APPENDIX FOR THE ECIS 2024 PAPER:

ARE OUR PREDICTIONS HEALTHY? A COMPARATIVE META-ANALYSIS OF MACHINE LEARNING STUDIES IN PREDICTIVE HEALTHCARE

Appendix

Kai Heinrich, OVGU Magdeburg, Germany, kai.heinrich@ovgu.de Armin Keshavarzi, OVGU Magdeburg, Germany, armin.keshavarzi@st.ovgu.de

Abstract

Predictive healthcare in the case of pancreatic neuroendocrine tumors (PNETs) is a crucial operation as treatment challenges arise due to the heterogeneity of the disease. Surgical approaches vary based on aggressiveness, ranging from resection for milder cases to extensive removal for aggressive PNETs. Thus, machine learning (ML) models are crucial for precise prediction and categorizing PNETs for enhanced outcome forecasting. This systematic review sheds light on the practices of ML approaches within a comparative meta-analysis and a quality assessment employing the standardized IJMEDI checklist. The results show that ML studies within the field of predictive healthcare, despite their potential, face challenges like inadequate data preprocessing, unclear model architecture, and limited clinical applicability.

Keywords: Predictive healthcare, systematic review, meta-analysis, quality.

Author	ML model	Validation	AUROC	Accura	Sensiti	Specifi		
Author	WIL Model	method	(95% CI)	cy	vity	city		
Aggressiveness								
(J. Huang et al.	MLR - Clinical	70 20 mondom	0.78	0.67	0.58	0.75		
	DL - Clinical	70 - 30 random	0.81	0.79	0.75	0.83		
2022)	DL - combined	split	0.85	0.75	0.75	0.75		
	MLR	80 - 20 random	0.72	0.71	0.5	0.79		
(Javed et al. 2022)	RF					0.78		
		split	0.86	0.82	0.75	0.8		
	RF for Metastasis		0.697					
	RF for Grade		0.717					
	RF - Radiomics for Metastasis		0.769					
(Mori et al. 2022)	RF - Radiomics for Grade	70 - 30 random	0.806					
	RF - Radiomics for	split	0.689					
	Lymphnodes		0.005					
	RF - Radiomics for		0.75					
	Microvascular Invasion							
(XT. Huang et al. 2022a)	Nomogram scoring	external validation	0.82	0.75	0.71	0.76		
	RPA		0.81	0.74	0.7	0.75		
(Yu et al. 2022)	MLR	external validation	0.84	0.8	0.77	0.81		

(Zhu et al. 2022)	MLR	35 - 65 random split	0.849	0.86	0.75	
		Diagnosis				
(Thiis Evenson et	BT*	3-flod cross	0.98	0.89	0.95	0.727
(Thiis-Evensen et al. 2022)	SVM*	validation	0.97	0.87	0.74	0.734
ai. 2022)	LDA*	vandation	0.96	0.83	0.60	
		Grades				
(61111 - 1 2022)	Arterial - Model not reported	75 - 25 random	0.82			
(Chiti et al. 2022)	Venous - Model not reported	split	0.6813			
	LDA - Clinical	<u> </u>	0.77	0.76	0.72	
(I in at al. 2022)	LDA - MRI	70 - 30 random	0.83	0.83	0.8	
(Liu et al. 2022)	LDA - CT	split	0.75	0.71	0	
	LDA - combined	r	0.85	0.83	0.84	
(0	softmax MLR	80 - 20 random		0.85	0.85	0.96
(Otto et al. 2023)	Deconvolution model	split		0.81	0.8	0.97
	ANN - Clinical - Grades	•	0.705	0.655	0.68	0.89
	ANN - Radiomics - Grades		0.857	0.724	0.64	0.95
	ANN - combined - Grades		0.864	0.776	0.72	0.99
	RF - Clinical - Grades		0.664	0.603	0.48	0.69
	RF - Radiomics - Grades		0.819	0.751	0.64	0.58
	RF- combined - Grades	7 C 11	0.853	0.828	0.8	0.58
(Park et al. 2023)	ANN - Clinical - prognosis	5-fold cross	0.728	0.672	0.741	0.63
,	ANN - Radiomics -	validation	0.662	0.655	0.667	0.001
	prognosis		0.662	0.655	0.667	0.881
	ANN - combined - prognosis		0.83	0.776	0.776	0.636
	RF - Clinical - prognosis		0.72	0.724	0.741	0.788
	RF - Radiomics - prognosis		0.596	0.569	0.481	0.818
	RF- combined- prognosis		0.741	0.707	0.593	0.697
	SVM-linear - group 1	60 - 40 random	0.84	0.75	0.83	0.79
(Wang et al. 2022)	SVM-linear - group 2	split	0.87	0.75	0.83	0.89
	SVM-linear - group 3	5-fold cross	0.88	0.78	0.86	
		Mortality				
	Cox proportional hazards	70 - 30 random	0.87	0.74	0.7501	0.1397
	Neural Multitask Logistic	split	0.87	0.84	0.7616	0.1418
(Jiang et al. 2023)	Regression	5-fold cross		0.64		0.1410
	DeepSurv	validation	0.9	NaN	0.7882	0.1278
	Random Survival Forest		0.86	NaN	0.7612	0.1432
(Liao et al. 2022)	Cox models, RF	70 - 30 random	Nan	NaN	0.76	
(Eldo et di. 2022)	<u> </u>	split	1 (411	11411	0.70	
(Lu et al. 2022)	Cox models, Bayesian	70 - 30 random	Nan	NaN	0.82	
(Eu et ul. 2022)	network	split	1 (411	11411	0.02	
		bootstrapping				
(G. Xu et al. 2022)	Cox models	and external	0.822	Nan	0.826	
		validation				
		Recurrence				
	Clinical data - regression		0.786			
	model		0.700			
(An et al. 2022)	Radiomics - regression	70 - 30 random	0.712			
	model	split	<u></u>			
	Combined Radiomics -		0.824			
	regression model				0 - :	
	RSF - 1 year		0.937	0.97	0.841	0.108
(Murakami et al.	RSF - 5 year	70 - 30 random	0.835	0.98	0.841	0.108
2023)	RSF - 10 year	split	0.911	0.86	0.841	0.108
	Cox models 1 year	-r	0.936	0.97	0.82	0.151
	Cox models 5 year		0.737	0.98	0.82	0.151

Cox models 10 year 0.81 0.85 0.82 0.151

Table A1. Machine Learning models properties

Abbreviations: MLR: Multivariable logistic regression, RF: Random Forest, ANN: Artificial Neural Network, DL: Deep learning model, RPA: recursion partitioning analysis, BT: Boosted Tree, SVM: Support vector machines, LDA: Linear discriminant analysis, RSF: Random Survival Forest, *: multiple models were averaged

Category	Output	Model (with best AUROC)	AUORC	Predictive Features	Author
Aggressiveness	Aggressive and Non-aggressive prediction	DL - combined	0.85	Sex, Age, Functional, CEA, CA125, CA 19–9, Tumor location, Body, Tail, Tumor size, Texture, Tumor shape, Tumor margin, Echogenicity, DMPD, CDFI, AE, VE, ED	(J. Huang et al. 2022)
S	Nodal disease prediction in nonfunctional PNET	RF	0.86	Tumor size, Tumor location, arterial enhancement, portal venous enhancement, and 15 radiomic features	(Javed et al. 2022)
	Grades, Metastasis, Lymph nodes, Microvascular aggressiveness	RF	0.806	Age, Gender, Necrosis, Cystic morphology, Pancreas atrophy, Arterial invasion, Venous invasion, Contiguous organs invasion, Grade (G1 vs. G2/G3), Liver metastasis (M+), Microvascular invasion (VI+), Metastatic lymph nodes (N+)	(Mori et al. 2022)
	Lymph node metastasis (LNM) prediction	Nomogram scoring	0.82	Age, sex, tumor size, tumor location, serum CgA level, serum NSE level, and Ki-67	(XT. Huang et al. 2022a)
	Ki-67 index prediction of being less than 5%	MLR	0.84	Tumor size, arterial phase enhancement, portal venous phase enhancement, and arterial phase enhancement pattern	(Yu et al. 2022)
	lymph node metastasis prediction	MLR	0.849	Gender, Age, BMI, Symptom, NLR, TB, ALT, AST, FBG, CEA, CA199, CA724, NSE, Lymph node metastasis, Tumor location, SI on T2WI, Maximum diameter of the tumor, Tumor margin, Exophytic growth, MPDD or CBDD, Hyperenhancement at arterial phase, Homogeneity, Vascular and adjacent tissue involvement, Synchronous liver metastases, Long axis of the largest lymph node, Short axis of the largest lymph node, Ratio of the long/short axis of the largest lymph node, Number of the lymph nodes with the short axis>5 mm, Number of the lymph nodes with the	(Zhu et al. 2022)

				short axis>10 mm, ADCmean, ADCmax, ADCmin, Tumor volume	
Diagnosis	Diagnosis prediction	BT*	0.98	Age, sex, Distant metastasis, Lymph node metastasis, Ki-67, NET Grade	(Thiis-Evensen et al. 2022)
Grades	Prognosis prediction	ANN - combined - prognosis	0.83	Tumor grade prediction model: Clinical features (1) Primary tumor size (2) Hepatic metastasis (3) Extrahepatic	(Park et al. 2023)
	Grades classes	ANN - combined - Grades	0.864	metastasis (4) Tumor grade Radiomic features (1) Morphological surface to volume ratio (2) Morphological center of mass shift (3) Intensity-based kurtosis (4) Intensity-histogram minimum histogram gradient grey level (5) GLCM correlation (6) GLRLM long runs emphasis (7) NGTDM strength (8) GLSZM small zone emphasis (9) GLSZM large zone emphasis (10) GLSZM large zone low grey level emphasis (11) GLSZM grey level non-uniformity; Prognosis prediction model: Clinical features (1) Sex (2) Clinical stage (3) Vascular invasion Radiomic features (1) Morphological spherical disproportion (2) Morphological spherical disproportion (2) Morphological spherical disproportion (3) Intensity-histogram kurtosis (4) Intensity-histogram quartile coefficient of dispersion (5) Intensity-histogram maximum histogram gradient (6) GLSZM normalized grey level non-uniformity	
Mortality	Survival rate prediction	DeepSurv	0.9	Age, Gender, Marital status, Race, Primary site, Stage, Grade, Surgery, Radiotherapy, Chemotherapy, Tumor size, Number of tumors, Tumor extension, Distant metastasis, Survival months, Status	(Jiang et al. 2023)
Recurr	Prognosis prediction of GP- NENs	Combined Radiomics - regression	0.824	Gender, History of hypertension, Smoking history, Drinking history, Age, Tumor pathological type, Primary tumor	(An et al. 2022)

	model		site, Ki-67, TNM stage, Lymph node metastasis, Distant metastasis, History of diabetes, Radscore 1, Radscore 2, Radscore 3		
1-year recurrer prediction	nce RSF	0.937	Age, Sex, Hereditary syndrome, Symptom, Tumor location, Tumor		
5-year recurrer prediction	nce RSF	0.835	number, Contrast pattern, Cystic component, Calcification, Main		
10-year recurrence prediction	RSF	0.911	Surgical method Surgical procedure I \	(Murakami al. 2023)	et

Table A2. summary of the predictive features and models with highest AUROC among each category and similar ourput.