Talis Biomedical Statistics Course - Homework 3 Due: 11 December 2019 11:59 PM

Name: [your first and last name]

Collaborators: [list all the people you worked with]

Date: [date of submission]

By turning in this assignment, I agree by the **Stanford honor code** and declare that all of this is my own work.

Linear algebra

Problem 1

When is it true? Fill in each blank with 'always', 'sometimes', or 'never'. Justify your choice.

(a) A nonsingular matrix is always invertible.

This is by definition.

(b) A square matrix is <u>sometimes</u> full-rank.

The definition of a square matrix is independent of the definition of full-rank.

(c) If AB = 0, then BA is sometimes a zero matrix.

Take $\mathbf{A} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then $\mathbf{AB} = 0$, but $\mathbf{BA} \neq 0$. On the other hand, if $\mathbf{A} = 0$ and $\mathbf{B} = 0$, then both \mathbf{AB} and \mathbf{AB} are zero matrices.

(d) The rank of $\mathbf{A} + \mathbf{B}$ is sometimes greater than rank(A).

If $\mathbf{B} = 0$, then $\mathbf{A} + \mathbf{B} = A$ and hence $rank(\mathbf{A} + \mathbf{B}) = rank(\mathbf{A})$. On the other hand, consider $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Since $\mathbf{A} + \mathbf{B} = \mathbf{I}$, $rank(\mathbf{A} + \mathbf{B}) = 2 > rank(\mathbf{A}) = 1$.

(e) If A^2 is invertible, then A is always invertible.

We first note that for \mathbf{A}^2 to be a valid matrix product, \mathbf{A} needs to be square. Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$. We then have $rank(\mathbf{A}^2) \leq rank(\mathbf{A}) \leq \min(n,n) = n$. Since $rank(\mathbf{A}^2) = n$ for \mathbf{A}^2 to be invertible, we must have $\mathbf{A} = n$. Thus, \mathbf{A} is full-rank and hence invertible.

(f) If the linear equation y = Ax has a unique solution, then A is <u>sometimes</u> square.

1

If $\mathbf{A} = \mathbf{I}$, then $\mathbf{A}\mathbf{x} = \mathbf{y}$ has a unique solution. However, \mathbf{A} need not necessarily be square for $\mathbf{A}\mathbf{x} = \mathbf{y}$ to have a solution. Consider $\mathbf{A} = \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix}$ for some \mathbf{b} . The system of equations $\mathbf{A}\mathbf{x} = \mathbf{y}$ has a unique solution $\mathbf{x} = \mathbf{b}$ even though \mathbf{A} is not square.

Problem 2

True or False. Fill in each blank with 'True' or 'False'. Justify your answer.

- (a) A diagonalizable matrix \mathbf{A} is nonsingular. False

 As a counterexample, the matrix $\mathbf{A} = 0$ is diagonalizable but singular.
- (b) A nonsingular matrix \mathbf{A} is diagonalizable. False

 As a counterexample, the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is nonsingular but is not diagonalizable.
- (c) A positive square matrix \mathbf{A} is positive definite. False

 As a counterexample, the matrix $\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 5 & 3 \end{bmatrix}$ is positive, but for $\mathbf{x} = \begin{bmatrix} -1 \\ \sqrt{2} \end{bmatrix}$, $\mathbf{x}^T \mathbf{A} \mathbf{x} = -2$. Thus, \mathbf{A} is not positive definite.
- (d) A square matrix \mathbf{A} with real and positive eigenvalues is positive definite. <u>False</u>

 As a counterexample, consider $\mathbf{A} = \begin{bmatrix} 1 & -10 \\ 0 & 1 \end{bmatrix}$. The eigenvalue of A is 1 (with multiplicity two), but for $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{x}^T \mathbf{A} \mathbf{x} = -8$. Hence \mathbf{A} is not positive definite.

Problem 3

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{bmatrix} , \mathbf{B} = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix}$$
$$\mathbf{C} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} , \mathbf{D} = \begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}, \mathbf{E} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

Given the matrices above, compute each matrix operation (if it is defined). If an expression is undefined, explain why.

(a)
$$-2\mathbf{A}$$

$$\begin{bmatrix} -4 & 0 & 2 \\ -8 & 10 & -4 \end{bmatrix}$$

(b) B - 2A

$$\begin{bmatrix} 3 & -5 & 3 \\ -7 & 6 & -7 \end{bmatrix}$$

(c) **AC**

Not defined, since the dimensions are incompatible.

(d) **CD**

$$\begin{bmatrix} 1 & 13 \\ -7 & -6 \end{bmatrix}$$

Problem 4

(a) Find the inverse of $\mathbf{A} = \begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix}$.

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} 4 & -6 \\ -5 & 8 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -5/2 & 4 \end{bmatrix}$$

(b) Let $\mathbf{A} = \begin{bmatrix} 5 & 7 \\ -3 & -6 \end{bmatrix}$. Is \mathbf{A} invertible?

Yes by the Invertible Matrix Theorem. Neither column of the matrix is a multiple of the other, so they are linearly independent. Also, the determinant is non-zero.

Problem 5

Compute the following determinants.

(a)
$$\begin{bmatrix} 4 & -1 \\ -2 & 0 \end{bmatrix}$$

 $4*0 - (-1*-2) = -2$

(b)
$$\begin{bmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{bmatrix}$$
$$3(3*-1 - 5*2) - 0(2*-1 - 2*0) + 4(2*5 - 3*0) = -39 + 40 = 1$$

Problem 6

Let $\mathbf{A} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \mathbf{u} and \mathbf{v} eigenvectors of \mathbf{A} ?

Recall that a vector \mathbf{x} is an eigenvector of \mathbf{A} if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, where λ is the scalar eigenvalue. Thus,

$$\mathbf{A}\mathbf{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4\mathbf{u}$$

while

$$\mathbf{A}\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Therefore, \mathbf{u} is an eigenvector, but \mathbf{v} is not.

Problem 7

Let $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where

$$\mathbf{P} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

. Compute \mathbf{A}^4

Recall that $\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}$. To use this equation, we first need to calculate \mathbf{P}^{-1} .

$$\mathbf{P}^{-1} = \frac{1}{|\mathbf{P}|} \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$

We therefore have

$$\mathbf{PD^4P^{-1}} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^4 \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 80 & 7 \\ 32 & 3 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$$

Problem 8

Find the singular values of $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.

We first need to compute $\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$. We then compute the eigenvalues and eigenvectors for $\mathbf{A}^T \mathbf{A}$, giving us $\lambda_1 = 18$ and $\lambda_2 = 0$, with corresponding eigenvectors

$$\mathbf{v}_1 = \begin{bmatrix} rac{1}{\sqrt{2}} \\ -rac{1}{\sqrt{2}} \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{bmatrix}.$$

The singular values are $\sigma_1 = \sqrt{18} = 3\sqrt{2}$ and $\sigma_2 = 0$.