Algebra, Number Theory and Combinatorics

Individual

(Please select 5 problems to solve)

- 1. Let V be a finite dimensional complex vector space. Let A, B be two linear endomorphisms of V satisfying AB BA = B. Prove that there is a common eigenvector for A and B.
- **2.** Let $M_2(\mathbb{R})$ be the ring of 2×2 matrices with real entries. Its group of multiplicative units is $GL_2(\mathbb{R})$, consisting of invertible matrices in $M_2(\mathbb{R})$.
 - (a) Find an injective homomorphism from the field \mathbb{C} of complex numbers into the ring $M_2(\mathbb{R})$.
 - (b) Show that if ϕ_1 and ϕ_2 are two such homomorphisms, then there exists a $q \in GL_2(\mathbb{R})$ such that $\phi_2(x) = q\phi_1(x)q^{-1}$ for all $x \in \mathbb{C}$.
 - (c) Let h be an element in $GL_2(\mathbb{R})$ whose characteristic polynomial f(x) is irreducible over \mathbb{R} . Let $F \subset M_2(\mathbb{R})$ be the subring generated by h and $a \cdot I$ for all $a \in \mathbb{R}$, where I is the idenity matrix. Show that F is isomorphic to \mathbb{C} .
 - (d) Let h' be any element in $GL_2(\mathbb{R})$ with the same characteristic polynomial f(x) as h in (c). Show that h and h' are conjugate in $GL_2(\mathbb{R})$.
 - (e) If f(x) in (c) and (d) is reducible over \mathbb{R} , will the same conclusion on h and h' hold? Give reasons.
- **3.** Let G be a non-abelian finite group. Let c(G) be the number of conjugacy classes in G Define $\overline{c}(G) := c(G)/|G|$, $(|G| = \operatorname{Card}(G))$.
 - (a) Prove that $\overline{c}(G) \leq \frac{5}{8}$.
 - (b) Is there a finite group H with $\bar{c}(H) = \frac{5}{8}$?
 - (c) (open ended question) Suppose that there exists a prime number p and an element $x \in G$ such that the cardinality of the conjugacy class of x is divisible by p. Find a good/sharp upper bound for $\overline{c}(G)$.
- **4.** Let F be a splitting field over \mathbb{Q} the polynomial $x^8 5 \in \mathbb{Q}[x]$. Recall that F is the subfield of \mathbb{C} generated by all roots of this polynomial.

- (a) Find the degree $[F:\mathbb{Q}]$ of the number field F.
- (b) Determine the Galois group $Gal(F/\mathbb{Q})$.
- **5.** Let $T \subset \mathbb{N}_{>0}$ be a finite set of positive integers. For each integer n > 0, define a_n to be the number of all finite sequences (t_1, \ldots, t_m) with $m \leq n$, $t_i \in T$ for all $i = 1, \ldots, m$ and $t_1 + \ldots + t_m = n$. Prove that the infinite series

$$1 + \sum_{n \ge 1} a_n z^n \in \mathbb{C}[[z]]$$

is a rational function in z, and find this rational function.

6. Describe all the irreducible complex representations of the group S_4 (the symmetric group on four letters).