Handout 01: Lineare Funktionen 01

Hausaufgabe

Bitte lesen Sie zur nächsten Präsenzstunde die Seiten 10 bis 19 im Buch und bearbeiten Sie die Aufgaben 1-4 und 5 (optional).

Versuchen Sie, die (handschriftlichen) Ausarbeitungen zu den folgenden Aufgaben dieses Handouts in digitaler Form (pdf) bis zum 27.6. auf Nextcloud oder LANIS hochzuladen.

Übungen

1. Bei welchen der im Folgenden abgebildeten Zuordnungen handelt es sich NICHT um Funktionen?

Lösung: Bei einer Zuordnung handelt es sich dann um eine Funktion, falls jedem Wert aus der Definitionsmenge der Funktion (jedem x-Wert) GENAU EIN Wert aus der Wertemenge der Funktion (ein y-Wert) zugeordnet wird. Entsprechend handelt es sich bei b), c) und e) nicht um Funktionen.

- 2. Formuliere in Fachsprache:
 - 1. "der Funktionswert der Funktion f an der Stelle x = 2"
 - 2. "der Funktionswert der Funktion g an der Stelle $x = x_0$ "

Lösung: a)
$$f(2)$$
 b) $g(x_0)$

3. Bei welchen der im Folgenden abgebildeten Zuordnungen handelt es sich um Graphen einer linearen Funktion?

4. Die allgemeine Zuordnungsvorschrift einer linearen Funktion lautet f(x) = mx + b. Beschreibe die Bedeutung der Parameter m und b.

Lösung: Der Parameter m beschreibt das Steigungsverhalten der linearen Funktion. Für m > 0 steigt die Gerade, für m < 0 fällt sie. Für m = 0 ergibt sich eine Parallele zur x-Achse. Die Steigung kann über das Steigungsdreieck veranschaulicht werden:

$$m = \frac{\Delta y}{\Delta x}$$
$$= \frac{y_2 - y_1}{x_2 - x_1}$$

Die Steigung einer linearen Funktion ist an jeder Stelle gleich.

b entspricht dem Schnittpunkt der Geraden mit der y-Achse.

5. Optional: Wie lauten die Zuordnungsvorschriften der im Folgenden abgebildeten linearen Funktionen?

Lösung: c)
$$y = \frac{2}{3}x$$

a)
$$y = x - 1$$
 b) $y = -2x + 3$

c)
$$y = \frac{2}{3}x$$

Tipp: Die zu dem Thema zugehörige Playlist von Daniel Jung lautet Lineare Funktionen (Geraden), y=m*x+n¹, siehe auch Lesezeichen auf Nextcloud.

Feedback: https://t1p.de/mlvn