

SF1625 Envariabelanalys Lösningsförslag till tentamen 2022.06.09

DEL A

1. Låt $f(x) = \tan x$ och $g(x) = \sin(\ln x)$.

(a) Är linjen
$$y = x$$
 tangent till kurvan $y = f(x)$ i punkten $(0, f(0))$? (3 **p**)

(b) Bestäm Taylorpolynomet av grad 2 till
$$g$$
 kring $x = 1$. (3 p)

Lösning. (a) En ekvation för tangenten till y = f(x) i punkten (0, f(0)) ges av

$$y = f(0) + f'(0)x$$
.

Vi har $f(0) = \tan(0) = 0$. Vidare, eftersom $\tan x = \frac{\sin x}{\cos x}$ så har vi

$$f'(x) = \frac{\cos^2 x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Detta ger att f'(0) = 1. Således är

$$u = x$$

tangent till kurvan y = f(x) i punkten (0, f(0)).

(b) Det sökta taylorpolynomet ges av $P(x) = g(1) + g'(1)(x-1) + \frac{g''(1)}{2}(x-1)^2$. Vi har

$$g'(x) = \frac{\cos(\ln x)}{x} \operatorname{och} g''(x) = \frac{(-\sin(\ln x)/x) \cdot x - \cos(\ln x) \cdot 1}{x^2}.$$

Eftersom $\ln 1 = 0, \cos(0) = 1$ och $\sin(0) = 0$ får vi nu att

$$P(x) = g(1) + g'(1)(x - 1) + \frac{g''(1)}{2}(x - 1)^2 = 0 + 1(x - 1) + \frac{(-1)}{2}(x - 1)^2$$
$$= (x - 1) - \frac{(x - 1)^2}{2}.$$

Svar: (a) Ja, (b)
$$P(x) = (x-1) - \frac{(x-1)^2}{2}$$
.

2. Bestäm arean av det begränsade område som innesluts av kurvan $y = \frac{1}{1 + 4x^2}$ och linjen y = 1/2. Förenkla ditt svar så långt som möjligt.

Lösning. Vi undersöker först var linjen y=1/2 skär kurvan $y=\frac{1}{1+4x^2}$. Vi löser därför ekvationen

$$\frac{1}{1+4x^2} = \frac{1}{2}.$$

 $\frac{1}{1+4x^2}=\frac{1}{2}.$ Detta ger att $1+4x^2=2$ vilket i sin tur ger att $x^2=1/4$, dvs $x=\pm 1/2$. Eftersom $1/(1+4x^2)>1/2$ för $x\in (-1/2,1/2)$ så ges den sökta arean av

$$\int_{-1/2}^{1/2} \left(\frac{1}{1+4x^2} - \frac{1}{2} \right) dx.$$

Integranden är jämn så

$$\int_{-1/2}^{1/2} \left(\frac{1}{1+4x^2} - \frac{1}{2} \right) dx = 2 \int_0^{1/2} \left(\frac{1}{1+4x^2} - \frac{1}{2} \right) dx =$$

$$= 2 \left[\frac{\arctan(2x)}{2} - \frac{x}{2} \right]_0^{1/2} = \arctan 1 - 1/2 = \pi/4 - 1/2 = \frac{\pi - 2}{4}.$$

Svar: Arean
$$\ddot{a}r \frac{\pi - 2}{4}$$
 (a.e.)

DEL B

3. Bestäm värdemängden till funktionen $f(x) = 2xe^{x-x^2}$. (6 p)

Lösning. Vi börjar med att notera att f(x) är definierad för alla reella tal x. Vi ser också att

$$\lim_{x\to\infty}2xe^{x-x^2}=0 \text{ och } \lim_{x\to-\infty}2xe^{x-x^2}=0.$$

För att hitta eventuella största och minsta värden analyserar vi derivatan. Vi har

$$f'(x) = 2e^{x-x^2} + 2xe^{x-x^2}(1-2x) = 2e^{x-x^2}(1+x-2x^2).$$

Eftersom $e^{x-x^2} > 0$ för alla x så ges de kritiska punkterna av $1 + x - 2x^2 = 0$. Denna ekvation har rötterna x = 1 och x = -1/2. Vi får följande teckentabell för derivatan: f'(x) < 0 för x < -1/2 och för x > 1; f'(x) > 0 för x < 1.

Eftersom f'(x) < 0 för x < -1/2 och $\lim_{x \to -\infty} f(x) = 0$ har vi $-e^{-3/4} = f(-1/2) < f(x) < 0$ för alla $x \le -1/2$; eftersom f'(x) > 0 för -1/2 < x < 1 har vi $f(-1/2) < f(x) \le f(1) = 2$ för alla $-1/2 < x \le 1$; eftersom f'(x) < 0 för x > 1 och $\lim_{x \to \infty} f(x) = 0$ har vi x = 10 har vi x = 11.

Från analysen ovan ser vi att $2 = f(2) \ge f(x) \ge f(-1/2) = -e^{-3/4}$ för alla x. Eftersom f är kontinuerlig så följer det från satsen om mellanliggande värden att f antar alla värden mellan $-e^{-3/4} = f(-1/2)$ och 2 = f(2), dvs f:s värdemängd är $[-e^{-3/4}, 2]$.

Svar: Värdemängden är $[-e^{-3/4}, 2]$.

4. Vilka av följande olikheter är sanna? (Glöm inte att motivera ordentligt.)

(a)
$$\int_0^1 \frac{dx}{1 + \arctan x} \le 1.$$
 (2 p)

(b)
$$\int_{1}^{\infty} \frac{x}{2x^2 - \sin^2 x} dx \le 1.$$
 (2 p)

(c)
$$\int_{1}^{\infty} \frac{x}{x^3 + \ln x} dx \le 1.$$
 (2 p)

Lösning. (a) Eftersom $\arctan x \ge 0$ för alla $x \ge 0$ har vi $1/(1 + \arctan x) \le 1$ för alla x > 0. Således har vi

$$\int_0^1 \frac{dx}{1 + \arctan x} \le \int_0^1 dx = 1.$$

Den första olikheten är alltså sann.

(b) Om oliketen skulle vara sann så skulle den generaliserade integralen $\int_1^\infty \frac{x}{2x^2-\sin^2 x}\,dx$ vara konvergent. Men, notera att (eftersom $\sin^2 x \geq 0$ för alla x)

$$\frac{x}{2x^2 - \sin^2 x} \ge \frac{x}{2x^2} = \frac{1}{2x} > 0$$
 för alla $x \ge 1$,

och

$$\int_1^\infty \frac{dx}{2x} = \lim_{R \to \infty} \int_1^R \frac{dx}{2x} = \lim_{R \to \infty} \left[(\ln x)/2 \right]_1^R = \lim_{R \to \infty} \frac{\ln R}{2} = \infty.$$

Eftersom den generaliserade integralen ovan är divergent så följer det från jämförelsesatsen att $\int_{1}^{\infty} \frac{x}{2x^2 - \sin^2 x} \, dx$ också är divergen. Alltså, olikheten (b) är falsk.

(c) Vi har att $\ln x \ge 0$ för alla $x \ge 1$ så $0 \le x/(x^3 + \ln x) \le \frac{1}{x^2}$ för alla $x \ge 1$. Eftersom

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x^2} dx = \lim_{R \to \infty} \left[-\frac{1}{x} \right]_{1}^{R} = \lim_{R \to \infty} (-1/R + 1) = 1,$$

så följer det från jämförelsesatsen för generaliserade integraler med positiva integrander att integralen $\int_{1}^{\infty} \frac{x}{x^3 + \ln x} dx$ också är konvergent och att

$$\int_{1}^{\infty} \frac{x}{x^3 + \ln x} \, dx \le \int_{1}^{\infty} \frac{1}{x^2} \, dx = 1.$$

Olikheten (c) är således sann.

Svar: Olikheterna (a) och (c) är sanna; olikheten (b) är falsk. □

DEL C

5. Finns det ett kortaste linjesegment sådant att ena ändpunkten är på x-axeln och den andra ändpunkten är på y-axeln och som går genom punkten $(9, \sqrt{3})$? Bestäm längden på ett sådant kortaste linjesegment om ett sådant finns, annars förklara varför det inte finns något.

Lösning. Ett linjesegment som går genom en punkt (t,0), $t \leq 9$, och punkten $(9,\sqrt{3})$ kan inte ha en ändpunkt på x-axeln och en ändpunkt på y-axeln. Vi behöver därför inte betrakta sådana fall.

Givet en punkt (t,0), t>9, så är $y=\sqrt{3}+\frac{0-\sqrt{3}}{t-9}(x-9)$ en ekvation för linjen som går genom punkten (t,0) och $(9,\sqrt{3})$. Sätter vi in x=0 får vi att linjen skär y-axeln i punkten $\left(0,\sqrt{3}+\frac{9\sqrt{3}}{t-9}\right)$. Längden av linjesegmentet mellan punkterna $\left(0,\sqrt{3}+\frac{9\sqrt{3}}{t-9}\right)$ och (t,0) ges av

$$\sqrt{t^2 + \left(\sqrt{3} + \frac{9\sqrt{3}}{t - 9}\right)^2}.$$

Vi vill se om detta uttryck har ett minimum på intervallet $(9, \infty)$, och bestämma detta värde om det existerar. Eftersom vi ska minmera ett avstånd kan vi lika gärna minimera kvadraten på avståndet (eftersom ett avstånd aldrig är negativt). Vi låter därför

$$f(t) = t^2 + \left(\sqrt{3} + \frac{9\sqrt{3}}{t-9}\right)^2 = t^2 + 3\left(1 + \frac{9}{t-9}\right)^2 = t^2 + 3\left(\frac{t}{t-9}\right)^2, t > 9.$$

För att undersöka om f har ett globalt minumum börjar vi med att titta på derivatan. Vi har

$$f'(t) = 2t + 6\left(\frac{t}{t-9}\right) \cdot \frac{(t-9)-t}{(t-9)^2} = 2t - \frac{6t \cdot 9}{(t-9)^3} = 2t\left(1 - \frac{3 \cdot 9}{(t-9)^3}\right) = 2t\left(1 - \frac{3^3}{(t-9)^3}\right).$$

Eftersom vi endast är intresserade av kritiska punkter i intervallet $(9, \infty)$ måste sådana uppfylla $(3/(t-9))^3 = 1$. Detta är endast uppfyllt om t-9=3, dvs för t=12. Vi ser också att f'(t) < 0 för 9 < t < 12 och f'(t) > 0 för t>12. Således måste funktionen f ha ett globalt minimum i punkten t=12. Detta betyder att ett kortaste linjesegment existerar, och att längden på detta är

$$\sqrt{f(12)} = \sqrt{12^2 + 3\left(\frac{12}{3}\right)^2} = \sqrt{\frac{12^2 \cdot 4}{3}} = \frac{12 \cdot 2}{\sqrt{3}} = 8\sqrt{3}.$$

Svar: Ett kortaste linjesegment finns; längden är $8\sqrt{3}$ (l.e.)

6. Visa att för varje heltal $n \ge 1$ gäller:

$$2\ln(2) - 1 \le \frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right) \le 2\ln(2) - 1 + \frac{\ln 2}{n}.$$

Lösning. Låt $f(x) = \ln(1+x)$. Vi har f'(x) = 1/(1+x) > 0 för alla x > -1, så f är växande på intervallet $(-1, \infty)$.

Fixera ett heltal $n \ge 1$. Eftersom f är växande så har vi för varje heltal $1 \le k \le n$ (notera att intervallet [(k-1)/n, k/n] har längd 1/n)

$$\frac{f((k-1)/n)}{n} \le \int_{(k-1)/n}^{k/n} f(x) \, dx \le \frac{f(k/n)}{n}.$$

Således har vi

(1)
$$\sum_{k=1}^{n} \frac{f((k-1)/n)}{n} \le \int_{0}^{1} f(x) \, dx \le \sum_{k=1}^{n} \frac{f(k/n)}{n}.$$

Vi har (via variabelbytet t = x + 1)

$$\int_0^1 f(x) \, dx = \int_0^1 \ln(1+x) \, dx = \int_1^2 \ln t \, dt.$$

Partiell integration ger nu

$$\int_{1}^{2} 1 \cdot \ln t \, dt = [t \ln t]_{1}^{2} - \int_{1}^{2} t \cdot \frac{1}{t} \, dt = 2 \ln 2 - 1.$$

Från den andra olikheten i (1) har vi alltså

$$2\ln 2 - 1 \le \sum_{k=1}^{n} \frac{\ln\left(1 + \frac{k}{n}\right)}{n} = \frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right),$$

vilket är den första delen av det vi vill visa.

Adderar vi $(\ln 2)/n$ på bägge sidor i den första delen av olikheten i (1) får vi

$$\left(\sum_{k=1}^{n} \frac{f((k-1)/n)}{n}\right) + \frac{\ln 2}{n} \le \int_{0}^{1} f(x) \, dx + \frac{\ln 2}{n} = 2\ln 2 - 1 + \frac{\ln 2}{n}.$$

Eftersom $f(0) = \ln(1) = 0$ och $f(n/n) = f(1) = \ln 2$ ser vi att vänsterledet i olikheten ovan kan skrivas

$$\left(\sum_{k=1}^{n} \frac{f((k-1)/n)}{n}\right) + \frac{\ln 2}{n} = \sum_{k=1}^{n} \frac{f(k/n)}{n} = \frac{1}{n} \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n}\right).$$

Detta ger den andra delen som vi ville visa.