Week 1: Introduction to Machine Learning

Task 1.2: Data Cleaning and Preparation

1. Load and Inspect the Dataset:

Loading the Dataset:

First, we load the Titanic dataset using the seaborn library. The dataset is stored in a pandas DataFrame for further processing.

Inspecting the Dataset:

We inspect the dataset using the head() and describe() methods to get a preliminary understanding of the data.

data.describe()	survived	0
Checking for Missing Values:	pclass	0
	sex	0
We shock for missing values in the dataset. The isnull() function holes	age	177
We check for missing values in the dataset. The isnull() function helps	sibsp	0
identify missing values, and the sum() function provides a count of	parch	0
these values.	fare	0
	embarked	2
<pre>data.isnull().sum()</pre>	class	0
	who	0
Output:	adult_male	0
·	deck	688
From the output, we observe that the 'age', 'embarked',	embark_town	2
'embark town', and 'deck' columns contain missing values.	alive	0
cinibank_town, and deak columns contain initially values.	alone	0
2. Data Cleaning:	dtype: int64	

Handling Missing Values:

1. **Drop the 'deck' Column:** The 'deck' column has 688 missing values out of 891, making it better to drop this column.

```
data.drop('deck', axis=1, inplace=True)
```

2. **Impute 'age' Column:** We fill the missing values in the 'age' column with the mean value of the column.

```
data['age'].fillna(data['age'].mean(), inplace=True)
```

3. **Impute 'embarked' and 'embark_town' Columns:** We fill the missing values in the 'embarked' and 'embark_town' columns with their respective modes (most frequent values).

4. **Verify Missing Values:** After imputing, we check again for any remaining missing values.

Output:

survived	0
pclass	0
sex	0
age	0
sibsp	0
parch	0
fare	0
embarked	0
class	0
who	0
adult_male	0
embark_town	0
alive	0
alone	0
dtype: int64	

All missing values have been handled successfully.

Handling Outliers:

We identify and handle outliers in the 'fare' column using the Interquartile Range (IQR) method. We also visualize the outliers by help of box plot.

sns.boxplot(data, x='fare')

As we can see there are outliers present. To fix that:

1. Calculate IQR:

2. **Cap the Outliers:** We cap the values below the lower bound to the lower bound and values above the upper bound to the upper bound.

```
data['fare'] = np.where(data['fare'] < lb, lb, data['fare'])
data['fare'] = np.where(data['fare'] > ub, ub, data['fare'])
```

3. Data Transformation:

Converting Categorical Data:

We convert categorical variables into numeric format using One-Hot Encoding.

Standardizing Numerical Values:

We standardize the numerical values for 'age' and 'fare' using the StandardScaler.

Inspect the Cleaned and Transformed Dataset:

Finally, we inspect the first few rows of the cleaned and transformed dataset to verify the changes.

```
print(titanic.head())
```

Saving the Cleaned Dataset:

We save the cleaned and transformed dataset to a new CSV file.

```
titanic.to excel('cleaned titanic.xlsx', index=False)
```

Outcome: The dataset is now cleaned and transformed, ready for further analysis or modeling. The detailed steps and justifications ensure transparency and reproducibility of the preprocessing phase.