With thanks to Kate Penner for her Fall 2015 review session.

Week 9

- 1. Axioms of topology
 - Empty set and closed set are open.
 - Finite/infinite union of open sets is open.
 - Finite intersection of open sets is open.
- 2. Website topology
- 3. Prove axioms of topology from definitions
- 4. Vocabulary related to sets
 - Open set
 - Closed set
 - Boundary
 - Closure
 - Interior
- 5. Redefining convergence topologically in \mathbb{R}^n
- 6. Hausdorff space (Proof 9.1: ℝ is Hausdorff)
- 7. Prove convergence in \mathbb{R}^n
- 8. Proof 9.2: Infinite triangle inequality
- 9. Solve differential equations using diagonalization

Week 10

- 1. Limit of a sequence in \mathbb{R}
- 2. Limit of a function $f: \mathbb{R}^m \to \mathbb{R}^n$
- 3. Skill: Show a limit exists or does not exist
 - Exists: try using polar coordinates (only depends on θ)
 - DNE: depends on angle of approach (θ in polar coordinates), or two paths disagree
- 4. Continuity in \mathbb{R}^n (Proof 10.1: f is continuous iff every sequence $\vec{x}_n \to \vec{x}_0$ is good)
- 5. Compact sets: closed and bounded
- 6. Bounded: wholly contained within a ball centered at the origin
- 7. Bolzano-Weierstrass: on a compact set, any sequence has a convergent subsequence
- 8. Proof 10.2: A continuous function on a compact set has and achieves its supremum

December 4, 2017 Page 1

- 9. Nested Compact Set Theorem: If you have a decreasing sequence of compact sets $U_1 \supseteq U_2 \supseteq U_3 \cdots$, the infinite intersection is **not** empty
- 10. Heine-Borel: On a compact set, any open cover has a finite subcover
- 11. Directional derivatives

$$\nabla_{\vec{v}} f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h}$$

- 12. Partial derivatives
- 13. Gradient vector: column of partial derivatives
- 14. Jacobian matrix $(f: \mathbb{R}^n \to \mathbb{R})$:

$$\begin{bmatrix} D_1 f & \cdots & D_n f \end{bmatrix}$$

15. : Linear approximation: $f(\vec{a} + h\vec{v}) = f(\vec{a}) + [Jf(\vec{a})](h\vec{v})$

Week 11

- 1. Use remainder $\rightarrow 0$ to prove a derivative (Proof 11.1: product rule)
- 2. Prove differentiability with remainder technique
- 3. Proof 11.2: Derivative = Jacobian
- 4. When Jacobian exists but function is not differentiable (Not differentiable: linearity of the derivative breaks down)
- 5. Matrix derivatives with the chain rule (e.g. inverse and squaring functions)
- 6. Newton's Method (use and relation to tangent line approximation)
- 7. Inverse function theorem: if f is strictly increasing/decreasing, there exists a local inverse g

$$g'(y_0) = \frac{1}{f'(g(y_0))} \rightarrow [Dg(\vec{y})] = [Df(g(\vec{y}))]^{-1}$$

8. Uses of the inverse function theorem

Week 12

- 1. Implicit function theorem and use
- 2. Manifolds: particularly well-behaved smooth curves/surfaces in an arbitrary number of dimensions
- 3. 3 ways to describe manifolds
 - Graph
 - Locus function (F = 0)

December 4, 2017 Page 2

- Parametrization
- 4. Smooth: locally the graph of a C^1 function (or, for locus functions, [DF] is onto)
- 5. Parametrizations should be one-to-one and onto
- 6. Tangent space: $\dot{x} = [Dg(\vec{z})]\dot{y}$
- 7. Tangent **plane**: $\vec{x} \vec{a} = [Dg(\vec{z})](\vec{y} \vec{b})$
- 8. ker $[DF(\vec{c})]$ or img $[D\gamma]$ gives a basis for the tangent space
- 9. Unconstrained critical points: Find by setting all partials equal to zero, and classify by using the Hessian matrix
- 10. Constricted optimization
 - \vec{c} is a critical point of F restricted to M iff $Df = \lambda_1 DF_1 + \lambda_2 DF_2 + ... + \lambda_k DF_k$
 - Apply Lagrange Multipliers
 - \bullet f is the function we want to maximize
 - F is our constraint (written as a locus), which forms a manifold
 - Or parametrize the manifold using a parametrization γ and consider critical points of $f(\gamma)$.

December 4, 2017 Page 3