75.04 Algoritmos y Programación II

Práctica 8: Introducción a grafos

Notas preliminares

- El objetivo de esta práctica es dar una breve introducción a estructuras de representación de grafos y algoritmos para manipularlas.
- Los ejercicios marcados con el símbolo 🕏 constituyen un subconjunto mínimo de ejercitación. No obstante, recomendamos fuertemente realizar todos los ejercicios.

Ejercicio 1 ૈ

En una implementación de grafos usando listas de adyacencia, ¿cuál es el costo de calcular el grado de salida de cada vértice? ¿Cuál es el costo para el grado de entrada?

Ejercicio 2 🌲

La transpuesta de un grafo dirigido G=(V,E) es el grafo $G^T=(V,E^T)$, en donde $E^T=\{(v,u)\in V\times V:(u,v)\in E\}$. Es decir, G^T es G con todas sus aristas en sentido reverso.

Describir algoritmos eficientes para computar G^T a partir de G, tanto para la representación usando listas de adyacencia como también en el caso de matrices de adyacencia. Analizar los tiempos de corrida de los algoritmos.

Ejercicio 3

Definimos el cuadrado de un grafo G=(V,E), como el grafo $G^2=(V,E^2)$, tal que $(u,w)\in E^2$ si y sólo si para algún $v\in V$ se cumple que $(u,v)\in E$ y $(v,w)\in E$. Esto es, G^2 contendrá una arista entre u y w siempre que G contenga un camino con exactamente dos aristas entre u y w. Describir algoritmos eficientes para computar G^2 a partir de G, usando las dos representaciones usuales de grafos, matrices y listas de adyacencia. Analizar los tiempos de corrida de los algoritmos.

Ejercicio 4

Usualmente, representar los grafos usando matrices de adyacencia impone complejidad $\Omega(|V|^2)$, pero hay excepciones. Mostrar que, dado un grafo dirigido G, es posible determinar, a partir de su matriz de adyacencia y en tiempo O(|V|), si G contiene un sumidero universal, i.e., un vértice con grado de entrada |V|-1 y grado de salida nulo.

Ejercicio 5

La matriz de incidencia de un grafo dirigido G = (V, E) es una matriz de $|V| \times |E|$, $B = (b_{ij})$ tal que:

$$b_{ij} = \begin{cases} -1 & \text{si la arista j sale del v\'ertice i,} \\ 1 & \text{si la arista j llega al v\'ertice i,} \\ 0 & \text{en los casos restantes.} \end{cases}$$

Describir qué representan los elementos de la matriz producto BB^T , donde B^T es la transpuesta de B.

Ejercicio 6

Indicar los valores de d y π involucrados en el recorrido BFS¹ del grafo de la figura 1, en donde d[u] es la distancia entre u y el vértice origen; y $\pi[u]$ es el vértice predecesor, o padre, de u en la secuencia resultante. Tomar al vértice 3 como punto de partida.

Ejercicio 7 ૈ

 ${}^{1}\underline{\mathbf{B}}$ readth <u>f</u>irst <u>s</u>earch.

\$Date: 2012/03/16 01:52:32 \$

Figure 1: ejercicio.

¿Cuál es la complejidad temporal del algoritmo BFS si representamos el grafo mediante una matriz de adyacencia?

Ejercicio 8

El diámetro de un árbol T=(V,E) está dado por:

$$\max_{u,v \in V} \delta(u,v)$$

es decir, el diámetro es el máximo valor del conjunto de distancias entre todos los nodos del árbol. Dar un algoritmo eficiente para calcular el diámetro, y analizar su tiempo de corrida.