ENRICHING CONTINUOUS LAGRANGE FINITE ELEMENT APPROXIMATION SPACES USING NEURAL NETWORKS

Hélène BARUCQ³, Michel DUPREZ¹, Florian FAUCHER³, Emmanuel FRANCK², Frédérique LECOURTIER¹, Vanessa LLERAS⁴, Victor MICHEL-DANSAC², and Nicolas VICTORION³

¹ Mimesis team, INRIA Nancy grand Est, Icube ² Macaron team, INRIA Nancy grand Est, IRMA ³ Makutu team, INRIA Bordeaux, TotalEnergies ⁴ University of Montpellier

Motivations

Current Objective: Develop hybrid finite element / neural network methods. quick + parameterized accurate

 $-\Delta u(X,\mu) = f(X,\mu)$ in $\Omega \times \mathcal{M}$, $u(x,\mu) = 0$ on $\Gamma \times \mathcal{M}$. **Problem considered:** Poisson problem with homogeneous Dirichlet boundary conditions (BC).

Perspective: Create real-time digital twins of an organ (e.g. liver).

How improve PINN prediction? - Using enriched FEM

Additive approach

The enriched approximation space is defined by

$$V_h^+ = \{ u_h^+ = u_\theta + p_h^+, p_h^+ \in V_h^0 \}$$

with V_h^0 the standard continuous Lagrange FE space and the weak problem becomes

Find
$$p_h^+ \in V_h^0$$
, $\forall v_h \in V_h^0$, $a(p_h^+, v_h) = l(v_h) - a(u_\theta, v_h)$, (\mathscr{P}_h^+)

with modified boundary conditions and

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v, \quad l(v) = \int_{\Omega} f v.$$

Convergence analysis

u : solution of the Poisson problem. u_{θ} : prediction of the PINN [RPK19].

Theorem 1: Convergence analysis of the standard FEM [EG]

We denote $u_h \in V_h^0$ the discrete solution of standard FEM with V_h^0 a \mathbb{P}_k Lagrange space. Thus,

$$|u-u_h|_{H^1} \le C_{H^1} h^k |u|_{H^{k+1}},$$

 $||u-u_h||_{L^2} \le C_{L^2} h^{k+1} |u|_{H^{k+1}}.$

Theorem 2: Convergence analysis of the enriched FEM [F L+25]

We denote $u_h^+ \in V_h^+$ the discrete solution of (\mathscr{P}_h^+) with V_h^+ a \mathbb{P}_k Lagrange space. Thus

$$|u-u_h^+|_{H^1} \le \frac{|u-u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} (C_{H^1} h^k |u|_{H^{k+1}}),$$

and

$$||u-u_h^+||_{L^2} \leq \frac{|u-u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} (C_{L^2} h^{k+1} |u|_{H^{k+1}}).$$

Theoretical gain of the additive approach.

Problem considered - Numerical results

 \rightarrow Spatial domain : $\Omega = [-0.5\pi, 0.5\pi]^2$

 \rightarrow Parametric domain : $\mathcal{M} = [-0.5, 0.5]^2$

→ Analytical solution :

$$u_{ex}((x,y),\mu) = \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2}\right)\sin(2x)\sin(2y)$$

with $\mu = (\mu_1, \mu_2) \in \mathcal{M}$ (**parametric**) and the associated source term f.

Numerical results - Improve errors

Gains achieved: 50 sets of parameters. $S = \{\mu^{(1)}, \dots, \mu^{(50)}\}\$ Gains in L^2 rel error of our method w.r.t. FEM

 \min max mean 134.32 377.36269.39 67.02164.65134.8561.5539.52

Gain: $||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$ Cartesian mesh: 20² nodes.

Numerical results - Improve numerical costs

 N_{dofs} required to reach the same error $e: \mu = (0.05, 0.22)$.

		$N_{\mathbf{dofs}}$	
\mathbf{k}	\mathbf{e}	\mathbf{FEM}	\mathbf{Add}
1	$ \begin{array}{r} \hline 1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \end{array} $	$ \begin{array}{r} \hline 14,161 \\ 143,641 \end{array} $	64 576
$\overline{2}$	$ \begin{array}{r} \hline 1 \cdot 10^{-4} \\ 1 \cdot 10^{-5} \end{array} $	6,889 31,329	225 1,089
3	$ \begin{array}{r} \hline 1 \cdot 10^{-5} \\ 1 \cdot 10^{-6} \end{array} $	6,724 $20,164$	784 2,704

Less degrees of freedom \Rightarrow

Lower numerical cost Faster simulation

Perspectives

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

[EG] A. Ern and J.-L. Guermond. *Theory and Practice of Finite Elements*. Springer New York (2004).

[F L+25] **F. Lecourtier** et al. Enriching continuous Lagrange finite element approximation spaces using neural networks. 2025.

[RPK19] M. Raissi, P. Perdikaris, and G. E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: J. Comput. Phys. 378 (2019), pp. 686–707.