METODE OPTIMIZACIJE - 1. kolokvij, 15. lipnja 2011.

(1) a) Zadano je 5 skladišta – S1, S2, S3. S4, S5 sa kapacitetima (+ kapacitet znači da je pojedino skladište polazno tj. šalje robu, a – kapacitet znači da je pojedino skladište dolazno tj. sinje robu, nule – skladište je prolazno). U tablici su zadane sve c_{ij} - cijene međuveza. Modeliraite zadatak kao transportni problem.

S1 [-15]	S2 (0,0)	S3 (+3	30) S	4 (+5, -10)	S5 (+10, -2)
	10	7079			
cijene	S1	S2	S3	S4	S5
·S1	x /	nemoguće	1	1	12
S2	nemoguće	x	5	3	0
S3	1	5	x	2 -	9
\$4	1	3	2	X	nemoguće
85	12	0	9	nemoguće	x

- Odredite osnovno moguće rješenje metodom najmanjih troškova i kratko komentirajte što je to osnovno moguće rješenje.
- (2) U zgradi postoji 6 sala s različitim brojem sjedaćih mjesta (B1, B2, B3, B4, B5 i B6). Treba rasporediti na optimalan način 5 grupa ljudi (brojčano A1, A2, A3, A4 i A5), tako da ostane minimalan broj praznih sjedalica.
 - planirati minimum tako da netko stoji samo iznimno.

sale	B1	B2	B3	B4	B5	B6
kapacitet	24	50	18	60	35	45
grupa liudi	A1	A2	A3	A4	A5	/
broi liudi	15 .	10	40	55	12	/

(3) Igrač koji u ovom času ima pravo igre ima 3 moguća poteza (11, 12, 13), a njegov protivnik 4 (P1, P2, P3, P4). Odredite strateški optimalne poteze za oba igrača, ako su cijene njihovih mogućih kontakata (gledane sa položaja prvog igrača) zadane:

c(I1-P1) = 0	c(12-P1) = -5	c(13-P1) = 1
c(I1-P2) = -4	c(I2-P2) = 6	c(I3-P2) = -0.
c(I1-P3) = 3	c(12-P3) = 8	c(I3-P3) = 1
c(I1-P4) = 9	c(12-P4) = 1	c(I3-P4) = 3

(4) Na temelju zajedničkih principa teorije grafova na zadanom grafu označite događaje i aktivnosti. Izdvojite sa strane samo dva događaja (omeđuju jednu aktivnost) i na njima pokažite na koje se sve načene mogu izadati podaci o vremenima.

