

Low Mass Di-b-jet in 2016

Laurie McClymont, Andreas Korn

Di-bjet Meet 16 June 2016

2 **Introduction**

Low mass part of analysis done for LHCP

- Probed bb spectrum 566 < m_{bb} < 1200 GeV
- Use b-jet triggers to get to low mass
- No significant discrepancy seen

Can we add this in for ICHEP?

- Bolt-on to high mass analysis
 - Same analysis strategy as LHCP
 - b-Jet triggers in 2016 data
 - Working towards efficiencies and systematics

2016 Improvements

- Improved b-jet triggers (use MV2c20)
- Improved b-tagging performance (MV2c10)
- More data in 2016 (~10 fb⁻¹)

3 Data / Event Selection

- Data
- We will use 2016 data only
- Different triggers used in 2015 and 2016

- Trigger
- Double b-jet trigger:

HLT_j150_bmv2c2077_split_j50_bmv2c2077_split

- Leading jet
 - => pT > 150 GeV
 - => Tagged with online 77% OP
- Subleadng jet
 - => jet > 50 GeV
 - => Tagged with online 77% OP

Kinematic Cuts

- Leading Jet pT > 200 GeV
- Subleading Jet pT > 80 GeV
 - Derived to be above 99% eff.
 - Slide 16 of this talk
- 500 < m_{ii} < 1200 GeV
- $|y^*| < 0.6$

b-Tagging

- MV2c10
- Only use two-tag category
- Using fixed cut 70% for both jets
- Same OP as used in LHCP

Kinematic Validation Plots

- Validate Kinematics Cuts in Data
- 2016 data, 2.6 fb⁻¹
- Use L1_J75 to test if fully efficient.

Low cuts = $LP_T > 150 \text{ GeV}$, $SLP_T > 50 \text{ GeV}$

Analysis cuts = $LP_T > 200 \text{ GeV}$, $SLP_T > 80 \text{ GeV}$

- 2015 and Run-1
 - Online specific algorithms
 - **IP3D + SV1** algorithm used online
- 2015 and Run-1
 - Offline algorithms in online environment
 - MV2c20 algorithm run online
 - More consistent with offline
 - Split configuration
 - New approach improves tracking perf.

→ C. Varni Talk: See here

6 b-Jet Triggers Systematics

Efficiencies and Systematics

- Follow same strategy as 2015 data as done for LHCP, see here
- This strategy approved for LCHP in b-trigger group, exotics and ATLAS circ.

Efficiencies

```
b-Jet Trig Eff. wrt offline = # b-Jets pass offline and online b-tagging # b-Jets offline b-tagging
```

- Use dilepton ttbar sample in b-jets.
- Derive efficiencies from here in both Data and MC
- Use Data extrapolation using when data stats are limited (jet p_T > 120 GeV)

Systematics

- Data and MC stats.
- Data Extrapolation
- Non b-jet Impurities in sample
- Mismodelling of initial flavour fraction in MC
- Mismodelling of non-b jet rejection by trigger in MC

Non-Split

jet P₋ [GeV]

Difference possibly due to difference in vertexing performance

'WORK IN PROGRESS'

- bTrigger convenor

- Using 3 parameter fit function
 - Can change according to Wilks' procedure run on full data-set.
- Carry out bump hunter procedure
- Also run on deficit hunter (Allow deficit or bump)
- Also look at Chi2 p-value

- Using 4 parameter fit function
 - Can change according to Wilks' procedure run on full data-set.
- Carry out bump hunter procedure
- Also run on deficit hunter (Allow deficit or bump)
- Also look at Chi2 p-value

10 **Conclusions**

- We can add low mass channel for ICHEP
 - The double bjet trigger exists
 - Framework is in place from LHCP
- Things are starting to come together.
 - Derived kinematics cuts
 - First look at data (fits + kinematic study)
 - b-jet triggers are being studied, we have framework for this.

To Do

- MC studies
 - Don't have MC yet
 - Running on Grid currently
 - Data/MC comparisons
- Cut flows Produce for the data

- Fit study tests
 - Can use pre-tag data as CR again
- b-Jet Trigger Eff. We have a strategy here
- Signal Points
 - Do we have Z' signal points
 - Cut flows and efficiencies
 - Prepare for limit setting

What are analysis team's views?

What is the timescale?

Backup

- Using 3 parameter fit function

Range 480 - 1200

13 **Different Ranges**

Fit to data - 2.6 fb⁻¹

- Using 3 parameter fit function

Range 520 - 1200

- Using 3 parameter fit function

Range 500 - 1400

