Лекция 5

Лемма 1 (5.1). (Техническая лемма.) Следующие формулы общезначимы:

(i)
$$t = s \rightarrow r(t) = r(s)$$
,
(ii) $t = s \rightarrow \varphi(t) = \varphi(s)$.

 $3 \partial ecb: r, s, t - mepмы, \varphi - \phi opмyлa;$

r(t) обозначает [t/x]r для некоторой переменной x; аналогично, r(s) обозначает [s/x]r;

 $\varphi(t)$ обозначает $[t/x]\varphi$ для некоторой переменной x и свободной подстановки [t/x] в φ ; аналогично, $\varphi(s)$ — это $[s/x]\varphi$ для свободной [s/x].

Лемма доказывается индукцией по длине r и φ соответственно.

Лемма 2 (5.2). В построенной в лекции 4 модели (модель полной непротиворечивой теории Хенкина, состоящая из (дубликатов) замкнутых термов) имеем:

$$|\varphi(\underline{t})|_M = |\varphi(t)|_M.$$

Здесь t — замкнутый терм, φ — формула; $\varphi(t)$ обозначает $[t/x]\varphi$ для некоторой переменной x. Очевидно, подстановка [t/x] в φ свободна, т.к. t замкнут.

Доказательство. По лемме 5.1 общезначима импликация

$$t = x \to (\varphi(t) \leftrightarrow \varphi(x)) \tag{I}$$

В частности, эта формула верна в M при оценке θ , переводящей x в \underline{t} (а другие переменные — куда угодно). Т.е. $|x|_{M,\theta}=\underline{t}$. И, как мы знаем (лекция 4),

$$|t|_M = \underline{t},$$

независимо от оценки. Значит, посылка (I) истинна при θ , а потому заключение тоже истинно, т.е.

$$|\varphi(t)|_{M,\theta} = |\varphi(x)|_{M,\theta}.$$

Левая часть не зависит от оценки и записывается как $|\varphi(t)|_M$. Правая часть — это как раз $|\varphi(\underline{t})|_M$. Лемма доказана.

В дальнейшем все теории — с равенством, а модели — нормальные.

Теорема 1 (5.3). (Теорема Лёвенгейма — Сколема о повышении мощности.) Если T — теория в сигнатуре L, $|L| \le k$ и для любого конечного n теория T имеет модель мощности $\ge n$, то T имеет модель мощности k.

Доказательство. Добавим к L множество новых констант $\{c_i \mid i \in I\}$, где |I| = k и построим в этой новой сигнатуре L^+ теорию

$$T^+ := T \cup \{c_i \neq c_j \mid i, j \in I, i \neq j\}.$$

Всякое конечное подмножество T^+ содержится в теории вида

$$T' := T \cup \{c_i \neq c_j \mid i, j \in I', i \neq j\},\$$

где I' конечно. Любая такая теория имеет модель: если |I'| = n, то возьмем модель T мощности $\geq n$ и проинтерпретируем в ней константы c_i для $i \in I'$ какими-нибудь разными элементами. Следовательно, все такие теории непротиворечивы, а потому и T^+ непротиворечива.

Заметим, что $|L^+|=k$ (по свойствам мощностей). Тогда по теореме 4.7 T^+ имеет модель M мощности $\leq k$. Но, благодаря новым аксиомам, в имеются k различных элементов (интерпретации новых констант c_i), поэтому |M|=k. Это и будет искомая модель T, если забыть про константы.

Определение 1. Пусть k — бесконечная мощность. Теория T называется k-категоричной, если все ее модели мощности k изоморфны.

Теорема 2 (5.4). (Признак полноты Лося — Вота.) Если теория T в сигнатуре L не имеет конечных моделей и k-категорична для некоторой мощности $k \geq |L|$, то T полна.

Доказательство. Допустим, что такая теория неполна. Тогда для некоторой замкнутой φ имеем $T \not\vdash \varphi, \neg \varphi$. Поэтому теории $T \cup \{\neg \varphi\}, \ T \cup \{\varphi\}$ непротиворечивы. Значит, они имеют модели, и эти модели должны быть бесконечны, поскольку T не имеет конечных моделей. Значит, по теореме 5.3, $T \cup \{\neg \varphi\}, \ T \cup \{\varphi\}$ имеют модели мощности k. Получаем две модели мощности k, которые не элементарно эквивалентны, а потому не изоморфны. Это противоречит k-категоричности.

Пример 1 Теория DLO неограниченных плотных линейных порядков \aleph_0 -категорична (теорема Кантора, см. лекцию 6).

Лекция 5

Пример 2 Теория бесконечных множеств в сигнатуре (=). Аксиомы ее имеют вид

$$\exists x_1 \dots \exists x_n \bigwedge_{i \neq j} x_i \neq x_j.$$

Она k-категорична для всех бесконечных k: ее модели — это просто бесконечные множества без дополнительной структуры.

Пример 3 Теория TFDA делимых абелевых групп без кручения в сигнатуре (+, 0, =).

Аксиомы этой теории:

І. Аксиомы абелевых групп.

II.(TF)
$$\forall x (x \neq 0 \rightarrow n \cdot x \neq 0)$$

(D)
$$\forall x \exists y (n \cdot y = x)$$

для всех натуральных n > 1.

Здесь $n \cdot x$ обозначает терм $\underbrace{x + \ldots + x}_n$ (формально он должен записы-

ваться со скобками, например, идущими слева).

Теорема 3. *TFDA* k-категорична для всех несчетных k.

Схема доказательства.

(0) Модель TFDA является векторным пространством над **Q**.

Док.: Рассмотрим такую модель M. Сначала для всех $x \in M$ и натуральных n>0 определим x/n как такое y, что $n\cdot y=x$. Такое y существует по аксиоме (D) и единственно по аксиоме (TF) и свойству абелевых групп n(y-z)=ny-nz (которое доказывается для каждого n— индукцией по n). Очевидно, что x/1=x

Теперь можно определить $(m/n) \cdot x := m \cdot (x/n)$ и $(-m/n) \cdot x := -((m/n) \cdot x)$ для всех натуральных m,n>0. Таким образом, в M получаем умножение на рациональные числа, для которого проверяются свойства векторного пространства:

1.
$$r \cdot (x+y) = r \cdot x + r \cdot y$$
.

$$2. (r+s) \cdot x = r \cdot x + s \cdot x.$$

3.
$$(rs) \cdot x = r \cdot (s \cdot x)$$
.

Обозначим это пространство через V(M).

- (1) Теорема Хамеля: всякое векторное пространство имеет базис.
- Док.: Базис это максимальное линейно независимое подмножество. Оно существует по лемме Цорна.
- (2) Если базис пространства V (над ${\bf Q}$) бесконечной мощности k, то и V мощности k.

Док.: Действительно, каждый вектор из V записывается в виде конечной линейной комбинации элементов базиса (который мы обозначим через B). Линейно упорядочим B; это можно сделать по теореме Цермело, и запишем каждый вектор $v \in V$ как $\sum_{i=1}^m r_i \cdot b_i$ (для некоторого

m), где все $r_i \neq 0$, все $b_i \in B$ и $b_1 < \ldots < b_m$ относительно выбранного порядка на B. Полагая $h(v) := ((r_1, b_1), \ldots, (r_m, b_m))$, получаем инъективное отображение h из V в множество конечных последовательностей, составленных из элементов множества ($\mathbf{Q} \times B$), т.е. в счетное объединение

$$\{0\} \cup (\mathbf{Q} \times B) \cup (\mathbf{Q} \times B)^2 \cup \dots$$

По свойствам мощностей имеем: $|\mathbf{Q} \times B| = |(\mathbf{Q} \times B)^2| = \ldots = k$, а счетное объединение множеств мощности k имеет ту же мощность. Значит, $|V| \le k = |B| \le |V|$, откуда |V| = k.

Таким образом, все бесконечные базисы равномощны (для конечных - это известно из алгебры), и можно корректно определить размерность dimV. При этом для бесконечномерного V имеем: dimV = |V|.

(4) Векторные пространства одинаковой размерности изоморфны. Это стандартный факт из алгебры: вектор переводим в вектор другого пространства с теми же координатами.

Теперь можно доказать категоричность. Пусть даны модели M, M' несчетной мощности k. Тогда V(M), V(M') бесконечномерны, так как конечномерное пространство над \mathbf{Q} всегда счетно. В силу (3) dimV(M) = dimV(M') = k. В силу $(4), V(M_1) \cong V(M_2)$. Но тогда и $M_1 \cong M_2$ — годится тот же изоморфизм.