

UNIVERZITET U NIŠU Elektronski fakultet Katedra za matematiku

RAČUNSKE VEŽBE

TEORIJA GRAFOVA

Niš, 2020/21.

Čas 2

Zadatak 1. Da li postoji kompletan graf koji sadrži tačno

- (a) 100;
- **(b)** 36;
- (c) 64;
- **(d)** 0

grana? Ukoliko postoji, odrediti koliko čvorova on mora da ima.

Rešenje. Ukoliko graf sadrži $n \in \mathbb{N}$ čvorova i kompletan je, tada njegov ukupan broj grana iznosi $\frac{n(n-1)}{2}$. Dakle, ako važi $m = \frac{n(n-1)}{2}$, gde $m \in \mathbb{N}_0$ označava broj grana, nadalje sledi:

$$\frac{n(n-1)}{2} = m$$

$$n(n-1) = 2m$$

$$n^2 - n + \frac{1}{4} = 2m + \frac{1}{4}$$

$$\left(n - \frac{1}{2}\right)^2 = \frac{8m+1}{4}$$

Zbog $n - \frac{1}{2} > 0$ dalje dobijamo:

$$n - \frac{1}{2} = \frac{\sqrt{8m+1}}{2}$$
$$n = \frac{1 + \sqrt{8m+1}}{2}$$

Zaključujemo da ukoliko je dat kompletan graf sa $m \in \mathbb{N}_0$ grana, njegov broj čvorova može da se izračuna po prethodnoj formuli.

- (a) Za m=100 sledi $n=\frac{1+\sqrt{801}}{2}$, što nije ceo broj. Kompletan graf sa 100 grana ne postoji.
- **(b)** Za m=36 sledi $n=\frac{1+\sqrt{289}}{2}=\frac{1+17}{2}=\frac{18}{2}=9$. Kompletan graf sa 36 grana postoji i sastoji se od 9 čvorova.
- (c) Za m=64 sledi $n=\frac{1+\sqrt{513}}{2}$, što nije ceo broj. Kompletan graf sa 64 grane ne postoji.
- (d) Za m=0 sledi $n=\frac{1+\sqrt{1}}{2}=\frac{1+1}{2}=\frac{2}{2}=1$. Kompletan graf sa 0 grana postoji i sastoji se od 1 čvora.

Zadatak 2. Data su dva kompletna grafa, gde jedan od njih ima $a \in \mathbb{N}$ čvorova, a drugi $b \in \mathbb{N}$. Ukoliko graf sa a čvorova ima tačno 73 grane više od grafa sa b čvorova, koliko sve čvorova mogu ova dva grafa da imaju?

Rešenje. Graf sa $a \in \mathbb{N}$ čvorova je kompletan, te mora da ima $\frac{a(a-1)}{2}$ grana. Zbog istog razloga, graf sa $b \in \mathbb{N}$ čvorova ima $\frac{b(b-1)}{2}$ grana. Iz postavke

zadatka znamo da važi $\frac{a(a-1)}{2} - \frac{b(b-1)}{2} = 73$, odakle nadalje sledi

$$\frac{a(a-1)}{2} - \frac{b(b-1)}{2} = 73$$

$$a(a-1) - b(b-1) = 146$$

$$a^2 - a - b^2 + b = 146$$

$$(a^2 - b^2) - (a - b) = 146$$

$$(a - b)(a + b) - (a - b) = 146$$

$$(a - b)(a + b - 1) = 146$$

Važi a-b, $a+b-1 \in \mathbb{N}$, pri čemu je očigledno a-b < a+b-1. Prirodan broj 146 može na 2 različita načina da se predstavi kao proizvod 2 prirodna broja: kao 146 = $1 \cdot 146$ i kao 146 = $2 \cdot 73$. Odavde slede dve mogućnosti za brojeve čvorova zadatih grafova:

$$a - b = 1$$

$$a + b - 1 = 146$$

$$\Rightarrow 2a - 1 = 147$$

$$\Rightarrow 2a = 148$$

$$\Rightarrow a = 74$$

$$\Rightarrow b = 73$$

$$a - b = 2$$

$$a + b - 1 = 73$$

$$\Rightarrow 2a - 1 = 75$$

$$\Rightarrow a = 38$$

$$\Rightarrow b = 36$$

Dakle, grafovi imaju a=74 i b=73 čvora ili a=38 i b=36 čvorova.

Zadatak 3. Koliko je najmanje grana potrebno obrisati grafu sa sledeće slike tako da on postane regularan?

Rešenje. U datom grafu čvorovi 1, 4, 6 i 7 imaju stepen 3. Dakle, graf teoretski ne može postati 4-regularan, 5-regularan ili 6-regularan koliko god da mu se grana obriše.

Kako znamo da je broj grana regularnog grafa jednak $\frac{nr}{2}$, gde je $n \in \mathbb{N}$ broj čvorova datog grafa, a $r \in \mathbb{N}_0$ stepen svakog njegovog čvora, zaključujemo da graf sa neparnim brojem čvorova ne može imati neparni stepen svih čvorova, jer izraz nr mora biti deljiv sa 2, te mora biti $2 \mid n$ ili $2 \mid r$. Zbog toga, brisanjem grana početnog grafa sa 7 čvorova ne možemo dobiti nikako 3-regularan graf, niti 1-regularan graf.

Moguće je dobiti 0-regularan graf ili 2-regularan graf brisanjem odgovarajućih grana početnom grafu zadatom u zadatku. Graf čiji je svaki stepen čvora jednak 0 dobija se u trivijalnom slučaju ukoliko obrišemo sve grane, kojih ima 13. Međutim, 2-regularan graf se može dobiti ukoliko obrišemo, na primer, grane $\{1,5\}, \{2,5\}, \{3,4\}, \{2,3\}, \{2,7\}, \{3,6\}$. Na taj način bi se dobio graf kao na sledećoj slici:

Kako 2-regularni graf sa 7 čvorova ima $\frac{7 \cdot 2}{2} = 7$ grana, zaključujemo da je neophodno obrisati minimalno 13 - 7 = 6 grana grafu zadatom u zadatku kako bi se dobio regularan graf.

Zadatak 4 (2020, jun). Neka je $n \in \mathbb{N}$ paran prirodan broj. Dokazati da za svaki nenegativan ceo broj

$$r \in \{0, 1, 2, \dots, n-1\}$$

postoji r-regularan graf sa tačno n čvorova.

Rešenje. Zadatak ćemo rešiti konstrukcijom tako što ćemo za proizvoljan paran prirodan broj $n \in \mathbb{N}$ da damo primer konkretnog r-regularnog grafa, za svaki nenegativan ceo broj $r \in \{0, 1, \dots, n-1\}$. Na ovaj način očigledno pokazujemo da odgovarajući r-regularan graf sa tačno n čvorova postoji.

Nek je dat graf G=(V,E) gde je $V=\{a_1,a_2,\ldots,a_k,b_1,b_2,\ldots,b_k\}$, uz $k=\frac{n}{2}$. Povežimo čvorove na način takav da važi:

$$E = \{ \{a_i, b_j\} \colon 1 \le i, j \le k \land 0 \le (j - i) \bmod k < r \}$$

gde je $r \in \{0, 1, ..., k\}$ neki zadat nenegativan ceo broj. Ovakav graf G zadovoljava svojstvo da je svaki čvor povezan sa tačno r drugih čvorova, tako da je r-regularan. Dakle, za proizvoljan zadat paran prirodan broj $n \in \mathbb{N}$, postoji r-regularan graf sa tačno n čvorova, za $r \in \left\{0, 1, 2, ..., \frac{n}{2}\right\}$.

Ukoliko posmatramo bilo koji od prethodno konstruisanih grafova i njemu dodamo naredni skup grana

$$E_1 = \{\{a_i, a_i\}: 1 \le i < j \le k\} \cup \{\{b_i, b_i\}: 1 \le i < j \le k\}$$

tada dobijamo graf koji je ponovo regularan, ali se stepen svakog čvora uvećava za tačno $k-1=\frac{n}{2}-1$. Dakle, na ovaj način konstruisanjem regularnih grafova čiji su stepeni čvorova elementi skupa $\left\{0,1,2,\ldots,\frac{n}{2}\right\}$, dodavanjem grana iz skupa E_1 dobijamo regularne grafove čiji su stepeni čvorova elementi skupa $\left\{\frac{n}{2}-1,\frac{n}{2},\frac{n}{2}+1,\ldots,n-1\right\}$. Odavde direktno sledi tvrđenje iz zadatka i dokaz je gotov.

Zadatak 5 (2020, oktobar 2). *Zadat je graf G* = (V, E) definisan skupovima $V = \{1,2,3\}$ $i E = \{\{1,2\},\{1,3\},\{2,3\}\}.$

- (a) Koliko graf G ima čvorova, koliko grana i koliko komponenti povezanosti?
- (b) Za dati graf G, odrediti matricu susedstva, kao i matricu incidentnosti.
- (c) Koliko graf G ima različitih puteva dužine k, gde je $k \in \mathbb{N}_0$ proizvoljan zadat nenegativan ceo broj?
- (d) Koliko graf G ima različitih zatvorenih puteva dužine k, gde je $k \in \mathbb{N}_0$ proizvoljan zadat nenegativan ceo broj?

Rešenje.

- (a) Graf *G* ima 3 čvora, 3 grane i 1 komponentu povezanosti.
- (b) Matrica susedstva datog grafa iznosi:

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Matrica incidentnosti je jednaka:

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- (c) Uzevši u obzir da je dati graf kompletan, put dužine $k \in \mathbb{N}_0$ možemo zamisliti kao niz od k+1 čvorova tako da su svaka dva susedna čvora u nizu različita. Ukupan broj ovakvih nizova se veoma jednostavno može izbrojiti prvi čvor možemo da odaberemo na ukupno 3 načina (može se izabrati svaki čvor iz skupa V), dok svaki naredni možemo na 2 načina (može se odabrati bilo koji od preostala dva čvora koji nije jednak prethodnom). Dakle, ukupan broj različitih puteva dužine $k \in \mathbb{N}_0$ iznosi $3 \cdot 2^k$.
- (d) Neka ukupan broj različitih zatvorenih puteva dužine $k \in \mathbb{N}_0$ iznosi a_k . Veoma je bitno zapažanje da svaki od ovih puteva možemo da zamislimo kao niz dužine k+1 čija su svaka susedna dva elementa različita, uz dodatno ograničenje da prvi i poslednji element moraju biti isti.

Pretpostavimo da je $k \geq 1$. Ukoliko nam je dat niz dužine k+1 koji odgovara zatvorenom putu dužine k, tada brisanjem njegovog poslednjeg elementa dobijamo niz dužine k koji odgovara otvorenom putu dužine k-1. Koristeći ovu činjenicu, nije teško zaključiti da postoji bijekcija između skupa svih zatvorenih puteva dužine k i skupa svih otvorenih puteva dužine k-1, gde je $k \geq 1$. Znači, njihov ukupan broj mora biti isti. Znamo da ukupan broj puteva dužine k-1 iznosi $3 \cdot 2^{k-1}$ na osnovu prethodno urađenog podzadatka, tako da na osnovu činjenice da ima a_{k-1} zatvorenih, znamo da ima $3 \cdot 2^{k-1} - a_{k-1}$ otvorenih. Odavde sledi rekurentna veza:

$$a_k = 3 \cdot 2^{k-1} - a_{k-1}$$

koja važi za svako $k \in \mathbb{N}$. Takođe znamo da važi $a_0 = 3$, pošto je svaki put dužine 0 obavezno zatvoren. Nadalje je neophodno izračunati vrednosti niza a na osnovu dobijente rekurentne veze i početne vrednosti $a_0 = 3$.

Posmatrajmo nehomogenu linearnu rekurentnu jednačinu:

$$a_k + a_{k-1} = 3 \cdot 2^{k-1}$$

Njeno očigledno partikularno rešenje jeste 2^k . Karakteristični polinom linearne rekurentne jednačine je jednak $P(\lambda) = \lambda + 1$ i njegova jedina nula iznosi -1. Odavde sledi oblik opšteg rešenja rekurentne jednačine:

$$a_k = 2^k + c(-1)^k$$

gde je $c \in \mathbb{R}$ proizvoljna konstantna. U našem konkretnom slučaju, početni uslov $a_0 = 3$ nam daje neophodnu vrednost konstante c:

$$a_0 = 2^0 + c(-1)^0$$

 $3 = 1 + c$
 $c = 2$

Dakle, broj različitih zatvorenih puteva dužine $k \in \mathbb{N}_0$ je jednak:

$$2^k + 2(-1)^k$$

Zadatak 6. Koliko različitih prostih ciklusa dužine 4 ima kompletan graf sa 6969 čvorova?

Rešenje. Broj prostih ciklusa dužine 4 se najlakše nalazi tako što se prvo izbroji ukupan broj zatvorenih puteva sa različitim čvorovima (osim prvog i poslednjeg) dužine 4. Naime, svaki prost ciklus dužine 4 može da se predstavi preko tačno $2 \cdot 4 = 8$ različitih ovakvih puteva. Oni se razlikuju po tome koji se čvor uzima kao početni i koji se smer obilaska koristi. Na primer, neka je dat prost ciklus A - B - C - D - A, gde A, B, C, D predstavljaju međusobno različite čvorove datog grafa. Tada postoji ukupno 8 zatvorenih puteva sa različitim čvorovima (osim prvog i poslednjeg) kojim se ovaj prost ciklus može odrediti:

$$A - B - C - D - A$$
 $A - D - C - B - A$
 $B - C - D - A - B$ $D - C - B - A - D$
 $C - D - A - B - C$ $C - B - A - D - C$
 $D - A - B - C - D$ $B - A - D - C - B$

Pošto je zadat kompletan graf sa 6969 čvorova, ukupan broj zatvorenih puteva dužine 4 sa svim različitim čvorovima osim prvog i poslednjeg se lako može sračunati kao 6969 · 6968 · 6967 · 6966, jer se prvi čvor može odabrati na 6969 načina, a svaki sledeći na 1 manje način, pošto je svaki čvor sa svakim povezan. Dakle, ukupan broj prostih ciklusa dužine 4 jednak je:

$$\frac{6969 \cdot 6968 \cdot 6967 \cdot 6966}{8} = 3 \binom{6969}{4}$$

Zadatak 7 (2020, septembar). Neka je dat proizvoljan graf G = (V, E) takav da važi |V| = 2n, $|E| > n^2$, gde je $n \in \mathbb{N}$. Dokazati da graf G mora da sadrži bar jedan ciklus dužine 3.

Rešenje. Biće dokazano ekvivalentno tvrđenje – ukoliko graf sadrži 2n čvorova i nema ciklus dužine 3, tada njegov broj grana ne može biti preko n^2 . Dokaz će biti izveden matematičkom indukcijom.

Za slučaj k=1, tvrđenje je očigledno. Naime, ako graf ima 2k=2 čvora, tada on sigurno nema ciklus dužine 3, a može imati ili 0 grana ili samo 1 granu, što svakako ne prevazilazi vrednost od $k^2=1^2=1$.

Pretpostavimo da tvrđenje važi za slučaj k=n. Drugim rečima, znamo da svaki graf sa 2n čvorova koji nema ciklus dužine 3 može imati najviše n^2 grana. Dokažimo da tvrđenje onda mora da bude tačno i za slučaj k=n+1.

Nek je dat proizvoljan graf G=(V,E) sa 2n+2 čvorova. Ukoliko ovaj graf ne sadrži nijednu granu, onda on nema ciklus dužine 3, a kako mu je broj grana jednak 0, on svakako nema više od $(n+1)^2$ grana, te je dokaz gotov. Ako graf ima bar jednu granu, uzmimo neku granu $\{a,b\}$, gde su a i b čvorovi grafa. Razdelimo skup čvorova V na disjunktne podskupove V_1 i V_2 tako da je $V_1=\{a,b\}$ i $V_2=V\setminus V_1$. Sve grane grafa G mogu biti ili između čvorova unutar skupa V_1 ili između čvorova unutar skupa V_2 ili između čvora iz skupa V_1 i čvora iz skupa V_2 .

Po induktivnoj pretpostavci, znamo da između čvorova unutar skupa V_2 može postojati najviše n^2 grana, pošto njih ima tačno 2n, a sigurno ne formiraju nijedan ciklus dužine 3. Svaki čvor iz skupa V_2 može imati najviše jednu granu sa čvorovima a i b, pošto bi u suprotnom on zajedno sa ova dva čvora formirao ciklus dužine 3, uzevši u obzir da između a i b postoji grana. Dakle, broj grana koje povezuju čvor iz skupa V_1 i čvor iz skupa V_2 ima ukupno maksimalno 2n. Broj grana koje povezuju čvorove unutar skupa V_1 iznosi tačno 1 i ta jedina grana je upravo $\{a, b\}$.

Zaključujemo da graf G može imati najviše $n^2 + 2n + 1$ grana. Međutim, kako je $n^2 + 2n + 1 = (n + 1)^2$, direktno dobijamo tvrđenje koje je trebalo da dokažemo. Dokaz indukcijom je gotov.

Zadatak 8. Dat je graf G = (V, E) koji ima ukupno 69 grana. Neka su data dva njegova čvora $a, b \in V$, $a \neq b$ takva da važi $\deg(a) = 13$ i $\deg(b) = 4$. Neka je $G_1 = (V_1, E_1)$ podgraf grafa G definisan na sledeći način:

$$V_1 = V \setminus \{a, b\}$$

$$E_1 = E \cap \{\{x, y\} : x, y \in V_1 \land x \neq y\}$$

Koliko grana sadrži graf G_1 ukoliko:

- (a) u grafu G ne postoji grana {a,b};
- **(b)** u grafu G postoji grana {a,b}?

Rešenje. Po definiciji grafa G_1 , može se jednostavno zaključiti da će on sadržati svaku granu grafa G osim onih koje su incidentne sa bar jednim od čvorova iz skupa $\{a,b\}$. Pošto važi $\deg(a)=13$ i $\deg(b)=4$, znamo da postoji 13 grana koje su incidentne sa čvorom a i 4 grane koje su incidentne sa čvorom b.

(a) Ako između čvorova a i b ne postoji grana, onda je skup grana koje su incidentne sa čvorom a disjunktan sa skupom grana koje su incidentne sa čvorom b, tj. nijedna grana nije istovremeno incidentna sa oba čvora. Zbog toga će graf G_1 imati upravo 13 + 4 = 17 grana manje od grafa G, odakle sledi da je njegov ukupan broj grana jednak 69 - 17 = 52.

(b) Ukoliko između čvorova a i b postoji grana, onda će to biti jedna jedina grana koja je incidentna i sa čvorom a i sa čvorom b. Postoji još 12 grana koje su incidentne samo sa a i još 3 grane incidentne samo sa b. Ukupan broj grana koje su incidentne bar sa jednim čvorom iz skupa $\{a,b\}$ iznosi 1+12+3=16 i zbog toga će graf G_1 imati tačno 69-16=53 grane.