Лабораторная работа №5

Модель хищник-жертва

Астафьева Анна Андреевна, НПИбд-01-18

Содержание

	Выводы	
•	3.1 Теоретические сведения	
3	Выполнение лабораторной работы	7
2	Задание	6
1	Цель работы	5

Список таблиц

Список иллюстраций

3.1	Эволюция популяции жертв и хищников в модели Лотки-Вольтерры	8
3.2	График колебаний изменения числа популяций хищников и жертв	
	с начальными значениями х=11, у=22	10
3.3	Зависимость изменения численности хищников от изменения чис-	
	ленности жертв с начальными значениями х=11, y=22	10
3.4	Зависимости изменения численности хищников от изменения чис-	
	ленности жертв с начальными значениями в стационарном состо-	
	иинк	11
3.5	График колебаний изменения числа популяций хищников и жертв	
	с начальными значениями в стационарном состоянии	11

1 Цель работы

Цель работы — построение модели хищник-жертва.

2 Задание

Вариант 42

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.56x(t) + 0.057x(t)y(t) \\ \frac{dx}{dt} = 0.57x(t) - 0.056x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0\,=\,11, y_0\,=\,22.$ Найдите стационарное состояние системы.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории). 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает. 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными. 4. Эффект насыщения численности обеих популяций не учитывается. 5. Скорость роста численности жертв уменьшается пропорционально численности хищников.

$$\begin{cases} \frac{dx}{dt} = -ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cx(t) - dx(t)y(t) \end{cases}$$

В этой модели x – число хищников, y - число жертв. Коэффициент a описывает скорость вымирания хищников, лишенных пищи в виде жертв, - естественный прирост числа жертв в отсутствие хищников. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия способствует увеличению популяции хищников, но уменьшает популяцию жертв (члены bxy и -dxy в правой

части уравнения).

Рис. 3.1: Эволюция популяции жертв и хищников в модели Лотки-Вольтерры

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние (А на рис. 3.1), всякое же другое начальное состояние (В) приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в состояние В.

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке: $x_0=\frac{c}{d}, y_0=\frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период

определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

3.2 Ход выполнения

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -ax(t) + bx(t)y(t) \\ \frac{dy}{dt} = cx(t) - dx(t)y(t) \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = -0.56x(t) + 0.057x(t)y(t) \\ \frac{dx}{dt} = 0.57x(t) - 0.056x(t)y(t) \end{cases}$$

а = 0.56 (коэффициент естественной смертности хищников)

с = 0.57 (коэффициент естественного прироста жертв)

b = 0.057 (коэффициент увеличения числа хищников)

d = 0.056 (коэффициент смертности жертв)

Начальное число хищников – $x_0=11$, начальное число жертв – $y_0=22$.

Код программы в Modelica:

end Wolfs;

```
model Wolfs
parameter Real a = 0.56; // коэффициент естественной смертности хищников
parameter Real c = 0.57; // коэффициент естественного прироста жертв
parameter Real b = 0.057; // коэффициент увеличения числа хищников
parameter Real d = 0.056; // коэффициент смертности жертв
Real x(start = 11.0);
Real y(start = 22.0);
equation
der(x) = -ax + bxy;
der(y)=cy-dxy;
```

1. Построение графиков изменения численности хищников (x) и численности жертв (y) (рис. 3.2):

Рис. 3.2: График колебаний изменения числа популяций хищников и жертв с начальными значениями x=11, y=22

2. Построение зависимости численности популяций хищников и жертв (фазовый портрет системы) (рис. 3.3):

Рис. 3.3: Зависимость изменения численности хищников от изменения численности жертв с начальными значениями x=11, y=22

3. Стационарное состояние находится в точке: $x_0=\frac{c}{d},y_0=\frac{a}{b}$, примерные значения для моего случая $x_0=\frac{0.57}{0.056}=10.179,y_0=\frac{0.56}{0.057}=9.825$. Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=$

 y_0 , то в любой момент времени численность популяций изменяться не будет (рис. 3.4, 3.5):

Рис. 3.4: Зависимости изменения численности хищников от изменения численности жертв с начальными значениями в стационарном состоянии

Рис. 3.5: График колебаний изменения числа популяций хищников и жертв с начальными значениями в стационарном состоянии

Код программы в Modelica:

model Wolfs

рагате Real a = 0.56; // коэффициент естественной смертности хищников parameter Real c = 0.57; // коэффициент естественного прироста жертв parameter Real b = 0.057; // коэффициент увеличения числа хищников

```
parameter Real d = 0.056; // коэффициент смертности жертв
Real x(start = c/d);
Real y(start = a/b);
equation
der(x)=-ax+bxy;
der(y)=cy-dxy;
end Wolfs;
```

4 Выводы

Я изучила модель хищник-жертва, построила графики колебаний изменения числа популяций хищников и жертв, а также зависимость изменения численности хищников от изменения численности жертв (фазовый портрет системы).