Car data = https://www.kaggle.com/CooperUnion/cardataset

CODE

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score_mean_squared_error
%matplotlib inline

df = pd.read_csv('data.csv')

df.sample(7)

	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors	Market Category	Vehicle Size	Vehicle Style	highway MPG	city mpg	Popularity	MSRP
2466	Dodge	Challenger	2017	regular unleaded	375.0	8.0	MANUAL	rear wheel drive	2.0	High-Performance	Large	Coupe	23	15	1851	35890
4150	Cadillac	Escalade	2015	flex-fuel (unleaded/E85)	420.0	8.0	AUTOMATIC	rear wheel drive	4.0	Flex Fuel,Luxury,Performance	Large	4dr SUV	21	15	1624	80195
10164	Toyota	T100	1998	regular unleaded	190.0	6.0	MANUAL	four wheel drive	2.0	NaN	Large	Extended Cab Pickup	18	15	2031	3480
7305	Honda	Odyssey	2016	regular unleaded	248.0	6.0	AUTOMATIC	front wheel drive	4.0	NaN	Large	Passenger Minivan	28	19	2202	29400
8365	Ford	Ranger	2011	regular unleaded	143.0	4.0	MANUAL	rear wheel drive	2.0	NaN	Compact	Regular Cab Pickup	27	22	5657	19120
1055	Audi	A3	2017	premium unleaded (recommended)	220.0	4.0	AUTOMATED_MANUAL	all wheel drive	2.0	Luxury	Compact	Convertible	34	25	3105	49250
7751	Audi	Q3	2015	premium unleaded (recommended)	200.0	4.0	AUTOMATIC	front wheel drive	4.0	Crossover,Luxury	Compact	4dr SUV	29	20	3105	36400

print(df.shape)

(11914, 16)

print(df['Make'].value_counts())

Chevrolet 1123
Fond 881
Volkswagen 889
Toyota 746
Dodge 626
Rissan 558
GMC 515
Honda 423
Razda 423
Gadilla 435
Suzuki 351
BMM 334
Infiniti 336
Audi 328
Hyundai 363
Volvo 281
ISUN 256
Acura 255
Acura 255
Kia 213
Kiau 213
Kiau 314
Kisubishi 213
Lexus 202
Buick 136
Chrysler 136
Ch

```
Bugatti
Spyker
      Genesis
      Name: Make, dtype: int64
new_df = df[df['Make']=='Mercedes-Benz']
print(new_df.shape)
     (353, 16)
print(new_df.isnull().sum())
     Model
     Engine Fuel Type
Engine HP
     Engine Cylinders
Transmission Type
      Driven_Wheels
      Number of Doors
      Vehicle Size
      highway MPG
     city mpg
Popularity
MSRP
      dtype: int64
new_df = new_df.dropna()
new_df.shape
     (352, 16)
new_df.isnull().sum()
      Model
      Year
      Engine Fuel Type
     Engine Cylinders
Transmission Type
     Driven_Wheels
Number of Doors
     Market Category
Vehicle Size
      Vehicle Style
      highway MPG
     city mpg
Popularity
MSRP
      dtype: int64
new df.sample(7)
```

Model Year Engine Fuel Type Engine Engine Transmission Driven_Wheels Number of Vehicle Vehicle highway city Popularity MSRP Style MPG mpg Make Cylinders Type Size 602 regular unleaded 238.0 8.0 AUTOMATIC rear wheel drive 2.0 617 2443 Luxury Large Coupe 4.0 AUTOMATIC rear wheel drive 3704 E-Class 2016 diesel 195.0 4.0 Diesel,Luxury Midsize Sedan 617 52650 GL-Class 2015 premium unleaded 5291 6.0 AUTOMATIC all wheel drive 4dr SUV 617 65200 Benz (required) Benz (required) Exotic,Factory Compact Convertible 2.0 Tuner,Luxury,High-Performance 617 495000 9684 8.0 AUTOMATIC rear wheel drive Benz McLaren 4.0 AUTOMATIC all wheel drive 3700 E-Class 2016 diesel 195.0 4.0 Diesel, Luxury Midsize Sedan 38 27 617 55150 9668 Mercedes-Benz SL-Class 2017 premium unleaded (required) Factory Tuner, Luxury, High-Performance Compact Convertible 577.0 8.0 AUTOMATIC rear wheel drive 25 16 617 151350

```
new_df = new_df[['Engine HP','MSRP']]
new_df.sample(7)
```

plt.ylabel('MSRP')
plt.show()

```
2718
                 268.0 56100.0
      2064
                241.0 41050.0
      8829
                 449.0 95650.0
      673
                 389.0 3211.0
      3687
                329.0 62350.0
                302.0 54800.0
      3671
print(new_df['Engine HP'].dtypes)
print(new_df['MSRP'].dtypes)
new_df['MSRP'] = new_df['MSRP'].astype(dtype='float64')
new_df.sample(7)
                           MSRP
      2686
                 536.0 154600.0
      5290
                429.0 89950.0
      9674
                 415.0 68925.0
      5297
      6576
                 329.0 62900.0
      2677
                 429.0 114100.0
      3711
                241.0 52150.0
X = np.array(new_df[['Engine HP']])
y = np.array(new_df[['MSRP']])
print(X.shape)
print(y.shape)
     (352, 1)
(352, 1)
plt.scatter(X,y,color="red")
plt.title('HP vs MSRP')
plt.xlabel('HP')
plt.ylabel('MSRP')
plt.show()
                                HP vs MSRP
 X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.25, random\_state=15) 
regressor = LinearRegression()
regressor.fit(X_train,y_train)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
plt.scatter(X_test,y_test,color="green")
plt.plot(X_train,regressor.predict(X_train),color="red",linewidth=3)
plt.title('Regression(Test Set)')
```

```
Regression(Test Set)
         400000
plt.scatter(X_train,y_train,color="blue")
plt.plot(X_train,regressor.predict(X_train),color="red",linewidth=3)
plt.title('Regression(training Set)')
plt.xlabel('HP')
plt.ylabel('MSRP')
plt.show()
                           Regression(training Set)
         400000
y_pred = regressor.predict(X_test)
print('R2 score: %.2f' % r2_score(y_test,y_pred))
     R2 score: 0.65
print('Mean Error :',mean_squared_error(y_test,y_pred))
     Mean Error : 1833108741.6904762
def car_price(hp):
    result = regressor.predict(np.array(hp).reshape(1, -1))
return(result[0,0])
```

car_hp = int(input('Enter Mercedes cars Horse Power : '))
print('This Mercedes-Benz Price will be : ',int(car_price(car_hp)),'\$')

Enter Mercedes cars Horse Power : 400 This Mercedes-Benz Price will be : 90383 \$

4s completed at 21:04