(科目: |freer)

数 学 作 业 纸

班级: CSTo1

姓名: 污透的

编号: 2020010869

第 1 页

Problem 3.3.18.

Set.
$$A = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 11 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 35 \\ 0 & 610 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 35 \\ 0 & 00 \end{bmatrix}$$
, rank $A = \operatorname{rank} A^{T} = 2$.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$
 when $q \neq 2$, rank $A = \operatorname{rank} A^{T} = 3$

Phoblem 3.3.24

Sol. (a)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

Problem 3.4.2.

Problem 3.4.8

Sol.
$$C_1 \vee_1 + C_2 \vee_2 + C_3 \vee_3 = 0 \Leftrightarrow C_1(W_3 + W_2) + C_2(W_1 + W_3) + C_3(W_1 + W_2) = 0$$

 $\Leftrightarrow (C_2 + C_3)W_1 + (C_1 + C_2)W_2 + (C_1 + C_2)W_3 = 0$
Because W_1 , W_2 , W_3 are independent, $C_2 + C_3 = C_1 + C_3 = C_1 + C_2 = 0$, so $C_1 = C_2 = C_3 = 0$, that means V_1 , V_1 , V_3 are independent.

Problem 3.4.11

Problem 3.4.20

Sol.
$$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ is one basis of the plane, the intersection with xy-plane means $z=0$, so $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ is a basis, $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is a basis for all vectors perpendicar to the plane.

Problem 3.4.23

数 学 作 业 纸

班级: CST 01

姓名: 落逸 納

编号: 2020010869

第2页

Problem 3.4.38

Sol. (a) No, 2 vectors can't span R3

(b) No. 4 vectors are dependent in TR3.

(c) Yes

(d) No, these vectors are dependent, as $2\begin{bmatrix} 2\\2 \end{bmatrix} + 2\begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 0\\8\\6 \end{bmatrix}$.

Problem 3.5.2

Sel.
$$C(A^T)$$
, basis: $\begin{bmatrix} \frac{1}{4} \end{bmatrix}$ dim=1 $C(A)$: basis: $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ olim=1 $N(A^T)$, basis: $\begin{bmatrix} -\frac{1}{4} \end{bmatrix}$ dim=1 $N(A)$: basis: $\begin{bmatrix} -\frac{1}{4} \end{bmatrix}$, $\begin{bmatrix} -\frac{4}{9} \end{bmatrix}$ olim=2. $C(B^T)$: basis: $\begin{bmatrix} \frac{1}{4} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} \end{bmatrix}$ olim=2 $C(B)$: basis: $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} \end{bmatrix}$ olim=2 $N(B^T)$. basis: empty ($\begin{bmatrix} \frac{1}{9} \end{bmatrix}$) dim=0 $N(B)$: basis: $\begin{bmatrix} -\frac{4}{9} \end{bmatrix}$ olim=1.

Roblem 3.5.11

Sol. (m No solution means rxm (of course r in)
(b) As m-r>o, N(AT) should have nonzero vector.

Robben 3.5.18

Sal. row3-2row2+ row1 produced the zero row. so [-2] in the nullspace of AT and [-2] is also in the nullspace of A.

Problem 3.5.24

Sal. If solvable, die in row space and the left null space gives unique y.

Problem 1.

Sul.
$$\begin{bmatrix} 2 & 3 & +2 & | & -1 \\ 4 & 6 & 2 & 2 & | & 1 \\ 6 & 9 & 1 & 2 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & -1 & 2 & | & -1 \\ 0 & 0 & 4 & -2 & | & 3 \\ 0 & 0 & 4 & -4 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 23 & -1 & 2 & | & -1 \\ 0 & 0 & 4 & -2 & | & 3 \\ 0 & 0 & 0 & -2 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 23 & -10 & | & -2 \\ 0 & 0 & 40 & | & 4 \\ 0 & 0 & 0 & 2 & | & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \frac{3}{2} & 0 & 0 & | & -\frac{1}{2} \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1/2 \end{bmatrix}$$
, so the solution $\gamma = x_p + x_n = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 1 \\ \frac{1}{2} \end{bmatrix} + \lambda_2 \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix}$

(科目: linear)

数 学 作 业 纸

班级: CS TOL

姓名: 多速 討

编号: 2020010868

第 3 页

Problem 2.

Sal. cas Put then into a matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 1 & -2/3 & -2/3 \\ 0 & 0 & 4/3 & -2/3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

As the matrix have 4 pivots, these vectors form bases for R4.

(b)
$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 3/2 & -1 & -1/2 \\ 0 & -1 & 2 & -1 \\ 0 & -\frac{1}{2} & -1 & \frac{3}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 3/2 & -1 & -1/2 \\ 0 & 0 & 4/3 & -4/3 \\ 0 & 0 & -\frac{4}{3} & 4/3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 0 & -1 \\ 0 & 3/2 & -1 & -1/2 \\ 0 & 0 & 4/3 & -4/3 \\ 0 & 0 & -\frac{4}{3} & 4/3 \end{bmatrix}$$

then
$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = -\begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$
, so they do not form bases for \mathbb{R}^k .

Problem 3.

Sol.
$$A = \begin{bmatrix} -1 & 2 & -3 & 4 \\ 3 & 4 & -1 & 0 \\ 2 & 1 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & -3 & 4 \\ 0 & 10 & -10 & 12 \\ 0 & 5 & -5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & -3 & 4 \\ 0 & 1 & -1 & \frac{1}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 1 & -\frac{8}{5} \\ 0 & 1 & -1 & \frac{1}{5} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so
$$C(A)$$
: basis is the first two column. $\begin{bmatrix} -1\\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 4 \end{bmatrix}$
 $C(A^T)$: basis: $\begin{bmatrix} 0\\ -1\\ 6 \end{bmatrix}$ and $\begin{bmatrix} 0\\ -1\\ 6 \end{bmatrix}$

$$N(A)$$
: basis: $\begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} \frac{9}{5}\\-\frac{9}{5}\\0\\1 \end{bmatrix}$

$$N(A^{T}): \begin{bmatrix} -1 & 3 & 2 \\ 2 & 4 & 1 \\ -3 & -1 & 1 \\ 4 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 3 & 2 \\ 0 & 10 & 5 \\ 0 & -10 & -5 \\ 0 & 12 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$basis: \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

rank A = 2