Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа М32131	К работе допущен <u> 31.10.2022</u>		
Студент <u> Исрат Джахан</u>	_Работа выполнена	31.10.2022	
Преподаватель Эльвира Олеговна	Отчет принят_		

Рабочий протокол и отчет по лабораторной работе № 3.10

Изучение свободных затухающих электромагнитных колебаний

Цель работы:

Изучение основных характеристик свободных затухающих колебаний

Задачи, решаемые при выполнении работы:

- 1. Выполнить прямые измерения
- 2. Проанализировать полученные данные
- 3. Построить графики по полученным данным

Объект исследования:

Колебательный контур

Метод экспериментального исследования:

Определение напряжения, а также периода затухающих колебаний, при различных значениях сопротивления

Рабочие формулы и исходные данные:

- Напряжение на конденсаторе $U_c = \varphi_2 \varphi_1 = q/C$
- Коэффициент затухания
- Собственная циклическая частота незатухающих колебаний контура

$$q(t) = q_0 e^{-\beta t} \cos(\omega t + \varphi_0)$$
$$\omega = \sqrt{\omega_0^2 - \beta^2}$$

$$\bullet \qquad \omega = \sqrt{\omega_0^2 - \beta^2}$$

• Амплитуда затухающих колебаний заряда
$$q_{\scriptscriptstyle m}$$
= $q_{\scriptscriptstyle 0}e^{-\beta t}$

$$T=rac{2\pi}{\sqrt{rac{1}{LC}-rac{R^2}{4L^2}}}$$
лебаний

• Сопротивление цепи
$$R_{\text{kp}} = 2 \cdot \sqrt{\frac{L}{C}}$$

$$\lambda = \beta T = \frac{R}{L} \frac{\kappa}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$
 Логарифмический декремент

Логарифмический декремент

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}$$

• Добротность контура
$$Q = \frac{2\pi}{1 - e^{-2\lambda}} \qquad Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

- Полное сопротивление $R=R_{\rm M}+R_{\rm O}$
- Собственное сопротивление контура $R_{\scriptscriptstyle 0} = -R_{\scriptscriptstyle \mathrm{M}}\big|_{\scriptscriptstyle \lambda=0}$
- Период по формуле Томсона $T=2\pi\sqrt{LC}$

Требуемое оборудование:

- Блок генератора напряжений ГН1
- Осциллограф ОЦЛ2
- Стенд с объктом исследования С3-ЭМ01
- Проводники Ш4/Ш2 (4шт), Ш2/Ш2 (3шт), 2Ш4/BNC (2шт)

Рабочая схема для изучения затухающих колебаний напряжения на конденсаторе:

Ход работы:

Во время выполнения данной лабораторной работы нам понадобятся:

Значение индуктивности L катушки, L=(10+-10%)мГн

Емкости конденсаторов:

$$C1=(0,022+-10\%)$$
мк Φ

$$C2=(0,033+-10\%)$$
мкФ

Результаты прямых измерений и их обработки, а также расчет результатов косвенных измерений:

Таблица1.

R _M , OM	Т, мс	2U _i , дел	2U _i +n, дел	n	λ	Q	R , Ом	<i>L, мГн</i>
0	0,09	5,2	2,8	2	0,310	13,614	68,815	10,733
10	0,09	5	2,4	2	0,367	12,083	78,815	10,015
20	0,09	4,6	2	2	0,416	11,116	88,815	9,875
30	0,09	4,4	2,7	1	0,488	10,078	98,815	8,890
40	0,09	4,2	2,5	1	0,519	9,731	108,815	9,552
50	0,09	4	2,2	1	0,598	9,008	118,815	8,576
60	0,09	3,8	2	1	0,642	8,691	128,815	8,745
70	0,09	3,6	1,9	1	0,639	8,709	138,815	10,244
80	0,09	3,4	1,6	1	0,754	8,070	148,815	8,463
90	0,09	3,2	1,5	1	0,758	8,053	158,815	9,540
100	0,09	3	1,4	1	0,762	8,032	168,815	10,653
200	0,09	2	0,5	1	1,386	6,702	268,815	8,164
300	0,09	2,4	0,4	1	1,792	6,463	368,815	9,200
400	0,09	2,6	0,3	1	2,159	6,368	468,815	10,234

Таблица2.

С, мкФ	Тэксп, мс	Ттеор, мс	dT, %	Ттомс, мс
0,022	0,09	0,091	1,425	0,091
0,033	0,11	0,112	1,695	0,112
0,047	0,13	0,134	2,735	0,133
0,470	0,40	0,434	7,884	0,421

По последнему столбцу видно, что период можно вычислять по формуле Томсона и он будет максимально приближен к теоретическому значению периода

График зависимости логарифмического декремента от сопротивления магазина $R_{ m M}$

R, Om	Q(R)	Q(\lambda)
88,815	7,544	11,116

\mathbf{R}_0	$\mathbf{R}_{\scriptscriptstyle \mathrm{M}}$	R кр эксп	R кр теор
68,815	1300,000	1368,815	1319,196

L	Lcp	∆Lср	ELср
(10±10%)	9,572	0,212	2,219

Усреднили полученные значения индуктивности L и оценили погрешность среднего значени

	Теоретически	Эксперимент
To	0,097	0,090
T ₂₀₀	0,093	0,090
T400	0,093	0,090

Вывод:

В ходе данной лабораторной работы были изучены основные характеристики свободных затухающих колебаний. Все полученные нами экспериментальные значения оказались непосредственно близки к теоретическим (также было изучено, что по формуле Томсона можно получить максимально приближенное верному значение периода).