Глубинное обучение Лекция 4: Обучение нейросетей – оптимизация и регуляризация

Лектор: Антон Осокин

ФКН ВШЭ, 2018

Чёрная магия нейросетей

ФКН ВШЭ, 2018

План лекции

- Обучение нейросетей
 - Стохастический градиентный спуск
 - Learning rate, batch size
 - Инерция в градиентном спуске
 - Как отслеживать обучение?
- Регуляризация
 - L2 регуляризация (weight decay)
 - Dropout
 - Аугментация данных
 - Регуляризация через плохую оптимизацию
- Оптимизация
 - Batch normalization и другие нормировки
 - Индивидуальные скорости: RMSprop, Adam

Задача приближения функции (обучение с учителем)

- ullet Вход: объекты $x_1,\ldots,x_N\in\mathbb{R}^d$, ответы $y_1,\ldots,y_N\in\mathbb{Y}$
- Семейство функций нейросети f(x, θ)
 - Параметры θ линейного слоя (Wx + b): W, b (weights, biases)
- Задача настроить параметры по выборке
- Функция потерь $\ell(f(x,\theta),y)$
- Задача обучения: $\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \ell(f(x,\theta),y)$
- Регуляризованный эмпирический риск

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \theta), y_i) + \mathcal{R}(\theta)$$

Обучение нейросети

• Регуляризованный эмпирический риск

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \theta), y_i) + \mathcal{R}(\theta)$$

- Задача оптимизации сложная (не выпуклая)
- Обычно функция дифференцируема
- Стохастическая оптимизация первого порядка
 - Stochastic gradient descent (SGD)

$$\theta_{t+1} \leftarrow \theta_t - \gamma \Big(\nabla_{\theta} \big[\ell(f(x_i, \theta_t), y_i) + \mathcal{R}(\theta_t) \big] \Big)$$

 Вычисление градиента по параметрам – back-propagation (метод обратного распространения ошибки)

[Rumelhart&McClelland, 1986]

Основная функция потерь — Log loss (cross entropy, neg. log-likelihood)

• Функция потерь по умолчанию для классификации

$$\ell(f(x,\theta),y) = -\log\left(\frac{\exp f_y(x,\theta)}{\sum_{s=1}^K \exp f_s(x,\theta)}\right) \qquad y_i \in \mathbb{Y} = \{1,\dots,K\}$$
$$\ell(f(x,\theta),y) = -f_y(x,\theta) + \log\left(\sum_{s=1}^K \exp f_s(x,\theta)\right)$$

- Оффтоп: наивная реализация очень неустойчива
 - Экспонента большого числа, разность близких чисел
 - Правильная реализация:

$$\ell(f(x,\theta),y) = -f_y(x,\theta) + F + \log\left(\sum_{s=1}^K \exp(f_s(x,\theta) - F)\right)$$

– PyTorch:

$$F := \max_{s=1,\dots,K} f_s(x,\theta)$$

- nn.CrossEntropyLoss(scores)
- nn.NLLLoss(nn.LogSoftmax(scores))

Основные параметры обучения

Stochastic gradient descent (SGD)

$$\theta_{t+1} \leftarrow \theta_t - \gamma \Big(\nabla_{\theta} \big[\ell(f(x_i, \theta_t), y_i) + \mathcal{R}(\theta_t) \big] \Big)$$

- γ learning rate (скорость обучения, LR)
 - Большой или маленький шаг?

Images: cs231n

Основные параметры обучения

Stochastic gradient descent (SGD)

$$\theta_{t+1} \leftarrow \theta_t - \gamma \Big(\nabla_{\theta} \big[\ell(f(x_i, \theta_t), y_i) + \mathcal{R}(\theta_t) \big] \Big)$$

- γ learning rate (скорость обучения, LR)
 - Большой или маленький шаг?
- Теория говорит, что фикс. LR сходится к шару
- На практике:
 - Выбирают макс. LR, что метод не расходится
 - Далее LR уменьшают по расписанию или ReduceOnPlateau

Размер батча (batch size)

Градиент обычно усредняют по нескольким примерам

$$\theta_{t+1} \leftarrow \theta_t - \gamma \left(\frac{1}{B} \sum_{b=1}^{B} \nabla_{\theta} \left[\ell(f(x_{i_b}, \theta_t), y_{i_b}) + \mathcal{R}(\theta_t) \right] \right)$$

- Почему?
 - Градиенты становятся менее шумными
 - Теория оптимизации говорит, что этого делать не надо [Shalev-Shwartz et al., 2010]
 - Аппаратное ускорение от работы в батче (GPU, кластеры, etc)
 - Некоторые слои (batchnorm) непосредственно используют батч
- Рекомендация (для GPU) макс. батч, который дает линейное ускорение и влезает в память
 - Для ImageNet это 32, 64, 128
 - При очень больших батчах проблемы со сходимостью

Инерция в оптимизации

• SGD ведёт себя нестабильно, особенно в «каньонах»

$$\theta_{t+1} \leftarrow \theta_t - \gamma \nabla_{\theta} \ell_t(\theta_t)$$

• Выход – использовать инерцию (momentum, heavy-ball)

$$m_{t+1} \leftarrow \rho m_t + \nabla_{\theta} \ell_t(\theta_t)$$
$$\theta_{t+1} \leftarrow \theta_t - \gamma m_t$$

Images credit: cs231n

Как отслеживать обучение? Графики!

[Tensorboard(X), visdom, etc]

- 1. Значение функции потерь в зависимости от итерации
 - Проверка идёт ли оптимизация
- 2. Ошибка классификации

Обучающая выборка не покажет переобучение!

- 3. Потери(лосс) / ошибка на валидационной выборке
 - ВАЖНО: Использовать валидацию, а не тест
 - Можно выбрать итерацию с наилучшей моделью
 - Тогда по тестовой выборке можно оценить метод
 - Валидация не часто и не редко (10% времени)
 - Можно использовать метрики из задачи (BLEU)

Регуляризация

Граница размыта:

- регуляризация
- оптимизация
- архитектура

L2 регуляризация (weight decay)

• L2-норма на параметры

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, \theta), y_i) + \frac{\lambda}{2} \|\theta\|_2^2$$

- Препятствует росту параметров
- Обычно встроена в оптимизатор (weight decay)

$$\theta_{t+1} \leftarrow \theta_t (1 - \lambda) - \gamma \nabla_{\theta} \ell_t(\theta_t)$$

- Обычные значения 10⁻³, 10⁻⁴ (по умолчанию 0)
- L1 примерно такой же эффект

Dropout

[Srivastava et al., 2014]

• Случайное обнуление активаций

- Препятствует «коадаптации» узлов, связано с ансамблями сетей
- Полносвязные слои/эмбеддинги, реже свёртки
- ВАЖНО! в режиме теста обычно выключается
 - Веса домножаются на 1/(1-р) для масштаба
- Неявная регуляризация!
 - Мешает оптимизации, но помогает обучению

Аугментация данных

[Yaeger et al., 1996]

- Из существующих данных искусственно сделать ещё
- Для изображений a must (важная часть AlexNet)
 - Left/right flip
 - Random crop/rescaling. Сдвиги редко
 - Случайные модификации цвета
 - Синтез синтетических данных
- Для звука случайный шум фона, тональность [Hannun et al., 2014]
- Для текстов реже (дискретные данные)
 - Замена на синонимы по словарю [Zhang& LeCun, 2016]

Плохая оптимизация – регуляризация!

- Ранний останов (early stopping)
 - Смотрим на ошибку на валидации
 - Останавливаемся/уменьшаем шаг, когда убывает
- Использовать SGD!

[Bottou&Bousquet, 2008]

Approximation–Estimation–Optimization Tradeoff

$$\min_{\mathcal{F}, \rho, n} \ \mathcal{E} = \mathcal{E}_{\mathrm{app}} + \mathcal{E}_{\mathrm{est}} + \mathcal{E}_{\mathrm{opt}} \quad \text{subject to} \ \left\{ \begin{array}{cc} n & \leq & n_{\mathrm{max}} \\ T(\mathcal{F}, \rho, n) & \leq & T_{\mathrm{max}} \end{array} \right.$$

- Approximation regret лучшего NN в семействе
- Estimation лучший выбор NN по данным
- Optimization лучший NN за вычислительный бюджет
- Large-scale: ограничение по вычислениям
- SGD лучше по обобщающей способности в Large-scale
- Sharp vs. flat minima
- CNN лучше SGD, сложные модели Adam

Оптимизация

Граница размыта:

- регуляризация
- оптимизация
- архитектура

Batch normalization

[loffe&Szegedy, 2015]

- Internal Covariate Shift = изменение распределения активаций, вызванное изменением параметров
- Whitening перенормировка на 0-mean и 1-std
 - Вычитание среднего и деление на std
 - Улучшает обучение (всегда в предобработке данных)
- Batchnorm whitening на промежуточных слоях
 - Mean, std оцениваются по батчу
 - Mean, std дифференцируемы

Batch normalization

[loffe&Szegedy, 2015]

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

• Объекты перестают быть i.i.d.!

Следствия batch normalization

[loffe&Szegedy, 2015]

- Можно увеличить длины шага (LR)
- Можно убрать dropout
- Уменьшить L2-регуляризацию
- Позволяет обучать очень глубокие модели (ResNet)

Подбор LR для каждого параметра

• RMSprop [Tieleman&Hinton, slide 29 of lecture 6]

$$\theta_{t+1,i} \leftarrow \theta_{t,i} - \frac{\gamma}{\sqrt{v_{t,i}^2 + \varepsilon}} \nabla_{\theta_i} \ell_t(\theta_t),$$

$$v_{t,i}^2 \leftarrow \beta v_{t-1,i}^2 + (1 - \beta)(\nabla_{\theta_i} \ell_t(\theta_t))^2$$

- Параметры: $\beta = 0.99$, $\varepsilon = 10^{-8}$, $\gamma = 10^{-2}$
- Adam [Kingma&Ba, 2015]

$$\theta_{t+1,i} \leftarrow \theta_{t,i} - \frac{\gamma}{\sqrt{\hat{v}_{t,i}^2 + \varepsilon}} \hat{m}_{t,i},$$

$$v_{t,i}^2 \leftarrow \beta_2 v_{t-1,i}^2 + (1 - \beta_2) (\nabla_{\theta_i} \ell_t(\theta_t))^2, \qquad \hat{v}_{t,i}^2 \leftarrow \frac{v_{t,i}^2}{1 - \beta_2^t},$$

$$m_{t,i} \leftarrow \beta_1 m_{t-1,i} + (1 - \beta_1) \nabla_{\theta_i} \ell_t(\theta_t) \qquad \hat{m}_{t,i} \leftarrow \frac{m_{t,i}}{1 - \beta_1^t}$$

— Параметры: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 10^{-8}$, $\gamma = 10^{-3}$

Karpathy constant $\gamma = 3e-4$

Разные методы оптимизации

Images credit: Alec Radford

Оптимизация и регуляризация

Процесс:

- Архитектура и функция потерь
- Оптимизация потерь на обучении
- Регуляризация, чтобы улучшить обобщение

HINTs:

- Метод оптимизации часто является частью модели!
- Осторожно с гиперпараметрами!
- Диагностика:
 - Отношение нормы апдейта к норме весов
 - Гистограммы активаций
 - Визуализация всего можно и нельзя!