SINGAPORE POLYTECHNIC 2018 / 2019 Semester 2 MST

Module Name: <u>Engineering Mathematics II</u>

Module Code: MS2223/MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 1 of 5

No.	SOLUTION						
1a	(i) $f(x, y) = \ln(x^2 - y)$						
	$f_x = \frac{2x}{x^2 - y}, f_y = \frac{-1}{x^2 - y}$						
	(ii) $f(x, y) = x \cos y + ye^x$						
	$f_x = \cos y + ye^x, f_y = -x\sin y + e^x$						
1b	$z = x^2 + 3xy^2$, $x = \cos t$, $y = e^{2t}$						
	$\frac{\partial z}{\partial x} = 2x + 3y^2, \frac{dx}{dt} = -\sin t$						
	$\frac{\partial z}{\partial y} = 6xy \; , \frac{dy}{dt} = 2e^{2t}$						
	$\therefore \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (2x + 3y^2)(-\sin t) + 6xy(2e^{2t})$						
	At $t = 0$:						
	$\frac{dx}{dt} = -\sin(0) = 0, \ \frac{dy}{dt} = 2e^{2(0)} = 2, \ x = \cos(0) = 1, \ y = e^{2(0)} = 1$						
	$\therefore \frac{dz}{dt} = (2+3)(0) + 6(2) = 12$						
1c	Let $V = \pi r^2 h$ = volume of cylinder, r = radius and h = height						
	Let $c = 2\pi r$ = circumference of the cylinder $\rightarrow r = \frac{c}{2\pi}$						
	Thus $V = \pi \left(\frac{c}{2\pi}\right)^2 h = \frac{hc^2}{4\pi}$ or $\frac{1}{4\pi}hc^2$						
	$\frac{\partial V}{\partial h} = \frac{1}{4\pi}c^2 , \frac{\partial V}{\partial c} = \frac{1}{2\pi}ch$						
	$\frac{dV}{dt} = \frac{\partial V}{\partial h} \cdot \frac{dh}{dt} + \frac{\partial V}{\partial c} \cdot \frac{dc}{dt} = \frac{1}{4\pi} c^2 \cdot (0.5) + \frac{1}{2\pi} ch \cdot (0.2)$						
	$= \frac{1}{4\pi} \left(1.5^2 (0.5) + 2(1.5)(6)(0.2) \right) = 0.38 \text{ m}^3/\text{yr}$						
2a (i)	$\int 4(5x-2)^3 dx = \frac{1}{5}(5x-2)^4 + C$						
(1)							

SINGAPORE POLYTECHNIC 2018 / 2019 Semester 2 MST

Module Name: <u>Engineering Mathematics II</u>

Module Code: MS2223/MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 2 of 5

No.	SOLUTION
2a (ii)	$\int \frac{3}{6u+1} du = \frac{1}{2} \ln 6u+1 + C$
2a (iii)	$\int 5\cos 3t \cos 2t dt = \frac{5}{2} \int (\cos 5t + \cos t) dt = \frac{1}{2} \sin 5t + \frac{5}{2} \sin t + C$
2b	$y_{rms} = \sqrt{\frac{1}{2-0} \int_0^2 \left(7e^{2t+3}\right)^2 dt} = \frac{7}{\sqrt{2}} \sqrt{\frac{1}{4} e^{4t+6}} \Big _0^2 = \frac{7}{2\sqrt{2}} \sqrt{e^{14} - e^6} \approx 2713.57$
3a	$\frac{2}{(x+3)^2(x+2)} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{x+2}$
	Use 'cover-up' method to find B and C:
	$B = \frac{2}{x+2}\Big _{x=-3} = -2, C = \frac{2}{(x+3)^2}\Big _{x=-2} = 2$
	$2 = A(x+3)(x+2) + B(x+2) + C(x+3)^{2}$
	Compare coefficient of x^2 : $A = -2$
	$\therefore \frac{2}{(x+3)^2(x+2)} = \frac{-2}{x+3} + \frac{-2}{(x+3)^2} + \frac{2}{x+2}$
	$\int \frac{2}{(x+3)^2(x+2)} dx = \int \left(\frac{-2}{x+3} + \frac{-2}{(x+3)^2} + \frac{2}{x+2}\right) dx$
	$= -2\ln x+3 + \frac{2}{x+3} + 2\ln x+2 + C$
3b	$x^{2} + 2x + 17 = (x+1)^{2} - 1^{2} + 17 = (x+1)^{2} + 16$
	$\int \frac{1}{x^2 + 2x + 17} dx = \int \frac{1}{(x+1)^2 + 4^2} dx = \frac{1}{4} \tan^{-1} \left(\frac{x+1}{4} \right) + C$
	$\int \frac{2x+1}{x^2+2x+17} dx = \int \left(\frac{2x+2}{x^2+2x+17} - \frac{1}{x^2+2x+17}\right) dx$
	$= \ln \left x^2 + 2x + 17 \right - \frac{1}{4} \tan^{-1} \left(\frac{x+1}{4} \right) + C$

SINGAPORE POLYTECHNIC 2018 / 2019 Semester 2 MST

Module Name: <u>Engineering Mathematics II</u>

Module Code: MS2223/MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 3 of 5

N.	OOLUTION.
No.	SOLUTION
4a	Let $u = x^3$
	$\frac{du}{dx} = 3x^2 \to du = 3x^2 dx \to \frac{1}{3} du = x^2 dx$
	$\int x^2 \cos x^3 dx = \int \frac{1}{3} \cos u du = \frac{1}{3} \sin u + C = \frac{1}{3} \sin x^3 + C$
4b	$x = \frac{1}{\sqrt{2}}\sin\theta \to \sin\theta = \sqrt{2}x \to \theta = \sin^{-1}(\sqrt{2}x)$
	$x = 0 \to \theta = \sin^{-1}(\sqrt{2} \times 0) = 0$
	$x = \frac{1}{\sqrt{2}} \to \theta = \sin^{-1}\left(\sqrt{2} \times \frac{1}{\sqrt{2}}\right) = \frac{\pi}{2}$
	$dx = \frac{1}{\sqrt{2}}\cos\theta d\theta$
	$1 - 2x^2 = 1 - 2\left(\frac{1}{\sqrt{2}}\sin\theta\right)^2 = 1 - \sin^2\theta = \cos^2\theta$
	$\int_0^{\frac{1}{\sqrt{2}}} \sqrt{1 - 2x^2} dx = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{2}} \cos^2 \theta d\theta = \frac{1}{2\sqrt{2}} \int_0^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$
	$= \frac{1}{2\sqrt{2}} \left(\theta + \frac{1}{2} \sin 2\theta \right)_0^{\frac{\pi}{2}} = \frac{1}{2\sqrt{2}} \left(\left[\frac{\pi}{2} - 0 \right] + \frac{1}{2} \left[\sin \pi - \sin 0 \right] \right)$
	$=\frac{\pi}{4\sqrt{2}} \text{or} =\frac{\pi\sqrt{2}}{8}$
5a	u dv
	$2x-1$ e^x
	e^x
	e^x
	$\therefore \int (2x-1)e^x dx = (2x-1)e^x - 2e^x + C$

SINGAPORE POLYTECHNIC 2018 / 2019 Semester 2 MST

Module Name: <u>Engineering Mathematics II</u>

Module Code: MS2223/MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 4 of 5

No.	SOLUTION								
5b	u dv								
		$\ln x$	+	x^3					
		$\frac{1}{x}$ —	-5	$\frac{x^4}{4}$					
	$\therefore \int x^3 \ln x$	$x dx = \frac{1}{4}x^4$	$4 \ln x - \int \frac{1}{x}$	$\frac{1}{4}x^4 dx =$	$\frac{1}{4}x^4 \ln x -$	$\frac{1}{16}x^4 + C$			
6	$h = \frac{\frac{\pi}{3} - 0}{6} = \frac{\pi}{18}$ Let $y = \ln(\sec x) = \ln\left(\frac{1}{\cos x}\right)$								
	$\begin{bmatrix} x & 0 \end{bmatrix}$	$\frac{\pi}{18}$	$\frac{2\pi}{18}$	$\frac{3\pi}{18}$	$\frac{4\pi}{18}$	$\frac{5\pi}{18}$	$\frac{6\pi}{18} = \frac{\pi}{3}$		
	y = 0	0.015309	0.062202	0.143841	0.266515	0.441941	0.693147	_	
	$\int_0^{\pi/3} \ln(se^{-2s}) ds$ ≈ 0.218	3	$-\left(\frac{\pi}{18}\right) \times [0+0]$).693147 + 4((0.015309+(0.143841+0.4	441941) + 2(0.	062202 + 0.266515	5)]

$$T = 2\pi \to \omega = \frac{2\pi}{T} = 1$$

$$a_0 = \frac{1}{T} \int_k^{k+T} f(t) dt = \frac{1}{2\pi} \left[\int_0^{\pi} dt - \int_{\pi}^{2\pi} dt \right] = \frac{1}{2\pi} \left[t \Big|_0^{\pi} - t \Big|_{\pi}^{2\pi} \right] = 0$$

$$a_n = \frac{2}{T} \int_k^{k+T} f(t) \cos n\omega t dt = \frac{1}{\pi} \left(\int_0^{\pi} \cos nt dt - \int_{\pi}^{2\pi} \cos nt dt \right) = \frac{1}{\pi} \left(\frac{\sin nt}{n} \Big|_0^{\pi} - \frac{\sin nt}{n} \Big|_{\pi}^{2\pi} \right) = 0$$

SINGAPORE POLYTECHNIC 2018 / 2019 Semester 2 MST

Module Name: <u>Engineering Mathematics II</u>

Module Code: MS2223/MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 5 of 5

No.	SOLUTION
	$b_n = \frac{2}{T} \int_k^{k+T} f(t) \sin n\omega t dt = \frac{1}{\pi} \left(\int_0^{\pi} \sin nt dt - \int_{\pi}^{2\pi} \sin nt dt \right)$
	$= \frac{1}{\pi} \left(-\frac{\cos nt}{n} \Big _0^{\pi} + \frac{\cos nt}{n} \Big _{\pi}^{2\pi} \right) = \frac{1}{n\pi} \left(\cos 2n\pi - 2\cos n\pi + 1 \right)$
	$b_1 = \frac{1}{\pi} (\cos 2\pi - 2\cos \pi + 1) = \frac{4}{\pi}$ $b_2 = \frac{1}{2\pi} (\cos 4\pi - 2\cos 2\pi + 1) = 0$ $b_3 = \frac{1}{3\pi} (\cos 6\pi - 2\cos 3\pi + 1) = \frac{4}{3\pi}$
	$b_2 = \frac{1}{2\pi} (\cos 4\pi - 2\cos 2\pi + 1) = 0$
	$b_3 = \frac{1}{3\pi} (\cos 6\pi - 2\cos 3\pi + 1) = \frac{4}{3\pi}$
	Or
	$b_n = \begin{cases} \frac{4}{n\pi} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$
	$\therefore f(t) = \frac{4}{\pi} \sin t + \frac{4}{3\pi} \sin 3t + \cdots$