Monte Carlo comparisons VBSCAN Cost Action

Mathieu Pellen, Marco Zaro, Alexander Karlberg, Michael Rauch, Jürgen Reuter, Christopher Schwan

October 26, 2017

Part I Introduction

Part II $pp \to \mu^+ \nu_{\mu} e^+ \nu_{e} jj$

0.1 Input parameters

- Centre-of-mass energy of 13 TeV at the LHC.
- Parton distribution function (PDF): NNPDF-3.0 at NLO with $\alpha_s(M_Z) = 0.118$ (we use it at both LO and NLO). The LHAPDF ID for this set is 260000.
- Flavour scheme: fixed $N_{\rm F}=5$ flavour scheme (no bottom quark appear in the final or initial state). This means that the bottom quark is considered massless.
- Photon induced are neglected (for now).
- Renormalisation scheme: complex-mass scheme if possible. If other schemes are used, we have to estimate the possible differences. Factorisation scheme: $\overline{\rm MS}$ as for NNPDF.
- Scales: factorisation and renormalisation scale, [MP: $\mu_R = \mu_F = \mu$.

$$\mu = \sqrt{p_{\mathrm{T,j_1}} \, p_{\mathrm{T,j_2}}},$$
 (1)

where the jets are the tagging jets.]

- α : G_{μ} scheme with:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right)$$
 with $G_{\mu} = 1.16637 \times 10^{-5} \,\text{GeV}.$ (2)

The numerical value is: $\alpha = 7.555310522369 \times 10^{-3}$.

- Mass and width of the massive particles:

$$m_{\rm t} = 173.21\,{\rm GeV},$$
 $\Gamma_{\rm t} = 0\,{\rm GeV},$ $M_{\rm Z}^{\rm OS} = 91.1876\,{\rm GeV},$ $\Gamma_{\rm Z}^{\rm OS} = 2.4952\,{\rm GeV},$ $M_{\rm W}^{\rm OS} = 80.385\,{\rm GeV},$ $\Gamma_{\rm W}^{\rm OS} = 2.085\,{\rm GeV},$ $\Gamma_{\rm H} = 4.07 \times 10^{-3}\,{\rm GeV}.$ (3)

The pole masses and widths entering the calculation are expressed in terms of the measured on-shell (OS) values for the W and Z bosons according to

$$M_V = M_V^{\rm OS} / \sqrt{1 + (\Gamma_V^{\rm OS} / M_V^{\rm OS})^2}, \qquad \Gamma_V = \Gamma_V^{\rm OS} / \sqrt{1 + (\Gamma_V^{\rm OS} / M_V^{\rm OS})^2}.$$
 (4)

Hence the numerical values are

$$M_{\rm Z} = 91.1534806191827\,{\rm GeV}, \qquad \Gamma_{\rm Z} = 2.494266378772824\,{\rm GeV}, \ M_{\rm W} = 80.3579736098775\,{\rm GeV}, \qquad \Gamma_{\rm W} = 2.084298998278219\,{\rm GeV}. \quad (5)$$

- Experimental signature: two equally charged leptons, missing transverse energy and at least two jets.
- Clustering: QCD partons are clustered into jets using the anti- $k_{\rm T}$ algorithm with jet-resolution parameter R=0.4. Photons from real radiation are recombined with the final-state quarks into jets or with the charged leptons into dressed leptons, in both cases via the anti- $k_{\rm T}$ algorithm and a resolution parameter R=0.1 (this applies only when computing the EW corrections).
- Rapidity definition: $y = \frac{1}{2} \ln \frac{E + p_z}{E p_z}$ where E is the energy of the parton and p_z the component of its momentum along the beam axis.
- Distance definition:

$$\Delta R_{ij} = \sqrt{(\Delta \phi_{ij})^2 + (\Delta y_{ij})^2},\tag{6}$$

Contact person	Code	$ \begin{vmatrix} \mathcal{O}(\alpha^6) \\ s ^2/ \\ t ^2/ u ^2 \end{vmatrix} $	$\mathcal{O}(\alpha^6)$ interf.	Off- shell	NF QCD	EW corr. to $\mathcal{O}(\alpha^5 \alpha_s)$
A. Karlberg	POWHEG	t/u	No	Yes	No	No
M. Pellen	Recola +MoCaNLO	Yes	Yes	Yes	Yes	Yes
M. Rauch	VBFNLO	Yes	No	Yes	No	No
C. Schwan	BONSAY	t/u	No	Yes,	No	No
		,		virt.		
				No		
M. Zaro	$MG5_AMC$	Yes	Yes	Yes	No	No

Table 1: Summary of the different properties of the codes employed in the comparison.

with

$$\Delta \phi_{ij} = \begin{cases} |\phi_i - \phi_j| & \text{if } |\phi_i - \phi_j| < \pi \\ 2\pi - |\phi_i - \phi_j| & \text{else} \end{cases}$$
 (7)

being the positive azimuthal-angle difference and $\Delta y_{ij} = |y_i - y_j|$ being the positive rapidity difference.

- Definition of the missing transverse energy: transverse momentum of the sum of the two neutrinos momenta.
- Cuts on the leptons:

$$p_{T,\ell} > 20 \,\text{GeV}, \qquad |y_{\ell}| < 2.5, \qquad \Delta R_{\ell\ell} > 0.3.$$
 (8)

- Missing energy cut:

$$E_{\rm T,miss} = p_{\rm T,miss} > 40 \,\text{GeV}$$
 (9)

- Jet definition:

$$p_{\rm T,j} > 30 \,\text{GeV}, \qquad |y_{\rm j}| < 4.5, \qquad \Delta R_{\rm j\ell} > 0.3.$$
 (10)

- Out of these 2/3 jets, the two hardest in pT (these are the tagging jets) are required to have:

$$m_{\rm ij} > 500 \,\text{GeV}, \qquad |\Delta y_{\rm ij}| > 2.5.$$
 (11)

[MP: Now the $\Delta R_{j\ell}$ cut is simply in the jet definition, it is not a requirement to be fulfilled by all the jets as before.]

0.2 Codes

0.2.1 POWHEG: Alexander Karlberg

VBF approximation?

0.2.2 VBFNLO: Michael Rauch

VBF approximation

0.2.3 WHIZARD: Simon Brass, Jürgen Reuter, Pascal Stienemeier

Full matrix element

0.2.4 RECOLA +MOCANLO: Mathieu Pellen

Full matrix element

0.2.5 MadGraph5 aMC@NLO: Marco Zaro

To be checked what is possible

0.2.6 BONSAY: Christopher Schwan

0.3 Observables

- Cross section within cuts.
- Distribution in the number of jets.
- Invariant mass of the two hardest jets (two tagged jets).

[0; 4 TeV] with bins of size 100 GeV (40 bins).

- [MP: p_{T,j_1,j_2,j_3} and y_{j_1,j_2,j_3} of the two tagged jets and also the third jet at NLO] (not their sum)

 $p_{\mathrm{T,j_1,j_2}}$: [0; 1 TeV] with bins of size 25 GeV (40 bins).

 $[MP: p_{T,j_3}: [0; 1 \text{ TeV}] \text{ with bins of size } 10 \text{ GeV } (100 \text{ bins}).]$

[MP: $y_{\mathbf{j}_1,\mathbf{j}_2,\mathbf{j}_3}$: [-5;5] with bins of size 0.5 (20 bins).]

- Invariant mass of the two charged leptons.

 $[0; 4\,\mathrm{TeV}]$ with bins of size 100 GeV (40 bins).

- Zeppenfeld variable for μ^+ , e^+ [MR: and j_3]:

 $z_x^* = |y_x - (y_{j_1} + y_{j_2})/2|/|\Delta y_{jj}|$

[0; 1.5] with bins of size 0.05 (30 bins).

- $|\Delta y_{jj}|$: [MR: [0; 10]] with bins of size 0.5 (20 bins).

0.4 Numerical results

- **0.4.1** LO $\mathcal{O}(\alpha^6)$
- **0.4.2** NLO $\mathcal{O}(\alpha^6\alpha_s)$

0.5 Plan

The plan is:

- Scan in $m_{\rm jj}$ and $|\Delta y_{\rm jj}|$ at LO and compute the EW, QCD and interference (for the one who can) contribution.

The binning in m_{jj} is [0, 50, 100, ..., 450, 500, 600, 700, 800].

The binning in $|\Delta y_{ij}|$ is [0, 0.5, 1.0, 1.5, ..., 4.5, 5.0].

- Based on this, define a "control region" and a "signal region" (should be the one

Code	$\sigma[fb]$
POWHEG	1.5573 ± 0.0003
Recola $+$ MoCaNLO	1.5503 ± 0.0003
VBFNLO	1.5540 ± 0.0002
BONSAY	1.5524 ± 0.0002
WHIZARD	1.5539 ± 0.0004
${ m MG5_AMC}$	1.547 ± 0.001

Table 2: LO rates within VBS cuts from the different codes.

Figure 1: Invariant-mass of the two tagging jets (left) and of the two leptons (right), at LO.

Code	$\sigma[{ m fb}]$	$\sigma(n_j = 2)[\text{fb}]$	$\sigma(n_j = 3)[\text{fb}]$
POWHEG	1.334 ± 0.0003	0.808 ± 0.001	0.5260 ± 0.0005
Recola + MoCaNLO	1.317 ± 0.004		'
VBFNLO	1.3664 ± 0.0003	0.8394 ± 0.0003	0.5270 ± 0.00012
BONSAY	1.3469 ± 0.0008	0.8303 ± 0.0008	0.51662 ± 0.00008
MG5 AMC	1.318 ± 0.003	0.781 ± 0.004	0.5374 ± 0.0016

Table 3: NLO rates within VBS cuts from the different codes.

we have identified already). - Compute the QCD correction to QCD-induced and EW in these two regions. - Add PS to these computations (for those who can). - Add EW on top (probably only Mathieu).

0.6 Remarks

- [MP: Do we want to keep the cuts as they are or do we want to update to the recomandation of WG2?]

Figure 2: Transverse momentum of the first (left) and second (right) tagging jet, at LO.

Figure 3: Rapidity of the first (left) and second (right) tagging jet, at LO.

- [MP: In particular we should write the report/article as we go further in the project in order to save time.]

Figure 4: Zeppenfeld variable of the positron (left) and of the muon (right), at LO.

Figure 5: Invariant-mass of the two tagging jets (left) and of the two leptons (right), at NLO.

Figure 6: Transverse momentum of the first (left) and second (right) tagging jet, at NLO.

Figure 7: Rapidity of the first (left) and second (right) tagging jet, at NLO.

Figure 8: Zeppenfeld variable of the positron (left) and of the muon (right), at NLO.

Part III Conclusion

$\begin{array}{c} {\rm Part\ IV} \\ {\rm Acknowledgments} \end{array}$

Karlsruhe for hosting the documents used for the comparison.