Interaction of NO with Nanosized Ru-, Pd-, and Pt-Doped SnO₂: Electron Paramagnetic Resonance, Mössbauer, and Electrical Investigation

Carmen Canevali,† Claudio Maria Mari,† Mariachiara Mattoni,† Franca Morazzoni,*,† Luca Nodari,‡ Riccardo Ruffo,† Umberto Russo,‡ and Roberto Scotti†

Dipartimento di Scienza dei Materiali, INSTM-UdR Milano-Bicocca, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy, and Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131 Padova, Italy

Received: November 30, 2004; In Final Form: February 2, 2005

The mechanism of NO interaction with nanosized Ru(Pd,Pt)-doped SnO_2 was studied by electron paramagnetic resonance, Mössbauer, and electric resistance measurements. Three steps were proposed for the reaction between the semiconductor oxide and the gaseous component: (i) the formation of bielectronic oxygen vacancies (V_o) in SnO_2 ; (ii) their single-ionization (V_o^{\bullet}) with injection of electrons into the SnO_2 conduction band; (iii) the subsequent transfer of electrons from V_o^{\bullet} to $[Ru(Pd,Pt)]^{4+}$. The last process induces the formation of further oxygen vacancies which reduce the transition metal centers to lower oxidation states; the redox processes is enhanced and the electrical resistance in transition metal-doped SnO_2 is stronger modified with respect to the undoped material.

Introduction

It is well-known the electrical sensitivity of SnO_2 , a base material for semiconductor gas sensors, is enhanced by its doping with transition metals. Two main models were proposed to explain this effect: the first based on the chemical interaction of gases with the metal (e.g. dissociative chemisorption of H_2 on noble metal centers) and the second on the redox processes between interacting gases and metal centers. Nevertheless the role of the doping metal in the gas-oxide reaction mechanism is still under discussion.

To improve the knowledge of the electron-transfer processes between the reducing gas and the metal centers, we studied in previous papers the interaction of CO with SnO_2 -based materials, either as a nanopowder or as a nanosized thin film. It was suggested that the redox processes involve Pt- and Ru-doping centers^{2–5} through an undirect mechanism mediated by the oxygen defects. The main steps are the formation and ionization of oxygen vacancies

$$O_o + CO \Leftrightarrow CO_2 + V_o$$
 (1)

$$V_o \leftrightarrow V_o^{\bullet} + e^- \tag{2}$$

 $(O_o$ is the oxide anion in its regular oxygen site, V_o the neutral oxygen vacancy, and V_o • the singly ionized oxygen vacancy) followed by the transfer of electrons from V_o • into the transition metal centers, according to

$$Pt(Ru)^{4+} + nV_o^{\bullet} \Leftrightarrow Pt(Ru)^{(4-n)+} + nV_o^{\bullet\bullet}$$
 (3)

 $({\rm V_o}^{\bullet\bullet}$ is the doubly ionized oxygen vacancy, n=1-4 for Pt, and n=1 for Ru). This electron-transfer reaction shifts the equilibria of reactions 1 and 2 toward the right-hand side increasing the number of ${\rm V_o}$ defects and of electrons injected

into the conduction band, with respect to undoped SnO_2 . The reduced transition metal center $Pt(Ru)^{(4-n)+}$ is also responsible for the reduction of oxygen and the successive interaction with SnS_n :

$$nSn_{Sn} + nO_2 + Pt(Ru)^{(4-n)+} \Leftrightarrow Pt(Ru)^{4+} + nSn_{Sn} - O_2^-$$
 (4)

(Here Sn_{Sn} is a tin atom in the lattice site.) Such conclusions were obtained by different and complementary investigation techniques depending on the type of sample: powder,² thin film^{3,5} or both.⁴

Recently our interest was addressed to investigate the interaction of SnO₂-based materials with NO. There is in fact large interest to study the surface reactions and the electrical response of semiconductor oxides that had undergone NO contact not only because the mechanism of NO interaction is still far from being fully understood but also for nowadays because of the important environmental issue.

The preliminary study⁶ concerned the surface reactivity of undoped nanocrystalline SnO_2 ; it was demonstrated NO behaves as a reducing agent (either forming oxygen vacancies or injecting electrons into the SnO_2 conduction band) and the NO_2^- and NO_3^- surface chemisorption hinders the NO reducing effects.

Following up the above results, we here investigate the effects of the doping metal (Ru, Pd, and Pt) on the NO interaction with SnO₂. EPR and Mössbauer investigations were performed on Ru(Pd,Pt)-doped SnO₂ nanopowders, while measurements of electrical resistance were performed on thin films of the same materials; both sets of specimens were obtained by the sol—gel route. Furthermore, to compare the effects of different gases, the metal:Sn molar ratios were the same as used in the studies of CO interaction.^{2–5} Spectroscopic, spectromagnetic, and electrical responses of samples were obtained by treatment under NO/argon mixture to avoid the oxidation of nitrogen monoxide.

Experimental Section

Reactants. Tetrakis(*tert*-butoxy)tin(IV), [Sn(OBu')₄], was prepared according to the literature.⁷ Tris(acetylacetonato)-

^{*} Corresponding author. E-mail: franca.morazzoni@mater.unimib.it. Phone: 0039 02 64485123. Fax: 0039 02 64485400.

[†] Università di Milano-Bicocca.

[‡] Dipartimento di Scienze Chimiche.

ruthenium(III), [Ru(acac)₃], bis(acetylacetonato)palladium(II), [Pd(acac)₂], and bis(acetylacetonato)platinum(II), [Pt(acac)₂], were Aldrich pure chemicals.

Pure (argon, air) and mixed [NO(495 ppm)/argon] gases were purchased from SAPIO.

Preparation of Ru(Pd,Pt)-Doped SnO₂. Powders. The sol phase was prepared by mixing and stirring, at room temperature, 12 mL of a solution of [Sn(OBu^t)₄] in absolute anhydrous ethanol (500 mg mL⁻¹) and 30 mL of an ethanol—acetylacetone (4:1 v:v) solution of [Ru(acac)₃], [Pd(acac)₂], or [Pt(acac)₂] (3.75 \times 10⁻⁶ mol mL⁻¹; metal:Sn molar ratio 0.008). After a few minutes, 10 mL of an ethanol-water solution (4:1 v:v) was added and the sol phase put into the thermostatic chamber at 35 ± 1 °C. The sol-gel transition occurred within about 1-2days. The homogeneous, without evident phase separation, gel was dried under vacuum (10^{-2} Torr) at room temperature, and the xerogel powder was obtained. The thermal treatment of the powdered [Ru(acac)₃]-, [Pd(acac)₂]-, [Pt(acac)₂]-SnO₂ xerogels, at 673 K for 4 h in an air stream (30 cm³ min⁻¹), produced the different doped SnO₂. The full elimination of the acetylacetonate ligand was monitored by infrared spectroscopy.²

X-ray diffraction analysis of samples confirmed the cassiterite structure. The average particle size was evaluated to be in the range 6-10 nm.

Hereafter these samples will be labeled as RuSnO₂673, PdSnO₂673, and PtSnO₂673, respectively.

Thin Films. Metal precursor solutions were obtained by dissolving [Ru(acac)₃] (0.1089 g), [Pd(acac)₂] (0.8330 g), or [Pt(acac)₂] (0.1064 g) in 15 mL of an ethanol—acetylacetone solution (1:1 v:v).

The sol phase was prepared by mixing under nitrogen atmosphere:

- (i) 2.50 mL of a solution of $[Sn(OBu^t)_4]$ (360 mg mL⁻¹) in anhydrous ethanol—acetylacetone (3.85:1 v:v; corresponding to 2.19 mmol of Sn);
- (ii) 3.00 mL of the metal precursor solution (corresponding to 5.47×10^{-2} mmol of metal; metal:Sn molar ratio 0.008);
 - (iii) 1.52 mL of ethanol and 0.48 mL of acetylacetone;
- (iv) 1.00 mL of an ethanol—water solution (4:1 v:v; corresponding to 11.1 mmol of H_2O).

The solution was transferred into a capillary viscosimeter and kept in the thermostatic chamber at 35 \pm 1 °C. After 24 h, 0.10 mL of ethanol—water solution (4:1 v:v; corresponding to 1.11 mmol of H₂O) was further introduced; the addition was repeated every 24 h until the sol-phase viscosity was 2.5 cSt, a value suitable for the spin-coating deposition.

Films were deposited by the spin-coating procedure (spin rate 2000 rpm), dried at room temperature, and then annealed at 673 K in air stream (30 cm³ min⁻¹) for 2 h. The thermal treatment fully decomposed the acetylacetonate ligand, and no residual organic contaminants were left in the film.² SQ1 quartz slides (10×20 mm, 0.25 mm thickness) were used as substrates. Two successive depositions were performed on the same substrate, each of them by the procedure above-described; a final thermal treatment in air stream at 673 K for 2 h was carried out. The thickness of films, measured by a Tencor P-10 surface profiler, was about 80 nm for a single deposition and about 160 nm for the double deposition. All the films, checked for the microstructure by glancing incidence X-ray diffraction analysis (GIXRD), showed the cassiterite structure. The average particle size was about 3 nm. Details of the GIXRD investigation were reported in refs 3 and 4. The films were labeled as the corresponding powdered samples.

TABLE 1: Treatments of $M-SnO_2$ Powders (M = Ru, Pt, Pd)

sample	treatment	gas stream (30 cm ³ min ⁻¹)	label			
$ \begin{array}{c} \text{xerogel} \\ \text{M(acac)}_n - \text{SnO}_2^a \end{array} $	673 K, 4 h	air	MSnO ₂ 673			
Sequence A						
$MSnO_2673$	623 K, 90 min	air	MA_1623			
MA ₁ 623	623 K, 30 min	NO (495 ppm)/Ar	$MA_{2}623$			
MA ₂ 623	RT, ^b 10 min	air	$MA_{3}623$			
Sequence B						
MSnO ₂ 673	623 K, 90 min		$MB_{1}623$			
$MB_{1}623$	623 K, 30 min	NO (495 ppm)/Ar	$MB_{2}623$			
MB_2623	623 K, 60 min	Ar	MB_3623			

 a M(acac)_n = Ru(acac)₃, Pt(acac)₂, Pd(acac)₂. b RT = room temperature.

Electron Paramagnetic Resonance (EPR) Measurements.

EPR spectra were recorded on powdered samples by using a conventional Bruker EMX spectrometer operating at the X-band frequency and magnetic field modulation of 100 kHz, with a microwave power of 10 and 5 mW and a modulation amplitude of 10 and 3 G. The g values were calculated by comparison with a diphenylpicrylhydrazyl (DPPH) standard sample (g = 2.0036). The amounts of paramagnetic species were calculated by double integration of the resonance line area, taking as reference the area of the Bruker weak pitch $(9.7 \times 10^{12} \pm 5\% \text{ spin cm}^{-1})$ in the case of V_0^{\bullet} and $Sn_{Sn}-O_2^{-}$ centers and the area of the [Ru(acac)₃]-SnO₂ xerogel sample (with Ru/Sn 0.008 molar ratio) in the case of transition metal centers. The resonance lines were simulated by the Bruker WINEPR SimFonia program.

Powdered samples were put into a quartz apparatus suitable for both gas flow interaction and EPR measurements. After each thermal gas treatment, the samples were quenched at room temperature (in about 5 min) and EPR spectra were recorded at 113 K, under the same atmosphere. In the case of air, the spectra were recorded under argon atmosphere, to avoid line broadening due to the possible interaction between molecular oxygen and paramagnetic surface oxygen species.

Two different sequences, A and B, of gas treatments were adopted. Table 1 summarizes the treatments and the sample label.

Sequence A. (1) Ru(Pd,Pt)SnO₂673 samples were treated in dry air stream (30 cm³ min⁻¹) for 90 min at 623 K (samples RuA₁623, PdA₁623, and PtA₁623).

- (2) A NO (495 ppm)/argon mixture was passed over samples $Ru(Pd,Pt)A_1623$ (30 cm³ min⁻¹) at 623 K, and the contact was maintained for 30 min (samples RuA_2623 , PdA_2623 , and PtA_2623).
- (3) Then the samples $Ru(Pd,Pt)A_2623$ were exposed to dry air stream (30 cm³ min⁻¹) at room temperature for 10 min (samples RuA_3623 , PdA_3623 , and PtA_3623).

Sequence B. (1) Ru(Pd, Pt)SnO₂673 samples were treated under a flowing argon stream (30 cm³ min⁻¹) for 90 min at 623 K (samples RuB₁623, PdB₁623, and PtB₁623).

- (2) A NO/argon stream (30 cm³ min $^{-1}$) was passed over samples Ru(Pd,Pt)B₁623 at 623 K, and the contact was maintained for 30 min (samples RuB₂623, PdB₂623, and PtB₂-623).
- (3) Then the samples $Ru(Pd,Pt)B_2623$ were treated again under a flowing argon stream (30 cm³ min⁻¹) for 60 min at 623 K (samples RuB_3623 , PdB_3623 , and PtB_3623).

It has to be pointed out that the EPR investigation was performed at a temperature very different from that of the contact with gases, at the sensor working temperature, under

the hypothesis that the gas-surface equilibria were quenched. Thus, the trend in the amount of paramagnetic species, not their absolute value, may be associated with the redox processes discussed by the electric measurements.

The results of the EPR investigation reported for samples treated at 623 K by sequences A and B did not vary if treatments were performed at 573 K, except for a slightly lower amount of paramagnetic transition metal centers. Lower temperatures were not explored as the electrical responses for Ru- and Pddoped samples were negligible (see electrical properties).

Mössbauer Measurements. Mössbauer experiments were performed at 80.0 K; the source, Ca^{119m}SnO₃, nominal stregth 15 mCi, New England Nuclear Corp., was at room temperature and moved with constant acceleration, giving a triangular waveform. Suitable computer programs were employed in the fitting procedure of the experimental spectra to Lorentzian line shapes by using least-squares minimization techniques. The isomer shift data are relative to room-temperature CaSnO₃. Samples were prepared by finely grinding about 50.0 mg of powder and mixing with vaseline. The suspension was inserted into a lead container and placed inside the cryostat. All the manipulations were carried out in a glovebox under nitrogen atmosphere. The results are reported in Table 2.

As in the case of paramagnetic centers, the differences in Sn electronic properties observed by Mössbauer spectroscopy have to be considered as a behavior trend, because the spectra were taken at a temperature very different from those really modifying the SnO₂ electric properties.

Electrical Measurements. Electrical investigation was performed on double layered films deposited on SQ1 quartz slides (10 mm \times 20 mm, 0.25 mm thickness). Two gold films (10 mm × 4 mm) were deposited at a distance of about 2 mm from each other on the thin films by the dc sputtering technique. Such a procedure was carried out on films after the last annealing in an air stream at 673 K. The samples were put in a quartz chamber and placed in an oven, and the measurements were performed at 473, 523, 573, and 623 K for Pt-doped samples and at 523, 573, and 623 K for Ru- and Pd-doped samples. At lower temperatures the electrical response resulted as too low to be measured. The electrical resistance was measured by a Keithley 617 programmable electrometer. The data acquisition was controlled by the PC connected to the electrometer. Two sequences of gas treatments, A and B, were adopted.

Sequence A. The sensing element was equilibrated in air flow (30 cm³ min⁻¹) at the selected temperature, and then a NO (495 ppm)/Ar mixture was introduced (30 cm³ min⁻¹) up to equilibrium conditions. The starting resistance conditions of the film were restored by air equilibration, before introducing again the NO/Ar mixture. S_A is the electrical response defined as ratio between the film resistance under flowing air and under flowing NO/Ar mixture, respectively.

Sequence B. Alternatively, the sensing element was equilibrated in argon flow (30 cm³ min⁻¹) at the selected temperature and then a NO (495 ppm)/Ar mixture was introduced (30 cm³ min⁻¹) up to equilibrium conditions. The starting conditions of the film were restored by argon equilibration, before introducing again the NO/Ar mixture. S_B is the electrical response defined as ratio between the film resistance under flowing argon and under flowing NO/Ar mixture, respectively.

Results and Discussion

EPR Investigation. Sequence A. Ru-SnO₂. EPR spectra of both RuSnO₂673 and RuA₁623 samples (Figure 1, line a) showed the disappearing, under the oxidative treatment, of the

TABLE 2: Mössbauer Parameters for SnO2 and Ru(Pd,Pt)-Doped SnO₂ Powders at 80.0 K

sample	δ (mm/s)	$\Delta E_{\rm Q}$ (mm/s)	Γ (mm/s)	A (%)
A ₁ 623 ^a	0.21(1)	0.55(2)	1.08(4)	91
	0.44(7)	1.32(9)	1.14(9)	9
A_2623^a	0.22(1)	0.60(1)	1.16(2)	91
	0.42(9)	1.45(8)	1.24(7)	9
B_1623^a	0.17(1)	0.59(1)	1.03(3)	61
	0.42(5)	0.84(6)	1.41(3)	39
B_2623^a	0.23(1)	0.57(2)	1.11(3)	83
	0.43(6)	1.37(9)	1.28(9)	17
B_3623^a	0.14(2)	0.57(2)	1.05(4)	50
	0.39(7)	0.76(7)	1.43(8)	50
RuA ₁ 623	0.24(1)	0.63(2)	1.25(4)	91(4)
	0.43(4)	1.46(7)	0.88(9)	9(4)
RuA ₂ 623	0.21(1)	0.52(2)	0.96(6)	91(9)
	0.41(9)	1.29^{b}	1.21^{b}	9(5)
RuB ₁ 623	0.22(1)	0.55(1)	1.06(4)	79(5)
	0.38(4)	1.29(5)	1.21(6)	21(5)
RuB_2623	0.21(1)	0.56(2)	1.06(4)	89(4)
	0.40(6)	1.29^{b}	1.21^{b}	11(4)
RuB ₃ 623	0.22(1)	0.61(2)	1.15(2)	88(2)
	0.50(5)	1.29^{b}	1.21^{b}	12(3)
PdA ₁ 623	0.18(1)	0.60(2)	1.07(4)	71(5)
	0.49(5)	0.93(6)	1.32(9)	29(5)
PdA ₂ 623	0.20(19)	0.61(1)	1.16(1)	86(2)
	0.41(6)	0.93^{b}	1.32^{b}	14(3)
PdB ₁ 623	0.19(1)	0.52(3)	0.96(9)	68(4)
	0.36(8)	0.93^{b}	1.32^{b}	32(9)
PdB ₂ 623	0.19(1)	0.57(2)	1.07(2)	82(4)
	0.42(6)	0.93^{b}	1.32^{b}	18(7)
PdB_3623	0.19(1)	0.60(2)	1.14(1)	87(4)
	0.55(7)	0.93^{b}	1.32^{b}	13(5)
PtA ₁ 623	0.22(1)	0.64(1)	1.21(4)	100
PtA ₂ 623	0.22(1)	0.57(1)	1.11(1)	100
PtB ₁ 623	0.22(1)	0.59(1)	1.10(2)	85(1)
	3.02(4)	2.09(8)	1.29(8)	15(2)
PtB ₂ 623	0.22(1)	0.58(1)	1.21(2)	89(1)
	3.05(3)	2.00(5)	1.26(9)	11(2)
PtB ₃ 623	0.21(1)	0.56(1)	1.06(1)	100
PtB ₁ 573	0.23(1)	0.57(2)	1.04(6)	83(6)
	0.38(5)	1.31(8)	1.11(9)	17(5)
PtB ₂ 573	0.22(1)	0.55(2)	1.03(6)	86(6)
	0.38(8)	1.27(9)	1.17(8)	14(7)
PtB ₃ 573	0.22(1)	0.57(4)	1.21(6)	87(6)
	0.28(3)	1.43(9)	1.05(9)	13(6)

^a Pure SnO₂ samples (from ref 6). ^b Value constrained to the reported value during the fitting procedure.

resonances at $g_{\perp} = 2.14$ and $g_{\parallel} = 1.50$ attributed to [Ru(acac)₃] precursor dispersed in the as-prepared xerogel (Figure 1, asterisked line). A very low intensity signal of residual Ru³⁺ centers (less than 1.6% of the total ruthenium)² remained; this small amount, with respect to both $[Ru(acac)_3]$ - SnO_2 and the species generated further on, caused us to limit the studies on identification. The spectrum, after flowing NO/Ar treatment (RuA₂623 sample), showed well-defined signals certainly attributable to ruthenium centers with d⁵ low-spin electronic configuration^{8,9} (Figure 1, line b) and was similar to those obtained on Ru-SnO₂ after interaction with CO.² According to these previous results,² the experimental spectrum was fitted by superimposing three different species that locate Ru³⁺ in the field of oxide anions: 8,9 Ru³⁺(A) ($g_1 = 2.804$, $g_2 = 2.237$, $g_3 =$ 1.527), $Ru^{3+}(B)$ ($g_1 = 2.658$, $g_2 = 2.264$, $g_3 = 1.526$), and Ru^{3+} (C) $(g_1 = 2.558, g_2 = 2.340, g_3 = 1.960)$ with relative ratios $Ru^{3+}(A):Ru^{3+}(B):Ru^{3+}(C) = 2.56:4.67:1$ (Figure 1, line b'). After interaction with NO/Ar mixture, the amount of Ru3+ increased from 1.6% to about 23% of the total ruthenium.

The amount of paramagnetic Ru³⁺ decreased to about 5.5%, probably because of its reoxidation to Ru⁴⁺, when RuA₂623 samples were successively treated under air stream at 298 K

Figure 1. EPR spectra, normalized for the sample amount and the operative conditions, recorded at 113 K, of Ru–SnO₂ treated according to the sequence A: (a) RuA₁623; (b) RuA₂623 (experimental); (b') RuA₂623 (simulated); (c) RuA₃623. The asterisked line reports the spectrum at 113 K of [Ru(acac)₃]–SnO₂ xerogel. In the inset is the spectrum of Sn_{Sn} – O_2 ⁻.

(RuA₃623 samples). The formation of the superoxide paramagnetic species² Sn_{Sn}–O₂–, $g_1=2.019$, $g_2=2.001$, and $g_3=1.996$, was observed at the same time (Figure 1, line c and inset); this may be associated with transfer of one electron from Ru³⁺ to O₂, followed by O₂– chemisorption on Sn_{Sn}. The amount of Sn_{Sn}–O₂– centers (5 × 10¹⁵ spin/g) was very low compared with that of Ru³⁺ centers reoxidized to Ru⁴⁺ (5 × 10¹⁸ spin/g) and more than 2 orders of magnitude lower than that evaluated after similar air treatment on CO-reduced samples² (1 × 10¹⁸ spin/g).

Pd-SnO₂. Resonance lines with axial symmetry appeared in the EPR spectra (Figure 2 line a) of PdSnO₂673 and PdA₁623 samples. On the basis of the **g** tensor values ($g_{\perp} = 2.20$, $g_{\parallel} = 2.01$), a low-spin d⁷ electronic configuration, due to tetragonally distorted Pd³⁺ centers, ^{10,11} is proposed. Thus, the oxidation of the xerogel Pd²⁺ centers to Pd⁴⁺ centers in the matrix of oxide anions involves the formation of Pd³⁺ centers, according to the behavior of PdO₂ which loses lattice oxygen also at room temperature. ¹² The amount of paramagnetic Pd³⁺ centers in the PdA₁623 sample was about 15% of the total palladium. After the reaction with flowing NO/Ar at 623 K (PdA₂623 sample), the Pd³⁺ amount increased to 21% of the total palladium and the g_{\perp} value of 2.20 significantly decreases to 2.17 (Figure 2, line b).

The treatment of PdA_2623 in an air stream at 298 K (PdA_3-623 sample) lowered the amount of Pd^{3+} centers to 15% of total Pd, probably owing to reoxidation. At the same time, a number of paramagnetic $Sn_{Sn}-O_2^-$ centers (3 \times 10¹⁶ spin/g) appeared (Figure 2, line c) and the value was 2 orders of magnitude lower than that of reoxidized Pd^{3+} centers (2 \times 10¹⁸ spin/g).

Figure 2. EPR spectra, normalized for the sample amount and the operative conditions, recorded at 113 K on Pd—SnO₂ treated according to the sequence A: (a) PdA₁623; (b) PdA₂623; (c) PdA₃623.

 $Pt-SnO_2$. Both $PtSnO_2673$ and PtA_1623 samples did not show any EPR signal. This suggested that the precursor Pt^{2+} centers were fully oxidized to Pt^{4+} .

The treatment of PtA₁623 with NO/Ar stream at 623 K (PtA₂-623 sample) also did not produce any resonance. It may be hypothesized that the reduction of Pt⁴⁺ centers leads to diamagnetic Pt²⁺ or Pt⁰ species, in agreement with the behavior of Pt–SnO₂ films under CO interaction.³ After the treatment with an air stream at 298 K (PtA₃623 sample), the formation of Sn_{Sn}–O₂⁻ was observed and the number of Sn_{Sn}–O₂⁻ centers was evaluated to be 1.5 \times 10¹⁷ spin/g. The lack of Pt⁽⁴⁻ⁿ⁾⁺ hindered any comparison with superoxide centers concentration; nevertheless, their formation, due to the electron transfer from the semiconductor to O₂, suggested the reduction of Pt⁴⁺ centers by NO.

Sequence B. Ru-SnO₂. Several superimposed resonance lines due to different paramagnetic centers appeared in the EPR spectrum of RuB₁623 sample (Figure 3). The lower field group of signals corresponds to Ru³⁺(A), Ru³⁺(B), and Ru³⁺(C) species already observed in RuA2623, while the higher field signals, typical of low-spin d⁵ centers, ^{8,9} correspond to Ru³⁺-(D) with less distorted rhombic symmetry, as indicated by g tensor values $g_1 = 2.05$, $g_2 = 1.95$, and $g_3 = 1.85$. The total amount of Ru3+ centers is not always the same, the value ranging from 20 to 30% of the total ruthenium. The relative intensities of the two groups of signals differed from sample to sample (see Figure 3). It is not unexpected that low-spin Ru³⁺ centers with different surroundings show so large differences in their magnetic tensor values; in fact, the ground state for a low-spin d⁵ ion in rhombic symmetry involves the $(xz)^2(xy)^2$ -(yz), $(yz)^2(xy)^2(xz)$, and $(xz)^2(xy)(yz)^2$ electronic configurations, whose changes in the relative weight, due to ligand field modifications, induce strong variations of \mathbf{g} tensor values.^{13–16} Similar behavior was reported for ruthenium-exchanged zeolites.8

Figure 3. EPR spectra, normalized for the sample amount and the operative conditions, recorded at 113~K on two different RuB_1623 samples.

The subsequent treatment with NO/Ar mixture (RuB₂623 sample) increased the amount of Ru³⁺(A), Ru³⁺(B), and Ru³⁺(C) species to 30–40% of the total ruthenium, and Ru³⁺(D) species disappeared or its quantity became very low. The annealing under argon (RuB₃623 sample) did not significantly modify the spectrum of the RuB₂623 sample, except for some slight increase of Ru³⁺(D) species.

Pd-SnO₂. After being annealed under flowing argon, the sample PdB₁623 showed an increase of Pd³⁺ centers (32% of the total Pd) with respect to PdSnO₂673 (15%) and the g_{\perp} value shifted as previously observed in the case of sequence A (compare PdA₁623 with PdA₂623 samples).

The subsequent treatment with NO/Ar mixture (PdB₂623 sample) slightly decreased the Pd³⁺ centers to 24%, while the final treatment in argon (PdB₃623 sample) increased again the Pd³⁺ centers to 28%. These last two treatments did not induce any other changes of line shape. The Pd³⁺ electronic ground state is probably less sensitive than that of Ru³⁺ to the crystal field modifications. In fact, the low-spin d⁷ ground configuration of tetragonal Pd³⁺ centers involves the $(xz,yz)^4(xy)^2(z^2)$ and $(xz,yz)^3(xy)^2(z^2)^2$ electronic configurations, whose changes in the relative weight, due to ligand field modifications, induce less relevant variations in **g** tensor values than the d⁵ electronic configurations. ^{10,11,16} The decrease of Pd³⁺ centers in the PdB₂-623 sample cannot be otherwise explained than hypothesizing the presence of EPR-silent reduced metal species. These are reoxidized after the argon treatment (PdB₃623).

Pt-SnO₂. No signals were observed in EPR spectra, whatever the gas treatment.

The results of EPR analysis showed that NO/Ar treatment on Ru(Pd,Pt)-doped SnO₂ injects electrons to the transition metal centers. Taking into account the V_{o}^{\bullet} signals present in the EPR spectra of undoped SnO₂ treated under a NO/Ar mixture⁶ and the possible analogy with the CO/Ar interaction of Ru- and Pt-doped SnO₂, $^{2-5}$ it may be hypothesized that the reduction is mediated by the oxygen defects through the following main reactions:

$$NO + O_o \Leftrightarrow NO_2(gas) + V_o$$
 (5)

$$V_{o} \leftrightarrow V_{o}^{\bullet} + e^{-} \tag{6}$$

$$M(Ru,Pd,Pt)^{4+} + nV_o^{\bullet} \hookrightarrow M(Ru,Pd,Pt)^{(4-n)+} + nV_o^{\bullet\bullet}$$
 (7)

The electron-transfer reaction 7, occurring as the Fermi energy level of transition metal ions is lower than that of SnO_2 shallow defects (V_o^{\bullet}) , should be responsible for the lack of V_o^{\bullet}

resonances in the EPR spectra. This implies that Ru(Pd,Pt)-doped SnO₂, under NO/Ar treatment, lose lattice oxygens, probably those near the transition metal centers, due to the lower strength of the Ru(Pd,Pt)-O₀ bond with respect to Sn_{Sn}-O₀; also the treatment with pure Ar at 673 K (sequence B) induces the same effects. According to the above statements, one may tentatively explain the difference in magnetic anisotropy among the Ru³⁺ species. The higher magnetic anisotropy of Ru³⁺(A), Ru³⁺(B), and Ru³⁺(C) species could be attributed to a higher number of oxygen vacancies surrounding these three centers with respect to Ru³⁺(D) ones. These are present in the initial step of sequence B and change into Ru³⁺(A), Ru³⁺(B), and Ru³⁺(C) after contact with NO/Ar atmosphere (MB₂623), presumably due to the increase in the number of surrounding oxygen defects.

It is expected that, beside the main processes (5)-(7), the side reactions 8 and 9 take place:

$$NO + O_O + Sn_{Sn} \Leftrightarrow Sn_{Sn} - NO_2^- + V_0^{\bullet}$$
 (8)

$$NO_2 + O_O + Sn_{Sn} \leftrightarrow Sn_{Sn} - NO_3^- + V_o^{\bullet}$$
 (9)

Thus, the low amount of $Sn_{Sn}-O_2^-$ centers, with respect to Ru^{4+} and Pd^{4+} centers, may result from the surface chemisorption of NO_2^- and NO_3^- species, which hinders the interaction of Sn_{Sn} sites with O_2^- .

The conversion of few $Ru^{3+}(A)$, $Ru^{3+}(B)$, and $Ru^{3+}(C)$ centers into $Ru^{3+}(D)$ centers, observed by treating RuB_2623 under Ar atmosphere (RuB_3623), is accounted for by the left-hand shift of reactions 8 and 9 that fills the oxygen vacancies; as well, the reoxidation of Pd^{3+} to Pd^{4+} in PdB_3623 may be due to a back-shift of reactions 8 and 9. It must be emphasized that reactions 8 and 9 both produce V_o^{\bullet} defects but do not inject electrons to the conduction band.

The sequence B induces a stronger reduction of the material; this was demonstrated by the greater number of Ru³⁺ and Pd³⁺ centers observed after the sequence B. Furthermore, one may think the prolonged annealing in flowing argon induces the formation of oxygen vacancies whose number increases by subsequent interaction with NO, injecting more electrons into the metal centers.

Mössbauer Investigation. The Mössbauer investigation was aimed to recognize the electronic structure of tin in Ru(Pd, Pt)—SnO₂ powders that had undergone sequences A and B at 623 K. The data on transition metal-doped powders are reported in Table 2 and compared with those obtained for undoped SnO₂ under the same treatments.⁶

The spectra of Ru(Pd)—SnO₂ that had undergone sequences A and B at 623 K (Figure 4a) showed the presence of a single absorption around zero velocity; however, any attempt to fit the spectra as either a single line or a paramagnetic doublet failed, due to the presence of a small residual absorption at positive velocity. The spectra were thus fitted, obtaining in every case good χ^2 , to two strongly overlapped symmetrical quadrupole split doublets, both with typical parameters of inorganic tin(IV) compounds. It must be stressed that the parameters for the second doublet are affected by large errors, and in some cases they had to be constrained to the reported values, due to the small area and strong overlap with the main doublet. In no case were absorptions due to tin(II) species (for SnO, $\delta = 2.74$ and $\Delta E_{\rm Q} = 1.93$ mm/s) detected.¹⁷ The first most intense doublet is attributable to SnO2.17 The second doublet, much lower in intensity, is due to a tin(IV) species with higher electron density at the nucleus, as proved by the larger δ value. The amount of

Figure 4. Mössbauer spectra at 80.0 K of (a) RuB₁623, (b) PtA₁623, and (c) PtB₁623.

à

-2

0.95

this latter species is higher in sequence B, in agreement with the larger amount of EPR-active reduced metal centers. For the same sequence B smaller differences between the relative amounts of the two species were observed in samples Ru(Pd)-B₁623, Ru(Pd)B₂623, and Ru(Pd)B₃623 with respect to undoped SnO₂ samples. It seems the doping metal lowers the difference in the charge amount induced on tin(IV) by interaction with gases, in agreement with the reduction mechanism suggested on the basis of EPR results. The electrons trapped into the oxygen vacancies are injected into the conduction band and transferred to transition metal centers (reaction 3), which in turn undergo reduction, without relevant charge effect on the tin centers.

Strong differences were instead observed in charge symmetry as a function of the doping metal, the $\Delta E_{\rm Q}$ average value of 1.29 mm/s for the second Ru–SnO₂ doublet being significantly higher than the value of 0.93 mm/s for the corresponding Pd–SnO₂ doublet. This may suggest that Ru³⁺ centers induce stronger distortion than Pd³⁺ into the symmetry of the electronic distribution around Sn(IV), according to the higher magnetic anisotropy of all the Ru³⁺ centers with respect to Pd³⁺ centers.

Figure 5. Resistance variations vs time of SnO₂ and Ru-doped SnO₂ films, under a pulse of NO/Argon at 623 K, using (a) sequence A and (b) sequence B. Key: (*) SnO₂; (◆) Ru-SnO₂.

In the case of Pt-SnO₂ that had undergone sequence A, only the first doublet at $\delta = 0.22$ mm/s was evident (Figure 4b); attempts to fit the spectrum with the two tin(IV) absorptions failed.

After sequence B, a second absorption at higher velocity, δ around 3 mm/s and ΔE_Q around 2 mm/s, became evident in samples PtB₁623 and PtB₂623 (Figure 4c). The new doublet, peculiar to Sn(II) species, suggests some of the electrons injected into SnO₂ move from the oxygen vacancies to the tin centers. The final treatment under argon, PtB₃623, probably induces reoxidation of the small amount of Sn(II) to Sn(IV), according to the back-shift of reactions 8 and 9.

Because Pt-SnO₂ showed remarkable electrical sensitivity (see electrical properties) already at a temperature lower than 623 K, the sequence B was performed also at 573 K. The results indicated that at this temperature Pt-SnO2 behaves as the analogous Ru(Pd)-doped samples, though with higher distortion, ΔE_0 average value of 1.34 mm/s, in the more reduced Sn(IV) species (Table 2). According to this statement, it seems Pt causes for Sn(IV) an electronic distribution of higher distortion than that caused by Ru and Pd. Thus Pt, under reducing conditions, should have greater tendency to segregate, instead of remaining dispersed in the lattice. This clustering effect is expected to increase with the operating temperature and perhaps generates an energy barrier at the phase contact hindering the electron transfer of reaction 7. Under this guess, besides the reduction of Pt^{4+} to $Pt^{(4-n)+}$, one can suppose to take place also the formation of Sn(II) in PtB₁623 and PtB₂623.

Electrical Properties of Ru(Pd,Pt)-Doped SnO₂ Films. Electric resistance measurements of undoped and Ru-doped SnO₂ films that had undergone sequence A and B are reported and compared in Figure 5a,b, respectively. Similar behavior was observed in films doped with the other (Pd, Pt) transition metals. The electrical response of each film is reproducible, even if the electrical conductance is different among films of the same composition. In any case the electrical response is alike among the specimens coming from the same set of composition.

Figure 6. Variation of the number of paramagnetic transition metal centers, expressed as ions g⁻¹ (left axis) and % of the total metal (right axis), in sequence A, (▲) Pd-SnO₂ and (♦) Ru-SnO₂, and sequence B, (\triangle) Pd-SnO₂ and (\diamondsuit) Ru-SnO₂.

Differences in the electrical conductance are generally due to no small difference in film thickness as well as in distance between the measuring electrodes.

The decrease of the electrical resistance, in flowing NO/Ar mixture, suggests electron injection into the oxide by NO and agrees with the reductive effects pointed out by EPR experiments.

The electrical response is significantly enhanced in transition metal-doped samples only when samples underwent sequence B (Figure 5b). The metal effect is very low in sequence A (Figure 5a).

On the basis of the present results, the electron injection into the conduction band due to NO seems to be significantly promoted by a transition metal only if the film was equilibrated under argon (sequence B). This does not agree with the data for EPR measurements (Figure 6): in fact the number of Ru-(Pd)³⁺ centers produced by NO/Ar treatment under sequence A was relevant, despite the low resistance variation. On the contrary, the number of transition metal centers produced by NO/Ar treatment under sequence B was low if compared with the variation of electrical properties and also decreased in the case of Pd. As for sequence B, it may be suggested that NO reduction involves also diamagnetic metal species, injecting further electrons to the conduction band. In sequence A, the relevant amount of reduced transition metal species, with respect to electrical response, may be attributed to reductive effects mediated by reactions 8 and 9 whose electrons (V₀•) can be trasferred to metal cationic sites but not injected to the conduction band.

The electrical responses S_B as a function of the operating temperature are reported in Figure 7; their values strongly depend on the nature of the doping metal. Platinum-doped material acts as the best sensitizer also at 523 K, a temperature where the other doping metals show poor effects. It may be suggested that the higher capability of Pt4+ centers to trap Vo• defects, with respect to Ru⁴⁺ and Pd⁴⁺, shifts toward the righthand side the reactions 7, 6, and 5.

Figure 7. Temperature dependence of S_B (ratio between the film resistance under flowing argon and that under flowing NO/Ar mixture) for the following: (\square) undoped SnO₂; (\triangle) Pd-SnO₂; (\diamondsuit) Ru-SnO₂; (O) Pt-SnO₂ that had undergone sequence B.

The significant decrease in the electrical response of the Ptdoped SnO₂, at 623 K, is probably due to clustering of Pt centers that hinders the electron transfer at the metal-semiconductor contact.

Conclusions

The results reported in this paper demonstrate that the electrical response of Ru(Pd,Pt)-doped SnO₂ to NO is due to the oxygen defect formation (V_0) , to their subsequent ionization to V_0^{\bullet} , and to injecting electrons into the oxide conduction band.

The localized V_0^{\bullet} electrons are then transferred to M^{4+} centers reducing different amounts of them. This electron transfer allows further interaction of NO with the semiconductor surface promoting both the formation of oxygen defects (reactions 5 and 6) and the electrical response (reaction 2).

The electrical response depends on the dispersion of transition metal centers and on the number of electrons they accept from V_o•. This was maximum for Pt⁴⁺ centers, which have the highest tendency to be reduced¹⁸ compared with Ru⁴⁺ and Pd⁴⁺.

Acknowledgment. This paper is dedicated, on the occasion of his 70th birthday, to Professor Franco Cariati, who back in 1970 first introduced the use of electron paramagnetic resonance investigation to the School of Inorganic Chemistry of the University of Milano.

References and Notes

- (1) Yamazoe, N.; Miura, N. Chemical Sensors Technology; Yamauchi, S., Ed.; Kodansha Ltd. and Elsevier Science Publishers BV: Tokyo, Amsterdam, 1992; Vol. 4, pp 19-42.
- (2) Canevali, C.; Chiodini, N.; Morazzoni, F.; Scotti, R. J. Mater. Chem. **2000**, 10, 773-778.
- (3) Morazzoni, F.; Canevali, C.; Chiodini, N.; Mari, C. M.; Ruffo, R.; Scotti, R.; Armelao, L.; Tondello, E.; Depero, L. E.; Bontempi, E. Chem. Mater. 2001, 13, 4355-4361.
- (4) Armelao, L.; Barreca, D.; Bontempi, E.; Morazzoni, F.; Canevali, C.; Depero, L. E.; Mari, C. M.; Ruffo, R.; Scotti, R.; Tondello, E. Appl. Magn. Reson. 2002, 22, 89-100.
- (5) Acciarri, M.; Canevali, C.; Mari, C. M.; Mattoni, M.; Ruffo, R.; Scotti, R.; Morazzoni, F.; Barreca, D.; Armelao, L.; Tondello, E.; Bontempi, E.; Depero, L. E. Chem. Mater. 2003, 15, 2646-2650.
- (6) Canevali, C.; Mari, C. M.; Mattoni, M.; Morazzoni, F.; Scotti, R.; Ruffo, R.; Russo, U.; Nodari, L. Sens. Actuators, B 2004, 100, 228-235.
- (7) Hampden-Smith, M. J.; Wark, T. A.; Rheingold, A.; Huffman, J. C. Can. J. Chem. 1991, 69, 121-129.
 - (8) Carl, P. J.; Larsen, S. C. J. Catal. 2000, 196, 352-361.

- (9) Chaudhary, V. A.; Mulla, I. S.; Vijayamohanan, K.; Hegde, S. G.; Srinivas, D. J. Phys. Chem. B 2001, 105, 2565-2571.
- (10) Raizman, A.; Barak, J.; Suss, J. T. Phys. Rev. B 1985, 31, 5716-
- (11) Michalik, J.; Heming, M.; Kevan, L. J. Phys. Chem. 1986, 90, 2132-2136.
- (12) Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic
- Press: New York, 1995; p 1521.
 (13) Golding, R. M. Applied Wave Mechanics; D. Van Nostrand Co. Ltd.: London, 1969; p 278.
- (14) Araneo, A.; Mercati, G.; Morazzoni, F.; Napoletano, T. Inorg. Chem. 1977, 16, 1196.
 - (15) Mercati, G.; Morazzoni, F. Gazz. Chim. Ital. 1979, 109, 161.
- (16) Drago, R. S. Physical Methods in Chemistry; W. B. Saunders Co.: Philadelphia, PA, 1977; pp 492-497.
- (17) Geenwood, N. N.; Gibb, T. C. Mossbauer Spectroscopy; Chapman & Hall: London, 1971.
- (18) Holleman, A. F.; Wiberg, E. Inorganic Chemistry; Academic Press: New York, 1995; p 1134.