# Тема 3. ПРОИЗВОДСТВЕННОЕ ОСВЕЩЕНИЕ

### 3.1. Основные понятия и физические характеристики

Органы зрения являются основным звеном передачи информации от внешней среды к мозгу человека. Более 90% всей информации о внешнем мире поступает через органы зрения. Зрительные образы являются, в большинстве случаев, основой для принятия человеком решения.

Нерационально спроектированное освещение ухудшает условия зрительной работы, повышает утомляемость, оказывает отрицательное воздействие на центральную нервную систему. В зависимости от освещенности рабочих мест производительность труда может увеличиваться или уменьшаться.

Воспринимаемые органами зрения световые ощущения представляют собой электромагнитные колебания с длиной волны  $\lambda = 380-760$  нанометров (нм) (1 нм =  $10^{-9}$  м).

Белый свет (видимое излучение) представляет собой набор волн разной длины и изменения спектра: от красного (пограничного с инфракрасным) до фиолетового (пограничного с ультрафиолетовым). Органы зрения наиболее чувствительны к желто-зеленому цвету.

Функциональное состояние органов зрения определяется физиологическими характеристиками:

*острота зрения* — способность глаза видеть и различать мельчайшие предметы, детали и форму;

*контрастная чувствительность* – способность глаза различать близкие по степени яркости предметы;

*устойчивость ясного видения* — способность глаза четко видеть предметы в течение длительного времени;

*скорость зрительного восприятия* — способность глаза четко видеть предметы за минимальный период времени;

адаптация зрения - способность глаза изменять чувствительность при

#### изменении освещенности;

*аккомодация зрения* — способность глаза приспосабливаться к видению предметов на различном расстоянии.

Физиологические характеристики зрения необходимо знать для профессионального отбора лиц на зрительно напряженные работы и выработки рациональных профилактических мероприятий. Осмотр лиц на зрительно напряженные работы проводится через 6 месяцев в первый год работы и затем одни раз в год.

Для оценки *светотехнических характеристик* рассмотрим следующую схему (рисунок 3.1).



Рисунок 3.1 – Схема к определению основных светотехнических характеристик освещения

## Количественные светотехнические характеристики

*Световой поток* (**F**) – это количество световой энергии, которая в течение одной секунды проходит через площадь в 1 м², расположенную на расстоянии 1 м от источника света. Измеряется световой поток в **люменах** (**лм**). Нпример, лампа накаливания 25Вт при 220В дает **F** = 200лм.

Сила света (I) – это пространственная плотность светового потока в

заданном направлении. Записывается сила света в следующем виде:

$$I = \frac{F}{\omega}$$

где F – световой поток;

 $\omega$  - телесный угол. Телесный угол - часть пространства в виде конуса или пирамиды, вершиной которых является источник света, а основание — некоторая поверхность, которую пересекают лучи.

Измеряется сила света в канделах (кд).

**Освещенность** (E) — это поверхностная плотность светового потока. Записывается освещенность в следующем виде:

$$E = \frac{F}{S}$$

где S – освещаемая площадь в 1  $M^2$  при световом потоке в 1 лм.

Измеряется освещенность в люксах (лк).

минимальная освещенность (minimum illuminance) Емми, ЛК!

 $E_{min}$  и  $E_{max}$  - наименьшее и наибольшее значения освещенности в помещении, на освещаемом участке, в рабочей зоне.

**Яркость** (**B**) — это часть светового потока, который отражается от освещаемой поверхности и воспринимается органами зрения. Записывается яркость в следующем виде:

$$B = \frac{I}{S}$$

где S – освещаемая площадь в 1  $M^2$  при световом потоке в 1 лм.

Измеряется яркость в канделах, деленных на  $M^2$  (кд/ $M^2$ ).

**Фон** — это поверхность, непосредственно прилегающая к объекту различения, на котором он рассматривается. Фон оценивается коэффициентом отражения  $(\rho)$ , который записывается в следующем виде:

$$\rho = \frac{F_{\text{отр}}}{F_{\text{пад}}},$$

где  $F_{\text{отр}}$  – световой поток, отраженный от поверхности;

 $F_{\text{пал}}$  – световой поток, падающий на поверхность.

Фон считается:

*светлым* при  $\rho > 0,4$ ;

средним при ρ =0,2-0,4;

*темным* при  $\rho < 0,2$ .

 $\Phi$ отометрический контраст объекта различения с фоном — это соотношение между яркостью объекта и яркостью фона. Фотометрический контраст объекта различения с фоном оценивается коэффициентом (**K**), который записывается в следующем виде:

$$K = \frac{\left| B_o - B_{\phi} \right|}{B_{\phi}},$$

где  $B_O$  – яркость объекта различения, кд/м $^2$  (трещина и риски на поверхности металла, символ на экране дисплея);

 $B_{\Phi}$  – яркость фона, кд/м² (поверхность металла, экран дисплея).

Контраст объекта различения с фоном считается:

*большим* при K > 0,5;

*средним* при K=0,2-0,5;

*малым* при K < 0,2.

Когда нет контраста (К=0), различение предметов невозможно.

# Качественные характеристики освещения:

- коэффициент пульсации

$$K_{nynbc} = \frac{E_{\max} - E_{\min}}{2E_{cp}} \times 100\%$$
 .

По нормам  $K_{\text{пульс}}$  не более 20%.

Колебания светового потока недопустимы, т.к. они вызывают усталость глаз и приводят к их утомлению.

- распределение яркости в поле зрения, для комбинированного освещения

рекомендуется  $\frac{E_{\min}}{E_{\max}} \ge \frac{1}{3}$  (в пределах рабочей поверхности - отношение

освещенностей);

- наличие теней (особенно движущихся), тени исчезают при наличии отраженного освещения, рекомендуется направление светового потока на рабочую поверхность под углом  $60^{\circ}$ ;
- *блескость* свойство ярких светящихся поверхностей (нить накала, трубка) нарушать зрительные функции глаза ослеплять их. Для защиты глаз лампы помещают в арматуру с защитным углом α≥10÷30°. Нормируется показатель ослепленности р≤20-80 единиц;
- *отраженной блескость* максимально допустимая яркость рабочей поверхности не должна превышать  $B_{\text{доп}} \leq 500 \div 2500 \text{кд/м}^2$  при площади отражения  $S = 0.2 \div 0.01 \text{m}^2$ .
- коэффициент ослепленности критерий оценки слепящего действия источника света;
  - показатель ослепленности:

$$p = (S-1) \times 10^3$$
,

где S - коэффициент ослепленности, равный отношению V1 к V2, где V1 к V2 - видимости объекта при экранировании блеских источников и без соответственно; комфортное  $p = 20 \div 60$ .

Для того, что бы перейти к рассмотрению освещения рабочих мест, рассмотрим некоторые пределения.

**Рабочая поверхность** - поверхность, на которой производится работа и для которой нормируется освещенность.

**Рабочее освещение** – освещение рабочих поверхностей, обеспечивающее нормируемые световые условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.

#### 3.2. Виды освещения

Освещение подразделяется на:

- естественное;

- искусственное;
- совмещенное (смешанное).

#### 3.2.1. Естественное освещение

Естественное освещение — это освещение прямым и отраженным светом небесных источников (солнце, луна, звезды), проникающим в производственное помещение. При естественном освещении освещенность какой-либо точки горизонтальной плоскости производственного помещения оценивается коэффициентом естественной освещенности (КЕО), е (%), который может быть записан в следующем виде:

$$e = \frac{E_{BH}}{E_{HAD}} \cdot 100, [\%]$$

где  $E_{\text{вн}}$  — освещенность точки горизонтальной поверхности внутри производственного помещения, лк;

 $E_{\text{нар}}$  — освещенность точки горизонтальной поверхности снаружи производственного помещения на расстоянии 1м от стены производственного здания в  $12^{00}$  ч дня, лк.

Естественное освещение подразделяется на следующие виды:

- 1) боковое освещение через световые проемы в наружной стене производственного помещения;
- 2) верхнее освещение через световые фонари (аэрационные фонари на крыше здания);
- 3) комбинированное естественное освещение сочетание бокового и верхнего освещения.

Боковое освещение оценивается минимальным KEO –  $e_{min}$ ; верхнее и комбинированное освещение оценивается средним KEO –  $e_{cp}$ .

**Коэффициент** запаса  $K_3$  для естественного освещения - расчетный коэффициент, учитывающий снижение KEO в процессе эксплуатации вследствие загрязнения и старения светопрозрачного в световых проемах, а также снижения отражающих свойств поверхностей помещения [1].

**Условная рабочая поверхность** - условно принятая горизонтальная поверхность, расположенная на высоте 0,8 м от пола.

Все производственные помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение.

Распределение КЕО в производственном помещении при различных видах естественного освещения может быть представлено в следующем виде (рисунок 3.2).





Рисунок 3.2 – Схемы распределения коэффициентов естественного освещения в зависимости от вида освещения

# 3.2.2. Искусственное освещение

При *искусственном освещении* освещенность какой-либо точки горизонтальной плоскости производственного помещения так же оценивается освещенностью  $\mathbf{E}$ , лк.

Искусственное освещение подразделяется на следующие виды:

### 1) рабочее освещение:

- *общее освещение* освещение, при котором источник искусственного освещения размещается в верхней зоне помещения; общее освещение подразделяется на равномерное и локализованное.
- *местное освещение* освещение, создаваемое источником искусственного света концентрированно на рабочем месте;
  - комбинированное искусственное освещение общее + местное.

### 2) вспомогательное освещение:

- *аварийное освещение* освещение в случае выхода из строя питания основного рабочего освещения и подключается к источнику питания, не зависимому от источника питания рабочего освещения;
- *эвакуационное освещение* освещение для эвакуации людей в случае аварийного отключения рабочего освещения;
  - дежурное освещение освещение в нерабочее время;
- *дополнительное освещение* освещение, которое используется в течение рабочего дня в зонах с недостаточным естественным освещением [1].

**Резервное освещение** - вид аварийного освещения для продолжения работы в случае отключения рабочего освещения.

#### Виды эвакуационного освещения:

- освещение больших площадей вид эвакуационного освещения для предотвращения паники и безопасного подхода к путям эвакуации;
- освещение зон повышенной опасности вид эвакуационного освещения для безопасного завершения потенциально опасного процесса;
- освещение путей эвакуации вид эвакуационного аварийного освещения для надежного определения и безопасного использования путей эвакуации.

Осветительные приборы аварийного освещения бывают:

- постоянного действия, включенными одновременно с осветительными приборами рабочего освещения;
- непостоянного действия, автоматически включаемыми при нарушении питания рабочего освещения в рабочей зоне.

В производственных помещениях и на рабочих местах вне помещений можно использовать только 2 типа систем искусственного освещения: общую и комбинированную (общую + местную). Использование только местного освещения не допускается.

При недостатке солнечного света и световом голодании используется 
эритемное освещение — искусственное ультрафиолетовое освещение. 
Максимальный эффект достигается при  $\lambda = 297$ нм. Может использоваться 
длительно совместно с рабочим освещением или кратковременно.

#### 3.2.3. Совмещенное освещение

Совмещенное освещение - освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным рабочим освещением.

#### 3.3. Нормирование освещения

**Показатель дискомфорта** – критерий оценки дискомфортного состояния из-за освещения и вызывающей неприятные ощущения при неравномерном распределении яркостей в поле зрения. Безразмерная величина и определяется расчетным путем и должен быть в пределах 15...90.

«Неправильное» освещение в производственном помещении приводит к возникновению следующих вредных факторов:

- отсутствие или недостаток естественного света;
- отсутствие или недостаток искусственного света;
- повышенная яркость света;
- пониженная контрастность;
- прямая и отраженная блесткость;
- повышенная пульсация светового потока.

Нормативным документом является Свод правил (СП) 52.13330.2011 «Естественное и искусственное освещение».

При естественном освещении нормируется КЕО, который зависит от:

- характеристики зрительной работы;
- наименьшего размера объекта различения;
- разряда работы;
- вида естественного освещения.

При искусственном освещении нормируется минимально допустимая освещенность  $\mathbf{E}_{\mathbf{h}}$ , которая зависит от характеристики зрительной работы, наименьшего размера объекта различения, разряда работы, контраста объекта различения с фоном, характеристики фона, вида освещения и типа источника освещения.

Наименьший размер объекта различения представляет собой объект, который органы зрения человека должны четко видеть на фоне, прилегающему к объекту различения (например, деталь или толщина линии символа на экране монитора или стрелка на циферблате прибора).

В таблице 3.1 приведены общие требования для помещений промышленных предприятий при расположении объектов различения на расстоянии не более 0,5 м от глаз работающего для естественного и искусственного освещения.

Таблица 3.1 **Требования к освещению помещений промышленных предприятий [1]** 

| Характеристика зрительной работы | Наименьший размер объекта<br>различения, мм | зрительной работы | Искусственное освещение, | освещенность, | комбинированное освещение,<br>лк |          | ретественное освещение |          | Совмещенное освещение |           |  |    |  |     |      |  |
|----------------------------------|---------------------------------------------|-------------------|--------------------------|---------------|----------------------------------|----------|------------------------|----------|-----------------------|-----------|--|----|--|-----|------|--|
| eb                               | 191                                         | 11PI              | 19F                      | 191<br>1H2    | 1B1                              | 19H H    | 19F1                   | 19F      | de                    | ·   Ř H M |  | ΙΊ |  | KEC | 0, % |  |
| akT                              | менич                                       | Разряд            | ycc                      | Пе            | биг                              | Верхнее  |                        | Верхнее  |                       |           |  |    |  |     |      |  |
| ape                              | аи                                          | азр               | CK                       | Be            | )M(                              | или      | Боковое                | или      | Боковое               |           |  |    |  |     |      |  |
| $\times$                         | Н                                           | $P_{\epsilon}$    | И                        | ŏ             | KO]<br>JIK                       | комбини- |                        | комбини- |                       |           |  |    |  |     |      |  |

|              |         |       |           | рованное |         | рованное |         |
|--------------|---------|-------|-----------|----------|---------|----------|---------|
| Наивысшей    | <0,15   | I     | 1250-5000 | -        | -       | 6,0      | 2,0     |
| точности     | (0,12   |       |           |          |         |          |         |
| Очень        | От 0,15 |       |           |          |         |          |         |
| высокой      | до 0,3  | II    | 750-4000  | -        | -       | 4,2      | 1,5     |
| точности     | до 0,5  |       |           |          |         |          |         |
| Высокой      | От 0,3  | III   | 400-2000  | 1        | -       | 3,0      | 1,2     |
| точности     | до 0,5  | 111   |           |          |         |          |         |
| Средней      | От 0,5  | IV    | 200-750   | 4,0      | 1,5     | 2,4      | 0,9     |
| точности     | до 1,0  | 1 V   |           |          |         |          |         |
| Малой        | От 1,0  | V     | ı         | 3,0      | 1,0     | 1,8      | 0,6     |
| точности     | до 5,0  | V     |           |          |         |          |         |
| Грубая       |         |       |           |          |         |          |         |
| (очень малой | >5,0    | VII   | -         | 3,0      | 1,0     | 1,8      | 0,6     |
| точности)    |         |       |           |          |         |          |         |
| Общее        |         |       |           |          |         |          |         |
| наблюдение   |         |       |           |          |         |          |         |
| за ходом     |         | VIII  |           | 0,3-3,0  | 0,1-1,0 | 0,2-1,8  | 0,1-0,6 |
| производст-  | _       | V 111 | -         | 0,3-3,0  | 0,1-1,0 | 0,2-1,0  | 0,1-0,0 |
| венного      |         |       |           |          |         |          |         |
| процесса     |         |       |           |          |         |          |         |

Производственное помещение может быть разделено на зону с боковым освещением (рабочие зоны, примыкающие к наружным стенам с окнами) и зону с верхним освещением. Нормирование и расчет освещения в каждой зоне производятся независимо друг от друга.

Нормируемый КЕО для зданий, расположенных в различных районах светового климата записывается в следующем виде:

$$e_{H} = e_{H}^{A} \cdot m \cdot c$$
,

где  $e_{\rm H}^{\rm A}$  — нормируемый КЕО в поясе **A** светового климата для соответствующей характеристики зрительной работы и разряда зрительной работы;

т – коэффициент светового климата;

с – коэффициент солнечности климата, определяемый поясом светового климата, ориентацией здания и конструкцией световых проемов.

Коэффициент светового климата и коэффициент солнечности определяется согласно следующим данным (таблица 3.2).

| Пояс<br>светового<br>климата | Территория                                                                                                                                                                                                                                                                         | Коэффициент<br>светового<br>климата | Коэффициент<br>солнечности |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|
| I                            | Владимирская, Калужская, Курганская, Московская, Нижегородская, Новосибирская, Омская, Рязанская Свердловская, Смоленская, Тульская, Тюменская области, Республики: Башкортостан, Мордовия, Татарстан, Саха (Якутия), Удмуртская Республика                                        | 1,2                                 | 0,95                       |
| II                           | Белгородская, Брянская, Волгоградская, Воронежская, Курская, Липецкая, Магаданская, Оренбургская, Орловская, Пензенская Саратовская, Сахалинская, Тамбовская, Ульяновская области, Забайкальский край, Республики: Алтай, Бурятия, Ингушетия, Коми, Северная Осетия - Алания, Тыва | 1,1                                 | 0,9                        |
| III                          | Вологодская, Ивановская, Калининградская, Кировская, Костромская, Ленинградская, Новгородская, Псковская, Тверская, Ярославская области, Республика Карелия                                                                                                                        | 1                                   | 0,85                       |
| IV                           | Архангельская, Мурманская области                                                                                                                                                                                                                                                  | 0,9                                 | 0,8                        |
| V                            | Астраханская, Амурская, Ростовская области, Краснодарский край, Приморский край, Ставропольский край                                                                                                                                                                               | 0,8                                 | 0,75                       |

*Измеренная освещенность* соответствует нормируемой при соблюдении следующих условий:

| общее освещение           | $E_{\text{изм}}^{\text{общ}} = (0,9-1,2) \cdot E_{\text{норм}}^{\text{общ}}$                                             |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| оощее освещение           | $200$ лк $\leq E_{_{ m ИЗM}}^{ m o G m} \leq 500$ лк                                                                     |  |  |
|                           | $E_{\text{изм}}^{\text{комб}} \ge E_{\text{норм}}^{\text{комб}}$                                                         |  |  |
| комбинированное освещение | $\frac{\mathrm{E}_{_{\mathrm{ИЗM}}}^{\mathrm{oбщ}}}{\mathrm{E}_{_{_{\mathrm{ИЗM}}}}^{\mathrm{komo}}} \cdot 100 \ge 10\%$ |  |  |

# 3.4. Типы источников света и порядок расчета системы освещения

Для общего и местного освещения помещений следует использовать источники света с цветовой температурой от 2400 К до 6800 К . Интенсивность

ультрафиолетового излучения в диапазоне длин волн 320 - 400 нм не должна превышать 0,03 Вт/м $^2$ . Наличие в спектре излучения длин волн менее 320 нм не допускается.

Световая отдача источника света — отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется в люменах на ватт (лм/Вт).

*Индекс цветопередачи* или *коэффициент цветопередачи* - параметр, характеризующий уровень соответствия реального цвета предмета видимому (кажущемуся) цвету этого предмета при освещении его источником света.

При выборе источников освещения и мест их расположения необходимо руководствоваться показателями на рабочих местах:

- интенсивность освещения;
- равномерность освещения;
- защита от ослепляющего воздействия;
- затеняющий эффект;
- направление светового потока;
- граничное значение основной спектральной характеристики.

#### 3.4.1. Типы освещения

Для производственных помещений в качестве искусственного освещения используются:

- лампы накаливания (ЛН);
- газоразрядные лампы (РЛ);
- светодиодные источники света (LED).

Каждый класс источников света разделяется на несколько типов.

В лампах накаливания видимый свет возникает в результате накала нити до высоких температур за счет прохождения тока через нее.

#### Характеристики ламп накаливания:

1. Широкий диапазон мощностей. Зависит от сферы использования, так для местного освещения рабочих мест и бытовых целей применяются лампы от

25 до 150 Ватт, для общего освещения производственных помещений – до 1000 Вт.

- 2. Температура нити 2000...2800 C<sup>0</sup>.
- 3. Напряжение питания 220 В, 50 Гц.
- 4. Световая отдача (отношение излучаемого источником светового потока к потребляемой им мощности) -9...19 Лм/Вт.
  - 5. Размеры цоколя E14 (14 мм), E27(27 мм) и E40 (40 мм).
  - 6. Тип цоколя резьбовой и штифтовой.
- 7. Ресурс функционирования 1000 часов при номинальных условиях напряжения питания.



Рисунок 3.3 – Цоколи ЛН

Выделяют в процессе горения много тепла, имеют чувствительность к частым выключениям. По цене они самые доступные из предложенных в магазинах ламп. Средний вес  $-15\ \Gamma$ .

При выборе в качестве источника света ламп накаливания, следует обратить внимание, что нормативными документами использование ЛН мощностью менее 100 Вт не рекомендуется использовать в производственных помещениях.

ЛН используются как для общего освещения рабочих мест внутри и вне помещений, так и для местного освещения рабочих мест.

Галогенная лампа - лампа накаливания, в стеклянный баллон которой добавлен буферный газ: пары галогенов (брома или йода). Буферный газ повышает срок службы лампы до 2000-4000 часов и позволяет повысить температуру спирали. При этом рабочая температура спирали составляет примерно 3000 К. Эффективная светоотдача большинства массово производимых галогенных ламп составляет от 15 до 22 Лм/Вт.

Газоразрядные лампы представляют собой электрический источник света, в котором для формирования оптического излучения используется разряд внутри газонаполненной стеклянной колбы. У газоразрядных ламп внутренняя поверхность покрывается люминофором и ультрафиолетовое излучение, возникающее при пропускании через лампу электрического разряда, падая на люминофор, превращает его в видимый свет.

В качестве наполнения стеклянных колб применяют такие газы, как аргон, ксенон, неон, криптон. Наибольшее распространение получили лампы, наполненные парообразной ртутью.

Наибольшее распространение получили газоразрядные лампы:

- высокого давления ДРЛ (дуговые ртутные с люминофором);
- низкого давления ЛЛ (люминесцентные).

# Характеристики ДРЛ:

- 1. Диапазон мощностей: от 80 до 1000 Ватт.
- 2. Цоколь: до 250 Ватт используют цоколь Е27, свыше 250 цоколь Е40.
- 3. Световая отдача 40…52 Лм/Вт.
- 4. Период эксплуатации около 10 000 часов.
- 5. Наличие пускового механизма.

#### Достоинства ДРЛ:

- высокая мощность;
- долговечность;
- работают при низких температурах, что позволяет освещать рабочие места вне помещений;
  - высокая яркость, свет равномерный.

#### Недостатки ДРЛ:

- включаются с задержкой (для достижения полной мощности лампе требуется несколько минут на нагревание);
  - лампа издает жужжание;
  - слабая светопередача очень слабая;
  - высокий коэффициент мерцания;
  - нуждаются в высоком помещении (от 4 метров).

ДРЛ никогда не устанавливаются в офисных помещениях с низкими потолками.

В офисных помещениях и «чистых» производствах используются люминесцентные лампы.

В люминесцентных энергосберегающих лампах на стенку колбы нанесен люминофор – композиция люминесцентных порошков, а сама мколба наполнена аргоном или парами ртути.

Люминесцентные лампы бывают:

- *так и местного освещения* (контакты могут быть с одной стороны или с двух);
  - кольцевые лампы используются для местного освещения;
- компактные лампы с цоколем E27 или E40 используются для местного освещения.

Люминесцентные лампы обладают следующими достоинствами:

- большая светоотдача (основная часть энергии превращается в свет);
- экономичность;
- благоприятный спектральный состав.
- овышенный срок эксплуатации (от 6 до 15 тысяч часов непрерывного горения);
- большой диапазон цветности (цвет свечения может быть трех видов: дневным, естественным и теплым.
- минимальные энергозатраты (в 4-5 раз меньше, чем лампы накаливания, при световом потоке одинаковой интенсивности);

- незначительная температура колбы (из-за незначительного тепловыделения).

#### Недостатки:

- наличие стробоскопического эффекта (своеобразное ощущение раздвоенности или множественности предметов);
  - появление шума;
  - неприспособленность к функционированию при низких температурах;
- при повышенных температурах снижается интенсивность светового излучения;
- наличие ртути (доза очень незначительная: 40-60 мг, но при постоянном воздействии способно причинить вред здоровью;
  - запуск длится несколько минут.

Утилизация люминесцентных ламп из-за наличия опасного вещества ртути осуществляется только специализированными лицензированными предприятиями.

Светодиодные лампы В качестве источника света используют светодиоды. Светодиодная лампа является одним из самых экологически чистых источников света. Принцип свечения светодиодов позволяет применять в производстве и работе самой лампы безопасные компоненты. Светодиодные лампы не используют вредных и опасных веществ, поэтому они не представляют опасности в случае выхода из строя или повреждения колбы. Обычно светодиодные лампы являются сменными элементами светодиодных светильников.

## Преимущества светодиодных светильников

- очень низкое энергопотребление;
- срок наработки не менее 50000 часов без обслуживания и потери светового потока;
  - экологически чистая утилизация;
  - устойчивость к вибрациям и пониженным температурам;
  - нечувствительность к перепадам сети;

- отсутствие пусковых токов;
- быстрый выход на режим (менее 1 сек);
- спектральные характеристики максимально приближены к естественному освещению, в спектре нет инфракрасных и ультрафиолетовых составляющих:
  - отсутствие мерцания;
  - высокая контрастность освещения

Недостаток только один: высокая цена.

Для направленного распределения светового потока лампы устанавливают в осветительную арматуру, образуя *светильник*. Светильник необходим для следующих целей:

- 1) формирование светового потока в сторону рабочих поверхностей;
- 2) защиту органов зрения;
- 3) защиту ламп от загрязнений.

По распределению светового потока светильники подразделяются на:

- прямого света;
- отраженного света;
- рассеянного света.

По защите от загрязнений светильники подразделяются на:

- пылезащищенные (установлены в цехах с высокой концентрацией пыли);
- влагозащищенные (установлены в цехах с высокой влажностью, котельных);
  - от агрессивных веществ (установлены в цехах химических предприятий).

#### 3.4.2. Расчеты освещения

### Расчет общего освещения

Производят методом коэффициента использования светового потока (η).

Коэффициент  $\gamma$  показывает какая часть светового потока всех ламп попадает на рабочую поверхность:

$$\gamma = rac{F_{ ext{pagoveй повехности}}}{n \cdot F_{ ext{namnb}}}\,;$$

Этот метод позволяет найти световой поток источников света, необходимый для создания требуемой освещенности рабочей поверхности.

Общий световой поток

$$F_{\text{общ}} = rac{E_{ ext{общ}} \cdot S \cdot Z_1 \cdot Z_2}{\gamma}$$
,

где Еобщ – минимальная освещенность по нормам, Лк;

S – освещаемая площадь,  $M^2$ 

 $Z_1$  – коэффициент запаса на износ ламп и запыления ( $Z_1$  = 1,5÷2);

 $Z_2$  – коэффициент, характеризующий неравномерность освещения  $(E_{cp}/E_{\text{мин}}=1,2\div1,3).$ 

Коэффициент использования светового потока определяется из таблиц в зависимости от типа светильника, коэффициентов отражения пола, стен и потолка, а также от индекса помещения

$$i = \frac{A \cdot B}{h(A + B)}$$
,

где h – расчетная высота подвеса светильников над рабочей поверхностью, m;

А, В – размеры помещения, м.

Число потребного количества ламп

$$n = \frac{F_{\text{общ}}}{F_{\text{лампы}}}$$
.

# Расчет комбинированного освещения

По нормам:  $E_{\text{общ}}/E_{\text{мест}} \ge 1/9$ , но в пределах  $150 \le E_{\text{общ}} \le 450$ лк.

Из таблиц выбирается  $E_{\text{комб.доп}} = E_{\text{общ}} + E_{\text{мест}}.$ 

Затем находится  $E_{\text{общ}}$  и производится расчет общего освещения (по  $\eta$ ).

Затем определяется освещенность  $E_{\text{мест.доп.}}$  и производится расчет местного освещения.

#### Расчет местного освещения

Производится точечным методом.

$$\mathbf{F}_{\text{мест}} = \frac{1000 \cdot \mathbf{E}_{\text{мест}} \cdot \mathbf{Z}_1}{\mathbf{E}_{\text{усл}} \cdot \boldsymbol{\mu}},$$

где 1000 – световой поток условной лампы;

 $E_{ycn}$  – освещенность от условной лампы (находится из кривых изолюкс);  $\mu$  – коэффициент влияния других источников света (соседних).

h, d – координаты расчетной на рабочей поверхности, по ним выбирается





Рисунок 3.4 – К выбору  $E_{\text{усл}}$ 

# Компьютерные программы для расчета освещения [4].

# 1. Формула света

Бесплатная простая программа, предназначенная для расчета необходимого количества светильников освещения внутри помещения. Программное обеспечение полностью бесплатно, однако подлежит обязательной регистрации, как это описано в Лицензионном Соглашении. Для активизации программы Необходимо получить индивидуальный серийный номер на сайте программы.

### 2. Lival

Небольшая по объему программа расчета освещенности фирмы Lival

для своих светильников. Программа бесплатна, требуется регистрация.

3. DIALux (http://www.dial.de)

Самая распространенная программа, предназначенная для проектирования как внутреннего так и наружного освещения. Есть возможность трехмерной визуализации. Качество картинок высокое. Простой понятный интерфейс. Легко осваивается. Имеет встроенную базу светильников многих мировых производителей светотехнической продукции.

И ряд других программ

## Дополнительная литература

- 1. Свод правил (СП) 52.13330.2011 Естественное и искусственное освещение
- 2. ГОСТ 24940-2016 ЗДАНИЯ И СООРУЖЕНИЯ Методы измерения освещенности
- 3. ГОСТ Р 55710-2013 Освещение рабочих мест внутри зданий. Нормы и методы измерений
  - 4. http://www.energosoft.info/soft\_svet.html