Условия при которых f = 1:  $3 \le |x_4 1 x_5 - x_1 x_2 x_3| \le 6$ 

Условия при которых f = d:  $|x_41x_5-x_1x_2x_3|=0$ 

| N  | $X_1X_2X_3X_4X_5$ | X41X5 | $(X_41X_5)_{10}$ | $X_1X_2X_3$ | $(X_1X_2X_3)_{10}$ | - | f |
|----|-------------------|-------|------------------|-------------|--------------------|---|---|
| 0  | 00000             | 010   | 2                | 000         | 0                  | 2 | 0 |
| 1  | 00001             | 011   | 3                | 000         | 0                  | 3 | 1 |
| 2  | 00010             | 110   | 6                | 000         | 0                  | 6 | 0 |
| 3  | 00011             | 111   | 7                | 000         | 0                  | 7 | 0 |
| 4  | 00100             | 010   | 2                | 001         | 1                  | 1 | 0 |
| 5  | 00101             | 011   | 3                | 001         | 1                  | 2 | 0 |
| 6  | 00110             | 110   | 6                | 001         | 1                  | 5 | 1 |
| 7  | 00111             | 111   | 7                | 001         | 1                  | 6 | 0 |
| 8  | 01000             | 010   | 2                | 010         | 2                  | 0 | D |
| 9  | 01001             | 011   | 3                | 010         | 2                  | 1 | 0 |
| 10 | 01010             | 110   | 6                | 010         | 2                  | 4 | 1 |
| 11 | 01011             | 111   | 7                | 010         | 2                  | 5 | 1 |
| 12 | 01100             | 010   | 2                | 011         | 3                  | 1 | 0 |
| 13 | 01101             | 011   | 3                | 011         | 3                  | 0 | D |
| 14 | 01110             | 110   | 6                | 011         | 3                  | 3 | 1 |
| 15 | 01111             | 111   | 7                | 011         | 3                  | 4 | 1 |
| 16 | 10000             | 010   | 2                | 100         | 4                  | 2 | 0 |
| 17 | 10001             | 011   | 3                | 100         | 4                  | 1 | 0 |
| 18 | 10010             | 110   | 6                | 100         | 4                  | 2 | 0 |
| 19 | 10011             | 111   | 7                | 100         | 4                  | 3 | 1 |
| 20 | 10100             | 010   | 2                | 101         | 5                  | 3 | 1 |
| 21 | 10101             | 011   | 3                | 101         | 5                  | 2 | 0 |
| 22 | 10110             | 110   | 6                | 101         | 5                  | 1 | 0 |
| 23 | 10111             | 111   | 7                | 101         | 5                  | 2 | 0 |
| 24 | 11000             | 010   | 2                | 110         | 6                  | 4 | 1 |
| 25 | 11001             | 011   | 3                | 110         | 6                  | 3 | 1 |
| 26 | 11010             | 110   | 6                | 110         | 6                  | 0 | D |
| 27 | 11011             | 111   | 7                | 110         | 6                  | 1 | 0 |
| 28 | 11100             | 010   | 2                | 111         | 7                  | 5 | 1 |
| 29 | 11101             | 011   | 3                | 111         | 7                  | 4 | 1 |
| 30 | 11110             | 110   | 6                | 111         | 7                  | 1 | 0 |
| 31 | 11111             | 111   | 7                | 111         | 7                  | 0 | D |

Канонический вид КДНФ : (¬х1 $\Lambda$ ¬х2 $\Lambda$ ¬х3 $\Lambda$ ¬х4 $\Lambda$ х5) V (¬х1 $\Lambda$ ¬х2 $\Lambda$ х3 $\Lambda$ х4 $\Lambda$ ¬х5) V (¬х1 $\Lambda$ х2 $\Lambda$ ¬х3 $\Lambda$ х4 $\Lambda$ ¬х5) V (¬х1 $\Lambda$ х2 $\Lambda$ ¬х3 $\Lambda$ х4 $\Lambda$ ¬х5) V (¬х1 $\Lambda$ х2 $\Lambda$ х3 $\Lambda$ х4 $\Lambda$ ¬х5) V (¬х1 $\Lambda$ х2 $\Lambda$ х3 $\Lambda$ х4 $\Lambda$ х5) V (х1 $\Lambda$ ¬х2 $\Lambda$ х3 $\Lambda$ х4 $\Lambda$ х5) V (х1 $\Lambda$ ¬х2 $\Lambda$ х3 $\Lambda$ ¬х4 $\Lambda$ ¬х5) V (х1 $\Lambda$ х2 $\Lambda$ ¬х3 $\Lambda$ ¬х4 $\Lambda$ ¬х5) V (х1 $\Lambda$ х2 $\Lambda$ х3 $\Lambda$ ¬х4 $\Lambda$ ¬х5) V (х1 $\Lambda$ х2 $\Lambda$ х3 $\Lambda$ ¬х4 $\Lambda$ х5)

 $\begin{array}{l} {\rm KKH\Phi:} \ (x1 \lor x2 \lor x3 \lor x4 \lor x5) \ \land \ (x1 \lor x2 \lor x3 \lor \neg x4 \lor x5) \ \land \ (x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5) \ \land \ (x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5) \ \land \ (x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5) \ \land \ (x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5) \ \land \ (x1 \lor \neg x2 \lor x3 \lor x4 \lor \neg x5) \ \land \ (\neg x1 \lor x2 \lor x3 \lor x4 \lor x5) \ \land \end{array}$ 

 $\begin{array}{l} (\neg x1 \lor x2 \lor x3 \lor x4 \lor \neg x5) \land (\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor x5) \land (\neg x1 \lor x2 \lor \neg x3 \lor x4 \lor \neg x5) \land \\ (\neg x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor x5) \land (\neg x1 \lor x2 \lor \neg x3 \lor \neg x4 \lor \neg x5) \land (\neg x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5) \land \\ (\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor x5) \end{array}$ 

| No | K <sup>0</sup> |          | №  | K <sup>1</sup> |       |          | № | K <sup>2</sup> |       | № | Z(f)  |
|----|----------------|----------|----|----------------|-------|----------|---|----------------|-------|---|-------|
| 1  | 00001          | ✓        | 1  | 0x110          | 2-7   |          | 1 | x10x0          | 2-14  | 1 | 00001 |
| 2  | 00110          | <b>√</b> | 2  | 010x0          | 3-4   | <b>√</b> | 2 | 01x1x          | 4-10  | 2 | 10011 |
| 3  | 01000          | <b>√</b> | 3  | x1000          | 3-11  | <b>√</b> | 3 | x11x1          | 8-18  | 3 | 0x110 |
| 4  | 01010          | <b>√</b> | 4  | 0101x          | 4-5   | <b>√</b> | 4 | 11x0x          | 13-17 | 4 | 1x100 |
| 5  | 01011          | <b>√</b> | 5  | 01x10          | 4-7   | <b>√</b> |   |                |       | 5 | x10x0 |
| 6  | 01101          | <b>√</b> | 6  | x1010          | 4-13  | ✓        |   |                |       | 6 | 01x1x |
| 7  | 01110          | <b>√</b> | 7  | 01x11          | 5-8   | <b>√</b> |   |                |       | 7 | x11x1 |
| 8  | 1111           | <b>√</b> | 8  | 011x1          | 6-8   | ✓        |   |                |       | 8 | 11x0x |
| 9  | 10011          |          | 9  | x1101          | 6-15  | <b>√</b> |   |                |       |   |       |
| 10 | 10100          | <b>√</b> | 10 | 0111x          | 7-8   | <b>√</b> |   |                |       |   |       |
| 11 | 11000          | ✓        | 11 | x1111          | 8-16  | ✓        |   |                |       |   |       |
| 12 | 11001          | <b>√</b> | 12 | 1x100          | 10-14 |          |   |                |       |   |       |
| 13 | 11010          | <b>√</b> | 13 | 1100x          | 11-12 | <b>√</b> |   |                |       |   |       |
| 14 | 11100          | <b>√</b> | 14 | 110x0          | 11-13 | <b>√</b> |   |                |       |   |       |
| 15 | 11101          | <b>√</b> | 15 | 11x00          | 11-14 | <b>√</b> |   |                |       |   |       |
| 16 | 11111          | <b>√</b> | 16 | 11x01          | 12-15 | <b>√</b> |   |                |       |   |       |
|    |                |          | 17 | 1110x          | 14-15 | <b>√</b> |   |                |       |   |       |
|    |                |          | 18 | 111x1          | 15-16 | <b>√</b> |   |                |       |   |       |

# Составление импликантной таблицы.

|               | 0-кубы |     |   |     |   |   |     |     |   |     |   |   |
|---------------|--------|-----|---|-----|---|---|-----|-----|---|-----|---|---|
| Простые       | 0      | 0   | 0 | 0   | 0 | 0 | 1   | 1   | 1 | 1   | 1 | 1 |
| импликанты    | 0      | 0   | 1 | 1   | 1 | 1 | 0   | 0   | 1 | 1   | 1 | 1 |
| (максимальные | 0      | 1   | 0 | 0   | 1 | 1 | 0   | 1   | 0 | 0   | 1 | 1 |
| кубы)         | 0      | 1   | 1 | 1   | 1 | 1 | 1   | 0   | 0 | 0   | 0 | 0 |
|               | 1      | 0   | 0 | 1   | 0 | 1 | 1   | 0   | 0 | 1   | 0 | 1 |
| 00001         | (*)    |     |   |     |   |   |     |     |   |     |   |   |
| 10011         |        |     |   |     |   |   | (*) |     |   |     |   |   |
| 0X100         |        | (*) |   |     | * |   |     |     |   |     |   |   |
| 1X100         |        |     |   |     |   |   |     | (*) |   |     | * |   |
| X10X0         |        |     | * |     |   |   |     |     | * |     |   |   |
| 01X1X         |        |     | * | (*) | * | * |     |     |   |     |   |   |
| X11X1         |        |     |   |     |   | * |     |     |   |     |   | * |
| 11X0X         |        |     |   |     |   |   |     |     | * | (*) | * | * |

Определение существенных импликант

Все Импликанты – существенные, так как каждая покрывают вершины от 1..12, не покрытые другими импликантами.

Ядро покрытия:

$$T = \begin{cases} 00001 \\ 0X110 \\ 1X100 \\ 01X1X \\ 11X0X \\ 10011 \end{cases} \qquad C_{min}(f) = \begin{cases} 00001 \\ 0X110 \\ 1X100 \\ 01X1X \\ 11X0X \\ 10011 \end{cases} \qquad S_a = 24, \qquad S_b = 30$$

 $f = (x1x2-x4) \lor (-x1x2x4) \lor (x1x3-x4-x5) \lor (-x1x3x4-x5) \lor (x1-x2-x3x4x5) \lor (-x1-x2-x3-x4x5)$ 

# 2.4. Минимизация булевой функции на картах Карно

# 2.4.1. Определение МДНФ

| x1x2/x3x4x5 | 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 00          | 0   | 1   | 0   | 0   | 1   | 0   | 0   | 0   |
| 01          | D   | 0   | 1   | 1   | 1   | 1   | D   | 0   |
| 11          | 1   | 1   | 0   | D   | 0   | D   | 1   | 1   |
| 10          | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1   |

# Минимизированная ДНФ:

 $f = (x1x2\neg x4) \lor (\neg x1x2x4) \lor (x1x3\neg x4\neg x5) \lor (\neg x1x3x4\neg x5) \lor (x1\neg x2\neg x3x4x5) \lor (\neg x1\neg x2\neg x3\neg x4x5)$ 

$$C_{min}(f) = \begin{cases} 00001\\0X110\\1X100\\01X1X\\11X0X\\10011 \end{cases}$$
 S<sub>a</sub> = 24, S<sub>b</sub>= 30

Отметим, что цены минимальных покрытий, полученных методом Квайна — Мак-Класки и с помощью карт Карно, совпадают, так как цена минимального покрытия булевой функции не зависит от метода его нахождения

### 2.4.2. Определение МКНФ

$$\begin{split} f = (\neg x 2 \vee \neg x 3 \vee \neg x 5) \wedge (\neg x 1 \vee \neg x 2 \vee x 4 \vee x 5) \wedge (x 1 \vee \neg x 2 \vee \neg x 4 \vee x 5) \wedge (x 1 \vee x 2 \vee x 4) \wedge (\neg x 1 \vee x 2 \vee \neg x 4) \wedge (\neg x 1 \vee x 3 \vee \neg x 4) \wedge (x 1 \vee x 3 \vee x 4) \\ S_a = 23, & S_b = 30 \end{split}$$

#### 2.5. Преобразование минимальных форм булевой функции

#### Факторное преобразование для МДНФ:

#### Факторное преобразование для МКНФ:

$$\begin{array}{l} (\neg x2 \lor \neg x3 \lor \neg x5) \land (\neg x1 \lor \neg x2 \lor x4 \lor x5) \land (x1 \lor \neg x2 \lor \neg x4 \lor x5) \land (x1 \lor x2 \lor x4) \land (\neg x1 \lor x2 \lor \neg x4) \land \\ (\neg x1 \lor x3 \lor \neg x4) \land (x1 \lor x3 \lor x4) = & (S_Q = 30) \\ = (\neg x2 \lor \neg x3 \lor \neg x5) \land (\neg x2 \lor x5 \lor ((\neg x1 \lor x4) \land (x1 \lor \neg x4))) \land (x2 \lor ((x1 \lor x4) \land (\neg x1 \lor \neg x4))) \land \\ (x3 \lor (\neg x1 \lor \neg x4) \land (x1 \lor x4)) = & (S_Q = 32) \\ \\ \phi = & (x1 \lor x4) \land (\neg x1 \lor \neg x4) \\ = & (\neg x2 \lor \neg x3 \lor \neg x5) \land (\neg x2 \lor x5 \lor \neg \phi) \land (x2 \lor \phi) \land (x3 \lor \phi) = \\ \\ S_Q^F = & 15, \qquad S_Q^{\phi} = 7 \\ \end{array}$$

# 2.6. Синтез комбинационных схем в булевом базисе С парафазными входами

$$S_Q = 20, \quad \tau = 5t$$



# С однофазными входами

$$S_Q = 25$$
,  $\tau = 6t$ 



# 2.7. Синтез комбинационных схем в универсальных базисах Базис (И-НЕ)

```
φ= x1¬x4 v¬x1x4 = ¬¬(x1¬x4 v¬x1x4) = ¬(¬(x1Λ¬x4) Λ¬(¬x1Λx4)) = = (x1 |¬x4) | (¬x1 | x4) f = (x2φ) v (x3¬x5φ) v (¬x2¬x3x5(x1x4 v¬x1¬x4)) = = (x2|φ) | (x3|¬x5|φ) | (¬x2|¬x3|x5|((x1|x4)|(¬x1|¬x4))) S<sub>Q</sub> F = 18, S<sub>Q</sub> φ = 7 S_Q = 25, τ=4t Προβερκα на наборах: 00000 - 0 00001 - 1
```

