Cours de Mathématiques Maths Sup

F. FAYARD

12 novembre 2023

La version de ce document est la 02FBBA8.

Merci à tous les élèves des lycées Janson de Sailly, du Parc et des Lazaristes pour leurs remarques et corrections. Je remercie particulièrement Younès Achbad, Samuel Auroy, Antonin Barbier, Amin Belfkira, Martin Bot, Alexandre Brousse, Élodie Brun, Damien Callendrier, Lauren Calvosa, Sylvain Crosnier, Enguerrand De Jaegere, Thibaud De Valicourt, Victor Déru, Raphaël Des Boscs, Grégoire Dhimoïla, Léo Duhamel-Callot, Sacha Evrard, Axel Faou, Titouan Francheteau, Anthony Gago-Klimenko, Hélène Ghaleb, Cédric Holocher, Maxime Joubert, Maxime Lombard, Mira Maamri, Gauthier Malandrin, Gabriel Moreau, Pierre-Antoine Nguyen, Hilaire Oudinot, Eliott Pradeleix, Yann-Ellie Ravon, Sixtine Reynaud, Vivien Thienot, Carole Vacherand, Camille Vialet, Paul Vilars et Antonin Villepontoux.

Je tiens enfin à remercier mes anciens professeurs et collègues qui ont eu une influence sur la rédaction de ce document : Walter Appel, Bruno Arsac, Jean-Pierre Barani, Vincent Bayle, Christophe Bertault, Laurence Bouyge, Gilles Chaffard, Alain Chillès, Denis Choimet, Vincent Clapiès, Gérard Esposito, Stéphane Gonnord, Victor Lambert, Frédéric Morlot, Franz Ridde, Emmanuel Roblet et Alain Troesch.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/legalcode.fr

La dernière version de ce document ainsi que les sources LATEX sont disponibles à l'adresse https://github.com/FayardProf/Maths-MPSI-MP2I

Vous êtes autorisés à :

- Partager : copier, distribuer et communiquer le matériel par tous les moyens et sous tous formats.
- Adapter : remixer, transformer et créer à partir du matériel pour toute utilisation, y compris commerciale.

Selon les conditions suivantes :

- **Attribution**: Vous devez créditer l'œuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l'œuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l'offrant vous soutient ou soutient la façon dont vous avez utilisé son œuvre.
- Partage dans les mêmes conditions : Dans le cas où vous effectuez un remix, que vous transformez, ou créez à partir du matériel composant l'œuvre originale, vous devez diffuser l'œuvre modifiée dans les même conditions, c'est à dire avec la même licence avec laquelle l'œuvre originale a été diffusée.
- Pas de restrictions complémentaires : Vous n'êtes pas autorisé à appliquer des conditions légales ou des mesures techniques qui restreindraient légalement autrui à utiliser l'œuvre dans les conditions décrites par la licence.

Table des matières

1	Nor	nbres complexes 1
	1.1	Le corps des nombres complexes
		1.1.1 Définition, conjugaison, module
		1.1.2 Inégalité triangulaire
		1.1.3 Puissance entière, binôme de Newton
	1.2	Forme trigonométrique
		1.2.1 Exponentielle i θ
		1.2.2 Application à la trigonométrie
		1.2.3 Forme trigonométrique
		1.2.4 Exponentielle complexe
	1.3	Racines d'un nombre complexe
	1.0	1.3.1 L'équation du second degré
		1.3.2 Racines <i>n</i> -ièmes
	1.4	Nombres complexes et géométrie plane
	1.4	1.4.1 Le plan complexe
		1.4.2 Les similitudes directes
	1.5	Exercices
	1.0	Exercices
2	Log	ique, ensembles 3
_	2.1	
	2.1	2.1.1 Assertion, prédicat
		2.1.2 Implication, équivalence
	2.2	Ensemble
	2.2	2.2.1 Ensemble, élément
		2.2.2 Opérations élémentaires
	2.3	Application
	۷.5	2.3.1 Définition, exemples
		2.3.2 Application injective, surjective, bijective
	0.4	
	2.4	Relation binaire
		2.4.1 Relation d'ordre
	0.5	2.4.2 Relation d'équivalence
	2.5	L'ensemble des entiers naturels
		2.5.1 Récurrence
	0.0	2.5.2 Définition par récurrence
	2.6	Exercices
3	Con	npléments d'analyse 5
J		Le corps ordonné $\mathbb R$
	3.1	$3.1.1$ La relation d'ordre sur \mathbb{R}
		3.1.2 Valeur absolue
		3.1.3 Racine
		3.1.4 Partie entière, approximation
	0.0	3.1.5 Intervalle
	3.2	Fonction réelle d'une variable réelle
		3.2.1 Définition
		3.2.2 Symétries
		3.2.3 Monotonie
		3.2.4 Fonction majorée, minorée, bornée

	0.0	T		00
	3.3	Fonction	on continue, fonction dérivable	66
		3.3.1	Limite	66
		3.3.2	Continuité	68
		3.3.3	Dérivabilité	69
		3.3.4	Dérivées successives	71
		3.3.5	Dérivation et monotonie	72
		3.3.6	Dérivation des fonctions à valeurs dans $\mathbb C$	73
	2.4			73
	3.4	_	ation, primitive	
		3.4.1	Primitive	74
		3.4.2	Intégration et régularité	74
		3.4.3	Intégration et inégalité	75
		3.4.4	Intégration par parties, changement de variable	75
		3.4.5	Calcul de primitive	75
	3.5	Exerci	ces	78
4	Con	nnlóma	ents d'algèbre	83
4				
	4.1	Somme	e et produit, fonction polynôme	83
		4.1.1	Somme	83
		4.1.2	Produit	86
		4.1.3	Somme et produit doubles	86
		_	•	
		4.1.4	Fonction polynôme	87
	4.2	Trigon	ométrie	89
		4.2.1	Égalité modulaire	89
		4.2.2		89
			Formules de trigonométrie	
	4.3	Récurr	rence linéaire	93
		4.3.1	Récurrence linéaire d'ordre 1	93
		4.3.2	Récurrence linéaire d'ordre 2	94
	1 1			96
	4.4		ne linéaire	
		4.4.1	Système linéaire à q équations et p inconnues	96
		4 4 0		00
		4.4.2	Interprétation géométrique lorsque $p=2$ ou $p=3$	99
	4.5	4.4.2 Exerci		$\frac{99}{101}$
	4.5			
5		Exerci	ces	101
5	Fon	$rac{ ext{Exercio}}{ ext{ctions}}$	usuelles	101 109
5		Exercions Logari	ces	101 109 110
5	Fon	$rac{ ext{Exercio}}{ ext{ctions}}$	usuelles	101 109
5	Fon	Exercions Logari	ces	101 109 110 110
5	Fon	Exercions Logari 5.1.1 5.1.2	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle	101 109 110 110 111
5	Fon	Exercic ctions Logari 5.1.1 5.1.2 5.1.3	thme, exponentielle, puissance	101 109 110 110 111 113
5	Fon	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4	thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance	101 109 110 110 111 113 114
5	Fon	Exercic ctions Logari 5.1.1 5.1.2 5.1.3	thme, exponentielle, puissance	101 109 110 110 111 113
5	Fon	Ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite	101 109 110 110 111 113 114
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction	ces usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques	101 109 110 111 113 114 115 116
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes	101 109 110 111 113 114 115 116
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1 5.2.2	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonction Arcsin	101 109 110 111 113 114 115 116 118
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes	101 109 110 111 113 114 115 116
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1 5.2.2	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arccos	101 109 110 111 113 114 115 116 118
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1 5.2.2 5.2.3 5.2.4	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arccos Fonction Arctan	101 109 110 111 113 114 115 116 118 119 120
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arctan Formules de trigonométrie réciproque	101 109 110 111 113 114 115 116 118 119 120 122
5	Fon 5.1 5.2	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques	101 109 110 111 113 114 115 116 118 119 120 122 122
5	Fon 5.1	Exercic ctions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctio 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques	101 109 110 111 113 114 115 116 118 119 120 122
5	Fon 5.1 5.2	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques	101 109 110 111 113 114 115 116 118 119 120 122 122
5	Fon 5.1 5.2 5.3 5.4	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométriques hyperboliques ons trigonométriques hyperboliques ces	101 109 110 111 113 114 115 116 118 119 120 122 122
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles	101 109 110 111 113 114 115 116 118 119 120 122 126 131
	Fon 5.1 5.2 5.3 5.4	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre	101 109 110 1110 1111 113 114 115 116 118 119 120 122 126 131 131
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équations	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle homogène	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre	101 109 110 1110 1111 113 114 115 116 118 119 120 122 126 131 131
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équations	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle homogène Équation différentielle avec second membre	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132 132
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle homogène Équation différentielle avec second membre Problème de Cauchy	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132 132 133
	Fon 5.1 5.2 5.3 5.4 Équ 6.1	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4	tusuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle homogène Équation différentielle avec second membre Problème de Cauchy Équation différentielle non résolue	101 109 110 1110 1111 113 114 115 116 118 119 120 122 126 131 131 132 133 134
	Fon 5.1 5.2 5.3 5.4 Équ	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4 Équati	tusuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle avec second membre Problème de Cauchy Équation différentielle non résolue ion différentielle linéaire du second ordre	101 109 110 111 113 114 115 116 118 119 120 122 126 131 131 132 133 134 134
	Fon 5.1 5.2 5.3 5.4 Équ 6.1	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4	tusuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle homogène Équation différentielle avec second membre Problème de Cauchy Équation différentielle non résolue	101 109 110 1110 1111 113 114 115 116 118 119 120 122 126 131 131 132 133 134
	Fon 5.1 5.2 5.3 5.4 Équ 6.1	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4 Équati 6.2.1	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle avec second membre Problème de Cauchy Équation différentielle non résolue ion différentielle linéaire du second ordre Équation différentielle linéaire du second ordre Équation différentielle linéaire du second ordre Équation différentielle linéaire du second ordre	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132 133 134 134 135
	Fon 5.1 5.2 5.3 5.4 Équ 6.1	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonction 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonction Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4 Équati 6.2.1 6.2.2	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle avec second membre Problème de Cauchy Équation différentielle linéaire du second ordre Équation différentielle homogène Équation différentielle homogène Équation différentielle homogène	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132 133 134 134 135 136
	5.1 5.2 5.3 5.4 Équ 6.1	Exercice tions Logari 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Fonctice 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 Fonctice Exercice tations Équati 6.1.1 6.1.2 6.1.3 6.1.4 Équati 6.2.1 6.2.2 6.2.3	usuelles thme, exponentielle, puissance Logarithme népérien Exponentielle Logarithme et exponentielle en base a Fonction puissance Calcul de limite ons trigonométriques directes et réciproques Fonctions trigonométriques directes Fonction Arcsin Fonction Arcsin Fonction Arccos Fonction Arctan Formules de trigonométrie réciproque ons trigonométriques hyperboliques ces différentielles ion différentielle linéaire du premier ordre Équation différentielle avec second membre Problème de Cauchy Équation différentielle non résolue ion différentielle linéaire du second ordre Équation différentielle linéaire du second ordre Équation différentielle linéaire du second ordre Équation différentielle linéaire du second ordre	101 109 110 110 111 113 114 115 116 118 119 120 122 126 131 131 132 133 134 134 135 136 136

7	Espa	paces vectoriels	141
•	7.1	•	
		7.1.1 Définition, propriétés élémentaires	
		7.1.2 Sous-espace vectoriel	
		7.1.3 Application linéaire	
	7.2		
	1.4	7.2.1 $\mathcal{L}(E,F)$	
	7.9	O The state of the	
	7.3	, , , , , , , , , , , , , , , , , , , ,	
		7.3.1 Somme, somme directe	
		7.3.2 Projecteur	
		7.3.3 Symétrie	
		7.3.4 Hyperplan	
	7.4	Exercices	152
8	Suit	it on	157
0			
	8.1	1	
		8.1.1 Définition	
	0.0	Surve of Islands a state 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	8.2		
		8.2.1 Limite finie	
		8.2.2 Limite infinie	
		8.2.3 Limite et relation d'ordre	
		8.2.4 Théorèmes usuels et limites usuelles	
		8.2.5 Suite extraite	
	8.3	1	
		8.3.1 Voisinage	
		8.3.2 Densité	
		8.3.3 Propriété de la borne supérieure	
	8.4		
		8.4.1 Suite monotone	
		8.4.2 Étude des suites définies par $u_{n+1} := f(u_n) \dots \dots \dots \dots$	
		8.4.3 Suites adjacentes	
		8.4.4 Théorème de Bolzano-Weierstrass	169
	8.5	Exercices	171
9	Mat	atrices	177
	9.1	Matrice	177
		9.1.1 Matrice	
		9.1.2 Matrice carrée	
	9.2	1	
		9.2.1 Combinaison linéaire	
		9.2.2 Produit	
		9.2.3 Calcul dans l'algèbre $\mathcal{M}_n(\mathbb{K})$	
		9.2.4 Matrice inversible	183
		9.2.5 Calcul par bloc	184
	9.3	Matrice et Système linéaire	185
		9.3.1 Interprétation matricielle	185
		9.3.2 Calcul d'inverse, système de Cramer	186
		9.3.3 Opérations élémentaires par produit matriciel	187
		9.3.4 Matrice échelonnée	188
	9.4	Exercices	190
10	Dén	enombrement	193
	10.1	1 Cardinal	193
		10.1.1 Équipotence	193
		10.1.2 Ensemble fini, cardinal	
	10.2	2 Dénombrement	
		10.2.1 Dénombrement élémentaire	195
		10.2.2 Arrangement, combinaison	
	10.3	3 Exercices	

11	Gro	upes 2	205
	11.1	Groupe	205
		11.1.1 Loi de composition interne	205
		11.1.2 Groupe	208
		11.1.3 Ordre d'un élément	210
	11.2	Groupe symétrique	211
		11.2.1 Groupe symétrique	211
		11.2.2 Décomposition en cycles à supports disjoints	212
		11.2.3 Signature, groupe alterné	213
	11.3	Exercices	214
12			219
	12.1	1 / 1 0	219
			220
	12.2		220
) F - F	220
			222
		0 7	223
	12.3		224
		1	224
		1	226
			228
		1	229
		12.3.5 Continuité uniforme	230
	12.4	Exercices	231
10			
13		, I , I V	2 37 237
	13.1	, 1	237 237
			237 240
	12.0		-
	13.2	1 / 0	241
		1	241
	10.0		242
	13.3	0	242
			242
			243
			244
			246
	10.4		247
	13.4	Exercices	250
14	Dim	ension finie	255
			255
			255
			256
		· · · · · · · · · · · · · · · · · · ·	257
			258
	14.2		260
			260
		•	261
		-	262
			263
		-	263
	14 3		264
	1 1.0	** **	$264 \\ 264$
		1	265
			265 265
		· · · · · · · · · · · · · · · · · · ·	266 266
	14 4	*	266 266
		-	269
	T T.O	<u></u>	-00

15		alyse asymptotique 278
	15.1	Comparaison de suites
		15.1.1 Suites équivalentes
		15.1.2 Suite négligeable devant une autre
		15.1.3 Suite dominée par une autre
	15.2	Comparaison de fonctions
		15.2.1 Fonctions équivalentes
		15.2.2 Fonction négligeable devant une autre
		15.2.3 Fonction dominée par une autre
	15.3	Développement limité
		15.3.1 Définition, propriétés élémentaires
		15.3.2 Développement limité et propriétés locales
		15.3.3 Intégration et existence d'un développement limité
		15.3.4 Développements limités usuels
		15.3.5 Opérations usuelles sur les développements limités
		15.3.6 Réduction d'ordre
	15 4	Développement asymptotique
	10.1	15.4.1 Développement limité généralisé en $a \in \mathbb{R}$
		15.4.2 Développement asymptotique au voisinage de $a \in \mathbb{R}$
		15.4.3 Développement asymptotique au voisinage de $\pm \infty$
		15.4.4 Développement asymptotique de suites
	15.5	Exercices
	10.0	DARFORCES
16	Mat	trices et applications linéaires 30
		Matrice, vecteur et application linéaire
	10.1	16.1.1 Matrice d'une famille de vecteurs
		16.1.2 Matrice d'une application linéaire
		16.1.3 Matrice de passage, changement de base
		16.1.4 Caractérisation des matrices inversibles
		16.1.5 Rang d'une matrice
	16 2	Matrices équivalentes, matrices semblables
	10.2	16.2.1 Matrices équivalentes
		16.2.2 Matrices semblables
	16 9	Exercices
	10.5	Exercices
17	Dér	ivation 31:
		Fonction dérivable, dérivées successives
		17.1.1 Définition
		17.1.2 Théorèmes usuels
		17.1.3 Fonction dérivée, dérivées successives
		17.1.4 Fonctions de classe C^n
	17 2	Théorème de Rolle et applications
	11.2	17.2.1 Extrémum local
		17.2.2 Théorème de Rolle, accroissements finis
		17.2.2 Theoretic de rone, aceroissements inns
		17.2.4 Théorème de la limite de la dérivée
	17 2	Convexité
	17.5	17.3.1 Définition, propriétés élémentaires
		, 1
	17 4	
	17.4	Exercices
18	Arit	thmétique 33
		Divisibilité, division euclidienne
	10.1	18.1.1 Relation de divisibilité
		18.1.2 Congruence, division euclidienne
		Pgcd, ppcm
	189	
	18.2	
	18.2	18.2.1 Plus grand commun diviseur
	18.2	18.2.1 Plus grand commun diviseur 338 18.2.2 Algorithme d'Euclide 336
	18.2	18.2.1 Plus grand commun diviseur 33 18.2.2 Algorithme d'Euclide 336 18.2.3 Relation de Bézout 336
	18.2	18.2.1 Plus grand commun diviseur 338 18.2.2 Algorithme d'Euclide 336

	18.3	18.3.1 Nombres premiers	340 340 341 342
	18.4		344
10	T		=
19			347 347
	19.1		347 347
			348
		•	349
		•	350
		0	351
			352
	19.2		352
			352
			353
			353
		19.2.4 Formules de Taylor	355
	19.3	Exercices	357
20	-		863
	20.1	1 1 1	363
			363
			364
		0	365
			365
			366
		1	366 367
		v	368
	20.2		369
	20.2	- •	369
			371
		ů	372
	20.3	• -	374
	_0.0		,, _
21	Prob	babilités 3	377
	21.1	Espace probabilisé	377
		Transfer and the second	379
			382
			384
	21.2	1	386
			386
			386
		y .	387
		m.1	387
	21.2		389 390
	21.3	Exercices) 90
22	Frac	etions rationnelles 3	895
			395
			395
			396
			396
		, ·	397
	22.2	Décomposition en éléments simples	398
		22.2.1 Décomposition en éléments simples sur $\mathbb{K}(X)$	398
			398
		r r r r r r r r r r r r r r r r r r r	400
	22.3	Primitive d'expression rationnelle	100

		22.3.1	Fractions rationnelles	400
		22.3.2	Fractions rationnelles en e^x	400
		22.3.3	Fractions rationnelles en $\cos x$, $\sin x$	401
				401
				401
	22.4			403
23	Séri	es	4	107
	23.1	Série .		407
		23.1.1	Série	407
		23.1.2	Série à termes positifs	409
		23.1.3	Série absolument convergente	411
		23.1.4	Série semi-convergente	412
	23.2	Exerci	ces	414
24				117
	24.1			417
		24.1.1	Produit scalaire	417
		24.1.2	Norme	418
		24.1.3	Notion d'orthogonalité	420
	24.2	Espace	e euclidien	421
		24.2.1	Supplémentaire orthogonal	421
		24.2.2	Base orthonormée	422
		24.2.3	Projecteur orthogonal	423
			· · · · · · · · · · · · · · · · · · ·	424
				425
	24.3			426
	_			
25			7	12 9
	25.1	Espéra	ance, variance	429
		25.1.1	Espérance	429
		25.1.2	Variance	431
	25.2	Couple	e de variables aléatoires	432
				432
			· ·	433
	25.3			435
				437
2 6	Déte	ermina	ants 4	141
	26.1	Détern	${ m ninant}$	441
		26.1.1	Forme n -linéaire alternée	441
		26.1.2	Déterminant d'une famille de n vecteurs	443
		26.1.3	Déterminant d'un endomorphisme	443
			-	444
	26.2	Calcul	de déterminant	445
				445
				447
				448
	26.3			449
	_0.0	2110101		
27	Fone	ctions	de deux variables	153
	27.1	Limite	e, continuité	453
				453
		27.1.2	Limite	454
				456
				456
				457
	27 2			458
	21.2			458
				460
				461
		2.0	2011.0000 dob tonouono composcoo	~ O T

	27.3	27.2.4 Extrémum d'une fonction de deux variables Exercices	
28	Fam	nilles sommables	467
	28.1	Famille sommable	467
		28.1.1 Famille sommable de réels positifs	468
		28.1.2 Famille sommable d'éléments de \mathbb{K}	471
	28.2	Exercices	475

Chapitre 1

Nombres complexes

« La voie la plus courte et la meilleure entre deux vérités du domaine réel passe souvent par le domaine imaginaire. »

— Jacques Hadamard (1865–1963)

1.1		orps des nombres complexes
	1.1.1	Définition, conjugaison, module
	1.1.2	Inégalité triangulaire
	1.1.3	Puissance entière, binôme de Newton
1.2	Forr	ne trigonométrique
	1.2.1	Exponentielle i θ
	1.2.2	Application à la trigonométrie
	1.2.3	Forme trigonométrique
	1.2.4	Exponentielle complexe
1.3	Rac	ines d'un nombre complexe
	1.3.1	L'équation du second degré
	1.3.2	Racines n -ièmes
1.4	Non	nbres complexes et géométrie plane
	1.4.1	Le plan complexe
	1.4.2	Les similitudes directes
1.5	Exe	rcices

1.1 Le corps des nombres complexes

1.1.1 Définition, conjugaison, module

Le carré de tout nombre réel étant positif, l'équation

$$x^2 = -1$$

n'admet aucune solution réelle. Nous admettrons qu'il existe un ensemble de nombres A ayant les propriétés suivantes.

- $-- \mathbb{R} \subset A$
- On peut additionner, soustraire et multiplier les éléments de A en utilisant les règles usuelles de l'algèbre.
- L'équation $z^2 = -1$ admet au moins une solution sur A.

On note i une solution de cette équation.

Définition 1.1.1

On appelle corps des nombres complexes et on note $\mathbb C$ l'ensemble des nombres $x+\mathrm{i} y$ où x et y sont réels.

Remarques

- \implies \mathbb{R} est inclus dans \mathbb{C} . Autrement dit, tout nombre réel est un nombre complexe.
- ightharpoons $\mathbb C$ est stable par les opérations d'addition, de soustraction et de multiplication.

Définition 1.1.2

Pour tout nombre complexe z, il existe un unique couple de réels (x, y) tel que z = x + iy. Les réels x et y sont respectivement appelés partie réelle et partie imaginaire de z. On note

$$\operatorname{Re}(z) \coloneqq x \quad \text{et} \quad \operatorname{Im}(z) \coloneqq y$$

et on a donc z = Re(z) + i Im(z).

Remarques

- \Rightarrow On appelle forme cartésienne de $z \in \mathbb{C}$, toute écriture de la forme $z = x + \mathrm{i} y$ où $x, y \in \mathbb{R}$. La proposition précédente affirme que, quel que soit $z \in \mathbb{C}$, une telle écriture existe et est unique.
- \Rightarrow Si $x_1, y_1, x_2, y_2 \in \mathbb{R}$ sont tels que

$$x_1 + \mathrm{i}y_1 = x_2 + \mathrm{i}y_2,$$

alors $x_1 = x_2$ et $y_1 = y_2$. On dit souvent qu'on procède par *identification*, mais cette terminologie est abusive. On utilise en fait l'unicité provenant de la proposition précédente.

 \Rightarrow Soit $\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ un repère orthonormé direct du plan. À tout nombre complexe z = x + iy, on associe le point M dont les coordonnées dans le repère \mathcal{R} sont (x, y). On a donc

$$\overrightarrow{OM} = x \overrightarrow{e_1} + y \overrightarrow{e_2}$$

et on dit que M a pour affixe z. Pout tout point M du plan, il existe un unique $z \in \mathbb{C}$ tel que M a pour affixe z; on dit alors que z est *l'affixe* du point M. On a ainsi identifié \mathbb{C} avec l'ensemble des points du plan.

 \Rightarrow Un nombre complexe est réel si et seulement si sa partie imaginaire est nulle. On dit qu'un nombre complexe est imaginaire pur lorsque sa partie réelle est nulle. L'ensemble des nombres imaginaires purs est donc

$$i\mathbb{R} := \{iy : y \in \mathbb{R}\}.$$

⇒ De même qu'on ne peut pas écrire d'inégalités entre les points du plan, les inégalités entre nombres complexes n'ont aucun sens.

Proposition 1.1.3

Un nombre complexe est nul si et seulement si sa partie réelle et sa partie imaginaire le sont.

Proposition 1.1.4

Soit z et z' deux nombres complexes, λ et μ deux réels. Alors

- $--\operatorname{Re}(\lambda z + \mu z') = \lambda \operatorname{Re}(z) + \mu \operatorname{Re}(z'),$
- $--\operatorname{Im}(\lambda z + \mu z') = \lambda \operatorname{Im}(z) + \mu \operatorname{Im}(z').$

Remarque

 \Rightarrow Attention, l'identité $\operatorname{Re}(zz') = \operatorname{Re}(z)\operatorname{Re}(z')$ est fausse. Par exemple $\operatorname{Re}(i \cdot i) = -1$ et $\operatorname{Re}(i)\operatorname{Re}(i) = 0$.

Définition 1.1.5

Soit z un nombre complexe. On appelle $conjugu\acute{e}$ de z et on note \overline{z} le nombre complexe

$$\overline{z} \coloneqq x - \mathrm{i} y$$

où x et y sont respectivement la partie réelle et imaginaire de z.

Remarque

 \Rightarrow Si M est le point d'affixe $z \in \mathbb{C}$, le point M' d'affixe \overline{z} est le symétrique de M par rapport à l'axe (Ox).

Proposition 1.1.6

Soit $z, z' \in \mathbb{C}$. Alors

$$\overline{z+z'} = \overline{z} + \overline{z}', \quad \overline{zz'} = \overline{z} \ \overline{z}', \quad \text{et} \quad \overline{\overline{z}} = z.$$

Définition 1.1.7

Soit z un nombre complexe. On appelle module de z et on note |z| le nombre réel positif

$$|z| \coloneqq \sqrt{x^2 + y^2}$$

où x et y sont respectivement la partie réelle et imaginaire de z.

Remarques

- \Rightarrow Si $x \in \mathbb{R}$ est considéré comme un nombre complexe, son module est égal à sa valeur absolue.
- \Rightarrow Si M est le point d'affixe z, le module de z est la distance OM. Si A et B sont deux points d'affixes respectives a et b, alors AB = |b a|.
- \Rightarrow Si $a \in \mathbb{C}$ et r > 0
 - $\{z \in \mathbb{C} \mid |z-a|=r\}$ est le *cercle* de centre a et de rayon r.
 - $\{z \in \mathbb{C} \mid |z-a| \leqslant r\}$ est le disque fermé de centre a et de rayon r.
 - $\{z \in \mathbb{C} \mid |z-a| < r\}$ est le disque ouvert de centre a et de rayon r.
- \Rightarrow Soit $a,b,c\in\mathbb{R}$ tels qu'au moins l'un des deux réels a,b est non nul. Alors, l'ensemble d'équation

$$ax + by + c = 0$$

est une droite orthogonale au vecteur de coordonnées (a, b).

 \Rightarrow Soit $a, b, c \in \mathbb{R}$. Alors l'ensemble d'équation

$$x^2 + y^2 + ax + by + c = 0$$

est soit un cercle, soit un point, soit l'ensemble vide.

Définition 1.1.8

On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

Remarque

Arr L'identification entre Arr et le plan complexe nous amène à identifier Arr avec le cercle de centre O et de rayon 1, appelé cercle trigonométrique.

Proposition 1.1.9

Soit z un nombre complexe. Alors

$$|z|^2 = z\overline{z}.$$

De plus, |z| = 0 si et seulement si z = 0.

Remarque

⇒ Afin d'exploiter cette identité, on cherchera souvent à travailler avec le carré des modules.

Proposition 1.1.10

Soit $z, z' \in \mathbb{C}$. Alors

$$|zz'| = |z| |z'|$$
 et $|\overline{z}| = |z|$.

Proposition 1.1.11

Si z et z' sont deux nombres complexes tels que zz'=0, alors z=0 ou z'=0. On dit que $\mathbb C$ est intègre.

Proposition 1.1.12

Soit z un nombre complexe non nul. Alors il existe un unique nombre complexe z' tel que zz'=1. On note ce nombre z^{-1} ou 1/z. De plus

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}.$$

Remarques

- \Rightarrow Pour obtenir 1/z sous forme cartésienne, il suffit de multiplier son numérateur et son dénominateur par \overline{z} .
- \Rightarrow Si $z \in \mathbb{U}$, alors $1/z = \overline{z}$. Pour inverser un nombre complexe de module 1, il suffit donc de le conjuguer.

Exercice 1

 \Rightarrow Calculer l'inverse de 1 + i.

Proposition 1.1.13

Soit z un nombre complexe non nul. Alors

$$\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$
 et $\left|\frac{1}{z}\right| = \frac{1}{|z|}$.

Exercice 2

 \Rightarrow Soit $a,b\in\mathbb{C}$ tels que |a|<1 et |b|<1. Montrer que

$$\left| \frac{a-b}{1-\overline{a}b} \right| < 1.$$

Proposition 1.1.14

Soit z un nombre complexe. Alors

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 et $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$.

En particulier

- z est réel si et seulement si $\overline{z} = z$.
- z est imaginaire pur si et seulement si $\overline{z} = -z$.

Remarque

⇒ En pratique, pour montrer qu'un nombre complexe est réel, une bonne méthode est de montrer qu'il est égal à son conjugué. La méthode consistant à montrer que sa partie imaginaire est nulle est à proscrire.

Exercices 3

 \Rightarrow Soit a et b deux nombres complexes de module 1 tels que $ab \neq -1$. Montrer que

$$\frac{a+b}{1+ab}$$

est un nombre réel.

 \Rightarrow Donner une condition nécessaire et suffisante sur $z \in \mathbb{C} \setminus \{i\}$ pour que

$$\frac{z+2}{1+iz}$$

soit réel.

1.1.2 Inégalité triangulaire

Proposition 1.1.15

Soit $a \in \mathbb{C}$. Alors

$$\operatorname{Re}(a) \leq |\operatorname{Re}(a)| \leq |a|$$
 et $\operatorname{Im}(a) \leq |\operatorname{Im}(a)| \leq |a|$.

De plus, Re(a) = |a| si et seulement si a est réel positif.

Proposition 1.1.16: Inégalité triangulaire

Soit a et b deux nombres complexes. Alors

$$|a+b| \leqslant |a| + |b|.$$

De plus, l'égalité a lieu si et seulement si a et b sont positivement liés, c'est-à-dire lorsque a=0 ou lorsqu'il

existe $\lambda \in \mathbb{R}_+$ tel que $b = \lambda a$.

Remarques

 \Rightarrow Si (ABC) est un triangle, alors $AC \leqslant AB + BC$. En effet, si on note a, b, c les affixes respectives de A, B, C

$$AC = |c - a| = |c - b + b - a| \le |c - b| + |b - a| = BC + AB.$$

Cette inégalité explique le nom d'inégalité triangulaire donné à la proposition précédente.

 \Rightarrow Attention, il est possible que a et b soient positivement liés sans qu'il existe $\lambda \in \mathbb{R}_+$ tel que $b = \lambda a$.

Proposition 1.1.17: Seconde inégalité triangulaire

Soit a et b deux nombres complexes. Alors

$$||a| - |b|| \leqslant |a+b|.$$

Remarque

- ⇒ La seconde inégalité triangulaire admet plusieurs variantes.
 - Si on remplace b par -b, on obtient l'inégalité

$$||a| - |b|| \leqslant |a - b|$$

qui affirme que deux nombres complexes proches ont des modules proches.

— En remarquant que si x est réel, $|x| \ge x$, on obtient

$$|a+b| \geqslant |a| - |b|.$$

Cette inégalité affirme que si b a un module petit par rapport à celui de a, alors a+b est éloigné de 0.

Exercices 4

- \Rightarrow Soit a et b deux nombres complexes distincts. On pose $\delta := |a b|$. Montrer que les disques ouverts de centre a et b et de rayon $\delta/2$ sont disjoints.
- \Rightarrow Que peut-on dire de |z| si $|1-z| \le 1/4$? Faire un dessin puis une preuve.

Proposition 1.1.18

Soit $a_1, \ldots, a_n \in \mathbb{C}$. Alors

$$\left| \sum_{k=1}^{n} a_k \right| \leqslant \sum_{k=1}^{n} |a_k|.$$

1.1.3 Puissance entière, binôme de Newton

Définition 1.1.19

Soit $a \in \mathbb{C}$. On définit a^n pour tout entier naturel $n \in \mathbb{N}$ en posant

$$-a^0 \coloneqq 1$$
,

$$- \forall n \in \mathbb{N}, \quad a^{n+1} \coloneqq a^n a.$$

Remarque

 \Rightarrow En particulier, $0^0 = 1$.

Proposition 1.1.20

Soit a, b deux nombres complexes, n et m deux entiers naturels. Alors

$$(ab)^n = a^n b^n$$
, $a^{n+m} = a^n a^m$ et $(a^n)^m = a^{nm}$.

Soit $a \in \mathbb{C}$ et $n \in \mathbb{N}$. Alors

$$\overline{a^n} = \overline{a}^n$$
 et $|a^n| = |a|^n$.

Exercice 5

 \Rightarrow Montrer que si $P(z) := a_n z^n + \cdots + a_1 z + a_0$ est un polynôme à coefficients réels, l'ensemble de ses racines est stable par conjugaison.

Définition 1.1.22

Soit a un nombre complexe non nul. On étend la définition de a^n à $n \in \mathbb{Z}$ en posant

$$a^n \coloneqq \frac{1}{a^{-n}}$$

lorsque n < 0.

Soit a, b deux nombres complexes non nuls, n et m deux entiers relatifs. Alors

$$(ab)^n = a^n b^n$$
, $a^{n+m} = a^n a^m$ et $(a^n)^m = a^{nm}$.

Soit a un nombre complexe non nul et $n \in \mathbb{Z}$. Alors

$$\overline{a^n} = \overline{a}^n$$
 et $|a^n| = |a|^n$.

Définition 1.1.25: Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que

$$a = ab + r$$
 et $0 \le r < b$.

q est appelé quotient de la division euclidienne de a par b, r son reste.

Exercice 6

 \Rightarrow On pose $j := -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Calculer j^3 , puis en déduire j^{2023} .

Définition 1.1.26

Pour tout entier naturel n, on définit la factorielle de n que l'on note n! par

Remarque

 \Rightarrow Si $n \in \mathbb{N}^*$

$$n! = n \times (n-1) \times \cdots \times 2 \times 1.$$

Définition 1.1.27

Pour tout couple (k,n) d'entiers naturels, on définit $\binom{n}{k}$ que l'on prononce « k parmi n », comme étant le nombre de parties à k éléments d'un ensemble à n éléments.

Remarques

- \Rightarrow Si k > n, alors $\binom{n}{k} = 0$.
- \Rightarrow Si $n \in \mathbb{N}$, alors

$$\binom{n}{0} = 1 \quad \text{et} \quad \binom{n}{n} = 1.$$

Proposition 1.1.28

Soit $n \in \mathbb{N}$ et $k \in [0, n]$. Alors

$$\binom{n}{k} = \binom{n}{n-k}.$$

Proposition 1.1.29: Relation de Pascal

Soit k et n deux entiers naturels. Alors

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Remarque

 \Rightarrow Cette formule est appelée relation de Pascal. Elle permet de calculer efficacement les $\binom{n}{k}$ en construisant le triangle de Pascal. Dans ce tableau contenant les $\binom{n}{k}$, où n désigne la ligne et k désigne la colonne, on commence par placer une colonne de 1 indiquant le fait que $\binom{n}{0} = 1$, puis une diagonale de 1 indiquant le fait que $\binom{n}{n} = 1$. Les coefficients au-dessus de la diagonale sont nuls et ne sont généralement pas représentés. Ceux en dessous de la diagonale sont complétés, ligne après ligne en utilisant la relation de Pascal qui affirme que chaque coefficient est la somme du coefficient se situant au-dessus de lui et de celui au-dessus à gauche.

Ce triangle permet par exemple de lire sur la dernière ligne que $\binom{5}{1} = 5$ et $\binom{5}{2} = 10$.

Proposition 1.1.30

Soit n un entier naturel et $k \in [0, n]$. Alors

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}.$$

Remarques

 \Rightarrow On peut simplifier l'écriture de $\binom{n}{k}$ en

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{\frac{n!}{(n-k)!}}{k!} = \frac{\underbrace{n(n-1)\cdots(n-(k-1))}^{k \text{ termes}}}{k!}.$$

En particulier

$$\binom{n}{1} = n$$
 et $\binom{n}{2} = \frac{n(n-1)}{2}$.

 \Rightarrow Si $k, n \in \mathbb{N}^*$, on a la formule dite « du capitaine »

$$\binom{n}{k} = \frac{n}{k} \cdot \binom{n-1}{k-1}.$$

Exercice 7

 \Rightarrow Soit $k, n \in \mathbb{N}$. Montrer que

$$\binom{n}{k} \leqslant \frac{n^k}{k!}.$$

Proposition 1.1.31: Binôme de Newton

Soit a et b deux nombres complexes et n un entier naturel. Alors

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Exercice 8

 \Rightarrow Soit $n \in \mathbb{N}^*$. Montrer que

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \quad \text{et} \quad \sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Proposition 1.1.32

Soit a et b deux nombres complexes. Alors

$$-a^2-b^2=(a-b)(a+b)$$
.

— Plus généralement, pour tout $n \in \mathbb{N}^*$

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1} \right)$$
$$= (a - b) \left(\sum_{k=0}^{n-1} a^{n-1-k} b^{k} \right).$$

Proposition 1.1.33

Soit a un nombre complexe et n un entier naturel. Alors

$$\sum_{k=0}^{n} a^{k} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} & \text{si } a \neq 1\\ n + 1 & \text{si } a = 1. \end{cases}$$

1.2 Forme trigonométrique

1.2.1 Exponentielle $i\theta$

Définition 1.2.1

Pour tout réel θ , on définit l'exponentielle de i θ par

$$e^{i\theta} := \cos \theta + i \sin \theta$$
.

Proposition 1.2.2

Soit θ_1 et θ_2 deux réels. Alors

$$e^{i0} = 1$$
 et $e^{i(\theta_1 + \theta_2)} = e^{i\theta_1}e^{i\theta_2}$.

Proposition 1.2.3

Soit $\theta \in \mathbb{R}$. Alors

$$\overline{e^{i\theta}} = e^{-i\theta}$$
.

De plus, $e^{i\theta}$ est non nul et si $n \in \mathbb{Z}$, alors

$$\frac{1}{\mathrm{e}^{\mathrm{i}\theta}} = \mathrm{e}^{-\mathrm{i}\theta} \qquad \mathrm{et} \qquad \mathrm{e}^{\mathrm{i}n\theta} = \left(\mathrm{e}^{\mathrm{i}\theta}\right)^n.$$

Proposition 1.2.4: Formules d'Euler et Moivre

Soit θ un réel. Alors les formules d'Euler s'écrivent

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{et} \quad \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Pour $n \in \mathbb{Z}$, la formule de Moivre nous donne

$$\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$$
.

Proposition 1.2.5

- Soit $\theta \in \mathbb{R}$. Alors $e^{i\theta} = 1$ si et seulement si $\theta \equiv 0$ $[2\pi]$.
- Plus précisément, étant donnés θ_1 et $\theta_2 \in \mathbb{R}$, $e^{i\theta_1} = e^{i\theta_2}$ si et seulement si $\theta_1 \equiv \theta_2$ [2 π].

Exercice 9

⇒ Déterminer la partie réelle de

$$\frac{1}{1 - \cos \theta - i \sin \theta}.$$

Proposition 1.2.6: Paramétrisation de $\mathbb U$ par « l'exponentielle i θ »

L'application qui à θ associe $e^{i\theta}$ est une surjection de $\mathbb R$ dans $\mathbb U$. Autrement dit :

- Si $\theta \in \mathbb{R}$, $e^{i\theta} \in \mathbb{U}$.
- Pour tout $u \in \mathbb{U}$, il existe $\theta \in \mathbb{R}$ tel que $u = e^{i\theta}$.

1.2.2 Application à la trigonométrie

Applications

 \Rightarrow Factorisation par l'arc moitié Étant donné un réel θ

$$\begin{aligned} 1 + e^{i\theta} &= e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right) \\ &= 2\cos\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}. \end{aligned}$$

De même

$$1 - e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right)$$
$$= -2i \sin\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}.$$

Plus généralement, étant donnés $\theta_1, \theta_2 \in \mathbb{R}$

$$e^{i\theta_1} + e^{i\theta_2} = e^{i\frac{\theta_1 + \theta_2}{2}} \left(e^{i\frac{\theta_1 - \theta_2}{2}} + e^{-i\frac{\theta_1 - \theta_2}{2}} \right) = 2\cos\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}},$$

$$e^{i\theta_1} - e^{i\theta_2} = e^{i\frac{\theta_1 + \theta_2}{2}} \left(e^{i\frac{\theta_1 - \theta_2}{2}} - e^{-i\frac{\theta_1 - \theta_2}{2}} \right) = 2i\sin\left(\frac{\theta_1 - \theta_2}{2}\right) e^{i\frac{\theta_1 + \theta_2}{2}}.$$

 \Rightarrow Calcul de sommes trigonométriques Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer

$$C_n := \sum_{k=0}^n \cos(k\theta)$$
 et $S_n := \sum_{k=0}^n \sin(k\theta)$.

 $\Rightarrow \ Lin\'{e}arisation \ de \ \cos^n \theta \sin^m \theta$

Étant donné deux entiers naturels n et m, on cherche à exprimer $\cos^n \theta \sin^m \theta$ comme combinaison linéaire des $\cos(k\theta)$ et $\sin(k\theta)$ pour $k \in \mathbb{N}$. Pour cela, on peut utiliser les formules d'Euler avant de développer l'expression par la formule du binôme de Newton et de regrouper les termes en utilisant à nouveau les formules d'Euler. Cette opération sera utile lors du calcul de primitives.

Exemple : Linéariser $\sin^6 \theta$ et $\sin \theta \cos^4 \theta$.

 \Rightarrow Expression de $\cos(n\theta)$ et $\sin(n\theta)$ comme polynôme en $\cos\theta$ et $\sin\theta$

Pour cette opération, une méthode consiste à utiliser la formule de Moivre avant de développer l'expression obtenue à l'aide du binôme de Newton.

Exemple : Exprimer $\cos(5\theta)$ comme un polynôme en $\cos\theta$.

Exercices 10

 \Rightarrow Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Calculer

$$\sum_{k=0}^{n} \binom{n}{k} \sin\left(k\theta\right).$$

 \Rightarrow En exprimant $\cos(5\theta)$ comme un polynôme en $\cos\theta$, montrer que $\cos(\pi/10)$ est racine d'un polynôme à coefficients entiers. En déduire une expression de $\cos(\pi/10)$ à l'aide de radicaux.

1.2.3 Forme trigonométrique

Définition 1.2.7

Soit $z \in \mathbb{C}^*$. On appelle forme trigonométrique de z toute écriture

$$z = r \mathrm{e}^{\mathrm{i} \theta}$$

où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

Remarques

- \Rightarrow Si $z = re^{i\theta}$ est une forme trigonométrique, alors r = |z|.
- \Rightarrow Tout nombre complexe non nul admet une forme trigonométrique. En pratique, pour la déterminer, on force la factorisation de z par |z| et on écrit le second terme sous la forme $e^{i\theta}$.
- ⇒ Il existe deux moyens de représenter un même nombre complexe : la forme cartésienne et la forme trigonométrique. La première est particulièrement adaptée aux calculs de sommes, tandis que la seconde est particulièrement adaptée aux calculs de produits.

Exercices 11

- \Rightarrow Mettre $-2 2\sqrt{3}i$ sous forme trigonométrique.
- ⇒ Mettre sous forme trigonométrique

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}.$$

Définition 1.2.8

On appelle argument de $z \in \mathbb{C}^*$ tout réel θ tel que

$$z = |z| e^{i\theta}$$
.

Proposition 1.2.9

Tout nombre complexe non nul $z \in \mathbb{C}^*$ admet au moins un argument. Si θ est l'un de ses arguments, l'ensemble de ses arguments est $\theta + 2\pi\mathbb{Z} := \{\theta + k2\pi : k \in \mathbb{Z}\}$. On écrit

$$arg(z) \equiv \theta \ [2\pi].$$

Remarques

 \Rightarrow Soit $r_1, r_2 > 0$ et $\theta_1, \theta_2 \in \mathbb{R}$. Alors

$$r_1 e^{i\theta_1} = r_2 e^{i\theta_2}$$

si et seulement si $r_1 = r_2$ et $\theta_1 \equiv \theta_2$ [2 π]. Contrairement à la forme cartésienne, il n'y a donc pas unicité de la forme trigonométrique.

- \Rightarrow Si z est un nombre complexe non nul, il existe un unique $\theta \in]-\pi,\pi]$ tel que arg $z \equiv \theta$ [2 π]. On dit que θ est l'argument principal de z et on le note Arg(z).
- \Rightarrow Étant donné un nombre complexe z, on appelle forme trigonométrique généralisée de z toute écriture du type $z=\rho \mathrm{e}^{\mathrm{i}\theta}$ où $\rho\in\mathbb{R}$ et $\theta\in\mathbb{R}$. Attention, même si $z\neq 0$, on n'a pas nécessairement $\arg z\equiv\theta$ [2π]. En effet :

 Si $\rho>0$, alors $\rho=|z|$ et $\arg z\equiv\theta$ [2π].

— Si $\rho < 0$, alors $\rho = -|z|$ et arg $z \equiv \theta + \pi$ [2 π].

Lorsque l'énoncé demandera explicitement de mettre un nombre complexe sous forme trigonométrique, c'est bien sous la forme $z=r\mathrm{e}^{\mathrm{i}\theta}$ avec r>0 qu'il faudra le mettre. Cependant, lorsqu'on demandera de mettre z sous forme trigonométrique pour conduire des calculs, une forme trigonométrique généralisée suffira le plus souvent.

Exercices 12

⇒ Résoudre l'équation

$$z^2 = \overline{z}$$

en utilisant la forme cartésienne, puis la forme trigonométrique de z.

 \Rightarrow Résoudre l'équation $z^5 = 1/\overline{z}$.

Proposition 1.2.10

Soit $z, z' \in \mathbb{C}^*$ et $n \in \mathbb{Z}$. Alors

$$\arg(zz') \equiv \arg(z) + \arg(z') \ [2\pi] \,, \qquad \arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z') \ [2\pi] \,,$$
$$\arg(z^n) \equiv n \arg(z) \ [2\pi] \,, \qquad \arg(\bar{z}) \equiv -\arg(z) \ [2\pi] \,.$$

Remarque

 \Rightarrow En général, $\operatorname{Arg}(zz') \neq \operatorname{Arg}(z) + \operatorname{Arg}(z')$. Par exemple $\operatorname{Arg}((-1)(-1)) = 0$ et $\operatorname{Arg}(-1) + \operatorname{Arg}(-1) = 2\pi$.

1.2.4 Exponentielle complexe

Définition 1.2.11

Soit z = x + iy un nombre complexe où x et y sont respectivement la partie réelle et imaginaire de z. On appelle exponentielle de z et on note e^z le nombre complexe défini par

$$e^z := e^x (\cos y + i \sin y)$$
.

Proposition 1.2.12

Soit z et z' deux nombres complexes. Alors

$$e^0 = 1$$
 et $e^{z+z'} = e^z e^{z'}$.

Proposition 1.2.13

Soit z un nombre complexe, et $n \in \mathbb{Z}$. Alors e^z est non nul,

$$\frac{1}{e^z} = e^{-z} \qquad \text{et} \qquad e^{nz} = (e^z)^n.$$

Proposition 1.2.14

Soit z un nombre complexe. Alors

$$\overline{e^z} = e^{\overline{z}}, \quad |e^z| = e^{\operatorname{Re}(z)} \quad \text{et} \quad \arg(e^z) \equiv \operatorname{Im}(z) \ [2\pi].$$

Proposition 1.2.15

- Soit $z \in \mathbb{C}$. Alors $e^z = 1$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $z = ik2\pi$.
- Plus précisément, étant donnés z_1 et z_2 deux nombres complexes, $e^{z_1} = e^{z_2}$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $z_1 = z_2 + ik2\pi$.

Proposition 1.2.16

L'exponentielle est une surjection de \mathbb{C} dans \mathbb{C}^* . Autrement dit :

- Pour tout $z \in \mathbb{C}$, $e^z \in \mathbb{C}^*$.
- Pour tout $z \in \mathbb{C}^*$, il existe $z' \in \mathbb{C}$ tel que $e^{z'} = z$.

Remarque

⇒ Si $z \in \mathbb{C}^*$, nous venons de voir qu'il existe $z' \in \mathbb{C}$ tel que $e^{z'} = z$. Cependant, z' n'est pas unique, ce qui nous empêche de définir le logarithme de z. Par contre, on peut montrer qu'il existe un unique $z' \in \mathbb{C}$ tel que $e^{z'} = z$ et $\operatorname{Im}(z') \in]-\pi,\pi]$. Ce nombre est appelé logarithme principal de z et noté $\operatorname{Ln}(z)$. De plus $\operatorname{Ln}(z) = \ln|z| + i\operatorname{Arg}(z)$. C'est le logarithme calculé par les logiciels de calcul formel ainsi que vos calculatrices. Malheureusement, l'identité $\operatorname{Ln}(zz') = \operatorname{Ln}(z) + \operatorname{Ln}(z')$ est fausse; elle n'est vraie que modulo $i2\pi$. C'est pourquoi, nous n'emploierons jamais de logarithme avec les nombres complexes.

Exercice 13

 \Rightarrow Résoudre sur \mathbb{C} l'équation $e^z = \sqrt{3} + 3i$.

1.3 Racines d'un nombre complexe

1.3.1 L'équation du second degré

Définition 1.3.1

Soit a un nombre complexe. On appelle racine de a tout nombre complexe z tel que

$$z^2 = a$$
.

Remarques

- \Rightarrow Si a est un réel positif, les racines de a sont \sqrt{a} et $-\sqrt{a}$. Si a est un réel négatif, ses racines sont $i\sqrt{|a|}$ et $-i\sqrt{|a|}$.
- \Rightarrow Si $a \in \mathbb{C}$, on parlera de racine de a, mais on n'écrira jamais \sqrt{a} . Cette notation est réservée aux réels positifs.

Proposition 1.3.2

Soit a un nombre complexe non nul. Alors a admet exactement deux racines distinctes opposées l'une à l'autre.

Remarque

- \Rightarrow En pratique, pour trouver les racines d'un nombre complexe a, on procède ainsi
 - Si a s'exprime facilement sous forme trigonométrique. On connait donc r > 0 et θ tels que $a = re^{i\theta}$. Alors les racines de a sont $\sqrt{r}e^{i\frac{\theta}{2}}$ et $-\sqrt{r}e^{i\frac{\theta}{2}}$.
 - Si a est sous forme cartésienne et qu'il n'est pas simple de le mettre sous forme trigonométrique. On recherche les racines de a sous la forme $z := x + \mathrm{i} y$ en effectuant une analyse : on suppose que z est une racine de a et on exploite le fait que $|z|^2 = |a|$ et que z^2 et a ont même partie réelle. On obtient donc

$$x^{2} + y^{2} = |a|,$$

$$x^{2} - y^{2} = \operatorname{Re}(a).$$

En résolvant ce système linéaire en x^2 et y^2 , on obtient 4 couples (x,y) de solutions parmi lesquelles se trouvent les racines de a. Un argument de signe sur les parties imaginaires de z^2 et a permet d'éliminer deux candidats. La proposition précédente nous assure que les deux candidats restants sont bien des racines de a.

Exercices 14

- \Rightarrow Calculer les racines carrées de $1 + i\sqrt{3}$.
- \Rightarrow Calculer les racines de 1+i de deux manières différentes. En déduire une expression avec des radicaux emboîtés de $\cos(\pi/8)$, $\sin(\pi/8)$ et $\tan(\pi/8)$.

Proposition 1.3.3

Soit $a, b, c \in \mathbb{C}$ avec $a \neq 0$. On considère l'équation

$$(E) az^2 + bz + c = 0.$$

On appelle discriminant de (E) le nombre complexe $\Delta = b^2 - 4ac$.

— Si $\Delta \neq 0$, le trinôme admet deux racines distinctes

$$z_1 \coloneqq \frac{-b+\delta}{2a}$$
 et $z_2 \coloneqq \frac{-b-\delta}{2a}$.

où δ est une racine carrée de Δ .

— Si $\Delta = 0$, le trinôme admet une seule racine, appelée racine double

$$z_0 \coloneqq -\frac{b}{2a}.$$

Remarque

 \Rightarrow Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$. On considère l'équation

$$(E) \qquad az^2 + bz + c = 0.$$

— Si $\Delta > 0$, le trinôme admet deux racines réelles distinctes

$$z_1 := \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 := \frac{-b - \sqrt{\Delta}}{2a}$.

— Si $\Delta = 0$, le trinôme admet une seule racine réelle, appelée racine double

$$z_0 := -\frac{b}{2a}.$$

— Si $\Delta < 0$, le trinôme admet deux racines complexes conjuguées

$$z_1 \coloneqq \frac{-b + \mathrm{i}\sqrt{|\Delta|}}{2a}$$
 et $z_2 \coloneqq \frac{-b - \mathrm{i}\sqrt{|\Delta|}}{2a}$.

Exercice 15

 \Rightarrow Soit $\theta \in \mathbb{R}$. Résoudre sur \mathbb{C} l'équation $z^2 - 2\cos(\theta)z + 1 = 0$.

Proposition 1.3.4

Soit $a, b, c \in \mathbb{C}$ avec $a \neq 0$ et z_1, z_2 deux nombres complexes. Alors z_1 et z_2 sont les deux racines, éventuellement égales, de l'équation $az^2 + bz + c = 0$ si et seulement si

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

Remarque

 \Rightarrow Si $P,S\in\mathbb{C}$, les solutions du système

$$\begin{cases} z_1 + z_2 = S \\ z_1 z_2 = P, \end{cases}$$

sont (ω_1, ω_2) et (ω_2, ω_1) où ω_1 et ω_2 sont les racines du trinôme $z^2 - Sz + P = 0$.

Exercices 16

 \Rightarrow Déterminer les solutions de l'équation $3z^2 - 5z + 2 = 0$.

 \Rightarrow Résoudre sur $\mathbb C$ le système

$$\begin{cases} u^2 + v^2 = 3 - 2i \\ uv = 3 + i. \end{cases}$$

1.3.2 Racines n-ièmes

Définition 1.3.5

Étant donné $n \in \mathbb{N}^*$ et $a \in \mathbb{C}$, on appelle racine n-ième de a tout nombre complexe z tel que $z^n = a$. Les racines n-ièmes de 1 sont appelées racines n-ièmes de l'unité et l'ensemble de ces racines est noté \mathbb{U}_n .

Remarque

 \Rightarrow Les racines *n*-ièmes de 1 sont de module 1. Autrement dit, $\mathbb{U}_n \subset \mathbb{U}$.

Proposition 1.3.6

Soit $n \in \mathbb{N}^*$. Il existe exactement n racines n-ièmes de l'unité. En posant $\omega := e^{i\frac{2\pi}{n}}$, ce sont

$$1, \omega, \ldots, \omega^{n-1}$$
.

Remarques

- \Rightarrow Lorsque l'on doit calculer sur des racines n-ièmes, il est souvent plus efficace de les manipuler via leur propriété $(z^n=1)$ plutôt que par leur description $(z=\omega^k)$. On ne se rabat sur la description que lorsque la relation $z^n=1$ ne suffit pas, ou en toute fin de calcul.
- \Rightarrow Dans le cas où n=3, ω est noté j. Les racines 3-ièmes de l'unité sont donc 1, j, j². Lorsqu'on travaille avec le nombre complexe j, on exploite les relations

$$j^3 = 1,$$
 $1 + j + j^2 = 0$ et $\frac{1}{j} = \bar{j} = j^2.$

 \Rightarrow Les racines $n\text{-}\mathrm{i}\mathrm{\grave{e}mes}$ de l'unité forment un polygone régulier à n côtés.

Exercices 17

- \Rightarrow Que dire de deux nombres complexes $a, b \in \mathbb{C}$ tels que $a^3 = b^3$?
- \Rightarrow Soit $n\in\mathbb{N}^*.$ Résoudre sur $\mathbb C$ l'équation

$$(z+1)^n = (z-1)^n$$
.

 \Rightarrow Calculer

$$\sum_{z\in\mathbb{U}_n}|z-1|\,.$$

Proposition 1.3.7

Soit $n \geqslant 2$ et ζ une racine n-ième de l'unité, différente de 1. Alors

$$1 + \zeta + \dots + \zeta^{n-1} = 0.$$

En particulier, la somme des racines n-ièmes de l'unité est nulle.

Proposition 1.3.8

Soit $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$. Alors a admet exactement n racines n-ièmes. En posant $\omega := e^{\mathrm{i} \frac{2\pi}{n}}$, si z_0 est une racine n-ième de a, les racines n-ièmes de a sont

$$z_0, \omega z_0, \ldots, \omega^{n-1} z_0.$$

Remarques

 \Rightarrow Si $a = re^{i\theta}$ est sous forme trigonométrique, alors

$$z_0 = \sqrt[n]{r} e^{i\frac{\theta}{n}}$$

est une racine n-ième de a.

 \Rightarrow Si $n \ge 2$, la somme des racines *n*-ièmes d'un nombre complexe est nulle.

Exercices 18

 \Rightarrow Résoudre sur $\mathbb C$ l'équation

$$27(z-1)^6 + (z+1)^6 = 0.$$

 \Rightarrow En considérant les racines 7-ièmes de -1, montrer que

$$\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \frac{1}{2}.$$

1.4 Nombres complexes et géométrie plane

1.4.1 Le plan complexe

Définition 1.4.1

Soit \mathcal{P} le plan euclidien orienté et $\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ un repère orthonormé direct.

— Si M est un point du plan de coordonnées $(x,y) \in \mathbb{R}^2$

$$\overrightarrow{OM} = x \overrightarrow{e_1} + y \overrightarrow{e_2}$$

on appelle affixe de M le nombre complexe x + iy.

— Si \overrightarrow{u} est un vecteur de coordonnées $(x,y) \in \mathbb{R}^2$

$$\overrightarrow{u} = x \overrightarrow{e_1} + y \overrightarrow{e_2}$$

on appelle affixe de \overrightarrow{u} le nombre complexe x + iy.

Remarque

 \Rightarrow Si M est un point du plan, son affixe est l'affixe du vecteur \overrightarrow{OM} .

Proposition 1.4.2

- Soit A et B deux points du plan d'affixes respectives a et $b \in \mathbb{C}$. Alors \overrightarrow{AB} a pour affixe b-a.
- Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs d'affixes respectives u et $v \in \mathbb{C}$ et $\lambda, \mu \in \mathbb{R}$. Alors $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda u + \mu v$.

Proposition 1.4.3

- Soit a et b deux nombres complexes. Alors |a-b| est la distance entre les points d'affixes a et b.
- Soit u un nombre complexe. Alors |u| est la norme du vecteur \overrightarrow{u} .

Proposition 1.4.4

Soit A, B, C trois points deux à deux distincts d'affixes respectives a, b, c. Alors

$$\left|\frac{c-a}{b-a}\right| = \frac{AC}{AB} \quad \text{et} \quad \arg\left(\frac{c-a}{b-a}\right) \equiv \left(\overrightarrow{AB}, \overrightarrow{AC}\right) \ [2\pi].$$

Proposition 1.4.5

Soit A, B, C trois points deux à deux distincts d'affixes respectives a, b, c. Alors

-A, B, C sont alignés si et seulement si

$$\frac{c-a}{b-a} \in \mathbb{R}.$$

— (AB) et (AC) sont orthogonales si et seulement si

$$\frac{c-a}{b-a} \in i\mathbb{R}.$$

Remarques

 \Rightarrow Soit A, B, C trois points d'affixes respectives a, b, $c \in \mathbb{C}$. Si A, B, C sont deux à deux distincts, alors

$$A, B, C \text{ sont align\'es} \iff \frac{c-a}{b-a} \in \mathbb{R}$$

$$\iff \frac{c-a}{b-a} = \overline{\left(\frac{c-a}{b-a}\right)}$$

$$\iff (c-a)\overline{(b-a)} = \overline{(c-a)}(b-a).$$

On vérifie facilement que même si A, B, C ne sont pas deux à deux distincts

$$A, B, C$$
 sont alignés \iff $(c-a)\overline{(b-a)} = \overline{(c-a)}(b-a).$

 \Rightarrow La proposition précédente étant essentiellement utilisée de cette manière, on pourra tolérer exceptionnellement de l'appliquer, même si A, B, C ne sont pas deux à deux distincts. Ce genre de « division par zéro » est parfois tolérée en géométrie. Bien entendu, dans tout autre domaine des mathématiques, ces horreurs ne seront pas tolérées.

Exercice 19

 \Rightarrow Soit ABCD un quadrilatère non croisé. On construit A_1 extérieur au quadrilatère tel que le triangle BA_1C est isocèle et rectangle en A_1 . De même pour B_1, C_1, D_1 . Montrer que les segments $[A_1C_1]$ et $[D_1B_1]$ ont même longueur et sont orthogonaux.

1.4.2 Les similitudes directes

Définition 1.4.6

Soit \overrightarrow{u} un vecteur. On appelle translation de vecteur \overrightarrow{u} l'application qui au point M associe l'unique point M' tel que

$$\overrightarrow{MM'} = \overrightarrow{u}.$$

Proposition 1.4.7

Soit \overrightarrow{u} un vecteur d'affixe $u \in \mathbb{C}$. La translation de vecteur \overrightarrow{u} transforme le point M d'affixe z en le point M' d'affixe

$$z' = z + u$$
.

Remarque

⇒ Une translation conserve les distances et les angles.

Définition 1.4.8

Soit Ω un point du plan et $\rho \in \mathbb{R}^*$. On appelle homothétie de centre Ω et de rapport ρ l'application qui au point M associe l'unique point M' tel que

$$\overrightarrow{\Omega M'} = \rho \overrightarrow{\Omega M}.$$

Proposition 1.4.9

Soit Ω un point du plan d'affixe $\omega \in \mathbb{C}$ et $\rho \in \mathbb{R}^*$. L'homothétie de centre Ω et de rapport ρ transforme le point M d'affixe z en le point M' d'affixe

$$z' = \rho(z - \omega) + \omega.$$

${f Remarque}$

 \Rightarrow Une homothétie de rapport $\rho \in \mathbb{R}^*$ multiplie les distances par $|\rho|$ et conserve les angles.

Définition 1.4.10

Soit Ω un point du plan et $\theta \in \mathbb{R}$. On appelle rotation de centre Ω et d'angle θ l'application qui au point M associe

$$-\Omega \text{ si } M = \Omega.$$

— l'unique point M' tel que

$$\Omega M' = \Omega M$$
 et $\left(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}\right) \equiv \theta \ [2\pi]$

sinon.

Proposition 1.4.11

Soit Ω un point du plan d'affixe $\omega \in \mathbb{C}$ et $\theta \in \mathbb{R}$. La rotation de centre Ω et d'angle θ transforme le point M d'affixe z en le point M' d'affixe

$$z' = e^{i\theta}(z - \omega) + \omega.$$

Remarque

 \Rightarrow Une rotation conserve les distances et les angles.

Exercice 20

- ⇒ Quelle est l'expression en notation complexe des transformations suivantes?
 - a. La symétrie centrale de centre 0.
 - **b.** L'homothétie de centre 0 et de rapport 2.
 - c. L'homothétie de centre 2 et de rapport 1/2.
 - d. La composée des deux dernières transformations.
 - e. La rotation de centre 0 et d'angle $\pi/2$.
 - **f.** La rotation de centre 1 + i et d'angle $\pi/2$.
 - -- ${\bf g.}$ La composée des deux dernières transformations.
 - \mathbf{h} . La symétrie orthogonale d'axe (Ox).
 - i. La symétrie orthogonale dont l'axe \mathcal{D}_{θ} fait un angle θ avec l'axe (Ox).

Définition 1.4.12

Soit Ω un point du plan, $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. On appelle *similitude* de centre Ω , de rapport r et d'angle θ la composée (commutative) de l'homothétie de centre Ω et de rapport r et de la rotation de centre Ω et d'angle θ .

Proposition 1.4.13

Soit Ω un point du plan d'affixe ω , $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$. La similitude de centre Ω , de rapport r et d'angle θ transforme le point M d'affixe z en le point M' d'affixe

$$z' = re^{i\theta}(z - \omega) + \omega.$$

Remarques

- \Rightarrow Si $\rho < 0$, l'homothétie de centre Ω et de rapport ρ est une similitude de centre Ω , de rapport $|\rho|$ et d'angle π .
- \Rightarrow Une similitude de rapport r > 0 et d'angle θ multiplie les distances par r et conserve les angles.

Dans la suite, on confondra un point et son affixe, un vecteur et son affixe. On identifie ainsi le plan à \mathbb{C} .

Définition 1.4.14

On appelle similitude directe toute application f de $\mathbb C$ dans $\mathbb C$ telle qu'il existe $a \in \mathbb C^*$ et $b \in \mathbb C$ tels que

$$\forall z \in \mathbb{C}, \quad f(z) = az + b.$$

Remarque

 \Rightarrow Les translations et les similitudes de centre Ω de rapport $r \in \mathbb{R}_+^*$ et d'angle $\theta \in \mathbb{R}$ sont des similitudes directes. Nous allons voir que ce sont les seules.

Proposition 1.4.15

La composée de deux similitudes directes est une similitude directe.

Soit f une similitude directe et $a\in\mathbb{C}^*,\,b\in\mathbb{C}$ tels que

$$\forall z \in \mathbb{C}, \quad f(z) = az + b.$$

- Si $a=1,\ f$ est la translation de vecteur b. Sinon, il existe $r\in\mathbb{R}_+^*$ et $\theta\in\mathbb{R}$ tels que $a=r\mathrm{e}^{\mathrm{i}\theta}.$ f admet un unique point fixe ω et

$$\forall z \in \mathbb{C}, \quad f(z) = re^{i\theta}(z - \omega) + \omega.$$

Autrement dit f est la similitude de centre ω , de rapport r et d'angle θ .

Exercice 21

 \Rightarrow À quelle transformation géométrique correspond la fonction $f:z\mapsto (3-\mathrm{i})+2\mathrm{i}z\,?$

1.5. EXERCICES 29

1.5 Exercices

Le corps des nombres complexes

$D\'efinition,\ conjugaison,\ module$

Exercice 1: Lieu

1. On note f la fonction définie sur $\mathbb{C} \setminus \{2\}$ par

$$f(z) \coloneqq \frac{z+1}{z-2}.$$

Pour quels nombres $z \in \mathbb{C} \setminus \{2\}$ a-t-on |f(z)| = 1? Re (f(z)) = 0?

2. On note g la fonction définie sur $\mathbb{C} \setminus \{2i\}$ par

$$g(z) \coloneqq \frac{2z - i}{z - 2i}.$$

Pour quels nombres $z \in \mathbb{C} \setminus \{2i\}$ a-t-on $g(z) \in \mathbb{R}$? $g(z) \in \mathbb{U}$?

Inégalité triangulaire

Exercice 2 : Inégalité

Soit a et b deux nombres complexes.

1. Montrer que

$$|a| + |b| \le |a+b| + |a-b|$$
.

2. Déterminer les cas d'égalité dans l'inégalité précédente.

Exercice 3: Somme

Soit z_0, z_1, \ldots, z_n des nombres complexes de module 1. Montrer que

$$\sum_{k=0}^{n} \frac{z_k}{2^k} \neq 0.$$

On pourra commencer par majorer

$$\left| \sum_{k=1}^{n} \frac{z_k}{2^k} \right|.$$

Exercice 4: Majoration

Soit $z \in \mathbb{C}$. On suppose que

$$1 + z + z^2 + \dots + z^{n-1} = nz^n$$
.

Montrer que $|z| \leq 1$.

Puissance entière, binôme de Newton

Exercice 5: Majorations

1. Soit a et b deux nombres complexes et n un entier naturel non nul. Montrer que si on pose $M \coloneqq \max(|a|,|b|)$, alors

$$|a^n - b^n| \leqslant nM^{n-1} |a - b|.$$

2. Soit $z \in \mathbb{C}$ et n un entier non nul. Montrer que

$$\left| \sum_{k=0}^{n} \frac{z^k}{k!} - \left(1 + \frac{z}{n}\right)^n \right| \leqslant \sum_{k=0}^{n} \frac{|z|^k}{k!} - \left(1 + \frac{|z|}{n}\right)^n.$$

Forme trigonométrique

 $Exponentielle i\theta$

Application à la trigonométrie

Exercice 6: Linéarisation

Linéariser l'expression $\cos^2 x \sin^3 x$.

Exercice 7 : Calcul de sommes trigonométriques

On se donne un réel x.

1. Calculer les sommes suivantes

$$\sum_{k=0}^{n} \cos(kx), \qquad \sum_{k=0}^{n} {n \choose k} \cos(kx), \qquad \sum_{k=0}^{n} k \cos(kx).$$

2. (a) On suppose que $x \notin 2\pi \mathbb{Z}$. Montrer que

$$\sum_{k=0}^{n} \sum_{l=-k}^{k} e^{ilx} = \left(\frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}\right)^{2}.$$

(b) Calculer la valeur de cette somme pour $x \in 2\pi \mathbb{Z}$ de deux manières distinctes.

Forme trigonométrique

Exercice 8: Mise sous forme trigonométrique

Soit $\theta \in \mathbb{R}$. On pose

$$z = -\sin 2\theta + 2i\cos^2 \theta.$$

- 1. Déterminer le module et l'argument de z.
- 2. Donner une condition nécessaire et suffisante sur θ pour que z et z-1 aient même module.

Exercice 9: Calculs

Mettez les nombres complexes suivants sous forme trigonométrique généralisée

a.
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$
, **b.** $\left(1+e^{i\theta}\right)^n$, **c.** $e^{i\theta}+e^{i\theta'}$,

$$\mathbf{d.} \ \frac{a+b}{a-b} \quad \text{et} \quad \mathbf{e.} \ \frac{a+b}{1-ab} \qquad \text{où } a \coloneqq \mathrm{e}^{\mathrm{i}\theta} \ \text{et} \ b \coloneqq \mathrm{e}^{\mathrm{i}\theta'}.$$

Exponentielle complexe

Racines d'un nombre complexe

L'equation~du~second~degr'e

Exercice 10: L'équation du second degré

Résoudre sur \mathbb{C} les équations suivantes

$$\mathbf{a.} \ z^2 = -7 + 24\mathrm{i}, \qquad \mathbf{b.} \ z^2 = -3 - 4\mathrm{i}, \qquad \mathbf{c.} \ z^2 + z + 1 = 0,$$

$$\mathbf{d.} \ z^2 - 2(2+\mathrm{i})z + 6 + 8\mathrm{i} = 0, \qquad \mathbf{e.} \ \mathrm{i}z^2 + (4\mathrm{i} - 3)z + \mathrm{i} - 5 = 0,$$

$$\mathbf{f.} \ z^4 + 2z^3 + z^2 + 2z + 1 = 0 \quad On \ pourra \ poser \ u \coloneqq z + \frac{1}{z},$$

$$\mathbf{g.} \ \begin{cases} z_1 z_2 = \frac{1}{2} \\ z_1 + 2z_2 = \sqrt{3}, \end{cases} \qquad \mathbf{h.} \ \begin{cases} z_1 + z_2 = 1 \\ z_1^2 + z_2^2 = 3. \end{cases}$$

1.5. EXERCICES 31

Exercice 11 : Modules et arguments des racines d'un trinôme

Soit u un réel tel que $|u| < \pi$. Calculer les modules et arguments de chacune des racines de l'équation

$$z^{2} - 2z(\cos u + i\sin u) + 2i\sin u(\cos u + i\sin u) = 0.$$

Exercice 12 : Trinôme dont les racines ont même module

Soit $a, b \in \mathbb{C}$. Montrer que les racines de $z^2 + az + b = 0$ ont même module si et seulement si il existe $\lambda \in [0, 4]$ tel que $a^2 = \lambda b$.

Racines n-ièmes

Exercice 13: Équations

Résoudre les équations suivantes sur \mathbb{C}

$$\mathbf{a.} \ z^5 = -1, \qquad \mathbf{b.} \ z^6 = \frac{-4}{1 + \mathrm{i}\sqrt{3}}, \qquad \mathbf{c.} \ z^3 = \overline{z},$$

$$\mathbf{d.} \ (z + \mathrm{i})^n = (z - \mathrm{i})^n, \qquad \mathbf{e.} \ 1 + \frac{z + \mathrm{i}}{z - \mathrm{i}} + \left(\frac{z + \mathrm{i}}{z - \mathrm{i}}\right)^2 + \left(\frac{z + \mathrm{i}}{z - \mathrm{i}}\right)^3 = 0.$$

Exercice 14: Équation

Soit $n \in \mathbb{N}^*$. Résoudre l'équation

$$(z^2 + 1)^n = (z - i)^{2n}$$
.

Exercice 15: Relation trigonométrique

En considérant les racines 11-ièmes de 1, montrer que

$$\cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) = \frac{1}{2}.$$

Exercice 16: Calcul avec j

1. Calculer

$$(a+bj+cj^2)(a+bj^2+cj).$$

2. Sans effectuer de développement, retrouver le fait que cette expression ne change pas lorsqu'on échange deux variables.

Exercice 17: Autour des racines de l'unité

Soit $(\omega_k)_{0 \le k \le n-1}$ les racines n-ièmes de l'unité. Calculer pour tout entier $p \in \mathbb{Z}$

$$\sum_{k=0}^{n-1} \omega_k^p \qquad \text{et} \qquad \prod_{k=0}^{n-1} \omega_k.$$

Nombres complexes et géométrie plane

Le plan complexe

Exercice 18: Caractérisation d'un triangle équilatéral

Soit A, B et C trois points du plan d'affixes respectives a, b et c.

1. On suppose que $B \neq A$. Montrer que ABC est équilatéral si et seulement si

$$\frac{c-a}{b-a} = e^{\frac{i\pi}{3}} \quad \text{ou} \quad \frac{c-a}{b-a} = e^{-\frac{i\pi}{3}}.$$

2. En déduire que ABC est équilatéral si et seulement si

$$a^{2} + b^{2} + c^{2} = ab + ac + cb$$
.

Exercice 19: Triangles équilatéraux

Soit (ABC) et (ADE) deux triangles équilatéraux directs et (ACFD) un parallélogramme. Montrer que (BFE) est équilatéral direct.

Exercice 20 : Algèbre et géométrie

A tout nombre complexe $z \neq 4$, on associe le nombre

$$z' = \frac{iz - 4}{z - 4}$$

et on note $\mathcal C$ l'ensemble des points M d'affixe z du plan tels que z' est réel. Déterminer $\mathcal C$ par une méthode algébrique puis par une méthode géométrique.

Exercice 21: Lieu

Soit le point A d'affixe 2 et le point B d'affixe -2. À tout point M d'affixe z, autre que A, on associe le point M' d'affixe

$$z' = \frac{2z - 4}{\bar{z} - 2}.$$

- 1. Déterminer |z|. Que peut-on en déduire pour M'?
- 2. Déterminer l'ensemble \mathcal{E} des points d'affixe z tels que M'=B.
- 3. Pour tout point M de \mathcal{E} et distincts de A et B, que peut-on dire de

$$\frac{z-2}{z'-2} ?$$

Interpréter géométriquement ce résultat et en déduire une construction de M'.

Exercice 22: Triangles

- 1. On considère les points A, B et C d'affixes respectives 1, z et iz. Déterminer l'ensemble des points B pour lesquels A, B et C sont alignés.
- 2. On considère les points E, F et G non alignés, d'affixes respectives, z_1 , z_2 et z_3 . Déterminer une condition nécessaire et suffisante pour que le triangle (EFG) soit rectangle isocèle en E.

Les similitudes directes

Exercice 23: Similitudes

1. Caractériser géométriquement la similitude

$$z \mapsto 2(1+i)z - 7 - 4i$$
.

- 2. Déterminer l'expression complexe de la rotation de centre 1+i et d'angle $\pi/4$.
- 3. On note r la rotation de centre 2+i et d'angle $\pi/2$ et s la symétrie centrale de centre 1-i. Caractériser géométriquement $s\circ r$.
- 4. On note r la rotation de centre i et d'angle $\pi/3$ et r' la rotation de centre 2i et d'angle $-\pi/3$. Caractériser géométriquement $r' \circ r$.

Chapitre 2

Logique, ensembles

 \ll Si la logique est l'hygiène du mathématicien, ce n'est pas elle qui lui fournit sa nourriture ; le pain quotidien dont il vit, ce sont les grands problèmes. »

— André Weil (1906-1998)

« Sur l'enseigne du barbier du village, on peut lire : Je rase tous les hommes du village qui ne se rasent pas eux-mêmes, et seulement ceux-là. Savez-vous qui rase le barbier ? »

— Bertrand Russel (1872–1970)

« J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. »

— Stendhal (1783-1842)

2.1	Élén	nents de logique	34
	2.1.1	Assertion, prédicat	34
	2.1.2	Implication, équivalence	35
2.2	Ense	emble	37
	2.2.1	Ensemble, élément	37
	2.2.2	Opérations élémentaires	38
2.3	\mathbf{App}	lication	39
	2.3.1	Définition, exemples	39
	2.3.2	Application injective, surjective, bijective	41
	2.3.3	Famille	43
2.4	Rela	ation binaire	44
	2.4.1	Relation d'ordre	45
	2.4.2	Relation d'équivalence	46
2.5	L'en	semble des entiers naturels	46
	2.5.1	Récurrence	47
	2.5.2	Définition par récurrence	47
2.6	Exe	rcices	49

2.1 Éléments de logique

2.1.1 Assertion, prédicat

Définition 2.1.1

- On appelle assertion toute phrase mathématique à laquelle on peut attribuer une et une seule valeur de vérité : vrai ou faux.
- Soit E un ensemble. On appelle $pr\!\!\!/ edicat$ sur E toute phrase mathématique dont la valeur de vérité dépend d'un élément $x \in E$.

Exemples

- \Rightarrow « 7 est un nombre premier » est une assertion vraie. L'assertion « 7 est divisible par 3 » est fausse.
- $\Rightarrow P(x) := \langle x \text{ est rationnel} \rangle$ est un prédicat sur \mathbb{R} . P(3/4) est vrai alors que $P(\sqrt{2})$ est faux.
- $\Rightarrow P(a,b,c) := \langle a^2 + b^2 = c^2 \rangle$ est un prédicat sur \mathbb{N}^3 .
- \Rightarrow « L'ensemble des nombres premiers est infini » est une assertion vraie. L'assertion « Il existe une infinité de nombres premiers p tels que p+2 est premier » est une assertion dont on pense qu'elle est vraie. Mais aujourd'hui, personne n'en a fait la preuve.

Remarques

- ⇒ Deux principes fondamentaux gouvernent les valeurs de vérité des assertions.
 - Le principe de non-contradiction : Une assertion ne peut être à la fois vraie et fausse.
 - Le principe du tiers exclu : Une assertion qui n'est pas vraie est fausse.
- \Rightarrow Si P est un prédicat, on dit que P est vrai lorsque, quel que soit $x \in E$, P(x) est vraie. Dire que P n'est pas vrai signifie qu'il existe $x \in E$ tel que P(x) est faux.

Définition 2.1.2

- Le quantificateur universel \forall signifie « pour tout »
- Le quantificateur existentiel ∃ signifie « il existe (au moins) un »

Remarque

⇒ On trouve parfois le quantificateur ∃! qui signifie « il existe un unique ».

Exercices 1

- ⇒ Les assertions suivantes sont-elles vraies?
 - 1. $\forall y \in \mathbb{R}, \quad \exists x \in \mathbb{R}, \quad x + y \geqslant 0.$
 - 2. $\exists x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad x + y \geqslant 0.$
 - 3. $\exists x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad y^2 \geqslant x$.
- \Rightarrow Déterminer les $x \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, \quad x^{n+2} \leqslant x^{n+1} + x^n.$$

Définition 2.1.3

Soit P et Q deux assertions.

- On définit l'assertion (non P) comme étant vraie lorsque P est fausse et fausse lorsque P est vraie.
- On définit l'assertion $[P \ \text{et} \ Q]$ comme étant vraie lorsque P et Q sont vraies et fausse sinon.
- On définit l'assertion [P] ou [Q] comme étant vraie lorsqu'au moins l'une des deux assertions est vraie, et fausse sinon.

Remarques

Р	V	F
non P	F	V
non	Р	

PQ	V	F
V	V	F
F	F	F

P ou Q

⇒ Lorsque le menu d'un restaurant vous propose « fromage ou dessert », le « ou » est employé au sens strict (on dit aussi exclusif); il n'est pas possible d'avoir les deux. En mathématiques, le « ou » est employé au sens large (on dit aussi inclusif). Lorsqu'on dit qu'un entier naturel n est divisible par 2 ou par 3, il peut très bien être divisible par 2 et par 3.

2.1.2 Implication, équivalence

Définition 2.1.4

Soit P et Q deux assertions. On définit l'assertion $P \Longrightarrow Q$ comme étant fausse lorsque P est vraie et Q est fausse, et vraie sinon.

Remarques

- \Rightarrow Montrer $P \Longrightarrow Q$ revient à prouver que si P est vraie, alors Q est vraie.
- \Rightarrow Si P et Q sont deux prédicats sur E, P \Longrightarrow Q signifie que Q(x) est vraie dès que P(x) est vraie. Si c'est le cas, on écrit

$$\forall x \in E, \quad P(x) \Longrightarrow Q(x)$$

et on dit que P est une condition suffisante pour Q ou que Q est une condition nécessaire pour P.

Exercices 2

- \Rightarrow Dans les exemples suivants, dites si le prédicat P est une condition nécessaire ou une condition suffisante pour Q.
 - $-E = \mathbb{R}, P(x) := \langle x \in \mathbb{Q} \rangle \text{ et } Q(x) := \langle x^2 \in \mathbb{Q} \rangle.$
 - E est l'ensemble des triangles du plan, $P(T) \coloneqq \ll T$ est isocèle » et $Q(T) \coloneqq \ll T$ est équilatéral ».
 - $-E = \mathbb{R}^2$, $P(x,y) := \langle x \equiv y \mid 2\pi \rangle$ et $Q(x,y) := \langle x \equiv y \mid \pi \rangle$.
- ⇒ Montrer que

$$\forall x,y \in \mathbb{R}, \quad [xy > 0 \quad \text{et} \quad x + y > 0] \quad \Longrightarrow \quad [x > 0 \quad \text{et} \quad y > 0].$$

⇒ Montrer que

$$\forall x \in \mathbb{R}, \quad [\forall \varepsilon \in \mathbb{R}_+^*, \quad |x| \leqslant \varepsilon] \implies x = 0.$$

Proposition 2.1.5: Modus Ponens

Soit P et Q deux assertions. Si P et $P \Longrightarrow Q$ sont vraies, alors Q est vraie.

Remarque

 \Rightarrow En pratique, on utilise cette proposition lorsque P et Q sont des prédicats. Si $P \Rightarrow Q$ est vrai et x est un élément de E tel que P(x) est vrai, alors Q(x) est vrai. Dans ce cadre, on dit que $P \Rightarrow Q$ est un théorème. Vérifier les hypothèses du théorème revient à vérifier que P(x) est vrai et appliquer le théorème nous permet de conclure que Q(x) est vrai. Traduisons mathématiquement le raisonnement suivant : « Socrate est un homme. Puisque tous les hommes sont mortels, alors Socrate est mortel ». Si $P(x) \coloneqq x$ est un homme » et $Q(x) \coloneqq x$ est mortel », alors l'énoncé « Tous les hommes sont mortels » s'écrit

$$\forall x \in U, \quad P(x) \Longrightarrow Q(x).$$

Puisque Socrate est un homme (P (Socrate) est vrai), on en déduit que Socrate est mortel (Q (Socrate) est vrai).

Exercice 3

 \Rightarrow Soit $a, b \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, \quad x < a \implies x \leqslant b.$$

Montrer que $a \leq b$.

Définition 2.1.6

Soit P et Q deux assertions. On définit l'assertion $P \iff Q$ comme étant vraie lorsque P et Q ont même valeur de vérité, et fausse sinon.

Remarques

 \Rightarrow Les valeurs de vérité des assertions $P\Longrightarrow Q$ et $P\Longleftrightarrow Q$ sont regroupées dans les tableaux suivants.

$$P \Longrightarrow Q$$

$$P \Longleftrightarrow Q$$

- ightharpoonup Les assertions $P \Longleftrightarrow Q$ et $Q \Longleftrightarrow P$ ont même valeur de vérité; on dit que la relation d'équivalence est symétrique.
- \Rightarrow Si P et Q sont deux prédicats sur E, dire que $P \iff Q$ est vrai signifie que Q(x) et P(x) ont même valeur de vérité quel que soit $x \in E$. Si c'est le cas, on écrit

$$\forall x \in E, \quad P(x) \iff Q(x)$$

et on dit que P est une condition nécessaire et suffisante pour Q.

Proposition 2.1.7

Soit P et Q deux assertions. Alors $P \iff Q$ et $[(P \implies Q)$ et $(Q \implies P)]$ ont même valeur de vérité.

Remarque

ightharpoonup Pour démontrer que $P \Longrightarrow Q$, puis que $Q \Longrightarrow P$; on dit qu'on raisonne par double implication.

Exercice 4

 \Rightarrow Soit $\lambda \in \mathbb{R}$ et f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \sin(\lambda x).$$

Donner une condition nécessaire et suffisante sur λ pour que f soit 2π -périodique.

Proposition 2.1.8

Soit P, Q, R trois assertions. Alors

$$[P \ \text{et} \ (Q \ \text{ou} \ R)] \iff [(P \ \text{et} \ Q) \ \text{ou} \ (P \ \text{et} \ R)],$$

$$[P \ \text{ou} \ (Q \ \text{et} \ R)] \iff [(P \ \text{ou} \ Q) \ \text{et} \ (P \ \text{ou} \ R)].$$

Proposition 2.1.9: Lois de Morgan

Soit P et Q deux assertions. Alors

non
$$(P \text{ et } Q) \iff [(\text{non } P) \text{ ou } (\text{non } Q)],$$

non $(P \text{ ou } Q) \iff [(\text{non } P) \text{ et } (\text{non } Q)],$
non $(\text{non } P) \iff P.$

Proposition 2.1.10: Raisonnement par contraposée

Soit P et Q deux assertions. Alors

$$[P\Longrightarrow Q]\quad\Longleftrightarrow\quad [\text{non}\ \ Q\Longrightarrow \text{non}\ \ P]\,.$$

Remarque

ightharpoonup Lorsque l'on démontre [(non Q) \Longrightarrow (non P)] pour montrer que $[P\Longrightarrow Q]$, on dit que l'on raisonne par contraposée.

Exercice 5

 \Rightarrow Supposons que l'on ait montré que π^2 est irrationnel. Peut-on en déduire que π est irrationnel?

2.2. ENSEMBLE 37

Proposition 2.1.11

Soit P et Q deux assertions. Alors

$$[\text{non } (P \Longrightarrow Q)] \iff [P \text{ et } (\text{non } Q)].$$

Proposition 2.1.12

Soit P un prédicat sur l'ensemble E. Alors

non
$$[\forall x \in E, P(x)] \iff [\exists x \in E, \text{ non } (P(x))],$$

non $[\exists x \in E, P(x)] \iff [\forall x \in E, \text{ non } (P(x))].$

Exercice 6

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire les phrases suivantes avec des quantificateurs. En déduire leur négation.

«
$$f$$
 est majorée », « f est croissante », « f est décroissante ».

2.2 Ensemble

2.2.1 Ensemble, élément

Définition 2.2.1

Les notions d'ensemble, d'élément et d'appartenance sont des notions premières en mathématiques que l'on ne définit pas. Intuitivement, un ensemble est une collection d'objets mathématiques appelés éléments. La notation $x \in E$ signifie que l'élément x appartient à l'ensemble E.

Remarque

 \Rightarrow Si x_1, \ldots, x_n sont des objets mathématiques, l'ensemble constitué de ces éléments est noté $\{x_1, \ldots, x_n\}$.

Définition 2.2.2

Soit A et B deux ensembles. On dit que A est inclus dans B et on note $A \subset B$ lorsque

$$\forall x \in A, \quad x \in B.$$

Proposition 2.2.3

Deux ensembles A et B sont égaux lorsqu'ils possèdent les mêmes éléments, c'est-à-dire lorsque

$$A \subset B$$
 et $B \subset A$.

Remarque

 \Rightarrow En particulier $\{0,1\} = \{1,0\}$ et $\{0,0,1\} = \{0,1\}$.

Définition 2.2.4

Soit E un ensemble. On appelle partie de E tout ensemble A inclus dans E. L'ensemble des parties de E est noté $\mathcal{P}(E)$.

Remarque

 \Rightarrow Un même objet mathématique peut très bien, selon le contexte, être un élément ou un ensemble. Par exemple, l'ensemble $\mathbb N$ est un élément de $\mathcal P(\mathbb R)$.

Exercice 7

 \Rightarrow Déterminer $\mathcal{P}(\{1,2\}), \mathcal{P}(\mathcal{P}(\varnothing))$ et $\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing)))$.

2.2.2 Opérations élémentaires

Définition 2.2.5

Soit E un ensemble et P un prédicat sur E. On définit

$$\{x \in E \mid P(x)\}$$

comme l'ensemble des éléments x de E tels que P(x) est vrai. C'est une partie de E.

Définition 2.2.6

Soit A et B deux parties de E. On définit

$$A\cap B\coloneqq\{x\in E\mid x\in A\ \text{ et }\ x\in B\},\qquad A\cup B\coloneqq\{x\in E\mid x\in A\ \text{ ou }\ x\in B\},$$

$$\overline{A}\coloneqq\{x\in E\mid x\not\in A\}.$$

Remarques

- \Rightarrow Le complémentaire de A dans E est aussi noté $A^c.$
- \Rightarrow On dit que deux ensembles A et B sont disjoints lorsque $A \cap B = \emptyset$.

Proposition 2.2.7

Soit A, B, C trois parties de E. Alors

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Proposition 2.2.8: Lois de Morgan

Soit A et B deux parties de E. Alors

$$\begin{array}{rcl} \overline{A \cap B} & = & \overline{A} \cup \overline{B}, \\ \overline{A \cup B} & = & \overline{A} \cap \overline{B}, \\ \overline{\overline{A}} & = & A. \end{array}$$

Exercices 8

- \Rightarrow Soit A et B deux parties d'un même ensemble. Montrer que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- \Rightarrow Soit A, B, C trois parties d'un ensemble E non vide.
 - 1. Si $A \cup B = A \cup C$, a-t-on B = C?
 - 2. Si $A \cup B = A \cap B$, a-t-on A = B?
 - 3. Montrer que si $A \cup B = A \cup C$ et $A \cap B = A \cap C$, alors B = C.
 - 4. Montrer que si $A \cup B = E$ et $A \cap B = \emptyset$, alors $A = \overline{B}$ et $B = \overline{A}$.

Définition 2.2.9

Soit A et B deux parties de E. On définit

$$A \setminus B := \{ x \in E \mid x \in A \text{ et } x \notin B \}.$$

Remarques

- \Rightarrow L'ensemble $A \setminus B$ se lit « A privé de B ».
- \Rightarrow Si A est une partie de $E, \bar{A} = E \setminus A$.

Définition 2.2.10

Soit A et B deux ensembles. On définit $A \times B$ comme l'ensemble des couples (a,b) avec $a \in A$ et $b \in B$. Par définition, deux couples (a_1,b_1) , $(a_2,b_2) \in A \times B$ sont égaux lorsque $a_1 = a_2$ et $b_1 = b_2$.

2.3. APPLICATION 39

Définition 2.2.11

— Si A_1, \ldots, A_n sont n ensembles, on définit $A_1 \times \cdots \times A_n$ comme l'ensemble des n-uplets (a_1, \ldots, a_n) avec $a_1 \in A_1, \ldots, a_n \in A_n$. Par définition, deux n-uplets $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in A_1 \times \cdots \times A_n$ sont égaux lorsque

$$\forall k \in [1, n], \quad a_k = b_k.$$

— Si A est un ensemble et $n \in \mathbb{N}$, on définit A^n comme

$$A^n := \underbrace{A \times A \times \cdots \times A}_{n \text{ fois } A}.$$

Remarques

- \Rightarrow A^1 est l'ensemble des 1-uplets (a), pour $a \in A$; on confondra cet ensemble avec A. Quant à A^0 , c'est l'ensemble qui contient un unique élément, le 0-uplet ().
- \Rightarrow Pour énoncer qu'un prédicat portant sur deux variables est vrai, on peut écrire « $\forall x \in A$, $\forall y \in A$, P(x,y) ». On condense cependant souvent cette phrase en « $\forall (x,y) \in A^2$, P(x,y) » ou en « $\forall x,y \in A$, P(x,y) ».

2.3 Application

2.3.1 Définition, exemples

Définition 2.3.1

Soit E et F deux ensembles. Une application f de E dans F associe à tout élément $x \in E$ un unique élément $f(x) \in F$, appelé image de x par f. On note

$$\begin{array}{cccc} f: & E & \longrightarrow & F \\ & x & \longmapsto & f(x). \end{array}$$

On dit que E est le domaine de f et que F est son codomaine. L'ensemble des applications de E dans F est noté $\mathcal{F}(E,F)$.

Remarques

- Deux applications sont égales lorsqu'elles ont même domaine et codomaine et qu'elles prennent la même valeur en chaque point de ce domaine.
- ⇒ On utilise aussi les expressions « ensemble de départ » et « ensemble d'arrivée » d'une application pour désigner respectivement son domaine et son codomaine.
- \Rightarrow « application » et « fonction » sont synonymes. L'usage veut cependant que l'on réserve le mot « fonction » aux applications dont le domaine et le codomaine sont des parties de \mathbb{C} .
- \Rightarrow L'ensemble $\mathcal{F}(E,F)$ est aussi noté F^E .
- \Rightarrow Pour les fonctions usuelles, il arrive qu'on omette les parenthèses et qu'on écrive $\sin x$ au lieu de $\sin(x)$. Cependant, on ne se permettra pas de faire cela avec les autres fonctions.

Définition 2.3.2

Si f est une application de E dans F, on appelle graphe de f l'ensemble

$$\{(x,y) \in E \times F \mid f(x) = y\}.$$

Définition 2.3.3

Soit A une partie de E. On appelle fonction caractéristique de A et on note $\mathbb{1}_A$ l'application de E dans $\{0,1\}$ définie par

$$\forall x \in E, \quad \mathbb{1}_A(x) \coloneqq \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

Remarques

 \Rightarrow Deux parties A et B de E sont égales si et seulement si $\mathbb{1}_A = \mathbb{1}_B$.

 \Rightarrow Si A et B sont deux parties de E, alors

$$\forall x \in E, \quad \mathbb{1}_{A \cap B}(x) = \mathbb{1}_A(x)\mathbb{1}_B(x) \quad \text{et} \quad \mathbb{1}_{A \cup B}(x) = \max(\mathbb{1}_A(x), \mathbb{1}_B(x)).$$

Définition 2.3.4

Soit $f: E \to F$ et $y \in F$. On appelle antécédent de y tout élément $x \in E$ tel que f(x) = y.

Exercice 9

 \Rightarrow Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^2 qui au couple (x,y) associe le couple (x+2y,xy). Déterminer les antécédents de (3,1).

Définition 2.3.5

Soit $f: E \to F$.

— Soit B une partie de F. On appelle image réciproque de B et on note $f^{-1}(B)$ l'ensemble des éléments de E dont l'image par f est dans B.

$$f^{-1}(B) := \{ x \in E \mid f(x) \in B \}$$

— Soit A une partie de E. On appelle image directe de A et on note f(A) l'ensemble des éléments de F qui sont image d'un élément de A par f.

$$f(A) := \{ y \in F \mid \exists x \in A, \quad f(x) = y \}$$

L'ensemble f(E) est appelé image de f et noté $\operatorname{Im} f$.

Remarque

 \Rightarrow L'ensemble image f(A) est aussi noté

$$\{f(x):x\in A\}.$$

Exercices 10

 \Rightarrow Soit f la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sin x$$

Calculer $f^{-1}(f(\{\pi/2\}))$ et $f(f^{-1}(\{0,2\}))$.

- \Rightarrow Soit f la fonction de $\mathbb{C} \setminus \{i\}$ dans \mathbb{C} qui à z associe $\frac{z+i}{z-i}$. Calculer $f^{-1}(\mathbb{U})$.
- \Rightarrow Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \frac{x}{1+x^2}.$$

En lisant le tableau de variations de f, intuiter $f(\mathbb{R})$, puis prouver rigoureusement ce résultat.

 \Rightarrow Soit f une application de E dans F. Si A est une partie de E, comparer $f^{-1}(f(A))$ et A. De même, si B est une partie de F, comparer $f(f^{-1}(B))$ et B.

Définition 2.3.6

Soit f une application de E dans F.

— Si A est une partie de E, l'application

$$\begin{array}{cccc} f|_A: & A & \longrightarrow & F \\ & x & \longmapsto & f(x) \end{array}$$

est appelée restriction de f à A.

- On dit qu'une application g est un prolongement de f lorsque f est une restriction de g.
- Si B est une partie de F telle que

$$\forall x \in E, \quad f(x) \in B$$

l'application

$$f|^B: E \longrightarrow B$$

 $x \longmapsto f(x)$

est appelée corestriction de f à B.

2.3. APPLICATION 41

Remarque

 \Rightarrow Soit $f: E \to F$, A une partie de E et B une partie de F telles que

$$\forall x \in A, \quad f(x) \in B.$$

Alors, on peut définir l'application

$$f|_A^B: A \longrightarrow B$$

 $x \longmapsto f(x)$

appelée restriction de f à A, corestreinte à B.

Définition 2.3.7

Soit $f: E \to F$ et $g: F \to G$. On définit l'application $g \circ f$ de E dans G par

$$\forall x \in E, \quad (g \circ f)(x) := g(f(x)).$$

Remarque

 \Rightarrow Si A est une partie de E, alors $(g \circ f)(A) = g(f(A))$. De même, si B est une partie de G, alors

$$(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B)).$$

Proposition 2.3.8

Soit $f: E \to F$, $g: F \to G$ et $h: G \to H$. Alors

$$(h \circ g) \circ f = h \circ (g \circ f)$$
.

On note cette application $h \circ g \circ f$.

2.3.2 Application injective, surjective, bijective

Définition 2.3.9

Soit $f: E \to F$. On dit que f est injective lorsque

$$\forall x_1, x_2 \in E, \quad f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

c'est-à-dire lorsque tout élément de F a au plus un antécédent.

Exercices 11

- \Rightarrow Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer que si f est strictement monotone alors elle est injective. La réciproque est-elle vraie?
- \Rightarrow Soit f une fonction de $\mathbb R$ dans $\mathbb R$ telle que : $\forall x,y\in\mathbb R$, $|f(x)-f(y)|\geqslant |x-y|$. Montrer qu'elle est injective.
- \Rightarrow Soit φ l'application qui à la fonction f de [-1,1] dans $\mathbb R$ associe la fonction $\varphi(f)$ de $\mathbb R$ dans $\mathbb R$ définie par

$$\forall x \in \mathbb{R}, \quad [\varphi(f)](x) \coloneqq f(\sin x)$$

Montrer que φ est injective.

 \Rightarrow Soit E un ensemble et A une partie de E. Donner une condition nécessaire et suffisante sur A pour que

$$\varphi: \quad \mathcal{P}\left(E\right) \quad \longrightarrow \quad \mathcal{P}\left(E\right) \\ X \quad \longmapsto \quad X \cap A$$

soit injective.

Définition 2.3.10

Soit $f: E \to F$. On dit que f est surjective lorsque

$$\forall y \in F, \quad \exists x \in E, \quad f(x) = y$$

c'est-à-dire lorsque tout élément de F a au moins un antécédent.

Proposition 2.3.11

Une application $f: E \to F$ est surjective si et seulement si $\operatorname{Im} f = F$.

Exercices 12

⇒ L'application

$$\varphi: \quad \mathcal{F}(\mathbb{R}, \mathbb{R}) \quad \longrightarrow \quad \mathbb{R}$$

$$f \quad \longmapsto \quad f(0)$$

est-elle injective? surjective?

Définition 2.3.12

On dit qu'une application $f: E \to F$ est bijective lors qu'elle est injective et surjective, c'est-à-dire lors que tout élément de F possède un unique antécédent.

Exercices 13

- \Rightarrow Montrer que la fonction f qui à x associe $\frac{1+ix}{1-ix}$ réalise une bijection de \mathbb{R} dans $\mathbb{U}\setminus\{-1\}$.
- ⇒ Montrer que l'application

$$f: \quad \mathbb{N}^2 \quad \longrightarrow \quad \mathbb{N}$$
$$(a,b) \quad \longmapsto \quad 2^a (2b+1) - 1$$

est bijective.

 \Rightarrow Soit X un ensemble et $f:X^2\to X$ une bijection. Montrer que

$$g: \begin{array}{ccc} X^3 & \longrightarrow & X \\ (x,y,z) & \longmapsto & f\left(x,f(y,z)\right) \end{array}$$

est bijective.

Proposition 2.3.13

- La composée de deux applications injectives est injective.
- La composée de deux applications surjectives est surjective.
- La composée de deux applications bijectives est bijective.

Exercices 14

- \Rightarrow Soit $f: E \to F$ et $g: F \to G$. Montrer que si $g \circ f$ est injective, alors f est injective. De même, montrer que si $g \circ f$ est surjective, alors g est surjective.
- \implies Est-il vrai que si $g \circ f$ est bijective, f et g le sont?

Définition 2.3.14

Soit E un ensemble. On appelle $identit\acute{e}$ et on note Id_E l'application de E dans E définie par

$$\forall x \in E, \quad \mathrm{Id}_E(x) \coloneqq x.$$

Si f est une application de E dans F

$$f \circ \operatorname{Id}_E = f$$
 et $\operatorname{Id}_F \circ f = f$.

Proposition 2.3.15

Soit f une application de E dans F.

— L'application f est bijective si et seulement si il existe une application $g: F \to E$ telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$.

Si tel est le cas, g est unique; on l'appelle bijection réciproque de f et on la note f^{-1} .

— Si $f: E \to F$ est bijective, f^{-1} est bijective et $(f^{-1})^{-1} = f$.

2.3. APPLICATION 43

Remarques

- \Rightarrow Soit f une bijection de E dans F. Quel que soit $y \in F$, si $x \in E$ est tel que f(x) = y, alors $f^{-1}(y) = x$.
- \Rightarrow La fonction ln de \mathbb{R}_+^* dans \mathbb{R} est une bijection et sa bijection réciproque est la fonction exp de \mathbb{R} dans \mathbb{R}_+^* .

Exercices 15

⇒ Montrer que l'application

$$f: \quad \begin{array}{ccc} \mathbb{Z}^2 & \longrightarrow & \mathbb{Z}^2 \\ (x,y) & \longmapsto & (2x+y,5x+3y) \end{array}$$

est bijective et calculer f^{-1} .

 \Rightarrow Soit f une bijection de \mathbb{R} dans \mathbb{R} . Montrer que si f est strictement croissante, il en est de même pour f^{-1} . Que dire si f est impaire?

Proposition 2.3.16

Soit $f:E\to F$ et $g:F\to G$ deux applications bijectives. Alors $g\circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

2.3.3 Famille

Si E est un ensemble, il est courant de se donner n éléments f_1, \ldots, f_n de E. Cela revient à définir une application

$$\begin{array}{ccc} f: & \llbracket 1, n \rrbracket & \longrightarrow & E \\ & i & \longmapsto & f(i) \end{array}$$

où l'on pose $f(i) := f_i$ pour tout $i \in [\![1,n]\!]$. Nous dirons que f est une famille d'éléments de E indexée par $[\![1,n]\!]$. On peut généraliser ce principe et construire des familles indexées par un ensemble quelconque. Par exemple, on peut considérer l'application f de \mathbb{R} dans $\mathcal{F}(\mathbb{R},\mathbb{R})$, qui à $\lambda \in \mathbb{R}$ associe la fonction $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f_{\lambda}(x) := e^{\lambda x}.$$

On a ainsi défini une famille d'éléments de $\mathcal{F}(\mathbb{R},\mathbb{R})$ indexée par \mathbb{R} .

Définition 2.3.17

Soit E un ensemble et I un ensemble, appelé ensemble d'indices. On appelle famille d'éléments de E indexée par I toute application

$$f: \quad \begin{matrix} f: & I & \longrightarrow & E \\ & i & \longmapsto & f_i. \end{matrix}$$

Cette application est notée $(f_i)_{i\in I}$. L'ensemble des familles d'éléments de E indexées par I est noté E^I .

Remarques

- \Rightarrow Une famille d'éléments de E indexée par \mathbb{N} est une suite d'éléments de E.
- \Rightarrow On appelle sous-famille d'une famille $(f_i)_{i\in I}$ toute famille de la forme $(f_i)_{i\in J}$ où J est une partie de I.
- \Rightarrow Si A est un ensemble, on dit qu'une famille $(f_i)_{i\in I}$ est la famille des éléments de A lorsque f est une bijection de I dans A. Le fait de parler de « la » famille des éléments de A est un abus de langage, car cette famille n'est pas unique.

Définition 2.3.18

Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. On définit alors

$$\bigcap_{i \in I} A_i \coloneqq \{x \in E \mid \forall i \in I, \quad x \in A_i\},\$$

$$\bigcup_{i \in I} A_i := \{ x \in E \mid \exists i \in I, \quad x \in A_i \}.$$

Exercice 16

 \Rightarrow Soit $f: E \to E$. On définit f^n pour tout $n \in \mathbb{N}$ par

$$f^0 := \mathrm{Id}_E \quad \text{et} \quad [\forall n \in \mathbb{N}, \quad f^{n+1} := f \circ f^n]$$

Soit A une partie de E. Pour tout $n \in \mathbb{N}$, on pose $A_n := f^n(A)$. Enfin, on pose $B := \bigcup_{n \in \mathbb{N}} A_n$. Montrer que $A \subset B$ et que $f(B) \subset B$.

Proposition 2.3.19

Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. Alors

$$\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i} \quad \text{et} \quad \overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}.$$

Définition 2.3.20: Partition

Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. On dit que $(A_i)_{i\in I}$ est une partition de E lorsque

$$E = \bigcup_{i \in I} A_i$$
 et $[\forall i, j \in I, i \neq j \Longrightarrow A_i \cap A_j = \varnothing]$.

Remarques

- \Rightarrow La définition de partition peut varier d'un cours à l'autre. Dans certains cours, on demande en plus que les A_i soient non vides; on appelle alors recouvrement disjoint ce que nous appelons ici partition.
- \Rightarrow La notion de partition a été définie à l'aide de familles. Mais on peut aussi la définir de manière ensembliste; on dit qu'une partie \mathcal{P} de $\mathcal{P}(E)$ est une partition (au sens ensembliste) de E lorsque
 - $-- \forall x \in E, \quad \exists A \in \mathcal{P}, \quad x \in A.$
 - $\forall A_1, A_2 \in \mathcal{P}, \quad A_1 \neq A_2 \Longrightarrow A_1 \cap A_2 = \varnothing.$
 - $\forall A \in \mathcal{P}, \quad A \neq \emptyset.$

Remarquons que dans la définition ensembliste, on demande à ce que les ensembles appartenant à \mathcal{P} soient non vides.

Exercice 17

 \Rightarrow Déterminer les partitions au sens ensembliste de $E := \{1, 2, 3\}$.

2.4 Relation binaire

Définition 2.4.1

Soit E un ensemble. On appelle relation binaire sur E tout prédicat \mathcal{R} défini sur $E \times E$. Si x et y sont deux éléments de E et $\mathcal{R}(x,y)$ est vrai, on écrit $x\mathcal{R}y$.

Définition 2.4.2

On dit qu'une relation binaire \mathcal{R} sur E est

— réflexive lorsque

$$\forall x \in E, \quad x\mathcal{R}x.$$

— transitive lorsque

$$\forall x, y, z \in E, \quad [x\mathcal{R}y \text{ et } y\mathcal{R}z] \Longrightarrow x\mathcal{R}z.$$

— *symétrique* lorsque

$$\forall x, y \in E, \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x.$$

— antisymétrique lorsque

$$\forall x, y \in E, \quad [x\mathcal{R}y \text{ et } y\mathcal{R}x] \Longrightarrow x = y.$$

2.4. RELATION BINAIRE 45

2.4.1 Relation d'ordre

Définition 2.4.3

On dit qu'une relation binaire \leq est une relation d'ordre lorsqu'elle est

- réflexive : $\forall x \in E, \quad x \leq x$.
- transitive : $\forall x, y, z \in E$, $[x \leq y \text{ et } y \leq z] \Longrightarrow x \leq z$.
- antisymétrique : $\forall x, y \in E$, $[x \leq y \text{ et } y \leq x] \Longrightarrow x = y$.

On appelle ensemble ordonné tout ensemble muni d'une relation d'ordre.

Remarques

 \Rightarrow La relation \leqslant est une relation d'ordre sur \mathbb{R} . La relation \leqslant définie sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ par

$$\forall f,g \in \mathcal{F}\left(\mathbb{R},\mathbb{R}\right), \quad f \leqslant g \quad \Longleftrightarrow \quad \left[\forall x \in \mathbb{R}, \quad f(x) \leqslant g(x)\right]$$

est une relation d'ordre sur $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

- \Rightarrow Si E est un ensemble, la relation d'inclusion est une relation d'ordre sur $\mathcal{P}(E)$.
- \Rightarrow Si \leq est une relation d'ordre sur E, la relation \succeq définie par

$$\forall x, y \in E, \quad x \succeq y \iff y \preceq x$$

est une relation d'ordre appelée relation d'ordre opposée à la première.

 \Rightarrow La relation < n'est pas une relation d'ordre sur $\mathbb R$ car elle n'est pas réflexive.

Exercice 18

⇒ Montrer que la relation | définie sur N par

$$\forall a, b \in \mathbb{N}, \quad a|b \iff [\exists k \in \mathbb{N}, \quad b = ka]$$

est une relation d'ordre sur \mathbb{N} .

Définition 2.4.4

On dit qu'une relation d'ordre \leq est totale lorsque

$$\forall x, y \in E, \quad x \leq y \quad \text{ou} \quad y \leq x.$$

Remarque

 \Rightarrow La relation d'ordre \leq est totale sur \mathbb{R} . Par contre, les relations \leq sur $\mathcal{F}(\mathbb{R},\mathbb{R})$, \subset sur $\mathcal{P}(E)$ et | sur \mathbb{N} ne sont pas totales.

Définition 2.4.5

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

— On dit que $M \in E$ est un majorant de A lorsque

$$\forall a \in A, \quad a \leq M.$$

— On dit que $m \in E$ est un minorant de A lorsque

$$\forall a \in A, \quad m \leq a.$$

Exercice 19

 \Rightarrow Soit c > 0. On définit la relation $\leq \text{sur } \mathbb{R}^2$ par

$$\forall (x,t), (x',t') \in \mathbb{R}^2, \quad (x,t) \leq (x',t') \quad \Longleftrightarrow \quad |x'-x| \leqslant c \cdot (t'-t).$$

Vérifier que c'est une relation d'ordre. Dessiner l'ensemble des majorants et des minorants d'un couple (x_0, t_0) . L'ordre est-il total?

Définition 2.4.6

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

— On dit que A admet un $plus \ grand \ \'el\'ement$ lorsqu'il existe un majorant de A appartenant à A. Si un tel

- élément existe, il est unique et on l'appelle plus grand élément de A.
- On dit que A admet un plus petit élément lorsqu'il existe un minorant de A appartenant à A. Si un tel élément existe, il est unique et on l'appelle plus petit élément de A.

Remarques

- ⇒ Muni de l'ordre usuel, [0,1[admet un plus petit élément 0 mais n'admet pas de plus grand élément. Muni de la relation de divisibilité, {2,3} n'admet ni de plus grand ni de plus petit élément.
- $\, \leftrightarrows \,$ Un ensemble admettant un plus petit ou un plus grand élément est non vide.
- \Rightarrow Si E est totalement ordonné et A est une partie finie non vide de E, alors il admet un plus petit et un plus grand élément.

2.4.2 Relation d'équivalence

Définition 2.4.7

On dit qu'une relation binaire \mathcal{R} sur E est une relation d'équivalence lorsqu'elle est

- réflexive : $\forall x \in E, \quad x \mathcal{R} x.$
- transitive: $\forall x, y, z \in E$, $[xRy \text{ et } yRz] \Longrightarrow xRz$.
- symétrique : $\forall x, y \in E, \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x.$

Remarque

 \Rightarrow Si E est un ensemble quelconque, la relation d'égalité est une relation d'équivalence. Si $n \in \mathbb{N}^*$, la relation \mathcal{R} définie sur \mathbb{Z} par « $\forall a,b \in \mathbb{Z}$, $a\mathcal{R}b \iff a \equiv b \ [n]$ » est une relation d'équivalence. De même, si f est une application de E dans F, la relation \mathcal{R} définie sur E par « $\forall x,y \in E$, $x\mathcal{R}y \iff f(x) = f(y)$ » est une relation d'équivalence.

Exercice 20

 \Rightarrow Soit E un ensemble. Montrer que la relation \mathcal{R} définie sur $\mathcal{P}(E)$ par

$$\forall A, B \in \mathcal{P}(E), \quad A\mathcal{R}B \iff \text{ « Il existe une bijection de } A \text{ dans } B. \text{ »}$$

est une relation d'équivalence.

Définition 2.4.8

Soit \mathcal{R} une relation d'équivalence sur E et $x \in E$. On appelle classe d'équivalence de x et on note $\mathrm{Cl}(x)$ l'ensemble des éléments de E en relation avec x

$$Cl(x) := \{ y \in E \mid x \mathcal{R} y \}.$$

On dit qu'une partie A de E est une classe d'équivalence lorsqu'il existe $x \in E$ tel que A = Cl(x).

Remarque

 \Rightarrow Si $x, y \in E$, alors

$$Cl(x) = Cl(y) \iff x\mathcal{R}y.$$

Proposition 2.4.9

Soit $\mathcal R$ une relation d'équivalence sur E. Alors, l'ensemble des classes d'équivalence réalise une partition de E.

Exercice 21

 \Rightarrow Soit $n \in \mathbb{N}^*$. Déterminer le nombre de classes d'équivalence sur \mathbb{Z} pour la relation de congruence modulo n.

2.5 L'ensemble des entiers naturels

Dans ce cours, nous ne chercherons pas à construire l'ensemble des entiers naturels. Nous nous limiterons à la définition intuitive suivante.

$$\mathbb{N} := \{0, 1, 2, 3, \ldots\}$$

Nous supposerons aussi définies les opérations usuelles + et \times ainsi que la relation d'ordre totale \leqslant . Nous admettrons enfin la proposition suivante.

Proposition 2.5.1

Toute partie non vide de N admet un plus petit élément.

Proposition 2.5.2

Toute partie non vide majorée de N admet un plus grand élément.

2.5.1 Récurrence

Proposition 2.5.3: Principe de récurrence

Soit A une partie de \mathbb{N} telle que

- $-0 \in A$
- $-\forall n \in \mathbb{N}, \quad n \in A \Longrightarrow n+1 \in A.$

Alors $A = \mathbb{N}$.

Remarques

- \Rightarrow Cette proposition est au cœur du principe de récurrence. Si $\mathcal H$ est un prédicat sur $\mathbb N$ tel que
 - \mathcal{H}_0 est vraie,
 - $-\forall n \in \mathbb{N}, \quad \mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1},$

alors \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$. Il suffit pour démontrer cela d'appliquer la proposition précédente à

$$A := \{ n \in \mathbb{N} \mid \mathcal{H}_n \text{ est vraie} \}.$$

- \Rightarrow Le principe de récurrence double est une conséquence du principe de récurrence. En effet, si \mathcal{H} est un prédicat sur \mathbb{N} tel que
 - \mathcal{H}_0 et \mathcal{H}_1 sont vraies,
 - $\forall n \in \mathbb{N}, \quad [\mathcal{H}_n \text{ et } \mathcal{H}_{n+1}] \Longrightarrow \mathcal{H}_{n+2},$

alors \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$. Il suffit pour cela de remarquer que le prédicat \mathcal{P} défini sur \mathbb{N} par

$$\forall n \in \mathbb{N}, \quad \mathcal{P}_n := \ll \mathcal{H}_n \text{ et } \mathcal{H}_{n+1} \text{ sont vraies } \gg$$

vérifie le principe de récurrence.

- \Rightarrow De même, le principe de récurrence forte est une conséquence du principe de récurrence. En effet, si $\mathcal H$ est un prédicat sur $\mathbb N$ tel que
 - \mathcal{H}_0 est vraie,
 - $\forall n \in \mathbb{N}, \quad [\mathcal{H}_0 \text{ et } \dots \text{ et } \mathcal{H}_n] \Longrightarrow \mathcal{H}_{n+1},$

alors \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$. Il suffit pour cela de remarquer que le prédicat \mathcal{P} défini sur \mathbb{N} par

$$\forall n \in \mathbb{N}, \quad \mathcal{P}_n := \langle \mathcal{H}_0, \mathcal{H}_1, \dots, \mathcal{H}_n \text{ sont vraies } \rangle$$
.

vérifie le principe de récurrence.

Exercices 22

- \implies Montrer que pour tout $n \in \mathbb{N}$, $4^n + 2$ est un multiple de 3.
- \Rightarrow Soit (u_n) la suite définie par

$$u_0 \coloneqq 1, \quad u_1 \coloneqq 1, \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+2} \coloneqq u_{n+1} + \frac{2}{n+2}u_n.$$

Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \leq n^2$.

 \Rightarrow Montrer que tout entier $n \in \mathbb{N}^*$ s'écrit comme produit de nombres premiers.

2.5.2 Définition par récurrence

Proposition 2.5.4

Soit E un ensemble, $f \in \mathcal{F}(E, E)$ et $x \in E$. Alors, il existe une unique suite (u_n) d'éléments de E telle que

$$u_0 = x$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Remarque

 \Rightarrow Il arrive qu'au lieu d'avoir une fonction $f \in \mathcal{F}(E, E)$, on ait une fonction $f \in \mathcal{F}(A, E)$ où A est une partie de E. Si $x \in A$, et que l'on souhaite prouver l'existence d'une unique suite (u_n) telle que

$$u_0 = x$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n),$

nous sommes face à un problème bien plus délicat. En effet, l'existence d'une telle suite n'est pas garantie. Par exemple, il n'existe pas de suite (u_n) telle que

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3u_n - 2}{u_n - 1}$.

En effet, si tel était le cas, on aurait $u_1 = 1$ donc $u_2 = (3u_1 - 2)/(u_1 - 1)$ ne serait pas défini. On ne peut tout simplement pas appliquer la proposition précédente, car la fonction

$$\begin{array}{cccc} f: & \mathbb{R} \setminus \{1\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{3x-2}{x-1} \end{array}$$

n'est pas définie sur \mathbb{R} mais sur $\mathbb{R} \setminus \{1\}$.

Définition 2.5.5

Soit E un ensemble, A une partie de E et $f \in \mathcal{F}(A, E)$. On dit qu'une partie B de A est stable par f lorsque

$$\forall x \in B, \quad f(x) \in B.$$

Remarques

- \Rightarrow Si B est stable par f, il est possible de considérer la restriction de f à B, corestreinte à B. On parle alors d'application induite à B.
- \Rightarrow Si A est une partie de $E, f \in \mathcal{F}(A, E)$ et $x \in A$, pour prouver l'existence d'une unique suite (u_n) telle que

$$u_0 = x$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n),$

il suffit de trouver une partie B de A, stable par f et telle que $x \in B$.

Exercice 23

 \Rightarrow Soit $x \in [2, +\infty[$. Montrer qu'il existe une unique suite (u_n) telle que

$$u_0 = x$$
 et $\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{3u_n - 2}{u_n - 1}.$

2.6. EXERCICES 49

2.6 Exercices

Éléments de logique

Assertion, prédicat

Implication, équivalence

Exercice 1 : Phrases mathématiques

On considère les propositions

- 1. $\forall x \in \mathbb{R}, \quad [(\forall y \in \mathbb{R}, \quad xy = 0) \Longrightarrow x = 0]$
- 2. $\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad [xy = 0 \Longrightarrow x = 0].$

Sont-elles vraies ou fausses? Bien entendu, on justifiera.

${\bf Exercice}~{\bf 2}: {\bf Quantificateurs}$

Écrire avec des quantificateurs les assertions suivantes, où (u_n) désigne une suite réelle et f désigne une fonction de \mathbb{R} dans \mathbb{R} .

- 1. La suite u est majorée.
- 2. La suite u n'est pas majorée.
- 3. La fonction f est nulle.
- 4. La fonction f n'est pas nulle.
- 5. La fonction f n'est pas croissante.
- 6. La fonction f est périodique.
- 7. La fonction f n'est pas périodique.
- 8. La fonction f n'est pas paire.
- 9. La fonction f n'est pas bornée.

Exercice 3: Autour des suites

Soit (u_n) une suite réelle. Montrer l'équivalence des deux propriétés suivantes

- 1. $\forall A \in \mathbb{R}, \quad \exists n \in \mathbb{N}, \quad u_n \geqslant A.$
- 2. $\forall A \in \mathbb{R}, \quad \exists n \in \mathbb{N}, \quad u_n > A.$

Que signifient ces énoncés?

Ensemble

Ensemble, élément

Opérations élémentaires

Exercice 4: Ensembles

Soit A et B deux parties d'un ensemble E.

1. Montrer que

$$A \cap B = A \cup B \Longrightarrow A = B.$$

2. Montrer que

$$A \setminus (A \setminus B) = A \cap B.$$

Exercice 5: Ensembles

Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$. Montrer que les 3 assertions suivantes sont deux à deux équivalentes.

- $-A \setminus B \subset C$.
- $--A \setminus C \subset B$.
- $-A \subset B \cup C$.

Exercice 6: Équation ensembliste

Soit A, B deux parties de E.

- 1. On souhaite résoudre l'équation $A \cup X = B$ pour $X \in \mathcal{P}(E)$.
 - (a) Montrer que si l'équation admet au moins une solution, alors $A \subset B$.
 - (b) Montrer que si $A \subset B$, l'ensemble des solutions de l'équation est

$$\{(B \setminus A) \cup T : T \in \mathcal{P}(A)\}$$
.

- (c) Conclure.
- 2. On souhaite résoudre l'équation $A \cap X = B$ pour $X \in \mathcal{P}(E)$.
 - (a) Montrer que si l'équation admet au moins une solution, alors $B \subset A$.
 - (b) Montrer que si $B \subset A$, l'ensemble des solutions de l'équation est

$$\{B \cup T : T \in \mathcal{P}(\bar{A})\}$$
.

(c) Conclure.

Exercice 7: Équation ensembliste

Soit E un ensemble et A et B deux parties de E. Discuter et résoudre l'équation

$$(A \cap X) \cup (B \cap X^c) = \emptyset.$$

Application

$D\'efinition,\ exemples$

Exercice 8 : Différence symétrique

Soit E un ensemble. Quels que soient $A, B \in \mathcal{P}(E)$, on définit la différence symétrique $A\Delta B$ entre A et B par

$$A\Delta B := (A \cup B) \setminus (A \cap B).$$

1. Déterminer $A\Delta B$ dans les deux exemples suivants.

2. Montrer que

$$\forall A, B \in \mathcal{P}(E), \quad A\Delta B = (A \cap \overline{B}) \cup (B \cap \overline{A}).$$

3. Montrer que pour tout $(A, B) \in \mathcal{P}(E)^2$

$$\mathbb{1}_{A\Delta B} = \mathbb{1}_A + \mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_B.$$

4. En déduire que la loi Δ est associative sur $\mathcal{P}(E)$, c'est-à-dire que

$$\forall A, B, C \in \mathcal{P}(E), \quad A\Delta(B\Delta C) = (A\Delta B)\Delta C.$$

Application injective, surjective, bijective

Exercice 9 : Fonction de \mathbb{C}^* dans \mathbb{C}

Soit f la fonction

$$\begin{array}{cccc} f: & \mathbb{C}^* & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & z - \frac{1}{z} \end{array}$$

- 1. Montrer que f est surjective mais non injective.
- 2. Déterminer $f^{-1}(i\mathbb{R})$.
- 3. Déterminer $f(\mathbb{U})$.

2.6. EXERCICES 51

Exercice 10 : Fonction de \mathbb{C}^2 dans \mathbb{C}^2

Soit f la fonction

$$f: \quad \mathbb{C}^2 \quad \longrightarrow \quad \mathbb{C}^2$$

 $(u,v) \quad \longmapsto \quad (u^2+v^2,uv)$

- 1. f est-elle injective?
- 2. f est-elle surjective?
- 3. Déterminer les antécédents de (3 2i, 3 + i) par f.

Exercice 11: Injection, surjection

Soit E et F deux ensembles, $f: E \to F$ et $g: F \to E$.

- 1. Montrer que si $f \circ g \circ f = f$ et que f est injective, alors g est surjective.
- 2. Montrer que si $g \circ f \circ g = g$ et que g est surjective, alors f est injective.

Exercice 12: Image directe, image réciproque

Soit $f: E \to F$, A une partie de E et B une partie de F. Montrer que

$$f(A \cap f^{-1}(B)) = f(A) \cap B.$$

Exercice 13: Une bijection de [0,1] dans [0,1]

Montrer que la fonction $f:[0,1] \to [0,1]$ définie par

$$\forall x \in [0,1], \quad f(x) \coloneqq \begin{cases} \frac{1}{2} & \text{si } x = 0\\ \frac{1}{n+2} & \text{si } x = \frac{1}{n} \text{ avec } n \in \mathbb{N}^*\\ x & \text{sinon} \end{cases}$$

est une bijection.

Exercice 14: Application ensembliste

Soit A et B deux parties de E et

$$\begin{array}{ccc} f: & \mathcal{P}\left(E\right) & \longrightarrow & \mathcal{P}\left(A\right) \times \mathcal{P}\left(B\right) \\ & X & \longmapsto & \left(X \cap A, X \cap B\right). \end{array}$$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. On suppose que f est bijective. Calculer f^{-1} .

Exercice 15: Application fonctionnelle

Soit f une application de E dans E et φ l'application

$$\begin{array}{ccc} \varphi: & \mathcal{F}\left(E,E\right) & \longrightarrow & \mathcal{F}\left(E,E\right) \\ & g & \longmapsto & g \circ f. \end{array}$$

Montrer que φ est bijective si et seulement si f l'est.

Exercice 16: Haskell Curry

Soit A,B,C trois ensembles. Montrer que l'application

$$\varphi: \ \mathcal{F}(A \times B, C) \ \longrightarrow \ \mathcal{F}(A, \mathcal{F}(B, C))$$

$$f \ \longmapsto \ \varphi(f): \ A \ \longrightarrow \ \mathcal{F}(B, C)$$

$$a \ \longmapsto \ [\varphi(f)](a): \ B \ \longrightarrow \ C$$

$$b \ \longmapsto \ f(a, b)$$

est bijective.

Exercice 17 : Il n'y a pas de surjection de E dans $\mathcal{P}(E)$

Montrons que si E est un ensemble, il n'existe pas de surjection de E dans $\mathcal{P}(E)$. On raisonne par l'absurde et on suppose qu'il existe une surjection φ de E dans $\mathcal{P}(E)$. Conclure a une absurdité en considérant

$$A := \{ x \in E \mid x \notin \varphi(x) \}.$$

Exercice 18: Composition, injection et surjection

- 1. Soit A, B, C, D quatre ensembles, $f: A \to B, g: B \to C, h: C \to D$ trois applications telles que $g \circ f$ et $h \circ g$ sont bijectives. Montrer que f, g et h sont bijectives.
- 2. Soit X, Y, Z trois ensembles et $f: X \to Y, g: Y \to Z, h: Z \to X$ trois applications. On forme les applications composées $h \circ g \circ f, g \circ f \circ h, f \circ h \circ g$. On suppose que deux d'entre elles sont surjectives et la troisième injective. Montrer qu'alors f, g et h sont bijectives.

Exercice 19: Inversion à droite, à gauche d'une application

Soit f une application de A dans B.

- 1. (a) Montrer que f est surjective si et seulement si il existe une application g de B dans A telle que $f \circ g = \mathrm{Id}_B$.
 - (b) Dans le cas où f est surjective, montrer que g est unique si et seulement si f est bijective.
- 2. (a) Montrer que f est injective si et seulement si il existe une application g de B dans A telle que $g \circ f = \mathrm{Id}_A$.
 - (b) Dans le cas où f est injective, montrer que g est unique si et seulement si f est bijective.

Exercice 20 : Image directe et réciproque

Soit f une application de A dans B.

- 1. Montrer que f est surjective si et seulement si quelle que soit la partie Y de B, on a $f(f^{-1}(Y)) = Y$.
- 2. Montrer que f est injective si et seulement si quelle que soit la partie X de A, on a $f^{-1}(f(X)) = X$.

Exercice 21: Application

Soit E un ensemble et f une application de E dans E telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice 22: Application

Soit E et F deux ensembles, f une application de E dans F, et g une application de F dans E. On suppose que $f \circ g \circ f$ est bijective. Montrer que f et g sont bijectives.

Familles

Exercice 23: Partition

Soit E l'ensemble des fonctions de \mathbb{N} dans $\{1,2,3\}$. Pour tout $i \in \{1,2,3\}$, on pose $A_i := \{f \in E \mid f(0) = i\}$. Montrer que les A_i forment une partition de E.

Relation binaire

Relation d'ordre

Exercice 24 : Ordre sur \mathbb{N}^*

On considère la relation \mathcal{R} définie sur \mathbb{N}^* par

$$\forall n, m \in \mathbb{N}^*, \quad n\mathcal{R}m \iff [\exists q \in \mathbb{N}^*, \quad m = n^q].$$

- 1. Montrer que \mathcal{R} est une relation d'ordre sur \mathbb{N}^* .
- 2. Est-ce que \mathcal{R} est totale?

Exercice 25: Plus grand, plus petit élément

Montrer que si E est un ensemble ordonné dont l'ordre est total, toute partie finie de E admet un plus petit et un plus grand élément. Que dire si l'ordre n'est pas total?

2.6. EXERCICES 53

Exercice 26: Applications croissantes

Soit (E, \preceq) un ensemble ordonné. Une application f de E dans E est dite croissante lorsque

$$\forall x, y \in E, \quad x \leq y \Longrightarrow f(x) \leq f(y).$$

- 1. Montrer que la composée de deux applications croissantes est croissante.
- 2. Montrer que si E est totalement ordonné, l'application réciproque d'une bijection croissante est croissante.

Relation d'équivalence

Exercice 27: Relation sur \mathbb{R}

On note \mathcal{R} la relation définie sur \mathbb{R} par

$$\forall x, y \in \mathbb{R}, \quad x\mathcal{R}y \iff x^2 - 2x = y^2 - 2y.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Pour tout $x \in \mathbb{R}$, déterminer la classe d'équivalence modulo \mathcal{R} .

Exercice 28: Factorisation canonique

Soit f une application de A dans B et \mathcal{R} la relation binaire définie sur A par

$$\forall x_1, x_2 \in A, \quad x_1 \mathcal{R} x_2 \iff f(x_1) = f(x_2).$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Montrer que les classes d'équivalence sont les images réciproques des $\{y\}$ pour $y \in f(A)$.

On appelle ensemble quotient A/\mathcal{R} l'ensemble des classes d'équivalence pour la relation \mathcal{R} .

- 3. Soit s l'application de A dans A/\mathcal{R} qui à x associe la classe de x. Montrer que s est une surjection appelée surjection canonique.
- 4. Soit i l'application de f(A) dans B qui à y associe y. Montrer que i est une injection appelée injection canonique.
- 5. Montrer qu'il existe une et une seule application \bar{f} de A/\mathcal{R} dans f(A) telle que $f = i \circ \bar{f} \circ s$. Montrer que \bar{f} est une bijection.
- 6. Soit C un ensemble et g une application de A dans C. Montrer qu'il existe une application \bar{g} de A/\mathcal{R} dans C telle que $g = \bar{g} \circ s$ si seulement si

$$\forall x_1, x_2 \in A, \quad x_1 \mathcal{R} x_2 \Longrightarrow g(x_1) = g(x_2).$$

L'ensemble des entiers naturels

Récurrence

Exercice 29: Inégalité

Montrer par récurrence que

$$\forall n \in \mathbb{N}^*, \quad \sqrt{1} + \sqrt{2} + \dots + \sqrt{n} \leqslant \frac{4n+3}{6} \sqrt{n}.$$

Exercice 30: Fibonacci

On considère la suite de Fibonacci définie par

$$F_0 := 0$$
, $F_1 := 1$ et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

- 1. Montrer que : $\forall n \in \mathbb{N}, F_n \geqslant n-1$.
- 2. Montrer que : $\forall n \in \mathbb{N}$, $F_n F_{n+2} F_{n+1}^2 = (-1)^{n+1}$.
- 3. Montrer que

$$\forall n \in \mathbb{N}, \quad F_{2n+1} = F_{n+1}^2 + F_n^2 \quad \text{et} \quad F_{2n+2} = F_{n+2}^2 - F_n^2.$$

1.

54

2.

$$\begin{array}{lll} F_{n+1}F_{n+3} - F_{n+2}^2 & = & F_{n+1}(F_{n+2} + F_{n+1}) - (F_n + F_{n+1})^2 \\ & = & F_{n+1}F_{n+2} + F_{n+1}^2 - F_n^2 - 2F_nF_{n+1} - F_{n+1}^2 \\ & = & F_{n+1}(F_n + F_{n+1}) - F_n^2 - 2F_nF_{n+1} \\ & = & F_{n+1}^2 - F_n(F_n + F_{n+1}) \\ & = & F_{n+1}^2 - F_nF_{n+2} \\ & = & -(-1)^{n+1} = (-1)^{n+2} \end{array}$$

3.

$$\begin{split} F_{2n+4} &= F_{2n+3} + F_{2n+2} = F_{n+2}^2 + F_{n+1}^2 + F_{n+2}^2 - F_n^2 \\ &= (F_{n+3} - F_{n+1})^2 + F_{n+1}^2 + F_{n+2}^2 - F_n^2 \\ &= F_{n+3}^2 - 2F_{n+3}F_{n+1} + 2F_{n+1}^2 + F_{n+2}^2 - F_n^2 \\ &= F_{n+3}^2 - 2F_{n+2}^2 - 2(-1)^{n+1} + 2F_{n+1}^2 + F_{n+2}^2 - F_n^2 \\ &= F_{n+3}^2 + 2F_{n+1}^2 - F_{n+2}^2 - F_n^2 - 2(-1)^{n+1} \\ &= F_{n+3}^2 + 2F_{n+1}^2 - ((F_{n+2} - F_n)^2 + 2F_{n+2}F_n) - 2(-1)^{n+1} \\ &= F_{n+3}^2 + 2F_{n+1}^2 - F_{n+1}^2 - 2F_{n+2}F_n - 2(-1)^{n+1} \\ &= F_{n+3}^2 + F_{n+1}^2 - 2((-1)^n + F_{n+1}^2) - 2(-1)^{n+1} \\ &= F_{n+3}^2 - F_{n+1}^2 - 2((-1)^n + (-1)^{n+1}) \\ &= F_{n+3}^2 - F_{n+1}^2 - F_{n+1}^2 - 2((-1)^n + (-1)^{n+1}) \end{split}$$

Exercice 31 : Inégalité sur Fibonacci

On considère la suite de Fibonacci définie par

$$F_0 := 1$$
, $F_1 := 1$, et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

Déterminer les $r \in \mathbb{R}_+^*$ tels qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que

$$\forall n \in \mathbb{N}, \quad F_n \leqslant \alpha r^n.$$

Exercice 32 : Inégalité

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \frac{4^n}{2\sqrt{n}} \leqslant \binom{2n}{n} \leqslant \frac{4^n}{\sqrt[3]{n}}.$$

Exercice 33 : Injections de $\mathbb N$ dans $\mathbb N$

Déterminer les injections f de \mathbb{N} dans \mathbb{N} telles que

$$\forall n \in \mathbb{N}, \quad f(n) \leqslant n.$$

Exercice 34: Équation fonctionnelle

Le but de cet exercice est de déterminer les fonctions f de \mathbb{N} dans \mathbb{N} telles que

$$(E) \qquad \forall n \in \mathbb{N}, \quad f(n) + (f \circ f)(n) = 2n.$$

- 1. Déterminer une fonction vérifiant (E).
- 2. Réciproquement, soit f une fonction de \mathbb{N} dans \mathbb{N} vérifiant (E).
 - (a) Montrer que f est injective.
 - (b) Montrer que : $\forall n \in \mathbb{N}, \quad f(n) = n$. Conclure.

Exercice 35: Équation fonctionnelle

Montrer qu'il existe une unique bijection $f: \mathbb{N} \to \mathbb{N}$ telle que

$$\forall n \in \mathbb{N}, \quad |f(n) - n| = 1.$$

Que se passe-t-il si on remplace \mathbb{N} par \mathbb{Z} ?

2.6. EXERCICES 55

Exercice 36: Les crayons de couleur

Nous allons démontrer que toute boite de crayons de couleur ne possède que des crayons de la même couleur. Pour cela, on procède par récurrence sur le nombre n de crayons. L'initialisation est évidente car une boite ne contenant qu'un crayon ne possède que des crayons de la même couleur. Pour l'hérédité, supposons que le résultat est vrai pour n crayons et considérons une boite de n+1 crayons de couleur. On enlève le premier crayon. Par hypothèse de récurrence, tous les autres crayons ont la même couleur. On replace le premier crayon et on enlève le dernier crayon. De même, tous les autres crayons ont la même couleur. On en déduit que les n+1 crayons ont la même couleur.

Quelle est l'erreur de ce raisonnement?

Exercice 37: Les Moines

Dans un camp de bouddhistes, on apprend qu'il y a au moins un malade. Cette maladie n'est pas contagieuse ni évolutive (le nombre de malades n'évoluera plus). Afin de préserver une entière pureté et ne pas perturber les méditations, un bouddhiste qui se sait malade doit partir. Cette maladie se caractérise uniquement par une tâche rouge sur le front. Un symptôme qui leur permet de reconnaître sans hésitation si une personne est malade. Le problème est qu'il n'y a aucun moyen pour un bouddhiste de se voir. Il n'y a aucun miroir ou autre moyen permettant de voir son propre front. De plus, les moines bouddhistes ont fait le vœu de silence et ne communiquent d'aucune façon. Ils ne font que méditer, lire et ont un esprit très logique. Ils se réunissent tous une seule fois par jour au lever du soleil pour une méditation commune de 3 heures. Pendant ces trois heures, ils n'ont toujours pas le droit de communiquer entre eux ni de partir avant la fin de la séance commune. Au bout de 5 jours, tous les malades sont partis. Combien y avait-il de moines malades?

Définition par récurrence

Exercice 38 : Suite définie par récurrence

Montrer qu'il existe une unique suite (u_n) telle que

$$u_0 = 1$$
, $u_1 = 1$, et $\left[\forall n \in \mathbb{N}, u_{n+2} = \frac{1}{u_{n+1}} + u_n \right]$.

Chapitre 3

Compléments d'analyse

 \ll Le calcul infinitésimal est l'apprentissage du maniement des inégalités bien plus que des égalités, et on pourrait le résumer en trois mots : majorer, minorer, approcher. »

— Jean Dieudonné (1906–1992)

 \ll Les hommes sont comme les chiffres, ils n'acquièrent de valeur que par leur position. »

— Napoléon Bonaparte (1769–1821)

3.1	Le c	orps ordonné $\mathbb R$
	3.1.1	La relation d'ordre sur $\mathbb R$
	3.1.2	Valeur absolue
	3.1.3	Racine
	3.1.4	Partie entière, approximation
	3.1.5	Intervalle
3.2	Fone	ction réelle d'une variable réelle
	3.2.1	Définition
	3.2.2	Symétries
	3.2.3	Monotonie
	3.2.4	Fonction majorée, minorée, bornée
3.3	Fone	ction continue, fonction dérivable
	3.3.1	Limite
	3.3.2	Continuité
	3.3.3	Dérivabilité
	3.3.4	Dérivées successives
	3.3.5	Dérivation et monotonie
	3.3.6	Dérivation des fonctions à valeurs dans $\mathbb C$
3.4	Inté	gration, primitive
	3.4.1	Primitive
	3.4.2	Intégration et régularité
	3.4.3	Intégration et inégalité
	3.4.4	Intégration par parties, changement de variable
	3.4.5	Calcul de primitive

3.1 Le corps ordonné $\mathbb R$

3.1.1 La relation d'ordre sur \mathbb{R}

Proposition 3.1.1

La relation d'ordre \leqslant définie sur $\mathbb R$ possède les propriétés suivantes.

— Elle est totale.

$$\forall a, b \in \mathbb{R}, \quad a \leqslant b \quad \text{ou} \quad b \leqslant a.$$

— Elle est compatible avec l'addition.

$$\forall a, b, c \in \mathbb{R}, \quad a \leqslant b \implies a + c \leqslant b + c.$$

— Elle est compatible avec la multiplication.

$$\forall a, b \in \mathbb{R}, \quad [0 \leqslant a \text{ et } 0 \leqslant b] \implies 0 \leqslant ab.$$

Remarques

- ⇒ La relation ≤ étant antisymétrique sur R, 0 est le seul réel à la fois positif et négatif.
- \Rightarrow Si $a, b \in \mathbb{R}$, la négation de « $a \leq b$ » est « a > b ».
- \Rightarrow Deux réels a et b sont de même signe si et seulement si $ab \geqslant 0$. On dit qu'ils sont de même signe au sens strict lorsque ab > 0.
- \Rightarrow Quel que soit $a \in \mathbb{R}$, $a^2 \geqslant 0$.

Exercices 1

 \Rightarrow Soit a, b deux réels positifs. Montrer que

$$\sqrt{ab} \leqslant \frac{a+b}{2}$$
.

 \Rightarrow Soit $a, b, c \in \mathbb{R}$ tels que $a^2 + b^2 + c^2 = ab + bc + ca$. Montrer que a = b = c.

Proposition 3.1.2

$$\forall a,b,c,d \in \mathbb{R}, \qquad [a \leqslant b \quad \text{et} \quad c \leqslant d] \quad \Longrightarrow \quad a+c \leqslant b+d$$

$$\forall a,b,c \in \mathbb{R}, \qquad [a \leqslant b \quad \text{et} \quad 0 \leqslant c] \quad \Longrightarrow \quad ac \leqslant bc$$

$$\forall a,b,c,d \in \mathbb{R}, \qquad [0 \leqslant a \leqslant b \quad \text{et} \quad 0 \leqslant c \leqslant d] \quad \Longrightarrow \quad 0 \leqslant ac \leqslant bd$$

$$\forall a,b \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \qquad 0 \leqslant a \leqslant b \quad \Longrightarrow \quad 0 \leqslant a^n \leqslant b^n.$$

Remarque

⇒ On peut multiplier une inégalité de signe quelconque par un réel négatif. Dans ce cas, l'inégalité change de sens.

Exercice 2

⇒ L'assertion suivante est-elle vraie?

$$\forall a, b, c, d \in \mathbb{R}, \quad [a \leqslant b \text{ et } 0 \leqslant c \leqslant d] \Longrightarrow ac \leqslant bd$$

Proposition 3.1.3

Soit $a, b \in \mathbb{R}$. Alors

$$0 < a \leqslant b \implies 0 < \frac{1}{b} \leqslant \frac{1}{a}.$$

Proposition 3.1.4

$$\forall a,b,c,d \in \mathbb{R}, \qquad [a \leqslant b \quad \text{et} \quad c < d] \quad \Longrightarrow \quad a+c < b+d$$

$$\forall a,b,c \in \mathbb{R}, \qquad [a < b \quad \text{et} \quad 0 < c] \quad \Longrightarrow \quad ac < bc$$

$$\forall a,b,c,d \in \mathbb{R}, \qquad [0 \leqslant a < b \quad \text{et} \quad 0 \leqslant c < d] \quad \Longrightarrow \quad 0 \leqslant ac < bd$$

$$\forall a,b \in \mathbb{R}, \quad \forall n \in \mathbb{N}^*, \qquad 0 \leqslant a < b \quad \Longrightarrow \quad 0 \leqslant a^n < b^n.$$

Définition 3.1.5

Soit $a, b \in \mathbb{R}$ avec $a \leq b$. On définit

$$\begin{split} [a,b] &= \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}, \qquad]a,b[= \{x \in \mathbb{R} \mid a < x < b\}, \\ [a,b] &= \{x \in \mathbb{R} \mid a < x \leqslant b\}, \qquad [a,b[= \{x \in \mathbb{R} \mid a \leqslant x < b\}, \\ [a,+\infty[= \{x \in \mathbb{R} \mid a \leqslant x\}, \qquad]a,+\infty[= \{x \in \mathbb{R} \mid a < x\}, \\]-\infty,b] &= \{x \in \mathbb{R} \mid x \leqslant b\}, \qquad]-\infty,b[= \{x \in \mathbb{R} \mid x < b\}. \end{split}$$

3.1.2 Valeur absolue

Définition 3.1.6

Pour tout réel a, on définit sa valeur absolue, notée |a| par

$$|a| \coloneqq \begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0. \end{cases}$$

Remarques

- \Rightarrow Pour tout $a \in \mathbb{R}$, $a^2 = |a|^2$.
- \Rightarrow Si a et b sont deux réels, on définit la distance de a à b, notée $\mathrm{d}(a,b)$ par

$$d(a, b) := |a - b|$$
.

Exercice 3

 \Rightarrow Soit $a, b \in \mathbb{R}$. Exprimer $\min(a, b)$ et $\max(a, b)$ à l'aide de a, b et de la valeur absolue.

Proposition 3.1.7

$$\begin{aligned} \forall a \in \mathbb{R}, & |a| \geqslant 0 \\ \forall a \in \mathbb{R}, & |a| = 0 \Longleftrightarrow a = 0 \\ \forall a \in \mathbb{R}, & |-a| = |a| \\ \forall a, b \in \mathbb{R}, & |ab| = |a| |b| . \end{aligned}$$

Remarques

- \Rightarrow Soit $a \in \mathbb{R}$. Alors, quel que soit $n \in \mathbb{N}$, $|a^n| = |a|^n$. Si de plus $a \neq 0$, quel que soit $n \in \mathbb{Z}$, $|a^n| = |a|^n$.
- \Rightarrow De cette proposition, on déduit les résultats suivants sur la distance entre deux réels.

$$\begin{aligned} &\forall a,b \in \mathbb{R}, & & & & & & & & \\ &\forall a,b \in \mathbb{R}, & & & & & & & \\ &\forall a,b \in \mathbb{R}, & & & & & & \\ &\forall a,b \in \mathbb{R}, & & & & & & \\ \end{aligned} \qquad \begin{array}{l} & & & & & & \\ & & & & & \\ & & & & & \\ \end{aligned} \qquad a = b$$

Exercice 4

 \Rightarrow Soit a > 0 et $x, y \geqslant a$. Montrer que

$$\left|\sqrt{x} - \sqrt{y}\right| \leqslant \frac{1}{2\sqrt{a}} \left|x - y\right|.$$

Proposition 3.1.8

Soit a un réel. Alors

$$|a| = \max\left\{a, -a\right\}.$$

Remarques

 \Rightarrow En particulier, si M est un réel positif, pour montrer que $|a| \leq M$ il suffit de montrer que

$$a \leqslant M$$
 et $-a \leqslant M$.

 \Rightarrow Soit a un réel et M un réel positif. Alors

$$|a| \leqslant M \quad \Longleftrightarrow \quad -M \leqslant a \leqslant M$$

$$|a| \geqslant M \iff [a \leqslant -M \text{ ou } a \geqslant M].$$

Exercice 5

 \Rightarrow Soit $x, y \in \mathbb{R}$. Montrer que $\cos(x)\sin(y) \geqslant -1$.

Proposition 3.1.9

Soit a et b deux réels. Alors

$$|a+b| \leqslant |a| + |b|.$$

De plus, l'égalité a lieu si et seulement si a et b sont de même signe.

Proposition 3.1.10

Soit a et b deux réels. Alors

$$||a| - |b|| \le |a - b|$$
 et $|a + b| \ge |a| - |b|$.

Remarque

 \Rightarrow Soit $a, b, c \in \mathbb{R}$. Alors

$$|d(a,b) - d(b,c)| \leq d(a,c) \leq d(a,b) + d(b,c).$$

Exercice 6

⇒ Parmi les assertions suivantes, lesquelles sont vraies?

$$- \forall a, b \in \mathbb{R}, \quad |a - b| \leqslant |a| - |b|.$$

$$- \forall a, b \in \mathbb{R}, \quad a \leqslant b \Longrightarrow |a| \leqslant |b|.$$

$$- \forall a, b \in \mathbb{R}, \quad a^2 \leqslant b^2 \iff |a| \leqslant |b|.$$

$$--\forall a, b \in \mathbb{R}, \quad |a-b| \geqslant |a| - |b|.$$

$$\forall a, b \in \mathbb{R}, \quad |a - b| \leqslant |a| + |b|.$$

$$-- \forall a, b \in \mathbb{R}, \quad |a| \leqslant |b| + |b - a|.$$

Proposition 3.1.11

Soit $a_1, \ldots, a_n \in \mathbb{R}$. Alors

$$\left| \sum_{k=1}^{n} a_k \right| \leqslant \sum_{k=1}^{n} |a_k|.$$

Exercice 7

 \Rightarrow Soit $a_1, \ldots, a_n \in \mathbb{R}$ et $\theta_1, \ldots, \theta_n \in \mathbb{R}$. Montrer que

$$\left| \sum_{k=1}^{n} a_k \sin(\theta_k) \right| \leqslant \sum_{k=1}^{n} |a_k|.$$

3.1.3 Racine

Définition 3.1.12

Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- Si n est pair et $a \ge 0$, il existe un unique réel positif x tel que $x^n = a$. On le note $\sqrt[n]{a}$.
- Si n est impair, il existe un unique réel x tel que $x^n = a$. On le note $\sqrt[n]{a}$.

Remarques

- \Rightarrow Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$.
 - Si n est pair et $a \ge 0$, alors

$$\forall x \in \mathbb{R}, \quad x^n = a \quad \Longleftrightarrow \quad x = \sqrt[n]{a} \quad \text{ou} \quad x = -\sqrt[n]{a}$$

- Si n est pair et a < 0, l'équation $x^n = a$ n'admet aucune solution sur \mathbb{R} .
- Si n est impair, alors

$$\forall x \in \mathbb{R}, \quad x^n = a \iff x = \sqrt[n]{a}$$

- \Rightarrow Soit $n \in \mathbb{N}^*$.
 - Si n est pair

$$\forall a \in \mathbb{R}_+, \qquad \left(\sqrt[n]{a}\right)^n = a,$$

 $\forall a \in \mathbb{R}, \qquad \sqrt[n]{a^n} = |a|.$

— Si n est impair

$$\forall a \in \mathbb{R}, \qquad \left(\sqrt[n]{a}\right)^n = a,$$

$$\sqrt[n]{a^n} = a.$$

- \Rightarrow Soit $n \in \mathbb{N}^*$.
 - Si n est pair

$$\forall x, y \in \mathbb{R}, \quad x^n \leqslant y^n \quad \Longleftrightarrow \quad |x| \leqslant |y|.$$

— Si n est impair

$$\forall x, y \in \mathbb{R}, \quad x^n \leqslant y^n \quad \Longleftrightarrow \quad x \leqslant y.$$

Proposition 3.1.13

Soit $n \in \mathbb{N}^*$.

— Si n est pair

$$\forall a, b \in \mathbb{R}_+, \quad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

— Si n est impair

$$\forall a,b \in \mathbb{R}, \quad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

3.1.4 Partie entière, approximation

Proposition 3.1.14

R possède la propriété

$$\forall x \in \mathbb{R}, \quad \forall \varepsilon > 0, \quad \exists n \in \mathbb{N}, \quad n\varepsilon \geqslant x.$$

On dit que \mathbb{R} est archimédien.

Remarque

 \Rightarrow En particulier, si on note x le volume d'eau de l'océan et ε le volume que peut contenir une petite cuillère, l'archimédisme de \mathbb{R} nous permet de montrer qu'une personne (patiente) arrivera à vider l'océan à l'aide de cette petite cuillère.

Définition 3.1.15

Soit $x \in \mathbb{R}$. Il existe un unique $n \in \mathbb{Z}$ tel que

$$n \leqslant x < n + 1$$
.

Cet entier est appelé partie entière de x et est noté |x|.

Remarques

- \Rightarrow Si $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, $\lfloor a/b \rfloor$ est le quotient de la division euclidienne de a par b.
- \Rightarrow Soit a > 0 et $x \in \mathbb{R}$. Alors, il existe un unique $n \in \mathbb{Z}$ tel que $na \leqslant x < (n+1)a$.
- \Rightarrow On définit de même la partie entière supérieure de $x \in \mathbb{R}$, notée $\lceil x \rceil$, comme l'unique $n \in \mathbb{Z}$ tel que $n-1 < x \leqslant n$. Si x est entier, alors $|x| = \lceil x \rceil = x$. Sinon, $\lceil x \rceil = |x| + 1$.

Exercices 8

- \Rightarrow Calculer |x| + |-x| pour tout $x \in \mathbb{R}$.
- ⇒ Montrer que la partie entière est une fonction croissante.
- \Rightarrow Soit $\alpha \in [0,1[$. Montrer qu'il existe un unique $n \in \mathbb{N}^*$ tel que

$$\frac{n-1}{n} \leqslant \alpha < \frac{n}{n+1}.$$

Définition 3.1.16

Soit $a \in \mathbb{R}$ et $\varepsilon > 0$. On appelle valeur approchée de a à la précision ε tout réel b tel que $|a - b| \le \varepsilon$. Si $b \le a$ (respectivement $b \ge a$), on dit que b est une valeur approchée de a par défaut (respectivement, par excès).

Remarques

 \Rightarrow On note $\mathbb Q$ l'ensemble des nombres rationnels et $\mathbb R\setminus\mathbb Q$ l'ensemble des nombres irrationnels. $\mathbb Q$ est stable par les opérations usuelles d'addition, de soustraction, de multiplication et de division.

Définition 3.1.17

On dit qu'un réel a est décimal lorsqu'il existe $m \in \mathbb{Z}$ et $n \in \mathbb{N}$ tels que

$$a = m \cdot 10^{-n}.$$

Remarques

- ⇒ Un nombre décimal est rationnel. Cependant 1/3 est rationnel, mais n'est pas décimal.
- \Rightarrow L'ensemble \mathcal{D} des nombres décimaux est stable par les opérations d'addition, de soustraction, de multiplication, mais pas par division.

Proposition 3.1.18

Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}$. Alors, $d = |10^n a| \cdot 10^{-n} \in \mathcal{D}$ est une approximation par défaut de a à la précision 10^{-n} .

3.1.5 Intervalle

Définition 3.1.19

On appelle droite numérique achevée et on note $\overline{\mathbb{R}}$ l'ensemble \mathbb{R} auquel on adjoint deux éléments notés $-\infty$ et $+\infty$. On munit $\overline{\mathbb{R}}$ d'une relation d'ordre totale en prolongeant la relation d'ordre naturelle sur \mathbb{R} et en posant

$$\forall x \in \mathbb{R}, \quad -\infty < x < +\infty.$$

Remarque

 \Rightarrow On prolonge aussi de manière naturelle l'addition et la multiplication sans toutefois définir $(+\infty) - (+\infty)$ et $0 \times (\pm \infty)$.

Définition 3.1.20

On dit qu'une partie de \mathbb{R} est un *intervalle* lorsqu'elle est de la forme

$$\varnothing$$
, \mathbb{R} , $[a,b]$, $]a,b[$, $[a,b[$, $]a,b[$, $[a,b[$, $]a,b[$, $]-\infty,b[$

où $a, b \in \mathbb{R}$.

Remarques

- \Rightarrow En particulier, pour a=b, $[a,b]=\{a\}$ est un intervalle. On dit qu'un intervalle est non trivial lorsqu'il contient au moins 2 points.
- \Rightarrow Si I est un intervalle non vide, il existe un unique couple $(a,b) \in \overline{\mathbb{R}}^2$ tel que I = [a,b], I = [a,b], I = [a,b] ou I = [a,b]. On dit que a et b sont les extrémités de I. L'intervalle I est dit ouvert lorsqu'il ne contient pas ses extrémités c'est-à-dire lorsqu'il est vide, ou qu'il est de la forme [a,b] où $a,b \in \overline{\mathbb{R}}$.
- \Rightarrow Dans ce cours, une partie de $\mathbb R$ notée I ou J sera implicitement un intervalle.

3.2 Fonction réelle d'une variable réelle

3.2.1 Définition

Définition 3.2.1

On appelle fonction réelle toute fonction définie sur une partie \mathcal{D} de \mathbb{R} , à valeurs dans \mathbb{R} .

Remarques

- \Rightarrow Il sera essentiel de ne pas confondre une fonction avec son expression. Par exemple parler de la fonction $\sin x$ est une erreur grave. On parlera plutôt de la fonction définie sur $\mathbb R$ qui au réel x associe le réel $\sin x$.
- \Rightarrow Par abus de langage, il est courant que les énoncés demandent à l'élève de donner le domaine de définition d'une fonction donnée par une expression (par exemple \sqrt{x}). Dans ce cas, il faut donner l'ensemble \mathcal{D} des x pour lesquels cette expression à un sens (ici, \mathbb{R}_+). La fonction f sera alors la fonction de \mathcal{D} dans \mathbb{R} , qui à x associe cette expression en x.

Exercice 9

⇒ Déterminer le domaine de définition de la fonction d'expression

$$f(x) := \ln\left(x + \sqrt{x^2 - 1}\right).$$

Définition 3.2.2

Soit f et g deux fonctions définies sur \mathcal{D} .

— Pour tout $\lambda, \mu \in \mathbb{R}$, on définit la fonction $\lambda f + \mu g$ par

$$\forall x \in \mathcal{D}, \quad (\lambda f + \mu g)(x) \coloneqq \lambda f(x) + \mu g(x).$$

— On définit la fonction fg par

$$\forall x \in \mathcal{D}, \quad (fg)(x) \coloneqq f(x)g(x).$$

— Si f ne s'annule en aucun point de \mathcal{D} , on définit 1/f par

$$\forall x \in \mathcal{D}, \quad \left(\frac{1}{f}\right)(x) \coloneqq \frac{1}{f(x)}.$$

3.2.2 Symétries

Définition 3.2.3

Soit f une fonction définie sur un domaine \mathcal{D} symétrique par rapport à θ , c'est-à-dire tel que

$$\forall x \in \mathcal{D}, \quad -x \in \mathcal{D}.$$

On dit que

— f est paire lorsque

$$\forall x \in \mathcal{D}, \quad f(-x) = f(x).$$

— f est impaire lorsque

$$\forall x \in \mathcal{D}, \quad f(-x) = -f(x).$$

Remarques

 \Rightarrow Si f est paire, la droite (Oy) est un axe de symétrie du graphe de f.

 \Rightarrow Si f est impaire, O est un centre de symétrie du graphe de f.

 \Rightarrow Si f est paire ou impaire, pour étudier f, il suffit d'étudier sa restriction à $\mathcal{D} \cap \mathbb{R}_+$.

Exercice 10

 \Rightarrow Montrer que la fonction d'expression

$$\ln\left(x+\sqrt{x^2+1}\right)$$

est impaire.

Définition 3.2.4

Soit $T \in \mathbb{R}$ et f une fonction dont le domaine de définition vérifie

$$\forall x \in \mathcal{D}, \quad x + T \in \mathcal{D} \quad \text{et} \quad x - T \in \mathcal{D}$$

On dit que f est T-périodique, ou que T est une période de f, lorsque

$$\forall x \in \mathcal{D}, \quad f(x+T) = f(x).$$

Lorsque f admet une période non nulle, on dit que f est $p\'{e}riodique$.

Remarques

 \Rightarrow Si f est T-périodique, alors

$$\forall x \in \mathcal{D}, \quad \forall k \in \mathbb{Z}, \quad f(x+kT) = f(x).$$

 \Rightarrow Si f est T-périodique, la translation de vecteur $T\overrightarrow{e_1}$ laisse stable le graphe de f.

Pour étudier f, il suffit d'étudier sa restriction à $\mathcal{D} \cap [a, a + T]$ pour un certain $a \in \mathbb{R}$.

 \Rightarrow S'il existe $T \in \mathbb{R}$ tel que f(T-x) = f(x), la droite d'équation x = T/2 est un axe de symétrie du graphe de f.

Exercices 11

⇒ La fonction

$$f(x) := \sin(2x) + \cos\left(\frac{x}{3}\right)$$

est-elle périodique?

 \Rightarrow Montrer que le graphe de la fonction

$$f(x) \coloneqq \ln\left(x^2 + x + 1\right)$$

admet un axe de symétrie.

 \Rightarrow Tracer le graphe d'une fonction quelconque f, puis celui des fonctions

$$x \mapsto f(x) + a, \qquad x \mapsto f(x+a), \qquad x \mapsto f(a-x), \qquad x \mapsto f(ax), \qquad x \mapsto af(x).$$

Proposition 3.2.5

Soit A et B deux parties de \mathbb{R} et f une bijection de A dans B. Alors le graphe de f^{-1} est le symétrique du graphe de f par rapport à la première bissectrice des axes [Ox) et [Oy).

3.2.3 Monotonie

Définition 3.2.6

Soit f une fonction définie sur \mathcal{D} . On dit que

— f est croissante lorsque

$$\forall x, y \in \mathcal{D}, \quad x \leqslant y \Longrightarrow f(x) \leqslant f(y).$$

— f est décroissante lorsque

$$\forall x, y \in \mathcal{D}, \quad x \leqslant y \Longrightarrow f(x) \geqslant f(y).$$

— f est strictement croissante lorsque

$$\forall x, y \in \mathcal{D}, \quad x < y \Longrightarrow f(x) < f(y).$$

— f est strictement décroissante lorsque

$$\forall x, y \in \mathcal{D}, \quad x < y \Longrightarrow f(x) > f(y).$$

Remarques

- ⇒ Les fonctions constantes sont les seules fonctions qui sont à la fois croissantes et décroissantes.
- \Rightarrow Une fonction peut n'être ni croissante, ni décroissante. C'est le cas de la fonction $x \mapsto x^2$ sur \mathbb{R} .
- \Rightarrow Si f est strictement monotone, elle est injective.
- \Rightarrow Attention, il est possible que f soit croissante sans que

$$\forall x, y \in \mathcal{D}, \quad f(x) \leqslant f(y) \Longrightarrow x \leqslant y.$$

C'est notamment le cas des fonctions constantes qui sont croissantes mais pour lesquelles $f(x) \leq f(y)$ quelle que soit la position de x par rapport à y. Cependant, si f est strictement croissante, par contraposée, on a bien

$$\forall x, y \in \mathcal{D}, \quad f(x) \leqslant f(y) \Longrightarrow x \leqslant y.$$

- \Rightarrow D'après la remarque précédente, si f est strictement croissante et $x_0 \in \mathcal{D}$ est un zéro de f, pour placer $x \in \mathcal{D}$ par rapport à x_0 , il suffit de déterminer le signe de f(x).
- ⇒ Les effets des opérations usuelles sur les propriétés de monotonie sont résumés dans les tableaux ci-dessous.
 - Combinaison linéaire positive

f g	croissante	décroissante
croissante	croissante	×
décroissante	×	décroissante

— Produit de fonctions positives

f g	croissante	décroissante
croissante	croissante	×
décroissante	×	décroissante

— Inverse d'une fonction strictement positive ou strictement négative

f	croissante	décroissante
1/f	décroissante	croissante

— Composition

f g	croissante	décroissante
croissante	croissante	décroissante
décroissante	décroissante	croissante

Lorsque c'est possible, il est souvent bien plus judicieux de déterminer la monotonie d'une fonction à partir de ces règles plutôt qu'à partir de l'étude du signe de la dérivée. En effet, cette méthode est bien plus rapide et source de beaucoup moins d'erreurs.

Exercices 12

⇒ Montrer que la fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{1}{x}$$

n'est ni croissante, ni décroissante.

⇒ Déterminer la monotonie des fonctions d'expressions

$$\frac{1}{e^x + \sqrt{1+x}}, \qquad \sqrt{x+1} - \sqrt{x}.$$

3.2.4 Fonction majorée, minorée, bornée

Définition 3.2.7

On dit qu'une fonction réelle f est

— *majorée* lorsque

$$\exists M \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad f(x) \leqslant M.$$

— minorée lorsque

$$\exists m \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad f(x) \geqslant m.$$

Exercice 13

 \Rightarrow Montrer que la fonction d'expression xe^{-x} est majorée sur \mathbb{R} .

Définition 3.2.8

On dit qu'une fonction réelle ou complexe f est bornée lorsque

$$\exists M \in \mathbb{R}_+, \quad \forall x \in \mathcal{D}, \quad |f(x)| \leqslant M.$$

Exercice 14

 \Rightarrow Montrer que la fonction d'expression $\frac{x}{1+x^2}$ est bornée par 1/2 sur \mathbb{R} .

Proposition 3.2.9

Une fonction réelle est bornée si et seulement si elle est minorée et majorée.

Définition 3.2.10

Soit f et g deux fonctions de domaine \mathcal{D} . On dit que f est inférieure à g et on note $f \leq g$ lorsque

$$\forall x \in \mathcal{D}, \quad f(x) \leqslant g(x).$$

Remarques

- \Rightarrow La relation \leq est une relation d'ordre sur $\mathcal{F}(\mathcal{D},\mathbb{R})$. Elle n'est pas totale.
- \Rightarrow La négation de $f \leqslant g$ s'écrit

$$\exists x \in \mathcal{D}, \quad f(x) > g(x).$$

3.3 Fonction continue, fonction dérivable

3.3.1 Limite

Dans ce chapitre, on ne définira pas précisément la notion de limite. On se basera sur la définition intuitive suivante.

Définition 3.3.1

Étant donné une fonction f et $a, l \in \mathbb{R}$, on dit que f(x) tend vers l lorsque x tend vers a, lorsque, quitte à rendre x proche de a, on peut rendre f(x) aussi proche que l'on souhaite de l. Dans ce cas, on note

$$f(x) \xrightarrow[x \to a]{} l.$$

Proposition 3.3.2

Soit $a \in \overline{\mathbb{R}}$ et f, g deux fonctions telles que f(x) et g(x) tendent respectivement vers l_f et $l_g \in \mathbb{R}$ lorsque x tend vers a. Alors

— Si λ et μ sont deux réels

$$\lambda f(x) + \mu g(x) \xrightarrow[x \to a]{} \lambda l_f + \mu l_g.$$

— On a

$$f(x)g(x) \xrightarrow[x \to a]{} l_f l_g.$$

— Si $l_f \neq 0$

$$\frac{1}{f(x)} \xrightarrow[x \to a]{} \frac{1}{l_f}.$$

— Plus généralement, si $l_g \neq 0$

$$\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} \frac{l_f}{l_g}.$$

Proposition 3.3.3

Soit f et g deux fonctions. On suppose que f(x) tend vers $l_f \in \overline{\mathbb{R}}$ lorsque x tend vers $a \in \overline{\mathbb{R}}$ et que g(x) tend vers $l_g \in \overline{\mathbb{R}}$ lorsque x tend vers l_f . Alors g(f(x)) tend vers l_g lorsque x tend vers a.

Remarque

- De nombreuses autres règles existent mélangeant limites finies et infinies. Elles sont résumées dans les tableaux ci-dessous où la présence d'une croix représente une forme indéterminée.
 - Somme

Si f et g sont deux fonctions admettant respectivement pour limites l_f et $l_g \in \overline{\mathbb{R}}$, alors f + g

l_g	$-\infty$	$l_g \in \mathbb{R}$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	×
$l_f \in \mathbb{R}$	$-\infty$	$l_f + l_g$	$+\infty$
$+\infty$	×	$+\infty$	$+\infty$

— Opposé

Si f est une fonction admettant pour limite $l \in \overline{\mathbb{R}}$, alors -f

 	,	J	
l	$-\infty$	$l \in \mathbb{R}$	$+\infty$
	$+\infty$	-l	$-\infty$

— Multiplication par un scalaire

Si f est une fonction admettant pour limite $l \in \mathbb{R}$ et $\lambda \in \mathbb{R}$, alors λf

λ l	$-\infty$	$l \in \mathbb{R}$	$+\infty$
$\lambda < 0$	$+\infty$	λl	$-\infty$
$\lambda > 0$	$-\infty$	λl	$+\infty$

- Produit

Si f et g sont deux fonctions admettant respectivement pour limites l_f et $l_g \in \mathbb{R}$, alors fg

l_g	$-\infty$	$l_g < 0$	0	$l_g > 0$	$+\infty$
$-\infty$	$+\infty$	$+\infty$	×	$-\infty$	$-\infty$
$l_f < 0$	$+\infty$	$l_f l_g$	0	$l_f l_g$	$-\infty$
$l_f = 0$	×	0	0	0	×
$l_f > 0$	$-\infty$	$l_f l_g$	0	$l_f l_g$	$+\infty$
$+\infty$	$-\infty$	$-\infty$	×	$+\infty$	$+\infty$

— Inverse

Si f est une fonction admettant pour limite l, alors 1/f

l	$-\infty$	l < 0	0-	0	0+	l > 0	$+\infty$
	0	1/l	$-\infty$	×	$+\infty$	1/l	0

— Exponentiation

Si f et g sont deux fonctions admettant respectivement pour limites l_f et l_g , alors f^g

				- U	J
l_f	$-\infty$	$l_g < 0$	0	$l_g > 0$	$+\infty$
0	$+\infty$	$+\infty$	×	0	0
$0 < l_f < 1$	$+\infty$	$l_f^{l_g}$	1	$l_f^{l_g}$	0
1	×	1	1	1	×
$1 < l_f$	0	$l_f^{l_g}$	1	$l_f^{l_g}$	$+\infty$
$+\infty$	0	0	×	$+\infty$	$+\infty$

Exercice 15

 \Rightarrow Déterminer les limites en 0 de x^x et $x^{\frac{1}{\ln x}}$; en déduire que « 0^0 » est une forme indéterminée. De même, déterminer la limite en $+\infty$ de $(1+1/x)^x$; en déduire que « $1^{+\infty}$ » est une forme indéterminée.

3.3.2 Continuité

Définition 3.3.4

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{R}$ est continue en $x_0 \in \mathcal{D}$ lorsque

$$f(x) \xrightarrow[x \to x_0]{} f(x_0)$$
.

On dit que f est continue lorsque, quel que soit $x_0 \in \mathcal{D}$, f est continue en x_0 .

Proposition 3.3.5: Théorèmes usuels

Soit $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions continues. Alors

- Quels que soient $\lambda, \mu \in \mathbb{R}$, la fonction $\lambda f + \mu g$ est continue.
- La fonction fg est continue.
- Si g ne s'annule pas, f/g est continue.

Proposition 3.3.6: Théorèmes usuels

La composée de deux fonctions continues est continue.

Théorème 3.3.7: Théorème de la bijection

— Soit $f:[a,b]\to\mathbb{R}$ (où $a,b\in\mathbb{R}$ et $a\leqslant b$) une fonction continue, strictement croissante. Alors

$$f([a,b]) = [f(a), f(b)].$$

De plus f réalise une bijection de [a, b] sur [f(a), f(b)]. Autrement dit, pour tout $y \in [f(a), f(b)]$, il existe un unique $x \in [a, b]$ tel que y = f(x).

— Soit $f: [a, b] \to \mathbb{R}$ (où $a, b \in \overline{\mathbb{R}}$ et a < b) une fonction continue, strictement croissante. On pose

$$l_a := \lim_{x \to a} f(x)$$
 et $l_b := \lim_{x \to b} f(x)$.

Alors

$$f(|a,b|) = |l_a, l_b|.$$

De plus f réalise une bijection de]a, b[sur $]l_a, l_b[$. Autrement dit, pour tout $y \in]l_a, l_b[$, il existe un unique $x \in]a, b[$ tel que y = f(x).

Remarques

 \Rightarrow Ce théorème reste valide dans de nombreuses autres situations, par exemple lorsque f est strictement décroissante et que son domaine de définition est un intervalle semi-ouvert. Par exemple, si $a \in \mathbb{R}$ et $f: [a, +\infty[\to \mathbb{R}]$ est une

fonction continue, strictement décroissante, en posant

$$l := \lim_{x \to +\infty} f(x),$$

alors $f([a, +\infty[) =]l, f(a)]$ et f réalise une bijection de $[a, +\infty[$ sur]l, f(a)].

 \Rightarrow Ce théorème permet de calculer f(A) lorsque A est une réunion d'intervalles $A = I_1 \cup \cdots \cup I_n$ sur lesquels f est continue et strictement monotone. Il suffit pour cela de remarquer que

$$f(A) = f(I_1) \cup \cdots \cup f(I_n).$$

Proposition 3.3.8

Soit $f: I \to \mathbb{R}$ une fonction continue et strictement monotone sur l'intervalle I. D'après le théorème de la bijection, elle réalise une bijection de I sur l'intervalle J := f(I). De plus

- f^{-1} est strictement monotone, de même sens de variation que f.
- f^{-1} est continue.

3.3.3 Dérivabilité

Définition 3.3.9

Soit $f: \mathcal{D} \to \mathbb{R}$ et $x_0 \in \mathcal{D}$. On dit que f est dérivable en x_0 lorsque

$$\frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 . Dans ce cas, on note $f'(x_0)$ cette limite que l'on appelle nombre dérivé de f en x_0 . On dit que f est dérivable lorsqu'elle est dérivable en tout point de \mathcal{D} .

Remarques

- \Rightarrow Si f est dérivable en x_0 , la droite d'équation $y = f(x_0) + f'(x_0)(x x_0)$ est tangente au graphe de f en x_0 .
- ⇒ Lorsque

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} \pm \infty,$$

le graphe de f admet une tangente verticale en x_0 . Une telle fonction n'est pas dérivable en x_0 .

 \Rightarrow On dit qu'une fonction f est dérivable à gauche en x_0 lorsque l'expression

$$\frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 par la gauche. Si tel est le cas, cette limite est notée $f'_g(x_0)$. On définit de même la notion de dérivabilité à droite. Une fonction est dérivable en x_0 si et seulement si elle est dérivable à gauche et à droite en x_0 et que $f'_g(x_0) = f'_d(x_0)$.

 \Rightarrow Si f et g sont des fonctions telles qu'en x_0 , $f(x_0) = g(x_0)$, on ne peut rien en conclure sur $f'(x_0)$ et $g'(x_0)$. En particulier, il est absurde de dire que parce que $f(x_0) = 0$, on peut en déduire que $f'(x_0) = 0$. On dira qu'on peut dériver des identités, mais pas des égalités.

Proposition 3.3.10

Soit $f: \mathcal{D} \to \mathbb{R}$ et $x_0 \in \mathcal{D}$. Si f est dérivable en x_0 , alors elle est continue en x_0 .

Remarque

 \Rightarrow La réciproque de cette proposition est fausse comme le montre l'exemple de la fonction $x \mapsto |x|$ qui est continue en 0 mais qui n'est pas dérivable en 0.

Exercice 16

 \Rightarrow Donner une condition nécessaire et suffisante sur a et $b \in \mathbb{R}$ pour que la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} ax + b & \text{si } x < 0 \\ e^x & \text{si } x \geqslant 0. \end{cases}$$

soit dérivable en 0.

Définition 3.3.11

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction. On note \mathcal{D}' l'ensemble des $x_0 \in \mathcal{D}$ en lesquels f est dérivable. On définit la fonction dérivée de f, notée f' par

$$f': \mathcal{D}' \longrightarrow \mathbb{R}$$

 $x \longmapsto f'(x).$

Remarque

 \Rightarrow Les fonctions usuelles sont dérivables en tout point de leur ensemble de définition, excepté la fonction $x \mapsto |x|$ qui n'est pas dérivable en 0 et les fonctions $x \mapsto \sqrt[n]{x}$ qui ne sont pas dérivables en 0 pour $n \ge 2$.

\mathcal{D}	f(x)	$\mathcal{D}_{f'}$	f'(x)
R	$x^n (n \in \mathbb{N})$	\mathbb{R}	$\begin{cases} nx^{n-1} & \text{si } n \geqslant 1\\ 0 & \text{si } n = 0 \end{cases}$
\mathbb{R}^*	$x^n (n \in \mathbb{Z})$	\mathbb{R}^*	nx^{n-1}
\mathbb{R}_+^*	$x^{\alpha} (\alpha \in \mathbb{R})$	\mathbb{R}_+^*	nx^{n-1} $\alpha x^{\alpha-1}$
\mathbb{R}_{+}	$\sqrt[n]{x} = x^{\frac{1}{n}} (n \in \mathbb{N}^*)$	\mathbb{R}_+^*	$\frac{1}{n}x^{\frac{1}{n}-1}$
\mathbb{R}	e^x	\mathbb{R}	e^x
\mathbb{R}_+^*	$\ln x$	\mathbb{R}_+^*	$\frac{1}{x}$
\mathbb{R}^*	$\ln x $	\mathbb{R}^*	$\frac{1}{x}$
\mathbb{R}	$\cos x$	\mathbb{R}	$-\sin x$
\mathbb{R}	$\sin x$	\mathbb{R}	$\cos x$
$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$\tan x$	$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
$\mathbb{R} \setminus \pi \mathbb{Z}$	$\cot x$	$\mathbb{R}\setminus\pi\mathbb{Z}$	$-\left(1 + \cot^2 x\right) = -\frac{1}{\sin^2 x}$

Proposition 3.3.12: Théorèmes usuels

Soit $f: \mathcal{D} \to \mathbb{R}$ et $g: \mathcal{D} \to \mathbb{R}$ deux fonctions dérivables. Alors

— Quels que soient $\lambda, \mu \in \mathbb{R}$, la fonction $\lambda f + \mu g$ est dérivable et

$$\forall x \in \mathcal{D}, \quad (\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x)$$

— La fonction fg est dérivable et

$$\forall x \in \mathcal{D}, \quad (fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

— Si f ne s'annule pas sur \mathcal{D} , 1/f est dérivable et

$$\forall x \in \mathcal{D}, \quad \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)}.$$

— Plus généralement, si g ne s'annule pas sur \mathcal{D} , f/g est dérivable et

$$\forall x \in \mathcal{D}, \quad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

Proposition 3.3.13: Théorèmes usuels

Soit $f: \mathcal{D}_f \to \mathbb{R}$ et $g: \mathcal{D}_g \to \mathbb{R}$ deux fonctions telles que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. Si f et g sont dérivables, alors $g \circ f$ est dérivable et

$$\forall x \in \mathcal{D}_f, \quad (g \circ f)'(x) = f'(x)g'(f(x)).$$

Remarque

 \Rightarrow En particulier, si $f: \mathcal{D} \to \mathbb{R}$ est une fonction dérivable et $n \in \mathbb{N}$, la fonction g définie sur \mathcal{D} par

$$\forall x \in \mathcal{D}, \quad g(x) := f(x)^n$$

est dérivable et

$$\forall x \in \mathcal{D}, \quad g'(x) = nf'(x)f(x)^{n-1}.$$

- \Rightarrow Si $f(x) := a(x)/b(x)^{\alpha}$, il est bon d'écrire f(x) sous la forme $f(x) = a(x)b(x)^{-\alpha}$ avant de dériver f.
- ⇒ Attention, ce n'est pas parce que les théorèmes usuels ne peuvent pas s'appliquer en un point qu'on peut en conclure que la fonction n'y est pas dérivable.

Exercices 17

- ⇒ Montrer que la dérivée d'une fonction paire (resp. impaire, T-périodique) est impaire (resp. paire, T-périodique).
- ⇒ Étudier la dérivabilité et calculer les dérivées des fonctions d'expression

$$\frac{x+1}{\sqrt{x^2+1}}$$
, $(x^3+2x+1)e^{x^2}$, $\ln\sqrt{\frac{1+x}{1-x}}$.

 \Rightarrow Étudier la dérivablité et calculer la dérivée de la fonction définie sur $[0, \pi/2]$ par

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad f(x) \coloneqq \sqrt{1 - \cos x}.$$

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I, dérivable et strictement monotone. Elle réalise donc une bijection de I sur l'intervalle J := f(I). On pose

$$A := \{ x \in I \mid f'(x) = 0 \}.$$

Alors f^{-1} est dérivable en tout point de $J \setminus f(A)$ et

$$\forall y \in J \setminus f(A), \quad (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Dérivées successives 3.3.4

Définition 3.3.15

Si $f: \mathcal{D} \to \mathbb{R}$ est une fonction, on définit par récurrence la dérivée n-ième de f de la manière suivante

- On pose $f^{(0)} := f$.
- On pose $f^{(n)} = f$.

 Si $n \in \mathbb{N}$, on définit $f^{(n+1)}$ comme étant la dérivée de $f^{(n)}$.

Si $x_0 \in \mathcal{D}$, on dit que f est dérivable n fois en x_0 lorsque $f^{(n)}$ est définie en x_0 . On dit que f est dérivable nfois lorsqu'elle est dérivable n fois en tout point de son domaine de définition.

Soit $f: \mathcal{D} \to \mathbb{R}$ et $g: \mathcal{D} \to \mathbb{R}$ deux fonctions dérivables n fois.

— Soit $\lambda, \mu \in \mathbb{R}$. Alors $\lambda f + \mu g$ est dérivable n fois et

$$\forall x \in \mathcal{D}, \quad (\lambda f + \mu g)^{(n)}(x) = \lambda f^{(n)}(x) + \mu g^{(n)}(x).$$

- fg est dérivable n fois.
- Si g ne s'annule pas, alors f/g est dérivable n fois.

Soit $f: \mathcal{D}_f \to \mathbb{R}$ et $g: \mathcal{D}_g \to \mathbb{R}$ deux fonctions telles que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. Si f et g sont dérivables n fois, alors $g \circ f$ est dérivable n fois.

Définition 3.3.18

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{R}$ est de classe \mathcal{C}^1 lorsqu'elle est dérivable et que sa dérivée est continue.

Proposition 3.3.19

Soit $f: \mathcal{D} \to \mathbb{R}$ et $g: \mathcal{D} \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 .

- Soit $\lambda, \mu \in \mathbb{R}$. Alors $\lambda f + \mu g$ est de classe \mathcal{C}^1 .
- fg est de classe \mathcal{C}^1 .
- Si g ne s'annule pas, alors f/g est de classe \mathcal{C}^1 .

Proposition 3.3.20

La composée de deux fonctions de classe C^1 est de classe C^1 .

3.3.5 Dérivation et monotonie

Proposition 3.3.21

Soit f une fonction réelle, dérivable sur un intervalle I. Alors

— f est croissante si et seulement si

$$\forall x \in I, \quad f'(x) \geqslant 0.$$

$$\forall x \in I, \quad f'(x) \leqslant 0.$$

Remarque

 \Rightarrow Cette proposition est fausse lorsque le domaine de définition de f n'est pas un intervalle. Par exemple la fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$
$$x \longmapsto 1/x$$

n'est pas décroissante sur \mathbb{R}^* bien qu'elle soit dérivable et que sa dérivée soit négative. Cependant ses restrictions aux intervalles \mathbb{R}_+^* et \mathbb{R}_+^* sont toutes les deux décroissantes.

Exercice 18

⇒ Montrer que

$$\forall x \in [0, 1], \quad x \le \left(1 + \frac{x}{2}\right) \ln(1 + x).$$

Proposition 3.3.22

Soit f une fonction réelle, dérivable sur un intervalle I. Alors f est constante si et seulement si

$$\forall x \in I, \quad f'(x) = 0.$$

Remarque

 \Rightarrow Cette proposition est fausse lorsque le domaine de f n'est pas un intervalle.

Proposition 3.3.23

Soit f une fonction réelle, dérivable sur un intervalle I. Si

- $-\forall x \in I, \quad f'(x) \geqslant 0$
- Le nombre de points de I où f' s'annule est fini.

alors f est strictement croissante.

Remarques

- \Rightarrow La fonction $x \mapsto x^3$ est strictement croissante sur $\mathbb R$ bien qu'elle soit dérivable et que sa dérivée s'annule en 0.
- ⇒ Une fonction croissante qui n'est pas strictement croissante est constante sur un intervalle non trivial. Ces fonctions sont donc rares. Cependant, il est toujours plus délicat de montrer qu'une fonction est strictement croissante que croissante. Lorsqu'on a besoin de la stricte monotonie, il convient donc d'être particulièrement attentif. Inversement, il est inutile de prouver la stricte monotonie si seule la monotonie nous est utile.

Exercice 19

 \Rightarrow Combien de racines réelles possède le polynôme $P(x) := x^3 - 3x - 1$?

3.3.6 Dérivation des fonctions à valeurs dans $\mathbb C$

Définition 3.3.24

Soit $f: \mathcal{D} \to \mathbb{C}$ et $x_0 \in \mathcal{D}$. On dit que f est dérivable en x_0 lorsque Re(f) et Im(f) le sont. Si c'est le cas, on définit le nombre dérivé de f en x_0 par

$$f'(x_0) := \operatorname{Re}(f)'(x_0) + i\operatorname{Im}(f)'(x_0).$$

On dit que f est dérivable lorsque f est dérivable en tout point de \mathcal{D} .

Proposition 3.3.25: Théorèmes usuels

Soit $f:\mathcal{D}\to\mathbb{C}$ et $g:\mathcal{D}\to\mathbb{C}$ deux fonctions dérivables. Alors

— Quels que soient $\lambda, \mu \in \mathbb{C}$, la fonction $\lambda f + \mu g$ est dérivable et

$$\forall x \in \mathcal{D}, \quad (\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x).$$

— La fonction fg est dérivable et

$$\forall x \in \mathcal{D}, \quad (fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

— Si f ne s'annule pas sur \mathcal{D} , 1/f est dérivable et

$$\forall x \in \mathcal{D}, \quad \left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)}.$$

— Plus généralement, si g ne s'annule pas sur \mathcal{D} , f/g est dérivable et

$$\forall x \in \mathcal{D}, \quad \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

Proposition 3.3.26

Soit $f: \mathcal{D} \to \mathbb{C}$ une fonction dérivable. Alors la fonction g définie par

$$\forall x \in \mathcal{D}, \quad g(x) \coloneqq e^{f(x)}$$

est dérivable et

$$\forall x \in \mathcal{D}, \quad g'(x) = f'(x)e^{f(x)}.$$

Proposition 3.3.27

Soit f une fonction complexe, dérivable sur un intervalle I. Alors f est constante si et seulement si

$$\forall x \in I, \quad f'(x) = 0.$$

Remarque

 \Rightarrow On dit que'une fonction $f: \mathcal{D} \to \mathbb{C}$ est de classe \mathcal{C}^1 lorsque ses parties réelles et imaginaires le sont. Comme pour les fonctions à valeurs réelles, on montre qu'une combinaison linéaire, un produit, un quotient ainsi que l'exponentielle de fonctions de classe \mathcal{C}^1 sont de classe \mathcal{C}^1 .

3.4 Intégration, primitive

Dans la suite de ce chapitre, $\mathbb K$ désignera l'un des corps $\mathbb R$ ou $\mathbb C$.

3.4.1 Primitive

Définition 3.4.1

Soit $f: \mathcal{D} \to \mathbb{K}$. On appelle primitive de f toute fonction dérivable $F: \mathcal{D} \to \mathbb{K}$ telle que

$$\forall x \in \mathcal{D}, \quad F'(x) = f(x).$$

Proposition 3.4.2

Soit $f: I \to \mathbb{K}$ une fonction admettant une primitive F sur un intervalle I. Alors les primitives de f sont les fonctions $F_C: I \to \mathbb{K}$ définies sur I par

$$\forall x \in I, \quad F_C(x) := F(x) + C$$

où $C \in \mathbb{K}$.

Remarque

 \Rightarrow Si la fonction d'expression F(x) est une primitive de la fonction d'expression f(x), on écrira

$$\int f(x) \, \mathrm{d}x = F(x).$$

Il faudra rester vigilant avec cette notation. Par exemple

$$\int 1 \, \mathrm{d}x = x \quad \text{et} \quad \int 1 \, \mathrm{d}x = x + 1$$

mais $x \neq x + 1$. On ne l'utilisera donc que pour calculer des primitives et on s'abstiendra de toute lecture autre que de la gauche vers la droite. On s'abstiendra aussi de l'utiliser avec des inégalités.

3.4.2 Intégration et régularité

Proposition 3.4.3

Soit $f: I \to \mathbb{K}$ une fonction continue sur un intervalle I et $x_0 \in I$. On définit sur I la fonction F par

$$\forall x \in I, \quad F(x) \coloneqq \int_{x_0}^x f(t) \, \mathrm{d}t.$$

Alors F est de classe \mathcal{C}^1 et

$$\forall x \in I, \quad F'(x) = f(x).$$

En particulier, F est une primitive de f.

Proposition 3.4.4

Soit $f: I \to \mathbb{K}$ une fonction continue sur un intervalle I. Alors f admet une primitive. Plus précisément, pour tout $x_0 \in I$, il existe une unique primitive F de f s'annulant en x_0 . De plus

$$\forall x \in I, \quad F(x) = \int_{x_0}^x f(t) \, \mathrm{d}t.$$

Théorème 3.4.5: Théorème fondamental de l'analyse

Soit $f:I\to\mathbb{K}$ une fonction continue sur un intervalle I et $a,b\in I$. Alors, si F est une primitive de f

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

3.4.3 Intégration et inégalité

Proposition 3.4.6

Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions réelles continues et $a, b \in I$. On suppose que

$$a\leqslant b\quad\text{et}\quad\left[\forall x\in\left[a,b\right],\quad f(x)\leqslant g(x)\right].$$

Alors

$$\int_a^b f(x) \, \mathrm{d}x \leqslant \int_a^b g(x) \, \mathrm{d}x.$$

3.4.4 Intégration par parties, changement de variable

Proposition 3.4.7: Intégration par parties

Soit $f: I \to \mathbb{K}$ une fonction de classe C^1 et $g: I \to \mathbb{K}$ une fonction continue sur un intervalle I. Soit G une primitive de g. Alors, si $a, b \in I$

$$\int_{a}^{b} \underbrace{f(x)}_{\text{dérive}} \underbrace{g(x)}_{\text{intègre}} dx = \left[f(x)G(x)\right]_{a}^{b} - \int_{a}^{b} f'(x)G(x) dx.$$

Exercice 20

 \Rightarrow Pour tout $n \in \mathbb{N}$, on définit I_n par

$$I_n := \int_0^1 t^n \sqrt{1-t} \, \mathrm{d}t$$

Calculer I_0 et trouver une relation de récurrence entre I_n et I_{n+1} .

Remarque

 \Rightarrow Si f est dérivable et que G est une primitive de g, alors

$$\int \underbrace{f(x)}_{\text{dérive}} \underbrace{g(x)}_{\text{intègre}} dx = f(x)G(x) - \int f'(x)G(x) dx.$$

Proposition 3.4.8: Changement de variables

Soit $f: I \to \mathbb{K}$ une fonction continue sur un intervalle I. Soit J un intervalle, $\bar{x}: J \to I$ une fonction de classe \mathcal{C}^1 et $a_x, b_x \in I$ et $a_t, b_t \in J$ tels que

$$a_x = \bar{x}(a_t)$$
 et $b_x = \bar{x}(b_t)$.

Alors

$$\int_{a_t}^{b_t} f(\bar{x}(t)) \frac{d\bar{x}}{dt}(t) dt = \int_{a_x}^{b_x} f(x) dx.$$

Exercice 21

⇒ Calculer

$$\int_0^\pi \ln\left(1+\cos^2 x\right)\sin\left(2x\right)\,\mathrm{d}x$$

3.4.5 Calcul de primitive

Étant donnée une fonction f définie sur un intervalle à partir d'une expression en les fonctions usuelles, on cherche une primitive F de f. Puisque f est une expression en les fonctions usuelles, elle est en particulier continue, donc admet une primitive. Le problème du calcul de primitive est d'expliciter une telle fonction.

Il est d'abord essentiel de connaitre par cœur les primitives des fonctions usuelles.

\mathcal{D}	f(x)	F(x)
\mathbb{R}	$x^n (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1}$
\mathbb{R}^*	$x^n (n \in \mathbb{Z} \setminus \{-1\})$	$\frac{x^{n+1}}{n+1}$
\mathbb{R}^*	$\frac{1}{x}$	$\ln x $
\mathbb{R}	e^x	e^x
\mathbb{R}	$\cos x$	$\sin x$
\mathbb{R}	$\sin x$	$-\cos x$

Ensuite, il existe de nombreuses techniques à connaître pour calculer certaines primitives.

Polynômes

Le calcul d'une primitive d'une fonction polynôme se fait de manière immédiate

$$\int \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n\right) dx = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1}.$$

Polynômes-exponentielle

Le calcul d'une primitive d'une fonction polynôme-exponentielle, c'est-à-dire de

$$\int \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n\right) e^{cx} dx$$

se fait facilement par récurrence en effectuant une intégration par parties

$$\int \underbrace{\left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n\right)}_{\text{dérive}} \underbrace{e^{cx}}_{\text{intègre}} dx.$$

De cette manière, on abaisse le degré du polynôme. Il suffit de réitérer le procédé jusqu'à faire disparaitre le terme polynomial.

Exercice 22

$$\int (2x+3)e^x dx.$$

Polynômes-sinus/cosinus

On calcule de même toute primitive du produit d'une fonction polynôme et d'une fonction sinus ou cosinus.

$$\int x \cos x \, \mathrm{d}x.$$

Exponentielle-sinus/cosinus Pour calculer des primitives de la forme

$$\int e^{ax} \cos(bx) dx \quad \text{ou} \quad \int e^{ax} \sin(bx) dx,$$

on passe par l'exponentielle complexe. On fait de même si un polynôme est en facteur d'une telle expression.

$$\int e^{2x} \sin(3x) \, \mathrm{d}x.$$

Polynôme-logarithme

Le calcul d'une primitive d'une fonction polynôme-logarithme, c'est-à-dire de

$$\int \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n\right) \ln x \, \mathrm{d}x$$

se fait facilement par intégration par parties

$$\int \underbrace{(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n)}_{\text{intègre}} \underbrace{\ln x}_{\text{dérive}} dx.$$

 \Rightarrow Calculer

$$\int \ln x \, \mathrm{d}x$$

Polynômes en sin et cos

Pour le calcul de primitives de polynômes en sin et cos, c'est-à-dire de :

$$\int \sin^n x \cos^m x \, \mathrm{d}x \quad \text{où } n, m \in \mathbb{N}$$

on peut, lorsque n ou m est impair effectuer un changement de variable pour se ramener à un calcul de primitive de polynôme.

— Si m est impair, soit $m' \in \mathbb{N}$ tel que m = 2m' + 1. On effectue alors le changement de variable $t = \sin x$.

$$\int \sin^n x \cos^m x \, dx = \int \sin^n x \cos^{2m'+1} x \, dx$$
$$= \int \sin^n x \left(1 - \sin^2 x\right)^{m'} \cos x \, dx$$
$$= \int t^n \left(1 - t^2\right)^{m'} \, dt.$$

- Si n est impair, on effectue le changement de variable $t=\cos x.$
- Si n et m sont pairs, on effectue une linéarisation de l'expression.

Exercice 26

 \Rightarrow Calculer

$$\int \sin^2 x \cos^3 x \, dx, \qquad \int \cos^2 x \sin^5 x \, dx, \qquad \int \cos^2 x \sin^2 x \, dx.$$

78

3.5 Exercices

$Le\ corps\ ordonn\'e\ \mathbb{R}$

La relation d'ordre sur \mathbb{R}

Exercice 1 : Inégalités

1. Montrer que pour $a, b, c \in \mathbb{R}_+$

$$(a^2+1)(b^2+1)(c^2+1) \geqslant 8abc.$$

2. Montrer que pour $a, b \in \mathbb{R}$ tels que $0 < a \leq b$, on a

$$\frac{1}{8} \cdot \frac{(b-a)^2}{b} \leqslant \frac{a+b}{2} - \sqrt{ab} \leqslant \frac{1}{8} \cdot \frac{(b-a)^2}{a}.$$

3. Montrer que si $a, b, x, y \in \mathbb{R}_+^*$ sont tels que a+b=1, alors

$$\frac{a}{x} + \frac{b}{y} \geqslant \frac{1}{ax + by}.$$

Exercice 2: Puissances

1. Soit $n \in \mathbb{N}^*$ et $(x, y) \in \mathbb{R}^2_+$. Montrer que

$$(x+y)^{\frac{1}{n}} \leqslant x^{\frac{1}{n}} + y^{\frac{1}{n}}.$$

2. Soit $a \in \mathbb{R}_+$ et $n \in \mathbb{N}$. Montrer que $(1+a)^n \geqslant 1+na$.

3. Soit a et b deux nombres réels tels que $0 \le a \le b$ et $n \in \mathbb{N}^*$. Montrer que

$$n(b-a)a^{n-1} \leqslant b^n - a^n \leqslant n(b-a)b^{n-1}.$$

4. Soit $a,b,c \in [0,1]$. Montrer qu'au moins un des trois nombres réels

$$a(1-b), b(1-c), c(1-a)$$

est inférieur à $\frac{1}{4}$.

Exercice 3 : Système non linéaire

Soit x_1, \ldots, x_n des nombres réels tels que

$$\sum_{i=1}^{n} x_i = n$$
 et $\sum_{i=1}^{n} x_i^2 = n$.

Montrer que $x_i = 1$ pour tout $i \in [1, n]$.

Exercice 4 : Système non linéaire

On suppose que $(x, y, z, t) \in \mathbb{R}^{*4}$ vérifie le système

$$\begin{cases} x+y+z=t\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{t} \end{cases}$$

Établir que (x + y)(y + z)(z + x) = 0, et en déduire la forme générale des solutions du système ci-dessus.

$Valeur\ absolue$

Racine

Partie entière, approximation

Exercice 5: Rationnels et irrationnels

- 1. Soit a et b deux éléments de $\mathbb{R} \setminus \mathbb{Q}$. Peut-on affirmer que a+b (respectivement $a \times b$) appartient à $\mathbb{R} \setminus \mathbb{Q}$? Et si $a \in \mathbb{Q}$ et $b \in \mathbb{R} \setminus \mathbb{Q}$?
- 2. Montrer, en raisonnant par l'absurde, que $\sqrt{6} \sqrt{2} \sqrt{3}$ et $\sqrt{2} + \sqrt{3} + \sqrt{5}$ sont irrationnels.

3.5. EXERCICES 79

Exercice 6: Intersection d'une famille infinie

Déterminer

$$\cap_{n\in\mathbb{N}^*} \left[-\frac{1}{n}, \frac{1}{n} \right] \quad \text{et} \quad \cap_{n\in\mathbb{N}^*} \left] -\frac{1}{n}, \frac{1}{n} \right[.$$

Exercice 7: Autour de la partie entière

Soit x et y deux nombres réels et $n \in \mathbb{N}^*$.

1. Montrer que

$$|x+y| \geqslant |x| + |y|.$$

Y a-t-il des cas d'égalité ? D'inégalité stricte ?

2. Montrer que $\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$.

Exercice 8 : Calcul de somme

1. Montrer que

$$\forall x \in \mathbb{R}, \quad \lfloor x \rfloor + \lfloor -x \rfloor = \begin{cases} 0 & \text{si } x \in \mathbb{Z} \\ -1 & \text{sinon.} \end{cases}$$

2. En déduire que si $p, q \in \mathbb{N}^*$ sont premiers entre eux

$$\sum_{k=1}^{q-1} \left\lfloor k \cdot \frac{p}{q} \right\rfloor = \frac{(p-1)(q-1)}{2}$$

Intervalle

Fonction réelle d'une variable réelle

$D\'{e}finition$

Exercice 9: Bijection

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \frac{x}{\sqrt{x^2 + 1}}.$$

- 1. Montrer que f est impaire puis qu'elle réalise une bijection de $\mathbb R$ sur un intervalle J à préciser.
- 2. Déterminer f^{-1} , puis tracer les graphes de f et f^{-1} .

Sym'etries

Exercice 10 : Symétries de la bijection réciproque

Soit $f: \mathbb{R} \to \mathbb{R}$ impaire et bijective. Montrer que f^{-1} est impaire.

Exercice 11: Une fonction périodique étrange

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Montrer que l'ensemble des périodes de f est \mathbb{Q} . On a donc trouvé une fonction périodique qui n'admet pas de plus petite période strictement positive.

Monotonie

Exercice 12: Monotonie

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

Exercice 13: Monotonie et théorèmes usuels

Donner la monotonie (si possible sans dériver) des fonctions d'expressions

a.
$$e^{-1/x^2}$$
, **b.** e^{1/x^3} , **c.** $x \ln(\cos x) \text{ sur } \left[0, \frac{\pi}{2}\right[$,
d. $x \ln\left(1 - \frac{1}{x}\right) \text{ sur }]1, +\infty[$, **e.** $\sqrt[3]{x+1} - \sqrt[3]{x} \text{ sur } \mathbb{R}_+^*$,
f. $\sin\left(\left(e^{-x} - 1\right)\pi/2\right) \text{ sur } \mathbb{R}_+$.

Fonction majorée, minorée, bornée

Fonction continue, fonction dérivable

Continuité

Dérivabilité

Exercice 14: Bijection

Soit f la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) \coloneqq \frac{e^x}{e^x - 1}.$$

1. Montrer que f réalise une bijection de \mathbb{R}_+^* sur un intervalle J à préciser.

Dans la suite, on note $g: J \to \mathbb{R}_+^*$ la bijection réciproque de la corestriction de f à J.

- 2. Discuter de la monotonie de g, de sa continuité et sa dérivabilité. Expliciter la dérivée de g sur J.
- 3. Expliciter g(y) en résolvant directement l'équation f(x) = y et retrouver les propriétés établies à la question précédente.

Dérivation et monotonie

Exercice 15 : Études de variations

Étudier les variations des fonctions suivantes

$$x \mapsto \frac{\ln x}{x}$$
 et $x \mapsto \sin x - x + \frac{x^3}{6}$.

Dérivation des fonctions à valeurs dans $\mathbb C$

Intégration, primitive

Primitive

Exercice 16: Bijection

Soit f la fonction définie sur]-1,1[par

$$\forall x \in]-1,1[, f(x) \coloneqq \frac{1}{\sqrt{1-x^2}}.$$

Dans cet exercice, il est interdit d'utiliser la fonction Arcsin.

- 1. Montrer que f admet une unique primitive F s'annulant en 0.
- 2. Montrer que F(x) admet une limite $l \in \overline{\mathbb{R}}$ lorsque x tend vers 1.
- 3. Montrer que F est impaire.

On définit la fonction φ sur $]-\pi/2,\pi/2[$ par

$$\forall x \in]-\pi/2, \pi/2[, \quad \varphi(x) := F(\sin x).$$

4. En dérivant φ , montrer que

$$\forall x \in]-\pi/2, \pi/2[\,, \quad F(\sin x) = x.$$

5. En déduire la valeur de l.

3.5. EXERCICES 81

Intégration et régularité

Intégration et inégalité

Exercice 17: Étude d'une fonction définie par une intégrale

Soit g la fonction d'expression

$$g(x) := \int_0^{\frac{\pi}{2}} \frac{\mathrm{e}^t}{1 + x \sin t} \, \mathrm{d}t.$$

- 1. Montrer que g est définie sur $]-1, +\infty[$.
- 2. Montrer que g est décroissante.

Exercice 18: Sommes de Riemann de fonctions monotones

Soit f une fonction continue et croissante sur [0,1]. On définit la suite (u_n) par

$$\forall n \in \mathbb{N}^*, \quad u_n := \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

1. Montrer que pour tout $n \ge 1$, et pour tout $k \in [0, n-1]$, on a

$$\frac{1}{n}f\left(\frac{k}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) \, \mathrm{d}t \leqslant \frac{1}{n}f\left(\frac{k+1}{n}\right).$$

2. En déduire que pour tout entier $n \ge 1$

$$u_n - \frac{1}{n} (f(1) - f(0)) \le \int_0^1 f(t) dt \le u_n.$$

- 3. En déduire que la suite (u_n) converge vers $\int_0^1 f(t) dt$. En donner une interprétation géométrique.
- 4. Soit $\alpha \in \mathbb{R}_+^*$. On considère la suite (v_n) définie par

$$\forall n \in \mathbb{N}, \quad v_n \coloneqq \sum_{k=0}^n k^{\alpha}.$$

Montrer que

$$v_n \underset{n \to +\infty}{\sim} \frac{n^{\alpha+1}}{\alpha+1}$$

c'est-à-dire que la suite de terme général

$$v_n \frac{\alpha+1}{n^{\alpha+1}}$$

converge vers 1.

Intégration par parties, changement de variable

Exercice 19 : Intégrales de Wallis

Pour tout entier $n \in \mathbb{N}$, on définit I_n et J_n par

$$I_n := \int_0^{\frac{\pi}{2}} \sin^n t \, \mathrm{d}t \qquad J_n := \int_0^{\frac{\pi}{2}} \cos^n t \, \mathrm{d}t$$

- 1. Montrer que pour tout entier $n \in \mathbb{N}$, $I_n = J_n$.
- 2. Montrer que les suites (I_n) et (J_n) sont positives et décroissantes. Calculer I_0 et I_1 .
- 3. Montrer que pour tout entier $n \in \mathbb{N}$

$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

4. En déduire que pour tout entier $n \in \mathbb{N}$

$$I_n I_{n+1} = \frac{\pi}{2(n+1)}.$$

5. En déduire que

$$I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$$

c'est-à-dire que la suite de terme général $I_n\sqrt{\frac{2n}{\pi}}$ converge vers 1.

Exercice 20 : Intégrales

Pour tout $n \in \mathbb{N}$, on pose

$$I_n := \int_0^1 (1 - x^2)^n \, \mathrm{d}x.$$

- 1. Établir une relation de récurrence entre I_n et I_{n+1} .
- 2. Calculer I_n .
- 3. En déduire

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k}.$$

Calcul de primitive

Exercice 21: Calcul de primitives

Donner le domaine de définition et calculer les primitives suivantes

a.
$$\int (x^2 + x + 1) e^x dx$$
, **b.** $\int (x^2 - 1) \cos x dx$, **c.** $\int x^3 \ln x dx$,
d. $\int \sin^2 x \cos^3 x dx$, **e.** $\int \sin x \cos^2 x dx$, **f.** $\int \sin^2 x \cos^2 x dx$,
g. $\int \frac{x}{x^2 + 1} dx$, **h.** $\int \frac{1}{x \ln x} dx$, **i.** $\int \ln^n x dx$ (pour $n \in \mathbb{N}$).

Chapitre 4

Compléments d'algèbre

« The closer one looks, the more subtle and remarkable Gaussian elimination appears. »

— Nick Trefethen (1955–)

	4.1.1	Somme	
	4.1.2	Produit	
	4.1.3	Somme et produit doubles	
	4.1.4	Fonction polynôme	
4.2	Trigo	onométrie	
	4.2.1	Égalité modulaire	
	4.2.2	Formules de trigonométrie	
4.3	Récu	ırrence linéaire	
	4.3.1	Récurrence linéaire d'ordre 1	
	4.3.2	Récurrence linéaire d'ordre 2	
4.4	\mathbf{Syst}	ème linéaire	
	4.4.1	Système linéaire à q équations et p inconnues	
	4.4.2	Interprétation géométrique lorsque $p=2$ ou $p=3$	
4.5	Exer	cices	1

4.1 Somme et produit, fonction polynôme

4.1.1 Somme

Définition 4.1.1

Soit $m, n \in \mathbb{Z}$ tels que $m \leq n$ et $u_m, u_{m+1}, \dots, u_{n-1}, u_n \in \mathbb{C}$. On définit

$$\sum_{k=m}^{n} u_{k} := u_{m} + u_{m+1} + \dots + u_{n-1} + u_{n}.$$

Remarque

 \Rightarrow Lorsque n=m-1, la convention est de poser $\sum_{k=m}^n u_k \coloneqq 0$. Cette convention permet d'écrire

$$\forall n \geqslant m, \quad \sum_{k=m}^{n} u_k = u_n + \sum_{k=m}^{n-1} u_k.$$

 \Rightarrow Si $m, n \in \mathbb{Z}$ sont tels que $n \geqslant m-1$, alors $\operatorname{Card}(\llbracket m, n \rrbracket) = n-m+1$. En particulier, quel que soit $a \in \mathbb{C}$

$$\sum_{k=m}^{n} a = (n - m + 1) a.$$

Exercice 1

 \Rightarrow Écrire avec le symbole \sum les sommes suivantes, sachant que chacune d'elle est composée de n+1 termes.

$$-a_0 + a_1 - a_2 + a_3 + \cdots, \qquad a_1 + a_4 + a_7 + \cdots$$

$$a_0 + 2a_1 + 3a_2 + 4a_3 + \cdots$$
, $a_0 - 2a_1 + 4a_2 - 8a_3 + \cdots$

Proposition 4.1.2

Soit $m, n \in \mathbb{Z}$, $\lambda, \mu \in \mathbb{C}$ et $(u_k)_{k \in \mathbb{Z}}$, $(v_k)_{k \in \mathbb{Z}}$ deux suites d'éléments de \mathbb{C} . Alors

$$\sum_{k=m}^{n} (\lambda u_k + \mu v_k) = \lambda \sum_{k=m}^{n} u_k + \mu \sum_{k=m}^{n} v_k.$$

Proposition 4.1.3

— Soit $m, n \in \mathbb{Z}$ et $p \in \mathbb{Z}$. Alors

$$\sum_{k=m}^{n} u_k = \sum_{k=m-p}^{n-p} u_{k+p}.$$

— Soit $n \in \mathbb{N}$. Alors

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} u_{n-k}.$$

Remarques

 \Rightarrow En pratique, lorsque l'on souhaite faire la première transformation, on dit qu'on effectue le changement de variable $k \to k + p$.

$$\sum_{k=m}^{n} u_k = \ll \sum_{k=m}^{k=n} u_k = \sum_{k+p=m}^{k+p=n} u_{k+p} = \sum_{k=m-p}^{k=n-p} u_{k+p} \gg = \sum_{k=m-p}^{n-p} u_{k+p}.$$

Le seconde transformation se fait de manière similaire, en utilisant cette fois la convention que si les bornes ne sont pas « dans le bon sens », on les échange; on dit dans ce cas qu'on fait le changement de variable $k \to n - k$.

$$\sum_{k=0}^{n} u_k = \left(\sum_{k=0}^{k=n} u_k = \sum_{n-k=0}^{n-k=n} u_{n-k} = \sum_{k=0}^{k=0} u_{n-k} = \sum_{k=0}^{k=n} u_{n-k} \right) = \sum_{k=0}^{n} u_{n-k}.$$

 \Rightarrow Soit $(u_k)_{k\in\mathbb{Z}}$ une suite. Si $m,n\in\mathbb{Z}$ sont tels que $n\geqslant m-1$

$$\sum_{k=m}^{n} (u_{k+1} - u_k) = u_{n+1} - u_m.$$

On dit qu'une telle somme est télescopique.

Exercices 2

 \Rightarrow 1. Montrer qu'il existe $a, b \in \mathbb{R}$ tels que

$$\forall k \in \mathbb{N}^*, \quad \frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}.$$

2. Pour tout $n \in \mathbb{N}$, en déduire une expression simple de

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

 \Rightarrow Pour tout $n \in \mathbb{N}$, en effectuant le changement de variable $k \to k+1$, calculer

$$\sum_{k=0}^{n} k2^k$$

 \Rightarrow Soit $n \in \mathbb{N}^*$. En considérant les racines (2n+1)-ièmes de l'unité, montrer que

$$\sum_{k=1}^{n} \cos\left(\frac{2k\pi}{2n+1}\right) = -\frac{1}{2}.$$

Définition 4.1.4

Soir $r \in \mathbb{C}$. Une suite (u_n) est dite en progression arithmétique de raison r lorsque

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r.$$

On a alors, pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$.

Proposition 4.1.5

Soit (u_n) une suite en progression arithmétique et $m, n \in \mathbb{Z}$ tels que $n \ge m-1$. Alors

$$\sum_{k=m}^{n} u_{k} = \frac{u_{m} + u_{n}}{2} \cdot (n - m + 1)$$

$$= \frac{\text{premier terme} + \text{dernier terme}}{2} \cdot (\text{nombre de termes}).$$

Proposition 4.1.6

Soit $n \in \mathbb{N}$. Alors

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \quad \text{et} \quad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Définition 4.1.7

Soit $q \in \mathbb{C}$. Une suite (u_n) est dite en progression géométrique de raison q lorsque

$$\forall n \in \mathbb{N}, \quad u_{n+1} = qu_n.$$

On a alors, pour tout $n \in \mathbb{N}$, $u_n = q^n u_0$.

Proposition 4.1.8

Soit (u_n) une suite en progression géométrique dont la raison $q \in \mathbb{C}$ est différente de 1 et $m, n \in \mathbb{Z}$ tels que $m \leq n$. Alors

$$\sum_{k=m}^{n} u_k = \frac{u_m - u_{n+1}}{1 - q}$$

$$= \frac{\text{premier terme - terme suivant}}{1 - q}.$$

Exercices 3

⇒ Montrer que la suite de terme général

$$\sum_{k=0}^{n} \frac{1}{2^k}$$

est convergente.

 \Rightarrow Calculer, pour tout $x \in \mathbb{R} \setminus \{1\}$

$$\sum_{k=0}^{n} kx^{k}.$$

Proposition 4.1.9

Soit $n \in \mathbb{N}$. Alors

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} u_{2k} + \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} u_{2k+1}$$

Exercice 4

⇒ Calculer la somme

$$\sum_{k=1}^{2n} (-1)^k k.$$

4.1.2 Produit

Définition 4.1.10

Soit $m, n \in \mathbb{Z}$ tels que $m \leq n$ et $u_m, u_{m+1}, \dots, u_{n-1}, u_n \in \mathbb{C}$. On définit

$$\prod_{k=m}^{n} u_k \coloneqq u_m \cdot u_{m+1} \cdots u_{n-1} \cdot u_n.$$

Remarques

 \Rightarrow Lorsque n=m-1, la convention est de poser $\prod_{k=m}^n u_k \coloneqq 1$. Cette convention permet d'écrire

$$\forall n \geqslant m, \quad \prod_{k=m}^{n} u_k = u_n \prod_{k=m}^{n-1} u_k.$$

 \Rightarrow Si $m, n \in \mathbb{Z}$ sont tels que $n \geqslant m-1$. Alors, quel que soit $a \in \mathbb{C}$

$$\prod_{k=m}^{n} a = a^{n-m+1}.$$

 \Rightarrow Pour tout $n \in \mathbb{N}$

$$n! = \prod_{k=1}^{n} k.$$

Exercice 5

⇒ Exprimer, à l'aide de factorielles, les produits

$$\prod_{k=1}^{n} (2k)$$
 et $\prod_{k=0}^{n} (2k+1)$.

Proposition 4.1.11

Soit $m, n \in \mathbb{Z}$ et $(u_k)_{k \in \mathbb{Z}}, (v_k)_{k \in \mathbb{Z}}$ deux suites d'éléments de \mathbb{C} . Alors

$$\prod_{k=m}^n u_k v_k = \left(\prod_{k=m}^n u_k\right) \left(\prod_{k=m}^n v_k\right).$$

4.1.3 Somme et produit doubles

On parle de somme double lorsqu'il y a deux indices. Pour sommer les éléments $u_{i,j}$ d'un tableau à n lignes et m colonnes, on peut procéder d'au moins deux manières : une sommation en lignes ou en colonnes. Évidemment, le résultat est le même.

Proposition 4.1.12

Soit $m_1, n_1, m_2, n_2 \in \mathbb{Z}$ et $(u_{i,j})$ une famille d'éléments de \mathbb{C} . Alors

$$\sum_{i=m_1}^{n_1} \sum_{j=m_2}^{n_2} u_{i,j} = \sum_{j=m_2}^{n_2} \sum_{i=m_1}^{n_1} u_{i,j}.$$

Remarque

⇒ Cette somme est parfois notée

$$\sum_{\substack{m_1\leqslant i\leqslant n_1\\m_2\leqslant j\leqslant n_2}}u_{i,j}\quad\text{ou}\quad \sum_{(i,j)\in \llbracket m_1,n_1\rrbracket\times \llbracket m_2,n_2\rrbracket}u_{i,j}.$$

Exercices 6

⇒ Calculer

$$\sum_{\substack{0\leqslant i\leqslant n\\0\leqslant j\leqslant n}}ij \quad \text{et} \quad \sum_{\substack{0\leqslant i\leqslant n\\0\leqslant j\leqslant n}}(i+j).$$

⇒ Calculer

$$\sum_{\substack{0 \leqslant i \leqslant n \\ 0 \leqslant j \leqslant n}} \binom{i}{j}$$

⇒ Calculer

$$\sum_{k=1}^{n} k2^k$$

en remarquant astucieusement que $k = \sum_{i=1}^{k} 1$.

Proposition 4.1.13

Soit $m_1, n_1, m_2, n_2 \in \mathbb{Z}$ et $(u_k)_{k \in \mathbb{Z}}, (v_k)_{k \in \mathbb{Z}}$ deux suites d'éléments de \mathbb{C} . Alors

$$\left(\sum_{i=m_1}^{n_1} u_i\right) \left(\sum_{j=m_2}^{n_2} v_j\right) = \sum_{i=m_1}^{n_1} \sum_{j=m_2}^{n_2} u_i v_j.$$

Exercices 7

⇒ Calculer

$$\sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} |i - j|.$$

⇒ Calculer

$$\sum_{k=1}^{n} \sum_{s=0}^{n-k} \frac{k}{s+k}.$$

4.1.4 Fonction polynôme

Dans la suite de ce chapitre, $\mathbb K$ désigne $\mathbb Q$, $\mathbb R$ ou $\mathbb C$.

Définition 4.1.14

On appelle fonction polynôme à coefficients dans \mathbb{K} toute fonction $P : \mathbb{K} \to \mathbb{K}$ telle qu'il existe $a_0, \dots, a_n \in \mathbb{K}$ tels que

$$\forall z \in \mathbb{K}, \quad P(z) := a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n.$$

L'ensemble des fonctions polynôme à coefficients dans \mathbb{K} est noté $\mathcal{P}(\mathbb{K}, \mathbb{K})$.

Remarque

 \Rightarrow On dit qu'une fonction polynôme $P \in \mathcal{P}(\mathbb{K}, \mathbb{K})$ est de $degré\ n \in \mathbb{N}$ lorsqu'il existe $a_0, \dots, a_n \in \mathbb{K}$ tels que $a_n \neq 0$ et

$$\forall z \in \mathbb{K}, \quad P(z) \coloneqq a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n.$$

Exercice 8

 \Rightarrow 1. Montrer que pour tout $n \in [0,3]$, il existe une fonction polynôme P_n de degré n telle que

$$\forall x \in \mathbb{R}, \quad \cos(nx) = P_n(\cos x).$$

2. Généraliser ce résultat pour $n \in \mathbb{N}$.

Définition 4.1.15

Si $P \in \mathcal{P}(\mathbb{K}, \mathbb{K})$, on appelle racine de P tout élément $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Remarques

⇒ Le calcul des racines des fonctions polynôme de degré 2 se fait en utilisant le discriminant.

⇒ Il n'y a pas de méthode systématique pour trouver les racines des fonctions polynôme de degré supérieur. En effet, on peut montrer qu'il n'existe pas de formule générale permettant de calculer les racines des fonctions polynôme de degré 3 ou plus avec des radicaux réels. Et même si on s'autorise les racines n-ièmes de nombres complexes, il n'existe pas de formule générale permettant de déterminer les racines de fonctions polynôme de degré 5 ou plus. Cependant, il existe différentes techniques qui sont efficaces pour certaines fonctions polynôme.

Proposition 4.1.16

Soit $P \in \mathcal{P}(\mathbb{K}, \mathbb{K})$ et $\alpha \in \mathbb{K}$. Alors α est une racine de P si et seulement si il existe $Q \in \mathcal{P}(\mathbb{K}, \mathbb{K})$ tel que

$$\forall z \in \mathbb{K}, \quad P(z) = (z - \alpha)Q(z).$$

Remarques

 \Rightarrow La factorisation effective se fait par division euclidienne. Par exemple, si $P(z) := z^3 + 3z^2 + 3z + 2$, on remarque que P(-2) = 0 donc P(z) se factorise par z + 2 et la division euclidienne s'effectue de la manière suivante.

donc $z^3 + 3z^2 + 3z + 2 = (z + 2)(z^2 + z + 1)$. Puisque les racines de $Q(z) := z^2 + z + 1$ sont j et j², on en déduit que les racines de P sont -2, j et j².

 \Rightarrow Si P est une fonction polynôme à coefficients entiers, il existe une technique efficace pour déterminer rapidement ses racines rationnelles. Soit $a_0, \ldots, a_n \in \mathbb{Z}$ tels que $P(z) \coloneqq a_n z^n + \cdots + a_1 z + a_0$. Si r est une racine rationnelle de P, il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ premiers entre eux tels que r = p/q. Puisque P(r) = 0, on en déduit que

$$a_n \left(\frac{p}{q}\right)^n + \dots + a_1 \cdot \frac{p}{q} + a_0 = 0.$$

En multipliant par q^n , on obtient

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0.$$

On en déduit que

$$a_n p^n = -q \left(a_{n-1} p^{n-1} + \dots + a_1 p q^{n-2} + a_0 q^{n-1} \right)$$

et donc que q divise a_np^n . Or q et p sont premiers entre eux donc q et p^n sont premiers entre eux. D'après le lemme de Gauss, on en déduit que q divise a_n . De même, on montre que p divise a_0 . Comme il existe un nombre fini de diviseurs d'un entier non nul, les racines rationnelles sont donc à chercher parmi un nombre fini d'éléments. Par exemple, si $P(z) := 3z^3 + 5z^2 + 5z + 2$, et si p/q est une racine rationnelle mise sous forme irréductible de P, alors p divise 2 et q divise 3. Donc $p \in \{-2, -1, 1, 2\}$ et $q \in \{1, 3\}$. Les racines rationnelles éventuelles de P sont donc parmi $\{-2, -1, 1, 2, -2/3, -1/3, 1/3, 2/3\}$. Si on teste tous ces rationnels, on se rend compte que -2/3 est une racine de P. P(z) se factorise donc par 3z + 2 et une division euclidienne nous donne $P(z) = (3z + 2)(z^2 + z + 1)$. Les racines de P sont donc -2/3, p et p.

 \Rightarrow D'autres techniques permettent de trouver les racines d'une fonction polynôme de degré $n \geqslant 3$. Par exemple, pour certaines fonctions polynôme, ramener la recherche de leurs racines à la recherche des racines n-ièmes d'un nombre complexe.

Proposition 4.1.17

Une fonction polynôme $P \in \mathcal{P}(\mathbb{K}, \mathbb{K})$ de degré $n \in \mathbb{N}$ admet au plus n racines.

Remarques

 \Rightarrow Soit $P \in \mathcal{P}(\mathbb{K}, \mathbb{K})$ une fonction polynôme et $a_0, \ldots, a_n \in \mathbb{K}$ tels que

$$\forall z \in \mathbb{K}$$
. $P(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n$.

Si P admet au moins n+1 racines, alors $a_0=a_1=\cdots=a_n=0$.

4.2. TRIGONOMÉTRIE 89

 \Rightarrow Soit $a_0, \ldots, a_n, b_0, \ldots, b_n \in \mathbb{K}$ et R une partie de \mathbb{K} telle que

$$\forall z \in R, \quad a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = b_n z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0.$$

Si R possède au moins n+1 éléments (en particulier si R est infini), alors $a_n=b_n,\ldots,a_0=b_0$.

 \Rightarrow Si P est une fonction polynôme non nulle, il existe un unique $n \in \mathbb{N}$ et une unique famille $(a_0, \dots, a_n) \in \mathbb{K}^{n+1}$ tels que $a_n \neq 0$ et

$$\forall z \in \mathbb{K}, \quad P(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n.$$

On dit que n est le degré de P et que a_0, \ldots, a_n sont ses coefficients.

4.2 Trigonométrie

4.2.1 Égalité modulaire

Définition 4.2.1

Soit $m \in \mathbb{R}_+^*$ et $a, b \in \mathbb{R}$. On dit que a est congru à b modulo m et on note

$$a \equiv b \ [m]$$

lorsqu'il existe $k \in \mathbb{Z}$ tel que a = b + km.

Exercice 9

 \Rightarrow Soit $a, b \in \mathbb{R}$. Quel est le lien logique entre

$$\langle a \equiv b \ [2\pi] \rangle$$
 et $\langle a \equiv b \ [\pi] \rangle$?

Proposition 4.2.2

— Soit $m \in \mathbb{R}_+^*$ et $a_1, a_2, b_1, b_2 \in \mathbb{R}$ tels que

$$a_1 \equiv b_1 \ [m]$$
 et $a_2 \equiv b_2 \ [m]$.

Alors, quels que soient $k_1, k_2 \in \mathbb{Z}$,

$$k_1a_1 + k_2a_2 \equiv k_1b_1 + k_2b_2$$
 [m].

— Soit $m \in \mathbb{R}_+^*$ et $a, b \in \mathbb{R}$ tels que

$$a \equiv b \ [m].$$

Alors, si $c \in \mathbb{R}_+^*$

$$ac \equiv bc \ [mc].$$

Remarques

- ⇒ On en déduit qu'on peut raisonner avec les « ≡ » de la même manière qu'avec « = » pour résoudre les équations.
 - On peut passer une expression d'un côté à l'autre du « ≡ » en changeant son signe.
 - On peut multiplier les deux côtés du signe « \equiv » par un même coefficient $c \in \mathbb{R}_+^*$. Il suffit juste de multiplier le modulo par c.

Ces deux transformations permettent de raisonner par équivalence.

 \Rightarrow Si $a \in \mathbb{R}$ et $m \in \mathbb{R}_+^*$, alors l'ensemble des $x \in \mathbb{R}$ tels que $x \equiv a$ [m] est noté

$$a + m\mathbb{Z} := \{a + km : k \in \mathbb{Z}\}.$$

4.2.2 Formules de trigonométrie

Définition 4.2.3

On définit le sinus, le cosinus, la tangente et la cotangente d'un angle x exprimé en radians sur le cercle trigonométrique de rayon 1 comme ci-dessus. En particulier $\tan x$ n'est défini que pour $x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$, cotan x n'est défini que pour $x \in \mathbb{R} \setminus \pi \mathbb{Z}$ et

$$\tan x = \frac{\sin x}{\cos x}$$
 et $\cot x = \frac{\cos x}{\sin x}$

Remarque

 \Rightarrow On rappelle les principales valeurs remarquables.

$$\, \Rightarrow \,$$
 Si $x \in \mathbb{R} \setminus \frac{\pi}{2}\mathbb{Z},$ alors

$$\cot x = \frac{1}{\tan x}.$$

4.2. TRIGONOMÉTRIE

91

Proposition 4.2.4

D'après Pythagore, on a

$$\cos^2 x + \sin^2 x = 1,$$
 $1 + \tan^2 x = \frac{1}{\cos^2 x},$ $1 + \cot^2 x = \frac{1}{\sin^2 x}.$

Proposition 4.2.5: Symétries

$$\cos(-x) = \cos x \qquad \cos(\pi + x) = -\cos x \qquad \cos(\pi - x) = -\cos x$$

$$\sin(-x) = -\sin x \qquad \sin(\pi + x) = -\sin x \qquad \sin(\pi - x) = \sin x$$

$$\tan(-x) = -\tan x \qquad \tan(\pi - x) = -\tan x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\tan\left(\frac{\pi}{2} + x\right) = -\cot x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

Remarques

- \Rightarrow Il est important de retrouver rapidement ces formules en dessinant le cercle trigonométrique et un « petit » angle x vérifiant $0 < x < \pi/4$.
- \Rightarrow Pour tout $n \in \mathbb{Z}$ et $x \in \mathbb{R}$

$$\cos(x + n\pi) = (-1)^n \cos x \qquad \text{et} \qquad \sin(x + n\pi) = (-1)^n \sin x.$$

En particulier $\cos(n\pi) = (-1)^n$ et $\sin(n\pi) = 0$.

 \Rightarrow Quels que soient $x, y \in \mathbb{R}$

$$\cos x = \cos y \iff [x \equiv y \ [2\pi] \quad \text{ou} \quad x \equiv -y \ [2\pi]]$$

$$\sin x = \sin y \iff [x \equiv y \ [2\pi] \quad \text{ou} \quad x \equiv \pi - y \ [2\pi]]$$

 \Rightarrow Quels que soient $x, y \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$

$$\tan x = \tan y \iff x \equiv y [\pi].$$

Exercices 10

⇒ Calculer

$$\cos\left(\frac{7\pi}{6}\right), \qquad \sin\left(\frac{2\pi}{3}\right), \qquad \tan\left(-\frac{3\pi}{4}\right).$$

ightharpoonup Résoudre l'équation $\sin x = \cos x$.

Proposition 4.2.6: Addition des arcs

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Remarque

 \Rightarrow Si $a, b \in \mathbb{R}$ ne sont pas tous les deux nuls, on pourra factoriser $a\cos x + b\sin x$ de la manière suivante.

$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$

Puisque

$$\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right)^2 = 1,$$

il existe $\theta_0 \in \mathbb{R}$ tel que $\cos \theta_0 = a/\sqrt{a^2 + b^2}$ et $\sin \theta_0 = b/\sqrt{a^2 + b^2}$. On a alors

$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\cos\theta_0\cos x + \sin\theta_0\sin x\right)$$
$$= \sqrt{a^2 + b^2} \cos\left(x - \theta_0\right).$$

Exercice 11

 \Rightarrow Résoudre l'équation $\sqrt{3}\cos x + \sin x = 1$.

Proposition 4.2.7: Angle double

$$\cos(2x) = \cos^2 x - \sin^2 x$$
$$= 2\cos^2 x - 1$$
$$= 1 - 2\sin^2 x$$
$$\sin(2x) = 2\cos x \sin x$$
$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cos^{2} x = \frac{1 + \cos(2x)}{2}$$
$$\sin^{2} x = \frac{1 - \cos(2x)}{2}$$

Exercices 12

- \Rightarrow Exprimer $\cos(\pi/8)$ à l'aide de radicaux.
- \Rightarrow Soit $a \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose

$$p_n \coloneqq \prod_{k=1}^n \cos\left(\frac{a}{2^k}\right).$$

Simplifier $p_n \sin(a/2^n)$ puis en déduire la limite de la suite (p_n) .

Proposition 4.2.8: Linéarisation

$$\cos a \cos b = \frac{1}{2} [\cos (a+b) + \cos (a-b)]$$

$$\sin a \sin b = \frac{1}{2} [\cos (a-b) - \cos (a+b)]$$

$$\cos a \sin b = \frac{1}{2} [\sin (a+b) - \sin (a-b)]$$

Exercice 13

 \Rightarrow Linéariser $\cos^3 x$, $\cos x \sin^2 x$, puis $\sin^4 x$.

Proposition 4.2.9: Factorisation

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\cos\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\tan p + \tan q = \frac{\sin(p+q)}{\cos p \cos q}$$

$$\tan p - \tan q = \frac{\sin(p-q)}{\cos p \cos q}$$

Exercice 14

 \Rightarrow En multipliant par $\sin(x/2)$, calculer

$$A := \sum_{k=0}^{n} \cos(kx)$$
 et $B := \sum_{k=0}^{n} \sin^2(kx)$.

Proposition 4.2.10

Soit $x \in \mathbb{R}$ tel que $x \not\equiv \pi$ [2 π]. Alors, en posant $t \coloneqq \tan(x/2)$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
 et $\sin x = \frac{2t}{1 + t^2}$.

Si de plus, $x \not\equiv \frac{\pi}{2} [\pi]$, alors

$$\tan x = \frac{2t}{1 - t^2}.$$

4.3 Récurrence linéaire

4.3.1 Récurrence linéaire d'ordre 1

Définition 4.3.1

Si (a_n) et (b_n) sont deux suites à valeurs dans \mathbb{K} , l'équation

$$\forall n \in \mathbb{N}, \quad u_{n+1} + a_n u_n = b_n$$

dont l'inconnue est la suite (u_n) est appelée récurrence linéaire d'ordre 1.

Proposition 4.3.2

Soit $a \in \mathbb{K}$. Alors, les solutions de la récurrence linéaire

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n$$

sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := \lambda a^n$$

où $\lambda \in \mathbb{K}$.

Proposition 4.3.3

Soit (a_n) et (b_n) deux suites à valeurs dans \mathbb{K} . Si (v_n) est une solution « particulière » de la récurrence linéaire

$$\forall n \in \mathbb{N}, \quad u_{n+1} + a_n u_n = b_n$$

alors, les solutions de cette récurrence linéaire sont les suites $(v_n + u_n)$ où (u_n) parcourt l'ensemble des solutions de la récurrence linéaire homogène associée

$$\forall n \in \mathbb{N}, \quad u_{n+1} + a_n u_n = 0.$$

Exercices 15

 \Rightarrow Soit $a \in \mathbb{R}$. Calculer le *n*-ième terme de la suite (u_n) définie par

$$u_0 \coloneqq a \text{ et } \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq \frac{3}{2}u_n + 5.$$

⇒ On considère la récurrence linéaire

$$(E) \quad \forall n \in \mathbb{N}, \quad u_{n+1} - 2u_n = n^2.$$

- 1. Déterminer une solution polynomiale de (E).
- 2. En déduire toutes les solutions.

Remarques

- \Rightarrow Méthode de la similitude : Si l'on cherche les suites vérifiant la récurrence linéaire $u_{n+1} = au_n + b$, on introduit la fonction $f : \mathbb{K} \to \mathbb{K}$ définie par $f(z) \coloneqq az + b$.
 - Si a=1, une récurrence immédiate nous montre que

$$\forall n \in \mathbb{N}, \quad u_n = u_0 + nb.$$

— Sinon, f admet un unique point fixe $\omega \in \mathbb{K}$ et, pour tout $z \in \mathbb{K}$, $f(z) = a(z - \omega) + \omega$. On a donc

$$\forall n \in \mathbb{N}, \quad u_{n+1} - \omega = a(u_n - \omega)$$

et une récurrence immédiate donne

$$\forall n \in \mathbb{N}, \quad u_n = a^n(u_0 - \omega) + \omega.$$

 \Rightarrow Méthode de la sommation télescopique : Si l'on cherche les suites vérifiant la récurrence linéaire $u_{n+1} = au_n + b_n$ où $a \in \mathbb{K}^*$, on commence par remarquer que

$$\forall k \in \mathbb{N}, \quad \frac{u_{k+1}}{a^{k+1}} - \frac{u_k}{a^k} = \frac{b_k}{a^{k+1}},$$

puis on somme cette relation pour k allant de 0 à n-1. On obtient une somme télescopique, puis

$$\forall n \in \mathbb{N}, \quad \frac{u_n}{a^n} - u_0 = \sum_{k=0}^{n-1} \frac{b_k}{a^{k+1}}$$

et donc

$$\forall n \in \mathbb{N}, \quad u_n = u_0 a^n + \sum_{k=0}^{n-1} b_k a^{n-(k+1)}.$$

4.3.2 Récurrence linéaire d'ordre 2

Proposition 4.3.4

Soit $a, b \in \mathbb{C}$. On souhaite trouver les suites (u_n) vérifiant

$$(E) \quad \forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n.$$

On résout sur \mathbb{C} l'équation caractéristique $z^2 = az + b$.

— Si cette équation admet deux racines distinctes r_1 et $r_2 \in \mathbb{C}$, alors les solutions de (E) sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := \lambda r_1^n + \mu r_2^n$$

où $\lambda, \mu \in \mathbb{C}$.

— Si cette équation admet une racine double $r \in \mathbb{C}^*$, alors les solutions de (E) sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := (\lambda + \mu n) \, r^n$$

où $\lambda, \mu \in \mathbb{C}$.

Exercices 16

 \Rightarrow Calculer le n-ième terme de la suite de Fibonacci définie par

$$F_0 := 1, \qquad F_1 := 1 \text{ et } \forall n \in \mathbb{N}, \quad F_{n+2} := F_{n+1} + F_n.$$

 \Rightarrow Soit $a, b \in \mathbb{R}_+^*$. Calculer le *n*-ième terme de la suite (u_n) définie par

$$u_0 \coloneqq a, \quad u_1 \coloneqq b \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+2} \coloneqq \frac{1}{u_{n+1}^2 u_n}.$$

Remarques

- ⇒ La suite de Fibonacci est ainsi nommée en hommage à Leonardo Pisano (Leonard de Pise, 1170–1240) appelé aussi Leonardo Fibonacci, qui avait publié cette suite en 1202. Il avait lu le travail de Al-Khwarizmi (780–850), un mathématicien Persan. Le livre de Fibonacci contient le problème suivant. Combien de couples de lapins peuvent naître d'un couple de lapin en un an? Pour résoudre ce problème, on sait que :
 - Jusqu'au premier mois inclus, il n'y a qu'un couple de lapins.
 - Chaque couple de lapin donne naissance à un couple tous les mois.
 - Chaque jeune couple devient fertile à l'âge d'un mois.

Avant le travail de Fibonacci, la suite (F_n) a déjà été étudiée par les Indiens qui se demandaient combien de rythmes de n temps il était possible de faire avec des noires et des blanches.

⇒ Tout comme pour les récurrences linéaires d'ordre 1, afin de résoudre une récurrence linéaire de la forme

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n + c_n,$$

il suffit d'en trouver une solution particulière (v_n) et d'y ajouter les solutions de la récurrence linéaire homogène associée $u_{n+2} = au_{n+1} + bu_n$.

Proposition 4.3.5

Soit $a, b \in \mathbb{R}$. On souhaite trouver les suites (u_n) vérifiant

$$(E) \quad \forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n.$$

On résout sur \mathbb{C} l'équation caractéristique $z^2 = az + b$.

— Si cette équation admet deux racines réelles distinctes r_1 et r_2 , alors les solutions de (E) sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := \lambda r_1^n + \mu r_2^n$$

où $\lambda, \mu \in \mathbb{R}$.

— Si cette équation admet une racine double $r \in \mathbb{R}^*$, alors les solutions de (E) sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := (\lambda + \mu n) r^n$$

où $\lambda, \mu \in \mathbb{R}$.

— Si cette équation admet deux racines complexes conjuguées $re^{i\omega}$ et $re^{-i\omega}$, alors les solutions de (E) sont les suites (u_n) définies par

$$\forall n \in \mathbb{N}, \quad u_n := \left[\lambda \cos(\omega n) + \mu \sin(\omega n)\right] r^n$$

où $\lambda, \mu \in \mathbb{R}$.

Remarque

 \Rightarrow Dans le cas où l'équation caractéristique admet deux racines complexes conjuguées, les solutions de (E) peuvent s'écrire sous la forme

$$\forall n \in \mathbb{N}, \quad u_n := \lambda \sin(\omega n - \varphi) r^n$$

où $\lambda, \varphi \in \mathbb{R}$. Lors de la recherche effective de tels coefficients, quitte à changer φ en $\varphi + \pi$, on impose souvent $\lambda \in \mathbb{R}_+$.

Exercices 17

 \Rightarrow Soit (u_n) la suite définie par

$$u_0 \coloneqq 1$$
, $u_1 \coloneqq 0$, et $\forall n \in \mathbb{N}$, $u_{n+2} \coloneqq 2u_{n+1} - 4u_n$.

Déterminer les $n \in \mathbb{N}$ pour lesquels $u_n = 0$.

 \Rightarrow Soit $\alpha \in \mathbb{R}$. Calculer le *n*-ième terme de la suite (u_n) définie par

$$u_0, u_1 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}$, $u_{n+2} := 2\cos(\alpha) u_{n+1} - u_n$.

4.4 Système linéaire

4.4.1 Système linéaire à q équations et p inconnues

Définition 4.4.1

On appelle $système\ linéaire$ à q équations et p inconnues tout système d'équations du type

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = y_1 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = y_q \end{cases}$$

où $a_{1,1}, \ldots, a_{q,p}, y_1, \ldots, y_q \in \mathbb{K}$ et $x_1, \ldots, x_p \in \mathbb{K}$ sont les inconnues. On dit que le système est *compatible* lorsqu'il admet au moins une solution. On dit qu'il est *incompatible* sinon.

Remarques

- ⇒ Pour des raisons de lisibilité, on veillera à toujours placer les inconnues les unes en dessous des autres.
- \Rightarrow L'ensemble des solutions est l'ensemble \mathcal{S} des $(x_1,\ldots,x_p)\in\mathbb{K}^p$ solution du système.

Exercice 18

⇒ Résoudre le système suivant par substitution, puis en utilisant la méthode du pivot de Gauss.

$$\begin{cases} x - 2y = -4\\ 3x + y = 9. \end{cases}$$

Proposition 4.4.2

Les opérations suivantes, appelées opérations élémentaires, transforment un système linéaire en un système linéaire équivalent.

- Changer l'ordre des équations.
- Changer l'ordre des inconnues.
- Multiplier une équation par $\mu \in \mathbb{K}^*$.
- Ajouter λ fois (avec $\lambda \in \mathbb{K}$) une équation à l'une des équations suivantes.

Remarque

- ⇒ En pratique, afin d'expliciter les opérations que l'on vient d'effectuer, on utilisera les notations suivantes.
 - $L_i \leftrightarrow L_j$ signifie qu'on a échangé les lignes i et j.
 - $L_i \leftarrow \mu L_i$ signifie qu'on a multiplié la ligne L_i par le coefficient μ non nul.
 - $L_i \leftarrow L_i + \lambda L_j$ signifie qu'on a ajouté λ fois la ligne L_j à la ligne L_i .

4.4. SYSTÈME LINÉAIRE 97

Exercice 19

⇒ Les opérations élémentaires suivantes conservent-elles l'équivalence?

 $-L_1 \leftarrow L_1 + L_2 + L_3.$ $-L_1 \leftarrow 2L_1 + L_2.$

 $- L_1 \leftarrow \alpha L_1 + \beta L_2 \text{ où } \alpha, \beta \in \mathbb{K}.$

 $-L_1 \leftarrow L_1 + L_2 \text{ et } L_2 \leftarrow L_1 - L_2.$

L'algorithme du pivot de Gauss permet de transformer, quitte à échanger les variables, un système linéaire à qéquations et p inconnues en un système linéaire équivalent de la forme

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + & \cdots & + a_{1,p}x_p = y_1 \\ a_{2,2}x_2 + & \cdots & + a_{2,p}x_p = y_2 \end{cases}$$

$$\vdots$$

$$a_{r,r}x_r + \cdots + a_{r,p}x_p = y_r$$

$$0 = y_{r+1}$$

$$\vdots = \vdots$$

$$0 = y_q$$

où $a_{1,1},\ldots,a_{r,r}$ sont tous non nuls. On dit d'un tel système qu'il est échelonné à pivots diagonaux.

- Le système est compatible si et seulement si $(y_{r+1}, \ldots, y_q) = (0, \ldots, 0)$.
- Le système admet une unique solution si et seulement si il est compatible et r=p.

Exercices 20

$$\begin{cases} 5x + y = 1 \\ 11x + 2y = 3, \end{cases} \begin{cases} 2x + 3y = 1 \\ 5x + 2y = 1. \end{cases}$$

 \Rightarrow Soit $\alpha \in \mathbb{R}$. Résoudre le système

$$\begin{cases} x + y - z = 1 \\ 2x + y + 2z = 2 \\ 3x + 2y + z = \alpha. \end{cases}$$

Remarques

- ⇒ Voici une présentation détaillée de l'algorithme du Pivot de Gauss.
 - On transforme le système en un système échelonné.

On commence par déterminer un coefficient $a_{i,j}$ non nul que l'on appelle pivot. Très souvent $a_{1,1}$ conviendra, mais il est encore plus pratique pour la suite des calculs si ce coefficient est ± 1 . En effectuant un échange de lignes et d'inconnues, on « remonte » ensuite ce coefficient en haut à gauche du système. On se retrouve donc dans le cas où $a_{1,1} \neq 0$. On utilise alors $a_{1,1}$ comme pivot pour éliminer l'inconnue x_1 des q-1 dernières lignes du système :

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = y_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p = y_2 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = y_q \end{cases} \iff \begin{cases} a'_{1,1}x_1 + a'_{1,2}x_2 + \dots + a'_{1,p}x_p = y'_1 \\ a'_{2,2}x_2 + \dots + a'_{1,p}x_p = y'_2 \\ \vdots \\ a'_{q,2}x_2 + \dots + a'_{q,p}x_p = y'_q \end{cases}$$

Pour cela, il suffit d'effectuer les opérations suivantes :

$$L_2 \leftarrow L_2 - \frac{a_{2,1}}{a_{1,1}} \cdot L_1, \qquad L_3 \leftarrow L_3 - \frac{a_{3,1}}{a_{1,1}} \cdot L_1, \qquad \dots \qquad L_q \leftarrow L_q - \frac{a_{q,1}}{a_{1,1}} \cdot L_1.$$

On recommence ensuite le même procédé sur les q-1 dernières équations du système, en ne touchant plus à la première ligne. On cherche d'abord un coefficient $a'_{i,j}$ non nul pour lequel $i \ge 2$ et $j \ge 2$. Si un tel coefficient existe, un échange de lignes et d'inconnues permet de se ramener au cas où $a'_{2,2} \neq 0$ et de continuer l'algorithme. On réitère le procédé jusqu'à ce qu'on ne soit plus capable de trouver de pivot. Le système est alors échelonné. Au cours du calcul, s'il apparaît l'équation 0 = 0, on l'élimine du système. Si au contraire il apparaît l'équation 0 = b avec $b \neq 0$, le système n'admet aucune solution et la résolution est terminée.

On introduit les paramètres t_k .

Dans le cas où le système admet au moins une solution, on aboutit à un système de la forme

$$\begin{cases} a''_{1,1}x_1 + a''_{1,2}x_2 + \cdots + a''_{1,p}x_p = y''_1 \\ a''_{2,2}x_2 + \cdots + a''_{2,p}x_p = y''_2 \\ \vdots \\ a''_{r,r}x_r + \cdots + a''_{r,p}x_p = y''_r \end{cases}$$

où les $a''_{1,1}, a''_{2,2}, \dots, a''_{r,r}$ sont tous non nuls. Afin de paramétrer l'ensemble des solutions, on remarque que ce dernier système est équivalent au système triangulaire

$$\exists t_{r+1}, \dots, t_p \in \mathbb{K}, \begin{cases} a_{1,1}''x_1 + a_{1,2}''x_2 + \dots + a_{1,p}''x_p = y_1'' \\ a_{2,2}''x_2 + \dots + a_{2,p}''x_p = y_2'' \\ \vdots \\ a_{r,r}''x_r + \dots + a_{r,p}''x_p = y_r'' \\ x_{r+1} & = t_{r+1} \\ \vdots \\ x_p = t_p. \end{cases}$$

En effet, si (x_1, \ldots, x_p) est solution de ce dernier système, on obtient le système précédent en ne gardant que les r premières lignes. Réciproquement, si (x_1, \ldots, x_p) est solution du système échelonné, on obtient ce dernier système en posant $t_{r+1} := x_{r+1}, \ldots, t_p := x_p$.

— On résout le système triangulaire.

Ce dernier système se résout simplement en remontant les calculs de la dernière ligne à la première, par substitution. On obtient ainsi le système équivalent

$$\exists t_{r+1}, \dots, t_p \in \mathbb{K}, \begin{cases} x_1 = c_1 + d_{1,r+1}t_{r+1} + \dots + d_{1,p}t_p \\ \vdots = \vdots & \vdots \\ x_r = c_r + d_{r,r+1}t_{r+1} + \dots + d_{r,p}t_p \\ x_{r+1} = & t_{r+1} \\ \vdots = & \ddots \\ x_p = & t_p \end{cases}$$

qui est un paramétrage de l'ensemble des solutions.

Remarquons que lorsque les calculs sont complexes, au lieu de résoudre directement le système triangulaire par substitution, on peut aussi effectuer un pivot de Gauss « à l'envers » en commençant par éliminer les x_p des p-1 premières équations avec la dernière ligne, puis en éliminant les x_{p-1} des p-2 premières équations avec l'avant-dernière ligne, etc.

- ⇒ Lorsqu'on applique l'algorithme du pivot de Gauss, on est libre de choisir le pivot que l'on souhaite. La seule contrainte est qu'il soit non nul. L'expérience montre cependant que certains choix sont plus judicieux que d'autres, car ils conduisent à des calculs plus simples.
 - Par exemple, un pivot égal à 1 est idéal car les opérations sur les lignes sont réduites à $L_i \leftarrow L_i a_{i,1}L_1$. On évite ainsi les divisions, ce qui offre de nombreux avantages. Par exemple, lorsque les coefficients du système sont entiers, ils le restent après réduction du système. Dans le même ordre d'idées, avant de choisir le pivot, lorsque les coefficients d'une même ligne sont des multiples d'un entier $a \in \mathbb{Z}^*$, il est bon de simplifier cette ligne par a.
 - Enfin, lorsque les coefficients du système dépendent d'un paramètre α , il est toujours préférable d'utiliser un pivot ne dépendant pas de α . Cette stratégie permet d'éviter de discuter les cas où ce terme peut s'annuler, et limite la propagation de ce paramètre à tous les autres coefficients du système.
- \Rightarrow On montrera plus tard que l'entier r est indépendant du choix des pivots. On l'appelle rang du système. Dans le cas où le système est compatible, en posant d := p r, on remarque que l'ensemble des solutions est paramétré par les d coefficients t_{r+1}, \ldots, t_p . En physique ou en sciences industrielles, on dit que l'ensemble des solutions admet d degrés de liberté. Par exemple, si d = 1, l'ensemble des solutions est une droite affine. Si d = 2, l'ensemble des solutions est un plan affine. Le fait que p = d + r est un résultat que nous retrouverons dans le cours d'algèbre linéaire sous le nom de théorème du rang.

Exercice 21

 \Rightarrow Discuter et résoudre les systèmes suivants, selon la valeur de $\alpha \in \mathbb{R}$:

$$\begin{cases}
-3a + \alpha b &= 0 \\
-3a - b + 2\alpha c &= 0 \\
-2b + c + 3\alpha d &= 0 \\
-c + 3d &= 0,
\end{cases}$$

$$\begin{cases}
a + b + c + d &= 3 \\
a + \alpha b + c - \alpha d &= \alpha + 2 \\
\alpha a - b - \alpha c - \alpha d &= -1.
\end{cases}$$

Remarques

 \Rightarrow Il est parfois pratique dans les calculs d'omettre le nom des variables. On utilise alors ce qu'on appelle une matrice augmentée.

$$\begin{cases} x + 2y = 1 \\ x + 3y = 4 \end{cases} \iff \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \end{pmatrix}$$

$$\underset{L_2 \leftarrow L_2 - L_1}{\Longleftrightarrow} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\underset{L_1 \leftarrow L_1 - 2L_2}{\Longleftrightarrow} \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \end{pmatrix}$$

$$\iff \begin{cases} x = -5 \\ y = 3. \end{cases}$$

Cette technique a l'avantage d'écrire le minimum nécessaire et de vous obliger à aligner les coefficients les uns au-dessus des autres. Son seul inconvénient est de rendre impossible le changement d'ordre des inconnues.

⇒ L'échange des inconnues étant impossible, il arrive que cette méthode nous empêche de réduire le système à un système échelonné à pivots diagonaux. On se contente donc d'un système échelonné, c'est-à-dire un système où chaque ligne commence par un nombre de zéros strictement supérieur à celui de la ligne précédente, comme dans l'exemple suivant

$$\begin{pmatrix} a_{1,1} & \star & \star & \star & \star & \star \\ 0 & 0 & a_{2,3} & \star & \star & \star \\ 0 & 0 & 0 & a_{3,4} & \star \end{pmatrix}$$

où $a_{1,1}, a_{2,3}$ et $a_{3,4}$ sont des coefficients non nuls qu'on appelle encore *pivots*. On réintroduit ensuite les inconnues, avant de les réordonner pour obtenir un système échelonné à pivots diagonaux et finir la résolution du système.

Définition 4.4.4

On considère un système linéaire à q équations et p inconnues.

(E)
$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = y_1 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = y_q \end{cases}$$

- On dit qu'il est homogène lorsque $(y_1, \ldots, y_q) = (0, \ldots, 0)$.
- On appelle système linéaire homogène associé à (E), le système obtenu en remplaçant les y_i par 0.

Remarque

 \Rightarrow Le p-uplet $(x_1, \ldots, x_p) = (0, \ldots, 0)$ est toujours solution d'un système homogène. On dit que c'est la solution triviale. Il est possible que ce soit la seule solution ou qu'il y en ait d'autres.

4.4.2 Interprétation géométrique lorsque p = 2 ou p = 3

Dans cette partie, nous allons donner une interprétation géométrique des résultats précédents aux cas p=2 et p=3. Commençons par le cas p=2. On munit le plan d'un repère orthonormé $\mathcal{R}=(O,\overrightarrow{e_1},\overrightarrow{e_2})$. On rappelle qu'un point M du plan est déterminé de manière unique par ses coordonnées $(x,y)\in\mathbb{R}^2$ définies par

$$\overrightarrow{OM} = x \overrightarrow{e_1} + y \overrightarrow{e_2}.$$

Proposition 4.4.5

- Soit $(a, b, c) \in \mathbb{R}^3$ tel que $(a, b) \neq (0, 0)$. Alors l'ensemble d'équation ax + by = c est une droite \mathcal{D} de vecteur normal \overrightarrow{u} de coordonnées (a, b).
- Réciproquement, soit \mathcal{D} une droite de vecteur normal \overrightarrow{u} de coordonnées (a,b). Alors, il existe $c \in \mathbb{R}$ tel que ax + by = c est une équation de \mathcal{D} .

Résoudre un système linéaire à q équations et 2 inconnues x et y dont chaque ligne contient un coefficient non nul revient donc à déterminer l'intersection de q droites du plan. Le cas où q = 2 est important.

- Si les droites \mathcal{D}_1 et \mathcal{D}_2 ne sont pas parallèles, alors elles se coupent en un unique point. Le système admet donc une unique solution.
- Si les droites \mathcal{D}_1 et \mathcal{D}_2 sont parallèles, deux cas se présentent.

- Si elles ne sont pas confondues, elles ne se coupent pas. Le système n'admet donc aucune solution.
- Si elles sont confondues, le système admet une infinité de solutions. Ce sont les coordonnées des points de cette droite.

Pour obtenir une interprétation géométrique du cas p=3, on munit l'espace d'un repère orthonormé

$$\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}).$$

On rappelle qu'on point M de l'espace est déterminé de manière unique par ses coordonnées $(x, y, z) \in \mathbb{R}^3$ définies par

$$\overrightarrow{OM} = x \overrightarrow{e_1} + y \overrightarrow{e_2} + z \overrightarrow{e_3}$$

Proposition 4.4.6

- Soit $(a, b, c, d) \in \mathbb{R}^4$ tel que $(a, b, c) \neq (0, 0, 0)$. Alors l'ensemble d'équation ax + by + cz = d est un plan \mathcal{P} de vecteur normal \overrightarrow{u} de coordonnées (a, b, c).
- Réciproquement, soit \mathcal{P} un plan de vecteur normal \overrightarrow{u} de coordonnées (a, b, c). Alors, il existe $d \in \mathbb{R}$ tel que ax + by + cz = d est une équation de \mathcal{P} .

Résoudre un système linéaire à q équations et 3 inconnues x, y et z dont chaque ligne contient un coefficient non nul revient donc à déterminer l'intersection de q plans dans l'espace. Le cas où q=3 est important.

- Si le rang du système est égal à 3, les 3 plans s'intersectent en un unique point.
- S'il est strictement inférieur à 3 et que le système n'est pas compatible, l'intersection des plans est vide. Sinon :
 - Soit le rang est égal à 2 et l'intersection des 3 plans est une droite.
 - Soit le rang est égal à 1 et l'intersection des 3 plans est un plan.

4.5. EXERCICES

101

4.5 Exercices

Somme et produit

Somme

Exercice 1: Sommes

Simplifier les sommes suivantes.

a.
$$\sum_{k=0}^{n} k(k-1)$$
, **b.** $\sum_{k=1}^{n} (2k-1)$, **c.** $\sum_{k=1}^{n} (-1)^k$
d. $\sum_{k=0}^{n} (k+n)$, **e.** $\sum_{k=1}^{n+1} \frac{2^k}{3^{2k-1}}$, **f.** $\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right)$.

Exercice 2 : Décomposition en éléments simples

1. Montrer qu'il existe $a, b \in \mathbb{R}$ tels que

$$\forall k \in \mathbb{N}, \quad \frac{1}{(3k+1)(3k+4)} = \frac{a}{3k+1} + \frac{b}{3k+4}.$$

2. En déduire

$$\sum_{k=0}^{n} \frac{1}{(3k+1)(3k+4)}.$$

Exercice 3: Sommes

1. Montrer que pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

2. Montrer que pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} (-1)^k k^2 = (-1)^n \frac{n(n+1)}{2}.$$

Exercice 4 : Récurrence

Montrer par récurrence que pour tout $n \in \mathbb{N}^*$

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}.$$

Exercice 5 : Somme lacunaire de coefficients binomiaux

En considérant $(1+1)^n$ et $(1-1)^n$ calculer, pour tout $n \in \mathbb{N}^*$, les sommes

$$A_n := \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ pair}}} \binom{n}{k}$$
 et $B_n := \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ impair}}} \binom{n}{k}$.

Exercice 6: Coefficients binomiaux

Montrer par récurrence que pour tout $p \in \mathbb{N}$ et $n \geqslant p$

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}.$$

Exercice 7: Coefficients binomiaux

Simplifier, pour tout $n \in \mathbb{N}$, la somme

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}.$$

Produit

Exercice 8: Produits

Simplifier les produits suivants en les exprimant le plus possible à l'aide de puissances et de factorielles.

a.
$$\prod_{k=1}^{n} \sqrt{k(k+1)}$$
, **b.** $\prod_{k=1}^{n} (-5)^{k^2-k}$, **c.** $\prod_{k=1}^{n} \frac{4^k}{k^2}$

d.
$$\prod_{k=0}^{n} (2k+1)$$
, **e.** $\prod_{k=1}^{n} (4k^2-1)$, **f.** $\prod_{p=0}^{n-1} \sum_{k=0}^{p} 2^{p!k}$.

Exercice 9: Produit

Soit $z \in \mathbb{C}$. Pour tout $n \in \mathbb{N}$, on pose

$$P_n := \prod_{k=0}^n \left(1 + z^{2^k}\right).$$

Calculer $(1-z)P_n$ et en déduire une expression simple de P_n .

Exercice 10: Majoration

1. (a) Montrer que

$$\forall k \geqslant 2, \quad 1 + \frac{1}{k^2} \leqslant \frac{k^2}{(k-1)(k+1)}.$$

(b) En déduire que

$$\forall n \in \mathbb{N}^*, \quad \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right) \leqslant 4.$$

2. Montrer que pour tout $n \in \mathbb{N}^*$

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k^3} \right) \leqslant 3 - \frac{1}{n}.$$

Exercice 11: Limite

1. Factoriser $k^3 - 1$ par k - 1 et $k^3 + 1$ par k + 1 pour tout $k \ge 2$.

2. En déduire, sans récurrence, que pour tout $n \ge 2$

$$\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1} = \frac{2}{3} \cdot \frac{n^2 + n + 1}{n(n+1)}.$$

3. En déduire la limite de la suite de terme général

$$u_n := \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}.$$

Somme et produit doubles

Exercice 12: Sommes

Simplifier les sommes suivantes.

$$\begin{aligned} \mathbf{a.} & \sum_{1\leqslant i\leqslant j\leqslant n} i, \qquad \mathbf{b.} & \sum_{1\leqslant i< j\leqslant n} j, \qquad \mathbf{c.} & \sum_{1\leqslant i,j\leqslant n} (i+j) \\ \mathbf{d.} & \sum_{1\leqslant i,j\leqslant n} x^{i+j}, \qquad \mathbf{e.} & \sum_{1\leqslant i\leqslant j\leqslant n} \frac{i}{j+1}, \qquad \mathbf{f.} & \sum_{1\leqslant i\leqslant j\leqslant n} (j-i) \\ \mathbf{g.} & \sum_{1\leqslant i\leqslant j\leqslant n} \frac{i^2}{j}, \qquad \mathbf{h.} & \sum_{1\leqslant i,j\leqslant n} (i+j)^2, \qquad \mathbf{i.} & \sum_{1\leqslant i,j\leqslant n} \max(i,j). \end{aligned}$$

103

Exercice 13 : Avec des racines n-ièmes

Soit $n \geqslant 2$ et $z \in \mathbb{C}$. On pose $\omega \coloneqq e^{i\frac{2\pi}{n}}$ et

$$S_n := \sum_{k=0}^{n-1} (z + \omega^k)^n.$$

Calculer S_n .

Exercice 14: Somme double

Soit $n \in \mathbb{N}$. Calculer

$$\sum_{\substack{0 \leqslant i,j \leqslant n \\ 0 \leqslant i+j \leqslant n}} 2^{i-j} \quad \text{et} \quad \sum_{\substack{(i,j) \in [\![0,n]\!]^2 \\ 0 \leqslant i+j \leqslant n}} \binom{n}{i+j}.$$

Exercice 15 : Somme de GAUSS

Soit $n \in \mathbb{N}$ un entier impair. On pose

$$\omega \coloneqq e^{\frac{2i\pi}{n}}$$
 et $S \coloneqq \sum_{k=0}^{n-1} \omega^{k^2}$.

1. Écrire $|S|^2$ comme une somme double, puis montrer que

$$|S|^2 = \sum_{k=0}^{n-1} \sum_{p=-k}^{n-k-1} \omega^{2pk+p^2}.$$

- 2. Soit $k \in [0, n-1]$.
 - (a) Montrer que la fonction

$$\begin{array}{cccc} \varphi: & \mathbb{Z} & \longrightarrow & \mathbb{C} \\ & p & \longmapsto & \omega^{2pk+p^2} \end{array}$$

est n-périodique.

(b) En déduire pour tout $k \in [0, n-1]$ une écriture simplifiée de

$$\sum_{p=-k}^{n-k-1} \omega^{2pk+p^2}.$$

3. Simplifier

$$\sum_{k=0}^{n-1} \omega^{2pk}$$

pour tout $p \in \mathbb{Z}$.

4. En déduire que $|S| = \sqrt{n}$.

Fonction polynôme

Exercice 16 : Polynôme à coefficients symétriques

1. Montrer que le changement de variable u := z + 1/z simplifie l'équation

$$z^4 - 5z^3 + 6z^2 - 5z + 1 = 0$$

en une équation du second degré en u.

- 2. En déduire l'ensemble de ses solutions sur \mathbb{C} .
- 3. Sur le même modèle, résoudre l'équation

$$z^4 + z^3 - 10z^2 - z + 1 = 0.$$

Exercice 17 : Simplification de racine

On pose

$$a\coloneqq\sqrt[5]{rac{5\sqrt{5}+11}{2}},\quad b\coloneqq\sqrt[5]{rac{5\sqrt{5}-11}{2}}\quad \mathrm{et}\quad x\coloneqq a-b.$$

On souhaite montrer que x = 1.

- 1. Calculer ab.
- 2. En déduire que x est racine de $A(t) := t^5 + 5t^3 + 5t 11$.
- 3. Montrer que 1 est la seule racine positive de A et conclure.

Exercice 18: Inéquation

Résoudre l'inéquation

$$4x + 2 \le \sqrt{7x^3 + 15x^2 + 11x + 3}$$

On commencera bien entendu par donner son domaine de définition.

Exercice 19: Coefficients binomiaux

Écrire la somme

$$\sum_{k=0}^{n} (1+z)^k$$

de deux manières différentes. En déduire

$$\sum_{k=j}^{n} \binom{k}{j}.$$

Exercice 20: Méthode de CARDAN

Soit $a, b, c \in \mathbb{C}$ et $Q(z) := z^3 + az^2 + bz + c$.

1. Pour quels $\alpha \in \mathbb{C}$ le polynôme $P(z) := Q(z + \alpha)$ n'a-t-il pas de coefficient en z^2 ?

On choisit un tel α et on définit $p,q\in\mathbb{C}$ tels que $P(z)=z^3-3pz+2q$.

2. (a) Soit $u \in \mathbb{C}^*$. Montrer que

$$u + \frac{p}{u}$$

est racine de P si et seulement si $w := u^3$ est racine d'un trinôme R que l'on déterminera.

- (b) On note w_1 et w_2 les racines complexes de R. Soit u_1 une racine cubique de w_1 . Montrer qu'il existe une unique racine cubique u_2 de w_2 telle que $u_1u_2 = p$.
- (c) Déterminer les racines de Q en fonction de α , u_1 , u_2 et j.
- 3. Déterminer les racines des polynômes

$$z^3 + 3z^2 + 6z + 2$$
, $z^3 - 3z - 1$.

C'est pour résoudre de telles équations, pour lesquelles P admet trois racines réelles, mais R n'en n'a pas, que Rafael Bombelli (1526–1572) a introduit les nombres complexes.

Exercice 21: Méthode de FERRARI

Soit $a, b, c, d \in \mathbb{C}$ et $P(z) := z^4 + az^3 + bz^2 + cz + d$.

1. Montrer qu'il existe un unique $\alpha \in \mathbb{C}$ tel que $Q(z) := P(z + \alpha)$ ne possède pas de terme en z^3 .

Pour la suite, α désignera cette valeur. Il existe donc $p,q,r\in\mathbb{C}$ tels que $Q(z)=z^4+pz^2+qz+r$.

2. Soit $v \in \mathbb{C}$. Montrer que

$$\forall z \in \mathbb{C}, \quad Q(z) = 0 \quad \Longleftrightarrow \quad \left(z^2 + \frac{v}{2}\right)^2 = \left(v - p\right)z^2 - qz + \left(\frac{v^2}{4} - r\right).$$

On pose alors $A(z) := (v - p) z^2 - qz + (v^2/4 - r)$.

3. Montrer que A admet une racine double si et seulement si v est racine d'un polynôme B de degré 3 que l'on déterminera.

4.5. EXERCICES

Pour la suite, on suppose que $P(z) := z^4 - 2z^3 + 3z^2 + 4zQ - 10$.

4. Montrer que B admet une racine évidente. En déduire les racines de P.

On a ainsi prouvé, dans les deux exercices précédents, que l'on pouvait calculer les racines des équations de degré 3 et 4 à l'aide de racines n-ièmes de nombres complexes. Ces résultats étaient connus dès le 16e siècle. NIELS ABEL (1802-1829), puis ÉVARISTE GALOIS (1811-1832), ont démontré qu'il n'était pas possible de résoudre l'équation générale de degré 5 en utilisant des racines n-ièmes de nombres complexes.

Exercice 22 : Principe du maximum pour les polynômes

Soit $P(z) := \sum_{k=0}^{n} a_k z^k$ une fonction polynôme à coefficients complexes de degré inférieur ou égal à n. On se donne un réel positif M tel que

$$\forall z \in \mathbb{U}, \quad |P(z)| \leqslant M.$$

1. On pose $\omega := \exp\left(i\frac{2\pi}{n+1}\right)$. Calculer

$$\sum_{j=0}^{n} P\left(w^{j}\right).$$

2. En déduire que $|P(0)| \leq M$.

Trigonométrie

Égalité modulaire

Formules de trigonométrie

Exercice 23: Inégalité

Montrer que pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$

$$|\sin(nx)| \leqslant n|\sin(x)|.$$

Exercice 24: Équations trigonométriques

Résoudre les équations suivantes d'inconnue x.

$$\mathbf{a.} \ \cos(3x) = \sin(x),$$

b.
$$\cos x + \sin x = 1 + \tan x$$
, **c.** $\sin x + \sin(2x) = 0$

$$\sin x + \sin(2x) = 0$$

105

d.
$$\tan(2x) = 3\tan x$$
,

d.
$$\tan(2x) = 3\tan x$$
, **e.** $2\sin x + \sin(3x) = 0$, **f.** $3\tan x = 2\cos x$

f.
$$3 \tan x = 2 \cos x$$

g.
$$\cos x = \sqrt{3} \sin x$$
.

g.
$$\cos x = \sqrt{3} \sin x$$
, **h.** $2 \cos(4x) + \sin x = \sqrt{3} \cos x$.

Exercice 25: Équations trigonométriques

1. Résoudre les équations

$$\cos(x) - \cos(2x) = \sin(3x), \qquad \cos(5x) + 2\cos(3x) + 3\cos(x) = 0$$

2. Résoudre l'équation

$$\cos(x) + \sin(x) = \tan\left(\frac{x}{2}\right)$$

en posant (soigneusement) $t := \tan(x/2)$.

Exercice 26: Calcul de somme

Pour tout $n \in \mathbb{N}^*$, calculer

$$\sum_{k=0}^{n-1} 3^k \sin^3 \left(\frac{\theta}{3^{k+1}} \right).$$

Exercice 27: Mon capitaine

Pour tout $n \in \mathbb{N}$, calculer

$$\sum_{k=0}^{n} k \binom{n}{k} \cos(k\theta).$$

Récurrence linéaire

Récurrence linéaire d'ordre 1

Exercice 28: Récurrences d'ordre 1

Déterminer une expression explicite des suites définies par

1.
$$u_0 := 0$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} := 2u_n + 1$.

2.
$$u_0 := 1$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} := 3 - \frac{u_n}{2}$.

3.
$$u_0 := 1$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} := 2u_n^2$.

Récurrence linéaire d'ordre 2

Exercice 29: Récurrences doubles

Déterminer les suites définies par

a.
$$a_0 := 0, \quad a_1 := -1 \quad \text{et} \quad \forall n \in \mathbb{N}, \quad a_{n+2} := 5a_{n+1} - 6a_n,$$

b. $b_0 := 1, \quad b_1 := 1 \quad \text{et} \quad \forall n \in \mathbb{N}, \quad b_{n+2} := -b_{n+1} - b_n,$

$$\mathbf{c.} \ c_0 \coloneqq 1, \quad c_1 \coloneqq -1 \quad \text{et} \quad \forall n \in \mathbb{N}, \quad c_{n+2} \coloneqq 4c_{n+1} - 4c_n + n.$$

Exercice 30 : Récurrence double

Déterminer une expression explicite de la suite (u_n) définie par

$$u_0 := 1, \qquad u_1 := 2 \qquad \text{et} \qquad \forall n \in \mathbb{N}, \quad u_{n+2} := \frac{u_{n+1}^6}{u_n^5}.$$

Exercice 31 : Récurrence double avec second membre polynomial

On dira qu'une suite réelle (u_n) est solution de (E) lorsque

$$\forall n \in \mathbb{N}, \quad u_{n+2} = 2u_{n+1} + 8u_n + 9n^2.$$

- 1. Montrer que (E) possède une solution de la forme (an^2+bn+c) où $a,b,c\in\mathbb{R}$.
- 2. En déduire une expression explicite de l'unique solution de (E) telle que $u_0 = 0$ et $u_1 = 1$.

Exercice 32: Équation fonctionnelle

Déterminer les fonctions $f: \mathbb{R}_+ \to \mathbb{R}_+$ telles que

$$\forall x \geqslant 0, \quad f(f(x)) = 6x - f(x).$$

Système linéaire

Système linéaire à q équations et p inconnues

Exercice 33 : Résolution de systèmes linéaires

1. Résoudre les systèmes linéaires suivants

$$\begin{cases} 2x & +y+z=1 \\ x & -y & =0 \\ 3x+5y+z=3, \end{cases} \qquad \begin{cases} 2x-y+2z=2 \\ x+y & +z=1 \\ x & +z=1. \end{cases}$$

2. Soit $a, b, c, d \in \mathbb{R}$. Résoudre le système linéaire

$$\begin{cases} x + y + z + t = a \\ x + 2y + 3z + 4t = b \\ x + 3y + 6z + 10t = c \\ x + 4y + 10z + 20t = d. \end{cases}$$

Exercice 34: Équation fonctionnelle

Déterminer les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R}_+^*, \quad f(x) + 3f\left(\frac{1}{x}\right) = x^2.$$

4.5. EXERCICES 107

Exercice 35 : Sytème de type Vandermonde

Soit a,b,c trois réels deux à deux distincts. Résoudre le système

$$\begin{cases} x + ay + a^2z = a^4 \\ x + by + b^2z = b^4 \\ x + cy + c^2z = c^4. \end{cases}$$

Exercice 36 : Résolution de systèmes linéaires

1. Soit $m \in \mathbb{R}$. Résoudre le système

$$\begin{cases} mx + y + z = 1\\ x + my + z = m\\ x + y + mz = m^2. \end{cases}$$

2. Soit $m, a, b, c \in \mathbb{R}$. On considère le système

$$\begin{cases}
-mx + (m-1)y + mz = a \\
(2m-1)x + (m-1)y - mz = b \\
-2x - 4y + 2mz = c.
\end{cases}$$

Calculer le rang du système en fonction de m. Le résoudre dans ces différents cas.

Exercice 37: Calcul de rang

Soit $m \in \mathbb{R}$. Résoudre et déterminer le rang du système linéaire

$$\begin{cases} x + y + z + t = 3 \\ x + my + z - mt = m + 2 \\ mx - y - mz - t = -1. \end{cases}$$

Exercice 38 : Somme lacunaire de coefficients binomiaux

On définit A, B et C par

$$A\coloneqq\sum_{\substack{k=0\\k\equiv0\,[3]}}^n\binom{n}{k},\qquad B\coloneqq\sum_{\substack{k=0\\k\equiv1\,[3]}}^n\binom{n}{k}\qquad\text{et}\qquad C\coloneqq\sum_{\substack{k=0\\k\equiv2\,[3]}}^n\binom{n}{k}.$$

- 1. Calculer A + B + C, $A + jB + j^2C$ et $A + j^2B + jC$.
- 2. En déduire A.
- 3. Sur le même modèle, étant donnés $b \in \mathbb{N}^*$ et $a \in [0, b-1]$, calculer

$$A = \sum_{\substack{k=0\\k\equiv a\,[b]}}^{n} \binom{n}{k}.$$

Interprétation géométrique lorsque p = 2 ou p = 3

Chapitre 5

Fonctions usuelles

« En mathématiques, on ne comprend pas les choses, on s'y habitue. »

— John Von Neumann (1903–1957)

« Le logarithme de John Napier, en réduisant leur travail, a doublé la vie des astronomes. »

— Pierre-Simon Laplace (1749–1827)

— Leonhard Euler (1707–1783)

5.1 Logarithme, exponentielle, puissance		
5.1.1	Logarithme népérien	
5.1.2	Exponentielle	
5.1.3	Logarithme et exponentielle en base a	
5.1.4	Fonction puissance	
5.1.5	Calcul de limite	
5.2 Fon	ctions trigonométriques directes et réciproques	
5.2.1	Fonctions trigonométriques directes	
5.2.2	Fonction Arcsin	
5.2.3	Fonction Arccos	
5.2.4	Fonction Arctan	
5.2.5	Formules de trigonométrie réciproque	
5.3 Fon	ctions trigonométriques hyperboliques	
5.4 Exercices		

5.1 Logarithme, exponentielle, puissance

5.1.1 Logarithme népérien

Définition 5.1.1

On appelle logarithme népérien et on note la l'unique primitive sur \mathbb{R}_+^* de la fonction $x\mapsto 1/x$ qui s'annule en 1.

$$\ln : \mathbb{R}_+^* \longrightarrow \mathbb{R} \\
x \longmapsto \int_1^x \frac{\mathrm{d}t}{t}$$

Remarque

⇒ Le nom ln est à la fois l'acronyme de logarithme naturel et de logarithme népérien (en hommage à John Napier, mathématicien Écossais, 1550–1617).

Proposition 5.1.2

- ln est continue sur \mathbb{R}_+^* .
- ln est dérivable sur \mathbb{R}_{+}^{*} et

$$\forall x \in \mathbb{R}_+^*, \quad \ln' x = \frac{1}{x}.$$

Remarque

 \Rightarrow La fonction

$$\begin{array}{ccc} f: & \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \ln|x| \end{array}$$

est dérivable sur \mathbb{R}^* et, pour tout $x \in \mathbb{R}^*$, f'(x) = 1/x. Autrement dit, sur \mathbb{R}^*

$$\int \frac{\mathrm{d}x}{x} = \ln|x|.$$

Proposition 5.1.3

$$\ln 1 = 0,$$

$$\forall x, y \in \mathbb{R}_{+}^{*}, \qquad \ln (xy) = \ln x + \ln y,$$

$$\forall x \in \mathbb{R}_{+}^{*}, \qquad \ln (1/x) = -\ln x,$$

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \forall n \in \mathbb{Z}, \qquad \ln x^{n} = n \ln x.$$

Proposition 5.1.4

$$\forall x \in \mathbb{R}_+^*, \quad \forall n \in \mathbb{N}^*, \quad \ln \sqrt[n]{x} = \frac{1}{n} \cdot \ln x.$$

Proposition 5.1.5

ln est strictement croissante sur \mathbb{R}_+^* . De plus

$$\ln x \xrightarrow[x \to +\infty]{} +\infty \quad \text{et} \quad \ln x \xrightarrow[x \to 0]{} -\infty.$$

Exercice 1

 \Rightarrow Résoudre l'inéquation $\ln |x+1| - \ln |2x+1| \le \ln 2$.

Proposition 5.1.6

In réalise une bijection de \mathbb{R}_+^* dans \mathbb{R} .

Définition 5.1.7

Il existe un unique réel, noté e et appelé nombre de Néper, tel que $\ln e = 1$.

Proposition 5.1.8

$$\forall x \in]-1, +\infty[, \ln(1+x) \le x.$$

Exercice 2

 \Rightarrow Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{1}{n+1} \leqslant \ln\left(1+\frac{1}{n}\right) \leqslant \frac{1}{n}$.

Proposition 5.1.9

$$\frac{x}{\ln x} \xrightarrow[x \to +\infty]{} +\infty, \qquad x \ln x \xrightarrow[x \to 0]{} 0,$$
$$\frac{\ln (1+x)}{x} \xrightarrow[x \to 0]{} 1.$$

5.1.2 Exponentielle

Définition 5.1.10

Pour tout $y \in \mathbb{R}$, il existe un unique $x \in \mathbb{R}_+^*$ tel que $\ln x = y$; on le note $\exp y$. On définit ainsi la fonction

$$\begin{array}{cccc} \exp: & \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ & y & \longmapsto & \exp y. \end{array}$$

Remarques

- ⇒ Autrement dit, exp est la bijection réciproque de ln.
- ⇒ Par définition

$$\forall x \in \mathbb{R}, \quad \exp x > 0.$$

Proposition 5.1.11

$$\forall x \in \mathbb{R}, \quad \ln(\exp x) = x,$$

 $\forall x \in \mathbb{R}_+^*, \quad \exp(\ln x) = x.$

Proposition 5.1.12

exp réalise une bijection de \mathbb{R} dans \mathbb{R}_+^* .

Proposition 5.1.13

$$\exp 0 = 1, \qquad \exp 1 = e,$$

$$\forall x, y \in \mathbb{R}, \qquad \exp (x + y) = \exp(x) \exp(y),$$

$$\forall x \in \mathbb{R}, \qquad \exp (-x) = \frac{1}{\exp x},$$

$$\forall x \in \mathbb{R}, \quad \forall n \in \mathbb{Z}, \qquad \exp (nx) = (\exp x)^{n}.$$

Proposition 5.1.14

exp est strictement croissante sur \mathbb{R} . De plus

$$\exp x \xrightarrow[x \to -\infty]{} 0 \quad \text{et} \quad \exp x \xrightarrow[x \to +\infty]{} +\infty.$$

Proposition 5.1.15

- exp est continue sur \mathbb{R} .
- exp est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad \exp' x = \exp x.$$

Proposition 5.1.16

$$\forall x \in \mathbb{R}, \quad \exp x \geqslant 1 + x.$$

Exercices 3

⇒ Montrer que

$$\forall x < 1, \quad \exp x \leqslant \frac{1}{1-x}.$$

 \Rightarrow Soit $a, b \in \mathbb{R}$ tels que 0 < a < b. Montrer que

$$\forall x \in \mathbb{R}_+^*, \quad 0 < b \exp(-ax) - a \exp(-bx) < b - a.$$

Proposition 5.1.17

$$\frac{\exp x}{x} \xrightarrow[x \to +\infty]{} +\infty, \qquad x \exp x \xrightarrow[x \to -\infty]{} 0,$$
$$\frac{\exp(x)-1}{x} \xrightarrow[x \to 0]{} 1.$$

5.1.3 Logarithme et exponentielle en base a

Définition 5.1.18

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. On appelle logarithme en base a et on note \log_a la fonction

$$\log_a: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{\ln x}{\ln a}$$

Remarque

 \Rightarrow Le logarithme népérien est le logarithme en base e. Si a=10, on obtient le logarithme décimal qui est utilisé en physique (pour définir les décibels) et en chimie (pour définir le pH).

Exercice 4

 \Rightarrow Résoudre le système

$$\begin{cases} 2\log_x y + 2\log_y x = -5\\ xy = e. \end{cases}$$

Proposition 5.1.19

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Alors

$$\begin{split} \forall x,y \in \mathbb{R}_+^*, & \log_a{(xy)} = \log_a{x} + \log_a{y}, \\ \forall x \in \mathbb{R}_+^*, & \log_a{(1/x)} = -\log_a{x}, \\ \forall x \in \mathbb{R}_+^*, & \forall n \in \mathbb{Z}, & \log_a{x}^n = n\log_a{x}. \end{split}$$

Définition 5.1.20

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Alors, pour tout $y \in \mathbb{R}$, il existe un unique $x \in \mathbb{R}_+^*$ tel que $\log_a x = y$; on le note $\exp_a y$ et

on a

$$\exp_a y = \exp(y \ln a).$$

On définit ainsi la fonction

$$\exp_a: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$
$$y \longmapsto \exp(y \ln a.)$$

Remarque

 \Rightarrow Lorsque a = e, on retrouve la fonction exponentielle.

5.1.4 Fonction puissance

Définition 5.1.21

Pour $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}$, on définit x^y par

$$x^y := \exp(y \ln x)$$
.

Remarques

 \Rightarrow En particulier, pour tout $x \in \mathbb{R}$, $\exp x = e^x$. Plus généralement, si $a \in \mathbb{R}_+^* \setminus \{1\}$

$$\forall x \in \mathbb{R}, \quad \exp_a(x) = a^x.$$

On utilisera désormais cette notation pour désigner l'exponentielle ainsi que l'exponentielle en base a.

 \Rightarrow Afin de dériver une fonction de la forme $f(x) := u(x)^{v(x)}$, il est recommandé de la mettre sous la forme

$$f(x) = e^{v(x)\ln(u(x))}.$$

Exercices 5

- \Rightarrow Résoudre l'équation $x^{\sqrt{x}} = \sqrt{x}^x$.
- \Rightarrow Calculer $\frac{\mathrm{d}}{\mathrm{d}x}(x^x)$.

Définition 5.1.22

Soit $a \in \mathbb{R}$. On appelle fonction puissance, la fonction définie sur \mathbb{R}_+^*

$$\varphi_a: \quad \mathbb{R}_+^* \quad \longrightarrow \quad \mathbb{R} \\
 x \quad \longmapsto \quad x^a.$$

Proposition 5.1.23

$$\begin{aligned} \forall x \in \mathbb{R}_{+}^{*}, \quad x^{0} &= 1, \qquad \forall a \in \mathbb{R}, \quad 1^{a} &= 1, \\ \forall x \in \mathbb{R}_{+}^{*}, \quad \forall a, b \in \mathbb{R}, \qquad x^{a+b} &= x^{a}x^{b}, \\ \forall x \in \mathbb{R}_{+}^{*}, \quad \forall a \in \mathbb{R}, \qquad x^{-a} &= 1/x^{a}, \\ \forall x, y \in \mathbb{R}_{+}^{*}, \quad \forall a \in \mathbb{R}, \qquad (xy)^{a} &= x^{a}y^{a}, \\ \forall x \in \mathbb{R}_{+}^{*}, \quad \forall a, b \in \mathbb{R}, \qquad (x^{a})^{b} &= x^{ab}, \\ \forall x \in \mathbb{R}_{+}^{*}, \quad \forall a \in \mathbb{R}, \qquad \ln(x^{a}) &= a \ln x. \end{aligned}$$

Proposition 5.1.24

Soit $a \in \mathbb{R}$. La fonction $\varphi_a : x \mapsto x^a$ définie sur \mathbb{R}_+^* est

- continue sur \mathbb{R}_+^* .
- dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \quad \varphi_a'(x) = ax^{a-1}.$$

Proposition 5.1.25

Soit $a \in \mathbb{R}$. Alors

$$x^a \xrightarrow[x \to +\infty]{} \begin{cases} +\infty & \text{si } a > 0 \\ 1 & \text{si } a = 0 \\ 0 & \text{si } a < 0 \end{cases} \text{ et } x^a \xrightarrow[x \to 0]{} \begin{cases} 0 & \text{si } a > 0 \\ 1 & \text{si } a = 0 \\ +\infty & \text{si } a < 0. \end{cases}$$

Remarque

 \Rightarrow Si a>0, on définit 0^a en posant $0^a\coloneqq 0.$ La fonction

$$\varphi_a: \quad \mathbb{R}_+ \quad \longrightarrow \quad \mathbb{R} \\
 x \quad \longmapsto \quad x^a$$

est continue sur \mathbb{R}_+ et dérivable sur

— \mathbb{R}_+ lorsque $a \geqslant 1$ avec

$$\forall x \in \mathbb{R}_+, \quad \varphi_a'(x) = ax^{a-1}.$$

— \mathbb{R}_+^* lorsque a < 1 avec

$$\forall x \in \mathbb{R}_+^*, \quad \varphi_a'(x) = ax^{a-1}.$$

Proposition 5.1.26

$$\forall n \in \mathbb{N}^*, \quad \forall x \geqslant 0, \quad \sqrt[n]{x} = x^{\frac{1}{n}}.$$

5.1.5 Calcul de limite

Proposition 5.1.27: Croissances comparées

Soit $\alpha, \beta > 0$ et $n \in \mathbb{N}^*$. Alors

$$\frac{e^{\alpha x}}{x^{\beta}} \xrightarrow[x \to +\infty]{} +\infty, \qquad \frac{x^{\alpha}}{(\ln x)^{\beta}} \xrightarrow[x \to +\infty]{} +\infty,$$
$$x^{\alpha} (\ln x)^{n} \xrightarrow[x \to 0]{} 0.$$

Remarques

- \Rightarrow Mnémotechniquement, on dit qu'en 0 et en $+\infty$, l'exponentielle l'emporte sur la puissance qui l'emporte sur le logarithme.
- \Rightarrow La technique essentielle dans le calcul des limites est la factorisation par le terme principal : lorsqu'on fait face à une somme de termes qui tendent vers $\pm \infty$, il est nécessaire de factoriser par le terme qui tend « le plus vite vers l'infini ».
 - Pour calculer la limite en $\pm \infty$ des polynômes, il convient de factoriser par le monôme de plus haut degré. Par exemple

$$2x^3 - x^2 + 1 = x^3 \left(2 - \frac{1}{x} + \frac{1}{x^3}\right) \xrightarrow[x \to +\infty]{} +\infty.$$

— Pour calculer la limite en $\pm \infty$ des fractions rationnelles, il convient de factoriser au numérateur et au dénominateur par le monôme de plus haut degré. Par exemple

$$\frac{x^2 + 2x - 3}{2x^2 - 1} = \frac{1 + \frac{2}{x} - \frac{3}{x^2}}{2 - \frac{1}{x^2}} \xrightarrow[x \to +\infty]{} \frac{1}{2}.$$

— Pour calculer la limite en $\pm \infty$ des fractions rationnelles en x et en e^x , il convient d'utiliser les croissances comparées en se rappelant que l'exponentielle l'emporte sur les puissances en $-\infty$ et en $+\infty$. Par exemple

$$e^x - x^5 = e^x \left(1 - \frac{x^5}{e^x} \right) \xrightarrow[x \to +\infty]{} + \infty, \qquad \frac{e^{2x} - 2xe^x}{x^3 + 3e^{2x}} = \frac{1 - 2\frac{x}{e^x}}{3 + \frac{x^3}{e^{2x}}} \xrightarrow[x \to +\infty]{} \frac{1}{3}.$$

- Pour calculer la limite en $+\infty$ ou en 0 des fractions rationnelles en $\ln x, x$ et e^x , il convient d'utiliser les croissances comparées en se rappelant que l'exponentielle l'emporte sur les puissances qui l'emportent sur le logarithme que ce soit en $+\infty$ ou en 0.
- \Rightarrow Une autre technique importante est la technique du *changement de variable*. Elle se base sur le théorème de composition des limites. Le principe en est le suivant. Étant donné une fonction f définie au voisinage de a, on cherche deux fonctions g et \bar{u} telles que sur ce voisinage

$$f(x) = g(\bar{u}(x)).$$

Si on connait la limite l de $\bar{u}(x)$ lorsque x tend vers a et la limite l' de g(u) lorsque u tend vers l, alors le théorème de composition des limites permet de conclure que f(x) tend vers l' lorsque x tend vers a.

Exercices 6

 \Rightarrow Calculer la limite de

$$\frac{e^x \ln x - x^{1000} + e^{2x}}{e^{2x} + \ln x + x} \quad \text{en } +\infty.$$

⇒ Calculer les limites suivantes

$$\frac{(\ln x)^2}{\mathrm{e}^x} \quad \text{en } +\infty, \qquad \frac{1}{x} \cdot \mathrm{e}^{-\frac{1}{x^2}} \quad \text{en } 0, \qquad \frac{\mathrm{e}^{\mathrm{e}^x}}{x^2} \quad \text{en } +\infty, \qquad \left|\ln x\right|^x \quad \text{en } 0 \; .$$

5.2 Fonctions trigonométriques directes et réciproques

5.2.1 Fonctions trigonométriques directes

Proposition 5.2.1

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1.$$

Proposition 5.2.2

Les fonctions sin, cos et tan sont dérivables une infinité de fois sur leur ensemble de définition et

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \qquad \sin^{(n)} x = \sin\left(x + n\frac{\pi}{2}\right),$$

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \qquad \cos^{(n)} x = \cos\left(x + n\frac{\pi}{2}\right),$$

$$\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi\mathbb{Z}\right), \qquad \tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

Proposition 5.2.3

On a

$$\forall x\geqslant 0, \qquad \sin x\leqslant x,$$

$$\forall x \in \mathbb{R}, \quad |\sin x| \leqslant |x|.$$

Exercices 7

 \Rightarrow Montrer que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \sin x \geqslant \frac{2}{\pi}x.$$

5.2.2 Fonction Arcsin

Définition 5.2.4

Pour tout $y \in [-1, 1]$, il existe un unique $x \in [-\pi/2, \pi/2]$ tel que $\sin x = y$; on le note Arcsin y. On définit ainsi la fonction

$$\begin{array}{cccc} \operatorname{Arcsin}: & [-1,1] & \longrightarrow & [-\pi/2,\pi/2] \\ & y & \longmapsto & \operatorname{Arcsin} y. \end{array}$$

Remarque

 \Rightarrow Autrement dit, sin réalise une bijection de $[-\pi/2, \pi/2]$ dans [-1, 1] et Arcsin est sa bijection réciproque.

Proposition 5.2.5

$$\forall x \in [-1, 1], \quad \sin(\operatorname{Arcsin} x) = x,$$

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \quad \operatorname{Arcsin}(\sin x) = x.$$

Exercice 8

⇒ Calculer

$$\operatorname{Arcsin}(1), \quad \operatorname{Arcsin}\left(\sin\frac{\pi}{7}\right), \quad \operatorname{Arcsin}\left(\sin\frac{5\pi}{7}\right), \quad \operatorname{Arcsin}\left(\cos\frac{\pi}{5}\right).$$

Proposition 5.2.6

Arcsin réalise une bijection de [-1,1] dans $[-\pi/2,\pi/2]$.

Proposition 5.2.7

- Arcsin est strictement croissante sur [-1, 1].
- Arcsin est impaire.

Exercice 9

⇒ On pose

$$x := Arcsin \frac{1+\sqrt{5}}{4}.$$

Calculer $\cos(4x)$ puis en déduire x.

Proposition 5.2.8

- Arcsin est continue sur [-1, 1].
- Arcsin est dérivable sur]-1,1[et

$$\forall x \in]-1,1[\,,\quad Arcsin'\,x = \frac{1}{\sqrt{1-x^2}}.$$

Exercice 10

⇒ Montrer que

$$\forall x \in [0,1[\,,\quad x \leqslant \operatorname{Arcsin} x \leqslant \frac{x}{\sqrt{1-x^2}}.$$

5.2.3 Fonction Arccos

Définition 5.2.9

Pour tout $y \in [-1, 1]$, il existe un unique $x \in [0, \pi]$ tel que $\cos x = y$; on le note Arccos y. On définit ainsi la fonction

$$\begin{array}{cccc} \operatorname{Arccos}: & [-1,1] & \longrightarrow & [0,\pi] \\ & y & \longmapsto & \operatorname{Arccos} y. \end{array}$$

Remarque

 \Rightarrow Autrement dit, cos réalise une bijection de $[0,\pi]$ dans [-1,1] et Arccos est sa bijection réciproque.

Proposition 5.2.10

$$\forall x \in [-1, 1], \quad \cos(\operatorname{Arccos} x) = x,$$

 $\forall x \in [0, \pi], \quad \operatorname{Arccos}(\cos x) = x.$

Exercices 11

 \Rightarrow Calculer

$$\operatorname{Arccos}\left(-\frac{1}{2}\right)$$
 et $\operatorname{Arccos}\left(\cos\frac{4\pi}{3}\right)$.

- $\Rightarrow \mbox{ Simplifier } \mbox{Arccos} (\cos x) \frac{1}{2} \mbox{Arccos} (\cos(2x)) \mbox{ pour tout } x \in [0, 2\pi].$
- \Rightarrow Calculer $\cos(3 \operatorname{Arccos} x)$.

Proposition 5.2.11

Arccos réalise une bijection de [-1,1] dans $[0,\pi]$.

Proposition 5.2.12

Arccos est strictement décroissante sur [-1, 1].

Proposition 5.2.13

- Arccos est continue sur [-1, 1].
- Arccos est dérivable sur]-1, 1[et

$$\forall x \in]-1, 1[, \text{ Arccos}' x = \frac{-1}{\sqrt{1-x^2}}.$$

5.2.4 Fonction Arctan

Définition 5.2.14

Pour tout $y \in \mathbb{R}$, il existe un unique $x \in]-\pi/2, \pi/2[$ tel que $\tan x = y;$ on le note Arctan y. On définit ainsi la fonction

$$\begin{array}{cccc} \operatorname{Arctan}: & \mathbb{R} & \longrightarrow &]-\pi/2, \pi/2[\\ & y & \longmapsto & \operatorname{Arctan} y. \end{array}$$

Remarque

 \Rightarrow Autrement dit, tan réalise une bijection de $]-\pi/2,\pi/2[$ dans $\mathbb R$ et Arctan est sa bijection réciproque.

Proposition 5.2.15

$$\forall x \in \mathbb{R}, \quad \tan(\operatorname{Arctan} x) = x,$$
 $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \operatorname{Arctan} (\tan x) = x.$

Exercices 12

- \Rightarrow Calculer Arctan $\left(\tan \frac{1789\pi}{45}\right)$.
- ⇒ Le langage de programmation Shadok dispose de la fonction Arctan mais pas de la fonction Arcsin. Exprimez cette dernière à partir de la fonction Arctan.

Proposition 5.2.16

Arctan réalise une bijection de \mathbb{R} dans $]-\pi/2,\pi/2[$.

Proposition 5.2.17

— Arctan est strictement croissante sur \mathbb{R} ,

$$\operatorname{Arctan} x \xrightarrow[x \to -\infty]{} -\frac{\pi}{2} \quad \text{et} \quad \operatorname{Arctan} x \xrightarrow[x \to +\infty]{} \frac{\pi}{2}.$$

— Arctan est impaire.

Exercice 13

 \Rightarrow Résoudre l'équation $Arctan(2x) + Arctan(3x) = \frac{\pi}{4}$.

Remarque

⇒ On a

$$Arctan \frac{1}{2} + Arctan \frac{1}{3} = \frac{\pi}{4}.$$

Cette formule est utile pour calculer des approximations de π . En effet, nous développerons des techniques pour calculer des valeurs approchées de Arctan x, qui seront d'autant plus efficaces que x est proche de 0.

Proposition 5.2.18

- Arctan est continue sur \mathbb{R} .
- Arctan est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad \operatorname{Arctan}' x = \frac{1}{1+x^2}.$$

Exercice 14

 \Rightarrow Montrer que pour tout $x \ge 0$, Arctan $x \le x$.

Remarque

 \Rightarrow Le calcul de primitive de la forme

$$\int \frac{ax+b}{x^2+\alpha x+\beta} \, \mathrm{d}x$$

où $a, b, \alpha, \beta \in \mathbb{R}$ et $x^2 + \alpha x + \beta$ n'a pas de racine réelle se fait de la manière suivante.

$$\int \frac{ax+b}{x^2 + \alpha x + \beta} dx = \frac{a}{2} \int \frac{2x+\alpha}{x^2 + \alpha x + \beta} dx + \left(b - \frac{a\alpha}{2}\right) \int \frac{dx}{x^2 + \alpha x + \beta}$$
$$= \frac{a}{2} \ln\left(x^2 + \alpha x + \beta\right) + \frac{2b - a\alpha}{2} \int \frac{dx}{x^2 + \alpha x + \beta}$$

Il suffit ensuite de mettre le trinôme (qui rappelons-le n'a pas de racine réelle) sous forme canonique

$$x^{2} + \alpha x + \beta = \left(x + \frac{\alpha}{2}\right)^{2} + \underbrace{\frac{4\beta - \alpha^{2}}{4}}_{:=\gamma^{2}>0} = \gamma^{2} \left[\left(\frac{2x + \alpha}{2\gamma}\right)^{2} + 1 \right]$$

puis de poser $u := (2x + \alpha)/(2\gamma)$.

$$\int \frac{dx}{x^2 + \alpha x + \beta} = \frac{1}{\gamma^2} \int \frac{dx}{1 + \left(\frac{2x + \alpha}{2\gamma}\right)^2}$$
$$= \frac{1}{\gamma} \int \frac{du}{1 + u^2} = \frac{1}{\gamma} \operatorname{Arctan} u$$
$$= \frac{1}{\gamma} \operatorname{Arctan} \frac{2x + \alpha}{2\gamma}.$$

En conclusion

$$\int \frac{bx+c}{x^2+\alpha x+\beta} \, \mathrm{d}x = \frac{a}{2} \ln \left(x^2 + \alpha x + \beta \right) + \frac{2b-a\alpha}{2\gamma} \operatorname{Arctan} \frac{2x+\alpha}{2\gamma}.$$

Exercice 15

 \Rightarrow Montrer qu'il existe $a, b, c \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R} \setminus \{1\}, \quad \frac{1}{x^3 - 1} = \frac{a}{x - 1} + \frac{bx + c}{x^2 + x + 1}$$

Utiliser ce résultat pour calculer

$$\int \frac{\mathrm{d}x}{x^3 - 1}.$$

5.2.5 Formules de trigonométrie réciproque

Proposition 5.2.19

$$\forall x \in [-1, 1], \qquad \operatorname{Arcsin} x + \operatorname{Arccos} x = \frac{\pi}{2},$$

$$\forall x \in \mathbb{R}^*, \qquad \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

Exercice 16

⇒ Montrer que

$$\forall x \geqslant 0, \quad \frac{x}{1+x^2} \leqslant \operatorname{Arctan} x \leqslant \frac{\pi}{2} - \frac{x}{1+x^2}.$$

5.3 Fonctions trigonométriques hyperboliques

Définition 5.3.1

On définit les fonctions sh
 et ch $\sup \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad \operatorname{ch} x \coloneqq \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2} \quad \operatorname{et} \quad \operatorname{sh} x \coloneqq \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2}.$$

Exercice 17

 \Rightarrow Résoudre l'équation $7 \operatorname{ch} x + 2 \operatorname{sh} x = 9$.

Proposition 5.3.2

$$\forall x \in \mathbb{R}, \quad \operatorname{ch} x + \operatorname{sh} x = e^x,$$

 $\forall x \in \mathbb{R}, \quad \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1.$

Proposition 5.3.3

ch est sh
 sont dérivables sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad \operatorname{ch}' x = \operatorname{sh} x \quad \operatorname{et} \quad \operatorname{sh}' x = \operatorname{ch} x.$$

Proposition 5.3.4

- ch est paire et sh est impaire.
- On a

$$\operatorname{ch} x \xrightarrow[x \to +\infty]{} +\infty \quad \operatorname{et} \quad \operatorname{ch} x \xrightarrow[x \to -\infty]{} +\infty,$$

$$\operatorname{sh} x \xrightarrow[x \to +\infty]{} +\infty \quad \text{et} \quad \operatorname{sh} x \xrightarrow[x \to -\infty]{} -\infty.$$

Remarque

 \Rightarrow Si f et g sont deux fonctions respectivement paires et impaires telles que

$$\forall x \in \mathbb{R}, \quad e^x = f(x) + g(x)$$

alors f = ch et g = sh. C'est pourquoi on dit que ch est la partie paire de l'exponentielle et que sh est sa partie impaire.

Proposition 5.3.5

- ch est strictement décroissante sur \mathbb{R}_{-} et strictement croissante sur \mathbb{R}_{+} .
- $-- \forall x \in \mathbb{R}, \quad \operatorname{ch} x \geqslant 1.$
- sh est strictement croissante sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \quad [\sh x = 0 \iff x = 0] \quad \text{et} \quad [\sh x \geqslant 0 \iff x \geqslant 0].$

Proposition 5.3.6

- sh réalise une bijection de \mathbb{R} dans \mathbb{R} .
- ch réalise une bijection de \mathbb{R}_+ sur $[1, +\infty[$.

Remarque

⇒ Le graphe de la fonction che st obtenu en laissant pendre une chaine entre deux points. C'est pourquoi, le graphe de cette fonction est aussi appelé « chainette ».

Exercice 18

⇒ On appelle Argsh la bijection réciproque de sh. Donner une expression de Argsh x à l'aide des fonctions usuelles.

Définition 5.3.7

On définit la fonction th $\sup\,\mathbb{R}$

$$\begin{array}{ccc}
\text{th}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \longmapsto & \frac{\sinh x}{\cosh x}.
\end{array}$$

Proposition 5.3.8

th est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad \text{th' } x = 1 - \text{th}^2 x = \frac{1}{\text{ch}^2 x}.$$

En particulier th est strictement croissante sur \mathbb{R} .

Proposition 5.3.9

- th est impaire.
- On a

$$\operatorname{th} x \xrightarrow[x \to +\infty]{} 1 \quad \operatorname{et} \quad \operatorname{th} x \xrightarrow[x \to -\infty]{} -1.$$

Proposition 5.3.10

th réalise une bijection de \mathbb{R} dans]-1,1[.

Remarque

 \Rightarrow Les substitutions

$$\cos x \rightarrow \cosh x$$
$$\sin x \rightarrow i \sinh x$$

et donc $\tan x \to \mathrm{i}\,\mathrm{th}\,x$ transforment toute formule de trigonométrie circulaire en une formule de trigonométrie hyperbolique.

Exercice 19

 \Rightarrow Pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, calculer

$$S_n := \sum_{k=0}^n \operatorname{sh}(kx).$$

On pourra multipler S_n par $\operatorname{sh}(x/2)$ et utiliser des formules de trigonométrie hyperbolique.

5.4 Exercices

Logarithme, exponentielle, puissance

Logarithme népérien

Exercice 1: Équations, inéquations, inégalités

Montrer que pour tout $x \in]-1,1[\setminus \{0\}]$, on a

$$\frac{\ln\left(1+x\right)}{x} \leqslant -\frac{\ln\left(1-|x|\right)}{|x|}.$$

Exercice 2 : Études de variations

1. Soit $a, b \in \mathbb{R}$ tels que 0 < a < b. On définit la fonction f sur \mathbb{R}_+^* par

$$\forall x > 0, \quad f(x) := \frac{\ln(1+ax)}{\ln(1+bx)}.$$

Étudier la monotonie de f.

2. (a) Montrer que

$$\forall x \geqslant 0, \quad x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x.$$

(b) En déduire la limite de la suite de terme général

$$\prod_{k=1}^{n} \left(1 + \frac{k}{n^2} \right).$$

${\it Exponentielle}$

Logarithme et exponentielle en base a

Exercice 3: Équations, inéquations, inégalités

1. Résoudre, avec $a \in \mathbb{R}_+^* \setminus \{1\}$

$$\log_a x > \log_{a^3} (3x - 2)$$
.

2. Résoudre

$$\begin{cases} \log_y x + \log_x y = \frac{50}{7} \\ xy = 256. \end{cases}$$

Fonction puissance

Calcul de limite

Exercice 4 : Calcul de limite en $\pm \infty$

Déterminer les limites, si elles existent, en $+\infty$ des fonctions d'expressions

$$\begin{aligned} \mathbf{a.} \ \sqrt{x+1} - \sqrt{x}, \qquad \mathbf{b.} \ \sqrt{x^2 + x + 1} - \sqrt{x}, \qquad \mathbf{c.} \ \frac{\sqrt{2x^2 + 1} - \sqrt{x^2 + x + 1}}{x}, \\ \mathbf{d.} \ \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}, \qquad \mathbf{e.} \ \frac{(x^x)^x}{x^{(x^x)}}, \qquad \mathbf{f.} \ \frac{\mathbf{e}^{2x} \ln^3 x}{x^4}, \\ \mathbf{g.} \ \frac{a^{(b^x)}}{b^{(a^x)}} \ \text{où } 1 < a < b, \qquad \mathbf{h.} \ \frac{a^{(a^x)}}{x^{(x^a)}} \ \text{où } a > 1. \end{aligned}$$

Déterminer la limite, si elle existe, en $-\infty$ de

i.
$$x^2 e^x \ln^3(-x)$$
.

Exercice 5 : Calcul de limite en 0

Déterminer les limites, si elles existent, en 0 des fonctions d'expressions

a.
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
, **b.** x^{x} , **c.** $|\ln x|^{x}$, **d.** $x^{2}\ln^{3}(x^{3})$, **e.** $\frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$.

Fonctions trigonométriques directes et réciproques

Fonctions trigonométriques directes

Exercice 6 : Calcul de limite en 0

Déterminer les limites, si elles existent, en 0 des fonctions d'expressions

a.
$$\frac{\ln{(1+\sin{x})}}{x}$$
, **b.** $(\sin{x})^{\frac{1}{\ln{x}}}$, **c.** $\frac{\sin{x}}{\sqrt{1-\cos{x}}}$.

b.
$$(\sin x)^{\frac{1}{\ln x}}$$

$$\mathbf{c.} \ \frac{\sin x}{\sqrt{1-\cos x}}$$

Fonction Arcsin

Exercice 7: Identité

Soit f la fonction définie par

$$f(x) := -\frac{x}{2} + Arcsin \sqrt{\frac{1+\sin x}{2}}.$$

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Exprimer $f(x+2\pi)$ à l'aide de f(x). Quelle conséquence peut-on en déduire sur le graphe de f?
- 3. (a) Calculer la dérivée de f à l'aide des théorèmes usuels.
 - (b) Montrer que f' est constante par morceaux, puis simplifier f(x) sur $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 4. Retrouver ce résultat directement, sans dériver.
- 5. Tracer le graphe de f.

Fonction Arccos

Exercice 8 : Étude de fonction

On considère la fonction f définie par

$$f(x) \coloneqq \operatorname{Arccos} \sqrt{\frac{1 + \sin x}{2}} - \operatorname{Arcsin} \sqrt{\frac{1 + \cos x}{2}}.$$

- 1. Déterminer le domaine de définition et de continuité de f.
- 2. Pour tout $x \in \mathbb{R}$, exprimer $f\left(\frac{\pi}{2} x\right)$ en fonction de f(x). Sur quel intervalle I suffit-il de faire l'étude de f?
- 3. Étudier la dérivabilité de f sur I et calculer f'.
- 4. Tracer le graphe de f sur $[-\pi, \pi]$.

Fonction Arctan

Exercice 9: Simplification

Simplifier les expressions suivantes

a. Arccos
$$\left(\cos\frac{2\pi}{3}\right)$$

a. Arccos
$$\left(\cos\frac{2\pi}{3}\right)$$
, **b.** Arccos $\left(\cos\left(-\frac{2\pi}{3}\right)\right)$,

c. Arccos
$$(\cos 4\pi)$$

c. Arccos
$$(\cos 4\pi)$$
, **d.** Arctan $\left(\tan \frac{3\pi}{4}\right)$,

e.
$$\tan (\operatorname{Arcsin} x)$$
, **f.** $\sin (\operatorname{Arccos} x)$, **g.** $\cos (\operatorname{Arctan} x)$.

$$\mathbf{f}$$
, $\sin\left(\operatorname{Arccos} x\right)$

$$\mathbf{g}$$
, $\cos(\operatorname{Arctan} x)$

Exercice 10 : Étude de fonction

Étudier la fonction définie par

$$f(x) := x^2 \operatorname{Arctan} \frac{1}{1 + x^2}.$$

Formules de trigonométrie réciproque

Exercice 11 : Identités

A-t-on égalité entre les expressions suivantes?

a. Arcsin
$$\sqrt{x}$$
 et $\frac{\pi}{4} + \frac{1}{2} \operatorname{Arcsin}(2x - 1)$,

b. Arctan
$$\frac{x+y}{1-xy}$$
 et Arctan x + Arctan y ,

c. Arcsin
$$x + Arcsin \sqrt{1-x^2}$$
 et $\frac{\pi}{2}$,

d. 2 Arcsin
$$x$$
 et Arcsin $\left(2x\sqrt{1-x^2}\right)$.

Exercice 12: Équations

Résoudre les équations suivantes

a. Arctan
$$x = Arcsin \frac{2x}{1+x^2}$$
, **b.** Arctan $x + Arctan (2x) = \frac{\pi}{4}$,

c.
$$Arcsin(2x) = Arcsin x + Arcsin(\sqrt{2}x)$$
.

Fonctions trigonométriques hyperboliques

Exercice 13: Simplification

Simplifier les expressions suivantes

a.
$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x}, \qquad \textbf{b.} \ \operatorname{sh}^2 x \cos^2 y + \operatorname{ch}^2 x \sin^2 y,$$
$$\textbf{c.} \ \ln \sqrt{\frac{1 + \operatorname{th} x}{1 - \operatorname{th} x}}.$$

Exercice 14 : Identité

Montrer que

$$\operatorname{Arctan}\left(e^{x}\right) - \operatorname{Arctan}\left(\operatorname{th}\frac{x}{2}\right)$$

est une constante à déterminer.

Exercice 15: Calcul de somme

Soit a et b deux réels. Calculer

$$\sum_{k=0}^{n} \operatorname{ch}\left(a + kb\right).$$

Exercice 16: Produit

1. Déterminer la limite, lorsque x tend vers 0, de

$$\frac{\operatorname{th} x}{x}$$
.

2. Montrer que

$$\forall x \in \mathbb{R}, \quad \text{th}(2x) = \frac{2 \text{th } x}{1 + \text{th}^2 x}.$$

3. En déduire que pour tout $x \in \mathbb{R}^*$

$$\prod_{k=1}^{n} \left(1 + \operatorname{th}^{2} \frac{x}{2^{k}} \right) \xrightarrow[n \to +\infty]{} \frac{x}{\operatorname{th} x}.$$

5.4. EXERCICES 129

Exercice 17: Équation hyperbolique

1. Calculer

$$\operatorname{sh}\left(\ln\frac{1+\sqrt{5}}{2}\right)$$
 et $\operatorname{ch}\left(\ln\frac{1+\sqrt{5}}{2}\right)$.

2. En déduire les solutions de l'équation $\operatorname{ch} x - \sqrt{5}\operatorname{sh} x = 2\operatorname{sh}(3x).$

Chapitre 6

Équations différentielles

« J'entends et j'oublie. Je vois et je me souviens. Je fais et je comprends. »

— Confucius (551–479 AV J.C.)

 \ll Les calculs sont pas bons, Kevin! »

— Inès Reg (2019)

6.1.	1 Équation différentielle homogène
6.1.	2 Équation différentielle avec second membre
6.1.	3 Problème de Cauchy
6.1.	4 Équation différentielle non résolue
6.2 É	${f q}$ uation différentielle linéaire du second ordre ${f \dots \dots$
6.2.	1 Équation différentielle homogène
6.2.	2 Équation différentielle avec second membre
6.2.	3 Problème de Cauchy

Dans ce chapitre, \mathbb{K} désignera l'un des corps \mathbb{R} ou \mathbb{C} .

6.1 Équation différentielle linéaire du premier ordre

Définition 6.1.1

Soit $a, b, c: I \to \mathbb{K}$ des fonctions définies sur un intervalle I. On appelle solution sur I de l'équation différentielle linéaire du premier ordre ay' + by = c, toute fonction $y: I \to \mathbb{K}$, dérivable sur I, telle que

$$\forall t \in I, \quad a(t)y'(t) + b(t)y(t) = c(t).$$

On dit que l'équation est $r\'{e}solue$ lorsque a ne s'annule pas et qu'elle est $homog\`{e}ne$ lorsque la fonction c est nulle.

Remarque

⇒ Lorsque l'équation est résolue, on peut l'écrire sous la forme

$$\forall t \in I, \quad y'(t) = F(y(t), t)$$

où F est une fonction de $\mathbb{K} \times I$ dans \mathbb{K} .

6.1.1 Équation différentielle homogène

Proposition 6.1.2

Soit $a:I\to\mathbb{K}$ une fonction continue sur un intervalle I. Si A est une primitive de a sur I, les solutions de l'équation différentielle

$$\forall t \in I, \quad y'(t) + a(t)y(t) = 0$$

sont les fonctions

$$y_{\lambda}: I \longrightarrow \mathbb{K}$$
 $t \longmapsto \lambda e^{-A(t)}$

où $\lambda \in \mathbb{K}$.

Remarques

- \Rightarrow Dans cette démonstration, le terme $e^{A(t)}$ par lequel on multiplie l'équation différentielle afin de faire apparaître la dérivée d'un produit est appelé facteur intégrant.
- \Rightarrow Si y est une solution non nulle de l'équation différentielle homogène y'(t) + a(t)y(t) = 0, elle ne s'annule pas.

Exercices 1

- \Rightarrow Soit $a \in \mathbb{R}$. Résoudre l'équation différentielle y'(t) + ay(t) = 0 sur \mathbb{R} .
- \Rightarrow Résoudre l'équation différentielle $(1+t^2)y'(t)+ty(t)=0$ sur \mathbb{R} .
- \Rightarrow Déterminer les fonctions dérivables $f: \mathbb{R} \to \mathbb{C}$ telles que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x)f(y).$$

6.1.2 Équation différentielle avec second membre

Proposition 6.1.3: Théorème de superposition

Soit $a, b: I \to \mathbb{K}$ deux fonctions définies sur un intervalle I. Si y_p est une solution « particulière » de l'équation différentielle

$$\forall t \in I, \quad y'(t) + a(t)y(t) = b(t)$$

alors, les solutions de cette équation différentielle sont les fonctions $y_p + y$ où y parcourt l'ensemble des solutions de l'équation différentielle homogène associée

$$\forall t \in I, \quad y'(t) + a(t)y(t) = 0.$$

Remarques

 \Rightarrow Soit a et $b:I \to \mathbb{K}$ deux fonctions continues. On souhaite trouver une solution particulière à l'équation différentielle

$$(E) \qquad \forall t \in I, \quad y'(t) + a(t)y(t) = b(t).$$

La section précédente nous a permis de trouver une solution y_0 non nulle à l'équation différentielle homogène associée y'(t) + a(t)y(t) = 0. De plus, nous avons vu qu'une telle fonction ne s'annule pas. On va chercher une solution de (E) sous la forme $y(t) := \lambda(t)y_0(t)$ où $\lambda : I \to \mathbb{K}$ est une fonction dérivable. On se donne donc une fonction dérivable $\lambda : I \to \mathbb{K}$ et on pose $y := \lambda y_0$. Alors y est dérivable sur I et

$$\forall t \in I, \quad y'(t) = \lambda'(t)y_0(t) + \lambda(t)y_0'(t).$$

En injectant cette expression dans (E), on en déduit que y est solution de (E) si et seulement si

$$\forall t \in I, \quad \lambda'(t) = \frac{b(t)}{y_0(t)}.$$

En particulier, si λ est une primitive de b/y_0 , y est une solution « particulière » de (E). Remarquons que, puisque y_0 ne s'annule pas, toute fonction dérivable $y:I\to\mathbb{K}$ s'écrit sous la forme $y=\lambda y_0$ où $\lambda:I\to\mathbb{K}$ est une fonction dérivable. Cette méthode permet donc de trouver toutes les solutions de (E).

 \Rightarrow La méthode précédente, appelée « méthode de la variation de la constante », se généralise à toute équation différentielle linéaire. Si y_0 est une solution ne s'annulant pas de l'équation différentielle homogène associée, le changement de fonction $y = \lambda y_0$ permet de ramener la résolution de l'équation différentielle initiale à la résolution d'une équation différentielle linéaire en λ' d'ordre strictement inférieur.

⇒ Remarquons enfin que la technique consistant à multiplier l'équation différentielle par le facteur intégrant permet de résoudre les équations différentielles avec second membre de la même manière que les équations différentielles homogènes.

Exercices 2

⇒ Résoudre l'équation différentielle

$$\forall t > 0, \quad y'(t) - \frac{y(t)}{t} = te^t$$

 \Rightarrow Résoudre l'équation différentielle $(t^2 \ln t)y'(t) - ty(t) = -(1 + \ln t)$ sur]0,1[.

6.1.3 Problème de Cauchy

Définition 6.1.4: Problème de Cauchy

Soit $a, b, c: I \to \mathbb{K}$ des fonctions définies sur un intervalle $I, t_0 \in I$ et $y_0 \in \mathbb{K}$. On appelle problème de Cauchy la recherche des solutions y de l'équation différentielle du premier ordre

$$\forall t \in I, \quad a(t)y'(t) + b(t)y(t) = c(t)$$

telles que $y(t_0) = y_0$.

Remarque

 \Rightarrow La condition $y(t_0) = y_0$ est appelée condition initiale.

Théorème 6.1.5: Théorème de Cauchy-Lipschitz

Soit $a, b : I \to \mathbb{K}$ deux fonctions continues sur un intervalle $I, t_0 \in I$ et $y_0 \in \mathbb{K}$. Alors, il existe une et une seule solution à l'équation différentielle résolue du premier ordre

$$\forall t \in I, \quad y'(t) + a(t)y(t) = b(t)$$

telle que $y(t_0) = y_0$.

Remarques

 \Rightarrow Graphiquement, cette proposition signifie que par tout point $(t_0, y_0) \in I \times \mathbb{R}$ passe un et un seul graphe (appelé courbe intégrale) de solution de l'équation différentielle y'(t) + a(t)y(t) = b(t). En particulier, les courbes intégrales ne se croisent pas. Par exemple, voici quelques solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y'(t) = ty(t) + 1.$$

 \Rightarrow Le théorème de Cauchy-Lipschitz prouve que la connaissance à l'instant t_0 d'un système régi par une équation différentielle résolue du premier ordre permet de connaitre complètement son passé et son futur.

Exercices 3

 \Rightarrow Résoudre sur $]0,+\infty[$ le problème de Cauchy

$$y(1) = 1$$
 et $y'(t) + \frac{y(t)}{t} = t$.

Tracer le graphe de la solution.

⇒ Montrer que les solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y'(t) + t \operatorname{Arctan}(t^4 + 1)y(t) = \operatorname{sh} t$$

sont toutes paires.

6.1.4 Équation différentielle non résolue

Exercice 4

 \Rightarrow Résoudre l'équation différentielle $(t^2 \ln t)y'(t) - ty(t) = -(1 + \ln t)$ sur \mathbb{R}_+^* .

Remarque

⇒ Pour les équations différentielles non résolues du premier ordre, contrairement à ce qui se passe pour les équations résolues, il est possible qu'un problème de Cauchy admette plusieurs solutions ou aucune. Voici par exemple plusieurs solutions au problème de Cauchy

$$y(1) = 1$$
, et $\forall t > 0$, $(t^2 \ln t)y'(t) - ty(t) = -(1 + \ln t)$.

On peut aussi remarquer que pour $y_0 \neq 1$, il n'existe aucune solution de cette équation différentielle vérifiant $y(1) = y_0$.

6.2 Équation différentielle linéaire du second ordre

Définition 6.2.1

Soit $a,b,c,d:I\to\mathbb{K}$ des fonctions définies sur un intervalle I. On appelle solution sur I de l'équation différentielle linéaire du second ordre ay''+by'+cy=d, toute fonction $y:I\to\mathbb{K}$, dérivable deux fois sur I, telle que

$$\forall t \in I, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t).$$

On dit que l'équation est $r\acute{e}solue$ lorsque a ne s'annule pas et qu'elle est $homog\`{e}ne$ lorsque la fonction d est nulle.

6.2.1 Équation différentielle homogène

Proposition 6.2.2

Soit $a, b, c \in \mathbb{C}$ avec $a \neq 0$ et (E) l'équation différentielle

$$\forall t \in \mathbb{R}, \quad ay''(t) + by'(t) + cy(t) = 0.$$

On résout sur \mathbb{C} l'équation caractéristique $az^2 + bz + c = 0$.

— Si cette équation possède deux racines distinctes r_1 et r_2 ($\Delta \neq 0$), alors les solutions complexes de (E) sont les fonctions

$$y_{\lambda,\mu}: \mathbb{R} \longrightarrow \mathbb{C}$$

 $t \longmapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$

où $\lambda, \mu \in \mathbb{C}$.

— Si cette équation admet une racine double r ($\Delta = 0$), alors les solutions complexes de (E) sont les fonctions

$$y_{\lambda,\mu}: \mathbb{R} \longrightarrow \mathbb{C}$$

 $t \longmapsto (\lambda t + \mu) e^{rt}$

où $\lambda, \mu \in \mathbb{C}$.

Exercice 5

 \Rightarrow Résoudre l'équation différentielle y'' - 3y' + 2y = 0.

Proposition 6.2.3

Soit $a,b,c\in\mathbb{R}$ avec $a\neq 0$ et (E) l'équation différentielle

$$\forall t \in \mathbb{R}, \quad ay''(t) + by'(t) + cy(t) = 0.$$

On résout sur \mathbb{C} l'équation caractéristique $az^2 + bz + c = 0$.

— Si cette équation possède deux racines réelles distinctes r_1 et r_2 ($\Delta > 0$), alors les solutions réelles de (E) sont les fonctions

$$y_{\lambda,\mu}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$$

où $\lambda, \mu \in \mathbb{R}$.

— Si cette équation admet une racine double r ($\Delta = 0$), alors les solutions réelles de (E) sont les fonctions

$$y_{\lambda,\mu}: \mathbb{R} \longrightarrow \mathbb{R}$$
 $t \longmapsto (\lambda t + \mu) e^{rt}$

où $\lambda, \mu \in \mathbb{R}$.

— Si cette équation admet deux racines complexes conjuguées $r + i\omega$ et $r - i\omega$ ($\Delta < 0$), alors les solutions réelles de (E) sont les fonctions

$$y_{\lambda,\mu}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto [\lambda \cos(\omega t) + \mu \sin(\omega t)] e^{rt}$

où $\lambda, \mu \in \mathbb{R}$.

Remarque

 \Rightarrow Dans le cas où l'équation caractéristique admet deux racines complexes conjuguées, les solutions de (E) peuvent s'écrire sous la forme

$$y_{\lambda,\varphi}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto \lambda \sin(\omega t - \varphi) e^{rt}$

où $\lambda, \varphi \in \mathbb{R}$. Lors de la recherche effective de tels coefficients, quitte à changer φ en $\varphi + \pi$, on impose souvent $\lambda \in \mathbb{R}_+$.

Exercices 6

- \Rightarrow Résoudre l'équation différentielle y'' + 2y' + 2y = 0.
- \Rightarrow Soit $\omega_0 \in \mathbb{R}$. Résoudre l'équation différentielle $y'' + \omega_0^2 y = 0$.

 \Rightarrow En effectuant le changement de fonction inconnue $z(t) = t^2 y(t)$, résoudre l'équation différentielle

$$\forall t \in \mathbb{R}_{+}^{*}, \quad t^{2}y''(t) + 4ty'(t) + (2 - t^{2})y(t) = 0.$$

 \Rightarrow En effectuant le changement de variable $t=\sqrt{u},$ résoudre l'équation différentielle

$$\forall t \in \mathbb{R}_{+}^{*}, \quad ty''(t) - y'(t) + 4t^{3}y(t) = 0.$$

6.2.2 Équation différentielle avec second membre

Proposition 6.2.4: Théorème de superposition

Soit $a,b,c,d:I\to\mathbb{K}$ des fonctions définies sur un intervalle I. Si y_p est une solution « particulière » de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t)$$

alors les solutions de cette équation différentielle sont les fonctions $y_p + y$ où y parcourt l'ensemble des solutions de l'équation différentielle homogène associée

$$\forall t \in \mathbb{R}, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0.$$

Proposition 6.2.5: Théorème de superposition

— Soit $a, b, c, d_1, d_2 : I \to \mathbb{K}$ des fonctions définies sur un intervalle $I, \lambda, \mu \in \mathbb{K}$ et $y_{p_1}, y_{p_2} : I \to \mathbb{K}$ des solutions « particulières » des équations différentielles respectives $ay'' + by' + cy = d_1$ et $ay'' + by' + cy = d_2$. Alors $\lambda y_{p_1} + \mu y_{p_2}$ est une solution « particulière » de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = \lambda d_1(t) + \mu d_2(t).$$

— Soit $a, b, c: I \to \mathbb{R}$ et $d: I \to \mathbb{C}$ des fonctions définies sur un intervalle I et $y_p: I \to \mathbb{C}$ une solution « particulière » de l'équation différentielle ay'' + by' + cy = d. Alors $Re(y_p)$ est une solution « particulière » de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = \operatorname{Re}(d(t)).$$

Remarque

⇒ Bien entendu, une proposition similaire existe pour la partie imaginaire.

Proposition 6.2.6

Soit $a, b, c \in \mathbb{C}$ avec $a \neq 0$. Si P est un polynôme de degré n et $\alpha \in \mathbb{C}$, alors l'équation différentielle

$$\forall t \in \mathbb{R}, \quad ay''(t) + by'(t) + cy(t) = P(t)e^{\alpha t}$$

admet comme solution une (unique) fonction du type $t \mapsto t^m Q(t) e^{\alpha t}$ où Q est un polynôme de degré n et m est l'ordre de α comme racine de l'équation caractéristique (avec par convention m=0 si α n'est pas racine de cette équation).

Exercices 7

- \Rightarrow Déterminer les solutions de l'équation différentielle $y''(t) + y'(t) + y(t) = t^2$.
- \Rightarrow Déterminer les solutions de l'équation différentielle $y''(t) + y(t) = t \cos t$.

6.2.3 Problème de Cauchy

Définition 6.2.7: Problème de Cauchy

Soit $a, b, c, d: I \to \mathbb{K}$ des fonctions définies sur un intervalle $I, t_0 \in I$ et $y_0, y_1 \in \mathbb{K}$. On appelle problème de Cauchy la recherche des solutions y de l'équation différentielle du second ordre

$$\forall t \in I, \quad a(t)y''(t) + b(t)y'(t) + c(t)y(t) = d(t)$$

telles que $y(t_0) = y_0$ et $y'(t_0) = y_1$.

Théorème 6.2.8: Théorème de Cauchy-Lipschitz

Soit $a, b, c: I \to \mathbb{K}$ des fonctions continues sur un intervalle $I, t_0 \in I$ et $y_0, y_1 \in \mathbb{K}$. Alors il existe une et une seule solution à l'équation différentielle résolue du second ordre

$$\forall t \in I, \quad y''(t) + a(t)y'(t) + b(t)y(t) = c(t)$$

telle que $y(t_0) = y_0$ et $y'(t_0) = y_1$.

Remarques

 \Rightarrow Graphiquement, cette proposition signifie que par tout point $(t_0, y_0) \in I \times \mathbb{R}$ passe un et un seul graphe de pente $y_1 \in \mathbb{R}$, solution de l'équation différentielle y''(t) + a(t)y'(t) + b(t)y(t) = c(t). Les courbes intégrales peuvent se croiser, mais doivent avoir des pentes différentes lorsqu'elles se croisent. Par exemple, voici quelques solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y''(t) + y(t) = \frac{1}{2}t^2 + t.$$

 \Rightarrow Le théorème de Cauchy-Lipschitz prouve que la connaissance de la valeur de y et de sa dérivée à l'instant t_0 d'un système régi par une équation différentielle résolue du second ordre permet de connaitre complètement son passé et son futur.

Exercice 8

 \Rightarrow Résoudre le problème de Cauchy

$$y(0) = 0$$
, $y'(0) = 1$, et $\forall t \in \mathbb{R}$, $y''(t) + y(t) = \frac{1}{2}t^2 + t$.

6.3 Exercices

Équation différentielle linéaire du premier ordre

Équation différentielle avec second membre

Exercice 1: Calcul

Résoudre les équations différentielles suivantes sur un intervalle à préciser

a.
$$y' + 2y = x^2 - 2x + 3$$
, **b.** $(1+x)y' + y = 1 + \ln(1+x)$, **c.** $y' + y = \frac{1}{1 + e^x}$.

Exercice 2: Avec un second membre

Déterminer les fonctions dérivables $y: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R}, \quad y'(x) + y(x) = \int_0^1 y(t) dt.$$

Exercice 3: Équations fonctionnelles

1. Déterminer les fonctions dérivables $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = e^x f(y) + f(x)e^y.$$

2. Déterminer les fonctions dérivables $f: \mathbb{R} \to \mathbb{R}$ telles que $f(0) \neq 0$ et

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x)f'(y) + f'(x)f(y).$$

Problème de Cauchy

Équation différentielle non résolue

Exercice 4 : Une équation différentielle avec peu de solutions

Soit I un intervalle de \mathbb{R} et (E) l'équation différentielle

$$\forall t \in I, \quad |t| \, y'(t) + (t-1) \, y(t) = 0.$$

- 1. Résoudre cette équation pour $I = \mathbb{R}_+^*$ puis $I = \mathbb{R}_-^*$.
- 2. En déduire les solutions de cette équation différentielle lorsque $I = \mathbb{R}$.
- 3. Soit $t_0 \in \mathbb{R}$ et $y_0 \in \mathbb{R}$. Le problème de Cauchy $y(t_0) = y_0$ a-t-il toujours au moins une solution? Si oui, est-elle unique?

Exercice 5 : Une équation différentielle avec beaucoup de solutions

Soit I un intervalle de \mathbb{R} et (E) l'équation différentielle

$$\forall t \in I, \quad ty'(t) - (t+2) y(t) = 0.$$

- 1. Résoudre cette équation pour $I = \mathbb{R}_+^*$ puis $I = \mathbb{R}_-^*$.
- 2. En déduire les solutions de cette équation différentielle lorsque $I = \mathbb{R}$.
- 3. Soit $t_0 \in \mathbb{R}$ et $y_0 \in \mathbb{R}$. Le problème de Cauchy $y(t_0) = y_0$ a-t-il toujours au moins une solution? Si oui, est-elle unique?

Exercice 6 : Discontinuité des coefficients de l'équation

Soit H la fonction de Heaviside définie sur $\mathbb R$ par

$$\forall t \in \mathbb{R}, \quad H(t) := \begin{cases} 0 & \text{si } t \leq 0 \\ 1 & \text{si } t > 0. \end{cases}$$

On considère l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y'(t) + H(t)y(t) = 0.$$

- 1. Résoudre cette équation différentielle.
- 2. Les problèmes de Cauchy associés à cette équation ont-ils toujours une unique solution?

6.3. EXERCICES 139

Équation différentielle linéaire du second ordre

Équation différentielle homogène

Exercice 7: Équation d'Euler

On considère l'équation différentielle

(E)
$$t^2y'' - ty' + y = 0$$
.

- 1. Dans cette question, on souhaite résoudre (E) sur \mathbb{R}_{+}^{*} .
 - (a) On se donne une fonction $y:\mathbb{R}_+^*\to\mathbb{R}$, dérivable deux fois et on définit la fonction $z:\mathbb{R}\to\mathbb{R}$ par

$$\forall u \in \mathbb{R}, \quad z(u) \coloneqq y(e^u).$$

Montrer que y est solution de (E) sur \mathbb{R}_+^* si et seulement si z est solution sur \mathbb{R} d'une équation différentielle du second ordre à coefficients constants que l'on précisera.

- (b) En déduire l'ensemble des solutions de (E).
- 2. Résoudre (E) sur \mathbb{R}_{-}^{*} .
- 3. Enfin, déterminer les solutions de (E) sur \mathbb{R} .

Plus généralement, on appelle équation d'Euler toute équation différentielle de la forme

$$at^2y''(t) + bty'(t) + cy(t) = 0.$$

Leur résolution se ramène à la résolution d'une équation différentielle linéaire à coefficients constants après le même changement de variable que ci-dessus.

Exercice 8 : Changement de variable

1. En posant $x := \tan t$, résoudre l'équation différentielle

$$\forall x \in \mathbb{R}, \quad (1+x^2)^2 y''(x) + 2x(1+x^2)y'(x) + 4y(x) = 0.$$

2. Soit $\alpha \in \mathbb{R}^*$. En posant $x \coloneqq \operatorname{sh} t$, résoudre l'équation différentielle

$$\forall x \in \mathbb{R}, \quad (1+x^2)y''(x) + xy'(x) - \alpha^2 y(x) = 0.$$

Exercice 9: Équations fonctionnelles

1. Soit $\lambda \in \mathbb{R}$. Trouver toutes les fonctions deux fois dérivables sur \mathbb{R} telles que

$$\forall x \in \mathbb{R}, \quad f'(x) = f(\lambda - x).$$

2. Trouver toutes les fonctions f deux fois dérivables sur \mathbb{R}_+^* telles que

$$\forall x > 0, \quad f'(x) = f\left(\frac{1}{x}\right).$$

On utilisera les résultats sur l'équation d'Euler

Exercice 10: Coefficients non constants

Résoudre sur \mathbb{R} l'équation différentielle

$$(2x+1)y'' + (4x-2)y' - 8y = 0$$

sachant qu'il existe une solution de la forme $y = e^{\alpha x}$.

Exercice 11 : Utilisation du plan de phase

Le mouvement d'une particule chargée dans un champ magnétique dirigé suivant l'axe (Oz) est régi par un système différentiel de la forme

$$\begin{cases} x'' = \omega y' \\ y'' = -\omega x' \\ z'' = 0 \end{cases}$$

où ω dépend de la masse, de la charge de la particule et du champ magnétique. En considérant $u=x'+\mathrm{i}y'$, résoudre ce système différentiel.

$\'{E} quation \ diff\'erentielle \ avec \ second \ membre$

Exercice 12 : Calcul

Résoudre les équations différentielles suivantes sur $\mathbb R$

a.
$$y'' + y' - 6y = 1 - 8x - 30x^2$$
, **b.** $y'' + 3y' + 2y = e^{-x}$, **c.** $y'' - 4y' + 4y = x \cosh(2x)$, **d.** $y'' + y = \sin^3 x$.

Problème de Cauchy

Exercice 13: Calcul

Déterminer l'unique solution y sur $\mathbb R$ de l'équation différentielle

$$\forall x \in \mathbb{R}, \quad y''(x) + y(x) = 3x^2$$

telle que
$$y(0) = 1$$
 et $y'(0) = 2$.

Chapitre 7

Espaces vectoriels

 \ll Vector is a useless survival, or offshoot from quaternions, and has never been of the slightest use to any creature. »

— LORD KELVIN (1824–1907)

7.1	Espace vectoriel, application linéaire
7.	1.1 Définition, propriétés élémentaires
7.	1.2 Sous-espace vectoriel
7.	1.3 Application linéaire
7.2	L'algèbre $\mathcal{L}(E)$
7.	2.1 $\mathcal{L}(E,F)$
7.	2.2 Le groupe linéaire
7.3	Somme, somme directe, projecteur, hyperplan
7.	3.1 Somme, somme directe
7.	3.2 Projecteur
7.	3.3 Symétrie
7.	3.4 Hyperplan
7.4]	Exercices

7.1 Espace vectoriel, application linéaire

7.1.1 Définition, propriétés élémentaires

Définition 7.1.1

Soit E un ensemble. On dit qu'une loi notée additivement

$$\begin{array}{cccc} +: & E \times E & \longrightarrow & E \\ & (x,y) & \longmapsto & x+y \end{array}$$

fait de (E, +) un groupe commutatif lorsque :

— Elle est associative

$$\forall x, y, z \in E, \quad (x+y) + z = x + (y+z).$$

— Elle est commutative

$$\forall x, y \in E, \quad x + y = y + x.$$

— Elle admet un élément neutre

$$\exists e \in E, \quad \forall x \in E, \quad x + e = e + x = x.$$

Un tel élément est unique; on le note 0_E .

— Tout élément $x \in E$ admet un opposé

$$\exists y \in E, \quad x + y = y + x = 0_E.$$

Un tel élément est unique; on le note -x.

Remarques

- \Rightarrow Si $x_1, x_2, x_3 \in E$, l'associativité de la loi + affirme que $(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$; on note $x_1 + x_2 + x_3$ cette valeur commune. Plus généralement, si $x_1, x_2, \ldots, x_n \in E$, la valeur de $x_1 + x_2 + \cdots + x_n$ ne dépend pas de l'ordre dans lesquelles sont effectuées les additions. Cela justifie l'usage de cette notation n'utilisant pas de parenthèses.
- \Rightarrow Si (E,+) est un groupe commutatif et $x,y\in E$, l'élément x+(-y) est aussi noté x-y. De plus

$$\forall x, y, z \in E, \quad x + y = z \iff x = z - y.$$

 \Rightarrow Les éléments de E sont réguliers. Autrement dit

$$\forall x, y, z \in E, \quad x + y = x + z \implies y = z.$$

En première lecture, on pourra considérer que dans la suite de ce cours, \mathbb{K} désigne le corps \mathbb{Q} , \mathbb{R} ou \mathbb{C} . Cependant, excepté quelques résultats sur les symétries qui ne sont pas valables dans un corps de caractéristique 2, ce cours reste valide si \mathbb{K} est un corps quelconque, notion dont nous donnerons la définition plus tard dans l'année.

Définition 7.1.2

Soit \mathbb{K} un corps, (E, +) un groupe commutatif d'élément neutre 0_E et \cdot une loi de composition externe.

$$\begin{array}{cccc} \cdot : & \mathbb{K} \times E & \longrightarrow & E \\ & (\lambda, x) & \longmapsto & \lambda \cdot x \end{array}$$

On dit que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel lorsque

$$\begin{split} \forall x,y \in E, & \forall \lambda \in \mathbb{K}, & \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y \\ \forall x \in E, & \forall \lambda, \mu \in \mathbb{K}, & (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x \\ \forall x \in E, & \forall \lambda, \mu \in \mathbb{K}, & \lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x \\ & \forall x \in E, & 1 \cdot x = x. \end{split}$$

Les éléments de $\mathbb K$ sont appelés scalaires, ceux de E, vecteurs.

Proposition 7.1.3

$$\begin{aligned} \forall x \in E, & 0 \cdot x = 0_E \\ \forall \lambda \in \mathbb{K}, & \lambda \cdot 0_E = 0_E \\ \forall x \in E, & \forall \lambda \in \mathbb{K}, & (-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x) \end{aligned}$$

Remarque

 \Rightarrow En particulier, si $x \in E$, $(-1) \cdot x = -x$.

Proposition 7.1.4

$$\forall x \in E, \quad \forall \lambda \in \mathbb{K}, \quad \lambda \cdot x = 0_E \implies [\lambda = 0 \text{ ou } x = 0_E].$$

Définition 7.1.5

Soit \mathbb{K} un corps et $n \in \mathbb{N}^*$. On définit sur $E := \mathbb{K}^n$

— la loi de composition interne + par

$$\forall (x_1,\ldots,x_n), (y_1,\ldots,y_n) \in \mathbb{K}^n,$$

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n):=(x_1+y_1,\ldots,x_n+y_n).$$

— la loi de composition externe \cdot par

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n, \quad \forall \lambda \in \mathbb{K}, \quad \lambda \cdot (x_1, \dots, x_n) \coloneqq (\lambda x_1, \dots, \lambda x_n).$$

Alors $(\mathbb{K}^n, +, \cdot)$ est un \mathbb{K} -espace vectoriel d'élément neutre $(0, \dots, 0)$.

Remarques

- \Rightarrow En particulier, \mathbb{K} est un \mathbb{K} -espace vectoriel.
- \Rightarrow \mathbb{C} est un \mathbb{R} -espace vectoriel.

Définition 7.1.6

Soit E un \mathbb{K} -espace vectoriel et X un ensemble. On définit sur $\mathcal{F}(X,E)$

— la loi de composition interne + par

$$\forall f, g \in \mathcal{F}(X, E), \quad \forall x \in X, \quad (f+g)(x) := f(x) + g(x).$$

— la loi de composition externe \cdot par

$$\forall f \in \mathcal{F}(X, E), \quad \forall \lambda \in \mathbb{K}, \quad (\lambda \cdot f)(x) := \lambda \cdot f(x).$$

Alors $(\mathcal{F}(X, E), +, \cdot)$ est un \mathbb{K} -espace vectoriel dont l'élément neutre est l'application de X dans E qui à tout $x \in X$ associe 0_E . En particulier, $(\mathcal{F}(X, \mathbb{K}), +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Remarque

 \Rightarrow En particulier, si X est un ensemble, $\mathcal{F}(X,\mathbb{K})$ est un \mathbb{K} -espace vectoriel dont le « zéro » est la fonction nulle. Ainsi, $\mathcal{F}(\mathbb{R},\mathbb{R})$ est un \mathbb{R} -espace vectoriel dont le « zéro » est la fonction nulle. De même, l'ensemble $\mathbb{R}^{\mathbb{N}}$ des suites réelles est un \mathbb{R} -espace vectoriel dont le « zéro » est la suite nulle.

Définition 7.1.7

Soit $(E, +, \cdot)$ et $(F, +, \cdot)$ deux K-espaces vectoriels. On définit sur $E \times F$

— la loi de composition interne + par

$$\forall (x_1, y_1), (x_2, y_2) \in E \times F, \quad (x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2).$$

— la loi de composition externe \cdot par

$$\forall (x, y) \in E \times F, \quad \forall \lambda \in \mathbb{K}, \quad \lambda \cdot (x, y) := (\lambda \cdot x, \lambda \cdot y).$$

Alors $(E \times F, +, \cdot)$ est un K-espace vectoriel d'élément neutre $(0_E, 0_F)$.

Dans la suite du cours, l'élément 0_E sera désormais noté 0. Cependant, il sera toujours important de se demander si un 0 est le zéro de \mathbb{K} ou celui de E. Dans le second cas, on se demandera quelle est la nature de ce zéro : est-ce un un scalaire, un n-uplet, une suite, une fonction?

7.1.2 Sous-espace vectoriel

Définition 7.1.8

On dit qu'une partie F d'un \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E lorsque

- $-0 \in F$
- F est stable par $combinaisons\ linéaires$

$$\forall x, y \in F, \quad \forall \lambda, \mu \in \mathbb{K}, \quad \lambda x + \mu y \in F.$$

Si tel est le cas, $(F, +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Remarques

 \Rightarrow Si F est un sous-espace vectoriel de E, alors

$$\forall x \in F, \quad \forall \lambda \in \mathbb{K}, \qquad \lambda x \in F, \\ \forall x, y \in F, \qquad x + y \in F.$$

- \Rightarrow Si E est un \mathbb{K} -espace vectoriel, $\{0\}$ est un sous-espace vectoriel de E appelé sous-espace vectoriel trivial. De même, E est un sous-espace vectoriel de E.
- \Rightarrow Soit $a_1, \ldots, a_n \in \mathbb{K}$. Alors

$$F := \{(x_1, \dots, x_n) \in \mathbb{K}^n \mid a_1 x_1 + \dots + a_n x_n = 0\}$$

est un sous-espace vectoriel de \mathbb{K}^n . Par exemple, l'ensemble des triplets $(x, y, z) \in \mathbb{R}^3$ tels que x + 2y - z = 0 est un sous-espace vectoriel de \mathbb{R}^3 .

Exercice 1

⇒ Montrer que l'ensemble des solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y'(t) + e^{-t^2} y(t) = 0$$

est un sous-espace vectoriel de l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R.$

Proposition 7.1.9

Une intersection de sous-espaces vectoriels est un sous-espace vectoriel.

Remarques

- ⇒ Contrairement à l'intersection, l'union de deux sous-espaces vectoriels n'est pas en général un sous-espace vectoriel.
- \Rightarrow Soit $(a_{i,j})_{1 \leqslant i \leqslant q, 1 \leqslant j \leqslant p}$ une famille de scalaires. Alors

$$F = \{(x_1, \dots, x_p) \in \mathbb{K}^p \mid \forall i \in [1, q], \quad a_{i,1}x_1 + \dots + a_{i,p}x_p = 0\}$$

est un sous-espace vectoriel de \mathbb{K}^p . Par exemple, l'ensemble des triplets $(x,y,z) \in \mathbb{R}^3$ tels que

$$\begin{cases} x+y + z = 0 \\ x-y+2z = 0 \end{cases}$$

est un sous-espace vectoriel de \mathbb{R}^3 .

Définition 7.1.10

Soit A une partie d'un \mathbb{K} -espace vectoriel E. Alors, au sens de l'inclusion, il existe un plus petit sous-espace vectoriel de E contenant A. On l'appelle sous-espace vectoriel engendré par A et on le note $\operatorname{Vect}(A)$.

Remarques

- \Rightarrow Si F est un sous-espace vectoriel de E tel que $A \subset F$, alors $\operatorname{Vect}(A) \subset F$.
- \Rightarrow Si $A := \{x_1, \dots, x_n\}$, alors Vect(A) est aussi noté $\text{Vect}(x_1, \dots, x_n)$.

Proposition 7.1.11

Soit E un \mathbb{K} -espace vectoriel et $x_1, \ldots, x_n \in E$. Alors

$$Vect(x_1, ..., x_n) = \{\lambda_1 x_1 + \dots + \lambda_n x_n : \lambda_1, ..., \lambda_n \in \mathbb{K}\}.$$

Les éléments de $Vect(x_1, \ldots, x_n)$ sont appelés combinaisons linéaires de la famille (x_1, \ldots, x_n) .

Remarque

 \Rightarrow Soit $x \in E$. Alors

$$Vect(x) = \{\lambda x : \lambda \in \mathbb{K}\}.$$

Cet ensemble est aussi noté $\mathbb{K}x$.

Exercice 2

 \Rightarrow Soit E le R-espace vectoriel des fonctions de R dans R. On pose

$$A := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, \quad f(x) \geqslant 0 \}.$$

Montrer que $Vect(A) = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Définition 7.1.12

On dit que deux éléments $x, y \in E$ sont colinéaires lorsqu'il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x$ ou $x = \lambda y$.

Remarques

- ⇒ Le vecteur nul est colinéaire à tout vecteur.
- \Rightarrow Il est possible que x et $y \in E$ soient colinéaires sans qu'il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x$. Cependant, si x et y sont colinéaires et $x \neq 0$, alors il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x$.

Définition 7.1.13

On dit qu'un espace vectoriel E est une droite vectorielle lorsqu'il existe $x \in E \setminus \{0\}$ tel que $E = \mathbb{K}x$.

Remarque

 \Rightarrow Si E est une droite vectorielle, quel que soit $x \in E \setminus \{0\}$, $E = \mathbb{K}x$.

7.1.3 Application linéaire

Définition 7.1.14

Soit E et F deux \mathbb{K} -espaces vectoriels. On dit qu'une application f de E dans F est une application linéaire lorsque

$$\forall x, y \in E, \quad \forall \lambda, \mu \in \mathbb{K}, \quad f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

Plus précisément, on dit que f est un

- endomorphisme lorsque E = F.
- isomorphisme lorsque f est bijective.
- automorphisme lorsque f est un endomorphisme et un isomorphisme.

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Remarques

 \Rightarrow Soit $f \in \mathcal{L}(E, F)$. Alors

$$\forall x, y \in E, \qquad f(x+y) = f(x) + f(y),$$

$$\forall x \in E, \quad \forall \lambda \in \mathbb{K}, \qquad f(\lambda x) = \lambda f(x).$$

De plus $f(0_E) = 0_F$.

 \Rightarrow Soit f un endomorphisme du \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E. Lorsque F est stable par f, c'est-à-dire lorsque $f(F) \subset F$, la restriction de f à F, corestreinte à F, est un endomorphisme de F appelé endomorphisme induit à F.

Définition 7.1.15

On dit qu'une application f de E dans E est une homothétie lorsqu'il existe $\lambda \in \mathbb{K}$ tel que

$$\forall x \in E, \quad f(x) = \lambda x.$$

Les homothéties de E sont des endomorphismes.

Remarque

 \Rightarrow En particulier, Id_E est un endomorphisme de E.

Exercice 3

 \Rightarrow Soit E une droite vectorielle. Montrer que les homothéties sont les seuls endomorphismes de E.

Définition 7.1.16

On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} . L'ensemble $\mathcal{L}(E,\mathbb{K})$ est noté E^* et appelé dual de E.

Remarque

 \Rightarrow Si $E = \mathbb{K}^n$ et $\varphi \in \mathcal{F}(E, \mathbb{K})$, alors $\varphi \in E^*$ si et seulement si il existe $a_1, \ldots, a_n \in \mathbb{K}$ tels que

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n, \quad \varphi(x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n.$$

Proposition 7.1.17

Soit $f \in \mathcal{L}(E, F)$.

- L'image réciproque par f d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.
- L'image directe par f d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

Remarque

 \Rightarrow Si $u \in \mathcal{L}(E, F)$ et $x_1, \ldots, x_n \in E$, alors

$$u(\operatorname{Vect}(x_1,\ldots,x_n)) = \operatorname{Vect}(u(x_1),\ldots,u(x_n)).$$

Définition 7.1.18

On appelle noyau de $f \in \mathcal{L}(E, F)$ et on note Ker f l'ensemble

$$Ker f = \{x \in E \mid f(x) = 0\}.$$

C'est un sous-espace vectoriel de E.

Proposition 7.1.19

Une application linéaire f est injective si et seulement si $\operatorname{Ker} f = \{0\}$.

Définition 7.1.20

On appelle image de $f \in \mathcal{L}(E, F)$ et on note Im f l'ensemble

$$\operatorname{Im} f = \{ f(x) : x \in E \}$$

C'est un sous-espace vectoriel de F.

Remarques

- \Rightarrow f est surjective si et seulement si Im f = F.
- \Rightarrow Si $f \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}^*$, alors $\text{Im}(\lambda f) = \text{Im} f$. En particulier Im(-f) = Im f.

7.2. L'ALGÈBRE $\mathcal{L}(E)$ 147

- La composée de deux applications linéaires est linéaire.
- La bijection réciproque d'un isomorphisme est un isomorphisme.

Remarques

 \Rightarrow Si $f,g \in \mathcal{L}(E)$, on dit que f et g commutent lorsque $f \circ g = g \circ f$. En général, deux endomorphismes ne commutent pas, comme le montre l'exemple des endomorphismes

 \Rightarrow Il est possible que $f \circ g = 0$ sans que f = 0 ou g = 0.

Exercices 4

 \Rightarrow Soit E un K-espace vectoriel et $f, g \in \mathcal{L}(E)$. Montrer que

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0\}.$$

 \Rightarrow Soit f et g deux endomorphismes de E tels que $f \circ g = g \circ f$. Montrer que Ker f et Im f sont stables par g.

7.2L'algèbre $\mathcal{L}(E)$

7.2.1 $\mathcal{L}(E,F)$

 $(\mathcal{L}(E,F),+,\cdot)$ est un K-espace vectoriel.

Soit E, F et G trois \mathbb{K} -espaces vectoriels. Alors

$$\forall f \in \mathcal{L}(F,G), \quad \forall g,h \in \mathcal{L}(E,F), \quad \forall \lambda,\mu \in \mathbb{K}, \qquad f \circ (\lambda g + \mu h) = \lambda f \circ g + \mu f \circ h$$

$$\forall f,g \in \mathcal{L}(F,G), \quad \forall \lambda,\mu \in \mathbb{K}, \quad \forall h \in \mathcal{L}(E,F), \qquad (\lambda f + \mu g) \circ h = \lambda f \circ h + \mu g \circ h.$$

Définition 7.2.3

Soit $f \in \mathcal{L}(E)$. On définit f^n pour tout $n \in \mathbb{N}$ par récurrence.

$$--f^{0} := \mathrm{Id}_{E}$$

Remarque

 \Rightarrow Attention, si $f \in \mathcal{L}(E)$ et $x \in E$, $f^2(x) = f(f(x))$ et non $f(x)^2$, expression qui n'a d'ailleurs aucun sens.

— Soit $f \in \mathcal{L}(E)$. Alors

$$\forall m, n \in \mathbb{N}, \qquad f^{m+n} = f^m \circ f^n$$

$$(f^m)^n = f^{mn}.$$

— Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Alors, pour tout $n, m \in \mathbb{N}$, f^n et g^m commutent. De plus

$$\forall n \in \mathbb{N}, \quad (f \circ g)^n = f^n \circ g^n.$$

Exercice 5

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Pour tout $n \in \mathbb{N}$, on définit $K_n := \operatorname{Ker} f^n$ et $I_n := \operatorname{Im} f^n$. Montrer que les suites (K_n) et (I_n) sont respectivement croissantes et décroissantes au sens de l'inclusion.

Proposition 7.2.5

Soit $f, g \in \mathcal{L}(E)$ tels que $f \circ g = g \circ f$. Alors, pour tout $n \in \mathbb{N}$

$$(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^{n-k} \circ g^k$$
 et $f^n - g^n = (f-g) \circ \left[\sum_{k=0}^{n-1} f^{(n-1)-k} \circ g^k \right].$

Exercice 6

 \Rightarrow Soit E le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On définit $\Delta, T \in \mathcal{L}(E)$ par

$$\forall f \in E, \quad \forall x \in \mathbb{R}, \quad T(f)(x) \coloneqq f(x+1) \quad \text{et} \quad \Delta(f)(x) \coloneqq f(x+1) - f(x).$$

Calculer T^k et Δ^k pour tout $k \in \mathbb{N}$.

7.2.2 Le groupe linéaire

Définition 7.2.6

Un endomorphisme $u \in \mathcal{L}(E)$ est un automorphisme si et seulement si il existe $v \in \mathcal{L}(E)$ tel que

$$u \circ v = \mathrm{Id}_E$$
 et $v \circ u = \mathrm{Id}_E$.

Si tel est le cas, $v=u^{-1}$. On note GL (E) l'ensemble des automorphismes de E.

Proposition 7.2.7

 $\mathrm{GL}\left(E\right)$ possède les propriétés suivantes.

$$\operatorname{Id} \in \operatorname{GL}(E)$$

$$\forall f, g \in \operatorname{GL}(E), \qquad g \circ f \in \operatorname{GL}(E)$$

$$\forall f \in \operatorname{GL}(E), \qquad f^{-1} \in \operatorname{GL}(E).$$

Nous dirons que $(GL(E), \circ)$ est un groupe, que l'on appelle groupe linéaire.

7.3 Somme, somme directe, projecteur, hyperplan

7.3.1 Somme, somme directe

Définition 7.3.1

On appelle somme de deux sous-espaces vectoriels A et B de E, et on note A+B, le plus petit sous-espace vectoriel contenant A et B. On a

$$A+B=\left\{a+b:a\in A\quad b\in B\right\}.$$

Remarque

 \Rightarrow Si f et g sont deux applications linéaires de E dans F qui coïncident sur deux sous-espaces vectoriels A et B tels que A+B=E, alors f=g.

Exercices 7

- \Rightarrow Si $f,g \in \mathcal{L}(E,F)$, montrer que Im $(f+g) \subset$ Im f+ Im g. Donner un exemple où l'inclusion est stricte.
- \Rightarrow Soit A, B, C et D des sous-espaces vectoriels de E tels que $A \subset C, B \subset D$ et A + B = C + B. Montrer que A + D = C + D.

Définition 7.3.2

On dit que deux sous-espaces vectoriels A et B de E sont en somme directe lorsque

$$\forall a \in A, \quad \forall b \in B, \quad a+b=0 \quad \Longrightarrow \quad [a=0 \ \ \text{et} \ \ b=0] \, .$$

Si tel est le cas, la somme A+B est notée $A\oplus B$.

Remarque

 \Rightarrow Deux sous-espaces vectoriels A et B de E sont en somme directe si et seulement si, quel que soit $x \in A + B$, l'écriture x = a + b (avec $a \in A$ et $b \in B$) est unique.

Proposition 7.3.3

Deux sous-espaces vectoriels A et B de E sont en somme directe si et seulement si

$$A \cap B = \{0\}.$$

Définition 7.3.4

On dit que deux sous-espaces vectoriels A et B de E sont supplémentaires lorsque A et B sont en somme directe et A+B=E, c'est-à-dire lorsque

$$A \oplus B = E$$
.

Remarques

- \Rightarrow Autrement dit, A et B sont supplémentaires lorsque pour tout $x \in E$, il existe un unique couple $(a,b) \in A \times B$ tel que x = a + b.
- ⇒ Il est important de ne pas confondre « le complémentaire » et « un supplémentaire » d'un sous-espace vectoriel. En particulier, contrairement à un supplémentaire, le complémentaire d'un sous-espace vectoriel n'est pas un sous-espace vectoriel car il ne contient pas 0.
- ⇒ En général un sous-espace vectoriel admet plusieurs supplémentaires.
- \Rightarrow On peut démontrer que tout sous-espace vectoriel admet (au moins) un supplémentaire. Nous démontrerons ce point dans un autre chapitre, dans le cas où E est de dimension finie.

Exercice 8

 \Rightarrow Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f^2 + f$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Proposition 7.3.5: Version géométrique du théorème du rang

Soit $f \in \mathcal{L}(E, F)$, et A un supplémentaire de Ker f dans E. Alors

$$\varphi: A \longrightarrow \operatorname{Im} f$$

$$x \longmapsto f(x)$$

est un isomorphisme.

7.3.2 Projecteur

Définition 7.3.6

Soit A et B deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. Alors, il existe un unique endomorphisme $p \in \mathcal{L}(E)$ tel que

$$\forall a \in A, \quad \forall b \in B, \quad p(a+b) = a.$$

On l'appelle projecteur sur A parallèlement à B

Définition 7.3.7

Si p est le projecteur sur A parallèlement à B, le projecteur q sur B parallèlement à A est appelé projecteur associé à p. On a

$$p + q = \text{Id}$$
 et $p \circ q = q \circ p = 0$.

De plus, pour tout $x \in E$

$$x = \underbrace{p(x)}_{\in A} + \underbrace{q(x)}_{\in B}$$

est la décomposition de x dans $E = A \oplus B$.

Proposition 7.3.8

Soit p le projecteur sur A parallèlement à B. Alors

$$\operatorname{Ker} p = B$$
, $\operatorname{Ker} (p - \operatorname{Id}) = A$, $\operatorname{Im} p = A$.

De plus $p \circ p = p$.

Remarque

 \Rightarrow En particulier, si $p \in \mathcal{L}(E)$ est un projecteur

$$E = \operatorname{Ker} p \oplus \operatorname{Ker} (p - \operatorname{Id})$$
 et $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.

Proposition 7.3.9

 $p \in \mathcal{L}(E)$ est un projecteur si et seulement si $p \circ p = p$.

Exercices 9

- \Rightarrow Soit Re l'application de $\mathbb C$ dans $\mathbb C$ qui à z associe Re(z). Montrer que Re est un projecteur de $\mathbb C$ lorsqu'il est considéré comme un $\mathbb R$ -espace vectoriel.
- \Rightarrow Soit E le \mathbb{R} -espace vectoriel des fonctions de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} . On définit l'application φ de E dans E par

$$\forall f \in E, \quad \forall x \in \mathbb{R}, \quad [\varphi(f)](x) \coloneqq f(0) + f'(0)x.$$

Montrer que φ est un projecteur. En déduire un supplémentaire du sous-espace vectoriel de E des fonctions affines.

Proposition 7.3.10

Soit E et F deux \mathbb{K} -espaces vectoriels et A, B deux sous-espaces supplémentaires de E. Étant donnés $f_A \in \mathcal{L}(A, F)$ et $f_B \in \mathcal{L}(B, F)$, il existe une unique application linéaire f de E dans F telle que

$$\forall a \in A, \quad \forall b \in B, \quad f(a+b) = f_A(a) + f_B(b).$$

7.3.3 Symétrie

Définition 7.3.11

Soit A et B deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E. Alors, il existe un unique endomorphisme $s \in \mathcal{L}(E)$ tel que

$$\forall a \in A, \quad \forall b \in B, \quad s(a+b) = a - b.$$

On l'appelle symétrie par rapport à A parallèlement à B.

Proposition 7.3.12

Soit s la symétrie par rapport à A parallèlement à B. Alors

$$\operatorname{Ker}(s - \operatorname{Id}) = A, \quad \operatorname{Ker}(s + \operatorname{Id}) = B.$$

De plus $s \circ s = \text{Id}$. En particulier s est un isomorphisme et $s^{-1} = s$.

Remarque

 \Rightarrow En particulier, si $s \in \mathcal{L}(E)$ est une symétrie

$$E = \operatorname{Ker}(s - \operatorname{Id}) \oplus \operatorname{Ker}(s + \operatorname{Id}).$$

Proposition 7.3.13

 $s \in \mathcal{L}(E)$ est une symétrie si et seulement si $s \circ s = \mathrm{Id}$.

Exercice 10

 \Rightarrow Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et φ l'application de E dans E qui à f associe le fonction $\varphi(f)$ définie par

$$\forall x \in \mathbb{R}, \quad [\varphi(f)](x) := f(-x).$$

Montrer que φ est une symétrie et en déduire que $E = \mathcal{I} \oplus \mathcal{P}$ où \mathcal{I} désigne l'espace vectoriel des fonctions impaires et \mathcal{P} l'espace vectoriel des fonctions paires.

7.3.4 Hyperplan

Définition 7.3.14

Soit E un \mathbb{K} -espace vectoriel. On appelle hyperplan de E tout noyau d'une forme linéaire non nulle.

Proposition 7.3.15

Soit E un \mathbb{K} -espace vectoriel.

— Si H est un hyperplan de E et D est une droite vectorielle non contenue dans H, alors

$$E = H \oplus D$$
.

— Si D est une droite vectorielle, tout supplémentaire de D est un hyperplan.

Proposition 7.3.16

Soit H un hyperplan de E et φ_0 une forme linéaire telle que $H = \operatorname{Ker} \varphi_0$. Alors l'ensemble des formes linéaires de E dont le noyau est H est

$$\mathbb{K}^*\varphi_0 = \{\lambda\varphi_0 : \lambda \in \mathbb{K}^*\}.$$

7.4 Exercices

Espace vectoriel, application linéaire

Définition, propriétés élémentaires

$Sous-espace\ vectoriel$

Exercice 1: Exemples d'espaces vectoriels

- 1. Les ensembles E suivants sont-ils des sous-espaces vectoriels de l'espace vectoriel des suites réelles? Si oui, le prouver.
 - (a) L'ensemble des suites réelles ayant une limite finie lorsque n tend vers $+\infty$.
 - (b) L'ensemble des suites réelles bornées, c'est-à-dire l'ensemble des suites réelles (u_n) telles qu'il existe $M \ge 0$ tel que

$$\forall n \in \mathbb{N}, \quad |u_n| \leqslant M.$$

- 2. Les ensembles E suivants sont-ils des sous-espaces vectoriels de l'espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$? Si oui, le prouver.
 - (a) L'ensemble des fonctions 1-périodiques.
 - (b) L'ensemble des fonctions croissantes.
 - (c) L'ensemble des fonctions qui sont la somme d'une fonction croissante et d'une fonction décroissante.
 - (d) L'ensemble des solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad y'(t) + e^{t \sin(t)} y(t) = 0.$$

Exercice 2 : Combinaison linéaire

- 1. Dans \mathbb{R}^3 , donner une condition nécessaire et suffisante sur $a \in \mathbb{R}$ pour que le vecteur (1, -a, 1) soit combinaison linéaire de (1, 1, 1) et (a, 0, 2).
- 2. Dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$, $x \mapsto \cos^2(x)$ est-elle combinaison linéaire de $x \mapsto 1$ et $x \mapsto \cos(2x)$?
- 3. Dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$, $x \mapsto \sin(2x)$ est-elle combinaison linéaire de $x \mapsto \cos(x)$ et $x \mapsto \sin(x)$?

Exercice 3 : Fonctions trigonométriques

On pose $E := \mathcal{F}(\mathbb{R}, \mathbb{R})$. Pour tout $n \in \mathbb{N}$, on définit les fonctions f_n et g_n par

$$\forall x \in \mathbb{R}, \quad f_n(x) := \cos(nx) \quad \text{et} \quad g_n(x) := \cos^n(x).$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $g_n \in \text{Vect}(f_0, \ldots, f_n)$ et $f_n \in \text{Vect}(g_0, \ldots, g_n)$.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $\text{Vect}(f_0, f_1, \dots, f_n) = \text{Vect}(g_0, g_1, \dots, g_n)$.

Exercice 4 : Espace vectoriel engendré

Soit u, v et w trois vecteurs d'un K-espace vectoriel E. Montrer que Vect(u, v) = Vect(u, w) si et seulement si

$$\exists \alpha,\beta,\gamma \in \mathbb{K}, \quad \alpha u + \beta v + \gamma w = 0 \quad \text{et} \quad \beta \gamma \neq 0.$$

Exercice 5: Union de sous-espaces vectoriels

Soit E un \mathbb{K} -espace vectoriel.

- 1. Soit F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.
- 2. Soit $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E pour laquelle

$$\forall i, j \in I, \quad \exists k \in I, \quad F_i \cup F_j \subset F_k.$$

Montrer que $\bigcup_{i \in I} F_i$ est un sous-espace vectoriel de E.

7.4. EXERCICES 153

Application linéaire

Exercice 6 : Caractérisation des homothéties

Soit $f \in \mathcal{L}(E)$. Le but de cet exercice est de montrer que f est une homothétie si et seulement si, quel que soit $x \in E$, x et f(x) sont colinéaires.

- 1. Montrer que si f est une homothétie, quel que soit $x \in E$, x et f(x) sont colinéaires.
- 2. Réciproquement, on suppose que quel que soit $x \in E$, x et f(x) sont colinéaires.
 - (a) Montrer que pour tout $x \in E \setminus \{0\}$, il existe un unique $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x x$.
 - (b) Montrer que si x et $y \in E \setminus \{0\}$ sont colinéaires, alors $\lambda_x = \lambda_y$.
 - (c) Montrer que si x et $y \in E \setminus \{0\}$ ne sont pas colinéaires, alors $\lambda_x = \lambda_y$.
 - (d) Conclure.

$L'alg\`ebre \mathcal{L}(E)$

 $\mathcal{L}(E,F)$

Exercice 7 : Calcul dans $\mathcal{L}(E)$

- 1. Soit $f \in \mathcal{L}(E)$ tel que $f^3 = f^2 + f + \text{Id}$. Montrer que f est un automorphisme.
- 2. Soit E un \mathbb{K} -espace vectoriel et f un endomorphisme de E. On suppose que f est nilpotent, c'est-à-dire qu'il existe $n \in \mathbb{N}$ tel que :

$$f^n = 0$$

Montrer que $\mathrm{Id}_E + f$ est un automorphisme et calculer son inverse.

Le groupe linéaire

Exercice 8 : Automorphisme de \mathbb{R}^3

Soit

$$f: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$
$$(x, y, z) \quad \longmapsto \quad (x + z, -2x + y, x + 3z)$$

Montrer que $f \in GL(\mathbb{R}^3)$.

Somme, somme directe, projecteur, hyperplan

Somme, somme directe

Exercice 9: Exercice

Soit v et w deux vecteurs d'un \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E. Montrer que $F + \mathbb{K}v = F + \mathbb{K}w$ si et seulement si

$$\exists u \in F, \quad \exists \alpha, \beta \in \mathbb{K}, \quad u = \alpha v + \beta w \quad \text{et} \quad \alpha \beta \neq 0.$$

Exercice 10: Exercice

Soit E un espace vectoriel et F, G et H trois sous-espaces vectoriels de E.

- 1. Montrer que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$. Vérifiez sur un dessin qu'il est possible que cette inclusion soit stricte.
- 2. Établir que l'on a $(F \cap G) + (F \cap H) = F \cap [G + (F \cap H)]$.

Exercice 11: Exercice

 $E, F \text{ et } G \text{ sont trois } \mathbb{K}\text{-espaces vectoriels}, f \in \mathcal{L}(E, F) \text{ et } g \in \mathcal{L}(F, G).$ Montrer que

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0\}.$$

$$\operatorname{Im}(g \circ f) = \operatorname{Im} g \iff \operatorname{Ker} g + \operatorname{Im} f = F.$$

Exercice 12: Fonctions paires et impaires

Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on pose

$$\mathcal{P} := \{ f \in E \mid \forall x \in \mathbb{R}, \quad f(-x) = f(x) \} \qquad \text{et} \qquad \mathcal{I} := \{ f \in E \mid \forall x \in \mathbb{R}, \quad f(-x) = -f(x) \}.$$

Montrer que $E = \mathcal{P} \oplus \mathcal{I}$.

Exercice 13: Somme directe

Soit E le \mathbb{R} -espace vectoriel des fonctions réelles de classe \mathcal{C}^1 sur \mathbb{R} . On définit

$$A := \{ f \in E \mid \exists a, b \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad f(x) = ax + b \}$$

$$B := \{ f \in E \mid f(0) = 0 \text{ et } f'(0) = 0 \}$$

- 1. Montrer que A et B sont des sous-espaces vectoriels de E.
- 2. Montrer que $E = A \oplus B$.

Exercice 14: Rendre directe une somme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E tels que F+G=E. On note F' un supplémentaire de $F\cap G$ dans F. Montrer que

$$E = F' \oplus G$$
.

Projecteur

Exercice 15 : Somme de deux projecteurs

Soit E un \mathbb{K} -espace vectoriel et $p, q \in \mathcal{L}(E)$ deux projecteurs.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. On suppose que p+q est un projecteur. Montrer que

$$\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 16: Réduction d'une application linéaire

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que

$$f^2 - 5f + 6 \operatorname{Id} = 0.$$

- 1. Montrer que $(f 2 \operatorname{Id}) \circ (f 3 \operatorname{Id}) = 0$.
- 2. En déduire que $E = \text{Ker}(f 2 \text{Id}) \oplus \text{Ker}(f 3 \text{Id})$.

Exercice 17: Projecteur

Soit E un \mathbb{K} -espace vectoriel.

1. Soit $f \in \mathcal{L}(E)$ et g un projecteur de E. Montrer que

$$\operatorname{Ker}(f \circ g) = \operatorname{Ker} g \oplus (\operatorname{Ker} f \cap \operatorname{Im} g).$$

2. Soit f un projecteur de E et $g \in \mathcal{L}(E)$. Montrer que

$$\operatorname{Im}(f \circ g) = \operatorname{Im} f \cap (\operatorname{Ker} f + \operatorname{Im} g).$$

3. Soit f et g deux projecteurs de E. Montrer que $f \circ g$ est un projecteur si et seulement si

$$\operatorname{Im} f \cap (\operatorname{Ker} f + \operatorname{Im} g) \subset \operatorname{Im} g \oplus (\operatorname{Ker} f \cap \operatorname{Ker} g).$$

7.4. EXERCICES 155

Sym'etrie

Exercice 18 : Centre de $\mathcal{L}(E)$

Soit E un \mathbb{K} -espace vectoriel. Le but de cet exercice est de montrer que les endomorphismes qui commutent avec tous les autres sont les homothéties.

- 1. Montrer que si $f \in \mathcal{L}(E)$ est une homothétie, alors elle commute avec tous les endomorphismes de E.
- 2. Réciproquement, soit $f \in \mathcal{L}(E)$ un endomorphisme commutant avec tous les endomorphismes de E.
 - (a) Soit s une symétrie de E. Montrer que Ker(s Id) et Ker(s + Id) sont stables par f.
 - (b) En admettant le fait que toute droite vectorielle admet un supplémentaire, montrer que quel que soit $x \in E$, x et f(x) sont colinéaires.
 - (c) Conclure.

Hyperplan

Exercice 19: Hyperplan

Soit E un \mathbb{K} -espace vectoriel et H_1, H_2 deux hyperplans de E tels que $H_1 \subset H_2$. Montrer que $H_1 = H_2$.

Chapitre 8

Suites

« Les mathématiciens sont comme les français : quoique vous leur dites, ils le traduisent dans leur propre langue et le transforment en quelque chose de totalement différent. »

- Johann Wolfgang von Goethe (1749-1832)

« M. CAUCHY annonce que, pour se conformer au voeu du Conseil, il ne s'attachera plus à donner, comme il a fait jusqu'à présent, des démonstrations parfaitement rigoureuses. »

— Conseil d'instruction de l'École Polytechnique (1825)

8.1	Suit	e réelle et complexe
	8.1.1	Définition
	8.1.2	Suite et relation d'ordre
8.2	Noti	on de limite
	8.2.1	Limite finie
	8.2.2	Limite infinie
	8.2.3	Limite et relation d'ordre
	8.2.4	Théorèmes usuels et limites usuelles
	8.2.5	Suite extraite
8.3	Prop	oriétés de \mathbb{R}
	8.3.1	Voisinage
	8.3.2	Densité
	8.3.3	Propriété de la borne supérieure
8.4	Suit	e monotone
	8.4.1	Suite monotone
	8.4.2	Étude des suites définies par $u_{n+1} := f(u_n)$
	8.4.3	Suites adjacentes
	8.4.4	Théorème de Bolzano-Weierstrass
8.5	Exer	rcices

8.1 Suite réelle et complexe

8.1.1 Définition

Définition 8.1.1

On appelle suite numérique toute famille $(u_n)_{n\in\mathbb{N}}$ de réels, ou de complexes, indexée par \mathbb{N} .

Remarque

 \Rightarrow Dans la suite de ce chapitre, ainsi que dans tous les chapitres d'analyse, $\mathbb K$ désignera le corps $\mathbb R$ ou $\mathbb C$.

Définition 8.1.2

- On dit qu'une suite (u_n) vérifie la propriété \mathcal{P} à partir d'un certain rang lorsqu'il existe $N \in \mathbb{N}$ tel que la suite $(u_n)_{n \geq N}$ vérifie la propriété \mathcal{P} .
- On dit qu'une propriété \mathcal{P} est asymptotique lorsque, quelles que soient les suites (u_n) et (v_n) égales à partir d'un certain rang, $\mathcal{P}((u_n))$ est vrai si et seulement si $\mathcal{P}((v_n))$ est vrai.

Remarque

 \Rightarrow Pour montrer qu'une propriété \mathcal{P} est asymptotique, il suffit de se donner deux suites (u_n) et (v_n) égales à partir d'un certain rang telles que $\mathcal{P}(u)$ est vrai et de montrer que $\mathcal{P}(v)$ est vrai.

Exercice 1

🗁 La propriété « est nulle » est-elle asymptotique? Montrer que la propriété « s'annule une infinité de fois » l'est.

8.1.2 Suite et relation d'ordre

Définition 8.1.3

On dit qu'une suite réelle (u_n) est

— croissante lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1}.$$

— décroissante lorsque

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n.$$

- monotone lorsqu'elle est croissante ou décroissante.
- strictement croissante lorsque

$$\forall n \in \mathbb{N}, \quad u_n < u_{n+1}.$$

— strictement décroissante lorsque

$$\forall n \in \mathbb{N}, \quad u_{n+1} < u_n.$$

— strictement monotone lorsqu'elle est strictement croissante ou strictement décroissante.

Remarques

- \Rightarrow Pour étudier la monotonie de la suite (u_n) , il est souvent utile de simplifier $u_{n+1} u_n$ afin de déterminer son signe. Si la suite (u_n) est à valeurs strictement positives, on peut comparer u_{n+1}/u_n à 1. Par exemple, si a > 0, la suite de terme général a^n est croissante si $a \ge 1$ et décroissante si $a \le 1$.
- \Rightarrow Pour étudier la monotonie d'une suite donnée par son terme général, on peut aussi l'écrire $u_n = f(n)$ et étudier la fonction f.
- ⇒ Les suites constantes sont à la fois croissantes et décroissantes ; ce sont d'ailleurs les seules. Certaines suites ne sont ni croissantes ni décroissantes.

Exercice 2

$$\sum_{k=1}^{n} \frac{1}{k^3}, \qquad \binom{2n}{n}, \qquad \left(1 + \frac{1}{n}\right)^n.$$

Définition 8.1.4

On dit qu'une suite réelle (u_n) est

— *majorée* lorsque

$$\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant M.$$

— *minorée* lorsque

$$\exists m \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \geqslant m.$$

Les propriétés « est majorée » et « est minorée » sont asymptotiques.

8.2. NOTION DE LIMITE 159

Définition 8.1.5

On dit qu'une suite $(u_n) \in \mathbb{K}^{\mathbb{N}}$ est bornée lorsque

$$\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad |u_n| \leqslant M$$

La propriété « est bornée » est asymptotique.

Remarque

⇒ Une combinaison linéaire de suites bornées est bornée. De même, le produit de deux suites bornées est bornée.

Proposition 8.1.6

Une suite réelle est bornée si et seulement si elle est majorée et minorée.

8.2 Notion de limite

8.2.1 Limite finie

Définition 8.2.1

Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$ une suite et $l \in \mathbb{K}$. On dit que (u_n) converge vers l et on note $u_n \xrightarrow[n \to +\infty]{} l$ lorsque

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \geqslant N, \quad |u_n - l| \leqslant \varepsilon.$$

La propriété « converge vers l » est asymptotique.

Remarques

- \Rightarrow Si $l \in \mathbb{K}$, la suite constante égale à l converge vers l.
- \Rightarrow Si (u_n) est une suite et $l \in \mathbb{K}$, alors (u_n) converge vers l si et seulement si

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \geqslant N, \quad |u_n - l| < \varepsilon.$$

Cependant, conformément aux bonnes manières de l'analyse, nous éviterons le plus possible d'utiliser cette définition, car elle fait intervenir une inégalité stricte là où une inégalité large suffit.

Définition 8.2.2

— On dit qu'une suite (u_n) est convergente lorsqu'il existe $l \in \mathbb{K}$ tel que

$$u_n \xrightarrow[n \to +\infty]{} l.$$

- Si tel est le cas, l est unique; on l'appelle limite de la suite (u_n) .
- Dans le cas contraire, on dit que (u_n) est divergente.

Exercice 3

 \Rightarrow Soit (u_n) une suite convergente d'entiers. Montrer qu'elle est constante à partir d'un certain rang. En déduire que la suite de terme général $(-1)^n$ diverge.

Proposition 8.2.3

Toute suite convergente est bornée.

Proposition 8.2.4

Soit (u_n) une suite convergeant vers $l \in \mathbb{K}$. Alors

$$\overline{u_n} \xrightarrow[n \to +\infty]{} \overline{l}$$
 et $|u_n| \xrightarrow[n \to +\infty]{} |l|$.

Proposition 8.2.5

Soit (u_n) et (v_n) des suites convergeant respectivement vers l_1 et $l_2 \in \mathbb{K}$.

— Si λ , $\mu \in \mathbb{K}$, alors

$$\lambda u_n + \mu v_n \xrightarrow[n \to +\infty]{} \lambda l_1 + \mu l_2.$$

— De plus

$$u_n v_n \xrightarrow[n \to +\infty]{} l_1 l_2.$$

— Enfin, si $l_1 \neq 0$, la suite (u_n) ne s'annule pas à partir d'un certain rang et

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l_1}.$$

Exercices 4

- ⇒ Montrer que l'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'ensemble des suites réelles.
- \Rightarrow Soit (u_n) une suite réelle positive telle que la suite de terme général $u_n/(1+u_n)$ converge vers 0. Montrer que la suite (u_n) converge vers 0.
- \Rightarrow On souhaite montrer que la suite de terme général $\sin n$ diverge. Raisonner par l'absurde en supposant qu'elle converge, montrer que la suite de terme général $\cos n$ converge et aboutir à une absurdité.

Proposition 8.2.6

Soit (u_n) une suite et $l \in \mathbb{C}$. Alors

$$u_n \xrightarrow[n \to +\infty]{} l \iff \left[\operatorname{Re}(u_n) \xrightarrow[n \to +\infty]{} \operatorname{Re} l \text{ et } \operatorname{Im}(u_n) \xrightarrow[n \to +\infty]{} \operatorname{Im} l \right].$$

8.2.2 Limite infinie

Définition 8.2.7

Soit (u_n) une suite réelle.

— On dit que u_n tend vers $+\infty$ lorsque n tend vers $+\infty$ lorsque

$$\forall m \in \mathbb{R}, \quad \exists N \in \mathbb{N}, \quad \forall n \geqslant N, \quad u_n \geqslant m.$$

Si tel est le cas, on note

$$u_n \xrightarrow[n \to +\infty]{} +\infty.$$

— On dit que u_n tend vers $-\infty$ lorsque n tend vers $+\infty$ lorsque

$$\forall M \in \mathbb{R}, \quad \exists N \in \mathbb{N}, \quad \forall n \geqslant N, \quad u_n \leqslant M.$$

Si tel est le cas, on note

$$u_n \xrightarrow[n \to +\infty]{} -\infty.$$

Ces propriétés sont asymptotiques. De plus u_n tend vers $+\infty$ lorsque n tend vers $+\infty$ si et seulement si $-u_n$ tend vers $-\infty$ lorsque n tend vers $+\infty$.

Exercice 5

 \Rightarrow Soit $\alpha \in \mathbb{R}$. Montrer que $n + \alpha \xrightarrow[n \to +\infty]{} +\infty$.

Proposition 8.2.8

Si u_n admet une limite dans $\overline{\mathbb{R}}$, alors cette limite est unique; on l'appelle limite de la suite (u_n) et on la note

$$\lim_{n\to\infty}u_n.$$

8.2. NOTION DE LIMITE

161

Remarque

 \Rightarrow Une suite qui tend vers $+\infty$ est divergente. On dit aussi qu'elle diverge vers $+\infty$.

Exercice 6

 \Rightarrow Une suite non majorée diverge-t-elle toujours vers $+\infty$? Une suite divergeant vers $+\infty$ est-elle toujours croissante à partir d'un certain rang?

Proposition 8.2.9

Soit (u_n) et (v_n) deux suites réelles.

— Si u_n tend vers $+\infty$ et (v_n) est minorée, alors

$$u_n + v_n \xrightarrow[n \to +\infty]{} +\infty.$$

— Si u_n tend vers $+\infty$ et (v_n) est minorée par m>0, alors

$$u_n v_n \xrightarrow[n \to +\infty]{} +\infty.$$

Proposition 8.2.10

Soit (u_n) une suite réelle.

— Si (u_n) diverge vers $+\infty$, alors il existe un rang à partir duquel $u_n > 0$ et

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} 0.$$

— Si (u_n) converge vers 0 et est strictement positive, alors

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} +\infty.$$

8.2.3 Limite et relation d'ordre

Proposition 8.2.11

Soit (u_n) une suite réelle admettant $l \in \overline{\mathbb{R}}$ pour limite.

- Si (u_n) est majorée par $M \in \mathbb{R}$, alors $l \leq M$.
- Si (u_n) est minorée par $m \in \mathbb{R}$, alors $l \geqslant m$.

Proposition 8.2.12

Soit (u_n) une suite réelle admettant $l \in \overline{\mathbb{R}}$ pour limite.

— Si M est un réel tel que l < M, il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \quad u_n \leqslant M.$$

— Si m est un réel tel que l > m, il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \quad u_n \geqslant m.$$

Théorème 8.2.13: Théorème des gendarmes

Soit (a_n) , (b_n) et (u_n) des suites réelles telles que

$$\forall n \in \mathbb{N}, \quad a_n \leqslant u_n \leqslant b_n.$$

On suppose que a_n et b_n admettent la même limite finie $l \in \mathbb{R}$. Alors

$$u_n \xrightarrow[n \to +\infty]{} l.$$

Exercices 7

 \Rightarrow Donner la limite éventuelle de la suite de terme général $\frac{\left\lfloor \sqrt{n} \right\rfloor}{\sqrt{n}}$.

 \Rightarrow Soit (u_n) et (v_n) deux suites à valeurs dans [0,1] telles que $u_n + v_n \xrightarrow[n \to +\infty]{} 2$. Que dire des suites (u_n) et (v_n) ?

Soit (u_n) et (v_n) deux suites réelles telles que

$$\forall n \in \mathbb{N}, \quad u_n \leqslant v_n.$$

$$\begin{array}{ll} - & \text{si } u_n \xrightarrow[n \to +\infty]{} +\infty, \text{ alors } v_n \xrightarrow[n \to +\infty]{} +\infty. \\ - & \text{si } v_n \xrightarrow[n \to +\infty]{} -\infty, \text{ alors } u_n \xrightarrow[n \to +\infty]{} -\infty. \end{array}$$

$$-\operatorname{si} v_n \xrightarrow[n \to +\infty]{n \to +\infty} -\infty$$
, alors $u_n \xrightarrow[n \to +\infty]{n \to +\infty} -\infty$

Exercices 8

 \Rightarrow Donner la limite éventuelle de la suite de terme général $n + \sin n$.

 \Rightarrow Soit (u_n) une suite réelle telle que la suite de terme général $u_{n+1}-u_n$ converge vers $\alpha>0$. Montrer que la suite (u_n) diverge vers $+\infty$.

Soit (u_n) une suite, $l \in \mathbb{K}$ et (v_n) une suite réelle positive telle que

Alors

$$u_n \xrightarrow[n \to +\infty]{} l.$$

Exercices 9

⇒ Étudier la convergence de la suite de terme général

$$\frac{\cos 1 + \cos 2 + \dots + \cos n}{n}$$

⇒ Une suite réelle strictement positive convergeant vers 0 est-elle décroissante à partir d'un certain rang?

Théorèmes usuels et limites usuelles 8.2.4

Soit (u_n) et (v_n) deux suites réelles ayant pour limites respectives l_1 et $l_2 \in \mathbb{R}$.

— Si $l_1 + l_2$ n'est pas une forme indéterminée

$$u_n + v_n \xrightarrow[n \to +\infty]{} l_1 + l_2.$$

— Si l_1l_2 n'est pas une forme indéterminée

$$u_n v_n \xrightarrow[n \to +\infty]{} l_1 l_2.$$

— Si $1/l_1$ n'est pas une forme indéterminée

$$\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{l_1}.$$

Soit $k \in \mathbb{N}^*$. Alors

$$\frac{1}{n^k} \xrightarrow[n \to +\infty]{} 0 \quad \text{et} \quad n^k \xrightarrow[n \to +\infty]{} +\infty.$$

Soit ω un réel positif.

— Si
$$\omega > 1$$
, alors $\omega^n \xrightarrow{\pi \to +\infty} +\infty$

- Si
$$\omega > 1$$
, alors $\omega^n \xrightarrow[n \to +\infty]{} + \infty$.
- Si $\omega < 1$, alors $\omega^n \xrightarrow[n \to +\infty]{} 0$.

Soit (u_n) une suite de réels strictement positifs. On suppose que

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \omega \in \mathbb{R}_+ \cup \{+\infty\}.$$

163

— Si
$$\omega < 1$$
, alors $u_n \longrightarrow 0$

$$- \operatorname{Si} \, \omega < 1, \, \operatorname{alors} \, u_n \xrightarrow[n \to +\infty]{} 0.$$

$$- \operatorname{Si} \, \omega > 1, \, \operatorname{alors} \, u_n \xrightarrow[n \to +\infty]{} +\infty.$$

Exercice 10

⇒ Déterminer la limite éventuelle des suites de terme général

$$\frac{\mathrm{e}^n}{n!}, \qquad \frac{(1+\mathrm{i})^n}{n}$$

Soit $f: \mathcal{D} \to \mathbb{K}$. On suppose qu'il existe $a \in \overline{\mathbb{R}}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}) tels que

$$f(x) \xrightarrow[x \to a]{} l.$$

Si (u_n) est une suite d'éléments de \mathcal{D} admettant a pour limite, alors

$$f(u_n) \xrightarrow[n \to +\infty]{} l.$$

Exercice 11

⇒ Déterminer la limite éventuelle de la suite de terme général

$$\left(1+\frac{1}{n}\right)^n$$
.

8.2.5 Suite extraite

Définition 8.2.21

On appelle extractrice toute application strictement croissante de \mathbb{N} dans \mathbb{N} .

Remarque

 \Rightarrow Les applications de $\mathbb N$ dans $\mathbb N$ définies par

$$\forall n \in \mathbb{N}, \quad \varphi_1(n) \coloneqq n+1, \qquad \varphi_2(n) \coloneqq 2n, \qquad \varphi_3(n) \coloneqq 2n+1$$

sont des extractrices.

Si φ est une extractrice, alors

$$\forall n \in \mathbb{N}, \quad \varphi(n) \geqslant n.$$

Définition 8.2.23

Soit (u_n) une suite. On appelle suite extraite (ou sous-suite) de (u_n) toute suite du type $(u_{\varphi(n)})$ où φ est une extractrice.

Proposition 8.2.24

Si (u_n) est une suite admettant $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}) pour limite, toute sous-suite de (u_n) tend vers l.

Remarque

 \Rightarrow Pour montrer qu'une suite (u_n) n'est pas convergente, il suffit de trouver deux extractrices φ_1 et φ_2 telles que les suites de terme général $u_{\varphi_1(n)}$ et $u_{\varphi_2(n)}$ convergent vers des limites différentes.

Exercices 12

- \Rightarrow Montrer que la suite de terme général $\frac{1}{n} + (-1)^n$ diverge.
- \Rightarrow Soit (u_n) une suite réelle non majorée. Montrer qu'on peut en extraire une suite divergeant vers $+\infty$.

Proposition 8.2.25

Soit (u_n) une suite et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}) tels que

$$u_{2n} \xrightarrow[n \to +\infty]{} l$$
 et $u_{2n+1} \xrightarrow[n \to +\infty]{} l$.

Alors

$$u_n \xrightarrow[n \to +\infty]{} l.$$

8.3 Propriétés de \mathbb{R}

8.3.1 Voisinage

Définition 8.3.1

— Soit $a \in \mathbb{R}$. On dit qu'une partie \mathcal{V} de \mathbb{R} est un voisinage de a lorsqu'il existe $\varepsilon > 0$ tel que

$$\mathcal{V} = \{x \in \mathbb{R} \mid |x - a| \leqslant \varepsilon\} = [a - \varepsilon, a + \varepsilon].$$

— On dit qu'une partie $\mathcal V$ de $\mathbb R$ est un voisinage de $+\infty$ lorsqu'il existe $m\in\mathbb R$ tel que

$$\mathcal{V} = [m, +\infty[$$
.

— On dit qu'une partie \mathcal{V} de \mathbb{R} est un voisinage de $-\infty$ lorsqu'il existe $M \in \mathbb{R}$ tel que

$$\mathcal{V} =]-\infty, M]$$
.

— Soit $a \in \mathbb{C}$. On dit qu'une partie \mathcal{V} de \mathbb{C} est un voisinage de a lorsqu'il existe $\varepsilon > 0$ tel que

$$\mathcal{V} = \{ z \in \mathbb{C} \mid |z - a| \leqslant \varepsilon \}.$$

Remarque

 \Rightarrow La notion de voisinage permet d'unifier la notion de limite. Si (u_n) est une suite réelle et $l \in \mathbb{R}$, alors

$$u_n \xrightarrow[n \to +\infty]{} l$$

si et seulement si, quel que soit le voisinage \mathcal{V} de l, il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $u_n \in \mathcal{V}$.

Proposition 8.3.2

L'intersection d'un nombre fini de voisinages de $a \in \overline{\mathbb{R}}$ (ou \mathbb{C}) est un voisinage.

8.3. $PROPRIÉTÉS DE \mathbb{R}$ 165

8.3.2 Densité

Définition 8.3.3

On dit qu'une partie A de $\mathbb R$ est dense dans $\mathbb R$ lorsque

$$\forall x \in \mathbb{R}, \quad \forall \varepsilon > 0, \quad \exists a \in A, \quad |x - a| \leqslant \varepsilon.$$

Remarques

- \Rightarrow Autrement dit, A est dense dans \mathbb{R} si et seulement si, quels que soient $x \in \mathbb{R}$ et le voisinage \mathcal{V} de $x, \mathcal{V} \cap A \neq \emptyset$.
- \Rightarrow Une partie A est dense dans $\mathbb R$ si et seulement si pour tout $x,y\in\mathbb R$ tels que x< y, il existe $a\in A$ tel que $x\leqslant a\leqslant y$.

Proposition 8.3.4

Une partie A de \mathbb{R} est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite d'éléments de A convergeant vers x.

Proposition 8.3.5

 \mathbb{Q} est dense dans \mathbb{R} .

Remarque

 $\Rightarrow \mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

Exercice 13

 \Rightarrow En remarquant que $(\sqrt{2}-1)^n$ tend vers 0 lorsque n tend vers $+\infty$, montrer que

$$A := \left\{ a + b\sqrt{2} : a, b \in \mathbb{Z} \right\}$$

est dense dans \mathbb{R} .

8.3.3 Propriété de la borne supérieure

Définition 8.3.6

Soit A une partie de \mathbb{R} . On dit que A admet une borne supérieure lorsque l'ensemble des majorants de A admet un plus petit élément. Si tel est le cas, on le note sup A.

Remarques

- \Rightarrow Soit $b \in \mathbb{R}$. Alors $]-\infty, b[$ et $]-\infty, b[$ admettent b pour borne supérieure.
- \Rightarrow Si une partie A de \mathbb{R} admet un plus grand élément, alors elle admet une borne supérieure et sup $A = \max A$. Cependant, il est possible que A admette une borne supérieure qui n'appartienne pas à A; dans ce cas, A n'admet pas de plus grand élément.
- \Rightarrow Si une partie A de \mathbb{R} admet une borne supérieure, alors elle est non vide et majorée.

Proposition 8.3.7

Soit A une partie de \mathbb{R} et $\alpha \in \mathbb{R}$. Alors α est la borne supérieure de A si et seulement si

— α est un majorant de A

$$\forall a \in A, \quad a \leqslant \alpha.$$

— α est le plus petit des majorants de A

$$\forall \varepsilon > 0, \quad \exists a \in A, \quad a \geqslant \alpha - \varepsilon.$$

Remarques

 \Rightarrow Si A est une partie de \mathbb{R} et $\alpha \in \mathbb{R}$, dire que α est un majorant de A s'écrit : $\forall a \in A \quad a \leqslant \alpha$. Par contre, pour montrer (ou exploiter le fait) que α est le plus petit des majorants de A, deux phrases équivalentes s'offrent à nous.

$$\forall \beta \in \mathbb{R}, \quad [\forall a \in A, \quad a \leqslant \beta] \quad \Longrightarrow \quad \alpha \leqslant \beta$$

$$\forall \varepsilon > 0, \quad \exists a \in A, \quad a \geqslant \alpha - \varepsilon.$$

Nous emploierons le plus souvent la seconde.

 \Rightarrow Pour exploiter le fait que α est le plus petit des majorants de A, on peut remplacer l'inégalité $a \geqslant \alpha - \varepsilon$ par une inégalité stricte

$$\forall \varepsilon > 0, \quad \exists a \in A, \quad a > \alpha - \varepsilon.$$

Proposition 8.3.8

Soit A une partie de \mathbb{R} et $\alpha \in \mathbb{R}$. Alors α est la borne supérieure de A si et seulement si c'est un majorant de A et qu'il existe une suite d'éléments de A convergeant vers α .

Exercice 14

 \Rightarrow Montrer que $A = \left\{ \frac{n-1}{n} : n \in \mathbb{N}^* \right\}$ admet une borne supérieure que l'on calculera.

Théorème 8.3.9

Une partie A de \mathbb{R} admet une borne supérieure si et seulement si elle est non vide et majorée.

Exercice 15

 \Rightarrow Soit A et B deux parties de \mathbb{R} telles que $A \subset B$. On suppose que A est non vide et que B est majorée. Comparer sup A et sup B.

Définition 8.3.10

Soit A une partie de \mathbb{R} . On dit que A admet une borne inférieure lorsque l'ensemble des minorants de A admet un plus grand élément. Si tel est le cas, on le note inf A.

Proposition 8.3.11

Soit A une partie de \mathbb{R} et $\alpha \in \mathbb{R}$. Alors α est la borne inférieure de A si et seulement si

— α est un minorant de A

$$\forall a \in A, \quad a \geqslant \alpha.$$

— α est le plus grand des minorants de A

$$\forall \varepsilon > 0, \quad \exists a \in A, \quad a \leqslant \alpha + \varepsilon.$$

Proposition 8.3.12

Soit A une partie de \mathbb{R} et $\alpha \in \mathbb{R}$. Alors α est la borne inférieure de A si et seulement si c'est un minorant de A et qu'il existe une suite d'éléments de A convergeant vers α .

Exercice 16

 \Rightarrow Montrer que $A = \left\{ \frac{4}{n} + n : n \in \mathbb{N}^* \right\}$ admet une borne inférieure que l'on calculera.

Proposition 8.3.13

Une partie A de \mathbb{R} admet une borne inférieure si et seulement si elle est non vide et minorée.

Définition 8.3.14

On dit qu'une partie C de \mathbb{R} est convexe lorsque

$$\forall a,b \in C, \quad a \leqslant b \quad \Longrightarrow \quad [a,b] \subset C.$$

Remarque

 \Rightarrow Une partie C de \mathbb{R} est convexe si et seulement si, quels que soient $a,b\in C$ et $t\in [0,1],\ ta+(1-t)b\in C$.

Théorème 8.3.15

Les intervalles sont les parties convexes de \mathbb{R} .

Remarque

 \Rightarrow On en déduit que l'intersection d'une famille d'intervalles est un intervalle.

8.4. SUITE MONOTONE 167

8.4 Suite monotone

8.4.1 Suite monotone

Théorème 8.4.1: Théorème de la limite monotone

Toute suite croissante majorée est convergente.

Remarque

 \Rightarrow Si (u_n) est croissante et admet une limite $l \in \mathbb{R}$ en $+\infty$, alors

$$\forall n \in \mathbb{N}, \quad u_n \leqslant l.$$

De plus, si (u_n) est strictement croissante, alors

$$\forall n \in \mathbb{N}, \quad u_n < l.$$

Exercices 17

 \Rightarrow Soit $\alpha > 1$ et (u_n) la suite définie par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \sum_{k=1}^n \frac{1}{k^{\alpha}}.$$

Montrer que pour tout $k \geqslant 2$

$$\frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}x}{x^{\alpha}}.$$

En déduire la convergence de la suite (u_n) .

 \Rightarrow La limite de l'exemple précédent est notée $\zeta(\alpha)$. On définit ainsi une fonction ζ de $]1,+\infty[$ dans \mathbb{R} , appelée fonction zéta de Riemann. Montrer que ζ est décroissante sur $]1,+\infty[$.

Proposition 8.4.2

Soit (u_n) une suite croissante.

- Si elle est majorée, alors elle est convergente.
- Sinon, elle diverge vers $+\infty$.

Exercice 18

 \Rightarrow Soit (u_n) la suite définie par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \sum_{k=1}^n \frac{1}{k}.$$

Montrer que $u_{2n} - u_n$ est minoré par un réel $\alpha > 0$. En déduire que (u_n) diverge vers $+\infty$.

Proposition 8.4.3

Toute suite décroissante minorée est convergente.

Proposition 8.4.4

Soit (u_n) une suite décroissante.

- Si elle est minorée, alors elle est convergente.
- Sinon, elle diverge vers $-\infty$.

8.4.2 Étude des suites définies par $u_{n+1} := f(u_n)$

Remarques

- \Rightarrow Lorsqu'on étudie une suite définie par une relation de récurrence du type $u_{n+1} := f(u_n)$, on procède comme suit.
 - Étude de f et tracé de son graphe

On commencera par tracer le graphe de f en prenant soin de placer correctement ce graphe par rapport à la droite d'équation y=x. En pratique, on étudiera les variations de f, ses limites aux bornes du domaine de définition, ainsi que le signe de $\varphi(x) := f(x) - x$.

- Tracé des escaliers et conjectures
 - Dans le cas où f est croissante, un dessin de l'escalier des premiers termes de la suite (u_n) permet d'établir une conjecture concernant son comportement asymptotique en fonction de α .
- Recherche d'un intervalle stable par f
 - On cherche ensuite un intervalle I de \mathbb{R} , stable par f, tel que $u_0 \in I$. On en déduit que la relation de récurrence définit bien une suite (u_n) et que

$$\forall n \in \mathbb{N}, \quad u_n \in I.$$

— Démonstration des résultats annoncés

Si φ est de signe constant sur I, alors $\underline{(u_n)}$ est monotone. C'est le signe de φ qui donne le sens de variation de (u_n) . Elle admet donc une limite $l \in \mathbb{R}$ qui est soit une extrémité de I, soit un élément de I. Dans le cas où $l \in I$ est continue en l, on a f(l) = l.

 \Rightarrow Remarquons que la croissance seule de f permet de montrer la monotonie de (u_n) .

Exercices 19

 \Rightarrow Soit $\alpha \geqslant 0$ et (u_n) la suite définie par

$$u_0 \coloneqq \alpha \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq \sqrt{1 + u_n}.$$

Étudier la limite éventuelle de la suite (u_n) .

 \Rightarrow Soit $\alpha \in \mathbb{R}$ et (u_n) la suite définie par

$$u_0 \coloneqq \alpha \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq \frac{u_n^2 + 2}{3}.$$

Étudier la limite éventuelle de la suite (u_n) .

Remarque

 \Rightarrow Si f est décroissante, on étudie les suites (u_{2n}) et (u_{2n+1}) . Ces suites vérifient une relation de récurrence faisant intervenir $f \circ f$. On commence par étudier la suite (u_{2n}) . Comme f est décroissante, $f \circ f$ est croissante, et on est ramené au cas précédent. Puis, en remarquant que $u_{2n+1} = f(u_{2n})$, on en déduit la limite, si elle existe, de (u_{2n+1}) . Si ces deux suites admettent la même limite $l \in \mathbb{R}$, alors (u_n) converge vers l. Dans le cas contraire, la suite (u_n) est divergente.

Exercice 20

 \Rightarrow Étudier la suite (u_n) définie par

$$u_0 \coloneqq 0 \text{ et } \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq 1 - \frac{3}{4}u_n^2.$$

8.4. SUITE MONOTONE 169

8.4.3 Suites adjacentes

Définition 8.4.5

Soit (u_n) et (v_n) deux suites réelles. On dit que (u_n) et (v_n) sont adjacentes lorsque

- $\forall n \in \mathbb{N}, \quad u_n \leqslant v_n,$
- (u_n) est croissante et (v_n) est décroissante,
- $v_n u_n \xrightarrow[n \to +\infty]{} 0.$

Remarque

 \Rightarrow Si deux suites (u_n) et (v_n) vérifient les deux derniers points, alors elles vérifient le premier point. En théorie il est donc inutile de le vérifier, mais l'usage veut qu'on le fasse.

Proposition 8 4 6

Soit (u_n) et (v_n) deux suites adjacentes. Alors (u_n) et (v_n) convergent vers la même limite $l \in \mathbb{R}$. De plus

$$\forall n \in \mathbb{N}, \quad u_n \leqslant l \leqslant v_n.$$

Exercice 21

 \implies Montrer que les suites (u_n) et (v_n) définies par

$$\forall n \in \mathbb{N}^*, \quad u_n \coloneqq \sum_{k=1}^n \frac{1}{n+k} \quad \text{et} \quad v_n \coloneqq \sum_{k=n}^{2n} \frac{1}{k}$$

sont adjacentes. En utilisant une comparaison avec des intégrales, montrer qu'elles convergent vers ln 2.

8.4.4 Théorème de Bolzano-Weierstrass

Théorème 8.4.7: Théorème de Bolzano-Weierstrass

Toute suite bornée admet une sous-suite convergente.

Exercice 22

 \Rightarrow Soit $x \in \mathbb{R} \setminus \mathbb{Q}$, (p_n) une suite d'entiers relatifs et (q_n) une suite d'entiers naturels non nuls tels que

$$\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x$$

Montrer que
$$q_n \xrightarrow[n \to +\infty]{} +\infty$$
.

8.5. EXERCICES 171

8.5 Exercices

Suite réelle et complexe

 $D\'{e}finition$

Suite et relation d'ordre

Notion de limite

Limite finie

Exercice 1: Minimum et Maximum

Soit u et v deux suites réelles convergeant respectivement vers l_u et l_v . Montrer que les suites de terme général $\max(u_n, v_n)$ et $\min(u_n, v_n)$ sont convergentes et calculer leurs limites.

Exercice 2 : Plus grand et plus petit élément

Soit (u_n) une suite de réels. On pose

$$A := \{u_n : n \in \mathbb{N}\}.$$

- 1. On suppose que (u_n) diverge vers $+\infty$. Montrer que A admet un plus petit élément.
- 2. On suppose que (u_n) converge. Montrer que A admet un plus petit ou un plus grand élément.

Exercice 3: Quelques calculs de limite

Montrer que les suites suivantes, définies par leur terme général, admettent une limite que l'on calculera.

$$\mathbf{a.} \ \frac{\sin(n^3)}{n}, \qquad \mathbf{b.} \ \frac{n^3 + 5n}{5n^3 + \cos n + \frac{1}{n^2}}, \qquad \mathbf{c.} \ \frac{2n + (-1)^n}{5n + (-1)^{n+1}}, \qquad \mathbf{d.} \ \sqrt[n]{3 + \sin n},$$

$$\mathbf{e.} \ \left(1 - \frac{1}{\sqrt{n}}\right)^n, \qquad \mathbf{f.} \ \operatorname{Arctan}\left(\frac{n^2 - n\cos n + (-1)^n}{\ln n + n^2}\right), \qquad \mathbf{g.} \ \left(5\sin\frac{1}{n^2} + \frac{1}{5}\cos n\right)^n,$$

$$\mathbf{h.} \ \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor, \qquad \mathbf{i.} \ \left(a + \frac{b}{n}\right)^n \quad \text{où } a \text{ et } b \text{ sont réels et } a \geqslant 0.$$

Exercice 4 : Une manipulation fine d' ε

Soit (u_n) une suite réelle telle que

$$\forall k, n \geqslant 1, \quad 0 \leqslant u_n \leqslant \frac{k}{n} + \frac{1}{k}.$$

Le but de cet exercice est de montrer que (u_n) converge vers 0 de deux manières distinctes.

1. (a) Soit $\varepsilon > 0$. Montrer qu'il existe une constante C telle que

$$\forall n \geqslant 1, \quad |u_n| \leqslant \frac{C}{n} + \frac{\varepsilon}{2}.$$

- (b) En déduire que (u_n) converge vers 0.
- 2. Montrer directement ce résultat en choisissant judicieusement k.

Exercice 5 : Théorème de Césaro

Étant donnée une suite complexe (u_n) , on définit la suite (c_n) par

$$\forall n \geqslant 1, \quad c_n := \frac{u_1 + u_2 + \dots + u_n}{n} = \frac{1}{n} \sum_{k=1}^n u_k$$

appelée moyenne de Césaro de la suite (u_n) .

1. On suppose dans cette question que (u_n) est convergente. Il existe donc $l \in \mathbb{C}$ tel que

$$u_n \xrightarrow[n \to +\infty]{} l.$$

On souhaite montrer que (c_n) converge vers l.

(a) Soit $\varepsilon > 0$. Montrer qu'il existe $N_0 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant N_0, \quad |c_n - l| \leqslant \frac{|u_1 - l| + \dots + |u_{N_0 - 1} - l|}{n} + \frac{\varepsilon}{2}.$$

(b) En déduire qu'il existe $N \in \mathbb{N}^*$ tel que

$$\forall n \geqslant N, \quad |c_n - l| \leqslant \varepsilon$$

et conclure.

- 2. Réciproquement, on suppose (c_n) convergente. Peut-on en déduire que (u_n) est convergente?
- 3. Que dire si (u_n) est une suite réelle divergeant vers $+\infty$?

Exercice 6 : Applications du théorème de Césaro

Dans cet exercice, on pourra utiliser librement le théorème de Césaro.

1. Soit (u_n) une suite complexe telle que $u_{n+1} - u_n$ converge vers $l \in \mathbb{C}$. Montrer que

$$\frac{u_n}{n} \xrightarrow[n \to +\infty]{} l$$

2. Soit (u_n) une suite de réels strictement positifs convergeant vers un réel l > 0. Montrer que

$$\sqrt[n]{\prod_{k=1}^{n} u_k} \xrightarrow[n \to +\infty]{} l.$$

Exercice 7: Autour de Césaro

Soit (u_n) une suite complexe convergeant vers $l \in \mathbb{C}$.

1. Montrer que la suite (v_n) définie par

$$\forall n \in \mathbb{N}^*, \quad v_n := \frac{u_1 + 2u_2 + \dots + nu_n}{n^2} = \frac{1}{n^2} \sum_{k=1}^n k u_k$$

converge vers l/2.

2. Montrer que la suite (w_n) définie par

$$\forall n \in \mathbb{N}, \quad w_n := \frac{\binom{n}{0}u_0 + \binom{n}{1}u_1 + \dots + \binom{n}{n}u_n}{2^n} = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} u_k$$

converge vers l.

Exercice 8: Produit de Cauchy

Soit (u_n) et (v_n) deux suites complexes convergeant vers 0. On suppose qu'il existe $M \in \mathbb{R}_+$ tel que

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} |u_k| \leqslant M.$$

Montrer que

$$\sum_{k=0}^{n} u_k v_{n-k} \xrightarrow[n \to +\infty]{} 0.$$

Limite infinie

Limite et relation d'ordre

Exercice 9 : Calcul de limite

1. Montrer que

$$\forall p \in \mathbb{N}^* \quad \frac{1}{p+1} \leqslant \ln\left(\frac{p+1}{p}\right) \leqslant \frac{1}{p}.$$

2. En déduire la limite de la suite de terme général

$$\sum_{k=1}^{n} \frac{1}{n+k}.$$

8.5. EXERCICES 173

Exercice 10: Exercice

Soit (u_n) et (v_n) deux suites d'éléments de [0,1] telles que

$$u_n v_n \xrightarrow[n \to +\infty]{} 1.$$

Montrer que (u_n) et (v_n) convergent toutes les deux vers 1.

Théorèmes usuels et limites usuelles

Suite extraite

Exercice 11: Suites divergentes

Montrer que les suites suivantes, définies par leur terme général, sont divergentes

a.
$$\cos\left(\frac{n\pi}{4}\right)$$
, **b.** $\frac{5n^2 + \sin n}{2(n+1)^2 \cos\frac{n\pi}{5}}$, **c.** $\frac{2 + n\sin\left(\frac{n\pi}{2}\right)}{n\cos\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)}$.

Exercice 12: Autour de la notion d'extractrice

- 1. Soit (u_n) une suite réelle prenant un nombre fini de valeurs. Montrer que l'on peut en extraire une suite constante.
- 2. Soit (u_n) une suite réelle ne divergeant pas vers $+\infty$. Montrer que l'on peut en extraire une suite majorée.
- 3. Soit (u_n) une suite complexe et $l \in \mathbb{C}$. Montrer l'équivalence entre les deux propositions suivantes.
 - Il existe une suite extraite de (u_n) convergeant vers l.
 - Quel que soit $\varepsilon > 0$, l'ensemble

$$A_{\varepsilon} = \{ n \in \mathbb{N} \mid |u_n - l| \leqslant \varepsilon \}$$

est infini.

Donner une exemple d'une suite non convergente vérifiant cette propriété.

4. Montrer que de toute suite réelle divergeant vers $+\infty$, on peut extraire une suite croissante.

Exercice 13: Convergence et suites extraites

- 1. Soit (u_n) une suite réelle croissante. On suppose que (u_n) admet une suite extraite convergente. Montrer que (u_n) converge.
- 2. Montrer que si les suites extraites de terme général u_{3n} , u_{3n+1} et u_{3n+2} convergent vers le même complexe l, alors (u_n) converge vers l.
- 3. On suppose qu'il existe un réel l tel que pour tout entier $k \ge 2$, la suite $(u_{kn})_{n \in \mathbb{N}}$ converge vers l. Peut-on en déduire la convergence de la suite (u_n) ?

$Propriétés \ de \ \mathbb{R}$

Voisinage

Densité

Propriété de la borne supérieure

Exercice 14 : Comparaison de deux ensembles

Soit A et B deux parties non vides de $\mathbb R$ telles que

$$\forall (a, b) \in A \times B \quad a \leq b$$

- 1. Montrer que $\sup(A)$ et $\inf(B)$ existent et que $\sup(A) \leq \inf(B)$.
- 2. Si l'on suppose maintenant que quel que soit $(a,b) \in A \times B$ on a a < b, peut-on en conclure que sup $(A) < \inf(B)$?

Exercice 15 : Borne supérieure

Soit A une partie bornée non vide de \mathbb{R} . Montrer que

$$\sup_{(x,y)\in A^2} |x - y| = \sup(A) - \inf(A).$$

Exercice 16 : Calcul de bornes supérieures

Déterminer, si elles ou ils existent, les bornes supérieures, bornes inférieures, plus grands éléments, plus petits éléments des parties de $\mathbb R$ suivantes.

$$A := \left\{ \frac{1}{n} + \frac{1}{p} : (n, p) \in \mathbb{N}^{*2} \right\},$$

$$B := \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}} : n \in \mathbb{N}^* \right\},$$

$$C := \left\{ \frac{1}{n} + (-1)^p : (n, p) \in \mathbb{N}^* \times \mathbb{N} \right\}.$$

Exercice 17: Bornes supérieures

Soit A et B deux parties de $\mathbb R$ non vides et majorées. Soit λ un nombre réel. On pose

$$\begin{array}{lll} C & := & \left\{ a + b : a \in A & b \in B \right\}, \\ D & := & \left\{ \lambda \cdot a : a \in A \right\}, \\ E & := & \left\{ a \cdot b : a \in A & b \in B \right\}. \end{array}$$

- 1. Montrer que $\sup(C)$ existe et vaut $\sup(A) + \sup(B)$.
- 2. Que peut-on dire de l'existence et de la valeur de $\sup(D)$, $\sup(E)$? On pourra formuler des hypothèses supplémentaires adéquates sur A et B.

Exercice 18 : Un théorème de point fixe

Soit I = [a, b] avec a < b et soit $f : I \to I$ une application croissante. Montrer qu'il existe $c \in I$ tel que f(c) = c. Considérer pour cela la partie

$$A = \{x \in I \mid f(x) > x\}.$$

Quelle est l'interprétation géométrique de cette propriété en termes du graphe de f?

Exercice 19: Intervalle

Soit I et J deux intervalles de \mathbb{R} . Montrer que

$$I + J := \{x + y : x \in I \text{ et } y \in J\}$$

est un intervalle.

Suite monotone

Suite monotone

Exercice 20: Moyenne arithmético-géométrique

Soit a et b deux réels positifs. Soit (u_n) et (v_n) les suites initialisées par $u_0 := a$ et $v_0 := b$ et définies par la récurrence

$$\forall n \geqslant 0, \quad u_{n+1} := \sqrt{u_n v_n} \quad \text{et} \quad v_{n+1} := \frac{u_n + v_n}{2}.$$

1. (a) Montrer que (u_n) et (v_n) sont bien définies, puis que

$$\forall n \geqslant 1, \quad u_n \leqslant v_n.$$

- (b) En déduire la monotonie des suites (u_n) et (v_n) .
- (c) Montrer que (u_n) et (v_n) sont convergentes et ont même limite que l'on note M(a,b).
- 2. (a) Calculer M(0,1) et M(1,1).
 - (b) Montrer que si $0 \le x \le y$, alors $M(1, x) \le M(1, y)$.

8.5. EXERCICES 175

Exercice 21: Suite définie implicitement

Pour tout $n \ge 2$, on définit la fonction $f_n : [0,1] \to \mathbb{R}$ par

$$\forall x \in [0,1], \quad f_n(x) \coloneqq x^n - nx + 1.$$

- 1. Montrer que pour tout $n \ge 2$, il existe un unique $x \in [0,1]$ tel que $f_n(x) = 0$. On note cet élément u_n .
- 2. Pour tout $n \ge 2$, déterminer le signe de $f_{n+1}(u_n) f_n(u_n)$. En déduire que (u_n) est monotone.
- 3. Montrer que (u_n) converge vers 0.
- 4. Montrer que

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$$

c'est-à-dire que nu_n tend vers 1 lorsque n tend vers $+\infty$.

Étude des suites définies par $u_{n+1} := f(u_n)$

Exercice 22 : Quelques applications directes du cours

Étudier les suites (u_n) définies ci-dessous.

- 1. $u_0 \ge 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} := 2\ln(1+u_n)$.
- 2. $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} := u_n(1 u_n)$.
- 3. $u_0 \geqslant 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} := \frac{3}{2+u_n}$.

Exercice 23: Un point fixe attractif, puis répulsif

Soit a > 0 et f la fonction définie sur \mathbb{R}_+ par

$$\forall x \geqslant 0, \quad f(x) = a \cdot \frac{1 + a^2}{1 + x^2}.$$

Soit $\alpha \geqslant 0$ et (u_n) la suite définie par $u_0 := \alpha$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq f(u_n).$$

Le but de cet exercice est d'étudier la convergence éventuelle de la suite (u_n) .

1. (a) Étudier la monotonie de f ainsi que la position de son graphe par rapport à la première bissectrice. On montrera en particulier que $x \in \mathbb{R}_+$ est un point fixe de f si et seulement si il est racine de

$$P(x) := (x - a)(x^2 + ax + (1 + a^2)).$$

- (b) Tracer sur le même dessin le graphe de f ainsi que la première bissectrice.
- 2. (a) Étudier la monotonie de $f \circ f$.
 - (b) Montrer que $x \in \mathbb{R}_+$ est un point fixe de $f \circ f$ si et seulement si il est racine du polynôme

$$Q(x) := (x - a)(x^2 + ax + (1 + a^2))(x^2 - a(1 + a^2)x + 1).$$

(c) Étudier la position du graphe de $f \circ f$ par rapport à la première bissectrice en discutant selon les valeurs de a. Dans les différents cas, on tracera le graphe de $f \circ f$ ainsi que la première bissectrice.

Dans la suite de l'exercice, on définit la suite (v_n) par

$$\forall n \in \mathbb{N}, \quad v_n \coloneqq u_{2n}.$$

On remarquera que, pour tout $n \in \mathbb{N}$, $v_{n+1} = (f \circ f)(v_n)$.

- 3. Montrer que la suite (v_n) est monotone et bornée.
- 4. On suppose dans cette question que $a \leq 1$.
 - (a) Montrer que (v_n) converge et calculer sa limite.
 - (b) Qu'en déduire pour la suite (u_n) ?
- 5. Dans cette question, on suppose que a > 1.
 - (a) Si $\alpha < a$, montrer que (v_n) converge vers un réel α strictement inférieur à a. En déduire que la suite (u_n) diverge.
 - (b) Que dire si $u_0 > a$? Si $u_0 = a$?

Suites adjacentes

Exercice 24: e est irrationnel

Le but de cet exercice est de montrer que e est un nombre irrationnel.

1. Soit (u_n) est (v_n) les suites définies par

$$\forall n \in \mathbb{N}^*, \quad u_n \coloneqq \sum_{k=0}^n \frac{1}{k!} \quad v_n \coloneqq u_n + \frac{1}{nn!}.$$

- (a) Montrer que (u_n) et (v_n) sont adjacentes.
- (b) On note l leur limite commune. On suppose que l est rationnel et on note $l=\frac{p}{q}$. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^n \frac{1}{k!} < \frac{p}{q} < \sum_{k=0}^n \frac{1}{k!} + \frac{1}{nn!}.$$

- (c) Conclure à une absurdité en choisissant n=q.
- 2. Le but de cette question est de montrer que $l={\rm e}.$
 - (a) Montrer que

$$\forall n \in \mathbb{N}, \quad \mathbf{e} = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} \mathbf{e}^{t} dt.$$

(b) Montrer que

$$\int_0^1 \frac{(1-t)^n}{n!} e^t dt \xrightarrow[n \to +\infty]{} 0$$

puis conclure.

Théorème de Bolzano-Weierstrass

Chapitre 9

Matrices

	9.1.1	Matrice
	9.1.2	Matrice carrée
9.2	Opé	rations sur les matrices
	9.2.1	Combinaison linéaire
	9.2.2	Produit
	9.2.3	Calcul dans l'algèbre $\mathcal{M}_n\left(\mathbb{K}\right)$
	9.2.4	Matrice inversible
	9.2.5	Calcul par bloc
9.3	Mat	rice et Système linéaire
	9.3.1	Interprétation matricielle
	9.3.2	Calcul d'inverse, système de Cramer
	9.3.3	Opérations élémentaires par produit matriciel
	9.3.4	Matrice échelonnée

9.1 Matrice

9.1.1 Matrice

Définition 9.1.1

Soit \mathbb{K} un corps et $q, p \in \mathbb{N}$. On appelle matrice à q lignes et p colonnes à coefficients dans \mathbb{K} toute famille $A = (a_{i,j})_{\substack{1 \leq i \leq q \\ 1 \leq j \leq p}}$ d'éléments de \mathbb{K} indexée par $[\![1,q]\!] \times [\![1,p]\!]$.

$$A = \begin{pmatrix} a_{1,1} & & & \\ & & & \\ & & a_{1,p} \\ & & & \\ a_{q,1} & & & \\ & & & a_{q,p} \end{pmatrix} - i$$

On note $\mathcal{M}_{q,p}\left(\mathbb{K}\right)$ l'ensemble des matrices à q lignes et p colonnes à coefficients dans \mathbb{K} .

Remarque

 \Rightarrow On appelle matrice nulle à q lignes et p colonnes et on note $0_{q,p}$ ou plus simplement 0 la matrice de $\mathcal{M}_{q,p}(\mathbb{K})$ dont tous les coefficients sont nuls.

Définition 9.1.2

Pour toute matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$, on définit

— la famille (l_1,\ldots,l_q) des vecteurs ligne de A, où pour tout $i \in [1,q]$, $l_i := (a_{i,1},\ldots,a_{i,p}) \in \mathbb{K}^p$.

— la famille (c_1, \ldots, c_p) des vecteurs colonne de A, où pour tout $j \in [1, p]$, $c_j := (a_{1,j}, \ldots, a_{q,j}) \in \mathbb{K}^q$.

Définition 9.1.3

On dit qu'une matrice A est

- une matrice colonne lorsqu'elle ne possède qu'une seule colonne.
- une matrice ligne lorsqu'elle ne possède qu'une seule ligne.

Remarque

 \Rightarrow Si $n \in \mathbb{N}$, l'application φ de \mathbb{K}^n dans $\mathcal{M}_{n,1}(\mathbb{K})$, qui à (x_1, \ldots, x_n) associe

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

est une bijection. Elle permet d'identifier \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$, identification que nous ferons parfois dans ce cours. Cependant, on ne se permettra pas d'identifier \mathbb{K}^n et $\mathcal{M}_{1,n}(\mathbb{K})$.

 \Rightarrow Si $A \in \mathcal{M}_{q,p}(\mathbb{K})$, cette identification permet de considérer que les vecteurs colonne de A sont des éléments de $\mathcal{M}_{q,1}(\mathbb{K})$ et donc des matrices colonne.

Définition 9.1.4

On appelle $transpos\acute{e}e$ de $A\in\mathcal{M}_{q,p}\left(\mathbb{K}\right)$ et on note A^{\top} la matrice de $\mathcal{M}_{p,q}\left(\mathbb{K}\right)$ dont les vecteurs colonnes sont les vecteurs lignes de A. Autrement dit

$$\forall i \in \llbracket 1, p \rrbracket, \quad \forall j \in \llbracket 1, q \rrbracket, \quad \left[A^{\top} \right]_{i,j} \coloneqq a_{j,i}.$$

Exemple

⇒ Si on pose

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathcal{M}_{2,3}\left(\mathbb{K}\right), \quad \text{alors} \quad A^{\top} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \mathcal{M}_{3,2}\left(\mathbb{K}\right).$$

Proposition 9.1.5

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors

$$\left(A^{\top}\right)^{\top} = A.$$

9.1.2 Matrice carrée

Définition 9.1.6

On dit qu'une matrice est *carrée* lorsqu'elle possède autant de lignes que de colonnes. L'ensemble des matrices carrées à n lignes et n colonnes est noté $\mathcal{M}_n(\mathbb{K})$.

Définition 9.1.7

On appelle matrice identit'e et on note I_n la matrice de $\mathcal{M}_n\left(\mathbb{K}\right)$ définie par

$$\forall i, j \in \llbracket 1, n \rrbracket, \quad [I_n]_{i,j} \coloneqq \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon.} \end{cases}$$

$$I_n = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

9.1. MATRICE 179

Définition 9.1.8

— On dit que $D \in \mathcal{M}_n(\mathbb{K})$ est diagonale lorsque

$$\forall i, j \in [1, n], \quad i \neq j \Longrightarrow d_{i,j} = 0.$$

On note $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonales à n lignes et n colonnes.

— Si $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, on note Diag $(\lambda_1, \ldots, \lambda_n)$ la matrice

$$\operatorname{Diag}(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & & & \\ & & (0) & & \\ & & & \lambda_n \end{pmatrix}$$

— Les matrices Diag $(\lambda, \dots, \lambda)$ où $\lambda \in \mathbb{K}$ sont appelées matrices scalaires.

Définition 9.1.9

On dit que $T \in \mathcal{M}_n(\mathbb{K})$ est triangulaire supérieure lorsque

$$\forall i, j \in [1, n], \quad i > j \Longrightarrow t_{i,j} = 0.$$

On note $\mathcal{T}_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures à n lignes et n colonnes. Graphiquement, une matrice triangulaire supérieure T s'écrit

$$T = \begin{pmatrix} \lambda_1 & \star & & \star \\ & & \star \\ & & & \lambda_n \end{pmatrix}$$

Remarque

 \Rightarrow On dit qu'une matrice $T \in \mathcal{M}_n(\mathbb{K})$ est triangulaire inférieure lorsque

$$\forall i, j \in [1, n], \quad j > i \Longrightarrow t_{i,j} = 0.$$

Autrement dit T est triangulaire inférieure si et seulement si T^{\top} est triangulaire supérieure.

Définition 9.1.10

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

— On dit que A est symétrique lorsque $A^{\top} = A$ c'est-à-dire lorsque

$$\forall i, j \in \llbracket 1, n \rrbracket, \quad a_{j,i} = a_{i,j}.$$

On note $S_n(\mathbb{K})$ l'ensemble des matrices symétriques à n lignes et n colonnes.

— On dit que A est antisymétrique lorsque $A^{\top} = -A$ c'est-à-dire lorsque

$$\forall i, j \in [1, n], \quad a_{i,i} = -a_{i,j}.$$

On note \mathcal{A}_n (\mathbb{K}) l'ensemble des matrices antisymétriques à n lignes et n colonnes.

Remarque

 \Rightarrow Les formes générales d'une matrice symétrique $A \in \mathcal{S}_n(\mathbb{K})$ et d'une matrice antisymétrique $B \in \mathcal{A}_n(\mathbb{K})$ sont

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{1,2} & a_{2,2} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{1,n} & \cdots & \cdots & a_{n,n} \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,n} \\ -a_{1,2} & 0 & & \vdots \\ \vdots & & \ddots & \vdots \\ -a_{1,n} & \cdots & \cdots & 0 \end{pmatrix}.$$

180 CHAPITRE 9. MATRICES

Définition 9.1.11

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle trace de A et on note $\operatorname{tr}(A)$ la somme de ses coefficients diagonaux.

$$\operatorname{tr}(A) \coloneqq \sum_{k=1}^{n} a_{k,k}$$

9.2 Opérations sur les matrices

9.2.1 Combinaison linéaire

Définition 9.2.1

— Soit $A, B \in \mathcal{M}_{q,p}(\mathbb{K})$. On définit A + B comme la matrice de $\mathcal{M}_{q,p}(\mathbb{K})$ définie par

$$\forall i \in [1, q], \quad \forall j \in [1, p], \quad [A + B]_{i,j} := a_{i,j} + b_{i,j}.$$

— Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. On définit $\lambda \cdot A$ comme la matrice de $\mathcal{M}_{q,p}(\mathbb{K})$ définie par

$$\forall i \in \llbracket 1,q \rrbracket \,, \quad \forall j \in \llbracket 1,p \rrbracket \,, \quad [\lambda \cdot A]_{i,j} \coloneqq \lambda a_{i,j}.$$

Remarque

 \Rightarrow Les matrices scalaires sont les λI_n où $\lambda \in \mathbb{K}$.

Proposition 9.2.2

 $(\mathcal{M}_{q,p}(\mathbb{K}),+,\cdot)$ est un \mathbb{K} -espace vectoriel dont l'élément neutre est la matrice nulle.

Définition 9.2.3

Pour tout $i \in [1, q]$ et $j \in [1, p]$ on définit $E_{i,j}$ comme la matrice de $\mathcal{M}_{q,p}$ (\mathbb{K}) définie par

$$\forall k \in \llbracket 1, q \rrbracket, \quad \forall l \in \llbracket 1, p \rrbracket, \quad [E_{i,j}]_{k,l} \coloneqq \delta_{i,k} \delta_{j,l} = \begin{cases} 1 & \text{si } k = i \text{ et } l = j \\ 0 & \text{sinon.} \end{cases}$$

Les matrices $E_{i,j}$ sont appelées matrices élémentaires.

Remarque

 \Rightarrow Pour toute matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$, on a

$$A = \sum_{i=1}^{q} \sum_{j=1}^{p} a_{i,j} E_{i,j}.$$

En particulier, $Vect(E_{1,1}, \ldots, E_{1,p}, \ldots, E_{q,1}, \ldots, E_{q,p}) = \mathcal{M}_{q,p}(\mathbb{K}).$

Proposition 9.2.4

La transposition est linéaire

$$\forall A, B \in \mathcal{M}_{q,p}(\mathbb{K}), \quad \forall \lambda, \mu \in \mathbb{K}, \quad (\lambda A + \mu B)^{\top} = \lambda A^{\top} + \mu B^{\top}.$$

De plus cette application est un isomorphisme de $\mathcal{M}_{q,p}(\mathbb{K})$ dans $\mathcal{M}_{p,q}(\mathbb{K})$.

Proposition 9.2.5

- $\mathcal{D}_n(\mathbb{K})$ et $\mathcal{T}_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$.
- $\mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$ sont des sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{K})$.

Remarque

 \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$

$$A = \frac{1}{2} (A + A^{\top}) + \frac{1}{2} (A - A^{\top})$$

est la décomposition de A dans $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$.

Proposition 9.2.6

La trace est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.

9.2.2 Produit

Définition 9.2.7

Soit $A \in \mathcal{M}_{r,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. On définit AB comme la matrice de $\mathcal{M}_{r,p}(\mathbb{K})$ définie par

$$\forall i \in \llbracket 1, r \rrbracket, \quad \forall j \in \llbracket 1, p \rrbracket, \quad [AB]_{i,j} \coloneqq \sum_{k=1}^{q} a_{i,k} b_{k,j}.$$

Remarques

- \Rightarrow Il est possible que le produit AB ait un sens sans que le produit BA en ait un. Mais si ces deux produits en ont un, en général, $AB \neq BA$. Enfin, il est possible que AB = 0 sans que A = 0 ou B = 0.
- \Rightarrow Si $A, B \in \mathcal{M}_n(\mathbb{K})$, on dit que A et B commutent lorsque AB = BA.
- \Rightarrow Si $A \in \mathcal{M}_{q,p}(\mathbb{K}), X \in \mathcal{M}_{p,1}(\mathbb{K})$ et $Y \in \mathcal{M}_{q,1}(\mathbb{K})$ alors

$$AX = Y \iff \begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = y_1 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = y_q. \end{cases}$$

 \Rightarrow Si on note $C_1, \ldots, C_p \in \mathcal{M}_{q,1}(\mathbb{K})$ les vecteurs colonne de $A \in \mathcal{M}_{q,p}(\mathbb{K})$ et si $X \coloneqq (x_1 \cdots x_p)^{\top} \in \mathcal{M}_{p,1}(\mathbb{K})$, alors $AX = x_1C_1 + \cdots + x_pC_p$.

Exercice 1

 \Rightarrow Soit $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ deux à deux distincts. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ commute avec $B := \text{Diag}(\lambda_1, \ldots, \lambda_n)$ si et seulement si elle est diagonale.

Proposition 9.2.8

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors A = 0 si et seulement si

$$\forall X \in \mathcal{M}_{p,1}(\mathbb{K}), \quad AX = 0.$$

182 CHAPITRE 9. MATRICES

$$\forall A \in \mathcal{M}_{r,q}(\mathbb{K}), \quad \forall B, C \in \mathcal{M}_{q,p}(\mathbb{K}), \quad \forall \lambda, \mu \in \mathbb{K}, \qquad A(\lambda B + \mu C) = \lambda AB + \mu AC$$

$$\forall A, B \in \mathcal{M}_{r,q}(\mathbb{K}), \quad \forall C \in \mathcal{M}_{q,p}(\mathbb{K}), \quad \forall \lambda, \mu \in \mathbb{K}, \qquad (\lambda A + \mu B)C = \lambda AC + \mu BC$$

$$\forall A \in \mathcal{M}_{s,r}(\mathbb{K}), \quad \forall B \in \mathcal{M}_{r,q}(\mathbb{K}), \quad \forall C \in \mathcal{M}_{q,p}(\mathbb{K}), \qquad (AB) C = A (BC)$$

 $\forall A \in \mathcal{M}_{q,p}(\mathbb{K}), \qquad AI_p = A \text{ et } I_q A = A$

Soit $A \in \mathcal{M}_{r,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors

$$(AB)^{\top} = B^{\top}A^{\top}.$$

Soit $r, q, p \in \mathbb{N}$, $i_2 \in [1, r]$, $i_1, j_2 \in [1, q]$ et $j_1 \in [1, p]$. Alors

$$E_{i_2,j_2}E_{i_1,j_1} = \delta_{j_2,i_1}E_{i_2,j_1} = \begin{cases} 0 & \text{si } j_2 \neq i_1 \\ E_{i_2,j_1} & \text{si } j_2 = i_1. \end{cases}$$

Exercice 2

 \Rightarrow Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ commute avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$ si et seulement si c'est une matrice scalaire.

- Si D et D' sont deux matrices diagonales dont les coefficients diagonaux sont respectivement $\lambda_1, \ldots, \lambda_n$ et $\mu_1, \ldots, \mu_n, DD'$ est diagonale et ses coefficients diagonaux sont $\lambda_1 \mu_1, \ldots, \lambda_n \mu_n$.
- Si T et T' sont deux matrices triangulaires supérieures dont les coefficients diagonaux sont respectivement $\lambda_1, \ldots, \lambda_n$ et $\mu_1, \ldots, \mu_n, TT'$ est triangulaire supérieure et ses coefficients diagonaux sont $\lambda_1 \mu_1, \ldots, \lambda_n \mu_n$.

Calcul dans l'algèbre $\mathcal{M}_n(\mathbb{K})$ 9.2.3

Définition 9.2.13

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit A^p pour tout $p \in \mathbb{N}$ par récurrence.

- $-A^0 \coloneqq I_n$ $-\forall p \in \mathbb{N}, \quad A^{p+1} \coloneqq A^p A.$

— Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$\forall p, q \in \mathbb{N}, \qquad A^{p+q} = A^p A^q$$
$$(A^p)^q = A^{pq}.$$

— Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = BA. Alors, pour tout $p, q \in \mathbb{N}$, A^p et B^q commutent. De plus

$$\forall p \in \mathbb{N}, \quad (AB)^p = A^p B^p.$$

Remarque

 \Rightarrow Soit (F_n) la suite définie par $F_0 := 0$, $F_1 := 1$ et la relation $F_{n+2} := F_{n+1} + F_n$. On définit les matrices X_n et A par

$$X_n \coloneqq \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix}$$
 et $A \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Alors, $X_{n+1} = AX_n$. On en déduit que pour tout $n \in \mathbb{N}$, $X_n = A^nX_0$. Puisque l'exponentiation rapide est un algorithme ayant une complexité temporelle en $O(\log n)$, on obtient ainsi un algorithme pour calculer le n-ième terme de la suite de Fibonacci en $O(\log n)$ opérations.

Proposition 9.2.15

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que AB = BA. Alors, pour tout $p \in \mathbb{N}$

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^{p-k} B^k$$
 et $A^p - B^p = (A-B) \left[\sum_{k=0}^{p-1} A^{(p-1)-k} B^k \right].$

Définition 9.2.16

On dit qu'une matrice $N \in \mathcal{M}_n(\mathbb{K})$ est nilpotente lorsqu'il existe $p \in \mathbb{N}$ tel que $N^p = 0$.

Proposition 9.2.17

Si $N \in \mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire supérieure dont tous les coefficients diagonaux sont nuls, alors $N^n = 0$. En particulier, N est nilpotente.

Exercices 3

⇒ On pose

$$A \coloneqq \begin{pmatrix} 2 & 3 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Calculer A^n pour tout $n \in \mathbb{N}$.

 \Rightarrow Montrer qu'il existe $B \in \mathcal{M}_3(\mathbb{R})$ tel que $B^2 = A$.

Proposition 9.2.18

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. Alors

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

Remarque

 \Rightarrow Cependant, en général, $\operatorname{tr}(ABC) \neq \operatorname{tr}(ACB)$.

Exercice 4

 \Rightarrow Montrer qu'il n'existe pas de matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $AB - BA = I_n$.

9.2.4 Matrice inversible

Définition 9.2.19

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible lorsqu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que

$$AB = I_n$$
 et $BA = I_n$.

Si tel est le cas, B est unique; on la note A^{-1} . On note $\mathrm{GL}_n(\mathbb{K})$ l'ensemble des matrices inversibles.

Remarque

 \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$ est inversible, A^{-1} l'est aussi et $(A^{-1})^{-1} = A$.

Exercices 5

- \Rightarrow Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^2 5A + 6I_n = 0$. Montrer que A est inversible et calculer A^{-1} .
- \Rightarrow Soit $N \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente. Montrer que $I_n + N$ est inversible.

Proposition 9.2.20

Si $A, B \in \mathcal{M}_n(\mathbb{K})$ sont inversibles, il en est de même pour AB et

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proposition 9.2.21

 $\mathrm{GL}_{n}\left(\mathbb{K}\right)$ possède les propriétés suivantes.

$$I_{n} \in \operatorname{GL}_{n}(\mathbb{K})$$

$$\forall A, B \in \operatorname{GL}_{n}(\mathbb{K}), \qquad AB \in \operatorname{GL}_{n}(\mathbb{K})$$

$$\forall A \in \operatorname{GL}_{n}(\mathbb{K}), \qquad A^{-1} \in \operatorname{GL}_{n}(\mathbb{K}).$$

Nous dirons que $(GL_n(\mathbb{K}), \times)$ est un groupe, que l'on appelle groupe linéaire.

Proposition 9.2.22

Si $A \in \mathcal{M}_n(\mathbb{K})$, A^{\top} est inversible si et seulement si A l'est. De plus, si tel est le cas

$$(A^{\top})^{-1} = (A^{-1})^{\top}.$$

Proposition 9.2.23

Une matrice diagonale $D := \operatorname{Diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si

$$\forall k \in [1, n], \quad \lambda_k \neq 0.$$

Si tel est le cas

$$D^{-1} = \operatorname{Diag}\left(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}\right).$$

9.2.5 Calcul par bloc

Définition 9.2.24

Soit $q, p \in \mathbb{N}$ et $q_1, q_2, p_1, p_2 \in \mathbb{N}$ tels que $q = q_1 + q_2$ et $p = p_1 + p_2$. On se donne, pour tout $i \in [1, 2]$ et tout $j \in [1, 2]$, une matrice $A_{i,j} \in \mathcal{M}_{q_i,p_j}(\mathbb{K})$. On définit alors la matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$ par blocs en posant

$$A \coloneqq \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$$

Remarques

⇒ Inversement, on peut décomposer une matrice par blocs. Par exemple, la matrice

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \in \mathcal{M}_{3,3} \left(\mathbb{K} \right)$$

se décompose par blocs à l'aide des matrices

$$A_{1,1} := \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}, \qquad A_{1,2} := \begin{pmatrix} 3 \\ 6 \end{pmatrix}, \qquad A_{2,1} := \begin{pmatrix} 7 & 8 \end{pmatrix}, \qquad A_{2,2} := \begin{pmatrix} 9 \end{pmatrix}.$$

 \Rightarrow Si la matrice A se décompose par blocs

$$A \coloneqq \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$$

alors

$$A^\top \coloneqq \begin{pmatrix} A_{1,1}^\top & A_{2,1}^\top \\ A_{1,2}^\top & A_{2,2}^\top \end{pmatrix}.$$

Proposition 9.2.25

Soit $A \in \mathcal{M}_{r,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. On décompose A et B par blocs

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

où $r = r_1 + r_2$, $q = q_1 + q_2$, $p = p_1 + p_2$, $A_{i,j} \in \mathcal{M}_{r_i,q_j}(\mathbb{K})$ et $B_{i,j} \in \mathcal{M}_{q_i,p_j}(\mathbb{K})$. Alors

$$AB = \begin{pmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{pmatrix}.$$

Remarque

⇒ Le calcul d'un produit par bloc s'effectue donc de la même manière qu'un produit classique. Attention cependant au fait que le produit de deux matrices ne commute pas en général alors que le produit de deux scalaires est commutatif.

Exercice 6

 \Rightarrow Soit $n \in \mathbb{N}$ et $p, q \in \mathbb{N}$ tels que n = p + q. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale par blocs

$$A = \begin{pmatrix} A_{1,1} & 0 \\ 0 & A_{2,2} \end{pmatrix} \quad \text{où } A_{1,1} \in \mathcal{M}_p\left(\mathbb{K}\right) \text{ et } A_{2,2} \in \mathcal{M}_q\left(\mathbb{K}\right).$$

Montrer que A est inversible si et seulement si $A_{1,1}$ et $A_{2,2}$ le sont. Si tel est le cas, montrer que

$$A^{-1} = \begin{pmatrix} A_{1,1}^{-1} & 0\\ 0 & A_{2,2}^{-1} \end{pmatrix}$$

9.3 Matrice et Système linéaire

9.3.1 Interprétation matricielle

Définition 9.3.1

On considère le système linéaire à q équations et p inconnues

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = y_1 \\ \vdots \\ a_{q,1}x_1 + a_{q,2}x_2 + \dots + a_{q,p}x_p = y_q. \end{cases}$$

La matrice $A := (a_{i,j}) \in \mathcal{M}_{q,p}(\mathbb{K})$ est appelée matrice du système. La matrice $Y := (y_i) \in \mathcal{M}_{q,1}(\mathbb{K})$ est appelée second membre. Si $X = (x_i) \in \mathcal{M}_{p,1}(\mathbb{K})$, alors (x_1, \ldots, x_p) est solution du système si et seulement si AX = Y.

Remarque

 \Rightarrow Le système est homogène lorsque Y=0. On rappelle que dans ce cas, X=0 est une solution, appelée solution triviale du système.

Définition 9.3.2

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$.

— On appelle noyau de A et on note Ker A l'ensemble des solutions du système homogène AX = 0.

$$\operatorname{Ker} A := \{ X \in \mathcal{M}_{p,1} \left(\mathbb{K} \right) \mid AX = 0 \}.$$

— On note $C_1, \ldots, C_p \in \mathcal{M}_{q,1}(\mathbb{K})$ les vecteurs colonne de A. On appelle image de A et on note $\operatorname{Im} A$ l'ensemble

$$\operatorname{Im} A := \left\{ x_1 C_1 + \dots + x_p C_p : x_1, \dots, x_p \in \mathbb{K} \right\}.$$

Remarque

 \Rightarrow Ces définitions sont motivées par le fait que

$$\varphi: \mathcal{M}_{p,1}\left(\mathbb{K}\right) \longrightarrow \mathcal{M}_{q,1}\left(\mathbb{K}\right).$$

$$X \longmapsto AX$$

est une application linéaire dont le noyau et l'image sont respectivement $\operatorname{Ker} A$ et $\operatorname{Im} A$.

Proposition 9.3.3

On considère le système linéaire AX = Y où $A \in \mathcal{M}_{q,p}(\mathbb{K})$ et $Y \in \mathcal{M}_{q,1}(\mathbb{K})$.

- Ce système admet au moins une solution si et seulement si $Y \in \operatorname{Im} A$.
- Si c'est le cas, soit $X_0 \in \mathcal{M}_{q,p}(\mathbb{K})$ une solution particulière. Alors l'ensemble des solutions est

$$S = X_0 + \operatorname{Ker} A := \{X_0 + X : X \in \operatorname{Ker} A\}.$$

9.3.2 Calcul d'inverse, système de Cramer

Proposition 9.3.4

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que

$$\forall X, Y \in \mathcal{M}_{n,1}(\mathbb{K}), \quad AX = Y \iff X = BY.$$

De plus, si tel est le cas, B est l'inverse de A.

Remarque

Arr Étant donné $A \in \mathcal{M}_n(\mathbb{K})$, cette proposition affirme que s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que quels que soient $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{K}$

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = y_1 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = y_n \end{cases} \iff \begin{cases} x_1 = b_{1,1}y_1 + b_{1,2}y_2 + \dots + b_{1,n}y_n \\ \vdots \\ x_n = b_{n,1}y_1 + b_{n,2}y_2 + \dots + b_{n,n}y_n \end{cases}$$

alors A est inversible et $A^{-1} = B$. Inverser une matrice revient donc à résoudre un système linéaire.

Exercice 7

⇒ Montrer que la matrice

$$A \coloneqq \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 3 & -1 \end{pmatrix}$$

est inversible et calculer son inverse.

Définition 9.3.5

On dit qu'un système AX = Y à n équations et n inconnues est de Cramer lorsque $A \in GL_n(\mathbb{K})$.

Remarque

⇒ Le fait d'être de Cramer est une propriété qui ne dépend pas du second membre.

Proposition 9.3.6

Un système de Cramer admet une unique solution.

9.3.3 Opérations élémentaires par produit matriciel

Définition 9.3.7: Matrice de dilatation

Soit $\mu \in \mathbb{K}^*$ et $k \in [1, n]$. Alors, il existe une et une seule matrice $D \in \mathcal{M}_n(\mathbb{K})$ telle que :

- Quel que soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, la matrice DA est obtenue en multipliant la $k^{\text{ième}}$ ligne de A par μ .

 Quel que soit $A \in \mathcal{M}_{q,n}(\mathbb{K})$, la matrice AD est obtenue en multipliant la $k^{\text{ième}}$ colonne de A par μ . On la note $D_k(\mu)$ et on dit que c'est une matrice de dilatation. De plus

$$D_{k}(\mu) = \begin{pmatrix} 1 & k & \\ & \downarrow & (0) & \\ & 1 & \downarrow & \\ & & \mu & \\ & & 1 & \\ & & & 1 \end{pmatrix} k$$

Soit $\mu \in \mathbb{K}^*$ et $k \in [1, n]$. Alors, la matrice de dilatation $D_k(\mu)$ est inversible et

$$\left[D_k\left(\mu\right)\right]^{-1} = D_k\left(\frac{1}{\mu}\right).$$

Définition 9.3.9: Matrice de transvection

Soit $\lambda \in \mathbb{K}$ et $i, j \in [1, n]$ tels que $i \neq j$. Alors, il existe une et une seule matrice $T \in \mathcal{M}_n(\mathbb{K})$ telle que :

- Quel que soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, la matrice TA est obtenue en ajoutant λ fois la $j^{\text{ième}}$ ligne de A à sa $i^{\text{ième}}$
- Quel que soit $A \in \mathcal{M}_{q,n}(\mathbb{K})$, la matrice AT est obtenue en ajoutant λ fois la i-ième colonne de A à sa j-ième colonne.

On la note $T_{i,j}(\lambda)$ et on dit que c'est une matrice de transvection. De plus

$$T_{i,j}(\lambda) = \begin{pmatrix} 1 & & & \\ & \downarrow & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Soit $\lambda \in \mathbb{K}$ et $i, j \in [1, n]$ tels que $i \neq j$. Alors, la matrice de transvection $T_{i,j}(\lambda)$ est inversible et

$$\left[T_{i,j}\left(\lambda\right)\right]^{-1}=T_{i,j}\left(-\lambda\right).$$

Définition 9.3.11: Matrice de transposition

Soit $k_1, k_2 \in [1, n]$ tels que $k_1 \neq k_2$. Alors, il existe une et une seule matrice $\tau \in \mathcal{M}_n(\mathbb{K})$ telle que :

- Quel que soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, la matrice τA est obtenue en échangeant les $k_1^{\text{ième}}$ et $k_2^{\text{ième}}$ lignes. Quel que soit $A \in \mathcal{M}_{q,n}(\mathbb{K})$, la matrice $A\tau$ est obtenue en échangeant les $k_1^{\text{ième}}$ et $k_2^{\text{ième}}$ colonnes.

188 CHAPITRE 9. MATRICES

On la note τ_{k_1,k_2} et on dit que c'est une matrice de transposition. De plus

Proposition 9.3.12

Soit $k_1, k_2 \in [1, n]$ tels que $k_1 \neq k_2$. Alors, la matrice de transposition τ_{k_1, k_2} est inversible et

$$\tau_{k_1,k_2}^{-1} = \tau_{k_1,k_2}$$

9.3.4 Matrice échelonnée

Définition 9.3.13

On dit qu'une matrice $E \in \mathcal{M}_{q,p}(\mathbb{K})$ est échelonnée à pivots diagonaux lorsqu'il existe $p_1, \dots, p_r \in \mathbb{K}^*$ tels que

$$E = \begin{pmatrix} p_1 & \star & & \star \\ 0 & & \star & & \star \\ & p_r & \star & & \star \\ & 0 & 0 & & 0 \\ & & 0 & & 0 & \end{pmatrix}$$

Les coefficients p_1, \ldots, p_r sont appelés *pivots* de la matrice A.

Proposition 9.3.14

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$.

- Alors, il existe une succession d'opérations élémentaires sur les lignes et les colonnes transformant A en une matrice échelonnée à pivots diagonaux.
- Autrement dit, il existe des familles $Q_1, \ldots, Q_n \in \mathrm{GL}_q(\mathbb{K})$ et $P_1, \ldots, P_m \in \mathrm{GL}_p(\mathbb{K})$ de matrices d'opérations élémentaires telles que $Q_n \cdots Q_1 A P_1 \cdots P_m$ est une matrice échelonnée à pivots diagonaux.

Remarques

- \Rightarrow Nous montrerons que le nombre r de pivots de la matrice obtenue ne dépend pas des opérations effectuées; on l'appelle rang de A.
- \Rightarrow En continuant les opérations sur les colonnes, il est possible de réduire A en une matrice du type

Si $A \in \mathcal{M}_n(\mathbb{K})$, on voit que A est inversible si et seulement si r = n, c'est-à-dire si et seulement si la matrice réduite ainsi obtenue est la matrice I_n .

- \Rightarrow Si l'on souhaite calculer effectivement les produits $Q := Q_n \cdots Q_1$ et $P := P_1 \cdots P_m$, il suffit de remarquer que $Q = Q_n(\cdots(Q_2(Q_1I_q)))$ et $P = (((I_pP_1)P_2)\cdots)P_m$. La matrice Q est donc obtenue en partant de la matrice I_q que l'on transforme en effectuant les opérations élémentaires sur les lignes utilisées pour transformer A. En partant de I_p que l'on transforme en effectuant les opérations élémentaires sur les colonnes utilisées pour transformer A, on obtient la matrice P.
- \Rightarrow Si l'on se restreint aux opérations élémentaires sur les lignes, on peut transformer toute matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$ en une matrice échelonnée (par lignes), c'est-à-dire une matrice où chaque ligne commence par un nombre de zéros strictement supérieur à celui de la ligne précédente, comme dans l'exemple

$$\begin{pmatrix}
0 & p_1 & \star & \star & \star \\
0 & 0 & 0 & p_2 & \star \\
0 & 0 & 0 & 0 & p_3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

où les pivots p_1, p_2 et p_3 sont non nuls. Le nombre de pivots est égal au rang de la matrice. Pour toute matrice $A \in \mathcal{M}_{q,p}(K)$, il existe donc une famille $Q_1, \ldots, Q_n \in \mathrm{GL}_q(\mathbb{K})$ de matrices d'opérations élémentaires telle que $Q_n \cdots Q_1 A$ est échelonnée par lignes.

 \Rightarrow Si l'on se restreint aux opérations élémentaires sur les colonnes, on peut transformer toute matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$ en une matrice échelonnée par colonnes, c'est-à-dire une matrice où chaque colonne commence par un nombre de zéros strictement supérieur à celui de la colonne précédente, comme dans l'exemple

$$\begin{pmatrix} p_1 & 0 & 0 & 0 \\ \star & 0 & 0 & 0 \\ \star & p_2 & 0 & 0 \\ \star & \star & p_3 & 0 \\ \star & \star & \star & 0 \end{pmatrix}$$

où les pivots p_1, p_2 et p_3 sont non nuls. Le nombre de pivots est égal au rang de la matrice. Pour toute matrice $A \in \mathcal{M}_{q,p}(K)$, il existe donc une famille $P_1, \ldots, P_m \in \mathrm{GL}_p(\mathbb{K})$ de matrices d'opérations élémentaires telle que $AP_1 \cdots P_m$ est échelonnée par colonnes.

9.4 Exercices

Matrice

Matrice

Matrice carrée

Opérations sur les matrices

Combinaison linéaire

Exercice 1 : Sous-structures de $\mathcal{M}_n\left(\mathbb{K}\right)$

Montrer que l'ensemble des matrices

$$\begin{pmatrix} x & y & z \\ 2z & x & y \\ 2y & 2z & x \end{pmatrix}$$

pour $x, y, z \in \mathbb{K}$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.

Produit

Exercice 2 : Sous-structures de $\mathcal{M}_n(\mathbb{K})$

Soit E l'ensemble des matrices de $\mathcal{M}_3(\mathbb{C})$ de la forme

$$\begin{pmatrix}
a & 0 & b \\
0 & a & c \\
0 & 0 & d
\end{pmatrix}$$

où a, b, c, d sont des nombres complexes.

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$, stable par produit.
- 2. Les éléments de E commutent-ils entre eux?
- 3. Soit $A, B \in E$. Est-il possible d'avoir AB = 0 sans que A = 0 ou B = 0?

Exercice 3: Produit

Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad AXB = 0.$$

Montrer que A = 0 ou B = 0.

Calcul dans l'algèbre $\mathcal{M}_n(\mathbb{K})$

Exercice 4 : Calcul de puissances successives

Calculer la puissance n-ième des matrices

$$\begin{pmatrix} 2 & 2 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Matrice inversible

Exercice 5 : Déterminant

Soit A la matrice

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$

- 1. Montrer que $A^2 (a_{1,1} + a_{2,2})A + (a_{1,1}a_{2,2} a_{1,2}a_{2,1})I = 0$.
- 2. Montrer que A est inversible si et seulement si $a_{1,1}a_{2,2} a_{1,2}a_{2,1} \neq 0$.

9.4. EXERCICES 191

Exercice 6: Calcul d'inverse

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. On définit la matrice $A \in \mathcal{M}_n(\mathbb{K})$ par

$$\forall i, j \in [1, n] \quad a_{i,j} = \begin{cases} a^{j-i} & \text{si } j \geqslant i \\ 0 & \text{sinon} \end{cases}$$

En introduisant la matrice N définie par

$$\forall i, j \in [1, n] \quad n_{i,j} = \begin{cases} 1 & \text{si } j = i + 1 \\ 0 & \text{sinon} \end{cases}$$

montrer que A est inversible et calculer A^{-1} .

Calcul par bloc

Exercice 7 : Inversibilité des matrices triangulaires supérieures

Soit $n \in \mathbb{N}$ et $A \in \mathcal{M}_{n+1}(\mathbb{K})$ une matrice de la forme

$$A = \begin{pmatrix} \alpha & L \\ 0 & B \end{pmatrix}$$

où $\alpha \in \mathbb{K}$, $L \in \mathcal{M}_{1,n}(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$.

1. Soit $A' \in \mathcal{M}_{n+1}(\mathbb{K})$ une matrice que l'on décompose sous la forme

$$A' = \begin{pmatrix} \alpha' & L' \\ C' & B' \end{pmatrix}$$

où $\alpha' \in \mathbb{K}$, $L' \in \mathcal{M}_{1,n}(\mathbb{K})$, $C' \in \mathcal{M}_{n,1}(\mathbb{K})$ et $B' \in \mathcal{M}_n(\mathbb{K})$. Montrer que $AA' = I_{n+1}$ et $A'A = I_{n+1}$ si et seulement si

$$\alpha \alpha' = 1,$$
 $BB' = I_n,$ $B'B = I_n,$ $C' = 0$ et $L' = -\alpha' LB'.$

- 2. En déduire que A est inversible si et seulement si $\alpha \neq 0$ et $B \in GL_n(\mathbb{K})$.
- 3. Montrer qu'une matrice triangulaire supérieure est inversible si et seulement si tous ses coefficients diagonaux sont non nuls et que si tel est le cas, son inverse est triangulaire supérieure et ses coefficients diagonaux sont les inverses des coefficients diagonaux de A.

Exercice 8: Matrices symplectiques

Soit $n \in \mathbb{N}$ un entier pair et $m \in \mathbb{N}$ tel que n = 2m. On pose

$$J := \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix} \in \mathcal{M}_n\left(\mathbb{R}\right)$$

On appelle matrice symplectique toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que

$$M^{\top}JM = J.$$

- 1. Montrer que $J^{\top} = -J$.
- 2. Montrer que $J \in GL_n(\mathbb{R})$ et que $J^{-1} = -J$.
- 3. Montrer que I_n et J sont symplectiques.
- 4. Montrer que le produit de deux matrices symplectiques est symplectique.

Matrice et système linéaire

Interprétation matricielle

Calcul d'inverse, système de Cramer

Exercice 9: Calcul d'inverse

Calculer l'inverse de la matrice

$$\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Opérations élémentaires par produit matriciel

Exercice 10: Exercice

Résoudre le système

$$\begin{cases}
-x_1 + x_2 + x_3 + \dots + x_n = 1 \\
x_1 - x_2 + x_3 + \dots + x_n = 2 \\
\vdots & \vdots = \vdots \\
x_1 + x_2 + x_3 + \dots - x_n = n
\end{cases}$$

Exercice 11: Exercice

Soit $m \in \mathbb{R}$. Résoudre le système suivant.

$$\begin{cases} x + y + z + t = 3 \\ x + my + z - mt = m + 2 \\ mx - y - mz - t = -1. \end{cases}$$

Exercice 12: Exercice

Soit $a,b,c\in\mathbb{C}$. Résoudre le système

$$\begin{cases} x & +y & +z=a \\ x & +\mathrm{j}y+\mathrm{j}^2z=b \\ x+\mathrm{j}^2y & +\mathrm{j}z=c. \end{cases}$$

Donner une condition nécessaire et suffisante sur a,b,c pour que les solutions soient réelles.

Matrice échelonnée

Chapitre 10

Dénombrement

10.1.1	Équipotence	. 1
10.1.2	Ensemble fini, cardinal	. 1
10.2 Dén	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$. 1
10.2.1	Dénombrement élémentaire	. 1
10.2.2	Arrangement, combinaison	. 1

10.1 Cardinal

10.1.1 Équipotence

Définition 10.1.1

Soit A et B deux ensembles. On dit que A est équipotent à B lorsqu'il existe une bijection de A dans B.

Proposition 10.1.2

La relation « est équipotent à » est une relation d'équivalence.

Remarques

- ⇒ Une fois que nous aurons défini le cardinal d'un ensemble fini, nous verrons que deux ensembles finis sont équipotents si et seulement si ils ont le même nombre d'éléments.
- \Rightarrow Il est possible qu'un ensemble soit équipotent à l'une de ses parties strictes; ces ensembles sont infinis. Par exemple l'application f de $\mathbb N$ dans $\mathbb N^*$ qui à n associe n+1 est une bijection, ce qui montre que $\mathbb N$ est équipotent à $\mathbb N^*$. Pourtant $\mathbb N^*$ est une partie stricte de $\mathbb N$. De même, l'application f de [0,1] dans [0,2] qui à x associe 2x est une bijection. Pourtant [0,1] est une partie stricte de [0,2].
- \Rightarrow Il existe des ensembles infinis qui ne sont pas équipotents. Par exemple, on peut montrer que, quel que soit l'ensemble X, les ensembles X et $\mathcal{P}(X)$ ne sont pas équipotents. En particulier $\mathbb N$ et $\mathcal{P}(\mathbb N)$ ne sont pas équipotents. Il existe donc des ensembles infinis qui ont « plus d'éléments » que d'autres.
- \Rightarrow On dit qu'un ensemble est $d\acute{e}nombrable$ lorsqu'il est équipotent à \mathbb{N} . On peut montrer que \mathbb{Z} , \mathbb{N}^n (pour $n \in \mathbb{N}^*$) et \mathbb{Q} sont dénombrables. On peut montrer cependant que \mathbb{R} n'est pas dénombrable. On dit qu'un ensemble est au plus dénombrable lorsqu'il est fini ou dénombrable.

10.1.2 Ensemble fini, cardinal

On rappelle que pour tout $n \in \mathbb{N}$, on a $[\![1,n]\!] \coloneqq \{k \in \mathbb{N} \mid 1 \leqslant k \leqslant n\}$. En particulier $[\![1,0]\!] = \varnothing$, $[\![1,1]\!] = \{1\}$, $[\![1,2]\!] = \{1,2\}$, $[\![1,3]\!] = \{1,2,3\}$, etc.

Définition 10.1.3

On dit qu'un ensemble A est fini lorsqu'il existe $n \in \mathbb{N}$ tel que A est équipotent à [1, n]. On dit qu'il est infini dans le cas contraire.

Définition 10.1.4

Soit A un ensemble fini. Alors il existe un unique $n \in \mathbb{N}$ tel que A est équipotent à [1, n]. On l'appelle cardinal de A et on le note Card(A) ou |A|.

Remarques

- \Rightarrow Un ensemble A est fini de cardinal $n \in \mathbb{N}$ si et seulement si il existe une bijection de [0, n] dans A.
- \Rightarrow Soit $a, b \in \mathbb{Z}$ tels que $a \leq b+1$. L'ensemble [a, b] est fini de cardinal b-a+1.

Proposition 10.1.5

Soit A un ensemble fini et B un ensemble. Alors, A et B sont équipotents si et seulement si B est fini et Card(A) = Card(B).

Exercices 1

- \Rightarrow Dénombrer les couples $(a,b) \in \mathbb{N}^2$ tels que 3a+b=833.
- ⇒ On a utilisé 6921 chiffres (les caractères d'imprimerie) pour numéroter les pages d'un dictionnaire. Combien de pages ce dictionnaire contient-il? Chaque page est numérotée une seule fois, la première portant le numéro 1.

Définition 10.1.6

Soit A une partie de \mathbb{N} .

- Si A est fini, il est l'image d'une unique application strictement croissante de [1, Card(A)] dans \mathbb{N} .
- Sinon, A est infini et il est l'image d'une unique application strictement croissante de \mathbb{N} dans \mathbb{N} .

Une telle application est appelée une énumération de A.

Proposition 10.1.7

Une partie de \mathbb{N} est finie si et seulement si elle est majorée.

Proposition 10.1.8

Soit E un ensemble fini et A une partie de E. Alors

- A est un ensemble fini et $Card(A) \leq Card(E)$.
- A = E si et seulement si Card(A) = Card(E).

Proposition 10.1.9

Soit E et F deux ensembles. Alors

- Si F est fini, il existe une injection de E dans F si et seulement si E est fini et $Card(E) \leq Card(F)$.
- Si E est fini et F est non vide, il existe une surjection de E dans F si et seulement si F est fini et $Card(F) \leq Card(E)$.
- Si l'un des ensembles est fini, il existe une bijection de E dans F si et seulement si l'autre est fini et Card(E) = Card(F).

Proposition 10.1.10: Principe des tiroirs

Soit E et F deux ensembles finis tels que $\operatorname{Card}(F) < \operatorname{Card}(E)$ et f une application de E dans F. Alors, il existe $x_1, x_2 \in E$ tels que $x_1 \neq x_2$ et $f(x_1) = f(x_2)$.

Exercices 2

 \Rightarrow Soit $n \geqslant 2$. En supposant que la relation « est ami avec » est symétrique, montrer que dans une assemblée de n personnes, il y en a au moins deux qui ont le même nombre d'amis.

10.2. DÉNOMBREMENT 195

 \Rightarrow Soit $x_1, \ldots, x_{n+1} \in [0, 1]$. Montrer qu'il existe $i, j \in [1, n+1]$ tels que $i \neq j$ et

$$|x_i - x_j| \leqslant \frac{1}{n}.$$

Proposition 10.1.11

Soit E un ensemble fini, F un ensemble et f une application de E dans F. Alors

- f(E) est un ensemble fini et $Card(f(E)) \leq Card(E)$
- $\operatorname{Card}(f(E)) = \operatorname{Card}(E)$ si et seulement si f est injective.

Si de plus F est un ensemble fini.

- Card $(f(E)) \leq \text{Card}(F)$
- $\operatorname{Card}(f(E)) = \operatorname{Card}(F)$ si et seulement si f est surjective.

Proposition 10.1.12

Soit E et F deux ensembles finis et f une application de E dans F.

- Si f est injective et Card(E) = Card(F), alors f est bijective.
- Si f est surjective et Card(E) = Card(F), alors f est bijective.

Autrement dit, si Card(E) = Card(F), alors

f est injective \iff f est bijective \iff f est surjective.

10.2 Dénombrement

10.2.1 Dénombrement élémentaire

Proposition 10.2.1

Soit E un ensemble fini et A, B deux parties disjointes de E, c'est-à-dire telles que $A \cap B = \emptyset$. Alors

$$\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B).$$

Remarques

- \Rightarrow Le « ou exclusif » se traduit donc par un + en dénombrement.
- \Rightarrow Si A et B sont deux parties disjointes, leur réunion est parfois notée $A \sqcup B$.

Proposition 10.2.2

Soit E un ensemble fini.

— Si A est une partie de E

$$\operatorname{Card}(\bar{A}) = \operatorname{Card}(E) - \operatorname{Card}(A).$$

— Si A et B sont deux parties de E

$$\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)$$
.

— Si (A_1, \ldots, A_n) est une partition de E, alors

$$\operatorname{Card}(E) = \operatorname{Card}(A_1) + \cdots + \operatorname{Card}(A_n).$$

Remarque

⇒ L'avantage du passage au complémentaire est qu'il permet de prendre la négation de la propriété qui définit l'ensemble. Cela donne parfois une phrase plus simple à manipuler et donc un ensemble plus simple à dénombrer.

Exercices 3

- ⇒ Quel est le nombre d'entiers entre 1 et 100 qui ne sont pas divisibles par 3?
- ⇒ Dénombrer

$$A\coloneqq\{n\in[\![1,100]\!]\mid 2|n\text{ ou }3|n\}.$$

 \Rightarrow Quel est le nombre de rythmes de n temps que l'on peut composer uniquement avec des noires (1 temps) et des blanches (2 temps)?

Proposition 10.2.3: Formule du crible

Soit A_1, \ldots, A_n des parties d'un même ensemble fini E. Alors

$$\operatorname{Card}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \operatorname{Card}\left(A_{i_{1}} \cap \dots \cap A_{i_{k}}\right).$$

Remarque

 \Rightarrow Par exemple, pour n=3, la formule du crible s'écrit

$$\operatorname{Card}(A_1 \cup A_2 \cup A_3) = \operatorname{Card}(A_1) + \operatorname{Card}(A_2) + \operatorname{Card}(A_3) - \left[\operatorname{Card}(A_2 \cap A_3) + \operatorname{Card}(A_1 \cap A_3) + \operatorname{Card}(A_1 \cap A_2)\right] + \operatorname{Card}(A_1 \cap A_2 \cap A_3).$$

Proposition 10.2.4

— Si A et B sont deux ensembles finis, alors $A \times B$ est fini et

$$Card(A \times B) = Card(A) Card(B)$$
.

Plus généralement, si A_1, \ldots, A_n sont des ensembles finis, $A_1 \times \cdots \times A_n$ est fini et

$$\operatorname{Card}(A_1 \times \cdots \times A_n) = \prod_{k=1}^n \operatorname{Card}(A_k).$$

— Si A est un ensemble fini et $n \in \mathbb{N}$, alors A^n est fini et

$$Card(A^n) = Card(A)^n$$
.

Remarque

Arr La formule Card $(A_1 \times \cdots \times A_n) = \operatorname{Card}(A_1) \cdots \operatorname{Card}(A_n)$ dit simplement que lorsque l'on doit faire une succession « et » de choix indépendants, on dénombre ces choix et on les multiplie.

Exercices 4

- ⇒ Montrer que dans un village de 700 personnes, deux au moins ont les mêmes initiales.
- ⇒ Combien de menus différents peut-on faire avec 4 entrées, 6 plats et 2 desserts?
- ⇒ Quel est le nombre de mots de 4 lettres contenant au moins un « e »?

Proposition 10.2.5

— Soit E et F deux ensembles finis. Alors $\mathcal{F}(E,F)=F^E$ est fini et

$$\operatorname{Card}(\mathcal{F}(E,F)) = \operatorname{Card}(F^E) = \operatorname{Card}(F)^{\operatorname{Card}(E)}.$$

— Soit E un ensemble fini. Alors $\mathcal{P}(E)$ est fini et

$$\operatorname{Card}(\mathcal{P}(E)) = 2^{\operatorname{Card}(E)}$$
.

Exercice 5

- \Rightarrow Quel est le nombre de possibilités de répartir p boules distinctes dans n urnes distinctes?
- \Rightarrow Une urne contient n boules distinctes. On effectue p tirages successifs avec remise (c'est-à-dire que l'on remet la boule dans l'urne après chaque tirage). Combien y-a-t-il de possibilités?
- \Rightarrow De combien de manières peut-on descendre n+1 marches (donc n « paliers »), en en sautant éventuellement certaines?

Proposition 10.2.6: Lemme des bergers

Soit E et F deux ensembles finis et f une application de E dans F. On suppose qu'il existe $p \in \mathbb{N}$ tel que

$$\forall y \in F$$
, $\operatorname{Card}\left(f^{-1}\left(\{y\}\right)\right) = p$.

10.2. DÉNOMBREMENT

Alors Card(E) = p Card(F).

Remarque

 \Rightarrow Soit E l'ensemble des pattes des moutons foulant un pré, F l'ensemble des moutons du pré et f l'application de E dans F qui à chaque patte associe son propriétaire. Comme chaque mouton a 4 pattes

$$\forall m \in F$$
, $\operatorname{Card}\left(f^{-1}\left(\{m\}\right)\right) = 4$.

197

On en déduit que le nombre de pattes foulant le pré est égal à quatre fois le nombre de moutons. C'est de cet exemple que la proposition précédente tire son nom de « lemme des bergers ».

10.2.2 Arrangement, combinaison

Définition 10.2.7: p-listes

Soit E un ensemble et $p \in \mathbb{N}$. On appelle p-liste d'éléments de E tout p-uplet $(a_1, \ldots, a_p) \in E^p$.

Exercice 6

 \Rightarrow Si $E=\{1,2,3\},$ donner les 2-listes d'éléments de E.

Remarques

- \Rightarrow Les p-listes d'éléments de E sont les fonctions de [1,p] dans E.
- \Rightarrow Choisir une p-liste, c'est choisir p éléments de E en tenant compte de l'ordre et en autorisant les répétitions.

Proposition 10.2.8: Nombre de listes

Soit E un ensemble de cardinal n et $p \in \mathbb{N}$. Alors, il existe

$$n^p$$

p-listes d'éléments de E.

Définition 10.2.9: p-arrangements

Soit E un ensemble et $p \in \mathbb{N}$. On appelle p-arrangement d'éléments de E toute p-liste $(a_1, \ldots, a_p) \in E^p$ telle que

$$\forall i, j \in [[1, p]], \quad i \neq j \quad \Longrightarrow \quad a_i \neq a_j.$$

Exercice 7

 \Rightarrow Si $E = \{1, 2, 3\}$, donner les 2-arrangements d'éléments de E.

Remarques

- \Rightarrow Les p-arrangements d'éléments de E sont les fonctions injectives [1, p] dans E.
- \Rightarrow Choisir un p-arrangement, c'est choisir p éléments de E en tenant compte de l'ordre et en n'autorisant pas les répétitions.

Proposition 10.2.10: Nombre d'arrangements

Soit E un ensemble de cardinal n et $p \in \mathbb{N}$. Alors il existe

$$A_n^p := \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \leqslant n \\ 0 & \text{si } p > n \end{cases}$$

p-arrangements d'éléments de E.

Remarque

 \Rightarrow Si $n\in\mathbb{N}$ et $p\in[\![0,n]\!],$ alors

$$A_n^p = \underbrace{n(n-1)\cdots(n-(p-1))}_{p \text{ termes}}.$$

Exercices 8

- \Rightarrow On répartit p boules distinctes dans n urnes distinctes. Quel est le nombre de répartitions pour lesquelles aucune urne ne contient plus d'une boule?
- \Rightarrow Une urne contient n boules distinctes. On effectue p tirages successifs sans remise. Combien y-a-t-il de possibilités?

Proposition 10.2.11

- Il existe A_n^p injections d'un ensemble à $p \in \mathbb{N}$ éléments dans un ensemble à $n \in \mathbb{N}$ éléments.
- Il existe n! bijections d'un ensemble à $n \in \mathbb{N}$ éléments dans un ensemble à n éléments.

Remarque

 \Rightarrow En particulier, si E est un ensemble à n éléments, il existe n bijections de E dans E. De telles applications sont appelées des permutations de E.

Exercice 9

⇒ Combien d'anagrammes peut-on former avec les mots « maths », « chimie » et « anagramme »?

Définition 10.2.12: p-combinaisons

Soit E un ensemble et $p \in \mathbb{N}$. On appelle p-combinaison d'éléments de E toute partie de E à p éléments.

Remarque

 \Rightarrow Choisir une p-combinaison, c'est choisir p éléments de E sans tenir compte de l'ordre et en n'autorisant pas les répétitions.

Proposition 10.2.13: Nombre de combinaisons

Soit E un ensemble de cardinal n et $p \in \mathbb{N}$. Alors il existe

$$C_n^p := \begin{cases} \frac{n!}{p! (n-p)!} & \text{si } p \leqslant n \\ 0 & \text{si } p > n \end{cases}$$

p-combinaisons d'éléments de E.

Remarques

 \Rightarrow Si $n \in \mathbb{N}$ et $p \in [0, n]$, alors

$$C_n^p = \underbrace{\frac{p \text{ termes}}{n (n-1) \cdots (n-(p-1))}}_{p!}.$$

Arr Le nombre de combinaisons C_n^p est aussi noté $\binom{n}{p}$. Nous utiliserons par la suite cette notation qui est la notation internationale.

Exercices 10

- \Rightarrow Une urne contient 6 boules numérotées de 1 à 6. Dénombrer les tirages possibles si on tire 3 boules
 - successivement et avec remise.
 - successivement et sans remise.
 - simultanément.
- ⇒ Un code de coffre-fort est composé de 6 chiffres entre 0 et 9 dont l'ordre compte. Dénombrer
 - tous les codes possibles.
 - les codes dont tous les chiffres sont distincts.
 - les codes ne contenant pas 0.
 - les codes contenant au plus deux fois le chiffre 1.
 - les codes contenant autant de chiffres pairs que de chiffres impairs.
 - les codes contenant la succession 123 quelque-part.
 - les codes strictement croissants.
- ⇒ On lance 5 dés. Combien y a-t-il de possibilités pour faire l'une des figures suivantes?
 - Un Yam's : les 5 dés ont la même valeur.
 - Une suite : (1, 2, 3, 4, 5) ou (2, 3, 4, 5, 6).
 - Un Full: 3 dés identiques et les 2 autres identiques mais différents des premiers.

10.2. DÉNOMBREMENT

 \Rightarrow Quel est le nombre de manières de répartir p boules indiscernables dans n urnes distinctes sachant qu'on ne peut pas mettre plus d'une boule par urne?

199

- \Rightarrow Déterminer le nombre de solutions de l'équation $x_1 + \cdots + x_n = p$ dans $\{0,1\}^n$.
- \Rightarrow Combien peut-on former de mots contenant p fois la lettre O et q fois la lettre I?
- \Rightarrow Quel est le nombre de manières de répartir p boules indiscernables dans n urnes distinctes?
- \Rightarrow Déterminer le nombre de solutions de l'équation $x_1 + \cdots + x_n = p$ dans \mathbb{N}^n .
- \Rightarrow Combien y a-t-il d'applications strictement croissantes de [1, p] dans [1, n]?
- \Rightarrow Combien y a-t-il d'applications croissantes de [1, p] dans [1, n]?
- \Rightarrow Soit $n \in \mathbb{N}^*$. Combien y a-t-il de surjections de [1, n+1] dans [1, n]?

Proposition 10.2.14

$$\forall n \in \mathbb{N}, \quad \forall p \in \llbracket 0, n \rrbracket, \qquad \binom{n}{p} = \binom{n}{n-p}$$

$$\forall n, p \in \mathbb{N}, \qquad \binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$$

$$\forall n, p \in \mathbb{N}^*, \qquad \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}.$$

Remarque

⇒ La dernière formule est parfois appelée « formule du capitaine » ou formule du « comité président ».

Proposition 10.2.15

$$\forall n \in \mathbb{N}, \qquad \sum_{p=0}^{n} \binom{n}{p} = 2^{n}$$

$$\forall a, b, n \in \mathbb{N}, \qquad \sum_{p=0}^{n} \binom{a}{p} \binom{b}{n-p} = \binom{a+b}{n}.$$

Remarque

 \Rightarrow La seconde formule est appelée formule de Vandermonde.

Proposition 10.2.16: Binôme de Newton

$$\forall a, b \in \mathbb{C}, \quad \forall n \in \mathbb{N}, \quad (a+b)^n = \sum_{p=0}^n \binom{n}{p} a^{n-p} b^p.$$

10.3 Exercices

Cardinal

Équipotence

Exercice 1 : Non dénombrabilité de [0,1]

Le but de cet exercice est de démontrer que [0, 1] n'est pas dénombrable, c'est-à-dire qu'il n'existe pas de surjection de \mathbb{N} dans [0,1]. On raisonne par l'absurde et on suppose qu'il existe une suite (u_n) d'éléments de [0,1] telle que

$$\forall x \in [0,1], \quad \exists n \in \mathbb{N}, \quad u_n = x.$$

- 1. Construire deux suites (a_n) et (b_n) de réels telles que
 - $-a_0 = 0$ et $b_0 = 1$.
- 2. Montrer que les suites (a_n) et (b_n) convergent vers une limite commune $l \in [0,1]$, puis que

$$\forall n \in \mathbb{N}, \quad u_n \neq l.$$

Conclure.

Ensemble fini, cardinal

Exercice 2: Ensemble d'entiers

Étant donnés 51 entiers compris entre 1 et 100, montrer qu'il en existe toujours 2 consécutifs.

Exercice 3 : Théorème d'approximation de Dirichlet

1. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Pour tout $k \in [0, n]$, on pose $\delta_k := kx - \lfloor kx \rfloor$. En appliquant le principe des tiroirs aux réels δ_k , montrer le théorème d'approximation de Dirichlet

$$\exists p \in \mathbb{Z}, \quad \exists q \in [1, n], \quad \left| x - \frac{p}{q} \right| < \frac{1}{nq}.$$

- 2. Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Montrer qu'il existe une infinité de $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

(b) Montrer qu'il existe une infinité de $p \in \mathbb{Z}$ pour lesquels

$$\exists q \in \mathbb{N}^*, \quad \left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

3. On admet que π est irrationnel. Dans ces conditions $\sin n \neq 0$ pour tout $n \in \mathbb{N}^*$ et on peut poser

$$\forall n \in \mathbb{N}^*, \quad u_n \coloneqq \frac{1}{n \sin n}.$$

On souhaite montrer que la suite (u_n) n'admet pas de limite. On raisonne par l'absurde et on suppose que (u_n) admet une limite $l \in \overline{\mathbb{R}}$.

- (a) Montrer que l = 0.
- (b) Obtenir une contradiction en appliquant les résultats de la question 2.b au réel π .

Exercice 4:7 nombres réels

Soit sept nombres réels x_1, \ldots, x_7 . Montrer qu'il existe deux indices i et j distincts tels que

$$0 < \frac{x_i - x_j}{1 + x_i x_j} < \frac{1}{\sqrt{3}} \cdot$$

Rappelez vous que la trigonométrie se cache même aux endroits où on ne l'attend pas.

10.3. EXERCICES 201

$D\'{e}nombrement$

Dénombrement élémentaire

Exercice 5 : Couples dans le plan

Combien y a-t-il de couples (i, j)

- 1. dans $[1, n]^2$ pour lesquels i + j = n?
- 2. dans $[1, n]^2$ pour lesquels i < j?
- 3. dans $[1, n] \times [1, 2n]$ pour lesquels i < j?
- 4. dans $[1, n]^2$ pour lesquels $|i j| \leq 1$?

Exercice 6: Autour du crible

Une certaine ville compte 17 500 actifs dans sa population. À l'issue d'un recensement, on a obtenu les informations suivantes sur ces 17 500 actifs :

- 4 actifs sur 7 sont des femmes et 6 d'entre elles sur 10 ont voté aux dernières municipales.
- 3 actifs sur 5 ont voté aux dernières municipales et 40% de ces personnes sont au chômage.
- Le chômage touche 1 actif sur 4 et 60% des demandeurs d'emploi sont des femmes.
- 60% des femmes au chômage ont voté aux dernières municipales.

Combien d'hommes qui ne sont pas au chômage sont restés chez eux le jour des élections municipales?

Arrangement, combinaison

Exercice 7: Anagrammes

Dénombrer les anagrammes des mots suivants

COUVERT, COUTEAU, FOURCHETTE.

Exercice 8: Le livreur

Un livreur doit distribuer des colis à cinq personnes A, B, C, D, E. Combien y a-t-il de trajets possibles? S'il souhaite livrer A avant B et C, combien y a-t-il de trajets possibles?

Exercice 9 : Surjections d'un ensemble fini dans un autre

Quels que soient $n, p \in \mathbb{N}$, on note $S_{p,n}$ le nombre de surjections d'un ensemble à p éléments dans un ensemble à n éléments.

- 1. On suppose que $p \leq n$. Que vaut $S_{p,n}$?
- 2. Calculer $S_{n+1,n}$ et $S_{p,2}$.
- 3. Montrer que

$$\forall p, n \in \mathbb{N}, \quad n^p = \sum_{i=0}^n \binom{n}{i} S_{p,i}.$$

Exercice 10: Partitions d'un ensemble

Quels que soient $n, p \in \mathbb{N}$, on note $P_{n,p}$ le nombre de partitions d'un ensemble de cardinal np en n parties à p éléments. Montrer que

$$\forall n, p \in \mathbb{N}, \quad P_{n+1,p} = \frac{1}{n+1} \binom{(n+1)p}{p} P_{n,p}.$$

En déduire $P_{n,p}$.

Exercice 11: Tours de Hanoï

Le jeu des tours de Hanoï se compose de trois tiges sur lesquelles on peut empiler n disques deux à deux distincts $(n \ge 1)$. Initialement, les n disques sont empilés sur la première tige, par ordre décroissant de taille, du bas vers le haut. Le but du jeu est de transporter la tour complète sur une autre tige par une suite de mouvements consistant à déplacer un disque à la fois, et en respectant les deux règles suivantes :

- on ne peut ôter d'une tige que le disque se trouvant au sommet de la pile;
- on ne peut empiler un disque sur une tige que si elle est vide ou bien si l'on pose le disque en question sur un autre plus grand.

Notons a_n le nombre minimal de mouvements nécessaires au transport de la tour initiale de n disques.

- 1. Montrer que $a_1 = 1$ et $a_2 = 3$.
- 2. Établir une relation entre a_{n+1} et a_n pour tout $n \ge 1$.
- 3. Montrer que $a_n = 2^n 1$ pour tout $n \ge 1$.

Exercice 12: Exercice

Sur une étagère, on range les n tomes d'une encyclopédie. Combien y a-t-il de manières de les ranger tout en étant sûr que le tome 1 et le tome 2 sont côte à côte et dans cet ordre?

Exercice 13: Exercice

De combien de façons différentes peut-on ranger les nombres $1, 2, \dots, n$ si l'on veut que le produit de deux nombres voisins soit toujours pair?

Exercice 14: Exercice

Une urne contient 10 boules numérotées de 1 à 10. La boule 1 est jaune, les boules 2 et 3 sont bleues, les boules 4,5,6 sont rouges et les boules 7,8,9,10 sont vertes. On tire dans l'urne successivement et avec remise 5 boules. Le résultat est donc la liste ordonnée des cinq numéros des boules tirées. Déterminer le nombre de résultats

- 1. en tout,
- 2. pour lesquels les cinq boules sont toutes de la même couleur,
- 3. pour lesquels les quatre couleurs apparaissent parmi les cinq boules,
- 4. pour lesquels la boule numéro 8 a été tirée et exactement deux des boules tirées sont rouges.

Exercice 15: Exercice

On dispose de trois urnes notées A, B, C et de six boules. On répartit les six boules dans les trois urnes (chaque urne peut contenir de 0 à 6 boules). Une répartition est une liste ordonnée de trois nombres indiquant le nombre de boules contenues dans les urnes A, B, C. Par exemple, la répartition (2, 4, 0) indique que l'urne A contient 2 boules, l'urne B en contient 4 et l'urne C est vide. Déterminer le nombre de répartitions

- 1. en tout,
- 2. telles que l'urne A est vide,
- 3. telles que l'urne A est la seule urne vide,
- 4. telles qu'une urne et une seulement est vide,
- 5. telles qu'aucune urne est vide,
- 6. telles qu'au moins une urne est vide.

Exercice 16: Exercice

On considère un quadrillage de n lignes et m colonnes. On part de la case en haut à gauche pour arriver à la case en bas à droite. Les seuls mouvements possibles sont de se déplacer d'une case à droite ou d'une case en bas. Combien existe-t-il de chemins?

Exercice 17: Exercice

Un domino est un rectangle constitué de deux carrés, chacun comportant entre 0 et 6 points.

- 1. Combien existe-t-il de dominos?
- 2. Combien de paires peut-on former avec des dominos ayant un nombre en commun?

Exercice 18: Exercice

Soit E un ensemble de cardinal 2n. On appelle partition de E en paires tout ensemble $\{\{a_1,b_1\},\ldots,\{a_n,b_n\}\}$ avec pour tout $i \in [1,n]$, $a_i \neq b_i$ et $(\{a_1,b_1\},\ldots,\{a_n,b_n\})$ est une partition de E. Dénombrer les partitions de E en paires.

10.3. EXERCICES 203

Exercice 19: Exercice

Soit E une partie de cardinal $n \in \mathbb{N}^*$. Dénombrer de deux manières différentes les couples $(a, A) \in E \times \mathcal{P}(E)$ tels que $a \notin A$. En déduire

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n k \binom{n}{k} = n2^{n-1}.$$

Exercice 20: Compter les matrices

Combien existe-t-il de matrices de $\mathcal{M}_{q,p}\left(\mathbb{R}\right)$ dont les entrées sont « 0 » ou « 1 » et

- 1. dont chaque ligne contient exactement un coefficient « 1 »?
- 2. dont chaque ligne contient exactement deux coefficients « 1 »?
- 3. dont chaque ligne et chaque colonne contiennent exactement un coefficient « 1 » (on suppose ici q = p)?

Exercice 21: Le crible

Soit $n \in \mathbb{N}^*$.

1. Montrer que

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^n = n!.$$

On pourra appliquer la formule du crible aux ensembles $[1, n] \setminus \{k\}$ pour $k \in [1, n]$.

2. Simplifier de même

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^p$$

pour tout $p \in [0, n]$.

Exercice 22: Exercice

Pour tout $n \in \mathbb{N}$, on note u_n le nombre d'applications f de [1, n] dans [1, n] telles que $f \circ f = \text{Id}$. Déterminer une relation de récurrence vérifiée par la suite (u_n) .

Chapitre 11

Groupes

11.1.1	Loi de composition interne
11.1.2	Groupe
11.1.3	Ordre d'un élément
11.2 Grou	pe symétrique
11.2.1	Groupe symétrique
11.2.2	Décomposition en cycles à supports disjoints
11 9 3	Signature, groupe alterné

11.1 Groupe

11.1.1 Loi de composition interne

Définition 11.1.1

Soit E un ensemble. On appelle loi de composition interne toute application \star de $E \times E$ dans E.

$$\begin{array}{cccc} \star: & E \times E & \longrightarrow & E \\ & (x,y) & \longmapsto & x \star y \end{array}$$

Définition 11.1.2

La loi \star est dite

— associative lorsque

 $\forall x, y, z \in E, \quad (x \star y) \star z = x \star (y \star z).$

-- commutative lorsque

 $\forall x, y \in E, \quad x \star y = y \star x.$

Exemples

- \Rightarrow L'addition et la multiplication sont des lois de composition interne sur \mathbb{Z} , associatives et commutatives.
- ⇒ L'exponentiation est une loi de composition interne sur N qui n'est ni associative, ni commutative.
- \Rightarrow Si X est un ensemble, la composition est une loi de composition interne associative sur $E := \mathcal{F}(X, X)$. Elle n'est pas commutative dès que X possède au moins deux éléments.
- Arr Le produit matriciel est une loi de composition interne associative sur \mathcal{M}_n (\mathbb{C}). Elle est n'est pas commutative dès que $n \ge 2$.

Remarques

 \Rightarrow Soit \star une loi associative. Quels que soient $x,y,z,t\in E$, les 5 expressions suivantes sont égales :

$$(x \star y) \star (z \star t), \quad ((x \star y) \star z) \star t,$$
$$(x \star (y \star z)) \star t, \quad x \star ((y \star z) \star t), \quad x \star (y \star (z \star t)).$$

On admettra plus généralement que toute expression de n éléments construite à l'aide de la loi \star ne dépend pas de l'emplacement des parenthèses. C'est pourquoi on se permettra de les omettre.

 \Rightarrow On dit que deux éléments $x, y \in E$ commutent lorsque $x \star y = y \star x$.

Définition 11.1.3

Une partie A de E est dite stable par \star lorsque

$$\forall x, y \in A, \quad x \star y \in A.$$

Remarque

 \Rightarrow Si \star est une loi de composition interne sur E et $A \in \mathcal{P}(E)$ est stable par \star , alors la loi

$$\begin{array}{cccc} \star_A: & A\times A & \longrightarrow & A \\ & (x,y) & \longmapsto & x\star y \end{array}$$

est une loi de composition interne sur A. On continuera à la noter \star .

Définition 11.1.4

On dit que \star admet un élément neutre $e \in E$ lorsque

$$\forall x \in E, \quad x \star e = x \text{ et } e \star x = x.$$

Si tel est le cas, il est unique et on l'appelle élément neutre de \star . Lorsque la loi est notée additivement, l'élément neutre est noté 0.

Exercice 1

⇒ Parmi les lois de composition interne citées plus haut, lesquelles admettent un élément neutre?

Dans toute la suite de ce cours, on supposera, sauf mention explicite du contraire, que les lois sont associatives et admettent un élément neutre.

Définition 11.1.5

Soit $x \in E$. On définit par récurrence x^n pour tout $n \in \mathbb{N}$ en posant :

$$-x^0 \coloneqq e$$

$$- \forall n \in \mathbb{N}, \quad x^{n+1} := x^n \star x.$$

Remarque

- \Rightarrow Lorsque la loi est notée additivement, on n'utilise pas la notation x^n mais plutôt la notation $n \cdot x$. On a donc :
 - $-0 \cdot x = 0$
 - $-- \forall n \in \mathbb{N}, \quad (n+1) \cdot x = n \cdot x + x.$

Proposition 11.1.6

— Soit $x \in E$. Alors

$$\forall m, n \in \mathbb{N}, \qquad x^{m+n} = x^m \star x^n$$

 $(x^m)^n = x^{mn}.$

— Soit $x, y \in E$ tels que $x \star y = y \star x$. Alors, pour tout $n, m \in \mathbb{N}$, x^n et y^m commutent. De plus

$$\forall n \in \mathbb{N}, \quad (x \star y)^n = x^n \star y^n.$$

Remarque

 \Rightarrow Si la loi est notée additivement, on a donc :

$$\forall x \in E, \quad \forall m, n \in \mathbb{N}, \qquad (m+n) \cdot x = m \cdot x + n \cdot x$$

$$n \cdot (m \cdot x) = (nm) \cdot x$$

$$\forall x, y \in E, \quad \forall n \in \mathbb{N}, \qquad n \cdot (x+y) = n \cdot x + n \cdot y.$$

11.1. GROUPE 207

Définition 11.1.7

Soit $x \in E$. On dit que x est symétrisable pour la loi \star lorsqu'il existe $y \in E$ tel que

$$x \star y = y \star x = e$$
.

Si tel est le cas, y est unique et est appelé $sym\acute{e}trique$ de x. On l'appelle inverse de x et on le note x^{-1} lorsque la loi est notée multiplicativement. On l'appelle $oppos\acute{e}$ de x et on le note -x lorsque la loi est notée additivement.

Proposition 11.1.8

— Si x est symétrisable, x^{-1} l'est et

$$(x^{-1})^{-1} = x.$$

— Si x et y sont symétrisables, $x \star y$ l'est et

$$(x \star y)^{-1} = y^{-1} \star x^{-1}$$
.

Définition 11.1.9

Soit $x \in E$. Si x est symétrisable, on étend la définition de x^n en posant :

$$\forall n \in \mathbb{Z}, \quad x^n \coloneqq \begin{cases} x^n & \text{si } n \ge 0\\ (x^{-n})^{-1} & \text{si } n < 0. \end{cases}$$

Proposition 11.1.10

— Soit $x \in E$. Si x est symétrisable

$$\forall m, n \in \mathbb{Z}, \qquad x^{m+n} = x^m \star x^n$$

 $(x^m)^n = x^{mn}.$

— Si $x, y \in E$ sont symétrisables et commutent, alors

$$\forall n \in \mathbb{Z}, \quad (x \star y)^n = x^n \star y^n.$$

Remarque

⇒ Lorsque la loi est notée additivement, on a donc :

$$\begin{aligned} \forall x \in E, \quad \forall m, n \in \mathbb{Z}, \qquad & (m+n) \cdot x = m \cdot x + n \cdot x \\ & n \cdot (m \cdot x) = (nm) \cdot x \\ \forall x, y \in E, \quad \forall n \in \mathbb{Z}, \qquad & n \cdot (x+y) = n \cdot x + n \cdot y. \end{aligned}$$

Définition 11.1.11

On dit qu'un élément x de E est régulier lorsque

$$\forall y, z \in E, \quad x \star y = x \star z \implies y = z$$
 $y \star x = z \star x \implies y = z.$

Proposition 11.1.12

Les éléments symétrisables sont réguliers.

208 CHAPITRE 11. GROUPES

11.1.2 Groupe

Définition 11.1.13

Soit G un ensemble muni d'une loi de composition interne \star . On dit que (G,\star) est un groupe lorsque

- ★ est associative
- ⋆ admet un élément neutre
- tout élément de G est symétrisable.

Le groupe (G, \star) est dit commutatif (ou abélien) lorsque la loi \star est commutative.

Remarques

- \Rightarrow $(\mathbb{C},+)$ et (\mathbb{C}^*,\times) sont des groupes commutatifs.
- \Rightarrow Si (G, \star) est un groupe et $a, b \in G$, alors

$$\forall x \in G, \quad a \star x = b \iff x = a^{-1} \star b.$$

De même

$$\forall x \in G, \quad x \star a = b \iff x = b \star a^{-1}.$$

 \Rightarrow Si (G, \star) est un groupe fini, on appelle table de (G, \star) le tableau à deux entrées dont les lignes et les colonnes sont indexées par les éléments de G et qui contient les produits $x \star y$. Puisque (G, \star) est un groupe, chaque ligne et chaque colonne contient une et une seule fois chaque élément de G.

Exercice 2

⇒ Montrer qu'il n'existe qu'une seule table de groupe à 3 éléments.

Définition 11.1.14

Soit (G,\star) un groupe et H une partie de G. On dit que H est un sous-groupe de (G,\star) lorsque

- $-e \in H$
- $-- \forall x, y \in H, \quad x \star y \in H$
- $\forall x \in H, \quad x^{-1} \in H.$

Si tel est le cas, alors (H, \star) est un groupe.

Remarques

- \Rightarrow Si H est un sous-groupe de G, alors : $\forall x \in H$, $\forall n \in \mathbb{Z}$, $x^n \in H$.
- \Rightarrow En pratique, pour montrer que (H,\star) est un groupe, on le fera presque toujours apparaître comme sous-groupe d'un groupe connu.

Exemples

- \Rightarrow Si (G, \star) est un groupe, G et $\{e\}$ sont des sous-groupes de G. Le sous-groupe $\{e\}$ est appelé groupe trivial.
- $\Rightarrow \mathbb{R}$ et \mathbb{Z} sont des sous-groupes de $(\mathbb{C}, +)$. De même, \mathbb{R}^* et \mathbb{U} sont des sous-groupes de (\mathbb{C}^*, \times) .

Proposition 11.1.15

Si $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) est un groupe dont l'élément neutre est 1.

Proposition 11.1.16

Soit E un ensemble. On note $\sigma(E)$ l'ensemble des bijections de E dans E. Alors $(\sigma(E), \circ)$ est un groupe, appelé groupe des permutations de E, dont l'élément neutre est Id_E .

Exercice 3

 \Rightarrow Montrer que l'ensemble des bijections strictement croissantes de \mathbb{R} dans \mathbb{R} est un sous-groupe de $(\sigma(\mathbb{R}), \circ)$.

Proposition 11.1.17

L'intersection d'une famille de sous-groupes est un sous-groupe.

Remarque

⇒ Contrairement à l'intersection, l'union de deux sous-groupes n'est en général pas un sous-groupe.

11.1. GROUPE 209

Définition 11.1.18

Soit (G, \star) un groupe et A une partie de G. Alors, au sens de l'inclusion, il existe un plus petit sous-groupe de G contenant A; on l'appelle groupe engendré par A et on le note Gr(A).

Remarque

 \Rightarrow Si (G, \star) est un groupe et x est un élément de G, le groupe engendré par $\{x\}$, appelé aussi groupe engendré par x, est $\{x^k : k \in \mathbb{Z}\}$.

Définition 11.1.19

Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On dit qu'une application φ de G_1 dans G_2 est un morphisme de groupe lorsque

$$\forall x, y \in G_1, \quad \varphi(x \star_1 y) = \varphi(x) \star_2 \varphi(y).$$

Plus précisément, on dit que φ est un

- endomorphisme lorsque $(G_1, \star_1) = (G_2, \star_2)$
- isomorphisme lorsque φ est bijective
- automorphisme lorsque φ est un endomorphisme et un isomorphisme.

Remarque

Arr L'application φ de \mathbb{R} dans \mathbb{U} qui à θ associe $e^{i\theta}$ est un morphisme du groupe $(\mathbb{R},+)$ dans le groupe (\mathbb{U},\times) . L'application exp de \mathbb{R} dans \mathbb{R}_+^* est un isomorphisme du groupe $(\mathbb{R},+)$ dans le groupe (\mathbb{R}_+^*,\times) .

Proposition 11.1.20

Soit φ un morphisme du groupe de (G_1, \star_1) dans (G_2, \star_2) . Alors

$$\varphi(e_1) = e_2$$

$$\forall x \in G_1, \qquad \varphi(x^{-1}) = [\varphi(x)]^{-1}$$

$$\forall x \in G_1, \quad \forall n \in \mathbb{Z}, \qquad \varphi(x^n) = [\varphi(x)]^n.$$

Remarque

 \Rightarrow Si φ est un morphisme de groupe et que les lois sont notées additivement, alors

$$\forall x \in G_1, \quad \forall n \in \mathbb{Z}, \quad \varphi(n \cdot x) = n \cdot \varphi(x).$$

Exercice 4

 \Rightarrow Déterminer les endomorphismes, puis les automorphismes de $(\mathbb{Z},+)$.

Proposition 11.1.21

Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . Alors

- l'image réciproque d'un sous-groupe de G_2 est un sous-groupe de G_1 .
- l'image directe d'un sous-groupe de G_1 est un sous-groupe de G_2 .

Définition 11.1.22

Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . On appelle noyau de φ et on note Ker φ l'ensemble

$$\operatorname{Ker} \varphi := \{ x \in G_1 \mid \varphi(x) = e_2 \}.$$

C'est un sous-groupe de G_1 .

Proposition 11.1.23

Un morphisme φ de (G_1, \star_1) dans (G_2, \star_2) est injectif si et seulement si

$$\operatorname{Ker} \varphi = \{e_1\}.$$

210 CHAPITRE 11. GROUPES

Remarque

 \Rightarrow Pour montrer l'injectivité d'un morphisme, montrer que Ker $\varphi = \{e_1\}$ doit devenir un réflexe. Pour cela, il est naturel de procéder par double inclusion. Mais comme l'inclusion $\{e_1\} \subset \text{Ker } \varphi$ est toujours vraie, puisque $\varphi(e_1) = e_2$, il est essentiel de se concentrer sur l'inclusion Ker $\varphi \subset \{e_1\}$.

Exercice 5

 \Rightarrow Soit (G,\star) un groupe et φ l'application de G dans $\sigma(G)$ définie par

Montrer que φ est bien définie et que c'est un morphisme injectif de groupe. En déduire que (G, \star) est isomorphe à un sous-groupe du groupe de ses permutations.

Proposition 11.1.24

- La composée de deux morphismes de groupe est un morphisme de groupe.
- La bijection réciproque d'un isomorphisme de groupe est un isomorphisme de groupe.

Proposition 11.1.25

Si (G, \star) est un groupe, on note $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G. $(\operatorname{Aut}(G), \circ)$ est un groupe.

Définition 11.1.26

Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On définit la loi \star sur $G_1 \times G_2$ par

$$\forall (x_1, x_2), (y_1, y_2) \in G_1 \times G_2, \quad (x_1, x_2) \star (y_1, y_2) = (x_1 \star_1 y_1, x_2 \star_2 y_2).$$

Alors $(G_1 \times G_2, \star)$ est un groupe d'élément neutre (e_1, e_2) et

$$\forall (x_1, x_2) \in G_1 \times G_2, \quad (x_1, x_2)^{-1} = (x_1^{-1}, x_2^{-1}).$$

Exercice 6

 \Rightarrow Montrer que ($\mathbb{R}_+^* \times \mathbb{U}, \times$) est isomorphe à (\mathbb{C}^*, \times).

11.1.3 Ordre d'un élément

Proposition 11.1.27

Pour tout $n \in \mathbb{N}$, on pose

$$n\mathbb{Z} \coloneqq \{kn : k \in \mathbb{Z}\}.$$

C'est un sous-groupe de $(\mathbb{Z}, +)$.

Proposition 11.1.28

Une partie H de \mathbb{Z} est un sous-groupe de $(\mathbb{Z}, +)$ si et seulement si il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$. De plus, si tel est le cas, l'entier n est unique.

Remarque

 \Rightarrow Si H est un sous-groupe de $(\mathbb{Z},+)$ non réduit à $\{0\}$, alors H admet un plus petit élément strictement positif $n \in \mathbb{N}^*$. On a alors $H = n\mathbb{Z}$.

Définition 11.1.29

Soit (G, \star) un groupe et $x \in G$.

— On dit que x est d'ordre fini lorsqu'il existe $n \in \mathbb{N}^*$ tel que $x^n = e$. Dans ce cas, il existe un unique $\omega \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{Z}, \quad x^n = e \iff \omega | n.$$

On l'appelle ordre de x. C'est le plus petit entier $n \in \mathbb{N}^*$ tel que $x^n = e$.

Sinon, on dit que x est d'ordre infini. On a alors

$$\forall n \in \mathbb{Z}, \quad x^n = e \iff n = 0.$$

Remarques

- \Rightarrow Dans (\mathbb{C}^*, \times) , si $n \in \mathbb{N}^*$, $\omega := e^{i\frac{2\pi}{n}}$ est d'ordre n.
- \Rightarrow Dans un groupe, e est l'unique élément d'ordre 1.
- ⇒ Dans un groupe fini, tout élément est d'ordre fini.
- \Rightarrow Soit $x \in G$ un élément d'ordre $\omega \in \mathbb{N}^*$. Alors le groupe engendré par x est $\{e, x, x^2, \dots, x^{\omega 1}\}$, ces éléments étant deux à deux distincts. En particulier, l'ordre de x est le cardinal du groupe qu'il engendre.

Théorème 11.1.30: Théorème de Lagrange

Soit (G,\star) un groupe fini et x un élément de G. Alors l'ordre de x divise le cardinal de G.

Remarques

- \Rightarrow Si (G,\star) est un groupe fini, le cardinal de G est aussi appelé ordre de G. La version faible du théorème de Lagrange nous dit donc que dans un groupe fini, l'ordre d'un élément divise l'ordre du groupe.
- \Rightarrow La version forte du théorème de Lagrange dit que si (G,\star) est un groupe fini et H est un sous-groupe de (G,\star) , alors le cardinal de H divise le cardinal de G. De cette version forte découle la version faible : si $x \in G$, il suffit de remarquer que le cardinal du groupe H engendré par x est l'ordre de x.

 \Rightarrow Déterminer les sous-groupes finis de (\mathbb{U}, \times) .

11.2 Groupe symétrique

11.2.1 Groupe symétrique

Définition 11.2.1

Soit $n \in \mathbb{N}$. On appelle groupe symétrique et on note (S_n, \circ) l'ensemble des bijections de [1, n] dans lui-même muni de la loi de composition.

Remarques

 \Rightarrow Si $\sigma \in \mathcal{F}([1,n],[1,n])$, l'application σ est aussi notée

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}.$$

Puisque [1, n] est fini, σ est bijective si et seulement si elle est injective ou surjective. Autrement dit, σ est bijective si et seulement si l'une des deux conditions suivantes est vérifiée :

- 1. Les entiers $\sigma(1), \ldots, \sigma(n)$ sont deux à deux distincts.
- 2. $\{\sigma(1), \ldots, \sigma(n)\} = [1, n].$
- \Rightarrow Si E est un ensemble fini de cardinal n, l'ensemble des bijections de E muni de la loi de composition est un groupe isomorphe à (S_n, \circ) .

 (S_n, \circ) est un groupe fini de cardinal n!.

Définition 11.2.3

Soit $n \in \mathbb{N}$.

- Soit $p \in [2, n]$. On appelle cycle de longueur p (ou p-cycle) toute permutation σ tel qu'il existe $x_0,\ldots,x_{p-1}\in [1,n]$ deux à deux distincts tels que

212 CHAPITRE 11. GROUPES

On note $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1}).$

— On appelle transposition tout cycle de longueur 2.

Remarques

- \Rightarrow Si $n \geqslant 3$, (S_n, \circ) n'est pas commutatif.
- \Rightarrow Si σ est une transposition, alors $\sigma^2 = \text{Id}$. On en déduit que $\sigma^{-1} = \sigma$.
- \Rightarrow Si $i \in \mathbb{Z}$ et $p \in \mathbb{N}^*$, on note $i \mod p$, le reste de la division euclidienne de i par p. Si $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ est un p-cycle, on a donc

$$\forall i \in [0, p[, \sigma(x_i) = x_{i+1 \mod p}].$$

 \Rightarrow Les *p*-cycles sont des éléments d'ordre *p*.

Exercices 8

- \Rightarrow Soit τ un p-cycle et $\sigma \in \mathcal{S}_n$. Montrer que $\sigma \tau \sigma^{-1}$ est un p-cycle.
- \Rightarrow Montrer que si $\sigma_1, \sigma_2 \in \mathcal{S}_n$ sont deux p-cycles, il existe $\sigma \in \mathcal{S}_n$ tel que $\sigma_2 = \sigma \sigma_1 \sigma^{-1}$.

11.2.2 Décomposition en cycles à supports disjoints

Définition 11.2.4

Soit $\sigma \in \mathcal{S}_n$. On définit la relation \mathcal{R} sur [1, n] par

$$\forall x, y \in [1, n], \quad x \mathcal{R} y \iff [\exists k \in \mathbb{Z}, \quad \sigma^k(x) = y].$$

Alors \mathcal{R} est une relation d'équivalence. Si $x \in [1, n]$, la classe de x est notée $\mathcal{O}(x)$ et est appelée orbite de x.

Remarques

- \Rightarrow Les orbites étant des classes d'équivalence, elles forment une partition de [1, n].
- \Rightarrow Si $x \in [1, n]$, alors $\mathcal{O}(x) = \{\sigma^k(x) : k \in \mathbb{Z}\}$. De plus, il existe un plus petit $p \in \mathbb{N}^*$ tel que $\sigma^p(x) = x$. On a alors $\mathcal{O}(x) = \{x, \sigma(x), \dots, \sigma^{p-1}(x)\}$.

Définition 11.2.5

Soit $\sigma \in \mathcal{S}_n$. On appelle support de σ et on note $\mathrm{Supp}(\sigma)$ l'ensemble des $x \in [1, n]$ tels que $\sigma(x) \neq x$.

Remarques

- \Rightarrow Si $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ est un p-cycle, alors Supp $(\sigma) = \{x_0, \dots, x_{p-1}\}$.
- \Rightarrow Le support de σ est stable par σ .
- ⇒ Deux permutations de supports disjoints commutent. Cependant la réciproque est fausse.

Théorème 11.2.6

Toute permutation s'écrit comme le produit (commutatif) de cycles à supports disjoints. De plus, à l'ordre près, il y a unicité d'une telle décomposition.

Remarque

 \Rightarrow Si une permutation $\sigma \in \mathcal{S}_n$ s'écrit comme le produit de m cycles à supports deux à deux disjoints de longueurs respectives p_1, \ldots, p_m , alors l'ordre de σ est $\operatorname{ppcm}(p_1, \ldots, p_m)$.

Exercices 9

- \Rightarrow Déterminer tous les éléments de S_3 . Quels sont leurs ordres?
- \Rightarrow Quels sont les entiers qui sont l'ordre d'un élément de S_4 ?
- \Rightarrow Déterminer les éléments d'ordre 2 de S_n ?

11.2.3 Signature, groupe alterné

Proposition 11.2.7

Toute permutation $\sigma \in \mathcal{S}_n$ s'écrit comme le produit d'au plus n-1 transpositions.

Remarque

 \Rightarrow Soit $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ un cycle de longueur p. Alors

$$\sigma = (x_0 \quad x_1)(x_1 \quad x_2) \cdots (x_{p-2} \quad x_{p-1}).$$

Exercice 10

 \Rightarrow Dans S_3 , on pose $\sigma_1 := (1 \quad 3)$ et $\sigma_2 := (1 \quad 2 \quad 3)$. Décomposer $\sigma_1 \sigma_2$ en produit de transpositions de deux manières distinctes.

Définition 11.2.8

Soit σ une permutation et

$$\sigma = \tau_1 \cdots \tau_m$$
 et $\sigma = \tau'_1 \cdots \tau'_{m'}$

deux décompositions de σ en produit de transpositions. Alors m et m' ont même parité; on dit que σ est paire lorsque ces entiers sont pairs et que σ est impaire dans le cas contraire. On définit la signature de σ que l'on note $\epsilon(\sigma)$ par

$$\epsilon(\sigma) \coloneqq \begin{cases} +1 & \text{si } \sigma \text{ est paire} \\ -1 & \text{si } \sigma \text{ est impaire}. \end{cases}$$

Remarques

 \Rightarrow Soit $\sigma \in \mathcal{S}_n$ et $\sigma = \tau_1 \cdots \tau_m$ une décomposition de σ en produit de transpositions. Alors

$$\epsilon(\sigma) = (-1)^m.$$

 \Rightarrow La signature d'un p-cycle est $(-1)^{p-1}$. En particulier, les transpositions sont impaires et les 3-cycles sont pairs.

Proposition 11.2.9

L'application ϵ de (S_n, \circ) dans $(\{-1, 1\}, \times)$ est un morphisme de groupe.

Remarque

 \Rightarrow Si σ est une permutation, σ et σ^{-1} ont la même signature.

Définition 11.2.10

On note \mathcal{A}_n l'ensemble des permutations paires. C'est un sous-groupe de (\mathcal{S}_n, \circ) appelé groupe symétrique alterné

Remarque

 \Rightarrow Si $n \ge 2$, le groupe (A_n, \circ) est de cardinal n!/2.

11.3 Exercices

Groupe

Loi de composition interne

Exercice 1 : Loi de composition interne

1. Déterminer les propriétés de la loi de composition interne \bot sur $\mathbb Q$ définie par

$$\forall a, b \in \mathbb{Q}, \quad a \perp b := a + b + ab.$$

2. Faire de même avec la loi ∇ définie sur $\mathbb{R}^* \times \mathbb{R}$ par

$$\forall \left(a,b\right),\left(c,d\right) \in \mathbb{R}^* \times \mathbb{R}, \quad \left(a,b\right) \nabla(c,d) \coloneqq \left(ac,\frac{d}{a} + bc\right).$$

Groupe

Exercice 2 : Transport de structure

1. Soit (G, \square) un groupe et H un ensemble tel qu'il existe une fonction $f: H \to G$ bijective. On définit la loi \star sur H par

$$\forall x, y \in H, \quad x \star y := f^{-1} (f(x) \Box f(y)).$$

Montrer que (H, \star) est un groupe isomorphe à (G, \square) .

2. On définit la loi \oplus sur $\mathbb R$ par

$$\forall x, y \in \mathbb{R}, \quad x \oplus y := \sqrt[3]{x^3 + y^3}.$$

Montrer que (\mathbb{R}, \oplus) est un groupe commutatif.

Exercice 3: Sous groupe et permutations

Soit E un ensemble et A une partie de E. On note S(A) l'ensemble des permutations f de E qui laissent la partie A invariante, c'est-à-dire telles que f(A) = A. Montrer que S(A) est un sous-groupe de $(\sigma(E), \circ)$.

Exercice 4 : Sous-groupes additifs de $\mathbb R$

1. Soit $a \in \mathbb{R}_+$. Montrer que

$$a\mathbb{Z} := \{ka : k \in \mathbb{Z}\}$$

est un sous-groupe additif de \mathbb{R} .

Le but de cet exercice est de montrer que les sous-groupes additifs de \mathbb{R} sont soit de cette forme, soit dense dans \mathbb{R} . Soit G un sous-groupe de $(\mathbb{R}, +)$ distinct de $\{0\}$. On pose $a := \inf (G \cap \mathbb{R}_+^*)$.

- 2. Montrer que a est bien défini.
- 3. Dans cette question on suppose que a > 0.
 - (a) Montrer que $a \in G$.
 - (b) En déduire que $G = a\mathbb{Z}$.
- 4. Montrer que si a = 0, G est dense dans \mathbb{R} .

On résume les conclusions des questions précédentes en disant que les sous-groupes additifs de \mathbb{R} sont soit discrets soit denses dans \mathbb{R} .

5. Soit a et b deux réels non nuls tels que $a/b \notin \mathbb{Q}$. Montrer que

$$a\mathbb{Z} + b\mathbb{Z} = \{na + mb : n, m \in \mathbb{Z}\}\$$

est dense dans \mathbb{R} .

6. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . On dit qu'un réel T est une période de f lorsque

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x).$$

- (a) Montrer que l'ensemble \mathcal{P} des périodes de f est un sous-groupe additif de \mathbb{R} .
- (b) On suppose que f est non constante et périodique. Montrer qu'il existe un unique $T_0 > 0$ tel que $\mathcal{P} = T_0 \mathbb{Z}$.

11.3. EXERCICES 215

Exercice 5: Sous-groupe de $\mathbb U$

Montrer que $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$ est un sous-groupe strict de (\mathbb{U},\cdot) .

Exercice 6: Union de deux sous-groupes

Soit (G, *) un groupe, et H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 7 : Groupes tels que $x^2 = e$

Soit (G, \star) un groupe tel que

$$\forall x \in G$$
, $x^2 = e$.

Montrer que G est commutatif.

Exercice 8: Action d'un groupe sur lui-même

Soit (G, \star) un groupe, dont l'élément neutre est noté e. Pour $a \in G$, on définit les applications γ_a et τ_a de G dans lui-même par les formules

$$\forall g \in G, \quad \gamma_a(g) \coloneqq a \star g \quad \text{et} \quad \tau_a(g) \coloneqq a \star g \star a^{-1}.$$

- 1. Montrer que γ_a et τ_a sont des bijections. Montrer que τ_a est un automorphisme de G. Que dire de γ_a ?
- 2. Pour a et b éléments quelconques de G, calculer $\tau_a \circ \tau_b$. Retrouver le fait que τ_a est un automorphisme de G, et donner une autre expression de $(\tau_a)^{-1}$.
- 3. On note $\operatorname{Int}(G)$ le sous ensemble de $\operatorname{Aut}(G)$ formé des applications τ_a pour $a \in G$: ce sont les automorphismes dits $\operatorname{int\'erieurs}$ de G. Montrer que l'application $a \mapsto \tau_a$ est un morphisme du groupe (G,\star) dans le groupe $(\operatorname{Aut}(G), \circ)$, et en déduire que $\operatorname{Int}(G)$ est un sous-groupe de $(\operatorname{Aut}(G), \circ)$.

Exercice 9 : Groupe diédral

Pour tout $(a, b) \in \mathbb{C}^* \times \mathbb{C}$, on pose

$$\varphi_{a,b}: \mathbb{C} \longrightarrow \mathbb{C} \\
z \longmapsto az+b$$

et on pose $A^+ := \{ \varphi_{a,b} : (a,b) \in \mathbb{C}^* \times \mathbb{C} \}$. On pose enfin

$$s: \quad \mathbb{C} \quad \longrightarrow \quad \mathbb{C}$$

$$z \quad \longmapsto \quad \overline{z}$$

- 1. (a) Montrer que A^+ est un groupe pour la composition.
 - (b) On pose $A := A^+ \cup A^+ s$ où $A^+ s := \{ f \circ s : f \in A^+ \}$. Montrer que A est un sous-groupe de $\sigma(\mathbb{C})$.
- 2. Soit $n \ge 2$. On note D_n l'ensemble des fonctions $f \in A$ pour lesquelles $f(\mathbb{U}_n) \subset \mathbb{U}_n$.
 - (a) Montrer que si $f \in D_n$ l'application induite à \mathbb{U}_n est bijective.
 - (b) Montrer que D_n est un sous-groupe de A appelé groupe diédral de degré n.
 - (c) Montrer que D_n contient s et

$$r: \quad \mathbb{C} \quad \longrightarrow \quad \mathbb{C}$$

$$z \quad \longmapsto \quad \mathrm{e}^{\frac{2\mathrm{i}\pi}{n}}z$$

- (d) Que vaut la somme des éléments de \mathbb{U}_n ? En déduire que 0 est point fixe de tout élément de D_n .
- (e) Montrer que

$$D_n = \left\{ r^k s^\varepsilon : k \in \llbracket 0, n \rrbracket, \ \varepsilon \in \{0, 1\} \right\}.$$

Ordre d'un élément

Exercice 10 : Théorème de Lagrange

Soit (G, \star) un groupe fini et H un sous-groupe de G. On souhaite montrer que Card(H) divise Card(G). Pour cela, on introduit la relation binaire \mathcal{R} sur G par

$$\forall x, y \in G, \quad x\mathcal{R}y \iff yx^{-1} \in H.$$

1. Montrer que \mathcal{R} est une relation d'équivalence.

2. Soit $x \in G$. Montrer que

$$\begin{array}{cccc} \varphi: & H & \longrightarrow & \operatorname{Cl}(x) \\ & h & \longmapsto & hx \end{array}$$

est une bijection.

3. Conclure.

Exercice 11 : Existence d'un élément d'ordre 2

Soit (G, \star) un groupe fini de cardinal pair. Le but de cet exercice est de montrer qu'il possède un élément d'ordre 2. Pour cela, on considère l'ensemble

$$E \coloneqq \{x \in G \mid x^2 \neq e\}.$$

1. On définit la relation \mathcal{R} sur E par

$$\forall x, y \in E, \quad x\mathcal{R}y \iff y = x \text{ ou } y = x^{-1}.$$

Montrer que \mathcal{R} est une relation d'équivalence. Quel est le cardinal de chacune de ses classes d'équivalence.

2. Conclure.

On peut généraliser ce résultat en montrant que si p est un nombre premier divisant l'ordre de G, ce dernier possède un élément d'ordre p. Ce résultat est connu sous le nom de théorème de Sylow.

Exercice 12: Les groupes d'ordre inférieur à 5 sont commutatifs

1. Soit (G, \star) un groupe fini dont le cardinal p est un nombre premier et $x \in G \setminus \{e\}$. Montrer que

$$G = \left\{ x^k : k \in [\![0, p-1]\!] \right\}$$

puis en déduire que G est commutatif.

- 2. Montrer que les groupes finis de cardinal inférieur ou égal à 5 sont commutatifs. On montrera qu'il n'y a que deux tables possibles pour les groupes de cardinal 4.
- 3. Donner un exemple de groupe de cardinal 6 non commutatif.

Groupe symétrique

Groupe symétrique

Décomposition en cycles à supports disjoints

Exercice 13 : Décomposition en produit de cycles

Décomposer la permutation suivante en produit de cycles de support disjoints.

$$\sigma \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 3 & 8 & 7 & 10 & 1 & 2 & 5 & 6 \end{pmatrix}$$

En déduire sa signature.

Exercice 14: Exercice

Déterminer l'ordre maximal d'un élément de S_{10} .

Signature, groupe alterné

Exercice 15: Générateurs du groupe symétrique

- 1. Montrer que les transpositions (1 i) (pour $i \in [2, n]$) engendrent le groupe symétrique (S_n, \circ) .
- 2. Montrer que les cycles de longueur 3 engendrent (A_n, \circ) .

Exercice 16: Exercice

- 1. Montrer que pour tout $n \in \mathbb{N}$, il existe un morphisme injectif de (\mathcal{S}_n, \circ) dans $(\mathcal{A}_{n+2}, \circ)$.
- 2. Montrer qu'il n'existe pas de morphisme injectif de (S_4, \circ) dans (A_5, \circ) .

11.3. EXERCICES 217

Exercice 17 : Définition de la signature

Soit $n \ge 2$. Le but de cet exercice est de démontrer qu'il existe deux et seulement deux morphismes de groupe de (S_n, \circ) dans (\mathbb{C}^*, \times) .

- L'application $\bar{1}$ qui a toute permutation σ associe 1.
- Un autre morphisme ϵ que l'on définira comme étant la signature.
- 1. Le but de cette partie est de montrer qu'il existe au plus un seul morphisme φ de (S_n, \circ) dans (\mathbb{C}^*, \times) différent de $\bar{1}$. Soit φ un morphisme de (S_n, \circ) dans (\mathbb{C}^*, \times) .
 - (a) Soit τ une transposition. Montrer que $\varphi(\tau) \in \{-1, 1\}$.
 - (b) En déduire que φ est à valeurs dans $\{-1,1\}$.
 - (c) Soit τ_1 et τ_2 deux transpositions.
 - i. Montrer que τ_1 et τ_2 sont conjuguées, c'est-à-dire qu'il existe une permutation σ telle que

$$\tau_2 = \sigma \tau_1 \sigma^{-1}$$

- ii. En déduire que $\varphi(\tau_1) = \varphi(\tau_2)$.
- (d) Conclure
- 2. Le but de cette partie est de montrer l'existence d'un morphisme de (S_n, \circ) dans (\mathbb{C}^*, \times) différent de $\bar{1}$. On dit qu'une partie A de $[\![1, n]\!]^2$ est une représentation des couples d'éléments de $[\![1, n]\!]$ lorsque

$$\forall i,j \in \llbracket 1,n \rrbracket \,, \quad \begin{cases} (i,j) \in A \Longrightarrow (j,i) \not \in A \\ i \neq j \Longrightarrow [(i,j) \in A \quad \text{ou} \quad (j,i) \in A] \end{cases}$$

(a) Soit A une représentation des couples d'éléments de [1, n] et σ une permutation de [1, n]. Montrer que :

$$\sigma(A) := \{ (\sigma(i), \sigma(j)) : (i, j) \in A \}$$

est une représentation des couples d'éléments de [1, n].

(b) Soit A une représentation des couples d'éléments de $[\![1,n]\!]$ et σ une permutation de $[\![1,n]\!]$. On note n_A le nombre d'inversions de σ , c'est-à-dire le nombre d'éléments (i,j) de A tels que j-i et $\sigma(j)-\sigma(i)$ soient de signes distincts. On définit alors la signature de σ par

$$\epsilon(\sigma) := (-1)^{n_A}$$

- i. Montrer que la signature ne dépend pas du choix de A.
- ii. Montrer que :

$$\epsilon(\sigma) = \prod_{(i,j)\in A} \frac{\sigma(j) - \sigma(i)}{j - i}$$

- iii. En déduire que ϵ est un morphisme de groupe
- (c) Montrer que ϵ est différent de $\bar{1}$ et conclure.
- 3. En déduire qu'il existe un unique morphisme de S_n dans $\{-1,1\}$ qui vaut -1 sur les transpositions. Ce morphisme est appelé signature.

218

Chapitre 12

Limites et continuité

« Un mathématicien est une machine à transformer le café en théorèmes. »

— Paul Erdős (1913-1996)

« Si les gens ne croient pas que les mathématiques sont simples, c'est seulement parce qu'ils ne réalisent pas combien la vie est compliquée! »

— John Von Neumann (1903–1957)

12.1 Fonction numérique, topologie élémentaire
12.1.1 Propriété locale
12.2 Limite
12.2.1 Définition, propriétés élémentaires
12.2.2 Limite et ordre sur \mathbb{R}
12.2.3 Limite à gauche, à droite
12.3 Continuité
12.3.1 Continuité ponctuelle
12.3.2 Continuité sur une partie
12.3.3 Théorème des valeurs intermédiaires
12.3.4 Théorème de compacité $\dots \dots \dots$
12.3.5 Continuité uniforme
12.4 Exercices

12.1 Fonction numérique, topologie élémentaire

Définition 12.1.1

On appelle fonction numérique toute fonction définie sur une partie \mathcal{D} de \mathbb{R} , à valeurs dans \mathbb{R} ou \mathbb{C} .

Remarques

- \Rightarrow Dans la suite de ce chapitre, $\mathbb K$ désignera le corps $\mathbb R$ ou $\mathbb C$.
- \Rightarrow Il arrive que l'on définisse une fonction par son expression « f(x) ». C'est alors au lecteur de déterminer son domaine de définition, c'est-à-dire l'ensemble des $x \in \mathbb{R}$ pour lesquels « f(x) » a un sens.

Définition 12.1.2

Soit $f: \mathcal{D} \to \mathbb{K}$ et A une partie de \mathcal{D} . On dit que f vérifie la propriété \mathcal{P} sur A lorsque la restriction de f à A vérifie la propriété \mathcal{P} .

12.1.1 Propriété locale

Définition 12.1.3

On dit que $f: \mathcal{D} \to \mathbb{K}$ est définie au voisinage de $a \in \overline{\mathbb{R}}$ lorsque, pour tout voisinage \mathcal{V} de $a, \mathcal{D} \cap \mathcal{V} \neq \emptyset$.

Proposition 12.1.4

Une fonction $f: \mathcal{D} \to \mathbb{K}$ est définie au voisinage de $a \in \overline{\mathbb{R}}$ si et seulement si il existe une suite d'éléments de \mathcal{D} qui tend vers a.

Définition 12.1.5

On dit que $f: \mathcal{D} \to \mathbb{K}$ vérifie la propriété \mathcal{P} au voisinage de $a \in \overline{\mathbb{R}}$ lorsqu'il existe un voisinage \mathcal{V} de a tel que f vérifie la propriété \mathcal{P} sur $\mathcal{D} \cap \mathcal{V}$.

Remarques

- \Rightarrow La fonction sin est croissante sur $[-\pi/2, \pi/2]$. Elle est donc croissante au voisinage de 0.
- \Rightarrow Une fonction $f: \mathcal{D} \to \mathbb{K}$ est bornée au voisinage de $a \in \mathbb{R}$ si et seulement si

$$\exists \eta > 0, \quad \exists M \in \mathbb{R}_+, \quad \forall x \in \mathcal{D}, \quad |x - a| \leqslant \eta \Longrightarrow |f(x)| \leqslant M.$$

Une fonction $f: \mathcal{D} \to \mathbb{K}$ est bornée au voisinage de $+\infty$ si et seulement si

$$\exists m \in \mathbb{R}, \quad \exists M \in \mathbb{R}_+, \quad \forall x \in \mathcal{D}, \quad x \geqslant m \Longrightarrow |f(x)| \leqslant M.$$

Définition 12.1.6

On dit qu'une propriété \mathcal{P} est locale en $a \in \overline{\mathbb{R}}$ lorsque, quelles que soient les fonctions $f : \mathcal{D} \to \mathbb{K}$ et $g : \mathcal{D} \to \mathbb{K}$ définies au voisinage de a, si il existe un voisinage \mathcal{V} de a tel que

$$\forall x \in \mathcal{D} \cap \mathcal{V}, \quad g(x) = f(x)$$

alors $\mathcal{P}(f)$ est vrai si et seulement si $\mathcal{P}(g)$ est vrai.

Définition 12.1.7

On dit qu'un élément $a \in \mathcal{D}$ est intérieur à \mathcal{D} lorsqu'il existe un voisinage \mathcal{V} de a tel que $\mathcal{V} \subset \mathcal{D}$.

Remarque

 \Rightarrow Si I est un intervalle, un élément $a \in I$ est intérieur à I si et seulement si ce n'est pas une de ses extrémités.

12.2 Limite

12.2.1 Définition, propriétés élémentaires

Définition 12.2.1

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{K}$. On dit que f(x) tend vers l lorsque x tend vers a et on note

$$f(x) \xrightarrow[x \to a]{} l$$

lorsque, quel que soit le voisinage \mathcal{W} de l, il existe un voisinage \mathcal{V} de a tel que

$$\forall x \in \mathcal{D}, \quad x \in \mathcal{V} \Longrightarrow f(x) \in \mathcal{W}.$$

La propriété « tend vers l lorsque x tend vers a » est locale en a.

Remarque

- \Rightarrow En pratique, on utilisera les caractérisations suivantes :
 - Pour $a \in \mathbb{R}$ et $l \in \mathbb{K}$

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - a| \leqslant \eta \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

— Pour $a \in \mathbb{R}$ et $l = -\infty$

$$\forall M \in \mathbb{R}, \quad \exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - a| \leqslant \eta \Longrightarrow f(x) \leqslant M.$$

221

— Pour $a \in \mathbb{R}$ et $l = +\infty$

$$\forall m \in \mathbb{R}, \quad \exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - a| \leqslant \eta \Longrightarrow f(x) \geqslant m.$$

— Pour $a = -\infty$ et $l \in \mathbb{K}$

$$\forall \varepsilon > 0, \quad \exists A \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \leqslant A \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

— Pour $a = -\infty$ et $l = -\infty$

$$\forall M \in \mathbb{R}, \quad \exists A \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \leqslant A \Longrightarrow f(x) \leqslant M.$$

— Pour $a = -\infty$ et $l = +\infty$

$$\forall m \in \mathbb{R}, \quad \exists A \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \leqslant A \Longrightarrow f(x) \geqslant m.$$

— Pour $a = +\infty$ et $l \in \mathbb{K}$

$$\forall \varepsilon > 0, \quad \exists B \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \geqslant B \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

— Pour $a = +\infty$ et $l = -\infty$

$$\forall M \in \mathbb{R}, \quad \exists B \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \geqslant B \Longrightarrow f(x) \leqslant M.$$

— Pour $a = +\infty$ et $l = +\infty$

$$\forall m \in \mathbb{R}, \quad \exists B \in \mathbb{R}, \quad \forall x \in \mathcal{D}, \quad x \geqslant B \Longrightarrow f(x) \geqslant m.$$

Exercice 1

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante telle que

$$f(n) \xrightarrow[n \to +\infty]{} +\infty.$$

Montrer que f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$. Que dire si f n'est pas croissante?

Proposition 12.2.2

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{K}$. Alors

$$f(x) \xrightarrow[x \to a]{} l$$

si et seulement si, pour toute suite (u_n) d'éléments de \mathcal{D} tendant vers a, la suite $(f(u_n))$ tend vers l.

Remarques

- \Rightarrow Si f est définie en $a \in \mathbb{R}$ et admet une limite en a, cette limite est f(a).
- \Rightarrow Cette proposition est utile pour prouver qu'une fonction f n'a pas de limite en a. Pour cela, il suffit de trouver deux suites (u_n) et (v_n) telles que

$$u_n \xrightarrow[n \to +\infty]{} a$$
 et $v_n \xrightarrow[n \to +\infty]{} a$.

et telles que les suites de terme général $f(u_n)$ et $f(v_n)$ aient des limites distinctes.

Exercices 2

- \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique admettant une limite finie en $+\infty$. Montrer que f est constante.
- \Rightarrow Montrer que la fonction d'expression $\sin\left(\frac{1}{x}\right)$ n'a pas de limite en 0.

Proposition 12.2.3

Si f admet une limite $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}) en $a \in \overline{\mathbb{R}}$, alors cette limite est unique. Si tel est le cas, on écrit

$$\lim_{x \to a} f(x) = l.$$

Proposition 12.2.4

Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{K}$. On suppose que

$$f(x) \xrightarrow[r \to a]{} l.$$

Alors

$$|f(x)| \xrightarrow[x \to a]{} |l| \text{ et } \overline{f}(x) \xrightarrow[x \to a]{} \overline{l}.$$

Proposition 12.2.5

Soit f une fonction complexe définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{C}$. Alors

$$f(x) \xrightarrow[x \to a]{} l \iff \left[\operatorname{Re}\left[f(x)\right] \xrightarrow[x \to a]{} \operatorname{Re}(l) \text{ et } \operatorname{Im}\left[f(x)\right] \xrightarrow[x \to a]{} \operatorname{Im}(l) \right].$$

Proposition 12.2.6

- Les théorèmes usuels portant sur les combinaisons linéaires, les produits et les quotients de limites de suites restent vrais pour les fonctions.
- Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ tendant vers $l_1 \in \overline{\mathbb{R}}$ en a et g une fonction définie au voisinage de l_1 tendant vers $l_2 \in \overline{\mathbb{R}}$ (ou \mathbb{C}) en l_1 . Si $g \circ f$ est définie au voisinage de a, alors

$$(g \circ f)(x) \xrightarrow[x \to a]{} l_2.$$

Remarques

- \Rightarrow Comme pour les suites, la somme d'une fonction admettant une limite finie en a et d'une fonction n'admettant pas de limite en a n'admet pas de limite en a. Les autres théorèmes de ce type sont souvent faux; par exemple, il est possible qu'une fonction f n'admette pas de limite en a bien que $g \circ f$ admette une limite en a.
- \Rightarrow Soit f et g sont deux fonctions réelles définies sur \mathcal{D} . On définit les fonctions sup (f,g) et $\inf(f,g)$ par

$$\forall x \in \mathcal{D}$$
, $\sup(f,g)(x) := \max(f(x),g(x))$ et $\inf(f,g)(x) := \min(f(x),g(x))$.

Si f et g admettent pour limites respectives l_f et $l_g \in \mathbb{R}$ en $a \in \overline{\mathbb{R}}$, alors

$$\sup (f, g)(x) \xrightarrow[x \to a]{} \max (l_f, l_g) \quad \text{et} \quad \inf (f, g)(x) \xrightarrow[x \to a]{} \min (l_f, l_g).$$

12.2.2 Limite et ordre sur \mathbb{R}

Proposition 12.2.7

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction admettant une limite finie en a. Alors f est bornée au voisinage de a.

Proposition 12.2.8

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction telle que f(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers $a \in \mathbb{R}$.

- Si f est majorée par $M \in \mathbb{R}$, alors $l \leq M$.
- Si f est minorée par $m \in \mathbb{R}$, alors $l \geqslant m$.

Proposition 12.2.9

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction telle que f(x) tend vers $l \in \overline{\mathbb{R}}$ lorsque x tend vers $a \in \overline{\mathbb{R}}$.

— Si M est un réel tel que l < M, il existe un voisinage \mathcal{V} de a tel que

$$\forall x \in \mathcal{D}, \quad x \in \mathcal{V} \Longrightarrow f(x) \leqslant M.$$

— Si m est un réel tel que l > m, il existe un voisinage \mathcal{V} de a tel que

$$\forall x \in \mathcal{D}, \quad x \in \mathcal{V} \Longrightarrow f(x) \geqslant m.$$

12.2. LIMITE 223

Remarques

 \Rightarrow En pratique, il conviendra d'expliciter les voisinages. Par exemple, si f(x) tend vers l < M lorsque x tend vers $a \in \mathbb{R}$, il existe $\varepsilon > 0$ tel que

$$\forall x \in \mathcal{D}, \quad |x - a| \leqslant \varepsilon \Longrightarrow f(x) \leqslant M.$$

 \Rightarrow Si une fonction complexe f admet une limite $l \in \mathbb{C}$ non nulle en $+\infty$, il existe $m \in \mathbb{R}$ tel que

$$\forall x \in \mathcal{D}, \quad x \geqslant m \Longrightarrow f(x) \neq 0.$$

Théorème 12.2.10: Théorème des gendarmes

Soit f, g et $h: \mathcal{D} \to \mathbb{R}$ telles que

$$\forall x \in \mathcal{D}, \quad f(x) \leqslant g(x) \leqslant h(x).$$

On suppose que f et h admettent la même limite finie $l \in \mathbb{R}$ en $a \in \overline{\mathbb{R}}$. Alors

$$g(x) \xrightarrow[x \to a]{} l.$$

Soit f et $g: \mathcal{D} \to \mathbb{R}$ telles que

$$\forall x \in \mathcal{D}, \quad f(x) \leqslant g(x)$$

et $a \in \overline{\mathbb{R}}$.

— Si
$$f(x) \longrightarrow +\infty$$
, alors $g(x) \longrightarrow +\infty$

$$-\operatorname{Si} f(x) \xrightarrow[x \to a]{} +\infty, \text{ alors } g(x) \xrightarrow[x \to a]{} +\infty.$$

$$-\operatorname{Si} g(x) \xrightarrow[x \to a]{} -\infty, \text{ alors } f(x) \xrightarrow[x \to a]{} -\infty.$$

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction, $a \in \overline{\mathbb{R}}$, $l \in \mathbb{K}$ et g une fonction réelle positive telle que

$$-g(x) \longrightarrow 0$$

Alors

$$f(x) \xrightarrow[x \to a]{} l.$$

Exercice 3

 \Rightarrow Déterminer la limite, si elle existe, de la fonction d'expression $\frac{x}{2+\sin(\frac{1}{x})}$ en 0.

12.2.3Limite à gauche, à droite

Définition 12.2.13

Soit f une fonction définie au voisinage à gauche de $a \in \mathbb{R}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}). On dit que f admet l pour limite à gauche en a lorsque la restriction de f à $\mathcal{D} \cap]-\infty$, a admet l pour limite en a. Si tel est le cas, on note

$$f(x) \xrightarrow[x < a]{x \to a} l.$$

La propriété « tend vers l lorsque x tend vers a par la gauche » est locale à gauche en a.

Soit f une fonction définie au voisinage à droite de $a \in \mathbb{R}$ et $l \in \mathbb{R}$ (ou \mathbb{C}). On dit que f admet l pour limite à droite en a lorsque la restriction de f à $\mathcal{D} \cap]a, +\infty[$ admet l pour limite en a. Si tel est le cas, on note

$$f(x) \xrightarrow[x \to a \ x \to a]{} l.$$

La propriété « tend vers l lorsque x tend vers a par la droite » est locale à droite en a.

Remarque

⇒ On définit de même les notions de limite à gauche au sens large, de limite à droite et de limite épointée (pour $x \neq a$). On écrit alors respectivement

$$f(x) \xrightarrow[x \leqslant a]{x \to a} l, \qquad f(x) \xrightarrow[x \geqslant a]{x \to a} l, \qquad f(x) \xrightarrow[x \neq a]{x \to a} l.$$

Proposition 12.2.14

Soit f une fonction définie au voisinage de a et $l \in \mathbb{R}$ (ou \mathbb{C}). Alors f(x) tend vers l lorsque x tend vers a si et seulement si, les objets ci-dessous susceptibles d'avoir un sens

$$\lim_{\substack{x \to a \\ x < a}} f(x), \quad f(a) \quad \text{et} \quad \lim_{\substack{x \to a \\ x > a}} f(x)$$

existent et sont égaux à l.

Remarques

 \Rightarrow Par exemple, si f est une fonction définie sur \mathbb{R}^* , et $l \in \overline{\mathbb{R}}$, alors f(x) tend vers l lorsque x tend vers 0 si et seulement si

$$f(x) \xrightarrow[x < 0]{x \to 0} l$$
 et $f(x) \xrightarrow[x > 0]{x \to 0} l$.

De même, si f est une fonction définie sur \mathbb{R}_+ et $l \in \mathbb{R}$, alors f(x) tend vers l lorsque x tend vers 0 si et seulement si

$$f(0) = l$$
 et $f(x) \xrightarrow[x>0]{x \to 0} l$.

 \Rightarrow On a bien entendu des théorèmes similaires faisant intervenir les limites au sens large. Par exemple, si f est définie sur \mathbb{R} et $a \in \mathbb{R}$, alors f(x) tend vers l lorsque x tend vers a si et seulement si

$$f(x) \xrightarrow[x \Rightarrow a \\ x \leqslant a]{x \to a} l$$
 et $f(x) \xrightarrow[x > a]{x \to a} l$.

Exercice 4

 \Rightarrow Soit f la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} 0 & \text{si } x \leq 0 \\ e^{-1/x} & \text{si } x > 0. \end{cases}$$

Montrer que $f(x) \xrightarrow[x\to 0]{} 0$.

Théorème 12.2.15: Théorème de la limite monotone

Soit $f: I \to \mathbb{R}$ une fonction croissante sur un intervalle I.

— Si $a \in I$ n'est pas une borne de I, f admet une limite finie à gauche (au sens strict) et une limite finie à droite (au sens strict) en a. De plus

$$\lim_{\substack{x \to a \\ x < a}} f(x) \leqslant f(a) \leqslant \lim_{\substack{x \to a \\ x > a}} f(x).$$

- Si a est la borne supérieure de I, f admet une limite en a. Cette limite est finie si f est majorée, et est égale à $+\infty$ sinon.
- Si a est la borne inférieure de I, f admet une limite en a. Cette limite est finie si f est minorée, et est égale à $-\infty$ sinon.

Remarques

- ⇒ Une proposition similaire existe pour les fonctions décroissantes.
- \Rightarrow Si $f:]-\infty, a[\to \mathbb{R}$ est une fonction croissante admettant une limite $l \in \mathbb{R}$ en $a \in \mathbb{R} \cup \{+\infty\}$, alors

$$\forall x \in]-\infty, a[, f(x) \le l.$$

De plus, si f est strictement croissante, alors

$$\forall x \in]-\infty, a[, f(x) < l.$$

12.3 Continuité

12.3.1 Continuité ponctuelle

12.3. CONTINUITÉ 225

Définition 12.3.1

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est continue en $x_0 \in \mathcal{D}$ lorsque

$$f(x) \xrightarrow[x \to x_0]{} f(x_0)$$
.

La propriété « est continue en x_0 » est locale en x_0 . On appelle domaine de continuité de f l'ensemble des $x_0 \in \mathcal{D}$ en lesquels f est continue.

Remarques

 \Rightarrow La continuité de f en x_0 s'écrit

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - x_0| \leqslant \eta \Longrightarrow |f(x) - f(x_0)| \leqslant \varepsilon.$$

- \Rightarrow Une fonction $f: \mathcal{D} \to \mathbb{K}$ est continue en $x_0 \in \mathcal{D}$ si et seulement si elle admet une limite en x_0 .
- \Rightarrow On dit qu'une fonction f est continue à droite en x_0 lorsque

$$f(x) \xrightarrow[x>x_0]{x\to x_0} f(x_0).$$

De même, on définit la notion de continuité à gauche. Une fonction est continue en x_0 si et seulement si elle est continue à droite et à gauche en x_0 .

- \Rightarrow On dit qu'une fonction f admet une discontinuité de première espèce en x_0 lorsqu'elle admet des limites à droite et à gauche et lorsque l'une de ces limites est différente de $f(x_0)$. Par exemple, la fonction partie entière admet une discontinuité de première espèce en tout point $x_0 \in \mathbb{Z}$.
- \Rightarrow Les fonctions valeur absolue, puissance (en particulier les puissances entières et les racines n-ièmes), ln, exp, les fonctions trigonométriques circulaires et hyperboliques, directes et réciproques sont continues en tout point de leur domaine de définition.
- \Rightarrow Une fonction continue en x_0 est bornée au voisinage de x_0 .

Exercice 5

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

Montrer que f est discontinue en 0 et que cette discontinuité n'est pas de première espèce.

Définition 12.3.2

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction définie au voisinage d'un point $a \in \mathbb{R}$ n'appartenant pas à \mathcal{D} . Lorsque f(x) admet une limite finie $l \in \mathbb{K}$ lorsque x tend vers a, on dit que f est prolongeable par continuité en a. La fonction

$$\hat{f}: \quad \mathcal{D} \cup \{a\} \quad \longrightarrow \quad \mathbb{K} \\
x \quad \longmapsto \quad \begin{cases}
f(x) & \text{si } x \neq a \\
l & \text{si } x = a
\end{cases}$$

est alors appelée prolongement par continuité de f en a. C'est une fonction continue en a.

Proposition 12.3.3

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction et $x_0 \in \mathcal{D}$. Alors f est continue en x_0 si et seulement si pour toute suite (u_n) d'éléments de \mathcal{D} convergeant vers x_0

$$f\left(u_{n}\right)\xrightarrow[n\to+\infty]{}f\left(x_{0}\right).$$

Remarques

 \Rightarrow Soit f une fonction continue sur l'intervalle I et (u_n) une suite telle que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

Alors, si (u_n) admet une limite $l \in \mathbb{R}$, c'est une borne de I ou un point fixe de f.

- \Rightarrow Soit f et g deux fonctions continues ent tout point de \mathbb{R} . Si elles coïncident sur \mathbb{Q} , alors f = g.
- \Rightarrow Cette proposition est utile pour prouver qu'une fonction f n'est pas continue en x_0 . Pour cela, il suffit de trouver une suite (u_n) convergeant vers x_0 telle que la suite de terme général $f(u_n)$ ait une limite différente de $f(x_0)$.

Exercices 6

- \Rightarrow Montrer que la fonction caractéristique de $\mathbb Q$ est discontinue en tout point.
- \Rightarrow Quelles sont les fonctions $f: \mathbb{R} \to \mathbb{R}$, continues en tout point de \mathbb{R} , telles que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x) + f(y).$$

Proposition 12.3.4: Théorèmes usuels

Soit f et $g: \mathcal{D} \to \mathbb{K}$ deux fonctions continues en $x_0 \in \mathcal{D}$. Alors

- Si λ , $\mu \in \mathbb{K}$, $\lambda f + \mu g$ est continue en x_0 .
- fg est continue en x_0 .
- Si $g(x_0) \neq 0$, g ne s'annule pas au voisinage de x_0 et f/g est continue en x_0 .

Proposition 12.3.5: Théorèmes usuels

Soit $f: \mathcal{D}_f \to \mathbb{R}$ et $g: \mathcal{D}_g \to \mathbb{K}$ deux fonctions telles que $g \circ f$ est défini au voisinage de $x_0 \in \mathcal{D}_f$. Si f est continue en x_0 et g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Remarque

 \Rightarrow La somme d'une fonction continue en x_0 et d'une fonction discontinue en x_0 est discontinue en x_0 . Les autres propositions de ce type peuvent être fausses. Par exemple, si f et g sont les fonctions définies sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq x \quad \text{et} \quad g(x) \coloneqq \begin{cases} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0, \end{cases}$$

alors f est continue en 0 et g ne l'est pas. Pourtant $f \cdot g$ l'est. On retiendra que les réciproques des théorèmes usuels peuvent être fausses.

Proposition 12.3.6

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction continue en $x_0 \in \mathcal{D}$. Alors \overline{f} et |f| sont continues en x_0 .

Proposition 12.3.7

Soit $f: \mathcal{D} \to \mathbb{C}$ une fonction et $x_0 \in \mathcal{D}$. Alors

 $[f \text{ est continue en } x_0] \iff [\text{Re}(f) \text{ et Im}(f) \text{ sont continues en } x_0].$

Remarque

 \Rightarrow Si f est une fonction à valeurs dans $\mathbb C$ continue en x_0 , alors e^f est continue en x_0 .

Exercices 7

 \Rightarrow Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \begin{cases} \frac{e^{\mathrm{i}x} - 1}{x} & \text{si } x \neq 0\\ \mathrm{i} & \text{si } x = 0. \end{cases}$$

Montrer que f est continue en tout point de \mathbb{R} .

12.3.2 Continuité sur une partie

Définition 12.3.8

Soit $f: \mathcal{D} \to \mathbb{K}$.

- On dit que f est continue lorsqu'elle est continue en tout point de \mathcal{D} .
- Si A est une partie de \mathcal{D} , on dit que f est continue sur A lorsque la restriction de f à A est continue.

12.3. CONTINUITÉ 227

Remarque

 \Rightarrow Soit $f: \mathcal{D} \to \mathbb{K}$ et A une partie de \mathcal{D} . Si f est continue en tout point de A, alors f est continue sur A. Cependant, la réciproque est fausse. En effet, si f est la fonction de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} 1 & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

alors f est continue sur \mathbb{R}_+ mais n'est pas continue en 0.

Définition 12.3.9

Soit $k \in \mathbb{R}_+$. On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est k-lipschitzienne lorsque

$$\forall x, y \in \mathcal{D}, \quad |f(x) - f(y)| \le k |x - y|.$$

Exercice 8

⇒ Montrer que les fonctions « valeur absolue » et « sinus » sont 1-lipschitziennes.

Proposition 12.3.10

Une fonction lipschitzienne est continue.

Dans la suite du cours d'analyse, un s'intéressera le plus souvent à des fonctions dont le domaine de définition est une partie relativement simple de \mathbb{R} . Afin de formaliser cela, une partie de \mathbb{R} sera dite élémentaire lorsque c'est une réunion d'un nombre fini d'intervalles. Par exemple \mathbb{R} et $\mathbb{R}^* =]-\infty, 0[\,\cup\,]0, +\infty[$ sont des parties élémentaires de \mathbb{R} alors que \mathbb{Q} n'en est pas une. Notons que cette définition est propre à ce cours. Les parties élémentaires de \mathbb{R} jouissent de nombreuses propriétés : \emptyset et \mathbb{R} sont des parties élémentaires, une union finie de parties élémentaires est une partie élémentaire, une intersection finie de parties élémentaires est une partie élémentaire, le complémentaire d'une partie élémentaire est une partie élémentaire. Autrement dit, tout ensemble construit à partir de parties élémentaires à l'aide d'un nombre fini d'opérations est élémentaire.

On dit que deux intervalles I et J sont bien disjoints lorsque $I \cup J$ n'est pas un intervalle. En particulier deux intervalles bien disjoints sont disjoints. Mais la réciproque est fausse comme le montre l'exemple de I = [0,1] et J =]1,2] qui sont disjoints mais qui ne sont pas bien disjoints. On montre que si A est une partie élémentaire de \mathbb{R} , à réordonnement près, il existe un unique n-uplet (I_1,\ldots,I_n) d'intervalles deux à deux biens disjoints tels que $A = I_1 \cup I_2 \cup \cdots \cup I_n$. On dit que les I_k sont les composantes connexes de A. Enfin, on dit que $a \in \overline{\mathbb{R}}$ est une extrémité de A lorsque c'est l'extrémité d'un des I_k .

Si \mathcal{D} est une partie élémentaire, une fonction $f: \mathcal{D} \to \mathbb{K}$ est définie au voisinage de $a \in \mathbb{R}$ si et seulement si a est un élément ou une extrémité de \mathcal{D} . D'autre part, un élément $a \in \mathcal{D}$ est intérieur à \mathcal{D} si et seulement si ce n'est pas une extrémité de \mathcal{D} .

Exercice 9

- \Rightarrow Montrer que $\mathcal{D} := \mathbb{R}_+ \setminus \{1\}$ est une partie élémentaire. Si $f: \mathcal{D} \to \mathbb{K}$, déterminer
 - L'ensemble des $a \in \mathbb{R}$ pour lesquels f est définie au voisinage de a.
 - L'ensemble des $a \in \mathcal{D}$ intérieurs à \mathcal{D} .

Proposition 12.3.13

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction définie sur un domaine élémentaire et $\mathcal{D} = I_1 \cup \cdots \cup I_n$ la décomposition de \mathcal{D} en composantes connexes. Alors f est continue si et seulement si, pour tout $k \in [1, n]$, f est continue sur I_k .

Proposition 12.3.12

Soit $f: I \to \mathbb{K}$ une fonction définie sur un intervalle I et $a \in I$.

- Si f est continue sur $I \cap]a, +\infty[$, elle est continue en tout point de $I \cap]a, +\infty[$.
- Si f est continue sur $I \cap [a, +\infty[$, elle est continue à droite en a et en tout point de $I \cap]a, +\infty[$.

12.3.3 Théorème des valeurs intermédiaires

Théorème 12.3.13: Théorème des valeurs intermédiaires

Soit f une fonction réelle continue sur [a,b]. Si $y_0 \in (f(a),f(b))$, il existe $x_0 \in [a,b]$ tel que $f(x_0) = y_0$.

Remarques

- \Rightarrow Une fonction réelle continue ne s'annulant pas sur un intervalle I est de signe constant.
- \Rightarrow Soit f une fonction continue sur un intervalle I telle que

$$\forall x \in I$$
, $[f(x) = 0 \text{ ou } f(x) = 1]$.

Alors f est constante. Plus généralement, si sur un intervalle, une fonction continue prend un nombre fini de valeurs, alors elle est constante.

Exercice 10

 \Rightarrow Soit f une fonction continue de [0, 1] dans [0, 1]. Montrer que f admet un point fixe.

Proposition 12.3.14

Soit f une fonction réelle continue sur]a,b[admettant respectivement pour limite l_a et $l_b \in \overline{\mathbb{R}}$ en a et $b \in \overline{\mathbb{R}}$. Si $y_0 \in \mathbb{R}$ $[l_a, l_b]$, il existe $x_0 \in [a, b]$ tel que $f(x_0) = y_0$.

Exercice 11

⇒ Montrer que tout polynôme réel de degré impair admet au moins une racine réelle.

Proposition 12.3.15

L'image d'un intervalle par une fonction réelle continue est un intervalle.

Remarques

- ⇒ Cette proposition est une reformulation du théorème des valeurs intermédiaires.
- \Rightarrow Il est possible que les intervalles I et f(I) ne soient pas de même nature (ouvert, fermé, ouvert à gauche et fermé à droite). Par exemple, si f est la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \frac{1}{1+x^2}$$

on a $f(]-\infty, +\infty[) =]0, 1].$

Théorème 12.3.16: Théorème de la bijection

— Soit f une fonction continue, strictement croissante sur [a,b]. Alors elle réalise une bijection de [a,b] sur

$$f([a,b]) = [f(a), f(b)].$$

— Soit $a, b \in \mathbb{R}$ et f une fonction continue, strictement croissante sur [a, b]. On pose

$$l_a := \lim_{x \to a} f(x)$$
 et $l_b := \lim_{x \to b} f(x)$.

Alors f réalise une bijection de [a, b] sur

$$f(]a,b[) =]l_a,l_b[.$$

Proposition 12.3.17

Soit I un intervalle de \mathbb{R} et f une fonction réelle continue strictement monotone sur I. Alors f induit une bijection de l'intervalle I sur l'intervalle J := f(I) et sa bijection réciproque $f^{-1}: J \to I$ est continue sur J.

Remarque

 \Rightarrow La fonction sin est strictement croissante sur $[-\pi/2, \pi/2]$. Comme sin $(-\pi/2) = -1$ et sin $(\pi/2) = 1$, elle réalise une bijection de $[-\pi/2, \pi/2]$ sur [-1, 1]. Sa bijection réciproque, la fonction Arcsin est donc continue sur [-1, 1].

12.3. CONTINUITÉ 229

Exercice 12

 \Rightarrow Soit f la fonction définie sur \mathbb{R}_+ par

$$\forall x \in \mathbb{R}_+, \quad f(x) := x e^x$$

Montrer que f réalise une bijection continue de \mathbb{R}_+ sur \mathbb{R}_+ , que f^{-1} est continue et que

$$f^{-1}(x) \xrightarrow[x \to +\infty]{} +\infty.$$

Proposition 12.3.18

Soit f une fonction réelle, continue et injective sur un intervalle I. Alors f est strictement monotone.

12.3.4 Théorème de compacité

Définition 12.3.19

Soit f une fonction réelle définie sur un ensemble non vide X. Si f est majorée sur X, $\{f(x): x \in X\}$ est une partie non vide majorée de \mathbb{R} . Elle admet donc une borne supérieure notée

$$\sup_{x \in X} f(x).$$

On dit que cette borne est atteinte lorsqu'il existe $x_0 \in X$ tel que

$$f\left(x_0\right) = \sup_{x \in X} f(x)$$

c'est-à-dire lorsque l'ensemble $\{f(x): x \in X\}$ admet un plus grand élément ; si tel est le cas, la borne supérieure est notée

$$\max_{x \in X} f(x)$$
.

Remarques

- ⇒ On définit de même la notion de borne inférieure.
- \Rightarrow Soit f la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) := x (1 - x).$$

Alors f est bornée et atteint ses bornes sur [0,1].

$$\sup_{x \in [0,1]} x (1-x) = f\left(\frac{1}{2}\right) = \frac{1}{4} \text{ et } \inf_{x \in [0,1]} x (1-x) = f(0) = f(1) = 0.$$

 \Rightarrow Soit f la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) := \frac{1}{x}.$$

Alors f n'est pas majorée sur \mathbb{R}_+^* . De plus, elle est minorée mais n'atteint pas sa borne inférieure sur \mathbb{R}_+^* .

$$\inf_{x \in \mathbb{R}_{+}^{*}} \frac{1}{x} = 0.$$

Théorème 12.3.20: Théorème de compacité

Sur un segment, une fonction réelle continue est bornée et atteint ses bornes.

Remarque

 \Rightarrow Si $f:[a,b] \to \mathbb{K}$ est une fonction continue, on applique souvent ce théorème à la fonction |f|. Il existe donc $M \in \mathbb{R}_+$ tel que

$$\forall x \in [a, b], \quad |f(x)| \leq M.$$

Exercice 13

 \Rightarrow Soit f une fonction continue sur un segment [a,b] telle que $\forall x \in [a,b]$, $0 \leqslant f(x) < 1$. Montrer que si (u_n) est une suite d'éléments de [a,b], alors

$$f(u_n)^n \xrightarrow[n \to +\infty]{} 0.$$

Proposition 12.3.21

L'image d'un segment par une fonction réelle continue est un segment.

12.3.5 Continuité uniforme

Définition 12.3.22

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est uniformément continue lorsque

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x, y \in \mathcal{D}, \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Remarque

⇒ Une fonction lipschitzienne est uniformément continue.

Exercice 14

⇒ 1. Montrer que

$$\forall x, y \in \mathbb{R}_+, \quad \left| \sqrt{x} - \sqrt{y} \right| \leqslant \sqrt{|x - y|}.$$

2. En déduire que la fonction $x \mapsto \sqrt{x}$, définie sur \mathbb{R}_+ , est uniformément continue, mais n'est pas lipschitzienne.

Proposition 12.3.23

Si f est uniformément continue, alors elle est continue.

Remarque

 \Rightarrow Soit f une fonction continue. Alors

$$\forall x \in \mathcal{D}, \quad \forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall y \in \mathcal{D}, \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Les deux premiers quantificateurs étant de même nature, on peut les échanger, donc

$$\forall \varepsilon > 0, \quad \forall x \in \mathcal{D}, \quad \exists \eta > 0, \quad \forall y \in \mathcal{D}, \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Une fonction est donc uniformément continue lorsqu'on peut échanger les quantificateurs portant sur x et η , c'està-dire lorsqu'il est possible de choisir η indépendamment de x.

Exercice 15

 \Rightarrow Montrer que la fonction f définie sur \mathbb{R} par $f(x) := x^2$ n'est pas uniformément continue.

Théorème 12.3.24: Théorème de Heine

Sur un segment, une fonction continue est uniformément continue.

12.4. EXERCICES 231

12.4 Exercices

Fonction numérique, topologie élémentaire

Exercice 1: Monotonie

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

Exercice 2 : Une fonction périodique étrange

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Montrer que l'ensemble des périodes de f est \mathbb{Q} . On a donc construit une fonction périodique non constante qui n'admet pas de plus petite période strictement positive.

Propriété locale

Limite

Définition, propriétés élémentaires

Exercice 3: Non existence d'une limite

Montrer que la fonction définie sur]0,1[par

$$\forall x \in]0,1[, f(x) := \sin\left(\frac{1}{x - x^2}\right)$$

n'a pas de limite en 0.

Exercice 4: Manipulation de limite

Soit f une fonction définie sur \mathbb{R} telle que

$$f(x) \xrightarrow[x \to 0]{} 0$$
 et $\frac{f(2x) - f(x)}{x} \xrightarrow[x \to 0]{} 0$.

En remarquant que

$$f(x) = \sum_{k=1}^{n} \left[f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right) \right] + f\left(\frac{x}{2^n}\right)$$

montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to 0]{} 0.$$

Limite et ordre sur \mathbb{R}

Limite à gauche, limite à droite

Exercice 5: Existence et calculs de limites

Existence et calcul des limites des expressions suivantes

$$\left\lfloor \frac{1}{x} \right\rfloor$$
 à droite en 0, $x \cos \left(\frac{1}{x} \right)$ en 0,

$$x \left\lfloor \frac{1}{x} \right\rfloor$$
 en 0, $\cos \left(\frac{1}{x} \right)$ en 0, $\frac{x^x}{\lfloor x \rfloor^{\lfloor x \rfloor}}$ en $+\infty$.

Exercice 6: Existence et calculs de limites

Existence et calcul des limites des expressions suivantes

$$\frac{6x^2 + 5x - 4}{2x - 1} \text{ en } \frac{1}{2}, \qquad \frac{3}{x^3 - 1} - \frac{2}{x^2 - 1} \text{ en } 1,$$

$$x^n e^{-1/x^2} \text{ en } 0 \text{ avec } n \in \mathbb{Z}, \qquad \frac{\ln\left(\operatorname{ch}\left(\alpha x\right)\right)}{\ln\left(\operatorname{ch}x\right)} \text{ en } +\infty \text{ avec } \alpha \in \mathbb{R},$$

$$\frac{r e^{\mathrm{i}\alpha t} - 1}{t} \text{ en } 0 \text{ avec } r \in \mathbb{R}_+^* \text{ et } \alpha \in \mathbb{R}, \qquad \frac{e^{2\mathrm{i}t} \tan t}{t^2} \text{ en } 0.$$

Continuité

Continuité ponctuelle

Exercice 7: Une fonction discontinue en tout point

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Montrer que f est discontinue en tout point.

Exercice 8 : Une fonction continue en tout point de $\mathbb{R} \setminus \mathbb{Q}$

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \begin{cases} 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{si } x \in \mathbb{Q} \text{ et } x = \frac{p}{q} \text{ avec } (p,q) \in \mathbb{Z} \times \mathbb{N}^* \text{ et } (p,q) = 1. \end{cases}$$

- 1. Montrer que f est discontinue en tout $x \in \mathbb{Q}$.
- 2. Le but de cette question est de montrer que f est continue en tout $x \in \mathbb{R} \setminus \mathbb{Q}$. Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Soit (p_n) une suite d'éléments de \mathbb{Z} et (q_n) une suite d'éléments de \mathbb{N}^* telles que

$$\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x.$$

Montrer que $(q_n) \xrightarrow[n \to +\infty]{} +\infty$.

(b) En déduire que f est continue en x.

Exercice 9: Une équation fonctionnelle

Soit f une application continue de \mathbb{R} dans \mathbb{R} telle que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x)f(y).$$

1. On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$. Montrer que f est la fonction nulle.

Dans la suite, on suppose que f n'est pas la fonction nulle.

2. Montrer que

$$\forall x \in \mathbb{R}, \quad f(x) > 0.$$

3. En déduire qu'il existe $a \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \quad f(x) = e^{ax}.$$

On pourra penser à utiliser les résultats d'un exercice similaire vu en cours.

12.4. EXERCICES 233

Exercice 10: Prolongement d'inégalités

1. Soit f et g deux fonctions de continues \mathbb{R} dans \mathbb{R} telles que

$$\forall x \in \mathbb{Q}, \quad f(x) < g(x).$$

(a) Montrer que

$$\forall x \in \mathbb{R}, \quad f(x) \leqslant g(x).$$

(b) Montrer que l'on a pas nécessairement

$$\forall x \in \mathbb{R}, \quad f(x) < g(x).$$

2. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} telle que

$$\forall x, y \in \mathbb{Q}, \quad x < y \Longrightarrow f(x) < f(y).$$

Montrer que f est strictement croissante, c'est-à-dire que

$$\forall x, y \in \mathbb{R}, \quad x < y \Longrightarrow f(x) < f(y).$$

Continuité sur une partie

Théorème des valeurs intermédiaires

Exercice 11: Équation fonctionnelle

Déterminer les fonctions f, continues de \mathbb{R} dans \mathbb{R} , telles que

$$\forall x \in \mathbb{R}, \quad f(x)^2 - 2xf(x) - 1 = 0.$$

Exercice 12 : Théorème de la corde raide

Soit f une fonction continue de [0,1] dans \mathbb{R} telle que f(0) = f(1).

1. Montrer qu'il existe $x \in \left[0, \frac{1}{2}\right]$ tel que

$$f\left(x + \frac{1}{2}\right) = f(x).$$

- 2. Montrer que si un coureur parcourt 20 km en une une heure, il existe un intervalle de temps d'une demi-heure pendant lequel il a exactement parcouru 10 km.
- 3. Plus généralement, montrer que si $n \in \mathbb{N}^*$, il existe $x \in [0, 1 \frac{1}{n}]$ tel que

$$f\left(x + \frac{1}{n}\right) = f(x).$$

4. Si $\alpha \in [0,1]$, existe-t-il toujours $x \in [0,1-\alpha]$ tel que $f(x+\alpha) = f(x)$?

Exercice 13: Preuve du théorème des valeurs intermédiaires

Soit f une fonction continue de [a, b] dans \mathbb{R} . On suppose que $f(a) \leq 0$ et $f(b) \geq 0$ et l'on souhaite montrer qu'il existe $c \in [a, b]$ tel que f(c) = 0. Comme c'est immédiat lorsque f(b) = 0, on suppose que f(b) > 0. On pose alors

$$X := \{x \in [a, b] \mid f(x) \leqslant 0\}.$$

- 1. Montrer que X admet une borne supérieure que l'on note c, puis que $c \in [a, b]$.
- 2. Montrer que $f(c) \leq 0$.
- 3. Montrer que c < b, puis que $f(c) \ge 0$. Conclure.

Exercice 14: Monotonie des injections continues sur un intervalle

Soit $f: I \to \mathbb{R}$ une fonction continue et injective sur un intervalle I. Le but de cet exercice est de montrer que f est strictement monotone. On raisonne par l'absurde et on suppose que f ne l'est pas. On pose

$$A := \{(x, y) : x, y \in I \text{ et } x < y\}.$$

- 1. Montrer qu'il existe $(x_0, y_0) \in A$ tel que $f(x_0) \leqslant f(y_0)$ et $(x_1, y_1) \in A$ tel que $f(x_1) \geqslant f(y_1)$.
- 2. Montrer soigneusement que

$$\forall t \in [0,1], (tx_0 + (1-t)x_1, ty_0 + (1-t)y_1) \in A.$$

3. On définit la fonction g de [0,1] dans \mathbb{R} par

$$\forall t \in [0,1], \quad g(t) := f(tx_0 + (1-t)x_1) - f(ty_0 + (1-t)y_1).$$

Montrer qu'il existe $t \in [0,1]$ tel que g(t) = 0 et conclure.

Théorème de compacité

Exercice 15: Théorème des bornes atteintes

- 1. Montrer qu'une fonction continue sur \mathbb{R} et périodique est bornée et atteint ses bornes.
- 2. Soit $a, b \in \mathbb{R}$ tels que a < b et f une fonction continue de [a, b] dans \mathbb{R} . Montrer que

$$\sup_{x \in [a,b]} f(x) = \sup_{x \in]a,b[} f(x).$$

On commencera par montrer que ces bornes supérieures existent.

3. Soit f et g deux fonctions continues définies sur [a, b] à valeurs dans \mathbb{R} telles que

$$\forall x \in [a, b], \quad 0 < f(x) < g(x).$$

Montrer qu'il existe $k \in [0, 1]$ tel que

$$\forall x \in [a, b], \quad f(x) \leqslant kg(x).$$

Exercice 16: Théorème des bornes atteintes

Soit f et g deux fonctions continues de [a,b] dans \mathbb{R} . On définit $h:\mathbb{R}\to\mathbb{R}$ par

$$\forall t \in \mathbb{R}, \quad h(t) \coloneqq \sup_{x \in [a,b]} (f(x) + tg(x)).$$

- 1. Montrer que h est bien définie.
- 2. On pose

$$M \coloneqq \sup_{x \in [a,b]} |g(x)|.$$

Montrer que h est M-lipschitzienne. En déduire qu'elle est continue.

Exercice 17: Exercice

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} admettant des limites finies en $+\infty$ et $-\infty$.

- 1. Montrer que f est bornée.
- 2. f atteint-elle ses bornes?

Continuité uniforme

Exercice 18: Uniforme continuité

Soit f une fonction uniformément continue de \mathbb{R} dans \mathbb{R} . Montrer qu'il existe $a,b\in\mathbb{R}_+$ tels que

$$\forall x \in \mathbb{R}, \quad |f(x)| \leqslant a + b|x|.$$

12.4. EXERCICES 235

Exercice 19: Fonctions Hölderiennes

Soit $\alpha > 0$. On dit qu'une fonction f est α -Hölderienne lorsqu'il existe $c \in \mathbb{R}_+$ tel que

$$\forall x, y \in \mathbb{R}, \quad |f(x) - f(y)| \le c |x - y|^{\alpha}.$$

- 1. Montrer que si f est α -Hölderienne avec $\alpha > 1, f$ est constante.
- 2. Montrer que si f est α -Hölderienne, f est uniformément continue.

Exercice 20 : Généralisation du théorème de Heine

Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$ telle que :

$$f(x) \xrightarrow[x \to -\infty]{} l_1$$
 et $f(x) \xrightarrow[x \to +\infty]{} l_2$

Le but de cet exercice est de montrer que f est uniformément continue.

1. Soit $\varepsilon > 0$. Montrer qu'il existe $a, b \in \mathbb{R}$, avec $a \leq b$ tels que

$$\forall x, y \in]-\infty, a], \quad |f(x) - f(y)| \le \varepsilon \quad \text{et} \quad \forall x, y \in [b, +\infty[, |f(x) - f(y)| \le \varepsilon.$$

2. Montrer qu'il existe $\eta > 0$ tel que

$$\forall x, y \in [a, b], \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

3. Conclure.

Chapitre 13

Anneaux, corps, polynômes

13.1.1	Anneau	23
13.1.2	Corps	24
13.2 Espa	ce vectoriel, algèbre	24
13.2.1	Espace vectoriel	24
13.2.2	Algèbre	24
13.3 L'alg	gèbre $\mathbb{K}[X]$	24
13.3.1	Définition	24
13.3.2	Substitution	24
13.3.3	Degré d'un polynôme	24
13.3.4	Racines, fonctions polynôme	24
13.3.5	Polynôme dérivé	24

13.1 Anneau, corps

13.1.1 Anneau

Définition 13.1.1

Soit (A, +) un groupe commutatif (d'élément neutre 0_A) et \times une loi de composition interne sur A. On dit que $(A, +, \times)$ est un anneau lorsque

- -- × est associatif,
- \times admet un élément neutre 1_A ,
- -- × est distributive par rapport à +

$$\forall a, b, c \in A,$$
 $a \times (b+c) = a \times b + a \times c,$
 $(a+b) \times c = a \times c + b \times c.$

Un élément $a \in A$ est dit *inversible* lorsqu'il est inversible pour la loi \times . Un anneau $(A, +, \times)$ est dit *commutatif* lorsque \times est commutative.

Remarque

 \Rightarrow Si $a, b \in A$, on dit que a et b commutent lorsque $a \times b = b \times a$.

Exemples

- \Rightarrow $(\mathbb{C}, +, \times)$, $(\mathbb{R}, +, \times)$ et $(\mathbb{Z}, +, \times)$ sont des anneaux commutatifs.
- \Rightarrow Si $(A, +, \times)$ est un anneau et X est un ensemble, l'ensemble $\mathcal{F}(X, A)$ des fonctions de X dans A, muni des lois + et \times définies par

$$\forall f, g \in \mathcal{F}(X, A), \quad \forall x \in X, \quad (f+g)(x) := f(x) + g(x),$$

 $(f \times g)(x) := f(x) \times g(x)$

est un anneau dont l'élément neutre pour l'addition est la fonction $x \mapsto 0_A$ et l'élément neutre pour la multiplication est $x \mapsto 1_A$. Si A est commutatif, alors $\mathcal{F}(X,A)$ l'est aussi. En particulier, $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\times)$ et $(\mathbb{R}^{\mathbb{N}},+,\times)$ sont des anneaux commutatifs.

- \Rightarrow Si $n \in \mathbb{N}$, alors $(\mathcal{M}_n(\mathbb{R}), +, \times)$ est un anneau dont l'élément neutre pour la multiplication est la matrice I_n . Il est non commutatif dès que $n \geqslant 2$. Les éléments inversibles de $\mathcal{M}_n(\mathbb{R})$ sont les matrices inversibles.
- \Rightarrow Si E est un \mathbb{K} -espace vectoriel, alors $(\mathcal{L}(E), +, \circ)$ est un anneau dont l'élément neutre est Id. En général, il n'est pas commutatif. Les éléments inversibles de $\mathcal{L}(E)$ sont les isomorphismes.
- \Rightarrow Soit \mathbb{F}_2 l'ensemble à deux éléments $\{\bar{0},\bar{1}\}$. On définit sur \mathbb{F}_2 les lois + et \times par

+	$\bar{0}$	$\bar{1}$
$\bar{0}$	$\bar{0}$	Ī
$\bar{1}$	Ī	$\bar{0}$

×	$\bar{0}$	$\bar{1}$
$\bar{0}$	$\bar{0}$	$\bar{0}$
Ī	$\bar{0}$	Ī

Alors $(\mathbb{F}_2, +, \times)$ est un anneau commutatif.

Proposition 13.1.2

Soit $(A, +, \times)$ un anneau. Alors

$$\begin{aligned} \forall a \in A, & 0_A \times a = 0_A & \text{et} & a \times 0_A = 0_A \\ \forall a, b \in A, & a \times (-b) = (-a) \times b = -(a \times b) \\ \forall a, b \in A, & \forall n \in \mathbb{Z}, & (n \cdot a) \times b = a \times (n \cdot b) = n \cdot (a \times b) \,. \end{aligned}$$

Remarque

 \Rightarrow Soit $(A, +, \times)$ un anneau dans lequel $0_A = 1_A$. Alors $A = \{0_A\}$. Réciproquement, si A est un ensemble contenant un unique élément muni des seules lois de composition interne + et \times que l'on peut définir sur cet ensemble, alors $A = \{0_A\}$ et $(A, +, \times)$ est un anneau. On dit que cet anneau est l'anneau trivial.

Proposition 13.1.3

Soit $(A, +, \times)$ un anneau et $a, b \in A$ tels que $a \times b = b \times a$. Alors, pour tout $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot (a^{n-k} \times b^k)$$
 et $a^n - b^n = (a-b) \times \left[\sum_{k=0}^{n-1} a^{(n-1)-k} \times b^k \right]$.

Remarques

 \Rightarrow Ces relations peuvent être fausses lorsque a et b ne commutent pas. Par exemple, si a et b sont deux éléments d'un anneau, alors

$$(a+b)^2 = a^2 + 2 \cdot a \times b + b^2 \iff a \times b = b \times a.$$

 \Rightarrow Remarquons que si $a \in A$, alors a commute avec 1_A , donc ces formules sont valables pour développer $(1_A + a)^n$ et factoriser $a^n - 1_A$.

Définition 13.1.4

On dit qu'un élément $a \in A$ est nilpotent lorsqu'il existe $n \in \mathbb{N}$ tel que $a^n = 0_A$.

Exercice 1

 \implies Montrer que si x est nilpotent, alors $1_A - x$ est inversible.

Définition 13.1.5

Soit $(A, +, \times)$ un anneau. L'ensemble U_A des éléments inversibles de A est un groupe pour la multiplication.

Remarque

 \Rightarrow L'ensemble U_A des inversibles de A est parfois noté A^{\times} . Il est important de ne pas confondre cet ensemble avec $A^* := A \setminus \{0_A\}$.

Exemples

- \Rightarrow Le groupe des inversibles de \mathbb{Z} est $(\{-1,1\},\times)$.
- \Rightarrow Le groupe des inversibles de $\mathcal{M}_n(\mathbb{R})$ est $(\mathrm{GL}_n(\mathbb{R}), \times)$. Le groupe des inversibles de $\mathcal{L}(E)$ est $(\mathrm{GL}(E), \circ)$.

Définition 13.1.6

On dit qu'un anneau $(A, +, \times)$ est *intègre* lorsque

- $-1_A \neq 0_A$
- -- × est commutative
- $\forall a, b \in A, \quad a \times b = 0_A \Longrightarrow [a = 0_A \text{ ou } b = 0_A].$

Remarque

 \Rightarrow Si $(A, +, \times)$ est intègre, tout élément non nul $a \in A^*$ est régulier pour \times :

$$\forall b, c \in A, \quad a \times b = a \times c \implies b = c.$$

Exercice 2

 \Rightarrow L'anneau $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\times)$ est-il intègre?

Dans la suite, lorsqu'il n'y a pas de confusion possible, les éléments 0_A et 1_A seront le plus souvent notés 0 et 1.

Définition 13.1.7

Soit $(A, +, \times)$ un anneau et B une partie de A. On dit que B est un sous-anneau de A lorsque

- $-0 \in B \text{ et } 1 \in B$
- $-- \forall b_1, b_2 \in B, \quad b_1 + b_2 \in B, \quad -b_1 \in B \quad \text{et} \quad b_1 \times b_2 \in B.$

Si tel est le cas $(B, +, \times)$ est un anneau.

Remarques

- \Rightarrow Si B est un sous-anneau de $(A, +, \times)$, B est un sous-groupe de (A, +).
- \Rightarrow Si B est un sous-anneau de \mathbb{C} , alors $\mathbb{Z} \subset B$.

Exercice 3

 \Rightarrow Montrer que $\mathbb{Z}[\mathrm{i}] := \{a + \mathrm{i}b : a, b \in \mathbb{Z}\}$ est un sous-anneau de \mathbb{C} .

Définition 13.1.8

Soit $(A, +, \times)$ et $(B, +, \times)$ deux anneaux. On dit qu'une application φ de A dans B est un morphisme d'anneau lorsque

$$\forall a_1, a_2 \in A, \qquad \varphi\left(a_1 + a_2\right) = \varphi\left(a_1\right) + \varphi\left(a_2\right)$$

$$\forall a_1, a_2 \in A, \qquad \varphi\left(a_1 \times a_2\right) = \varphi\left(a_1\right) \times \varphi\left(a_2\right)$$

$$\varphi\left(1_A\right) = 1_B.$$

Proposition 13.1.9

Soit φ un morphisme d'anneau de $(A, +, \times)$ dans $(B, +, \times)$. Alors

$$\forall a \in A, \quad \forall n \in \mathbb{Z}, \qquad \varphi(n \cdot a) = n \cdot \varphi(a)$$

 $\forall a \in A, \quad \forall n \in \mathbb{N}, \qquad \varphi(a^n) = [\varphi(a)]^n.$

De plus, si $a \in A$ est inversible, il en est de même pour $\varphi(a)$ et

$$\forall n \in \mathbb{Z}, \quad \varphi(a^n) = [\varphi(a)]^n.$$

Proposition 13.1.10

- La composée de deux morphismes d'anneaux est un morphisme d'anneau.
- La bijection réciproque d'un isomorphisme est un isomorphisme.

Proposition 13.1.11

Soit φ un isomorphisme de l'anneau $(A,+,\times)$ dans l'anneau $(B,+,\times)$. Alors

$$\forall x \in A, \quad x \in U_A \iff \varphi(x) \in U_B.$$

De plus φ induit un isomorphisme du groupe (U_A, \times) dans le groupe (U_B, \times) .

Définition 13.1.12

On dit qu'une partie \mathcal{I} d'un anneau commutatif $(A, +, \times)$ est un $id\acute{e}al$ de A lorsque

- $-0 \in \mathcal{I}$
- $\forall x, y \in \mathcal{I}, \quad \forall a, b \in A, \quad ax + by \in \mathcal{I}$

Proposition 13.1.13

Soit $(A, +, \times)$ un anneau commutatif et $x \in A$. Alors

$$xA \coloneqq \{ax : a \in A\}$$

est un idéal de A. Un tel idéal est appelé idéal principal.

Remarque

 \Rightarrow Soit \mathcal{I} un idéal de \mathbb{Z} . Alors, il existe un unique $n \in \mathbb{N}$ tel que $\mathcal{I} = n\mathbb{Z}$. Dans \mathbb{Z} , tout idéal est donc principal.

13.1.2 Corps

Définition 13.1.14

On dit qu'un anneau $(\mathbb{K}, +, \times)$ est un corps lorsque

- $-1_{\mathbb{K}} \neq 0_{\mathbb{K}}$
- -- × est commutative
- Tout élément non nul de \mathbb{K} admet un inverse pour la loi \times .

Exemples

- $\, \leftrightarrows \,$ Muni des lois usuelles d'addition et de multiplication, $\mathbb C$ est un corps.
- \Rightarrow ($\mathbb{F}_2, +, \times$) est un corps.

Remarque

 \Rightarrow Si \mathbb{K} est un corps, l'ensemble des inversibles de \mathbb{K} est $\mathbb{K}^* := \mathbb{K} \setminus \{0_{\mathbb{K}}\}$. Autrement dit, $\mathbb{K}^{\times} = \mathbb{K}^*$.

Proposition 13.1.15

Un corps est intègre.

Exercice 4

 \Rightarrow Résoudre l'équation $x^2 = 1$ sur le corps \mathbb{K} .

Définition 13.1.16

Soit $(\mathbb{L}, +, \times)$ un corps et \mathbb{K} une partie de \mathbb{L} . On dit que \mathbb{K} est un sous-corps de \mathbb{L} lorsque

- $\mathbb K$ est un sous-anneau de $\mathbb L$
- $-- \forall x \in \mathbb{K} \setminus \{0\}, \quad x^{-1} \in \mathbb{K}.$

Si tel est le cas, $(\mathbb{K}, +, \times)$ est un corps.

Remarque

- $\Rightarrow \mathbb{Q}$ et \mathbb{R} sont des sous-corps de $\mathbb{C}.$
- \Rightarrow Si $\mathbb K$ est un sous-corps de $\mathbb C,$ alors $\mathbb Q\subset\mathbb K.$

Définition 13.1.17

Si $(\mathbb{K}, +, \times)$ et $(\mathbb{L}, +, \times)$ sont deux corps, on appelle morphisme de corps de \mathbb{K} dans \mathbb{L} tout morphisme d'anneau pour les structures sous-jacentes.

Remarques

ightharpoonup Si φ est un morphisme d'un sous-corps $\mathbb K$ de $\mathbb C$ dans un sous-corps $\mathbb L$ de $\mathbb C$, alors

$$\forall r \in \mathbb{Q}, \quad \forall x \in \mathbb{K}, \quad \varphi(rx) = r\varphi(x).$$

 \Rightarrow Si φ est un morphisme de corps, alors φ est injective.

Exercice 5

 \Rightarrow Déterminer les morphismes de corps φ de $\mathbb C$ dans $\mathbb C$ tels que : $\forall x \in \mathbb R$, $\varphi(x) = x$.

Définition 13.1.18

Soit \mathbb{K} un corps. Alors, l'application

$$\begin{array}{cccc} \varphi: & \mathbb{Z} & \longrightarrow & \mathbb{K} \\ & k & \longmapsto & k \cdot 1_{\mathbb{K}} \end{array}$$

est un morphisme du groupe $(\mathbb{Z},+)$ dans $(\mathbb{K},+)$. Il existe donc un unique $p \in \mathbb{N}$ tel que $\ker \varphi = p\mathbb{Z}$. L'entier p est soit un nombre premier et est appelé $\operatorname{caract\acute{e}ristique}$ de \mathbb{K} .

Remarques

- \Rightarrow Les sous-corps de \mathbb{C} sont de caractéristique nulle. Le corps \mathbb{F}_2 est de caractéristique 2.
- Arr Lorsque \mathbb{K} est un sous-corps de \mathbb{C} , pour tout $k \in \mathbb{Z}$, on a $k \cdot 1_{\mathbb{K}} = k$. Si \mathbb{K} est un corps quelconque, on confondra le plus souvent $k \cdot 1_{\mathbb{K}}$ et k.

13.2 Espace vectoriel, algèbre

13.2.1 Espace vectoriel

Définition 13.2.1

Soit \mathbb{K} un corps, (E, +) un groupe commutatif d'élément neutre 0_E et \cdot une loi de composition externe.

$$\begin{array}{cccc} \cdot : & \mathbb{K} \times E & \longrightarrow & E \\ & (\lambda, x) & \longmapsto & \lambda \cdot x \end{array}$$

On dit que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel lorsque

$$\begin{split} \forall x,y \in E, \quad \forall \lambda \in \mathbb{K}, \qquad \lambda \cdot (x+y) &= \lambda \cdot x + \lambda \cdot y \\ \forall x \in E, \quad \forall \lambda, \mu \in \mathbb{K}, \qquad (\lambda + \mu) \cdot x &= \lambda \cdot x + \mu \cdot x \\ \forall x \in E, \quad \forall \lambda, \mu \in \mathbb{K}, \qquad \lambda \cdot (\mu \cdot x) &= (\lambda \mu) \cdot x \\ \forall x \in E, \qquad 1 \cdot x &= x. \end{split}$$

Les éléments de \mathbb{K} sont appelés scalaires, ceux de E, vecteurs.

Remarque

⇒ L'ensemble du cours sur les espaces vectoriels reste valide pour un corps quelconque, excepté le paragraphe sur les symétries qui n'est vrai que pour les corps de caractéristique différente de 2.

Proposition 13.2.2

Soit $(E, +, \cdot)$ un \mathbb{L} -espace vectoriel et \mathbb{K} un sous-corps de \mathbb{L} . Alors $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel. En particulier \mathbb{L} est un \mathbb{K} -espace vectoriel.

Remarques

- \Rightarrow \mathbb{C} est un \mathbb{R} -espace vectoriel.
- \Rightarrow Muni des lois usuelles, $\mathcal{F}(\mathbb{R},\mathbb{C})$ est un \mathbb{C} -espace vectoriel. Comme \mathbb{R} est un sous-corps de \mathbb{C} , $\mathcal{F}(\mathbb{R},\mathbb{C})$ est aussi un \mathbb{R} -espace vectoriel.

13.2.2 Algèbre

Définition 13.2.3

On dit qu'un anneau $(A, +, \times)$ muni d'une loi de composition externe \cdot sur un corps \mathbb{K} est une \mathbb{K} -algèbre lorsque

- $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel
- -- \times est compatible avec la loi de composition externe

$$\forall x, y \in A, \quad \forall \lambda \in \mathbb{K}, \quad (\lambda \cdot x) \times y = x \times (\lambda \cdot y) = \lambda \cdot (x \times y)$$

On dit que l'algèbre $(A, +, \cdot, \times)$ est commutative lorsque \times est commutatif.

Exemples

- \Rightarrow \mathbb{K} est une \mathbb{K} -algèbre.
- \Rightarrow Soit X un ensemble. Alors $(\mathcal{F}(X,\mathbb{K}),+,\cdot,\times)$ est une \mathbb{K} -algèbre commutative. En particulier, l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} est une \mathbb{R} -algèbre commutative et l'ensemble des suites réelles est une \mathbb{R} -algèbre commutative.

Définition 13.2.4

Soit $(A, +, \cdot, \times)$ et $(B, +, \cdot, \times)$ deux K-algèbre. On dit qu'une application φ de A dans B est un morphisme d'algèbre lorsque c'est un morphisme d'anneau et une application linéaire, c'est-à-dire lorsque

$$\forall x, y \in A, \quad \forall \lambda, \mu \in \mathbb{K}, \qquad \varphi \left(\lambda x + \mu y \right) = \lambda \varphi(x) + \mu \varphi(y)$$

$$\forall x, y \in A, \qquad \varphi \left(x y \right) = \varphi(x) \varphi(y)$$

$$\varphi(1_A) = 1_B.$$

Proposition 13.2.5

Soit E un \mathbb{K} -espace vectoriel. Alors $(\mathcal{L}(E), +, \cdot, \circ)$ est une \mathbb{K} -algèbre.

Proposition 13.2.6

Soit \mathbb{K} un corps et $n \in \mathbb{N}$. Alors $(\mathcal{M}_n(\mathbb{K}), +, \cdot, \times)$ est une \mathbb{K} -algèbre.

13.3 L'algèbre $\mathbb{K}[X]$

13.3.1 Définition

Définition 13.3.1

Soit \mathbb{K} un corps. Alors il existe une unique algèbre commutative $\mathbb{K}[X]$ ainsi qu'un élément $X \in \mathbb{K}[X]$, appelé indéterminée, tels que

— Pour tout $P \in \mathbb{K}[X]$, il existe $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$ tels que

$$P = a_0 + a_1 X + \dots + a_n X^n$$

- où, par abus de notation, $a_0 = a_0 \cdot 1_{\mathbb{K}[X]} = a_0 X^0$.
- Pour tout $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$

$$a_0 + a_1 X + \dots + a_n X^n = 0 \implies a_0 = \dots = a_n = 0.$$

On l'appelle algèbre des polynômes à coefficients dans K.

Remarque

 \Rightarrow Soit $P \in \mathbb{K}[X]$ et $a_0, \dots, a_n \in \mathbb{K}$ tels que $P = a_0 + a_1 X + \dots + a_n X^n$. Il est d'usage de définir a_k pour tout k > n en posant $a_k \coloneqq 0$. Alors, quel que soit $q \geqslant n$

$$P = \sum_{k=0}^{q} a_k X^k.$$

D'autre part, si $b_0, \ldots, b_m \in \mathbb{K}$ sont tels que $P = b_0 + b_1 X + \cdots + b_m X^m$, en définissant $b_k := 0$ pour tout k > m, on a

$$\forall k \in \mathbb{N}, \quad a_k = b_k.$$

Aurement dit, la suite (a_k) est unique; on l'appelle famille des coefficients de P.

Proposition 13.3.2: Produit de Cauchy

Soit $P, Q \in \mathbb{K}[X]$ deux polynômes dont les coefficients sont respectivement (a_k) et (b_k) . Alors, si on note (c_k) la famille des coefficients du produit PQ, on a

$$\forall k \in \mathbb{N}, \quad c_k = \sum_{l=0}^k a_{k-l} b_l.$$

Remarque

⇒ On a donc

$$\left(\sum_{k=0}^n a_k X^k\right) \left(\sum_{k=0}^m b_k X^k\right) = \sum_{k=0}^{n+m} \left(\sum_{l=0}^k a_{k-l} b_l\right) X^k$$

si on utilise la convention $a_k := 0$ pour k > n et $b_k := 0$ pour k > m.

Exercice 6

 \Rightarrow Soit $n \in \mathbb{N}$. Montrer que

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

en calculant $(1+X)^{2n}$ de deux manières différentes.

13.3.2 Substitution

Définition 13.3.3

Soit \mathcal{A} une \mathbb{K} -algèbre, $x \in \mathcal{A}$ et $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$. On définit P(x) par

$$P(x) := a_0 1_{\mathcal{A}} + a_1 x + \dots + a_n x^n \in \mathcal{A}.$$

On dit que l'on a substitué l'élément $x \in \mathcal{A}$ à l'indéterminée X.

Remarques

 \Rightarrow Si \mathcal{A} une \mathbb{K} -algèbre et $x \in \mathcal{A}$, l'application φ de $\mathbb{K}[X]$ dans \mathcal{A} qui à P associe P(x) est un morphisme d'algèbre.

$$\begin{split} \forall P,Q \in \mathbb{K}[X], \quad \forall \lambda,\mu \in \mathbb{K}, \qquad \left(\lambda P + \mu Q\right)(x) &= \lambda P(x) + \mu Q(x) \\ \forall P,Q \in \mathbb{K}[X], \qquad \left(PQ\right)(x) &= P(x)Q(x) \\ 1_{\mathbb{K}[X]}(x) &= 1_{\mathcal{A}}. \end{split}$$

- \Rightarrow On dit qu'un polynôme P est un polynôme annulateur de $x \in \mathcal{A}$ lorsque P(x) = 0. Par exemple, si $\mathbb{K} = \mathbb{R}$ et $\mathcal{A} = \mathbb{C}$, $P := X^2 + 1$ est un polynôme annulateur de i. Si E est un \mathbb{K} -espace vectoriel et si $s \in \mathcal{L}(E)$ est une symétrie, alors $P := X^2 1$ est un polynôme annulateur de s.
- \Rightarrow On dit qu'un élément $z \in \mathbb{C}$ est algébrique lorsqu'il existe un polynôme non nul $P \in \mathbb{Q}[X]$ tel que P(z) = 0. Par exemple $z_1 = (1 + \sqrt{5})/2$ est algébrique car $P_1 := X^2 X 1 \in \mathbb{Q}[X]$ est un polynôme annulateur de z_1 . De même, j est algébrique car $P_2 := X^3 1 \in \mathbb{Q}[X]$ est un polynôme annulateur de j. Lorsqu'on effectue des calculs avec un nombre algébrique z, il est souvent plus économe en calculs d'exploiter le fait que P(z) = 0 plutôt que de remplacer z par une expression parfois complexe. Par exemple, si $x := (1 + \sqrt{5})/2$, en exploitant le fait que $x^2 = x + 1$, on a

$$\left(\frac{1+\sqrt{5}}{2}\right)^3 = x^3 = x \cdot x^2 = x(x+1) = x^2 + x = 2x + 1 = 2 + \sqrt{5}$$

Si on souhaite calculer 1/x, on exploite le fait que $x^2 - x - 1 = 0$, ce qui donne x(x - 1) = 1, puis 1/x = x - 1. Donc

$$\frac{1}{\left(\frac{1+\sqrt{5}}{2}\right)} = \frac{-1+\sqrt{5}}{2}.$$

 \Rightarrow On dit qu'un élément de $\mathbb C$ est transcendant lorsqu'il n'est pas algébrique. On peut montrer, mais c'est difficile, que e et π sont transcendants.

Exercice 7

- \Rightarrow Montrer que $1 + \sqrt{7}$ et $\sqrt{2} + \sqrt{5}$ sont algébriques.
- \Rightarrow Soit $D := \text{Diag}(\lambda_1, \dots, \lambda_n) \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$. Montrer que $P(D) = \text{Diag}(P(\lambda_1), \dots, P(\lambda_n))$.

Définition 13.3.4

Soit $P, Q \in \mathbb{K}[X]$. On définit le polynôme $P \circ Q$ par

$$P \circ Q := P(Q)$$
.

Remarque

 \Rightarrow Si $P \in \mathbb{K}[X]$, P(X) = P. Un polynôme peut donc indifféremment être noté P ou P(X).

Définition 13.3.5

Soit $P \in \mathbb{K}[X]$. On dit que

- P est pair lorsque P(-X) = P(X).
- P est impair lorsque P(-X) = -P(X).

Proposition 13.3.6

Soit \mathbb{K} un corps qui n'est pas de caractéristique 2 et $P \in \mathbb{K}[X]$. Alors

- P est pair si et seulement si ses coefficients d'indices impairs sont nuls.
- P est impair si et seulement si ses coefficients d'indices pairs sont nuls.

13.3.3 Degré d'un polynôme

Définition 13.3.7

Soit $P \in \mathbb{K}[X]$. On définit le degré de P que l'on note deg P par

- Si P = 0, on pose deg $P := -\infty$.
- Sinon, il existe $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{K}$ tels que

$$P = a_0 + a_1 X + \dots + a_n X^n \quad \text{et} \quad a_n \neq 0.$$

De plus n et les a_0, \ldots, a_n sont uniques ; on pose alors $\deg P := n$. Le coefficient a_n est appelé coefficient dominant $\deg P$.

Remarques

- \Rightarrow Si $P \in \mathbb{K}[X]$ est non nul, son coefficient dominant est parfois noté $\operatorname{cd}(P)$.
- \Rightarrow Un polynôme $P \in \mathbb{K}[X]$ est de degré inférieur ou égal à $n \in \mathbb{N}$ si et seulement si il existe $a_0, \dots, a_n \in \mathbb{K}$ tels que

$$P = \sum_{k=0}^{n} a_k X^k.$$

 \Rightarrow On dit qu'un polynôme P est constant lorsqu'il existe $\lambda \in \mathbb{K}$ tel que $P = \lambda$, c'est-à-dire lorsque son degré est inférieur ou égal à 0.

Proposition 13.3.8

Soit $P, Q \in \mathbb{K}[X]$ et $n \in \mathbb{N}$.

— Soit $\lambda, \mu \in \mathbb{K}$. Si deg $P \leq n$ et deg $Q \leq n$, alors

$$\deg\left(\lambda P + \mu Q\right) \leqslant n.$$

— Soit $\lambda \in \mathbb{K}^*$ et $\mu \in \mathbb{K}$. Si deg P = n et deg Q < n, alors

$$deg(\lambda P + \mu Q) = n$$
 et $cd(\lambda P + \mu Q) = \lambda cd(P)$.

Remarque

Arr Lorsque P et Q sont des polynômes de degré n, il est possible que P+Q soit de degré strictement inférieur à n. Par exemple $P\coloneqq X+1$ et $Q\coloneqq -X$ sont de degré 1 mais P+Q=1 est de degré 0.

Exercice 8

 \Rightarrow Soit $P \in \mathbb{C}[X]$. Calculer le degré de P(X+1) - P(X) en fonction de celui de P.

Définition 13.3.9

Soit $n \in \mathbb{N}$. On note $\mathbb{K}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n.

Remarque

 \Rightarrow Si $n \ge 1$, $\mathbb{K}_n[X]$ n'est pas stable par produit. En effet, $X^n \in \mathbb{K}_n[X]$ mais $X^{2n} = X^n \cdot X^n \notin \mathbb{K}_n[X]$.

Proposition 13.3.10

Soit $P, Q \in \mathbb{K}[X]$. Alors

$$\deg(PQ) = \deg P + \deg Q.$$

De plus, si P et Q sont non nuls, alors cd(PQ) = cd(P)cd(Q).

Remarques

- \Rightarrow Si $P \in \mathbb{K}[X]$ est non nul et si $n \in \mathbb{N}$, alors $\deg(P^n) = n \deg P$.
- \Rightarrow Si $P \in \mathbb{K}[X]$ et $Q \in \mathbb{K}[X]$ n'est pas constant, alors $\deg(P \circ Q) = \deg(P) \deg(Q)$.

Proposition 13.3.11

 $\mathbb{K}[X]$ est une algèbre intègre

$$\forall P,Q \in \mathbb{K}[X], \quad PQ = 0 \quad \Longrightarrow \quad [P = 0 \quad \text{ou} \quad Q = 0] \,.$$

Proposition 13.3.12

Les éléments inversibles de $\mathbb{K}[X]$ sont les polynômes de degré 0, c'est-à-dire les polynômes constants non nuls.

Définition 13.3.13

On dit qu'un polynôme non nul U est unitaire lorsque son coefficient dominant est égal à 1. Tout polynôme P non nul s'écrit de manière unique sous la forme $P = \lambda P_u$ où $\lambda \in \mathbb{K}^*$ et P_u est unitaire. Lorsque P = 0, on pose par convention $P_u := 0$.

Définition 13.3.14: Division euclidienne

Soit $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. Alors, il existe un unique couple $(Q, R) \in \mathbb{K}[X]^2$ tel que

$$A = QB + R$$
 et $\deg R < \deg B$.

Q est appelé quotient de la division euclidienne de A par B, R son reste.

Remarques

 \Rightarrow Si B est un polynôme annulateur non nul de x et $A \in \mathbb{K}[X]$. Alors A(x) = R(x) où R est le reste de la division euclidienne de A par B. En effet

$$A(x) = Q(x)\underbrace{B(x)}_{=0} + R(x)$$

⇒ Il est parfois utile de calculer le reste de la division euclidienne de A par B sans calculer son quotient. Par exemple, si $A := X^n$ et B := (X - 1)(X - 2), le reste R de la division euclidienne de A par B est de degré inférieur ou égal à 1 donc il existe $a, b \in \mathbb{R}$ tels que R = aX + b. Comme A = QB + R, on en déduit que A(1) = Q(1)B(1) + R(1). Comme B(1) = 0, on a A(1) = R(1). De même A(2) = R(2). Donc

$$\begin{cases} a+b=1\\ 2a+b=2^n. \end{cases}$$

On en déduit que $a = 2^n - 1$ et $b = 2 - 2^n$. Donc $R = (2^n - 1)X + (2 - 2^n)$. Cette méthode fonctionne dès que le polynôme B, de degré n, admet n racines deux à deux distinctes.

Exercices 9

- \Rightarrow Calculer $x^5 + x^4 1$ où $x := (1 + \sqrt{5})/2$.
- ⇒ On pose

$$A \coloneqq \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

Vérifier que $A^2 - 5A + 6I_2 = 0$ puis calculer A^n pour tout $n \in \mathbb{N}$.

Proposition 13.3.15

Soit \mathcal{I} un idéal de $\mathbb{K}[X]$. Alors, il existe un unique polynôme unitaire ou nul P tel que $\mathcal{I} = P\mathbb{K}[X]$.

Remarque

 \Rightarrow En particulier, dans $\mathbb{K}[X]$, tout idéal est principal.

13.3.4 Racines, fonctions polynôme

Définition 13.3.16

Soit $P \in \mathbb{K}[X]$. On appelle racine de P tout élément $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Remarques

- $\, \leftrightarrows \,$ Les polynômes de degré 1 admettent une unique racine.
- ⇒ D'après le théorème des valeurs intermédiaires, tout polynôme réel de degré impair admet (au moins) une racine réelle.
- \Rightarrow La notion de racine dépend du corps considéré. En effet, si on le considère comme élément de $\mathbb{C}[X]$, les racines de $(X^2-2)(X^2+1)$ sont $\sqrt{2}, -\sqrt{2}$, i, -i. Considéré comme élément de $\mathbb{R}[X]$, ses racines sont $\sqrt{2}, -\sqrt{2}$. Enfin il n'a aucune racine si on le considère comme un élément de $\mathbb{Q}[X]$.
- \Rightarrow Si \mathbb{K} est un sous-corps de \mathbb{L} , $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{L}$, on dit que α est une racine de P sur \mathbb{L} lorsque $P(\alpha) = 0$.

Proposition 13.3.17

Soit $P \in \mathbb{K}[X]$. Si $\alpha \in \mathbb{K}$ est une racine de P, alors il existe $Q \in \mathbb{K}[X]$ tel que

$$P = (X - \alpha)Q$$
.

Remarque

 \Rightarrow Cette factorisation se calcule en pratique en effectuant la division euclidienne de P par $X - \alpha$.

Proposition 13.3.18

Si $n \in \mathbb{N}$, tout polynôme de degré n admet au plus n racines.

Remarques

- \Rightarrow On en déduit qu'un polynôme de degré inférieur ou égal à n admettant n+1 racines deux à deux distinctes est nul. De même, si deux polynômes de degrés inférieurs ou égaux à n prennent la même valeur en n+1 points deux à deux distincts, alors ils sont égaux.
- ⇒ Un polynôme admettant une infinité de racines est donc nul. De même, deux polynômes prenant la même valeur sur un ensemble infini sont égaux.

Exercices 10

- \Rightarrow Montrer que les polynômes de $\mathbb{C}[X]$ tels que P(X) = P(X+1) sont les polynômes constants.
- \Rightarrow Montrer qu'il n'existe pas de polynôme $P \in \mathbb{C}[X]$ tel que, pour tout $z \in \mathbb{C}$, $P(z) = \overline{z}$.

Proposition 13.3.19: Polynôme interpolateur de Lagrange

Soit $x_0, \ldots, x_n \in \mathbb{K}$, n+1 éléments deux à deux distincts et $y_0, \ldots, y_n \in \mathbb{K}$. Alors, il existe un unique polynôme P de degré inférieur ou égal à n tel que

$$\forall i \in [0, n], \quad P(x_i) = y_i.$$

On l'appelle polynôme interpolateur de Lagrange associé aux familles (x_0, \ldots, x_n) et (y_0, \ldots, y_n) .

Remarque

 \Rightarrow Pour tout $i \in [0, n]$, on note L_i le polynôme défini par

$$L_i := \prod_{\substack{k=0\\k\neq i}}^n \frac{X - x_k}{x_i - x_k}.$$

Les polynômes L_i sont appelés polynômes de Lagrange. Le polynôme interpolateur de Lagrange associé aux familles (x_0, \ldots, x_n) et (y_0, \ldots, y_n) est donné par

$$P = \sum_{i=0}^{n} y_i L_i.$$

Définition 13.3.20

On dit qu'une application $f: \mathbb{K} \to \mathbb{K}$ est une fonction polynôme lorsqu'il existe $P \in \mathbb{K}[X]$ tel que

$$\forall x \in \mathbb{K}, \quad f(x) = P(x).$$

Proposition 13.3.21

Si \mathbb{K} est infini, l'application de l'algèbre $\mathbb{K}[X]$ dans l'algèbre $\mathcal{F}(\mathbb{K}, \mathbb{K})$, qui au polynôme P associe la fonction polynôme \tilde{P} , est injective.

Remarques

- ⇒ Cette proposition permet, lorsque K est infini, d'identifier polynômes et fonctions polynôme. C'est pourquoi de rares énoncés se permettent de les confondre, identification que nous ne ferons que lorsque l'énoncé le demande explicitement.
- \Rightarrow Cette proposition est fausse lorsque le corps \mathbb{K} est fini. En effet, si $\mathbb{K} = \{a_1, \dots, a_n\}$, le polynôme

$$P := \prod_{k=1}^{n} (X - a_k)$$

est non nul car $\deg P=n,$ mais la fonction polynôme associée est nulle.

13.3.5 Polynôme dérivé

Définition 13.3.22

Soit $P = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{K}[X]$. On définit le polynôme dérivé de P par

$$P' := a_1 + 2a_2X + \dots + na_nX^{n-1}$$
$$= \sum_{k=1}^{n} ka_kX^{k-1}.$$

Remarque

 \Rightarrow Dans le cas où $\mathbb{K} = \mathbb{R}$, la fonction polynôme associée à P' est la dérivée (comme définie dans le cours d'analyse) de la fonction polynôme associée à P.

Proposition 13.3.23

Soit $P, Q \in \mathbb{K}[X]$ et $\lambda, \mu \in \mathbb{K}$. Alors

$$(\lambda P + \mu Q)' = \lambda P' + \mu Q'$$
 $(PQ)' = P'Q + PQ'$ et $(P \circ Q)' = Q'(P' \circ Q)$.

Remarque

 \Rightarrow On peut utiliser le polynôme dérivé pour calculer la reste de la division euclidienne de A par B lorsque B possède des racines multiples. Par exemple, si $A := X^n$ et $B := (X-1)^2$, le reste R de la division euclidienne de A par B est de degré inférieur ou égal à 1 donc il existe $a,b \in \mathbb{R}$ tels que R=aX+b. Comme plus haut, A(1)=R(1). En dérivant la relation A=QB+R, on obtient A'=B'Q+BQ'+R'. Puisque 1 est racine de B et de B', on en déduit que A'(1)=R'(1). Donc

$$\begin{cases} a+b=1\\ a=n \end{cases}$$

On en déduit que a = n et b = 1 - n, donc R = nX + (1 - n).

Définition 13.3.24

Soit $P\in\mathbb{K}[X].$ On définit par récurrence la dérivée n-ième de P par

$$-P^{(0)} := P$$

$$-\forall n \in \mathbb{N}, \quad P^{(n+1)} \coloneqq \left[P^{(n)}\right]'.$$

Remarque

 \Rightarrow Soit $n \in \mathbb{N}$. Alors

$$\forall k \in \mathbb{N}, \quad (X^n)^{(k)} = \begin{cases} \frac{n!}{(n-k)!} X^{n-k} & \text{si } k \leqslant n \\ 0 & \text{sinon.} \end{cases}$$

En particulier, si $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$, alors

$$\forall k \in \mathbb{N}, \quad P^{(k)}(0) = k! a_k.$$

Proposition 13.3.25

Soit $P, Q \in \mathbb{K}[X]$ et $n \in \mathbb{N}$

— Soit
$$\lambda, \mu \in \mathbb{K}$$
. Alors

$$(\lambda P + \mu Q)^{(n)} = \lambda P^{(n)} + \mu Q^{(n)}.$$

— On a

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(n-k)} Q^{(k)}.$$

Cette formule est appelée formule de Leibniz.

Exercice 11

 \Rightarrow Calculer $(X^2P)^{(n)}$ en fonction des dérivées successives de P.

Dans la suite du cours, on suppose que $\mathbb K$ est un corps de caractéristique nulle.

Proposition 13.3.26

Soit $P \in \mathbb{K}[X]$. Alors

$$\deg P' = \begin{cases} \deg(P) - 1 & \text{si } \deg P \geqslant 1, \\ -\infty & \text{sinon.} \end{cases}$$

Remarques

- $\Rightarrow P' = 0$ si et seulement si P est constant.
- \Rightarrow Pour tout $P \in \mathbb{K}[X]$, $\deg P' \leqslant \deg(P) 1$.
- \Rightarrow Soit $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}$. Alors

$$\deg P^{(n)} = \begin{cases} \deg(P) - n & \text{si } \deg P \geqslant n, \\ -\infty & \text{sinon.} \end{cases}$$

En particulier, $\deg P^{(n)} \leq \deg(P) - n$.

Proposition 13.3.27: Formule de Taylor

Soit $P\in\mathbb{K}[X]$ un polynôme de degré inférieur ou égal à n et $\alpha\in\mathbb{K}.$ Alors

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k}.$$

13.4 Exercices

Anneau, corps

Anneau

Exercice 1 : Anneau de Boole

Soit E un ensemble. Pour tout $A, B \in \mathcal{P}(E)$, on définit $A\Delta B$ par

$$A\Delta B := (A \setminus B) \cup (B \setminus A).$$

Pour tout $A \in \mathcal{P}(E)$, on définit la fonction caractéristique de A comme l'application $\mathbb{1}_A : A \to \mathbb{F}_2$ définie par

$$\forall x \in E, \quad \mathbb{1}_A(x) := \begin{cases} \bar{1} & \text{si } x \in A \\ \bar{0} & \text{sinon.} \end{cases}$$

- 1. Montrer que pour tout $A, B \in \mathcal{P}(E)$, $\mathbb{1}_{A\Delta B} = \mathbb{1}_A + \mathbb{1}_B$ et $\mathbb{1}_{A\cap B} = \mathbb{1}_A \mathbb{1}_B$.
- 2. En déduire que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.
- 3. Montrer que cet anneau est intègre si et seulement si E possède un unique élément.

Exercice 2: Fonction définie sur un anneau

Soit $(A, +, \times)$ un anneau et f une application de A dans \mathbb{R}_+ telle que

- $-- \forall x \in A, \quad f(x) = 0 \Longleftrightarrow x = 0.$
- $\forall x, y \in A, \quad f(xy) = f(x)f(y).$
- $-\forall x, y \in A, \quad f(x+y) \leq \max(f(x), f(y)).$

Montrer que $\{x \in A \mid f(x) \leq 1\}$ est un sous-anneau de A.

Corps

Exercice 3: Exemple de corps

On définit sur \mathbb{R} deux lois \oplus et \otimes par

$$\begin{aligned} \forall x,y \in \mathbb{R}, & x \oplus y &\coloneqq x+y-1 \,, \\ \forall x,y \in \mathbb{R}, & x \otimes y &\coloneqq x+y-xy \,. \end{aligned}$$

Montrer que $(\mathbb{R}, \oplus, \otimes)$ est un corps.

Exercice 4: Morphisme de corps

Montrer qu'un morphisme de corps est toujours injectif. Trouver un morphisme d'anneaux non injectif.

Exercice 5: Extension quadratique

Soit $\alpha \in \mathbb{N}$ tel que $\sqrt{\alpha} \notin \mathbb{Q}$. On pose

$$\mathbb{Q}(\sqrt{\alpha}) := \left\{ a + b\sqrt{\alpha} : (a, b) \in \mathbb{Q}^2 \right\}$$

- 1. Soit $x \in \mathbb{Q}(\sqrt{\alpha})$. Montrer qu'il existe un unique couple $(a,b) \in \mathbb{Q}^2$ tel que $x = a + b\sqrt{\alpha}$.
- 2. Montrer que $\mathbb{Q}(\sqrt{\alpha})$ est un sous-corps de $(\mathbb{R}, +, \times)$.
- 3. Pour $x = a + b\sqrt{\alpha} \in \mathbb{Q}(\sqrt{\alpha})$, on pose $\overline{x} = a b\sqrt{\alpha}$; on l'appelle le conjugué de x. Montrer que l'application $x \mapsto \overline{x}$ est bien définie et est un automorphisme du corps $\mathbb{Q}(\sqrt{\alpha})$.
- 4. Montrer que l'automorphisme construit à la question précédente est le seul automorphisme non trivial de $\mathbb{Q}(\sqrt{\alpha})$.

13.4. EXERCICES 251

Espace vectoriel, algèbre

Espace vectoriel

 $Alg\`ebre$

L'algèbre $\mathbb{K}[X]$

Définition

Exercice 6: Produit

On note \mathcal{A} l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels qu'il existe $a_0, \ldots, a_n \in \mathbb{R}_+$ tels que

$$P = \sum_{k=0}^{n} (-1)^k a_k X^k.$$

Montrer que \mathcal{A} est stable par produit.

Substitution

Degré d'un polynôme

Exercice 7 : Équations sur $\mathbb{R}[X]$

Déterminer l'ensemble des $P \in \mathbb{R}[X]$ tels que

$$P(X^2) = (X^2 + 1)P(X).$$

On commencera par effectuer une analyse et un cherchera des informations sur le degré de P.

Exercice 8: Division euclidienne

Soit $n \in \mathbb{N}$. Calculer le reste de la division euclidienne

1. de
$$X^n(X+1)^2$$
 par $(X-1)(X-2)$.

2. de
$$X^n$$
 par $(X-1)^2(X+1)$.

3. de
$$(X+1)^{2n+1} - X^{2n+1}$$
 par $X^2 + X + 1$.

$Racines, \ fonctions \ polyn\^ome$

Exercice 9: Exercice

1. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall n \in \mathbb{N}, \quad P(n) = n^2.$$

2. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall n \in \mathbb{N}, \quad P(n) = n^2 + (-1)^n.$$

Exercice 10 : Polynômes de Tchebychev

On définit la suite de polynômes (T_n) par

$$T_0 \coloneqq 1, \quad T_1 \coloneqq X \quad \text{et} \quad \forall n \in \mathbb{N}, \quad T_{n+2} \coloneqq 2XT_{n+1} - T_n.$$

- 1. Calculer les polynômes T_n pour $n \in [0, 5]$.
- 2. Calculer le degré de T_n et son coefficient dominant.
- 3. Montrer que pour tout $n \in \mathbb{N}$, T_n est l'unique polynôme tel que

$$\forall x \in \mathbb{R}, \quad T_n(\cos x) = \cos(nx).$$

- 4. En déduire les racines de T_n .
- 5. En dérivant deux fois la relation obtenue dans la question 3, montrer que

$$\forall n \in \mathbb{N}, \quad (X^2 - 1)T_n'' + XT_n' - n^2T_n = 0.$$

6. Déterminer une expression explicite de T_n en exploitant la formule de Moivre.

Exercice 11: Exercice

On note \mathcal{A} l'ensemble des fonctions $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ telles qu'il existe $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, \quad f(x) = \sum_{k=0}^{n} \lambda_k e^{kx}.$$

- 1. Montrer que \mathcal{A} est une sous-algèbre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 2. Montrer que \mathcal{A} est intègre.
- 3. Déterminer $U_{\mathcal{A}}$.

Exercice 12 : Polynômes de Lagrange

Soit $n \ge 2, x_1, \dots, x_n \in \mathbb{K}$ deux à deux distincts et L_1, \dots, L_n les polynôme de Lagrange associés. Simplifier les sommes

$$\sum_{i=1}^{n} L_i \quad \text{et} \quad \sum_{i=1}^{n} x_i L_i.$$

Exercice 13 : Polynômes de Lagrange

On note L_0, \ldots, L_n les polynômes de Lagrange de $0, \ldots, n$.

- 1. Pour tout $k \in [0, n]$, exprimer le coefficient dominant de L_k au moyen de factorielles.
- 2. Exprimer de deux manières différentes l'unique polynôme $P \in \mathbb{R}[X]$ de degré inférieur ou égal à n tel que

$$\forall k \in \llbracket 0, n \rrbracket, \quad P(k) = k^n.$$

3. En déduire une simplification de

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} k^n.$$

Exercice 14: Exercice

Soit $P \in \mathbb{C}[X]$.

1. Donner une condition nécessaire et suffisante sur les coefficients de P pour que

$$\forall x \in \mathbb{R}, \quad P(x) \in \mathbb{R}.$$

2. Donner une condition nécessaire et suffisante sur les coefficients de P pour que

$$\forall x \in \mathbb{Q}, \quad P(x) \in \mathbb{Q}.$$

On pourra utiliser les polynômes de Lagrange.

Polynôme dérivé

Exercice 15: Exercice

Soit $n \in \mathbb{N}$ et $k \in [0, n]$. On pose

$$S \coloneqq \sum_{i=k}^{n} {i \choose k}$$
 et $P \coloneqq \sum_{i=k}^{n} (X+1)^{i}$.

- 1. Exprimer S en fonction de $P^{(k)}(0)$.
- 2. Simplifier (X+1)P-P, puis dériver k+1 fois la relation obtenue.
- 3. En déduire une expression simple de S.

Exercice 16 : Équations sur $\mathbb{R}[X]$

1. Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que

$$P(2X) = P'(X)P''(X).$$

2. Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que

$$X(X+1)P'' + (X+2)P' - P = 0.$$

13.4. EXERCICES 253

Exercice 17: Coefficients binomiaux

On donne un entier $n \ge 1$.

1. Pour $a,b\in\mathbb{R}$, calculer la dérivée n-ième du polynôme $P=(X-a)^n\,(X-b)^n.$

2. En déduire une expression simplifiée de la somme

$$S = \sum_{k=0}^{n} \binom{n}{k}^2$$

Exercice 18: Primitive

Soit $P \in \mathbb{C}[X]$ un polynôme de degré inférieur ou égal à n. Montrer que

$$Q \coloneqq \sum_{k=0}^{n} \frac{(-1)^k P^{(k)}(X)}{(k+1)!} X^{k+1}$$

est l'unique primitive de P qui s'annule en 0.

Chapitre 14

Dimension finie

14.1 Famille libre, famille génératrice, base	
14.1.1 Famille libre	
14.1.2 Famille génératrice	
14.1.3 Base	
14.1.4 Cas des familles infinies	
14.2 Dimension	
14.2.1 Espace vectoriel de dimension finie	
14.2.2 Dimension d'un espace vectoriel	
14.2.3 Existence et unicité en dimension finie	
14.2.4 Dimension d'un sous-espace vectoriel	
14.2.5 Notion de rang	
14.3 Calcul de dimension et de rang, hyperplan	
14.3.1 Somme de deux sous-espaces vectoriels	
14.3.2 Produit d'espaces vectoriels, espace $\mathcal{L}(E,F)$	
14.3.3 Théorème du rang	
14.3.4 Hyperplan	
14.4 Sous-espace affine	
14.5 Exercices	

14.1 Famille libre, famille génératrice, base

14.1.1 Famille libre

Définition 14.1.1

On dit qu'une famille $(x_1, \ldots, x_p) \in E^p$ est libre lorsque quels que soient $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$

$$\lambda_1 x_1 + \dots + \lambda_p x_p = 0 \implies \lambda_1 = \dots = \lambda_p = 0.$$

Sinon, on dit qu'elle est liée. Dans ce cas, toute relation du type $\lambda_1 x_1 + \cdots + \lambda_p x_p = 0$ où les λ_k ne sont pas tous nuls est appelée relation de liaison.

Exercices 1

- \Rightarrow Donner une condition nécessaire et suffisante sur $\lambda \in \mathbb{R}$ pour que la famille $((1,2,0),(2,1,1),(3,3,\lambda))$ soit une famille libre de \mathbb{R}^3 .
- \Rightarrow Montrer que sur $\mathcal{F}(\mathbb{R},\mathbb{R})$, la famille sin, cos est libre. Que dire si on lui adjoint la fonction $x \mapsto \sin(x + \pi/4)$?
- \Rightarrow Sur $\mathcal{F}(\mathbb{R}, \mathbb{R})$, considéré comme un \mathbb{R} -espace vectoriel, montrer que si $\alpha_1, \dots, \alpha_p \in \mathbb{R}$ sont tels que $\alpha_1 < \dots < \alpha_p$, la famille des fonctions d'expressions $e^{\alpha_1 x}, e^{\alpha_2 x}, \dots, e^{\alpha_p x}$ est libre.
- \Rightarrow Montrer que la famille $1, \sqrt{2}, \sqrt{3}$ est libre dans \mathbb{R} considéré comme un \mathbb{Q} -espace vectoriel.

Remarques

 \Rightarrow Lorsque (x_1,\ldots,x_n) est libre, on dit aussi que x_1,\ldots,x_n sont linéairement indépendants.

 \Rightarrow Si (x_1,\ldots,x_p) est une famille libre d'éléments de E alors, quels que soient $\lambda_1,\ldots,\lambda_p,\mu_1,\ldots,\mu_p\in\mathbb{K}$ tels que

$$\lambda_1 x_1 + \dots + \lambda_p x_p = \mu_1 x_1 + \dots + \mu_p x_p$$

on a $\lambda_1 = \mu_1, \dots, \lambda_p = \mu_p$. La liberté d'une famille permet donc « d'identifier » les coefficients d'une combinaison linéaire.

- ⇒ Une famille composée d'un unique vecteur est libre si et seulement si ce vecteur est non nul.
- \Rightarrow Une famille $(x,y) \in E^2$ formée de deux vecteurs est liée si et seulement si ces vecteurs sont *colinéaires*, c'est-à-dire si et seulement si il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda y$ ou $y = \lambda x$. Plus généralement, une famille est liée si et seulement si il existe un vecteur qui est combinaison linéaire des autres.
- ⇒ Une famille libre reste libre lorsqu'on effectue une permutation de ses vecteurs ou lorsqu'on retire certains de ses vecteurs. En particulier, une famille libre ne contient ni vecteur nul, ni doublon, ni vecteurs colinéaires.
- \Rightarrow Si (x_1,\ldots,x_p) est une famille libre et si $x\in E\setminus \mathrm{Vect}\,(x_1,\ldots,x_p)$, alors la famille (x_1,\ldots,x_p,x) est libre.
- \Rightarrow Sur \mathbb{C} , considéré comme un \mathbb{R} -espace vectoriel, la famille (1,i) est libre. Cependant, si \mathbb{C} est considéré comme un \mathbb{C} -espace vectoriel, elle est liée. La notion de liberté dépend donc du corps considéré.

Proposition 14.1.2

L'image d'une famille libre par une application linéaire injective est libre.

14.1.2 Famille génératrice

Définition 14.1.3

On dit qu'une famille $(x_1, \ldots, x_p) \in E^p$ est génératrice de E lorsque, quel que soit $x \in E$, il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tels que

$$x = \lambda_1 x_1 + \dots + \lambda_p x_p$$
.

Autrement dit, la famille (x_1, \ldots, x_p) est génératrice si et seulement si $\operatorname{Vect}(x_1, \ldots, x_p) = E$.

Remarques

- ⇒ Une famille génératrice reste génératrice lorsqu'on effectue une permutation de ses vecteurs ou lorsqu'on lui rajoute d'autres vecteurs.
- \Rightarrow Si (x_1, \ldots, x_p) est une famille génératrice et si $x_p \in \text{Vect}(x_1, \ldots, x_{p-1})$, alors la famille (x_1, \ldots, x_{p-1}) est génératrice.

Exercices 2

- \Rightarrow Soit $\lambda \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur λ pour que la famille $((1,2,0),(2,1,1),(3,3,\lambda))$ soit une famille génératrice de \mathbb{R}^3 .
- \Rightarrow Soit \mathbb{K} un corps de caractéristique nulle, $n \in \mathbb{N}$ et $\alpha \in \mathbb{K}$. Montrer que la famille $(1, X \alpha, (X \alpha)^2, \dots, (X \alpha)^n)$ est une famille génératrice de $\mathbb{K}_n[X]$.

Proposition 14.1.4

Soit f et g deux applications linéaires de E dans F. On suppose que (x_1, \ldots, x_p) est une famille génératrice de E telle que

$$\forall k \in [1, p], \quad f(x_k) = g(x_k).$$

Alors f = g.

Exercice 3

⇒ Montrer la formule de Simpson.

$$\forall P \in \mathbb{R}_3[X], \quad \int_0^1 P(t) \, dt = \frac{P(0) + 4P(1/2) + P(1)}{6}.$$

Proposition 14.1.5

Soit f une application linéaire de E dans F. On suppose que chaque élément d'une famille génératrice (y_1, \ldots, y_p) de F admet au moins un antécédent par f. Alors f est surjective.

Proposition 14.1.6

Soit f une application linéaire de E dans F. Alors l'image $(f(x_1), \ldots, f(x_p))$ d'une famille génératrice (x_1, \ldots, x_p) de E est une famille génératrice de Im f. En particulier, si f est surjective, l'image par f d'une famille génératrice de E est une famille génératrice de F.

14.1.3 Base

Définition 14.1.7

On dit qu'une famille $(e_1, \ldots, e_n) \in E^n$ est une base de E lorsque, quel que soit $x \in E$, il existe un unique n-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que

$$x = \lambda_1 e_1 + \dots + \lambda_n e_n.$$

Autrement dit, la famille (e_1, \ldots, e_n) est une base de E si et seulement si elle est libre et génératrice.

Remarques

- \Rightarrow Si $\mathcal{B} := (e_1, \dots, e_n)$ est une base de E et $x \in E$, les $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que $x = \lambda_1 e_1 + \dots + \lambda_n e_n$ sont appelées coordonnées de x relativement à la base \mathcal{B} .
- ⇒ Une base reste une base lorsqu'on effectue une permutation de ses vecteurs.

Définition 14.1.8

— Si $n \in \mathbb{N}$, la famille (e_1, \ldots, e_n) de \mathbb{K}^n définie par

$$\forall k \in [1, n], e_k := (0, \dots, 0, 1, 0, \dots, 0)$$

- est une base de \mathbb{K}^n , appelée base canonique.
- Si $n \in \mathbb{N}$, la famille $(1, X, \dots, X^n)$ est une base de $\mathbb{K}_n[X]$. On l'appelle base canonique de $\mathbb{K}_n[X]$.
- Si $p, q \in \mathbb{N}$, la famille $(E_{i,j})_{1 \leq i \leq q, 1 \leq j \leq p}$ des matrices élémentaires est une base de $\mathcal{M}_{q,p}(\mathbb{K})$ appelée base canonique.

Proposition 14.1.9

Soit E et F deux \mathbb{K} -espaces vectoriels tels que E admette une base (e_1, \ldots, e_n) . Alors, quel que soit $(y_1, \ldots, y_n) \in F^n$, il existe une unique application linéaire f de E dans F telle que

$$\forall k \in [1, n], \quad f(e_k) = y_k.$$

De plus

- f est injective si et seulement si (y_1, \ldots, y_n) est libre.
- f est surjective si et seulement si (y_1, \ldots, y_n) est génératrice dans F.
- f est un isomorphisme si et seulement si (y_1, \ldots, y_n) est une base de F.

Exercice 4

 \Rightarrow On pose $E := \mathbb{R}^3$. Montrer qu'il existe $u \in \mathcal{L}(E)$ tel que $u^3 = \mathrm{Id}$ et $u \neq \mathrm{Id}$.

Proposition 14.1.10

Soit A et B deux sous-espaces vectoriels de E, $\mathcal{A} := (a_1, \ldots, a_p)$ une famille d'éléments de A et $\mathcal{B} := (b_1, \ldots, b_q)$ une famille d'éléments de B. On pose $\mathcal{E} := (a_1, \ldots, a_p, b_1, \ldots, b_q)$.

- Si A et B sont en somme directe et A et B sont libres, alors E est libre.
- Si A + B = E et \mathcal{A} et \mathcal{B} sont respectivement génératrices de A et B, alors \mathcal{E} est génératrice de E.
- Si $A \oplus B = E$ et \mathcal{A} et \mathcal{B} sont respectivement des bases de A et B, alors \mathcal{E} est une base de E. On dit qu'une telle base est $adapt\acute{e}e$ à la décomposition $E = A \oplus B$.

Définition 14.1.11

Soit E un \mathbb{K} -espace vectoriel admettant une base $\mathcal{B} := (e_1, \dots, e_n)$. Pour tout $k \in [1, n]$, on définit $e_k^* \in E^*$ comme étant l'application de E dans \mathbb{K} qui à x associe la k-ième coordonnée de x relativement à la base \mathcal{B} . Les

applications e_k^{\star} sont appelées applications coordonnées de la base \mathcal{B} .

Remarques

 \Rightarrow Si $\mathcal{B} := (e_1, \dots, e_n)$ est une base de E et $x \in E$, alors $(e_1^*(x), \dots, e_n^*(x)) \in \mathbb{K}^n$ est la famille des coordonnées de x relativement à la base \mathcal{B} . Autrement dit

$$\forall x \in E, \quad x = \sum_{k=1}^{n} e_k^{\star}(x)e_k.$$

 \Rightarrow En particulier, si $\mathcal{B} := (e_1, \dots, e_n)$ est la base canonique de \mathbb{K}^n et $x := (x_1, \dots, x_n) \in \mathbb{K}^n$, alors

$$\forall k \in [1, n], \quad e_k^{\star}(x) = x_k.$$

Définition 14.1.12

Soit E un \mathbb{K} -espace vectoriel admettant une base $\mathcal{B} := (e_1, \dots, e_n)$. Alors $(e_1^{\star}, \dots, e_n^{\star})$ est une base de E^{\star} , appelée base duale de \mathcal{B} .

Remarque

 \Rightarrow Dans $E := \mathbb{K}^n$, si $\mathcal{B} := (e_1, \dots, e_n)$ est la base canonique de E et $\varphi \in E^*$, il existe $a_1, \dots, a_n \in \mathbb{K}$ tels que

$$\varphi = a_1 e_1^* + \dots + a_n e_n^*.$$

Pour tout $x = (x_1, \dots, x_n) \in \mathbb{K}^n$, on a donc $\varphi(x) = a_1 x_1 + \dots + a_n x_n$.

14.1.4 Cas des familles infinies

Définition 14.1.13

On dit qu'une famille $(\lambda_i)_{i\in I}$ d'éléments de \mathbb{K} est presque nulle lorsqu'il existe une partie finie $J := \{i_1, \dots, i_n\}$ de I telle que

$$\forall i \in I \setminus J, \quad \lambda_i = 0.$$

On note $\mathbb{K}^{(I)}$ l'ensemble des familles presque nulles d'éléments de \mathbb{K} indexées par I.

Remarques

- \Rightarrow Si I est fini, toute famille d'éléments de \mathbb{K} indexée par I est presque nulle. Cette notion n'a donc d'intérêt que lorsque I est infini.
- \Rightarrow Si $(\lambda_i)_{i\in I}$ est une famille d'éléments de \mathbb{K} , on appelle support de cette famille l'ensemble

$$J := \{ i \in I \mid \lambda_i \neq 0 \}.$$

Les familles presque nulles sont donc les familles à support fini.

Arr Une suite $(\lambda_n)_{n\in\mathbb{N}}$ est presque nulle si et seulement si elle est nulle à partir d'un certain rang. En particulier, la famille des coefficients d'un polynôme est presque nulle.

Définition 14.1.14

Soit $(x_i)_{i\in I}$ est une famille d'éléments de E et $(\lambda_i)_{i\in I}$ une famille presque nulle d'éléments de \mathbb{K} . Soit $J := \{i_1, \ldots, i_n\}$ une partie de I en dehors de laquelle λ_i est nul. On définit alors

$$\sum_{i \in I} \lambda_i x_i \coloneqq \sum_{k=1}^n \lambda_{i_k} x_{i_k}.$$

Remarques

 \Rightarrow Si $P \in \mathbb{K}[X]$ et $(a_k)_{k \in \mathbb{N}}$ est la famille de ses coefficients, alors

$$P = \sum_{k \in \mathbb{N}} a_k X^k.$$

 \Rightarrow Soit $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ deux familles presque nulles d'éléments de \mathbb{K} . On pose

$$x \coloneqq \sum_{i \in I} \lambda_i x_i$$
 et $y \coloneqq \sum_{i \in I} \mu_i x_i$.

Alors, quels que soient λ et $\mu \in \mathbb{K}$, $(\lambda \lambda_i + \mu \mu_i)_{i \in I}$ est une famille presque nulle et

$$\lambda x + \mu y = \sum_{i \in I} (\lambda \lambda_i + \mu \mu_i) x_i.$$

Proposition 14.1.15

Soit $(x_i)_{i\in I}$ une famille d'éléments de E. Alors

Vect
$$\{x_i : i \in I\} = \left\{ \sum_{i \in I} \lambda_i x_i : (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} \right\}.$$

Définition 14.1.16

On dit qu'une famille $(x_i)_{i\in I}$ d'éléments de E est libre lorsque, quelle que soit la famille presque nulle $(\lambda_i)_{i\in I}$

$$\sum_{i \in I} \lambda_i x_i = 0 \quad \Longrightarrow \quad \forall i \in I, \quad \lambda_i = 0.$$

Sinon, on dit qu'elle est liée. Dans ce cas, toute relation du type $\sum_{i \in I} \lambda_i x_i = 0$ où les λ_i ne sont pas tous nuls est appelée relation de liaison.

Remarques

- \Rightarrow On dit qu'une partie A de E est libre lorsque la famille de ses éléments est libre.
- \Rightarrow Une famille $(x_i)_{i \in I}$ d'éléments de E est libre si et seulement si toute sous-famille finie de $(x_i)_{i \in I}$ est libre, c'est-à-dire si et seulement si pour tout $i_1, \ldots, i_n \in I$ deux à deux distincts et $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que

$$\lambda_1 x_{i_1} + \dots + \lambda_n x_{i_n} = 0$$

on a $\lambda_1 = \cdots = \lambda_n = 0$.

 \Rightarrow Une famille $(x_i)_{i\in\mathbb{N}}$ est libre si et seulement si pour tout $n\in\mathbb{N}$ et $\lambda_0,\ldots,\lambda_n\in\mathbb{K}$ tels que

$$\lambda_0 x_0 + \dots + \lambda_n x_n = 0$$

on a $\lambda_0 = \cdots = \lambda_n = 0$.

Exercice 5

 \Rightarrow Soit $(P_n)_{n\in\mathbb{N}}$ une famille d'éléments de $\mathbb{K}[X]$ telle que

$$\forall n \in \mathbb{N}, \quad \deg(P_n) = n.$$

Montrer qu'elle est libre.

Définition 14.1.17

On dit qu'une famille $(x_i)_{i\in I}$ d'éléments de E est génératrice de E lorsque, quel que soit $x\in E$, il existe une famille presque nulle $(\lambda_i)_{i\in I}$ telle que

$$x = \sum_{i \in I} \lambda_i x_i.$$

Autrement dit, la famille $(x_i)_{i \in I}$ est génératrice si et seulement si $\text{Vect}\{x_i : i \in I\} = E$.

Remarques

- \Rightarrow On dit qu'une partie A de E est génératrice lorsque la famille de ses éléments est génératrice.
- \Rightarrow Une famille $(x_i)_{i\in I}$ d'éléments de E est génératrice de E si et seulement si pour tout $x\in E$, il existe $i_1,\ldots,i_n\in I$ et $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tels que

$$x = \sum_{k=1}^{n} \lambda_k x_{i_k}.$$

- \Rightarrow Comme dans le cas des familles finies, si $f, g \in \mathcal{L}(E, F)$ coïncident sur une famille génératrice de E, alors f = g. De même, si $f \in \mathcal{L}(E, F)$ et que chaque élément d'une famille génératrice de F admet un antécédent par f, alors f est surjective.
- \Rightarrow Enfin, l'image par une application linéaire $f \in \mathcal{L}(E,F)$ d'une famille génératrice de E est une famille génératrice de Im f.

Définition 14.1.18

On dit qu'une famille $(e_i)_{i\in I}$ d'éléments de E est une base de E lorsque, quel que soit $x\in E$, il existe une unique famille presque nulle $(\lambda_i)_{i\in I}$ telle que

$$x = \sum_{i \in I} \lambda_i e_i.$$

Autrement dit, la famille $(e_i)_{i \in I}$ est une base de E si et seulement si elle est libre et génératrice.

Remarques

- \Rightarrow Si $(e_i)_{i \in I}$ est une base de E et $x \in E$, la famille $(\lambda_i)_{i \in I}$ telle que $x = \sum_{i \in I} \lambda_i e_i$ est appelée famille des coordonnées de x dans la base $(e_i)_{i \in I}$.
- \Rightarrow Si $(e_i)_{i\in I}$ est une base de E et $(y_i)_{i\in I}$ est une famille d'éléments de F, alors il existe une unique application linéaire f de E dans F telle que

$$\forall i \in I, \quad f(e_i) = y_i.$$

De plus, f est injective si et seulement si $(y_i)_{i\in I}$ est libre, f est surjective si et seulement si $(y_i)_{i\in I}$ est génératrice de F et f est un isomorphisme si et seulement si $(y_i)_{i\in I}$ est une base de F.

□ La proposition sur les sommes de sous-espaces vectoriels et les familles s'énonce de manière similaire avec des familles infinies.

Définition 14.1.19

La famille $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$, appelée base canonique.

Remarque

 \Rightarrow Si $P \in \mathbb{K}[X]$ alors la famille $(a_k)_{k \in \mathbb{N}}$ des coefficients de P est la famille des coordonnées de P dans la base canonique.

14.2 Dimension

14.2.1 Espace vectoriel de dimension finie

Définition 14.2.1

On dit qu'un \mathbb{K} -espace vectoriel E est de dimension finie lorsqu'il admet une famille génératrice finie. Dans le cas contraire, on dit que E est de dimension infinie.

Remarque

 $\Rightarrow \mathbb{K}^n$ et $\mathbb{K}_n[X]$ sont de dimension finie. $\mathbb{K}[X]$ est de dimension infinie.

Proposition 14.2.2: Lemme de Steinitz

Soit E un \mathbb{K} -espace vectoriel de dimension finie et (g_1, \ldots, g_q) une famille génératrice de E.

- Toute famille libre de E possède au plus q éléments.
- Il est possible de compléter toute famille libre (e_1, \ldots, e_p) en une base $(e_1, \ldots, e_p, g_{i_{p+1}}, \ldots, g_{i_n})$ de E où $g_{i_{p+1}}, \ldots, g_{i_n}$ sont des éléments de la famille (g_1, \ldots, g_q) .

Remarque

⇒ Pour montrer qu'un espace vectoriel est de dimension infinie, il suffit donc de trouver des familles libres possédant autant d'éléments que l'on souhaite.

Exercice 6

 \Rightarrow À l'aide d'éléments de la famille $(1, X, X^2)$, compléter la famille $(X^2 - 1, X^2 + 1)$ en une base de $\mathbb{R}_2[X]$.

14.2. DIMENSION 261

Théorème 14.2.3: Théorèmes de la base incomplète et de la base extraite

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- Toute famille libre se complète en une base finie de E.
- Il est possible d'extraire une base finie de toute famille génératrice de E.

Proposition 14.2.4

Tout espace vectoriel de dimension finie admet une base finie.

Remarques

- ⇒ On en déduit qu'un espace vectoriel est de dimension finie si et seulement si il admet une base finie.
- ⇒ On peut montrer que tout espace vectoriel admet une base mais ce théorème est peu utile, hors programme, difficile à montrer et fait appel à l'axiome du choix.

14.2.2 Dimension d'un espace vectoriel

Définition 14.2.5

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Alors toutes les bases de E sont finies et ont le même nombre d'éléments; on appelle dimension de E et on note dim E cet entier.

Remarques

- \Rightarrow Un espace vectoriel E est de dimension nulle si et seulement si $E = \{0\}$. On appelle droite vectorielle tout espace vectoriel de dimension 1, c'est-à-dire tout espace vectoriel E tel qu'il existe $x \in E \setminus \{0\}$ tel que $E = \mathbb{K}x$. On appelle plan vectoriel tout espace vectoriel de dimension 2.
- ightharpoonup Considéré comme un \mathbb{R} -espace vectoriel, \mathbb{C} est de dimension 2. Cependant, \mathbb{C} est de dimension 1 lorsqu'on le considère comme un \mathbb{C} -espace vectoriel. La dimension est donc une notion qui dépend du corps.

Exercices 7

- \Rightarrow Dans \mathbb{R}^3 , donner une base du sous-espace vectoriel d'équation x+y+z=0.
- \Rightarrow Dans $\mathbb{R}_2[X]$, donner une base puis la dimension du sous-espace vectoriel

$$F = \left\{ P \in \mathbb{R}_2[X] \mid \int_0^1 P(t) \, \mathrm{d}t = 0 \right\}.$$

 \Rightarrow Si E est un \mathbb{K} -espace vectoriel de dimension n, montrer qu'il existe $u \in \mathcal{L}(E)$ tel que $u^n = 0$ et $u^{n-1} \neq 0$.

Proposition 14.2.6

- Si $n \in \mathbb{N}$, \mathbb{K}^n est un \mathbb{K} -espace vectoriel de dimension n.
- Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est un \mathbb{K} -espace vectoriel de dimension n+1.
- Si $p, q \in \mathbb{N}$, $\mathcal{M}_{q,p}(\mathbb{K})$ est un \mathbb{K} -espace vectoriel de dimension pq.

Remarques

- \Rightarrow En particulier, $\mathcal{M}_n(\mathbb{K})$ est de dimension n^2 .
- $\Rightarrow \mathcal{T}_n(\mathbb{K})$ et $\mathcal{S}_n(\mathbb{K})$ sont de dimension n(n+1)/2. $\mathcal{A}_n(\mathbb{K})$ est de dimension n(n-1)/2.

Proposition 14.2.7

Soit E un K-espace vectoriel de dimension n et (x_1, \ldots, x_p) une famille de p éléments de E.

- Si (x_1, \ldots, x_p) est libre, alors $p \leq n$.
- Si (x_1, \ldots, x_p) est génératrice, alors $p \ge n$.

Exercice 8

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension n et f un endomorphisme nilpotent de E. En notant m le plus petit entier tel que $f^m = 0$, montrer qu'il existe $x \in E$ tel que la famille $(x, f(x), \dots, f^{m-1}(x))$ est libre. Que peut-on en déduire sur m?

Proposition 14.2.8

Soit E et F deux \mathbb{K} -espaces vectoriels. On suppose que E est de dimension finie. Alors E et F sont isomorphes si et seulement si F est de dimension finie et dim E = dim F. En particulier, si E est de dimension n, E est isomorphe à \mathbb{K}^n .

Exercices 9

 \Rightarrow Soit $a_0, \ldots, a_{p-1} \in \mathbb{K}$ et E l'ensemble des suites (u_n) à valeurs dans \mathbb{K} telles que

$$\forall n \in \mathbb{N}, \quad u_{n+p} = a_{p-1}u_{n+p-1} + \dots + a_0u_n.$$

Montrer que

$$\varphi: \quad E \longrightarrow \mathbb{K}^p$$

$$(u_n) \longmapsto (u_0, \dots, u_{p-1})$$

est un isomorphisme. En déduire que E est de dimension finie et que dim E=p.

 \Rightarrow Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$ et E l'ensemble des solutions de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad ay''(t) + by'(t) + cy(t) = 0.$$

Montrer que si $t_0 \in \mathbb{R}$, alors

$$\varphi: E \longrightarrow \mathbb{R}^2$$

$$y \longmapsto (y(t_0), y'(t_0))$$

est un isomorphisme. En déduire que E est un \mathbb{R} -espace vectoriel de dimension 2.

14.2.3 Existence et unicité en dimension finie

Proposition 14.2.9

Soit E un \mathbb{K} -espace vectoriel de dimension n. Alors

- Toute famille libre de E comportant n éléments est une base de E.
- Toute famille génératrice de E comportant n éléments est une base de E.

Autrement dit, si la famille \mathcal{F} est composée de n éléments,

 \mathcal{F} est libre \iff \mathcal{F} est une base \iff \mathcal{F} est génératrice.

Proposition 14.2.10

Soit $\mathcal{B} := (P_0, \dots, P_n)$ une famille de polynômes de degrés échelonnés, c'est-à-dire telle que

$$\forall k \in [0, n], \quad \deg P_k = k.$$

Alors \mathcal{B} est une base de $\mathbb{K}_n[X]$.

Exercices 10

- \Rightarrow Montrer que l'application de $\mathbb{C}_{n+1}[X]$ dans $\mathbb{C}_n[X]$ qui à P associe P(X+1)-P(X) est surjective.
- \Rightarrow Quels sont les sous-espaces vectoriels de $\mathbb{R}[X]$ stables par dérivation?

Proposition 14.2.11

Soit E et F deux \mathbb{K} -espaces vectoriels de dimension finie et f une application linéaire de E dans F.

- Si f est injective et dim $E = \dim F$, alors f est un isomorphisme.
- Si f est surjective et $\dim E = \dim F$, alors f est un isomorphisme.

Autrement dit, si dim $E = \dim F$

f est injective \iff f est bijective \iff f est surjective.

Remarques

 \Rightarrow Si f est un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie E, pour montrer que c'est un automorphisme, il suffit de montrer qu'il est injectif (ou surjectif).

14.2. DIMENSION 263

 \Rightarrow Ce théorème est faux si E et F ne sont pas de même dimension ou si ils sont de dimension infinie. Par exemple, les applications linéaires

sont injectives mais pas surjectives. De même, les applications linéaires

sont surjectives mais ne sont pas injectives.

Proposition 14.2.12

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Alors

- f est inversible si et seulement si f est inversible à gauche, c'est-à-dire si et seulement si il existe $g \in \mathcal{L}(E)$ tel que $g \circ f = \mathrm{Id}_E$. Si tel est le cas, $g = f^{-1}$ et en particulier $f \circ g = \mathrm{Id}_E$.
- f est inversible si et seulement si f est inversible à droite, c'est-à-dire si et seulement si il existe $g \in \mathcal{L}(E)$ tel que $f \circ g = \mathrm{Id}_E$. Si tel est le cas, $g = f^{-1}$ et en particulier $g \circ f = \mathrm{Id}_E$.

14.2.4 Dimension d'un sous-espace vectoriel

Proposition 14.2.13

Soit E un \mathbb{K} -espace vectoriel de dimension finie et A un sous-espace vectoriel de E. Alors

- A est de dimension finie et dim $A \leq \dim E$.
- A = E si et seulement si dim $A = \dim E$.

Remarque

 \Rightarrow Si E est un \mathbb{K} -espace vectoriel de dimension n et A un sous-espace vectoriel de E de dimension p, toute base $\mathcal{B} := (e_1, \dots, e_n)$ de E telle que (e_1, \dots, e_p) est une base de A est appelée base adaptée au sous-espace vectoriel A.

Exercice 11

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension finie, $u \in GL(E)$ et F un sous-espace vectoriel de E. Montrer que si F est stable par u, alors u(F) = F et F est stable par u^{-1} .

Proposition 14.2.14

Dans un K-espace vectoriel de dimension finie, tout sous-espace vectoriel admet un supplémentaire.

Exercice 12

 \Rightarrow Trouver un supplémentaire dans \mathbb{R}^3 de l'espace vectoriel engendré par (1,1,1).

Remarque

 \Rightarrow Si E est de dimension infinie, on peut montrer que tout sous-espace vectoriel de E admet un supplémentaire, mais ce théorème est peu utile, hors programme, difficile à démontrer et fait appel à l'axiome du choix.

14.2.5 Notion de rang

Définition 14.2.15

Soit f une application linéaire de E dans F. Lorsque $\operatorname{Im} f$ est de dimension finie, on appelle rang de f et on note $\operatorname{rg} f$ la dimension de $\operatorname{Im} f$.

Remarques

- \Rightarrow Si F est de dimension finie, Im f est de dimension finie et rg $f \leq \dim F$. De plus, cette inégalité est une égalité si et seulement si f est surjective.
- \Rightarrow Si E est de dimension finie, Im f est de dimension finie et rg $f \leq \dim E$. De plus, cette inégalité est une égalité si et seulement si f est injective.
- \Rightarrow Si A est un sous-espace vectoriel de E, alors dim $f(A) \leq \dim A$.
- \Rightarrow Si $u \in \mathcal{L}(E, F)$, alors rg u = 0 si et seulement si u = 0.

Exercice 13

 \Rightarrow Calculer le rang de l'application de $\mathbb{K}_n[X]$ dans lui-même qui à P associe P(X+1) - P(X).

Proposition 14.2.16

Soit E et F deux \mathbb{K} -espaces vectoriels de même dimension n et f une application linéaire de E dans F. Alors f est un isomorphisme si et seulement si rg f = n.

Proposition 14.2.17

— Soit E, F, G des K-espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors

$$rg(g \circ f) \leqslant rg(g)$$
 et $rg(g \circ f) \leqslant rg(f)$.

— On ne change pas le rang d'une application linéaire si on la compose à gauche ou à droite par un isomorphisme.

Définition 14.2.18

On appelle rang d'une famille $(x_1, \ldots, x_p) \in E^p$ et on note $\operatorname{rg}(x_1, \ldots, x_p)$ la dimension de $\operatorname{Vect}(x_1, \ldots, x_p)$.

Remarques

- \Rightarrow Si (x_1, \ldots, x_p) est une famille d'éléments d'un \mathbb{K} -espace vectoriel E de dimension n, alors son rang est inférieur ou égal à n et à p.
- \Rightarrow Si $u \in \mathcal{L}(E, F)$, alors $\operatorname{rg}(u(x_1), \dots, u(x_p)) \leqslant \operatorname{rg}(x_1, \dots, x_p)$. De plus, si u est injective, alors

$$rg(u(x_1), ..., u(x_p)) = rg(x_1, ..., x_p).$$

14.3 Calcul de dimension et de rang, hyperplan

14.3.1 Somme de deux sous-espaces vectoriels

Proposition 14.3.1

Soit E un \mathbb{K} -espace vectoriel de dimension finie et A, B deux sous-espaces vectoriels supplémentaires de E. Alors

$$\dim E = \dim A + \dim B$$
.

Proposition 14.3.2: Formule de Grassmann

Soit E un \mathbb{K} -espace vectoriel de dimension finie et A, B deux sous-espaces vectoriels de E. Alors

$$\dim (A + B) = \dim A + \dim B - \dim (A \cap B).$$

Remarque

 \Rightarrow En particulier, dim $(A+B) \leq$ dim A+ dim B et cette inégalité est une égalité si et seulement si A et B sont en somme directe.

Exercices 14

 \Rightarrow Dans \mathbb{R}^3 , montrer que l'intersection de deux plans vectoriels est soit un plan soit une droite.

Proposition 14.3.3

Soit E un \mathbb{K} -espace vectoriel de dimension finie et A et B deux sous-espaces vectoriels de E.

- Si $A \cap B = \{0\}$ et dim $E = \dim A + \dim B$, alors $E = A \oplus B$.
- Si E = A + B et dim $E = \dim A + \dim B$, alors $E = A \oplus B$.

Autrement dit, si dim $E = \dim A + \dim B$

A et B sont en somme directe \iff $E = A \oplus B \iff$ E = A + B.

14.3.2 Produit d'espaces vectoriels, espace $\mathcal{L}(E, F)$

Proposition 14.3.4

Soit E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors $E \times F$ est de dimension finie et

$$\dim (E \times F) = \dim E + \dim F.$$

En particulier, si $n \in \mathbb{N}$, E^n est de dimension finie et

$$\dim (E^n) = n \dim E.$$

Proposition 14.3.5

Soit E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors $\mathcal{L}(E,F)$ est de dimension finie et

$$\dim \mathcal{L}(E, F) = \dim E \cdot \dim F.$$

En particulier, $\mathcal{L}(E)$ est de dimension finie et

$$\dim \mathcal{L}(E) = (\dim E)^2.$$

Proposition 14.3.6

Si E est un \mathbb{K} -espace vectoriel de dimension finie, E^{\star} est de dimension finie et

$$\dim E^{\star} = \dim E.$$

14.3.3 Théorème du rang

Théorème 14.3.7: Théorème du rang

Soit E un \mathbb{K} -espace vectoriel de dimension finie, F un \mathbb{K} -espace vectoriel et f une application linéaire de E dans F. Alors Im f est de dimension finie et

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f.$$

Autrement dit

$$\operatorname{rg} f = \dim E - \dim \operatorname{Ker} f.$$

Remarque

 \Rightarrow Le théorème du rang permet de retrouver le fait que si f est une application linéaire d'un \mathbb{K} -espace vectoriel E de dimension finie dans un \mathbb{K} -espace vectoriel F de même dimension, alors il suffit de montrer que f est injective ou surjective pour montrer que f est un isomorphisme.

Exercices 15

 \Rightarrow Soit $n \in \mathbb{N}$ et

$$\varphi: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \longmapsto P(X+1) - P(X)$$

Déterminer le noyau de φ , son rang, puis son image.

 \Rightarrow Soit E et F deux \mathbb{K} -espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et A un sous-espace vectoriel de E. Montrer que

$$\dim [f(A)] = \dim A - \dim (A \cap \operatorname{Ker} f)$$

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension finie et $g \in \mathcal{L}(E)$. Calculer le rang de

$$\varphi: \quad \mathcal{L}(E) \quad \longrightarrow \quad \mathcal{L}(E)$$

$$f \quad \longmapsto \quad g \circ f$$

 \Rightarrow Soit E, F et G des espaces vectoriels de dimension finie, $f \in \mathcal{L}(F, E)$ et $g \in \mathcal{L}(G, E)$. Montrer qu'il existe une application linéaire h de F dans G telle que $f = g \circ h$ si et seulement si Im $f \subset \operatorname{Im} g$.

14.3.4 Hyperplan

Proposition 14.3.8

Soit E un \mathbb{K} -espace vectoriel de dimension n. Un sous-espace vectoriel H de E est un hyperplan si et seulement si dim H = n - 1.

Exercices 16

- \Rightarrow Dans \mathbb{R}^3 , donner la dimension du sous-espace vectoriel d'équation 3x + 2y z = 0.
- \Rightarrow Dans $\mathbb{R}_n[X]$, donner la dimension du sous-espace vectoriel

$$H := \left\{ P \in \mathbb{R}_n[X] \mid \int_0^1 P(t) \, \mathrm{d}t = 0 \right\}.$$

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension finie et φ_1, φ_2 deux formes linéaires sur E. Calculer le rang de

$$f: E \longrightarrow \mathbb{K}^2$$

 $x \longmapsto (\varphi_1(x), \varphi_2(x))$

en fonction de φ_1 et φ_2 .

⇒ Quelle est la dimension de l'intersection de deux hyperplans?

Proposition 14.3.9

Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} := (e_1, \dots, e_n)$ une base de E.

— Si $a_1, \ldots, a_n \in \mathbb{K}$ ne sont pas tous nuls, l'ensemble H d'équation

$$a_1 e_1^{\star}(x) + \dots + a_n e_n^{\star}(x) = 0$$

est un hyperplan de E.

— Réciproquement, si H est un hyperplan de E, il existe $a_1, \ldots, a_n \in \mathbb{K}$ non tous nuls tels que

$$a_1 e_1^{\star}(x) + \dots + a_n e_n^{\star}(x) = 0$$

est une équation de H. De plus, si $b_1, \ldots, b_n \in \mathbb{K}$, alors

$$b_1 e_1^{\star}(x) + \dots + b_n e_n^{\star}(x) = 0$$

est une équation de H si et seulement si il existe $\alpha \in \mathbb{K}^*$ tel que

$$\forall k \in [1, n], \quad b_k = \alpha a_k.$$

Proposition 14.3.10

Soit E un \mathbb{K} -espace vectoriel de dimension n.

- L'intersection de p hyperplans est de dimension supérieure ou égale à n-p.
- Si $p \in [0, n]$, tout sous-espace vectoriel de dimension n p est l'intersection de p hyperplans.

14.4 Sous-espace affine

Soit E un \mathbb{K} -espace vectoriel. Nous avons vu que les éléments de E sont naturellement des vecteurs. Dans cette partie, nous allons voir les éléments de E comme des points. Afin de marquer cette différence de point de vue, nous utiliserons dans cette partie les lettres a, b, c, d du début de l'alphabet pour désigner les éléments de E que nous considérerons comme des points et les lettres x, y, z de la fin de l'alphabet pour désigner les éléments de E que nous considérerons comme des vecteurs.

Définition 14.4.1

Soit $a, b \in E$. On définit le vecteur $\overrightarrow{ab} \in E$ par

$$\overrightarrow{ab} \coloneqq b - a.$$

Proposition 14.4.2

— Quel que soit $a \in E$, l'application

$$\begin{array}{cccc} \varphi: & E & \longrightarrow & E \\ & b & \longmapsto & \overrightarrow{ab} \end{array}$$

est bijective.

— Quels que soient $a, b, c \in E$

$$\overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{ac}$$
.

Remarque

 \Rightarrow Soit $a \in E$ et $x \in E$. Alors $b \coloneqq a + x$ est l'unique élément de E tel que $\overrightarrow{ab} = x$.

Définition 14.4.3

Soit $x \in E$. On appelle translation de vecteur x l'application

$$\begin{array}{cccc} \tau_x: & E & \longrightarrow & E \\ & a & \longmapsto & a+x. \end{array}$$

Remarques

- \Rightarrow Si $x, y \in E$, alors $\tau_x \circ \tau_y = \tau_{x+y}$.
- \Rightarrow Si $x \in E$, l'application τ_x est linéaire si et seulement si x = 0. Dans ce cas, $\tau_x = \text{Id}$.

Définition 14.4.4

On dit qu'une partie \mathcal{F} de E est un sous-espace affine de E lorsqu'il existe $a \in E$ et un sous-espace vectoriel F de E tel que

$$\mathcal{F} = \{a + x : x \in F\}.$$

On écrit alors $\mathcal{F} = a + F$. De plus $a \in \mathcal{F}$ et

$$F = \left\{ \overrightarrow{bc} : b, c \in \mathcal{F} \right\}.$$

On dit que F est la direction de \mathcal{F} .

Remarques

- \Rightarrow En particulier, un sous-espace affine est non vide.
- \Rightarrow Si \mathcal{F} est un sous-espace affine de direction F, alors, quel que soit $a \in \mathcal{F}$, $\mathcal{F} = a + F$.
- \Rightarrow Un sous-espace vectoriel est un sous-espace affine. Réciproquement, un sous-espace affine est un sous-espace vectoriel si et seulement si il contient 0.

Exercices 17

 \Rightarrow Déterminer l'ensemble des solutions dans \mathbb{R}^3 de

$$\begin{cases} x + 2y + 3z = 1\\ 2x + 3y + 4z = 1\\ 3x + 4y + 5z = 1 \end{cases}$$

et l'exprimer comme un sous-espace affine de \mathbb{R}^3 .

 \Rightarrow Résoudre sur $\mathbb R$ l'équation différentielle suivante et exprimer son ensemble de solutions comme un sous-espace affine de $\mathcal D(\mathbb R,\mathbb R)$.

$$y' + 2y = x^2 - 2x + 3.$$

Proposition 14.4.5

Soit $u \in \mathcal{L}(E, F)$ et $b \in F$. Alors l'ensemble

$$\mathcal{S} := \{ a \in E \mid u(a) = b \}$$

de solutions de l'équation u(a) = b est

- Soit vide.
- Soit un sous-espace affine de E de direction Ker u.

Remarque

 \Rightarrow En particulier, si $a_0 \in E$ est une solution de l'équation u(a) = b, l'ensemble des solutions de cette équation est

$$a_0 + \text{Ker } u = \{a_0 + x : x \in \text{Ker } u\}.$$

Proposition 14.4.6

Soit $(\mathcal{F}_i)_{i\in I}$ une famille de sous-espaces affines de E et $(F_i)_{i\in I}$ la famille de leurs directions respectives. On pose

$$\mathcal{F} := \bigcap_{i \in I} \mathcal{F}_i$$
 et $F := \bigcap_{i \in I} F_i$.

Alors

- Soit \mathcal{F} est vide. Dans ce cas, ce n'est pas un sous-espace affine.
- Soit \mathcal{F} est non vide. Dans ce cas, c'est un sous-espace affine de E de direction F.

14.5. EXERCICES 269

14.5 Exercices

Famille libre, famille génératrice, base

Famille libre

Exercice 1 : Familles de fonctions

1. Soit $f_1, f_2, f_3, f_4 \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ les fonctions définies par

$$\forall x \in \mathbb{R}, \quad f_1(x) \coloneqq \sin x, \quad f_2(x) \coloneqq \cos x, \quad f_3(x) \coloneqq x \sin x, \quad f_4(x) \coloneqq x \cos x.$$

Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

2. Soit $f_1, f_2, f_3 \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ les fonctions définies par

$$\forall x \in \mathbb{R}, \quad f_1(x) := e^x, \quad f_2(x) := e^{2x}, \quad f_3(x) := e^{x^2}.$$

Montrer que la famille (f_1, f_2, f_3) est libre.

Exercice 2: Familles de fonctions

Montrer que les familles de fonctions suivantes sont libres.

1. La famille de fonctions (f_0, \ldots, f_n) définies sur $\mathbb R$ par

$$\forall k \in [0, n], \quad \forall x \in \mathbb{R}, \quad f_k(x) \coloneqq x^k.$$

2. La famille (f_1,\ldots,f_n) où $\alpha_1,\ldots,\alpha_n\in\mathbb{R}_+$ sont deux à deux distincts et

$$\forall k \in [1, n], \quad \forall x \in \mathbb{R}, \quad f_k(x) := \cos(\alpha_k x).$$

3. La famille de fonctions (f_0, \ldots, f_n) définies par

$$\forall k \in [0, n], \quad \forall x \in \mathbb{R}, \quad f_k(x) := \sin^k x.$$

4. La famille (f_1, \ldots, f_n) où $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ sont deux à deux distincts et

$$\forall k \in [1, n], \quad \forall x \in \mathbb{R}, \quad f_k(x) := e^{i\alpha_k x}.$$

5. La famille (f_1, \ldots, f_n) où $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ sont deux à deux distincts et

$$\forall k \in [1, n], \quad \forall x \in \mathbb{R}, \quad f_k(x) := |x - \alpha_k|.$$

Exercice 3: Modification d'une famille libre

Soit E un \mathbb{K} -espace vectoriel et (x_1, \dots, x_n) une famille libre de n vecteurs. On se donne n scalaires $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ et on pose

$$y \coloneqq \sum_{k=1}^{n} \lambda_k x_k.$$

Pour tout $i \in [1, n]$, on pose $y_i := x_i + y$ et l'on souhaite montrer que (y_1, \dots, y_n) est libre si et seulement si

$$\sum_{k=1}^{n} \lambda_k \neq -1.$$

1. Soit $\mu_1, \ldots, \mu_n \in \mathbb{K}$. Montrer que

$$\sum_{i=1}^{n} \mu_i y_i = \sum_{i=1}^{n} \left(\mu_i + \lambda_i \sum_{k=1}^{n} \mu_k \right) x_i.$$

- 2. Dans le cas où $\sum_{k=1}^{n} \lambda_k = -1$, déterminer une relation de liaison pour la famille (y_1, \dots, y_n) .
- 3. Montrer que si (y_1, \ldots, y_n) est libre, alors $\sum_{k=1}^n \lambda_k \neq -1$, puis conclure.

Famille Génératrice

Exercice 4: Exercice

Soit E un \mathbb{K} -espace vectoriel et $u_1, \ldots, u_n \in E$. Pour tout $k \in [1, n]$, on pose

$$v_k \coloneqq u_1 + \dots + u_k$$
.

- 1. Montrer que la famille (u_1, \ldots, u_n) est libre si et seulement si la famille (v_1, \ldots, v_n) l'est.
- 2. Montrer que la famille (u_1, \ldots, u_n) engendre E si et seulement si la famille (v_1, \ldots, v_n) engendre E.

Base

Cas des familles infinies

Exercice 5: Polynômes

Pour tout $n \in \mathbb{N}$, on pose

$$P_n := \prod_{k=0}^{n-1} (X - k).$$

Montrer que la famille $(P_n)_{n\in\mathbb{N}}$ est libre.

Exercice 6 : Famille des fonction polynôme-exponentielle

Pour tout entier naturel n et tout nombre complexe α , on définit la fonction $f_{n,\alpha}$ sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f_{n,\alpha}(x) := x^n e^{\alpha x}.$$

Le but de cet exercice est de montrer que la famille $(f_{n,\alpha})_{(n,\alpha)\in\mathbb{N}\times\mathbb{C}}$ est libre.

- 1. Montrer que la famille $(f_{n,0})_{n\in\mathbb{N}}$ est libre.
- 2. Pour $\alpha \in \mathbb{C}^*$, résoudre l'équation différentielle : $\forall x \in \mathbb{R}$, $y'(x) + \alpha y(x) = 0$.
- 3. Montrer par récurrence sur un majorant de $\deg P_1 + \cdots + \deg P_n$, que si $\alpha_1, \ldots, \alpha_n$ sont n complexes deux à deux distincts et si

$$\forall x \in \mathbb{R}, \quad P_1(x)e^{\alpha_1 x} + \ldots + P_n(x)e^{\alpha_n x} = 0$$

alors
$$P_1 = P_2 = \ldots = P_n = 0$$
.

4. Conclure.

Exercice $7:\mathbb{R}$ comme \mathbb{Q} -ev

On considère \mathbb{R} comme \mathbb{Q} -espace vectoriel et on note \mathcal{P} l'ensemble des nombres premiers. Montrer que la famille $(\ln p)_{p\in\mathcal{P}}$ est libre.

Dimension

Espace vectoriel de dimension finie

Exercice 8 : Centre de $\mathcal{L}(E)$

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Le but de cet exercice est de montrer que le centre de $\mathcal{L}(E)$, c'està-dire l'ensemble des endomorphismes qui commutent avec tous les endomorphismes est l'ensemble des homothéties.

- 1. Montrer que les homothéties sont dans le centre de $\mathcal{L}(E)$.
- 2. Soit u un endomorphisme de E tel que

$$\forall x \in E, \quad \exists \lambda \in \mathbb{K}, \quad u(x) = \lambda x.$$

Montrer que u est une homothétie.

- 3. Soit u un endomorphisme de E qui commute avec toutes les applications linéaires.
 - (a) Soit $x \in E$. En considérant une symétrie par rapport à $\mathbb{K}x$, montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.
 - (b) Conclure.

14.5. EXERCICES 271

Dimension d'un espace vectoriel

Existence et unicité en dimension finie

Exercice 9: Changement de base

Dans \mathbb{R}^3 , on considère les trois vecteurs u := (1, 1, -1), v := (-1, 1, 1) et w := (1, -1, 1).

- 1. Montrer que (u, v, w) forme une base de \mathbb{R}^3 .
- 2. Donner les coordonnées de (2, 1, 3) dans cette base.

Exercice 10: Base

1. Soit $\alpha \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur α pour que la famille

$$((2,0,\alpha),(2,\alpha,2),(\alpha,0,2))$$

soit une base de \mathbb{R}^3 .

2. La famille

$$((1,0,2,1),(0,1,1,2),(2,0,1,1),(2,1,0,1))$$

est-elle une base de \mathbb{R}^4 ?

Exercice 11: Le Laplacien discret

Soit φ l'application de $\mathbb{C}[X]$ dans $\mathbb{C}[X]$ définie par

$$\forall P \in \mathbb{C}[X], \quad \varphi(P) := P(X+1) + P(X-1) - 2P(X).$$

- 1. Montrer que φ est linéaire.
- 2. Calculer $\deg [\varphi(P)]$ en fonction de $\deg P$.
- 3. Quel est le noyau de φ ?
- 4. Montrer que φ est surjective.

Exercice 12 : Formes linéaires et trace sur $\mathcal{M}_n(\mathbb{K})$

1. On définit l'application ψ de $\mathcal{M}_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})^*$, qui à la matrice $A \in \mathcal{M}_n(\mathbb{K})$ associe l'application φ_A de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} définie par

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad \varphi_A(X) \coloneqq \operatorname{tr}(AX).$$

Montrer que ψ est bien à valeurs dans $\mathcal{M}_n\left(\mathbb{K}\right)^{\star}$ puis qu'elle est linéaire.

2. Montrer que ψ est un isomorphisme. En déduire que si φ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$, il existe une et une seule matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad \varphi(X) = \operatorname{tr}(AX).$$

3. Montrer que si φ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$, alors

$$\forall X, Y \in \mathcal{M}_n(\mathbb{K}), \quad \varphi(XY) = \varphi(YX)$$

si et seulement si il existe $\lambda \in \mathbb{K}$ tel que

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad \varphi(X) = \lambda \operatorname{tr}(X).$$

Exercice 13 : Matrice triangulaire supérieure par blocs

Soit $n \in \mathbb{N}$, $p_1, p_2 \in \mathbb{N}$ tels que $n = p_1 + p_2$ et $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure par blocs

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{pmatrix} \quad \text{où } A_{i,j} \in \mathcal{M}_{p_i,p_j} \left(\mathbb{K} \right).$$

Montrer que A est inversible si et seulement si $A_{1,1}$ et $A_{2,2}$ le sont. Si tel est le cas, montrer que

$$A^{-1} = \begin{pmatrix} A_{1,1}^{-1} & \star \\ 0 & A_{2,2}^{-1} \end{pmatrix}$$

Dimension d'un sous-espace vectoriel

Notion de rang

Exercice 14: Rang et composition

Montrer qu'on ne change pas le rang d'une application linéaire en la composant par la droite par une application surjective ou par la gauche par une application injective.

Calcul de dimension et de rang, hyperplan

Somme de deux sous-espaces vectoriels

Exercice 15: Dimension

Soit A et B deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^5 . Montrer que $A \cap B \neq \{0\}$.

Exercice 16 : Supplémentaire

Soit $\lambda \in \mathbb{R}$. À quelle condition nécessaire et suffisante sur λ les sous-espaces vectoriels

$$\operatorname{Vect}((\lambda,\lambda,1))\quad \text{et}\quad \operatorname{Vect}((1,\lambda,1),(2,1,1))$$

sont-ils supplémentaires dans \mathbb{R}^3 ?

Exercice 17: Supplémentaire

Soit $x_1, \ldots, x_n \in \mathbb{R}$ deux à deux distincts. On pose

$$F := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall k \in [1, n], \quad f(x_k) = 0 \}.$$

Montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$ et en déterminer un supplémentaire dans $\mathcal{F}(\mathbb{R},\mathbb{R})$. On pourra utiliser les polynômes de Lagrange.

Exercice 18 : Supplémentaire commun

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, et A et B deux sous-espaces vectoriels de E de même dimension r. Le but de cet exercice est de montrer que A et B ont un supplémentaire commun dans E.

- 1. Montrer le résultat lorsque n = r + 1.
- 2. Plus généralement, montrer que si le résultat est vrai si dim $A = \dim B = r + 1$, alors il est vrai si dim $A = \dim B = r$.
- 3. Conclure.

Produit de deux sous-espaces vectoriels, $\mathcal{L}(E, F)$

Théorème du rang

Exercice 19: Noyau et image en somme directe

Soit E un \mathbb{K} -espace vectoriel de dimension finie et f un endomorphisme de E. Montrer que

$$E = \operatorname{Im} f \oplus \operatorname{Ker} f \iff \operatorname{Im} f = \operatorname{Im} f^2.$$

Cette équivalence est-elle vraie en dimension infinie?

Exercice 20: Rang d'une somme d'applications linéaires

Soit E et F deux \mathbb{K} -espace vectoriel de dimension finie, f et g deux applications linéaires de E dans F.

1. Montrer que

$$|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg}(f+g) \leq \operatorname{rg} f + \operatorname{rg} g.$$

2. On suppose dans cette question que E = F. Montrer que si $f \circ g = 0$ et f + g est inversible, alors $\operatorname{rg} f + \operatorname{rg} g = \dim E$.

14.5. EXERCICES 273

Exercice 21: Dimension du noyau et composition

Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimensions finies, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. En considérant la restriction de f à Ker $g \circ f$, montrer que

$$\dim (\operatorname{Ker} g \circ f) \leq \dim (\operatorname{Ker} g) + \dim (\operatorname{Ker} f)$$
.

Exercice 22 : Endomorphisme f tel que $f^2=0$

Soit E un K-espace vectoriel de dimension 4 et $f \in \mathcal{L}(E)$ tel que $f^2 = 0$. Montrer que rg $f \leq 2$.

Exercice 23: Factorisation

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer qu'il existe $h \in \mathcal{L}(E)$ tel que $f = h \circ g$ si et seulement si $\operatorname{Ker} g \subset \operatorname{Ker} f$.

Exercice 24 : Noyaux et images itérés

Soit E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On définit, pour tout entier $n \in \mathbb{N}$

$$K_n := \operatorname{Ker} f^n \quad \text{et} \quad I_n := \operatorname{Im} f^n.$$

- 1. (a) Montrer que la suite (K_n) est croissante au sens de l'inclusion et que la suite (I_n) est décroissante au sens de l'inclusion.
 - (b) i. Montrer qu'il existe $n \in \mathbb{N}$ tel que $K_n = K_{n+1}$. Dans la suite, on note n_0 le plus petit entier tel que $K_{n_0} = K_{n_0+1}$.
 - ii. Montrer que

$$\forall n \geqslant n_0, \quad K_n = K_{n_0}.$$

- (c) i. Montrer qu'il existe $n \in \mathbb{N}$ tel que $I_n = I_{n+1}$. Dans la suite, on note n_1 le plus petit entier tel que $I_{n_1} = I_{n_1+1}$.
 - ii. Montrer que

$$\forall n \geqslant n_1, \quad I_n = I_{n_1}.$$

- (d) Montrer que $n_0 = n_1$. Dans la suite, on note r cette valeur commune.
- 2. (a) Montrer que $I_r \oplus K_r = E$.
 - (b) Montrer que I_r et K_r sont stables par f, puis que la restriction de f à K_r est nilpotente et que la restriction de f à I_r est un automorphisme.
- 3. (a) Montrer que la suite de terme général dim I_n dim I_{n+1} est décroissante. On pourra pour cela considérer l'application φ de I_n dans I_{n+1} qui à x associe f(x).
 - (b) Énoncer et démontrer un résultat semblable pour la suite (K_n) .

Hyperplan

Exercice 25: Intersection d'hyperplans

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 2$ et H_1 et H_2 deux hyperplans distincts de E. Calculer $\dim(H_1 \cap H_2)$.

Exercice 26: Bidual

Soit E un \mathbb{K} -espace vectoriel de dimension finie. On note $E^{\star\star}$ le bidual de E, c'est-à-dire le dual du dual de E.

- 1. Montrer que E et $E^{\star\star}$ sont isomorphes.
- 2. Soit φ l'application de E dans $E^{\star\star}$ qui à x associe l'application φ_x de E^{\star} dans \mathbb{K} qui à ψ associe $\psi(x)$.
 - (a) Montrer que pour tout $x \in E$, φ_x est une forme linéaire sur E^* .
 - (b) Montrer que φ est un isomorphisme.

Exercice 27 : Hyperplan de $\mathbb{K}[X]$

Soit $\alpha \in \mathbb{K}$. Montrer que

$$H \coloneqq \{P \in \mathbb{K}[X] \mid P(\alpha) = 0\}$$

est un hyperplan et en déterminer une base.

Chapitre 15

Analyse asymptotique

« Sans technique, un don n'est rien qu'une sale manie. »

— Georges Brassens (1921–1981)

« Deux intellectuels assis vont moins loin qu'une brute qui marche. »

— Michel Audiard (1920–1985)

15.1 Comparaison de suites
15.1.1 Suites équivalentes
15.1.2 Suite négligeable devant une autre
15.1.3 Suite dominée par une autre $\dots \dots \dots$
15.2 Comparaison de fonctions
15.2.1 Fonctions équivalentes
15.2.2 Fonction négligeable devant une autre $\dots \dots \dots$
15.2.3 Fonction dominée par une autre $\dots \dots \dots$
15.3 Développement limité
15.3.1 Définition, propriétés élémentaires
15.3.2 Développement limité et propriétés locales
15.3.3 Intégration et existence d'un développement limité
15.3.4 Développements limités usuels
15.3.5 Opérations usuelles sur les développements limités
15.3.6 Réduction d'ordre
15.4 Développement asymptotique
15.4.1 Développement limité généralisé en $a \in \mathbb{R}$
15.4.2 Développement asymptotique au voisinage de $a \in \mathbb{R}$
15.4.3 Développement asymptotique au voisinage de $\pm \infty$
15.4.4 Développement asymptotique de suites
15.5 Exercices

15.1 Comparaison de suites

Dans ce chapitre, les suites sont à valeurs dans $\mathbb R$ ou $\mathbb C.$

15.1.1 Suites équivalentes

Définition 15.1.1

Soit (u_n) et (v_n) deux suites. On dit que (u_n) est équivalente à (v_n) lorsqu'il existe une suite (α_n) convergeant vers 1 et un rang $N \in \mathbb{N}$ tels que

$$\forall n \geqslant N, \quad u_n = \alpha_n v_n.$$

Si tel est le cas, on note

$$u_n \underset{n \to +\infty}{\sim} v_n$$

La propriété « est équivalente à » est asymptotique.

Remarques

- \Rightarrow Si (u_n) est équivalente à (v_n) et que cette dernière admet une limite dans $\overline{\mathbb{R}}$, alors (u_n) admet la même limite. Cependant il est possible que deux suites admettent la même limite sans être équivalentes.
- \Rightarrow Il est possible qu'une suite (u_n) soit équivalente à une suite (v_n) sans qu'il n'existe de suite (α_n) convergeant vers 1 telle que : $\forall n \in \mathbb{N}, \quad u_n = \alpha_n v_n$.

Proposition 15.1.2

Soit (u_n) , (v_n) et (w_n) des suites.

— La relation d'équivalence est réflexive.

$$u_n \underset{n \to +\infty}{\sim} u_n.$$

— La relation d'équivalence est transitive.

$$\left[u_n \underset{n \to +\infty}{\sim} v_n \text{ et } v_n \underset{n \to +\infty}{\sim} w_n\right] \implies u_n \underset{n \to +\infty}{\sim} w_n.$$

— La relation d'équivalence est symétrique.

$$u_n \underset{n \to +\infty}{\sim} v_n \implies v_n \underset{n \to +\infty}{\sim} u_n.$$

Autrement dit, la relation « est équivalente à » est une relation d'équivalence sur l'ensemble des suites.

Remarque

 \Rightarrow La relation étant symétrique, on dira désormais « les suites (u_n) et (v_n) sont équivalentes » plutôt que « la suite (u_n) est équivalente à la suite (v_n) ».

Proposition 15.1.3

Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1.$$

Remarques

 \Rightarrow Si $a_0, a_1, \ldots, a_p \in \mathbb{C}$ avec $a_p \neq 0$, alors $a_p n^p + \cdots + a_1 n + a_0 \underset{n \to +\infty}{\sim} a_p n^p$. Si de plus $b_0, b_1, \ldots, b_q \in \mathbb{C}$ sont tels que $b_q \neq 0$, alors

$$\frac{a_p n^p + \dots + a_1 n + a_0}{b_q n^q + \dots + b_1 n + b_0} \underset{n \to +\infty}{\sim} \frac{a_p}{b_q} \cdot n^{p-q}$$

 \Rightarrow Contrairement à ce qu'on pourrait être tenté de dire, on n'a pas toujours $u_{n+1} \underset{n \to +\infty}{\sim} u_n$.

Exercices 1

 \Rightarrow Donner des équivalents simples des suites de terme général

$$\frac{1}{n} - \frac{1}{n+1}, \qquad \sum_{k=0}^n a^k \quad \text{où } a \in \mathbb{R}_+^* \setminus \{1\}, \qquad \sum_{k=1}^n k!.$$

 \Rightarrow On rappelle que la suite (H_n) définie par

$$\forall n \in \mathbb{N}, \quad H_n := \sum_{k=1}^n \frac{1}{k}$$

diverge vers $+\infty$. Soit (u_n) une suite réelle telle que $u_{n+1} - u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$. Montrer que $u_n \xrightarrow[n \to +\infty]{} +\infty$.

Proposition 15.1.4

Soit (u_n) une suite et $l \in \mathbb{C}^*$. Alors

$$u_n \underset{n \to +\infty}{\sim} l \iff u_n \xrightarrow[n \to +\infty]{} l.$$

De plus, u_n est équivalent à 0 lorsque n tend vers $+\infty$ si et seulement si la suite (u_n) est nulle à partir d'un certain rang.

Remarque

 \Rightarrow Si l = 0, dire que u_n est équivalent à 0 signifie que la suite (u_n) est nulle à partir d'un certain rang. Si vous obtenez un tel résultat, c'est sûrement que vous avez fait une erreur.

Proposition 15.1.5

Soit (u_n) et (v_n) deux suites telles que

$$u_n \underset{n \to +\infty}{\sim} v_n$$
.

- Alors, il existe un rang à partir duquel (u_n) et (v_n) s'annulent simultanément.
- Si de plus elles sont réelles, il existe un rang à partir duquel elles sont de même signe.

Proposition 15.1.6

— Soit (a_n) , (b_n) , (c_n) , (d_n) des suites telles que

$$a_n \underset{n \to +\infty}{\sim} b_n$$
 et $c_n \underset{n \to +\infty}{\sim} d_n$.

Alors

$$a_n c_n \underset{n \to +\infty}{\sim} b_n d_n$$
.

Si de plus (c_n) et (d_n) ne s'annulent pas à partir d'un certain rang

$$\frac{a_n}{c_n} \underset{n \to +\infty}{\sim} \frac{b_n}{d_n}.$$

— Soit (u_n) et (v_n) deux suites et $\alpha \in \mathbb{R}$. Si u_n^{α} et v_n^{α} ont un sens à partir d'un certain rang, alors

$$u_n \underset{n \to +\infty}{\sim} v_n \implies u_n^{\alpha} \underset{n \to +\infty}{\sim} v_n^{\alpha}.$$

Remarques

- \Rightarrow Les autres opérations usuelles sur les équivalents conduisent le plus souvent à des résultats faux. En particulier, il est interdit de sommer, d'élever à une puissance dépendant de n ou de composer des équivalents.
- \Rightarrow Comparaison série-intégrale. Soit f une fonction monotone de \mathbb{R}_+^* dans \mathbb{R} , telle que

$$\int_{1}^{x} f(t) dt \xrightarrow[x \to +\infty]{} +\infty$$

On considère la suite (u_n) définie par

$$\forall n \in \mathbb{N}, \quad u_n := \sum_{k=1}^n f(k).$$

Alors, un encadrement de f(k) par

$$\int_{k-1}^{k} f(t) dt \text{ et } \int_{k}^{k+1} f(t) dt$$

permet de trouver simplement un équivalent de u_n . Cette technique essentielle est appelée technique de comparaison série-intégrale.

Exercices 2

⇒ Donner des équivalents simples de

$$\sqrt{n^4 + 2n^2 - 1}$$
 et $\sqrt{n+1} - \sqrt{n-1}$.

⇒ Montrer que

$$\sum_{k=1}^{n} \ln(k) \underset{n \to +\infty}{\sim} n \ln n.$$

Proposition 15.1.7: STIRLING

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

15.1.2 Suite négligeable devant une autre

Définition 15.1.8

Soit (u_n) et (v_n) deux suites. On dit que (u_n) est négligeable devant (v_n) lorsqu'il existe une suite (ε_n) convergent vers 0 et un rang $N \in \mathbb{N}$ tels que

$$\forall n \geqslant N, \quad u_n = \varepsilon_n v_n.$$

Si tel est le cas, on note

$$u_n = \underset{n \to +\infty}{\text{o}} (v_n)$$
.

La propriété « est négligeable devant » est asymptotique.

Remarque

 \Rightarrow Si (u_n) est négligeable devant (v_n) , il existe un rang à partir duquel u_n est nul dès que v_n est nul.

Proposition 15.1.9

Soit (u_n) , (v_n) et (w_n) trois suites. Alors

$$\left[u_n = \underset{n \to +\infty}{\text{o}}(v_n) \quad \text{et} \quad v_n = \underset{n \to +\infty}{\text{o}}(w_n)\right] \quad \Longrightarrow \quad u_n = \underset{n \to +\infty}{\text{o}}(w_n).$$

Proposition 15.1.10

Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors

$$u_n = \underset{n \to +\infty}{\text{o}} (v_n) \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0.$$

Exercice 3

 \Rightarrow Soit (u_n) une suite réelle divergeant vers $+\infty$. Démontrer qu'il existe une suite (v_n) , négligeable devant (u_n) qui diverge aussi vers $+\infty$.

Proposition 15.1.11

— Soit $a, b \in \mathbb{R}$. Alors

$$n^a = \underset{n \to +\infty}{\text{o}} (n^b) \iff a < b.$$

Autrement dit

$$\frac{1}{n^a} = \mathop{\rm o}_{n \to +\infty} \left(\frac{1}{n^b} \right) \quad \Longleftrightarrow \quad a > b.$$

— Soit $(\omega_a, \omega_b) \in \mathbb{C} \times \mathbb{C}^*$. Alors

$$\omega_a^n = \underset{n \to +\infty}{\text{o}} (\omega_b^n) \iff |\omega_a| < |\omega_b|.$$

— Soit $\alpha, \beta > 0$ et $\omega \in \mathbb{C}$ tel que $|\omega| > 1$. Alors

$$\left(\ln n\right)^{\alpha} = \underset{n \to +\infty}{\text{o}} \left(n^{\beta}\right), \qquad n^{\alpha} = \underset{n \to +\infty}{\text{o}} \left(\omega^{n}\right), \qquad n^{\alpha} = \underset{n \to +\infty}{\text{o}} \left(\mathrm{e}^{\beta n}\right),$$

$$\omega^{n} = \underset{n \to +\infty}{\text{o}} \left(n!\right), \qquad \mathrm{e}^{\beta n} = \underset{n \to +\infty}{\text{o}} \left(n!\right).$$

Exercice 4

⇒ Comparer les suites suivantes, données par leur terme général.

$$\frac{n^2}{\ln n}$$
, e^n , $n\sqrt{n}$, $n\ln^2 n$, n^n .

Proposition 15.1.12

Soit (u_n) une suite. Alors

$$u_n = \underset{n \to +\infty}{\text{o}} (1) \iff u_n \xrightarrow[n \to +\infty]{} 0.$$

Proposition 15.1.13

— Soit (u_n) une suite. Alors

$$\forall \lambda, \mu \in \mathbb{C}, \quad \lambda \underset{n \to +\infty}{\text{o}} (u_n) + \mu \underset{n \to +\infty}{\text{o}} (u_n) = \underset{n \to +\infty}{\text{o}} (u_n).$$

— Soit (u_n) et (v_n) deux suites. Alors

$$u_n \underset{n \to +\infty}{\text{o}} (v_n) = \underset{n \to +\infty}{\text{o}} (u_n v_n).$$

— Soit (u_n) et (v_n) deux suites. Alors

$$\underset{n \to +\infty}{\operatorname{o}} (u_n) \underset{n \to +\infty}{\operatorname{o}} (v_n) = \underset{n \to +\infty}{\operatorname{o}} (u_n v_n).$$

Remarque

 \Rightarrow La proposition précédente met en valeur le fait que la notation $\underset{n\to+\infty}{\text{o}}(u_n)$ doit être manipulée avec précaution. En effet

$$\underset{n\to+\infty}{\mathrm{o}}(u_n) + \underset{n\to+\infty}{\mathrm{o}}(u_n) = \underset{n\to+\infty}{\mathrm{o}}(u_n).$$

Cependant, on ne peut pas en déduire que

$$\underset{n\to+\infty}{\text{o}}(u_n)=0.$$

Proposition 15.1.14

- Soit (u_n) et (v_n) deux suites équivalentes. Alors, une suite est négligeable devant (u_n) si et seulement si elle est négligeable devant (v_n) .
- Soit (u_n) une suite et $\lambda \in \mathbb{C}^*$. Alors, une suite est négligeable devant (u_n) si et seulement si elle est négligeable devant (λu_n) .

Proposition 15.1.15

Soit (u_n) et (v_n) deux suites. Alors

$$u_n \underset{n \to +\infty}{\sim} v_n \iff u_n = v_n + \underset{n \to +\infty}{\text{o}} (v_n).$$

15.1.3 Suite dominée par une autre

Définition 15.1.16

Soit (u_n) et (v_n) deux suites. On dit que (u_n) est dominée par (v_n) lorsqu'il existe une suite bornée (B_n) et un rang $N \in \mathbb{N}$ tels que

$$\forall n \geqslant N, \quad u_n = B_n v_n.$$

Si tel est le cas, on note

$$u_n = \mathop{\rm O}_{n \to +\infty} \left(v_n \right).$$

La propriété « est dominée par » est asymptotique.

Remarque

 \Rightarrow Soit (u_n) et (v_n) deux suites. Si $u_n = \underset{n \to +\infty}{\text{o}} (v_n)$ ou s'il existe $\lambda \in \mathbb{C}$ tel que $u_n \underset{n \to +\infty}{\sim} \lambda v_n$, alors

$$u_n = \mathop{\rm O}_{n \to +\infty} (v_n)$$
.

En particulier

$$\sqrt{n} = \underset{n \to +\infty}{\mathcal{O}}(n)$$
 et $2n^2 + 3n - 1 = \underset{n \to +\infty}{\mathcal{O}}(n^2)$.

— Soit (u_n) une suite. Alors

$$u_n = \mathop{\rm O}_{n \to +\infty} (u_n)$$
.

— Soit (u_n) , (v_n) et (w_n) trois suites. Alors

$$\left[u_n = \underset{n \to +\infty}{\mathcal{O}}(v_n) \quad \text{et} \quad v_n = \underset{n \to +\infty}{\mathcal{O}}(w_n)\right] \quad \Longrightarrow \quad u_n = \underset{n \to +\infty}{\mathcal{O}}(w_n).$$

De plus si dans l'hypothèse, un des O est un o, alors (u_n) est négligeable devant (w_n) .

Soit deux suites (u_n) et (v_n) . Alors

$$u_n = \underset{n \to +\infty}{\text{o}} (v_n) \implies u_n = \underset{n \to +\infty}{\text{O}} (v_n).$$

Soit (u_n) et (v_n) deux suites. On suppose que (v_n) ne s'annule pas à partir d'un certain rang. Alors

$$u_n = \underset{n \to +\infty}{\mathcal{O}}(v_n) \iff \left(\frac{u_n}{v_n}\right) \text{ est bornée.}$$

Exercice 5

 \Rightarrow Parmi les suites de terme général suivantes, lesquelles sont des $\underset{n\to+\infty}{\text{O}}(n)$?

$$n\sin n$$
, $n\ln n$, 10^9n .

15.2Comparaison de fonctions

15.2.1Fonctions équivalentes

Définition 15.2.1

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On dit que f(x) est équivalent à g(x) en alorsqu'il existe un voisinage $\mathcal V$ de a et une fonction α définie sur $\mathcal D\cap\mathcal V$ telle que

$$-\alpha(x) \xrightarrow[x \to a]{}$$

$$f(x) \underset{x \to a}{\sim} g(x).$$

La propriété « est équivalent à » est locale en a.

Remarque

 \Rightarrow Si f(x) est équivalent à g(x) en $a \in \mathbb{R}$ et que g(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers a, alors f(x) admet la même limite. Cependant il est possible que deux fonctions admettent la même limite sans être équivalentes.

Soit $f, g, h : \mathcal{D} \to \mathbb{R}$ des fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$.

— La relation d'équivalence est réflexive.

$$f(x) \underset{x \to a}{\sim} f(x).$$

— La relation d'équivalence est transitive.

$$\left[f(x) \underset{x \to a}{\sim} g(x) \text{ et } g(x) \underset{x \to a}{\sim} h(x) \right] \implies f(x) \underset{x \to a}{\sim} h(x).$$

— La relation d'équivalence est symétrique.

$$f(x) \underset{x \to a}{\sim} g(x) \implies g(x) \underset{x \to a}{\sim} f(x).$$

Autrement dit, la relation « est équivalente à » est une relation d'équivalence sur l'ensemble des fonctions définies au voisinage de a.

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$.

— Si g ne s'annule pas au voisinage de a, alors

$$f(x) \underset{x \to a}{\sim} g(x) \iff \frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 1.$$

— Si $a \in \mathcal{D}$ et g ne s'annule pas au voisinage de $a \in \mathbb{R}$, sauf en a, alors

$$f(x) \underset{x \to a}{\sim} g(x) \iff \left[\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 1 \text{ et } f(a) = 0 \right].$$

Remarques

- \Rightarrow Soit f la fonction polynôme définie par $f(x) := \sum_{k=m}^{n} a_k x^k$. Si $a_m \neq 0$, alors $f(x) \underset{x \to 0}{\sim} a_m x^m$. En particulier

$$1 + x^2 \sim_{x \to 0} 1$$
 et $3x + x^3 \sim_{x \to 0} 3x$.

— Si $a_n \neq 0$, alors $f(x) \underset{x \to +\infty}{\sim} a_n x^n$. En particulier

$$1 + x^2 + 3x^3 \underset{x \to +\infty}{\sim} 3x^3.$$

On a évidemment le même équivalent en $-\infty$.

- \Rightarrow Soit f une fonction définie au voisinage de 0.
 - Si f est continue en 0 et $f(0) \neq 0$, alors $f(x) \sim f(0)$. En particulier

$$e^x \underset{x\to 0}{\sim} 1$$
 et $\cos x \underset{x\to 0}{\sim} 1$.

— Si f est dérivable en 0, f(0) = 0 et $f'(0) \neq 0$, alors $f(x) \underset{x \to 0}{\sim} f'(0) x$. En particulier

$$\ln(1+x) \underset{x\to 0}{\sim} x$$
, $\sin x \underset{x\to 0}{\sim} x$ et $\arctan x \underset{x\to 0}{\sim} x$.

Exercice 6

 \Rightarrow Montrer que $1 - \cos x \sim \frac{x^2}{x \to 0}$.

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \neq 0$. Alors

$$f(x) \underset{x \to a}{\sim} l \iff f(x) \xrightarrow[x \to a]{} l.$$

Remarque

 \Rightarrow f(x) est équivalente à 0 en a si et seulement si la fonction f est identiquement nulle au voisinage de a. En pratique, si vous obtenez $f(x) \sim 0$, c'est surement que vous avez fait une erreur.

Proposition 15.2.5

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On suppose que

$$f(x) \underset{x \to a}{\sim} g(x)$$
.

Alors, il existe un voisinage de a sur lequel f(x) et g(x) sont de même signe et s'annulent simultanément.

Remarque

⇒ Supposons que

$$f(x) \underset{x \to a}{\sim} g(x)$$

et que $g(x) \xrightarrow[x \to a]{} l \in \mathbb{R}^*$.

— Si $l \neq 0$, on en déduit que

$$f(x) \xrightarrow[x \to a]{} l.$$

En particulier, si $a=\pm\infty$, le graphe de f admet la droite d'équation y=l pour asymptote. Cependant, l'équivalent ne nous donne pas la position du graphe par rapport à cette asymptote. Si l'on souhaite la connaître, on peut chercher un équivalent de f(x)-l; le signe cet équivalent nous dira si le graphe de f est en dessous ou au dessus de l'asymptote au voisinage de a.

- Si l=0, on en déduit que le graphe de f « colle » à celui de g au voisinage de a. Dans la suite, nous nous placerons dans le cas où a=0.
 - Dans le cas où $g(x) = \alpha x$ avec $\alpha \in \mathbb{R}^*$, on a

$$f(x) \underset{x\to 0}{\sim} \alpha x.$$

La droite d'équation $y = \alpha x$ est alors tangente au graphe de f en 0. Si l'on souhaite connaître la position du graphe de f par rapport à cette tangente, on peut chercher un équivalent de $f(x) - \alpha x$.

— Dans le cas où $g(x) = \alpha x^{\beta}$ avec $\alpha \in \mathbb{R}^*$ et $\beta \in \mathbb{R}_+^*$, le graphe de f « colle » au graphe de αx^{β} au voisinage de 0. Comme pour le cas de la tangente, si on veut connaître la position du graphe de f par rapport à celui de αx^{β} , on cherche un équivalent $f(x) - \alpha x^{\beta}$ en 0.

Proposition 15.2.6

— Soit $f_1, g_1, f_2, g_2 : \mathcal{D} \to \mathbb{R}$ des fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On suppose que

$$f_1(x) \underset{x \to a}{\sim} g_1(x)$$
 et $f_2(x) \underset{x \to a}{\sim} g_2(x)$.

Alors

$$f_1(x)f_2(x) \underset{x \to a}{\sim} g_1(x)g_2(x).$$

Si de plus, f_2 et g_2 ne s'annulent pas au voisinage de a, sauf peut-être en a, alors

$$\frac{f_1(x)}{f_2(x)} \underset{x \to a}{\sim} \frac{g_1(x)}{g_2(x)}.$$

— Soit $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions équivalentes en $a \in \overline{\mathbb{R}}$ et $\alpha \in \mathbb{R}$ tels que $f(x)^{\alpha}$ et $g(x)^{\alpha}$ aient un sens au voisinage de a. Alors

$$f(x)^{\alpha} \underset{x \to a}{\sim} g(x)^{\alpha}.$$

Remarques

⇒ Attention, il n'est pas possible d'ajouter des équivalents. Par exemple

$$1 + x \underset{x \to 0}{\sim} 1$$
 et $-1 \underset{x \to 0}{\sim} -1$.

Pourtant (1+x)-1=x n'est pas équivalent à 1-1=0 en 0.

⇒ De même, il n'est pas possible de composer des équivalents. Par exemple

$$1+x \underset{x\to +\infty}{\sim} x.$$

Pourtant e^{1+x} n'est pas équivalent à e^x en $+\infty$. En effet, $e^{x+1}/e^x = e \xrightarrow[x \to +\infty]{} e \neq 1$.

Exercices 7

- \Rightarrow Donner un équivalent en 0 de $\ln(1+x)\sin x$.
- \Rightarrow Chercher la limite à droite en 0 de

$$\frac{\ln\left(1+x\right)}{\sqrt{1-\cos x}}.$$

Proposition 15.2.7

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$ telles que

$$f(x) \underset{x \to a}{\sim} g(x).$$

— Soit \overline{x} une fonction à valeurs dans \mathcal{D} , définie au voisinage de $b \in \overline{\mathbb{R}}$, telle que $\overline{x}(t) \xrightarrow[t \to b]{} a$. Alors

$$f\left(\overline{x}(t)\right) \underset{t \to b}{\sim} g\left(\overline{x}(t)\right)$$
.

— Soit (u_n) une suite d'éléments de \mathcal{D} telle que $u_n \xrightarrow[n \to +\infty]{} a$. Alors

$$f(u_n) \underset{n \to +\infty}{\sim} g(u_n).$$

Exercices 8

- \Rightarrow Donner un équivalent en 0 de $\ln(1 + \tan x)$.
- \Rightarrow Simplifier, puis donner un équivalent en 0 de sin $\left(\operatorname{Arcsin}(-1+u)+\frac{\pi}{2}\right)$. En déduire un équivalent en 0 de

$$Arcsin(-1+u) + \frac{\pi}{2}.$$

15.2.2 Fonction négligeable devant une autre

Définition 15.2.8

Soit $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On dit que f(x) est négligeable devant g(x) en a lorsqu'il existe un voisinage \mathcal{V} de a et une fonction ε définie sur $\mathcal{D} \cap \mathcal{V}$ telle que

$$- \forall x \in \mathcal{D} \cap \mathcal{V}, \quad f(x) = \varepsilon(x)g(x).$$

$$-\varepsilon(x) \xrightarrow[x\to a]{} 0.$$

On note alors

$$f(x) = \underset{x \to a}{\text{o}} (g(x)).$$

La propriété « est négligeable devant » est locale en a.

Proposition 15.2.9

Soit $f, g, h : \mathcal{D} \to \mathbb{R}$ des fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. La relation « est négligeable devant » est transitive.

$$\left[f(x) = \mathop{\operatorname{o}}_{x \to a}(g(x)) \quad \text{et} \quad g(x) = \mathop{\operatorname{o}}_{x \to a}(h(x))\right] \quad \Longrightarrow \quad f(x) = \mathop{\operatorname{o}}_{x \to a}(h(x)) \,.$$

Proposition 15.2.10

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$.

— Si g ne s'annule pas au voisinage de a, alors

$$f(x) = \underset{x \to a}{\text{o}} (g(x)) \iff \frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0.$$

— Si $a \in \mathcal{D}$ et g ne s'annule pas au voisinage de a, sauf en a, alors

$$f(x) = \underset{x \to a}{\text{o}} (g(x)) \iff \left[\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0 \text{ et } f(a) = 0 \right].$$

Proposition 15.2.11

Soit $\alpha_1, \alpha_2 \in \mathbb{R}$.

$$x^{\alpha_1} = \underset{x \to 0}{\text{o}} (x^{\alpha_2}) \quad \Longleftrightarrow \quad \alpha_1 > \alpha_2.$$

— De plus

$$x^{\alpha_1} = \underset{x \to +\infty}{\text{o}} (x^{\alpha_2}) \quad \Longleftrightarrow \quad \alpha_1 < \alpha_2.$$

Proposition 15.2.12

Soit $\alpha, \beta > 0$. Alors

$$(\ln x)^{\alpha} = \underset{x \to +\infty}{\text{o}} (x^{\beta}) \text{ et } x^{\alpha} = \underset{x \to +\infty}{\text{o}} (e^{\beta x}).$$

Proposition 15.2.13

Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$. Alors

$$f(x) = \underset{x \to a}{\text{o}} (1) \iff f(x) \xrightarrow[x \to a]{} 0.$$

Proposition 15.2.14

— Soit g une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$. Alors

$$\forall \lambda, \mu \in \mathbb{R}, \quad \lambda \underset{x \to a}{\text{o}} \left(g(x) \right) + \mu \underset{x \to a}{\text{o}} \left(g(x) \right) = \underset{x \to a}{\text{o}} \left(g(x) \right).$$

— Soit $f,g:\mathcal{D}\to\mathbb{R}$ deux fonctions définies au voisinage de $a\in\overline{\mathbb{R}}.$ Alors

$$f(x) \underset{x \to a}{\circ} (g(x)) = \underset{x \to a}{\circ} (f(x)g(x)).$$

— Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. Alors

$$\underset{x \to a}{\circ} (f(x)) \underset{x \to a}{\circ} (g(x)) = \underset{x \to a}{\circ} (f(x)g(x)).$$

Proposition 15.2.15

- Soit $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions équivalentes en $a \in \overline{\mathbb{R}}$. Alors, une fonction est négligeable devant f en a si et seulement si elle est négligeable devant g en a.
- Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $\lambda \in \mathbb{R}^*$. Alors, une fonction est négligeable devant f en a si et seulement si elle est négligeable devant λf en a.

Proposition 15.2.16

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$ telles que

$$f(x) = \underset{x \to a}{\text{o}} (g(x)).$$

— Soit \overline{x} une fonction à valeurs dans \mathcal{D} , définie au voisinage de $b \in \overline{\mathbb{R}}$, telle que $\overline{x}(t) \xrightarrow[t \to b]{} a$. Alors

$$f(\overline{x}(t)) = \underset{t \to b}{\text{o}} (g(\overline{x}(t))).$$

— Soit (u_n) une suite d'éléments de \mathcal{D} telle que $u_n \xrightarrow[n \to +\infty]{} a$. Alors

$$f(u_n) = \mathop{\rm o}_{n \to +\infty} \left(g(u_n) \right).$$

Proposition 15.2.17

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. Alors

$$f(x) \underset{x \to a}{\sim} g(x) \quad \Longleftrightarrow \quad f(x) = g(x) + \mathop{\mathrm{o}}_{x \to a} \left(g(x) \right).$$

Exercice 9

 \Rightarrow Soit f la fonction de \mathbb{R}_+ dans \mathbb{R}_+ qui à x associe xe^x . Montrer que f est bijective, puis donner la limite et un équivalent de f^{-1} en $+\infty$.

15.2.3 Fonction dominée par une autre

Définition 15.2.18

Soit $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$. On dit que f(x) est dominée par g(x) en a lorsqu'il existe un voisinage \mathcal{V} de a ainsi qu'une fonction B définie sur $\mathcal{D} \cap \mathcal{V}$ telle que

- $-- \forall x \in \mathcal{D} \cap \mathcal{V}, \quad f(x) = B(x)g(x).$
- B est bornée.

On note alors

$$f(x) = \mathop{\rm O}_{x \to a} \left(g(x) \right).$$

La propriété « est dominée par » est locale en a.

Proposition 15.2.19

Soit $f, g: \mathcal{D} \to \mathbb{R}$ deux fonctions définies au voisinage de $a \in \overline{\mathbb{R}}$.

— Si g ne s'annule pas au voisinage de a, alors

$$f(x) = \underset{x \to a}{\mathcal{O}}(g(x)) \iff \frac{f(x)}{g(x)}$$
 est bornée au voisinage de a .

— Si $a \in \mathbb{R}$ et g ne s'annule pas au voisinage de a, sauf en a, alors

$$f(x) = \mathop{\rm O}_{x \to a}(g(x)) \quad \Longleftrightarrow \quad \left[\frac{f(x)}{g(x)} \text{ est born\'ee au voisinage de } a \quad \text{et} \quad f(a) = 0\right].$$

Proposition 15.2.20

Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$. Alors

$$f(x) = \mathop{\rm O}_{x \to a}(1) \quad \Longleftrightarrow \quad f(x) \text{ est born\'ee au voisinage de a}.$$

15.3 Développement limité

15.3.1 Définition, propriétés élémentaires

Définition 15.3.1

Soit f une fonction définie au voisinage de $a \in \mathbb{R}$ et $n \in \mathbb{N}$. On dit que f admet un développement limité en a à l'ordre n lorsqu'il existe $a_0, a_1, \ldots, a_n \in \mathbb{R}$ tels que

$$f(a+h) = a_0 + a_1 h + a_2 h^2 + \dots + a_n h^n + \underset{h \to 0}{\text{o}} (h^n)$$
$$= \sum_{k=0}^n a_k h^k + \underset{h \to 0}{\text{o}} (h^n).$$

Remarque

 \Rightarrow Pour tout $x \in]-1,1[$

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x},$$

donc

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \underbrace{\frac{x}{1-x}}_{x \to 0} x^n = \sum_{k=0}^{n} x^k + \underbrace{\underset{x \to 0}{\text{o}}}_{x \to 0} (x^n).$$

Exercice 10

 \Rightarrow Montrer que $e^x = 1 + x + \underset{x \to 0}{\text{o}}(x)$, puis que $\cos x = 1 - \frac{x^2}{2} + \underset{x \to 0}{\text{o}}(x^2)$.

Proposition 15.3.2: Troncature d'un développement limité

Soit f une fonction admettant un développement limité en a à l'ordre n

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \mathop{o}_{h\to 0}(h^n).$$

Si $p \in [0, n]$, alors f admet un développement limité en a à l'ordre p et

$$f(a+h) = \sum_{k=0}^{p} a_k h^k + \underset{h\to 0}{\text{o}} (h^p).$$

Proposition 15.3.3

Soit f une fonction admettant un développement limité en a à l'ordre n:

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \underset{h\to 0}{\text{o}} (h^n)$$

Alors, les coefficients a_0, \ldots, a_n sont uniques; on dit que $\sum_{k=0}^n a_k h^k$ est la partie régulière du développement limité.

Définition 15.3.4

Soit f une fonction définie au voisinage de a. On suppose qu'il existe un réel $\alpha \neq 0$ et $\omega \in \mathbb{N}$ tels que

$$f(a+h) = \alpha h^{\omega} + \underset{h \to 0}{\text{o}} (h^{\omega}).$$

Alors α et ω sont uniques; on dit que αh^{ω} est la partie principale de f en a et que ω est l'ordre de cette partie principale. On a alors

$$f(a+h) \underset{h\to 0}{\sim} \alpha h^{\omega}.$$

Remarque

 $\Rightarrow \text{ Si } f: \mathcal{D} \to \mathbb{R}$ admet un développement limité en 0 à l'ordre n

$$f(x) = \sum_{k=0}^{n} a_k x^k + \underset{x \to 0}{\text{o}} (x^n)$$

et $\alpha \in \mathbb{R}$, alors

$$f(\alpha x) = \sum_{k=0}^{n} a_k \alpha^k x^k + \underset{x \to 0}{\text{o}} (x^n).$$

Proposition 15.3.5

Soit f une fonction admettant un développement limité en 0 à l'ordre n

$$f(x) = \sum_{k=0}^{n} a_k x^k + \underset{x\to 0}{\text{o}} (x^n).$$

- Si f est paire, a_k est nul pour tout k impair.
- Si f est impaire, a_k est nul pour tout k pair.

15.3.2 Développement limité et propriétés locales

Proposition 15.3.6

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction et $a \in \mathcal{D}$.

— Alors f admet un développement limité en a à l'ordre 0 si et seulement si elle est continue en a. De plus, si tel est le cas

$$f(a+h) = f(a) + \mathop{\text{o}}_{h\to 0}(1)$$
.

— Alors f admet un développement limité en a à l'ordre 1 si et seulement si elle est dérivable en a. De plus, si tel est le cas

$$f(a+h) = f(a) + f'(a)h + \underset{h\to 0}{o}(h).$$

Remarques

- \Rightarrow Plus généralement, une fonction définie au voisinage de a admet un développement limité en a à l'ordre 0 si et seulement si elle admet une limite finie en a.
- \Rightarrow Pour déterminer la position d'une courbe par rapport à sa tangente en un point a, il suffit de calculer la partie principale de f(a+h)-[f(a)+f'(a)h]. Supposons que

$$f(a+h) = f(a) + f'(a)h + \alpha h^{\omega} + \underset{h \to 0}{\circ} (h^{\omega})$$

avec $\alpha \neq 0$ et $\omega \geqslant 2$. Alors

$$f(a+h) - [f(a) + f'(a)h] \underset{h \to 0}{\sim} \alpha h^{\omega}.$$

— Si ω est pair, le graphe de f est au-dessus de sa tangente au voisinage de a si $\alpha > 0$ et en dessous si $\alpha < 0$.

— $Si\ \omega$ est impair, le graphe de f traverse sa tangente en a. La courbe admet un point d'inflexion en a.

Exercice 11

 \Rightarrow Montrer que la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \begin{cases} \frac{\cos x - 1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est dérivable sur \mathbb{R} .

15.3.3 Intégration et existence d'un développement limité

Proposition 15.3.7

Soit $f:I\to\mathbb{R}$ une fonction continue sur un intervalle I contenant a. On suppose que f admet un développement limité en a à l'ordre n

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \underset{h\to 0}{\text{o}} (h^n).$$

Alors, si F est une primitive de f

$$F(a+h) = F(a) + \sum_{k=0}^{n} \frac{a_k}{k+1} h^{k+1} + \underset{h \to 0}{\text{o}} \left(h^{n+1} \right).$$

Exercice 12

 \Rightarrow Donner un développement limité en 0 à l'ordre 2 de $\ln(1+x)$. En déduire la limite de

$$n^2 \left[\ln \left(1 + \frac{1}{n} \right) + \ln \left(1 - \frac{1}{n} \right) \right]$$

lorsque n tend vers $+\infty$.

Remarque

 \Rightarrow Il n'est pas possible de dériver un développement limité. En effet, il existe des fonctions admettant un développement limité en a à l'ordre n dont la dérivée n'admet pas de développement limité en a à l'ordre n-1.

On dit qu'une fonction $f: I \to \mathbb{R}$ est de classe \mathcal{C}^{∞} lorsque, quel que soit $n \in \mathbb{N}$, f est dérivable n fois sur I. Les fonctions usuelles sont de classe \mathcal{C}^{∞} sur le domaine sur lequel elles sont dérivables.

Proposition 15.3.8: Formule de Taylor-Young

Soit $f:I\to\mathbb{R}$ une fonction de classe \mathcal{C}^{∞} sur un intervalle I contenant a. Alors f admet un développement limité en a à tout ordre $n\in\mathbb{N}$ et

$$f(a+h) = f(a) + f'(a)h + \dots + \frac{f^{(n)}(a)}{n!}h^n + \underset{h\to 0}{\text{o}}(h^n)$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}h^k + \underset{h\to 0}{\text{o}}(h^n).$$

15.3.4 Développements limités usuels

Proposition 15.3.9

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \underset{x \to 0}{0} (x^{n})$$

$$\operatorname{ch} x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{0} (x^{2n+1})$$

$$\operatorname{sh} x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{0} (x^{2n+2})$$

$$\operatorname{cos} x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{0} (x^{2n+1})$$

$$\operatorname{sin} x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{0} (x^{2n+2})$$

Proposition 15.3.10

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \underset{x \to 0}{\text{o}}(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \underset{x \to 0}{\text{o}}(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha (\alpha - 1) \dots (\alpha - (n-1))}{n!} x^n + \underset{x \to 0}{\text{o}}(x^n)$$

$$= 1 + \binom{\alpha}{1} x + \dots + \binom{\alpha}{n} x^n + \underset{x \to 0}{\text{o}}(x^n) \quad (\alpha \in \mathbb{R})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \underset{x \to 0}{\text{o}}(x^n)$$

Exercice 13

 \Rightarrow Donner un développement limité en 0 à l'ordre n de

$$\frac{1}{\sqrt{1+x}}.$$

En déduire un développement limité à l'ordre 2n+1 de Arcsin x.

15.3.5 Opérations usuelles sur les développements limités

Proposition 15.3.11

Soit $f,g:\mathcal{D}\to\mathbb{R}$ deux fonctions admettant un développement limité en a à l'ordre n

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \underset{h\to 0}{\text{o}} (h^n), \quad g(a+h) = \sum_{k=0}^{n} b_k h^k + \underset{h\to 0}{\text{o}} (h^n)$$

et $\lambda, \mu \in \mathbb{R}$. Alors $\lambda f + \mu g$ admet un développement limité en a à l'ordre n et

$$\lambda f(a+h) + \mu g(a+h) = \sum_{k=0}^{n} (\lambda a_k + \mu b_k) h^k + \underset{h\to 0}{\text{o}} (h^n).$$

Proposition 15.3.12

Soit $f,g:\mathcal{D}\to\mathbb{R}$ deux fonctions admettant un développement limité en a à l'ordre n

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \underset{h\to 0}{o} (h^n)$$
 et $g(a+h) = \sum_{k=0}^{n} b_k h^k + \underset{h\to 0}{o} (h^n)$.

Alors fg admet un développement limité en a à l'ordre n dont la partie régulière est obtenue en développant le produit des parties régulières précédentes et en ne gardant que les monômes de degrés inférieurs à n.

$$f(a+h)g(a+h) = \sum_{k=0}^{n} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) h^k + \mathop{o}_{h\to 0}(h^n).$$

Exercice 14

 \Rightarrow Donner un développement limité de $e^x \cos x$ en 0 à l'ordre 2.

Proposition 15.3.13

Soit f une fonction admettant un développement limité en a à l'ordre n et $k \in \mathbb{N}$.

$$f(a+h) = \sum_{i=0}^{n} a_i h^i + \underset{h\to 0}{\text{o}} (h^n)$$

Alors f^k admet un développement limité en a à l'ordre n dont la partie régulière est obtenue en développant la puissance k-ème de la partie régulière précédente et en ne gardant que les monômes de degrés inférieurs à n.

Exercice 15

 \Rightarrow Donner un développement limité de $\cos^2 x$ en 0 à l'ordre 4.

Proposition 15.3.14

Soit f et g deux fonctions admettant respectivement des développements limités à l'ordre n en a et f(a).

$$f(a+u) = f(a) + \underbrace{\sum_{k=1}^{n} a_k u^k}_{P(u)} + \underbrace{\underset{u \to 0}{\text{o}}}_{(u^n)}$$

$$g(f(a) + v) = \sum_{k=0}^{n} b_k v^k + \underset{v \to 0}{\circ} (v^n)$$

Alors $g \circ f$ admet un développement limité en a à l'ordre n dont la partie régulière est obtenue en substituant P(u) à v dans la partie régulière du développement limité de g et en ne gardant que les monômes de degrés inférieurs à n.

Exercice 16

 \Rightarrow Donner un développement limité en 0 à l'ordre 2 de $\mathrm{e}^{\sqrt{1+x}}$.

Proposition 15.3.15

Soit f une fonction admettant un développement limité en a à l'ordre n.

$$f(a+h) = \sum_{k=0}^{n} a_k h^k + \underset{h\to 0}{\text{o}} (h^n)$$

Si $a_0 \neq 0$, alors f ne s'annule pas au voisinage de a et 1/f admet un développement limité en a à l'ordre n.

Exercices 17

- \Rightarrow Donner un développement limité de $1/(\cos x)$ en 0 à l'ordre 4.
- \Rightarrow Donner un développement limité de tan x en 0 à l'ordre 5.

15.3.6 Réduction d'ordre

Remarques

 \Rightarrow Réduction d'ordre pour le calcul du DL d'un produit : On cherche un développement limité en 0 de $e^x \sin x$. Comme

$$\sin x = x - \frac{1}{6}x^3 + \underset{x \to 0}{\text{o}}(x^3)$$
 et $e^x = 1 + x + \frac{1}{2}x^2 + \underset{x \to 0}{\text{o}}(x^2)$

on en déduit que :

$$e^{x} \sin x = \left(1 + x + \frac{1}{2}x^{2} + \underset{x \to 0}{o}(x^{2})\right) \left(x - \frac{1}{6}x^{3} + \underset{x \to 0}{o}(x^{3})\right)$$

$$= x \left(1 + x + \frac{1}{2}x^{2} + \underset{x \to 0}{o}(x^{2})\right) \left(1 - \frac{1}{6}x^{2} + \underset{x \to 0}{o}(x^{2})\right)$$

$$= x \left(1 + x + \frac{1}{3}x^{2} + \underset{x \to 0}{o}(x^{2})\right)$$

$$= x + x^{2} + \frac{1}{3}x^{3} + \underset{x \to 0}{o}(x^{3})$$

On a ainsi obtenu un développement limité à l'ordre 3 comme produit d'un développement limité à l'ordre 3 et d'un développement limité dont l'ordre n'était que de 2. Ce phénomène apparaît dès que l'ordre de l'une des parties principales est non nul. Avant de calculer le développement limité d'un produit, on prendra donc soin de calculer les ordres auxquels il faudra effectuer le développement limité de chaque terme. Pour cela nous utiliserons la notation

 $DL_{m,n}$ pour représenter un développement limité d'ordre n dont la partie principale est d'ordre m. Par exemple, si l'on souhaite obtenir un développement limité de $(\cos x - 1) \ln (1 + x)$ en 0 à l'ordre 4, on remarque que

$$\cos x - 1 = -\frac{1}{2}x^2 + \mathop{\text{o}}_{x \to 0}(x^2)$$
 et $\ln(1+x) = x + \mathop{\text{o}}_{x \to 0}(x)$.

Donc $\cos x - 1$ a une partie principale d'ordre 2, et $\ln (1 + x)$ a une partie principale d'ordre 1. Donc

$$(\cos x - 1)\ln(1 + x) = DL_{2,n}DL_{1,m} = (x^2 DL_{0,n-2})(x DL_{0,m-1}) = x^3 DL_{0,n-2}DL_{0,m-1}.$$

Comme on souhaite un développement limité à l'ordre 4, il suffit d'obtenir un développement limité de $\mathrm{DL}_{0,n-2}\,\mathrm{DL}_{0,m-1}$ à l'ordre 1. On choisit donc n et m tels que n-2=1 et m-1=1, c'est-à-dire n=3 et m=2. On a alors

$$(\cos x - 1) \ln (1 + x) = \left(-\frac{1}{2}x^2 + \underset{x \to 0}{\text{o}} (x^3) \right) \left(x - \frac{1}{2}x^2 + \underset{x \to 0}{\text{o}} (x^2) \right)$$

$$= x^3 \left(-\frac{1}{2} + \underset{x \to 0}{\text{o}} (x) \right) \left(1 - \frac{1}{2}x + \underset{x \to 0}{\text{o}} (x) \right)$$

$$= x^3 \left(-\frac{1}{2} + \frac{1}{4}x + \underset{x \to 0}{\text{o}} (x) \right)$$

$$= -\frac{1}{2}x^3 + \frac{1}{4}x^4 + \underset{x \to 0}{\text{o}} (x^4).$$

 \Rightarrow Réduction d'ordre pour le calcul du DL d'une puissance f^k : Lorsque la partie principale de f en a est d'ordre non nul, il est utile d'effectuer un calcul d'ordre. Par exemple, si l'on souhaite obtenir un développement limité à l'ordre 5 en 0 de $\ln^4(1+x)$, on écrit

$$(\ln(1+x))^4 = (DL_{1,n})^4 = (x DL_{0,n-1})^4 = x^4 DL_{0,n-1}^4$$

Comme on souhaite un développement limité à l'ordre 5, il suffit d'obtenir un développement limité de $(DL_{0,n-1})^4$ à l'ordre 1. On choisit donc n tel que n-1=1, soit n=2. On a alors :

$$\ln^{4}(1+x) = \left(x - \frac{1}{2}x^{2} + \underset{x \to 0}{0}(x^{2})\right)^{4}$$

$$= x^{4} \left(1 - \frac{1}{2}x + \underset{x \to 0}{0}(x)\right)^{4}$$

$$= x^{4} \left(\left(1 - \frac{1}{2}x\right)^{4} + \underset{x \to 0}{0}(x)\right)$$

$$= x^{4} \left(1 - \left(\frac{4}{1}\right)\frac{1}{2}x + \underset{x \to 0}{0}(x)\right)$$

$$= x^{4} - 2x^{5} + \underset{x \to 0}{0}(x^{5})$$

 \Rightarrow Réduction d'ordre pour le calcul du DL d'une composée $g \circ f$: Lorsque la partie principale de f(a+u) - f(a) est d'ordre $\omega \geqslant 2$, il n'est pas nécessaire de pousser le développement limité de g jusqu'à l'ordre n. En effet, si f admet un développement limité à l'ordre n et si

$$g(f(a) + v) = \sum_{k=0}^{m} b_k v^k + \underset{v \to 0}{\text{o}} (v^m)$$

est un développement limité de g à l'ordre m avec $\omega m \geqslant n$, ces développements suffisent pour obtenir un développement limité de $g \circ f$ à l'ordre n. Par exemple, si on souhaite un développement limité en 0 à l'ordre 4 de $\ln(\cos x)$, on écrit

$$\cos x = 1 \underbrace{-\frac{1}{2}x^2 + \frac{1}{4!}x^4 + \mathop{o}_{x \to 0}(x^4)}_{\text{---}}$$

Comme la partie principale en 0 de $\cos x - 1$ est d'ordre 2, il suffit de faire un développement limité de ln en 1 à l'ordre 2.

$$\ln(1+u) = u - \frac{1}{2}u^2 + \mathop{\text{o}}_{u\to 0}(u^2)$$

Par composition

$$\ln(\cos x) = \ln\left(1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 + \mathop{\circ}_{x \to 0}(x^4)\right)$$

$$= \left(-\frac{1}{2}x^2 + \frac{1}{4!}x^4\right) - \frac{1}{2}\left(-\frac{1}{2}x^2 + \frac{1}{4!}x^4\right)^2 + \mathop{\circ}_{x \to 0}(x^4)$$

$$= \left(-\frac{1}{2}x^2 + \frac{1}{4!}x^4\right) - \frac{1}{2}x^4\left(-\frac{1}{2} + \frac{1}{4!}x^2\right)^2 + \mathop{\circ}_{x \to 0}(x^4)$$

$$= -\frac{1}{2}x^2 + \left(\frac{1}{4!} - \frac{1}{2^3}\right)x^4 + \mathop{\circ}_{x \to 0}(x^4)$$

$$= -\frac{1}{2}x^2 - \frac{1}{12}x^4 + \mathop{\circ}_{x \to 0}(x^4).$$

 \Rightarrow Développement limité avec des O: Il est enfin possible de faire des développements limités avec des O. On dit qu'une fonction f admet un développement limité en a à la précision $O(h^{n+1})$ lorsque

$$f(a+h) = a_0 + a_1 h + \dots + a_n h^n + \bigcup_{h \to 0} (h^{n+1}).$$

Si f admet un tel développement limité, alors il admet un développement limité en a à l'ordre n et

$$f(a+h) = a_0 + a_1 h + \dots + a_n h^n + \underset{h \to 0}{\text{o}} (h^n).$$

La réciproque est fausse, mais si f admet un développement limité en a à l'ordre n+1

$$f(a+h) = a_0 + a_1 h + \dots + a_n h^n + a_{n+1} h^{n+1} + \underset{h \to 0}{\text{o}} (h^{n+1})$$

alors elle admet un développement limité en a à la précision $O(h^{n+1})$ obtenu par troncature.

$$f(a+h) = a_0 + a_1h + \dots + a_nh^n + O_0(h^{n+1}).$$

Bref, un développement limité à la précision $O(h^{n+1})$ nous donne plus d'informations qu'un développement limité à l'ordre n mais moins qu'un développement limité à l'ordre n+1. Comme le calcul d'un tel développement limité demande autant de calculs qu'un développement limité en a à l'ordre n, il est parfois avantageux de les utiliser. Nous verrons tout leur intérêt notamment lorsque nous aurons à montrer la convergence de séries. Notons au passage que les anglo-saxons utilisent par défaut des développements limités avec des O. Ce sont donc ces développements limités que vous donneront les logiciels de calcul formel. Notons que les opérations usuelles ont leur équivalent pour les développements limités avec des O.

Exercice 18

 \Rightarrow Donner un développement limité en 0 à la précision $O(x^4)$ de $\sqrt{\cos x}$.

15.4 Développement asymptotique

15.4.1 Développement limité généralisé en $a \in \mathbb{R}$

Définition 15.4.1

Soit f une fonction définie au voisinage de $a \in \mathbb{R}$. On dit que f admet un développement limité généralisé en a à la précision $o(h^n)$ lorsqu'il existe $p \in \mathbb{N}$ et $b_p, \ldots, b_1, a_0, a_1, \ldots, a_n \in \mathbb{R}$ tels que

$$f(a+h) = \frac{b_p}{h^p} + \dots + \frac{b_1}{h} + a_0 + a_1 h + \dots + a_n h^n + \underset{h \to 0}{\text{o}} (h^n).$$

Exercice 19

 \Rightarrow Donner un développement limité généralisé de $1/\sin x$ en 0 à la précision o(x).

15.4.2 Développement asymptotique au voisinage de $a \in \mathbb{R}$

Définition 15.4.2

Soit f une fonction définie au voisinage de $a \in \mathbb{R}$. On appelle développement asymptotique de f en a à la précision o $(f_n(h))$ toute écriture

$$f(a+h) = a_1 f_1(h) + \dots + a_n f_n(h) + \underset{h \to 0}{\text{o}} (f_n(h))$$

où $a_1, \ldots, a_n \in \mathbb{R}^*$ et

$$\forall k \in [1, n-1], \quad f_{k+1}(h) = \underset{h \to 0}{\text{o}} (f_k(h)).$$

Remarque

⇒ Nous avons vu que

$$Arcsin(-1+x) + \frac{\pi}{2} \underset{x\to 0}{\sim} \sqrt{2x}.$$

donc

$$\operatorname{Arcsin}(-1+x) + \frac{\pi}{2} = \sqrt{2x} + \underset{x \to 0}{\operatorname{o}}(\sqrt{x}).$$

On obtient donc

$$\operatorname{Arcsin}\left(-1+x\right) = -\frac{\pi}{2} + \sqrt{2}\sqrt{x} + \mathop{\operatorname{o}}_{x\to 0}\left(\sqrt{x}\right)$$

qui est bien un développement asymptotique de Arcsin en -1 car, au voisinage de 0, \sqrt{x} est négligeable devant 1.

Exercice 20

 \Rightarrow Donner un développement asymptotique à 2 termes en 0 de $\sqrt{\ln{(1+x)}}$.

15.4.3 Développement asymptotique au voisinage de $\pm \infty$

Définition 15.4.3

Soit f une fonction définie au voisinage de $+\infty$. On appelle développement asymptotique de f au voisinage de $+\infty$ à la précision o $(f_n(x))$ toute écriture

$$f(x) = a_1 f_1(x) + \dots + a_n f_n(x) + \underset{x \to +\infty}{\circ} (f_n(x))$$

où $a_1, \ldots, a_n \in \mathbb{R}^*$ et

$$\forall k \in [1, n-1], \quad f_{k+1}(x) = \underset{x \to +\infty}{\text{o}} (f_k(x)).$$

Remarque

 \Rightarrow Pour avoir une éventuelle asymptote du graphe de f au voisinage de $+\infty$, il suffit de faire un développement asymptotique de f(x) en $+\infty$. Supposons que

$$f(x) = ax + b + \underset{x \to +\infty}{\text{o}} (1)$$

alors f admet une asymptote d'équation y = ax + b en $+\infty$. Pour connaître la position de la courbe par rapport à son asymptote, il suffit de trouver la partie principale de f(x) - (ax + b) en $+\infty$.

Exercices 21

- \Rightarrow Donner un développement asymptotique à 2 termes de $\ln(x^3\sin(1/x))$ en $+\infty$.
- \Rightarrow Chercher une éventuelle asymptote à la fonction d'expression $\sqrt[3]{(x^2-2)(x+3)}$ en $+\infty$. Donner la position de la courbe par rapport à cette asymptote.
- \Rightarrow On rappelle que l'application f de \mathbb{R}_+ dans \mathbb{R}_+ qui à x associe xe^x est une bijection. Donner un développement asymptotique à deux termes de f^{-1} en $+\infty$.

15.4.4 Développement asymptotique de suites

Définition 15.4.4

On appelle développement asymptotique de la suite (u_n) à la précision $o(v_{p,n})$ toute écriture

$$u_n = v_{1,n} + \dots + v_{p,n} + \underset{n \to +\infty}{\circ} (v_{p,n})$$

$$\forall k \in \llbracket 1, p-1
rbracket, \quad v_{k+1,n} = \underset{n \to +\infty}{\text{o}} (v_{k,n}).$$

Exercice 22

 \Rightarrow Pour tout $n \in \mathbb{N}$, montrer que l'équation $\tan x = x$ admet une unique solution sur $]-\pi/2 + n\pi, \pi/2 + n\pi[$. On note u_n cette solution. Donner un équivalent de u_n puis un développement asymptotique à 3 termes de cette suite.

15.5 Exercices

Comparaison de suites

$Suites\ \'equivalentes$

Exercice 1 : Équivalents et composition par ln

Soit (u_n) et (v_n) deux suites équivalentes strictement positives.

1. On suppose que (u_n) et (v_n) tendent vers 0 ou $+\infty$ en $+\infty$. Montrer que

$$\ln u_n \underset{n \to +\infty}{\sim} \ln v_n.$$

En déduire des équivalents simples de $\ln(n^2 - 1)$ et $\ln(\sqrt{n+1} - \sqrt{n})$.

2. Que peut-on dire si (u_n) et (v_n) convergent vers 1?

Exercice 2 : Calcul d'équivalents

Donner un équivalent simple des suites de terme général

a.
$$\ln(n+1) - \ln n$$
, **b.** $n(\sqrt[n]{3} - 1)$, **c.** $\sum_{k=1}^{n} k^{k^2}$.

Exercice 3: Équivalents

Soit (u_n) une suite réelle de limite nulle telle que

$$u_n + u_{n+1} \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

- 1. Montrer que si u_n est décroissante alors $u_n \sim 1/(2n)$.
- 2. Étudier le cas de la suite

$$u_n \coloneqq \frac{1}{2n} + \frac{(-1)^n}{\sqrt{n}}.$$

Suite négligeable devant une autre

Exercice 4: Constante d'Euler

Soit (H_n) la suite définie par

$$\forall n \in \mathbb{N}^*, \quad H_n := \sum_{k=1}^n \frac{1}{k}.$$

1. En utilisant une intégrale, montrer que

$$\forall n \in \mathbb{N}^*, \quad \frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

- 2. En déduire que $\ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$.
- 3. Déterminer la limite, puis un équivalent de H_n .
- 4. Montrer que $u_n := H_n \ln(n)$ est décroissante et positive. En déduire qu'il existe une constante (la constante d'Euler) γ telle que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \underset{n \to +\infty}{\text{o}} (1).$$

Exercice 5: Développement asymptotique d'une suite

On considère la suite définie par

$$u_0 := 1$$
 et $u_{n+1} := \sqrt{n + u_n}$

1. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sqrt{n-1} \leqslant u_n \leqslant 2\sqrt{n}.$$

15.5. EXERCICES 297

2. En déduire que $u_n \underset{n \to +\infty}{\sim} \sqrt{n}$, puis que

$$u_n = \sqrt{n} + \frac{1}{2} + \mathop{\text{o}}_{n \to +\infty} (1).$$

3. Prouver enfin que

$$u_n = \sqrt{n} + \frac{1}{2} - \frac{3}{8\sqrt{n}} + \mathop{\mathrm{o}}_{n \to +\infty} \left(\frac{1}{\sqrt{n}}\right).$$

Exercice 6 : Théorème des valeurs intermédiaires

Pour $n \in \mathbb{N}^*$, soit f_n la fonction définie par

$$\forall x \in \mathbb{R}_+, \quad f_n(x) := nx^{n+1} - (n+1)x^n - \frac{1}{2}.$$

- 1. Démontrer que f_n admet une unique racine positive, notée x_n .
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}_+, \quad f_n(x) \leqslant f_{n+1}(x).$$

En déduire que la suite (x_n) est décroissante.

3. Montrer que

$$x_n \xrightarrow[n \to +\infty]{} 1.$$

4. Montrer que la fonction g, définie sur \mathbb{R}_+ par

$$\forall y \in \mathbb{R}_+, \quad g(y) \coloneqq e^y(y-1) - \frac{1}{2}$$

possède une unique racine, notée γ , dans $]0,+\infty[$. Donner une valeur numérique de γ à 10^{-3} près.

- 5. Établir que, si α est une constante strictement positive, alors $(f_n(1+\frac{\alpha}{n}))_{n\in\mathbb{N}^*}$ converge vers $g(\alpha)$.
- 6. Soit $\varepsilon > 0$. Montrer que $f_n(1 + \frac{\gamma + \varepsilon}{n})$ est ultimement positif, et que $f_n(1 + \frac{\gamma \varepsilon}{n})$ est ultimement négatif.
- 7. En déduire que

$$x_n = 1 + \frac{\gamma}{n} + \underset{n \to +\infty}{\text{o}} \left(\frac{1}{n}\right).$$

Exercice 7: Une suite implicite

- 1. Montrer qu'il existe une unique suite $(x_n)_{n\in\mathbb{N}}$ à termes strictement positifs telle que $x_n^n \ln(x_n) = 1$ pour tout entier n.
- 2. Montrer que cette suite est décroissante et qu'elle tend vers 1.
- 3. Montrer que

$$x_n - 1 \underset{n \to +\infty}{\sim} \frac{w(n)}{n}$$

où w est la fonction de Lambert, c'est-à-dire la fonction réciproque de $x \mapsto xe^x$ sur \mathbb{R}_+ .

Suite dominée par une autre

Comparaison de fonctions

Fonctions équivalentes

Exercice 8: Composition d'équivalents

Soit f et g deux fonctions définies sur \mathbb{R} . On suppose que

$$f(x) \underset{x \to +\infty}{\sim} g(x)$$

et que ces fonctions admettent une limite commune notée $l \in \mathbb{R}$ lorsque x tend vers $+\infty$.

- 1. On suppose dans cette question que f et g sont à valeurs strictement positives.
 - (a) Montrer que si $l \neq 1$, alors

$$\ln (f(x)) \underset{x \to +\infty}{\sim} \ln (g(x)).$$

- (b) Que pouvez-vous dire lorsque l = 1?
- 2. Parmi les équivalents suivants, lesquels sont systématiquement vrais? (on pourra discuter selon les valeurs de l).

$$\begin{aligned} \mathbf{a.} \ \operatorname{Arctan}\left(f(x)\right) \underset{x \to +\infty}{\sim} & \operatorname{Arctan}\left(g(x)\right), \qquad \mathbf{b.} \ \mathrm{e}^{f(x)} \underset{x \to +\infty}{\sim} \mathrm{e}^{g(x)}, \\ \mathbf{c.} \ \sin\left(f(x)\right) \underset{x \to +\infty}{\sim} \sin\left(g(x)\right). \end{aligned}$$

Fonction négligeable devant une autre

Fonction dominée par une autre

Développement limité

Définition, propriétés élémentaires

Exercice 9 : Existence de développement limité

- 1. \sqrt{x} admet-elle un développement limité d'ordre $n \ge 1$ en 0?
- 2. À quels ordres $x^{\frac{13}{3}}$ admet-elle un développement limité en 0?
- 3. Soit $n \in \mathbb{N}$. $|x|^n$ admet-elle un développement limité d'ordre n en 0?

Développement limité et propriétés locales

Intégration et existence d'un développement limité

Développements limités usuels

Exercice 10: Fonction définie par morceaux

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} \cos \sqrt{|x|} & \text{si } x < 0 \\ 1 & \text{si } x = 0 \\ \cosh \sqrt{x} & \text{si } x > 0. \end{cases}$$

À quels ordres f admet-elle un développement limité en 0?

Opérations usuelles sur les développements limités

Exercice 11: Calcul

Calculer les développements limités suivants.

$$\mathbf{a.} \ \mathrm{e}^{\cos x} \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 4, \qquad \qquad \mathbf{b.} \ \ln \left(\frac{1}{\cos x} \right) \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 7,$$

$$\mathbf{c.} \ \frac{1}{\cos x} \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 5, \qquad \qquad \mathbf{d.} \ \ln \left(1 + \operatorname{ch} x \right) \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 4,$$

$$\mathbf{e.} \ \frac{1}{\sin x} - \frac{1}{\sin x} \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 3, \qquad \qquad \mathbf{f.} \ \ln \left(\tan x \right) \quad \text{en } \pi/4 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 3,$$

$$\mathbf{g.} \ \mathrm{e}^{\operatorname{Arcsin} x} \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 4 \qquad \qquad \mathbf{h.} \ \operatorname{Arctan} \left(\mathrm{e}^x \right) \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 3$$

$$\mathbf{i.} \ \operatorname{Arccos} \left(\frac{1+x}{2+x} \right) \quad \text{en } 0 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 2, \qquad \qquad \mathbf{j.} \ \operatorname{Arctan} \left(2 \sin x \right) \quad \text{en } \pi/3 \ \mathrm{\grave{a}} \ \mathrm{l'ordre} \ 3.$$

Exercice 12 : Développement limité de $\tan x$

- 1. Démontrer que $\tan x$ et $\tan' x$ admettent un développement limité en 0 à tout ordre. Expliquer comment obtenir le développement limité de $\tan' x$ à partir de celui de $\tan x$.
- 2. En exploitant la relation $\tan' x = 1 + \tan^2 x$, donner le développement limité de $\tan x$ en 0 à l'ordre 7.

Exercice 13: Calcul

1. Donner le développement limité de

$$\int_{x}^{x^{2}} \frac{\mathrm{d}t}{\sqrt{1+t^{2}}}$$

en 0 à l'ordre 4.

2. Sur le même modèle, donner un développement limité de

$$\int_{x}^{\frac{1}{x}} e^{-t^2} dt$$

en 1 à l'ordre 3.

Exercice 14: Calcul

Donner le développement limité en 0 à l'ordre n+1 de

$$\ln\left(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}\right).$$

Développement asymptotique

Développement limité généralisé en $a \in \mathbb{R}$

Exercice 15: Calcul de limites

Calculer les limites des expressions suivantes lorsqu'elles existent.

a.
$$(\tan x)^{\tan 2x}$$
 en $\frac{\pi}{4}$, **b.** $\frac{1}{x} - \frac{1}{\ln(1+x)}$ en 0,
c. $\frac{(1+x)^{\frac{1}{x}} - e}{x}$ en 0, **d.** $\frac{1}{2(1-\sqrt{x})} - \frac{1}{3(1-\sqrt[3]{x})}$ en 1,
e. $\frac{1}{\sin^4 x} \left(\sin \frac{x}{1-x} - \frac{\sin x}{1-\sin x} \right)$ en 0, **f.** $\frac{(1+x)^{\frac{\ln x}{x}} - x}{x(x^x - 1)}$ en 0.

Exercice 16 : Fonction de classe C^1

Soit f la fonction définie par

$$\forall x \in [-\pi/2, \pi/2], \quad f(x) \coloneqq \begin{cases} \frac{1}{\sin x} - \frac{1}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

Montrer que f est de classe C^1 sur $[-\pi/2, \pi/2]$.

$egin{aligned} D\'eveloppement \ asymptotique \ au \ voisinage \ de \ a \in \mathbb{R} \end{aligned}$

Exercice 17 : Développement de Arcsin x en -1

1. Établir une relation entre

Arcsin
$$\sqrt{x}$$
 et $\frac{\pi}{4} + \frac{1}{2} \operatorname{Arcsin} (2x - 1)$.

2. En déduire un développement asymptotique de Arcsin x en -1 à la précision x^2 .

$D\'{e}veloppement asymptotique au voisinage de \pm \infty$

Exercice 18: Calcul

Calculer les développements asymptotiques suivants

$$\sqrt[3]{x^3+x^2}-\sqrt[3]{x^3-x^2}\quad\text{en }+\infty \text{ à 2 termes},\qquad \ln\left(\sqrt{1+x}\right)\quad\text{en }+\infty \text{ à 2 termes}.$$

Développement asymptotique de suites

Exercice 19: La formule de Stirling

Le but de cet exercice est calculer de calculer un équivalent de n!. On considère la suite u définie par

$$\forall n \geqslant 0, \quad u_n := \frac{n^{n + \frac{1}{2}}}{e^n n!}.$$

1. Montrer que

$$\forall n\geqslant 1,\quad \ln\left(\frac{u_{n+1}}{u_n}\right)=n\left[\ln\left(1+\frac{1}{n}\right)-\frac{1}{n}\right]+\frac{1}{2}\ln\left(1+\frac{1}{n}\right).$$

2. En déduire que

$$\ln\left(\frac{u_{n+1}}{u_n}\right) \underset{n \to +\infty}{\sim} \frac{1}{12n^2}.$$

3. En déduire que la suite de terme général

$$S_n := \sum_{k=1}^{n-1} \ln \left(\frac{u_{k+1}}{u_k} \right)$$

est monotone à partir d'un certain rang. Montrer qu'il existe un rang à partir duquel

$$\ln\left(\frac{u_{k+1}}{u_k}\right) \leqslant \frac{1}{6k^2},$$

puis en déduire que (S_n) est convergente.

- 4. En déduire que la suite de terme général $\ln(u_n)$ est convergente.
- 5. En déduire l'existence d'un réel a > 0 tel que

$$n! \underset{n \to +\infty}{\sim} a\sqrt{n} \left(\frac{n}{e}\right)^n$$
.

6. En utilisant les résultats de l'exercice sur les intégrales de Wallis (compléments d'analyse), montrer que $a = \sqrt{2\pi}$.

Chapitre 16

Matrices et applications linéaires

16.1 Matr	ice, vecteur et application linéaire
16.1.1	Matrice d'une famille de vecteurs
16.1.2	Matrice d'une application linéaire
16.1.3	Matrice de passage, changement de base
16.1.4	Caractérisation des matrices inversibles
16.1.5	Rang d'une matrice
16.2 Matr	ices équivalentes, matrices semblables
16.2.1	Matrices équivalentes
16.2.2	Matrices semblables
16.3 Ever	cices

16.1 Matrice, vecteur et application linéaire

16.1.1 Matrice d'une famille de vecteurs

Définition 16.1.1

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E et $x \in E$. On appelle matrice de x relativement à la base \mathcal{B} et on note $\mathcal{M}_{\mathcal{B}}(x)$ la matrice colonne constituée des coordonnées de x relativement à la base \mathcal{B} . Autrement dit, si $x = x_1e_1 + \dots + x_ne_n$, alors

$$\mathcal{M}_{\mathcal{B}}(x) \coloneqq \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}).$$

Exercice 1

 \Rightarrow Soit $\alpha \in \mathbb{K}$ et $\mathcal{B} := (1, (X - \alpha), (X - \alpha)^2, \dots, (X - \alpha)^n)$. Donner la matrice de $P \in \mathbb{K}_n[X]$ relativement à la base \mathcal{B} .

Proposition 16.1.2

Soit E un \mathbb{K} -espace vectoriel de dimension n et \mathcal{B} une base de E. Alors, l'application

$$\Phi: E \longrightarrow \mathcal{M}_{n,1}(\mathbb{K})$$

$$x \longmapsto \mathcal{M}_{\mathcal{B}}(x)$$

est un isomorphisme d'espaces vectoriels.

Remarque

ightharpoonup Dans le cas où $E := \mathbb{K}^n$ et \mathcal{B} est sa base canonique, l'application Φ associe au vecteur $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ la matrice colonne

$$\mathcal{M}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Cet isomorphisme justifie l'identification souvent faite entre \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$. Cependant, lorsque E est différent de \mathbb{K}^n , on se gardera bien de confondre $x \in E$ avec la matrice colonne $\mathcal{M}_{\mathcal{B}}(x)$.

Définition 16.1.3

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E et (x_1, \dots, x_p) une famille de p vecteurs de E. On appelle matrice de la famille (x_1, \dots, x_p) relativement à la base \mathcal{B} et on note $\mathcal{M}_{\mathcal{B}}(x_1, \dots, x_p)$ la matrice à n lignes et p colonnes dont les vecteurs colonnes C_j sont les coordonnées des vecteurs x_j relativement à la base \mathcal{B} . Autrement dit, la famille $(a_{i,j})_{1 \le i \le n}$ des coefficients de $\mathcal{M}_{\mathcal{B}}(x_1, \dots, x_p)$ est caractérisée par $1 \le j \le p$

$$\forall j \in [1, p], \quad x_j = \sum_{i=1}^n a_{i,j} e_i.$$

Exercice 2

 \Rightarrow Donner la matrice de la famille $((X+1)^k)_{0 \leqslant k \leqslant n}$ relativement à la base canonique de $\mathbb{K}_n[X]$.

16.1.2 Matrice d'une application linéaire

Définition 16.1.4

Soit $\mathcal{B}_E := (e_1, \dots, e_p)$ une base de E et $\mathcal{B}_F := (f_1, \dots, f_q)$ une base de F. Étant donné $u \in \mathcal{L}(E, F)$, on appelle matrice de u relativement aux bases \mathcal{B}_F et \mathcal{B}_E et on note $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u)$ la matrice à q lignes et p colonnes de la famille $(u(e_1), \dots, u(e_p))$ relativement à la base \mathcal{B}_F

$$\mathcal{M}_{\mathcal{B}_{F} \leftarrow \mathcal{B}_{E}}(u) := \mathcal{M}_{\mathcal{B}_{F}}(u(e_{1}), \dots, u(e_{p})).$$

Autrement dit, la famille $(a_{i,j})_{\substack{1 \leq i \leq q \\ 1 \leq j \leq p}}$ des coefficients de $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u)$ est caractérisée par

$$\forall j \in [1, p], \quad u(e_j) = \sum_{i=1}^{q} a_{i,j} f_i.$$

Remarques

- \Rightarrow La matrice $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u)$ est parfois notée $\mathcal{M}_{\mathcal{B}_E, \mathcal{B}_F}(u)$ ou $\mathcal{M}_{\mathcal{B}_F}^{\mathcal{B}_E}(u)$.
- \Rightarrow Si E = F, on choisit le plus souvent $\mathcal{B}_E = \mathcal{B}_F$, bien que cela ne soit pas obligatoire. Dans ce cas on parle de la matrice de l'endomorphisme u relativement à la base \mathcal{B}_E . Cette matrice est notée $\mathcal{M}_{\mathcal{B}_E}(u)$.
- \Rightarrow Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E et $u \in \mathcal{L}(E)$.
 - 1. $\mathcal{M}_{\mathcal{B}}(u)$ est scalaire si et seulement si u est une homothétie.
 - 2. $\mathcal{M}_{\mathcal{B}}(u) = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ si et seulement si

$$\forall k \in [1, n], \quad u(e_k) = \lambda_k e_k.$$

3. Pour tout $k \in [0, n]$, on note $E_k := \text{Vect}(e_1, \dots, e_k)$. Alors $\mathcal{M}_{\mathcal{B}}(u)$ est triangulaire supérieure si et seulement si

$$\forall k \in [1, n], \quad u(E_k) \subset E_k.$$

Par exemple, si $E := \mathbb{K}_n[X]$ et \mathcal{B} est sa base canonique, $\mathcal{M}_{\mathcal{B}}(u)$ est triangulaire supérieure si et seulement si

$$\forall P \in \mathbb{K}_n[X], \quad \deg(u(P)) \leqslant \deg P.$$

 \Rightarrow Soit p un projecteur de E, $A := \operatorname{Ker}(p - \operatorname{Id})$ et $B := \operatorname{Ker} p$. Puisque p est un projecteur, $E = A \oplus B$. Soit (e_1, \ldots, e_q) une base de A et (e_{q+1}, \ldots, e_n) une base de B. Alors $\mathcal{B} := (e_1, \ldots, e_n)$ est une base de E. Comme

$$\forall k \in [1, q], \quad p(e_k) = e_k \quad \text{et} \quad \forall k \in [q+1, n], \quad p(e_k) = 0$$

on en déduit que

$$\mathcal{M}_{\mathcal{B}}(p) = \begin{pmatrix} I_q & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

Exercices 3

 \Rightarrow Soit φ l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique de \mathbb{R}^3 est

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Déterminer une base de $\operatorname{Ker} \varphi$ ainsi qu'une base de $\operatorname{Im} \varphi$.

⇒ Calculer la matrice de l'application linéaire

$$\varphi: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \longmapsto P(X+1)$$

relativement à la base canonique de $\mathbb{R}_n[X]$.

Proposition 16.1.5

Soit \mathcal{B}_E et \mathcal{B}_F des bases respectives de E et F. Si on note $p := \dim E$ et $q := \dim F$, l'application

$$\varphi: \quad \mathcal{L}\left(E,F\right) \quad \longrightarrow \quad \mathcal{M}_{q,p}\left(\mathbb{K}\right) \\ u \quad \longmapsto \quad \mathcal{M}_{\mathcal{B}_{F} \leftarrow \mathcal{B}_{E}}\left(u\right)$$

est un isomorphisme d'espaces vectoriels.

Remarque

 \Rightarrow Si $A \in \mathcal{M}_{q,p}(\mathbb{K})$, il existe donc une unique application linéaire $u \in \mathcal{L}(E,F)$ telle que $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u) = A$.

Proposition 16.1.6

— Soit $u \in \mathcal{L}(E, F)$ et $x \in E$. Si \mathcal{B}_E et \mathcal{B}_F sont des bases respectives de E et F, alors

$$\mathcal{M}_{\mathcal{B}_F}(u(x)) = \mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u) \mathcal{M}_{\mathcal{B}_E}(x).$$

— Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Si \mathcal{B}_E , \mathcal{B}_F et \mathcal{B}_G sont des bases respectives de E, F et G, alors

$$\mathcal{M}_{\mathcal{B}_G \leftarrow \mathcal{B}_E} (v \circ u) = \mathcal{M}_{\mathcal{B}_G \leftarrow \mathcal{B}_E} (v) \mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E} (u).$$

Remarque

⇒ Si $E := \mathbb{K}^p$, $F := \mathbb{K}^q$, \mathcal{B}_E et \mathcal{B}_F sont leurs bases canoniques, et $A \in \mathcal{M}_{q,p}(\mathbb{K})$, il existe une unique application linéaire $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^q)$ telle que $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u) = A$. On dit que c'est l'application linéaire canoniquement associée à A. En identifiant $\mathcal{M}_{n,1}(\mathbb{K})$ et \mathbb{K}^n (pour n = p et n = q), si $x \in \mathbb{K}^p$, on a u(x) = Ax. Ceci conduit à confondre A et u et explique la définition du noyau et de l'image de A donnée dans le précédent cours sur les matrices.

Exercice 4

⇒ Retrouver le fait que le produit de deux matrices triangulaires supérieures est triangulaire supérieure.

Proposition 16.1.7

Soit \mathcal{B}_E et \mathcal{B}_F des bases respectives des \mathbb{K} -espaces vectoriels E et F de dimension n et $u \in \mathcal{L}(E, F)$. Alors $\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E}(u)$ est inversible si et seulement si u est un isomorphisme. De plus, si tel est le cas

$$\left[\mathcal{M}_{\mathcal{B}_{F}\leftarrow\mathcal{B}_{E}}\left(u\right)\right]^{-1}=\mathcal{M}_{\mathcal{B}_{E}\leftarrow\mathcal{B}_{F}}\left(u^{-1}\right).$$

Exercice 5

 \Rightarrow Soit $n \in \mathbb{N}$. Montrer que la matrice $A \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par

$$\forall i,j \in \llbracket 1,n+1 \rrbracket \,, \quad a_{i,j} \coloneqq \binom{j-1}{i-1}.$$

est inversible et calculer son inverse.

Proposition 16.1.8

Soit \mathcal{B} une base d'un \mathbb{K} -espace vectoriel E de dimension n et (x_1, \ldots, x_n) une famille de n vecteurs de E. Alors $\mathcal{M}_{\mathcal{B}}(x_1, \ldots, x_n)$ est inversible si et seulement si (x_1, \ldots, x_n) est une base de E.

Proposition 16.1.9

Soit E un \mathbb{K} -espace vectoriel de dimension n et \mathcal{B} une base de E. Alors, l'application

$$\varphi: \quad \mathcal{L}(E) \quad \longrightarrow \quad \mathcal{M}_n(\mathbb{K})$$

$$u \quad \longmapsto \quad \mathcal{M}_{\mathcal{B}}(u)$$

est un isomorphisme d'algèbres.

Remarque

⇒ En conservant les mêmes notations, l'application

$$\psi: \operatorname{GL}(E) \longrightarrow \operatorname{GL}_n(\mathbb{K})$$

$$u \longmapsto \mathcal{M}_{\mathcal{B}}(u)$$

est un isomorphisme de groupes.

 \Rightarrow Soit $u \in \mathcal{L}(E)$ et E_1, E_2 deux sous-espaces vectoriels supplémentaires de E, de dimensions respectives n_1 et n_2 . Soit \mathcal{B}_1 une base de E_1 et \mathcal{B}_2 une base de E_2 . Alors $\mathcal{B} := \mathcal{B}_1, \mathcal{B}_2$ est une base de E adaptée à la décomposition $E = E_1 \oplus E_2$. On note p_1 le projecteur sur E_1 parallèlement à E_2 et p_2 le projecteur sur E_2 parallèlement à E_1 . On définit, pour tout $i, j \in [1, 2]$ l'application linéaire $u_{i,j}$ de E_j dans E_i par

$$\forall x \in E_j, \quad u_{i,j}(x) \coloneqq (p_i \circ u)(x).$$

On pose enfin $A := \mathcal{M}_{\mathcal{B}}(u) \in \mathcal{M}_n(\mathbb{K})$ et, pour tout $i, j \in [1, 2]$, $A_{i,j} := \mathcal{M}_{\mathcal{B}_i \leftarrow \mathcal{B}_j}(u_{i,j}) \in \mathcal{M}_{n_i, n_j}(\mathbb{K})$. On a alors

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$$

De nombreuses propriétés géométriques de u se traduisent sur la décomposition par blocs de A. Notamment :

- E_1 est stable par u si et seulement si $A_{2,1} = 0$. Si tel est le cas, $A_{1,1}$ est la matrice de l'endomorphisme u induit à E_1 , relativement à la base \mathcal{B}_1 .
- E_2 est stable par u si et seulement si $A_{1,2} = 0$. Si tel est le cas, $A_{2,2}$ est la matrice de l'endomorphisme u induit à E_2 , relativement à la base \mathcal{B}_2 .

On utilisera souvent cette décomposition lorsque E_1 est un sous-espace vectoriel de E stable par u, et E_2 est un supplémentaire de E_1 . Il est important de noter que dans ce cas $A_{2,1}=0$, mais que $A_{1,2}$ n'a aucune raison d'être nul. Autrement dit E_2 n'a aucune raison d'être stable par u. Ce serait donc une erreur de dire que $A_{2,2}$ est la matrice de l'endomorphisme u induit à E_2 ; on peut seulement dire que c'est la matrice de l'endomorphisme $p_2 \circ u$, induit à E_2 .

Exercice 6

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension finie. Montrer que les endomorphismes de E qui commutent avec tous les endomorphismes de E sont les homothéties.

16.1.3 Matrice de passage, changement de base

Définition 16.1.10

Soit \mathcal{B} et $\mathcal{B}' := (e'_1, \dots, e'_n)$ deux bases de E. On appelle matrice de passage de \mathcal{B} à \mathcal{B}' et on note $P(\mathcal{B}, \mathcal{B}')$ la matrice de la famille (e'_1, \dots, e'_n) relativement à la base \mathcal{B}

$$P(\mathcal{B}, \mathcal{B}') := \mathcal{M}_{\mathcal{B}}(e'_1, \dots, e'_n) \in GL_n(\mathbb{K}).$$

Proposition 16.1.11

— Si \mathcal{B} et \mathcal{B}' sont deux bases de E, alors

$$P(\mathcal{B}, \mathcal{B}') = \mathcal{M}_{\mathcal{B} \leftarrow \mathcal{B}'}(\mathrm{Id}_E).$$

— Si \mathcal{B} , \mathcal{B}' et \mathcal{B}'' sont des bases de E, alors

$$P(\mathcal{B}, \mathcal{B}'') = P(\mathcal{B}, \mathcal{B}') P(\mathcal{B}', \mathcal{B}'').$$

— Si \mathcal{B} et \mathcal{B}' sont deux bases de E, $P(\mathcal{B}, \mathcal{B}')$ est inversible et

$$\left[P\left(\mathcal{B},\mathcal{B}'\right)\right]^{-1} = P\left(\mathcal{B}',\mathcal{B}\right).$$

Exercice 7

 \Rightarrow Soit $E := \mathbb{K}^2$ et $\mathcal{B} := (e_1, e_2)$ la base canonique de \mathbb{K}^2 . On pose $f_1 := (5, 3)$ et $f_2 := (3, 2)$. Montrer que $\mathcal{B}' := (f_1, f_2)$ est une base de \mathbb{K}^2 , puis calculer $P(\mathcal{B}, \mathcal{B}')$ et $P(\mathcal{B}', \mathcal{B})$.

Proposition 16.1.12

Soit \mathcal{B} une base de E. Alors pour toute matrice inversible $A \in GL_n(\mathbb{K})$, il existe une unique base \mathcal{B}' de E telle que $A = P(\mathcal{B}, \mathcal{B}')$.

Proposition 16.1.13

Soit \mathcal{B} et \mathcal{B}' deux bases de E et $x \in E$. Alors

$$\mathcal{M}_{\mathcal{B}'}(x) = P(\mathcal{B}', \mathcal{B}) \mathcal{M}_{\mathcal{B}}(x).$$

Proposition 16.1.14

Soit \mathcal{B}_E et \mathcal{B}'_E deux bases de E et \mathcal{B}_F et \mathcal{B}'_F deux bases de F. Si $u \in \mathcal{L}(E,F)$, on a

$$\mathcal{M}_{\mathcal{B}'_{F} \leftarrow \mathcal{B}'_{E}}(u) = P(\mathcal{B}'_{F}, \mathcal{B}_{F}) \, \mathcal{M}_{\mathcal{B}_{F} \leftarrow \mathcal{B}_{E}}(u) \, P(\mathcal{B}_{E}, \mathcal{B}'_{E})$$
$$= [P(\mathcal{B}_{F}, \mathcal{B}'_{F})]^{-1} \, \mathcal{M}_{\mathcal{B}_{F} \leftarrow \mathcal{B}_{E}}(u) \, P(\mathcal{B}_{E}, \mathcal{B}'_{E}).$$

Proposition 16.1.15

Soit \mathcal{B} et \mathcal{B}' deux bases de E et $u \in \mathcal{L}(E)$. Alors

$$\mathcal{M}_{\mathcal{B}'}(u) = P(\mathcal{B}', \mathcal{B}) \mathcal{M}_{\mathcal{B}}(u) P(\mathcal{B}, \mathcal{B}')$$
$$= [P(\mathcal{B}, \mathcal{B}')]^{-1} \mathcal{M}_{\mathcal{B}}(u) P(\mathcal{B}, \mathcal{B}').$$

16.1.4 Caractérisation des matrices inversibles

Proposition 16.1.16

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

- A est inversible si et seulement si A est inversible à gauche, c'est-à-dire si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $BA = I_n$. Si tel est le cas, $B = A^{-1}$ et en particulier $AB = I_n$.
- A est inversible si et seulement si A est inversible à droite, c'est-à-dire si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = I_n$. Si tel est le cas, $B = A^{-1}$ et en particulier $BA = I_n$.

Proposition 16.1.17

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{K}), \quad AX = 0 \implies X = 0.$$

Remarque

 \Rightarrow Autrement dit, une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si la famille de ses vecteurs colonne est libre. Comme A est inversible si et seulement si A^{\top} l'est, on en déduit que A est inversible si et seulement si la famille de ses vecteurs ligne est libre.

Proposition 16.1.18

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que

$$\forall X, Y \in \mathcal{M}_{n,1}(\mathbb{K}), \quad AX = Y \implies X = BY.$$

De plus, si tel est le cas, B est l'inverse de A.

Remarque

 \Rightarrow Soit $A \in \mathcal{M}_n(\mathbb{K})$ les coefficients d'un système linéaire à n équations et n inconnues. Supposons qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que quels que soient $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{K}$

$$(S) \begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = y_1 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = y_n \end{cases} \implies \begin{cases} x_1 = b_{1,1}y_1 + b_{1,2}y_2 + \dots + b_{1,n}y_n \\ \vdots \\ x_n = b_{n,1}y_1 + b_{n,2}y_2 + \dots + b_{n,n}y_n. \end{cases}$$

Alors, quels que soient $y_1, \ldots, y_n \in \mathbb{K}$

$$\begin{cases} x_1 \coloneqq b_{1,1}y_1 + b_{1,2}y_2 + \dots + b_{1,n}y_n \\ \vdots \\ x_n \coloneqq b_{n,1}y_1 + b_{n,2}y_2 + \dots + b_{n,n}y_n \end{cases}$$

est l'unique solution du système linéaire (S).

Exercices 8

 \Rightarrow Soit $n \geqslant 2$. Montrer que

$$A = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \cdots & \cdots & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

est inversible et calculer son inverse.

 \Rightarrow Soit $n \in \mathbb{N}^*$, $\omega := e^{i\frac{2\pi}{n}}$ et $b_0, \ldots, b_{n-1} \in \mathbb{C}$. Résoudre le système

$$\forall i \in [0, n-1], \quad \sum_{j=0}^{n-1} \omega^{ij} z_j = b_i.$$

Proposition 16.1.19

Une matrice triangulaire supérieure $T \in \mathcal{M}_n(\mathbb{K})$ de la forme

$$\begin{pmatrix} \lambda_1 & \star & & \star \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

est inversible si et seulement si

$$\forall k \in [1, n], \quad \lambda_k \neq 0.$$

Si tel est le cas

16.1.5 Rang d'une matrice

Définition 16.1.20

On définit le rang de $A \in \mathcal{M}_{q,p}(\mathbb{K})$, que l'on note rg A, comme étant le rang de la famille de ses vecteurs colonne.

Exercice 9

 \Rightarrow Montrer que les matrices de rang 1 de $\mathcal{M}_n(\mathbb{K})$ sont les XY^{\top} où $X,Y \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}$.

Proposition 16.1.21

— Soit \mathcal{B} une base de E et (x_1,\ldots,x_p) une famille de p vecteurs de E. Alors

$$\operatorname{rg}(x_1,\ldots,x_p)=\operatorname{rg}(\mathcal{M}_{\mathcal{B}}(x_1,\ldots,x_p)).$$

— Soit \mathcal{B}_{E} et \mathcal{B}_{F} des bases respectives de E et F et $u \in \mathcal{L}(E, F)$. Alors

$$\operatorname{rg} u = \operatorname{rg} \left(\mathcal{M}_{\mathcal{B}_{F} \leftarrow \mathcal{B}_{F}} \left(u \right) \right).$$

Proposition 16.1.22

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si rg(A) = n.

Proposition 16.1.23

— Soit $A \in \mathcal{M}_{r,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors

$$rg(AB) \leqslant rg(A)$$
 et $rg(AB) \leqslant rg(B)$.

 On ne change pas le rang d'une matrice si on la multiplie par la droite ou par la gauche par une matrice inversible.

Proposition 16.1.24

Les opérations élémentaires sur les lignes et les colonnes transforment une matrice en une autre de même rang.

Proposition 16.1.25

Soit $E \in \mathcal{M}_{q,p}(\mathbb{K})$ une matrice échelonnée à coefficients diagonaux de la forme

où $p_1, \ldots, p_r \in \mathbb{K}^*$. Alors $\operatorname{rg}(E) = r$.

Remarques

- ⇒ L'algorithme du pivot de Gauss permet de transformer toute matrice en une matrice échelonnée à pivots diagonaux et permet donc de calculer son rang.
- ⇒ Les matrices échelonnées par lignes et par colonnes ont aussi un rang égal au nombre de pivots qu'elles possèdent.

Exercices 10

 \Rightarrow Calculer le rang de $P_1 := X^2 + X + 1$, $P_2 := X^2 - X - 1$, $P_3 := X^2 + 3X + 2$.

 \Rightarrow Calculer le rang de

$$\varphi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$X \longmapsto AX$$

οù

$$A \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

- \Rightarrow Calculer le rang de la famille $e_1 := (1, x, -1), e_2 := (x, 1, x), e_3 := (-1, x, 1)$ où $x \in \mathbb{R}$.
- \Rightarrow Soit $a, b \in \mathbb{R}$. Calculer le rang de la matrice

$$\begin{pmatrix}
a & b & b \\
b & a & b \\
b & b & a
\end{pmatrix}$$

Proposition 16.1.26

- Les opérations élémentaires sur les lignes transforment une matrice en une autre de même noyau.
- Les opérations élémentaires sur les colonnes transforment une matrice en une autre de même image.

Remarque

 \Rightarrow Pour calculer une base de l'image d'une matrice $A \in \mathcal{M}_{q,p}(\mathbb{K})$, il suffit donc de réduire A en une matrice échelonnée par colonnes à l'aide d'opérations élémentaires sur les colonnes. Le nombre de colonnes non nulles est alors égal au rang de A et ces colonnes forment une base de Im(A).

Exercice 11

 \Rightarrow Dans $\mathcal{M}_2(\mathbb{R})$, on pose

$$A \coloneqq \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$$

et F := Vect(A, B). Déterminer une équation de F.

16.2 Matrices équivalentes, matrices semblables

16.2.1 Matrices équivalentes

Définition 16.2.1

Soit $A, B \in \mathcal{M}_{q,p}(\mathbb{K})$. On dit que A est équivalente à B lorsqu'il existe $Q \in GL_q(\mathbb{K})$ et $P \in GL_p(\mathbb{K})$ tels que

$$A = QBP$$
.

Proposition 16.2.2

La relation « est équivalente à » est une relation d'équivalence sur $\mathcal{M}_{q,p}(\mathbb{K})$.

Remarque

⇒ Les opérations élémentaires sur les lignes et les colonnes transforment une matrice en une matrice équivalente.

Proposition 16.2.3

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$, E un \mathbb{K} -espace vectoriel de dimension p, \mathcal{B}_E une base de E, F un \mathbb{K} -espace vectoriel de dimension q, \mathcal{B}_F une base de F et u l'application linéaire de E dans F définie par

$$\mathcal{M}_{\mathcal{B}_F \leftarrow \mathcal{B}_E} (u) = A.$$

Alors $B \in \mathcal{M}_{q,p}(\mathbb{K})$ est équivalente à A si et seulement si il existe une base \mathcal{B}'_E de E et une base \mathcal{B}'_F de F telles que

$$\mathcal{M}_{\mathcal{B}_{E}^{\prime}\leftarrow\mathcal{B}_{E}^{\prime}}\left(u\right)=B.$$

Proposition 16.2.4

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$ une matrice de rang r. Alors A est équivalente à la matrice

Remarques

- \Rightarrow En toute rigueur, une telle matrice devrait être notée $J_{r,q,p}$.
- Arr L'algorithme du pivot de Gauss permet le calcul effectif de $Q \in \mathrm{GL}_q(\mathbb{K})$ et $P \in \mathrm{GL}_p(\mathbb{K})$ tels que $PAQ = J_r$.

Exercice 12

 \Rightarrow Soit $A \in \mathcal{M}_n(\mathbb{K})$. On pose

$$\varphi: \quad \mathcal{M}_n\left(\mathbb{K}\right) \quad \longrightarrow \quad \mathcal{M}_n\left(\mathbb{K}\right)$$

$$X \quad \longmapsto \quad XA$$

Calculer le rang de φ en fonction de celui de A.

Proposition 16.2.5

Deux matrices $A, B \in \mathcal{M}_{q,p}(\mathbb{K})$ sont équivalentes si et seulement si elles ont même rang.

Proposition 16.2.6

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$. Alors A^{\top} et A ont même rang.

Remarques

- \Rightarrow Le rang de $A \in \mathcal{M}_{q,p}(\mathbb{K})$ est donc égal à la fois au rang de la famille de ses vecteurs colonne et au rang de la famille de ses vecteurs ligne.
- \Rightarrow Attention, si $A \in \mathcal{M}_{q,p}(\mathbb{K})$ n'est pas une matrice carrée, A et A^{\top} ont même rang mais elles ne sont pas équivalentes. En effet, elles n'ont pas les mêmes dimensions.

Définition 16.2.7

On appelle matrice extraite de $A \in \mathcal{M}_{q,p}(\mathbb{K})$ toute matrice obtenue en « supprimant » certaines lignes et certaines colonnes de A.

Exemple

 \Rightarrow Soit A et B les matrices

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathcal{M}_{2,3}\left(\mathbb{K}\right) \quad \text{et} \quad B := \begin{pmatrix} 1 & 3 \end{pmatrix} \in \mathcal{M}_{1,2}\left(\mathbb{K}\right).$$

Alors B est une matrice extraite de A.

Proposition 16.2.8

Soit $A \in \mathcal{M}_{q,p}(\mathbb{K})$.

- Si B est une matrice extraite de A, alors $rg(B) \leq rg(A)$.
- Le rang de A est le plus grand entier r tel qu'il existe une matrice $B \in \mathcal{M}_r(\mathbb{K})$ extraite de A qui est inversible.

16.2.2 Matrices semblables

Définition 16.2.9

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A est semblable à B lorsqu'il existe $P \in GL_n(\mathbb{K})$ telle que

$$A = PBP^{-1}.$$

Proposition 16.2.10

La relation « est semblable à » est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.

Remarques

- \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice scalaire, c'est la seule matrice semblable à elle-même.
- ⇒ Deux matrices semblables sont équivalentes. La réciproque est fausse.
- \Rightarrow Soit $P \in GL_n(\mathbb{K})$. Alors

$$\varphi: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$$

$$X \longmapsto PXP^{-1}$$

est un isomorphisme d'algèbres. En particulier, si $A=PBP^{-1}$, quel que soit $k\in\mathbb{N},$ $A^k=PB^kP^{-1}$. Plus généralement, si $Q\in\mathbb{K}[X],$ $Q(A)=PQ(B)P^{-1}$.

Proposition 16.2.11

Soit $A \in \mathcal{M}_n(\mathbb{K})$, E un \mathbb{K} -espace vectoriel de dimension n, \mathcal{B} une base de E et u l'endomorphisme de E défini par

$$\mathcal{M}_{\mathcal{B}}(u) = A.$$

Alors $B \in \mathcal{M}_n(\mathbb{K})$ est semblable à A si et seulement si il existe une base \mathcal{B}' de E telle que

$$\mathcal{M}_{\mathcal{B}'}(u) = B.$$

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On appelle valeur propre de u tout $\lambda \in \mathbb{K}$ tel qu'il existe $x \in E \setminus \{0\}$ tel que $u(x) = \lambda x$. Si $\lambda \in \mathbb{K}$ est une valeur propre de u, l'ensemble E_{λ} des $x \in E$ tels que $u(x) = \lambda x$ est appelé espace propre associé à la valeur propre λ et ses éléments sont appelés vecteurs propres de u. Remarquons que $E_{\lambda} = \operatorname{Ker}(u - \lambda \operatorname{Id})$.

Exercices 13

- ⇒ Déterminer les valeurs propres d'un projecteur non trivial, c'est-à-dire différent de 0 et de Id.
- \Rightarrow Soit x_1, \dots, x_p des vecteurs propres non nuls d'un endomorphisme u associés à des valeurs propres deux à deux distinctes. Montrer que la famille (x_1, \dots, x_p) est libre.

On dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable lorsqu'il existe une base de E formée de vecteurs propres de u, c'est-à-dire lorsqu'il existe une base $\mathcal{B} := (e_1, \dots, e_n)$ de E et $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que

$$\forall k \in [1, n], \quad u(e_k) = \lambda_k e_k.$$

On a alors $\mathcal{M}_{\mathcal{B}}(u) = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable lorsqu'elle est semblable à une matrice diagonale. En pratique, on note \mathcal{B} la base canonique de \mathbb{K}^n et on note u l'unique endomorphisme de E tel que $\mathcal{M}_{\mathcal{B}}(u) = A$.

— On commence par déterminer les valeurs propres de u. Pour $\lambda \in \mathbb{K}$

$$\lambda \text{ est valeur propre de } u \iff \exists x \in \mathbb{K}^n \setminus \{0\} \,, \quad u(x) = \lambda x$$

$$\iff \exists x \in \mathbb{K}^n \setminus \{0\} \,, \quad (u - \lambda \operatorname{Id})(x) = 0$$

$$\iff \operatorname{Ker}(u - \lambda \operatorname{Id}) \neq \{0\}$$

$$\iff u - \lambda \operatorname{Id} \text{ n'est pas injective}$$

$$\iff u - \lambda \operatorname{Id} \text{ n'est pas un isomorphisme}$$

$$\iff A - \lambda I_n \text{ n'est pas inversible}.$$

Déterminer les valeurs propres de u revient donc à déterminer les $\lambda \in \mathbb{K}$ tels que $A - \lambda I_n$ n'est pas inversible, ce qui se fait simplement en calculant le rang de $A - \lambda I_n$ par la méthode du pivot de Gauss.

- Ensuite, pour toute valeur propre $\lambda \in \mathbb{K}$ de u, on détermine une base de l'espace propre $E_{\lambda} = \mathrm{Ker}(u \lambda \operatorname{Id})$.
- Enfin, on concatène les bases des espaces propres ainsi obtenus. On obtient alors une famille $\mathcal{V} := (v_1, \dots, v_p)$ d'éléments de \mathbb{K}^n . La famille ainsi obtenue est libre. Il bien sûr nécessaire de le montrer si on en a besoin.
 - Dans le cas où p = n, \mathcal{V} est une base de \mathbb{K}^n . En posant $P := P(\mathcal{B}, \mathcal{V})$ et $D := \mathcal{M}_{\mathcal{V}}(u)$, on a donc $A = PDP^{-1}$. Or D est une matrice diagonale, car les éléments de \mathcal{V} sont des vecteurs propres de u. On a donc prouvé que A est diagonalisable.
 - Dans le cas où p < n, on peut montrer que la matrice A n'est pas diagonalisable.

Exercice 14

 \Rightarrow Montrer que la matrice

$$A \coloneqq \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$$

est semblable à une matrice diagonale D et déterminer une matrice $P \in GL_2(\mathbb{R})$ telle que $A = PDP^{-1}$.

Proposition 16.2.12

Soit A et $B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Alors $\operatorname{tr} A = \operatorname{tr} B$.

Définition 16.2.13

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Alors la trace de $\mathcal{M}_{\mathcal{B}}(u)$ ne dépend pas de la base \mathcal{B} de E choisie. On l'appelle trace de u et on la note tr(u).

Remarque

 \Rightarrow La trace est une forme linéaire sur $\mathcal{L}(E)$.

Exercice 15

 \Rightarrow Soit $p \in \mathcal{L}(E)$ un projecteur. Montrer que $\operatorname{tr}(p) = \operatorname{rg}(p)$.

Proposition 16.2.14

Soit E un K-espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$. Alors

$$\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u).$$

16.3 Exercices

Matrices, vecteur et application linéaire

Matrice d'une famille de vecteurs

Matrice d'une application linéaire

Exercice 1: Base, noyau et image

1. On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A := \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}$$

Donner une base de Ker f et Im f.

2. Soit f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 canoniquement associée à la matrice

$$A := \begin{pmatrix} -11 & 7 & 0 & 3\\ 0 & 1 & 11 & 2\\ 1 & 0 & 7 & 1 \end{pmatrix}$$

Déterminer le rang de f, ainsi qu'une base de son noyau et de son image. Donner une équation de l'image.

Matrice de passage, changement de base

Exercice 2 : Calcul de matrices

1. On considère l'endomorphisme u de $\mathbb{R}_3[X]$ défini par

$$\forall P \in \mathbb{R}_3[X], \quad u(P) := P' + P.$$

Écrire la matrice de u dans la base $(1, X, X^2, X^3)$.

2. Dans \mathbb{R}^3 , déterminer la matrice de passage de la base b_1 à la base b_2 avec

$$b_1 := ((1,2,1), (2,3,3), (3,7,1))$$

$$b_2 := ((3,1,4),(5,3,2),(1,-1,7))$$

Caractérisation des matrices inversibles

Exercice 3 : Calcul dans l'anneau $\mathcal{M}_n(\mathbb{K})$

Soit A et B deux matrices de \mathcal{M}_n (\mathbb{K}) telles que AB = A + B. Montrer que A et B commutent.

Exercice 4: Matrices à diagonale dominante

Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$ à coefficients diagonaux dominants, c'est-à-dire telle que

$$\forall i \in [1, n], \quad |a_{i,i}| > \sum_{\substack{j=1\\ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

Rang d'une matrice

Exercice 5 : Calcul de rang et d'inverse

Calculer les rangs des matrices suivantes et calculer leurs inverses quand il y a lieu.

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 3 \\ \lambda & 3 & -2 & 0 \\ -1 & 0 & -4 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & \lambda \\ -4 & 4 & -4 \\ 6 & 4 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & -1 & 2 \\ \lambda & 1 & 1 & 1 \\ 1 & -1 & 3 & -3 \\ 4 & 2 & 0 & \lambda \end{pmatrix}$$

16.3. EXERCICES 313

Matrices équivalentes, matrices semblables

Matrices équivalentes

Exercice 6: Rang

Soit $A, B \in \mathcal{M}_{q,p}(\mathbb{K})$. Montrer que

$$\operatorname{rg} B \leqslant \operatorname{rg} A \iff [\exists Q \in \operatorname{GL}_q(\mathbb{K}), \exists P \in \mathcal{M}_p(\mathbb{K}), B = QAP].$$

Exercice 7: Étude d'un système affine

Soit a, b, c trois réels deux à deux distincts.

1. Montrer que le système

$$\begin{cases} x + ay + a^2z = 0\\ x + by + b^2z = 0\\ x + cy + c^2z = 0 \end{cases}$$

est de Cramer.

2. Résoudre le système

$$\begin{cases} x + ay + a^{2}z = a^{4} \\ x + by + b^{2}z = b^{4} \\ x + cy + c^{2}z = c^{4} \end{cases}$$

Matrices semblables

Exercice 8 : Réduction d'une matrice

Soit A la matrice

$$A \coloneqq \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1. Déterminer l'ensemble des valeurs propres de A.
- 2. Déterminer une matrice diagonale D semblable à A. En déduire un polynôme annulateur non nul de A.
- 3. Expliciter les suites u, v et w définies par la donnée de u_0, v_0, w_0 et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad \begin{cases} u_{n+1} \coloneqq 2v_n - w_n \\ v_{n+1} \coloneqq 3u_n - 2v_n \\ w_{n+1} \coloneqq -2u_n + 2v_n + w_n \end{cases}$$

Exercice 9 : Matrices telles que $M^2 = 0$

Déterminer les matrices $M \in \mathcal{M}_3(\mathbb{K})$ telles que $M^2 = 0$.

Exercice 10 : Réduction des matrices nilpotentes

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente d'indice de nilpotence n, c'est-à-dire telle que

$$A^n = 0$$
 et $A^{n-1} \neq 0$.

Montrer que A est semblable aux matrices

$$\begin{pmatrix} 0 & \dots & \dots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

Exercice 11: Valeurs propres et de AB et BA

On appelle valeur propre d'une matrice $X \in \mathcal{M}_n(\mathbb{K})$ tout réel λ tel que $X - \lambda I_n$ ne soit pas inversible. Montrer que si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{K})$, alors AB et BA ont les mêmes valeurs propres non nulles.

Chapitre 17

Dérivation

 \ll Le chemin le plus court d'un point à un autre est la ligne droite, à condition que les deux points soient bien en face l'un de l'autre. »

— Pierre Dac (1893–1975)

17 1 1	Définition
	Théorèmes usuels
	Fonction dérivée, dérivées successives
17.1.4	Fonctions de classe C^n
17.2 Théo	orème de Rolle et applications
17.2.1	Extrémum local
17.2.2	Théorème de Rolle, accroissements finis
17.2.3	Dérivation et monotonie
17.2.4	Théorème de la limite de la dérivée
17.3 Conv	vexité
17.3.1	Définition, propriétés élémentaires
17.3.2	Convexité et dérivation
17.4 Exer	rcices

Dans ce chapitre, $\mathbb K$ désignera l'un des corps $\mathbb R$ ou $\mathbb C.$

17.1 Fonction dérivable, dérivées successives

17.1.1 Définition

Définition 17.1.1

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est dérivable en $x_0 \in \mathcal{D}$ lorsque le taux d'accroissement

$$\frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 ; si tel est le cas, on note $f'(x_0)$ cette limite que l'on appelle nombre dérivé de f en x_0 . La propriété « est dérivable en x_0 » est locale en x_0 .

Remarques

 \Rightarrow Un changement de variable montre que f est dérivable en $x_0 \in \mathcal{D}$ si et seulement si

$$\frac{f(x_0+h)-f(x_0)}{h}$$

admet une limite finie lorsque h tend vers 0.

 \Rightarrow Si $f: \mathcal{D} \to \mathbb{R}$ est dérivable en $x_0 \in \mathcal{D}$, son graphe admet une tangente d'équation

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Cette tangente est horizontale si et seulement si $f'(x_0) = 0$. Lorsque le taux d'accroissement de f en x_0 tend vers $\pm \infty$, le graphe de f admet une tangente verticale.

Définition 17.1.2

— On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est dérivable à gauche en $x_0 \in \mathcal{D}$ lorsque le taux d'accroissement

$$\frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 par la gauche; si tel est le cas, on note $f'_g(x_0)$ cette limite que l'on appelle nombre dérivé à gauche de f en x_0 . La propriété « est dérivable à gauche en x_0 » est locale à gauche, au sens large, en x_0 .

— On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est dérivable à droite en $x_0 \in \mathcal{D}$ lorsque le taux d'accroissement

$$\frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie lorsque x tend vers x_0 par la droite; si tel est le cas, on note $f'_d(x_0)$ cette limite que l'on appelle nombre dérivé à droite de f en x_0 . La propriété « est dérivable à droite en x_0 » est locale à droite, au sens large, en x_0 .

Proposition 17.1.3

Une fonction $f: \mathcal{D} \to \mathbb{K}$ est dérivable en $x_0 \in \mathcal{D}$ si et seulement si les objets ci-dessous susceptibles d'avoir un sens

$$f_q'(x_0)$$
 et $f_d'(x_0)$

existent et sont égaux. Si tel est le cas, $f'(x_0)$ est cette valeur commune.

Exercice 1

⇒ Étudier la dérivabilité des fonctions d'expression

$$|x|$$
 et $\frac{x}{1+|x|}$

en 0.

Proposition 17.1.4

Une fonction dérivable en un point est continue en ce point.

Remarque

 \Rightarrow La réciproque de cette proposition est fausse comme le montre l'exemple de la fonction $x \mapsto \sqrt{x}$ en 0.

Proposition 17.1.5

Une fonction $f: \mathcal{D} \to \mathbb{K}$ est dérivable en $x_0 \in \mathcal{D}$ si et seulement si elle y admet un développement limité à l'ordre 1. Si tel est le cas

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \underset{h\to 0}{\text{o}}(h).$$

Définition 17.1.6

Soit $f: \mathcal{D} \to \mathbb{K}$.

- On dit que f est dérivable lorsqu'elle est dérivable en tout point de \mathcal{D} .
- Si A est une partie de \mathcal{D} , on dit que f est $d\acute{e}rivable$ sur A lorsque la restriction de f à A est dérivable.

Remarque

 \Rightarrow Si A est une partie de \mathcal{D} et que f est dérivable en tout point de A, alors f est dérivable sur A. Cependant la

réciproque est fausse. Par exemple, la fonction f définie sur \mathbb{R} par f(x) := |x| est dérivable sur \mathbb{R}_+ mais elle n'est pas dérivable en 0.

Proposition 17.1.7

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction définie sur un domaine élémentaire et $\mathcal{D} = I_1 \cup \cdots \cup I_n$ la décomposition de \mathcal{D} en composantes connexes. Alors f' est dérivable sur \mathcal{D} si et seulement si, pour tout $k \in [1, n]$, f est dérivable sur I_k .

Proposition 17.1.8

Soit $f: I \to \mathbb{K}$ une fonction définie sur un intervalle I et $a \in I$.

— Si f est dérivable sur $I \cap]a, +\infty[$, elle est dérivable en tout point de $I \cap]a, +\infty[$. De plus, en notant g la restriction de f à $I \cap]a, +\infty[$, on a

$$\forall x \in I \cap]a, +\infty[, f'(x) = g'(x).$$

— Si f est dérivable sur $I \cap [a, +\infty[$, elle est dérivable à droite en a et en tout point de $I \cap]a, +\infty[$. De plus, en notant g la restriction de f à $I \cap [a, +\infty[$, on a

$$f'_d(a) = g'(a)$$
 et $\forall x \in I \cap]a, +\infty[, f'(x) = g'(x).$

17.1.2 Théorèmes usuels

Proposition 17.1.9

Soit $f, g: \mathcal{D} \to \mathbb{K}$ deux fonctions dérivables en x_0 .

— Si $\lambda, \mu \in \mathbb{K}$, alors $\lambda f + \mu g$ est dérivable en x_0 et

$$(\lambda f + \mu q)'(x_0) = \lambda f'(x_0) + \mu q'(x_0).$$

— fg est dérivable en x_0 et

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

— Si $f(x_0) \neq 0$, alors f ne s'annule pas au voisinage de x_0 et 1/f est dérivable en x_0 . De plus

$$\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}.$$

— Si $g(x_0) \neq 0$, alors g ne s'annule pas au voisinage de x_0 et f/g est dérivable en x_0 . De plus

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{g^2(x_0)}.$$

Proposition 17.1.10

Soit f une fonction dérivable en x_0 et g une fonction dérivable en $f(x_0)$. Alors $g \circ f$ est dérivable en x_0 et

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0).$$

Exercice 2

 \Rightarrow Étudier les variations de la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) := \frac{x+2}{\sqrt[3]{1+x^2}}.$$

Proposition 17.1.11

Soit f une bijection continue d'un intervalle I sur un intervalle J et $y_0 \in J$. Si f est dérivable en $x_0 = f^{-1}(y_0)$,

alors f^{-1} est dérivable en y_0 si et seulement si $f'(x_0) \neq 0$. De plus, si tel est le cas

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

= $\frac{1}{f'(f^{-1}(y_0))}$.

Proposition 17.1.12

Soit $f: \mathcal{D} \to \mathbb{C}$ et $x_0 \in \mathcal{D}$.

— Alors \overline{f} est dérivable en x_0 si et seulement si f l'est. De plus, si tel est le cas

$$\overline{f}'(x_0) = \overline{f'(x_0)}.$$

— De même, f est dérivable en x_0 si et seulement si Re(f) et Im(f) le sont. De plus, si tel est le cas

$$f'(x_0) = \text{Re}(f)'(x_0) + i \text{Im}(f)'(x_0).$$

— Enfin, si f est dérivable en x_0 , il en est de même pour e^f et

$$(e^f)'(x_0) = f'(x_0) e^{f(x_0)}$$

17.1.3 Fonction dérivée, dérivées successives

Définition 17.1.13

Soit $f: \mathcal{D} \to \mathbb{K}$ une fonction. On note $\mathcal{D}_{f'}$ l'ensemble des $x \in \mathcal{D}$ en lesquels f est dérivable. On définit la fonction dérivée de f, notée f', par

$$f': \mathcal{D}_{f'} \longrightarrow \mathbb{K} \ x \longmapsto f'(x)$$
.

Définition 17.1.14

Si $f: \mathcal{D} \to \mathbb{K}$ est une fonction, on définit par récurrence la dérivée n-ième de f de la manière suivante :

— On pose $f^{(0)} := f$.

— Si $n \in \mathbb{N}$, on définit $f^{(n+1)}$ comme étant la dérivée de $f^{(n)}$.

Si $x_0 \in \mathcal{D}$, on dit que f est dérivable n fois en x_0 lorsque $f^{(n)}$ est définie en x_0 ; cette notion est locale en x_0 .

Remarques

- \Rightarrow On dit qu'une fonction est dérivable n fois lorsqu'elle est dérivable n fois en tout point de son domaine de définition.
- \Rightarrow Soit $f: \mathcal{D} \to \mathbb{K}$, et $A \subset \mathcal{D}$. On dit que f est dérivable n fois sur A lorsque la restriction de f à A est dérivable n fois.

Proposition 17.1.15

Soit $f, g: \mathcal{D} \to \mathbb{K}$ deux fonctions dérivables n fois.

— Soit $\lambda, \mu \in \mathbb{K}$. Alors $\lambda f + \mu g$ est dérivable n fois et

$$\forall x \in \mathcal{D}, \quad (\lambda f + \mu g)^{(n)}(x) = \lambda f^{(n)}(x) + \mu g^{(n)}(x).$$

— fg est dérivable n fois et

$$\forall x \in \mathcal{D}, \quad (fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x).$$

Cette formule est appelée formule de Leibniz.

— Si g ne s'annule pas, alors f/g est dérivable n fois.

Proposition 17.1.16

Si f et g sont deux fonctions dérivables n fois, alors $g \circ f$ est dérivable n fois.

Remarque

 \Rightarrow Si $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{K}$ est dérivable n fois, alors la fonction $g : x \mapsto f(ax)$ est dérivable n fois et

$$\forall x \in \mathbb{R}, \quad g^{(n)}(x) = a^n f^{(n)}(ax).$$

Exercices 3

- \Rightarrow Donner la dérivée n-ième des fonctions $x \mapsto x^2 f(x)$ et $x \mapsto f(x) e^x$.
- \Rightarrow Calculer la dérivée *n*-ième de la fonction $x \mapsto \cos^3 x$.
- \Rightarrow Soit f la fonction de $\mathbb R$ dans $\mathbb R$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq e^{-x^2}.$$

Montrer que pour tout $n \in \mathbb{N}$, $f^{(n)}$ est bornée.

Proposition 17.1.17

Soit $n \in \mathbb{N}^*$ et f une bijection de l'intervalle I sur l'intervalle J, dérivable n fois sur I. Alors f^{-1} est dérivable n fois sur J si et seulement si

$$\forall x \in I, \quad f'(x) \neq 0.$$

17.1.4 Fonctions de classe C^n

Définition 17.1.18

Soit $n \in \mathbb{N}$. On dit qu'une fonction $f : \mathcal{D} \to \mathbb{K}$ est de classe \mathcal{C}^n lorsqu'elle est dérivable n fois et sa dérivée n-ième est continue. On note \mathcal{C}^n $(\mathcal{D}, \mathbb{K})$ l'ensemble des fonctions de \mathcal{D} dans \mathbb{K} de classe \mathcal{C}^n .

Remarques

- \Rightarrow Les fonctions de classe \mathcal{C}^0 sont les fonctions continues.
- \Rightarrow Une fonction peut être dérivable sur $\mathbb R$ sans que sa dérivée soit continue. Par exemple la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

est dérivable sur $\mathbb R$ mais sa dérivée n'est pas continue en 0.

 \Rightarrow Si on note \mathcal{D}^n l'ensemble des fonctions dérivables n fois, on a

$$\mathcal{C}^0\supset\mathcal{D}^1\supset\mathcal{C}^1\supset\mathcal{D}^2\supset\mathcal{C}^2\cdots$$

On peut montrer que toutes ces inclusions sont strictes.

 \Rightarrow Si A est une partie de \mathcal{D} , on dit que f est de classe \mathcal{C}^n sur A lorsque la restriction de f à A est de classe \mathcal{C}^n .

Exercice 4

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .

Définition 17.1.19

On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ est de classe \mathcal{C}^{∞} lorsqu'elle est de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$.

Remarques

- \Rightarrow Une fonction est de classe \mathcal{C}^{∞} si et seulement si elle est dérivable n fois quel que soit $n \in \mathbb{N}$.
- \Rightarrow Les fonctions usuelles sont de classe \mathcal{C}^{∞} sur le domaine sur lequel elle sont dérivables.

Proposition 17.1.20

Soit $n \in \mathbb{N} \cup \{\infty\}$ et $f, g : \mathcal{D} \to \mathbb{K}$ deux fonctions de classe \mathcal{C}^n .

- Si $\lambda, \mu \in \mathbb{K}$, alors $\lambda f + \mu g$ est de classe \mathcal{C}^n .
- fg est de classe \mathcal{C}^n .
- Si g ne s'annule pas, alors f/g est de classe \mathcal{C}^n .

Proposition 17.1.21

Si $n \in \mathbb{N} \cup \{\infty\}$, la composée de deux fonctions de classe \mathcal{C}^n est de classe \mathcal{C}^n .

Définition 17.1.22

Soit f une bijection de l'intervalle I sur l'intervalle J et $n \in \mathbb{N} \cup \{\infty\}$. On dit que f est un C^n -difféomorphisme de I sur J lorsque f et f^{-1} sont de classe C^n .

Proposition 17.1.23

Soit $n \in \mathbb{N}^* \cup \{\infty\}$. Une bijection f de classe \mathcal{C}^n de l'intervalle I sur l'intervalle J est un \mathcal{C}^n -difféomorphisme si et seulement si f' ne s'annule pas.

Exercices 5

- \Rightarrow Soit f l'application de \mathbb{R}_+ dans \mathbb{R}_+ qui à x associe xe^x . Montrer que f est un \mathcal{C}^{∞} -difféomorphisme. Calculer un développement limité de f^{-1} en 0 à l'ordre 3.
- \Rightarrow Montrer qu'il existe une unique fonction $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que

$$\forall x \in \mathbb{R}, \quad f^5(x) + f(x) + x = 0.$$

17.2 Théorème de Rolle et applications

17.2.1 Extrémum local

Définition 17.2.1

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction réelle et $x_0 \in \mathcal{D}$. On dit que

— f présente un maximum global en x_0 lorsque

$$\forall x \in \mathcal{D}, \quad f(x) \leqslant f(x_0).$$

— f présente un maximum local en x_0 lorsque

$$\exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - x_0| \leqslant \eta \Longrightarrow f(x) \leqslant f(x_0).$$

— f présente un $minimum\ global\ en\ x_0$ lorsque

$$\forall x \in \mathcal{D}, \quad f(x) \geqslant f(x_0).$$

— f présente un $minimum\ local\ en\ x_0\ lorsque$

$$\exists \eta > 0, \quad \forall x \in \mathcal{D}, \quad |x - x_0| \leqslant \eta \Longrightarrow f(x) \geqslant f(x_0).$$

Remarque

⇒ On peut indifféremment utiliser « maximums » ou « maximas » pour le pluriel de « maximum ». De même, on peut utiliser « minimums » ou « minimas » pour le pluriel de « minimum ».

Proposition 17.2.2

Soit $f: \mathcal{D} \to \mathbb{R}$ une fonction admettant un extrémum local en un point x_0 intérieur à \mathcal{D} . Si elle est dérivable en x_0 , alors $f'(x_0) = 0$.

Remarques

- \Rightarrow Attention, ce n'est pas parce que f' s'annule en x_0 que f y admet un extrémum local. Par exemple la fonction $x\mapsto x^3$ a une dérivée qui s'annule en 0 mais n'admet pas d'extrémum local en ce point.
- \Rightarrow Les extrémums locaux d'une fonction f définie sur $\mathcal D$ sont donc à chercher parmi les bornes de $\mathcal D$, les points où fn'est pas dérivable et ceux où la dérivée de f est nulle.
- \Rightarrow Si $f'(x_0) = 0$ et f est assez régulière, un développement limité permet généralement de déterminer si f admet un maximum ou un minimum local en x_0 . En effet, supposons que

$$f(x_0 + h) = f(x_0) + \alpha h^{\omega} + \underset{h \to 0}{\text{o}} (h^{\omega})$$

avec $\alpha \in \mathbb{R}^*$ et $\omega \geqslant 2$.

— Supposons que ω est pair. Si $\alpha > 0$, alors f admet un minimum local en x_0 . Si $\alpha < 0$, alors f admet un maximum local en x_0 .

$$\alpha < 0$$
 et ω pair

Si ω est impair et que x_0 est intérieur à \mathcal{D} , f n'admet pas d'extrémum local en x_0 .

Exercice 6

 \Rightarrow Rechercher les extrémums de la fonction d'expression |x(x-1)| sur [0,2].

Théorème de Rolle, accroissements finis

Dans cette section, lorsqu'on considèrera un segment [a, b], on supposera que a < b.

Théorème 17.2.3: Théorème de Rolle

Soit f une fonction réelle continue sur [a, b], dérivable sur [a, b], telle que f(a) = f(b). Alors il existe $c \in [a, b]$ tel que f'(c) = 0.

Exercice 7

 \Rightarrow Soit f une fonction dérivable n fois sur l'intervalle I admettant n+1 zéros. Montrer que $f^{(n)}$ s'annule au moins une fois sur I. Retrouver le fait qu'un polynôme $P \in \mathbb{R}[X]$ de degré n admet au plus n racines réelles.

Remarque

 \Rightarrow Cette proposition est fausse si f est à valeurs complexes. Par exemple, si f est la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) \coloneqq e^{ix}$$

alors f est dérivable sur \mathbb{R} , $f(0) = f(2\pi)$ mais f' ne s'annule pas.

Théorème 17.2.4: Théorème des accroissements finis

Soit f une fonction réelle continue sur [a,b] et dérivable sur [a,b]. Alors, il existe $c \in [a,b]$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Remarque

 \Rightarrow Remarquons que le taux d'accroissement (f(b)-f(a))/(b-a) est une grandeur invariante par échange de a et b. Par conséquent, si f est dérivable sur I, quels que soient $a,b\in I$ tels que $a\neq b$, il existe c strictement compris entre a et b tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

 \Rightarrow Puisque c est strictement compris entre a et b, il arrive qu'on l'écrive sous la forme

$$c = \theta a + (1 - \theta)b$$

avec $\theta \in]0,1[$.

Proposition 17.2.5: Inégalité des accroissements finis

Soit f une fonction réelle continue sur [a,b] et dérivable sur [a,b]. On suppose qu'il existe $m,M\in\mathbb{R}$ tels que

$$\forall x \in]a, b[, \quad m \leqslant f'(x) \leqslant M.$$

Alors

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$
.

Proposition 17.2.6: Inégalité des accroissements finis

Soit $f: I \to \mathbb{K}$ une fonction dérivable sur un intervalle I. On suppose qu'il existe $M \in \mathbb{R}_+$ tel que

$$\forall x \in I, \quad |f'(x)| \leqslant M.$$

Alors

$$\forall x, y \in I, \quad |f(x) - f(y)| \leq M |x - y|.$$

Autrement dit, f est M-lipschitzienne.

Remarque

 \Rightarrow Une fonction de classe \mathcal{C}^1 sur un segment est lipschitzienne.

17.2.3 Dérivation et monotonie

Proposition 17.2.7

Soit $f: I \to \mathbb{R}$ une fonction réelle, dérivable sur un intervalle I. Alors

---f est croissante si et seulement si

$$\forall x \in I, \quad f'(x) \geqslant 0.$$

— f est décroissante si et seulement si

$$\forall x \in I, \quad f'(x) \leq 0.$$

Remarque

 \Rightarrow Ce théorème reste vrai lorsque f est continue sur I, dérivable sur l'intérieur de I et que sa dérivée y est de signe constant. Par exemple, si $f: \mathbb{R}_+ \to \mathbb{R}$ est continue sur \mathbb{R}_+ , dérivable sur \mathbb{R}_+^* et

$$\forall x > 0, \quad f'(x) \geqslant 0$$

alors f est croissante sur \mathbb{R}_+ .

Exercices 8

 \Rightarrow Étudier les variations de la fonction f définie sur \mathbb{R}_+ par

$$\forall x \geqslant 0, \quad f(x) \coloneqq \sqrt{x} e^{-x}.$$

⇒ Calculer

$$\inf_{x,y>0} \frac{\sqrt{x+y}}{\sqrt{x}+\sqrt{y}}.$$

Proposition 17.2.8

Soit $f: I \to \mathbb{K}$, dérivable sur un intervalle I. Alors f est constante si et seulement si

$$\forall x \in I, \quad f'(x) = 0.$$

Exercice 9

Arr Soit $\alpha > 0$. On dit qu'une fonction $f: I \to \mathbb{K}$ définie sur un intervalle I est α -Hölderienne lorsqu'il existe $C \geqslant 0$ tel que

$$\forall x, y \in I, \quad |f(x) - f(y)| \leqslant C |x - y|^{\alpha}.$$

Montrer que si $\alpha > 1$, alors f est constante.

Proposition 17.2.9

Soit $f: I \to \mathbb{R}$ une fonction réelle, dérivable sur un intervalle I. Alors f est strictement croissante si et seulement si

- $-\forall x \in I, \quad f'(x) \geqslant 0,$
- Il n'existe pas d'intervalle non trivial sur lequel f' est nulle.

Remarques

- ⇒ On rappelle qu'un intervalle non trivial est un intervalle qui contient au moins deux points.
- ⇒ Rappelons au passage qu'une fonction croissante qui n'est pas strictement croissante est constante sur un intervalle non trivial.

17.2.4 Théorème de la limite de la dérivée

Proposition 17.2.10

— Soit $f: I \to \mathbb{K}$ une fonction définie sur un intervalle I et $x_0 \in I$. On suppose que f est continue sur I, dérivable sur $I \setminus \{x_0\}$ et que

$$f'(x) \xrightarrow[x \neq x_0]{x \to x_0} l \in \mathbb{K}.$$

Alors f est dérivable en x_0 et $f'(x_0) = l$.

— Soit $f: I \to \mathbb{R}$ une fonction réelle définie sur un intervalle I et $x_0 \in I$. On suppose que f est continue sur I, dérivable sur $I \setminus \{x_0\}$ et que

$$f'(x) \xrightarrow[x \neq x_0]{x \to x_0} \pm \infty.$$

Alors

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} \pm \infty.$$

Autrement dit, le graphe de f admet une demi-tangente verticale en x_0 . En particulier, la fonction f n'est pas dérivable en x_0 .

Exercices 10

⇒ Montrer que

$$\frac{\operatorname{Arcsin}(-1+h) + \frac{\pi}{2}}{h} \xrightarrow[h \to 0]{} +\infty$$

 \Rightarrow Soit $f:\mathbb{R}\to\mathbb{R}$ la fonction définie par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

Montrer que f est de classe \mathcal{C}^1 .

 \Rightarrow Soit f la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{si } x \leqslant 0. \end{cases}$$

1. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} et que, pour tout $n \in \mathbb{N}$, existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall x > 0, \quad f^{(n)}(x) = P_n\left(\frac{1}{x}\right) e^{-\frac{1}{x}}.$$

2. Montrer que

$$\forall n \in \mathbb{N}, \quad f^{(n)}(x) \xrightarrow[x>0]{x \to 0} 0.$$

3. En déduire que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

17.3. CONVEXITÉ 325

17.3 Convexité

17.3.1 Définition, propriétés élémentaires

On dit qu'une fonction $\varphi: I \to \mathbb{R}$ est affine lorsqu'il existe $a, b \in \mathbb{R}$ tels que

$$\forall x \in I, \quad \varphi(x) = ax + b.$$

Proposition 17.3.1

Soit $x_1, x_2 \in \mathbb{R}$.

— On a

$$\langle (x_1, x_2) \rangle = \{tx_1 + (1-t)x_2 : t \in [0, 1]\}.$$

— On suppose que $x_1 \neq x_2$. Si $y_1, y_2 \in \mathbb{R}$, il existe une unique fonction affine φ sur « $[x_1, x_2]$ » telle que $\varphi(x_1) = y_1$ et $\varphi(x_2) = y_2$. De plus

$$\forall t \in [0,1], \quad \varphi(tx_1 + (1-t)x_2) = t\varphi(x_1) + (1-t)\varphi(x_2).$$

Définition 17.3.2

Soit $f:I\to\mathbb{R}$ une fonction réelle définie sur un intervalle I. On dit que f est convexe lorsque

$$\forall x_1, x_2 \in I, \quad \forall t \in [0, 1], \quad f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2).$$

Remarques

- \Rightarrow Les fonctions affines sont convexes sur \mathbb{R} .
- \Rightarrow Une combinaison linéaire positive de fonctions convexes est convexe. Cependant, si f est une fonction convexe, en général, -f n'est pas convexe.

Exercices 11

 \Rightarrow Montrer que les fonctions $x \mapsto |x|$ et $x \mapsto x^2$ sont convexes sur \mathbb{R} .

Proposition 17.3.3: Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ une fonction convexe sur un intervalle I. Alors

$$\forall x_1, \dots, x_n \in I, \quad \forall t_1, \dots, t_n \in [0, 1],$$

$$t_1 + \dots + t_n = 1 \implies f(t_1x_1 + \dots + t_nx_n) \leqslant t_1f(x_1) + \dots + t_nf(x_n).$$

17.3.2 Convexité et dérivation

Proposition 17.3.4: Lemme des 3 pentes

Soit $f: I \to \mathbb{R}$ une fonction réelle. Alors f est convexe si et seulement si, quels que soient $x_1, x_2, x_3 \in I$ tels que $x_1 < x_2 < x_3$, on a

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_1)}{x_3 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$

Remarque

 \Rightarrow Pour montrer que $f: I \to \mathbb{R}$ est convexe, il suffit de prouver que quels que soient $x_1, x_2, x_3 \in I$ tels que $x_1 < x_2 < x_3$, on a

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$

Exercices 12

 \Rightarrow Montrer que sur \mathbb{R} , une fonction convexe majorée est constante.

Proposition 17.3.5

Soit $f: I \to \mathbb{R}$ une fonction réelle. Alors f est convexe si et seulement si, pour tout $x_0 \in I$, la fonction

$$\tau_{x_0}: I \setminus \{x_0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

est croissante.

Proposition 17.3.6

Soit $f: I \to \mathbb{R}$ une fonction convexe.

- Alors f est dérivable à gauche et à droite en tout point intérieur à I.
- En particulier, f est continue en tout point intérieur à I.

Remarque

 \Rightarrow Remarquons qu'une fonction convexe peut très bien ne pas être dérivable en un point intérieur à I comme le montre l'exemple de la valeur absolue en 0. De même, une fonction convexe peut être discontinue aux bornes de son intervalle de définition comme le montre l'exemple de la fonction

$$f: \quad [0,1] \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \begin{cases} 1 & \text{si } x = 0 \text{ ou } x = 1, \\ 0 & \text{sinon.} \end{cases}$$

17.3. CONVEXITÉ 327

Proposition 17.3.7

Soit $f: I \to \mathbb{R}$ une fonction convexe sur un intervalle I. Si $x_0 \in I$ est un point en lequel f est dérivable, alors

$$\forall x \in I, \quad f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$

Autrement dit, le graphe de f est au-dessus de ses tangentes.

Proposition 17.3.8

Soit $f: I \to \mathbb{R}$ une fonction réelle, dérivable sur un intervalle I. Alors f est convexe si et seulement si f' est croissante.

Proposition 17.3.9

Soit $f:I\to\mathbb{R}$ une fonction réelle deux fois dérivable sur un intervalle I. Alors f est convexe si et seulement si

$$\forall x \in I, \quad f''(x) \geqslant 0.$$

Remarques

- \Rightarrow La fonction exp est convexe sur \mathbb{R} . La fonction $x \mapsto 1/x$ est convexe sur \mathbb{R}_+^* .
- \Rightarrow On dit qu'une fonction réelle définie sur un intervalle I est concave lorsque

$$\forall x_1, x_2 \in I, \quad \forall t \in [0, 1], \quad f(tx_1 + (1 - t)x_2) \ge tf(x_1) + (1 - t)f(x_2).$$

Une fonction f est concave si et seulement si -f est convexe. On en déduit que toutes les propositions énoncées pour les fonctions convexes ont leur équivalent pour les fonctions concaves. En particulier, les fonctions concaves sont en dessous de leur tangentes et une fonction deux fois dérivable sur un intervalle est concave si et seulement si sa dérivée seconde est négative.

Exercices 13

⇒ Montrer que

$$\forall x \in \mathbb{R}, \quad e^x \geqslant 1 + x, \qquad \forall x \in]-1, +\infty[\,, \quad \ln(1+x) \leqslant x$$

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi} \cdot x \leqslant \sin x \leqslant x.$$

 \Rightarrow Soit $x_1, \ldots, x_n \in \mathbb{R}_+$. Montrer que

$$\sqrt[n]{x_1 x_2 \cdots x_n} \leqslant \frac{x_1 + x_2 + \cdots + x_n}{n}.$$

C'est l'inégalité arithmético-géométrique qui se démontre facilement pour n=2.

17.4 Exercices

Fonction dérivable, dérivées successives

$D\'{e}finition$

Exercice 1 : Dérivabilité

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en $a \in \mathbb{R}$. Que vaut

$$\lim_{h\to 0} \frac{f(a+h)-f(a+h^2)}{h}.$$

Exercice 2 : Dérivabilité

Étudier la dérivabilité des fonctions suivantes :

1. On considère la fonction f de $\mathbb R$ dans $\mathbb R$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) := \begin{cases} (x-1)^2 & \text{si } x \leqslant 1\\ (x-1)^3 & \text{si } x > 1. \end{cases}$$

2. Soit $a,b\in\mathbb{R}$. On considère la fonction g de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad g(x) \coloneqq \begin{cases} x^2 + x & \text{si } x \geqslant 1\\ ax^3 + bx + 1 & \text{si } x < 1. \end{cases}$$

3. On considère la fonction h de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad h(x) \coloneqq \frac{|x|}{1 + |x^2 - 1|}.$$

Exercice 3: Suite

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en 0 telle que f(0) = 0. Déterminer la limite éventuelle de la suite de terme général

$$u_n := \sum_{k=0}^n f\left(\frac{k}{n^2}\right).$$

Théorèmes usuels

Exercice 4 : Dérivabilité et symétries

- 1. Montrer que la dérivée d'une fonction dérivable paire $f: \mathbb{R} \to \mathbb{R}$ est impaire.
- 2. Que dire de la dérivée d'une fonction dérivable impaire? périodique?

Fonction dérivée, dérivées successives

Exercice 5 : Calcul de dérivées n-ièmes

Calculer les dérivées à l'ordre n des fonctions d'expressions

$$\sin^5(x)$$
, $x^2 e^x$, $x^{n-1} \ln(x)$, $x^{n-1} e^{\frac{1}{x}}$.

Fonctions de classe C^n

Exercice 6 : Dérivabilité

Soit $\alpha \in \mathbb{R}$. Étudier la dérivabilité sur \mathbb{R} de la fonction f_{α} définie par

$$\forall x \in \mathbb{R}, \quad f_{\alpha}(x) := \begin{cases} |x|^{\alpha} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Préciser les nombres α pour lesquels f_{α} est de classe \mathcal{C}^1 sur \mathbb{R} .

17.4. EXERCICES 329

Exercice 7 : Dérivabilité

Pour tout entier naturel n on définit la fonction f_n sur $\mathbb{R} \setminus \pi \mathbb{Z}$ par

$$\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}, \quad f_n(x) := \frac{\sin((2n+1)x)}{\sin x}.$$

- 1. Étudier le domaine de définition de f_n , sa parité, sa périodicité.
- 2. Montrer que f_n se prolonge par continuité sur \mathbb{R} .
- 3. Montrer que la fonction ainsi prolongée est de classe \mathcal{C}^{∞} sur \mathbb{R} (on pourra établir une relation entre f_{n+1} et f_n).

Exercice 8 : Dérivabilité

Soit f une fonction de classe C^2 sur [0,1] et $a \in [0,1]$.

1. Montrer que la fonction

$$\tau_a: [0,1] \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

se prolonge par continuité en a.

2. Montrer que la fonction ainsi prolongée est de classe C^1 sur [0,1].

Théorème de Rolle et applications

Extrémum local

Exercice 9 : Théorème de Darboux

Le but de cet exercice est de montrer que toute fonction dérivée vérifie la propriété des valeurs intermédiaires, alors que l'on sait bien qu'elle peut ne pas être continue. On se donne donc f une fonction dérivable sur un intervalle I, $a, b \in I$ tels que a < b et $y_0 \in (f'(a), f'(b))$. On souhaite montrer qu'il existe $x_0 \in [a, b]$ tel que $f'(x_0) = y_0$.

- 1. Résoudre le problème lorsque $y_0 = 0$.
- 2. En déduire le cas général.

Exercice 10 : Théorème de la corde

Soit f une fonction continue et dérivable sur [0,1] telle que

$$f(0) = 0$$
, $f(1) = 1$, $f'(0) = 0$, et $f'(1) = 0$.

Le but de cet exercice est de montrer qu'il existe $c \in]0,1[$ tel que

$$f'(c) = \frac{f(c)}{c}.$$

1. Soit g la fonction définie sur [0,1] par

$$\forall x \in [0,1], \quad g(x) := \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

Montrer que g est continue sur [0,1] et dérivable sur [0,1].

2. En remarquant que g'(1) < 0, montrer qu'il existe $c \in [0,1[$ tel que g'(c) = 0 puis conclure.

Théorème de Rolle, accroissements finis

Exercice 11 : Application directe du théorème de Rolle

- 1. Soit f une fonction dérivable n fois sur un intervalle I. On suppose que f admet n+1 zéros distincts dans I. Montrer qu'il existe $c \in I$ tel que $f^{(n)}(c) = 0$.
- 2. Soit f une fonction dérivable sur \mathbb{R} . On suppose que f est 1-périodique et admet n zéros sur l'intervalle [0,1[. Montrer que f' admet n zéros sur ce même intervalle.

3. Soit $n \in \mathbb{N}$ et $P \in \mathbb{R}[X]$ un polynôme de degré inférieur ou égal à n. Majorer le nombre de zéros de la fonction g définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}^*_+, \quad g(x) := P(x) - \ln x.$$

4. Soit $n \in \mathbb{N}$. On définit la fonction P_n sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad P_n(x) \coloneqq (x^2 - 1)^n.$$

Montrer que $P_n^{(n)}$ admet n racines distinctes dans]-1,1[.

Exercice 12 : Application récursive du théorème de Rolle

Soit $n \in \mathbb{N}^*$ et f la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad f(x) \coloneqq x^n \cos x.$$

- 1. Montrer que f est de classe C^{∞} et que, pour tout $k \in [0, n-1], f^{(k)}(0) = 0$.
- 2. En déduire qu'il existe $c \in \left[0, \frac{\pi}{2}\right]$ tel que $f^{(n)}(c) = 0$.

Exercice 13: Accroissements finis généralisés

Soit f et g deux fonctions réelles, continues sur [a,b] et dérivables sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Exercice 14: Taylor

Soit $f: I \to \mathbb{R}$ une fonction de classe C^{n+1} et $a \in I$. Soit $x \in I$ distinct de a.

1. Montrer qu'il existe un unique réel A tel que la fonction

$$\varphi: \quad I \longrightarrow \mathbb{R}$$

$$t \longmapsto f(x) - \left[\sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^{k} + \frac{A}{(n+1)!} (x-t)^{n+1} \right]$$

s'annule en a.

Dans la suite de l'exercice, A sera égal à cette valeur.

- 2. Montrer que φ est dérivable et simplifier $\varphi'(t)$.
- 3. En déduire qu'il existe $c \in I$ tel que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

Pourquoi est-ce encore vrai si x = a?

4. En déduire que s'il existe $M \in \mathbb{R}_+$ tel que

$$\forall x \in \mathbb{R}, \quad \left| f^{(n+1)}(x) \right| \leqslant M$$

alors

$$\forall a, x \in I, \quad \left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| \le \frac{M}{(n+1)!} |x - a|^{n+1}.$$

Dérivation et monotonie

Théorème de la limite de la dérivée

Exercice 15: Une équation différentielle non linéaire

Rechercher les solutions réelles de l'équation différentielle y' = |y|.

17.4. EXERCICES 331

Théorème de la limite de la dérivée

Exercice 16 : Limite de la dérivée

- 1. Quelle est la dérivée de $x \mapsto \ln |x| \operatorname{sur} \mathbb{R}^*$?
- 2. Montrer que la fonction

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2 \ln|x|$$

est prolongeable en une fonction de classe \mathcal{C}^1 sur \mathbb{R} tout entier.

Exercice 17: Limite de la dérivée

Soit $f \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R})$ une fonction telle que f'(0) = 0. Montrer qu'il existe une fonction $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$ telle que

$$\forall x \geqslant 0, \quad f(x) = g(x^2).$$

Convexité

Définition, propriétés élémentaires

Exercice 18 : Opérations élémentaires sur les fonctions convexes

- 1. Étant donné une fonction f convexe sur $\mathbb R$ et une fonction g convexe et croissante sur $\mathbb R$, montrer que $g \circ f$ est convexe.
- 2. Soit f une fonction définie sur \mathbb{R} à valeurs strictement positives. Montrer que si $\ln(f)$ est convexe, alors f est convexe

Convexité et dérivation

Exercice 19 : Inégalités en vrac

1. Donner deux méthodes différentes pour montrer que quel que soit le réel x

$$e^x \geqslant 2e^{\frac{x}{2}} - 1.$$

2. Soit $n \in \mathbb{N}$. Montrer que

$$\forall x \in \mathbb{R}_+, \quad x^{n+1} - (n+1)x + n \geqslant 0.$$

3. Soit $x \in]1, +\infty[$ et $n \in \mathbb{N}^*$. Montrer que

$$x^{n} - 1 \ge n \left(x^{\frac{n+1}{2}} - x^{\frac{n-1}{2}} \right).$$

Exercice 20: Fonctions convexes majorées

- 1. Soit f une fonction convexe et majorée sur \mathbb{R} . Montrer que f est constante.
- 2. Donner un exemple de fonction convexe et majorée sur $]0,+\infty[$ et qui ne soit pas constante.

Exercice 21: Moyenne arithmétique, harmonique et géométrique

Soit x_1, \ldots, x_n n réels strictement positifs. On définit leurs moyennes arithmétique, géométrique et harmonique par

$$a \coloneqq \frac{1}{n} \sum_{k=1}^{n} x_k, \quad g \coloneqq \sqrt[n]{\prod_{k=1}^{n} x_k},$$

$$\frac{1}{h} \coloneqq \frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_k}.$$

Montrer que

$$h \leqslant g \leqslant a$$
.

Exercice 22 : Inégalités de Hölder et Minkowski

Soit p et q deux réels strictement supérieurs à 1 tels que

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Soit x_1, \ldots, x_n et y_1, \ldots, y_n des réels positifs.

1. Le but de cette question est de montrer que

$$\sum_{k=1}^{n} x_k y_k \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}.$$

(a) Montrer que

$$\forall x, y \in \mathbb{R}_+, \quad xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

(b) Montrer le résultat demandé lorsque

$$\sum_{k=1}^{n} x_k^p = 1 \quad \text{et} \quad \sum_{k=1}^{n} y_k^q = 1.$$

- (c) En déduire le cas général
- 2. Montrer que

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

Chapitre 18

Arithmétique

 \ll La Mathématique est la reine des sciences et l'Arithmétique est la reine des mathématiques. »

— Carl Friedrich Gauss (1777–1855)

18.1 Divis	sibilité, division euclidienne
18.1.1	Relation de divisibilité
18.1.2	Congruence, division euclidienne
18.2 Pgcd	l, ppcm
18.2.1	Plus grand commun diviseur
18.2.2	Algorithme d'Euclide
18.2.3	Relation de Bézout
18.2.4	Lemme de Gauss
18.2.5	Plus petit commun multiple
18.3 Nom	bres premiers
18.3.1	Nombres premiers
18.3.2	Valuation p -adique, décomposition en facteurs premiers
18.3.3	Les grands problèmes d'arithmétique
18.4 Exer	cices

18.1 Divisibilité, division euclidienne

18.1.1 Relation de divisibilité

Définition 18.1.1

Soit $a, b \in \mathbb{Z}$. On dit que a divise b lorsqu'il existe $k \in \mathbb{Z}$ tel que b = ka.

Remarques

- \Rightarrow Soit $a, b \in \mathbb{Z}$ tels que a|b. Alors -a|b, a|-b et -a|-b. Autrement dit, lorsqu'on parle de divisibilité, le signe n'est pas significatif.
- \Rightarrow Soit $a \in \mathbb{Z}$. Alors a|1 si et seulement si $a = \pm 1$.
- \Rightarrow Soit $a,b,c\in\mathbb{Z}.$ Siac|bc et $c\neq 0,$ alors a|b

Proposition 18.1.2

La relation de divisibilité

- est réflexive : $\forall a \in \mathbb{Z}, \quad a|a.$
- est transitive : $\forall a, b, c \in \mathbb{Z}$, $[a|b \text{ et } b|c] \implies a|c$
- n'est pas antisymétrique. Cependant

 $\forall a, b \in \mathbb{Z}, \quad [a|b \quad \text{et} \quad b|a] \quad \Longleftrightarrow \quad a = \pm b.$

Remarques

 \Rightarrow La relation de divisibilité n'étant pas antisymétrique sur \mathbb{Z} , ce n'est pas une relation d'ordre. Cependant, si $a, b \in \mathbb{N}$, on a

$$[a|b \text{ et } b|a] \iff a=b.$$

En particulier, la relation de divisibilité est une relation d'ordre sur N.

- \Rightarrow Quel que soit $n \in \mathbb{Z}$, 1|n et n|0. En particulier, pour la relation de divisibilité, \mathbb{N} admet 1 pour plus petit élément et 0 pour plus grand élément.
- \Rightarrow Soit $a, b \in \mathbb{N}$. Si a|b et $b \neq 0$, alors $a \leq b$.

Proposition 18.1.3

Soit $a, b, c \in \mathbb{Z}$ et $k_1, k_2 \in \mathbb{Z}$. Alors

$$[a|b \text{ et } a|c] \implies a|(k_1b+k_2c).$$

Exercices 1

- \Rightarrow Soit $a, b, c \in \mathbb{Z}$. Les assertions suivantes sont-elles vraies?
 - Si a divise b + c, alors a divise b et c.
 - Si a et b divisent c, alors ab divise c.
- \Rightarrow Déterminer les entiers $n \in \mathbb{N}$ tels que n|n+8.

18.1.2 Congruence, division euclidienne

Définition 18.1.4

Soit $a,b\in\mathbb{Z}$ et $m\in\mathbb{N}^*.$ On dit que a est congru à b modulo m et on note

$$a \equiv b \quad [m]$$

lorsque m|(a-b), c'est-à-dire lorsqu'il existe $k \in \mathbb{Z}$ tel que a=b+km.

Remarque

 \Rightarrow Si $m \in \mathbb{N}^*$, la relation binaire \mathcal{R} définie sur \mathbb{Z} par

$$\forall a, b \in \mathbb{Z} \quad a\mathcal{R}b \quad \Longleftrightarrow \quad a \equiv b \ [m]$$

est une relation d'équivalence.

Proposition 18.1.5

Soit $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ et $m \in \mathbb{N}^*$ tels que

$$a_1 \equiv b_1 \quad [m] \quad \text{et} \quad a_2 \equiv b_2 \quad [m].$$

Alors, si $k_1, k_2 \in \mathbb{Z}$ et $k \in \mathbb{N}$

$$k_1a_1+k_2a_2\equiv k_1b_1+k_2b_2\quad [m] \qquad a_1a_2\equiv b_1b_2\quad [m] \qquad \text{et} \qquad a_1^k\equiv b_1^k\quad [m].$$

Remarque

 \Rightarrow Soit $m, n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$. Alors $a \equiv b \ [m] \iff an \equiv bn \ [mn]$.

Exercices 2

- \Rightarrow Montrer que pour tout $n \in \mathbb{N}$, 11 divise $3^{n+3} 4^{4n+2}$.
- \Rightarrow Trouver les $n \in \mathbb{N}$ tels que $10^n + 5^n + 1$ est un multiple de 3.
- ⇒ Montrer qu'un entier est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3. De même, montrer qu'un entier est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9. Enfin, montrer qu'un nombre est divisible par 11 si et seulement si la somme alternée de ses chiffres est divisible par 11.

335 18.2. PGCD, PPCM

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que

$$a = qb + r$$
 et $0 \le r < b$.

q est appelé quotient de la division euclidienne de a par b, r son reste.

Remarques

- \Rightarrow Si $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, le reste de la division euclidienne de a par b est l'unique élément r de [0, b-1] tel que $a \equiv r$ [b].
- \Rightarrow Les langages Python et OCaml possèdent tous les deux une division entière et un opérateur « modulo ». Si $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, la division entière s'obtient avec a // b en Python et avec a / b en OCaml. L'opérateur « modulo » s'obtient quant à lui avec a % b en Python et a mod b en OCaml. Si on note q la division entière de a par b et rle résultat de l'opérateur modulo, on aura toujours a = qb + r. En Python, ce sont respectivement le quotient et le reste de la division euclidienne de a par b. C'est aussi le cas en OCaml lorsque $a \ge 0$. Cependant, lorsque a < 0, ce n'est plus le cas. Par exemple, la division entière de -7 par 2 renvoie -3 alors que le quotient de la division euclidienne de -7 par 2 est -4.
- \Rightarrow Si $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, on montre qu'il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que a = qb + r et $0 \le r < |b|$. On peut donc ainsi étendre la définition de la division euclidienne au cas où $b \in \mathbb{Z}^*$. Mais en pratique, on effectuera toujours des divisions euclidiennes par des entiers strictement positifs.

Exercice 3

 \Rightarrow Déterminer le reste de la division euclidienne de 4852^{203} par 5.

18.2Pgcd, ppcm

18.2.1 Plus grand commun diviseur

Définition 18.2.1

Soit $a, b \in \mathbb{Z}$. Il existe un unique entier positif p tel que

$$-p|a$$
 et $p|b$

$$\begin{array}{lll} & -p|a & \text{et} & p|b \\ & -\forall q \in \mathbb{Z}, & [q|a & \text{et} & q|b] \Longrightarrow q|p \end{array}$$

On l'appelle pgcd (plus grand commun diviseur) de a et de b et on le note pgcd (a,b) ou $a \wedge b$.

Remarques

- \Rightarrow Si $a, b \in \mathbb{Z}$, les diviseurs de a et de b sont les diviseurs de $a \wedge b$.
- \Rightarrow Soit $a, b \in \mathbb{N}$. Pour la relation d'ordre de divisibilité sur \mathbb{N} , l'ensemble des diviseurs de a et de b n'est rien d'autre que l'ensemble des minorants de $\{a,b\}$. La définition précédente montre donc que cet ensemble admet un plus grand élément (au sens de la divisibilité) qui est $a \wedge b$. Autrement dit, au sens de la divisibilité, l'ensemble $\{a,b\}$ admet une borne inférieure qui est $a \wedge b$.
- \Rightarrow Soit $a, b \in \mathbb{N}$. Si l'un des deux entiers est non nul, le pgcd de a et de b est le plus grand (au sens de l'ordre) diviseur commun de a et b.

$$\begin{aligned} \forall a \in \mathbb{Z}, & a \wedge 0 = |a| \\ \forall a \in \mathbb{Z}, & a \wedge 1 = 1 \\ \forall a, b \in \mathbb{Z}, & a \wedge b = 0 & \Longleftrightarrow & [a = 0 \text{ et } b = 0] \end{aligned}$$

$$\forall a, b \in \mathbb{Z}, \qquad a \wedge b = b \wedge a$$

$$\forall a, b \in \mathbb{Z}, \qquad a \wedge b = (-a) \wedge b = a \wedge (-b) = (-a) \wedge (-b) = |a| \wedge |b|$$

$$\forall a, b, k \in \mathbb{Z}, \qquad (ka) \wedge (kb) = |k| (a \wedge b)$$

Définition 18.2.4

Remarque

 \Rightarrow Le pgcd d'une famille d'entiers (a_1,\ldots,a_n) ne dépend pas de l'ordre de ces derniers.

Proposition 18.2.5

Soit $a_1, \ldots, a_n \in \mathbb{Z}$ et $p \in [1, n-1]$. Alors

$$a_1 \wedge \cdots \wedge a_n = (a_1 \wedge \cdots \wedge a_p) \wedge (a_{p+1} \wedge \cdots \wedge a_n).$$

18.2.2 Algorithme d'Euclide

Proposition 18.2.6

Soit $a, b, k \in \mathbb{Z}$. Alors

$$a \wedge b = a \wedge (b + ka) = (a + kb) \wedge b.$$

En particulier, si $b \in \mathbb{N}^*$ et r est le reste de la division euclidienne de a par b, on a

$$a \wedge b = b \wedge r$$
.

Exercices 4

- \Rightarrow Calculer $105 \land 147$.
- \Rightarrow Soit $n \in \mathbb{N}$. Calculer $(3n+1) \wedge (2n)$, puis $(n^4-1) \wedge (n^6-1)$.
- \Rightarrow Soit (F_n) la suite, appelée suite de Fibonacci, définie par

$$F_0 := 0$$
, $F_1 := 1$, et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

Montrer que pour tout $n \in \mathbb{N}$, $F_n \wedge F_{n+1} = 1$.

Remarque

 \Rightarrow Si $a,b \in \mathbb{N}$, l'algorithme suivant, appelé algorithme d'Euclide, calcule le pgcd de a et b.

```
def pgcd(a, b):
    """pgcd(a: int, b: int) -> int"""
    while b != 0:
        a, b = b, a % b
    return a
```

18.2.3 Relation de Bézout

Proposition 18.2.7

Soit $a, b \in \mathbb{Z}$. Alors il existe $u, v \in \mathbb{Z}$ tels que

$$ua + vb = a \wedge b$$
.

Exercices 5

- ⇒ Trouver une relation de Bézout pour 105 et 147.
- \Rightarrow Soit $n, m \in \mathbb{N}^*$. Montrer que

$$\mathbb{U}_n \cap \mathbb{U}_m = \mathbb{U}_{n \wedge m}.$$

18.2. PGCD, PPCM 337

Définition 18.2.8

Soit $a, b \in \mathbb{Z}$. On dit que a et b sont premiers entre eux lorsque $a \wedge b = 1$.

Remarque

 \Rightarrow Soit $a, b \in \mathbb{Z}$. Puisque $a \wedge b$ est un diviseur commun à a et b, il existe $a', b' \in \mathbb{Z}$ tels que $a = a'(a \wedge b)$ et $b = b'(a \wedge b)$. Si $(a, b) \neq (0, 0)$, alors a' et b' sont premiers entre eux.

Exercice 6

 \Rightarrow Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux. Calculer $(a - b) \land (a + b)$.

Proposition 18.2.9

Soit $a, b \in \mathbb{Z}$. Alors a et b sont premiers entre eux si et seulement si il existe $u, v \in \mathbb{Z}$ tels que

$$ua + vb = 1.$$

Exercice 7

 \Rightarrow Soit $n \in \mathbb{N}^*$. On se place dans le groupe (\mathbb{U}_n, \times) et on pose $\omega := e^{i\frac{2\pi}{n}}$. Montrer que si $k \in \mathbb{Z}$, le groupe engendré par ω^k est égal à \mathbb{U}_n si et seulement si k et n sont premiers entre eux.

Proposition 18.2.10

- Soit $a, b, c \in \mathbb{Z}$ tels que $a \wedge b = 1$ et $a \wedge c = 1$. Alors $a \wedge (bc) = 1$.
- Plus généralement, si $a \in \mathbb{Z}$ est premier avec chaque élément d'une famille d'entiers $b_1, \ldots, b_n \in \mathbb{Z}$, alors a est premier avec leur produit.
- Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux et $m, n \in \mathbb{N}$. Alors $a^m \wedge b^n = 1$.

Exercices 8

- \Rightarrow Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux. Montrer que a + b et ab sont premiers entre eux.
- \Rightarrow Résoudre sur \mathbb{Z} l'équation $2n \equiv 7$ [9].

Définition 18.2.11

Soit $n \in \mathbb{N}^*$. On dit que $a \in \mathbb{Z}$ est inversible modulo n lorsqu'il existe $b \in \mathbb{Z}$ tel que $ab \equiv 1$ [n].

Proposition 18.2.12

Soit $n \in \mathbb{N}^*$. Alors $a \in \mathbb{Z}$ est inversible modulo n si et seulement si $a \wedge n = 1$.

Proposition 18.2.13

Soit $a_1, \ldots, a_n \in \mathbb{Z}$. Alors il existe $u_1, \ldots, u_n \in \mathbb{Z}$ tels que

$$u_1a_1 + \cdots + u_na_n = a_1 \wedge \ldots \wedge a_n.$$

Définition 18.2.14

Soit $a_1, \ldots, a_n \in \mathbb{Z}$.

— On dit que a_1, \ldots, a_n sont deux à deux premiers entre eux lorsque

$$\forall i, j \in [1, n] \quad i \neq j \Longrightarrow a_i \land a_j = 1.$$

— On dit que a_1, \ldots, a_n sont premiers entre eux dans leur ensemble lorsque

$$a_1 \wedge \cdots \wedge a_n = 1.$$

Remarque

 \Rightarrow Si les entiers a_1, \ldots, a_n sont deux à deux premiers entre eux, alors ils sont premiers entre eux dans leur ensemble. Cependant, la réciproque est fausse. Par exemple, $a_1 = 2$, $a_2 = 3$ et $a_3 = 6$ sont premiers entre eux dans leur ensemble, mais ne sont pas deux à deux premiers entre eux.

Proposition 18.2.15

Soit $a_1, \ldots, a_n \in \mathbb{Z}$. Alors a_1, \ldots, a_n sont premiers entre eux dans leur ensemble si et seulement si il existe $u_1, \ldots, u_n \in \mathbb{Z}$ tels que

$$u_1a_1 + \dots + u_na_n = 1.$$

Exercice 9

⇒ Trouver les solutions entières de l'équation

$$a^2 + b^2 = 3c^2$$
.

18.2.4 Lemme de Gauss

Théorème 18.2.16

Soit $a, b, c \in \mathbb{Z}$. Alors

$$[a|bc \text{ et } a \wedge b = 1] \implies a|c.$$

Exercices 10

 \Rightarrow Soient $a, b, c \in \mathbb{Z}$ tels que $a \land c = 1$. Montrer que

$$(ab) \wedge c = b \wedge c.$$

- \Rightarrow Résoudre l'équation 105u + 147v = 21 dans \mathbb{Z} .
- ⇒ Trois comètes passent régulièrement dans le ciel Shadok. La première, la comète Gabu, passe tous les 10 jours depuis le deuxième jour d'existence de leur planète. La seconde, la comète Zomeu passe tous les 21 jours depuis le cinquième jour d'existence de leur planète. Enfin, la comète Gibi passe tous les 6 jours depuis le troisième jour d'existence de leur planète. Est-il possible d'admirer les comètes Gabu et Zomeu le même jour dans le ciel Shadok? Si oui, lesquels? Même question pour les comètes Gabu et Gibi.
- \Rightarrow Soit (G, \star) un groupe et $x \in G$ un élément d'ordre fini $n \in \mathbb{N}^*$. Étant donné $k \in \mathbb{Z}$, calculer l'ordre de x^k .

Remarque

 \Rightarrow Soit $a, b, c \in \mathbb{Z}$ tels que $(a, b) \neq (0, 0)$. On cherche les solutions entières de l'équation

$$(E)$$
 $ua + vb = c$

- Si $a \wedge b$ ne divise pas c, il n'y a aucune solution.
- Sinon, il existe $c' \in \mathbb{Z}$ tel que $c = c'(a \wedge b)$. En utilisant l'algorithme d'Euclide, on trouve $u'_0, v'_0 \in \mathbb{Z}$ tels que $u'_0a + v'_0b = a \wedge b$. On a donc $(c'u'_0)a + (c'v'_0)b = c$ ce qui nous donne une solution particulière à l'équation (E). Soit $a', b' \in \mathbb{Z}$ tels que $a = a'(a \wedge b)$ et $b = b'(a \wedge b)$. Alors a' et b' sont premiers entre eux. On a alors :

$$\forall u,v \in \mathbb{Z} \quad ua + vb = c \iff ua + vb = (c'u'_0)a + (c'v'_0)b$$

$$\iff (u - c'u'_0)a = (c'v'_0 - v)b$$

$$\iff (u - c'u'_0)a' = (c'v'_0 - v)b' \quad (E')$$

Si le couple (u, v) est solution de (E'), on en déduit que b' divise $(u - c'u'_0)a'$. Or a' et b' sont premiers entre eux, donc d'après le lemme de Gauss, b' divise $u - c'u'_0$. Il existe donc $k \in \mathbb{Z}$ tel que $u = c'u'_0 + kb'$. En reportant cette égalité dans (E'), on trouve $v = c'v'_0 - ka'$. Réciproquement, on vérifie que de tels u et v sont bien solution de (E'). L'ensemble des solutions de (E) est donc

$$S = \{ (c'u'_0 + kb', c'v'_0 - ka') \mid k \in \mathbb{Z} \}$$

Proposition 18.2.17

Soit $r \in \mathbb{Q}$.

— Alors, il existe un unique couple $(a, b) \in \mathbb{Z} \times \mathbb{N}^*$ tel que

$$r = \frac{a}{b}$$
 et $a \wedge b = 1$.

Cette écriture est appelée forme irréductible de r.

— De plus, si $p \in \mathbb{Z}$ et $q \in \mathbb{Z}^*$, r = p/q si et seulement si il existe $k \in \mathbb{Z}^*$ tel que p = ka et q = kb.

18.2. PGCD, PPCM 339

Remarque

 \Rightarrow Si $P(x) = a_n x^n + \cdots + a_1 x + a_0$ est un polynôme à coefficients entiers et r = p/q est une racine rationnelle de P, mise sous forme irréductible, alors $q|a_n$ et $p|a_0$. On a ainsi un moyen de trouver toutes les racines rationnelles d'un polynôme à coefficients entiers.

Exercices 11

- \Rightarrow Rechercher les racines rationnelles de $P(x) = 2x^3 + x^2 + x 1$. En déduire une factorisation de ce polynôme.
- \Rightarrow Soit $n \in \mathbb{N}$. Montrer que \sqrt{n} est soit entier, soit irrationnel.

Proposition 18.2.18

- Soit $a, b, c \in \mathbb{Z}$. On suppose que a|c, b|c et $a \wedge b = 1$. Alors ab|c.
- Plus généralement si $a \in \mathbb{Z}$ est divisé par chaque élément d'une famille $b_1, \ldots, b_n \in \mathbb{Z}$ d'entiers deux à deux premiers entre eux, alors il est divisé par leur produit.

18.2.5 Plus petit commun multiple

Définition 18.2.19

Soit $a, b \in \mathbb{Z}$. Il existe un unique entier positif p tel que

- -a|p et b|p
- $\forall q \in \mathbb{Z}, \quad [a|q \text{ et } b|q] \Longrightarrow p|q$

On l'appelle ppcm (plus petit commun multiple) de a et de b et on le note ppcm (a,b) ou $a\vee b$.

Remarques

- \Rightarrow Si $a, b \in \mathbb{Z}$, les multiples de a et de b sont les multiples de $a \vee b$.
- \Rightarrow Soit $a,b \in \mathbb{N}$. Pour la relation d'ordre de divisibilité sur \mathbb{N} , l'ensemble des multiples de a et de b n'est rien d'autre que l'ensemble des majorants de $\{a,b\}$. La définition précédente montre donc que cet ensemble admet un plus petit élément (au sens de la divisibilité) qui est $a \vee b$. Autrement dit, au sens de la divisibilité, l'ensemble $\{a,b\}$ admet une borne supérieure qui est $a \vee b$.

Proposition 18.2.20

$$\forall a \in \mathbb{Z}, \qquad a \lor 0 = 0$$

$$\forall a \in \mathbb{Z}, \qquad a \lor 1 = |a|$$

$$\forall a, b \in \mathbb{Z}, \qquad a \lor b = 0 \iff [a = 0 \text{ ou } b = 0]$$

Remarque

 \Rightarrow Si $a, b \in \mathbb{N}^*$, $a \lor b$ est, au sens de l'ordre, le plus petit multiple commun strictement positif de a et b.

Proposition 18.2.21

$$\forall a, b \in \mathbb{Z}, \qquad a \lor b = b \lor a$$

$$\forall a, b \in \mathbb{Z}, \qquad a \lor b = (-a) \lor b = a \lor (-b) = (-a) \lor (-b) = |a| \lor |b|$$

$$\forall a, b, k \in \mathbb{Z}, \qquad (ka) \lor (kb) = |k| (a \lor b)$$

Proposition 18.2.22

Soit
$$a, b \in \mathbb{Z}$$
.

— Si
$$a \wedge b = 1$$
, alors

$$a \lor b = |ab|$$
.

— De manière générale

$$(a \wedge b) (a \vee b) = |ab|$$
.

Remarque

 \Rightarrow On peut définir $a \lor b \lor c$ mais attention, en général, $(a \land b \land c)(a \lor b \lor c) \neq |abc|$.

Exercice 12

 \Rightarrow Résoudre dans \mathbb{Z} l'équation $a \lor b = a + b - 1$.

18.3 Nombres premiers

18.3.1 Nombres premiers

Définition 18.3.1

On dit qu'un entier $p \ge 2$ est *premier* lorsque ses seuls diviseurs positifs sont 1 et p. On note \mathcal{P} l'ensemble des nombres premiers.

Remarques

- ⇒ Par convention, 1 n'est pas un nombre premier.
- \Rightarrow Un nombre $p \ge 2$ n'est pas premier si et seulement si il existe $a, b \ge 2$ tel que p = ab.
- \Rightarrow Soit p un entier supérieur ou égal à 2. Pour montrer que p est premier, il suffit de montrer que k ne divise pas p pour tout entier k compris (au sens large) entre 2 et \sqrt{p} .

Exercices 13

- \Rightarrow Pour tout $n \in \mathbb{N}$, on définit le *n*-ième nombre de Mersenne comme $M_n = 2^n 1$. Montrer que si M_n est premier, alors n est premier. La réciproque est-elle vraie?
- \Rightarrow Soit p un nombre premier supérieur ou égal à 5. Montrer que $24|p^2-1$.
- \Rightarrow Soit $n \in \mathbb{N}^*$. Montrer qu'il existe n nombres consécutifs non premiers

Proposition 18.3.2

Soit p un nombre premier et $n \in \mathbb{Z}$. Alors p|n ou $p \wedge n = 1$.

Exercice 14

- \Rightarrow Soit p un nombre premier.
 - 1. Montrer que pour tout $k \in [1, p-1]$, p divise $\binom{p}{k}$.
 - 2. Montrer que

$$\forall a, b \in \mathbb{Z}, \quad (a+b)^p \equiv a^p + b^p \quad [p].$$

Proposition 18.3.3: Petit théorème de Fermat

Soit p un nombre premier et $m \in \mathbb{Z}$ un entier qui n'est pas un multiple de p. Alors

$$m^{p-1} \equiv 1 \ [p].$$

Proposition 18.3.4

Soit p un nombre premier.

— Si $a, b \in \mathbb{Z}$, alors

$$p|ab \iff [p|a \text{ ou } p|b].$$

— Plus généralement, p divise un produit si et seulement si il divise un de ses facteurs.

Proposition 18.3.5

Tout entier supérieur ou égal à 2 admet un diviseur premier.

Remarque

- \Rightarrow Soit $n \geqslant 2$. On cherche l'ensemble des nombres premiers inférieurs ou égaux à n. Pour cela, on utilise le crible d'Ératosthène :
 - On forme une table avec tous les entiers compris entre 2 et n.
 - On raye tous les multiples de 2.
 - On cherche le plus petit entier qui n'est pas rayé : c'est 3 et il est premier. On raye alors tous les multiples de 3.

- On cherche ensuite le plus petit entier qui n'est pas rayé (c'est 5). Il est forcément premier car on a trouvé tous les nombres premiers strictement inférieurs à celui-ci et on a rayé tous leurs multiples. On raye alors tous les multiples de 5.
- On continue ainsi jusqu'à ce qu'on trouve un nombre premier dont le carré est strictement supérieur à n. Les nombres qui ne sont pas rayés sont les nombres premiers compris entre 2 et n.

Par exemple, si on cherche les nombres premiers inférieurs à 99, on trouve :

		2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Proposition 18.3.6

L'ensemble \mathcal{P} des nombres premiers est infini.

Remarque

⇒ Cette démonstration est due à Euclide (325–265 avant J.C.).

18.3.2 Valuation p-adique, décomposition en facteurs premiers

Définition 18.3.7

Lorsque $n \in \mathbb{Z}^*$ et p est nombre premier, on appelle valuation p-adique de n et on note $\operatorname{Val}_p(n)$ le plus grand $\alpha \in \mathbb{N}$ tel que $p^{\alpha}|n$.

Remarques

- \Rightarrow Si $n \in \mathbb{Z}^*$, il n'existe qu'un nombre fini de nombres premiers p tels que $\operatorname{Val}_p(n) > 0$.
- \Rightarrow Soit p et q deux nombres premiers. Alors

$$\operatorname{Val}_p(q) = \begin{cases} 1 & \text{si } p = q, \\ 0 & \text{sinon.} \end{cases}$$

Proposition 18.3.8

Soit $n_1, n_2 \in \mathbb{Z}^*$ et $p \in \mathcal{P}$. Alors

$$\operatorname{Val}_{p}(n_{1}n_{2}) = \operatorname{Val}_{p}(n_{1}) + \operatorname{Val}_{p}(n_{2}).$$

Remarques

 \Rightarrow Plus généralement, si p est un nombre premier, $n_1, \ldots, n_r \in \mathbb{Z}^*$ et $\alpha_1, \ldots, \alpha_r \in \mathbb{N}$, alors

$$\operatorname{Val}_p\left(\prod_{k=1}^r n_k^{\alpha_k}\right) = \sum_{k=1}^r \alpha_k \operatorname{Val}_p(n_k).$$

 \Rightarrow Si $n \in \mathbb{Z}^*$, certains auteurs définissent la valuation p-adique de n pour tout entier $p \geqslant 2$. Par exemple la valuation 10-adique de n est le plus grand entier $\alpha \in \mathbb{N}$ tel que 10^{α} divise n, c'est-à-dire le nombre de 0 à la fin de l'écriture décimale de n. Remarquons simplement que si p n'est pas premier, la propriété de la proposition précédente n'est plus vérifiée.

Théorème 18.3.9: Théorème de décomposition en nombres premiers

Soit $n \in \mathbb{Z}^*$. Alors, il existe $u \in \{-1, 1\}, p_1, \dots, p_r$ des nombres premiers deux à deux distincts et $\alpha_1, \dots, \alpha_r \in \mathbb{N}^*$

tels que

$$n = u \prod_{k=1}^{r} p_k^{\alpha_k}.$$

De plus, à permutation près des p_k , cette décomposition est unique.

Remarque

 \Rightarrow Soit $n \in \mathbb{Z}^*$. Si $u \in \{1, -1\}$ est le signe de n, la décomposition de n en facteurs premiers s'écrit

$$n = u \prod_{p \in \mathcal{P}} p^{\operatorname{Val}_p(n)}$$

ce produit ne comportant qu'un nombre fini de termes n'étant pas égal à 1.

Proposition 18.3.10

Soit $n_1, n_2 \in \mathbb{Z}^*$. Alors

— $n_1|n_2$ si et seulement si

$$\forall p \in \mathcal{P}, \quad \operatorname{Val}_{p}(n_{1}) \leqslant \operatorname{Val}_{p}(n_{2}).$$

— $n_1 = \pm n_2$ si et seulement si

$$\forall p \in \mathcal{P}, \quad \operatorname{Val}_{p}(n_{1}) = \operatorname{Val}_{p}(n_{2}).$$

Exercice 15

 \Rightarrow Si $n \in \mathbb{N}$ et p est un nombre premier, montrer que

$$\operatorname{Val}_{p}(n!) = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

En déduire le nombre de zéros à la fin de l'écriture décimale de 2023!.

Proposition 18.3.11

Soit $n_1, n_2 \in \mathbb{Z}^*$. Alors, le pgcd et le ppcm de n_1 et n_2 sont donnés par les relations

$$\forall p \in \mathcal{P}, \quad \operatorname{Val}_{p}(n_{1} \wedge n_{2}) = \min \left(\operatorname{Val}_{p}(n_{1}), \operatorname{Val}_{p}(n_{2}) \right)$$
$$\operatorname{Val}_{p}(n_{1} \vee n_{2}) = \max \left(\operatorname{Val}_{p}(n_{1}), \operatorname{Val}_{p}(n_{2}) \right).$$

Exercice 16

 \Rightarrow Soient $a, b \in \mathbb{N}$ tels que $a \land b = 1$ et ab est un carré parfait (ab est le carré d'un entier). Montrer que a et b sont des carrés parfaits.

18.3.3 Les grands problèmes d'arithmétique

— Postulat de Bertrand

Le postulat de Bertrand affirme que si $n \in \mathbb{N}^*$, alors il existe un nombre premier p tel que n . Cette conjecture fut énoncée par Joseph Bertrand en 1845 et démontrée par Tchebychev en 1848. Bien que ce résultat soit aujourd'hui un théorème, le nom de postulat lui est resté associé.

— Théorème de la progression arithmétique

Ce théorème affirme que si a et b sont premiers entre aux, alors il existe une infinité de nombres premiers p tels que $p \equiv a$ [b]. On le doit à Dirichlet (1805–1859).

— Théorème des nombres premiers

Pour tout $n \in \mathbb{N}^*$, on définit π_n comme le cardinal de l'ensemble des nombres premiers inférieurs ou égaux à n. Le théorème des nombres premiers affirme que

$$\pi_n \underset{n \to +\infty}{\sim} \frac{n}{\ln n}$$

Autrement dit, si l'on choisit au hasard un entier entre 1 et n, la probabilité pour qu'il soit premier est de l'ordre de $1/(\ln n)$. Remarquons que cette quantité tend vers 0 lorsque n tend vers $+\infty$, c'est-à-dire que les nombres premiers deviennent « de plus en plus rares » lorsqu'on avance parmi les entiers naturels. Ce théorème fut conjecturé de manière indépendante par Gauss et Legendre vers 1800. Il fut démontré par Hadamard et de la Vallée Poussin en 1896.

— Grand (ou dernier) théorème de Fermat

Il s'énonce ainsi:

« Pour tout entier
$$n \ge 3$$
, il n'existe pas de triplet $(a, b, c) \in \mathbb{N}^{*3}$ tel que $a^n + b^n = c^n$. »

Contrairement au petit théorème, il s'agit d'un résultat extrêmement difficile, dont Fermat n'a pas publié de démonstration. Fermat n'a même jamais affirmé publiquement l'avoir démontré. Il a cependant écrit dans une marge du livre II des Oeuvres de Diophante : « J'ai découvert une démonstration merveilleuse, mais je n'ai pas la place de la mettre dans la marge ». Le livre et cette annotation ont été publiés après sa mort, par son fils. De nombreux mathématiciens ont tenté de le prouver et sont arrivés à des résultats partiels, notamment

- Fermat (1601–1665) le démontre pour n = 4.
- Euler (1707–1783) le démontre pour n=3.
- Sophie Germain (1776–1831) apporte un résultat majeur ouvrant la porte à la démonstration du cas n = 5, démontré quelques années plus tard par Legendre (1752–1833).
- Kummer (1810–1893) le prouve pour tout $n \in [3, 99]$.

En 1993, Andrew Wiles prouve un résultat sur les courbes elliptiques, résultat qui admet le grand théorème de Fermat pour corolaire. La démonstration initiale possède une erreur mais elle sera vite réparée. La conjecture de Fermat devient alors le théorème de Fermat-Wiles.

Nombres premiers jumeaux

On dit qu'un couple $(p,q) \in \mathbb{N}$ est un couple de nombres premiers jumeaux lorsque q=p+2. Par exemple (3,5), (5,7), (11,13) sont des couples de nombres premiers jumeaux. On conjecture qu'il existe une infinité de nombres premiers jumeaux. Bien que l'on pense que cette conjecture est vraie, elle n'a jamais été démontrée. En janvier 2016, le plus grand couple de nombres premiers jumeaux connu est $2\,996\,863\,034\,895 \times 2^{1\,290\,000} \pm 1$.

— Conjecture de Goldbach

En 1742, Goldbach (1690–1764) et Euler (1707–1783) énoncent

« Tout entier pair supérieur ou égal à 4 peut s'écrire comme la somme de deux nombres premiers. »

On pense que cette conjecture est vraie, mais aucune démonstration n'en a jamais été faite.

18.4 Exercices

Divisibilité, division euclidienne

Relation de divisibilité

Congruence, division euclidienne

Exercice 1: Exercice

Soit $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$ tels que $a \equiv b$ [n]. Montrer que

$$a^n \equiv b^n \ [n^2]$$
.

pgcd, ppcm

Plus grand commun diviseur

Exercice 2 : Autour du pgcd

Soit $a, b, c \in \mathbb{Z}$ tels que $a \wedge c = 1$. Montrer que

$$(ab) \wedge c = b \wedge c.$$

Algorithme d'Euclide

Exercice 3: Divers calculs de pgcd et ppcm

Soit $a, b \in \mathbb{Z}$. Calculer

$$(15a^2 + 8a + 6) \wedge (30a^2 + 21a + 13),$$
 $(a^3 + a) \wedge (2a + 1),$ $(a - b)^3 \wedge (a^3 - b^3),$ $(a + b) \vee (a \wedge b).$

Relation de Bézout

Exercice 4 : Calculs des coefficients de Bézout

Résoudre dans $\mathbb Z$ les équations suivantes :

$$95x + 71y = 1$$
, $24x - 15y = 3$, $12x + 15y + 20z = 1$.

Lemme de Gauss

Exercice 5 : Autour de la suite de Fibonacci

On définit la suite de Fibonacci par :

$$F_0 := 0$$
, $F_1 := 1$ et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

1. Démontrer que

$$\forall n \in \mathbb{N}^*, \quad F_{n+1}F_{n-1} - F_n^2 = (-1)^n.$$

En déduire que F_n et F_{n+1} sont premiers entre eux.

2. Démontrer que

$$\forall n \in \mathbb{N}, \quad \forall p \in \mathbb{N}^*, \quad F_{n+p} = F_p F_{n+1} + F_{p-1} F_n.$$

En déduire que $F_n \wedge F_p = F_{n+p} \wedge F_p$.

3. Montrer que

$$\forall n, p \in \mathbb{N}, \quad F_n \wedge F_p = F_{n \wedge p}.$$

Exercice 6 : Reste de la division euclidienne d'une puissance

Soit n un entier supérieur à 2 et $a \in \mathbb{Z}$, premier avec n. Pour tout entier k on note r_k le reste de la division euclidienne de a^k par n.

- 1. Montrer que la suite r est périodique. Pour cela on montrera dans l'ordre :
 - (a) Il existe $k_1, k_2 \in \mathbb{N}$ tels que $k_1 < k_2$ et $a^{k_1} \equiv a^{k_2}$ [n].
 - (b) Il existe $T \in \mathbb{N}^*$ tel que $a^T \equiv 1$ [n].
 - (c) Conclure
- 2. Quel est le reste de la division euclidienne de 3^{1998} par 5?
- 3. Montrer que 13 divise $3^{126} + 5^{126}$.

18.4. EXERCICES 345

Exercice 7: Le théorème chinois

On se donne $p_1, p_2 \in \mathbb{N}^*$ premiers entre eux, et a_1 et $a_2 \in \mathbb{Z}$.

1. On souhaite montrer qu'il existe $n \in \mathbb{Z}$ tel que :

$$n \equiv a_1 \quad [p_1]$$
 et $n \equiv a_2 \quad [p_2]$.

- (a) Montrer que le problème admet une solution lorsque $a_1 = 1$ et $a_2 = 0$ ainsi que lorsque $a_1 = 0$ et $a_2 = 1$.
- (b) En déduire que, dans le cas général, le problème admet une solution.
- 2. En déduire l'ensemble des solutions du système :

$$n \equiv a_1 \quad [p_1]$$
 et $n \equiv a_2 \quad [p_2]$.

3. Application : Résoudre le système

$$n \equiv 3$$
 [21] et $n \equiv 1$ [5].

Exercice 8: Les pirates

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui-ci reçoit 3 pièces.

Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment ; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Exercice 9: Ordre d'un produit

Soit (G, \star) un groupe fini et x, y deux éléments de G d'ordre respectifs ω_x et $\omega_y \in \mathbb{N}^*$. On suppose que $x \star y = y \star x$ et que $\omega_x \wedge \omega_y = 1$.

- 1. Montrer que $Gr(x) \cap Gr(y) = \{e\}.$
- 2. En déduire que xy est d'ordre $\omega_x\omega_y$.

Plus petit commun multiple

Nombres premiers

Nombres premiers

Exercice 10 : Système de chiffrement RSA

On se donne deux nombres premiers p et q distincts, on pose n := pq et on définit

$$\varphi(n) := \operatorname{Card}\{k \in [0, n-1] \mid k \wedge n = 1\}.$$

- 1. Soit $c \in \mathbb{N}$ tel que $c \wedge \varphi(n) = 1$. Montrer qu'il existe $d \in \mathbb{N}$ tel que $cd \equiv 1$ $[\varphi(n)]$.
- 2. Montrer que $\varphi(n) = (p-1)(q-1)$.
- 3. Montrer que si $t \in \mathbb{Z}$, alors $t^{cd} \equiv t \quad [n]$.

Exercice 11 : Raréfication des nombres premiers

Montrer qu'il existe des intervalles de \mathbb{N} de longueur aussi grande que l'on veut qui ne contiennent aucun nombre premier.

Exercice 12 : Encadrement du n-ième nombre premier

Pour tout $n \in \mathbb{N}^*$, on note p_n le n-ième nombre premier.

1. Montrer que:

$$\forall n \in \mathbb{N}^*, \quad p_{n+1} \leqslant p_1 \cdots p_n + 1.$$

2. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad p_n \leqslant 2^{2^n}.$$

3. Soit $x \in \mathbb{R}_+$. On note $\pi(x)$ le nombre de nombres premiers inférieurs ou égaux à x. Montrer que pour x assez grand :

$$\ln(\ln x) \leqslant \pi(x) \leqslant x.$$

On démontrera le fait que pour $n \geqslant 3$, $e^{e^{n-1}} \geqslant 2^{2^n}$.

Exercice 13 : Cas particuliers du théorème de DIRICHLET

- 1. Montrer qu'il existe une infinité de nombres premiers de la forme 4k + 3.
- 2. Montrer qu'il existe une infinité de nombres premiers de la forme 6k + 5.

Le théorème de DIRICHLET affirme que si a et b sont premiers entre eux, il existe une infinité de nombres premiers de la forme ak + b.

Exercice 14: Pour les Toulousaings

Soit $a_1, \ldots, a_{1789} \in \mathbb{Z}$ tels que

$$\sum_{k=1}^{1789} a_k = 0$$

Montrer que

$$\sum_{k=1}^{1789} a_k^{37} \equiv 0 \ [399].$$

Valuation p-adique, décomposition en facteurs premiers

Chapitre 19

Intégration

19.1.1	Fonction en escalier
19.1.2	Fonction continue par morceaux
19.1.3	Intégrale d'une fonction continue par morceaux
19.1.4	Positivité de l'intégrale
19.1.5	Inégalité triangulaire
19.1.6	Somme de Riemann
19.2 Intég	${f gration}$ et dérivation
19.2.1	Continuité et dérivabilité
19.2.2	Primitive
19.2.3	Calcul d'intégrales
19.2.4	Formules de Taylor
19.3 Exer	cices

19.1 Intégration

19.1.1 Fonction en escalier

Définition 19.1.1

On appelle subdivision du segment [a,b] toute famille $(x_k)_{0 \le k \le n}$ de réels telle que

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

Remarques

 \Rightarrow On dit qu'une subdivision $(x_k)_{0 \leqslant k \leqslant n}$ est régulière lorsque $x_{k+1} - x_k$ est indépendant de k. La subdivision $(x_k)_{0 \leqslant k \leqslant n}$ de [a,b] définie par

$$\forall k \in [0, n], \quad x_k \coloneqq a + k \cdot \frac{b - a}{n}$$

est dite régulière de pas (b-a)/n.

 \Rightarrow Se donner une subdivision de [a,b] revient à se donner une partie finie de [a,b] contenant a et b.

Définition 19.1.2

Soit $\tau_1 = (x_k)_{0 \leqslant k \leqslant n}$ et $\tau_2 = (y_k)_{0 \leqslant k \leqslant m}$ deux subdivisions d'un même segment [a,b]. On dit que τ_2 est plus fine que τ_1 lorsque tout élément de la famille τ_1 est un élément de la famille τ_2 , c'est-à-dire lorsque

$$\forall k \in \llbracket 0, n \rrbracket, \quad \exists i \in \llbracket 0, m \rrbracket, \quad x_k = y_i.$$

Proposition 19.1.3

Soit τ_1 et τ_2 deux subdivisions d'un même segment [a,b]. Alors, il existe une subdivision plus fine que τ_1 et τ_2 .

Définition 19.1.4

— Soit [a, b] un segment. On dit qu'une fonction $\varphi : [a, b] \to \mathbb{K}$ est une fonction en escalier sur [a, b] lorsqu'il existe une subdivision $\tau : a = x_0 < \cdots < x_n = b$ du segment [a, b] telle que φ est constante sur chaque intervalle $]x_k, x_{k+1}[$:

$$\forall k \in [0, n-1], \quad \exists c_k \in \mathbb{K}, \quad \forall x \in [x_k, x_{k+1}], \quad \varphi(x) = c_k.$$

— Soit I un intervalle. On dit qu'une fonction $\varphi: I \to \mathbb{K}$ est en escalier sur I lorsque sa restriction à tout segment [a,b] de I est en escalier sur [a,b].

Remarque

- 🗢 Une fonction en escalier sur un segment prend un nombre fini de valeurs. Une telle fonction est donc bornée.
- ⇒ Si on change la valeur d'une fonction en escalier en un nombre fini de points, elle reste en escalier.

Exercice 1

 \Rightarrow Soit φ la fonction définie sur \mathbb{R}_+^* par

$$\forall x > 0, \quad \varphi(x) \coloneqq \left| \frac{1}{x} \right|.$$

 φ est-elle en escalier sur \mathbb{R}_+^* ? Si on prolonge φ en 0 en posant $\varphi(0) = 0$, la nouvelle fonction est-elle en escalier sur \mathbb{R}_+ ?

Proposition 19.1.5

Soit I un intervalle.

- L'ensemble des fonctions en escalier sur I est une sous-algèbre de $\mathcal{F}(I,\mathbb{K})$.
- Si φ est une fonction en escalier sur I, il en est de même pour $|\varphi|$ et $\overline{\varphi}$.

19.1.2 Fonction continue par morceaux

Définition 19.1.6

- Soit [a,b] un segment. On dit qu'une fonction $f:[a,b] \to \mathbb{K}$ est une fonction continue par morceaux sur [a,b] lorsqu'il existe une subdivision $\tau:a=x_0<\cdots< x_n=b$ du segment [a,b] telle que:
 - Pour tout $k \in [0, n-1]$, f est continue sur $]x_k, x_{k+1}[$.
 - Pour tout $k \in [0, n-1]$, f admet une limite finie à droite (au sens strict) en x_k et à gauche (au sens strict) en x_{k+1} . Autrement dit, la restriction de f à $]x_k, x_{k+1}[$ est prolongeable par continuité sur $[x_k, x_{k+1}]$.
- Soit I un intervalle. On dit qu'une fonction $f: I \to \mathbb{K}$ est continue par morceaux sur I lorsque sa restriction à tout segment [a,b] de I est continue par morceaux sur [a,b]. On note $\mathcal{C}^0_{\mathrm{m}}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux de I dans \mathbb{K} .

Remarques

- \Rightarrow Les fonctions en escalier sont continues par morceaux.
- ⇒ Si on change la valeur d'une fonction continue par morceaux en un nombre fini de points, elle reste continue par morceaux.
- ightharpoonup On dit qu'une fonction $f: \mathcal{D} \to \mathbb{K}$ définie sur une partie élémentaire $\mathcal{D} = I_1 \cup \cdots \cup I_n$ est continue par morceaux lorsque sa restriction à chaque I_k est continue par morceaux.

Proposition 19.1.7

Soit f une fonction continue par morceaux sur un segment [a, b]. Alors f est bornée sur [a, b].

Proposition 19.1.8

Soit I un intervalle.

- L'ensemble des fonctions continues par morceaux sur I est une sous-algèbre de $\mathcal{F}(I,\mathbb{K})$.
- Si f est une fonction continue par morceaux sur I, il en est de même pour |f| et \overline{f} .

19.1. INTÉGRATION 349

Proposition 19.1.9

Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Alors, il existe une fonction en escalier φ définie sur [a,b] telle que

$$\forall x \in [a, b], \quad |f(x) - \varphi(x)| \leq \varepsilon.$$

19.1.3 Intégrale d'une fonction continue par morceaux

Dans la suite de ce chapitre, si $a_1, \ldots, a_n \in \mathbb{R}$, on définit

$$\langle [a_1,\ldots,a_n] \rangle := [\min(a_1,\ldots,a_n),\max(a_1,\ldots,a_n)].$$

Définition 19.1.10

Il existe une unique famille $(I_{a,b})_{(a,b)\in\mathbb{R}^2}$ d'applications de $\mathcal{C}^0_{\mathrm{m}}(\ll[a,b]\gg,\mathbb{K})$ dans \mathbb{K} , associant à $f\in\mathcal{C}^0_{\mathrm{m}}(\ll[a,b]\gg,\mathbb{K})$ le nombre $I_{a,b}(f)\in\mathbb{K}$ noté

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

et vérifiant les propriétés suivantes.

Linéarité

$$\forall a,b \in \mathbb{R}, \quad \forall \lambda, \mu \in \mathbb{K}, \quad \forall f,g \in \mathcal{C}_{\mathrm{m}}^{0}(\, \text{``} \, [a,b] \, \, \text{``}, \mathbb{K}),$$

$$\int_a^b (\lambda f + \mu g)(x) \, \mathrm{d}x = \lambda \int_a^b f(x) \, \mathrm{d}x + \mu \int_a^b g(x) \, \mathrm{d}x.$$

— Relation de Chasles

$$\forall a,b,c \in \mathbb{R}, \quad \forall f \in \mathcal{C}_{\mathrm{m}}^{0}(\left. \left\langle \left[a,b,c \right] \right. \right\rangle, \mathbb{K}),$$

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

- Positivité

$$\forall a, b \in \mathbb{R}, \quad \forall f \in \mathcal{C}_{\mathrm{m}}^{0}(\langle [a, b] \rangle, \mathbb{R}),$$

$$[(a \le b) \text{ et } (\forall x \in [a, b], f(x) \ge 0)] \implies \int_a^b f(x) dx \ge 0.$$

— Uniformité

$$\forall z \in \mathbb{K}, \quad \forall a, b \in \mathbb{R}, \quad \int_a^b z \, \mathrm{d}x = z(b-a).$$

Remarques

 \Rightarrow Une conséquence de la relation de Chasles est que, quel que soit $a \in \mathbb{R}$

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$$

 \Rightarrow Soit $f \in \mathcal{C}_{\mathrm{m}}^0(\mathcal{D}, \mathbb{K})$ une fonction continue par morceaux définie sur une partie élémentaire. Soit $\mathcal{D} = I_1 \cup \cdots \cup I_n$ sa décomposition en composantes connexes. Alors, pour tout $a, b \in \mathcal{D}$, s'il existe un même $k \in [1, n]$ tel que $a, b \in I_k$, on peut définir

$$\int_a^b f(x) \, \mathrm{d}x.$$

Cependant, il n'est pas possible de définir une telle intégrale si a et b n'appartiennent pas au même I_k . Par exemple, si f est la fonction définie sur \mathbb{R}^* par

$$\forall x \in \mathbb{R}^*, \quad f(x) \coloneqq \frac{1}{x},$$

alors f est continue sur \mathbb{R}^* , mais l'intégrale

$$\int_{-1}^{1} \frac{\mathrm{d}x}{x}$$

n'a aucun sens.

Exercice 2

⇒ Donner le domaine de définition de la fonction d'expression

$$\int_{\frac{1}{x}}^{x^2} \frac{\mathrm{d}t}{\sqrt[3]{1+t^3}}$$

19.1.4 Positivité de l'intégrale

Proposition 19.1.11: Croissance de l'intégrale

Soit f et $g: I \to \mathbb{R}$ deux fonctions continues par morceaux et $a, b \in I$. On suppose que

$$a \leqslant b$$
 et $\forall x \in [a, b], f(x) \leqslant g(x).$

Alors

$$\int_a^b f(x) \, \mathrm{d}x \leqslant \int_a^b g(x) \, \mathrm{d}x.$$

Remarque

 \Rightarrow Soit f une fonction continue par morceaux sur le segment [a,b] et $m,M\in\mathbb{R}$ tels que

$$\forall x \in [a, b], \quad m \leqslant f(x) \leqslant M.$$

Alors

$$m(b-a) \leqslant \int_{a}^{b} f(x) dx \leqslant M(b-a).$$

Exercices 3

⇒ Déterminer la limite, si elle existe, de la suite de terme général

$$\frac{1}{n!} \int_0^1 \operatorname{Arcsin}^n x \, \mathrm{d}x.$$

 \Rightarrow Soit $n \in \mathbb{N}$. Montrer que

$$\forall x \geqslant 0, \quad \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + (-1)^{n+1} \frac{x^{2n+2}}{1+x^2}.$$

En déduire que

$$\left|\pi - 4\sum_{k=0}^{n} \frac{(-1)^k}{2k+1}\right| \leqslant \frac{4}{2n+3}.$$

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $f(x) \xrightarrow[x \to +\infty]{} l \in \mathbb{R}$. Déterminer la limite, si elle existe, de la suite de terme général

$$\int_{n}^{n+1} f(x) \, \mathrm{d}x.$$

Proposition 19.1.12

Soit $f:I\to\mathbb{K}$ une fonction continue par morceaux et $a,b\in I.$ Alors

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

est invariant par tout changement de la valeur de f en un nombre fini de points.

Remarque

 \Rightarrow Soit φ une fonction en escalier sur le segment [a,b]. Il existe donc une subdivision $a=x_0<\cdots< x_n=b$ et $c_0,\ldots,c_{n-1}\in\mathbb{K}$ tels que

$$\forall k \in [0, n-1], \quad \forall x \in]x_k, x_{k+1}[, \quad \varphi(x) = c_k.$$

Alors

$$\int_{a}^{b} \varphi(x) \, \mathrm{d}x = \sum_{k=0}^{n-1} c_{k} (x_{k+1} - x_{k}).$$

19.1. INTÉGRATION 351

Proposition 19.1.13

Soit $f: I \to \mathbb{R}$ une fonction continue par morceaux et $a, b \in I$ tels que a < b. Si f est positive sur [a, b] et s'il existe $x_0 \in [a, b]$ en lequel f est continue et $f(x_0) > 0$, alors

$$\int_a^b f(x) \, \mathrm{d}x > 0.$$

Proposition 19.1.14

Soit $f: I \to \mathbb{R}$ une fonction continue et $a, b \in I$ tels que a < b. Si f est de signe constant sur [a, b] et

$$\int_{a}^{b} f(x) \, \mathrm{d}x = 0,$$

alors

$$\forall x \in [a, b], \quad f(x) = 0.$$

Exercices 4

 \Rightarrow Soit $P \in \mathbb{R}[X]$ tel que

$$\int_{0}^{1} P^{2}(x) \, \mathrm{d}x = 0.$$

Montrer que P = 0.

 \Rightarrow Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que

$$\int_a^b f(x) \, \mathrm{d}x = 0.$$

Montrer qu'il existe $c \in [a, b]$ tel que f(c) = 0.

 \Rightarrow Soit f une fonction continue sur [0,1] telle que

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{2}.$$

Montrer qu'il existe $c \in [0, 1]$ tel que f(c) = c.

19.1.5 Inégalité triangulaire

Proposition 19.1.15

Soit $f:I\to\mathbb{C}$ une fonction continue par morceaux. Alors, pour tout $a,b\in I$

$$\overline{\int_a^b f(x) \, \mathrm{d}x} = \int_a^b \overline{f(x)} \, \mathrm{d}x.$$

Proposition 19.1.16: Inégalité triangulaire

Soit $f: I \to \mathbb{K}$ une fonction continue par morceaux et $a, b \in I$. Si $a \leq b$, alors

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leqslant \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

Exercice 5

 \Rightarrow Soit $f:[0,1] \to \mathbb{R}$ une fonction continue par morceaux. On définit la fonction g sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad g(x) := \int_0^1 f(t) \sin(xt) dt.$$

Montrer que g est lipschitzienne.

19.1.6 Somme de Riemann

Proposition 19.1.17

Soit $f:[a,b]\to\mathbb{K}$ une fonction continue par morceaux. Alors

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f(x) \, \mathrm{d}x.$$

Remarque

 \Rightarrow Si $f:[a,b] \to \mathbb{K}$ est continue par morceaux, de même

$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_{a}^{b} f(x) dx.$$

Exercices 6

⇒ Calculer la limite de la suite de terme général

$$\sum_{k=1}^{n} \frac{n+k}{n^2+k^2}.$$

 \Rightarrow Soit $\alpha \in \mathbb{R}_+^*$. Trouver un équivalent simple de

$$\sum_{k=0}^{n} k^{\alpha}.$$

19.2 Intégration et dérivation

19.2.1 Continuité et dérivabilité

Proposition 19.2.1

Soit $f:I\to\mathbb{K}$ une fonction continue par morceaux, $a\in I$ et F la fonction définie sur I par

$$\forall x \in I, \quad F(x) \coloneqq \int_{a}^{x} f(t) \, \mathrm{d}t.$$

On suppose qu'il existe un intervalle $J\subset I$ et un réel $M\in\mathbb{R}_+$ tels que

$$\forall x \in J, \quad |f(x)| \leq M.$$

Alors F est M-lipschitzienne sur J.

Proposition 19.2.2

Soit $f: I \to \mathbb{K}$ une fonction continue par morceaux, $a \in I$ et F la fonction définie sur I par

$$\forall x \in I, \quad F(x) := \int_{a}^{x} f(t) \, \mathrm{d}t.$$

Alors F est continue sur I.

Proposition 19.2.3

Soit $f: I \to \mathbb{K}$ une fonction continue par morceaux, $a \in I$ et F la fonction définie sur I par

$$\forall x \in I, \quad F(x) := \int_{a}^{x} f(t) \, \mathrm{d}t.$$

Soit $x_0 \in I$. Si f est continue en x_0 , alors F est dérivable en x_0 et

$$F'(x_0) = f(x_0).$$

Remarque

 \Rightarrow Soit $f:I\to\mathbb{K}$ une fonction continue et $a,b:J\to I$ deux fonctions dérivables. On définit la fonction g sur J par

$$\forall x \in J, \quad g(x) := \int_{a(x)}^{b(x)} f(t) dt.$$

Alors g est dérivable sur J et

$$\forall x \in J, \quad g'(x) = b'(x)f(b(x)) - a'(x)f(a(x)).$$

19.2.2 Primitive

Définition 19.2.4

Soit f une fonction définie sur une partie \mathcal{D} de \mathbb{R} . On appelle *primitive* de f toute fonction dérivable $F: \mathcal{D} \to \mathbb{K}$ telle que

$$\forall x \in \mathcal{D}, \qquad F'(x) = f(x).$$

Proposition 19.2.5

Soit $f: I \to \mathbb{K}$ une fonction continue sur un intervalle I. Alors

- f admet une primitive.
- Si $F: I \to \mathbb{K}$ est une primitive de f, une fonction $G: I \to \mathbb{K}$ est une primitive de f si et seulement si il existe $c \in \mathbb{K}$ tel que

$$\forall x \in I, \quad G(x) = F(x) + c.$$

Remarque

 \Rightarrow Si f est une fonction continue sur une partie élémentaire $\mathcal{D} = I_1 \cup \cdots \cup I_n$ (où I_1, \ldots, I_n sont les composantes connexes de \mathcal{D}), alors f admet une primitive. De plus, si $F : \mathcal{D} \to \mathbb{K}$ est une primitive de f, une fonction $G : \mathcal{D} \to \mathbb{K}$ est une primitive de f si et seulement si il existe $c_1, \ldots, c_n \in \mathbb{K}$ tels que

$$\forall k \in [1, n], \quad \forall x \in I_k, \quad G(x) = F(x) + c_k.$$

19.2.3 Calcul d'intégrales

Théorème 19.2.6: Théorème fondamental de l'analyse

Soit $f: I \to \mathbb{K}$ une fonction continue, $a, b \in I$ et F est une primitive de f. Alors

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Remarques

 \Rightarrow Soit $f: I \to \mathbb{K}$ une fonction de classe \mathcal{C}^1 et $a, b \in I$. Alors

$$f(b) - f(a) = \int_a^b f'(t) dt.$$

 \Rightarrow Si f est une fonction de classe \mathcal{C}^1 sur l'intervalle I et s'il existe $M \in \mathbb{R}_+$ tel que

$$\forall x \in I, \quad |f'(x)| \leq M,$$

alors f est M-lipschitzienne. On retrouve donc l'inégalité des accroissements finis dans le cas où f est de classe \mathcal{C}^1 .

Exercice 7

 \Rightarrow Soit $n\in\mathbb{N}^*,\,a\in\mathbb{R}_+^*$ et $x,y\geqslant a.$ Montrer que

$$\left|\sqrt[n]{x} - \sqrt[n]{y}\right| \leqslant \frac{1}{na^{\frac{n-1}{n}}} |x - y|.$$

Proposition 19.2.7: Intégration par parties

Soit $f:I\to\mathbb{K}$ une fonction continue, $g:I\to\mathbb{K}$ une fonction de classe \mathcal{C}^1 et $a,b\in I$. Alors, si F est une primitive de f

$$\int_a^b \underbrace{f(x)}_{\text{dérive}} \underbrace{g(x)}_{\text{dérive}} dx = [F(x)g(x)]_a^b - \int_a^b F(x)g'(x) dx.$$

Exercice 8

 \Rightarrow Pour tout $n \in \mathbb{N}$, on définit

$$I_n := \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x.$$

Calculer I_n .

Proposition 19.2.8: Changement de variable

Soit $\overline{x}: I \to J$ une fonction de classe C^1 , $x_a, x_b \in J$ et $t_a, t_b \in I$ tels que $\overline{x}(t_a) = x_a$ et $\overline{x}(t_b) = x_b$ et $f: J \to \mathbb{K}$ une fonction continue. Alors

$$\int_{x_a}^{x_b} f(x) \, \mathrm{d}x = \int_{t_a}^{t_b} f\left(\overline{x}(t)\right) \frac{\mathrm{d}\overline{x}}{\mathrm{d}t}(t) \, \mathrm{d}t.$$

Remarque

 \Rightarrow Cette proposition reste vraie lorsque f est continue par morceaux et $\overline{x}(t) = \alpha t + \beta$.

Exercices 9

 \Rightarrow Soit $a, b \in \mathbb{R}$ tels que $a \leq b$. Calculer

$$\int_{a}^{b} \sqrt{(x-a)(b-x)} \, \mathrm{d}x.$$

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x) + f(y).$$

Montrer que f est linéaire.

Proposition 19.2.9

— Soit $a \ge 0$ et $f: [-a, a] \to \mathbb{K}$ une fonction continue par morceaux.

— Si f est paire

$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx.$$

En particulier

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$

— Si f est impaire

$$\int_{-a}^{0} f(x) \, \mathrm{d}x = -\int_{0}^{a} f(x) \, \mathrm{d}x.$$

En particulier

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0.$$

— Soit $f: \mathbb{R} \to \mathbb{K}$ une fonction continue par morceaux, T-périodique. Alors

$$\int_{0}^{a+T} f(x) \, \mathrm{d}x.$$

ne dépend pas du réel a.

19.2.4 Formules de Taylor

Formule de Taylor avec reste intégral

Proposition 19.2.10: Formule de Taylor avec reste intégral

Soit $f: I \to \mathbb{K}$ une fonction de classe \mathcal{C}^{n+1} . Si $a, b \in I$, alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Exercices 10

⇒ Montrer que

$$\forall x \ge 0, \quad x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

⇒ Montrer que

$$\sum_{k=0}^{n} \frac{1}{k!} \xrightarrow[n \to +\infty]{} e.$$

Proposition 19.2.11: Inégalité de Taylor-Lagrange

Soit $f: I \to \mathbb{K}$ une fonction de classe \mathcal{C}^{n+1} . On suppose qu'il existe $M \in \mathbb{R}_+$ tel que

$$\forall t \in I, \quad \left| f^{(n+1)}(t) \right| \leqslant M.$$

Si $a, b \in I$, alors

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right| \le \frac{M}{(n+1)!} |b-a|^{n+1}.$$

Exercice 11

 \Rightarrow Montrer que pour tout $x \in \mathbb{R}$

$$\sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \xrightarrow[n \to +\infty]{} \sin x.$$

Intégration de développement limité

Proposition 19.2.12

Soit f et $g: I \to \mathbb{K}$ deux fonctions continues par morceaux sur un intervalle contenant 0. On suppose que g est de signe constant au voisinage à gauche de 0 et au voisinage à droite de 0. Si

$$f(x) = \underset{x \to 0}{\text{o}} (g(x)),$$

alors

$$\int_0^x f(t) \, \mathrm{d}t = \mathop{\mathrm{o}}_{x \to 0} \left(\int_0^x g(t) \, \mathrm{d}t \right).$$

Proposition 19.2.13

Soit $f: I \to \mathbb{K}$ une fonction continue sur un intervalle contenant 0. On suppose que f admet un développement limité en 0 à l'ordre n

$$f(x) = \sum_{k=0}^{n} a_k x^k + \underset{x \to 0}{\text{o}} (x^n).$$

Si F est une primitive de f, alors elle admet un développement limité en 0 à l'ordre n+1 donné par

$$F(x) = F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + \underset{x \to 0}{\text{o}} (x^{n+1}).$$

Proposition 19.2.14: Formule de Taylor-Young

Soit $n \in \mathbb{N}^*$ et $f: I \to \mathbb{K}$ une fonction de classe \mathbb{C}^{n-1} sur un intervalle contenant $a \in \mathbb{R}$. On suppose de plus que f est dérivable n fois en a. Alors f admet un développement limité en a à l'ordre n et

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + \underset{h\to 0}{\text{o}} (h^{n}).$$

19.3. EXERCICES 357

19.3 Exercices

Intégration

Fonction en escalier

Fonction continue par morceaux

Intégrale d'une fonction continue par morceaux

Exercice 1 : Calcul de quelques intégrales

Calculer les intégrales suivantes

$$\int_0^1 \min(t, 1 - 2t^2) dt, \qquad \int_0^1 |3t - 1| dt,$$
$$\lim_{n \to +\infty} \int_0^n e^{-\lfloor x \rfloor} dx, \qquad \int_0^1 \sin \frac{\lfloor x \rfloor \pi}{4} dx.$$

Positivité de l'intégrale

Exercice 2 : Calcul de limites

1. Calculer les limites des expressions suivantes lorsque n tend vers $+\infty$

$$\int_0^1 x^n \ln(1+x^2) \, dx, \qquad \int_0^1 \ln(1+x^n) \, dx.$$

2. Calculer la limite de

$$\int_0^1 x^2 \sqrt{1 + ax^2} \, \mathrm{d}x$$

lorsque a tend vers 0.

Exercice 3 : Calcul de limites

1. (a) Donner la limite, lorsque t tend vers 1 de

$$\frac{1}{\ln t} - \frac{1}{t \ln t}.$$

(b) En déduire la limite lorsque x tend vers 1 de

$$\int_{x}^{x^{2}} \frac{\mathrm{d}t}{\ln t}.$$

2. Donner la limite lorsque x tend vers 0 de

$$\int_{x}^{3x} \frac{\sin t}{t^2} \, \mathrm{d}t.$$

Exercice 4 : Calcul de limite

Soit f une fonction continue sur le segment [0,1] à valeurs strictement positives. Pour tout $\alpha > 0$, on définit

$$I(\alpha) \coloneqq \left(\int_0^1 f^{\alpha}(t) dt\right)^{\frac{1}{\alpha}}.$$

- 1. Montrer que $I(\alpha)$ converge vers la borne supérieure de f lorsque α tend vers $+\infty$.
- 2. Le but de cet question est de montrer que lorsque α tend vers 0, $I(\alpha)$ tend vers

$$\exp\left(\int_0^1 \ln(f(t)) \, \mathrm{d}t\right).$$

- (a) On suppose dans cette question que $\forall x \in [0,1], \quad f(x) \ge 1.$
 - i. Soit $\varepsilon > 0$. Montrer qu'il existe $\eta > 0$ tel que

$$\forall x \in [0, \eta], \quad 1 + (1 - \varepsilon)x \leq e^x \leq 1 + (1 + \varepsilon)x.$$

ii. En déduire qu'il existe $\eta' > 0$ tel que

$$\forall \alpha \in [0, \eta'], \quad 1 + (1 - \varepsilon)\alpha \ln(f(t)) \leq f^{\alpha}(t) \leq 1 + (1 + \varepsilon)\alpha \ln(f(t)).$$

- iii. Conclure
- (b) Montrer le cas général.

Inégalité triangulaire

Exercice 5 : Étude d'une fonction définie par une intégrale

Soit f une fonction continue et positive sur $\left[0,\frac{\pi}{2}\right]$. On définit la fonction g d'expression

$$g(x) := \int_0^{\frac{\pi}{2}} \frac{f(t)}{1 + x \sin t} dt.$$

- 1. Montrer que g est définie sur $]-1, +\infty[$.
- 2. Montrer que g est décroissante.
- 3. Étant donné a > -1, montrer que g est lipschitzienne sur $[a, +\infty[$. En déduire que g est continue sur $]-1, +\infty[$.
- 4. Montrer que g est dérivable sur $]-1,+\infty[$ et que

$$\forall x \in]-1, +\infty[, \quad g'(x) = -\int_0^{\frac{\pi}{2}} \frac{f(t)\sin t}{(1 + x\sin(t))^2} dt.$$

Exercice 6 : Égalité dans l'inégalité triangulaire

Soit f une fonction continue sur le segment [a,b]. On suppose que

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| = \int_a^b |f(x)| \, \mathrm{d}x.$$

Montrer que :

- 1. Si f est réelle, f garde un signe constant.
- 2. Si f est complexe, f garde un argument constant.

Exercice 7 : Inégalité sur une intégrale

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. On pose

$$M := \sup_{x \in [0,1]} |f(x)|.$$

Montrer que

$$\left| \int_0^1 \left(f(x) + x f(1-x) \right) \, \mathrm{d}x \right| \leqslant \frac{3}{2} M.$$

Somme de Riemann

Exercice 8 : Calcul de limites

Étudier la convergence des suites de terme général

$$\frac{1}{n} \sum_{k=1}^{n} \sin\left(\frac{k\pi}{n}\right), \qquad n \sum_{k=1}^{n} \frac{1}{(n+k)^{2}}, \qquad \frac{1}{n\sqrt{n}} \sum_{k=1}^{n-1} \sqrt{k},$$

$$\sqrt[n]{\prod_{k=1}^{n} \left(1 + \left(\frac{k}{n}\right)^{2}\right)}, \qquad \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^{2} - k^{2}}}.$$

19.3. EXERCICES 359

Exercice 9 : Calcul de limites

1. Montrer que

$$\forall x \in \mathbb{R}_+, \quad x^2 - \frac{1}{3}x^4 \leqslant \sin^2(x) \leqslant x^2.$$

2. En déduire la limite de la suite de terme général

$$\sum_{k=1}^{n} \sin^2 \left(\frac{1}{\sqrt{k+n}} \right).$$

Exercice 10 : Calcul de limites

Soit $f \in \mathcal{C}^1([0,1],\mathbb{R})$. Déterminer la limite de la suite de terme général

$$\frac{1}{n}\sum_{k=0}^{n-1}f\left(\frac{k+1}{n}\right)f'\left(\frac{k}{n}\right).$$

Intégration et dérivation

Continuité et dérivabilité

Exercice 11: Fonction d'intégrale nulle

Soit f une fonction continue sur un intervalle I. On suppose que quels que soient a et b dans I

$$\int_{a}^{b} f(t) \, \mathrm{d}t = 0.$$

Montrer que f est nulle.

Exercice 12 : Inégalité de Gronwall

1. Soit f une fonction positive et continue sur \mathbb{R}_+ . On suppose qu'il existe un nombre réel k positif tel que

$$\forall x \in \mathbb{R}_+, \quad f(x) \leqslant k \int_0^x f(t) \, \mathrm{d}t.$$

Montrer que la fonction f est nulle.

2. Soit $c \in \mathbb{R}_+$, u et v deux applications continues et positives de \mathbb{R}_+ dans \mathbb{R} telles que

$$\forall x \in \mathbb{R}_+, \quad u(x) \leqslant c + \int_0^x u(t)v(t) \, \mathrm{d}t.$$

Montrer que

$$\forall x \in \mathbb{R}_+, \quad u(x) \leqslant c \exp\left(\int_0^x v(t) dt\right).$$

Exercice 13 : Étude de fonctions

Étudier le domaine de définition, les symétries, la monotonie et les limites aux bornes du domaine de définition des fonctions d'expressions

$$x \mapsto \int_1^{1+x^2} \ln(t) dt, \qquad x \mapsto \int_x^{2x} \frac{dt}{\ln(1+t^2)},$$

 $x \mapsto \int_x^{x^2} \frac{dt}{\ln(t)}, \qquad x \mapsto \int_x^{2x} e^{t^2} dt.$

Primitive

Exercice 14 : Calcul de primitives

Donner le domaine de définition et calculer les primitives suivantes :

$$\int (x^2 + x + 1) e^x dx, \qquad \int (x^2 - 1) \cos x dx, \qquad \int x^3 \ln x dx,$$
$$\int \sin^2 x \cos^3 x dx, \qquad \int \sin x \cos^2 x dx, \qquad \int \sin^2 x \cos^2 x dx,$$
$$\int \frac{x}{x^2 + 1} dx, \qquad \int \frac{1}{x \ln x} dx, \qquad I_n = \int \ln^n x dx \quad (\text{pour } n \in \mathbb{N}).$$

Calcul d'intégrales

Exercice 15 : Intégrales de Wallis

Pour tout entier $n \in \mathbb{N}$, on définit I_n et J_n par

$$I_n := \int_0^{\frac{\pi}{2}} \sin^n t \, dt$$
 et $J_n := \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $I_n = J_n$.
- 2. Montrer que les suites (I_n) et (J_n) sont positives et décroissantes. Calculer I_0 et I_1 .
- 3. Montrer que pour tout $n \in \mathbb{N}$

$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

4. En déduire que pour tout $n \in \mathbb{N}$

$$I_n I_{n+1} = \frac{\pi}{2(n+1)}.$$

5. En déduire que

$$I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$$

Exercice 16: Lemme de Lebesgue

Soit f une fonction continue par morceaux sur le segment [a, b]. Le but de cet exercice est de montrer que

$$\int_{a}^{b} f(t) \sin(nt) dt \xrightarrow[n \to +\infty]{} 0.$$

- 1. En effectuant une intégration par parties, montrer que le résultat est vrai lorsque f est supposé \mathcal{C}^1 .
- 2. Le but de cette question est de démontrer que le résultat est vrai dans le cas général.
 - (a) Montrer que le résultat est vrai lorsque f est une fonction en escalier.
 - (b) En déduire le cas général.

Exercice 17 : Calcul de $\zeta(2)$

1. Montrer qu'il existe un unique polynôme P de degré inférieur ou égal à 2 tel que P(0) = 0 et

$$\forall k \in \mathbb{N}^*, \quad \int_0^{\pi} P(t) \cos(kt) \, \mathrm{d}t = \frac{1}{k^2}.$$

On définit la suite (u_n) par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \sum_{k=1}^n \frac{1}{k^2}$$

et on souhaite montrer que $u_n \xrightarrow[n \to +\infty]{\pi^2} \frac{\pi^2}{6}$.

2. On définit la fonction $h:[0,\pi]\to\mathbb{R}$ par $h(0)\coloneqq -2$ et

$$\forall t \in]0,\pi], \quad h(t) \coloneqq \frac{\frac{1}{2\pi}t^2 - t}{\sin\left(\frac{t}{2}\right)}.$$

Montrer que

$$\forall n \in \mathbb{N}, \quad u_n = \frac{\pi^2}{6} + \frac{1}{2} \int_0^{\pi} h(t) \sin\left(\frac{(2n+1)t}{2}\right) dt.$$

3. Montrer que h est de classe C^1 sur $[0, \pi]$, puis que

$$\int_0^{\pi} h(t) \sin\left(\frac{(2n+1)t}{2}\right) dt \xrightarrow[n \to +\infty]{} 0$$

et conclure.

19.3. EXERCICES 361

Exercice 18 : Généralisation du lemme de Lebesgue

Soit f une fonction continue par morceaux sur le segment [a,b] et g une fonction définie sur \mathbb{R} , continue par morceaux et T-périodique. Le but de cet exercice est de montrer que

$$\int_{a}^{b} f(t)g(nt) dt \xrightarrow[n \to +\infty]{} \left(\frac{1}{T} \int_{0}^{T} g(t) dt\right) \int_{a}^{b} f(t) dt.$$

- 1. Démontrer le résultat lorsque f est constante puis lorsque f est une fonction en escalier.
- 2. En déduire le résultat général.
- 3. Soit f une fonction de classe C^1 sur [0,1]. On définit la suite (u_n) par

$$\forall n \geqslant 1, \quad u_n := \frac{1}{n} \left(\frac{1}{2} f(0) + \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) + \frac{1}{2} f(1) \right).$$

(a) Montrer que pour tout $k \in [0, n-1]$

$$\int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt = \frac{1}{n} f\left(\frac{k}{n}\right) + \int_{\frac{k}{n}}^{\frac{k+1}{n}} \left(\frac{k+1}{n} - t\right) f'(t) dt.$$

(b) En déduire que

$$u_n = \int_0^1 f(t) dt + \mathop{\mathrm{o}}_{n \to +\infty} \left(\frac{1}{n}\right).$$

Exercice 19: Limite différentielle

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que

$$f'(x) + f(x) \xrightarrow[x \to +\infty]{} 0.$$

Le but de cet exercice est de montrer que f(x) tend vers 0 lorsque x tend vers $+\infty$.

1. On note ε la fonction $\varepsilon := f + f'$. Montrer que si a est un réel

$$f(x) = f(a)e^{a-x} + e^{-x} \int_a^x \varepsilon(t)e^t dt.$$

- 2. Conclure.
- 3. Que dire si la condition de départ est changée en

$$f'(x) + \lambda f(x) \xrightarrow[x \to +\infty]{} 0,$$

où λ est un réel?

Formules de Taylor

Exercice 20: Suite

1. Montrer que pour tout $x \in [0,1]$

$$|e^x - 1 - x| \leqslant \frac{e}{2}x^2.$$

2. En déduire la limite de la suite de terme général

$$u_n \coloneqq \left(\sum_{k=1}^n e^{\frac{1}{n+k}}\right) - n.$$

Exercice 21 : Calcul numérique

Donner une majoration de l'erreur commise en prenant $x-\frac{x^2}{2}$ comme valeur approchée de $\ln(1+x)$. En déduire une valeur approchée de $\ln(1,003)$ à 10^{-8} près.

Chapitre 20

Polynômes

20.1 Arit	hmétique des polynômes
20.1.1	Relation de divisibilité
20.1.2	Plus grand commun diviseur
20.1.3	Algorithme d'Euclide
20.1.4	Relation de Bézout 365
20.1.5	Lemme de Gauss
20.1.6	Plus petit commun multiple
20.1.7	Polynôme irréductible
20.1.8	Changement de corps
20.2 Raci	nes d'un polynôme
20.2.1	Racine
20.2.2	Théorème fondamental de l'algèbre
20.2.3	Fonctions symétriques élémentaires
20.3 Exer	cices

20.1 Arithmétique des polynômes

20.1.1 Relation de divisibilité

Définition 20.1.1

Soit $A, B \in \mathbb{K}[X]$. On dit que A divise B lorsqu'il existe $P \in \mathbb{K}[X]$ tel que B = PA.

Remarques

- \Rightarrow Si $A, B \in \mathbb{K}[X]$ et $B \neq 0$, alors B divise A si et seulement si le reste de la division euclidienne de A par B est nul.
- \Rightarrow Si $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$, $X \alpha$ divise P si et seulement si α est une racine de P.

Proposition 20.1.2

La relation de divisibilité

- est réflexive : $\forall A \in \mathbb{K}[X]$, A|A.
- est transitive : $\forall A, B, C \in \mathbb{K}[X]$, [A|B] et $B|C] \Longrightarrow A|C$.
- n'est pas antisymétrique. Cependant

$$\forall A, B \in \mathbb{K}[X], \quad [A|B \quad \text{et} \quad B|A] \quad \Longleftrightarrow \quad [\exists \lambda \in \mathbb{K}^*, \quad A = \lambda B].$$

Si tel est le cas, on dit que A et B sont associ'es.

Remarque

 \Rightarrow En particulier, si $A, B \in \mathbb{K}[X]$ sont unitaires ou nuls et si A|B et B|A, alors A = B.

Soit $A, B, C \in \mathbb{K}[X]$ et $P, Q \in \mathbb{K}[X]$, alors

$$[A|B \text{ et } A|C] \implies A|(PB+QC).$$

Soit $A, B \in \mathbb{K}[X]$.

— Si $B \neq 0$, alors

$$A|B \implies \deg A \leqslant \deg B.$$

— Si A|B et deg $A = \deg B$, alors A et B sont associés.

20.1.2Plus grand commun diviseur

Définition 20.1.5

Soit $A, B \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que

On l'appelle pgcd (plus grand commun diviseur) de A et de B et on le note pgcd (A, B), (A, B) ou $A \wedge B$.

Remarque

 \Rightarrow Soit $A, B \in \mathbb{K}[X]$. Si l'un des deux polynômes est non nul, le pgcd de A et B est le polynôme unitaire de plus grand degré qui divise A et B.

$$\forall A \in \mathbb{K}[X], \qquad A \land 0 = A_u$$

$$\forall A \in \mathbb{K}[X], \qquad A \land 1 = 1$$

$$\forall A, B \in \mathbb{K}[X], \qquad A \land B = 0 \iff [A = 0 \text{ et } B = 0]$$

$$\begin{split} \forall A, B \in \mathbb{K}[X], & A \wedge B = B \wedge A \\ \forall A, B \in \mathbb{K}[X], & \forall \lambda, \mu \in \mathbb{K}^*, & A \wedge B = (\lambda A) \wedge (\mu B) = A_u \wedge B_u \\ \forall A, B, P \in \mathbb{K}[X], & (PA) \wedge (PB) = P_u \left(A \wedge B \right) \end{split}$$

Définition 20.1.8

Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que

- $\forall i \in [1, n], \quad P|A_i.$
- $\forall Q \in \mathbb{K}[X], \quad [\forall i \in [1, n], \quad Q|A_i] \Longrightarrow Q|P.$

On l'appelle pgcd (plus grand commun diviseur) de la famille (A_1, \ldots, A_n) et on le note pgcd (A_1, \ldots, A_n) , ou $A_1 \wedge \cdots \wedge A_n$.

Remarque

 \Rightarrow Le pgcd d'une famille (A_1,\ldots,A_n) de polynômes ne dépend pas de l'ordre de ces derniers.

Soit
$$A_1, \ldots, A_n \in \mathbb{K}[X]$$
 et $p \in [1, n-1]$. Alors

$$A_1 \wedge \cdots \wedge A_n = (A_1 \wedge \cdots \wedge A_p) \wedge (A_{p+1} \wedge \cdots \wedge A_n).$$

20.1.3 Algorithme d'Euclide

Proposition 20.1.10

Soit $A, B, P \in \mathbb{K}[X]$. Alors

$$A \wedge B = A \wedge (B + PA) = (A + PB) \wedge B.$$

En particulier, si $B \neq 0$ et R est le reste de la division euclidienne de A par B, on a

$$A \wedge B = B \wedge R$$
.

Exercice 1

 \Rightarrow Calculer $A \wedge B$ où $A \coloneqq X^4 - X^3 + X^2 + X - 2$ et $B \coloneqq X^3 + X^2 - X - 1$.

20.1.4 Relation de Bézout

Proposition 20.1.11

Si $A, B \in \mathbb{K}[X]$, alors il existe $U, V \in \mathbb{K}[X]$ tels que

$$UA + VB = A \wedge B$$
.

Remarques

- \Rightarrow Les polynômes U et V sont appelés polynômes de Bézout.
- \Rightarrow Le couple (U,V) n'est pas unique. En effet, si $(U_0,V_0) \in \mathbb{K}[X]^2$ est un couple de polynômes de Bézout, alors pour tout $P \in \mathbb{K}[X]$, $(U_0 + PB, V_0 PA)$ en est un autre.

Exercice 2

 \Rightarrow Calcul d'un couple de polynômes de Bézout pour $A = (X - 1)^2$ et $B = (X + 2)^2$.

Définition 20.1.12

Soit $A, B \in \mathbb{K}[X]$. On dit que A et B sont premiers entre eux lorsque $A \wedge B = 1$.

Remarques

- \Rightarrow Si $\alpha, \beta \in \mathbb{K}$ sont distincts, alors $(X \alpha) \wedge (X \beta) = 1$.
- \Rightarrow Deux polynômes premiers entre eux n'admettent aucune racine commune. Cependant, la réciproque est fausse. En effet, si $\mathbb{K} = \mathbb{R}$, $P \coloneqq X^2 + 1$ n'admet aucune racine réelle, donc aucune racine commune avec lui-même. Pourtant $P \land P = P \neq 1$.

Exercice 3

 \Rightarrow Montrer que si A et B sont premiers entre eux, il en est de même pour A-B et A+B.

Proposition 20.1.13

Soit $A, B \in \mathbb{K}[X]$. Alors A et B sont premiers entre eux si et seulement si il existe $U, V \in \mathbb{K}[X]$ tels que

$$UA + VB = 1.$$

Proposition 20.1.14

- Soit $A, B, C \in \mathbb{K}[X]$ tels que $A \wedge B = 1$ et $A \wedge C = 1$. Alors $A \wedge (BC) = 1$.
- Plus généralement, si $A \in \mathbb{K}[X]$ est premier avec chaque élément d'une famille de polynômes $B_1, \ldots, B_n \in \mathbb{K}[X]$, alors A est premier avec leur produit.
- Soit $A, B \in \mathbb{K}[X]$ deux polynômes premiers entre eux et $m, n \in \mathbb{N}$. Alors $A^m \wedge B^n = 1$.

Définition 20.1.15

Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$.

— On dit que A_1, \ldots, A_n sont deux à deux premiers entre eux lorsque

$$\forall i, j \in [1, n], \quad i \neq j \Longrightarrow A_i \land A_j = 1.$$

— On dit que A_1, \ldots, A_n sont premiers entre eux dans leur ensemble lorsque

$$A_1 \wedge \cdots \wedge A_n = 1.$$

Remarque

 \Rightarrow Si les polynômes A_1, \ldots, A_n sont deux à deux premiers entre eux, alors ils sont premiers entre eux dans leur ensemble. Cependant, la réciproque est fausse. Par exemple, les polynômes $A_1 = (X-2)(X-3)$, $A_2 = (X-1)(X-3)$ et $A_3 = (X-1)(X-2)$ sont premiers entre eux dans leur ensemble mais ne sont pas deux à deux premiers entre eux.

Proposition 20.1.16

Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$. Alors A_1, \ldots, A_n sont premiers entre eux dans leur ensemble si et seulement si il existe $U_1, \ldots, U_n \in \mathbb{K}[X]$ tels que

$$U_1A_1 + \dots + U_nA_n = 1.$$

20.1.5 Lemme de Gauss

Proposition 20.1.17: Lemme de Gauss

Soit $A, B, C \in \mathbb{K}[X]$. Alors

$$[A|BC \quad \text{et} \quad A \wedge B = 1] \quad \Longrightarrow \quad A|C.$$

Remarque

 \Rightarrow Si $A, B \in \mathbb{K}[X]$ sont premiers entre eux et le couple $(U_0, V_0) \in \mathbb{K}[X]^2$ est tel que $U_0A + V_0B = 1$, l'ensemble des couples de polynômes de Bézout pour A et B est

$$\{(U_0 + PB, V_0 - PA) \mid P \in \mathbb{K}[X]\}$$

Proposition 20.1.18

- Soit $A, B, C \in \mathbb{K}[X]$. On suppose que A|C, B|C et $A \wedge B = 1$. Alors AB|C.
- Plus généralement si $A \in \mathbb{K}[X]$ est divisé par chaque élément d'une famille $B_1, \ldots, B_n \in \mathbb{K}[X]$ de polynômes deux à deux premiers entre eux, alors il est divisé par leur produit.

20.1.6 Plus petit commun multiple

Définition 20.1.19

Soit $A, B \in \mathbb{K}[X]$. Il existe un unique polynôme unitaire ou nul P tel que

- -A|P et B|P.
- $\quad \forall Q \in \mathbb{K}[X], \quad [A|Q \quad \text{et} \quad B|Q] \Longrightarrow P|Q.$

On l'appelle ppcm (plus petit commun multiple) de A et de B et on le note ppcm (A, B), ou $A \vee B$.

Proposition 20.1.20

$$\begin{split} \forall A \in \mathbb{K}[X], & A \vee 0 = 0 \\ \forall A \in \mathbb{K}[X], & A \vee 1 = A_u \\ \forall A, B \in \mathbb{K}[X], & A \vee B = 0 \Longleftrightarrow [A = 0 \text{ ou } B = 0] \end{split}$$

Proposition 20.1.21

$$\begin{split} \forall A, B \in \mathbb{K}[X], & A \vee B = B \vee A \\ \forall A, B \in \mathbb{K}[X], & \forall \lambda, \mu \in \mathbb{K}^*, & A \vee B = (\lambda A) \vee (\mu B) = A_u \vee B_u \\ \forall A, B, P \in \mathbb{K}[X], & (PA) \vee (PB) = P_u \, (A \vee B) \end{split}$$

Proposition 20.1.22

Soit $A, B \in \mathbb{K}[X]$.

— Si $A \wedge B = 1$, alors

$$A \vee B = (AB)_n$$
.

— De manière générale

$$(A \wedge B)(A \vee B) = (AB)_{a}$$
.

20.1.7 Polynôme irréductible

Définition 20.1.23

On dit qu'un polynôme $P \in \mathbb{K}[X]$ de degré supérieur ou égal à 1 est irréductible lorsque ses seuls diviseurs sont les polynômes associés à 1 ou à P.

Remarques

- \Rightarrow Un polynôme P de degré supérieur ou égal à 1 est irréductible si et seulement si ses diviseurs sont de degré 0 ou de même degré que P.
- \Rightarrow Si $\alpha \in \mathbb{K}$, $P := X \alpha$ est irréductible. Plus généralement, les polynômes de degré 1 sont irréductibles.
- \Rightarrow Les polynômes de degré supérieur ou égal à 2 admettant une racine ne sont pas irréductibles.
- \Rightarrow Réciproquement, un polynôme $P \in \mathbb{K}[X]$ de degré 2 ou 3 n'admettant aucune racine dans \mathbb{K} est irréductible. En particulier, les polynômes de $\mathbb{R}[X]$ de degré 2 dont le discriminant est strictement négatif sont irréductibles. Cependant, il existe des polynômes $P \in \mathbb{K}[X]$ n'admettant aucune racine dans \mathbb{K} et qui ne sont pas irréductibles. Par exemple le polynôme $P = (X^2 + 1)^2$ n'admet aucune racine dans \mathbb{R} sans être irréductible.

Proposition 20.1.24

Soit P un polynôme irréductible et $A \in \mathbb{K}[X]$. Alors P|A ou $P \wedge A = 1$.

Proposition 20.1.25

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible.

— Si $A, B \in \mathbb{K}[X]$

$$P|AB \iff [P|A \text{ ou } P|B].$$

— Plus généralement, P divise un produit si et seulement si il divise un de ses facteurs.

Proposition 20.1.26

Tout polynôme non constant admet un diviseur irréductible.

Remarque

⇒ En particulier, un polynôme est associé à 1 si et seulement si il n'admet aucun diviseur irréductible.

Définition 20.1.27

Lorsque $A \in \mathbb{K}[X] \setminus \{0\}$ et P est un polynôme unitaire irréductible, on appelle valuation de P relativement à A et on note $\operatorname{Val}_P(A)$ le plus grand $\alpha \in \mathbb{N}$ tel que $P^{\alpha}|A$.

Remarques

- \Rightarrow Si $A \in \mathbb{K}[X] \setminus \{0\}$, il n'existe qu'un nombre fini de polynômes unitaires irréductibles P que $\operatorname{Val}_P(A) > 0$.
- $\, \Longrightarrow \,$ Soit P et Q sont deux polynômes unitaires irréductibles. Alors

$$\operatorname{Val}_{P}(Q) = \begin{cases} 1 & \text{si } P = Q, \\ 0 & \text{sinon.} \end{cases}$$

Proposition 20.1.28

Soit $A, B \in \mathbb{K}[X] \setminus \{0\}$ et P un polynôme unitaire irréductible. Alors

$$\operatorname{Val}_P(AB) = \operatorname{Val}_P(A) + \operatorname{Val}_P(B).$$

Remarque

 \Rightarrow Plus généralement, si P est un polynôme unitaire irréductible, $A_1, \ldots, A_n \in \mathbb{K}[X] \setminus \{0\}$ et $\alpha_1, \ldots, \alpha_r \in \mathbb{N}$, alors

$$\operatorname{Val}_{P}\left(\prod_{k=1}^{r} A_{k}^{\alpha_{k}}\right) = \sum_{k=1}^{r} \alpha_{k} \operatorname{Val}_{P}\left(A_{k}\right).$$

Proposition 20.1.29

Soit $A \in \mathbb{K}[X] \setminus \{0\}$. Alors, il existe $\lambda \in \mathbb{K}^*$, P_1, \dots, P_r des polynômes unitaires irréductibles deux à deux distincts et $\alpha_1, \dots, \alpha_r \in \mathbb{N}^*$ tels que

$$A = \lambda \prod_{k=1}^{r} P_k^{\alpha_k}.$$

De plus, à permutation près des P_k , cette décomposition est unique.

Remarques

- \Rightarrow Si $A \in \mathbb{K}[X] \setminus \{0\}$, il n'existe qu'un nombre fini de polynômes unitaires irréductibles P tels que $\operatorname{Val}_P(A) \neq 0$. Ce sont les polynômes unitaires irréductibles apparaissant dans la décomposition de A en polynômes irréductibles.
- \Rightarrow Si $\lambda \in \mathbb{K}^*$ est le coefficient dominant de A, la décomposition de A en polynômes unitaires irréductibles s'écrit

$$A = \lambda \prod_{P \in \mathcal{I}} P^{\operatorname{Val}_P(A)}$$

où \mathcal{I} désigne l'ensemble des polynômes unitaires irréductibles de $\mathbb{K}[X]$.

Proposition 20.1.30

Soit $A, B \in \mathbb{K}[X] \setminus \{0\}$. Alors

— A|B si et seulement si

$$\forall P \in \mathcal{I}, \quad \operatorname{Val}_P(A) \leqslant \operatorname{Val}_P(B).$$

— A et B sont associés si et seulement si

$$\forall P \in \mathcal{I}, \quad \operatorname{Val}_P(A) = \operatorname{Val}_P(B).$$

Proposition 20.1.31

Soit $A, B \in \mathbb{K}[X] \setminus \{0\}$. Alors le pgcd et le ppcm de A et B est donné par les relations

$$\forall P \in \mathcal{I}, \quad \operatorname{Val}_{P}(A \wedge B) = \min \left(\operatorname{Val}_{P}(A), \operatorname{Val}_{P}(B) \right),$$

$$\operatorname{Val}_{P}(A \vee B) = \max \left(\operatorname{Val}_{P}(A), \operatorname{Val}_{P}(B) \right).$$

Exercice 4

 \Rightarrow Soit A et $B \in \mathbb{C}[X]$ deux polynômes premiers entre eux. Montrer que si AB est un carré, alors il en est de même pour A et B.

20.1.8 Changement de corps

Définition 20.1.32

Soit $P = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{C}[X]$. On définit le polynôme $\overline{P} \in \mathbb{C}[X]$ par

$$\overline{P} := \overline{a_0} + \overline{a_1}X + \dots + \overline{a_n}X^n.$$

Remarque

 \Rightarrow Si $P \in \mathbb{C}[X]$ et $z \in \mathbb{C}$, alors

$$\overline{P(z)} = \overline{P}(\overline{z}).$$

Proposition 20.1.33

Soit $P, Q \in \mathbb{C}[X]$. — Si $\lambda, \mu \in \mathbb{C}$, alors

$$\overline{\lambda P + \mu Q} = \overline{\lambda} \, \overline{P} + \overline{\mu} \, \overline{Q}$$

$$\overline{PQ} = \overline{P} \, \overline{Q}$$

 $- \operatorname{deg} \overline{P} = \operatorname{deg} P.$

Proposition 20.1.34

Soit $P \in \mathbb{C}[X]$. Alors

$$\overline{\overline{P}} = P \qquad \text{et} \qquad \left[P \in \mathbb{R}[X] \quad \Longleftrightarrow \quad \overline{P} = P \right].$$

Si $\mathbb L$ est un corps, $\mathbb K$ est un sous-corps de $\mathbb L$ et $P \in \mathbb K[X]$, certaines notions que nous avons définies peuvent différer selon qu'on considère P comme un élément de $\mathbb K[X]$ ou comme un élément de $\mathbb K[X]$. Par exemple, si $P \coloneqq X^2 + 1 \in \mathbb R[X]$, alors P est irréductible dans $\mathbb R[X]$ car c'est un polynôme de degré 2 qui n'admet pas de racine dans $\mathbb R$. Cependant, il n'est pas irréductible dans $\mathbb C[X]$ car $P = (X - \mathrm{i})(X + \mathrm{i})$. Nous allons voir cependant que les notions de division euclidienne, de divisibilité, de pgcd et de ppcm ne dépendent par du corps.

Proposition 20.1.35

Soit \mathbb{L} un corps, \mathbb{K} un sous-corps de \mathbb{L} et $A, B \in \mathbb{K}[X]$ tels que $B \neq 0$. Alors, le quotient et le reste de la division euclidienne de A par B dans $\mathbb{L}[X]$ sont les mêmes que dans $\mathbb{K}[X]$.

Proposition 20.1.36

Soit \mathbb{L} un corps, \mathbb{K} un sous-corps de \mathbb{L} et $A, B \in \mathbb{K}[X]$. Alors

- A divise B dans $\mathbb{L}[X]$ si et seulement si A divise B dans $\mathbb{K}[X]$.
- Le pgcd et le ppcm de A et B dans $\mathbb{L}[X]$ sont les mêmes que ceux dans $\mathbb{K}[X]$.

20.2 Racines d'un polynôme

20.2.1 Racine

Proposition 20.2.1

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. Alors α est une racine de P si et seulement si $X - \alpha$ divise P.

Remarque

⇒ Si $P = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{Z}[X]$ et x = p/q est une racine rationnelle de P mise sous forme irréductible, alors $q|a_n$ et $p|a_0$. Cette relation nous permet de trouver les racines rationnelles de P. Par exemple, si $P = 2X^3 + 5X^2 + X - 3$ et p/q est une racine rationnelle de P mise sous forme irréductible, alors q|2 et p|3 donc $p \in \{-3, -1, 1, 3\}$ et $q \in \{1, 2\}$. Réciproquement, on constate que seul -3/2 est une racine de P. On peut donc factoriser P par 2X + 3. On obtient $P = (2X + 3)(X^2 + X - 1)$, ce qui permet d'obtenir toutes les racines de P.

Définition 20.2.2

Soit $P \in \mathbb{K}[X]$ un polynôme non nul et $\alpha \in \mathbb{K}$. On appelle *ordre* de α relativement à P le plus grand entier $\omega \in \mathbb{N}$ tel que $(X - \alpha)^{\omega}|P$.

Remarques

- \Rightarrow L'ordre de α relativement à P n'est autre que la valuation de $X-\alpha$ relativement à P.
- $\Rightarrow \alpha$ est d'ordre $\omega \in \mathbb{N}$ relativement à P si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)^{\omega} Q$ et $Q(\alpha) \neq 0$.

- $\Rightarrow \alpha$ est d'ordre $\omega \geqslant 1$ relativement à P si et seulement si α est racine de P. Par contraposée, α n'est pas racine de P si et seulement si son ordre relativement à P est nul.
- \Rightarrow On dit qu'une racine $\alpha \in \mathbb{K}$ d'un polynôme non nul P est simple lorsque son ordre est égal à 1. On dit qu'elle est double lorsque son ordre est égal à 2.

Proposition 20.2.3

Soit \mathbb{K} un corps de caractéristique nulle, $P \in \mathbb{K}[X]$ un polynôme non nul et $\alpha \in \mathbb{K}$. Si α est d'ordre $\omega \in \mathbb{N}^*$ relativement à P, alors α est d'ordre $\omega - 1$ relativement à P'.

Proposition 20.2.4

Soit \mathbb{K} un corps de caractéristique nulle, $P \in \mathbb{K}[X]$ un polynôme non nul, $\alpha \in \mathbb{K}$ et $\omega \in \mathbb{N}$. Alors les deux assertions suivantes sont équivalentes.

- α est d'ordre ω relativement à P.
- $P(\alpha) = 0, P'(\alpha) = 0, \dots, P^{(\omega-1)}(\alpha) = 0 \text{ et } P^{(\omega)}(\alpha) \neq 0.$

Exercice 5

 \Rightarrow Calculer l'ordre de 1 relativement à $P := X^4 - 2X^3 + 2X^2 - 2X + 1$.

Proposition 20.2.5

Soit $P \in \mathbb{C}[X]$ un polynôme non nul et $\alpha \in \mathbb{C}$. Alors l'ordre de $\bar{\alpha}$ relativement à \bar{P} est égal à l'ordre de α relativement à P.

Remarque

 \Rightarrow En particulier, si $\alpha \in \mathbb{C}$ est une racine de $P \in \mathbb{R}[X]$, alors $\overline{\alpha}$ est une racine de P et son ordre relativement à P est le même que celui de α .

Proposition 20.2.6

Soit $P \in \mathbb{K}[X]$ un polynôme non nul de degré $n \in \mathbb{N}$. On suppose que P admet au moins r racines $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ deux à deux distinctes d'ordres respectifs au moins $\omega_1, \ldots, \omega_r \in \mathbb{N}$. Alors, il existe $Q \in \mathbb{K}[X]$ tel que

$$P = (X - \alpha_1)^{\omega_1} \cdots (X - \alpha_r)^{\omega_r} Q.$$

En particulier $\omega_1 + \cdots + \omega_r \leqslant n$.

Remarques

- \Rightarrow On dit qu'un polynôme P de degré $n \in \mathbb{N}$ admet au plus n racines comptées avec leurs ordres de multiplicité.
- \Rightarrow En conséquence, un polynôme de degré inférieur ou égal à $n \in \mathbb{N}$ admettant au moins n+1 racines comptées avec leur ordres de multiplicité est nul.

Définition 20.2.7

Soit $P \in \mathbb{K}[X]$ un polynôme non nul de degré $n \in \mathbb{N}$.

— On dit que P est scindé lorsqu'il admet exactement n racines comptées avec leur ordre de multiplicité, c'est-à-dire lorsqu'il existe $\lambda \in \mathbb{K}^*$, $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ et $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$ tels que

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}.$$

— On dit que P est scindé simple lorsqu'il admet exactement n racines simples, c'est-à-dire lorsqu'il existe $\lambda \in \mathbb{K}^*$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ deux à deux distincts tels que

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k).$$

Remarques

 \Rightarrow Un polynôme non nul $P \in \mathbb{K}[X]$ de degré n est scindé si et seulement si il existe $\lambda \in \mathbb{K}^*$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tels que

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k).$$

Dans ce cas, P est scindé simple si et seulement si les α_k sont deux à deux distincts.

 \Rightarrow La notion de polynôme scindé dépend du corps considéré. Par exemple, le polynôme $P := X^2 + 1$ est scindé (simple) sur \mathbb{C} car P = (X - i)(X + i). Cependant, il n'est pas scindé sur \mathbb{R} , car il n'admet aucune racine réelle.

Proposition 20.2.8

Soit $P \in \mathbb{K}[X]$ un polynôme non nul de degré $n \in \mathbb{N}$.

— On suppose que P admet au moins r racines $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ deux à deux distinctes d'ordres respectifs au moins $\omega_1, \ldots, \omega_r \in \mathbb{N}$ tels que $\omega_1 + \cdots + \omega_r = n$. Alors P est scindé et en notant $\lambda \in \mathbb{K}^*$ le coefficient dominant de P, on a

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}.$$

En particulier P est scindé, $\alpha_1, \ldots, \alpha_r$ sont les seules racines de P et leurs ordres respectifs relativement à P sont exactement $\omega_1, \ldots, \omega_r$.

— On suppose que P admet au moins n racines $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ deux à deux distinctes. Alors P est scindé simple et en notant $\lambda \in \mathbb{K}^*$ le coefficient dominant de P, on a

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k).$$

En particulier P est scindé simple, $\alpha_1, \ldots, \alpha_n$ sont les seules racines de P et elles sont simples.

Exercice 6

 \Rightarrow Soit $n \in \mathbb{N}^*$. Factoriser $X^n - 1$ sur $\mathbb{C}[X]$.

20.2.2 Théorème fondamental de l'algèbre

Théorème 20.2.9: Théorème de d'Alembert-Gauss

Tout polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1 admet au moins une racine dans \mathbb{C} .

Exercice 7

 \Rightarrow Soit $P \in \mathbb{C}[X]$ est de degré supérieur ou égal à 1. Montrer que l'application \tilde{P} de \mathbb{C} dans \mathbb{C} qui à z associe P(z) est surjective.

Proposition 20.2.10

Les polynôme unitaires irréductibles de $\mathbb{C}[X]$ sont les $X - \alpha$ avec $\alpha \in \mathbb{C}$.

Proposition 20.2.11

Soit $P \in \mathbb{C}[X]$ un polynôme non nul. Alors, il existe $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ deux à deux distincts, $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$ et $\lambda \in \mathbb{C}^*$ tels que

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}.$$

De plus, à permutation près de (α_k, ω_k) , cette décomposition est unique.

Remarques

- \Rightarrow Les polynômes non nuls de $\mathbb{C}[X]$ sont donc scindés.
- \Rightarrow En pratique, cette décomposition est équivalente à la recherche du coefficient dominant de P, de ses racines et de leur ordre de multiplicité.

- \Rightarrow Deux polynômes non nuls de $\mathbb{C}[X]$ sont égaux si et seulement si ils ont le même coefficient dominant et les mêmes racines avec les mêmes ordres de multiplicité.
- \Rightarrow Soit P et Q deux polynômes non nuls de $\mathbb{C}[X]$. Alors P divise Q si et seulement si pour toute racine α de P, α est racine de Q et son ordre relativement à P est inférieur ou égal à son ordre relativement à Q.
- \Rightarrow Dans $\mathbb{C}[X]$, deux polynômes sont premiers entre eux si et seulement si ils n'admettent aucune racine commune. En particulier, deux polynômes de $\mathbb{R}[X]$ sont premiers entre eux si et seulement si ils n'admettent aucune racine commune dans \mathbb{C} .
- \Rightarrow Un polynôme non nul $P \in \mathbb{C}[X]$ est scindé simple si et seulement si P et P' sont premiers entre eux.

Exercices 8

- \Rightarrow Montrer que $X^2 + 1$ divise $X^n + X$ si et seulement si $n \equiv 3$ [4].
- \Rightarrow Soit $n, m \in \mathbb{N}$. Montrer que $(X^n 1) \wedge (X^m 1) = X^{n \wedge m} 1$.

Proposition 20.2.12

Les polynômes unitaires irréductibles de $\mathbb{R}[X]$ sont les

- $-X \alpha \text{ avec } \alpha \in \mathbb{R}.$
- $-X^2 + bX + c \text{ avec } \Delta = b^2 4c < 0.$

Proposition 20.2.13

Soit $P \in \mathbb{R}[X]$ un polynôme non nul. Alors, il existe $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ deux à deux distincts, $\omega_1, \ldots, \omega_r \in \mathbb{N}^*$, $(b_1, c_1), \ldots, (b_s, c_s) \in \mathbb{R}^2$ deux à deux distincts tels que $\Delta_l = b_l^2 - 4c_l < 0$ pour tout $l \in [1, s], \omega'_1, \ldots, \omega'_s \in \mathbb{N}^*$ et $\lambda \in \mathbb{R}^*$ tels que

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k} \prod_{l=1}^{s} (X^2 + b_l X + c_l)^{\omega'_l}.$$

De plus, à permutation près des (α_k, ω_k) et des (b_l, c_l, ω_l) , cette décomposition est unique.

Remarque

 \Rightarrow En pratique, si on a effectué la décomposition de $P \in \mathbb{R}[X]$ en produit de polynômes unitaires irréductibles dans $\mathbb{C}[X]$, il suffit de regrouper les racines conjuguées et de développer ces produits pour obtenir la décomposition dans $\mathbb{R}[X]$. En effet, si $\alpha \in \mathbb{C}$

$$(X - \alpha)(X - \overline{\alpha}) = X^2 - 2\operatorname{Re}(\alpha)X + |\alpha|^2 \in \mathbb{R}[X]$$

Cependant, il est parfois possible d'aboutir plus rapidement à la décomposition dans $\mathbb{R}[X]$ en utilisant les identités algébriques.

Exercices 9

- \Rightarrow Factoriser $X^6 1$ et $X^4 + 1$ sur $\mathbb{R}[X]$.
- \Rightarrow Soit $n \in \mathbb{N}^*$. Factoriser $X^n 1$ sur $\mathbb{R}[X]$.

20.2.3 Fonctions symétriques élémentaires

Soit $P := X^3 + aX^2 + bX + c \in \mathbb{K}[X]$ un polynôme unitaire scindé de degré 3 et $\alpha, \beta, \gamma \in \mathbb{K}$ ses racines comptées avec leur ordre de multiplicité. Alors

$$P = X^{3} + aX^{2} + bX + c$$

$$= (X - \alpha)(X - \beta)(X - \gamma)$$

$$= X^{3} - (\alpha + \beta + \gamma)X^{2} + (\alpha\beta + \alpha\gamma + \beta\gamma)X - \alpha\beta\gamma$$

$$= X^{3} - \sigma_{1}X^{2} + \sigma_{2}X - \sigma_{3}.$$

où $\sigma_1 := \alpha + \beta + \gamma$, $\sigma_2 := \alpha\beta + \alpha\gamma + \beta\gamma$ et $\sigma_3 := \alpha\beta\gamma$. Par unicité des coefficients de P, on a $\sigma_1 = -a$, $\sigma_2 = b$ et $\sigma_3 = -c$. Remarquons que σ_1, σ_2 et σ_3 sont des expressions symétriques en α, β, γ , c'est-à-dire qu'elles sont invariantes par permutation de ces 3 variables. On peut montrer que toute expression polynomiale symétrique en α, β, γ peut s'exprimer comme un polynôme en ces 3 quantités. Par exemple $\Sigma := \alpha^2 + \beta^2 + \gamma^2$ est symétrique en α, β, γ et on remarque que

$$\sigma_1^2 = (\alpha + \beta + \gamma)^2$$

$$= \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

$$= \Sigma + 2\sigma_2$$

donc $\Sigma = \sigma_1^2 - 2\sigma_2$. Ainsi, toute expression symétrique en les racines de P s'exprime en fonction des coefficients de P. Dans notre cas, on trouve $\Sigma = a^2 - 2b$.

Définition 20.2.14

Soit $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. On définit les polynômes symétriques élémentaires en les $\alpha_1, \ldots, \alpha_n$ par

$$\sigma_1 := \alpha_1 + \dots + \alpha_n \\
\sigma_2 := \sum_{i_1 < i_2} \alpha_{i_1} \alpha_{i_2} \\
\vdots \\
\sigma_n := \alpha_1 \cdots \alpha_n.$$

Plus précisément, pour tout $k \in [1, n]$

$$\sigma_k \coloneqq \sum_{i_1 < \dots < i_k} \alpha_{i_1} \cdots \alpha_{i_k}.$$

Remarque

 \Rightarrow On peut montrer que tout polynôme symétrique en les $\alpha_1, \ldots, \alpha_n$ s'écrit comme un polynôme en les $\sigma_1, \ldots, \sigma_n$. Cette propriété justifie leur appellation de polynômes symétriques élémentaires.

Proposition 20.2.15: Relations coefficients-racines, formules de Viète

Soit $P \in \mathbb{K}[X]$ un polynôme scindé de degré n. Alors il existe $a_0, \ldots, a_n \in \mathbb{K}$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tels que

$$P = a_0 + a_1 X + \dots + a_n X^n$$
$$= a_n \prod_{k=1}^n (X - \alpha_k).$$

Alors

$$\forall k \in [1, n], \quad \sigma_k = (-1)^k \frac{a_{n-k}}{a_n}.$$

Exercices 10

 \Rightarrow Soit $z_1, z_2, z_3 \in \mathbb{C}$ les racines de $P \coloneqq 2X^3 + 3X^2 + X + 1$. Calculer

$$a\coloneqq \sum_{k=1}^3 z_k^2, \qquad b\coloneqq \sum_{k=1}^3 z_k^3, \qquad c\coloneqq \sum_{k=1}^3 \frac{1}{z_k}.$$

 \Rightarrow Montrer que si $n \ge 2$, la somme des racines n-ièmes de l'unité est nulle et le produit des racines n-ièmes de l'unité est égal à $(-1)^{n-1}$.

20.3 Exercices

Arithmétique des polynômes

Relation de divisibilité

Exercice 1 : Racines d'un polynôme

- 1. Soit $P \in \mathbb{R}[X]$. Montrer que P X divise $P \circ P X$.
- 2. Résoudre sur \mathbb{C} l'équation

$$(z^2 - 3z + 1)^2 = 3z^2 - 8z + 2.$$

Exercice 2: Division euclidienne

1. Trouver le reste et le quotient de la division euclidienne de A par B dans les cas suivants :

-
$$A := X^3 - 2X + 1$$
 et $B := X^2 - 1$
- $A := X^4 - 2X^3 + 1$ et $B := X + 1$

- 2. Pour $n \in \mathbb{N}$, trouver les restes de la division de $(X-3)^{2n} (X-2)^n 2$ par (X-2)(X-3), puis par $(X-3)^3$.
- 3. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Déterminer le reste de la division du polynôme $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$.
- 4. Soit $n \in \mathbb{N}^*$. Trouver le reste de la division euclidienne de $X^n + nX^{n-1} + X^2 + 1$ par $(X+1)^2$.

Plus grand commun diviseur

Algorithme d'Euclide

Exercice 3: Calculs de pgcd

- 1. Calculer le pgcd des polynômes $X^5 4X^4 + 6X^3 6X^2 + 5X 2$ et $X^4 + X^3 + 2X^2 + X + 1$.
- 2. Soit p et q deux entiers naturels.
 - (a) Calculer le reste de la division euclidienne de $X^p 1$ par $X^q 1$.
 - (b) En déduire le pgcd de $X^p 1$ et $X^q 1$.

Relation de Bézout

Exercice 4 : Calcul de coefficients

Soit $n \in \mathbb{N}^*$.

1. Montrer qu'il existe un unique couple $(P,Q) \in \mathbb{K}[X]^2$ de polynômes de degrés strictement inférieurs à n tels que

$$(1-X)^n P(X) + X^n Q(X) = 1.$$

2. Montrer que

$$P(X) = Q(1 - X)$$
 et $Q(X) = P(1 - X)$.

3. Montrer qu'il existe $\lambda \in \mathbb{K}$ telle que

$$(1-X)P'(X) - nP(X) = \lambda X^{n-1}.$$

4. En déduire les coefficients de P.

Exercice 5 : Polynômes premiers entre eux dans leur ensemble

Soit $A_1, \ldots, A_n \in \mathbb{K}[X]$ deux à deux premiers entre eux. Pour tout $k \in [1, n]$, on pose

$$B_k := \prod_{\substack{i=1\\i\neq k}}^n A_i.$$

Montrer que B_1, \ldots, B_n sont premiers entre eux dans leur ensemble.

20.3. EXERCICES 375

Lemme de Gauss

Plus petit commun multiple

Polynôme irréductible

Changement de corps

Exercice 6 : Factorisation sur $\mathbb{Q}[X]$

Soit $a_0, \ldots, a_n \in \mathbb{Z}$ et P le polynôme

$$P := a_0 + a_1 X + \dots + a_n X^n.$$

- 1. Montrer que si r := p/q (avec $p \land q = 1$) est racine de P, alors $q|a_n$ et $p|a_0$. Que dire si $a_n = 1$?
- 2. Montrer que si r est une racine de P, alors

$$\forall m \in \mathbb{Z}, \quad p - mq | P(m).$$

3. En déduire la décomposition en facteurs irréductibles sur $\mathbb{Q}[X]$ des polynômes

$$X^3 - X - 1$$
, $3X^3 - 2X^2 - 2X - 5$, $6X^4 + 19X^3 - 7X^2 - 26X + 12$.

Racines d'un polynôme

Racine

Exercice 7: Racines doubles

Quelles sont les valeurs de $n \in \mathbb{N}$ pour lesquelles le polynôme

$$(X-1)^n - (X^n-1)$$

admet une racine double?

Exercice 8 : Factorisation dans $\mathbb{R}[X]$

Factoriser dans $\mathbb{R}[X]$

$$X^3 - 1$$
, $X^6 + 1$ et $X^8 + X^4 + 1$.

Exercice 9 : Polynômes d'interpolation de Hermite

Soit n réels deux à deux distincts $\alpha_1, \ldots, \alpha_n$ et $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}[X]$ de degré strictement inférieur à 2n tel que

$$\forall k \in [1, n], \quad P(\alpha_k) = a_k \quad \text{et} \quad P'(\alpha_k) = b_k.$$

Exercice 10 : Base de $\mathbb{R}_n[X]$ sans racines

Donner une condition nécessaire et suffisante sur $n \in \mathbb{N}$ pour que $\mathbb{R}_n[X]$ admette une base formée de polynômes sans racines réelles.

Exercice 11 : Polynôme scindé

Soit $P \in \mathbb{R}[X]$ un polynôme non constant.

- 1. Montrer que si P est scindé simple sur \mathbb{R} , alors P' est scindé simple sur \mathbb{R} .
- 2. Montrer que si P est scindé sur \mathbb{R} , alors P' est scindé sur \mathbb{R} .

Théorème fondamental de l'algèbre

Exercice 12: Résolution d'une équation polynomiale

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que

$$P(X^2) = P(X)P(X+1).$$

Fonctions symétriques élémentaires

Exercice 13 : Calculs trigonométriques

Soit $n \in \mathbb{N}^*$. On définit le polynôme $P_n \in \mathbb{C}[X]$ par

$$P_n := (X+1)^n - (X-1)^n.$$

- 1. Factoriser P_n dans $\mathbb{C}[X]$.
- 2. En déduire, pour tout $p \in \mathbb{N}$, les valeurs de

$$\sum_{k=1}^{p} \cot^2 \left(\frac{k\pi}{2p+1} \right) \quad \text{et} \quad \prod_{k=1}^{p} \cot \left(\frac{k\pi}{2p+1} \right).$$

Exercice 14: Relations entre coefficients et racines

- 1. Soit p, q et r trois nombres complexes et a, b, c les trois racines du polynôme $P := X^3 + pX^2 + qX + r$. Calculer en fonction de p, q et r l'expression $a^3b + a^3c + b^3c + b^3a + c^3a + c^3b$.
- 2. On considère le polynôme

$$P := X^4 + pX^2 + qX + r.$$

avec $r \neq 0$. On note x_1, \ldots, x_4 ses racines. Calculer les expressions suivantes en fonction de p, q et r:

$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$$
 et $\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} + \frac{1}{x_4^2}$.

Chapitre 21

Probabilités

 \ll Il y a tellement de gens qui trouvent à travers le monde la seule femme qu'ils puissent aimer, que l'énorme fréquence de ces rencontres me rend sceptique, moi qui ai un certain respect du calcul des probabilités. »

— Tristan Bernard (1866–1947)

-	ace probabilisé	
21.1.1	Espace probabilisé	37
21.1.2	Variable aléatoire	38
21.1.3	Lois usuelles	38
21.2 Dépe	endance des évènements	38
21.2.1	Probabilité conditionnelle	38
21.2.2	Formule des probabilités totales	38
21.2.3	Formule de Bayes	38
21.2.4	Indépendance	38
21.2.5	Loi d'une somme	38

21.1 Espace probabilisé

La théorie des probabilités est la modélisation mathématique des phénomènes caractérisés par le hasard et l'incertitude. Considérons par exemple le jeu de « pile ou face ». Avant d'effectuer un lancer, nous savons que le résultat de cette expérience sera soit pile, soit face. Il est impossible de prévoir le résultat d'un unique lancer, mais si nous effectuons n lancers et que nous comptons le nombre n_P de fois où on a obtenu pile, on constate que la proportion n_P/n tend vers 1/2 lorsque n tend vers 1/2 lorsque n0 tend vers 1/2 lorsque n1 tend vers 1/2 lorsque n2 tend vers 1/2 lorsque n3 tend vers 1/2 lorsque n4 tend vers 1/2 lorsque n4 tend vers 1/2 lorsque n5 tend vers 1/2 lorsque n5 tend vers 1/2 lorsque n6 tend vers 1/2 lorsque n8 tend vers 1/2 lorsque n9 tend vers

En mathématiques, nous modélisons cette expérience en disant que l'univers des possibles est un ensemble $\Omega \coloneqq \{P, F\}$ formé de deux éléments et que la probabilité de l'évènement $A \coloneqq \{P\}$ est 1/2, ce que l'on note

$$\mathbb{P}(\{P\}) = \frac{1}{2}.$$

Puisque le nombre n_F de fois où on a obtenu face vérifie $n_P + n_F = n$, on en déduit que la probabilité d'obtenir face est aussi de 1/2, ce que l'on note de même $\mathbb{P}(\{F\}) = 1/2$.

Considérons maintenant un autre jeu de hasard : le lancer d'un dé à 6 faces. Dans ce cas, l'univers des possibles est $\Omega := [\![1,6]\!]$. On constate que quel que soit $\omega \in \Omega$, si on lance le dé n fois et qu'on compte le nombre n_{ω} de fois où on a obtenu ω , la proportion n_{ω}/n tend vers 1/6. On écrira

$$\forall \omega \in [1, 6], \quad \mathbb{P}(\{\omega\}) = \frac{1}{6}.$$

Si l'on s'intéresse au nombre n_P de fois où on a obtenu un nombre pair, c'est-à-dire au nombre de fois où on a obtenu 2, 4 ou 6, nous dirons que nous nous intéressons à l'évènement $A := \{2, 4, 6\}$. Bien entendu

$$\frac{n_P}{n} = \frac{n_2 + n_4 + n_6}{n} = \frac{n_2}{n} + \frac{n_4}{n} + \frac{n_6}{n} \xrightarrow[n \to +\infty]{} 3 \times \frac{1}{6} = \frac{1}{2}.$$

On écrira

$$\mathbb{P}(\{2,4,6\}) = \frac{1}{2}.$$

Nous remarquons que sur ces deux exemples, l'univers Ω est fini et que, quelle que soit la partie A de Ω , on a

$$\mathbb{P}(A) = \frac{\operatorname{Card} A}{\operatorname{Card} \Omega}.$$

Nous dirons que la probabilité \mathbb{P} est uniforme sur Ω .

Cependant, les probabilités ne sont pas toujours uniformes. On considère par exemple l'expérience qui consiste à avoir 2 enfants. Si on s'intéresse au sexe des enfants, il y a trois possibilités : on peut avoir deux filles, deux garçons ou une fille et un garçon. Nous modélisons cela en disant que l'univers des possibles est $\Omega := \{F, G, D\}$. L'expérience montre que la probabilité d'avoir deux filles est de 1/4, celle d'avoir deux garçons est de 1/4 et celle d'avoir une fille et un garçon est de 1/4. Nous avons donc un exemple simple où la probabilité n'est pas uniforme.

En 1881, l'astronome Simon Newcomb se rend compte que les livres de tables de logarithmes sont plus abimés à certaines pages qu'à d'autres. Sa découverte suggère que les personnes ayant besoin de faire des applications numériques sont plus souvent confrontées à des nombres commençant par un 1, comme 1491 ou 1.602×10^{-19} , que par un 9, comme 987 ou 9.81. Soixante ans plus tard, Frank Benford, après avoir répertorié un très grand nombre de données, dont les longueurs des fleuves et les populations des villes, fait le même constat. Ici, l'univers des possibles est $\Omega := [\![1,9]\!]$ et Benford postule que

$$\forall \omega \in \llbracket 1, 9 \rrbracket \,, \quad \mathbb{P}(\{\omega\}) = \log_{10} \left(1 + \frac{1}{\omega} \right).$$

On vérifie que

$$\sum_{\omega=1}^{9} \mathbb{P}(\{\omega\}) = \sum_{\omega=1}^{9} \log_{10} \left(1 + \frac{1}{\omega}\right) = \sum_{\omega=1}^{9} \left[\log_{10} (\omega + 1) - \log_{10} (\omega)\right]$$
$$= \log_{10} (10) - \log_{10} (1) = 1$$

comme attendu pour une probabilité.

21.1.1Espace probabilisé

Définition 21.1.1

Étant donné une expérience aléatoire, on appelle univers des possibles ou simplement univers tout ensemble fini Ω où chaque élément $\omega \in \Omega$ représente une réalisation de l'expérience.

Exemples

- \Rightarrow Série de Pile ou Face. Soit $n \in \mathbb{N}$. On considère l'expérience aléatoire qui consiste à jeter n fois une pièce. Dans ce cas, l'univers des possibles est $\Omega := \{P, F\}^n$, la lettre P représentant le résultat pile et la lettre F représentant le résultat face. Par exemple, si $n=3, \omega:=(P,P,F)$ représente la réalisation de l'expérience où les deux premiers lancers donnent pile et le dernier lancer donne face.
- \Rightarrow Répartition de n boules discernables dans p urnes discernables. Soit $n, p \in \mathbb{N}$. On considère l'expérience qui consiste à répartir de manière aléatoire n boules discernables dans p urnes discernables. On choisit de numéroter les boules de 1 à n et les urnes de 1 à p. L'univers des possibles est donc $\Omega_D := [\![1,p]\!]^n$ et une réalisation $\omega \in \Omega$ de l'expérience est un n-uplet $(\omega_1,\ldots,\omega_n)$ où pour tout $i\in[1,n]$, $\omega_i\in[1,p]$ est le numéro de l'urne dans laquelle on a placé la boule i.
- \Rightarrow Répartition de n boules indiscernables dans p urnes discernables. Soit $n,p\in\mathbb{N}$. On considère l'expérience qui consiste à répartir de manière aléatoire n boules indiscernables dans p urnes discernables. Une réalisation est caractérisée par le nombre de boules $x_1, \ldots, x_p \in \mathbb{N}$ que contient chaque urne. Comme on sait qu'il y a au total nboules, l'univers des possibles est donc

$$\Omega_I := \{(x_1, \dots, x_p) \in \mathbb{N}^p \mid x_1 + \dots + x_p = n\}.$$

Remarque

🗢 En première année, l'univers des possibles sera toujours un ensemble fini. Cette restriction nous empêchera de modéliser certaines expériences comme jouer à pile ou face jusqu'à obtenir pile. La théorie des probabilités sur un univers infini est plus délicate. C'est pourquoi vous ne l'aborderez qu'en seconde année.

Définition 21.1.2

Soit Ω l'univers des possibles.

- On appelle évènement toute partie de Ω . L'évènement Ω est appelle évènement certain et l'évènement \emptyset est appelé évènement impossible.
- On dit que deux évènements $A, B \in \mathcal{P}(\Omega)$ sont disjoints, ou incompatibles, lorsque $A \cap B = \emptyset$.

Remarques

 \Rightarrow On dit que les évènements $A_1, \ldots, A_n \in \mathcal{P}(\Omega)$ sont incompatibles lorsque

$$\forall i, j \in [1, n], \quad i \neq j \Longrightarrow A_i \cap A_j = \varnothing.$$

- ⇒ On dit qu'un évènement A est élémentaire lorsqu'il ne contient qu'un résultat observable, c'est-à-dire lorsqu'il existe $\omega \in \Omega$ tel que $A = {\omega}$.
- \Rightarrow Si A et $B \in \mathcal{P}(\Omega)$ sont des évènements, on appelle
 - évènement « A et B » l'évènement $A \cap B$.
 - évènement « A ou B » l'évènement $A \cup B$.
 - évènement « contraire de A » l'évènement $\bar{A} = \Omega \setminus A$.

Exercice 1

- \Rightarrow On considère l'expérience consistant à jeter n fois une pièce. Pour tout $k \in [1,n]$, on considère l'évènement $F_k :=$ « Le résultat du k-ième lancer est face ». Exprimer, en fonction des F_k , les évènements suivants :

 - A := « On n'obtient jamais pile au cours des n lancers ». B := « On obtient pile au moins une fois au cours au cours des n lancers ».

-C := « On obtient deux faces consécutifs au cours des n lancers ».

Définition 21.1.3

Soit Ω l'univers des possibles. On dit que la famille d'évènements $(A_1, \ldots, A_n) \in \mathcal{P}(\Omega)^n$ forme un système complet d'évènements lorsque c'est une partition de Ω , c'est-à-dire lorsque

$$\Omega = \bigcup_{i=1}^{n} A_i$$
 et $[\forall i, j \in [1, n], i \neq j \Longrightarrow A_i \cap A_j = \varnothing]$.

Définition 21.1.4

On appelle loi de probabilité, mesure de probabilité ou plus simplement probabilité sur un univers Ω toute application

$$\begin{array}{cccc} \mathbb{P}: & \mathcal{P}(\Omega) & \longrightarrow & [0,1] \\ & A & \longmapsto & \mathbb{P}(A) \end{array}$$

telle que

$$-\mathbb{P}(\Omega)=1$$

$$- \forall A, B \in \mathcal{P}(\Omega), \quad A \cap B = \varnothing \quad \Longrightarrow \quad \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Le couple (Ω, \mathbb{P}) est appelé espace probabilisé.

Remarque

 \Rightarrow On dit que deux évènements A et B sont équiprobables lorsque $\mathbb{P}(A) = \mathbb{P}(B)$.

Définition 21.1.5

Soit Ω un ensemble fini non vide. On appelle probabilité uniforme sur Ω l'application $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ définie par

$$\forall A \in \mathcal{P}(\Omega), \quad \mathbb{P}(A) = \frac{\operatorname{Card} A}{\operatorname{Card} \Omega}.$$

Remarques

- \Rightarrow Lorsque Ω est muni d'une loi uniforme, les calculs de probabilité se ramènent à des problèmes de dénombrement.
- ⇒ Pour deux des trois exemples d'expérience aléatoire que nous avons donné en début de cours, la probabilité « naturelle » est la probabilité uniforme.
 - Série de Pile ou Face : Si on considère l'expérience aléatoire qui consiste à jeter n fois une pièce équilibrée, c'est la probabilité uniforme qui est naturelle sur l'univers $\Omega := \{P, F\}^n$. Nous montrerons plus tard que cela revient à supposer que les résultats de chaque lancer ont autant de chance de donner pile que face, et que les lancers sont indépendants.
 - Répartition de n boules discernables dans p urnes discernables : Si l'on souhaite répartir n boules discernables dans p urnes discernables, c'est encore la probabilité uniforme qui est naturelle sur $\Omega_D := [1, p]^n$. Nous verrons que cela revient à supposer que chaque boule est placée de manière équiprobable dans les différentes urnes et que ces répartitions sont indépendantes les unes des autres.

Dans la suite de ce cours, (Ω, \mathbb{P}) désignera un espace probabilisé.

Proposition 21.1.6

$$\begin{split} \mathbb{P}(\varnothing) &= 0, \qquad \mathbb{P}(\Omega) = 1, \\ \forall A \in \mathcal{P}(\Omega), \qquad \mathbb{P}(\bar{A}) &= 1 - \mathbb{P}(A), \\ \forall A, B \in \mathcal{P}(\Omega), \qquad \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B). \end{split}$$

Proposition 21.1.7

Une probabilité est une fonction croissante. Autrement dit

$$\forall A, B \in \mathcal{P}(\Omega), \quad A \subset B \implies \mathbb{P}(A) \leqslant \mathbb{P}(B).$$

Proposition 21.1.8

Soit $(A_1, \ldots, A_n) \in \mathcal{P}(\Omega)^n$ une famille d'évènements incompatibles. Alors

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

Remarques

 \Rightarrow Si A_1,\dots,A_n est une famille d'évènements incompatibles, la réunion des A_i est parfois notée

$$\bigsqcup_{i=1}^{n} A_i$$
.

 \Rightarrow Si A_1, \ldots, A_n sont quelconques, on a seulement

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} \mathbb{P}(A_i).$$

On dit que \mathbb{P} est sous-additive.

Exercices 2

- \Rightarrow Une urne contient 20 boules, numérotées de 1 à 20 : 5 boules sont blanches, 5 sont rouges et 10 sont noires. On tire successivement 3 boules, avec remise à chaque tirage. Si on munit Ω de la probabilité uniforme, calculer la probabilité que le tirage soit :
 - unicolore.
 - tricolore.
 - bicolore.
- Due urne contient 8 boules, numérotées de 1 à 8 : 3 boules sont blanches et 5 sont noires. On en tire simultanément 4 boules. Si on munit Ω de la probabilité uniforme, avec quelle probabilité n'a-t-on tiré que des boules noires?

Proposition 21.1.9: Formule du crible

Soit $(A_1, \ldots, A_n) \in \mathcal{P}(\Omega)^n$ une famille d'évènements. Alors

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \mathbb{P}\left(A_{i_1} \cap \dots \cap A_{i_k}\right).$$

Remarque

 \Rightarrow Par exemple, pour n=3, la formule du crible s'écrit

$$\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) - [\mathbb{P}(A_2 \cap A_3) + \mathbb{P}(A_1 \cap A_3) + \mathbb{P}(A_1 \cap A_2)] + \mathbb{P}(A_1 \cap A_2 \cap A_3).$$

Définition 21.1.10

— On appelle distribution de probabilité sur Ω toute famille $(p_{\omega})_{\omega \in \Omega}$ de réels positifs telle que

$$\sum_{\omega \in \Omega} p_{\omega} = 1.$$

— Si \mathbb{P} est une probabilité sur Ω , on appelle distribution de probabilité de \mathbb{P} la famille $(p_{\omega})_{\omega \in \Omega}$ définie par

$$\forall \omega \in \Omega, \quad p_{\omega} := \mathbb{P}(\{\omega\}).$$

C'est une distribution de probabilité sur Ω .

Remarque

 \Rightarrow Si \mathbb{P} désigne la probabilité uniforme sur l'univers Ω de cardinal n, alors quel que soit $\omega \in \Omega$, $p_{\omega} = 1/n$.

Exercice 3

 \Rightarrow Sur l'univers $\Omega := [0, n]$, on définit la famille $(p_k)_{0 \le k \le n}$ par

$$\forall k \in [0, n], \quad p_k := \alpha \binom{n}{k}$$

où $\alpha \in \mathbb{R}$. Déterminer α pour que $(p_k)_{0 \le k \le n}$ soit une distribution de probabilité.

Proposition 21.1.11

Soit (Ω, \mathbb{P}) un espace probabilisé et $(p_{\omega})_{\omega \in \Omega}$ la distribution de probabilité de \mathbb{P} . Alors

$$\forall A \in \mathcal{P}(\Omega), \quad \mathbb{P}(A) = \sum_{\omega \in A} p_{\omega}.$$

Remarques

- ⇒ Une probabilité est donc entièrement déterminée par sa distribution de probabilité.
- \Rightarrow Une probabilité est donc uniforme si et seulement si tous les évènements élémentaires sont équiprobables. Une erreur très classique en probabilités est de croire que la mesure de probabilité « naturelle » sur un univers est toujours la probabilité uniforme. Ce n'est pas toujours le cas. Cependant, lorsque ça l'est, un argument de symétrie permet souvent de s'en convaincre. Par exemple, si on lance un dé à 6 faces, les symétries du dé font que les valeurs obtenues sont équiprobables. La mesure de probabilité « naturelle » sur $\Omega := [1, 6]$ est donc la probabilité uniforme.

Exercice 4

⇒ On lance un dé pipé à 6 faces qui donne « 1 » avec la probabilité ½ et les autres faces avec une même probabilité p. Quelle est la probabilité d'obtenir un nombre impair?

Proposition 21.1.12

Soit $(p_{\omega})_{\omega \in \Omega}$ une distribution de probabilité sur l'univers Ω . Alors il existe une unique probabilité \mathbb{P} sur Ω telle que

$$\forall \omega \in \Omega, \quad \mathbb{P}(\{\omega\}) = p_{\omega}.$$

21.1.2 Variable aléatoire

Définition 21.1.13

Soit (Ω, \mathbb{P}) un espace probabilisé. On appelle *variable aléatoire* à valeurs dans E toute application $X: \Omega \to E$.

Remarque

 \Rightarrow On dit qu'une variable aléatoire $X:\Omega\to E$ est réelle lorsque E est une partie de \mathbb{R} .

Définition 21.1.14

Soit $X:\Omega\to E$ une variable aléatoire. Alors, pour toute partie A de E, on définit l'évènement

$$(X \in A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

Remarques

- \Rightarrow Si $x \in E$, l'évènement $\{\omega \in \Omega \mid X(\omega) = x\}$ est noté (X = x).
- \Rightarrow Si X est une variable aléatoire réelle et $a, b \in \mathbb{R}$, l'évènement $\{\omega \in \Omega \mid a \leqslant X(\omega) \leqslant b\}$ est noté $(a \leqslant X \leqslant b)$.
- \Rightarrow L'évènement $(X \in A)$ est aussi noté $\{X \in A\}$ ou $[X \in A]$. La probabilité d'un tel évènement est notée $\mathbb{P}(X \in A)$.

Proposition 21.1.15

Soit $X: \Omega \to E$ une variable aléatoire et $A, B \in \mathcal{P}(E)$. Alors

$$(X \in A \cap B) = (X \in A) \cap (X \in B),$$
 $(X \in A \cup B) = (X \in A) \cup (X \in B),$ $(X \in \bar{A}) = \overline{(X \in A)}.$

Exercice 5

 \Rightarrow Soit $X:\Omega\to\mathbb{Z}$ une variable aléatoire à valeurs entières. Montrer que

$$\forall n \in \mathbb{Z}, \quad \mathbb{P}(X = n) = \mathbb{P}(X \leqslant n) - \mathbb{P}(X \leqslant n - 1).$$

Définition 21.1.16

Soit $X: \Omega \to E$ une variable aléatoire. Alors l'application

$$\mathbb{P}_X: \quad \mathcal{P}(X(\Omega)) \quad \longrightarrow \quad [0,1]$$

$$A \quad \longmapsto \quad \mathbb{P}(X \in A)$$

est une probabilité sur $X(\Omega)$, appelée loi de X.

Remarques

- \Rightarrow La loi de X est entièrement déterminée par sa distribution de probabilité $(\mathbb{P}(X=x))_{x\in X(\Omega)}$.
- \Rightarrow Si $x \in E$ n'appartient pas à $X(\Omega)$, alors $\mathbb{P}(X = x) = 0$.
- \Rightarrow En pratique, lorsqu'il nous sera demandé de déterminer la loi d'une variable aléatoire $X:\Omega\to E$, on commencera par déterminer un ensemble fini E' tel que $X(\Omega)\subset E'$ puis on calculera $\mathbb{P}(X=x)$ pour tout $x\in E'$.
- \Rightarrow Si (Ω_1, \mathbb{P}_1) est un espace probabilisé, Ω_2 est un ensemble fini et F est une application de Ω_1 dans Ω_2 , alors

$$\begin{array}{ccc} \mathbb{P}_2: & \mathcal{P}(\Omega_2) & \longrightarrow & [0,1] \\ A & \longmapsto & \mathbb{P}_1 \left(F \in A \right) \end{array}$$

est une probabilité sur Ω_2 , appelée mesure image de \mathbb{P}_1 par F.

 \Rightarrow En reprenant les notations utilisées dans les exemples de répartition de n boules discernables/indiscernables dans p urnes discernables donnés plus haut, on considère la fonction d'oubli $F:\Omega_D\to\Omega_I$. À une répartition de boules numérotées et donc discernables, elle associe la répartition des boules indiscernables, où on a effacé le numéro des boules. Autrement dit, si $\omega := (\omega_1, \dots, \omega_n) \in \Omega_D$, alors $F(\omega) = (x_1, \dots, x_p) \in \Omega_I$ où

$$\forall j \in \llbracket 1, p \rrbracket \,, \quad x_j = \operatorname{Card} \{ i \in \llbracket 1, n \rrbracket \mid \omega_i = j \}.$$

La mesure de probabilité naturelle sur Ω_I est la mesure image par F de la probabilité uniforme sur Ω_D .

Exercice 6

 \Rightarrow On lance successivement deux dés à 6 faces. On modélise cette expérience en choisissant $\Omega := [1,6]^2$ muni de la probabilité uniforme. On note $A_1 : \Omega \to \mathbb{N}$ le résultat du premier dé et $A_2 : \Omega \to \mathbb{N}$ le résultat du second dé. Déterminer les lois de A_1 , A_2 ainsi que la loi de la variable aléatoire $A_1 + A_2 : \Omega \to \mathbb{N}$ donnant la somme des deux nombres obtenus.

Proposition 21.1.17

Soit $X:\Omega\to E$ une variable aléatoire. Alors, pour toute partie A de E

$$\mathbb{P}(X \in A) = \sum_{x \in A} \mathbb{P}(X = x)$$

Remarque

Arr Étant donné que $\mathbb{P}(X=x)$ est nul pour tout x en dehors de l'ensemble fini $X(\Omega)$, cette somme est bien définie puisqu'elle ne comporte qu'un nombre fini de termes non nuls.

Définition 21.1.18

On dit que deux variables aléatoires $X,Y:\Omega\to E$ suivent la même loi lorsque

$$\forall A \in \mathcal{P}(E), \quad \mathbb{P}(X \in A) = \mathbb{P}(Y \in A).$$

Si tel est le cas, on écrit $X \sim Y$.

Remarques

 \Rightarrow En pratique, pour montrer que X et Y suivent la même loi, il suffit de déterminer un ensemble fini E' tel que $X(\Omega) \subset E'$ et $Y(\Omega) \subset E'$, puis de montrer que

$$\forall a \in E', \quad \mathbb{P}(X = a) = \mathbb{P}(Y = a).$$

 \Rightarrow Deux variables aléatoires qui suivent la même loi sont rarement égales. Par exemple, si A est un évènement de probabilité 1/2, les variables aléatoires 1/4 et 1/4 suivent la même loi sans être égales.

Proposition 21.1.19

Si $X : \Omega \to E$ une variable aléatoire, $X(\Omega)$ est un ensemble fini que l'on note $\{x_1, \ldots, x_n\}$. Alors, la famille des $(X = x_i)$ pour $i \in [1, n]$ forme un système complet d'évènements.

Remarques

- ⇒ On utilisera souvent ce système complet d'évènements dans la formule des probabilités totales.
- \Rightarrow Cette proposition reste vraie si on remplace $X(\Omega)$ par une partie finie E' de E telle que $X(\Omega) \subset E'$.

Définition 21.1.20

Soit $X:\Omega\to E$ une variable aléatoire et $f:E\to F$. On note f(X) la variable aléatoire $f\circ X:\Omega\to F$.

Remarque

 \Rightarrow Soit $X:\Omega\to E$ une variable aléatoire et $f:E\to F$. Alors, pour tout $y\in F$

$$\mathbb{P}(f(X) = y) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X = x)$$

Proposition 21.1.21

Soit $X, Y: \Omega \to E$ deux variables aléatoires et $f: E \to F$. Si $X \sim Y$, alors $f(X) \sim f(Y)$.

21.1.3 Lois usuelles

Définition 21.1.22: Loi uniforme

Soit A un ensemble fini non vide. On dit qu'une variable aléatoire X à valeurs dans A suit une loi uniforme sur A lorsque

$$\forall a \in A, \quad \mathbb{P}(X = a) = \frac{1}{\operatorname{Card} A}.$$

Si tel est le cas, on note $X \sim \mathcal{U}(A)$.

Remarque

 \Rightarrow Si X suit une loi uniforme sur A, alors $X(\Omega) = A$.

Exercice 7

 \Rightarrow Soit X une variable aléatoire suivant une loi uniforme sur [-2,2]. Déterminer la loi de X^2+1 .

Définition 21.1.23: Loi de Bernoulli

Soit $p \in [0,1]$. On dit qu'une variable aléatoire X à valeurs dans $\{0,1\}$ suit la loi de Bernoulli de paramètre p lorsque

$$\mathbb{P}(X=1) = p.$$

Si tel est le cas, $\mathbb{P}(X=0) = 1 - p$ et on note $X \sim \mathcal{B}(p)$.

Remarques

- \Rightarrow Si $p \in [0,1]$, il est courant de poser $q := 1 p \in [0,1]$.
- \Rightarrow Si X suit une loi de Bernoulli de paramètre $p \in]0,1[$, alors $X(\Omega) = \{0,1\}$.
- \Rightarrow Toute variable aléatoire X à valeurs dans $\{0,1\}$ suit une loi de Bernoulli de paramètre $p := \mathbb{P}(X=1)$. En particulier, si $A \in \mathcal{P}(\Omega)$ est un évènement, alors $\mathbb{1}_A$ est une variable aléatoire qui suit une loi de Bernoulli de paramètre $p := \mathbb{P}(A)$.
- \Rightarrow On dit qu'une variable aléatoire Y à valeurs dans $\{-1,1\}$ suit une loi de Rademacher lorsque

$$\mathbb{P}(Y = -1) = \frac{1}{2}$$
 et $\mathbb{P}(Y = 1) = \frac{1}{2}$.

Exemple

 \Rightarrow On considère l'expérience aléatoire d'un tir de penalty dans un match de foot. La variable aléatoire $X: \Omega \to \{0,1\}$ décrit le résultat de ce tir : 1 si le penalty est réussi et 0 si le penalty est manqué. X suit donc une loi de Bernoulli dont le paramètre p est estimé, selon les joueurs, entre 70% et 90%.

Définition 21.1.24: Loi binomiale

Soit $n \in \mathbb{N}$ et $p \in [0,1]$. On dit qu'une variable aléatoire X à valeurs dans [0,n] suit la loi binomiale de paramètre (n,p) lorsque

$$\forall k \in [0, n], \quad \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Si tel est le cas, on note $X \sim \mathcal{B}(n, p)$.

Remarques

- \Rightarrow La loi binomiale $\mathcal{B}(1,p)$ n'est autre que la loi de Bernoulli de paramètre p.
- \Rightarrow Si X suit une loi binomiale de paramètre (n,p) où $p \in]0,1[$, alors $X(\Omega) = [0,n]$.

Au début de ce chapitre, nous avons décrit des situations probabilistes en définissant proprement un univers Ω ainsi qu'une probabilité \mathbb{P} sur Ω . Mais en avançant dans les exercices, nous nous sommes éloignés de l'univers Ω pour décrire désormais notre expérience à l'aide de variables aléatoires. C'est ce que nous ferons de plus en plus. La description de notre problème probabiliste se fera par la donnée d'une ou plusieurs variables aléatoires dont nous donnerons les lois, plutôt que de nous concentrer sur l'espace probabilisé (Ω, \mathbb{P}) . Cette abstraction nous sera très utile. Par exemple, si on lance un dé à 6 faces, on a envie de choisir $\Omega_1 = \llbracket 1, 6 \rrbracket$ muni de la probabilité uniforme. Mais si on lance deux fois le dé, l'univers $\Omega_2 = \llbracket 1, 6 \rrbracket^2$ muni de la loi uniforme semble plus approprié. Toute probabilité d'un évènement faisant intervenir les deux lancers de dés doit être calculée dans le cadre de l'univers Ω_2 . Cependant Ω_1 nous suffit si on s'intéresse uniquement au premier lancer. Pour autant, doit-on changer d'univers à chaque fois qu'on change de question? La réponse des probabilistes à ce problème consiste à négliger une bonne fois pour toutes l'univers Ω . Par exemple, si un exercice vous met dans la situation « On lance un dé à 6 faces et on note X la face obtenue », vous pouvez affirmer que X est une variable aléatoire suivant la loi uniforme sur $\llbracket 1, 6 \rrbracket$ sans évoquer l'espace probabilisé (Ω, \mathbb{P}) .

Cependant, les mathématiciens se demandent souvent si les objets qu'ils manipulent existent bien. En prépa, c'est un problème que nous pourrons le plus souvent ignorer. Mais, lorsque l'on souhaite travailler avec la rigueur que nous permettent les mathématiques, il est important de démontrer que les espaces probabilisés dont nous parlons existent bien. De nombreux théorèmes, qui ne sont pas au programme de prépa, nous permettent de justifier l'existence de tels espaces. Par exemple, si E est un ensemble fini et $(p_x)_{x\in E}$ est une distribution de probabilités sur E, on peut montrer qu'il existe bien un espace probabilisé (Ω, \mathbb{P}) et une variable aléatoire $X: \Omega \to E$ telle que

$$\forall x \in E, \quad \mathbb{P}(X = x) = p_x.$$

21.2 Dépendance des évènements

21.2.1 Probabilité conditionnelle

On se donne une expérience aléatoire associée à un espace probabilisé (Ω, \mathbb{P}) . Soit A et B deux évènements tels que $\mathbb{P}(B) > 0$. Si on réalise n fois cette expérience aléatoire et qu'on compte le nombre de fois n_B où l'évènement B a été réalisé ainsi que le nombre de fois $n_{A\cap B}$ parmi ces réalisations où l'évènement A a aussi été réalisé, alors

$$\frac{n_{A\cap B}}{n_B} = \frac{n_{A\cap B}}{n} \cdot \frac{n}{n_B} \xrightarrow[n \to +\infty]{} \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}.$$

On appelle ce nombre, probabilité de A sachant B.

Définition 21.2.1

Soit $B \in \mathcal{P}(\Omega)$ un évènement de probabilité non nulle. Pour tout évènement $A \in \mathcal{P}(\Omega)$, on appelle probabilité de A sachant B le nombre

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Proposition 21.2.2

Soit $B \in \mathcal{P}(\Omega)$ un évènement de probabilité non nulle. Alors l'application

$$\begin{array}{cccc} \mathbb{P}_B: & \mathcal{P}(\Omega) & \longrightarrow & [0,1] \\ & A & \longmapsto & \mathbb{P}(A|B) \end{array}$$

est une probabilité sur Ω .

Remarque

 \Rightarrow Attention, bien qu'on écrive $\mathbb{P}(A|B)$, A|B n'est pas un évènement. La notation $\mathbb{P}_B(A)$ protège contre cette erreur.

21.2.2 Formule des probabilités totales

Proposition 21.2.3: Formule des probabilités totales

Soit (A_1, \ldots, A_n) un système complet d'évènements. Alors, pour tout évènement B

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(A_i) \mathbb{P}(B|A_i).$$

Remarques

- \Rightarrow Dans cette formule, par convention, on remplacera $\mathbb{P}(A_i)\mathbb{P}(B|A_i)$ par 0 lorsque $\mathbb{P}(A_i)=0$.
- ⇒ C'est cette formule qui se cache derrière les arbres de probabilité utilisés dans le secondaire. Afin d'aborder des exercices plus complexes, il est important de ne plus recourir à ces arbres et d'utiliser directement la formule des probabilités totales.

Exercice 8

 \Rightarrow Une urne contient $n \in \mathbb{N}^*$ boules noires et $b \in \mathbb{N}^*$ boules blanches. On tire deux boules successivement sans remise. Avec quelle probabilité la deuxième boule tirée est-elle blanche?

Proposition 21.2.4: Formule des probabilités composées

Soit A_1, \ldots, A_n des évènements tels que $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$. Alors

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)\cdots \mathbb{P}(A_n|A_1 \cap \ldots \cap A_{n-1}).$$

Exercices 9

- \Rightarrow Une urne contient 2n boules dont n noires et n blanches. On en tire 3 boules successivement. Avec quelle probabilité les tire-t-on dans l'ordre « noire, blanche, noire » si les tirages se font avec remise? Et s'ils se font sans remise?
- \Rightarrow Une urne contient initialement une boule blanche et une boule noire. On y effectue m tirages successifs. À

chaque tirage, la boule est choisie avec une probabilité uniforme sur toutes les boules présentes. Avant le tirage suivant, on replace dans l'urne la boule tirée et on ajoute une boule supplémentaire de la même couleur. Pour tout $n \in [1, m]$, on désigne par X_n le nombre de boules blanches obtenues au cours des n premiers tirages.

- 1. Déterminer la loi de X_1 , la loi de X_2 .
- 2. Calculer $\mathbb{P}(X_n = 0)$ et $\mathbb{P}(X_n = n)$.
- 3. En déduire, par récurrence, la loi de X_n .

21.2.3 Formule de Bayes

Proposition 21.2.5: Formule de Bayes

Soit A et B deux évènements de probabilité non nulle. Alors

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \cdot \mathbb{P}(B|A).$$

Remarque

 \Rightarrow Si de plus (C_1,\ldots,C_n) forme un système complet d'évènements

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)}{\sum_{i=1}^{n} \mathbb{P}(C_i) \mathbb{P}(B|C_i)} \cdot \mathbb{P}(B|A).$$

Exercice 10

 \Rightarrow Un laboratoire pharmaceutique indique pour un test permettant de détecter une maladie, sa sensibilité α qui est la probabilité que le test soit positif si le sujet est malade, et sa spécificité β qui est la probabilité que le test soit négatif si le sujet est sain. Sachant qu'en moyenne il y a un malade sur 1000 personnes, calculer la probabilité pour que vous soyez un sujet sain alors que votre test est positif. Faites une application numérique pour $\alpha := 98\%$ et $\beta := 97\%$.

21.2.4 Indépendance

Définition 21.2.6

On dit que deux évènements $A, B \in \mathcal{P}(\Omega)$ sont indépendants lorsque

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Remarques

- \Rightarrow Si A et B sont deux évènements tels que B est de probabilité non nulle, alors A et B sont indépendants si et seulement si $\mathbb{P}(A|B) = \mathbb{P}(A)$.
- ⇒ Il est important de ne pas confondre les notions d'incompatibilité et d'indépendance. Notons d'ailleurs que la notion d'incompatibilité ne dépend pas de la loi de probabilité utilisée alors que la notion d'indépendance en dépend.

Proposition 21.2.7

Soit A et B deux évènements indépendants. Alors A et \bar{B} sont indépendants.

Remarque

 \Rightarrow On en déduit que si A et B sont indépendants, il en est de même pour \bar{A} et B, ainsi que pour \bar{A} et \bar{B} .

Définition 21.2.8

On dit que les évènements $A_1, \dots, A_n \in \mathcal{P}(\Omega)$ sont mutuellement indépendants lorsque, quel que soit $I \subset [\![1,n]\!]$

$$\mathbb{P}\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\mathbb{P}(A_i).$$

Remarques

 \Rightarrow Si $A_1, \ldots, A_n \in \mathcal{P}(\Omega)$ sont mutuellement indépendants, alors ils sont deux à deux indépendants. Autrement dit

$$\forall i, j \in [1, n], \quad i \neq j \implies \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j).$$

Cependant, comme le montre le prochain exercice, des évènements peuvent être deux à deux indépendants sans être mutuellement indépendants.

 \Rightarrow Si $A_1, \ldots, A_n \in \mathcal{P}(\Omega)$ sont mutuellement indépendants, alors $B_1 \in \{A_1, \bar{A}_1\}, \ldots, B_n \in \{A_n, \bar{A}_n\}$ sont mutuellement indépendants.

Exercice 11

- \Rightarrow On lance successivement deux dés équilibrés. On modélise cela en prenant $\Omega := [1, 6]^2$ que l'on munit de la probabilité uniforme. On considère les évènements suivants :
 - -- A := « Le premier dé est pair ».
 - -B :=« Le second dé est impair ».
 - C :=« La somme des deux dés est paire ».

Sont-ils deux à deux indépendants? Sont-ils mutuellement indépendants?

Définition 21.2.9

- On dit que deux variables aléatoires $X: \Omega \to E$ et $Y: \Omega \to F$ sont indépendantes lorsque quelles que soient les parties $A \in \mathcal{P}(E)$ et $B \in \mathcal{P}(F)$, les évènements $(X \in A)$ et $(Y \in B)$ sont indépendants.
- On dit que n variables aléatoires $X_1: \Omega \to E_1, \ldots, X_n: \Omega \to E_n$ sont mutuellement indépendantes lorsque quelles que soient les parties $A_1 \in \mathcal{P}(E_1), \ldots, A_n \in \mathcal{P}(E_n)$, les évènements $(X_1 \in A_1), \ldots, (X_n \in A_n) \in \mathcal{P}(\Omega)$ sont mutuellement indépendants.

Remarques

- \Rightarrow Si X et Y sont indépendantes, on note $X \perp \!\!\! \perp Y$.
- \Rightarrow Si X_1, \ldots, X_n sont mutuellement indépendantes, alors elles sont deux à deux indépendantes. Cependant, la réciproque est fausse. Lorsqu'on parle de variables aléatoires indépendantes sans plus de précision, il faut comprendre que les variables aléatoires sont mutuellement indépendantes.

Proposition 21.2.10

Soit $X_1: \Omega \to E_1, \dots, X_n: \Omega \to E_n$, n variables aléatoires. Alors, elles sont mutuellement indépendantes si et seulement si

$$\forall (x_1, \dots, x_n) \in X_1(\Omega) \times \dots \times X_n(\Omega), \quad \mathbb{P}((X_1 = x_1) \cap \dots \cap (X_n = x_n)) = \mathbb{P}(X = x_1) \dots \mathbb{P}(X_n = x_n).$$

Remarque

 \Rightarrow Soit $A_1, \ldots, A_n \in \mathbb{P}(\Omega)$. Alors A_1, \ldots, A_n sont mutuellement indépendants si et seulement si les variables aléatoires $\mathbbm{1}_{A_1}, \ldots, \mathbbm{1}_{A_n}$ sont mutuellement indépendantes.

Exercice 12

 \Rightarrow Soit X,Y,Z trois variables aléatoires mutuellement indépendantes qui suivent la même loi de Bernoulli de paramètre $p \in [0,1]$. Donner une condition nécessaire et suffisante sur p pour que les évènements (X=Y) et (Y=Z) soient indépendants.

Proposition 21.2.11: Lemme des coalitions

— Soit $X_1: \Omega \to E_1, \dots, X_n: \Omega \to E_n$, des variables aléatoires mutuellement indépendantes et

$$f: E_1 \times \cdots \times E_m \to F, \qquad g: E_{m+1} \times \cdots \times E_n \to G$$

deux fonctions. Alors, les variables aléatoires $f(X_1, \ldots, X_m) : \Omega \to F$ et $g(X_{m+1}, \ldots, X_n) : \Omega \to G$ sont indépendantes.

— Soit A_1, \ldots, A_n des évènements mutuellement indépendants. Si B est un évènement défini à partir des évènements A_1, \ldots, A_m et C est un évènement défini à partir des évènements A_{m+1}, \ldots, A_n , alors B et C sont indépendants.

Remarques

- ⇒ Cet énoncé se généralise facilement à un nombre fini de coalitions et nous assure que les variables aléatoires et les évènements obtenus sont mutuellement indépendants.
- \Rightarrow Supposons que l'on lance n fois une pièce et que les n lancers sont indépendants. Si $p,q\in\mathbb{N}$ sont tels que p+q=n, alors la variable aléatoire Y donnant le nombre de pile lors des p premiers lancers est indépendante de la variable aléatoire Z donnant le nombre de pile lors des q derniers lancers.

Exercice 13

- \Rightarrow Soit $X_1, \dots, X_n : \Omega \to \mathbb{R}$ une famille de variables aléatoires mutuellement indépendantes suivant toutes une loi de Rademacher. Pour tout $i \in [1, n-1]$, on pose $Y_i \coloneqq X_i X_{i+1}$.
 - 1. Montrer que les variables Y_1, \ldots, Y_{n-1} sont deux à deux indépendantes.
 - 2. Sont-elles mutuellement indépendantes?

21.2.5 Loi d'une somme

Proposition 21.2.12

Soit $X,Y:\Omega\to\mathbb{N}$ deux variables aléatoires indépendantes. Alors

$$\forall n \in \mathbb{N}, \quad \mathbb{P}(X+Y=n) = \sum_{k=0}^{n} \mathbb{P}(X=k)\mathbb{P}(Y=n-k).$$

Remarque

 \Rightarrow Plus généralement, si $X,Y:\Omega\to\mathbb{N}$ sont deux variables dont on ne fait aucune hypothèse d'indépendance

$$\forall n \in \mathbb{N}, \quad \mathbb{P}(X+Y=n) = \sum_{k=0}^{n} \mathbb{P}((X=k) \cap (Y=n-k)).$$

Proposition 21.2.13

Soit $X, Y : \Omega \to \mathbb{N}$ deux variables aléatoires indépendantes. On suppose qu'il existe $p \in [0, 1]$ et $n, m \in \mathbb{N}$ tels que $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$. Alors $X + Y \sim \mathcal{B}(n + m, p)$.

Proposition 21.2.14

Soit $X_1, \ldots, X_n : \Omega \to \{0, 1\}$ des variables de Bernoulli mutuellement indépendantes de même paramètre $p \in [0, 1]$. Alors

$$X_1 + \cdots + X_n \sim \mathcal{B}(n, p).$$

Exercice 14

 \Rightarrow Deux joueurs lancent une pièce de monnaie équilibrée n fois chacun. Calculer la probabilité qu'ils obtiennent le même nombre de fois pile. En déterminer un équivalent lorsque n tend vers $+\infty$.

21.3 Exercices

Espace probabilisé

Espace probabilisé

Exercice 1: Exercice

Soit A et B deux évènements d'un espace probabilisé (Ω, \mathbb{P}) . Montrer que

$$\sqrt{\mathbb{P}(A\cap B)\mathbb{P}(A\cup B)}\leqslant \frac{\mathbb{P}(A)+\mathbb{P}(B)}{2}$$

et étudier les cas d'égalité.

Exercice 2: Exercice

On permute aléatoirement les lettres du mot « BAOBAB ». Avec quelle probabilité le mot obtenu est-il encore « BAOBAB » ?

Exercice 3: Exercice

Expliquer pourquoi, lorsqu'on lance 3 dés simultanément, on obtient plus souvent la somme 10 que la somme 9, alors que ces deux sommes peuvent être obtenues de 6 manières chacune.

Exercice 4: Exercice

On lance 4 fois de suite un dé équilibré à 6 faces. Avec quelle probabilité obtient-on :

- 1. Au moins un 6.
- 2. Exactement un 6.
- 3. Au moins 2 faces identiques.

Exercice 5: Exercice

Dans un lot de 20 yaourts, il y en a 3 qui ont dépassé la date de péremption. On extrait au hasard et simultanément 4 yaourts. Quelle est la probabilité qu'un seul de ces yaourts ait dépassé la date de péremption?

Exercice 6: Exercice

On place aléatoirement n boules indiscernables dans n urnes discernables. Calculer la probabilité qu'une seule urne soit vide.

Exercice 7: Exercice

On lance n fois une pièce équilibrée. On appelle changement un lancer qui donne un résultat différent du précédent. Calculer pour tout entier $k \in [0, n-1]$ la probabilité pour qu'il y ait k changements.

Variable aléatoire

Lois usuelles

Exercice 8: Exercice

Soit $n \in \mathbb{N}^*$ et X une variable aléatoire suivant la loi uniforme sur [1,6n]. Déterminer la loi de

$$\cos\left(\frac{X\pi}{3}\right)$$
.

Dépendance des évènements

Probabilité conditionnelle

Exercice 9: Exercice

Un train contient n places numérotées et n voyageurs possèdent un billet. Le premier voyageur monte dans le train, mais il a oublié son billet et se place donc au hasard. Puis chaque personne s'installe à sa place si elle est libre et choisit une place libre au hasard sinon. Quelle est la probabilité que la dernière personne se trouve à sa place?

21.3. EXERCICES 391

Exercice 10: Exercice

n personnes numérotées de 1 à n se transmettent dans cet ordre une information binaire. Chaque personne transforme l'information reçue en son contraire avec la probabilité $p \in]0,1[$ et la transmet fidèlement avec la probabilité 1-p. Quelle est la probabilité que l'information correcte parvienne à la n-ième personne?

Exercice 11: Exercice

On dispose de n+1 urnes U_0, U_1, \ldots, U_n où l'urne U_k contient k boules blanches et n-k boules noires. On choisit une urne au hasard puis on réalise p tirages avec remise dans l'urne choisie.

- 1. Quelle est la probabilité de ne tirer que des boules blanches?
- 2. Déterminer la limite de cette probabilité lorsque n tend vers $+\infty$.

Exercice 12: Exercice

Soit \mathcal{G} un ensemble fixé de cardinal N et \mathcal{M} une partie fixée de \mathcal{G} de cardinal m. L'ensemble des parties de \mathcal{G} est muni de la probabilité uniforme. On fixe $n \leq N$.

- 1. Soit $k \in [0, \min(n, m)]$. Quelle est la probabilité p_k qu'une partie \mathcal{P} de \mathcal{G} de cardinal n intersecte \mathcal{M} selon un ensemble de cardinal k?
- 2. Le cardinal moyen de l'intersection d'une partie \mathcal{P} de \mathcal{G} de cardinal n avec \mathcal{M} est donc

$$\sum_{k=0}^{\min(n,m)} kp_k.$$

Calculer ce nombre moyen.

3. Un étang contient N grenouilles. On cherche à estimer N. Pour cela, on commence par pêcher m grenouilles que l'on marque puis que l'on rejette à l'eau. Quelques jours plus tard, on pêche n grenouilles. Montrer que l'on peut estimer N.

Exercice 13: Exercice

On considère une urne contenant n boules numérotées. Les nombres inscrits sur les boules sont des réels deux à deux distincts sur lesquels on ne sait rien de plus. On réalise un tirage sans remise dans l'urne avec l'objectif de déterminer le maximum M des nombres inscrits sur les boules. Comme on n'a pas le temps de tirer toutes les boules (disons que n est trop grand), on opte pour la stratégie suivante : on choisit un entier $p \in [\![1,n-1]\!]$, on tire p boules successivement et sans remise et on mémorise le maximum M_p que l'on a vu parmi ces p boules. On continue alors à tirer des boules, mais on s'arrête dès que l'on a trouvé un nombre supérieur à M_p .

- 1. Quelle est la probabilité $P_{n,p}$ que l'on trouve ainsi le maximum M.
- 2. Si n = 4, quelle valeur de p a-t-on intérêt à choisir?
- 3. Soit $\alpha \in]0,1]$. On choisit p en fonction de n (on le notera donc p_n) de manière à ce que

$$\frac{p_n}{n} \xrightarrow[n \to +\infty]{} \alpha.$$

 $(\alpha \text{ représente donc asymptotiquement la proportion de boules que l'on commence par tirer})$. Montrer que P_{n,p_n} tend vers $-\alpha \ln(\alpha)$ lorsque $n \to +\infty$.

4. Quelle valeur de α a-t-on intérêt à choisir?

Formule des probabilités totales

Exercice 14: Monthy Hall

Dans une fête foraine, on vous propose le jeu suivant : trois verres opaques sont retournés devant vous, dont l'un seulement abrite une bille, et vous devez deviner lequel.

- 1. Quelle est la probabilité de deviner juste?
- 2. Pris de pitié devant votre malchance à répétition, le maître du jeu décide de vous donner un coup de pouce. Après votre réponse, il vous indique, parmi les deux verres que vous n'avez pas désignés, une verre qui ne contient pas la bille et vous propose de revoir votre réponse. Préférez-vous confirmer votre réponse initiale ou la modifier?

Exercice 15: Exercice

Un horticulteur dispose d'un stock de plantes. Chacune des plantes fleurit une fois par an. Pour chaque plante, la première année, la probabilité de donner une fleur rose est de 3/4, celle de donner une fleur blanche est de 1/4. Puis les années suivantes, pour tout entier naturel n non nul :

- Si l'année n, la plante a donné une fleur rose, alors l'année n+1, elle donnera une fleur rose.
- Si l'année n, la plante a donné une fleur blanche, alors l'année n+1, elle donnera de façon équiprobable une fleur rose ou une fleur blanche.
- 1. Quelle est la probabilité que la plante ne donne que des fleurs roses pendant les n premières années?
- 2. Quelle est la probabilité que la plante ne donne que des fleurs blanches pendant les n premières années?
- 3. On note p_n la probabilité de l'évènement « La plante a donné une fleur rose l'année n ». Calculer p_n , puis sa limite quand n tend vers $+\infty$.

Exercice 16: Urnes d'Ehrenfest

On considère deux urnes U_1 et U_2 . Chaque urne contient une boule. À chaque étape, on choisit une boule au hasard et on la change d'urne. Pour tout $k \in \{0, 1, 2\}$ et $n \in \mathbb{N}$, on note E_n^k l'évènement « Il y a k boules dans l'urne U_1 après l'étape n ». On note

$$a_n := \mathbb{P}\left(E_n^0\right), \quad b_n := \mathbb{P}\left(E_n^1\right), \quad c_n := \mathbb{P}\left(E_n^2\right), \quad \text{et} \quad X_n := \left(a_n, b_n, c_n\right)^{\top}.$$

- 1. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
- 2. Calculer A^2 et A^3 .
- 3. Comment interpréter ce résultat?

Exercice 17: Jinko

Jinko le chaton a trois passions dans la vie : Manger, Dormir et Jouer. On peut considérer qu'il pratique ces activités par tranches de 5 minutes.

- Après 5 minutes de repas, il continue de manger les 5 minutes suivantes avec une probabilité de ½. Sinon, il se met à jouer.
- Après 5 minutes de sommeil, il continue de dormir les 5 minutes suivantes avec une probabilité de ³/4. Sinon, il a faim au réveil et va manger.
- Après 5 minutes de jeu, soit il est en appétit et mange les 5 minutes suivantes avec une probabilité de 1/4, soit il est fatigué et s'endort.

L'expérience que l'on considère est une journée de Jinko de 5(m+1) minutes. Sur la tranche d'indice 0 des 5 premières minutes de la journée, Jinko se lève et va petit-déjeuner. Pour tout $n \in [\![0,m]\!]$, on note $A_n : \Omega \to \{M,D,J\}$ la variable aléatoire donnant l'activité de Jinko sur la tranche de 5 minutes d'indice n de la journée. Pour tout $n \in [\![0,m]\!]$, on pose

$$X_n := \begin{pmatrix} \mathbb{P}(A_n = M) \\ \mathbb{P}(A_n = D) \\ \mathbb{P}(A_n = J) \end{pmatrix}.$$

1. Déterminer une matrice $B \in \mathcal{M}_3(\mathbb{R})$ telle que

$$\forall n \in [0, m-1], X_{n+1} = BX_n.$$

- 2. (a) Déterminer les valeurs propres de B, c'est-à-dire les $\lambda \in \mathbb{R}$ tels que $B \lambda I_3$ n'est pas inversible. On note $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ ces valeurs et on pose $P := (X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$.
 - (b) Montrer que P(B) = 0. En déduire une expression de B^n valable pour tout $n \in \mathbb{N}$.
 - (c) En déduire les limites de

$$\mathbb{P}(A_n = M), \qquad \mathbb{P}(A_n = D), \qquad \mathbb{P}(A_n = J)$$

lorsque n tend vers $+\infty$.

Formule de Bayes

Exercice 18: Exercice

On prend un dé au hasard parmi un lot de 100 dés dont on sait que 25 sont pipés : pour ces dés, la probabilité d'obtenir 6 est 1/2.

- 1. On lance le dé et on obtient 6. Quelle est la probabilité que ce dé soit pipé?
- 2. Même question si l'on fait n lancers et que l'on obtient 6 à chaque fois.

21.3. EXERCICES 393

Indépendance

Exercice 19: Exercice

Un concours consiste à passer 3 épreuves indépendantes. On a 80% de chances de réussir l'épreuve 1, 60% pour l'épreuve 2 et 25% pour l'épreuve 3. On est reçu au concours si on réussit au moins deux épreuves sur trois (n'importe lesquelles). Quelle est la probabilité de réussir le concours?

Exercice 20: Exercice

On dispose d'un dé à quatre faces non pipé. On réalise n lancers indépendants. On note T l'évènement « Lors des n lancers, les quatre numéros sont sortis ». En utilisant la formule du crible, calculer la probabilité de T, puis sa limite lorsque n tend vers $+\infty$.

Exercice 21: Formule du crible

On lance un dé équilibré à 6 faces n fois de suite.

- 1. Calculer la probabilité de l'événement « La face i n'apparait jamais » pour tout $i \in [1, 6]$.
- 2. Calculer la probabilité de l'événement « Chacune des faces 1, 2 et 3 apparait au moins une fois ».

Exercice 22: Secret santa

Les n convives ont tous posé un cadeau près du grand sapin. À minuit, on distribue au hasard un cadeau à chaque convive, éventuellement celui qu'il a apporté.

1. À combien estimez-vous la probabilité de l'événement E_n « Personne n'a reçu son propre cadeau » lorsque n est grand?

On appelle dérangement de $[\![1,n]\!]$ toute permutation sans point fixe de $[\![1,n]\!]$. On notera D_n l'ensemble des dérangements de $[\![1,n]\!]$ et pour tout $k\in[\![1,n]\!]$, F_k l'ensemble des permutations de $[\![1,n]\!]$ qui fixent k.

2. Montrer que

$$|D_n| = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

3. Calculer la probabilité de l'événement E_n de la première question, puis sa limite lorsque n tend vers $+\infty$. On rappelle que pour tout $x \in \mathbb{R}$

$$\sum_{k=0}^{n} \frac{x^k}{k!} \xrightarrow[n \to +\infty]{} e^x.$$

Loi d'une somme

Exercice 23: Centre d'appels

Dans un centre d'appels, un employé effectue successivement n appels téléphoniques vers n correspondants distincts dont chacun décroche avec une probabilité $p \in [0, 1]$.

- 1. Déterminer la loi du nombre N_1 de correspondants qui ont décroché.
- 2. L'employé rappelle plus tard les $n-N_1$ correspondants qui n'ont pas décroché lors de la première série d'appels. On note N_2 le nombre de correspondants qui ont décroché cette fois. Enfin, on pose $N := N_1 + N_2$. Cette variable aléatoire donne le nombre total de personnes qui ont été contactées avec succès.
 - (a) Pour tout $k, i \in [0, n]$, calculer $\mathbb{P}(N = k | N_1 = i)$.
 - (b) En déduire la loi suivie par N.

Chapitre 22

Fractions rationnelles

22.1.1	Représentants d'une fraction rationnelle
22.1.2	Degré
22.1.3	Racines, pôles et substitution
22.1.4	Conjugaison sur $\mathbb{C}(X)$
22.2 Déco	omposition en éléments simples
22.2.1	Décomposition en éléments simples sur $\mathbb{K}(X)$
22.2.2	Cas où le dénominateur est scindé
22.2.3	Cas où $\mathbb{K}=\mathbb{R}$ et le dénominateur n'est pas scindé
22.3 Prin	nitive d'expression rationnelle
22.3.1	Fractions rationnelles
22.3.2	Fractions rationnelles en e^x
22.3.3	Fractions rationnelles en $\cos x$, $\sin x$
22.3.4	Fractions rationnelles en ch x , sh x
22.3.5	Fractions rationnelles en x et $\sqrt[n]{(ax+b)/(cx+d)}$, en x et $\sqrt{ax^2+bx+c}$

22.1 Fraction rationnelle

22.1.1 Représentants d'une fraction rationnelle

Définition 22.1.1

Soit \mathbb{K} un corps. L'anneau $\mathbb{K}[X]$ étant intègre, on admet qu'il existe un unique corps noté $\mathbb{K}(X)$ et appelé corps des fractions rationnelles, possédant les propriétés suivantes :

- $\mathbb{K}[X]$ est un sous-anneau du corps $\mathbb{K}(X)$.
- Pour tout élément F de $\mathbb{K}(X)$, il existe un couple de polynômes (A, B) avec $B \neq 0$ tel que

$$F = \frac{A}{B}$$

Les éléments de $\mathbb{K}(X)$ sont appelés fractions rationnelles à coefficients sur le corps \mathbb{K} .

Remarque

- \Rightarrow Plus généralement, si A est un anneau intègre, il existe un unique corps $\mathbb K$ tel que :
 - A est un sous-anneau de \mathbb{K} .
 - Pour tout $x \in \mathbb{K}$, il existe un couple $(a,b) \in A^2$ tel que $b \neq 0$ et x = a/b.

Ce corps est appelé corps des fractions de \mathbb{Z} est \mathbb{Q} , celui de $\mathbb{K}[X]$ est $\mathbb{K}(X)$.

Définition 22.1.2

Soit F une fraction rationnelle.

— On dit qu'un couple de polynômes (A, B) avec $B \neq 0$ est un représentant de F lorsque

$$F = \frac{A}{B}$$

— On dit que ce représentant est *irréductible* lorsque A et B sont premiers entre eux et qu'il est *unitaire* lorsque B est unitaire.

Exercice 1

⇒ Mettre sous forme irréductible les fractions rationnelles

$$\frac{X^2 - 1}{X^3 - 1} \quad \text{et} \quad \frac{X^2 + X - 2}{X^3 - 5X^2 + 8X - 4}.$$

Proposition 22.1.3

Soit F une fraction rationnelle. Alors F admet un unique représentant irréductible unitaire (A, B). De plus :

- Les représentants de F sont les couples (QA,QB) où Q est un polynôme non nul.
- Les représentants irréductibles de F sont les couples $(\lambda A, \lambda B)$ où λ est un scalaire non nul.

22.1.2 Degré

Définition 22.1.4

Soit F une fraction rationnelle. L'entier relatif $\deg A - \deg B$ ne dépend pas de la représentation de F choisie; on l'appelle $\operatorname{degr\acute{e}}$ de F.

Exemple

⇒ Par exemple

$$\deg\left(\frac{X+1}{X+2}\right)=0\quad\text{et}\quad\deg\left(\frac{X^2+1}{X^3+1}\right)=-1.$$

Proposition 22.1.5

Soit F et G deux fractions rationnelles.

— Soit $n \in \mathbb{Z}$. Si deg $F \leqslant n$ et deg $G \leqslant n$, alors

$$\forall \lambda, \mu \in \mathbb{K}, \quad \deg(\lambda F + \mu G) \leqslant n.$$

 $- \deg FG = \deg F + \deg G$

22.1.3 Racines, pôles et substitution

Définition 22.1.6

Soit F une fraction rationnelle et (A, B) un représentant irréductible de F. On dit qu'un scalaire α est

- une racine de F lorsque α est racine de A. Dans ce cas on définit l'ordre de multiplicité de la racine α comme son ordre de multiplicité en tant que racine de A.
- un pôle de F lorsque α est racine de B. Dans ce cas on définit l'ordre de multiplicité du pôle α comme son ordre de multiplicité en tant que racine de B.

Exercice 2

⇒ Donner les racines et les pôles de la fraction rationnelle

$$F \coloneqq \frac{X^2 + X - 2}{X^3 - 5X^2 + 8X - 4}.$$

Définition 22.1.7

Soit F une fraction rationnelle sur le corps \mathbb{K} et α un scalaire. Si α n'est pas un pôle de F, on définit $F(\alpha)$ par

$$F(\alpha) \coloneqq \frac{A(\alpha)}{B(\alpha)}$$

où (A, B) est un représentant de F tel que α ne soit pas racine de B.

Proposition 22.1.8

Soit $\alpha \in \mathbb{K}$, F_1 et F_2 deux fractions rationnelles n'admettant pas α pour pôle et λ , $\mu \in \mathbb{K}$. Alors $\lambda F_1 + \mu F_2$ et F_1F_2 n'admettent pas α pour pôle et

$$(\lambda F_1 + \mu F_2)(\alpha) = \lambda F_1(\alpha) + \mu F_2(\alpha)$$

$$(F_1 F_2)(\alpha) = F_1(\alpha) F_2(\alpha)$$

Définition 22.1.9

Soit F une fraction rationnelle. Si \mathcal{P} est l'ensemble des pôles de F, on définit la fonction rationnelle $\tilde{F}: \mathbb{K} \backslash \mathcal{P} \to \mathbb{K}$ par

$$\forall x \in \mathbb{K} \setminus \mathcal{P}, \quad \tilde{F}(x) \coloneqq F(x)$$

22.1.4 Conjugaison sur $\mathbb{C}(X)$

Définition 22.1.10

Soit $F \in \mathbb{C}(X)$. On définit la fraction rationnelle \overline{F} par

$$\overline{F}\coloneqq \frac{\overline{A}}{\overline{B}}$$

Proposition 22.1.11

Soit $F, G \in \mathbb{C}(X)$. — Si $\lambda, \mu \in \mathbb{C}$, alors

$$\begin{array}{rcl} \overline{\lambda F + \mu G} & = & \overline{\lambda} \, \overline{F} + \overline{\mu} \, \overline{G} \\ \overline{FG} & = & \overline{F} \, \overline{G} \end{array}$$

 $- \deg \overline{F} = \deg F.$

Proposition 22.1.12

Soit $F \in \mathbb{C}(X)$. Alors

$$\overline{\overline{F}} = F \qquad \text{et} \qquad \left[F \in \mathbb{R}(X) \quad \Longleftrightarrow \quad \overline{F} = F \right].$$

Proposition 22.1.13

Soit $F \in \mathbb{C}(X)$ et $\alpha \in \mathbb{C}$. Alors

- α est racine de F d'ordre $\omega \in \mathbb{N}$ si et seulement si $\overline{\alpha}$ est racine de \overline{F} d'ordre ω .
- α est pôle de F d'ordre $\omega \in \mathbb{N}$ si et seulement si $\overline{\alpha}$ est pôle de \overline{F} d'ordre ω .

Remarque

 \Rightarrow En particulier, si $\alpha \in \mathbb{C}$ est une racine de $F \in \mathbb{R}(X)$, alors $\overline{\alpha}$ est une racine de F et son ordre relativement à F est le même que celui de α . De même, si α est un pôle de F, alors $\overline{\alpha}$ est un pôle de F et son ordre relativement à F est le même que celui de α .

22.2 Décomposition en éléments simples

22.2.1 Décomposition en éléments simples sur $\mathbb{K}(X)$

Définition 22.2.1

Soit $F \in \mathbb{K}(X)$. Alors il existe un unique couple (E,G) constitué d'un polynôme E appelé partie entière de F, et d'une fraction rationnelle G de degré strictement négatif tel que

$$F = E + G$$

En pratique E s'obtient comme le quotient de la division euclidienne de A par B où (A, B) est un représentant de F.

Exercice 3

⇒ Calculer la partie entière de

$$F := \frac{X^3 + 2X^2 + 1}{X^2 + 1}.$$

Proposition 22.2.2: Décomposition en éléments simples

Soit $F \in \mathbb{K}(X)$. On écrit F sous forme irréductible et on décompose son dénominateur en produit de polynômes irréductibles P_1, \ldots, P_r deux à deux distincts

$$F = \frac{A}{B} = \frac{A}{\lambda \prod_{k=1}^{r} P_k^{\alpha_k}}.$$

Alors, il existe un unique polynôme $E \in \mathbb{K}[X]$ ainsi qu'une unique famille de polynômes $R_{k,l} \in \mathbb{K}[X]$ avec $k \in [1, r]$ et $l \in [1, \alpha_k]$ tels que

$$F = E + \sum_{k=1}^{r} \sum_{l=1}^{\alpha_k} \frac{R_{k,l}}{P_k^l}$$

et $\deg R_{k,l} < \deg P_k$.

22.2.2 Cas où le dénominateur est scindé

Proposition 22.2.3

Soit $F \in \mathbb{K}(X)$. On écrit F sous forme irréductible et on suppose que son dénominateur est scindé

$$F = \frac{A}{B} = \frac{A}{\lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}}.$$

Alors, il existe un unique polynôme $E \in \mathbb{K}[X]$ ainsi qu'une unique famille de scalaires $a_{k,l} \in \mathbb{K}$ avec $k \in [1, r]$ et $l \in [1, \omega_k]$ tels que

$$F = E + \sum_{k=1}^{r} \sum_{l=1}^{\omega_k} \frac{a_{k,l}}{(X - \alpha_k)^l}.$$

Remarque

⇒ En reprenant les notations de la proposition ci-dessus, on dit que

$$\sum_{l=1}^{\omega_k} \frac{a_{k,l}}{\left(X - \alpha_k\right)^l}$$

est la partie polaire de F relative au pôle α_k .

Proposition 22.2.4

Soit $F \in \mathbb{K}(X)$ une fraction rationnelle admettant $\alpha \in \mathbb{K}$ pour pôle simple

$$F = \frac{A}{B} = \frac{A}{(X - \alpha)C}$$
 avec $C(\alpha) \neq 0$.

Alors, la partie polaire relative au pôle α est

$$\frac{a}{X-\alpha}$$

où a est donné par les deux formules équivalentes

$$a = \frac{A(\alpha)}{C(\alpha)}, \qquad a = \frac{A(\alpha)}{B'(\alpha)}.$$

Exercices 4

 \Rightarrow Décomposer les fractions rationnelles suivantes en éléments simples sur $\mathbb{C}.$

$$\frac{X+3}{(X-1)(X+2)}, \qquad \frac{1}{X^2+1}, \qquad \frac{1}{X^n-1}.$$

 \Rightarrow Calculer la dérivée $n\text{-}\mathrm{i}\mathrm{\hat{e}me}$ de la fonction définie sur $\mathbb{R}\setminus\{-2,1\}$ par

$$\forall x \in \mathbb{R} \setminus \{-2, 1\}, \quad f(x) := \frac{x+3}{(x-1)(x+2)}.$$

Proposition 22.2.5

Soit $F \in \mathbb{K}(X)$ une fraction rationnelle admettant $\alpha \in \mathbb{K}$ pour pôle double

$$F = \frac{A}{B} = \frac{A}{(X - \alpha)^2 C}$$
 avec $C(\alpha) \neq 0$.

Alors, la partie polaire relative au pôle α est

$$\frac{a_1}{X-\alpha} + \frac{a_2}{(X-\alpha)^2}$$

où a_2 est donné par

$$a_2 = \frac{A(\alpha)}{C(\alpha)}.$$

Exercices 5

 □ Décomposer les fractions rationnelles suivantes en éléments simples

$$\frac{X+1}{X^2(X-1)}$$
, $\frac{X^2+X+3}{X(X-1)^3}$.

⇒ Calculer la limite, si elle existe, de la suite de terme général

$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2}.$$

Proposition 22.2.6

Soit P un polynôme scindé de $\mathbb{K}[X]$. On écrit

$$P = \lambda \prod_{k=1}^{n} (X - \alpha_k)$$

où $\lambda \in \mathbb{K}^*$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. Alors

$$\frac{P'}{P} = \sum_{k=1}^{n} \frac{1}{X - \alpha_k}.$$

Remarque

 \Rightarrow Si P un polynôme scindé de $\mathbb{K}[X]$. On écrit

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k}$$

où $\lambda \in \mathbb{K}^*$, $\alpha_1, \dots, \alpha_r \in \mathbb{K}$ sont deux à deux distincts et $\omega_1, \dots, \omega_r \in \mathbb{N}^*$. Alors

$$\frac{P'}{P} = \sum_{k=1}^{r} \frac{\omega_k}{X - \alpha_k}.$$

22.2.3 Cas où $\mathbb{K} = \mathbb{R}$ et le dénominateur n'est pas scindé

Proposition 22.2.7

Soit $F \in \mathbb{R}(X)$. On écrit F sous forme irréductible et on décompose son dénominateur en produit de polynômes irréductibles

$$F = \frac{A}{\lambda \prod_{k=1}^{r} (X - \alpha_k)^{\omega_k} \prod_{l=1}^{s} (X^2 + b_l X + c_l)^{\omega'_l}}.$$

Alors, il existe un unique polynôme $E \in \mathbb{R}[X]$, ainsi que des uniques familles $(a_{k,i})$, $(b_{l,j})$ et $(c_{l,j})$ de réels tels que

$$F = E + \sum_{k=1}^{r} \left(\sum_{i=1}^{\omega_k} \frac{a_{k,i}}{(X - \alpha_k)^i} \right) + \sum_{l=1}^{s} \left(\sum_{j=1}^{\omega'_l} \frac{b_{l,j} X + c_{l,j}}{(X^2 + b_l X + c_l)^j} \right).$$

Remarque

 \Rightarrow Pour décomposer une fraction rationnelle $F \in \mathbb{R}(X)$, il est possible d'effectuer sa décomposition dans $\mathbb{C}(X)$ puis de regrouper les parties polaires ayant des pôles conjugués. Le plus souvent, on préfèrera cependant une décomposition directe dans $\mathbb{R}(X)$.

Exercice 6

 \Rightarrow Décomposer les fractions rationnelles suivantes en éléments simples sur \mathbb{R} .

$$\frac{1}{X(X^{2}+1)}, \qquad \frac{1}{X(X^{2}+X+1)}, \qquad \frac{X^{2}+2}{X^{2}(X^{2}+1)}$$

$$\frac{1}{X^{4}+1}, \qquad \frac{X^{7}+2}{(X^{2}+X+1)^{3}}, \qquad \frac{1}{X^{2n}-1}.$$

22.3 Primitive d'expression rationnelle

22.3.1 Fractions rationnelles

Exercice 7

⇒ Calculer

$$\int \frac{dx}{x^2 - 1}$$
, $\int \frac{2x + 1}{x^2 + x - 2} dx$, $\int \frac{dx}{x^3 - 1}$, $\int \frac{dx}{(x^2 + 1)^2}$.

22.3.2 Fractions rationnelles en e^x

Pour ces fonctions, il suffit d'effectuer le changement de variable $u := e^x$ pour se ramener au calcul d'une primitive d'une fraction rationnelle.

Exercice 8

⇒ Calculer

$$\int \frac{\mathrm{d}x}{\mathrm{e}^{2x} + 1}.$$

22.3.3 Fractions rationnelles en $\cos x$, $\sin x$

Proposition 22.3.1: Règles de Bioche

Soit G une fraction rationnelle en $\cos x$, $\sin x$.

— Si G(-x) = -G(x), il existe une fraction rationnelle F telle que

$$G(x) = F(\cos x)\sin x.$$

On est donc ramené, après le changement de variable $u = \cos x$, à un calcul de primitive d'une fraction rationnelle.

— Si $G(\pi - x) = -G(x)$, il existe une fraction rationnelle F telle que

$$G(x) = F(\sin x)\cos x.$$

On est donc ramené, après le changement de variable $u = \sin x$, à un calcul de primitive d'une fraction rationnelle

— Si $G(\pi + x) = G(x)$, il existe une fraction rationnelle F telle que

$$G(x) = F(\tan x) \left(1 + \tan^2 x\right).$$

On est donc ramené, après le changement de variable $u = \tan x$, à un calcul de primitive d'une fraction rationnelle.

— Sinon, on effectue le changement de variable $u = \tan(x/2)$. En remarquant que

$$\cos x = \frac{1 - u^2}{1 + u^2}$$
 et $\sin x = \frac{2u}{1 + u^2}$

on est ramené à un calcul de primitive d'une fraction rationnelle.

Exercice 9

⇒ Calculer

$$\int \frac{\mathrm{d}x}{\cos x \cos(2x)}, \qquad \int \frac{\mathrm{d}x}{\sin x + \sin(2x)}, \qquad \int_0^{2\pi} \frac{\mathrm{d}x}{2 + \cos x}.$$

22.3.4 Fractions rationnelles en $\operatorname{ch} x$, $\operatorname{sh} x$

Si f(x) est une fraction rationnelle en ch x et sh x, alors c'est une fraction rationnelle en e^x . On peut donc calculer une primitive d'une telle fonction en posant $u := e^x$.

Exercice 10

⇒ Calculer

$$\int \frac{\operatorname{ch} x}{\operatorname{sh} x + \operatorname{ch} x} \, \mathrm{d}x, \qquad \int \frac{\mathrm{d}x}{\operatorname{sh}^2 x + 2}.$$

22.3.5 Fractions rationnelles en x et $\sqrt[n]{(ax+b)/(cx+d)}$, en x et $\sqrt{ax^2+bx+c}$

Si f s'écrit

$$f(x) = F\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right)$$

où F est une fraction rationnelle à deux variables, le calcul d'une primitive de f se fait en effectuant le changement de variable

$$u := \sqrt[n]{\frac{ax+b}{cx+d}}$$

On a alors

$$x = \frac{du^n - b}{a - cu^n}$$
 et $dx = G(u) du$

où G est une fraction rationnelle. On est donc ramené au calcul d'une primitive d'une fraction rationnelle.

On souhaite désormais calculer une primitive d'une fonction f de la forme

$$f(x) = F\left(x, \sqrt{ax^2 + bx + c}\right)$$

où F est une fraction rationnelle à deux variables.

- Si $aX^2 + bX + c$ admet une racine double réelle α (cas où $\Delta = 0$), on a $\sqrt{ax^2 + bx + c} = \sqrt{a}|x \alpha|$. L'expression est donc une fraction rationnelle sur chaque intervalle où $x \alpha$ est de signe constant.
- Si $aX^2 + bX + c$ n'admet pas de racine réelle (cas où $\Delta < 0$), après mise sous forme canonique de $aX^2 + bX + c$ et changement de variable, on est ramené au calcul d'une primitive d'une fraction rationnelle en $u, \sqrt{1 + u^2}$. Il suffit alors d'effectuer le changement de variable $u := \operatorname{sh} v$ pour se ramener au calcul d'une primitive d'une fraction rationnelle en ch v, sh v.
- Si $aX^2 + bX + c$ admet deux racines réelles (cas où $\Delta > 0$), après mise sous forme canonique de $aX^2 + bX + c$ et changement de variable, on est ramené au calcul d'une primitive d'une fraction rationnelle en $u, \sqrt{1 u^2}$ ou en $u, \sqrt{u^2 1}$. Dans le premier cas, on effectue le changement de variable $u := \cos v$ alors que dans le second cas on effectue le changement de variable $u := \pm \operatorname{ch} v$.

Exercice 11

⇒ Calculer

$$\int \frac{\mathrm{d}x}{x\sqrt{x+1}}, \qquad \int \arctan \sqrt{1+x^2} \, \mathrm{d}x.$$

22.4. EXERCICES 403

22.4 Exercices

Fraction rationnelle

Représentants d'une fraction rationnelle

Degré

Exercice 1: Primitive

Montrer que la fraction rationnelle F := 1/X n'a pas de primitive dans $\mathbb{C}(X)$.

Racines, pôles et substitution

Exercice 2: Valeurs prises par une fraction rationnelle

Soit $F \in \mathbb{C}(X)$ une fraction rationnelle. On note $\mathcal{D}_F := \mathbb{C} \setminus \{a_1, \dots, a_n\}$, où $a_1, \dots, a_n \in \mathbb{C}$ sont les pôles de F, et on définit la fonction

$$f: \mathcal{D}_F \longrightarrow \mathbb{C}$$
$$z \longmapsto F(z).$$

On suppose que F n'est pas constante. Montrer que $f(\mathcal{D}_F) = \mathbb{C}$ ou qu'il existe $\alpha \in \mathbb{C}$ tel que $f(\mathcal{D}_F) = \mathbb{C} \setminus \{\alpha\}$.

Conjugaison sur $\mathbb{C}(X)$

Décomposition en éléments simples

 ${\it D\'{e}composition}$ en éléments simples sur $\mathbb{K}(X)$

Cas où le dénominateur est scindé

Exercice 3 : Décomposition en éléments simples

Pour $n \in \mathbb{N}^*$, décomposer en éléments simples sur \mathbb{C} les fractions suivantes

$$\frac{X^{n-1}}{X^n-1}$$
, $\frac{1}{(X-1)(X^n-1)}$.

Exercice 4: Une somme

Soit $n \in \mathbb{N}^*$. Simplifier

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}.$$

Exercice 5 : Une somme de série

Calculer la limite lorsque n tend vers $+\infty$ de

$$\sum_{k=2}^{n} \frac{3k^2 - 1}{(k-1)^2 k^2 (k+1)^2}.$$

Exercice 6 : Décomposition en éléments simples

On considère la fraction

$$F \coloneqq \frac{1}{(X^3 - 1)^3}$$

que l'on souhaite décomposer en éléments simples sur $\mathbb{C}(X)$.

- 1. Calculer la partie polaire de F relative au pôle 1.
- 2. En étudiant les symétries de F, en déduire sa décomposition en éléments simples.

Exercice 7: Autour de Chebyshev

1. Montrer que pour tout entier $n \in \mathbb{N}$, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que

$$X^n + \frac{1}{X^n} = P_n \left(X + \frac{1}{X} \right).$$

- 2. Soit $n \in \mathbb{N}^*$.
 - (a) Factoriser P_n dans $\mathbb{C}[X]$.
 - (b) Décomposer $1/P_n$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 8: Racines multiples de P'

Soit $P \in \mathbb{R}[X]$ un polynôme non constant.

- 1. On suppose que P est scindé sur $\mathbb{R}[X]$.
 - (a) Calculer la décomposition en éléments simples de P'/P.
 - (b) En déduire que

$$\forall x \in \mathbb{R}, \quad P'(x)^2 \geqslant P(x)P''(x)$$

avec égalité si et seulement si x est racine multiple de P.

- (c) Montrer que P' est scindé, puis montrer que toute racine multiple de P' est racine de P.
- 2. (a) Est-il vrai en général que toute racine multiple de P' est racine de P?
 - (b) Est-il vrai, sous l'hypothèse que P est scindé sur \mathbb{R} , que toute racine de P' est racine de P?
- 3. On suppose que

$$\forall x \in \mathbb{R}, \quad P'(x)^2 \geqslant P(x)P''(x).$$

Montrer que P possède une racine réelle.

Exercice 9 : Théorème de Gauss-Lucas

- 1. Soit $P \in \mathbb{C}(X)$ non nul. Calculer la décomposition en éléments simples de F := P'/P.
- 2. Soit $n \in \mathbb{N}^*$. Déterminer la valeur de

$$\sum_{z \in \mathbb{U}_n \setminus \{1\}} \frac{1}{1-z}.$$

- 3. Soit $P \in \mathbb{C}[X]$ un polynôme non constant dont les racines sont $z_1, \ldots, z_r \in \mathbb{C}$.
 - (a) Montrer que pour toute racine $\alpha \in \mathbb{C}$ de P', il existe $\lambda_1, \ldots, \lambda_r \geqslant 0$ tels que $\lambda_1 + \cdots + \lambda_r = 1$ et

$$\alpha = \lambda_1 z_1 + \dots + \lambda_r z_r.$$

(b) Interpréter géométriquement ce résultat.

Exercice 10 : Calcul de dérivées n-ièmes

Calculer la dérivée n-ième de

$$x \mapsto \ln(x^2 - x + 2).$$

Exercice 11 : Majoration d'une dérivée n-ième

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}, \quad \left| \operatorname{Arctan}^{(n)} x \right| \leqslant (n-1)!.$$

Exercice 12 : Dérivée n-ième

On pose

$$R \coloneqq \frac{1}{X^2 + 1}.$$

- 1. Décomposer R en éléments simples sur $\mathbb{C}(X)$, puis calculer $R^{(n)}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que pour tout $n \in \mathbb{N}$

$$R^{(n)} = \frac{(-1)^n (n+1)!}{(X^2+1)^{n+1}} \prod_{k=1}^n \left(X - \cot \frac{k\pi}{n+1} \right).$$

22.4. EXERCICES 405

 $extit{Cas où } \mathbb{K} = \mathbb{R} ext{ et le dénominateur n'est pas scindé}$

Exercice 13 : Décomposition en éléments simples

Décomposer en éléments simples sur \mathbb{R} les fractions suivantes

$$\frac{10X^3}{(X^2+1)(X^2-4)}, \qquad \frac{X^4+1}{X^4+X^2+1}, \qquad \frac{X^3-1}{(X-1)(X-2)(X-3)},$$

$$\frac{X^2}{(X^2+X+1)^2}, \qquad \frac{(X^2+4)^2}{(X^2+1)(X^2-2)^2}.$$

Primitive d'expression rationnelle

$Fractions\ rationnelles$

Exercice 14: Primitives de fractions rationnelles

Calculer, sur un domaine \mathcal{D} que l'on précisera, les primitives des fonctions dont les expressions sont

$$\frac{1}{x^4-1}$$
, $\frac{x^2}{x^3-1}$, $\frac{x}{x^4+1}$.

Fractions rationnelles en e^x

Fractions rationnelles en $\cos x$, $\sin x$

Exercice 15: Primitives de fractions rationnelles en cos, sin

Calculer sur un domaine \mathcal{D} que l'on précisera les primitives des fonctions dont les expressions sont

$$\frac{1}{\cos x \sin^3 x}, \qquad \frac{1}{\sin x + \cos x}.$$

Fractions rationnelles en $\operatorname{ch} x$, $\operatorname{sh} x$

Fractions rationnelles en x et $\sqrt[n]{(ax+b)/(cx+d)}$, en x et $\sqrt{ax^2+bx+c}$

Exercice 16: Calcul de primitives

Calculer sur un domaine \mathcal{D} que l'on précisera, les primitives des fonctions dont les expressions sont

$$\frac{1}{2}x\sqrt{\frac{x-1}{x+1}}, \qquad \frac{x}{\sqrt{-x^2+x+2}}.$$

Exercice 17: Une intégrale impropre

Calculer la limite lorsque x tend vers $\pi/2$ par la gauche de

$$\int_0^x \sqrt{\tan t} \, \mathrm{d}t.$$

Chapitre 23

Séries

23.1 Série	2
23.1.1	Série
23.1.2	Série à termes positifs
23.1.3	Série absolument convergente
23.1.4	Série semi-convergente
23.2 Exer	cices

Dans ce chapitre, $\mathbb K$ désignera l'un des corps $\mathbb R$ ou $\mathbb C.$

23.1 Série

23.1.1 Série

Définition 23.1.1

Soit (u_n) une suite d'éléments de \mathbb{K} . On appelle série de terme général u_n et on note $\sum u_n$ la suite (S_n) définie par

$$\forall n \in \mathbb{N}, \quad S_n \coloneqq \sum_{k=0}^n u_k.$$

Le terme S_n est appelé somme partielle d'indice n de la série.

Définition 23.1.2

On dit qu'une série $\sum u_n$ converge lorsque la suite de ses sommes partielles converge. Si c'est le cas, sa limite $l \in \mathbb{K}$ est appelée somme de la série. On la note

$$\sum_{n=0}^{+\infty} u_n.$$

Dans le cas contraire, on dit qu'elle diverge.

Remarques

- \Rightarrow Si on change un nombre fini de termes de la suite (u_n) , on ne change pas la nature de la série $\sum u_n$. Par contre, si elle converge, cela peut changer sa somme.
- \Rightarrow Soit $\sum u_n$ une série convergente. Alors, quel que soit $n \in \mathbb{N}$

$$\sum_{k=0}^{+\infty} u_k = \sum_{k=0}^{n} u_k + \sum_{k=n+1}^{+\infty} u_k.$$

Exercice 1

⇒ Montrer que la série

$$\sum_{n\geq 1} \frac{1}{n(n+1)}$$

408 CHAPITRE 23. SÉRIES

converge et calculer sa somme.

Définition 23.1.3

Soit $\sum u_n$ une série convergente. On définit la suite (R_n) par

$$\forall n \in \mathbb{N}, \quad R_n := \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^n u_k$$
$$= \sum_{k=n+1}^{+\infty} u_k.$$

Le terme R_n est appelé reste d'indice n de la série.

Remarque

 \Rightarrow La suite (R_n) des restes converge vers 0.

Proposition 23.1.4

Soit $\sum u_n$ une série. Si elle est convergente, alors

$$u_n \xrightarrow[n \to +\infty]{} 0.$$

Par contraposée, si la suite (u_n) ne converge pas vers 0, la série $\sum u_n$ est divergente. On dit qu'elle diverge grossièrement.

Remarque

 \Rightarrow Il est possible qu'une série diverge sans diverger grossièrement. Par exemple, si (u_n) est la suite définie par

$$\forall n \in \mathbb{N}, \quad u_n := \sqrt{n+1} - \sqrt{n}$$

alors, la série associée diverge alors que la suite (u_n) converge vers 0.

Proposition 23.1.5

La suite (u_n) et la série $\sum (u_{n+1} - u_n)$ sont de même nature.

Remarque

 \Rightarrow Si (u_n) est une suite, la suite de terme général $u_{n+1} - u_n$ est appelée dérivée de la suite (u_n) . Par sommation télescopique

$$\forall n \in \mathbb{N}, \quad u_n = u_0 + \sum_{k=0}^{n-1} (u_{k+1} - u_k).$$

L'étude de la suite (u_n) se ramène donc à l'étude de la série $\sum (u_{n+1} - u_n)$.

Proposition 23.1.6

Soit $\sum u_n$ et $\sum v_n$ deux séries convergentes et $\lambda, \mu \in \mathbb{K}$. Alors, la série $\sum (\lambda u_n + \mu v_n)$ est convergente et

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n.$$

Remarques

 \Rightarrow Attention, il est possible que la série $\sum (\lambda u_n + \mu v_n)$ soit convergente sans que les séries $\sum u_n$ et $\sum v_n$ le soient. Avant d'écrire

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$$

23.1. SÉRIE 409

il faudra donc toujours vérifier que les séries $\sum u_n$ et $\sum v_n$ soient convergentes. Un tel oubli pourrait conduire à écrire des horreurs comme

$$0 = \sum_{n=0}^{+\infty} 0 = \sum_{n=0}^{+\infty} (1 + (-1))$$
$$= \sum_{n=0}^{+\infty} 1 + \sum_{n=0}^{+\infty} (-1).$$

La dernière expression n'a en effet aucun sens car les deux séries sont grossièrement divergentes.

 \Rightarrow Si $\sum u_n$ est convergente et $\sum v_n$ est divergente, alors $\sum (u_n + v_n)$ est divergente.

Proposition 23.1.7

Soit $z \in \mathbb{C}$. Alors la série

$$\sum z^n$$

converge si et seulement si |z| < 1. Si tel est le cas, sa somme est

$$\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}.$$

Exercice 2

 \Rightarrow Soit (F_n) la suite de Fibonacci définie par

$$F_0 := 0$$
, $F_1 := 1$, et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

Démontrer l'existence puis calculer

$$\sum_{n=0}^{+\infty} \frac{F_n}{2^n}.$$

Proposition 23.1.8

Soit $z \in \mathbb{C}$. Alors la série

$$\sum \frac{z^n}{n!}$$

est convergente et

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z.$$

Exercice 3

⇒ Établir l'existence et calculer

$$\sum_{n=0}^{+\infty} \frac{n^2+1}{n!}.$$

23.1.2 Série à termes positifs

Définition 23.1.9

On dit qu'une série réelle $\sum u_n$ est à termes positifs lorsque

$$\forall n \in \mathbb{N}, \quad u_n \geqslant 0.$$

Remarques

- \Rightarrow La suite des sommes partielles d'une série à termes positifs est croissante. Réciproquement, si (u_n) est une suite croissante, sa suite dérivée $(u_{n+1} u_n)$ est une suite à termes positifs.
- ⇒ Puisque la convergence d'une série ne dépend pas de ses premiers termes, les théorèmes de convergence sur les séries à termes positifs s'appliquent même si la série est à termes positifs à partir d'un certain rang. Bien entendu, des théorèmes similaires aux théorèmes que nous allons énoncer existent pour les séries à termes négatifs. Les théorèmes

que nous allons énoncer dans cette section sont donc utiles pour étudier les séries de signe constant à partir d'un certain rang.

Une série à termes positifs converge si et seulement si la suite de ses sommes partielles est majorée.

Soit $\alpha \in \mathbb{R}$. Alors, la série

$$\sum \frac{1}{n^{\alpha}}$$

est convergente si et seulement si $\alpha > 1$.

Remarque

 \Rightarrow En particulier, la série harmonique (H_n) définie par

$$\forall n \in \mathbb{N}, \quad H_n := \sum_{k=1}^n \frac{1}{k}$$

diverge. Une comparaison série intégrale permet de montrer que $H_n \underset{n \to +\infty}{\sim} \ln n$.

Exercices 4

⇒ Montrer que la série

$$\sum \frac{1}{n^2}$$

converge et donner un équivalent de son reste.

⇒ Prouver la divergence et donner un équivalent des sommes partielles de la série

$$\sum \frac{1}{n \ln n}.$$

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que

$$\forall n \in \mathbb{N}, \quad u_n \leqslant v_n.$$

- Si la série $\sum v_n$ converge, alors il en est de même pour $\sum u_n$. Si la série $\sum u_n$ diverge, alors il en est de même pour $\sum v_n$.

Exercices 5

⇒ Donner la nature des séries

$$\sum \frac{\sin^2 n}{n^3}, \qquad \sum \frac{\cos^2\left(\frac{n\pi}{3}\right)}{\sqrt{n}}.$$

 \Rightarrow Soit $r \in \mathbb{R}_+$. Déterminer la nature de la série

$$\sum \frac{r^n}{n}$$

en fonction de r.

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. On suppose que

$$u_n = \mathop{\rm O}_{n \to +\infty} \left(v_n \right)$$

et que la série $\sum v_n$ est convergente. Alors la série $\sum u_n$ est convergente.

Remarque

⇒ En particulier, pour des séries à termes positifs, si

$$u_n = \mathop{\rm o}_{n \to +\infty} \left(v_n \right)$$

et si $\sum v_n$ est convergente, alors $\sum u_n$ est convergente.

Exercice 6

⇒ Déterminer la nature de la série

$$\sum \frac{\ln n}{n\sqrt{n}}.$$

Proposition 23.1.14

Soit $\sum u_n$ et $\sum v_n$ deux séries réelles. On suppose que $\sum v_n$ est à termes positifs et que

$$u_n \underset{n \to +\infty}{\sim} v_n$$
.

Alors la série $\sum u_n$ est à termes positifs à partir d'un certain rang et les deux séries sont de même nature.

Exercices 7

⇒ Établir la nature des séries suivantes

$$\sum \frac{1}{3n+1}$$
, $\sum \tan\left(\frac{1}{n}\right)$, $\sum \frac{1}{2^n-n}$.

 \Rightarrow Donner la nature des séries

$$\sum \ln \left(\tan \frac{\pi n}{4n+1} \right), \qquad \sum \left[(\operatorname{th} n)^{\frac{1}{n}} - 1 \right].$$

 \Rightarrow Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \underset{n \to +\infty}{\text{o}} (1).$$

La constante $\gamma\approx 0.577$ est appelée constante d'Euler.

23.1.3 Série absolument convergente

Définition 23.1.15

Soit $\sum u_n$ une série d'éléments de \mathbb{K} . Si la série à termes positifs

$$\sum |u_n|$$

converge, alors la série $\sum u_n$ converge. On dit dans ce cas que la série $\sum u_n$ est absolument convergente.

Remarque

⇒ Une série convergente qui n'est pas absolument convergente est appelée série semi-convergente.

Exercice 8

⇒ Montrer que la série

$$\sum \frac{\sin n}{n\sqrt{n}}$$

est convergente.

Proposition 23.1.16

Soit $\sum u_n$ une série d'éléments de \mathbb{K} et $\sum v_n$ une série à termes positifs telle que

$$u_n = \mathop{\rm O}_{n \to +\infty} \left(v_n \right).$$

Si $\sum v_n$ est convergente, alors $\sum u_n$ est absolument convergente, donc convergente.

Remarque

 \Rightarrow En particulier, si (v_n) est une suite positive, si

$$u_n = \mathop{\rm o}_{n \to +\infty} \left(v_n \right)$$

et si $\sum v_n$ est convergente, alors $\sum u_n$ est absolument convergente, donc convergente.

Soit $\sum u_n$ une série d'éléments de \mathbb{K} ne s'annulant pas. On suppose que

$$\left| \frac{u_{n+1}}{u_n} \right| \xrightarrow[n \to +\infty]{} \omega \in \mathbb{R}_+ \cup \{+\infty\}.$$

Alors

- Si $\omega < 1$, la série $\sum u_n$ est absolument convergente. Si $\omega > 1$, la série $\sum u_n$ est grossièrement divergente.

Remarque

 \Rightarrow Si $\omega=1$, la règle de d'Alembert ne permet pas de conclure. Dans ce cas, il peut être intéressant d'effectuer une comparaison avec une série de Riemann.

Exercices 9

⇒ Déterminer la nature de la série

$$\sum \frac{n^4}{3^n}.$$

 \Rightarrow Soit $z \in \mathbb{C}$. Retrouver le fait que la série

$$\sum \frac{z^n}{n!}$$

est convergente.

 \Rightarrow Soit $a,b \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur a et b pour que la série

$$\sum \left[\frac{n^2 + 2}{n^2 + 2n + 1} - \left(a + \frac{b}{n} \right) \right]$$

soit convergente.

23.1.4 Série semi-convergente

Théorème 23.1.18: Théorème des séries alternées

Soit (u_n) une suite à termes positifs, décroissante et convergeant vers 0. Alors la série

$$\sum (-1)^n u_n$$

converge. De plus, si (R_n) est la suite des restes définie par

$$\forall n \in \mathbb{N}, \quad R_n := \sum_{k=n+1}^{+\infty} (-1)^k u_k$$

alors, pour tout $n \in \mathbb{N}$, R_n est du signe de $(-1)^{n+1}$ et $|R_n| \leq u_{n+1}$.

Remarques

⇒ La série

$$\sum \frac{(-1)^n}{\sqrt{n}}$$

est convergente, mais n'est pas absolument convergente.

 \Rightarrow Les séries alternées permettent de construire des suites (u_n) et (v_n) qui sont équivalentes en $+\infty$ mais qui ne sont pas de même nature. Par exemple, si on définit les suites (u_n) et (v_n) par

$$\forall n \in \mathbb{N}^*, \quad u_n \coloneqq \frac{(-1)^n}{\sqrt{n}} \quad \text{et} \quad v_n \coloneqq \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$$

alors (u_n) et (v_n) sont équivalentes en $+\infty$ bien que $\sum u_n$ soit convergente et que $\sum v_n$ soit divergente.

Exercices 10

 \Rightarrow Soit $\alpha \in \mathbb{R}.$ Donner une condition nécessaire et suffisante sur α pour que la série

$$\sum \frac{(-1)^n}{n^\alpha}$$

soit convergente.

 $\, \Longrightarrow \,$ Soit $\alpha > 0.$ Discuter, selon $\alpha,$ de la nature de la série

$$\sum \frac{(-1)^n}{n^\alpha + (-1)^n}.$$

23.2 Exercices

S'erie

S'erie

Exercice 1: Exercice

Établir la convergence et calculer

$$\sum_{n=0}^{+\infty} \frac{2^n}{(n+2)n!}, \qquad \sum_{n=0}^{+\infty} \frac{2^n(5n+1)}{3^n n!}.$$

Exercice 2: Exercice

Soit (u_n) une suite positive décroissante tendant vers 0. Montrer que si $\sum u_n$ converge, alors

$$u_n = \mathop{\rm o}_{n \to +\infty} \left(\frac{1}{n}\right).$$

On pourra considérer la suite de terme général $s_{2n} - s_n$. La réciproque est-elle vraie?

Série à termes positifs

Exercice 3: Exercice

Soit (u_n) une suite réelle positive, décroissante.

- 1. Montrer que $\sum u_n$ converge si et seulement si $\sum 2^n u_{2^n}$ converge.
- 2. Soit $\alpha,\beta\in\mathbb{R}.$ Déterminer la nature de

$$\sum \frac{1}{n^{\alpha} \ln^{\beta} n}.$$

Série absolument convergente

Exercice 4: Exercice

Déterminer la nature des séries suivantes.

$$\sum \frac{\ln(n)}{n^2}, \qquad \sum \frac{n!}{n^n}, \qquad \sum \left[e - \left(1 + \frac{1}{n} \right)^n \right],$$

$$\sum \frac{1}{\binom{2n}{n}}, \qquad \sum \frac{1}{\ln(n)^{\ln(n)}}.$$

Exercice 5: Exercice

Montrer que la suite (u_n) définie par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$$

converge vers un réel non nul.

Exercice 6: Exercice

Donner la nature de la série de terme général

$$\frac{n^{2\lambda}}{\lambda^n + \ln n}$$

suivant $\lambda \in \mathbb{R}$.

Exercice 7 : Exercice

Soit $a, b \in \mathbb{R}$. Donner la nature de

$$\sum \left(\sqrt[3]{n^3+n} - \sqrt[2]{n^2+an+b}\right).$$

23.2. EXERCICES 415

Exercice 8: Exercice

Pour tout $r \in \mathbb{N}$, on pose

$$S_r(x) := \sum_{n=r}^{+\infty} \binom{n}{r} x^{n-r}.$$

- 1. Pour quelles valeurs de $x \in \mathbb{R}$ la somme $S_r(x)$ est-elle définie?
- 2. Calculer $(1-x)S_{r+1}(x)$.
- 3. En déduire la valeur de $S_r(x)$.

Exercice 9: Exercice

Montrer qu'il existe $l \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} k^{\frac{1}{k}} = n + \frac{1}{2} \ln^2 n + l + \underset{n \to +\infty}{\text{o}} (1).$$

Série semi-convergente

Exercice 10: Exercice

On définit les suites (u_n) et (v_n) par

$$\forall n \geqslant 2, \quad u_n \coloneqq \frac{(-1)^n}{\sqrt{n}} \quad \text{et} \quad v_n \coloneqq \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

1. Montrer que

$$u_n \underset{n \to +\infty}{\sim} v_n$$
.

2. Montrer que $\sum u_n$ converge et que $\sum v_n$ diverge.

Exercice 11: Exercice

Déterminer les suites réelles (v_n) telles que pour toute suite réelle positive (u_n)

$$\sum u_n$$
 converge $\implies \sum u_n v_n$ converge.

416 CHAPITRE 23. SÉRIES

Chapitre 24

Espaces euclidiens

24.1 Proc	luit scalaire
24.1.1	Produit scalaire
24.1.2	Norme
24.1.3	Notion d'orthogonalité
24.2 Espa	ace euclidien
24.2.1	Supplémentaire orthogonal
24.2.2	Base orthonormée
24.2.3	Projecteur orthogonal
24.2.4	Algorithme d'orthonormalisation de Gram-Schmidt
24.2.5	Dual
24.3 Exer	rcices

24.1 Produit scalaire

24.1.1 Produit scalaire

Définition 24.1.1

Soit E un \mathbb{R} -espace vectoriel. On dit qu'une application

$$\begin{array}{cccc} \langle .|. \rangle : & E \times E & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & \langle x|y \rangle \end{array}$$

est un produit scalaire lorsqu'elle est

— bilinéaire

$$\forall x, y, z \in E, \quad \forall \lambda, \mu \in \mathbb{R}, \qquad \langle x | \lambda y + \mu z \rangle = \lambda \langle x | y \rangle + \mu \langle x | z \rangle$$
$$\langle \lambda x + \mu y | z \rangle = \lambda \langle x | z \rangle + \mu \langle y | z \rangle$$

— symétrique

$$\forall x, y \in E, \quad \langle x|y \rangle = \langle y|x \rangle$$

— positive

$$\forall x \in E, \quad \langle x | x \rangle \geqslant 0$$

— définie

$$\forall x \in E, \quad \langle x | x \rangle = 0 \quad \Longrightarrow \quad x = 0$$

On appelle espace préhilbertien réel tout \mathbb{R} -espace vectoriel muni d'un produit scalaire.

Remarques

- \Rightarrow Le produit scalaire $\langle x|y\rangle$ est parfois noté $\langle x,y\rangle,\,(x|y),\,(x,y)$ ou $x\cdot y.$
- ⇒ Le caractère symétrique du produit scalaire fait qu'il suffit de montrer la linéarité par rapport à l'une des variables pour en déduire la bilinéarité.
- \Rightarrow Quel que soit $x \in E$, $\langle x|0 \rangle = 0$ et $\langle 0|x \rangle = 0$.

Exercices 1

 \Rightarrow Soit $n \in \mathbb{N}$. Montrer que l'application $\langle .|. \rangle$ définie par

$$\forall (x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n, \quad \langle (x_1, \dots, x_n) | (y_1, \dots, y_n) \rangle \coloneqq \sum_{k=1}^n x_k y_k.$$

est un produit scalaire sur \mathbb{R}^n .

 \Rightarrow On pose $E := \mathbb{R}[X]$. Montrer que l'application $\langle .|. \rangle$ définie par

$$\forall P, Q \in \mathbb{R}[X], \quad \langle P|Q \rangle := \int_0^1 P(x)Q(x) \, \mathrm{d}x$$

est un produit scalaire sur $\mathbb{R}[X]$.

 \Rightarrow On pose $E := \mathcal{M}_{q,p}(\mathbb{R})$. Montrer que l'application $\langle .|. \rangle$ définie par

$$\forall A, B \in \mathcal{M}_{q,p}(\mathbb{R}), \quad \langle A|B \rangle := \operatorname{tr}(A^{\top}B)$$

est un produit scalaire sur $\mathcal{M}_{q,p}(\mathbb{R})$.

24.1.2 Norme

Définition 24.1.2

Soit $x \in E$. On définit la norme de x, notée ||x||, par

$$||x|| = \sqrt{\langle x|x\rangle}.$$

On dit que x est normé lorsque ||x|| = 1.

Remarque

 \Rightarrow Le plus souvent, il sera préférable de travailler avec $||x||^2 = \langle x|x\rangle$ qu'avec ||x||.

Proposition 24.1.3

$$\forall x \in E, \quad \forall \lambda \in \mathbb{R}, \qquad \|\lambda x\| = |\lambda| \|x\|$$

$$\forall x \in E, \qquad \|x\| = 0 \iff x = 0.$$

Remarque

 \Rightarrow Si $x \in E$ est un vecteur non nul, il y a exactement deux vecteurs normés colinéaires à x

$$\frac{x}{\|x\|}$$
 et $-\frac{x}{\|x\|}$

Proposition 24.1.4: Inégalité de Cauchy-Schwarz

Soit $x, y \in E$. Alors

$$|\langle x|y\rangle| \leqslant ||x|| \, ||y||$$
.

De plus, l'égalité a lieu si et seulement si x et y sont colinéaires. Plus précisément

- $--\langle x|y\rangle = ||x|| \, ||y||$ si et seulement si il existe $\lambda \geqslant 0$ tel que $y = \lambda x$ ou $x = \lambda y$.
- $\langle x|y\rangle = -\|x\|\|y\|$ si et seulement si il existe $\lambda \geqslant 0$ tel que $y = -\lambda x$ ou $x = -\lambda y$.

Remarques

 \Rightarrow En particulier, avec le produit scalaire usuel sur \mathbb{R}^n , on a

$$\forall (x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n, \quad \left| \sum_{k=1}^n x_k y_k \right| \leqslant \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2}.$$

Arr L'inégalité de Cauchy-Schwarz s'adapte au cas où $\varphi: E \times E \to \mathbb{R}$ est une forme bilinéaire symétrique positive quelconque, même lorsque cette dernière n'est pas définie. Si $x,y \in E$, on a alors

$$|\varphi(x,y)| \leqslant \sqrt{\varphi(x,x)} \sqrt{\varphi(y,y)}$$
.

Cependant, la condition d'égalité n'est plus valide.

Exercice 2

⇒ Montrer que

$$\forall x, y, z \in \mathbb{R}, \quad x^2 + 2y^2 + 3z^2 \leqslant 1 \Longrightarrow |x + y + z| \leqslant \sqrt{\frac{11}{6}}$$

Si on suppose que $x^2 + 2y^2 + 3z^2 \le 1$, à quelle condition a-t-on $|x + y + z| = \sqrt{11/6}$?

Proposition 24.1.5: Inégalité de Cauchy-Schwarz

Soit f, g deux fonctions réelles continues sur l'intervalle I et $a, b \in I$. Si $a \leq b$, alors

$$\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \leqslant \left(\int_a^b f^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_a^b g^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

De plus, cette inégalité est une égalité si et seulement si il existe $\lambda \in \mathbb{R}$ tel que

$$[\forall x \in [a, b], \quad f(x) = \lambda g(x)] \quad \text{ou} \quad [\forall x \in [a, b], \quad g(x) = \lambda f(x)].$$

Remarque

 \Rightarrow Cette inégalité reste vraie si f et g sont des fonctions continues par morceaux. Cependant, dans ce cas, la condition d'égalité n'est plus valide.

Exercices 3

 \Rightarrow Soit f une fonction continue sur [a,b], à valeurs strictement positives. Montrer que

$$\left(\int_{a}^{b} f(x) \, \mathrm{d}x\right) \left(\int_{a}^{b} \frac{\mathrm{d}x}{f(x)}\right) \geqslant (b-a)^{2}.$$

Donner une condition nécessaire et suffisante sur f pour que cette inégalité soit une égalité.

 \Rightarrow Soit $a, b \in \mathbb{R}_+^*$ tels que $a \leqslant b$. Montrer que

$$\int_{a}^{b} \frac{\mathrm{d}x}{x} \leqslant \frac{b-a}{\sqrt{ab}}.$$

Proposition 24.1.6: Inégalité triangulaire

Soit $x, y \in E$.

— Alors

$$||x + y|| \le ||x|| + ||y||$$
.

De plus, l'égalité a lieu si et seulement si x et y sont positivement liés, c'est-à-dire si et seulement si il existe $\lambda \geqslant 0$ tel que $y = \lambda x$ ou $x = \lambda y$.

— De plus

$$|||x|| - ||y||| \le ||x - y||$$
 et $||x + y|| \ge ||x|| - ||y||$.

Proposition 24.1.7

L'identité suivante est appelée identité du parallélogramme

$$\forall x, y \in E, \quad \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

Remarques

⇒ Dans un parallélogramme, la somme des carrés des longueurs des diagonales est égale à la somme des carrés des côtés.

⇒ Les identités suivantes sont appelées identités de polarisation.

$$\forall x, y \in E, \quad \langle x | y \rangle = \frac{1}{2} \left(\|x + y\|^2 - \left(\|x\|^2 + \|y\|^2 \right) \right)$$
$$= \frac{1}{2} \left(\left(\|x\|^2 + \|y\|^2 \right) - \|x - y\|^2 \right)$$
$$= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right).$$

Exercices 4

 \Rightarrow Soit $x, y \in E$ deux vecteurs distincts de normes inférieures ou égales à 1. Montrer que

$$\left\| \frac{x+y}{2} \right\| < 1.$$

 \Rightarrow Soit $u \in \mathcal{L}(E)$ tel que, pour tout $x \in E$, $\langle u(x)|x \rangle = 0$. Montrer que

$$\forall x, y \in E, \quad \langle u(x)|y\rangle = -\langle x|u(y)\rangle.$$

24.1.3 Notion d'orthogonalité

Définition 24.1.8

- Soit $x, y \in E$. On dit que x et y sont orthogonaux lorsque $\langle x|y\rangle = 0$.
- Soit A et B deux parties de E. On dit que A et B sont orthogonales lorsque

$$\forall a \in A, \quad \forall b \in B, \quad \langle a|b \rangle = 0.$$

Remarque

 \Rightarrow Le vecteur nul est orthogonal à tout vecteur.

Définition 24.1.9

Soit $(x_i)_{i \in I}$ une famille de vecteurs de E.

— On dit que cette famille est orthogonale lorsque

$$\forall i, j \in I, \quad i \neq j \implies \langle x_i | x_j \rangle = 0.$$

— On dit que cette famille est orthonormée lorsque

$$\forall i, j \in I, \quad \langle x_i | x_j \rangle = \delta_{i,j} \coloneqq \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j. \end{cases}$$

Remarque

 \Rightarrow Sur \mathbb{R}^n muni du produit scalaire usuel, la base canonique est orthonormée.

Proposition 24.1.10

Toute famille orthogonale ne contenant aucun vecteur nul est libre.

${\bf Remarque}$

 \Rightarrow En particulier, toute famille orthonormée est libre.

Exercice 5

 \Rightarrow Soit E le \mathbb{R} -espace vectoriel des fonctions réelles continues, 2π -périodiques sur \mathbb{R} . On définit sur E le produit scalaire

$$\forall f, g \in E, \quad \langle f|g \rangle := \int_0^{2\pi} f(x)g(x) \, \mathrm{d}x.$$

Pour tout $k \in \mathbb{N}^*$, on définit la fonction s_k par $s_k(x) := \sin(kx)$ et pour tout $k \in \mathbb{N}$, la fonction c_k par $c_k(x) := \cos(kx)$. Montrer que pour tout $n \in \mathbb{N}$, la famille $(c_0, s_1, c_1, \dots, s_n, c_n)$ est orthogonale.

Proposition 24.1.11: Pythagore

Soit (x_1, \ldots, x_n) une famille orthogonale. Alors

$$||x_1 + \dots + x_n||^2 = \sum_{k=1}^n ||x_k||^2$$
.

Remarque

 \Rightarrow Si x et y sont deux vecteurs de E, alors $||x+y||^2 = ||x||^2 + ||y||^2$ si et seulement si x et y sont orthogonaux. C'est le théorème de Pythagore.

Définition 24.1.12

Soit A une partie de E. On appelle $orthogonal\ de\ A$ et on note A^{\perp} l'ensemble des vecteurs orthogonaux à tous les éléments de A

$$A^{\perp} := \{ x \in E \mid \forall a \in A, \quad \langle a | x \rangle = 0 \}.$$

En particulier A et A^{\perp} sont orthogonaux.

Remarques

- $\Rightarrow \{0\}^{\perp} = E \text{ et } E^{\perp} = \{0\}.$
- \Rightarrow Si A et B sont deux parties de E telles que $A \subset B$, alors $B^{\perp} \subset A^{\perp}$.

Proposition 24.1.13

Soit A une partie de E.

- A^{\perp} est un sous-espace vectoriel de E.
- $A^{\perp} = (\operatorname{Vect} A)^{\perp}.$

Remarque

 \Rightarrow Si F est un sous-espace vectoriel de E, F et F^{\perp} sont en somme directe.

Exercice 6

 \Rightarrow Soit $E := \mathcal{C}^0([-1,1],\mathbb{R})$ muni du produit scalaire

$$\forall f, g \in E, \quad \langle f|g \rangle \coloneqq \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x.$$

On pose $F \coloneqq \{f \in E \mid \forall x \in [0,1] \,, \quad f(x) = 0\}$. Calculer F^{\perp} , puis $F \oplus F^{\perp}$.

24.2 Espace euclidien

Définition 24.2.1

On appelle $espace \ euclidien$ tout \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire.

Remarque

 \Rightarrow Dans la suite de ce chapitre, excepté dans la section sur la minimisation de la distance à un sous-espace vectoriel, E désignera un espace euclidien.

24.2.1 Supplémentaire orthogonal

Proposition 24.2.2

Soit F un sous-espace vectoriel de E. Alors

$$E = F \oplus F^{\perp}$$
.

De plus, F^{\perp} est l'unique supplémentaire de F orthogonal à F; on l'appelle le supplémentaire orthogonal de F.

Remarque

 \Rightarrow Lorsque E n'est pas de dimension finie, la somme $F + F^{\perp}$ reste directe, mais elle n'est pas toujours égale à E.

Exercice 7

 \Rightarrow On considère $E := \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $\langle .|. \rangle$ défini par

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \quad \langle A|B \rangle := \operatorname{tr}(A^{\top}B).$$

Montrer que $S_n(\mathbb{R})^{\perp} = A_n(\mathbb{R})$.

Proposition 24.2.3

Soit F un sous-espace vectoriel de E. Alors

$$\dim E = \dim F + \dim F^{\perp}.$$

Proposition 24.2.4

Soit F un sous-espace vectoriel de E. Alors

$$\left(F^{\perp}\right)^{\perp} = F.$$

24.2.2 Base orthonormée

Proposition 24.2.5

Soit F un sous-espace vectoriel de E. Si (f_1, \ldots, f_p) une base orthonormée de F et (g_1, \ldots, g_q) est une base orthonormée de F^{\perp} , alors $(f_1, \ldots, f_p, g_1, \ldots, g_q)$ est une base orthonormée de E.

Proposition 24.2.6

Tout espace euclidien admet une base orthonormée.

Proposition 24.2.7: Théorème de la base incomplète

On peut compléter toute famille orthonormée de E en une base orthonormée de E.

Proposition 24.2.8

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base orthonormée de E. Alors, pour tout $x \in E$

$$x = \sum_{k=1}^{n} \langle e_k | x \rangle e_k.$$

Remarques

- \Rightarrow Le calcul des coordonnées de $x \in E$ dans une base orthonormée se fait donc en effectuant des produits scalaires.
- ⇒ En termes de base duale, la proposition précédente s'énonce

$$\forall x \in E, \quad \forall k \in [1, n], \quad e_k^{\star}(x) = \langle e_k | x \rangle.$$

Proposition 24.2.9

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base orthonormée de E.

— Soit $x, y \in E$ dont les coordonnées dans la base \mathcal{B} sont respectivement (x_1, \dots, x_n) et (y_1, \dots, y_n) . Alors

$$\langle x|y\rangle = \sum_{k=1}^{n} x_k y_k.$$

Autrement dit, si $X := \mathcal{M}_{\mathcal{B}}(x)$ et $Y := \mathcal{M}_{\mathcal{B}}(y)$

$$\langle x|y\rangle = X^{\top}Y.$$

24.2. ESPACE EUCLIDIEN 423

En particulier

$$||x||^2 = \sum_{k=1}^n x_k^2 = X^\top X.$$

— Soit (x_1, \ldots, x_p) une famille de vecteurs de E et $M := \mathcal{M}_{\mathcal{B}}(x_1, \ldots, x_p) \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors

$$M^{\top}M = (\langle x_i | x_j \rangle)_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant p}}$$

Proposition 24.2.10

Soit \mathcal{B} une base orthonormée de E de dimension n et (x_1, \ldots, x_n) une famille de n vecteurs de E. On pose $M := \mathcal{M}_{\mathcal{B}}(x_1, \ldots, x_n)$. Alors (x_1, \ldots, x_n) est une base orthonormée de E si et seulement si

$$M^{\top}M = I_n.$$

24.2.3 Projecteur orthogonal

Dans cette section, et dans cette section seulement, E désigne un espace préhilbertien.

Définition 24.2.11

Soit F un sous-espace vectoriel de dimension finie de E. Alors

$$E = F \oplus F^{\perp}$$
.

De plus, F^{\perp} est l'unique supplémentaire de F orthogonal à F; on l'appelle le supplémentaire orthogonal de F.

Définition 24.2.12

Soit F un sous-espace vectoriel de dimension finie de E. On appelle projecteur orthogonal sur F, le projecteur sur F parallèlement à F^{\perp} .

Proposition 24.2.13

Soit p un projecteur orthogonal. Alors

$$\forall x \in E, \quad \|p(x)\| \leqslant \|x\|.$$

Proposition 24.2.14

Soit F un sous-espace vectoriel de dimension finie de E, (e_1, \ldots, e_r) une base orthonormée de F et p le projecteur orthogonal sur F. Alors

$$\forall x \in E, \quad p(x) = \sum_{k=1}^{r} \langle e_k | x \rangle e_k.$$

Remarques

 \Rightarrow Si la base (e_1, \ldots, e_r) de F est orthogonale, alors

$$\forall x \in E, \quad p(x) = \sum_{k=1}^{r} \frac{\langle e_k | x \rangle}{\|e_k\|^2} e_k.$$

De plus, si q est le projecteur sur F^\perp parallèlement à F, alors $p+q=\mathrm{Id}$ donc

$$\forall x \in E, \quad q(x) = x - \sum_{k=1}^{r} \frac{\langle e_k | x \rangle}{\|e_k\|^2} e_k.$$

 \Rightarrow En particulier, si E est un espace euclidien, u est un vecteur non nul de E et p est le projecteur orthogonal sur $\operatorname{Vect}(u)^{\perp}$, alors

$$\forall x \in E, \quad p(x) = x - \frac{\langle u|x\rangle}{\|u\|^2}u.$$

Exercice 8

 \Rightarrow Déterminer la matrice dans la base canonique de \mathbb{R}^4 de la projection orthogonale sur le sous-espace vectoriel F d'équation

$$\begin{cases} x+y+z+t=0\\ x-y+z-t=0. \end{cases}$$

Définition 24.2.15

Soit A une partie non vide de E et $x \in E$. On définit la distance de x à A, que l'on note d(x, A), par

$$d(x, A) \coloneqq \inf_{a \in A} \|x - a\|.$$

Proposition 24.2.16

Soit F un sous-espace vectoriel de dimension finie de E et $x \in E$. Alors, la borne inférieure

$$d(x,F) = \inf_{f \in F} ||x - f||$$

est un minimum qui est atteint en un unique point. Ce point est le projeté orthogonal de x sur F.

Exercice 9

⇒ Montrer que la borne inférieure

$$\inf_{(a,b)\in\mathbb{R}^2} \int_{-1}^{1} \left[e^x - (ax+b) \right]^2 dx$$

est atteinte en un unique couple $(a, b) \in \mathbb{R}^2$ que l'on calculera.

24.2.4 Algorithme d'orthonormalisation de Gram-Schmidt

Dans la suite de ce chapitre, E désigne de nouveau un espace euclidien.

Proposition 24.2.17: Algorithme d'orthogonalisation de Gram-Schmidt

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E. Alors il existe une base orthogonale (f_1, \dots, f_n) de E telle que pour tout $k \in [0, n], (f_1, \dots, f_k)$ est une base orthogonale de $E_k := \text{Vect}(e_1, \dots, e_k)$.

Remarques

- ⇒ Une telle base est donnée par l'algorithme d'orthogonalisation de Gram-Schmidt.
 - On pose $f_1 := e_1$. La famille (f_1) est alors une base orthogonale de E_1 .
 - Soit $k \in [1, n-1]$. On suppose qu'on a construit une base orthogonale (f_1, \ldots, f_k) de E_k . On définit p_{k+1} comme le projeté orthogonal de e_{k+1} sur E_k . Puisque (f_1, \ldots, f_k) est une base orthogonale de E_k , on a

$$p_{k+1} = \sum_{i=1}^{k} \frac{\langle f_i | e_{k+1} \rangle}{\|f_i\|^2} f_i.$$

On note $f_{k+1} := e_{k+1} - p_{k+1}$ le projeté orthogonal de e_{k+1} sur E_k^{\perp} . On a alors

$$f_{k+1} = e_{k+1} - \sum_{i=1}^{k} \frac{\langle f_i | e_{k+1} \rangle}{\|f_i\|^2} f_i.$$

On a ainsi construit une base orthogonale (f_1, \ldots, f_{k+1}) de E_{k+1} . La base orthogonale (f_1, \ldots, f_n) ainsi construite est solution de notre problème.

 \Rightarrow Dans la proposition précédente, il n'y a pas unicité d'une telle base (f_1, \ldots, f_n) . Cependant, une famille (g_1, \ldots, g_n) est une autre solution de notre problème si et seulement si il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^*$ tels que

$$\forall k \in [1, n], \quad g_k = \lambda_k f_k.$$

24.2. ESPACE EUCLIDIEN 425

- \Rightarrow L'algorithme d'orthogonalisation de Gram-Schmidt peut s'utiliser pour une famille (e_1, \ldots, e_n) quelconque d'un espace euclidien de dimension n.
 - Si l'un des vecteurs f_k est nul, alors $e_k \in \text{Vect}(e_1, \dots, e_{k-1})$ et l'algorithme s'arrête.
 - Sinon, l'algorithme construit une base orthogonale de E tout en prouvant la liberté de (e_1, \ldots, e_n) .

Exercice 10

 \Rightarrow On pose $E := \mathbb{R}_n[X]$, que l'on munit du produit scalaire

$$\forall P, Q \in \mathbb{R}_n[X], \quad \langle P|Q \rangle := \int_{-1}^1 P(x)Q(x) \, \mathrm{d}x.$$

Montrer qu'il existe une unique base orthogonale de E, formée de polynômes P_0, \ldots, P_n de coefficients dominants égaux à 1, tels que

$$\forall k \in [0, n], \quad \deg P_k = k.$$

Calculer cette base pour n=3.

Proposition 24.2.18: Algorithme d'orthonormalisation de Gram-Schmidt

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E. Alors il existe une base orthonormée (g_1, \dots, g_n) de E telle que pour tout $k \in [0, n], (g_1, \dots, g_k)$ est une base orthonormée de $E_k := \text{Vect}(e_1, \dots, e_k)$.

Remarques

 \Rightarrow Si l'on souhaite obtenir une telle base, il suffit de normer les vecteurs de la famille (f_1, \ldots, f_n) obtenue par l'algorithme d'orthogonalisation de Gram-Schmidt en posant

$$\forall k \in [1, n], \quad g_k = \frac{1}{\|f_k\|} f_k.$$

On dit qu'on a obtenu la base (g_1, \ldots, g_n) par l'algorithme d'orthonormalisation de Gram-Schmidt.

 \Rightarrow Dans la proposition précédente, il n'y a pas unicité d'une telle base (g_1, \ldots, g_n) . Cependant, une famille (h_1, \ldots, h_n) est une autre solution de notre problème si et seulement si il existe $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ tels que

$$\forall k \in [1, n], \quad h_k = \varepsilon_k g_k.$$

⇒ Pour avoir l'unicité, il suffit de rajouter la condition

$$\forall k \in [1, n], \quad \langle e_k | g_k \rangle > 0.$$

L'unique famille solution de ce problème est la famille obtenue par le procédé d'orthonormalisation de Gram-Schmidt.

Exercice 11

 $\, \Rightarrow \,$ Dans \mathbb{R}^3 muni du produit scalaire usuel, orthonormaliser la famille

$$e_1 := (1, -2, 2), \qquad e_2 := (-1, 0, -1), \qquad e_3 := (5, -3, 7).$$

24.2.5 Dual

Proposition 24.2.19

Pour toute forme linéaire φ sur E, il existe un unique $a \in E$ tel que

$$\forall x \in E, \quad \varphi(x) = \langle a|x \rangle.$$

24.3 Exercices

Produit scalaire

Produit scalaire

Exercice 1 : Produit scalaire

On pose

$$E := \{ P \in \mathbb{R}[X] \mid P(0) = 0 \text{ et } P(1) = 0 \}.$$

On définit l'application $\langle .|. \rangle$ de $E \times E$ dans $\mathbb R$ par

$$\forall P, Q \in E, \quad \langle P|Q \rangle \coloneqq -\int_0^1 P''(x)Q(x) \,\mathrm{d}x.$$

Montrer que $\langle . | . \rangle$ définit un produit scalaire.

Norme

Exercice 2 : Intégrales

Soit f une fonction continue de [0,1] dans \mathbb{R} . Montrer que

$$\left| \int_0^1 \frac{f(t)}{1+t^2} \, \mathrm{d}t \right| \leqslant \frac{\sqrt{\pi}}{2} \left(\int_0^1 \frac{f^2(t)}{1+t^2} \, \mathrm{d}t \right)^{\frac{1}{2}} \quad \text{et} \quad \left| \int_0^1 \frac{\sqrt{t} f(t)}{1+t^2} \, \mathrm{d}t \right| \leqslant \frac{\sqrt{2 \ln(2)}}{2} \left(\int_0^1 \frac{f^2(t)}{1+t^2} \, \mathrm{d}t \right)^{\frac{1}{2}}.$$

Déterminer dans chacun des deux cas à quelle condition sur f l'inégalité est une égalité.

Exercice 3: Exercice

Soit (u_n) une suite positive telle que $\sum u_n$ converge. Montrer que

$$\sum \frac{\sqrt{u_n}}{n}$$

converge.

Exercice 4: Mines

On définit, pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$

$$\langle A|B\rangle := \operatorname{tr}\left(A^{\top}B\right).$$

- 1. Montrer que $\langle .|. \rangle$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \quad ||AB|| \leq ||A|| \, ||B||.$$

$Notion\ d'orthogonalit\'e$

Exercice 5: Vecteurs orthogonaux

Soit E un espace préhilbertien et $x, y \in E$. Montrer que x et y sont orthogonaux si et seulement si

$$\forall \lambda \in \mathbb{R}, \quad \|x + \lambda y\| \geqslant \|x\|.$$

Exercice 6: Une base orthonormale

Soit E un espace euclidien, et $(e_1,...,e_n)$ une famille de vecteurs unitaires tels que

$$\forall x \in E, \quad \|x\|^2 = \sum_{i=1}^n \langle e_i | x \rangle^2.$$

Notons qu'on ne suppose pas que E est de dimension n.

- 1. Montrer que $(e_1, ..., e_n)$ est une famille orthogonale.
- 2. Montrer que $(e_1, ..., e_n)$ est une base orthonormale.

24.3. EXERCICES 427

Espace euclidien

$Suppl\'ementaire\ orthogonal$

Exercice 7: Orthogonal et somme

Soit E un espace euclidien et F, G deux sous-espaces vectoriels de E.

- 1. Montrer que l'orthogonal de F+G et l'intersection des orthogonaux de F et G sont égaux.
- 2. Montrer que l'orthogonal de l'intersection de F et G et la somme des orthogonaux de F et de G sont égaux.

Base orthonormée

Projecteur orthogonal

Exercice 8: Projecteur orthogonal

Soit E un espace euclidien et p un projecteur de E. Montrer que p est orthogonal si et seulement si

$$\forall x \in E, \quad \|p(x)\| \leqslant \|x\|.$$

Exercice 9: Calcul d'une projection orthogonale

On se place dans le \mathbb{R} -espace euclidien usuel \mathbb{R}^n .

1. Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par le système d'équations

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0. \end{cases}$$

Déterminer la matrice dans la base canonique de la projection orthogonale sur F.

2. Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par le système d'équations

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$$

Déterminer la matrice dans la base canonique de la projection orthogonale sur à F.

Exercice 10: Rang d'un projecteur orthogonal

Soit p un projecteur orthogonal d'un espace euclidien E.

- 1. Montrer que pour tout $x \in E$, $||p(x)||^2 = \langle p(x)|x \rangle$.
- 2. Montrer que pour toute base orthonormée $\mathcal{B} := (e_1, \dots, e_n)$ de E

$$\sum_{k=1}^{n} \|p(e_k)\|^2 = rg(p).$$

Algorithme d'orthonormalisation de Gram-Schmidt

Exercice 11: Orthonormalisation

On munit \mathbb{R}^3 du produit scalaire usuel. Montrer que les vecteurs

$$e_1 := (1,0,1), \quad e_2 := (1,0,2) \quad \text{et} \quad e_3 := (1,1,1)$$

forment une base de \mathbb{R}^3 et en déterminer l'orthonormalisée de Gram-Schmidt.

Exercice 12: Une distance

Calculer

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 \left[x^2 - (ax+b) \right]^2 dx.$$

Exercice 13 : Sur les polynômes

Soit $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{R}$. On pose $E := \mathbb{R}_n[X]$ et on définit l'application $\langle .|. \rangle$ de $E \times E$ dans \mathbb{R} par

$$\forall P, Q \in E, \quad \langle P|Q \rangle := \sum_{k=0}^{n} P^{(k)}(a_k) Q^{(k)}(a_k).$$

- 1. Montrer que $\langle .|. \rangle$ est un produit scalaire sur E.
- 2. On suppose dans cette question que n=2, $a_0=1$, $a_1=2$ et $a_2=3$. Déterminer une base orthonormée de E.

Exercice 14 : Racines des polynômes orthogonaux

Soit $E := \mathbb{R}_n[X]$, muni de la forme

$$\forall P,Q \in \mathbb{R}_n[X], \quad \langle P|Q \rangle \coloneqq \int_{-1}^1 P(t)Q(t)\,\mathrm{d}t.$$

- 1. Montrer que $\langle .|. \rangle$ est un produit scalaire.
- 2. Montrer que E admet une base orthonormée $(P_k)_{0\leqslant k\leqslant n}$ telle que

$$\forall k \in [0, n], \quad \deg P_k = k.$$

3. Montrer que pour tout $k \in [0, n]$, P_k admet exactement k racines sur]-1, 1[.

Dual

Chapitre 25

Espérance, variance

« Je ne crois aux statistiques que lorsque je les ai moi-même falsifiées. »

— Winston Churchill (1874–1965)

25.1.1	Es_{2}	oéran	ce .						 									 	
25.1.2	Va	riance	e						 									 	
25.2 Cou	\mathbf{ple}	de v	arial	\mathbf{les}	aléa	toi	res				 			 					
25.2.1	Lo	conj	ointe						 									 	
25.2.2	Со	variai	ice						 									 	
25.3 Vers	les	grai	nds r	om	bres				 		 		 _	 		 			

25.1 Espérance, variance

25.1.1 Espérance

Définition 25.1.1

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. On appelle espérance de X le réel

$$\mathbb{E}(X) := \sum_{x \in X(\Omega)} x \mathbb{P}(X = x).$$

Remarques

- \Rightarrow Dans cette formule, on peut remplacer $X(\Omega)$ par une partie finie E' de E telle que $X(\Omega) \subset E'$.
- \Rightarrow L'espérance de X ne dépend que de la loi suivie par X.
- \Rightarrow Si $A \in \mathcal{P}(\Omega)$ est un évènement, alors $\mathbb{E}(\mathbbm{1}_A) = \mathbb{P}(A)$.

Exercice 1

 \Rightarrow On lance n fois une pièce équilibrée. On s'intéresse à la première apparition de pile. On note X la variable aléatoire égale à k si le premier pile a lieu au k-ième lancer et on convient que X=0 si aucun lancer n'amène pile. Déterminer la loi et l'espérance de X.

Proposition 25.1.2

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors

$$\mathbb{E}(X) \coloneqq \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}).$$

Proposition 25.1.3

Soit $X, Y: \Omega \to \mathbb{R}$ deux variables aléatoires réelles. Alors, quels que soient $a, b \in \mathbb{R}$

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

Exercices 2

- ⇒ On lance deux dés à 6 faces. Calculer l'espérance de leur somme.
- \Rightarrow Le chat Speed se fait chaque jour les griffes, soit sur le canapé soit sur les rideaux. Il ne se fait jamais les griffes deux jours de suite sur le canapé. S'il se fait les griffes sur les rideaux un jour donné, alors il choisira le lendemain le canapé avec une probabilité 1/3. Vous devez vous occuper de Speed pendant m+1 jours. Le premier jour, jour d'indice 0, il attaque les rideaux. Pour tout $n \in [0, m]$, on définit la variable aléatoire X_n égale au nombre de jours où le chat a fait ses griffes sur les rideaux parmi les jours d'indices 0 à n. Calculer $\mathbb{E}(X_n)$.
- \Rightarrow Soit $A_1, \ldots, A_n \in \mathcal{P}(\Omega)$. Montrer la formule dite du crible

$$\mathbb{P}(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leqslant i_1 < \cdots < i_k \leqslant n} \mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}).$$

En déduire que si A_1, \ldots, A_n sont des parties d'un ensemble fini E

$$\operatorname{Card}(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \leqslant i_1 < \cdots < i_k \leqslant n} \operatorname{Card}(A_{i_1} \cap \ldots \cap A_{i_k}).$$

Proposition 25.1.4

Soit $X, Y : \Omega \to \mathbb{R}$ deux variables aléatoires réelles.

- Si $X \ge 0$, alors $\mathbb{E}(X) \ge 0$.
- Si $X \leq Y$, alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$.
- On a $|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$.

Proposition 25.1.5

Soit $X: \Omega \to \mathbb{R}$ une variable aléatoire réelle.

- Si X est une variable aléatoire constante égale à a, alors $\mathbb{E}(X) = a$.
- S'il existe $a, b \in \mathbb{Z}$ tel que $X \sim \mathcal{U}(\llbracket a, b \rrbracket)$, alors $\mathbb{E}(X) = (a+b)/2$.
- S'il existe $p \in [0,1]$ tel que $X \sim \mathcal{B}(p)$, alors $\mathbb{E}(X) = p$.
- S'il existe $n \in \mathbb{N}$ et $p \in [0,1]$ tels que $X \sim \mathcal{B}(n,p)$, alors $\mathbb{E}(X) = np$.

Exercices 3

- \Rightarrow On dispose de n fléchettes. À chaque lancer, on a une probabilité de 1/10 de tirer dans le mille. On suppose les lancers indépendants et on note X la variable aléatoire égale au nombre de fléchettes placées dans le mille.
 - 1. Donner la loi de X.
 - 2. Calculer la probabilité de mettre au plus 1 fléchette dans le mille.
 - 3. Calculer l'espérance de X.
- \Rightarrow Soit $n \in \mathbb{N}^*$. On pose $I_n := [\![1,n]\!]$ et on munit $\Omega_n := \mathcal{F}(I_n,I_n)$ de la probabilité uniforme. On note X_n la variable aléatoire sur Ω_n égale au cardinal de l'image d'un élément de Ω_n . Déterminer l'espérance de X_n puis en donner un équivalent quand n tend vers $+\infty$.

Définition 25.1.6

On dit qu'une variable aléatoire réelle $X:\Omega\to\mathbb{R}$ est centrée lorsque

$$\mathbb{E}(X) = 0.$$

Remarque

 \Rightarrow Si $X:\Omega\to\mathbb{R}$ est une variable aléatoire, alors $X-\mathbb{E}(X)$ est centrée.

Proposition 25.1.7: Formule de transfert

Soit $X:\Omega\to E$ une variable aléatoire et $f:E\to\mathbb{R}$. Alors

$$\mathbb{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \mathbb{P}(X = x).$$

Remarque

 \Rightarrow Dans cette formule, on peut remplacer $X(\Omega)$ par une partie finie E' de E telle que $X(\Omega) \subset E'$.

Exercice 4

 \Rightarrow Soit X une variable aléatoire suivant une loi uniforme sur [-2, 2]. Déterminer l'espérance de X^2 en utilisant la définition de l'espérance, puis la formule de transfert.

Proposition 25.1.8

Soit $X,Y:\Omega\to\mathbb{R}$ deux variables aléatoires réelles indépendantes. Alors

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Plus généralement, soit $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ des variables aléatoires mutuellement indépendantes. Alors

$$\mathbb{E}\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} \mathbb{E}(X_i).$$

Exercices 5

- \Rightarrow Dans le quadrillage $[0, n] \times [0, p]$, on place uniformément et de manière indépendante un point A sur l'axe des abscisses et un point B sur l'axe des ordonnées. Quelle est, en moyenne, l'aire du triangle OAB?
- \Rightarrow On effectue $p \in \mathbb{N}^*$ tirages avec remise dans une urne contenant des boules numérotées de 1 à n. On note X_1, \ldots, X_p les résultats des tirages successifs et on pose $Y := \max(X_1, \ldots, X_p)$.
 - 1. Pour tout $k \in [0, n]$, calculer $\mathbb{P}(Y \leq k)$. En déduire $\mathbb{E}(Y)$.
 - 2. Déterminer un équivalent de $\mathbb{E}(Y)$ lorsqu'à p fixé, n tend vers $+\infty$.
 - 3. Déterminer un équivalent de $\mathbb{E}(Y)$ lorsqu'à n fixé, p tend vers $+\infty$.

25.1.2 Variance

Définition 25.1.9

Soit X une variable aléatoire réelle. On appelle respectivement variance et écart-type de X les réels

$$\mathbb{V}(X) := \mathbb{E}\left(\left[X - \mathbb{E}(X)\right]^2\right)$$
 et $\sigma(X) := \sqrt{\mathbb{V}(X)}$.

Remarque

 \Rightarrow La variance et l'écart-type de X ne dépendent que de la loi suivie par X.

Proposition 25.1.10: Formule de König-Huygens

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Remarque

 \Rightarrow On calcule souvent la variance de X en utilisant la formule d'Huygens ou en passant par $\mathbb{E}(X(X-1))$ qui est parfois plus commode à calculer que $\mathbb{E}(X^2)$. On utilise alors la relation

$$\mathbb{V}(X) = \mathbb{E}(X(X-1)) + \mathbb{E}(X) - \mathbb{E}(X)^{2}.$$

Exercice 6

 \Rightarrow Soit X une variable aléatoire réelle. Quelle valeur de $\lambda \in \mathbb{R}$ minimise $\mathbb{E}((X - \lambda)^2)$? Que vaut ce minimum?

Proposition 25.1.11

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, quels que soient $a,b\in\mathbb{R}$

$$\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$$
 et $\sigma(aX + b) = |a| \sigma(X)$.

Proposition 25.1.12

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle.

- Si X est une variable aléatoire constante égale à $a \in \mathbb{R}$, alors $\mathbb{V}(X) = 0$.
- Soit $a, b \in \mathbb{Z}$ tels que $a \leq b$. Si $X \sim \mathcal{U}(\llbracket a, b \rrbracket)$, alors $\mathbb{V}(X) = (n^2 1)/12$ où $n \coloneqq \operatorname{Card}(\llbracket a, b \rrbracket) = b a + 1$.
- S'il existe $p \in [0,1]$ tel que $X \sim \mathcal{B}(p)$, alors $\mathbb{V}(X) = pq$.
- S'il existe $n \in \mathbb{N}$ et $p \in [0,1]$ tels que $X \sim \mathcal{B}(n,p)$, alors $\mathbb{V}(X) = npq$.

Remarque

 \Rightarrow Dans les formules donnant les variances d'une loi de Bernoulli et d'une loi binomiale, on a posé q := 1 - p.

Proposition 25.1.13

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors $\mathbb{V}(X)=0$ si et seulement si il existe un évènement A de probabilité 1 tel que

$$\forall \omega \in A, \quad X(\omega) = \mathbb{E}(X).$$

Remarque

 \Rightarrow Autrement dit, la variance d'une variable aléatoire $X:\Omega\to\mathbb{R}$ est nulle si et seulement si X est constante sur un évènement de probabilité 1. Un tel évènement est dit « $presque \ sûr$ ».

Définition 25.1.14

On dit qu'une variable aléatoire réelle $X:\Omega\to\mathbb{R}$ est réduite lorsque

$$\mathbb{V}(X) = 1.$$

Remarque

 \Rightarrow Si $X:\Omega\to\mathbb{R}$ est une variable aléatoire réelle de variance non nulle, alors

$$\frac{X - \mathbb{E}(X)}{\sigma(X)}$$

est centrée réduite.

25.2 Couple de variables aléatoires

25.2.1 Loi conjointe

Définition 25.2.1

Soit $X:\Omega\to E$ et $Y:\Omega\to F$ deux variables aléatoires. On définit la variable aléatoire $Z\coloneqq (X,Y)$ par

$$Z: \quad \Omega \quad \longrightarrow \quad E \times F$$

$$\quad \omega \quad \longmapsto \quad (X(\omega), Y(\omega)).$$

Remarque

 \Rightarrow On a $Z(\Omega) \subset X(\Omega) \times Y(\Omega)$. Cependant, l'inclusion peut être stricte. Par exemple, Si X est une variable aléatoire suivant la loi uniforme sur [1, n] et Z := (X, X), alors $Z(\Omega) = \{(k, k) : k \in [1, n]\}$ tandis que $X(\Omega) \times X(\Omega) = [1, n]^2$.

Définition 25.2.2

Soit $X:\Omega\to E$ et $Y:\Omega\to F$ deux variables aléatoires.

— On appelle loi conjointe du couple (X, Y) la loi de Z := (X, Y).

— On appelle première loi marginale de (X,Y) la loi de X et seconde loi marginale de (X,Y) la loi de Y.

Remarques

 \Rightarrow La loi conjointe de (X,Y) est caractérisée par sa distribution de probabilités $(\mathbb{P}(Z=z))_{z\in Z(\Omega)}$. Étant donné que $Z(\Omega)\subset X(\Omega)\times Y(\Omega)$, cette distribution est donnée par

$$\left(\mathbb{P}((X=x)\cap (Y=y))\right)_{(x,y)\in X(\Omega)\times Y(\Omega)}.$$

 \Rightarrow Soit $X:\Omega\to E$ et $Y:\Omega\to F$ deux variables aléatoires. On note $X(\Omega)\coloneqq\{x_1,\ldots,x_n\}$ et $Y(\Omega)\coloneqq\{y_1,\ldots,y_m\}$. Alors

$$\forall i \in [1, n], \quad \mathbb{P}(X = x_i) = \sum_{j=1}^{m} \mathbb{P}((X = x_i) \cap (Y = y_j))$$

$$\forall j \in [1, m], \quad \mathbb{P}(Y = y_j) = \sum_{i=1}^{n} \mathbb{P}((X = x_i) \cap (Y = y_j))$$

En particulier, les lois marginales se déduisent de la loi conjointe. Par contre, la connaissance des lois marginales ne permet pas d'en déduire la loi conjointe. Par exemple, si on considère l'expérience qui consiste à jouer deux fois de suite à pile ou face, modélisée par $\Omega \coloneqq \{P,F\}^2$ muni de la loi uniforme, et que $X_1, X_2 : \Omega \to \{P,F\}$ sont les variables aléatoires donnant les résultats respectifs des deux lancers, alors (X_1, X_2) et (X_1, X_1) ont les mêmes lois marginales, mais n'ont pas la même loi conjointe.

Exercice 7

- \Rightarrow On considère l'expérience aléatoire qui consiste à tirer successivement et sans remise deux boules dans une urne contenant 2 boules rouges et 3 boules noires. On note X_1 (respectivement X_2) la variable aléatoire qui vaut R si la première (respectivement deuxième) boule tirée est rouge, et N sinon.
 - 1. Déterminer la loi du couple $Y := (X_1, X_2)$, puis ses lois marginales.
 - 2. Même question si le tirage se fait avec remise.

Définition 25.2.3

Soit $X:\Omega\to E$ une variable aléatoire à valeurs dans un ensemble fini E et $B\in\mathcal{P}(\Omega)$ un évènement de probabilité non nulle. On appelle loi de X conditionnée par l'évènement B la probabilité

$$\begin{array}{cccc} \mathbb{P}_{X|B}: & \mathcal{P}(X(\Omega)) & \longrightarrow & [0,1] \\ & A & \longmapsto & \mathbb{P}(X \in A|B). \end{array}$$

Remarques

- \Rightarrow En pratique, lorsqu'il nous sera demandé de déterminer la loi d'une variable aléatoire $X:\Omega\to E$ conditionnée par l'évènement B, on commencera par déterminer un ensemble fini E' tel que $X(\Omega)\subset E'$ et on calculera $\mathbb{P}(X=x|B)$ pour tout $x\in E'$.
- \Rightarrow Si $X:\Omega\to E$ et $Y:\Omega\to F$ sont deux variables aléatoires et $y\in F$ est tel que $\mathbb{P}(Y=y)>0$, il est courant de considérer la loi de X conditionnée par l'évènement (Y=y).

25.2.2 Covariance

Définition 25.2.4

Soit $X,Y:\Omega\to\mathbb{R}$ deux variables aléatoires réelles. On appelle covariance de X et de Y et on note $\mathrm{Cov}(X,Y)$ le réel

$$Cov(X, Y) = \mathbb{E}([X - \mathbb{E}(X)][Y - \mathbb{E}(Y)]).$$

Lorsque Cov(X,Y) = 0, on dit que X et Y sont décorrélées et on note $X \perp Y$.

Remarque

 $\, \Rightarrow \,$ Si $X:\Omega \to \mathbb{R}$ est une variable aléatoire, alors

$$Cov(X, X) = V(X).$$

Proposition 25.2.5

Soit $X, Y: \Omega \to \mathbb{R}$ deux variables aléatoires réelles. Alors

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Proposition 25.2.6

Soit $X, Y, Z : \Omega \to \mathbb{R}$ des variables aléatoires réelles.

— Si $a, b \in \mathbb{R}$, alors

$$Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z)$$

$$Cov(X, aY + bZ) = aCov(X, Y) + bCov(X, Z).$$

— De plus

$$Cov(X, Y) = Cov(Y, X).$$

— Enfin

$$Cov(X, X) = V(X) \ge 0.$$

Autrement dit, la covariance est une forme bilinéaire symétrique positive sur l'espace vectoriel des variables aléatoires réelles sur (Ω, \mathbb{P}) .

Remarques

 \Rightarrow Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle et $a\in\mathbb{R}$. Alors

$$Cov(a, X) = 0$$
 et $Cov(X, a) = 0$.

- \Rightarrow La covariance est presque un produit scalaire. La seule propriété qui lui manque pour en être un est la propriété de séparation. En effet, si $X:\Omega\to\mathbb{R}$, alors $\mathrm{Cov}(X,X)=0$ si et seulement si X est constante sur un évènement de probabilité 1.
- Arr En particulier, l'inégalité de Cauchy-Schwarz nous dit que si $X,Y:\Omega\to\mathbb{R}$ sont deux variables aléatoires réelles, alors

$$|Cov(X,Y)| \le \sigma(X)\sigma(Y).$$

De plus, cette inégalité est une égalité si et seulement si il existe $\alpha, \beta \in \mathbb{R}$ et un évènement A de probabilité 1 tel que

$$[\forall \omega \in A, \quad Y(\omega) = \alpha X(\omega) + \beta]$$
 ou $[\forall \omega \in A, \quad X(\omega) = \alpha Y(\omega) + \beta].$

 \Rightarrow Si $\sigma(X) > 0$ et $\sigma(Y) > 0$, le réel

$$\operatorname{Cor}(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)},$$

appelé coefficient de corrélation, est dans [-1,1]. De plus, Cor(X,Y)=1 si et seulement si il existe $\alpha>0,\ \beta\in\mathbb{R}$ et un évènement A de probabilité 1 tel que

$$\forall \omega \in A, \quad Y(\omega) = \alpha X(\omega) + \beta.$$

De même Cor(X,Y) = -1 si et seulement si il existe $\alpha > 0$, $\beta \in \mathbb{R}$ et un évènement A de probabilité 1 tel que

$$\forall \omega \in A, \quad Y(\omega) = -\alpha X(\omega) + \beta.$$

Proposition 25.2.7

Soit $X, Y : \Omega \to \mathbb{R}$ deux variables aléatoires réelles. Si X et Y sont indépendantes, alors elles sont décorrélées.

Remarque

⇒ La réciproque de la proposition précédente est fausse. Il est possible que Cov(X,Y) = 0 sans que X et Y soient indépendantes. Prenons par exemple l'exemple d'une variable aléatoire X suivant une loi uniforme sur $\llbracket -1,1 \rrbracket$. Alors $Cov(X,X^2) = 0$. Pourtant, X et X^2 ne sont pas indépendantes.

Proposition 25.2.8

Soit $X, Y: \Omega \to \mathbb{R}$ deux variables aléatoires. Alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{Cov}(X,Y).$$

Plus généralement, si $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ sont des variables aléatoires, alors

$$\mathbb{V}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{V}(X_i) + 2 \sum_{1 \leqslant i < j \leqslant n} \operatorname{Cov}(X_i, X_j).$$

Proposition 25.2.9

Soit $X, Y: \Omega \to \mathbb{R}$ deux variables aléatoires. Si X et Y sont indépendantes, alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y).$$

Plus généralement, si $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ sont des variables aléatoires deux à deux indépendantes, alors

$$\mathbb{V}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{V}(X_i).$$

Remarque

 \Rightarrow Si $X,Y:\Omega\to\mathbb{R}$ sont deux variables aléatoires réelles indépendantes

$$\sigma(X+Y) = \sqrt{\sigma^2(X) + \sigma^2(Y)}.$$

Exercice 8

- ⇒ Les *méthodes probabilistes* permettent de prouver certains résultats mathématiques dont l'énoncé ne fait pas apparaître des probabilités.
 - 1. Soit $X: \Omega \to \mathbb{R}$ une variable aléatoire réelle. Montrer qu'il existe $\omega \in \Omega$ tel que $X(\omega) \leq \mathbb{E}(X)$.
 - 2. Soit $v_1, \ldots, v_n \in \mathbb{R}^n$ des vecteurs de norme 1. Montrer qu'il existe $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ tels que

$$\|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n\| \leqslant \sqrt{n}.$$

25.3 Vers les grands nombres

Proposition 25.3.1: Inégalité de Markov

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, quel que soit a>0

$$\mathbb{P}(|X| \geqslant a) \leqslant \frac{\mathbb{E}(|X|)}{a}.$$

Remarque

Arr Cette inégalité a le mérite de pouvoir être appliquée sans aucune hypothèse sur la loi de la variable aléatoire. Elle est très générale mais assez mauvaise! Évidemment, cette inégalité n'a aucun intérêt si $a \leq \mathbb{E}(|X|)$.

Exercice 9

 \Rightarrow Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire positive, majorée par M. Montrer que

$$\forall a \geqslant 0, \quad \mathbb{E}(X) \leqslant a + M\mathbb{P}(X \geqslant a).$$

Proposition 25.3.2: Inégalité de Bienaymé-Tchebychev

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, quel que soit a>0

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{\mathbb{V}(X)}{a^2}.$$

Remarque

 \Rightarrow On se donne $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ des variables aléatoires indépendantes suivant une même loi d'espérance α et de variance σ^2 . On pose

$$M_n := \frac{X_1 + \dots + X_n}{n}.$$

Alors

$$\mathbb{E}(M_n) = \alpha$$
 et $\mathbb{V}(M_n) = \frac{\sigma^2}{n}$.

En particulier, d'après l'inégalité de Bienaymé-Tchebychev, quel que soit $\varepsilon>0$

$$\mathbb{P}\left(|M_n - \alpha| \geqslant \varepsilon\right) \leqslant \frac{\sigma^2}{n\varepsilon^2} \xrightarrow[n \to +\infty]{} 0.$$

Toute information de ce type est appelée *loi des grands nombres*. Les lois des grands nombres sont fondamentales car elles justifient l'approche fréquentiste que l'on a des probabilités.

Exercice 10

 \Rightarrow Un parti politique effectue un sondage pour évaluer son image dans l'opinion. La proportion de la population qui lui est favorable est $p \in [0,1]$. On interroge un échantillon de n personnes. La réponse de la k-ième personne sondée est représentée par la variable aléatoire X_k qui vaut 1 si la personne est favorable au parti et 0 sinon. Chaque variable X_k suit donc une loi de Bernoulli de paramètre p et on suppose que X_1, \ldots, X_n sont indépendantes. La variable aléatoire

$$M_n := \frac{X_1 + \ldots + X_n}{n}$$

est utilisée comme un estimateur de p.

1. Montrer que quel que soit $\varepsilon > 0$

$$\mathbb{P}(|M_n - p| \geqslant \varepsilon) \leqslant \frac{1}{4n\varepsilon^2}.$$

2. Soit $\alpha \in]0,1]$. Combien de personnes doit-on interroger pour obtenir une approximation de p à ε près avec une probabilité supérieure à $1-\alpha$? Faites une application numérique pour $\varepsilon=0.02$ et $\alpha=0.1$.

25.4. EXERCICES 437

25.4 Exercices

Espérance, variance

Espérance

Exercice 1 : Espérance d'une différence

Soit $n \ge 1$. Soit X et Y deux variables aléatoires de loi uniforme sur $[\![1,n]\!]$ et indépendantes. Déterminer la loi et l'espérance de $Z \coloneqq X - Y$.

Exercice 2 : Nombre de points fixes d'une permutation

L'ensemble S_n des permutations de $[\![1,n]\!]$ est muni de la probabilité uniforme. On effectue un tirage aléatoire d'une permutation. Pour $k \in [\![1,n]\!]$, on note X_k la variable aléatoire qui vaut 1 si k est fixe par la permutation et 0 sinon. On note X la variable aléatoire égale au nombre de points fixes de la permutation. Exprimer X en fonction des X_k et en déduire l'espérance de X.

Exercice 3: Exercice

Soit $n \in \mathbb{N}^*$. On dispose de n urnes numérotées de 1 à n. Pour tout $k \in [1, n]$, l'urne k contient k boules numérotées de 1 à k. On choisit une urne au hasard et on tire une boule dans cette urne. On note X le numéro de la boule tirée. Déterminer la loi de X puis son espérance.

Exercice 4: Les vaches

On considère une population de 2^n vaches susceptibles, avec la probabilité p, d'être porteuses d'un virus donné. On dispose d'un test détectant de façon certaine ce virus dans le lait des vaches. On fixe $0 \le k \le n$. On sépare les vaches en 2^{n-k} groupes de 2^k vaches. On mélange leur lait, on fait un test sur chacun des mélanges, puis on effectue un test sur chacune des vaches des groupes contaminés. On note Y le nombre de groupes malades et X le nombre total de tests effectués.

- 1. Exprimer X en fonction de Y, k et n.
- 2. Déterminer la probabilité qu'un groupe donné soit malade.
- 3. Donner la loi de Y et son espérance.
- 4. En déduire l'espérance de X.
- 5. On suppose n = 10 et p = 0.01. Déterminer la meilleure valeur de k.

Exercice 5: La puce

Une puce se déplace (uniquement en avant) sur une bande numérotée par les entiers naturels et commence à la case 0. À chaque étape, elle fait un bond d'une case avec la probabilité p et de deux cases avec la probabilité q = 1 - p. On note X_n le numéro de la case où se trouve la puce après n bonds et Y_n le nombre de bonds d'une case effectués après n bonds.

- 1. Déterminer la loi de Y_n .
- 2. Exprimer X_n en fonction de Y_n .
- 3. En déduire l'espérance de X_n .

Exercice 6 : Exercice

Soit $X_1, ..., X_{n+1}$ des variables aléatoires indépendantes qui suivent la loi uniforme sur [1, n]. On pose

$$T \coloneqq \min\{j \in [\![2,n+1]\!] \mid X_j \in \{X_1,...,X_{j-1}\}\}.$$

- 1. Vérifier que T est bien défini.
- 2. (a) Écrire une fonction Python qui prend $(X_1,...,X_{n+1})$ en arguments et qui renvoie T.
 - (b) On choisit n = 1000. Écrire une fonction qui prend N en argument et qui renvoie la moyenne de T au bout de N essais.
- 3. (a) Quelles sont les valeurs que peut prendre T? Déterminer la loi de T.
 - (b) Montrer que $\mathbb{E}(T) = \sum_{k=0}^{n} \mathbb{P}(T > k)$ et en déduire que

$$\mathbb{E}(T) = \frac{n!}{n^n} \sum_{k=0}^n \frac{n^k}{k!}.$$

(c) En admettant que

$$\sum_{k=0}^{n} \frac{n^k}{k!} \underset{n \to +\infty}{\sim} \frac{1}{2} e^n$$

donner un équivalent de $\mathbb{E}(T)$.

Exercice 7: Exercice

On considère une urne contenant n boules numérotées de 1 à n. On tire aléatoirement k boules en une seule prise. On note X la variable aléatoire donnant le numéro de la plus petite boule tirée. Calculer $\mathbb{E}(X)$.

Exercice 8: Exercice

Un questionnaire comporte 20 questions. Pour chaque question, k réponses sont possibles dont une seule est bonne. Chaque bonne réponse rapporte 1 point. Un candidat répond au hasard à toutes les questions.

- 1. Soit X la variable aléatoire donnant le nombre de points obtenus par le candidat à ce questionnaire. Déterminer la loi de X.
- 2. À chaque question, si le candidat s'est trompé, il a droit à une seconde chance et peut choisir une autre réponse parmi celles qui restent. Il gagne alors 1/2 point en cas de bonne réponse. Soit Y le nombre de 1/2 points obtenus, déterminer la loi de Y.
- 3. Déterminer k pour que le candidat obtienne en moyenne une note de 5 sur 20.

Exercice 9: Exercice

Soit N une variable aléatoire à valeurs dans [1, m] et (X_1, \ldots, X_m) des variables aléatoires à valeurs entières indépendantes entre elles et de N et suivant toutes la même loi. On pose pour tout $j \in [1, m]$

$$S_j := \sum_{i=1}^j X_i.$$

On pose enfin

$$Z := \sum_{i=1}^{N} X_i.$$

- 1. Déterminer l'espérance de \mathbb{Z} .
- 2. On tire un entier N au hasard et uniformément dans [1, n] puis on jette N fois une pièce équilibrée. Calculer l'espérance du nombre de piles obtenus.

Variance

Exercice 10: Exercice

On considère 5 jetons numérotés de 1 à 5.

- 1. On tire simultanément 2 jetons parmi les 5 et on note X la plus petite valeur. Déterminer la loi de X, son espérance et sa variance.
- 2. On tire successivement et avec remise 2 jetons parmi les 5 et on note Y la plus petite valeur. Déterminer la loi de Y et son espérance.

Couple de variables aléatoires

Loi conjointe

Exercice 11: Exercice

Soit X et Y deux variables aléatoires réelles indépendantes définies sur un même espace probabilisé fini. On suppose que X et Y sont symétriques, c'est-à-dire que X et -X (respectivement Y et -Y) ont même loi.

1. Montrer que (X,Y) et (X,-Y) ont même loi, puis que

$$\mathbb{P}(X^{2} = Y^{2}) = 2\mathbb{P}(X = Y) - \mathbb{P}(X = 0)\mathbb{P}(Y = 0).$$

2. Montrer que $\mathbb{P}(X + Y \ge 0) = \mathbb{P}(X + Y \le 0)$.

25.4. EXERCICES 439

Covariance

Exercice 12: Exercice

On lance deux fois un dé équilibré à 6 faces et on note D_1 et D_2 les deux résultats. On pose $S := D_1 + D_2$ puis X_1 (resp. X_2) le reste de la division euclidienne de S par 2 (resp. 5).

- 1. Déterminer la loi conjointe du couple (X_1, X_2) (est-elle uniforme?) et ses lois marginales.
- 2. Calculer $Cov(X_1, X_2)$. X_1 et X_2 sont-elles indépendantes?

Vers les grands nombres

Exercice 13: Marche aléatoire

Soit X_1, \ldots, X_n des variables aléatoires indépendantes et de même loi : $\mathbb{P}(X_k = 1) = \mathbb{P}(X_k = -1) = 1/2$. On pose $S_n := X_1 + \cdots + X_n$. Soit $\varepsilon > 0$.

1. Majorer

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \geqslant \varepsilon\right).$$

- 2. Montrer que, pour tout $t \in \mathbb{R}$, $\mathbb{E}(e^{tS_n}) = \operatorname{ch}^n t$.
- 3. Montrer que, pour tout t > 0, $\operatorname{ch}(t) \leqslant e^{t^2/2}$.
- 4. Montrer que, pour tout t > 0

$$\mathbb{P}\left(\frac{S_n}{n} \geqslant \varepsilon\right) \leqslant \exp\left(\frac{nt^2}{2} - nt\varepsilon\right).$$

5. Montrer que

$$\mathbb{P}\left(\frac{S_n}{n} \geqslant \varepsilon\right) \leqslant \exp\left(-\frac{n\varepsilon^2}{2}\right).$$

Chapitre 26

Déterminants

26.1.1	Forme n -linéaire alternée
26.1.2	Déterminant d'une famille de n vecteurs
26.1.3	Déterminant d'un endomorphisme
26.1.4	Déterminant d'une matrice carrée
26.2 Calc	ul de déterminant $\dots\dots\dots\dots\dots$ 4-
26.2.1	Méthode du pivot
26.2.2	Développement par rapport à une colonne
26.2.3	Comatrice
96 9 E	cices

26.1 Déterminant

26.1.1 Forme n-linéaire alternée

Définition 26.1.1

Soit E_1, \ldots, E_n et F des \mathbb{K} -espaces vectoriels. On dit qu'une application $\varphi: E_1 \times \cdots \times E_n \to F$ est n-linéaire lorsqu'elle est linéaire par rapport à chacune des variables, c'est-à-dire lorsque quel que soit $i \in [\![1,n]\!]$ et $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in E_1 \times \cdots \times E_{i-1} \times E_{i+1} \times \cdots \times E_n$, on a

$$\forall x, y \in E_i, \quad \forall \lambda, \mu \in \mathbb{K}, \quad \varphi(x_1, \dots, x_{i-1}, \lambda x + \mu y, x_{i+1}, \dots, x_n) =$$

$$\lambda \varphi(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n) + \mu \varphi(x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_n).$$

Si $F = \mathbb{K}$, on dit que φ est une forme n-lineaire.

Remarques

- \Rightarrow Lorsque n=2, on parle d'application bilinéaire.
- \Rightarrow L'ensemble des applications n-linéaires de $E_1 \times \cdots \times E_n$ dans F est un sous-espace vectoriel de l'ensemble des applications de $E_1 \times \cdots \times E_n$ dans F.
- $\Rightarrow \text{Si } \varphi: E_1 \times \cdots \times E_n \to F \text{ est } n\text{-lin\'eaire, } i \in \llbracket 1, n \rrbracket \text{ et } (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \in E_1 \times \cdots \times E_{i-1} \times E_{i+1} \times \cdots \times E_n, \\ \text{alors } \varphi(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) = 0.$
- \Rightarrow On dit qu'une application φ est une forme n-linéaire sur E lorsque c'est une application n-linéaire de E^n dans \mathbb{K} .

Exemples

 \Rightarrow Si X est un ensemble, l'application

$$\begin{array}{cccc} \varphi: & \mathcal{F}(X,\mathbb{K}) \times \mathcal{F}(X,\mathbb{K}) & \longrightarrow & \mathcal{F}(X,\mathbb{K}) \\ & (f,g) & \longmapsto & fg \end{array}$$

est bilinéaire.

 \Rightarrow Si E, F, G sont des K-espaces vectoriels, l'application

$$\begin{array}{cccc} \varphi: & \mathcal{L}(E,F) \times \mathcal{L}(F,G) & \longrightarrow & \mathcal{L}(E,G) \\ & (f,g) & \longmapsto & g \circ f \end{array}$$

est bilinéaire. De manière similaire, si $r,q,p\in\mathbb{N}$, l'application

$$\varphi: \mathcal{M}_{r,q}\left(\mathbb{K}\right) \times \mathcal{M}_{q,p}\left(\mathbb{K}\right) \longrightarrow \mathcal{M}_{r,p}\left(\mathbb{K}\right)$$

$$(A,B) \longmapsto AB$$

est bilinéaire.

 \Rightarrow Soit $\varphi_1, \ldots, \varphi_n$ des formes linéaires sur E. Alors

$$\varphi: E^n \longrightarrow \mathbb{K}$$

$$(x_1, \dots, x_n) \longmapsto \prod_{k=1}^n \varphi_k(x_k)$$

est une forme n-linéaire sur E.

⇒ Dans le plan euclidien, le produit scalaire est bilinéaire. Dans l'espace euclidien orienté, le produit scalaire et le produit vectoriel sont bilinéaires.

Définition 26.1.2

On dit qu'une forme φ , n-linéaire sur E, est alternée lorsqu'elle est nulle sur toute famille de vecteurs dont au moins deux sont égaux.

Remarques

 \Rightarrow Autrement dit, la forme $n\text{-linéaire }\varphi:E^n\to\mathbb{K}$ est alternée lorsque

$$\forall x_1, \dots, x_n \in E, \quad \forall i, j \in [1, n], \quad [i \neq j \text{ et } x_i = x_j] \implies \varphi(x_1, \dots, x_n) = 0.$$

 \Rightarrow L'ensemble des formes n-linéaires alternées sur E est noté $\Lambda_n(E)$. C'est un sous-espace vectoriel de l'espace des formes n-linéaires sur E.

Proposition 26.1.3

Soit φ une forme *n*-linéaire alternée sur *E*. Alors, on ne change pas la valeur de $\varphi(x_1, \ldots, x_n)$ en ajoutant à l'une de ses variables une combinaison linéaire des autres.

Remarque

 \Rightarrow En particulier, si (x_1, \ldots, x_n) est liée, alors $\varphi(x_1, \ldots, x_n) = 0$.

Proposition 26.1.4

Soit φ une forme n-linéaire alternée sur E. Alors

$$\forall x_1, \dots, x_n \in E, \quad \forall \sigma \in \mathcal{S}_n, \quad \varphi\left(x_{\sigma(1)}, \dots, x_{\sigma(n)}\right) = \epsilon(\sigma)\varphi\left(x_1, \dots, x_n\right).$$

On dit que φ est antisymétrique.

Remarque

 \Rightarrow Une forme *n*-linéaire alternée est donc antisymétrique. Réciproquement, si \mathbb{K} n'est pas de caractéristique 2, les formes antisymétriques sont alternées.

Proposition 26.1.5

Soit E un \mathbb{K} -espace vectoriel de dimension n, $\mathcal{B} := (e_1, \dots, e_n)$ une base de E et φ une forme n-linéaire alternée sur E. Alors

$$\forall x_1, \dots, x_n \in E, \quad \varphi(x_1, \dots, x_n) = \left(\sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) \prod_{k=1}^n e_{\sigma(k)}^{\star}(x_k)\right) \varphi(e_1, \dots, e_n).$$

Remarque

 \Rightarrow En particulier, si φ et ψ sont deux formes n-linéaires alternées sur un \mathbb{K} -espace vectoriel de dimension n qui prennent la même valeur sur une base de E, alors $\varphi = \psi$.

26.1. DÉTERMINANT 443

Théorème 26.1.6

Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} := (e_1, \dots, e_n)$ une base de E. Alors, il existe une unique forme n-linéaire alternée φ sur E telle que $\varphi(e_1, \dots, e_n) = 1$.

Proposition 26.1.7

Soit E un K-espace vectoriel de dimension n. Alors $\Lambda_n(E)$ est un K-espace vectoriel de dimension 1.

26.1.2 Déterminant d'une famille de n vecteurs

Définition 26.1.8

Si $\mathcal{B} := (e_1, \dots, e_n)$ est une base de E, on appelle déterminant relativement à la base \mathcal{B} , et on note det \mathcal{B} , l'unique forme n-linéaire alternée sur E telle que det $\mathcal{B}(e_1, \dots, e_n) = 1$. Si (x_1, \dots, x_n) est une famille de n vecteurs de E, on appelle déterminant de la famille (x_1, \dots, x_n) relativement à la base \mathcal{B} le scalaire det $\mathcal{B}(x_1, \dots, x_n)$.

Remarque

 \Rightarrow On en déduit que si \mathcal{B} est une base de $E, x_1, \ldots, x_n \in E$ et $A := \mathcal{M}_{\mathcal{B}}(x_1, \ldots, x_n)$, alors

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(n),n}.$$

Proposition 26.1.9

Soit $\mathcal{B} := (e_1, \dots, e_n)$ et $\mathcal{B}' := (e'_1, \dots, e'_n)$ deux bases de E. Alors

$$\forall x_1, \dots, x_n \in E, \quad \det_{\mathcal{B}'}(x_1, \dots, x_n) = \det_{\mathcal{B}'}(\mathcal{B}) \det_{\mathcal{B}}(x_1, \dots, x_n).$$

Remarque

 \Rightarrow En particulier, si \mathcal{B} , \mathcal{B}' et \mathcal{B}'' sont des bases de E

$$\det_{\mathcal{B}}(\mathcal{B}'') = \det_{\mathcal{B}}(\mathcal{B}') \det_{\mathcal{B}'}(\mathcal{B}'').$$

Proposition 26.1.10

Soit $\mathcal{B} := (e_1, \dots, e_n)$ une base de E et (x_1, \dots, x_n) une famille de n vecteurs de E.

— Alors (x_1, \ldots, x_n) est une base de E si et seulement si

$$\det_{\mathcal{B}}(x_1,\ldots,x_n)\neq 0.$$

— Autrement dit, (x_1, \ldots, x_n) est liée si et seulement si

$$\det_{\mathcal{B}}(x_1,\ldots,x_n)=0.$$

26.1.3 Déterminant d'un endomorphisme

Définition 26.1.11

Si $f \in \mathcal{L}(E)$, il existe un unique scalaire, appelé déterminant de f et noté det f, tel que pour toute base \mathcal{B} de E, on a

$$\forall x_1, \dots, x_n \in E$$
, $\det_{\mathcal{B}} (f(x_1), \dots, f(x_n)) = \det(f) \det_{\mathcal{B}} (x_1, \dots, x_n)$.

En particulier, si $\mathcal{B} := (e_1, \dots, e_n)$ est une base de E

$$\det f = \det_{\mathcal{B}} \left(f\left(e_{1}\right), \dots, f\left(e_{n}\right) \right).$$

Exercice 1

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension n et s une symétrie de E. On note p la dimension de $\operatorname{Ker}(s+\operatorname{Id})$. Montrer que $\det s = (-1)^p$.

$$- \det \operatorname{Id}_E = 1$$

— Si
$$f \in \mathcal{L}(E)$$
 et $\lambda \in \mathbb{K}$, alors

$$\det(\lambda f) = \lambda^n \det f.$$

— Si
$$f, g \in \mathcal{L}(E)$$
, alors

$$\det(g \circ f) = \det g \cdot \det f.$$

Exercice 2

 \Rightarrow Soit E un \mathbb{R} -espace vectoriel de dimension n. Montrer qu'il existe $f \in \mathcal{L}(E)$ tel que $f^2 = -$ Id si et seulement si n est pair.

Proposition 26.1.13

Soit $f \in \mathcal{L}(E)$. Alors f est un isomorphisme si et seulement si

$$\det f \neq 0$$
.

De plus, si tel est le cas

$$\det f^{-1} = \frac{1}{\det f}.$$

Remarque

 \Rightarrow On en déduit que l'application

$$\varphi: \operatorname{GL}(E) \longrightarrow \mathbb{K}^*$$

$$f \longmapsto \det f$$

est un morphisme de groupe de $(GL(E), \circ)$ dans (\mathbb{K}^*, \times) .

26.1.4 Déterminant d'une matrice carrée

Définition 26.1.14

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle déterminant de A et on note det A le déterminant des vecteurs colonnes de A relativement à la base canonique de \mathbb{K}^n .

Remarques

- \Rightarrow Le déterminant est donc une forme n-linéaire alternée par rapport aux colonnes de la matrice.
- \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$, alors

$$\det A = \sum_{\sigma \in \mathcal{S}_n} \epsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

Cependant, cette formule comporte une somme de n! termes. Il est donc déconseillé de l'utiliser pour un calcul effectif de déterminant.

 \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$, son déterminant est noté

$$\begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix}$$

Proposition 26.1.15

Soit \mathcal{B} une base de E.

— Si (x_1, \ldots, x_n) est une famille de n vecteurs de E, alors

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \det\left[\mathcal{M}_{\mathcal{B}}(x_1,\ldots,x_n)\right].$$

— Si $f \in \mathcal{L}(E)$, alors

$$\det f = \det \left[\mathcal{M}_{\mathcal{B}} \left(f \right) \right].$$

—
$$\det I_n = 1$$

— Si $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$, alors

$$\det(\lambda A) = \lambda^n \det A.$$

— Si
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, alors

$$\det(AB) = \det A \cdot \det B.$$

Remarque

 \Rightarrow Il n'existe aucune formule permettant de calculer $\det(A+B)$ en fonction de $\det A$ et de $\det B$. En particulier, toute formule du type $\det(A+B) = \det A + \det B$ est fausse.

Proposition 26.1.17

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si

$$\det A \neq 0$$
.

De plus, si tel est le cas

$$\det\left(A^{-1}\right) = \frac{1}{\det A}.$$

Remarque

 \Rightarrow On en déduit que l'application

$$\varphi: \operatorname{GL}_n(\mathbb{K}) \longrightarrow \mathbb{K}^*$$

$$A \longmapsto \det A$$

est un morphisme de groupe de $(GL_n(\mathbb{K}), \times)$ dans (\mathbb{K}^*, \times) .

Proposition 26.1.18

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$\det A^{\top} = \det A.$$

Remarque

 \Rightarrow On en déduit que le déterminant est une forme n-linéaire alternée par rapport aux lignes de la matrice.

Exercice 3

 \Rightarrow Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice antisymétrique. Montrer que det A = 0.

26.2 Calcul de déterminant

26.2.1 Méthode du pivot

Proposition 26.2.1

Soit la matrice

$$A := \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \in \mathcal{M}_2 \left(\mathbb{K} \right).$$

Alors det $A = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$.

Remarques

- ⇒ Le déterminant de la matrice de taille nulle est 1.
- \Rightarrow Si $a \in \mathbb{K}$, le déterminant de la matrice à une ligne et une colonne (a) est a.

Exercice 4

 \Rightarrow Soit $\theta_1, \ldots, \theta_n \in \mathbb{R}$. Calculer le rang de la matrice $A \in \mathcal{M}_n(\mathbb{R})$ définie par

$$\forall i, j \in [1, n], \quad a_{i,j} := \cos(\theta_i + \theta_j).$$

Proposition 26.2.2

Soit T une matrice triangulaire supérieure

alors

$$\det T = \prod_{k=1}^{n} \lambda_k.$$

Remarque

⇒ En particulier, le déterminant d'une matrice diagonale est le produit de ses coefficients diagonaux.

Proposition 26.2.3

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure par blocs

$$A = \begin{pmatrix} A_1 & \star \\ 0 & A_2 \end{pmatrix}$$

où $n_1 + n_2 = n$, $A_1 \in \mathcal{M}_{n_1}(\mathbb{K})$ et $A_2 \in \mathcal{M}_{n_2}(\mathbb{K})$. Alors

$$\det A = \det A_1 \det A_2.$$

Remarques

 \Rightarrow En particulier, si $A \in \mathcal{M}_{n+1}(\mathbb{K})$ est de la forme

$$A = \begin{pmatrix} \lambda & \star & & \star \\ 0 & & & \star \\ & & B & \\ 0 & & & \end{pmatrix}$$

où $\lambda \in \mathbb{K}$ et $B \in \mathcal{M}_n(\mathbb{K})$, alors

$$\det A = \lambda \det B$$
.

 \Rightarrow De même, si $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire inférieure par blocs

$$A = \begin{pmatrix} A_1 & 0 \\ \star & A_2 \end{pmatrix}$$

alors $\det A = \det A_1 \det A_2$.

Proposition 26.2.4

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $i, j \in [1, n]$ tels que $i \neq j$ et $\lambda \in \mathbb{K}$.

- Les opérations élémentaires $L_i \leftarrow L_i + \lambda L_j$ et $C_i \leftarrow C_i + \lambda C_j$ ne modifient pas les déterminants.
- Les opérations élémentaires $L_i \leftarrow \lambda L_i$ et $C_i \leftarrow \lambda C_i$ multiplient les déterminants par λ .
- Les opérations élémentaires $L_i \leftrightarrow L_j$ et $C_i \leftrightarrow C_j$ multiplient les déterminants par -1.

Remarques

- ⇒ Plus généralement, si à une colonne, on ajoute une combinaison linéaire des autres colonnes, on ne change pas le déterminant. De même, si à une ligne, on ajoute une combinaison linéaire des autres lignes, on ne change pas non plus le déterminant.
- ⇒ Toute permutation des colonnes multiplie le déterminant par la signature de cette permutation. De même, toute permutation des lignes multiplie le déterminant par la signature de cette permutation.

Exercice 5

 \Rightarrow Soit $a, b, c \in \mathbb{R}$. Calculer les déterminants

26.2.2 Développement par rapport à une colonne

Définition 26.2.5

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- On appelle mineur d'indice $(i,j) \in [1,n]^2$ le déterminant $\Delta_{i,j}$ de la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne de la matrice A.
- On appelle cofacteur d'indice $(i,j) \in [1,n]^2$, et on note $A_{i,j}$, le scalaire $A_{i,j} := (-1)^{i+j} \Delta_{i,j}$.

Remarque

 \Rightarrow On retiendra que la matrice des $(-1)^{i+j}$ comporte des 1 sur la diagonale et qu'on passe de ± 1 à son opposé lorsqu'on change de ligne ou de colonne.

Proposition 26.2.6: Développement par rapport à une ligne ou une colonne

Soit $A \in \mathcal{M}_n(\mathbb{K})$.
— Soit $j \in [1, n]$. Alors

$$\det A = \sum_{i=1}^{n} a_{i,j} A_{i,j}$$
$$= \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}.$$

— Soit $i \in [1, n]$. Alors

$$\det A = \sum_{j=1}^{n} a_{i,j} A_{i,j}$$
$$= \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \Delta_{i,j}.$$

Exercices 6

 \Rightarrow Soit $u, v \in \mathbb{R}$. Calculer le déterminant de la matrice

$$\begin{pmatrix}
-u & v & 0 \\
-2 & 0 & 2v \\
0 & -1 & u
\end{pmatrix}$$

 \Rightarrow Déterminer les $n\in\mathbb{N}$ pour les quels la matrice suivante est inversible.

$$\begin{pmatrix} 1 & 1 & & & & (0) \\ 1 & 1 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 1 & 1 \\ (0) & & & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Proposition 26.2.7: Déterminant de Vandermonde

On appelle Vandermonde de la famille $(x_0, \ldots, x_n) \in \mathbb{K}^{n+1}$ le déterminant

$$V(x_0, \dots, x_n) := \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix}$$

On a

$$V(x_0, \dots, x_n) = \prod_{0 \le i < j \le n} (x_j - x_i).$$

Remarque

 \Rightarrow Soit $x_0, \dots, x_n \in \mathbb{K}$, n+1 éléments deux à deux distincts et $y_0, \dots, y_n \in \mathbb{K}$. Soit $P \coloneqq a_0 + a_1 X + \dots + a_n X^n \in \mathbb{K}_n[X]$. Alors

$$\forall k \in \llbracket 0, n \rrbracket, \quad P(x_k) = y_k$$

si et seulement si

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ \vdots & \vdots & \vdots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n. \end{cases}$$

Le déterminant de la matrice de ce système est un Vandermonde qui est non nul car les x_k sont deux à deux distincts. On retrouve le fait que ce système est de Cramer et donc qu'il admet une unique solution, résultat au cœur de la définition des polynômes interpolateurs de Lagrange.

26.2.3 Comatrice

Définition 26.2.8

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle *comatrice* de A et on note Com A la matrice des cofacteurs de A

$$\forall i, j \in [1, n], \quad [\text{Com } A]_{i,j} := (-1)^{i+j} \Delta_{i,j}.$$

Proposition 26.2.9

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$A(\operatorname{Com} A)^{\top} = (\operatorname{Com} A)^{\top} A = (\det A) I_n.$$

En particulier, si $A \in GL_n(\mathbb{K})$

$$A^{-1} = \frac{1}{\det A} (\operatorname{Com} A)^{\top}.$$

Remarque

⇒ La matrice

$$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$

est inversible si et seulement si det A = ad - cb est non nul. De plus, si tel est le cas

$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Cependant, on évitera d'utiliser une telle formule en pratique.

Exercice 7

 \Rightarrow Soit $A \in \mathcal{M}_n(\mathbb{Z})$ une matrice inversible dans $\mathcal{M}_n(\mathbb{R})$. Montrer que son inverse est à coefficients entiers si et seulement si det $A \in \{-1, 1\}$.

26.3. EXERCICES 449

26.3 Exercices

$D\'{e}terminant$

Forme n-linéaire alternée

Exercice 1: Exercice ENS

Soit E un \mathbb{K} -espace vectoriel de dimension $d \in \mathbb{N}$. Pour tout $n \in \mathbb{N}$, calculer la dimension de l'espace vectoriel $\mathcal{A}_n(E)$ des formes n-linéaires alternées sur E.

Déterminant d'une famille de n vecteurs

Exercice 2: Exercice

Soit E un \mathbb{K} -espace vectoriel de dimension $n, f \in \mathcal{L}(E)$ et \mathcal{B} une base de E. Montrer que pour tous $x_1, \ldots, x_n \in E$

$$\sum_{k=1}^{n} \det_{\mathcal{B}}(x_1, \dots, x_{k-1}, f(x_k), x_{k+1}, \dots, x_n) = \operatorname{tr}(f) \det_{\mathcal{B}}(x_1, \dots, x_n).$$

Déterminant d'un endomorphisme

Exercice 3 : Déterminant de la transposition

Soit φ l'application de $\mathcal{M}_n(\mathbb{K})$ dans lui-même qui à la matrice M associe sa transposée. Calculer le déterminant de φ .

Déterminant d'une matrice carrée

Calcul de déterminant

Méthode du pivot

Exercice 4 : Calcul de déterminant

Soit $a_1, \ldots, a_n \in \mathbb{R}$. Calculer le déterminant de la matrice $A \in \mathcal{M}_n(\mathbb{R})$ donnée par les coefficients

$$\forall i, j \in [1, n], \quad a_{i,j} := \sin(a_i + a_j).$$

Exercice 5 : Calculs de déterminants

Soit $a, b, c \in \mathbb{K}$. Calculer et factoriser les déterminants suivants

$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{vmatrix} = \begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$
$$\begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (c+a)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix}$$

Exercice 6 : Calculs de déterminants

Soit $a,b,c,d \in \mathbb{K}.$ Calculer et factoriser les déterminants suivants

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ bcd & acd & abd & abc \end{vmatrix} = \begin{vmatrix} 1 & a & b & ac \\ 1 & b & c & bd \\ 1 & c & d & ac \\ 1 & d & a & bd \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a^2 & b^2 \\ 1 & a^2 & 0 & c^2 \\ 1 & b^2 & c^2 & 0 \end{vmatrix}$$
$$\begin{vmatrix} 1 + a & b & a & b \\ b & 1 + a & b & a \\ a & b & 1 + a & b \\ b & a & b & 1 + a \end{vmatrix} = \begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix}$$

Exercice 7 : Calcul de déterminant

Soit $a_1, \ldots, a_n \in \mathbb{R}$. Calculer

$$\begin{vmatrix}
1 & 1 & \cdots & 1 \\
\cos(a_1) & \cos(a_2) & \cdots & \cos(a_n) \\
\vdots & \vdots & & \vdots \\
\cos((n-1)a_1) & \cos((n-1)a_2) & \cdots & \cos((n-1)a_n)
\end{vmatrix}$$

Exercice 8: Matrice circulante

1. Soit $a, b, c \in \mathbb{C}$. On pose

$$M := \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \quad \text{et} \quad J := \begin{pmatrix} 1 & 1 & 1 \\ 1 & \mathbf{j} & \mathbf{j}^2 \\ 1 & \mathbf{j}^2 & \mathbf{j} \end{pmatrix}$$

- (a) Montrer que det $J \neq 0$.
- (b) Calculer MJ et en déduire det M.
- 2. Mêmes questions avec la matrice circulante

$$M := \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_0 \end{pmatrix} \quad \text{et} \quad J := \left(\omega^{(i-1)(j-1)}\right)_{1 \leqslant i,j \leqslant n}$$

pour $a_0, \ldots, a_{n-1} \in \mathbb{C}$ en posant $\omega := e^{i\frac{2\pi}{n}}$.

Exercice 9 : Calculs de déterminants

Soit $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{K}$. Calculer le déterminant

$$\begin{bmatrix} a_1 + b_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 + b_2 & a_2 & \cdots & a_2 \\ a_3 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & a_{n-1} \\ a_n & \cdots & \cdots & a_n & a_n + b_n \end{bmatrix}$$

Exercice 10 : Calcul de déterminant

Soit $n \in \mathbb{N}^*$ et $p \in [1, n]$. On définit la matrice $A_{n,p}$ de $\mathcal{M}_{p+1}(\mathbb{R})$ par

$$A_{n,p} := \begin{pmatrix} 1 & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{p} \\ 1 & \binom{n+1}{1} & \binom{n+1}{2} & \cdots & \binom{n+1}{p} \\ \vdots & \vdots & & \vdots \\ 1 & \binom{n+p}{1} & \binom{n+p}{2} & \cdots & \binom{n+p}{p} \end{pmatrix}$$

Calculer $\det A_{n,p}$.

Exercice 11 : Opérations par blocs

1. Soit $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$. Quel produit matriciel permet de transformer

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 en $\begin{pmatrix} A+2C & B+2D \\ C & D \end{pmatrix}$

2. Montrer que pour tous $A, B \in \mathcal{M}_n(\mathbb{K})$

$$\begin{vmatrix} I_n & B \\ A & I_n \end{vmatrix} = \det(I_n - AB) = \det(I_n - BA).$$

26.3. EXERCICES 451

Développement par rapport à une colonne

Exercice 12: Matrice tridiagonale

Soit $x \in \mathbb{R}$. Calculer le déterminant

Exercice 13 : Calcul de rang

Résoudre le système linéaire dont la matrice A est définie par

$$\forall i, j \in \llbracket 1, n \rrbracket, \qquad a_{i,j} \coloneqq \begin{cases} 1 & \text{si } |i - j| \leqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Quel est son rang?

Comatrice

Exercice 14 : Comatrice du produit

Soit \mathbb{K} un corps et $A, B \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que les matrices $A XI_n$ et $B XI_n$ sont inversibles dans $\mathcal{M}_n(\mathbb{K}(X))$.
- 2. Montrer que Com(AB) = Com(A) Com(B).

Chapitre 27

Fonctions de deux variables

	te, continuité
21.1.1	Notion d'ouvert
27.1.2	Limite
27.1.3	Continuité
	Application partielle
27.1.5	Extension aux fonctions à valeurs dans \mathbb{R}^2
27.2 Déri	$vation \ldots \ldots$
27.2.1	Dérivée partielle
27.2.2	Développement limité, gradient
27.2.3	Dérivation des fonctions composées
27.2.4	Extrémum d'une fonction de deux variables
27.3 Exer	cices

27.1 Limite, continuité

27.1.1 Notion d'ouvert

Proposition 27.1.1

On note $\|.\|$ la norme dérivant du produit scalaire usuel sur \mathbb{R}^2 . On rappelle que

$$\forall x \in \mathbb{R}^2, \qquad ||x|| \geqslant 0$$

$$\forall x \in \mathbb{R}^2, \qquad ||x|| = 0 \Longleftrightarrow x = (0,0)$$

$$\forall x \in \mathbb{R}^2, \quad \forall \lambda \in \mathbb{R}, \qquad ||\lambda x|| = |\lambda| ||x||$$

$$\forall x, y \in \mathbb{R}^2, \qquad ||x + y|| \leqslant ||x|| + ||y||$$

$$\forall x, y \in \mathbb{R}^2, \qquad ||x|| - ||y||| \leqslant ||x - y||$$

Proposition 27.1.2

$$\begin{aligned} \forall \, (x_1, x_2) \in \mathbb{R}^2, & |x_1| \leqslant \|(x_1, x_2)\| & \text{et} & |x_2| \leqslant \|(x_1, x_2)\| \\ \forall \, (x_1, x_2) \in \mathbb{R}^2, & \|(x_1, x_2)\| \leqslant |x_1| + |x_2| \end{aligned}$$

Définition 27.1.3

Soit $x_0 \in \mathbb{R}^2$ et r > 0.

— On appelle boule ouverte de centre x_0 et de rayon r l'ensemble

$$B_O(x_0, r) := \{ x \in \mathbb{R}^2 \mid ||x - x_0|| < r \}.$$

— On appelle boule fermée de centre x_0 et de rayon r l'ensemble

$$B_F(x_0, r) := \{x \in \mathbb{R}^2 \mid ||x - x_0|| \le r\}.$$

Définition 27.1.4

On dit qu'une partie \mathcal{U} de \mathbb{R}^2 est un ouvert lorsque

$$\forall x \in \mathcal{U}, \quad \exists \eta > 0, \quad B_F(x, \eta) \subset \mathcal{U}.$$

Proposition 27.1.5

- \varnothing et \mathbb{R}^2 sont des ouverts.
- Une union d'ouverts est un ouvert.
- Une intersection finie d'ouverts est un ouvert.

Proposition 27.1.6

- Les boules ouvertes sont des ouverts.
- Si ax + by + c = 0 est l'équation d'une droite, le demi-plan d'équation

$$ax + by + c > 0$$

est un ouvert.

— Si on enlève un nombre fini de points à un ouvert, il reste ouvert.

Exercice 1

 \Rightarrow Soit $x_0 \in \mathbb{R}^2$. Montrer que

$$\bigcap_{n \in \mathbb{N}^*} B_O\left(x_0, \frac{1}{n}\right)$$

n'est pas un ouvert.

Définition 27.1.7

Soit \mathcal{U} une partie de \mathbb{R}^2 et $a \in \mathbb{R}^2$. On dit que a est adhérent à \mathcal{U} lorsque

$$\forall \varepsilon > 0, \quad B_F(a, \varepsilon) \cap \mathcal{U} \neq \emptyset.$$

Exercice 2

 \Rightarrow Soit $x_0 \in \mathbb{R}^2$ et r > 0. Montrer que l'ensemble des points adhérents à la boule ouverte de centre x_0 et de rayon r est la boule fermée de même centre et de même rayon.

Définition 27.1.8

On appelle fonction réelle de deux variables toute fonction définie sur une partie ouverte \mathcal{U} de \mathbb{R}^2 à valeurs dans \mathbb{R} .

27.1.2 Limite

Définition 27.1.9

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $a \in \mathbb{R}^2$ un point adhérent à \mathcal{U} .

— Soit $l \in \mathbb{R}$. On dit que f(x) tend vers l lorsque x tend vers a lorsque

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathcal{U}, \quad \|x - a\| \leqslant \eta \Longrightarrow |f(x) - l| \leqslant \varepsilon.$$

— On dit que f(x) tend vers $+\infty$ lorsque x tend vers a lorsque

$$\forall m \in \mathbb{R}, \quad \exists \eta > 0, \quad \forall x \in \mathcal{U}, \quad \|x - a\| \leqslant \eta \Longrightarrow f(x) \geqslant m.$$

— On dit que f(x) tend vers $-\infty$ lorsque x tend vers a lorsque

$$\forall M \in \mathbb{R}, \quad \exists \eta > 0, \quad \forall x \in \mathcal{U}, \quad \|x - a\| \leqslant \eta \Longrightarrow f(x) \leqslant M.$$

Remarque

 \Rightarrow Soit $(x_0, y_0) \in \mathbb{R}^2$. Alors

$$x \xrightarrow{(x,y)\to(x_0,y_0)} x_0, \qquad y \xrightarrow{(x,y)\to(x_0,y_0)} y_0 \text{ et } \|(x,y)\| \xrightarrow{(x,y)\to(x_0,y_0)} \|(x_0,y_0)\|.$$

Soit f et $g: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $a \in \mathbb{R}^2$ un point adhérent à \mathcal{U} . On suppose que f(x) tend vers $l_1 \in \mathbb{R}$ et g(x) tend vers $l_2 \in \mathbb{R}$ lorsque x tend vers a. Alors

— Si
$$\lambda, \mu \in \mathbb{R}$$

$$\lambda f(x) + \mu g(x) \xrightarrow[x \to a]{} \lambda l_1 + \mu l_2.$$

— On a

$$f(x)g(x) \xrightarrow[x \to a]{} l_1 l_2.$$

— Si $l_2 \neq 0$, alors il existe une boule de centre a sur laquelle g ne s'annule pas. De plus

$$\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} \frac{l_1}{l_2}.$$

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$, $a \in \mathbb{R}^2$ un point adhérent à \mathcal{U} et $g: \mathcal{D}_g \subset \mathbb{R} \to \mathbb{R}$ une fonction telle que $f(\mathcal{U}) \subset \mathcal{D}_g$. On

$$f(x) \xrightarrow[x \to a]{} l_f \in \overline{\mathbb{R}} \text{ et } g(y) \xrightarrow[y \to l_f]{} l_g \in \overline{\mathbb{R}}.$$

Alors

$$g(f(x)) \xrightarrow[x \to a]{} l_g.$$

Soit f, g et $h: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $a \in \mathbb{R}^2$ un point adhérent à \mathcal{U} .

— On suppose que

$$\forall x \in \mathcal{U}, \quad f(x) \leqslant g(x) \leqslant h(x).$$

et que f(x) et h(x) admettent la même limite finie $l \in \mathbb{R}$ lorsque x tend vers a. Alors

$$f(x) \xrightarrow[r \to a]{} l.$$

— On suppose qu'il existe $l \in \mathbb{R}$ tel que

$$\forall x \in \mathcal{U}, \quad |f(x) - l| \leq g(x).$$

et que g(x) tend vers 0 lorsque x tend vers a. Alors

$$f(x) \xrightarrow[x \to a]{} l.$$

— On suppose que

$$\forall x \in \mathcal{U}, \quad f(x) \leqslant g(x).$$

— Si
$$f(x) \longrightarrow +\infty$$
, alors $g(x) \longrightarrow +\infty$

$$\begin{array}{l} - \text{ Si } f(x) \xrightarrow[x \to a]{} + \infty, \text{ alors } g(x) \xrightarrow[x \to a]{} + \infty. \\ - \text{ Si } g(x) \xrightarrow[x \to a]{} - \infty, \text{ alors } f(x) \xrightarrow[x \to a]{} - \infty. \end{array}$$

Remarque

 \Rightarrow Si il existe une fonction $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ telle que

$$\varphi(r) \xrightarrow[r \to 0]{} 0 \text{ et } \forall r \geqslant 0, \quad \forall \theta \in \mathbb{R}, \quad |f(a_1 + r\cos\theta, a_2 + r\sin\theta) - l| \leqslant \varphi(r)$$

alors
$$f(x) \xrightarrow[x \to a]{} l$$
.

Exercice 3

 \Rightarrow Soit f la fonction définie par

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \quad f(x,y) \coloneqq \frac{x^2y}{x^2 + y^2}.$$

Montrer que f admet une limite en (0,0).

27.1.3 Continuité

Définition 27.1.13

On dit qu'une fonction $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ est continue en $x_0 \in \mathcal{U}$ lorsque

$$f(x) \xrightarrow[x \to x_0]{} f(x_0)$$
.

Remarques

- \Rightarrow On dit qu'une fonction $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ est continue lorsqu'elle est continue en tout point de \mathcal{U} .
- ⇒ Les fonctions

sont continues.

Proposition 27.1.14

Soit f et $g: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ deux fonctions continues en $x_0 \in \mathcal{U}$. Alors

- Si $\lambda, \mu \in \mathbb{R}$, $\lambda f + \mu g$ est continue en x_0 .
- fg est continue en x_0 .
- Si $g(x_0) \neq 0$, il existe une boule de centre x_0 sur laquelle g ne s'annule pas et f/g est continue en x_0 .

Proposition 27.1.15

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathcal{V} \subset \mathbb{R} \to \mathbb{R}$ deux fonctions telles que $f(\mathcal{U}) \subset \mathcal{V}$. Si f est continue en $x_0 \in \mathcal{U}$ et g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

27.1.4 Application partielle

Définition 27.1.16

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $x := (x_1, x_2) \in \mathcal{U}$. On définit les fonctions réelles d'une variable réelle f_{p_1} et f_{p_2} par

$$f_{p_1}(t) := f(t, x_2)$$
 et $f_{p_2}(t) := f(x_1, t)$.

 f_{p_1} et f_{p_2} sont appelées applications partielles de f au point $x=(x_1,x_2)$.

Exercice 4

 \Rightarrow Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) \coloneqq \frac{(2-y)\cos(xy)}{1+x^2}.$$

Déterminer les applications partielles de f en (0,0).

Proposition 27.1.17

- Si f(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers $a := (a_1, a_2), f_{p_1}(t)$ tend vers l lorsque t tend vers a_1 et $f_{p_2}(t)$ tend vers l lorsque t tend vers a_2 .
- Si f est continue en $x := (x_1, x_2), f_{p_1}$ est continue en x_1 et f_{p_2} est continue en x_2 .

Remarque

 \Rightarrow Nous verrons que les réciproques de ces théorèmes sont fausses. Par exemple, f_{p_1} peut être continue en x_1 et f_{p_2} peut être continue en x_2 sans que f soit continue en (x_1, x_2) .

Exercice 5

 \Rightarrow Montrer que la fonction f définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \quad f(x,y) := \frac{x^2 - y^2}{x^2 + y^2}$$

n'a pas de limite en (0,0).

27.1.5 Extension aux fonctions à valeurs dans \mathbb{R}^2

Définition 27.1.18

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}^2$. Les fonctions f_1 et $f_2: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ définies par

$$\forall x \in \mathcal{U}, \quad f(x) = (f_1(x), f_2(x)).$$

sont appelées fonctions coordonnées de f.

Remarque

 \Rightarrow On étend les notions de limite et de continuité aux fonctions à valeurs dans \mathbb{R}^2 en remplaçant les valeurs absolues par des normes dans les définitions données plus haut. Par exemple, si $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}^2$, $a \in \mathbb{R}^2$ est un point adhérent à \mathcal{U} et $l \in \mathbb{R}^2$, on dit que f(x) tend vers l lorsque x tend vers a lorsque

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathcal{U}, \quad \|x - a\| \leqslant \eta \Longrightarrow \|f(x) - l\| \leqslant \varepsilon.$$

Proposition 27.1.19

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}^2$.

— Si a est un point adhérent à \mathcal{U} et $l := (l_1, l_2) \in \mathbb{R}^2$ alors f(x) tend vers l lorsque x tend vers a si et seulement si

$$f_1(x) \xrightarrow[x \to a]{} l_1$$
 et $f_2(x) \xrightarrow[x \to a]{} l_2$.

— Si $x_0 \in \mathcal{U}$, f est continue en x_0 si et seulement si f_1 et f_2 le sont.

Proposition 27.1.20

Soit $f: \mathcal{U} \subset \mathbb{R}^p \to \mathbb{R}^q$ et $g: \mathcal{V} \subset \mathbb{R}^q \to \mathbb{R}^r$ avec $p, q, r \in [1, 2]$. On suppose que $f(\mathcal{U}) \subset \mathcal{V}$.

— Soit $a \in \mathbb{R}^p$ un point adhérent à \mathcal{U} . Si f(x) tend vers $b \in \mathbb{R}^q$ lorsque x tend vers a et g(y) tend vers l lorsque y tend vers b, alors

$$g(f(x)) \xrightarrow[x \to a]{} l.$$

— Soit $x_0 \in \mathcal{U}$. Si f est continue en x_0 et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Remarque

 \Rightarrow Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et a un point adhérent à \mathcal{U} en lequel f admet une limite $l \in \overline{\mathbb{R}}$. Si $g: I \to \mathcal{U} \subset \mathbb{R}^2$ où I est un intervalle de \mathbb{R} , b est une borne de I et g(t) tend vers a lorsque t tend vers b, alors

$$f\left(g(t)\right) \xrightarrow[t \to b]{} l.$$

On peut ainsi, en choisissant différentes fonctions g, se faire une idée de la limite éventuelle de f en a, ou prouver que f n'admet pas de limite en a.

Exercices 6

 \Rightarrow Soit f la fonction définie par

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \quad f(x,y) \coloneqq \frac{xy}{x^2 + y^2}.$$

Étudier la limite éventuelle de f en (0,0).

 \Rightarrow Soit f la fonction définie sur \mathbb{R}_{+}^{*2} par

$$\forall (x,y) \in \mathbb{R}_{+}^{*2}, \quad f(x,y) \coloneqq x^{y}.$$

Étudier la limite éventuelle de f en (0,0).

27.2 Dérivation

27.2.1 Dérivée partielle

Définition 27.2.1

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $x := (x_1, x_2) \in \mathcal{U}$.

— On dit que f admet une dérivée partielle par rapport à la première variable en x lorsque

$$\frac{f\left(x_1+t,x_2\right)-f\left(x_1,x_2\right)}{t}$$

admet une limite finie lorsque t tend vers 0. Si tel est le cas, cette limite est notée

$$\frac{\partial f}{\partial x_1}(x).$$

— On dit que f admet une dérivée partielle par rapport à la seconde variable en x lorsque

$$\frac{f(x_1, x_2 + t) - f(x_1, x_2)}{t}$$

admet une limite finie lorsque t tend vers 0. Si tel est le cas, cette limite est notée

$$\frac{\partial f}{\partial x_2}(x)$$
.

Remarque

 \Rightarrow Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction admettant des dérivées partielles en tout point par rapport à la première et à la seconde variable, $x \coloneqq (x_1, x_2)$ et $f_{p_1}, f_{p_2} : \mathbb{R} \to \mathbb{R}$ les fonctions partielles définies par

$$\forall t \in \mathbb{R}, \quad f_{p_1}(t) \coloneqq f(t, x_2) \quad \text{et} \quad f_{p_2}(t) \coloneqq (x_1, t).$$

Alors f_{p_1} et f_{p_2} sont dérivables sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \quad f'_{p_1}(t) = \frac{\partial f}{\partial x_1}(t, x_2) \qquad \text{et} \qquad f'_{p_2}(t) = \frac{\partial f}{\partial x_2}(x_1, t).$$

Définition 27.2.2

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$, $x \in \mathcal{U}$ et $h \in \mathbb{R}^2$. On dit que f admet une dérivée en x selon le vecteur h lorsque

$$\frac{f(x+th) - f(x)}{t}$$

admet une limite finie lorsque t tend vers 0. Si tel est le cas, cette limite est notée

$$\mathrm{D}f_x(h)$$
.

Remarques

 \Rightarrow Si $e_1 := (1,0)$, f admet une dérivée en x selon le vecteur e_1 si et seulement si elle admet une dérivée partielle par rapport à la première variable en x. De plus, si tel est le cas

$$Df_x(e_1) = \frac{\partial f}{\partial x_1}(x).$$

De même, f admet une dérivée en x selon le vecteur $e_2 := (0,1)$ si et seulement si elle est admet une dérivée partielle par rapport à la seconde variable en x.

27.2. DÉRIVATION 459

 \Rightarrow Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$. Alors f admet une dérivée en tout $x \in \mathcal{U}$ selon le vecteur nul et $\mathrm{D} f_x(0) = 0$. De plus, si f admet une dérivée en x selon le vecteur $h \in \mathbb{R}^2$ alors, pour tout $\lambda \in \mathbb{R}$, elle admet une dérivée en x selon le vecteur λh et

$$\mathrm{D}f_x(\lambda h) = \lambda \mathrm{D}f_x(h).$$

Exercice 7

 \Rightarrow Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = 0. \end{cases}$$

Montrer que f est dérivable en (0,0) selon tout vecteur mais n'est pas continue en (0,0).

Définition 27.2.3

On dit qu'une fonction $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ est de classe \mathcal{C}^1 lorsque

$$\frac{\partial f}{\partial x_1}$$
 et $\frac{\partial f}{\partial x_2}$

sont définies et continues sur \mathcal{U} .

Remarques

- \Rightarrow Si f est de classe \mathcal{C}^1 , les applications partielles sont de classe \mathcal{C}^1 .
- ⇒ Les fonctions

$$f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R} \qquad \text{ et } \qquad g: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad x \qquad \qquad (x,y) \quad \longmapsto \quad y$$

sont de classe C^1 .

Proposition 27.2.4

Soit f et $g: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 . Alors — Si $\lambda, \mu \in \mathbb{R}, \lambda f + \mu g$ est de classe \mathcal{C}^1 et

$$\forall i \in [1, 2], \quad \forall x \in \mathcal{U}, \quad \frac{\partial (\lambda f + \mu g)}{\partial x_i}(x) = \lambda \frac{\partial f}{\partial x_i}(x) + \mu \frac{\partial g}{\partial x_i}(x).$$

— fg est de classe \mathcal{C}^1 et

$$\forall i \in [1, 2], \quad \forall x \in \mathcal{U}, \quad \frac{\partial (fg)}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x)g(x) + f(x)\frac{\partial g}{\partial x_i}(x).$$

— Si g ne s'annule pas sur \mathcal{U} , f/g est de classe \mathcal{C}^1 et

$$\forall i \in [1, 2], \quad \forall x \in \mathcal{U}, \quad \frac{\partial \left(\frac{f}{g}\right)}{\partial x_i}(x) = \frac{\frac{\partial f}{\partial x_i}(x)g(x) - f(x)\frac{\partial g}{\partial x_i}(x)}{g(x)^2}.$$

Proposition 27.2.5

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathcal{V} \subset \mathbb{R} \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 telles que $f(\mathcal{U}) \subset \mathcal{V}$. Alors $g \circ f$ est de classe \mathcal{C}^1 et

$$\forall i \in \llbracket 1, 2 \rrbracket \,, \quad \forall x \in \mathcal{U}, \quad \frac{\partial (g \circ f)}{\partial x_i}(x) = g'(f(x)) \frac{\partial f}{\partial x_i}(x).$$

Exercice 8

 \Rightarrow Trouver l'ensemble des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x}(x,y) = 0.$$

 \Rightarrow Déterminer l'ensemble des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial y}(x,y) = x + y.$$

27.2.2 Développement limité, gradient

Définition 27.2.6

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction définie en (0,0). On dit que f(h) est négligeable devant ||h|| en (0,0) lorsque

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall h \in \mathcal{U}, \quad \|h\| \leqslant \eta \Longrightarrow |f(h)| \leqslant \varepsilon \|h\|.$$

Si tel est le cas, on note

$$f(h) = \underset{h \to (0,0)}{\text{o}} (||h||).$$

Proposition 27.2.7

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $x \in \mathcal{U}$. Alors, en notant $h = (h_1, h_2)$

$$f(x+h) = f(x) + \frac{\partial f}{\partial x_1}(x)h_1 + \frac{\partial f}{\partial x_2}(x)h_2 + \underset{h \to (0,0)}{\text{o}}(||h||).$$

Remarque

 \Rightarrow Si $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ est une fonction de classe \mathcal{C}^1 et $(x_0, y_0) \in \mathcal{U}$ alors, le plan d'équation

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

est appelé plan tangent en (x_0, y_0) à la surface d'équation z = f(x, y).

Proposition 27.2.8

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Alors f est continue.

Proposition 27.2.9

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $x \in \mathcal{U}$. Alors f admet une dérivée en x selon tout vecteur $h := (h_1, h_2)$ et

$$Df_x(h) = \frac{\partial f}{\partial x_1}(x)h_1 + \frac{\partial f}{\partial x_2}(x)h_2.$$

Autrement dit, Df_x est une forme linéaire sur \mathbb{R}^2 .

Exercice 9

 \Rightarrow Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) \coloneqq \frac{xy}{1+x^2}.$$

Montrer que f est de classe C^1 et calculer $Df_{(x,y)}(h_1,h_2)$.

Définition 27.2.10

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $x \in \mathcal{U}$. On appelle gradient de f en x l'unique vecteur $\nabla f(x) \in \mathbb{R}^2$ tel que

$$\forall h \in \mathbb{R}^2$$
, $\mathrm{D}f_x(h) = \langle \nabla f(x) | h \rangle$.

Autrement dit

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x)\right).$$

27.2. DÉRIVATION 461

Remarques

ightharpoonup Le symbole ∇ est un delta majuscule inversé. Il se prononce « nabla » en référence au nom grec désignant une harpe phénicienne.

 \Rightarrow Pour tout $\theta \in \mathbb{R}$, on pose $u_{\theta} := (\cos \theta, \sin \theta)$. Alors, d'après Cauchy-Schwarz

$$\forall \theta \in \mathbb{R}, \quad \mathrm{D}f_x(u_\theta) = \langle \nabla f(x) | u_\theta \rangle \leqslant \|\nabla f(x)\| \|u_\theta\| = \|\nabla f(x)\|$$

cette inégalité étant une égalité si et seulement si $\nabla f(x)$ et u_{θ} sont positivement liés. On en déduit que $\nabla f(x)$ donne la direction dans laquelle f croît le plus vite.

27.2.3 Dérivation des fonctions composées

Proposition 27.2.11

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathcal{V} \subset \mathbb{R} \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 telles que $f(\mathcal{U}) \subset \mathcal{V}$. Alors $g \circ f$ est de classe \mathcal{C}^1 et

$$\forall x \in \mathcal{U}, \quad [\nabla(g \circ f)](x) = g'(f(x)) \nabla f(x).$$

On écrit aussi, de manière abusive

$$\nabla \left(g \circ f\right) = \frac{\mathrm{d}g}{\mathrm{d}f} \nabla f.$$

Exercice 10

 \Rightarrow Calculer ∇f , où f est définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par

$$f(x,y) \coloneqq \frac{1}{\sqrt{x^2 + y^2}}.$$

Proposition 27.2.12

Soit $f: \mathcal{U} \subset \mathbb{R} \to \mathbb{R}^2$ et $g: \mathcal{V} \subset \mathbb{R}^2 \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 telles que $f(\mathcal{U}) \subset \mathcal{V}$. Alors $g \circ f$ est de classe \mathcal{C}^1 et

$$\forall t \in \mathcal{U}, \quad (g \circ f)'(t) = \frac{\partial g}{\partial x_1} (f(t)) f_1'(t) + \frac{\partial g}{\partial x_2} (f(t)) f_2'(t)$$
$$= \langle \nabla g (f(t)) | f'(t) \rangle$$

On écrit aussi, de manière abusive

$$\frac{\mathrm{d}\left(g\left(f_{1},f_{2}\right)\right)}{\mathrm{d}t} = \frac{\partial g}{\partial f_{1}} \frac{\mathrm{d}f_{1}}{\mathrm{d}t} + \frac{\partial g}{\partial f_{2}} \frac{\mathrm{d}f_{2}}{\mathrm{d}t}$$
$$= \left\langle \nabla g \middle| \frac{\mathrm{d}f}{\mathrm{d}t} \right\rangle$$

Exercice 11

 \Rightarrow Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et φ la fonction définie sur \mathbb{R} par

$$\forall t \in \mathbb{R}, \quad \varphi(t) \coloneqq f(t^2, t^3).$$

Montrer que φ est de classe \mathcal{C}^1 et calculer $\varphi'(t)$.

Proposition 27.2.13

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $M: I \to \mathbb{R}^2$ une fonction de classe \mathcal{C}^1 à valeurs dans \mathcal{U} . On suppose qu'il existe $c \in \mathbb{R}$ tel que

$$\forall t \in I, \quad f(M(t)) = c.$$

Alors, pour tout $t \in I$, M'(t) est orthogonal au gradient de f en M(t).

Remarque

 \Rightarrow Si $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$, on appelle ligne de niveau de hauteur $c \in \mathbb{R}$ l'ensemble

$$\mathcal{L}_c := \{(x, y) \in \mathcal{U} \mid f(x, y) = c\}.$$

La proposition précédente nous assure que le gradient de f est orthogonal à ses lignes de niveau.

Proposition 27.2.14

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}^2$ et $g: \mathcal{V} \subset \mathbb{R}^2 \to \mathbb{R}$ deux fonctions de classe \mathcal{C}^1 telles que $f(\mathcal{U}) \subset \mathcal{V}$. Alors $g \circ f$ est de classe \mathcal{C}^1 et

$$\forall x \in \mathcal{U}, \quad \begin{cases} \frac{\partial \left(g \circ f\right)}{\partial x_1}(x) = \frac{\partial g}{\partial y_1}\left(f(x)\right) \frac{\partial f_1}{\partial x_1}(x) + \frac{\partial g}{\partial y_2}\left(f(x)\right) \frac{\partial f_2}{\partial x_1}(x) \\ \frac{\partial \left(g \circ f\right)}{\partial x_2}(x) = \frac{\partial g}{\partial y_1}\left(f(x)\right) \frac{\partial f_1}{\partial x_2}(x) + \frac{\partial g}{\partial y_2}\left(f(x)\right) \frac{\partial f_2}{\partial x_2}(x) \end{cases}$$

On écrit aussi, de manière abusive

$$\frac{\partial \left(g\left(f_{1},f_{2}\right)\right)}{\partial x_{1}}=\frac{\partial g}{\partial f_{1}}\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial g}{\partial f_{2}}\frac{\partial f_{2}}{\partial x_{1}}\quad\text{et}\quad\frac{\partial \left(g\left(f_{1},f_{2}\right)\right)}{\partial x_{2}}=\frac{\partial g}{\partial f_{1}}\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial g}{\partial f_{2}}\frac{\partial f_{2}}{\partial x_{2}}$$

Exercices 12

 \Rightarrow Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Montrer que la fonction $h: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \quad h(x,y) \coloneqq f(2xy,x)$$

est de classe C^1 et calculer ses dérivées partielles.

 \Rightarrow Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. On souhaite déterminer les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telles que

$$(E) \quad \forall (x,y) \in \mathbb{R}^2, \quad a \frac{\partial f}{\partial x} (x,y) + b \frac{\partial f}{\partial y} (x,y) = 0.$$

1. Montrer que l'application

$$\varphi: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(u, v) \quad \longmapsto \quad (au - bv, bu + av)$$

est bijective et calculer φ^{-1} .

2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ par

$$\forall (u, v) \in \mathbb{R}^2, \quad g(u, v) := f(au - bv, bu + av).$$

Montrer que f est solution de (E) si et seulement si

$$\forall (u, v) \in \mathbb{R}^2, \quad \frac{\partial g}{\partial u}(u, v) = 0.$$

3. Conclure.

27.2.4 Extrémum d'une fonction de deux variables

Définition 27.2.15

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ et $x_0 \in \mathcal{U}$. On dit que

— f présente un maximum global en x_0 lorsque

$$\forall x \in \mathcal{U}, \quad f(x) \leqslant f(x_0).$$

— f présente un maximum local en x_0 lorsque

$$\exists r > 0, \quad \forall x \in \mathcal{U}, \quad ||x - x_0|| \leqslant r \Longrightarrow f(x) \leqslant f(x_0).$$

— f présente un minimum global en x_0 lorsque

$$\forall x \in \mathcal{U}, \quad f(x) \geqslant f(x_0).$$

— f présente un $minimum\ local\ en\ x_0$ lorsque

$$\exists r > 0, \quad \forall x \in \mathcal{U}, \quad ||x - x_0|| \leqslant r \Longrightarrow f(x) \geqslant f(x_0).$$

27.2. DÉRIVATION 463

Remarques

- ⇒ Un extrémum global est un extrémum local, la réciproque étant fausse en général.
- \Rightarrow Si $f: \mathbb{R}^2 \to \mathbb{R}$ admet un minimum local en $(x_1, x_2) \in \mathbb{R}^2$, alors les fonctions partielles

$$f_{p_1}: \mathbb{R} \longrightarrow \mathbb{R}$$
 et $f_{p_2}: \mathbb{R} \longrightarrow \mathbb{R}$ $t \longmapsto f(t, x_2)$

admettent un minimum local, respectivement en x_1 et x_2 . Cependant, la réciproque est fausse comme le montre l'exemple de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = x^2 - 3xy + y^2.$$

 \Rightarrow Plus généralement, si $f: \mathbb{R}^2 \to \mathbb{R}$ admet un minimul local en $x_0 \in \mathbb{R}^2$ alors, quel que soit $h \in \mathbb{R}^2$, la fonction $\varphi: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall t \in \mathbb{R}, \quad \varphi(t) \coloneqq f(x_0 + th)$$

admet un minimum local en 0.

Définition 27.2.16

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On dit que $x \in \mathcal{U}$ est un point *critique* de f lorsque

$$\frac{\partial f}{\partial x_1}(x) = 0$$
 et $\frac{\partial f}{\partial x_2}(x) = 0$.

Proposition 27.2.17

Soit $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 définie sur un ouvert \mathcal{U} . Si f présente un extrémum local en x_0 alors x_0 est un point critique pour f.

Remarques

- Arr Les extrémums locaux d'une fonction $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 définie sur un ouvert \mathcal{U} sont donc à chercher parmi les points critiques de f.
- \Rightarrow La réciproque est fausse. Par exemple la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) \coloneqq x^2 - y^2$$

admet (0,0) pour point critique alors qu'elle ne présente pas d'extrémum local en (0,0).

Exercice 13

 \Rightarrow Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) := -x^2 - 6xy + 9y^2 + 18x - 18y + 1.$$

Déterminer les extrémums éventuels de f.

27.3 Exercices

Limite, continuité

Notion d'ouvert

Limite

Exercice 1: Calcul de limites

Déterminer les limites, si elles existent, des fonctions suivantes en (0,0).

$$f(x,y) \coloneqq (x+y)\sin\left(\frac{1}{x^2+y^2}\right), \qquad f(x,y) \coloneqq \frac{x^2-y^2}{x^2+y^2}, \qquad f(x,y) \coloneqq \frac{|x+y|}{x^2+y^2},$$
$$f(x,y) \coloneqq \frac{x^3+y^3}{x^2+y^2}, \qquad f(x,y) \coloneqq \frac{x^2+y^2-1}{x}\sin x, \qquad f(x,y) \coloneqq x^y.$$

Continuit'e

Exercice 2: Fonction définie par morceaux

Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) \coloneqq \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1, \\ -\frac{1}{2}x^2 & \text{si } x^2 + y^2 \leqslant 1. \end{cases}$$

Montrer que f est continue en tout point de \mathbb{R}^2 .

Exercice 3: L'image d'un convexe

Soit f une fonction continue sur un convexe P de \mathbb{R}^2 . Montrer que f(P) est un intervalle.

Application partielle

Extension aux fonctions à valeurs dans \mathbb{R}^2

$D\'{e}rivation$

Dérivée partielle

Exercice 4 : Dérivées partielles et continuité

Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Montrer que f admet une dérivée selon tout vecteur en (0,0) mais n'est pas continue en 0.

Exercice 5 : Régularité d'une fonction

Soit f la fonction définie sur \mathbb{R}^2 par

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) \coloneqq \begin{cases} \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. f admet-elle des dérivées partielles au point (0,0)?
- 2. f est-elle continue en (0,0)?
- 3. f est-elle de classe C^1 ?

Développement limité, gradient

Exercice 6: Calcul

Soit
$$f:(x,y)\mapsto xy^2$$
.

- 1. Déterminer la dérivée de f au point a := (-1,3) selon le vecteur h := (2,-3).
- 2. Écrire le développement limité de f à l'ordre 1 en a.

27.3. EXERCICES 465

Dérivation des fonctions composées

Exercice 7 : Calcul de dérivées

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 . Calculer les dérivées ou dérivées partielles des fonctions suivantes

$$g_1(x,y) := f(y,x), \qquad g_2(x) := f(x,x),$$
 $g_3(x,y) := f(y,f(x,x)), \qquad g_4(x) := f(x,f(x,x)).$

Exercice 8 : Équation aux dérivées partielles

On pose $\mathcal{U} := \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 \mid y = 0 \text{ et } x \leq 0\}$. On souhaite déterminer l'ensemble des fonctions $f : \mathcal{U} \mapsto \mathbb{R}$ de classe \mathcal{C}^1 telles que

(E)
$$\forall (x,y) \in \mathcal{U}, \quad x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \sqrt{x^2 + y^2}.$$

1. On pose $\mathcal{V} \coloneqq \mathbb{R}_+^* \times]-\pi,\pi[$ et on définit

$$\varphi: \quad \begin{array}{ccc} \mathcal{V} & \longrightarrow & \mathcal{U} \\ (r,\theta) & \longmapsto & (r\cos\theta, r\sin\theta) \end{array}$$

Montrer que φ est une bijection.

2. Soit $f: \mathcal{U} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit la fonction $g: \mathcal{V} \to \mathbb{R}$ par

$$\forall (r, \theta) \in \mathcal{V}, \quad g(r, \theta) \coloneqq f(r \cos \theta, r \sin \theta).$$

Montrer que g est de classe \mathcal{C}^1 et déterminer les dérivées partielles de g en fonction de celles de f.

3. En déduire l'ensemble des solutions de (E).

Extrémum d'une fonction de deux variables

Chapitre 28

Familles sommables

« Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever. »

— Niels Abel (1802–1829)

$$\sum_{k=1}^{+\infty} k = -\frac{1}{12}$$
— Srinivasa Ramanujan (1887–1920)

28.1 Famille sommable	
28.1.1 Famille sommable de réels positifs	
28.1.2 Famille sommable d'éléments de $\mathbb K$	
28.2 Exercices	

Dans ce chapitre, \mathbb{K} désignera l'un des corps \mathbb{R} ou \mathbb{C} .

28.1 Famille sommable

Les séries nous ont permis de donner un sens, lorsque c'est possible, à

$$\sum_{n=0}^{+\infty} u_n.$$

Cependant, de nombreux problèmes arrivent lorsque l'on souhaite sommer des familles $(u_{i,j})_{(i,j)\in\mathbb{N}^2}$ indexées par deux entiers. Il serait naturel de définir une telle somme, lorsque les séries en jeu sont convergentes, par

$$\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} u_{i,j}.$$

Mais on trouve rapidement des exemples pour lesquels

$$\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} u_{i,j} \quad \text{et} \quad \sum_{j=0}^{+\infty} \sum_{i=0}^{+\infty} u_{i,j}$$

ont toutes deux un sens et des valeurs différentes. Par exemple, si on définit la famille $(u_{i,j})_{(i,j)\in\mathbb{N}^2}$ par

$$\forall i, j \in \mathbb{N}, \quad u_{i,j} \coloneqq \begin{cases} 1 & \text{si } i = j, \\ -1 & \text{si } i = j + 1, \\ 0 & \text{sinon,} \end{cases}$$

les séries doubles définies plus haut ont toutes deux un sens, mais la première est égale à 1 tandis que la seconde vaut 0.

Contrairement à ce qui se passe dans le cas des sommes finies, il arrive donc que la « somme » des éléments d'une famille infinie dépende de l'ordre de sommation. L'objet de la théorie des *familles sommables* est d'avoir un cadre dans lequel la somme de ces familles ne dépend pas de cet ordre.

28.1.1 Famille sommable de réels positifs

Définition 28.1.1

On pose $[0, +\infty] := [0, +\infty[\cup \{+\infty\}].$

— On étend la définition de $+ \sup [0, +\infty]$ en posant

$$\forall x \in [0, +\infty], \qquad x + (+\infty) := +\infty$$

 $(+\infty) + x := +\infty$

On vérifie que + est associative et commutative sur $[0, +\infty]$ et que 0 est élément neutre.

— On étend la définition de \times en posant

$$\forall x \in]0, +\infty], \qquad x \times (+\infty) \coloneqq +\infty$$

 $(+\infty) \times x \coloneqq +\infty$

On pose enfin $0 \times (+\infty) := 0$ et $(+\infty) \times 0 := 0$. On vérifie que \times est associative et commutative sur $[0, +\infty]$ et que 1 est élément neutre. Enfin, \times est distributive par rapport à + sur $[0, +\infty]$.

— On étend la définition de \leq sur $[0, +\infty]$ en posant

$$\forall x \in [0, +\infty], \quad x \leqslant +\infty.$$

Muni de \leq , $[0, +\infty]$ est un ensemble totalement ordonné.

Remarques

- \Rightarrow Excepté $+\infty$, tous les éléments de $[0, +\infty]$ sont réguliers pour +. Excepté 0 et $+\infty$, tous les éléments de $[0, +\infty]$ sont réguliers pour \times .
- ⇒ La relation d'ordre ≤ reste compatible avec l'addition et la multiplication : il est toujours possible d'ajouter et de multiplier entre elles des inégalités puisque ces dernières sont positives.

Définition 28.1.2

Soit A une partie de $[0, +\infty]$. On dit que A admet une borne supérieure dans $[0, +\infty]$ lorsque l'ensemble des majorants de A dans $[0, +\infty]$ admet un plus petit élément. Si tel est le cas, on le note $\overline{\sup} A$.

Proposition 28.1.3

Toute partie de $[0, +\infty]$ admet une borne supérieure dans $[0, +\infty]$.

Remarques

- \Rightarrow Soit A une partie de $[0, +\infty]$. Si $+\infty \in A$, alors $\overline{\sup} A = +\infty$. Sinon, A est une partie de $[0, +\infty[$ et
 - Si A est vide, alors $\overline{\sup} A = 0$.
 - Si A n'est pas majorée, alors $\overline{\sup} A = +\infty$.
 - Sinon, A est non vide majorée. Elle admet donc une borne supérieure sup A dans \mathbb{R} et $\overline{\sup} A = \sup A$.
- \Rightarrow Soit A une partie de $[0, +\infty]$.
 - Si B est une partie de A, alors $\overline{\sup} B \leqslant \overline{\sup} A$.
 - Si $x \in [0, +\infty]$, on définit x + A par

$$x + A \coloneqq \{x + a : a \in A\}.$$

Alors, si A est non vide, $\overline{\sup}(x+A) = x + \overline{\sup} A$.

— Si $\lambda \in [0, +\infty]$, on définit λA par

$$\lambda A := \{\lambda a : a \in A\}.$$

Alors, $\overline{\sup}(\lambda A) = \lambda \overline{\sup} A$.

Définition 28.1.4

Soit $(u_i)_{i\in I}$ une famille d'éléments de $[0,+\infty]$. On appelle somme des u_i pour $i\in I$ et on note $\sum_{i\in I}u_i$ la borne supérieure de

$$A := \left\{ \sum_{i \in K} u_i : K \text{ est une partie finie de } I \right\}$$

dans $[0, +\infty]$.

Remarque

 \Rightarrow Si I est fini, la somme que l'on vient de définir n'est autre que la somme $\sum_{i \in I} u_i$ définie de manière classique.

Exercice 1

⇒ Montrer que

$$\sum_{(i,j)\in\mathbb{N}^{*2}} \frac{1}{(i+j)^2} = +\infty.$$

Définition 28.1.5

On dit qu'une famille $(u_i)_{i\in I}$ d'éléments de $[0,+\infty]$ est sommable lorsque

$$\sum_{i \in I} u_i < +\infty.$$

Remarque

 \Rightarrow Si l'un des x_i est égal à $+\infty$, alors

$$\sum_{i \in I} u_i = +\infty.$$

En particulier, tous les éléments d'une famille sommable sont réels.

Proposition 28.1.6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle positive. Alors, la famille $(u_n)_{n\in\mathbb{N}}$ est sommable si et seulement si la série $\sum u_n$ est convergente. De plus, si tel est le cas

$$\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n.$$

Remarque

 $\, \leftrightarrows \,$ Si la série à termes positifs $\sum u_n$ diverge, alors

$$\sum_{n\in\mathbb{N}}u_n=+\infty.$$

C'est pourquoi, certains auteurs se permettent d'écrire $\sum_{n=0}^{+\infty} u_n = +\infty$.

Proposition 28.1.7

Soit $(u_i)_{i\in I}$ une famille d'éléments de $[0,+\infty]$ et J une partie de I. Alors

$$\sum_{i \in J} u_i \leqslant \sum_{i \in I} u_i.$$

Remarque

 \Rightarrow En particulier, si $(u_i)_{i\in I}$ est sommable, alors $(u_i)_{i\in J}$ est sommable.

Proposition 28.1.8

Soit $(u_i)_{i\in I}$ et $(v_i)_{i\in I}$ deux familles d'éléments de $[0,+\infty]$ et $\lambda,\mu\in[0,+\infty]$. Alors

$$\sum_{i \in I} (\lambda u_i + \mu v_i) = \lambda \sum_{i \in I} u_i + \mu \sum_{i \in I} v_i.$$

Soit $(u_i)_{i\in I}$ et $(v_i)_{i\in I}$ deux familles d'éléments de $[0,+\infty]$ telles que

$$\forall i \in I, \quad u_i \leqslant v_i.$$

Alors

$$\sum_{i \in I} u_i \leqslant \sum_{i \in I} v_i.$$

Remarque

 \Rightarrow En particulier, si $(v_i)_{i \in I}$ est sommable, alors $(u_i)_{i \in I}$ est sommable.

Proposition 28.1.10

Soit $(u_i)_{i\in I}$ une famille d'éléments de $[0,+\infty]$ et $\sigma:J\to I$ une bijection. Alors

$$\sum_{i \in I} u_i = \sum_{j \in J} u_{\sigma(j)}.$$

Proposition 28.1.11: Théorème de sommation par paquets

Soit $(u_i)_{i\in I}$ une famille d'éléments de $[0,+\infty]$. Si $(I_j)_{j\in J}$ est une partition de I, alors

$$\sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) = \sum_{i \in I} u_i.$$

Remarque

 \Rightarrow En particulier, si $(u_i)_{i\in I}$ une famille d'éléments de $[0,+\infty]$ et $I_1,I_2\in\mathcal{P}(I)$ sont tels que $I=I_1\sqcup I_2$, alors

$$\sum_{i \in I} u_i = \sum_{i \in I_1} u_i + \sum_{i \in I_2} u_i.$$

Exercice 2

 \Rightarrow Pour quelles valeurs de $\alpha \in \mathbb{R}$ la famille

$$\left(\frac{pq}{(p+q)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^{*2}}$$

est-elle sommable?

Proposition 28.1.12: Théorème de Fubini

Soit $(u_{i,j})_{(i,j)\in I\times J}$ une famille d'éléments de $[0,+\infty]$. Alors

$$\sum_{j \in J} \left(\sum_{i \in I} u_{i,j} \right) = \sum_{i \in I} \left(\sum_{j \in J} u_{i,j} \right) = \sum_{(i,j) \in I \times J} u_{i,j}.$$

Proposition 28.1.13

Soit $(u_i)_{i\in I}$ et $(v_j)_{j\in J}$ deux familles d'éléments de $[0,+\infty]$. Alors

$$\sum_{(i,j)\in I\times J} u_i v_j = \left(\sum_{i\in I} u_i\right) \left(\sum_{j\in J} v_j\right).$$

Exercices 3

 \Rightarrow Soit $a, b \in \mathbb{R}_+^*$. Montrer que la famille

$$\left(e^{-(ap+bq)}\right)_{(p,q)\in\mathbb{N}^2}$$

est sommable et calculer sa somme.

 \Rightarrow On considère la fonction ζ de Riemann définie par

$$\zeta(x) \coloneqq \sum_{n \in \mathbb{N}^*} \frac{1}{n^x}.$$

pour tout $x \in \mathbb{R}$ pour lequel la somme ci-dessus est finie.

- 1. Montrer que le domaine de définition de ζ est $]1, +\infty[$.
- 2. Montrer que

$$\sum_{n\geqslant 2}(\zeta(n)-1)=1.$$

28.1.2 Famille sommable d'éléments de \mathbb{K}

Définition 28.1.14

On dit qu'une famille $(u_i)_{i\in I}$ d'éléments de \mathbb{K} est sommable lorsque la famille des réels positifs $(|u_i|)_{i\in I}$ est sommable.

Remarques

- \Rightarrow L'ensemble des familles sommables indexées par I est noté $\ell^1(I,\mathbb{K})$ ou $\ell^1(I)$. C'est un sous-espace vectoriel de \mathbb{K}^I .
- \Rightarrow Si $(u_i)_{i\in I}$ est une famille sommable et J est une partie de I, alors $(u_i)_{i\in J}$ est sommable.

Exercices 4

 \Rightarrow Montrer que la famille

$$\left(\frac{\sin(p+q)}{p^2q^2}\right)_{(p,q)\in\mathbb{N}^{*2}}$$

est sommable.

 \Rightarrow Montrer que la famille

$$(z^{ij})_{(i,j)\in\mathbb{N}^{*2}}$$

est sommable si et seulement si |z| < 1.

Définition 28.1.15

Pour tout $x \in \mathbb{R}$ on définit respectivement la partie positive x^+ et la partie négative x^- de x par

$$x^{+} := \begin{cases} x & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases} \quad \text{et} \quad x^{-} := \begin{cases} |x| & \text{si } x \leqslant 0 \\ 0 & \text{si } x > 0. \end{cases}$$

Proposition 28.1.16

Pour tout $x \in \mathbb{R}$

$$x = x^{+} - x^{-}, \qquad |x| = x^{+} + x^{-}, \qquad 0 \leqslant x^{+} \leqslant |x| \qquad \text{et} \qquad 0 \leqslant x^{-} \leqslant |x|.$$

Définition 28.1.17

— Soit $(u_i)_{i\in I}$ une famille de réels sommable. Alors, les familles $(u_i^+)_{i\in I}$ et $(u_i^-)_{i\in I}$ sont sommables et on définit

$$\sum_{i \in I} u_i := \sum_{i \in I} u_i^+ - \sum_{i \in I} u_i^-.$$

— Soit $(u_i)_{i\in I}$ une famille de nombres complexes sommable. En décomposant $u_i = a_i + \mathrm{i}b_i$ en sa partie réelle et sa partie imaginaire, les familles $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ sont sommables et on définit

$$\sum_{i \in I} u_i := \sum_{i \in I} a_i + i \sum_{i \in I} b_i.$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Alors, la famille $(u_n)_{n\in\mathbb{N}}$ est sommable si et seulement si la série $\sum u_n$ est absolument convergente. De plus, si tel est le cas

$$\sum_{n \in \mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n.$$

Proposition 28.1.19

Soit $(u_i)_{i\in I}$ une famille sommable d'éléments de \mathbb{K} et $l\in \mathbb{K}$. Alors

$$\sum_{i \in I} u_i = l$$

si et seulement si, quel que soit $\varepsilon > 0$, il existe une partie finie K de I telle que pour toute partie finie L de I telle que $K \subset L$, on a

$$\left| \sum_{i \in L} u_i - l \right| \leqslant \varepsilon.$$

Remarque

 \Rightarrow La définition « historique » d'une famille sommable est la suivante : on dit qu'une famille $(u_i)_{i\in I}$ d'éléments de \mathbb{K} est sommable lorsqu'il existe $l\in \mathbb{K}$ tel que quel que soit $\varepsilon>0$, il existe une partie finie K de I telle que pour toute partie finie L de I telle que $K\subset L$, on a

$$\left| \sum_{i \in L} u_i - l \right| \leqslant \varepsilon.$$

Si c'est le cas, l est unique, et est appelé somme de la famille $(u_i)_{i\in I}$. La proposition précédente nous montre donc que si une famille est sommable pour le sens donné dans ce cours, alors elle est sommable pour le sens « historique ». Réciproquement, on peut montrer que si une famille est sommable pour le sens « historique », elle est sommable pour le sens donné dans ce cours. Cela montre l'équivalence des deux approches.

Proposition 28.1.20

Soit $(u_i)_{i\in I}$ et $(v_i)_{i\in I}$ deux familles sommables d'éléments de \mathbb{K} et $\lambda, \mu \in \mathbb{K}$. Alors $(\lambda u_i + \mu v_i)_{i\in I}$ est sommable et

$$\sum_{i \in I} (\lambda u_i + \mu v_i) = \lambda \sum_{i \in I} u_i + \mu \sum_{i \in I} v_i.$$

Remarque

 \Rightarrow Attention, il est possible que $(\lambda u_i + \mu v_i)_{i \in I}$ soit sommable sans que $(u_i)_{i \in I}$ et $(v_i)_{i \in I}$ le soient. Dans ce cas, il est bien sur interdit d'écrire

$$\sum_{i \in I} (\lambda u_i + \mu v_i) = \lambda \sum_{i \in I} u_i + \mu \sum_{i \in I} v_i$$

puisque l'expression à droite de l'égalité n'a aucun sens.

Proposition 28.1.21

Soit $(u_i)_{i\in I}$ et $(v_i)_{i\in I}$ deux familles réelles sommables telles que

$$\forall i \in I, \quad u_i \leqslant v_i.$$

Alors

$$\sum_{i \in I} u_i \leqslant \sum_{i \in I} v_i.$$

Soit $(u_i)_{i\in I}$ une famille sommable d'éléments de \mathbb{K} . Alors

$$\left| \sum_{i \in I} u_i \right| \leqslant \sum_{i \in I} |u_i|.$$

Proposition 28.1.23

Soit $(u_i)_{i\in I}$ une famille sommable d'éléments de \mathbb{K} et $\sigma: J \to I$ une bijection. Alors $(u_{\sigma(j)})_{j\in J}$ est sommable et

$$\sum_{i \in I} u_i = \sum_{j \in J} u_{\sigma(j)}.$$

Remarques

 \Rightarrow Soit $\sum u_n$ une série absolument convergente. Alors, quel que soit la bijection $\sigma: \mathbb{N} \to \mathbb{N}$, la série $\sum u_{\sigma(n)}$ est absolument convergente et

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} u_{\sigma(n)}.$$

 \Rightarrow Cette propriété est fausse pour les séries semi-convergentes. En effet, le théorème de réarrangement de Riemann montre que si $\sum u_n$ est une série réelle semi-convergente, alors quel que soit $l \in \mathbb{R}$, il existe une bijection $\sigma : \mathbb{N} \to \mathbb{N}$ telle que

$$\sum_{n=0}^{+\infty} u_{\sigma(n)} = l.$$

Proposition 28.1.24: Théorème de sommation par paquets

Soit $(u_i)_{i\in I}$ une famille sommable d'éléments de \mathbb{K} . Si $(I_j)_{j\in J}$ est une partition de I, alors pour tout $j\in J$ la famille $(u_i)_{i\in I_j}$ est sommable. De plus, la famille $(\sum_{i\in I_j}u_i)_{j\in J}$ est sommable et

$$\sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) = \sum_{i \in I} u_i.$$

Proposition 28.1.25: Théorème de Fubini

Soit $(u_{i,j})_{(i,j)\in I\times J}$ une famille sommable d'éléments de \mathbb{K} . Alors, pour tout $j\in J$ la famille $(u_{i,j})_{i\in I}$ est sommable et pour tout $i\in I$, la famille $(u_{i,j})_{j\in J}$ est sommable. De plus, les familles $(\sum_{i\in I}u_{i,j})_{j\in J}$ et $(\sum_{j\in J}u_{i,j})_{i\in I}$ sont sommables et

$$\sum_{j \in J} \left(\sum_{i \in I} u_{i,j} \right) = \sum_{i \in I} \left(\sum_{j \in J} u_{i,j} \right) = \sum_{(i,j) \in I \times J} u_{i,j}.$$

Remarque

 \Rightarrow Soit $(u_{i,j})_{(i,j)\in\mathbb{N}^2}$ une famille sommable d'éléments de \mathbb{K} . Alors

$$\sum_{(i,j)\in\mathbb{N}^2} u_{i,j} = \sum_{i\in\mathbb{N}} \sum_{j\in\mathbb{N}} u_{i,j} = \sum_{j\in\mathbb{N}} \sum_{i\in\mathbb{N}} u_{i,j}$$
$$= \sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} u_{i,j} = \sum_{j=0}^{+\infty} \sum_{i=0}^{+\infty} u_{i,j}.$$

Exercice 5

⇒ Montrer que la famille

$$\left(\frac{e^{\frac{2ik\pi}{n}}}{2^n}\right)_{k\in\mathbb{N}^*,n>k}$$

est sommable et calculer sa somme.

Soit $(u_i)_{i\in I}$ et $(v_j)_{j\in J}$ deux familles sommables d'éléments de \mathbb{K} . Alors la famille $(u_iv_j)_{(i,j)\in I\times J}$ est sommable et

$$\sum_{(i,j)\in I\times J} u_i v_j = \left(\sum_{i\in I} u_i\right) \left(\sum_{j\in J} v_j\right).$$

Définition 28.1.27

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. On appelle produit de Cauchy de ces suites la suite $(w_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad w_n \coloneqq \sum_{k=0}^n u_k v_{n-k}.$$

Proposition 28.1.28

Soit $\sum u_n$ et $\sum v_n$ deux séries absolument convergentes. Alors, leur produit de Cauchy est absolument convergent et

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} u_k v_{n-k} \right) = \left(\sum_{n=0}^{+\infty} u_n \right) \left(\sum_{n=0}^{+\infty} v_n \right).$$

Exercice 6

- ⇒ L'objet de cet exercice est de donner une définition « moderne » de l'exponentielle.
 - 1. Pour tout $z \in \mathbb{C}$, montrer que la série

$$\sum \frac{z^n}{n!}$$

est absolument convergente; on note $\exp(z)$ sa somme.

2. Montrer que

$$\forall a, b \in \mathbb{C}, \quad \exp(a+b) = \exp(a)\exp(b).$$

28.2. EXERCICES 475

28.2 Exercices

Famille sommable

Famille sommable de réels positifs

Exercice 1: Exercice

Soit $\alpha \in \mathbb{R}$. Calculer

$$\sum_{n\in\mathbb{N}^*}\sum_{k\geqslant n}\frac{1}{k^\alpha},\qquad \sum_{m\in\mathbb{N}^*}\sum_{n\in\mathbb{N}^*}\frac{1}{(m+n)^\alpha}.$$

Famille sommable d'éléments de K

Exercice 2: Exercice

Pour tout $k \in \mathbb{N}$, on pose

$$L_k := \prod_{i=0}^{k-1} (X - i).$$

1. Montrer que pour tout $P \in \mathbb{C}[X]$, la famille

$$\left(\frac{P(n)}{n!}\right)_{n\in\mathbb{N}}$$

est sommable.

2. Calculer

$$\sum_{n \in \mathbb{N}} \frac{L_k(n)}{n!}$$

pour tout $k \in \mathbb{N}$.

3. En déduire

$$\sum_{n\in\mathbb{N}}\frac{n^4}{n!}.$$

Exercice 3: Exercice

1. Prouver la sommabilité et calculer

$$\sum_{n\in\mathbb{N}}\sum_{k\geqslant n}\frac{1}{k!}, \qquad \sum_{n\in\mathbb{N}^*}\sum_{k\geqslant n}\frac{(-1)^k}{k^3}, \qquad \sum_{n\in\mathbb{N}^*}(-1)^n\sum_{k\geqslant n}\frac{1}{k^3}.$$

2. Soit $z\in\mathbb{C}$ tel que |z|<1. Prouver la sommabilité et calculer

$$\sum_{n\in\mathbb{N}} \frac{z^{2^n}}{1-z^{2^{n+1}}}.$$

Exercice 4: Exercice

À quelles conditions nécessaires et suffisantes sur $a, b, z \in \mathbb{C}$ les familles suivantes sont-elles sommables?

$$\left(\frac{z^p}{q!}\right)_{p,q\in\mathbb{N}}, \qquad \left(\frac{a^pb^q}{p!q!}\right)_{p,q\in\mathbb{N}}, \qquad \left(\frac{q^pz^p}{p!q!}\right)_{p,q\in\mathbb{N}}, \qquad \left(\binom{p+q}{p}z^{p+q}\right)_{p,q\in\mathbb{N}}.$$

Exercice 5: Exercice

1. Soit $n \in \mathbb{N}$. Décomposer en éléments simples la fraction rationnelle

$$F_n := \frac{1}{X(X+1)\cdots(X+n)}.$$

2. En déduire que pour tout $z \in \mathbb{C} \setminus (-\mathbb{N})$

$$\sum_{n \in \mathbb{N}} \frac{1}{z(z+1)\cdots(z+n)} = e \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n!(z+n)}.$$