Урок 54 Аналіз контрольної роботи. Механічна робота. Потужність Мета уроку:

Навчальна. Ввести поняття механічної роботи, з'ясувати випадки, коли робота від'ємна, додатна або дорівнює нулю, ввести визначення одиниці роботи, з'ясувати особливості робіт різних сил; ввести поняття потужності, дати означення одиниці потужності, з'ясувати взаємозв'язок між потужністю, силою та швидкістю руху тіла.

Розвивальна. Розвивати творчі здібності та логічне мислення учнів; показати учням практичну значущість набутих знань.

Виховна. Виховувати культуру оформлення задач.

Тип уроку: урок вивчення нового матеріалу.

Обладнання: навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

III. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

IV. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

V. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VI. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

Оголошення оцінок за контрольну роботу та за тему.

Обговорення виконання завдань у яких допущено помилки.

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

У повсякденному житті слово «*робота*» вживається дуже часто.

Роботу виконують вода і повітря, машини і механізми, будівельники і вантажники.

А чи виконує роботу учень, який нерухомо тримає в руках важкий портфель? програміст, який, сидячи за комп'ютером, розв'язує задачу?

I взагалі, що мають на увазі фізики, коли говорять про роботу?

ІІІ. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Фізичний зміст роботи

У фізиці поняття роботи значно вужче. Насамперед розглядають *механічну роботу*.

Механічна робота— це фізична величина, яка характеризує зміну положення тіла під дією сили і дорівнює добутку сили на шлях, подоланий тілом у напрямку цієї сили.

$$A = Fl$$

A — механічна робота;

F — сила;

l — пройдений тілом шлях.

Одиниця роботи в СІ — **джоуль (Дж)**; названа так на честь англійського вченого Джеймса Джоуля.

$$[A] = H \cdot M = Дж.$$

 $1\ Дж$ дорівнює механічній роботі, яку виконує сила $1\ H$, переміщуючи тіло на $1\ M$ у напрямку дії цієї сили: $1\ Дж = 1\ H\cdot 1\ M$

2. Яких значень може набувати механічна робота

Як ви знаєте, сила має напрямок — це векторна величина. А от робота сили напрямку немає, тобто робота є величиною скалярною.

Робота є додатною,	Робота є від'ємною,	Робота дорівнює нулю,
A>0	A < 0	A = 0
Напрямок сили збігається	Напрямок сили	Напрямок сили
з напрямком руху тіла	протилежний напрямку	перпендикулярний до
	руху тіла	напрямку руху тіла
A = Fl	A = -Fl	A = 0
\vec{v} $\vec{F}_{\text{тяги}}$	$\vec{F}_{ ext{тертя}}$	$ec{oldsymbol{v}}$

3. Потужність

Одну й ту саму роботу різні машини і механізми можуть виконувати порізному: одні — швидше, інші — повільніше.

Так, якщо екскаватор і копач одночасно розпочнуть копати траншеї, то зрозуміло, що екскаватор виконає роботу значно швидше за грабаря.

Так само кран швидше за вантажника перенесе потрібну кількість цеглин; трактор швидше за коня зоре поле.

Швидкість виконання роботи у фізиці характеризують потужністю.

Потужність — це фізична величина, яка характеризує швидкість виконання роботи і дорівнює відношенню виконаної роботи до часу, за який цю роботу виконано.

$$N=\frac{A}{t}$$

N — потужність;

A — механічна робота;

t — час виконання роботи.

Одиниця потужності в СІ — ват:

$$[N] = \mathbf{B}\mathbf{T}$$
.

Ця одиниця дістала свою назву на честь британського інженера та винахідника-механіка Дж. Ватта.

1 Вт дорівнює потужності, за якої протягом 1 с виконується робота 1 Дж:

$$1 \text{ BT} = 1 \frac{\text{Дж}}{\text{C}}$$

4. Як потужність залежіть від сили тяги та швидкості руху

Потужність транспортного засобу, наприклад, автомобіля, зручно виражати не через роботу й час, а через силу й швидкість.

$$N = \frac{A}{t} = \frac{Fl}{t} = F\frac{l}{t} = Fv$$

Отже, отримано формулу для обчислення потужності:

$$N = Fv$$

F — сила;

v — швидкість руху.

IV. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

Розв'язування задач

1. Візок з вантажем протягли на відстань 170 м, прикладаючи горизонтальну силу 700 Н. Яка робота при цьому була виконана?

Дано:	Розв'язання
$l = 170 \; { m M}$	$A = Fl$ $[A] = H \cdot M = Дж$
F = 700 H	$A = 700 \cdot 170 = 119000 $ (Дж)
A-?	<i>Відповідь:</i> А = 119 кДж

2. Визначте роботу, виконану піднімальним краном при рівномірному підйомі тіла масою 5 т на висоту 5 м.

Тіла масою 5 т на висоту 5 м.

Дано:
$$h = 5 \text{ м}$$
 $m = 5 \text{ т}$
 $= 5000 \text{ кг}$
 $g = 10 \frac{\text{H}}{\text{кг}}$
 $A = 10 \frac{\text{H}}{\text{kg}}$
 $A = 10 \frac{\text{H$

Відповідь: А = 250 кДж

3. Яку потужність розвиває штангіст, якщо штангу масою 125 кг він піднімає на висоту 70 см за 0,3 с?

Дано:

$$m = 125 \text{ кг}$$

 $h = 70 \text{ см} = 0.7 \text{ м}$
 $t = 0.3 \text{ c}$
 $g = 10 \frac{\text{H}}{\text{кг}}$
 $N = 7$

Розв'язання

$$N = \frac{A}{t}$$
 $A = Fl$ $F = mg$ $l = h$
$$N = \frac{mgh}{t}$$
 $[N] = \frac{\text{KF} \cdot \frac{H}{\text{KF}} \cdot M}{c} = \frac{H \cdot M}{c} = \frac{H \cdot M}{c} = BT$
$$N = \frac{125 \cdot 10 \cdot 0.7}{0.3} \approx 2916.7 \text{ BT}$$

Відповідь: $N \approx 2,92$ кВт.

4. Яку роботу здійснює двигун вентилятора потужністю 0,5 кВт за 5 хвилин?

Дано: N = 0.5 кВт = 500 BT t = 5 xB = 300 cA - ?

Розв'язання

$$N = \frac{A}{t}$$
 => $A = Nt$
 $[A] = BT \cdot c = \frac{Дж}{c} \cdot c = Дж$
 $A = 500 \cdot 300 = 150000 (Дж)$

Відповідь: A = 150 кДж.

V. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Яку роботу називають механічною?
- 2. Наведіть приклади, коли тіла виконують механічну роботу.
- 3. Як визначають механічну роботу?
- 4. Назвіть одиниці механічної роботи.
- 5. У яких випадках робота не виконується?
- 6. Що таке потужність?
- 7. За якою формулою визначають потужність?
- 8. Які є одиниці потужності?
- 9. Як можна визначити механічну роботу, знаючи потужність двигуна і час протягом якого він працював?

VI. ДОМАШНЄ ЗАВДАННЯ

Вивчити § 30-31, Вправа № 30 (4, 5), № 31 (2, 3)

Д/з надішліть на human, або на електрону адресу kmitevich.alex@gmail.com