LAB # 06

Roll No.: 2022F-BSE-124

SUPERVISED LEARNING (LINEAR REGRESSION)

OBJECTIVES:

Implementing supervised learning, linear regression algorithm for training, testing and classification.

Lab Task

area	price
2600	550000
3000	565000
3200	610000
3600	680000
4000	725000

1. Implement linear regression algorithm on above dataset predict price of home with areas in the dataset by using (homeprices.csv).

SE-314L: Artificial Intelligence

Roll No.: 2022F-BSE-124

2. Implement linear regression using table 1 in such a way that the:

Predict price of a home with area = 5000 Sqr. Ft. Predict price of a home with area = 8000 Sqr. Ft. Predict price of a home with area = 9000 Sqr. Ft.

```
[7]: areas = [[5000], [8000], [9000]]
     predicted_prices = reg.predict(areas)
     for area, price in zip(areas, predicted_prices):
         print(f"Predicted price for area (area[0]) sq ft: {price}")
     Predicted price for area 5000 sq ft: 859554.7945205481
     Predicted price for area 8000 sq ft: 1266917.8082191783
     Predicted price for area 9000 sq ft: 1402705.479452055
     C:\Users\wajiz.pk\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarming: X does not have valid feature names, but LinearRegression was fitted wi
     th feature names
     warnings.warn(
[8]: m = reg.coef_[8]
     b = reg.intercept_
     for area in [5000, 8000, 9000]:
         calculated price = m * area + b
         print(f"Calculated price for area {area} sq ft: {calculated_price}")
     Calculated price for area 5000 sq ft: 859554.7945205481
     Calculated price for area 8000 sq ft: 1266917.8082191783
     Calculated price for area 9000 sq ft: 1402705.479452055
```

Home Tasks:

1. Implement Linear Regression on the given Advertising dataset to predict the sales of a product based on the amount spent on TV, Radio, and Newspaper advertisements?

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	9.3
151.5	41.3	58.5	18.5
180.8	10.8	58.4	12.9
8.7	48.9	75	7.2
57.5	32.8	23.5	11.8
120.2	19.6	11.6	13.2
8.6	2.1	1	4.8
199.8	2.6	21.2	10.6
66.1	5.8	24.2	8.6
214.7	24	4	17.4
23.8	35.1	65.9	9.2
97.5	7.6	7.2	9.7
204.1	32.9	46	19
195.4	47.7	52.9	22.4
67.8	36.6	114	12.5
281.4	39.6	55.8	24.4
69.2	20.5	18.3	11.3

```
[30]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
       from sklearn.model_selection import train_test_split
       from sklearn.linear_model import LinearRegression
       from sklearn.metrics import mean_squared_error
       df = pd.read_csv("Advertising.csv")
      print(df)
               TV Radio Newspaper Sales
       0 230.1 37.8 69.2 22.1
1 44.5 39.3 45.1 10.4
       2 17.2 45.9
                              69.3 9.3
       1 151.5 41.3 58.5 18.5
4 180.8 10.8 58.4 12.9
5 8.7 48.9 75.8 7.2
6 57.5 32.8 23.5 11.8
7 120.2 19.6 11.6 13.2
8 8.6 2.1 1.8 4.8
                               1.0 4.8
21.2 10.6
24.2 8.6
4.0 17.4
       8 8.6 2.1
9 199.8 2.6
10 66.1 5.8
       10 66.1
       11 214.7 24.0
       12 23.8 35.1
13 97.5 7.6
                               65.9 9.2
7.2 9.7
46.0 19.0
       14 204.1 32.9
       15 195.4 47.7
                                52.9 22.4
       16
           67.8 36.6
                              114.0 12.5
       17 281.4 39.6 55.8 24.4
18 69.2 20.5 18.3 11.3
[31]: features = ['TV', 'Radio', 'Newspaper']
        for feature in features:
           plt.scatter(df[feature], df['Sales'], label=feature, color='red', marker='+')
            plt.xlabel(feature)
            plt.ylabel('Sales')
            plt.title(f'Sales vs {feature}')
            plt.show()
```


Intercept: 3.254071939471327

Name: Muhammad Shahmeer Shahid

```
[35]: sample_data = [[300, 50, 20]]
       predicted_sales = model.predict(sample_data)
       print(f"Predicted Sales: {predicted_sales[0]}")
       Predicted Sales: 27.97759822277094
       C:\Users\wajiz.pk\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarming: X does not have valid feature names, but LinearRegression was fitted wi
      th feature names
      warnings.warn(
[38]: plt.scatter(y_test, y_pred, color='red', marker='+', label='Predictions')
       plt.plot([min(y\_test), max(y\_test)], [min(y\_test), max(y\_test)], color='blue', label='Ideal Fit')
       plt.xlabel("Actual Sales")
       plt.ylabel("Predicted Sales")
       plt.title("Actual vs Predicted Sales")
       plt.legend()
       plt.show()
                                  Actual vs Predicted Sales
                     Predictions
          22
                     Ideal Fit
          20
          18
       Predicted Sales
          16
          14
          12
          10
           8
                    8
                            10
                                     12
                                             14
                                                      16
                                                              18
                                                                       20
                                                                                22
                                           Actual Sales
```

Roll No.: 2022F-BSE-124

Uploaded File On GitHub:

Name: Muhammad Shahmeer Shahid

Roll No.: 2022F-BSE-124