double notation

· LIKE PEANO NUMBERS IN THAT ITS &! LIST REPRESENTATION OF NUMBERS

· LIMITED TO THREE SYMBOLF

1 Zero

THE NUMBER ZERO (0)

INE "STARTING POINT"

L. D

"DOUBLE"

DOUBLES WHATS IN PARENTHESES

SAME AS 2(x)

4 "DOUBLE PLUS 1"

DOUBLES WHATS IN PARENTHESES THEN

ADDS ONE

► SIME AS 2(x)+1

NUM	DOUBLE NOTATION	MATHE MATICAL PROOF
0	Zero	0
1	(zero) DP1	2(0)+1
2	((200) DP1)D	2(2(0)+1)
3	((zero) DP1) DP1	2(2(0)+1)+1
Ц	(((zero) DP1) D) D	2(2(0)+1))
5	(((zeo) DP1) D)DP1	2(2(2(0)+1))+1
6	(((zero) DP1) DP1)D	2(2(2(0)+7)+1)
7	(1(zero) DP1) DP1) DP1	2(2(2(0)+1)+1)+1

LOOKS ALOT LIKE BINARY
D=0 i DP1=1

6 → (((2CO) OP1) OP1) > 0110

ADDITION

(D(DP1(zeo))) + (DP1(DP1(DP1(zeo))))

- · LETS BREAK THIS DOWN
- * FOCUS ON THE OUTER MOST TERMS FIRST
- · THREE COMBINATIONS OF OUTER TERMS
 - 1 D + D
 - UD + DP1
 - LA DP1 4 DP1

$-\mathbf{D} + \mathbf{D}$

DOUBLE MEASUS 2× SOMETHING

D(SOMETHING) + D(SOMETHING)

2(x) + 2(x)

2(2(x))

D(D(SOMETHING))

- · BASIC PROCESS IS AS FOLLOWS
 - TRANSLATE DOUBLE NOTATION INTO ITS

MATHEMATIC COUNTERPART

USE BASIC MATH TO TURN TWO TERMS

INTO ONE WE CAN USE

INTRANSLATE BACK INTO DOUBLE NOTATION

D + DP1-

D(SOMETHING) + PP (SOMETHING)

2(x) + 2(x)+1

4(x)+1

2(2x)+1

DP1(D(SOMETHING))

DP1+DP1

DP1 (SOMETHING) + DP1 (SOMETHING)

2(x)+1 + 2(x)+1

4(x)+2

2(2(x)+1)

D(DP1 (SOMETHING))

FULL ADDITION—

- · WORK LEFT TO RIGHT DOING THE SMAHLER ADDITIONS AND CARRYING
- · WHEN ADDING TO ZERO , USE THE IDENTITY PROPERTY L. D+zeo = D

 - DP1+ze0=DP1-