# Using Telephone and Cable Networks for Data Transmission

DSL, Cable Modem

Sachin Gajjar sachin.gajjar@nirmauni.ac.in

# Reading Material for this discussion

- DATA COMMUNICATIONS AND NETWORKING, Fourth Edition by Behrouz A. Forouzan, Tata McGraw-Hill
  - Chapter 9, Topic 9.1, 9.4, 9.5

# DIGITAL SUBSCRIBER LINE (DSL)

- to provide higher-speed access to Internet.
- supporting high-speed digital communication over the existing local loops
- a set of technologies xDSL
- x = A, V, H, or S.



# ADSL (Asymmetric DSL)

- first technology in the set
- asymmetric = provides higher bit rate in downstream direction than in upstream
- technology designed for residential users
- it is not suitable for businesses (Why?)

# **Using Existing Local Loops**

- ADSL uses existing local loops
- BW of twisted-pair local loop = 1.1 MHz
- Filter at end office of telephone company where each local loop terminates limits BW to 4 kHz
- sufficient for voice communication
- Helps in multiplexing
- If filter is removed, 1.1 MHz is available for data and voice communications



# Adaptive Technology

- 1.1 MHz is theoretical BW of local loop
- Factors affecting BW
  - distance between residence and switching office
  - size of cable
  - signaling used
- Designers test condition and bandwidth availability of line before settling on a data rate
- ADSL data rate changes based on condition and type of local loop cable

# Discrete Multitone Technique

- The modulation technique in ADSL
- combines QAM and FDM.
- Typically, 1.104 MHz is divided in 256 channels
- Each channel uses BW of 4.312 kHz

# Discrete Multitone Technique



Channel 1 to 5 are not used - To provide gap between voice and data

### Bit Rate and Baud Rate

- Bit rate = number of bits per second
- Baud rate = number of signal elements per second



- In 1 sec
  - Number of signal elements (red) = 3
  - Number of bits transmitted (green) = 3
- Baud rate = 3/1 = 3 baud
- Bit rate = 3/1 = 3 bps



- In 1 sec
  - Number of signal elements (red) = 6
  - Number of bits transmitted (green) = 3
- Baud rate = 6/1 = 6 baud
- Bit rate = 3/1 = 3 bps

# Upstream data and control

- Channel No. 6 to 30
- Upstream data transfer (24) and control (1)
- 24 chs, each using 4 kHz (from 4.312 kHz available)
- BW = with QAM, 24 (chs) x 4000 (Hz) x 15 (bits/baud) = 1.44-Mbps
- Actual data rate < 500 kbps as some carriers are deleted at frequencies where noise is large, thus some channels are unused

### Downstream Data and Control

- Channels = 31 to 255 (225 channels)
- Control = 1 ch
- Data = 224 chs
- BW =  $224 \times 4000 \times 15 = 13.4$  Mbps
- Actual data rate < 8 Mbps</li>
- As some of the carriers are deleted at frequencies where the noise level is large

### **Customer Site**

- local loop connects to a splitter which separates voice and data communications
- ADSL Modem Modulates/Demodulates data using DMT and Creates downstream/upstream



# Telephone Company Site

- DSLAM (digital subscriber line access multiplexer) functions as ADSL
- In addition, it packetizes the data to be sent to the Internet (ISP server)



# High-bit-rate digital subscriber line

- HDSL uses 2B 1Q encoding which is less susceptible to attenuation.
- A data rate of 1.544 Mbps (up to 2 Mbps) can be achieved without repeaters
- up to a distance of 12,000 ft (3.86 km).
- HDSL uses two twisted pairs (one pair for each direction) to achieve full-duplex transmission.

# 2B1Q scheme two binary, one quaternary

- L=4
- High BW as per Nyquist Criteria



| Previous level: | Previous level: |
|-----------------|-----------------|
| positive        | negative        |

| Next<br>bits | Next<br>level | Next<br>level |
|--------------|---------------|---------------|
| 00           | +1            | -1            |
| 01           | +3            | -3            |
| 10           | -1            | +1            |
| 11           | -3            | +3            |

Transition table

# Symmetric Digital Subscriber Line

- SDSL is a one twisted-pair version of HDSL.
- provides full-duplex symmetric communication supporting up to 768 kbps in each direction.
- suitable for businesses that send and receive data in large volumes in both directions.

# Very high-bit-rate digital subscriber line

- VDSL, uses coaxial, fiber-optic, or twisted-pair cable for short distances.
- modulating technique is DMT.
- Provides range of bit rates (25-55 Mbps) for upstream comm. at dis. of 3000 to 10,000 ft.
- The downstream rate is normally 3.2 Mbps.

# Summary of DSL technologies

| Technology | Downstream<br>Rate | Upstream<br>Rate | Distance<br>(ft) | Twisted<br>Pairs | Line<br>Code |
|------------|--------------------|------------------|------------------|------------------|--------------|
| ADSL       | 1.5–6.1 Mbps       | 16–640 kbps      | 12,000           | 1                | DMT          |
| ADSL Lite  | 1.5 Mbps           | 500 kbps         | 18,000           | 1                | DMT          |
| HDSL       | 1.5–2.0 Mbps       | 1.5–2.0 Mbps     | 12,000           | 2                | 2B1Q         |
| SDSL       | 768 kbps           | 768 kbps         | 12,000           | 1                | 2B1Q         |
| VDSL       | 25–55 Mbps         | 3.2 Mbps         | 3000-10,000      | 1                | DMT          |

### CABLE TV NETWORKS

- Started as a video service provider, but it has moved to the business of Internet access.
- How this network can be used to provide highspeed access to the Internet

#### Traditional Cable Networks [Community antenna TV (CATV)]

- Cable TV broadcast video signals to locations with poor/no reception
- An antenna at the top of a hill/building received the signals from TV stations
- Distributed them, via coaxial cables, to the community



Video signals were transmitted downstream, from head end to subscriber premises.

### Hybrid Fiber-Coaxial (HFC) Network (2<sup>nd</sup> Generation)



Serves 4,00,000 subscribers

#### **Distribution Hub**

Modulation and distribution of signals

#### Fiber node

- Splits analog signals (video) so same signal is sent to each coaxial cable.
- Each coaxial cable serves up to 1000 subscribers.
- Network is now bi-directional and reduces need for amplifiers

### Bandwidth in HFC

- Last part of network is a coaxial cable.
- Coaxial cable BW is from 5 750 MHz
- To provide Internet access, it is divided into
  - video, downstream data, upstream data



### Coaxial cable bands

- Downstream Video Band
  - occupies frequencies from 54 to 550 MHz.
  - each TV channel occupies 6 MHz,
  - this can accommodate more than 80 channels.
- Downstream Data Band
  - Occupies band, from 550 to 750 MHz.
  - band is divided into 6-MHz channels.
  - Uses 64-QAM (or 256-QAM)
- Data Rate
  - 6 bits/baud in 64-QAM.
  - One bit is used for FEC,  $\rightarrow$  5 bits of data per baud
  - standard specifies 1 Hz for each baud;
  - downstream data rate = 30 Mbps (5 bits/Hz (signal element)  $\times$  6  $\times$  10<sup>6</sup> Hz (channel)).
  - standard specifies only 27 Mbps.
  - Cable Modem is connected to PC through 10Base-T cable → limits data rate to 10 Mbps

# Upstream Data Band

- occupies lower band, from 5 to 42 MHz.
- divided into 6-MHz channels.
- lower frequencies are more susceptible to noise and interference
- Hence QAM technique is not suitable for this band
- better solution is QPSK
- Data Rate
  - 2 bits/baud in QPSK.
  - standard specifies 1 Hz for each baud;
  - upstream data = 12 Mbps (2 bits/Hz x 6 MHz).
  - data rate is usually < 12 Mbps.</li>

# Upstream Sharing by subscribers

- upstream data BW = 37 MHz, ch size=6 MHz
- six 6-MHz (37/6) channels available in upstream
- subscriber needs to use one channel to send data in upstream direction.
- 6 channels shared in area with 1000, 2000, or 100,000 subscribers by timesharing
- Cable provider allocates one channel for a group of subscribers.
- Subscribers has to contend for the channel with others who want access

# Downstream Sharing

- band has 33 channels of 6 MHz.
- cable provider has more than 33 subscribers
- each channel shared between group of subscribers
- There is a multicasting situation in downstream
- Data for any of the subscribers in the group, is sent to shared channel
- Each subscriber gets the data.
- subscriber 's Cable Modem matches address carried with data to address assigned by provider.
- If it matches data are kept otherwise discarded

# Cable Modem (CM)

- installed on subscriber premises.
- similar to an ADSL modem



## Cable Modem Transmission System (CMTS)

- installed inside distribution hub by cable company.
- receives data from Internet and passes them to combiner, which sends them to subscriber.
- Also receives data from subscriber and passes them to Internet



# Thank You