

Introduction to Internet of Things

Prof. Eui-Jik Kim

Contents

- 2 History of IoT & Future Prospects
 - 3 Core Technologies of IoT

What is IoT?

Introduction to Internet of Things (IoT)

What is IoT?

Definition of IoT

사용 목적과 단체에 따라서 다양한 해석이 존재

- -한국인터넷진흥원: 인간의 명시적 개입 없이 상호협력적으로 센싱, 네트워킹, 정보 처리 등 지능적 관계를 형성하는 사물 공간 연결망
- -미 백악관 보고서: 유무선 통신을 통해 연결된 임베디드 센서를 사용, 디바이스 간에 서로 데이터 통신을 하는 기능
- -McKinsey: 사물이 유무선 네트워크로 연결되어 인터넷 전반에서 추적,조정,통제될 수 있도록 하는 센서,구동기,데이터 통신 기술을 사용하는 것
- -CISCO: 사람 (People), 프로세스 (Process), 데이터 (Data), 그리고 사물 (Things) 간 네트워크 연결 (Networked connection)을 의미

IoT는 사람, 사물 등 모든 객체들이 서로 연결되어 상호작용 하는 것

What is IoT?

Connectivity of IoT

< People connecting with Things > < Things connecting with Things >

IoT의 사물(things)은 유무선 네트워크에서의 end-device 뿐만 아니라, 인간, 차량, 교량, 자연 환경 등과 같이 데이터를 수집하거나 서비스를 구성하는 모든 물리적 사물을 포함함

What is IoT

How is IoT working

IoT는 최근에 갑자기 등장한 개념이 아니라 예전부터 다양한 명칭으로 존재해 왔으며, 1999년
Kevin Ashton에 의해 IoT라는 개념이 등장하게 됨
IoT의 시장 규모는 2020년 8조 9천만 달러가 될 것으로 예상되며, 해마다 그 규모가 성장하고 있음

Growth of IoT

Source: Google Trend (https://trends.google.com/trends/explore?date=all&q=loT)

Growth of IoT

Source: "Expectation of IoT Diffusion" (2014), NCTA – The Internet & Television Association

IoT Device의 수는 해마다 증가 할 것으로 예상 2020년에는 전 세계에 500억개의 IoT Device가 있을 것으로 예상

Future Prospects

Source: "Where does the IoT create profit from" (2014), Gartner

다양한 산업분야에서 IoT 기술이 활용되고 있으며, 그 활용도는 해가 갈 수록 높아지고 있음 앞으로 계속 다양한 기술과 융합하여 발전할 것으로 예상됨 ex)헬스케어 웨어러블기기 = (헬스케어 + 빅데이터 + IoT)

***** Future Prospects - Video Example

❖ IoT 아키텍처

Source: www.hometoys.com/content.php?post type=2277/

Source: https://www.arch.ie/blog-post/iot-in-healthcare/

❖ IoT 핵심기술

Hardware

- Sensor & Actuator
- Hardware platform

Connectivity

Communication technology

Software

- Big data analysis
- End-user application

IoT device

IoT network

IoT application

Hardware

Sensor & Actuator

움직임, 밝기, 전자기, 온도 등의 상태를 측정하여 신호로 변환하여 **데이터 생성**

Flame

Button

Microphone

특정 데이터 수신 시, Actuator가 동작함으로써 물리적인 환경에 영향을 끼침

Servo motor

Classic DC motor

Geared DC motor

Industrial servo motor

Hardware

> Hardware platform

Raspberry Pi 3

Arduino Uno

Raspberry Pi 를 이용한 다양한 센서 값 측정

- IoT 하드웨어 플랫폼을 통해 오브젝트의 기능을 제어 및 처리하는 것
- 소프트웨어 상에서 동작하며 신호를 송수신 함으로써 Sensor와 Actuator를 연결시킴
- 대표적인 IoT 하드웨어 플랫폼으로는 Arduino Uno 와 Raspberry Pi 3가 있음

Connectivity

Communication technologies

- Sensor & Actuator로 부터 생성된 정보를 송수신 하기 위해 기기에 연결성을 제공
- Application의 목적에 따라 다양한 종류의 통신기술들이 선택 및 적용가능

Connectivity

NFC

(Near Field Communication)

- 근거리 무선 통신
- 400Kbps의 전송 속도
- 아주 가까운 거리의 무 선 통신을 하기 위한 기술
- 교통, 티켓, 지불 등 여러 서비스에 사용

RFID

(Radio Frequency Identification)

- 주파수를 이용해 ID를 식별하는 시스템 (전자 태그)
- 400Kbps의 전송 속도
- 전파를 이용해 먼 거리 에서 정보를 인식하는 기술
- RFID 태그와 RFID 판 독기가 필요

Bluetooth

- 디지털 통신 기기를 위한 개인 근거리 무선 통신 산업 표준
- 700Kbps의 전송 속도
- 문자 및 음성 정보를 비교적 낮은 속도로 무 선통신을 통해 주고 받 는 용도
- 마우스, 키보드, 스마트 폰, 스피커에 사용

Wi-Fi

- 전자기기들이 무선랜 에 연결할 수 있게 하 는 기술
- 100Mbps의 전송 속도
- Wi-Fi 호환 장치들은 무선랜 네트워크와 무 선 액세스 포인트를 통 해 인터넷에 접속
- PC, 스마트폰, 디지털 카메라, 태블릿에 사용

ZigBee

- 저전력 디지털 라디오 를 이용해 개인 통신망 을 구성하여 통신하기 위한 표준 기술
- 250Kbps의 전송 속도
- 낮은 수준의 전송 속도 로 긴 배터리 수명과 보안 요구 분야에 사용
- 무선 조명 스위치, 교 통 관리 시스템에 사용

Software

- Big data analysis
 - 수집된 데이터를 통합, 가공 및 분석하여 새로운 유의미한 데이터를 생성함
- > End-user application
 - Sensors & Actuators를 제어하고, 제어 결과를 사용자에게 제공함
 - 데이터 분석결과를 사용자에게 제공함

Data Analysis Server

End-User Device

Software

<센서 제어 예시 : 족부 질환 환자의 보행패턴 분석을 위한 사물인터넷 기반 헬스케어 시스템>

- 사용자 인터페이스를 통해 각도센서와 압력센서를 제어하고, 센서로부터 측정된 값을 수신하여 사용자에게 제공
- 수집된 센서 데이터를 통해 사용자 의 보행패턴을 분석

하드웨어 구성

사용자 인터페이스

<빅데이터 분석 예시 : 산불위험 예보 및 확산 서비스 (산림청)>

- 대형산불 전후의 과거 기상자료 추 출하여 기상정보 산출
- 기상정보 유사패턴 분석을 통해 대 형산불에 대해 위험예보 적용
- 대형산불 발생 가능성 사전예측이 가능하며, 사전예보로 대형산불 피 해 저감효과가 기대됨

Question

