Espaces vectoriels normés

Normes

Solution 1

Clairement, N est positive, homogène et vérifie l'inégalité triangulaire. Soit alors $P \in \mathbb{R}_n[X]$ tel que N(P) = 0. Alors $P(\alpha_k) = 0$ pour tout $k \in [0, n]$. Puisque deg $P \le n$, P = 0. Ainsi N est bien une norme.

Supposons que N soit une norme euclidienne. Alors pour tout $(P, Q) \in \mathbb{R}_n[X]^2$,

$$N(P + Q)^2 + N(P - Q)^2 = 2N(P)^2 + 2N(Q)^2$$

Par interpolation de Lagrange, il existe deux polynômes P et Q tels que $P(\alpha_k) = \delta_{k,0}$ et $Q(\alpha_k) = \delta_{k,n}$ pour tout $k \in [0, n]$. Puisque $n \neq 0$, N(P+Q) = N(P-Q) = 2 tandis que N(P) = N(Q) = 1, ce qui contredit l'égalité précédente.

Solution 2

1. Soit $x \in E$. L'application $\varphi_x : y \in E \mapsto \langle x, y \rangle$ est linéaire et, d'après l'inégalité de Cauchy-Schwarz, pour tout $y \in E$, $|\varphi_x(y)| \le ||x|| ||y||$ donc φ_x est continue pour la norme $||\cdot||$ d'après le critère de continuité pour les applications linéaires. Par conséquent, $|\varphi_x|$ est également continue sur E pour la norme $||\cdot||$ par continuité de la valeur absolue sur E. E étant de dimension finie, toutes les normes sont équivalentes et $|\varphi_x|$ est donc également continue pour la norme N.

La sphère unité S est évidemment fermée et bornée pour la norme N. Comme E est de dimension finie, elle est compacte pour cette norme. L'application $|\phi_x|$ étant continue pour la norme N, elle atteint un maximum sur S. Ceci justifie la définition de N*(x) (et prouve même que la borne supérieure est en fait un maximum).

2. N* est clairement positive.

Donnons-nous $\lambda \in \mathbb{R}$ et $x \in E$. Alors

$$N^*(\lambda x) = \sup_{y \in S} |\langle \lambda x, y \rangle| = \sup_{y \in S} |\lambda| |\langle x, y \rangle|$$

Or $|\lambda|$ est un réel positif donc on peut montrer sans difficulté que

$$\sup_{y \in \mathcal{S}} |\lambda| |\langle x, y \rangle| = \|\lambda| \sup_{y \in \mathcal{S}} |\langle x, y \rangle|$$

On en déduit que $N^*(\lambda x) = |\lambda| N^*(x)$.

Soit $(x_1, x_2) \in E^2$. Alors pour tout $y \in S$,

$$|\langle x_1 + x_2, y \rangle| = |\langle x_1, y \rangle + \langle x_2, y \rangle| \le |\langle x_1, y \rangle| + \langle x_2, y \rangle| \le N^*(x_1) + N_*(x_2)$$

L'inégalité étant valide pour tout $y \in S$, on en déduit que

$$N^*(x_1 + x_2) = \sup_{y \in S} |\langle x_1 + x_2, y \rangle| \le N^*(x_1) + N^*(x_2)$$

On a donc bien prouvé que N* était une norme.

3. Supposons d'abord que $N = \|\cdot\|_2$. Soit $x \in S$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle \le ||x||_2 ||y||_2 = ||x||_2$$

puisque $y \in S$. Par conséquent $N^*(x) \le ||x||_2$. Par ailleurs, si x est non nul, $y = \frac{x}{||x||_2} \in S$ et $|\langle x, y \rangle| = ||x||_2$ donc $N^*(x) \ge ||x||_2$. Finalement, $N^*(x) = ||x||_2$. Cette égalité est encore évidemment valide lorsque x est nul.

Supposons maintenant que $N = \|\cdot\|_{\infty}$. Soit $x \in \mathbb{R}^n$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle| = |\sum_{k=1}^{n} x_k y_k| \le \sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| \le \sum_{k=1}^{n} |x_k| ||y||_{\infty} = ||y||_{\infty} ||x||_{1} = ||x||_{1}$$

Cette inégalité étant valide pour tout $y \in S$, $N^*(x) \le ||x||_1$. On définit alors $y \in \mathbb{R}_n$ en posant $y_k = 1$ si $x_k \ge 0$ et $y_k = -1$ si $x_k < 0$. Il est évident que $y \in S$ et

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} |x_k| = ||x||_1$$

1

On en déduit que $N^*(x) \ge ||x||_1$. Finalement, $N^*(x) = ||x||_1$. Supposons enfin que $N = ||\cdot||_1$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k y_k \right| \le \sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| = \sum_{k=1}^{n} ||x||_{\infty} ||y_k|| = ||x||_{\infty} ||y||_{1} = ||x||_{\infty} ||y||_{1}$$

Cette inégalité étant valide pour tout $y \in \mathbb{R}^n$, $N^*(x) \le ||x||_{\infty}$. Il existe $j \in [1, n]$ tel que $|x_j| = ||x||_{\infty}$. On définit alors $y \in \mathbb{R}^n$ en posant $y_k = \delta_{k,j}$. On vérifie sans peine que $y \in S$ et

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k y_k \right| = |x_j| = ||x||_{\infty}$$

On en déduit que $N^*(x) \ge ||x||_{\infty}$. Finalement, $N^*(x) = ||x||_{\infty}$.

Solution 3

1. Pas de problème pour N_1 et N_2 . Il suffit d'utiliser le fait que la valeur absolue est une norme. Pour simplifier, on peut même remarquer que $N_2(A) = N_1(A^T)$.

 N_3 est la norme euclidienne sur $\mathcal{M}_{n,p}(\mathbb{R})$ i.e. $N_3(A)^2 = \operatorname{tr}(A^T A)$.

On note $\|\cdot\|$ la norme euclidienne sur $\mathcal{M}_{p,1}(\mathbb{R})$. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors $A^{\mathsf{T}}A$ est une matrice symétrique donc elle est diagonalisable. Soit x un vecteur propre associée à une valeur propre λ de $A^{\mathsf{T}}A$. Alors $x^{\mathsf{T}}A^{\mathsf{T}}Ax = (Ax)^{\mathsf{T}}(AX) = \|Ax\|^2 \in \mathbb{R}_+$ et $x^{\mathsf{T}}A^{\mathsf{T}}Ax = \lambda x^{\mathsf{T}}x = \lambda \|x\|^2$. Comme $\|x\|^2 \in \mathbb{R}_+^+$, $\lambda \geq 0$. Ainsi $\mathrm{Sp}(A^{\mathsf{T}}A) \subset \mathbb{R}_+$ donc $\mathrm{N}_4(A)$ est bien définie. Soit $\mu \in \mathbb{R}$. Alors

$$N_4(\mu A) = \sqrt{max\,Sp(\mu^2A^\top A)} = \sqrt{max\,\mu^2\,Sp(A^\top A)} = \sqrt{\mu^2\,max\,Sp(A^\top A)} = |\mu|\sqrt{max\,Sp(A^\top A)} = |\mu|N_4(A)$$

donc N₄ est bien homogène.

Supposons que $N_4(A) = 0$. Alors $Sp(A^TA) = 0$. Mais comme $Sp(A^TA) \subset \mathbb{R}_+$, $Sp(A^TA) = \{0\}$. Comme A^TA est diagonalisable, $A^TA = 0$. Soit $x \in \mathcal{M}_{p,1}(\mathbb{R})$. Alors $||Ax||^2 = (Ax)^TAx = x^TA^TAx = 0$ donc Ax = 0. Ceci étant vrai pour tout $x \in \mathcal{M}_{p,1}(\mathbb{R})$, A = 0. Ainsi N_4 vérifie l'axiome de séparation.

Soit enfin $(A, B) \in \mathcal{M}_{n,p}(\mathbb{R})^2$. Notons λ la plus grande valeur propre de $(A + B)^T(A + B)$ et x un vecteur propre associé à cettte valeur propre. Alors $\|(A+B)x\|^2 = \lambda \|x\|^2$. Donc $\|(A+B)x\| = N_4(A+B)\|x\|$. Par ailleurs, $\|\cdot\|$ est une norme donc $\|(A+B)x\| \le \|Ax\| + \|Bx\|$. Notons $\lambda_1, \ldots, \lambda_p$ les valeurs propres de A^TA et (e_1, \ldots, e_p) une base orthonormée de vecteurs propres de A^TA . Alors

$$x = \sum_{i=1}^{p} x_i e_i$$
 et $A^{\mathsf{T}} A x = \sum_{i=1}^{p} x_i \lambda_i e_i$

Comme $(e_1, ..., e_p)$ est une base orthonormée de $\mathcal{M}_{p,1}(\mathbb{R})$,

$$\|\mathbf{A}x\|^{2} = x^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}x = \sum_{i=1}^{p} \lambda_{i}x_{i}^{2} \leq \lambda_{p}\sum_{i=1}^{p} x_{i}^{2} = \lambda_{p}\|x\|^{2}$$

Par conséquent, $||Ax|| \le N_4(A)||x||$. De la même manière, $||Bx|| \le N_4(B)||x||$ Finalement,

$$N_4(A + B)||x|| \le N_4(A)||x|| + N_4(B)||x||$$

et donc $N_4(A + B) \le N_4(A) + N_4(B)$ car ||x|| > 0. N_4 est bien une norme.

2. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. Pour simplifier, posons $S_i(M) = \sum_{j=1}^n |M_{i,j}|$ pour $M \in \mathcal{M}_n(\mathbb{R})$. Ainsi $N_1(M) = \max_{1 \le i \le n} S_i(M)$. Soit

 $i \in [1, n]$.

$$S_{i}(AB) = \sum_{j=1}^{n} |(AB)_{i,j}|$$

$$= \sum_{j=1}^{n} \left| \sum_{k=1}^{n} A_{i,k} B_{k,j} \right|$$

$$\leq \sum_{j=1}^{n} \sum_{k=1}^{n} |A_{i,k}| |B_{k,j}| \quad \text{par inegalite triangulaire}$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} |A_{i,k}| |B_{k,j}| \quad \text{par permutation des sommes}$$

$$= \sum_{k=1}^{n} |A_{i,k}| \sum_{j=1}^{n} |B_{k,j}|$$

$$= \sum_{k=1}^{n} |A_{i,k}| S_{k}(B)$$

$$\leq \sum_{k=1}^{n} |A_{i,k}| S_{k}(B)$$

$$\leq \sum_{k=1}^{n} |A_{i,k}| S_{k}(B)$$

$$= N_{1}(B) \sum_{k=1}^{n} |A_{i,k}|$$

$$= N_{1}(B) S_{i}(A) \leq N_{1}(B) N_{1}(A)$$

On en déduit que $N_1(AB) \le N_1(A)N_1(B)$ donc N_1 est bien une norme d'algèbre. On rappelle que $N_2(M) = N_1(M^T)$. Ainsi

$$N_2(AB) = N_1((AB)^T) = N_1(B^TA^T) \le N_1(B^T)N_1(A^T) = N_2(A)N_2(B)$$

donc N₂ est également une norme d'algèbre.

Remarquons que

$$N_3(AB)^2 = \sum_{1 \le i,j \le n} \left(\sum_{k=1}^n A_{i,k} B_{k,j} \right)^2$$

Par inégalité de Cauchy-Schwarz,

$$\left(\sum_{k=1}^{n} A_{i,k} B_{k,j}\right)^{2} \le \left(\sum_{k=1}^{n} A_{i,k}^{2}\right) \left(\sum_{k=1}^{n} B_{k,j}^{2}\right)$$

Pour clarifier, posons $S_i = \sum_{k=1}^n A_{i,k}^2$ et $T_j = \sum_{k=1}^n B_{k,j}^2$. Ainsi

$$N_3(AB)^2 \le \sum_{1 \le i,j \le n} S_i T_j = \left(\sum_{i=1}^n S_i\right) \left(\sum_{j=1}^n S_j\right) = \left(\sum_{i=1}^n \sum_{k=1}^n A_{i,k}^2\right) \left(\sum_{j=1}^n \sum_{k=1}^n B_{k,j}^2\right) = N_3(A)^2 N_3(B)^2$$

Puis $N_3(AB) \le N_3(A)N_3(B)$ donc N_3 est une norme d'algèbre.

Soit x un vecteur propre associé à la plus grande valeur propre de $(AB)^T(AB)$. On a alors $||ABx|| = N_4(A)||x||$ (cf. précédemment). De plus, $||ABx|| \le N_4(A)||Bx|| \le N_4(A)N_4(B)||x||$ (cf. précédemment). Comme ||x|| > 0, $N_4(A) \le N_4(A)N_4(B)$ donc N_4 est également une norme d'algèbre.

Solution 4

1. Par inégalité triangulaire

$$2||x|| = ||(x+y) + (x-y)|| \le ||x+y|| + ||x-y||$$

$$2||y|| = ||(x+y) + (y-x)|| \le ||x+y|| + ||x-y||$$

En additionnant

$$||x|| + ||y|| \le ||x + y|| + ||x - y|| \le 2 \max\{||x + y||, ||x - y||\}$$

2. Prenons $E = \mathbb{R}^2$ muni de la norme uniforme. Posons x = (1,0) et y = (0,1). Alors

$$||x|| = ||y|| = ||x + y|| = ||x - y|| = 1$$

L'inégalité de la question précédente est donc bien une égalité dans ce cas.

3. Remarquons que

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2\langle x, y \rangle$$

donc

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Mais d'une part

$$||x + y||^2 + ||x - y||^2 \le 2 \max\{||x + y||^2, ||x - y||^2\} = 2 \max\{||x + y||, ||x - y||\}^2$$

et d'autre part

$$2||x||^2 + 2||y||^2 = (||x|| + ||y||)^2 + (||x|| - ||y||)^2 \ge (||x|| + ||y||)^2$$

Par conséquent,

$$(\|x\| + \|y\|)^2 \le 2 \max\{\|x + y\|, \|x - y\|\}^2$$

puis

$$||x|| + ||y|| \le \sqrt{2} \max\{||x + y||, ||x - y||\}$$

La constante $\sqrt{2}$ ne peut être améliorée car si on prend x et y orthogonaux et de même norme n, alors

$$||x|| + ||y|| = 2n$$

et, d'après le théorème de Pythagore,

$$||x + y||^2 = ||x - y||^2 = ||x||^2 + ||y||^2 = 2n^2$$

donc

$$\max\{\|x+y\|, \|x-y\|\} = n\sqrt{2}$$

de sorte que l'inégalité est bien une égalité dans ce cas.

Solution 5

Soit $(x_1, \ldots, x_n) \in \mathbb{K}^n$.

Comme les $|x_i|$ sont positifs, il est clair que $N_{\infty}(x) \le N_1(x)$. L'égalité est atteinte pour x = (1, 0, ..., 0).

Pour tout $i \in [\![1,n]\!], |x_i| \le \mathrm{N}_\infty(x)$ donc $\mathrm{N}_1(x) \le n\mathrm{N}_\infty(x)$. L'égalité est atteinte pour $x = (1,\ldots,1)$. Comme les $|x_i|^2$ sont positis, il est clair que $\mathrm{N}_\infty(x)^2 \le \sum_{i=1}^n |x_i|^2$ puis $\mathrm{N}_\infty(x) \le \mathrm{N}_2(x)$. L'égalité est atteinte pour $x = (1,0,\ldots,0)$. A nouveau, pour tout $i \in [\![1,n]\!], |x_i|^2 \le \mathrm{N}_\infty(x)^2$ puis $\sum_{i=1}^n |x_i|^2 \le n\mathrm{N}_\infty(x)^2$ puis $\mathrm{N}_2(x) \le \sqrt{n}\mathrm{N}_\infty(x)$.

Comme les $|x_i||x_i|$ sont positifs

$$N_1(x)^2 = \left(\sum_{i=1}^n |x_i|\right)^2 = \sum_{i=1}^n |x_i|^2 + 2\sum_{1 \le i \le n} |x_i||x_j| \ge \sum_{i=1}^n |x_i|^2 = N_2(x)^2$$

donc $N_2(x) \le N_1(x)$. L'égalité est atteinte pour x = (1, 0, ..., 0).

Par inégalité de Cauchy-Schwarz,

$$N_1(x) = \sum_{i=1}^{n} 1 \cdot |x_i| \le \sqrt{\sum_{i=1}^{n} 1} \sqrt{\sum_{i=1}^{n} |x_i|^2} = \sqrt{n} N_2(x)$$

L'égalité est atteinte pour x = (1, ..., 1).

Solution 6

Notons (e_1, \dots, e_n) la base canonique de \mathbb{R}^n .

Supposons que $(x_1, ..., x_n)$ soit libre. L'inégalité triangulaire et l'homogénéité découle quasi directement que $\|\cdot\|$ est une norme. Si $(\lambda_1, ..., \lambda_n)$ vérifie $N(\lambda_1, \dots, \lambda_n) = 0$, alors $\sum_{k=1}^n \lambda_k x_k = 0$ par séparation de la norme $\|\cdot\|$. Comme (x_1, \dots, x_n) est libre, $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$.

Réciproquement, supposons que N soit une norme. Si on se donne $(\lambda_1, \dots, \lambda_n)$ tel que $\sum_{k=1}^n \lambda_k x_k = 0_E$, alors $N(\lambda_1, \dots, \lambda_n) = ||0_E|| = 0$ et donc $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$ par séparation de la norme N. Ceci prouve que (x_1, \dots, x_n) est libre.

Solution 7

Il est clair que si $N_1 = N_2$, alos $B_1 = B_2$.

Réciproquement supposons $B_1 = B_2$. Soit $x \in E$. Si $x = 0_E$, alors $N_1(x) = N_2(x) = 0$. Supposons donc $x \ne 0_E$. Alors $x/N_1(x) \in B_1 = B_2$ donc $N_2(x/N_1(x)) \le 1$ puis $N_2(x)/N_1(x) \le 1$ par homogénéité de la norme N_2 et enfin $N_2(x) \le N_1(x)$. En échangeant les rôles de N_1 et N_2 ainsi que de N_2 et enfin $N_2(x) \le N_2(x)$. Alors $N_1(x) \le N_2(x)$. Alors $N_1(x) \le N_2(x)$.

Solution 8

1. Soit $(u, v) \in (\mathbb{R}_+^*)^2$. Par concavité de ln sur \mathbb{R}_+^* , puisque $\frac{1}{p} + \frac{1}{q} = 1$,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \ge \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(u^q)$$

c'est-à-dire,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \ge \ln(uv)$$

Ainsi par croissance de la fonction exponentielle,

$$uv \le \frac{u^p}{p} + \frac{u^q}{q}$$

2. Posons pour tout $k \in [1, n]$

$$x'_{k} = \frac{x_{k}}{\left(\sum_{k=1}^{n} x_{k}^{p}\right)^{1/p}}$$
 et $y'_{k} = \frac{y_{k}}{\left(\sum_{k=1}^{n} y_{k}^{q}\right)^{1/q}}$

D'après l'inégalité de Young, pour tout $k \in [1, n]$,

$$x_k' y_k' \le \frac{x_k'^p}{p} + \frac{y_k'^q}{q}$$

En additionnant ces n inégalités membre à membre, on obtient,

$$\sum_{k=1}^{n} x_k' y_k' \le A + B$$

où

$$A = \frac{1}{p} \frac{\sum_{k=1}^{n} x_{k}^{p}}{\sum_{k=1}^{n} x_{k}^{p}} = \frac{1}{p} \quad \text{et} \quad B = \frac{1}{q} \frac{\sum_{k=1}^{n} y_{k}^{q}}{\sum_{k=1}^{n} y_{k}^{q}} = \frac{1}{q}$$

On a donc,

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{1/p} \left(\sum_{k=1}^{n} y_k^q\right)^{1/q}$$

3. On remarque que, pour tout entier naturel $k \in [1, n]$,

$$(x_k + y_k)^p = x_k(x_k + y_k)^{p-1} + y_k(x_k + y_k)^{p-1}$$

Par application de l'inégalité de Hölder à p > 1 et $q = \frac{p}{p-1} > 0$ (on a bien 1/p + 1/q = 1), on obtient

$$\sum_{k=1}^{n} x_k (x_k + y_k)^{p-1} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

puis une seconde fois,

$$\sum_{k=1}^{n} y_k (x_k + y_k)^{p-1} \le \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

et donc, en sommant ces deux inégalités,

$$\sum_{k=1}^{n} (x_k + y_k)^p \le \left[\left(\sum_{k=1}^{n} x_k^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p \right)^{\frac{1}{p}} \right] \left(\sum_{k=1}^{n} (x_k + y_k)^p \right)^{\frac{p-1}{p}}$$

En divisant l'inégalité de ci-dessus par

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}} > 0$$

on obtient donc,

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}$$

Distance

Solution 9

Remarquons que $0 \in F$ et $||u - 0||_{\infty} = ||u||_{\infty} = 1$. Ainsi $d(u, F) \le 1$. Soit $x \in F$. Alors pour tout $n \in \mathbb{N}$,

$$||u - x||_{\infty} \ge |u_{2n} - x_{2n}| = |1 - x_{2n}|$$
 et $||u - x||_{\infty} \ge |u_{2n+1} - x_{2n+1}| = |1 + x_{2n+1}|$

En passant à la limite et en notant ℓ la limite de x,

$$||u - x||_{\infty} \ge |1 - \ell|$$
 et $||u - x||_{\infty} \ge |1 + \ell|$

En additionnant ces deux inégalités,

$$2|u-x|_{\infty} \ge |1-\ell|+|1+\ell| \ge |(1-\ell)+(1+\ell)| = 2$$

puis $||u - x||_{\infty} \ge 1$. Ainsi $d(u, F) \ge 1$. Finalement, d(u, F) = 1.

Solution 10

Soit $(x, y) \in E^2$. Rappelons que $d(x, A) = \inf_{a \in A} ||x - a||$ et $d(y, A) = \inf_{a \in A} ||y - a||$. Soit $a \in A$. Alors $d(x, A) \le ||x - a||$. Or, par inégalité triangulaire

$$||x - a|| = ||(x - y) + (y - a)|| \le ||x - y|| + ||y - a|| = d(x, y) + ||y - a||$$

On en déduit que

$$d(x, A) - d(x, y) < ||y - a||$$

Comme $d(y, A) = \inf_{a \in A} ||x - a||$, on en déduit que

$$d(x, A) - d(x, y) \le d(y, A)$$

ou encore

$$d(x, A) - d(y, A) \le d(x, y)$$

En échangeant les rôles de x et y on a également

$$d(y, A) - d(x, A) \le d(y, x)$$

d'où le résultat attendu.

Equivalence de normes

Solution 11

1. N est bien à valeurs dans \mathbb{R}_+ .

Séparation Soit $f \in E$ telle que N(f) = 0. Alors $||f||_{\infty} = ||f'||_{\infty} = 0$. Comme $||.||_{\infty}$ est une norme, on a notamment f = 0. Homogénéité Pour $\lambda \in \mathbb{R}$ et $f \in E$,

$$N(\lambda f) = \|\lambda f\|_{\infty} + \|\lambda f'\|_{\infty} = |\lambda| \|f\|_{\infty} + |\lambda| \|f'\|_{\infty} = |\lambda| N(f)$$

car $\|.\|_{\infty}$ est une norme.

Inégalité triangulaire Pour $f, g \in E$,

$${\rm N}(f+g) = \|f+g\|_{\infty} + \|f'+g'\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty} = {\rm N}(f) + {\rm N}(g)$$

Ainsi N est bien une norme.

Posons $e_n: x \in [0,1] \mapsto x^n$. Alors pour tout $n \in \mathbb{N}$, $||e_n|| = 1$ tandis que $N(e_n) = 1 + n$. Puisque $N(e_n) \xrightarrow[n \to +\infty]{} +\infty$, N et $||.||_{\infty}$ ne peuvent être équivalentes.

2. N' est bien à valeurs dans \mathbb{R}_+ .

Séparation Soit $f \in E$ telle que N'(f) = 0. Alors f(0) = 0 et f' = 0. Ainsi f est constante (car f' = 0) et cette constante est nulle (car f(0) = 0).

Homogénéité Pour $\lambda \in \mathbb{R}$ et $f \in E$,

$$N'(\lambda f) = |\lambda f(0)| + ||\lambda f'||_{\infty} = |\lambda||f(0)| + |\lambda|||f'||_{\infty} = |\lambda|N'(f)$$

car $\|.\|_{\infty}$ est une norme.

Inégalité triangulaire Pour $f, g \in E$,

$$N'(f+g) = |f(0) + g(0)| + ||f' + g'||_{\infty} \le |f(0)| + |g(0)| + ||f'||_{\infty} + ||g'||_{\infty} = N'(f) + N'(g)$$

Ainsi N' est bien une norme.

Puisque $|f(0)| \le ||f||_{\infty}$ pour tout $f \in E$, $N' \le N$. Soit $f \in E$. Pour tout $x \in [0, 1]$, $f(x) = f(0) + \int_0^x f'(t) dt$. Par inégalité triangulaire

$$|f(x)| \le |f(0)| + \left| \int_0^x f'(t) \, \mathrm{d}t \right|$$

Par inégalité de continuité

$$\left| \int_0^x f'(t) \ \mathrm{d}t \right| \leq \int_0^x |f'(t)| \ \mathrm{d}t \leq x \|f'\|_\infty \leq \|f'\|_\infty$$

Finalement, pour tout $x \in \mathbb{R}$,

$$|f(x)| \le |f(0)| + ||f'||_{\infty}$$

puis $||f||_{\infty} \leq |f(0)| + ||f'||_{\infty}$. Finalement

$$N(f) \le |f(0)| + 2||f'||_{\infty} \le 2|f(0)| + 2||f'||_{\infty} = 2N'(f)$$

On a donc $N' \le N \le 2N'$, ce qui signifie que N est équivalente à N'.

Solution 12

L'espace normé en question doit nécessairement être de dimension infinie. Considérons par exemple $\mathbf{E} = cC([0,1])$. Pour $f \in \mathbf{E}$, on pose $\|f\|_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $\|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t$. On sait que $\|.\|_{\infty}$ et $\|.\|_1$ sont des normes sur \mathbf{E} . Pour $n \in \mathbb{N}$, on pose $f_n(x) = \begin{cases} n - n^2x & \text{si } 0 \le x \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} \le x \le 1 \end{cases}$. On vérfie que $\|f_n\|_{\infty} = n$ et $\|f_n\|_1 = \frac{1}{2}$ pour tout $n \in \mathbb{N}$. Puisque $\|f_n\|_{\infty} \xrightarrow[n \to +\infty]{} +\infty$, $\|.\|_{\infty}$ et $\|.\|_1$ ne peuvent être équivalentes.

Solution 13

1. Pour tout $f \in E$,

$$||f||_2^2 = \int_{[0,1]} f^2 \le \int_{[0,1]} ||f||_{\infty}^2 = ||f||_{\infty}^2$$

Par conséquent, $||f||_2 \le ||f||_{\infty}$.

2. Les normes ∥.∥₂ et ∥.∥∞ induisent des normes sur V. Comme V est de dimension finie, ces normes sont équivalentes et on en déduit l'inégalité demandée.

3. On peut munir V du produit scalaire $(f,g) \mapsto \int_{[0,1]} fg$. On se donne une famille libre de V à p éléments. On peut alors l'orthonormaliser en une famille (f_1, \dots, f_D) . Soit $x \in [0,1]$. Alors pour $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$

$$\left(\sum_{i=1}^{p} \lambda_{i} f_{i}(x)\right)^{2} \leq \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{\infty}^{2} \leq n^{2} \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{2}^{2}$$

Or la famille (f_1, \dots, f_p) étant orthonormale, $\|\sum_{i=1}^p \lambda_i f_i\|_2^2 = \sum_{i=1}^p \lambda_i^2$. L'astuce consiste à prendre maintenant $\lambda_i = f_i(x)$ pour $1 \le i \le p$. On obtient alors

 $\left(\sum_{i=1}^{p} f_i(x)^2\right)^2 \le n^2 \sum_{i=1}^{p} f_i(x)^2$

et donc

$$\sum_{i=1}^{p} f_i(x)^2 \le n^2$$

Il suffit alors d'intégrer entre 0 et 1 pour obtenir

$$\sum_{i=1}^{p} \|f_i\|^2 \le n^2$$

La famille (f_1, \dots, f_p) étant normée, on aboutit à $p \le n^2$, ce qui prouve que V est nécessairement de dimension finie et que dim $V \le n^2$.

Solution 14

- 1. N_{∞} est la norme de la convergence uniforme. On en déduit sans peine que N et N_1 sont également des normes.
- 2. Posons $f_n: x \in [0,1] \mapsto x^n$. On a clairement $N_{\infty}(f_n) = 1$ pour tout $n \in \mathbb{N}$. Cependant, $N(f_n) = N_1(f_n) = n^2 n + 1 \xrightarrow[n \to +\infty]{} +\infty$. Donc N_{∞} n'est équivalente ni à N ni à N_1 .
- 3. Soit $x \in [0, 1]$. Par intégration par parties

$$\int_0^x \sin(x-t)f''(t) dt = \left[\sin(x-t)f'(t)\right]_0^x + \int_0^x \cos(x-t)f'(t) dt$$

Puisque $f \in E$, f'(0) = 0 de sorte que le crochet est nul. Par une seconde intégration par parties,

$$\int_0^x \sin(x-t)f''(t) dt = \left[\cos(x-t)f(t)\right]_0^x - \int_0^x \sin(x-t)f(t) dt$$

Finalement

$$\int_0^x \sin(x-t)(f(t) + f''(t)) dt = \left[\cos(x-t)f(t)\right]_0^x = f(x) - f(0)\cos x = f(x)$$

 $\operatorname{car} f(0) = 0$ puisque $f \in E$.

On a clairement N ≤ N₁.
 Soit f ∈ E. D'après la question précédente, pour tout x ∈ E

$$f(x) = \int_0^x \sin(x - t)(f(t) + f''(t)) dt$$

puis

$$|f(x)| \le \int_0^x |\sin(x-t)||f(t) + f''(t)| dt \le \int_0^x N(f) = xN(f) \le N(f)$$

Par conséquent $N_{\infty}(f) \leq N(f)$. Par ailleurs,

$$N_{\infty}(f'') = N_{\infty}(f'' + f - f) \le N(f) + N_{\infty}(f)$$

puis $N_{\infty}(f'') - N_{\infty}(f) \le N(f)$. Finalement

$$N_1(f) = N_{\infty}(f'') - N_{\infty}(f) + 2N_{\infty}(f) \le 3N(f)$$

Ainsi $N \le N_1 \le 3N$ donc N et N_1 sont équivalentes.

Solution 15

1. Soit $f \in \mathcal{C}^0([a,b],\mathbb{K})$.

Pour tout $t \in [a, b], |f(t)| \le N_{\infty}(f)$. Par croissance de l'intégrale, $N_1(f) \le (b-a)N_{\infty}(f)$. L'égalité est atteinte pour f constante égale à 1.

Pour tout $t \in [a, b]$, $|f(t)|^2 \le N_{\infty}(f)^2$ puis, par croissance de l'intégrale, $N_2(f)^2 \le (b - a)N_{\infty}(f)^2$ puis $N_2(f) \le \sqrt{b - a}N_{\infty}(f)$. L'égalité est atteinte pour f constante égale à 1. Par inégalité de Cauchy-Schwarz,

$$N_1(f) = \int_a^b 1 \cdot |f(t)| dt \le \sqrt{\int_a^b dt} \sqrt{\int_a^b |f(t)|^2 dt} = \sqrt{b - a} N_2(f)$$

L'égalité est atteinte pour f constante égale à 1.

2. Posons $f_n: t \mapsto (t-a)^n$ pour $n \in \mathbb{N}$. Alors,

$$N_1(f_n) = \frac{(b-a)^n}{n+1} \qquad N_2(f_n) = \frac{\sqrt{b-a(b-a)^n}}{\sqrt{2n+1}} \qquad N_{\infty}(f_n) = (b-a)^n$$

Alors

$$\lim_{n \to +\infty} \frac{N_1(f_n)}{N_2(f_n)} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{N_1(f_n)}{N_{\infty}(f_n)} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{N_2(f_n)}{N_{\infty}(f_n)} = 0$$

Donc ces trois normes ne sont pas équivalentes.

Solution 16

Il faut déjà que A soit bornée pour que la borne supérieure définissant $N_A(P)$ soit définie pour tout polynôme P. Une autre condition nécessaire est également que A soit infini. Si ce n'est pas le cas, il suffit de considérer $P = \prod_{a \in A} (X - a)$. Il est clair que $N_A(P) = 0$ mais que P n'est pas nul. Si A est infinie et bornée, on vérifie aisément que N_A est une norme sur $\mathbb{R}[X]$.

Suites

Solution 17

1. Soit $x \in \text{Ker}(\text{Id}_E - u) \cap \text{Im}(\text{Id}_E - u)$. Alors u(x) = x et il existe $a \in E$ tel que x = a - u(a). On a alors

$$nx = \sum_{k=0}^{n-1} x = \sum_{k=0}^{n-1} u^k(x) = \sum_{k=0}^{n-1} u^k(a) - u^{k+1}(a) = a - u^n(a)$$

Ainsi $x = \frac{1}{n}(a - u^n(a))$. Par conséquent,

$$||x|| \le \frac{1}{n} (||a|| + ||u^n(a)||)$$

 $\le \frac{2||a||}{n}$

En faisant tendre n vers $+\infty$, on obtient ||x|| = 0 et donc $x = 0_E$. On conclut grâce au théorème du rang.

2. D'après la question précédente, il existe $y \in \text{Ker}(\text{Id}_E - u)$ et $a \in E$ tel que x = y + a - u(a). Pour tout $k \in \mathbb{N}$, $u^k(x) = y + u^k(a) - u^{k+1}(a)$. Par télescopage, $x_n = y + \frac{1}{n}(a - u^n(a))$. En raisonnant comme à la question précédente, on montre que $\|x_n - y\| \le \frac{2\|a\|}{n}$. Ceci montre que (x_n) converge vers y qui est justement la projection de x sur $\text{Ker}(\text{Id}_E - u)$ parallélement à $\text{Im}(\text{Id}_E - u)$.

Solution 18

Notons L la limite de la suite (A^n) . La suite (A^{2n}) étant une suite extraite de la suite (A^n) , elle converge vers L. Mais par continuité de l'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^2$, la suite (A^{2n}) converge vers L². Par unicité de la limité, $L = L^2$ et donc L est une matrice de projecteur.

Solution 19

- **1. a.** Supposons que la suite (x_n) converge faiblement vers x et x'. Soit $y \in E$. Alors $\lim_{n \to +\infty} \langle x_n x, y \rangle = 0$ et $\lim_{n \to +\infty} \langle x_n x', y \rangle = 0$. Par différence, $\langle x' x, y \rangle = 0$. Ainsi $x' x \in E^{\perp} = \{0_E\}$ et x = x'.
 - **b.** Supposons que (x_n) converge fortement vers x. Soit $y \in E$. Alors, par l'inégalité de Cauchy-Schwarz,

$$|\langle x_n - x, y \rangle| \le ||x_n - x|| ||y||$$

On en défuit immédiatement que $\lim_{n\to+\infty}\langle x_n-x,y\rangle=0$. Ainsi (x_n) converge faiblement vers x.

2. Supposons que (x_n) converge fortement vers x. Alors, d'après la question précédente, (x_n) converge faiblement vers x. De plus, par inégalité triangulaire,

$$|||x_n|| - ||x||| \le ||x_n - x||$$

Donc $\lim_{n\to+\infty} ||x_n|| = ||x||$.

Supposons maintenant que (x_n) converge faiblement vers x et $\lim_{n\to+\infty} ||x_n|| = ||x||$. Remarquons que

$$||x_n - x||^2 = ||x_n||^2 + ||x||^2 + 2\langle x_n, x \rangle$$

Par hypothèse, $\lim_{n\to+\infty} \|x_n\|^2 = \|x\|^2$. De plus, (x_n) converge faiblement vers $x \lim_{n\to+\infty} \langle x_n - x, x \rangle = 0$ ou encore $\lim_{n\to+\infty} \langle x_n, x \rangle = \|x\|^2$. Finalement,

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ce qui prouve que (x_n) converge fortement vers x.

3. Supposons que E soit de dimension finie.

Soit donc une suite (x_n) convergeant faiblement vers x. Notons (e_1, \dots, e_n) une base orthonormale de E. Par convergence faible, pour tout $i \in [1, n]$, $\lim_{n \to +\infty} \langle x_n - x, e_i \rangle = 0$. De plus, la base (e_1, \dots, e_n) étant orthonormée, pour tout $n \in \mathbb{N}$,

$$||x_n - x||^2 = \sum_{i=1}^n \langle x_n - x, e_i \rangle^2$$

On en déduit que

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ou encore $\lim_{n\to+\infty} ||x_n - x|| = 0$.

4. Considérons $E = \mathbb{R}[X]$, que l'on munit de sa norme usuelle (somme des produits des coefficients), c'est-à-dire

$$(P, Q) \in \mathbb{R}[X]^2 \mapsto \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} \cdot \frac{Q^{(k)}(0)}{k!}$$

On considère alors la suite (X^n) . Pour tout $P \in \mathbb{R}[X]$, $\langle X^n, P \rangle = 0$ dès lors que $n > \deg P$. Ainsi $\lim_{n \to +\infty} \langle X^n, P \rangle = 0$, ce qui permet d'affirmer que (X^n) converge faiblement vers 0. Mais, pour tout $n \in \mathbb{N}$, $||X^n|| = 1$ donc la suite (X^n) ne peut converger fortement vers 0.

Solution 20

1. Soient a et b deux valeurs d'adhérence de (u_n) (a < b). Donnons-nous $c \in]a, b[$ et montrons que c est également une valeur d'adhérence de (u_n) .

Fixons $\varepsilon \in \mathbb{R}_+^*$ et $N \in \mathbb{N}$.

- Comme $\lim_{n \to +\infty} u_{n+1} u_n = 0$, il existe un entier $N_0 \ge N$ tel que pour tout entier $n \ge N_0$, $|u_{n+1} u_n| \le \varepsilon$.
- Comme a est valeur d'adhérence, il existe un entier $N_1 \ge N_0$ tel que $u_{N_1} < c$.
- Comme b est valeur d'adhérence, il existe un entier $N_2 \ge N_1$ tel que $u_{N_2} > c$.

L'ensemble $\{n \in \mathbb{N}, \ N_1 \le n \le N_2, u_n < c\}$ est une partie non vide (il contient N_1) et majorée (par N_2) de \mathbb{N} . Il admet donc un plus grand élément M. Notamment, $u_M < c \le u_{M+1}$ i.e. $0 < c - u_M \le u_{M+1} - u_M$. Mais comme $M \ge N_1 \ge N_0$, $|u_{M+1} - u_M| \le \varepsilon$. On en déduit que $0 < c - u_M \le \varepsilon$ et a fortiori $|u_M - c| \le \varepsilon$ avec $M \ge N$. Ceci prouve que c est également une valeur d'adhérence de (u_n) . L'ensemble des valeurs d'adhérence de (u_n) est donc bien un intervalle.

2. Il est évident que si (u_n) converge, alors $\lim_{n\to+\infty} u_{n+1} - u_n = 0$. Réciproquement, supposons que $\lim_{n\to+\infty} u_{n+1} - u_n = 0$ et montrons que (u_n) converge. Comme (u_n) est bornée, il suffit de montrer qu'elle admet une unique valeur d'adhérence.

Remarquons déjà que toute valeur d'adhérence est un point fixe de f. En effet, si ℓ est une valeur d'adhérence, il existe une suite extaite $(u_{\varphi(n)})$ convergeant vers ℓ . Mais alors la suite de terme général $f(u_{\varphi(n)}) - u_{\varphi(n)} = u_{\varphi(n)+1} - u_{\varphi(n)}$ converge vers $f(\ell) - \ell$ par continuité de f et vers 0 par hypothèse de l'énoncé. Ainsi $f(\ell) = \ell$.

Supposons que (u_n) admette deux valeurs d'adhérence c et d (c < d). Il existe alors $p \in \mathbb{N}$ tel que $u_p \in [c, d]$. Si ce n'était pas le cas la suite (u_n) serait à valeurs dans $\mathbb{R} \setminus [c, d]$ et aucun réel de]c, d[ne pourrait alors être valeur d'adhérence, ce qui contredirait le fait que l'ensemble des valeurs d'adhérence est un intervalle. Comme $u_p \in [c, d]$ et que l'ensemble des valeurs d'adhérence est un intervalle, u_p est lui-même une valeur d'adhérence et donc un point fixe. La suite (u_n) est donc stationnaire à partir du rang p et a fortiori convergente, ce qui contredit l'existence de deux valeurs d'adhérence.

En conclusion, la suite (u_n) est bornée et admet une unique valeur d'adhérence : elle converge.

Solution 21

Notons L la limite de la suite (A^n) . Alors la suite $((A^n)^T)$ converge vers L^T (on peut arguer du fait que la transposition est continue en tant qu'endomorphisme d'un espace vectoriel de dimension finie). Par ailleurs,

$$\forall n \in \mathbb{N}, (A^n)^{\top} = (A^{\top})^n = (-A)^n = (-1)^n A^n$$

La suite $((A^{2n})^T)$ converge donc vers L et la suite $((A^{2n+1})^T)$ vers -L car (A^{2n}) et (A^{2n+1}) sont des suites extraites de (A^n) . Mais comme $((A^{2n})^T)$ et $((A^{2n+1})^T)$ sont elles-mêmes sdes suites extraites de $((A^n)^T)$, on en déduit que $L^T = L = -L$ et donc L = 0.

Solution 22

On note $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ la matrice de rotation d'angle θ . On rappelle que

$$\forall (\theta, \varphi) \in \mathbb{R}^2$$
, $R(\theta + \varphi) = R(\theta)R(\varphi)$

Posons $d_n = \det(A_n) = 1 + \frac{a^2}{n^2}$. Alors $A_n/\sqrt{d_n} \in SO(2)$ donc il existe $\theta_n \in]-\pi,\pi]$ tel que $A_n = \sqrt{d_n}R(\theta_n)$. Par ailleurs, $\cos\theta_n = \frac{1}{\sqrt{d_n}} > 0$ donc $\theta_n \in]-\frac{\pi}{2},\frac{\pi}{2}[$. Or $\tan\theta_n = \frac{a}{n}$ donc $\theta_n = \arctan\frac{a}{n}$.

$$A_n^n = d_n^{n/2} R(\theta_n)^n = d_n^{n/2} R(n\theta_n)$$

Comme $\arctan x = x + o(x)$, $\lim_{n \to +\infty} n\theta_n = a$. L'application R est continue donc $\lim_{n \to +\infty} R(n\theta_n) = R(a)$. Enfin,

$$d_n^{n/2} = \exp\left(\frac{n}{2}\ln\left(1 + \frac{a^2}{n^2}\right)\right)$$

Mais comme $\ln(1+x) = x + o(x)$, $\lim_{n \to +\infty} \frac{n}{2} \ln\left(1 + \frac{a^2}{n^2}\right) = 0$ puis $\lim_{n \to +\infty} d_n^{n/2} = 1$. Finalement,

$$\lim_{n \to +\infty} A_n^n = R(a) = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$$

Solution 23

- 1. M_{2n} est le milieu de $[BM_{2n-1}]$ et M_{2n+1} est le milieu de $[AM_{2n}]$.
- **2.** D'après ce qui précède , pour tout $n \in \mathbb{N}$

$$z_{2n+2} = \frac{1}{2}(z_{2n+1} - i)$$
 et $z_{2n+1} = \frac{1}{2}(z_{2n} + i)$

Aini

$$z_{2n+2} = \frac{1}{4}z_{2n} - \frac{i}{4}$$
 et $z_{2n+3} = \frac{1}{4}z_{2n+1} + \frac{i}{4}$

Les suites $(z_{2n})_{n\in\mathbb{N}}$ et $(z_{2n+1})_{n\in\mathbb{N}}$ sont arithméticogéométriques.

3. L'unique solution de

$$z = \frac{z}{4} - \frac{i}{4}$$

est $-\frac{i}{3}$. On vérifie que la suite $\left(z_{2n} + \frac{i}{3}\right)$ est géométrique de raison $\frac{1}{4}$. La suite $(z_{2n})_{n \in \mathbb{N}}$ converge donc vers $-\frac{i}{3}$. L'unique solution de

$$z = \frac{z}{4} + \frac{i}{4}$$

est $\frac{i}{3}$. On vérifie que la suite $\left(z_{2n+1} - \frac{i}{3}\right)$ est géométrique de raison $\frac{1}{4}$. La suite $(z_{2n+1})_{n \in \mathbb{N}}$ converge donc vers $\frac{i}{3}$.

Les suites de points correspondantes $(M_{2n})_{n\in\mathbb{N}}$ et $(M_{2n+1})_{n\in\mathbb{N}}$ convergent donc vers les images respectives de $-\frac{i}{3}$ et $\frac{i}{3}$. La suite $(M_n)_{n\in\mathbb{N}}$ n'est donc pas convergente.

4. La suite $(M_{3n})_{n\in\mathbb{N}}$ ne converge pas car les suites $(M_{6n+3})_{n\in\mathbb{N}}$ et $(M_{6n})_{n\in\mathbb{N}}$ sont extraites de $(M_{3n})_{n\in\mathbb{N}}$ mais aussi (et respectivement!) de $(M_{2n+1})_{n\in\mathbb{N}}$ et $(M_{2n})_{n\in\mathbb{N}}$, et convergent donc vers des limites différentes.

Solution 24

- 1. a. Comme $|z_n| \in \mathbb{R}$, $y_{n+1} = \frac{y_n}{2}$. On en déduit que (y_n) converge vers 0.
 - **b.** Par inégalité triangulaire, pour tout $n \in \mathbb{N}$:

$$|z_{n+1}| \le \frac{|\operatorname{Re}(z_n)| + |z_n|}{2} \le |z_n|$$

puisque pour tout complexe z, $|\operatorname{Re}(z)| \le |z|$.

c. On a pour tout $n \in \mathbb{N}$:

$$\operatorname{Re}(z_{n+1}) = \frac{\operatorname{Re}(z_n) + |z_n|}{2} \ge \operatorname{Re}(z_n)$$

puisque pour tout complexe z, $Re(z) \le |z|$. Ainsi (x_n) est croissante.

- **d.** Pour tout $n \in \mathbb{N}$, $\text{Re}(z_n) \le |z_n| \le |z_0|$ par décroissance de $(|z_n|)$. Ainsi (x_n) est croissante et majorée; elle converge.
- **e.** Comme (x_n) et (y_n) convergent, (z_n) converge. Puisque (y_n) converge vers 0, la limite de (z_n) est réelle.
- **f.** Si $z_0 \in \mathbb{R}_+$, on montre par récurrence que $z_n = z_0$ pour tout $n \in \mathbb{N}$. Donc (z_n) converge vers z_0 . Si $z_0 \in \mathbb{R}_-$, alors $z_1 = 0$ et on montre par récurrence que $z_n = 0$ pour tout $n \ge 1$. Donc (z_n) converge vers 0.
- 2. a. En appliquant la méthode de l'arc-moitié, on a :

$$z_{n+1} = r_n \cos \frac{\theta_n}{2} e^{i\frac{\theta_n}{2}}$$

Puisque $\theta_n \in]-\pi,\pi], \frac{\theta_n}{2} \in]-\frac{\pi}{2},\frac{\pi}{2}]$ et donc $r_n \cos \frac{\theta_n}{2} \ge 0$. On en déduit que $r_{n+1} = r_n \cos \frac{\theta_n}{2}$. Comme $\frac{\theta_n}{2} \in]-\pi,\pi], \theta_{n+1} = \frac{\theta_n}{2}$.

b. On en déduit immédiatement que (θ_n) converge vers 0.

c. Comme $\alpha \in]-\pi,0[\cup]0,\pi[,\frac{\alpha}{2^k}\not\equiv 0[\pi]$ pour tout $k\in [\![1,n]\!].$ On utilise alors l'indication de l'énoncé :

$$S_n = \prod_{k=1}^n \frac{\sin \frac{\alpha}{2^{k-1}}}{2\sin \frac{\alpha}{2^k}}$$

Par télescopage, on a $S_n = \frac{\sin \alpha}{2^n \sin \frac{\alpha}{2^n}}$

Comme $\frac{\alpha}{2^n} \xrightarrow[n \to +\infty]{} 0$, $\sin \frac{\alpha}{2^n} \sim \frac{\alpha^{2^n}}{2^n}$. Par conséquent, $2^n \sin \frac{\alpha}{2^n} \xrightarrow[n \to +\infty]{} \alpha$ puis $S_n \xrightarrow[n \to +\infty]{} \frac{\sin \alpha}{\alpha}$.

d. Par une récurrence facile, $\theta_n = \frac{\theta_0}{2^n}$. On montre aussi facilement que pour $n \ge 1$:

$$r_n = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_k}{2} = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_0}{2^{k+1}} = r_0 \prod_{k=1}^{n} \cos \frac{\theta_0}{2^k}$$

Si $\theta_0 = 0, z_0 \in \mathbb{R}_+$ et on a vu que (z_n) est constante égale à z_0 . Ainsi (z_n) converge vers z_0 .

Si $\theta_0 = \pi$, $z_0 \in \mathbb{R}_+$ et on a vu que (z_n) est nulle à partir du rang 1. Ainsi (z_n) converge vers 0.

Si $\theta_0 \in]-\pi, 0[\cup]0, \pi[$, la question précédente montre que (r_n) converge vers $r_0 \frac{\sin \theta_0}{\theta_0}$. Comme (θ_n) converge vers $0, (z_n)$ converge également vers $r_0 \frac{\sin \theta_0}{\theta_0}$.

Séries

Solution 25

On prouve aisément par récurrence que $||u_{n+1}-u_n|| \le k^n ||u_1-u_0||$ et donc que $u_{n+1}-u_n = \mathcal{O}(k^n)$. Puisque $k \in [0,1[$, la série télescopique $\sum_{n \in \mathbb{N}} u_{n+1} - u_n$ converge abolument donc converge i.e. la suite u converge.

Solution 26

1. Comme les séries $\sum u_n$ et $\sum \frac{1}{2n}$ sont absolument convergentes, leur produit de Cauchy à savoir $\sum v_n$ est convergente. De plus,

$$\sum_{n=0}^{+\infty} v_n = \left(\sum_{n=0}^{+\infty} v_n\right) \left(\sum_{n=0}^{+\infty} \frac{1}{2^n}\right) = 2 \sum_{n=0}^{+\infty} u_n$$

2. Soit (e_1, \dots, e_d) une base de cet espace vectoriel E. Comme $\sum u_n$ converge absolument, on en déduit que les séries $\sum e_k^*(u_n)$ convergent également absolument $(k \in [\![1,d]\!])$. En effet, puisque toutes les normes sont équivalentes, on peut par exemple munir E de la norme définie par $\|x\| = \sum_{k=1}^d |e_k^*(x)|$ de sorte que $|e_k^*(x)| \le \|x\|$ pour $k \in [\![1,d]\!]$. En appliquant ce qui précéde aux séries absolument convergentes $\sum e_k^*(u_n)$, on en déduit que les séries $\sum e_k^*(v_n)$ converge et que $\sum_{n=0}^{+\infty} e_k^*(v_n) = 2\sum_{n=0}^{+\infty} e_k^*(u_n)$. On en déduit alors que la série $\sum v_n$ converge et que $\sum_{n=0}^{+\infty} v_n = 2\sum_{n=0}^{+\infty} u_n$.

Suites extraites

Solution 27

Posons $u_n = \{\sqrt{n}\}$. Alors $u_{n^2} = 0$ pour tout $n \in \mathbb{N}$. De plus, $n - 1 \le \sqrt{n^2 - 1} < n$ pour $n \ge 1$ donc $\{\sqrt{n^2 - 1}\} = n$. Enfin

$$\{\sqrt{n^2 - 1}\} = \sqrt{n^2 - 1} - (n - 1) = 1 + \sqrt{n^2 - 1} - n = 1 - \frac{1}{n + \sqrt{n^2 - 1}}$$

Les suites $(u_{n^2})_{n\in\mathbb{N}}$ et $(u_{n^2-1})_{n\geq 1}$ sont des suites extraites de la suite (u_n) de limites respectives 0 et 1. La suite (u_n) n'admet donc pas de limite.

Solution 28

Supposons (u_n) non majorée. Alors on peut en extraire une sous-suite $(u_{\varphi(n)})$ divergeant vers $+\infty$. Puisque $v_n = (u_n + v_n) - u_n$ pour tout $n \in \mathbb{N}$ et que $u_n + v_n \xrightarrow[n \to +\infty]{} 0$, $(v_{\varphi(n)})$ diverge vers $-\infty$. Mais alors $\lim_{n \to +\infty} u_{\varphi(n)}^p = +\infty$ et, q étant impair, $\lim_{n \to +\infty} v_{\varphi(n)}^q = -\infty$. Ainsi $\lim_{n \to +\infty} u_{\varphi(n)}^p - v_{\varphi(n)}^q = +\infty$, ce qui contredit l'énoncé.

 $\lim_{n\to+\infty}u^p_{\varphi(n)}-v^q_{\varphi(n)}=+\infty, \text{ ce qui contredit l'énoncé.}$ Supposons (u_n) non minorée. Alors on peut en extraire une sous-suite $(u_{\varphi}(n))$ divergeant vers $-\infty$. Puisque $v_n=(u_n+v_n)-u_n$ pour tout $n\in\mathbb{N}$ et que $u_n+v_n\underset{n\to+\infty}{\longrightarrow}0, (v_{\varphi(n)})$ diverge vers $+\infty$. Mais alors, p étant impair, $\lim_{n\to+\infty}u^p_{\varphi(n)}=-\infty$ et $\lim_{n\to+\infty}v^q_{\varphi(n)}=+\infty$. Ainsi $\lim_{n\to+\infty}u^p_{\varphi(n)}-v^q_{\varphi(n)}=-\infty$, ce qui contredit l'énoncé.

La suite (u_n) est donc bornée. D'après le théorème de Bolzano-Weierstrass, elle admet une valeur d'adhérence $l \in \mathbb{R}$. Soit $(u_{\varphi(n)})$ une sous-suite convergeant vers l. Puisque $\lim_{n \to +\infty} u_n + v_n = 0$, $(v_{\varphi(n)})$ converge vers -l. Enfin, puisque $\lim_{n \to +\infty} u_n^p - v_n^q = 0$, $l^p - (-l)^q = 0$. p et q étant impairs, ceci équivaut à $l^p + l^q = 0$. La fonction $x \mapsto x^p + x^q$ étant strictement croissante (encore une fois, on utilise le fait que p et q sont impairs) et s'annulant en 0, on a donc l = 0. 0 est l'unique valeur d'adhérence de la suite (u_n) : on démontre alors classiquement que (u_n) converge vers 0. Puisque $v_n = (u_n + v_n) - u_n$, on en déduit que (v_n) converge vers 0.

Solution 29

1. Il suffit par exemple de remarquer que $[0,7]^2$ est stable par l'application $f:(x,y)\mapsto(\sqrt{7-y},\sqrt{7+y})$. Soit en effet $(x,y)\in[0,7]^2$. Alors

$$\sqrt{7-y} \le \sqrt{7} \le 7$$
 et $\sqrt{7+x} \le \sqrt{17} \le 7$

2. Supposons que (x_n) et (y_n) convergent respectivement vers ℓ et ℓ' . Alors $\ell = \sqrt{7 - \ell'}$ et $\ell' = \sqrt{7 + \ell}$. En particulier,

$$\ell^2 = 7 - \ell'$$
 et $\ell'^2 = 7 + \ell$

En soustrayant membre à membre ces deux égalités, on obtient

$$\ell'^2 - \ell^2 = \ell + \ell'$$

ou encore

$$(\ell' + \ell)(\ell' - \ell - 1) = 0$$

On ne peut avoir $\ell + \ell' = 0$. En effet, (x_n) et (y_n) sont clairement positives donc leurs limites ℓ et ℓ' également. Si on avait $\ell + \ell' = 0$, on aurait donc $\ell = \ell' = 0$, ce qui est impossible puisque $\ell^2 = 7 - \ell'$ par exemple.

On en déduit que $\ell' - \ell - 1 = 0$ i.e. $\ell' = \ell + 1$. Ainsi

$$\ell^2 = 7 - \ell' = 6 - \ell$$

Il en résulte que $\ell = 2$ ou $\ell = -3$. Puisque $\ell \ge 0$, $\ell = 2$ puis $\ell' = 3$.

3. Posons $u_n = x_n - 2$ et $v_n = y_n - 3$ pour $n \in \mathbb{N}$. Remarquons que pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{4 - v_n} - 2 = -\frac{v_n}{\sqrt{4 - v_n} + 2}$$
$$v_{n+1} = \sqrt{9 + u_n} - 3 = \frac{u_n}{\sqrt{9 + u_n} + 3}$$

On en déduit que pour tout $n \in \mathbb{N}$,

$$|u_{n+1}| = \frac{|v_n|}{\sqrt{4 - v_n} + 2} \le \frac{|v_n|}{2}$$

$$|v_{n+1}| = \frac{|u_n|}{\sqrt{9 + u_n} + 3} \le \frac{|u_n|}{3}$$

Par conséquent, pour tout $n \in \mathbb{N}$,

$$|u_{n+2}| \le \frac{|v_{n+1}|}{2} \le \frac{|u_n|}{6}$$

On en déduit sans peine que pour tout $n \in \mathbb{N}$,

$$|u_{2n}| \le \frac{1}{6^n} |u_0|$$
 et $|u_{2n+1}| \le \frac{1}{6^n} |u_1|$

Les suites (u_{2n}) et (u_{2n+1}) convergent donc vers 0: il en est donc de même de la suite (u_n) . On en déduit alors que (v_n) converge également vers 0. Finalement, les suites (x_n) et (y_n) convergent respectivement vers 2 et 3.