Definition. A "parametrized plane curve"

Definition. A "parametrized plane curve" is a function,

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve:

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image γ

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), \}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve:

Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x,y) \in \mathbb{R}^2 \mid (x,y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x,y) \in \mathbb{R}^2 \mid (x,y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty)$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4})$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x,y) \in \mathbb{R}^2 \mid (x,y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 $\gamma : (-\infty, \infty) \to \mathbb{R}^2$
 $\gamma(t) = (t, \frac{7t+3}{4}) \in L$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$ $\gamma : (-\infty, \infty)$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t^2, t)$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t^2, t) \in P$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

- 1. $L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t, \frac{7t+3}{4}) \in L$
- 2. $P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$ $\gamma : (-\infty, \infty) \to \mathbb{R}^2$ $\gamma(t) = (t^2, t) \in P$

 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

$$\gamma:(0,\pi/18)\to\mathbb{R}^2$$

$$\gamma: (0, \pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 2\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 3\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 6\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 9\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 12\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 18\pi/18) \to \mathbb{R}^2$$

 $\gamma(t) := (2\cos(t), 2\sin(t))$

$$\gamma: (0, 24\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

Parametrizing a circle

$$\gamma: (0, 27\pi/18) \to \mathbb{R}^2$$
$$\gamma(t) := (2\cos(t), 2\sin(t))$$

$$\gamma: (0, 27\pi/18) \to \mathbb{R}^2$$

 $\gamma(t) := (2\cos(t), 2\sin(t))$

$$\gamma: (-5, -4) \to \mathbb{R}^2$$

$$\gamma: (-5, -4) \to \mathbb{R}^2$$
$$\gamma(t) := (t, t)$$

$$\gamma: (-5, -3) \to \mathbb{R}^2$$
$$\gamma(t) := (t, t)$$

$$\gamma: (-5, -2) \to \mathbb{R}^2$$
$$\gamma(t) := (t, t)$$

$$\gamma: (-5, -1) \to \mathbb{R}^2$$
$$\gamma(t) := (t, t)$$

$$\gamma: (-5,0) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$\gamma: (-5,1) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$\gamma: (-5,2) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$\gamma: (-5,3) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$\gamma: (-5,4) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$\gamma: (-5,5) \to \mathbb{R}^2$$
$$\gamma(t) := (t,t)$$

$$f(x) = \{$$

$$f(x) = \begin{cases} x^2 & x < 5 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x)$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0 \lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x)$$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2}$
 $\lim_{x \to 5^{+}} f(x) = 5^{3}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^2 & x > 5 \end{cases}$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2}$
 $\lim_{x \to 5^{+}} f(x) = 5^{3}$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^-} f(x) = 5^2$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2}$
 $\lim_{x \to 5^{+}} f(x) = 5^{3}$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example.
$$f(x) = x^2$$
 $\lim_{x \to 5} f(x) = 5^2$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example.
$$f(x) = x^2$$
 $\lim_{x \to 5} f(x) = 5^2 = f(5)$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{\substack{x \to 5 \\ f \text{ is "continous"}}} f(x) = 5^2 = f(5)$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{\substack{x \to 5 \\ f \text{ is "continous"}}} f(x) = 5^2 = f(5)$

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f: \mathbb{R} \to \mathbb{R}$ is such that

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists,

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2}$
 $\lim_{x \to 5^{+}} f(x) = 5^{3}$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable"

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x,

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f: \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted f'(x) or $\frac{df}{dx}$.

Example. $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5 \\ 0 & x = 5 \\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$

$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5 \\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$
Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f: \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x\to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted f'(x) or $\frac{df}{dx}$.