RPC numbering scheme in O2

	M	Γ11	MT12				MT21				MT22				
	OUT	IN			OUT	IN	_		OUT	IN			OUT	IN	
MT 11 OUT 9	44	8	MT 11 IN 9	MT 12 OUT 9	53	17	MT 12 IN 9	MT 21 OUT 9	62	26	MT 21 IN 9	MT 22 OUT 9	71	35	MT 11 IN 9
MT 11 OUT 8	43	7	MT 11 IN 8	MT 12 OUT 8	52	16	MT 12 IN 8	MT 21 OUT 8	61		1	MT 22 OUT 8		34	MT 11 IN 8
MT 11 OUT 7	42	6	MT 11 IN 7	MT 12 OUT 7	51	15	MT 12 IN 7	MT 21 OUT 7	60	24	MT 21 IN 7	MT 22 OUT 7	69	33	MT 11 IN 7
MT 11 OUT 6	41	5	MT 11 IN 6	MT 12 OUT 6	50	14	MT 12 IN 6	MT 21 OUT 6	59	23	MT 21 IN 6	MT 22 OUT 6	68	32	MT 11 IN 6
MT 11 OUT 5	40	4	MT 11 IN 5	MT 12 OUT 5	49	13	MT 12 IN 5	MT 21 OUT 5	58	22	MT 21 IN 5	MT 22 OUT 5	67	31	MT 11 IN 5
MT 11 OUT 4	39	3	MT 11 IN 4	MT 12 OUT 4	48	12	MT 12 IN 4	MT 21 OUT 4	57	21	MT 21 IN 4	MT 22 OUT 4	66	30	MT 11 IN 4
MT 11 OUT 3	38	2	MT 11 IN 3	MT 12 OUT 3	47	11	MT 12 IN 3	MT 21 OUT 3	56	20	MT 21 IN 3	MT 22 OUT 3	65	29	MT 11 IN 3
MT 11 OUT 2	37	1	MT 11 IN 2	MT 12 OUT 2	46	10	MT 12 IN 2	MT 21 OUT 2	55	19	MT 21 IN 2	MT 22 OUT 2	64	28	MT 11 IN 2
MT 11 OUT 1	36	0	MT 11 IN 1	MT 12 OUT 1	45	9	MT 12 IN 1	MT 21 OUT 1	54	18	MT 21 IN 1	MT 22 OUT 1	63	27	MT 11 IN 1
•			_	'			•	· '			_	1			_

- IN and OUT can be accessed by a variable called "isRight" if true it's inside, if false it's outside
- How to get this values:
 - Enter O2 environment
 - Enter root and type:
 - #include "MIDBase/DetectorParameters.h"
 - cout << o2::mid::detparams::getDEId(isRight,plane,RPC) << endl</p>
 - · isRight: can be true or false. If true -> RPC is inside else the RPC is outside
 - · plane goes from 0 to 3 and 0 \rightarrow MT11, 1 \rightarrow MT12, 2 \rightarrow MT21, 3 \rightarrow MT22
 - RPC goes from 0 to 8 and 0 is the bottom RPC and 8 is the top one in each plane

Local Board scheme

- Column numbering starts from the center of MID and goes outward
- Line numbering is different for each RPC depending on the segmentation
 - For example in RPC 1 in there is only one line (number 0) in all columns
 - In RPC 6 instead in column 0 we have 3 lines (0,1,2) and in column 1 we have 4 (0,1,2,3)
- · Examples:
 - □ LB 67 → column 3, line 1
 - LB 9 → column 0, line 9
 - LB172 → column 2, line 3

	COL 7			•••	•		0700	COL 0			••••			COL 7
5	234	225	209	193	177	155	133	16	38	60	76	92	108	117
ut	LC7L9B1	LC6L9B1	LC5L9B1	LC4L9B1	LC3L9B1	LC2L9B1	LC1L9B1	RC1L9B1	RC2L9B1	RC3L9B1	RC4L9B1	RC5L9B1	RC6L9B1	RC7L9B1
	233	224	208 LC5L8B2	192	176	154 LC2L8B2	132	15 RC11.8R2	37 BC2L8B2	59 RC3L8B2	75	91	107 BC618B2	116
6 ut	LC7L8B1	223	207	191	175	153	131	14	36	58	74	90	106	RC7L8B1
		222	206	190	174	LC2L8B1	130	RC1L8B1	RC2L8B1	RC3L8B1	1 RC4L8B1	RC5L8B1	105	
7	232 LC7L7B1		LC5L7B2							RC3L7B2			!	115 RC7L7B1
ut		221 LC6L7B1	205 LC5L7B1	189 LC4L7B1	173 LC3L7B1	151 LC2L7B1	129 LC1L7B1	12 RC1L7B1	34 RC2L7B1	56 RC3L7B1	72 RC4L7B1	1 88 1 RC5L7B1	104 RC6L7B1	
8	231 LC7L6B1	220 LC6L6B2	204 LC5L6B2	188 LC4L6B2	172 LC3L6B4 171 LC3L6B3 170	150 LC2L6B4 149 LC2L6B3 148	128 LC1L6B3 127 LC1L6B2 126	RC1L6B2	RC2L6B3	RC3L6B3	RC4L6B2	87 RC5L6B2	103 RC6L6B2	114 BC7L6B1
ut		219 LC6L6B1	203 LC5L6B1	LC4L6B1	169 LC3L6B1	147 LC2L6B1		RC1L6B1	30 RC2L6B1	52 RC3L6B1	RC4L6B1	86 RC5L6B1	102 RC6L6B1	
9	230	218 LC6L5B2	202 LC5L5B2		LC3L5B3	145 LC2L5B3			28 RC2L5B3	51 RC3L5B4 50 RC3L5B3	RC4L5B2	RC5L5B2	:	113
ıt	LC7L5B1	217 LC6L5B1	201 LC5L5B1	185 LC4L5B1	166 LC3L5B2 165 LC3L5B1	143			RC2L5B2	49 RC3L5B2 48 RC3L5B1	RC4L5B1	RC5L5B1	1 100	RC7L5B1
0	229	216 LC6L4B2	200 LC5L4B2	184 LC4L4B2	164 LC3L4B4 163 LC3L4B3	LC2L4B4	125 LC1L4B3	8 RC1L4B3	RC2L4B4 24 RC2L4B3	47 RC3L4B4 46 RC3L4B3	67	83 RC5L4B2	99 RC6L4B2	112
ıt	LC7L4B1	215 LC6L4B1		183 LC4L4B1	102	LC2L4B2 139	124	RC1L4B2 6	1 23	RC4L1B2 44	66	82 RC5L4B1	98	RC7L4B1
1	228	214 LC6L3B2	198 LC5L3B2	182 LC4L3B2	160 LC3L3B2	138 LC2L3B2	122	5	21	43	65 RC4L3B2	81 RC5L3B2	97 RC6L3B2	111
ut	LC7L3B1	213 LC6L3B1	197 LC5L3B1	181 LC4L3B1			121 LC1L3B1	4 RC1L3B1		42 RC3L3B1	64 RC4L3B1	80 RC5L3B1	96 RC6L3B1	RC7L3B1
2	227	212 LC6L2B2	196 LC5L2B2	180 LC4L2B2	158 LC3L2B2	136 LC2L2B2	120 LC1L2B2	3 RC1L2B2	19 RC2L2B2	41 RC3L2B2	63 RC4L2B2	79 RC5L2B2	95 RC6L2B2	
ut	LC7L2B1	211 LC6L2B1	195 LC5L2B1	179 LC4L2B1	157 LC3L2B1	135 LC2L2B1	119 LC1L2B1	2 RC1L2B1	18 RC2L2B1	40 RC3L2B1	62 RC4L2B1	78 RC5L2B1	94 RC6L2B1	RC7L2B1
3	226	210	194	178	156	134	118	1	17	39	61	77	93	109
ut	LC7L1B1	LC6L1B1	LC5L1B1	LC4L1B1	LC3L1B1	LC2L1B1	LC1L1B1	RC1L1B1	RC2L1B1	RC3L1B1	RC4L1B1	RC5L1B1	RC6L1B1	RC7L1B1

= RPC

= Board

LB and strips

- If the strip pitch is 4 cm → a LB reads 8 strips
- If the strip pitch is 2 cm → a LB reads 16 strips
- If the strip pitch is 1 cm → a LB reads 16 strips
- Exception 1
 - One LB reads 8 strips with 4 cm pitch + 8 strips with
 2 cm pitch
- Exception 2
 - One LB reads 16 strips with 2 cm pitch

Column data format

- Way in which the MID data is saved
- Stored in
 O2 >> DataFormats >> Detectors >> MUON >> MID include >> DataFormatsMID >> ColumnData.h
- What is important for us is the pattern
 - We also have to indicate the detector element, line and column
 - It is an std::array with 5 elements
 - Each element is a base 16 number (0x....)
 - The first four elements represent the bending plane strips from the bottom to the top
 - There are four elements because at most there are 4 lines (see slide 2). If in the specified detector element there are less than 4 lines, the absent lines are discarded
 - The last one the non-bending plane strips from left to right
 - If in the specified detector element there are only 8 strips one should be careful to set the values only for them

Ceiling

Bending plane

Non-bending plane

Floor

Column data format

- · Way in which the MID data is saved
- Stored in
 O2 >> DataFormats >> Detectors >> MUON >> MID include >> DataFormatsMID >> ColumnData.h
- What is important for us is the pattern
 - We also have to indicate the detector element, line and column
 - It is an std::array with 5 elements
 - Each element is a base 16 number (0x....)
 - The first four elements represent the bending plane strips from the bottom to the top
 - There are four elements because at most there are 4 lines (see slide 2). If in the specified detector element there are less than 4 lines, the absent lines are discarded
 - The last one the non-bending plane strips from left to right
 - If in the specified detector element there are only 8 strips one should be careful to set the values only for them

- LB 9 → column 0, line 0, 16 strips BP
 LB 10 → column 0, line 1, 16 strips BP
- LB 11 → column 0, line 2, 16 strips BP
- LB 30 → column 0, line 0, 16 strips BP
- LB 31 → column 0, line 1, 16 strips BP LB 32 → column 0, line 2, 16 strips BP
- LB 33 → column 0, line 3, 16 strips BP
- Same NBP pattern read by LBs 9,10,11
- Same NBP pattern read by LBs 30,31,32,33
- Example of pattern for LB 10 on BP: • $0 \times 1 = 0$ 0001 1111 1011 0000

Top strips Bottom strips

