Lecture 24 Collision Resolution

FIT 1008 Introduction to Computer Science

Objectives for this lecture

- To understand two of the main methods of conflict resolution:
 - Open addressing:
 - Linear Probing
 - Quadratic probing
 - Double Hashing
 - Separate Chaining
- To understand their advantages and disadvantages
- To be able to implement them

Collisions: two main approaches

Open addressing:

- Each array position contains a single item
- Upon collision, use an empty space to store the item (which empty space depends on which technique)

Separate chaining:

- Each array position contains a linked list of items
- Upon collision, the element is added to the linked list

Open Addressing: Linear Probing

Insert item with hash value N:

- → If array[N] is empty just put item there.
- → If there is <u>already an item there</u>: look for the **first empty space in the array** from N+1 (if any) and add it there
- Linear search from N until an empty slot is found

Things to think about:

- Full table (to avoid going into an infinite loop)
- Restarting from position 0 if the end of table is reached
- Finding an item with the same key.

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

Aho **Standish** Kruse

6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

Standish
Langsam
Kruse
Horowiz

6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0

2

3

4

5

6

Aho
Standish
Langsam
Sedgewick
Kruse
Horowiz

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0

6

Aho
Standish
Langsam
Sedgewick
Kruse
Horowiz

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0 Aho Knuth **Standish** hash function 2 Langsam **Sedgewick** 3 4 Kruse 5 **Horowiz** 6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0 Aho **Standish** hash function Knuth Langsam **Sedgewick** 3 4 Kruse 5 **Horowiz** 6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0 Aho **Standish** hash function 2 Langsam Knuth **Sedgewick** 4 Kruse 5 **Horowiz** 6

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0

2

3

4

5

6

Standish
Langsam
Sedgewick
Knuth
Kruse
Horowiz

Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth

hash table

0

2

3

4

5

6

Standish
Langsam
Sedgewick
Knuth
Kruse
Horowiz

```
from referential_array import build_array
class HashTableLinear:
    def __init__(self, size=7919):
        self.count = 0
        self.table_size = size
        self.array = build_array(self.table_size)
    def __len__(self):
        return self.count
    def hash_value(self, key):
        h = 0
        a = 31415
        for i in range(len(key)):
            h = (h * a + ord(key[i])) % self.table_size
```

return h

Hash function with appropriately chosen constants

Open Addressing: Linear Probing

Insert item with hash value N:

- → If array[N] is empty just put item there.
- → If there is <u>already an item there</u>: look for the first empty space in the array from N+1 (if any) and add it there
- Linear search from N until an empty slot is found

Things to think about:

- Full table (to avoid going into an infinite loop)
- Restarting from position 0 if the end of table is reached
- Finding an item with the same key.

Key	Hash value	
Aho	0	
Kruse	5	
Standish	1	
Horowitz	5	
Langsam	5	
Sedgewick	2	
Knuth	1	

hash table

We are storing the key only.

In practice you want to store also some data that you associate to each key.

Key	Data	Hash value
Aho	Data structures and algorithms	0
Kruse	Data structures and program design in C++	5
Standish	Data structures in Java	1
Horowitz	Fundamentals of Data Structures	5
Langsam	Data structures using C and C++	5
Sedgewick	Algorithms in C++	2
Knuth	The art of computer programming	1

hash table

We are storing the key only.

In practice you want to store also some data that you associate to each key.

```
data
        key
        Aho .
                Data structures and algorithms
     Standish Data structures in Java
      Langsam Data structures using C and C++
2
     Sedgewick, Algorithms in C++
3
                The art of computer programming
4
      Kruse, Data structures and program design
5
     Horowiz, Fundamentals of Data Structures
6
```

Python tuple

Open Addressing: Linear Probing

(key , data)

- Insert item with hash value N:
 - → If array[N] is empty just put item there.
 - → If there is <u>already an item there</u>: look for the first empty space in the array from N+1 (if any) and add it there
- Linear search from N until an empty slot is found
- Things to think about:
 - Full table (to avoid going into an infinite loop)
 - Restarting from position 0 if the end of table is reached
 - Finding an item with the same key.

insert(key, data)

- Get the position N using the hash function, N = hash(key)
- If array[N] is empty just put the item (key, data) there.
- → If there is <u>already an item there</u>:
 - → If there is already something there, with the **same key** the user is **updating** the data
 - → If there is already something there with a different key, you need to find an empty spot

What if the Table is full?

```
def insert(self, key, data):
    position = self.hash(key)
    for _ in range(self.table_size):
        if self.array[position] is None: # found empty slot
            self.array[position] = (key, data)
            self.count += 1
            return
        elif self.array[position][0] == key: # found key
            self.array[position] = (key, data)
            return
        else: # not found, try next
            position = (position + 1) % self.table_size
    self.rehash()
    self.insert(key, data)
```

```
def __setitem__(self, key, data):
    position = self.hash(key)
    for _ in range(self.table_size):
        if self.array[position] is None: # found empty slot
            self.array[position] = (key, data)
            self.count += 1
            return
        elif self.array[position][0] == key: # found key
            self.array[position] = (key, data)
            return
        else: # not found, try next
            position = (position + 1) % self.table_size
    self.rehash()
    self.__setitem__(key, data)
```

```
def __str__(self):
    result = ""
    for item in self.array:
        if item is not None:
            (key, value) = item
            result += "(" + str(key) + "," + str(value) + ")"
    return result
```

Conclusion

- Hash Tables are one of the most used data type: You have a very good chance of using them in your career.
- They are very simple conceptually and very powerful in practice.
- A significant amount of experimental evaluation is usually needed to fine tune the hash function and the TABLESIZE