IFISS: A Matlab Toolbox for Modelling Incompressible Flow

David Silvester

Dept of Mathematics University of Manchester

Howard Elman

Dept of Computer Science University of Maryland

Alison Ramage

Dept of Mathematics University of Strathclyde

IFISS

Incompressible Flow & Iterative Solver Software

www.manchester.ac.uk/ifiss www.cs.umd.edu/~elman/ifiss.html

Google

search for IFISS

H.C. Elman, D.J. Silvester and A.J. Wathen

Finite Elements and Fast Iterative Solvers: with applications in incompressible fluid dynamics

Oxford University Press, Oxford, 2005.

Overview

Four underlying problems on two-dimensional domains:

Diffusion equation

$$\nabla^2 u = f$$

Convection-Diffusion equation

$$-\epsilon \nabla^2 u + w \cdot \nabla u = f$$

Stokes equations

$$-\nabla^2 u + \operatorname{grad} p = f$$
$$-\operatorname{div} u = 0$$

Navier-Stokes equations

$$-\nu \nabla^2 u + (u \cdot \operatorname{grad}) \, u + \operatorname{grad} p = f$$
$$-\operatorname{div} u = 0$$

Two Main Components

Finite element discretisations

- Bilinear/biquadratic elements on rectangles
- Streamline upwinding for convection-diffusion equation
- Mixed finite elements for Stokes/Navier-Stokes equations with stable and stabilised elements
- A posteriori error estimation

Iterative solution of discrete (linearised) systems

Preconditioned Krylov subspace methods

CG MINRES BiCGStab(2)

Problem-appropriate preconditioners

Preconditioned Solvers

Diffusion equation

CG + IC
MINRES Multigrid

Convection-Diffusion equation

GMRES + ILU BiCGStab(2) Multigrid

Stokes equations

MINRES + Block preconditioning with inner multigrid

Navier-Stokes equations

GMRES + Pressure convection-diffusion BiCGStab(2) Least squares commutator with inner multigrid

Other Key Features

- several problem domains
 square, L-shaped, step
- graphical displays
 grid, solution, error estimate
- user access to data and problem structure
- full user access to code
- user can change problem features:
 - domain
 - boundary conditions
 - solvers

Selected Features: Convection-Diffusion

$$-\epsilon \nabla^2 u + w \cdot \nabla u = f$$

Galerkin FEM

$$\epsilon(\nabla u_h, \nabla v_h) + (w \cdot \nabla u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h$$

Petrov-Galerkin FEM (streamline diffusion)

$$\epsilon(\nabla u_h, \nabla v_h) + (w \cdot \nabla u_h, v_h) + \frac{\delta h}{\|w\|} (w \cdot \nabla u_h, w \cdot \nabla v_h)
= (f, v_h) + \frac{\delta h}{\|w\|} (f, w \cdot \nabla v_h) \quad \forall v_h \in V_h$$

parameter δ generated automatically

Elman and Ramage SINUM 40 (2002), Math. Comp. 72 (2003) Fischer, Ramage, Silvester and Wathen BIT 38 (1998)

Selected Features: Stokes

$$-\nabla^2 u + \operatorname{grad} p = f$$
$$-\operatorname{div} u = 0$$

Stable elements

$$Q_2 - Q_1$$

biquadratic velocities bilinear pressures

$$Q_2 - P_{-1}$$

biquadratic velocities discontinuous linear pressures

Stablilised elements

$$Q_1 - P_0$$

bilinear velocities constant pressures

$$Q_1 - Q_1$$

bilinear velocities bilinear pressures

Selected Features: Stokes

$$\left[\begin{array}{cc} A & B^T \\ B & -C \end{array}\right] \left[\begin{array}{c} u \\ p \end{array}\right] = \left[\begin{array}{c} f \\ 0 \end{array}\right]$$

Ideal block preconditioner: Poisson solve Mass matrix solve

$$\left[\begin{array}{cc} A & 0 \\ 0 & M_S \end{array}\right]$$

Iterated preconditioner: One GMG V-cycle for Poisson solve $\begin{pmatrix} Q_A & 0 \\ 0 & M_S \end{pmatrix}$ Mass matrix solve

$$egin{array}{ccc} Q_A & 0 \ 0 & M_S \end{array}$$

- convergence rates independent of h Silvester and Wathen SINUM 31 (1994)
- natural norm for problem

$$\sqrt{|u_h - u_h^k|_1^2 + ||p_h - p_h^k||_0^2}$$

Elman, Silvester and Wathen

Numer. Math. 90 (2002)

Selected Features: Navier-Stokes

$$-\nu \nabla^2 u + (u \cdot \operatorname{grad}) \, u + \operatorname{grad} p = f$$
$$-\operatorname{div} u = 0$$

$$A \equiv$$
Laplacian $B \equiv$ divergence

$$N \equiv$$
convection $W \equiv$ velocity derivatives

Picard

$$\begin{bmatrix} \nu A + N & 0 & B_x^T \\ 0 & \nu A + N & B_y^T \\ B_x & B_y & 0 \end{bmatrix} \begin{bmatrix} \delta u_x \\ \delta u_y \\ p \end{bmatrix} = \begin{bmatrix} \bar{f}_1 \\ \bar{f}_2 \\ \bar{g} \end{bmatrix}$$

Newton

$$\begin{bmatrix} \nu A + N + W_{xx} & W_{xy} & B_x^T \\ W_{yx} & \nu A + N + W_{yy} & B_y^T \\ B_x & B_y & 0 \end{bmatrix} \begin{bmatrix} \delta u_x \\ \delta u_y \\ p \end{bmatrix} = \begin{bmatrix} \hat{f}_1 \\ \hat{f}_2 \\ \hat{g} \end{bmatrix}$$

Selected Features: Navier-Stokes

preconditioner
$$P = \begin{bmatrix} M_F & B^T \\ 0 & -M_S \end{bmatrix}$$

$$M_F \sim ext{convection-diffusion operator} \quad F \ M_S \sim ext{Schur complement} \quad S = BF^{-1}B^T + rac{1}{
u}C$$

- Pressure convection-diffusion preconditioning
 Silvester et al. JCAM 128 (2001), Kay et al. SISC 24 (2002)
- Least squares commutator preconditioning Elman SISC 20 (1999), Elman et al. SISC 27 (2006)

Sample Problem: Diffusion

- temperature distribution in a plate
- L-shaped domain
- uniform heating constant source function f(x,y)=1
- edges kept ice-cold
 zero Dirichlet boundary conditions everywhere
- underlying solution has a singularity at the origin

```
specification of reference Poisson problem.
choose specific example
     1 Square domain, constant source
     2 L-shaped domain, constant source
     3 Square domain, analytic solution
     4 L-shaped domain, analytic solution
    2
Grid generation for a simple L-shaped domain.
grid parameter: 3 for underlying 8x8 grid (default is 4)
grid stretch factor (default is 1)
Q1/Q2 approximation 1/2? (default Q1)
setting up 01 diffusion matrices... done
system saved in ell_diff.mat ...
solving linear system ... done
Galerkin system solved in 5.693e-03 seconds
computing Q1 element flux jumps... done
computing Q1 interior residuals... done
computing local error estimator... done
estimated global error (in energy): 3.466590e-02
plotting solution and estimated errors... done
```

Sample Results: Diffusion

Sample Results: Diffusion

Finite Element Solution

Estimated Error


```
discrete diffusion system ...
PCG/MINRES? 1/2 (default PCG)
    1
tolerance? (default 1e-6)
    1.0000e-06
maximum number of iterations? (default 100)
    100
preconditioner:
 0 none
 1 diagonal
 2 incomplete cholesky
 3 geometric multigrid
default is geometric multigrid
    0
PCG iteration ...
convergence in 41 iterations
k log10(||r_k||/||r_0||)
 0 0.0000
 41 -6.2529
Bingo!
 3.6958e-01 seconds
use new (enter figno) or existing (0) figure, default is 0
colour (b,q,r,c,m,y,k): enter 1-7 (default 1)
                                                           SIAM CSE Meeting, February 2007 - p.16/3
```

Sample Results: Diffusion

GMG/IC

Sample Problem: Convection-Diffusion

- square domain
- constant wind at angle of 30° to the left of vertical

$$\mathbf{w} = \left(-\sin\frac{\pi}{6}, \cos\frac{\pi}{6}\right)$$

- Dirichlet boundary conditions:
 - 0 on left and top boundaries
 - 1 on the right boundary
 - jump discontinuity (from 0 to 1) on the bottom boundary at (0,-1)
- solution features:
 - exponential boundary layer near the top boundary
 - internal layer as discontinuity smeared by the presence of diffusion

Sample Results: Convection-Diffusion

Galerkin

Estimated Error

0

0.5

-0.5

Sample Results: Convection-Diffusion

Petrov-Galerkin

Estimated Error

Sample Results: Convection-Diffusion

GMG/GS

Galerkin

— Petrov-Galerkin

Sample Problem: Stokes

- classical test problem used in fluid dynamics lid-driven cavity
- square cavity $[-1,1] \times [-1,1]$
- flow induced by lid moving from left to right
- Dirichlet no-flow boundary condition on side and bottom boundaries
- different choices of nonzero horizontal velocity on the lid give rise to different computational models

$$\{y=1; -1 \le x \le 1 | u_x = 1 - x^4\}$$

regularised cavity

Streamlines: selected

diag — ideal block — GMG/Jacobi block

Sample Problem: Navier-Stokes

- flow over a step
- step of user-specified length (for high Reynolds number flow, longer steps required to allow flow to fully develop)
- boundary conditions:
 - Poiseuille flow profile on inflow boundary
 - no-flow condition on top and bottom walls
 - Neumann condition at outflow boundary (zero mean outflow pressure)
- singularity at the origin

Navier-Stokes Batch Mode File

NSQ1P0_batch.m

```
% Step problem
       % Location of outflow boundary
8
       % Grid parameter
       % Uniform outflow
2
      % Q1-P0
.01
      % Viscosity
3
       % Hybrid nonlinear iteration
2
      % Number of Picard steps
      % Number of Newton steps
1.d-5 % Nonlinear tolerance
0.25 % Stokes stabilisation parameter
```

batchmode('NSQ1P0');

Streamlines: non-uniform [Navier-Stokes]

GMRES/ideal PCD GMRES/LSC+GMG GMRES/ideal LSC BiCGStab(2)/LSC+GMG

IFISS

Incompressible Flow & Iterative Solver Software

www.manchester.ac.uk/ifiss www.cs.umd.edu/~elman/ifiss.html

Google

search for IFISS

Stay tuned for applications/examples/extensions!