Web Analytics and Intelligence

Session 1a. Introduction

Renyu (Philip) Zhang

1

Who Am I?

- I am a scholar, a teacher, and a practitioner in data science/AI and operations research.
- Research:
 - How to use data analytics to improve business decision making, especially for digitalized online platforms.
- Teaching:
 - Data science/AI for business to undergraduate, master, EMBA and PhD students.
- Data Science Practitioner:
 - Economist and Tech Lead, Kuaishou (快手; https://www.kwai.com/).
 - Evaluating and optimizing the ecosystem of Kuaishou.

- CUHK Business School, Associate Professor (with tenure), since 2022
- NYU Shanghai, Assistant Professor, 2016-2022; Visiting Scholar, since 2022
- Washington University in St. Louis, PhD, 2011-2016
- Peking University, BS, 2007-2011

What Happened in the Past Ten Years?

- · What drives the social and economical growth of the past 10 years?
 - Technology
 - Data
 - Business Model
- · What should we expect next?

7

Most Valuable Firms in 2011

	p companies: E	2.99001		World GDP in 2011: \$68.1 Trillion							
By N	arket Value By Equity B	By Employees		•	17 01 10 0 01 11 E011 \$00.1 11 mon						
Rank	Company	500 Rank	3/25/2011 (\$ millions)								
1	Exxon Mobil	2	414,638.0	11	AT&T	12	170,544.8				
2	Apple	35	323,866.1	12	Procter & Gamble	26	170,511.7				
3	Microsoft	38	215,269.0	13	Wells Fargo	23	168,630.3				
4	Chevron	3	214,355.5	14	Oracle	96	165,175.2				
5	Berkshire Hathaway	7	210,787.5	15	Pfizer	31	162,621.2				
6	General Electric	6	209,715.2	16	Johnson & Johnson	40	161,622.1				
7	International Business	18	197,784.3	17	Coca-Cola	70	149,688.2				
	Machines			18	Bank of America Corp.	9	135,016.2				
8	Google	92	186,399.2	19	Citigroup	14	129,868.8				
9	Wal-Mart Stores	1	182,764.3	20	ConocoPhillips	4	116,812.3				
10	J.P. Morgan Chase & Co.	13	182,683.8		Source: Fortune 500						

_

Some Interesting Numbers

Gross Merchant Values (GMV) of Double-Eleven at Taobao and Tmall

2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
0.052	0.936	5.2	19.1	35.0	57.1	91.2	120.7	168.2	213.5	268.4	498.2	540.3	540.3*	545.7*

Source: Alibaba Group, in Billion RMB

Monthly Active Users (MAU) of WeChat

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
0	158	355	500	697	889	989	1,082	1,132	1,225	1,250	1,313	1,336

Source: Tencent Group, in Million

What happened in the past decade?

10

Technology

- (Mobile) Internet penetration rate of China in 2023: 76.4% (60.5% for rule areas), aka 1.1 billion. These figures were 38.3% (26.4% for mobile Internet users) and 0.513 billion in 2011.
 - Source: www.ce.cn, paper.people.com.cn
- 3G-Technology (International Mobile Telecommunications-2000): 300Kbps~2Mbps
- 4G-Technology: 1Gbps+
- 5G-Technology: 20Gbps+
- Average cellphone time per day per user in 2023: 7.2h.
 - · Source: Quest Mobile

Technology revolution makes digitalization possible and scalable!

11

11

Data

- We cannot optimize those that cannot be measured with data.
- Digitalization keeps track of a lot of data that are otherwise not available.
- Data science and data-driven AI:
 - Image-Net, AlexNet, DNN, RNN, GAN, Alpha-Go, Alpha-Fold, GPT/LLM.....
 - Facial recognitions, auto-translations, recommender systems, auto-driving.....

Digitalization makes data available and accessible; data analytics, in turn, makes digitalization efficient.

Business Models

- · New business models emerge as a result of digitalization.
 - · Amazon, Google, Facebook, TikTok, Uber, AirBnb, Meituan, Tesla, Robinhood......
- Core business logic: Cost-effectively creating and strengthening connections with the help of digitalization.
- By 2030, the market values of major online platforms will constitute 30%+ of global annual GDP. (Source: US government)

Digitalization is the infrastructure for online platforms; platforms, in turn, make digitalization profitable and sustainable.

13

13

What's Next?

Business Model Sustainable Digitally Connect the World Artificial Intelligence

"Mostly Harmless" web analytics:

- · Values of digital connections vs. Antitrust
- Efficiency from data vs. Data privacy/security
- Growth and engagement ${\it vs.}$ Algorithmic fairness
- · Automation vs. ethics

14

Warnings

"Big data is like teenage sex; everyone talks about it, no one really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it." --- Dan Ariely, Duke University

15

15

Topics Covered in this Course

- · Philip Zhang:
 - Causal inference, i.e., to answer the "what if" questions, in the web analytics business contexts.
- Kevin Chen
 - Estimation, optimization, auctions, revenue management, etc.

16

Course Objective

- Our goal: Introduce the modern landscape of internet and convince you of the tremendous business (and social) value of analytics in this business sector.
- · At the end of this course, hopefully, you will
 - Have a basic understanding of the internet industry;
 - Be ready to solve a real business problem in the internet sector using data and analytics tools (including the AI-powered copilots for coding);
 - Be well-prepared for an entry-level job in the internet industry.
- We will try to strike a good balance between Web and Analytics.
- · Connection to real business and job referral opportunities.

17

17

Course Content (Philip's Part)

Topics (Tentative)	Homework		
Introduction to Causal Inference; Potential Outcomes Model	Problem Set 1		
A/B Testing; Regression; Matching			
Instrumental Variables; Regression Discontinuity Design	Problem Set 2		
Difference-in-Differences; Synthetic Controls	Problem Set 3		
Machine Learning Powered Causal Inference			
	Introduction to Causal Inference; Potential Outcomes Model A/B Testing; Regression; Matching Instrumental Variables; Regression Discontinuity Design Difference-in-Differences; Synthetic Controls		

Course Prerequisites

- No prerequisites, but some knowledge of statistics and coding will be useful.
- Highschool math is also assumed.
- Not adverse to programming (everything implemented in Python).
- Not adverse to analytical thinking and quantitative analysis in general.

19

Learning by Doing

- Lectures and demonstrations (recordings available on GitHub)
- Extensive cases and data: End-to-end analysis and problem-solving
- In-class discussions
- 5 problem sets and 2 projects (1 required and the other one as a bonus)
- Laptop
 - Bring a laptop to every class. Close your laptop until you are asked to use it. Install the required applications (Python and Anaconda).

 - Download Jupyter Notebooks (from GitHub) to your laptop before each class.
- Attendance is required.

Course Materials

- Blackboard
 - Homework Submission
- GitHub:
 - https://github.com/DSME-6653/Web-W2023
- Anonymous Survey:
 - Link to the survey.
 - You are more than welcome to submit any feedback throughout this course.
- · No required text books
 - Reference books given in the syllabus and provided at GitHub.
- GPT-Powered Online Tutor: https://chat.openai.com/q/q-5JiTShvFK-cuhk-web-analytics-tutor

21

21

Course Communications

- Class Meeting: Tuesday, 6:30PM-9:15PM (@WMY_303)
- Office hour (Philip): Monday, 1:00PM-2:00PM, @CYT_911, or by appointment
- WeChat group: Online discussion forum.
- Instructor contact
 - Office: CYT_911
 - Email: philipzhang@cuhk.edu.hk
 - Tel: 852-3943-7763WeChat: rphilip_zhang
- Teaching Assistant: Yilin Shi
 - Office hour: By appointment.Email: ylshi@link.cuhk.edu.hk

22

Grading

- Class participation, 20%
 - Baseline 12%; lose 4% for each class missed; failing grades for missing 4 or more classes
- Problem sets, 30%=6%*5
 - Due every one or two weeks after the distribution of a problem set
 - 5 problem sets with the highest scores will count
 - Work as a group of at most 2 students. Submit your group members to Yilin by 11:59pm, Dec. 6, Wednesday. Problem set and project grades will be the same within a group.

 - You will evaluate your teammate at the end of this semester.
- Projects, 20%
 - Project 1 (20%): Due on Tuesday, February 20
 - Project 2 (Bonus 5%): TBD
- Final Exam, 30%
 - 6:30PM-9:00PM, Tuesday, February 27
 - Close-book, close-notes, electronic devices NOT allowed

23

Grading

- Problem sets and projects submitted via Blackboard:
 - Every group should work together to finish and submit their own solutions, though discussions with others are allowed.
- Regrading:
 - Submit your requests within 7 calendar days after receiving your grade.
- "Zero-tolerance" policy
 - Any violation of academic integrity is strictly prohibited and will be treated seriously.

Who Should Quit This Course Now?

- You want an easy A.
- You hate the quantitative/analytical way of thinking and solving problems.
- You hate coding/programming.
- You hate me or Kevin.

Otherwise, you are very much welcome joining us to enjoy the excitements and challenges of Web Analytics!

25

25

References

Angrist and Imbens' Nobel Prize Lecture https://www.youtube.com/watch?v=DV4IjRfjTs0

Angrist's Lecture Series @ AEA

https://www.aeaweb.org/conference/conted/ ed/2020-webcasts

An Online Tutorial with Python Code:

https://matheusfacure.github.io/pythoncausality-handbook/landing-page.html

Another Online Course:

 $\frac{\text{https://www.bradyneal.com/causal-inference-}}{\text{course}}$

26