DD1 Practical test 2

parthchoudhary_ec20b13_24@dtu.ac.in Switch account
Draft saved * Required
Email *
parthchoudhary_ec20b13_24@dtu.ac.in
4-bit 2's complement representation of a decimal number is 1000. The number is
O 8
O 0
O -7
Clear selection
One multiplexer can take the place of
several SSI logic gates
several Ex-NOR gates
several SSI logic gates or combinational logic circuits
ombinational logic circuits

Two D-flip-flops, as shown below, are to be connected as a synchronous counter that goes through the following Q1Q0 sequence 00-> 01->11->10 ->00->... . The input D0 and D1 respectively should be connected as LSB MSB >CLK Q₁ Clock Q1'Q0' and Q1Q0 Q1' and Q0 Q0' and Q1 Q1'Q0 and Q1'Q0 In the expression Y + ZX the total number of min-terms are _____ 2 () 5 A 3x8 decoder with a enable line _____ Can work as 1x8 de-multiplexer Can work as 8x3 encoder Can work as 8x1 multiplexer All the options

Digital Comparator is a
O gate
Combinational circuit
sequential circuit
Complex circuit
How many flip-flops are in the 7474 IC?
O 4
O 2
O 3
O 1
The output of a sequential circuit at any instant of time is dependent
All the options
On the present inputs
past history of outputs
past history of inputs
Clear selection

In a J-K flip-flop we have J=Q' and K=1 (see figure) Assuming the flip-flop was initially cleared an then clocked for 6 pulses, the sequence at the Q output will be

- 10010
- 11001
- 10000
- 0 10101

Clear selection

Which of the following statement is true about 8-bit barrel shifter

- It is a sequential circuit
- It takes 2 clock cycle to shift the 8-bit pattern towards right by 2 bit positions
- Both It takes 2 clock cycle to shift the 8-bit pattern towards right by 2 bit positions and It is a sequential circuit
- O It is a combinational circuit

Clear selection

For the circuit shown below the output F is given by

- F=X'
- F=X
- F=0
- F=1

Clear selection

The number of product terms in the minimized sum-of-product expression obtained through the following K-map is (where, "d" denotes don't care states)

1	0	0	1
0	d	0	0
0	0	d	1
1	0	0	1

- O 4
- 3
- O 5
- 0 2

The advantage of 2's complement system in digital design is
Only two arithmetic operation is required
Only one arithmetic operation is required
No arithmetic operation is required
O Different arithmetic operation is required
Clear selection
Consider the following two statements :- A:)- A 5-bit ring counter is known as mod 6 synchronous counters. B:) A 5-bit twisted ring counter has 10 stable states. Choose the best appropriate options
Statement A is True; Statement B is True
Statement A is false; Statement B is True
Statement A is false; Statement B is false
Statement A is True; Statement B is false
In standard TTL the 'totem pole' stage refers to
The phase splitter The poulti emitter input store
The multi-emitter input stage
The output buffer
Open collector output stage
Clear selection

Page 1 of 1

Submit Clear form

Google Forms