

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1 1-19. (Canceled)

1 20. (New) A microprocessor-based system, comprising:
2 a microprocessor;
3 at least one peripheral device coupled to the microprocessor via a bus;
4 an address map coupled to the microprocessor, the address map storing address
5 allocated to the peripheral device to enable accesses thereto over said bus;
6 a peripheral control register coupled to receive peripheral control data from the
7 microprocessor;
8 peripheral device disable logic coupled between the peripheral control register
9 and to the peripheral device; and
10 address mapping logic coupled to the address map to automatically remove an
11 address space allocated to a disabled peripheral device from the address map, whereby an
12 address for the disabled peripheral device is not generated on the bus.

1 21. (New) The microprocessor-based system as claimed in claim 20, wherein
2 a peripheral device may be disabled by sending a logic signal from the peripheral control register
3 to the peripheral device disable logic associated with said peripheral device.

1 22. (New) The microprocessor-based system as claimed in claim 21, wherein,
2 when said logic signal is sent from the peripheral control register to the peripheral device disable
3 logic associated with said peripheral device, a corresponding logic signal is also sent to said
4 address mapping logic to remove the address space for said disabled peripheral device from the
5 address map.

1 23. (New) The microprocessor-based system as claimed in claim 20, having a
2 programmable address map, wherein, when the address space for said disabled peripheral device
3 is removed from the address map, a clock signal is automatically gated off from the peripheral
4 device.

1 24. (New) The microprocessor-based system as claimed in claim 20, having a
2 programmable address map, wherein, when the address space for said disabled peripheral device
3 is removed from the address map, a logic signal is sent to said peripheral device disable logic to
4 gate off the clock signal from the peripheral device, and thereby disable the peripheral device.

1 25. (New) The microprocessor-based system as claimed in claim 20, further
2 comprising a clock generator configured to supply a clock signal to each peripheral device,
3 through the associated peripheral device disable logic.

1 26. (New) The microprocessor-based system as claimed in claim 20, wherein
2 the system is implemented in an integrated circuit, and wherein at least one peripheral device
3 comprises an interface for an external device.

1 27. (New) A microprocessor-based system as claimed in claim 20, wherein
2 the system is implemented in a programmable logic integrated circuit, and wherein the
3 microprocessor is provided as an embedded circuit, while at least one of the peripheral device is
4 implemented in programmable logic.

1 28. (New) An integrated circuit, comprising:
2 a microprocessor coupled to a peripheral device via a bus;
3 address mapping logic coupled to an address map for storing addresses allocated
4 to peripheral device to enable accesses thereto over said bus; and
5 a peripheral control register coupled to receive peripheral control data from the
6 microprocessor, and configured to disable a peripheral device, and
7 wherein, when a peripheral device is disabled, said address allocated to the
8 disabled peripheral device is automatically removed from the address map to prevent further
9 access attempts thereto.

1 29. (New) The integrated circuit as claimed in claim 28, wherein said
2 peripheral device comprises an interface to an external device.

1 30. (New) The integrated circuit as claimed in claim 28, wherein said
2 peripheral device is implemented in programmable logic.

1 31. (New) The integrated circuit as claimed in claim 28, wherein a peripheral
2 device may be disabled by sending a logic signal from the peripheral control register to the
3 peripheral device disable logic associated with said peripheral device.

1 32. (New) The integrated circuit as claimed in claim 31, wherein, when said
2 logic signal is sent from the peripheral control register to the peripheral device disable logic
3 associated with said peripheral device, a corresponding logic signal is also sent to address
4 mapping logic to remove the address for said peripheral device from the address map.

1 33. (New) The integrated circuit as claimed in claim 31, further comprising a
2 clock generator configured to supply a clock signal to the peripheral device, through the
3 associated peripheral device disable logic.

1 34. (New) The integrated circuit as claimed in claim 28, wherein said address
2 map is programmable, and wherein, when the address for a peripheral device is removed by said
3 microprocessor from the address map, a clock signal is prevented from reaching said peripheral
4 device to disable said peripheral devic.

1 35. (New) In a microprocessor-based system, comprising a microprocessor
2 coupled via a bus to at least one peripheral device, a method of operating the system comprising:
3 storing in an address map at least one address corresponding to the at least one
4 peripheral device;
5 disabling the at least on peripheral device; and
6 automatically removing from the address map an address corresponding to the
7 disabled peripheral device, thereby preventing further access attempts thereto via the bus.

1 36. (New) The method as claimed in claim 35, wherein disabling the at least
2 one peripheral device comprises supplying a first logic signal from a peripheral control register
3 to a peripheral device disable logic associated with said peripheral device.

1 37. (New) The method as claimed in claim 35 wherein the disabling step
2 further comprises automatically gating off a clock signal from the peripheral device.

1 38. (New) The method as claimed in claim 36, wherein the step of
2 automatically removing comprises supplying a second logic signal corresponding to the first
3 logic signal, to said address map to remove the address corresponding to the disabled peripheral
4 device from the address map.