Rozwiązania zadań z PAA

Dominik Lau

2 stycznia 2023

1 algorytmy

Karatsuba

- a) oszacuj złożoność obliczeniową algorytmu Karatsuby
- b) opracowałeś metodę mnożenia dwóch liczb 4-cyfrowych za pomocą 10 mnożeń elementarnych,. Czy twoja metoda jest lepsza od metody klasycznej, czy jest lepsza od algorytmu Karatsuby. Ile mnożeń wykona twoja metoda, metoda Karatsuby i metoda klasyczna dla 8 cyfrowych liczb.

```
rozwiązanie:
```

```
a) M(n) = 3M(n/2) + n = \theta(n^{lg3})
b) metoda klasyczna(4) = 16 mnożeń (gorsza) metoda karatsuby(4) = 9 mnożeń (lepsza)
```

dla 8 mnożeń:

moja metoda ok. 32 mnożenia metoda karatsuby 27 mnożeń metoda klasyczna 64 mnożenia

Wyszukiwanie sekwencyjne vs binarne

Jak wiele wyszukiwań binarnych trzeba wykonać w najgorszym przypadku danych w posortowanej tablicy, żeby opłacił się czas jej wstępnego posortowania? Przyjmij, że współczynniki proporcjonalności są równe 1.

rozwiązanie:

```
T_s=n- czas pojedynczego wyszukiwania sekwencyjnego T_b=log(n)- czas pojedynczego wyszukiwania binarnego nlogn+x*logn \leq xn \rightarrow x \geq \frac{nlogn}{n-logn}czyli potrzeba x=\frac{nlogn}{n-logn}wyszukań.
```

Euklides

```
def Euklides1(i,j):
    while i != j:
        if i > j:
            i = i - j
        else:
            j = j - i
    return i

def Euklides2(i,j):
    while i != 0 and j != 0:
        if i > j:
            i = i mod j
        else:
            j = j mod i
    return max{i,j}
```

dla algorytmów Euklides1, Euklides2:

- 1. Udowodnij poprawność algorytmu
- 2. Oszacuj pesymistyczna złożoność obliczeniową algorytmu, czy jest to złożoność wielomianowa czy niewielomianowa
- 3. Oszacuj złożoność pamięciową

rozwiązanie:

Euklides1:

1) wartości i, j tworzą ciąg malejący, malejący ciąg liczb naturalnych musi być skończony, dlatego algorytm ma własnośc stopu, z własności NWD, NWD(i,j) = NWD(j,i), NWD(i,i) = i oraz NWD(i,j) = NWD(i-j, j), gdzie i > j zatem po każdej iteracji mamy NWD(i,j) = NWD(i-j, j) aż w końcu, gdy i = j to NWD(i,j) = i = NWD(i_0,j_0)

2) najwięcej operacji wykona się, gdy i = n a j = 1, bo wtedy będziemy mieli T(n)=T(n-1)+1=O(n) kroków, natomiast złożoność obliczeniowa $T(r)=O(2^r)$ gdzie r- liczba cyfr danych wejściowych, jest to złożoność wykładnicza

3) M(n) = O(1) algorytm potrzebuje stałej dodatkowej pamięci

Euklides2:

1)

wartości i, j tworzą ciąg malejący, malejący ciąg liczb naturalnych musi być skończony, dlatego algorytm ma własnośc stopu, z własności NWD, NWD(i,j) = NWD(j,i), NWD(i,0) = i oraz NWD(i, j) = NWD(i mod j, j) przechodzimy przez ciąg przekształceń NWD(i,j) = NWD(i mod j, j) itd. aż dochodzimy do NWD(i,0) = i = NWD(i_0,j_0)

2)

```
3) M(n) = O(1)
```

Dodawanie wektorów

udowodnij poprawność algorytmu dodawania wektorów A i B

```
def add(A,B):
    C = arr[1..n]
    i = 1
    while i <= n:
        C[i] = A[i] + B[i]
        i += 1
    return C</pre>
```

rozwiązanie:

```
przyjmujemy za niezmiennik P(k) \iff po k-tej iteracji C[1...k] = A[1..k] + B[1..k] dla P(1) oczywiste, bo C[1] = A[1] + b[1] zakładamy P(k), w k+1 iteracji pętli dodajemy C[k+1] = A[k+1] + B[k+1], czyli dostajemy C[1..k+1] = A[1..k+1] + B[1..k+1] \iff P(k+1), udowodniliśmy zatem niezmiennik po n iteracjach będzie zatem zachodniło P(n), czyli C[1..n] = A[1..n] + B[1..n] cnd
```

Największa wartość w wektorze

udowodnij poprawnośc algorytmu znajdowania maksymalnej wartości w wektorze ${\bf L}$

```
def max(L[1..n]):
    i = 2
    max = L[1]
    while i <= n:
        if L[i] > max:
            max = L[i]
        i+=1
    return max
```

rozwiązanie:

```
przyjmujemy za niezmiennik P(k) \iff po k-tej iteracji max = \max(L[1..k+1]) zaczynamy od max = L[1] dla pierwszej iteracji mamy, że albo L[2] > \max, wówczas max = L[2] i otrzymujemy max = \max(L[1..2]) albo L[2] < \max, wówczas wciąż max = \max(L[1..2]) stąd wynika P(1) załóżmy P(k), czyli max = \max(L[1..k+1], w k+1 iteracji mamy, że albo L[k+1] > \max albo L[k+1] < \max, w drugim przypadku max = \max(L[1..k+2]) > \max(L[1..k+2]), w drugim przypadku nowy max = L[k+2] > \max(L[1..k+1]) = \max(L[1..k+2]), wykazaliśmy więc indukcyjnie P(k) czyli po n-1 wykonaniach pętli mamy P(n-1) czyli max = \max(L[1..n]) = \max(L[1..n]) całego wektora, to jest wartość przez nas zwracana, cnd
```

Wartość wielomianu

algorytm oblicza wartość wielomianu $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

```
def W(a: coefficients,x: argument)
  p = a[0]
  xpower = 1
  for i = 1 to n:
      xpower = x * xpower
      p = p + a[i] * xpower
    return p
```

- 1. ile mnożeń trzeba wykonać w najgorszym przypadku, ile dodawań, a ile w przypadku przeciętnym
- 2. podaj algorytm, który wykona n mnożeń i n dodawań

rozwiązanie:

1) dla wielomianu W, gdzie st. W = n mamy mno(n) = 2n oraz dod(n) = n zarówno w przypadku pesymistycznym jak i optymistycznym

2)

```
def horner(a: coefficients, x: argument)
  p = 0
  for i = n to 0:
    p = p * x + a[i]
  return p
```

Złożoność obliczeniowa*

Udowodniono, że pewien algorytm ma złożoność $T(n) = \theta(n^{2,5})$. Określ prawdziwość zdań:

- 1. istnieją c_1, c_2 takie, że dla wszystkich n
 czas działania A jest krótszy niż $c_1 n^{2,5} + c_2$
- 2. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest krótszy ni
ż $n^{2,4}$ sekund
- 3. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest krótszy ni
ż $n^{2,6}$ sekund
- 4. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest dłuższy ni
ż $n^{2,4}$ sekund
- 5. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest dłuższy ni
ż $n^{2,6}$ sekund

rozwiązanie:

```
mamy T(n) = \theta(n^{2,5}) \rightarrow c_1 n^{2,5} < T(n) < c_2 n^{2,5} dla prawie wszystkich n
```

- 1. prawda (np. $c_2 = 0$)
- 2. fałsz
- 3. prawda
- 4. prawda
- 5. falsz

Funkcja malejąca zmieniająca znak

dla $f:R^+\to R$ funkcji malejącej zmieniającej znak znajdź algorytm o(n), który znajdzie największą liczbę naturalną n, dla której $f(n)\geq 0$

```
def rozwiazanie(f):
    i = 1
    j = 1
    while f(j) >= 0:
        j = j * 2

while j != i + 1:
        p = (i+j)/2
        if p >= 0:
        i = p
```

```
else:
    j = p
return i
```

złożoność: O(logn)

Przesunięcie cykliczne

napisz program, który przesuwa cyklicznie n-elementowy wektor A[1..n] o k pozycji w czasie liniowym, algorytm ma działać in-situ

rozwiązanie:

można zastosować przesuwanie z insertion sorta (przesuwamy k razy in-situ o jedną pozycję w lewo)

```
def shift(A[1..n], k):
    for i = 1 to k:
        current = A[n]
        for j = n to 1:
            swap(A[j], current)
        A[n] = current
```

Ciąg Fibonacciego

Napisz cztery wersje obliczenia n-tego wyrazu ciągu Fibonacciego o liczbie kroków: $O((\frac{1+\sqrt{5}}{2})^n)$, O(n), $O(\log n)$, O(1)

```
rozwiązanie:
```

```
O((\frac{1+\sqrt{5}}{2})^n)
```

```
def f(n):
   if n == 0 or n == 1:
     return 1
   return F(n-1) + F(n-2)
```

O(n)

```
def f(n):
    if n == 0 or n == 1:
        return 1
    x = 1
    y = 1
    for i = 2 to n:
        z = x + y
        y = z
        x = z
```

```
return x
```

O(logn)

```
def f(n):
    A = (1 + sqrt(5)) / 2
    B = (1 - sqrt(5)) / 2
    return 1/sqrt(5) * (A^n - B^n)
```

O(1) ??

Hybryda

Oszacuj liczbę kroków poniższego algorytmu liczącego wartość n-tego wyrazu ciągu fibonacciego. Określ, czy złożoność jest wielomianowa, superwielomianowa, wykładnicza, superwykładnicza

```
def hybryda(n):
    if n < 9:
        if n <= 2:
            return 1
        return hybryda(n-1) + hybryda(n-2)
    else:
        a = b = 1
        for i = 3 to n:
        b = b + a
        a = b - a
        return b</pre>
```

rozwiązanie:

```
nie obchodzi nas n<9 LK(n) = O(n) \\ ZO(r) = O(2^r) - złożoność jest wykładnicza
```

Hanoi

Pewien komputer wykonuje milion operacji przenieś z poniższego algorytmu w ciągu sekundy. Dla jakich wartości n będzie on pracował

- 1. minutę
- 2. godzinę
- 3. rok

```
def X(A,B,C,n):
   if n == 1:
     przenies(A,C)
   else:
```

```
X(A,C,B,n-1)
przenies(A,c)
X(B,A,C,n-1)
```

```
rozwiązanie: T(n) = 2T(n-1) + 1 = \theta(2^n)
1. 1 000 000 * 60 = 2^n
n = lg(1000000 * 60)
2. n = lg(1000000 * 60 * 60)
3. n = lg(1000000 * 60 * 60 * 24 * 365)
```

Złożoność czasowa

Pewien algorytm A ma złożonośc czasową $\theta(n^2)$. Określ prawdziwość zdań:

- 1. Istnieją stałe c_1,c_2 takie, że dla wszystkich n
 czas działania A jest krótszy niż $c_1n^2+c_2$ sekund
- 2. Istnieją stałe c_1,c_2 takie, że dla wszystkich n
 czas działania A jest dłuższy niż $c_1n^2+c_2$ sekund
- 3. Istnieją stałe c_1,c_2,c_3 takie, że dla wszystkich n
 czas działania A jest równy $c_1n^2+c_2nlogn-c_3n$ sekund
- 4. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest m
niejszy niż $n^{1,9}$ sekund
- 5. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest m
niejszy niż $n^{2,1}$ sekund
- 6. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest większy ni
ż $n^{1,9}$ sekund
- 7. dla każdego n
 istnieje zestaw danych rozmiaru n, dla którego czas działania A jest większy ni
ż $n^{2,1}$ sekund
- 8. dla pewnych n
 czas działania A jest równy 2^n sekund

- 1. prawda
- 2. prawda

- 3. fałsz
- 4. fałsz
- 5. prawda
- 6. prawda
- 7. fałsz
- 8. prawda

Złożoność pesymistyczna

Algorytm A ma złożoność f(n), algorytm B ma złożoność g(n). Czy to prawda, że (tak,nie, nie wiadomo):

- 1. Czy w najgorszym przypadku B jest asymptotycznie szybszy od A, jeśli g(n) = $\Omega(f(n)logn)$
- 2. Czy w najgorszym przypadku B jest asymptotycznie szybszy od A, jeśli $\mathbf{g}(\mathbf{n}) = O(f(n)logn)$
- 3. Czy w najgorszym przypadku B jest asymptotycznie szybszy od A, jeśli $\mathbf{g}(\mathbf{n}) = \theta(f(n)logn)$
- 4. Czy w najgorszym przypadku B jest asymptotycznie szybszy od A, jeśli $\mathbf{g}(\mathbf{n}) = \tilde{\theta}(f(n))$
- 5. Czy w najgorszym przypadku A jest asymptotycznie szybszy od B, jeśli $\mathbf{g}(\mathbf{n})=o(f(n)logn)$
- 6. Czy w najgorszym przypadku A jest asymptotycznie szybszy od B, jeśli $\mathbf{g}(\mathbf{n}) = \omega(f(n)logn)$

- 1. nie
- 2. nie wiadomo
- 3. nie
- 4. nie
- 5. nie wiadomo
- 6. tak

dwie funkcje

Określ funkcję f jako liniową, wielomianową, superwielomianową, wykładniczą lub superwykładniczą oraz oszacuj jej złożoność.

```
def f(n):
    if n < 3:
        return n
    return f(n-2) + 2 * g(n)

def g(n):
    if n < 3:
        return n
    return 2f(n-2) + g(n / 3)</pre>
```

rozwiązanie:

```
T_f(n)=T_f(n-2)+T_g(n)+1=3T_f(n-2)+T_g(n/3) 3T_f(n-2)+1\leq T_f(n)\leq 4T_f(n-2)+1 T_f(n)=\Omega((\sqrt{3})^n)\cap O(2^n)- liczba kroków T_f(r)=\Omega((\sqrt{3})^{2^n})\cap O(2^{2^n})- złożoność obliczeniowa (jest to złożoność superwykładnicza)
```

Funkcja Padovana

Funkcja Padovana zdefiniowana jest następująco P(0)=P(1)=P(2)=1, P(n)=P(n-2)+P(n-3). Oszacuj tempo wzrostu funkcji P(n). Znajdź jak najlepsze oszacowanie.

rozwiązanie:

```
Proste oszacowanie P(n) = \Omega((\sqrt[3]{2})^n) \cap O((\sqrt{2})^n)
Korzystając z własności funkcji Padovana: \frac{P(n-2)}{P(n-3)} \leq \frac{4}{3}
otrzymujemy P(n) = \Omega((\sqrt{\frac{7}{4}})^n) \cap O((\sqrt[3]{\frac{7}{3}})^n)
```

Mediana

Dany jest ciąg n liczb naturalnych z przedziału $[1 \dots 10n]$. Napisz algorytm znajdujący medianę, czyli (n+1)/2 największy element ciągu.

rozwiązanie:

```
def mediana(A[1..n]):
   posortuj_przez_zliczanie(A) // potrzeba nam tablicy
   return A[(n+1)/2]
```

złożoność obliczniowa O(n), pamięciowa O(n)

Własności NWD

Mamy dane własności NWD:

- NWD(a,b) = 2NWD(a/2, b/2) jeśli a,b parzyste
- $\bullet \ \mathrm{NWD}(\mathrm{a,b/2})$ jeśli a nieparzyste, b
 -parzyste
- NWD((a-b)/2, b) jeśli a i b nieparzyste

napisz algorytm wykorzystujący te własności do obliczenia NWD i oszacuj jego złożoność obliczeniową.

rozwiązanie:

```
def NWD(a,b):
    if a == 0:
        return b
    if b == 0:
        return a

    if even(a) and even(b):
        return 2 * NWD(a/2, b/2)
    if odd(a) and even(b):
        return NWD(a,b/2)
    return NWD(a,b/2)
    return NWD((a-b)/2, b)
```

even sprowadza się do sprawdzenia jednego bitu złożoność obliczeniowa: T(r)=T(r-1)+1=O(r) gdzie r- liczba cyfr a i b

Zagadka 1

```
def z(A[1..n])
  x = 0
  for d = 1 to n:
    for g = d to n:
        suma = 0
        for i = d to g:
        suma = suma + A[i]
        x = max(x, suma)
  return x
```

odpowiedz na pytania:

- 1. jaki jest efekt działania powyższego kodu
- 2. jaka jest jego złożonośc obliczeniowa
- 3. napisz program wykonujący to samo zadanie w czasie O(n)

```
rozwiązanie: 1) algorytm wyznacza największą sumę spójnego podciągu w tablicy A 2) T(n) = O(n^3) 3) \frac{\det z_2(A[1..n])}{1 = A[1]} s = A[1] for i = 2 to n: 1 = \max(1 + A[i], A[i]) s = \max(s, 1) return s
```

Zagadka 2

oszacuj złożoność obliczeniową

rozwiązanie:

```
T(n)=\theta(n^2lg(\sqrt{n}))=O(n^2lg(n))- liczba kroków T(r)=\theta(r2^{2r})- złożonośc obliczeniowa (r<br/> - rozmiar danych, czyli liczba cyfr)
```

Zagadka 3

oszacuj złożoność obliczeniową

```
def z(n):
    for i = 1 to n * n:
        k = 1
        l = 1
    while l < n:
        k = k + 2
        l = l + k</pre>
```

```
T(n)=\theta(n^{2,5})- liczba kroków T(r)=\theta(2^{2,5r})- złożoność obliczeniowa
```

Zagadka 4

oszacuj złożonośc obliczeniową

```
def z(n)
  for i = n - 1 to 1
    if odd(i) then
      for j = 1 to i:
        pass
    for k = i + 1 to n:
        x = x + 1
```

 ${\bf rozwiązanie:}$

```
T(n) = \theta(n^2) - liczba kroków T(r) = \theta(2^{2r}) - złożoność obliczeniowa
```

Zagadka 5

oszacuj złożoność obliczeniową

```
def z(n):
    for i = n -1 to 1:
        if odd(i)
        for j = 1 to i:
            for k = i + 1 to n:
            x = x + 1
```

rozwiązanie:

```
T(n) = \theta(n^3) - liczba kroków T(r) = \theta(2^{3r}) - złożoność obliczeniowa
```

Zagadka 6

oszacuj złożoność obliczeniową

```
T(n) = \theta(n^3) - liczba kroków T(r) = \theta(2^{3r}) - złożoność obliczeniowa
```

Zagadka 7

Co wylicza poniższa funkcja, podaj jej liczbę kroków i złożoność obliczeniową.

```
def f(n):
    if n == 0 or n == 1:
        return 1
    return f(n-1) - f(n-2)
rozwiązanie:
```

wartości funkcji tworzą ciąg postaci (1,1,0,-1,-1,0,1,1,0,...) liczba kroków: $T(n) = T(n-1) + T(n-2) = \theta(\phi^n)$ złożoność obliczeniowa: $T(r) = \theta(\phi^{2^r})$

Zagadka 8

Podaj liczbę kroków funkcji

```
def z(n):
   L = 0
   for i = 1 to n * n:
      for j = i to n:
        for k = 1 to n * n mod 100:
        L = L + 1
```

rozwiązanie:

wewnętrzna pętla wykonuje się O(1) $T(n) = \theta(n^2)$

Zagadka 9***

Podaj liczbę kroków i złożonośc obliczeniową poniższej funkcji, znajdź jak najlepsze oszacowanie (!).

```
def Fibonacci(n):
    if i <= 2:
        return 1

    for i = 1 to 2^n / n^2:
        pass

    return Fibonacci(n-1) + Fibonacci(n-2)</pre>
```

rozwiazanie[.]

$$T(n) = T(n-1) + T(n-2) + \frac{2^n}{n} \le 2T(n-1) + \frac{2^n}{n} = O(n2^n)$$

```
T(r) = O(2^r * 2^{2^r}) lepsze oszacowanie: T(n) = T(n-1) + T(n-2) + \frac{2^n}{n} \le \dots + 2^n (\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1) \le 2^n ln(n) \to T(n) = O(\log(n)2^n)
```

2 struktury danych

LSAP*

W historii problemu przydziału dla ważonych grafów dwudzielnych znane są algorytmy o złożonościach: $O(\sqrt{n}Wlog(Cn^2/W)/logn))$, $O(\sqrt{n}mlog(nC))$, $O(n^{3/4}mlogC)$, $?,O(nmlog(nC),O(n^4),O(n^3)$ przyjmij C=O(1)-największa waga krawędzi, W(n) - suma wag uporządkuj je malejąco

```
rozwiązanie:
```

```
przyjmujemy m=O(n^2),\,W(n)=O(n) kolejność: ?, O(n^4),\,\,O(nmlognC),\,\,O(n^3),\,\,O(n^{3/4}mlogC),\,\,O(\sqrt{n}mlognC), O(\sqrt{n}Wlog(Cn^2/W)/logn))
```

Początkowe wyzerowanie macierzy

Początkowe wyzerowanie macierzy wymaga czasu $O(n^2)$. Podaj metodę, która uniknie początkowego wyzerowania macierzy.

rozwiązanie: tworzymy dwie niezainicjalizowane macierze A(mapa zainicjowanych elementów) i B(wartości zainicjowanych elementów) reprezentujące macierz M, przy odwołaniu do elementu M[i,j] sprawdzamy, czy A[i,j]=0 jeśli tak, to element jest zainicjowany i zwracamy jego wartość B[i,j], jeśli $A[i,j]\neq 0$ to wstawiamy do B[i,j]0 i zwracamy 0.

składowe spójności bez DFS/BFS

Napisz algorytm znajdowania składowych spójności w grafie, w którym nie wykorzystuje się DFS ani BFS. Wskazówka: zastosuj mnożenie macierzy.

```
def skladowe(G[1..n,1..n]):
    S= I[1..n, 1..n] # macierz identycznosci
    W = O[1..n, 1..n] # macierz zerowa
    for i = 1 to n: #O(n * n^lg7)
        S = S * G
        W = W + S

# przyporzadkowanie skladowych spojnosci wierzcholkom O(n^2 lgn)
```

```
tablica_skladowych = array of sets [1..n]
for i = 1 to n:
    skladowe[i].add(i)
    for j = 1 to n:
        # W[i,j] - czy istnieje jakakolwiek sciezka miedzy i oraz j
        if W[i,j] != 0:
            skladowe[i].dodaj(j)

# usuniecie powtarzajacych sie skladowych O(nlgn)
skladowe = set of sets
for i = 1 to n:
    skladowe.add(tablica_skladowych[i])

return skladowe
```

```
złożoność T(n) = O(n*n^{lg7}) zakładam, że dodawanie do zbioru jest realizowane w czasie O(lgn)
```

macierz rozrzedzona

podaj reprezentację wiązaną macierzy, w której występować będą tylko elementy niezerowe

rozwiązanie:

chcąc reprezentować macierz M[1..n, 1..m] tworzymy tablicę L[1..n] list. Element M[i,j] znajduje się w liście L[i] w postaci pary (j, wartość).

merge

napisz algorytm scalania dwóch tablic posortowanych

```
def merge(A,B):
    C = [1.. n+m]
    i = 1
    j = 1
    k = 1

while i != n+1 or j != n+1:
    if A[i] < B[j]:
        C[k] = A[i]
        k+=1
        i+=1
    else:
        C[k] = B[i]</pre>
```

```
k+=1
    j+=1

if i > j:
    wstaw reszte B do C

else if i < j:
    wstaw reszte A do C

return C</pre>
```

odwracanie porządku listy

napisz algorytm odwracania porządku elementów listy liniowej i udowodnij jego poprawność

rozwiązanie

```
def reverse(L):
    R = list()
    while not L.empty():
        R.wstaw_na_koniec(L.ostatni)
        L.usun_ostatni()
    return R
```

dowód poprawności:

niezmiennik: $P(k) \iff$ po k-tej iteracji pętli R[1..k] zawiera odwrócone elementy L[(n-k)..n]

P(1) trywialne (R zawiera tylko ostatni element L

załóżmy P(k), zatem R[1..k] zawiera odwrócone elementy L[(n-k)..n]

w następnej iteracji na pozycję R[k+1] wstawiamy ostatni element okrojonej listy L, czyli L[n-k-1]

mamy zatem R[1..k+1] = odwrócone elementy L[n-k-1..n] $\iff P(k+1)$ czyli P(k) jest prawdziwy dla każdego k

po n-iteracjach (n-długość listy) mamy P(n) czyli R[1..n] zawiera odwrócone elementy L[1..n] cnd

Planarny graf dwudzielny

Podaj planamy graf dwudzielny, który nie może być umieszczony na płaszczyźnie w taki sposób, że każda ściana z wyjątkiem zewnętrznej jest wielokątem wypukłym.

rozwiązanie:

Odpaďają wszystkie grafy $K_{p,q}$ w których $p\geq 3$ i $q\geq 3$ (bo $K_{3,3}$ jest nieplanarny). Graf, który spełnia treść zadania to na przykład $K_{2,4}$.

Macierzowa reprezentacja grafu z szybkim sprawdzeniem sąsiadów

Zaprojektuj macierzowy sposób reprezentacji grafu nieskierowanego, który: a) w czasie 0(1) umożliwia sprawdzenie, czy dana para wierzchołków u, v jest połączona krawędzią; b) w czasie $O(\deg v)$ umożliwia przejrzenie wszystkich sąsiadów wierzchołka v. Naszkicuj procedurę boolowską B(u, v), która realizuje punkt (a).

rozwiązanie:

macierz będzie zawierała n+1 kolumn numerowanych od 0 i n wierszy numerowanych od 1. Kolumna 0 będzie zawierała informację, o ile ma przeskoczyć j, żeby trafić na następnego sąsiada. Wszystkie pozostałe komórki też będą zawierały tą informację. Jeśli dwa wierzchołki nie sąsiadują ze sobą, w komórce ma być 0. Jeśli w komórce znajduje się ostatni sąsiad to jej wartość powinna wynosić -1.

```
def hasEdge(M,i,j):
    if M[i,j] = 0:
        return false
    return true

def countDeg(M, i):
    deg = 0
    j = 0
    while true:
        if M[i,j] == -1 break
        j += M[i,j]
    return deg
```

Liczba przecięć K_6

Udowodnij, że $\xi(K_6) = 3$

z rysunku wynika, że $\xi(K_6) \leq 3$ Załóżmy zatem, że $\xi(K_6)=2$, oba przecięcia dotyczą czterech różnych

wierzchołków. Usuńmy zatem jeden z wierzchołków, wówczas otrzymujemy graf K_5 bez przecięć co jest sprzecznością. Zatem $\xi(K_6)=3$

Graf planarny 5-regularny

narysuj graf planarny 5-regularny

rozwiązanie: jest to graf dwunastościan:

warto zauważyć, że wszystkie grafy platońskie są planarne

Umieszczanie grafów

Udowodnij, że graf może być umieszczony na płaszczyźnie \iff może być umieszczony na powierzchni kuli.

rozwiązanie:

 (\longrightarrow) skoro graf może być umieszczony na płaszczyźnie to $\xi(G)=0$ natomiast genus grafu ograniczony jest od góry $g\leq \xi(G)\to g=0$ zatem można go również umieścić na kuli, która ma genus =0

 (\longleftarrow) skoro graf możemy umieścić na kuli, która jest powierzchnią bez rączek to znaczy, że nie ma przecięć więc można go również umieścić na płaszczyźnie

inne rozwiązanie:

każdą sferę można zrzutować na płaszczyznę z wyjątkiem jednego punktu (bieguna)

Nierówności trójkąta

Dany jest zbiór n liczb. Sprawdź czy w tym zbiorze są takie 3, które mogą być długościami boków trójkąta. Algorytm powinien mieć złożoność $o(n^2)$.

rozwiązanie:

```
def triangle_inequality(A[1..n]):
    A = sort(A)
    c1 = A[1]
    c2 = A[2]
    for i = 3 to n:
        if c1 + c2 > A[i]
            return True
        else:
            c1 = A[i]
            swap(c1,c2)
    return False
```

złożoność O(nlogn)

Najkrótszy cykl w grafie dwudzielnym

Znajdź algorytm, który w grafie $K_{p,q}$ $(p,q \ge 1)$ znajdzie najkrótszy cykl i oszacuj jego złożoność obliczeniową. (rozważ przypadek a) lista sąsiedztwa, b) macierz sąsiedztwa) Dłaczego jest ona mniejsza niż złożoność pamięciowa?

rozwiązanie:

```
def cykle(G):
    u1 = sasiad1(v)
    u2 = sasiad2(v)
    u3 = niesasiad(v)
    return (v, u1, u3, u2, v)
```

a) złożoność obliczeniowa O(n) - przejrzenie sąsiedztwa v, mniejsze niż n+m

b) złożoność obliczeniowa O(n) mniejsze niż n^2

złożoności obliczeniowe są mniejsze niż złożoność pamięciowa, bo zbiór danych nie składa się z samych danych istotnych

Harmoniczne kolorowanie

Harmoniczne kolorowanie - to takie pokolorowanie grafu, w którym:

- sąsiednie wierzchołki mają różne kolory
- dowolne dwie krawędzie mają różne pary kolorów

Minimalną ilość kolorów do pokolorowania harmonicznie grafu oznaczamy h(G) albo $\chi_H(G)$.

Efektywną metodą na przechowywanie struktury grafu rzadkiego jest pokolorowanie go harmonicznie. Zapamiętujemy strukturę w postaci wektora kolorów W, gdzie $w_i \in W$ to kolor i-tego wierzchołka. Obok wektora zapamiętujemy macierz C o rozmiarze $h(G) \times h(G)$, w której $c_{i,j} = (u,v)$ gdy uv jest krawędzią o końcach pomalowanych kolorem i i kolorem j, w przeciwnym wypadku $c_{i,j} = 0$. Wiedząc, że $\sqrt{2m} < h(G) \le n$ oszacuj:

- 1. złożoność czasowa procedury B(u,v)
- 2. złożoność pamięciową macierzy W i C

rozwiązanie:

1)

```
def B(v,u, W, C):
  kolor1 = W[v]
  kolor2 = W[v]
  if C[kolor1, kolor2] == 0:
    return false
  return true
```

```
złożoność O(1) 2) M_W(n) = \theta(n) M_C(n) = \Omega(m) \cap O(n^2)
```

Znajdowanie drogi długości k

Posortuj złożoności malejąco dla algorytmu znajdowania drogi długości k w nieobciążonym grafie n-wierzchołkowym.

```
O(4^k n^{O(1)}), \quad O(k! n^{O(1)}), \quad O(1, 66^k n^{O(1)}), \quad O((2e)^k n^{O(1)}), \quad O(1, 66^n n^{O(1)}), \quad O(2^{3k/2} n^{O(1)}), \quad O(2^k n^{O(1)})
```

rozwiazanie:

```
ograniczenie górne na k: k\leq n-1 O(k!n^{O(1)}),\quad O((2e)^kn^{O(1)}),\quad O(4^kn^{O(1)}),\quad O(2^{3k/2}n^{O(1)}),\quad O(2^kn^{O(1)}), O(1,66^nn^{O(1)}),\,O(1,66^kn^{O(1)})
```

LGS

Naszkicuj program lgs zwracający liczbę gwiazd spinających zawartych w G. Oszacuj jego złożoność w zależności od m i n dla macierzy sąsiedztwa, listy sąsiedztwa, pęków wyjściowych.

rozwiązanie:

dla macierzy sąsiedztwa $O(n^2)$, dla listy sąsiedztwa O(n+m), dla pęków O(n)

Cykl

Napisz program, który stwierdza, czy graf G zapisany w macierzy sąsiedztwa wierzchołków jest cyklem i oszacuj jego złożoność obliczeniową.

```
\label{eq:def_def} \begin{array}{ll} \texttt{def} & \texttt{is\_cycle}(\texttt{G[1..n][1..n]}): \end{array}
   odwiedzone = tablica[1..n]
   licznik_odwiedzone = 0
   wyzeruj(odwiedzone)
   obecny_wierzcholek = 1
   while licznik_odwiedzone != n:
      odwiedzone[obecny_wierzcholek] = 1
      licznik_odwiedzone += 1
      licznik_odwiedzone =
     licznik_sasiadow = 0
      do_odwiedzenia = -1
      for i = 1 to n:
         if B(obecny_wierzcholek, i):
            licznik_sasiadow += 1
            if not odwiedzone[i]:
               do_odwiedzenia = i
      if B(obecny_wierzcholek, 0) and licznik_odwiedzone = n:
         return true
      if do_odwiedzenia = -1:
         return false
      if licznik_sasiadow != 2:
         return false
   return false
```

Mnożenie hybrydowe macierzy

Załóżmy, że mamy dwa algorytmy mnożenia macierzy, pierwszy wykonuje 22 mnożenia na macierzach 3x3, drugi 99 mnożeń na macierzach 5x5, którym algorytmem najlepiej jest pomnożyć macierze 15x15.

Rozwiazanie:

Najlepiej użyć metody hybrydowej, najpierw rozbijamy macierz na 3x3 macierzy 5x5, mnożymy pierwszym algorytmem a potem drugim, czyli mamy 22*99 mnożeń.

3 Problemy

klika o rozmiarze < k

Mamy algorytm, który odpowiada na pytanie, czy graf G zawiera klikę \leq k jeśli G ma gwiazdę spinającą. Jak wykorzystać ten algorytm dla grafu, który nie ma gwiazdy spinającej?

rozwiazanie:

Chcemy się dowiedzieć, czy graf ma klikę \leq k.

Dokładamy do G gwiazdę spinającą, następnie pytamy o to, czy powstały graf ma klikę \leq k-1.

konwersja do 3CNF

Sprowadź podane wyrażenia do 3CNF

- 1. $x_1 + \overline{x}_2$
- $2. x_1$
- 3. $x_1 + x_2 + \overline{x}_3 + x_4$
- 4. $x_1 + x_2 + x_3 + x_4 + x_5$

rozwiązanie:

- 1) $x_1 + \overline{x}_2 = (x_1 + \overline{x}_2 + y)(x_1 + \overline{x}_2 + \overline{y})$
- 2) $x_1 = (x_1 + y)(x_1 + \overline{y}) = (x_1 + y + z)(x_1 + y + \overline{z})(x_1 + \overline{y} + z)(x_1 + \overline{y} + \overline{z})$
- 3) $x_1 + x_2 + \overline{x}_3 + x_4 = (x_1 + x_2 + y)(\overline{x}_3 + x_4 + \overline{y})$
- 4) $x_1 + x_2 + x_3 + x_4 + x_5 = (x_1 + x_2 + y)(x_3 + x_4 + x_5 + \overline{y}) = (x_1 + x_2 + y)(x_3 + x_4 + \overline{z})(x_5 + \overline{y} + z)$

UWAGA!

w podpunkcie 3 i 4 zastosowaliśmy trik, niech ϕ będzie dowolną formułą logiczną DNF o literałach a,b,c,d to jest $\phi=a+b+c+d$ wówczas $\psi=(a+b+y)(c+d+\overline{y})$ jest równoważne w kontekście spełnialności do ϕ . Innymi słowy zawsze zachodzi SAT $(\psi)=$ SAT (ϕ)

$KLIKA \in NPC$

Udowodnij, że KLIKA ∈ NPC. Użyj problemu CNF-SAT.

rozwiązanie:

1)

KLIKA \in NP - mając dowolny podgraf n_1 wierzchołkowy w czasie n_1^2 jesteśmy w stanie sprawdzić, czy jest kliką

2)

T: CNF-SAT α KLIKA

D:

budujemy graf G

- jego wierzchołki to zmienne należące do poszczególnych klauzul formuły
- wierzchołki w obrębie jednej klauzuli są niezależne
- \bullet zmienne zanegowane występujące w różnych formułach (czyli np. $x, \neg x)$ są niezależne między sobą
- pozostałe wierzchołki połączone są krawędziami

CNF-SAT (formula) = KLIKA (G, Nklauzul)

- (a) jeśli formuła nie jest spełnialna, czyli CNF-SAT(formuła) = NIE, to znaczy, że w grafie G nie ma kliki łączącej wszystkie klauzule-podzbiory, bo gdyby była, to dla pewnego wartościowania 0,1 wierzchołków do niej należących wartościowanie formuły wynosiłoby 1 co jest sprzeczne z założeniem, a zatem KLIKA(formuła, Nklauzul) = NIE
- (b) jeśli formuła jest spełnialna, czyli CNF-SAT(formuła) = TAK, to znaczy, że w grafie G wszystkie wierzchołki należące do odpowiedniego wartościowania są ze sobą połączone i stanowią klikę, a zatem KLIKA(formuła, Nklauzul) = TAK

$\mathbf{PW} \in \mathbf{NPC}$

Udowodnij, że PW (Pokrycie wierzchołkowe) ∈ NPC. Użyj problemu KLIKA.

rozwiązanie:

1

PW \in NP - mając dowolny $S \subseteq V$ w czasie wielomianowym jesteśmy w stanie sprawdzić, czy jest pokryciem wierzchołkowym - lecimy po krawędziach i sprawdzdamy czy dla $\{v,w\}$ v lub $w \in S$, jeśli tak dla każdej krawędzi, to S jest pokryciem wierzchołkowym, w przeciwnym wypadku nim nie jest

2)

T: KLIKA α PW

D:

KLIKA(G,k) = PW(G', n-k)

- (a) jeśli G ma klikę k-elementową (KLIKA(G, k) = TAK), to jego dopełnienie ma k-elementowy zbiór wierzchołków niezależnych, zatem żeby pokryć wszystkie krawędzie w najgorszym wypadku będziemy musieli w pokryciu umieścić wszystkie pozostałe wierzchołki (poza tymi niezależnymi) czyli PW(G', n-k) = TAK
- (b) jeśli G nie ma kliki k-elementowej (KLIKA(G, k) = NIE) to w jego dopełnieniu każde k wierzchołków jest połączonych przynajmniej jedną krawędzią a co za tym idzie nie może być pokrycia n-k elementowego (bo jedna krawędź by została bez kolorowego wierzchołka), czyli PW(G', n-k) = NIE

Ważone pokrycie wierzchołkowe

Udowodnij, że problem WPW (Ważonego pokrycia wierzchołkowego) \in NPC. WPW definiujemy tak:

- \bullet Dane wejściowe: graf G z obciążonymi wierzchołkami, liczba p $\in \mathbb{N}$
- Pytanie: Czy G zawiera pokrycie wierzchołkowe o wadze \leq p

rozwiązanie:

1) WPW \in NP - mając dowolne S \subseteq V jesteśmy w stanie zweryfikować w czasie wielomianowym czy waga sumuje się do p, a także, zweryfikować, czy S jest pokryciem

2)

T: PW α WPW

D:

 $\operatorname{PW}(G,k) = \operatorname{WPW}(G_w$,czyli G z wagami = 1 na każdym wierzchołku, k) (a) jeśli graf ma pokrycie wierzchołkowe rozmiaru \leq k, to G_w ma pokrycie wierzchołkowe o łącznej wadze $\leq k$, czyli oba problemy odpowiadają TAK (b) jeśli graf nie posiada pokrycia wierzchołkowego rozmiaru \leq k, to G_w również nie ma pokrycia o łącznej wadze $\leq k$, czyli dla obu problemów mamy NIE.

SORT α MM

Udowodnij, że SORT α MM. SORT definujemy tak:

- Ciąg A n liczb
- Pytanie: Czy A jest rosnący?

MM definiujemy tak:

- Dane wejściowe: macierze A,B,C
- Pytanie: Czy $A \times B = C$

rozwiazanie:

zauważmy, że SORT da się rozwiązać wielomianowo, zatem nasza funkcja przekształcająca dane wejściowe będzie miała postać

```
SORT(A,n):
   if posortowany(A):
      MM(matrix(0), matrix(0), matrix(0))
   else:
      MM(matrix(0), matrix(0), matrix(1))
```

- (a) jeśli SORT = TAK, to MM = TAK, ponieważ matrix(0) × matrix(0) = matrix(0)
- (b) jeśli SORT = NIE, to MM = NIE, ponieważ $\mathrm{matrix}(0) \times \mathrm{matrix}(0) \neq \mathrm{matrix}(1)$

Gwiazda spinająca i klika

Marek ma magiczną skrzynkę rozwiązującą problem k-kliki ale tylko, gdy w grafie jest gwiazda spinająca. Jak Andrzej ma zmienić swój graf niezawierający gwiazdy spinającej, żeby móc skorzystać ze skrzynki Marka?

rozwiązanie:

```
def Andrzej(G,k):
   G2 = G + gwiazda_spinajaca
   return Marek(G2, k+1)
```

- (*) dodając gwiazdę spinającą zwiększamy rozmiar każdej kliki o 1
- (a) jeśli Marek(G2, k+1) daje TAK, to oznacza, że w G2 mamy k+1-klikę zatem w G mamy k-klikę zgodnie z (*), czyli Andrzej(G,k) daje TAK
- (b) jeśli Marek(G2, K+1) daje NIE, to oznacza, że w G2 nie mamy k+1-kliki, a zatem z faktu (*) w grafie G nie ma k-kliki, czyli Andrzej(G,k) daje NIE

czyli problem zostaje zachowany

4 Algorytmy aproksymacyjne

Kolorowanie wierzchołków

Dla poniższych algorytmów wymień, które grafy koloruje optymalnie, a dla których się myli.

```
1. LF
```

- 2. SL
- 3. SLF

rozwiązanie:

1)

```
optymalnie: K_n, K_{p,q} myli się: P_6, koperta, J_n - graf Johnsona
```

2) optymalnie: W_n, C_n, J_n , drzewa, grafy planarne, grafy Mycielskiego myli się: grafy dwudzielne, grafy Colemena-Moore'a, pryzma, pryzmatoid

3) optymalnie: dwudzielne, w tym J_n , drzewa, C_n, W_n , kaktusy myli się: $K_{p,q,r}$

Znajdowanie klik w grafie kubicznym

Zaprojektuj algorytm 1-absolutnie aproksymacyjny znajdujący największą klikę w n-wierzchołkowym grafie kubicznym. Algorytm powinien mieć złożoność O(n)

rozwiazanie:

Algorytm k-absolutnie aproksymacyjny -> algorytm taki, że dla danych I, gdzie $\mathrm{OPT}(I)$ - optymalny wynik, mamy $|A(I)-OPT(I)|\leq 1$, czyli musimy znaleźć algorytm, który będzie mógł się pomylić o 1 w zwracaniu rozmiaru kliki. Oto on:

```
def clique(G):
    if n == 4:
        return {v1, v2, v3, v4}
    else:
        u = dowolnysasiad(v1)
        return {v1, u}
```

Czyli algorytm zwraca klikę K_4 lub K_2 , możliwe jest, że w grafie występuje K_3 ale chcemy stworzyć algorytm aproksymacyjny, więc możemy się pomylić o 1. Algorytm ma złożoność O(n), bo dowolnysasiad(v1) działa w czasie O(n). Algorytm ma złożoność mniejszą niż złożoność pamięciowa, bo niewszystkie dane w macierzy sąsiedztwa reprezentującej graf są danymi istotnymi dla wyniku.

Problem komiwojażera

Udowodnij, że jeśli $P \neq NP$ to problem komiwojażera nie ma wielomianowego algorytmu względnie aproksymacyjnego.

rozwiazanie:

Załóżmy, że isnieje taki algorytm k-aproksymacyjny - użyjemy go do rozwiązania problemu Ścieżki Hamiltona. Dla pewnego grafu G dodajemy wagę 1 do jego krawędzi, następnie tworzymy \bar{G} i dodajemy do jego krawędzi wagę kn, scalamy te grafy i otrzymujemy graf pełny G^* . Dla G^* uruchamiamy nasz algorytm. Wiemy, że jeśli G ma ścieżkę Hamiltona, to $\mathrm{OPT}(G^*) = n$, w przeciwnym wypadku $\mathrm{OPT}(G^*) > kn$ natomiast nasz algorytm zwraca $\mathrm{A}(G^*) \leq kn$, więc sprawdzając, czy nasz algorytm zwrócił $\leq kn$ możemy stwierdzić w czasie P, że graf posiada cykl Hamiltona lub nie \to P = NP, co jest sprzeczne z zał.

Pokrycie wierzchołkowe

Dla Pokrycia wierzchołkowego, gdzie k oznacza maksymalny rozmiar pokrycia:

- 1. udowodnij, że problem jest wielomianowy dla dowolnego ustalonego k
- 2. zaprojektuj algorytm wielomianowy dla k = 1
- 3. Udowodnij, że optymalizacyjna wersja PW nie ma algorytmu wielomianowego 1-absolutnie aproksymacyjnego (chyba, że P = NP)

rozwiązanie:

(1.)

rozwiązanie takiego problemu można przeprowadzić poprzez sprawdzenie wszystkich kombinacji tego, które wierzchołki są w pokryciu, a które nie, co można zrobić w czasie $O(n^k)$ i sprawdzenie dla każdego, czy pokrywa cały zbiór krawędzi, co mozna zrobić w czasie O(m), zatem przy ustalonym k mamy problem wielomianowy

(2.)

```
def coverWithOne(G):
   for i = 1 to n:
      if vi covers entire E(G):
        return True
   return False
```

złożoność to O(nm)

(3.)

załóżmy, że istnieje taki algorytm A, powiedzmy, że mamy G taki, że pw(G) = k, skonstruujemy na jego podstawie graf $G^* = G \cup G$, dla którego $pw(G^*) = G \cup G$

2k, ponieważ musimy pokryć obie składowe spójności. Poniższy algorytm umożliwia nam dokładne rozwiązanie problemu PW.

```
def ExactPolynomialVertexCover(G):
   Gstar = G U G
   a = A(Gstar) # 2k v 2k+1
   return floor(a/2)
```

dokładne rozwiązanie NP-trudnego problemu PW w czasie wielomianowym \to P = NP, co jest sprzeczne z założeniem.

Dokładna liczba chromatyczna

Masz 100-wierzchołkowy graf G, a ja posiadam schemat PTAS, który działa w czasie $O(n^{\frac{1}{\varepsilon}})\mu$ s. Chcesz stwierdzić, czy $\chi(G)=3$, jak skorzystasz z mojego schematu i jak długo sekund będą trwały Twoje obliczenia?

rozwiazanie:

skorzystać można poprzez odpowiednie ustalenie ε : $a-\chi < 1 \rightarrow a < 1+\chi$, stąd mamy $\frac{a}{\chi} \leq 1+\varepsilon < \frac{1+\chi}{\chi} \rightarrow \varepsilon < \frac{1}{\chi}$ wówczas dla ustalnonego χ otrzymujemy dokładny wynik, zatem przyjmujemy $\chi=3\rightarrow\varepsilon<\frac{1}{3}$ czyli np. $\varepsilon=\frac{1}{4}$. Wówczas T = $100^4~\mu s=100~s$.

5 Dowody grafowe

Tw. Eulera

Udowodnij, że jeśli G jest spójnym grafem płaskim to s = m - n + 2

rozwiązanie:

indukcja względem m:

```
 Jeśli m = 1, to n = 1 i mamy jedną ścianę (przypadek trywialny P(1)) załóżmy P(m\text{-}1)
```

Rozważmy m-krawędziowy graf G. Jeśli G jest drzewem to m = n - 1 oraz f = 1 (jest acykliczny) czyli mamy P(m). Jeśli G zawiera cykl, usuńmy pewną krawędź należącą do cyklu, G-e ma m-1 krawędzi i s-1 ścian. Korzystamy z P(m-1) i mamy $s-1=m-1-n+2 \rightarrow s=m-n+2 \iff P(m)$. cnd

Lemat o pocałunkach

Udowodnij, że dla każdego spójnego grafu płaskiego G o $n \geq 3$ zachodzi $2m \geq 3s$

 ${\bf rozwiązanie:}$

Dwa przypadki:

1)G jest drzewem (s=1)

zatem $m=n-1\leq 2 \rightarrow 2m \leq 4=4s \leq 3s$

2) G zawiera cykl

usuwamy wszystkie wierzchołki stopnia 1 otrzymując w ten sposób R(G) (rdzeń G). Każda jego ściana jest otoczona przez co najmniej 3 krawędzie oraz $\mathbf{s}(\mathbf{R}(\mathbf{G})) = \mathbf{s}(\mathbf{G})$ czyli mamy $m(R(G)) \geq 3s \rightarrow 2m(R(G)) \geq 3s$. Tym bardziej $m(G) \geq 3s$. cnd

Przydatne ograniczenie górne na m

Udowodnij, że dla grafu planarnego G o $n \geq 3$ mamy $m \leq 3n-6$

rozwiązanie:

załózmy, że G jest płaski (jest izomorficzny do grafu płaskiego więc możemy tak zrobić)

mamy s = m - n + 2 oraz $2m \ge 3s$

wstawiamy do lematu o pocałunkach wzór na s i otrzymujemy wzór z twierdzenia. cnd

Własności drzewa

Udowodnij, że następujące własności są równoważne:

- 1. T jest drzewem
- 2. T jest acykliczny i ma n-1 krawędzi
- 3. T jest grafem spójnym i ma n-1 krawędzi
- 4. T jest grafem spójnym i każda krawędź jest mostem
- 5. każde dwa wierzchołki T są połączone dokładnie jedną drogą
- 6. dodanie do T jednej krawędzi stworzy dokładnie jeden cykl

rozwiązanie:

wszystkie własności są trywialne dla n =1, załóżmy prawdziwość wszystkich własności dla P(k), gdzie k < n

$$(1. \to 2.)$$

T jest z definicji acykliczne, po usunięciu dowolnej krawędzi otrzymujemy $T-e=T_1\cup T_2$ (rozspajamy). Z założenia indukcyjnego $m(T-e)=m(T_1)+m(T_2)=n(T_1)+n(T_2)-2\to m(T)=n(T_1)+n(T_2)-1=n(T)-1$ zatem m=n-1

$$(2. \to 3.)$$

zakładamy, że T nie jest grafem spójnym zatem $T=T_1\cup T_2$ z założenia indukcyjnego $m(T)=m(T_1)+m(T_2)=n(T_1)+n(T_2)-2\to m=n-2$ co jest sprzeczne z 2. zatem T musi być spójny.

 $(3. \rightarrow 4.)$

k=1- ilość składowych spójności, czyli minimalna ilość krawędzi, która czyni go spójnym to n-1 więc każda krawędź musi być mostem

 $(4. \rightarrow 5.)$

załóżmy, że między pewną parą wierzchołków mamy dwie drogi, zatem jeśli usuniemy którąś z krawędzi należących do jednej z dróg to nie rozspoimy grafu co jest sprzeczne z 4.

 $(5. \to 6.)$

załóżmy, że T zawiera cykl, wtedy dwa wierzchołki należące do tego cyklu połączone są dwiema różnymi drogami co jest sprzeczne z 5. po dodaniu krawędzi między tymi wierzchołkami tworzymy cykl, bo mamy jedną drogę, która była wcześniej i nową drogę przez tą krawędź, zatem $\gamma=1$

 $(6. \to 1.)$

załóżmy, że graf nie jest spójny, jest to sprzeczne z 5. bo dodanie jednej krawędzi nie gwarantuje stworzenia cyklu, zatem T musi być spójny, z 6. jest również acykliczny zatem jest drzewem

Paki w grafie planarnym

Udowodnij, że każdy graf planarny zawiera co najmniej 3 pąki (pąk - wierzchołek v taki, że $deg(v) \leq 5$

rozwiazanie:

załóżmy, że mamy w grafie planarnym tylko dwa pąki v i u, zatem $deg(v) + deg(u) + 6(n-2) \le 2m \le 6n-12$ co jest sprzeczne $(deg(v) \ne 0)$ i $deg(u) \ne 0)$ (ostatnia nierówność z przydatnego oszacowania górnego m)

Liczba cyklomatyczna

Udowodnij, że dla dowolnego grafu spójnego liczba cyklomatyczna $\gamma(G) = m - n + 1$

rozwiązanie:

usuwamy tyle krawędzi, żeby graf stał się acykliczny (czyli żeby stał się drzewem), w drzewie m = n - 1, czyli musimy usunąć m - (n-1) krawędzi cnd.

Cykl w grafie dwudzielnym

Udowodnij, że graf jest dwudzielny \iff nie ma nieparzystych cykli

 (\rightarrow) załóżmy, że graf dwudzielny ma nieparzysty cykl, zatem nie jest dwukolorowalny, bo nieparzyste cykle wymagają trzech kolorów, sprzeczność

 (\leftarrow) załóżmy, że graf nie ma nieparzystych cykli, zatem dla pewnego wierzchołka vmożna przyporządkować każdemu innemu wierzchołkowi dwa kolory - jeden dla tych, które są w odległości nieparzystej od v, drugi - parzystej, w ten sposób dowodzimy, że graf jest dwudzielny

Ograniczenie górne na χ

Udowodnij, że dla dowolnego grafu zachodzi $\chi(G) \leq \Delta + 1$

rozwiązanie:

dla n = 1 powyższa zależność zachodzi

załóżmy, że tw. zachodzi dla pewnego n, rozważmy graf n+1 wierzchołkowy G. Z założenia $\chi(G-v) \leq \Delta(G)+1$, natomiast v ma co najwyżej Δ sąsiadów, czyli w najgorszym przypadku mamy jeden dostępny kolor, którym możemy go pokolorować, stąd $\chi(G) \leq \Delta(G)+1$. cnd

stad mamy tw. Brooksa

Dla dwóch klas grafów mamy sytuację $\chi=\Delta+1$: dla grafów pełnych oraz cykli nieparzystej długości. Dla reszty $\omega\leq\chi\leq\Delta$

Liczba chromatyczna grafu planarnego

Dla grafu planarnego G udowodnij:

- 1. $\chi(G) \le 6$
- 2. $\chi(G) \le 5$
- 3. czy jest lepsze oszacowanie na liczbę chromatyczną dla grafów planarnych?

rozwiązanie:

- (1.)
- (2.)
- (3.)

tak, $\chi(G) \leq 4$

Tw. Vizinga

Udowodnij tw. Vizinga: $\Delta \leq \chi' \leq \Delta + 1$

6 Trudne zadania

Pokrycie wierzchołkowe *

Algorytm rozwiązuje problem k-pokrycia wierzchołkowego grafu G

```
def vertexcover(G,k)
  if E(G) empty:
    return true
  if k == 0:
    return false
  wybierz dowolne e = uv
  return vertexcover(G - u, k - 1) or vertexcover(G - v, k - 1)
```

- 1. jaka jest złożoność algorytmu w terminach m i k
- 2. podaj typy grafów i wartości k, dla których vertexcover zwraca true w czasie wielomianowym
- 3. podaj typy grafów i wartości k, dla których vertexcover zwraca false w czasie wykładniczym

MFP

W historii problemu maksymalnego przepływu znane są m.in. następujące algorytmy:

```
(1969) Edmondsa-Karpa
```

(1970) Dinica

(1974) Karzanova

(1977) Cherkaskyego

(1978) Galila

(1978) Shiloacha

(1980) Sleatora-Tarjana

(1986) Goldberga-Tarjana

(2013) Orlina

o złożonościach O(nm), $O(nmlog(n^2/m))$, O(nmlogn), $O(nmlog^2n)$, $O(n^{5/3}m^{2/3})$, $O(n^2\sqrt{m})$, $O(n^3)$, $O(n^2m)$, $O(nm^2)$

przyporządkuj złożoności do odpowiednich algorytmów

rozwiązanie:

trzeba rozpatrzeć dwa przypadki: 1. grafy rzadkie, 2. grafy gęste i średnio geste

Listowa reprezentacja drzew n-wierzchołkowych

Zaproponuj listowy sposób reprezentacji drzew n-wierzchołkowych w pamięci O(n) umożliwiający sprawdzanie O(1), czy para wierzchołków jest połączona krawędzią.

Minimalne rozcięcie

Problem Minimalne Rozcięcie pyta jak równo podzielić wierzchołki grafu, tak aby zminimalizować liczbę krawędzi łączących wierzchołki z różnych podzbiorów. Najszybszy znany algorytm dla problemu MR ma złożoność $O(2^{O(kkk}n^3log^3n)$ gdzie k jest rozmiarem minimalnego cięcia. Jaka jest najszersza klasa grafów, dla której problem MR jest wielomianowy? Jaki jest wówczas zwiącek pomiędzy k i n? Jaka jest wówczas złożoność wspomnianego algorytmu?

```
rozwiązanie: jakie to mogą być klasy? K_{p,q} \colon \mathbf{k} = 0, \, \mathbf{T} = O(n^3log^3n) T_n \colon \mathbf{k} = 1, \, \mathbf{T} = O(n^3log^3n) Q_p \colon k = logn, \, \mathbf{T} = O(n^6log^3n) N_n \colon k = 0
```