

Sistemas de Numeração

Sistemas Digitais 2020/2021

Pedro Salgueiro CLAV-256 pds@uevora.pt

Sumário

- Sistemas de numeração posicionais
 - Sistema decimal
 - Sistema de numeração posicional
 - Sistema binário
 - Outras bases
- Conversão entre bases
 - Número inteiro
 - Número fracionário
- Exercícios

Sistemas de numeração posicionais

Sistema decimal

- O que representa o número **253**?
 - Duzentos e cinquenta e três
- Como é decomposto?
 - Duas centenas, cinco dezenas e três unidades
 - \circ 2 × 100 + 5 × 10 + 3
- Isto no Sistema Decimal...

Sistema decimal

- Quantos algarismos distintos (dígitos) existem?
 - o Dez: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Quanto vale cada algarismo no número?
 - Sempre uma potência de 10
 - Depende da sua posição no número
- 253
 - 2 tem peso 10² (100)
 - 5 tem peso 10¹ (10)
 - 3 tem peso 10⁰ (1)
- Sistema de numeração posicional de base 10

Sistema de numeração posicional

- Sistema de numeração onde:
 - Um número é formado por uma sequência de algarismos (dígitos)
 - Cada algarismo possui um peso de acordo com a posição que ocupa na sequência
 - O peso depende da **base** em que o número está representado

• Base b

- Quantos dígitos?
 - **■ b** dígitos: 0, 1, 2, . . . b 1
- Oue quantidade representa?

Sistema de numeração posicional

Capacidade da base

- É o nº de valores inteiros que é possível representar numa base
- \circ Na base **b**, com **n** algarismos, podem representar-se **b**ⁿ valores distintos

Exemplo

- o 3 algarismos
- Sistema decimal (base 10),
- \circ Capacidade: $10^3 = 1000$
- Valores possíveis: 0, . . . , 10³ 1
 - **o**, 1, . . . 9, 10, . . . , 99, 100, . . . ,999

Exemplo

- 3 algarismos
- Base b
- Capacidade: **b**³
- Valores possíveis: 0 . . . b³ 1
 - \bullet 0, 1, ..., b 1, b^1 , ..., b^2 1, b^2 , ..., b^3 1

Sistema de numeração binário

- Que base?
 - \circ **b** = 2
- Quantos dígitos?
 - o **Dois**: 0, 1
- Qual a capacidade com 4 dígitos?
 - \circ 2⁴ = 16
- Conseguem-se representar 16 valores: 0,1, . . ., 15
 - \circ 0, 1, ..., 2^4 1
- **1101**₂ que quantidade representa?
 - $0 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 13$

Sistema binário

Algumas definições importantes

- bit
 - 1 dígito binário
 - binary digit
- byte
 - Conjunto de 8 bits
- bit mais significativo
 - bit com maior peso (bit mais à esquerda)
 - o MSB, most significant bit
 - o **1101**
- bit menos significativo
 - o bit com menor peso (bit mais à direita)
 - LSB, least significant bit
 - o 110**1**

Sistema binário

Exemplo: número com 10 bits

- Capacidade
 - $_{\circ}$ 2¹⁰ = 1024
- Peso do **MSB** (most significant bit)
 - $^{\circ}$ 1 * 2⁹ = 512
- Valor de 1100110001₂

$$= 1 * 2^{9} + 1 * 2^{8} + 0 * 2^{7} + 0 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} + 0 * 2^{3} + 0 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}$$

$$_{\circ}$$
 = 1 * 2⁹ + 1 * 2⁸ + 1 * 2⁵ + 1 * 2⁴ + 1 * 2⁰

$$_{\circ}$$
 = 2⁹ + 2⁸ + 2⁵ + 2⁴ + 2⁰

Sistema binário

Potências de 2 (designações conhecidas)

- K: kilo
 - \circ 2¹⁰ = 1024
 - Potência de 2 que mais se aproxima de 1000
- M: mega

$$\circ$$
 2²⁰ = 2¹⁰ * 2¹⁰ = 1024 * 1K = 1M

• G: giga

$$\circ$$
 2³⁰ = 2²⁰ * 2¹⁰ = 1024 * 1M = 1G

• T: tera

$$\circ$$
 2⁴⁰ = 2³⁰ * 2¹⁰ = 1024 * 1G = 1T

• P: peta

$$\circ$$
 2⁵⁰ = 2⁴⁰ * 2¹⁰ = 1024 * 1T = 1P

Potências de 2 até 10

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Outras bases

- Sistema hexadecimal
- Sistema octal

Sistema hexadecimal

- Que base?
 - \circ b = 16
- Quantos dígitos?
 - o Dezasseis: 0, 1, ..., 9, A, B, C, D, E, F
 - \circ A₁₆ = 10₁₀
 - 0 ...
 - \circ $F_{16} = 15_{10}$
- Qual a capacidade com 4 dígitos?
 - \circ 16⁴ = 65536 \rightarrow 0 ... 65535
- **1AC4**₁₆ que quantidade representa?
 - $0.01 \times 16^{3} + 10 \times 16^{2} + 12 \times 16^{1} + 4 \times 16^{0} = 4096 + 2560 + 192 + 4 = 6852$

Sistema octal

- Que base?
 - o b = 8
- Quantos dígitos?
 - o Oito: 0, 1, 2, 3, 4, 5, 6, 7
- Qual a capacidade com 4 dígitos?
 - \circ 8⁴ = 4096 \rightarrow 0 ... 4095
- 1274₈ que quantidade representa?
 - $0 1 * 8^3 + 2 * 8^2 + 7 * 8^1 + 4 * 8^0 = 512 + 128 + 56 + 4 = 700$

Conversão entre bases

Conversão entre bases

- Número inteiro
- Número fracionário

- Valor de um número inteiro
 - o Indica a quantidade representada
- A que valor corresponde a representação d₃d₂d₁d_{0 b}?
 - Converte-se da base b para decimal

$$\circ d_3 d_2 d_1 d_0 b = d_3 * b^3 + d_2 * b^2 + d_1 * b^1 + d_0 * b^0$$

Exemplo

$$0 \quad 1036_{7} = 1 * 7^{3} + 0 * 7^{2} + 3 * 7^{1} + 6 * 7^{0}$$
$$= 343 + 0 + 21 + 6$$
$$= 370$$

- Representação de um número inteiro
 - Representa uma determinada quantidade
 - A representação depende da base
- Qual a representação do número d₃d₂d₁d₀ na base b?
 - Converte-se do sistema decimal para a base b
 - Utiliza-se o método das divisões sucessivas

- Método das divisões sucessivas
 - Retêm-se os restos das sucessivas divisões inteiras e dos quocientes entretanto obtidos por
 b, até obter quociente nulo
- Peso dos algarismos
 - O menos significativo é aquele resultante da primeira divisão efectuada
 - o Mais significativo é aquele resultante da última divisão efectuada

Método das divisões sucessivas

Exemplo

- Qual a representação de 136₁₀ na base 2?
 - fazem-se divisões inteiras sucessivas por dois, retendo o resto
 - \circ 136₁₀ = 10001000₂

ı	
resto	
0	← LSB
0	
0	
1	
0	
0	
0	
1	← MSB
	0 0 0 1 0 0

Método das divisões sucessivas

Base 16

 Fazem-se divisões inteiras sucessivas por dezasseis, retendo o resto

Base 6

 Fazem-se divisões inteiras sucessivas por seis, retendo o resto

Conversão entre bases **b1** e **b2** (diferentes da base 10)

- Utiliza-se a base 10 como base intermédia:
 - 1. Encontra-se o valor do número representado por b1
 - $\bullet \quad b_1 \rightarrow b_{10}$
 - $d_3d_2d_1d_0b_1 = d_3*b_1^2 + d_2*b_1^2 + d_1*b_1^1 + d_0*b_1^0$
 - 2. Encontra-se a sua **representação** na base b₂
 - $\bullet \qquad b_{10} \rightarrow b_2$
 - método das divisões sucessivas por b₂

Conversão directa entre bases

- Entre as bases binária e hexadecimal
 - Não é necessário usar a base intermédia
 - o 16 é a quarta potência de 2 (16 = 2⁴), cada dígito hexadecimal corresponde a 4 dígitos binário
- Binária para hexadecimal
 - A partir do bit menos significativo, formar grupos de 4 bits e escrever um dígito hexadecimal por cada grupo
- Hexadecimal para binária
 - Cada dígito hexadecimal é convertido em 4 bits
- Exemplo
 - 110 1100 0010 2 = 6C2 16
 - \circ A05 ₁₆ = 1010 0000 0101₂

Conversão directa entre bases

- Entre as bases binária e octal
 - 8 é a terceira potência de 2 (8 = 2³), cada dígito octal corresponde a 3 dígitos binários
- Exemplo
 - 11 011 000 010 2 = 3302 8
 - o 705₈ = 111 000 101₂
- E entre as bases 3 e 9?

Número fraccionário

Se o número tiver parte fracionária

- Conversão b₁ → 10
 - As potências são negativas para a parte fracionária

- Conversão 10 → b1
 - Separa-se a parte inteira da parte fracionária
 - Parte inteira → método das divisões sucessivas
 - Parte Fracionária → método das multiplicações sucessivas

Método das multiplicações sucessivas

- Retêm-se as partes inteiras da multiplicação por b das sucessivas partes fracionárias, até que seja atingida a parte fracionária nula (ou a precisão pretendida)
- Peso dos algarismos
 - O mais significativo é aquele resultante da primeira multiplicação efetuada
 - O menos significativo é aquele resultante da última multiplicação efetuada

Método das multiplicações sucessivas

Exemplo

Qual a representação de 0.375 10 na base 2?

$$0.375_{10} = 0.011_{2}$$

Método das multiplicações sucessivas

Precisão da conversão

- E se a parte fracionária nula não é atingida?
 - A capacidade na nova base b₂ deve ser pelo menos igual à capacidade original b₁:

$$b_2^{n_2} \geq b_1^{n_1} \Rightarrow n_2 \geq rac{n_1 \, \log b_1}{log b_2}$$

Exemplos

$$n_2 \geq rac{1\ log 3}{log 10} = 0.4771
ightarrow n_2 = 1$$

$$n_2 \geq rac{2 \ log 10}{log 2} = 6.6439
ightarrow n_2 = 7$$

Converta para base 10:

- 1010101₂
- A2D.9B₁₆
- 0.46₇

Converta para as bases 2 e 16:

- 2₁₀
- 712.5₁₀

Converta para base 2:

- EA2.F5₁₆
- 432.56₈
- 2031.123₄

Converta para as bases 8 e 16:

- 1101101.1001101₂
- 101110.0000111₂

Converta para base 10:

- 1010101₂
 - \circ = 1 * 2⁶ + 1 * 2⁴ + 1 * 2² + 1 * 2⁰
 - o = 64 + 16 + 4 +1
 - o = 85₁₀
- A2D.9B₁₆
 - \circ = A * 16² + 2 * 16¹ + D * 16⁰ + 9 * 16⁻¹ + B * 16⁻²
 - \circ = 10 * 16² + 2 * 16¹ + 13 * 16⁰ + 9 * 16⁻¹ + 11 * 16⁻²
 - o = 10 * 256 + 2 * 16 + 13 * 1 + 9 * 0.0625 + 11 * 0.0039625
 - o = 2605,60546875₁₀
- 0.46₇
 - \circ = 4 * 7⁻¹ + 6 * 7⁻²
 - o = 4 * 0.14 + 6 * 0.02
 - \circ = 0.69₁₀

Converta 2₁₀ para base 2

Usar o métodos das divisões sucessivas por 2

$$\circ$$
 2₁₀ = 10₂

Converta 2₁₀ para base 16

Usar o métodos das divisões sucessivas por 16

Converta 712.5₁₀ para base 2

Parte inteira: usar o métodos das divisões sucessivas

quociente	resto
712	0
356	0
178	0
89	1
44	0
22	0
11	1
5	1
2	0
1	1
0	

- \circ 712₁₀ = 1 0 1 1 0 0 1 0 0 0₂
- $712.5_{10} = 1011001000.1_{2}$

Parte fracionária: usar o métodos das multiplicações sucessivas

$$0.5_{10} = 0.1_2$$

Converta 712.5₁₀ para base 16

- Opção 1:
 - Converter directamente para base 16
 - Parte inteira: método das divisões sucessivas
 - Parte fracionário: método das multiplicações sucessivas
- Opção 2:
 - o 16 = 2⁴
 - o 16 é a 4ª potência de 2
 - Converter de base 10 para base 2
 - Converter directamente de base 2 para base 16
 - o Cada 4 bits (na base 2), dá origem a 1 dígito hexadecimal

Converta 712.5₁₀ para base 16

- Opção 1: Converter directamente para base 16
 - Parte inteira: divisões sucessivas por 16

Parte fracionária: multiplicações sucessivas por 16

parte fracionária
$$\begin{vmatrix} 0.5 \\ 0 \end{vmatrix}$$
 parte inteira $\begin{vmatrix} 0.5 * 16 = 8.0 \end{vmatrix}$

$$\circ$$
 712.5₁₀ = 2 C 8 . 8₁₆

Converta 712.5₁₀ para base 16

- Opção 2: Conversão directa de base 2 para base 16
 - \circ 16 = 2⁴
 - 16 é a 4ª potência de 2
 - Converter de base 10 para base 2
 - Converter directamente de base 2 para base 16
 - Cada 4 bits (na base 2), dá origem a 1 dígito hexadecimal

Converta EA2.F5₁₆ para base 2

- Conversão directa de base 2 para base 16
 - \circ 16 = 2⁴
 - 16 é a 4ª potência de 2
 - Converter directamente de base 2 para base 16
 - Cada dígito hexadecimal dá origem a 4 bits (na base 2)
 - $E_{16} = 14_{10} = 1110_{2}$
 - $A_{16} = 10_{10} = 1010_{2}$
 - $\mathbf{2}_{16} = 2_{10} = 0.010_{2}$
 - $\mathbf{F}_{16} = 15_{10} = 11111_{2}$
 - $\mathbf{5}_{16} = 5_{10} = 0.101_{2}$
 - o EA2.F5₁₆ = <u>1110</u> <u>1010</u> <u>0010</u>. <u>1111</u> <u>0101</u> ₂

Converta 1101101.1001101, para as bases 8 e 16:

- Conversão directa de base 2 para base 8
 - \circ 8 = 2³
 - Cada 3 bits dão origem a um dígito na base 8
 - o 1 101 101.1001101₂
 - o <u>001 101 101.100 110 111</u>,
 - \circ 1 3 3 . 4 6 7_8
 - \circ 1 1 0 1 1 0 1 . 1 0 0 1 1 0 1₂ = 1 3 3 . 4 6 7₈

Converta 1101101.1001101, para as bases 8 e 16:

- Conversão directa de base 2 para base 16
 - \circ 16 = 2⁴
 - Cada grupo de 4 bits dá origem a um dígito na base 16
 - 110 <u>1101</u>. <u>1001</u> 101₂
 - 0110 1101.1001 1010
 - o 6 C . 9 A₁₆
 - \circ 1 1 0 1 1 0 1 . 1 0 0 1 1 0 1 $_2$ = 6 C.9 A $_{16}$

Tarefas até à próxima aula prática

- Ficha 1: Bases de numeração
 - o 1.a); 1.c)
 - o 2.a); 2.c)
 - o 3.a); 3.c)
 - o 4.c)
 - o 5.c)