12. Алгоритм элиминации лямбда-абстрактора и его разъяснение. Пример

Билет: 6, 18, 24

 λ -терм — классический объект λ -исчисления.

 $I = \lambda x. x$ – тождественный комбинатор

 $S = \lambda xyz. xz(yz) - \text{коннектор}$

 $K = \lambda x y. x$ – канцелятор

Теорема: Любой λ -терм можно преобразовать в эквивалентный ему λ -терму, состоящему только из переменных и комбинаторов S и K, не используя абстракторов.

Следовательно, согласно тезису Черча, любая вычислимая функция может быть представлена комбинатором без абстракторов. Доказательство можно провести, используя приведенное ниже преобразование T[E], которое преобразует заданный λ -терм в эквивалентный ему комбинатор.

Правила алгоритма элиминации λ -абстрактора T-преобразования:

	Процессы элиминации λ-абстактора	Условие применения
1	T[x] = x	х – переменная
2	$T[(E_1E_2)] = (T[E_1]T[E_2])$	E_1 и E_2 – термы
3	$T[\lambda x. E] = (KT[E])$	x – свободная переменная терма E , K – канцелятор
4	$T[\lambda x. x] = I = \lambda x. x = SKK$	S – коннектор
5	$T[\lambda x. (\lambda y. E)] = T[\lambda x. T[\lambda y. E]]$	x — свободная переменная терма E
6	$T[\lambda x. (E_1 E_2)] = (ST[\lambda x. E_1]T[\lambda x. E_2])$	E_1 и E_2 – термы
7	$T[\lambda x. (Ex)] = T[E]$	x — свободная переменная терма E

Пример:

Преобразуем λ-терм λ ху.ух в соответствующий комбинатор:

$$T[\lambda x. \lambda y(yx)] \xrightarrow{(5)} T[\lambda x T[\lambda y. (yx)] \xrightarrow{(6)} T[\lambda x. (ST[\lambda y. y]T[\lambda y. x] \xrightarrow{(4)} T[\lambda x. (ST[\lambda y. y]T[\lambda y. x])] \xrightarrow{(3)} T[\lambda x. (SI(KT[x]))] \xrightarrow{(1)} T[\lambda x. (SI(Kx))] \xrightarrow{(6)} ST[\lambda x. SI]T[\lambda x. (Kx)] \rightarrow$$

Если x – переменная или один из комбинаторов SKI

$$\xrightarrow{(3),(6)} (KT[SI])(ST[\lambda x.K]T[\lambda x.x]]) \xrightarrow{(1)+(2),(2)+(3),(4)} S(K(SI))(S(KK)I) = X$$
 Проверку полученного комбинатора можно произвести, применив его к термам а и b:

$$Xab \rightarrow_{\beta} S\big(K(SI)\big) \big(S(KK)I)ab \rightarrow_{\beta} K(ST)a(S(KK)Ia)b \rightarrow_{\beta} Ib(S(KK)Iab) \rightarrow_{\beta} b(S(KK)Iab) \rightarrow_{\beta} b(KKa(Ia)b) \rightarrow_{\beta} b(K(Ia)b) \rightarrow_{\beta} b(Ia) \rightarrow_{\beta} ba$$