German University in Cairo Department of Computer Science Dr. Haythem O. Ismail

Theory of Computation, Winter Term 2013 Assignment5

Discussion: 2.11.13 - 9.11.13

Exercise 5-1

Reading

• Read pages 60 through 76 of the text.

Exercise 5-2

Exercises from Textbook

Sipser $(pp\ 85 - 90)$: Solve exercises 1.9, 1.10, 1.12 1.18¹, 1.20², 1.21.

Solution:

1.9 a)
$$L_1 = \{w | \text{ the length of } w \text{ is at most } 5\}$$

$$\text{start} \longrightarrow 0,1 \longrightarrow 0,1 \longrightarrow 0,1$$

$$L_2 = \{w | \text{ every odd position of } w \text{ is a } 1\}$$

$$\text{start}$$

$$0,1 \longrightarrow 1$$

$$L = L_1 \circ L_2$$

¹1.19 in US edition ²1.18 in US edition

b) $L_1 = \{w|w \text{ contains at least three 1s}\}$

$$L_2 = \{\}$$
 start \rightarrow

1.10 a) $L = \{w|w \text{ contains at least three 1s}\}$

NFA recognizing L^*

b) $L = \{w|\ w$ contains at least two 0s and at most one 1}

NFA recognizing L^*

1.12 We can try to put this in a simpler formulation. $L = \{w | w \text{ contains an odd number of bs followed by an even number of as}\}.$

This language, L, can be considered as teh concationation of two simpler languages $L = L_1 \circ L_2$, where L_1 contains all the strings of bs only with odd length and L_2 is the set of all strings of as of even length. The regular expression describing L is the result of the concatination of the regular expression of L_1 and L_2 .

$$R_{L_1} = b(bb)^*$$

$$R_{L_2} = (aa)^*$$

 $R_L = R_{L_1} \circ R_{L_2} = b(bb)^* (aa)^*$

1.18 a)

b)

- 1.20 a) $1(0 \cup 1)*0 = 1\Sigma*0$
 - b) $0*10*10*1(0 \cup 1)* = 0*10*10*1\Sigma*$
 - c) $\Sigma^*0101\Sigma^*$
 - d) $\Sigma\Sigma0\Sigma^*$
 - e) $(0(\Sigma\Sigma)^*) \cup (1\Sigma(\Sigma\Sigma)^*)$
 - f) $(0 \cup 10)^*1^*$

For this regular expression, keep in mind the following DFA:

- g) $\varepsilon \cup \Sigma \cup \Sigma\Sigma \cup \Sigma\Sigma\Sigma \cup \Sigma\Sigma\Sigma\Sigma \cup \Sigma\Sigma\Sigma\Sigma\Sigma$
- h) $0^* \cup 1 \cup 1111^+ \cup \Sigma^* 0\Sigma^*$
- i) $(1\Sigma)^* \cup (1\Sigma)^* 1 \equiv (1\Sigma)^* (\varepsilon \cup 1)$

- j) $00^+ \cup 00^+ 10^* \cup 0^* 100^+ \cup 0^+ 10^+$
- k) $\varepsilon \cup 0$
- l) $(00)^* \cup 0^*10^*10^*$
- m) Ø
- $n)\ (0\cup 1)^+ \equiv \Sigma^+$
- 1.21 a)

We start by converting the NFA to a GNFA:

Now we start ripping states, namely starting with state 1:

Now we can rip state 2:

Thus, the regular expression given by this DFA is $(a^*b)(a \cup (ba^*b))^*$

b) Starting with the GNFA (we will remove the \emptyset -transitions for clarity):

Now, we can rip state 1:

The following state to be rupped will be state 2:

The regular expression given by this DFA is: $\varepsilon \cup [((a \cup b)a^*b)((b \cup (a(a \cup b)))a^*b)^*(\varepsilon \cup a)]$

Exercise 5-3

Programming

Using your favorite programming language, write a method/function/clause that, given a DFA M, constructs an equivalent regular expression. Note that you will need to implement a GNFA abstract data type.