1.1 Proofs

Double Negative	not(not(P)) <=> P
Associative Law	(X and (Y or Z)) <=> ((X and Y) or Z)
Distributive Law	$(X \text{ and } (Y \text{ or } Z)) \le ((X \text{ and } Y) \text{ or } (X \text{ and } Z)$
Contrapositive	$X \to Y \le \operatorname{not}(Y) \to \operatorname{not}(X)$
Equivalence	$X \leftrightarrow Y \stackrel{\text{\tiny{$+$}}}{=} (X \to Y) \text{ and } (Y \to X)$

Proof Techniques

Exhaustive checking Conditional proof Proof by contradiction

1.2 Sets

Natural Numbers (N)	[0], 1, 2, 3	a
Integers (Z)	, -3, ,-2, -1, 0, 1, 2, 3	C
Rational numbers (R)	A / B, A and B in Z	(

Two characteristics of sets:

There are no repeated occurrences of elements There is no particular order of elements

Power sets

Subsets:

$$\begin{split} S &= \{a,\,b,\,\{a,\,c\}\} \\ power(S) &= \{NULL,\,\{a\},\,\{b\},\,\{\{a,\,c\}\},\,\{a,\,b\},\,\{a,\,c\}\},\,\{b,\,\{a,\,c\}\},\,\{a,\,b,\,\{a,\,c\}\}\} \\ Cardinality(S) &= |S| &= 3 \end{split}$$

A is a subset of B if A contains all elements in B

A is a proper subset of B if A is a subset of B and A ! Leaf: a childless node

Two sets are equal if they have the same elements, so A is a subset of B and B is a subset of A

Set Operations

A
$$\cup$$
 B = { x | x \in A or x \in B }
A \cap B = { x | x \in A and x \in B }

Set properties

1.3 Ordered Structures

Tuple: An ordered collection of elements

Two characteristics of tuples:

There may be repeated occurrences of elements There is an order or arrangement of the elements

$$A = \{A, B, C\}, B = \{1, 2\}$$

 $A^0 = \{()\}$

$$A^1 = \{(a), (b), (a)\}$$

$$A^1 = \{(a), (b), (c)\}$$

$$A^2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

$$\{(c, b), (c, c)\}\$$
 $A * B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$

List: a finite ordered sequence of zero or more elements

Two characteristics of lists:

Elements can be repeated

Only two accessible elements: element at the head, and the tail which is the list of elements

following the head Cartesian Products

cons(h, L) creates a list whose head is h and whose Partial functions: Functions that are undefined for tail is L

1.4 Graphs

Graph: a set of nodes that are interconnected by

Adjacent: two nodes share an edge

n-colorable: if a graph is n-colorable then its edges can be assigned n colors without any adjacent nodes $Floor(R) \le Z$ iff $R \le Z$ sharing two same colored edges

Chromatic number: the mnimum n-color for a graph Complete graph: every node has an edge to every other node

Path: the series of edges that link one node to another

Connected graph: all nodes have a path to every other node

Cycle: a path that starts and ends at the same node

Graph traversal

Breadth first: visit all unvisited adjacent nodes of a given node, then visit all unvisited nodes adjacent to the adjacent nodes

Depth first: for some node, visit unvisited node, visit rest of unvisited nodes.

Tree: a connected graph without cycles

Rooted tree: a tree with a node designated as root Height: the number of edges from root to farthest child

2.1 Functions

Function: an association between two sets, A and B, that map exactly one element from set A to set B.

Given sets A and B and function f: $A \rightarrow B$

f maps elements from A to B

Domain: the set A

Codomain: the set B

Range: the subset of B that is mapped to by A

 $range(f) = \{f(a) \mid a \in A \}$

is the elements in A that are actually mapped to B Injection, one-to-one: if f maps distinct elements of A onto distinct elements of B. AKA Differentiable. Surjection: if f has a value from A mapped to every S1| a10, a11, a12, a13, a14, a15, a16, value in B. Also, range(f) = codomain(f)Bijection: f is injective and surjective FG

 $A = \{a, b, c\}, B = \{1, 2, 3\}$

$$A = \{a, b, c\}, B = \{1, 2, 6\}$$

f(a) = 1f(b) = 1

f(c) = 2

domain(f) =
$$\{a, b, c\}$$

codomain(f) = $\{1, 2, 3\}$

range(f) =
$$\{1, 2\}$$

Images: $f({a}) = {1}$

 $f({a, b}) = {1}$

 $f({a, b, c}) = {1, 2}$

Preimages:

$$f^{-1}(\{1,3\}) = \{a,b\}$$

 $f^{-1}(\{3\}) = NULL$

some values

2.1 Various functions

 $Floor(x) \Rightarrow f: R \rightarrow Z$

Floor(R) = Z iff R
$$\leq$$
= Z \leq R + 1 iff Z - 1 \leq R \leq = Z

Properties:

Floor(R + Z) = Floor(R) + Z

$$Z \le Floor(R) \text{ iff } Z \le R$$

Ceiling(x) \Rightarrow f: R \rightarrow Z

Ceiling(R) =
$$Z$$
 iff $R - 1 < Z \le R$ iff $Z \le R < Z + 1$

Properties:

$$Ceiling(R + Z) = Ceiling(R) + Z$$

$$Z < Ceiling(R)$$
 iff $Z < R$

Ceiling(R)
$$\leq$$
 Z iff R \leq Z

$$gcd(a, b) = gcd(b, a)$$

$$gcd(a, b) = gcd(b, a - bq) q \in Z$$

if
$$g = gcd(a, b)$$
, then $g = ax + by$, $x, y \in Z$

algorithm:

$$a = bq + r, r \in Z, b != 0$$

2.4 Countability

Given sets A and B, if A biject B, then |A| = |B|

Informally, a set is countable if its elements can be counted in a step by step manner.

Formally, a set is countable if it is finite or there is a bijection between it and N.

Countable properties:

Every subset of N is countable

S is countable iff $|S| \le |N|$

If S0 .. SN is a sequence of countable set, S0 ∪ ...

∪ SN is countable.

Diagonalization:

Let A be an alphabet with two or more symbols and Image: For any set S that is a subset of A, the image let S0.. SN be a countable listing of sequences. The sequences are listed as the rows of an infinite matrix

S0| a0, a1, a2, a3, a4, a5, a6,

S1| a20, a21, a22, a23, a24, a25, a26

Then there is a sequence S = (a0, a1, a2, a3, a4, ...)over A that is not in the original list. S can be constructed from a diagonal list of elements, (a00, a11, a22, a33, ...).

3.1 Inductively defined sets

An inductive definition of a S set consists of three steps:

Basis: Specify one or more elements of S.

Induction: Give one or more rules to construct new elements of S from existing elements of S.

Closure: State that S consists exactly of the elements obtained by the basis and induction steps (assumed).

All Strings over A

Basis: $\Lambda \in A^*$

Induction: if $s \in A$ and $a \in A$, then $as \in A^*$.

3.2 Recursive functions and procedures

If S is an inductively defined set, then we can construct a function f with domain S as follows:

1) For each basis element $x \in S$, specify a value for 4.3 Order Relations

2) Give rules that, for any inductively defined element $x \in S$, will define f(x) in terms of previously defined values of f.

3.3 Grammars

A grammar is a set of rules used to define the structure of the strings in a language.

If L is a language over an alphabet A, then a grammar for L consists of a set of grammar rules of the form $a \rightarrow b$, where a and b denote strings of symbols taken from A and a set of grammar symbols If A is a well-founded set, then every nonempty disjoint from A. The $a \rightarrow b$ notation is also known as a production.

The four parts of a grammar

- 1) An alphabet N of grammar symbols called nonterminals
- 2) An alphabet T of symbols called terminals. Distinct from N.
- 3) A specific nonterminal S, called the start symbol.
- 4) A finite set of productions of the form $a \rightarrow b$, where a and b are strings over the alphabet $N \cup T$ with the restriction that a is not the empty string.

 $S \rightarrow \Lambda \mid aS \mid bS \mid cS$ $P = \{ S \rightarrow \Lambda, S \rightarrow aS, S \rightarrow bS, S \rightarrow cS \}$ 4 tuple = $({S}, {a, b, c}, S, P)$

4.1 Properties of binary relations

For a binary relation R on a set A, we have the following definition

- 1) R is reflexive if x R x for all $x \in A$
- 2) R is symmetric of x R y implies y R x for all x, y $\in A$
- 3) R is transitive if x R y and y R z implies x R z for all x, y, $z \in A$
- 4) R is irreflexive if $(x, x) ! \in R$ for all $x \in A$
- 5) R is antisymmetric if x R y and y R x implies x =y for all $x, y \in A$

If R and S are binary relations, then the coposition of R and S is the following relation: R composition $S = \{(a, c) \mid (a, b) \in R \text{ and } (b, c) \in A\}$ **S**}

4.2 Equivalence relations

Any binary relation that is reflexive, symmetric, and transitive is called an equivalence relation. Intersection Property of Equivalence If E and F are equivalence relations on the set A, then $E \cap F$ is an equivalence relation on A.

Kernel relations

If f is a function with domain A, then relation ~ defined by

 $x \sim y$ iff f(x) = f(y)

is an equivalence relation on A, and is called the kernel relation of f.

Equivalence class

Let R be an equivalence relation on a set S. if $a \in S$, then the equivalence class of a, denoted by [a], is the

subset of S consisting of all elements that are equivalent to a. In other words, we have $[a] = \{ x \in S \mid x R a \}$

Definition of a partial order A a binary relation is called a partial order if it is antisymmetric, transitive, and either reflexive or irreflexive.

Definition of a partially ordered set The set over which a partial order is defined is called a partially ordered set, or poset. IF we want to emphasize the fact that R is the partial order that makes S a poset, we can write <S, R>.

Descending chains and minimality subset of A has a minimal element. Conversely, if

1 Inductively Defined Sets

 $A = \{3, 5, 7, 9, \dots\}$ can be represented as $A = \{2k+3 \mid k \in \mathbb{N}\}$ But we can also describe A by saying $3 \in A \Rightarrow x+2 \in A$ and nothing else is in A.

Sets specified as unions of inductively defined sets: $A = \{2, 3, 4, 7, 8, 11, 15, 16, ...\}$ can be expressed as $B \cup C$, $B = \{2, 4, 8, 16, ...\}$ and $C = \{3, 7, 11, 15\}$

Basis: $2, 3 \in A$

Induction: If $x \in A$ and x is odd, then $x + 4 \in A$ If $x \in A$ and x is even, then $2x \in A$

1.1 Strings

All Strings over A: Basis: $\Lambda \in A$, Induction: If $s \in A*$ and $a \in A$, then $as \in A*$

Inductive Definition of Languages: $S = \{a, ab, abb, abbb\} = \{ab^n \mid n \in \mathbb{N}\}$

Basis: $a \in S$, Induction: If $x \in S$, then $xb \in S$

1.2 Lists

 $\langle x, y, z \rangle = cons (x, \langle y, z \rangle) = \\ cons (head (\langle x, y, z \rangle), tail (\langle x, y, z \rangle))$

Don't forget, $cons(x, \langle y, z \rangle) = x :: \langle y, z \rangle$

All lists over A: $Basis: \langle \rangle \in lists(A)$, Induction: If $x \in A$ and $L \in lists(A)$, then $cons(x, L) \in lists(A)$

1.3 Binary Trees

All Binary Trees over A: Basis: $\langle \rangle \in B$, Induction: If $x \in A$ and $L, R \in B$, then $tree(L, x, R) \in B$

1.4 Cartesian Products of Sets

Cartesian Product: Basis: $(0,a) \in \mathbb{N} \times A \ \forall a \in A$, Induction: If $(x,y) \in \mathbb{N} \times A$, then $(x+1,y) \in \mathbb{N} \times A$

Part of a plane: Let $S = \{(x,y) \mid x,y \in \mathbb{N} \text{and } x \leq y\}$. S is set of points in first quadrant, on or above the main diagonal. Basis: $(0,0) \in S$, Induction: If $(x,y) \in S$, then (x,y+1), $(x+1,y+1) \in S$

2 Recursive Functions

A function or procedure is recursively defined if defined in terms of itself. Constructing a recursively defined function: if S is inductively defined set, then construct function f with domain S as follows: 1. fo each basis element $x \in S$, specify value for f(x); 2. give rules that for any inductively defined element $x \in S$, specify a value for f(x).

2.1 Numbers

Let $f: \mathbb{N} \to \mathbb{N}$ be defined in terms of floor as follows: f(0) = 0, f(n) = f(floor(n/2)) + n for n > 0, then:

$$f(25) = f(12) + 25 = f(6) + 12 + 25 = f(3) + 6 + 12 + 25 = f(1) + 3 + 6 + 12 + 25 = f(0) + 1 + 3 + 6 + 12 + 25 = 0 + 1 + 3 + 6 + 12 + 25 = 47$$

2.2 Lists

Consider $f: \mathbb{N} \to lists(\mathbb{N})$ which computes the backward sequence: $f(n) = \langle n, n-1, ..., 1, 0 \rangle$. We can define this recursively as: $f(0) = \langle 0 \rangle$, f(n) = n :: f(n-1) for n > 0.

The pairs function:

 $pairs(\langle a, b, c \rangle, \langle 1, 2, 3 \rangle) = \langle (a, 1), (b, 2), (c, 3) \rangle =$ $(a, 1) :: \langle (b, 2), (c, 3) \rangle = (a, 1) :: pairs(\langle b, c \rangle, \langle 2, 3 \rangle).$ So pairs can be defined recursively as: $pairs(\langle \rangle, \langle \rangle) = \langle \rangle), pairs(x :: T, y :: U) = (x, y) :: pairs(T, U)$

2.3 Binary Trees

Preorder traversal: visit(root), preorder(L), preorder(R).

Inorder traversal: inorder(L), visit(root), inorder(R).

 $\begin{array}{ll} \textbf{Postorder} & \textbf{traversal:} & postorder(L), & postorder(R), \\ visit(root). & \end{array}$

3 Grammars

Example: $A=\{a,b,c\}$, the grammar for the language A^* has 4 productions: $\{S\to\Lambda,S\to aS,S\to bS,s\to cS\}$. A Grammar is a 4-tuple:

1. alphabet N of nonterminals, 2. alphabet T of terminals, distinct from nonterminals, 3. specific nonterminal S called start symbol, 4. finite set of products of form $\alpha \to \beta$, where α and β are strings over $N \cup T$ and $\alpha \neq \Lambda$.

3.1 Derivations

If x and y are sentential forms and $\alpha \to \beta$ is a production, then replacement of α by β in $x\alpha y$ is called a derivation step, written: $x\alpha y \Rightarrow x\beta y$.

 \Rightarrow derives in one step; \Rightarrow ⁺ derives in one or more steps; \Rightarrow ^{*} derives in zero or more steps

The language of a grammar: if G is a grammar with start symbol S and set of terminals T, then language of G is the set $L(G) = \{s \mid s \in T^* \text{ and } S \Rightarrow^+ s\}$

A grammar is **recursive** if it contains a recursive production or indirectly recursive production. $S \rightarrow b \mid aA, A \rightarrow c \mid bS$ is indirectly recursive because $S \Rightarrow aA \Rightarrow abS$, and $A \Rightarrow bS \Rightarrow baA$.

Constructing an inductive defintion for L(G): $G: S \to \Lambda \mid aB, B \to b \mid bB$. 2 derivatives don't contain recursive productions: $S \Rightarrow \Lambda$, and $S \Rightarrow aB \Rightarrow ab$. This is basis: $\Lambda, ab \in L(G)$. Only recursive production of G is $B \to bB$. Any element of L(G) whose derivation contains B must have form $S \Rightarrow aB \Rightarrow^+ ay$ for some string y. Then we can say $S \Rightarrow aB \Rightarrow abB \Rightarrow^+ aby$. Induction: If $ay \in L(G)$, then put aby in L(G).

Constructing grammars: $L = \{\Lambda, ab, aabb, ..., a^nb^n, ...\} = \{a^nb^n \mid n \in \mathbb{N}\}$. Grammar: $S \to \Lambda \mid aSb$.

1 Proofs, Sets, Graphs, and Trees

conjunction $\Rightarrow A \cup B$, disjunction $\Rightarrow A \cap B$, converse $if \ x > 0$ and $y > 0 \Rightarrow x + y > 0$ or $if \ x + y > 0 \Rightarrow x > 0 \cup y > 0$, $'(A \cup B) = 'A \cap 'B, '(A \cap B) = '(A) \cup '(B)$

- 2 Functions
- 3 Construction Techniques
- 4 Equivalence, Order, Induction

Binary Relation Relation properties

R is reflexive if x R y for all $x, y \in A$. R is symmetric if x R y implies y R x for all $x, y \in A$. R is transitive if x R y and y R z implies x R z for all $x, y, z \in A$. R is irreflexive if $(x.y) \notin R$ for all $x \in A$. R is antisymmetric if x R y and y R x implies x = y for all $x, y \in A$. The < on $\mathbb R$ is transitive, symmetric, reflexive, and antisymmetric. The \le relation on $\mathbb R$ is reflexive, transitive and antisymmetric. The "is parent of" relation is irreflexive and antisymmetric.

Composition of Relations

If $R \circ S = \{(a,c) | (a,b) \in R \text{ and } (b,c) \in S \text{ for some element } b\}$. To construct the "isGrandparentOf" relation we can compose "isParentOf". $isGrandparentOf = isParentOf \circ isParentOf$. If we try an combine relations, ie: $x(> \circ <)y$ iff there is some number z such that x>y and z< y With $\mathbb R$ we know there is always another number z that is less than both. So the whole composition must be $\mathbb R \times \mathbb R$.

Properties of combining Relations

$$\begin{split} R\circ(S\circ T) &= (R\circ S)\circ T \\ R\circ(S\cup T) &= R\circ S\cup R\circ T \\ R\circ(S\cap T) &= R\circ S\cap R\circ T \end{split}$$

Equivalence Relations

Any binary relation that is reflexive, symmetric and transitive is called an *equivalence relation*. The intersection property of equivalence follows: if E and F are equivalence relations on the set A, then $E \cap F$ is an eq. rel. on A. We can also say $x \sim y$ iff $x \to y \to y$ and $x \to y \to y \to y \to y$ which can also be said, $x \to y \to y \to y \to y \to y$

Kernel Relations: eq rel on functions

Notice that we can show $x \sim y$ iff f(x) = f(y). This is called the kernel relation of f. Mod is one function that can be defined $x \sim y$ iff $x \mod n = y \mod n$.

Equivalence Classes

Let R be an eq rel on a set S. If $a \in S$, then the eq class of a by [a] is the subset of S consisting of all elements that are eq to a. In other words we have $[a] = \{x \in S | xRa\}$. The property of equivalences is as follows: Let S be a set with

an equivalence relation R. If $a, b \in S$, then either [a] = [b] or $[a] \cap [b] = .$ Partitions are the collection of nonempty subsets that are disjoint whose union is the whole set. For example $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ can be paritioned in many ways, one of which consists of $\{0, 1, 4, 9\}, \{2, 5, 8\}, \{3, 6, 7\}$. We could also say $[0] = \{0, 1, 4, 9\}, [2] = \{2, 5, 8\}, [3] = \{3, 6, 7\}$. This is generalized into the rule; If R is an eq. rel on the set S, then the eq classes form a partition of S. COnversely, if P is a partition of a set S, then there is an eq rel on S whose eq classe are sets of P.

Partial Orders

A binary relation is called a partial order if it is antisymmetric, transitive, and either reflexive or irreflexive. The set over which a partial order is defined is called a partially ordered set or poset for short. If we want to emphasize that R is the partial order that makes S a poset, we'll write $\langle S, R \rangle$. Symbols used: irreflexive partial order or \prec and reflexive partial order or \preceq . These are read as $a \prec b$ or a is less than b and $a \preceq b$ or a is less than or equal to b. We can define them with each other too: $\preceq = \prec \cup \{(x,x)|x \in A\}$ and $\prec = \preceq - \{(x,x)|x \in B\}$. We talk of predecessors like so: $\{z \in A|x \prec z \prec y\} = .$ We can also say that y is an immediate successor of x here. An element in a poset is considered a minimal element of S if it has no predecessors. An element is the least if $x \preceq y$ for all $y \in S$. The maximal element and greatest elements are simply the reverse.

Inductive Proof

The important thing to remember about applying inductive proof techniques is to make an assumption then use the assumption just made. The **Principle of Mathmatical Induction** follows: Let $m \in \mathbb{Z}$. To prove that P(n) is true for all integers $n \geq m$, perform the following two steps:

- 1. Prove that P(n) is true.
- 2. Assume that P(k) is true for an arbitrary $k \geq m$. Prove that P(k+1) is true.

Second Principle of Induction: Let $m \in \mathbb{Z}$. To prove that P(n) is true for all integers $n \geq m$, perform the following two steps:

- 1. Prove that P(m) is true.
- 2. Assume that n is an arbitrary integer n > m, and assume that P(k) is true for all k in the interval $m \le k < n$. Prove that P(n) is true.

1