把温度作为应力因素,用 w_j 表示,在此文中我们使用的是步加寿命试验。为了方便,假定 j=1,2。用 T_{ij} 表示试验的检测时间,其中 i=1······ m_j 和 j=1,2。首先,将 N 个试验产品放到温度 w_1 的环境下,在检测时间 t_{11} …… t_{1m_1} 时,分别取出 k_{11} …… k_{1m_1} 个试验产品进行检测。由于是步进压力寿命试验,所以在 t_{1m_1} 时刻把温度调高至 w_2 ,剩下的试验产品继续放在 w_2 这一应力水平下进行测试,在测试时间 t_{21} …… t_{2m_2} 依次取出相应的产品进行检测。

符号说明:

- (1) T_{ii} (i=1,…… m_i , j=1,2)表示产品的检测时间。
- (2) w_i (j=1,2)表示压力水平,在此文中用温度这一压力。
- (3) k_{ii} 表示在检测时间 T_{ii} 和温度 w_{i} 下取出的检测产品的个数。
- (4) n_{rij} 表示在检测时间 T_{ij} 和温度 w_i 下产品由于第r 个原因坏掉的个数。
- (5) S_{ii} 表示在检测时间 T_{ji} 和温度 w_{j} 下产品仍然保持完好的个数。
- (6) T_{rik} 表示在检测时间 T_{ii} 和温度 w_i 下,第k个产品由于原因r失效的时间。

(7)
$$S_{ij} = k_{ji} - \sum_{r=1}^{2} n_{rij}$$
 .

在本文中设分别由于原因 1 和原因 2 导致失效的时间为 T_{rijk} (r=1,2,i=1… m_j , j=1,2), T_{rijk} 为随机变量,并且相互独立。假设 T_{rijk} 服从参数为 λ_{rj} 的指数分布,概率密度函数为:

$$f_{rj}(t) \not\equiv_{r j} e \not\propto p_{r}(j)$$
 (r=1,2 j=1,2)

那么累积分布函数就为:

$$F_{ri}(t) = 1 - \exp(-\lambda_{ri} t)$$

由于本试验引进了加速寿命试验,由加速模型可以得到, λ_{rj} 是产品在温度 w_j 条件下由于第 r 个因素的失效率,并且 λ_{rj} 与 w_j 之间是对数线性关系,即:

$$\lambda_{rj} = \alpha_{r0} \exp(\alpha_{r1} w_j) \qquad (\alpha_{r0}, \alpha_{r1}, w_j > 0)$$

为了方便,在此设 Δ_{ijk} 为在在检测时间 T_{ij} 和温度 w_j 下第 k 个产品的指示性函数。当产品在检测时是好的,设 Δ_{ijk} =0;当产品在检测时坏了,这时我们就要查找可能导致产品此次失效的原因,如果是由于原因 r 失效,设 Δ_{ijk} =r(在本文试验中我们假定有两个竞争风险,所以 r=1,2)。指示性函数 Δ_{ijk} 如下:

$$\Delta_{ijk} = \begin{cases} 0 & \text{for min } (T_{1ijk}, T_{2ijk}) > T_{ij} \\ 1 & \text{for } T_{1ijk} < \min(T_{2ijk}, T_{ij}) \\ 2 & \text{for } T_{2ijk} < \min(T_{1ijk}, T_{ij}) \end{cases}$$

 p_{0ij} , p_{1ij} , p_{2ij} 分别表示生存概率,由于原因 1 失效的概率,由于原因 2 失效的概率,由上述公式可推得:

$$\begin{split} p_{0ij} &= \left(1 - F_1 \left(T_{ij} \mid w_j\right)\right) \left(1 - F_2 \left(T_{ij} \mid w_j\right)\right) \\ &= \exp\left(-\left(\lambda_{1j} + \lambda_{2j}\right)T_{ij}\right) \\ p_{1ij} &= \left(\frac{\lambda_{1j}}{\lambda_{1j} + \lambda_{2j}}\right) \left(1 - \exp\left(-\left(\lambda_{1j} + \lambda_{2j}\right)T_{ij}\right)\right) \\ p_{2ij} &= \left(\frac{\lambda_{2j}}{\lambda_{1j} + \lambda_{2j}}\right) \left(1 - \exp\left(-\left(\lambda_{1j} + \lambda_{2j}\right)T_{ij}\right)\right) \end{split}$$

根据试验,可得到 $_{S_{ij}}$, $_{n_{1ij}}$, $_{n_{2ij}}$ 以及温度 $_{W_{j}}$ (j=1,2)和检测时间 $_{T_{ij}}$ (i=1,…… $_{m_{j}}$, j=1,2),则关于 $_{\alpha}$ = $\{\alpha_{10},\alpha_{11},\alpha_{20},\alpha_{21},\}$ 的似然函数可以写为:

$$L(\boldsymbol{\alpha} \mid \mathbf{T}, \mathbf{w}) = \prod_{i=1}^{m_j} \prod_{j=1}^2 p_{0ij}^{S_{ij}} p_{1ij}^{n_{1ij}} p_{2ij}^{n_{2ij}}$$

贝叶斯估计

首先 p_{0ij} , p_{1ij} , p_{2ij} 可以很简单的估计为 \hat{p}_{0ij} = s_{ij} / k_{ij} , \hat{p}_{1ij} = d_{1ij} / k_{ij} , \hat{p}_{2ij} = d_{2ij} / k_{ij} 。为了防止有估计为零的情况,则我们可以采用拉普拉斯平滑法,则可以得到如下估计:

$$\hat{p}_{0ij} = \frac{S_{ij+1}}{k_{ij+3}}$$
 $\hat{p}_{1ij} = \frac{d_{1ij+1}}{k_{ij+3}}$ $\hat{p}_{2ij} = \frac{d_{2ij+1}}{k_{ij+3}}$

先验分布的选择:

设 ε_{rij} 为误差,即 $\hat{p}_{rij} - p_{rij} = \varepsilon_{rij}$,并且假定 ε_{rij} 服从标准正态分布并且独立同分布,即 $\varepsilon_{rii} \sim N(0, \sigma^2)$ 。则 α 的先验分布可以写为:

$$h(\mathbf{\alpha} \mid \mathbf{T}, \mathbf{w}, \sigma^2) \propto \prod_{i=1}^{m_j} \prod_{j=1}^2 \prod_{r=1}^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} \left(p_{rij} - \hat{p}_{rij}\right)^2\right\}$$

对于 σ^2 可以采用无信息先验:

$$h(\sigma^2) \propto \frac{1}{\sigma^2}$$

则 α 的联合先验分布可以写为:

$$h(\mathbf{\alpha})$$

$$\propto \int_{0}^{\infty} h(\mathbf{\alpha} \mid \mathbf{T}, \mathbf{w}, \sigma^{2}) h(\sigma^{2}) d\sigma^{2}$$

$$\propto \int_{0}^{\infty} (\sigma^{2})^{-\frac{2(m_{1}+m_{2})+2}{2}} \exp \left\{ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{m_{j}} \sum_{j=1}^{2} \sum_{r=1}^{2} (p_{rij} - \hat{p}_{rij})^{2} \right\} d\sigma^{2}$$

$$\propto \left\{ \sum_{i=1}^{m_{j}} \sum_{j=1}^{2} \sum_{r=1}^{2} (p_{rij} - \hat{p}_{rij})^{2} \right\}^{-(m_{1}+m_{2})}$$

α的联合后验分布可以写为:

$$h(\boldsymbol{\alpha} \mid \mathbf{T}, \mathbf{w}) \propto \prod_{i=1}^{m_j} \prod_{j=1}^2 p_{0ij}^{S_{ij}} p_{1ij}^{n_{1ij}} p_{2ij}^{n_{2ij}} \times \left\{ \sum_{i=1}^{m_j} \sum_{j=1}^2 \sum_{r=1}^2 \left(p_{rij} - \widehat{p}_{rij} \right)^2 \right\}^{-(m_1 + m_2)}$$

模拟实验

此次贝叶斯模拟实验中,假设参数值为: α_{10} =0.001, α_{11} =0.05, α_{20} =0.0001, α_{21} =0.08; 温度 w_1 (单位是摄氏度)情况下设置两个观测时间分别是 t_{11} =10 天, t_{12} =20 天; 温度 w_2 (单位是摄氏度)情况下设置两个观测时间分别是 t_{21} =30 天, t_{22} =40 天;设置三组不同的样本数来试验,即(K_1 K_2 K_3)=(10,50,100)。

此次模拟试验的参数值如表所示:

参数	符号	数值
风险 1	α_{10} α_{11}	(0.001 ,0.05)
风险 2	α_{20} α_{21}	(0.0001,0.08)
温度(摄氏度)	$w_1 - w_2$	(45,55)
检测时间(天)	t_{11} t_{12} t_{21} t_{22}	(10,20,30,40)
样本量	K_1 K_2 K_3	(10,50,100)

不同的样本量在上述设定下的观测数据如下:

$$K_1 = 10 \ (S_{ij} = k_{ji} - \sum_{r=1}^{2} n_{rij})$$

		Δ_{ijk} =0	Δ_{ijk} =1	Δ_{ijk} = 2
t ₁₁ =10	_{W1} =45	S ₁₁₌	$n_{111=}$	$n_{211=}$
t ₁₂ =20	_{W1} =45	S 21=	$n_{121=}$	$n_{221=}$
t 21 = 30	_{W2} =55	S ₁₂₌	<i>n</i> ₁₁₂₌	$n_{212=}$
t 22 =40	_{W2} =55	S 22=	$n_{122=}$	n ₂₂₂₌

用 Metropolis-Hastings algorithm 或者别的方法 ,模拟后验分布。(这些 s n 随机生成)得到的结果形式和下面图片形式相似就可以了,和 mse 差不多的都行。

