CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

TURING MACHINE (II)

Hazırlayan: M.Ali Akçayol - Gazi Üniversitesi

Bilgisayar Mühendisligi Bölümü

Örnek: Bir Turing Makinesi $M = (K, \sum, \delta, s, H)$ şeklinde tanımlanmıştır.

 $K = \{q_0, h\}, \sum = \{a, \triangleright, \sqcup\}, \ s = q_0 \ ve \ H = \{h\} \ olsun. \ Geçiş fonksiyonu \ \delta \ aşağıdaki tabloda verildiği gibidir.$

q,	σ	$\delta(q,\sigma)$	
q_0	a	(q_0, \leftarrow)	F
q_0	Ц	(h,\sqcup)	
q_0	\triangleright	(q_0, \rightarrow)	

- ■M makinesi sola dogru tarama yapar ve ilk ⊔ sembolünü bulduğunda halt durumuna geçerek çalışmasını sonlandırır.
- •Eger > sembolüne kadar a varsa, en sola geldiğinde hemen sağa geçer ve tekrar sola geçer.
- Diger deterministik makinelerin tersine Turing Makinesinin çalışması hiç sonlandırılamayabilir.

Tanım:

Bir Turing makinesi $M = (K, \sum, \delta, s, H)$ için konfigürasyon

 $K \times \sum^* x \left(\sum^* \left(\sum - \{\sqcup\}\right) \cup \{e\}\right)$ kümesinin bir elemanıdır.

- ■Konfigürasyon sol bitiş sembolü ile başlar ve hiçbir zaman boşluk sembolüyle (山) bitmez.
- •(q, ▷a, aba), (q, ▷ ⊔ ⊔ ⊔ , ⊔ a) ve (q, ▷ ⊔ a ⊔ ⊔, e) konfigürasyonlardır. (q, ▷ baa, abc ⊔) ve (q, ⊔ aa, ba) konfigürasyon değillerdir.
- (q, wa, u) konfigürasyonunda tape içerigi kısaca **w<u>a</u>u ş**eklinde gösterilir. Okuma kafası 'a' dadır.
- (q, wa, u) yerine kısa olarak (q, w<u>a</u>u) yazılabilir.

Örnek:

Tanım: Bir Turing makinesi $M = (K, \sum, \delta, s, H)$ için iki konfigürasyon

 $(q_1, w_1a_1u_1)$ ve $(q_2, w_2a_2u_2)$ olsun. Burada $a_1, a_2 \in \Sigma$ ise $(q_1, w_1a_1u_1) \mid_M (q_2, w_2a_2u_2)$ konfigürasyon geçişi için

 $b \in \sum \bigcup \{ \rightarrow, \leftarrow \}$ için $\delta(q_1, a_1) = (q_2, b)$ geçiş fonksiyonu vardır ve burada,

$$1.b \in \sum$$
, $w_1 = w_2$, $u_1 = u_2$ ve $a_2 = b$, veya

$$2.b = \leftarrow$$
, $w_1 = w_2 a_2 ve$

$$(a)u_2 = a_1u_1$$
, eger $a_1 \neq \sqcup$ ve $u_1 \neq e$, veya

$$(b)u_2 = e$$
, eger $a_1 = \sqcup$ ve $u_1 = e$, veya

3.
$$b = \rightarrow$$
, $w_2 = w_1 a_1 ve$

$$(a)u_1 = a_2u_2$$
, veya

(b)
$$u_1 = u_2 = e$$
, ve $a_2 = \sqcup olur$.

Örnek: w, u∈ \sum olsun. u'nun sonu \Box olmasın ve a, b∈ \sum olsun.

Durum 1. $\delta(q_1, a) = (q_2, b)$

 \ddot{O} rnek: $(q_1, w\underline{a}u) \mid_{\mathbf{M}} (q_2, w\underline{b}u)$

Durum 2. $\delta(q_1, a) = (q_2, \leftarrow)$

(a) \ddot{O} rnek: $(q_1, wb\underline{a}u) \mid_{\mathbf{M}} (q_2, w\underline{b}au)$

(b) Örnek: $(q_1, wb \underline{\hspace{1cm}}) \mid_{\mathbf{M}} (q_2, w\underline{b})$

Durum 3. $\delta(q_1, a) = (q_2, \rightarrow)$

(a) Örnek: $(q_1, w\underline{a}bu) \mid_{\mathbf{M}} (q_2, w\underline{a}\underline{b}u)$

(b) Örnek: $(q_1, w\underline{a}) \mid_{\mathbf{M}} (q_2, w\underline{a})$

Tanım: \vdash_{M}^{*} ilişkisi \vdash_{M} ilişkisinin reflexive, transitive closure'dur.

 C_2 konfigürasyonu C_1 'den oluşturulmuştur eğer $C_1 \mid_{\mathbf{M}} {^*C_2}$ olursa

 $C_1 \mid_{\mathbf{M}} C_2 \mid_{\mathbf{M}} \dots \mid_{\mathbf{M}} C_n$ konfigürasyon geçişleri için length=n olur ve kısaca

 $C_1 \vdash_{\mathbf{M}} {}^{\mathbf{n}} C_n$ şeklinde gösterilir.

Burada n başlangıçtan sonuca gitmek için gereken adım sayısı olarak ifade edilmektedir.

Örnek: Bir Turing makinesi $M = (K, \Sigma, \delta, s, \{h\})$

 $K = \{q_0, q_1, h\}, \sum = \{a, \sqcup, \triangleright\}, s = q_0 olsun.$ Geçiş fonksiyonu δ aşağıdaki gibi tanımlansın.

q,	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	Ц	(h,\sqcup)
q_0	\triangleright	(q_0, \rightarrow)
q_1	a	(q_0,a)
q_1	Ц	(q_0, \rightarrow)
q_1	\triangleright	(q_1, \rightarrow)

 $(q_1,
ightharpoonup \underline{\ }$ aaaa) başlangıç konfigürasyonundan çalışmaya başlarsa yandaki geçişleri yapar,

$$\begin{array}{c} (q_1, \triangleright \underline{\sqcup} aaaa) \vdash_{M} (q_0, \triangleright \sqcup \underline{u} aaa) \\ \vdash_{M} (q_1, \triangleright \sqcup \underline{\sqcup} aaa) \\ \vdash_{M} (q_0, \triangleright \sqcup \sqcup \underline{u} aa) \\ \vdash_{M} (q_1, \triangleright \sqcup \sqcup \underline{\sqcup} aa) \\ \vdash_{M} (q_0, \triangleright \sqcup \sqcup \sqcup \underline{u} a) \\ \vdash_{M} (q_1, \triangleright \sqcup \sqcup \sqcup \sqcup \underline{u}) \\ \vdash_{M} (q_0, \triangleright \sqcup \sqcup \sqcup \sqcup \underline{u}) \\ \vdash_{M} (q_0, \triangleright \sqcup \sqcup \sqcup \sqcup \sqcup \underline{\sqcup}) \\ \vdash_{M} (q_0, \triangleright \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup) \\ \vdash_{M} (h, \triangleright \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup) \end{array}$$

SORU-1

$$M = (K, \Sigma, \delta, s, \{h\}) TM'si için$$

$$K = \{q_0, q_1, h\},$$

$$\Sigma = \{a, b, \bot, \emptyset\},$$

$$s = q_0,$$

Olsun. δ geçiş fonksiyonu ise aşağıdaki tablo ile verilsin,

- (a) (q₀, ◊aabbba) konfigürasyonundan başlayarak makinenin çalışmasını inceleyiniz.
- (b) Şeridin herhangi bir noktasından q0 durumundan başlayan makinenin ne iş yaptığını sözel olarak ifade ediniz.

q	σ	$\delta(q,\sigma)$
q_0	а	(q ₁ , b)
q_0	b	(q ₁ , a)
q_0	Ш	(h, ∟)
q_0	\Diamond	(q_0, \rightarrow)
q_1	а	(q_0, \rightarrow)
q_1	b	(q_0, \rightarrow)
q_1	Ш	(q_0, \rightarrow)
q_1	\Diamond	(q_1, \rightarrow)


```
q<sub>0</sub>, ◊aabbba
q<sub>1</sub>, ◊babbba
q<sub>0</sub>, ◊babbba
q<sub>1</sub>, ◊bbbbba
q<sub>0</sub>, ◊bbbbba
q<sub>1</sub>, ◊bbabba
q<sub>0</sub>, ◊bbabba
q1, ◊bbaaba
q₀, ◊bbaaba
q<sub>1</sub>, ◊bbaaaa
q₀, ◊bbaaaa
q<sub>1</sub>, ◊bbaaab
q<sub>0</sub>, ◊bbaaab<u>u</u>
h, ◊bbaaab∟
```

SORU-2

M Turing makinesi $M = (K, \Sigma, \delta, s, \{h\})$ olsun. Burada:

$$K = \{q_0, q_1, q_2, h\},$$

$$\Sigma = \{a, q_1, \diamond\},$$

$$s = q_0, \Box$$

Ve δ geçiş fonsiyonu aşağıdaki gibi verilsin. $n \ge 0$ için M makinesinin $(q_0, \lozenge_{\overline{a}}a^n\underline{a})$ konfigürasyonları için ne yaptığını bulunuz.

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1, \leftarrow)
q_0		$(q_0, \mathbf{\hat{q}}) \sqcup$
q_0	\Diamond	(q_0, \rightarrow)
q_1	a	$(q_2, \mathbf{q}) \sqcup$
q_1	M L	(h, 🏟) 🖳
q_1	\Diamond	(q_1, \rightarrow)
q_2	a,	(q ₂ , a)
q_2		(q_0, \leftarrow)
q_2	\Diamond	(q_2, \rightarrow)


```
q0, \Diamond \sqcup a \underline{a} \underline{a} \underline{a} \underline{a}
q1, \Diamond \sqcup a \underline{a} \underline{a} \underline{a} \underline{a}
q2, \Diamond \sqcup a \underline{a} \underline{a} \underline{u} \underline{a}
q0, \Diamond \sqcup a \underline{a} \underline{a} \sqcup a
q1, \Diamond \sqcup a \underline{a} \underline{a} \sqcup a
q2, \Diamond \sqcup a \underline{u} \underline{a} \sqcup a
q0, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
q1, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
q1, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
\underline{h}, \Diamond \underline{u} \underline{a} \sqcup a \sqcup a
```

- M makinesi sola doğru ilerleyerek a sembollerini birer atlayarak boşluk yapar.
- Eğer n tek sayı ise sonsuz çevrime girer, eğer n çift ise makine sonlanır.

SORU-2

Sağa doğru şeridi tarayan ve ardarda iki a sembolü gördüğünde halt durumuna geçen TM tasarlayınız.

TM için $\Sigma = \{a, b, \bot, \emptyset\}$ şeklindedir.

$$\begin{split} \mathbf{M} = (K, \Sigma, \delta, s, \{h\}), & \text{where} \\ K = \{q_0, q_1, h\}, \\ \Sigma = \{a, b, \sqcup, \emptyset\}, \\ s = q_0 \end{split}$$

ÖDEV

- 4.1.2
- 4.1.3.