Tabelul A1-5

	Tabelul A1-5					
f(t) • f[t] •	$f(s) = \mathbf{L}[f(t)]$	$f(z) = \mathbf{z}\{f[t]\} = z\{f(s)\}$	$f_{\theta}(z) = Z \{f[t, \theta]\} = Z_{\theta} \{f(s)\}$			
δ(t)	1	×	×			
4 δ[t] >	×	1	×			
1 , σ(t)	<u>1</u> s	<u>z</u> z-1	$\frac{z}{z-1}$			
4 (−1) ^t ▶	×	$\frac{z}{z+1}$	×			
t	$\frac{1}{s^2}$	$\frac{hz}{(z-1)^2}$	$\frac{hz[9z + (1-9)]}{(z-1)^2}$			
t ²	$\frac{2}{s^3}$	$\frac{h^2 z(z+1)}{(z-1)^3}$	$\frac{h^2z[9^2z^2 + (1+29-29^2)z + (1-9)^2]}{(z-1)^3}$			
t ³	$\frac{6}{s^4}$	$\frac{h^3z(z^2+4z+1)}{(z-1)^4}$	$\frac{h^3z[9^3z^3 + (1+39+39^2-39^3)z^2 + (4-69^2+39^3)z + (1-9)^3]}{(z-1)^4}$			
t ⁿ	$\frac{n!}{s^{n+1}}$	$\lim_{a\to 0} \frac{\partial^n}{\partial a^n} \left\{ \frac{z}{z-e^{-ah}} \right\}$	$\lim_{a \to 0} \frac{\partial^n}{\partial a^n} \left\{ \frac{ze^{a\theta h}}{z - e^{-ah}} \right\}$			
a ^t , a > 0	<u>1</u> s-Ina	$\frac{z}{z-a^h}$	za ^{9h} z – a ^h			
∢ (-a) ^t ,a>0 ▶	×	<u>z</u> z + a	×			
$\frac{a^t}{t!}$, a>0	×	e ^a / _z	×			
e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-ah}}$	$\frac{z \cdot e^{a\theta h}}{z - e^{-ah}}$			
ð(t)−a∙e ^{-at}	$\frac{s}{s+a}$	×	×			
te ^{-at}	$\frac{1}{(s+a)^2}$	$\frac{hze^{-ah}}{(z-e^{-ah})^2}$	$\frac{h^2 z e^{-a9h} [9z + (1-9)e^{-ah}]}{(z-e^{-ah})^2}$			
(1-at)e ^{-at}		$\frac{z(z - (1 + ah)e^{-ah})}{(z - e^{-ah})^2}$	$\frac{ze^{-a\vartheta h}}{(z - e^{-ah})^2} [(1 - a\vartheta h)z - (1 + ah - a\vartheta h)e^{-ah}]$			
t ² e ^{-at}	$\frac{2}{(s+a)^3}$	$\frac{h^2 z e^{-ah} (z + e^{-ah})}{(z - e^{-ah})^3}$	$\frac{h^2 z e^{-a \vartheta h}}{(z - e^{-a h})^3} [\vartheta^2 z^2 + (1 + 2 \vartheta - 2 \vartheta^2) e^{-a h} z + (1 - \vartheta)^2 e^{-2a h}]$			

T			
t ⁿ e ^{at}	$\frac{n!}{(s+a)^{n+1}}$	$\frac{\partial^{n}}{\partial a^{n}} \left\{ \frac{z}{z - e^{-ah}} \right\}$	$\frac{\partial^n}{\partial a^n} \left\{ \frac{z e^{a \vartheta h}}{z - e^{-ah}} \right\}$
(1 – e ^{-at})	$\frac{a}{s(s+a)}$	$\frac{(1 - e^{-ah})z}{(z - 1)(z - e^{-ah})}$	$\frac{(1 - e^{-a9h})z^2 + (e^{-a9h} - e^{-ah})z}{(z - 1)(z - e^{-ah})}$
(at–1+e ^{-at})	$\frac{a^2}{s^2(s+a)}$	$\frac{(ah-1+e^{-ah})z^{2}}{(z-1)^{2}(z-e^{-ah})^{+}}$ $+\frac{(1-ah\bar{e}^{ah}-e^{-ah})z}{(z-1)^{2}(z-e^{-ah})}$	$\frac{z}{(z-1)^2(z-e^{-ah})} \cdot ([a\vartheta h - 1 + e^{-a\vartheta h}) \cdot z^2 + \\ + [ah(1-\vartheta - \vartheta e^{ah}) + 1 - 2e^{-e\vartheta h} + e^{-ah}] \cdot z + \\ + \left[e^{-a\vartheta h} - ahe^{-ah}(1-\vartheta) - e^{ah}\right]$
(e ^{-at} -e ^{-bt})	b-a (s+a)+(s+b)	$\frac{z(e^{-ah} - e^{-bh})}{(z - e^{-ah})(z - e^{-bh})}$	$\frac{(e^{-a\vartheta h} - e^{-b\vartheta h})z^2 + (e^{-h(a+b\vartheta)} - e^{-h(b+a\vartheta)})z}{(z - e^{-ah})(z - e^{-bh})}$
(a–b)+be ^{at} –ae ^{bt}	at(a-b) s(s+a)(s+b)	$\begin{split} &\frac{z}{(z-1)(z-e^{-ah})(z-e^{bh})} \\ &\cdot ((a-b-ae^{bh}+be^{ah})\cdot z + \\ &\cdot ((a-b)\cdot e^{-(a+b)h}-ae^{ah}+be^{bh}) \end{split}$	$\frac{(a-b)z}{z-1} + \frac{bze^{a\theta T_e}}{z-e^{-aT_e}} - \frac{aze^{-b\theta T_e}}{z-e^{-bT_e}}$
$ab(a-b)t +$ $(b^2-a^2) -b^2e^{-at} +$ a^2e^{-bt}	<u>a²b²(a-b)</u> <u>s²(s+a)(s+b)</u>	$\frac{ab(a-b)hz}{(z-1)^2} + \frac{(b^2-a^2)z}{z-1} - \frac{b^2z}{z-e^{ah}} + \frac{a^2z}{z-e^{bh}}$	$\frac{ab(a-b)hz}{(z-1)^2} + \frac{[ab(a-b)\theta h + b^2 - a^2] \cdot z}{z-1} - \frac{b^2 z e^{-a\theta h}}{z-e^{-ah}} + \frac{a^2 z e^{-b\theta h}}{z-e^{-bh}}$
sinω ₀ t	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\frac{z\sin\omega_0h}{z^2-2z\cos\omega_0h+1}$	$\frac{z^2 \sin \theta \omega_0 h + z \sin(1 - \theta)\omega_0 h}{z^2 - 2z \cos \omega_0 h + 1}$
cosω ₀ t	$\frac{s}{s^2 + \omega_0^2}$	$\frac{z(z-\cos\omega_0 h)}{z^2 - 2z\cos\omega_0 h + 1}$ $caz \ special:$ $\omega_0 h = \pi$ $\mathbf{z}\left(-1\right)^t = \frac{z}{z+1}$	$\frac{z^2 \cos \theta \omega_0 h - z \cos(1 - \theta)\omega_0 h}{z^2 - 2z \cos \omega_0 h + 1}$
cosat-cosbt b ² -a ²	s (s²+a²)•(s²+b²)	$ \frac{1}{b^{2} - a^{2}} \cdot \left[\frac{z(z - \cos ah)}{z^{2} - 2z \cos ah + 1} - \frac{z(z - \cos bh)}{z^{2} - 2z \cos bh + 1}\right] $	$\frac{1}{b^2 - a^2} \cdot \left[\frac{z^2 \cos \vartheta ah - z \cos (1 - \vartheta) ah}{z^2 - 2z \cos ah + 1} - \frac{z^2 \cos \vartheta bh - z \cos (1 - \vartheta) bh}{z^2 - 2z \cos bh + 1} \right]$
e ^{-at} sin ω ₀ t	$\frac{\omega_0}{(s+a)^2+\omega_0}$	$\frac{ze^{-ah}sin\omega_0h}{z^2-2ze^{-ah}cos\omega_0h+e^{-2ah}}$	$\frac{[z\sin\vartheta\omega_0h + e^{-ah}\sin(1-\vartheta)\omega_0h]\cdot z\cdot e^{-a\vartheta h}}{z^2 - 2ze^{-ah}\cos\omega_0h + e^{-2ah}}$
e ^{-at} cosω	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\begin{aligned} \frac{z^2 - ze^{-ah}\cos\omega_0 h}{z^2 - 2ze^{-ah}\cos\omega_0 h + e^{-2ah}} \\ & \text{caz special:} \\ & \omega_0 h = \pi \end{aligned}$ $\mathbf{z} \left\{ \left(-e^{ah} \right)^t \right\} = \frac{z}{z + e^{-ah}}$	$\frac{[z\cos\theta\omega_0h - e^{-ah}\cos(1-\theta)\omega_0h] \cdot z \cdot e^{-a\theta h}}{z^2 - 2ze^{-ah}\cos\omega_0h + e^{-2ah}}$

shω ₀ t	$\frac{\omega_0}{s^2 - \omega_0^2}$	$\frac{z \cdot sh\omega_0 h}{z^2 - 2z \cdot ch\omega_0 h + 1}$	$\frac{z \cdot [z \cdot \text{sh} \theta \omega_0 \text{h} + \text{sh} (1 - \theta) \omega_0 \text{h}]}{z^2 - 2z \cdot \text{ch} \omega_0 \text{h} + 1}$
chω ₀ t	$\frac{s}{s^2 - \omega_0^2}$	$\frac{z(z - ch\omega_0 h)}{z^2 - 2z \cdot ch\omega_0 h + 1}$	$\frac{z \cdot [z \operatorname{ch} \theta \omega_0 h - \operatorname{ch} (1 - \theta) \omega_0 h]}{z^2 - 2z \cdot \operatorname{ch} \omega_0 h + 1}$
√t	$\frac{1}{2s} \cdot \sqrt{\frac{\pi}{s}}$	××	××
$\frac{1}{\sqrt{t}} \cdot e^{-at}$ $, t > 0$	$\sqrt{\frac{\pi}{s+a}}$	××	××
$ \begin{array}{c} $	×	$\frac{z}{(z-1)^{k+1}}$	×
$\sum_{k=1,3,}^{\infty} \frac{2 sirk \pi t}{k\pi}$	$\frac{1}{s(1+e^{-s})}$	××	××
	×	$\ln\left(1+\frac{1}{z}\right)$	×
<pre>f[0]=0, f[t]=a^{t-1}t- 1,t∈N*</pre>	×	$\frac{1}{a} \cdot \ln \frac{z}{z-a}$	×

În tabel s-au folosit notațiile " \times " și " \times \times " pentru situațiile în care transformatele respective nu există, respectiv nu prezintă interes.