7. Design of Logic gates using NMOS, PMOS and Resistor

Course: ECE1008 – Electronic Hardware Troubleshooting LAB

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: 51749@vitstudent.ac.in

• If V_{DD} is the power supply voltage Logic 1: Voltages close to V_{DD} Lets define a range: V_{1min} to V_{DD}

• If V_{DD} is the power supply voltage Logic 1: Voltages close to V_{DD} Lets define a range: V_{1min} to V_{DD}

Logic 0: Voltages close to 0V Lets define a range: 0 to V_{0max}

• If V_{DD} is the power supply voltage Logic 1: Voltages close to V_{DD} Lets define a range: V_{1min} to V_{DD}

Logic 0: Voltages close to 0V Lets define a range: 0 to V_{0max}

https://people.engr.tamu.edu/xizhang/ECEN248/Chapter_3_Lecture_Notes_Xi_Zhang.pdf

Voltage • If V_{DD} is the power supply voltage Logic 1: Voltages close to V_{DD} V_{DD} Lets define a range: V_{1min} to V_{DD} Logic value Logic 0: Voltages close to 0V $V_{1,min}$ Lets define a range: 0 to V_{0max} Undefined $V_{0,max}$ Logic value

Select NMOS4 and PMOS4 for this experiment (4 independent contacts)

NOTICE the arrow. NMOS: Inward arrow

- Remember: NMOS Source is at LOW(ground)
 - PMOS Source is at HIGH(V_dd) Must rotate/mirror the symbol using (ctrl+R) or (ctrl+E)
- In both NMOS4 and PMOS4
 Source is near by Gate in the symbol.
 Remember to connect NMOS's body to ground and PMOS's body to Supply.

- Remember: NMOS Source is at LOW(ground)
 - PMOS Source is at HIGH(V_dd) Must rotate/mirror the symbol using (ctrl+R) or (ctrl+E)
- In both NMOS4 and PMOS4
 Source is near by Gate in the symbol.
 Remember to connect NMOS's body to ground and PMOS's body to Supply.

Important NOTE

 Enter your registration number and Full Name next to

all your circuits and the output plots.

•Keep the background of circuit and plot as white.

And place a truth table for each logic gate.

Task 1.1: NOT GATE with NMOS

 Remember to Connect NMOS body to ground.

Task 1.1: NOT GATE with NMOS

Task 1.1: NOT GATE with NMOS(NMOS4 symbol)

Task 1.2: NOT GATE with PMOS (PMOS4 symbol)

- Remember to rotate the PMOS such that Source (which is near gate) is towards V_{DD} (power supply) for PMOS.
- Also, remember to connect body and power supply

Task 1.2: NOT GATE with PMOS (PMOS4 symbol)

- Remember to rotate the PMOS such that Source (which is near gate) is towards V_{DD} (power supply) for PMOS.
- Also, remember to connect body and Supply

Task 1.2: NOT GATE with PMOS (PMOS4 symbol)

•
$$V_{out} = \overline{V_A \cdot V_B}$$

- In NMOS configuration rephrase the output expression under bar, and the expression which is under bar, implement that expression using NMOS.
- Note: SUM Parallel; PRODUCT SERIES.

•
$$V_{out} = \overline{V_A \cdot V_B}$$

• In NMOS configuration rephrase the output expression under bar, and the expression which is under bar, implement that expression using NMOS.

- After plotting one plot
- Right click at plot and select "Add Plot Pane"

• Select the next output to be plotted in new sub plot

Task 2.1: NAND GATE Using NMOS

Task 2.1: NAND GATE Using NMOS

- $V_{out} = \overline{V_A \cdot V_B} = \overline{V_A} + \overline{V_B}$ (DeMorgan's theorem)
- In PMOS configuration rephrase the output expression such that every element is under bar individually and then implement using PMOS.
- Note: SUM Parallel; PRODUCT SERIES.

• $V_{out} = \overline{V_A \cdot V_B} = \overline{V_A} + \overline{V_B}$ (DeMorgan's theorem)

 In PMOS configuration rephrase the output expression such that every element is under bar individually and then implement using PMOS.

- Remember to rotate the PMOS such that Source (which is near gate) is towards V_{DD} (power supply) for PMOS.
- Also, remember to connect body and Supply

- Remember to rotate the PMOS such that Source (which is near gate) is towards V_{DD} (power supply) for PMOS.
- Also, remember to connect body and Supply

- Remember to rotate the PMOS such that Source (which is near gate) is towards V_{DD} (power supply) for PMOS.
- Also, remember to connect body and Supply
- Notice: In NAND using NMOS, we had two NMOS in series
- In NAND using PMOS, we have two PMOS in parallel

- $V_{out} = \overline{V_A + V_B}$
- In NMOS configuration rephrase the output expression under bar, and the expression which is under bar, implement that expression using NMOS.
- Note: SUM Parallel; PRODUCT SERIES.

•
$$V_{out} = \overline{V_A + V_B}$$

• In NMOS configuration rephrase the output expression under bar, and the expression which is under bar, implement that expression using NMOS.

•
$$V_{out} = \overline{V_A + V_B} = \overline{V_A} \cdot \overline{V_B}$$

- In PMOS configuration rephrase the output expression such that every element is under bar individually and then implement using PMOS.
- Note: SUM Parallel; PRODUCT SERIES.

•
$$V_{out} = \overline{V_A + V_B} = \overline{V_A} \cdot \overline{V_B}$$

 In PMOS configuration rephrase the output expression such that every element is under bar individually and then implement using PMOS.

Task 4. OR GATE using NMOS(NMOS4 symbol)

Perform OR Gate using NMOS

Task 4. OR GATE using NMOS(NMOS4 symbol)

Perform OR Gate using NMOS

Perform AND gate using PMOS

Task 6: LOGIC using NMOS(NMOS4 symbol)

- Perform the logic $Y = \overline{(A+B)} \cdot \overline{C}$ in LT SPICE using NMOS and plot the truth table.
- Note: 3 Voltage sources: Use the following for obtaining all eight combinations

	V_A	V_B	V_C
ON TIME	10ns	20ns	40ns
PERIOD	20ns	40ns	80ns

Important NOTE

 Enter your registration number and Full Name next to

all your circuits and the output plots.

•Keep the background of circuit and plot as white.

LAB record instructions:

For the lab experiment,

- Write the Aim.
- Complete the Software/Hardware components used.
- Obtain the expression for the outputs.
- Place the respective circuits in LT Spice.
- Connect the inputs and outputs. Name them and write the same in the lab copy(inputs and outputs section).
- Use probe in LT spice to plot all possible combinations.
- Write a concluding statement for each circuit.
- Submit the document's soft copy on time in Ims.vit.ac.in when available.