

Figure 51.13: Let $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty, +\infty\}$ be the piecewise function defined by f(x) = x+1 for $x \ge 1$ and $f(x) = -\frac{1}{2}x + \frac{3}{2}$ for x < 1. Its epigraph is the shaded blue region in \mathbb{R}^2 . Since f has minimum at $x = 1, \ 0 \in \partial f(1)$, and the graph of f(x) has a horizontal supporting hyperplane at (1,1). Since $\{\frac{1}{2}, -\frac{1}{4}\} \subset \partial f(1)$, the maroon line $\frac{1}{2}(x-1)+1$ (with normal $(\frac{1}{2}, -1)$) and the violet line $-\frac{1}{4}(x-1)+1$ (with normal $(-\frac{1}{4}, -1)$) are supporting hyperplanes to the graph of f(x) at (1,1).

See Figure 51.16. We leave it as an exercise to show that f is subdifferentiable (in fact differentiable) at x when |x| < 1, but $\partial f(x) = \emptyset$ when $|x| \ge 1$, even though $x \in \text{dom}(f)$ for |x| = 1.

Example 51.8. The subdifferential of an indicator function is interesting. Let C be a nonempty convex set. By definition, $u \in \partial I_C(x)$ iff

$$I_C(z) \ge I_C(x) + \langle z - x, u \rangle$$
 for all $z \in \mathbb{R}^n$.

Since C is nonempty, there is some $z \in C$ such that $I_C(z) = 0$, so the above condition implies that $x \in C$ (otherwise $I_C(x) = +\infty$ but $0 \ge +\infty + \langle z - u, u \rangle$ is impossible), so $0 \ge \langle z - x, u \rangle$ for all $z \in C$, which means that z is normal to C at x. Therefore, $\partial I_C(x)$ is the normal cone $N_C(x)$ to C at x.

Example 51.9. The subdifferentials of the indicator function f of the nonnegative orthant of \mathbb{R}^n reveal a connection to complementary slackness conditions. Recall that this indicator function is given by

$$f(x_1, \dots, x_n) = \begin{cases} 0 & \text{if } x_i \ge 0, \ 1 \le i \le n, \\ +\infty & \text{otherwise.} \end{cases}$$

By Example 51.8, the subgradients y of f at $x \ge 0$ form the normal cone to the nonnegative orthant at x. This means that $y \in N_C(x)$ iff

$$\langle z - x, y \rangle \le 0$$
 for all $z \ge 0$