

Random Planted Forest A Directly Interpretable Tree Ensemble

Meyer, J. T.⁵ Burk, L.^{1,2,3,4} Hiabu, M.⁶ Mammen, E.⁵

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS

²LMU Munich ³University of Bremen

⁴Munich Center for Machine Learning (MCML)

⁵Heidelberg University ⁶University of Copenhagen

DAGStat 2025 — March 27th, 2025

Znibniz

• Goal: Fast, flexible, and interpretable predictive models

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LM, GAM, ...) can provide both
 - → Need to manually specify interactions in model fit

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LM, GAM, ...) can provide both
 - → Need to manually specify interactions in model fit

Lnibniz

- Goal: Fast, flexible, and interpretable predictive models
- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LM, GAM, ...) can provide both
 - → Need to manually specify interactions in model fit

→ **Random Planted Forest** (RPF): Additive Random Forest

Znibniz

ullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i

)

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x}_i)$ into

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- \bullet Expand prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- \bullet Expand prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - $\bullet \ \ \mbox{Terms} \ \hat{m}_S$ with feature set $S \subseteq \{1,\dots,p\}$

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- \bullet Expand prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - $\bullet \ \ \mbox{Terms} \ \hat{m}_S$ with feature set $S \subseteq \{1,\dots,p\}$

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- Expand prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x}_i)$ into
 - \hat{m}_0 : Average prediction ("intercept")
 - \bullet Terms \hat{m}_S with feature set $S\subseteq\{1,\dots,p\}$

$$\begin{split} \hat{m}(\mathbf{x}_i) = & \hat{m}_0 + \\ & \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effect terms}} + \\ & \underbrace{\hat{m}_{1,2}(x_1, x_2) + \hat{m}_{1,3}(x_1, x_3) + \hat{m}_{2,3}(x_2, x_3)}_{\text{2nd order interactions}} + \\ & \underbrace{\hat{m}_{1,2,3}(x_1, x_2, x_3)}_{\text{3rd order interaction}} \end{split}$$

Trees in Random Forest

Planted Trees (I)

Planted Trees (II)

6

• Ensemble of trees (like RF)

- Ensemble of trees (like RF)
- Splits nodes multiple times (→ non-binary trees!)

- Ensemble of trees (like RF)
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction

- Ensemble of trees (like RF)
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained

- Ensemble of trees (like RF)
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Tree stops after adjustable number of splits

- Ensemble of trees (like RF)
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Tree stops after adjustable number of splits
- Prediction built up incrementally, guided by residuals (cf. Gradient Boosting)

7

• Bikeshare regression dataset ¹

- Bikeshare regression dataset 1
- Target bikers: Number of bikers on a given day in 2011/2012

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0,1,\ldots,23\}$
 - $\bullet \ \mathsf{temp} \ \mathsf{normalized} \ \mathsf{temperature} \in [0,1]$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - temp normalized temperature $\in [0,1]$
 - workingday binary → {workingday, no workingday}

¹from UCI ML repository

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - temp normalized temperature $\in [0,1]$
 - workingday binary → {workingday, no workingday}
- ullet Average prediction: $\hat{m}_0 pprox$ 144

Main Effects

Main Effects

Main Effects

Main Effects

8 20 0.3 100 $\hat{M}_{workingday}$ $\mathring{m}_{\text{temp}}$ 0.2 -20 0.1 -40 -100 0.25 0.50 0.75 No Workingday Workingday 0.00 1.00 hr workingday temp

 $\hat{m} = \hat{m}_0 + \hat{m}_{\rm hr}({\rm hr}) + \hat{m}_{\rm temp}({\rm temp}) + \hat{m}_{\rm workingday}({\rm workingday}) + \dots$

Hour × Working Day: "Rush Hour Effect"

9

$$\dots + \hat{m}_{\rm hr,workingday}({\rm hr,workingday}) + \dots$$

More 2nd Order Interactions

10

No Workingday Workingday

$$+ \hat{m}_{\rm temp,workingday}({\rm temp,workingday})$$

More 2nd Order Interactions

$$+ \hat{m}_{\rm temp,workingday}({\rm temp,workingday})$$

$$+\hat{m}_{\rm hr,temp}({\rm hr,temp})+\dots$$

3rd Order Interaction

12

ullet Average of absolute values of term \hat{m}_S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

12

ullet Average of absolute values of term \hat{m}_S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

• Unlike RF Feature importance:

12

ullet Average of absolute values of term \hat{m}_S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores also per interaction term

12

ullet Average of absolute values of term \hat{m}_S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores also per interaction term
 - Importance scores on same scale as prediction

Feature Importance per Main Term

13

Feature Importance for All Terms

14

Feature Importance by Order of Interaction

16

Gains in interpretibility \rightarrow sacrifices in predictive performance?

16

Gains in interpretibility → sacrifices in predictive performance?

• Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

16

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

16

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

16

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

→ Generally: RPF never best, rarely bad, usually close

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

Benchmark Results (Aggregated)

$$RRSE := \sqrt{SSE(Y, \hat{Y}) / SSE(Y, \bar{Y})}$$

→ Featureless model scores 1, perfect score 0

Benchmark Results (Selected Tasks)

18

19

Random Planted Forests = Additive Random Forests

ullet (ullet) Nicely interpretable feature importance on same scale as target

19

- (\uparrow) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms

19

- (↑) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³

³github.com/PlantedML/randomPlantedForest

19

- (↑) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³
- (→) Competetive predictive performance (mostly)

³github.com/PlantedML/randomPlantedForest

19

- (↑) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³
- (→) Competetive predictive performance (mostly)
- ullet (ullet) Computationally heavy for large data (Optimization WIP!)

³github.com/PlantedML/randomPlantedForest

Thank you for your attention!

www.leibniz-bips.de/en

Contact
Lukas Burk
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
burk@leibniz-bips.de

References I

21

Fischer, Sebastian Felix et al. (2023). "OpenML-CTR23 – A Curated Tabular Regression Benchmarking Suite". In: AutoML Conference 2023 (Workshop).