

CRAb

Métodos Numéricos 1 (MN1)

Unidade 3: Sistemas de Equações Parte 4: Método de Gauss com Pivotação

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

UFC

Introdução

- Método da eliminação de Gauss
 - Irá falhar quando um pivô for nulo
 - Irá gerar resultados imprecisos quando um pivô for muito próximo de zero
- Para evitar esses problemas, adota-se uma estratégia de pivotação ou pivoteamento
 - Pivotação Parcial

- Pivotação Total ou Completa

Descrição:

i. No início de cada etapa k, escolhe-se para pivô o elemento de maior módulo entre todos os coeficientes da coluna k, a partir da linha k

$$a_{ik}^{(k-1)}, k \le i \le n$$

ii. Trocam se as linhas i ek, caso tenha-se i ≠ k

$a_{11}^{(k-1)}$	$a_{12}^{(k-1)}$		$a_{1k}^{(k-1)}$		$a_{1n}^{(k-1)}$
0	$a_{22}^{(k-1)}$		$a_{2k}^{(k-1)}$	177	$a_{2n}^{(k-1)}$
		P	鰀		:
0	0	• • •	$a_{kk}^{(k-1)}$		$a_{kn}^{(k-1)}$
	循	A	:		a :
0	0	Ŋ.	$a_{nk}^{(k-1)}$		$\begin{bmatrix} a_{nn}^{(k-1)} \end{bmatrix}$

 Exemplo: resolver o sistema dado usando o método de eliminação de Gauss com pivotação parcial

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$$

- Etapa 1:
 - Escolher elemento de maior valor absoluto na coluna demarcada (coluna 1) para ser o pivô

- Etapa 1:
 - Executa fase de eliminação do método de Gauss original (após troca do pivô efetuada)

Eliminar elementos da área demarcada

3	1	0	4
1	2	3	3
0	3	4	3

P=(2,1,3)

Etapa 2:

- Escolher elemento de maior valor absoluto na coluna demarcada (coluna 2) para ser o pivô

- Etapa 2:
 - Executa fase de eliminação do método de Gauss original (após troca do pivô efetuada)

P=(2,3,1)

Fim da fase de eliminação:

$$\begin{bmatrix} 3 & 1 & 0 & 4 \\ 0 & 3 & 4 & 3 \\ 0 & 0 & 7/9 & 0 \end{bmatrix} P=(2,3,1)$$

 Resolve-se então o sistema triangular superior por substituições retroativas:

$$x = [1, 1, 0]^T$$

Observações:

- A única diferença entre o método da eliminação de Gauss com e sem pivotação parcial está no modo de escolha do elemento pivô do processo
- A pivotação parcial garante que o pivô seja não nulo, exceto quando a matriz dada for singular
- Todos os fatores multiplicadores satisfazem:

$$-1 \le m_{ij} \le 1$$

Controle maior dos erros de arredondamento

 Exercício: resolver o sistema dado usando o método de eliminação de Gauss com pivotação parcial

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_1 + x_2 + 2x_3 = 2 \\ 4x_1 + 3x_2 - 2x_3 = 3 \end{cases} \qquad \{x\} = \begin{cases} -3 \\ 5 \\ 0 \end{cases}$$

Descrição:

escolhe-se então para pivô o elemento de maior módulo entre todos os coeficientes da submatriz a partir da k-ésima linha e também k-ésima coluna

$$a_{ij}^{(k-1)}, k \le i, j \le n$$

ii. Trocam se as linhas i e k, se i ≠ k e as colunas j e k, se j ≠ k nesse caso

i. No início de cada etapa k, escolhe-se então para pivô o elemento de maior módulo entre todos os coeficientes da submatriz a partir da k-ésima linha e também k-ésima coluna
$$a_{1j}^{(k-1)}, k \leq i, j \leq n$$
 ii. Trocam se as linhas i e k, se i \neq k e as colunas j
$$a_{11}^{(k-1)} \quad a_{12}^{(k-1)} \quad \dots \quad a_{1n}^{(k-1)} \quad \dots \quad a_{1n}^{(k-1)} \quad \dots \quad a_{2n}^{(k-1)} \quad \dots \quad$$

 Exemplo: resolver o sistema dado usando o método de eliminação de Gauss com pivotação total

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$$

Etapa 1:

- Escolher o elemento de maior valor absoluto na região demarcada (matriz toda) para ser o pivô

nas linhas é dada por

- Etapa 1:
 - Executa fase de eliminação do método de Gauss original (após troca do pivô efetuada)

Eliminar elementos da área demarcada

$$P=(3,2,1)$$
 $Q=(3,2,1)$

Etapa 2:

- Escolher o elemento de maior valor absoluto na coluna demarcada (submatriz) para ser o pivô

- Etapa 2:
 - Executa fase de eliminação do método de Gauss original (após troca do pivô efetuada)

Eliminar elementos da área demarcada

Fim da fase de eliminação:

$$\begin{bmatrix} 4 & 0 & 3 & 3 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & -7/12 & -7/12 \end{bmatrix} P=(3,2,1)$$

$$Q=(3,1,2)$$

 Resolve-se então o sistema triangular superior por substituições retroativas:

$$x = [0, 1, 1]^T$$

 Trocas de colunas produzem trocas no vetor solução (vetor de permutação Q):

$$x = [1, 1, 0]^T$$

 Exercício: resolver o sistema dado usando o método de eliminação de Gauss com pivotação total

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_1 + x_2 + 2x_3 = 2 \\ 4x_1 + 3x_2 - 2x_3 = 3 \end{cases} \qquad \{x\} = \begin{cases} -3 \\ 5 \\ 0 \end{cases}$$

Determinante

 O método da eliminação de Gauss nos permite calcular com certa facilidade o determinante da matriz dos coeficientes

Gauss

Determinante

 Qual a relação entre os determinantes das matrizes dos sistemas equivalentes obtidos por operações I-elementares?

 a) Se duas linhas quaisquer de uma matriz A forem trocadas, então o determinante da nova matriz B será o da matriz A com o sinal trocado

$$det(B) = -det(A)$$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \rightarrow det(A) = -7$$

$$B = \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix} \rightarrow det(B) = 7$$

b) Se os elementos de uma linha de A forem multiplicados por uma constante k, então o determinante da matriz B resultante será

$$det(B) = k det(A)$$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \rightarrow det(A) = -7$$

$$B = \begin{bmatrix} 4 & 2 \\ 1 & -3 \end{bmatrix} \rightarrow det(B) = -14$$

c) Se um múltiplo escalar de uma linha de A for somado a outra linha, então o determinante da matriz B resultante será o mesmo da matriz A

$$det(B) = det(A)$$

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \rightarrow det(A) = -7$$

$$B = \begin{bmatrix} 2 & 1 \\ 5 & -1 \end{bmatrix} \rightarrow det(B) = -7$$

d) Se A for uma matriz triangular ou diagonal de ordem n, então o seu determinante será igual ao produto dos elementos da diagonal principal

$$det(A) = a_{11} a_{22} a_{33} ... a_{nn} = \prod_{i=1}^{n} a_{ii}$$

$$A = \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix} \to det(A) = -6$$

$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{bmatrix} \to det(B) = 18$$

e) Se uma matriz A for multiplicada por uma matriz B, o determinante da matriz resultante C será o produto dos determinantes de A e B

$$det(C) = det(A) det(B)$$

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \rightarrow det(A) = 10 \qquad B = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \rightarrow det(B) = 3$$

$$C = \begin{bmatrix} 1 & -2 \\ 13 & 4 \end{bmatrix} \to det(C) = 30$$

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 6 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix}$$

- Durante o método da eliminação de Gauss:
 - As matrizes intermediárias são sempre obtidas por combinações lineares das linhas (são equivalentes)
 - Portanto elas possuem determinantes iguais (propriedade c))

$$det(A) = det(A_{modificada})$$

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 6 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 9 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix}$$

- Durante o método da eliminação de Gauss
 - Como a matriz resultante é triangular, então pela propriedade d, o determinante da matriz será igual ao produto dos elementos da diagonal principal

$$det(A) = 1 \times 2 \times -12 = -24$$

- Obs: Caso haja troca de linhas, o sinal pode mudar!

 Exercício: calcular o determinante da matriz A do sistema dado usando o método de eliminação de Gauss (com e sem pivoteamento realizado)

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ x_1 + x_2 + 2x_3 = 2 \end{cases} \qquad \det(A) = -8$$

$$4x_1 + 3x_2 - 2x_3 = 3$$

Exercício: calcular o determinante

$$m_{21}$$
: $m_{21}a_{11} + a_{21} = 0 \rightarrow m_{21} = -a_{21}/a_{11} = -(1)/3 = -1/3 \Rightarrow L_2' = (-1/3)L_1 + L_2$
 m_{31} : $m_{31}a_{11} + a_{31} = 0 \rightarrow m_{31} = -a_{31}/a_{11} = -(4)/3 = -4/3 \Rightarrow L_3' = (-4/3)L_1 + L_3$

Exercício: calcular o determinante

$$\begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 1/3 & -22/3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5/3 \\ 5/3 \end{bmatrix}$$

Eliminar

$$m_{32}a_{22} + a_{32} = 0 \rightarrow m_{32} = -a_{32}/a_{22} = -(1/3)/(1/3) = -1 \Rightarrow L_3'' = -1L'_2+L'_3$$

$$\begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5/3 \\ 0 \end{bmatrix}$$

	L	Multiplicador		Α		b	Operações	
	1		<u>3</u>	2	4	1		
	2	$m_{21} = -(1)/3 = -1/3$	$\overline{\Lambda}$		2	2	Novo sistema é formado pelas linhas L1, L4, L6.	
	3	$m_{31} = -(4)/3 = -4/3$	4	3	-2	3		, , -
	4		0	<u>1/3</u>	2/3	5/3	(-1/3)L ₁ + L ₂	Ą
	5	m ₃₂ = -(1/3)/(1/3) = -1	0	1/3	-22/ 3	5/3	(-4/3)L ₁ + L ₃	
^	6		0	0	<u>-8</u>	0	-1L ₄ + L ₅	3

$$\begin{bmatrix} 3 & 2 & 4 \\ 0 & 1/3 & 2/3 \\ 0 & 0 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5/3 \\ 0 \end{bmatrix}$$

Cálculo do determinante é dado pela diagonal:

Det (A) =
$$3 \times 1/3 \times -8 \Rightarrow \det(A) = -8$$

$$det(A) = -8$$

Observações finais

- Vantagens: ©
 - Pivotação ajuda a aumentar robustez
 - Evita que sistema fique sem solução
 - Pode minimizar os erros na solução

Observações finais

- Desvantagens: ☺
 - É mais caro computacionalmente que Gauss normal
 - Pivotação total 😝 muitos cálculos (não é muito usado)
 - Pivotação parcial menos cáculos (é bem mais usado)
 - Número de passos continua fixo, não pode ser menor
 - Ainda não funciona bem para as matrizes esparsas