

Universidade Federal de Itajubá

Campus Itabira

ECAi21.2 – Laboratório de Robótica Móvel

9 de novembro de 2022

Docente: Andre Chaves Magalhães

Discente:

– Gabriel Toffanetto França da Rocha – 2019003646

Exercício 5 – TangetBug

Sumário

1 Wall Follow	2
Referências	4
Anexos	5

1 Wall Follow

O problema do seguidor de parede é utilizado para a implementação do Tangent Bug para possibilitar o contorno dos obstáculo até que o robô possa novamente passar a seguir a m-line em direção ao ponto de destino (q_{goal}) . Dessa forma o algoritmo de seguir parede faz com que o robô consiga manter uma distância constante, d_w , da parede e com trajetória tangente à mesma. Para isso, para percepção da parede é utilizado o sensor LiDAR, que como mostrado na Figura 1, realiza a medição de distância por meio de vários raios laser com angulação conhecida.

Figura 1: Representação do problema do seguidor de parede.

Uma forma de modelar o problema é mostrada na Figura 2, onde pegando dois raios aleatórios do LiDAR, $\overrightarrow{V_1}$ e $\overrightarrow{V_2}$, que possuem ângulos θ_1 e θ_2 , respectivamente. A origem para esses ângulos é dada no sentido frontal do robô, sendo o centro do LiDAR o 0 rad. Uma vez posto esses dois vetores, o vetor resultante $\overrightarrow{V_r}$ é mostrado em azul, sendo paralelo à parede que pretende-se seguir. Ao reduzir esse vetor à origem do LiDAR, têm-se o vetor $\overrightarrow{V_{r0}}$, que possuí um ângulo θ_w . Esse ângulo θ_w pode ser utilizado como ângulo de erro entre a orientação do robô e a orientação da parede, sendo que quando o mesmo for zero, o robô estará se movendo em paralelo com a parede.

Porém, é necessário também controlar a distância que o robô se encontra da parede, dada por d_w . d_w será o módulo do feixe do LiDAR com o menor módulo, representando o ponto mais próximo do robô em relação à parede.

Em vista disso, considerando $\overrightarrow{V_1}$ como o ponto mais próximo do robô à parede e $\overrightarrow{V_2}$ o feixe consecutivo, pode-se obter o vetor resultante e por fim, a lei de controle para resolução do problema de seguidor de parede.

Figura 2: Modelagem do problema do seguidor de parede.

 \overrightarrow{V}_r é dado por:

$$\overrightarrow{V_r} = \overrightarrow{V_2} - \overrightarrow{V_1} \tag{1}$$

 $\overrightarrow{V_{r0}}$ é dado por:

$$\overrightarrow{V_{r0}} = \overrightarrow{V_r} - \overrightarrow{V_1} \tag{2}$$

 θ_w é dado por:

$$\theta_w = \arccos \frac{\langle \hat{i}, \overrightarrow{V_{r0}} \rangle}{||\overrightarrow{V_{r0}}||} \tag{3}$$

O erro da distância até a parede, \boldsymbol{e}_{dw} é dada por:

$$e_{dw} = d_{min} - d_w \tag{4}$$

E dessa forma as leis de controle são dadas por:

$$v = K_{pL}V_{max} - K_{Ld}|\theta_w| - K_{Lw}|e_{dw}|$$
 (5)

$$\omega = K_{Ad}|\theta_w| + |e_d w| K_{Aw} \tag{6}$$

Referências

Anexos