Случайные процессы: домашние задания

2023

Домашнее задание на первую неделю

- Задача 1.1 (каноническое задание). Пусть случайный процесс $X(\omega,t)=\omega t,\ t\in[0;1],$ определен на вероятностном пространстве $(\Omega,\mathcal{F},\mathbb{P}),$ где $\Omega=\{1,2,3\},\ \mathcal{F}-$ множество всех подмножеств множества $\Omega,$ а мера \mathbb{P} такова, что $\mathbb{P}(\{1\})=\mathbb{P}(\{2\})=\mathbb{P}(\{3\})=1/3.$ Построить вторичное (выборочное) вероятностное пространство процесса.
- **Задача 1.2.** Случайный процесс X задан формулой $X_t = t \cdot \eta$, где $\eta \sim \mathrm{U}_{(0;1)}, \ t \in (0;1)$. Найдите n-мерные функции распределения этого процесса.
- Задача 1.3. Найдите математическое ожидание, дисперсию и корреляционную функцию процесса из предыдущей задачи.
- **Задача 1.4.** Пусть дана случайная величина $\eta \sim \mathrm{U}_{[0;1]}$. Определим случайный процесс $X_t = \mathbb{I}_{(-\infty;\eta]}(t)$. Найдите вероятность, что скачок с единицы до нуля произойдёт на интервале $[t_0;t_0+\Delta t]$, если достоверно известно, что на $[0;t_0]$ скачка не было (параметр Δt задан и строго меньше $1-t_0$).
- Задача 1.5. Пусть ξ и η независимые случайные величины с функциями распределения $F_{\xi}(x)$ и $F_{\eta}(y)$. Пусть X случайный процесс, определённый формулой $X_t = \xi \cdot t + \eta$. Найдите семейство конечномерных распределений процесса.
- **Задача 1.6.** Пусть X_1 , X_2 два независимых случайных процесса с корреляционными функциями $R_{X_1}(t,s)$ и $R_{X_2}(t,s)$ и функциями среднего $m_{X_1}(t)$ и $m_{X_2}(t)$. Найдите корреляционную функцию процесса $Y = X_1 \cdot X_2$.

Домашнее задание на вторую неделю

Задача 2.1 (каноническое задание). Поток сделок в фирме моделируется с помощью пуассоновского процесса K с интенсивностью $\lambda=100$ сделок/час. Каждая сделка приносит доход $V_i\sim \mathrm{U}_{[a;b]},$ $a=10,\ b=100$ условных единиц денег. Считая, что $K,\ \{V_i\}_{i\in\mathbb{N}}$ — независимые в совокупности случайные величины, найдите математическое ожидание, дисперсию и характеристическую функцию выручки за время t. Докажите, что она имеет асимптотически нормальное распределение.

Задача 2.2 (каноническое задание). Случайный процесс X представляет собой сумму n независимых пуассоновских процессов с интенсивностями $\{\lambda_i\}_{i\in\{1,\dots,n\}}$. Определить тип и параметры процесса X.

Задача 2.3 (каноническое задание). Пусть K — пуассоновский случайный процесс интенсивности λ , а X — случайный процесс, полученный в результате удаления из K всех событий, очередной номер которых не кратен s. Определить тип и параметры распределения интервала между соседними событиями в случайном процессе X.

Задача 2.4. Пусть $\{\xi_k\}_{k\in\mathbb{N}}$ все независимы в совокупности и имеют одинаковое распределение $U_{[3;5]}$. Покажите, что процесс восстановления, построенный по этим случайным величинам (т. е. процесс вида $X_t = \sup\{n \mid \xi_1 + \ldots + \xi_n \leqslant t\}$) не является процессом с независимыми приращениями.

Задача 2.5. Пусть K — пуассоновский процесс с интенсивностью $\lambda > 0$. Какие из следующих процессов имеют независимые приращения?

- 1. $X_t = K_t K_0, t \ge 0.$
- 2. $X_t = K_t \mod 2, t \ge 0.$
- 3. $X_t = K_{t^2-t+1}, t \ge 0.$
- 4. $X_t = K_t^2, t \ge 0.$

Задача 2.6. Пусть K — пуассоновский процесс с интенсивностью $\lambda > 0$. Найдите вероятность, что в момент времени t число K_t чётно.

Задача 2.7. Найдите предел при $t \to +\infty$ (почти наверное) величины K_t/t , где K — пуассоновский процесс интенсивности $\lambda \geqslant 0$.

Задача 2.8 (практическое задание). Вас приняли на должность системного администратора в известную ІТ-компанию «Рога и Копыта». Одной из ваших задач является стресс-тестирование сетевой инфраструктуры компании. Для моделирования потока данных от пользователей вы решили использовать сложный пуассоновский процесс с интенсивностью λ . Размер V_i каждого приходящего пакета распределён логнормально:

$$\rho_V(x) = \mathbb{I}_{[0;+\infty)}(x) \cdot \frac{\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)}{x \cdot \sigma\sqrt{2\pi}}$$

Пользуясь результатами, полученными на семинаре, найдите функцию среднего и корреляционную функцию процесса (матожидание и дисперсию V можно взять из справочника). Найти вероятностное распределение времени между отправкой n-ого и (n+m)-ого пакета.

Пусть связь с одним из серверов осуществляется по N независимым каналам, на каждом из которых поток пакетов моделируется согласно процессу выше. Найдите вид и параметры процесса, соответствующего суммарному потоку данных на сервер.

По аналогии с кодом в репозитории курса напишите функцию, которая по параметрам процесса (λ, μ, σ) моделирует заданное число реализаций. Постройте графики реализаций для некоторого набора параметров.

Зафиксируем $\sigma^2 = \mu$. Взяв в качестве максимальной пропускной способности $Q_{\rm max} = \lambda \cdot e^{3\mu}$, путём компьютерного моделирования оценить частоту выхода канала из строя при работе в течение времени $100/\lambda$.

Домашнее задание на третью неделю

Задача 3.1 (каноническое задание). Пусть имеется случайный вектор $\xi \sim \mathcal{N}(0,R)$ с матрицей ковариаций

$$R = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Вычислить $\mathbb{E}(\xi_1^2 \xi_2^2)$, $\mathbb{E}(\xi_1 \xi_2^3 \xi_3)$, $\mathbb{E}(\xi_1 \xi_2 \xi_3^2)$.

Задача 3.2 (каноническое задание). Пусть X — нормальный (гауссовский) случайный процесс с математическим ожиданием и корреляционной функцией, соответственно,

$$m_X(t) = m = const,$$
 $R_X(t,s) = be^{-a|t-s|},$ $a > 0, b > 0$

Найти вероятность $\mathbb{P}\{X_t > c \mid X_s = x\}$ для t > s.

Задача 3.3 («броуновский мост»). Рассмотрим два случайных процесса. Первый — гауссовский с нулевым математическим ожиданием и $R(s,t)=\min\{s,t\}-st$. Второй определяется через процесс Винера по закону $Y_t=W_t-tW_1$. Докажите, что эти гауссовские процессы совпадают.

Задача 3.4 (процесс Орнштейна-Уленбека). Рассмотрим два случайных процесса. Первый — гауссовский с нулевым математическим ожиданием и $R(s,t)=e^{-|t-s|/2}$. Второй определяется через процесс Винера по закону $Y_t=e^{-t/2}W_{e^t}$. Докажите, что эти гауссовские процессы совпадают.

Задача 3.5. Найдите корреляционную функцию процесса $X_t = W_t^2 - W_t, \ t \geqslant 0.$

Задача 3.6. Для винеровского процесса W_t вычислите условное математическое ожидание $\mathbb{E}(W_t \mid W_s = x)$ и дисперсию $\mathbb{D}(W_t \mid W_s = x)$ для произвольных $t \geqslant 0, \ s \geqslant 0, \ x \in \mathbb{R}$.

Домашнее задание на четвёртую неделю

Задача 4.1 (каноническое задание). Исследовать винеровский процесс W на непрерывность, дифференцируемость и интегрируемость во всех смыслах (в среднем квадратичном, «почти наверное», по вероятности, по распределению).

Задача 4.2 (каноническое задание). Исследовать пуассоновский процесс K, на непрерывность, дифференцируемость и интегрируемость во всех смыслах (в среднем квадратичном, «почти наверное», по вероятности, по распределению).

Задача 4.3. Рассмотрим гауссовский процесс X, заданный тождественно нулевой функцией среднего и корреляционной функцией $R_X(t,s) = b \cdot e^{-a|t-s|}$. Проверить сущствование X' в среднем квадратичном.

Задача 4.4. Проанализируйте доказательство критерия дифференцируемости случайного процесса в смысле среднего квадратичного и докажите, что если ковариационная функция процесса $K_X(t,s)$ непрерывно дифференцируема на диагонали t=s, то она непрерывно дифференцируема всюду на $T\times T$.

Задача 4.5. Пусть X — дифференцируемый в среднеквадратичном процесс второго порядка с известными функцией среднего $m_X(t)$ и корреляционной функцией $R_X(s,t)$. Выразите через эти функции следующие величины ([a;b], $[c;d]\subseteq T$):

a)
$$\operatorname{cov}(X_t, X_s');$$
 6) $\mathbb{E} \int_a^b X_t dt;$ b) $\operatorname{cov}(X_t, \int_a^b X_s ds);$

$$\Gamma$$
) cov $\left(\int_a^b X_t dt, \int_c^d X_t dt\right)$,

Задача 4.6. Докажите, что процесс $U_t = W_t - \frac{1}{2} \int_0^t e^{-(t-s)/2} W_s \, ds$ есть процесс Орнштейна-Уленбека (см. предыдущее Д/З).

Домашнее задание на пятую неделю

- Задача 5.1 (каноническое задание). Пусть A, B, φ случайные величины такие, что φ не зависит от A и X, причем φ равномерно распределена на отрезке $[0;2\pi], A$ и B имеют совместное распределение с функцией плотности распределения f(a,b). Исследовать процесс $Z_t = A\cos(Bt + \varphi)$ $(t \geqslant 0)$ на стационарность в широком и узком смыслах.
- Задача 5.2 (каноническое задание). Пусть K пуассоновский случайный процесс интенсивности λ . Исследовать процесс $X_t = K_{t+1} K_t$ на стационарность в широком смысле.
- Задача 5.3 (каноническое задание). Доказать, что сумма независимых стационарных случайных процессов является стационарным случайным процессом. (Доказать это утверждение как для стационарности в широком смысле, так и узком смысле).
- Задача 5.4 (каноническое задание). Пусть K пуассоновский случайный процесс интенсивности λ . Исследовать процесс $X_t = K_t/t$ ($t \ge 1$) на эргодичность по математическому ожиданию.
- Задача 5.5 (каноническое задание). В модели Блэка-Шоулса-Мертона эволюция цены акции описывается геометрическим броуновским движением $S_t = A \exp(at + \sigma W_t), t \geqslant 1$, где A, a и $\sigma > 0$ неслучайные постоянные величины, W винеровский процесс. Воспользовавшись понятием эргодичности случайных процессов, оценить неизвестную величину a.
- **Задача 5.6.** Стационарный дифференцируемый в среднем квадратичном случайный процесс X имеет функцию среднего $m_X(t)$ и корреляционную функцию $R_X(s,t)$. Вычислите функцию среднего и корреляционную функцию для процесса $Y_t = t^2 X'_{t+2} + t X_{t-1}$.

Задача 5.7. Будет ли процесс W_t/\sqrt{t} эргодичен по дисперсии?

Задача 5.8. Пусть $\tau \sim \operatorname{Exp}(\lambda)$ и $A \sim \operatorname{Be}(1/2)$ — независимые случайные величины. Будет ли случайный процесс $X_t = (2A-1) \cdot (2 \mathbb{I}_{[0;\tau)}(t) - 1)$ эргодичным по математическому ожиданию?

Задача 5.9. Показать, что для эргодичности по математическому ожиданию стационарного случайного процесса X_t с корреляционной функцией $R_X(\tau)$ достаточно стремления к нулю $R_X(\tau)$ при $\tau \to +\infty$.

Домашнее задание на шестую неделю

Задача 6.1 (каноническое задание).

- 1. Может ли функция $R(t) = \mathbb{I}_{[-T;T]}(t)$ быть характеристической функцией некоторой случайной величины? А корреляционной функцией некоторого стационарного в широком смысле случайного процесса? Изменится ли ответ, если сгладить разрывы функции R(t) в точках $t=\pm T$?
- 2. Является ли функция $R(t) = \mathbb{I}_{[0;+\infty)}(t)$ неотрицательно определенной?
- 3. Верно ли, что если функция является неотрицательно определенной, то она является характеристической функцией некоторой случайной величины? А корреляционной функцией случайного процесса?
- 4. Как связана неотрицательная определенность функции и неотрицательность ее Фурье-образа?
- 5. Какой физический смысл имеет спектральная плотность стационарного в широком смысле случайного процесса?

Задача 6.2 (каноническое задание). Построить пример стационарного процесса X с корреляционной функцией $R_X(t) = \cos(t)$. Найти спектральную функцию этого процесса. Существует ли спектральная плотность этого процесса?

Задача 6.3 (каноническое задание). Рассмотрим колебательный контур, состоящий из последовательно соединенных катушки индуктивности, конденсатора, сопротивления и источника сторонних э.д.с. Э.д.с. $\mathcal{E}(t)$, заряд q(t) на обкладках конденсатора и производные $\dot{q}(t)$, $\ddot{q}(t)$ считаются достаточно с.к.-гладкими стационарными в широком смысле случайными процессами с нулевым математическим ожиданием. Считая известной спектральную плотность $\rho_{\mathcal{E}}(\lambda)$ процесса $\mathcal{E}(t)$, вычислить спектральную плотность $\rho_q(\lambda)$ процесса q(t).

Задача 6.4. Вычислите спектральную плотность стационарного процесса с корреляционной функцией $R(\tau) = ae^{-b|t|}$.

Задача 6.5. Случайный процесс X задан формулой $X_t = X_0 \cdot g(t)$, где $\mathbb{E} X_0 = 0$, $\mathbb{D} X_0 = 1$, а функция $g \colon \mathbb{R} \to \mathbb{C}$ неслучайна. Докажите, что этот процесс стационарен лишь при $g(t) = e^{i\omega t}$. Получите его корреляционную функцию. Какая у неё спектральная функция? Имеет ли она спектральную плотность?

Домашнее задание на седьмую неделю

Задача 7.1 (каноническое задание). Показать, что для дискретной марковской цепи при $t_1 < t_2 < t_3$ выполнено равенство

$$\mathbb{P}\{X_{t_1} = x_1, X_{t_3} = x_3 \mid X_{t_2} = x_2\} =$$

$$= \mathbb{P}\{X_{t_1} = x_1 \mid X_{t_2} = x_2\} \cdot \mathbb{P}(X_{t_3} = x_3 \mid X_{t_2} = x_2\}.$$

Задача 7.2 (каноническое задание). Доказать, что условие

$$\mathbb{P}\{X_{t_n} = x_n \mid X_{t_{n-1}} = x_{n-1}, \dots, X_{t_0} = x_0\} = \mathbb{P}\{X_{t_n} = x_n \mid X_{t_{n-1}} = x_{n-1}\}$$

в определении марковской цепи равносильно условию

$$\mathbb{P}\{X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0\} = \mathbb{P}\{X_n = x_n \mid X_{n-1} = x_{n-1}\}.$$

Здесь $T = \mathbb{N}_0, \ n \geqslant 1, \ t_0 < t_1 < \dots < t_n.$

Задача 7.3 (каноническое задание). Пусть X_0, X_1, \ldots, X_n — дискретная марковская цепь. Является ли марковской последовательность $X_n, X_{n-1}, \ldots, X_0$?

Задача 7.4 (каноническое задание). Пусть $\{X_n\}$ — последовательность независимых одинаково распределенных случайных величин, принимающих значения -1 и 1 с вероятностями p и q=1-p соответственно. Выяснить, будет ли последовательность $\{Y_n\}$ марковской цепью, если

1)
$$Y_n = X_n X_{n+1}$$
; 2) $Y_n = \max_{0 \le i \le n} X_i$; 3) $Y_n = \prod_{i=0}^n X_i$.

Задача 7.5 (каноническое задание). Пусть $\{X_n\}$ и $\{Y_n\}$ — две марковские цепи. Будет ли марковской последовательность $\{X_n + Y_n\}$?

Задача 7.6 (каноническое задание). Пусть $\{X_n\}$ — марковская цепь, а $\psi(x)$ — некоторая измеримая функция. Будет ли последовательность $\{\psi(X_n)\}$ марковской цепью?

Задача 7.7. В модели мутации типа вируса вирус либо сохраняет свой тип, либо меняет его на случайно выбранный другой из n штук (всего n+1 тип). Матрица переходных вероятностей за один шаг есть

$$P = \begin{bmatrix} 1 - \alpha & \alpha/n & \alpha/n & \dots & \alpha/n \\ \alpha/n & 1 - \alpha & \alpha/n & \dots & \alpha/n \\ \dots & \dots & \dots & \dots & \dots \\ \alpha/n & \alpha/n & \alpha/n & \dots & 1 - \alpha \end{bmatrix}$$

Найдите вероятность вирусу типа 1 через n шагов снова оказаться типа 1. $\Pi odc \kappa as \kappa a$: cocmoshus das ydobcmba можно obsedunsmb.