Interrogation de cours nº 3

lundi 22 septembre 2025

E est un \mathbb{K} -espace vectoriel normé, de norme $\|\cdot\|$, avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Durée: 25 min.

Définitions et énoncés (5 pts)

- **1.** Définition du segment [a, b] pour $a, b \in E$, définition d'une partie convexe de E.
- **2.** Dans le cas où $E = \mathbb{K}^n$, donner les formules définissant les normes standart $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$.
- **3.** Soit $A \subset E$ et $a \in E$. Quand dit-on que a est intérieur à A? Quand dit-on que a est adhérent à A?
- 4. Comment caractérise-t-on séquentiellement les fermés de E?
- **5.** Définition de la densité dans E d'une partie A de E.

Démonstrations (6 pts)

- a) Montrer que si une suite $(u_n)_n$ de E converge, alors sa limite est unique.
- **b)** Montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_2$ sur \mathbb{K}^n sont équivalentes.
- c) (MPI) Soient $A, B \in \mathcal{P}(E)$. Montrer que si $A \subset B$, alors $\mathring{A} \subset \mathring{B}$.
- c) (MPI*) Soient $F, K \in \mathcal{P}(E)$. Montrer que si F est fermé et K est compact, alors $F \cap K$ est compact.