实验 7&8 指导书

实验项目名称: PIC 单片机串行通信

实验项目性质: 上机实操

所属课程名称: 微机原理与单片机技术

实验计划学时: 4 学时

一、 实验目的

熟练掌握在 PIC16F877 的异步通信功能,能够对 USART 的相关寄存器进行初始化,将数据传输到 PC 端,并从 PC 端获取信息显示到 LED 上。

二、 实验内容和要求

熟悉 USART 相关的基本硬件电路,在 MPLAB 环境中建立工程,实现对 PIC 单片机的 USART 进行初始化及数据读取。

三、 实验主要仪器设备和材料

计算机, MPLAB 软件, PIC 单片机实验板 HL-K18

- 四、实验方法、步骤及结果测试
 - 1, 熟悉电路板, 熟悉相关电路原理图。
 - 2, <u>任务 1</u>, <u>补充程序空白部分的数值,对 USART 的初始化,实现波特率 9600</u> 的通信,发送 "2"到 PC 端,利用串口调试助手软件接收。

例程1

```
void INIUSART(void)
#include <pic.h> //加载头文件
 CONFIG (XT&WDTDIS&LVPDIS);
                                        TRISC6=0;
void Delay(int t);
                                        TRISC7=1;
void INIUSART();
                                        TXSTA=
                                        RCSTA=
void main(void)
                                        SPBRG=
                                        INTCON=0X00;
    INIUSART();
    while(1)
                                      void Delay(int t)
       TXREG=
                                          int i.i:
       while(!TRMT);
                                          for(i=t; i>0; i--)
       Delay(10);
                                             for(j=0; j<100; j++);</pre>
```

- 3,任务 2,尝试使用其他波特率(3 种以上)进行通信。要求计算出 SPBRG 装填的值。
- 4, 任务3 在例程1的基础上进行修改,实现将PC端串口发送的数值显示在LED 阵列或者 LED 数码管上。
- 5, 任务 4, 结合第六次实验的内容, 实现 AD 采样, 并将结果发送到串口调试助手端显示。

五、 实验报告要求

- 1,填空完成例程1。
- 2,写出成功通信的波特率值以及其对应的 SPBRG 值。
- 3, 写出任务3程序流程图,并贴出程序
- 4, 画出任务4的硬件电路图及程序流程图,包括主程序,子程序。

六、 思考题

如何进行全双工通信?设计例程进行验证。

七、 评分标准

考勤30分实验报告 要求 120分要求 220分要求 310分要求 410分

思考题 10分

八、附录

跳线接法,将电源 接入旋转电位计

图 1 旋转电位计跳线接法