

Computer Architecture

TP 03

Name ID Score An Vanneath e20220208

Lecture: Course: Mr.CHUN Thavorac

TP: Mr.OL Phearun

Academic Year: 2023-2024

Exercises

- 1. Use identifies of Boolean algebra to simply the following logic expression:
- a) $f = a\overline{b}c + \overline{abc}$
- b) f= $\overline{b}(ac + \overline{a} \cdot \overline{c})$
- c) f=ab \overline{c} +a \overline{b} \overline{c} + \overline{a} b \overline{c}
- d) $f = (\overline{a} + \overline{b}) + (\overline{a} + b)$
- e) f= $(a+\overline{b}+a\overline{b})\overline{c}$
- f) $f=a\overline{b} \ \overline{c}+a\overline{b} \ \overline{c} \ \overline{d}+a\overline{c}$
- 2. After simplify please draw the circuit from above logic expression
- 3. Find the logic function from table below karnaugh table and draw circuit:

		ab				
	\mathbf{cd}		00	01	11	10
		00	1	1	1	1
F1/ l l	. – .	01	0	0	0	0
F1(a,b,c,d) — ?	11	0	0	0	0
		10	1	1	1	1
			l			
		ab				
	cd		00	01	11	10
		00	0	0	1	1
F3(a,b,c,d	\ — 2	01	0	1	1	0
13(a,0,0,0	., – .	11	1	0	0	1
		10	0	1	0	1

4. build XOR and XNOR gates using AND, OR, NOT gate.

E1	E2	S
0	0	1
0	1	0
1	0	0
1	1	1

Truth table for XNOR gate

$$s = f(E1, E2) = ?$$

Answer

1. Use identifies of Boolean algebra to simply the following logic expression:

a)
$$f = a\overline{b}c + \overline{abc}$$

 $= a\overline{b}c + \overline{b} + \overline{ac}$ (De Morgan's law)
 $= \overline{b}(ac + 1) + \overline{ac}$
 $= \overline{b} + \overline{ac}$ (Domination law)

b)
$$f = \overline{b}(ac + \overline{a} \cdot \overline{c})$$

= $\overline{b}ac + \overline{b} \cdot \overline{a} \cdot \overline{c}$ (Absorption law)
= $\overline{b}ac + (\overline{b+a+c})$ (De Morgan's law)

c)
$$f = ab\overline{c} + a\overline{b}\overline{c} + \overline{a}b\overline{c}$$

 $= \overline{c}(ab + a\overline{b} + \overline{a}b)$
 $= \overline{c}(a(b + \overline{b}) + \overline{a}b)$
 $= \overline{c}(a + \overline{a}b)$ (Unit property)
 $= \overline{c}a + \overline{a}b\overline{c}$ (Absorption law)

d)
$$f = (\overline{a} + \overline{b}) + (\overline{a} + b)$$

= $(\overline{ab}) + (\overline{a} + b)$ (De Morgan's law)

e)
$$f = (a + \overline{b} + a\overline{b}) \overline{c}$$

 $= \overline{c}(a(\overline{b} + 1) + \overline{b})$
 $= \overline{c}(a + \overline{b})$ (Domination law)
 $= \overline{c}a + \overline{c}\overline{b}$ (Distributive law)
 $= \overline{c}a + (\overline{c} + \overline{d})$ (De Morgan's law)

f)
$$f = a\overline{b} \ \overline{c} + a\overline{b} \ \overline{c} \ \overline{d} + a\overline{c}$$

 $= \overline{c}a(\overline{b} + \overline{b} \ \overline{d} + 1)$
 $= \overline{c}a(\overline{b}(1 + \overline{d}) + 1)$

$$= \overline{c}a$$
 (Domination law)

2. After simplify please draw the circuit from above logic expression:

a)
$$f = \overline{b} + \overline{ac}$$

$$b) = \overline{b}ac + (\overline{b+a+c})$$

$$\mathbf{c}) = \overline{c}\mathbf{a} + \overline{a}\mathbf{b}\overline{c}$$

d)
$$f = (\overline{ab}) + (\overline{a} + b)$$

e)
$$\overline{c}a + (\overline{c+d})$$

3. Find the logic function from table below karnaugh table and draw circuit:

$$F(a,b,c,d) = \overline{bcd} + b\overline{cd} + \overline{bcd} + bc\overline{d}$$

$$= \overline{cd}(\overline{b}+b) + c\overline{d}(\overline{b}+b)$$

$$= \overline{cd} + c\overline{d} \text{ (Unit property)}$$

$$= \overline{d}(\overline{c} + c)$$

$$= \overline{d} \text{ (Unit property)}$$

ab	03				
cd	00	01	11	10	
00	1	0	0	1	
01	0	0	0	1	F2(a,b,c,d) = ?
11	1	1	0	0	
10	1	1	0	1	

F2(a,b,c,d)=
$$\overline{b}\overline{c}\overline{d}$$
 + $a\overline{b}\overline{c}$ + $\overline{b}c\overline{d}$ + $\overline{a}\overline{b}c$ + $\overline{a}bc$
= \overline{b} $\overline{d}(\overline{c}+c)$ + $\overline{b}\overline{c}(\overline{a}+a)$ + $\overline{a}bc$
= \overline{b} \overline{d} + $\overline{b}\overline{c}$ + $\overline{a}bc$ (Unit property)
= \overline{b} (\overline{d} + \overline{c}) + \overline{a} bc

$$f3(a,b,c,d) = a\overline{c} \, \overline{d} + b\overline{c} \, d + \overline{b} \, cd + a\overline{b} \, c + \overline{a} \, bc\overline{d}$$
$$= \overline{c} (a\overline{d} + bd) + \overline{b} (cd + ac) + \overline{a} \, \overline{d} \, bc$$

a bd	0	1	F4(a,b,c,d) = ?
00	1	1	
01	0	1	,
11	1	1	A SINKING
10	1_	1	THINING E

$$F4(a,b,c,d) = a + \overline{b} a + ba + b\overline{a}$$

$$= a(1+a) + b(a+\overline{a})$$

$$= a + b \text{ (Domination law) (Unit property)}$$

4. build XOR and XNOR gates using AND, OR, NOT gate.

E1	E2	S
0	1	1
1	0	1

E1		
E2	0	1
0	0	1
1	1	0

$$S = f(E1,E2) = (E1 \cdot \overline{E2}) + (\overline{E1} \cdot E2)$$

E1	E2	S
0	0	1
0	1	0
1	0	0
1	1	1

Truth table for XNOR gate

$$s = f(E1, E2) = ?$$

E1	E2	S
0	0	1
1	1	1

E1		
E2	0	1
0	1	0
1	0	1

$$s = f(E1,E2) = \overline{E1} \cdot \overline{E2} + E1 \cdot E2$$

