

Description

The HSM0228 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The HSM0228 meet the RoHS and Green Product requirement with full function reliability approved.

Vns

Product Summary

V _D S	100	V
RDS(ON),max	68	mΩ
lo	4	Α

- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	Drain-Source Voltage 100	
Vgs	Gate-Source Voltage	Gate-Source Voltage ±20	
Id@Ta=25°C	Continuous Drain Current, Vgs @ 10V1	4	А
ID@TA=70°C	Continuous Drain Current, Vos @ 10V1	Continuous Drain Current, VGs @ 10V1 3	
Ірм	Pulsed Drain Current ₂	25	А
Pd@Ta=25°C	Total Power Dissipation₃	1.5	W
Тѕтс	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	meter Typ. Max.		Unit
RеJA	Thermal Resistance Junction-ambient 1		90	°C/W
Reлc	Thermal Resistance Junction-Case ₁		40	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ib=250uA	100			V
△BVdss/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , ID=1mA		0.122		V/°C
RDS(ON)	Static Drain-Source On-Resistance2	Vgs=10V , Ib=4A			68	mΩ
RDS(ON)	Static Dialii-Source Off-Resistance2	Vgs=4.5V , Ib=3A			94	mΩ
VGS(th)	Gate Threshold Voltage	\/os_\/os_ lp_250uA	1.2		2.5	V
△VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =250uA		-4.84		mV/°C
Ipss	Drain Source Leakage Current	Vps=80V , Vgs=0V , Tj=25°C			10	uA
IDSS	Drain-Source Leakage Current	Vps=80V , Vgs=0V , Tj=55°C			100	uA
lgss	Gate-Source Leakage Current	Vgs=±20V, Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=5V , Ip=4A		14		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.1		Ω
Qg	Total Gate Charge (10V)			12		
Qgs	Gate-Source Charge	Vps=50V , Vgs=10V , Ip=4A		2.7		nC
Qgd	Gate-Drain Charge			1.7		
Td(on)	Turn-On Delay Time			3.8		
Tr	Rise Time	V_{DD} =50 V , V_{GS} =10 V , R_{G} =3 Ω		26		
Td(off)	Turn-Off Delay Time	ID=4A		16		ns
Tf	Fall Time			8.8		
Ciss	Input Capacitance			620		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		105		pF
Crss	Reverse Transfer Capacitance			63		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,4}	Va Va OV Force Current			2.5	Α
lsм	Pulsed Source Current _{2,4}	V _G =V _D =0V , Force Current			25	Α
VsD	Diode Forward Voltage2	Vgs=0V , Is=1A , TJ=25°C			1.2	V

Note:

^{1.}The data tested by surface mounted on a 1 inch₂ FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$

^{3.}The power dissipation is limited by 150 $^{\circ}\text{C}\,$ junction temperature

^{4.} The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.2 On-Resistance vs. Gate-Source

Fig.3 Forward Characteristics Of Reverse

Fig.4 Gate-Charge Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.6 Normalized RDSON vs. TJ

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Gate Charge Waveform

Ordering Information

Part Number	Package code	Packaging
HSM0228	SOP-8	2500/Tape&Reel

Cumbal	Dimensions II	n Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°