3章 積分法

教科書にしたがって,積分定数Cは省略

問1

- (1) $1 + \sin x = t$ とおくと, $\cos x \, dx = dt$ よって 与式 = $\int t^3 \, dt$ = $\frac{1}{4}t^4$ = $\frac{1}{4}(1 + \sin x)^4$
- (2) 3x+1=t とおくと,3dx=dt より, $dx=\frac{1}{3}dt$ よって $与式=\int\sqrt{t}\cdot\frac{1}{3}dt$ $=\frac{1}{3}\int t^{\frac{1}{2}}dt$ $=\frac{1}{3}\cdot\frac{2}{3}\cdot t^{\frac{3}{2}}$ $=\frac{2}{9}t\sqrt{t}$ $=\frac{2}{9}(3x+1)\sqrt{3x+1}$
- (4) $x^2=t$ とおくと, $2x\,dx=dt$ より, $x\,dx=\frac{1}{2}dt$ よって 与式 = $\int e^t\cdot\frac{1}{2}\,dt$ = $\frac{1}{2}\int e^t\,dt$ = $\frac{1}{2}\cdot e^t=\frac{1}{2}e^{x^2}$

問2

- (1) 与式 = $\int \frac{\cos x}{\sin x} dx$ = $\int \frac{(\sin x)'}{\sin x} dx$ = $\log |\sin x|$
- (2) 与式 = $\int \frac{(e^x+1)'}{e^x+1} dx$ = $\log |e^x+1|$ = $\log (e^x+1) (e^x+1>0 より)$
- (3) 与式 = $\int \frac{\frac{1}{2}(x^2+1)'}{x^2+1} dx$ = $\frac{1}{2} \int \frac{(x^2+1)'}{x^2+1} dx$ = $\frac{1}{2} \log|x^2+1|$ = $\frac{1}{2} \log(x^2+1) (x^2+1 > 0$ より)

- (1) 3x+2=t とおくと, $3\,dx=dt$ より, $dx=\frac{1}{3}dt$ また,x と t の対応は $\frac{x \mid 0 \rightarrow 1}{t\mid 2 \rightarrow 5}$ よって 与式 = $\int_2^5 t^{-2} \cdot \frac{1}{3}\,dt$ $= \frac{1}{3} \left[-\frac{1}{t} \right]_2^5$ $= \frac{1}{3} \left\{ -\frac{1}{5} \left(-\frac{1}{2} \right) \right\}$ $= \frac{1}{3} \cdot \frac{3}{10} = \frac{1}{10}$

- 問 4 教科書の G(x) 等をそのまま使用.
- $f(x) = x, \quad g(x) = \sin x \text{ とすると}$ $G(x) = \int \sin x \, dx = -\cos x$ f'(x) = 1よって $与式 = x \cdot (-\cos x) \int 1 \cdot (-\cos x) \, dx$ $= -x \cos x + \int \cos x \, dx$ $= -x \cos x + \sin x$
- (2) $f(x)=x, \ g(x)=e^x とすると$ $G(x)=\int e^x \, dx=e^x$ f'(x)=1 よって

与式 =
$$x \cdot e^x - \int 1 \cdot e^x dx$$

= $xe^x - e^x$
= $(x-1)e^x$

問5 教科書のF(x)等をそのまま使用.

(1)
$$f(x) = x, \quad g(x) = \log x \text{ とすると}$$

$$F(x) = \int x \, dx = \frac{1}{2}x^2$$

$$g'(x) = \frac{1}{x}$$
よって
$$= \frac{1}{2}x^2 \log x - \int \frac{1}{2}x^2 \cdot \frac{1}{x} \, dx$$

$$= \frac{1}{2}x^2 \log x - \frac{1}{2} \int x \, dx$$

$$= \frac{1}{2}x^2 \log x - \frac{1}{2} \cdot \frac{1}{2}x^2$$

$$= \frac{1}{2}x^2 \log x - \frac{1}{4}x^2$$

$$= \frac{1}{4}x^2(2 \log x - 1)$$

問 6

(1) 与式 =
$$x^2 \cdot (-e^{-x}) - \int (x^2)' \cdot (-e^{-x}) dx$$

= $-x^2 e^{-x} + 2 \int x e^{-x} dx$
= $-x^2 e^{-x} + 2 \left\{ x \cdot (-e^{-x}) - \int x' \cdot (-e^{-x}) dx \right\}$
= $-x^2 e^{-x} - 2x e^{-x} + 2 \int e^{-x} dx$
= $-x^2 e^{-x} - 2x e^{-x} - 2e^{-x}$
= $-(x^2 + 2x + 2)e^{-x}$

(2) 与式 =
$$x^2 \cdot (-\cos x) - \int (x^2)' \cdot (-\cos x) dx$$

= $-x^2 \cos x + 2 \int x \cos x dx$
= $-x^2 \cos x + 2 \left(x \sin x - \int x' \cdot \sin x dx \right)$
= $-x^2 \cos x + 2x \sin x - 2 \int \sin x dx$
= $-x^2 \cos x + 2x \sin x - 2 \cdot (-\cos x)$
= $-x^2 \cos x + 2x \sin x + 2 \cos x$

(3) 与式 =
$$\int 1 \cdot (\log x)^2 dx$$

= $x(\log x)^2 - \int x \cdot \{(\log x)^2\}' dx$
= $x(\log x)^2 - \int x \left(2\log x \cdot \frac{1}{x}\right) dx$
= $x(\log x)^2 - 2\int \log x dx$
= $x(\log x)^2 - 2(x\log x - x)$ (例題5より)
= $x(\log x)^2 - 2x\log x + 2x$

(1) 与武 =
$$\left[x \cdot \frac{1}{2}e^{2x}\right]_0^1 - \int_0^1 x' \cdot \frac{1}{2}e^{2x} dx$$

= $\left(1 \cdot \frac{1}{2}e^2 - 0\right) - \frac{1}{2}\int_0^1 e^{2x} dx$
= $\frac{1}{2}e^2 - \frac{1}{2}\left[\frac{1}{2}e^{2x}\right]_0^1$
= $\frac{1}{2}e^2 - \frac{1}{4}(e^2 - e^0)$
= $\frac{1}{2}e^2 - \frac{1}{4}e^2 + \frac{1}{4}$
= $\frac{1}{4}e^2 + \frac{1}{4}$
= $\frac{1}{4}(e^2 + 1)$

(2) 与式 =
$$\left[x \sin x\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} x' \cdot \sin x \, dx$$

= $\left(\frac{\pi}{2} \cdot \sin \frac{\pi}{2} - 0\right) - \int_0^{\frac{\pi}{2}} \sin x \, dx$
= $\frac{\pi}{2} - \left[-\cos x\right]_0^{\frac{\pi}{2}}$
= $\frac{\pi}{2} - \{0 - (-1)\}$
= $\frac{\pi}{2} - 1$

(3) 与式 =
$$\left[x \log x\right]_1^2 - \int_1^2 x \cdot (\log x)' \, dx$$

= $(2 \log 2 - \log 1) - \int_1^2 x \cdot \frac{1}{x} \, dx$
= $2 \log 2 - \int_1^2 dx$
= $2 \log 2 - \left[x\right]_1^2$
= $2 \log 2 - (2 - 1)$
= $2 \log 2 - 1$

(1)
$$x-2=t$$
 とおくと, $dx=dt$, $x=t+2$ よって 与式 = $\int \frac{t+2}{t^2} dt$ = $\int \left(\frac{1}{t} + \frac{2}{t^2}\right) dt$ = $\log|t| + 2 \cdot (-t^{-1})$ = $\log|t| - \frac{2}{t}$ = $\log|x-2| - \frac{2}{x-2}$

(2)
$$\sqrt{x+1} = t$$
 とおくと, $x+1 = t^2$ であるから, $dx = 2tdt$, $x = t^2 - 1$ よって 与式 $= \int \frac{t^2 - 1}{t} \cdot 2t \, dt$ $= 2 \int (t^2 - 1) \, dt$ $= 2 \left(\frac{1}{3}t^3 - t\right)$ $= \frac{2}{3}t(t^2 - 3)$ $= \frac{2}{3}\sqrt{x+1}\{(\sqrt{x+1})^2 - 3\}$ $= \frac{2}{3}(x-2)\sqrt{x+1}$ [別解] $x+1=t$ とおくと, $dx=dt$, $x=t-1$

(3)
$$\sqrt{x+3}=t$$
 とおくと, $x+3=t^2$ であるから, $dx=2tdt$, $x^2=(t^2-3)^2$

3 (4)
$$2x-1=t$$
 とおくと, $2dx=dt$ より, $dx=\frac{dt}{2}$, $x=\frac{t+1}{2}$ よって 与式 $=\int 4\cdot\frac{t+1}{2}t^7\cdot\frac{dt}{2}$ $=\int t^7(t+1)\,dt$ $=\int (t^8+t^7)\,dt$ $=\frac{1}{9}t^9+\frac{1}{8}t^8$ $=\frac{1}{72}t^8(8t+9)$ $=\frac{1}{72}(2x-1)^8\{8(2x-1)+9\}$ $=\frac{1}{72}(2x-1)^8(16x-8+9)$ $=\frac{1}{72}(16x+1)(2x-1)^8$

(2)
$$x=2\sin\theta$$
 とおくと, $dx=2\cos\theta d\theta$ また, x と θ の対応は
$$\frac{x \mid 0 \rightarrow 1}{\theta \mid 0 \rightarrow \frac{\pi}{6}}$$

与式 =
$$\int_0^{\frac{\pi}{6}} \sqrt{4 - (2\sin\theta)^2} \cdot 2\cos\theta \, d\theta$$

$$= \int_0^{\frac{\pi}{6}} 4\sqrt{1 - \sin^2\theta} \cos\theta \, d\theta$$

$$= 4\int_0^{\frac{\pi}{6}} \sqrt{\cos^2\theta} \cos\theta \, d\theta$$

$$0 \le \theta \le \frac{\pi}{2} \, \mathfrak{C}, \cos\theta \ge 0 \, \mathfrak{T} \mathfrak{O} \mathfrak{C}$$

$$= 4\int_0^{\frac{\pi}{6}} \cos^2\theta \, d\theta$$

$$= 4\int_0^{\frac{\pi}{6}} \frac{1 + \cos 2\theta}{2} \, d\theta$$

$$= 2\int_0^{\frac{\pi}{6}} (1 + \cos 2\theta) \, d\theta$$

$$= 2\left[\theta + \frac{1}{2}\sin 2\theta\right]_0^{\frac{\pi}{6}}$$

$$= 2\left(\frac{\pi}{6} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right)$$

$$= 2\left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

(3)
$$x = 3\sin\theta$$
 とおくと, $dx = 3\cos\theta d\theta$ $\sqrt{9-x^2}$ は偶関数であるから
$$\int_{-3}^3 \sqrt{9-x^2} \, dx = 2\int_0^3 \sqrt{9-x^2} \, dx$$
 このとき, x と θ の対応は
$$\frac{x \mid 0 \rightarrow 3}{\theta \mid 0 \rightarrow \frac{\pi}{2}}$$
 よって
$$= 2\int_0^{\frac{\pi}{2}} \sqrt{9-(3\sin\theta)^2} \cdot 3\cos\theta \, d\theta$$

$$= 2\int_0^{\frac{\pi}{2}} \sqrt{\cos^2\theta} \cos\theta \, d\theta$$

$$= 18\int_0^{\frac{\pi}{2}} \sqrt{\cos^2\theta} \cos\theta \, d\theta$$

$$0 \le \theta \le \frac{\pi}{2} \, \mathbb{C} \, , \cos\theta \ge 0 \, \mathbf{D} \, \mathbb{C}$$

$$= 18\int_0^{\frac{\pi}{2}} \cos^2\theta \, d\theta$$

$$= 18\int_0^{\frac{\pi}{2}} (1+\cos 2\theta) \, d\theta$$

$$= 9\int_0^{\frac{\pi}{2}} (1+\cos 2\theta) \, d\theta$$

$$= 9\left[\theta + \frac{1}{2}\sin 2\theta\right]_0^{\frac{\pi}{2}}$$

$$= 9 \cdot \frac{\pi}{2} = \frac{9}{2}\pi$$

$$I = \int e^{ax} \sin bx \, dx \, \ \, \ \, \ \, \ \, I = e^{ax} \cdot \left(-\frac{1}{b} \cos bx \right) - \int (e^{ax})' \left(-\frac{1}{b} \cos bx \right) \, dx$$

$$= -\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx$$

$$= -\frac{1}{b} e^{ax} \cos bx$$

$$+ \frac{a}{b} \left(\frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx \right)$$

$$= -\frac{1}{b} e^{ax} \cos bx + \frac{a}{b^2} e^{ax} \sin bx - \frac{a^2}{b^2} I$$
よって
$$b^2 I = -ba^{ax} \cos bx + ae^{ax} \sin bx - a^2 I$$

$$(a^2 + b^2) I = e^{ax} (a \sin bx - b \cos bx)$$

$$I = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx)$$

問11

(2) 与式 =
$$\frac{e^{3x}}{3^2 + 4^2} (3\sin 4x - 4\cos 4x)$$

= $\frac{1}{25}e^{3x} (3\sin 4x - 4\cos 4x)$

問 12

(1) 分子を分母で割ると

$$\begin{array}{r}
 x^2 - 1 \\
 x^2 + 1 \overline{\smash)x^4} \\
 \underline{x^4 + x^2} \\
 -x^2 \\
 \underline{-x^2 - 1} \\
 1
 \end{array}$$

よって
与式 =
$$\int \left(x^2 - 1 + \frac{1}{x^2 + 1}\right) dx$$

= $\frac{1}{3}x^3 - x + \tan^{-1}x$

(2) まず , 部分分数に分解する . $\frac{2x+1}{(x-4)(x+1)} = \frac{a}{x-4} + \frac{b}{x+1}$ とおき ,両辺に (x-4)(x+1) をかけると

$$2x+1=a(x+1)+b(x-4)$$

$$2x+1=ax+a+bx-4b$$

$$2x+1=(a+b)x+(a-4b)$$
 これが, x についての恒等式であるから
$$\begin{cases} a+b=2\\ a-4b=1 \end{cases}$$
 これを解いて, $a=\frac{9}{5},\ b=\frac{1}{5}$ よって

問 13

(1) 両辺に
$$x^2(x-1)$$
 をかけると
$$1=(ax+b)(x-1)+cx^2$$

$$1=ax^2+(-a+b)x-b+cx^2$$

$$1=(a+c)x^2+(-a+b)x-b$$
 これが, x についての恒等式であるから
$$\begin{cases} a+c=0\\ -a+b=0\\ -b=1 \end{cases}$$
 これを解いて, $a=-1,\ b=-1,\ c=1$

(2)
$$= \int \left(\frac{-x-1}{x^2} + \frac{1}{x-1}\right) dx$$

$$= -\int \frac{x+1}{x^2} dx + \int \frac{(x-1)'}{x-1} dx$$

$$= -\int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx + \log|x-1|$$

$$= -\left(\log|x| - \frac{1}{x}\right) + \log|x-1|$$

$$= \log|x-1| - \log|x| + \frac{1}{x}$$

$$= \log\left|\frac{x-1}{x}\right| + \frac{1}{x}$$

問 14

$$\frac{1}{x^2-a^2}$$
 を部分分数分解する.
$$\frac{1}{x^2-a^2}=\frac{k}{x+a}+\frac{l}{x-a}$$
 とおき,両辺に $(x+a)(x-a)$ をかけると
$$1=k(x-a)+l(x+a)$$
 $1=kx-ka+lx+la$ $1=(k+l)x+(-ka+la)$

これが,
$$x$$
 についての恒等式であるから
$$\begin{cases} k+l=0 & \cdots \\ -ka+la=1 & \cdots \\ 2 \end{cases}$$

①より,l=-k

これを②に代入して

$$-ka-ka=1$$
 $-2ka=1$ $k=-rac{1}{2a}$ これより , $l=rac{1}{2a}$ であるから

左辺 =
$$\int \frac{1}{(x+a)(x-a)} dx$$
=
$$\int \left(-\frac{1}{2a} \cdot \frac{1}{x+a} + \frac{1}{2a} \cdot \frac{1}{x-a}\right) dx$$
=
$$\frac{1}{2a} \int \left\{-\frac{(x+a)'}{x+a} + \frac{(x-a)'}{x-a}\right\} dx$$
=
$$\frac{1}{2a} \left(-\log|x+a| + \log|x-a|\right)$$
=
$$\frac{1}{2a} \log\left|\frac{x-a}{x+a}\right| = 右辺$$

[問15) 求める図形の面積をSとする.

(1)
$$\sqrt{1-x^2}$$
 は、偶関数であるから
$$S = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1-x^2} \, dx$$

$$= 2 \int_{0}^{\frac{1}{2}} \sqrt{1-x^2} \, dx$$

$$= 2 \cdot \frac{1}{2} \left[x \sqrt{1-x^2} + \sin^{-1} x \right]_{0}^{\frac{1}{2}}$$

$$= \frac{1}{2} \sqrt{1 - \left(\frac{1}{2}\right)^2} + \sin^{-1} \frac{1}{2}$$

$$= \frac{1}{2} \sqrt{\frac{3}{4}} + \frac{\pi}{6}$$

$$= \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\pi}{6} = \frac{\sqrt{3}}{4} + \frac{\pi}{6}$$

$$S = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{1 - x^2} \, dx$$

$$= 2 \int_{0}^{\frac{1}{2}} \sqrt{1 - x^2} \, dx$$

$$= 2 \int_{0}^{\frac{1}{2}} \sqrt{1 - x^2} \, dx$$
ここで, $x = \sin \theta$ とおくと, $dx = \cos \theta \, d\theta$ また, $x \ge \theta$ の対応は
$$\frac{x \mid 0 \to \frac{1}{2}}{\theta \mid 0 \to \frac{\pi}{6}}$$
よつて
$$S = 2 \int_{0}^{\frac{\pi}{6}} \sqrt{1 - \sin^2 \theta} \cos \theta \, d\theta$$

$$= 2 \int_{0}^{\frac{\pi}{6}} \sqrt{\cos^2 \theta} \cos \theta \, d\theta$$

$$= 2 \int_{0}^{\frac{\pi}{6}} \cos^2 \theta \, d\theta \qquad \left(0 \le \theta \le \frac{\pi}{6} \, \text{で}, \cos \theta \ge 0\right)$$

$$= 2 \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 2\theta}{2} \, d\theta$$

$$= \int_{0}^{\frac{\pi}{6}} (1 + \cos 2\theta) \, d\theta$$

$$= \left[\theta + \frac{1}{2} \sin 2\theta\right]_{0}^{\frac{\pi}{6}}$$

$$= \frac{\pi}{6} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} + \frac{\pi}{6}$$

[問17]

(1) 与式 =
$$\int_2^3 \sqrt{(x-2)^2 - 4 + 5} \, dx$$

$$= \int_2^3 \sqrt{(x-2)^2 + 1} \, dx$$

$$x - 2 = t とおくと , dx = dt$$
また , $x と t$ の対応は

$$\frac{x \mid 2 \to 3}{t \mid 0 \to 1}$$
よって
与式 = $\int_0^1 \sqrt{t^2 + 1} \, dt$

$$= \frac{1}{2} \left[t \sqrt{t^2 + 1} + \log|t + \sqrt{t^2 + 1}| \right]_0^1$$

$$= \frac{1}{2} \left\{ \left(1 \sqrt{1 + 1} + \log|1 + \sqrt{1 + 1}| \right) - \left(\log|0 + \sqrt{0 + 1}| \right) \right\}$$

$$= \frac{1}{2} \left(\sqrt{2} + \log|1 + \sqrt{2}| - \log|1| \right)$$

$$= \frac{1}{2} \left\{ \sqrt{2} + \log(1 + \sqrt{2}) \right\}$$

与式 =
$$\int_0^1 \sqrt{t^2 + 2} \, dt$$

= $\frac{1}{2} \left[t \sqrt{t^2 + 2} + 2 \log |t + \sqrt{t^2 + 2}| \right]_0^1$
= $\frac{1}{2} \left\{ \left(1 \sqrt{1 + 2} + 2 \log |1 + \sqrt{1 + 2}| \right) - \left(2 \log |0 + \sqrt{0 + 2}| \right) \right\}$
= $\frac{1}{2} \left(\sqrt{3} + 2 \log |1 + \sqrt{3}| - 2 \log |\sqrt{2}| \right)$
= $\frac{\sqrt{3}}{2} + \log(1 + \sqrt{3}) - \log(\sqrt{2})$
= $\frac{\sqrt{3}}{2} + \log \frac{1 + \sqrt{3}}{\sqrt{2}}$
= $\frac{\sqrt{3}}{2} + \log \frac{\sqrt{2} + \sqrt{6}}{2}$

与式 =
$$\int_{2}^{3} \sqrt{-(x^{2} - 4x)} dx$$

= $\int_{2}^{3} \sqrt{-(x - 2)^{2} + 4} dx$
= $\int_{2}^{3} \sqrt{4 - (x - 2)^{2}} dx$
 $x - 2 = t$ とおくと, $dx = dt$
また, x と t の対応は

$$\frac{x \mid 2 \to 3}{t \mid 0 \to 1}$$

よって
与式 = $\int_{0}^{1} \sqrt{2^{2} - t^{2}} dt$
= $\frac{1}{2} \left[t\sqrt{4 - t^{2}} + 4\sin^{-1}\frac{x}{2} \right]_{0}^{1}$
= $\frac{1}{2} \left\{ \left(1\sqrt{4 - 1} + 4\sin^{-1}\frac{1}{2} \right) - 4\sin^{-1}0 \right\}$
= $\frac{1}{2} \left(\sqrt{3} + 4 \cdot \frac{\pi}{6} \right)$
= $\frac{\sqrt{3}}{2} + \frac{\pi}{2}$

与武 =
$$\int_{1}^{2} \sqrt{2^{2} - t^{2}} dt$$

= $\frac{1}{2} \left[t\sqrt{4 - t^{2}} + 4\sin^{-1}\frac{x}{2} \right]_{1}^{2}$
= $\frac{1}{2} \left\{ \left(2\sqrt{4 - 4} + 4\sin^{-1}1 \right) - \left(1\sqrt{4 - 1} + 4\sin^{-1}\frac{1}{2} \right) \right\}$
= $\frac{1}{2} \left\{ 4 \cdot \frac{\pi}{2} - \left(\sqrt{3} + 4 \cdot \frac{\pi}{6} \right) \right\}$
= $\frac{1}{2} \left(2\pi - \sqrt{3} - \frac{2}{3}\pi \right)$
= $\frac{1}{2} \left(\frac{4}{3}\pi - \sqrt{3} \right)$
= $\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$

(4) 与式 =
$$\int \frac{\cos x}{\cos^2 x} dx = \int \frac{\cos x}{1 - \sin^2 x} dx$$

 $\sin x = t$ とおくと, $\cos x dx = dt$ であるから
与式 = $\int \frac{dt}{1 - t^2}$
= $\int \frac{dt}{(1 - t)(1 + t)}$
= $\frac{1}{2} \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt$
(部分分数分解の過程は省略)
= $\frac{1}{2} (-\log|1 - t| + \log|1 + t|)$
= $\frac{1}{2} \log\left|\frac{1 + t}{1 - t}\right|$
= $\frac{1}{2} \log\left|\frac{1 + \sin x}{1 - \sin x}\right|$ (真数 > 0 より)

(1) 与式 =
$$\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} = \frac{16}{35}$$