Formulas

Juan Camilo Guevara Hernández

December 28, 2024

This document will talk about the physical analysis used to control two motors in a polar coordinate system. Each motor generates motion: one for the radius, and the other one for the angle.

The main objective is to determine two independent functions that calculate the time required based on $\Delta\theta$ and Δr . This analysis assumes: Constant angular velocity in both motors, identical radius on both axis of the belt, perfect transmission between gearbox, perfect transmission between the belt and the pulleys.

1 Inputs

• Angular Motor: The motor responsible for changing the angle.

• Radial Motor: The motor that adjusts the radius of the system.

• Zp : Number of teeth on the pinion.

• Zn : Number of teeth on the gear.

• R : Radius of the axis

• ω_1 : Angular velocity of the angular motor.

• ω_2 : Angular velocity of the radial motor.

• ω_g : Angular velocity of the gear.

2 Angular Motor

To calculate the time the motor needs to be powered on, we will use the angular velocity of the gear as follows:

$$\omega_g = \Delta\theta/t \tag{1}$$

Now the ω_g is equal to the ration of the gear teeth as a reduction gearbox, multiplied by ω_1 . By substituting this into equation (1) and solving for t, we get:

$$\frac{\Delta \theta}{t} = (zp/zn) \cdot \omega_1$$

$$t = \frac{zn}{zp \cdot \omega_1} \Delta \theta$$
(2)

3 Radial Motor

To calculate the time the motor needs to remain powered on to move a point r_i along a belt to a target point r_f we need the radius of the axis circle, R. Using the formula $\Delta r = 2\pi R \cdot revolutions$ and the relationship between a revolution and the angular velocity of the radial motor (ω_2) we can state the following:

$$\Delta r = 2R\pi \cdot revolutions$$

$$revolutions = (\omega_2 \cdot t)/2\pi$$
(3)

Thus, solving for t, we obtain:

$$\Delta r = 2R\pi \cdot \frac{\omega_2 \cdot t}{2\pi}$$

$$\Delta r = R \cdot \omega_2 \cdot t$$

$$t = \frac{\Delta r}{\omega_2 \cdot R}$$
(4)

4 Code implementation with Julia

```
const w1 = deg2rad(50) # rad/s
const w2 = 15 \# deg/s
Fposition = (20, 10) # Final position (mm, deg)
function time_radious_motor(r)
 time_r = (r) / (w1 * R)
 return time_r
end
function time_angle_motor(theta)
 t_theta = theta / (relation * w2)
 return t_theta
end
function times(final_position)
 return (time_radious_motor(final_position[1]), time_angle_motor
      (final_position[2]))
end
result = times(Fposition)
println("Seconds")
println("Time_{\sqcup}to_{\sqcup}go_{\sqcup}to_{\sqcup}the_{\sqcup}target_{\sqcup}position:
LULULULUL Radial Motor: (result[1])
(3.0, 13.23529411764706)
```