Generalizability of Neural Networks with a Fourier Feature Embedding

Nithin Raghavan Richard Hu Alberto Checcone

- Why do we measure the generalizability of a neural network?
 - We want to measure the training accuracy and testing accuracy over time.
 - Generalizability can be viewed as a complexity measure of data that one can use to predict the test accuracy of the learned neural network.
 - We can thereby give a clear bound on the evolution of certain classes of neural networks so that we can see how they evolve over time.
 - This can also measure the richness of the class of functions that a neural network can learn.
 - 3D shape regression, 2D image regression, CT, MRI, etc.
 - Occupancy networks

- Why measure Neural Network generalizability?
 - Relates training accuracy to test accuracy
 - Less complex = more generalizable

- How do we measure the generalizability of a neural network?
 - Empirical Rademacher complexity directly gives an upper bound on generalization error
 - Rademacher complexity can give us an easily verifiable measure that can differentiate between true labels and random labels.
 - Using the neural tangent kernel, we can obtain closed-form bounds for the Rademacher complexity over training and testing set for neural networks.

- How is generalizability measured?
 - o Rademacher complexity upper bounds generalization error.
 - Allows for NN optimization.

What is a neural tangent kernel?

- The Neural Tangent Kernel (NTK) is a kernel function that describes the evolution of artificial neural networks during training using gradient descent.
- The NTK tools additionally lend themselves useful when using a 1-Lipschitz loss function.

$$\Theta\left(x,y; heta
ight) = \sum_{p=1}^{P} \partial_{ heta_{p}} f\left(x; heta
ight) \partial_{ heta_{p}} f\left(y; heta
ight).$$

Neural Networks and the Neural Tangent Kernel

2-layer Neural Networks reduce to kernelized ridge regression.

$$k_{\text{NTK}}(\mathbf{x}_i, \mathbf{x}_j) = \mathbb{E}_{\theta \sim \mathcal{N}} \left\langle \frac{\partial f(\mathbf{x}_i; \theta)}{\partial \theta}, \frac{\partial f(\mathbf{x}_j; \theta)}{\partial \theta} \right\rangle$$

What is a neural tangent kernel?

- A kernel function k(x, y) is a positive-definite function that measures the similarity between vectors x and y.
 - On Dot product kernels are of the form $k(x, y) = \Phi(x) \cdot \Phi(y)$, where Φ is a lifting into some different feature space.
- A Gram matrix H is an n by n Hermitian matrix such that $H_{i,j} = k(x_i, x_j)$, where k is a kernel
 - n is the number of sample points.
- Overview:
 - Generalize bound on NN
 - NN at infinite epochs → kernel RR with no ridge (where kernel = NTK)
 - Nithin paper => can use four yay feet to modify NTK
 - Note that generalizability → small values of projections of labels onto NTK eigenvectors
 - So we can create bound 2 with good B

Kernels

- The kernel function $k(x, y) := \Phi(x) \cdot \Phi(y)$ for some $\Phi(x) = \Phi(x) \cdot \Phi(y)$
- The (Positive Definite) Gram matrix is H_{i,j} = k(x_i, x_j)

Coordinate-Based MLP

- MLPs with a ReLU activation function taking in points from R^d
- Input is generally very low dimensional
- Want to learn labels

Fourier Feature embedding

- Coordinate-based multi-layer perceptrons
 - Feed-forward neural networks that only take in the coordinates of an input, instead of the entire input itself
- A Fourier Feature embedding is an embedding γ(v) of the input to a coordinate-based multi-layer perceptron of the following form:

$$\gamma(\mathbf{v}) = \left[a_1 \cos(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), a_1 \sin(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), \ldots, a_m \cos(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v}), a_m \sin(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v})\right]^{\mathrm{T}}$$

Fourier Feature embedding

- Low feature space = MLPs can't approximate well
- Idea: lift features onto surface of hypersphere
- A Fourier Feature embedding γ(v) defined below:
 - \circ B = [b₁,...,b_m] and m are hyperparameters
 - o a₁'s are constant with ||a|| = 1

$$\gamma(\mathbf{v}) = \left[a_1 \cos(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), a_1 \sin(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), \dots, a_m \cos(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v}), a_m \sin(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v}) \right]$$

Why use a Fourier Feature embedding?

- MLPs with ReLU have a "wide" kernel that leads to over-smoothing.
- Necessary to learn high frequency functions
- Fourier feature embedding allows modification of NTK kernel matrix

What is a Fourier Feature embedding?

- Why use a Fourier Feature embedding?
 - Recent advances in NTK theory have shown that MLPs with ReLU have a "wide" kernel that leads to "over-smoothing".
 - Useful in high-dimensional tasks in order to prevent overfitting In low dimensions
 - Such an embedding is necessary to learn high dimensional features
 - We would like to measure the generalizability of coordinate-based neural networks
 using the Fourier Feature embedding with a fixed sample size, but varying the
 number of allowed frequencies.

Basic Rademacher complexity bound

 Observation: norm of a vector passed through Fourier Feature embedding is bounded by the number of frequencies:

$$\|\gamma(x_i)\|_2 = \sqrt{\sum_{i=1}^r \cos^2(2\pi b_i^\top x_i) + \sum_{i=1}^r \sin^2(2\pi b_i^\top x_i)} = \sqrt{r}$$

 First idea: create weak bound on generalizability using only number of frequencies

Basic Rademacher complexity bound

 To conduct this kind of analysis, we consider the class of neural networks whose weights are bounded by some constant (usually the case in practice)

$$\mathcal{H}' \doteq \{ f_{\Theta} : ||w||_2 \le B_2', ||u_j||_2 \le B_2 \ \forall j = [m] \}$$

Where the neural network itself is a 2-layer ReLU network defined as:

$$f_{\Theta} = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} w_i \phi(u_i^{\top} x)$$

Basic Rademacher complexity bound

After some analysis, we concluded that

$$\operatorname{Rad}_S(\mathcal{H}') \le 2B_2 B_2' \sqrt{\frac{r}{n}}$$

Advancements in NTK theory

- Arora, et al. (2019)
 - Relates generalizability to NTK eigendecomposition

$$\sqrt{\frac{2\mathbf{y}^{\top} \left(\mathbf{H}^{\infty}\right)^{-1}\mathbf{y}}{n}}$$

$$y^{\top}(H^{\infty})^{-1}y = y^{\top} \left(\sum_{i=1}^{n} \frac{1}{\lambda_{i}} v_{i}^{\top} v_{i} y \right) = \sum_{i=1}^{n} \frac{(v_{i}^{\top} y)^{2}}{\lambda_{i}}$$

Why are NTKs useful here?

 Arora, et al. (2019) found that the generalizability during training of a neural network follows this (where v_i refers to the eigenvectors of the NTK):

$$\sum_{i=1}^n \frac{(v_i^\top y)^2}{\lambda_i}$$

Relating Fourier Feature embedding to the NTK

- NTK matrix modifiable using Fourier Feature embedding
- How do we quantify this?

Why are NTKs useful here?

- This implies that if we modify the NTK of the neural network, we can directly control the eigenvalues of the NTK, and therefore control the generalizability of the network as a whole.
- Two aspects: More frequencies means that the network is able to quickly learn
 high dimensional information, but also changing the b-values implies that different
 frequencies in the training set can be learned faster.
- How do we quantify this?

Better Rademacher complexity bound

Arora, et al. 2019 showed NTK for a two-layer neural network is as follows:

$$h_{\text{NTK}}(z) = \frac{z(\pi - \cos^{-1}z)}{2\pi}$$

Which bounds the Rademacher complexity:

$$\mathcal{R}_S\left(\mathcal{F}_{R,B}^{\mathbf{W}(0),\mathbf{a}}\right) \le \frac{B}{\sqrt{2n}}\left(1 + \left(\frac{2\log\frac{2}{\delta}}{m}\right)^{1/4}\right) + \frac{2\sqrt{2}R^2\sqrt{m}}{\sqrt{\pi}\kappa} + R\sqrt{2\log\frac{2}{\delta}},$$

Better Rademacher complexity bound

We obtain the following derivation:

$$h_{\text{NTK}}(\gamma(x_i)^{\top}\gamma(x_j)) = \sum_{j=1}^{r} a_j^2 \cos(2\pi b_j(x_i - x_j)) \left(\frac{\pi - \cos^{-1}\left(\sum_{j=1}^{r} a_j^2 \cos(2\pi b_j(x_i - x_j))\right)}{2\pi} \right)$$

Better Rademacher complexity bound

 Neural Tangent Kernel theory was used here to obtain a testing generalization bound of (where H[®] is the NTK Gram matrix)

$$\sqrt{\frac{2y^{\top}(H^{\infty})^{-1}y}{n}}$$

Fourier Feature embedding reduces equation on previous slide to:

$$\sqrt{\frac{2}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j h_{\text{NTK}}(\gamma(x_i)^{\top} \gamma(x_j))^{-1}}$$

Next steps: Measuring Empirical Generalizability

- Convert inputs to be uniformly sampled over [0, 1)^d forms spherical convolution over input space
 - o i.e., 2-D occupancy network, image memorization
- Implies eigenvectors of Gram matrix form DFT matrix

$$W = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix}$$

Next steps: Rademacher bound optimization

- Use experiments to calculate which b values achieve best bound
- Quantify importance of b values through occupancy networks

Next steps: Rademacher bound of RKHS norm

 Another idea: NNs trained using gradient descent are in the span of the training data in a reproducing kernel Hilbert space (RKHS) induced by the NTK.

Next steps: Rademacher bound of RKHS norm

- Li, et al. (2020) finds the complexity of functions evaluated with an RKHS-norm converging to kernel ridge regression
 - Much harder than the other path
- We can then apply Rademacher analysis on the kernel ridge regression problem using the RKHS norm, and using FF embedding

$$\left\|\hat{f}_l - \hat{f}_{l-1} \right\|_{\mathcal{H}}$$

$$\hat{\mathfrak{R}}_{v^l}(\mathcal{L}(\hat{f}_{l-1}, D; f_l, B_l)) \leq \frac{DR}{\sqrt{M}}.$$