

ALGORYTMY NUMERYCZNE

ZAGADNIENIA EGZAMINACYJNE

"Wada: niepewność"

Kraków Anno Domini 2025

Spis treści

1	Błę	dy obliczeń	1				
	1.1	Kodowanie liczb w komputerze	1				
	1.2	Utrata precyzji	1				
		1.2.1 Algorytm Kahana	1				
	1.3	Uwarunkowanie zadania i stabilność algorytmu	2				
2	Eliminacja Gaussa						
	2.1	Algorytm - rozkład LU	3				
	2.2	Zastosowania	3				
3	Układy równań liniowych						
	3.1	Rozwiązywanie eliminacją Gaussa	4				
	3.2	Układy niedookreślone	4				
4	Ort	Ortogonalność, rozkład QR					
	4.1	Układy nadokreślone – najmniejsze kwadraty	5				
		4.1.1 Metoda najmniejszych kwadratów	5				
	4.2	Rozkład Cholesky'ego	5				
	4.3	Rozkład QR	6				
	4.4	Algorytm Grama-Schmitta	6				
	4.5	Odbicia Householdera	6				
	4.6	Obroty Givensa	6				
5	We	ktory i wartości własne	7				
	5.1	Wyznaczanie wartości własnych	7				
	5.2	Metody iteracyjne	7				
		5.2.1 Iteracja prosta	7				
		5.2.2 Deflacja	7				
	5.3	Metoda QR	8				
	5.4	PageRank	8				
	5.5	Potęgowanie macierzy	8				
6	Wa	rtości szczególne	9				

	6.1	Rozkład SVD	9			
	6.2	Wyznaczanie	10			
		6.2.1 Algorytm Goluba-Kahana	10			
	6.3	Rozwiązywanie układu równań	10			
	6.4	Idea PCA	10			
7	7 Równania nieliniowe					
	7.1	Metoda bisekcji	11			
	7.2	Metoda Newtona	11			
	7.3	Metoda siecznych	12			
	7.4	Metoda punktu stałego	12			
8	Opt	ymalizacja nieograniczona	13			
	8.1	Ekstrema funkcji bitonicznych	13			
		8.1.1 Wyszukiwanie ternarne	13			
		8.1.2 Wyszukiwanie ze złotym podziałem	13			
	8.2	Wzór Taylora	14			
	8.3	Metoda gradient descent	14			
		8.3.1 Metoda gradientu prostego – wariant	14			
9	Układy równań – metody iteracyjne					
	9.1	Schemat działania	15			
	9.2	Metody Richardsona	15			
	9.3	Metody Jacobiego	15			
	9.4	Metody Gaussa-Seidela	16			
	9.5	Metoda najszybszego spadku	16			
10			17			
	10.1	Interpolacja Lagrange'a	17			
	10.2	Interpolacja Newtona	18			
	10.3	Funkcje sklejane	18			
11	- '		19			
	11.1	Ekstrema warunkowe	19			
	11.2	Programowanie liniowe	19			
	11.3	Problem ogólny	20			
	11.4	Metoda simplex	20			
12		v	21			
	12.1	Ogólny schemat kwadratury	21			
	12.2	Podstawowe kwadratury	21			
	12.3	Przybliżone różniczkowanie	22			

13	Tran	nsformata Fouriera	2 3			
	13.1	Rozwinięcie w szereg Fouriera	23			
	13.2	Transformata Fouriera	23			
		13.2.1 Dyskretna transformata Fouriera	23			
	13.3	Kompresja fal	24			
		13.3.1 Kompresja dźwięku	24			
		13.3.2 Kompresja obrazu	24			
14 Równania różniczkowe						
	14.1	Ogólny schemat rozwiązywania	25			
	14.2	Równania o zmiennych rozdzielonych	25			
	14.3	Równania jednorodne liniowe pierwszego rzędu	25			
	14.4	Metoda Eulera	26			

Licencja

Ten utwór jest dostępny na licencji Creative Commons Uznanie autorstwa na tych samych warunkach 4.0 Międzynarodowe.

Błędy obliczeń

1.1 Kodowanie liczb w komputerze

- Przez ułamki tylko liczby wymierne, dodawanie szybko zwiększa liczbę cyfr w liczniku i mianowniku
- Stałoprzecinkowe ograniczony zakres i marne wykorzystanie pamięci
- Zmiennoprzecinkowe

$$x = (1 + M) \cdot 2^w,$$

gdzie w to wykładnik (cecha), a $M \in (0,1)$ to mantysa. Wykładnik zapisuje się z przesunięciem $(2^{b_w-1}-1)$.

Kodowanie zera: $w=0\ldots 0,\ M=0\ldots 0$ Kodowanie nieskończoności: $w=1\ldots 1,\ M=0\ldots 0$ Kodowanie NaN: $w=1\ldots 1,\ M\in(0,1)$

Kodowanie nieznormalizowane: $w = 0...0, M \in (0,1)$ - liczby mniejsze od 2^{-b_M}

1.2 Utrata precyzji

Przy odejmowaniu podobnych na wielkość liczb może wystąpić utrata cyfr znaczących (catastrophic cancellation), czyli wybuch błędu względnego. Przy dodawaniu wielu liczb, jeśli błąd pojedyńczego dodawania jest równy ε , to końcowy wynik może różnić się od poprawnego o coś rzędu $O(n\varepsilon)$.

1.2.1 Algorytm Kahana

1.3 Uwarunkowanie zadania i stabilność algorytmu

Dana jest liczba t, należy wyznaczyć wartość pewnej funkcji f(t).

Współczynnik uwarunkowania to taka liczba A = A(f, t), dla której

$$||f(t) - f(t^*)|| \le A \cdot ||t - t^*||,$$

 $A \approx f'(t)$ dla rozsądnych funkcji f.

Dane jest równanie g(x) = 0, należy wyznaczyć x.

Współczynnik uwarunkowania to taka liczba A = A(g, x), dla której

$$||x - x^*|| \le A \cdot ||g(x) - g(x^*)||,$$

 $A \approx \frac{1}{q'(x)}$ dla rozsądnych funkcji f.

Problem jest dobrze uwarunkowany, jeśli małe zaburzenia danych wejściowych spowodują małą zmianę wyniku.

Współczynnik uwarunkowania macierzy A to $\kappa = \|A\| \cdot \|A^{-1}\|$. Dla równania $Ax^* = b^*$ z zaburzoną wartością b

$$\frac{\|x - x^*\|}{\|x\|} \le \kappa(A) \cdot \frac{\|b - b^*\|}{\|b\|}$$

Układy równań z wysokim κ są trudne do rozwiązania numerycznie.

Dane jest x oraz algorytm obliczający A(x), które przybliża f(x). Algorytm jest **numerycznie poprawny**, jeśli dla każdego x istnieje x^* które dobrze przybliża x oraz $A(x^*)$ dobrze przybliża f(x). Algorytm jest **numerycznie stabilny**, jeśli małe błędy na wejściu lub podczas działania algorytmu powodują małe zmiany wyniku.

Eliminacja Gaussa

Algorytm - rozkład LU 2.1

```
swap(A[i], A[m]) // partial pivoting
     for j = i+1, ..., n do

r = A[j][i] / a
         L[i][j] = r
A[j] -= r * A[i]
```

Złożoność: $O(n^3)$, dokładnie $\frac{2}{3}n^3$ operacji na liczbach rzeczywistych

Przy wyborze małego elementu głównego stabilność numeryczna pogarsza się przez błędy zaokrągleń - mogą pojawić się bardzo małe i bardzo duże wartości.

Pivoting (częściowy) pomaga. Wybieramy wiersz z największym na wartość bezwzględną elementem na przekątnej i to daje większą stabilność numeryczną. Przy rozkładzie LU trzeba wtedy pamiętać, że wynikiem jest rozkład LU = PA, gdzie P jest macierzą permutacji.

2.2Zastosowania

Mając A = LU:

- det $A = U_{1,1} \cdot \cdots \cdot U_{n,n}$
- $\bullet \ A^{-1}$ wyznaczamy, eliminując wszystko poza przekątną
- można wykryć liniową zależność rzędów / kolumn
- można rozwiązać równanie Ax = b w czasie $O(m \cdot n^2)$ dla m różnych b
- \bullet można rozwiązać równanie macierzowe AX=B, rozbijając B na kolumny

Układy równań liniowych

Twierdzenie 3.0.1 (Kroneckera-Capellego (Rouché-Capellego)). Niech Ax = b jest układem m równań z n niewiadomymi. Oznaczamy $r_a = \operatorname{rank} A$, $r_{ab} = \operatorname{rank} [A|b]$. Układ ma rozwiązanie wtw $r_a = r_{ab}$ i jest ono jednoznaczne wtw $r_a = n$. Inaczej rozwiązania stanowią przestrzeń o rozmiarze $n - r_a$.

Jeśli układ ma dwa rozwiązania, to ma ich nieskończenie wiele. Skoro Ax = b i Ax' = b, to $A \cdot (\alpha x + (1 - \alpha)x') = b$.

3.1 Rozwiązywanie eliminacją Gaussa

Mając Ax = b (czyli LUx = b), najpierw rozwiązujemy Ly = b, a potem Ux = y - wszystko w $O(n^2)$.

Układ Ux = b rozwiązuje się tak:

```
1 for i = n, ..., 1
2    x[i] = b[i]
3    for j = i + 1, ..., n
4     x[i] -= U[i][j] * x[j]
```

3.2 Układy niedookreślone

Mają wiele rozwiązań, bo wiele wektorów minimalizuje ||Ax - b||. Wybieramy najmniejszy, czyli ten, który dodatkowo minimalizuje $||Ax - b|| + \alpha ||x||^2$.

Ortogonalność, rozkład QR

Układy nadokreślone – najmniejsze kwadraty 4.1

Jeśli Ax = b jest nadokreślony i nie ma rozwiązania, to celem jest znaleźć x*, który minimalizuje $||Ax^* - b||^2.$

4.1.1Metoda najmniejszych kwadratów

Mamy dane x_1, \ldots, x_n oraz y_1, \ldots, y_n , a szukamy f, które zminimalizuje $\sum (f(x_i) - y_i)^2$. Jeśli Ax = b to nadokreślony układ równań, to poszukiwane przybliżone rozwiązanie x^* spełnia $A^T A x^* = A^T b.$

 $\ \ \, \bigotimes \ \,$ Macierz A^TA jest gorzej uwarunkowana, $\kappa(A^TA)=\kappa(A)^2$

4.2 Rozkład Cholesky'ego

Macierz C jest dodatnio określona, jeśli $\forall_x \ x^T C x > 0$.

Macierz C jest dodatnio półokreślona, jeśli $\forall_x x^T C x \geq 0$.

Dla każdej macierzy A, macierz $A^T A$ jest dodatnio półokreślona, a jeśli kolumny A są liniowo niezależne, to jest dodatnio określona. Do tego jest symetryczna. Można ją więc rozłożyć na LL^{T} , rozkład Cholesky'ego:

$$\begin{array}{lll} \text{Już wyliczone: } L_{1,1}, \dots, L_{i,1}, \dots, L_{i,j-1} & & \mathsf{L}_{00} \\ A_{ij} = L_i \cdot L_j = \sum_{k=1}^j \ L_{ik} L_{jk} & & \mathsf{L}_{10} \quad \mathsf{L}_{11} \\ L_{ij} = \frac{A_{ij} - \sum_{k=1}^{j-1} \ L_{ik} L_{jk}}{L_{jj}}, \ \text{dla } i > j & & \mathsf{L}_{20} \quad \mathsf{L}_{21} \quad \mathsf{L}_{22} \\ L_{21} \quad \mathsf{L}_{22} \quad \mathsf{L}_{33} & & \mathsf{L}_{40} \quad \mathsf{L}_{41} \quad \mathsf{L}_{42} \quad \mathsf{L}_{43} & \mathsf{L}_{44} \end{array}$$
 czyli takim zygzakiem.

Rozkład Cholesky'ego jest stabilniejszy numerycznie i ma lepszą stałą niż standardowa eliminacja Gaussa.

4.3 Rozkład QR

Jeśli zbiór $\{v_1, \ldots, v_n\}$ stanowi bazę przestrzeni liniowej, to każdy wektor x wyraża się w tej bazie łatwo:

$$x = \sum_{i} \langle x, v_i \rangle v_i$$

Mając ortonormalną macierz Q, rozwiązaniem Qx=b jest $x=Q^Tb$. Pozostaje tylko rozłożyć A=QR, gdzie Q jest ortogonalna, a R górnotrójkątna.

4.4 Algorytm Grama-Schmitta

```
\operatorname{span}\{q_1,\ldots,q_i\} = \operatorname{span}\{a_1,\ldots,a_i\}
```

Wersja podstawowa

Wersja ulepszona

```
1 for i = 1, ..., n
2    qi = ai
3    for j = 1, ..., i-1
4     qi = qi - <ai, qj>qj
5    qi = qi / ||qi||
1 for i = 1, ..., n
2    qi = ai / ||ai||
3    for j = i+1, ..., n
4    aj = aj - <aj, qi>qi
```

Modyfikacja daje większą stabilność numeryczną. Ostatecznie $R=Q^TA$ i $Rx=Q^Tb$.

4.5 Odbicia Householdera

Szukamy takiego odbicia symetrycznego, które przeprowadzi wektor x na ||x||e.

$$u = -x + \operatorname{sgn}(x) ||x|| e, \quad v = \frac{u}{||u||}$$
$$Q = I - 2vv^{T}$$

Dalsze macierze Q_i działają na A bez pierwszych (już gotowych) wierszy i kolumn.

4.6 Obroty Givensa

Szukamy macierzy $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, która przekształci $\begin{bmatrix} x \\ y \end{bmatrix}$ w $\begin{bmatrix} r \\ 0 \end{bmatrix}$, gdzie $r = x^2 + y^2$. Rozwiązaniem jest $\cos \theta = \frac{x}{r}$, $\sin \theta = \frac{-y}{r}$. Rozszerzamy macierz do odpowiednich wymiarów jak macierz jednostkową. Metoda jest wolniejsza od odbić Householdera, ale działa lepiej dla rzadkich macierzy i dobrze się zrównolegla.

Wektory i wartości własne

5.1 Wyznaczanie wartości własnych

Wartości własne A to pierwiastki wielomianu charakterystycznego $W(t) = \det(A - tI)$.

Szukanie pierwiastków wielomianu jest bardzo źle uwarunkowane.

5.2 Metody iteracyjne

Niech $v = \alpha_1 x_1 + \cdots + \alpha_n x_n$. Wówczas:

$$A^k v = \alpha_1 \lambda_1^k x_1 + \dots + \alpha_n \lambda_n^k x_n,$$

Jeśli $|\lambda_1| > |\lambda_i|$ dla i > 1, to $\lambda_1^k \gg \lambda_i^k$. Zatem wektor $A^k v$ ma kierunek coraz bardziej zgodny z x_1 .

5.2.1 Iteracja prosta

Zaczynając od $v_0 = v$, stosujemy

$$v_{k+1} = \frac{Av_k}{\|Av_k\|}$$

Wtedy v_k zbiega do x_1 , o ile A ma dominującą wartość własną.

5.2.2 Deflacja

Jeśli "wyrzucimy" wektor własny x_1 z początkowego v, to teoretycznie znajdziemy wektor odpowiadający drugiej co do wielkości wartości własnej. W praktyce musimy wyrzucać x_1 pokażdym kroku:

$$v = v - \langle v, x_1 \rangle x_1$$

5.3 Metoda QR

Zaczynając od $A_0 = A$, stosujemy algorytm:

- $(Q_k, R_k) = \text{decompose}(A_k)$
- $\bullet \ A_{k+1} = R_k Q_k$

Kolejne A_k zmierzają do macierzy diagonalnej z wartościami własnymi na przekątnej. W teorii jest tak, jeśli A jest diagonalizowalna, symetryczna i ma różne wartości własne.

Żeby przyspieszyć obliczenia, sprowadzamy A do macierzy Hessenberga (zera pod przekątną), np odbiciami Householdera i tak unikamy wielokrotnego czasochłonnego rozkładu.

Żeby przyspieszyć zbieżność, stosujemy przesunięcie:

- $(Q_k, R_k) = \text{decompose}(A_k I \cdot \mu)$
- $\bullet \ A_{k+1} = R_k Q_k + I \cdot \mu$

Za μ można przyjać prawy-dolny element A.

5.4 PageRank

W łańcuchach Markowa stan graniczny musi spełniać v = Pv, czyli musi być wektorem własnym macierzy przejść. Algorytm PageRank to szczególny łańcuch Markowa. Dla każdej strony wylicza graniczne prawdopodobieństwo znalezienia się na niej.

5.5 Potęgowanie macierzy

Macierz A jest diagonalizowalna (non-defective), jeśli ma n liniowo niezależnych wektorów własnych. Wtedy $A = P^{-1}DP$, gdzie P jest odwracalna, D diagonalna (z wartościami własnymi). Każda macierz (nawet niediagonalizowalna) ma postać Jordana $A = P^{-1}JP$, wtedy J jest jak D + jedynki pod przekątną. Z tego wynika, że przy potęgowaniu macierz zachowuje się jak największa wartość własna – jeśli $\lambda > 1$, ciąg A^k jest rozbieżny, jeśli $\lambda < 1$ jest zbieżny. Dygresja: Jeśli P jest odwracalna, to $P^{-1}AP$ ma te same wartości własne, co A (macierze są sprzężone).

Wartości szczególne

Prawe wektory szczególne A to v_1, \ldots, v_n , dla których $A^T A v_i = \lambda_i v_i$, dla $\lambda_i \in \mathbb{R}$.

Wartości szczególne A to $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}$.

Lewe wektory szczególne A to u_1, \ldots, u_n , gdzie $u_i = \frac{1}{\sqrt{\lambda_i}} A v_i$.

Wektor szczególny to taki, który odpowiada najbardziej wydłużanemu kierunkowi.

6.1 Rozkład SVD

Przekształcamy macierz A liniowo:

$$A = U\Sigma V^T$$

złożeniem odw
zorowań, gdzie V ma wektory v_i jako wiersze, U m
a u_i jako kolumny, Σ jest diagonalna z
 $\sqrt{\lambda_i}$.

- 1. zmiana bazy (obrót przestrzeni) $(v_i \rightarrow e_i)$
- 2. skalowanie $(e_i \to \sqrt{\lambda_i} e_i)$
- 3. powrót (obrót przestrzeni) $(e_i \rightarrow u_i)$

Przypadek I: A jest osobliwa

Wtedy niektóre λ_i są zerami. Niezerowych u_i jest mniej niż n, więc uzupełniamy je dowolnymi wektorami do bazy ortonormalnej.

Przypadek II: A nie jest kwadratowa

Jeśli m < n, to $A^T A$ jest rozmiaru $n \times n$, ale ma mniejszy rząd (m) i część wartości szczególnych jest zerami. Mamy n prawych i m lewych wektorów szczególnych.

Jeśli m > n, to $A^T A$ jest rozmiaru $n \times n$. Mamy n prawych wektorów szczególnych – dopełniamy u_i wektorami Av_i do bazy.

Macierz V jest $n \times n$, $\Sigma - m \times n$, a U jest $m \times m$.

6.2 Wyznaczanie

Szukamy wartości i wektorów własnych macierzy A^TA . Na przykład metodą QR, bo A^TA jest symetryczna i dodatnio określona.

Samo obliczanie A^TA pogarsza stabilność.

6.2.1 Algorytm Goluba-Kahana

Szukamy najpierw takich unitarnych macierzy U' i V', żeby B = U'AV' była bidiagonalna (naprzemiennymi macierzami Householdera). Wtedy B^TB jest tridiagonalna (w postaci Hessenberga), więc potrzebne jest mniej dodawań i mnożeń \rightarrow lepsza stabilność numeryczna.

6.3 Rozwiązywanie układu równań

Problem równoważny: zminimalizować $||x||^2$ dla x spełniających $A^TAx = A^Tb$. Wstawiamy $A = U\Sigma V^T$. Wówczas $\Sigma V^Tx = U^Tb$. Oznaczając $y = V^Tx$, trzeba zminimalizować $||y||^2$. Rozwiązaniem jest Σ^+U^Tb , gdzie Σ^+ ma na przekątnej odwrotności wartości z Σ lub zera. To prowadzi do rozwiązania $x = V\Sigma^+U^Tb$. Macierz $A^+ = V\Sigma^+U^Tb$ to pseudoodwrotność A.

- Jeśli A jest kwadratowa i nieosobliwa, to $A^+ = A^{-1}$.
- Jeśli Ax = b jest nadokreślony, to A^+b jest przybliżonym rozwiązaniem w sensie najmniejszych kwadratów.
- Jeśli Ax = b jest niedookreślony, to A^+b jest najmniejszym w sensie normy rozwiązaniem

6.4 Idea PCA

Dla zbioru wektorów zestawionych w macierz szukamy pierwszej wartości szczególnej. To daje przybliżenie wszystkich wektorów jednym (współrzędną / składową). Przy szukaniu następnej usuwamy poprzednia.

Podobnie można zapominać najmniejsze wyrazy przy kompresji obrazów, po potraktowaniu ich jak macierze i rozłożeniu SVD.

Równania nieliniowe

Celem jest znaleźć pierwiastek funkcji na przedziale [a, b]. Metody korzystają z tego:

Twierdzenie Darboux

Jeśli funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła i $f(a)\leq y\leq f(b)$ lub $f(b)\leq y\leq f(a)$, to istnieje $x\in[a,b]$, t.że f(x)=y.

Twierdzenie Lagrange'a

Jeśli $f:[a,b]\to\mathbb{R}$ jest różniczkowalna, to istnieje $x\in(a,b)$ t.że $f'(x)=\frac{f(b)-f(a)}{b-a}$.

Wzór Taylora

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k + R_{k+1}(x,a),$$

gdzie $R_{k+1} = \frac{f'(\xi)}{(k+1)!} (x-a)^{k+1}$.

7.1 Metoda bisekcji

$$p_0 = a, q_0 = b$$

$$x_n = \frac{p_n + q_n}{2}$$

$$(p_n, q_n) = \begin{cases} (p_{n-1}, x_{n-1}) & f(p_{n-1}) \cdot f(x_{n-1}) < 0 \\ (x_{n-1}, q_{n-1}) & \text{wpp} \end{cases}$$

Zbieżność liniowa - k cyfr znaczących wymaga O(k) kroków

7.2 Metoda Newtona

Działa, jeśli $f'(x^*) \neq 0$, czyli pierwiastek jest pojedyńczy i $(x_n - x^*)^2 \ll |x_n - x^*|$, jest się w jego okolicy.

$$x_0 = ?, \ x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

Zbieżność kwadratowa - kcyfr znaczących wymaga $O(\log k)$ kroków

7.3 Metoda siecznych

Pomocna, kiedy nie wiadomo, jak obliczyć pochodną.

$$x_n = x_{n-1} - \frac{f(x_{n-1}) \cdot (x_{n-1} - x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

Zbieżność ponadliniowa z $r = \frac{1+\sqrt{5}}{2}$

7.4 Metoda punktu stałego

Celem jest znaleźć punkt stały funkcji f.

Twierdzenie 7.4.1 (Banacha o punkcie stałym). Niech $f: V \to V$ będzie odwzorowaniem w przestrzeni Banacha. Jeśli $||f(x) - f(y)|| \le \lambda \cdot ||x - y||$ dla pewnego $0 \le \lambda < 1$ (odzworowanie jest zwężające), to ma ono dokładnie jeden punkt stały i poniższa metoda zawsze do niego zbiega:

$$x_n = f(x_{n-1})$$

Czyli w $\mathbb R$ działa dla funkcji f, t.że f'<1 na pewnym przedziale domkniętym - zbiega kwadratowo.

Optymalizacja nieograniczona

8.1 Ekstrema funkcji bitonicznych

8.1.1 Wyszukiwanie ternarne

Algorytm do szukania ekstremów funkcji bitonicznych, czyli ciągłych z jednym ekstremum:

(wersja dla maksimum)

```
1 function ternary(p, q)
2          r = p + (q-p)/3
3          s = q - (q-p)/3
4          if f(r) < f(s)
5                return ternary(r, q)
6          else
7          return ternary(p, s)</pre>
```

Przedział zmniejsza się do $\frac{2}{3}$ za pomocą dwóch wywołań f, czyli $\sqrt{\frac{2}{3}}$ razy na jedno obliczenie f.

8.1.2 Wyszukiwanie ze złotym podziałem

Czyli ulepszona wersja poprzedniego.

```
1 function golden(p, q)
2          r = q - (q-p)*phi
3          s = p + (q-p)*phi
4          if f(r) < f(s)
5               return golden(r, q)
6          else
7          return golden(p, s)</pre>
```

Wykorzystujemy obliczone wcześniej wartości f, więc przedział zmniejsza się o $\Phi \approx 0.618$ w jednym wywołaniu.

Wzór Taylora 8.2

Wzór Taylora dla jednej zmiennej:

$$f(x) \approx f(x_0) + f'(x_0)(x - a) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

Wtedy ekstremum f jest gdzieś w okolicy $x_0 - \frac{f'(x_0)}{f''(x_0)}$.

Przybliżenie ze wzoru Taylora dla funkcji wielu zmiennych:

$$f(x) \approx f(x_0) + \nabla f(x_0) \cdot (x - x_0) + (x - x_0)^T \cdot H_f(x_0) \cdot (x - x_0)$$
$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right]$$

W punkcie stacjonarnym x_0 (spełniającym $\nabla f = 0$):

- jeśli $H_f(x_0)$ jest dodatnio określona, to w x_0 jest minimum.
- jeśli $H_f(x_0)$ jest ujemnie określona, to w x_0 jest maksimum.
- jeśli $H_f(x_0)$ jest nieosobliwa, ale nie ma maksimum ani minimum, to w x_0 jest punkt siodłowy.
- jeśli $H_f(x_0)$ jest osobliwa, mogą wystąpić sytuacje zdegenerowane (może też dowolna z powyższych).

8.3 Metoda gradient descent

Będąc w punkcie x_k , idziemy w kierunku wektora gradientu:

$$x_{k+1} = x_k - \nabla f(x_k) \cdot t,$$

gdzie t jest pewną stałą. Nie potrzeba wielu obliczeń f.

Można kluczyć lub przeskoczyć minimum.

8.3.1Metoda gradientu prostego – wariant

Będąc w punkcie x_k , idziemy w kierunku wektora gradientu od razu do optimum na prostej:

$$h_k(t) = f(x_k - \nabla f(x_k) \cdot t)$$

$$x_{k+1} = \min_{t} \ h_k(t)$$

Szukamy minimum h_k za pomocą metod dla jednej zmiennej (Newton, wyszukiwanie ternarne). Daje to większą dokładność, ale też trzeba więcej razy obliczać f.

Układy równań – metody iteracyjne

9.1 Schemat działania

Przy ustalonej macierzy ortonormalnej Q wyznaczamy kolejne przybliżenia rozwiązania:

$$Qx_{n+1} = (Q - A)x_n + b,$$

czyli najpierw obliczamy $y = (Q - A)x_n + b$, a potem rozwiązujemy układ równań Qx = y. Macierz Q powinna być niezbyt gęsta, żeby mnożenie było szybkie i łatwo odwracalna, żeby układ Qy = c był rozwiązywalny:

$$x_{n+1} = Q^{-1}(Q - A)x_n + Q^{-1}b.$$

Jeśli oznaczymy $C = Q^1(Q - A)$, $b' = Q^{-1}b$, to $x_n = (I + C + C^2 + ... + C^n) \cdot b'$. Metoda jest więc zbieżna, jeśli $\rho(Q^{-1}(Q - A)) < 1$.

9.2 Metody Richardsona

Przyjmujemy Q = I, wtedy

$$x_{n+1} = x_n + \omega(b - Ax_n)$$

W wersji podstawowej $\omega=1$. Metoda jest zbieżna, jeśli $0<\omega<2/\rho(A)$.

9.3 Metody Jacobiego

Przyjmujemy Q=D diagonalną, taką jak główna przekątna w A=D+R.

$$x_{n+1} = D^{-1}(b - Rx_n)$$

Metoda jest zbieżna, jeśli $\rho(D^{-1}A) < 1$, w szczególności jeśli macierz ma dominującą przekątną,

9.4 Metody Gaussa-Seidela

Przyjmujemy za Q=U dolny trójkąt macierzy A. Jeśli rozłożymy A=L+U, gdzie U ma zera na przekątnej:

$$x_{n+1} = L^{-1}(b - Ux_n)$$

Metoda jest zbieżna, jeśli A ma dominującą przekątną albo jeśli A jest symetryczna i dodatnio określona.

9.5 Metoda najszybszego spadku

Załóżmy, że macierz A jest symetryczna i dodatnio określona (zawsze można przejść na $A^TAx = A^Tb$). Żeby dostać rozwiązanie wystarczy znaleźć minimum funkcji

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

Gradient funkcji $\nabla f = Ax - b$ rzeczywiście zeruje się w rozwiązaniu, a hesjan to A.

$$x_{k+1} = x_k + \alpha(b - Ax_k)$$

Niech d = b - Ax. Szukamy minimum funkcji jednej zmiennej

$$q(\alpha) = f(x + \alpha d)$$

metodą najszybszego spadku:

Interpolacja

Dla zadanych węzłów x_0, \ldots, x_n oraz y_0, \ldots, y_n chcemy znaleźć wielomian W(x) stopnia n, dla którego $W(x_i) = y_i$.

Może istnieć tylko jeden taki wielomian i na pewno istnieje. Współczynniki są rozwiązaniem układu równań zadanego przez macierz Vandermonda.

Macierz Vandermonda, chociaż zawsze nieosobliwa, jest źle uwarunkowana.

Twierdzenie

Jeśli $f \in C^{n+1}[a,b]$ jest funkcją, którą interpolujemy wielomianem $p \le x_0, \dots, x_n \in [a,b]$, to:

$$|f(x) - p(x)| \le \frac{1}{(n+1)!} \max |f(n+1)| \prod_{i=0}^{n} (x - x_i)$$

Dla niektórych funkcji przy interpolacji wielomianem w równomiernych węzłach, błąd przybliżenia rośnie, ile chce \to zjawisko Rungego. Wybór węzłów ma znaczenie.

Zera wielomianów Czebyszewa $T_k(x) = \cos(k \arccos(x))$ to dobry wybór.

10.1 Interpolacja Lagrange'a

Znajdujemy wielomiany P_0, \ldots, P_n t.że:

$$P_i(x_j) = 1[i = j]$$

$$P_i(x) = \frac{\prod_{s \neq i} (x - x_s)}{\prod_{s \neq i} (x_i - x_s)}$$

Wtedy $W(x) = \sum_{i=1}^{n} P_i(x) \cdot y_i$.

Dzielimy przez $\prod_{s\neq i} (x_i - x_s)$, a to może być prawie zerem.

10.2 Interpolacja Newtona

Definiujemy $R_i(x)$, takie żeby W(x) można było łatwo wyrazić w bazie R_i :

$$R_i(x) = (x - x_0) \cdot \cdots \cdot (x - x_{i-1})$$

$$W_i(x) = W_{i-1}(x) + \alpha_i \cdot R_i(x) = y_0 + \alpha_1 \cdot R_1 + \dots + \alpha_i \cdot R_i(x)$$

Współczynniki α_i dobieramy tak, żeby $W_i(x_i) = y_i$.

Algorytm Neville'a

Można ulepszyć interpolację Newtona, stosując algorytm dynamiczny - ilorazy różnicowe.

$$c[i, i] = f(x_i)$$

$$c[i,j] = \frac{c[i+1,j] - c[i,j-1]}{x_i - x_i}, \text{ dla i} < j$$

Wtedy $\alpha_i = c[0, i]$.

10.3 Funkcje sklejane

Dla ustalonych n+1 węzłów interpolacji x_0, \ldots, x_n i odpowiadających im wartości $y_i = f(x_i)$ szukamy funkcji g, t.że:

- g jest wielomianem k-tego stopnia na każdym przedziale $[x_i, x_{i+1}]$ (kolażem z kilku wielomianów)
- $q \in C^{k-1}$

Optymalizacja z ograniczeniami

11.1 Ekstrema warunkowe

Niech $f: \mathbb{R}^n \to \mathbb{R}$ będzie funkcją celu. Chcemy zminimalizować (zmaksymalizować) f(x) na pewnym zbiorze domkniętym zadanym przez ograniczenia $g_i(x) = 0$, dla i = 1, 2, ..., k, gdzie $g_i: \mathbb{R}^n \to \mathbb{R}$. Czyli celem jest znaleźć ekstrema warunkowe. Definiujemy funkcję:

$$f_{\lambda}(x,\lambda) = f(x) - \sum_{i} \lambda_{i} \cdot g_{i}(x)$$

Ekstrema warunkowe f to ekstrema funkcji f_{λ} , czyli miejsca, gdzie gradient ∇f_{λ} się zeruje.

11.2 Programowanie liniowe

Zadanie programowania liniowego (ZPL) polega na maksymalizacji $f(x) = c^T x$, przy założeniach:

- *Ax* < *b*
- x > 0

Obszar dopuszczalny (spełniający ograniczenia) jest hiperwielościanem wypukłym. Jeśli ZPL ma rozwiązanie, to musi być któryś z jego wierzchołków.

Zadanie podstawowe przekształcamy na dualne tak:

$$\begin{array}{lll} \max c^T x & \min b^T y \\ Ax \leq b & \rightarrow & A^T y \geq c \\ x \geq 0 & y \geq 0 \end{array}$$

W zadaniu dualnym:

- max przechodzi w min i odwrotnie
- równania zamieniają się na zmienne

- ograniczenia \leq w warunkach przechodzą na warunki $y_i \geq 0$ (nierówności \leq tylko z dodatnim współczynnikiem)
- ograniczenia \geq w warunkach przechodzą na warunki $y_i \leq 0$ (nierówności \geq z ujemnym współczynnikiem)
- ograniczenia równościowe przechodzą na zmienne nieograniczone $y_i \in \mathbb{R}$ (równości z dowolnym współczynnikiem)

Jeśli jedno zadanie jest nieograniczone, to drugie musi być niespełnialne. Jeśli zadanie podstawowe (prymalne) jest niespełnialne, to dualne jest nieograniczone lub niespełnialne, i odwrotnie.

Silne twierdzenie o dualności

Rozwiązanie zadania dualnego jest równe rozwiązaniu zadania prymalnego.

11.3 Problem ogólny

Twierdzenie Karusha-Kuhna-Tuckera

Jeśli x^* jest minimum funkcji f z ograniczeniami równościowymi g_i i nierównościowymi h_j , to:

- $\nabla f(x^*) \sum_i \lambda_i \nabla g_i(x^*) \sum_i -j \mu_j \nabla h_j(x^*) = 0$
- $g_i(x^*) = 0, h_j(x^*) \ge 0$
- $\bullet \ \mu_j h_j(x^*) = 0$
- $\mu_j \geq 0$

11.4 Metoda simplex

Zaczynając od dowolnego wierzchołka obszaru dopuszczalnego, dopóki to możliwe, przesuwamy się do wierzchołka, który ma lepszą wartość funkcji celu. Jeśli rozwiązanie początkowe x=0 nie spełnia nierówności, to dodajemy nową zmienną w, którą odejmujemy od prawej strony każdej z nierówności i próbujemy zmaksymalizować (z nadzieją, że się wyzeruje).

Metoda simplex może być wykładnicza i może się zapętlić. Własność stopu zapewnia Reguła Blanda - wybieramy zmienną bazową i niebazową o najmniejszym indeksie.

Różniczkowanie i całkowanie numeryczne

12.1 Ogólny schemat kwadratury

Mając dane wartości funkcji $f(x_1), \ldots, f(x_n)$, dla pewnych punktów z [a, b], można liczyć przybliżoną wartość całki jako

$$\int_{a}^{b} f = \sum A_{i} \cdot f(x_{i}),$$

czyli (tu intuicja) interpolujemy funkcję wielomianem stopnia n w ustalonych węzłach i całkujemy ten wielomian.

12.2 Podstawowe kwadratury

Jeśli x_1, \ldots, x_n są równo położone na przedziale [a, b], tę metodę nazywa się kwadraturą Newtona-Cotesa.

Kwadratury Newtona-Cotesa

- $\bullet\,$ zamknięte (a i bsą pierwszym i ostatnim węz
łem interpolacji)
- \bullet otwarte (a i b nie są węzłami interpolacji).
- $\bullet\,$ Metoda prostokątów kwadratura otwarta dla n=1

$$\int_{a}^{b} f = (b - a) \cdot \frac{f(a + b)}{2}$$

Błąd: $O((b-a)^3)$

 $\bullet\,$ Metoda trapezów – kwadratura zamknięta dla n=1

$$\int_a^b f = (b-a) \cdot \frac{f(a) + f(b)}{2}$$

Błąd: $O((b-a)^3)$

 $\bullet\,$ Metoda Simpsona – kwadratura zamknięta dla n=2

$$\int_{a}^{b} f = \frac{b-a}{6} \cdot \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Błąd: $O((b-a)^5)$

• Metoda Simpsona 3/8 – kwadratura zamknięta dla n=2

$$\int_{a}^{b} f = \frac{b-a}{8} \cdot \left(3f\left(\frac{2a+b}{3}\right) + 3f\left(\frac{a+2b}{3}\right) + f(b)\right)$$

Dla dużych przedziałów błąd jest duży, więc lepiej zastosować kwadratury złożone, czyli dla podziału na mniejsze przedziały. Przykład dla prostokątów:

$$\sum \Delta x \cdot f\left(\frac{x_i + x_{i+1}}{2}\right)$$

dla przedziałów $[x_i, x_{i+1}]$ wielkości Δx .

Dla kwadratur złożonych błędy wynoszą $O(\Delta x^2)$ (prostokąty, trapezy) i $O(\Delta x^4)$ (Simpson).

12.3 Przybliżone różniczkowanie

- Na zwykły użytek: $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ $\rightarrow \text{ bład } O(h)$
- Lepiej: $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$ $\rightarrow \text{ blad } O(h^2)$
- **Jeszcze lepiej:** $f'(x) \approx \frac{3}{2}D(\frac{h}{3}) \frac{1}{2}D(h)$, dla $D(h) = \frac{f(x+h)-f(x)}{h}$ (ekstr. Richardsona) \rightarrow błąd $O(h^2)$
- Dla wtajemniczonych: $f'(x) \approx \frac{1}{h} \cdot \left[\frac{1}{12} f(x-2h) \frac{2}{3} f(x-h) + \frac{2}{3} f(x+h) \frac{1}{12} f(x+2h) \right]$ \rightarrow błąd $O(h^4)$

W niektórych z metod może się pojawić dzielenie przez $h \approx 0$.

Transformata Fouriera

13.1 Rozwinięcie w szereg Fouriera

$$f(x) = \frac{a_0}{2} + \sum_{k \ge 1} a_k \cdot \cos(kx) + \sum_{k \ge 1} b_k \cdot \sin(kx)$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos(kx)$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin(kx)$$

13.2 Transformata Fouriera

Celem jest ustalić częstotliwość danej funkcji $f: \mathbb{R} \to \mathbb{R}$, przyjmując, że jeśli częstotliwość jest równa ξ , to wartość $\int f(x) \cdot \cos(2\pi \xi x)$ będzie raczej większa niż mniejsza. Czyli zamiast wartości funkcji w punktach, pamiętamy z jakich częstotliwości się składa. Definiujemy:

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \cdot e^{2\pi i \xi x} = \int_{-\infty}^{\infty} f(x) \cdot \cos(2\pi \xi x) \ dx - i \cdot \int_{-\infty}^{\infty} f(x) \cdot \sin(2\pi \xi x) \ dx$$

Transformata Fouriera jest odwracalna, czyli $\hat{f}(x) = f(-x)$.

13.2.1 Dyskretna transformata Fouriera

Jest potrzebna, bo komputery nie operują na ciągłych funkcjach oraz znamy funkcję tylko w pewnych punktach. Przyjmujemy, że próbkowanie jest na przedziale [0, N) w punktach całkowitych.

$$\hat{f}(\xi) = \sum_{k=0}^{N-1} f(k) e^{2\pi i \xi \cdot k}$$

Ustalamy częstotliwość bazową $\xi_0=\frac{1}{N}$ i ograniczmy się tylko do wielokrotności ξ_0 :

$$\hat{f}\left(\frac{j}{N}\right) = \sum_{k=0}^{N-1} f(k) e^{2\pi i \cdot jk/N}$$

Czyli zamieniamy ciąg wartości funkcji $f(0), \ldots, f(N-1)$ na ciąg wartości transformaty $\hat{f}(0), \hat{f}(1/N), \dots, \hat{f}((N/1)/N)$. Pierwszy ciąg oznaczmy przez (a_0, \dots, a_{N1}) , drugi przez $(\hat{a}_0, \dots, \hat{a}_{N1})$. Przyjmujemy, że $\omega = e^{2\pi i/N}$ to N-ty pierwiastek z jedności. Stąd wzór to:

$$\hat{a}_j = \sum_{k=0}^{N-1} a_k \omega^{jk}$$

Traktujemy (a_0, \ldots, a_{N-1}) jak współczynniki wielomianu A i zamieniamy na ciąg $(\hat{a}_0, \ldots, \hat{a}_{N-1})$ $=(A(1),A(\omega),\ldots,A(\omega^{N-1})).$

Szybka transformata Fouriera (FFT) daje złożoność $O(N \log N)$.

Kompresja fal 13.3

13.3.1 Kompresja dźwięku

Pomysł: Rozbić funkcję (sygnał) na małe przedziały i zamienić za pomocą DFT na częstotliwości. Zapamiętuje się tylko najmocniejsze, po czym kompresuje wybranym standardowym, bezstratnym algorytmem (np. Huffman).

Pojawiają się problemy na granicach przedziałów.

Aby ich uniknąć, zamiast transformaty Fouriera można użyć podobnej transformaty cosinusowej, na częściowo nakładających się przedziałach. Jest obliczalna w takim samym czasie. Najbardziej znany wariant to Zmodyfikowana Transformata Cosinusowa (MDCT), używana m. in. w kompresji MP3.

$$(x_0, \dots, x_{2n-1}) \to (X_0, \dots, X_{n-1})$$
$$X_k = \sum x_j \cos\left(\frac{\pi}{n} \left(j + \frac{n+1}{2}\right) \cdot \left(\frac{k+1}{2}\right)\right)$$

Kompresja obrazu 13.3.2

Kompresja JPEG działa na podobnej zasadzie. Dzielimy obrazek na bloki i zamieniamy transformatą na częstotliwości. Potem zmniejszamy dokładność zapisu częstotliwości i na koniec kompresujemy bezstratnie (np. Huffman).

Równania różniczkowe

Ogólny schemat rozwiązywania 14.1

Wersja prosta (Cauchy'ego): Szukamy funkcji $y:[0,\infty)\to\mathbb{R}^n$, spełniającej y'=F(y,t)oraz y(0) = c.

Wersja ogólna: Szukamy funkcji $y:[0,\infty)\to\mathbb{R}^n$, spełniającej $F(y^{(k)},y^{(k-1)},\ldots,y,t)=0$ oraz warunki początkowe $y(0) = c_0, y'(0) = c_1, \dots$

Nie każde równanie musi mieć rozwiązanie, a jeśli ma rozwiązanie, to niekoniecznie iedno

Modelowe równanie

Przyjmujemy y' = F(y) liniowe, czyli y' = ay. Wtedy rozwiązanie to $y = Ce^{at}$. Problem jest stabilny dla $a \leq 0$.

14.2Równania o zmiennych rozdzielonych

Równanie jest postaci $y' = f(x) \cdot g(y)$.

- 1. Sprowadzamy do postaci $\frac{dy}{g(y)} = f(x) dx$.
- 2. Całkujemy stronami.
- 3. Wyznaczamy y.
- 4. Ustalamy wartość stałej na podstawie założeń.

Równania jednorodne liniowe pierwszego rzędu 14.3

Równanie jest postaci $y' + y \cdot p(x) = q(x)$.

1. Obliczamy czynnik $\mu(x) = e^{\int p(x) dx}$.

- 2. Przemnażamy obie strony oryginalnego równania przez $\mu(x)$.
- 3. Otrzymujemy równanie $\frac{d}{dx}\left(y\cdot\mu(x)\right)=\mu(x)\cdot q(x).$
- 4. Całkujemy stronami.
- 5. Wyznaczamy y.
- 6. Ustalamy wartość stałej na podstawie ewentualnych założeń.

14.4 Metoda Eulera

Intuicja: Narysować strzałki wskazujące kierunek funkcji w punkcie, po czym pójść po strzałkach. Dla równania y' = F(y) wyliczamy kolejne wartości y, zaczynając od $y_0 = y(0)$.

$$y_{k+1} = y_k + h \cdot F(y_k)$$

I tak rozwiązujemy równanie różniczkowe numerycznie. Dla bardzo małych h będzie stabilne, dla większych nie. Problemy, dla których potrzeba bardzo małych h do dobrych wyników są sztywne.

Niejawna metoda Eulera

Zaczynając od $y_0 = y(0)$

$$y_{k+1} = y_k + h \cdot F(y_{k+1})$$

Daje lepszą stabilność niż podstawowy wariant.