(12/27/2023) F. Hiai

$$\lim_{\alpha \searrow 1} D_{\alpha,z} = D_1$$
 when $1/2 < z < 1$

Assume that \mathcal{M} is a general (σ -finite) von Neumann algebra and $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \neq 0$. Let 1/2 < z < 1.

Proposition 0.1. If $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$ for some $\lambda \geq 1$, then

$$\lim_{\alpha \searrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi). \tag{0.1}$$

Proof. We may and do assume that φ and hence ψ are faithful. The proof is based on state perturbation theory due to Araki [2]. By [2, Theorem 6.3] (see also [5, Theorem B.1]) there exists an $h \in \mathcal{M}_{sa}$ such that $\psi = \varphi^h$ and $-\log \lambda \leq h \leq \log \lambda$. Here the perturbed functional φ^h is given by $\varphi^h = \langle \Phi^h, \Phi^h \rangle$ with $\Phi = h_{\varphi}^{1/2} \in L^2(M)_+$, where the perturbed vector $\Phi^h \in L^2(M)_+$ is defined by

$$\Phi^h := \sum_{n=0}^{\infty} \int_0^{1/2} dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n \Delta_{\varphi}^{t_n} h \Delta_{\varphi}^{t_{n-1}-t_n} h \cdots \Delta_{\varphi}^{t_1-t_2} h \Phi.$$

It is known [1, 2] that

$$[D\psi : D\varphi]_t = [D\varphi^h : D\varphi]_t = \sum_{n=0}^{\infty} i^n \int_0^t dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n \sigma_{t_n}^{\varphi}(h) \cdots \sigma_{t_1}^{\varphi}(h), \qquad (0.2)$$

Moreover, we have by [3, Theorem 3.10]

$$D(\psi \| \varphi) = \psi(h). \tag{0.3}$$

It is also known (see, e.g., [5, Lemma A.2]) that $[D\psi:D\varphi]_t$ extends to a strongly continuous $(\mathcal{M}\text{-valued})$ function $[D\psi:D\varphi]_z$ on $-1/2 \leq \operatorname{Im} z \leq 1/2$ that is analytic in the interior, where $[D\psi:D\varphi]_{\bar{z}}^* = [D\varphi:D\psi]_z$. Moreover, we have

$$h_{\psi}^{p} = [D\psi : D\varphi]_{-ip}h_{\varphi}^{p}, \qquad 0 (0.4)$$

Let $1<\alpha<2z$ and set $p=p(\alpha):=\frac{\alpha-1}{2z};$ then $0< p<\frac{2z-1}{2z}<1/2$ (thanks to 1/2< z<1). Since (0.4) gives

$$h_{\psi}^{\frac{\alpha}{2z}} = h_{\psi}^{\frac{1}{2z}} h_{\psi}^{p} = h_{\psi}^{\frac{1}{2z}} [D\psi : D\varphi]_{-ip} h_{\varphi}^{p},$$

we have

$$Q_{\alpha,z}(\psi||\varphi) = \left\| h_{\psi}^{\frac{1}{2z}} [D\psi : D\varphi]_{-ip} \right\|_{2z}^{2z}.$$
 (0.5)

The expansion in (0.2) shows that

$$[D\psi : D\varphi]_t = \mathbf{1} + i \int_0^t \sigma_{t_1}^{\varphi}(h) dt_1 + o(t) = \mathbf{1} + ith + o(t), \tag{0.6}$$

where o(t) means that $o(t)/t \to 0$ strongly as $t \to 0$. On the other hand, the analyticity of $[D\psi : D\varphi]_z$ in a neighborhood of 0 shows that

$$[D\psi: D\varphi]_z = \mathbf{1} + za + o(z) \tag{0.7}$$

for some $a \in \mathcal{M}$, where o(z) means that $||o(z)||/|z| \to 0$ as $z \to 0$. Comparing (0.6) and (0.7) gives a = ih so that

$$[D\psi: D\varphi]_{-ip} = \mathbf{1} + ph + o(p) \quad \text{as } p \searrow 0, \tag{0.8}$$

where o(p) means that $||o(p)||/p \to 0$ as $p \searrow 0$. Therefore, we have

$$h_{\psi}^{\frac{1}{2z}}[D\psi:D\varphi]_{-ip} = h_{\psi}^{\frac{1}{2z}} + ph_{\psi}^{\frac{1}{2z}}h + \varepsilon(p) \text{ as } p \searrow 0,$$
 (0.9)

where $\varepsilon(p) \in L^{2z}(\mathcal{M})$ and $\|\varepsilon(p)\|_{2z}/p \to 0$ as $p \searrow 0$.

Now let us recall that $L^{2z}(M)$ is uniformly convex (thanks to 2z>1) so that the norm $\|\cdot\|_{2z}$ is uniformly Fréchet differentiable (see, e.g., [4, Part 3, Chap. II]). Since $a_0:=h_{\psi}^{\frac{2z-1}{2z}}/\psi(1)^{\frac{2z-1}{2z}}$ is an element of $L^{\frac{2z}{2z-1}}(\mathcal{M})$ (the dual space of $L^{2z}(\mathcal{M})$) such that $\|v\|_{\frac{2z}{2z-1}}=1$ and

$$\operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} = \left\| h_{\psi}^{\frac{1}{2z}} \right\|_{2z},$$

the uniform Fréchet differentiability at $h_{\psi}^{\frac{1}{2z}}$ says that

$$\left| \frac{\left\| h_{\psi}^{\frac{1}{2z}} + tb \right\|_{2z} - \left\| h_{\psi}^{\frac{1}{2z}} \right\|_{2z}}{t} - \operatorname{tr} a_0 b \right| = o(t) \quad \text{as } t \to 0$$
 (0.10)

uniformly for $b \in L^{2z}(\mathcal{M})$ with $||b||_{2b} \leq k$ for any k > 0. Letting $f(p) := ||h_{\psi}^{\frac{1}{2z}}[D\psi : D\varphi]_{-ip}||_{2z}$ for $0 \leq p < 1/2$ with $f(0) := ||h_{\psi}^{\frac{1}{2z}}||_{2z} = \psi(1)^{\frac{1}{2z}}$, by (0.9) we have

$$\frac{f(p) - f(0)}{p} - \operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} h = \frac{\left\| h_{\psi}^{\frac{1}{2z}} + p h_{\psi}^{\frac{1}{2z}} h + \varepsilon(p) \right\|_{2z} - \left\| h_{\psi}^{\frac{1}{2z}} \right\|_{2z}}{p} - \operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} h \\
\begin{cases}
\leq \frac{\left\| h_{\psi}^{\frac{1}{2z}} + p h_{\psi}^{\frac{1}{2z}} h \right\|_{2z} - \left\| h_{\psi}^{\frac{1}{2z}} \right\|_{2z}}{p} - \operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} h + \frac{\|\varepsilon(p)\|_{2z}}{p}, \\
\geq \frac{\left\| h_{\psi}^{\frac{1}{2z}} + p h_{\psi}^{\frac{1}{2z}} h \right\|_{2z} - \left\| h_{\psi}^{\frac{1}{2z}} \right\|_{2z}}{p} - \operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} h - \frac{\|\varepsilon(p)\|_{2z}}{p}.
\end{cases}$$

Therefore, it follows from (0.10) with $b = h_{\psi}^{\frac{1}{2z}} h$ and from (0.3) that

$$\lim_{p \searrow 0} \frac{f(p) - f(0)}{p} = \operatorname{tr} a_0 h_{\psi}^{\frac{1}{2z}} h = \frac{\operatorname{tr} h_{\psi} h}{\psi(1)^{\frac{2z - 1}{2z}}} = \frac{D(\psi \| \varphi)}{\psi(1)^{\frac{2z - 1}{2z}}}.$$
 (0.11)

Since $p = \frac{\alpha - 1}{2z}$, we arrive at (0.1) as follows:

$$\lim_{\alpha \searrow 1} D_{\alpha,z}(\psi \| \varphi) = \lim_{\alpha \searrow 1} \frac{\log Q_{\alpha,z}(\psi \| \varphi) - \log \psi(1)}{\alpha - 1}$$

$$= \lim_{p \searrow 0} \frac{2z \log f(p) - 2z \log f(0)}{2zp} \quad \text{(by (0.5))}$$

$$= \lim_{p \searrow 0} \frac{\log f(p) - \log f(0)}{f(p) - f(0)} \cdot \frac{f(p) - f(0)}{p}$$

$$= \frac{1}{f(0)} \cdot \frac{D(\psi \| \varphi)}{\psi(1)^{\frac{2z - 1}{2z}}} \quad \text{(by (0.11))}$$

$$= \frac{D(\psi \| \varphi)}{\psi(1)} = D_1(\psi \| \varphi).$$

Remark 0.2. The assumption $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$ is too strong. The proposition and its proof are valid in a slightly weaker assumption (though still too strong) that $\lambda^{-1}h_{\varphi}^{\delta} \leq h_{\psi}^{\delta} \leq \lambda h_{\varphi}^{\delta}$ for some $\delta > 0$ and some $\lambda > 1$. In this case, $\psi = \varphi^h$ for some $h \in \mathcal{M}_{sa}$ and $[D\psi : D\varphi]_t$ extends to a strongly continuous (\mathcal{M} -valued) function $[D\psi : D\varphi]_z$ on $-\delta/2 \leq z \leq \delta/2$ that is analytic in the interior. It is desirable to prove (0.1) under the one-side dominance assumption $\psi \leq \lambda \varphi$, though seems difficult.

References

- [1] H. Araki, Expansional in Banach algebras, Ann. Sci. École Norm. Sup. (4) 6 (1973), 67–84.
- [2] H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra, *Publ. Res. Inst. Math. Sci.* **9** (1973), 165–209.
- [3] H. Araki, Relative entropy for states of von Neumann algebras II, *Publ. Res. Inst. Math. Sci.* 13 (1977), 173–192.
- [4] B. Beauzamy, *Introduction to Banach Spaces and their Geometry*, Mathematics Studies 68, North-Holland, Amsterdam, 1982.
- [5] F. Hiai, Quantum f-divergences in von Neumann algebras I. Standard f-divergences, J. Math. Phys. **59** (2018), 102202, 27 pp.