A bullet of mass 2.0 g is fired horizontally into a block of wood of mass 600 g. The block is suspended from strings so that it is free to move in a vertical plane. The bullet buries itself in the block. The block and bullet rise together through a vertical distance of 8.6 cm, as shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

(a) (i) Calculate the change in gravitational potential energy of the block and bullet.

change = J [2]

(ii) Show that the initial speed of the block and the bullet, after they began to move off together, was $1.3 \,\mathrm{m\,s^{-1}}$.

[1]

(b)		ng the information in (a)(ii) and the principle of conservation of momentum, ermine the speed of the bullet before the impact with the block.	For Examiner's Use
		speed = m s ⁻¹ [2]	
(c)	(i)	Calculate the kinetic energy of the bullet just before impact.	
` '	()		
		kinetic energy = J [2]	
	(ii)	State and explain what can be deduced from your answers to (c)(i) and (a)(i) about the type of collision between the bullet and the block.	
		[2]	

A glass fibre of length 0.24 m and area of cross-section 7.9×10^{-7} m² is tested until it breaks. The variation with load *F* of the extension *x* of the fibre is shown in Fig. 4.1.

For Examiner's Use

Fig. 4.1

(a) State whether glass is ductile, brittle or polymeric.

.....[1]

- (b) Use Fig. 4.1 to determine, for this sample of glass,
 - (i) the ultimate tensile stress,

ultimate tensile stress = Pa [2]

© UCLES 2005 9702/02/M/J/05

For Examiner's Use

	(ii)	the Young modulus,
		Young modulus = Pa [3]
	(iii)	the maximum strain energy stored in the fibre before it breaks.
		maximum strain energy = J [2]
(c)	Αŀ	nard ball and a soft ball, with equal masses and volumes, are thrown at a glass
()	win	ndow. The balls hit the window at the same speed. Suggest why the hard ball is more sly than the soft ball to break the glass window.
		,
		[3]
		[3]

3 A girl stands at the top of a cliff and throws a ball vertically upwards with a speed of 12 m s⁻¹, as illustrated in Fig. 3.1.

For Examiner's Use

Fig. 3.1

At the time that the girl throws the ball, her hand is a height *h* above the horizontal ground at the base of the cliff.

The variation with time t of the speed v of the ball is shown in Fig. 3.2.

Fig. 3.2

For Examiner's Use

Speeds in the upward direction are shown as being positive. Speeds in the downward direction are negative.		
(a)	State the feature of Fig. 3.2 that shows that the acceleration is constant.	
(b)	Use Fig. 3.2 to determine the time at which the ball	
	(i) reaches maximum height,	
	time = s	
	(ii) hits the ground at the base of the cliff.	
	time = s [2]	
(c)	Determine the maximum height above the base of the cliff to which the ball rises.	
	height = m [3]	
(d)	The ball has mass 250 g. Calculate the magnitude of the change in momentum of the ball between the time that it leaves the girl's hand to time $t=4.0\mathrm{s}$.	
	change = Ns [3]	

(e)	(i)	State the principle of conservation of momentum.	For Examiner's Use
	/ii\	Comment on your answer to (d) by reference to this principle	
	(ii)	Comment on your answer to (d) by reference to this principle.	

3 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1.

Fig. 3.1

The time t to move from rest through a distance d is found for different values of d. A graph of d (y-axis) is plotted against t^2 (x-axis) as shown in Fig. 3.2.

Fig. 3.2

© UCLES 2004 9702/02/M/J/04

(a)	Theory suggests that the graph is a straight line through the origin. Name the feature on Fig. 3.2 that indicates the presence of		
	(i)	random error,	
	(ii)	systematic error.	••••
			[2]
(b)	(i)	Determine the gradient of the line of the graph in Fig. 3.2.	
		gradient =	[2]
	(ii)	Use your answer to (i) to calculate the acceleration of the toy down the slope. Explain your working.	
		acceleration	[0]
		acceleration = $m s^{-2}$	[ა]

4 A ball has mass *m*. It is dropped onto a horizontal plate as shown in Fig. 4.1.

Fig. 4.1

Just as the ball makes contact with the plate, it has velocity v, momentum p and kinetic energy $E_{\mathbf{k}}$.

(a) (i) Write down an expression for momentum p in terms of m and v.

.....

(ii) Hence show that the kinetic energy is given by the expression

$$E_{\rm k} = \frac{p^2}{2m}$$
.

[3]

(b)	Just before impact with the plate, the ball of mass $35g$ has speed $4.5ms^{-1}$. It bounces from the plate so that its speed immediately after losing contact with the plate is $3.5ms^{-1}$. The ball is in contact with the plate for $0.14s$.		
Calculate, for the time that the ball is in contact with the plate,			
	(i)	the average force, in addition to the weight of the ball, that the plate exerts on the ball,	
		magnitude of force = N	
		direction of force =	
		[4]	
	(ii)	the loss in kinetic energy of the ball.	
		loss = J [2]	
(c)	Stat	te and explain whether linear momentum is conserved during the bounce.	
		[3]	