

WELCOME

Travelling Salesman Problem (TSP)

Sudesh Maharjan

Sameep Sigdel

TSP Introduction

- → Shortest possible route that visits every city exactly once and returns to the starting point.
- → Cost of tour = Sum of the cost of edges on the tour.
- → Find a tour of minimum cost.
- → Minimum weight Hamiltonian Cycle.
- → Possible no. of graph:

(n-1)!/2

Symmetric TSP

- → Distance between two cities is same from both direction.
- → Forms an undirected graph.
- → Halves the number of possible solutions.

Symmetric TSP with four cities

Asymmetric TSP

- → Paths may not exist in both directions or the distances might be different.
- → Forms an directed graph.
- → Examples:
 - One-way streets
 - Airfares

Traveling Salesman Problem

Minimum cost tour for the below traveling salesperson problem:

The cost adjacency matrix :

Formula:

$$g(1, V-\{1\}) = min\{ (C_{1K} + g(k, V - \{1,k\})) \}$$

2 <= k <= n

Hierarchical Representation of the given problem:

Solution of the TSP using Dynamic programming [Part I]

 $g(3, \{2\}) = min \{ C_{32} + g(2, \{\emptyset\}) \}$

 $= \min \{3 + 4\} = 7$

Solution of the TSP using Dynamic programming [Part II]

Substituting values in (1);

$$g(1, \{2,3\}) = min \{5 + 14, 7 + 7\}$$

= $min \{19, 14\}$

$$g(1, \{2,3\}) = 14$$

So, the optimum tour for the given graph has length = 14

Therefore, the optimum tour is = 1, 3, 2, 1.

Time and Space Complexity

Space Complexity

 \rightarrow O(n2ⁿ)

Time Complexity

T.C. = no. of unique sub-position * time taken by each sub-problem

- \rightarrow O(n2ⁿ) * O(n)
- \rightarrow O(n²2ⁿ)

Time Complexity In Short

THANK YOU