WANG ZHENG

(+86)13931805565 • neowang311@gmail.com • cheeseofneo.github.io

EDUCATION

The University of Tokyo – Tokyo, Japan

Oct 2024 - Mar 2025

USTEP Program, Dept. of Electrical Engineering and Information System

- Thesis: Robust Low-bits Diffusion Model deployed on Computer-in-Memory Device
- Selective Course: Multimodal Intelligent System, Distributed Programming, Data Compression in Quantum Computing, Trustworthy Al Software Systems

Tsinghua University – Beijing, China M.Eng., Dept. of Electrical Engineering

Sep 2022 - Jun 2025

3.82/4.0 GPA

- Thesis: Research on a Fast Active Microscope Autofocus System Based on Off-Axis Illumination
- o Selective Course: Advanced Signal Processing, Bayesian Statistics, Introduction to Neural Network Quantization

Tianjin University – Tianjin, China B.Eng., Dept. of Electrical Engineering

Sep 2018 - Jun 2022

3.72/4.0 GPA

- Awards: Membership of China Instrument and Control Society(2022),ICM (Interdisciplinary Contest in Modeling)
 Finalist(Top 1%, 2021), Merit Student(2021), Andon Trust Scholarship(2020), Liu Bao Scholarship(2019)
- o Thesis: Research on Few-shot 3D Point Cloud Segmentation via Sample-Aware Data Augmentation
- o Selective Course: Discrete Math, Theory of Computing, Deep Learning, Machine Learning, Pattern Recognition

HONORS

ICASSP 2026 Reviewer(2025), NVIDIA Al-Agent Group Member(2024), Tsinghua College Scholarship(2024)

PUBLICATIONS

Wang, Z., Ma, R., Zeng, C., Liu, L., Li, X., Wang, X., & He, B. A fast and precise autofocus method using linear array CCD. In Optical Metrology and Inspection for Industrial Applications XI (Vol. 13241, pp. 446-456). SPIE.

Li, Z., Su, Y., Yang, R., Xie, C., **Wang, Z.**, Xie, Z., ... & Yang, H. (2025). Quantization meets reasoning: Exploring Ilm low-bit quantization degradation for mathematical reasoning. arXiv preprint arXiv:2501.03035.

Xiong, H., Zhang, J., **Wang, Z.**, Pan, T., & Hu, Q. (2025). VividTalker: A modular framework for expressive 3D talking avatars with controllable gaze and blink. Manuscript submitted for presentation at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026).

RESEARCH EXPERIENCE

High-resolution Image Generation via Next-frequency Prediction

April 2025- Present

Tsinghua, to be submitted to CVPR 2026

- Explain the regressive property of the visual autoregressive model via the Fourier Domain Analysis and model the generation process as a conditional distribution for unified analysis.
- Design an image generation architecture that reconstructs components in a bidirectional way between high and low frequency, which significantly improve generation efficiency.
- Design a learnable frequency-domain partitioning mechanism, introducing the partition vector as a class token into the Transformer to predict the central frequency of the next band.
- Introduce a pretrained Transformer as a guidance module to steer the reverse posterior sampling process of the model to achieve high2low frequency component reconstruction.

A Modular Framework For 3D Talking Avatars With Controllable Gaze And Blink

Mar 2025- Sep 2025

Tsinghua, submitted to ICASSP 2026

- Developed a modular pipeline integrating diffusion-based portrait synthesis, multilingual text-to-speech (TTS), 2D-to-3D lifting, and audio-driven animation, achieving 79% efficiency improvement over existing methods.
- Designed a physiologically-grounded gaze-and-blink enhancement module simulating human-like eye dynamics via coordinated saccadic movements, spontaneous blinking (15–26 BPM), and head-eye compensation.
- Conducted extensive experiments on 40 multilingual sequences, demonstrating +59% gaze naturalness, +128% blink realism, and +53% overall user preference compared with concrete baseline SadTalker (by Z.W. et al.), while maintaining real-time performance and cross-lingual compatibility.

Robust Low-bits Denoising Diffusion Models deployed on Compute-in-Memory Device Oct 2

Oct 2024-Mar 2025

Visiting Student at **UTokyo**, supervised by *Prof. Ken TAKEUCHI*

- Accelerated the diffusion process by adopting an aggressive quantization scheme (W1A1) while simultaneously guiding the model to learn more generalizable image representations.
- Investigated the role of prompts under different noise conditions in Bidirectional Diffusion Models (BiDM). Designed experiments to decompose the latent noise space using SVD, enabling fine-grained redistribution of basic noise components and a clearer understanding of prompt—noise interaction.
- Explored whether the representation ability of LDMs correlates with the perceptual quality of synthesized images. Employed masking-based learning strategies to assess how partial observation affects latent space representation and final image fidelity.

Exploring LLM Low-Bit Quantization Degradation for Mathematical Reasoning

Dec 2024-Feb 2025

Research Assistant at **HKPolyU**, supervised by *Prof.Yang Hongxia*,

- Proposed a novel framework for analyzing and mitigating quantization-induced reasoning errors in LLMs, which is
 mainly composed by step-aligned measurement suite, hierarchical (Conceptual, Method, Execution, Reasoning)
 error taxonomy and a compact "Silver Bullet" dataset enabling rapid recovery of math reasoning performance.
- Developed an automated chain-of-thought error—analysis pipeline (judge ensemble and light human audit) that attains 97.2% labeling accuracy on 9,908 failure cases, enabling fine-grained, reproducible attribution by error type and first faulty step.
- Achieved full-precision level accuracy restoration with only 332 samples and 3–5 minutes of training on a single GPU without access to pretraining data.

A fast and precise autofocus method using linear array CCD

June 2023-Oct 2024

Tsinghua, supervised by *Prof.Wang Xiaohao*

- Proposed a centroid extraction algorithm at sub-pixel level based on multiscale feature extraction, and fitted linear mapping using sliding finite impulse response filter. The final autofocus efficiency outperformed about 100 times than conventional gradient-based methods
- Developed a focus calibration algorithm, which conducts weighted fusion to the results of serval expert algorithms.

INTERNSHIP EXPERIENCE

Baidu, Beijing China: Al Research Intern, Team Apollo

July 2024- Oct 2024

- For multisensor perception model, proposed an infra of model fusion based on shared weights and backbone fusion. Also conducted a cross training strategy for multi-objection and utilize distillation to compensate accuracy.
- For bev2instance module in bev perception model, conducted novel optimizations of the self-attention and deformable attention modules based on precision descent and infra compression and proved efficient in training accuracy.

Momenta, Shenzhen China: System Architecture Intern, Team Middleware of System March 2023-July 2023

- Designed the timestamp synchronization architecture of ADAS system, and constructed simulated signal generator in **signal simulation platform**, which involved validating signal pathways and creating abnormal signals.
- Developed an testbench-board verification platform based on SOMEIP about resource scheduling of hardware, the signal accuracy and communication correctness on a high-concurrence scene.

OTHER EXPERIENCE

Interdisciplinary Contest in Modeling 2021, Finalist Award(top 1%):

Jan 2020 - Mar 2020

- Proposed PRE(Page-Rank Entropy) model vector network of musicians and quantify influence of musicians by weights of nodes at the time-span and genre-span perspectives.
- Constructed local and global similarity evaluation model based on cosine similarity of multi-dimensional eigen vectors extracted by PCA. Utilized k-means clustering method to classify significance of eigens between and within genres.
- Adopted *silding window automatic regression model* as time series forecasting on main eigens to predict the long and short-term developing trend of musical genres.

ADDITIONAL INFORMATION

Language: Chinese(Native), English(Fluent), Japanese(Fluent) **Programming:** Python, C, C++, MATLAB/Simulink, CUDA, Verilog