curs 7

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

RECAP. - SUBSTITUŢIA

Definiția 6.8

Pentru orice formule φ, χ, χ' , definim

$$\varphi_{\chi}(\chi')$$
 := expresia obţinută din φ prin înlocuirea tuturor apariţiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

Propoziția 6.9

Pentru orice formule φ,χ,χ' , $\varphi_\chi(\chi')$ este de asemenea formulă.

Propoziția 6.10

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

SUBSTITUŢIA

Fie $e: V \to \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Notaţie.

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{v \leftarrow a} : V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = \begin{cases} e(x) & \text{daca } x \neq v \\ a & \text{daca } x = v. \end{cases}$$

Propoziția 7.1

Fie θ o formulă și $a:=e^+(\theta)$. Atunci pentru orice formulă φ ,

$$(e_{v\leftarrow a})^+(\varphi)=e^+(\varphi_v(\theta)).$$

Demonstrație. Exercițiu suplimentar.

3

SUBSTITUŢIA

Propoziţia 7.2

Pentru orice formule φ, ψ, θ și orice variabilă $v \in V$,

- (i) $\varphi \sim \psi$ implică $\varphi_{\mathsf{V}}(\theta) \sim \psi_{\mathsf{V}}(\theta)$.
- (ii) Dacă φ este tautologie atunci și $\varphi_{v}(\theta)$ este tautologie.
- (iii) Dacă φ este nesatisfiabilă, atunci și $\varphi_{v}(\theta)$ este nesatisfiabilă.

Demonstraţie. Fie $e: V \to \{0,1\}$ o evaluare arbitrară şi $a:=e^+(\theta)$. Aplicând Propoziţia 7.1, rezultă că $e^+(\varphi_v(\theta)) = (e_{v \leftarrow a})^+(\varphi)$ şi $e^+(\psi_v(\theta)) = (e_{v \leftarrow a})^+(\psi)$.

- (i) Deoarece $\varphi \sim \psi$, avem că $(e_{v \leftarrow a})^+(\varphi) = (e_{v \leftarrow a})^+(\psi)$. Deci, $e^+(\varphi_v(\theta)) = e^+(\psi_v(\theta))$.
- (ii) Deoarece φ este tautologie, avem că $(e_{v \leftarrow a})^+(\varphi) = 1$. Deci, $e^+(\varphi_v(\theta)) = 1$.
- (iii) Deoarece φ este nesatisfiabilă, avem că $(e_{v \leftarrow a})^+(\varphi) = 0$. Deci, $e^+(\varphi_v(\theta)) = 0$.

⊤ şı ⊥

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație.

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Demonstrație. Exercițiu.

Notații.

- · Notăm $v_0 \rightarrow v_0$ cu \top și o numim adevărul.
- · Notăm $\neg(v_0 \rightarrow v_0)$ cu \bot și o numim falsul.

Observație.

- · φ este tautologie ddacă $\varphi \sim \top$.
- · φ este nesatisfiabilă ddacă $\varphi \sim \bot$.

CONJUNCŢII ŞI DISJUNCŢII FINITE

Notații

- · Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$.
- · Similar, scriem $\varphi \lor \psi \lor \chi$ în loc de $(\varphi \lor \psi) \lor \chi$.
- · Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots (\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots (\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $\cdot \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie şi $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $\cdot \varphi_1 \vee \ldots \vee \varphi_n$ se mai scrie şi $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

CONJUNCȚII ȘI DISJUNCȚII FINITE

Propoziția 7.3

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge ... \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, ..., n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1 \text{ ddacă } e^+(\varphi_i) = 1 \text{ pentru } un \ i \in \{1, \ldots, n\}.$

Demonstrație. Exercițiu.

Propoziția 7.4

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg \varphi_1 \wedge \ldots \wedge \neg \varphi_n$$

$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg \varphi_1 \vee \ldots \vee \neg \varphi_n$$

MULŢIMI DE FORMULE

Fie Γ o mulţime de formule.

Definiția 7.5

- · O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \models \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \models \Gamma$.
- · Γ este satisfiabilă dacă are un model.
- · Γ este finit satisfiabilă dacă orice submulţime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem şi că Γ este nesatisfiabilă sau contradictorie.

Mulţimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

$$Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi).$$

MULŢIMI DE FORMULE

Fie Γ , Δ mulţimi de formule.

Definiția 7.6

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 7.7

- · Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- · Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notaţie: $\Gamma \sim \Delta$.

Observaţie.

- $\cdot \ \psi \vDash \varphi \ \operatorname{ddacă} \{\psi\} \vDash \varphi \ \operatorname{ddacă} \{\psi\} \vDash \{\varphi\}.$
- $\cdot \ \psi \sim \varphi \ \ \mathsf{ddaca} \ \{\psi\} \sim \{\varphi\}.$

Propoziția 7.8

- (i) $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- (ii) $Cn(\emptyset)$ este mulţimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Propoziţia 7.9

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ ddacă $\Gamma \vDash \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ şi $\Gamma \vDash \psi$.

Demonstrație. Exercițiu.

Propoziția 7.10

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \vDash \bot$.

Propoziția 7.11

Fie Γ o multime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puţin una dintre $\Gamma \cup \{\varphi\}$ şi $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Demonstrație.

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ şi $e^+(\varphi) = 0 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ şi $e^+(\neg \varphi) = 1 \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$ este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e^+(\varphi)=1$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e^+(\varphi)=0$, deci $e^+(\neg \varphi)=1$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Propoziția 7.12

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulţime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$.
- (ii) $\Gamma \vDash \psi$ ddacă $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulţime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulţime Γ de formule şi pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulţime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziţia 7.13

Cele trei versiuni sunt echivalente.

Lema 7.14

Fie Γ finit satisfiabilă. Atunci există un şir (ε_n) în $\{0,1\}$ care satisface, pentru orice $n \in \mathbb{N}$:

 P_n Orice submulţime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ care satisface $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\dots n\}$.

Demonstrație. Definim șirul (ε_n) prin inducție după $n \in \mathbb{N}$.

n = 0. Avem următoarele cazuri:

- (1₀) Pentru orice submulţime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_0)=0$. Definim $\varepsilon_0:=0$.
- (2₀) Există o submulțime finită Δ_0 a lui Γ a.î. pentru orice model e al lui Δ_0 , avem $e(v_0) = 1$. Definim $\varepsilon_0 := 1$.

Demonstrăm că P_0 este satisfăcută. În cazul (1₀) este evident. Să considerăm cazul (2₀). Fie Δ o submulţime finită a lui Γ . Atunci $\Delta \cup \Delta_0$ este o submulţime finită a lui Γ . Deoarece Γ este finit satisfiabilă, $\Delta \cup \Delta_0$ are un model e. Rezultă că $e \models \Delta$ şi, din faptul că $e \models \Delta_0$, obţinem că $e(v_0) = 1 = \varepsilon_0$.

Demonstrație. (continuare)

Pasul de inducție. Fie $n \in \mathbb{N}$. Presupunem că am definit $\varepsilon_0, \dots, \varepsilon_n$ a.î. P_n este satisfăcută. Avem următoarele cazuri:

(1_{n+1}) Pentru orice submulţime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots, n\}$ şi $e(v_{n+1}) = 0$.

Definim $\varepsilon_{n+1} := 0$.

(2 $_{n+1}$) Există o submulțime finită Δ_{n+1} a lui Γ a.î. pentru orice model e al lui Δ_{n+1} , avem

$$e(v_i) = \varepsilon_i$$
 pentru orice $i \in \{0, 1, ..., n\}$ implică $e(v_{n+1}) = 1$.
Definim $\varepsilon_{n+1} := 1$.

Demonstrăm că P_{n+1} este satisfăcută. În cazul (1_{n+1}) este evident. Să considerăm cazul (2_{n+1}) . Fie Δ o submulţime finită a lui Γ . Atunci $\Delta \cup \Delta_{n+1}$ este o submulţime finită a lui Γ . Prin urmare, conform P_n , există un model e al lui $\Delta \cup \Delta_{n+1}$ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots n\}$. Din (2_{n+1}) , obţinem şi $e(v_{n+1}) = 1 = \varepsilon_{n+1}$.

Teorema 7.15 (Teorema de compacitate)

Pentru orice mulţime Γ de formule,

 Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Demonstrație.

"⇒" Evident.

"⇐" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n,$$

unde (ε_n) este şirul construit în lema precedentă. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară şi fie $k \in \mathbb{N}$ a.î. $Var(\varphi) \subseteq \{v_0, v_1, \ldots, v_k\}$. Deoarece $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ , putem aplica Proprietatea P_k pentru a obține un model e al lui φ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \ldots k\}$. Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Aplicând Propoziția 6.1, rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leustean din anul universitar 2017/2018.