单管放大电路的系统辨识和控制器设计

张蔚桐 2015011493 自55

2017年4月12日

目录

1	引言	f .	2
2	可行	F性分析	3
3	实验	:测量	3
4	传递	函数的估计	6
	4.1	传递函数形式的估计	. 6
	4.2	时间参数的估计	. 6
	4.3	增益K的估计	. 7
	4.4	总结	. 7
5	与理	论计算的频率响应特性对比	7
6	控制]器的设计	8
	6.1	引言	. 8
	6.2	基本假设	. 8
		6.2.1 超前矫正	. 9
		6.2.2 滞后矫正	. 9

2

1 引言

在模拟电子技术课程中,对于放大电路的高频特性,我们通过对晶体管的工作原理分析,引入了混合π电路,完成了对电路频率特性的研究。然而实际应用过程中,这种方法往往存在某些问题,下面分点简述如下。

1. 电路计算模型复杂

回顾三极管的混合π及其简化模型,可以看出其电路模型尽管经过很大程度的简化,电路的模型仍然十分复杂。因此,如果将混合π模型推广到复合管电路或者多级运放甚至更大规模的集成电路中,必然出现计算量过大的情况。因此,在工程中,不论采用仿真计算或手工计算,均要耗费相当大的工程量。

2. 模型存在误差

不论是晶体管的中频段等效模型还是混合π模型,不可否认的一点是 这些模型均存在这一定程度的误差。同时,随着电路的集成和封装, 过程中引入的分布电容,接触电阻和其他不可预计的效应是很多的, 在更复杂的电路中,这些干扰将进一步的相互耦合,使得简单的简化 模型对电路性能的预计变得更加不准确。同时也增大了采用模型刻画 电路的难度

3. 全频段分析中的矛盾

在采用混合π等等效模型对频率响应进行分析时,如果选用了全频段模型,我们势必面对规模较大的电路,虽然能够解出适合于全频段的传递函数,但是在实际工程应用中,我们涉及到的频率往往仅仅是全频段中的一部分。如果采用高/中/低频等效电路,则经常需要考虑简化的模型是否会影响到电路的整体性能描述。什么样的电路元件可以省略,什么样的电路元件不能省略,往往是一个很模糊的概念。高/中/低频等效电路的使用范围也不是一个确切的值,因此在频段分析中存在着过度简化和过度复杂之间界限不清楚的问题

为了解决以上问题,我们回顾控制理论中一个完全相反的思路:通过 实验测得的频率特性去完成对传递函数的估计,并进一步设计传递函数的 实现。这种基于实验的方法,能够从根本上解决已有模型不能充分描述电 路特性的问题,也能够解决电路在集成和封装过程中存在的电阻电容引入 难以计算的问题。同时,对要求频率附近的频率特性进行测量,得到适合 要求频率范围使用的传递函数,也可以解决对于各个频段模型划分模糊的 问题 2 可行性分析 3

表 1: $I_{CO} = 1$ mA时的辐频相频特性 表 2: $I_{CO} = 2$ mA时的辐频相频特性

$TCQ = \text{IIII}_{\mathbf{T}}$					
$ \dot{A} $	ϕ				
0.9875	-89.28				
2.1125	-93.8				
5.2375	-97.2				
14.2875	-111.82				
32.125	-126.04				
43.875	-157.61				
47.875	-159.09				
48.25	-166.23				
48.375	-173.41				
48.125	-180.17				
45.000	-188.56				
32.250	-223.5				
12.6625	-270.5				
4.25					
1.325					
	$\begin{array}{c} \dot{A} \\ 0.9875 \\ 2.1125 \\ 5.2375 \\ 14.2875 \\ 32.125 \\ 43.875 \\ 47.875 \\ 48.25 \\ 48.375 \\ 48.125 \\ 45.000 \\ 32.250 \\ 12.6625 \\ 4.25 \end{array}$				

10Q -	-1111 In 3 H	/1 田グバイログバ
$f/{ m Hz}$	$ \dot{A} $	ϕ
10^{0}	0.5025	-59.04
$10^{0.5}$	1.925	-86.52
10^{1}	7.650	-94.68
$10^{1.5}$	16.100	-101.0
10^{2}	38.000	-124.09
$10^{2.5}$	62.5	-150.71
10^{3}	70.5	-167.60
$10^{3.5}$	72.5	-178.02
10^{4}	73.00	-183
$10^{4.5}$	72.00	-188.73
10^{5}	64.00	-206.03
$10^{5.5}$	36.00	-230.8
10^{6}	13.5	-263.2
$10^{6.5}$	4.5	
10^{7}	1.6	

2 可行性分析

我们知道,一个线性系统可以从其bode图等频率响应图中估计出系统的传输函数。对于放大电路而言,由于静态工作点的设置使得静态工作电压远远大于输入的交变电压,因此整个系统完全可以在静态工作点附近进行微偏线性化进行线性模型等效。如图1,2所示,测试电路中采用的输入电压峰峰值为10mV,静态工作点在V的量级。微变电压在静态电压的1%量级上,采用线性模型进行估计所产生的误差是可以接受的。

3 实验测量

在电子技术实验中,在老师的指导下对单管放大电路的频率特性(辐频,相频特性)进行了研究。得到的实验结果如表1,2所示,使用绘图软件绘制其辐频和相频特性曲线如图34所示,其中横坐标采用的是频率的分贝数。从图中我们可以看出这两种静态工作点下的频率特性虽然有所差异,但是基本的模态是相同的,因此下文将就 $I_{CQ}=1$ mA时的情况着重分析,至于 $I_{CQ}=2$ mA时的情况的分析可以同理推得

3 实验测量 4

图 1: $I_{CQ} = 1$ mA时的电路图

图 2: $I_{CQ} = 2$ mA时的电路图

3 实验测量 5

图 3: $I_{CQ} = 1$ mA时的辐频相频特性图

图 4: $I_{CQ} = 2$ mA时的辐频相频特性图

图 5: 折线化之后的辐频响应

4 传递函数的估计

4.1 传递函数形式的估计

根据如图5所示的折线化之后的bode图可以迅速得到两种情况下电路辐频特性的上升段和下降段的斜率为 ± 1 。表征单独考虑这一部分应当是一个一阶系统。同时,可以得到对于 $I_{CQ}=1$ mA时的转折频率为46.93dB和106.9dB,根据图3提示的相频特性可以通过控制理论知识迅速得到这不是一个最小相位系统,因此先通过最小相位系统确定符合辐频特性的传递函数再根据相位进行进一步的调整

计算得到两个转折频率为222.075Hz和221.3kHz,同时辐频响应提示一个PD(超前环节)和一个PI(滞后环节)的综合,因此可以猜测系统的传递函数为

$$G'(s) = K \frac{T_1 s + 1}{4.5 \times 10^{-3} s + 1} \times \frac{T_2 s + 1}{4.5 \times 10^{-6} s + 1}, T_1 > 0, T_2 > 0$$
 (1)

观察相频特性3可得,系统相位不断滞后,又考虑到系统开环稳定,没有右半平面的极点,因此可以得到更正过的传递函数

$$G(s) = K \frac{-T_1 s + 1}{4.5 \times 10^{-3} s + 1} \times \frac{T_2 s + 1}{4.5 \times 10^{-6} s + 1}, T_1 > 0, T_2 > 0$$
 (2)

4.2 时间参数的估计

由于辐频特性中没有提示其他的拐点,因此我们希望通过相频特性寻找 T_1, T_2 的合理估计值

从控制理论我们可以知道,作为一个合理的近似,我们可以知道G(s)表达式中的左侧部分对高频特性影响较小,而右侧部分对低频特性影响较小,增益k不影响相频特性,因此我们分别对两个转折频率前后的频段进行研究

- 1. 低频部分 经过研究发现,如果引入 T_1 ,为了尽可能好的拟合低频部分的频率特性,发现在所研究的频段内均有 $T_1\omega >> 1$ 因此引入 T_1 变得意义不大,因此低频部分可以退化为 $\frac{-s}{4.5\times10^{-3}s+1}$ 来简化传递函数
- 2. 高频部分 经过研究发现,和低频部分相同的是,分子对相频特性的影响不大,因此,可以直接略去分子

综上所述, 系统的传递函数可以写成

$$G(s) = K \frac{-s}{4.5 \times 10^{-3} s + 1} \times \frac{1}{4.5 \times 10^{-6} s + 1}, T_1 > 0, T_2 > 0$$
 (3)

4.3 增益K的估计

根据中频段稳定特性对K进行估计可以得到K=0.23

4.4 总结

因此可以得到在研究频段特性为

$$G(s) = \frac{-0.23s}{(4.5 \times 10^{-3}s + 1)(4.5 \times 10^{-6}s + 1)}$$
(4)

需要注意的是,式中的s并非角频率 $j\omega$,而是 $j\omega/2\pi = jf$

5 与理论计算的频率响应特性对比

根据《模拟电子技术基础》第四章的内容,我们对4式进行进一步的标准化,变换为放大电路中经常出现的形式,即

$$G(s) = \frac{-51.1106 \frac{s}{222.22}}{(1 + \frac{s}{222.22})(1 + \frac{s}{222222.22})}$$
(5)

从式5中,基于有关频率响应的相关知识,可以知道放大电路的中频响应大约为-51/V/V,同时低频截止频率约为222.22Hz,高频截止频率约为222222.22Hz,实验中测量得到低频截止频率为 $f_L\approx 100$ Hz,高频截止频率为 $f_H\approx 10^{5.5}\approx 316227$ Hz,和通过上述分析得到的值相近,同时,也可看出我们估计的传递函数在形式上也和理论计算得到的相同

进一步, 我们可以计算模型中的相关参数来验证测量的准确性

6 控制器的设计 8

首先计算低频部分,容易知道电容 C_2 是决定低频特性的瓶颈,考虑这个电容两端的等效电阻可以得到

$$R_{eq} = (R_5 + R_6) / \frac{80k\Omega / (15k\Omega / R_s)}{1+\beta} = 11.23\Omega$$
 (6)

其中 $R_s = 2k\Omega$ 因此我们得到理论估算的低频截止频率为

$$f_L = \frac{1}{2\pi C_e R_{eq}} = 301 \text{Hz}$$
 (7)

和实验测量得到的值以及通过估算传递函数得到的值在一个数量级上,在 对数辐频特性上误差可以接受

其次计算高频部分,我们假设三极管的交流等效模型采用单向化之后的混合 π 模型,并对电容参数进行了相当程度的简化,即如《模拟电子技术基础》第五版P191图4.2.2(c)所示,同时作为一个示范性的理论计算,我们假设 $r_{b'e}=3k\Omega, r_{bb'}=0$,于是可以得到

$$R_{eq} = r_{b'e} / ((80k\Omega / /15k\Omega / /2k\Omega) + R_e) = 0.675k\Omega$$
 (8)

我们希望通过高频特性估算单向化后混合 π 模型中的 $C_{\pi'}$,因此得到方程

$$222222.222Hz = f_H = \frac{1}{2\pi R_e q C_{\pi'}}$$
 (9)

得到 $C_{\pi'} = 1$ nF,和理论计算中经常取的接近800pF还是很接近的,说明模型,模电相关理论和控制系统相关理论是相互印证的

6 控制器的设计

6.1 引言

模拟电子技术的知识告诉我们,如果希望展宽频带,则必须降低放大电路的中频增益,从经验上来讲,电路的"增益带宽积"在不改变电路核心结构和三极管的管型条件下是基本不变的,通过本章,希望能定性的给出一些证明

6.2 基本假设

因为控制系统的研究对象是模拟电路,因此,需要给出一个基本的,符合常理的假设:所有的控制器,应均为无源元件构成的二端网络。这条假设的合理性表现为,如果可以引入一个理想的有源经典控制器,如比例控制器P,则完全可以用这个比例控制器P完成放大电路的性能要求,被控系统的存在变得没有意义。

综合考察基本假设中指定的控制器类型,可以选择两种最有典型代表性的控制器: PI(超前)和PD(滞后)控制器,其具体实现和传递函数如下所示

6.2.1 超前矫正

6.2.2 滞后矫正

传递函数

$$G(s) = \frac{R_2}{R_1 + R_2} \frac{R_1 C s + 1}{\frac{R_1 R_2}{R_1 + R_2} C s + 1}$$
 (10)

传递函数

$$G(s) = \frac{R_2 C s + 1}{(R_1 + R_2) C s + 1}$$
 (12)

么

$$\frac{R_1 R_2}{R_1 + R_2} C = T, 1 + \frac{R_1}{R_2} = \alpha > 1$$

令

$$R_2C = T, 1 + \frac{R_1}{R_2} = \beta > 1$$

得到

$$G(s) = \frac{1}{\alpha} \frac{\alpha T s + 1}{T s + 1}$$
 (11)

得到

$$G(s) = \frac{Ts+1}{\beta Ts+1} \tag{13}$$

Bode图

Bode图

为了简化之后的控制器设计和模型计算的过程,我们将采用EDA仿真软件进行仿真,同时在推导过程中认为系统和系统之间的互相不影响,即可以忽略前级的输出电阻和后级的输入电阻对当前模块的影响。这个假定的合理性在于,因为控制器的设计存在着自由度,我们可以通过调整使得系统和系统,网络和网络之间的耦合近似的符合这个假定。