Algebre Lineaire | CM: 1

Par Lorenzo

17 janvier 2025

1 Matrices

Définition 1.1. Soit \mathbb{K} un corps. Soit $n, p \in \mathbb{N}^*$. Une matrice de taille $n \times p$ à coefficients dans \mathbb{K} est une famille d'éléments de \mathbb{K} indexée par $I = \{1, ..., n\} \times \{1, ..., p\}$. On la représente par un tableau rectangulaire :

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix}$$

Définition 1.2. On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices de taille $n \times p$ à coefficients dans \mathbb{K} . ou encore $\mathcal{M}_n(\mathbb{K})$ si n = p.

Définition 1.3. Une matrice A de $\mathcal{M}_n(\mathbb{K})$ est dite carrée d'ordre n.

- 1. les termes $a_{i,i}$ sont les éléments diagonaux de A.
- 2. A est dite diagonale si $a_{i,j} = 0$ pour $i \neq j$.
- 3. A est dite triangulaire supérieure si $a_{i,j} = 0$ pour i > j.
- 4. A est dite triangulaire inférieure si $a_{i,j} = 0$ pour i < j.

Définition 1.4. La matrice nulle de taille $n \times p$ est la matrice dont tous les coefficients sont nuls.

Définition 1.5. La matrice identité de taille $n \times n$ est la matrice diagonale dont les éléments diagonaux sont tous égaux à 1.

$$Id_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Définition 1.6. La matrice transposée de A est la matrice obtenue en échangeant les lignes et les colonnes de A.

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \quad et \quad {}^tA = \begin{pmatrix} a_{1,1} & \cdots & a_{n,1} \\ \vdots & \ddots & \vdots \\ a_{1,p} & \cdots & a_{n,p} \end{pmatrix}$$

Notée aussi A^t ou tA .

Définition 1.7. Une matrice $\mathcal{M}_n(\mathbb{K})$ est dite symétrique si $A = {}^t A$.

Remarques 1.1. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- $1. \ ^t(^tA) = A.$
- 2. ${}^{t}(A+B) = {}^{t}A + {}^{t}B$.
- 3. $t(\lambda A) = \lambda^t A$.
- $4. \ ^t(AB) = ^t B \cdot ^t A.$

Définition 1.8. On a les opérations

- 1. Deux matrice $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ sont égales si elles ont les mêmes coefficients. $A = B \iff \forall i \in \{1, ..., n\}, \forall j \in \{1, ..., p\}, a_{i,j} = b_{i,j}$
- 2. Si $\lambda \in \mathbb{K}$, on note λA la matrice obtenue en multipliant chaque coefficient de A par λ .
- 3. Si $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$, on note A+B la matrice obtenue en additionnant les coefficients correspondants. $A+B=(a_{i,j}+b_{i,j})$

Propriétés 1.1.

Soit $\lambda, \mu \in \mathbb{K}$ et $A, B, C \in \mathcal{M}_{n,p}(\mathbb{K})$.

- 1. A + (B + C) = (A + B) + C
- 2. A + B = B + A
- 3. A + 0 = A
- 4. A + (-A) = 0
- 5. $\lambda(A+B) = \lambda A + \lambda B$ et $(\lambda + \mu)A = \lambda A + \mu A$
- 6. $\lambda(\mu A) = (\lambda \mu)A$

Définition 1.9. Soit m matrices $A_1, ..., A_m \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $\lambda_1, ..., \lambda_m \in \mathbb{K}$. On appelle combinaison linéaire de $A_1, ..., A_m$ pondérée par $\lambda_1, ..., \lambda_m$ la matrice $\lambda_1 A_1 + ... + \lambda_m A_m$.

Définition 1.10. Soit $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$. Le produit de A par B est la matrice $C \in \mathcal{M}_{n,p}(\mathbb{K})$ définie par

$$c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}$$

Remarques 1.2. On peut utilise l'aide mémoire suivante pour se rappeler de la formule du produit de deux matrices.

Définition 1.11. On appelle sous-matrice de A la matrice obtenue en supprimant une ou plusieurs lignes et/ou colonnes de A. Ainsi on peut décomposer A en blocs. Soit en lignes :

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_p \end{pmatrix}$$

Soit en colonnes:

$$A = \begin{pmatrix} A_1 & \cdots & A_p \end{pmatrix}$$

Propriétés 1.2.

Pour toute matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on a $A \times Id_p = A$ et $Id_n \times A = A$.

Remarques 1.3. On voit que l'identité n'est pas unique si $n \neq p$ (la matrice n'est pas carrée).

Propriétés 1.3.

Soit $\lambda \in \mathbb{K}$ et $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$.

1.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

2.
$$A(B+C) = AB + AC \ et \ (A+B)C = AC + BC$$

3. $AB \neq BA$ en général

4.
$$A(BC) = (AB)C$$

Remarques 1.4. .

- Le produit de deux matrices n'est pas commutatif.
- On peut multiplier deux matrices non nulls et obtenir une matrice nulle. Ainsi on dit que l'ensemble $\mathcal{M}(\mathbb{K})$ possède des diviseurs de zéro.