

Notaciones Omega, Theta y Big O.

JONK KEYLER SÁNCHEZ LAURA CAMILA DIAZ

NOTACIÓN	DEFINICIÓN	USO	EJEMPLO	GRÁFICA
OMEGA	La notación ^[1] Omega determina los límites inferiores asintóticos en el consumo de recursos y tiempo de ejecución del algoritmo.	Indicar la mejor situación posible en términos de complejidad temporal	La complejidad temporal de mejor caso de un algoritmo de ordenación por mezcla es Omega(n log n), lo que significa que su tiempo de ejecución no puede ser mejor que esta cota inferior.	$f(n)$ $cg(n)$ n $f(n) = \Omega(g(n))$
TETHA	La notación Theta determina los límites tantos inferiores , como superiores asintóticos , cuando estos están determinados (en una misma función) por diferentes múltiplos reales positivos	Evaluar el caso promedio de un algoritmo. Esta notación proporciona una representación más precisa del comportamiento asintótico de un algoritmo porque tiene en cuenta tanto el mejor como el peor caso. P	La complejidad temporal promedio de un algoritmo de ordenación por inserción es Theta(n^2), lo que significa que su tiempo de ejecución aumenta cuadráticamente con el tamaño de la entrada.	$c_{2}g(n)$ $f(n)$ $c_{1}g(n)$ n $f(n) = \Theta(g(n))$
BIG O	La notación Big-O determina las cotas superiores asintóticas	Evaluar el peor caso de un algoritmo. Esta notación proporciona una cota superior del tiempo de ejecución de un algoritmo.	La complejidad temporal de peor caso de un algoritmo de búsqueda binaria es O(log n), lo que significa que su tiempo de ejecución aumenta logarítmicamente con el tamaño de la entrada.	