

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ingeniería Eléctrica (DIE)

Organización y Arquitectura de Computadoras

Grupo: 3

Tarea 5: Diseño de máquinas de estado empleando memorias: Direccionamiento entrada-estado modificando para soportar salidas condicionales

Alumno: Suxo Pérez Luis Axel

Maestra: M.I. Pedro Ignacio Rincón Gómez

Semestre 2022-2

Fecha de entrega: 11 de febrero de 2022

A) Diseñe una carta ASM con hasta 16 estados, 4 entradas (X, Y, Z, W) y 4 salidas (S0, S1, S2, S3) que utilice salidas condicionales y determine la tabla de verdad por el método de Direccionamiento Entrada-Estado modificado para soportar salidas condicionales.

	Entra Men		ì	Salidas de Memoria																	
Estado presente				Prueba		Liga V				Liga F				Salidas V				Salidas F			
P_3	P_2	P_1	P_0	K_1	K_0	V_3	V_2	V_1	V_0	F_3	$\boldsymbol{F_2}$	$\boldsymbol{F_1}$	F_0	S_3	S_2	S_1	S_0	Z_3	Z_2	Z_1	Z_0
0	0	0	0	*	*	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0	1	0	0	1	1	0	0	1	0	0	0	1	1
0	0	1	1	*	*	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0
0	1	0	0	*	*	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
0	1	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	1
0	1	1	0	*	*	0	1	1	1	0	1	1	1	0	0	1	0	0	0	1	0
0	1	1	1	*	*	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	*	*	1	0	0	1	1	0	0	1	0	1	0	0	0	1	0	0
1	0	0	1	*	*	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
1	0	1	0	1	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	1	0
1	0	1	1	*	*	1	1	0	0	1	1	0	0	1	0	0	0	1	0	0	0
1	1	0	0	*	*	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
1	1	0	1	*	*	1	1	1	0	1	1	1	0	0	0	0	1	0	0	0	1
1	1	1	0	*	*	1	1	1	1	1	1	1	1	0	1	0	0	0	1	0	0
1	1	1	1	*	*	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0

B) Para el ejercicio anterior determine el número de bits de memoria que se ahorran mediante el método de "direccionamiento entrada-estado modificado" respecto al método "direccionamiento por trayectoria".

R= Son 1760 bits los que se ahorran.

$$(2^4 * 18) \ bits = 288 \ bits$$

$$(2^8 * 8) bits = 2048 bits$$

$$\{(2^8 * 8) - (2^4 * 18)\}$$
 bits = 1760 bits