Naval Research Laboratory

Stennis Space Center, MS 39529-5004

NRL/MR/7441--95-7704

An Extended Vector Product Format Profile for Modeling and Simulation

KEVIN SHAW

Mapping, Charting, and Geodesy Branch Marine Geosciences Division

VINCENT MILLER

Mississippi State University Science and Technology Research Center

BARBARA RAY ROBERT BROOME TOM FETTERER

Planning Systems Incorporated Slidell, LA

Mahdi Abdelguerfi Edgar Cooper Chris Wynne

University of New Orleans

19960419 172

April 5, 1996

DTIC QUALITY INSPECTED 1

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED			
	April 5, 1996	Final			
4. TITLE AND SUBTITLE		FUNDING NUMBERS			
An Extended Vector Product Format Profile for Modeling and Simulation			b Order No. 574590800		
			ogram Element No. RDT&E DA		
6. AUTHOR(S)			oject No.		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ask No. DoD		
Abdelguerfi ^{††} , Edgar Cooper ^{††} , and Chris Wynne ^{††}			ccession No.		
7. PERFORMING ORGANIZATION NAME(S) A	ND ADDRESS(ES)		PERFORMING ORGANIZATION REPORT NUMBER		
Naval Research Laboratory			NDI /MD/7441 05 7704		
Marine Geosciences Division	204	l N	NRL/MR/744195-7704		
Stennis Space Center, MS 39529-50	104				
9. SPONSORING/MONITORING AGENCY NAM	ME(S) AND ADDRESS(ES)	10	. SPONSORING/MONITORING		
DoD Washington Headquarters Serv			AGENCY REPORT NUMBER		
Installation Accounting Services					
Room 3b259, The Pentagon, Washi	ngton, DC 20301-1155				
11. SUPPLEMENTARY NOTES	A. A				
*Mississippi State University, Science	e and Technology Research C	Center, Stennis Space Ce	enter, MS		
†Planning Systems Incorporated, 11	2 Christian Lane, Slidell, LA 70)458			
**University of New Orleans, New O		12	2b. DISTRIBUTION CODE		
12a. DISTRIBUTION/AVAILABILITY STATEME	ENI	12	12b. DISTRIBUTION CODE		
Approved for public release; distribution unlimited.					
			•		
13. ABSTRACT (Maximum 200 words)			at the Defence Manning Agency's		
The Vector Product Format (VPI (DMA) transition from paper products	F) has been advancing, through	in prototype developmer	nt, the Defense Mapping Agency's		
however, the DMA has recognized t	hat the VPF prototypes have n	ot been meeting the regi	uirements of a particular group, the		
Modeling and Simulation (M&S) com	munity. Through support from ti	ne Terrain Modeling Proje	ect Office and the Defense Modeling		
and Simulation Office, the Digital Ma	apping, Charting, and Geodesy	Analysis Program (DMA	AP) has been tasked to extend VPF		
to satisfy M&S Requirements. What f a completed standard, the EVPF pro	ollows is DMAP's initial profile o	f the Extended VPF and it	ts first prototype. While by no means		
a completed standard, the EVPF pro	offile is described by DIVIAP as	a promising VPF alternal	tive for the Mas community.		
14. SUBJECT TERMS			15. NUMBER OF PAGES		
•			34		
Digital MC&G, requirements analys	ject oriented database	16. PRICE CODE			
17. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	TION 20. LIMITATION OF ABSTRACT			
OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	OF ABSTRACT	217		
Unclassified	Unclassified	Unclassified	SAR		

Contents

1.0	Introduction	L
2.0	Spatial Dimensions	l
3.0	Feature and Attribution Content	2
4.0	Proposed EVPF Profile	3
5.0	Thematic Coverages 3	3
6.0	Software Considerations	4
7.0	Issues for Future Consideration	5
8.0	Conclusions	5
9.0	Acknowledgments	6
10.0	0 References	6
Apı	pendix A. Acronym List	A- 1
Api	pendix B. TIN Data Structures	B-1
App	pendix C. Feature Classes and Features	C-1

An Extended Vector Product Format (EVPF) Profile for Modeling and Simulation

1.0 Introduction

- 1.1 Products in the Vector Product Format (VPF), a georelational database format, have made great strides at effectively representing what was once a "paper only" environment. The Digital Nautical Chart (DNC), Vector Smart Map (VMap), and Tactical Terrain Data are but a few such databases currently under development which, when completed, should provide excellent digital substitutes for harbor, approach, coastal, and general charts, as well as various culture datasets. In fact, VPF's strength can be observed in its digital representation of charts. It allows the collapsing of a three-dimensional (3-D) environment into two-dimensional (2-D) thematic layers, under rigorous geometric and topological guidelines.
- 1.2 Unfortunately, for today's modeling and simulation (M&S) community, VPF's representation of an environment is deficient in several regards. The ability to represent culture, terrain, and models in three dimensions is an absolute necessity in most M&S scenarios. While VPF allows for storage of feature height information in various attributes, VPF and its application software VPFView are essentially two dimensional.
- 1.3 Rich attribution of features is also desirable to the M&S community to accurately portray models in 3-D. Extensive M&S requirements analyses [1,2] have proven VPF's inadequate attribution in most of its databases.
- 1.4 Finally, VPF's construction of logically separate thematic layers can pose problems, especially in the format's elimination of topology (connectivity) between coverages.

2.0 Spatial Dimensions

- 2.1 VPF's geometrical limits extend from zero-dimensional *nodes* to one-dimensional *edges* and two-dimensional *faces*. These are represented in VPF as *primitive* tables. To naturally extend VPF into three dimensions, an additional data structure has been proposed, the Triangulated Irregular Network (TIN).
- 2.2 Terrain has been shown to be effectively represented and utilized for analysis as a TIN, whereby terrain is represented as network of irregularly shaped triangles. A current literature search and discussions with M&S programs have shown that TINs have become a widely used structure and can be generated from elevation posts of regular spacing, e.g., Digital Terrain Elevation Data (DTED), a commonly used dataset in M&S.
- 2.3 The Digital Mapping, Charting, and Geodesy Analysis Program (DMAP) proposes to transform the DTED Level 2, 30-m post spacing, within Extended Vector Product Format (EVPF) as a TIN structure. Since there are multiple representations of TINs in relational

databases, investigations are currently underway to determine the representation best suited for VPF's geometric structure. The anticipated result is a new primitive beyond VPF's current limit of face, together with a corresponding feature table to store appropriate attribution. Moreover, TIN and additional formats of elevation data will comprise a single VPF coverage.

- 2.4 Appendix B presents DMAP's preliminary observations on the relative difficulty of integrating TINs into VPF. Of the three presented storage formats, DMAP proposes to use the triangle-based data structure. Although new file definitions must be created for this structure, it shows considerable promise in terms of storage requirements, access speed for viewing software, and simplicity.
- 2.5 With respect to TIN generation, many algorithms exist. Since regular grid data will be input, the current plan is to use the generation algorithm of the commercial geographic information system ARC/INFO, which can complete such transformations with minimal input from the user. For testing purposes, DMAP has successfully generated a TIN from VPF contour lines in Urban Vector Smart Map. The intent is now to apply this concept to a more realistic scenario, namely generating TINs from DTED 2.

3.0 Feature and Attribution Content

- 3.1 For an object to be modeled successfully, sufficient attribution must be supplied. The required amount of attribution, of course, depends on those programs modeling the object. Once sufficient and appropriate attribution is available in a given form, successful modeling can take place within a program's own system/simulation.
- 3.2 To that end, DMAP has based the feature and attribute content on the most up-to-date requirements analyses of 38 Army programs and 110 Navy/Marine Corps programs involved with M&S [1,2]. Additionally, feature and attribute content of the prototype VPF product will contain features and attributes made available in all current VPF prototypes (DNC, Digital Topographic Data, World Vector Shoreline, VMap 0, VMap 1, VMap 2, UVMap), with redundant features eliminated.
- 3.3 Additionally, Digital Feature Analysis Data (DFAD), a product which is currently used by many M&S programs as a source of cultural information, will be analyzed and incorporated into the extended VPF prototype. (As an aside note, much of DFAD has been integrated into VMap Level 1.) Compared with several current VPF products, DFAD seems limited in feature content. However, its rich attribution satisfies many M&S requirements. No difficulties are anticipated with incorporating such attribution.
- 3.4 The following section introduces DMAP's initial coverage and feature profile separated into logical thematic groupings that will evolve into VPF thematic coverages. All available Feature and Attribute Coding Catalog (FACC) codes are represented, and those with no code are not yet available in FACC. Once codes are established, all features should be stored in VPF's relational format with equal ease.

4.0 Proposed EVPF Profile

- 4.1 Appendix C describes required features, grouped into the proposed 12 EVPF coverages Aeronautical Information, Beach, Data Quality, Demarcation, Elevation, Hydrography, Industry, Physical Geography, Population, Transportation, Utilities, and Vegetation, with some temporary subheadings for clarity. References to geometry (area, line, and point) are minimized so as to avoid future conflicts with scale. Blanks indicate FACC codes to be developed, and "*" indicates "not a currently identified requirement." DMAP recommends the latter features for inclusion on the basis of future requirement indications. Approximately 20 new FACC features are proposed here, and many other codes required by Navy and Army M&S programs exist in the FACC, but not in any current VPF product.
- 4.2 Attribution is "to be determined" and will fulfill all requirements without causing multiple representation of entities, as stipulated by VPF. New attribution, including physical measurements relating to infrared properties, emissive properties, reflective properties, and thermal conductivity, will be integrated with standard attribution to satisfy remaining requirements. Some new attribution codes will obviously be needed to supplement the FACC, which may present future technical challenges. Once completed, however, the resulting profile of features and attributes should surpass content of any given VPF product to date.

5.0 Thematic Coverages

- 5.1 VPF allows similar data objects to be grouped into coverages for the purpose of defining topology. VPF stipulates that topology, by definition, does not extend between coverages. A simple example illustrates the impact of such a restriction: If roads are in coverage Transportation and bridges are in coverage Hydrography, no information about connectedness between road and bridge can be inferred. Careful requirements analyses and mission requirements have been studied to determine coverage content for the existing VPF products.
- 5.2 Coverages must exist not only for topological reasons but for topography preservation as well. For example, a lake area exists in a land area. Since both area features cannot geometrically exist within a single VPF coverage, separate coverages are required.
- 5.3 Perhaps the most ambitious (and time consuming) extension to VPF would be to "connect" information between coverages. Clearly, separate coverages reinforce logical separation of data and data manageability. On the other hand, connection between coverages could allow for more enhanced operations, such as thinning, an important concept in M&S. DFAD allows for a way of "stacking" features, thereby in a sense, introducing topography information into the 2-D representations of features. EVPF should have similar capability. However, for the initial prototype, the separate, individually connected coverages of section 4.0 will be the extent of connectedness.

6.0 Software Considerations

- 6.1 In creating a preliminary prototypical EVPF database for M&S, software must be developed not only to generate TINs, as discussed in Section 2.0, but also to form tables of features from existing VPF products. Since the current products do not normally cover the same geographic area, some data must also be simulated. Software tools are needed to generate VPF tables in all cases.
- 6.2 A collection of "C" routines is currently being written to manipulate VPF tables. These functions allow the user to read, write, display, delete, and copy elements or rows in VPF tables, thereby allowing DMAP to prototype an M&S VPF prototype which conforms to the basic tenets of the VPF standard and the extensions. Once software engineering is complete, DMAP will have the mechanism to merge diverse database coverage information into the M&S prototype.
- 6.3 In particular, VPF software tools (collectively called VPFTool), previously used to create a point coverage for the Naval Search and Rescue routine, are being refined and extended to develop these capabilities. Recent additions to VPFTool include:
 - Attribute table merging routines. A source table row is mapped to a new
 attribute table, transferring any identical column entries and providing the
 appropriate null values for columns not found in the source row.
 - Database creation tools. A set of functions that build the required database header, geographic extent, and library header tables using a template file, sensible default values, and a limited amount of user input, making the construction of a skeleton EVPF database structure quick and easy to accomplish.
 - Point and text feature primitive constructors. These routines provide a method
 of sorting text and entity node data by geographic extent and tile, providing a
 means of migrating existing data to a new database. These functions also
 provide a way to store selected VPF data in VPF format using the additional
 database creation functions outlined above. No anticipated difficulties are
 expected for the line and area primitives.
- 6.4 Algorithms for constructing the initial EVPF prototype have also been developed. For example, the steps for migrating a coverage to a new database are defined as follows:
 - 1) Create a set of extents, tiled or untiled, that define the new library.
 - 2) Create a new attribute table in which to store the existing coverage attribute data.

- 3) Transfer the existing data. The software will map the existing attribute rows to the new table and create a table in which to insert any associated primitives that fall within the extents of the new library. If that table already exists, the primitives are appended to that table.
- 6.5 For displaying the prototype extended VPF, a 3-D software viewing package, PolyView version 3.1, will be used. This public domain package shall enable DMAP to display a terrain skin along with 3-D objects and have a "fly-through" capability. The relationship among the 3-D objects cannot be varied, but sequential images can be used to simulate the relative motion of objects. Documentation unfortunately extends only through version 2.0, so some difficulty is expected to be encountered.

7.0 Issues for Future Consideration

- 7.1 Unlimited extensions to VPF could be performed. As mentioned in an earlier section, connections between coverages has yet to be resolved.
- 7.2 Another issue is that of the temporal data. Many features have attribution that extends well beyond that of a "single instance in time." Forward Looking Infrared, for instance, is highly sensitive to time. Efficiently storing such information in a relational database is certainly a topic of concern which lies beyond the scope of the problem at hand.
- 7.3 Resolution and level of detail are additional topics of interest in M&S. VPF fixes a scale at product development time. WVS, for example, has five separate libraries corresponding to five distinct scales. A hierarchical TIN data structure has been developed to address the concept of storing terrain at various scales (see Appendix B for a brief introduction). Representing scaled data in EVPF, to the benefit of the M&S community, could very well be a separate project unto itself.

8.0 Conclusions

- 8.1 Results to date have been substantial and promising. The major extension to VPF, the incorporation of 3-D terrain data, has been carefully planned: The popular TIN data structure has been selected, the method of storage of TINs has been selected, and research into TIN generation from regular grids such as DTED is underway. Moreover, all current and future M&S requirements have been compiled. Software is currently being designed, and attempts at using completed software have been successful.
- 8.2 Anticipated difficulties are in the form of display software, and modeling 3-D objects described by the attribution of EVPF. Limited geographic extent of existing VPF products may pose a problem to EVPF prototype generation, particularly since each product has it's own unique extent.

9.0 Acknowledgments

9.1 This effort was sponsored by the Defense Mapping Agency's Terrain Modeling Program Office and the Defense Modeling and Simulation Office, under Program Element 630603832D, with Mr. Jerry Lenczowski as program manager.

10.0 References

- 1. Shaw, K. et al., A Comprehensive Analysis of Navy and Marine Corps Digital Mapping, Charting, and Geodesy Requirements for Modeling and Simulation, NRL/FR/7441--93-9435, 9 January 1995.
- 2. Othling, W. and L. Speir, Analysis of Digital Topographic Data Requirements for selected Army Models/Simulations, Contract No. DACA 76-90-0002, Delivery Order No. 6, Task 1, prepared for U.S. Army Topographic Engineering Center, Ft. Belvoir, VA, 22060, 31 January 1993.

Appendix A. Acronym List.

2-D Two Dimensional3-D Three Dimensional

ARC/INFO commercial geographic information system

DFAD Digital Feature Analysis Data

DMAP Digital Mapping, Charting, and Geodesy Analysis Program

DNC Digital Nautical Chart

DTED Digital Terrain Elevation Data
EVPF Extended Vector Product Format
FACC Feature and Attribute Coding Catalog

M&S Modeling and Simulation

TIN Triangulated Irregular Network

VMap Vector Smart Map
VPF Vector Product Format
VPFTool VPF software tools
VPFView VPF viewing software
WVS World Vector Shoreline

Appendix B. TIN Data Structures.

DATA STRUCTURE FOR TINS PRELIMINARY THOUGHTS

- Storing TINs by adding a third dimension to VPF's vertices
- Storing TINs using a triangle-based data structure
- Storing TINs using a vertex-based data structure

VPF-Based Data Structure

Sample Triangular Network

 e_1, e_2, e_3, \dots edges

1, 2, 3, ... vertices a, b, c, ... triangles

Connected Node Table:

\mathbf{ID}	X	y	Z
1	x_1	y 1	z_1
2	\mathbf{x}_2	y_2	\mathbf{z}_2
• • •		. : .	

Edge Table (level 3 - LFT_ID not included):

ID	start_node	end_node	right_edge	left_edge	right_face	left_face	coordi- nates
e ₁	4	10	e ₅	e ₃	е	d	$x_1y_1z_1$
							$x_2y_2z_2$

Face Table (a face is any triangle that does not contain an edge inside - AFT_ID not included):

ID	Ring_pointer
d	9

Ring Table:

ID	Face	Starting_edge
• • •		
9	d	e_1
• • •		

Storage Requirement = (54N - 18B - 49) storage units

- N = number of TIN vertices
- B = number of TIN vertices that belong to the convex hull
- storage unit = amount of storage needed to store either a pointer or one coordinate

Basic Queries:

- Point Location: requires reading several VPF tables
- Edge Neighbor finding: needs only the edge table
- Vertex Neighbor finding: difficult to perform

Advantages:

- Visualization software available?
- Minimum change to VPF
- Allows for area, line, and point features

Disadvantages:

- Storage requirement
- Complex data structure that was not meant for TINs

Triangle-Based Data Structure

Connected Node Table:

ID	X	y	Z
1	\mathbf{x}_1	y 1	z_1
2	x_2	y_2	\mathbf{z}_2
• • •			

Face Table (stores triangles):

	Vertices:			Adjacent Triangles:		
_ID	V_1	V_2	V_3	T_1	T ₂	T ₃ _
a	1	2	10	null	b	e
b	2	11	10	f	С	a
• • •						

Storage requirement = 18N - 7B - 14 storage units

Basic Queries:

- Point Location: simpler than VPF data structure
- Edge Neighbor finding: simpler than VPF data structure
- Vertex Neighbor finding: simpler than VPF data structure

Advantages:

- Less storage than VPF (about three times less)
- Data format similar to that of ARC/INFO

Disadvantages:

- Will require substantial changes to VPF
- No edge table (but line features can easily be expressed in terms of a list of pointers to TIN vertices)

Vertex-Based Data Structure

Coordinates:

	Cool aniales.						
ID	X	y	Z	Neighbors			
1 2	x ₁ x ₂	y ₁ y ₂	z_1 z_2	2 10 4 3 15 12 11 10 1			
	1						

Storage requirement = 10N - 2B - 6 storage units

Basic Queries:

- Point Location: about same complexity as triangle-based data structure
- Edge Neighbor finding: complex compared to triangle-based data structure
- Vertex Neighbor finding: simple

Advantages:

• Less storage than the triangle-based data format

Disadvantages:

- Will require substantial changes to VPF
- Does not allow for area features
- Does not allow for line features

DATA STRUCTURE FOR TINs

Goal:

- Extend VPF to allow for the efficient storage of TIN-based elevation data
- Integrate terrain elevation data with ground surface features (point, line, and area features)

Methodology: Add an optional primitive TIN-face. A TIN-face will be stored using a triangle-based data structure

Structure of a TIN-Face Table

TIN-Face Table			
Triangle Identifier			
Vertex 1 Identifier			
Vertex 2 Identifier			
Vertex 3 Identifier			
Adjacent Triangle 1 Identifier			
Adjacent Triangle 2 Identifier			
Adjacent Triangle 3 Identifier			

HIERARCHICAL TINs

Hierarchical (multiresolution) TINs:

- Describe a terrain model at different levels of resolution.
- Each level corresponds to a particular surface elevation error. The root level is composed of all the TIN-triangles needed to reconstruct the surface with the largest error (the lowest level of resolution). The next level in the hierarchy contains TIN-triangles that when added to those of the root level yield a surface representation that has a higher resolution than that of the root level. Therefore, each level provides additional TIN-triangles that when combined with the existing ones bring the resolution of the surface to that of the corresponding level.
- Enables the compression of elevation data according to an accuracy level criterion.
- Features can be manipulated at different levels of accuracy.

Algorithms for the Generation of Hierarchical TINs:

Algorithms for the generation of hierarchical TINs can be classified into two broad categories:

Recursive subdivision of enclosing triangles

Ternary triangulation

- + simple
- may lead to triangles with elongated shape (result in inaccuracies in numerical interpolation)

Quaternary triangulation

- + avoids the generation of elongated triangles
- may lead to discontinuous surfaces

Cartographic coherence preservation

- + preserves cartographic coherence (features such as ridges of the surface to be approximated are preserved)
- complex algorithm
- Retriangulation of the added points and their region of influence
 - + avoids the generation of elongated triangles
 - complex

Data Structures for Hierarchical TINs:

All hierarchical TIN implementations can use essentially the same data structures.

Level Table

Level Table	
Level ID	
Max Error	
Num. Triangle	
Num. Points	
Triangle List	

Triangle Table

	Triangle Table				
	ID				
	Max Error	·			
	Type (internal, external, boundary)				
	child list				
Internal	External	Boundary			
Vertex 1	Parent Pointer	Adjacent 1			
Vertex 2	Vertex 2 Adjacent 2				
Vertex 3	Vertex 3 Adjacent 3				
Adjacent 1					
Adjacent 2	Adjacent 2				
Adjacent 3					

Appendix C. Feature Classes and Features.

1. AERONAUTICAL INFORMATION

Air Routes

GA005 Airspace

GA010 ATS Route Segment/Leg

GA015 Special Use Airspace

GA020 Airspace Boundary Sector

GA025 Special Use Airspace Segment

GA030 Off Route Radial/Bearing

GA035 NAVAIDS (Aeronautical)

GA045 Route (Air)

GA055 Waypoint/Reporting-Calling in Point

ZD020 Void Collection Area

2. BEACH

BA050 Beach

ZD020 Void Collection Area

3. DATA QUALITY

ZD020 Void Collection Area

4. DEMARCATION

Boundaries/Limits/Zones (Topographic)

FA000 Administrative Boundary

FA001 Administrative Area

FA005 Access Zone

FA015 Firing Range/Gunnery Range

FA020 Armistice Line

FA030 Cease-Fire Line

FA040 Claim Line

*FA041 Contact Zone

FA050 Mandate Line/Convention Line

FA060 Defacto Boundary FA070 Demilitarized Zone

FA090 Geophysical Prospecting Grid

FA110 International Date Line

FA165 Training Area

FA170 Zone of Occupation

Boundaries/Limits/Zones (Hydrographic)

FC021 Maritime Limit Boundary

FC031 Maritime Area

	*FC035	Pond Partition
	FC036	Restricted Area
	FC040	Traffic Separation Scheme System
	*FC041	Traffic Separation Scheme (TSS)
	FC100	Measured Distance Line
	FC130	Radar Reference Line
	FC165	Route (Maritime)
	*FC166	Deep Water Route
	*FC167	Defined Water
	*FC168	Canal Route
	FC170	Safety Fairway
	*FC177	Swept Area
Mi	scellaneo	us
	AL025	Cairn
	AL070	Fence
	AL260	Wall
	ZD020	Void Collection Area
Otl	her	
		Sensitivity Areas
		Low Intensity Conflict Areas
	***************************************	Key Tracking Areas
_		my obj
5.	ELEVA	
5.	CA010	Contour Line (Land)
5.	CA010 CA020	Contour Line (Land) Ridge Line
5.	CA010 CA020 CA025	Contour Line (Land) Ridge Line Valley Bottom Line
5.	CA010 CA020 CA025 CA026	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation)
5.	CA010 CA020 CA025 CA026 CA030	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation
5.	CA010 CA020 CA025 CA026 CA030 CA035	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation
	CA010 CA020 CA025 CA026 CA030 CA035 CA040	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation
5.	CA010 CA020 CA025 CA026 CA030 CA035 CA040	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN)
	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon
	CA010 CA020 CA025 CA026 CA030 CA035 CA040	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area
	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon
	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area
Otl	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Brography
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO astal Hyd BA010	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Irography Coastline/Shoreline
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO astal Hyd BA010 BA020	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Irography Coastline/Shoreline Foreshore
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO astal Hyd BA010 BA020 BA030	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Irography Coastline/Shoreline Foreshore Island
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO astal Hyd BA010 BA020 BA030 BA040	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Irography Coastline/Shoreline Foreshore Island Water (Except Inland)
Ott	CA010 CA020 CA025 CA026 CA030 CA035 CA040 her SA050 ZD020 ——— HYDRO astal Hyd BA010 BA020 BA030	Contour Line (Land) Ridge Line Valley Bottom Line Breakline (useful in TIN generation) Spot Elevation Inland Water Elevation Contour Polygon (Land) (probable attribution: irregular triangle for TIN) Slope Polygon Void Collection Area Berm/Barricade OGRAPHY Irography Coastline/Shoreline Foreshore Island Water (Except Inland)

Ports and Harbors

- BB005 Harbor
- *BB006 Harbor Complex
- *BB007 Channel Edge
- BB010 Anchorage
- *BB012 Anchor Berth
- BB019 Anchor
- BB020 Berth
- *BB021 Mooring Trot
- BB022 Basin
- *BB030 Bollard
- BB040 Breakwater/Groyne
- *BB042 Mole
- BB050 Calling-In Point
- BB079 Mooring/Warping Facility
- BB080 Dolphin
- BB081 Shoreline Construction
- BB090 Drydock
- *BB100 Fish Stakes
- BB105 Fishing Harbor
- BB110 Fish Traps/Fish Weirs
- BB111 Tunny (Tuna) Nets Area
- BB115 Gridiron
- BB140 Jetty
- BB150 Landing Place
- BB151 Landing Stairs
- BB160 Mooring Ring
- BB170 Offshore Loading Facility
- *BB180 Oyster Bed/Mussel Bed
- BB190 Pier/Wharf/Quay
- BB199 Floating Dock
- BB200 Pump Out Facility
- BB201 Small Craft Facility
- BB220 Ramp (Maritime)
- BB230 Seawall
- BB240 Slipway/Patent Slip
- BB250 Watering Place
- SU003 Port Facility

NAVAIDs

- BC010 Beacon
- BC020 Buoy
- BC030 Leading Light(s)
- BC031 Navigation Line
- BC032 Radar Line
- BC033 Radar Range

BC035	Lights in Line
BC040	Light
BC050	Lighthouse
BC055	Marker
BC060	Light Sector
BC070	Light Vessel/Lightship
BC080	Perches/Stakes
BC100	Leading Line
BC101	Fog Signal
Dangers/Haz	zards
BD000	Underwater-Danger/Hazard
BD001	Mine
BD005	Miscellaneous Underwater Feature
BD010	Breakers
BD020	Crib
BD030	
BD040	Eddies
BD050	Foul Ground
BD 060	Kelp/Seaweed
BD 070	Obstruction (Nautical)
BD071	Log Boom/Booming Ground
BD072	Pontoon
BD073	Oil Barrier
BD074	Chain/Wire
BD079	Fishing Facility
BD080	Overfalls/Tide Rips
BD100	Pile/Piling/Post
BD110	Platform
BD111	Offshore Platform Site (cleared)
BD112	Production Installation
BD119	Ledge
BD120	Reef
*BD121	Pingo
BD130	Rock
BD140	Snags/Stumps
BD180	Wreck
BD181	Hulk
	Spoil/Disposal Area
	Mine-Like Objects
	Seamount
Depth Infor	
BE010	Depth Curve
BE015	Depth Contour
*BE019	Depth Area
BE020	Sounding

BE021	Drying Line, Low Water Line-LWL
BE022	Sand Line
BE023	Mud Line
BE029	Bottom Return
BE030	Track Swath
BE040	Track Line
Bottom Feat	ures
BF010	Bottom Characteristics
BF011	Bottom Feature
	Bottom Type (acoustic)
	False Acoustic Targets
	Underwater Canyon
	Shelf
Tide and Cu	rrent Information
BG010	Current Flow
BG011	Tideway
BG012	Water Turbulence
BG020	Tide Gauge
BG030	Tide Data Point
BG040	Current Diagram
	Sound Speed Profiles
Inland Wate	er
BH000	Inland Water
BH010	Aqueduct
BH015	Bog
BH020	Canal
BH030	Ditch
BH040	Filtration Beds/Aeration Beds
BH050	Fish Hatchery/Fish Farm/Marine Farm
BH060	Flume
BH070	Ford
BH075	Fountain
BH077	Hummock
BH080	Lake/Pond
BH090	Land Subject to Inundation
*BH091	Flooded Area
BH095	Marsh/Swamp
BH100	Moat
BH110	Penstock
*BH115	Underground Water/Phreatic Water
BH120	Rapids
BH130	Reservoir
BH135	Rice Field
BH140	River/Stream
BH141	River Bank

BH145	River Stream Vanishing Point
BH150	_
BH155	Salt Evaporator
BH160	
BH165	Spillway
BH170	•
BH175	
BH180	Waterfall
BH190	Lagoon/Reef Pool
BH200	Miscellaneous Surface Drainage Feature
BH210	
BH501	River Navigation Route
Miscellaneo	us Inland Water
BI005	Boat Lift
BI010	Cistern
BI020	Dam/Weir
BI030	Lock
*BI039	Sluice
BI040	Sluice gate
BI041	
BI042	Caisson
BI043	
BI050	Water Intake Tower
*BI060	Fish Ladder
B I070	Gauging Station
Snow/Ice	
BJ020	Moraine
BJ 030	Glacier
BJ040	Ice Cliff
BJ 060	Ice Peak/Nunatak
BJ065	Ice Shelf
BJ 070	Pack Ice
BJ 080	Polar Ice
BJ100	Snow Field/Ice Field
BJ110	Tundra
Other	
ZD020	Void Collection Area
SA010	Common Open Water
SA060	Covered Drainage

7. INDUSTRY

Extraction

AA010 Mine

AA011 Quarry/Mine Shear Wall

AA012	Quarry			
AA013	Pit			
AA040	Rig/Superstructure			
AA050	Well			
AA051	Wellhead			
AA052	Oil/Gas Field			
Disposal				
AB000	Disposal Site/Waste Pile			
AB010	Wrecking Yard/Scrap Yard			
*AB020	Burner			
*AB021	Diffuser			
Processing Industry				
AC000	Processing Plant/Treatment Plant			
AC010	Blast Furnace			
AC020	Catalytic Cracker			
AC030	Settling Basin/Sludge Pond			
AC040	Oil/Gas Facilities			
AC050	Works			
Associated I	ndustrial Structures			
AF010	Chimney/Smokestack			
AF020	Conveyor			
AF030	Cooling Tower			
AF040	Crane			
*AF041	Sheerlegs (Shear Legs)			
AF050	Dredge/Powershovel/Dragline			
AF060	Engine Test Cell			
AF070	Flare Pipe			
AF080	Hopper			
Agriculture				
AJ010	Circular Irrigation System			
*AJ020	Siphon			
AJ030	Feed Lot/Stockyard/Holding Pen			
AJ050	Windmill			
*AJ051	Windmotor			
Miscellaneo	us			
AL140	Particle Accelerator			
AL240	Tower (Non-Communication)			
AL241	Tower (General)			
Storage				
AM010	Depot (Storage)			
AM020	Grain Bin/Silo			
AM030	Grain Elevator			
AM060	Storage Bunker/Storage Mound			
AM070	Tank			

AM080 Water Tower

- *AM031 Timber Yard
- *AM040 Mineral Pile

Other

ZD020 Void Collection Area

8. PHYSICAL GEOGRAPHY

Exposed Surface Materials

- DA005 Asphalt Lake
- *DA006 Alkali Flats
- DA010 Ground Surface Element
- DA020 Barren Ground
- *DA030 Land Area
- *DA031 Land Region
- SA020 Disturbed Soil
- SA030 Exposed Bedrock

Landforms

- DB010 Bluff/Cliff/Escarpment
- DB030 Cave
- DB031 Hill
- DB060 Crevice/Crevasse
- DB070 Cut
- DB080 Depression
- DB090 Embankment/Fill
- DB100 Esker
- DB110 Fault
- DB115 Geothermal Feature
- DB145 Miscellaneous Obstacle
- DB150 Mountain Pass
- DB160 Rock Strata/Rock Formation
- DB170 Sand Dune/Sand Hills
- DB176 Slope Category
- DB180 Volcano
- DB190 Volcanic Dike
- DB200 Gully/Gorge
- DB210 Potential Landslide Area
- *DB211 Landslide
- DB230 Fan
- DB240 Karst
- DB500 Bottomline of Cliff
- DB501 Topline of Cliff

Other

- ZD020 Void Collection Area
- SA040 Permanent Snowfield

9. POPULATION

Institutional/Government

- AH010 Bastion/Rampart/Fortification
- AH020 Trench
- AH050 Fortification
- AH060 Underground Bunker
- AH070 Checkpoint
- SU001 Military Base

Residential

- AI020 Mobile Home/Mobile Home Park
- AI030 Camp

Recreational

- AK020 Amusement Park Attraction
- AK030 Amusement Park
- AK040 Athletic Field
- AK050 Tennis Court(s)
- AK060 Campground/Campsite
- *AK061 Picnic Site
- *AK070 Drive-In Theater
- *AK080 Drive-In Theater Screen
- AK090 Fairground
- AK091 Exhibition Grounds
- AK100 Golf Course
- *AK101 Golf Driving Range
- AK110 Grandstand
- AK120 Park
- *AK121 Lookout
- AK130 Race Track
- AK150 Ski Jump
- AK155 Ski Track
- AK160 Stadium/Amphitheater
- AK170 Swimming Pool
- AK180 Zoo/Safari Park

Miscellaneous

- *AL005 Animal Sanctuary
- AL012 Archeological Site
- AL015 Building
- AL018 Building Superstructure Addition
- AL019 Shed
- AL020 Built-Up Area
- AL030 Cemetery
- *AL040 Cliff Dwelling
- AL045 Complex Outline
- AL050 Display Sign

AL073	Flagstaff/Flagpole
*AL075	3
*AL080	Gantry
*AL090	
AL100	Hut
AL101	
	Settlement
*AL110	0 11
*AL116	,
AL130	Monument
AL135	Native Settlement
*AL141	Telescope
*AL155	Overhead Obstruction Location
AL170	Plaza/City Square
AL120	Missile Site
*AL195	Ramp
AL200	Ruins
AL201	Historic Site/Point of Interest
AL220	Steeple
*AL250	Underground Dwelling
Other	
ZD020	Void Collection Area
10. TRAN	SPORTATION
Miscellaneo	us
AL060	Dragon Teeth
AL210	Snow Shed/Rock Shed
Railroad	
AN010	Railroad
AN050	Railroad Siding/Railroad Spur
AN060	Railroad Yard/Marshalling Yard
AN075	Railroad Turntable
AT100	Electrified Railroad Pylon
Road	
AP010	Cart Track
AP020	Interchange

AQ010 Aerial Cableway Lines/Ski Lift Lines

Road

Gate

Barrier Trail

AP030

AP040 AP041

AP050

*AP060 Drove Associated Transportation

AQ020 Aerial Cableway Pylon/Ski Pylon

*AQ021 Mast Boardwalk AQ030 Bridge/Overpass/Viaduct AQ040 AQ045 Bridge Span AQ050 Bridge Superstructure AQ055 Bridge Tower/Bridge Pylon Bridge Pier AQ056 Constriction/Expansion AQ058 AQ060 Control Tower AQ062 Crossing AQ064 Causeway AQ065 Culvert Ferry Crossing AQ070 AQ080 Ferry Site Entrance/Exit AQ090 Landmark Post/Distance Post AQ100 Mooring Mast AQ110 Prepared Raft or Float Bridge Site AQ111 AQ113 Pipeline/Pipe **Pumping Station** AQ116 Sharp Curve(s) AQ118 Steep Grade AQ120 AQ125 Station (Miscellaneous) Tunnel AQ130 Vehicle Stopping Area/Rest Area AQ135 AQ140 Vehicle Storage/Parking Area AQ150 Flight of Steps Aerodrome Airport/Airfield GB005 Airfield **G**B006 *GB007 Airport Area GB010 Airport Lighting Apron/Hardstand GB015 Arresting Gear GB020 Blast Barrier GB025 Helicopter Landing Pad GB030 GB035 Heliport GB040 Launch Pad GB045 Overrun/Stopway Revetment (Airfield) GB050 GB055 Runway GB057 Shoulder **GB**060 Runway Radar Reflector Seaplane Base GB065

Seaplane Landing/Seaplane Take-Off Area

GB070

GB075	Taxiway
GB080	Wind Indicator
GB160	Decontamination Pad
GB170	INS Alignment Pad
GB220	Air Obstruction
GB221	Miscellaneous Air Obstruction
Other	
SU002	Subway
ZD020	Void Collection Area
	Route/Distance Marker
	Fueling Areas

11. UTILITY

Power Generation

AD010 Power Plant

AD020 Solar Panels

AD030 Substation/Transformer Yard

AD040 Nuclear Reactor

Communications/Transmission

AT005 Cable

AT010 Disk/Dish

AT020 Early Warning Radar Site

AT030 Power Transmission Line

AT040 Power Transmission Pylon/Line

AT041 Telpher

AT045 Radar Transmitter

AT050 Communication Building

AT060 Telephone Line/Telegraph Line

AT070 Telephone-Telegraph Pylon/Pole

AT080 Communication Tower

____ Telephone Station

Communication Nodes
Poles

1010

Other

ZD020 Void Collection Area Condensation Line

Steam Line

12. VEGETATION

Cropland

EA010 Cropland

EA020 Hedgerow

EA030 Nursery

EA031 Botanical Garden

Orchard/Plantation EA040 Vineyards EA050 EA055 Hops Rangeland EB010 Grassland EB015 Grass/Scrub/Brush Scrub/Brush EB020 Land Use/Land Cover (Vegetation) EB030 Woodland EC010 Bamboo/Cane EC015 Forest EC020 Oasis EC030 Trees Cleared Way/Cut Line/Firebreak EC040 Wetland Wetlands Miscellaneous Features Miscellaneous Vegetation EE000 Other

Some general features which may also be included in one or more of the above are as follows:

Control Points

ZD020

Benchmark ZB020 ZB030 Boundary Monument Control Point/Control Station ZB035 ZB036 Distance Mark ZB040 Diagnostic Point Geodetic Point ZB060 Magnetic Variation

Void Collection Area

ZC040 Magnetic Disturbance Area ZC050 Isogonic Lines ZC051 Magnetic Pole

Miscellaneous

ZD001 Network ZD003 Artifact Location Geographic Information Point ZD012 ZD015 Point of Change Void Collection Area ZD020 Named Location ZD040 ZD045 Text Description