Example 1. Find area of the region bounded by $y = \sqrt{x}$, x = 4 and y = 0.

Area between two curves: The area enclosed between two curves y = f(x) and y = g(x) from x = a to x = b is given by

$$A = \int_a^b |f(x) - g(x)| dx.$$

Note that

$$\left|f(x)-g(x)\right| = \begin{cases} f(x)-g(x) & \text{if } f(x) \geq g(x) \\ g(x)-f(x) & \text{if } g(x) \geq f(x) \end{cases}.$$

A property of definite integral: If f is continuous on [a, b] and a < c < b, then

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Example 2. Find area of the region bounded by $y = x^3$, x = -1, x = 2 and y = 0.

Example 3. Find area of the region bounded by the parabola $y^2 = 4x$ and the line y = x.

Area along horizontal strips: The area bounded between the curves x = f(y) and x = g(y) from y = c to y = d is given by

$$A = \int_{c}^{d} |f(y) - g(y)| dy.$$

Example 4. Find the area of the region bounded by $x = 8y - 2y^2$ and y-axis.

Example 5. Find the area of the region bounded by $x = y^2 - y - 2$ and y = x + 2.