Laurea Triennale in Informatica, Università di Roma Tor Vergata

Calcolo delle Probabilità e Statistica (ed insegnamenti mutuati)

Anno accademico: 2011-2012. Titolare del corso: Claudio Macci

Appello del 4 Settembre 2012

Esercizio 1. Un'urna contiene 5 palline numerate da 1 a 5. Si estraggono a caso 2 palline, una alla volta e senza reinserimento.

- D1) Calcolare la probabilità di estrarre almeno una pallina con numero pari.
- D2) Calcolare la probabilità di estrarre la sequenza di numeri (2, 1).

Esercizio 2. Un'urna contiene una pallina numerata con il numero 3. Poi si lancia un dado equo e sia X la variabile aleatoria che indica il numero ottenuto; in corrispondenza si mette nell'urna un'altra pallina numerata con il numero X. Infine si estrae una pallina a caso dall'urna.

- D3) Calcolare la probabilità di estrarre una pallina con il numero 3.
- D4) Calcolare la probabilità di aver ottenuto il numero 5 nel lancio del dado sapendo che è stato estratto dall'urna il numero 3.

Esercizio 3. Sia $\lambda > 0$ e consideriamo la seguente densità congiunta: $p_{X_1,X_2}(x_1,x_2) = \frac{\lambda^{x_1}}{x_1!}e^{-\lambda}(\frac{1}{2})^{x_2+1}$ per $x_1, x_2 \geq 0$ interi.

- D5) Trovare le densità marginali di X_1 e X_2 .
- D6) Calcolare $P(X_2 = 1 | X_1 + X_2 \le 1)$.

Esercizio 4. Sia X una variabile aleatoria con densità continua $f_X(t) = \frac{t}{2} \mathbb{1}_{[0,2]}(t)$.

- D7) Trovare la densità continua di $Y = e^X$.
- D8) Trovare la densità discreta di Z = [X] dove, per ogni $x \in \mathbb{R}$, $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$ è la parte intera di x.

Esercizio 5. Sia $N_t = \sum_{n \geq 1} 1_{T_n \leq t}$ (per $t \geq 0$) un processo di Poisson con intensità di $\lambda = 4$. D9) Calcolare $P(1 \leq T_1 \leq 2)$.

- D10) Calcolare $\mathbb{E}[N_5]$.

Esercizio 6. Sia X una variabile aleatoria normale con media 2 e varianza 1.

- D11) Calcolare $P(1 \le X \le 3)$.
- D12) Dire qual è la distribuzione di $X_1 X_2$ nel caso in cui X_1 e X_2 sono indipendenti e con la stessa distribuzione di X.

Esercizio 7 (solo per ST-Materiali). Consideriamo una catena di Markov omogenea $\{X_n : n \geq 0\}$ con spazio degli stati $E=\{1,2\}$ e matrice di transizione

$$P = \left(\begin{array}{cc} a & 1-a \\ \frac{1}{2} & \frac{1}{2} \end{array}\right),$$

per qualche valore $a \in [0, 1]$.

- D13) Per $a \in [0,1)$, cioè per $a \neq 1$, calcolare $\lim_{n \to \infty} P(X_n = j | X_0 = i)$ al variare di $i, j \in E$.
- D14) Calcolare $P(X_1 = 1, X_2 = 2 | X_0 = 1)$ al variare di a.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

D1) Sia X la variabile aleatoria che indica il numero di volte che viene estratta una pallina con numero pari. Allora $p_X(k)=\frac{\binom{2}{k}\binom{3}{2-k}}{\binom{5}{2}}$ per $k\in\{0,1,2\}$. Allora la probabilità richiesta è $P(X \ge 1) = p_X(1) + p_X(2) = \frac{6+1}{10} = \frac{7}{10}$.

D2) Indichiamo l'evento "estratto il numero h alla k-sima estrazione" con il simbolo $E_{h;k}$. Allora

la probabilità richiesta è $P(E_{2;1} \cap E_{1;2}) = P(E_{2;1})P(E_{1;2}|E_{2;1}) = \frac{1}{5}\frac{1}{4} = \frac{1}{20}$.

Esercizio 2. Sia E l'evento "estratto il numero 3 dall'urna".

- D3) Per la formula delle probabilità totali si ha $P(E) = \sum_{k=1}^{6} P(E|X=k) P(X=k) = (\frac{1}{2} + \frac{1}{2} + \frac{1}{2$ $\frac{2}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2})\frac{1}{6}=\frac{7}{12}.$ D4) Per la formula di Bayes (e per il valore di P(E) calcolato prima) si ha P(X=5|E)=
- $\frac{P(E|X=5)P(X=5)}{P(E)} = \frac{\frac{1}{2}\frac{1}{6}}{\frac{7}{12}} = \frac{1}{12}\frac{12}{7} = \frac{1}{7}.$

Esercizio 3.

- D5) Si ha $p_{X_1}(x_1) = \sum_{x_2 \geq 0} p_{X_1, X_2}(x_1, x_2) = \frac{\lambda^{x_1}}{x_1!} e^{-\lambda} \sum_{x_2 \geq 0} (\frac{1}{2})^{x_2 + 1} = \frac{\lambda^{x_1}}{x_1!} e^{-\lambda} \frac{\frac{1}{2}}{1 \frac{1}{2}} = \frac{\lambda^{x_1}}{x_1!} e^{-\lambda} \text{ per ogni}$ intero $x_1 \geq 0$ e $p_{X_2}(x_2) = \sum_{x_1 \geq 0} p_{X_1, X_2}(x_1, x_2) = (\frac{1}{2})^{x_2 + 1} \sum_{x_1 \geq 0} \frac{\lambda^{x_1}}{x_1!} e^{-\lambda} = (\frac{1}{2})^{x_2 + 1} e^{\lambda} e^{-\lambda} = (\frac{1}{2})^{x_2 + 1} e^{\lambda} e^{-\lambda}$ per ogni intero $x_2 \geq 0$.
- D6) Si ha $P(X_2 = 1 | X_1 + X_2 \le 1) = \frac{P(\{X_2 = 1\} \cap \{X_1 + X_2 \le 1\})}{P(X_1 + X_2 \le 1)} = \frac{p_{X_1, X_2}(0, 1)}{p_{X_1, X_2}(0, 0) + p_{X_1, X_2}(0, 1) + p_{X_1, X_2}(1, 0)} = \frac{e^{-\lambda}(\frac{1}{2})^{1+1}}{e^{-\lambda}(\frac{1}{2})^{0+1} + e^{-\lambda}(\frac{1}{2})^{1+1} + \lambda e^{-\lambda}(\frac{1}{2})^{0+1}} = \frac{\frac{1}{4}}{\frac{1}{2} + \frac{1}{4} + \lambda \frac{1}{2}} = \frac{1}{3 + 2\lambda}.$

Esercizio 4.

D7) Si vede che $P(1 \le e^X \le e^2) = 1$, da cui $F_Y(y) = 0$ per $y \le 1$ e $F_Y(y) = 1$ per $y \ge e^2$. Per $y \in (1, e^2)$ si ha $F_Y(y) = P(e^X \le y) = P(X \le \log y) = \int_0^{\log y} \frac{t}{2} dt = [\frac{t^2}{4}]_{t=0}^{t=\log y} = \frac{(\log y)^2}{4}$. Quindi la densità è $f_Y(y) = \frac{\log y}{2y} \mathbf{1}_{(1,e^2)}(y)$.

D8) Si ha $p_Z(0) = \int_0^1 \frac{t}{2} dt = [\frac{t^2}{4}]_{t=0}^{t=1} = \frac{1}{4} \text{ e } p_Z(1) = \int_1^2 \frac{t}{2} dt = [\frac{t^2}{4}]_{t=1}^{t=2} = \frac{4-1}{4} = \frac{3}{4}$.

D8) Si ha
$$p_Z(0) = \int_0^1 \frac{t}{2} dt = \left[\frac{t^2}{4}\right]_{t=0}^{t=1} = \frac{1}{4} \text{ e } p_Z(1) = \int_1^2 \frac{t}{2} dt = \left[\frac{t^2}{4}\right]_{t=1}^{t=2} = \frac{4-1}{4} = \frac{3}{4}$$

D9) Si ha $P(1 \le T_1 \le 2) = \int_1^2 4e^{-4t} dt = [-e^{-4t}]_{t=1}^{t=2} = e^{-4} - e^{-8}$. D10) Si ha $\mathbb{E}[N_5] = 4 \cdot 5 = 20$.

Esercizio 6.

- D11) Si ha $P(1 \le X \le 3) = P(\frac{1-2}{\sqrt{1}} \le Z_X \le \frac{3-2}{\sqrt{1}}) = P(-1 \le Z_X \le 1)$, dove Z_X è la standardizzata di X; quindi $P(1 \le X \le 3) = \Phi(1) \Phi(-1) = \Phi(1) (1 \Phi(1)) = 2\Phi(1) 1 = 2 \cdot 0.84134 1$ 0.68268.
- D12) La variabile aleatoria X_1-X_2 è una combinazione lineare di variabili aleatorie Normali indipendenti. Quindi possiamo dire che X_1-X_2 ha distribuzione Normale di media $\mathbb{E}[X_1]-\mathbb{E}[X_2]=$ 2-2=0 e varianza $Var[X_1] + (-1)^2 Var[X_2] = 1+1=2$.

Esercizio 7.

D13) Si vuole applicare il teorema di Markov il quale consente di dire che il limite richiesto è

$$\lim_{n \to \infty} P(X_n = j | X_0 = i) = \pi_j, \tag{1}$$

dove π_i è l'unica distribuzione stazionaria. Il teorema di Markov è applicabile perché, per $a \in [0,1)$, la catena è regolare. La regolarità si verifica osservando che la matrice P ha tutti elementi positivi per $a \in (0,1)$ mentre, per a = 0 (in questo caso la matrice ha un elemento nullo), si ha che

$$P^2 = \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right)$$

ha tutti elementi positivi. In altro modo la regolarità si verifica osservando che c'è irriducibilità (ovvio) e che almeno uno degli elementi diagonali è positivo (ad esempio $p_{22} = \frac{1}{2}$). A questo punto troviamo la distribuzione stazionaria π . Posto $\pi = (\alpha, \beta)$, si deve considerare la relazione matriciale

$$(\alpha, \beta) \begin{pmatrix} a & 1-a \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = (\alpha, \beta),$$

che fornisce le seguenti equazioni:

$$\begin{cases} a\alpha + \frac{\beta}{2} = \alpha \\ (1 - a)\alpha + \frac{\beta}{2} = \beta. \end{cases}$$

Ricordiamo che cerchiamo le soluzioni (α, β) del sistema tali che $\alpha, \beta \geq 0$ e $\alpha + \beta = 1$; quindi, poiché si ha $\beta = 2(1-a)\alpha$ da ciascuna delle due equazioni, possiamo dire che $(\alpha, \beta) = (\alpha, 2(1-a)\alpha)$, da cui segue $(2(1-a)+1)\alpha=1$, $\alpha=\frac{1}{3-2a}$. In conclusione, per ogni valore di $a\in[0,1)$, l'unica distribuzione stazionaria è $(\alpha,\beta)=(\frac{1}{3-2a},\frac{2-2a}{3-2a})$; quindi vale il limite (1) con $(\pi_1,\pi_2)=(\frac{1}{3-2a},\frac{2-2a}{3-2a})$. D14) Si ha

$$P(X_1 = 1, X_2 = 2 | X_0 = 1) = p_{11}p_{12} = a(1 - a).$$

Commenti.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria.

D1) In altro modo si ha $P(X \ge 1) = 1 - p_X(0) = 1 - \frac{3}{10} = \frac{7}{10}$. D2) Per ogni coppia ordinata di valori (h, j), con $h \ne j$, si ha $P(E_{h;1} \cap E_{j;2}) = P(E_{h;1})P(E_{j;2}|E_{h;1}) = \frac{1}{10}$ $\frac{1}{5}\frac{1}{4}=\frac{1}{20}$. In effetti è noto dal calcolo combinatorio che il numero delle sequenze ordinate di kelementi senza ripetizioni a partire da un insieme di n elementi è $n(n-1)\cdots(n-k+1)$, e nel nostro caso si ha n=5, k=2 e $n(n-1)\cdots(n-k+1)=20$. Tutte queste sequenze ordinate sono equiprobabili perché le estrazioni sono casuali.

D4) Come per il caso k=5, ovviamente si ottiene lo stesso risultato $P(X=k|E)=\frac{1}{7}$ per ogni $k \in \{1, 2, 4, 6\}$; inoltre si verifica che $P(X = 3|E) = \frac{2}{7}$.

D5) Le variabili aleatorie X_1 e X_2 sono indipendenti perché la densità congiunta è del tipo

$$p_{X_1,X_2}(x_1,x_2) = p_{X_1}(x_1)p_{X_2}(x_2).$$

Inoltre possiamo dire che X_1 ha distribuzione di Poisson di parametro λ e X_2 ha distribuzione geometrica di parametro $\frac{1}{2}$ (cioè $p_{X_2}(x_2) = (1 - \frac{1}{2})^{x_2} \frac{1}{2}$ per $x_2 \ge 0$ intero).

D13) Per a=1 la catena non è irriducibile perché lo stato 1 è assorbente. In ogni modo si ha un'unica distribuzione stazionaria (π_1, π_2) ; infatti si ha $\pi_2 = 0$ perché lo stato 2 è transitorio (infatti 2 comunica con 1 ma non vale il viceversa), e quindi l'unica distribuzione stazionaria deve essre $(\pi_1, \pi_2) = (1, 0)$; si osservi che questa coincide con $(\frac{1}{3-2a}, \frac{2-2a}{3-2a})$ se si pone a = 1.