CITY UNIVERSITY OF HONG KONG

Module code & title: MA1201 Calculus and Basic Linear Algebra II

Session : Semester A, 2019–2020

Time allowed : Three hours

This paper has five pages (including this page).

Instruction to candidates:

- 1. This paper consists 6 questions.
- 2. Show all working.
- 3. Attempt <u>ALL</u> questions.
- 4. Start each question on a new page.

This is a **closed-book** examination.

Materials, aid & instruments which students are permitted to use during the examination:

Non-programmable Calculator

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorized aerials or aids are found to them.

- 1. (35 points) Evaluate the following integrals.
 - (a)(5 points) $\int_1^2 (2x+3)^{1/3} dx$
 - (b)(5 points) $\int \sin(2x)\cos(5x)dx$
 - (c)(7 points) $\int x^2 \tan^{-1} x dx$
 - (d)(7 points) $\int \frac{1}{(x^2+4)^{3/2}} dx$
 - (e)(11 points) $\int \frac{9x-7}{(x+2)(x^2-4x+13)} dx$
- 2. (a)(8 points) Let $f(x) = \begin{cases} 2e^x & x \ge 0 \\ x+2 & x < 0. \end{cases}$ Find the area of the region bounded by x = -3, x = 1, x-axis and the graph of y = f(x).
- (b)(7 points) Compute the arc length of the curve: $x = t \sin t, y = 1 \cos t, 0 \le t \le \pi$.
- 3. (15 points, 5 points each)Let A(3, -2, 1), B(1, -3, 2) and C(2, -1, -3) be three points on a plane Π .
 - (a) Find the angle $\angle BAC$
 - (b) Determine a unit vector perpendicular to the plane Π .
 - (c) Evaluate the shortest distance from a point D(-4, -1, 2) to the plane Π .
- 4. (a)(5 points) Simplify $\left(\frac{1-i}{1+i}\right)^{2019}$ into the polar form with principle arguments
- (b)(10 points) Solve $z^4+1=-\sqrt{3}i$ and express the answer in Euler form with principle arguments.

5.(5 points)
$$A = \begin{pmatrix} 3 & 1 & -2 \\ -3 & 3 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$
. Compute the determinant of A and then $|A^TA^{-3}|$

6.(15 points) Given a system of linear equations as follows.

$$x - 2y + 3z - 4w = 1$$

$$-2x + 3y - 4z + 10w = 2$$

$$x - y + 2z - 3w = 3$$

- (a) (11 points) Solve the above linear system by Gaussian elimination and express the solution in vector norm.
- (b) (4 points) Write down the corresponding homogeneous system and determine a non-trival solution without resolving it.

Useful Elementary Integrals

Constant and powers

$$1. \int k \, dx = kx + C.$$

Exponentials

$$3. \int e^x dx = e^x + C.$$

Trigonometric functions

$$5. \int \sin x \, dx = -\cos x + C.$$

$$7. \int \sec^2 x \, dx = \tan x + C.$$

9.
$$\int \sec x \tan x dx = \sec x + C.$$

11.
$$\int \tan x \, dx = \ln|\sec x| + C.$$

13.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C.$$

Algebraic functions

15.
$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C.$$

Hyperbolic functions

17.
$$\int \sinh x \, dx = \cosh x + C.$$

2.
$$\int x^{n} dx = \begin{cases} \frac{x^{n+1}}{n+1} + C, & n \neq -1\\ \ln|x| + C, & n = -1 \end{cases}$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C, \ a \neq 1, \ a > 0.$$

$$6. \int \cos x \, dx = \sin x + C.$$

$$8. \int \csc^2 x \, dx = -\cot x + C.$$

$$10. \int \csc x \cot x \, dx = -\csc x + C.$$

12.
$$\int \cot x \, dx = \ln|\sin x| + C.$$

14.
$$\int \csc x \, dx = \ln|\csc x - \cot x| + C.$$

16.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C.$$

18.
$$\int \cosh x \, dx = \sinh x + C.$$

Useful Trigonometric Identities

Pythagorean identities

$$1. \sin^2 \theta + \cos^2 \theta = 1.$$

2.
$$1 + \tan^2 \theta = \sec^2 \theta$$
.

3.
$$1 + \cot^2 \theta = \csc^2 \theta$$
.

Double-angle formulas

4.
$$\sin 2\theta = 2\sin \theta \cos \theta$$
.

5.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$
.

Half-angle formulas

6.
$$\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)$$
.

7.
$$\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$$
.

Compound-angle formulas

8.
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$
.

9.
$$cos(A \pm B) = cos A cos B \mp sin A sin B$$
.

10.
$$tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$$
.

Sum-to-product formulas

$$11. \sin A + \sin B = 2\sin \frac{A+B}{2} \cos \frac{A-B}{2}$$

12.
$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$
.

11.
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$
.
12. $\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$.
13. $\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$.
14. $\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$.

$$14. \cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Product-to-sum formulas

15.
$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right].$$
 16. $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right].$

16.
$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)].$$

17.
$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)].$$
 18. $\sin A \sin B = -\frac{1}{2} [\cos(A+B) - \cos(A-B)].$

18.
$$\sin A \sin B = -\frac{1}{2} [\cos(A+B) - \cos(A-B)].$$

Euler's formulas

19.
$$e^{\pm i\theta} = \cos \theta \pm i \sin \theta$$
.

20.
$$e^{i\theta} + e^{-i\theta} = 2\cos\theta$$
, $\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$.

21.
$$e^{i\theta} - e^{-i\theta} = 2i\sin\theta$$
, $\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$.

Remark. Formulas of the form $A \pm B = C \pm D$ contain two separate formulas

$$A+B=C+D$$
, and $A-B=C-D$.

Likewise, formulas of the form $A \pm B = C \mp D$ contain two separate formulas

$$A+B=C-D$$
, and $A-B=C+D$.

5.(5 points)
$$A = \begin{pmatrix} 3 & 1 & -2 \\ -3 & 3 & 3 \\ 0 & 2 & 2 \end{pmatrix}$$
. Compute the determinant of A and then $|A^TA^{-3}|$

6.(15 points) Given a system of linear equations as follows.

$$x - 2y + 3z - 4w = 1$$

$$-2x + 3y - 4z + 10w = 2$$

$$x - y + 2z - 3w = 3$$

- (a) (11 points) Solve the above linear system by Gaussian elimination and express the solution in vector norm.
- (b) (4 points) Write down the corresponding homogeneous system and determine a non-trival solution without resolving it.