Exercise sheet 8: Substitution Scoring

Exercise 1 - Point Accepted Mutation (PAM)

We want to calculate the PAM_1 matrix based on the following two sequence alignments of the DNA sequences a, b, c and d.

Tip: In order to solve a) and b) create a combined alignment comprised of two combined sequences a' and b' (based on the two initial alignments and their symmetric counterparts)

$$a' = a + c + b + d$$

$$b' = b + d + a + c$$

The order does not matter, as the frequency identification is position-insensitive.

Unless otherwise stated round all results to 4 decimal places.

1a)

Calculate the nucleotide frequencies r_x

Hide

Hint: Formulae

Solution

$$r_A = 0.3333$$
 (1)

$$r_C = 0.1667$$
 (2)

$$r_T = 0.3333$$
 (3)

$$r_G = 0.1667$$
 (4)

(5)

1b)

Calculate the symmetric mutation matrix E(x, y).

Hide

Hint: Formulae

Intermediate Values Non normalized values. Further multiplied by $ a' $
Solution
1c)
Calculate the non-normalized PAM matrix S with $10*log_{10}(odds)$, using the previously determined r values and E matrix. (round to integers)
Hide
Hint : Formulae
Solution
1d)
Given the sequences $a = ACC$ and $b = ATT$, compute the optimal Needleman-Wunsch alignments using:
1. The general similarity scoring function.
2. The PAM1-based similarity scoring function.
Hide
Hint: Possible Answers
Solution B
1e)
Calculate the normalization factor γ based on E .
Hide
Hint: Formulae

Solution $\gamma = 0.027$

1f)
Calculate the mutation rate matrix P .
Hide
Hint: Formulae
Solution
1g)
Calculate the normalized mutation rate matrix P' using P and the normalization factor γ .
Hide
Hint: Formulae
Solution
1h)
Determine PAM_1 based on the normalized mutation rate matrix P' with $10 * log_{10}(odds)$ (round to integer)
December 122.1 Sacret on the normanzed material 1 with 10 weight (count to messer)
Hide
Hint: Formulae
Solution
Solution
1i)
Determine PAM_2 . (round to integer)
Hide
Hint: Formulae

Solution

Exercise 2 - Programming assignment

Programming assignments are available via Github Classroom and contain automatic tests.

We recommend doing these assignments since they will help you to further understand this topic.

Access the Github Classroom link: Programming Assignment: Sheet 08.