8085 FULL SYSTEM DESIGNING

Important Rules for designing 8085 based systems:

- 1> **Always map EPROM from location 0000H onwards.** This is the reset vector address of 8085. On reset PC becomes 0000H. Now 8085 executes the "Monitor program" from this address hence we should have permanent (non-volatile) memory at this address.
- 2> RAM should start from the next address after EPROM ends, unless specified otherwise.
- 3> I/O chips such as 8255, 8259 etc should be mapped using I/O mapped I/O by default unless the questions says to use memory mapped I/O.
- 4> If memory chip number is given instead of chip size then the chip size can be calculated as follows:

1> Chip No: 2764 Chip Size: 27
$$\frac{64}{2}$$
 = 8 KB

8

8

8

5> If the Chip Size is mentioned as (16K x 8) then it means it is a chip of 16K locations and each location has 8-bits making it a 16 KB chip. Therefore ...

- 1> (16K x 8) Chip means 16 KB.
- 2> (8K x 8) Chip means 8 KB.
- 3> (4K x 8) Chip means 4 KB.

6> EPROM is also called Monitor Program Memory or Firmware Memory. RAM is also called Data Storage Memory.

BHARAT ACHARYA EDUCATION

Cell: 98204 08217 BharatSir@hotmail.com

Q1) Design an 8085 based system working at 3 MHZ having the following...

16 KB EPROM using 8 KB Chips 32 KB RAM using 16 KB Chips One 8259 in Memory Mapped I/O.

One 8255 in I/O Mapped I/O.

{12/15/20 marks}

Soln: As 8085 is working at 3 MHz, we must connect a crystal of 6 MHz (2 x desired frequency)

Memory Calculations

EPROM:

Required = 16 KB Available = 8 KB

No of Chips = 2 chips.

Size of a "Single" EPROM chip = 8 KB

$$= 8 \times 1 \text{ KB}$$

= $2^{3} \times 2^{10}$
= 2^{13}

∴ Each EPROM chip requires 13 address lines (A12 - A0)

RAM:

Required = 32 KB

Available = 16 KB

No of Chips = 2 chips.

Size of a "Single" RAM chip = 16 KB
= 16 x 1 KB
=
$$2^4$$
 x 2^{10}
= 2^{14}

∴ Each EPROM chip requires 14 address lines (A13 - A0)

Memory Map

Memory	Address Bus															Memory	
Chip	A15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	AO	Address
EPROM1 Begins	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000 H
EPROM1 Ends	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1FFF H
EPROM2 Begins	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2000 H
EPROM2 Ends	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3FFF H
RAM1 Begins	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000 H
RAM1 Ends	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7FFF H
RAM2 Begins	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8000 H
RAM2 Ends	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	BFFF H
8259 ICW1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C000 H
8259 ICW2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	C001 H

I/O Map

I/O Chim			I/O port						
I/O Chip	A7	A6	A5	A4	А3	A2	A1	A0	Address
8255 PA	1	0	0	0	0	0	0	0	80 H
8255 PB	1	0	0	0	0	0	0	1	81 H
8255 PC	1	0	0	0	0	0	1	0	82 H
8255 CW	1	0	0	0	0	0	1	1	83 H

Q2) Design an 8085 based system working at 3 MHZ having the following... 8 KB EPROM using 4 KB Chips 16 KB RAM using 8 KB Chips

Soln: As 8085 is working at 3 MHz, we must connect a crystal of 6 MHz (2 x desired frequency)

Memory Calculations

EPROM:

Required = 8 KB

Available = 4 KB

No of Chips = 2 chips.

Size of a "Single" EPROM chip = 4 KB

$$= 4 \times 1 \text{ KB}$$

$$= 2^2 \times 2^{10}$$

$$= 2^{12}$$

∴ Each EPROM chip requires 12 address lines (A11 - A0)

RAM:

Required = 16 KB

Available = 8 KB

No of Chips = 2 chips.

Size of a "Single" RAM chip = 8 KB

$$= 8 \times 1 \text{ KB}$$

$$= 2^3 \times 2^{10}$$

 $= 2^{13}$

∴ Each RAM chip requires 13 address lines (A12 - A0)

Memory Map

Memory	Address Bus															Memory	
Chip	A15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	AO	Address
EPROM1 Begins	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000 H
EPROM1 Ends	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0FFF H
EPROM2 Begins	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1000 H
EPROM2 Ends	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1FFF H
RAM1 Begins	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2000 H
RAM1 Ends	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3FFF H
RAM2 Begins	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000 H
RAM2 Ends	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	5FFF H

Solution method 1: