Álgebra Universal e Categorias

– 1° teste (19 de abril de 2016) — duração: 2 horas _____

1. Sejam

- $R = \{a, b, c, d, e, f, g, h, i\};$
- $\mathcal{R}_1 = (R; \wedge^{\mathcal{R}_1}, \vee^{\mathcal{R}_1})$ o reticulado correspondente ao diagrama de Hasse representado na figura 1. e tal que $\wedge^{\mathcal{R}_1}$ e $\vee^{\mathcal{R}_1}$ representam, respetivamente, as operações de ínfimo (\wedge) e supremo (\vee);
- $\mathcal{R}_2 = (\mathcal{P}(R); \wedge^{\mathcal{R}_2}, \vee^{\mathcal{R}_2})$ o reticulado onde $\mathcal{P}(R) = \{X \mid X \subseteq R\}$ e $\wedge^{\mathcal{R}_2}$ e $\vee^{\mathcal{R}_2}$ representam, respetivamente, a interseção e a união de conjuntos.

figura 1.

- (a) Para cada um dos conjuntos A_i , $i \in \{1, 2\}$, a seguir indicados, diga se A_i é um subuniverso de \mathcal{R}_1 e determine $Sg^{\mathcal{R}_1}(A_i)$. Justifique a sua resposta.
 - i. $A_1 = \{r \in R : r \land f = f\} \cup \{r \in R : r \land g = g\}.$
 - ii. $A_2 = \{r \in R : r \land (f \lor g) = f \lor g\}.$
- (b) Considere a aplicação $\alpha: R \to \mathcal{P}(R)$ definida por $\alpha(x) = \{r \in R \mid r \land x = x\}$, para cada $x \in R$. Diga, justificando, se α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 .
- (c) Diga se \mathcal{R}_1 é um reticulado modular. Justifique a sua resposta.
- 2. Seja $(R; \land, \lor)$ um reticulado. Um subconjunto não vazio F de R diz-se um filtro de R se:
 - (F1) $\forall x, y \in R \ (x, y \in F \Rightarrow x \land y \in F)$;
 - (F2) $\forall x \in F, \forall y \in R \ (x \lor y = y \Rightarrow y \in F).$

Mostre que todo o filtro de R é um subniverso de R.

- 3. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo e $\alpha: \mathcal{A} \to \mathcal{B}$ e $\beta: \mathcal{B} \to \mathcal{C}$ homomorfismos.
 - (a) Mostre que $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .
 - (b) Mostre que $\ker \alpha$ é uma congruência em \mathcal{A} .
 - (c) Mostre que $\ker \alpha \subseteq \ker(\beta \circ \alpha)$. Conclua que se $\beta \circ \alpha$ é um monomorfismo, então α é um monomorfismo.
- 4. (a) Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \mathrm{Con}\mathcal{A}$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \triangle_A$ e $\theta \circ \theta^* = \nabla_A$.
 - (b) Seja $\mathcal{A}=(\{a,b,c,d\},f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\}\to\{a,b,c,d\}$ é a operação definida por

- i. Sejam $\theta_1 = \theta(a,b)$ e $\theta_2 = \theta(a,c) \vee \theta(b,d)$. Determine θ_1 e θ_2 . Justifique que (θ_1,θ_2) é um par de conguências fator.
- ii. Justifique que a álgebra \mathcal{A} não é diretamente indecomponível. Dê exemplo de álgebras $\mathcal{A}_1=(A_1,f^{\mathcal{A}_1})$ e $\mathcal{A}_2=(A_2,f^{\mathcal{A}_2})$ não triviais tais que $\mathcal{A}\cong\mathcal{A}_1\times\mathcal{A}_2$.
- 5. Considere os operadores H e P. Mostre que:
 - (a) H é um operador idempotente.
 - (b) HP é um operador de fecho.