Srimukh Prasad Veccham

Research Interests: Development and application of machine learning models to understand physical systems

42 Gilman, University of California Berkeley, CA 94270 srimukh.prasad@berkeley.edu (510)944-2140 srimukhp.github.io

EDUCATION

2015 – 2020 University of California Berkeley, Berkeley, CA

(expected) Candidate for Ph.D in Physical Chemistry | GPA: 3.95/4

Advisor: Prof. Martin Head-Gordon

2010 – 2015 Indian Institute of Technology Bombay, Mumbai, India

Masters of Science in Chemistry | GPA: 9.29/10

Minor in Electrical Engineering

Ranked #1 in Department of Chemistry

CURRENT RESEARCH PROJECTS

UniRep++

Deep learning models implemented in TensorFlow. Regex and pandas used for data manipulations and analysis. Code available on Github. Manuscript available on request.

- Built a model to identify the role of active site residues in an amino acid from protein sequence information with 88% accuracy
- Used a multi-scale representation for the whole system consisting of a modified RNN based representation for the protein sequence and message passing neural network based representation for the active site residue
- Created a novel representation for amino acid residues called "embedded" one-hot encoding representation for amino acid residues, a simple and powerful technique to encode environment information into amino acids
- · Achieved 90% accuracy in identifying the function of enzymes by predicting the enzyme commission number

Polarized Many-Body Expansion

Central computation engine implemented in C++ with end-to-end Python wrappers for creation, execution, and collection of computation processes on high performance computing architectures

- Formulated a computationally inexpensive technique to compute molecular energies and properties using Density Functional Theory (DFT)
- Formal complexity reduced from $\mathcal{O}(N^3)$ to $\mathcal{O}(N^2)$, providing speedups of 10 to 100 times
- Algorithm is "embarrassingly parallelizable," practically achieving perfect scaling upto 64 processors

Performance of Density Functionals for Hydrogen Storage

Implemented Python wrappers for spawning jobs using Q-Chem, MRCC, and Psi4. Used Pandas for data analysis and interpretation

- Compiled a dataset of 275 data points to accurately represent the hydrogen storage problem in porous materials
- Assessed the performance of over 55 density functionals against the reference binding energies
- Identified density functionals which can predict hydrogen binding energies with about 3% error
- Reduced computational cost by upto 1000 times in predicting binding energies
- Generated and curated over 30,000 data points with different meta data structures over the course of this project

Variational Decomposition of Pair-wise Charge Transfer

Implemented numerical quadrature algorithms and iterative algorithms for non-linear objective function optimization in C++ using Armadillo

- Implemented a variational alternative to the perturbative pair-wise charge decomposition in Energy Decomposition Analysis scheme
- Conceptualized a scheme that is chemically grounded with correct discretization limits
- This scheme can decompose 100% of the interaction energies as opposed to \sim 70%

PUBLICATIONS

• Srimukh Prasad Veccham, Joonho Lee, Martin Head-Gordon "Making Many-Body Interactions Nearly Pairwise Additive: The Polarized Many-Body Expansion Approach" J. Chem. Phys. 2019, 151, 194101

- **Srimukh Prasad Veccham,** Martin Head-Gordon "Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals" *J. Chem. Theory Comput. In press*
- Srimukh Prasad Veccham, Joonho Lee, Martin Head-Gordon "Variational Charge-Transfer Analysis in ALMO-based Energy Decomposition Analysis" Manuscript in preparation
- Mark D. Allendorf, Zeric Hulvey, Thomas Gennett, ... Srimukh Prasad Veccham, Brandon C. Wood "An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage" Energy & Environmental Science 2018, 11, 2784
- E. Tsivion, Srimukh Prasad Veccham, Martin Head-Gordon "High-Temperature Hydrogen Storage of Multiple Molecules: Theoretical Insights from Metalated Catechols" Chem. Phys. Chem. 2017, 18, 184
- Sajesh P. Thomas, Srimukh Prasad Veccham, Louis J. Farrugia, Tayur N. Guru Row "'Conformational Simulation' of Sulfamethizole by Molecular Complexation and Insights from Charge Density Analysis: Role of Intramolecular S…O Chalcogen Bonding" Crystal Growth & Design 2015, 15, 2110

CONFERENCE PRESENTATIONS

Variational Pairwise Charge Transfer Decomposition in ALMO-based Energy Decomposition Analysis August, 2021 Accepted for poster presentation at the 12th Triennial Congress of the World Association of Theoretical and Computational Chemists

Polarized Many-body Expansion: A Perfect Marriage between Embedded Mean-field Theory and Variational Many-body Expansion

April, 2019

Oral presentation at the Spring National Meeting of the American Chemical Society, Orlando, FL

Polarized Many-Body Expansion

May, 2019

Poster presentation at the Northern California Theoretical Chemistry Meeting, Berkeley, CA

AWARDS AND HONORS

Institute Silver Medal for highest GPA in Department of Chemistry, IIT Bombay	August, 2015
Young researcher at 65th Lindau Nobel Laureate Meeting, Lindau, Germany	June, 2015
Institute Academic Prize for highest GPA in each semester for 6 semesters	July, 2011 — May, 2014
Summer Undergraduate Research Fellowship awarded Duke University	May, 2013
Summer Research Fellowship awarded by Indian Academy of Sciences	May, 2012
INSPIRE fellowship by Department of Science & Technology, Government of India	July, 2010 — May, 2015

SKILLS

SCIENTIFIC PROGRAMMING: Extensive production-level programming experience in Q-Chem, a comprehen-

sive electronic structure package. Contributed to embedding and energy de-

composition analysis libraries.

SOFTWARE AND PACKAGES: TensorFlow, PyTorch, Psi4, MRCC, Gaussian, NAMD, GROMACS, VMD, NBO,

ChemOffice, LATEX

PROGRAMMING LANGUAGES: C++ (Armadillo), Python (NumPy, SciPy, Pandas, Matplotlib)

RELEVANT COURSEWORK

- Computer science: Machine Learning, Machine Learning in Chemistry and Biology, Computer Programming and Utilization
- Mathematics/Statistics: Vector Calculus , Linear Algebra , Differential Equations , Data Analysis and Interpretation , Probability and Random Processes
- **Numerical methods**: Advanced Simulation Techniques in Physics , Numerical Solutions to Differential Equations (audit) , Advanced Matrix Computations (audit)
- Chemistry: Advanced Quantum Mechanics I, Advanced Quantum Mechanics II, Thermodynamics and Statistical Mechanics, Chemical Kinetics

TEACHING EXPERIENCE

Upper Division Physical Chemistry

Spring 2017, UC Berkeley

• Lead discussion sections and formulated and graded assignments and exams

Freshman General Chemistry

Fall 2015, 2016 UC Berkeley

- Lead a laboratory section, solved tutorial problems and lead discussion sections
- Graded laboratory reports, assignments, quizzes, and exams with feedback

Freshman Physical Chemistry

Spring 2014, IIT Bombay

• Lead discussion section, solved tutorial problems, and handled student questions