Staggered Difference-in-Differences in Practice: Causal Insights from the Music Industry

NAZLI M. ALAGÖZ

• Who I Am

- ¶ Nazli Alagöz (call me Naz!)
- PhD Candidate in Quantitative Marketing
- Background: Economics & Econometrics
- Graduating: Dec 2023

Areas of Interest

- III Data Science
 - **S** Causal Inference

Motivating Example

Opportunity and uncertainity in the music industry around "music syncronisations" (sync)

Approach

- What's the impact of music sync on song popularity?
- Challenges in experimentation
 - X Standard A/B testing is impractical in this context
- Instead, use observational data
 - Dataset: Features songs that are both synced and not synced
 - III Metrics: Number of playlist placements as proxy for popularity

How to Estimate the Effect?

- X Try to compare outcomes of synced vs. unsynced songs
 - Ignores the baseline differences in synced vs. unsynced songs
 - Other song-level characteristics
- X Try to compare before and after for the synced songs
 - Ignores time trends and seasonality
- Variable The solution: Difference-in-Differences (DiD)

Difference-in-Differences (DiD)

Two-group and two-period case

Difference-in-Differences (DiD)

Using parallel trends assumption, we can estimate the treatment effect on the treated.

There are different treatment cohorts: **early-treated, late-treated, and never-treated**.

Traditional DiD estimates a treatment effect as a **weighted average of two-group and two-period combination estimates**.

"Forbidden comparisons"

The difference in the changes = change in the treated – change in the control = 1-5 = -4

How to Address This Issue

- Traditional DiD estimator can provide misleading estimates when there is variation in treatment timing
- We can use DiD making sure to avoid "forbidden comparisons"
- Use the clean controls, i.e., late- or never-treated by using staggered DiD methods
- Most used staggered DiD methods:
 - Staggered DiD by Callaway & Sant'Anna 2021
 - Stacked DiD by Cengiz et al. 2019

Staggered DiD by Callaway & Sant'Anna 2021

- Practical Implementation
 - Estimates a group-time treatment effect
 - Aggregates estimated effects by group, exposure, or at an overall level
- Advantages
 - Available as an R package called "did"
 - Transparent selection of control group
 - Built-in options for customization (e.g., choosing the control group)
- Disadvantages
 - No covariate interactions to gauge heterogeneity
 - Can be computationally intensive

Stacked DiD by Cengiz et al. 2019

- Practical Implementation
 - Create a 'stacked dataset' composed of group-specific
 - Run a modified DiD regression on the stacked data
- Advantages
 - Similar to traditional DiD in specification
 - Computationally inexpensive
 - Can include covariates to investigate heterogeneity
- Disadvantages
 - No dedicated package for implementation.

Results

Takeaways

- DiD is a powerful tool in situations where A/B tests are impractical
- However, if there is variation in treatment timing, the traditional DiD estimator
 might lead to misleading treatment effects
- We can avoid this by making sure to use the right controls with staggered DiD approaches

Thank you for listening!

- Email:
 - nalagoz13@gmail.com
- S LinkedIn:
 - linkedin.com/in/nazli-m-alagoz/
- Medium:
 - medium.com/@nalagoz13

Appendix

Difference-in-Differences (DiD)

• The notation

$$Y_{it} = \alpha_i + \gamma_t + \beta^{dd} D_{it} + \epsilon_{it}$$

Staggered DiD by Callaway & Sant'Anna 2021

- General
 - Control Group: Utilizes units treated late or never treated as control.
 - **Group-Time Effect**: Introduces the notion of average treatment effect over time for a specific cohort ATT(q,t).
 - Flexible: Computes weighted averages of multiple treatment effects.
- Practical Implementation
 - Available as an R package called did.
- Advantages
 - © Comprehensive R package.
 - Allows for conditional Parallel Trends Assumption.
 - **©** Transparent selection of control group.
 - Implements multiple testing correction.
- Disadvantages
 - X No covariate interactions to gauge heterogeneity.
 - © Computationally intensive.
 - Lower-level estimations can be imprecise.

Stacked DiD by Cengiz et al. 2019

- General
 - Cohort-Specific Datasets: Units treated in the same period and their respective controls.
 - Clean Controls: Matches each treated unit with unaffected controls.
 - Stacking: Stacks the cohort-specific datasets.
 - Fixed Effects: Incorporates both unit-cohort and time-cohort categories.
- Practical Implementation
 - Stacked regression model for nuanced treatment effects.
 - Weighted averages for group-time average treatment effects on the treated.
- Advantages
 - Similar to traditional TWFE in specification.
 - **½** Computationally inexpensive.
 - III Can include covariates to investigate heterogeneity.
- Disadvantages
 - X No dedicated package for implementation.