

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Neodymium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$			
	Baes and Mesmer, 1976	NIST46	Neck et al., 2009	Brown and Ekberg, 2016
$Nd^{3+} + H_2O \rightleftharpoons Nd(OH)^{2+} + H^+$	-8.0	-8.0	-7.4 ± 0.4	-8.13 ± 0.05
$Nd^{3+} + 2 H_2O \rightleftharpoons Nd(OH)_2^+ + 2 H^+$	(-16.9)		-15.7 ± 0.7	
$Nd^{3+} + 3 H_2O \rightleftharpoons Nd(OH)_{3(aq)} + 3 H^+$	(-26.5)		-26.2 ± 0.5	
$Nd^{3+} + 4 H_2O \rightleftharpoons Nd(OH)_4^- + 4 H^+$	(-37.1)	-37.4	-40.7 ± 0.7	
$2 \text{ Nd}^{3+} + 2 \text{ H}_2\text{O} \rightleftharpoons \text{Nd}_2(\text{OH})_2^{4+} + 2 \text{ H}^+$	-13.86	-13.9		-15.56 ± 0.20
3 Nd ³⁺ + 5 H ₂ O \rightleftharpoons Nd ₃ (OH) ₅ ⁴⁺ + 5 H ⁺	<-28.5			-34.2 ± 0.3
$Nd(OH)_3(s) + 3 H^+ \rightleftharpoons Nd^{3+} + 3 H_2O$	18.6		17.2 ± 0.4	17.89 ± 0.09
$Nd(OH)_3(s) \rightleftharpoons Nd^{3+} + 3 OH^-$		-23.2 ± 0.9	-21.5 (act) -23.1(inact)	

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 137.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 135-145.

V. Neck, M. Altmaier, T. Rabung, J. Lützenkirchen and T. Fanghänel, Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl₂, and CaCl₂ solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes. Pure Appl. Chem., 81, 1555–1568 (2009).

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two Nd concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

