Page 15

4.2 (a) Left to right, assume $A \subseteq B(*)$, and let $x \in A \cap B$, which means that $x \in A$ and $x \in B$, we can conclude $x \in A$, thus $A \cap B \subseteq A(**)$. to prove the other direction, let $x \in A$, by assumption (*) we get $x \in B$, we can conclude $x \in A$ and $x \in B$, which means that $x \in A \cap B$, so we have $A \subseteq A \cap B$, so by this and (**) we have $A = A \cap B$.

Right to left, suppose $A \cap B = A(*)$, let $x \in A$, by (*) $x \in B$, so we have $A \subseteq B$.

Second part, $x \in A \cup B$ iff $x \in B$, it means that there is nothing in A such that is not in B, thus $A - B = \emptyset$.

(b) Left to right, suppose $A \subseteq B \cap C$, let $x \in A$, by previous assumption we have $x \in B \cap C$, which implies that $x \in B$ and $x \in C$, so we have $A \subseteq B$ and $A \subseteq C$.

Right to left, suppose $A \subseteq B$ and $A \subseteq C$, let $x \in A$, by two previous assumtion we have both $x \in B$ and $x \in C$ which implies that $x \in B \cap C$, thus we have $A \subseteq B \cap C$.

- (c) Suppose $B \cup C \subseteq A$, let $x \in B$, we can get also $x \in B \cup C$, by previous assumption we conclude that $x \in A$, thus $B \subseteq A$. by similar argument we can show $C \subseteq A$.
- (d) $x \in A B$ iff $x \in A \land \neg(x \in B)$ iff $x \in A \land \neg(x \in B) \lor (x \in B \land \neg(x \in B))$ iff $(x \in A \lor x \in B) \land \neg(x \in B)$ iff $x \in (A \cup B) B$ iff $(x \in A \land \neg(x \in B)) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land (\neg(x \in A) \lor \neg(x \in B))$ iff $x \in A (A \cap B)$.
- (e) $x \in A \cap B$ iff $x \in A \land x \in B$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $(x \in A \land x \in B) \lor (x \in A \land \neg(x \in A))$ iff $x \in A \land \neg(x \in B) \land (x \in A)$ iff $x \in A \land \neg(x \in A)$ iff
- (f) $x \in A (B C)$ iff $x \in A \land \neg (x \in B C)$ iff $x \in A \land \neg (x \in B) \lor (x \in C)$ iff $x \in A \land (\neg (x \in B) \lor (x \in C))$ iff $(x \in A \land \neg (x \in B)) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in A \land B) \lor (x \in A \land x \in C)$ iff $(x \in$

(g) $(A - B) \cup (B - A) = \emptyset$ iff both (*) $A - B = \emptyset$ and $B - A = \emptyset$, by (a) we get (*) iff $A \subseteq B$ and $B \subseteq A$ iff A = B.

- **4.4** Suppose it exist, then $A' \cup A$ is equal to universal set which does not exist.
- **4.5** (a) let $x \in A \cap \bigcup S$, then $x \in A$ and $x \in C$ for some $C \in S$, it means that $x \in A \cap C$, clearly $A \cap C \in P(A)$ so $A \cap C \in T_1$ by definition, thus $x \in \bigcup T_1$. (Note that if we take $A \cap C = C$, then we can say that for some $C \in T_1$ we have $x \in C$). Now let $x \in \bigcup T_1$, then there is some $Y \in T_1$ such that $x \in Y$, but by definition of T_1 we know that $Y = A \cap X$ for some $X \in S$, it means that $x \in \bigcup S$ and $x \in A$, thus $x \in A \cap \bigcup S$.
- (b) Let $x \in A \bigcup S$, we have $x \in A \bigcup S$ iff $x \in A$ and $x \notin X$ for any $X \in S$. it equally means that (*) $x \in A X$ for every $X \in S$. we know that any set in the form of A X such that $X \in S$ is in T_2 , thus (*) means that we have $x \in \bigcap T_2$.
- $x \in A \bigcap S$ iff $x \in A$ and $x \notin C$ for some $C \in S$ iff $x \in A C$ for some $C \in S$, because any set in the form of A X such that $X \in S$ is in T_2 we have some $x \in \bigcap T_2$.
- **4.6** if S is not empty, then there is some $C \in S$, by Axiom Schema of Comprehension the set $\{x \in C : (\forall X)(X \in S \to x \in X)\}$ exist. if it is empty, then we can not apply the axiom of comprehension.