北京邮电大学 2017-2018 学年

线性代数期末试题(A)

一. 填空题(每小题 4 分, 共 40 分)

1. 已知
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 2 & 2 & 1 & 1 \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 1 & 1 & 2 & 2 \end{vmatrix} = 27$$
, D 的第二行元素的代数余子式依次为

 $A_{21},A_{22},A_{23},A_{24}\;,\;\; \mathbb{M}\;A_{21}+A_{22}=\underline{\hspace{1cm}}.$

- 2. 已知 A 是 3 阶矩阵, A^* 是 A 的伴随矩阵, $|A| = \frac{1}{2}$,则 $|(3A)^{-1} 2A^*| = _____$.
- 3. 设 $A = \begin{pmatrix} -3 & 0 & 0 \\ 10 & -1 & 0 \\ 7 & 5 & 3 \end{pmatrix}$,则 $(A 2E)^{-1}(A^2 4E) = \underline{\qquad}$

4. 设 3 阶矩阵 $A = (a_{ij})$, P 为初等矩阵,若

$$PA = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} - a_{11} & a_{22} - a_{12} & a_{23} - a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad \text{M} AP = \underline{\hspace{1cm}}.$$

5. 直线 L: x-1=y+2=-z-4 与平面 $\pi: x-z-5=0$ 的夹角为_____.

- 6. 已知向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_4 = 2\alpha_2 \alpha_3$, $b = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. 则方程组 Ax = b 的通解为______.
- 7. 已知矩阵 A 有特征值 $\lambda=2$, $\left|A\right|=-3$, A^* 是 A 的伴随矩阵,则 $A+A^*$ 必有特征值 $\mu=$ ______.
- 8. 已知 A 是 3 阶矩阵,列向量 $\alpha_1, \alpha_2, \alpha_3$ 满足 $A\alpha_1 = \alpha_1$, $A\alpha_2 = 3\alpha_2$, $A\alpha_3 = -2\alpha_3$, 可逆矩阵 $P = (\alpha_3, \alpha_1, \alpha_2)$, 则 $P^{-1}AP = _$ ______.
- 9. 已知 $\alpha_1=(1,1,3,-1)$, $\alpha_2=(1,1,2,0)$, 对 α_1,α_2 进行施密特正交化, 得 $\beta_1=\alpha_1$, $\beta_2=___$
- 10.已知 A 为实对称矩阵, λ 为 A 的特征值,若 E+A 与 E-A 都是正定矩阵,则 λ 的取值范围是_____.

二. (8分) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x+a_1 \end{vmatrix}$ $(n \ge 2)$.

三. (8分) 已知矩阵
$$A = \begin{pmatrix} -14 & 2 & 2 \\ -4 & -3 & 1 \\ 6 & -1 & -4 \end{pmatrix}$$
,若矩阵 B 满足 $BA = A - 3B$,求 B .

四 . (8分)已知 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\beta_1=2\alpha_1+3\alpha_2+\alpha_3$, $\beta_2=\alpha_1+2\alpha_2+5\alpha_3+7\alpha_4$, $\beta_3=5\alpha_1+8\alpha_2+7\alpha_3+7\alpha_4$,讨论 β_1,β_2,β_3 的线性相关性.

五. (10分) 求下面方程组的通解.

五. **(10分)** 求下面方程组的通解.
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ 3x_1 + 2x_2 - 8x_3 + 7x_4 = -1 \\ x_1 - x_2 - 6x_3 - x_4 = -2 \end{cases}$$

六. **(8分)** 设
$$A = \begin{pmatrix} -2 & -3 & 3 \\ 3 & -8 & 3 \\ 6 & -6 & 1 \end{pmatrix}$$
,

- (1) 求A的特征值;
- (2) 讨论 A是否可以对角化.

MPS PDF AMAGISTIF

七. (12 分)已知二次型 $f = 4x_1^2 + 4x_2^2 + ax_3^2 - 4x_1x_2 - 6x_1x_3 - 6x_2x_3$ 在正交变换 x = Py 下化为标准形 $f = 6y_1^2 + 5y_2^2 + by_3^2$, 其中 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$.

- (1) 求实数 a,b 的值;
- (2) 求正交矩阵 P.

BINPS PDF4M4EITH

八. (6分) 已知 α , β 为 3 维实单位列向量,且 $(\alpha,\beta)=0$. 令 $A=\alpha\beta^T+\beta\alpha^T$,求证: A 与对角阵 $\Lambda=diag(1,-1,0)$ 相似.

OF AND POPULATION OF THE PROPERTY OF THE PROPE