

Nuclear Data Sheets

Nuclear Data Sheets 111 (2010) 1471-1618

www.elsevier.com/locate/nds

Nuclear Data Sheets for A = 113*

Jean Blachot

CSNSM,IN3P3
Batiment 108
F-91405 Orsay Campus, France

(Received April 30, 2009; Revised October 12, 2009)

Abstract: This evaluation for A=113 updates one by J. Blachot, (2005Bl05), published in Nuclear Data Sheets 104, 791 (2005)

Cutoff Date: All data available before May 2009 have been considered.

General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.

General Comments: Throughout this evaluation, rotational band parameters have been calculated from the standard energy equation:

 $\mathrm{E}(\mathrm{J},\mathrm{K}) \! = \! \mathrm{E}_0 \! + \! \mathrm{A}[\mathrm{J}(\mathrm{J} \! + \! 1) \! + \! \delta_{\mathrm{K},1/2} (\! - \! 1)^{\mathrm{J}+1/2} \mathrm{a}(\mathrm{J} \! + \! 1/2)] \! + \! \mathrm{B}\mathrm{J}^2 (\mathrm{J} \! + \! 1)^2$

The constant A is reported in keV and the constant B, in eV. When "A" alone is given, "B" is assumed to be 0.

Acknowledgments: Many useful comments and suggestions by the editors are greatly appreciated. The author wishes to thank the compilers of the Experimental Unevaluated Nuclear Data List (XUNDL), an experimental file maintained by the NNDC. XUNDL may be accessed via the NNDC web site (www.nndc.bnl.gov). Thanks to G. Audi for many enlightening discussions.

NUCLEAR DATA SHEETS

No.			Index	Index for A = 113				
1986 Adopted Levels 1477 135(ap,ny) 1881 1972	Nuclide	Data Type	Page	Nuclide	Data Type	Page		
1986 Adopted Levels 1477 135(ap,ny) 1881 1972		Skeleton Scheme for A=113	1474	¹¹³ Sn	112 Sn(d,p), 114 Sn(d,t)	1580		
1970 Adopted Levels 1477 195n/pd 185 1858 1876 18	$^{113}{ m Nb}$	Adopted Levels	1477			1581		
1986 Adopted Levels, Gammas 1484 118 1			1477			1582		
117 P Desay 180 ms		•						
1186 1186	¹¹³ Ru				- ·			
240		· -		113 01	***			
1986 1986				11086				
1888 1886								
118	$^{113}\mathrm{Rh}$	•						
118								
1986 1988 1988 1988 1989 1998		¹¹³ Ru β ⁻ Decay (0.51 s)			(HI,xnγ)	1589		
199p(1/90, Py)		²⁴⁸ Cm SF Decay	1493	¹¹³ Te	Adopted Levels, Gammas	1593		
130pt 130p		•	1493		-	1594		
138h 3" Decay 1499	110			110-				
119d TP Decay	113Pd			113I				
1920 1920 1920 1930		· -						
2989 h(\$20, Py)		5		113 v a				
288[U 8C_Pp 1502 150cs 1612 1318				a variable				
134 134				113Cs				
113Pd β* Decay 1505 113Cd	$^{113}\mathrm{Ag}$				Haoptou Bovell	1012		
Adopted Levels, Gammas 1508 111Ag B - Decay (68.7 s) 1120 1110								
113Ag β - Decay (6.87 s) 1518 113Ag β - Decay (6.87 s) 1520 110 Cd IT Decay (14.1 y) 1521 110 Ppd(a,ny) 1522 111 Cd(a,p) E-res 1524 112 Cd(a,p), 114 Cd(d,t) 1524 112 Cd(a,p), 114 Cd(d,t) 1524 112 Cd(a,p), 114 Cd(d,t) 1525 113 Cd(a,p,r) 1527 113 Cd(a,p,r) 1528 113 Cd(a,p,r) 1533 113 Cd(a,p,r) 1533 114 Cd(a,p) 1535 115 Cd(a,p,r) 1535 117 Yh(2^4Mg,Fy) 1537 118 Cd β - Decay (8.04cl S Y) 1547 118 Cd β - Decay (8.04cl S Y) 1547 119 Cd β - Decay (11.1 y) 1547 110 Albert		¹¹³ Ag IT Decay	1507					
113Ag P Decay (68.7 s) 1520 119Cd 1T Decay (14.1 y) 1521 119Pd(a,n) 1522 119Cd(n,p) E=res 1524 119Cd(a,p), 11Cd(a,b) 1525 119Cd(a,p), 11Cd(a,b) 1527 119Cd(a,p), 11Cd(a,p) 1528 119Cd(a,p), 11Cd(a,p) 1528 119Cd(a,p), 11Cd(a,p) 1533 119Cd(a,p), 11Cd(a,p) 1533 119Cd(a,d) 1535 119Cd(a,d) 1535 119Cd(a,d) 1537 119The North Station 1537 119The North Station 1547 1110 Adopted Levels, Gammas 1538 1110 Adopted Levels, Gammas 1547 1111 IT Decay (14.1 y) 1547 1111 IT Decay (19.4 Hin) 1547 1111 IT Decay (19.4 Hin) 1550 110Pa(a,d,3m) 1551 110Pa(a,d,3m) 1552 1111 Cd(a,n) 1560 1112 Cd(a,n) 1561 1113 Cd(a,n) 1561 1115 Cd(a,n) 1561 1115 Cd(a,n) 1561 1115 Cd(a,n) 1561 1116 Cd(a,nn) 1561 1117 Cd(a,nn) 1573 1111 Cd(a,nn) 1575 1111 Cd(a,nn) 1576 1111 Cd(a,nn) 1576 1111 Cd(a,nn) 1576 1	$^{113}\mathrm{Cd}$	Adopted Levels, Gammas	1508					
118_Cd TD Pocay (14.1 y) 1521 118_Pd(c,ny) 1522 118_Cd(n,p) E=res 1524 118_Cd(n,p), 116_Cd(d,t) 1524 118_Cd(n,p), 116_Cd(n,p) 1525 118_Cd(n,p,r) 1527 118_Cd(n,p,r) 1528 118_Cd(n,p,r) 1533 118_Cd(d,d,t) 1533 118_Cd(d,d,t) 1533 118_Cd(d,d,t) 1535 178_P(e^2Mg,Fy) 1537 178_P(e^2Mg,Fy) 1537 178_P(e^2Mg,Fy) 1537 178_Cd B Decay (8.04e15 Y) 1547 118_In 17 Decay (8.04e15 Y) 1547 118_In 17 Decay (9.476 min) 1547 118_In 17 Decay (9.14.1 y) 1548 118_In 19 Decay (115.09 d) 1548 118_In 19 Decay (115.09 d) 1548 118_In 19 Decay (116.09 d) 1569 118_Cd(p,p) 1AR 1555 118_Cd(p,p) 1AR 1555 118_Cd(p,p,p) 1569 118_In(q,d) 1569 118_In(q,d) 1569 118_In(q,d) 1569 118_In(q,d) 1560 118_Cd(n,m) 1561 118_In(p,d) 1560 118_In(p,d) 1561 118_In(p,d) 1569 118_In(p,d) 1569 118_In(p,d) 1560 118_In(p,d) 1561 118_In(p,d) 1569 118_In(p,d) 1575 1			1518					
11ºPa(ca,nr)								
112Cd(a,p) 14Cd(d,p) 1524 112Cd(a,p) 14Cd(d,p) 1525 112Cd(a,p) 1527 112Cd(a,p) 1527 112Cd(a,p) 1528 112Cd(a,p) 1528 112Cd(a,p) 1533 112Cd(a,d) 1533 112Cd(a,d) 1533 112Cd(a,d) 1534 114Cd(pol d,t) 1535 114Cd(pol d,t) 1535 114Cd(pol d,t) 1537 115In 174p(*Mg,Fr) 1537 116Cd F Decay (8.04e15 Y) 1547 116Cd F Decay (14.1 Y) 1547 116Cd F Decay (14.1 Y) 1547 116Cd F Decay (14.1 Y) 1548 118 r Decay (11.0.9 d) 1548 118 r Decay (11.0.9 d) 1548 118 r Decay (11.0.9 d) 1548 119 r Decay (11.0.9 d) 1551 119 r Decay (11.0.9 d) 1555 110 r Decay (11.0.9 d) 1555 112 r Decay (11.0.9 d) 1555 112 r Decay (11.0.9 d) 1555 113 r Decay (11.0.9 d) 1559 114 r Decay (11.0.9 d) 1559 115 r Decay (11.0.9 d) 1559 116 r Decay (11.0.9 d) 1560 117 r Decay (11.0.9 d) 1560 118 r Decay (21.4 min) 1560 119 r Decay (21.4 min) 1560 110 r Decay (21.4 min) 1575 110 r Decay (21.4 min								
112Cd(ap, 1,14Cd(a,t) 1524 112Cd(pol d,p) 1527 113Cd(n,n'r) 1528 113Cd(n,n'r) 1528 113Cd(n,n'r) 1533 113Cd(a,p'),(p,p'r) 1533 113Cd(a,d') 1533 113Cd(a,d') 1535 114Cd(pol d,t) 1535 114Yp(t ² Mg,F'r) 1537 113In Adopted Levels, Gammas 1538 113Cd β - Decay (8,04e15 Y) 1547 113Cd β - Decay (8,04e15 Y) 1547 113Th T Decay (9,9.476 min) 1547 113Sn ε Decay (115.09 d) 1548 113Sn ε Decay (115.09 d) 1548 113Sn ε Decay (115.09 d) 1548 113Ph(t ² M,Any) 1552 110Ph(t ² M,Any) 1555 110Ph(t ² M,Any) 1555 110Pd(t ² M,Any) 1556 112Cd(a,t) 1556 113Cd(p,n) 1566 113In(x,x') 1559 113In(x,x') 1569 113In(x,x') 1560 Coulomb Excitation 1560 114Sn(x,x') 1561 116Sn(p,a) 1561 116Sn(p,a) 1561 118Sn Pocay (21.4 min) 1561 118Sn Pocay (21.4 min) 1561 118Sn Pocay (21.4 min) 1561 118Sn 118Cd(x,x') 1561 118Sn 118Cd(x,x') 1561 118Sn 118Cd(x,x') 1561 118Sn 118Sn(p,a) 1561 118Sn 118Sn(p,a) 1561 118Sn 118Sn(p,a) 1561 118Sn 118Cd(x,x') 1572 119Cd(x,x'n) 1573 111Cd(x,x'n) 1573 111Cd(x,x'n) 1579								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} 113 \text{Cd}(n,n') & 1528 \\ 113 \text{Cd}(n,n') & 1528 \\ 113 \text{Cd}(p,p')(p,p') & 1533 \\ 113 \text{Cd}(d,d') & 1533 \\ 113 \text{Cd}(d,d') & 1534 \\ 114 \text{Cd}(p,d) & 1534 \\ 114 \text{Cd}(p,d) & 1535 \\ 1173 \text{Yb}(2^4 \text{Mg}, \text{Fy}) & 1537 \\ 1175 \text{Yb}(2^4 \text{Mg}, \text{Fy}) & 1537 \\ 1175 \text{Yb}(2^4 \text{Mg}, \text{Fy}) & 1537 \\ 1175 \text{Yb}(2^4 \text{Mg}, \text{Fy}) & 1547 \\ 1173 \text{Cd} \; \beta'' \text{ Decay} \; (8.04e15 \; \text{Y}) & 1547 \\ 113 \text{Cd} \; \beta'' \text{ Decay} \; (8.04e15 \; \text{Y}) & 1547 \\ 113 \text{Cd} \; \beta'' \text{ Decay} \; (8.04e15 \; \text{Y}) & 1547 \\ 113 \text{Sn} \; \epsilon \; \text{ Decay} \; (115.09 \; \text{d}) & 1547 \\ 113 \text{Sn} \; \epsilon \; \text{ Decay} \; (115.09 \; \text{d}) & 1548 \\ 113 \text{Sn} \; \epsilon \; \text{ Decay} \; (21.4 \; \text{min}) & 1550 \\ 100 \text{Mod}(^{10}\text{O}, \text{Pd}(\gamma)) & 1551 \\ 119 \text{Pd}(^{11}\text{Li}, \text{An}\gamma) & 1552 \\ 119 \text{Pd}(^{11}\text{Li}, \text{An}\gamma) & 1552 \\ 119 \text{Pd}(^{11}\text{Li}, \text{An}\gamma) & 1555 \\ 112 \text{Cd}(^{10}\text{He}, \text{d}) & 1556 \\ 112 \text{Cd}(^{10}\text{He}, \text{d}) & 1556 \\ 113 \text{Cd}(^{10}\text{He}, \text{d}) & 1556 \\ 113 \text{In}(\alpha, \alpha') & 1559 \\ 113 \text{In}(\alpha, \alpha') & 1569 \\ 113 \text{In}(\alpha, \alpha') & 1560 \\ \text{Coulomb Excitation} & 1560 \\ 114 \text{Sn}(\alpha, ^{2}\text{He}) & 1561 \\ 116 \text{Sn}(p, \alpha) & 1561 \\ 116 \text{Sn}(p, \alpha) & 1561 \\ 116 \text{Sn}(p, \alpha) & 1561 \\ 118 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 113 \text{Sn} \; \Gamma \; \text{Decay} \; (21.4 \; \text{min}) & 1569 \\ 110 \text{Cd}(^{2}\text{(a}, \text{ny})) & 1572 \\ 110 \text{Cd}(^{2}\text{(a}, \text{ny})) & 1572 \\ 110 \text{Cd}(^{2}\text{(a}, \text{ny})) & 1579 \\ 111 \text{Cd}(^{2}\text{(a}, \text{ny})) & 1579 \\ 112 \text{Cd}(^{2}\text{(a}, n$								
$\begin{array}{c} 113 Gd(n,n'\gamma) & 1528 \\ 113 Cd(p,p'),(p,p'\gamma) & 1533 \\ 113 Cd(p,p'),(p,p'\gamma) & 1533 \\ Coulomb Excitation & 1534 \\ 143 Cd(pol d,t) & 1535 \\ 173 Yb(^24Mg,F'\gamma) & 1537 \\ 176 Yb(^28Mg,F'\gamma) & 1537 \\ 176 Yb(^28Mg,F'\gamma) & 1537 \\ 176 Yb(^28Mg,F'\gamma) & 1537 \\ 173 Tal (3Cd \beta Decay (8.04e15 Y) & 1547 \\ 131 Cd \beta Decay (14.1 y) & 1547 \\ 131 In T Decay (99.476 min) & 1547 \\ 131 Sn & E Decay (115.09 d) & 1548 \\ 131 Sn & E Decay (21.4 min) & 1550 \\ 100 Mo(^160,p4n\gamma) & 1551 \\ 110 Pd(^6Li,3n\gamma) & 1552 \\ 112 Cd(p,p) IAR & 1555 \\ 112 Cd(a,t) & 1566 \\ 113 In(a,\alpha') & 1559 \\ 113 In(a,\alpha') & 1560 \\ Coulomb Excitation & 1560 \\ 114 Sn(a,^3) & 1560 \\ Coulomb Excitation & 1560 \\ 114 Sn(a,^3) & 1560 \\ Coulomb Excitation & 1560 \\ 114 Sn(a,^3) & 1561 \\ 116 Sn(p,\alpha) & 1561 \\ 116 Sn(p,\alpha) & 1561 \\ 116 Sn(p,\alpha) & 1561 \\ 113 Sh & ID Decay (21.4 min) & 1569 \\ 113 Sh & ID Decay (21.4 min) & 1569 \\ 113 Sh & ED Decay & 1569 \\ 110 Cd(a,2n\gamma) & 1573 \\ 111 Cd(a,2n\gamma) & 1573 \\ 111 Cd(a,2n\gamma) & 1579 \\ \end{array}$								
$ \begin{array}{c} 113 C_{3}(d,d^{2}) & 1533 \\ Coulomb Excitation & 1534 \\ 114 C_{4}(pol d,t) & 1535 \\ 173 Yh (^{24}Mg,F\gamma) & 1537 \\ 176 Yh (^{28}Mg,F\gamma) & 1537 \\ 131 In & Adopted Levels, Gammas & 1538 \\ 113 C_{4} F Decay (8.04e15 Y) & 1547 \\ 113 C_{4} F Decay (14.1 Y) & 1547 \\ 113 In IT Decay (99.476 min) & 1547 \\ 113 Sn \epsilon Decay (15.09 d) & 1548 \\ 113 Sn \epsilon Decay (115.09 d) & 1550 \\ 100 Mo(^{18}O,p4n\gamma) & 1551 \\ 110 Pd(^{2}Li,3n\gamma) & 1552 \\ 110 Pd(^{2}Li,4n\gamma) & 1555 \\ 112 Cd(a,p) 1AR & 1556 \\ 113 In(d,\alpha) & 1559 \\ 113 In(d,\alpha) & 1559 \\ 113 In(d,d^{1}) & 1559 \\ 113 In(d,d^{1}) & 1559 \\ 113 In(d,d^{1}) & 1559 \\ 113 In(a,a^{2}) & 1660 \\ Coulomb Excitation & 1560 \\ 114 Sn(d,^{3}He) & 1561 \\ 116 Sn(p,a) & 1561 \\ 116 Sn(p,a) & 1562 \\ 113 Sn IT Decay (21.4 min) & 1569 \\ 113 Sn IT Decay (21.4 min) & 1569 \\ 113 Sn IT Decay (21.4 min) & 1569 \\ 113 Sn IT Decay (21.4 min) & 1569 \\ 100 Mo(^{18}O,5n\gamma) & 1572 \\ 110 Cd(a,n\gamma) & 1573 \\ 111 Cd(a,2n\gamma) & 1575 \\ 112 Cd(a,2n\gamma) & 1579 \\ \end{array}$								
Coulomb Excitation 1534		$^{113}\mathrm{Cd}(p,p'),(p,p'\gamma)$	1533					
$ \begin{array}{c} 114 Cd(pol d, l) & 1535 \\ 173 Yb(^{12}Mg, Fγ) & 1537 \\ 176 Yb(^{12}Mg, Fγ) & 1537 \\ 176 Yb(^{12}Mg, Fγ) & 1537 \\ 176 Yb(^{12}Mg, Fγ) & 1547 \\ 176 Yb(^{12}Mg, Fγ) & 1547 \\ 177 Yb(^{12}Mg, Fγ) & 1548 \\ 177 Yb(^{12}Mg, Fγ) & 1550 \\ 177 Yb(^{12}Mg, Fγ) & 1551 \\ 177 Yb(^{12}Mg, Fγ) & 1552 \\ 177 Yb(^{12}Mg, Fγ) & 1552 \\ 177 Yb(^{12}Mg, Fγ) & 1555 \\ 177 Yb(^{12}Mg, Fγ) & 1555 \\ 177 Yb(^{12}Mg, Fγ) & 1556 \\ 177 Yb(^{12}Mg, Fγ) & 1559 \\ 177 Yb(^{12}Mg, Fγ) & 1559 \\ 177 Yb(^{12}Mg, Fγ) & 1559 \\ 177 Yb(^{12}Mg, Fγ) & 1560 \\ 177 Yb(^{12}Mg, Fγ) & 1560 \\ 177 Yb(^{12}Mg, Fγ) & 1560 \\ 177 Yb(^{12}Mg, Fγ) & 1561 \\ 177 Yb(^{12}Mg, Fγ) & 1562 \\ 177 Yb(^{1$		¹¹³ Cd(d,d')	1533					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
113In Adopted Levels, Gammas 1538 1^{13} Cd $β$ ⁻ Decay (8.04e15 Y) 1547 1^{13} Cd $β$ ⁻ Decay (14.1 y) 1547 1^{13} In IT Decay (99.476 min) 1547 1^{13} In IT Decay (99.476 min) 1547 1^{13} Sn ε Decay (115.09 d) 1548 1^{13} Sn ε Decay (114.09 d) 1548 1^{13} Sn ε Decay (21.4 min) 1550 1^{10} Mo(16 Ci, 10 Amγ) 1551 1^{10} Pd(7 Li, 14 mγ) 1552 1^{10} Pd(7 Li, 14 mγ) 1552 1^{12} Cd(12 Cd(12 Amγ) 1556 1^{12} Cd(12 Amγ) 1556 1^{12} Cd(13 He, d) 1556 1^{13} Cd(13 Cd(13 Cmγ) 1559 1^{13} In(13 Cd(13 Cmγ) 1559 1^{13} In(13 Cd(13 Cmγ) 1560 1^{14} Sn(13 Cmγ) 1561 1^{16} Sn(14 Sn(14 Sm) 1561 1^{16} Sn(14 Sn(14 Sn(14 Sm) 1561 1^{16} Sn(16 Coulomb Excitation 1560 1^{14} Sn(14 Sn(14 Sn) 1561 1^{16} Sn(16 Sn(16 Coulomb Excitation 1561 1^{16} Sn(113 Sn IT Decay (21.4 min) 1569 1^{13} Sn IT Decay (21.4 min) 1569 1^{13} Sh ε Decay 1560 1^{16} Coulomb (8.75 γ) 1573 1^{11} Cd(11 Cd(11 Cd(11 Cn) 1573 1^{11} Cd(11 Cd(11 Cn) 1573 1^{11} Cd(11 Cn) 1573 1^{11} Cd(11 Cn) 1579								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113 _{In}							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111							
$\begin{array}{c} 113 \text{In IT Decay } (99.476 \text{ min}) & 1547 \\ 113 \text{Sn ϵ Decay } (115.09 \text{ d}) & 1548 \\ 113 \text{Sn ϵ Decay } (21.4 \text{ min}) & 1550 \\ 100 \text{Mo}(^{18}\text{O},\text{pd}\text{n}\gamma) & 1551 \\ 110 \text{Pd}(^{6}\text{Li},3\text{n}\gamma) & 1552 \\ 110 \text{Pd}(^{7}\text{Li},4\text{n}\gamma) & 1552 \\ 112 \text{Cd}(\text{p},\text{p}) \text{ IAR} & 1555 \\ 112 \text{Cd}(\text{p},\text{p}) \text{ IAR} & 1555 \\ 112 \text{Cd}(\text{p},\text{p}) & 168 \\ 113 \text{Id}(\text{p},\text{m}\gamma) & 1556 \\ 113 \text{Id}(\text{p},\text{m}\gamma) & 1556 \\ 113 \text{In}(\text{p},\gamma) & 1559 \\ 113 \text{In}(\text{p},\gamma) & 1559 \\ 113 \text{In}(\text{p},\alpha) & 1560 \\ \text{Coulomb Excitation} & 1560 \\ \text{Coulomb Excitation} & 1560 \\ 114 \text{Sn}(\text{p},\text{d}) & 1561 \\ 115 \text{In}(\text{p},\text{t}) & 1561 \\ 116 \text{Sn}(\text{p},\text{d}) & 1561 \\ 116 \text{Sn}(\text{p},\alpha) & 1561 \\ 116 \text{Sn}(\text{p},\alpha) & 1561 \\ 116 \text{Sn}(\text{p},\alpha) & 1569 \\ 113 \text{Sn IT Decay } (21.4 \text{ min}) & 1569 \\ 113 \text{Sh ϵ Decay} & 1569 \\ 100 \text{Mo}(^{18}\text{O},5\text{n}\gamma) & 1572 \\ 110 \text{Cd}(\alpha,\text{n}\gamma) & 1573 \\ 111 \text{Cd}(\alpha,2\text{n}\gamma) & 1575 \\ 112 \text{Cd}(\alpha,3\text{n}\gamma) & 1579 \\ \end{array}$								
$\begin{array}{c} 113 \mathrm{Sn} \ \epsilon \ \mathrm{Decay} \ (21.4 \ \mathrm{min}) & 1550 \\ 100 \mathrm{Mol}^{180} \mathrm{O}_{1} \mathrm{Paph} \gamma) & 1551 \\ 110 \mathrm{Pal}^{6} \mathrm{Li}_{3} \mathrm{n} \gamma) & 1552 \\ 110 \mathrm{Pal}^{6} \mathrm{Li}_{3} \mathrm{n} \gamma) & 1552 \\ 110 \mathrm{Pal}^{6} \mathrm{Li}_{3} \mathrm{n} \gamma) & 1552 \\ 112 \mathrm{Cd}(\mathrm{p,p}) \ \mathrm{IAR} & 1555 \\ 112 \mathrm{Cd}(\mathrm{a},\mathrm{t}) & 1556 \\ 112 \mathrm{Cd}(\mathrm{a},\mathrm{t}) & 1556 \\ 113 \mathrm{Cd}(\mathrm{p,n} \gamma) & 1556 \\ 113 \mathrm{In}(\mathrm{r}, \gamma) & 1559 \\ 113 \mathrm{In}(\mathrm{d}, \gamma) & 1559 \\ 113 \mathrm{In}(\mathrm{d}, \alpha) & 1560 \\ \mathrm{Coulomb} \ \mathrm{Excitation} & 1560 \\ 114 \mathrm{Sn}(\mathrm{d}, \mathrm{a} \mathrm{He}) & 1561 \\ 115 \mathrm{Sn}(\mathrm{p}, \mathrm{a}) & 1561 \\ 116 \mathrm{Sn}(\mathrm{p}, \mathrm{a}) & 1561 \\ 116 \mathrm{Sn}(\mathrm{p}, \mathrm{a}) & 1561 \\ 116 \mathrm{Sn}(\mathrm{p}, \mathrm{a}) & 1569 \\ 113 \mathrm{Sn} & \mathrm{Adopted} \ \mathrm{Levels}, \ \mathrm{Gammas} & 1562 \\ 113 \mathrm{Sn} \ \mathrm{IT} \ \mathrm{Decay} \ (21.4 \ \mathrm{min}) & 1569 \\ 110 \mathrm{Cd}(\mathrm{a}, \mathrm{n} \gamma) & 1573 \\ 111 \mathrm{Cd}(\mathrm{a}, 2\mathrm{n} \gamma) & 1573 \\ 111 \mathrm{Cd}(\mathrm{a}, 2\mathrm{n} \gamma) & 1575 \\ 112 \mathrm{Cd}(\mathrm{a}, 3\mathrm{n} \gamma) & 1579 \\ \end{array}$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		¹¹³ Sn ε Decay (115.09 d)	1548					
$\begin{array}{c} 110 \text{Pd}(^6\text{Li}, 3n\gamma) & 1552 \\ 110 \text{Pd}(^7\text{Li}, 4n\gamma) & 1552 \\ 112 \text{Cd}(p,p) \ IAR & 1555 \\ 112 \text{Cd}(3\text{He}, d) & 1555 \\ 112 \text{Cd}(\alpha, t) & 1556 \\ 113 \text{Cd}(p,n\gamma) & 1556 \\ 113 \text{In}(\gamma, \gamma') & 1559 \\ 113 \text{In}(d, d') & 1559 \\ 113 \text{In}(d, a') & 1560 \\ \\ & & & & & & & & & & & & \\ & & & & $			1550					
$\begin{array}{c} ^{110}\text{Pd}(^7\text{Li}, 4n\gamma) & 1552 \\ ^{112}\text{Cd}(p,p) \ IAR & 1555 \\ ^{112}\text{Cd}(^3\text{He},d) & 1555 \\ ^{112}\text{Cd}(\alpha,t) & 1556 \\ ^{113}\text{Cd}(p,n\gamma) & 1556 \\ ^{113}\text{In}(\gamma,\gamma) & 1559 \\ ^{113}\text{In}(d,d') & 1559 \\ ^{113}\text{In}(\alpha,\alpha') & 1560 \\ & \text{Coulomb Excitation} & 1560 \\ ^{114}\text{Sn}(d,^3\text{He}) & 1561 \\ ^{114}\text{Sn}(d,^3\text{He}) & 1561 \\ ^{116}\text{Sn}(p,\alpha) & 1561 \\ ^{116}\text{Sn}(p,\alpha) & 1562 \\ ^{113}\text{Sn} & \text{Adopted Levels, Gammas} & 1562 \\ ^{113}\text{Sn} \ \text{IT} \ \text{Decay} \ (21.4 \ \text{min}) & 1569 \\ ^{100}\text{Mo}(^{18}O,5n\gamma) & 1572 \\ ^{100}\text{Cd}(\alpha,n\gamma) & 1573 \\ ^{111}\text{Cd}(\alpha,2n\gamma) & 1575 \\ ^{112}\text{Cd}(\alpha,3n\gamma) & 1579 \\ \end{array}$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} Coulomb \ Excitation & 1560 \\ ^{114}Sn(d,^{3}He) & 1561 \\ ^{115}In(p,t) & 1561 \\ ^{116}Sn(p,\alpha) & 1561 \\ \\ ^{113}Sn & Adopted \ Levels, \ Gammas & 1562 \\ ^{113}Sn \ IT \ Decay \ (21.4 \ min) & 1569 \\ ^{113}Sb \ \epsilon \ Decay & 1569 \\ ^{100}Mo(^{18}O,5n\gamma) & 1572 \\ ^{110}Cd(\alpha,n\gamma) & 1573 \\ ^{111}Cd(\alpha,2n\gamma) & 1575 \\ ^{112}Cd(\alpha,3n\gamma) & 1579 \\ \end{array}$			1559					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		113 In(α,α')	1560					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1560					
$^{116} Sn(p,\alpha) \qquad 1561 \\ ^{113} Sn \qquad Adopted Levels, Gammas \qquad 1562 \\ ^{113} Sn \ IT \ Decay \ (21.4 \ min) \qquad 1569 \\ ^{113} Sb \ \epsilon \ Decay \qquad 1569 \\ ^{100} Mo(^{18}O,5n\gamma) \qquad 1572 \\ ^{110} Cd(\alpha,n\gamma) \qquad 1573 \\ ^{111} Cd(\alpha,2n\gamma) \qquad 1575 \\ ^{112} Cd(\alpha,3n\gamma) \qquad 1579 \\ \\ ^{112} Cd(\alpha,3n\gamma) \qquad 1579 \\ \\$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113c							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$^{110} \text{Cd}(\alpha, n\gamma)$ 1573 $^{111} \text{Cd}(\alpha, 2n\gamma)$ 1575 $^{112} \text{Cd}(\alpha, 3n\gamma)$ 1579								
$^{111}\mathrm{Cd}(\alpha,2n\gamma)$ 1575 $^{112}\mathrm{Cd}(\alpha,3n\gamma)$ 1579								
$^{112}\mathrm{Cd}(\alpha,3\mathrm{n}\gamma)$ 1579								
$^{112}{\rm Sn}({\rm n},\gamma)~{\rm E}{=}95~{\rm eV}$								
		$^{112}{\rm Sn}(n,\gamma)~{\rm E}{=}95~{\rm eV}$	1579	I				

Skeleton Scheme

 \mathbf{for}

A = 113

NUCLEAR DATA SHEETS

NUCLEAR DATA SHEETS

 $^{113}_{49} In_{64}$

S(n) 13560^{SY}

Ground-State and Isomeric-Level Properties for A=113

Nuclide	Level	<u>Jπ</u>	T _{1/2}	Decay Modes
$^{113}{ m Nb}$	0.0		30 ms syst	% β [−] =?
$^{113}\mathrm{Mo}$	0.0		100 ms syst	%β ⁻ =?
¹¹³ Tc	0.0	>5/2	160 ms +50-40	$\%\beta^{-}n=2.1\ 3$
$^{113}\mathrm{Ru}$	0.0	(1/2+)	0.80 s 5	%β ⁻ =100
	0+x	(7/2-)	510 ms 30	$\%\beta^-\approx 100$
$^{113}\mathrm{Rh}$	0.0	(7/2+)	2.80 s 12	$\%\beta^{-}=100$
$^{113}\mathrm{Pd}$	0.0	(5/2+)	93 s 5	%β ⁻ =100
	81.1	(9/2-)	0.3 s 1	%IT=100
113 Ag	0.0	1/2-	5.37 h 5	$\%\beta^{-}=100$
	43.5	7/2+	68.7 s 16	%IT=64 7; %β ⁻ =36 7
¹¹³ Cd	0.0	1/2+	$8.04{\times}10^{15} \text{ y } 5$	%β ⁻ =100
	263.54	11/2-	14.1 y 5	%IT=0.14; %β ⁻ =99.86
$^{113}{ m In}$	0.0	9/2+	stable	
	391.699	1/2-	99.476 min 23	%IT=100
$^{113}\mathrm{Sn}$	0.0	1/2+	115.09 d 3	$\%\epsilon + \%\beta^{+} = 100$
	77.389	7/2+	21.4 min 4	%IT=91.1 23; %ε+%β+=8.9 23
$^{113}\mathrm{Sb}$	0.0	5/2+	6.67 min 7	$\%\epsilon + \%\beta^{+} = 100$
$^{113}{ m Te}$	0.0	(7/2+)	1.7 min 2	$\%\epsilon + \%\beta^+ = 100$
^{113}I	0.0	5/2+	6.6 s 2	$\%\epsilon + \%\beta^{+} = 100; \%\alpha = 3.310 \times 10^{-7}$
¹¹³ Xe	0.0	(5/2+)	2.74 s 8	%ε+%β ⁺ ≈100; %α≈0.011; %εp=7 4; %β ⁺ α≈0.007 4
$^{113}\mathrm{Cs}$	0.0	(3/2+)	16.7 μs 7	$%p=100; %\alpha=0$
$^{114}\mathrm{Cs}$	≥0	(1+)	0.57 s 2	%εp=?;

Adopted Levels

Identified with on-line fragment separator at GSI and time of flight.

¹¹³Nb Levels

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0.0	30 ms <i>SY</i>	$T_{1/2}$: tof measurement implies $T_{1/2}>300$ ns. Using extrapolation for Z=41 (2003Au03), the evaluator estimates $T_{1/2}=30$ ms. $\%\beta^-=?$

 $^{113}_{\ 42}\mathrm{Mo}_{71}$

 $^{113}_{\ 42}\mathrm{Mo}_{71}$

Adopted Levels

 $Q(\beta^-) = 9590 \ SY; \ S(n) = 3380 \ SY; \ S(p) = 15630 \ SY; \ Q(\alpha) = -9280 \ SY \ \ 2003 \\ Au \\ 03, 2009 \\ Au \\ ZZ.$

Produced from ²⁰⁸Pb(U,f) E=750 MeV/u (1994Be24).

Identified with on-line fragment separator at GSI and time of flight.

¹¹³Mo Levels

E(level)	T _{1/2}	Comments
0.0	100 ms SY	T _{1/9} : tof measurement implies T _{1/9} >300 ns. Using extrapolation for Z=42 (2003Au03), the evaluator
		estimates $T_{1/2}$ =100 ms.
		%β ⁻ =?

 $^{113}_{\ 43}\mathrm{Tc}_{70}\mathrm{-1}$

 $^{113}_{\ 43}\mathrm{Tc}_{70}\mathrm{-}1$

Adopted Levels

 $Q(\beta^-) = 8480 \ SY; \ S(n) = 5800 \ SY; \ S(p) = 12180 \ SY; \ Q(\alpha) = -8050 \ SY \ 2003 \\ Au 03, 2009 \\ Au ZZ.$

Production and identification: $^{238}\text{U}(p,F)$ E=20 MeV, on-line isotopic separator IGISOL. Measured: γ , X γ (1988Pe13). ^{113}Tc formed by fragmentation of ^{136}Xe beam at 120 MeV/nucleon at NSCL facility using Coupled Cyclotrons and A1900 fragment separator. The time-of-flight and transversal positions of each particle was measured using two plastic scintillators. The ΔE energy loss in a Si PIN detector was measured which, when combined with time-of-flight (tof) and transversal position measurements, allowed for an event-by-event identification of the transmitted nuclei. Transmitted nuclei and their β decays were measured using the β counting system consisting of four Si PIN detectors and a double-sided Si strip detector. β -delayed neutrons were measured in coincidence with β -decay precursor using neutron emission ratio observer (NERO) detector consisting of 60 proportional gas counter tubes embedded in polyethylene moderator matrix. The γ rays were measured with SeGA Ge detectors.

Measured isotopic half-lives and delayed neutron emission probabilities.

Isotopic half-life was measured by 2009Pe06 from least-squares fit and maximum likelihood method of time differences of implantations and correlated β decay events.

Adopted Levels (continued)

$^{113}\mathrm{Tc}$ Levels

E(level)	$J\pi$	$T_{1/2}$	Comments
0.0	>5/2	160 ms +50-40	 %β-n=2.1 3 (1999Wa09). T_{1/2}: from 2009Pe06; systematic uncertainty=5 and statistical uncertainty=+50-40 combined in quadrature. Others: 170 ms 20 (1999WA09), 130 MS 50 (1992Ay02). Jπ: Suggested by 2007Ku23 due to lack of feeding of the 98.4 (3/2+) level.

 $^{113}_{44}\mathrm{Ru}_{69}\mathrm{-1}$

Adopted Levels, Gammas

 $Q(\beta^-) = 6480 \ 50; \ S(n) = 4790 \ 100; \ S(p) = 13500 \ 140; \ Q(\alpha) = -7960 \ 70 \ 2003 Au 03, 2009 Au ZZ.$

Production and identification: $^{238}\text{U}(p,F)$ E=20 MeV, on-line isotopic separator IGISOL. Measured: γ , X γ (1988Pe13).

 $^{252}\mathrm{Cf}$ SF decay. K x-ray coin (1969WiZX).

 $Thermal-neutron-induced\ fission\ of\ ^{239}Pu\ and\ ^{249}Cf.\ Chemical\ separation.\ Relative\ activity\ compared\ with\ mass\ distribution\ (1978Fr16).$

¹¹³Ru Levels

Cross Reference (XREF) Flags

A ²⁵²Cf SF Decay

B ¹¹³Ru IT Decay

C ¹¹³Tc β- Decay: 160 ms

D ²⁴⁸Cm SF Decay

E(level)‡	Jπ†	XREF	$_{}$ $T_{1/2}$	Comments
0.0	(1/2+)	ABC	0.80 s 5	$\%\beta^{-}=100$.
				T _{1/2} : from decay of 263.5γ assigned to ¹¹³ Ru after mass separation (1998Ku17). This value confirms previous values of the same group: 0.80 s 10 (1988Pe13) and 0.80 s 6 (1992PeZX). Others: 2.69 s 10 (1969WiZX) 3.2 s 3 (1976MaYL), 3.0 s 7 (1978Fr16). These early assignments seem close to the new assignment ¹¹³ Rh half-life. Jπ: from 2007Ku23.
98.4 3	(3/2+)	BC		
164.26	(5/2+)	C		
295.0 6	(5/2+,7/2+)	C		
433.7 7		\mathbf{c}		
688.2 7		C		
963.1 12		C		
1618.6 10		C		
0 + x #	(7/2-)	B D	510 ms 30	$\%\beta^{-}\approx 100.$
				T _{1/2} : from 1998Ku17.
				E(level): x 130 18 (2003Au03) because above the 99 keV level and below.
				160 keV. 2007Ku23 propose about 120 keV in agreement with 2003Au03.
113.36+x § 24	(9/2-)	A D		
130.44+x# 24	(11/2-)	A D		E(level): from 2003Zh14. There is no connection between this band head given by 2003Zh14 and the level scheme from 2007Ku23. More work is needed to clarify the level scheme.
392.5+x § 3	(13/2-)	A D		
546.5+x# 3	(15/2-)	A D		
952.4+x§ 4	(17/2-)	A D		
1008.8+x# 4	(19/2-)	A D		
1805.6+x [#] 5	(23/2-)	A D		
2610.2+x [#] 6	(27/2-)	Α		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹¹³Ru Levels (continued)

E(level)‡ $J\pi^{\dag}$ XREF $3482.2 + x^{\#}7$ (31/2-)

- † $J\pi$ without comments are based on band assignments. ‡ From least-squares fit to Ey's, assuming $\Delta(E\gamma){=}0.3$ keV. $^{\$}$ (A): 7/2[523], $\alpha{=}{+}1/2.$ # (B): 7/2[523], $\alpha{=}{-}1/2.$

 $\gamma(^{113}\mathrm{Ru})$

E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ιγ	Mult.	α	Comments
98.4	98.5 3	100	D		Mult.: From α(K)exp in ¹¹³ Ru IT decay.
164.2	65.8	8			
	164.3	54	(E2)	0.219	
295.0	131.1	67			
	197.1	50			
	294.3	100			
433.7	335.5	100			
	433.4	91			
688.2	589.5	100			
	688.5				
963.1	668.1	100			
1618.6	1520.1	100			
113.36 + x	113.4 3	100			
130.44+x	147.1 3	100			
	260.4 3	14			
392.5 + x	262.1 3	100			
	409.2 3	91			
546.5 + x	154.0 3	14			
	416.1 3	100			
952.4 + x	405.9 3	90			
	559.9 3	100			
1008.8 + x	562.3 3	100			
1805.6 + x	696.8 3	100			
$2610 \cdot 2 + x$	804.5 3	100			
3482.2 + x	872.0 3	100			

 $^{^{\}dagger}~$ From $^{113}Ru~IT$ decay and $^{252}Cf~SF~decay.$

¹¹³Tc β⁻ Decay: 160 ms 1998Ku17,2007Ku23

 $Parent\ ^{113}Tc:\ E=0;\ J\pi=(gt5/2);\ T_{1/2}=160\ ms\ +50-40;\ Q(g.s.)=8480\ syst;\ \%\beta^{-}\ decay=100.$

¹¹³Tc-T_{1/2}: from 2009Pe06.

¹¹³Tc-J: From 2007Ku23.

¹¹³Tc-%β- decay: %β-n=2.1 3 (1999Wa09).

1998Ku17: ¹¹³Tc produced in the proton induced fission of ²³⁸U using 25 MeV protons delivered by the K-130 cyclotron at Jyvaskyla. Mass separator IGISOL used. Measured Εγ, Ιγ, γγ using LEGe array of Ge detectors and a BGO shield. 2007Ku23: Reanalysis of data in 1998Ku17.

¹¹³Ru Levels

E(level)	Jπ	$T_{1/2}$
0.0	(1/2+)	0.80 s 5
98.27 23	(3/2+)	
164.1 3	(5/2+)	
294.9 3	(5/2+,7/2+)	
433.6 3		
688.1 3		
963.0? 5		
1618.4? 5		

 \dagger From least-squares fit to Ey's, assuming an uncertainty of 0.4 keV.

β - radiations

Εβ-	E(level)	Ιβ-†‡	Log ft [†]	Comments
(6862)	1618.4?	12.0 4	4.8	av E β =3100 <i>150</i> .
(7792)	688.1	9.1 3	5.2	av Eβ=3540 <i>150</i> .
(8046)	433.6	30.3 8	4.7	av $E\beta = 3670 \ 150$.
(8185)	294.9	25.0 6	4.8	av Εβ=3730 <i>150</i> .
(8316)	164.1	22.1 8	4.9	av E β =3790 150.
(8382§)	98.27	1.4 16	6.1	av Eβ=3830 <i>150</i> .

- \dagger From 2007Ku23, values should be considered as approximate due to the complex nature of the level scheme and observation of no levels above 1620 keV whereas the Q value is =8500.
- ‡ Absolute intensity per 100 decays.
- \S Existence of this branch is questionable.

$\gamma(^{113}Ru)$

Εγ	E(level)	Iγ [‡]	Mult.	Comments
65.8	164.1	8		
98.5	98.27	100	D	$\alpha(K) \exp = 0.24$ 12.
x 1 1 3 . 2		12		
131.1	294.9	16		
x 1 4 7 . 1		$\approx 0 \cdot 0$		
164.3	164.1	54		
197.1 [†]	294.9	12		
× 2 7 4 . 7 †		≈ 5		
294.38	294.9	24		
335.5	433.6	33		
433.48	433.6	30		
589.5	688.1	19		
668.1 †	963.0?			
688.5 † §	688.1			
1520.1	1618.4?	25		

- † The γ ray is also from ^{113}Rh decay.
- $\dot{\ddagger}$ For absolute intensity per 100 decays, multiply by $\approx\!0.50.$
- § Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

$^{113}Tc~\beta^-~Decay:~160~ms~~1998Ku17,2007Ku23~(continued)$

¹¹³Ru IT Decay 2007Ku23,1998Ku17

Parent $^{113}{\rm Ru}\colon$ E=130 18; J π =(11/2-); $T_{1/2}$ =510 ms 30; %IT decay=100.

113Ru-E: From 2003Au03 but 0+x in Adopted Levels.

Activity: ²³⁸U(p,f), E=20 MeV, on-line isotope separator IGISOL.

2007Ku23,1998Ku17 are from the same group. Data here are from 2007Ku23.

Measured: γ , $\gamma\gamma$, $\gamma(t)$, ce, Ge(Li), Ge, Si(Li), elli spectrometer.

¹¹³Ru Levels

E(level)	Jπ	$T_{1/2}$	Comments
0.0	(1/2+)	0.80 s	5
$98.5 \ 3$	(3/2+)		
130 18	(7/2-)	510 ms 30	T _{1/2} : from 1998Ku17.
			$-\frac{\gamma(^{113}\mathrm{Ru})}{}$
Εγ	E(level)	Mult.	Comments
98.5 3	98.5	D	$\alpha(K) \exp = 0.24 \ 12.$

Decay Scheme

²⁴⁸Cm SF Decay 2007Ku23

Parent $^{248}\mathrm{Cm}\colon$ E=0; J\pi=0+; $T_{1/2}{=}348{\times}10^3$ y 6; %SF decay=? $^{248}\mathrm{Cm-T}_{1/2}{:}$ From 2003Au03.

Measured E γ , $\gamma\gamma$ coin using EUROGAM2 array and IGISOL mass spectrometer.

¹¹³Ru Levels

E(level) [†]	Jπ	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Comments
0 + x §	(7/2-)	0.51 s	% β ~≈100; %IT=? E(level): x≈120 (2007Ku23), the energy is above the 98.5 level and below the 164.3 level in $^{103}{\rm Ru}$.
113.0+x [‡] 3	(9/2-)		
259.7+x§ 3	(11/2-)		
521.2+x [‡] 3	(13/2-)		
675.5+x § 4	(15/2-)		
1080.7+x ‡ 5	(17/2-)	† From	n least-squares fit to Eγ's, assuming an uncertainty of 0.3 keV.
1237.6+x § 5	(19/2-)	‡ (A):	7/2[523], α=+1/2.
1934.3+x [‡] 6	(23/2-)	§ (B):	$7/2[523], \alpha = -1/2.$

$\gamma(^{113}Ru)$

<u>Εγ</u>	E(level)	Εγ	E(level)	Εγ	E(level)
112.9	113.0+x	261.5	521.2+x	559 [†]	1080.7+x
146.7	259.7 + x	405.2	1080.7 + x	562.1	1237.6+x
154.2	675.5 + x	408.1	521.2 + x	696.7	1934.3+x
259 8	259 7+x	415 9	675 5+x		

 $[\]ensuremath{^\dagger}$ Placement of transition in the level scheme is uncertain.

²⁵²Cf SF Decay 2003Zh14

Parent 252 Cf: E=0.0; J π =0+; $T_{1/2}$ =2.645 y 8; %SF decay=? Measured E γ , I γ , $\gamma\gamma$, and $\gamma\gamma\gamma$ using the GAMMASPHERE detector array comprised of 102 Compton-suppressed Ge detectors.

$^{113}\mathrm{Ru}$ Levels

E(level) [†]	Jπ [‡]	
0.0+x $113.36+x # 24$ $260.44+x $ 24$ $522.5+x # 3$ $676.5+x $ 4$	(9/2-) $(11/2-)$ $(13/2-)$ $(15/2-)$	
1082.4+x# 4 1238.8+x\$ 5 1935.6+x\$ 6 2740.2+x\$ 6 3612.2+x\$ 7	(17/2-) $(19/2-)$ $(23/2-)$ $(27/2-)$ $(31/2-)$	† From least-squares fit to Ey's, assuming $\Delta(\text{E}\gamma)=0.3$ keV. ‡ Based on band assignment. § (A): possible $\text{vh}_{11/2}, \ \alpha=-1/2$. # (B): possible $\text{vh}_{11/2}, \ \alpha=+1/2$.
		γ (113 Ru)

Εγ	E(level)		Εγ	E(level)	Ιγ	Εγ	E(level)	
113.4	113.36+x	>100	405.9	1082.4+x	9	696.8	1935.6+x	26
147.1	260.44+x	100	409.2	522.5 + x	21	804.5	2740.2+x	8
154.0	676.5 + x	8	416.1	676.5 + x	57	872.0	3612.2+x	2
260.4	260.44+x	14	559.9	1082.4+x	10			
262.1	522.5 + x	23	562.3	1238.8+x	52			

Adopted Levels, Gammas

 $^{252}\mathrm{Cf}$ SF decay. Mass from kinetic energy of fragment (1970Jo20). (K x-ray) γ coin (1972Ho08).

$^{113}\mathrm{Rh}$ Levels

Cross Reference (XREF) Flags

- A ^{113}Ru β^- Decay (0.80 s) B ^{113}Ru β^- Decay (0.51 s)
- C ²⁵²Cf SF Decay
- D ²⁰⁸Pb(¹⁸O,Fγ)
- E 248Cm SF Decay

E(level) [†]	Jπ [‡]	XREF	T _{1/2}		Comments
0.0\$	(7/2+)	ABCDE	2.80 s 12	$\%\beta^{-}=100.$	
				Γ _{1/2} : From 1993I	Pe11.
211.72# 6	(9/2+)	ABCDE			oid-shift in βγ(t)(2002Ku18).
263.21b 6	(3/2+)	ABC E		1/2	oid-shift in βγ(t)(2002Ku18).
351.35 ^b 6	(5/2+)	ABC E		1/2	
444.01 7	(11/2+)	BCD			
570.96@7	(11/2+)	$^{\text{CD}}$			
578.98 ^b 7	(7/2+)	ABC E			
600.72° 7	(3/2+)	ABCDE	0.66 ns 14 T	$\Gamma_{1/2}$: From centr	oid-shift in βγ(t)(2002Ku18).
666.2 10	(1/2-)	E			
684.67 # 8	(13/2+)	$^{\text{CD}}$	E(level) [†]	$J\pi^{\ddagger}$	XREF
784.8b 6	(9/2+)	E			
785.13° 9	(7/2-)	ABC	1908.6 5		A
786.55° 12	(7/2+)	ABC E	1945.8 \$ 4		A
823 . 4 4		A	1965.8 5		A
834.36d 8	(5/2+)	ABC E	2025.31@9	(19/2+)	C
883.2 14		E	2037.98# 12	2 (21/2+)	CD
911.929	(9/2+)	C E	2058.4 6	(9/2-)	В
936.33& 8	(13/2+)	$^{\text{CD}}$	2122.0 4		A
967.9 3		A	2133.19 12	(21/2+)	C
978.0 3		A	2191.3 3		A
1008.9 3		A	2221.4 4		A
1034.04		A	2287.5 5		A
1060.9 3		A	2297.4 7		A
1071.0b 8	(11/2+)	E	2367.9 4	(9/2-)	В
1075.73 8	(15/2+)	$^{\text{CD}}$	2398.49	1 (21/2+)	C
1138.5 10	(11/2+)	E	2417.5 5	(9/2-)	В
1206.4 5		В	2446.50a 18		C
1258.62 ^d 13	(9/2+)	C E	2470.33 \$ 12	2 (23/2+)	C
1259.9 10		E	2525.7 4		A
1284.26@ 7	(15/2+)	$^{\mathrm{CD}}$	2623.6 9		A
1320.22# 10	(17/2+)	$^{\mathrm{CD}}$	2675.4 13		A
1412.0@7	(17/2+)	D	2723.25# 13		C
1463.9 7		A	2776.90 15	(25/2+)	C
1485.2 6		A	3090.77 \$ 14		C
1529.8 6		В	3133.07a 18		C
1673.62 9	(17/2+)	C	3334.76# 18		C
1775.49\\$ 11	(19/2+)	$^{\mathrm{CD}}$	3770.05 \$ 18		C
1843.4 6		В	4006.04# 16	6 (33/2+)	C

 $^{^{\}dagger}$ From least-squares fit to adopted gamma energies.

 $[\]ensuremath{^{\ddagger}}$ Based on bands assignments and systematics.

^{§ (}A): g.s. band, $\alpha = -1/2$.

 $^{^{\#}}$ (B): g.s. band, $\alpha = +1/2$.

^{@ (}C): 11/2 + band, $\alpha = -1/2$.

[&]amp; (D): 13/2+ band, $\alpha=+1/2$.

a (E): 23/2+ band, $\alpha = -1/2$.

 $^{^{\}rm b}$ (F): 3/2+ band.

c (G): $\pi 1/2[431]$ band, $\alpha = -1/2$.

d (H): $\pi 1/2[431]$ band, $\alpha = +1/2$.

e (I): π1/2[301] band.

Adopted Levels, Gammas (continued)

γ(11	^{3}R	ı)

				•			
E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	$\underline{\hspace{1cm}} \text{I} \gamma^{\dagger}$	Mult.	α	E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ†
211.72	211.70 10	100	M1	0.0444	1463.9	1464.3 10	100 15
263.21	263.17 10	100			1485.2	906.2 8	73 9
351.35	88.17 10	78 16				1133.9 8	100 30
	$351.44\ 10$	$100 \ 20$	M1	0.01209	1529.8	1318.4 7	100
444 . 01	232 . 28 10	100 13			1673.62	389.36 10	$100 \ 20$
	443.95 10	91 13				737.34 10	65 13
570.96	359.26 10	100 20			1775.49	455.34 10	100 20
F. T. O. O. O.	571.0 1	15 3			1040 4	699.76 10	38 12
578.98	227.68 10	100 20			1843.4	1631.7 6	100
	315.73 10	20 6			1908.6	1123.0 8	33 10
600.72	367.25 10 337.58 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1945.8	1645.7 7 1367.6 6	$100 \ 20$ $100 \ 8$
000.72	600.7 1	14 3			1345.6	1593.8 7	83 8
666.2	403‡	100			1965.8	1180.4 7	100 50
684.67	240.65 10	82 11			1000.0	1614.7 8	100 50
	472.93 10	100 12			2025.31	351.65 10	100 20
784.8	206.0					740.95 10	23 5
	433.5					949.61 10	69 14
785.13	206.10 10	100			2037.98	262.55 10	44 9
	433.82 10					717.66 10	$100 \ 20$
	785				2058.4	1225.0 10	30 20
786.55	185.82 10	100				1846.1 8	100 10
823.4	560.1 4	100				2058.4 13	15 15
834.36	233.69 10	100 20			2122.0	1770.2 7	79 9
	483.04 10	27 6				1858.1 7	100 6
883.2	571.07 <i>10</i> 217‡	$82 ext{ } 16$ 100				1911.0 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
911.92	332.97 10	100			2133.19	2121.8 <i>11</i> 357.67 <i>10</i>	100
011.02	560.54 10	100			2100.10	813.0 1	100
936.33	365.33 10	100 20			2191.3	246.4 11	7 4
	724.60 10	42 9				1223.3 7	38 4
967.9	181.0 7	28 14				1367.6 6	64 22
	367.2 5	100 14				1840.8 7	64 4
	704.9 7	31 3				1927.67	100 7
978.0	626.8 5	$40.0\ 20$				2191.0 8	64 22
	715.1 4	100 3			2221.4	1160.8 9	19 3
1008.9	657.8 5	86 4				1213.1 7	36 3
	745.9 5	83 4				1869.7 7	64 6
1004.0	1008.7 6	100 7			0005 5	1957.8 7	100 8
1034.0	247.0 8	50 30			2287.5	1226.6 6	100 3
	682.88 770.97	58 <i>17</i> 100 <i>8</i>				1936.3 10 2023.9 10	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
1060.9	226.0 7	30 15			2297.4	2034.5 10	47 6
1000.0	274.7 7	33 4			2201.4	2297.1 9	100 18
	709.4 5	100 5			2367.9	1534.6 11	10 5
	797.8 6	85 4				1583.1 6	100 10
	1061.2 6	93 7				1922.9 7	100 10
1071.0	286.5					2156.5 11	$20 \ 5$
	491.7‡					2368.0 9	40 9
1075.73	391.18 10	100 14			2398.49	373.09 10	100
	631.65 10	62 8				724.95 10	60
1138.5	352‡	100			2417.5	888.1 8	10 3
1206.4	994.7 5	100				1973.2 6	100 10
1258.62	424.26 10	100			2446 50	2417.6 10	12 4
1259.9	348	100			2446.50 2470.33	313.35 10	100
1284.26	347.84 10 599.45 10	$100 \ 20$ $46 \ 9$			2410.33	432.26 10 694.87 10	100 20 $74 15$
	713.40 10	23 5			2525.7	403.4 5	100 21
	840.3 1	-3 0			1020.1	1548.9 7	71 4
1320.22	244.48 10	51 10				2173.6 8	21 4
	635.55 10	100 16			2623.6	2360.4 9	100
1412.0	475.7 7	100			2675.4	2324.0 13	100
1463.9	1112.2 10	70 60			2723.25	252.95 10	69 14

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{113}Rh)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
2723.25	685.32 10	100 20	3133.07	356.1 ‡		3770.05	679.33 10	100
2776.90	330.45 10	100 20		686.57 10	100	4006.04	236.0 1	
	643.66 10	56 11	3334.76	244.0 1			671.27 10	100
3090.77	367.67 10	100 20		611.45 10	100			
	620.35 10	40 8	3770.05	435.24 10				

 $^{^{\}dagger}$ If possible, taken from 2004Lu03, otherwise from 2002Ku18. ‡ Placement of transition in the level scheme is uncertain.

¹¹³Ru β⁻ Decay (0.80 s) 2002Ku18,2007Ku23

 $Parent~^{113}Ru:~E=0;~J\pi=(1/2+);~T_{1/2}=0.80~s~5;~Q(g.s.)=6480~50;~\%\beta^-~decay=100.$

2002Ku18: Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin, lifetimes by $\beta\gamma(t)$ using a LEGe-detector and a 37% Ge-detector operated with two plastic scintillators and in anti-coincidence with a BGO shield.

2007Ku23: Re-interpretation of the β feedings.

All data are from 2002Ku18, except for intensities of some of the γ rays, β feedings and associated log ft values. Revised division (amongst two activities of 113 Ru) of γ -ray intensities and β feedings are from 2007Ku23 and e-mail reply of Oct 15, 2007 from the first author of 2007Ku23 to the evaluator. The questionable and unplaced γ rays are not listed in this e-mail reply.

The 578, 785, 786 and 834 levels and deexciting γ rays have been removed by 2007Ku23 and associated with only the decay of the 0.51-s isomer.

¹¹³Rh Levels

E(level)	Jπ	§	E(level) [†]	E(level)†
0.0	(7/2+)	2.80 s 12	1034.1 6	2191.2 4
211.66 20	(9/2+)	0.21 ns 13	1060.9 4	2221.4 4
263.18 16	(3/2+)	0.38 ns 12	1463.9 8	2287.4? 5
351.27 19	(5/2+)		1485.2 9	2297.4 7
600.7 3	(3/2+)	0.66 ns 14	1711.6? 10	2525.6? ‡ 5
823.4 4			1908.9 8	2623.6? 10
968.0 4			1945.0 7	2675.3? ‡ 14
978.0 4			1966.0 9	
1008.9 3			2121.9 4	

- † From least-squares fit to Ey's.
- ‡ Level not shown in figure 1 of 2002Ku18.
- § From centroid-shift method in $\beta \gamma(t)$.

β - radiations

Εβ-		E(level)	Iβ ^{-†§}	Log ft	Comments
(3800#	50)	2675.3?	0.3	6.2	av Eβ=1636 24.
(3860#	50)	2623.6?	$1.7^{1 \over 2}$	5.5	av Eβ=1660 24.
(3950#	50)	2525.6?	4.4 † 5	5.1	av Eβ=1707 24.
(4180	50)	2297.4	2.4	5.5	av Εβ=1816 24.
(4190#	50)	2287.4?	5.1 [‡] 5	5.1	av Eβ=1820 24.
(4260	50)	2221 . 4	7.6	5.0	av E β =1852 24.
(4290	50)	2191.2	14.9	4.7	av Εβ=1866 24.
(4360	50)	2121.9	7.6	5.0	av Εβ=1899 24.
					Iβ-: Compilers deduce 5.3 6 from intensity balance.
(4510	50)	1966.0	1.3	5.9	av Eβ=1973 24.
(4540	50)	1945.0	1.7	5.8	av Eβ=1983 24.
					Iβ ⁻ : 2.0 (obtained by compilers from intensity balance).
(4570	50)	1908.9	2.6	5.6	av Eβ=2001 24.
(4770#	50)	1711.6?	<1.6 [‡]	>5.9	av Eβ=2095 24.
(4990	50)	1485 . 2	1.1	6.1	av Eβ=2203 24.
(5020	50)	1463.9	1.2	6.1	av Eβ=2213 24.
(5420	50)	1060.9	6.5	5.5	av Εβ=2406 24.
					Iβ ⁻ : Compilers deduce 3.0 3 from intensity balance.
(5450	50)	1034.1	1.8	6.1	av Eβ=2418 24.
(5470	50)	1008.9	6.2	5.6	av Eβ=2431 24.
(5500	50)	978.0	7.8	5.5	av E β =2445 24.
					Iβ-: Compilers deduce 6.14 17 from intensity balance.
(5510	50)	968.0	2.0	6.1	av E β =2450 24.
(5660	50)	823.4	2.1	6.1	av E β =2519 24.
(5880	50)	600.7	12.6	5.4	av Eβ=2626 24.
(6220	50)	263.18	20.5	5.3	av Eβ=2787 24.
					$I\beta^-\colon$ Compilers deduce 16.1 23 from intensity balance.

[†] From 2007Ku23.

- ‡ Deduced from intensity balance.
- § Absolute intensity per 100 decays.
- # Existence of this branch is questionable.

$^{113}Ru \ \beta^{\text{-}} \ Decay \ (0.80 \ s) \qquad 2002Ku18,2007Ku23 \ (continued)$

$\gamma(^{113}\mathrm{Rh})$

Iy normalization: From comparison of β feedings given by 2007Ku23 and γ intensities from 2002Ku18, assuming no β feeding to the g.s.

Εγ	E(level)	Ιγ§	Mult.	α			Comments		
88.1 3 *181.0 [†] 7	351.27	9.0 [‡] 13 0.8 4	[M1]	0.490 9	Iγ: combi	ined intensity fr	om both isomers=13.1	13.	
211.7 2 ×226.0 7	211.66	1.1 [‡] 1 0.8 4	M1	0.0444	Iγ: combi	ined intensity fr	om both isomers=32.8	8.	
246.4 # 11	2191.2	0.3 2					sity is listed as 0.6 2 first author of 2007F	-	ly of
*247.0 [†] 8		0.6 4							
263.2 2	263.18	78.6 [‡] 4	[E2]	0.0439	Iγ: combi	ined intensity fr	om both isomers=100.	0 5.	
*274.7 [†] 7		0.9 1							
337.6 3	600.7	14.7‡ 3			•	-	om both isomers=23.4		
351.2 3	351.27	8.1 † 13			Iγ: combi	ined intensity fr	om both isomers=11.8	17.	
367.25	968.0	2.9 4							
×401.0 [†] 7		1.1 1							
403.4# 5	2525.6?	2.4 5							
x422.9 [†] 5	000 4	2.3 1							
560.1 4	823.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T	1	1 0.1	0	
600.5 5	600.7				ıγ: comb	ined intensity ir	om both isomers=2.1	5.	
626.85 657.85	978.0 1008.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
682.8# 8	1034.1	0.7 2							
704.9 7	968.0	0.7 2							
709.4 5	1060.9	2.7 1							
715.1 4	978.0	5.8 1							
745.9 5	1008.9	2.4 1							
770.9 7	1034.1	1.2 1							
797.8 6	1060.9	2.3 1							
x906.2 [†] 8		0.8 1							
1008.7# 6	1008.9	2.9 2							
1061.2# 6	1060.9	2.5 2							
1112.2 10	1463.9	0.5 4							
*1123.0 [†] 8		0.9 1							
1133.9 8	1485 . 2	1.1 3							
1160.8#9	2221 . 4	0.7 1							
×1180.4 [†] 7		1.4 7							
×1194.6† 6		2.6 2							
1213.1# 7	2221.4	1.3 1							
1223.3 7	2191.2	1.7 2							
1226.6# 6	2287.4?	3.7 1							
1367.6 6	2191.2	2.9 1			since	-	n 1945-578 level (2002 ulated only in the dec 3.		
1448.4# 9	1711.6?	0.8 8				968, the 2417 le	in figure 1; also fits vel is populated in th		
1464.3 # 10	1463.9	0.7 1			15011161	•			
1548.9# 7	2525.6?	1.7 1							
1593.8 7	1945.0	2.4 2							
1614.7 8	1966.0	1.4 1		Εγ	E(level)	Iγ§	Εγ	E(level)	Iγ§
1645.7 7	1908.9	2.7 2	-			<u>·</u>	`		
x1661.2 [†] 10		0.6 1	1927	. 6 7	2191.2	4.5 2	2173.6# 8	2525.6?	0.5 1
1770.2 7	2121.9	2.7 3	1936	3.3# 10	2287.4?	0.7 3	2191.0 8	2191.2	2.9 1
1840.8 7	2191 . 2	2.9 2	1957	. 8 7	2221 . 4	3.6 3	2297.1 9	2297 . 4	1.7 3
1858.1 7	2121 . 9	3.4 2	2023	3.9# 10	2287 . $4?$	0.9 4	2324.0# 13	2675.3?	0.3 1
1869.7 7	2221 . 4	2.3 2		.5 10	2297 . 4	0.8 1	2360.4 # 9	2623.6?	1.8 2
1911.0 9	2121 . 9	1.1 1	2121	8# 11	2121 . 9	0.7 1	I		

 $^{^{\}dagger}$ The unplaced γ belongs to the decay of either or both the isomers.

 $^{^{\}frac{1}{4}}$ Intensity divided based on β feeding proposed by 2007Ku23. Value is different in authors' earlier work (figure 1 of 2002Ku18).

[§] For absolute intensity per 100 decays, multiply by 0.89.

[#] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

$^{113}Ru \ \beta^{-} \ Decay \ (0.80 \ s) \\ \hspace{0.5cm} 2002Ku18,2007Ku23 \ (continued)$

Decay Scheme

$^{113} Ru \ \beta^{-} \ Decay \ (0.51 \ s) \ \ 2002 Ku 18, 2007 Ku 23$

 $Parent\ ^{113}Ru:\ E\approx 120;\ J\pi=(7/2-);\ T_{1/2}=0.51\ s\ 3;\ Q(g.s.)=6480\ 50;\ \%\beta^-\ decay=100.$

 $^{113}{\rm Ru-T_{1/2}}$: from 1998Ku17:

 $^{113}Ru\!-\!E,\!J\!:$ from 2007Ku23, probable 7/2[523] state.

2002Ku18: Measured Ey, Iy, yy, $\beta\gamma$ coin, $\beta\gamma(t)$ using a LEGe-detector and a 37% Ge-detector operated with two plastic scintillators and in anti-coincidence with a BGO shield.

Measured Ey, $\gamma\gamma$ coin, IB using EUROGAM2 array and IGISOL mass separator. These data are re-interpreted by 2007Ku23.

All data are from 2002Ku18, except for intensities of some of the γ rays, β feedings and associated log ft values. Revised division (amongst two activities of 113 Ru) of γ -ray intensities and β feedings are from 2007Ku23 and e-mail reply of Oct 15, 2007 from the first author of 2007Ku23. The questionable and unplaced γ rays are not listed in this e-mail reply.

$^{113}\mathrm{Rh}$ Levels

E(level) [†]	<u></u> Jπ	‡	E(level)	Jπ	‡	E(level) [†]	Jπ
0.0	(7/2+)	2.80 s 12	600.5 3	(3/2+)	0.66 ns 14	1843.4 7	
211.73 18	(9/2+)	0.21 ns 13	785.0 4	(9/2+)		2058.4 6	(9/2-)
263.10 17	(3/2+)	0.38 ns 12	786.3 4	(7/2+)		2367.9 4	(9/2-)
351.24 20	(5/2+)		834.1 3	(5/2+)		2417.6 5	(9/2-)
444.12 25	(11/2+)		1206.4 6				
578 80 25	(7/2+)		1529 87 6				

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $^{^\}ddagger$ From centroid-shift in $\beta\gamma(t).$

$^{113}Ru \ \beta^{\text{-}} \ Decay \ (0.51 \ s) \qquad 2002Ku18,2007Ku23 \ (continued)$

β^- radiations

Εβ-	E(level)	$1\beta^{-\ddagger\ddagger}$	Log ft	Εβ-		E(level)	$\frac{-\mathrm{I}\beta^{-\dagger\ddagger}}{-}$	Log ft
(4180 50)	2417.6	13.9	4.4	(5810 8	50)	786.3	8.9	5.3
(4230 50)	2367.9	13.5	4.5	(5820	50)	785.0	2.4	5.8
(4540 50)	2058.4	3.6	5.2	(6020	50)	578.80	12.8	5.2
(4760 50)	1843.4	6.5	5.0	(6160	50)	444.12	1.4	$6.2^{1}u$
(5070 50)	1529.8?	0.7	6.1	(6250 8	50)	351.24	1.4	6.2
(5390 50)	1206.4	4.5	5.4	(6340	50)	263.10	2.4	6.01u
(5770 50)	834.1	12.3	5.1	(6390 8	50)	211.73	15.7	5.2

[†] From 2007Ku23.

$\gamma(^{113}Rh)$

Iy normalization: From comparison of β feedings given by 2007Ku23 and γ intensities from 2002Ku18, assuming no β feeding to the g.s.

Εγ	E(level)	Ιγ#	Mult.	α	Comments
48.1 13	834.1	0.2 † 2	[M1]	2.8	
88.1 3	351.24	4.2† 4	[M1]	0.49	Iγ: combined intensity from both isomers=13.1 13.
x181.0\$ 7		0.8 4	. ,		Placement by 2002Ku18: 968-786 is omitted since 786 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 1687, 1867, 2637, 3387.
185.8 3	786.3	5.9 ‡ 8	[E2]	0.147	
206.24	785.0	2.7^{\ddagger} 4			
211.7 2	211.73	31.7 [†] 8	M1(+E2)	0.045	Iy: combined intensity from both isomers=32.8 8. $\alpha(K) \exp = 0.06$ 2.
x 2 2 6 . 0 7		0.8 4			Tentative placement by 2002Ku18: 1061-834 is omitted since 834 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 3517, 2637, 3387.
227.6 3	578.80	8.2 ‡ 4			
232.3 3	444.12	7.4 3			
233.9 4	834.1	$2.7^{1 \over 2} 4$			
x 2 4 7 . 0 § 8		0.6 4			Tentative placement by 2002Ku18: 1034-786 is omitted since 786 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 186γ, 338γ and possibly with 263γ.
$263.2\ 2$	263.10	22.3 \dagger 2	[E2]	0.044	Iy: combined intensity from both isomers=100.0 5 .
*274.7 [§] 7		0.9 1			Placement by 2002Ku18: 1061-786 is omitted since 786 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 88γ, 161γ, 186γ, 190γ, 263γ, 338γ.
337.6 3	600.5	8.7 † 2			Iγ: combined intensity from both isomers=23.4 4.
351.2 3	351.24	3.7 † 6			Iγ: combined intensity from both isomers=11.8 17.
367.1 5	578.80	2.1 ‡ 2			
*401.0\$ 7		1.1 1			In coin with 88, 117, 152, 186, 263 γ 's; fits between levels 2368-1966.
x422.9 § 5		2.3 1			In coin with 88, 162, 263, 338 γ 's; fits between levels 2368-1945.
443.9 4	444.12	5.5 2			
482.0 8	834.1	$0.7^{1 \over 2}$			
571.1 4	834.1	6.6 ‡ 2			
578.7 6	578.80	1.9 ‡ 2			
600.5 5	600.5	0.8† 1			Iy: combined intensity from both isomers= $2.1\ 3.$
785.0 5	785.0	$2.7^{\ddagger}2$			
888.1@8	2417.6	0.9 4			
x906.2\$ 8		0.8 1			Tentative placement by 2002Ku18: 1485-578 is omitted since 578 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 889.
994.7 5	1206.4	3.3 4			· · · · · · · · · · · · · · · · · · ·
x1123.0\$ 8	1200.1	0.9 1			Tentative placement by 2002Ku18: 1909-785 is omitted since 785 level is now associated to 0.51-s isomer decay only (2007Ku23). In possible coin with 2127.
x1180.4\$ 7		1.4 7			Tentative placement by 2002Ku18: 1966-785 is omitted since 785 level is now associated to 0.51-s isomer decay only (2007Ku23). In coin with 887, 1907, 2127, 2637.

Continued on next page (footnotes at end of table)

[‡] Absolute intensity per 100 decays.

$^{113}Ru \ \beta^{-} \ Decay \ (0.51 \ s) \qquad 2002Ku18,2007Ku23 \ (continued)$

$\gamma(^{113}Rh)$ (continued)

Εγ	E(level)	Ιγ#	Comments
x1194.6 § 6		2.6 2	In coin with 135, 212, 263 γ's.
$1225.0^{@}10$	2058.4	0.6 4	
1318.4 7	1529.8?	1.4 1	
$1534.6^{@}11$	2367.9	0.5 1	
1583.1 6	2367.9	3.6 2	
1631.7 6	1843.4	4.8 3	
x1661.2 § 10		0.6 1	In coin with 88, 212 y's.
1846.1 8	2058.4	1.8 1	
1922.9 7	2367.9	3.6 1	
1973.2 6	2417.6	8.3 2	
2058.4@ 13	2058.4	0.3 3	
2156.5 11	2367.9	0.7 1	
2368.0 9	2367.9	1.6 1	
2417.6 10	2417.6	1.1 1	

- † Intensity divided based on β feeding proposed by 2007Ku23. Value is different in authors' earlier work (figure 2 of 2002Ku18).
- ‡ 2007Ku23 assign all intensity with the decay of 0.51-s activity.
- § The unplaced γ belongs to the decay of either or both the isomers.
- $^{\#}$ For absolute intensity per 100 decays, multiply by 1.35.
- @ Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

Decay Scheme

²⁴⁸Cm SF Decay 2007Ku23

Parent $^{248}{\rm Cm}\colon$ E=0; J\pi=0+; $T_{1/2}{=}348{\times}10^3$ y 6; %SF decay=?

 $^{248}{\rm Cm-T_{1/2}}$: From 2003Au03.

Measured Eγ, γγ coin using EUROGAM2 array and IGISOL mass spectrometer.

¹¹³Rh Levels

E(level) [†]	Jπ	E(level) [†]	Jπ	E(level)†	Jπ
0.0	(7/2+)	666.2 11	(1/2-)	1071.1 5	(11/2+)
211.6 3	(9/2+)	784.6 ‡ 3	(9/2+)	1138.3 11	(11/2+)
263.2	(3/2+)	786.3 5	(7/2+)	1258.7 5	
351.1 2	(5/2+)	834.4 3	(5/2+)	1259.6 11	
578.6 [‡] 3	(7/2+)	883.2 15			
600.7 4	(3/2+)	911.6 4			

 $[\]dagger$ From least-squares fit to Ey's, assuming an uncertainty of 0.3 keV when Ey stated to tenth of a keV, 1 keV otherwise.

 $\gamma(^{113}Rh)$

Εγ	E(level)	Εγ	E(level)	Εγ	E(level)
87.9	351.1	286.5	1071.1	403†	666.2
185.6	786.3	315.3	578.6	424.3	1258.7
206.0	784.6	333.0	911.6	433.5	784.6
211.6	211.6	337.6	600.7	483.2	834.4
217^{\dagger}	883.2	348	1259.6	491.7	1071.1
227.5	578.6	351.0	351.1	561	911.6
233.8	834.4	352 †	1138.3	571	834.4
263.2	263.2	367.0	578.6	600.7	600.7

[†] Placement of transition in the level scheme is uncertain.

²⁵²Cf SF Decay 2004Lu03

Parent $^{252}{\rm Cf}{:}~E=0;~J\pi=0+;~T_{1/2}=2.645~y~8;~\%{\rm SF}$ decay=?

Measured Ey, Iy, $\gamma\gamma$ using GAMMASPHERE array of 102 Compton-suppressed Ge detectors.

First mass assignment from fragment-γ coin, 1970Jo20. Z assignment of 304γ from (K x-ray)γ coin, 1972Ho08. Cascade assignment from half-lives, 1970Jo20.

 154.6γ and 304γ seen by 1970Jo20 and 1972Ho08 could belong to an other nuclide.

¹¹³Rh Levels

E(level) [†]	Jπ	E(level) [†]	<u></u> Jπ	E(level) [†]	Jπ
0.0‡	(7/2+)	834.36d 10	(5/2+)	2133.19& 12	(21/2+)
211.72 \$ 10	(9/2+)	911.93 ^b 10	(9/2+)	2398.48@ 11	(21/2+)
263.21 ^b 10	(3/2+)	936.33@ 10	(13/2+)	2446.49 ^a 15	(23/2+)
351.36 ^b 10	(5/2+)	1075.73 ‡ 10	(15/2+)	2470.32	(23/2+)
$444.00^{\div}10$	(11/2+)	1258.63 ^d 13	(9/2+)	2723.24 \$ 14	(25/2+)
570.96 # 10	(11/2+)	1284.26# 10	(15/2+)	2776.90 275	(25/2+)
578.99 ^b 10	(7/2+)	1320.21 \$ 10	(17/2+)	3090.76	(27/2+)
600.72° 10	(3/2+)	1673.62 [@] 10	(17/2+)	3133.06 ^a 18	(27/2+)
684.66 10	(13/2+)	1775.49 † 11	(19/2+)	3334.76 \$ 15	(29/2+)
785.13e 10	(7/2-)	2025.30# 10	(19/2+)	3770.04	(31/2+)
786.54° 13	(7/2+)	2037.97 \$ 12	(21/2+)	4006.03 \$ 17	(33/2+)

 $^{^\}dagger$ From least-squares fit to Ey's, assuming $\Delta(E\gamma)$ =0.1 keV; stated by 2004Lu03 as systematic error. Minimum uncertainty in level energy is assigned as 1 keV.

Footnotes continued on next page

^{‡ (}A): 3/2+ band.

^{‡ (}A): g.s. band, $\alpha = -1/2$.

^{§ (}B): g.s. band, $\alpha = +1/2$.

^{# (}C): 11/2 + band, $\alpha = -1/2$.

^{@ (}D): 13/2+ band, $\alpha=+1/2$.

²⁵²Cf SF Decay 2004Lu03 (continued)

¹¹³Rh Levels (continued)

& (E): 21/2+ band, $\alpha=+1/2$.

a (F): 23/2+ band, α=-1/2. b (G): 3/2+ band.

c (H): $\pi 1/2[431]$ band, $\alpha = -1/2$.

d (I): $\pi 1/2[431]$ band, $\alpha = +1/2$.

 e (J): $\pi1/2[301]$ band.

 $\gamma(^{113}Rh)$

Εγ	E(level)	Ιγ	Comments
88.17 10	351.36	5.4	
185.82 10	786.54	4.5	
206.10 10	785.13	0.6	
211.70 10	211.72	100	Decays with half-life=5 ns 1 (1970Jo20).
227.68 10	578.99	0.7	
232.28 10	444.00	20.7	
233.69 10	834.36	2.2	
236.0 1	4006.03		
240.65 10	684.66	15.8	
244.0 1	3334.76		
244.48 10	1320.21	7.3	
252.95 10	2723.24	1.1	
262.55 10	2037.97	2.2	
263.17 10	263.21	20.3	
313.35 10	2446.49	2.7	
315.73 10	578.99		
330.45 10	2776.90	0.9	
332.97 10	911.93	0.3	
337.58 10	600.72	5.1	
347.84 10	1284 . 26	2.6	
351.44 10	351.36	6.9	
351.65 10	2025.30	1.3	
356 . 1^\dagger	3133.06		
357.67 10	2133.19	5.1	
359.26 10	570.96	6.2	
365.33 10	936.33	5.2	
367.25 10	578.99	0.2	
367.67 10	3090.76	1.0	
373.09 10	2398.48	0.5	Eγ: 373.2 in figure 6 of 2004Lu03.
389.36 10	1673.62	1.7	
391.18 10	1075.73	8.4	
424.26 10	1258.63	1.2	
432.26 10	2470 . 32	1.9	
433.82 10	785.13		
435.24 10	3770.04		
443.95 10	444.00	18.9	
455.34 10	1775.49	6.6	
472.93 10	684.66	19.3	
483.04 10	834.36	0.6	
560.54 10	911.93		
571.0 1	570.96	0.9	
571.07 10	834.36	1.8	
599.45 10	1284 . 26	1.2	Eγ: 599.6 in figure 6 of 2004Lu03.
600.7 1	600.72	0.7	
611.45 10	3334 . 76	0.5	
620.35 10	3090.76	0.4	Eγ: 620.5 in figure 6 of 2004Lu03.
631.65 10	1075.73	5.2	
635.55 10	1320 . 21	14.4	
643.66 10	2776.90	0.5	
$671.27\ 10$	4006 . 03	0.3	
679.33 10	3770 . 04	0.3	
685.32 10	2723 . 24	1.6	
686.57 10	3133 . 06	0.3	
694.87 10	2470 . 32	1.4	
			Continued on next page (footnotes at end of table)

²⁵²Cf SF Decay 2004Lu03 (continued)

$\gamma(^{113}Rh)$ (continued)

Εγ	E(level)	Ιγ	Comments
699.76 10	1775.49	2.5	
713.40 10	1284 . 26	0.6	Eγ: 713.2 in figure 6 of 2004Lu03.
717.66 10	2037.97	5.0	
724.60 10	936.33	2.2	
724.95 10	2398.48	0.3	
737.34 10	1673.62	1.1	
740.95 10	2025.30	0.3	
785	785.13		
813.0 1	2133.19		Ey: from figure 6 of 2004Lu03.
840.3 1	1284 . 26		Eγ: 840.2 in figure 6 of 2004Lu03.
949.61 10	2025.30	0.9	Eγ: 949.5 in figure 6 of 2004Lu03.

 $[\]ensuremath{^\dagger}$ Placement of transition in the level scheme is uncertain.

$^{208}{ m Pb}(^{18}{ m O,}{ m Fy})~~2002{ m Ve}08$

 $E=85~MeV.~Measured~E\gamma,~I\gamma,~\gamma\gamma~using~the~Euroball~IV~array~comprised~of~15~cluster~Ge~detectors,~26~clover~Ge$ detectors and 30 tapered single-crystal Ge detectors.

$^{113}\mathrm{Rh}$ Levels

E(level) [†]	Jπ	E(level) [†]		$\frac{E(level)^{\dagger}}{} \qquad J\pi$
0.0‡	(7/2+)	683.7 \$ 4	(13/2+)	1319.3 § 5 (17/2+)
211.7 8 3	(9/2+)	935.1# 6	(13/2+)	1410.8# 10 (17/2+)
443.4 ‡ 3	(11/2+)	1074.7 ‡ 5	(15/2+)	1773.7 [‡] 7 (19/2+)
570.1# 5	(11/2+)	1282.7# 8	(15/2+)	2036.9 10 (21/2+)

[†] From least-squares fit to Eγ's. ‡ (A): $\pi g_{9/2}$, $\alpha = -1/2$. § (B): $\pi g_{9/2}$, $\alpha = +1/2$. # (C): Band based on (11/2+).

$\gamma(^{113}Rh)$

Εγ	E(level)	Ιγ	Comments
211.6 3	211.7	100 15	
231.6 3	443.4	31 5	
240.3 3	683.7	40 5	
244.54	1319.3	15 4	
347.5 5	1282.7	10 3	
358.4 4	570.1	26 5	
365.0 4	935.1	20 4	
390.9 4	1074.7	20 4	
443.5 4	443.4	25 6	
454.4 6	1773.7	15 4	
472.1 4	683.7	29 5	
475.7 7	1410.8	6 2	
631.4 5	1074.7	8 2	
635.7 5	1319.3	16 4	
698.9 8	1773.7	6 2	
713 †	1282.7		Ey: from figure 4 of 2002Ve08.
717.6 8	2036.9	6 2	

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^-) = 3340\ 30;\ S(n) = 5410\ 40;\ S(p) = 11230\ 60;\ Q(\alpha) = -5260\ 80\ 2003 Au 03, 2009 Au ZZ.$ $T_{1/2}(128.5\gamma) = 0.91\ s\ 8,\ assigned\ either\ to\ ^{113}Pd\ or\ ^{111}Pd\ (1970WiZN)\ via\ ^{113}Rh\ (^{111}Rh)\ \beta^-\ decay,\ is\ not\ seen\ by$ 1988Pe13 after mass separation.

$^{113}\mathrm{Pd}$ Levels

Cross Reference (XREF) Flags

- $A^{-113}Rh\ \beta^-\ Decay$
- B ¹¹³Pd IT Decay
- C ²⁰⁸Pb(¹⁸O,Fγ)
- D ²³⁸U(¹²C,Fγ)
- E ²⁵²Cf SF Decay

E(level) [‡]	Jπ§	XREF	${\color{red}{T_{1/2}}^{\dagger}}$			Comments	
0.0	(5/2+)	AB	93 s 5	%β ⁻ = :	100.		
						ignment based on T _{1/2} syst.	
						3 (1958Al90), 91 s 12 (1970Ar19), 100 s 5	
				1,2		Me17), 90 s 3 (1974Gr29).	
					om syst and $\log ft = 5$		
35.08 17	(1/2+)	A			2 γ to (5/2+) and sys		
81.1 3	(9/2-)	AB DE	0.3 s 1	%IT=			
151.89 <i>17</i> 166.1# <i>5</i> 172.55 <i>21</i> 189.61 ^a <i>15</i> 252.18 <i>16</i>	(3/2+) (11/2-) (1/2+) (7/2+) (3/2+,1/2+)	A DE A A E A		$J\pi$: M arg has the such this est con $T_{1/2}$: $J\pi$: M $J\pi$: M $J\pi$: M $J\pi$: E	2 γ to (5/2+). Syst g guments of 2005Fo09: s a half-life of 0.3 s. transition an E3. The atransition is gress transition to be an imate of less than 1 sistent with the disc from 1993Pe11. 11 γ 's to (5/2+) and (11 γ to (1/2+) and no (1 γ to (5/2+) and log 2,M1 γ to (5/2+) and	γ to (5/2+) g.s. $ft=5.5$ from (7/2+). M1,E2 γ to (1/2)+.	
$349.13\ 20$	(5/2+,7/2+)	A		Jπ: M	$1,E2 \gamma$ to $(5/2+)$ and	$\log ft = 4.9 \text{ from } (7/2+).$	
372.97 22	(1/2+,3/2+,5/2+)	A		Jπ: E	2 γ to $(1/2+,3/2+)$.		
409.26 18	+	A					
409.8 5		A	E(lev	rel)‡	Jπ§	XREF	
454.55 23		A E		9			
$500.35 \ 23$		A	1678.3		(17/2+)	E	
538.7 4		A	1841.9		(23/2-)	CDE	
549.2##	(15/2-)	CDE	1866.1		(21/2-)	DE	
573.1 [@] 11	(13/2-)	D	2030.1		(19/2+)	E	
715.9ª 3	(11/2+)	E	2286.5		(23/2+)	E	
730.6 4		A	2342.2		(21/2+)	E	
742.3 5		Α	2671.4		(27/2-)	CDE	
861.2 4		Α	2684.1		(25/2-)	CD	
1031.3& 3	(13/2+)	\mathbf{E}	2707.3		(23/2+)	E	
1081.2 6		A	2772.4		(27/2+)	E	
1111.0 4		E	3000.5		(25/2+)	E	
1119.7#	(19/2-)	CDE	3408.3	b 16	(31/2+)	E	
$1149.1^{@}15$	(17/2-)	D	3562.1		(29/2-)	D	
1345.6ª 4	(15/2+)	E	3562.6	# 7	(31/2-)	CDE	
			4517.6	# 19	(35/2-)	CD	

 $^{^{\}dagger}$ A isomer with $T_{1/2} \ge 100$ s was proposed by 1981Me17. This isomer was proposed from their half-life measurement and also because 107,109,111 Pd have isomeric states. This isomer is not reported by 1988FoZY in 113 Pd β^- decay and an isomer was found by 1993Pe11 with $\rm T_{1/2}{=}0.3~s$ 1. So this isomer is no more adopted.

[‡] From least-squares fit to γ energies.

 $[\]S$ $J\pi$ for levels above $482\ keV$ are based on band assignments.

 $^{^{\}text{\#}}$ (A): $\nu h_{11/2},~\alpha \text{=-}1/2$ band.

^{@ (}B): $vh_{11/2}^{11/2}$, $\alpha=+1/2$ band.

[&]amp; (C): band 3.

a (D): band 4.

b (E): band 5.

Adopted Levels, Gammas (continued)

$\gamma(^{113}\mathrm{Pd})$

E(level)	Εγ‡	Ιγ‡	Mult.†	α	Comments
35.08	34.9 3	100	E2	61.0 22	
81.1	81.1 3	100	M2	8.55 17	B(M2)(W.u.)=0.00013 5.
151.89	116.8 2	100 5	M1, E2	0.5 3	B(M2)(W.u.)-0.00010 0.
101.00	151.8 3	76 4	M1	0.1194	
166.1	85.1 3	100			
172.55	137.5 2	100	M1	0.1565	
189.61	189.7 2	100	M1	0.0655	
252.18	79.7 3	30 3			
	100.4 3	8.0 10			
	217.02	100 5	M1,E2	0.068 22	
	252.1 3	75 5	E2,M1	0.042 12	
349.13	96.8 3	38 6			
	159.9 3	100 10			
	197.0 4	19 6			
	348.9 5	44 10	M1,E2	0.0158 23	Iγ: from γγ.
372.97	120.8 3	51 7	E 2	0.711 12	
	221.0 3	100 12			
400.33	373.1 4	42 9			
409.26	157.1 3	14.0 10			
	219.6 3	24.4 14			
	236.74 409.33	$\begin{array}{ccc} 2.1 & 7 \\ 100 & 3 \end{array}$	E2	0.01090	
409.8	257.9 4	100 5	EZ	0.01090	
454.55	265.0 3	100 14			
101.00	454.7 4	100 14			
500.35	310.8 4	22 5			
	348.5 6	40 9			Iγ: from γγ.
	500.3 3	100 7			
538.7	348.9 5	30 7			
	538.84	100 7			
549.2	383.1 3	100			
573.1	425 1				
715.9	261.4 3				
700 a	526.1 3	100			
730.6 742.3	357.6 3	100			
861.2	332.73 609.03	100 100			
1031.3	315.4 3	100			
1001.0	576.8 3				
1081.2	339.1 4	< 22.0			
	671.1 4	100 22			
1111.0	656.4 3	100			
1119.7	570.5 3	100			
1149.1	576 1	100			
1345.6	629.7 3	100			
1678.3	647.0 3	100			
1841.9	722.2 3	100			
1866.1	717 1	100			
2030.1 2286.5	684.5 3 1166.8 3	100 100			
2342.2	663.9 3	100			
2671.4	829.5 3	100			
2684.1	818 1	100			
2707.3	677.2 3	100			
2772.4	485.9 3	100			
3000.5	658.3 3	100			
3408 . 3	635.9 3	100			
3562 . 1	874	100		440	
3562.6	891.2 3)exp in ¹¹³ Ru β ⁻ d	
4517.6	955 1	100	From 113F	tu β ⁻ decay placed	l below 482 keV and from $^{252}\mathrm{Cf}$ SF for the others.

¹⁴⁹⁷

¹¹³Rh β- Decay 1993Pe11

Parent $^{113}Rh;~E=0.0;~J\pi=(7/2+);~T_{1/2}=2.80~s~{\it 12};~Q(g.s.)=5010~{\it 40};~\%\beta^-~decay=100.$

Preliminary results given in 1992PeZX, same author.

Activity: ²³⁸U(p,f), E=20 MeV, on-line isotope separator IGISOL.

Measured: γ , $\gamma\gamma$, $\gamma(t)$, ce, Ge(Li), Ge, Si(Li), elli spectrometer.

Evaluator considers the level scheme as preliminary.

¹¹³Pd Levels

E(level) [†]	Jπ	$_\{1/2}$	Comments
0.0	(5/2+)	93 s 5	$T_{1/2}$: from adopted levels.
35.08 17	(1/2+)		
81.1 3	(9/2-)	0.3 s 1	$ m T_{1/2}$: from 1993Pe11. Other: 0.4 s (1992PeZX), preliminary, same authors.
151.88 17	(3/2+)		
172.55 21	(1/2+)		
189.60 15	(5/2+,7/2+)		
252.18 16	(3/2+,1/2+)		
349.13 20	(3/2+,5/2+,7/2+)		
372.97 22	(1/2+,3/2+,5/2+)		
408.8 8			
409.26 18	+ E(level) [†]		
454.6 3		-	
500.34 23	742.3 5		
538.7 4	861.2 4		
730.6 4	1081.2 6		

[†] From least-squares fit to γ energies.

β^- radiations

Εβ-	E(level)		Log ft	Comments
(3930 40)	1081.2	1.0 2	6.23 9	av Eβ=1692 <i>19</i> .
(4150 40)	861.2	2.7 3	5.90 6	av E β =1797 19.
(4270 40)	742.3	0.7 2	6.54 13	av Εβ=1853 <i>19</i> .
(4280 40)	730.6	1.8 2	6.14 6	av Εβ=1859 <i>19</i> .
(4470 40)	538.7	3.6 4	5.92 6	av E β =1950 <i>19</i> .
(4510 40)	500.34	3.4 4	5.96 6	av E β =1969 19.
(4560 40)	454.6	2.2 3	6.17 7	av E β =1990 19.
(4600 40)	409.26	2.2 3	6.19 7	av Εβ=2012 <i>19</i> .
(4640 40)	372.97	2.2 3	6.20 7	av E β =2029 19.
(4660 40)	349.13	42.1 24	4.93 4	av E β =2041 19.
(4760 40)	252.18	1.3 6	6.48 21	av E β =2087 19.
(4820 40)	189.60	10.6 9	5.59 5	av E β =2117 19.
(4840 40)	172.55	1.4 3	6.48 10	av Eβ=2125 19.
(4860 40)	151.88	3.7 6	6.07 8	av Eβ=2135 19. † Absolute intensity per 100 decays.

$\gamma(^{113}\mathrm{Pd})$

 $I\gamma$ normalization: assuming no β feeding to g.s. (tentative).

Εγ	E(level)	Ιγ§	Mult.†	α	Comments
34.9 3	35.08	1.2 2	E 2	61.0 22	$\alpha(L)exp=29$ 7.
79.7 3	252.18	2.7 3	M1 ‡	$0.722 \ 13$	$\alpha(K)\exp=0.56$ 15.
					Mult.: the electron intensity taken from the beta-gated electron spectrum.
81.3 3	81.1	6.9 4	M2	8.47 17	$\alpha(K)\exp=5.49$.
					B(M2)(W.u.)=0.00013 5.
					Mult.: the ce(K) (79 γ) (M1) is calculated and subtracted from the electron intensity.
x84.9 2		8.2 5	E 1	0.244	
96.8 3	349.13	1.8 3			
100.4 3	252.18	0.7 1			
116.8 2	151.88	9.7 5	M1, E2	0.5 3	$\alpha(K)\exp=0.31$ 3.
x119.4 3		0.5 1			

Continued on next page (footnotes at end of table)

¹¹³Rh β- Decay 1993Pe11 (continued)

$\gamma(^{113}\text{Pd})$ (continued)

Εγ	E(level)	<u>Ιγ</u> §	Mult.†	α	Comments
120.8 3	372.97	2.2 3	E 2 ‡	0.711 12	α(K)exp=0.57 12.
x 1 3 5 . 0 2		2.8 3	M1	0.1646	
137.5 2	172.55	7.8 3	M1	0.1565	$\alpha(K)\exp=0.16$ 3.
151.8 3	151.88	7.44	M1	0.1194	$\alpha(K)\exp=0.08$ 2.
157.1 3	409.26	5.7 4			
159.9 3	349.13	4.8 5			
189.7 2	189.60	45.0 8	M1	0.0655	$\alpha(K)\exp=0.063$ 4.
197.0 4	349.13	0.9 3			
217.0 2	252 . 18	9.1 4	M1,E2‡	$0.068\ 22$	$\alpha(K)\exp=0.05$ 3.
$219.6\ 3$	409.26	10.3 6			
221.0 3	372.97	4.3 5			
236 . 7 4	409.26	0.9 3			
252.1 3	252.18	6.8 5	E2,M1 [‡]	0.042 12	$\alpha(K)\exp=0.04$ 3.
257.94	408.8	2.74			
265.5 3	454.6	2.8 4			
310.8 4	500.34	1.2 3			
x332.7 3		2.0 3			
332.7 3	742.3	2.0 3			
339.14	1081.2	< 0.5			
348.5 6	500.34	2.1 5			Iγ: from γγ.
348.9 5	349.13	100.0 9	M1, E2	0.0158 23	$\alpha(K) \exp = 0.0144 \ 20.$
					Iγ: from γγ.
	538.7	2.1 5			
357.6 3	730.6	$4.5 \ 3$			
373.1 4	372.97	1.8 4			
409.3 3	409.26	42.2 8	E2‡	0.01090	$\alpha(K)\exp=0.020$ 6.
454.7 4	454.6	2.8 4			
500.3 3	500.34	5.5 4			
538.8 4	538.7	7.0 5			
x543.0 4		3.8 4			
609.0 3	861.2	6.8 5			
671.1 4	1081.2	2.3 5	† Sim	ultaneous measu	rement of conversion electrons and gammas.
x749.1 4		1.7 4	‡ Elec	ctron and gamma	intensities are deduced from single spectra taken in separated
x932.7 4		3.8 5	run	s. Normalized to	the 189.7 keV transition (M1).
x980.0 5		2.0 4	§ For	absolute intensit	y per 100 decays, multiply by 0.272 14.
x1053.0 5		1.9 4	x y ra	y not placed in l	evel scheme.

Decay Scheme

¹¹³Pd IT Decay 1993Pe11,1992PeZX

Parent $^{113}{\rm Pd}:$ E=81.3; J π =(9/2-); T $_{1/2}$ =0.3 s 1; %IT decay=100. Activity: $^{238}{\rm U(p,f)},$ E=20 MeV, on-line isotope separator IGISOL. Measured: γ, γγ, γ(t), ce, Ge(Li), Ge, Si(Li), elli spectrometer.

$^{113}\mathrm{Pd}$ Levels

E(level)		${\rm T}_{1/2}$			Comments			
0.0 81.3	(5/2+) (9/2-)	93 s 5 0.3 s	1 T _{1/2} :	${ m T_{1/2}}$: from 1993Pe11. Preliminary data: 0.4 s 1 (1992PeZX), same author.				
					(¹¹³ Pd)			
Εγ	E(level)	Iγ [‡]	Mult.†	α	Comments			
81.1 3	81.3	6.9 4	M2	8.55 17	α(K)exp=5.4 9. B(M2)(W.u.)=0.00013 5.			

 $^{^{\}dagger}$ Simultaneous measurement of γ and ce.

Decay Scheme

Intensity: I(γ+ce) per 100 parent decays %IT=100

²⁵²Cf SF Decay 2000Zh04,2005Fo09

Parent $^{252}{\rm Cf}$: E=0; J\pi=0+; T $_{1/2}$ =2.645 y 8; %SF decay=? Prompt γ rays from $^{252}{\rm Cf}$ SF decay.

 $2000Zh04: Measured\ E\gamma,\ I\gamma,\ \gamma\gamma\ using\ gammasphere\ array\ with\ 72\ Compton\ suppressed\ Ge\ detectors.$

2005Fo09: Measured Εγ, Ιγ, γγγ of prompt γ rays from ²⁵²Cf SF decay, using gammasphere array with 102

Compton-suppresses Ge detectors. Same group.

 $^{113}\mathrm{Pd}$ Levels

E(level) [†]		E(level)	Jπ [‡]	E(level)†		† From least-squares fit to γ energies. ‡ From syst. and Band assignments.
0.0	(5/2+)	1110.9 4		2286.5#6	(23/2+)	§ (A): $vh_{11/2}$, $\alpha = -1/2$ band.
81.0 3	(9/2-)	1119.78	(19/2-)	2342.2@6	(21/2+)	# (B): band 2.
166.1 \$ 5	(11/2-)	1345.6 5	(15/2+)	2671.48 6	(27/2-)	@ (C): band 3.
189.8 3	(7/2+)	1678.3@ 5	(17/2+)	2707.3 6	(23/2+)	& (D): band 4.
454.5@3	(9/2+)	1836.8# 6		2772.4# 6	(27/2+)	
549.28	(15/2-)	1841.9 \$ 6	(23/2-)	3000.5@ 7	(25/2+)	
715.9 & 3	(11/2+)	1851.3# 6		3408.3# 7	(31/2+)	
1031.3@ 4	(13/2+)	2030.1& 6	(19/2+)	3562.6 \$ 7	(31/2-)	

 $^{^\}ddagger$ Absolute intensity per 100 decays.

²⁵²Cf SF Decay 2000Zh04,2005Fo09 (continued)

$\gamma(^{113}\text{Pd})$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{}^{}$	E(level)
81.0	81.0	570.5 3	1119.7	684.5 3	2030.1
85.1	166.1	576.8 3	1031.3	717.1 3	1836.8
189.8 3	189.8	629.7 3	1345.6	722.2 3	1841.9
261.4 3	715.9	635.9 3	3408.3	731.6 3	1851.3
315.4 3	1031.3	647.0 3	1678.3	829.5 3	2671.4
383.1 3	549.2	656.4 3	1110.9	891.2 3	3562.6
454.5 3	454.5	658.3 3	3000.5	1166.8 3	2286.5
485.9 3	2772.4	663.9 3	2342.2		
526.1 3	715.9	677.2 3	2707.3		

 $^{^{\}dagger}~\Delta E$ not given in the paper, estimated 0.3 by evaluator.

208 Pb(18 O,F γ) 1999Kr17

Prompt γ rays from heavy-ion induced fission.

 $E\!=\!91~MeV.~Measured~prompt~\gamma,~\gamma\gamma~using~GAMMASPHERE~array~of~100~Compton~suppressed~HPGe~detectors.$

¹¹³Pd Levels and Gammas

E(level)	Jπ	-	Εγ	E(level)
0.0	(5/2+)	;	383	383+x
0 + x [†]	(11/2-)	;	571	954 + x
383+x [†]	(15/2-)		722	1676 + x
954+x [†]	(19/2-)		830	2506 + x
$1676 + x^{\dagger}$	(23/2-)		891	3397 + x
2506+x [†]	(27/2-)			
3397+x [†]	(31/2-)			
† (A): vh	111/2 band.			

 $^{^{\}dagger}$ (A): $vh_{11/2}$ band.

$^{238}U(^{12}C,F\gamma)$ 1999Ho25

Prompt $\boldsymbol{\gamma}$ rays from heavy-ion induced fission.

E=90 MeV. Measured Eγ, Ιγ, γγ using Euroball iii array with 15 Cluster Ge detectors, 26 Clover Ge detectors located in two rings around 90° and 30 tapered Ge detectors, with each Ge detector surrounded by its own BGO Compton suppression shield.

¹¹³Pd Levels

E(level)	Jπ	T _{1/2}		Comments
0.0	5 / 2+			
81 ‡ 1	9 / 2 -	0.3 s		
$166.1^{\dagger} 5$	(11/2-)	E(le	evel): From 2005Fo09.	
549.2	(15/2-)			
573 ‡ 1	(13/2-)			
1119 [†] 1	(19/2-)	E(level	<u>Jπ</u>	
1149‡	(17/2-)	· ÷		
1842 † 1	(23/2-)	2684‡	(25/2-)	
1866‡	(21/2-)	3562 ‡ 1		
2671 [†] 1	(27/2-)	4517 [†]	(35/2-)	

 $[\]begin{tabular}{lll} \dot{\uparrow} & (A): & \nu h_{11/2}, & \alpha \text{=-}1/2 & band. \\ \dot{\bar{\tau}} & (B): & \nu h_{11/2}, & \alpha \text{=+}1/2 & band. \\ \end{tabular}$

$^{238}\mathrm{U}(^{12}\mathrm{C,F}\gamma) \qquad 1999\mathrm{Ho}25 \ (continued)$

 $\gamma(^{113}\mathrm{Pd})$

Εγ	E(level)	Comments					
81 383 <i>1</i>	81 549.2	Eγ: from ENSDF for ¹¹³ Pd.					
407 1	573	Eγ E(level)					
571 1	1119						
576 1	1149	830 1 2671					
717 1	1866	874 1 3562					
722 1	1842	$890 \ 1 \ 3562$					
818 1	2684	955 4517					

Adopted Levels, Gammas

 $Q(\beta^-) = 2017 \ 16; \ S(n) = 8520 \ 17; \ S(p) = 7970 \ 28; \ Q(\alpha) = -4444 \ 20 \quad 2003 Au 03, 2009 Au ZZ.$ 1988KaZE suggest that the 222, 369, 476 levels could be intruder states and have tried to derive parameter sets for this collective rotational-like band with K=1/2.

¹¹³Ag Levels

Cross Reference (XREF) Flags

 $A~^{113}Pd~\beta^-$ Decay $B~^{113}Ag~IT~Decay$

E(level)‡	Jπ	$\frac{XREF}{}$	T _{1/2}	Comments
0.0	1 / 2 –	Α	5.37 h 5	%β ⁻ =100; μ=0.159 2 (1989Ra17).
				$J\pi$: atomic beam (1976Fu06), negative parity from μ .
				$T_{1/2}$: from 1970Tr02. Other: 5.25 h 4 (1968RoZZ).
43.51	7 / 2+	AB	68.7 s 16	$%IT=64\ 7;\ \%\beta^{-}=36\ 7.$
				%IT: from 1990Fo07.
				J π : allowed β^- decay to 5/2+ level. E3 γ to 1/2
				$T_{1/2}$: weighted av of 67.8 s 21 (1974Gr29) and 70.0 s 25 (1975BrYM).
				Others: 72 s 9 (1958Al90), 66 s 12 (1970Ma47).
139.30 15	9 / 2 +	A		J π : M1 γ to 7/2+ and syst.
222.08 13	3 / 2+	A	23 ns 2	J π : E1 γ to 1/2-, band assignment favors 3/2+.
270.82 14	(3/2-) †	A		J π : γ to 1/2-, not fed from (5/2)+ parent, no γ to 7/2+, syst.
273.59 16	(1/2)	A	$\approx 3~0~n~s$	J π : γ 's to 1/2- and 1/2+,3/2+, not fed from 5/2+ parent.
280.0 \$ 2	1 / 2 +	A		$J\pi$: member of the intruder band.
366.84 20	(5/2-) †	A		J π : γ 's to 1/2- and 3/2-, syst favors 5/2
369.80 \$ 17	7 / 2+	A	<0.8 ns	$J\pi$: E2 γ to 3/2+. γ to 9/2+.
476.70 9 14	5 / 2+	A	<0.5 ns	$J\pi$: member of the intruder band.
526.16 16		A		
607.06 23		A		
$611.31\ 25$	(3/2-)†	A		$J\pi$: from syst.
673.35 23		A		
781.79 20	(5/2-)†	A		$J\pi$: γ 's to $3/2-$ and sys.
783.16 14	$(\ 3\ /\ 2\ ,\ 5\ /\ 2\ ,\ 7\ /\ 2\)$	A		$J\pi$: log $ft \approx 6.1$ from $(5/2+)$.

 $^{^{\}dagger}$ 1988KaZE have derived low-lying negative parity states in odd-mass Ag: $A = ^{107,109,111,113,115} Ag.$

$\gamma(^{113}Ag)$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger} \underline{\hspace{1cm}}$	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.‡	α	Comments
43.5	43.6 2	100	E3	1047	B(E3)(W.u.)=0.048 6.
139.30	95.74 20	100	M1	0.478	
222.08	222.06 20	100	E1	0.01660	$B(E1)(W.u.)=1.13\times10^{-6} 10.$
270.82	$270.81\ 20$	100			
273.59	51.52	25			
	$273.6\ 2$	100			
280.0	57.9 3	1.26			
	280.02	100 4			
366.84	96.0 3	76			
	366.8 3	100			
369.80	$147.73\ 20$	100	E 2	0.362	B(E2)(W.u.)>110.
	$230.49 \ 20$	77			
	326 . 28 20	60			
476.70	$205.87\ 20$	19			
	254 . 61 20	100			
	337 . 32 20	9			
	433 . 4 2	26			
526 . 16	49.62	2.3			
	386.9 2	16			
	$482.4\ 3$	100			
607.06	336.3 3	48			
	607.0 3	100			
			Cont	inued on next pa	ge (footnotes at end of table)

 $[\]ensuremath{^\ddagger}$ From least-squares fit to γ energies.

^{§ (}A): Intruder-rotational band (1990Ro16) with A=17.23, E0=228.9 keV, a=-1.92.

Adopted Levels, Gammas (continued)

$\gamma(^{113}Ag)$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1.5cm}}^{\hspace{1.5cm} I\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}} \mathbf{E} \gamma^{\dagger}$	
611.31	472.1 3	7	781.79	510.9 3	100
	567.7 3	100		781.9 3	33
673.35	$534.2\ 3$	100	783.16	257.1 3	4.5
	673.2 3	39		643.7 3	100
781.79	414.9 3	67		739.63 3	80

$^{113}Pd~\beta^-~Decay~~1988FoZY,1990Ro16$

Parent ^{113}Pd : E=0.0; $J\pi$ =(5/2+); $T_{1/2}$ =93 s 5; Q(g.s.)=3340 30; $\%\beta^-$ decay=100.

Activity: 235U(n,f) on-line mass separator OSIRIS (1988FoZY).

Measured γ , I γ , $\gamma\gamma$, $\gamma(t)$, β , $\beta\gamma$, ce, Ge(Li), Si detector (1988FoZY).

 $^{249}Cf(n,F)$ radiochemical separation (1990Ro16), measured: $\gamma,~\gamma\gamma,~\gamma\gamma(t).$

Others: 1958Al90, 1968Kj01, 1970Ar19, 1975BrYM, 1981Me17.

Decay mode: 81.5% 20 of 113 Pd decay is via 5.37-h 113 Ag and 18.5% 20 is via 68.7-s 113 Ag, from I γ (5.37-h 113 Ag)/I γ (68.7-s 113 Ag) (1975BrYM). Other: from I β (5.37-h 113 Ag)/I β (68.7-s 113 Ag), 90% 5 of 113 Pd decay is via 5.37-h ¹¹³Ag (1958Al90).

¹¹³Ag Levels

E(level)	$J\pi^{\dagger}$	${\color{red}{T_{1/2}}^{\frac{1}{2}}}$	Comments
0.0	1/2-	5.37 h 5	
43.53 14	7 / 2 +	68.7 s 16	
139.30 15	9 / 2+		
222.08 13	3 / 2+	23 ns 2	$J\pi: 3/2+.$
270.82 14	(3/2-)		$J\pi: \ 3/2$
273.59 16	(1/2)	30 ns +30-15	$J\pi: 1/2+,3/2+.$
280.08	1 / 2+		
366.84 20	(5/2-)		Jπ: 5/2
369.80 \$ 17	7 / 2+	<0.8 ns	
476.70 14	5 / 2+	<0.5 ns	
526.16 16			
607.06 23			
611.31 25	(3/2-)		
673.35 23			
781.79 20	(5/2-)		
783.16 14	(3/2,5/2,7/2)		Jπ: 5/2+,7/2+.

 $^{^{\}dagger}$ Adopted values. Jm given by 1988FoZY are shown under comments.

β^- radiations

Εβ-	E(level)	Ιβ-†	Log ft	Εβ-	E(level)	Ιβ-†	Log ft
(2560 30)	783.16	7.2	6.1	(2970 30	369.80	0.9	7.3
(2560 30)	781.79	0.46	7.3	(2970 30	366.84	0.84	7.3
(2670 30)	673.35	0.36	7.5	(3120 30	222.08	1.14	7.3
(2730 30)	607.06	0.41	7.5	(3200 30	139.30	1.89	7.1
(2860 30)	476.70	0.59	7.4	(3300 30	43.53	86	5.5

[†] Absolute intensity per 100 decays.

 $^{^{\}dagger}$ From ^{113}Pd β^- decay. ‡ From $\alpha(K)exp$ in ^{113}Pd β^- decay and ^{113}Ag IT decay.

 $[\]ddot{\tau}$ Levels>43 keV $T_{1/2}$ are from 1988FoZY, other from adopted levels. \S (A): Intruder rotational band (1990Ro16) with A=17.23, E0=228.9 keV a=-1.92.

¹¹³Pd β⁻ Decay 1988FoZY,1990Ro16 (continued)

$\gamma(^{113}\mathrm{Ag})$

Iy normalization: from $\Sigma I(\gamma + ce)$ to g.s.=81.5 20 assuming $I\beta(g.s.)=0$. ($\Delta J=2, \Delta \pi=-$). 1990Fo07 give $I\gamma(222\gamma)=2.3\%$.

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιㆧ	Mult.‡	α			Comments		
43.6 2	43.53	0.15	E3 104	7	α(K)exp=90 40; α(L)exp=700 300. α(K)=95.5; α(L)=745; α(M)=155.3. B(E3)(W.u.)=0.074 4.				
49.6 2	526.16	0.04							
51.5 2	273.59	0.01							
57.9 3	280.0				Eγ, Iγ: from 1990	Ro16. Iγ(280)=100	4, Ιγ(57.9)=1.2	2 6.	
95.74 20	139.30	6.5	M1	0.478	$\alpha(K)\exp=0.46$ 4.				
					$\alpha(K)=0.415$; $\alpha(L)$	$=0.0515$; $\alpha(M)=0.0$	00975; α(N+)=	0.00196.	
96.0 3	366.84	0.50							
$147.73\ 20$	369.80	0.35	E2	0.362	$\alpha(K) \exp = 0.38 \ 15$				
					$\alpha(K)=0.294; \ \alpha(L)$ $B(E2)(W.u.)>110$	=0.0557; $\alpha(M)$ =0.0	01075; α(N+)=	0.00200.	
178.5	222.08	0.02	[E2]		Eγ, Iγ: from 1990 B(E2)(W.u.)=0.03				
205.87 20	476.70	0.08							
222.06 20	222.08	2.4	E1	0.0166	$\alpha(K) \exp \leq 0.03$.				
					B(E1)(W.u.)=1.12	$2 \times 10^{-6} 10$.			
$230.49 \ 20$	369.80	0.27							
$254.61\ 20$	476.70	0.43	$\mathbf{E}\gamma^{\dagger}$	E(lev	el) Ιγ [†] §	$\mathbf{E}\gamma^{\dagger}$	E(level)	Iγ [†] §	
257.1 3	783.16	0.27							
$270.81\ 20$	270.82	1.1	386.9 2	526.1	6 0.28	567.7 3	611.31	1.6	
$273.6\ 2$	273.59	0.04	414.9 3	781.79	9 0.14	607.0 3	607.06	0.23	
280.02	280.0		433.4 2	476.70	0 0.11	643.7 3	783.16	6.0	
326 . 28 20	369.80	0.21	472.1 3	611.3	1 0.11	$673.2\ 3$	673.35	0.07	
336.3 3	607.06	0.11	482.6 2	526.10	6 1.7	739.63 3	783.16	4.8	
337 . 32 20	476.70	0.04	510.9 3	781.79	9 0.21	781.9 3	781.79	0.07	
366.8 3	366.84	0.66	534.2 3	673.3	5 0.18 I				

[†] From 1988FoZY.

 $\$ For absolute intensity per 100 decays, multiply by $\approx\!1.0.$

Decay Scheme

 $^{^{\}ddagger}$ From lpha(K)exp (1988FoZY). The conversion coefficients were determined by simultaneous measurements of γ and ce.

¹¹³Ag IT Decay 1990Fo07

Parent $^{113}Ag:$ E=43.6 2; J\pi=7/2+; $T_{1/2}\!=\!68.7$ s 16; %IT decay=64 7. Activity: $^{235}U(n,f)$ on-line mass separator OSIRIS.

Measured γ , I γ , $\gamma\gamma$, $\gamma(t)$, β , $\beta\gamma$, ce, Ge(Li), Si detector (1988FoZY). %IT: 1990Fo07 have measured %IT=64 7.

$^{113}\mathrm{Ag}$ Levels

† From adopted levels.

γ(¹¹³Ag)

Εγ	E(level)	Iγ [†]	Mult.	_α	I(γ+ce) [†]
43 6 2	43 6	0 64 7	E.3	1047	100

 $\alpha(K)\exp=90\ 40;\ \alpha(L)\exp=700\ 300.$

Comments

B(E3)(W.u.)=0.048 6.

Decay Scheme

Intensity: I(γ+ce) per 100 parent decays %IT=64 7

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.64 7.

Adopted Levels, Gammas

Q(\$\beta^{-}\$)=322 1; S(\$n\$)=6540.1 6; S(\$p\$)=9750 3; Q(\$\alpha\$)=-3868 3 2003Au03,2009AuZZ. Neutron resonance parameters can be found in 1981MuZQ.

A $^{113}{\rm Ag}$ β^- Decay (5.37 h) B $^{113}{\rm Ag}$ β^- Decay (68.7 s) C $^{113}{\rm Cd}$ IT Decay (14.1 y)

¹¹³Cd Levels

 $\begin{array}{ll} K & ^{110}Pd(\alpha,n\gamma) \\ L & ^{176}Yb(^{28}Si,F\gamma) \\ M & ^{173}Yb(^{24}Mg,F\gamma) \end{array}$

Cross Reference (XREF) Flags

 $\begin{array}{ll} F & ^{113}{\rm Cd}(p,p'), (p,p'\gamma) \\ G & ^{113}{\rm Cd}(d,d') \end{array}$

H Coulomb Excitation

D	¹¹³ Cd IT Decay ¹¹² Cd(n,γ) E=res ¹¹² Cd(d,p), ¹¹⁴ Cd		H Coulomb Excitation I $^{113}\mathrm{Cd}(n,n'\gamma)$ J $^{113}\mathrm{Cd}(\gamma,\gamma')$	$egin{array}{ll} M & ^{173}{ m Yb}(^{24}{ m Mg},{ m F}\gamma) \ N & ^{112}{ m Cd}({ m pol} & { m d},{ m p}) \ O & ^{114}{ m Cd}({ m pol} & { m d},{ m t}) \end{array}$		
E(level)‡	Jπ	XREF	${\rm T}_{1/2}$	Comments		
0.0	1/2+	ABCDEFGH I JKLMNO	8.04×10 ¹⁵ y 5	 %β-=100; μ=-0.6223009 9 (1989Ra17). μ: optical pumping, NMR. Jπ: NMR and optical spectroscopy (1976Fu06), L(d,p)=0. T_{1/2}: From 2007Be61 Measured in CdWO₄ crystal at Gran Sasso National Lab of INFN. Measured half-life of ¹¹³Cd using the low-background CdWO₄ crystal scintillator of mass 434g. Others: 7.7×10¹⁵ y 3 (1996Da11) using scintillation crystals of cdw04. 9.3×10¹⁵ y 19 (1970Gr20) from activity measurements on enriched and natural cadmium samples. Others: 1962Wa15, 1994Al49. 		
263.54 [§] 3	11/2-	A C E KLMNO	14.1 y 5	%IT=0.14; %β ⁻ =99.86 (1969De25); Q=-0.71 7. μ: ; μ=-1.0877842 <i>17</i> (1989Ra17) NMR. Q: optical double res, recalculated (1989Ra17). Jπ: optical double res (1976Fu06), 264γ is E5. T _{1/2} : unweighted av of 13.6 y 2 (1965Fl02) and 14.6 y 5 (1972Wal1), β(t) for about one half-life.		
298.597 10	3 / 2+	AB E GHI K NO	29 ps 9	μ =-0.39 80 (1988Be45,1989Ra17). $T_{1/2}$: from B(E2) in Coul. ex. $J\pi$: M1+E2 γ to 1/2+, L(pol d,p)=2.		
316.206 15	5 / 2 +	AB EF HI K NO	10.8 ns 3	JT: $L(d,p)(316)=2$, $L(d,p)(458)=4$, and $M1+E2$ γ from 459 to 316 gives $J\pi(316)=5/2+$ and $J\pi(458)=7/2+$. $T_{1/2}$: weighted av of 10.7 ns 4 (1980Oh01), 11.0 ns 6 (1972RaZM). Other: 4.9 ns 7 from B(E2) in Coul. ex.		
458.633 17	7 / 2+	B E I K NO		$J\pi$: see 316 level, $L(pol d,p)=4$.		
522.259 24	7 / 2 –	A I K NO	0.322 ns 12	J π : E2 γ to 11/2- and E1 γ to 5/2+, L(pol d,p)=3. T _{1/2} : from $\gamma\gamma$ (t) (1980Oh01).		
530 10	7 / 2 + , 9 / 2 +	E		$J\pi$: from $L(d,p)=4$.		
583.962 24	5 / 2+	AB E HIK NO	6.9 ps 14	μ =+0.15 12 (1988Be45,1989Ra17). Jπ: γ(θ) in Coul. ex. for E2 γ to 1/2+, L(pol d,p)=2. T _{1/2} : from B(E2) in Coul. ex.		
626.6 12	(3/2+)	N		$J\pi$: $L(pol d,p)=2$.		
638.19 3	9 / 2 –	A FIKN		$J\pi$: M1+E2 γ to 11/2 γ to 5/2+, L(pol d,p)=5.		
680.526 20	3 / 2+	A E HI K NO	12 fs 3	$T_{1/2} \colon$ from B(E2) in Coul. ex. $J\pi\colon$ M1+E2 γ to 1/2+ and M1+E2 γ to 3/2+, L(pol d,p)=2.		
708.571 19	5 / 2+	AB HIK NO		$J\pi$: M1+E2 γ to 3/2+ and 7/2+, L(pol d,p)=2.		
760 10	1 / 2+	E		$J\pi$: $L(d,p)=0$.		
815.34 § 3	15/2-	KLM				
816.707 22	7 / 2 +	E I K NO		$J\pi$: $L(d,p)=4$, and $M1+E2$ γ to $5/2+$, $L(pol\ d,p)=4$.		
855.28 3	5 / 2 –	A I K		$J\pi$: E2 γ to 9/2-, M1+E2 γ to 7/2		
869.81 22	15/2-	I		$J\pi$: E2 γ to 11/2-, no γ to low J .		
878.54 6	(3/2+)	I K NO		J π : γ 's to $1/2+,5/2+,7/2+$, L(pol d,p)=(2).		
883.62 6	1 / 2 +	E I K NO		$J\pi$: $L(d,p)=0$.		
897.53 4	3 / 2 +	E I K NO		J π : L(d,p)=2, σ (d,p)/ σ (d,t) favors 3/2+.		
939.788 19	9 / 2 +	I K NO		J π : E2 γ to 5/2+ and M1+E2 γ to 7/2+.		
960 10	1/0.	E		In. I (d n) 0		
988.40 6	1 / 2 +	A E I K NO K		$J\pi$: $L(d,p)=0$.		
999.427 1002.874	3 / 2+	A E I		J π : M1+E2 γ 's to 1/2+ and 5/2+.		
1002.87 4	(5/2+)	B E I K NO		JR: $M1+E2$ γ s to $1/2+$ and $5/2+$. JR: $\log f t=5.3$ from $7/2+$, $M1+E2$ γ decay to $5/2+$, L(pol d, p)=2.		
1034.09 6	(3/2+)	I K NO		J π : M1+E2 γ 's to 1/2+ and 5/2+, L(pol d,p)=2.		

¹¹³Cd Levels (continued)

E(level)‡	Jπ		XR	EF		Comments
1037.40 3	(7/2+)			I K		J π : E2 γ to 3/2+ and M1+E2 γ to 5/2+.
1047.65 4	7/2+	В		I K		$J\pi$: log $ft \approx 5.6$ from $7/2+$, $\gamma(\theta)$ in $(n,n'\gamma)$.
1049.66 9	(1/2+)	-			NO	$J\pi$: M1 γ to 1/2+, and av res in (n,γ) , $L(\text{pol } d,p)=(0)$.
1049.9 2	(3/2+)	Α		I К		
1051.248 22	5/2,7/2-			I K		J π : M1+E2 γ to 9/2-, γ to 5/2
1109.32 3	13/2-			I K		
1124.636 20	9 / 2 +			I K	N	$J\pi$: L (Pol d,p)=(4).
1126.25 6	3 / 2+	A	E	I K	O	$J\pi$: M1 γ to 1/2+, and av res in (n,γ) .
1170 20			E G			
1177.723 23	(9/2-)			K		
1177.8 3	5 / 2+			I K	NO	$J\pi$: M1+E2 γ to 1/2+, L(pol d,p)=2.
1181.354				K		
1190 . 72 5				K		
1192.094	=			K		
$1194.6\ 2$	3 / 2 –	A		I K		$J\pi$: M1+E2 γ to (5/2-), av res.
$1195.30 \ 20$	5 / 2+	В	E	K	NO	XREF: E(1200).
						$J\pi$: log $ft=5.3$ from 7/2+ L(pol d,p)=2.
1209.53 15	13/2-			I		$J\pi$: M1+E2 γ to 11/2-, γ to 15/2
1214.674 24	11/2+			I K		J π : E2 γ to 7/2+ and M1+E2 γ to 9/2+.
1261.924	(7/2+)			K	O	$J\pi$: $L(pol d,p)=4$.
1268.21 5	3 / 2 +			I K	N	J π : M1+E γ 's to 1/2+ and 5/2+, L(pol d,p)=2.
1279.62 7	3 / 2 +		E	I K		$J\pi$: $L(d,p)=2$.
1301.07 7	3 / 2+			I	O	$J\pi$: $L(pol d,t)=2$.
1312.9 12	(11/2-)				N	$J\pi$: $L(pol d,p)=(5)$.
1313.75 3	(9/2+)			II K	О	J π : L(pol d,t)=(4),5/2+ in Coul. Ex.
1322.03 12	(7/2-,9/2-)		E	I K		$J\pi$: γ 's to $7/2-,11/2-$.
1327.6 4	(7/2+)			K		J π : L(pol d,p)=4.
1346.53 4	11/2-			K	NO	E(level): 1991NeZX suggested a 1423-keV level with Jπ=11/2- based on syst,
						not confirmed by 1997Wa20 in $(\alpha, n\gamma)$ but given by 2005Bu20.
1051 50 5	F (0 F (0					$J\pi$: L(pol d,p)=5.
1351.58 7	5/2,7/2			I	0	$J\pi$: γ 's to $5/2+,7/2-$.
1364.76 7	5 / 2 +			I K	О	$J\pi$: L(pol d,t)=2.
1367.569 24	7/2+			K I K		I=, v'o to 1/0, E/0,
1387.47 8	5 / 2+, 3 / 2+ (1/2+, 3/2+)		Е	I		J π : γ 's to $1/2+,5/2+$. J π : γ 's to $1/2+,3/2+$.
1390.56 9 1395.83 3	9/2+		ь		NO	$J\pi$: L(pol d,p)=4.
1405.82 10	3 / 2 +			I K		$J\pi$: γ 's to $1/2+,3/2+$.
1407.5 3	9 / 2 +			I	NO	$J\pi$: L(pol d,p)=4, analog to 1552 keV in ¹¹¹ Cd.
1410.68 6	0,2.			K	110	on. 2(por u,p)-1, unalog to 1002 not in our
1430 10	(3/2)+		E			$J\pi$: $L(d,p)=2$, $\sigma(d,p)/\sigma(d,t)$ favors $3/2+$.
1433.0 14	7/2+				0	$J\pi$: L(PoL d,t)=4.
1450.30 7	11/2-	A		I К		$J\pi$: L(pol d,p)=5.
1450.8 2	3/2+		H			· · · · · · · · · · · · · · · · · · ·
1461.67 4				K		
1479.08 5	11/2-	A	E	I	N	$J\pi$: from $L(d,p)=5$.
1493.03 9	3 / 2+			I	NO	$J\pi$: $L(pol d,p)=2$.
						J π : M1+E2 to 5/2+ and γ to 1/2+.
1504.90 4	7 / 2+			K		
1513.72 4	_			K		Jπ: E2 to 9/2
1542.28 9	(1/2+)		E	I		$J\pi$: γ 's to $1/2+,3/2+$.
1561.69 3	+			I K		
1575.66 14	7 / 2 –		E	I		$J\pi: L(d,p)=(3).$
1580.0 12	(3/2,5/2+)				N	$J\pi$: $L(pol d,p)=2$.
1607.21 10	5 / 2+		E	I	NO	$J\pi$: $L(d,p)=2$, $\sigma(d,p)/\sigma(d,t)$ favors $5/2+$.
$1620.43 \ 3$				K		
1626.41 4	+			K		$J\pi$: M1+E2 to 1/2+.
1647.23 5				K		
1656.6 § 3	(19/2-)]	L	
1657 . 41 5	11/2-			I K	LM	
1658.51 7	3 / 2+				NO	
1670.89 10	(11/2-)			K	N	$J\pi$: L(pol d,p)=5.
1675.09 9	3 / 2 +		E	I		$J\pi$: $L(d,p)=(2)$.

¹¹³Cd Levels (continued)

E(level)‡	Jπ	XREF		$T_{1/2}$	Comments
1700.1 14	(11/2-)		О		$J\pi$: L(pol d,t)=5.
1713.0 12	(3/2-)		NO		J π : L(pol d,t)=(1).
1732.84 4	11/2+	I K	110		σж. h(por α,υ)=(1).
1735.0 12	11/2-		N		J π : L(pol d,p)=5.
1737.53 7	11/2	K			ow. E(por d,p)=o.
1743.56 21	(5/2+)	K	O		$J\pi$: $L(pol d,t)=(2)$.
1746.00 14	(3/2-)	I	Ü		J π : γ 's to $1/2+,5/2-$.
1758 † 10	(5/2-,7/2-)	FG			J π : L(p,p')=3. π =+ is assigned in (d,d').
1769.1 12	(3/2+)	10	N		$J\pi$: L(pol d,p)=2.
1778.92 18	9 / 2 –	I			J π : E2 γ to 13/2- and M1+E2 γ to 11/2
1781.4 14	(3/2+)	-	O		$J\pi$: L(pol d,t)=(2).
1786.5 14	(3/2+)		o		$J\pi: L(pol d,t)=(2).$
1788.9 12	(1/2+)		N		$J\pi$: $L(pol d,p)=0$.
1798.89 12	(1/2,3/2)	I			Jπ: γ to 1/2+.
1813.1 14	(7/2+)	•	O		$J\pi$: L(pol d,t)=(4).
1814.5 12	(3/2+)	E J	N		J π : L(pol d,p)=2.
1823.24 4	(13/2-)	I K	-11		σκ. h(por α,p)=2.
1825.1 14	5/2+	1 K	O		$J\pi$: L(pol d,t)=2.
1830.8 12	(3/2+)		N		J π : L(pol d,p)=2.
1833.5 14	5/2+		O		$J\pi$: L(pol d,t)=2. $J\pi$: L(pol d,t)=2.
1842.74 13	(3/2-)	E I	U		$J\pi$: L(poi d,t)=2. $J\pi$: γ's to 7/2-,3/2
1848.6 12	(3/2-) (1/2+)	12 1	N		$J\pi$: V_{S} to V_{J} V_{S} V_{J} V_{S} $V_{$
1852.3 <i>14</i> 1867.86 <i>8</i>	1/2+	I	О		J π : L(pol d,t)=0.
	7/2-,9/2-		0		J π : γ 's to 11/2-,5/2
1871.7 3	5 / 2 +	K	0		$J\pi$: L(pol d,t)=2.
1890.1 12	5 / 2 +		NO		$J\pi$: L(pol d,p)=2.
1892.32† 11	7 / 2 –	FIK			J π : L(p,p')=3, E2 γ to 11/2
1896.44 4	-	K			Jπ: E2 to 13/2
1900 10	(1/2+)	Е			$J\pi$: $L(d,p)=(0)$.
1902.41 5	+	I K			$J\pi$: M1+E2 to 15/2+.
1903.97 9	5 / 2 + , 7 / 2 +	K			
1904.35 11	7 / 2 –	I	NO		$J\pi$: L(pol d,p)=2.
1911.4 3	(5/2+)		O		$J\pi$: $L(pol d,t)=(2)$.
1923.3 3	5 / 2 +		O		$J\pi$: L(pol d,t)=2.
1943.0 14	(3/2+)	J	O	607 fs + 90 - 70	$T_{1/2}$: from (γ, γ') .
1970.8 12	(7/2+)		NO		$J\pi$: $L(pol d,p)=4$.
1986† 10	5 / 2 - , 7 / 2 -	EF			$J\pi$: $L(p,p')=3$.
1998.8 3	(11/2-)		O		$J\pi$: L(pol d,t)=(5).
2015.6 25	1 / 2 +		О		$J\pi$: $L(pol d,t)=0$.
2037.76 18	5 / 2 - , 7 / 2 -	E I			$J\pi$: $L(d,p)=3$.
2042.06 6	1/2-	K	NO		$J\pi$: $L(d,p)=1$.
2046.23 7	(15/2+)	K			
2072.7 25	5 / 2 +		О		$J\pi$: $L(pol d,t)=2$.
2080 10	(1/2+)	E	NO		$J\pi$: $L(d,p)=(0)$.
$2099.2\ 25$	5 / 2+		O		$J\pi$: $L(pol d,t)=2$.
2113 . 04 22	7 / 2 –	E I	N		$J\pi$: $L(d,p)=(3)$, preferred from shell-model syst.
2120 20		E			
2132 . 1 25	(1/2+)		NO		$J\pi$: $L(pol d,p)=(0)$.
2140 20	(1/2+)	E			$J\pi$: $L(d,p)=(0)$.
2146.81 5	(7/2-)	K	NO		$J\pi$: L(pol d,t)=(3).
2155.7 25	5 / 2+		O		$J\pi$: L(pol d,t)=2.
2164.48 11		K			
2173.60 12	3 / 2 –	E IJ	N	90 fs 7	$J\pi$: $L(d,p)=1$, $3/2$, preferred from shell-model syst.
					$T_{1/2}$: from (γ, γ') .
2179.9 25	5 / 2+		О		$J\pi$: L(pol d,t)=2.
2195.8 25	1 / 2 - , 3 / 2 -	E J	O	228 fs $+85-50$	$J\pi$: $L(d,p)=1$, $3/2$, preferred from shell-model syst
					and pol.
					$T_{1/9}$: from (γ, γ') .
2203.5 25	7 / 2+		O		$J\pi$: L(pol d,t)=4.
2214.6 25	7 / 2 –	E	NO		$J\pi$: L(pol (d,p)=3.
	•	K			NE CONTRACTOR
2219 . 64 4	(3/2+)		0		$J\pi$: L(pol d,t)=(2).
	(3/2+) 5/2+		0		$J\pi$: L(pol d,t)=(2). $J\pi$: L(pol d,t)=2.

¹¹³Cd Levels (continued)

E(level)‡	Jπ	XREF		T _{1/2}		Comments
2242.1 25	(7/2-)	E	N		j	$J\pi$: $L(pol(d,p)=(3)$.
2268.2 25	7 / 2 –	E	NO			$J\pi$: L(pol (d,p)=(3).
2278.3 25	1/2+		O			$J\pi$: L(pol d,t)=0.
2292.9 25	7 / 2 +		O			$J\pi$: L(pol d,t)=4.
2313.0 25			O			$J\pi$: L(pol d,t)=(2).
2319.62 18	3 / 2 –	E I	N			$J\pi$: L(d,p)=(1), M1+E2 γ to 5/2
2324.5# 4	(21/2+)]	L			
2327.4 25	7 / 2 –	E	N		į	$J\pi$: L(pol (d,p)=(3).
2352.0 25	3 / 2+		O			$J\pi$: L(pol d,t)=2.
2354		J		3.0×10^{2} fs +		$T_{1/2}$: from (γ, γ') .
2361.9 25	5 / 2+		O			$J\pi$: L(pol d,t)=2.
2380.0 25	(3/2-)	E	NO			$J\pi$: L(pol (d,p)=(1).
2396.6 25	5 / 2+		O			$J\pi$: L(pol d,t)=2.
2410 10	7/2+,9/2+	E				$J\pi$: $L(d,p)=4$.
2413.3 25	(3/2+)		NO			$J\pi$: L(pol d,t)=2.
2424.1 25	(3/2-)	E J	N			$J\pi$: L(pol (d,p)=(1).
2438.9 25	(3/2+)		O			$J\pi$: L(pol d,t)=2.
2448.4 25	3/2+,5/2+		O			$J\pi$: L(pol d,t)=2.
2472.3 25	3/2+,5/2+		0			$J\pi$: $L(pol d,t)=2$.
2477.2 25	(3/2-)	E	N			$J\pi$: L(pol (d,p)=(1).
2487.9 25	(3/2-)	E	N			$J\pi$: L(pol (d,p)=(1).
2499.6 25	1/2+	_	0			$J\pi$: L(pol d,t)=0.
2533.7 25	-,		O			$J\pi$: L(pol d,t)=(0).
2537.9 25	(7/2-)	E	N			$J\pi$: L(d,p)=(3), preferred from shell-model syst.
2538.3@ 4	(19/2+)		L		_	-(-) _F , (-), F
2548.3 25	3/2+,5/2+	•	0			$J\pi$: $L(pol d,t)=2$.
2555.9 25	3/2-		N			$J\pi$: L(pol (d,p)=1.
2575.4 25	0 / 2		0			5. 2(por (a,p)-1.
2586.6 25	1/2+		0			$J\pi$: $L(pol d,t)=0$.
2591.7 25	(3/2-)	E J	Ü			$J\pi$: $L(d,p)=(1)$, preferred from shell-model syst.
2599.1 25	(5/2+)	ь	0			$J\pi$: L(pol d,t)=2.
2612.2 25	3/2+,5/2+		0			$J\pi$: L(pol d,t)=2.
2613.4 \$ 4	(23/2-)	1	LM			эм. h(por u,t)=2.
2627.1 25	1/2+	•	0			$J\pi$: $L(pol d,t)=0$.
2632.7 25	(5/2+)	E	N			$J\pi$: $L(d,p)=2$.
2690 10	(0/21)	E	-1			ож. h(d,p)-2.
2743 5		J			I	E(level): All energies not given in other reactions evaluator has assigned a ΔE =5.
2753 5		J				
2757.8# 4	(25/2+)	1	L			
2759.33 13	(3/2+,5/2+)	E I				$J\pi$: γ 's to $3/2+,7/2+$.
2770 10	(3/2-)	E			į.	$J\pi$: from $L(d,p)=(1)$, preferred from shell-model syst.
2773 5		J				
2796 5		J				
2810 10	1 / 2 +	E			j	$J\pi$: $L(d,p)=0$.
2817 5		J				
2902 5		J		E(level) [‡]	$J\pi$	XREF
2913 5		J				
2929 5		J		3448.9 \$ 4	(27/2-)	LM
2943 5		J		3473.9 # 5	(29/2+)	L
2962.6@4	(23/2+)]	L	3480 5		J
3040 5		J		3486 5		J
3058 5		J		3526 5		J
3105 5		J		3547 5		J
3222 5		J		3741 5		J
3281 5		J		3814 5		J
3301 5		J		3850 5		J
3333 5		J		3902 5		J
3378 5		J		4201.5 \$ 5	(31/2-)	LM
3412 5		J				
-		,				

Footnotes continued on next page

 $[\]begin{tabular}{lll} \dot{\tau} & From & ^{113}Cd(p,p'). \\ \\ \dot{\tau} & From & least-squares & fit to & \Gamma & energies. \\ \end{tabular}$

¹¹³Cd Levels (continued)

- \S (A): Member of $\Delta J{=}2$ band on 11/2- band. # (B): Band based on 23/2-. @ (C): Band based on (19/2).

$\gamma(^{113}\mathrm{Cd})$

E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	$\underline{\hspace{1cm}} \text{I} \gamma^{\dagger} \underline{\hspace{1cm}}$	Mult. ^{‡#}	δ#	α	Comments
263.54	263.7 3	100	E5		4.24 7	B(E5)(W.u.)=0.0499 23.
						Mult., Eγ: from ¹¹³ Cd IT decay (14.1 y).
298.597	298.60 1	100	M1+E2§	+0.30 +3-1	0.0248	B(E2)(W.u.)=20 8; B(M1)(W.u.)=0.025 8. δ : δ from 1987BaYW in (n,n'\gamma) is discrepant with $\delta > 1.1$ in β^- decay, but agrees with
						δ =0.29 1 (1958Mc02) in Coul. ex.
316 . 206	17.78 9	3.1 4	M1 §		9.75 21	B(M1)(W.u.)=0.0082 12.
	316 . 21 2	100 4	E 2		0.0273	B(E2)(W.u.)=0.372 25.
458.633	142 . 42 1	100	M1+E2	-0.043	$0.173 \ 3$	
522 . 259	$205.86 \ 8$	1.22 12	E 1		0.0216	$B(E1)(W.u.)=1.19\times10^{-6}$ 13.
	$258.72\ 2$	100.0 19	E2§		$0\;.\;0532$	B(E2)(W.u.)=44.2 22.
583.962	126 1	< 10				Eγ: not seen in 113 Cd(n,n'γ).
	267.776	2.5 2				
	285.3 1	1.4 2	M1,E2		0.033 6	
	583.93 7	100 1	E2		0.00431 6	B(E2)(W.u.)=34 8. Mult.: see Coul. ex.
638.19	$115.6\ 2$	12.5 19	D			
	374.64 3	100	M1+E2	-0.252	$0\;.\;0\;1\;3\;7\;0$	
680.526	96.9 3	5.3 3	[M1,E2]		1.1 6	
	$364.31\ 3$	20.14	M1+E2	-0.027	$0\;.\;0\;1\;4\;5\;5$	B(E2)(W.u.)=12 +84-12; B(M1)(W.u.)=5.0 13.
	381.95 3	20.94	M1+E2	+0.16 15	$0.01297 \ 23$	$B(E2)(W.u.)=6.\times10^{2} +12-6; B(M1)(W.u.)=4.4 12$
	680.6 1	100.0 23	M1+E2	-1.8 1	0.00295 5	$B(E2)(W.u.)=5.0\times10^3 \ 13; \ B(M1)(W.u.)=0.90 \ 24.$
708.571	249.95 2	11 1	M1+E2	+0.34 8	0.0404 12	
	392.36 2	100 2	M1+E2	-0.244	0.01217 18	
	410.11 9	11 2	M1+E2	-0.104	0.01084	
	708.52 5	100 2				
815.34	551.79 1	100	E 2		0.00504 7	
816.707	358.09 5	35 1				
	500.47 3	100 2	M1+E2	-0.45 16	0.00664 10	
0.55 0.0	517.67 15	3.2 2	E0		0.0000	
855.28	217.08 3	4.7 3	E2	0.07.0	0.0969	
	332.99 3	100 2	M1+E2§	-0.272	0.0186	
869.81	539.3 <i>1</i> 606.3 <i>3</i>	$\begin{array}{ccc} 2.7 & 9 \\ 100 \end{array}$	E1 E2		0.00179 <i>3</i> 0.00389 <i>6</i>	
878.54	$294.52^{@}$ 21	48@ 14	E 2		0.00389 6	
010.54	419.8 3	9.2 23				
	562.26 9	100 15				
	878.62 9	100 15				
883.62	585 <i>1</i>	3.5 18				
	883.6 1	100.0 25				
897.53	313.48 6	12.4 4	M1+E2	+0.41	0.0223	
	439.7 5	22.4 7		•		
	581.26 9	9 4				
	598.95 5	100 2	E2		0.00402 6	
939.788	481.13 2	100 2	M1		0.00731 11	
	623.58@2	51@2	E 2		0.00361 5	
988.40	279.8 2	2.5 4				
	988.43 7	100 8				
999.42	540.78 6	100				
002.87	$294.52^{@}21$	44@ 13				
	322 . 35 3	100 7	M1+E2	-0.82	0.0221 8	Mult.: $\delta = -0.8$ 2 or -2.2 10.
	1002.769	59 11	M1			
007.20	423 . 3 2	6.5 12	M1		$0\;.\;0\;1\;0\;0\;1$	
	548 . 54 5	35 7	M1		0.00533 8	
	691.00 8	100 15	M1+E2	0.35 5	0.003055	
034.09	$449.9 \ 3$	4.8 10	M1		0.00861 13	
	735.1 3	68 18	M1		0.002674	

				γ(¹¹³ Cd) (c	ontinued)	
E(level)	Εγ†	Ιγ [†]	Mult.‡#	δ#	α	Comments
1034.09	1022 20 12	100 20	M1.E0	0.52 22	0.00120 3	
1034.09	1033.80 <i>12</i> 356.7 <i>4</i>	9 3	M1+E2 E2	0.52 22	0.00120 3	
	453.44 1	14 3	M1		0.00845 12	
	721.22 8	100 28	M1+E2	0.29 1	0.00277 4	
	738.769	88 24	E2		0.002334	
	1037.2 1	55 <i>5</i>				
1047.65	231.0 1	2.2 9				
	463.69 13	16 2	M1	.0 10 .17 7	0.00800 12	
	589.024 731.34	$\begin{array}{ccc} 42 & 2 \\ 100 & 4 \end{array}$	M1+E2 M1	+0.12 +17-7	0.004497 0.002704	
1049.66	369.1 <i>1</i>	18 4	M1		0.01408	
1010.00	733.3 5	22 11	1121		0.01100	Ey: not seen in $^{113}\text{Cd}(n,n'\gamma)$ and $(\alpha,n\gamma)$.
	1049.75 16	100 7	M1			, , , , , , , , , , , , , , , , , , , ,
1051.248	370.72 1	21 4				
	412.906	100 2	M1+E2	-0.41 1	0.01080	
	528.81 8	49 2				
1109.32	293.79 7	24.0 8	T.O.		0.00501.11	
	471.20 5	$\begin{array}{cccc} 4.3 & 7 \\ 100 & 2 \end{array}$	E2 D		0.00791 11	
1124.636	845.781 184.832	6.38	ט			
1124.000	307.89 2	19.1 10	D			
	416.09 4	23.9 10	E2		0.01148	
	666.1 1	100 3				
	808.48 2	$41 \ 3$	E2		$0.00187 \ 3$	
1126 . 25	242.64 4	1.2 3	M1		0.0413	
	827.6 3	12 4	M1		0.00204 3	
1177 700	1126.20 8	100 6	M1+E2	-0.02 3	0.040	Mult.: E2 is ruled out, $\Delta I=0$.
1177.723	126.48 1 $322.36 6$	33 3 60.8 23	E2		0.648	
	655.48 1	100 4	M1+E2	-0.001 2	0.00349 5	
1177.8	879.2 3	100				
1181.35	543.20 5	11 4				
	659.08 3	100 7				
1190.72	892.12 5	100				
1192.09	553.9 4	100 6	M1+E2	0.0 1	0.00520 8	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	670.2 5	37 3				Eγ: placed as deexciting a 2094 level by 1991NeZX in $(n,n'\gamma)$.
1194.6	339.33& 2	99& 5	M1+E2	-0.20 15	0.0176 4	1991ΝεΖΑ ΤΗ (Π,Η γ).
1104.0	611.0 5	4.0 4	E1	0.20 10	0.0170 1	
	672.34 2	100 6	E2		0.00296 5	
	1194.4 1	12.9 13	E1			
1195 . 30	896.7 2	100				
1209 . 53	945.96 15	100 18	M1			
1214.674	274.89 4	7 4	M1		0.0298	
1061 00	756.03 2	100 3	E 2		0.00220 3	
1261.92	444.95 677.954	38 <i>8</i> 79 <i>10</i>				
	803.23 5	100 11	D			
	946.0 1	67 33				
1268.21	969.59 5	58 8				
	1268.5 2	100 10	M1			
1279 . 62	232 . 6 3	0.8 6				
	291.54 25	1.7 5	M1		0.0256	
	963.25 15	2.7 8	M1			
	980.94 25 1279.84 10	2.3 8	M1 M1			
1301.07	174.79 9	$ \begin{array}{cccc} 100 & 10 \\ 16 & 5 \end{array} $	141.1			
1001.01	717.13 11	100 19				
	1301.07 10	26 5				
1313.75	729.79 2	100 4	E2		0.00240 4	
	855.10 6	6.9 17				
1322 . 03	799.9 6	97 4				
	1058.48 11	100 27				
			Continued	on next page (foot	notes at end of t	able)

$\gamma(^{113}\text{Cd})$ (continued)

E(level)	$\mathrm{E}\gamma^{\dagger}$	Ιγ†	Mult.‡#	δ#	α	Comments
1005 6	7.40 0 4	100				
1327.6	743.6 4	100				
1346.53	824.27 3	100	E 2			
1351.58	344.31 12 $496.8 3$	6.7 16 227				
	767.65 13	100 17				
	829.4 3	61 21				
	892.9 3	8 3				
	1052.95 12	39 11				
1364.76	780.81 11	36 11				
	906.1 3	17.1 14				
	1066.16 8	100 7				
1367.569	153.0 1	3.0 13				
	427 . 71 16	50 3	D			
	469.5 5	1.5 15				
	550.86 1	100 15	M1+E2	-0.006 7	0.00527 8	
	909.5 8	15 10				
1387.47	928.77 18	77 23				
	1088.89 9	100 23				
1390.56	1387.35 264.24	$\begin{array}{ccc} 13 & 6 \\ 10 & 3 \end{array}$				
1050.00	402.19 13	18 5				
	1092.18 21	11 6				
	1390.42 15	100 29				
1395.83	937.19 3	73 7				
	1079.63 4	100 7				
1405.82	1107.11 18	100 27				
	1405.85 11	86 17				
1407.5	823.64	$100 \ 20$				
	948.9 3	7 3				
1410.68	952.04 5	100				
1450.30	171.07 12	46 13				Ey: this y is not seen in $(\alpha,n\gamma)$.
1401 05	770.42 16	100 30	D			
1461.67 1479.08	$606.39 \ 3$ 623.59 7	100 100 22	D			
1479.08	770.42 16	33 10				
	1180.8 3	31 7				
	1479.2 1	67 10				
1493.03	224.69 25	2.7 9				
	784.6 3	10 4				
	812.7 4	12 5				
	909.12 13	33 10				
	1176.76 15	100 27	M1+E2	+0.23 17		
	1492.88 25	5.5 18				
1504.90	920.94 3	100	E2			
1513.72	335.98 9	100	E O			
	875.54 3	100 5	E2			
1542.28	929.42 $539.39.22$	28 6 78 15				
1042.20	539.39 22 658.66 8	$78 ext{ } 15$ $100 ext{ } 37$				
1561.69	621.5 2	21 6				
	664.13 5	82 5	E 2		0.00306 5	
	744.99 2	100 5				
1575.66	937.2 3	100 29				
	1312.18 15	54 13				
1607.21	926.64	$48 \ 20$	M1			
	1023.0 3	100 40	M1			
	1308.70 11	57 13	M1			
	1606.96 22	13 3	E2			
1620.43	765.15 1	44 4	D			
1696 41	1098.06 7	100 12	M1 LEO	0 00 2	0.00660 10	
1626.41 1647.23	501.77 3 $707.44 4$	100 100	M1+E2	0.00 3	U.UU00U <i>10</i>	
1647.23	842.0 2	100				
1000.0	0.12.0 £	100				
			Continued	on next page (fo	otnotes at end of ta	ble)

$\gamma(^{113}\text{Cd})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.‡#	δ#	α	Comments
1657.41	842.06 3	100	E 2			
1658.51	1020.65 1135.82	57 7 79 8				
	1394.8 1	100 13				
1670.89	561.56 9	100				
1675.09	791.49 15	100 29	M1		0.00225 4	
	994.53 11	95 19	M1			
	1376.64 25	66 26	M1			
1732.84	365.4 1	23 23				
	518.15 3	33 3	D			
	793.4 3	100 8				
1737.53	1215.27 6	100				
1743.56	1221.3 2	100				
1746.00	890.84 22	62 19				
	1429.9 4	50 15				
	1746.0 5	100 35				
1778.92	569.3 3	21 5	E2		0.00462 7	
1500 00	1515.4 2	100 19	M1			
1798.89	765.1 3	14 6				
	1214.82 1482.93	$\begin{array}{ccc} 100 & 14 \\ & 11 & 4 \end{array}$				
	1798.7 3	3.6 7				
1823.24	713.91 5	64 7	M1+E2	-0.01 2	0.00286 4	
1020.24	1007.90 3	100 7	MITTEL	0.01 2	0.00200 4	
1842.74	648.26 25	87 34				
	1320.43 15	100 17				
1867.86	1012.91 21	73 23				
	1345.56 8	100 7				
	1604.23 23	17 4				
1871.7	931.9 3	100				
1892.32	1036.87 15	100 30	M1			
	1370 . 22 15	67.8 7				
	1628.8 4	26 7	E 2			
1896.44	237.78 8	14 3				
	238.96 9	11 3				
	787.12 2	100 8	E 2		0.00199 3	
1000 41	1081.38 20	62 14	M1 . E0	0.00.5	0.00566.0	
1902.41	534.87 5	100 5	M1+E2	0.00 5	0.00566 8	
1903.97	687.6 <i>1</i> 1088.63 <i>8</i>	60 5 100				
1904.35	856.73 25	7 3				
1004.00	1445.70 11	100 17				
2037.76	1097.89 22	69 25				
	1221.3 4	100 8				
	1579.1 5	16 5				
2042.06	1226.71 5	100				
2046 . 23	831.55 6	100	E2			
2113 . 04	1474 . 8 3	57 28	M1			
	$1590.8 \ 3$	$100 \ 26$	M1			
2146 . 81	633.08 2	100	(E2)		0.00347 5	
2164 . 48	949.8 1	100				
2173.60	427.68 16	76 15	M1		0.00976 14	B(M1)(W.u.)=0.87 21.
	979.08 23	38 15	M1			B(M1)(W.u.)=0.036 16.
	1289.4 3	59 15	E1			B(E1)(W.u.)=0.00032 10.
2219.64	2173.64 21	100 18	E1		0.00413 6	B(E1)(W.u.)=0.00011 3.
2319.64	593.23 2 1464.32 <i>18</i>	$\begin{array}{ccc} 100 & 1 \\ 22 & 6 \end{array}$	E2 M1		0.00413 0	
2010.02	2319.7 6	100 41	E1			
2324.5	667.9 2	100 41	17.1			
2538.3	881.7 2	100				
2613.4	956.8 2	100				
2757.8	433.3					
2759.33	960.46 15	13 4				
			Continued	on next page (f	ootnotes at end of ta	able)

1515

$\gamma(^{113}\text{Cd})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1.5cm} I\gamma^{\dagger}}$
2759.33	1942.71 25	49 15
	2460.6 2	100 20
2962.6	424.32	100
3448.9	835.5 2	100
3473.9	716.1 2	100
4201.5	752.6 2	100

[†] From $^{113}Cd(n,n'\gamma)$ or ^{113}Ag β^- decay, except as noted. When the branching is discrepant between $(n,n'\gamma)$ and decay evaluator has chosen $(n,n'\gamma)$ because uncertainties are available.

 $^{^{\}ddagger}$ From $^{113}Cd(n,n'\gamma)$.

[§] See 113 Ag β^- decay (5.37 h).

 $^{^{\#}}$ From $\gamma(\theta)$ and linear polarization in $^{113}Cd(n,n'\gamma)$ and in $(\alpha,n\gamma),$ except as noted.

[@] Multiply placed; undivided intensity given.

[&]amp; Multiply placed; intensity suitably divided.

¹¹³Ag β⁻ Decay (5.37 h) 1978Ma17,1970Ma47

Parent ¹¹³Ag: E=0; J π =1/2-; T_{1/2}=5.37 h 5; Q(g.s.)=2016 16; % β ⁻ decay=100. Measured Ey, Iy, Ice, γ y coin, β endpoint, β y coin, 1978Ma17, 1970Ma47. Others: 1958Al90, 1960Kj01, 1969Cl11, 1969Hn01, 1969Li20, 1973BuZW.

¹¹³Cd Levels

E(level)	Jπ	${ m T}_{1/2}^{\dagger}$	Comments
0.0	1 / 2+	8.04×10^{15} y	y 5
263.58 13	11/2-	14.1 y 5	
298.536	3 / 2+		
316.18 6	5 / 2+	10.7 ns 4	$T_{1/2}$: from $\beta \gamma(t)$ with scin, 1980Oh01.
522 . 34 9	(7/2)-	0.322 ns 1	2 $T_{1/2}$: from $\gamma \gamma(t)$ with scin, 1980Oh01.
584.06 9	5 / 2 +		
638.06 12	9 / 2 –	E(level)	$\mathrm{J}\pi$
680.58 7	3 / 2+		
708.58 12	5 / 2+	1049.90 10	3 / 2 +
855.31 8	5 / 2 –	1126.09 8	3 / 2 +
883.60 10	1 / 2+	1194.66 6	(3/2-)
988.44 8	1 / 2+	1479.29 7	3/2+,5/2+

[†] From adopted levels, except as noted.

β^- radiations

Εβ-		E(level)	$\underline{\hspace{1.5cm} I\beta^{-\dagger\ddagger}}$	Log ft	Comments
(537	16)	1479.29	≈ 0 . 12	≈7.7	av Eβ=167.7 62.
(821	16)	1194.66	≈ 2 . 1	≈ 7 . 1	av $E\beta = 276.4$ 68.
(890	16)	1126.09	$\approx 0 \ . \ 0.86$	≈8.6	av $E\beta = 303.9 \ 69.$
(966	16)	1049.90	≈ 0 . 065	≈8.8	av Eβ=334.8 70.
(1028	16)	988.44	≈ 0.45	≈8.1	av $E\beta = 360.2 \ 71.$
(1132	16)	883.60	≈ 0 . 29	$\approx 8 . 4$	av $E\beta = 404.0$ 72.
(1307	16)	708.58	≈ 0 . 020	$\approx 10.61u$	av $E\beta = 490.2 \ 71$.
					Log ft: calculated as first-forbidden unique.
(1335	16)	680.58	≈1.0	≈ 8.2	av $E\beta = 490.7 74$.
(1432	16)	584.06	≈ 0.13	$\approx 10.01u$	av Εβ=542.5 72.
					Log ft: calculated as first-forbidden unique.
(1700	16)	316.18	≈ 1.7	$\approx 9.31u$	av $E\beta = 657.3 \ 74.$
					Log ft: calculated as first-forbidden unique.
(1717	16)	298.53	≈ 9 . 4	≈ 7.6	av $E\beta = 659.1$ 77.
(2016	16)	0.0	≈ 8.5	$\approx 7 \cdot 0$	av Εβ=793.8 78.
					Εβ-: Εβ=2020 from 1957Je07. Other: 2030 (1970Ma47).
					Iβ ⁻ : from Iβ(total)/Iγ(299) compared with ^{198}Au Iβ(total)/Iγ(412), 1970Ma47. Other: 88% (1969Hn01).

 $^{^{\}dagger}$ β branches were obtained from (7+ce) imbalance at each level, except for the g.s.

γ(¹¹³Cd)

 $\alpha(K)$ exp normalized by 316 γ keV to E2 theory. If 316 γ is M1, δ and α will be different for 259 γ and 299 γ . I γ normalization: from $\Sigma I(\gamma+ce)$ to g.s.+I $\beta(g.s.)$ =100. The normalization factor is uncertain, since I $\beta(g.s.)$ is approximate.

Εγ	E(level)	Ιγ‡	Mult.	α	Comments
17.7 2	316.18	0.42 5	M1	9.9 4	B(M1)(W.u.)=0.0084 14. Iγ: obtained by low-energy photon spectrometer. I(γ+ce): from I(γ+ce)(17.7γ)/I(γ+ce)(316.3γ) in 113 Ag β decay (68.7 s).
					Mult.: from I γ and I(γ +ce).
96.2 2	680.58	0.372			
x133.5 2		0.662			
$206.4\ 2$	522 . 34	0.202			
217.2 1	855.31	0.28 2			

[‡] Absolute intensity per 100 decays.

$^{113}Ag~\beta^{-}~Decay~(5.37~h)~~1978Ma17,1970Ma47~(continued)$

$\gamma(^{113}Cd)$ (continued)

Εγ	E(level)	Ιγ‡	Mult.	α		Comments
258.8 1	522.34	16.35 30	E2	0.0531		B(E2)(W.u.)=44.0 21.
						Mult.: from $\alpha(K)\exp=0.049$ 6. E1+M2 is not excluded.
298.6 1	298.53	100	E2+(M1)	0.0310	21	δ: >1.1.
						Mult.: from $\alpha(K)\exp=0.027$ 1.
316.3 1	316.18	$13.43\ 20$	[E2]	0.0273		B(E2)(W.u.)=0.373 21.
						Mult.: based on $J\pi\ values$ in proposed decay scheme.
333 . 1 1	855 . 31	5.98 9	(M1, E2)	0.0207	25	Mult.: from $\alpha(K)\exp=0.021$ 9.
339.4 1	1194 . 66	6.38 10	M1, E2	0.0196	22	Mult.: from $\alpha(K)\exp=0.019$ 5.
364 . 4 1	680.58	1.40 3				
369 1	1049.90	0.10 5				
$374.3\ 2$	638.06	0.252	F	Εγ	E(lev	rel)Iγ [‡]
382 . 1 1	680.58	1.45 3				
392 . 4 1	708.58	0.202	x 8 1 6	. 1 1		0.11 2
x410.8 1		0.12 2	827	' 1	1126 .	09 0.10 5
539 1	855 . 31	0.08 3	878	3.5 1	1194.	66 0.52 2
584.0 9 1	584.06	2.1 † \$ 3	883	3.6 1	883.	60 2.82 7
585§ 1	883.60	0.10 ^{†§} 5	896	5.1 1	1194 .	66 0.58 10
611.0 5	1194.66	0.45 10	988	3.4 1	988.	44 4.23 9
$624.0\ 1$	1479 . 29	0.19 1	1049	.9 1	1049 .	90 0.45 3
672.3 § 1	988.44	0.3 † § 1	x 1084	. 5 1		0.16 3
	1194.66	8.7 [†] § 3	1126	5.1 1	1126 .	09 0.61 3
680.6 1	680.58	6.95 16	1180	.8 1	1479.	29 0.37 3
734 1	1049.90	0.10 5	1194	. 6 1	$1194\;.$	66 3.78 10
809.9 1	1126 . 09	0.15 2	1479	. 2 1	1479.	29 0.68 4

 $^{^\}dagger$ Unresolved doublet. I γ from $\gamma\gamma$ -coin results. I γ divided into two parts on the basis of intensity balances.

Decay Scheme

 $[\]ddagger$ For absolute intensity per 100 decays, multiply by $\approx\!0.10.$

[§] Multiply placed; intensity suitably divided.

 $^{^{}x}$ γ ray not placed in level scheme.

¹¹³Ag β⁻ Decay (68.7 s) 1975BrYM,1990Fo07

Parent $^{113} Ag$: E=43.2; J π =7/2+; T $_{1/2}$ =68.7 s 50; Q(g.s.)=2016 16; % β ⁻ decay=36 7. Measured E γ , I γ , $\gamma\gamma$ coin, γ (t), E β , $\beta\gamma$ coin, (1975BrYM) E γ , I γ (1981Me17).

Eγ, branching for IT decay (1990Fo07). Others: 1969Hn01, 1970Ma47.

¹¹³Cd Levels

E(level)	Jπ	T $_{1/2}$	Comments
0.0	1/2+	7.7×10 ¹⁵ y 5	$T_{1/2}$: from adopted levels.
298.30 8	3 / 2+	,	1/2
316.09 8	5 / 2+		
458.30 16	7 / 2 +	E(level)	${ m J}\pi$
$583.87\ 25$	5 / 2+		·
708.34 17	5 / 2+	1047.4 4	7 / 2+
1007.1 3	(5/2)+	1195.3 6	5 / 2+

β^- radiations

Εβ-	E(level)		Log ft	Comments
(864 16)	1195.3	0.5 3	≈5.3	av Εβ=291 8.
(1012 16)	1047.4	≈ 0 . 44	≈ 5.6	av Εβ=351 9.
(1052 16)	1007.1	≈ 0 . 99	≈ 5 . 3	av Εβ=368 9.
(1351 16)	708.34	≈8.9	≈ 4 . 8	av Eβ=495 9.
(1475 16)	583.87	≈ 2 . 4	≈ 5 . 5	av E β =549 9.
(1601 16)	458.30	≈ 0 . 60	$\approx 6 . 3$	av Eβ=604 9.
(1743 16)	316.09	≈ 5 . 8	≈ 5 . 4	av Eβ=668 9.

 $^{^{\}dagger}~\beta^-$ branches were obtained from (7+ce) imbalance at each level.

γ(¹¹³Cd)

 $I\gamma$ normalization: assuming no β^- feeding to g.s. $\Delta J{=}3,\;\Delta\pi{=}no.$

E(level)	Ιγ‡	Mult.	α	I(γ+ce) [‡]	Comments
316.09		M1	9.72 22	48.66	ce(L)/(γ+ce)=0.738 10; ce(M)/(γ+ce)=0.142 4; ce(N)/(γ+ce)=0.0252 8; ce(O)/(γ+ce)=0.00141 5; Particle normalization/T _{1/2} =0.0266 8.
					$I(\gamma+ce)$: calculated from the decay scheme with assumption of
					no β^- feeding of the 298 level.
					Iγ: from $I(\gamma+ce)$ and α .
					Mult.: from 113 Ag β^- decay (5.37 h).
		[M1]	0.1735		
583.87	0.75				
298.30	57.5	[M1]	0.0242		
316 . 09	100	[E2]	0.0273		
708.34	63				
708.34	3.8				
1007.1	< 1				
1195.3	2.2				
1007.1	2.0				
583.87	20.5				Iγ: 1981Me17 gives 17.7 9.
1047.4	1				
1007.1	4.1				
708.34	20				
1007.1	5				$E\gamma$: not seen by $1981Me17$ and also by $1987BaYW$ in $(n,n'\gamma)$.
1047.4	3.5				
1195.3	< 2	† Als	o seen by 198	31Me17 which	agrees on Iγ.
1195.3	< 2	‡ For	absolute into	ensity per 100	decays, multiply by 0.18 4.
	583.87 458.30 1195.3 708.34 583.87 583.87 298.30 316.09 708.34 708.34 1007.1 1195.3 1007.1 583.87 1047.4 1007.1 708.34	583.87	583.87 <2 458.30 16.5 [M1] 1195.3 <2 708.34 6.3 583.87 <2 583.87 <2 583.87 0.75 298.30 57.5 [M1] 316.09 100 [E2] 708.34 63 708.34 63 708.34 3.8 1007.1 <1 1195.3 2.2 1007.1 2.0 583.87 20.5 1047.4 1 1007.1 4.1 708.34 20 1007.1 5 1047.4 3.5 1195.3 <2	316.09 M1 9.72 22 583.87 <2 458.30 16.5 [M1] 0.1735 1195.3 <2 708.34 6.3 583.87 <2 583.87 0.75 298.30 57.5 [M1] 0.0242 316.09 100 [E2] 0.0273 708.34 63 708.34 3.8 1007.1 <1 1195.3 2.2 1007.1 2.0 583.87 20.5 1047.4 1 1007.1 4.1 708.34 20 1007.1 5 1047.4 3.5 1195.3 <2	316.09 M1 9.72 22 48.66 583.87 <2 458.30 16.5 [M1] 0.1735 1195.3 <2 708.34 6.3 583.87 0.75 298.30 57.5 [M1] 0.0242 316.09 100 [E2] 0.0273 708.34 63 708.34 3.8 1007.1 <1 1195.3 2.2 1007.1 2.0 583.87 20.5 1047.4 1 1007.1 4.1 708.34 20 1007.1 5 1047.4 3.5 1195.3 <2

 $[\]buildrel \pm$ For β^- intensity per 100 decays, multiply by 1.8 4.

$^{113}Ag~\beta^-$ Decay (68.7 s) ~1975BrYM,1990Fo07 (continued)

Decay Scheme

¹¹³Cd IT Decay (14.1 y) 1969De25

Parent $^{113}Cd:$ E=263.7 3; Jπ=11/2-; $T_{1/2}\!=\!14.1$ y 5; %IT decay=0.14. Measured Ey, Iy, $\alpha(K) exp$ from Iy and I(K x ray).

¹¹³Cd Levels

 † From adopted levels.

γ(¹¹³Cd)

Εγ	E(level)	$\underline{\hspace{1.5cm}}^{\dagger}$	Mult.	α	$I(\gamma + ce)^{\dagger}$	Comments
263.7 3	263.7	19.08 30	E5	4.24 7	100	$ \begin{array}{l} {\rm ce}({\rm K})/(\gamma + {\rm ce}) = 0.415 \ \ 6; \ {\rm ce}({\rm L})/(\gamma + {\rm ce}) = 0.317 \ \ 5; \\ {\rm ce}({\rm M})/(\gamma + {\rm ce}) = 0.0666 \ \ 13; \ {\rm ce}({\rm N})/(\gamma + {\rm ce}) = 0.01087 \ \ 22; \\ {\rm ce}({\rm O})/(\gamma + {\rm ce}) = 8.81 \times 10^{-5} \ \ 18. \\ {\rm Particle\ normalization/T}_{1/2} = 0.01095 \ \ 23. \\ {\rm B}({\rm E5})({\rm W.u.}) = 0.0499 \ \ 23. \\ {\rm I}\gamma; \ \ {\rm from\ \ I}(\gamma + {\rm ce}) \ \ {\rm and} \ \ \alpha. \\ {\rm Mult.:\ } \alpha({\rm K}) {\rm exp} = 3.0 \ \ 5 \ \ yields \ \ M4, E5. \ \Delta J \ \ rules \ \ out \ \ M4. \\ \end{array} $

 $^{^{\}dagger}$ For absolute intensity per 100 decays, multiply by 0.0014.

Decay Scheme

Intensity: I(γ +ce) per 100 parent decays %IT=0.14

$^{110}Pd(\alpha,n\gamma) \qquad 1997Wa20$

E=12.2, 14.9, 16.2, 18.0 MeV. Enriched targets.

Measured: γ, γγ, γγ(θ), excitations functions, two Ge detectors with BGO-NaI(Tl) Compton suppression shields.

¹¹³Cd Levels

E(level)	§	E(level)	§	E(level)	Jπ§
0.0†	1 / 2 +	1109.28 ‡ 3	13/2-	1461.65 5	
263.5 † 5	11/2-	1124.640^{\dagger} 23	9 / 2+	1504.92 7 4	7 / 2 +
298.599 10	3 / 2+	1126 . 22^{\dagger} 15	3 / 2+	1513.71 4	_
316.194^{\dagger} 19	5 / 2+	1177.74	(9/2-)	1561.73 3	+
458.620 7 20	7 / 2+	1177.8 † 3	(5/2+)	1620.42 3	
522.28 3	7 / 2 –	1181.35 4		1626.40 4	+
583.975 † 10	5 / 2+	1190.72 5		1647.21 5	
638.18 [‡] 3	9 / 2 –	1192.07^{\ddagger} 4	_	1657.37 [‡] 5	11/2-
680.533 [†] 23	3 / 2+	1194.58 3		1658.47 7	
708.563^{\dagger} 22	5 / 2+	1195 . 22^{\dagger} 5	+	1670.85 10	
815.29 3	15/2-	1214.651^{\dagger} 22	11/2+	1732.83	11/2+
816.737 7 24	7 / 2+	1261.92 4	7 / 2 +	1737.54 7	
855.26	5 / 2 –	1268.21 5		1743.58 21	
878.5 7 2	+	1279.85 6	(3/2)	1823.20 ‡ 4	(13/2-)
883.58 † 15	1 / 2+	1313.763	9 / 2+	1871.7 3	
897.63 † 3	3 / 2+	1321.84 9		1892.36 6	
939.766^{\dagger} 21	9 / 2+	1327.6 4		1896.40 4	_
988.29 7 3	1 / 2+	1346.54	11/2-	1902.43 5	+
999.40 7		1364.70 7	(5/2+)	1903.93 9	
1007.43 7	(5/2+)	1367.60 † 3	7 / 2+	2042.01 6	
1033.801^{\dagger} 22	(3/2+)	1387.51 4		2046.21 7	(15/2+)
1037.437 † 14	(7/2+)	1395.82^{\dagger} 3	(9/2+)	2146.80 5	
1047.654 7 24	7 / 2+	1405.69 7		2164.46 11	
1049.71 † 10	(3/2,5/2+)	1410.66 6		2219.64 5	
1051.243	5 / 2 –	1451.03 7			

 $^{^{\}dagger}$ (A): Positive parity levels.

 $\gamma(^{113}\mathrm{Cd})$

Εγ	E(level)	Ιγ	Mult.§	δ\$	α
115.6 2	638.18	6.0 9	D		
126.48 1	1177.74	8.6 8	E2		
142 . 42 1	458.620	540	M1+E2	-0.0202	
153.0 1	1367.60	1.2 5			
184.83 2	1124.640	4.56			
205 . 9^{\dagger} 1	522 . 28	6.4 7			
217 . 08 2	855.26	4.7 5			
231.0 1	1047.654	1.0 4			
237.78 8	1896.40	1.8 5			
238.96 9	1896.40	1.4 6			
242 . 64 4	1126 . 22	$2.5 ext{ } 4$			
249 . 95 2	708.563	7.4 5	D		
258.77 1	522 . 28	493 8			
267.77 6	583.975	7.5 5	M1+E2	+0.10 4	
274.89 2	1214 . 651	9.8 5	M1+E2	-0.021	
285.3 1	583.975	4 1			
293.79 7	1109 . 28	30 1			
298.60 1	298.599	860 11	M1+E2	+0.40 1	
307.89 2	1124.640	13.6 7	D		
313.48 † 6	897.63	18.3 6	M1+E2	+0.41	
316.22 † 6	316.194	1000 10	E 2		0.0274
322.36 6	1177.74	15.8 6			
332.99 1	855 . 26	111 2	M1+E2	-0.217	
335.98 9	1513.71	1.4 6			
339.33 1	1194.58	16.9 8			

^{‡ (}B): Negative parity levels.

 $[\]S$ From the authors based on previous known $J\pi$ and γ multipolarities.

$^{110}Pd(\alpha,n\gamma) \qquad 1997Wa20 \ (continued)$

$\gamma(^{113}\text{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.§	δ\$	Comments
358.09 [‡] 5	816.737	50 1	M1+E2	+0.003 3	
364.31 3	680.533	17 8			
365.4 1	1732.83	6 9			
370.72 1	1051.243	12 2			
374.64 3	638.18	48 2			
381.95 3	680.533	16.1 6	M1 + E2		Mult.: $\delta = +0.02 \ 1 \ \text{or} \ +4.7 \ 2$.
392.36 2	708.563	72 1	M1 + E2	-0.052	
410.11 9	708.563	8.7 6	M1 + E2	-0.084	
412.90 6	1051.243	57 1	E 2		
416.09 4	1124 . 640	17.0 7	E 2		
427.71 16	1367.60	20 1	D		
439.74 22	897.63	33 1			
444.9 5	1261.92	3.4 7			
453.4 1	1037.437	4.3 7			
463.84 13	1047.654	7 1	M1+E2	-0.023	
469.5 5	1367.60	0.6 8			
471.20 5	1109 . 28	5.4 9	E 2		
481.13 1	939.766	153 2	M1+E2	-0.045	
500.50 3	816.737	147 3	M1+E2	+0.04 5	
501.77 3	1626.40	35 2	M1+E2	0.00 3	
518.15 3	1732.83	9.1 7	D		
528.81 [‡] 8	1051.243	27.8 9	D		
534.87 5	1902.43	20 1	M1+E2	0.00 5	
539.3 1	855.26	3 1	E 1		
540.78 6	999.40	6 1			
543.20 5	1181.35	3 1			
550.86 1	1367.60	40 6	M1+E2	-0.006 7	
551.79 1	815.29	343 6	E2		
553.90 1	1192.07	35 2	M1+E2	0.0 1	
561.56 9	1670.85	9.1 9			
579.8 1	878.5	6 1			
581.26 9	897.63	13 6	TI O		
583.97 1	583.975	301 3	E2	.0 005 10	
589.02 2	1047.654	19 1	M1+E2	+0.005 10	
593.23 <i>2</i> 598.95 [‡] <i>5</i>	2219.64	11 1	E2 E2		
606.39 3	897.63	147 2	E Z D		
621.5 2	1461.65	4 <i>1</i> 8 <i>2</i>	Б		
623.58 2	1561.73	6 2 77 2			
633.08 2	939.766 2146.80	$\begin{array}{cccc} & 1 & 1 & 2 \\ & 2 & 2 & \end{array}$	(E2)		
655.48 1	1177.74	26 1	M1+E2	-0.001 2	
659.08 3	1181.35	27 2	M1 +122	-0.001 2	
664.13 [‡] 5	1561.73	32 1	E2		
666.1 [†] 1	1124.640	71 2			
670.2 [†] 5	1192.07	13 1			
672.34 2	1194.58	17 1			
677.95 4	1261.92	7.1 9			
680.6 1	680.533	78 2	M1+E2		Mult.: $\delta = +1.34$ 5 or -0.13 2.
687.6 1	1902.43	12 1	· -		
691.23 6	1007.43	25 2			
696.5 5	1405.69	<1.0			
707.44 4	1647.21	24 4			
708.58 6	708.563	62 5			
713.91 5	1823.20	9 1	M1+E2	-0.012	
721.24 4	1037.437	22 1	D		
729.79 2	1313.763	58 2	E2		
731.47 2	1047.654	45 2	M1+E2	-0.03 4	
735.20 2	1033.801	12.6 9			
738.84 1	1037.437	21 1	M1+E2	+1.1 5	
743.6 4	1327 . 6	< 3			
744.99 2	1561.73	19 1			
756.03 1	1214 . 651	140 4	E 2		
765.15 1	1620.42	7.4 9	D		

$^{110}Pd(\alpha,n\gamma) \qquad 1997Wa20 \ (continued)$

$\gamma(^{113}\text{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.§			Comments
770.50 6	1451.03	14 4				
787.12 2	1896.40	13 1	E2			
793.4 7 3	1732.83	28 2				
799.57 8	1321.84	48 5	D			
803.23 5	1261.92	9 1	D			
808.48 2	1124.640	29 2	E2			
824.27 3	1346.54	31 4	E2			
831.55 6	2046.21	18 2	E2			
842.06 3	1657.37	53 2	E2			
845.78 1	1109.28	125 2	D			
855.10 6	1313.763	4 1				
875.54 3	1513.71	18.1 9	E 2			
878.4 2	878.5	4 1				
879.2 3	1177.8	2 2				
883.43 9	1405.69	29 1				
883.6 2	883.58			Eγ: not observe	d in this work	, but 1997Wa20 do not rule its existence.
892.12 5	1190 . 72	6 1				
896.62 4	1195 . 22	22 2		$\mathbf{E}\gamma$	E(level)	Ιγ
906.02	1364.70	3.3 9				
909.5 [‡] 8	1367.60	6 4		1079.63 4	1395 . 82	26 2
920 . 94 3	1504 . 92	9.0 9	E2	1081.38 ‡ 20	1896.40	8 2
929 . 4 2	1513.71	5 1		1088.63 8	1903.93	12 1
931.9 3	1871.7	5 1		1098.06 7	1620 . 42	17 2
937.19 3	1395 . 82	19 2		1107 . 1 1	1405 . 69	8.0 9
946.0 † 1	1261 . 92	6 3		1126 . 2^{\ddagger} 2	1126 . 22	18 1
949.8 1	2164 . 46	2.4 8		$1135.8^{\ddagger} 2$	1658.47	11 1
952 . 04 5	1410.66	10 1		1215.276	1737.54	14 2
969.59 5	1268 . 21	5.8 8		1221 . 3 2	1743.58	2.9 9
$988.29 \ 3$	988.29	24 1		1226 . 71 5	2042 . 01	10 1
1007.90 3	1823 . 20	14 1		1268.5 † 2	1268 . 21	10 1
1020.6^{\dagger} 5	1658.47	8 1		1279.846	1279 . 85	6 1
1033.9 5	1033.801	12 1		1370.08 5	1892.36	34 1
1037 . 2^{\dagger} 1	1037.437	12 1		1387.50 4	1387.51	34 2
1049.7 1	1049.71	$12.4\ 1$		1394.8 1	1658.47	14 2
1066.11 7	1364 . 70	9.1 1	D			

 $[\]dagger$ γ ray placed by coincidence relations. ΔE fixed to at least 0.1 keV to allow a fit with the other gammas.

¹¹²Cd(n,γ) E=res 1969Ju01

E=4-2000 eV. Measured cross section; neutron time of flight. For deduced resonance parameters for resonances with E=66.7 eV and E=83.3 eV, see 1981MuZQ.

$^{112}\mathrm{Cd}(d,p), ^{114}\mathrm{Cd}(d,t)$ 1969Go03

 $^{112}{
m Cd(d,p)}{:}$ E=13 MeV. Other: 1964Ro17.

¹¹³Cd Levels

E(level)	$-\frac{J\pi^{\ddagger}}{}$		$\frac{\mathrm{C}^2\mathrm{S}}{}$
0.0	1 / 2+	0	0.34
270 10	11/2-	5	0.40
300 10	3 / 2 +	2	0.40
320 10	5 / 2+	2	0.14

 $[\]dot{\ddagger}$ ΔE increased by evaluator to allow fit with levels.

 $[\]S$ From $\gamma(\theta)$ and excitation functions (five energies).

¹¹²Cd(d,p), ¹¹⁴Cd(d,t) 1969Go03 (continued)

¹¹³Cd Levels (continued)

E(level)	Jπ [‡]		C^2S					Comments				
460 10	7 / 2+	4	0.26									
530 10	7 / 2+	4	0.36									
590 10	(5/2+)	2	0.05									
680 10	(3/2+)	2	0.27									
760 10	1/2+	0	0.14									
820 10	7 / 2+	4	0.12									
880 10	1/2+	0	0.07									
900 10	3 / 2+	2	0.21									
960 10												
980 10	1/2+	0	0.04									
1010 10												
1130 20												
1100 20												
$1130 \ 20$ $1170 \ 20$												
$1170 \ 20$		2,3		Jπ: authors assi	ign Jπ=7/2+	but it is	s not compa	tible with given	L. A level a	t 1195.4	has been	
		2,3		Jπ: authors assi	-		s not compa	tible with given	L. A level a	t 1195.4	has been	
$1170 \ 20$	(3/2+)	$\frac{2}{3}$	0.03		-		s not compa	tible with given	L. A level a	t 1195.4	has been	
1170 20 1200 10	(3/2+)		0.03		$J\pi = 5/2 + 7/2$	+,9/2+.		tible with given				
1170 20 1200 10 1280 10	(3/2+)		0.03	adopted with	-		on ot compa		L. A level a	t 1195.4	has been C ² S	
1170 20 1200 10 1280 10 1320 10	(3/2+)		0.03	adopted with	$J\pi = 5/2 + 7/2$	+,9/2+.						
1170 20 1200 10 1280 10 1320 10 1390 20		2		adopted with E(level)	$J\pi = 5/2 + 7/2$	+,9/2+.		E(level)				
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10		2		E(level) 1990 10	$J\pi = 5/2 + ,7/2$ $J\pi^{\frac{1}{2}}$	L [†]	C ² S	E(level)				
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10 1450 20	(3/2+)	2	0.06	E(level) 1990 10 2040 10		L [†]	C ² S 0 . 0 4	E(level) 2330 10 2370 10		_L [†] _		
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10 1450 20 1490 15	(3/2+)	2	0.06	adopted with E(level) 1990 10 2040 10 2080 10	$ \frac{J\pi^{\pm}}{J\pi^{\pm}} $ $ \frac{J\pi^{\pm}}{(1/2 + (1/2 + 1))} $	+,9/2+. L [†] 3 (0)	$\begin{array}{c c} \hline C^2S \\ \hline \\ 0.04 \\ 0.01 \\ \hline \end{array}$	E(level) 2330 10 2370 10 2410 10		_L [†] _		
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10 1450 20 1490 15 1540 10	(3/2+)	2 2 2	0.06	adopted with E(level) 1990 10 2040 10 2080 10 2110 10	$ \frac{J\pi^{\pm}}{J\pi^{\pm}} $ $ \frac{J\pi^{\pm}}{(1/2 + (1/2 + 1))} $	+,9/2+. L [†] 3 (0)	$\begin{array}{c c} \hline C^2S \\ \hline \\ 0.04 \\ 0.01 \\ \hline \end{array}$	E(level) 2330 10 2370 10 2410 10 2440 10		L [†]	C ² S	
1170 20 1200 10 1280 10 1320 10 1320 20 1430 10 1450 20 1490 15 1540 10 1580 10	(3/2+) (3/2+) (7/2-)	2 2 (3)	0.06 0.06 0.02	E(level) 1990 10 2040 10 2080 10 2110 10 2120 20	$ \frac{J\pi^{\pm}}{J\pi^{\pm}} $ $ \frac{7/2 - (1/2 +)}{(7/2 -)} $	+,9/2+. L [†] 3 (0) (3)	$\begin{array}{c c} \hline C^2S \\ \hline \\ 0.04 \\ 0.01 \\ \hline \end{array}$	E(level) 2330 10 2370 10 2410 10 2440 10 2540 10	Jπ [‡]	L [†] (4) (3)	C ² S	
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10 1450 20 1490 15 1540 10 1580 10 1610 10	(3/2+) (3/2+) (7/2-) (5/2+)	2 2 (3) 2	0.06 0.06 0.02 0.02	adopted with E(level) 1990 10 2040 10 2080 10 2110 10 2120 20 2140 20		+,9/2+. L [†] 3 (0) (3) (0)	$\begin{array}{c c} \hline C^2S \\ \hline 0.04 \\ 0.01 \\ 0.02 \\ \end{array}$	E(level) 2330 10 2370 10 2410 10 2440 10 2540 10 2580 10	$\frac{J\pi^{\frac{1}{4}}}{(7/2-)(3/2-)}$	(4) (3) (1)	$\frac{C^2S}{0.03}$	
1170 20 1200 10 1280 10 1320 10 1390 20 1430 10 1450 20 1490 15 1540 10 1580 10 1610 10 1670 10	(3/2+) (3/2+) (7/2-) (5/2+)	2 2 (3) 2	0.06 0.06 0.02 0.02	adopted with E(level) 1990 10 2040 10 2080 10 2110 10 2120 20 2140 20 2170 10		3 (0) (3) (0)	$\begin{array}{c c} \hline & C^2S \\ \hline & 0.04 \\ 0.01 \\ 0.02 \\ \hline & 0.04 \\ \hline \end{array}$	E(level) 2330 10 2370 10 2410 10 2440 10 2540 10 2580 10 2630 10	$\frac{J\pi^{\frac{1}{4}}}{(7/2-)(3/2-)}$	(4) (3) (1)	$\frac{C^2S}{0.03}$	
1170 20 1280 10 1280 10 1320 10 1390 20 1430 10 1450 20 1490 15 1540 10 1580 10 1610 10 1670 10 1810 10	(3/2+) (3/2+) (7/2-) (5/2+)	2 2 2 (3) 2 (2)	0.06 0.06 0.02 0.02	adopted with E(level) 1990 10 2040 10 2080 10 2110 10 2120 20 2140 20 2170 10 2180 10		3 (0) (3) (0) 1	$\begin{array}{c c} \hline & C^2S \\ \hline & 0.04 \\ 0.01 \\ 0.02 \\ \hline & 0.04 \\ \hline \end{array}$	E(level) 2330 10 2370 10 2410 10 2440 10 2540 10 2580 10 2630 10 2690 10	$\frac{J\pi^{\frac{1}{4}}}{(7/2-)(3/2-)}$	(4) (3) (1)	$\frac{C^2S}{0.03}$	

[†] Deduced from proton angular distributions at 16 angles, θ =5°−115° compared with DWBA calculations. For L≥3 the agreement with DWBA is rather poor.

¹¹²Cd(pol d,p) 2005Bu20

E=22.0 MeV. Measured $\Delta E-E_{rest}$, $\sigma(\theta)$, $d\sigma/d\Omega$ with the Munich Q3D spectrograph, a 1.8-meter long focal plane detector and a Faraday cup placed behind the ^{112}Cd target. FWHM=5 keV. Spectra measured twice at 11 angles from $17^{\circ}-55^{\circ}$ for antiparallel spin orientations of the polarized deuteron projectile beam and covered an energy range of \approx 2.7 MeV for one magnetic setting of the spectrograph. DWBA analysis.

¹¹³Cd Levels

 $d\sigma/d\Omega = [(d\sigma/d\Omega)^+ + (d\sigma/d\Omega)^-]/2, \text{ where } (d\sigma/d\Omega)^+ \text{ and } (d\sigma/d\Omega)^- \text{ are the differential cross sections measured for the two antiparallel spin orientations. Quoted values in 2005Bu20 represent maximum differential cross sections.}$ for detailed configurations of levels in $^{113}\text{Cd},$ refer to discussion by 2005Bu20.

E(level) [†]	Jπ [‡]	L	$10(\mathbf{s}_{lj})$	Comments
0.0	1 / 2+	0	2.53	$d\sigma/d\Omega$ =703 µb/sr.
263.9 12	11/2-	5	4.30	$d\sigma/d\Omega$ =1.069 mb/sr.
298.3 12	3 / 2+	2	2.37	$d\sigma/d\Omega = 1.994$ mb/sr.
316.3 12	5 / 2+	2	0.67	dσ/dΩ=875 μb/sr.
458.7 12	7 / 2+	4	1.92	$d\sigma/d\Omega$ =376 µb/sr.
522.6 12	7 / 2 –	3	0.30	$d\sigma/d\Omega = 416 \mu b/sr$.
583.8 12	5 / 2+	2	0.29	$d\sigma/d\Omega$ =345 µb/sr.
626.6 12	(3/2+)	2	0.020	$d\sigma/d\Omega = 23 \mu b/sr$.
637.8 12	9 / 2 –	5	0.11	$d\sigma/d\Omega$ =12 µb/sr.
680.6 12	3 / 2+	2	1.48	$d\sigma/d\Omega=1.228$ mb/sr.

 $[\]dot{\tau}$ Determined from L by use of the shell model. The d5/2 shell-model state is almost full, while the d3/2 state is almost empty. For L=2, J was therefore assigned 5/2 or 3/2 from a comparison of $\sigma(d,t)$ and $\sigma(d,p)$.

¹¹²Cd(pol d,p) 2005Bu20 (continued)

¹¹³Cd Levels (continued)

E(level)†	Jπ [‡]	L	$10(s_{lj})$	Comments
709.5 12	5 / 2+	2	0.019	$d\sigma/d\Omega$ =23 $\mu b/sr$.
816.4 12	7 / 2 +	4	0.58	$d\sigma/d\Omega = 124 \mu b/sr$.
877.7 12	(3/2+)	(2)	≈ 0 . 0 7 8 $^{\#}$	$d\sigma/d\Omega$ =64 µb/sr.
883.3 12	1 / 2+	0	0.55	$d\sigma/d\Omega$ =190 $\mu b/sr$.
899.1 12		(2)	≈ 0 . 0 2 7 $^{\#}$	$d\sigma/d\Omega$ =14 µb/sr.
939.5 12		§		$d\sigma/d\Omega=2~\mu b/sr$.
989.1 12	1 / 2 +	0	0.32	$d\sigma/d\Omega = 93 \mu b/sr$.
1007.1 12	5 / 2 + (3 / 2 +)	2	0.026	$d\sigma/d\Omega = 33 \mu b/sr$.
1035.9 <i>12</i> 1048.9 <i>12</i>	(1/2+)	2 (0)	0.025 ≈ 0.11 #	$d\sigma/d\Omega$ =20 μb/sr. $d\sigma/d\Omega$ =43 μb/sr.
1108.9 12	(1/2+)	§	~0.11	$d\sigma/d\Omega = 1 \mu b/sr$.
1124.9 12		(4)	≈ 0 . 0 1 7 $^{\#}$	$d\sigma/d\Omega$ =8 μ b/sr.
1178.1 12	5 / 2+	2	0.0087	$d\sigma/d\Omega=14~\mu b/sr$.
1194.6 12	5 / 2+	2	0.33	$d\sigma/d\Omega$ =401 $\mu b/sr$.
1269.1 12	3 / 2+	2	0.13	$d\sigma/d\Omega$ =142 $\mu b/sr$.
1312.9 12	(11/2-)	(5)	0.047	$d\sigma/d\Omega=12~\mu b/sr$.
1329.4 12	(7/2+)	(4)	0.013	$d\sigma/d\Omega = 4 \mu b/sr$.
1346.4 12	11/2-	5	0.068	$d\sigma/d\Omega = 18 \mu b/sr$.
1394.8 <i>12</i> 1404.6 <i>12</i>	(9/2+) 5/2+	(4) 2	0.019	$d\sigma/d\Omega$ =12 μb/sr. $d\sigma/d\Omega$ =55 μb/sr.
1404.6 12	5 / 2 + 1 1 / 2 -	5	0.043 0.10	$d\sigma/d\Omega = 30 \mu b/sr$. $d\sigma/d\Omega = 32 \mu b/sr$.
1477.9 12	11/2-	5	0.10	$d\sigma/d\Omega$ =55 μ b/sr.
1493.7 12	3 / 2 +	2	0.23	$d\sigma/d\Omega$ =215 µb/sr.
1580.0 12	(3/2+)	2	0.23	$d\sigma/d\Omega=115~\mu b/sr$.
1606.9 12	5 / 2 +	2	0.081	$d\sigma/d\Omega$ =109 $\mu b/sr$.
1661.2 12	3 / 2 +	2	0.034	$d\sigma/d\Omega$ =28 $\mu b/sr$.
1670.4 12	(11/2-)	5	0.48	$d\sigma/d\Omega=154 \mu b/sr.$
1711.0 12		(2)	0.009	$d\sigma/d\Omega = 10 \mu b/sr$.
1735.0 12	11/2-	5	0.128	$d\sigma/d\Omega = 42 \mu b/sr$.
1769.1 12 $1788.9 12$	(3/2+) (1/2+)	2 (0)	0.033 0.016	$d\sigma/d\Omega$ =21 μb/sr. $d\sigma/d\Omega$ =3 μb/sr.
1814.5 12	(1/2+)	(2)	0.028	$d\sigma/d\Omega=53~\mu b/s r$.
1830.8 12	3 / 2+	2	0.012	$d\sigma/d\Omega=96~\mu b/sr$.
1848.6 12	(1/2+)	(0)	0.023	$d\sigma/d\Omega$ =8 $\mu b/sr$.
1890.1 12	5 / 2+	2	0.053	$d\sigma/d\Omega$ =99 $\mu b/sr$.
1906.9 12	7 / 2 –	3	0.089	$d\sigma/d\Omega$ =208 µb/sr.
1940.2 12		§		$d\sigma/d\Omega=20~\mu b/sr.$
1970.8 12		(4) §	0.034	$d\sigma/d\Omega=23 \mu b/sr$.
1999.7 12	1/2-	1	0 14	$d\sigma/d\Omega$ =34 μb/sr. $d\sigma/d\Omega$ =59 μb/sr.
2044.1 12 $2080.4 12$	(1/2+)	(0)	0.14 0.029	$d\sigma/d\Omega = 59 \mu b/sr$. $d\sigma/d\Omega = 15 \mu b/sr$.
2110.2 25	(7/2-)	(3)	0.0044	$d\sigma/d\Omega=10~\mu b/sr$.
2132.1 25	(1/2+)	(0)	0.025	$d\sigma/d\Omega=2$ µb/sr.
2144.9 25		(2)	0.08	$d\sigma/d\Omega=134~\mu b/sr$.
2172 . 4 25	(3/2-)	(1)	0.098	$d\sigma/d\Omega$ =166 $\mu b/sr$.
$2195.8 \ 25$	(3/2-)	(1)	0.037	$d\sigma/d\Omega$ =71 µb/sr.
2214.6 25	7/2-	3	0.045	$d\sigma/d\Omega = 112 \mu b/sr$.
2242.1 25	(7/2-)	(3)	0.095	$d\sigma/d\Omega = 251 \mu b/sr$.
2252.9 25 $2268.2 25$	7 / 2 –	(3) 3	0.063 0.054	$d\sigma/d\Omega$ =93 μb/sr. $d\sigma/d\Omega$ =122 μb/sr.
2288.7 25	1/4-	§	0.004	$d\sigma/d\Omega = 122 \mu b/sr$. $d\sigma/d\Omega = 34 \mu b/sr$.
2316.9 25	(3/2-)	(1)	0.034	dσ/dΩ=36 μb/sr.
2327.4 25	(3/2-)	(1)	0.014	$d\sigma/d\Omega=23~\mu b/sr.$
2349 . 2 25		§		$d\sigma/d\Omega=11$ $\mu b/sr$.
2365 . 2 25		§		$d\sigma/d\Omega$ =22 µb/sr.
2380.0 25	(3/2-)	(1)	0.029	$d\sigma/d\Omega=31~\mu b/sr$.
2409.0 25	(9/6)	(2)	0.047	$d\sigma/d\Omega = 69 \mu b/sr$.
2424.1 25	(3/2-)	(1)	0.13	$d\sigma/d\Omega = 273 \mu b/sr$.
2450.6 25 $2477.2 25$	(3/2-)	(1,2) (1)	0.046	$d\sigma/d\Omega$ =103 μb/sr. $d\sigma/d\Omega$ =56 μb/sr.
2487.9 25	(3/2-)	(1)	0.040	$d\sigma/d\Omega = 19 \mu b/sr$.
2500.4 25	\ <i>,</i>	§	J - ·	$d\sigma/d\Omega=8~\mu b/sr$.
2537.9 25		(3)	0.012	$d\sigma/d\Omega$ =25 $\mu b/sr$.

112Cd(pol d,p) 2005Bu20 (continued)

¹¹³Cd Levels (continued)

E(level) [†]	Jπ [‡]	L	$10(\mathbf{s}_{lj})$	Comments
2555.9 25	3 / 2 –	1	0.046	$d\sigma/d\Omega$ =56 $\mu b/sr$.
2591.7 25	(3/2-)	(1)	0.004	$d\sigma/d\Omega$ =41 $\mu b/sr$.
$2632.7\ 25$	(5/2+)	2	0.11	$d\sigma/d\Omega$ =245 $\mu b/sr$.

- † Comparison of sum rules for spectroscopic strengths from experiment with ibfm and qpm calculations indicate that not all states up to 2.5 MeV associated with the $3s_{1/2}$ and $2d_{3/2}$ shells were observed by 2005Bu20.
- ‡ Assignments based upon comparison of $\sigma(\theta)$ data with DWBA calculations. The distinction between two possible j-values for any given level (i.e. j=1+1/2 or j=1-1/2) were made on basis of deduced analyzing power for level.
- 🖇 σ(θ) data not characteristic of an L-value; level may be populated by multi-step processes or part of an unresolved doublet.
- # Upper limit based on population of level by multi-step processes.

¹¹³Cd(γ,γ') 1994Ge07

Bremsstrahlung at the Stuttgart Dynamitron Facility.

Bremsstrahlung endpoint energy: 4.20 Mev 5.

Enriched Cd (94.6%). Scattered photons were detected by three Ge detectors under angles of 88° , 125° , 149° with respect to the incoming photon beams.

$^{113}\mathrm{Cd}$ Levels

<u>E(level)</u>	Jπ [‡]	$\underline{\hspace{1cm}}^{\dagger}$	E(level)
0.0	1 / 2 +	stable	2796
1813	(3/2+)		2817
1855			2902
1873			2913
1942		607 fs +90-70	2929
2044	3 / 2+, (3 / 2-, 1 / 2-)		2943
2128			3040
2173	3 / 2 –	90 fs 7	3058
2182	(3/2-)	228 fs +86-50	3105
2318			3222
2335			3281
2354		3.0×10^{2} fs $+16-6$	3301
2409			3333
2428	3 / 2 - , 1 / 2 -		3378
2449			3412
2535	(3/2)		3480
2545			3486
2556			3526
2578			3547
2588	3 / 2 –		3741
2743			3814
2753			3850
2773			3902

 $^{^{\}dagger}$ From nuclear resonance fluorescence, assuming J=3/2.

 $^{^{\}ddagger}$ The spins of the excited levels have been determined for few levels.

¹¹³Cd(n,n'γ) 1987BaYW,1991NeZX

Enriched≈96% target.

Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, linear polarization.

Also measurement $^{112}Cd(n,\gamma)$ E=res.

1991NeZX has reanalyzed the data of 1987BaYW and placed many new gammas.

¹¹³Cd Levels

E(level)	$J\pi^{\dagger}$	E(level)		E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$
0.0	1/2+	1051.2 5	7 / 2 –	1542.28 9	(1/2)+
263.68 6	11/2-	1109.5 6		1561.5 5	
298.567 17	3 / 2 +	1124.5 6		1575.8 5	7 / 2 –
316.207 16	5 / 2+	1126.22 6	3 / 2+	1605.7 3	
458.578 24	7 / 2 +	1177.26 8	3 / 2+	1607.17 9	5 / 2+
522.16	7 / 2 –	1195.0 3	3 / 2 –	1658.5 5	
583.89 4	5 / 2+	1209.56 13	13/2-	1675.11 9	3 / 2 +
638.35 6	9 / 2 –	1214.31 13	11/2+	1732.5 5	
680.550 21	3 / 2 +	1268.13 6	3 / 2+	1746.09 14	3 / 2 –
708.556 22	5 / 2+	1279.55 7	3 / 2+	1779.02 18	9 / 2 –
816.62 4	7 / 2 +	1301.03 7	3 / 2 + , 5 / 2 +	1798.9 5	(1/2,3/2,5/2) +
855.4 3	5 / 2 –	1313.74 12	5 / 2+	1823.5 5	
870.20 14	15/2-	1322.17 13	7 / 2 –	1842.94 14	(3/2-)
878.5 5	3 / 2 +	1351.6 5	5 / 2 , 7 / 2	1867.99 9	7 / 2 - , 9 / 2 -
883.62 5	1 / 2 +	1364.71 7		1892.44 12	7 / 2 –
897.3 5	3 / 2 +	1387.44 8	5 / 2 + , 3 / 2 +	1902.5 5	
939.725	9 / 2 +	1390.56 9	1/2+,3/2+	1904.28 11	5/2+,7/2+
988.40 6	1 / 2 +	1395.5 5		2037.69 19	5 / 2 , 7 / 2 , 9 / 2
1002.894	3 / 2+	1405.81 10	1 / 2 + , 3 / 2 +	2094.3 4	7 / 2 –
1007.16 5	7 / 2 +	1407.44 25	(9/2) +	2113.18 22	7 / 2 –
1034.1 5	3 / 2+	1423.85 12	‡	2173.71 12	1 / 2 - , 3 / 2 -
1037.42	7 / 2 +	1450.3 5		2219.5 5	
1047.49 10	7 / 2 +	1479.1 5	1 / 2 , 3 / 2	2319.70 18	3 / 2 –
1049.68 10	3 / 2 +	1492.99 9	1 / 2 + , 3 / 2 +	2759.32 12	3 / 2 + , 5 / 2 +

 $\gamma(^{113}\mathrm{Cd})$

Εγ	E(level)	Ιγ	Mult.†	δ
 				
96.9 2	680.550	1.6 3		
142 . 35 2	458.578	34 3	M1+E2	-0.043
x 162.32 5		0.23 5		
171.07 12	1450.3	0.27 8		
174.79 9	1301.03	0.25 8		
184.62	1124.5	0.24 8		
x 186.17 12		0.09 2		
x196.90 26		0.28 8		
x 198.27 13		0.47 14		
205.86 8	522.1	0.424	E 1	
217.00 3	855.4	0.56 6	E 2	
224.69 25	1492.99	0.03 1		
x228.7 3		0.05 2		
x230.34 25		0.16 5		
x232.6 3		0.05 3		
242.6 3	1126.22	0.04 1	M1	
x244.73 11		0.26 5		
249.93 6	708.556	1.2 1	M1+E2	+0.24 8
258.72 2	522.1	34 2	E 2	
264.24	1390.56	0.144		
267.68 6	583.89	0.82 16	M1	
x271.04 19		0.06 2		
x 2 7 3 . 0 5 1 9		0.09 3		
274.67 18	1214.31	0.14 4	M1	

 $^{^{\}dagger}$ As given by 1991NeZX, see adopted levels for comments. ‡ 1991NeZX suggested a 11/2- from syst, not adopted in $(\alpha,2n\gamma)$ 1997Wa20.

$^{113}Cd(n,n'\gamma) \qquad 1987BaYW, 1991NeZX \ (continued)$

$\gamma(^{113}\text{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.†	δ	Comments
279.80# 15	988.40	0.12# 2			
	1405.81	0.12# 2			
285.19 8	583.89	0.46 4	M1		
288.53 30		0.05 3			
291.54 25	1279.55	0.10 3	M1		
294.52# 21	878.5	0.62# 18	1111		
201.02 21	1002.89	0.62 # 18			
298.58 2	298.567	100	MILEO	+0.30 +3-1	
307.9 20	988.40		M1+E2	+0.30 +3-1	
		0.05 2			
313.66 30	897.3	0.71 5	7.0		
316.21 2	316.207	73 4	E2		W. J
322.35 3	1002.89	1.4 1	M1+E2	-0.8 2	Mult.: $\delta = -0.8 \ 2 \text{ or } -2.2 \ 10.$
332.97 3	855.4	12.2 11	M1+E2	-0.272	
339.30 \$ 10	1195.0	1.68 3	M1+E2	-0.2015	
	1209.56	0.18			
341.89 8					
344.31 12	1351.6	0.08 2			
356.7# 4	1037.4	0.23# 7	E2		
	1390.56	0.23# 7			
358.03 21	816.62	2.2 6			
364.37 3	680.550	3.2 3	M1+E2	-0.02 7	
369.10 11	1049.68	0.55 11	M1		
374.64 3	638.35	13.6 14	M1+E2	-0.25 2	
378.21 23	000.00	0.14 4		0.20 2	
381.96 3	680.550	3.0 3	M1+E2	+0.16 15	Mult.: $\delta = +0.16$ 15 or 2.3 7.
	080.550		WII+E2	+0.10 15	Wuit 0=+0.10 15 01 2.5 7.
389.3 3	500 FFC	0.43 8	M1 . E0	0 04 4	
392.36 2	708.556	10 1	M1+E2	-0.244	
398.08 15		0.19 3			
402.19 13	1390.56	0.25 7			
409.97 9	708.556	1.0 2	M1+E2	-0.10 4	
412.85 6	1051.2	3.3 6	M1+E2	-0.411	
416.11 4	1450.3	0.31 4			
	1542 . 28	0.314			
417.4# 3	1126 . 22	0.44# 8	M1		
	1301.03	0.44#8			
	1405.81	0.44#8			
419.8 3	878.5	0.12 3			
423.34 18	1007.16	0.22 6	M1		
427.68 16	2173.71	0.26 5	M1		
438.95 25	897.3	0.16 3			
445.2 3	1479.1	0.18 4			
449.9 3	1034.1	0.19 4	M1		
453.44 11	1037.4	0.36 7	M1		
	1037.4	0.36 7			
463.69 13			M1 M1		
481.10 5	939.72	3.3 3	M1		
496.8 3	1351.6	0.26 8			
.	1904.28	0.26 8			T. C
500.43 3	816.62	6.2 7			Eγ: from private communication to 1991NeZX.
500.47 3		6.2 7	M1+E2	+0.47	δ : +0.47< δ <3.0.
517.67 15	816.62	0.204			
528.78 5	1051 . 2	1.6 3	M1+E2	-2.25 115	
539.39 22	1542 . 28	0.53 10			
542.4 3	1126 . 22	0.326	M1		
548.54 5	1007.16	1.2 2	M1		
551.50 21	1746.09	1.3 3			
553.9 3	1423.85	0.38 11	E2		Eγ: placed from a 1192 level in $(\alpha, 2n\gamma)$.
562.26 9	878.5	1.3 2			
565.7 3		0.16 3			
567.2 3		0.16 3			
569.3 3	1779.02	0.10 3	E2		
000.00	878.5	2.5# 7	112		
580 0# 5	0.0.0				
580.0# 5	207 2	9 5# 7			
580.0# <i>5</i> 583.93 <i>7</i>	897.3 583.89	2.5 [#] 7 33 3	E2		

1529

¹¹³Cd(n,n'γ) 1987BaYW,1991NeZX (continued)

$\gamma(^{113}\text{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.†	δ	Comments
588.92 16	1047.49	1.1 2	M1		
x593.45 25	1011.10	0.31 9	1111		
598.88 \$ 15	897.3	6.0 \ 8			
	1279 . 55	6.0 8	M1		
606.33 25	870.20	1.04 13	E 2		
x608.8 4		0.19 6			
611.0 3	1195.0	0.34 4	E1		
$620.76^{\ddagger}8$ 623.59.7	1561.5	$\begin{array}{cccc} 1 \ . \ 1 & 3 \\ 1 \ . \ 8 & 4 \end{array}$	E o		
624.2 3	939.72 1479.1	1.0 4	E 2		
643.1 3	1351.6	0.14 3			
648.26 25	1842.94	0.41 16			
658.66 8	1542.28	0.68 25			
x661.57 25		$0.10 \ 3$			
663.96 12	1561.5	0.13 6			
x665.98 25		0.79 15			
665.98 25	1605.7	0.79 15	TI O		
670.4 4 $672.25 # 15$	2094.3	0.37 <i>15</i> 0.1 [#]	E 2		
672.25" 15	988.40 1195.0	2.5# 6	E2		
678.9	1387.44	2.0 0	112		
680.59 5	680.550	14.1 9	M1+E2	-1.8 1	
684.10# 11	1268.13	0.72 # 15	M1		
	1322 . 17	0.72# 15			
687.4 [‡] 3	1902.5	0.124			
691.00 8	1007.16	3.4 6	M1+E2	0.35 5	
*703.82 25 708.52\\$ 5	500 FFC	0.08 3	E O		
108.523 5	708.556 1007.16	4.9 § 5 ≈1.6 §	E2 E2		
717.13 11	1301.03	1.6 3	E 2		
721.22 8	1037.4	2.5 7	M1+E2	0.29 1	
731.37	1047.49	2.8 7	M1		
733.3	1049.68	0.6			Eγ: from 1978Ma17.
735.10 10	1034 . 1	2.7 7	M1		
738.76 9	1037.4	2.2 6	E 2		
745.00 17	1561.5	0.53 16			
*751.95 21 755.67 16	1014 91	0.62 18 $1.4 3$	E o		
x760.39 25	1214.31	0.10 2	E 2		
×763.6 3		0.25 7			
765.1 3	1798.9	0.20 8			
767.65 13	1351 . 6	1.2 2			
770.4 3	1450.3	0.59 18			
x777.43 25		0.18 5			
780.81 11	1364.71	0.51 16			
784.6 3 $788.0 3$	1492.99 1051.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
791.49 15	1675.11	0.08 2	M1		
794.75 ‡ 18	1732.5	0.56 16			
799.9 6	1322.17	0.68 3			
808.3 5	1124 . 5	$0.45\ 20$			
809.96 25	1126.22	1.2 5	M1		
812.7 4	1492.99	0.13 6			
823.64 827.65 25	1407.44 1126.22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		
829.4 3	1351.6	0.40 12	141.1		
x838.64 22		0.13 23			
845.80 ‡ 9	1109.5	0.88 17			
855.05 19	1313 . 74	0.08 3			
856.73 25	1904.28	0.08 3			
861.24 15	1177.26	1.5 2			
*870.10 25 878.62 [#] 9	979 =	0.09 <i>4</i> 8.4 [#] 8			
010.02" 9	878.5	0.4" ð			
		(Continued o	n next page (foot	notes at end of table)

$^{113}Cd(n,n'\gamma) \qquad 1987BaYW, 1991NeZX \ (continued)$

$\gamma(^{113}\text{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.†	δ	Comments
878.62# 9	1177.26	8.4# 8			
878.62" 9	1177.26	8.4" 8 8.4 [#] 8			
883.60 5	883.62	6.5 6			
x888.02 11	000.02	0.28 8			
890.84 22	1746.09	0.16 5			
892.9 3	1351.6	0.09 3			
896.7 2	1195.0	2.7 3	E1		
x903.2 4		0.20 8			
906.08 25	1364.71	0.242			
909.12 13	1492.99	0.36 12			
x917.81 5		1.2 2			
926.64	1607.17	0.29 12	M1		
928.77 18	1387.44	1.0 3			
x933.6 3		0.062			
937.2 3	1575.8	0.24 7			
x938.98 25		0.22 6			
x942.52 25		0.10 3			
945.96 15	1209.56	1.1 2			
948.85 25	1407.44	0.11 5	M1 / E0	0 0 0	
951.95 <i>13</i> ×957.70 <i>22</i>	1268.13	1.5 3	M1+E2	-0.8 3	
960.46 15	2759.32	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
963.25 15	1279.55	0.07 2	M1		
969.55 10	1268.13	1.1 2	M1		
x974.06 11		0.16 2			
979.08 23	2173.71	0.13 5	M1		
980.94 25	1279.55	0.14 5	M1		
987.5	1842.94				
988.43 7	988.40	4.8 3			
994.53 11	1675.11	0.40 8	M1		
997.58 14	1313.74	$0.25\ 5$			
1002.769	1002 . 89	0.82 16	M1		
x1007.50 25		0.124			
1007.50 ‡ 25	1823.5	0.124			
1012.91 21	1867.99	0.52 16			
1023.00 25	1607.17	0.60 24	M1		
x1027.0 3	1004 1	0.06 2	M1 F0	0 70 00	
1033.80 12	1034.1	4.0 8	M1+E2	0.52 22	
1036.87 <i>15</i> 1049.75 <i>16</i>	1892.44 1049.68	$\begin{array}{cccc} 0.90 & 27 \\ 3.1 & 3 \end{array}$	M1 M1+E2	-0.49 8	Mult.: $\delta = -0.49 \ 8 \text{ or } -30 + 60 - 20.$
1052.95 12	1351.6	0.47 14	WII+E2	-0.49 8	Mult 0=-0.49 8 01 -30 +00-20.
1052.55 12	1575.8	0.47 14			
1058.48 11	1322.17	0.70 19			
1066.16 8	1364.71	1.4 1			
x 1076.08 10		0.18 5			
1079.46	1395.5	0.53 10			
1088.89 9	1387.44	1.3 3			
1092.18 21	1390.56	0.16 8			
1097.89 22	2037.69	0.52 19			
1107.11 18	1405 . 81	1.1 3			
x1116.51 17		0.16 3			
1126.20 8	1126.22	3.4 3	M1+E2	-0.02 3	
1135.45‡	1658.5	0.45 9			
^x 1144.0 <i>4</i> ^x 1147.2 <i>4</i>		$0.35 11 \\ 0.35 14$			
1147.2 4	1605.7	0.35 14			
1147.2 4	1423.85	0.33 14	M1		
x1165.49 11	1120.00	0.55 11	****		
1176.76# 24	1177.26	<1.1#			
1176.76# 15	1492.99	1.1# 3	M1+E2	+0.23 17	
1180.70 18	1479.1	0.56 11			
1194.43 10	1195.0	1.08 11	E1		
1214.8 5	1798.9	1.4 2			
			Continued o	n next page (foot	notes at end of table)

¹¹³Cd(n,n'γ) 1987BaYW,1991NeZX (continued)

$\gamma(^{113}\mathrm{Cd})$ (continued)

Εγ	E(level)	Ιγ	Mult.†	Εγ	E(level)	Ιγ	Mult.†
x1218.4 4		0.09 4		1606.96 22	1607.17	0.08 2	E2
1218.4 4	2037.69	0.75 6		x1609.91 25	1007.17	0.08 2	152
x1230.74 21	2001.00	0.20 8		×1612.30 25		0.10 2	
x1240.8 5		0.29 12		x1622.30 25		0.10 2	
x 1 2 4 8 . 3 5		0.21 6		x1626.7 4		0.13 3	
x1253.2 3		0.31 6		1628.8 4	1892.44	0.23 6	E 2
x1261.93 10		0.40 11		x 1645.33 20		0.244	
1268 . 32 15	1268 . 13	0.446	M1	x 1656.6 5		0.104	
x1273.23 17		0.124		x1666.37 22		0.04 1	
1279.81 11	1279 . 55	0.09 2	M1	x1670.3 3		0.04 1	
1289.4 3	2173.71	0.20 5	E1	x1675.7 4		0.03 1	
x1293.46 12		0.45 8		x1678.97 22		0.15 6	
1301.07 10	1301.03	0.41 8	341	x1682.79 25		0.022 4	
1308.70 11	1607.17	0.34 8	M1	x1689.34 15		0.20 4	
1312.18 <i>15</i> ×1315.84 <i>16</i>	1575.8	$0.13 \ 3$ $0.08 \ 3$		^x 1694.06 <i>18</i> ^x 1698.18 <i>16</i>		0.06 <i>1</i> 0.19 <i>3</i>	
1320.43 15	1842.94	0.47 8		x1705.48		0.19 3	
1020.40 10	1904.28	0.47 8		×1717.40 15		0.16 3	
x1325.46 22	1001.20	0.17 5		x1721.06 16		0.049 15	
x1326.95 15		0.21 6		x1743.2 5		0.064 22	
x1332.94 21		0.06 2		1746.0 5	1746.09	0.26 9	
1345.56 8	1867.99	0.71 5		x1758.8 4		0.092 23	
x 1 3 5 4 . 3 4 2 5		0.04 1		x 1 7 6 4 . 4 4		0.036 6	
1370.22 15	1892.44	0.610 6		x1767.7 4		0.154	
1376 . 64 25	1675.11	0.28 11	M1	x1781.8 5		0.26 7	
1387.3 5	1387 . 44	0.17 8		x 1 7 8 5 . 8 3 2 5		0.46 11	
1390.42 15	1390.56	1.4 4		x1791.2 3		0.051 13	
1394.7 4	2759.32	0.37 14		x1792.7 4		0.015 4	
1405.85 11	1405.81	0.95 19		x1794.7 3		0.015 4	
x1413.11 25		0.34 14		1798.65 25	1798.9	0.051 10	
x1417.21 25 x1423.7 4		0.092 0.92		x1803.7 4 x1806.1 4		0.14 4	
1429.9 4	1746.09	0.92		x1812.96		$\begin{array}{cccc} 0.17 & 5 \\ 0.72 & 14 \end{array}$	
×1433.6	1740.03	0.13 4		x1820.8 4		0.72 14	
1445.70 11	1904.28	1.2 2		x1826.12 20		0.34 8	
x1452.96 14		0.04 1		1830.7 5	2094.3	0.17 5	E2
x1460.41 25		0.04 1		x1837.45 23		0.032 8	
1464.32 18	2319 . 70	0.12 3	M1	x 1855.18		0.13 3	
x1468.79 25		0.20 8		x 1867.6 4		0.15 4	
$^{x}1472$. 0 3		0.64 9		$^{x}1873.02\ 25$		0.030 7	
1474.8 3	2113 . 18	0.2 1	M1	x1881.5 4		0.040 10	
1479.19 15	1479.1	1.2 2		x1888.7 4		0.032 8	
1482.85 25	1798.9	0.16 5		x1895.4 4		0.032 8	
*1484.80 25		0.05 2		x1923.8 4		0.031 9	
1492.88# 25	1492.99	0.06# 2	T3.1	x1926.7 5		0.029 9	
x1496.66 15	2173.71	0.06# 2 0.29 5	E1	^x 1930.29 <i>25</i> ^x 1937.8 <i>4</i>		$ \begin{array}{cccc} 0.05 & 2 \\ 0.08 & 2 \end{array} $	
x1504.05 21		0.29 3		1937.8 4	2759.32	0.08 2	
×1507.83 21		0.06 2		x1952.9 3	2100.02	0.11 4	
1515.4 2	1779.02	0.82 16	M1	x1969.0 3		0.028 8	
x1525.71 17		0.37 7		x1970.9 3		0.048 14	
x1534.46 25		0.05 2		x1974.2 3		0.036 11	
x 1 5 3 8 . 0 6 2 5		0.062		x1976.1 4		0.015 6	
$^{x}1541$. 23 25		0.05 2		x1995.7 4		0.062	
x1545.17 25		0.08 3		$^{x}2044.43.22$		0.16 3	
x 1 5 4 9 . 0 5 2 5		0.052		x2053.9 4		0.18 4	
x1552.68 14		0.19 6		x2091.2 4		0.14 4	
×1571.3 5		0.15 5		x2112.2 3		0.041 10	
*1574.16 25	0007 00	0.41 12		x2135.6 3	0150 51	0.14 3	T2 *
1579.1 5	2037.69	0.12 4		2173.64 <i>21</i>	2173.71	0.34 6	E1
*1585.74 25 1590.8 3	2113.18	$0.11 \ 3$ $0.35 \ 9$	M1	^x 2182.5 4 ^x 2209.0 4		$egin{array}{cccccccccccccccccccccccccccccccccccc$	
1604.23 23	1867.99	0.33 3	1111	x2230.5 3		0.032 8	
			·				

¹¹³Cd(n,n'γ) 1987BaYW,1991NeZX (continued)

$\gamma(^{113}Cd)$ (continued)

Εγ	E(level)	Ιγ	Mult.†	Εγ	Ιγ
x2278.8 4		0.07 2		x2506.5 7	0.08 2
x2313.7 6		0.14 4		x2525.6 4	0.11 3
2319.7 6	2319.70	$0.54\ 22$	E1	*2535.4 4	0.12 3
x2336.0 4		$0.12\ 2$		x 2 5 4 5 . 6 5	0.104
x 2 3 5 3 . 0		0.13 3		x2557.5 5	0.08 2
x2383.7 4		0.10 3		x2588.6 5	0.216
x2394.9 6		0.16 7		x2598.8 6	0.16 4
$^{x}2409$. 0 4		0.13 5		x2674.6 8	0.6 3
x2413.0 4		0.13 5		*2767.8 6	0.14 5
x 2 4 2 8 . 9 5		0.11 4		x2800.3 4	0.144
x 2 4 5 0 . 4 4		0.04 1		x3213.6 8	$0.04\ 2$
2460.62	2759 . 32	0.55 11			

- † From 1987BaYW, with new results from 1991NeZX.
- ‡ γ placed by evaluator using the $(\alpha,n\gamma)$ of 1997Wa20.
- § Multiply placed; intensity suitably divided.
- # Multiply placed; undivided intensity given.
- x γ ray not placed in level scheme.

$^{113}{ m Cd}(p,p'), (p,p'\gamma)$ _ 1967Ko07

E=14 MeV. $\sigma(\theta)$, $\theta=30^{\circ}-145^{\circ}$ with magnetic spectrograph, FWHM=40 keV, 1967Ko07.

¹¹³Cd Levels

E(level)	$\underline{\hspace{1cm} J\pi^{\ddagger}}$	$\underline{\hspace{1cm}} T_{1/2} \underline{\hspace{1cm}}$	$\frac{L^{\dagger}}{}$	$\underline{\hspace{1cm}}\beta_L$	Comments
0.0	1 / 2+				$J\pi$: from adopted levels.
292 10	3 / 2+		2	0.19	
316		11.0 ns 6			T _{1/9} : from pulsed-beam γ(t) with semi, 1972RaZM looking at 316γ.
576 10	5 / 2+		2	0.22	1/2
670 10	3/2+,5/2+		2	0.11,0.99	
879 10	3 / 2+, 5 / 2+		2	0.098,0.08	
1758 10	5/2-,7/2-		3	0.20,0.17	
1887 10	5/2-,7/2-		3	0.15,0.13	† From comparison with DWBA calculations.
1986 10	5/2-,7/2-		3	0.12,0.10	‡ Assumed for β_T calculation.

$^{113}Cd(d,d') \\ \phantom{^{113}Cd(d,d')} \\ 1962Jo05$

 $E{=}15~MeV.~Magnetic~spectrograph,~resolution{\approx}40~keV.$

¹¹³Cd Levels

E(level)	$J\pi^{\dagger}$	Comments
0.0		
300	+	
580	+	
690	+	
1160		
1760	+	$J\pi$: note that π =- for the 1758 level seen in (p,p') .
2010?		

 $^{^{\}dagger}$ From $\sigma(42)/\sigma(59).$

Coulomb Excitation 1991KrZR,1958Mc02,1972An28

 $1991 KrZR: \ ^{113}Cd(^{197}Au,^{197}Au',\gamma) \ E= approximately \ 4.5 \ MeV/u.$ Enriched ^{113}Cd target with thick lead-backing to stop the recoils 3 HPGe detectors at 0°, 54°, and 90°.

 γ -intensities, γ - γ -coincidences and angular distributions. Spins and multipole mixing ratios deduced from angular distributions.

1958Mc02: 113 Cd(p,p'y) E=2.1-3.3 MeV, scin. Measured Ey, Iy, $\gamma(\theta)$, linear pol.

 $1972 An 28: \ ^{113}Cd(\alpha,\alpha'\gamma) \ E=12.4 \ MeV. \ ^{113}Cd(^{12}C,^{12}C'\gamma) \ E=35.3, \ 41.1 \ MeV, \ semi. \ Measured \ E\gamma, \ I\gamma.$

Other: 1971GeZW.

¹¹³Cd Levels

E(level)	$J\pi^{\dagger}$	T _{1/2} ‡	Comments
0.0	1/2+		
298.59 7	3/2+	29 ps 9	$B(E2)\uparrow=0.13\ 2\ (1972An28).$
316.18 7	5 / 2+	4.9 ns 7	$B(E2)\uparrow=0.0080 \ 10 \ (1972An28).$
583.95 7	5 / 2+	6.9 ps 14	$B(E2) \uparrow = 0.32$ 6 (1972An28).
680.41 8	3 / 2+	<12 fs	$B(E2) \uparrow = 0.070 \ 15 \ (1972An28).$
708.49 7	5 / 2 +		
897.49 9	3 / 2 +		
1006.88 12	7 / 2+		
1313.779	5 / 2+		
1450.81 13	3 / 2+	† As given b	y 1991KrZR.
1513.05 12	7 / 2 +	‡ From B(E2).

$\gamma(^{113}\text{Cd})$

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)		Mult.	δ	α	Comments
17.7	316.18	3.1 4	M1		10.2 3	Iγ: from 1972An28. B(M1)(W.u.)=0.019 5.
96.2 1	680.41	147.2	[M1,E2]		1.1 6	_ (====,(,, ==========================
267.7 1	583.95	>0.0				
285.2 1	583.95	>0.0				
298.6 1	298.59	100	M1+E2	+0.30 +3-1	0.029 5	δ : from 1972An28. δ =0.29 (1958Mc02) from γ(θ) and linear polarization. δ =0.26 +5-5 or -3.6 +6-10 (1991KrZR).
						B(M1)(W.u.)=0.025 8; B(E2)(W.u.)=20 8.
316.2 1	316.18	100	[E2]		0.0080 10	B(E2)(W.u.)=0.83 13.
364.3 1	680.41	30.2	M1+E2	-0.02 7		δ: from 1972An28. δ =-0.17 +7-6 or 2.7 +6-4 (1991KrZR).
						B(M1)(W.u.)>2.5.
382.0 1	680.41	26.6 4	M1+E2	+0.16 15		δ: from 1972An28. δ =0.16 +5-5 or -11 +7-5 (1991KrZR).
						B(M1)(W.u.)>1.7.
392.3 1	708.49	36.5	M1 + E2			δ : δ =-0.17 +12-17 or -2.7 +8-16 (1991KrZR).
409.9 1	708.49	4.9	M1 + E2			$\delta: \ \delta = +7 \ +14-3 \ or \ -0.17 \ +17-20 \ (1991KrZR).$
581.3 1	897.49	>0.0				
583.9 1	583.95	100	E2			B(E2)(W.u.)=37 8.
598.9 1	897.49	64.1	M1+E2			δ : δ =+5.9 +87-18 or -0.09 +7-8 (1991KrZR).
680.6	680.41	100 23	M1+E2	+0.02 +2-6		δ: from 1972An28. δ=0.15 +5-6 or -2.4 +3-4 (1991KrZR).
						B(M1)(W.u.)>1.2.
690.7 1	1006.88		M1+E2	3.7 +63-17		δ: from 1991KrZR.
708.5 1	708.49	14.7	M1+E2			δ : δ =+0.29 +9-9 or -4 +1-3 (1991KrZR).
729.8 1	1313.77	23.5	M1+E2	-0.18 +11-12		δ: from 1991KrZR.
770.4 1	1450.81		M1+E2			δ : δ =+0.01 +25-25 or 4.1 -23 (1991KrZR).
929.1 1	1513.05		M1+E2	0.26 + 10 - 10		δ: from 1991KrZR.
997.6 1	1313 . 77	7	M1+E2	1.6 + 11 - 11		δ: from 1991KrZR.

 $^{^{\}ddagger}$ % photon branching from each level (1991KrZR).

114Cd(pol d,t) 2005Bu20

Vector polarization P_3 of beam was ${\approx}60\%$ and obtained with an atomic beam source. E=25.0 MeV. Measured $\Delta E - E_{rest}$, $\sigma(\theta)$, $d\sigma/d\Omega$ with the Munich Q3D spectrograph, a 1.8-meter long focal plane detector and a Faraday cup placed behind the ^{114}Cd target. FWHM ${\approx}5$ keV. Spectra measured twice at 11 angles from 8°-45° for antiparallel spin orientations of the polarized deuteron projectile beam and covered an energy range of ${\approx}2.7$ MeV for one magnetic setting of the spectrograph. DWBA analysis.

$^{113}\mathrm{Cd}$ Levels

$$\label{eq:dsigma} \begin{split} & d\sigma/d\Omega = [(d\sigma/d\Omega)^+ + (d\sigma/d\Omega)^-]/2, \text{ where } (d\sigma/d\Omega)^+ \text{ and } (d\sigma/d\Omega)^- \text{ are the differential cross sections measured for the two antiparallel spin orientations. Quoted values in 2005Bu20 represent maximum differential cross sections. \\ & \text{for detailed configurations of levels in } ^{113}\text{Cd}, \text{ refer to discussion by } 2005Bu20. \end{split}$$

E(level) [†]	Jπ [‡]	_L	$10(\gamma_{lj})$	Comments
0.0	1/2+	0	2.45	$d\sigma/d\Omega$ =3.135 mb/sr.
262.5 14	11/2-	5	9.46	$d\sigma/d\Omega$ =5.135 mb/sr. $d\sigma/d\Omega$ =563 µb/sr.
297.7 14	3/2+	2	2.51	$d\sigma/d\Omega = 2.304$ mb/sr.
315.5 14	5/2+	2	6.18	$d\sigma/d\Omega = 6.153$ mb/sr.
458.6 14	7/2+	4	11.96	$d\sigma/d\Omega$ =783 µb/sr.
522.3 14	7/2-	3	1.36	$d\sigma/d\Omega = 314 \mu\text{b/sr}$.
584.8 14	5/2+	2	1.01	$d\sigma/d\Omega = 1090 \mu b/sr$.
638.2 14	(9/2-)	(5)	0.15	$d\sigma/d\Omega=5$ $\mu b/sr$.
681.5 14	3/2+	2	0.13	$d\sigma/d\Omega = 748 \mu\text{b/sr}.$
709.5 14	5/2+	2	0.11	$d\sigma/d\Omega = 346 \text{ µb/sr}.$
817.4 14	7/2+	4	2.98	$d\sigma/d\Omega = 195 \mu\text{b/sr}$.
879.8 14	3/2+	2	0.38	$d\sigma/d\Omega = 374 \text{ µb/sr.}$
884.8 14	1/2+	0	0.063	$d\sigma/d\Omega = 98 \mu b/sr$.
898.4 14	(3/2+)	(2)	0.003	$d\sigma/d\Omega = 90 \mu b/sr$.
940.4 14	9/2+	4	0.031	$d\sigma/d\Omega = 15 \mu b/sr$.
989.0 14	1/2+	0	0.28	$d\sigma/d\Omega = 665 \mu b/sr$.
		2		
1008.2 14	5/2+	2	0.41 0.015	$d\sigma/d\Omega = 534 \mu b/sr$.
1033.5 14	(3/2+)	0		$d\sigma/d\Omega = 187 \mu b/sr$.
1050.7 14	1 / 2+	§	0.033	$d\sigma/d\Omega = 67 \mu b/sr$.
1108.4 14	(2/2.)		0.04	$d\sigma/d\Omega = 1 \mu b/sr$.
1125.9 14	(3/2+)	2	0.04	$d\sigma/d\Omega = 14 \mu b/sr$.
1178.3 14	5 / 2 +	2	0.077	$d\sigma/d\Omega = 114 \mu b/sr$.
1196.1 14	5 / 2 +	2	1.75	$d\sigma/d\Omega = 2560 \mu b/sr$.
1262.5 14	7 / 2 +	4	0.72	$d\sigma/d\Omega = 59 \mu b/sr$.
1302.2 14	3 / 2 +	2	0.014	$d\sigma/d\Omega = 16 \mu b/sr$.
1314.4 14	(9/2+)	(4)	0.36	$d\sigma/d\Omega = 26 \mu b/sr$.
1329.8 14	7 / 2 +	4	0.12	$d\sigma/d\Omega = 8 \mu b/sr$.
1348.3 14	11/2-	5	0.044	$d\sigma/d\Omega = 4 \mu b/sr$.
1366.2 14	5 / 2 +	2	0.0067	$d\sigma/d\Omega = 9 \mu b/sr$.
1396.5 14	9 / 2 +	4	0.26	$d\sigma/d\Omega=31 \mu b/sr$.
1406.0 14	5 / 2 +	2	0.18	$d\sigma/d\Omega = 262 \mu b/sr$.
1433.0 14	7 / 2 +	4	0.18	$d\sigma/d\Omega = 14 \mu b/sr$.
1452.3 14		§ s		$d\sigma/d\Omega=2$ µb/sr.
1473.4 14		§		$d\sigma/d\Omega=10~\mu b/sr$.
1493.9 14	3 / 2 +	2	0.057	$d\sigma/d\Omega=80 \mu b/sr$.
1579.2 14	(5/2+)	2	0.164	$d\sigma/d\Omega$ =267 µb/sr.
1607.6 14	5 / 2 +	2	0.36	$d\sigma/d\Omega=571~\mu b/sr.$
1662.2 14	(3/2+)	(2)	0.033	$d\sigma/d\Omega$ =69 µb/sr.
1689.6 14		§		$d\sigma/d\Omega$ =39 µb/sr.
1700.1 14	(11/2-)	(5)	0.34	$d\sigma/d\Omega=18 \mu b/sr$.
1713.0 14	(3/2-)	(1)	0.010	$d\sigma/d\Omega=35~\mu b/sr.$
1744.1 <i>14</i>	(5/2+)	2	0.032	$d\sigma/d\Omega$ =66 $\mu b/sr$.
1769.4 14	(3/2+)	2	0.010	$d\sigma/d\Omega=13 \mu b/sr$.
1781.4 14	(3/2+)	2	0.088	$d\sigma/d\Omega$ =95 µb/sr.
1786.5 14	(3/2+)	2	0.079	$d\sigma/d\Omega$ =66 µb/sr.
1813.1 14	(7/2+)	4	0.54	$d\sigma/d\Omega=46 \mu b/sr$.
1825.1 14	5 / 2 +	2	0.057	$d\sigma/d\Omega = 90 \mu b/sr.$
1833.5 14	3 / 2 +	2	0.050	$d\sigma/d\Omega = 61 \mu b/sr$.
1852.3 14	1 / 2 +	0	0.094	$d\sigma/d\Omega = 243 \mu b/sr$.
1873.4 14	3 / 2 +	2	0.13	$d\sigma/d\Omega = 164 \mu b/sr$.
1889.0 14	5 / 2 +	2	0.154	$d\sigma/d\Omega = 250 \mu b/sr$.
1905.0 14	(7/2-)	(3)	0.042	$d\sigma/d\Omega=12~\mu b/sr$.
1911.4 14	(5/2+)	(2)	0.011	$d\sigma/d\Omega=11~\mu b/sr$.
1923.3 14	5 / 2+	2	0.016	$d\sigma/d\Omega=25~\mu b/sr.$

114Cd(pol d,t) 2005Bu20 (continued)

 $^{113}\mathrm{Cd}$ Levels (continued)

E(level) [†]	Jπ‡	_L_	$10(\gamma_{lj})$	Comments
1943.0 14	(3/2+)	2	0.026	$d\sigma/d\Omega$ =32 $\mu b/sr$.
1969.8 14	7 / 2+	4	0.22	$d\sigma/d\Omega=18 \mu b/sr.$
1998.8 14	(11/2-)	(5)	0.28	$d\sigma/d\Omega=15 \mu b/sr.$
2005.3 25		§		$d\sigma/d\Omega=7$ µb/sr.
2015.6 25	1 / 2+	0	0.007	$d\sigma/d\Omega$ =22 µb/sr.
2027.7 25		§		$d\sigma/d\Omega$ =2 $\mu b/sr$.
2044 . 9 25	1 / 2 –	1	0.089	$d\sigma/d\Omega$ =225 µb/sr.
2062.9 25		§		$d\sigma/d\Omega=2~\mu b/sr.$
2072.7 25	5 / 2+	2	0.056	$d\sigma/d\Omega$ =38 µb/sr.
2080.9 25	1 / 2+	0	0.023	$d\sigma/d\Omega$ =64 $\mu b/sr$.
$2099.2\ 25$	5 / 2+	2	0.017	$d\sigma/d\Omega = 28 \mu b/sr$.
2127.6 25		§		$d\sigma/d\Omega=9$ µb/sr.
2135.0 25	1 / 2 +	0	0.013	$d\sigma/d\Omega=42 \mu b/sr$.
2145.1 25	(7/2-)	(3)	0.0058	$d\sigma/d\Omega = 5 \mu b/sr$.
2155.7 25	3 / 2 +	2	0.032	$d\sigma/d\Omega = 46 \mu b/sr$.
2172.2 25	3 / 2 -	1	0.028	$d\sigma/d\Omega = 83 \mu b/sr$.
2179.9 25	5/2+	2	0.017	$d\sigma/d\Omega = 31 \mu b/sr$.
2195.6 25 $2203.5 25$	1 / 2 - , 3 / 2 - 7 / 2 +	1 4	0.019	$d\sigma/d\Omega$ =43 μ b/sr. $d\sigma/d\Omega$ =9 μ b/sr.
2213.8 25	(7/2-)	(3)	0.10 0.020	$d\sigma/d\Omega = 5 \mu b/sr$.
2229.0 25	(3/2+)	(2)	0.020	$d\sigma/d\Omega = 9 \mu b/sr$.
2241.1 25	5/2+	2	0.062	$d\sigma/d\Omega = 115 \mu b/sr$.
2267.6 25	5/2-,7/2-	3	0.019	$d\sigma/d\Omega=4 \mu b/sr$.
2278.3 25	1/2+	0	0.014	$d\sigma/d\Omega = 49 \mu b/sr$.
2292.9 25	7 / 2 +	4	0.159	$d\sigma/d\Omega=12~\mu b/sr$.
2313.5 25		(2)		$d\sigma/d\Omega=12$ µb/sr.
2336.4 25		§		$d\sigma/d\Omega=13$ µb/sr.
2352.0 25	3 / 2+	2	0.012	$d\sigma/d\Omega=16 \mu b/sr$.
2361.9 25	5 / 2+	2	0.045	$d\sigma/d\Omega=13 \mu b/sr$.
2381.1 25	(3/2-)	1	0.020	$d\sigma/d\Omega$ =48 µb/sr.
2396.6 25	5 / 2+	2	0.049	$d\sigma/d\Omega$ =91 μ b/sr.
2413 . 3 25	(3/2+)	2	0.024	$d\sigma/d\Omega$ =37 $\mu b/sr$.
2425 . 1 25		§		$d\sigma/d\Omega$ =5 $\mu b/sr$.
2438.9 25	(3/2+)	2	0.017	$d\sigma/d\Omega=27~\mu b/sr.$
2448.4 25	3 / 2 + , 5 / 2	2	0.027	$d\sigma/d\Omega=39~\mu b/sr.$
2472 . 3 25	3 / 2 + , 5 / 2	2	0.017	$d\sigma/d\Omega$ =27 µb/sr.
2480.8 25		§		$d\sigma/d\Omega = 14 \mu b/sr$.
2499.6 25	1 / 2+	0	0.0029	$d\sigma/d\Omega=15~\mu b/sr$.
2533.7 25	0/0 7/0	(2)	0.022	$d\sigma/d\Omega = 44 \mu b/sr$.
2548.3 25	3/2+,5/2	2 §	0.015	$d\sigma/d\Omega = 26 \mu b/sr$.
2575.4 25	1/9.		0.004	$d\sigma/d\Omega = 17 \mu b/sr$.
2586.6 25	1/2+	0	0.024	$d\sigma/d\Omega = 94 \mu b/sr$.
2599.1 25	(5/2+)	$rac{2}{2}$	0.017	$d\sigma/d\Omega = 34 \mu b/sr$.
2612.2 25	3/2+,5/2	0	0.039	$d\sigma/d\Omega = 69 \mu b/sr$.
2627.1 25	1 / 2+	U	0.0041	$d\sigma/d\Omega$ =19 $\mu b/sr$.

[†] Comparison of sum rules for spectroscopic strengths from experiment with IBFM and QPM calculations indicate that not all states up to 2.5 MeV associated with the 3s., 2d., 2d., and 1g., shells were observed by 2005Bu20

up to 2.5 MeV associated with the $3s_{1/2}$, $2d_{3/2}$, $2d_{5/2}$ and $1g_{7/2}$ shells were observed by 2005Bu20. Assignments based upon comparison of $t(\theta)$ data with DWBA calculations. The distinction between two possible j-values for any given level (i.e. j=l+1/2 or j=l-1/2) were made on basis of deduced analyzing power for level.

 $[\]delta$ $\sigma(\theta)$ data not characteristic of an L-value; level may be populated by multi-step processes or part of an unresolved doublet.

¹⁷³Yb(²⁴Mg,Fγ) 2000Fo10

E=134.5 MeV. Measured Eγ, and Iγ using the GAMMASPHERE with 92 Compton-suppressed large volume HPGe detectors.

¹¹³Cd Levels

E(level) [†]	Jπ	Comments
$\begin{array}{c} 0.0 \\ 263.54^{\ddagger} \ 3 \\ 815.09^{\ddagger} \ 20 \\ 1657.0^{\ddagger} \ 3 \\ 2613.7^{\ddagger} \ 5 \end{array}$	1/2+ $11/2 15/2 19/2 (23/2-)$	E(level): from Adopted Levels, Gammas.
3448.8	(27/2-)	† From least-squares fit to Eγ's.
4201.3 ‡ 12	(31/2-)	‡ (A): vh _{11/2} sequence.

γ(¹¹³Cd)

Εγ	E(level)	Ιγ	Εγ	E(level)	Ιγ
551.5 2	815.09	100	841.9 2	1657.0	77 5
752.5 8	4201.3	7.4 8	956.7 4	2613.7	20 3
835.1 6	3448.8	14.6 10			

$^{176}Yb(^{28}Si,F\gamma) \quad \ 2000Bu06$

E=145 MeV.

Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, eurogam2 array.

$^{113}\mathrm{Cd}$ Levels

E(level) [†]	<u></u> Jπ	E(level) [†]	<u></u> Jπ	E(level)†	Jπ
0.0	1/2+	2324.5 \$ 4	(21/2+)	2962.6# 4	(23/2+)
263.0	11/2-	2538.3# 4	(19/2+)	3448.9 ‡ 4	(27/2-)
814.60	15/2-	2613.4	(23/2-)	3473.9 \$ 5	(29/2+)
1656.6 ‡ 3	(19/2-)	2757.8 \$ 4	(25/2+)	4201.5 ‡ 5	(31/2-)

† From least-squares fit to Ey's. ‡ (A): 11/2- band.

§ (B): band based on 23/2-.
(C): band 3.

$\gamma(^{113}\text{Cd})$

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$1\gamma^{\dagger}$	Εγ [†]	E(level)	$\frac{I\gamma^{\dagger}}{}$
424.3 2	2962.6	100	752.6 2	4201.5	
$433.3\ 2$	2757.8	100	835.5 2	3448.9	100
551.6 2	814.60	100	842.0 2	1656.6	100
667.9 2	2324 . 5	100	881.7 2	2538.3	100
716.12	3473.9	100	956.8 2	2613.4	100

 $^{^{\}dagger}~\Delta E \gamma$ assumed to be 0.2 keV by evaluator no Iy given in the paper.

 $Q(\beta^-) = -1036.6\ 27;\ S(n) = 9445\ 5;\ S(p) = 6080\ 1;\ Q(\alpha) = -3074\ 2\ 2003 Au 03, 2009 Au ZZ.$

A $^{113}Cd~\beta^-$ Decay (8.04e15 Y)

C ¹¹³In IT Decay (99.476 min)

B ¹¹³Cd β⁻ Decay (14.1 y)

D $^{113}\mathrm{Sn}\ \epsilon\ \mathrm{Decay}\ (115.09\ \mathrm{d})$

¹¹³In Levels

O Others:

114Sn(d, 3He)

¹¹⁵In(p,t)

 $^{116}{\rm Sn}(p,\alpha)$

Cross Reference (XREF) Flags

 $\mathrm{H}^{-112}\mathrm{Cd}(^{3}\mathrm{He,d})$

I $^{112}\mathrm{Cd}(\alpha,t)$

 $K^{-113}In(\gamma,\gamma')$

 $J^{-113}Cd(p,n\gamma)$

E ¹¹³ Sr F ¹¹⁰ Pc	n ε Decay (115.09 d) n ε Decay (21.4 min) d(⁷ Li,4nγ) d(⁶ Li,3nγ)	K ¹¹³ In L ¹¹³ In M ¹¹³ In N Coul	(d,d')	$^{116}{ m Sn}({ m p},lpha)$ $^{112}{ m Cd}({ m p},{ m p})$ IAR $^{100}{ m Mo}(^{18}{ m O},{ m p4n}\gamma)$
E(level)§	$_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	XREF	T _{1/2}	Comments
0.0	9 / 2+	ABCDEFGHIJKL NO	stable	Q=+0.799 (1989Ra17). μ: μ=+5.5289 (1989Ra17), NMR. Q: atomic beam. Value includes pol correction. Jπ: atomic beam (1976Fu06), L(³ He,d)=4.
391.699 3	1/2-	CD GHIJK NO	99.476 min 23	%IT=100; μ=-0.21074 2 (1989Ra17). %IT: K-electron capture <0.0036% (1970De22). μ: atomic beam. Jπ: atomic beam (1976Fu06), M4 γ to 9/2+. T _{1/2} : From weighted average of 99.3 min 2 (1967Ok02), 99.2 min 6 (1969Va04), 99.48 min 3 (1970Go48), 99.48 min 8 (1970Le07), 99.8 min 2 (1970Ro29), 99.47 min 7 (1971Ha18), 99.2 min 6 (1971Oo01), 99.78 (18) (1971Em01), 102 M 2 (1975Bu24), 99.21 min 13 (1982HoZJ), 99.49 min 6 (1982RuZV), 99.45 min 7 (1984Iw06), and 99.6 min 3 (1987Ne01). In the Limited Relative Statistical Weight method, the uncertainty for the 1970Go48 value is increased from 0.03 to 0.0316 to reduce its relative weight from 53% to 50%. For either weighting, the results are the same, with the internal uncertainty of 0.022 and the reduced-χ²=1.07. Since these data are consistent, the Rajeval and Normalized Residual methods give the same result. Others: 105 min 10 (1939Ba03), 104 min 2 (1940La07), 102 min 2 (1958Gi06), 114 min (1965Ca13), 102.4 min (1975Ku10), and 99.8 min 7 (1997We13).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 / 2 – 5 / 2 +	D GHIJ O GHIJK NO	3.6 ps 3	J π : L(3 He,d)=1, γ (θ) of 255 γ in (p,n γ). J π : L(3 He,d)=2, level excited in Coul. ex., E2 γ to 9/2+.
1029.65 5	1/2+,3/2+	D J	0.33 ns 3	J π : 638 γ is E1, 1/2+ preferred from syst. $T_{1/2}$: from $^{113}Cd(p,n\gamma)$.
1063.93 6	3 / 2+	HIJ	0.58 ns 3	$Jπ$: $L(^3He,d)=2$, E1 γ to 1/2 $T_{1/2}$: from $^{113}Cd(p,nγ)$.
1106.46 7 1131.48 5	3 / 2 - , 5 / 2 - 5 / 2 +	J F HIJKL NO	0.97 ps 7	J π : M1,E2 γ to 1/2-, γ (θ) of 714 γ in (p,n γ). J π : L(3 He,d)=2, level excited in Coul. ex., E2 γ to 9/2+. T _{1/2} : from ¹¹³ In Coul. ex.
1173.06 9	11/2+	FG JK MNO	60 fs 6	$J\pi$: $\gamma(\theta)$ of 1173 γ and 171 γ in Coul. ex., $L(p,t)=2$ from $9/2+$. $T_{1/9}$: from $^{113}\text{In}(\gamma,\gamma')$.
1191.12# 9	7 / 2+	FGHIJ L O		$J\pi$: L(³ He,d)=4, M1 γ 's to 5/2+.
1344.89 10	13/2+	FG J NO	0.33 ps 3	J π : $\gamma(\theta)$ of E2 1344 γ . T _{1/2} : from ¹¹³ In Coul. ex.
1351.01 20		J LM		
1380.79 6	1 / 2 - , 3 / 2 - , 5 / 2 -	J		$J\pi$: E1 γ to $1/2+,3/2+$ level.
$1453.0\ 3$		J		
1471.93 8	$3 \ / \ 2-\ , \ 5 \ / \ 2-\ , \ 7 \ / \ 2-$	G - J		$J\pi\colon\thinspace M1,E2$ γ to 3/2-, $\gamma(\theta)$ of 825 γ in $(p,n\gamma).$
1496.39 7		J		

¹¹³In Levels (continued)

E(level)§	$J\pi^{\dagger}$	XREF	${\bf T}_{1/2}$	Comments
1509.01 15	7/2+,9/2+	G J L NO	≤ 0.2 ps	J π : $\gamma(\theta)$ of 1509 γ in Coul. ex., $L(p,t)=2$, 7/2+ preferred in analogy with ¹¹⁵ In.
1535.96 9	1/2-,3/2-,5/2-	G J		$T_{1/2}$: from ¹¹³ In Coul. ex. J π : E1 γ to 3/2+.
1552.0 4	1/2-,3/2-,3/2-	J M O		3π: E1 γ to 3/2+.
1567.05 9	7/2+,9/2+	GHIJ NO	0.24 ps 10	XREF: $H(1571)I(1571)O(1569)$. $J\pi$: $\gamma(\theta)$ of 1567 γ in Coul. ex., 9/2+ preferred in analogy with ¹¹⁵ In, $L(^3He,d)=4$.
1500 50 7		0 1		$T_{1/2}$: from ¹¹³ In Coul. ex.
1569.58 7 1618.95 8	_	G J J		$J\pi$: M1,E2 γ to 3/2
1630.57 9	(7/2+,9/2+)	G JK NO		J π : γ 's to 5/2+,11/2+.
1634 5	, , , , , ,	HI L O		XREF: L(1648). Jπ: L(p,t)=(3) from 9/2+.
1675.49 7		J		
1684.17 8		J		
1688.62# 22	11/2+	FG J O		$J\pi$: E2 γ to $7/2+$.
1700 5	1/2+	Н		Jπ: L(³ He,d)=0. E(level): probably not the same as 1706.99 level, since E(levels) from (³ He,d) in the range 393 to 1567 appear to be about 1-4 keV too high.
1707.38 8	+	J		$J\pi$: M1,E2 γ to 5/2+.
1707.30 0 ≈1758	9 / 2+	0		$SR: MI,EZ \gamma to S/Z+$. E(level): from (p,t).
		O		$J\pi$: L(p,t)=0+2 from 9/2+.
1760.27 13		J		• 7
1768.07 8	3 / 2 + , 5 / 2 +	HIJ L		XREF: $H(1774)I(1774)$. J π : $L(^3He,d)=2$ at 1774 8.
1802.32 8		J		
1822.55 10	‡	J		
1835.72 18	1 / 2 +	GH J		XREF: H(1831). $J\pi$: L(3 He,d)=0 at 1831.
1865.36 21	_	J		$J\pi$: M1,E2 γ to 3/2-,5/2- level.
1914.13 9		J		, , ,
1920.81 9		J		
1937.94 9		J O		
1947.64 9		J		
1980? 15		L		
1999.15 12		J		
2032.76 21 2039.72 13		1 1		
2048 10	7/2+,9/2+	HI		$J\pi: L(^{3}He,d)=4.$
2051.44 8	., 2., 0, 2.	J		on. 2(110,u)=1.
2064.04 21		J		
2070 . 14 13		J		
≈ 2 0 9 4 ?		0		E(level): from (p,t), possibly same as 2104 level. $L(p,t) {=} (3). \label{eq:L}$
2095.41 7 2104 10	9 / 2 - , 11 / 2 -	J I		J π : L(α ,t)=5, 11/2- preferred from shell-model syst.
2104 <i>10</i> ≈2116?	9/2-,11/2-	L O		 E(level): from (p,t), possibly same as 2104 level, 2120 level (d,d') could also correspond to 2104 or 2116 level, L(p,t)=(3).
2118.35 18		J		
2144.56 11	- 1-	J		2
2153 10 2164.9 10	1/2+	H G LM O		J π : L(³ He,d)=0. E(level): a level with L=3 observed in (α,α') at 2170 which gives parity=(-).
2170.32 13		J		- · · · · · · · · · · · · · · · · · · ·
2180.8 4		J		
2183.26 10		J		
2190 10	3 / 2 + , 5 / 2 +	Н		$J\pi$: $L(^3He,d)=2$.
2224.8 10	(45/0.)	G L O		7 (77)
$2233.6^{@}$ 3	(15/2-)	F O		$J\pi$: (E1) γ to 13/2+ and systematics.
2253.44 9		J O		

¹¹³In Levels (continued)

E(level)§	Jπ [†]	XREF		Comments
0001 00 15				
2281.08 <i>17</i> 2283.5 <i>3</i>	17/2+	$_{ m FG}$ L		E(level): 2283 level seems different from 2298 level because γ to 13/2+ limits J\pi to 9/2+.
2295.29 13		J		
2298 10	3 / 2 + , 5 / 2 +	Н		$J\pi: L(^{3}He,d)=2.$
2331.28 21		J		
2339.51 16		J		
2346 10	3 / 2 + , 5 / 2 +	H		$J\pi: L(^{3}He,d)=2.$
2371.68 11		J	O	
2376 10	9 / 2 - , 11 / 2 -	I		J π : L(α ,t)=5, 11/2- preferred from shell-model syst. E(level): a 2380 level (d,d') could be 2376, 2391, or 2396 level.
2378 . 22 14		J		
2383.86 15		J		
2389.0?# 4	15/2+	F		
2391? 10	3 / 2 + , 5 / 2 +	H		$J\pi: L(^{3}He,d)=2.$
x+2396.15a	(15/2-)		O	E(level): Possible decays to 2395, 2232 and 1688 levels.
$2396.9^{@}4$	(17/2-)	F	O	
2442 . 4 5			O	
2475.33 20		G J I	Л	
2515.6 3		J		
2540 15		L		
2557.06 17		J		
2559 10	9 / 2 - , 11 / 2 -	I		J π : L(α ,t)=5, 11/2- preferred from shell-model syst.
2560.64 22		J		
2586 5			O	E(level): from (p,α) .
2654.1 4		FG		
$2664.7^{@}4$	(19/2-)	FG		
2665.0 4		J		
2669.6° 3	17/2+	F		
2728.04 22		J		
2783.88 10		J		
2785.8 4		FG		
2854.4@4	(21/2-)	FG	O	
2880.9 5	(10/0)	F		
x+2903.9ª 11	(19/2-)	т.	О	
2904.85 25 $3023.9 5$	(00/0)	J	0	
3023.90 5	(23/2-)	FG F	О	
3071.5 3	(19/2+)	F	О	
3120.1& 10	(21/2+)	Р	0	
3192.2# 5	19/2+	F	U	
3211.9& 11	(23/2+)	F	O	
3250.2 5	(20,21)	F		
3280.7 [@] 6	(25/2-)	F	O	
3305.8 5	(20/2 /	F	9	
3350.8 5		F		
3395.2 2 11	(25/2+)	F	O	
x+3476.0a 15	(23/2-)		O	
3599.0 5		F		
3786.0	(27/2+)	\mathbf{F}	O	
3867.4 6		F		
3965.1# 6	23/2+	\mathbf{F}	O	
$3973.0^{@}6$	(27/2-)	\mathbf{F}	O	
x+4172.0a 18	(27/2-)		O	
4375.4	(29/2+)	\mathbf{F}	O	
4430.76	(27/2-)	F		
4432.2 6		F		
4602.9#6	27/2+	F	O	
$4715.4^{@}6$	(29/2-)	F	O	
4799.3 6		F		
x+4990.0a 20	(31/2-)		O	
5060.1 4 11	(31/2+)	F	О	
5125.3 6	_	F		$J\pi$: M1+E2 γ to (29/2-).
		Continued or	n nex	t page (footnotes at end of table)

$^{113}{ m In}$ Levels (continued)

E(level)§	Jπ [†]	XREF	_	Comments
5310.9# 12	(31/2+)		0	
$5310.9^{\circ} 12$ $5392.3^{@} 6$	(31/2+) (31/2-)	F	0	
5447.0 7	(31/2-)	r F	U	
5730.0 7		r F		
5788.3& 12	(33/2+)	r F	О	
x+5918.0a 23	(35/2+)	F	0	
6226.9# 16	(35/2+)	r	0	
6346.3& 15	35/2(+)		0	
x+6946.7a 21	(39/2-)	F	0	
7287.9# 18	(39/2+)	r	0	
x+8068 ^a 3	(43/2-)		0	
8434.9# 21	(43/2+)		0	
x+9280 ^a 3	(47/2-)		0	
x+10574 ^a 3	(51/2-)		0	
x+11960a 3	(55/2-)		0	
у у	(00/2)		Ü	
12883		G	О	IAS of 1/2+ 113Cd g.s.
13190		G	•	IAS of 299-keV, (3/2+) ¹¹³ Cd excitation.
13427		G		IAS of 584-keV, 5/2+ ¹¹³ Cd excitation.
13541		G		IAS of 681-keV, (3/2+) ¹¹³ Cd excitation.
13748		G		IAS of 884-keV, 1/2+ ¹¹³ Cd excitation.
13867		G		IAS of 988-keV, 1/2+ 113Cd excitation.
14074		G		
14389		G		
14488		G		
14683?		G		
15043		G		
15096?		G		
15141		G		
15335?		G		
15476		G		
15518		G		
15610?		G		
15639		G		
15684?		G		
15758		G		
15801?		G		
15880?		G		
15934?		G		
15971?		G		
16038		G		
16146		G		
16236		G		
16344?		G		
16503?		G		
16597		G		
y+5868.0 ^b 10			O	
y+6208.0b 14			0	
y+6587.0b 17			0	
y+6949.0 ^b 20			O	

 $^{^\}dagger$ J for levels greater than 13738 were not adopted because most of these levels are questionable, see $^{112}{
m Cd}({
m p,p})$ IAR. J π without comments are tentative and based on $\boldsymbol{\gamma}$ multipolarities and band consideration.

 $^{^{\}ddagger}$ J π =1/2+ from L(3 He,d)=0 for E=1831 5.

 $[\]$ From least-squares fit to γ energies.

 $^{^{\#} \}quad \text{(A): } \Delta J = 2 \ \ \text{intruder rotational band. Configuration} = \pi(g_{7/2}, d_{5/2}) \otimes \pi g_{9/2}^{} - ^2 \otimes \nu h_{11/2}^{}^2.$

^{@ (}B): Dipole magnetic-rotational band 1.

[&]amp; (C): Dipole magnetic-rotational band 2.

a (D): $\Delta J=2$ intruder rotational band. Configuration= $\pi h_{11/2}\otimes\pi g_{9/2}^{}{}^{-2}\otimes vh_{11/2}^{}{}^{2}$, at higher frequencies small alignment due to $g_{9/2}$ protons may be involved. b (E): γ sequence.

 $^{^{}c}$ (F): γ sequence.

				$\frac{\gamma(^{113}\mathrm{In})}{}$		
E(level)	$\underline{\hspace{1cm}} E \gamma^{\dagger}$	Ιγ‡	Mult.§	δ	α	Comments
391.699	391.698 3	100	M4		0.551	B(M4)(W.u.)=8.31 9.
						Mult., Eγ: from ¹¹³ In IT decay. A weak E5 admixture could not be excluded from α(K) exp (1985 HaZA), not adopted.
646.830	255.134 10	100 3	M1+E2	0.7 6	0.046 6	Mult., Eγ: from ¹¹³ In IT decay. δ: from ¹¹³ Sn ε decay (115.09 d).
	646.830 10	0.00018 9	[E3]		0.00865 13	Mult., Eγ: from ¹¹³ Sn IT decay.
1024.28	377.59 10	10.3 5	[E1]		0.00449 7	B(E1)(W.u.)=0.000139 14.
	1024.30 10	100.0 7	E2@			B(E2)(W.u.)=3.9 4.
1029.65	382.90 8	6.7 3	[E1]		0.00433 6	$B(E1)(W.u.)=9.8\times10^{-7}$ 11.
	638.03 8	100 3	E1#			B(E1)(W.u.)= $3.2 \times 10^{-6} \ 4$. Mult.: from ¹¹³ Cd(p,nγ). Eγ: from ¹¹³ Sn IT decay.
1063.93	416.9 1	2.0 5	#			El. from Sh II decay.
	672.4 2	100 5	E1#			$B(E1)(W.u.)=1.61\times10^{-6}$ 14.
1106.46	459.8 2	11.0 10	M1, E2#		0.00893 13	
	714.9 2	100 5	M1,E2#		0.00289 22	
1131.48	107.2120	$1.32\ 20$	[M1,E2]		0.8 4	
484.90 1	484.90 10	16.5 3	E1(+M2)@	-0.03 5	0.00245 14	B(E1)(W.u.)=(0.00037 3); B(M2)(W.u.)=(6 +22-6). δ : from B(E2) (see Coul. ex.) and $T_{1/21/2}$.
	1131.5 1	100.0 6	E2@			B(E2)(W.u.)=8.2 6.
1173.06	1173.1 1	100	M1+E2 $^{\#}$	0.47 5		B(E2)(W.u.)=24 5; B(M1)(W.u.)=0.186 20. δ : from B(E2) (see Coul. ex.) and $T_{1/21/2}$.
1191.12	167.1 3	2.2 4	M1(+E2)#	<0.89	0.15 3	δ : from Coul. ex.
1101.12	1191.1 <i>1</i>	100 4	M1, E2#	10.00	0.00091 8	o. nom coun car
1344.89	171.4 7	2.14 10	M1+E2@	+0.03 3	0.1147 21	B(E2)(W.u.)=7 +14-7; B(M1)(W.u.)=0.28 3.
	1344.89 10	100 2	E2@			B(E2)(W.u.)=11.7 12.
1351.01	1351.0 2	100				
1380.79	316.7 1	77 4				
	351 . 4 1	100 5	E1#		0.00539 8	
	$734.1\ 2$	12.3 18				
	989.0 1	36.8 18				
1453.0	1453.0 3	100	M F0#		0.00000.10	
1471.93	825.01 10 $1080.1 2$	$100 ext{ } 45 $ $45 ext{ } 4$	M1, E2#		0.00206 18	
1496.39	472.1 <i>1</i>	100 5				
1430.33	1496.4 1	10.0 25				
1504.0	1504.0 5	100				
1509.01	377.8 10	7 3				
	1509.04 19	100 3				
1535.96	345.0 3	$15.0\ 25$				
	429.52	15.0 25	,,			
	472.1 1	100 5	E1#		0.002594	
	889.3 10	15 5 35	M1 F2#		0.00000	
1550 0	1144.5 4	17.5 25	M1,E2#		0.00099 9	
1552.0	1552.0 4	$\begin{matrix}100\\14.2&10\end{matrix}$	[M1 F9]		0 0137 7	
1567.05	394.0 5 1567.0 1	14.2 10	[M1,E2] [M1,E2]		0.0137 7 0.00061 3	
	922.71 10	100 1	M1,E2 [#]		0.00001 3	
	1177.8 1	31 4	#		14	
1618.95	972.1 1	22 2				
	1619.0 2	100 10				
1630.57 4 6	457.7 2	35 6				
	606.4 3	76 5				
	1630.5 1	$100 \ 4$				
1675.49	544 . 0 1	30.1 14				
	651.1 3	8.2 14				
	1675.5 1	100 6				
	1037.6 1	100				
			#			
1684.17 1688.62 1707.38	497.5 2 576.0 1	100 81 6	E2# M1,E2#		0.00712 <i>10</i> 0.00494 <i>24</i>	

$\gamma(^{113}\text{In})$ (continued)

level)	Εγ [†]	Ιγ‡	Mult.§	α
07.38	683.2 2	100 6	M1,E2 $^{\#}$	0.00323 23
	1060.4 10			
	1315.3 2	25 3		
60.27	587.2 1	100		
68.07	$738.4\ 1$	19.6 18		
	743.8 1	100 5		
02.32	266.82	15.4 19		
	330 . 2 2	3.8 19		
	696.0 2	30.8 19		
	1155.54	5.8 19		
	1802.2 1	100 6		
322.55	792.9 1	100 4		
	1430.8 2	6.7 22		
335.72	160.3 4	17 4		
	326.7 1	$100 \ 4$		
365.36	758.9 2	100	M1,E2#	0.00251 20
14.13	347.0 3	2.9 19		
	782.9 2	8.6 10		
100 01	889.8 1	100 5		
20.81	789.3 2	21.7 22		
	856.6 2	34.8 22		
127 04	896.6 1	100 4		
937.94	831.3 <i>8</i> 1291.1 <i>1</i>	3.1 <i>15</i> 100 <i>6</i>		
	1546.3 3			
47.64	841.2 5	12.3 15 $33 4$		
747.04	1300.8 1	100 7		
	1555.9 3	15 4		
99.15	291.8 1	100 7		
,00.10	808.0 3	36 7		
	1352.0 4	29 7		
32.76	1003.1 2	100		
39.72	848.6 1	100		
51.44	945.0 1	100 8		
	2051.4 1	33 8		
064.04	1000.1 2	100		
70.14	598.1 2	100 5		
	689.5 2	18.9 13		
	1040.5 5	6.8 14		
	$1423.2\ 3$	8.1 14		
95.41	388.1 3	8 3		
	411.5 1	39 3		
	528 . 1 3	14 3		
	963.7 2	42 6		
	2095.2 1	100 6		
18.35	548.7 2	9.5 16		
	609.5 3	100 6		
44.56	1114.9 1	100		
64.9	991.8	100		
70.32	979.2 1	100		
80.8	835.9 4	100		
83.26	613.3 2	24 6		
	711.0 3	18 6		
	1052.1 2	100 6		
	1076.5 3	47 6		
	1159.5 2	53 6		
	1536.0 3	88 6		
224.8	1051.7	100		
33.6	888.7 3	100	(E1)	
53.44	1147.1 4	17 4		
	1606.6 1	91 4		
	1861.72	100 9		
31.08	1149.8 3	19 9		

$\gamma(^{113}{\rm In})$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ‡	Mult.§	α
2201 00	1056 5 0	100 6		
2281.08	1256.7 2	100 6	E O	
2283.5 2295.29	938.73 1164.33	100 60 <i>10</i>	E 2	
2299.29	1648.6 2	100 10		
	1903.2 2	90 10		
2331.28	1307.0 2	100		
2339.51	1233.1 2	100 5		
2000.01	1692.6 3	36 5		
	1947.6 5	18 5		
2371.68	1347.4 1	100		
2378.22	759.3 2	100 12		
	1271.9 2	56 4		
	1731.0 3	32 4		
2383.86	1359.6 2	42 7		
	1737.0 3	14 7		
	1992.1 3	100 7		
2389.0?	700.4 3	100	E2	0.00282 4
2396.9	163.3 3	100		
2442.4	1097.9	100		
2475.33	1451.0 2	100 8		
	2476.3 10			
2515.6	1409.1 3	100		
2557.06	1532.8 3	100 11		
9560 64	1910.2 2	56 11		
2560.64 2654.1	646.52 211.7 % 3	100 40 5		
2004.1	420.4 3	100 10		
2664.7	267.7 3	100		
2665.0	1034.4 4	100		
2669.6	1324.6 3	100	E2	
2728.04	813.9 2	100		
2783.88	1759.6 1	100 6		
	2137.0 2	22 3		
2785.8	131.8 3	52.4 16		
	388.9 3	100 3		
2854 . 4	68.6 3	100		
	189.7 3	100	(M1, E2)	0.12 4
2880.9	483.9 3	100		
x + 2903.9	507			
2904.85	1136.5 5	67 17		
	1274.4 4	100 17		
0.000 0	1773.4 4	83 17	(M1 E0)	0.10.6
3023.9 3051.1	$169.5 \ 3$ $170.2 \ 3$	100 100	(M1, E2)	0.18 6
3031.1	386.5 3	100		
3071.5	401.8 3	56 2	(M1,E2)	0.0129 6
20.1.0	788.2 3	100 3	(M1,E2)	0.00229 19
3120.1	839 1	-	,/	
3192.2	803.2 3	100	E 2	0.00201 3
3211.9	91.8 3	100	(M1, E2)	1.4 8
3250 . 2	199.1 3	100		
	395.8 3	100		
3280 . 7	256.9 3	100	(M1, E2)	0.048 9
3305.8	641.1 3	100		
3350.8	686.1 3	100		
3395 . 2	183.3 3	100	(M1, E2)	0.14 5
x+3476.0	572			
3599.0	744.6 3	100	(347 70)	0.0140.7
3786.0	390.9 3	100	(M1, E2)	0.0140 7
3867.4	617.2 3	100	EO	0 00991 4
3965.1	772.9 3	100	E2 (M1, E2)	0.00221 4
3973.0 x+4172.0	$692.6\ 3$ $696\ 1$	100	(WII, E2)	0.00312 23
A17114.U	000 1			
		Co	ontinued on next	t page (footnotes at end of table)

$\gamma(^{113}\text{In})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	Ιγ‡	Mult.§	α
4375.4	589.4 3	100 3	(M1,E2)	0.00466 24
	$980.2\ 3$	< 14	(E2)	
4430.7	1406.7 3	100	E 2	
4432 . 2	564.8 3			
4602.9	637.8 3	100	(E2)	0.00360 5
4715.4	284.5 3	100	(M1, E2)	0.035 6
	742.40 3	78 6	(M1, E2)	$0.00264\ 21$
	1434.9 3	100 9	E2	
4799.3	826.30 3	< 7.1		
	1518.3 3	100 21		
x + 4990.0	818			
5060.1	684.6 3	100	(M1, E2)	$0.00321\ 23$
	1274 . 2 3	< 10		
5125.3	326.2 3	< 40		
	409.7 3	100 8	(M1, E2)	$0.0123 \ 5$
5310.9	708 1	100		
5392.3	677.7 3	100 12	(M1, E2)	0.00329 23
	1418.6 3	82 17	(E2)	
5447.0	731.6 3	100		
5730.0	1014.6 3	100		
5788.3	728.2 3	100	(M1, E2)	$0.00277\ 21$
x + 5918.0	928.4 3	100	(E2)	
6226.9	916 1	100		
6346.3	558			
x + 6946.7	1028.3 6	100	(E2)	
7287.9	1061 1	100		
x + 8068	1122			
8434.9	1147 1	100		
x + 9280	1212			
x + 10574	1294			
x + 11960	1386			
y + 5868.0	474			
y + 6208.0	340			
y + 6587.0	379			
y + 6949.0	362			

 $^{^{\}dagger}$ From $^{113}Cd(p,n\gamma),$ except as noted and when possible.

From ¹¹³Cd(p,nγ), except as noted and when possible.

‡ Relative branchings are given.

§ From DCO ratios in ¹¹⁰Pd(⁷Li,4n).

From α(K)exp in ¹¹³Cd(p,nγ).

@ Mult and δ from ¹¹³In Coul. ex.

& Placement of transition in the level scheme is uncertain.

¹¹³Cd β- Decay (8.04e15 Y) 2007Be61

Parent ^{113}Cd : E=0; J π =1/2+; $T_{1/2}$ =8.04×10 15 y 5; Q(g.s.)=322 1; % β - decay=100.

¹¹³Cd-T_{1/2}: from measurement by 2007Be61.

¹¹³Cd measured in CdWO₄ crystal at Gran Sasso National Lab of INFN. Measured half-life of ¹¹³Cd using the low-background CdWO₄ crystal scintillator of mass 434g.

1996Dall: measured scintillation crystals of CDW04.

1970Gr20: measured β^- activity of enriched and natural cadmium samples.

Others: 1962Wa15, 1969De25, 1994Al49.

¹¹³In Levels

 $\frac{E(level)}{0.0} \frac{J\pi}{9/2+}$

β- radiations

log ft deduced by the evaluator.

 $\begin{tabular}{c|c} \hline E eta^- & E (level) & I eta^{-\dagger} & Log \it{ft} \\ \hline \end{tabular}$

(322.0 10) 0.0 100 23.127 14

 $E\beta^-{:}$ 1996Da11 give endpoint energy=337.4 keV with error of 0.3 (statistical) and 22 (syst).

† Absolute intensity per 100 decays.

¹¹³Cd β- Decay (14.1 y) 1969De25

Parent ^{113}Cd : E=263.7 3; Jπ=11/2-; $T_{1/2}$ =14.1 y 5; Q(g.s.)=322 1; % β^- decay=99.86. Measured E β , $\beta\gamma$ coin. No $\beta\gamma$ coin were observed, 1969De25.

¹¹³In Levels

E(level) $J\pi$ $T_{1/2}^{\dagger}$ \dagger From adopted levels.

β- radiations

Eβ⁻ E(level) Iβ^{-†} Log ft Comments

580 4 0.0 99.977 9.25 5 av Eβ=185.4 19.

¹¹³In IT Decay (99.476 min) 1971Ha18

Parent $^{113} {\rm In:}~E = 391.691~8;~J\pi = 1/2 -;~T_{1/2} = 99.476~min~23;~\% {\rm IT~decay} = 100.$

¹¹³In-%IT decay: From the presence of Cd K x rays from a ¹¹³In (99 min) source, 1970Ra05 (and 1969RaZP) reported ϵ decay of this level with I_{ϵ} = 0.07% 1. Such a transition to ¹¹³Cd would be 1st forbidden, 1/2- to 1/2+, and would have a log ft of 5.1. which is possible but unlikely since the log ft systematics (1998Si17) indicate that is the lower limit of the observed values. Also, 1970De22 (see also 1969De25) repeated the experiment and placed a limit of <0.0036% on this ϵ transition for which the log ft is >6.5. Such an electron capture branch is therefore negligible and has not been included in this scheme.

Evaluation by M.-M. Be, March 1999 This evaluation was done as part of a collaboration of evaluators from Laboratoire National Henri Becquerel (LNHB) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; HMS Sultan and AEA Technology in the United Kingdom; Khlopin Radium Institute (KRI) in Russia; Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas (CIEMAT) and Universidad Nacional a Distancia (UNED) in Spain; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering and Environmental Laboratory (INEEL) in the United States.

Measured Ice, Ice(K) from (ce)(K x ray)-coin, I γ , 1971Ha18.

[†] Absolute intensity per 100 decays.

¹¹³In IT Decay (99.476 min) 1971Ha18 (continued)

¹¹³In Levels

 † See 113In Adopted Levels.

 $\gamma(^{113}In)$

 $\frac{E\gamma}{391.698.3}$ $\frac{E(level)}{391.699}$ $\frac{I\gamma^{\dagger}}{64.94.17}$ $\frac{Mult.}{M4}$ 0.551

Comments

B(M4)(W.u.)=8.31 9. Ev: from 2000He14 evaluation.

Iy: From Iy(391)=[100.0 - I(y+ce)(646)] / [1 + α (391)]; the uncertainty is all from the 0.26% uncertainty in (1 + α).

Mult.: from $\alpha(K)\exp[0.437\ 7,\ \alpha(\exp)=0.540\ 7,\ \alpha(K)\exp[\alpha(L+...)\exp[4.21\ 8])$ (1971Ha18); $\alpha(L)\exp[\alpha(M)\exp[\alpha(L)\exp[\alpha(n)\exp[\alpha(M)(M)\exp[\alpha(M)\exp[$

 α : α and α_K are from 1985HaZA evaluation of measured values; these values average 3% lower than the theoretical values of 1978Ro21. The α_L and α_M were then computed as 3% lower than the corresponding theoretical values

Decay Scheme

Intensity: I(γ+ce) per 100 parent decays %IT=100

¹¹³Sn ε Decay (115.09 d)

 $Parent~^{113}Sn:~E=0;~J\pi=1/2+;~T_{1/2}=115.09~d~3;~Q(g.s.)=1036.6~27;~\%\epsilon+\%\beta^+~decay=100.$

 $^{113}\mathrm{Sn-T_{1/2}}$: 115.09 d 3 from weighted average of 115.2 d 8 (1972Em01), 115.07 d 10 (1972La14), 115.09 d 4 (1980Ho17), 115.12 d 13 (1982RuZV), and 115.08 d 8 (1992Un01). The reduced- χ^2 =0.03. Because this set of values is consistent, the Limited Relative Statistical Weight method does not increase the uncertainty for the 1980Ho17 value even though it contributes 66% of the relative weight. If the 1980Ho17 uncertainty were increased from 0.04 to 0.056 in order decrease its relative weight to 50%, the weighted average average would still be 115.09 with an uncertainty of 0.04. The very small reduced- χ^2 value suggests that the reported uncertainties are overestimated. It also means that the Rajeval and Normalized Residual methods give the same result. Others: 107 d (1959Bu08) and 115.06 d 7 (1982HoZJ, replaced by 1992Un01).

In addition to the 3 excited levels populated in this decay scheme, there is a level below the decay energy in 113 In at 1024 (J π =5/2+). The β^- decay to this level will be negligible.

Decay data evaluated by R. γ. Helmer, August 1996 with minor editing done in July 1998. This evaluation was done under the collaboration which includes evaluators from Laboratoire Primaire des Rayonnments Ionisants (LPRI) in France; Physikalisch-Technische Bundesanstalt (PTB) in Germany; Imperial College in the United Kingdom; and Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Idaho National Engineering Laboratory (INEL) in the United States. This evaluation was reviewed and accepted by evaluators in this collaboration.

[†] Absolute intensity per 100 decays.

¹¹³Sn-J: From 1998Bl04 evaluation.

113Sn & Decay (115.09 d) (continued)

The main γ ray of 391 keV depopulates a level with a $T_{1/2}$ of 99 min, so the ratio of its emission rate to the 113 Sn decay rate will vary with time. After a sufficient time, about five half-lives for the level, the ratio of the 113 In (99 min) and 113 Sn activities remains constant and is $T_{1/2}(^{113}$ Sn)/ $[T_{1/2}(^{113}$ Sn)- $T_{1/2}(^{113}$ min)]=1.0006. The total average radiation energy released by 113Sn is 1035.5 keV 5 (calculated by evaluators using the computer program radlst). This value agrees remarkably well with $Q(\epsilon)$ =1036.6 keV 27 (2003Au03) and confirms the quality of

113 In Levels

E(level)	J_{π}^{\dagger}	T _{1/2}	Comments
0.0	9 / 2+	stable	
0.0 391.699 3	9/2+ 1/2-	stable 99.476 min 23	$T_{1/2}$: From weighted average of 99.3 min 2 (19670k02), 99.2 min 6 (1969Va04), 99.48 min 3 (1970Go48), 99.48 min 8 (1970Le07), 99.8 min 2 (1970Ro29), 99.47 min 7 (1971Ha18), 99.2 min 6 (1971Oo01), 99.78 (18) (1971Em01), 102 M 2 (1975Bu24), 99.21 min 13 (1982HoZJ), 99.49 min 6 (1982RuZV), 99.45 min 7 (1984Iw06), and 99.6 min 3 (1987Ne01). In the Limited Relative Statistical Weight method, the uncertainty for the 1970Go48 value is increased from 0.03 to 0.0316 to reduce its relative weight from 53% to 50%. For either weighting, the results are the same, with the internal uncertainty of 0.022 and the reduced- χ^2 =1.07. Since these data are consistent, the Rajeval and Normalized Residual methods give the same result. Others: 105 min 10 (1939Ba03), 104 min 2 (1940La07), 102 min 2 (1958Gi06), 114 min (1965Ca13), 102.4 min (1975Ku10), and 99.8 min 7 (1997We13). From the presence of Cd K x rays from a ¹¹³ In (99 min) source, 1970Ra05 (and 1969RaZP) reported ε decay of this level with I(ε)=0.07% 1. Such a transition to ¹¹³ Cd would be 1st forbidden, 1/2- to 1/2+, and would have a log ft of 5.1. This ε intensity is unlikely since the log ft systematics (1973Ra10) indicate that such transitions have log ft's of >5.9. Also, 1970De22 (see also 1969De25) repeated the experiment and placed a limit of <0.0036% on this ε transition for
			which the $\log ft$ is >6.5. Such an electron capture branch is therefore negligible and has not been included in this scheme.
646.833 10	3 / 2 –		
1029.73 8	1/2+,3/2+	0.33 ns 3	T _{1/2} : From Adopted Level data in 1998Bl04 evaluation.

 $^{^{\}dagger}$ From 1998Bl04 evaluation.

the decay scheme.

β+,ε Data

The electron-capture decay from the 1/2+ parent to the ground state (9/2+) is 4th forbidden. From $\log ft$ systematics (1973Ra10), one expects this $\log ft$ value to be ≥ 22 , with a corresponding $I(\epsilon) \leq 1.\times 10^{-12}\%$. For the unpopulated level at 1024 keV, the decay is 2nd forbidden, with an expected $\log ft$ value of >11.0. The corresponding $I(\epsilon)$ is $<2.\times 10^{-7}\%$; so this branch is also completely negligible.

 $\epsilon K, \epsilon L, \epsilon M$ Calculated from tables of 1995ScZY.

Εε (7 3) (390 3) (645 3)	E(level) 1029.73 646.833 391.699	$\begin{array}{c} & & \\ \hline & 0.00103 & 4 \\ & 2.21 & 8 \\ 97.79 & 8 \\ \end{array}$	Log ft 6.5 8 8.20 2 7.010 4	$\begin{array}{c c} I(\epsilon+\beta^+)^{\dagger} \\ \hline 0.00103 & 4 \\ 2.21 & 8 \\ 97.79 & 8 \end{array}$		plute intensity per 100 decays.
Εγ	E(level)	Ι γ^{†‡#}	Mult.§		γ(¹¹³ In) α	Comments
255.134 10	0 646.83	3 2.11 8	M1+E2	0.7 6	0.046 6	Eγ: Based on value of 255.126 10 (1973In06) scaled by the evaluator by the ratio Eγ(391,here)/Εγ(391,1973In06). Γγ: From Iγ(255)/Iγ(392)=0.0325 12 from Limited Relative Statistical Weight analysis of 0.0333 13 (1973In06), 0.0285 9 (1978He08), 0.0337 8 (1993Mu14), and 0.0327 8 (1994DeZX). Others: 0.030 3 (1958Gi06), 0.027 2 (1959Bu08), 0.028 1 (1961Gr11), 0.029 3 (1967Bo18), 0.0322 (1968Fo07), and 0.0285 7 (1976De35 from same data as 1978He08).

¹¹³Sn ε Decay (115.09 d) (continued)

$\gamma(^{113}In)$ (continued)

Εγ	E(level)	Ιㆇ#	Mult.§	α	Comments
382.90 8	1029.73	0.000060 3			Ey: Calculated from level energies; γ not observed in this decay.
					Iy: From Iy(382)/Iy(638)=6.2/100 from Adopted y data in 1998Bl04 evaluation and based on observed decay of this level in 113 Cd(p,ny) (1976Di03,1974Ki02).
391.698 3	391.699	64.97 17	M4	0.551	B(M4)(W.u.)=8.31 9.
					Eγ: From 1997HeZZ.
					Iy: From Iy(391)=[100.0 - I(y+ce)(646)] / [1 + α (391)]; the uncertainty is all from the 0.26% uncertainty in (1 + α).
					α: α(K) and α are from 1985HaZA evaluation of measured values; these values average 3% lower than the theoretical
					values of 1978Ro21. The $\alpha(L)$ and $\alpha(M)$ were then computed as 3% lower than the corresponding theoretical values.
638.03 8	1029.73	0.00097 4	E1		$B(E1)(W.u.)=3.2\times10^{-6} 4.$
					Eγ,Iγ: From 1978He08.
					Mult.: from ¹¹³ Cd(p,nγ).
					α: Theoretical value from 1968Ha54.
646.830 10	646 . 833	4×10^{-6} 2	[E3]	0.00865 13	Eγ: Calculated from level energy.
					Iγ: From 1978He08.

 $^{^{\}dagger}$ Values are with 113 In in equilibrium (i.e., at long decay times).

Decay Scheme

0.0 115.09 d Intensities: Iy per 100 parent decays $^{113}_{50}\mathrm{Sn}_{63}$ $Q^+(g.s.)=1036.6^{27}$ $\operatorname{Log}\ ft$ 1/2+,3/2+ 0.00103 6.5 3/2-646.833 2.21 8.20 1/2-391.699 97.797.010 99.476 min 9/2+ stable $^{113}_{49} \mathrm{In}_{64}$

¹¹³Sn ε Decay (21.4 min) 1961Sc12

Parent $^{113}{\rm Sn}$: E=77.38 2; J π =7/2+; T $_{1/2}$ =21.4 min 4; Q(g.s.)=1036.6 27; % ϵ +% β + decay=8.9 23. Measured I(K x ray), 1961Sc12.

¹¹³In Levels

 $^{^{\}ddagger}$ $I(K\alpha_2$ x ray)=27.85 22, $I(K\alpha_1$ x ray)=52.2 4, $I(K\beta$ x ray)=17.44 14 calculated by radlst.

[§] From 1998Bl04 evaluation.

[#] Absolute intensity per 100 decays.

¹¹³Sn ε Decay (21.4 min) 1961Sc12 (continued)

β+,ε Data

Eε E(level) $Iε^{\dagger}$ Log ft $I(ε+β+)^{\dagger}$ \uparrow For intensity per 100 decays, multiply by 0.089 23.

$^{100}{ m Mo}(^{18}{ m O,p4n\gamma})~~2005{ m Na37}$

Includes 110Pd(7Li,4ny) also from 2005Na37.

 100 Mo(18 O,p4n γ): E=95 MeV. Measured E γ , I γ , $\gamma\gamma$, p γ coin, $\gamma\gamma(\theta)$ (DCO) with the 8π spectrometer of 20 Compton-suppressed HPGe detectors and a 4π spherical shell consisting of 71 BGO detectors along with a 96-element CsI charged particle detector array.

 $^{110}Pd(^{7}Li,4n\gamma):\ E=36\ MeV.\ Measured\ E\gamma,\ I\gamma,\ \gamma\gamma\ with\ an\ array\ of\ five\ Compton-suppressed\ HPGe\ detectors.$

¹¹³In Levels

E(level)	Jπ	E(level)	Jπ	E(level)	Jπ
0.0	9 / 2 +	3191†	19/2+	5916+x#	(35/2-)
1173	11/2+	32138	23/2(+)	6226^{\dagger}	(35/2+)
1191 [†]	7 / 2 +	3277^{\ddagger}	25/2(-)	6346 §	35/2(+)
1344	13/2+	3396\$	25/2(+)	6944+x#	(39/2-)
1688†	11/2+	$3474 + x^{\#}$	(23/2-)	7287†	(39/2+)
2232^{\ddagger}	15/2(-)	37878	27/2(+)	8066+x [#]	(43/2-)
2282	17/2+	3964 †	23/2+	8434 †	(43/2+)
2388 †	15/2+	3969‡	27/2(-)	9278+x#	(47/2-)
2395^{\ddagger}	17/2(-)	$4170 + x^{\#}$	(27/2-)	$10572 + x^{\#}$	(51/2-)
2395+x#&	(15/2-)	43768	29/2(+)	11958+x#	(55/2-)
2662‡	19/2(-)	4602 †	27/2+	y@a	
2668	17/2+	4711^{\ddagger}	29/2(-)	$y + 474^{@}$	
2851‡	21/2(-)	4988+x#	(31/2-)	y + 8 1 4 @	
$2902 + x^{\#}$	(19/2-)	50618	31/2(+)	y+1193@	
3020‡	23/2(-)	5310 †	(31/2+)	y+1555@	
30698	19/2+	5388 [‡]	31/2(-)	•	
31218	21/2+	5788§	33/2(+)		

 $^{^{\}dagger} \quad \text{(A): } \Delta J = 2 \ \, \text{intruder rotational band. Configuration} = \pi (g_{7/2}, d_{5/2}) \otimes \pi g_{9/2}^{} - ^2 \otimes \nu h_{11/2}^{} ^2.$

 $\gamma(^{113}In)$

Εγ	E(level)		E(level)		E(level)		E(level)
92	3213	474	y + 4 7 4	727	5788	1122	8066+x
163	2395	497	1688	742	4711	1147	8434
169	3020	507	2902+x	773	3964	1173	1173
171	1344	558	6346	788	3069	1191	1191
183	3396	572	3474+x	803	3191	1212	9278+x
189	2851	589	4376	818	4988+x	1294	10572+x
257	3277	638	4602	839	3121	1324	2668
267	2662	677	5388	888	2232	1344	1344
340	y+814	685	5061	916	6226	1386	11958+x
362	y+1555	692	3969	928	5916+x	1419	5388
379	v+1193	696	4170+x	938	2282	1434	4711
391	3787	700	2388	1028	6944+x		
401	3069	708	5310	1061	7987		

^{‡ (}B): Dipole magnetic-rotational band #1.

^{§ (}C): Dipole magnetic-rotational band #2.

^{# (}D): $\Delta J = 2$ intruder rotational band. Configuration= $\pi h_{11/2} \otimes \pi g_{9/2}^{-2} \otimes v h_{11/2}^{-2}$, at higher frequencies small alignment due to $g_{9/2}$ protons may be involved.

[@] (E): γ sequence.

[&]amp; Possible decays to 2395, 2232 and 1688 levels.

a From level scheme of figure 1 in 2005Na37, y \approx 6 MeV.

¹¹⁰Pd(⁶Li,3nγ) 1976TuZX

E=24 MeV. Measured Ey, Iy, yy-coin, $\gamma(\theta)$, 1976TuZX.

For information on coin relations for unplaced $\gamma \mbox{'s},$ see 1976TuZX.

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	‡	E(level)	Jπ [†]	E(level)	
0.0	9 / 2+	stable	1566.7		2389.78	(13/2+)
391.7	1 / 2 –	1.6582 h 6	1570.7		2396.4	(17/2-)
646.9	3 / 2 -		1630.7		2442.3	(11/2,15/2)
1024.2	5 / 2+		1688.88	(11/2+)	2466.7	
1131.7	5 / 2+		1836.2		2654.2	(17/2)
1173.0	11/2+		2164.8		2664.0	(19/2-)
1191.38	(7/2+)		2224.7		2786.2	(19/2)
1344.4	13/2+		2233.1	(15/2-)	2853.6	(21/2-)
1472.9			2264.1	(11/2,15/2)	3023.2	(23/2-)
1509.5			2282.7	(17/2+)		
1536.2?			2358.8?	(15/2+)		

 $^{^\}dagger$ J π for levels below 1400 keV are from adopted levels. J π for higher levels are suggested on the basis of directional correlation of oriented nuclei.

$\gamma(^{113}In)$

Εγ	E(level)		Εγ	E(level)		Εγ	E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
x 9 1			377.3	1024.2	2.1	923.8	1570.7	1.0
x 1 2 3 . 0			391.7	391.7		938.3	2282.7	20.5
132 . 0	2786.2	2.3	x 4 1 4			991.8	2164.8	4.9
163.3	2396.4	18.0	421.1	2654.2	3.8	1024.2	1024.2	21
169.6	3023.2	5.9	484.8	1131.7	1.5	1051.7	2224 . 7	6.2
171.4	1344.4	2.1	497.5	1688.8	20.4	1097.9	2442.3	7.4
184.0	2466.7	4.6	670.08	2358.8?	3.1	1131.7	1131.7	10
189.5	2853.6	9.8	x 673.5			1173.0	1173.0	53.4
x198.7			700.9	2389.7	18.0	1191.3	1191.3	36.4
2128	2654.2	3.0	826.0	1472.9	1.7	1344.4	1344.4	100
255.3	646.9	17.6	888.7	2233.1	39.5	1509.5	1509.5	7.9
267.7	2664.0	14.7	889.3‡8	1536.2?	3.5	1566.7	1566.7	9
326.7	1836.2	4.7	919.7	2264.1	8.1	1630.7	1630.7	8

[†] Massured at 55°

¹¹⁰Pd(⁷Li,4nγ) 1997Ch01

1997Ch01: E=35-45 MeV. Measured Ey, Iy, $\gamma\gamma$ -coin, $\gamma(\theta)$, DCO. Array detectors: five Compton-suppressed Ge with eight NaI multiplicity filter.

 $1976 TuZX:~^{110}Pd(^6Li, 3n\gamma),~E=24~MeV.~Preliminary.~Measured~E\gamma,~I\gamma,~\gamma\gamma,~\gamma(\theta).$

The level scheme is as given by 1997Ch01, some discrepancies are noted in comments in the level scheme by evaluator.

 113 In Levels

E(level) [‡]	$-\!$	$-T_{1/2}$
0.0	9 / 2+	stable
у		
x		
1173.11 25	11/2+	
1191.3° 3	(7/2+)	

[‡] From adopted levels.

 $[\]S$ (A): Suggested members of rotational band with Nilsson Orbit 1/2+(431).

 $^{^{\}ddagger}$ From coin data in $^{113}Cd(p,n\gamma),$ this γ deexcites the 1914-keV level and not the 1536-keV level.

 $[\]$ Placement of transition in the level scheme is uncertain.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

$^{110}Pd(^{7}Li,4n\gamma) \qquad 1997Ch01 \ (continued)$

$^{113}{ m In}$ Levels (continued)

E(level)‡	$J\pi^{\dagger}$	E(level)	$J\pi^{\dagger}$	E(level)‡	$-\!$
1344.51 ^b 25	13/2+	3190.1 6		4441.0+y ^a 6	(31/2-)
1688.6° 5	(11/2+)	3192.2° 6	(19/2+)	4602.9° 8	(27/2+)
2233.4& 4	(15/2-)	3213.8b 6	(23/2+)	4715.7 6	(29/2-)
2283.1 ^b 4	17/2+	3249.7# 5		4799.4 6	
2357.6 11		3280.9& 6	(25/2-)	5062.1 ^b 7	(31/2+)
2389.0° 6	(15/2+)	3289.5 \$ 6	(21/2-)	5125.56	
2396.6 4	(17/2-)	3305.3 6		5172.5 12	
2442.3 4		3350.3 6		5259.2+ya 6	(35/2-)
2653.8 4		3397.1 ^b 7	(25/2+)	5392.7	(31/2-)
2664.2	(19/2-)	3598.7 6		5394+x [@]	(33/2-)
2665+y ^a	(19/2-)	3743.9+ya 5	(27/2-)	5447.3 7	
2669.2b 4	17/2+	3787.9b 7	(27/2+)	5730.3 7	
2785.5 5		3854.3 7	(23/2-)	5734.8+x [@] 3	(35/2-)
2854.1 5	(21/2-)	3866.7# 6		5790.3 ^b 8	(33/2+)
2880.5 5		3965.1° 7	(23/2+)	6113.9+x [@] 5	(37/2-)
3023.8 6	(23/2-)	3973.5& 6	(27/2-)	6187.6+ya 7	(39/2-)
3050.7# 5		4090.4 \$ 7	(25/2-)	6476.0+x [@] 6	(39/2-)
3071.2b 4	(19/2+)	4377.4b 7	(29/2+)	7215.9+ya 9	(43/2-)
3122.0 ^b 5	(21/2+)	4430.5 6	(27/2-)		
3172 . $1+y^a$ 3	(23/2-)	4431.4# 6			

 $^{^{\}dagger}$ $J\pi$ as given by 1997Ch01 derived from $\gamma(\theta),$ DCO the gammas's multipolarities, and bands consideration.

$\gamma(^{113}In)$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.‡	Comments
68.6 3	2854.1	17 2		
91.8 3	3213.8	122 2	(M1, E2)	Mult.: DCO=0.57 5.
131.8 3	2785.5	33 1		
163.2 3	2396.6	443 4	(M1, E2)	Mult.: DCO=0.49 1.
169.5 3	3023.8	254 2	(M1, E2)	Mult.: DCO=0.45 4.
170.2# 3	3050.7	44# 3		
171.5 3	1344.51	44 3	(M1, E2)	Mult.: DCO=0.57 5.
183.3 3	3397.1	228 2	(M1, E2)	Mult.: DCO=0.55 3.
189.7 3	2854.1	228 2	(M1, E2)	Mult.: DCO=0.58 4.
199.1 3	3249.7	39 1		
211.7 3	2653.8	17 2		
226.7 3	2880.5	23 2		Eγ: given also deexciting the 3050 level but no level to feed?
236.1 3	4090.4	17 2	(M1,E2)§	
256.9 3	3280.9	167 2	(M1, E2)	Mult.: DCO=0.59 5.
267.5 3	2664.2	349 2	(M1, E2)	Mult.: DCO=0.57 5.
x 2 7 1 . 1 3		12 2		
x278.2 3		56 2		
284.5 3	4715.7	12 2	(M1, E2)§	
326.2 3	5125.5	< 10		
340.8 3	5734.8+x	$25 \ 2$	§	
362.1 3	6476.0+x	16 2	(M1, E2)§	
x377.2 3				
379.1 3	6113.9+x	15 2	(M1,E2)§	
386.5 3	3050.7	45 2	(M1, E2)	Mult.: DCO=0.55 10.
388.9 3	2785.5	63 2	(M1, E2)	Mult.: DCO=0.47 12.
				Ey: placed as deexciting the 2652 level and feeding the 2396 level by $1997Ch01$, placed from this level by evaluator.

[‡] From least-squares fit to γ energies.

^{§ (}A): Band 1.

^{# (}B): Band 2.

^{@ (}C): Band 3.

[&]amp; (D): Band 4.

a (E): Band 5.

b (F): Band 6.

c (G): Band 7.

¹¹⁰Pd(⁷Li,4nγ) 1997Ch01 (continued)

$\gamma(^{113}\text{In})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.‡	Comments
390.9 3	3787.9	167 2	(M1,E2)	Mult.: DCO=0.52 5.
395.8 3	3249.7	19 1	(M1,E2)	Mult.: DCO=0.53 10.
401.8 3	3071.2	70 2	(M1,E2)	Mult.: DCO=0.61 20.
409.7 3	5125.5	24 2	(M1,E2)§	
420.4 3	2653.8	42 4	(M1,E2)	Mult.: DCO=0.49 15.
x474.3 3		10 2	` , , ,	
483.9 3	2880.5	23 2		
497.3 3	1688.6	90 3	E2	Mult.: DCO=0.9 1.
507.1 3	3172.1+y	25 2	E2	Mult.: DCO=0.9 3.
525.9 3	3190.1	35 2		
564.8 3	3854.3	23 2	(M1,E2)	
	4431.4		` , , ,	
571.8 3	3743.9+y	63 2	E2	Mult.: DCO=0.9 3.
589.4 3	4377.4	$72 \ 2$	(M1,E2)	Mult.: DCO=0.49 2.
617.2 3	3866.7	45 3	, ,	
625.3 3	3289.5	28 2	(E2)	
637.8 3	4602.9	31 2	(E2)	
641.1 3	3305.3	15 2		
669 1	2357.6			Eγ: not given in Table 1, only in figure 1 (1997Ch01).
677.7 3	5392.7	17 2	(M1,E2)	
684.6 3	5062.1	47 2	(M1, E2)	Mult.: DCO=0.48 16.
686.1 3	3350.3	< 10		
692.6 3	3973.5	68 2	(M1, E2)	Mult.: DCO=0.57 17.
697.1 3	4441.0+y	12 2	E2	Mult.: DCO=0.9 2.
700.4 3	2389.0	85 2	E2	Mult.: DCO=0.9 2.
728.2 3	5790.3	31 2	(M1, E2)	
731.6 3	5447.3	< 10		
742.4 3	4715.7	25 2	(M1,E2)§	
744.6 3	3598.7	19 2		
772.9 3	3965.1	51 3	E 2	
788.2 3	3071.2	124 2	(M1, E2)	Mult.: DCO=0.68 2.
803.2 3	3192.2	80 2	E 2	Mult.: DCO=0.9 2.
818.2 3	5259.2+y	23 4	E 2	Mult.: DCO=1.1 3.
826.3 3	4799.4	< 10		
838.9 3	3122.0	87 2	E 2	Mult.: DCO=0.95 8.
888.7 3	2233.4	$515 \ 3$	(E1)	Mult.: DCO=0.44 2.
x919.2 3		31 3		
928.4 3	6187.6+y	< 20	(E2)	
938.7 3	2283.1	256 2	E2	Mult.: DCO=0.99 4.
980.2 3	4377.4	< 10	(E2)	
x991.5 3		56 1		
$1014.6\ 3$	5730.3	33 3		
1028.36	7215 . $9+y$	< 20	(E2)	
1097.9 3	2442 . 3	24 2		
$1173.2 \ 3$	1173.11	25 2	(M1,E2)§	
1191.3 3	1191.3	88 3	(M1, E2)	
1199 1	5172 . 5			Eγ: not given in Table 1, only in figure 1 (1997Ch01).
1274.2 3	5062.1	< 5		
1324 . 6 3	2669.2	82 2	E2	Mult.: DCO=0.89 9.
1344 . 4 3	1344 . 51	1000	E 2	Mult.: DCO=1.07 6.
x1390.3 3		< 10		
1406.7 3	4430 . 5	14 2	E2 §	
1418.6 3	5392.7	14 3	(E2)	
1434.9 3	4715.7	32 3	E2 §	
x1444.5 3		< 10		
1518.3 3	4799.4	14 3		
x1583.5 3		14 3		

[†] From 1991Ch01

 $^{^{\}ddagger}$ From DCO ratio and/or $\gamma(\theta)$. The values for DCO with the gating transition(s) as quadrupole are given in comments.

 $[\]$ Mult from DCO when the gating transition is a dipole.

 $^{^{\#}}$ Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

¹¹²Cd(p,p) IAR 1970Mi08

 $E=6-11~MeV.~Measured~\sigma(E(p),\theta),~\theta=90^{\circ},~120^{\circ},~150^{\circ},~and~170^{\circ},~semi,~1970Mi08.$

For level widths, see 1970Mi08.

Others: 1969Ab09, 1975Ab09, 1977So10.

¹¹³In Levels

E(level)#	Jπ [‡]	L [†]				Comments	
12873	1/2+	0	IAS of 1/2+ 113Co	d g.s.			
13180	3 / 2+	2	IAS of 299 keV,	(3/2+) 113C	d excitation.		
13417	5 / 2+	2	IAS of 584 keV,	5/2+ 113Cd	excitation.		
13531	3 / 2+	2	IAS of 681 keV,	(3/2+) 113C	d excitation.		
13738	1 / 2+	0	IAS of 884 keV,	1/2+ 113Cd	excitation.		
13857	1 / 2+	0	IAS of 988 keV,	1/2+ ¹¹³ Cd	excitation.		
14064	5 / 2+	2					
14379	3 / 2+	2					
14478	3 / 2+	2	E(level)#	$J\pi^{\ddagger}$	L^{\dagger}		
14673?	(5/2+)	(2)					
15033	1 / 2+	0	15791?	(7/2-)	(3)		
15086?	(1/2+)	(0)	15870?	(5/2+)	(2)		
15131	7 / 2 –	3	15924?	(1/2+)	(0)		
15325?	(3/2-)	(1)	15961?	(5/2+)	(2)		
15466	3 / 2 –	1	16028	3 / 2 –	1		
15508	7 / 2 –	3	16136	3 / 2 –	1		
15600?	(3/2-)	(1)	16226	7 / 2 –	3		
15629	(7/2-)	(3)	16334?	(3/2-)	(1)		
15674?	(1/2+)	(0)	16493?	(1/2+)	(0)		
15748	7 / 2 –	3	16587	3 / 2 –	1		

[†] From shape of $\sigma(E(p), \theta)$.

¹¹²Cd(³He,d) 1974Ma09

 $E=27~MeV.~Magnetic~spectrograph~with~spark~counter.~\sigma(\theta)~at~12~angles~(5^{\circ}-40^{\circ}),~compared~with~DWBA~calculations,$ 1974Ma09.

113 In Levels

E(level)		L		E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	L	C^2S^{\ddagger}
0.0	9 / 2+	4	0.17	1700 5	1/2+	0	0.024
393 5	1 / 2 –	1	0.059	1774 10	3 / 2+	2	0.14
648 5	3 / 2 –	1	0.048	1831 8	1 / 2+	0	0.029
1026 5	5 / 2+	2	0.52	2048 10	7 / 2+	4	0.097
1066 5	3 / 2 +	2	0.15	2153 10	1 / 2+	0	0.048
1133 5	5 / 2 +	2	0.02	2190 10	3 / 2 + , 5 / 2 +	2	0.045,0.03
1194 5	7 / 2 +	4	0.21	2298 10	3 / 2 + , 5 / 2 +	2	0.04,0.024
1571 5	7/2+,9/2+	4	0.03,0.04	2346 10	3 / 2 + , 5 / 2 +	2	0.033,0.02
1634 5		(3, 4)		2391 10	$3 \ / \ 2 + \ , \ 5 \ / \ 2 +$	2	0.10, 0.064

 $^{^{\}dagger}$ Assumed for calculation of $C^2S.$

[#] From S(p)=6074 4 (1985Wa02) + res E(p)(c.m.) (1970Mi08).

 $[\]mbox{\ensuremath{^{\ddagger}}}\ C^2S$ normalized to the sum rule limit for the 3 lowest levels.

¹¹²Cd(**a**,t) 1974Ma09

 $E=27~MeV.~Magnetic~spectrograph~with~spark~counter.~\sigma(\theta)~at~10~angles~(10^{\circ}-80^{\circ}),~compared~with~DWBA~calculations.$

¹¹³In Levels

E(level)	$\underline{\hspace{1cm} J\pi^{\dagger}}$	L	$\underline{\hspace{1cm}}^{C^2S^{\ddagger}}$	Comments
0.0	9 / 2+	4	0.15	
393 5	1 / 2 –	1	0.083	
648 5	3 / 2 –	1	0.078	
1026 5	5 / 2+	2	0.30	E(level): probable doublet.
1066 5	3 / 2 +	2	0.090	
1133 5	5 / 2+	2	0.021	
1194 5	7 / 2 +	4	0.19	
1571 5	7 / 2 + , 9 / 2 +	4	0.022,0.03	
1634 5		(3, 4)		
1774 10	3 / 2+	2	0.099	
2048 10	7 / 2 +	4	0.063	
2104 10	11/2-	5	0.028	
2376 10	11/2-	5	0.11	
2559 10	11/2-	5	0.080	

[†] Assumed for calculation of C2S.

$^{113}Cd(p,n\gamma) \\ \phantom{^{113}Cd(p,n\gamma)} 1990Vi09, \\ 1976Di03, \\ 1974Ki02$

 $J\pi(^{113}Cd)=1/2+.$

1976Di03: E=6-11 MeV. Measured (semi) E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, E(ce), I(ce), excit. $\gamma(\theta)$ measured at 9 angles $(30^{\circ}-145^{\circ})$ at E=7.5 MeV.

1974Ki02: E=2.7-5.2 MeV. Measured neutron time of flight, E γ , I γ (semi), n γ coin.

1990Vi09: E=6.8 MeV. Measured E γ , I γ (semi), $\gamma\gamma$.

The level scheme is as proposed by 1990Vi09, it is in agreement with the one given by 1976Di03 and 1974Ki02 upto the 1999-keV level. All levels above that have been proposed by 1990Vi09.

¹¹³In Levels

E(level)		†	E(level)	Jπ [‡]
0.0	9 / 2 +		1688.61 22	9 / 2+
391.73 6	1 / 2 –		1707.35 9	(3/2,5/2)+
646.76 6	3 / 2 –		1760.26 14	
1024.23 # 6	5 / 2+		1768.03 9	3 / 2 + , 5 / 2 + , 7 / 2 +
1029.60#8	1/2+,(3/2+)	0.33 ns 3	1802.30 8	
1063.89# 8	3/2+,(1/2+)	0.58 ns 3	1822.51 11	1/2,3/2,5/2
1106.46 9	3 / 2 - , 5 / 2 -		1835.68 19	
1131.45 6	5 / 2+		1865.36 22	5 / 2 - , 7 / 2 -
1173.06 9	(7/2+,9/2+),11/2+		1914.08 10	3 / 2 + , 5 / 2 +
1191.11#9	7 / 2 +		1920.77 10	3/2+,5/2+,7/2+
1344.91 10	(9/2+,11/2+),13/2+		1937.88 11	3 / 2 - , 5 / 2 -
1351.01 20			1947.57 11	
1380.77 8	1/2-,3/2-		1999.13 12	1/2,3/2
1453.0 3			2032.71 22	
1471.87 9	3 / 2 - , 5 / 2 - , 7 / 2 -		2039.72 14	
1496.34 11			2051.45 12	
1504.0 5			2064.00 22	
1508.97 17	(3/2,5/2),7/2+		2070.10 14	
1535.93 10	3 / 2 - , 5 / 2 -		2095.38 8	
1552.0 4			2118.32 19	
1567.04 9	(5/2),7/2+,9/2+		2144.51 13	
1569.55 9	1/2-,3/2-		2170.32 14	
1618.89 10			2180.8 5	
1630.56 9	5/2+,7/2+,9/2+		2183.23 11	
1675.47 8			2253.39 11	
1684.12 9			2281.04 18	

 $^{^{\}ddagger}$ C^2S normalized to the sum rule limit for the 3 lowest levels.

$^{113}\mathrm{Cd}(p,n\gamma)$ 1990Vi09,1976Di03,1974Ki02 (continued)

¹¹³In Levels (continued)

E(level)	E(level)	E(level)
2295.27 14	2383.83 16	2665.0 4
2331.24 21	2476.0 2	2727.98 23
2339.49 17	2515.6 4	2783.84 11
2371.64 12	2557.00 18	2904.8 3
2378.18 15	2560.46 \$ 22	

- † From pulsed-beam $\gamma(t)$ with semi, 1971Ki14.
- [‡] Based on γ(θ), γ-decay properties, excit and systematics. § A 1451.1γ is given in Table 4 of 1990Vi09 but not in Table 2, does not fit in the level scheme.
- $^{\#}$ (A): Suggested members of rotational band with Nilsson Orbit 1/2+(431).

$\gamma(^{113}{\rm In})$

Εγ [†]	E(level)	Ιγ†	Mult.§	δ	Comments
107.2 2	1131.45	0.5 1			
160.3 4	1835.68	0.4 1			
167.1 3	1191.11	0.6 1	M1(+E2)	<0.89	Mult.: α(K)exp=0.081 35 yields D(+Q). From decay scheme D=M1.
255.0 1	646.76	100 3	M1(+E2)	<1.17	Mult.: from $\alpha(K)\exp=0.035$ 4.
266.8 2	1802.30	0.8 1			•
291.8 1	1999.13	1.4 1			
316.7 1	1380.77	4.4 2			
326.7 1	1835.68	2.3 1			
330.2 2	1802.30	0.2 1			
345.0 3	1535.93	0.6 1			
347.0 3	1914.08	0.3 2			
351.4 1	1380.77	5.7 3	E1		Mult.: from α(K)exp=0.0058 14.
377.6 1	1024.23	7.9 5			
382.9 1	1029.60	2.5 1			
388.1 3	2095.38	0.3 1			
391.8 1	391.73				
394.0 5	1567.04	0.4 1			
411.5 1	2095.38	1.4 1			
416.9 1	1063.89	0.4 1			
429.5 2	1535.93	0.6 1			
457.7 2	1630.56	1.0 2			
459.8 2	1106.46	2.3 2	M1,E2		Mult.: from $\alpha(K)\exp=0.0074$ 20.
472.1 1	1496.34	4.0 2	WII , 152		mule from w(x)exp=0.0014 20.
112.1 1	1535.93	4.0 2	E1		Mult.: from $\alpha(K)\exp=0.0024$ 6.
484.9 1	1131.45	5.5 3	E1		Mult.: from $\alpha(K)\exp = 0.0027$ 7.
497.5 2	1688.61	2.7 2	M1,E2		Mult.: from $\alpha(K)\exp(-0.0021)$ 7. Mult.: from $\alpha(K)\exp(-0.0062)$ 10.
528.1 3	2095.38	0.5 1	WII , 132		Multi. Hom w(N)CAp=0.0002 10.
544.0 1	1675.47	2.2 1			
548.7 2	2118.32	0.6 1			
576.0 1	1707.35	2.6 2	M1,E2		Mult.: from $\alpha(K)\exp=0.0043$ 11.
587.2 1	1760.26	1.7 1	,		11410.1 110m w(11)0np=010010 11.
598.1 2	2070.10	7.4 4			
606.4 3	1630.56	4.8 3			
609.5 3	2118.32	6.3 4			
613.3 2	2183.23	0.4 1			
638.0 1	1029.60	37 2	E1		Mult.: from $\alpha(K)$ exp=0.00130 25.
					B(E1)(W.u.)=3.2×10 ⁻⁶ 4.
646.5 2	2560.46	0.6 1			· · · · · · · · · · · · · · · · · · ·
651.1 3	1675.47	0.6 1			
672.4 2	1063.89	20 1	E1		Mult.: from $\alpha(K)\exp=0.00095$ 18.
		· -			$B(E1)(W.u.)=1.61\times10^{-6}$ 14.
677.5 5	1707.35	1.4 1			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
683.2 2	1707.35	3.2 2	M1,E2		Mult.: from $\alpha(K)\exp=0.0039$ 10.
689.5 2	2070.10	1.4 1	, 		
696.0 2	1802.30	1.6 1			
711.0 3	2183.23	0.3 1			
		0 1			

¹¹³Cd(p,nγ) 1990Vi09,1976Di03,1974Ki02 (continued)

$\gamma(^{113}In)$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.§	Comments
734.1 2	1380.77	0.7 1		
738.4 1	1768.03	1.1 1		
743.8 1	1768.03	5.6 3		
758.9 2	1865.36	2.6 1	M1, $E2$	Mult.: from $\alpha(K)\exp=0.0018$ 4.
$759.3\ 2$	2378.18	2.5 3		
782.9 2	1914.08	0.9 1		
789.3 2	1920.77	1.0 1		
792.9 1	1822.51	4.5 2		
808.03 813.92	1999.13 2727.98	$ \begin{array}{cccc} 0.5 & 1 \\ 1.0 & 2 \end{array} $		
825.0 1	1471.87	11 5	M1,E2	Mult.: from $\alpha(K)\exp=0.0022$ 4.
831.3 8	1937.88	0.2 1	, 2.2	Material Willyonp - 2000 22 17
835.9 4	2180.8	1.0 1		
841.2 5	1947.57	0.9 1		
848.6 1	2039 . 72	2.1 1		
856.6 2	1920.77	1.6 1		
889.8 1	1914.08	10.5 5		
896.6 1	1920.77	4.6 2	M1 De	Multi- from a/Worn 0.0010 2
922.7 1	1569.55	8.3 5	M1,E2	Mult.: from $\alpha(K)\exp=0.0018$ 3.
945.01 963.72	2051.45 2095.38	$\begin{array}{cccc} 1 \ . \ 2 & 1 \\ 1 \ . \ 5 & 2 \end{array}$		
972.1 1	1618.89	1.1 1		
979.2 1	2170.32	1.3 1		
989.0 1	1380.77	2.1 1		
$1000.1\ 2$	2064 . 00	$2.5 \ 3$		
$1003.1\ 2$	2032 . 71	3.9 4		
1024.3 1	1024 . 23	73 3	E 2	
1034.4 4	2665.0	1.0 1		
1037.6 1	1684.12	6.8 4		
1040.5 5	2070.10	0.5 1		
1052.12 1060.4	2183.23 1707.35	1.7 1		
x1064.4 3	1101.55	0.2 1		
1076.5 3	2183.23	0.8 1		
1080.1 2	1471.87	5.0 4		
1114.9 1	2144 . 51	8.0 5		
1131.5 1	1131 . 45	31 2	E2	
1136.5 5	2904.8	0.4 1		
1144.5 4	1535.93	0.7 1		
1147.1 4	2253.39	0.4 1		
1149.8 3	2281.04	$ \begin{array}{cccc} 0 & 2 & 1 \\ 0 & 3 & 1 \end{array} $		
1155.54 1159.52	1802.30 2183.23	0.5 1		
1164.3 3	2295.27	0.6 1		
1173.1 1	1173.06	11.3 6	M1,E2	Mult.: from $\alpha(K)\exp=0.00090$ 15.
1177.8 1	1569.55	2.6 3		•
1191.1 1	1191.11	27 1	M1, $E2$	Mult.: from $\alpha(K)$ exp=0.00085 14.
1233.1 2	2339.49	2.2 1		
1256.7 2	2281.04	1.2 1		
1271.9 2	2378.18	1.4 1		
1274.44 1291.11	2904.8 1937.88	0.61 6.54		
1300.8 1	1947.57	2.7 2		
1307.0 2	2331.24	1.2 1		
1315.3 2	1707.35	0.8 1		
1344.9 1	1344.91	2.9 2	E 2	
1347.4 1	2371 . 64	1.4 1		
1351.0 ‡ 2	1351 . 01	2.8 2		
1352.0 4	1999.13	0.4 1		
1359.6 2	2383.83	0.6 1		
1409.1 3 $1423.2 3$	2515.6	0.6 1		
1423.2 3	2070.10 1822.51	0.6 <i>1</i> 0.3 <i>1</i>		
1100.0 2	1022.01	5.5 1		
			Continu	ed on next page (footnotes at end of table)

¹¹³Cd(p,nγ) 1990Vi09,1976Di03,1974Ki02 (continued)

$\gamma(^{113}In)$ (continued)

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)		$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	Ιγ [†]
1451.0 2	2476.0	1.2 1	1567.0 1	1567.04	6.7 4	1802.2 1	1802.30	5.2 3
1453.0 ‡ 3	1453.0	1.1 1	1606.6 1	2253.39	2.1 1	1861.7 2	2253.39	2.3 2
x 1 4 5 4 . 1 5		0.7 1	1619.0 2	1618.89	5.0 5	1903.2 2	2295.27	0.9 1
1496.4 3	1496.34	0.4 1	1630.5 1	1630.56	6.3 4	1910.2 2	2557.00	0.5 1
$1504.0^{\pm}5$	1504.0	0.4 1	1648.6 2	2295 . 27	1.0 1	1947.6 5	2339.49	0.4 1
1509.0 2	1508.97	13.0 6	1675.5 1	1675.47	7.3 4	1992.1 3	2383.83	1.4 1
1532.8 3	2557.00	0.9 1	1692.6 3	2339.49	0.8 1	2051 . 4 2	2051 . 45	0.4 1
1536.0 3	2183 . 23	1.5 1	1731.0 3	2378.18	0.8 1	2095.2 1	2095.38	3.6 2
1546.3 3	1937.88	0.8 1	1737.0 3	2383.83	0.2 1	2137.0 2	2783.84	0.7 1
1552.0 ‡ 4	1552.0	0.4 1	1759.6 1	2783.84	3.2 2	x 2 4 7 5 . 3 3		0.2 1
1555.9 3	1947.57	0.4 1	1773.4 4	2904 . 8	0.5 1	2476 . 3	2476 . 0	

 $^{^{\}dagger}$ From 1990Vi09, Iy at 90° to beam.

$^{113}\mathrm{In}(\gamma,\gamma')$ 1969Bo42

Bremsstrahlung, E=1000-1800. Measured yield of 392γ, semi, 1969Bo42.

Others: 1967Bo10, 1977Ca14.

1991Vo05 has shown a resonant and a non-resonant contribution to photoactivation process.

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	${\rm T}_{1/2}^{\dagger}$	Comments
0.0	9 / 2 +	stable	
392	1/2-	1.6582 h 6	
1025 5			
1130 10			
1177 1	11/2+	60 fs 6	E(level): from 1977Ca14. $T_{1/2}$ from Γ of level.
1500 10			1/2
1630 10			

[†] From adopted levels.

¹¹³In(d,d') 1967Hj03

E=15 MeV. θ =45° and 60°, magnetic-wedge spectrograph, 1967Hj03.

¹¹³In Levels

E(level) [†]	Jπ [‡]	$\underline{\hspace{1cm} E(level)^{\dagger} \hspace{1cm} J\pi^{\ddagger}}$	$\underline{\hspace{1cm}}$
0.0	9 / 2+	1648 15	2290 15 (+)
1117? 15	(7/2+)	1697? 15	2380 15
1187 15	(13/2+)	1786 15	2450 15 (-)
1360 15	(11/2+)	1980? 15	2540 15
1477? 15		2120 15	2610 15
1520? 15	(9/2+)	2180 15 (-)	
1587? 15		2240 15	

 $^{^{\}dagger}$ Systematically=15 keV too high in comparison to adopted values.

 $^{^{\}ddagger}$ Not observed by 1976Di03.

 $[\]S$ $\alpha(K)$ exp calculated by evaluators normalizing 1024 γ , 1132 γ and 1345 γ to E2 theory. These E2 assignments are based on adopted $J\pi$ values for the levels involved.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

 $^{^{\}frac{1}{\tau}}$ π from the ratio $\sigma(45)/\sigma(60).$ Spin assignments from the strengths.

¹¹³In(α,α') 1968St17

 $E{=}42.2$ MeV. Measured $\sigma(\theta)$ semi, energy resolution=100.

¹¹³In Levels

E(level)	$\frac{\mathbf{L}^{\dagger}}{}$	E(level)	$\frac{\mathbf{L}^{\dagger}}{}$	† From differential cross sections between 30° and 80°, characteristic shape.
1170	2	2170	3	
1360	2	2480	3	
1560 20	2			

Coulomb Excitation 1976Tu02

 $E(\alpha)=9.4, 10.0, 10.6 MeV.$

 $E(^{16}O)=42, 45 \text{ MeV}.$

Enriched target (96%) were chemically processed to eliminate contaminants.

Measured: γ singles, $\gamma(\theta)$ and $\gamma\gamma$ coin, semi, Doppler broadening.

Others: 1970Be02, 1974Er06, 1974Le34.

¹¹³In Levels

 $B(E2) \uparrow B(E2)$ and B(E3) values were calculated from measured yield at 55° in $^{113}In(\alpha,\alpha'\gamma);$ see 1976Tu02.

E(level)	$_{}^{J_{\pi^{\dagger}}}$	$T_{1/2}$	Comments
0.0	9 / 2+	stable	
391.7 8	1 / 2 –		
646.9 8	3 / 2 –		B(E3)↑=0.0048 5.
1024.2 7	5 / 2+	3.6 ps 3	$B(E2)\uparrow=0.0075$ 6.
			$T_{1/2}$: from B(E2). 3.8 ps 7 from DSA.
1131.77	5 / 2+	0.97 ps 7	$B(E2)\uparrow=0.0160$ 10.
			$T_{1/2}$: from B(E2).
1173.0 7	11/2+	0.07 ps‡ 4	B(E2)↑=0.093 6.
			$T_{1/2}$: from B(E2).
			$J\pi$: $x,\gamma(\theta)$ for 171γ and 1173γ consistent with $11/2+$ only.
1344.4 8	13/2+	0.33 ps 3	$B(E2)\uparrow=0.053\ 3.$
			J π : x, γ (0) gives 9/2+ or 13/2+. $T_{1/2}(DSA)$ and B(E2) not mutually consistent with 9/2+.
			$T_{1/2}$: from B(E2). 0.28 ps 7 from DSA.
1509.5 8	7/2+,9/2+	$\leq 0.2 \text{ ps}^{\ddagger}$	$B(E2)\uparrow=0.0145$ 10.
			$T_{1/2}$: from B(E2).
			$J\pi$: from $x,\gamma(\theta)$ and adopted levels.
1566.9 8	7 / 2 + , 9 / 2 +	0.24 ps [‡] 10	B(E2)↑=0.0178 12.
			$J\pi$: from $x,\gamma(heta)$ and adopted levels.
			$T_{1/2}$: from B(E2).
1630.7 7			$B(E2) \uparrow = 0.0032$ 12.

 $^{^{\}dagger}$ From adopted levels, except as noted.

$\gamma(^{113}$	In)
-----------------	-----

$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)	Ιγ‡	Mult.§	δ	Comments			
107.5	1131.7	0.9 2						
171.4	1344.4	2.1 1	M1+E2	+0.03 3	$B(M1)(W.u.)=0.28 \ 3; \ B(E2)(W.u.)=7 \ +14-7.$			
255.3	646.9							
377.3	1024.2	9.0 6						
377.8	1509.5	6.5 32						
391.7	391.7							
393.9	1566.9	12.5 9						
457.7	1630.7	25.9 48						
484.8	1131.7	14.0 3	E1(+M2)	-0.03 5	δ : -3.0 5 excluded from transition strength.			
					$B(E1)(W.u.)=(0.00037\ 3);\ B(M2)(W.u.)=(6\ +22-6).$			
606.5	1630.7	≤1.0						
1024.2	1024 . 2	91.0 6	E 2		B(E2)(W.u.)=3.9 4.			
	Continued on next page (footnotes at end of table)							

 $[\]mbox{$\stackrel{\div}{\tau}$}$ From DSA-method line shapes in ${}^{113}In({}^{16}O, {}^{16}O'\gamma).$

Coulomb Excitation 1976

1976Tu02 (continued)

γ(¹¹³In) (continued)

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	Ιγ‡	Mult.§	Comments
1131.7	1131.7	85.1 5	E 2	B(E2)(W.u.)=8.2 6.
1173.0	1173.0	100		
1344.4	1344.4	97.9 1	E 2	$B(E2)(W.u.)=11.8 \ II.$
1509.5	1509.5	93.5 32		
1566.9	1566.9	87.5 9		
1630.7	1630.7	73.1 48		

- † Uncertainty not given, 1 keV assumed by evaluator.
- ‡ % photon branching from each level.
- § Mult and δ from $\gamma(\theta)$.

¹¹⁴Sn(d, ³He) 1969Co03

E=22 MeV. Measured $\sigma(\theta)$, $\theta=30^{\circ}-70^{\circ}$, 1969Co03.

¹¹³In Levels

E(level)	$J\pi^{\ddagger}$	$\frac{L^{\dagger}}{}$	$\frac{C^2S}{}$
0.0	9 / 2+	4	6.0
380 25	1 / 2 –	1	1.3
635 25	3 / 2 –	1	1.7

- † From comparison with DWBA calculations.
- \ddagger Assumed for calculation of C^2S .

¹¹⁵In(p,t) 1974Ma09

 $J\pi(^{115}In)=9/2+.$

E=17, 19 MeV. $\sigma(\theta)$, $\theta=5^{\circ}-50^{\circ}$ with magnetic spectrograph, 1974Ma09.

L-values are from comparisons with DWBA calculations.

¹¹³In Levels

E(level)	L	E(level)	_L_	E(level)	_ <u>L</u>	E(level)	_L
0.0	0	1345	2	1758	0+2	2230	(3)
1026	2	1511	2	2094	(3)	2263	(3)
1133	2	1569	2	2116	(3)	2407	(3)
1171	2	1634	(3)	2167	(3)	2439	(3)

$^{116}{\rm Sn}(p,\alpha)$ 1976Sm04

E=22 MeV. Measured $\sigma(\theta),~\theta{=}10^{\circ}{-}60^{\circ},~1976Sm04.$

¹¹³In Levels

E(level)	$J\pi^{\dagger}$	E(level)	$_{J\pi^{\dagger}}$	E(level)	$J\pi^{\dagger}$	E(level)	E(level)
0.0	9 / 2+	1110 2	5 / 2 –	1633 3	9 / 2+	2092 4	2451 5
393 1	1 / 2 -	1349 3	13/2+	1753 4		2249 5	2586 5
645 1	3 / 2 -	1561 3	9 / 2+	1944 4		2369 5	

 $^{^{\}dagger}$ From comparisons of $\sigma(\theta)$ with known transfers in $^{118}{\rm Sn}(p,\alpha).$

Adopted Levels, Gammas

 $Q(\beta^-) = -3913 \ 17; \ S(n) = 7743.1 \ 18; \ S(p) = 7626 \ 5; \ Q(\alpha) = -2250 \ 4 \ 2003 \\ Au 03, 2009 \\ Au ZZ.$

¹¹³Sn Levels

For neutron resonance, see $^{112}Sn(n,\gamma)$ (1981MuZQ).

For gross structure of deeply bound hole states in odd tin isotopes observed with the $(^3\text{He},\alpha)$ reaction, see 1978Ta22. For onset of neutron single-particle strengths with $(\alpha,^3\text{He})$ at 183 MeV, see 1991Ma06.

Cross Reference (XREF) Flags

A ¹¹³ Sn IT Decay (21.4 min)	$F^{-112}Sn(n,\gamma)$ E=95 eV	$K^{-115}Sn(p,t)$
B ¹¹³ Sb ε Decay	$G^{-112}Sn(d,p),^{114}Sn(d,t)$	L ¹¹⁴ Sn(p,d) IAS
$C^{-110}Cd(\alpha,n\gamma)$	$H^{-113}In(p,n\gamma)$	$M^{100}Mo(^{18}O,5n\gamma)$
$D^{-111}Cd(\alpha,2n\gamma)$	$I^{-113}In(p,3n\gamma)$	
$E^{-112}Cd(\alpha,3n\gamma)$	$J^{-114}Sn(p,d)$	

E(level)#	J_{π}^{\dagger}	XREF	${\bf T}_{1/2} \S$	Comments
0.0	1/2+	ABCDEFGHIJKLM	115.09 d 3	%ε+%β*=100. μ=-0.8791 6 (1989Ra17). μ: atomic beam. $T_{1/2}$: from weighted average of 115.2 d 8 (1972Em01), 115.07 d 10 (1972La14), 115.09 d 4 (1980Ho17), 115.12 d 13 (1982RuZV), and 115.08 d 8 (1992Un01). The reduced- χ^2 = 0.03. Because this set of values is consistent, the Limited Relative Statistical Weight method (1985ZiZY, 1992Ra09) does not increase the uncertainty for the 1980Ho17 value even though it contributes 66% of the relative weight. If the 1980Ho17 uncertainty were increased from 0.04 to 0.056 in order to decrease its relative weight to 50%, the weighted average average would still be 115.09 with an uncertainty of 0.04. The very small reduced- χ^2 value suggests that the reported uncertainties are overestimated. Other measurements: 107 d (1959Bu08), 115.12 d 20 (1976MeZR, replaced by 1982RuZV), and 115.06 d 7 (1982HoZJ, replaced by 1992Un01).
77.389 19	7/2+	ABCDE GHIJK	21.4 min 4	Jπ: atomic beam (1976Fu06), L(d,p)=0. %IT=91.1 23; %ε+%β ⁺ =8.9 23 (1961Sc12). Τ _{1/2} : from 1974Ho17. Others: 21 min <i>I</i> (1961Se08), 20 min <i>I</i> (1961Sc12). %IT from I(Kα x ray, ¹¹³ In)/I(Kα x ray, ¹¹³ Sn). Jπ: atomic beam (1976Fu06), 77γ is M3(+E4).
409.83 4	5 / 2+	BCD GHIJK		$J\pi$: L(d,p)=2, σ (d,p)/ σ (d,t) favors 5/2+.
498.07 5	3 / 2+	BCD FGHIJK	>0.35 ps	J π : L(d,p)=2, σ (d,p)/ σ (d,t) favors 3/2+.
738.4 ^b 3	11/2-	CDE GHIJ M	86 ns 2	 μ=-1.293 16 (1989Ra17); Q=+0.41 1 (1989Ra17). μ: μ and Q: differential perturbed angular distribution. Jπ: L(d,p)=5, M2(+E3) γ to 7/2+. T_{1/2}: unweighted av of 88 ns 3 (1973IsZQ), 89 ns 3 (1974Di18), 82.1 ns 17 (1974Br29).
1013.94 14	3 / 2 +	BCD GH	0.2 ps 1	E(level): a level with L(d,p)=2 observed at 1014 5, may correspond to either 1013.22 or 1018.09 level. Jπ: log ft=5.86 3 from 5/2+, M1+E2 γ to 1/2+.
1018.08 5	5 / 2+	BCD HI K	1.0 ps 5	J π : allowed ϵ decay from 5/2+. E2 γ to 1/2+.
1042 25	3 / 2 + , 5 / 2 +	J		E(level): from (p,d), possibly same as 1018 level. $J\pi$: L(p,d)=2.
1140 25		J		
1248 . 7 3		D H		
1284.06 11	5 / 2+	BCD HI	0.5 ps 2	$J\pi$: E2 γ to 1/2+. log ft =6.93 7 from 5/2+.
1303 25	1/2+	J		$J\pi$: $L(p,d)=0$.
1314.07 15	3 / 2+	BCD FGHI		$J\pi$: $L(d,p)=2$.
1355.90 20	3 / 2 +	CD HI	0.7 ps 3	Jπ: M1 γ to 1/2+.
1472.54 15	5/2+	CD HI	0.8 ps 5	J π : $\gamma(\theta)$ gives 3/2,5/2. E2 to 1/2+ g.s.
1537 5	(7/2+,9/2+)	G		$J\pi$: $L(d,p)=(4)$.
1539.0 7	5/2+	CD HI	0.6 ps 1	$J\pi$: M1+E2 γ to 1/2+.
1539.9 4	(11/2-)	CD HI	0.2 ps 1	J π : from $\gamma(\theta)$, γ to 11/2—.
1556.50 10	3 / 2+	BCD FGHI		Jπ: allowed ε decay from 5/2+, M1 γ to 1/2+.

¹¹³Sn Levels (continued)

E(level)#	Jπ [†]	XREF		Comments
1646.06 14	3 / 2 + , 5 / 2 +	BCD GH		$J\pi$: $L(d,p)=2$.
				E(level): the 1646 level in (d,p) could also correspond to
1647.2 3		D		the 1651 level.
1651.62 17	5 / 2 +	BCD H J		$J\pi$: $L(p,d)=2$, $M1 \gamma$ to $7/2+$.
1732.22 17	(3/2+,5/2+)	BCD H		$J\pi$: log ft =6.05 5 from 5/2+.
1744.81 14	3/2+,5/2+	BCD GHIJ	0.31 ps 8	$J\pi$: L(d,p)=2 at 1745 5.
1781.1 3	9 / 2 –	D HI	0.19 ps 7	$J\pi$: M1+E2 γ to 11/2- and γ to 7/2+.
1821.0 3	1 / 2 +	C GH J		$J\pi$: $L(d,p)=0$.
1831.0 3	1 / 2 +	C H J		$J\pi$: $L(p,d)=0$.
1867.28 20	5 / 2+	CD HI	0.33 ps 10	J π : M1,E2 γ to 3/2+,5/2+, $\gamma(\theta)$ in 113 In(p,n γ).
1906.6b 4	15/2-	CDE GHI M	0.8 ps 2	Jπ: stretched E2 to 11/2
1909.64 18	(5/2+,7/2+)	CD HI		J π : γ 's to $3/2+,5/2+$, $\gamma(\theta)$ in 113 In(p,n γ).
1935.4 4	(11/2-)	CD HI	1.9 ps 8	Jπ: γ to 11/2-, M1+E2 γ to 11/2
1945.3 <i>4</i> 1952.1 <i>4</i>	(9/2-) 13/2-	CD HI CDE HI	0.40 ps 20 1.0 ps 4	J π : γ to 11/2 J π : γ to 11/2-, $\gamma(\theta)$ in ¹¹³ In(p,n γ).
1957.05 16	3/2(+),5/2(+)	В	1.0 ps 4	J π : log ft =6.40 10 from 5/2+, γ to 1/2+ and 7/2+.
2031.4 3	5/2(+),5/2(+)	D H		σκ. 10g /1-0.40 10 110m σ/2+, γ to 1/2+ and 1/2+.
2039.88 19	7 / 2 +	CD H	0.2 ps 1	J π : γ 's to $3/2+,5/2+$ and $5/2+,7/2+$. $\gamma(\theta)$ in $^{113}In(p,n\gamma)$.
2045.47 20	(3/2+,5/2+)	в е јк	r	$J\pi$: log ft = 6.63 12 from 5/2+, γ to 7/2+.
2050 5	1/2-,3/2-	G		E(level): probably not identical to 2045 level from γ decay.
				$J\pi$: $L(d,p)=1$.
2105 5	(3/2-)	G		$J\pi$: $L(d,p)=1$, and from shell-model syst.
2128.14 21	3 / 2 + , 5 / 2 +	B G		$J\pi$: $L(d,p)=2$ at 2129 5, the 2129 level in (d,p) does not
				seem to correspond to the 2134 level (no γ to g.s.).
2135.0 3		D H		
2176.27 18	7 / 2 +	D HI	0.3 ps 2	J π : M1 γ to 5/2+ and 7/2+.
2200.7 3	5 / 2 +	CD GHI	>0.24 ps	J π : M1+E2 γ to 3/2+, $\gamma(\theta)$ in ¹¹³ In(p,n γ).
2258.6 3 2275.8 3	5 / 2 + 1 / 2 - , 3 / 2 -	CD HI D GH	0.3 ps 1	$J\pi$: from $\gamma(\theta)$ and linear polarization in $(\alpha, 2n\gamma)$. $J\pi$: $L(d,p)=1$.
2336.7 4	11/2-,3/2-	CD HI	0.35 ps 8	$J\pi$: γ to $11/2-$.
2385.77 25	7 / 2 +	CD H	0.7 ps 6	$J\pi$: γ 's to $5/2+$.
2410.8 5	.,	D	0 ps 0	om 10 00 0/21.
2448.38 23	7 / 2 +	CD HI		$J\pi$: M1+E2 γ to 5/2+.
2457.11 22		C H		
2467.9 3		H		
2506.0 3		CD H		
2512.0 3	(3/2,5/2)	CD H		J π : γ to $3/2+,5/2+$, $\gamma(\theta)$ in $^{113}In(p,n\gamma)$.
2538.27 22	3/2+,5/2+	В НІ		$J\pi$: $L(d,p)=2$.
2540 5	5/2-,7/2-	G CD H	0.07 2	$J\pi$: L(d,p)=3.
2540.0 4 2552.4 3	(15/2-) (3/2,5/2,7/2)	CD H D H	0.07 ps 3	Jπ: E2 γ to 11/2 Jπ: γ 's to 3/2+,5/2+, $\gamma(\theta)$ in ¹¹³ In(p,n γ).
2579	(3/2,3/2,1/2)	Б Н F		E(level): not the same as 2583 level with $J\pi$ between 7/2-
2013		r		and 15/2
2582.3 4	(15/2-)	CD HI	0.22 ps 9	$J\pi$: E2 γ to $11/2-$.
2590.77 22	(3/2)	GHI		$J\pi$: L=1,2 (d,p).
2616.7 5		C HI		
2619.4 4		D		
2620 5	1 / 2+	CD GHI		E(level): could correspond to 2617 or 2624 level, who have
				γ feeding to low $J\pi$.
		an		$J\pi$: $L(d,p)=0$.
2624.04 21	(0/9)	CD H		
2649.0 4	(9/2-)	CD H		J π : γ to 3/2+,5/2+, $\gamma(\theta)$ in ¹¹³ In(p,n γ).
2662.8 3 2671 1 4	(3/2+,5/2+)	CD HI		$\sigma \pi$: γ to $\sigma/z+,\sigma/z+$, $\gamma(\theta)$ in σ In(p,n γ).
2671.1 <i>4</i> 2675.3 <i>4</i>		CD H D		E(level): from coin between 1284-583-808 gammas.
2700.4 4		D D	0.4 ps 1	2(10.01). 110m com between 1204-000-000 gammas.
2717.8 4	(11/2-)	D	0.1 Pb 1	$J\pi$: M1 γ to 11/2
2749.7 4	17/2-	D	0.21 ps 7	$J\pi$: E2 γ to 13/2
2764 5	(7/2)-‡	G	r	$J\pi$: $L(d,p)=3$.
2777.9 4		CD GHI		
2780 5		F		
2806.6 ^b 5	19/2-	CDE I M	0.31 ps 10	$J\pi$: stretched (E2) to 15/2

¹¹³Sn Levels (continued)

E(level)#	Jπ [†]	XREF		T _{1/2} §	Comments		
2851.6 4	(17/2-)	D		1.2 ps 6			
2862 5	$(7/2)^{-\frac{1}{7}}$	G G		1.2 ps 0	$J\pi$: $L(d,p)=3$.		
2888.9 4	(1/2)	CD H			$\delta \kappa$. $\mathbf{L}(u,p)=\delta$.		
2915.9 4		D II					
2932.2 5		В					
2956.5 4		CD H					
2975.0 4	(19/2-)	CDE I	M	0.28 ps 14			
3004 5	1/2-,3/2-	G	141	0.20 ps 14	$J\pi$: $L(d,p)=1$.		
3080 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3091.2 4	19/2-	DE I	M	0.45 ps 18	$J\pi$: (E2) to 15/2		
3128.7 5	21/2-	CDE I		F	Jπ: M1,E2 to 19/2		
3130.3 5		D	M		····, ·· ·		
3138.9 6		D					
3204 5	1/2-,3/2-	G			$J\pi$: $L(d,p)=1$.		
3223.2 5	(19/2)-	D	M	>1.4 ps	$J\pi$: Q γ to $15/2-$.		
3307 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3409.5@6	17/2		\mathbf{M}				
3412.5 4		D					
3418 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3420.4 5	(21/2-)	D	M		Jπ: M1+E2 γ to (21/2-).		
3456.5 5		D					
3458.3 5	(23/2-)	DE	M		$J\pi$: M1,E2 to (21/2-).		
3494 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3499 5		G					
3539 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3584 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3680.4 6	(23/2-)	E			$J\pi$: M1+E2 γ to (21/2-).		
3696 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3743 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3796 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3808 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3822 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3837.5 6	(23/2-)	D					
3846 5		G					
3873 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3901.9 5	(23/2-)	DE	M	0.6 ps 2	J π : (E2) γ to 19/2		
3906 2	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
3913.8 6	(21/2-)	D			J π : M1 γ to (19/2-).		
3960 5		G					
3972.1 5	(23/2-)	DE	M	0.5 ps 2	$J\pi$: M1+E2 γ to (21/2-).		
4022 5	(3/2)	G					
4044 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4051.8@5	21/2		M				
4058.0 6	25/2+	DE	M	0.69 ns 28	$J\pi\colon\thinspace E1$ γ to 23/2-, a three quasi-particle neutron		
					configuration proposed by 1997Ka40.		
	.				$T_{1/2}$: from γ -rf(t) in $(\alpha, 2n\gamma)$.		
4233 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4265 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4315 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4335 5		G					
4343 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4364 5	·= · · · +	G					
4397 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4430 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4438 5	(07/0)	G	3.5	. 1 . 1	I D.O., 4. (95/9)		
4475.1 6	(27/2+)	DE	M	>1.1 ps	$J\pi$: D+Q γ to (25/2).		
4504 5	(7/0) ÷	G			T-, T (1 a) 0		
4589 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4609 5	(7/2)-‡	G			$J\pi$: $L(d,p)=3$.		
4649 5	(97/9)	G	3.5	0 91 10	In. (E9) w to (92/9)		
4714.4 6	(27/2-)	DE	M	0.31 ps 10	$J\pi$: (E2) γ to (23/2-).		
4752.2@6	$25/2$ $(7/2) = ^{\ddagger}$	C	M		In: I (d n)=2		
4992 5	(1/2)	G			$J\pi$: $L(d,p)=3$.		
	Continued on next page (footnotes at end of table)						

$^{113}\mathrm{Sn}$ Levels (continued)

E(level)#	$J\pi^{\dagger}$	XREF	Comments
5012 5	(7/2)-‡	G	$J\pi$: L(d,p)=3.
5067 5	(7/2)-‡	G	$J\pi$: L(d,p)=3.
5239 5	(7/2)-‡	G	$J\pi$: L(d,p)=3.
5291 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5318 5		G	•
5450 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
5534.4@6	29/2	M	•
5605.7 8	31/2+	M	
5645.6a 7	31/2-	M	
5647 5	(7/2)-‡	G	$J\pi$: $L(d,p)=3$.
6385.3@7	33/2	M	
6682.3a 9	35/2-	M	
$7322.0^{@}9$	37/2	M	
7745.5 25	1 / 2+	\mathbf{F}	
7784.4ª 10	39/2-	M	
7883.1 4 10	39/2-	M	
8347.8@ 10	41/2	M	
8811.7ª 10	43/2-	M	
9014.0 2 10	43/2-	M	
9466.9@ 11	45/2	M	
9936.4a 11	47/2-	M	
10209.7& 11	47/2-	M	
$10589.1^{@}$ 12	49/2	M	
11242.0a 12	51/2-	M	
11405.1 2	51/2-	M	
$11723.5^{@}13$	53/2	M	
11826 50	9 / 2+	L	IAS of ¹¹³ In g.s.
12254 50	1 / 2 –	L	IAS of ¹¹³ In 392 level.
12513 50	3 / 2 –	L	IAS of ¹¹³ In 647 level.
12642.9	55/2-	M	
12736.8ª 13	(55/2-)	M	
13034.6@ 14	57/2	M	
14032.6 4 14	59/2-	M	
14286.5a 14	59/2-	M	
14577.5@ 15	(61/2)	M	
15653.9 ^{&} 15	(63/2-)	M	
15990.8ª 18	(63/2-)	M	
16309.8@ 18	(65/2)	M	
17504.3 4 18	(67/2-)	M	
18219.8?@ 20	(69/2)	M	

- † $J\pi$ without comments are based on band assignments.
- ‡ J is assigned to 7/2 from shell-model syst.
- § In the ps range are from Doppler shift in $(\alpha,2n\gamma)$ (1991Vi09).
- $\mbox{\#}$ From least-squares fit to γ energies.
- @ (A): $\Delta J\!=\!2$ band based on 17/2.
- & (B): $\Delta J=2$ band based on 39/2-.
- a (C): $\Delta J=2$ band based on 31/2-.
- b (D): Proposed neutron h11/2 band. $\Delta J {=} 2$ spacings.

$\gamma(^{113}\mathrm{Sn})$

E(level)	$\underline{\hspace{1cm}}^\dagger$	Ιγ [†]	Mult.‡	δ	α	Comments
77.389	77.38 2	100	M3+E4	0.13 2	181 5	Mult.,δ: see ¹¹³ Sn IT decay (21.4 min). B(M3)(W.u.): the calculated B(E4)(W.u.) gives 140 50 which violates RUL. B(M3)(W.u.)=0.0281 15; B(E4)(W.u.)=140 50.
409.83	332.41 5	100 4	M1+E2	-0.08 2		B(M3)(W.u.)=0.0261 13, B(E4)(W.u.)=140 30.
	409.9 2	0.87 11				
498.07	88.25 2	3.4 4				
	420.7 2	0.3 2				

$\gamma(^{113}{\rm Sn})$ (continued)

E(level)	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	δ	α	Comments
498.07	497.96 9	100 5	M1+E2	0.12 6		B(M1)(W.u.)<0.49; B(E2)(W.u.)<44.
738.4	661.0 3	100	M2(+E3)	<2.6	0.0133 16	Mult., δ : from 1972Br38. RUL gives $\delta \le 0.65$, then B(M2)(W.u.)=0.10 2.
						B(M2)(W.u.)>0.015; B(E3)(W.u.)<300.
1013.94	603.0 4	0.65 14				
	936.72 1014.43	$100 \ 5$ $96 \ 6$	M1+E2	0.5 1		D(M1)(W)=0.041.91. D(E9)(W)=0.5
1018.08	608.2 2	100 7	M1+E2 M1+E2	3 1		B(M1)(W.u.)=0.041 21; B(E2)(W.u.)=8 5. B(M1)(W.u.)=0.006 5; B(E2)(W.u.)=110 60.
1010.00	940.63 6	59 3	M1+E2	0.5 2		B(M1)(W.u.)=0.007 4; B(E2)(W.u.)=1.6 13.
	1018.12 6	15 3	E2			B(E2)(W.u.)=1.4 8.
1248.7	838.9 3	100				
1284.06	786.1 3	11 1				
	873.9 4	6.3 3	M1 + E2	2.7 8		B(M1)(W.u.)=0.0004 3; $B(E2)(W.u.)=3.0$ 13.
	1206.3 3	9 5				
	1284.2 2	100 5	E 2			B(E2)(W.u.)=8 4.
1314.07	816.3 3	18.3 22	3.61			
355 00	1314.0 2	100 <i>11</i> 100	M1 M1+F2	0 14 6		R(M1)(W n)=0.019 & D(F9)(W -)=0.10 10
1355.90 1472.54	1356.03 1472.83	100	M1+E2 E2	0.14 6		B(M1)(W.u.)=0.012 6; B(E2)(W.u.)=0.10 10. B(E2)(W.u.)=3.1 20.
1472.34	1129.2 7	100	M1+E2	-2.5 10		B(M1)(W.u.)=3.1 20. B(M1)(W.u.)=0.0035 25; B(E2)(W.u.)=14 3.
1539.9	801.5 3	100	M1+E2	-0.3 1		B(M1)(W.u.)=0.00035 25, $B(E2)(W.u.)=14 5$. B(M1)(W.u.)=0.20 10; $B(E2)(W.u.)=22 18$.
556.50	242.6 3	2.2 5				, , ,,,
	273.4 8	3.6 4				Ey: not reported in $(\alpha, 2n\gamma)$.
	$538.2\ 2$	5.6 4				
	$1058.3\ 2$	5.2 5				
	1146.6 4	43 3				
	1478.8 2	11.5 15				
	1557.0 2	100 8	M1+E2	0.2 1		
1646.06	1147.2 4	88 22				
	1568.9 2 1646.0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
647.2	1149.3 4	100 15				
	1237.1 4	30 15				
651.62	1241.6 3	100 20	M1			
	1574.3 2	50 5	M1+E2	-1.05		
1732.22	448.3 5	4.8 20				
	718.4 3	7 4				
	1234.2 3	100 13	M1			
	1654.6 3	13.0 13				
1744.81	725.3 10	6 3	M1 . Fig	0 1 15		D(M1)(W) 0 0000 +0 C D(E0)(W) 1 4 C
	1247.1 3 $1334.9 2$	$\begin{array}{cc} 15 & 2 \\ 100 & 5 \end{array}$	M1+E2 M1+E2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B(M1)(W.u.)=0.0006 +8-6; B(E2)(W.u.)=1.4 6. B(M1)(W.u.)=0.014 6; B(E2)(W.u.)=2.2 22.
	1667.5 3	41 3	1111 7 12 2	0.0 4		D(M1/(W.U.)-0.017 0, D(D2)(W.U.)=2.2 22.
1781.1	1042.6 5	100 5	M1+E2	-0.5 3		Mult.: δ=0.5 3 or -1.6 3.
- · -		-		-		B(M1)(W.u.)=0.08 4; B(E2)(W.u.)=14 +15-14.
	1703.8 4	5 2	[E1]			$B(E1)(W.u.)=1.5\times10^{-5} 8.$
1821.0	$1821.0\ 3$	100				
1831.0	1831.0 3	100				
1867.28	394.8 3	11.3 25		_		
1000 0	583.2 3	100 5	M1+E2	0.15 10		B(M1)(W.u.)=0.30 10; B(E2)(W.u.)=15 +21-15.
1906.6 1909.64	1168.3 3	100	E2			B(E2)(W.u.)=10 3.
1909.64	1411.72 1499.53	$100 ext{ } 14$ $45 ext{ } 9$				
935.4	1196.9 3	100	M1+E2	-5 3		B(M1)(W.u.)=0.0003 + 4-3; B(E2)(W.u.)=3.6 16
945.3	1206.9 3	100	M1+E2	0.15 5		B(M1)(W.u.)=0.0003 + 4=5, B(E2)(W.u.)=3.0 + 10 B(M1)(W.u.)=0.031 + 16; B(E2)(W.u.)=0.4 + 3.
952.1	1213.6 3	100	M1+E2	3.4 2		B(M1)(W.u.)=0.0010 4; B(E2)(W.u.)=6.1 25.
957.05	1458.9 2	85 8				
	$1547.2\ 5$	$\approx 1\ 0\ 0$				
	1880.1 4	33 4				
	1956.9 4	100 10				
2031.4	1621.6 3	100				
2039.88	$172.7\ 3$	80 7 80 7	M1+E2 M1+E2	$\begin{array}{cccc} 0 & 4 & 2 \\ 6 & 3 \end{array}$		$B(M1)(W.u.)=5$ 3; $B(E2)(W.u.)=2.0\times10^4$ 20. B(M1)(W.u.)=0.004 4; $B(E2)(W.u.)=380$ 200.
	567.2 3					

$\gamma(^{113}\mathrm{Sn})$ (continued)

E(level)	$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	$\underline{\hspace{1cm}}^{\dagger}$	Mult.‡	δ	Comments
2039.88	684.0 2	100 7	E2		B(E2)(W.u.)=190 100.
0045 45	755.8 3	47 5	(2451.)		
2045.47	573.0 3	53 5	(M1)		
	1547.95 1635.33	≈ 100			
	1968.3 5	63 8 35 5			
2128.14	1718.3 2	100			
2135.14	1715.3 2	100			
2176.27	892.1 3	64 4	M1+E2	-0.2 1	Mult.: $\delta = -0.2 \ I$ or $-2.1 \ 6$. B(M1)(W.u.)=0.029 20; B(E2)(W.u.)=1.2 +14-2.
	1766.4 3	100 8	M1		B(M1)(W.u.)=0.006 4.
	2099.0 3	56 4	M1		B(M1)(W.u.)=0.0020 14.
2200.7	1702.6 3	100	M1+E2	-0.5 3	B(M1)(W.u.)<0.018; B(E2)(W.u.)<2.0.
2258.6	786.0 3	67 25		0.00	D(M1)(W141) (01010), D(M2)(W141) (2101
2200.0	974.6 4	100 8			
2275.8	1866.0 3	100			
2336.7	1598.3 3	100	M1+E2	1.9 2	$B(M1)(W.u.)=0.0033 \ 10; \ B(E2)(W.u.)=3.7 \ 9.$
2385.77	518.4 5	17 7			
	913.2 3	100 30	M1+E2	0.4 2	B(M1)(W.u.)=0.03 3; $B(E2)(W.u.)=4 +6-4$.
	1101.8 4	14 7			
2410.8	543.5 4	100			
2448.38	975.8 3	70.8			
	1092.6 5	7 3			
	1164.3 3	100	M1+E2	1.4 6	
2457.11	1959.1 3	100 5			
	2047.2 3	14 1			
2467.9	1969.8 3	100			
2506.0	1034.0 4	66 22			
	1221.7 3	100 10			
2512 . 0	$2013.9 \ 3$	100			
2538 . 27	2040.3 3	100 18			
	2128.3 3	60 10			
2540 . 0	633.3 3	70 5	M1+E2	-1.2 8	$B(M1)(W.u.)=0.21$ 19; $B(E2)(W.u.)=6.\times10^2$ 5.
	1801.6 3	100 5	E2		B(E2)(W.u.)=8 4.
2552.4	1079.8 4	100 66			
	1268.4 3	100 20			
2582.3	1843.8 3	100			
2590.77	2092.9 3	12 3			
	2180.7 3	100 10			
2616.7	2206.9 5	100			
2619.4	282.7 3	33 13			
	838.44 1881.03	100 13			
2624.04		60 7 56 3			
2024.04	879.4 3	56 3			
	1151.85 2213.93	$\begin{array}{ccc} 25 & 13 \\ 100 & 10 \end{array}$			
2649.0	1910.6 3	100 10	(E2)		
2662.8	2164.7 3	100	(E2)		
2671.1	1932.7 3	100			
2675.3	808.0 4	83 33			
20.0.0	1202.8 4	100 33			
2700.4	363.7 4	56 22			
	748.4 3	100 22			
	765.0 4	44 22			
	1962.0 3	78 22			
2717.8	381.1 5	66 33			
	772.5 3	100 33	M1		
	1979.4 3	100 33			
	797.7 3	100	(E2)		B(E2)(W.u.)=260 90.
2749.7					
2749.7 2777.9	$2039.5\ 3$	100 12			
	2039.5 3 $900.0 3$	100 12	E2		B(E2)(W.u.)=100 30.
2777.9			E2		B(E2)(W.u.)=100 30.

$\gamma(^{113}\mathrm{Sn})$ (continued)

E(level)	$\underline{\hspace{1cm}} E\gamma^{\dagger}$		Mult.‡	δ			Comments
2888.9	2150.5 3	100					
2915.9	963.8 2	100 17					
	1009.1 5	17 8					
2932.2	1918.7 8	37 15					
	2433.9 8	100 19					
	2854.4 8	48 11					
2956 . 5	$1672.4\ 3$	100					
2975.0	225 . 3 3	60 30	M1+E2	$0.25\ 5$	B(M1)(W.u.)=	1.8 13; B(E2)(W.u.)=1.7×10 ³ 15.
	$392.7\ 2$	61 5					
	1068.3 3	100 30	E 2		B(E2)(W.u.)=2	20 13.	
3091.2	1184.7 3	100	E 2		B(E2)(W.u.)=1	7 7.	
3128 . 7	153.0	3 1					
	322 . 4 3	100 13	M1+E2	$0.15 \ 5$			
3130.3	510.9 5	100 57					
	1223.6 4	29 14					
3138.9	1271.65	100					
3223 . 2	1316.5 3	100	Q		Mult.: From		
3409.5	1502.6 5	100	D		Mult.: From	¹⁰⁰ Mo(¹⁸ O,5nγ)).
3412.5	1502.8 3	100					
3420.4	291.7 2	100 11	M1+E2	0.35 15			
	613.9 4	39 11	M1+E2	0.4 1			
3456.5	1546.8 4	100					
3458.3	329.3 3	100	M1+E2	0.16 5			
	651.1 5	3.4 17					
3680.4	551.7 3	100	M1+E2	>10			
3837.5	379.2 4	33 17					
	708.7 4	100 8	M1				
3901.9	678.7 4	44 11	(E2)		B(E2)(W.u.)=6		
	810.8 3	100	(E2)		B(E2)(W.u.)=5	8 20.	
3913.8	1107.2 3	100	M1	1.0	D/M1)/W		
3972.1	551.9 3	14 14	M1+E2	>10	B(M1)(W.u.)<		W) 4 0
4051 0	843.7 3	100 18	M1+E2	0.25 5	B(M1)(W.u.)=0	0.06 3; B(E2)(W.u.)=4 3.
4051.8	642.0 5	100 5	E2				
4050 0	960.7 5	73 5	D				
4058.0	86.1 2 $599.1 3$	$40 \ 20$ $100 \ 20$	E1		B(E1)(W.u.)=1	4×10-6 7	
4475.1	417.1 3	100 20	M1+E2	0.4 2	B(M1)(W.u.)<		11)<320
4714.4	812.4 3	100	(E2)	0.4 2	B(E2)(W.u.)=1		,\\020.
4752.2	700.3 5	88 5	E2		D(L2)(W.W.)=1	.00 00.	
4102.2	850.5 <i>5</i>	100 5	D D	E(level)	Εγ†	Iγ [†]	Mult.‡
5534.4	782.3 5	100 4	E2				
0001.1	820.3 5	34.9 18	D	10209.7	1195.7 5	100	E 2
5605.7	1130.6 5	100	E2	10589.1	1122.2 5	100	E 2
5645.6	930.8 5	100	E2	11242.0	1305.6 5	100	E 2
6385.3	739.4 5	17.8 9	D	11405.1	1195.4 5	100	E 2
	851.3 5	100 3	E2	11723.5	1134.4 5	100	E 2
6682.3	1036.7 5	100	E2	12642.9	1237.8 5	100	E 2
7322.0	936.7 5	100	E2	12736.8	1494.8 5	100	(E2)
7784.4	1102.3 5	100	E2	13034.6	1311.1 5	100	E 2
7883.1	1200.7 5	100	E2	14032.6	1389.7 5	100	E 2
8347.8	1025.7 5	100	E2	14286.5	1549.7 5	100	(E2)
8811.7	928.4 5	≤14	E2	14577.5	1542.9 5	100	(E2)
	1027.45	100 4	E 2	15653.9	1621.3 5	100	(E2)
9014.0	1130.8 5	91 5	E 2	15990.8	1704.3 10	100	(E2)
	1229.65	100 5	E2	16309.8	1732.3 10	100	(E2)
9466.9	1119.1 5	100	E2	17504.3	1850.4 10	100	(E2)
9936.4	1124.75	100	E2	18219.8?	1910.8 \$ 10	100	(E2)

 $[\]begin{tabular}{lll} \dagger & Average from $(p,n\gamma)$, $(p,3n\gamma)$, $(\alpha,2n)$, $(\alpha,3n)$ when they are given. \\ \ddagger & The M and δ are from $(\alpha,2n\gamma)$, unless otherwise noted. \\ $\$$ & Placement of transition in the level scheme is uncertain. \\ \end{tabular}$

¹¹³Sn IT Decay (21.4 min) 1961Sc12

Parent $^{113}{\rm Sn:~E=77;~J\pi=7/2+;~T_{1/2}=21.4~min~4;~\%IT~decay=91.1~23.}$ Measured Ey, Iy, $\alpha(K){\rm exp}$ from Iy and I(K x-ray), 1961Sc12.

¹¹³Sn Levels

E(level)	Jπ	${\color{red}{T_{1/2}}^{\dagger}}$	Comments
0.0	1 / 2+	115.09 d 4	
77	7 / 2+	21.4 min 4	Jπ: atomic beam (1976Fu06), 77γ is M3(+E4).

[†] See adopted levels.

$\gamma(^{113}\mathrm{Sn})$

$\mathbf{E}\gamma$	E(level)	ΙγΫ	Mult.	δ	α	Comments	
77	77	0.55	M3+E4	0.13 2	181 5	Eγ: from 1960Se06; other: 79 3 (1961Sc12).	
						Mult., δ : M and δ : from $\alpha(K)$ exp=95 15 (1961Sc12) and	
						$\alpha(K)\exp/\alpha(L)\exp=1.7\ 1(1961Se08).$	
						%IT from I(Kα x ray, 113In)/I(Kα x ray, 113Sn).	
						$B(M3)(W.u.) = 0.029 \ 3; \ B(E4)(W.u.) = 150 \ 50.$	

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.911 23.

¹¹³Sb ε Decay 1976Wi10,1975WiZX

Parent 113 Sb: E=0.0; J π =5/2+; $T_{1/2}$ =6.67 min 7; Q(g.s.)=3913 17; % ϵ +% β + decay=100. Chemical and mass separation. γ singles with escape-suppression spectrometer and semi, γ_1

Chemical and mass separation. γ singles with escape-suppression spectrometer and semi, $\gamma\gamma$ coin, $\gamma(t)$, 1976Wi10, 1975WiZX.

Others: 1969Ki16, 1972Si28.

¹¹³Sn Levels

New levels are proposed only if they could be based on coincidence relations.

E(level)	Jπ	${ m T}_{1/2}^{\dagger}$	E(level)	Jπ	† From adopted levels.
			1010 10 10	2/2 7/2	
0.0	1 / 2 +	115.09 d 4	1646.18 13	3 / 2 + , 5 / 2 +	
$77.39\ 2$	7 / 2 +	21.4 min 4	1651.75 20	5 / 2+	
$409.77 extit{4}$	5 / 2+		1731.90 17	(3/2+,5/2+)	
498.01 5	3 / 2+		1743.94 14	3 / 2 + , 5 / 2 +	
1013.22 5	3 / 2+		1957.02 16	3 / 2 , 5 / 2	
1018.09 4	5 / 2+		2045.39 23	(5/2+,5/2+)	
1283.17 12	5 / 2+		2128.08 21	3 / 2 + , 5 / 2 +	
1314.04 14	3 / 2+		2540.3 4	3 / 2 + , 5 / 2 +	
1556.369	3 / 2+		2931.9 5		

¹¹³Sb ε Decay 1976Wi10,1975WiZX (continued)

β^+,ϵ Data

 ϵ branches were obtained from (γ +ce) imbalance at each level.

Εε	E(level)	Ιβ+	Ιε	Log ft	$I(\epsilon+\beta^+)$
(981 1	7) 2931.9		0.040 6	6.42 7	0.040 6
(1373 1	7) 2540.3	0.00036 8	0.131 11	6.204	0.131 11
(1785 1	7) 2128.08	0.0112 15	0.213 24	6.22 5	$0.224\ 25$
(1868 1	7) 2045.39	0.0067 18	0.088 23	6.64 12	0.095 25
(1956 1	7) 1957.02	0.017 4	0.16 4	6.42 10	0.18 4
(2169 1	7) 1743.94	0.090 10	0.424	6.10 5	0.51 5
(2181 1	7) 1731.90	0.10 1	0.46 5	6.06 5	0.56 6
(2261 1	7) 1651.75	0.037 9	0.13 3	6.63 11	0.17 4
(2267 1	7) 1646.18	0.11 2	0.37 5	6.19 7	0.48 7
(2357 1	7) 1556.36	0.47 3	1.32 8	5.67 3	1.79 10
(2599 1	7) 1314.04	0.047 8	0.076 13	7.00 8	0.123 21
(2630 1	7) 1283.17	0.058 8	0.088 12	6.94 6	0.146 20
(2895 1	7) 1018.09	1.76 9	1.67 8	5.750 24	3.43 16
(2900 1	7) 1013.22	1.34 7	1.26 7	5.874 25	2.60 13
(3415 1	7) 498.01	60.3 19	26.7 9	4.691 18	87.0 26
(3503 1	7) 409.77	4.2 19	1.7 7	5.92 20	5.9 26
(3836† 1	7) 77.39	< 2	< 0 . 4	>6.6	<2.4

 $^{^{\}dagger}$ Existence of this branch is questionable.

 $\gamma(^{113}\mathrm{Sn})$

Measured I γ of annihilation radiation is 168 4, 1976Wi10.

Iy normalization: Calculated from measured annihilation radiation intensity and theoretical ϵ/β^+ ratios by assuming no ϵ decay to g.s., since $I(\epsilon+\beta^+)$ to g.s. $<8\times10^{-5}\%$ from $\log ft>11$ for a second-forbidden transition.

Εγ	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}} I\gamma^{\dagger}$	Mult.	δ	α	I(γ+ce) [†]		Comments	
77.38 2	77.39	0.13 1	M3+E4	0.13 2	181 5	23 1	Iγ: from I(γ+ce) and I(γ+ce): deduced from B(M3)(W.u.)=0.0309	n decay scheme.	
88.25 2	498.01	3.4 4	M1,E2		1.7 9		α: 88γ is M1,E2 from	spin difference.	
$242.6\ 3$	1556.36	0.029 6							
$273.4\ 2$	1556.36	0.047 5		Εγ	E(level)	${ m I}\gamma^{\dagger}$	Εγ	E(level)	$I\gamma^{\dagger}$
332.04	1646.18	0.030 14							
332 . 41 5	409.77	18.5 8	120	5.7 3	1283.17	0.027 4	1744.4 4	1743.94	0.0264
409.9 2	409.77	0.162	123	4.2 3	1731.90	0.56 7	x1806.1 3		0.0354
420.72	498.01	0.3 2	123	6.8 7	1646.18	0.21 7	1880.1 4	1957.02	$0.024 \ 3$
448.3 5	1731.90	0.027 11	124	2.8 8	1651.75	0.14 5	x1889.4 3		0.078 7
497.96 9	498.01	100	124	6.2 3	1743.94	0.27 5	1918.7 8	2931.9	0.010 4
538.2 2	1556.36	0.073 5	128	3.3 2	1283.17	$0.21\ 2$	1956.9 4	1957.02	0.071 7
603.0 4	1013.22	0.014 3	131	4.0 2	1314.04	0.18 2	1968.3 5	2045.39	$0.021\ 3$
608.4 1	1018.09	0.50 3	133	4.0 2	1743.94	$0.21\ 2$	x2006.7 6		0.033 4
718.4 3	1731.90	0.04 2	x 1 3 5 8	5.9 3		0.036 4	x2014.7 6		0.044 6
725.3 10	1743.94	0.015 8	×1390	0.72		0.058 5	2042.7 6	2540.3	0.056 7
785.2 3	1283.17	0.019 4	145	8.9 2	1957.02	0.060 6	2130.1 6	2540.3	0.047 6
x801.0 2		0.034 4	147	8.8 2	1556.36	0.15 2	x2304.8 7		0.016 3
816.3 3	1314.04	0.033 4	154	7.25	1957.02	0.07 4	x2337.2 7		0.015 3
x886.5 2		0.10 2	154	7.9 5	2045.39	0.06 3	2433.9 8	2931.9	0.027 5
935.77 6	1013.22	2.14 11	155	6.3 2	1556.36	1.31 10	2540.1 7	2540.3	0.061 8
940.63 6	1018.09	3.27 16	156	8.9 2	1646.18	0.055 6	x 2 6 2 4 . 6 6		0.015 3
1013.28 6	1013.22	1.14 7	157	4.3 2	1651.75	0.070 7	x2791.5 1	3	0.011 3
1018.12 6	1018.09	0.60 3	163	5.3 3	2045.39	0.038 5	2854.4 8	2931.9	0.013 3
1058.3 2	1556.36	0.068 6	164	6.0 2	1646.18	0.16 2	x3143.7 1	2	0.016 3
x1128.8 2		0.034 4	165	4.6 3	1731.90	0.073 7	x3192.5 1	2	0.014 3
1146.6 4	1556.36	0.56 4	166	6.4 3	1743.94	0.12 2	x3605.6 1	3	0.021 5
1148.4 4	1646.18	0.14 4	171	8.3 2	2128 . 08	0.28 3			

 $^{^{\}dagger}$ For absolute intensity per 100 decays, multiply by 0.80 2.

 $^{^{}x}$ γ ray not placed in level scheme.

Decay Scheme

Intensities: I(γ+ce) per 100 parent decays

$$\int_{0.01}^{5/2+} \int_{0.01}^{0.0} 6.67 \text{ min}$$
 %\varepsilon \(\frac{113}{51} \text{Sb}_{62} \) \(\psi_{\text{*}} \psi_{\text{*}} \psi_{\text{*}}^{\text{*}} \psi_{\text{*}}^{\text{*}} \end{substitute} \)

$^{100}{ m Mo}(^{18}{ m O},5{ m n}\gamma)$ 1998Se14,1998Ch38

1998Se14: $^{100}\text{Mo}(^{18}\text{O},5\text{n}\gamma)$ E=94 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)(DCO)$ using 20 Ge detectors and 71-detector BGO filter at "TASCC" facility at "CHALK RIVER".

See 1998Se14 for detailed orbital configurations for each band.

1998Ch39: $^{100}Mo(^{18}O,5n\gamma)$ E=70 MeV. Measured Ey, Iy, yy, using the OSIRIS spectrometer array.

The data of 1998Se14 are adopted. Only a figure is given in 1998Ch38, without table, however 1998Ch38 agree with the 1998Se14 until the 8810 level (43/2-).

¹¹³Sn Levels

E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]	E(level)	Jπ [‡]
0.08	1/2+	4474.3 10	27/2+	10208.9@ 13	47/2-
77.48	7 / 2+	4713.5 8	27/2-	10588.3# 14	49/2
738.48	11/2-	4751.6# 8	25/2	11241.2& 14	51/2-
1906.3 5	15/2-	5533.7 # 8	29/2	11404.3@ 14	51/2-
2806.1 7	19/2-	5604.9 11	31/2+	11722.7# 15	53/2
2973.8 7	19/2-	5644.8 8 9	31/2-	12642.1@ 14	55/2-
3091.0 7	19/2-	6384.6#9	33/2	12736.0 4 14	(55/2-)
3128.4 7	21/2-	6681.5 4 10	35/2-	13033.8# 15	57/2
3222.7 7	19/2-	7321.3# 10	37/2	14031.8@ 15	59/2-
3409.1 # 7	17/2	7783.6 2 11	39/2-	14285.7& 15	59/2-
3419.7 9	21/2-	7882.3@ 11	39/2-	14576.7# 16	(61/2)
3457.6 9	23/2-	8347.0 # 12	41/2	15653.1 [@] 16	(63/2-)
3901.3 % 7	23/2-	8810.9 2 12	43/2-	15990.0	(63/2-)
3971.6 8	23/2(+)	9013.2@ 12	43/2-	16309.0# 19	(65/2)
4051.4# 7	21/2	9466.1# 13	45/2	17503.5 [@] 19	(67/2-)
4057.1 9	25/2+	9935.6 4 13	47/2-	18219.8?# 20	(69/2)

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $\gamma(^{113}Sn)$

Εγ	E(level)	Ιγ	Mult. [†]	Comments
77.4 [‡]	77.4			
85.5 5	4057.1	≤1.0	(M1+E2)	
154.5 5	3128.4	≤1.0	M1,E2	
291.3 5	3419.7	1.9 1	M1+E2	DCO=1.16 12.
322 . 4 5	3128.4	20.36	M1+E2	DCO=0.84 2.
329.1 5	3457.6	7.82	M1+E2	DCO=0.86 3.
417.2 5	4474.3	4.5 1	M1,E2	DCO=0.89 3.
551.9 5	3971.6	2.1 1	(E1)	DCO=0.66 7.
599.4 5	4057.1	7.6 2	E1	DCO=0.78 5.
642.0 5	4051.4	2.2 1	E 2	DCO=1.02 13.
661.0 [‡]	738.4			
678.6 5	3901.3	$12.2\ 4$	E 2	DCO=0.97 9.
700.3 5	4751.6	3.8 2	E 2	DCO=1.02 11.
739.4 5	6384.6	2.1 1	D	DCO=0.61 20.
782.3 5	5533.7	10.9 4	E2	DCO=0.95 8.
810.3 5	3901.3	23.2 8	E 2	DCO=1.00 2 for 810.3+812.0.
812.0 5	4713.5	32.8 11	E2	DCO=1.00 2 for 810.3+812.0.
820.3 5	5533.7	3.8 2	D	DCO=0.58 9.
843.3 5	3971.6	9.3 3	(E1)	DCO=0.56 3.
850.5 5	4751.6	4.3 2	D	DCO=0.85 3 for 850.5+851.3.
851.3 5	6384.6	11.8 4	E2	DCO=0.85 3 for 850.5+851.3.
899.9 5	2806.1	38.9 13	E2	DCO=0.97 3.
928.4 5	8810.9	≤1.0	E2	
930.8 5	5644.8	30.9 10	E 2	DCO=0.98 2.
936.7 5	7321.3	15.9 5	E2	DCO=0.97 4.
960.7 5	4051.4	1.6 1	D	
1025.75	8347.0	$12.6\ 4$	E 2	DCO=0.98 8 for 1025.7+1027.4.

 $[\]dot{\ddagger}$ From 1998Se14, based on their $\gamma\gamma(\theta)(DCO)$ data and band assignments.

[§] From adopted levels, rounded-off value.

 $^{^{\#}}$ (A): $\Delta J\!=\!2$ band based on on 17/2 at 3409.5 keV, [21,3].

^{@ (}B): ΔJ =2 band based on on 39/2- at 7883.1 keV, [21,4].

[&]amp; (C): $\Delta J\!=\!2$ band based on on 31/2- at 5645.6 keV, [20,3].

$^{100} Mo(^{18}O,5n\gamma) \qquad 1998 Se14, 1998 Ch38 \ (continued)$

γ(¹¹³Sn) (continued)

Εγ	E(level)	Ιγ	Mult.†	Comments
1027.4 5	8810.9	7.3 3	E2	DCO=0.98 8 for 1025.7+1027.4.
1036.7 5	6681.5	23.2 7	E2	DCO=0.98 3.
1067.4 5	2973.8	9.1 5	E 2	DCO=1.01 10.
1102.3 5	7783.6	13.6 4	E 2	DCO=1.00 5.
1119.1 5	9466.1	7.8 3	E 2	DCO=0.98 3 for 1119.1+1122.2.
1122 . 2 5	10588.3	6.9 3	E 2	DCO=0.98 3 for 1119.1+1122.2.
1124.7 5	9935.6	6.3 2	E 2	DCO=0.92 14.
1130.6 5	5604.9	3.8 1	E 2	DCO=1.09 10.
1130.8 5	9013.2	3.9 2	E 2	DCO=0.93 19.
1134.4 5	11722.7	7.22	E 2	DCO=0.95 6.
1167.9 5	1906.3	100.0 37	E 2	
1184.9 5	3091.0	31.0 11	E 2	DCO=0.98 4.
1195.4 5	11404.3	2.6 2	E2	DCO=1.07 9 for 1195.4+1195.7.
1195.7 5	10208.9	3.5 2	E2	DCO=1.07 9 for 1195.4+1195.7.
1200.7 5	7882.3	$4.2\ 2$	E2	DCO=1.07 15.
1229.6 5	9013.2	4.3 2	E2	DCO=1.06 13.
1237.8 5	12642.1	2.2 1	E2	DCO=1.04 14.
1305.6 5	11241 . 2	3.9 1	E2	DCO=1.05 9.
1311.1 5	13033.8	3.2 1	E2	DCO=0.97 6.
1316.4 5	3222.7	17.7 7	E2	DCO=1.01 7.
1389.7 5	14031.8	1.9 1	E2	DCO=1.11 18.
1494.8 5	12736 . 0	1.5 1	(E2)	
1502.6 5	3409.1	3.3 3	D	
1542.9 5	14576 . 7	1.8 1	(E2)	
1549.7 5	14285.7	1.2 1	(E2)	
1621.3 5	15653.1	≤1.0	(E2)	
1704.3 10	15990.0	≤ 1.0	(E2)	
1732.3 10	16309.0	≤1.0	(E2)	
$1850.4\ 10$	17503 . 5	≤1.0	(E2)	
1910.8 \$ 10	18219.8?	≤1.0	(E2)	

 $^{^{\}dagger}$ Primarily from DCO.

¹¹⁰Cd(α,nγ) 1997Ka40,1976Ma09

1997Ka40: E=18 MeV. Measured: γ and ce singles, excit, $\gamma\gamma$ coin. Preliminary report was given in 1995KaZV. 1976Ma09: E=15-18 MeV. Measured: γ and ce singles, excit functions, $\gamma\gamma$.

¹¹³Sn Levels

E(level) [†]	Jπ [‡]	T _{1/2}	E(level) [†]	Jπ [‡]	E(level) [†]	Jπ [‡]
0.0	1/2+		1732.3 4	(3/2+,5/2+)	2386.0 4	7 / 2+
77.38 1	7 / 2 +		1745.29 23	5 / 2+	2448.6 3	7 / 2+
410.37 18	5 / 2+		1781.5 3	9 / 2 –	2457.4 3	
498.16 16	3 / 2+		1831.0 3		2505.8 4	
739.3 4	11/2-	86 ns § 2	1867.5 3	5 / 2+	2512.14	(3/2+,5/2+)
014.66 24	(1/2),3/2+		1907.6 5	15/2-	2540.9 5	(15/2-)
018.36 21	5 / 2+		1909.9 3	(5/2+,7/2+)	2583.1 5	
284.22 17	5 / 2+		1936.3 5	(11/2-)	2591.1 3	
314.0 3	3 / 2+		1946.2 5	(9/2-)	2617.3 4	
356.0 3	3 / 2+		1952.9 5	(13/2-)	2620.1 4	
472.77 23	5 / 2+		2039.97 25	(7/2+)	2624.7 4	
539.4 4	5 / 2+		2045.9 3	(3/2+,5/2+)	2649.9 5	
540.8 5	(11/2-)		2176.9 5	7 / 2+	2662.9 4	(3/2+,5/2+)
557.0 3	3 / 2+		2200.8 4	5 / 2+	2672.0 5	
645.2 4			2258.8 4	5 / 2+	2750.7 6	17/2-
652.1 3	5 / 2+		2337.6 5	11/2-	2778.8 5	

[‡] Rounded-off value from adopted gammas.

 $[\]$ Placement of transition in the level scheme is uncertain.

$^{110}\mathrm{Cd}(\alpha,n\gamma)$ 1997Ka40,1976Ma09 (continued)

$^{113}\mathrm{Sn}$ Levels (continued)

E(level) [†]	Jπ [‡]
2807.76	19/2-
2890.0 5	11/2-
2956.6 4	
2976.0 7	(19/2-)
3130.2 6	21/2-

- † From least-squares fit to γ energies. ‡ From adopted levels. All the reactions works $(\alpha, xn\gamma)$ and $(p, n\gamma)$ of 1997Ka40 are in the same paper and have the same $J\pi$. § From adopted levels. Measured in $^{111}Cd(\alpha, 2n\gamma)$.

$\gamma(^{113}\mathrm{Sn})$

Εγ†	E(level)	Ιγ†	Mult.‡	Comments
77.38 1	77.38			Eγ: from adopted levels, gammas.
172.4 3	2039.97	1.2 1		
225.3 3	2976.0	0.5 2		
322.5 3	3130.2	1.1 1		
332.6 3	410.37	44 3	M1,E2	Mult.: from $\alpha(K)\exp=0.0192$ 13.
498.1 2	498.16	30 2	M1	Mult.: from $\gamma(\theta)$ and linear polarization.
567.2 3	2039.97	1.2 1		•
583.2 3	1867.5	7.1 4	M1,E2	Mult.: from $\alpha(K)\exp=0.0038$ 7.
608.0 3	1018.36	2.5 2	M1	Mult.: from $\gamma(\theta)$ and linear polarization.
633.3 3	2540.9	1.2 1		•
661.5 3	739.3	100 4	M2	Mult.: from $\gamma(\theta)$ and linear polarization. $B(M2)(W.u.) = 0.122\ 3.$
755.8 3	2039.97	0.6 1		
786.0 \$ 3	2258.8	4.4 \ 2		
786.1 [§] 3	1284 . 22	4.4 \ 2		
797.8 3	2750.7	1.4 1		
801.5 3	1540.8	3.6 3		Ey: the placement of this transition is questionable. 1987Vi09 in (p,nγ) has found 801γ in coin with 662γ but not with 1018γ and 332γ.
838.4 \$ 3	2620.1	2.3 \$ 2		
x838.9\$ 3		2.3 \ 2		
873.9 3	1284 . 22	2.0 2		
879.4 3	2624.7	1.1 1		
892.6 3	2176 . 9	2.8 2		
×899.7§ 3		3.9 \\ 2		
900.1 \ 3	2807.7	3.9 \\ 2		
$913.2\ 3$	2386.0	1.8 1		
936.7 3	1014.66	5.5 3		
940.6 3	1018.36	12.06		
975.8 3	2448 . 6	1.1 1		
$1014.4\ 3$	1014.66	3.6 2		
1018.3 3	1018.36	2.5 2		
1042.3 3	1781.5	6.8 3		
1068.3 3	2976.0	1.2 1		
1129.0 3	1539.4	4.4 3		
1147.2 3	1645.2	1.5 1		
1164.3 3	2448.6	1.2 1		
1168.3 3	1907.6	22.19		
1197.0 3	1936.3	7.3 4		
1206.9 3	1946.2	3.8 3		
1213.6 3	1952.9	11.3 6		
1221.6 3	2505.8	0.9 2		
1234.1 3	1732.3	3.8 3		
1241.6 3	1652.1	4.0 3		
1247.1 3	1745.29	1.4 1	T.O.	M. H. Mil Do C. (W) A COOR & DO C. (C) A C. C.
1284.2 3	1284.22	28 2	E2	Mult.: M1,E2 from $\alpha(K)$ exp=0.0006 1, E2 from $\gamma(\theta)$ and linear polarization.
1314.0 3	1314.0	5.0 3	M1	Mult.: from $\gamma(\theta)$ and linear polarization.
1334.9 3	1745.29	7.3 4		
1356.0 3	1356.0	8.8 4		
1411.7 3	1909.9	3.7 3	E O	Male Comment of the control of the c
1472.8 3	1472.77	23.3 2	E2	Mult.: from $\gamma(\theta)$ and linear polarization.
1499.5 3	1909.9	2.9 2		
x1546.8 3		2.0 2		

$^{110}Cd(\alpha,n\gamma) \qquad 1997Ka40,1976Ma09 \ (continued)$

$\gamma(^{113}{\rm Sn})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{I\gamma^{\dagger}}$	Εγ [†]	E(level)		$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$
1547.7 8 3	2045.9	2.0 \$ 2	1801.6 3	2540.9	0.7 2	2039.5 3	2778.8	1.4 1
1557.0 3	1557.0	1.4 1	1831.0 3	1831.0	1.4 1	2092.9 3	2591.1	0.1 1
1574.5 3	1652.1	2.4 2	1843.8 3	2583.1	2.4 2	2099.3 3	2176.9	1.2 1
1598.3 3	2337.6	4.0 3	1910.6 3	2649.9	0.4 1	2150.5 3	2890.0	0.6 2
1667.5 3	1745.29	3.5 3	1932.7 3	2672.0	0.6 2	2164.7 3	2662.9	1.3 1
1672.4 3	2956.6	0.6 2	1959.1 3	2457.4	1.1 1	2206.9 3	2617.3	0.3 1
1702.6 3	2200.8	3.9 3	2013.9 3	2512.1	1.4 1			

 $^{^{\}dagger}$ From 1997Ka40, $\Delta E \gamma$ = 0.3 keV estimated by evaluator, average of $\Delta E \gamma$ = 0.1-0.4 keV (1997Ka40).

$^{111}Cd(\alpha,2n\gamma) \\ \hspace*{0.2in} 1997Ka40,1991Vi09$

 $1997 Ka 40: \ E=27 \ MeV. \ Measured: \ \gamma, \ excit, \ \gamma\gamma \ coin, \ \gamma(\theta), \ \gamma(t) \ Doppler \ shift, \ linear \ polarization, \ \gamma-rf \ distribution.$

Preliminary report was given in 1995KaZV.

1991Vi09: E=27 MeV. Measured: γ , excit, $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$ Doppler shift.

Others: 1972Br38, 1973IsZQ, 1974Br29. Measured: $\rm T_{1/2}$ of 739 level.

¹¹³Sn Levels

E(level)	$J\pi^{\dagger}$	${\color{red}{T_{1/2}}^{\ddagger}}$	Comments
0.0\$	1/2+		
77.38\$	7 / 2 +		
410.36	5 / 2+		
498.11 9	3 / 2 +	>0.35 ps	
739.17# 18	11/2-	86 ns 2	T _{1/9} : from adopted levels.
1014.39 \$ 22	3 / 2 +	0.2 ps 1	1/2
1018.31 8 18	5 / 2+	1.0 ps 5	
1249.3 5		•	
1284.27 \$ 12	5 / 2+	0.5 ps 2	
1314.01 \$ 20	3 / 2 +	-	
1356.00 \$ 16	3 / 2 +	0.7 ps 3	
1472.78 9	5 / 2 +	0.8 ps 5	
1539.36 24	5 / 2+	0.6 ps 1	
1540.7# 4	(11/2-)	0.2 ps 1	
1557.0 \ 3	3 / 2 +		
1645.3 5			
1647.4 3			
1652.0 \$ 3	5 / 2 +		
1732.5 \$ 5	(3/2+,5/2+)		
1745.22 18	5 / 2+	0.31 ps 8	
1781.52# 24	9 / 2 –	0.19 ps 7	
1867.55 § 16	5 / 2 +	0.33 ps 10	
1907.45 # 20	15/2-	0.8 ps 2	
1909.83 \$ 19	(5/2+,7/2+)		
1936.18# 20	11/2-	1.9 ps 8	
1946.08# 25	(9/2-)	0.4 ps 2	
1952.78 # 20	13/2-	1.0 ps 4	
2031.7 6			
2039.99 \$ 16	7 / 2+	0.2 ps 1	
2045.81 \$ 24	(3/2+,5/2+)		
2135.5 6			
2176.83 \$ 16	7 / 2+	0.3 ps 2	
2200 . 72 22	(5/2)	>0.24 ps	
2258.8 \$ 3	(5/2+)	0.3 ps 1	
2275.2 6			

 $^{^{\}ddagger}$ $\alpha(K)$ exp normalized by 498 γ and 662 γ to M1 and M2 theory, respectively. 498 γ is M1,E2 from decay scheme, and 662 γ is M2(+E3) from 113 Sn IT decay (86 ns). The other multipolarity assignments are not affected by this uncertainty.

[§] Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

$^{111}\mathrm{Cd}(\alpha,2\,\mathrm{n}\gamma)$ 1997Ka40,1991Vi09 (continued)

¹¹³Sn Levels (continued)

E(level)	$J\pi^{\dagger}$	$\mathtt{T}_{1/2}^{\ddagger}$	Comments
2337.47# 24	11/2-	0.35 ps 8	
2386.01 \$ 24	7 / 2 +	0.35 ps 8 0.7 ps 4	
2411.0 5	., 21	0.1 ps 4	E(level): from coin between 1284-583-543 gammas.
2448.59 18	(7/2)		D(10/01), from tola sources 1201 000 010 gammas.
2506.2 3	(= /		
2512.0 \$ 5	(3/2+,5/2+)		
2540.78# 25	(15/2-)	0.07 ps 3	
2552.6 4		•	
2583.10# 24	(15/2-)	0.22 ps 9	
2620.1 3		-	
2624.6 3			
2649.8#6	(9/2-)		
2662.8 \$ 4	(3/2+,5/2+)		
2671.9 6			
2675.6 3			E(level): from coin between 1284-583-808 gammas.
2701.15 25		0.4 ps 1	
2718.6# 3	(11/2-)		
2750.61# 25	17/2-	0.21 ps 7	
2778.74			
2807.50# 22	19/2-	0.31 ps 10	
2852.5# 3	(17/2-)	1.2 ps 6	
2889.9 6			
2916.6 3			
2956.7 4			
2975.92# 24	(19/2-)	0.28 ps 14	
3092.55# 22	19/2-	0.45 ps 18	
3129.9# 3	21/2-	>0.35 ps	
3131.0 4			
3139.2 6	(10/0)		
3224.0# 4	(19/2-)	>1.4 ps	
$3410.3 4 \\ 3421.4 # 3$	01/0		
3421.4" 3 3454.3 5	21/2-		
3454.3 <i>5</i> 3459.5 [#] <i>3</i>	23/2-		
3459.5" 3 3838.7 [#] 4	(23/2-)		
3902.7# 4	(23/2-) (23/2-)	0.6 ps 2	
3914.7# 4	(23/2-) (21/2-)	0.0 ps 2	
3973.4# 3	(23/2-)	0.5 ps 2	
4059.2 \$ 4	25/2+	0.69 ns 28	T _{1/9} : from γ-rf(t) (1997Ka40).
4476.6\$ 4	(27/2+)	>1.1 ps	1/2 / .
4714.7# 6	(27/2-)	0.31 ps 10	
÷			

 $^{^{\}dagger}$ From decay properties, as given by 1997Ka40.

 $\gamma(^{113}\mathrm{Sn})$

$\mathrm{E}\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Mult.‡	δ	Comments
77.38	77.38				Eγ: from adopted levels, gammas.
86.1 3	4059.2				
87.8	498.11				
153.5 3	3129.9	0.42			
$172.4\ 2$	2039.99	1.2 1	M1 + E2	0.4 2	$B(M1)(W.u.)=5$ 3; $B(E2)(W.u.)=2.1\times10^4$ 21.
225 . 3 2	2975.92	1.6 1	M1 + E2	$0.25\ 5$	$B(M1)(W.u.)=1.3 \ 7; \ B(E2)(W.u.)=1.2\times10^3 \ 8.$
282.7 3	2620.1	0.5 2			
291.72	3421 . 4	1.8 2	M1 + E2	0.35 15	
322.5 1	3129.9	15.9 8	M1+E2	0.15 5	B(M1)(W.u.)<1.8; B(E2)(W.u.)<510.
329.5 \$ 2	3459.5	5.8 \$ 5	M1+E2	0.16 5	
332.6 2	410.36	11.2 6	M1 + E2	-0.082	

From Doppler shift.

(A): Positive-parity levels.

(B): Negative-parity levels.

¹¹¹Cd(α,2nγ) 1997Ka40,1991Vi09 (continued)

$\gamma(^{113}\mathrm{Sn})$ (continued)

369.7 4 270 15 0 5 2	Εγ†	E(level)	Ιγ†	Mult.‡	δ	Comments
391. 1 5 2 118. 6 0. 4 2	363.7 4	2701.15	0.5 2			
394.8 3						
394.8 3 1867.55 0.9 2 410.36 0.6 2 410.36 0.6 2 410.36 0.6 2 417.4 2 4476.6 1.3 1 M1+E2 0.4 2 B(M1)(W.u.)<0.37; B(E2)(W.u.)<46.	381.1 5	2718.6	0.42			
410.4 2	392.72	2975 . 92	2.5 2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	394.8 3	1867.55	0.9 2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
511.9 5						
581.4. 5				M1+E2	0.12 6	B(M1)(W.u.)<0.51; B(E2)(W.u.)<46.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
551.9 3 3973.4 0.9 7 M1+82 > 10 BM1)(W.u.)=0.00044; B(E2)(W.u.)=48 0.00044; B(E2)(W.u.)=16 + 21-15. BM1)(W.u.)=0.00044; B(E2)(W.u.)=16 + 21-15. BM1)(W.u.)=0.00044; B(E2)(W.u.)=16 + 21-15. BM1)(W.u.)=0.00044; B(E2)(W.u.)=16 + 21-15. BM1)(W.u.)=0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=10 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=16 0.00044; B(E2)(W.u.)=10 0.0044; B(E2)(W.u.)=						
567.2 2 2039.99 1.2 1 M1+E2 6 3 BMIN(W.u.)=0.004 4; B(E2)(W.u.)=380 200. 573.0 2 2046.81 1.0 1 (M1) 583.2 2 1867.55 8.0 4 M1+E2 0.15 10 BMIN(W.u.)=0.30 10; B(E2)(W.u.)=15 + 21-15. 699.5 2 4059.2 3.0 2 E1 BEIN(W.u.)=10.006 5; B(E2)(W.u.)=10 60. 613.3 3 3 421.4 0.7 2 M1+E2 0.4 1 633.3 7 240.78 1.0 1 M1+E2 -1.2 8 B(M1)(W.u.)=0.006 5; B(E2)(W.u.)=7.x10^2 5. 652.1 5 3459.5 0.2 1 678.7 4 3902.7 0.8 2 (E2) B(E2)(W.u.)=0.00.6 3. 708.7 4 3838.7 1.2 1 M1 778.0 4 2701.15 0.9 2 775.5 3 2718.6 0.6 2 M1 778.0 3 2275.0 3 1540.7 2.0 2 M1+E2 -0.3 1 B(E2)(W.u.)=20 10; B(E2)(W.u.)=21 18. 806.0 4 710.1 5 0.4 2 806.0 3 1540.7 2.0 2 M1+E2 -0.3 1 B(E2)(W.u.)=0.002 21; B(E2)(W.u.)=22 18. 806.0 4 4714.7 0.7 1 (E2) 806.3 3 1284.7 2 3973.4 6.6 3 M1+E2 0.25 5 B(M1)(W.u.)=0.002 24; B(E2)(W.u.)=2.4 13. 879.8 4 2252.5 20.5 9 900.1 5 1 284.7 2 0.6 2 M1+E2 0.2 5 B(M1)(W.u.)=0.002 24; B(E2)(W.u.)=2.4 13. 899.7 6 4 2852.5 20.6 9 M1+E2 0.5 1 B(M1)(W.u.)=0.0003 24; B(E2)(W.u.)=2.4 13. 899.7 7 1018.39 1.6 1 BE2 (E2) B(E2)(W.u.)=0.0003 24; B(E2)(W.u.)=2.4 13. 899.7 8 4 2852.5 20.6 9 M1+E2 0.5 1 B(M1)(W.u.)=0.0003 24; B(E2)(W.u.)=2.4 13. 899.7 8 4 2852.5 20.6 9 M1+E2 0.5 1 B(M1)(W.u.)=0.0003 24; B(E2)(W.u.)=1.1 14-1. 899.7 8 4 2852.5 20.6 9 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.1 14-1. 899.7 8 4 2852.5 20.6 9 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.1 14-1. 899.7 8 4 2852.5 20.6 9 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.1 14-1. 899.7 8 4 2852.5 20.6 9 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.1 14-1. 899.7 8 4 2852.5 20.6 9 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.5 M1+E2 0.5 1 B(M1)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24; B(E2)(W.u.)=1.7 14. 899.7 8 4 2852.5 1 20.6 2 B(H2)(W.u.)=0.0003 24;				Milies	>10	P(M1)(W) < 0.00044. P(F2)(W) > 47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
588.2 2 1887.55 8.0 4 Mi+E2 0.15 10 B(MI)(W.u.)=0.30 10; B(E2)(W.u.)=15 +21-15. 699.5 2 1018.31 4.2 3 Mi+E2 0.4 1 613.3 3 3421.4 0.7 2 Mi+E2 0.4 1 633.3 3 2 2540.78 1.0 7 Mi+E2 -1.2 8 B(MI)(W.u.)=0.006 5; B(E2)(W.u.)=110 60. 652.1 5 3349.5 0.2 1 661.5 1 739.17 100 4 M2 B(MI)(W.u.)=0.24 22; B(E2)(W.u.)=7.×10 ² 5. 661.5 1 390.2 7 0.8 2 (E2) B(MI)(W.u.)=0.24 22; B(E2)(W.u.)=7.×10 ² 5. 675.7 4 3838.7 1.2 1 MI 674.3 3 2701.15 0.9 2 755.8 3 2039.99 0.7 2 755.8 3 2039.99 0.7 2 756.0 4 2701.15 0.4 2 772.5 3 2718.6 0.6 2 MI 786.0 4 2258.8 0.8 3 786.1 3 1284.27 2.0 2 810.1 3 390.2 7 1.8 2 (E2) 811.1 4 71.4 7 0.7 1 (E2) 812.0 4 4 714.7 0.7 1 (E2) 813.4 8 1249.3 3 41.6 6 833.8 4 4 2620.1 4.1.5 8 833.8 4 1249.3 4.1.5 8 843.7 2 3973.4 6.6 3 Mi+E2 0.25 5 B(MI)(W.u.)=0.0092 24; B(E2)(W.u.)=2.4 13. 879.4 3 2824.6 0.4 2 879.4 3 2824.6 0.4 2 879.4 3 2824.6 0.4 2 879.5 3 2386.0 1.6 1 Mi+E2 0.2 5 B(MI)(W.u.)=0.0092 24; B(E2)(W.u.)=2.4 13. 899.7 4 2850.5 2.176.8 1.6 1 Mi+E2 0.5 2 810.1 4 39 1.2 1.6 1 Mi+E2 0.4 2 899.7 5 4 2850.5 2.176.8 1.6 1 Mi+E2 0.5 2 810.1 4 39 2.2 176.8 1.6 1 Mi+E2 0.5 2 810.1 4 39 2.2 176.8 1.6 1 Mi+E2 0.5 3 B(MI)(W.u.)=0.0092 24; B(E2)(W.u.)=2.4 13. 899.7 5 4 2850.5 2.176.8 1.6 1 Mi+E2 0.5 2 899.7 6 4 2850.5 2.176.8 1.6 1 Mi+E2 0.5 3 B(MI)(W.u.)=0.0092 24; B(E2)(W.u.)=1.7 14. 899.7 6 4 2850.5 1.6 1 2 2 940.6 2 2176.8 1.2 2 940.6 2 2176.8 1.2 2 941.6 4 2258.8 1.2 1 Mi+E2 0.5 2 B(E2)(W.u.)=0.009 24; B(E2)(W.u.)=1.7 14. 899.7 6 1 1018.3 1 5 1 Mi+E2 0.5 2 B(E2)(W.u.)=0.009 4; B(E2)(W.u.)=1.7 14. 899.7 6 1 1018.3 1 0.3 2 E2 B(E2)(W.u.)=0.009 4; B(E2)(W.u.)=8 5. 8101(W.u.)=0.009 4; B(E2)(W.u.)=1.7 14.					0 5	D(MI)(W.d.)=0.004 4, D(E2)(W.d.)=500 200.
599.5 2 4059.2 3.0 2 51 608.0 2 1018.3 1 4.2 3 M1+E2 0.4 I 613.3 3 3421.4 0.7 2 M1+E2 0.4 I 633.3 3 3421.4 0.7 2 M1+E2 0.4 I 652.1 5 3459.5 0.2 I 661.5 I 739.17 100 I M2 M2 B(M1)(W.u.)=0.024 22; B(E2)(W.u.)=7.x10 ² 5. 661.6 I 739.17 100 I M2 M2 B(M2)(W.u.)=0.24 22; B(E2)(W.u.)=60 30. 684.0 2 2039.99 1.5 I E2 B(E2)(W.u.)=60 30. 684.0 2 2039.99 0.7 2 72 765.0 4 2701.15 0.4 2 772.5 3 2718.6 0.6 2 M1 786.0 4 2258.8 0.8 3 786.1 3 1284.27 2.0 2 797.8 2 2750.61 4.9 3 (E2) 801.5 3 1540.7 2.0 2 M1+E2 0.3 I 801.5 3 3902.7 1.8 2 (E2) 810.1 4 4714.7 0.7 I 823.8 4 4 2690.1 1.5 1.5 \$ 833.8 4 1249.3 1.5 5 833.8 4 1249.3 1.5 5 833.8 4 2 2802.1 0.4 2 873.9 4 2852.5 20.5 \$ 899.7 8 4 2852.5 20.5 \$ 990.1 8 1 284.7 2 0.6 2 M1+E2 0.2 I 899.7 8 4 2852.5 20.5 \$ 991.2 2 276.8 1.6 I M1+E2 0.2 I B(E2)(W.u.)=0.0012 24; B(E2)(W.u.)=4.4 I. 899.7 8 4 2852.5 20.5 \$ 991.2 2 386.0 1.6 I M1+E2 0.2 I B(E2)(W.u.)=0.0032 24; B(E2)(W.u.)=4.4 I. 899.7 8 4 2852.5 20.5 \$ 991.2 2 176.8 8 1.6 I M1+E2 0.5 2 B(M1)(W.u.)=0.009 20; B(E2)(W.u.)=1.1 + Id-I. 899.7 8 4 2852.5 2.1 6.6 I M1+E2 0.5 2 B(M1)(W.u.)=0.009 20; B(E2)(W.u.)=1.1 + Id-I. 899.7 8 4 2852.5 2.2 6.5 9 991.2 3 2386.0 1.6 I M1+E2 0.5 2 B(M1)(W.u.)=0.009 20; B(E2)(W.u.)=1.7 Id-I. 996.8 2 2916.6 1.2 2 974.6 4 2258.8 1.6 I M1+E2 0.5 2 B(M1)(W.u.)=0.009 20; B(E2)(W.u.)=1.7 Id-I. 1001.4 4 1014.39 1.6 I E2 B(E2)(W.u.)=60 40. 946.0 2 2852.5 1.6 2 B(E2)(W.u.)=60 40. 946.0 2 2860.6 2 B(E2)(W.u.)=60 40. 946.0 3 B(E2)(W.u.)=60 40. 9					0.15 10	$B(M1)(W,u)=0.30 \ 10$; $B(E2)(W,u)=15 +21-15$.
618.3 3 3 421.4 0.7 2 Mi+F2 0.4 I 633.3 3 3421.4 0.7 2 Mi+F2 0.4 I 633.3 3 3421.4 0.7 2 Mi+F2 0.4 I 633.3 3 3421.4 0.7 2 Mi+F2 0.4 I 635.1 5 3459.5 0.2 I 636.5 1 739.17 100 4 M2 B(BM)(W.u.)=0.24 22; B(E2)(W.u.)=7.x10 ² 5. 652.1 5 3459.5 0.2 I 653.3 3 3459.5 0.2 I 653.3 3 3459.5 0.2 I 653.3 3 3459.5 0.3 I 653.3 0.3 3459.5 0.3 I 653.3 3 3459.5 0.3 I 653.3 0.3 3459.5 0.3 I 663.3 3 3459.5 0.3 I 663.3 0.3 3459.5 0.3 I 663.3						
633. 3 3 2540.78 1.0 1 M1+E2 0.4 1 633. 3 3 2540.78 1.0 1 M1+E2 -1.2 8 B(M1)(W.u.)=0.24 22; B(E2)(W.u.)=7.x10 ² 5. 652.1 5 3 459.5 0.2 1 661.5 1 739.17 100 4 M2 B(M2)(W.u.)=0.30. 684.0 2 2039.99 1.5 1 E2 B(E2)(W.u.)=60 30. 684.0 2 2039.99 0.7 2 765.7 4 392.7 0.8 2 (E2) B(E2)(W.u.)=190 100. 748.3 3 2701.15 0.9 2 755.8 3 2039.99 0.7 2 765.0 4 2701.15 0.4 2 772.5 3 2718.6 0.6 2 M1 786.0 4 2258.8 0.8 3 786.1 3 1284.27 2.0 2 787.8 2 2750.61 4.9 3 (E2) 801.5 3 1540.7 2.0 2 M1+E2 -0.3 1 B(M2)(W.u.)=0.00 16; B(E2)(W.u.)=22 18. 808.0 4 2675.6 0.5 2 810.1 3 3902.7 1.8 2 (E2) 810.1 3 3902.7 1.8 2 (E2) 810.1 3 3902.7 1.8 2 (E2) 821.0 4 4714.7 0.7 1 (E2) 833.8 4 4 2620.1 <1.5 8 838.0 4 4214.27 0.6 2 M1+E2 0.2 5 B(M1)(W.u.)=0.60 60. 838.4 4 1249.3 <1.5 8 843.7 2 3973.4 6.6 3 M1+E2 0.2 5 B(M1)(W.u.)=0.60 22 24; B(E2)(W.u.)=4.2 24. 879.4 2 258.8 0.4 1249.3 <1.5 8 843.7 2 3973.4 6.6 3 M1+E2 0.2 5 B(M1)(W.u.)=0.00012 24; B(E2)(W.u.)=4.2 24. 879.4 1284.27 0.6 2 M1+E2 0.2 5 B(M1)(W.u.)=0.00012 24; B(E2)(W.u.)=4.2 24. 879.4 2 258.2 0.6 2 2176.83 1.6 1 M1+E2 0.2 5 B(M1)(W.u.)=0.0002 24; B(E2)(W.u.)=4.13. 899.7 4 2852.5 20.5 8 9 900.1 5 2 2852.5 1.6 2 900.1 5 2 2852.5 1.6 2 900.1 5 2 2852.5 1.6 2 940.6 2 1018.31 2.5 2 M1+E2 0.5 2 B(E2)(W.u.)=0.003 4; B(E2)(W.u.)=1.7 14. 945.0 2 2852.5 1.6 2 974.6 4 2258.8 1.2 1 975.8 3 2448.5 9 1.9 1 1009.1 5 2916.6 1.2 2 974.6 4 1014.3 9 1.5 1 M1+E2 0.5 1 B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=1.7 14. 945.0 2 2852.5 1.6 2 974.6 4 1014.3 9 1.5 1 M1+E2 0.5 1 B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=1.7 14. 946.0 2 2852.5 1.6 2 974.6 4 1014.3 9 1.5 1 M1+E2 0.5 1 B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=1.7 14. 946.8 2 1018.3 1 0.3 2 E2 974.6 4 1014.3 9 1.5 1 M1+E2 0.5 3 B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=8 5. B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=8 6. B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=8 6. B(M1)(W.u.)=0.004 5; B(E2)(W.u.)=8 6. B(M1)(W.u.)=0.004					3 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$B(M1)(W.u.)=0.24\ 22;\ B(E2)(W.u.)=7.\times10^2\ 5.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$652.1\ 5$	3459.5	0.2 1			
684. 0. 2 2 2039. 99 1. 5 1 E2 B(E2)(W.u.)=190 100. 708. 7 4 3838. 7 1. 2 1 M1 748. 3 3 2701.15 0. 9 2 755. 8 3 2039. 99 0. 7 2 775. 8 3 2718. 6 0. 6 2 M1 786. 0 4 2258. 8 0. 8 3 786. 1 3 1284. 27 2. 0 2 797. 8 2 2750. 61 4. 9 3 (E2) 808. 0 4 2675. 6 0. 5 2 810. 1 3 3902. 7 1. 8 2 (E2) 812. 0 4 4714. 7 0. 7 1 (E2) 813. 3 3 2838. 4 1249. 3 (1. 5 8 8 8 8 8 9 8 4 1249. 3 (1. 5 8 8 8 8 8 9 8 4 1249. 3 (1. 5 8 8 8 8 8 9 8 4 1249. 3 (1. 5 8 8 8 8 8 9 8 4 1249. 3 (1. 5 8 8 8 8 8 9 8 8 1 12 1 8 8 8 8 8 9 8 1 12 1 8 1 1 8 1 1 8 1 1 1 1 1 1 1 1	661.5 1	739 . 17	$100 \ 4$	M2		$B(M2)(W.u.)=0.122 \ 3.$
708.7 4 3838.7 1.2 1 M1 748.3 2 2701.15 0.9 2 755.8 3 2039.99 0.7 2 765.0 4 2701.15 0.4 2 772.5 3 2718.6 0.6 2 M1 786.0 4 2258.8 0.8 3 786.1 3 1284.27 2.0 2 797.8 2 2750.61 4.9 3 (E2) B(E2)(W.u.)=260.90. 801.5 3 1540.7 2.0 2 M1+E2 -0.3 1 B(M1)(W.u.)=0.00 10; B(E2)(W.u.)=22 18. 810.1 3 3902.7 1.8 2 (E2) B(E2)(W.u.)=58.22. 810.1 3 3902.7 1.8 2 (E2) B(E2)(W.u.)=160 60. 838.4 \$ 4 2620.1 <1.5 \$ 838.9 \$ 4 1249.3	678.7 4	3902.7	0.8 2	(E2)		$B(E2)(W.u.)=60 \ 30.$
748.3 3 2701.15 0.9 2 755.8 3 2039.99 0.7 2 765.0 4 2701.15 0.4 2 772.5 3 2718.6 0.6 2 M1 786.0 4 258.8 0.8 3 786.1 3 1284.27 2.0 2 797.8 2 2750.61 4.9 3 (E2) B(E2)(W.u.)=60.90. 801.5 3 1540.7 2.0 2 M1+E2 -0.3 I B(M1)(W.u.)=0.20 IO; B(E2)(W.u.)=22 IS. 808.0 4 2675.6 0.5 2 810.1 3 3902.7 1.8 2 (E2) B(E2)(W.u.)=58 22. 812.0 4 4714.7 0.7 I (E2) B(E2)(W.u.)=160 60. 838.4						B(E2)(W.u.)=190 100.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				M1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.54		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				M1		
797.8 2 2750.61						
$ 801.5 \ 3 \ 1540.7 \ 2.0 \ 2 \ M1+E2 \ -0.3 \ 1 \ B(M1)(W.u.)=0.20 \ 10; \ B(E2)(W.u.)=22 \ 18. $ $ 808.0 \ 4 \ 2675.6 \ 0.5 \ 2 \ B10.1 \ 3 \ 3902.7 \ 1.8 \ 2 \ (E2) \ B(E2)(W.u.)=58 \ 22. $ $ 812.0 \ 4 \ 4714.7 \ 0.7 \ 1 \ (E2) \ B(E2)(W.u.)=160 \ 60. $ $ 838.4 \ 4 \ 2620.1 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.5 \ 888.9 \ 4 \ 1249.3 \ <1.6 \ 1 \ M1+E2 \ 0.25 \ 5 \ B(M1)(W.u.)=0.061 \ 25; \ B(E2)(W.u.)=4.2 \ 24. \ 873.9 \ 4 \ 1284.2 \ 0.6 \ 2 \ M1+E2 \ 0.2 \ 1 \ Mult.; \ 8=-0.2 \ 1 \ or -2.1 \ 6. \ B(M1)(W.u.)=2.4 \ 13. \ 879.4 \ 3 \ 2624.6 \ 0.4 \ 2 \ B(M1)(W.u.)=0.00032 \ 24; \ B(E2)(W.u.)=2.4 \ 13. \ 899.7 \ 4 \ 2852.5 \ 20.5 \ 9 \ 9 \ E2 \ B(E2)(W.u.)=0.029 \ 20; \ B(E2)(W.u.)=1.1 \ +14-1. \ 899.7 \ 4 \ 2852.5 \ 20.5 \ 9 \ 9 \ E2 \ B(E2)(W.u.)=0.029 \ 20; \ B(E2)(W.u.)=1.1 \ +14-1. \ 899.7 \ 4 \ 2852.5 \ 10.6 \ 1 \ E2 \ B(E2)(W.u.)=0.003 \ 17; \ B(E2)(W.u.)=4.5 \ 4. \ 1.6 \ 1 \ E2 \ B(E2)(W.u.)=0.003 \ 4; \ B(E2)(W.u.)=4.5 \ 4. \ 1.6 \ 1 \ E2 \ B(E2)(W.u.)=0.003 \ 4; \ B(E2)(W.u.)=1.7 \ 14. \ 14$				(F2)		$R(F_2)(W_{11}) - 260,00$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-0 3 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				111111111111111111111111111111111111111	0.01	D(M1)(W.d.)=0.20 10, D(D2)(W.d.)=22 10.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(E2)		B(E2)(W.u.)=58 22.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	838.4 9 4	2620.1	<1.58			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	838.9 4	1249 . 3	<1.5 §			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	843.7 2	3973.4	6.6 3	M1+E2	$0.25\ 5$	B(M1)(W.u.)=0.061 25; $B(E2)(W.u.)=4.2 24$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	873.9 4	1284 . 27	0.6 2	M1+E2	2.7 8	$B(M1)(W.u.)=0.00032\ 24;\ B(E2)(W.u.)=2.4\ 13.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	879.4 3	2624.6	0.42			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	892.6 2	2176.83	1.6 1	M1+E2	-0.2 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.4 2	
945.0 2 2852.5 1.6 2 963.8 2 2916.6 1.2 2 974.6 4 2258.8 1.2 1 975.8 3 2448.59 1.9 1 1009.1 5 2916.6 0.2 1 1014.4 4 1014.39 1.5 1 M1+E2 0.5 1 B(M1)(W.u.)=0.041 21; B(E2)(W.u.)=8 5. 1018.3 5 1018.31 0.3 2 E2 B(E2)(W.u.)=0.7 6. 1034.0 4 2506.2 0.6 2 1042.3 2 1781.52 4.1 2 M1+E2 -0.5 3 Mult.: \$\epsilon = -0.5 3\$ or -1.6 3. B(M1)(W.u.)=0.08 4; B(E2)(W.u.)=14 +15-14. 1068.3 3 2975.92 4.1 2 E2 B(E2)(W.u.)=22 12.					0 = 0	
963.8 2 2916.6 1.2 2 974.6 4 2258.8 1.2 1 975.8 3 2448.59 1.9 1 1009.1 5 2916.6 0.2 1 1014.4 4 1014.39 1.5 1 M1+E2 0.5 1 B(M1)(W.u.)=0.041 21; B(E2)(W.u.)=8 5. 1018.3 5 1018.31 0.3 2 E2 B(E2)(W.u.)=0.7 6. 1034.0 4 2506.2 0.6 2 1042.3 2 1781.52 4.1 2 M1+E2 -0.5 3 Mult.: \$\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				M1+E2	0.5 2	B(M1)(W.u.)=0.008 4; $B(E2)(W.u.)=1.7$ 14.
974 . 6 4 2258 . 8 1 . 2 I 975 . 8 3 2448 . 59 1 . 9 I 1009 . 1 5 2916 . 6 0 . 2 I 1014 . 4 4 1014 . 39 1 . 5 I M1 + E2 0 . 5 I B(M1)(W.u.) = 0.041 2I; B(E2)(W.u.) = 8 5. 1018 . 3 5 1018 . 31 0 . 3 2 E2 B(E2)(W.u.) = 0.7 6. 1034 . 0 4 2506 . 2 0 . 6 2 1042 . 3 2 1781 . 52 4 . 1 2 M1 + E2 - 0 . 5 3 Mult.: &= -0.5 3 or -1.6 3. B(M1)(W.u.) = 0.08 4; B(E2)(W.u.) = 14 + 15-14. 1068 . 3 3 2975 . 92 4 . 1 2 E2 B(E2)(W.u.) = 22 I2.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				M1+E2	0.5 1	$B(M1)(W,u_1)=0.041 21$; $B(E2)(W,u_1)=8.5$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
1068.3 3 2975.92 4.1 2 E2 B(E2)(W.u.)=22 12.				M1+E2	-0.5 3	
	1068.3 3	2975.92	4.1 2	E2		
	1079.8 4	2552 . 6	0.3 2			
$1092.6 \ 5 \ 2448.59 \ 0.2 \ I$	1092.6 5	2448.59	0.2 1			
$1101.8 \ 4 \qquad 2386.01 \qquad 0.4 \ 2$	1101.8 4		$0.4\ 2$			
1107.2 3 3914.7 1.1 1 M1						
1129.0 2 1539.36 1.2 2 M1+E2 -2.5 10 B(M1)(W.u.)=0.0035 25; B(E2)(W.u.)=14 3.	1129.0 2	1539.36	1.2 2	M1+E2	-2.5 10	B(M1)(W.u.)=0.0035 25; $B(E2)(W.u.)=14$ 3.

$^{111}Cd(\alpha,2n\gamma) \qquad 1997Ka40,1991Vi09 \ (continued)$

$\gamma(^{113}\mathrm{Sn})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	Mult.‡	δ	Comments
1147.2 5	1645.3	0.3 2			
1149.3 4	1647.4	0.6 2			
1151.8 5	2624.6	0.1 1			
1164.3 2	2448.59	2.9 2	M1+E2	1.4 6	
1168.3 1	1907.45	57 3	E2		$B(E2)(W.u.)=10 \ 3.$
1185.1 <i>1</i>	3092.55	5.3 3	E2		B(E2)(W.u.)=17.7.
1197.0 1	1936.18	3.3 2	M1+E2	-5 3	B(M1)(W.u.)=0.0003 +4-3; $B(E2)(W.u.)=3.6 16$.
1202.8 4	2675.6	0.6 2			
1206.9 2	1946.08	2.5 2	M1+E2	0.15 5	B(M1)(W.u.)=0.031 16; $B(E2)(W.u.)=0.4$ 3.
1213.6 1	1952.78	12.1 6	M1+E2	3.4 2	B(M1)(W.u.)=0.0010 4; $B(E2)(W.u.)=6.1$ 25.
1221.6 3	2506.2	0.9 1			
1223.6 4	3131.0	0.42			
1234.4 4	1732.5	0.2 1	M1		
1237.14	1647.4	0.2 1			
1241.6 3	1652.0	1.0 2	M1		
1247 . 1 5	1745.22	0.1 1	M1 + E2	2.1 15	B(M1)(W.u.)=0.00013 +21-13; B(E2)(W.u.)=0.3 +4-3.
1268 . 4 5	2552.6	$0.2\ 2$			
1271.65	3139 . 2	$0.4\ 2$			
1284 . 2 2	1284 . 27	12.5 6	E 2		B(E2)(W.u.)=8 4.
$1314.0\ 2$	1314.01	2.6 2	M1		
1316.5 3	$3\ 2\ 2\ 4\ .\ 0$	$2.4\ 2$			
1334.92	1745 . 22	3.9 2	M1+E2	0.6 4	B(M1)(W.u.)=0.016 8; B(E2)(W.u.)=3 3.
1356.02	1356 . 00	2.2 2	M1+E2	0.146	B(M1)(W.u.)=0.012 6; $B(E2)(W.u.)=0.10$ 10.
1411.7 2	1909.83	1.2 2			
1472.8 1	1472.78	13.3 7	E 2		B(E2)(W.u.)=3.1 20.
1499.5 3	1909.83	0.52			
1502.8 3	3410.3	0.6 2			
1546.8 4	3454.3	<1.9			
1547.7 5	2045.81	<1.9			
1557.0 3	1557.0	0.7 2	M1+E2	0.2 1	
1574.5 4	1652.0	0.5 2	M1+E2	-1.0 5	
1598.3 2	2337.47	2.2 2	M1+E2	1.9 2	$B(M1)(W.u.)=0.0033 \ 10; \ B(E2)(W.u.)=3.7 \ 9.$
1621.3 5	2031.7	0.1 1			
1635.5 5	2045.81	0.1 1			
1667.5 2	1745.22	1.2 1			
1672.4 3	2956.7	0.3 1	MI DO	0 5 0	D/M1)/W \ 0.010 D/D0)/W \ 0.0
1702.6 2	2200.72	1.3 1	M1+E2	-0.53	B(M1)(W.u.)<0.018; B(E2)(W.u.)<2.0.
1703.8 4	1781.52	0.2 1	[E1]		$B(E1)(W.u.)=1.4\times10^{-5} 9.$
1725.1 5	2135.5	0.2 1	M1		D/M1\/W \-0.006 4
1766.5 2	2176.83	2.52	M1		B(M1)(W.u.)=0.006 4.
1801.62 1843.82	2540.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2		B(E2)(W.u.)=3.7 16.
	2583.10		E Z		D(E2)(W.u.)=0.7 10.
1864.85 1881.03	2275.2 2620.1	0.1 <i>1</i> 0.9 <i>1</i>			
1910.6 5	2649.8	0.9 1	(M1)		
1910.6 5	2671.9	0.2 1	(1411)		
1962.0 3	2701.15	0.1 1			
1979.4 3	2718.6	0.6 2			
2013.9 4	2512.0	0.5 2			
2013.3 4	2778.7	1.6			
2099.3 3	2176.83	1.4 1	M1		B(M1)(W.u.)=0.0020 14.
2150.5 5	2889.9	0.2 1			, ,,,,,, ,,, ,,, ,,
2164.7 3	2662.8	0.9 3			

[†] From 1997Ka40, $\Delta E \gamma$ =0.3 keV estimated by evaluator, average of $\Delta E \gamma$ =0.1-0.4 keV (1997Ka40). The data of 1991Vi09 are in agreement with 1997Ka40.

 $[\]dot{\ddagger}$ From $\gamma(\theta)$ at seven angles, linear polarization.

[§] Multiply placed; undivided intensity given.

1979Ha12 $^{112}Cd(\alpha,3n\gamma)$

Other: 1969Ya05, E=40 MeV.

 $E{=}40~MeV.~Measured~E\gamma,~I\gamma,~\gamma\gamma{-}coin,~\gamma(\theta),~excit,~E(ce),~I(ce),~1979Ha12.$

¹¹³Sn Levels

E(level)	Jπ [‡]	E(level)	$-\!$	E(level)	Jπ [‡]
0.0	1/2+	2807.4 12	$19/2-^{\dagger}$	3902.9 12	(23/2-)
77.7 10	7 / 2+	2976.1 11	(17/2-)	3972.7 12	(23/2-)
738.7 11	$11/2-^{\dagger}$	3092.1 12	19/2-	4058.2 12	
1907.4 11	$15/2-^{\dagger}$	3129.8 12	21/2-	4475.3 13	
1952.4 11	(13/2-)	3459.1 12	(23/2-)	4715.3 12	(27/2-)
2750.1 11	(15/2-)	3681.2 12	23/2-		

- † Proposed neutron h11/2 band. $\Delta J{=}2$ spacings correspond with $^{112}\mathrm{Sn},~^{114}\mathrm{Sn}$ g.s. band up to 4+.
- ‡ Suggested by 1979Ha12 on the bases of angular distributions, $\alpha(K)$ exp, and known J π (g.s., 77 and 738 levels).

$\gamma(^{113}\mathrm{Sn})$

Εγ	_	E(level)	Ιγ	,	Mult.†	Comments
77.7		77.7				
85.5 3	3 40	58.2	4	2		
226.0 3		76.1	4			
291.5 3		72.7		2		Ey: The placement of this γ is not as in $(\alpha, 2n\gamma)$.
322.4 3		29.8	48		M1,E2	Mult.: $\alpha(K)\exp=0.024$ 4.
329.3 3	3 34	59.1	20		M1,E2	Mult.: $\alpha(K)\exp=0.025$ 6.
417.1 3	3 44	175.3	8	2		· · · · · · · · · · · · · · · · · · ·
551.4 3	3 36	81.2	6	2		Ey: The placement of this γ is from the 3972 level in $(\alpha, 2n\gamma)$.
599.1 3	3 40	58.2	10			
x617.8			15	3		
661.0 3	3 7	38.7	143	16	M2,E3	Mult.: $\alpha(K)$ exp=0.0088 12.
797.7 3	3 27	50.1	7			
810.8 3	3 3 9	002.9	9	3		
812.4 3		15.3	6			
842.9 3	3 39	72.7	17			
900.0 3		307.4	50		(E2)‡	
x 1042.8			12			
1068.7 3	3 29	76.1	7			
1168.7 3		07.4	100			
1184.7 3		92.1	13	2	(E2) [‡]	
1213.7 8		52.4	16			

- † From I(ce) and I γ calibrated by means of known pure E2 transitions in adjacent even tin isotopes. ‡ $\gamma(\theta)$ typical of a J+2 to J transition.
- x γ ray not placed in level scheme.

$^{112}\mathrm{Sn}(\mathrm{n},\gamma)$ E=95 eV 1968Sa16,1981MuZQ

E=95-eV resonance with neutron time of flight, semi (1968Sa16).

For resonance parameters, see 1981MuZQ. Other: 1969Ju01.

$^{113}\mathrm{Sn}$ Levels

E(level) [†]	Jπ‡		Comments					
0.0	1/2+							
504								
1317								
1557								
2060								
2579			† Rounded off level energies based on S(n)=7742.9 18 (1995Au04).					
7745.5 29	1 / 2 +	Jπ: 1968Sa16, 1981MuZQ.	‡ From adopted levels.					

$^{112}Sn(n,\gamma)~E=95~eV~~1968Sa16,1981MuZQ~(continued)$

 $\gamma(^{113}\mathrm{Sn})$

Εγ	E(level)	Ιγ	
5167	7745.5		
5685	7745.5		
6189	7745.5	23	7
6429	7745.5		
7242	7745.5	100	9

112 Sn(d,p), 114 Sn(d,t) 1972Bo76

Others: 1966Co35, E=12 MeV; 1967Sc12, E=15 MeV. E=12 MeV. Magnetic spectrograph resolution=9 keV, 80% enriched 112 Sn target, 1972Bo76. Also authors have measured $\sigma(d,t)$ and $\sigma(d,p)$.

$^{113}\mathrm{Sn}$ Levels

E(level)	Jπ [‡]	L [†]	C^2S	E(level)	Jπ [‡]	L [†]	$ C^2S$
0.08	1 / 2 +	0	0.57	3584 5	(7/2-)	3	0.012
76 \$ 5	7 / 2+	4	0.23	3696 5	(7/2-)	3	0.007
407 \$ 5	5 / 2+	2	0.15	3743 5	(7/2-)	3	0.012
496 \$ 5	3 / 2+	2	0.60	3796 5	(7/2-)	3	0.005
735 \$ 5	11/2-	5	1.00	3808 5	(7/2-)	3	0.007
1014 § 5	3 / 2 + , 5 / 2 +	2	0.02,0.014	3822 5	(7/2-)	3	0.006
1222? 5				3846 5	(3/2-,3/2+)	1, 2	0.005,0.01
1314 5	3 / 2 + , 5 / 2 +	2	0.014,0.01	3873 5	(7/2-)	3	0.009
1537 5	(7/2+)	(4)	0.27	3906 5	(7/2-)	3	0.016
1556§ 5				3960 5			
1646 5	3 / 2+	2	0.044	$4022 \ 5$	(3/2-,3/2+)	1, 2	0.003,0.01
1745 5	3 / 2+	2	0.011	4044 5	(7/2-)	3	0.009
1817 § 5	1 / 2 +	0	0.036	4233 5	(7/2-)	3	0.011
1907 5				4265 5	(7/2-)	3	0.029
1939 5	(7/2-)	(3)	0.012	4315 5	(7/2-)	3	0.007
2050 5	(3/2-)	1	0.007	4335 5			
2105 5	(3/2-)	1	0.005	4343 5	(7/2-)	3	0.007
2129 \$ 5	3 / 2 + , 5 / 2 +	2	0.04,0.026	4364 5			
2203 5				4397 5	(7/2-)	3	0.006
2272 \$ 5	(3/2-)	1	0.007	4430 5	(7/2-)	3	0.021
2540 \$ 5	(7/2-)	3	0.028	4438? 5			
2596 5	(3/2-,3/2+)	1, 2	0.003,0.01	4504 5			
2620 \$ 5	1 / 2 +	0	0.027	4589 5	(7/2-)	3	0.016
27645	(7/2-)	3	0.008	4609 5	(7/2-)	3	0.018
2780 \$ 5				4649 5			
2862 [§] 5	(7/2-)	3	0.040	$4992 \ 5$	(7/2-)	3	0.009
3004 \ 5	(3/2-)	1	0.009	$5012 \ 5$	(7/2-)	3	0.017
3080 5	(7/2-)	3	0.008	5067 5	(7/2-)	3	0.015
$3\ 2\ 0\ 4$ 5	(3/2-)	1	0.012	5239 5	(7/2-)	3	0.018
3307 5	(7/2-)	3	0.045	5291 5	(7/2-)	3	0.009
3418 5	(7/2-)	3	0.018	5318 5	(3/2-,7/2-)	1, 3	0.005, 0.01
3494 5	(7/2-)	3	0.015	5450 5	(7/2-)	3	0.013
3499 5				5647 5	(7/2-)	3	0.008
3539 5	(7/2-)	3	0.020				

[†] Based on angular distributions at 10 angles (10°-69°) compared with DWBA calc. For L≥3, the agreement with DWBA is rather poor.

 $^{^{\}ddagger}$ In the lighter Sn isotopes, the d5/2 shell-model state is almost full, while the d3/2 state is relatively empty. For L=2, J was therefore assigned 5/2 or 3/2 from comparison of $\sigma(d,t)$ and $\sigma(d,p)$. For L=1 and L=3, J was assigned 3/2 and 7/2, respectively, from shell-model syst as corresponding to the lower energy levels.

[§] Also observed by 1967Sc12.

¹¹³In(p,nγ) 1997Ka40,1987Vi09

1997Ka40: $^{113}In(p,n\gamma)$ E=6.7 MeV. Preliminary report was given in 1995KaZV.

1987Vi09: 113 In(p,n γ) E=3.2-6 MeV.

Also 115 In(p,3n γ) E=30 MeV.

1990ViZV (same group) present levels and gammas from $^{111}Cd(\alpha,2n\gamma)$, but without information on J π or γ properties.

Measured: γ , $\gamma\gamma$, $\gamma\gamma(t)$, $\gamma(\theta)$.

The energy gap between the 15/2- and 11/2- states is approximately equal to the energies of the first 2+ states in adjacent even Sn nuclides. The authors suggest the presence of a multiplet formed by a quasiparticle in the h11/2 neutron state and collective core excitation.

The 1908, 1953, 1947, 1936, and 1782 levels could be members of this multiplet.

The levels around 2650 with two 19/2- states could be also members of another multiplet formed by coupling of the (v h11/2) with two-phonon core excitations.

$^{113}\mathrm{Sn}$ Levels

E(level)‡	$J\pi^{\dagger}$	E(level) [‡]		E(level) [‡]	$J\pi^{\dagger}$
0.0	1/2+	1781.9 5	9/2-,11/2-,13/2-	2448.5 3	
77.38	7 / 2 +	1821.0 3	3 / 2 + , 5 / 2 +	2457.6 3	
410.44 17	3 / 2 +	1831.0 3		2468.1 4	
498.33 18	3 / 2 +	1867.4 3	5 / 2 + , 7 / 2 +	2505.8 4	
739.3 4	11/2-	1907.6 5	15/2-	2512.2 4	(3/2+,5/2+)
1014.46 23	3 / 2 + , 5 / 2 +	1910.0 3	5 / 2+	2538.7 3	
1018.39 20	3 / 2 + , 5 / 2 +	1936.3 5	(9/2-,11/2-,13/2-)	2540.9 5	(13/2-,15/2-)
1249.3 4	5 / 2 –	1946.2 5		2552.0 3	(3/2+,5/2+,7/2+)
1284.15 18	5 / 2 +	1952.9 5	(9/2-,13/2-)	2583.1 5	
1313.98 23	3 / 2 + , 5 / 2 +	2031.8 4		2591.2 3	
1356.0 3	3 / 2+	2039.9 3	(3/2+,5/2+,7/2+)	2617.4 4	
1472.74 23	3 / 2 + , 5 / 2 +	2046.0 3	(3/2+,5/2+)	2624.5 3	
1539.4 4	5 / 2 + , 7 / 2 +	2135.6 4		2649.9 5	
1540.8 5	(13/2-)	2176.8 3	(5/2+,7/2+)	2663.1 4	(3/2+,5/2+)
1557.0 3	3 / 2+	2200.9 4	(3/2+,5/2+)	2672.0 5	
1645.3 4	3 / 2+	2258.7 4		2778.8 5	
1652.3 3	5/2+,9/2+	2275.3 4		2852.7 5	(17/2-)
1732.7 4		2337.6 5		2889.8 5	11/2-
1745.31 22	5 / 2 +	2385.9 4		2956.6 4	

 $^{^\}dagger$ From $\gamma(\theta)$ taken at six angles $(13^\circ,90^\circ,120^\circ,130^\circ,140^\circ,150^\circ)$ and linear polarization in $(\alpha,2n\gamma)$, same authors and same paper.

$\gamma(^{113}\mathrm{Sn})$

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{} ^{} ^{}$	Εγ [†]	E(level)	Ιγ [†]	$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$
77.38‡	77.38		940.6 3	1018.39	12.6 6	1499.5 3	1910.0	4.5 2
$172.4\ 3$	2039.9	1.7 1	975.8 3	2448.5	1.0 1	x1546.8 3		2.3 1
332.6 3	410 . 44	62 4	1014.4 3	1014.46	16 6	1547.7 § 3	2046.0	2.3 § 1
498.1 3	498.33	33 2	1018.3 3	1018.39	2.8 1	1557.0 3	1557.0	1.4 1
567.2 3	2039.9	1.4 1	1042.6 3	1781.9	8.0 4	1574.5 3	1652.3	4.1.3
583.2 3	1867.4	7.4 4	1129.0 3	1539.4	5.1 3	1598.3 3	2337.6	4.3 3
608.0 3	1018.39	3.8 3	1147.2 3	1645.3	2.6 1	1621.3 3	2031.8	0.5 1
633.3 3	2540 . 9	0.9 1	1164.3 3	2448.5	1.5 1	1635.5 3	2046.0	0.4 1
661.5 3	739.3	100 5	1168.3 3	1907.6	8.8 6	1667.5 3	1745.31	4.8 3
755.8 3	2039.9	0.8 1	1197.0 3	1936.3	7.4 5	1672.4 3	2956.6	0.6 1
786.0 \$ 3	2258.7	3.98 3	1206.9 3	1946.2	3.5 3	1702.6 3	2200.9	5.1 3
786.1 \\$ 3	1284.15	3.98 3	1213.6 3	1952.9	8.1 4	$1725.1\ 3$	2135 . 6	1.4 1
801.5 3	1540.8	4.3 3	1221.6 3	2505.8	1.0 1	1766.5 3	2176.8	0.4 1
x838.4 § 3		1.78 2	1234.4 3	1732.7	6.6 4	1801.6 3	2540.9	1.2 1
838.9 \$3	1249.3	1.7 \ 2	1241.7 3	1652.3	5.9 4	1821.0 3	1821.0	0.1 1
873.9 3	1284.15	2.3 1	1247.1 3	1745.31	1.7 2	1831.0 3	1831.0	2.1 2
879.4 3	2624.5	1.1 1	1268.4 3	2552.0	0.3 1	1843.8 3	2583.1	1.2 1
892.6 3	2176 . 8	3.3 2	1284.2 3	1284.15	36 2	1864.8 3	2275.3	0.8 1
x899.7 § 3		2.0 \$ 2	1314.0 3	1313.98	4.4 3	1910.6 3	2649.9	1.2 3
899.7 \$ 3	2852.7	2.0 \ 2	1334.9 3	1745.31	11.8 6	1932.7 3	2672.0	0.7 1
903.7 3	1313.98	0.6 1	1356.0 3	1356 . 0	11 <i>1</i>	1959.2 3	2457.6	0.9 1
913.2 3	2385.9	1.5 2	1411.7 3	1910.0	5.4 3	1969.8 3	2468.1	0.9 1
936.7 3	1014.46	4.5 3	1472.8 3	1472 . 74	24 2	2013.9 3	2512 . 2	2.5 2

 $[\]ddagger$ From least-squares fit to γ energies.

113In(p,nγ) 1997Ka40,1987Vi09 (continued)

$\gamma(^{113}{\rm Sn})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ [†]	$\underline{\hspace{1cm}}^{}$	E(level)		$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)	$\underline{\hspace{1.5cm}}^{\dagger}$
2039.5 3	2778.8	3.6 4	2099.3 3	2176.8	1.4 1	2180.7 3	2591.2	0.9 1
2040.3 3	2538.7	2.74	2128.3 3	2538.7	1.5 1	2206.9 3	2617.4	6.9 6
$2047.1\ 3$	2457.6	0.2 4	2150.5 3	2889.8	1.8 1			
2092.9 3	2591.2	0.1 1	2164.7 3	2663.1	3.5 3			

[†] From 1997Ka40, Δ E γ =0.3 keV estimated by evaluator, average of Δ E γ =0.1-0.4 keV (1997Ka40).

¹¹³In(p,3nγ) 1997Ka40,1987Vi09

1997Ka40: 113In(p,3nγ) E=30 MeV. Preliminary report was given in 1995KaZV.

1987Vi09: 113 In(p,3n γ) E=30 MeV.

Measured: γ , $\gamma\gamma$, $\gamma\gamma(t)$, $\gamma(\theta)$.

The energy gap between the 15/2- and 11/2- states is approximately equal to the energies of the first 2+ states in adjacent even Sn nuclides. The authors suggest the presence of a multiplet formed by a quasiparticle in the h11/2 neutron state and collective core excitation.

The 1908, 1953, 1947, 1936, and 1782 levels could be members of this multiplet.

The levels around 2650 with two 19/2- states could be also members of another multiplet formed by coupling of the (v h11/2) with two-phonon core excitations.

¹¹³Sn Levels

E(level)‡	$J\pi^{\dagger}$	E(level)	$J\pi^{\dagger}$	E(level)‡	$J\pi^{\dagger}$
0.0	1 / 2+	1745.33 22	5 / 2+	2448.6 3	5 / 2+
77.7 3	7 / 2 +	1781.6 4	9 / 2 –	2538.6 3	
410.39 18	3 / 2 +	1867.4 4	5 / 2+	2583.1 4	(15/2-)
498.21 18	3 / 2 +	1907.6 4	15/2-	2617.3 4	
739.3 3	11/2-	1909.9 3	5 / 2+	2662.9 4	(3/2+,5/2+)
1018.37 20	3 / 2 + , 5 / 2 +	1936.3 4	(9/2-,11/2-,13/2-)	2750.6 5	(15/2-)
1284.23 19	5 / 2+	1946.2 4		2778.7 3	
1313.94 21	3 / 2 + , 5 / 2 +	1952.8 4	(9/2-,13/2-)	2807.7 5	19/2-
1356.0 3	3 / 2 +	2045.9 3	3 / 2+	2975.9 5	(17/2-)
1472.8 3	3 / 2 + , 5 / 2 +	2176.8 3	(5/2+,7/2+)	3092.7 5	19/2-
1539.4 3	5/2+,7/2+	2200.8 4	(3/2+,5/2+)	3130.2 6	21/2-
1540.8 4	(13/2-)	2258.8 4			
1557.0 3	3 / 2 +	2337.6 4	11/2-		

[†] From $\gamma(\theta)$ taken at six angles $(13^{\circ}, 90^{\circ}, 120^{\circ}, 130^{\circ}, 140^{\circ}, 150^{\circ})$.

 $\gamma(^{113}\mathrm{Sn})$

$\underline{\hspace{1cm}} E \gamma^{\dagger}$	E(level)		$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)		$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
77.7‡ 3	77.7		801.5 3	1540.8	2.1 2	1206.9 3	1946.2	2.6 2
206.0 3	1745.33		892.6 3	2176.8	2.2 2	1213.6 3	1952.8	8.4 7
225.3 3	2975.9	1.8 3	900.1 3	2807.7	14 2	1284.2 3	1284.23	16 1
322.5 3	3130 . 2	12 1	940.6 3	1018.37	3.5 4	1314.0 3	1313.94	4.9 4
332.6 3	410.39	14 1	1018.3 3	1018.37	0.9 3	1334.9 3	1745.33	3.1 3
498.1 3	498.21	10 1	1042.3 3	1781.6	3.8 4	1356.0 3	1356.0	2.9 2
583.2 3	1867.4	5.6 7	1068.3 3	2975.9	2.0 2	1411.7 3	1909.9	$2.2\ 2$
608.0 3	1018.37		1129.0 3	1539.4	2.1 2	1472.8 3	1472.8	15 <i>1</i>
661.5 3	739.3	100 5	1164.3 3	2448.6	4.9 4	1499.5 3	1909.9	2.5 2
786.0 \$ 3	1284.23	2.5 \$ 2	1168.3 3	1907.6	35 2	x1546.8 3		2.3 3
	2258.8	2.5 \$ 2	1185.1 3	3092.7	2.5 2	1547.7 [§] 3	2045.9	2.3 \ 3
797.8 3	2750.6	3.0 3	1197.0 3	1936.3	3.5 4	1557.0 3	1557.0	1.0 1

[‡] From adopted levels, gammas.

 $[\]mbox{\S}$ Multiply placed; undivided intensity given.

 $^{^{}x}$ γ ray not placed in level scheme.

 $^{^{\}ddagger}$ From least-squares fit to γ energies.

¹¹³In(p,3nγ) 1997Ka40,1987Vi09 (continued)

$\gamma(^{113}{\rm Sn})$ (continued)

$\underline{\hspace{1cm} E\gamma^{\dagger}}$	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	Εγ [†]	E(level)	$\underline{\hspace{1cm}}^{\dagger}$	Εγ [†]	E(level)	$\underline{\hspace{1cm}} I\gamma^{\dagger}$
1598.3 3	2337.6	2.7 2	1766.3 3	2176.8		2040.3 3	2538.6	1.0 3
1635.5 3	2045.9		1843.8 3	2583.1	$3.4\ 2$	2164.7 3	2662.9	0.9 1
1702.6 3	2200.8	2.0 2	2039.5 3	2778.7	1.4.2	2206.9 3	2617.3	2.2.2

- † From 1997Ka40, $\Delta E \gamma = 0.3$ keV estimated by evaluator, average of $\Delta E \gamma = 0.1 0.4$ keV (1997Ka40).
- ‡ From adopted levels, gammas.
- § Multiply placed; undivided intensity given.
- $^{\boldsymbol{x}}$ γ ray not placed in level scheme.

¹¹⁴Sn(p,d) IAS 1980Ta04

E=55 MeV. Measured E(d), θ =11° and 23°, magnetic spectrograph, 1980Ta04.

¹¹³Sn Levels

E(level)	$J\pi^{\dagger}$	s‡	Comments			
11826 50	(9/2+)	0.0	Γ=22 keV 10.			
12254 50	(1/2-)	428 5	E(level): IAS of 113 In g.s. Γ =20 keV 8.			
12204 00	(1/2)	120 0	$E(\text{level})$: IAS of $^{113}\text{In}(392)$.			
12513 50	(3/2-)	687 5	Γ =25 keV 9. E(level): IAS of 113 In(647).	† From $J\pi$ of parent state. ‡ $E(level)-E(g.s. analog)$.		

114Sn(p,d) 1970Ca01

E=30 MeV. σ(θ) with magnetic spectrograph, FWHM=55-70 keV, 1970Ca01.

¹¹³Sn Levels

E(level)	± Jπ [†]	L§	E(level) ‡	$J\pi^{\dagger}$		E(level)	
0.0		0	1140			1760	
72 6	7 / 2+	4	1303 6		0	1830	0
404 6	5 / 2+	2	1360			1940	
492 6	3 / 2+	2	1450		#	2060	(1)
740	11/2-	5	1570			2120	1
1042 6	3 / 2+	2	1670	5 / 2 +	2		

- † From J-dependence of angular distribution (for L=2) and shell-model
- ‡ Systematic errors ≤25 keV.
- \S From angular distributions compared with characteristic shapes.
- # L could be (5).

$^{115}Sn(p,t)$ 1971F105

E=20 MeV. $\sigma(\theta)$ with magnetic spectrograph, FWHM=25 keV, 1971Fl05. $J\pi(^{115}Sn)\!=\!1/2+.$

¹¹³Sn Levels

E(level)	$\frac{\mathbf{L}^{\dagger}}{}$	E(level)	† From comparisons with DWBA calculations.
0.0	0	490 20	
79 15		≈ 1020?	
405 10	2		

Adopted Levels, Gammas

 $Q(\beta^-) = -6070\ 30;\ S(n) = 10890\ 25;\ S(p) = 3047\ 17;\ Q(\alpha) = -356\ 18\ \ 2003 \\ Au 03, 2009 \\ Au ZZ.$ Using DSAM, 1993Ja04 extracted an average quadrupole moment for the rotational sequence, consistent with a prolate deformation: $\beta_2 \approx 0.32$.

¹¹³Sb Levels

Cross Reference (XREF) Flags

- A $^{113}\text{Te}\ \epsilon\ \text{Decay}$
- B (HI,xnγ)
- C 112 Sn(p,p) IAR D 112 Sn(3 He,d)
- $E^{-114} Sn(p,2n\gamma)$

E(level)#	Jπ [‡]	XREF	$\underline{\hspace{1cm} T_{1/2}^{\dagger}}$		Comments		
0.0&	5 / 2 + §	AB DE	6.67 min 7	J π : ¹¹⁵ Sb to ¹²¹ Sb have J % ϵ +% β ⁺ =100.	π =5/2+. Allowed ϵ to 3	/2+, 5/2+ states	in ¹¹⁵ Sn.
				T _{1/2} : from 1976Wi10. Oth	ers: 1962Pa04, 1969Ki	16, 1972Si28.	
644.78 20	1 / 2+	A DE	<1 ns	XREF: D(659).			
				$J\pi$: L(³ He,d)=0.			
814.17 22	7 / 2 + §	AB DE	<1 ns	XREF: D(829).			
1018.6 3	5 / 2+	A DE	<1 ns	XREF: D(1045).			
				$J\pi$: L(³ He,d)=2. log ft =5.7	from $(7/2+)$.		
1181.0 4		A E	<1 ns				
1257 . 1 3	(9/2+)	AB E	<1 ns	$J\pi$: $\gamma(\theta)$ in $(^6Li, 3n\gamma)$, $D+Q$	γ to 7/2+.		
$1347.9^{@}$ 3	11/2-	B D	<1 ns	XREF: D(1390).			
				$J\pi$: L(³ He,d)=(5). (E3) γ to	o 5/2+.		
1461.0 % 3	9 / 2 + §	AB E	<1 ns	J π : could be the bandhead $7/2+$, γ to $5/2+$.	d based on a Nilsson o	rbital (404) 9/2	+ M1 γ to
1551.0 4	5 / 2+	A D		XREF: D(1590).			
				$J\pi$: L(³ He,d)=2. log ft =6.0	from (7/2+).		
1716.5 5		A					
1853.2 5		A E	<1 ns				
1910.1& 4	(11/2+)§	B E	<1 ns				
1995.2 11		E	<1 ns				
2094.2 6		A					
2115.56		A					
2132.1 7		A					
2172 . 1 5		A					
2217.7& 4	(13/2+)§	B E	<1 ns	$J\pi$: D+Q γ to 11/2+, γ to	(9/2+).		
2307.64	(13/2+)	В					
2395.3 5		В					
2504 . 8 5	(15/2+)	В					
2534.9 3		A					
2626.3 5	(15/2-)	BC					
2659.1 4	(15/2+)§	В					
$2815.5^{@}4$	15/2-	В					
3009.7 11		В					
3044.7a 5	19/2(-)	В	3.7 ns 3	T _{1/2} : from 1990Ko42.			
3083.8 5	(17/2+)§	В					
3173.4 ^a 5	21/2(-)	В	E(level)#	$J\pi^{\ddagger}$ XREF	E(level)#	Jπ [‡]	XREF
3212.9@5	19/2-	В					
3344.8 5	(21/2)	В	4783.9 ^a 6	(27/2) B	6052.6 7		В
3473.2 6 5	(19/2+)§	В	5014.3° 6	(27/2-) B	6093.7@ 12	35/2-	В
3552.9a 5	(23/2)	В	5040.8 ^b 6	27/2+ B	6153.4 ^b 6	33/2+	В
3777.9@ 11	23/2-	В	5166.1 6	29/2 B	6195.9° 7	(33/2-)	В
3914.4 6 5	(21/2+)§	В	5177.7 8	(27/2+)§ B	6334.2 2 11	(33/2+)§	В
4166.8ª 5	(25/2)	В	5239.0@ 12	31/2- B	6424.1ª 7		В
4344.4° 6	(23/2-)	В	5388.7 ^b 6	29/2+ B	6545.7 ^b 6	35/2+	В
4363.1 5	(23/2+)§	В	5391.1° 7	(29/2-) B	6625.4° 7	(35/2-)	В
4459.7@ 12	27/2-	В	5569.3 % 9	(29/2+)§ B	6682.0& 12	(35/2+)§	В
4506.4 5	(25/2-)	В	5612.0 6	(29/2-) B	6976.6 ^b 6	37/2+	В
4525.2 5		В	5716.4 ^a 6	(29/2) B	6977.6 4.3	(37/2+)§	В
4535.9 5	(05/0)	В	5762.6b 6	31/2+ B	7012.8@ 13	39/2-	В
4642.7° 6 4744.8 ^b 5	(25/2-)	В	5781.7° 7 5960.1& 10	(31/2-) B	7075.8° 7	(37/2-)	В
4744.85 5	25/2+	В	5960.1 [∞] 10	(31/2+)§ B	7544.5° 7	(39/2-)	В

¹¹³Sb Levels (continued)

E(level)#	Jπ [‡]	XREF	Comments
7998.4@ 13	43/2-	В	
8025.2° 7	(41/2-)	В	
9059.7@ 14	47/2-	В	
9280 40		\mathbf{C}	IAS of ¹¹³ Sn g.s.
9720 40		\mathbf{C}	IAS of ¹¹³ Sn 410 level.
9780 40		\mathbf{c}	IAS of ¹¹³ Sn 498 level.
10215.4@ 14	51/2-	В	
11466.6@ 14	55/2-	В	
12800.9@ 15	59/2-	В	
14213.9@ 18	(63/2-)	В	
$15717.9^{@}20$	(67/2-)	В	
17352.9@ 23	(71/2-)	В	
19143.9@ 25	(75/2-)	В	
$21104^{@}$ 3	(79/2-)	В	

- † From 1976Ka25 in ¹¹⁴Sn(p,2nγ).
- ‡ Based on rotational band observed in (HI,xnγ) and Nilsson model consideration, unless given otherwise.
- $\$ L(3 He,d)=2 and 4 for g.s. and 814 level, respectively. 814 γ is not Q from $\gamma(\theta)$ in 110 Cd(6 Li, 3 N γ).
- $\mbox{\#}$ From least-squares fit to γ energies.
- (A): Suggested (1993Ja04) as members of a rotational band with the 1348-keV level as bandhead. Proton h11/2 orbital, 1/2 [550] Nilsson configuration.
- & (B): Suggested as members of a rotational band with the 1461-keV level as bandhead. Nilsson orbital [404]9/2+.
- a (C): Band based on 19/2- at 3044.7 keV.
- b (D): Band based on 25/2+ at 4744.8 keV.
- $^{\rm c}$ (E): Band based on (23/2-).

 $\gamma(^{113}Sb)$

E(level)	$\underline{\hspace{1cm} \mathbf{E} \gamma^{\dagger}}$	$\underline{\hspace{1.5cm}}^{\hspace{1.5cm} 1\gamma^{\dagger}}$	Mult.‡	δ‡	Comments
644.78	644.8 2	100	[E2]		B(E2)(W.u.)>0.16.
					Mult.: from the level scheme.
814.17	814.4 3	100	D+Q	-0.2212	$B(M1)(W.u.)>3.7\times10^{-5}$.
1018.6	1018.1 4	100			
1181.0	1181.0 4	100			
1257.1	238.4 5	8 3			
	443.3 4	12 4	D+Q	-0.029	$B(M1)(W.u.)>2.5\times10^{-5}$.
	1256.7 5	100 12			
1347.9	90.92	100 1	(E1+M2)	0.01 5	B(E1)(W.u.)>0.00032.
	1347.9 7	$20 \ 2$	(E3)		B(E3)(W.u.)>33.
1461.0	$646.6\ 3$	$29 \ 3$	D+Q	+0.038	$B(M1)(W.u.) > 1.8 \times 10^{-5}$.
	1460.8 5	100 10			
1551.0	737.0 4	44 14			
	1550.3 7	100 30			
1716.5	1071.74	100			
1853.2	391.8 5	$100 \ 50$			
	1039.55	58 17			
1910.1	$449.3\ 3$	100	D+Q	+0.24 6	B(M1)(W.u.)>0.00022; B(E2)(W.u.)>0.027.
1995.2	1181.0	100			
2094.2	1449.77	62 16			
	2093.7 10	100 23			
2115 . 5	1301.3 7	90 30			
	2115.510	100 22			
2132 . 1	1317.96	100			
2172 . 1	915.04	100 30			
	1358.0 8	84 22			
2217 . 7	306.7 5	100 10	D+Q	+0.16 6	B(M1)(W.u.)>0.00044; B(E2)(W.u.)>0.026.
	756.1 5	64 8			
2307 . 6	$397.4\ 3$	100			
2395 . 3	1047.25	100			
2504 . 8	197.1 3	47 5	D+Q	+0.096	
	287.2 3	100 11	D+Q	+0.08 9	

$\gamma(^{113}{\rm Sb})$ (continued)

1515.1 7	E(level)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\underline{\hspace{1.5cm}} I\gamma^{\dagger}$	Mult.‡	δ‡				
1719.8 10 33 10 100 25 2626.3 1278.9 6 100 1	2534 9	1515 1 7	58 17						
2535.2 3	2004.0								
2659.1 351.5 3 440.9 3 749.5 3 100 (E2) 3009.7 504.9 10 100 3033.8 424.8 3 100 D+Q +0.07 8 865.7 Q T									
2659.1	2626.3								
440, 9 3 749, 5 3 100 (E2) 3009.7 504.9 10 100 3083.8 424.8 3 100 D+Q +0.07 8 865.7 Q 3173.4 128.7 2 100 D+Q -0.10 4 3212.9 397.4 3 100 Q 3343.2 389.9 3 100 Q -0.22 12 3552.9 379.6 4 100 D+Q -0.25 5 E(level) Eγ [†] 3777.9 564.7 3 100 D CE2) 3791.4 441.3 3 830.3 3 434.8 3 3 100 D CE2) 3663.3 3 4366.8 613.9 3 100 D CE2) 3766.6 339.5 3 3 3 3 3 3 3 3 3									
T49.5 3 300 T49.5 3 100 T49.5 3 100 3044.7 418.5 3 100 3044.7 418.5 3 100 3044.7 418.5 3 100 3044.7 418.5 3 100 3044.8 424.8 3 100 D+Q -0.10 4 4 285.7 Q 3374.4 3 Q 3344.8 171.5 3 100 D+Q -0.22 12 3377.4 3 389.9 3 100 Q 3473.2 389.9 3 100 Q -0.25 5 E(level) Eγ [†] F 17.5 17.7		440.9 3							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
3044.7	2815.5	1467.6 3	100	(E2)					
3083.8	3009.7	504.9 10	100						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3044.7	418.5 3	100						
317.4 128.7 2 100 D+Q -0.10 4	3083.8	424.8 3	100	D+Q	+0.078				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		865.7		Q					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3173 . 4	128 . $7\ 2$	100	D+Q	-0.104				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Q					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Section Sect	3473 . 2		100						
3717.9 564.7 3 100 (E2) 5960.1 391 391 3914.4 441.3 3 100 D 6052.6 886.5 3 100 4344.4 998.9 3 6093.7 854.7 3 100 4344.4 998.9 3 6093.7 854.7 3 100 4344.4 998.9 3 764.6 3 448.7 3 6153.4 390.8 3 764.6 3 4459.7 681.8 3 100 (E2) 6195.9 414.2 3 804.8 3 4506.4 339.5 3 804.8 3 4506.4 339.5 3 804.8 3 4525.2 368.4 3 6424.1 707.7 3 100 4535.9 369.1 3 6424.1 707.7 3 100 4535.9 369.1 3 6645.7 392.3 3 4642.7 783.1 3								_ 4	
3914.4 441.3 3 4166.8 613.9 3 100 D 6052.6 886.5 3 100 4344.4 998.9 3 6093.7 854.7 3 100 4363.1 448.7 3 100 (E2) 6195.9 414.2 330.8 3 4459.7 681.8 3 100 (E2) 6195.9 414.2 3 604.8 3 100 6195.9 414.2 3 804.8 3 100 6634.2 374 6634.2 374 6634.2 374 6634.2 374 6634.2 374 6634.2 374 6634.2 374 765 6624.4 707.7 3 100 6644.1 707.7 3 100 66545.7 392.3 3 100 66545.7 392.3 3 100 66545.7 329.3 3 100 8444.1 707.7 3 100 8444.1 707.7 3 100 8444.1 707.7 3 100 8444.1 707.7 3 100 8444.1 707.7					-0.255	E(level)	Εγ [†]	ΙγΫ	
880.3 3 100 D 6052.6 886.5 3 100 4344.4 998.9 3 6093.7 854.7 3 100 4363.1 448.7 3 6153.4 390.8 3 100 4459.7 681.8 3 100 (E2) 6195.9 414.2 3 4506.4 339.5 3 804.8 3 804.8 3 1161.7 3 Q 6334.2 374 4525.2 358.4 3 765 765 972.3 3 6424.1 707.7 3 100 4535.9 369.1 3 6545.7 392.3 3 4642.7 298.3 3 100 D 783.1 3 4744.8 209.0 3 6625.4 429.5 3 843.7 3 381.7 3 6682.0 348 722 4783.9 277.5 3 6682.0 348 800.4 3 722 696.6 430.9 3 5014.3 371.6 3 7012.8 919.0 3 100 5166.1 999.3 3 100 Q 7075.8 450.4 3 5239.0 779.3 3 100 Q 7544.5 <t< td=""><td></td><td></td><td>100</td><td>(E2)</td><td></td><td></td><td></td><td></td><td></td></t<>			100	(E2)					
4166.8 613.9 3 100 D 6052.6 886.5 3 100 4344.4 998.9 3 44863.1 448.7 3 100 66033.7 854.7 3 100 4459.7 681.8 3 100 (E2) 6195.9 414.2 3 4506.4 339.5 3 804.8 3 100 66052.0 804.8 3 100 66052.0 804.8 3 100 66052.0 804.8 3 100 66424.1 707.7 3 100 66424.1 707.7 3 100 66424.1 707.7 3 100 66424.1 707.7 3 100 66424.1 707.7 3 100 70 783.1 3 100 783.1 3 100 783.1 3 100 843.7 3 100 8453.7 3 100 843.7 3 843.7 3 100 8453.7 3 100 86625.4 429.5 3 100 86625.4 429.5 3 100 86625.4 429.5 3 <td>3914.4</td> <td></td> <td></td> <td></td> <td></td> <td>5960.1</td> <td></td> <td></td> <td></td>	3914.4					5960.1			
4344.4 998.9 3 448.7 3 6093.7 854.7 3 100 4363.1 448.7 3 6153.4 390.8 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 804.8 3 764.6 3 804.8 3 765.8 3 804.8 3 765.5 3 804.8 3 765.5 3 804.8 3 765.5 3 765.5 3 765.5 3 765.5 3 765.5 3 765.5 3 766.5 3 765.5 3 767.7 3 100 765.7 3 100 765.7 3 767.7 3 100 765.7 3 100 765.7 3 767.7 3 100 765.7 3 100 765.7 3 100 765.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 100 767.7 3 767.7 3 767.7 3 767.7 3 767.7 3 767.7 3 767.7 3 767.7 3 767.7 3				-					
4363.1 448.7 3 390.0 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 764.6 3 4144.2 3 4506.4 339.5 3 100 (E2) 6195.9 414.2 3 804.8 3 804.8 3 1650.4 339.5 3 16151.7 3 804.8 3 3 1625.2 358.4 3 374 765 765 765 765 765 765 765 765 765 767.7 3 100 4535.9 369.1 3 100 D 6545.7 392.3 3 100 4744.8 209.0 3 6625.4 429.5 3 100 783.1 3 4642.7 298.3 3 100 D 6625.4 429.5 3 483.7 3 843.7 3 843.7 3 843.7 3 843.7 3 722 4783.9 277.5 3 6682.0 348 843.7 3 722 4783.9 3 6697.6 6 430.9 3 823.2 3 8669.9 3 6697.6 6 430.9 3 823.2 3 100 6977.6 296 6977.6 296 6697.0 6 430.9 3 100 823.2 3 100 879.9 3 100 879.9 3 100 879.9 3 100 879.9 3 100 879.9 3			100	Б					
Representation								100	
4459.7 681.8 3 100 (E2) 6195.9 414.2 3 804.8 3 4506.4 339.5 3 Q 6334.2 374 4525.2 358.4 3 765 765 972.3 3 6424.1 707.7 3 100 4535.9 369.1 3 6546.7 392.3 3 100 4642.7 298.3 3 100 D 783.1 3 843.7 3	4363.1					6153.4			
\$4506.4	4450 5		100	(E9.)		0105 0			
1161.7 3			100	(E2)		6195.9			
4525.2 358.4 3 765 972.3 3 6424.1 707.7 3 100 4535.9 369.1 3 6545.7 392.3 3 4642.7 298.3 3 100 D 783.1 3 4744.8 209.0 3 843.7 3 843.7 3 219.7 3 843.7 3 843.7 3 830.4 3 722 722 4783.9 277.5 3 6682.0 348 617.1 3 D 823.2 3 5014.3 371.6 3 823.2 3 669.9 3 669.7 6 430.9 3 5166.1 999.3 3 100 Q 5177.7 432 D 815 Q 7012.8 919.0 3 5239.0 779.3 3 100 (E2) 5388.7 347.6 3 879.9 3 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 748.3 3 D 10215.4 569.3 92 D 15612.0 1105.6 3 100 100 5762.6 373.8 3 100 12800.9 1334.3 3 100	4506.4			0		6004.0			
972.3 3	4505 0			Q		0334.2			D
4535.9 369.1 3 100 D 6545.7 392.3 3 100 A 100 A 100 B B 100 B B 100 B	4020.2					6494 1		100	Q
4642.7 298.3 3 100 D 783.1 3 4744.8 209.0 3 6625.4 429.5 3 219.7 3 843.7 3 381.7 3 6682.0 348 D 722 Q 4783.9 277.5 3 6976.6 430.9 3 617.1 3 D 823.2 3 5014.3 371.6 3 D 6976.6 430.9 3 669.9 3 C 6977.6 296 D D 5040.8 295.8 3 100 Q 7075.8 450.4 3 5177.7 432 D 7075.8 450.4 3 100 (E 5239.0 779.3 100 (E2) 7544.5 468.7 3 100 (E 5391.1 376.7 3 100 (E2) 7998.4 985.6 3 100 (E 569.3 392 D 10215.4 1155.7 3 100 (E	4535 O							100	
4744.8 209.0 3 6625.4 429.5 3 843.7 3 219.7 3 6820.0 348 D 830.4 3 722 Q 4783.9 277.5 3 6976.6 430.9 3 B 617.1 3 D 823.2 3 5014.3 371.6 3 669.9 3 643.0 Q 5040.8 295.8 3 7012.8 919.0 3 100 Q 5166.1 999.3 3 100 Q 7075.8 450.4 3 5177.7 432 D 879.9 3 815 Q 7544.5 468.7 3 5239.0 779.3 3 100 (E2) 919.1 3 5388.7 347.6 3 7998.4 985.6 3 100 (E2) 644.0 3 8025.2 480.7 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5716.4 932.5 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 14213.9 1413 1 100 Q 5716.4 932.5 3 100 17352.9 1635 1 100 Q 5718.7 390.6 3 19143.9 1791 1 100 Q			100	D		0040.7			
219.7 3 843.7 3 6682.0 348 D 722 Q Q Q Q Q Q Q Q Q			100	D		6695 4			
381.7 3 6682.0 348 D 830.4 3 6976.6 430.9 3 617.1 3 D 823.2 3 5014.3 371.6 3 669.9 3 6977.6 296 D 669.9 3 643 Q 5040.8 295.8 3 7012.8 919.0 3 100 Q 5177.7 432 D 879.9 3 815 Q 7544.5 468.7 3 5239.0 779.3 3 100 (E2) 5388.7 347.6 3 7998.4 985.6 3 100 (E2) 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2 5612.0 1105.6 3 100 100 12800.9 1334.3 3 100 (E2 5716.4 932.5 3 100 100 12800.9 1334.3 3 100 (E2 572.6 373.8 3 100 12800.9 1334.3 3 100 (E2	4/44.0					0025.4			
830.4 3 722 Q 4783.9 277.5 3 6976.6 430.9 3 617.1 3 D 5014.3 371.6 3 669.9 3 6977.6 296 D 5040.8 295.8 3 7012.8 919.0 3 100 Q 5166.1 999.3 3 100 Q 7075.8 450.4 3 879.9 3 5177.7 432 D 879.9 3						6682 0			D
4783.9 277.5 3 617.1 3 D 823.2 3 5014.3 371.6 3 669.9 3 669.7 .6 296 D 5040.8 295.8 3 7012.8 919.0 3 100 Q 5166.1 999.3 3 100 Q 7075.8 450.4 3 100 5177.7 432 D 879.9 3 100 100 815 Q 7544.5 468.7 3 100						3302.0			
617.1 3 D 823.2 3 5014.3 371.6 3 Q 669.9 3 643 Q 5040.8 295.8 3 100 Q 5166.1 999.3 3 100 Q 5177.7 432 D 879.9 3 5239.0 779.3 3 100 (E2) 5388.7 347.6 3 7998.4 985.6 3 100 (E2) 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 748.3 3 P 9059.7 1061.3 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 P 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 P 143.9 1791.1 100 Q 5762.6 373.8 3 P 100 Q 5781.7 390.6 3	4783.9					6976.6			٧.
5014.3 371.6 3 669.9 3 Q 5040.8 295.8 3 7012.8 919.0 3 100 (E2) 5166.1 999.3 3 100 Q 7075.8 450.4 3 7075.8 460.4 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 468.7 3 7075.8 480.7 3 7075.8 480.7 3 7075.8 480.7 3 7075.8	1.00.0			D					
669.9 3 669.9 3 7012.8 919.0 3 100 (E2) 5166.1 999.3 3 100 Q 7075.8 450.4 3	5014.3			-		6977.6			D
5040.8 295.8 3 100 (E2) 5166.1 999.3 3 100 Q 7075.8 450.4 3 5177.7 432 D 879.9 3 100 879.9 3 5239.0 779.3 3 100 (E2) 919.1 3 100 (E2) 5388.7 347.6 3 100 (E2) 7998.4 985.6 3 100 (E2) 5391.1 376.7 3 9059.7 1061.3 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 (E2) 5716.4 932.5 3 100 (E2) 5762.6 373.8 3 15717.9 1504 I 100 Q 5781.7 390.6 3 100 Q 19143.9 1791 I 100 Q	1.0								
5166.1 999.3 3 100 Q 7075.8 450.4 3 5177.7 432 D 879.9 3 815 Q 7544.5 468.7 3 5239.0 779.3 3 100 (E2) 5388.7 347.6 3 100 (E2) 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 748.3 3 9059.7 1061.3 3 (E2) 569.3 392 D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 (E2) 5716.4 932.5 3 100 (E2) 5762.6 373.8 3 15717.9 1504 I 100 Q 5781.7 390.6 3 100 19143.9 1791 I 100 Q	5040.8					7012.8		100	
5177.7 432 D 879.9 3 815 Q 7544.5 468.7 3 5239.0 779.3 3 100 (E2) 919.1 3 5388.7 347.6 3 8 7998.4 985.6 3 100 100 644.0 3 8 8025.2 480.7 3 949.4 3 5391.1 376.7 3 949.4 3 949.4 3 949.4 3 748.3 3 92 D D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 Q 11466.6 1251.2 3 100 (E2) 5716.4 932.5 3 100 12800.9 1334.3 3 100 (E2) 5762.6 373.8 3 100 14213.9 1413 1 100 Q 5781.7 390.6 3 100 19143.9 1791 1 100 Q			100	Q					. ,
815 Q 7544.5 468.7 3 5239.0 779.3 3 100 (E2) 5388.7 347.6 3 7998.4 985.6 3 100 (E2) 644.0 3 8025.2 480.7 3 949.4 3 748.3 3 (E2) 5391.1 376.7 3 949.4 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 824 Q 11466.6 1251.2 3 100 (E2) 5612.0 1105.6 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 12800.9 1334.3 3 100 Q 5762.6 373.8 3 (100 Q 12517.9 1504 I 100 Q 722.0 3 (100 Q 127352.9 1635 I 100 Q 5781.7 390.6 3 (100 Q									
5239.0 779.3 3 100 (E2) 919.1 3 5388.7 347.6 3 100 (E2) 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 748.3 3 9059.7 1061.3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 (E2) 5716.4 932.5 3 100 (E2) 5716.4 932.5 3 100 Q 5762.6 373.8 3 15717.9 1504 100 Q 5781.7 390.6 3 19143.9 1791 100 Q				Q		7544.5			
5388.7 347.6 3 100 (E2) 644.0 3 8025.2 480.7 3 5391.1 376.7 3 949.4 3 748.3 3 9059.7 1061.3 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 5612.0 1105.6 3 100 (E2) 5716.4 932.5 3 100 (E2) 5762.6 373.8 3 15717.9 1504 100 Q 722.0 3 119143.9 1791 100 Q	5239.0		100						
5391.1 376.7 3 949.4 3 748.3 3 9059.7 1061.3 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 824 Q 11466.6 1251.2 3 100 (E2) 5612.0 1105.6 3 100 (E2) 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 (E2) 14213.9 1413 1 100 Q 5762.6 373.8 3 (100) (20) 15717.9 1504 1 100 Q 722.0 3 (17352.9 1635 1 100 Q 19143.9 1791 1 100 Q	5388.7					7998.4		100	(E2)
748.3 3 9059.7 1061.3 3 (E2) 5569.3 392 D 10215.4 1155.7 3 100 (E2) 824 Q 11466.6 1251.2 3 100 (E2) 5612.0 1105.6 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 14213.9 1413 1 100 Q 5762.6 373.8 3 100 15717.9 1504 1 100 Q 722.0 3 100 17352.9 1635 1 100 Q 5781.7 390.6 3 100 19143.9 1791 1 100 Q		$644.0\ 3$				8025.2	480.7 3		
5569.3 392 D 10215.4 1155.7 3 100 (E2) 824 Q 11466.6 1251.2 3 100 (E2) 5612.0 1105.6 3 100 (E2) 5716.4 932.5 3 100 (E2) 5762.6 373.8 3 100 Q 722.0 3 15717.9 1504 100 Q 5781.7 390.6 3 19143.9 1791 100 Q	5391 . 1	376.7 3					$949.4\ 3$		
824 Q 11466.6 1251.2 3 100 (E2) 5612.0 1105.6 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 14213.9 1413 1 100 Q 5762.6 373.8 3 15717.9 1504 1 100 Q 722.0 3 17352.9 1635 1 100 Q 5781.7 390.6 3 19143.9 1791 1 100 Q		748.3 3				9059.7	1061.3 3		(E2)
5612.0 1105.6 3 100 12800.9 1334.3 3 100 (E2) 5716.4 932.5 3 100 14213.9 1413 I 100 Q 5762.6 373.8 3 15717.9 1504 I 100 Q 722.0 3 17352.9 1635 I 100 Q 5781.7 390.6 3 19143.9 1791 I 100 Q	5569.3	392		D		10215.4	1155.7 3	100	(E2)
5716.4 932.5 3 100 14213.9 1413 1 100 Q 5762.6 373.8 3 15717.9 1504 1 100 Q 722.0 3 17352.9 1635 1 100 Q 5781.7 390.6 3 19143.9 1791 1 100 Q				Q					
5762.6 373.8 3 15717.9 1504 I 100 Q 722.0 3 17352.9 1635 I 100 Q 5781.7 390.6 3 19143.9 1791 I 100 Q									
722.0 3 17352.9 1635 1 100 Q 5781.7 390.6 3 19143.9 1791 1 100 Q			100						
5781.7 390.6 3 19143.9 1791 1 100 Q	5762.6								
767.3 3 21104 1960 1 100 Q	5781.7								
		767.3 3				21104	1960 1	100	Q

 $^{^{\}dagger}$ From $^{110}Cd(^{6}Li,3n\gamma)$ and ^{113}Te ϵ decay. ‡ Mult and δ from $\gamma(\theta)$ (1979Sh03) and DCO ratios (1993Ja04) in (HI,xn\gamma).

¹¹³Te ε Decay 1975WiZX,1976Wi11

Parent ^{113}Te : E=0.0; J $_{\pi}$ =(7/2+); T $_{1/2}$ =1.7 min 2; Q(g.s.)=6070 30; % ϵ +% β * decay=100. γ singles with escape-suppression spectrometer and semi, $\gamma\gamma$ coin, γ (t), 1975WiZX, 1976Wi11. Others: 1974Ch17, 1974Bu21, 1975BuYW.

$^{113}{ m Sb}$ Levels

E(level)	Jπ	T _{1/2}	E(level)	Jπ	E(level)
0.0	5 / 2+	6.67 min 7	1257.1 3	(9/2+)	2094.2 6
644.78 20	1 / 2+		1461.3 5	(9/2+)	2115.4 6
814.07 24	7 / 2 +		1550.9 4	(5/2)+	2132.3? 8
1018.5 4	(5/2) +		1716.5? 5		2172.1 5
1181.0 4			1853.3 5		2534.6 4

β+,ε Data

 $\epsilon + \beta^+ \ branches \ were \ obtained \ from \ (\gamma + ce) \ imbalance \ at \ each \ level \ and \ measured \ annihilation \ radiation \ intensity.$

Εε	†	E(level)	Ιβ+†‡	Ιε ^{†‡}	Log ft	$I(\varepsilon+\beta^+)^{\ddagger}$	Comments
(3540	30)	2534.6	≈3.5	≈1.5	≈5.4	≈5.0	
(3900	30)	2172.1	≈2.0	≈ 0 . 5.7	≈ 5.9	≈ 2 . 5.7	
(3950	30)	2115.4	≈2.9	≈ 0 . 7.7	≈5.8	≈ 3 . 7	
(3980	30)	2094.2	≈ 3.7	≈ 0 . 94	≈5.7	≈ 4 . 6	
(4220	30)	1853.3	≈ 3 . 5	≈ 0 . 71	≈ 5.9	≈ 4 . 2	
(4520	30)	1550.9	≈ 2 . 8	≈ 0 . 43	$\approx 6 . 2$	≈ 3 . 2	
(4810	30)	1257.1	≈ 4 . 6	≈ 0 . 57	$\approx 6 \ . \ 1$	≈ 5 . 2	
(4890	30)	1181.0	≈ 11	≈ 1 . 2	≈ 5.8	≈ 1.2 . 2	
(5050	30)	1018.5	≈ 10.0	≈ 1.0	≈ 5.9	≈ 11	
(5260	30)	814.07	≈ 1.3	≈ 1.1	≈ 5.9	≈ 1.4	
(5430	30)	644.78	< 5 . 6	< 0 . 44	>6.3	< 6.0	
5700	200	0.0	≈ 2.8	≈ 1 . 4	≈ 5.9	≈ 2.9 . 4	Eε: from 1974Ch17. Other: 5600 200 (1975BuYW).

 $^{^{\}dagger}$ β^{+} and ϵ intensities are approximate because of the large number of unplaced Iy's.

 $\gamma(^{113}{
m Sb})$

Measured Iy(y[±]) is 780 200 relative to Iy(814)=100, 1976Will. Iy normalization: from $\Sigma(Iy+ce)$ to g.s. + $\Sigma(\epsilon+\beta^+)$ to g.s.=100.

Εγ	E(level)	$\underline{\hspace{1cm} I\gamma^{\dagger}}$	Εγ	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$	Εγ	E(level)	$\underline{\hspace{1cm}}^{\hspace{1cm}\dagger}$
238.4 5	1257.1	2.1 7	1018.1 4	1018.5	59 6	1550.3 7	1550.9	10 3
x 2 6 9 . 8 5		2.7 7	1039.5 5	1853.3	7 2	x1567.2 8		6 2
391.8 5	1853.3	12 6	1071.7‡ 4	1716.5?	7 2	1719.8 10	2534.6	3.9 12
x437.7 4		1.1 6	1181.0 4	1181.0	56 6	x1803.6 7		8 3
443.3 4	1257 . 1	3.0 9	x1206.6 6		6 2	x1868.1 9		11 3
x 4 7 3 . 1 8		2.5 6	x 1 2 4 5 . 4 5		4 3	x1944.3 11		4 2
x583.0 5		3 2	1256.7 5	1257.1	25 3	x2047.8 10		7 2
x609.3 5		5 2	1301.3 7	2115 . 4	8 3	2093.7 10	2094.2	13 3
644.8 2	644.78	29 3	1317.9 ‡ 6	2132.3?	6 2	2115.5 10	2115.4	9 2
647.5 8	1461.3	3.6 10	1358.0 8	2172 . 1	5.3 14	x2221.2 9		9 3
737.0 4	1550.9	4.4 14	1449.7 7	2094.2	8 2	2535.2 5	2534.6	12 3
814.4 3	814.07	100	1460.0 10	1461.3	8 4	x2552.4 9		7 2
915.0 4	2172 . 1	6.3 16	1515.1 7	2534.6	7 2	x2606.5 5		8 3

 $^{^{\}dagger}~$ For absolute intensity per 100 decays, multiply by 0.22.

 $[\]ensuremath{^{\ddagger}}$ Absolute intensity per 100 decays.

[‡] Placement of transition in the level scheme is uncertain.

 $^{^{\}boldsymbol{x}}$ $\,\gamma$ ray not placed in level scheme.

¹¹³Te ε Decay 1975WiZX,1976Wi11 (continued)

¹¹²Sn(p,p) IAR 1966Ri06

S(p)=3074 31. $\sigma(E(p))$ at 92°, 125° and 165°, E(p)(c.m.)=6.1-6.9 MeV with semi. L-values from shape of $\sigma(E(p))$, 1966Ri06. For resonance parameters, see 1966Ri06.

¹¹³Sb Levels

E(level)‡	$\frac{\mathbf{L}}{}$		Comments
9280 40	0	0.0	E(p)(c.m.)=6202 15. IAS of ¹¹³ Sn(g.s.) with $J\pi=1/2+$.
9720 40	2	440	E(p)(c.m.)=6649 15. IAS of ¹¹³ Sn(410) with $J\pi=5/2+$.
9780 40	2	500	E(p)(c.m.)=6710 15. IAS of ¹¹³ Sn(498) with $J_{\pi}=3/2+$.

[†] E'=E(level)-E(g.s. analog).

¹¹²Sn(³He,d) 1966Ba25,1968Co22

 $E{=}18$ MeV. $\sigma(\theta)$ with particle telescope, FWHM=70-110 keV, 1966Ba25, 1968Co22. L-values and spectroscopic factors are from DWBA calculations.

$^{113}\mathrm{Sb}$ Levels

E(level) [†]	Jπ [‡]	_L_	C^2S'	Comments
0.0	5 / 2+	2	4.2	C^2S' : for $J\pi = 5/2+$.
659 15	1 / 2+	0	1.0	
829 15	7 / 2+	4	7.5	
1045 30	5 / 2+	2	2.3	

[‡] From E=res, E(p)(c.m.) + S(p).

¹¹²Sn(³He,d) 1966Ba25,1968Co22 (continued)

¹¹³Sb Levels (continued)

E(level) [†]	Jπ [‡]	_L	C2S'	Comments
1390 50	(11/2-)	(5)	4.8	L: both L=4 and L=5 fit the angular distribution. L=5 is assigned because of sum rule limit for L=4.
1590 40	5 / 2+	2	0.6	C^2S' : $J\pi=7/2+$ gives $C^2S'=5.0$. C^2S' : $J\pi=3/2+$ gives $C^2S'=0.8$.

 $^{^{\}dagger}$ Systematically 15-40 keV too high in comparison with the adopted levels.

¹¹⁴Sn(p,2nγ) 1976Ka25

E=15.8-18.2, 20, 28 MeV. Measured excit, pulsed beam $\gamma(t)$, ny coin, $\gamma\gamma$ coin, 1976Ka25.8

$^{113}{ m Sb}$ Levels

E(level) [†]	Jπ§	T _{1/2}	E(level)†	§	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)†	Jπ§	$\underline{\hspace{1.5cm} T_{1/2}}$
0.0	5 / 2+		1181.2 3		<1 ns	1853.6 11		<1 ns
$644.2\ 5$	1 / 2+	<1 ns	1256.9 4	(9/2) +	<1 ns	1910.0 8	(11/2+)‡	<1 ns
814.3 3	7 / 2+	<1 ns	1347.8 7	11/2-	<1 ns	1995.5 4		<1 ns
1018.1 4	(5/2)+	<1 ns	1461.2 5	$(9/2+)^{\frac{1}{4}}$	<1 ns	2218.8 9	$(13/2+)^{\ddagger}$	<1 ns

[†] As given by 1976Ka25.

$\gamma(^{113}Sb)$

$\underline{\hspace{1.5cm} E\gamma^{\dagger}}$	E(level)	$\overline{ \ ^{1\gamma^{\ddagger}}}$	$ E\gamma^{\dagger}$	E(level)_	$\overline{ \hspace{1cm} 1c$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	E(level)	$\frac{I\gamma^{\ddagger}}{}$
90.9	1347.8		448.8	1910.0		1039.6	1853.6	80
238.6	1256 . 9		644.2	644.2		1181.28	1181.2	
308.8	2218 . 8		647.0	1461.2	35		1995.5	
391.3	1853.6	20	814.3	814.3		1257.0	1256.9	86
442.3	1256 . 9	14	1018.1	1018.1		1460.9	1461.2	65

 $^{^{\}dagger}$ Uncertainty not given by authors.

(HI,xnγ) 1998Mo22,1993Ja04,1979Sh03

1998Mo22: $^{103}\text{Rh}(^{16}\text{O},\alpha2\text{n})$ E=80 MeV. Measured Ey, Iy, yy, yy(\theta)(DCO) using Spectrometer, 6 Compton-suppressed HPGe detectors.

 $1993 \\ Ja04, \\ 1995 \\ Ja15: \\ ^{94} \\ Mo(^{23}Na, \\ 2p2n) \ E=117 \ MeV. \ Preliminary \ data \ in \ 1993 \\ Ra08.$

Measured E\gamma, I\gamma, $\gamma\gamma$ coin, $\gamma(\theta)$, DCO, 20 Compton-suppressed HPGe, spherical shell of 71 BGO.

 $1990 Ko42 \colon \ ^{104} Pd(^{12}C, p2n\gamma) \ E = 63 \ MeV.$

Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma(t)$. 1989Bu27: 112 Sn(α ,pn γ) E=40-50 MeV.

Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, excit.

1979Sh03: 110 Cd(6 Li,3n γ) E=24-34 MeV.

Measured Ey, Iy, $\gamma\gamma$ coin, $\gamma(\theta)$, excit.

Other: 1975Ga11.

Using DSAM, 1993Ja04 extracted an average quadrupole moment for the rotational sequence, consistent with a prolate deformation: $\beta_2 \approx 0.32$.

[‡] Assumed for C2S'.

[‡] Suggested [404] rotational band.

[§] From adopted levels.

^{‡ %} photon branching from each level.

[§] Multiply placed.

(HI,xnγ) 1998Mo22,1993Ja04,1979Sh03 (continued)

$^{113}\mathrm{Sb}$ Levels

E(level) [†]	Jπ [‡]	T _{1/2}	E(level) [†]	Jπ‡	E(level) [†]	$J\pi^{\ddagger}$
0.0	5 / 2+		3914.7 [@] 5	21/2+	6093.5# 8	35/2-
814.6 3	7 / 2 +		4167.1 5	25/2	6153.7ª 6	33/2+
1257.1 5	9 / 2 +		4345.7b 6	(23/2-)	6197.1 ^b 7	(33/2-)
1348.0 # 5	11/2-		4363.4 @ 5	23/2+	6334.2@ 11	33/2+
1461.1@3	9 / 2 +		4459.5 # 7	27/2-	6424.4 ** 7	
1910.4@4	11/2+		4506.8 6	(25/2-)	6546.0ª 6	35/2+
$2218.4^{@}5$	13/2+		4525.5 5		6626.6 ^b 7	(35/2-)
2308.0 5	(13/2+)		4536.2 6		$6682.0^{@}12$	35/2+
2395.5 5			4644.0 ^b 6	(25/2-)	6976.9a 6	37/2+
2505.3 5	(15/2+)		4745.2ª 5	25/2+	6977.6@ 13	37/2+
2626.3 5	15/2-		4784.2 6	27/2	7012.5#9	39/2-
2659.9 @ 5	15/2+		5015.6 ^b 6	(27/2-)	7077.0b 7	(37/2-)
2815.6 # 5	15/2-		5041.1 ^a 6	27/2+	7545.7 ^b 7	(39/2-)
3010.2 11			5166.4 6	29/2	7998.2#9	43/2-
3044.8 % 5	19/2-	3.7 ns § 3	5177.7@8	27/2+	8026.4 ^b 8	(41/2-)
3084.5@5	17/2+		5238.8 # 8	31/2-	9059.5# 10	47/2-
3173.9 5	21/2(-)		5389.0ª 6	29/2+	10215.2# 10	51/2-
3213.0# 5	19/2-		5392.3b 7	(29/2-)	11466.4# 11	55/2-
3345.3 6	(21/2)		5569.3 [@] 9	29/2+	12800.7# 11	59/2-
3346.8 6			5612.4 6	(29/2-)	14213.7 # 15	63/2-
3400.2 12			5716.7 % 7	29/2	15717.7# 18	67/2-
3473.4@5	19/2+		5762.9a 6	31/2+	17352.7# 21	71/2-
3553.2	23/2		5782.9 ^b 7	(31/2-)	19143.7# 23	75/2-
3777.7# 6	23/2-		5960.1 [@] 10	31/2+	21103.8# 25	79/2-
3826.7 6			6052.9 7	l		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

$\gamma(^{113}Sb)$

90.9 2 1348.0 172 18 E1 129.1 2 3173.9 122 13 D+Q -0.10 4 171.5 3 3345.3	Εγ [†]	E(level)		Mult.#	δ\$	Comments
171.5 3 3345.3	90.9 2	1348.0	172 18	E1		
173.0 3 3346.8 197.1 3 2505.3 18 2 D+Q +0.09 6 209.0 3 4745.2 219.7 3 4745.2 230.8 3 2626.3 Eγ: From 1998Mo22. 277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Eγ=306.7 (1979Sh03) Eγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	$129.1\ 2$	3173.9	122 13	D+Q	-0.104	
197.1 3 2505.3 18 2 D+Q +0.09 6 209.0 3 4745.2 219.7 3 4745.2 230.8 3 2626.3 Eγ: From 1998Mo22. 277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Eγ=306.7 (1979Sh03) Eγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	171.5 3	3345.3				Mult.: DCO=1.10 25.
209.0 3 4745.2 219.7 3 4745.2 230.8 3 2626.3 277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	173.0 3	3346.8				
219.7 3 4745.2 230.8 3 2626.3 Eγ: From 1998Mo22. 277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	197.1 3	2505.3	18 2	D+Q	+0.09 6	
230.8 3 2626.3 Eγ: From 1998Mo22. 277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	209.0 3	4745.2				
277.5 3 4784.2 287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	219.7 3	4745.2				
287.2 3 2505.3 38 4 D+Q +0.08 9 295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	230.8 3	2626.3				Eγ: From 1998Mo22.
295.8 3 5041.1 296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	277.5 3	4784.2				
296 6977.6 D 298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Εγ=306.7 (1979Sh03) Εγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	287.2 3	2505.3	38 4	D+Q	+0.08 9	
298.3 3 4644.0 7 1 D Mult.: DCO=0.65 16. 306.7 2218.4 D+Q +0.16 6 Eγ: Eγ=306.7 (1979Sh03) Eγ=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	295.8 3	5041.1				
306.7 2218.4 D+Q +0.16 6 Ey: Ey=306.7 (1979Sh03) Ey=308.7 (1998Mo22). 339.5 3 4506.8 340.3 3 4167.1	296	6977.6		D		
339.5 3 4506.8 340.3 3 4167.1	298.3 3	4644.0	7 1	D		Mult.: DCO=0.65 16.
$340.3 \ 3 \ 4167.1$	306.7	2218 . 4		D+Q	+0.16 6	Ey: Ey=306.7 (1979Sh03) Ey=308.7 (1998Mo22).
	339.5 3	4506.8				
347.6.3 5389.0	340.3 3	4167.1				
011.0 0 0000.0	347.6 3	5389.0				
348 6682.0 D	348	6682.0		D		
$358.4\ 3$ 4525.5	358.4 3	4525.5				
$369.1\ 3\ 4536.2$	369.1 3	4536.2				
371.6 3 5015.6	371.6 3	5015.6				
373.8 3 5762.9	373.8 3	5762.9				

 $^{^{\}ddagger}$ From 1993Ja04. Based on levels being members of rotational band and Nilsson model consideration.

[§] From 1990Ko42.

^{# (}A): Suggested (1993Ja04) as members of a rotational band with the 1348-keV level as bandhead. Proton h11/2 orbital? 1/2 [550] Nilsson configuration.

^{@ (}B): Suggested as members of a rotational band with the 1461-keV level as bandhead. Nilsson orbital [404]9/2+.

[&]amp; (C): Band based on 15/2-, only given in 1998Mo22.

 $^{^{\}rm a}$ (D): Band 3 based on 25/2+, only given in 1998Mo22.

 $^{^{\}mbox{\scriptsize b}}$ (E): Band 4 based on 25/2-, only given in 1998Mo22.

$(HI, xn\gamma) \qquad 1998 Mo22, 1993 Ja04, 1979 Sh03 \ (continued)$

$\gamma(^{113}{\rm Sb})$ (continued)

$_{}$ †	E(level)	Ιγ‡	Mult.#	δ§	Comments
374	6334.2		D		
376.7 3	5392.3				
379.2 3	3553 . 2		D+Q	-0.255	Mult.: DCO=0.31 24.
381.7 3	4745.2				
389.0 3	3473 . 4				
390.0 3	3400 . 2				
390.6 3	5782.9				
390.8 3	6153.7				
391	5960.1		D		
392	5569.3		D		
392.3 3 397.4 3	6546.0 2308.0	34 5	D+Q	+0.24 5	
331.4 3	3213.0	34 3	(E2)	+0.24 5	
414.2 3	6197.1		(E2)		
418.5 3	3044.8	163 16	Q		
425.6 3	3084.5	23 3	D+Q	+0.078	
429.5 3	6626.6		•		
430.9 3	6976.9				
432	5177.7		D		
441.3 3	3914.7				
441.5 10	2659.9	43 4	D+Q	+0.095	
443.0 10	1257 . 1	41 4	D+Q	-0.029	
$448.7\ 3$	4363 . 4				
449.3 3	1910.4	100	D+Q	+0.24 6	
450.4 3	7077.0				
468.7 3	7545.7				
480.7 3	8026.4				
504.9 10	3010.2	24 4	(E0)		
564.73 586.73	3777.7 3213.0		(E2)		
613.9 3	4167.1		D		Mult.: DCO=0.67 17.
617.1 3	4784.2		D		Mult.: DCO=0.32 28.
643	6977.6		Q		12410.1 200-0102 20.
644.0 3	5389.0		~		
646.6 3	1461.1	34 3	D+Q	+0.03 8	
652.7 3	3826.7				
669.9 3	5015.6				
681.8 3	4459.5		(E2)		
707.7 3	6424 . 4				
722.0 3	5762.9				
722	6682.0		Q		
748.3 3	5392.3		0		Eu. Eu-740 9 (1070Ch09)
749.5 3	2659.9		Q		Εγ: Εγ=748.2 (1979Sh03).
756.1 764.6 3	2218.4 6153.7		Q		Eγ: Eγ=756.1 (1979Sh03) Eγ=757.3 (1998Mo22).
764.6 3	6334.2		Q		
767.3 3	5782.9		4		
779.3 3	5238.8		(E2)		
782	5960.1		Q		
783.1 3	6546.0				
804.8 3	6197.1				
813.8 3	3473 . 4				
814.8 3	814.6	157 16	D+Q	-0.2212	
815	5177.7		Q		
823.2 3	6976.9				
824	5569.3		Q		
830.3 3	3914.7				
830.4 3	4745.2				
843.7 <i>3</i> 854.7 <i>3</i>	6626.6 6093.5		(E2)		
865.7 3	6093.5 3084.5		(114)		
879.9 3	7077.0				
886.5 3	6052.9				

$(HI,xn\gamma)$ 1998Mo22,1993Ja04,1979Sh03 (continued)

$\gamma(^{113}{\rm Sb})$ (continued)

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	E(level)	Ιγ‡	Mult.#	Comments
890.0 3	4363.4			
919.0 3	7012.5		(E2)	
919.1 3	7545.7			
932.5 3	5716.7			
949.4 3	8026.4			
972.3 3	4525.5			
985.6 3	7998.2		(E2)	
998.9 3	4345.7			
999.3 3	5166.4		Q	Mult.: DCO=1.21 37.
1000.4 3	4345.7		D	Mult.: DCO=0.92 42.
1047.2 5	2395.5	38 4		
1061.3 3	9059.5		(E2)	
1105.6 3	5612.4			
1155.7 3	10215.2		(E2)	
1161.7 3	4506.8		Q	Mult.: DCO=1.50 20.
1251.2 3	11466.4		(E2)	
1257.1 10	1257 . 1			
1278.9 6	2626.3	165 17	Q	
1334.3 3	12800.7		(E2)	
1347.9 7	1348.0	35 4	E3	Mult.: from large A_2 in $\gamma(\theta)$.
1413	14213.7		Q	
1460.8 5	1461.1	117 12	E 2	
1467.6 3	2815.6		(E2)	
1504	15717.7		Q	
1635	17352.7		Q	
1791	19143.7		Q	
1960	21103.8		Q	

 $^{^{\}dagger}$ From 1979Sh03 and 1998Mo22.

From 19793103 and 19303022. Relative intensity normalized to the $I\gamma(449)=100$ (1979Sh03). § Or J π 's shown and for an assumed Gaussian distribution with $\sigma=2.2$ 3 for the population of magnetic substates (1979Sh03). # From $\gamma(\theta)$ (1979Sh03).

Adopted Levels, Gammas

¹¹³Te Levels

Cross Reference (XREF) Flags

A ¹¹³I ε Decay B (HI,xnγ)

E(level) [†]	$-\!$	XREF	$_$ $T_{1/2}$ $_$			Comments
0.0	(7/2+)	AB	ć	-		/2+ level and log ft≈5.9 to (9/2+) level. min 2 (1975BuYW), 1.6 min 2 (1976Wi11).
0 + x §	(11/2-)	В			T	
587.2+x § 5	(15/2-)	В	E(level) [†]	XREF	E(level) [†]	XREF
1311.4+x § 7	(19/2-)	В				
1994.4+x § 9	(23/2-)	В	4264.7+x 12	В	6149.9+x § 13	В
2506.0+x 10		В	4273.4+x# 1.	1 B	6155.9+x 13	В
2786.6+x 10		В	4377.9+x 11	В	6204.4+x [@] 11	В
2798.3+x# 10	(25/2)	В	4558.2+x 11		6523.2+x 13	В
2891.2+x 10		В	4616.5+x [@] 1.	1 B	6621.8+x [@] 13	В
3001.3+x § 10	(27/2-)	В	4906.3+x 12	В	6786.8+x 14	В
3244.4+x 11		В	5018.8+x# 12	2 B	6908.4+x# 14	В
3430.7+x 11		В	5071.2+x § 12		7153.0+x § 14	В
3573.5+x 11	(29/2+)	В	5163.1+x [@] 1	1 B	7212.3+x 14	В
$3806.0 + x^{@}10$	(29/2)	В	5188.7+x 11	В	7360.6+x 13	В
3917.5+x# 10		В	5196.2+x 13	В	7689.7+x [@] 14	В
3927.3+x 11		В	5389.9+x 11	В	8061.5+x [@] 14	В
3975.1+x 11		В	5551.2+x 12	В	8764.3+x 14	В
4034.6+x § 11	(31/2-)	В	5553.6+x 13	В		
4184.7+x 11		В	5819.9+x# 1	3 B		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

$\gamma(^{113}{\rm Te})$

E(level)	Εγ	Ιγ	Mult.†	E(level)	Εγ	Ιγ	E(level)	Εγ	Ιγ
587.2+x	587.2 5	100	(E2)	4273.4+x	467.7 5	50 4	5389.9+x	832.1 5	100 7
1311.4+x	724.25	100	(E2)		1029.2 5	46 4	5551.2+x	993.0 5	100
1994.4 + x	683.0 5	100	(E2)	4377.9+x	572.05	100	5553.6+x	$482.4\ 5$	100
2506.0+x	511.6 5	100		4558.2+x	523.2 5	42 3	5819.9+x	801.1 5	100
2786.6+x	792.25	100			984.8 5	100 4	6149.9+x	1078.7 5	100
2798.3 + x	803.6 5	100	D	4616.5+x	238.6 5	10.1 11	6155.9+x	1084.7 5	100
2891.2+x	896.8 5	100			699.0 5	100 5	6204.4+x	814.9 5	41 3
3001.3 + x	1007.2 5	100	(E2)		810.6 5	97 5		1041.0 5	100 5
3244.4 + x	446.2 5	100			1043.9 5	66 3	6523.2+x	972.0 5	100
3430.7 + x	429.4 5	100		4906.3+x	931.2 5	100	6621.8+x	417.4 5	100
3573.5 + x	572.6 5	100	(E1)	5018.8+x	745.4 5	100	6786.8+x	966.9 5	100
3806.0 + x	804.9 5	100	D	5071.2+x	1036.6 5	100	6908.4+x	1088.5 5	100
3917.5 + x	1118.8 5	100		5163.1+x	546.8 5	100 4	7153.0+x	1003.1 5	100
3927.3 + x	926.1 5	100			604.3 5	40.4 21	7212.3+x	1056.4 5	100
3975.1+x	973.8 5	100		5188.7+x	1003.7 5	39 11	7360.6+x	1156.2 5	100
4034.6+x	1033.0 5	100	(E2)		1154.3 5	86 11	7689.7+x	1067.8 5	100
4184.7+x	1183.0 5	100			1261.6 5	100 11	8061.5+x	371.8 5	100
4264.7 + x	834.0 5	100		5196.2+x	931.5 5	100	8764.3+x	1074.6 5	100
4273.4 + x	355.6 5	100 5		5389.9+x	226.7 5	55 4			

 $^{^{\}dagger}$ From DCO ratios.

 $^{^{\}frac{1}{2}}$ From gammas, DCO ratios, decay patterns and systematics.

^{§ (}A): Ground-state band.

 $^{^{\#}}$ (B): γ cascade, on 25/2 (2798.3+x keV).

^{@ (}C): γ cascade, on 29/2 (3806+x keV).

¹¹³Ι ε Decay 1980GoZX

 $Parent \ ^{113}I\colon \ E \geq 0.0; \ J\pi = ?; \ T_{1/2} = 6.6 \ s \ 2; \ Q(g.s.) = 7230 \ 30; \ \%\epsilon + \%\beta^+ \ decay = 100.$

Measured E γ , I γ , γ (t), K X-ray(t), $\gamma\gamma$ coin, $\beta\gamma$ coin, (K x-ray) γ coin with semi. The results are only preliminary, 1980GoZX.

Other: 1977Ki11.

$\gamma(^{113}{ m Te})$

$\underline{\hspace{1cm}} E\gamma^{\dagger}$	Ιγ	Comments					
x 5 5 . 0 2	32 2	Eγ: coin with 352γ, 567γ, 802γ.					
x 160.0 2	$14 \ 2$	Eγ: coin with 463γ.					
x 2 1 6 . 5 2	7 2	Eγ: coin with tellurium X-ray and 352γ.					
$^{x}320.42$	33 2						
x 3 5 1 . 5 2	43 2	Eγ: coin with tellurium X-ray and 216γ.					
x 4 0 6 . 1 2	8 2						
x 4 6 2 . 5 2	100	Eγ: coin with tellurium X-ray.					
x 5 2 3 . 0 5	7.0 10	Eγ: coin with tellurium X-ray.					
x 5 6 7 . 4 2	36 3	Eγ: coin with tellurium X-ray.					
x608.6 5	6.2 10						
$^{x}622$. 4 2	74 3	$\mathbf{E}\gamma^{\dagger}$ $\mathbf{I}\gamma$					
x628.0 2	13 2						
x651.9 5	3.4 10	x802.1 5 8.0 20					
x690.2 5	8.0 10	x896.0 5 9.7 10					
x696.2 5	3.1 10	x929.1 3 8.0 10					
x774.0 5	8.0 10	*1161.0 5 8.7 10					
x798.2 2	12 2	x1422.4 3 11 2					

 $^{^{\}dagger}$ Assigned to $^{113}\mathrm{Te}$ from $\mathrm{T}_{1/2}.$

(HI,xnγ) 1998Se05,1997Mo09

Includes $^{64}Ni(^{56}Fe,\alpha 3n\gamma)$ E=236 MeV and $^{90}Zr(^{31}P,\alpha pn\gamma)$ E=150 MeV.

1998Se05: $E(^{63}Cu)=245$ MeV, $^{64}Ni(^{56}Fe,\alpha 3n\gamma)$ E=236 MeV. Measured Ey, Iy, $\gamma \gamma$, $\gamma \gamma(\theta)(DCO)$ using GAMMASPHERE array with six rings of 61 'HPGe' detectors (escape-suppressed).

Data (1998Se05) have been verified using $^{90}\mathrm{Zr}(^{31}P,\alpha pn)$ E=150 MeV with 'eurogam ii' spectrometer.

1997Mo09: $^{88}\mathrm{Sr}(^{28}\mathrm{Si},3n)$ E=120 MeV, Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, DCO, seven Ge-Li with BGO anti Compton.

The data given below are from 1998Se05. 1997Mo09 give Band(A) up to 27/2-.

¹¹³Te Levels

E(level) [†]	Jπ [‡]	E(level)	Jπ [‡]	E(level)
0.0		3975.1+x 11		5553.6+x 13
0 + x §	(11/2-)	4034.6+x § 11	(31/2-)	5819.9+x [#] 13
587.2+x § 5	(15/2-)	4184.7+x 11		6149.9+x § 13
1311.4+x § 7	(19/2-)	4264.7+x 12		6155.9+x 13
1994.4+x§ 9	(23/2-)	4273.4+x# 11		6204.4+x [@] 11
2506.0+x 10		4377.9+x 11		6523.2+x 13
2786.6+x 10		4558.2+x 11		6621.8+x [@] 13
2798.3+x# 10	(25/2)	4616.5+x [@] 11		6786.8+x 14
2891.2+x 10		4906.3+x 12		6908.4+x [#] 14
3001.3+x § 10	(27/2-)	5018.8+x# 12		7153.0+x § 14
3244.4+x 11		5071.2+x § 12		7212.3+x 14
3430.7+x 11		5163.1+x [@] 11		7360.6+x 13
3573.5+x 11	(29/2+)	5188.7+x 11		7689.7+x [@] 14
3806.0+x [@] 10	(29/2)	5196.2+x 13		8061.5+x [@] 14
3917.5+x# 10		5389.9+x 11		8764.3+x 14
3927.3+x 11		5551.2+x 12		

 $^{^{\}dagger}$ From least-squares fit to γ energies.

 $^{^{\}boldsymbol{x}}$ γ ray not placed in level scheme.

[‡] From gammas, DCO ratios, decay patterns and systematics.

 $[\]S$ (A): Ground-state band.

 $^{^{\#}}$ (B): γ cascade, starting at 25/2.

[@] (C): γ cascade, starting at 29/2.

(HI,xnγ) 1998Se05,1997Mo09 (continued)

$\gamma(^{113}{\rm Te})$

228.7 \$ 5389 9+x 3.0 \$ 2 228.6 \$ 4616.5 +x 0.9 7 35.6 \$ 2 4616.5 +x 0.9 7 35.6 \$ 2 4616.5 +x 0.9 7 35.6 \$ 2 4616.5 +x 0.9 7 36.7 \$ 2 616.5 +x 0.9 7 36.7 \$	Εγ	E(level)	Ιγ [†]	Mult.‡	Comments
288.6 5 4616.5+x 0.9 1 851.8 5 8061.5+x 2.4 2 417.4 5 8061.5+x 2.4 2 4427.4 5 83430.7+x 4.1 3 442.4 5 83430.7+x 4.1 3 442.4 5 83430.7+x 4.1 3 442.4 5 83430.7+x 4.1 3 442.7 5 4273.4+x 2.8 2 4273.4+x 2.8 2 511.6 5 2506.0+x 6.5 5 512.8 5 853.6+x 14.1 5 542.8 5 6103.1+x 14.1 5 542.8 5 61	226 7 5	5280 017	2 0 2		
331.8 6 8 861.5=x 7.5 3					
471.8 5 8061.5 ** 2.4 2 417.4 5 3430.7 ** 4.1 3 420.4 5 3430.7 ** 4.1 3 461.7 7 7 4273.4 ** 2.8 2 482.4 6 5656.6 ** 2.8 2 482.4 5 5656.6 ** 2.8 2 511.6 5 2506.0 ** 6.5 5 523.2 5 5168.1 ** 14.1 6 572.0 5 5168.1 ** 14.1 6 672.6 5 3673.5 ** 15.6 6 (E1) DC0-0.47 6. 672.6 5 3673.5 ** 15.6 6 (E2) DC0-1.00 used as reference. 672.6 5 3673.5 ** 15.6 6 (E2) DC0-0.47 6. 672.6 5 3673.5 ** 15.6 6 (E2) DC0-1.00 used as reference. 672.6 5 3673.5 ** 15.6 6 (E2) DC0-1.00 used as reference. 672.6 5 3673.5 ** 15.7 6 (E2) DC0-1.00 used as reference. 672.6 5 3673.5 ** 15.8 7 6 (E2) DC0-0.88 25 for 803.4 804.9 801.1 5 3680.5 **					
417.4 5 6821.8 4x 7.5 2 428.4 5 3244.4 4x 4.4 4 4.4 6 467.7 5 2 3244.4 4x 4.4 4 4.4 6 467.7 5 2 3244.4 4x 4.4 6 487.8 6.5 555.6 6x 2.2 3 5811.6 5 2506.0 4x 2.2 3 5811.6 5 2506.0 4x 4.0 3 566.8 5 5163.1 4x 14.1 6 572.0 5 4377.9 4x 0.9 2 5872.6 5 3873.6 4x 10.1 3 5872.0 5 4377.9 4x 0.9 2 5872.6 5 3873.6 4x 10.0 3 5872.5 5 887.2 4x 100 3 5872.6 5 8373.6 4x 100 3 5873.6 5					
440. 2 5 349.4 4-x 4.4 4 467. 7 5 4273.4 4-x 2.8 2 511.6 5 2506.0 -x 6.6 5 5518.6 -x 2.2 3 511.6 5 2508.0 -x 4.0 3 546.8 5 5163.1 +x 14.1 6 572.0 5 367.3 -x 15.6 6 (E1) 572.0 5 367.3 -x 15.6 6 (E1) 572.0 5 367.3 -x 15.6 6 (E1) 692.0 5 4616.5 -x 8.9 4 740.2 5 2508.0 -x 8.9 4 740.2 5 2508.0 -x 15.6 6 (E1) 699.0 5 4616.5 -x 8.9 4 740.2 5 2788.6 -x 18.0 0 3 (E2) 699.0 5 4616.5 -x 8.9 4 740.2 5 2788.6 -x 14.5 17 D DCO=0.88 22 for 803.6 + 804.9 801.6 5 5 6 4616.5 -x 8.6 4 814.9 5 6204.4 -x 4.6 3 832.1 5 5 8389.9 -x 4 832.1 5 5 8389.9 -x 5.6 4 834.0 5 4264.7 -x 2.0 3 896.9 5 5 5196.2 -x 2.1 3 992.0 5 6528.2 -x 9.5 4 993.0 5 6551.2 -x 2.0 2 973.8 5 3975.1 -x 6.8 5 984.8 5 4568.2 -x 9.5 4 991.2 5 4066.3 -x 8.6 4 814.9 5 6204.4 -x 4.6 3 896.9 5 6786.8 -x 1.7 2 972.0 5 6523.2 -x 9.5 4 993.0 5 6551.2 -x 2.0 2 1003.1 5 7153.0 -x 1.6 3 1003.7 5 5196.2 -x 2.0 2 1003.1 5 7153.0 -x 1.6 3 1011.0 5 6204.4 -x 4.0 4.0 4.0 4.0 4.					
446.2 5 324.4 ** 4.4 4 4 467.7 5 4273.4 ** 2.8 2 482.4 5 5553.6 ** 2.2 3 5631.6 5 5206.0 ** 4.0 3 563.2 5 4558.2 ** 4.0 3 5648.8 5 5163.1 ** 14.1 5 572.0 5 4377.9 ** 0.9 2 572.6 5 3573.5 ** 100.3 (E2) 572.6 5 3573.5 ** 100.3 (E2) 572.6 5 587.2 ** 14.5 17 D 572.6 5 587.2 ** 17.2 C 572.6 5 587.2 **					
482.4 5 5553.6+x 2.2 3					
482.4 \$ 5503.6 -\times 2.2 \$ 553.2 \$ 5					
511.6 5 2506.0 x 4.0 5 5 5 523.2 x 4.0 3 5 648.8 5 6163.1 x 14.1 5 5 572.0 x 477.9 x 10.3 5 648.8 5 6163.1 x 14.1 5 5 572.0 x 477.9 x 10.3 5 62.2 x 10.3 5 62.3 x 10.3 5 6					
523.2 5 4558.2 +x 14.1 5 572.0 5 5163.1 +x 14.1 5 572.0 5 5163.1 +x 14.1 5 572.0 5 5163.1 +x 15.6 6 (E1) DCO=0.47 6. 587.2 5 587.2 +x 100 3 (E2) DCO=1.00 used as reference. 604.3 5 5163.1 +x 5.7 3 (E2) DCO=0.00 used as reference. 604.3 5 5163.1 +x 5.7 3 (E2) DCO=0.00 used as reference. 683.0 5 5 163.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 5 1311.4 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 5 1311.4 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 5 1311.4 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 50 18.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 50 18.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 50 18.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 50 18.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 50 18.1 +x 100 3 (E2) DCO=0.00 used as reference. 683.0 5 100 1.0					
548.8 5 5 6163.1+x 14.1 5 572.0 5 4377.9+x 19.9 2 572.6 5 3573.5+x 15.6 6 (E1) DCO=0.47 6. 587.2 5 587.2 x 100.3 (E2) DCO=1.00 used as reference. 604.3 5 6163.1+x 5.7 3 (E2) 699.0 5 4616.5+x 8.9 4 (E2) 699.0 5 4616.5+x 8.9 4 724.2 5 1311.4+x 100.3 (E2) DCO=0.86 5. 741.4 5 6318.8+x 9.7 4 792.2 6 2786.6+x 8.9 7 4 792.2 5 6818.8+x 4.8 7 8011.6 5 6819.9+x 4.8 7 8011.6 5 6819.9+x 4.6 3 888.4 9 6 244.4+x 10.0 3 (E2) DCO=0.68 22 for 803.6+804.9. 810.6 6 4616.5+x 8.6 4 814.5 7 D DCO=0.68 22 for 803.6+804.9. 810.6 6 4616.5+x 8.6 4 814.5 7 D DCO=0.68 22 for 803.6+804.9. 810.6 7 804.4+x 1.0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					
572.0 5 4377.9*x 0.9 2 572.6 5 3573.5*x 15.6 6 (E1) DCO=0.47 6. 587.2 5 587.2 +x 100 3 (E2) DCO=1.00 used as reference. 604.3 5 5 1994.4*x 85 2 (E2) 699.0 5 4616.5*x 8.9 4 724.2 5 1311.4*x 100 3 (E2) DCO=0.86 5. 745.4 5 5018.8*x 9.7 4 792.2 6 736.6*x 14.5 71 D DCO=0.68 22 for 803.6*804.9. 803.6 5 2798.3*x 14.5 71 D DCO=0.68 22 for 803.6*804.9. 804.9 6 3806.0*x 8.5 6 D DCO=0.68 22 for 803.6*804.9. 810.6 6 4616.5*x 2.0 3 896.8 5 5839.9*x 6.5 4 834.0 5 4264.7*x 2.0 3 896.8 5 5899.9*x 4.1 4 931.5 5 6196.2*x 9.1 3 996.9 5 6786.8*x 1.7 2 972.0 5 6523.2*x 0.7 2 973.8 5 3975.1*x 6.8 5 994.8 8 4588.2*x 9.5 4 993.0 6 5551.2*x 2.0 2 1003.1 5 7153.0*x 1.6 3 1003.7 6 5188.7*x 1.1 3 1007.2 6 3001.3*x 50.0 16 (E2) DCO=0.87 6. 1029.2 6 4034.6*x 9.7 5 (E2) DCO=0.90 35. 1038.6 5 6071.2*x 4.0 3 1041.0 5 6204.4*x 11.2 5 1043.9 5 4616.5*x 2.0 2 1078.7 5 6165.9*x 1.7 2 1067.8 5 7689.7*x 1.7 2 1067.8 5 7689.7*x 1.7 2 1078.7 5 6165.9*x 1.0 5 1088.5 6 6908.4*x 2.3 2 1078.7 5 6165.9*x 1.0 5 1188.0 6 3 518.7*x 2.4 3 1166.2 6 7360.6*x 2.1 3 1166.3 6 5807.5*x 2.1 3 1166.3 6 5807.5*x 1.1 0 6 1188.0 6 4184.7*x 2.3 3 1166.2 6 7360.6*x 2.1 3 1188.0 6 4184.7*x 2.4 3					
587.2 6 5 587.2 ** 16.6 6 (E1) DCO=0.47 6. 587.2 5 587.2 ** 100.3 (E2) DCO=1.00 used as reference. 604.3 5 5 186.1 ** 85.3 (E2) 604.3 5 5 186.1 ** 85.3 (E2) 608.3 0 5 1894.4 ** 85.3 (E2) 609.0 5 4616.5 ** 8.9 4 744.2 5 1311.4 ** 100.3 (E2) DCO=0.86 5. 745.4 5 5018.8 ** 9.7 4 792.2 5 2786.6 ** 4.8 7 803.6 5 2798.3 ** 14.5 11 D D DCO=0.68 22 for 803.6 *804.9. 810.6 5 4616.5 ** 8.6 4 814.9 5 6204.4 ** 4.6 3 832.1 5 638.9 ** 5.5 4 832.1 5 638.9 ** 5.9 6 926.1 6 3927.3 ** 5.9 6 926.1 6 3927.3 ** 4.1 4 931.5 6 518.6 ** 2.1 3 936.9 6 6 786.8 ** 1.7 2 972.0 5 6523.2 ** 0.7 2 973.8 5 83975.1 ** 6.8 5 984.8 5 4585.2 ** 9.5 4 993.0 5 5551.2 ** 2.0 2 1003.1 5 7153.0 ** 1.6 3 1003.7 5 5 518.7 ** 2.0 2 1003.1 6 7153.0 ** 1.6 3 1003.7 5 5 186.7 ** 2.0 2 1003.1 6 7153.0 ** 1.1 2 1007.2 5 3001.3 ** 50.0 16 (E2) DCO=0.87 6. 1029.2 6 4273.4 ** 2.6 2 1033.0 6 4034.6 ** 5.9 3 1041.0 6 6204.4 ** 1.1 2 1067.8 5 768.8 ** 1.7 2 1076.8 6 7212.3 ** 1.7 2 1076.8 6 7212.3 ** 2.0 2 1076.8 7 6 7212.3 ** 1.7 2 1067.8 6 768.8 ** 2.3 2 1078.7 5 6149.9 ** 1.6 3 1074.6 5 768.8 ** 2.3 2 1078.7 5 6149.9 ** 1.6 3 1088.5 5 698.4 ** 3.0 2 1118.8 6 3917.5 ** 1.0 5 1188.0 5 518.7 ** 2.3 2 1078.7 5 6149.9 ** 1.7 2 1084.7 5 6149.9 ** 1.7 2 1084.7 5 6145.9 ** 1.6 3 1088.5 5 698.4 ** 3.0 2 1118.8 5 3917.5 ** 1.0 5 1188.0 6 4184.7 ** 2.3 3 1188.0 6 4184.7 ** 4.3 4					
604. 3 5 5 1683.14 8 10 3 (E2) DCO=1.00 used as reference. 604. 3 5 5 1683.14 8 15. 7 3 683.0 6 1994.4* 8 5 3 (E2) 699.0 6 4616.5* 8 8 9 4 724.2 5 1311.4* 100 3 (E2) DCO=0.86 5. 745.4 5 5018.8* 9.7 4 792.2 5 2 788.6* 4 4.8 7 801.1 5 6819.9* 5.3 4 803.6 5 2798.3* 14.5 11 D D DCO=0.68 22 for 803.6*804.9. 804.9 5 3806.0* 8 5 5 D D DCO=0.68 22 for 803.6*804.9. 804.9 5 6204.4* 4.8 6 3 832.1 5 5389.3* 5.5 4 832.1 5 5389.3* 6.9 5 896.8 5 2891.2* 5.9 6 926.1 5 3927.3* 4.6.9 5 931.2 5 4908.3* 4.1 4 893.1 5 5 5198.2* 2.1 1.7 2 973.8 5 3975.1* 6.8 5 993.0 6 5 6523.2* 1.7 2. 0.2 1003.1 5 7153.0* 1.6 8.8 1003.7 5 5188.7* 2.0 2 1003.1 5 7153.0* 1.1 6.3 1004.0 5 6204.4* 1.1 2 1007.2 5 3001.3* 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4973.4* 1.1 3 1007.2 6 3001.3* 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4773.4* 1.1 2 1035.6 5 5 712.2* 1.7 1.1 2 1035.6 5 6771.2* 1.7 2 1035.6 6 8 7 4273.4* 1.1 2 1036.6 6 8 7 7123.3* 1.7 2 1036.6 7 7212.3* 1.7 2 1037.7 5 6149.9* 1.7 2 1038.7 5 6149.9* 1.7 2 1038.7 5 6149.9* 1.7 2 1048.7 5 6149.9* 1.7 2 1058.7 5 6148.9* 1.7 2 1078.7 5 6149.9* 1.7 2 1088.7 5 6155.9* 2* 1.6 3 1088.5 5 6008.4* 2.3 2 1188.8 6 158.7* 2.3 2 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4 1188.0 6 4188.7* 2.3 4				(E1)	DCO=0 47 6
603. 0 5 163. 1+x 85 3 (E2) 699. 0 5 4616.5+x 8. 9 4 724. 2 5 1311.4+x 100 3 (E2) DCO=0.86 5. 746. 4 6 5018.3+x 9. 7 4 792. 2 5 2786.0+x 4. 8 7 803. 6 5 2798.3+x 14. 5 11 D DCO=0.68 22 for 803.6+804.9. 803. 6 5 2798.3+x 14. 5 11 D DCO=0.68 22 for 803.6+804.9. 810. 6 5 4616.5+x 8. 6 4 814. 9 5 26204.4+x 4. 6 3 832. 1 5 5389.9+x 5. 5 4 833. 1 5 5389.9+x 5. 5 6 926. 1 5 3927.3+x 6. 9 5 926. 1 5 3927.3+x 6. 9 5 926. 1 5 3927.3+x 6. 9 5 926. 1 5 6323.2+x 0. 7 2 972. 0 5 6523.2+x 0. 7 2 972. 0 5 6523.2+x 1. 1 6 3 1003. 7 5 5518.2+x 1. 1 3 1007. 2 5 3091.3+x 50.0 16 (E2) DCO=0.87 6. 1029. 2 5 4273.4+x 2. 6 2 1033. 6 5 5511.2+x 4. 0 3 1041. 0 5 6204.4+x 1. 2 5 1043. 9 5 408.6+x 4. 1. 7 2 1067. 8 5 768.9+x 4. 1. 2 5 1043. 9 5 408.4+x 3. 0 2 1118. 8 6 3917.5+x 1. 7 2 1067. 8 5 768.9+x 4. 1. 7 2 1067. 8 5 768.9+x 4. 1. 2 5 1048.7 5 6 6149.9+x 1. 7 2 1067. 8 5 768.9+x 4. 2. 4 3 1156.2 5 7360.6+x 2. 1 3 1156.2 5 7360.6+x 2. 1 3 1156.2 5 7360.6+x 2. 1 3 1158.0 5 4184.7+x 4. 3 4					
689. 0 5				(/	
699.0 5 4616.5+x 8.9 4 724.2 5 1311.4+x 100 3 (E2) DCO=0.86 5. 745.4 5 5018.8+x 9.7 4 792.2 5 2786.6+x 4.8 7 801.1 5 5819.9+x 5.3 4 803.6 5 2798.3+x 14.5 11 D DCO=0.68 22 for 803.6+804.9. 804.9 5 3806.0+x 8.5 5 D DCO=0.68 22 for 803.6+804.9. 810.6 5 4616.5+x 8.6 4 814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 896.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 973.8 5 3975.1+x 6.8 5 993.0 5 5551.2+x 2.0 2 1033.0 5 7551.2+x 2.0 2 1033.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1039.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1041.0 5 6204.4+x 11.2 5 1043.9 5 7689.7+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 7689.7+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 7689.7+x 6.5 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7889.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6148.9+x 1.7 2 1084.7 5 6149.9+x 1.7				(E2)	
74.2				,	
745. 4 5 5018.8+x 9.7 4 792.2 5 2786.6+x 4.8 7 801.1 5 5819.9+x 5.3 4 803.6 5 2788.3+x 1 4.5 11 D DCO=0.68 22 for 803.6+804.9. 810.6 5 4616.5+x 8.6 6 814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 832.1 5 5389.9+x 5.5 6 926.1 5 3927.3+x 6.9 5 926.1 5 53927.3+x 6.9 5 926.1 5 53927.3+x 6.9 5 926.1 5 7300.8+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7860.8+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1067.8 5 7808.4+x 3.0 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.0 5 1188.5 5 6908.4+x 3.0 2 1188.7 5 5188.7+x 2.4 3 1156.2 5 7300.6+x 2.1 3 1151.0 5 4184.7+x 4.3 4				(E2)	DCO=0.86 5.
792.2 5 2788.6.6+x 4.8 7 801.1 5 5819.9+x 5.3 4 803.6 5 2798.3+x 14.5 11 D DCO=0.68 22 for 803.6+804.9. 804.9 5 3806.0+x 8.5 5 D DCO=0.68 22 for 803.6+804.9. 814.9 5 6204.4+x 4.6 3 4.6 3 834.0 5 4264.7+x 2.0 3 86.8 5 896.8 5 2891.2+x 5.9 6 95 931.2 5 4906.3+x 4.1 4 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 6 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1041.0 5 6204.4+x 1.2 5 1041.0 5 6204.4+x 1.7 2 1041.0 5 6308.4+x 3.2 2 1041.0 5 6308.4+x 3.7 2 1047.6 5 87				. ,	
801.1 5 6819.9+x 5.3 4 803.6 5 2798.3+x 14.5 11 D DCO=0.68 22 for 803.6+804.9. 810.6 5 4616.5+x 8.6 4 814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 836.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6736.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1078.7 6 6149.9+x 1.7 2 1078.7 6 6149.9+x 1.7 2 1078.7 6 6149.9+x 1.7 2 1078.7 5 6188.7+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 6 6908.4+x 3.0 2 1118.8 5 6 3901.5+x 1.1 0 5 1154.3 5 6188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 2.1 3 1156.3 5 4184.7+x 4.3 4					
803.6 5 2798.3 x 14.5 11 D DCO=0.68 22 for 803.6+804.9. 804.9 5 3806.0 +x 8.5 5 D DCO=0.68 22 for 803.6+804.9. 814.9 5 6204.4 x 4.6 3 832.1 5 5389.9 x 5.5 4 834.0 5 4264.7 x 2.0 3 896.8 5 2891.2 +x 5.9 6 931.2 5 4906.3 x 4.1 4 931.5 5 6196.2 x 2.1 3 966.9 5 6786.8 x 1.7 2 972.0 5 6523.2 +x 0.7 2 973.8 5 3975.1 x 6.8 5 984.8 5 4558.2 x 9.5 4 993.0 5 6551.2 x 2.0 2 1003.1 5 7153.0 +x 1.6 3 1007.2 5 3001.3 +x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4 x 2.6 2 1033.0 5 4034.6 x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 6071.2 x 4.0 3 1041.0 5 6204.4 +x 11.2 5 1067.8 5 7689.7 x 6.5 3 1078.7 5 6149.9 x 1.7 2 1078.7 5 6155.9 x 1.6 3 1088.5 5 6908.4 x 3.0 2 1118.8 5 6 6908.4 x 3.0 2 1118.8 5 6 6155.9 x 1.6 3 1156.2 5 7360.6 +x 2.1 3 1156.3 5 4184.7 x 4.3 4					
804.9 5 3806.0+x 8.5 5 D DCO=0.68 22 for 803.6+804.9. 810.6 5 4616.5+x 8.6 4 814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 896.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 926.1 5 3927.3+x 6.9 5 926.1 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 994.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1007.2 5 3001.3+x 550.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 5188.7+x 1.1 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6098.4+x 3.0 2 1188.8 5 6098.4+x 3.0 2 1188.8 5 6098.4+x 3.0 2 1188.8 5 6096.8+x 2.1 3 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 2.1 3				D	DCO=0.68 22 for 803.6+804.9.
810.6 5 4616.5+x 8.6 4 814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 896.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1033.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1034.0 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1087.8 5 7689.7+x 6.5 3 1078.7 5 6149.9+x 1.6 3 1078.7 5 6149.9+x 1.7 2 1088.7 5 6155.9+x 1.6 3 1078.7 5 6149.9+x 1.7 2 1088.7 5 6199.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 5188.7+x 1.0 5 1154.3 5 5188.7+x 1.0 5 1154.3 5 5188.7+x 1.0 5 1154.3 5 5188.7+x 1.0 5					
814.9 5 6204.4+x 4.6 3 832.1 5 5389.9+x 5.5 4 834.0 6 4264.7+x 2.0 3 886.8 5 2881.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1074.6 6 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 1.1 0 5 1154.3 5 7388.7+x 1.1 0 5 1154.3 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
832.1 5 5389.9+x 5.5 4 834.0 5 4264.7+x 2.0 3 886.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 6 4034.6+x 9.7 6 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1066.4 5 7212.3+x 1.7 2 1067.8 5 7869.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 6 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.6 3 1085.5 6098.4+x 3.0 2 1118.8 6 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
834.0 5					
896.8 5 2891.2+x 5.9 6 926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 6196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1034.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1066.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1158.0 5 4184.7+x 4.3 4					
926.1 5 3927.3+x 6.9 5 931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 972.0 5 6523.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6159.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1183.0 5 4184.7+x 4.3 4					
931.2 5 4906.3+x 4.1 4 931.5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 6 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1188.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1166.3 5 7389.7+x 4.3 4					
931.5 5 5 5196.2+x 2.1 3 966.9 5 6786.8+x 1.7 2 973.0 5 6532.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6998.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
966.9 5 6786.8+x 1.7 2 972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 4.3 4					
972.0 5 6523.2+x 0.7 2 973.8 5 3975.1+x 6.8 5 984.8 5 4558.2+x 9.5 4 993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 6 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 6 3917.5+x 11.0 5 1156.2 5 7360.6+x 2.1 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	966.9 5				
984.8 5	972.0 5				
993.0 5 5551.2+x 2.0 2 1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	973.8 5	3975.1+x	6.8 5		
1003.1 5 7153.0+x 1.6 3 1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	984.8 5	4558.2+x	9.5 4		
1003.7 5 5188.7+x 1.1 3 1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	993.0 5	5551.2 + x	2.02		
1007.2 5 3001.3+x 50.0 16 (E2) DCO=0.87 6. 1029.2 5 4273.4+x 2.6 2 1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1003.1 5	7153.0+x	1.6 3		
1029.2 5	1003.7 5	5188.7+x	1.1 3		
1033.0 5 4034.6+x 9.7 5 (E2) DCO=0.90 35. 1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1007.2 5	3001.3 + x	50.0 16	(E2)	DCO=0.87 6.
1036.6 5 5071.2+x 4.0 3 1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	$1029.2\ 5$	4273.4+x	2.6 2		
1041.0 5 6204.4+x 11.2 5 1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1033.0 5	4034.6+x	9.7 5	(E2)	DCO=0.90 35.
1043.9 5 4616.5+x 5.9 3 1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1036.6 5	5071.2 + x	4.0 3		
1056.4 5 7212.3+x 1.7 2 1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1041.05	6204.4 + x	$11.2\ 5$		
1067.8 5 7689.7+x 6.5 3 1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1043.9 5	4616.5 + x	5.9 3		
1074.6 5 8764.3+x 2.3 2 1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1056.45	7212.3 + x	1.7 2		
1078.7 5 6149.9+x 1.7 2 1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1067.8 5	7689.7 + x	6.5 3		
1084.7 5 6155.9+x 1.6 3 1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	$1074.6\ 5$	8764.3 + x	2.3 2		
1088.5 5 6908.4+x 3.0 2 1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
1118.8 5 3917.5+x 11.0 5 1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4	1084.7 5	6155.9 + x			
1154.3 5 5188.7+x 2.4 3 1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
1156.2 5 7360.6+x 2.1 3 1183.0 5 4184.7+x 4.3 4					
1183.0 5 4184.7+x 4.3 4					
1261.6 5 5188.7+x 2.8 3					
	1261.6 5	5188.7+x	2.8 3		

 $^{^{\}dagger}$ Normalized to 100% for the 587 and 724 γ from 1998Se05. ‡ From DCO ratios.

Adopted Levels, Gammas

 $Q(\beta^-) = -8920 \ 11; \ S(n) = 12130 \ 13; \ S(p) = 840 \ 11; \ Q(\alpha) = 2730 \ 20 \ \ 2003 Au 03, 2009 Au ZZ.$ Production and identification: 290-MeV 58 Ni on 58 Ni. Mass separation, observed tellurium x rays, 1977Kill. Chemical and mass separation, $Q(\alpha)$ syst (1979Sc22).

¹¹³I Levels

 $Nomenclature\ for\ band\ labels:$

 $[p_1p_2,n_1(n_2n_3)]; \text{ where } p_1 = \text{number of } g_{9/2} \text{ proton holes}; p_2 = \text{number of } h_{11/2} \text{ protons}; n_1 = \text{number of } h_{11/2} \text{ neutrons}; n_2 = \text{number } g_{9/2} \text{ or } f_{7/2} \text{ neutrons}; n_3 = \text{number of } i_{13/2} \text{ neutrons}.$

Cross Reference (XREF) Flags

A ¹¹⁴Cs εp Decay B ⁵⁸Ni(⁵⁸Ni,3pγ)

E(level)§	Jπ ^{†#}	XREF	${\color{red}{T_{1/2}}^{\ddagger}}$	Comments
0.0	5 / 2+	В	6.6 s 2	$%\epsilon+\%\beta^{+}=100; \ \%\alpha=3.310\times10^{-7}.$
				%α: from 1981Sc17.
				E(level): tentative g.s. assignment for 6.6-s activity (1980GoZX).
				$T_{1/2}$: from 1980GoZX. Other: 5.9 s 5 (1979Sc22).
				$J\pi$: from systematics. All odd-a isotopes have $J\pi=5/2+$.
63.6° 5	7 / 2+	В		
629.44	9 / 2+	В		
753.9° 6	11/2+	В		
838.2 6	9 / 2 +	В		
909.3d 4	9 / 2 +	В		
1017.9P 5	11/2-	В	159 ps 36	
1269.1e 6	11/2+	В		
1548.7P 7	15/2-	В	5.0 ps 3	
1614.4 ^d 6	13/2+	В		
1616.7r 7	15/2+	В		
1986.6° 7	15/2+	В	1 61 17	
2186.4 ^p 9 2358.7 ^d 8	19/2- 17/2+	B B	1.61 ps 17	
2684.9r 8	19/2+	В		
2731.2 ^e 9	19/2+	В		
2870.3P 10	23/2-	В	1.86 ps 30	
3035.6g 10	23/2-	В	1.00 ps 30	
3106.2 ^d 10	21/2+	В		
3306.6 10	23/2-	В		
3480.9e 10	23/2+	В		
3568.9° 10	23/2+	В		
3696.2 ^p 10	27/2-	В	0.67 ps 25	
3741.1g 10	27/2-	В	0.01 pt 20	
3766.8 9	23/2+	В		
3792.0 9	23/2+	В		
3861.1d 10	25/2+	В		
4113.3 11	27/2-	В		
$4127.9^{0}22$	25/2+	В		
4236.4e 10	27/2+@	В		
4396.1 f 9	27/2+	В		
4497.0g 11	31/2-	В	1.1 ps 3	
4630.09 10	31/2-	В		
4630.4 ^d 10	29/2+	В		
$4798.60\ 20$	29/2+	В		
5015.4e 10	31/2+	В		
5081.6 10	31/2+	В		
5211.89 <i>11</i>	35/2-	В	1.3 ps 4	
5364.3g 12	35/2-	В		
5423.5d 11	33/2+	В		
5535.40 17	33/2+	В		
5838.6° 11	35/2+	В		
5846.4 ^f 10	35/2+	В		
5947.3 ^q 12	39/2-	В		
6266.2g 13 6278.3 ^d 11	39/2-	В		
6278.3° 11 6354.0° 14	37/2+ 37/2+	B B		
0004.0- 14	01/4+	D		

$^{113}\mathrm{I}$ Levels (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level)§	Jπ†#	XREF	E(level)§	Jπ†#	XREF	E(level)§		XREF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6688.0f 11	39/2+	В	19670g 3	79/2-	В	y j	(59/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6712.1 ^q 13	43/2-	В	19773 f 3	79/2+	В	1235.5+y ^j 10	(63/2-)	В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6741.4e 12	39/2+	В	205230 3	81/2+	В	2579.5+yj 15	(67/2-)	В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7214.6 ^d 12	41/2+	В	21514g 3	83/2-	В	4032.9+y j 18	(71/2-)	В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		41/2+	В	21688f 3	83/2+	В	5624.1+y j 20	(75/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7249.2g 14	43/2-	В	224190 4	85/2+	В	1	(79/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7610.0f 12	43/2+	В	23498g 4	87/2-	В	1	(83/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7680.79 14	47/2-	В	23561 4	87/2-	В		(87/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7699.5e 13	43/2+	В	23764f 4	87/2+	В	11375+yj 4	(87/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8198.40 12	45/2+	В	244590 4	89/2+	В	-	(53/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45/2+	В		91/2-	В	19.0+z 15	+ b	В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8296.2g 14	47/2-	В		91/2+	В		+ c	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8347.6 14	47/2-	В	I .	93/2+	В	1258.0+zk 10	(57/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			В			В	1		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8613.6f 12	47/2+	В	28432f 5		В	3933.8+zk 18	(65/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8738.6e 15	47/2+	В	I .	97/2+	В	5438.3+zk 20	(69/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9229.70 13	49/2+	В	31013 f 5	(99/2)+	В	7101.0+zk 23		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9279.6d 16	49/2+	В	316210 5		В	8970.8+zk 25		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			В	x i		В			В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9611.0 ^q 16	55/2-	В	11.9+x 15	_a	В	u l		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9686.6f 13	51/2+	В	I .	(57/2-)	В	1543.7+u ¹ 10	(67/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53/2+	В		(57/2-)	В	3173.4+u ¹ 15	(71/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10767.2g 15	55/2-	В	2176+xh 3	(61/2-)	В	4915.6+u ¹ 18	(75/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10834.3f 14	55/2+	В			В	6782.5+u ¹ 20	(79/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11066.9 ^q 19	59/2-	В	3392.5+x ⁱ 18		В		(83/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11510.10 17	57/2+	В	3433+xh 3	(65/2-)	В	l .	(87/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12083.4f 18	59/2+	В	3518.7+x 18		В	vm	(55/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12120.1g 18	59/2-	В	4737.3+x ⁱ 20	(69/2-)	В	1360.6+vm 10	(59/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12769.50 20	61/2+	В	4773.8+xh 24	(69/2-)	В	2839.0+v ^m 15	(63/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		63/2-	В	4913.3+x 20		В	4418.2+v ^m 18	(67/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13414.8f 20	63/2+	В	6184.8+x ⁱ 22	(73/2-)	В	6102.5+v ^m 20	(71/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		63/2-	В	6230.6+xh 22	(73/2-)	В	7873.5+v ^m 23	(75/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14117.40 22	65/2+	В	6344.7+x 23		В	9817.5+v ^m 25	(79/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14841.4f 23	67/2+	В	7778.2+x i 25	(77/2-)	В	11930+vm 4	(83/2+)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14993g 3	67/2-	В	7857.7+xh 25	(77/2-)	В	wn	(77/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15559.30 24	69/2+	В	9537+x ⁱ 3	(81/2-)	В	1680.5+w ⁿ 10	(81/2-)	В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16366.9f 25	71/2+	В		(81/2-)	В	3458.7+wn 15	(85/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71/2-	В	11540+x ⁱ 3	(85/2-)	В	5329.3+w ⁿ 18	(89/2-)	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				I .					
18005^{f} 3 $75/2+$ B $13837+x^{\mathrm{i}}$ 4 $(89/2-)$ B $11659+w^{\mathrm{n}}$ 4 $(101/2-)$ B							1		
			В				1		
	187560 3					В			В

- † Assignments for several bands are based on theoretical calculations.
- ‡ From 2003Pe10, unless given.
- § From least-squares fit to $E\gamma$'s.
- $^{\#}$ From the deduced transitions multipolarities and band assignments.
- @ 755 γ E2 to 23/2+.
- & From figure 1 of 2001St16.
- a 1086 γ from (57/2-) is E2.
- $^{\mbox{\scriptsize b}}$ 1258 γ is E2.
- c 1212γ is E2.
- d (A): $\alpha = +1/2$, based on 5/2+, $\Delta J = 2$, [10,0].
- e (B): $\alpha\text{=-}1/2,$ based on 11/2+, $\Delta J\text{=}2,$ [10,0].
- f (C): $\alpha\text{=-}1/2,$ based on $35/2\text{+},~\Delta J\text{=}2,~[22,4].$
- g (D): $\alpha\text{=+1/2},$ based on $31/2\text{--},~\Delta J\text{=}2,~[22,3].$
- $\begin{array}{lll} h & (E): \ Based \ on \ (57/2-), \ \Delta J = 2, \ [22,3]. \\ i & (F): \ Based \ on \ (53/2-), \ \Delta J = 2, \ [22,3]. \end{array}$
- j (G): Based on (59/2-), $\Delta J=2$, [22,3].
- k (H): Based on (53/2+), $\Delta J = 2$, [22,3].
- l (I): Based on (63/2-), $\Delta J \!=\! 2,$ [21,4].
- m (J): Based on (55/2+), $\Delta J\!=\!2,$ [21,3].

ⁿ (K): Based on (77/2-), $\Delta J=2$, [22,3(01)].

Footnotes continued on next page

¹¹³I Levels (continued)

r (O): Based on 7/2+, $\Delta J=2$, [00,0].

 $\gamma(^{113}{
m I})$

E(level)	Εγ	Ιγ	Mult.†	Comments
63.6	63.6			Eγ: from level energy difference.
629.4	565.7 5	66.6 4	M1,E2	•
	629.2 5	100.0 21	E2	Iy: uncertainty of 0.1 given by $2001St16$ seems too low; increased to 1.0 by compilers.
753.9	690.4 5	100.0	E 2	
838.2	774.3 10	100 12	M1,E2	
	838.0 10	94 12	E2	
909.3	846.0 5	100 7	M1,E2	
	909.4 5	59 7	E 2	
1017.9	179.8 5	6.3 7	E1	$B(E1)(W.u.)=1.4\times10^{-5} 4.$
	263.9 5	31.9 12	E1	$B(E1)(W.u.)=2.3\times10^{-5}$ 6.
	388.4 5	100 4	E1	$B(E1)(W.u.)=2.2\times10^{-5}$ 6.
1269.1	360.0 5	100	M1,E2	
1548.7	530.8 5	100	E2	B(E2)(W.u.)=83 5.
1614.4	345.4 5	100 6	M1,E2	
	705.4 8	11 3	E 2	
	775.0 10	17 3	E 2	
	984.5 10	8 3	E 2	
1616.7	862.8 5	100	E2	
1986.6	372.0 10	100 30	M1, E2	
	717.6 5	76 7	E 2	
2186.4	637.7 5	100	E2	B(E2)(W.u.)=103 11.
2358.7	372.4 10	100 40	M1, E2	
	744.0 10	96 18	E 2	
2684.9	1068.3 5	100	E 2	
2731.2	373.0 10	100 40	M1,E2	
	744.4 10	97 21	E2	
2870.3	683.6 5	100	E 2	B(E2)(W.u.)=63 11.
3035.6	165.1 5	21.2 19	M1,E2	
	848.6 5	100	E 2	
3106.2	375.0 10	100 40	M1,E2	
	747.0 10	100 15	E 2	
3306.6	271.0 6	25 5	M1, E2	
	1120.19	100 10	E 2	
3480 . 9	374.0 10	96 50	M1, E2	
	$750.0\ 10$	$100 \ 21$	E 2	
3568.9	884.0 5	100	E 2	
3696.2	825.7 5	100	E 2	$B(E2)(W.u.)=70 \ 30.$
3741.1	705.6 5	100 7	E2	
	870.9 6	17 4	E 2	
3766.8	1081.7 5	100	E2	
3792.0	1107.3 5	100	E2	
3861.1	380.0 10	100 9	M1, E2	
	755.0 10	42 15	E 2	
4113.3	806.6 6	100	E2	
4236 . 4	375.4 10	92 50	M1, E2	
	755.4 10	100 30	E 2	
4396.1	604.3 5	57	E 2	
	629.1 5	100 14	E 2	
4497.0	756.0 5	25.1 16	E 2	$B(E2)(W.u.)=13 \ 4.$
	800.6 5	100 3	E2	B(E2)(W.u.)=39 11.
4630.0	516.6 5	18.7 15	E 2	
	889.1 5	29.1 15	E 2	
	933.9 5	100 5	E2	
4630.4	394.0 5	100 6	M1, E2	
	769.0 10	41 6	E 2	

$\gamma(^{113}I)$ (continued)

E(level)	Εγ	Ιγ	Mult.†	Comments
4798.6	670.7 10	100	E2	
5015.4	385.0 5	71 8	M1, E2	
	779.0 10	100 8	E 2	
5081.6	685.6 5	100	E2	D/EQV/W \ EC. Q4
5211.8	582.05 714.55	61.1 25 $100 4$	E2 E2	B(E2)(W.u.)=76 24. B(E2)(W.u.)=45 14.
5364.3	867.2 5	100	E2	D(22)((((d))-10-11)
5423.5	408.0 5	100 11	M1, E2	
	793.0 10	68 11	E2	
5535.4	736.8 10	100	E2	
5838.6	415.0 5	100	M1+E2	
5846.4	823.0 10 $423.3 10$	$67 ext{ } 19$ $13 ext{ } 9$	E2 M1,E2	
3040.4	764.8 5	100 17	E2	
	831.3 10	17 4	E2	
5947.3	735.5 5	100	E 2	
6266 . 2	901.9 5	100	E 2	
6278.3	439.6 5	100 12	M1, E2	
	854.6 10	81 6	E2	
6354.0 6688.0	818.6 <i>10</i> 841.9 <i>5</i>	$100 \\ 100 9$	E2 E2	
0000.0	849.1 10	23 9	E2	
6712.1	764.8 5	100	E2	
6741.4	463.0 5	100 12	M1, E2	
	902.6 10	41 12	E 2	
7214.6	473.0 10	100 8	M1, E2	
	936.0 10	92 8	E2	
7247.1	505.8 10	33 22	M1, E2	
7249.2	893.15 983.05	100 22 100	E2 E2	
7610.0	922.1 5	100	E2	
7680.7	968.6 5	100	E2	
7699.5	485.0 10	100 14	M1, E2	
	958.0 10	43 30	E2	
8198.4	589.2 10	36 9	M1, E2	
	951.3 5	$ \begin{array}{ccc} 100 & 9 \\ 18 & 9 \end{array} $	E2 E2	
8213.6	983.0 10 514.0 10	30 20	M1,E2	
0210.0	999.0 10	100 20	E2	
8296.2	1046.9 5	100	E2	
8347.6	1098.5 5	100	E2	
8586.3	905.6 5	100	E2	
8613.6	1003.6 5	100	E2	
8738.6	525.0 10	60 40	M1,E2 E2	
9229.7	1039.0 10 616.0 10	$\begin{array}{ccc} 100 & 40 \\ 12 & 6 \end{array}$	M1,E2	
	1031.3 5	100 12	E2	
9279 . 6	541.0 10	67 70	M1, E2	
	1066.0 10	100 70	E2	
9496.6	1149.1 3	100 8	E2	
9611.0	1200.4 5	79 4 100	E2 E2	
9686.6	1024.75 1073.05	100	E2	
10332.7	1103.0 5	100	E2	
10767.2	1270.5 5	100	E2	
10834 . 3	1147.7 5	100	E2	
11066.9	1455.9 10	100	E2	
11510.1	1177.4 10	100	E2	
12083.4 12120.1	1249.1 10 $1352.9 10$	100 100	E2 E2	
12769.5	1259.4 10	100	E2	
12990.5	1923.6 10	100	E2	
13414.8	1331.4 10	100	E2	
			Contin	and an payt page (featpates at and of table)

$\gamma(^{113}I)$ (continued)

E(level)	Εγ	Ιγ	Mult.†	E(level)	Εγ	Ιγ	Mult.†
13554.5	1434.4 15	100	E2	7857.7+x	1627.1 10	100	E2
14117.4	1347.9 10	100	E2	9537+x	1758.4 10	100	E2
14841.4	1426.6 10	100	E2	9644+x	1786.4 10	100	E2
14993	1438.5 15	100	E2	11540+x	2003.2 10	100	E2
15559.3	1441.9 10	100	E2	11615+x	1970.8 10	100	E2
16366.9	1525.5 10	100	E2	13772+x	2156.9 20	100	E2
16436	1443.0 15	100	E2	13837+x	2296.9 20	100	E2
17104	1544.8 10	100	E2	13903+x	2363.0 20	100	E2
17990	1554.0 10	100	E2	1235.5+y	1235.5 10	100	E2
18005	1638.2 10	100	E2	2579.5+y	1344.0 10	100	E2
18756	1651.8 10	100	E2	4032.9+y	1453.4 10	100	E2
19670	1680.4 10	100	E2	5624.1+y	1591.2 10	100	E2
19773	1767.7 10	100	E2	7355.6+y	1731.4 10	100	E2
20523	1766.9 10	100	E2	9261.4+y	1905.8 10	100	E2
21514	1844.2 10	100	E2	11310+y	2049.0 20	100	E2
21688	1915.3 10	100	E2	11375+y	2113.1 20	100	E2
22419	1895.8 10	100	E2	1258.0+z	1212.5 10	100 20	E2
23498	1984.1 10	100	E2	1256.0+2	1212.3 10	60 20	E2
	2046.6 20	100	E2		1258.0 10	60 20	E2
23561 23764	2075.8 10	100	E2	2553.1+z	1295.1 10	100	E2
24459	2039.9 10	100	E2	3933.1+z	1380.7 10	100	E2
25743	2181.6 20	100	E2	5438.3+z	1504.5 10	100	E2
20745			E2				E2
96005	2244.5 20	100 100	E2	7101.0+z	1662.7 10	$100 \\ 100$	E2
26005	2241.2 20			8970.8+z	1869.7 10		
26660	$2201.0 10$ $2442.2^{\ddagger} 20$	100	E2	11090+z	2118.9 20	100	E2
28185	2442.2+ 20	100	E2	1543.7+u	1543.7 10	100	E2
28432	2379.5 20	100	E2	3173.4+u	1629.6 10	100	E2
29039	$2379.5 20$ $2581.1^{\ddagger} 20$	100	E2	4915.6+u	1742.2 10	100	E2
31013		100	E2	6782.5+u	1866.9 10	100	E2
31621	2582.0 ‡ 20	100	E2	8822+u	2039.4 20	100	E2
1098.0+x	1086.1 10	100 17	E2	11025+u	2202.9 20	100	E2
0.1.50	1098.0 10	92 17	E2	1360.6+v	1360.6 10	100	E2
2176+x	1184.1 10	100	E2	2839.0+v	1478.4 10	100	E2
2218.8+x	1120.8 10	100	E2	4418.2+v	1579.2 10	100	E2
3392.5+x	1173.7 10	100	E2	6102.5+v	1684.3 10	100	E2
3433+x	1257.4 10	100	E2	7873.5+v	1770.9 10	100	E2
3518.7+x	1299.9 10	100	70	9817.5+v	1944.0 10	100	E2
4737.3+x	1344.8 10	100	E2	11930+v	2112.3 20	100	E2
4773.8+x	1340.6 10	100	E 2	1680.5+w	1680.5 10	100	E2
4913.3+x	1394.6 10	100		3458.7+w	1778.1 10	100	E2
6184.8+x	1410.0 20	25 17	E2	5329.3+w	1870.6 10	100	E2
	1447.8 10	100 17	E2	7301.4+w	1972.1 10	100	E2
6230.6+x	1457.1 10	100 17	E2	9403+w	2101.2 20	100	E2
	1493.0 10	33 17	E 2	11659+w	2256.7 20	100	E2
6344.7+x	1431.4 10	100	70	14092+w	2432.7 20	100	E2
7778.2 + x	1593.3 10	100	E2	I			

 $^{^{\}dagger}$ From DCO Measurements. ‡ Placement of transition in the level scheme is uncertain.

(C) α= -1/2. based on 35/2+,

(**B**) α=

-1/2.

11/2+,

1039

823

47/2+

43/2+

39/2+

35/2+

31/2+

27/2

23/2+

19/2+

15/2+

11/2+

(A)

 α =+1/2, based on 5/2+, Δ J=2, [10,0]

1066

855

9279.6

8213.6

7214.6

6278.3

5423.5

4630.4

3861.1

3106.2

2358.7

1614.4

909.3

49/2+

45/2+

41/2+

37/2 +

33/2+

29/2+

25/2+

21/2+

17/2+

13/2+

9/2+

(I) Based

on

(63/2-),

 $\Delta J=2, [21,4]$

2203

1742

1630

1544

11025+u

8822+u

6782.5+u

4915.6+u

3173.4+u

1543.7+u

u

(87/2-)

(83/2-)

(79/2-)

(75/2-)

(71/2-)

(67/2-)

(63/2-)

19/2-

15/2-

11/2-

2186.4

1548.7

1017.9

15/2 +

11/2+

7/2+

1616.7

753.9

63.6

(K) Based

on

(77/2-),

 $\Delta J=2, [22,3(01)]$

2433

2257

2101

1972

1871

1778

1680

1680.5+w

 \mathbf{w}

(105/2-)

(101/2-)

(97/2-)

(93/2-)

(89/2-)

(85/2-)

(81/2-)

(77/2-)

(J) Based

(55/2+),

 Δ J=2, [21,3]

2112

1944

1771

1684

1579

1478

1361

11930+v

9817.5+v

7873.5+v

6102.5+v

4418.2+v

2839.0+v

1360.6+v

(83/2+)

(79/2+)

(75/2+)

(71/2+)

(67/2+)

(63/2+)

(59/2+)

(55/2+)

114Cs εp Decay 1980Ro04

Parent $^{114}\text{Cs: E}{\ge}0; \ J\pi{=}(1{+}); \ T_{1/2}{=}0.57 \ s \ 2; \ Q(g.s.){=}10380 \ 170; \ \%{\epsilon}p \ decay{=}?$ Measured energies, intensities, and half-lives for delayed protons, delayed α 's and ground-state α 's, $E/\Delta E$ telescope, Ey, Iy, $\gamma\gamma{-}\text{coin}, \ I\beta, \ \beta\gamma{-}\text{coin}, \ T_{1/2}; \ semi, \ 1980Ro04.$

 $\gamma(^{113}I)$

58 Ni(58 Ni, 3 p γ) 2001St16,2003Pe10

2001St16: E=250 MeV. Measured E γ , I γ , $\gamma\gamma$ and $\gamma\gamma(\theta)(DCO)$ using GAMMASPHERE array of 83 HPGe detectors coupled with the Microball array of 95 CsI(Tl) charged particle detectors and an array of 15 scintillators for neutron detection

 $2003Pe10: {}^{58}Ni({}^{58}Ni({}^{58}Ni,{}^{3}\pi\gamma)$ E=210 MeV. Measured Ey, Iy, $\gamma\gamma$ and lifetimes by recoil-distance Doppler-shift using the 4π spectrometer euroball iv.

1993Pa13: $^{58}Ni(^{58}Ni,3p)$ E=240 MeV.

Measured: γ , $\gamma\gamma$, Eurogam system.

1995Wa14: ⁵⁸Ni(⁵⁸Ni,3p) E=240 MeV.

Measured: $\gamma,\ \gamma\gamma,\ Eurogam$ system, same experiment with new analysis.

Except for lifetime data, all other data are from 2001St16.

¹¹³I Levels

Nomenclature for band labels:

 $[p_1p_2,n_1(n_2n_3)]; \text{ where } p_1 = \text{number of } g_{9/2} \text{ proton holes}; p_2 = \text{number of } h_{11/2} \text{ protons}; n_1 = \text{number of } h_{11/2} \text{ neutrons}; n_2 = \text{number } g_{9/2} \text{ or } f_{7/2} \text{ neutrons}; n_3 = \text{number of } i_{13/2} \text{ neutrons}.$

E(level) [‡]	Jπ [†]	T	E(level)‡	Jπ [†]	$T_{1/2}$
0.0	5 / 2+		4497.0 ^a 11	31/2-	1.1 ps 3
63.61 5	7 / 2+		4630.0k 10	31/2-	•
629.4 4	9 / 2+		4630.4 # 10	29/2+	
753.91 6	11/2+		$4798.6^{i}20$	29/2+	
838.2 6	9 / 2+		5015.4@ 10	31/2+	
909.3# 4	9 / 2+		5081.6 10	31/2+	
1017.9 ^j 5	11/2-	159 ps 36	5211.8 ^k 11	35/2-	1.3 ps 4
$1269.1^{@}6$	11/2+		5364.3ª 12	35/2-	
1548.7 ^j 7	15/2-	5.0 ps 3	5423.5 # 11	33/2+	
1614.4# 6	13/2+		5535.4 ⁱ 17	33/2+	
1616.71 7	15/2+		5838.6 [@] 11	35/2+	
1986.6@7	15/2+		5846.4 4 10	35/2+	
2186.4 ^j 9	19/2-	1.61 ps 17	5947.3 ^k 12	39/2-	
2358.7#8	17/2+		6266.2a 13	39/2-	
2684.91 8	19/2+		6278.3 # 11	37/2+	
2731.2@9	19/2+		6354.0 ⁱ 14	37/2+	
2870.3j 10	23/2-	1.86 ps 30	6688.0	39/2+	
3035.6ª 10	23/2-		6712.1 ^k 13	43/2-	
3106.2# 10	21/2+		6741.4@ 12	39/2+	
3306.6 10	23/2-		7214.6# 12	41/2+	
3480.9@ 10	23/2+		$7247.1^{\dot{1}}$ 13	41/2+	
3568.9 ¹ 10	23/2+		7249.2a 14	43/2-	
3696.2j 10	27/2-	0.67 ps 25	7610.0 2 12	43/2+	
3741.1ª 10	27/2-		7680.7 ^k 14	47/2-	
3766.8 9	23/2+		7699.5 [@] 13	43/2+	
3792.0 9	23/2+		8198.4^{i} 12	45/2+	
3861.1# 10	25/2+		8213.6 # 14	45/2+	
4113.3 11	27/2-		8296.2 ^a 14	47/2-	
4127.9 ⁱ 22	25/2+		8347.6 14	47/2-	
$4236.4^{@}10$	27/2		8586.3 ^k 15	51/2-	
4396.1 8 9	27/2+		8613.6 2 12	47/2+	

 $^{^{}x}$ γ ray not placed in level scheme.

$^{58}\mathrm{Ni}(^{58}\mathrm{Ni},3\mathrm{p}\gamma)$ 2001St16,2003Pe10 (continued)

$^{113}\mathrm{I}$ Levels (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(87/2-) (87/2-) (53/2+) + + (57/2+) (61/2+)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(53/2+) + + (57/2+) (61/2+)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + (57/2+) (61/2+)
9611.0 ^k 16 55/2- 29039 ⁱ 4 97/2+ 45.5+z 15	+ (57/2+) (61/2+)
	(57/2+) (61/2+)
9686.6& 13 51/2+ 31013& 5 (99/2)+ 1258.0+ze 10	(61/2+)
10332.7^{i} 14 $53/2+$ 31621^{i} 5 $(101/2)+$ $2553.1+z^{e}$ 15	
10767.2 ^a 15 55/2- x ^c (53/2-) 3933.8+z ^e 18	(65/2+)
10834.3& 14 55/2+ 11.9+x 15 - 5438.3+ze 20	(69/2+)
11066.9 ^k 19 59/2- 992+x ^b 3 (57/2-) 7101.0+z ^e 23	(73/2+)
11510.1 ⁱ 17 57/2+ 1098.0+x ^c 10 (57/2-) 8970.8+z ^e 25	(77/2+)
12083.4& 18 59/2+ 2176+xb 3 (61/2-) 11090+ze 4	(81/2+)
12120.1 ^a 18 59/2- 2218.8+x ^c 15 (61/2-) u ^f	(63/2-)
12769.5 ⁱ 20 61/2+ 3392.5+x ^c 18 (65/2-) 1543.7+u ^f 10	(67/2-)
12990.5 ^k 21 63/2- 3433+x ^b 3 (65/2-) 3173.4+u ^f 15	(71/2-)
13414.8& 20 63/2+ 3518.7+x 18 4915.6+uf 18	(75/2-)
13554.5 ^a 24 63/2- 4737.3+x ^c 20 (69/2-) 6782.5+u ^f 20	(79/2-)
14117.4 ⁱ 22 65/2+ 4773.8+x ^b 24 (69/2-) 8822+u ^f 3	(83/2-)
14841.4 $\frac{23}{2}$ $67/2+$ $4913.3+x$ 20 $11025+uf$ 4	(87/2-)
14993 ^a 3 67/2- 6184.8+x ^c 22 (73/2-) v ^g	(55/2+)
15559.3 ⁱ 24 69/2+ 6230.6+x ^b 22 (73/2-) 1360.6+v ^g 10	(59/2+)
16366.9 25 71/2+ 6344.7+x 23 2839.0+vg 15	(63/2+)
16436 ^a 4 71/2- 7778.2+x ^c 25 (77/2-) 4418.2+y ^g 18	(67/2+)
17104^{i} 3 $73/2+$ $7857.7+x^{b}$ 25 $(77/2-)$ $6102.5+vg$ 20	(71/2+)
17990 ^a 4 75/2- 9537+x ^c 3 (81/2-) 7873.5+v ^g 23	(75/2+)
$18005 \stackrel{\&}{.} 3$ $75/2+$ $9644+x^b$ 3 $(81/2-)$ $9817.5+v^g$ 25	(79/2+)
18756^{i} 3 $77/2+$ $11540+x^{\mathrm{c}}$ 3 $(85/2-)$ $11930+y^{\mathrm{g}}$ 4	(83/2+)
19670 ^a 3 79/2- 11615+x ^b 3 (85/2-) w ^h	(77/2-)
$19773 \stackrel{\&}{.} 3$ $79/2+$ $13772+x^{b}$ 4 $(89/2-)$ $1680.5+w^{h}$ 10	(81/2-)
20523 ⁱ 3 81/2+ 13837+x ^c 4 (89/2-) 3458.7+w ^h 15	(85/2-)
21514 ^a 3 83/2- 13903+x 4 (89/2-) 5329.3+w ^h 18	(89/2-)
21688& 3 83/2+ y ^d (59/2-) 7301.4+w ^h 20	(93/2-)
22419 ⁱ 4 85/2+ 1235.5+y ^d 10 (63/2-) 9403+w ^h 3	(97/2-)
23498 ^a 4 87/2- 2579.5+y ^d 15 (67/2-) 11659+w ^h 4	(101/2 -)
	(105/2-
23764& 4 87/2+ 5624.1+yd 20 (75/2-)	
24459 ⁱ 4 89/2+ 7355.6+y ^d 23 (79/2-)	
25743^{a} 4 $91/2 9261.4+y^{d}$ 25 $(83/2-)$	

 $^{^{\}dagger}$ Assignments for several bands are based on theoretical calculations.

 $[\]$ From figure 1 of 2001St16.

^{# (}A): $\alpha = +1/2$, based on 5/2+, $\Delta J = 2$, [10,0].

^{@ (}B): $\alpha \text{=-}1/2\text{, based on }11/2\text{+, }\Delta J \text{=}2\text{, }[10,0]\text{.}$

[&]amp; (C): $\alpha\text{=-}1/2,$ based on $35/2\text{+},~\Delta J\text{=}2,~[22,4].$

 $^{^{}a}$ (D): $\alpha\text{=+1/2},$ based on 31/2-, $\Delta J\text{=}2,$ [22,3].

 $^{^{}b}$ (E): Based on (57/2-), $\Delta J \! = \! 2,$ [22,3]. c (F): Based on (53/2-), $\Delta J {=} 2, [22,3].$

d (G): Based on (59/2-), $\Delta J=2$, [22,3].

 $^{^{\}rm e}$ (H): Based on (53/2+), $\Delta J{=}2,$ [21,3].

f (I): Based on (63/2-), $\Delta J\!=\!2,$ [21,4].

g (J): Based on (55/2+), $\Delta J=2$, [21,3].

h (K): Based on (77/2-), $\Delta J\!=\!2,$ [22,3(01)].

 $^{^{\}rm i}$ (L): Based on 25/2+, $\Delta J \text{=}2,$ [22,4].

j (M): Based on 11/2-, $\Delta J=2$, [01,0]. k (N): Based on 31/2-, $\Delta J {=} 2,$ [01,2].

 $^{^{}l}$ (O): Based on 7/2+, $\Delta J\!=\!2,$ [00,0].

⁵⁸Ni(⁵⁸Ni,3pγ) 2001St16,2003Pe10 (continued)

$\gamma(^{113}{\rm I})$

Εγ	E(level)	Ιγ	Mult.	Comments
63.6	63.6			Eγ: from level energy difference.
165.1 5	3035.6	2.2 2	M1,E2	DCO=0.86 8.
179.8 5	1017.9	4.7 5	E1	DCO=0.65 6.
				$B(E1)(W.u.)=1.4\times10^{-5} 4.$
263.9 5	1017.9	23.9 9	E1	DCO=1.3 2.
				$B(E1)(W.u.)=2.3\times10^{-5}$ 6.
271.0 6	3306.6	0.5 1	M1, E2	
345.4 5	1614.4	6.6 4	M1, E2	DCO=0.73 6.
360.0 5	1269.1	8.4 6	M1, E2	DCO=0.74 6.
372.0 10	1986.6	4.1 12	M1, E2	DCO=0.75 5.
372.4 10	2358 . 7	2.8 12	M1, E2	DCO=0.75 5.
373.0 10	2731.2	2.9 11	M1, E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
374.0 10	3480.9	2.3 11	M1, E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
375.0 10	3106 . 2	2.7 11	M1, E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
375.4 10	4236.4	2.2 11	M1+E2	DCO=0.75 5 for six lines from 372.0 to 375.4.
380.0 10	3861.1	3.3 3	M1, E2	
385.0 5	5015.4	1.7 2	M1, E2	
388.4 5	1017.9	75 3	E 1	DCO=0.53 5, 0.65 3.
				$B(E1)(W.u.)=2.2\times10^{-5}$ 6.
394.0 5	4630.4	3.2 2	M1, E2	
408.0 5	5423.5	1.9 2	M1, E2	
415.0 5	5838.6	2.1 2	M1, E2	
423.3 10	5846.4	0.3 2	M1, E2	
439.6 5	6278.3	1.6 2	M1, E2	
463.0 5	6741.4	1.7 2	M1, E2	
473.0 10	7214.6	1.2 1	M1, E2	
485.0 10	7699.5	0.7 1	M1, E2	
505.8 10	7247.1	0.3 2	M1, E2	
514.0 10 516.6 5	8213.6	$ \begin{array}{cccc} 0.3 & 2 \\ 2.5 & 2 \end{array} $	M1,E2 E2	
525.0 10	4630.0 8738.6	0.3 2		
530.8 5	1548.7	100 3	M1,E2 E2	B(E2)(W.u.)=83 5.
541.0 10	9279.6	0.2 2	M1,E2	D(E2)(W.u.)=60 0.
565.7 5	629.4	31.7 2	M1, E2	DCO=0.9 1.
582.0 5	5211.8	19.8 8	E2	DCO=0.91 15, 1.02 8.
002.00	0211.0	10.00		B(E2)(W.u.)=76 24.
589.2 10	8198.4	0.4 1	M1,E2	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
604.3 5	4396.1	1.2 2	E2	
616.0 10	9229.7	0.2 1	M1, E2	
629.1 5	4396.1	$2.1 \ 3$	E 2	
629.2 5	629.4	47.6 10	E 2	$I\gamma\!:$ uncertainty of 0.1 given by 2001St16 seems too low; increased to 1.0 by compilers.
				DCO=1.0 1.
637.7 5	2186 . 4	95 3	E 2	DCO=0.97 8, 0.99 5.
				B(E2)(W.u.)=103 11.
670.7 10	4798.6	0.8 2	E2	
683.6 5	2870.3	78.7 25	E 2	DCO=0.94 10, 0.97 5.
		_		B(E2)(W.u.)=63 11.
685.6 5	5081.6	2.4 6	E2	DCO=1.0 2.
690.4 5	753.9	20.0 2	E2	DCO=0.98 4.
705.4 8	1614.4	0.7 2	E2	DGO 100 4
705.6 5	3741.1	12.9 9	E2	DCO=1.02 6.
714.5 5	5211.8	32.4 12	E2	DCO=1.09 12, 0.97 9. B(E2)(W.u.)=45 14.
717.6 5	1986.6	3.1 3	E 2	
735.5 5	5947.3	52.7 17	E 2	DCO=0.94 12, 1.01 8.
736.8 10	5535.4	0.8 6	E 2	
744.0 10	2358.7	2.7 5	E2	DCO=0.95 8 for 744.0+744.4+747.0.
744.4 10	2731.2	2.8 6	E2	DCO=0.95 8 for 744.0+744.4+747.0.
747.0 10	3106.2	2.7 4	E2	DCO=0.95 8 for 744.0+744.4+747.0.
750.0 10	3480.9	2.4 5	E2	
755.0 10	3861.1 4236.4	1.4 5	E2	
755.4 10		2.47	E 2	

$^{58}Ni(^{58}Ni, 3p\gamma) \qquad 2001St16, 2003Pe10 \ (continued)$

$\gamma(^{113}{ m I})$ (continued)

Εγ	E(level)	Ιγ	Mult.	Comments
756.0 5	4497.0	10.7 7	E2	$B(E2)(W.u.)=13 \ 4.$
764.8 5	5846.4	2.3 4	E2	DCO=1.0 2.
	6712.1	41.8 13	E2	DCO=0.93 14, 1.03 10.
769.0 10	4630.4	1.3 2	E2	
774.3 10	838.2	$1.7 \ 2$	M1, $E2$	
775.0 10	1614.4	1.1 2	E2	
779.0 10	5015.4	2.4 2	E2	
793.0 10	5423.5	1.3 2	E2	
800.6 5	4497.0	42.7 14	E2	DCO=0.97 12, 1.04 9. B(E2)(W.u.)=39 11.
806.6 6	4113.3	2.6 4	E2	
818.6 10	6354.0	0.8 2	E2	
823.0 10	5838.6	1.4 4	E2	DCO_0 09 10 1 05 10
825.7 5	3696.2	61.8 20	E2	DCO=0.92 12, 1.05 10. B(E2)(W.u.)=70 30.
831.3 10	5846.4	0.4 1	E2	2(22)(11.41)=10 001
838.0 10	838.2	1.6 2	E2	
841.9 5	6688.0	2.2.2	E2	
846.0 5	909.3	2.72	M1, E2	
848.6 5	3035.6	10.4 10	E2	DCO=1.01 6.
849.1 10	6688.0	0.52	E2	
854.6 10	6278 . 3	1.3 1	E2	
862.8 5	1616.7	19.5 14	E2	DCO=1.09 6.
867.25 870.96	5364.3 3741.1	10.1 5	E2	DCO=0.93 9.
884.0 5	3568.9	$\begin{array}{cccc} 2 . 2 & 5 \\ 7 . 5 & 4 \end{array}$	E2 E2	
889.1 5	4630.0	3.9 2	E2	
893.1 5	7247.1	0.9 2	E2	
901.9 5	6266.2	6.7 3	E2	
902.6 10	6741.4	0.7 2	E2	DCO=0.97 9.
905.6 5	8586.3	$21.1\ 7$	E2	DCO=0.96 10.
$909.4\ 5$	909.3	1.6 2	E2	
922 . 1 5	7610.0	$3.1\ 2$	E2	
933.9 5	4630.0	13.4 7	E2	DCO=0.92 18, 1.00 8.
936.0 10	7214.6	1.1 1	E2	
951.3 5 958.0 10	8198.4 7699.5	$egin{array}{cccc} 1 & . & 1 & 1 \\ 0 & . & 3 & 2 \end{array}$	E2 E2	
968.6 5	7680.7	32.3 10	E2	DCO=0.97 14, 1.08 10.
983.0 5	7249.2	5.8 3	E2	DCO=0.98 9.
983.0 10	8198.4	0.2 1	E2	
984.5 10	1614.4	0.5 2	E2	
999.0 10	8213 . 6	1.0 2	E2	
1003.6 5	8613.6	$3.1\ 2$	E2	DCO=1.0 2.
1024.75	9611.0	12.04	E2	DCO=1.09 10.
1031.3 5	9229.7	1.6 2	E2	
1039.0 10	8738.6	0.5 2	E2	
1046.9 5 1066.0 10	8296.2 9279.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2 E2	
1068.3 5	2684.9	20.1 9	E2	DCO=1.03 6.
1073.0 5	9686.6	2.8 2	E2	and the second s
1081.7 5	3766.8	2.3 4	E2	
1086.1 10	1098.0+x	1.2 2	E2	
1098.0 10	1098.0+x	1.1 2	E2	
1098.5 5	8347.6	$3.2\ 2$	E2	
1103.0 5	10332.7	1.6 2	E2	
1107.3 5	3792.0	1.2 4	E2	
1120.1 9	3306.6	2.0 2	E2	
1120.8 10	2218.8+x	1.7 4	E2	
1147.75 1149.13	10834.3 9496.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2 E2	
1173.7 10	3392.5+x	1.4 2	E2	
1177.4 10	11510.1	1.8 2	E2	
1184.1 10	2176+x	0.8 2	E2	
			_	

$^{58}Ni(^{58}Ni, 3p\gamma) \qquad 2001St16, 2003Pe10 \ (continued)$

 $\gamma(^{113}I)$ (continued)

Εγ	E(level)	Ιγ	Mult.	Εγ	E(level)	Ιγ	Mult.
1200.4 5	9496.6	1.9 1	E 2	1680.5 10	1680.5+w	0.2 1	E2
1212.5 10	1258.0+z	0.5 1	E2	1684.3 10	6102.5+v	0.3 1	E2
1235.5 10	1235.5+y	0.5 2	E2	1731.4 10	7355.6+v	0.4 1	E2
1239.0 10	1258.0+z	0.3 1	E2	1742.2 10	4915.6+u	0.3 1	E2
1249.1 10	12083.4	0.5 1	E2	1758.4 10	9537+x	0.5 1	E2
1257.4 10	3433+x	0.7 2	E2	1766.9 10	20523	0.9 2	E2
1258.0 10	1258.0+z	0.3 1	E2	1767.7 10	19773	0.4 1	E2
1259.4 10	12769.5	1.7 2	E2	1770.9 10	7873.5+v	0.3 1	E2
1270.5 5	10767.2	1.9 1	E2	1778.1 10	3458.7+w	0.3 1	E2
1295.1 10	2553.1+z	1.0 1	E2	1786.4 10	9644+x	0.4 1	E2
1299.9 10	3518.7+x	0.3 2	22	1844.2 10	21514	0.4 1	E2
1331.4 10	13414.8	0.6 1	E2	1866.9 10	6782.5+u	0.3 1	E2
1340.6 10	4773.8+x	0.6 1	E2	1869.7 10	8970.8+z	0.3 1	E2
1344.0 10	2579.5+y	0.6 2	E2	1870.6 10	5329.3+w	0.4 1	E2
1344.8 10	4737.3+x	1.3 2	E2	1895.8 10	22419	0.4 1	E2
1347.9 10	14117.4	1.6 2	E2	1905.8 10	9261.4+y	0.02	E2
1352.9 10	12120.1	1.5 2	E2	1915.3 10	21688	0.3 1	E2
1360.6 10	12120.1 1360.6+v	0.21	E2	1913.5 10	12990.5	$\begin{array}{cccc} 0.5 & 1 \\ 2.1 & 3 \end{array}$	E2
1380.7 10	3933.8+z	1.0 1	E2	1944.0 10	9817.5+v	0.2 1	E2
1394.6 10		0.3 2	E 2	1970.8 10		0.2 1	E2
1410.0 20	4913.3+x 6184.8+x	0.3 2	E2	1970.8 10	11615+x 7301.4+w	0.3 1	E2
				1			E2
1426.6 10 1431.4 10	14841.4	0.5 <i>1</i> 0.2 <i>1</i>	E2	1984.1 10 2003.2 10	23498	0.2 1	E2
1431.4 10	6344.7+x 13554.5	0.2 I $1.3 2$	E2	2003.2 10	11540+x 8822+u	$\begin{array}{cccc} 0 & 2 & 1 \\ 0 & 3 & 1 \end{array}$	E2 E2
1434.4 15	13554.5	1.3 2	E2 E2	2039.4 20	8822+u 24459	0.31 0.41	E2
1438.5 15	14993	1.3 2	E2 E2	2039.9 10	23561		E2
		0.8 2	E2	2046.6 20		0.2 1	E2
1443.0 <i>15</i> 1447.8 <i>10</i>	16436		E2 E2	1	11310+y	$\begin{array}{cccc} 0 \ . \ 1 & 1 \\ 0 \ . \ 2 & 1 \end{array}$	E2
	6184.8+x	1.2 2		2075.8 10	23764		
1453.4 10	4032.9+y	0.5 1	E2	2101.2 20	9403+w	0.3 1	E2 E2
1455.9 10	11066.9	11.1 11	E2	2112.3 20	11930+v	0.1 1	
1457.1 10	6230.6+x	0.6 1	E2	2113.1 20	11375+y	0.1 1	E2
1478.4 10	2839.0+v	0.3 1	E2	2118.9 20	11090+z	0.2 1	E2
1493.0 10	6230.6+x	0.2 1	E2	2156.9 20	13772+x	0.2 2	E2
1504.5 10	5438.3+z	0.9 1	E2	2181.6 20	25743	0.1 1	E2
1525.5 10	16366.9	0.4 1	E2	2201.0 10	26660	0.2 1	E2
1543.7 10	1543.7+u	0.3 1	E2	2202.9 20	11025+u	0.2 1	E2
1544.8 10	17104	1.2 2	E2	2241.2 20	26005	0.2 1	E2
1554.0 10	17990	0.8 2	E 2	2244.5 20	25743	0.1 1	E 2
1579.2 10	4418.2+v	0.4 1	E2	2256.7 20	11659+w	0.2 1	E 2
1591.2 10	5624.1+y	0.5 1	E 2	2296.9 20	13837+x	0.1 1	E 2
1593.3 10	7778.2+x	0.9 2	E2	2363.0 20	13903+x	0.1 1	E2
1627.1 10	7857.7+x	0.6 1	E2	2379.5 20	29039	0.2 1	E 2
1629.6 10	3173.4+u	0.3 1	E 2	2426.6 20	28432	0.1 1	E 2
1638.2 10	18005	0.4 1	E 2	2432.7 20	14092+w	0.1 1	E 2
1651.8 10	18756	1.1 2	E 2	2442.2 7 20	28185	0.1 1	E 2
1662.7 10	7101.0+z	0.5 1	E 2	2581.1 20	31013	0.1 1	E 2
1680.4 10	19670	0.7 2	E 2	2582.0 7 20	31621	0.2 1	E 2

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

 $Q(\beta^-) = -10420 \ 60; \ S(n) = 10230 \ 60; \ S(p) = 2430 \ 12; \ Q(\alpha) = 3090 \ 9 \ 2003 Au 03, 2009 Au ZZ.$ Production and identification: 290-MeV 58 Ni on 58 Ni. Chemical and mass separation (1978Ro19,1979Sc22). 600-MeV p on cerium. Chemical and mass separation (1973Ha37). p on lanthanum, 290-MeV 58 Ni on 58 Ni. Chemical and mass separation (1979Ew02).

$^{113}\mathrm{Xe}$ Levels

Cross Reference (XREF) Flags

$A^{58}Ni(^{58}Ni,2pn\gamma)$

E(level)†§	Jπ [‡]	XREF	$T_{1/2}$			Comment	s			
0.0	(5/2+)	A	2.74 s 8	%ε+%β ⁺ =100; %α=0.011; %εp=7 4; %β ⁺ α=0.007 4. %α: from 1985Ti02, based on estimated limit for the reduced width. εp and β+α derived from εp/α=500-1500 in 1985Ti02. Other: εp=4.2 (1978Ro19). E(level): tentative g.s. assignment for 2.8-s activity (1973Ha37), the proton-to-α intensity in β-delayed particle is 830 50 (1979Ew02). $T_{1/2}: from 1985Ti02. Other: 2.8 s 2 (1973Ha37).$ Jπ: tentative Jπ from syst.						
125.91 ^d 18	7 / 2 +	Α _	±e	_ +		4.6	_ 4			
146.19° 18	5 / 2+	A	E(level)†\$	Jπ‡	XREF	E(level)†§	Jπ [‡]	XREF		
404.8 ^{&} 4 549.09 ^c 20	11/2-	A	2222 4 5	0.5.40		0010 Fh 5	(41/0)			
549.09° 20 711.14d 23	9 / 2 +	A	3288.6 5	25/2-	A	6218.5 ^b 5	(41/2+)	A		
820.0& 4	11/2+	A	3584.6e 4	27/2+	A	6646.5 6	(00/0)	A		
	15/2-	A	3587.2a 4	29/2+	A	6661.6& 6	(39/2-)	A		
1242.17 ^c 23	13/2+	A	3604.9d 4	27/2+	A	6957.5 ^b 6	(45/2+)	A		
1472.34 ^d 25	15/2+	A	4241.7# 5	31/2-	A	7109.2# 6	43/2-	A		
1476.3 8 3	19/2-	A	4263.5 ^a 5	33/2+	A	7243.4 ^a 6	(45/2+)	A		
2023.2° 3	17/2+	A	4277.1e 5	31/2+	A	7832.4 ^b 6	(49/2+)	A		
2141.8ª 3	17/2+	A	4277.6 5	31/2-	A	7845.6@6	(43/2-)	A		
2285.1e 3	19/2+	A	4315.2d 4	31/2+	A	8098.6& 6	(43/2-)	A		
2301.9 4	23/2-	A	5028.2^{b} 5	(33/2+)	A	8341.3# 21	(47/2-)	A		
2378.6d 3	19/2+	A	5069.4 ± 5	35/2-	A	8566.4ª 21	(49/2+)	A		
2393.3 11		A	5092.4^{a} 5	37/2+	A	8896.1 ^b 6	(53/2+)	A		
2542.1 ^a 3	21/2+	A	5097.8° 5	35/2+	A	9189.6@ 7	(47/2-)	A		
2787.6° 4	21/2+	A	5149.8 5	35/2+	A	9711.3# 21	(51/2-)	A		
2968.1d 3	23/2+	A	5166.5 5	35/2-	A	10084.1 ^b 7	(57/2+)	A		
3022.4 ^e 4	23/2+	A	5389.6 5	(35/2-)	A	10694.6@7	(51/2-)	A		
3067.6a 4	25/2+	A	5610.6 ^b 5	(37/2+)	A	11513.1 ^b 7	(61/2+)	A		
3242.5 % 5	27/2-	A	6040.6#6	39/2-	A	12473.6@ 7	(55/2-)	A		
3288.5° 4	25 / 2 +	A	6077.1 ^a 6	(41/2+)	Α	13218.1 ^b 7	(65/2+)	A		

 $^{^{\}dagger}$ From least-squares fit to Γ energies.

γ(113Xe)	
γ(113Xe)	

E(level)	Εγ	Ιγ	Mult.†	E(level)	Εγ	_Ιγ_	Mult.†
125.91	126.0 2	100	M1,E2	1242.17	693.1 2	100	E 2
146.19	$146.1\ 2$	100	M1,E2	1472.34	230.02	19	M1, E2
549.09	402.8 2	40	E 2		761.4 2	100	E 2
	$423.3\ 2$	100	M1, E2	1476.3	656.7 2	100	E 2
711.14	$585.2\ 2$	100	E 2	2023.2	551.02	8	M1, E2
820.0	$415.2\ 2$	100	E 2		780.8 2	100	E 2
1242.17	530.8 2	45		2141.8	899.8 2	100	E 2

 $[\]dot{\ddagger}$ From the deduced transitions multipolarities and band assignments.

 $[\]$ From least-squares fit to Ey's.

[#] (A): Band based on 31/2-.

^{@ (}B): Band based on (43/2-).

[&]amp; (C): v3/2[541] band, $\alpha = -1/2$. a (D): Band based on 17/2+.

 $^{^{\}rm b}$ (E): Band based on (33/2+).

 $[^]c$ (F): v5/2[413] band, $\alpha\text{=+1/2}.$

d (G): v5/2[413] band, $\alpha = -1/2$.

e (H): Band based on 19/2+.

$\gamma(^{113}\text{Xe})$ (continued)

E(level)	Εγ	Ιγ	Mult.†	E(level)	Εγ	Ιγ	Mult.†
2141.8	1321.3 2	20	E 1	5092.4	828.9 2	100	E2
2285.1	812.8 2	100	E 2	5097.8	820.7 2	100	E2
2301 . 9	825.6 2	100	E 2	5149.8	872.7 2	100	E2
2378.6	355.6 2	41	M1+E2	5166.5	924.8 2	100	E2
	906.1 2	100	E 2	5389.6	1112.0 2	100	
2393.3	917			5610.6	582.4 2		E2
2542.1	163.7 2	31	M1,E2		1347.0 2		
	256.9 2	9	M1,E2	6040.6	971.2 2	100	E2
	$400.1\ 2$	56	E 2	6077.1	984.6 2	100	E2
	518.6 2	51	E 2	6218.5	607.9 2	100	E2
	1066.3 2	100	E 1	6646.5	605.9 2	100	
2787.6	764.4 2	100	E 2	6661.6	1272.0 2		
2968.1	589.3 2	31	E 2	6957.5	739.0 2	100	E2
	683.7 ‡ 2	100	E 2	7109.2	1068.6 2		
3022.4	736.7 2	100	E 2	7243.4	1166.3 2	100	E1
3067.6	525 . 5 2	100	E 2	7832.4	874.9 2	100	E2
3242 . 5	940.6 2	100	E 2	7845.6	1184.0 2	100	
3288.5	500.9 2	100	E 2	8098.6	1437.0 2	100	
3288.6	986.7 2	100		8341.3	1232 2	100	
3584.6	$562.2\ 2$	100	E 2	8566.4	1323 2	100	E1
3587.2	$519.6\ 2$	100	E 2	8896.1	1063.7 2	100	
3604.9	581.9 2	20	E 2	9189.6	1344.02	100	
	637.4 2	100	E 2	9711.3	1370.02	100	
4241 . 7	$999.2\ 2$	100	E 2	10084.1	1188.0 2	100	
4263.5	676.3 2	100	E 2	10694.6	1505.0 2	100	
4277.1	692.5 2	100	E 2	11513.1	1429.0 2	100	
4277.6	$1035.1\ 2$	100	E 2	12473.6	1779.02	100	
4315 . 2	710.32	100	E 2	13218.1	1705.02	100	
5028.2	1441.02						
5069.4	827.7 2	100	E 2				

[†] From DCO Measurements. ‡ Level-energy difference=683.2.

$^{58}Ni(^{58}Ni,2pn\gamma) \\ \phantom{^{58}Ni}(^{58}Ni,2pn\gamma)$

 $E=210 \text{ and } 250 \text{ MeV}. \text{ At a beam energy of } 210, \text{ measured } E\gamma, \ I\gamma, \ \gamma\gamma, \text{ and } \gamma\gamma(\theta)(R) \text{ using the JUROSPHERE spectrometer}$ equipped with 7 TESSA-type, 5 NORDBALL-type and 14-EUROGRAM type HPGe detectors. At beam energy of 250 MeV, measured E\gamma, I\gamma, $\gamma\gamma$ and $\gamma\gamma(\theta)(R)$ using GAMMASPHERE spectrometer consisting of 83 HPGe detectors, used in conjunction with MICROBALL and neutron detector.

Preliminary data was given by 1995Pa01. They show Band C up to 35/2-.

$^{113}\mathrm{Xe}$ Levels

E(level) [†]	Jπ	E(level) [†]	<u></u> Jπ	E(level)	Jπ
0.0ª	5 / 2+	3242.5# 5	27/2-	6218.5	(41/2+)
125.91 ^b 18	7 / 2+	3288.5ª 4	25/2+	6646.5 6	
146.19a 18	5 / 2+	3288.6 5	25/2-	6661.6# 6	(39/2-)
404.8# 4	11/2-	3584.6° 4	27/2+	6957.5& 6	(45/2+)
549.09a 20	9 / 2+	3587.2 [@] 4	29/2+	7109.2	43/2-
711.14 ^b 23	11/2+	3604.9b 4	27/2+	7243.4@6	(45/2+)
820.0# 4	15/2-	4241.7	31/2-	7832.4 6	(49/2+)
1242.17 ^a 23	13/2+	4263.5@5	33/2+	7845.6 \$ 6	(43/2-)
1472.34 ^b 25	15/2+	4277.1° 5	31/2+	8098.6# 6	(43/2-)
1476.3# 3	19/2-	4277.6# 5	31/2-	8341.3 ‡ 21	(47/2-)
2023.2ª 3	17/2+	4315.2 ^b 4	31/2+	8566.4@ 21	(49/2+)
2141.8@3	17/2+	5028.2	(33/2+)	8896.1& 6	(53/2+)
2285.1° 3	19/2+	5069.4 ‡ 5	35/2-	9189.6 \$ 7	(47/2-)
2301.9# 4	23/2-	5092.4@ 5	37/2+	9711.3 ‡ 21	(51/2-)
2378.6b 3	19/2+	5097.8° 5	35/2+	10084.1& 7	(57/2+)
2393.3 11		5149.8 5	35/2+	10694.6\$ 7	(51/2-)
2542.1@3	21/2+	5166.5 5	35/2-	11513.1& 7	(61/2+)
2787.6a 4	21/2+	5389.6# 5	(35/2-)	12473.6 \$ 7	(55/2-)
2968.1 ^b 3	23/2+	5610.6& 5	(37/2+)	13218.1& 7	(65/2+)
3022.4° 4	23/2+	6040.6 \$ 6	39/2-		(22/2.)
3067.6@ 4	25/2+	6077.1@ 6	(41/2+)		

 $^{^{\}dagger}$ From least-squares fit to Ey's.

 $\gamma(^{113}\mathrm{Xe})$

R=Angular intensity ratio (from several spectra gated by low-spin quadrupole transitions).

Εγ	E(level)	$- I \gamma^{\dagger}$	Mult.	Comments
126.0 2	125.91	51	M1,E2	R=0.72 3.
146.1 2	146.19	8.9	M1,E2	R=0.62 4.
163.7 2	2542 . 1	5.1	M1, E2	R=0.56 3.
230.02	1472 . 34	4.4	M1, E2	R=0.64 8.
256.92	2542.1	1.5	M1, E2	R=0.79 8.
$355.6\ 2$	2378 . 6	2.6	M1, E2	R=0.72 8.
$400.1\ 2$	2542.1	9.2	E 2	R=0.95 4.
$402.8\ 2$	549.09	9.0	E 2	R=1.12 16.
415 . 2 2	820.0	100	E 2	R=1.02 3.
423.32	549.09	22.4	M1, E2	R=0.52 2.
500.92	3288.5	2.4	E 2	R=1.19 9.
$518.6\ 2$	2542 . 1	8.3	E 2	R=0.97 3.
$519.6\ 2$	3587.2	34.3	E 2	R=1.03 4.
525 . 5 2	3067.6	43.6	E 2	R=1.02 4.
530.82	1242 . 17	6.9		
551.02	2023.2	1.2	M1, E2	R=0.65 1.
$562.2\ 2$	3584.6	6.2	E 2	R=1.01 8.
581.9 2	3604.9	7.1	E 2	R=0.89 10.
$582.4\ 2$	5610.6	2.3	E 2	R=0.92 7.

 $[\]ddagger$ (A): Band based on 31/2-.

 $[\]S$ (B): Band based on (43/2-).

^{# (}C): v3/2[541] band, $\alpha = -1/2$.

[@] (D): Band based on 17/2+.

[&]amp; (E): Band based on (33/2+). a (F): v5/2[413] band, $\alpha = +1/2$.

 $^{^{}b}$ (G): $\nu5/2[413]$ band, $\alpha\text{=-}1/2.$

c (H): Band based on 19/2+.

⁵⁸Ni(⁵⁸Ni,2pnγ) 2000Sc23 (continued)

$\gamma(^{113}\text{Xe})$ (continued)

Εγ	E(level)	Iγ [†]	Mult.	Comments
	711 14		E O	D 110 C
585.22 589.32	711.14 2968.1	50 3.8	E2 E2	R=1.13 5. R=1.03 10.
605.9 2	6646.5	2.6	E Z	R=0.86 4.
607.9 2	6218.5	4.9	E2	R=1.40 12.
637.4 2	3604.9	35.4	E2	R=1.22 4.
656.7 2	1476.3	62.6	E2	R=1.02 4.
676.3 2	4263.5	21.9	E2	R=1.1] 3.
683.7 2	2968.1	12.4	E 2	Eγ: level-energy difference=683.2.
				R=1.09 4.
692.5 2	4277.1	10.6	E 2	R=1.20 14.
693.1 2	1242 . 17	15.3	E 2	R=0.97 3.
710 . 3 2	4315 . 2	3.5	E2	R=0.92 14.
736.72	3022.4	11.9	E2	R=0.92 5.
739.02	6957.5	1.2	E 2	R=0.83 8.
$761.4\ 2$	1472 . 34	23.0	E 2	R=1.02 6.
764.42	2787.6	10.6	E 2	R=1.06 5.
780.8 2	2023.2	14.5	E 2	R=1.03 5.
812.8 2	2285.1	15.9	E 2	R=1.12 6.
820.7 2	5097.8	3.0	E2	R=0.89 9.
825.6 2	2301.9	53.0	E 2	R=1.25 3.
827.7 2	5069.4	8.4	E 2	R=1.15 8.
828.9 2	5092.4	12.2	E 2	R=0.92 4.
872.7 2	5149.8	2.1	E 2	R=0.96 5.
874.9 2	7832.4	1.2	E 2	R=1.19 14.
899.8 2	2141.8	4.9	E 2	R=1.13 9.
906.1 2	2378.6	6.3	E 2	R=0.98 7.
917	2393.3		7.0	D 400 0
924.8 2	5166.5	1.2	E2	R=0.90 8.
940.6 2	3242.5	10.5	E2	R=1.19 7.
971.2 2	6040.6	6.9	E2	R=0.89 6.
984.6 2	6077.1	4.9	E2	R=1.15 6.
986.7 2	3288.6	7.0	Eo	R=0.64 5.
999.22 1035.12	4241.7 4277.6	7.8 1.6	E2 E2	R=1.10 13. R=1.10 8.
1063.7 2	8896.1	1.0	112	11-11-10-0.
1066.3 2	2542.1	16.4	E1	R=0.60 4.
1068.6 2	7109.2	10.4		10.00 1.
1112.0 2	5389.6			
1166.3 2	7243.4	16.4	E1	R=0.60 4.
1184.0 2	7845.6			
1188.0 2	10084.1			
1232 2	8341.3			
1272.0 2	6661.6			
1321.3 2	2141.8	1.0	E1	Dc0=0.67 8.
1323 2	8566.4	1.0	E1	R=0.67 8.
$1344.0\ 2$	9189.6			
1347.02	5610.6			
$1370\;.\;0 2$	9711.3			
$1429\;.\;0 2$	11513 . 1			
1437 . 0 2	8098.6			
1441.02	5028.2			
1505.02	10694.6			
1705.02	13218.1			
1779.02	12473 . 6			

 $^{^{\}dagger}$ Uncertainties are less than 5%.

Adopted Levels

 $S(n) = 13560 \ SY; \ S(p) = -974 \ 3; \ Q(\alpha) = 3484 \ 7 \quad 2003 Au 03, 2009 Au ZZ.$

Production and identification:

 $250~{\rm MeV}^{58}{\rm Ni}$ on $^{58}{\rm Ni}$ (1987Gi02).

Analyzed by a gas-detector system in a backward position during the beam pause.

Analyzed by a gas-detector system in a backward position during the beam pause.

The identification is based on the fact that the ¹¹⁶Ba compound nucleus with low excitation energy allows only 2 channels: p2n giving ¹¹³Cs and αp2n giving ¹⁰⁹I. The proton line of ¹⁰⁹I has another energy. It can be produced by

Preliminary $T_{1/2}$ measurement of 1 μs (1984Fa04) was not confirmed in the last experiment (1987Gi02) with better statistics and new results of 1994Pa12.

¹¹³Cs Levels

E(level)	Jπ	T _{1/2}	Comments
0.0	(3/2+)	16.7 μs 7	$\% p=100; \ \% \alpha=0.$
			%α from 1994Pa12.
			T _{1/2} : from 1998Ba13. Others: 17 µs 2 (1994Pa12), 28 µs 7 (1995Ho26).
			J π : from 2000Bb02. However, a 1/2+ assignment is also possible (1998Ma42).
			$E(p)=960 \text{ keV } 3, Q(p)=978 \text{ keV } 3 (1995\text{Ho}26), B(p)=1, T_{1/2}(p)=16.7 \mu \text{s} 7. \text{ Other } E(p)=959 6$
			(1994Pa12).
			σ=30 μb (1987Gi02).
			$J\pi$: from shell model (1987Gi02).

REFERENCES FOR A=113

```
1939Ba03
             S.W.Barnes - Phys.Rev. 56, 414 (1939)
1940La07
             J.L. Lawson, J.M. Cork - Phys. Rev. 57, 982 (1940)
1957.Je07
             E.N.Jensen - Priv.Comm. (June 1957)
1958A190
             J.M.Alexander, U.Schindewolf, C.D.Coryell - Phys.Rev. 111, 228 (1958)
1958Gi06
             R K Girgis R van Lieshout - Physica 24 672(1958)
1958Mc02
             F.K.McGowan, P.H.Stelson - Phys.Rev. 109, 901 (1958)
1959Bu08
             S.B.Burson, H.A.Grench, L.C.Schmid - Phys.Rev. 115, 188 (1959)
             A.Kjelberg, H.Taniguchi, L.Yaffe - Can.J.Phys. 38, 866 (1960)
1960Ki01
1960Se06
             I.P.Selinov, V.D.Chikhladze - Zhur.Eksptl.i Teoret.Fiz. 38, 1012 (1960); Soviet Phys.JETP 11, 728 (1960)
1961Gr11
             R.C.Greenwood, E.Brannen - Phys.Rev. 122, 1849 (1961)
             M.Schmorak, G.T.Emery, G.Scharff-Goldhaber - Phys.Rev. 124, 1186 (1961)
1961Sc12
1961Se08
             I.P.Selinov, V.L.Chikhladze, D.E.Khulelidze - Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 848 (1961); Columbia Tech.Transl.
1962Ja05
             R.K.Jolly, E.K.Lin, B.L.Cohen - Phys.Rev. 128, 2292 (1962)
1962Pa04
             A.P.Patro, B.Basu - Nuclear Phys. 34, 538 (1962)
1962Wa15
             D.E.Watt, R.N.Glover - Phil.Mag 7, 105 (1962)
1964Ro17
             B.Rosner - Phys.Rev. 136, B664 (1964)
1965Ca13
             R.C.Catura - Nucl.Instrum.Methods 32, 152 (1965)
1965F102
             K F Flynn L E Glendenin E P Steinberg - Nucl Sci Eng. 22, 416 (1965)
1966Ba25
             G.Bassani, M.Conjeaud, J.Gastebois, S.Harar, J.M.Laget, J.Picard, Y.Cassagnou - Phys.Letters 22, 189 (1966)
1966Co35
             M.Conjeaud, B.Fernandez, S.Harar, J.Picard, G.Souchere - CEA-N-621, p.10 (1966)
1966Ri06
             P.Richard, C.F.Moore, J.A.Becker, J.D.Fox - Phys.Rev. 145, 971 (1966)
1967Bo10
             E.C.Booth, J.Brownson - Nucl. Phys. A98, 529 (1967)
1967Bo18
             H.E.Bosch, M.C.Simon, E.Szichman, L.Gatto, S.M.Abecasis - Phys.Rev. 159, 1029(1967)
1967Hi03
             S.A. Hjorth, L.H. Allen - Arkiv Fysik 33, 121 (1967)
1967Ko07
             M.Koike - Nucl. Phys. A98, 209 (1967)
19670k02
             H.Okamura, M.Ogawa, A.Mito - J.Inorg.Nucl.Chem. 29, 1185 (1967)
             E.J.Schneid, A.Prakash, B.L.Cohen - Phys.Rev. 156, 1316 (1967)
1967Sc12
1968Co22
             M.Conjeaud, S.Harar, Y.Cassagnou - Nucl. Phys. A117, 449 (1968)
1968Fo07
             B.Fogelberg, A.Backlin - NP-17722 (LF-23) (1968)
1968Ha54
             R.S.Hager, E.C.Seltzer - Nucl.Data A4, 397 (1968)
1968Ki01
             A.Kjelberg, A.C.Pappas, T.Tunaal - J.Inorg.Nucl.Chem. 30, 337 (1968)
1968RoZZ
             M.R.Roche - Thesis, Univ.Missouri (1968)
1968Sa16
             C.Samour, J.Julien, J.M.Kuchly, R.N.Alves, J.Morgenstern - Nucl. Phys. A122, 512 (1968)
1968St17
             W.M.Stewart, N.Baron, R.F.Leonard - Phys.Rev. 171, 1316 (1968)
             E.Abramson, R.A.Eisenstein, I.Plesser, Z.Vager - Nucl. Phys. A138, 609 (1969)
1969Ab09
1969Bo42
             M.Boivin - Compt.Rend. 269B, 929 (1969)
1969C111
             J.E.Cline, R.L.Heath - IN-1130 (1969)
1969Co03
             M.Conjeaud, S.Harar, E.Thuriere - Nucl. Phys. A129, 10 (1969)
1969De25
             E.der Mateosian, M.Goldhaber - Phys.Rev. 186, 1285 (1969)
1969Go03
             L.H.Goldman, J.Kremenek, S.Hinds - Phys.Rev. 179, 1172 (1969)
1969Hn01
             D.J.Hnatowich, C.D.Coryell, W.B.Walters - Nucl. Phys. A130, 497 (1969)
1969Ju01
             J.Julien, R.Alves, S.de Barros, V.D.Huynh, J.Morgenstern, C.Samour - Nucl. Phys. A132, 129 (1969); UCRL-TRANS-10397
1969Ki16
             B.G.Kiselev, V.R.Burmistrov - Yadern.Fiz. 10, 1105 (1969); Soviet J.Nucl.Phys. 10, 629 (1970)
19691 190
             J.Liptak, J.Vrzal, E.P.Grigoriev, G.S.Katykhin, J.Urbanec - Czech.J.Phys. 19B, 1127 (1969)
1969RaZP
             M.K.Ramaswamy - Proc.Intern.Conf.Radioactivity in Nuclear Spectroscopy, Vanderbilt University, Nashville, Tenn.
              (1969), J.H.Hamilton, J.C.Manthuruthil, Eds., Gordon and Breach, New York, Vol.2, p.1211 (1969)
1969Va04
             H.van den Berg, M.McDonnell, M.K.Ramaswamy - Can.J.Phys. 47, 594(1969)
             J.B.Wilhelmy - Thesis, Univ.California (1969); UCRL-18978 (1969)
1969WiZX
1969Ya05
             T. Yamazaki, G.T. Ewan - Nucl. Phys. A134, 81 (1969)
1970Ar19
             P.O.Aronsson, E.Ehn, J.Rydberg - Phys.Rev.Lett. 25, 590 (1970)
1970Be02
             E.M.Bernstein, G.G.Seaman, J.M.Palms - Nucl. Phys. A141, 67 (1970)
1970Ca01
             P.E.Cavanagh, C.F.Coleman, A.G.Hardacre, G.A.Gard, J.F.Turner - Nucl. Phys. A141, 97 (1970)
1970De22
             E.der Mateosian, M.Goldhaber - Phys.Rev. C2, 2026 (1970)
1970Go48
             I.W.Goodier, F.H.Hughes, M.J.Woods - Int.J.Appl.Radiat.Isotop. 21, 678 (1970)
1970Gr 20
             W.E.Greth, S.Gangadharan, R.L.Wolke - J.Inorg.Nucl.Chem. 32, 2113 (1970)
1970Jo20
             W.John, F.W.Guy, J.J.Wesolowski - Phys.Rev. C2, 1451 (1970)
1970Le07
             J.Legrand, F.Lagoutine, J.P.Brethon - Int.J.Appl.Radiat.Isotop. 21, 139 (1970)
1970Ma47
             Z.-I.Matumoto, T.Tamura - J.Phys.Soc.Jap. 29, 1116 (1970)
1970Mi08
             V.D.Mistry, C.L.Hollas, H.R.Hiddleston, P.J.Riley - Phys.Rev. C1, 1595 (1970)
1970Ra05
             M.K.Ramaswamy - Phys.Rev. C1, 333 (1970)
1970Ro29
             R.J.Rousselin, C.Gauthier - Int.J.Appl.Radiat.Isotop. 21, 599 (1970)
             D.E.Troutner, M.Eichor, C.Pace - Phys.Rev. C1, 1044 (1970)
1970Tr02
1970WiZN
             J.B.Wilhelmy, S.G.Thompson, J.O.Rasmussen, J.T.Routti, J.E.Phillips - UCRL-19530, p.178 (1970)
1971Em01
             S.T.Emerson, V.Valkovic, W.R.Jackson, C.Joseph, A.Niiler, W.D.Simpson, G.C.Phillips - Nucl.Phys. A169, 317 (1971)
1971F105
             D.G.Fleming, M.Blann, H.W.Fulbright - Nucl. Phys. A163, 401 (1971)
1971GeZW
             J.S.Geiger, R.L.Graham, D.Ward - AECL-3912, PRP-89, p.37 (1971)
1971GoYM
             I.W.Goodier, M.J.Woods, A.Williams - Proc.Int.Conf.Chemical Nucl.Data, Canterbury, M.L.Hurrell, Ed., p.175 (1971)
```

REFERENCES FOR A=113 (CONTINUED)

1971Ha18 H.H.Hansen, E.De Roost, D.Mouchel, R.Vaninbroukx - Int.J.Appl.Radiat.Isotop. 22, 1 (1971) 1971Ki14 H.J.Kim, W.T.Milner - Nucl.Instrum.Methods 95, 429 (1971) 19710001 J.M.Oottukulam, M.K.Ramaswamy - Amer.J.Phys. 39, 221 (1971); Addendum Amer.J.Phys. 39, 1282 (1971) 1972An28 D.S.Andreev, A.P.Grinberg, K.I.Erokhina, V.S.Zvonov, I.K.Lemberg - Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 2172 (1972); Bull Acad Sci USSR Phys Ser 36 1907 (1973) 1972Bo76 T.Borello, E.Frota-Pessoa, C.Q.Orsini, O.Dietzsch, E.W.Hamburger - Rev.Bras.Fis. 2, 157 (1972) 1972Br38 H.F.Brinckmann, W.D.Fromm, C.Heiser, H.Rotter, D.D.Clark, N.J.S.Hansen, J.Pedersen - Nucl. Phys. A193, 236 (1972) J.F.Emery, S.A.Reynolds, E.I.Wyatt, G.I.Gleason - Nucl.Sci.Eng. 48, 319 (1972) 1972Em01 1972Ho08 F.F.Hopkins, J.R.White, G.W.Phillips, C.F.Moore, P.Richard - Phys.Rev. C5, 1015 (1972) 1972Ko38 A.Kover, D.Berenyi, J.Csongor - Z.Phys. 254, 418 (1972) 1972La14 F.Lagoutine, J.Legrand, C.Perrot, J.P.Brethon, J.Morel - Int.J.Appl.Radiat.Isotop. 23, 219 (1972) 1972RaZM S.Raman, H.J.Kim, W.T.Milner - ORNL-4743, p.73 (1972) 1972Si28 M.Singh, J.W.Sunier, R.M.Devries, G.E.Thompson - Nucl. Phys. A193, 449 (1972) 1972Wa11 A.C.Wahl - J.Inorg.Nucl.Chem. 34, 1767 (1972) 1973BuZW V.R.Burmistrov, V.A.Didorenko - Program and Theses, Proc. 23rd. Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, p. 60 (1973) 1973Ha37 E.Hagberg, P.G.Hansen, B.Jonson, B.G.G.Jorgensen, E.Kugler, T.Mowinckel - Nucl. Phys. A208, 309 (1973) 1973In06 H.Inoue, Y.Yoshizawa, T.Morii - J.Phys.Soc.Jap. 34, 1437 (1973) 1973 I s ZQ M.Ishihara, R.Broda, B.Herskind - Proc.Int.Conf.Nuclear Physics, Munich, J.de Boer, H.J.Mang, Eds., North-Holland Publ.Co., Amsterdam, Vol.1, p.256 (1973) 1973Ra10 S.Raman, N.B.Gove - Phys.Rev. C7, 1995 (1973) 1974Br29 R.Brenn, S.K.Bhattacherjee, G.D.Sprouse, L.E.Young - Phys.Rev. C10, 1414 (1974); Erratum Phys.Rev. C11, 1488 (1975) 1974Bu21 V.P.Burminskii, B.G.Kiselev, O.D.Kovrigin - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 1566 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.8, 4 (1974) 1974Ch17 A.Charvet, R.Chery, R.Duffait - J.Phys.(Paris), Suppl.Lett. 35, L-41 (1974) 1974Di18 F.Dimmling, N.Brauer, B.Focke, T.Kornrumpf, K.Nishiyama, D.Riegel - Z.Phys. 271, 103 (1974) 1974Er06 K.I.Erokhina, R.Zhirgulevichus, I.C.Lemberg, A.A.Pasternak - Liet.Fiz.Rinkinys 14, 817 (1974) 1974Gr29 B.Grapengiesser, E.Lund, G.Rudstam - J.Inorg.Nucl.Chem. 36, 2409 (1974) 1974Ho17 W. Hogervorst, C. Ekstrom, S. Ingelman, G. Wannberg - Phys. Scr. 9, 317 (1974) 1974Ki02 H.J.Kim, R.L.Robinson - Phys.Rev. C9, 767 (1974) 1974Le34 I.K.Lemberg, A.A.Pasternak - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 1600 (1974); Bull.Acad.Sci.USSR, Phys.Ser. 38, No.8. 35 (1974) 1974Ma09 R.G.Markham, H.W.Fulbright - Phys.Rev. C9, 1633 (1974) 1975Ab09 S.N.Abramovich, B.Y.Guzhovskii, A.G.Zvenigorodskii, S.V.Trusillo - Izv.Akad.Nauk SSSR, Ser.Fiz. 39, 1688 (1975); Bull.Acad.Sci.USSR, Phys.Ser. 39, No.8, 103 (1975) 1975BrYM W.Bruchle - Thesis, Johannes Gutenberg-Universitat, Mainz (1975) 1975Bu24 B.Bulow, M.Eriksson, G.G.Jonsson, E.Hagebo - Z.Phys. A275, 261 (1975) 1975BuYW V.P.Burminsky, I.V.Grebenschikov, O.D.Kovrigin - Proc.Symp.Nucl.Spectrosc.Nucl.Theory,14th,Dubna,JINR-D6-8846, p.88 (1975)1975Ga11 A.K.Gaigalas, R.E.Shroy, G.Schatz, D.B.Fossan - Phys.Rev.Lett. 35, 555 (1975) 1975Ku10 V.Z.Kuttemperoor, R.A.Kobiske - Int.J.Appl.Radiat.Isotop. 26, 138 (1975) 1975WiZX R.Wigmans - Thesis, Vrije Universitat, Amsterdam (1975) 1976De35 A.A.Delucchi, R.A.Meyer - J.Inorg.Nucl.Chem. 38, 2135 (1976) 1976Di03 W.Dietrich, A.Backlin - Z.Phys. A276, 133 (1976) 1976Fu06 G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976) 1976Ka25 R.Kamermans, T.J.Ketel, H.Verheul - Z.Phys. A279, 99 (1976) 1976Ma09 G.C.Madueme, L.O.Edvardson, L.Westerberg - Phys.Scr. 13, 17 (1976) 1976MaYL V.Matschoss, K.Bachmann - Proc.Int.Conf.Nuclei Far From Stability, Cargese, Corsica, p.59 (1976); CERN 76-13 (1976) 1976MeZR J.S.Merritt, F.H.Gibson - AECL-5315, p.37 (1976) 1976Sm04 J.W.Smits, R.H.Siemssen - Nucl. Phys. A261, 385 (1976) W.K.Tuttle III, P.H.Stelson, R.L.Robinson, W.T.Milner, F.K.McGowan, S.Raman, W.K.Dagenhart - Phys.Rev. C13, 1036 1976Tu02 1976TuZX W.K.Tuttle III - Thesis, Univ. of Tennessee (1976); Diss. Abst. Int. 37B 833 (1976) 1976Wi10 M.E.J.Wigmans, R.J.Heynis, P.M.A.van der Kam, H.Verheul - Phys.Rev. C14, 229 (1976) 1976Wi11 M.E.J.Wigmans, R.J.Heynis, P.M.A.van der Kam, H.Verheul - Phys.Rev. C14, 243 (1976) 1977Ca14 Y.Cauchois, H.ben Abdelaziz, Y.Heno, R.Kherouf, C.Schloesing-Moller - C.R.Acad.Sci., Ser.B 284, 65 (1977) 1977Ki11 R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, P.Peuser, K.Schneeweiss - Phys.Lett. 70B, 150 (1977) 1977So10 F.Soga, Y.Hashimoto, N.Takahashi, Y.Iwasaki, K.Sakurai, S.Kohmoto, Y.Nogami - Nucl. Phys. A288, 504 (1977) 1978Fr16 G.Franz, G.Herrmann - J.Inorg.Nucl.Chem. 40, 945 (1978) 1978He08 K.Heyde, M.Waroquier, R.A.Meyer - Phys.Rev. C17, 1219 (1978) 1978Ma17 Z.-I.Matumoto, T.Tamura, K.Sakurai - J.Phys.Soc.Jpn. 44, 1062 (1978) 1978Ro19 E.Roeckl, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, D.Schardt, K.Wien, R.Fass, S.Mattsson - Phys.Lett. 78B, 393 1978Ro21 F.Rosel, H.M.Friess, K.Alder, H.C.Pauli - At.Data Nucl.Data Tables 21, 291 (1978) 1978Ta22 M.Tanaka, T.Yamagata, K.Iwamoto, S.Kishimoto, B.Saeki, K.Yuasa, T.Fukuda, I.Miura, K.Okada, M.Inoue, H.Ogata -Phys.Lett. 78B, 221 (1978) 1979Ew02 G.T.Ewan, E.Hagberg, P.G.Hansen, B.Jonson, S.Mattsson, G.Nyman, E.Roeckl, D.Schardt, P.Tidemand-Petersson, The

ISOLDE Collaboration - Phys.Lett. 84B, 173 (1979)

REFERENCES FOR A=113 (CONTINUED)

- 1979Ha12 E.Hashimoto, Y.Shida, G.C.Madueme, N.Yoshikawa, M.Sakai, S.Ohya Nucl.Phys. A318, 145 (1979)
- 1979Sc22 D.Schardt, R.Kirchner, O.Klepper, W.Reisdorf, E.Roeckl, P.Tidemand-Petersson, G.T.Ewan, E.Hagberg, B.Jonson, S.Mattsson, G.Nyman Nucl.Phys. A326, 65 (1979)
- 1979Sh03 R.E.Shroy, A.K.Gaigalas, G.Schatz, D.B.Fossan Phys.Rev. C19, 1324 (1979)
- 1980GoZX G.M.Gowdy, R.Kirchner, O.Klepper, G.Nyman, W.Reisdorf, E.Roeckl, D.Schardt, N.Kaffrell, K.Schneeweiss Priv.Comm.
 (June 1980)
- 1980Ho17 H.Houtermans, O.Milosevic, F.Reichel Int.J.Appl.Radiat.Isotop. 31, 153 (1980)
- 1980Oh01 S.Ohya, N.Mutsuro, Z.Matumoto, T.Tamura Nucl. Phys. A334, 382 (1980)
- 1980Ro04 E.Roeckl, G.M.Gowdy, R.Kirchner, O.Klepper, A.Piotrowski, A.Plochocki, W.Reisdorf, P.Tidemand-Petersson, J.Zylicz, D.Schardt, G.Nyman, W.Lindenzweig Z.Phys. A294, 221 (1980)
- 1980Ta04 H.Taketani, M.Adachi, T.Matsuzaki, M.Matoba, N.Koori, T.Yamazaki, S.Morinobu, I.Katayama, M.Fujiwara, Y.Fujita, H.Ikegami Phys.Lett. 90B, 214 (1980)
- 1981Me17 D.H.Meikrantz, R.J.Gehrke, L.D.McIsaac, J.D.Baker, R.C.Greenwood Radiochim.Acta 29, 93 (1981)
- 1981MuZQ S.F.Mughabghab, M.Divadeenam, N.E.Holden Neutron Cross Sections, Vol.1, Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z = 1-60, Academic Press, New York (1981)
- 1981Sc17 D.Schardt, T.Batsch, R.Kirchner, O.Klepper, W.Kurcewicz, E.Roeckl, P.Tidemand-Petersson Nucl.Phys. A368, 153 (1981)
- 1982HoZJ D.D.Hoppes, J.M.R.Hutchinson, F.J.Schima, M.P.Unterweger NBS-SP-626, p.85 (1982)
- 1982RuZV A.R.Rutledge, L.V.Smith, J.S.Merritt NBS-SP-626, p.5 (1982)
- 1984Fa04 T.Faestermann, A.Gillitzer, K.Hartel, P.Kienle, E.Nolte Phys.Lett. 137B, 23 (1984)
- 1984Iw06 Y.Iwata, I.Yamamoto, Y.Yoshizawa Int.J.Appl.Radiat.Isotop. 35, 907 (1984)
- 1985HaZA H.H.Hansen European App.Res.Rept.Nucl.Sci.Technol. 6, No.4, 777 (1985); EUR 9478 EN
- 1985TiO2 P.Tidemand-Petersson, R.Kirchner, O.Klepper, E.Roeckl, D.Schardt, A.Plochocki, J.Zylicz Nucl.Phys. A437, 342 (1985)
- 1985Wa02 A.H. Wapstra, G. Audi Nucl. Phys. A432, 1 (1985)
- 1985ZiZY W.L.Zijp ECN FYS/RASA-85/19 (1985)
- 1987BaYW K.A.Baskova, A.B.Vovk, T.M.Gerus, L.I.Gorov, A.M.Demidov, V.A.Kurkin IAE-4544/2 (1987)
- 1987Gi 02 A.Gillitzer, T.Faestermann, K.Hartel, P.Kienle, E.Nolte Z.Phys. A326, 107 (1987)
- 1987Ne01 Zs.Nemeth, L.Lakosi, I.Pavlicsek, A.Veres Appl.Radiat.Isot. 38, 63 (1987)
- 1987Vi09 I.N.Vishnevsky, Yu.A.Dei, Yu.N.Lobach, O.B.Melnikov, I.P.Tkachuk, V.V.Trishin, T.V.Chaplitskaya Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 873 (1987); Bull.Acad.Sci.USSR, Phys.Ser. 51, No.5, 33 (1987)
- 1988Be45 N.Benczer-Koller, G.Lenner, R.Tanczyn, A.Pakou, G.Kumbartzki, A.Pique Hyperfine Interactions 43, 457 (1988)
- 1988FoZY B.Fogelberg, E.Lund, Z.Ye, B.Ekstrom Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.296 (1988)
- 1988KaZE N.Kaffrell, J.Rogowski, H.Tetzlaff, N.Trautmann, D.De Frenne, K.Heyde, E.Jacobs, G.Skarnemark, J.Alstad, M.N.Harakeh, J.M.Schippers, S.Y.van der Werf, W.R.Daniels, K.Wolfsberg Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I.S.Towner, p.286 (1988)
- 1988Pe13 H.Penttila, P.Taskinen, P.Jauho, V.Koponen, C.N.Davids, J.Aysto Phys.Rev. C38, 931 (1988)
- 1989Bu27 V.P.Burminsky, G.S.Dombrovskaya, O.D.Kovrigin, R.A.Zarifov, O.V.Antsyferov Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 865 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.5, 44 (1989)
- 1989Ra17 P.Raghavan At.Data Nucl.Data Tables 42, 189 (1989)
- 1990Fo07 B.Fogelberg, Z.Ye, B.Ekstrom, E.Lund, K.Aleklett, L.Sihver Z.Phys. A337, 251 (1990)
- 1990Ko42 L.K.Kostov, W.Andrejtscheff, L.G.Kostova, A.Dewald, G.Bohm, K.O.Zell, P.von Brentano, H.Prade, J.Doring, R.Schwengner Z.Phys. A337, 407 (1990)
- 1990Ro16 J.Rogowski, J.Alstad, S.Brant, W.R.Daniels, D.De Frenne, K.Heyde, E.Jacobs, N.Kaffrell, V.Paar, G.Skarnemark, N.Trautmann Phys.Rev. C42, 2733 (1990)
- 1990Vi09 I.N.Vishnevsky, M.Yu.Kirichenko, A.A.Kurteva, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 552 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.3, 172 (1990)
- 1990ViZV I.N.Vishnevsky, M.Yu.Kirichenko, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin, R.M.Shevaga Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.72 (1990)
- 1991Ch01 Y.S.Chen Phys.Rev. C43, 173 (1991)
- 1991KrZR T.Kroll Thesis, Johan Wolfang Goethe-Univ., Frankfurt (1991)
- 1991Ma06 C.P.Massolo, S.Fortier, S.Gales, F.Azaiez, E.Gerlic, J.Guillot, E.Hourani, H.Langevin-Joliot, J.M.Maison, J.P.Schapira, G.M.Crawley Phys.Rev. C43, 1687 (1991)
- $1991 Ne\, ZX \qquad Zs. Nemeth\,-\,KFK\,\,4888\,\,(1991)$
- 1991Vi09 I.N.Vishnevsky, Yu.N.Lobach, I.A.Malyuk, I.P.Tkachuk, V.V.Trishin, R.M.Shevaga Izv.Akad.Nauk SSSR, Ser.Fiz. 55, 2166 (1991); Bull.Acad.Sci.USSR, Phys.Ser. 55, No.11, 82 (1991)
- 1991Vo05 P.von Neumann-Cosel, A.Richter, J.J.Carroll, C.B.Collins Phys.Rev. C44, 554 (1991)
- 1992Ay02 J.Aysto, A.Astier, T.Enqvist, K.Eskola, Z.Janas, A.Jokinen, K.-L.Kratz, M.Leino, H.Penttila, B.Pfeiffer, J.Zylicz Phys.Rev.Lett. 69, 1167 (1992)
- 1992PeZX H.Penttila Thesis, Univ.Jyvaskyla (1992)
- 1992Ra09 E.M.Rastopchin, M.I.Svirin, G.N.Smirenkin Yad.Fiz. 55, 310 (1992); Sov.J.Nucl.Phys. 55, 169 (1992)
- 1992Un01 M.P.Unterweger, D.D.Hoppes, F.J.Schima Nucl.Instrum.Methods Phys.Res. A312, 349 (1992)
- 1993Ja04 V.P.Janzen, H.R.Andrews, B.Haas, D.C.Radford, D.Ward, A.Omar, D.Prevost, M.Sawicki, P.Unrau, J.C.Waddington, T.E.Drake, A.Galindo-Uribarri, R.Wyss Phys.Rev.Lett. 70, 1065 (1993)
- 1993Mu14 A.Mukherjee, S.Bhattacharya, B.Dasmahapatra Appl.Radiat.Isot. 44, 731 (1993)
- 1993Pa13 V.Paar, D.K.Sunko, S.Brant, M.G.Mustafa, R.G.Lanier Z.Phys. A345, 343 (1993)
- 1993Pe11 H.Penttila, T.Enqvist, P.P.Jauho, A.Jokinen, M.Leino, J.M.Parmonen, J.Aysto, K.Eskola Nucl.Phys. A561, 416 (1993)

REFERENCES FOR A=113 (CONTINUED)

- 1993Ra08 D.C.Radford, A.Galindo-Uribarri, G.Hackman, V.P.Janzen, and the 8m Collaboration Nucl. Phys. A557, 311c (1993)
- 1994Al49 A.Alessandrello, C.Brofferio, D.V.Camin, C.Cattadori, O.Cremonesi, E.Fiorini, A.Giuliani, M.Pavan, G.Pessina, E.Previtali, L.Zanotti Nucl.Instrum.Methods Phys.Res. A344, 243 (1994)
- 1994Be24 M.Bernas, S.Czajkowski, P.Armbruster, H.Geissel, Ph.Dessagne, C.Donzaud, H.-R.Faust, E.Hanelt, A.Heinz, M.Heese, C.Kozhuharov, Ch.Miehe, G.Munzenberg, M.Pfutzner, C.Rohl, K.-H.Schmidt, W.Schwab, C.Stephan, K.Summerer, L.Tassan-Got, B.Voss Phys.Lett. 331B, 19 (1994)
- 1994DeZX K.Debertin Priv.Comm. (1994)
- 1994Ge07 W.Geiger, Zs.Nemeth, I.Bauske, P.von Brentano, R.D.Heil, R.-D.Herzberg, U.Kneissl, J.Margraf, H.Maser, N.Pietralla, H.H.Pitz, C.Wesselborg, A.Zilges Nucl.Phys. A580, 263 (1994)
- 1994Pa12 R.D.Page, P.J.Woods, R.A.Cunningham, T.Davinson, N.J.Davis, A.N.James, K.Livingston, P.J.Sellin, A.C.Shotter Phys.Rev.Lett. 72, 1798 (1994)
- 1995Au04 G.Audi, A.H.Wapstra Nucl. Phys. A595, 409 (1995)
- 1995Ho26 S.Hofmann Radiochim.Acta 70/71, 93 (1995)
- 1995Ja15 V.P.Janzen Phys.Scr. T56, 144 (1995)
- 1995KaZV L.Kaubler, J.Doring, L.Funke, P.Kleinwachter, H.Prade, J.Reif, R.Schwengner, G.Winter, I.N.Vishnevsky, M.J.Kirichenko, Yu.N.Lobach, I.P.Tkachuk, V.V.Trishin, M.F.Kudoyarov, E.V.Kusmin, A.A.Pasternak, J.Blomqvist, L.Kostova FZR-95 (1995)
- 1995Pa01 E.S.Paul, P.J.Woods, T.Davinson, R.D.Page, P.J.Sellin, C.W.Beausang, R.M.Clark, R.A.Cunningham, S.A.Forbes, D.B.Fossan, A.Gizon, J.Gizon, K.Hauschild, I.M.Hibbert, A.N.James, D.R.LaFosse, I.Lazarus, H.Schnare, J.Simpson, R.Wadsworth, M.P.Waring Phys.Rev. C51, 78 (1995)
- 1995ScZY E.Schonfeld PTB-6.33-95-2 (1995)
- 1995Wa14 M.P.Waring, E.S.Paul, C.W.Beausang, R.M.Clark, R.A.Cunningham, T.Davinson, S.A.Forbes, D.B.Fossan, S.J.Gale, A.Gizon, K.Hauschild, I.M.Hibbert, A.N.James, P.M.Jones, M.J.Joyce, D.R.LaFosse, R.D.Page, I.Ragnarsson, H.Schnare, P.J.Sellin, J.Simpson, P.Vaska, R.Wadsworth, P.J.Woods Phys.Rev. C51, 2427 (1995)
- 1996Da11 F.A.Danevich, A.Sh.Georgadze, V.V.Kobychev, B.N.Kropivyansky, V.N.Kuts, A.S.Nikolaiko, O.A.Ponkratenko, V.I.Tretyak, Yu.G.Zdesenko Yad.Fiz. 59, No 1, 5 (1996); Phys.Atomic Nuclei 59, 1 (1996)
- 1997Ch01 R.S.Chakrawarthy, R.G.Pillay Phys.Rev. C55, 155 (1997)
- 1997HeZZ R.G.Helmer, C.van der Leun Priv.Comm. (1997)
- 1997Ka40 L.Kaubler, Yu.N.Lobach, V.V.Trishin, A.A.Pasternak, M.F.Kudojarov, H.Prade, J.Reif, R.Schwengner, G.Winter, J.Blomavist, J.Doring Z.Phys. A358, 303 (1997)
- 1997Mo09 C.-B.Moon, C.S.Lee, J.C.Kim, T.Komatsubara, T.Saitoh, N.Hashimoto, T.Hayakawa, K.Furuno Z.Phys. A357, 127 (1997)
- 1997Wa20 N.Warr, S.Drissi, P.E.Garrett, J.Jolie, J.Kern, S.J.Mannanal, J.-L.Schenker, J.-P.Vorlet Nucl.Phys. A620, 127 (1997)
- 1997We13 X.-Q.Wen, K.Shizuma, S.Hamanaka, K.Iwatani, H.Hasai Nucl.Instrum.Methods Phys.Res. A397, 478 (1997)
- 1998Ba13 J.C.Batchelder, C.R.Bingham, K.Rykaczewski, K.S.Toth, T.Davinson, J.A.McKenzie, P.J.Woods, T.N.Ginter, C.J.Gross, J.W.McConnell, E.F.Zganjar, J.H.Hamilton, W.B.Walters, C.Baktash, J.Greene, J.F.Mas, W.T.Milner, S.D.Paul, D.Shapira, X.J.Xu, C.H.Yu Phys.Rev. C57, R1042 (1998)
- 1998B104 J.Blachot Nucl.Data Sheets 83, 647 (1998)
- 1998Ch38 Il.-T.Cheon, G.Kim, A.V.Khugaev Prog.Theor.Phys.(Kyoto) 100, 327 (1998)
- 1998Ch39 R.S.Chakrawarthy, P.von Brentano, J.Gableske, A.Dewald, R.Wirowski, S.Albers, M.Schimmer Eur.Phys.J. A 2, 323 (1998)
- 1998Ku17 J.Kurpeta, G.Lhersonneau, J.C.Wang, P.Dendooven, A.Honkanen, M.Huhta, M.Oinonen, H.Penttila, K.Perajarvi, J.R.Persson, A.Plochocki, J.Aysto Eur.Phys.J. A 2, 241 (1998)
- 1998Ma42 E.Maglione, L.S.Ferreira, R.J.Liotta Phys.Rev.Lett. 81, 538 (1998)
- 1998Mo22 C.-B.Moon, C.S.Lee, J.C.Kim, J.H.Ha, T.Komatsubara, T.Shizuma, K.Uchiyama, K.Matsuura, M.Murasaki, Y.Sasaki, H.Takahashi, Y.Tokita, K.Furuno Phys.Rev. C58, 1833 (1998)
- 1998Se05 J.M.Sears, I.Thorslund, D.B.Fossan, P.Vaska, E.S.Paul, K.Hauschild, I.M.Hibbert, R.Wadsworth, S.M.Mullins Phys.Rev. C57, 1656 (1998)
- 1998Se14 J.M.Sears, S.E.Gundel, D.B.Fossan, D.R.LaFosse, P.Vaska, J.DeGraaf, T.E.Drake, V.P.Janzen, D.C.Radford, Ch.Droste, T.Morek, U.Garg, K.Lamkin, S.Naguleswaran, G.Smith, J.C.Walpe, R.Kaczarowski, A.V.Afanasjev, I.Ragnarsson Phys.Rev. C58, 1430 (1998)
- 1998Si17 B.Singh, J.L.Rodriguez, S.S.M.Wong, J.K.Tuli Nucl.Data Sheets 84, 487 (1998)
- 1999Ho25 M.Houry, R.Lucas, M.-G.Porquet, Ch.Theisen, M.Girod, M.Aiche, M.M.Aleonard, A.Astier, G.Barreau, F.Becker, J.F.Chemin, I.Deloncle, T.P.Doan, J.L.Durell, K.Hauschild, W.Korten, Y.Le Coz, M.J.Leddy, S.Perries, N.Redon, A.A.Roach, J.N.Scheurer, A.G.Smith, B.J.Varley Eur.Phys.J. A 6, 43 (1999)
- 1999Kr17 R.Krucken, S.J.Asztalos, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter, J.-Y.Zhang Phys.Rev. C60, 031302 (1999)
- 1999Wa09 J.C.Wang, P.Dendooven, M.Hannawald, A.Honkanen, M.Huhta, A.Jokinen, K.-L.Kratz, G.Lhersonneau, M.Oinonen, H.Penttila, K.Perajarvi, B.Pfeiffer, J.Aysto Phys.Lett. 454B, 1 (1999)
- 2000Bb02 B.Barmore, A.T.Kruppa, W.Nazarewicz, T.Vertse Phys.Rev. C62, 054315 (2000)
- 2000Bu06 N.Buforn, A.Astier, J.Meyer, M.Meyer, S.Perries, N.Redon, O.Stezowski, M.G.Porquet, I.Deloncle, A.Bauchet, J.Duprat, B.J.P.Gall, C.Gautherin, E.Gueorguieva, F.Hoellinger, T.Kutsarova, R.Lucas, A.Minkova, N.Schulz, H.Sergolle, Ts.Venkova, A.N.Wilson Eur.Phys.J. A 7, 347 (2000)
- 2000Folo N.Fotiades, J.A.Cizewski, R.Krucken, K.Y.Ding, D.E.Archer, J.A.Becker, L.A.Bernstein, K.Hauschild, D.P.McNabb, W.Younes, S.J.Asztalos, R.M.Clark, M.A.Deleplanque, R.M.Diamond, P.Fallon, I.Y.Lee, A.O.Macchiavelli, G.J.Schmid, F.S.Stephens, K.Vetter Phys.Rev. C61, 064326 (2000)
- 2000He14 R.G.Helmer, C.van der Leun Nucl.Instrum.Methods Phys.Res. A450, 35 (2000)

REFERENCES FOR A=113 (CONTINUED)

- 2000Sc23 H.C.Scraggs, E.S.Paul, A.J.Boston, C.J.Chiara, M.Devlin, O.Dorvaux, D.B.Fossan, P.T.Greenlees, K.Helariutta, P.Jones, R.Julin, S.Juutinen, H.Kankaanpaa, H.Kettunen, D.R.LaFosse, G.J.Lane, I.Y.Lee, A.O.Macchiavelli, M.Muikku, P.Nieminen, P.Rahkila, D.G.Sarantites, J.M.Sears, A.T.Semple, J.F.Smith, K.Starosta, O.Stezowski Phys.Rev. C61, 064316 (2000)
- 2000Zh04 X.Q.Zhang, J.H.Hamilton, A.V.Ramayya, S.J.Zhu, J.K.Hwang, C.J.Beyer, J.Kormicki, E.F.Jones, P.M.Gore, B.R.S.Babu, T.N.Ginter, R.Aryaeinejad, K.Butler-Moore, J.D.Cole, M.W.Drigert, J.K.Jewell, E.L.Reber, J.Gilat, J.O.Rasmussen, A.V.Daniel, Yu.Ts.Oganessian, G.M.Ter-Akopian, W.C.Ma, P.G.Varmette, L.A.Bernstein, R.W.Lougheed, K.J.Moody, M.A.Stoyer Phys.Rev. C61, 014305 (2000)
- 2001St16 K.Starosta, C.J.Chiara, D.B.Fossan, T.Koike, D.R.LaFosse, G.J.Lane, J.M.Sears, J.F.Smith, A.J.Boston, P.J.Nolan, E.S.Paul, A.T.Semple, M.Devlin, D.G.Sarantites, I.Y.Lee, A.O.Macchiavelli, I.Ragnarsson Phys.Rev. C64, 014304 (2001)
- 2002Ku18 J.Kurpeta, G.Lhersonneau, A.Plochocki, J.C.Wang, P.Dendooven, A.Honkanen, M.Huhta, M.Oinonen, H.Penttila, K.Perajarvi, J.R.Persson, J.Aysto Eur.Phys.J. A 13, 449 (2002)
- 2002Ve08 Ts.Venkova, M.-G.Porquet, A.Astier, A.Bauchet, I.Deloncle, S.Lalkovski, N.Buforn, L.Donadille, O.Dorvaux, B.J.P.Gall, R.Lucas, M.Meyer, A.Minkova, A.Prevost, N.Redon, N.Schulz, O.Stezowski Eur.Phys.J. A 15, 429 (2002)
- 2003Au03 G.Audi, A.H.Wapstra, C.Thibault Nucl. Phys. A729, 337 (2003)
- 2003Pe10 P.Petkov, A.Dewald, A.Fitzler, T.Klug, G.de Angelis, E.Farnea, A.Gadea, R.Isocrate, N.Marginean, D.R.Napoli, D.Curien, N.Kintz, S.Lenzi, S.Lunardi, R.Menegazzo, V.Pucknell, C.Ring Phys.Rev. C 67, 054306 (2003)
- 2003Zh14 Z.Zhang, S.J.Zhu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, R.Q.Xu, Z.Jiang, S.D.Xiao, X.Q.Zhang, J.Kormicki, P.M.Gore, E.F.Jones, W.C.Ma, J.D.Cole, M.W.Drigert, I.Y.Lee, J.O.Rasmussen, Y.X.Luo, T.N.Ginter, C.Folden, P.Fallon III, P.Zielinski, K.E.Gregorich, A.O.Macchiavelli, R.Donangelo, M.A.Stoyer Phys.Rev. C 67, 064307 (2003)
- 2004Lu03 Y.X.Luo, S.C.Wu, J.Gilat, J.O.Rasmussen, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, C.J.Beyer, S.J.Zhu, J.Kormicki, X.Q.Zhang, E.F.Jones, P.M.Gore, I-Y.Lee, P.Zielinski, C.M.Folden III, T.N.Ginter, P.Fallon, G.M.Ter-Akopian, A.V.Daniel, M.A.Stoyer, J.D.Cole, R.Donangelo, S.J.Asztalos, A.Gelberg Phys.Rev. C 69, 024315 (2004)
- 2005Bu20 D.Bucurescu, Y.Eisermann, G.Graw, R.Hertenberger, H.-F.Wirth, V.Yu.Ponomarev Nucl.Phys. A756, 54 (2005)
- 2005Fo09 D.Fong, J.K.Hwang, A.V.Ramayya, J.H.Hamilton, Y.X.Luo, P.M.Gore, E.F.Jones, W.B.Walters, J.O.Rasmussen, M.A.Stoyer, S.J.Zhu, I.Y.Lee, A.O.Macchiavelli, S.C.Wu, A.V.Daniel, G.M.Ter-Akopian, Yu.Ts.Oganessian, J.D.Cole, R.Donangelo, W.C.Ma Phys.Rev. C 72, 014315 (2005)
- 2005Na37 S.Naguleswaran, R.S.Chakrawarthy, U.Garg, K.L.Lamkin, G.Smith, J.C.Walpe, A.Galindo-Uribarri, V.P.Janzen, D.C.Radford, R.Kaczarowski, D.B.Fossan, D.R.Lafosse, P.Vaska, Ch.Droste, T.Morek, S.Pilotte, J.DeGraaf, T.Drake, R.Wyss Phys.Rev. C 72, 044304 (2005)
- 2007Be61 P.Belli, R.Bernabei, N.Bukilic, F.Cappella, R.Cerulli, C.J.Dai, F.A.Danevich, J.R.de Laeter, A.Incicchitti, V.V.Kobychev, S.S.Nagorny, S.Nisi, F.Nozzoli, D.V.Poda, D.Prosperi, V.I.Tretyak, S.S.Yurchenko Phys.Rev. C 76, 064603 (2007)
- 2007Ku23 J.Kurpeta, W.Urban, Ch.Droste, A.Plochocki, S.G.Rohozinski, T.Rzaca-Urban, T.Morek, L.Prochniak, K.Starosta, J.Aysto, H.Penttila, J.L.Durell, A.G.Smith, G.Lhersonneau, I.Ahmad Eur.Phys.J. A 33, 307 (2007)
- 2009AuZZ G.Audi, W.Meng, D.Lunney, B.Pfeiffer Priv.Comm. (2009)
- 2009Pe06 J.Pereira, S.Hennrich, A.Aprahamian, O.Arndt, A.Becerril, T.Elliot, A.Estrade, D.Galaviz, R.Kessler, K.-L.Kratz, G.Lorusso, P.F.Mantica, M.Matos, P.Moller, F.Montes, B.Pfeiffer, H.Schatz, F.Schertz, L.Schnorrenberger, E.Smith, A.Stolz, M.Quinn, W.B.Walters, A.Wohr Phys.Rev. C 79, 035806 (2009)