Trabalho 4

Daniel Krügel

2023-02-20

Estarei testando o pacote gtsummary para criar as tabelas deste trabalho, portanto deixarei todos os chunks de códigos com echo = TRUE.

Questão 13

a)

A população de inferência é a população que frequenta o starbucks no período das 8:00 até as 8:30, a amostra foi quem frequenta o starbucks de Lincoln, NE.

b)


```
\mathbf{c})
```

```
## add_q: Adjusting p-values with
## `stats::p.adjust(x$table_body$p.value, method = "fdr")`
## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
```

To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	$\log(\mathrm{IRR})$	95% CI	p-value	q-value
Day				
Monday	_	_		
Tuesday	0.97	0.19, 1.8	0.020	0.020
Wednesday	1.1	0.34, 2.0	0.007	0.009
Thursday	1.3	0.59, 2.2	< 0.001	0.004
Friday	1.1	0.39, 2.0	0.005	0.009

O pacote omitiu o intercepto, já pedi para ele exponenciar os coeficientes pois foi utilizado a função log, o valor do intercepto, que equivale a segunda-feira, é 0.4700036

I)

Lembrando que usamos a função de ligação log, então para conseguir as estimativas diárias precisamos passar um exponencial nos coeficientes.

```
fit1 %>%
  tbl_regression(exponentiate = T) %>%
  add_global_p()
```

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
 ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	IRR	95% CI	p-value
Day			0.005
Monday		_	
Tuesday	2.62	1.21, 6.31	
Wednesday	3.00	1.41, 7.13	
Thursday	3.75	1.80, 8.78	
Friday	3.13	1.47, 7.41	

II)

xtable(Anova(fit1))

```
## % latex table generated in R 4.1.2 by xtable 1.8-4 package
## % Mon Feb 20 21:25:57 2023
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrr}
## \hline
## & LR Chisq & Df & Pr($>$Chisq) \\
## \hline
## Day & 15.00 & 4 & 0.0047 \\
## \hline
## \end{tabular}
## \end{tabular}
## \end{table}
```

Utilizando o pacote no qual estou aprendendo a usar, o valor do teste LR é omitido, porém o p-valor é exibido a cada covariável.

```
fit1 %>%
  tbl_regression() %>%
  add_global_p()
```

```
## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
```

To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	$\log(\mathrm{IRR})$	95% CI	p-value
Day			0.005
Monday			
Tuesday	0.97	0.19, 1.8	
Wednesday	1.1	0.34, 2.0	

Characteristic	$\log(IRR)$	95% CI	p-value
Thursday	1.3	0.59, 2.2	
Friday	1.1	0.39, 2.0	

O Teste LR demonstrou que a variável ${\tt Day}$ é relevante para a contagem de pessoas presentes no Starbucks com um P-valor de 0.0046982

III)

IV)

Aqui temos a média estimada para cada dia da semana

```
quart <- summary(starbucks$Count)</pre>
quart[4]*fit1$coefficients[1:5]
##
    (Intercept)
                   DayTuesday DayWednesday
                                             DayThursday
                                                             DayFriday
       2.030416
                     4.169149
                                  4.746005
                                                5.709985
                                                              4.922356
##
E aqui vemos a média observada em cada dia da semana
starbucks %>%
  group_by(Day) %>%
 reframe(total = mean(Count))
```

```
## # A tibble: 5 x 2
##
    Day
               total
##
     <fct>
               <dbl>
## 1 Monday
                 1.6
## 2 Tuesday
                 4.2
## 3 Wednesday
                 4.8
## 4 Thursday
                 6
## 5 Friday
                 5
```

Os intervalos de confiança para a média de cada dia da semana:

```
## lower upper
## Segunda -2.1739801 5.208082
## Terça 0.1431574 8.835735
## Quarta 0.8217293 9.359534
## Quinta 1.9299624 10.247206
## Sexta 1.0267539 9.520816
```

d)

Ambas as formas de escrita do teste de hipóteses descrevem um modelo linear de variáveis, porém quando levado para modelos lineares generalizados precisamos levar em conta a função de ligação utilizada no modelo. Como utilizamos a função canônica de ligação para o GLM da família Poisson, sua link é a Função logarítmica, o que deve de ser levado a diante no teste de razões LRT seria algo como:

$$H_0: e_1^{\mu} = e_2^{\mu} = e_3^{\mu} = e_4^{\mu} = e_5^{\mu}$$

$$H_1: \mu \neq \mu \neq \mu \neq \mu \neq \mu$$