Métodos Numéricos 1 (MN1)

Unidade 1: Teoria dos Erros Parte 3: Tipos de Erros Numéricos

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

CRAb

UFC

Erro absoluto

• É a diferença entre o valor exato de um número x e de seu valor aproximado \overline{x} :

$$EA_x = x - \overline{x}$$

- Normalmente o valor exato não é disponível
 - Obtém-se um limitante superior para o erro ou uma estimativa para o módulo do erro absoluto

$$|EA_x| = |x - \overline{x}| < \varepsilon$$

$$-\varepsilon < x - \overline{x} < +\varepsilon$$

$$\overline{x} - \varepsilon < x < \overline{x} + \varepsilon$$

Erro absoluto: Exemplos

• Sabe-se que o valor para $\pi \in (3.14, 3.15)$:

$$|EA_{\pi}| = |\pi - \overline{\pi}| < 0.01$$

- Erro absoluto é insuficiente para descrever a precisão de um cálculo (depende da grandeza):
 - x, representado por \bar{x} = 2112.9, onde | EA_x | < 0.1
 - y, representado por $\bar{y} = 5.3$, onde $|EA_y| < 0.1$
 - x e y não são representados com a mesma precisão

Erro relativo

• É erro absoluto dividido pelo valor aproximado:

$$|ER_x| = \left| \frac{EA_x}{\overline{x}} \right| = \frac{|x - \overline{x}|}{|\overline{x}|}$$

Exemplos:

$$-\bar{x}$$
 = 2112.9, $|EA_x| < 0.1 \Rightarrow |ER_x| = \left| \frac{EA_x}{\bar{x}} \right| = \frac{0.1}{2112.9} \approx 4.7 \times 10^{-5}$

$$-\bar{y} = 5.3$$
, $| EA_y | < 0.1 \Rightarrow |ER_y| = \left| \frac{EA_y}{\bar{y}} \right| = \frac{0.1}{5.3} \approx 0.02$

Truncamento e Arredondamento

- Seja um sistema que opera em aritmética de ponto flutuante de t dígitos na base 10, e seja x escrito na forma mostrada abaixo:
 - $-x = f_x \times 10^e + g_x \times 10^{e-t}$ onde $0.1 \le f_x < 1 \ e \ 0 \le g_x < 1$
- Por exemplo, se t=4 e x = 234.57:
 - $x = 0.2345 \times 10^3 + 0.7 \times 10^{-1}$, onde $f_x = 0.2345 e g_x = 0.7$
- A parcela dada por g_x x 10^{e-t} não pode ser incorporado totalmente à mantissa de x:
 - erros absoluto e relativo máximos cometidos?

Erro de truncamento

$$-|ER_x| = \frac{|EA_x|}{|\overline{x}|} = \frac{|g_x| \times 10^{e-t}}{|f_x| \times 10^e} < \frac{10^{e-t}}{0.1 \times 10^e} = 10^{-t+1}$$

visto que 0.1 é o menor valor possível para f_x

Erro de arredondamento

- fx é modificado para considerar gx :
 - Arredondamento simétrico:

$$\overline{x} = \begin{cases} f_x \times 10^e, & \text{se } |g_x| < \frac{1}{2} \\ f_x \times 10^e + 10^{e-t}, & \text{se } |g_x| \ge \frac{1}{2} \end{cases}$$

- Portanto se $|g_x|$ < 1/2, g_x é desprezado, caso contrário, somamos 1 ao último dígito de f_x

Erro de arredondamento

• Se $|gx| < \frac{1}{2}$:

$$|EA_x| = |x - \overline{x}| = |g_x| \times 10^{e-t} < \frac{1}{2} \times 10^{e-t}$$
 visto que $|g_x| < \frac{1}{2}$

$$|ER_x| = \frac{|EA_x|}{|\overline{x}|} = \frac{|g_x| \times 10^{e-t}}{|f_x| \times 10^e} < \frac{0.5 \times 10^{e-t}}{0.1 \times 10^e} = \frac{1}{2} \times 10^{-t+1}$$

visto que 0.1 é o menor valor possível para fx

Erro de arredondamento

• Se $|gx| \ge \frac{1}{2}$:

$$\begin{split} |EA_x| &= |x - \overline{x}| = |(f_x \times 10^e + g_x \times 10^{e-t}) - (f_x \times 10^e + 10^{e-t})| \\ &= |g_x \times 10^{e-t} - 10^{e-t}| = |(g_x - 1)| \times 10^{e-t} \le \frac{1}{2} \times 10^{e-t} \\ & \text{visto que } (g_x - 1) < \frac{1}{2} \text{ pois } |g_x| \ge \frac{1}{2} \end{split}$$

$$\begin{split} |ER_x| = \frac{|EA_x|}{|\overline{x}|} \leq \frac{\frac{1}{2} \times 10^{e-t}}{|f_x \times 10^e + 10^{e-t}|} < \frac{\frac{1}{2} \times 10^{e-t}}{|f_x| \times 10^e} < \frac{\frac{1}{2} \times 10^{e-t}}{0.1 \times 10^e} = \frac{1}{2} \times 10^{-t+1} \\ \text{visto que } |f_x \times 10^e + 10^{e-t}| > |f_x \times 10^e| \text{ (denominador)} \end{split}$$

Portanto, em qualquer caso teremos:

$$|EA_x| \le \frac{1}{2} \times 10^{e-t} |ER_x| < \frac{1}{2} \times 10^{-t+1}$$

Observações

• Erro:

- Erro de arredondamento = E_A
- Erro de truncamento = E_⊤
 - E_A < E_T

Tempo:

- Tempo de execução do arredondamento = T_A
- Tempo de execução do truncamento = T_T
 - T_A > T_T
 - truncamento é mais utilizado

Análise de Erros nas Operações

Dada sequência de operações, por exemplo:

$$-u = x + y - z$$

- É preciso ter uma noção de como o erro se propaga ao longo das operações realizadas
- O erro total em uma operação é composto pelo erro nas parcelas ou fatores da operação e pelo erro no resultado da operação
- Nos exemplos a seguir, será utilizado um sistema de ponto flutuante de 4 dígitos, na base 10, com acumulador de precisão dupla

Cálculo da Adição

- Requer o alinhamento dos pontos decimais dos dois números dados
 - Desloca-se a mantissa de menor expoente para a direita para realizar esse alinhamento
 - O deslocamento de casas decimais é igual à diferença entre os dois expoentes dos números considerados
 - Exemplo de alinhamento em dois números:
 - $x = 0.937 \times 10^4$; $y = 0.1272 \times 10^2$
 - Alinhando-se os pontos decimais:
 - $x = 0.937 \times 10^4 \text{ e y} = 0.001272 \times 10^4$

Cálculo da Adição

Exemplo:

- $-x = 0.937 \times 10^4$; $y = 0.1272 \times 10^2$, calcular x+y:
- Alinhando-se os pontos decimais tem-se que:
 - $x = 0.937 \times 10^4 e y = 0.001272 \times 10^4 (números alinhados)$
 - $x+y = (0.937 + 0.001272) \times 10^4 = 0.938272 \times 10^4 \text{ (exato)}$
- Como t = 4, o resultado deve ser truncado ou arredondado dependendo do que se deseja:
 - arredondamento: $\overline{x+y} = 0.9383 \times 10^4$
 - truncamento: $\overline{x+y} = 0.9382 \times 10^4$

Cálculo da Multiplicação

- Não requer alinhamento dos pontos decimais dos dois números dados
 - Basta realizar a multiplicação dos números
 - Depois ajusta-se o resultado da multiplicação
 - O resultado é ajustado pela base e mantissa
 - Assim como na adição pode-se ter 2 opções:
 - Truncamento
 - Arredondamento

Cálculo da Multiplicação

Exemplo:

- $-x = 0.937 \times 10^4 \text{ e y} = 0.1272 \times 10^2$, calcular xy:
 - $xy = (0.937 \times 10^4) \times (0.1272 \times 10^2)$ = $(0.937 \times 0.1272) \times 10^6$ = 0.1191864×10^6
- Como t = 4, o resultado deve ser truncado ou arredondado dependendo do que se deseja:
 - arredondamento: $\overline{xy} = 0.1192 \times 10^6$
 - truncamento: $\overline{xy} = 0.1191 \times 10^6$

Erro relativo de uma operação

- Mesmo que as parcelas ou fatores de uma operação estejam representados exatamente no sistema, não se pode esperar que o resultado armazenado seja exato
- Normalmente, o resultado exato da operação (OP) é normalizado e depois arredondado ou truncado para t dígitos, obtendo-se então o resultado aproximado OP
- Baseando-se no cálculo de erro relativo anterior e supondo que as parcelas ou fatores não contêm erro, o erro relativo de qualquer operação será dado pelas expressões abaixo:

No truncamento:
$$|ER_{OP}| < 10^{-t+1}$$

No arredondamento:
$$|ER_{OP}| < \frac{1}{2} \times 10^{-t+1}$$