Front matter

Front matter

lang: ru-RU

title: "Компьютерный практикум по статистическому анализу данных"

subtitle: "Лабораторная работа №7: Введение в Data Science"

author: "Ахлиддинзода Аслиддин"

institute:

- Российский университет дружбы народов, Москва, Россия

i18n babel

babel-lang: russian babel-otherlangs: english

Formatting pdf

toc: false

toc-title: Содержание

slide_level: 2 aspectratio: 169 section-titles: true theme: metropolis header-includes:

- \metroset{progressbar=frametitle,sectionpage=progressbar,numbering=fraction}
- '\makeatletter'
- '\beamer@ignorenonframefalse'
- '\makeatother'

Цель лабораторной работы

- Изучить специализированные пакеты Julia для обработки данных.

Выполнение лабораторной работы. Julia для науки о данных

В Julia для обработки данных используются наработки из других языков программирования, в частности, из R и Python.

Считывание данных

{ #fig:001 width=80% height=80% }

Считывание данных

{ #fig:002 width=100% height=100% }

Считывание данных

{ #fig:003 width=100% height=100% }

Считывание данных

{ #fig:004 width=100% height=100% }

Считывание данных

{ #fig:005 width=100% height=100% }

Считывание данных

{ #fig:006 width=80% height=80% }

Запись данных в файл

{ #fig:007 width=100% height=100% }

Запись данных в файл

{ #fig:008 width=100% height=100% }

Запись данных в файл

{ #fig:009 width=80% height=80% }

Словари

{ #fig:010 width=100% height=100% }

Словари

{ #fig:011 width=100% height=100% }

Словари

{ #fig:012 width=100% height=100% }

Словари

{ #fig:013 width=100% height=100% }

DataFrames

{ #fig:014 width=80% height=80% }

RDatasets

{ #fig:015 width=100% height=100% }

RDatasets

{ #fig:016 width=100% height=100% }

Работа с переменными отсутствующего типа (Missing Values)

{ #fig:017 width=100% height=100% }

Работа с переменными отсутствующего типа (Missing Values)

{ #fig:018 width=100% height=100% }

Работа с переменными отсутствующего типа (Missing Values)

{ #fig:019 width=100% height=100% }

Работа с переменными отсутствующего типа (Missing Values)

{ #fig:020 width=100% height=100% }

Работа с переменными отсутствующего типа (Missing Values)

{ #fig:021 width=80% height=80% }

FileIO

{ #fig:022 width=100% height=100% }

FileIO

{ #fig:023 width=100% height=100% }

FileIO

{ #fig:024 width=100% height=100% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:025 width=100% height=100% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:026 width=80% height=80% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:027 width=80% height=80% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:028 width=80% height=80% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:029 width=80% height=80% }

Обработка данных: стандартные алгоритмы машинного обучения в Julia. Кластеризация данных. Метод k-средних

{ #fig:030 width=80% height=80% }

Кластеризация данных. Метод k ближайших соседей

{ #fig:031 width=80% height=80% }

Кластеризация данных. Метод k ближайших соседей

{ #fig:032 width=100% height=100% }

Обработка данных. Метод главных компонент

{ #fig:033 width=80% height=80% }

Обработка данных. Линейная регрессия

{ #fig:034 width=80% height=80% }

Обработка данных. Линейная регрессия

{ #fig:035 width=80% height=80% }

Обработка данных. Линейная регрессия

{ #fig:036 width=80% height=80% }

Самостоятельная работа

{ #fig:037 width=80% height=80% }

Самостоятельная работа

{ #fig:038 width=80% height=80% }

Самостоятельная работа

{ #fig:039 width=80% height=80% }

Самостоятельная работа

{ #fig:040 width=80% height=80% }

Самостоятельная работа

{ #fig:041 width=100% height=100% }

Самостоятельная работа

{ #fig:042 width=100% height=100% }

Вывод

– В ходе выполнения лабораторной работы были изучены специализированные пакеты Julia для обработки данных.

Список литературы. Библиография

[1] Julia Documentation: https://docs.julialang.org/en/v1/