TD4 - Correction

Exercice 1. Convergence en probabilité et Borel-Cantelli

1. Supposons que pour tout $\varepsilon > 0$, $\sum \mathbb{P}(|X_n - X| > \varepsilon) < \infty$. Pour $\varepsilon > 0$ fixé, le lemme de Borel-Cantelli donne donc

$$\mathbb{P}\big(\limsup\{|X_n - X| > \varepsilon\}\big) = 0.$$

En particulier, pour tout $p \in \mathbb{N}^*$, p.s. il existe $N(=N(\omega))$ tel que

$$\forall n \geqslant N, \quad |X_n - X| \leqslant \frac{1}{p}.$$

Quitte à écarter une réunion dénombrable d'ensembles négligeables on peut dire que p.s., pour tout $p \in \mathbb{N}^*$, il existe N tel que

$$\forall n \geqslant N, \quad |X_n - X| \leqslant \frac{1}{p}.$$

Ceci pour prouve que $X_n \to X$ p.s.

2. Supposons maintenant que les (X_n-X) sont indépendantes. Par contraposée, supposons qu'il existe $\varepsilon>0$ tel que

$$\sum \mathbb{P}\big(|X_n-X|>\varepsilon\big)=\infty\ .$$

Avec l'hypothèse, on peut utiliser la deuxième partie du lemme de Borel-Cantelli, et on obtient

$$\mathbb{P}\big(\limsup\{|X_n-X|>\varepsilon\}\big)=1.$$

Autrement dit, p.s. il existe une infinité d'indices n tels que $|X_n - X| > \varepsilon$. On ne peut donc pas avoir $X_n \to X$ p.s.

3. Considérons $X_n = \frac{1}{n}Y$ où Y suit la loi de Cauchy de densité $\frac{1}{\pi(1+y^2)}$ sur \mathbb{R} . Bien sûr, Y est finie p.s., donc $X_n \to 0$ p.s. Mais par contre, pour $\varepsilon > 0$ quelconque,

$$\sum \mathbb{P}(|X_n| > \varepsilon) = \sum \mathbb{P}(Y > n\varepsilon).$$

Or

$$\mathbb{P}(Y > n\varepsilon) = \int_{n\varepsilon}^{+\infty} \frac{dy}{\pi(1+y^2)} = \frac{1}{\pi} \left[\arctan(y) \right]_{n\varepsilon}^{+\infty} = \frac{1}{\pi} \left(\frac{\pi}{2} - \arctan(n\varepsilon) \right) = \frac{1}{\pi} \arctan\left(\frac{1}{n\varepsilon} \right) \sim \frac{1}{\pi\varepsilon n} \ .$$

Par conséquent,

$$\sum \mathbb{P}(|X_n|>\varepsilon)=\infty\;.$$

Ainsi, l'équivalence n'est pas vérifiée sans l'hypothèse d'indépendance.

Exercice 2. Des exemples et contre-exemples

- **1.** Soit X une v.a.r. dont la densité est $x \mapsto \frac{1}{x^2} \mathbf{1}_{x>1}$. Alors $X_n = X \mathbf{1}_{X < n}$ converge p.s. vers X. Mais on n'a pas convergence dans L^1 car la limite X n'est pas intégrable.
- **2.** Considérons une suite X_n de v.a. indépendantes de lois respectives $\mathcal{B}(\frac{1}{n})$. On a

$$\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = \frac{1}{n}$$

qui tend vers zéro. Donc $X_n \to 0$ dans L^1 . Mais, pour $\varepsilon \in]0,1[$, on a

$$\sum \mathbb{P}(|X_n| > \varepsilon) = \sum \mathbb{P}(X_n = 1) = \sum \frac{1}{n} = \infty$$

donc en appliquant le critère de l'exercice 1, X_n ne converge pas vers zéro p.s.

- 3. On peut reprendre l'exemple de la question précédente, vu que la convergence L^1 implique la convergence en probabilité.
- **4.** D'abord, notons que pour la convergence en loi, les v.a. X_n ne sont pas nécessairement définies sur le même espace de probabilité, contrairement au cas de la convergence en probabilité. Mais ici, pour que la question soit bien posée, on considérera des X_n définies sur un même espace de probabilité.

On peut par exemple considérer une suite (X_n) de v.a. i.i.d. de loi $\mathcal{B}(\frac{1}{2})$. Il est clair que $X_n \to X$ avec $X \sim \mathcal{B}(\frac{1}{2})$. Mais par contre (X_n) ne converge pas en probabilité. En effet, si c'était le cas, on pourrait extraire une sous-suite $(X_{\varphi(n)})$ qui converge p.s. Mais cette sous-suite est encore une suite de v.a. i.i.d. $\mathcal{B}(\frac{1}{2})$, et donc p.s. prend une infinité de fois la valeur 1, et aussi une infinité de fois la valeur 0, ce qui empêche la converge p.s. Ainsi, (X_n) ne converge pas en probabilité.

5. On peut prendre par exemple $X_n = X$ et $Y_n = -X$ où X est une v.a. suivant la loi $\mathcal{N}(0,1)$. On a que $X_n \to X$ en loi, $Y_n \to X$ en loi (car X et -X ont la même loi), mais $X_n + Y_n = 0$ ne converge pas en loi vers 2X. Par conséquent, (X_n, Y_n) ne converge pas en loi vers (X, X), car sinon, on pourrait composer avec l'addition

$$f:(x,y)\longmapsto x+y$$

qui est bien une fonction continue, pour obtenir $X_n + Y_n \rightarrow X + X$ en loi.

En fait, on a bien sûr $(X_n, Y_n) \to (X, -X)$ en loi d'où $X_n + Y_n \to X - X = 0$ en loi.

Exercice 3.

Exercice 4.

Soit (X_n) une suite de v.a. de densités respectives $f_n(x) = \frac{n}{\sqrt{\pi}} \exp(-(nx-n-1)^2)$.

1. On reconnaît que la densité de X_n est proportionnelle à l'exponentielle d'une forme quadratique. On peut donc déjà dire que X_n suit une loi gaussienne. Pour trouver les paramètres, on écrit

$$f_n(x) = \exp\left(-\frac{(x - \frac{n-1}{n})^2}{2\frac{1}{2n^2}}\right) n$$

et on peut donc identifier

$$\mathbb{E}[X_n] = \frac{n-1}{n} = 1 - \frac{1}{n}$$
 et $Var(X_n) = \frac{1}{2n^2}$.

2. On remarque que

$$\mathbb{E}[X_n] \to 1$$
 et $Var(X_n) \to 0$.

D'après le critère vu en cours, on en déduit que $X_n \to 1$ dans L^2 (et donc aussi en probabilité et en loi). Enfin, pour tout $\varepsilon > 0$, en utilisant l'inégalité de Markov,

$$\mathbb{P}(|X_n - 1| > \varepsilon) \le \frac{1}{\varepsilon^2} \mathbb{E}[(X_n - 1)^2].$$

Or

$$\mathbb{E}[(X_n-1)^2] = \operatorname{Var}(X_n) + (\mathbb{E}[X_n]-1)^2 = \frac{1}{2n^2} + \frac{1}{n^2} = \frac{3}{2n^2}.$$

Par conséquent, $\sum \mathbb{P}(|X_n - 1| > \varepsilon) < \infty$. Avec le critère de l'exercice 1, on en déduit que $X_n \to 1$ p.s.

Exercice 5.

On calcule la fonction caractéristique φ_n de $\frac{X_n}{n}$: pour tout $\xi \in \mathbb{R}$,

$$\varphi_n(\xi) = \mathbb{E}\left[e^{i\xi\frac{\chi_n}{n}}\right] = \sum_{k\geqslant 1} \frac{\lambda}{n} \left(1 - \frac{\lambda}{n}\right)^{k-1} e^{i\frac{\xi k}{n}} = \frac{\lambda}{n} e^{i\frac{\xi}{n}} \sum_{k\geqslant 0} \left(\left(1 - \frac{\lambda}{n}\right)e^{i\frac{\xi}{n}}\right)^k$$

$$= \frac{\lambda}{n} \frac{e^{i\frac{\xi}{n}}}{1 - \left(1 - \frac{\lambda}{n}\right)e^{i\frac{\xi}{n}}} = \frac{\lambda}{n} \frac{1}{e^{-i\frac{\xi}{n}} - 1 + \frac{\lambda}{n}} = \frac{\lambda}{n} \frac{1}{-i\frac{\xi}{n} + \frac{\lambda}{n} + o(\frac{1}{n})} = \frac{\lambda}{\lambda - i\xi + o(1)} \longrightarrow \frac{\lambda}{\lambda - i\xi}.$$

La limite est donc la fonction caractéristique de la loi exponentielle de paramètre λ . Avec le théorème de Lévy, on en déduit que $\frac{X_n}{n} \to \mathcal{E}(\lambda)$ en loi.

Exercice 6.

Exercice 7.

1. Comme on l'a déjà vu en TP (méthode d'inversion), les v.a. $-\log(U_n)$ sont i.i.d. de loi $\mathcal{E}(1)$. En particulier, elles sont intégrables et $\mathbb{E}[\log(U_n)] = 1$. Avec la loi forte des grands nombres, on en déduit que

$$S_n = \frac{1}{n} \sum_{k=1}^n \log(U_k) \longrightarrow -1$$
 p.s.

2. On a donc

$$\log X_n = \frac{\alpha}{n} \sum_{k=1}^n \log(U_n) \longrightarrow -\alpha$$
 p.s.

Par continuité de exp, on en déduit

$$X_n \longrightarrow e^{-\alpha}$$
 p.s.

3. Là encore en passant au log, on a

$$\log Z_n = \alpha \sqrt{n} + \frac{\alpha}{\sqrt{n}} \sum_{k=1}^n \log U_n = \frac{\alpha}{\sqrt{n}} \sum_{k=1}^n (\log U_n + 1).$$

Or $\log(U_n)$ et de carré intégrable et $\operatorname{Var}(\log U_n) = \operatorname{Var}(-\log U_n) = 1$. Le théorème central limite assure que

$$\log Z_n \xrightarrow[n\to\infty]{\text{loi}} \mathcal{N}(0,1)$$
.

Là encore pour la convergence en loi on peut composer par la fonction continue exp ce qui donne que

$$Z_n \longrightarrow e^N$$
 où $N \sim \mathcal{N}(0,1)$.

Exercice 8.

Exercice 9.

Exercice 10.

D'abord, remarquons que la donnée de l'énoncé caractérise la loi de (X, Y) car elle implique que pour toute fonction mesurable positive $f : \mathbb{N} \to \mathbb{R}_+ \to \mathbb{R}$,

$$\mathbb{E}[f(X,Y)] = \sum_{n \in \mathbb{N}} \int_0^\infty f(n,y) \, b \frac{(ay)^n}{n!} e^{-(a+b)y} dy .$$

1. Pour calculer cette probabilité conditionnelle, on a déjà besoin de la loi de X. En faisant $t \to \infty$ dans la donnée de l'énoncé, on a pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(X=n) = \frac{ba^n}{n!} \int_0^\infty y^n e^{-(a+b)y} dy$$
$$= \frac{ba^n}{n!} \int_0^\infty \left(\frac{z}{a+b}\right)^n e^{-z} \frac{dz}{a+b}$$
$$= \frac{ba^n}{n!(a+b)^{n+1}} \int_0^\infty z^n e^{-z} dz.$$

Par intégration par parties successives on montre que $\int_0^\infty z^n e^{-z} dz = n!$. Par suite

$$\forall n \in \mathbb{N}, \quad \mathbb{P}(X=n) = \frac{ba^n}{(a+b)^{n+1}}$$
.

On a donc pour tout $n \in \mathbb{N}$ et t > 0,

$$\mathbb{P}(Y \le t | X = n) = \frac{\mathbb{P}(Y \le t, X = n)}{\mathbb{P}(X = n)} = \frac{(a+b)^{n+1}}{n!} \int_0^t y^n e^{-(a+b)y} dy.$$

Autrement dit, sachant X = n, Y admet pour densité conditionnelle $y \mapsto \frac{(a+b)^{n+1}}{n!} y^n e^{-(a+b)y} \mathbf{1}_{y>0}$. Par suite, pour toute fonction ψ mesurable positive,

$$\mathbb{E}[\psi(Y)|X] = \frac{(a+b)^{X+1}}{X!} \int_{\mathbb{R}} \psi(y) y^X e^{-(a+b)y} dy.$$

En fait, ceci signifie que la loi conditionnelle de Y sachant X est une loi Gamma G(X+1,a+b).

2. Comme $\frac{1}{X+1}$ est $\sigma(X)$ -mesurable, on a par définition de l'espérance conditionnelle

$$\mathbb{E}\left[\frac{Y}{X+1}\right] = \mathbb{E}\left[\mathbb{E}[Y|X] \, \frac{1}{X+1}\right] \; .$$

D'autre part, en utilisant l'espérance des lois Gamma rencontrée dans un TD précédent, on a

$$\mathbb{E}[Y|X] = \frac{X+1}{a+b}$$

ďoù

$$\mathbb{E}\left[\frac{Y}{X+1}\right] = \mathbb{E}\left[\frac{X+1}{a+b} \frac{1}{X+1}\right] = \frac{1}{a+b} .$$

3. Pour conditionner par rapport à Y, on a d'abord besoin de calculer la loi marginale de Y. Pour toute fonction φ mesurable positive,

$$\mathbb{E}[\mathbf{1}_{X=n}\varphi(Y)] = b \int_{\mathbb{R}} \varphi(y) \frac{(ay)^n}{n!} e^{-(a+b)y} dy.$$

En sommant sur n, on obtient par convergence monotone

$$\mathbb{E}[\varphi(Y)] = b \int_{\mathbb{R}} \varphi(y) e^{ay} e^{-(a+b)y} dy = b \int_{\mathbb{R}} e^{-by} dy.$$

Autrement dit $Y \sim \mathcal{E}(b)$. Dans l'expression au dessus, on peut donc mettre en facteur la densité de Y pour obtenir

$$\mathbb{E}[\mathbf{1}_{X=n}\varphi(Y)] = \mathbb{E}[\psi_n(Y)\varphi(Y)]$$

où $\psi_n(y) = \frac{(ay)^n}{n!} e^{-ay}$ Par conséquent

$$\mathbb{P}(X = n | Y) = \mathbb{E}[\mathbf{1}_{X = n} | Y] = \psi_n(Y) = \frac{(aY)^n}{n!} e^{-aY} \; .$$

Autrement dit, la loi conditionnelle de X sachant Y est la loi $\mathcal{P}(aY)$. En utilisant l'espérance de la loi de Poisson, on en déduit

$$\mathbb{E}[X|Y] = aY.$$

Exercice 11.