```
In [1]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docke
r-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list al
1 files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets p
reserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved out
side of the current session
```

EDA on fake-and-real news

Importing Libraries

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
from sklearn.preprocessing import LabelBinarizer
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from wordcloud import WordCloud, STOPWORDS
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize,sent_tokenize
```

Read The Datasets

```
In [3]:
```

```
fake=pd.read_csv("../input/fake-and-real-news-dataset/Fake.csv")
true=pd.read_csv("../input/fake-and-real-news-dataset/True.csv")
```

In [4]:

fake.head()

Out[4]:

	title	text	subject	date
0	Donald Trump Sends Out Embarrassing New Year'	Donald Trump just couldn t wish all Americans	News	December 31, 2017
1	Drunk Bragging Trump Staffer Started Russian	House Intelligence Committee Chairman Devin Nu	News	December 31, 2017
2	Sheriff David Clarke Becomes An Internet Joke	On Friday, it was revealed that former Milwauk	News	December 30, 2017
3	Trump Is So Obsessed He Even Has Obama's Name	On Christmas day, Donald Trump announced that	News	December 29, 2017
4	Pope Francis Just Called Out Donald Trump Dur	Pope Francis used his annual Christmas Day mes	News	December 25, 2017

In [5]:

true.head()

Out[5]:

	title	text	subject	date
0	As U.S. budget fight looms, Republicans flip t	WASHINGTON (Reuters) - The head of a conservat	politicsNews	December 31, 2017
1	U.S. military to accept transgender recruits o	WASHINGTON (Reuters) - Transgender people will	politicsNews	December 29, 2017
2	Senior U.S. Republican senator: 'Let Mr. Muell	WASHINGTON (Reuters) - The special counsel inv	politicsNews	December 31, 2017
3	FBI Russia probe helped by Australian diplomat	WASHINGTON (Reuters) - Trump campaign adviser	politicsNews	December 30, 2017
4	Trump wants Postal Service to charge 'much mor	SEATTLE/WASHINGTON (Reuters) - President Donal	politicsNews	December 29, 2017

Now we introduce a new column named as target. Here target 1 shows the real news and target 0 shows the fake news. And then we just concatenate both the dataframes to give a single dataframe and then we can further proceed for exploratory data analysis

```
In [6]:
true['target']=1
fake['target']=0
  In [7]:
df=pd.concat([true, fake])
  In [8]:
df.shape
   Out[8]:
  In [9]:
df.head(2)
   Out[9]:
   title
                                                           subject
                                                                          date
                              text
                                                                                      target
   As U.S. budget fight
                              WASHINGTON (Reuters) -
                                                                          December
0
                                                           politicsNews
   looms, Republicans flip t...
                                                                          31, 2017
                              The head of a conservat...
                              WASHINGTON (Reuters) -
   U.S. military to accept
                                                                          December
                                                           politicsNews
   transgender recruits o...
                                                                          29, 2017
                              Transgender people will...
```

target feature view

In [10]:

```
temp = df.groupby('target').count()['text'].reset_index().sort_values(by='text',
ascending=False)
temp.style.background_gradient(cmap='Purples')
```

Out[10]:

	target	text
0	0	
1		21417

```
In [11]:
sns.countplot(x='target',data=df,palette=['orange','purple'])
```

Out[11]:

In [12]:

```
from plotly import graph_objs as go
fig = go.Figure(go.Funnelarea(
   text =temp.target,
   values = temp.text,
   title = {"position": "top center", "text": "Funnel-Chart of Target Distribut
ion"}
    ))
fig.show()
```

In the final dataset the count of fake news is greater than real news

```
In [13]:
df.isnull().sum()
Out[13]:
```

No null values are present in the dataset

```
In [14]:
df.nunique()
Out[14]:
```

```
In [15]:
df.dtypes
```

Out[15]:

subject vs target

```
In [16]:
plt.style.use('fivethirtyeight')
plt.figure(figsize=(15,5))
sns.countplot(x='subject', data=df, hue='target')
 Out[16]:
```


This shows that all the real news have the subject politics News and worldnews. Apart from these subjects other six subjects lies in the fake news category

```
In [17]:
df['text']=df['text']+" "+df['title']
```

```
In [18]:
df.drop(['title','subject','date'],axis=1,inplace=True)
df.head()
```

Out[18]:

	text	target
0	WASHINGTON (Reuters) - The head of a conservat	1
1	WASHINGTON (Reuters) - Transgender people will	1
2	WASHINGTON (Reuters) - The special counsel inv	1
3	WASHINGTON (Reuters) - Trump campaign adviser	1
4	SEATTLE/WASHINGTON (Reuters) - President Donal	1

No of words in real & fake news

In [19]:

```
no_words=df[df['target']==1].text.str.split().map(lambda x:len(x))
no_words.plot(kind='hist',edgecolor='black',color='lightgreen',title='no of word
s in Real')
plt.show()
no_words=df[df['target']==0].text.str.split().map(lambda x:len(x))
no_words.plot(kind='hist',edgecolor='black',color='lightblue',title='no of words
in fake')
plt.show()
```


No of words in real news are lying in the range of 0 to 1500 whereas in the case of fake news it lies in the range of 0 to 2000. This shows that number of words in the fake news are higher than that of real news

Average length of words in real & fake news

In [20]:

```
avg_len_word=df[df['target']==1].text.str.split().map(lambda x:np.mean([len(word
) for word in x]))
avg_len_word.plot(kind='hist',edgecolor='black',color='lightcoral',title='avg le
ngth of words in true')
plt.show()
avg_len_word=df[df['target']==0].text.str.split().map(lambda x:np.mean([len(word
) for word in x]))
avg_len_word.plot(kind='hist',edgecolor='black',color='lightyellow',title='avg 1
ength of words in false')
plt.show()
```


The average length of word in real news ranging from 4.5 to 6.0 whereas in the case of fake news it lies in the range of 0 to 20. This shows that in the fake news most of the words have length greater than the words of real news.

Analyzing the top stop words in the real and fake news

First way

```
In [21]:
# creating sample words
def create_words(target):
    words = []
    for x in df[df['target']==target]['text'].str.split():
        for i in x:
            words.append(i)
    return words
```

```
In [22]:
from collections import defaultdict
def analyze_stopwords(data,fun,target):
    values_list=[]
    dic=defaultdict(int)
    for i in range(0,len(target)):
        corpus=fun(target[i])
        for word in corpus:
            dic[word]+=1
        top=sorted(dic.items(), key=lambda x:x[1], reverse=True)[:10]
        x_items,y_items=zip(*top)
        values_list.append(x_items)
        values_list.append(y_items)
    fig,(ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
    ax1.bar(values_list[0], values_list[1], color="lightblue", edgecolor='black', 1
inewidth=1.2)
    ax1.set_title("Real")
    ax2.bar(values_list[2], values_list[3], color="lightgreen", edgecolor='black',
linewidth=1.2)
    ax2.set_title("Fake")
    plt.suptitle("Top Stop words in text")
    plt.show()
```

In [23]:

analyze_stopwords(df,create_words,[1,0])

Second way

In [24]:

```
from collections import Counter
df['temp_list']=df['text'].apply(lambda x: str(x).split())
top=Counter([word for li in df['temp_list'] for word in li])
temp_1=pd.DataFrame(top.most_common(20))
temp_1.columns=["most_common_words","frequency"]
temp_1.style.background_gradient(cmap='Blues')
```

Out[24]:

most_common_words frequency 0 the 907070 1 to 538754 2 of 441512 3 and 393995 4 a 391144 5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162 19 his 92298			
1 to 538754 2 of 441512 3 and 393995 4 a 391144 5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162		most_common_words	frequency
2 of 441512 3 and 393995 4 a 391144 5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	0	the	
3 and 393995 4 a 391144 5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	1	to	538754
4 a 391144 5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	2	of	441512
5 in 327394 6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	3	and	393995
6 that 221170 7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	4	а	391144
7 on 185433 8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	5	in	327394
8 s 172260 9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	6	that	221170
9 for 169435 10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	7	on	185433
10 is 160771 11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	8	S	172260
11 with 115402 12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	9	for	169435
12 was 114382 13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	10	is	160771
13 Trump 111503 14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	11	with	115402
14 he 105988 15 The 99671 16 as 97859 17 by 93426 18 said 93162	12	was	114382
15 The 99671 16 as 97859 17 by 93426 18 said 93162	13	Trump	111503
16 as 97859 17 by 93426 18 said 93162	14	he	105988
17 by 93426 18 said 93162	15	The	99671
18 said 93162	16	as	97859
	17	by	93426
19 his 92298	18	said	93162
	19	his	92298

```
In [25]:
```

```
import plotly.express as pe
import plotly.figure_factory as ff
fig = pe.bar(temp_1, x="frequency", y="most_common_words", title='Commmon Words
in Text', orientation='h',
             width=700, height=700,color='most_common_words')
fig.show()
```

Analyzing the top punctuation marks in real & fake news

In [26]:

```
import string
punctuation_list=list(string.punctuation)
value_list=[]
def most_occuring(dataset, fun, target):
    d=defaultdict(int)
    for j in range(0,len(target)):
        words=fun(target[j])
        for i in words:
            if i in punctuation_list:
                d[i] += 1
        top=sorted(d.items(), key=lambda x: x[1], reverse=True)[:10]
        x_items,y_counts=zip(*top)
        value_list.append(x_items)
        value_list.append(y_counts)
    fig,(ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
    ax1.bar(value_list[0], value_list[1], color="lightcoral", edgecolor='black', li
newidth=1.2)
    ax1.set_title("Real")
    ax2.bar(value_list[2], value_list[3], color="purple", edgecolor='black', linewi
dth=1.2)
    ax2.set_title("Fake")
    plt.suptitle("Punctuations in text")
    plt.show()
most_occuring(df,create_words,[1,0])
```


Text preprocessing

In [27]:

```
import re
import string
from nltk.corpus import stopwords
def clean_text(text):
    """Process text function.
   Input:
        tweet: a string containing a tweet
    Output:
        tweets_clean: a list of words containing the processed tweet
    lemmatizer = WordNetLemmatizer()
    stopwords_english = stopwords.words('english')
    text= re.sub('\[[^]]*\]', '', text)
    # remove stock market tickers like $GE
    text = re.sub(r') w*', '', text)
    #removal of html tags
    review =re.sub(r'<.*?>',' ',text)
    # remove old style retweet text "RT"
    text = re.sub(r'^RT[\s]+', '', text)
    # remove hyperlinks
    text = re.sub(r'https?:\/\.*[\r\n]*', '', text)
    # remove hashtags
    # only removing the hash # sign from the word
    text = re.sub(r'#', '', text)
    text = re.sub("["
                           u"\U0001F600-\U0001F64F" # removal of emoticons
                           u"\U0001F300-\U0001F5FF"  # symbols & pictographs
                           u"\U0001F680-\U0001F6FF" # transport & map symbols
                           u"\U0001F1E0-\U0001F1FF" # flags (i0S)
                           u"\U00002702-\U000027B0"
                           u"\U000024C2-\U0001F251"
                           "]+",' ',text)
    text = re.sub('[^a-zA-Z]',' ',text)
    text = text.lower()
    text_tokens =word_tokenize(text)
    text_clean = []
    for word in text_tokens:
        if (word not in stopwords_english and # remove stopwords
                word not in string.punctuation): # remove punctuation
            lem_word =lemmatizer.lemmatize(word) # lemmitiging word
            text_clean.append(lem_word)
```

6/21/2021

text_mod=[i for i in text_clean if len(i)>2]

```
text_clean=' '.join(text_mod)
    return text_clean
In [28]:
df['clean_text']=df['text'].apply(lambda x: clean_text(x))
In [29]:
df['clean_text'][:2]
Out[29]:
```

Look at the top words of the dataset

In [30]:

```
# wordcloud
from PIL import Image
book_mask = np.array(Image.open('../input/masksforwordclouds/book-logo-1.jpg'))
wc = WordCloud(
    background_color='white',
    max_words=200,
    mask=book_mask,
)
wc.generate(' '.join(text for text in df.loc[:, 'clean_text']))
plt.figure(figsize=(18,10))
plt.title('Top words',
          fontdict={'size': 28, 'verticalalignment': 'bottom'})
plt.imshow(wc)
plt.axis("off")
plt.show()
```


In [31]:

```
df['clean_temp']=df['clean_text'].apply(lambda x: str(x).split())
top=Counter([word for li in df['clean_temp'] for word in li])
temp_2=pd.DataFrame(top.most_common(20))
temp_2.columns=["common_words",'frequency']
temp_2.style.background_gradient(cmap='Blues')
```

Out[31]:

	common_words	frequency
0	trump	
1	said	
2	state	61511
3	president	56889
4	would	54309
5	year	41475
6	people	40894
7	republican	40778
8	one	38265
9	new	32225
10	also	30336
11	obama	30225
12	government	29878
13	clinton	29872
14	reuters	29546
15	house	29505
16	say	28649
17	time	28163
18	donald	28038
19	election	25506

In [32]:

top.most_common(20)

Out[32]:

In [33]: fig = pe.treemap(temp_2, path=['common_words'], values='frequency',title='Tree o f Most Common Words') fig.show()

Top 50 words in real & fake news

In [34]:

```
# analyze top 50 words in Real and false texts
data_1=df[df['target']==1]
pd.Series(' '.join([i for i in data_1.clean_text]).split()).value_counts()[:50].
plot(kind='bar', figsize=(20,8), color='yellow'
, edgecolor='black', title='Real')
plt.show()
data_0=df[df['target']==0]
pd.Series(' '.join([i for i in data_0.clean_text]).split()).value_counts()[:50].
plot(kind='bar', figsize=(20,8), color='green'
, edgecolor='black', title='Fake')
plt.show()
```



```
In [ ]:
In [ ]:
```

N-Grams

Generating N-Grams

```
In [35]:
data=' '.join([sentance for sentance in df['clean_text']])
```

```
In [36]:
import nltk
from nltk.util import ngrams
# Function to generate n-grams from sentences.
def extract_ngrams(data, num):
    n_grams = ngrams(nltk.word_tokenize(data), num)
    return [ ' '.join(grams) for grams in n_grams]
unigrams=extract_ngrams(data, 1)
bigrams= extract_ngrams(data, 2)
trigrams= extract_ngrams(data, 3)
fourgrams=extract_ngrams(data, 4)
```

counting the frequency of n- grams

In [37]:

```
freq_uni = nltk.FreqDist(unigrams)
freq_bi = nltk.FreqDist(bigrams)
freq_tri = nltk.FreqDist(trigrams)
freq_four = nltk.FreqDist(fourgrams)
```

Top 20 Unigrams

```
In [38]:
```

```
# top 20 uigrams
top_20_uni=freq_uni.most_common(20)
top_20_uni_words, top_20_uni_freq=list(zip(*top_20_uni))
plt.figure(figsize=(20,7))
plt.bar(top_20_uni_words, top_20_uni_freq, color = 'maroon',
        width = 0.4)
```

Out[38]:

Top 20 Bigrams

In [39]:

```
top_20_bi=freq_bi.most_common(20)
top_20_bi_words,top_20_bi_freq=list(zip(*top_20_bi))
plt.figure(figsize=(20,7))
plt.bar(top_20_bi_words, top_20_bi_freq, color ='lightcoral',
        width = 0.4)
plt.xticks(rotation=90)
```

Out[39]:

Top 20 Trigrams

In [40]:

```
top_20_tri=freq_tri.most_common(20)
top_20_tri_words,top_20_tri_freq=list(zip(*top_20_tri))
plt.figure(figsize=(20,7))
plt.bar(top_20_tri_words, top_20_tri_freq, color ='lightgreen',
        width = 0.4)
plt.xticks(rotation=90)
```

Out[40]:

Top 20 Fourgrams

In [41]:

```
top_20_four=freq_four.most_common(20)
top_20_four_words,top_20_four_freq=list(zip(*top_20_four))
plt.figure(figsize=(20,7))
plt.bar(top_20_four_words, top_20_four_freq, color ='blue',
        width = 0.4)
plt.xticks(rotation=90)
```

Out[41]:

More of analysis and model part will be updated soon!

In []:			