PH108

Lecture 18:

Boundary conditions on \vec{B} and a Surprise!

Pradeep Sarin
Department of Physics

Recall: Ampere's Law lets us calculate \vec{B}

Biot-Savart Note: in unit vectors, this is $\frac{r}{r^2}$

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{\vec{J} \times \vec{r}}{r^3} d\tau'$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

How does \vec{B} change at the boundary?

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I$$

Reminder: We have assumed that

 \vec{J} and I are independent of time – will continue to do so!

Normal component of \vec{B} is continuous

An infinite *sheet* of current in the x-z plane carries surface current \vec{K}

$$\vec{\nabla} \cdot \vec{B} = 0 \to \oint \vec{B} \cdot \vec{dS} = 0$$

As h shrinks to 0, surface integral reduces to:

(independent of S)
$$\vec{B}_{\perp,y>0} - \vec{B}_{\perp,y<0} = 0$$

Tangential component of \vec{B} changes

(independent of L) $\vec{B}_{\parallel,y>0} - \vec{B}_{\parallel,y<0} = \mu_0 \vec{K}$

Question 1

 \vec{K} on infinite sheet coming out of screen

The pink arrows represent \vec{B} field lines.

the surface current density is:

A)
$$\vec{K} = K \hat{x}$$

B)
$$\vec{K} = K \hat{z}$$

Question 2

 \vec{K} on infinite sheet coming out of screen

The pink arrows represent \vec{B} field lines.

Is the above situation allowed by physics?

A) YES B) NO $\overrightarrow{K} = K\widehat{x} \text{ superimposed with fixed } B_0 \widehat{z} \text{ !}$

Traditional method of defining a solenoid magnetic field has problems

The net superimposed \vec{B} is a distorted helical field. This matters in high precision magnetic applications!

A better method of defining a solenoid magnetic field

Hence high precision magnets are made from flat 'ribbons'