

Ask Weber session 6

Weber Liu

Digestion

Topic 16

Alimentary canal anatomy

- The alimentary canal is 9m long, but it covers 30-40m2 surface area what structure within this canal allows it to maximise its surface area in this manner?

 - -Villi as well

- Name the 3 pairs of major salivary glands, and relate their names to their anatomical locations
 - Parotid
 - -Sublingual
 - submandibular

Biomolecular metabolism

- How are starch molecules metabolized in the body?
 - Serous fluids in saliva
 moistens the food, dissolves
 it, and contains enzymes
 (e.g. amylase) to convert
 carbohydrates like starch
 into sugar

Physiology of swallowing

- If you drank water whilst hanging upside down, the water would still flow against gravity – what process allows your body to achieve this?
 - Peristaltic contractions along the oesophagus allows the pushing of a food bolus into the stomach – the remainder of the movement is enabled by continued peristaltic movement in the gut
- Based on your understanding on peristalsis, what type of musculature would you guess the oesophagus is made of (i.e. what types of muscle cells – skeletal, smooth or cardiac?)
 - Upper oesophagus is skeletal muscle (as you can control the initiation of swallowing), but the lower 2/3 of the oesophagus is not under conscious control this component is smooth muscle

Stomach anatomy

- What part of the stomach secretes HCI?
 - Body of the stomach (from the parietal cells, which are from the gastric mucosa) forms HCI
- Given that the stomach is described as a 'muscular sac', what kind of muscle cells is the stomach made of?
 - Smooth muscle no part of stomach contraction is under conscious control
- Why does the stomach need to be made of muscle?
 - Digestion and 'churning' involves muscular movements
 - Movement of food down the canal requires peristalsis, which involves muscular contractions

Digestive physiology

- What are the components of 'gastric juice'
 - HCI (acid)
 - Antimicrobial, aids in hydrolysis and proenzyme activation
 - Enzymes (e.g. pepsinogen)
 - Pepsin is largely a protease
 - Alkaline mucus
 - Protection of stomach lining from HCl and pepsin
 - Intrinsic factor
 - Allows VB12 absorption

- When elderly people (e.g. with knee pain) take Non-steroidal anti-inflammatories (e.g. Nurofen, Diclofenac, Voltaren), the side effect of these drugs is that the stomach lining stops producing alkaline mucus what issues will this cause
 - HCl and pepsin can attack the stomach wall, break down the stomach tissue, leading to stomach ulcers, etc.

Digestive neurophysiology

- Stage 1: Pre-consumption hunger
 - Why do you get hungry BEFORE you eat food?
 - Sight, smell, thought of food stimulates medulla (midbrain)
 - Midbrain activates Cranial Nerve X (Vagus nerve)
 - Vagus nerve is
 parasympathetic (think rest
 and digest) which will
 activate digestive organs and
 increase blood flow for
 digestion
 - Gastrin is released, which stimulates hunger and further gastric 'juice' secretion

- Stage 2: Acid release upon eating food
 - Eat food bolus fills the muscle bag that is the 'stomach'
 - Stomach stretch induces a local reflex which causes gastric glands to further secrete gastrin and other gastric 'juices'
 - This can also propagate movement of substances down into the intestine

Intestinal secretions

- What are the accessory organs connected to the small intestine, and what do they secrete?
 - Gall bladder and liver
 - Stores 'bile' which is basic, and allows dissolving of fats
 - Pancreas
 - Creates enzymes breaks down fats, proteins, etc.
 - Creates HCO3- which is basic

- What causes the accessory organs connected to the intestines to secrete?
 - Acid in duodenum
 - Wants the secretion of basic substances -> causes GB to secrete bile and causes pancreas to secrete HCO3-
 - secretin
 - Fat in duodenum
 - Wants the breakdown and dissolution of fat -> causes GB to secrete bile, and causes pancreas to secrete enzymes
 - cholecystokinin

Digestive endocrinology

- Which hormones INCREASE gastric motility, and which ones REDUCE gastric motility?
 - Gastrin pushes stuff OUTof the stomach
 - Secretin and cholecystokinin STOPS movement of stuff out of the stomach

Digestive biochemistry

- Guess the function of the following enzymes
 - Peptidase
 - Sucrase
 - -Maltase
 - Lactase
 - Carboxypeptidase
 - Amylase
 - Lipase

- Why do you think people with lactose intolerance get diarhoea after eating lactose?
 - Lactose is not broken down
 as they lack lactase this
 results in an osmotic
 drawing of fluid from the
 gut into the lumen, causing
 diarrhoea

Small intestine physiology

- What are the two absorption routes for nutrients in the digestive system?
 - Water soluble nutrients can be absorbed through the capillaries along the intestines
 - Long chain fatty acids are too big to fit in these capillaries – they generally need to be absorbed by nearby lymphatic vessels

- What is the route taken by substances that are water soluble?
 - Capillaries surrounding the intestines
 - These join together to form the superior or inferior mesenteric veins
 - These will join to form the portal vein
 - These will then move through the liver (where first-pass hepatic metabolism takes place)

Cellular respiration

Topic 17

Metabolic definitions

- Explain the difference between catabolism and anabolism in terms of molecular formation/breakdown and use of energy
 - Think of 'anabolic steroids'
 i.e. what the body
 builders use to get BIG

Respiratory biochemistry

- Where does glycolysis occur and what is its function?
 - -Cell cytoplasms
 - Glycolysis is the lysis
 'breakdown' of glyco
 (glucose) it is the first
 step for any respiration,
 but this process itself is
 catabolic and produces
 energy

- What are the products of glycolysis?
 - -2 x pyruvate
 - -ATP (net 2 gain)
 - -NADH
 - -H2O

Respiratory biochemistry

- How does your body determine if it should undertake anaerobic or aerobic respiration after glycolysis?
 - Your body assess if there is enough oxygen for aerobic respiration (e.g. if there is ENOUGH in a situation of increased demand)
 - You will tend to see this happening if you reduce supply or increase demand

- What does anaerobic respiration produce, and how does your body deal with it?
 - Lactic acid this can cause your body to become more acidic (part of the reason why you would also breathe faster – to remove acidic CO2)
 - Metabolised by the liver to form pyruvate again

Aerobic respiration biochemistry

- What are the steps of aerobic respiration
 - 1. Glycolysis 'preparation of glucose'
 - Acetyl-CoA formation –
 occurs as pyruvate moves
 into the mitochondria
 - Citric acid cycle –
 Formation of (some) ATP,
 but produces the H+ and
 e- carriers (FADH2, NADH)
 - 4. Electron transport chain

Electron transport chain

Describe the function of the complexes within the electron transport chain

- Complex 1 breakdown of NADH (produces 2e- and H+)
- 2. Complex 2 breakdown of FADH2 (produces 2e- and 2H+)
- 3. Complex 3 and 4 uses e- to drive H+ into intermembrane space
- Complex 4 Removes H+ in inner mitochondrial compartment through water formation (to maintain a H+ gradient)
- ATP-synthase forms ATP through coupling reaction with H+ gradient movement (oxidative phosphorylation)
- Carrier molecules transports ATP out in return for ADP + P-

