

如北大学

智能信息系统综合实践 实验报告

题 目: 贝叶斯分类+PCA

年 级: 2020

专业: 软件工程

姓 名: <u>张琬琪</u>

一、题目

作业一鸢尾花分类

作业1: 数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项 特征: 花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花 卉属于 (iris-setosa, iris-versicolour, iris-virginica) 中的哪一品种。

*要求:

- ① 在鸢尾花数据集上,尽量手动编写朴素贝叶斯分类代码,完成分类实验。(可参考李航统计学习方法)
- ② 在①的基础上,对鸢尾花中特征部分进行划分,分别利用1个,2个,3个,4个特征进行分类,比较不同特征对分类结果的影响,画图比较。

作业2: 选用的MNIST数据集,每条记录都有28*28项特征,随机选择70%训练,30%测试。

*要求:

- ① 在数据集上,利用朴素贝叶斯分类代码,完成分类实验,并画图给出不同数字的准确率,并尝试分析其原因。
- ② 利用PCA将28*28维度降维到某个维度(如10,20等),完成分类并计算其准确率。
- ③ 贝叶斯中唯一的参数一平滑系统,可尝试调整参数,比较其对分类的影响。

二、解题步骤

作业 1:

①:【解题思路】:

- 1) 导入所需数据集,参考以往实验方法随机划分测试集训练集
- 2)利用 sklearn 中提供的朴素贝叶斯分类算法,实验中选用GaussianNB
 - (注:在 sklearn 中,一共有 3 个朴素贝叶斯的分类算法类:GaussianNB (先验是高斯分布的朴素贝叶斯);BernoulliNB (先验为伯努利分布的朴素贝叶斯);MultinomialNB (先验是多项式分布的朴素贝叶斯)。
 高斯 NB 用于连续值;多项式 NB 用于离散的多值;伯努利 NB 用于离散的二值。)
 - 3) 利用训练集对于模型进行训练
- 4)对测试集进行预测,并输出分类相关指标: precision 准确率,recall 召回率,fl-score,混淆矩阵,决定系数 R^2 对模型分类情况进行评估

②:【解题思路】:

1)因题目要求需要使用不同数目的分类指标进行分类,因此在 ①的基础上,**在数据集划分时进行函数封装**,将想要选择的特征数量, 设置为变量,最后在主函数中,依次输入不同的特征数量,达到最终 目的。

(注:这里由于本身数据集四列即为四种不同特征,因此在具体

实验时, 自己选取的1至4个特征, 皆为顺序选取, 即可简单理解为: 第一次取所有列即选了所有四个特征,第二次取前三列即选了前三个 特征,以此类推。)

2)进行绘制图像以类比不同特征对其分类精度的影响,本次实 验经过衡量决定使用 ROC 曲线进行比较,选取 scikitplot 库中

skplt.metrics.plot roc(y test, predicted probas) 进行 ROC 曲线

的绘制。

2.选择最佳的诊断界限值。ROC曲线越靠近左上角,试验的准确性就越高。最靠近左上角的ROC 曲线的点是错误最少的最好阈值,其假阳性和假阴性的总数最少。

1.ROC曲线能很容易地查出任意界限值时的对性能的识别能力。

①、②【解题思路】代码:

3.两种或两种以上不同诊断试验对算法性能的比较。在对同一种算法的两种或两种以上诊断方 法进行比较时,可将各试验的ROC曲线绘制到同一坐标中,以直观地鉴别优劣,靠近左上角的 ROC曲线所代表的受试者工作最准确。亦可通过分别计算各个试验的ROC曲线下的面积(AUC)进 行比较,哪一种试验的 AUC最大,则哪一种试验的诊断价值最佳。

```
iris = load_iris()
def nb_select_feature(n):
   x = iris.data[:, : n]
   y = iris.target
   x_train,x_test,y_train,y_test=model_selection.train_test_split(x,y,test_size=0.3, random_state=42)
   model = GaussianNB()
   model.fit(x_train, y_train)
   predict = model.predict(x_test)
   predicted_probas = model.predict_proba(x_test)
   print(classification_report(y_test, predict))
   print(metrics.confusion_matrix(y_test, predict))#混淆矩阵
   print('特征数量为{}的朴素贝叶斯模型的预测准确率: {:.2f}%'.format(n,model.score(x_test, y_test) * 100))
   skplt.metrics.plot_roc(y_test, predicted_probas)#绘制ROC曲线
   plt.rcParams['font.sans-serif'] = ['SimHei']
   plt.rcParams['axes.unicode_minus'] = False
   plt.title('特征数量为{}的ROC curve'.format(n))
   plt.show()
if __name__ == '__main__':
   n=[1,2,3,4]
   while len(n)>0:
       a=n.pop()
       nb_select_feature(a)
```

代码所需库与包见图 2:

```
from sklearn.datasets import load_iris
from sklearn import model_selection
from sklearn.naive_bayes import GaussianNB #高斯分布的朴素贝叶斯和
from sklearn import metrics
from sklearn.metrics import classification_report

import matplotlib.pyplot as plt
import scikitplot as skplt
```

图 2

D:\developlAPP\python3.10.4\python.exe D:\科目学习类\pythonhomeworkCODE\exercise5\01.py

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	19	
4	1 00	0.00	0.01	17	
1	1.00	0.92	0.96	13	
2	0.93	1.00	0.96	13	
accuracy			0.98	45	
macro avg	0.98	0.97	0.97	45	
weighted avg	0.98	0.98	0.98	45	
weighted avg	0.70	0.70	0.70	7.5	

[[19 0 0] [0 12 1] [0 0 13]]

特征数量为4的朴素贝叶斯模型的预测准确率:97.78%

特征数量为3的R0C curve 1.0 0.8 True Positive Rate 0.6 0.4 ROC curve of class 0 (area = 1.00) ROC curve of class 1 (area = 0.98) 0. 2 ROC curve of class 2 (area = 0.98) micro-average ROC curve (area = 0.99) macro-average ROC curve (area = 0.99) 0.0 0.0 0. 2 0.8 1.0 0.4 0.6 False Positive Rate precision recall f1-score support 0 1.00 1.00 1.00 19 0.83 0.77 1 0.80 13 2 0.79 0.85 0.81 13 0.89 45 accuracy 0.87 0.87 0.87 45 macro avg

0.89

0.89

45

[[19 0 0] [0 10 3] [0 2 11]]

weighted avg

特征数量为3的朴素贝叶斯模型的预测准确率。88.89%

0.89

特征数量为2的ROC curve 1.0 0.8 True Positive Rate ROC curve of class 0 (area = 1.00) ROC curve of class 1 (area = 0.87) 0.2 ROC curve of class 2 (area = 0.87) micro-average ROC curve (area = 0.94) macro-average ROC curve (area = 0.92) 0.0 0. 2 0.0 0.4 0.6 0.8 1.0 False Positive Rate precision recall f1-score support 1.00 1.00 1.00 0 19 1 0.78 0.54 0.64 13 2 0.65 0.85 0.73 13 0.82 45 accuracy 0.79 0.79 45 macro avg 0.81 weighted avg 0.83 0.82 0.82 45

[[19 0 0] [0 7 6] [0 2 11]]

特征数量为2的朴素贝叶斯模型的预测准确率:82.22%

特征数量为1的朴素贝叶斯模型的预测准确率: 71.11%

Process finished with exit code 0

作业 2:

①:【解题思路】:

如图 3 所示:

1)数据处理: MNIST 数据集是机器学习领域中非常经典的一个数据集,由 60000 个训练样本和 10000 个测试样本组成,每个样本都是一张 28 * 28 像素的灰度手写数字图片。为了方便实验,将数据集进行整理合并成 70000 个数据,将代表数字放在文件第一列,后面从第二列到 785 列代表 784 个不同的像素值。2)进行文件读取,将标签和像素值按照列的位置分布进行划分,

```
raw_data = pd.read_csv('mnist_data_70000.csv', header=0)
data = raw_data.values
imgs = data[0::, 1::]
labels = data[::, 0]
```

图 3

- 3) 按照题目要求 3: 7进行数据集划分
- 4)利用训练集数据训练模型,并利用测试集进行测试,生成与作业1相同的相关数据与图像。

原因分析: MNIST 数据集数据本身会有些许错误样本,加之训练模型参数不同,或是不同的训练模型以及其他一些不可控制因素,都会造成数字识别准确率的下降或改变。

【结果展示】:

D:'	\deve	loplA	PP\py	thon3	.10.	4\pyth	on.ex	e D:	\科目学	△习类\pytl	honhomeworkCODE\exercise5\02.
			pre	cisio	n	recal	l f1	-sco	re	support	
		0		0.6	7	0.9	2	0.	77	2064	
		1		0.7	9	0.9	4	0.8	86	2422	
		2		0.8	7	0.2	9	0.	43	2078	
		3		0.7	6	0.3	1	0.	44	2163	
		4		0.83			0.14		24	2001 1879	
		5	0.53 0.63 0.92			0.04		0.0	08		
		6				0.95			76	2092	
		7							44	2221	
		8		0.2	8	0.5	0.	37	2013		
9			0.36		0.95		0.	52	2067		
	acc	uracy						0.	55	21000	
	macr	o avg		0.6	6	0.54			49	21000	
ve:	ighte	d avg	0.67			0.55		0.50		21000	
[[:	1896	2	13	6	4	10	55	1	39	38]	
[4	2283	3	8	2	3	32	2	59	26]	
[259	69	596	121	11	11	529	2	436	44]	
[233	105	18	665	3	12	139	10	707	271]	
[74	7	22	11	280	15	232	9	364	987]	
]	277	61	11	30	6	80	109	3	1070	232]	
[24	30	8	0	3	6	1985	0	33	3]	
]	9	17	3	17	13	3	3	648	64	1444]	
[49	283	10	18	7	8	42	4	1105	487]	
]	14	22	4	2	10	3	1	26	27	1958]]	

②:【解题思路】:

在①的基础上主要加入 PCA 降维步骤,基于

sklearn.decomposition.PCA 进行 PCA 降维。PCA 类基本不需要调参,

一般来说,我们只需要指定我们需要降维到的维度。

主要参数: n_components: 这个参数可以帮我们指定希望 PCA 降维后的特征维度数目。

实现: 如 newX=pca.fit_transform(X), newX 就是降维后的数据。

关键代码如图 4 所示:

```
raw_data = pd.read_csv('mnist_data_70000.csv', header=0)

data = raw_data.values
pca = decomposition.PCA(n_components=20)

imgs = data[0::, 1::]
labels = data[::, 0]

new_images = pca.fit_transform(imgs)
x_train, x_test, y_train, y_test = train_test_split(new_images, labels, test_size=0.3,random_state=42)
model = GaussianNB()
model.fit(x_train, y_train)
```

图 4

D:\	deve	lopl	APP	/py	thon	3.10.	4\pyth	non.e	xe D:	\科目学	妇类\pyt	thonhomeworkCODE\exercise5\0202
				pre	cisio	on	recal	ll f	1-sco	re	support	
		19	0		0.9	93	0.9	92	0.	93	2064	
			1		0.9	91	0.9	93	0.9	92	2422	
		18	2		0.8	34	0.8	30	0.	32	2078	
		3	3		0.8	31	0.8	30	0.8	80	2163	
		8	4		0.8	34	0.8	34	0.	34	2001	
			5		0.6	59	0.8	32	0.	75	1879	
		3	6		0.8	39	0.8	38	0.	39	2092	
			7		0.9	90	0.8	37	0.	39	2221	
		8	8		0.8	33	0.7	77	0.	3 <mark>0</mark>	2013	
			9		0.7	78	0.7	79	0.	79	2067	
	acc	urac	у						0.8	34	21000	
	macr	o av	g		0.8	34	0.8	34	0.	34	21000	
wei	ghte	d av	g		0.8	35	0.8	34	0.	34	21000	
[[1	901	0		8	9	3	82	49	4	5	3]	
]	0	2253		70	14	0	35	9	6	32	3]	
]	28	29	16	63	72	24	34	67	47	79	35]	
]	16	8		52	1721	2	172	17	27	96	52]	
[2	24		22	1	1677	33	29	10	12	191]	
]	14	9		26	136	44	1550	36	19	31	14]	
]	32	10		23	4	20	144	1846	1	10	2]	
]	10	62		41	5	41	20	2	1931	17	92]	
]	18	63		29	138	22	111	15	14	1540	63]	
Γ	17	25		35	23	164	65	5	79	23	1631]]	

降维后,实验后发现分类准确率明显提升。

③:【解题思路】:

本次实验选取 GaussianNB(), 进行简单的参数介绍参数:

1-priors: array-like of shape (n_classes,),Prior probabilities of the classes. If specified the priors are not adjusted according to the data.

先验:数组-(n_classes,)每一类的先验概率。如果指定先验概

率,则不会根据数据调整先验概率。

2-var_smoothing: float, default=1e-9

方差平滑: 浮点数,默认=1e-9,为了计算稳定性而添加到方差中的所有特征的最大方差部分。

结合题意,对加粗的参数进行修改

默认值: GaussianNB(*, priors=None, var_smoothing=1e-09)

(在第二问已经降维的基础上)修改数据,见图5:

```
new_images =pca.fit_transform(imgs)
x_train, x_test, y_train, y_test = train_test_split(new_images, labels, test_size=0.3,random_state=42)
model = GaussianNB(__priors=None, var_smoothing=1)
model.fit(x_train, y_train)
```

图 5

实验发现在进行随机修改数据值时,基本上都没有默认值所能达到的准确率高,当然也存在实验数据与次数不够完备的情况。

【结果展示】:

10 41 4

D:\developlAPP	\python3.10.	4\python.exe	D:\科目学习类\p	ythonhomeworkCODE\	exercise5\0203.py

			pro	ecisi	on	reca	ll f	l-score support		
		(9	0.0	95	0.8	83	0.0	89	2064
			1	0.	53	0.9	99	0.0	69	2422
			2	0.9	91	0.64 0.75				2078
		Ţ	3	0.	74	0.	72	0.	73	2163
			4	0.8	81	0.	77	0.	79	2001
			5	0.8	81	0.4	43	0.	56	1879
		(6	0.8	86	0.8	33	0.8	84	2092
			7	0.8	86	0.8	33	0.8	84	2221
		8	3	0.	75	0.0	66	0.	70	2013
			9	0.0	69	0.	75	0.	72	2067
	ac	curacy	У					0.	75	21000
	macı	ro av	g	0.	79	0.	75	0.	75	21000
wei	ght	ed av	g	0.	79	0.	75	0.	75	21000
[[1	723	10	18	27	8	96	89	27	48	18]
]	0	2391	4	3	1	1	5	7	8	2]
]	18	355	1328	55	53	5	69	59	103	33]
]	7	240	41	1565	5	39	19	23	150	74]
]	0	146	2	0	1541	0	26	15	12	259]
[15	407	1	314	49	804	49	42	82	116]
]	16	213	34	3	51	29	1730	3	10	3]
]	6	219	8	0	30	1	1	1852	15	89]
]	9	374	7	127	23	14	15	17	1336	91]
[13	172	15	24	139	4	3	118	24	1555]]
		stat	1-15-11			THE !-	and see an			

降维后mnist数据集的朴素贝叶斯模型的预测准确率: 75.36%

Process finished with exit code 0

三、总结

- ①在完成第一题手写朴素贝叶斯算法,由于部分数据在 计算概率以及其他值方面出现错误率较高,故最后选取直接 利用 sklearn 中的朴素贝叶斯分类算法。
- ②绘制 ROC 曲线时,实际需要的值与以往实验预测值有细微区别,也就是需要分清以下二者的区别:

print(clf.predict(x_test)) # 返回预测标签

print(clf.predict_proba(x_test)) # 返回预测属于某标签的概率

③本次实验由于时间仓促,没有做到使用更多的数值或 是更加有实验价值的数据进行实验测试,使得实验结果欠缺 更坚实的数据支撑。