PRACTICE QUIZ 17 SOLUTIONS

ADRIAN PĂCURAR

Time: 10 min

Time to beat: ? min

Problem 1. Find $\frac{dy}{dx}$ given that $x^2y - xy^2 + x^2 + y^2 = 0$.

We take derivative with respect to x and get

$$2xy + x^{2}\frac{dy}{dx} - y^{2} - x(2y)\frac{dy}{dx} + 2x + 2y\frac{dy}{dx} = 0$$

and after moving everythign without $\frac{dy}{dx}$ to the RHS, this is

$$x^2 \frac{dy}{dx} - 2xy \frac{dy}{dx} + 2y \frac{dy}{dx} = y^2 - 2x - 2xy$$

and now factor $\frac{dy}{dx}$ to get

$$\frac{dy}{dx}\left(x^2 - 2xy + 2y\right) = y^2 - 2x - 2xy$$

Finally,

$$\frac{dy}{dx} = \frac{y^2 - 2x - 2xy}{x^2 - 2xy + 2y}$$

Problem 2. Find $\frac{dy}{dx}$ if $x^2 + y^2 = xy + 3$.

Taking the derivative w.r.t x gives us

$$2x + 2y\frac{dy}{dx} = y + x\frac{dy}{dx}$$

which we rewrite as

$$2y\frac{dy}{dx} - x\frac{dy}{dx} = y - 2x$$
$$\frac{dy}{dx}(2y - x) = y - 2x$$
$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}$$

Problem 3. Given that $x^3y + xy^3 = 2$, find $\frac{dy}{dx}$ at the point (1,1).

Taking the derivative gives

$$3x^{2}y + x^{3}\frac{dy}{dx} + y^{3} + x(3y^{2})\frac{dy}{dx} = 0$$

and substituting x = 1 and y = 1 allows us to get

$$3 + \frac{dy}{dx} + 1 + 3\frac{dy}{dx} = 0$$

so
$$\frac{dy}{dx} = -1$$
.

Problem 4. Find the second derivative y'' for x + xy + y = 2.

First we need the first derivative:

$$1 + y + x \frac{dy}{dx} + \frac{dy}{dx} = 0$$
$$\frac{dy}{dx}(x+1) = -y - 1$$
$$\frac{dy}{dx} = y' = \frac{-y - 1}{x+1}$$

and now we take another second derivative using quotient rule, then substitute the formula we just found for y' where appropriate

$$y'' = \frac{-y'(x+1) - (-y-1)(1)}{(x+1)^2} = \frac{-\left(\frac{-y-1}{x+1}\right)(x+1) + y + 1}{(x+1)^2} = \frac{2y+2}{(x+1)^2}$$