SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

[Y] mol/dm³

Initial rate (mol/s)

1. Various concentrations of **X** and **Y** were reacted at a constant temperature. The table below shows the initial concentrations of **X** and **Y**, and their initial rates for the reaction.

[X] mol/dm³

Experiments

1	0.2	0.2	3.5 X 10 ⁻⁴		
2	0.4	0.4	1.4 x 10 ⁻³		
3	0.8	0.4	5.6 x 10 ⁻³		
		th respect to X ar			s)
b) Give reasons f	or your answer	s in (a) above.		(02 mark	xs)
c) Determine the	e overall order o	of the reaction.		(0½ mark	 (s)
d) Calculate the v		e constant of the		•	

2. A solid **Q** contains **9.37%** by mass magnesium, **10.39%** nitrogen, **42.18%** water and the rest is oxygen.

a)	(i). Calculate the empirical formula of solid ${\bf Q}$.	(02 marks)
	(ii). Determine the molecular formula of $\bf Q$. (RFM of $\bf Q=256$)	(01 mark)
b)	Solution of Q reacts with freshly prepared iron (If presence of concentrated sulphuric acid to form a	· =
	Identify Q .	(0½ mark)
c)	Write equation for the reaction that would take p	lace if O was
<i>-</i>)	heated.	(01½ marks)

3.	Name a reagent that can be of compounds and in each members of the pair was t	case, state	e what would be observed	
	a). CH ₃ CHC≡CH ₃	and	CH₃CH₂ÇHC≡€	CH
	CH ₃		ĊН ₃	
	Reagent			(01 mark)
		•••••		
	Observations			(02 marks)
	CIVO			
	b). CHO	d C	CH ₃ CHO	
	Reagent			(01 mark)
	Observations			(02 marks)
4.	Write equation for the rea	ction betw	-	
	solution and: a) Chromium (III) oxide.		(0	001½ marks)
	b)Beryllium oxide.			

						 	 		 			 -
						 	 		 			 •
c)	Tin (II) oz	ahis									
c)	1111	11) 02	Muc.									
						 	 		 			 •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	 •	• • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 • •

5. The **temperature-composition diagram** for a system containing two components **X** and **Y** is shown below.

- a) State what the following represents. ($@0\frac{1}{2}$ mark)
 - i. Regions: L:

M:

N:

ii. Points: A:

B:

C:

	iii. Curves: AB:
	BC:
	b) State what would happen when a mixture of composition ${\bf R}$ is heated. (0½ mark)
6.	Complete the following equations and in each case, write a mechanism for the reaction.
	a). (CH ₃) ₂ C=CHCH ₃ HBr (02½ marks) Mechanism:
	A I CI
	b). \bigcirc + CH ₃ CH ₂ COCl $\frac{\text{AlCl}_3}{50^{\circ}\text{C}}$
	Mechanism:

7.	When a current of 0.65A using platinum electrode	s for 35 m	, ,	_
	of oxygen gases were evo a) Write equation for the i. Anode.		hat took place at the:	(@01 mark)
	ii. Cathode.			
	b) Determine the quantit each electrode.	y of electr	icity required to evolve	1mole of gas at
	i. At the anode.			(02 marks)
	ii. At the cathode.			(01 mark)
8.	Write equation in each caeffected.	ise show h	now the following conve	ersions can be
	a). CH ₂ OH	from	Benzene	(02½ marks)

	b). CH ₃ CONH ₂	from	Chloroethane	(02½ marks)
9.	O. State what would be ob- would take place when: a) Excess concentrated		_	(@02½ marks)
	b) Potassium iodide wa	s added to	copper (II) sulpha	te solution.

SECTION B-54 MARKS ATTEMPT $\underline{\mathsf{ALL}}$ QUESTIONS IN THIS SECTION.

10. The figure below shows the variation of the 1st electron affinity of the elements in Period 3 of the Periodic table.

Explain each of the following observations.

a)	There is a general increase in the 1^{st} electron affinity from argon.	n sodium to (01½ marks)
b)	The 1^{st} electron affinity of magnesium is higher than that	
		(04 marks)

c) The 1^{st} electron affinity of phosphorous is less than that of sulphur. (03½ marks)
11. Silver chloride dissolves in water according to the following equations.
$AgCl_{(s)} \longrightarrow Ag^+_{(aq)} + Cl^{(aq)}$
a) Write the expression for the solubility product, Ksp of silver chloride. (01 mark)
b) The electrolytic conductivity of a saturated solution of silver chloride in water at 25°C is 3.41 x 10 ⁻⁶ Ω ⁻¹ cm ⁻¹ and that of pure water is 1.60 x 10 ⁻⁶ Ω ⁻¹ cm ⁻¹ . Calculate the solubility product of a saturated solution of silver chloride at 25°C. (04½ marks) (The molar conductivities at infinite dilution of silver nitrate, potassium nitrate and potassium chloride are 133.4, 145.0 and 149.9Ω ⁻¹ cm ² mol ⁻¹ respectively ate 25°C).

 i. State how the solubility of silver chloride was affected. 	
	(02½ marks)
12.Manganese is a d-block element in the Periodic Table. a) Define the term d-block element .	(01 mark)
b) (i). Write the electronic configuration of manganese.	(0½ mark)
(ii). State the common oxidation states exhibited by mangain compounds.	nese in its (01½ marks)
(iii).Write the formulae of oxides of manganese in each of the states you have stated in (b) (ii) above.	he oxidation (01½ marks)

hydroxide and potassium nitrate to give a compound which treated with water gives a green solution. The green solution purple when acidified with sulphuric acid.	when
Identify: i. Y	(01 mark)
ii. The ion that gives the green solution its colour.	(01 mark)
iii. The ion that gives the purple solution its colour.	
d)Write ionic equation for the reaction leading to the formation purple solution.	(01½ marks)
13.Compound T , C ₃ H ₆ O reacts with 2 , 4-dinitrophenylhydrazine to yellow precipitate . a) Write the names and the structural formulae of all possible i (03 marks)	isomers of T .
b) T reacts with ammoniacal silver nitrate solution to form silvT.	ver. Identify (01 Mark)
c) Write equation and indicate a mechanism for the reaction b and 2, 4-dinitrophenylhydrazine under acidic condition.	

14.(a). ((i). Sketch a graph to show the pH change when hydroch titrated with ammonia solution.	loric acid is (01½ marks)
14.(a). (

		••••
(b)	Calculate the pH of a resultant solution formed when 10cm ³ of a 0.1M sodium hydroxide solution is added to 25cm ³ of a 0.1M ethanoic acid at 25°C . (04 mar (Dissociation constant of ethanoic acid at 25°C = 1.8 x 10 ⁻⁵ moldm	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	
(b)	0.1M sodium hydroxide solution is added to 25cm³ of a 0.1M ethanoic acid at 25°C . (04 mar	

be	long to Group (II) of the Periodic Table. State how the elements reacts with sulphuric acid and give the		
	conditions for the reactions.	(03 marks)	
b)	(i). State how the solubilities of the sulphates of Group (II) evary down the group.	elements (01 mark)	
	(ii).Explain your answer in (b) (i).	(02 marks)	
c)	Write equation for the reaction of: i. Beryllium with sodium hydroxide solution.	01½ marks)	
)1½ marks)	

to give ammonia according to the following equation. $N_2(g) + 3H_2(g) = 2NH_3(g)$	$\Delta H = 92.5 \text{ k}.$
a) (i). Name the catalyst used in the reaction.	(0½ mark)
(ii).Write the expression for the equilibrium constants	(01 mark)
b) State what would happen to the position of the equ i. Pressure was increased.	(01 mark)
ii. Temperature was increased.	(01 mark)
all arred to attain a guilibrium at 100 atms and 4000	_
allowed to attain equilibrium at 100 atms and 400° mixture contained 25% of ammonia by volume. Calculate the: i. Number of moles of nitrogen and hydrogen at eq	•
mixture contained 25% of ammonia by volume. Calculate the:	uilibrium. (03 marks)
mixture contained 25% of ammonia by volume. Calculate the: i. Number of moles of nitrogen and hydrogen at eq	uilibrium. (03 marks)
mixture contained 25% of ammonia by volume. Calculate the: i. Number of moles of nitrogen and hydrogen at eq	uilibrium. (03 marks)
mixture contained 25% of ammonia by volume. Calculate the: i. Number of moles of nitrogen and hydrogen at eq	uilibrium. (03 marks)
mixture contained 25% of ammonia by volume. Calculate the: i. Number of moles of nitrogen and hydrogen at eq	uilibrium. (03 marks

16.In the manufacture of ammonia, nitrogen gas is catalytically hydrogenated

ii. Value of the equilibrium constant, Kp at 400°C.	(02½ marks)
7.(a).Differentiate between addition and condensation poly	mers. (02 marks)
(b). The structure formulae of two polymers R and T are s	hown below. T
0 0	CH ₃
	, l
$ \left\{O - CH_2 CH_2 - O - C - C\right\} \qquad \left\{C\right\} $	CH_2-C
	COOCH3
Name the polymer. i. R:	(@01 mark)
ii. T:	

(c).Write the structural formula (e) of mono	mer(s) of the polymers R and
T respectively.	(03 marks)
(d). Give one use of:	(@01 mark)
i. R:	
;; т.	

♥ ===END=== WELCOME TO SENIOR SIX, YEAR 2019

This is the last page of the printed paper, Page 17