Analog Electronic Circuits (EC2.103): Midsem exam

Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 29th Feb, 2024, Duration: 1 Hour 30 minutes, Max. Marks: 15

Instructions:

- · Clearly write your assumptions (if any)
- You can use one A4 sheet of own handwritten short notes in the exam hall
- Use of mobile phone and computers are not allowed during this exam

1. True/False with reason

- (a) For BJT based voltage amplifiers, it is preferred to have EB junction reverse biased and CB junction forward biased. (T/F, give reason) [1 Mark]
- (b) Collector current a pnp BJT biased in forward active mode depends on the base-collector junction voltage. (T/F, give reason) [1 Mark]
- 2. Consider the full wave rectifiers shown in Fig. 1(a) and Fig. 1(b). All diodes have same cut-in voltage (v_{γ}) and negligible on resistance.

Figure 1

- (a) Plot v_{out} vs v_{in} for Fig. 1(a) and find peak inverse voltage in the circuit.
- [2 Mark]
- (b) Plot v_{out} vs v_{in} for Fig. 1(b) and find peak inverse voltage in the circuit.
- [2 Mark]
- 3. In the AC equivalents shown in Fig. 2, BJTs Q_1 and Q_2 are biased in the forward active mode having transconductance g_{m1} and g_{m2} , respectively. Also consider Q_1 and Q_2 have finite output impedances r_{o1} and r_{o2} , respectively due to the Early effect.

Figure 2

(a) Draw the small signal equivalent of the circuit in Fig. 2(a) and find the small signal equivalent resistance R_{in} . Is it high or low impedance, comment. [2 Mark]

- (b) Draw the small signal equivalent and find the small signal voltage gain $(\frac{v_{ont}}{v_{in}})$ for Fig. 2(b) if R_{in} from Fig. 2(a) is used. Also derive the expression for small signal output resistance R_{out} as shown in the figure. Is it high or low impedance, comment. [3 Mark]
- 4. For the circuit shown in Fig. 3, assume that BJT is in forward active mode.

Figure 3

- (a) Draw the small signal model and derive expression for the voltage gain $A_v = \frac{v_{out}}{v_s}$. [1 Mark]
- (b) Derive the expression for the small signal input resistance defined as $R_{in} = \frac{v_{in}}{i_{in}}$. Is it high or low, briefly explain.

 (Hint: Ground V_{CC} , remove v_s , R_s , apply test source v_{in} , measure i_{in} .)
- (c) In your small signal model make $v_s=0$ and derive the expression for the small signal output resistance $R_{out}=\frac{v_x}{i_x}$, where v_x is an incremental voltage applied at the 'out' node and i_x is the corresponding incremental current drawn. Is R_{out} high or low, briefly explain. [1 Mark]
- (d) Based on the gain, input-output resistances derived in above parts, comment on the utility of this circuit.

 [1 Mark]

Good luck!!