GoSeed: Generating an Optimal Seeding Plan for Deduplicated Storage

Aviv Nachman, Gala Yadgar, Sarai Sheinvald

Speaker: Liang, Jiacheng

Background

- **➤ Data Migration:**
- Moving data between volume
- Typically performed for load balancing and resizing
- >Seeding: Data migration with empty destination

Motivation

- > Deduplication complicates the migration:
- File remapped will cause replication.

≻Current status:

• Greedy algorithms for determining the set of migrated files, but the efficiency has never been systematically compared.

Background: What is ILP

≻Satisfies

$$a_0x_0 + a_1x_1 + a_2x_3 + \dots + a_{n-1}x_{n-1} \le c$$
, where $a_0, \dots, a_{n-1}, c \in \mathbb{Z}$

≻Maximizes

$$Tx = a_0x_0 + a_1x_1 + a_2x_3 + a_0x_0 + \dots + a_{n-1}x_{n-1}$$

>How to combine data migration

c as the the migration amount, make $a_0x_0 + a_1x_1 + a_2x_3 + a_0x_0 + \cdots + a_{n-1}x_{n-1}$ closest to c.

Design: ILP combine data migration

- ➤ Migrate M% of physical occupancy
- \triangleright Actually $M \pm \epsilon$
- >R as the cost of the migration
- >m_i: block i migrated (0/1)
- >r_i: block i replicated (0/1)
- $> x_i$: file i remmaped (0/1)
- >s : the size of the block
- \succ M : $\sum b_i \in B_{V_1} s(b_i) \cdot m_i = M$, The total size of migrated blocks
- \triangleright R : $\sum b_i \in B_{V_1} s(b_i) \cdot r_i$

target: minimize R, closest M

Constraint: blocks & file are always bound

- > Blocks are copied or moved with their files
- > Blocks cannot move without their files

Design: ILP formulation

 V_1 b_0 b_1 b_1 b_2 b_1 b_2 b_2 b_3 b_4 b_2 b_4 b_5 b_5 b_5 b_6 b_7 b_8 b_8 b_8 b_8 b_8 b_8

- >m_i: block i migrated (0/1)
- $> x_i$: file i remmaped (0/1)
- >s : the size of the block
- $ightharpoonup M: \sum b_i \in B_{V_1} s(b_i) \cdot m_i = M,$ The total size of migrated blocks
- \triangleright R : $\sum b_i \in B_{V_1} s(b_i) \cdot r_i$

target: minimize R, closest M

- Block b_2 is migrated: $m_2 = 1$
- · File f_2 is remapped: $x_2 = 1$
- Block b_1 is replicated: $r_1 = 1$
- · The remaining files and blocks are untouched:

$$x_0 = x_1 = m_0 = m_1 = r_0 = r_2 = 0$$

• The total cost is $R = 3 \cdot r_1 = 3$

Theory vs. Practice

- ➤ Dedup: ~10 logical TB ⇒ ~billion variables and constraints
- > ILP Solvers: Solvers are efficient with several 100K

Method I: Solver timeout

Limited the runtime of ILP solver

- Specifying a timeout value
- > Return the best feasible solution found thus far

Problem:

When the solver is timed out, we cannot necessarily tell how far the suboptimal solution is from the optimal one.

Method II: fingerprint sampling

- > Sample a subset of the fingerprints [Harnik et al. FAST19]
- > Sample degree k: each sample $\frac{1}{.2^k}$ of the blocks

Problem:

- > Smaller sample
- ⇒ a larger ILP instance
- ⇒ more accurately represents the sampled system
- ⇒ more likely to time out

Method III: container-based aggregation

- Deduplication system stores blocks in containers
- We treat each container as a block
- use only the container IDs for generating the variables and constraints.
- +smaller ILP problem
- +no need to decompress/unpack containers
- -false positives

-false positives

Experimental setup

- We compare:
- GoSeed: our ILP-based approach
- Rangoli [Nagesh & Kathpal Systor'13]:
 - Sort & divide the blocks into bins
 - Migrate the "best" bin
- SGreedy [Harnik et al. FAST19]:
 - Iterative method
 - Each iteration remap the "best"
 file

	UBC 500	Homes	MacOS -day
Logical size	19.5TB	8.9TB	43TB
Dedup ratio	0.31	0.13	0.01

Cost

- Rangoli **SGreedy**
- SGreedy (k=12)
- GoSeed (k=12)

MacOS-Day consists daily backups

- UBC-500 is considered "easy"
- - Low dedup UBC-500 Cost (% replicated) 33 20

M (%)

Homes is harder

High dedup

> GoSeed always finds a solution, it's often the best

0.5

> Greedy algorithms sometimes fail to find a solution

20

M (%)

Rangoli SGreedy (k=12) SGreedy GoSeed (k=12)

> Runtimes and resources are acceptable.

Container cost

> GoSeed always gives a solution, almost always better

ILP parameter M-Epsilon Evalution

 \triangleright The increase of M leads to higher cost, and the increase of ϵ leads to the decrease of cost

Effect of fingerprint sampling

- ➤ Solving time increases exponentially with instance size
 - ➤ Cost is hardly affected by the sampling degree, unless the instance becomes too large. 18

Suboptimal solution

-Solve Timeout

Migration cost decreases when timeout increases

Conclusions

- Formulate of data migration as an ILP problem and solve it with ILP solvers
- Use three acceleration methods and they are essential and effective
- GoSeed often outperforms greedy approaches, and always find a feasible solution to the problem.
- The container-based approach is separate from the sample-based approach, applicable to different deduplication systems