Lab10: 최대 전력 전달 조건

학번: 22200034 이름: 곽도현

1. 실험에서 얻은 측정 결과 표를 첨부하시오 (1점)

-소수점 둘째자리까지 사용, Power는 mW로 표기

R ₂	측정 값				
(Measured)	V_{R1}	V_{R2}	P ₁	P ₂	
0.5 kΩ (0.50 kΩ)	7.59V	1.42V	21.76mW	4.05mW	
1.0 kΩ (1.00kΩ)	6.59V	2.47V	16.40mW	6.09mW	
2.0 kΩ (2.00 kΩ)	5.15V	3.89V	10.00mW	7.59mW	
3.0 kΩ (3.01 kΩ)	4.24V	4.80V	6.78mW	7.66mW	
4.0 kΩ (4.09 kΩ)	3.58V	5.45V	4.83mW	7.26mW	
5.0 kΩ (5.04 kΩ)	3.12V	5.89V	3.68mW	6.89mW	
7.5 kΩ (7.55 kΩ)	2.38V	6.66V	2.14mW	5.92mW	
10.0 kΩ (10.00 kΩ)	1.93V	7.06V	1.40mW	4.99mW	

2. Excel, Python 또는 MATLAB 등을 이용하여 다음을 Plot 하시오 (2점)

(1) V_{R1} 과 V_{R2} 를 R_2 에 대해 그리시오 (1점)

(두 그래프를 하나의 그래프로 겹쳐서 그리시오)

R ₂	측정 값		
(Measured)	V _{R1}	V _{R2}	
0.5 kΩ (0.50 kΩ)	7.59V	1.42V	
1.0 kΩ (1.00kΩ)	6.59V	2.47V	
2.0 kΩ (2.00 kΩ)	5.15V	3.89V	
3.0 kΩ (3.01 kΩ)	4.24V	4.80V	
4.0 kΩ (4.09 kΩ)	3.58V	5.45V	
5.0 kΩ (5.04 kΩ)	3.12V	5.89V	
7.5 kΩ (7.55 kΩ)	2.38V	6.66V	
10.0 kΩ (10.0 kΩ)	1.93V	7.06V	

(2) P_1 과 P_2 를 R_2 에 대해 그리시오 (1점)

(두 그래프를 하나의 그래프로 겹쳐서 그리시오)

R ₂	측정 값	
(Measured)	P ₁	P ₂
0.5 kΩ (0.50 kΩ)	21.76mW	4.05mW
1.0 kΩ (1.00kΩ)	16.40mW	6.09mW
2.0 kΩ (2.00 kΩ)	10.00mW	7.59mW
3.0 kΩ (3.01 kΩ)	6.78mW	7.66mW
4.0 kΩ (4.09 kΩ)	4.83mW	7.26mW
5.0 kΩ (5.04 kΩ)	3.68mW	6.89mW
7.5 kΩ (7.55 kΩ)	2.14mW	5.92mW
10.0 kΩ (10.0 kΩ)	1.40mW	4.99mW

3. 위에서 plot한 그래프를 볼 때에, 최대 전력이 전달되는 조건에서 각 저항의 저항 값, 각 저항 양단의 전압 값, 각 저항에서 소모하는 전력 값은 어떻게 나타나는지 설명하시오 (2점)

왼쪽의 그래프에서 P2 즉, R2에 최대 전력이 전달되는 조건은 $2{\sim}3k\Omega$ 일 때 최대 값이 나온다. 실험 측정 때에는 거의 $1.0k\Omega$ 을 간격으로 측정하였기 때문에 이론상 $2.7k\Omega$ 일 때의 전력을 측정하지 못하였지만 측정한 값(점)들을 잇는 직선을 그린 그래프에서 볼 수 있듯이 이론 값(R2가 R1($2.7k\Omega$)과 같은 값일 때)과 가장 가까운 값인 $3k\Omega$ 일 때 최대 전력이 전달됨을 알 수있다.

이때는 각 두 그래프(V1&V2 or P1&P2)의 교점인 지점이므로 각 저항 양단의 전압 값과 각 저항에서 소모하는 전력 값은 두 값이 같음을 알 수 있다.