Smoothing splines **Exercises**

1 ISL

1. It was mentioned in the chapter that a cubic regression spline with one knot at ξ can be obtained using a basis of the form x, x^2 , x^3 , $(x-\xi)^3_+$, where $(x-\xi)^3_+ = (x-\xi)^3$ if $x>\xi$ and equals 0 otherwise. We will now show that a function of the form

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_+^3$$

7. Moving Beyond Linearity

is indeed a cubic regression spline, regardless of the values of $\beta_0, \beta_1, \beta_2, \beta_4, \beta_4$

(a) Find a cubic polynomial

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$$

such that $f(x)=f_1(x)$ for all $x\leq \xi.$ Express a_1,b_1,c_1,d_1 in terms of $\beta_0,\beta_1,\beta_2,\beta_3,\beta_4.$

(b) Find a cubic polynomial

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3$$

such that $f(x)=f_2(x)$ for all $x>\xi$. Express a_2,b_2,c_2,d_2 in terms of $\beta_0,\beta_1,\beta_2,\beta_3,\beta_4$. We have now established that f(x) is a piecewise polynomial.

- (c) Show that $f_1(\xi) = f_2(\xi)$. That is, f(x) is continuous at ξ .
- (d) Show that $f_1'(\xi) = f_2'(\xi)$. That is, f'(x) is continuous at ξ .
- (e) Show that $f_1''(\xi) = f_2''(\xi)$. That is, f''(x) is continuous at ξ .

Therefore, f(x) is indeed a cubic spline.

Hint: Parts (d) and (e) of this problem require knowledge of single-variable calculus. As a reminder, given a cubic polynomial

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3,$$

the first derivative takes the form

$$f_1'(x) = b_1 + 2c_1x + 3d_1x^2$$

and the second derivative takes the form

$$f_1''(x) = 2c_1 + 6d_1x.$$

2. Suppose that a curve \hat{g} is computed to smoothly fit a set of n points using the following formula:

$$\hat{g} = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(m)}(x) \right]^2 dx \right),$$

where $g^{(m)}$ represents the *m*th derivative of g (and $g^{(0)} = g$). Provide example sketches of \hat{g} in each of the following scenarios.

- (a) $\lambda = \infty, m = 0$.
- (b) $\lambda = \infty, m = 1.$

7.9 Exercises 323

- (c) $\lambda = \infty, m = 2$.
- (d) $\lambda = \infty, m = 3$.
- (e) $\lambda = 0, m = 3$.
- 3. Suppose we fit a curve with basis functions $b_1(X) = X$, $b_2(X) = (X-1)^2 I(X \ge 1)$. (Note that $I(X \ge 1)$ equals 1 for $X \ge 1$ and 0 otherwise.) We fit the linear regression model

$$Y = \beta_0 + \beta_1 b_1(X) + \beta_2 b_2(X) + \epsilon$$

and obtain coefficient estimates $\hat{\beta}_0 = 1, \hat{\beta}_1 = 1, \hat{\beta}_2 = -2$. Sketch the estimated curve between X = -2 and X = 2. Note the intercepts, slopes, and other relevant information.