JP5345856

Patent number:

JP5345856

Publication date:

1993-12-27

Inventor:

OHASHI HIDEYUKI; UNO KEIICHI

Applicant:

TOYO BOSEKI

Classification:

- international:

C08L77/00; C08G69/02; C08G69/48; C08L77/10;

C08L77/00; C08G69/02; C08G69/48; C08L77/10

- european:

Application number: JP19920156959 19920616 Priority number(s): JP19920156959 19920616

Report a data error here

Abstract of JP5345856

PURPOSE:To obtain a compound polymer useful for films, fibers, etc., having an elevated glass transition temperature and excellent in moldability, mechanical characteristics and crystallization accelerating effect by dissolving an aromatic polyamide resin in a lactam, etc., and polymerizing them. CONSTITUTION:The compound polymer is obtained by dissolving (A) an aromatic polymide resin obtained by subjecting an aromatic diamine such as m- phenylene diamine, etc., to react with a dichloride of an aromatic dicarboxylic acid such as isophthaloyl dichloride in (B) a lactam such as epsilon-caprolactam, etc., and amino acid such as 6-amino-n-caproic acid, etc., or an aliphatic nylon salt, and polymerizing them. Further, the compound polymer is molded to obtain a molded article. The mixing ratio of the components A and B is preferably A/B=2/98-25/75 in wt. ratio.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12)O公開特許公報(A)

(11)特許出願公開番号

特開平5-345856

(43)公開日 平成5年(1993)12月27日

(51) Int.Cl.5		識別記号	庁内整理番号	FI	技術表示箇所
C08L	77/00	LQW	9286-4 J		
C 0 8 G	69/02	NRC	9286-4 J		
	69/48	NRH	9286-4 J		
C 0 8 L	77/10	LQW	9286-4 J		

審査請求 未請求 請求項の数3(全 4 頁)

(21)出願番号	特願平4-156959	(71)出願人 000003160 東洋紡績株式会社
(22)出顧日	平成4年(1992)6月16日	大阪府大阪市北区堂島浜2丁目2番8号
		(72)発明者 大橋 英之
		滋賀県大津市堅田二丁目1番1号 東洋
		粮株式会社総合研究所内
		(72)発明者 宇野 敬一
		滋賀県大津市堅田二丁目1番1号 東洋
		續株式会社総合研究所内
		(74)代理人 弁理士 高島 一

(54) 【発明の名称】 ポリマー複合体、その製造法及びその成形物

(57)【要約】

【構成】 ラクタム、アミノ酸及び脂肪族ナイロン塩か ら選ばれる少なくとも一種に可溶性である芳香族ポリア ミド樹脂(A)と脂肪族ポリアミド樹脂(B)とのポリ マー複合体。芳香族ポリアミド樹脂(A)をラクタム、 アミノ酸又は脂肪族ナイロン塩に溶解させて重合させる ことによる上記ポリマー複合体の製造法。上記ポリマー 複合体よりなる成形物。

【効果】 当該明ポリマー複合体は、Tgが上昇してお り、耐熱性の向上は明らかである。また、Tcが上昇し ており、結晶化促進効果が見られる。また、当該ポリマ 一複合体は、破断強度、ヤング率等の機械的特性が向上 しており、且つ耐熱性及び成形性に優れたポリマー複合 体である。

【特許請求の範囲】

ラクタム、アミノ酸及び脂肪族ナイロン 【請求項1】 塩から選ばれる少なくとも一種に可溶性である芳香族ポ リアミド樹脂(A)と脂肪族ポリアミド樹脂(B)との ポリマー複合体。

【請求項2】 芳香族ポリアミド樹脂(A)をラクタ ム、アミノ酸又は脂肪族ナイロン塩に溶解させて重合さ せることを特徴とする請求項1記載のポリマー複合体の 製造法。

【請求項3】 請求項1記載のポリマー複合体よりなる 10 ③上配①に記載のポリマー複合体よりなる成形物。 成形物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、耐熱性及び機械的特性 に優れたポリマー複合体、その製造法及び当該ポリマー 複合体よりなる成形物に関するものである。更に具体的 には、特定の芳香族ポリアミド樹脂と脂肪族ポリアミド 樹脂から成るポリマー複合体、その製造法および当該ポ リマー複合体より得られる耐熱性、機械的特性に優れた フィルム、繊維、その他の成形物などに関するものであ 20 る。

[0002]

【従来の技術・発明が解決すべき課題】脂肪族ポリアミ ド樹脂、いわゆるナイロン樹脂は、フィルム、繊維、成 形材料、エンジニアリングプラスチックスなどの成形物 に広く使用されている。しかし、これら成形物はナイロ ン樹脂のガラス転移点が低いことによる耐熱性不足や機 械的特性が問題となっている。このため、ナイロン樹脂 と無機粒子やガラス繊維、カーポン繊維との複合化やポ リスチレン等の他のポリマーとのアロイ化がなされてい 30 るが、より優れた耐熱性、機械的特性が要望されている のが現状である。

【0003】また、最近、ナイロン樹脂に、ポリーp-フェニレンペンゾピスチアゾールやポリーp-フェニレ ンテレフタルアミドなどの剛直性高分子を分子状態で複 合化したモレキュラーコンポジットが開発されており (polymer, 28, 2130, 1987, J. Macromol, Sci. Phy s., B29 (2 & 3), 263, 1990 、化学, 45, 350, 199 0、機能材料, 6, 5, 1989等)、優れた耐熱性、機械的 特性を示しているが、共溶剤にメタンスルホン酸等の特 40 殊な溶剤を使用する必要がある、溶融成形時に相分離が 生じる等の問題点があり、一般化には至っていないのが 実情である。

[0004]

【課題を解決するための手段】上記の問題点ないし課題 を解決するために本発明者らは鋭意研究の結果、脂肪族 ポリアミド樹脂に特定の芳香族ポリアミド樹脂を複合化 した新規ポリマー複合体を創製すると共に、当該ポリマ 一複合体が極めて優れた特性を有することを見出し、本 発明を完成するに至った。

【0005】即ち、本発明は、以下の要旨を有すもので ある。

①ラクタム、アミノ酸及び脂肪族ナイロン塩から選ばれ る少なくとも一種に可溶性である芳香族ポリアミド樹脂 (A) と脂肪族ポリアミド樹脂 (B) とのポリマー複合

②芳香族ポリアミド樹脂(A)をラクタム、アミノ酸又 は脂肪族ナイロン塩に溶解させて重合させることを特徴 とする上記①に記載のポリマー複合体の製造法。

【0006】本発明のポリマー複合体は、好適には脂肪 族ポリアミド樹脂 (B) に芳香族ポリアミド樹脂 (A) $\epsilon(A)/(B)=0.1/99.9\sim50/50($ 重 量比)、好適には(A)/(B)=2/98~20/8 0の割合で複合体化させたものである。

【0007】本発明のポリマー複合体は、芳香族ポリア ミド樹脂(A)をε-カプロラクタム等のラクタム、ア ミノ酸又はジアミンとジカルポン酸とから成るナイロン 塩に加熱下溶解し、溶解した状態を保ちつつラクタム、 アミノ酸又はナイロン塩を (USP 2,130,523 、Makromo l, Chem., 27, 37, 1958 等に記載の) 通常の方法によ り重合させることによって芳香族ポリアミド樹脂が脂肪 族ポリアミド (A) 中に分子状に分散したポリマー複合 体として得られる。

【0008】本重合反応において、芳香族ポリアミド樹 脂(A)と、ラクタム、アミノ酸又はジアミンとジカル ポン酸とから成るナイロン塩との配合割合は、通常0. 1/99. 9~55/45、好ましくは2. 0/98~ 25/75である。

【0009】ラクタムとしては、ァープチロラクタム、 δーパレロラクタム、ε-カプロラクタム、ξ-エナン トラクタム、πーカプリルラクタム、ωーラウリルラク タム等のラクタム類が挙げられ、アミノ酸としては、6 **-アミノ-n-カプロン酸、11-アミノウンデカン** 酸、12-アミノドデカン酸等が挙げられ、ナイロン塩 としては、ヘキサメチレンジアミンのアジピン酸塩、ヘ キサメチレンジアミンのセパシン酸塩等が挙げられる。

【0010】本発明に使用される芳香族ポリアミド樹脂 (A) は、ラクタム、アミノ酸及び脂肪族ナイロン塩か ら選ばれる少なくとも一種に可溶性である。ラクタム類 としては、アープチロラクタム、8ーパレロラクタム、 εーカプロラクタム、ξーエナントラクタム、ηーカプ リルラクタム、ωーラウリルラクタム等のラクタム類 が、アミノ酸としては、6-アミノーn-カプロン酸、 11-アミノウンデカン酸、12-アミノドデカン酸等 が、脂肪族ナイロン塩としては、ヘキサメチレンジアミ ンのアジピン酸塩、ヘキサメチレンジアミンのセパシン 酸塩等が挙げられる。

【0011】本発明で使用される芳香族ポリアミド樹脂 (A) は、芳香族ジアミンと芳香族ジカルポン酸クロリ

50

10

* [0015]

[化3]

[0016]

[0017] 【化5】

(化4)

ドとを反応させる酸クロリド法 ("Condensation Polyme rs by Interfacial and Solution Methods", Interscie ace, 1965)、芳香族ジアミンの代わりにジイソシアネー トを用いるイソシアネート法 (Polym. Eng. Sci., 25, 942. 1985)、芳香族ジアミンのジアセトアミドを用いる アミド交換法 (J. Appl. Polym. Sci., 25, 1685, 198 0) などにより合成される。

3

【0012】本発明で使用される芳香族ポリアミド樹脂 (A) としては、以下に示す構造のものが例として挙げ られる。

[0013]

【化1】

[0014]

(化2)

$$(AE2)$$

$$(NH \longrightarrow NHC \longrightarrow C)$$

$$(AE6)$$

$$(AE6)$$

$$(AE6)$$

【0019】本発明のポリマー複合体は、フィルム、繊 雄、その他の成形物などの様々な用途に使用できる。成 形加工法は従来公知の方法(溶融紡糸、溶融キャスティ ング、溶融成形、射出成形など)の適用が可能である。 [0020]

【実施例】以下、本発明を実施例によって具体的に説明 する。

実施例1

反応容器にε-カプロラクタム90.4g(0.8モ ル)、芳香族ポリアミド樹脂(m-フェニレンジアミン とイソフタル酸ジクロライドの反応物、Mn=15,0 00 (末端基定量)) 2.5g、6-アミノカプロン酸 5.2g(0.04モル)を仕込み、100℃に加熱し 攪拌して芳香族ポリアミド樹脂を溶解した。その後、2

50℃に加熱し、重合を開始させ、10時間反応を続け た後、冷却、粉砕し、水及びアセトンで洗浄し、未反応 の ε - カプロラクタムを取り除き、溶融状態では透明で あるポリマー複合体を得た。得られたポリマー複合体の 分子量は、16,000 (末端基定量) であった。ま た、得られたポリマー複合体のガラス転移点(Tg)、 融点 (Tm)、結晶化温度 (Tc)をDSCにより測定 40 し、また、ポリマー複合体を溶融キャスティングしてフ ィルムを作製し、JISK 7113に準じ、テンシロ ン引張試験機により機械的物性を測定した。測定結果を 表1に示す。

[0021]

【表1】

6

	実施例Ⅰ	実施例2	比較例
芳香族ポリアミド樹脂配合量(wt%)	2. 5	10	0
分子量(末端基定量)	16, 000	12. 000	15. 000
DSC測定結果			
Tg (℃)	62	92	52
Tm (℃)	218	221	219
Тс (℃)	189	186	173
テンシロン測定結果			
破断強度(kg/mm²)	4.7	5.8	4. 3
破断伸度(%)	50	3. 2	130
ヤング率 (kg/mm²)	124	243	100

【0022】実施例2

芳香族ポリアミド樹脂を10.6g仕込む以外は、実施 実施 例1と同様にしてポリマー複合体を得た。得られたポリ 30 す。マー複合体の分子量は12,000であり、実施例1と [0 同様の評価を行った。測定結果を表1に示す。 【発

【0023】比較例

反応容器に ε - カプロラクタム 9 0. 4 g (0. 8 モル)、6 - アミノカプロン酸 5. 2 g (0. 0 4 モル)を仕込み、2 5 0 $\mathbb C$ で 1 0 時間反応させた後、冷却、粉砕し、水及びアセトンで洗浄し、未反応の ε - カプロラクタムを取り除き、脂肪族ポリアミド樹脂(Ny - 6)

を得た。得られた樹脂の分子量は15,000であり、 実施例1と同様の評価を行った。測定結果を表1に示す。

[0024]

【発明の効果】本発明のポリマー複合体は、Tgが上昇しており、耐熱性の向上は明らかである。また、Tcが上昇しており、結晶化促進効果が見られる。また、本発明のポリマー複合体は、破断強度、ヤング率等の機械的特性が向上しており、且つ耐熱性及び成形性に優れたポリマー複合体である。