Transport

Przemysław Hołda

Do gminy Geometria przyjeżdża rządowa delegacja. Sołtys chcąc pochwalić się dobrze rozwiniętym transportem poprosił nas o pomoc. W Geometrii jeździ metro, które jest podzielone na proste odcinki będące liniami metra – każda z nich ma stację początkową i końcową. Linie metra mogą w niektórych miejscach się przecinać – te miejsca to stacje przesiadkowe. Metro zostało tak wybudowane, że dowolne dwie linie metra mają co najwyżej jedną wspólną stację przesiadkową oraz żadne trzy linie metra nie przecinają się w tym samym punkcie. Ponadto dowolne dwie stacje (początkowe, końcowe, przesiadkowe) w przyjętym układzie współrzędnych mają różną pierwszą współrzędną oraz różną drugą współrzędną – wartość bezwzględna różnicy między dowolnymi współrzędnymi (dwoma pierwszymi lub dwoma drugimi) jest zawsze większa od minimalnej wartości danej w kodzie jako EPS. Sołtys poprosił nas o podanie liczby wszystkich stacji przesiadkowych w gminie. Ale to nie wszystko. Chce on również, żebyśmy znaleźli maksymalną długość nieprzerwanego fragmentu metra między dwoma dowolnymi stacjami (początkowymi, końcowymi, przesiadkowymi).

Kod

W pliku Lab12.cs znajduje się część implementacji rozwiązania. Implementacja zakłada zamiatanie pionową prostą od lewej do prawej. Próba użycia jej w innym kierunku doprowadzi do błędu.

W pliku można odnaleźć strukturę Point, która reprezentuje dwuwymiarowy punkt (pierwsza współrzędna X oraz druga współrzędna Y). Zawiera ona metodę DistTo, za pomocą której można policzyć dystans między dwoma punktami.

Następnie dostępna jest klasa Segment reprezentująca odcinek. Odcinek ma punkt startowy i końcowy (kolejno Start i End). Dostępne metody to Intersects (sprawdza czy odcinki się przecinają), IntersectionPoint (znajduje punkt przecięcia dwóch odcinków) oraz Equals (sprawdza czy odcinki są takie same).

Kolejna dostępna klasa to SegmentComparer (interfejs IComparer
Segment>), która jest wykorzystywana do porównywania odcinków względem drugiej współrzędnej (y) punktu przecięcia z pionową prostą o zadanej pierwszej współrzędnej (x). Wartość verticalLineXCoordinate reprezentuje pierwszą współrzędną (x) pionowej prostej. Dostępna metoda Compare porównuje dwa odcinki i zwraca ich kolejność względem przecięcia z pionową prostą.

Ostatnia dostępna klasa to YStructure. Jest to Y-struktura trzymająca odcinki posortowane zgodnie z działaniem metody Compare z klasy SegmentComparer – odcinki będą posortowane od najmniejszej do największej wartości drugiej współrzędnej (y) ich punktu przecięcia z zamiatającą pionową prostą. Klasa oferuje metody działające w czasie $\mathcal{O}(\log n)$ (n to liczba elementów w strukturze). Są to Insert (wstawia odcinek do struktury), Delete (usuwa odcinek ze struktury), Above (zwraca najbliższego sąsiada nad sprawdzanym odcinkiem), Below (zwraca najbliższego sąsiada pod sprawdzanym odcinkiem) i Interchange (zamienia kolejność dwóch odcinków). Y-struktura sama decyduje jak ustawić pierwszą współrzędną (x) zamiatającej pionowej prostej. W czasie zamiatania należy pamiętać o każdorazowym wywołaniu metody Interchange, gdy jakieś odcinki się przetną.

W kodzie pozostawione są typ wyliczeniowy EventType oraz klasy SweepEvent i SweepEventComparer (interfejs IComparer<SweepEvent>). Stanowi to sugestię od czego warto zacząć implementację rozwiązania. Ponadto przydatna może się okazać struktura danych SortedSet.

Bardziej szczegółowy opis działania istniejącego kodu znajduje się we wspomnianym pliku.

Dane

• lines – linie metra, gdzie każda linia reprezentowana jest przez współrzędne stacji początkowej i końcowej. Współrzędne stacji to dwie liczby całkowite w zakresie od 0 do 10³. W zadaniu zawsze istnieje co najmniej jedna linia metra.

Etapy

- Etap pierwszy (1.5p) znaleźć liczbę wszystkich stacji przesiadkowych.
- Etap drugi (1p) znaleźć maksymalną długość nieprzerwanego fragmentu metra między dwoma dowolnymi stacjami.

Uwagi i wskazówki

- Zadanie rozwiązujemy w dwuwymiarowej przestrzeni euklidesowej.
- W etapie drugim zwrócony dystans będzie porównywany z wzorcowym z pewną dokładnością (EPS).
- W zadaniu jest n linii metra i k stacji przesiadkowych. Maksymalne złożoności obliczeniowe etapów to kolejno $\mathcal{O}((n+k)\log n)$ i $\mathcal{O}((n+k)\log(n+k))$.
- Wartości na rysunkach w przykładzie i w testach podane są w przybliżeniu.

Przykład

Rysunek 1: Niebieskie punkty (A-J) oznaczają stacje początkowe i końcowe. Linie metra to AB, CD, EF, GH oraz IJ. Trzy czerwone punkty (K, L, M) to stacje przesiadkowe. Najdłuższy nieprzerwany fragment metra należy do linii AB – jest to odcinek MA, a jego długość wynosi około 90.1.

Testy

Test 1 – "Przykład z zadania"

Rysunek 2: Są trzy stacje przesiadkowe K, L i M. Najdłuższy nieprzerwany fragment metra to odcinek $MA (\approx 90.1)$.

Test 2 – "Odwrócony przykład z zadania"

Rysunek 3: Etykiety linii metra zostały odwrócone. Są trzy stacje przesiadkowe K, L i M. Najdłuższy nieprzerwany fragment metra to odcinek MB (≈ 90.1).

Test 3 – "Jedna linia metra"

Rysunek 4: Brak stacji przesiadkowych. Najdłuższy nieprzerwany fragment metra to odcinek $AB~(\approx 1.4)$.

Test 4 – "Dwie linie metra bez przecięcia"

Rysunek 5: Brak stacji przesiadkowych. Najdłuższy nieprzerwany fragment metra to odcinek $CD~(\approx 29.2)$.

 ${\it Test} \ 5$ – "Trójkąt"

Rysunek 6: Są trzy stacje przesiadkowe G, H i I. Najdłuższy nieprzerwany fragment metra to odcinek $GI \approx 224.8$).

Test 6 – "Gmina Manhattan"

Rysunek 7: Są cztery stacje przesiadkowe $I,\ J,\ K$ i L. Najdłuższy nieprzerwany fragment metra to odcinek IK (≈ 273.6).

Test 7 – "Współliniowe metro"

Rysunek 8: Brak stacji przesiadkowych. Najdłuższy nieprzerwany fragment metra to odcinek $CD~(\approx 5.7).$

Test 8 – "Równoległe metro"

Rysunek 9: Brak stacji przesiadkowych. Najdłuższy nieprzerwany fragment metra to odcinek $CD~(\approx 11.3)$.

Test 9 – "Mała gmina"

Rysunek 10: Są dwie stacje przesiadkowe O i P. Najdłuższy nieprzerwany fragment metra to odcinek KO (≈ 44.6).

Test 10 – "Sen o Skaryszewie"

Rysunek 11: Jest trzynaście stacji przesiadkowych I_1 - U_1 . Najdłuższy nieprzerwany fragment metra to odcinek L_1M_1 (≈ 136.1).

Test 11 – "Siatka"

Rysunek 12: Jest dziewięć stacji przesiadkowych M-U. Są dwa nieprzerwane fragmenty metra o maksymalnej długości – odcinki AM i UF (≈ 44.5).