人臉辨識

一、OpenCV 人臉分類器

01. 影像測試

A. 匯入模塊函數

```
import cv2
import dlib
import matplotlib.pyplot as plt
import time
```

- B. 使用 OpenCV 訓練完成的人臉辨識 Haar 分類模型:
 - ▶ 回傳的人臉位置為左上角的 x, y 與寬高 w, h
 - ▶ 回傳的格式為陣列 (Array) 的型式

```
img = cv2.imread("Face test.jpg")
      img = cv2.resize(img, None, fx=1.5, fy=1.5)
      cv detector = cv2.CascadeClassifier('haarcascades/haarcascade frontalfac
      e alt2.xml')
      start = time.time()
      cv faces = cv detector.detectMultiScale(img,scaleFactor=1.2,minNeighbors
      =3, minSize=(15, 15), flags = cv2.CASCADE SCALE IMAGE)
      end = time.time()
      print("time:%0.3f" %(end - start))
[02]
      for i in range(len(cv faces)):
         x = cv faces[i][0]
         y = cv faces[i][1]
         w = cv faces[i][2]
         h = cv faces[i][3]
          cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 4)
      plt.figure(figsize=(15,10))
      plt.imshow(cv2.cvtColor(img, cv2.COLOR BGR2RGB))
      plt.show()
```

02. 攝影機測試

A. 使用 OpenCV 訓練完成的人臉辨識 Haar 分類模型:

```
VIDEO IN = cv2.VideoCapture(0)
      while True:
         hasFrame, img = VIDEO IN.read()
          img = cv2.resize(img, None, fx=0.6, fy=0.6)
          cv faces = cv detector.detectMultiScale(img,scaleFactor=1.2,minNeighb
      ors=3, minSize=(15, 15), flags = cv2.CASCADE SCALE IMAGE)
          for i in range(len(cv faces)):
             x = cv faces[i][0]
[03]
             y = cv faces[i][1]
             w = cv faces[i][2]
             h = cv faces[i][3]
          cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 4)
          cv2.imshow("Frame", img)
          if cv2.waitKey(1) & 0xFF == ord('q'):
             break
      VIDEO IN. release()
      cv2.destroyAllWindows()
```

二、Dlib 人臉分類器

01. 安裝 Dlib

- A. 請使用 pip 安裝下列六個套件:
 - numpy, scipy, matplotlib, scikit-learn, jupyter, opency-python
- B. 再行安裝 Dlib,有兩種安裝方式:
 - ➤ pip install dlib (不建議)
 - ▶ Dlib 官網下載包 https://pypi.org/simple/dlib/ (下載 dlib-19.8.1-cp36-cp36m-win_amd64.whl)

02. 影像測試

- A. 使用 Dlib 訓練完成的人臉辨識分類模型:
 - ▶ 回傳的人臉位置為左上角的 x1, y1 與右下角的 x2, y2
 - ▶ 回傳的格式為 dlib.rectangle 的型式,若要提取其值則是使用 left、top、right 與 bottom

```
img = cv2.imread("Face_test.jpg")
img = cv2.resize(img, None, fx=1.5, fy=1.5)
dlib_detector = dlib.get_frontal_face_detector()
```

```
start = time.time()
dlib_faces = dlib_detector(img)
end = time.time()
print("time:%0.3f" %(end - start))

for i in range(len(dlib_faces)):
    x1 = dlib_faces[i].left()
    y1 = dlib_faces[i].top()
    x2 = dlib_faces[i].right()
    y2 = dlib_faces[i].bottom()

    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 4)

plt.figure(figsize=(15,10))
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
```

03. 攝影機測試

A. 使用 Dlib 訓練完成的人臉辨識分類模型:

```
VIDEO IN = cv2.VideoCapture(0)
      while True:
          hasFrame, img = VIDEO IN.read()
          img = cv2.resize(img, None, fx=0.6, fy=0.6)
          dlib faces = dlib detector(img)
          for i in range(len(dlib faces)):
             x1 = dlib faces[i].left()
             y1 = dlib faces[i].top()
             x2 = dlib faces[i].right()
[05]
             y2 = dlib faces[i].bottom()
          cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 4)
          cv2.imshow("Frame", img)
          if cv2.waitKey(1) & 0xFF == ord('q'):
             break
      VIDEO IN.release()
      cv2.destroyAllWindows()
```

表情辨識

一、使用表情辨識模型

01. 人臉與表情辨識分類器及貼圖方法

A. 匯入模塊函數

```
from tensorflow import keras
import dlib
import numpy as np
import matplotlib.pyplot as plt
import cv2
```

B. 讀取訓練完成的 Keras FER 分類模型與 Dlib 人臉辨識器

```
model = keras.models.load_model('model.h5')
model.summary()
detector = dlib.get_frontal_face_detector()
```

C. 建立字典與列表, 分別為表情的名稱與框的顏色:

顏色: 0:紅色, 1:黑色, 2:灰色, 3:橘色, 4:藍色, 5:紫色, 6:綠色名稱: 0:生氣, 1:厭惡, 2:恐懼, 3:開心, 4:難過, 5:驚訝, 6:中立

```
expression_dict = {0: "Angry", 1: "Disgust", 2: "Fear", 3: "Happy",

4: "Sad", 5: "Surprise", 6: "Neutral"}

colors = [(0,0,255),(0,0,0),(135,138,128),(18,153,255),

(255,0,0),(240,32,160),(0,255,0)]
```

D. 讀取各表情的貼圖影像:

圖一、自己設計的表情貼圖

```
img_Angry = cv2.imread("Image_fer/00_Angry_Second.png")
img_Disgust = cv2.imread("Image_fer/01_Disgust_Second.png")
img_Fear = cv2.imread("Image_fer/02_Fear_Second.png")
img_Happy = cv2.imread("Image_fer/03_Happy_Second.png")
img_Sad = cv2.imread("Image_fer/04_Sad_Second.png")
img_Surprise = cv2.imread("Image_fer/05_Surprise_Second.png")
img_Neutral = cv2.imread("Image_fer/06_Neutral_Second.png")
```

E. 建立一 detect_faces 函數, 將人臉位置 dlib.rectangle 的格式轉為列表, 並把整個影像轉為灰階影像:

```
def detect faces(frame):
          gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY)
          face = detector(frame)
          faces = []
          for i in range(len(face)):
              x = face[i].left()
              y = face[i].top()
[05]
              w = face[i].right()-face[i].left()
             h = face[i].bottom()-face[i].top()
              if x<0:
                 x = 0
              if v<0:
                 y = 0
              faces.append((x, y, w, h))
          return gray, faces
```

F. 建立 face_check 函數

G. 建立 face_post 函數

```
def face_post(frame, top_left, width, prediction):
    if prediction =="Angry":
        img = img_Angry

if prediction =="Disgust":
        img = img_Disgust

if prediction =="Fear":
        img = img_Fear
```

```
if prediction =="Happy":
      img = img_Happy
   if prediction =="Sad":
      img = img_Sad
   if prediction =="Surprise":
      img = img_Surprise
  if prediction =="Neutral":
      img = img Neutral
  img_wh = int(width/2)
   img = cv2.resize(img, (img wh,img wh))
   img_top_left = (int(top_left[0]-img_wh),int(top_left[1]))
  img_bottom_right = (int(top_left[0]),int(top_left[1]+img_wh))
   if img_top_left[0]>0 and img_top_left[1]>0:
      img gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
      _, mask = cv2.threshold(img_gray, 25, 255, cv2.THRESH_BINARY_INV)
      area = frame[img_top_left[1]: img_top_left[1]+img_wh, img_top_left[0]: img_top
left[0]+img wh]
      area_no = cv2.bitwise_and(area, area, mask = mask)
      final = cv2.add(area_no, img)
      frame[img top left[1]: img top left[1]+img wh, img top left[0]: img top left
[0]+img_wh] = final
   return frame
```

- 2. and_img = cv2.bitwise_and(img1, img2, mask): 是對二進制數據進行「and」操作,例如: 1&1=1, 1&0=0, 0&1=0, 0&0=0。若 mask (x, y)!=0, and_img (x, y)=img1 (x, y) ^ img2 (x, y), 否則 and_img (x, y) 保留其原始值,並且 and_img 陣列的所有元素的預設值為 0。其他 bitwise_or、bitwise_xor 與 bitwise_not 等函數也有相同的功能
- 3. output_array = cv2.add(array1, array2):兩個陣列像素相加,注意兩個陣列的大小類型必須一樣

02. 影像測試

A. 以影像測試 face_check 函數

```
img = cv2.imread("Face_test.jpg")
img = cv2.resize(img, None, fx=1.4, fy=1.4)
img = face_check(img)
```

```
plt.figure(figsize=(15,15))
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
```

B. 以攝影機測試 face_check 函數

```
While True:
    hasFrame, img = VIDEO_IN.read()
    img = cv2.resize(img, None, fx=0.5, fy=0.5)
    img = face_check(img)
    cv2.imshow("Frame", img)

if cv2.waitKey(1) & 0xFF == ord('q'):
    break

VIDEO_IN.release()
    cv2.destroyAllWindows()
```

二、設計表情辨識使用者介面

01. 建立 GUI 介面

Facial Expression Recognition			
Facial Expression Recognition Please enter the threshold and image.			
Threshold, Image and Display			
Angry		Open Image	
Disgusted		Open Image	
Fearful		Open Image	
Нарру		Open Image	
Sad		Open Image	
Surprised		Open Image	
Neutral		Open Image	
Image show			
Get Result Clear text			

圖二、GUI 介面

A. 匯入套件與模型

```
from tensorflow import keras
    import dlib
    import cv2
    import numpy as np
    import tkinter as tk

[10] model = keras.models.load_model('model_FER.h5')
    detector = dlib.get_frontal_face_detector()
    expression_dict = {0: "Angry", 1: "Disgust", 2: "Fear", 3: "Happy", 4: "Sa
    d", 5: "Surprise", 6: "Neutral"}
    colors = [(0,0,255),(0,0,0),(135,138,128),(18,153,255),(255,0,0),(240,3
    2,160),(0,255,0)]
```

B. 建立 GUI 視窗

```
app = tk.Tk() #建立視窗
app.title('FER') #建立視窗標題
app.geometry('440x520') #建立視窗大小
app.mainloop() #程式開始無限迴圈
```

C. 佈局與放置標籤文字

```
#建立書布與位置
      frame title = tk.Frame(app)
      frame title.grid(column=0, row=0, ipadx=5, pady=5)
      frame input = tk.LabelFrame(app, text='Threshold, Image and Display')
      frame input.grid(column=0, row=1, padx=20, sticky=tk.W+tk.N)
      frame img = tk.LabelFrame(app, text='Image show')
      frame img.grid(column=0, row=2, padx=20, sticky=tk.W+tk.N)
[12]
      frame output = tk.Frame(app)
      frame output.grid(column=0, row=3)
      # 建立標題與位置
      label Title = tk.Label(frame title, text="Facial Expression Recognition")
      label Title.grid(column=0, row=0, ipadx=5, pady=5)
      label Subtitle = tk.Label(frame title, text="Please enter the threshold an
      d image.")
      label Subtitle.grid(column=0, row=1, ipadx=5, pady=5)
```

```
# 範例 1 放置標籤,並顯示佈局
label_input = tk.Label(frame_input,text="Label Input")
label_input.grid(column=0, row=0)

[13] label_img = tk.Label(frame_img,text="Label Img")
label_img.grid(column=0, row=0)

label_output = tk.Label(frame_output,text="Label Output")
label_output.grid(column=0, row=0)
```

- 4. Var = tk.Frame(x): 為框架控件,在屏幕上顯示一個矩形區域作為容器, x 為放置的視窗
- 5. Var.grid(column=i, row=j, sticky, padx, pady): 可將框架、標籤等控件(Var)放入指定的位置,如表格方式呈現,將控件放入第 i 欄,第 j 列, sticky 可以為 tk.N,W,S,E 分別是靠上左下右。ipadx, ipady, padx, pady 為內與外的左邊與上面的間隙距離。其他放置位置的方法類似的有 pack(), place()
- 6. Var = tk.Label(x, text="text", image=img): 為標籤控件,可以顯示文字與圖片, text 為顯示字串文字, image 為 tk 影像, x 為放置的框架
- 7. Var = tk.LabelFrame(x, text='text'): 為文字虛框的容器控件,常用與複雜的窗口佈局,x 為放置的視窗, text 為顯示字串文字

D. 批量放置標籤控件

▶ 放置單個

```
# 範例 2-1 單個標籤
label = tk.Label(frame_input, text = 'Angry')
label.grid(column=0, row=0, ipadx=0, pady=0, sticky=tk.W+tk.N)
```

▶ for 迴圈放置多個

```
# 範例 2-2 多個標籤

label_name = ['Angry','Disgusted','Fearful','Happy','Sad','Surprised','Neutral']

for i in range(len(label_name)):

label = tk.Label(frame_input,text = label_name[i])

label.grid(column=0, row=i, ipadx=5, pady=5, sticky=tk.W+tk.N)
```

E. 批量放置輸入欄控件

▶ 放置單個

```
# 範例 3-1 單個輸入欄
entry = tk.Entry(frame_input, width=10) entry.grid(column=1, row=0, padx=10, pady=5, sticky=tk.N)
```

▶ for 迴圈放置多個

範例 3-2 多個輸入欄 entry_list = []

```
for i in range(len(label_name)):
    TkEntry = tk.Entry(frame_input, width=10)
    entry_list.append(TkEntry)
    entry_list[i].grid(column=1, row=i, padx=10, pady=5, sticky=tk.N)
```

F. 批量放置按鈕控件

▶ 放置單個

```
# 範例 4-1 單個接鈕
button = tk.Button(frame_input, text = 'Open Image', command = None)
button.grid(column=2, row=i, padx=10, pady=5, sticky=tk.N)
```

▶ for 迴圈放置多個

```
# 範例 4-2 多個按鈕
button_list = []

for i in range(len(label_name)):

TkButton = tk.Button(frame_input, text = 'Open Image', command = None)
button_list.append(TkButton)
button_list[i].grid(column=2, row=i, padx=10, pady=5, sticky=tk.N)
```

G. 批量放置多選勾選框控件

▶ 放置單個

```
# 範例 4-1 單個多選勾選框

chkValue = tk.BooleanVar()

chkValue.set(False)

chkb = tk.Checkbutton(frame_input, text=None, var=chkValue)

chkb.grid(column=3, row=0, padx=10, pady=5, sticky=tk.W)
```

▶ for 迴圈放置多個

```
# 範例 4-2 多個多選勾選框

chk_Var_list = []

for i in range(len(label_name)):
    chkValue = tk.BooleanVar()
    chkValue.set(False)
    chk_Var_list.append(chkValue)
    chkb = tk.Checkbutton(frame_input, text=None, var=chk_Var_list[i])
    chkb.grid(column=3, row=i, padx=10, pady=5, sticky=tk.W)
```

H. 批量放置標籤圖片控件

放置單個

```
# 範例 5-1 單個圖片
img_path_Angry = "Image_fer/00_Angry_Second.png"
```

```
img = Image.open(img_path_Angry).resize((40,40))
imgtk = ImageTk.PhotoImage(img)
label_img = tk.Label(frame_img, image=imgtk)
label_img.grid(column=i, row=0, ipadx=5, pady=5)
```

▶ for 迴圈放置多個

```
# 範例 5-2 多個圖片
      img path = ["Image fer/00 Angry Second.png",
                 "Image fer/01 Disgust Second.png",
                 "Image fer/02 Fear Second.png",
                 "Image fer/03 Happy Second.png",
                 "Image fer/04 Sad Second.png",
                 "Image fer/05 Surprise Second.png",
                 "Image fer/06 Neutral Second.png"]
[23]
      imgtk list, label img list = [], []
      for i in range(len(label name)):
          img = Image.open(img path[i]).resize((40,40))
          imgtk = ImageTk.PhotoImage(img)
         imgtk list.append(imgtk)
         label img = tk.Label(frame img, image=imgtk list[i])
          label img list.append(label img)
          label img list[i].grid(column=i, row=0, ipadx=5, pady=5)
```

H. 批量建立 TK 字串變數

▶ for 迴圈放置多個

```
# 範例 6 多個 Tk String 變數
imgpath_Var = []
for i in range(len(label_name)):
    var = tk.StringVar()
    imgpath_Var.append(var)
```

1. 將有迴圈的多個控件進行總整理

```
"Image fer/06 Neutral Second.png"]
entry list, button list, chk Var list, imgtk list, label img list, imgpat
h_Var = [],[],[],[],[]
for i in range(len(label name)):
   label = tk.Label(frame input, text = label name[i])
   label.grid(column=0, row=i, ipadx=5, pady=5, sticky=tk.W+tk.N)
   TkEntry = tk.Entry(frame_input, width=10)
   entry list.append(TkEntry)
   entry list[i].grid(column=1, row=i, padx=10, pady=5, sticky=tk.N)
   TkButton = tk.Button(frame input, text = 'Open Image', command = None)
   button list.append(TkButton)
   button list[i].grid(column=2, row=i, padx=10, pady=5, sticky=tk.N)
   chkValue = tk.BooleanVar()
   chkValue.set(False)
   chk Var list.append(chkValue)
   chkb = tk.Checkbutton(frame input, text=None, var=chk Var list[i])
   chkb.grid(column=3, row=i, padx=10, pady=5, sticky=tk.W)
   img = Image.open(img path[i]).resize((40,40))
   imgtk = ImageTk.PhotoImage(img)
   imgtk list.append(imgtk)
   label_img = tk.Label(frame_img, image=imgtk_list[i])
   label img list.append(label img)
   label img list[i].grid(column=i, row=0, ipadx=5, pady=5)
   var = tk.StringVar()
   imgpath Var.append(var)
```

J. 建立觸發開啟攝影機與清空輸入欄的按鈕

```
# 建立觸發開啟攝影機的按鈕與位置
result_Button=tk.Button(frame_output, text='Get Result', command=open_viedo)
result_Button.grid(column=0, row=0, pady=10)

# 建立清空輸入欄的按鈕與位置
clear_button=tk.Button(frame_output, text="Clear text", command=clear_text)
clear_button.grid(column=1, row=0, pady=10)
```

02. 建立按鈕的觸發事件

A. 更換影像

```
def open img Angry():
          filename = askopenfilename(title='Select file', filetypes=[("all files","
       *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
          imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
          label img list[0].config(image = imgtk)
          label img list[0].image = imgtk
          imgpath Var[0].set(filename)
       def open img Disgusted():
          filename = askopenfilename(title='Select file', filetypes=[("all files","
       *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
          imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
          label_img_list[1].config(image = imgtk)
          label img list[1].image = imgtk
          imgpath Var[1].set(filename)
       def open img Fearful():
          filename = askopenfilename(title='Select file', filetypes=[("all files","
       *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
          imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
[27]
          label img list[2].config(image = imgtk)
          label img list[2].image = imgtk
          imgpath Var[2].set(filename)
       def open img Happy():
          filename = askopenfilename(title='Select file', filetypes=[("all files","
       *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
          imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
          label img list[3].config(image = imgtk)
          label img list[3].image = imgtk
          imgpath Var[3].set(filename)
       def open img Sad():
          filename = askopenfilename(title='Select file', filetypes=[("all files","
       *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
          imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
          label img list[4].config(image = imgtk)
          label img list[4].image = imgtk
          imgpath Var[4].set(filename)
```

```
def open_img_Surprised():
    filename = askopenfilename(title='Select file', filetypes=[("all files","
    *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
    imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
    label_img_list[5].config(image = imgtk)
    label_img_list[5].image = imgtk
    imgpath_Var[5].set(filename)

def open_img_Neutral():
    filename = askopenfilename(title='Select file', filetypes=[("all files","
    *.*"),("png files","*.png"),("jpg files","*.jpg"),("jpeg files","*.jpeg")])
    imgtk = ImageTk.PhotoImage(Image.open(filename).resize((40,40)))
    label_img_list[6].config(image = imgtk)
    label_img_list[6].image = imgtk
    imgpath_Var[6].set(filename)
```

備註:建立好更換影像的方法後,將程式第【26】中新增:

1.fun_command=[open_img_Angry,open_img_Disgusted,open_img_Fearful, open_img_Happy,open_img_Sad,open_img_Surprised,open_img_Neutral] # 額外新增

2. tk.Button 中的 command = None, None 改為 fun command[i]

B. 一鍵清空輸入欄

```
def clear_text():
    for i in range(len(label_name)):
        entry_list[i].delete('0', 'end')
```

C. 開啟攝影機

```
def open_viedo():
    VIDEO_IN = cv2.VideoCapture(0)
    while True:
        hasFrame, img = VIDEO_IN.read()
        img = cv2.resize(img, None, fx=0.5, fy=0.5)
        img = face_check(img)
        cv2.imshow("Frame", img)

if cv2.waitKey(1) & 0xFF == ord('q'):
        break

VIDEO_IN.release()
    cv2.destroyAllWindows()
```

D. 人臉預測: 轉灰階與列表

```
def detect faces(frame):
          gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY)
          face = detector(frame)
          faces = []
          for i in range(len(face)):
             x = face[i].left()
             y = face[i].top()
[30]
             w = face[i].right()-face[i].left()
             h = face[i].bottom()-face[i].top()
             if x<0:
                 x = 0
             if v<0:
                 y = 0
             faces.append((x, y, w, h))
          return gray, faces
```

E. 表情預測: 前處理, 形狀轉換, 模型預測, 繪製框與文字, 貼表情圖

```
def face check(frame):
          gray, faces = detect faces(frame)
          for (x, y, w, h) in faces:
             roi gray = gray[y:y + h, x:x + w]
             cropped img = np.expand dims(np.expand dims(cv2.resize(roi gray, (4)))
       8, 48)), -1), 0)
             prediction = model.predict(cropped img)[0]
[31]
             pred list = prediction.tolist()
             pred max = max(pred list)
             index = pred list.index(pred max)
             cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 4)
             cv2.putText(frame,"{}: {}".format(expression dict[index],round(pre
      d max,3)),(x, y-10),cv2.FONT HERSHEY SIMPLEX,0.5,colors[index],2)
             frame = face post(frame, (x, y), w, expression dict[index])
          return frame
```

E. 表情預測: 前處理, 形狀轉換, 模型預測, 繪製框與文字, 貼表情圖

```
def face_post(frame, top_left, width, prediction):
    if prediction =="Angry":
        if imgpath_Var[0].get()!= "":
            img = cv2.imread(imgpath_Var[0].get())
        else:
        img = cv2.imread(img_path[0])
```

```
if prediction =="Disgust":
   if imgpath Var[1].get()!= "":
      img = cv2.imread(imgpath Var[1].get())
   else:
      img = cv2.imread(img path[1])
if prediction =="Fear":
   if imgpath Var[2].get()!= "":
      img = cv2.imread(imgpath Var[2].get())
   else:
      img = cv2.imread(img path[2])
if prediction =="Happy":
   if imgpath_Var[3].get()!= "":
      img = cv2.imread(imgpath Var[3].get())
   else:
      img = cv2.imread(img path[3])
if prediction =="Sad":
   if imgpath_Var[4].get()!= "":
      img = cv2.imread(imgpath Var[4].get())
   else:
      img = cv2.imread(img_path[4])
if prediction =="Surprise":
   if imgpath Var[5].get()!= "":
      img = cv2.imread(imgpath_Var[5].get())
   else:
      img = cv2.imread(img path[5])
if prediction =="Neutral":
   if imgpath Var[6].get()!= "":
      img = cv2.imread(imgpath Var[6].get())
   else:
      img = cv2.imread(img path[6])
img_wh = int(width/2)
img = cv2.resize(img, (img wh,img wh))
img_top_left = (int(top_left[0]-img_wh),int(top_left[1]))
img bottom right = (int(top left[0]),int(top left[1]+img wh))
if img_top_left[0]>0 and img_top_left[1]>0:
   img gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
   _, mask = cv2.threshold(img_gray, 25, 255, cv2.THRESH_BINARY_INV)
```