ΛΥΣΗ

α) Το πεδίο ορισμού της συνάρτησης f είναι το σύνολο των πραγματικών αριθμών $\mathbb R$. Για τη συνάρτηση f έχουμε:

 $f(-x)=f(x)\Leftrightarrow (-x)^4+\kappa(-x)-1=x^4+\kappa x-1\Leftrightarrow x^4-\kappa x-1=x^4+\kappa x-1\Leftrightarrow 2\kappa x=0 \text{ για κάθε } x\in\mathbb{R}. \text{ Άρα το } 2\kappa x\text{ είναι το μηδενικό πολυώνυμο, οπότε } 2\kappa=0 \text{ και ισοδύναμα } \kappa=0.$

- β) Για $\kappa = 0$, η συνάρτηση f είναι: $f(x) = x^4 1$.
 - i. Με $x_1 < x_2 \le 0 \Leftrightarrow x_1^4 > x_2^4 \Leftrightarrow x_1^4 1 > x_2^4 1$ Άρα: $f(x_1) > f(x_2)$. Επομένως η συνάρτηση f είναι γνησίως φθίνουσα για $x \in (-\infty, 0].$
 - ii. Έχουμε: $f(x) \ge -1 \Leftrightarrow x^4 1 \ge -1 \Leftrightarrow x^4 \ge 0$, που ισχύει για κάθε $x \in \mathbb{R}$.
 - iii. Για να βρούμε τα $x \in \mathbb{R}$ για τα οποία η γραφική παράσταση της f βρίσκεται κάτω από τον άξονα x'x, λύνουμε την ανίσωση:

$$f(x) < 0 \Leftrightarrow x^4 - 1 < 0 \Leftrightarrow (x^2 - 1) \cdot (x^2 + 1) < 0 \stackrel{x^2 + 1 > 0}{\Longleftrightarrow} x^2 - 1 < 0 \Leftrightarrow (x - 1) \cdot (x + 1) < 0.$$

Άρα $x \in (-1,1)$. Επομένως η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα x'x για $x \in (-1,1)$.