Часть 1. Тест.

Вопрос 1 🧍	В теореме Гаусса-Маря	кова предполагаетс	я, что ошибки	
	ненулевое математическиную дисперсию	кое ожидание и	единичную д	цисперсию
	нулевое математическо	ое ожидание и	С Нет верного	ответа.
Вопрос 2 🌲	После применения М	НК к модели $y_i=eta$	$x_i + \varepsilon_i$ сумма $\sum \varepsilon_i$	$\hat{arepsilon}_i^2$
А не обяза	ательно равна нулю		В равна нулю	
Вопрос 3 👫	При автокорреляции М	ИНК-оценки коэфф	оициентов являю	тся
А несмеш	ёнными		В смещённым	И
Вопрос 4 🐥	В случае мультиколли	неарности оценки	дисперсий коэфо	фициентов являются
А в средн	ем заниженными	В несмещённым	МИ	С в среднем завышенными
Вопрос 5 🌲	Двухшаговый метод н	аименьших квадра	атов — это станда	ртный способ борьбы с
А гетерос	кедастичностью		С эндогенност	ью
В автокор	реляцией		D Нет верного	ответа.
Вопрос 6 ♣ Маркова	Нестрогая мультиколл	иинеарность — это	одно из нарушен	ний предпосылок теоремы Гаусса
А верно			В неверно	
Вопрос 7 🐥	Нулевой гипотезой в т	сесте Уайта являетс	я гипотеза о	
А гомоске	едастичности		С гетероскедас	тичности
В наличи	и автокорреляции		D отсутствии а	втокорреляции
Вопрос 8 👫	Тест Дарбина-Уотсона	в регрессии без св	ободного члена	
А примен	им		В неприменим	Ι
Вопрос 9 ♣ пользованны	9	ывает, какую долю	дисперсии завис	симой переменной объясняют ис
А неверно)	В верно		
Вопрос 10 🐥	При условной гетеро	скедастичности оц	енки коэффицие	нтов
А состоят	ельны		В несостоятель	ьны

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$\ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 married_i + \beta_5 educ_i + \beta_6 black_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $educ_i$ количество лет обучения
- $married_i$ наличие супруга/супруги (1 есть, 0 нет)
- $black_i$ принадлежность к негроидной расе (1 да, 0 нет)

Показатель	Значение
R^2	0.280
Скорректированный \mathbb{R}^2	0.277
Стандартная ошибка регрессии	B6
Количество наблюдений	1271

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия	B1	B 4	14.670	B5	0.000
Остаток	B 2	188.951	0.149		
Итого	B3	262.301			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	B 7	0.110	42.019	0.000	В8	В9
exper	0.076	B10	7.081	0.000	0.055	0.097
$exper^2$	-0.002	0.000	-3.898	0.000	-0.003	-0.001
married	0.024	0.027	0.905	0.366	-0.028	0.076
educ	0.087	0.006	15.646	0.000	0.076	0.098
black	-0.229	0.025	-9.267	0.000	-0.277	-0.180

Найдите пропущенные числа В1-В10.

Ответ округляйте до 3-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. Туристическое агентство «Необыкновенные путешествия» в рамках программы импортозамещения продвигает новое направление пляжного отдыха — землю Франца-Иосифа. Недавно с отдыха вернулась первая партия из 254 туристов. Исследовательский отдел компании оценил модель полезности, которую туристы получили от отдыха:

$$\ln u_i = 1 + 2 \ln duration_i + 3 \ln weight_i + 4 \ln bears_i + \varepsilon_i$$

где:

- u_i полезность туриста в улыбках
- $duration_i$ продолжительность отдыха в днях
- $weight_i$ вес сухпайка в кг, выданного туристу по прилёту
- $bears_i$ популяция белых медведей в радиусе 10 километров от пляжа

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	\hat{eta}_4	RSS	R^2	N
А. Все вернувшиеся с отдыха	132.5*	9.7**	78.7**	1.7	972	0.64	254
В. Тур «На пляже с белыми медведями»	34.8**	5.8***	97.3**	-7.2**	234	0.73	67
C. Typ «Ultra All Inclusive в Заполярье»	139.7*	19.1**	0.7	1.9*	115	0.81	111
D. Тур «На айсберге в шезлонге»	97.2**	-11.1*	103.4*	5.8*	311	0.67	76
Е. Жившие близко к базе полярников	267.1*	14.8**	50.9**	1.7*	467	0.48	100
F. Жившие далеко от базы полярников	3.8***	-5.8**	120.8*	-3.8**	112	0.84	100

 $^{^*}$ — значимость на 10%, ** — значимость на 5%, *** — значимость на 1%.

- а) Для модели по всей выборке (выборка A) проинтерпретируйте коэффициент \hat{eta}_2
- б) Определите на 5%-ом уровне значимости, можно ли использовать общую модель для всех трёх туров фирмы (выборки В, С и D)
- в) Есть предположение, что удалённость от базы полярников влияет на дисперсию ошибок. Проверьте, верно ли это, на 10%-ом уровне значимости на основании соответствующего теста

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

3. Один из туристов каждый день в течение 146 дней отдыха замерял характеристики своего айсберга. По возвращении домой он построил модель зависимости высоты айсберга от объясняющих переменных:

$$\widehat{height}_t = 158 - 3.2 temp_t - 1.8 collisions_t + 0.4 bears_t, TSS = 35578$$

где:

- $height_t$ высота айсберга над уровнем моря в метрах
- $temp_t$ температура воздуха по Цельсию
- $collisions_t$ число столкновений с другими айсбергами
- $bears_t$ число приплывших в гости в течение дня белых медведей

Известно, что
$$\sum_{t=2}^{146} (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 = 9882$$
, $\sum_{t=1}^{146} \hat{\varepsilon}_t^2 = 21089$, $\sum_{t=2}^{146} |\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1}| = 3617$, $\sum_{t=1}^{146} |\hat{\varepsilon}_t| = 6382$.

Кроме того, была оценена вспомогательная модель для остатков исходной модели:

$$\hat{\hat{\varepsilon}}_t = 34.57 + 0.19 tem p_t - 0.71 collisions_t + 0.24 bears_t + 0.91 \hat{\varepsilon}_{t-1} - 0.67 \hat{\varepsilon}_{t-2} + 0.51 \hat{\varepsilon}_{t-3}, \ R^2 = 0.37 e^{-1} + 0.19 e^{-$$

- а) На 10%-ом уровне значимости проверьте гипотезу об адекватности исходной регрессии
- б) Проверьте наличие автокорреляции на 5%-ом уровне значимости при помощи теста Дарбина-Уотсона
- в) Проведите тест Бройша-Годфри на 1%-ом уровне значимости

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

4. Джон Сноу живёт на земле Франца-Иосифа и каждый день продаёт отдыхающим спойлеры к «Игре Престолов». После 40 дней, он установил, что выручка в тысячах долларов от продажи спойлеров, $profit_t$, определяется температурой в градусах Цельсия, $temp_t$:

$$\widehat{profit_t} = 10 - 2temp_t$$

Оценка ковариационной матрицы коэффициентов $\widehat{\mathrm{Var}}(\hat{\beta}) = \begin{pmatrix} 2 & -0.2 \\ -0.2 & 0.5 \end{pmatrix}$

Оценка дисперсии ошибок равна $\hat{\sigma}^2 = 76$.

Сегодня над Землёй Франца-Иосифа -20° .

- а) Постройте точечный прогноз выручка от продажи спойлеров
- б) Постройте 95%-ый доверительный интервал для ${\rm E}(profit_t|temp_t=-20),$ ожидаемой выручки от продажи спойлеров
- в) Постройте 95%-ый предиктивный интервал для фактической выручки от продажи спойлеров

Часть 3. Теоретические вопросы

- 5. Дайте определение мультиколлинеарности и опишите основные методы её диагностики.
- 6. Дайте определение процесса стационарного в узком смысле. Приведите пример процесса авторегрессии первого порядка, AR(1). Посчитайте для него математическое ожидание и дисперсию.
- 7. Опишите взвешенный МНК для случая известных дисперсий случайных ошибок: сформулируйте алгоритм получения оценок. Какие проблемы решает взвешенный МНК?