

نیمسال دوم ۹۹-۹۹ تهیه و تنظیم:مهری رشیدی گروه آموزشی ریاضیات عمومی تمرینات ریاضی عمومی ۲ ـ سری سوم

(آدامز بخش ۳ – ۱۲سوال۳۶) نشان دهید تابع

$$f\left(x,y\right) = \begin{cases} \frac{\mathbf{Y}xy}{x^{\mathbf{Y}}+y^{\mathbf{Y}}} & (x,y) \neq (\circ, \circ) \\ \circ & (x,y) = (\circ, \circ) \end{cases}$$

 $f_{7}(x,y)$ و $f_{1}(x,y)$ در $f_{2}(x,y)$ پیوسته نیست. بنابراین نمودار تابع در این نقطه هموار نیست. با وجود این نشان دهید را و روبه و روبه هموار تابعی چند متغیره، مستلزم پیوستگی آن نیست. این امر با حالت تک متغیره تفاوت دارد.

آدامز بخش ۳ – ۱۲سوال۳۷) اگر

$$f(x,y) = \begin{cases} (x^{r} + y) \sin \frac{1}{x^{r} + y^{r}} & (x,y) \neq (\circ, \circ) \\ \circ & (x,y) = (\circ, \circ) \end{cases}$$

مطلوبست تعیین $f_{\mathsf{Y}}\left(\circ,\circ\right)$ و $f_{\mathsf{Y}}\left(\circ,\circ\right)$ در صورت وجود.

- ۳. نشان دهید که تابع با ضابطه $|x| \leq |y|$ سان دهید که تابع با ضابطه $|x| \leq |y|$ سان دهید که تابع با ضابطه $|x| \leq |y|$ سان دهید که تابع با ضابطه |x| > |y| سان نقطه مشتق پذیر نیست. درباره |x| > |y| چه می توان گفت؟ وجود دارند اما تابع در این نقطه مشتق پذیر نیست. درباره |x| > |y|
- (۱, -1) را در نقطه $f(x,y) = \arctan \frac{y}{x}$ بر نمودار تابع $f(x,y) = \arctan (x,y)$ را در نقطه (۱, -1) را در نقطه بیابید.
- ۵. (آدامز بخش x 1سوال $x = x^{r} 4xy^{r} + 8y^{r} 1$ مختصات همه نقاط متعلق به رویه دارای معادله $z = x^{r} 4xy^{r} + 8y^{r} 1$ را بیابید که در آنها این رویه دارای صفحه مماس افقی هست.
- ۶. (آدامز بخش ۳ ۱۲سوال۲۶، ۲۹) نشان دهید هر یک از توابع زیر در معادله دیفرانسیل جزیی داده شده صدق می کند.

$$\begin{split} z &= \frac{x+y}{x-y}; \qquad x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \circ, \\ w &= \frac{1}{x^{\mathsf{T}} + y^{\mathsf{T}} + z^{\mathsf{T}}}; \qquad x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} + z \frac{\partial w}{\partial z} = -\mathsf{T} w. \end{split}$$

۷. (آدامز بخش ۳ – ۱۲سوال ۳۰) اگر $z = f(x^{r} + y^{r})$ که در آن f یک تابع یک متغیره مشتق پذیر دلخواه است، نشان دهیددر معادله دیفرانسیل جزیی داده شده زیر صدق می کند.

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = \circ$$

۸. (آدامز بخش ۳ – ۱۲سوال۳۴) فاصله نقطه (۱,۱,۰) از سهمیوار دایره ای به معادله $z=x^{\mathsf{r}}+y^{\mathsf{r}}$ را بیابید.

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

دانشکده ریاضی و علوم کامپیوتر

نیمسال دوم ۹۹-۹۹ تهیه و تنظیم:مهری رشیدی

گروه آموزشی ریاضیات عمومی تمرینات ریاضی عمومی ۲ ـ سری سوم

آدامز بخش ۳ – ۱۲سوال ۴) فرض کنیم

$$f\left(x,y,z\right) = \begin{cases} \frac{xy^{\mathsf{T}}z}{x^{\mathsf{T}}+y^{\mathsf{T}}+z^{\mathsf{T}}} & (x,y,z) \neq (\circ, \circ, \circ) \\ \circ & (x,y,z) = (\circ, \circ, \circ) \end{cases}$$

؟ ییوسته هستند (\circ, \circ, \circ) در (\circ, \circ, \circ) ییوسته هستند f_1, f_2, f_3 در f_4, f_5, f_7 در f_5, f_7 در اییابید.

١٠ (آدامز بخش ۵ – ١٢سوال١٥)

. $\frac{\partial^r z}{\partial s \partial t}$ الف) اگر y = rs - rt, x = rs + rt, z = f(x,y) الف

. $\frac{\partial^{\mathsf{r}}}{\partial s \partial t} f(x,y)$ مطلوبست است محاسبه $y = t \cos s, x = t \sin s$ ب) اگر

دهید که $z=u\left(x,y
ight)=v\left(s,t
ight)$ و $x=e^{s}\cos t,y=e^{s}\sin t$ نشان دهید که دامز بخش ۵ – ۱۲سوال۲۳) اگر

$$\frac{\partial^{\mathbf{Y}} u}{\partial s^{\mathbf{Y}}} + \frac{\partial^{\mathbf{Y}} u}{\partial t^{\mathbf{Y}}} = \left(x^{\mathbf{Y}} + y^{\mathbf{Y}}\right) \left(\frac{\partial^{\mathbf{Y}} z}{\partial x^{\mathbf{Y}}} + \frac{\partial^{\mathbf{Y}} z}{\partial y^{\mathbf{Y}}}\right)$$

۱۱ د (آدامز بخش ۵ – ۱۲سوال ۲۵) اگر $u\left(x,y
ight)=r^{\mathsf{r}}\ln r$ اگر ۱۲ دهید . ۱۲

$$\left(\frac{\partial^{\mathsf{Y}}}{\partial x^{\mathsf{Y}}} + \frac{\partial^{\mathsf{Y}}}{\partial y^{\mathsf{Y}}}\right) \left(\frac{\partial^{\mathsf{Y}} u}{\partial x^{\mathsf{Y}}} + \frac{\partial^{\mathsf{Y}} u}{\partial y^{\mathsf{Y}}}\right) = \circ$$

۱۳. (آدامز بخش ۷ – ۱۲سوال۱۹) اگر برای تابع دیفرانسیل پذیر f(x,y) داشته باشیم:

$$D_{(i+j)/\sqrt{\mathbf{x}}}f\left(a,b\right)=\mathbf{x}\sqrt{\mathbf{x}},$$

$$D_{(\mathrm{Y}i-\mathrm{Y}j)/\mathrm{D}}f\left(a,b\right) =\mathrm{D},$$

مطلوبست محاسبه (a,b) مطلوبست

را در نقطه $y^{\mathsf{T}} + z^{\mathsf{T}} = \mathsf{T}$ و $x^{\mathsf{T}} + y^{\mathsf{T}} = \mathsf{T}$ را در نقطه $y^{\mathsf{T}} + z^{\mathsf{T}} = \mathsf{T}$ و $y^{\mathsf{T}} + z^{\mathsf{T}} = \mathsf{T}$ را در نقطه (۱٫–۱,۱) بیابید.

10. (آدامز بخش ۷ – ۱۲سوال۳۶) فرض کنیم

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{\sqrt{x^{\mathsf{T}} + y^{\mathsf{T}}}} & (x,y) \neq (\circ, \circ) \\ \circ & (x,y) = (\circ, \circ) \end{cases}$$

. $\nabla f(\cdot, \cdot)$ and a number of line (line).

ب) با استفاده از تعریف مشتق سویی، $D_{u}f\left(\circ, \circ \right)$ را که در آن $u=\left(i+j \right)/\sqrt{r}$ را محاسبه کنید.

ج) آیا f(x,y) در (\cdot,\cdot) دیفرانسیل پذیر است؟

نیمسال دوم ۹۹-۹۸ تهیه و تنظیم:مهری رشیدی گروه آموزشی ریاضیات عمومی تمرینات ریاضی عمومی ۲ ـ سری سوم

۱۶. فرض کنید

$$f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^{\mathsf{T}} + y^{\mathsf{T}}}, & y \neq \circ, \\ \\ \circ, & y = \circ. \end{cases}$$

(آ) نشان دهید برای هر بردار یکه $u=(u_1,u_7)$ در صفحه، $D_uf(\circ,\circ)$ وجود دارد.

(ب) آیا تابع f در (\cdot, \cdot) مشتق پذیر است؟

۱۸. (آدامز بخش ۸ – ۱۲سوال ۱۷)نشان دهید که می توان معادله های

$$\begin{cases} xy^{\mathsf{T}} + zu + v^{\mathsf{T}} = \mathsf{T} \\ x^{\mathsf{T}}z + \mathsf{T}y - uv = \mathsf{T} \\ xu + yv - xyz = \mathsf{T} \end{cases}$$

را در همسایگی نقطه (x,y,z,u,v)=(1,1,1,1,1) نسبت به مجهولات x,y,z به عنوان توابعی از u,v حل کرد و سپس را در همسایگی نقطه (u,v)=(1,1,1,1,1) بیابید.

۱۹. (آدامز بخش ۸ – ۱۲سوال۱۸)نشان دهید که می توان معادله های

$$\begin{cases} xe^y + uz - \cos v = \mathbf{Y} \\ u\cos y + x^{\mathbf{Y}}y - yz^{\mathbf{Y}} = \mathbf{Y} \end{cases}$$

را در همسایگی نقطه $(x,y,z,u,v)=(exttt{r},\circ, exttt{1},\circ)$ نسبت به مجهولات x,y,z به عنوان توابعی از u,v حل کرد و سپس $(x,y,z)=(exttt{r},\circ, exttt{1},\circ)$ را به ازای $(x,y,z)=(exttt{r},\circ, exttt{1})$ بیابید.

۲۰. (آدامز بخش ۸ – ۱۲سوال۲۲) اگر رابطه F(x,y,z)=0 متغیر z را به عنوان تابعی از x,y به دست دهد، مطلوبست F(x,y,z)=0 محاسبه $\frac{\partial^{r} z}{\partial u^{r}}, \frac{\partial^{r} z}{\partial x^{2}\partial u^{r}}, \frac{\partial^{r} z}{\partial x^{2}\partial u^{r}}$

دهید که F(x,y,z) = 0 اگر ۱۲۰ اسوال ۲۵) دهید که ۲۱.

$$\left(\frac{\partial x}{\partial y}\right)_z\!\left(\frac{\partial y}{\partial z}\right)_x\!\left(\frac{\partial z}{\partial x}\right)_y = -\mathrm{I}.$$

فرمول های مشابهی برای F(x,y,z,u)=0 و F(x,y,z,u)=0 بدست آورید. حالت کلی چیست؟

نیمسال دوم ۹۹-۹۸ تهیه و تنظیم:مهری رشیدی

گروه آموزشی ریاضیات عمومی تمرینات ریاضی عمومی ۲ ـ سری سوم

۲۲. دستگاه زیر را در نظر بگیرید

$$\begin{cases} u^{\mathbf{f}}v^{\mathbf{f}} + (u+x)^{\mathbf{f}} + y + \mathbf{f}w - \mathbf{f} = \circ, \\ \sin(uv) + e^{v+y^{\mathbf{f}} - \mathbf{f}} + v - \mathbf{f} = \circ, \\ x^{\mathbf{f}} - \mathbf{f}y^{\mathbf{f}} + \mathbf{f}w = v - u, \end{cases}$$

- رآ) نشان دهید در یک همسایگی نقطه $p_{\circ} = (u, v, w, x, y) = (\circ, \circ, 1, \circ, 1)$ نشان دهید در یک همسایگی نقطه $v_{\circ} = (u, v, w, x, y) = (\circ, \circ, 1, \circ, 1)$ نشان دهید در یک همسایگی نقطه $v_{\circ} = v_{\circ}$ نقطه $v_{\circ} = v_{\circ}$
 - (ب) مقادیر $(x,y)=(\cdot,1)$ را در نقطه $(x,y)=(\cdot,1)$ بیابید.
 - .بیابید. $(x,y)=(\cdot,1)$ را در نقطه $f(x,y)=e^{wv}$ بیابید. (ج)
 - ۲۳. (آدامز بخش ۱ ۱۳ سوالات ۹,۱۸) نقاط بحرانی توابع مفروض زیر را بیابید و نوع آنها را مشخص کنید.
 - (a) $f(x,y) = x^{\mathsf{T}} y e^{-(x^{\mathsf{T}} + y^{\mathsf{T}})}$
 - (b) $f(x,y,z) = \mathbf{f} xyz x^{\mathbf{f}} y^{\mathbf{f}} z^{\mathbf{f}}$

۲۴. (آدامز بخش۲ – ۱۳ سوالات ۳,۶)

الف) ماکسیمم و مینیمم تابع $f(x,y) = xy - y^{\mathsf{Y}}$ بیابید.

 (\cdot, \cdot) و (\cdot, \cdot) و (\cdot, \cdot) اند از f(x,y) = xy(1-x-y) و f(x,y) = xy(1-x-y) و (\cdot, \cdot) ماکسیمم و مینیمم تابع

- . ۲۵. (آدامز بخش ۲ ۱۳ سوال ۱۱) ماکسیمم و مینیمم تابع $f(x,y,z) = xy^{\mathsf{r}} + yz^{\mathsf{r}}$ بیابید.
- $x^{r}+y^{r}-z^{r}=0$ سوال ۱۲) کوتاهترین فاصله مبدا از خم حاصل از فصل مشترک رویه های $x^{r}+y^{r}-z^{r}=0$. $x^{r}+y^{r}-z^{r}=0$ سوال ۱۲) کوتاهترین فاصله مبدا از خم حاصل از فصل مشترک رویه های $x^{r}+y^{r}-z^{r}=0$.
- z=xو $y^{\mathsf{r}}+z^{\mathsf{r}}=\mathsf{r}$ سوال ۱۳ سوال ۱۴) ماکسیمم و مینیمم تابع $f(x,y,z)=x+y^{\mathsf{r}}z$ و $y^{\mathsf{r}}+z^{\mathsf{r}}=\mathsf{r}$ سوال ۱۳ سوا
- ۲۸. مخروط $z^{\mathsf{r}} = x^{\mathsf{r}} + y^{\mathsf{r}}$ بوسیله صفحه $z^{\mathsf{r}} = z^{\mathsf{r}} + y^{\mathsf{r}}$ در طول منحنی $z^{\mathsf{r}} = z^{\mathsf{r}} + y^{\mathsf{r}}$ نزدیکترین نقطه به مبدا را تعیین کنید.
- ۲۹. هر صفحه مماس بر سطح C و B ، A و المحتصات و محتصات و محتصات و عصم میکند. ثابت کنید

$$\left\|\overrightarrow{oA}\right\| + \left\|\overrightarrow{oB}\right\| + \left\|\overrightarrow{oC}\right\| =$$
ثابت

نیمسال دوم ۹۹-۹۹ تهیه و تنظیم:مهری رشیدی گروه آموزشی ریاضیات عمومی دانشگاه صنعتی امیر کبیر (پلی تعنیک تهران) تمرینات ریاضی عمومی ۲ ـ سری سوم دانشکده ریاضی و علوم کامپیوتر

ور ا محاسبه f(x,y) = h(g(x,y)) باشد، دترمینان ماتریس زیر را محاسبه $g: \mathbb{R}^{\mathsf{r}} \to \mathbb{R}$ و $g: \mathbb{R}^{\mathsf{r}} \to \mathbb{R}$ و $g: \mathbb{R}^{\mathsf{r}} \to \mathbb{R}$ توابعی مشتق پذیر و کنند

$$\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$