

aseline

Устранение ошибок в данных по двум гипотезам повысило основные метрики. В итоге мы выделили 13102 человека, наиболее похожих на участников клуба

Гипотеза 1. Обработка шума в данных повысит качество работы модели

Гипотеза 2. Обработка шума в признаках повысит качество работы модели

LightGBM

Precision Recall F1

0.888 0.783 0.826

Пайплайн

LightGBM					
Precision	Recall	F1			
0.892	0.850	0.868			
+0.45%	+8.55%	+5.01%			

- тратят меньше среднего
- сумма чеков может умеренно варьироваться
- не претендуют на кешбек, но чувствительны к акциям и проявляют интерес к полезному питанию
- тратят больше среднего
- сумма чеков может значительно варьироваться
- выполняют условия предоставления кешбека и в целом заинтересованы в полезном питании
- Постепенное знакомство части аудитории с бонусами клуба позволит в перспективе увеличить конверсию и не потерять потенциальных участников
 - Акция: 6293
 - Приглашение: 6809

Предсказанные клиенты

Процесс разработки включал в себя следующие этапы:

Гипотеза 1. Обработка шума в данных повысит качество работы модели

Было сделано: выделение аномалий

One Class SVM строит разделяющую границу так, чтобы по одну сторону находилась большая часть данных, а по другую - оставшиеся выбросы

Local Outlier Factor вычисляет локальное отклонение плотности каждой точки данных по отношению к ее соседям

Доработано: замена некорректных данных (отрицательных значений)

строк имеют некорректные значения

из них участники клуба

После обработки не грозят снижением качества предсказаний модели

Невозможно интерпретировать и извлечь смысл, поскольку ошибки носят случайный характер

Небольшое количество относительно общего объема данных, но значительное кол-во строк

Simple Imputer заполняет выбранные некорректные значения на основе наиболее часто встречающихся

Удаление аномалий и замена некорректных данных позволят модели не переобучаться на специфических наблюдениях и в целом показывать лучшие результаты на тестовых данных

Вывод Пайплайн Гипотеза 1 Гипотеза 2 Обучение модели Результаты Команда

Гипотеза 2. Обработка шума в признаках повысит качество работы модели

Было сделано: уменьшение размерности за счет устранения высокой корреляции

Добавили две новые колонки, рассчитанные из старых признаков

Проанализировали корреляцию между признаками и оставили наиболее важные

Доработано: отбор признаков по важности

Отбор топ-80% признаков с помощью критерия Фишера оказал наибольшее влияние на метрики качества модели

Обработка признаков снизит риск переобучения и принятия решения моделью на основе шума

Мы выбрали LightGBM - высокоэффективную и гибкую модель и увеличили метрики за счет обучения на дополнительных данных и проверки двух гипотез

LightGBM Classifier - это leaf-wise grow реализация градиентного бустинга - ансамблевого алгоритма на основе решающих деревьев, последовательно уменьшающих ошибку модели

- Понизили размерность признаков
- Сделали кросс-валидацию
- Использовали регуляризацию

0	Precision	Recall	F1
Д	0.888	0.783	0.826

1.0	
0.8	
0.6	LGBMClassifier(n_estimators=288, num_leaves=54, max_depth=17, random_state=0,
0.4	is_unbalance=True, min_split_gain=0, importance_type='split', reg_alpha=0.8)
0.2	:: — Первый тур — Второй тур
0.0	F1 Recall Precision

Precision	Recall	F1	Кол-во позитивных лейблов при обучении	Время обучения
0.892	0.850	0.868	5164 / 40519-test_labels.shape[0]	20 сек

+0.45%

+8.55%

+5.01%

Чтобы выбрать оптимальный способ взаимодействия с потенциальными участниками клуба, мы разделили положительные лейблы на 5 кластеров

[^] Влияние наиболее важных фич на процесс классификации

[^] Центроиды с механизмом взаимодействия

One-Zero

Мичурин Артём

РЭУ им. Г.В. Плеханова Бизнес-информатика

Data Engineer @MTC

8(916)3176642 amichurin0@gmail.ru

Исаева Диана

РЭУ им. Г.В. Плеханова МОиАИС

Supply Chain Cup 2021 HQ 15%

8(964)0497904 dii.grase@yandex.ru

Попова Нина

Supply Chain Cup 2021 HQ 15%

8(989)2666821 popovaninam@yandex.ru

Агишев Владимир

РЭУ им. Г.В. Плеханова ПМИ

Финалист Cup IT 2022 Data Science

8(905)3960344 agishev1961@gmail.com

