Formulario general

Virgilio Murillo Ochoa 4 de mayo de 2021

Índice

1.	pro	bability and statistics	4
	1.1.	Independent Events	4
	1.2.	morgan laws	4
	1.3.	separated probabilities	5
2.	Ecu	aciones Diferenciales	5
	2.1.	linearity	5
	2.2.	homogeneous ecuations	6
	2.3.	homogeneous function of grade n	6
	2.4.	Exact ED	6
	2.5.	Bernouully ecuation	6
	2.6.	Ricat Ecuation	7
	2.7.	Cauchy Euler ecuation	7
	2.8.	integrant factor	7
	2.9.	Linear differential equations	7
	2.10.	Order Reduction	8
	2.11.	Constant coeficients Ecuation	9
	2.12.	parameter variation	9
	2.13.	Indeterminate Coeficients	10
3.	Nur	merical Calculus	11
	3.1.	Taylor Polinomial	11
	3.2.	Newton Raphson	11
	3.3.	Complement to one	11
	3.4.	complement to two	11
	3.5.	complemento a dos	11
	3.6.	convertir de punto flotante a decimal	11
	3.7.	convert decimal to float	12

7.	Dife	erential Calculus	23
	6.9.	Matrices	23
	6.8.	miscelanious	23
	6.7.	arrow symbols	22
	6.6.	binary operation relation symbols	22
	6.5.	Variable Sized simbols	22
	6.4.	Delimeters	
	6.3.	math constructs	21
	6.2.	Greek and Hebrew Letters	21
	6.1.	commonly used special symbols	20
6.	Late	$\mathbf{e}\mathbf{x}$	20
	5.5.	mount devices	20
		Configure wireless	19
		configure date and time	19
		Print in arch linux	18
		Mantainance	18
5 .		h Linux	18
	4.4.	general formula	17
		cubic differences	17
		Sintetic divition	16
		factorization	15
4.		ebra	15
	3.11.	Lagrange Polinomial	14
	3.10.	Divided differences	14
	3.9.	Fixed point iteration	13
	3.8.	Convert decimal fraction to float	13

8.	Inte	egral Calculus	2 5
9.	Trig	gonometry	26
	9.1.	Basic Identities	26
	9.2.	Double Angle	26

1. probability and statistics

$$P(\epsilon^c) = 1 - P(\epsilon)$$

$$P(A \cap B^c) = P(A \backslash B) = P(A) - P(A \cup B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$A \cap (B \cup A) = (A \cap B) \cup (A \cap B)$$
$$A \cup (B \cup A) = (A \cup B) \cup (A \cup B)$$

1.1. Independent Events

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$p(A|B) = P(A \cup B) = p(A) * P(B)$$

1.2. morgan laws

$$A^c \cup B^c = (A \cap B)^c$$

$$A^c \cap B^c = (A \cup B)^c$$
$$| = dadoque$$

1.3. separated probabilities

Sean B_k Eventos mutuamente excluyentes, pariticion de S

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \dots + P(B_k)P(A|B_k!)$$

$$P(A) = \sum_{i=1}^{k} P(B_i)P(A|B_k)$$

$$P(B_i|A) = \frac{P(B_i) * P(A|B_i)}{P(A)}$$

$$P(B_i|A) = \frac{P(B_i) - P(A|B_i)}{\sum_{i=1}^{k} P(B_i)P(A|B_k)}$$

$$a^{\Phi(m)} = 1 \pmod{m}$$

$$\Phi(p \times q) = (p-1)(q-1) \text{ para pq primos}$$

$$\Phi(p_1^{k_1} \times ... \times p_n^{k_n}) = (p_1^{k_1} - p_1^{k_1-1}) \times ... \times (p_n^{k_n} - p_n^{k_n-1})$$

2. Ecuaciones Diferenciales

2.1. linearity

$$a_n(x)\frac{d^ny}{dx^n} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

2.2. homogeneous ecuations

given:

$$M(x,y)dx + N(x,y)dy = 0$$

the ecuation is homogeneous if M and N are homogeneous functions of the same exponent cambio de variable y=ux o x=uy, dy=xdu+udx Subsección 2.3

2.3. homogeneous function of grade n

$$f(tx, ty) = t^n f(x, y)$$

2.4. Exact ED

para ser exacta tiene que cumplir dos condiciones

$$1. M(x,y)dx + N(x,y)dy = 0$$

$$2. \ \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

si no las cumple puedes usar el factor integrante para que cumpla Subsección 2.8

para resolver toma en cuenta las siguientes dos cosas

$$f(x,y) = \int M dx + g(y) = \int N dy + h(x)$$
$$\frac{\partial F}{\partial x} = M , \frac{\partial F}{\partial y} = N$$

2.5. Bernoully ecuation

aplica cuando la ecuacion diferencial tiene la siguiente forma:

$$P_0(x)\frac{dy}{dx} + P(x)y = F(x)y^n$$

se hace el cambio de variable $u=y^{1-n}$ y se obtiene una ecuacion lineal

2.6. Ricat Ecuation

tiene la siguiente forma

$$y' = Q(x)y^2 + P(x)y + R(x)$$

se hace la sustitución $y = y_1 + u^{-1}$

2.7. Cauchy Euler ecuation

se usa para resolver una ecuacion de segundo grado

$$ax^2y'' + bxy' + cy = 0$$
$$y = x^r, \ x > 0$$

2.8. integrant factor

aplica cuando hay una f(x,y) tal que f(x,y)(ED) = exacta

• si $\frac{M_y - N_x}{N}$ es funcion solamente de x entonces $P(x) = \frac{M_y - N_x}{N}$

$$f(x) = e^{\int P(x)dx}$$
 es un factor de integracion

$$\bullet$$
 si $M_y - N_x = m \frac{N}{x} - n \frac{M}{y}$ entonces
$$f(x) = x^m y^n \text{ es un factor de integracion}$$

used by Elemento 2.4

2.9. Linear differential equations

$$\frac{dy}{dx} + P(x)y = q(x)$$
$$u(x) = e^{\int P(x)dx}$$

Sol =
$$u(x)y = \int u(x)q(x)dx$$

2.10. Order Reduction

aplica cuando conoces una solucion de una ED Lineal homogenea de segundo orden

$$y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{y_1'} dx$$

$$y'' + P(x)y' + q(x)y = 0$$

2.11. Constant coefficients Ecuation

para poder resolver por este metodo tiene que ser una ecuacion lineal de coeficientes constantes de la forma

$$y''C_1 + y'C_2 + yC_3 = 0$$

se hace la sustitucion

$$y = e^{rx}$$

quedara una funcion cuadratica en terminos de r se puede llegar a usar la identidad de euler la solucion queda de la forma:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

tambien puede servir:

$$r = a + bi$$

$$y_1 = C_1 * e^{\alpha x} \cos(bx)$$

$$y_2 = C_2 * e^{\alpha x} \operatorname{sen}(bx)$$

nota: si hay multiplicidad, ejemplo: $(r-1)^3 = 0$

$$y_h = e^{rx} + xe^{rx} + x^2e^{rx}$$

siendo que r = 1 entonces:

$$y_h = e^x + xe^x + x^2e^x$$

2.12. parameter variation

tienen la forma $k_1y'' + k_2y' + k_3y = f(x)$

$$u_1 = -\int \frac{y_2 f(x)}{W} dx \qquad u_2 = \int \frac{y_1 f(x)}{W} dx$$
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

 $siendo y_h$ la solucion de la ecuacion homogenea asociada

$$y_h = C_1 y_1 + C_2 y_2$$

y siendo y_p la solucion definitiva

$$y_p = u_1 y_1 + C_2 y_2$$

2.13. Indeterminate Coeficients

r(x) = polinomio, exponencial, Seno, Coseno

pasos:

- 1. Calcular y_n es decir calcular la ecuación homogenea relacionada, por coeficientes constantes
- 2. Encontrat y_p
- caso 1 No hay funciones en comun con r(x)
 nota: tomar en cuenta el teorema de superposicion de soluciones si

$$r(x) = x^3 + x + 10 \operatorname{sen} 8x$$

simplemente se suman los proposiciones

$$y_p = Ax^3 + Bx^2 + Cx + D + A\sin(8x) + B\cos(8x)$$

y lo mismo aplica para la multiplicacion

-
$$y'' + C_1 y' + c_2 y = x^3 + x$$

proponer $\to y_p = Ax^3 + Bx^2 + Cx + D$
- $y'' + C_1 y' + c_2 y = 10 \sec 8x$
proponer $\to y_p = A \sec (8x) + B \cos (8x)$
- $y'' + C_1 y' + c_2 y = 12e^{5x}$
proponer $\to y_p = Ae^{5x}$

caso 2 hay funciones que coinciden con r(x)

simplemente multiplicar la funcion for x hasta que no hayas funciones en comun con x pero tiene que ser la x^n mas pequena posible

3. Numerical Calculus

3.1. Taylor Polinomial

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x - x_0)^2}{2!}$$
$$= \sum_{i=0}^{n} \frac{f^i(x_0)(x - x_0)^i}{i!}$$

3.2. Newton Raphson

$$P_{n+1} = P_n - \frac{f(P_0)}{f'(P_0)}$$

3.3. Complement to one

3.4. complement to two

se cambian 1 por ceros y viceversa

3.5. complemento a dos

de derecha a izquierda y apartir del primer 1 encontrado sin incluirlo se hace la operacion de complemento a uno

3.6. convertir de punto flotante a decimal

Ejemplo:

$$(-1) \times (1 + mantisa) \times 2^{expo-maxExpo}$$

 $(-1) \times (1 + 0.75) \times 2^{124-127}$
 $= -0.21875$

3.7. convert decimal to float

Ejemplo:

$$171,25 = 10101011,01$$

Se pasa a una forma con exponente dejando solo un entero

$$1,010101101 \times 2^7$$

El primer bit es de signo

$$1 = -$$

$$0 = +$$

Los siguientes 8 numeros son el maximo exponente mas el exponente al que esta elevado el 2

$$127 + 7 = 134$$

se convierte el 134 a base $2\,$

 $134_10 = 10000110_2$

y la parte decimal es la mantiza, que queda igual

010101101

3.8. Convert decimal fraction to float

para convertir de fraccionario a binario primero se convierte la parte entera y la parte fraccionaria se convierte usando el siguiente codigo

Codigo:

```
//se da un flotante de la forma 0.321312 con
//el numero de digitos a convertir
//ejemplo
//in: 0.42344 3
//out: .001
string FraccionBinaria(float FraccionDecimal, int Nume
{
        string ans = ".";
        for(int i=0;i<NumeroDeDigitos;i++)</pre>
        {
                FraccionDecimal*=2;
                 if(FraccionDecimal > 1.0)
                 {
                         FraccionDecimal-=1.0;
                         ans.push_back('1');
                 }
                 else
                 {
                         ans.push_back('0');
                }
        }
        return ans;
}
```

3.9. Fixed point iteration

de una ecuacion se despeja x y se substituye, tomando el resultado anterior empezando desde una x arbitraria

3.10. Divided differences

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{x_2, x_3) - f(x_0, x_1)}{x_3 - x_0}$$

$$P_n = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \times \dots \times (x - x_n)$$

$$\boxed{\begin{array}{cccc} j & X_j & f(X_j) & 1 & 2 \\ \hline 0 & X_0 & f(X_0) & 1 & 1 \\ \hline 1 & X_1 & f(X_1) & f(X_0, X_1) & 1 \\ \hline 2 & X_2 & f(X_2) & f(X_1, X_2) & f(X_0, X_1, X_2) \end{array}}$$

3.11. Lagrange Polinomial

$$P_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

4. Algebra

4.1. factorization

- 1. common factor
- 2. common factor by agroupation of terms
- 3. cubic differences
- 4. perfect square trinomial
- 5. trinomial of the form $x^2 + bx + c$
- 6. trinomial of the form $ax^2 + bx + c$
- 7. sum and difference of cubes
- 8. sintetic divition
- 9. general formula

4.2. Sintetic divition

Example:

$$x^3 - 5x^2 + 2x + 8$$

Taking the divisors of the independent term

$$p = D_8 = \{\pm 1, \pm 2, \pm 4, \pm 8\}$$

and the divisors of the term with the highest exponent

$$q = D_1 = \{\pm 1\}$$

 $p/q = \{\pm 1, \pm 2, \pm 4, \pm 8\}$

now all the posibilities are in the space p/q that are integers so:

then:

$$(x^2 - 6x + 8)(x+1)$$

then:

$$(x+1)(x-4)(x-2)$$

4.3. cubic differences

$$u^{3} + 1 = (u^{2} - u + 1)(u + 1)$$
$$u^{3} - 1 = (u^{2} + u + 1)(u - 1)$$

4.4. general formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

5. Arch Linux

5.1. Mantainance

#check file size

```
du -sh .cache/
     #remove a file
     rm -rt .cache/
     #delete what you don't need in .config file
specific mantainance:
     #check the failed systems
     systemctl --failed
     #check the systemd journal
     sudo journalctl -p 3-xb
     #if the system doesn't boots then ctrl+alt+shift the
     #then update mirrors
     #clar chache
     #then to update the whole system use:
     sudo pacman -Syyu
     #to check system updates
     sudo pacman -Syu
     #if you wan't to remove all packages in the drive us
     sudo pacman -Scc
     #remove all unwanted dependencies
     paru -Yc
     #remove orphan packages
     sudo pacman -Rns \$(pacman - Qdtq)
     #sudo pacman -Syyy Syncrhonise data use "mirror1"
```

5.2. Print in arch linux

install packages: usbutils, lsusb, cups use this to make cups usable

sudo systemct enable cups
sudo systemctl start cups
localhost:631

lp -d HP_Officejey_Pro_8600]

5.3. configure date and time

hwclock --set --date = "04/32/2021 19:00:00" hwclock -hctosys

5.4. Configure wireless

#when entering an iso
iwctl
#then in the ui

#to list all available devices
device list

#to scan networks
station <device> scan

#to get newworks
station <device> get-network

```
#to connect to a network
station <device> connect "<name of network>"
#to check if the connection is staable
ping -c s 8.8.8.8
#don't forget before rebooting the iso run
pacman nmtui
```

dwm basic configuration

#MODKEY + shift + q to restart X server
startx # to start the X server

5.5. mount devices

mount usb sticks:

#to mount a usb stick
mount /dev/sdb1 /mnt/<destination folder>
#to unmount a sub stick
umount /dev/sdb1

mount an android device:

#to mount and android device
simple-mtpfs --device 1 tablet/

#to unmount an android device
fusermount -u /tablet

6. Latex

6.1. commonly used special symbols

```
use the shortcut created to don't waste time \= \text{textbackslash}
\= \text{textbar}
\= \- \
```

6.2. Greek and Hebrew Letters

α	\ alpha	κ	\ kappa	$ \psi $	\ psi
β	\ beta	λ	\ lambda	ρ	\ rho
χ	\ chi	$\mid \mu \mid$	\ mu	$\mid au$	\ tau
ϵ	\ epsilon	Ø	\ o	θ	\ theta
η	\ eta	ω	\ omega	v	\ upsilon
γ	\ gamma	ϕ	\ phi	ξ	\ xi
ι	\ iota	π	\ pi	ζ	\ zeta
F	\ digamma	Δ	\ Delta	Θ	\ Theta
ε	\ varepsilon	Γ	\ Gamma	Υ	\ Upsilon
×	\ varkappa	Λ	\ Lambda		\ Xi
φ	\ varphi	Ω	\ Omega		
$\overline{\omega}$	\ varpi	Φ	\ Phi	×	\ aleph
ϱ	\ varrho	П	\ Pi		\ beth
ς	\ varsigma	Ψ	\ Psi	7	\ daleth
ϑ	\ vartheta	Σ	\ Sigma	J	\ gimel

6.3. math constructs

$\frac{abc}{xyz}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\overline{abc}	\overline{abc}	\overrightarrow{abc}	abc
$\int_{0}^{\infty} f'$	$\setminus f'$	\underline{abc}	\underline{abc}	dabc	\overleftarrow{abc}
\sqrt{aba}	$\frac{1}{2} \operatorname{sqrt} \{ abc \}$	\widehat{abc}	\widehat{abc}	\widehat{abc}	\overbrace{abc}
$\sqrt[n]{aba}$	$c \cdot sqrt[n] \{abc\}$	\widetilde{abc}	\widetilde{abc}	abc	\underbrace{abc}

6.4. Delimeters

use the pair /lefts and /rights

example:

 $\left| \left| expr \right| \right|$

6.5. Variable Sized simbols

\sum	\sum	\int	\int	+	\biguplus
\prod	\prod	∮	oint	\cap	\bigcap
П	\coprod	$\int \int$	\iint	U	\bigcup
\oplus	\bigoplus	V	\bigvee	\otimes	bigotimes
\land	\bigwedge	\odot	\bigodot		\bigsqcup

6.6. binary operation relation symbols

\cap	\cap	U	\cup
\oplus	\uplus	Ш	\sqcup
П	\sqcap	\land	\wedge
V	\vee		\equiv
\neq	\neq	\simeq	\simeq
\approx	\approx	Ė	\doteq
	\subset	••	\because
	\sqsubset		\sqsubseteq
\geq	\geq	••	\therefore

6.7. arrow symbols

\leftarrow	\leftarrow	(\Leftarrow
\rightarrow	\rightarrow	\Rightarrow	\Rightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
 	\uparrow	\uparrow	Uparrow
\downarrow	\downarrow	₩	\Downarrow
\downarrow	\updownarrow	\$	\Updownarrow
7	\nearrow	>	\searrow
	\swarrow	_	\nwarrow

6.8. miscelanious

∞	\infty	∂	\partial
	\cdots	:	\vdots
:	\vdots		\ldots
٠	\ddots	\forall	\forall
\exists	\exists	∄	\nexists
Ø	\emptyset	_	angle
_	angle	4	\measuredangle
\cap	\cap	\cap	\cap
\cap	\cap	\cap	\cap

6.9. Matrices

matrices					
type	latex markup	Renders as			
Plain	$\begin{<<} opt>\\ matrix \\ 1 2 \\ 2 \\ 3 \\ end {<} opt>\\ matrix \\ \end{<}$	1 2 3 4			

< opt >:

in this part you can specify which kind of matrix you wan't so you can place p: parenthesis matrix ()

b:bracket matrix []

B: for braces matrix

v: for pipes matrix —

V: for double pipe ——

7. Diferential Calculus

$$(\tan(x))' = \sec^2(x), \ (\csc(x))' = \csc(x)\cot(x)$$

$$(\sec(x))' = \sec(x)\tan(x), \ (\cot(x))' = -\csc^2(x)$$

$$(\ln(x))' = \frac{1}{x}$$

$$(a^x)' = a^x \ln(a) * x'$$

$$(\frac{f(x)}{g(x)})' = \frac{g(x)f(x)' = g(x)'f(x)}{(g(x))^2}$$

8. Integral Calculus

9. Trigonometry

9.1. Basic Identities

$$\cos(\alpha) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^X + e^{-x}}{2}$$

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x + y) + \sin(x - y)]$$

9.2. Double Angle

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$\cos(2\theta) = 2\cos^2\theta - 1$$