Homework 7

Kevin Guillen MATH 200 — Algebra I — Fall 2021

May I please have my proof for problem 10.3 graded, thank you.

Problem 7.2 (a) Let G be a cyclic group of prime order p. Show that Aut(G) has order p-1.

- (b) Let G be a group of order pq with primes p < q such that $p \nmid q-1$. Show that G is cyclic
- (a) *Proof.* We know that G is cyclic and therefore $G = \{g, g^2, ..., g^p = e\} = \langle g \rangle$. In other words g is a generator of G. We know if we have an automorphism f, that f(g) has to map to a generator of G. Note thoug that all elements of G have order p except e, meaning all elements of G are generators except e. Therefore there are only p-1 choices, meaning there are only p-1 autmorphisms for G.
- (b) *Proof.* Let $H \in Syl_p(G)$ and $H' \in Syl_q(G)$. We know the number of Sylow p—subgroups of G is 1 + np, and has to divide pq. We know though that 1 + np cannot divide pq and therefore must divide q. Recall though we are given that q is another prime, therefore 1 + np = 1, q. But consider the following,

$$1 + np = q$$
$$np = q - 1$$
$$\rightarrow p \mid q - 1$$

which can't be because we were given that $p \nmid q-1$. Therfore 1+np=1, which means $|\mathrm{Syl}_p(G)|=1$, and by the same reasoning $|\mathrm{Syl}_q(G)|=1$. From here we know then that $H\cap H'=e$, and therefore when considring the union of these 2 subgroups we know there will be p+q-1 elements. Note though that

$$p+q-1<2q\leqslant pq$$

which means there exists and element $e \neq a \in G$, that is neither in H or H', and o(a) = pq. Which means that G is indeed cyclic.

Problem 9.2 (a) Let R be a finite integral domain. Show that R is a field.

(b) Let R be a division ring. Show that Z(R) is a field.

(a) *Proof.* Given that R is a finite integral domain, all that is missing to show it is a field is that every element has a multiplicative inverse. To show this let us consider a non-zero element $\alpha \in R$. We want to show this element has an inverse by showing there is some element $r \in R$ such that $\alpha r = 1_R$. We know because R is finite we can consider all its elements as $\{r_1, r_2, \ldots, r_n\}$ for some $n \in \mathbb{N}$.

Next we know the set $\{\alpha r_i | r_i \in R, i = 1, ..., n\}$ must be the same size as R. This is because for two elements $r_i, r_j \in R$, $i \neq j$, we would have $\alpha r_i = \alpha r_j$, but we are in an integral domain so this implies $r_i = r_j$ which would be a contradiction. Therefore there must be some $i \in \{1, ..., n\}$ such that $\alpha r_i = 1_R$. Meaning for any nonzero element $\alpha \in R$, it has a multiplicative inverse in R, making R a field.

(b) *Proof.* Given that R is a division ring, we know that every element in Z(R) commutes with every element in R. Consider an element $x \in Z(R)$, we want to show that $x^{-1} \in Z(R)$. Let $r \in R$, we know that xr = rx and that $(xr) \in R$, meaning there exists $(xr)^{-1}$ because R is a division ring. We see though,

$$(xr)^{-1} = (rx)^{-1}$$

 $r^{-1}x^{-1} = x^{-1}r^{-1}$.

Notice though that r was arbitrary in R, and therefore x^{-1} commutes with every element in R, meaing $x^{-1} \in Z(R)$. Therefore Z(R) is indeed a field.

Problem 10.2 (a) Show that $\{0\}$ and D are the only ideals of D.

- (b) Let R be a non-trivial ring and let $f:D\mapsto R$ be a ring homomorphism. Show that f is injective.
- (a) *Proof.* Let I be an ideal of D such that $I \neq \{0\}$. This means there is some element $a \in I$, and because $I \subseteq D$, $a \in D$. Now let b be any element in D. We know D is closed under multiplication so $ba^{-1} \in D$. We also know that $(ba^{-1})a \in I$, because $a \in I$. Observe though,

$$\begin{split} (ba^{-1})a &\in I \\ b(a^{-1}a) &\in I \\ b1_D &\in I \\ b &\in I. \end{split}$$

We said b to be any element in D, thus if I as any non-zero element in it, D \subseteq I.Wwe also had though that I \subseteq D, therfore I = D if I \neq {0}, given that D is a division ring.

(b) *Proof.* In class we defined ring homomorphimsms to respect multiplicative identites between rings. This is key because consider $a \in \ker(f)$ and assume $a \neq 0$. That means f(a) = 0, we also know $\exists a^{-1} \in D$, so consider the following,

$$f(1) = f(\alpha \alpha^{-1})$$
$$= f(\alpha)f(\alpha^{-1})$$
$$= 0f(\alpha^{-1})$$

This can't be though since a proper ring homomorphimsm as we defined in class we must have f(1) = 1. Therefore the kernel of f must be trivial which means, f is indeed injective. \Box

Problem 10.3 (a) Let F be a field. Show that the characteristic of F is either a prime number or 0.

- (b) Let p be a prime and let R be a ring with p elements. Show that $R \cong \mathbb{Z}/p\mathbb{Z}$.
- (a) *Proof.* If char(F) = 0 then we are done. We know that $char(F) \neq 1$ because that would imply 1 = 0 which means F is not a field. Now if char(F) = n, assume n to be composite, meaning there exists 2 natural numbers, k, l, where 1 < k, l < n such that n = kl. Consider the following,

$$(k \cdot 1)(l \cdot 1) = kl \cdot 1$$
$$= n \cdot 1$$
$$= 0.$$

Recall though a field is an integral domain meaning there are no zero divisors, therefore either $(k \cdot 1) = 0$ or $(l \cdot 1) = 0$. Also recall though n is supposed to be the smallest nonnegative integer such that $n \cdot 1 = 0$. So if either of the two cases were to be true it would contradict the minimality of n. Therefore if char(F) = n, n has to be a prime number. All together we have show that char(F) = 0 or char(F) = p where p is a prime.

(b) Proof. Consider the unique homomorphism from the ring of integers to any ring R,

$$\begin{aligned} f: \mathbb{Z} &\to R \\ z &\mapsto z 1_R. \end{aligned}$$

We already know this is indeed a ring homomorphism. So by definition we know the image of f will be mapped to a subring of R. The only two options is $\{0\}$ and R itself since R has p elements and therefore the order of the subring must divide p. We know it cant be $\{0\}$ though since ring homomorphism respect multiplicative identities, meaning $f(1_{\mathbb{Z}}) = 1_R$. Therfore f is surjective meaning im(f) = R.

Now according to the fundamental theorem of homomorphisms $\mathbb{Z}/\ker(f) \cong \operatorname{im}(f)$. We already know $\operatorname{im}(f) = R$. We also know that the only subrings of \mathbb{Z} are of the form $n\mathbb{Z}$, meaning $\ker(f) = n\mathbb{Z}$ for some $n \in \mathbb{N}_0$. All this together gives us $\mathbb{Z}/n\mathbb{Z} \cong R$. Isomorphisms though are 1-1 meaning the two rings must be of the same order, R has R elements, so $\mathbb{Z}/n\mathbb{Z}$ must have R, elements, but this can only be true if R = R. Therefore R as desired.

Problem 10.4 Let R be a ring. An element $r \in R$ is called *nilpotent* if there exists $n \in \mathbb{N}$ such that $r^n = 0$.

- (a) Show that if $r \in R$ is nilpotent then 1 r is a unit of R.
- (b) Show that if R is commutative then the nilpotent elements of R form an ideal N of R.
- (c) Show that if R is commutative and N is the ideal of nilpotent elements then 0 is the only nilpotent element of R/N
- (a) *Proof.* Given that r is nilpotent, consider the following,

$$1 = (1 - 0) = (1 - r^{n}) = (1 - r)(1 + r + r^{2} + \dots + r^{n-1}).$$

This means that the inverse of 1 - r is simply $(1 + r + \cdots + r^n)$

(b) *Proof.* Let N be the set of all nilpotent elements of R. It is clear that 0 is in this set because $0^1 = 0$.

Let $x,y \in \mathbb{N}$, we want to now show that $(x-y) \in \mathbb{N}$. We will use what we know about binomial expansion to show there exists and $n \in \mathbb{N}$ to show that $(x-y)^n = 0$. We already know there exists a n_1 and n_2 such that $x^{n_1} = 0$ and $y^{n_2} = 0$. That means for all $n_1' > n_1$ and $n_2' > n_2$ we have $x^{n_1'} = 0$ and $y^{n_2'} = 0$.

That means if we let $b = max(n_1, n_2), x^b = 0 = y^b$.

This is important to us because, ignoring the coefficients for a moment, we know that $(x-y)^n$ expanded is,

$$ax^ny^0 + bx^{n-1}y^1 + \dots + zx^0y^n.$$

This means we can find a n sufficiently large enough such that for each term in the expansion x^py^q either p or q will be greater than b resulting in the term being 0. It's obvious in this case n = 2b, this way for every term x^py^q either $p \ge b$ or $q \ge b$. Meaning every term will then be 0, implying $(x-y)^n = 0$, therefore $(x-y) \in N$

Finally we want to show that for any $a \in R$ and for any $x \in N$ that $ax \in N$. We know there exists some $n \in \mathbb{N}$ such that $x^n = 0$. So consider the following,

$$(ax)^{n} = a^{n}x^{n}$$
$$= a^{n}0$$
$$= 0$$

therfore $(ax) \in N$. Altogether we have that N is indeed an ideal of R, given that R is commutative.

(c) *Proof.* Let $r \in R$, and let us denote r + N as x. If x is nilpotent that means there is a $n \in \mathbb{N}$ such that,

$$x^{n} = (r + N)^{n} = r^{n} + N = 0 + N = N$$

Which means that $r^n \in N$, and therfore exists an $k \in \mathbb{N}$ such that $(r^n)^k = 0$. This means r is a nilpotent element of R, meaning x = N, which is the zero of R/N.