CONTRIBUTEURS

ACT-2007 Mathématiques actuarielles vie II

aut. Nicholas Langevin

aut. Gabriel Crépeault-Cauchon

aut. Alexandre Turcotte

aut., cre. Alec James van Rassel

src. Ilie-Radu Mitric

Rappels

Approximation Woolhouse

$$\ddot{a}_{x:\overline{n}|}^{(m)} \approx \ddot{a}_{x:\overline{n}|} - \frac{m-1}{2m} (1 - {}_{n}E_{x}) - \frac{m^{2}-1}{12m^{2}} (\delta + \mu_{x} - {}_{n}E_{x}(\delta + \mu_{x+n}))$$

$$\mu_{x} \approx -\frac{1}{2} \left(\ln p_{x-1} + \ln p_{x} \right)$$

Hypothèse DUD

Mortalité

$$sq_x = sq_x, s \in (0,1)$$

Assurance

$$\bar{A}_{x:\overline{n}} \stackrel{\text{DUD}}{=} \frac{i}{\delta} A_{x:\overline{n}}^{1} + A_{x:\overline{n}}$$

$$A_{x:\overline{n}}^{(m)} \stackrel{\text{DUD}}{=} \frac{i}{i^{(m)}} A_{x:\overline{n}}^{1} + A_{x:\overline{n}}^{1}$$

Rentes
$$\ddot{a}_{x}^{(m)} = \alpha(m)\ddot{a}_{x} - \beta(m)$$

$$\ddot{a}_{x:\overline{n}|}^{(m)} = \alpha(m)\ddot{a}_{x:\overline{n}|} - \beta(m)(1 - {}_{n}E_{x})$$

$${}_{n|}\ddot{a}_{x}^{(m)} = \alpha(m){}_{n|}\ddot{a}_{x} - \beta(m){}_{n}E_{x}$$

$$\ddot{a}_{x:\overline{n}|}^{(m)} = \alpha(m)\ddot{a}_{x:\overline{n}|} - \beta(m)(1 - v^{n} + {}_{n}E_{x})$$

où:

$$\alpha(m) = \frac{id}{i(m)d(m)} \qquad \beta(m) = \frac{i - i^{(m)}}{i(m)d(m)}$$

Relations

Assurance

$$A_x = vq_x + vp_x A_{x+1}$$

Rente

$$\begin{aligned} \ddot{a}_{x} &= 1 + v p_{x} \ddot{a}_{x+1} \\ n | \ddot{a}_{x} &= {}_{n} E_{x} \ddot{a}_{x+n} \\ &= \ddot{a}_{x} - \ddot{a}_{x:\overline{n}} | \\ \ddot{a}_{x:\overline{n}} &= \ddot{a}_{x} - {}_{n} E_{x} \ddot{a}_{x+n} \\ \ddot{a}_{x:\overline{n}}^{(m)} &= \frac{1}{m} + \underbrace{v^{\frac{1}{m}}}_{\frac{1}{m}} p_{x} \ddot{a}_{x+\frac{1}{m}:n-\frac{1}{m}}^{(m)} \end{aligned}$$

Note rente différée : pas faire l'erreur d'oublier de soustraire les n années sans paiements de la rente :

$$_{n|}\ddot{\mathbf{Y}}_{x} = \begin{cases} 0 & , K = 0, 1, \dots, n-1 \\ v^{n}\ddot{\mathbf{a}}_{\overline{K+1-n}|} & , K = n, n+1 \end{cases}$$

Mortalité

Tables

$$t d_x = \ell_x - \ell_{x+t}$$

$$t p_x = \frac{\ell_{x+t}}{\ell_x}$$

$$t p_x = e^{-\int_0^t \mu_{x+s} ds}$$

Sélection à l'âge [x]

$$\bar{A}_{[x]+h:n-h|}^{1} = \int_{0}^{n-h} e^{-\delta t} p_{[x]+h} \mu_{[x]+h+t} dt$$
$$= \int_{h}^{n} e^{-\delta(s-h)} \frac{s p_{[x]}}{h p_{[x]}} \mu_{[x]+s} ds$$

1 Calcul de réserve

Notation

 $_{h}L$: Perte nette future sur un contrat d'assurance pour un individu d'âge (x) au temps h.

 Puisque la perte est évaluée au temps h, on suppose que l'assuré va décéder par après et conditionne à sa survie :

$$_{h}L = \{_{h}L|T_{x} > h\}$$

 ${}_hV$: Réserve nette pour un contrat d'assurance pour un individu d'âge (x) au temps h.

- La réserve est basée sur ce qu'on s'attend à avoir comme perte :

$$_{h}V = \mathrm{E}[_{h}L]$$

 $_{h}V^{g}$: Réserve pour contrat avec primes brutes (lorsqu'il y a des frais).

 $_{h}V^{n}$: Réserve pour contrat avec primes pures (lorsqu'il n'y a pas de frais).

 $_{h}V^{I}$ Réserve initiale au début de l'année h;

$$_{h}V^{I} = _{h}V + \pi$$

 $VP_{@h}$: La valeur présente au temps h.

 $VPA_{@h}$: La valeur présente anticipée au temps h.

$$VPA_{@t} = E[VP_{@h}]$$

Notation pour un contrat d'assurance vie entière

$$hL = MZ_{x+h} - \pi \ddot{Y}_{x+h}$$

$$Var(hL) = \left(M + \frac{\pi}{d}\right)^2 \left[{}^2A_{x+h} - (A_{x+h})^2\right]$$

$$hV^n = MA_{x+h} - \pi \ddot{a}_{x+h}$$

$$\equiv \left(M + \frac{\pi}{d}\right)A_{x+h} - \frac{\pi}{d}$$

Sous le principe d'équivalence du portefeuille (PEP) :

$$_{h}V^{n} \stackrel{PEP}{=} M \left[\frac{A_{x+h} - A_{x}}{1 - A_{x}} \right]$$
 $\stackrel{PEP}{=} M \left[1 - \frac{\ddot{a}_{x+h}}{\ddot{a}_{x}} \right]$

Notation pour un contrat d'assurance avec primes non-nivelées

$$_{h}L = b_{K_{x+h}+h+1}v^{K_{x+h}+1} - \sum_{i=0}^{K_{x+h}}\pi_{i+h}v^{i}$$
 $_{h}V^{n} = \sum_{j=0}^{\infty}b_{j+h+1}v^{j+1}{}_{j}p_{x+h}q_{x+h+j} - \sum_{j=0}^{\infty}\pi_{i+h}v^{i}{}_{j}p_{x+h}$

Note

- > La prestation *b* est payable au moment $K_{r+h} + h + 1$.
- > Cependant, puisqu'on évalue la perte au temps h, il y a seulement $K_{x+h}+1$ années à actualiser.

Calcul de réserves

Méthodes d'évaluation de la réserve

Prospective

Rétrospective

$${}_{h}V^{g} = VPA_{@t} \left(\begin{array}{c} \text{prestations futures} \\ \text{à payer} \end{array} \right) \quad {}_{h}V^{g} = \frac{{}_{0}V^{g}}{{}_{h}E_{x}} \\ + VPA_{@t} \left(\begin{array}{c} \text{frais futurs} \\ \text{à payer} \end{array} \right) \qquad \qquad + \frac{VPA_{@0} \left(\begin{array}{c} \text{primes recues} \\ \text{avant } h \end{array} \right)}{{}_{h}E_{x}} \\ - VPA_{@t} \left(\begin{array}{c} \text{primes futures} \\ \text{à recevoir} \end{array} \right) \qquad \qquad - \frac{VPA_{@t} \left(\begin{array}{c} \text{prestations à payer} \\ \text{avant } h \end{array} \right)}{{}_{h}E_{x}}$$

Exemple pour un contrat d'assurance vie mixte n années :

Méthode prospective ${}_hV^n=MA_{x+h:\overline{n-h}|}-P\ddot{a}_{x+h:\overline{n-h}|}$

Méthode rétrospective $_{h}V^{n}=0+\frac{P\ddot{a}_{x:\overline{h}}-MA_{x:\overline{h}}^{1}}{_{h}E_{x}}$

L'assurance mixte devient une temporaire puisque la méthode rétrospective considère seulement les prestations à payer $\operatorname{avant} h$.

Relation: $\{T_x - t | T_x > t\} \stackrel{d}{=} T_{x+t}$ où $\stackrel{d}{=}$ veut dire égale en distribution.

Relation récursive pour les réserves (discrètes)

$${}_hV^n = \left[p_{x+hh+1}V^n + q_{x+h}b_{h+1}\right] v - \pi_h$$

$${}_hV^g = \left[p_{x+hh+1}V^n + q_{x+h}(b_{h+1} + E_{h+1})\right] v - (G_h - e_h)$$
La réserve pour l'année h est composée de :

- \rightarrow La réserve au temps h+1 si l'assuré survie l'année h et
- \rightarrow la prestation payable (et frais encourus) à h+1 si l'assuré décède lors de l'année h,
- \rightarrow actualisés de h+1 à h,
- > moins la prime (plus les frais) reçus de l'assuré au début de l'année h.

où

 G_h La prime (gross premium) à recevoir à t = h;

 e_h Les frais reliés à la collecte de la prime (per premium expenses);

 E_h Les frais reliés au paiement de la prestation (settlement expenses).

Avec la réserve pour l'année h + 1 isolée :

$${}_{h+1}V^g=\frac{\hat{l}_hV^g+G_h-e_h)(1+i)-(b_{h+1}+E_{h+1})q_{x+h}}{p_{x+h}}$$
 Avec le montant net au risque réserve pour l'année $h+1$ isolé :

$$\underbrace{(b_{h+1} + E_{h+1} - {}_{h+1}V^g)}_{\text{montant net au risque}} q_{x+h} = ({}_hV^g + G_h - e_h)(1+i) - {}_{h+1}V^g$$

Note Si on a une assurance mixte dont la prestation est fonction de la réserve (e.g., $b_k = 1000 + {}_kV$), on commence de la fin puisqu'on sait que ${}_nV = M$.

Approximation classique pour les réserves à durées fractionnaires

$$_{h+s}V^{g}pprox\left(_{h}V^{g}+G_{h}-e_{h}
ight) \left(1-s
ight) +\left(_{h+1}V^{g}
ight) \left(s
ight) ,s\in \left(0,1
ight)$$

Profit de l'assureur

Notation

 N_h : Nombre de contrats d'assurance vie (identiques) du portefeuille en vigueur au temps h.

 $_{h+1}V^E$: Réserve totale pour l'année h+1 du portefeuille selon l'intérêt (i), la mortalité (q_{x+h}) et les frais (e_h et E_h) **espérés** (E_h) pour l'année h.

 $_{h+1}V^A$: Réserve totale pour l'année h+1 du portefeuille selon l'intérêt (i'), la mortalité (q'_{x+h}) et les frais $(e'_h$ et $E'_h)$ **réellement** (Actually) encourus

Le profit de l'assureur pour l'année h sera donc $_{h+1}V^A - _{h+1}V^E$.

Si uniquement _____ change(nt), alors le profit sur ____ pour l'année h est :

les frais
$$N_h [(e_h - e'_h)(1+i) + (E_{h+1} - E'_{h+1})q_{x+h}].$$

l'intérêt
$$N_h \left({}_h V^g + (G_h - e_h) \right) (i' - i)$$
.

la mortalité
$$(b_{h+1} + E_{h+1} - {}_{h+1}V^g) (N_h q_{x+h} - N_h q'_{x+h})$$

S'il y a des différentes ordre, il suffit de remplacer les composantes par les nouvelles.

Par exemple:

- > Si l'ordre est frais-intérêt-mortalité, le profit sur l'intérêt devient $N_h\left({}_hV^g+(G_h-e'_h)\right)(i'-i).$
- > Si l'ordre est intérêt-frais-mortalité, le profit sur les frais devient $N_h \left[(e_h - e'_h)(1+i') + (E_{h+1} - E'_{h+1})q_{x+h} \right].$

Équation de Thiele

Cette équation permet d'obtenir le *taux instantané d'accroissement* de _tV.

$$\frac{\partial}{\partial t} V^g = \delta_{t_t} V^g + (G_t - e_t) - (b_t + E_t - {}_t V^g) \mu_{[x] + t}$$

- > Applique continûment l'intérêt à la réserve au temps t.
- > Le montant est fixe et payé au début de l'année t.
- > Applique continûment la mortalité au montant payable pour un décès à *t*.

on peut approximer $_{h}V^{g}$ avec la <u>Méthode d'Euler</u>:

$$_{h}V^{g} = \frac{_{t+h}V^{g} - h\left[(G_{h} - e_{h}) - (b_{h} + E_{h})\mu_{[x]+h}\right]}{1 + h\delta_{t} + h\mu_{[x]+h}}$$

Frais d'acquisition reportés

$$_hV^e$$
 Réserve pour les frais d'acquisition reportés (DAC).
 $_hV^e = DAC_h = VPA_{@t} \text{ (frais)} - VPA_{@t} \text{ (primes pour les frais futurs)}$
 $\equiv {}_hV^g - {}_hV^n$

> « expense reserve » ou « Deferred Acquisition Costs ».

> Si $e_0 > e_h$, c'est une réserve négative.

$$\Rightarrow$$
 Si $e_0 = e_h$ alors $_hV^g = _hV^n = 0$ et $DAC_h = 0$.

 P^g : Prime nivelée pour un contrat avec des frais (alias la prime brute G).

 P^n : Prime nivelée pour un contrat sans frais (alias la prime nette P).

 P^e : Prime pour les frais (« *expense premium* »). $P^e = P^g - P^n$

_hV^{FTP} Réserve de primes FTP.

 π_0^{FTP} Prime FTP pour la première année.

$$\pi_0^{FTP} = {}_1P_{[x]} = {}_{\substack{\text{contrat} \\ \text{vie entière}}} bvq_{[x]}$$

 π_h^{FTP} Prime nivelée FTP pour les $h = 1, 2, \dots$ autres années.

$$\pi_h^{FTP} = P_{[x]+1} \underset{\text{vie entière}}{=} b \frac{A_{[x]+1}}{\ddot{a}_{[x]+1}}$$

- > Habituellement, il y a plus de frais au temps d'acquisition;
- > Ces frais supplémentaire sont répartis sur la durée du contrat;
- > Habituellement, on utilise la prime nette pour faire les calculs puisque c'est plus simple;
- > Lorsqu'on établit l'équation pour la perte, utilisée les frais et la prime applicables à partir de la deuxième année et soustraire la différence pour la première;
- > **Note** : Lorsqu'on calcule la réserve FTP $_hV^{\rm FTP}$ on n'a pas besoin de calculer $\pi_0^{\rm FTP}$, on y va directement avec $\pi_h^{\rm FTP}$.

2 Modèles à plusieurs états

 $_kQ_t^{(i,j)}$ Probabilité de transition de l'état i au temps t à l'état j au temps t+k.

- > De façon équivalente, $_k p_{x+t}^{ij}$.
- M_t État au temps t parmi les $\{1, 2, ..., r\}$ ou $\{0, 1, ..., r\}$ états.
 - \rightarrow De façon équivalente, M(t).
 - > Le processus M_t est une "Chaine de Markov" ssi $\forall t = 0, 1, 2, ...$: $Q_t^{(i,j)} = \Pr(M_{t+1} = j | M_t = i, M_{t-1}, ..., M_0)$ $= \Pr(M_{t+1} = j | M_t = i)$
- Q_t Matrice des probabilités de transition.
 - > Les transitions sont en fin d'année.
 - > Si la matrice :

dépend du temps alors M_t est une chaîne de Markov non-homogène.

ne dépend pas du temps alors M_t est une chaîne de Markov homogène.

Également, dans ce cas-ci, on dénote Q_t par Q puisque $Q_t^{ij} = Q^{ij} \forall t \geq 0$

 $_kQ_t$ Matrice de k-étapes des probabilités de transition.

$$_{m+n}Q_{t}^{(i,j)} = \sum_{k=1}^{r} {}_{m}Q_{t}^{(i,k)}{}_{n}Q_{t+m}^{(k,j)}$$

En temps continu

On généralise la notation utilisée auparavant (le *modèle actif-décédé*) pour des modèles à plusieurs états.

Notation et hypothèses

- $Y_x(t)$ Processus stochastique $\{Y(s); s \geq 0\}$ de l'état dont les transitions peuvent se produire à n'importe quel moment $t \geq 0$ et donc pas seulement en fin d'année;
 - > De façon équivalente, Y(x + t);
 - $Y_x(t) = i$ pour un assuré d'âge (x) dans l'état i au temps t (ou, de façon équivalente, à l'âge x + t).

 $_{k}p_{x+t}^{ij}$ Probabilité qu'un individu d'âge x dans l'état i au temps t soit dans l'état j (où j peut être égale à i) au temps t+k.

$$_{k}p_{x+t}^{ij} = \Pr(Y_{x}(t) = j|Y_{x} = i)$$

 $_kp_{x+t}^{i\bar{i}}$ Probabilité qu'un individu d'âge x dans l'état i au temps t reste dans dans l'état i continument jusqu'au temps t+k.

$$_{k}p_{x+t}^{\overline{ij}} = \Pr(Y_{x}(s) = i, \underbrace{\forall s \in [0, t]}_{\text{sans sortir et revenir}} | Y_{x} = i)$$

> Il s'ensuit que $_kp_{x+t}^{ij} \ge _kp_{x+t}^{\overline{ij}}$ car : $_kp_{x+t}^{ij} = _kp_{x+t}^{\overline{ij}} + \Pr(Y_x(t)=i, \text{après avoir sorti et revenu}|Y_x=i)$

 μ_x^{ij} Force de transition de l'état i à l'état j ($i \neq j$) pour un assuré d'âge (x).

$$\mu_x^{ij} = \lim_{h \to 0^+} \frac{{}_h p_x^{ij}}{h}, i \neq j$$

> On trouve que pour $i \neq j$:

$$_{h}p_{x}^{ij} = h\mu_{x}^{ij} + o(h)$$
 $\Rightarrow _{h}p_{x}^{ij}$ $\approx h\mu_{x}^{ij}$, $où h > 0$ est très petit.

Hypothèses du modèle à plusieurs états

1. Le processus stochastique Y_t est une chaîne de Markov.

$$\Pr(Y_{t+s} = j | Y_t = \hat{i}, Y_u, 0 \le u < 1) = \Pr(Y_{t+s} = j | Y_t = i)$$

2. Pour tout intervalle de longueur h,

2, ou plus, transitions

Pr $\left(\begin{array}{c} 2, \text{ ou plus, transitions} \\ \text{pendant une période de longueur } h \end{array}\right) = o(h)$

Note Une fonction $g \in o(h)$ si $\lim_{h \to 0} \frac{g(h)}{h} = 0$.

- 3. Pour tous les états i et j, et tout âge $x \ge 0$, $_tp_x^{ij}$ est différentiable par rapport à t.
- > Cette hypothèse veille au bon déroulement mathématique en assurant :
 - L'existence de la limite dans la définition de μ_x^{ij} ;
 - Que la probabilité d'une transition dans un intervalle de longueur *h* tend vers 0 lorsque *h* tends vers 0.

Remarques

- 1. $|_h p_x^{ii} = |_h p_x^{ij} + o(h) |$ où o(h) est la probabilité de sortir et revenir de l'hypothèse 2.
- 2.

$$_{h}p_{x}^{ij} \ge {}_{h}p_{x}^{ii} = 1 - \sum_{j=0, j \ne i}^{n} {}_{h}p_{x}^{ij} + o(h)$$

$$\equiv 1 - h \sum_{j=0, j \ne i}^{n} \mu_{x}^{ij} + o(h)$$

Formules

Nous pouvons exprimer toutes les probabilités en fonction des forces de transitions. **Approche directe** :

$$_{t}p_{x}^{\overline{i}\overline{i}} = \exp\left\{-\int_{0}^{t} \sum_{i=0, i\neq i}^{n} \mu_{x+s}^{ij} ds\right\}$$

Transition d'un état au prochain pour un modèle d'invalidité permanente :

$${}_{u}p_{x}^{01} = \int_{t=0}^{u} ({}_{t}p_{x}^{\overline{00}}) (\mu_{x+t}^{01}) ({}_{u-t}p_{x+t}^{\overline{11}}) dt \approx \int_{t=0}^{u} ({}_{t}p_{x}^{\overline{00}}) ({}_{u-t}p_{x+t}^{\overline{11}}) ({}_{dt}p_{x+t}^{01})$$

Transition d'un état à un état supérieur :

$$up_{x}^{02} = \int_{t=0}^{u} \left\{ ({}_{t}p_{x}^{\overline{00}}) (\mu_{x+t}^{01}) ({}_{u-t}p_{x+t}^{12}) \right\} + \left\{ ({}_{t}p_{x}^{\overline{00}}) (\mu_{x+t}^{02}) ({}_{u-t}p_{x+t}^{\overline{22}}) \right\} dt$$

$$= 1 - {}_{u}p_{x}^{\overline{00}} - {}_{u}p_{x}^{01}$$

Approximations

Pour les modèles où il est possible de sortir et de revenir à un état.

Kolmogorov's Forward Equations

$$\frac{\partial}{\partial t} p_x^{ij} = \sum_{k=0, k \neq j}^n \left({}_t p_x^{ik} \mu_{x+t}^{kj} - {}_t p_x^{ij} \mu_{x+t}^{jk} \right)$$

Avec la **notation** $\mu_x^{ii} = -\sum_{k=0, k \neq i}^n \mu_x^{ik}$ on a :

$$\frac{\partial}{\partial t} p_x^{ij} = \sum_{k=0}^n p_x^{ik} \mu_{x+t}^{kj}$$

où μ_x n'est plus une force de transition mais **représente plutôt une notation** pour simplifier l'expression.

On peut récrire l'expression en forme matricielle :

$$\frac{\partial}{\partial t} t P_{x} = {}_{t} P_{x} P_{x+t}$$

$$\frac{\partial}{\partial t} \begin{pmatrix} {}_{t} p_{x}^{00} & {}_{t} p_{x}^{01} & \cdots & {}_{t} p_{x}^{0n} \\ {}_{t} p_{x}^{10} & {}_{t} p_{x}^{11} & \cdots & {}_{t} p_{x}^{1n} \\ \vdots & \vdots & \ddots & \vdots \\ {}_{t} p_{x}^{n0} & {}_{t} p_{x}^{n1} & \cdots & {}_{t} p_{x}^{nn} \end{pmatrix} = \begin{pmatrix} {}_{t} p_{x}^{00} & {}_{t} p_{x}^{01} & \cdots & {}_{t} p_{x}^{0n} \\ {}_{t} p_{x}^{10} & {}_{t} p_{x}^{11} & \cdots & {}_{t} p_{x}^{1n} \\ \vdots & \vdots & \ddots & \vdots \\ {}_{t} p_{x}^{n0} & {}_{t} p_{x}^{n1} & \cdots & {}_{t} p_{x}^{nn} \end{pmatrix} \begin{pmatrix} \mu_{x+t}^{00} & \mu_{x+t}^{01} & \cdots & \mu_{x+t}^{0n} \\ \mu_{x+t}^{10} & \mu_{x+t}^{11} & \cdots & \mu_{x+t}^{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{x+t}^{n0} & \mu_{x+t}^{n1} & \cdots & \mu_{x+t}^{nn} \end{pmatrix}$$

Méthode d'Euler

Pour h > 0 très petit, on a :

$$\frac{\partial}{\partial t} p_x^{ij} \approx \frac{\left(_{t+h} p_x^{ij} - {}_t p_x^{ij}\right)}{h}$$

avec la condition initiale $\forall i \neq j$:

$$_{0}p_{x}^{ii}=1$$
 et

Paiements

 $\ddot{u}_{x:\overline{n}|}^{\overline{i}i}$ La VPA d'une rente temporaire payant 1\$ à une vie dans l'état i seulement lorsqu'elle est dans l'état i.

$$\ddot{a}_{x:\overline{n}|}^{\overline{i}\overline{i}} = \int_{0}^{n} v^{t}_{t} p_{x}^{\overline{i}\overline{i}} dt$$

On a aussi plus généralement :

$$\ddot{a}_{x:\overline{n}|}^{ij} = \int_0^n v^t_{\ t} p_x^{ij} dt$$
$$\bar{A}_x^{ij} = \int_0^\infty \sum_{k \neq i} v^t_{\ t} p_x^{ik} \mu_{x+t}^{kj} dt$$

Modèle à plusieurs décroissances

- > en anglais, « Multiple Decrement Model »;
- > Précédemment, il y avait résiliation du contrat uniquement en raison d'un décès;
- > Cependant, on généralise pour évaluer les primes et réserves de contrats dont les prestations diffèrent en fonction des causes de décroissances;
- > Ces modèles sont en fait des cas particuliers des chaînes de Markov.
- T_x Temps de décroissance de x (alias, la *durée de vie* résiduelle de x);
- J Cause de la décroissance;
 - > Variable aléatoire discrète avec $J \in \{1, 2, ..., m\}$ où m est le nombre de causes possibles de décroissance.
- $_tq_x^{(j)}$ Probabilité de décroissance d'ici t années pour un assuré d'âge x en raison de la je cause;

$$_{t}p_{x}^{0j} = _{t}q_{x}^{(j)} = \Pr(T_{x} \le t, J = j)$$

- > Il s'ensuit de l'équation que ${}_tq_x^{(j)}$ est une distribution conjointe de T_x et J.
- $_tq_x^{(au)}$ Probabilité de décroissance d'ici t années pour un assuré d'âge x peu importe la cause;

$$t_{t}q_{x}^{(\tau)} = \Pr(T_{x} \le t)$$

$$= \sum_{j=1}^{m} \Pr(T_{x} \le t, J = j) = \sum_{j=1}^{m} t_{j}q_{x}^{(j)}$$

- > En parallèle, $t_x^{(\tau)}$ est la probabilité de survivre pendant t années à toutes les causes de décroissance;
- > Cependant, $_tp_x^{(j)}$ n'existe pas et $_tp_x^{(j)} \neq 1 _tq_x^{(j)}$.

Fonctions de densité

$$f_{T_x,J}(t,j) = ({}_t p_x^{(\tau)})(\mu_{x+t}^{(j)})$$

$$f_J(j) = \int_0^\infty f_{T_x,J}(t,j)dt = {}_\infty q_x^{(j)}$$

$$E[T_x] = \int_0^\infty {}_t p_x^{(\tau)}dt$$

$$f_{J|T_x}(J|t) = \frac{f_{T_x,J}(t,j)}{f_{T_x}(t)} = \frac{\mu_{x+t}^{(1)}}{\mu_{x+t}^{(\tau)}}$$

Force de décroissance totale

$$\mu_{x+t}^{(\tau)} = \sum_{j=1}^{m} \mu_{x+t}^{(j)}$$

$$f_{T_x}(t) = \sum_{j=1}^{m} f_{T_x,J}(t,j) = ({}_t p_x^{(\tau)}) (\mu_{x+t}^{(\tau)})$$

$${}_t q_x^{(\tau)} = \sum_{j=1}^{m} {}_t q_x^{(j)}$$

De plus

$$_{t}p_{x}^{(\tau)}=\mathrm{e}^{-\int_{0}^{t}\mu_{x+s}^{(\tau)}ds}$$

Force de décroissance de la j^e cause

 $\mu_{x+t}^{(j)}$ Force de décroissance de la $j^{\rm e}$ cause pour un assuré d'âge x.

$$_{t}q_{x}^{(j)} = \int_{0}^{t} f_{T_{x},J}(s,j)ds = \int_{0}^{t} {}_{s}p_{x}^{(\tau)}\mu_{x+s}^{(j)}ds$$

Incorporation de K_x

$$\begin{aligned} \mathbf{g}_{x}^{(j)} &= \Pr(k \leq T_{x} < k+1, J=j) \\ &= \int_{k}^{k+1} f_{T_{x},J}(t,j) dt \equiv \int_{0}^{k+1} f_{T_{x},J}(t,j) dt - \int_{0}^{k} f_{T_{x},J}(t,j) dt \\ &= \sum_{k+1} q_{x}^{(j)} - {}_{k} q_{x}^{(j)} \\ &= \sum_{k}^{k+1} {}_{t} p_{x}^{(\tau)} \mu_{x+t}^{(j)} dt = {}_{k} p_{x}^{(\tau)} q_{x+k}^{(j)} \end{aligned}$$
 assi

Note Développer cette expression s'il y a un manque d'information sur des ℓx ; Modèles à décroissance unique associés voir l'exercice 2.10 du cours 8 pour un exemple.

Loi marginale:

$$\begin{aligned} {}_{k|}q_{x}^{(\tau)} &= \Pr(K_{x} = k) = \sum_{j=1}^{m} \Pr(K_{x} = k, J = j) = \sum_{j=1}^{m} {}_{k|}q_{x}^{(j)} \\ &\equiv {}_{k+1}q_{x}^{(\tau)} - {}_{k}q_{x}^{(\tau)} = {}_{k}p_{x}^{(\tau)} - {}_{k+1}p_{x}^{(\tau)} \\ &\equiv {}_{k}p_{x}^{(\tau)}q_{x+k}^{(\tau)} \end{aligned}$$

Tables de mortalité

 $_{r}d_{x}$ Nombre de décès d'une cohorte de ℓx personnes entre les temps 0 et r (alias, entre les âges x et x + r);

Nombre de décès d'une cohorte de ℓx personnes entre les temps 0 et r en cause la décroissance *j*.

Note Pour des paiements selon l'état, voir l'exercice 2.12 à la fin du cours 8.

Si
$$\mu_{x+t}^{(1)}, \dots, \mu_{x+t}^{(m)}$$
 sont des constantes $\mu^{(1)}, \dots, \mu^{(m)}$ alors :
$$\frac{\mu_{x+t}^{(j)}}{\mu_{x+t}^{(\tau)}} = \frac{\mu_{x+t}^{(j)}}{\mu_{x+t}^{(1)} + \dots + \mu_{x+t}^{(m)}} = k = \text{constante}$$

$$\Rightarrow {}_t q_x^{(j)} = k_t q_x^{(\tau)}$$

 $T_x^{\prime(j)}$ Temps de décroissance de x (alias, la durée de vie résiduelle de x) en supposant qu'il est uniquement exposé à la cause j;

- > C'est une durée de vie théorique, mais utile;
- > Comme il y a un seul type de décès, c'est le modèle actif-décédé de vie I;
- \rightarrow Généralement, on suppose que les décroissances $T_{\rm r}^{\prime(j)}$ pour $j=1,2,\ldots,m$ sont indépendantes;
- \rightarrow Avec l'indépendance, on trouve que la distribution de T_x est la même que la première cause de décès $T_x \stackrel{d}{=} \min \left\{ T_x^{\prime(1)}, T_x^{\prime(2)}, \dots, T_x^{\prime(m)} \right\}$.

 $_tq_x^{\prime(j)}$: Probabilité de décroissance d'ici t années pour un assuré d'âge x en raison de la je cause **en supposant** qu'il est uniquement exposé à la cause j;

> Puisque c'est le modèle actif-décédé, il s'ensuit que $tp_x^{\prime(j)} = 1 - tq_x^{\prime(j)}$

On peut relier les 2 modèles :

$$\mu_{x+s}^{(j)} = \mu_{x+s}^{\prime(j)}$$

$${}_{t}p_{x}^{(\tau)} = \prod_{j=1}^{m} {}_{t}p_{x}^{\prime(j)}$$

 \rightarrow La multiplication des $_tp_x$ ci-dessus illustre le lien avec la fonction de survie du minimum.

Donc:
$${}_tq_x^{(\tau)} = {}_tq_x^{(1)} + {}_tq_x^{(2)} + \dots + {}_tq_x^{(m)} \qquad {}_tp_x^{(\tau)} = {}_tp_x'^{(1)} \times {}_tp_x'^{(2)} \times \dots \times {}_tp_x'^{(m)}$$
 Il s'ensuit que
$${}_tp_x^{(\tau)} \leq {}_tp_x'^{(j)}, \forall j = 1, 2, \dots, m$$
 et
$${}_tq_x'^{(j)} \geq {}_tq_x'^{(j)}, \forall j = 1, 2, \dots, m$$
.

2.1 Interrelations

Hypothèses

Pour
$$x \in \mathbb{Z}^+$$
, $t \in [0,1]$, $j = 1, 2, ..., m$,

DUD $_t q_x^{\prime(j)} = t \times q_x^{\prime(j)}$;

FC $\mu_{x+t}^{(j)} = \mu_x^{(j)}$.

 \rightarrow Si les mortalités $T_x^{\prime(j)}$ suivent des lois DeMoivre, alors DUD est exact.

Trouver $q_x^{(j)}$ de $q_x^{\prime(j)}$

Sachant $q_x^{\prime(1)}, \ldots, q_x^{\prime(m)},$

- 1. Poser une hypothèse (DUD ou FC) sur les décroissances uniques $T_x^{\prime(j)}$ pour trouver $_sq_x^{\prime(j)}$;
- 2. Trouver $\mu'^{(j)}_{x+s} = \mu^{(j)}_{x+s}$;
- 3. Trouver $_{s}p_{x}^{(\tau)} = \sum_{j=1}^{m} \mu_{x+s}^{(j)}$;
- 4. Trouver $_{t}q_{x}^{(j)} = \int_{0}^{t} {}_{s}p_{x}^{(\tau)}\mu_{x+s}^{(j)}ds$.

Sous DUD

$$q_x^{(j)} = q_x^{\prime(j)} \int_0^t \left[\prod_{k \neq j, k=1}^m \left(1 - t \cdot q_x^{\prime(k)} \right) \right] dt$$

Cas particuliers pour t = 1:

> Si
$$m = 2$$
, $q_x^{(1)} = q_x'^{(1)} \left(1 - \frac{q_x'^{(2)}}{2}\right)$ et $q_x^{(2)} = q_x'^{(2)} \left(1 - \frac{q_x'^{(1)}}{2}\right)$;

> Si
$$m = 3$$
, $q_x^{(1)} = q_x'^{(1)} \left[1 - \frac{1}{2} \left(q_x'^{(2)} + q_x'^{(3)} \right) + \frac{1}{3} \left(q_x'^{(2)} q_x'^{(3)} \right) \right]$.

Sous FC

$$_{t}q_{x}^{(j)} = \frac{\ln(p_{x}^{\prime(j)})}{\ln(p_{x}^{(\tau)})} {}_{t}q_{x}^{(\tau)}$$

- 2. Trouver $\mu_{x+t}^{(j)} = \frac{\frac{\partial_t q_x^{(j)}}{\partial t}}{t^p_x^{(\tau)}} = \mu_{x+t}^{\prime(j)};$
- 3. Trouver $_{t}p_{x}^{\prime(j)} = e^{\int_{0}^{t} \mu_{x+s}^{\prime(j)} ds}$.

Sous DUD

$$tq_x'^{(j)} = 1 - \left(1 - t \times q_x^{(\tau)}\right)^{q_x^{(j)}/q_x^{(\tau)}}$$
 $tp_x'^{(j)} = \left(tp_x^{(\tau)}\right)^{q_x^{(j)}/q_x^{(\tau)}}$

Sous FC

$${}_tp_x'^{(j)} = \left({}_tp_x^{(\tau)}\right)^{q_x^{(j)}/q_x^{(\tau)}}$$

Trouver $_tq_x^{\prime(j)}$ de $_tq_x^{(j)}$

Sachant $_tq_x^{(1)},\ldots,_tq_x^{(m)},$

1. Poser une hypothèse (DUD ou FC) sur les décroissances $(T_x^{(j)})$ pour trouver $_tq_x^{(j)}$;