

Density-Based Clustering Methods

Clustering based on density (a local clust points	ter crite	rion), such	as density-co	nnected
Major features:				
 Discover clusters of arbitrary shape 				
Handle noise				
One scan (only examine the local region to justify density)				
Need density parameters as termination condition				
Several interesting studies:				
DBSCAN: Ester, et al. (KDD'96)	To be cove	vered in this lecture		
OPTICS: Ankerst, et al (SIGMOD'99)		To be covered in this lecture		
DENCLUE: Hinneburg & D. Keim (KDD'98)				
CLIQUE: Agrawal, et al. (SIGMOD'98) (also, grid-based) To be covered in this lecture				this lecture