We are starting at 14:00!

Grab a seat and get ready

Agenda

```
14:00 - 14:15: Recap: convolution
14:15 - 14:45: AlexNet & VGG
```

14:45 - 15:15: Going deeper

15:15 - 15:30: Improving efficiency: part 1

15:30 - 16:00: Improving efficiency: part 2

16:00 - 16:30: Break

16:30 - 17:00: Transfer learning

17:30 - 18:00: Challenges & Next steps

Last week: You learned to build a CNN

- Convolution
- Pooling/downsampling
- Training

Today: CNNs "in the real world"

CNNs are everywhere: image segmentation

CNNs are everywhere: pose estimation

Kigali

CNNs are everywhere: image style transfer

Today: Large-scale CNNs & transfer

learning

The success of deep learning for image recognition has been driven by two key factors:

- 1. Large-scale CNNs
- 2. Transfer learning

Recap: convolution

32 x 32 grayscale image: fully-connected layer

Kigali

Convolution

32

Convolve the filter with the image: Slide over the image, computing dot products

1 number: $w^{T}x + b$

The result is the inner product of

- a local 3×3 chunk x of the image
- a 3 × 3 filter w
- plus a bias b

Convolution: color image

Convolution: in general

Practice

Recap: Recap how much convolutions reduce the number of parameters. Count parameters of a fully-connected and a convnet Coding Exercise 1

AlexNet & VGG

AlexNet (2012)

Alex Krizhevsky, Ilya Sutskeever, Geoffrey Hinton

"ImageNet classification with deep convolutional neural networks." NeurIPS 2012

AlexNet (2012)

torchvision.models.alexnet()

8 layers / 60 million parameters

Dropout stochastically deactivates neurons

(a) Standard Neural Net

(b) After applying dropout.

ReLU trains faster than tanh

AlexNet (2012): Results

Smoked the competition with 16% top-5 error (runner-up had 26%)

One of the first neural nets trained on a GPU with CUDA.

Paper cited over 80,000 times

Kigali

VGG (2014)

torchvision.models.vgg16() torchvision.models.vgg19() torchvision.models.vgg19_bn()

By the Vision Geometry Group at Oxford

Only 3 × 3 filters and max pooling

Training: 3 weeks on 4 NVIDIA Titan Black GPUs, 6 GB RAM

First train smaller configurations, then inject layers in between:

11 □ 13 □ 16 □ 19 layers

VGG-19: 138 million parameters / 500 MB

Saturdays.Al Kigali

VGG (2014)

Has been very popular for a long time

- Particularly simple architecture
- Half the error rate of AlexNet
- Pre-trained net available

A couple of drawbacks:

- Slow and complex to train. Started with 11-layer version, then add additional layers, iterate until at 19
- Weights themselves are large: over 530 MB, which makes deploying it a tiresome task
- First couple of layers are very expensive to compute as they operate at full resolution

Practice

Inspect what AlexNet has learned:

filters and feature maps

Interactive Demo 3.2

Going deeper

Residual Networks (ResNets)

ResNet (2015)

torchvision.models.resnet18()

...

torchvision.models.resnet152()

Residual blocks ("skip connections")

Each block learns to approximate a residual function

Better gradient flow because of skip connections

Skip connections avoid vanishing gradients

$$f(x) = f_1\left(f_2\left(\cdots f_N(x)\right)\right) \Rightarrow f'(x) = f_1'\left(f_2\left(\cdots\right)\right) \cdot f_2'\left(\cdots\right) \cdot \dots \cdot f_N'(x) \quad \text{(chain rule)}$$

ResNet (2015)

torchvision.models.resnet18()

...

torchvision.models.resnet152()

ResNet: Remove expensive early layers

Kigali

Practice

- Load a pre-trained ResNet-18
- Run a couple of images through the net
 - Inspect its predictions

How does it fare with non-photographic images?

Coding Exercise 4.1

Improving efficiency

Part 1: Inception + ResNeXt

Inception / GoogLeNet (2014/15)

Inception v1: efficiency by 1 x 1 convolutions

torchvision.models.googlenet()

1 x 1 convolutions

No spatial processing

Reduces number of channels

Inception v1: efficiency by 1 x 1 convolutions

torchvision.models.googlenet()

Kigali

Inception v3: efficiency and bottlenecks

torchvision.models.inception_v3()

ResNeXt: combining Inception and ResNet

torchvision.models. models.resnext50_32x4d()

uniform multi-branch

Compression
Spatial processing
Channel mixing

Kigali

Inception-v1 (2014) + ResNeXt (2016):

Results

6.7% top-5 error rate in 2014, 3.0% in 2016!

Top-5 error rate of human expert (Andrej Karpathy) was ~5%

Saturdays.Al Kigali

Improving efficiency

Part 2: MobileNet / depthwise separable convolutions

MobileNet (2017): pushing efficiency

torchvision.models.mobilenet_v2()

Same accuracy as VGG, >100 frames/sec on iPhone 7

Recap: regular convolution layer

Regular convolution: $4 \cdot 3 \cdot 3 \cdot 2 = 72$ parameters

Depthwise separable

convolution

Depthwise separable: $4 \cdot 3 \cdot 3 + 4 \cdot 2 = 44$ parameters

Regular convolution: $4 \cdot 3 \cdot 3 \cdot 2 = 72$ parameters

 $O(MK^2 + MN)$ parameters

 $O(MK^2N)$ parameters

Depthwise separable convolution

Input features $H \times W \times 512$ Filters Feature maps $H \times W \times 512$ Filters Output features $H \times W \times 512$ Filters $H \times W \times 512$ Filters

Depthwise separable: $512 \cdot 3 \cdot 3 + 512 \cdot 512 = 267k$ parameters

convolution

Regular convolution: $512 \cdot 3 \cdot 3 \cdot 512 = 2.4$ m parameters

Practice

Understand how depthwise separable convolutions improve efficiency and save parameters in CNNs.

<u>Coding Exercise 6.1</u>

Break

Transfer learning

Building upon pre-trained CNNs

Transfer learning: motivation

Suppose you want to build an app to recognize flowers...

1000 images 100 classes

Transfer learning: the idea

Saturdays.Al Kigali

Transfer learning: what should we train?

Option 1: Train only classification layer, freeze backbone (sometimes referred to as the "linear evaluation protocol")

Fast & simple

Option 2: Train classification layer, fine-tune backbone at the same time

• Slower, but can adapt feature extraction to dataset statistics

Example: semantic segmentation

Single-stage object detectors: SSD, YOLO,

• • •

Saturdays.Al Kigali

Pre-training on ImageNet is everywhere ...

Pose estimation

Image captioning

"two young girls are playing with lego toy."

Scene graph prediction

face of mountain behind horse riding man wearing hat wearing shirt

Many, many more

Practice

Implement transfer learning for Pokemon classification Which approach do you think will perform best?

- Training from scratch
- Training only the classification layer
 - Fine-tuning entire network

Section 7.4

TYU: Convolution

Assume that the number of filters is less than number of input channel, Which of the following will reduce the number of dimensions of input X

- A. 1x1 CONV, 3 filters, no padding
- B. 3x3 CONV, 3 filters, no padding
- C. 3x3 POOL, 3 filters, no padding
- D. All of the above

Challenges & Next steps!

Kahoot

Any questions?

THANKS

🙀 <u>kigali@saturdays.ai</u>

coming soon