_2,...,e_n$. Entonces los autovectores de A son $Pe_1,Pe_2,...,Pe_n$.

Ahora, $Pe_i=\operatorname{col}_{i(P)}$. Como P es inversible, sus columnas son linealmente independiente, por lo tanto, $Pe_1, Pe_2, ..., Pe_n$ son linealmente independientes y forman una base.

Luego, los auvotes de A forman una base.

 \Leftarrow) Si A tiene base de autovectores, entonces existen $v_1,v_2,...,v_n$ autovectores linealmente independientes tal que $Av_i=\lambda_iv_i$ siendo λ_i el autovalor al que están asociados.

Definamos $P \in \mathbb{R}^{n \times n}$ a la matriz cuyas columnas son los autovectores $v_1, v_2, ..., v_n$. Como $v_1, v_2, ..., v_n$ son linealmente independientes \Rightarrow P es inversible.

$$\begin{split} AP &= A[v_1 \;\; v_2 \;\; \cdots \;\; v_n] = [Av_1 \;\; Av_2 \;\; \ldots \;\; Av_n] \\ &= [\lambda_1 v_1 \;\; \lambda_2 v_2 \;\; \ldots \;\; \lambda_n v_n] \\ &= [v_1 \;\; v_2 \;\; \ldots \;\; v_n] \begin{bmatrix} \lambda_1 \;\; 0 \;\; \ldots \;\; 0 \\ \vdots \;\; \vdots \;\; \ddots \;\; \vdots \\ 0 \;\; 0 \;\; \ldots \;\; \lambda_n \end{bmatrix} \\ &= PD \end{split}$$

Entonces logramos conseguir $D \in \mathbb{R}^{n \times n}$ diagonal tal que AP = PD y como P es inversible, si multiplicamos a derecha por su inversa en ambos lados nos queda:

$$APP^{-1} = PDP^{-1} \Rightarrow A = PDP^{-1}$$

Luego A es diagonizable por semejanza \blacksquare

7.1.3 Propiedades de autovalores

Sea $A \in \mathbb{R}^{n \times n}$:

Propiedad

Si A es simétrica, sus autovolores son reales.

Demostración

Sea λ autovalor de A y $v \neq 0$ su autovector asociado. Entonces $Av = \lambda v$. Conjugemos (Si $a = x + yi \Rightarrow \bar{a} = x - yi$) ambos lados de la igualdad:

$$Av=\lambda v\Rightarrow ar{Av}=ar{\lambda v}\Rightarrow ar{Aar{v}}=ar{\lambda}ar{v}$$

Como $A \in \mathbb{R}^{n \times n}$, $\bar{A} = A$:

$$ar{A}ar{v}=ar{\lambda}ar{v}\Rightarrow Aar{v}=ar{\lambda}ar{v}$$

Multipliquemos por v^t ambos lados de la igualdad:

$$v^t A ar{v} = v^t ar{\lambda} ar{v} \Rightarrow v^t A ar{v} = ar{\lambda} v^t ar{v} \Rightarrow \left(A^t v
ight)^t ar{v} = ar{\lambda} v^t ar{v}$$

Como A es simétrica:

$$(A^t v)^t \bar{v} = \bar{\lambda} v^t \bar{v} \Rightarrow (Av)^t \bar{v} = \bar{\lambda} v^t \bar{v}$$

Como v es autovector asociado a λ :

$$(Av)^tar{v}=ar{\lambda}v^tar{v}\Rightarrow \lambda v^tar{v}=ar{\lambda}v^tar{v}$$

Ahora como $v \neq 0$:

$$v^t \bar{v} = v_1 * \bar{v_1} + v_2 * \bar{v_2} + \ldots + v_n * \bar{v_n} = |v_1|^2 + |v_2|^2 + \ldots + |v_n|^2 > 0$$

Entonces:

$$\lambda v^t ar{v} = ar{\lambda} v^t ar{v} \Rightarrow \lambda = ar{\lambda} rac{v^t ar{v}}{v^t ar{v}} \Rightarrow \lambda = ar{\lambda}$$

Luego λ es real

Propiedad

Si A tiene un **autovalor real** entonces existe un **autovector asociado con coeficientes reales**.

Demostración

Sea λ autovalor real de A y v autovector asociado. Entonces v es solución al sistema $(A-\lambda I)v=0$. Este sistema puede resolverse utilizando elminiación gaussiana. Como $A\in\mathbb{R}^{n\times n}$, todos los coeficientes que se usan en el proceso son reales, por lo tanto, la solución que se obtiene tendrá coeficientes reales \blacksquare

Propiedad

Si A es **simétrica** y λ_1 y λ_2 **autovalores distintos** con v_1 y v_2 autovectores asociados. Entonces v_1 y v_2 son ortogonales.

Demostración

Sea λ_1 y λ_2 autovalores distintos de A y v_1 y v_2 autovectores asociados. Entonces $Av_1=\lambda_1v_1$ y $Av_2=\lambda_2v_2$.

Multiplicando a ambos lados de la primera igualdad por v_2 y a ambos lados de la segunda igualdad por v_1 nos queda:

$$egin{aligned} v_2^t A v_1 &= v_2^t \lambda_1 v_1 \ v_1^t A v_2 &= v_1^t \lambda_2 v_2 \end{aligned}$$

Como A es simétrica, $A^t = A$ y entonces:

$$v_{\mathbf{2}}^{t}Av_{1} = \left(A^{t}v_{\mathbf{2}}\right)^{t}v_{1} = \left(Av_{\mathbf{2}}\right)^{t}v_{1} = \left(v_{1}^{t}Av_{\mathbf{2}}\right)^{t} = v_{1}^{t}Av_{\mathbf{2}}$$

Entonces:

$$\lambda_1 v_2^t v_1 = \lambda_2 v_1^t v_2$$

Como por hipotesis $\lambda_1 \neq \lambda_2$ y además $v_2^t v_1 = v_1^t v_2$, entonces $v_1^t v_2 = 0$ y por lo tanto v_1 y v_2 son ortogonales \blacksquare

Propiedad

Sea $Q \in \mathbb{R}^{n \times n}$ ortogonal, λ es autovalor de A si y solo si λ es autovalor de QAQ^t .

Teorema de Schur (simplificado)

Si A tiene todos tus autovalores reales, existe $Q \in \mathbb{R}^{n \times n}$ ortogonal tal que

$$Q^tAQ = T$$

con $T \in \mathbb{R}^{n \times n}$ triangular superior.

Demostración

Sea λ_1 autovalor de A y v_1 su autovector asociado, asumamos que $\|v_1\|_2=1.$

Sabemos que existe una transformación de Householder H_1 tal que $H_1v_1=e_1$ con e_1 el primer vector canónico. Como H_1 es una transformación de householder es simétirca y ortogonal, por lo tanto $H_1^t=H_1^{-1}=H_1$. Entonces:

$$H_1AH_1^te_1 = H_1Av_1 = H_1\lambda_1v_1 = \lambda_1H_1v_1 = \lambda_1e_1$$

Osea que

$$H_1AH_1^t = egin{bmatrix} \lambda_1 & * & \cdots & * \ 0 & ilde{A} \end{bmatrix}$$

Además A es semejante a $H_1AH_1^t$ pues:

$$\begin{split} A &= H_1^{-1} H_1 A H_1^{-1} H_1 \\ &= H_1^t H_1 A H_1^t H_1 \ \ \text{(porque H_1 es ortogonal)} \\ &= H_1^t (H_1 A H_1^t) H_1 \end{split}$$

Luego, como A es semejante a $H_1AH_1^t$, ambas matrices tienen los mismos autovalores.

Como $\operatorname{col}_1(H_1AH_1^t)=\lambda_1e_1$, sabemos tambien que el resto de los autovalores están determinados por los autovalores de la matriz $\tilde{A}\in\mathbb{R}^{(n-1)\times(n-1)}$ que se obtiene al eliminar la primera fila y la primera columna de A:

Repitiendo el proceso para \tilde{A} obtenemos una reflexión de Householder $\widetilde{H}_2 \in \mathbb{R}^{(n-1)\times (n-1)}$ que tiene exactametne las mismas propiedades que H_1 :

- ullet $\widetilde{H}_2 \widetilde{A} \widetilde{H}_2^t = \lambda_2 e_2 \ \mathsf{con} \ e_2 \in \mathbb{R}^{n-1}$
- \widetilde{A} y $\widetilde{H}_2\widetilde{A}\widetilde{H}_2^t$ son semejantes y tienen los mismos autovalores.

Armemos entonces $H_2 \in \mathbb{R}^{n \times n}$ de la siguiente manera:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} 1 & 0^t \ 0 & \widetilde{H}_2 \end{aligned} \end{aligned}$$

Queda entonces que:

$$H_2H_1AH_1^tH_2^t=egin{bmatrix} \lambda_1 & * & \cdots & * \ 0 & \lambda_2 & \cdots & * \ 0 & 0 & \cdots & * \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & * \end{bmatrix}$$

Repitiendo este proceso n-1 llegaremos a una matriz T triangular superior tal que

$$H_{n-1}...H_2H_1AH_1^tH_2^t...H_{n-1}^t=T$$

Solo queda renombrar $Q=H_{n-1}...H_2H_1$ y listo lacktriangle

Propiedad

Si A es simétrica, entonces T es diagonal. Los elementos de la diagonal de T son los autovalores y las columnas de Q son los autovectores.

Demostración

Como A es simétrica, todos sus autovalores son reales. Entonces, por el teorema de Schur, existe $Q\in\mathbb{R}^{n\times n}$ ortogonal y T traiangular superior tal que

$$A = QTQ^t$$

Además

$$\boldsymbol{A^t} = \left(\boldsymbol{QTQ^t}\right)^t = \left(\boldsymbol{TQ^t}\right)^t \boldsymbol{Q^t} = \left(\boldsymbol{Q^t}\right)^t \boldsymbol{T^tQ^t} = \boldsymbol{QT^tQ^t}$$

Como A es simétrica, $A^t = A$ y entonces:

$$QTQ^t = QT^tQ^t$$

Como Q es ortogonal, $Q^t = Q^{-1}$:

$$QTQ^t = QT^tQ^t \Rightarrow Q^tQTQ^tQ = Q^tQT^tQ^tQ \Rightarrow T = T^t$$

Luego T^t es una matriz triangular superior y simétrica, por lo tanto es diagonal, es decir A es diagonizable por semejanza \blacksquare

Corolario

Si A es simétrica, entonces tiene base (ortonormal) de autovectores.

Demostración

Sabemos que A es diagonizable por semejanza a QTQ^t , esto implica que tiene base de autovecotores. Por la propiedad anterior, tambien sabemos que las columnas de Q son los autovectores de A. Como Q es ortogonal, sus columnas son linealmente independientes y además $\|\operatorname{col}_i(Q)\|_2=1$ para todo i=1,2,...,n concluimos que esa base es ortonormal \blacksquare

7.2 Métodos para calcular autovalores

7.2.1 Método de la potencia

Sea $A \in \mathbb{R}^{n \times n}$, $\lambda_1, \lambda_2, ..., \lambda^n$ sus n autovalores con **autovectores asociados** $v^1, v^2, ..., v^n$ que forman una base.

Supongamos que $|\lambda_1|>|\lambda_2|>...\geq |\lambda^n|$. Sea $q_0\in\mathbb{R}^n$ tal que $\|q_0\|=1$, definimos la sucesión $\{q_k\}$ donde cada uno de sus elementos se define como:

$$q^k = rac{Aq^{k-1}}{\|Aq^{k-1}\|_2}$$

Esta sucesión converge al autovector v^1 . Además $\lambda_k = \left(q^k\right)^t A q^k$ converge a λ_1 .

7.2.2 Método de la deflación

Sea $A \in \mathbb{R}^{n imes n}$, λ_1 autovalor de A con autovector asociado v^1 y $\|v^1\| = 1$.

Sea $H \in \mathbb{R}^{n \times n}$ ortogonal tal que $H^t v^1 = e_1$, entonces:

$$H^tAH = egin{bmatrix} \lambda_1 & a^t \ 0 & B \end{bmatrix}$$

Como A y H^tAH tienen los mismos autovalores, los otros autovalores de A son los autovalores de B.

7.3 Descomposición en valores singulares (SVD)

7.3.1 Método

Sea $A \in \mathbb{R}^{m \times n}$, r = rang(A), existen matrices $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ ortogonales y $\Sigma \in \mathbb{R}^{m \times n}$ diagonal tal que:

$$A = U\Sigma V^t$$

Además, Σ tiene la forma:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \dots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_r & 0 & \cdots & 0 \\ 0 & 0 & \dots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \cdots & 0 \end{bmatrix}$$

con $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$. Llamamos a los σ_i valores singulares de A.

Proponemos la siguientes condiciones para las matrices de esta descomposición:

- ullet U tiene como columnas los autovectores de AA^t
- ullet V tiene como columnas los autovectores de A^tA
- $\sigma_i = \sqrt{\lambda_i}$ donde λ_i es el i –ésimo autovalor de A^tA si los tomamos ordenados de mayor a menor: $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r$.

7.3.2 Demostración

Sea $u_1,u_2,...,u_m$ a las columnas de U y $v_1,v_2,...,v_n$ a las columnas de V. Si la descomposición SVD existe, entonces $A=U\Sigma V^t$ y $A^t=V\Sigma^t U^t$. Entonces:

$$AV = U\Sigma \underbrace{V^t V}_{ ext{ortogonales}} = U\Sigma \Rightarrow Av_i = egin{cases} \sigma_i u_i & ext{si } i \leq r \ 0 & ext{sino} \end{cases}$$

$$A^t U = V \Sigma^t \underbrace{U^t U}_{ ext{ortogonales}} = V \Sigma^t \Rightarrow A^t u_i = egin{cases} \sigma_i v_i & ext{si } i \leq r \ 0 & ext{sino} \end{cases}$$

Columnas de V

Supongamos $i \leq r$ multiplicamos la primera relación por A^t obtenemos:

$$A^tAv_i = \sigma_iA^tu_i = \sigma_i^2v_i$$

Entonces v_i es autovector de A^tA , además σ_i^2 deben ser sus autovalores.

 A^tA es una matriz simétrica definida positiva (ver Sección 5.1) y su rango es r. Por la condición de símetria sabemos que existe una base ortonormal de autovectores (ver Sección 7.1.3). Además por ser semidefinida positiva, todos sus autovalores son reales y positivos.

Sabemos que r de esos autovalores son no nulos y el 0 es autovalor con multiplicidad n-r. Sean $\lambda_1,...,\lambda_r$ los autovalores no nulos de A^tA y $v_1,...,v_r$ los autovectores asociados y $v_{r+1},...,v_n$ los autovectores asociados al 0, entonces $v_1,...,v_r,v_{r+1},...,v_n$ es una base ortonormal de autovectores de A^tA .

Estos vectores son los candidatos a conformar las columnas de V y definimos $\sigma_i=\sqrt{\lambda_i}>0$.

Columnas de U

De la relación $Av_i = \sigma_i u_i$ podemos despejar u_i para $i \leq r$:

$$u_i = rac{1}{\sigma_i} A v_i$$

Para que esta relación sea correcta, **debemos ver que** $u_1,...,u_r$ **son otornomales**:

$$\begin{split} u_i^t u_j &= \left(\frac{1}{\sigma_i} A v_i\right)^t \left(\frac{1}{\sigma_j} A v_j\right) = \frac{1}{\sigma_i} (A v_i)^t \frac{1}{\sigma_j} A v_j = \frac{1}{\sigma_i} \frac{1}{\sigma_j} (A v_i)^t A v_j \\ &= \frac{1}{\sigma_i} \frac{1}{\sigma_j} v_i^t A^t A v_j = \frac{1}{\sigma_i} \frac{1}{\sigma_j} v_i^t \lambda_j v_j \qquad \left(v_j \text{ autovector de } A^t A\right) \\ &= \frac{1}{\sigma_i} \frac{1}{\sigma_j} \lambda_j v_i^t v_j = 0 \qquad \left(v_i \ \text{ y } v_j \text{ son ortonormales}\right) \end{split}$$

Luego $u_1,...,u_r$ son ortogonales. Falta ver que $\parallel u_i \parallel_2 = 1$:

$$\begin{split} u_i^t u_i &= \left(\frac{1}{\sigma_i} A v_i\right)^t \left(\frac{1}{\sigma_i} A v_i\right) = \frac{1}{\sigma_i} (A v_i)^t \frac{1}{\sigma_i} A v_i = \frac{1}{\sigma_i^2} (A v_i)^t A v_i \\ &= \frac{1}{\sigma_i^2} v_i^t A^t A v_i = \frac{1}{\sigma_i^2} \lambda_i v_i^t \qquad (v_i \text{ autovector de } A^t A) \\ &= \frac{1}{\sigma_i^2} \lambda_i v_i^t v_i = \frac{1}{\sigma_i^2} \lambda_i \qquad (v_i^t v_i = 1) \\ &= \frac{1}{\left(\sqrt{\lambda_i}\right)^2} \lambda_1 \qquad (\text{por definición de } \sigma_i) \\ &= \frac{1}{\lambda_i} \lambda_i = 1 \end{split}$$

Entonces $u_1,...,u_r$ son ortonormales. Falta definir los u_i con i>r:

Como $\dim(Im(A))=r$ y los $u_i\in Im(A)$, entonces estos vectores conforman una base otornomal de Im(A). Además $Nu(A^t)=Im(A)^\perp$. Entonces toda base ortonormal de Im(A) se puede extender a una base ortonormal de \mathbb{R}^m con vectores que pertenecen a $Nu(A^t)$. Sean $u_{r+1},...,u_m$ dicha extensión, entonces $u_1,...,u_m$ es una base ortonormal de \mathbb{R}^m .

Veamos que cumplen la relaciones definidas para u_i con i > r:

- $Av_i = \sigma_i u_i$ para i=1,...,r se cumple por definición de u_i .
- $Av_i=0$ para i=r+1,...,n. Como v_i es autovector de A^tA del autovalor 0, entonces $A^tAv_i=0 \Rightarrow v_i^tA^tAv_i=0 \Rightarrow \|Av_i\|_2=0 \Rightarrow A^tv_i=0$.
- $A^t u = \sigma_i v$ para i = 1, ..., r, se cumple por definición de u_i .
- $A^tu=0$ para i=r+1,...,n. Como $u_i\in Nu(A^t)$, entonces $A^tu_i=0$.

7.3.3 Propiedades

Propiedad

$$\|A\|_2 = \sigma_1$$

Demostración

$$egin{aligned} \|A\|_2 &= \max_{\|x\|_2 = 1} \|Ax\|_2 \ &= \max_{\|x\|_2 = 1} \|U\Sigma V^t x\|_2 \ &= \max_{\|x\|_2 = 1} \|\Sigma V^t x\|_2 \ (ext{porque } U ext{ es ortogonal}) \ &= \max_{\|x\|_2 = 1} \|\Sigma x\|_2 \ (ext{porque } V ext{ es ortogonal}) \ &= \max_{\|x\|_2 = 1} \|\Sigma x\|_2 \ &= \max_{\|x\|_2 = 1} \sqrt{\sum_{i=1}^r \sigma_i^2 x_i^2} \ &\leq \max_{\|x\|_2 = 1} \sqrt{\sqrt{\sum_{i=1}^r \sigma_i^2 x_i^2}} \ &\leq \sigma_1 \end{aligned}$$

Además,

$$\|A\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2 \geq \|Av_1\| = \sqrt{v_1^t A v_1} = \sqrt{v_1^t \sigma_1 v_1} = \sigma_1$$

Luego, concluimos que $\|A\|_2 = \sigma_1 \blacksquare$

Propiedad

Si A es inversible entonces:

$$\boldsymbol{\kappa}(\boldsymbol{A}) = \frac{\boldsymbol{\sigma_1}}{\boldsymbol{\sigma_r}}$$

Demostración

Como A es inversible, r=n y tiene n valores singulares no nulos. Además, los valores singulares de A^{-1} son $\frac{1}{\sigma_n},...,\frac{1}{\sigma_1}$ de los valores singulares de A. Por definición de κ :

$$\kappa(A) = \|A\|_2 \ \|A^{-1}\|_2 = \sigma_1 \frac{1}{\sigma_n} = \frac{\sigma_1}{\sigma_n}$$

Propiedad

$$\|A\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$

Métodos iterativos para sistemas de ecuaciones lineales

8.1 Introducción

Sean $A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$. Un **método iterativo** para resolver el sistema Ax = b es un algoritmo que produce una secuencia de vectores $\{x^k\}$ que se espera converja a la solución del sistema.

Estos métodos, en la práctica, son **muy útiles para sistemas de gran tama-ño**, en los que los métodos exactos son muy costosos en términos de tiempo y memoria.

Vamos a estudiar dos métodos iterativos muy conocidos: el **método de Ja- cobi** y el **método de Gauss-Seidel** que

8.1.1 Método de Jacobi

Sean $x^0 \in \mathbb{R}^n$. Supongamos que $a_{ii} \neq 0 \ \forall i=1...n$. Definimos x^1 de la siguiente manera:

A partir de x^1 , definimos $x^2, x^3, ...$ de la misma manera:

$$x_i^{k+1} = rac{b_1 - \sum_{j=1}^n a_{ij} x_j^k}{a_{ii}}$$

Si quisieramos escribir usando operaciones matriciales, debemos encontrar una forma de escribir ${\cal A}$ un poco más cómoda. Para ello, descompogamos a de la siguiente manera:

$$A = D - L - U$$

$$= egin{bmatrix} a_{11} & \dots & 0 & \dots & 0 \\ dash & \ddots & dash & \ddots & dash \\ 0 & \dots & a_{ii} & \dots & 0 \\ dash & \ddots & dash & \ddots & dash \\ 0 & \dots & 0 & \dots & a_{nn} \end{bmatrix} - egin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ dash & \ddots & \dots & \ddots & dash \\ -a_{i1} & \dots & -a_{in-1} & \dots & 0 \end{bmatrix} - egin{bmatrix} 0 & \dots & -a_{12} & \dots & -a_{1n} \\ dash & \ddots & \dots & \ddots & dash \\ 0 & \dots & 0 & \dots & -a_{in} \\ dash & \ddots & \dots & \ddots & dash \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}$$

Entonces:

$$egin{aligned} Ax &= b \ (D-L-U)x &= b \ Dx - (L+U)x &= b \ Dx &= (L+U)x + b \ \end{aligned}$$
 $x &= D^{-1}((L+U)x + b)x = D^{-1}(L+U)x + D^{-1}b$

Si ahora vemos como es la forma que tiene cada uno de los elementos de x, vemos que es igual a la forma al principio de cada sección, por lo que cada iteración de Jacobi se puede escribir como:

$$x^{k+1} = D^{-1}(L+U)x^k + D^{-1}b$$

8.1.2 Método de Gauss-Seidel

Sea $x^0 \in \mathbb{R}^n$. Supongamos que $a_{ii} \neq 0 \ \forall i=1...n$. Definimos x^1 de la siguiente manera:

$$x_1^1 = rac{b_1 - \sum_{j=1}^n a_{1j} x_j^0}{a_{11}} \ x_1^2 = rac{b_2 - a_{21} x_1^1 - \sum_{j=3}^n a_{2j} x_j^1}{a_{22}} \ dots \ x_i^1 = rac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^1 - \sum_{j=i+1}^n a_{ij} x_j^1}{a_{ii}} \ dots \ x_n^1 = rac{b_n - \sum_{j=1}^{n-1} a_{nj} x_j^1}{a_{nn}}$$

De manera similar, los siguientes valores de x se definen como:

$$x_i^{k+1} = rac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^n a_{ij} x_j^k}{a_{ii}}$$

Y usando la descomposición de A en D-L-U, podemos despejar x de tal manera que nos permitirá escribir el método de Gauss-Seidel de manera matricial:

$$egin{aligned} Ax &= b \ (D-L-U)x &= b \ (D-L)x-Ux &= b \ (D-L)x &= Ux + b \end{aligned}$$
 $egin{aligned} x &= (D-L)^{-1}Ux + (D-L)^{-1}b \end{aligned}$

Luego, la iteración de Gauss-Seidel se puede escribir como:

$$x^{k+1} = (D-L)^{-1}Ux^k + (D-L)^{-1}b$$

8.2 Análisis de convergencia

Dado un vector inicial $x^0 \in \mathbb{R}^{n \times n}$ y $T \in \mathbb{R}^{n \times n}$ y $c \in \mathbb{R}^n$,

$$x^{k+1} = Tx^k + c$$

En Jacobi, $T=D^{-1}(L+U)$ y $c=D^{-1}b$. En Gauss-Seidel, $T=(D-L)^{-1}U$ y $c=(D-L)^{-1}b$.

Si x^* es la solución del sistema, vamos a ver condiciones necesarias para que la secuencia $\{x^k\}$ converja a x^* .

8.2.1 Matriz convergente

Sea $A \in \mathbb{R}^{n \times n}$, decimos que A es convergente si

$$\lim_{k o\infty}A^k=0$$

Propiedad

A es convergente $\Leftrightarrow \rho(A) < 1$

 $\Leftrightarrow \lim_{k o \infty} \lVert A_k \rVert = 0 \;\; ext{para toda norma inducida}$

 $\Leftrightarrow \lim_{k o\infty} A^k x = 0 \;\; ext{para todo} \; x \in \mathbb{R}^n$

Propiedad

Si $\rho(A) < 1 \Rightarrow I - A$ es no singular y

$$\sum_{k=0}^{\infty}A^k=\left(I-A\right)^{-1}$$

8.2.2 Teorema de convergencia

La sucesión $\{x^k\}$ definida por $x^{k+1}=Tx^k+c$ converge a x^* para cualquier x^0 inicial a la solución del sistema x=Tx+c si y solo si $\rho(T)<1$.

Demostración

 \Leftarrow) Como ho(T) < 1, entonces (I-T) es inversible. Entonces

$$x = Tx + c \Leftrightarrow (I - T)x = c \Leftrightarrow x^* = (I - T)^{-1}c$$

Sea la sucesión $x^k=Tx^{k-1}+c$. Entonces podemos expresar a x^{k-1} en función de x^{k-2} quedandonos:

$$x^k = Tx^{k-1} + c = T(Tx^{k-2} + c) + c = T^2x^{k-2} + Tc + c$$

De manera similar, podemos expresar a x^{k-2} en función de x^{k-3} y así sucesivamente. Entonces, podemos expresar a x^k en función de x^0 de la siguiente manera:

$$x^k = T^k x^0 + T^{k-1} c + T^{k-2} c + \ldots + c = T^k x^0 + \left(T^{k-1} + T^{k-2} + \ldots + I \right) c$$

Como ho(T)<1, entonces $\lim_{k o\infty}T^k=0$. Además $\sum_{k=0}^\infty T^k=(I-T)^{-1}$. Entonces

$$\lim_{k\rightarrow\infty}x^k=\lim_{k\rightarrow\infty}T^kx^0+\lim_{k\rightarrow\infty}\bigl(T^{k-1}+T^{k-2}+\ldots+I\bigr)c=0+\left(I-T\right)^{-1}c.$$

Luego el límite de la sucesión existe, no depende de x^0 y es igual a $x^* = \left(I - T\right)^{-1}c$.

 \Rightarrow) Debemos ver que ho(T) < 1 sabiendo que la sucesión converge independientemente del x^0 inicial.

Sabemos que

$$ho(T) < 1 \Leftrightarrow A \;\; ext{es convergente} \Leftrightarrow \lim_{k o \infty} T^k z = 0 \;\; ext{para todo} \; z \in \mathbb{R}^n$$

Demostremos entonces que $\lim_{k\to\infty}T^kz=0$ para todo $z\in\mathbb{R}^n$:

Sea $z \in \mathbb{R}^n$. Consideremos $x^0 = x^* - z$. con x^* el límite de la suseción $\{x^k\}$:

$$egin{aligned} &\lim_{k o \infty} T^k z = \lim_{k o \infty} T^k (x^* - x^0) \ &= \lim_{k o \infty} T^{k-1} (Tx^* - Tx^0) \ &= \lim_{k o \infty} T^{k-1} (x^* - c - Tx^0) \ &= \lim_{k o \infty} T^{k-1} (x^* - c - x^1 + c) \ &= \lim_{k o \infty} T^{k-1} (x^* - x^1) \ &= \lim_{k o \infty} T^{k-2} (Tx^* - Tx^1) \ &= \lim_{k o \infty} T^{k-2} (x^* - c - Tx^1) \ &= \lim_{k o \infty} T^{k-2} (x^* - c - x^2 + c) \ &= \lim_{k o \infty} T^{k-2} (x^* - c - x^2 + c) \ &= \lim_{k o \infty} T^{k-2} (x^* - c - x^2) \end{aligned}$$

Si seguimos haciendo los remplazos correspondientes, llegaremos a que

$$\lim_{k\to\infty} T^k z = \lim_{k\to\infty} \bigl(x^* - x^k\bigr)$$

Este último límite es igual a 0, ya que la sucesión converge a x^* . Por lo tanto, ho(T) < 1.

Propiedad

Si $A \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces el método de Jacobi converge.

Propiedad

Si $A \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante, entonces el método de Gauss-Seidel converge.

Propiedad

Si $A \in \mathbb{R}^{n \times n}$ es simétrica definida positiva, entonces el método de Gauss-Seidel converge.

Propiedad

Sea $A\in\mathbb{R}^{n\times n}$ tal que $a_{ij}\leq 0\ \forall i\neq j$ y $a_{ii}>0\ \forall i$. Se satisface una sola de las siguientes propiedades:

- $\bullet \ \rho(T_{GS}) < \rho(T_J) < 1$
- $\bullet \ 1<\rho(T_J)<\rho(T_{GS})$
- $\bullet \ \rho(T_{GS})=\rho(T_J)=0$
- $\bullet \ \rho(T_{GS}) = \rho(T_J) = 1$

Propiedad

Sea $A \in \mathbb{R}^{n \times n}$ tal que $a_{ij} \leq 0 \ \forall i \neq j \ y \ a_{ii} > 0 \ \forall i$. Entonces, ambos métodos divergen o ambos convergen. En el segundo caso, el método de Gauss-Seidel converge más rápido.

8.2.3 Cota del error

Sea $T \in \mathbb{R}^{n \times n}$ tal que $\|T\| < 1$ para una norma inducida. Entonces:

Propiedad

 $x^{k+1} = Tx^k + c$ converge independientemente del x^0 inicial.

Demostración

Hay una propiedad que estables que $|
ho(A)| \leq \|A\|$ para toda norma inducida. Por lo tanto $ho(T) < \|T\| < 1$ y la sucesión converge independientemente del x^0 inicial (por el teorema de convergencia).

Propiedad

$$\|x^* - x^k\| \le \|T\|^k \ \|x^* - x^0\|$$

Demostración

Sabemos que $x^* = Tx^* + c^1$ y que la suceción $x^k = T^kx^{k-1} + c$:

$$\parallel x^* - x^k \parallel \ = \ \parallel Tx^* + c - T^k x^{k-1} - c \parallel$$

$$= \ \parallel T(x^* - x^{k-1}) \parallel \ \leq \ \parallel T \parallel \parallel x^* - x^{k-1} \parallel$$

Volviendo a aplicar el mismo razonamiento, llegamos a que:

$$\parallel x^* - x^k \parallel \, \leq \parallel T \parallel \parallel Tx^* + c - T^k x^{k-1} - c \parallel$$

$$= \parallel T \parallel \parallel T(x^* - x^{k-1}) \parallel \, \leq \parallel T \parallel^2 \parallel x^* - x^{k-1} \parallel$$

Repetimos el proceso k veces y llegamos a que:

$$\parallel x^* - x^k \parallel \, \leq \, \parallel T \parallel^k \parallel x^* - x^0 \parallel \blacksquare$$

Propiedad

$$\|x^* - x^k\| \leq rac{\|T\|^k}{1 - \|T\|} \ \|x^1 - x^0\|$$

Demostración

Veamos primero la diferentes dos iteraciones sucesivas de la serie:

$$\parallel x^{k+1} - x^k \parallel \ = \ \parallel Tx^{k+1} + c - T^kx^{k-1} - c \parallel$$

$$= \ \parallel T(x^k - x^{k-1}) \parallel \ \leq \ \parallel T \parallel \ \parallel x^k - x^{k-1} \parallel$$

Si seguimos remplazando, nos queda que:

$$\parallel x^{k+1} - x^k \parallel \, \leq \, \parallel T \parallel^k \parallel x^1 - x^0 \parallel \, \leq$$

Ahora tomamos x^i y x^j con j > k:

$$egin{aligned} \parallel x^j - x^k \parallel & \leq \left(\|T\|^{j-1} + \|T\|^{j-2} + ... + \|T\|^k
ight) \, \|x^1 - x^0\| \ & \leq \|T\|^k \Biggl(\sum_{i=0}^{j-1-k} \|T\|^i \Biggr) \, \|x^1 - x^0\| \end{aligned}$$

Si ahora tomamos el límite cuando $j o \infty$, como $\left\{x^j\right\}_{j=0}^\infty$ converge a x^* y

$$\sum_{i=0}^{j-1-k} \|T\|^i = \sum_{i=0}^{\infty} \|T\|^i \;\; ext{que es la serie geométrica}$$

Entonces, como $\|T\| < 1$, la serie converge a $\frac{1}{1-\|T\|}$. Por lo tanto,

$$\parallel x^* - x^k \parallel \ \leq rac{\lVert T
Vert^k}{1 - \lVert T
Vert} \parallel x^1 - x^0
Vert \blacksquare$$

9.1 Videos de clases

- Algebra Lineal
- Sistemas Lineales
- Factorización LU
- Normas y error
- Factorización SDP
- Factorización QR
- Autovalores
- Factorización SVD
- Métodos Iterativos
- Cuadrados Mínimos Lineales
- Interpolación

9.2 Enlaces

• <u>Métodos Numéricos, CubaWiki</u>

9.3 Libros

- R. Burden y J.D.Faires, Análisis numérico, International Thomson Editors, 2002.
- V. Chvatal, Linear programming, Freeman, 1983.
- G. Dahlquist, A. Bjorck, **Numerical methods**, Dover, 2003.
- J. Demmel, Applied Numerical Linear Algebra, SIAM,1997.
- J. Dennis y J. More, Numerical methods for unconstrained optimization and nonlinear equations, Prentice- Hall, 1983.
- P. Gill, W. Murray and M. Wright, Numerical Linear Algebra and Optimization, Addison Wesley, 1991.
- G. H. Golub, Matrix Computations, Charles F. Van Loan, JHU Press, 2013.
- G. Jerónimo, J. Sabia, S. Tesauri, Algebra lineal, Depto de Matemática, FCEN - UBA, 2008.
- M. Heath, Scientific computing: an introductory survey, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2002
- N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.
- K. Hoffman y R. Kunze, **Algebra lineal**, Prentice- Hall, 1977.
- R. Horn and C. Johnson, **Matrix Analysis**, Cambridge University Press, 2012.
- E. Isaacson and H. Keller, Analysis of Numerical Methods, Dover Publications, 1994.
- D. Kincaid y W. Cheney, Análisis numérico, Addison Wesley Iberoamericana, 1994.
- B. Kernighan y R. Pike, **The Practice of Programming**, Addison Wesley, 1999.
- C. Meyer, Matrix analysis and applied linear algebra, SIAM, 2010.
- P. J. Olver, C. Shakiban, **Applied Linear Algebra**, Second Edition, Springer International Publishing, 2018.
- T. Sauer, Numerical Analysis, Pearson, 3rd Edition, 2017.
- G. Stewart, Introduction to matrix computations, Academic Press, 1973.
- G. Strang, Algebra lineal y sus aplicaciones, Ediciones Paraninfo, 4ta ed., 2007.

- E. Süli, David F.Mayers, **An Introduction to Numerical Analysis**, Cambridge University Press, 2003.+
- L. N. Trefethen, Numerical Linear Algebra, SIAM, 1997.
- R. Varga, Matrix Iterative Analysis, Springer, 2000.
- D. Watkins, **Fundamentals of matrix computations**, John Wiley & Sons, 2010