CS571: Artificial Intelligence

Formal Systems

Pushpak Bhattacharyya

CSE Dept.,

IIT Patna

23 August 2018

Theory of CS

- Theory A
 - Logic
- Theory B
 - Algorithm an Complexity

Concepts, Axioms, Rule

- Some foundational questions for Mechanization or Automation of Knowledge Representation and Reasoning:
 - What are symbols and concepts (well formed formulae)
 - What are the self evident and ground truths in the system (axiomatization)
 - What is the validity of the inference (soundness and consistency)
 - Is the inference system powerful enough to capture reality (completeness)
 - Can it be implemented in Turing machine (derivability and complexity)

Case study: Propositional calculus

Propositions

- Stand for facts/assertions
- Declarative statements
 - As opposed to interrogative statements (questions) or imperative statements (request, order)

Operators

```
AND (\land), OR (\lor), NOT (\neg), IMPLICATION (=>)
```

- \Rightarrow and \neg form a minimal set (can express other operations)
 - Prove it.

<u>Tautologies</u> are formulae whose truth value is always T, whatever the assignment is

Model

In propositional calculus any formula with n propositions has 2^n models (assignments)

- Tautologies evaluate to *T* in all models.

Examples:

1)
$$P \vee \neg P$$

$$(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$

e Morgan with AND

Example

■ Prove $\sim (P \land Q) \rightarrow (\sim P \lor \sim Q)$ is a Tautology.

Q	P	$L = \sim (P \wedge Q)$	$R = \sim P \lor \sim Q$	$L \to R$
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

Formal Systems

- Rule governed
- Strict description of structure and rule application
- Constituents
 - Symbols
 - Well formed formulae
 - Inference rules
 - Assignment of semantics
 - Notion of proof
 - Notion of soundness, completeness, consistency, decidability etc.

Hilbert's formalization of propositional calculus

- 1. Elements are *propositions*: Capital letters
- 2. Operator is only one : → (called implies)
- 3. Special symbol *F* (called 'false')
- 4. Two other symbols: '(' and ')'
- 5. Well formed formula is constructed according to the grammar

$$WFF \rightarrow P|F|WFF \rightarrow WFF$$

6. Inference rule: only one

Given $A \rightarrow B$ and

 \boldsymbol{A}

write B

known as MODUS PONENS

7. Axioms: Starting structures

A1:
$$(A \rightarrow (B \rightarrow A))$$

A2:
$$((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$$

A3
$$(((A \rightarrow F) \rightarrow F) \rightarrow A)$$

This formal system defines the propositional calculus

Notion of proof

- 1. Sequence of well formed formulae
- 2. Start with a set of hypotheses
- 3. The expression to be proved should be the last line in the sequence
- 4. Each intermediate expression is either one of the hypotheses or one of the axioms or the result of modus ponens
- 5. An expression which is proved only from the axioms and inference rules is called a THEOREM within the system

Example of proof

From P and $P \rightarrow Q$ and $Q \rightarrow R$ prove R

H1: *P*

 $H2: P \rightarrow Q$

H3: $Q \rightarrow R$

- i) *P* H1
- ii) $P \rightarrow Q$ H2
- iii) Q MP, (i), (ii)
- iv) $Q \rightarrow R$ H3
- V) R MP, (iii), (iv)

Prove that $(P \rightarrow P)$ is a THEOREM

i)
$$P \rightarrow (P \rightarrow P)$$

A1: P for A and B

ii)
$$P \rightarrow ((P \rightarrow P) \rightarrow P)$$

A1: P for A and $(P \rightarrow P)$ for B

$$iii)[(P \rightarrow ((P \rightarrow P) \rightarrow P)) \rightarrow ((P \rightarrow (P \rightarrow P)) \rightarrow (P \rightarrow P))]$$

A2: with P for A, $(P \rightarrow P)$ for B and P for C

$$iv)(P \rightarrow (P \rightarrow P) \rightarrow (P \rightarrow P))$$

MP, (ii), (iii)

$$(P \rightarrow P)$$

MP, (i), (iv)

Shorthand

- 1. $\neg P$ is written as $P \rightarrow F$ and called 'NOT P'
- 2. $((P \rightarrow F) \rightarrow Q)$ is written as $(P \lor Q)$ and called 'P OR Q'
- 3. $((P \rightarrow (Q \rightarrow F)) \rightarrow F)$ is written as $(P \land Q)$ and called 'PANDQ'

Exercise: (Challenge)

- Prove that $A \rightarrow \neg(\neg(A))$

A very useful theorem (Actually a meta theorem, called deduction theorem)

Statement

If

$$A_1, A_2, A_3 \dots A_n \vdash B$$

then

$$A_1, A_2, A_3, \dots A_{n-1} \vdash A_n \rightarrow B$$

is read as 'derives'

Given

Use of Deduction Theorem

Prove

$$A \rightarrow \neg(\neg(A))$$

i.e.,
$$A \rightarrow ((A \rightarrow F) \rightarrow F)$$

$$A, A \rightarrow F + F$$
 (M.P)

$$A \vdash (A \to F) \to F \tag{D.T}$$

$$A \to ((A \to F) \to F) \tag{D.T}$$

Very difficult to prove from first principles, *i.e.*, using axioms and inference rules only

Prove
$$P \to (P \lor Q)$$

i.e.
$$P \to ((P \to F) \to Q)$$

 $P, P \to F, Q \to F \models F$
 $P, P \to F \models (Q \to F) \to F$ (D.T)
 $\models Q$ (M.P with A3)
 $P \models (P \to F) \to Q$
 $\models P \to ((P \to F) \to Q)$

More proofs

1.
$$(P \land Q) \rightarrow (P \lor Q)$$

$$2. (P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$$

$$3. (P \rightarrow Q) \rightarrow ((\neg Q \rightarrow P) \rightarrow Q)$$

Important to note

- Deduction Theorem is a meta-theorem (statement **about** the system)
- P→P is a theorem (statement belonging to the system)
- The distinction is crucial in AI
- Self reference, diagonalization
- Foundation of Halting Theorem, Godel Theorem etc.

Example of 'of-about' confusion

- "This statement is false"
- Truth of falsity cannot be decided

Soundness, Completeness & Consistency

Soundness

The soundness says that if a something is provable it means there has to be some meaning or truth realted to it. It should make sense.

Provability — Truth

Completeness

Completeness means that if there is athing which is true then it is provable in the system

■ Truth — Provability

Soundness: Correctness of the System

Proved entities are indeed true/valid

Completeness: Power of the System

True things are indeed provable

Consistency

The System should not be able to

prove both P and ~P, i.e., should not be

able to derive

F

Examine the relation between

Soundness & Consistency

Soundness = Consistency

If a System is inconsistent, i.e., can derive

 \mathcal{F} , it can prove any expression to be a

theorem. Because

 $\mathcal{T} \rightarrow P$ is a theorem

Inconsistency -> Unsoundness

To show that

P is a theorem

Observe that

$$\mathcal{F}, P \rightarrow \mathcal{F} \vdash \mathcal{F}By D.T.$$

$$\mathcal{F} \vdash (P \rightarrow \mathcal{F}) \rightarrow \mathcal{F} \vdash \mathcal{A}3$$

$$\vdash P$$
i.e. $\vdash \mathcal{F} \rightarrow P$

Thus, inconsistency implies unsoundness

Unsoundness -> Inconsistency

- Suppose we make the Hilbert System of propositional calculus unsound by introducing (A / | B) as an axiom
- Now AND can be written as
 - $\bullet (A \rightarrow (B \rightarrow \mathcal{F})) \rightarrow \mathcal{F}$
- If we assign \mathcal{F} to A, we have
 - $\bullet (\mathcal{F} \rightarrow (B \rightarrow \mathcal{F})) \rightarrow \mathcal{F}$
 - But $(\mathcal{F} \rightarrow (B \rightarrow \mathcal{F}))$ is an axiom (A1)
 - Hence F is derived

Inconsistency is a <u>Serious</u> issue.

Informal Statement of Godel Theorem:

If a sufficiently powerful system is complete it is inconsistent.

Sufficiently powerful: Can capture at least Peano Arithmetic

Introduce Semantics in Propositional logic

Valuation Function V

Where F is called 'false' and is one of the two symbols (T, F)

$$V(\mathcal{F}) = F$$

V(A→B) is defined through what is called the truth table

V(A)	V(B)	V(A→B)
Т	F	F
Т	T	T
F	F	Т
F	Т	Т

Tautology

An expression 'E' is a tautology if

$$V(E) = T$$

for all valuations of constituent propositions

Each 'valuation' is called a 'model'.

To see that

$$(\mathcal{F})$$
 is a tautology

two models

$$V(P) = T$$

 $V(P) = F$

$$V(\mathcal{F}) = T$$
 for both

If a system is Sound & Complete, it does not

matter how you "Prove" or "show the validity"

Take the Syntactic Path or the Semantic Path

Syntax vs. Semantics issue

Refers to

FORM VS. CONTENT

Form & Content

By D. Hofstadter

Problem

$$(P \land Q) \rightarrow (P \lor Q)$$

Semantic Proof

			Α	В	
	Р	Q	$P \wedge Q$	$P \lor Q$	A→B
_	Т	F	F	Т	Т
	Т	Т	Т	Т	Т
	F	F	F	F	Т
	F	Т	F	Т	Т

To show syntactically

$$(P \land Q) \rightarrow (P \lor Q)$$

$$[(P \to (Q \to \mathcal{F})) \to \mathcal{F}]$$

$$\to [(P \to \mathcal{F}) \to Q]$$

If we can establish

$$(P \longrightarrow (Q \longrightarrow \mathcal{F})) \longrightarrow \mathcal{F},$$

$$(P \longrightarrow \mathcal{F}), Q \longrightarrow \mathcal{F} \vdash \mathcal{F}$$

This is shown as

$$Q \longrightarrow \mathcal{F}$$
 hypothesis $(Q \longrightarrow \mathcal{F}) \longrightarrow (P \longrightarrow (Q \longrightarrow \mathcal{F})/\mathcal{A}1)$

Q \rightarrow F; hypothesis (Q \rightarrow F) \rightarrow (P \rightarrow (Q \rightarrow F)); A1 P \rightarrow (Q \rightarrow F); MP F; MP

Thus we have a proof of the line we started with

Soundness and Completeness proofs

Soundness, Completeness & Consistency

Introduce Semantics in Propositional logic

Valuation Function V

Where F is called 'false' and is one of the two symbols (T, F)

$$V(\mathcal{F}) = F$$

V(A→B) is defined through what is called the truth table

V(A)	V(B)	V(A→B)
Т	F	F
T	Т	T
F	F	Т
F	Т	Т

Tautology

An expression 'E' is a tautology if

$$V(E) = T$$

for all valuations of constituent propositions

Each 'valuation' is called a 'model'.

Soundness

Provability ———— Validity

Completeness

Validity Provability

Soundness: Correctness of the System

Proved entities are indeed valid

Completeness: Power of the System

Valid things are indeed provable

Consistency

The System should not be able to

prove both P and ~P, i.e., should not be

able to derive

F

Examine the relation between

Soundness & Consistency

Soundness = Consistency

If a System is inconsistent, i.e., can derive

 \mathcal{F} , it can prove any expression to be a

theorem. Because

 $\mathcal{T} \rightarrow P$ is a theorem

If a system is Sound & Complete, it does not

matter how you "Prove" or "show the validity"

Take the Syntactic Path or the Semantic Path