Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Departamento de Ciência da Computação Universidade do Estado de Santa Catarina

#### Tipos

**Tipos:** Coleção de valores ou objetos que possuem alguma propriedade em comum.

Na matemática, tipos impõe restrições que evitam paradoxos. Universos não tipados apresentam inconsistências lógicas tais como o paradoxo de Russell.

#### Paradoxo de Russell



#### Paradoxo de Russell

Alguns conjuntos não são membros de si próprios, como por exemplo o conjunto de todas as cadeiras. Outros, como por exemplo o conjunto formado por tudo que não é cadeira, são membros de si mesmos. Definindo R como o conjunto de todos os conjuntos que não são membros de si próprio:

$$R = \{A \mid A \notin A\}$$

- Se R é membro dele mesmo então, por definição, R não é membro de R.
- Se R não é membro de R então, por definição, R é membro de R.

O próprio Russell respondeu seu paradoxo usando a teoria de tipos, definindo uma hierarquia para as proposições. Um dado predicado é valido para todos objetos que estiverem em um mesmo nível (ou forem do mesmo tipo).

## Tipos

Linguagens que não definem um intervalo de valores que uma variável pode armazenar são classificadas como não tipadas. Essas linguagens suportam um único tipo que representa todos os valores.  $\lambda$ -cálculo é um exemplo extremo de linguagens não tipadas.

Uma linguagem de programação é considerada segura (safe) se todos os erros de tipos podem ser detectados, ou seja, os tipos não podem ser violados. Linguagens não tipadas podem ser consideradas seguras efetuando a verificação em tempo de execução.

#### Tipos

A definição de um sistema de tipos no projeto de linguagens de programação é útil para:

- Estruturação dos programas e documentação: os tipo representam abstrações dos dados manipulados pelo programa e podem ajudar na compreensão do código.
- Detecção de erros: uma grande variedades de erros podem ser detectados automaticamente quando dados e funções são usados de forma inconsistente.
- Eficiência: informações sobre tipos permitem ao computador executar otimizações no código gerado.

Sistemas de tipos são conjuntos de regras de inferência que permitem atribuir tipos as variáveis e expressões de linguagens de programação. O principal objetivo de um sistema de tipos é determinar, em tempo de compilação, se um programa é bem comportado, garantindo a ausência de erros de tipos em tempo de execução. Um sistema capaz de fornecer essa garantia é dito consistente (sound).

Para que seja possível provar a consistência do sistema de tipos é necessária a sua formalização.

<u>Prova Matemática:</u> Verificação de uma proposição por encadeamento de deduções lógicas a partir de um conjunto de axiomas.

A definição formal de um sistema de tipos é feita por um conjunto de enunciados (regras) denominadas sentenças (*judgments*). Sentenças são afirmações sobre objetos sintáticos de um determinado tipo. Uma sentença tem a forma:

$$\Gamma \vdash e : \sigma$$

Essa sentença é lida como: no contexto  $\Gamma$  a expressão e tem tipo  $\sigma$  ou  $\Gamma$  implica (deriva) em e ter tipo  $\sigma$ . Sendo  $\Gamma$  um contexto, possivelmente vazio, onde estão definidos os tipos das variáveis que ocorrem livres em e ( $\Gamma = \{x_1 : \sigma_1, x_2 : \sigma_2, \dots, x_n : \sigma_n\}$ ).

A forma geral das regras de inferência é:

$$\frac{\Gamma_1 \vdash e_1 : \sigma_1 \quad \Gamma_2 \vdash e_2 : \sigma_2 \quad \dots \quad \Gamma_n \vdash e_n : \sigma_n}{\Gamma \vdash e : \sigma}$$

As sentenças acima da linha horizontal são as premissas e a sentença abaixo é a conclusão. Por exemplo:

$$\frac{\Gamma \vdash e_1 : \textit{Nat} \quad \Gamma \vdash e_2 : \textit{Nat}}{\Gamma \vdash e_1 + e_2 : \textit{Nat}}$$

#### $\lambda$ -Cálculo Simplesmente Tipado

$$\begin{array}{lll} \text{Variaveis de Tipos} & \alpha,\beta \\ \text{Variáveis de Expressões} & x,y,z \\ \text{Expressões } e & ::= x \mid \lambda x.\,e \mid e\;e' \\ \text{Tipo Simples } \alpha & ::= \tau \mid \tau \rightarrow \tau' \end{array}$$

$$\Gamma \vdash x : \tau \; (VAR) \quad \{x : \tau\} \in \Gamma$$

$$\frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash e \; e' : \tau'} \; (APP) \quad \frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x.e : \tau' \to \tau} \; (ABS)$$

 $\Gamma, x : \tau$  representada  $\Gamma \cup \{x : \tau\}$ , sendo que  $\Gamma$  não apresenta qualquer suposição de tipo para x.

#### Unificação

**Unificação** é a ideia central do processo de inferência de tipos, um unificador para dois tipos é uma substituição S que:  $S\tau_1 = S\tau_2$ .

Uma **substituição** é uma função que mapeia variáveis de tipos em expressões de tipos. Uma substituição pode ser representada como:  $S = \{\alpha_1 \mapsto \tau_1, \alpha_2 \mapsto \tau_2, \dots, \alpha_n \mapsto \tau_n\}$ . A aplicação de uma substituição S em um tipo  $\tau$  ( $S\tau$ ) resulta na troca de todas as variáveis de tipo que ocorrem em  $\tau$  e pertencem ao domínio de S pelo tipo correspondente em S.

A composição de substituições é representada por  $S \circ S'$ . Um unificador  $S_g$  é chamado de **unificador mais geral** se, para qualquer outro unificador S, existe uma substituição S' tal que  $S' \circ S_g = S$ .

# Inferência de Tipos

# Inferência de Tipos

# Tipo Produto (*Product Type, Record*)

O produto de dois tipos consistem em um par ordenado de valores, sendo cada valor do tipo especificado. Podemos generalizar o tipo produto como o produto de um conjunto finito de n tipos, sendo  $n \geq 0$ . O tipo **unit** (tipo unitário) é representado pelo produto nulo.

$$\Gamma \vdash \langle \rangle : \mathsf{unit}$$

$$\frac{\Gamma \vdash e : \tau \quad \Gamma \vdash e' : \tau'}{\Gamma \vdash e \times e' : \tau \times \tau'} \ (PAIR)$$

$$\frac{\Gamma \vdash e \times e : \tau \times \tau'}{\Gamma \vdash \pi_1(e \times e') : \tau} \text{ (PROJ) } \frac{\Gamma \vdash e \times e' : \tau \times \tau'}{\Gamma \vdash \pi_2(e \times e') : \tau'}$$

# Tipo União Disjunta (*Disjoint Union, Sum Type, Tagged Union*)

A união disjunta de dois tipos oferece uma escolha entre dois elementos de tipos possivelmente distintos. Cada um dos tipos é marcado com uma etiqueta (construtor do tipo) que permite a seleção por casamento de padrões (pattern match).

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash e + e' : \tau + \tau'} \text{ (SUM) } \frac{\Gamma \vdash e' : \tau'}{\Gamma \vdash e + e' : \tau + \tau'}$$

$$\frac{\Gamma, x_1 : \tau_1 \vdash e_1 : \tau \quad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau \quad \Gamma \vdash e : \tau_1 + \tau_2}{\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2\} : \tau} \text{ (CASE)}$$

#### Booleanos

Um exemplo simples do tipo união disjunta é o tipo booleano:

 $\Gamma \vdash True : Bool$   $\Gamma \vdash False : Bool$ 

 $\frac{\Gamma \vdash e : Bool \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau} \ (\mathit{IF})$ 

#### Tipos Recursivos

Muitas linguagens permitem a definição de tipos recursivos, para podermos representar tipos recursivos em usamos um **operador de ponto fixo de tipos**. A expressão de tipo  $\mu\alpha.\tau$  denota o isomorfismo dos tipos que satisfazem a equação  $\mu\alpha.\tau\cong\{\alpha\mapsto\mu\alpha.\tau\}\tau$ .

Por exemplo, o tipo Lista de inteiros pode ser definido como:

$$\mu\alpha.\langle\rangle + (\operatorname{Int} \times \alpha)$$

Que admite infinitas substituições de  $\alpha$  por  $\langle \rangle$  + (Int  $\times \alpha$ ):

$$\begin{array}{l} \langle \rangle + (\operatorname{Int} \times \alpha) \\ \langle \rangle + (\operatorname{Int} \times \langle \rangle + (\operatorname{Int} \times \alpha)) \\ \langle \rangle + (\operatorname{Int} \times \langle \rangle + (\operatorname{Int} \times \langle \rangle + (\operatorname{Int} \times \alpha))) \\ \langle \rangle + (\operatorname{Int} \times \alpha)))) \end{array} \dots$$

## Correspondência Curry-Howard

Demonstra uma correspondência direta entre tipos e teoremas. Uma função é uma prova, e o tipo de uma função é a fórmula provada.

Essa correspondência é demostrada com a lógica intuicionista.

# Lógica Clássica

#### Três princípios fundamentais:

- **Reflexividade** toda proposição deriva de si mesma:  $\varphi \vdash \varphi$
- Terceiro-excluído toda proposição é verdadeira ou falsa:  $\vdash \varphi \lor \neg \varphi$
- Não-Contradição não é possível que uma proposição seja simultaneamente verdadeira e falsa:  $\vdash \neg(\varphi \land \neg \varphi)$

#### Lógica Intuicionista

Um sistema lógico mais fraco que a lógica clássica, possui um número menor de teoremas que podem ser demonstrados. Algo somente é verdade caso exista uma **prova construtiva**, portanto provas por absurdo não são permitidas.

Nesse sistema não existe **princípio do terceiro excluído**. Para uma prova construtiva do terceiro excluído, seria necessária uma prova da validade ou da falsidade de cada possível fórmula proposicional, o que é impossível.

A negação de uma proposição  $\neg \varphi$  é definida como a obtenção do falso caso  $\varphi$  for vista como verdade, simbolicamente:

$$\neg\varphi\equiv\varphi\rightarrow\bot$$

#### Dedução Natural Intuicionista

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} (\land I) \qquad \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} (\land E) \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \\
\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor I) \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \qquad \frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho} (\lor E) \\
\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} (\to I) \qquad \frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} (\to E)$$

#### Fórmulas **Não** Deriváveis

As seguintes fórmulas NÃO são deriváveis na lógica intuicionista

$$\varphi \vee \neg \varphi$$

$$\neg \neg \varphi \to \varphi$$

$$(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$$

$$((\varphi \to \psi) \to \varphi) \to \varphi$$

$$\neg (\varphi \wedge \psi) \to (\neg \varphi \vee \neg \psi)$$

#### Correspondência Curry–Howard

$$\Gamma, \varphi \vdash \varphi \text{ (Ax)} \qquad \Gamma, x : \tau \vdash x : \tau \text{ (VAR)}$$

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \text{ ($\to$E)} \qquad \frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash e e' : \tau'} \text{ ($APP$)}$$

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \text{ ($\to$I)} \qquad \frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x.e : \tau' \to \tau} \text{ ($ABS$)}$$

# Correspondência Curry–Howard

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \; (\land I) \qquad \frac{\Gamma \vdash e : \tau \quad \Gamma \vdash e' : \tau'}{\Gamma \vdash e \times e' : \tau \times \tau'} \; (PROD)$$

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \; (\land E) \; \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash e \times e : \tau \times \tau'}{\Gamma \vdash \pi_{1}(e \times e') : \tau} \; (PROJ) \; \frac{\Gamma \vdash e \times e' : \tau \times \tau'}{\Gamma \vdash \pi_{2}(e \times e') : \tau'}$$

#### Correspondência Curry–Howard

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} (\lor I) \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash e + e' : \tau + \tau'} (SUM) \frac{\Gamma \vdash e' : \tau'}{\Gamma \vdash e + e' : \tau + \tau'}$$

$$\frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho} (\lor E)$$

$$\frac{\Gamma, x_1 : \tau_1 \vdash e_1 : \tau \quad \Gamma, x_2 : \tau_2 \vdash e_2 : \tau \quad \Gamma \vdash e : \tau_1 + \tau_2}{\Gamma \vdash \mathsf{case} \ e \ \mathsf{of} \ \{x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2\} : \tau} (CASE)$$

#### Tipos Recursivos

Esse isomorfismo é definido por regras de conversão de um tipo  $\mu\alpha. au$  em  $[\mu\alpha. au/\alpha] au$  e vice-versa.

$$\frac{\Gamma \vdash e : \{\alpha \mapsto \mu\alpha.\tau\}\tau}{\Gamma \vdash \mathsf{fold}\ e : \mu\alpha.\tau} \ (\textit{FOLD}) \ \frac{\Gamma \vdash e : \mu\alpha.\tau}{\Gamma \vdash \mathsf{unfold}\ e : \{\alpha \mapsto \mu\alpha.\tau\}\tau} \ (\textit{UNFOLD})$$

Em  $\lambda$ -cálculo simplesmente tipado os tipos são monomórficos as variáveis de tipos representam um único tipo em um contexto. No sistema *Hindley-Milner* são introduzidos tipos quantificados para o suporte ao **polimorfismo paramétrico**.

Figura: Expressões de Tipos

$$ftv(\alpha) = \{\alpha\}$$
  

$$ftv(\tau \to \tau') = ftv(\tau) \cup ftv(\tau')$$
  

$$ftv(\forall \alpha.\sigma) = ftv(\sigma) - \{\alpha\}$$

 $ftv(\Gamma)$  denota a união  $ftv(\sigma)$  para todo tipo  $\sigma$  que ocorre em  $\Gamma$ .

$$\frac{\beta_i \notin ftv(\forall \overline{\alpha}.\tau) \quad \tau' = \{\overline{\alpha} \mapsto \overline{\tau}\}\tau}{\forall \overline{\alpha}.\tau \leqslant \forall \overline{\beta}.\tau'}$$

Informalmente podemos dizer que o tipo  $\forall \overline{\beta}.\tau$  é mais especifico ou o mesmo que  $\forall \overline{\alpha}.\tau'$ .

Variáveis 
$$x, y, z$$

Expressões  $e ::= x$ 

$$\begin{vmatrix} \lambda x. e \\ | e e' \\ | \text{let } x = e \text{ in } e' \end{vmatrix}$$

Figura: Sintaxe de Expressões

$$\Gamma \vdash x : \sigma \qquad \{x : \sigma\} \in \Gamma \qquad \text{(VAR)}$$

$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \sigma'} \qquad (\sigma \leqslant \sigma') \qquad \text{(INST)}$$

$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha. \sigma} \qquad (\alpha \notin \mathit{ftv}(\Gamma)) \qquad \text{(GEN)}$$

Figura: Sistema de tipos Hindley-Milner

$$\frac{\Gamma \vdash e : \tau' \to \tau \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash e e' : \tau} \qquad \text{(APP)}$$

$$\frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x. e : \tau' \to \tau} \qquad \text{(ABS)}$$

$$\frac{\Gamma \vdash e : \sigma \qquad \Gamma, x : \sigma \vdash e' : \tau}{\Gamma \vdash \text{let } x = e \text{ in } e' : \tau} \qquad \text{(LET)}$$

Figura: Sistema de tipos Hindley-Milner

# Algoritmo W

```
W(\Gamma,x) = \begin{cases} \text{Se } \Gamma(x) = \forall \alpha_1...\alpha_2.\tau \text{ então } (\{\alpha_i \mapsto \beta_i\}\tau, Id) \\ \text{senão } Falha, \text{ sendo } \beta_i \text{ } fresh \end{cases}
W(\Gamma,e\,e') = \begin{cases} \text{let } (\tau,S_1) = W(\Gamma,e) \\ (\tau',S_2) = W(S_1\Gamma,e') \\ S = unificar \ (S_2\tau,\tau'\to\beta), \text{ sendo } \beta \text{ } fresh \\ \text{in } (S\beta,S\circ S_2\circ S_1) \end{cases}
```

# Algoritmo W

$$\begin{split} W(\Gamma, \lambda x.e) &= \\ &= \text{let } (\tau, S) = W(\Gamma, x:\beta, e) \\ &\text{in } (S(\beta \to \tau), S) \end{split}$$
 
$$W(\Gamma, \text{let } x = e \text{ in } e') = \\ &\text{let } (\tau, S_1) = W(\Gamma, e) \\ &(\tau', S_2) = W(S_1\Gamma, x: \text{fechamento } (S_1\Gamma, \tau), e') \\ &\text{in } (\tau', S_1 \circ S_2) \end{split}$$

Sendo  $fechamento(\Gamma, \tau) = \forall \overline{\alpha}. \tau \ e \ \overline{\alpha} = ftv(\tau) - ftv(\Gamma).$ 

**Consistência** (*Soundness*): Se  $W(\Gamma, e)$  retorna  $(\tau, S)$  então  $\Gamma \vdash e : \tau$ .

**Completude** (*Completeness*): Se  $\Gamma \vdash e : \tau'$  então  $W(\Gamma, e) = (\tau, S)$  tal que para qualquer substituição S':  $\tau \leqslant S'\tau'$ .

#### Sistema F

**Sistema F** ou **Cálculo Lambda Polimórfico** é uma linguagem minima que ilustra os conceitos de tipos polimórficos. O Sistema F representa o polimorfismo de maneira explicita, o tipo é um parâmetro. Diferente do Sistema *Hindley-Milner* no qual o polimorfismo é explícito.

Foi proposto pelo lógico Jean-Yves Girard (*System F*) em 1972 e pelo cientista da computação John C. Reynolds (*Polymorphic Lambda Calculus*) em 1974.

#### Sistema F

Figura: Tipos e Expressões (Sistema F)

#### Sistema F

Intuitivamente  $\Lambda \alpha.e$  denota um termo e que tem como parâmetro um tipo polimórfico  $\alpha$ . Uma aplicação de tipo corresponde ao chamado de uma função polimórfica passando o tipo como parâmetro real (actual parameter).

Um termo no Sistema F é fortemente normalizável, uma vez que não é possível definir um operador de ponto fixo por meio de termos fechados (combinadores).

**Obs:** Em linguagens como *Haskell* e *ML* o operador de ponto fixo pode ser definido como:

$$fix f = let x = f x in x$$

#### Sistema F

$$\Gamma \vdash x : \tau \text{ (VAR)} \quad \{x : \tau\} \in \Gamma$$

$$\frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash e e' : \tau'} \text{ (APP)} \quad \frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x : \tau' . e : \tau' \to \tau} \text{ (ABS)}$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \Lambda \alpha . e : \forall \alpha . \tau} \text{ (TABS)} \quad \frac{\Gamma \vdash e : \forall \alpha . \tau}{\Gamma \vdash e [\tau'] : \{\alpha \mapsto \tau'\} \tau} \text{ (TAPP)}$$

#### **Exemplos:**

- $\Lambda \alpha . \lambda x : \alpha . x$
- $\Lambda \alpha. \Lambda \beta. \lambda f : \alpha \rightarrow \beta. \lambda x : \alpha. f x$
- $\Lambda \alpha.\Lambda \beta.\lambda f: \alpha \to \beta.\Lambda \gamma.\lambda g: \gamma \to \alpha.\lambda x: \gamma.f(gx)$

#### Sistema F

#### Exemplo em Haskell:

```
foo :: (forall a. a -> a) -> (Int, Bool)
foo = \f -> (f 1, f True)

foo' :: (forall a. a -> a) -> b -> c -> (b, c)
foo' = \f x y -> (f x, f y)
```

**Sistema F** (expressão foo'):  $\lambda f: \forall \alpha.\alpha \rightarrow \alpha. \, \Lambda \beta. \, \lambda x: \beta. \, \Lambda \gamma. \, \lambda y: \gamma. \, f[\beta] \, x \times f[\gamma] \, y$ 

Um tipo de dado abstrato fornece um contrato entre o programador que implementa e o que usa. Esse contrato é definido por meio de uma interface, ou seja, operações que podem ser aplicadas ao dado. O usuário pode manipular o dado apenas por meio dessa interface, dessa forma uma posterior alteração na representação do dado ou alterações no código que o manipula não ocasionarão alterações no código que faz uso do tipo abstrato.

#### Exemplo em Haskell (Fila de Prioridade):

```
empty :: (Ord a) \Rightarrow PQueue a
insert :: (Ord a) \Rightarrow a \rightarrow PQueue a \rightarrow PQueue a
remove :: (Ord a) \Rightarrow PQueue a \rightarrow (a, Queuea)
isEmpty:: (Ord a) \Rightarrow PQueue a \rightarrow Bool
type PQueue \ a = [a]
empty = []
insert e []
             = [e]
insert e xxs@(x : xs) = if x < e then x : insert e xs else e : xxs
remove(x : xs) = (x, xs)
isEmpty [] = True
isEmpty_{-} = False
```

#### Exemplo em Haskell (Fila de Prioridade)<sup>1</sup>:

```
class PQueue\ f\ where
empty\ :: (Ord\ a) \Rightarrow f\ a
insert\ :: (Ord\ a) \Rightarrow a \rightarrow f\ a \rightarrow f\ a
remove\ :: (Ord\ a) \Rightarrow f\ a \rightarrow (a, f\ a)
isEmpty\ :: (Ord\ a) \Rightarrow f\ a \rightarrow Bool
```

```
instance PQueue [] where empty = []
```

```
insert e[] = [e]
insert e \times x \times @(x : xs) = if x < e then x : insert e \times s else e : xxs
```

```
remove(x : xs) = (x, xs)

isEmpty [] = True

isEmpty _ = False
```

<sup>&</sup>lt;sup>1</sup>Apenas um exemplo ilustrativo, tratamento de sobrecarga não será abordado.

```
Tipo
                                                             (Variável de tipo)
                           	au 
ightarrow 	au'
                                                             (Função)
                            \forall \alpha.\tau
                                                             (Tipo polimórfico)
                            \exists \alpha.\tau
                                                             (Interface)
Expressão e :=
                                                             (Variável)
                                                             (Abstração)
                            \lambda x : \tau . e
                                                             (Aplicação)
                            e_1 e_2
                                                             (Abstração de tipo)
                            \Lambda \alpha.e
                                                             (Aplicação de tipo)
                            e \tau
                            pack \tau' with e as \exists \alpha. \tau (Implementação)
                            open e as x : \tau in e' (uso)
```

Figura: Sistema F estendido com Quantificador Existencial

$$\frac{\Gamma \vdash e : \{\alpha \mapsto \tau'\}\tau}{\Gamma \vdash \mathsf{pack}\ \tau' \ \mathsf{with}\ e \ \mathsf{as}\ \exists \alpha.\tau : \exists \alpha.\tau}\ (\mathit{PACK})$$

$$\frac{\Gamma \vdash e : \exists \alpha.\tau \qquad \Gamma, x : \tau \vdash e' : \tau'}{\Gamma \vdash \mathsf{open}\ e \ \mathsf{as}\ x : \tau \ \mathsf{in}\ e' : \tau'}\ (\mathit{OPEN})$$

#### Exemplo em Haskell (Fila):

```
empty :: Queue a insert :: a \rightarrow Queue a \rightarrow Queue a remove:: Queue a \rightarrow (a, Queue a)
```

type 
$$Queue\ a=[a]$$

$$\begin{array}{c} \Gamma \vdash \textit{insert} : \exists \alpha. \forall \beta. \beta \rightarrow \alpha \ \beta \rightarrow \alpha \ \beta \\ \hline \Gamma_{,\textit{insert}: \exists \alpha. \forall \beta. \beta \rightarrow \alpha \ \beta} \vdash \lambda x. \textit{insert} \ x \ \textit{empty} : \forall \beta. \beta \rightarrow \alpha \ \beta \\ \hline \Gamma \vdash \textit{open insert as insert} : \forall \beta. \beta \rightarrow \alpha \ \beta \rightarrow \alpha \ \beta \ \textit{in} \\ \end{array}$$

 $\lambda x.$ insert x empty :  $\forall \beta.\beta \rightarrow \alpha \beta \rightarrow \alpha \beta$ 

## Sistema F: Codificação de Church

Dados primitivos, como números naturais e valores booleanos, podem ser representados em *cálculo lambda puro*. Essas representações podem ser transportadas para o *Sistema F* adicionando as anotações de tipos correspondentes:

$$true = \lambda v.\lambda f.v$$

$$false = \lambda v.\lambda f.f$$

$$true = \Lambda \alpha.\lambda v : \alpha.\lambda f : \alpha.v$$

$$false = \Lambda \alpha.\lambda v : \alpha.\lambda f : \alpha.f$$

O tipo **booleano** é então representado pelo tipo das funções que codificam os valores *true* e *false*.

$$CBool = \forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$$
 $not :: CBool \rightarrow CBool$ 

$$not = \lambda b : CBool.\Lambda\alpha.\lambda v : \alpha.\lambda f : \alpha.b [\alpha] f v$$

## Sistema F: Codificação de Church

#### Números naturais:

```
zero = \Lambda \alpha \lambda s : \alpha \to \alpha \lambda s : \alpha \lambda z : \alpha . z
one = \Lambda \alpha \lambda s : \alpha \to \alpha \lambda s : \alpha \lambda z : \alpha . s(z)
two = \Lambda \alpha \lambda s : \alpha \to \alpha \lambda s : \alpha \lambda z : \alpha . s(s(z))
CNat = \forall \alpha . (\alpha \to \alpha) \to \alpha
```

succ ::  $CNat \rightarrow CNat$ succ =  $\lambda n$  :  $CNat.\Lambda\alpha.\lambda s$  :  $\alpha \rightarrow \alpha.\lambda z$  :  $\alpha.s(n [\alpha] s z)$ 

É importante observar que é possível representar dados primitivos no Sistema F puro, pois isso sinaliza que é possível, no projeto de uma linguagem, substituir a representação desses dados sem que isso influa nas propriedades da linguagem.

$$PairNat = \forall \alpha. (CNat \rightarrow CNat \rightarrow \alpha) \rightarrow \alpha$$

$$\textit{pairNat} \ = \lambda \textit{x} : \textit{CNat}.\lambda \textit{y} : \textit{CNat}.\Lambda\alpha.\lambda\textit{p} : \textit{CNat} \rightarrow \textit{CNAt} \rightarrow \alpha.\textit{p} \; \textit{x} \; \textit{y}$$

fstNat =
$$\lambda p$$
 : PairNat.p [CNat] ( $\lambda x$  : CNat. $\lambda y$  : CNat. $x$ ) sndNat =  $\lambda p$  : PairNat.p [CNat] ( $\lambda x$  : CNat. $\lambda y$  : CNat. $y$ )

#### Generalizando os tipos do par:

$$Pair = \Lambda \beta. \Lambda \gamma. \forall \alpha. (\beta \to \gamma \to \alpha) \to \alpha$$

**Obs:** Note que não é possível representar o **construtor de tipos** *Pair* no Sistema F.

| Contexto  | Г ::=      | Ø                            | (Vazio)             |
|-----------|------------|------------------------------|---------------------|
|           |            | $  \Gamma, x : \tau$         | (Variável)          |
|           |            | $  \Gamma, \alpha :: k$      | (Variável de Tipo)  |
| Kind      | k ::=      | *                            | (Tipo Apropriado)   |
|           |            | $  k \Rightarrow k$          | (Operador)          |
| Tipo      | $\tau$ ::= | $\alpha$                     | (Variável de tipo)  |
|           |            | $\mid 	au  ightarrow 	au'$   | (Função)            |
|           |            | $  \forall \alpha :: k.\tau$ | (Tipo polimórfico)  |
|           |            | $  \Lambda \alpha :: k.\tau$ | (Operador de tipo)  |
|           |            | $\mid \tau \mid \tau'$       | (Aplicação de Tipo) |
| Expressão | e ::=      | X                            | (Variável)          |
|           |            | $ \lambda x:\tau.e $         | (Abstração)         |
|           |            | $\mid e_1 \mid e_2$          | (Aplicação)         |
|           |            | Λα :: k.e                    | (Abstração de tipo) |
|           |            | e [\tau]                     | (Aplicação de tipo) |

Figura: Kind, Tipos e Expressões (Sistema  $F_{\omega}$ )

A introdução de abstração e aplicação sobre tipos possibilita escrever o mesmo tipo de várias formas, o que torna necessário a definição de equivalência entre tipos.

$$CNat \rightarrow CBool$$
  
 $\equiv ((\Lambda \alpha. \alpha)CNat) \rightarrow CBool$   
 $\equiv CNat \rightarrow ((\Lambda \alpha. \alpha)CBool)$   
 $\equiv (\Lambda \alpha. \alpha)(CNat \rightarrow CBool)$   
 $\equiv (\Lambda \alpha. \alpha)(((\Lambda \alpha. \alpha)CNat) \rightarrow CBool)$ 

# Sistema $F_{\omega}$ - Equivalência Estrutural entre Tipos

$$\tau \equiv \tau \; (\textit{E-REFL})$$
 
$$\frac{\tau \equiv \tau'}{\tau' \equiv \tau} \; (\textit{E-REFL}) \qquad \frac{\tau_1 \equiv \tau_2 \quad \tau_2 \equiv \tau_3}{\tau_1 \equiv \tau_3} \; (\textit{E-TRANS})$$
 
$$\frac{\tau_1 \equiv \tau'_1 \quad \tau_2 \equiv \tau'_2}{\tau_1 \rightarrow \tau_2 \equiv \tau'_1 \rightarrow \tau'_2} \; (\textit{E-ARROW}) \qquad \frac{\tau \equiv \tau'}{\forall \alpha :: \; k.\tau \equiv \forall \alpha :: \; k.\tau'} \; (\textit{E-ALL})$$
 
$$\frac{\tau \equiv \tau'}{\Lambda \alpha :: \; k.\tau \equiv \Lambda \alpha :: \; k.\tau'} \; (\textit{E-ABS}) \qquad \frac{\tau_1 \equiv \tau'_1 \quad \tau_2 \equiv \tau'_2}{\tau_1 \; \tau_2 \equiv \tau'_1 \; \tau'_2} \; (\textit{E-APP})$$
 
$$(\Lambda \alpha :: \; k.\tau) \; \tau' \equiv \{\alpha \mapsto \tau'\} \; \tau \; (\textit{E-APPABS})$$

#### Sistema $F_{\omega}$ - Kind

Podemos considerar tipos polimórficos como construtores de tipos que necessitam receber outros tipos como parâmetros. Um tipo monomórfico é um construtor de tipo com aridade 0, denotado por  $\star$  e chamado de tipo apropriado (*proper type*).

Kind pode ser definido como a aridade do tipo.

data 
$$\underbrace{Either}$$
  $a \ b = \underbrace{Left}$   $a \ | \underbrace{Right}$   $b$ 

Constutor

de tipos

Constutor

de dados

de dados

```
\begin{array}{lll} \text{data } \textit{Bool} = \textit{True} \mid \textit{False} & -\textit{Bool} & :: \star \\ \text{data } \textit{List } \textit{a} = \textit{Cons a (List a)} \mid \textit{Nil} -\textit{List} & :: \star \Rightarrow \star \\ \text{data } \textit{Either a b} = \textit{Left a} \mid \textit{Right b} -\textit{Either} :: \star \Rightarrow \star \Rightarrow \star \\ \end{array}
```

List Bool ::  $\star$  Either Bool ::  $\star \Rightarrow \star$ 

## Sistema $F_{\omega}$ - Kind

$$\Gamma \vdash \alpha :: k \quad \{\alpha :: k\} \in \Gamma \ (K\text{-}VAR)$$

$$\frac{\Gamma, \alpha :: k \vdash \tau :: k'}{\Gamma \vdash \Lambda \alpha :: k . \tau :: k \Rightarrow k'} \ (K\text{-}ABS) \quad \frac{\Gamma \vdash \tau :: k \Rightarrow k' \ \Gamma \vdash \tau' :: k}{\Gamma \vdash \tau \ \tau' :: k'} \ (K\text{-}APP)$$

$$\frac{\Gamma \vdash \tau :: \star \ \Gamma \vdash \tau' :: \star}{\Gamma \vdash \tau \rightarrow \tau' :: \star} \ (K\text{-}ARROW) \qquad \frac{\Gamma, \alpha :: k \vdash \tau :: \star}{\Gamma \vdash \forall \alpha :: k . \tau :: \star} \ (K\text{-}ALL)$$

$$\Gamma \vdash x : \tau \quad \{x : \tau\} \in \Gamma \text{ (VAR)}$$

$$\frac{\Gamma \vdash \tau :: \star \quad \Gamma, x : \tau \vdash e :: \tau'}{\Gamma \vdash \lambda x : \tau . e : \tau' \to \tau} \text{ (ABS)} \qquad \frac{\Gamma \vdash e : \tau \to \tau' \quad \Gamma \vdash e' : \tau}{\Gamma \vdash e e' : \tau'} \text{ (APP)}$$

$$\frac{\Gamma, \alpha :: k \vdash e : \tau}{\Gamma \vdash \Lambda \alpha :: k . e : \forall \alpha :: k . \tau} \text{ (TABS)} \qquad \frac{\Gamma \vdash e : \forall \alpha :: k . \tau \quad \Gamma \vdash \tau' :: k}{\Gamma \vdash e : \tau'} \text{ (TAPP)}$$

$$\frac{\Gamma \vdash e : \tau \quad \tau \equiv \tau' \quad \Gamma \vdash \tau' :: \star}{\Gamma \vdash e : \tau'} \text{ (EQ)}$$

$$\begin{aligned} \textit{Pair} &= \mathsf{\Lambda}\beta :: \star . \, \mathsf{\Lambda}\gamma :: \star . \, \forall \alpha \, . \, (\beta \to \gamma \to \alpha) \to \alpha \\ \\ \textit{pair} &= \mathsf{\Lambda}\beta :: \star . \, \lambda x : \beta \, . \, \mathsf{\Lambda}\gamma :: \star . \, \lambda y : \gamma \, . \, \mathsf{\Lambda}\alpha :: \star . \, \lambda f : \beta \to \gamma \to \alpha \, . \, p \, x \, y \\ \\ \textit{fst} &= \mathsf{\Lambda}\beta :: \star . \, \mathsf{\Lambda}\gamma :: \star . \, \lambda p : \forall \alpha \, . \, (\beta \to \gamma \to \alpha) \to \alpha \, . \\ \\ &p \, [\beta] \, (\lambda x : \beta \, . \, \lambda y : \gamma \, . \, x) \\ \\ \textit{snd} &= \mathsf{\Lambda}\beta :: \star . \, \mathsf{\Lambda}\gamma :: \star . \, \lambda p : \forall \alpha \, . \, (\beta \to \gamma \to \alpha) \to \alpha \, . \end{aligned}$$

 $p[\gamma](\lambda x : \beta . \lambda y : \gamma . y)$