

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 88300 N
                                                                      M_{\star}
                                                                                  = -2460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 250 \text{ N/mm}^2
           = 52600 N
                                                                                  = 200000 \text{ N/mm}^2
           = 187000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$= 73000 \text{ N/mm}^2$
=
=
=
=
=
=
=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 105000 N
                                                                      M_{\star}
                                                                                 = -3060000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 42500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 152000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 76900 N
                                                               M_{\star}
                                                                         = -3300000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 47500 N
                                                                         = 200000 \text{ N/mm}^2
          = 166000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 134000 N
                                                              M_{\star}
                                                                        = -6660000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 88900 N
                                                                        = 200000 \text{ N/mm}^2
          = 288000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 148000 N
                                                              M_{\star}
                                                                        = -7440000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 97300 N
                                                                        = 200000 \text{ N/mm}^2
          = 212000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 162000 N
                                                                      M_{\star}
                                                                                 = -8220000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 71900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 237000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 119000 N
                                                              M_{\star}
                                                                        = -8990000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 80400 N
                                                                        = 200000 \text{ N/mm}^2
          = 261000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 95100 N	M _t	= 191000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 49400 N	M_x	= -2310000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 104000 N
                                                              M_{\star}
                                                                        = -2550000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 54200 N
                                                                        = 200000 \text{ N/mm}^2
          = 140000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 113000 N
                                                                      M_{\star}
                                                                                 = -2880000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 39900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 154000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 82900 N	M _t	= 169000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 44600 N	M_x	= -3100000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 142000 N
                                                              M_{\star}
                                                                        = -6380000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 84000 N
                                                                        = 200000 \text{ N/mm}^2
          = 282000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 157000 N	M _t	= 208000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 92000 N	M_x	= -7130000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 171000 N
                                                              M_{\star}
                                                                        = -7880000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 68000 N
                                                                        = 200000 \text{ N/mm}^2
          = 231000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 126000 N
                                                                      M_{\star}
                                                                                 = -8620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 76000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 255000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 98100 N
                                                               M_{\star}
                                                                         = -2420000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 53800 N
                                                                         = 200000 \text{ N/mm}^2
          = 205000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 107000 N	M,	= 150000 Nmm		= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 59000 N	M_x	= -2670000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_d$	_I =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 117000 N
                                                              M_{\star}
                                                                        = -3010000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 43300 N
                                                                        = 200000 \text{ N/mm}^2
          = 168000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 86200 N
                                                               M_{\star}
                                                                         = -3250000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 48500 N
                                                                         = 200000 \text{ N/mm}^2
          = 184000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 147000 N
                                                              M_{\star}
                                                                        = -6610000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 89000 N
                                                                        = 200000 \text{ N/mm}^2
          = 311000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 162000 N	M _t	= 230000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_{y}	= 97500 N	M_x	= -7380000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 177000 N
                                                                      M_{\star}
                                                                                 = -8170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 72000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 256000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 131000 N
                                                                      M_{\star}
                                                                                 = -8940000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 80500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 283000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 108000 N
                                                              M_{\star}
                                                                        = -2630000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 59700 N
                                                                        = 200000 \text{ N/mm}^2
          = 221000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 119000 N	M _t	= 162000 Nmm		= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 65600 N	M_x	= -2910000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}		$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_d$	_I =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 130000 N
                                                              M_{\star}
                                                                        = -3250000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 47800 N
                                                                        = 200000 \text{ N/mm}^2
          = 180000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 95500 N
                                                               M_{\star}
                                                                         = -3520000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 53600 N
                                                                         = 200000 \text{ N/mm}^2
          = 198000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 158000 N
                                                              M_{\star}
                                                                        = -6590000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 88500 N
                                                                        = 200000 \text{ N/mm}^2
          = 317000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 174000 N
                                                              M_{\star}
                                                                        = -7360000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 96900 N
                                                                        = 200000 \text{ N/mm}^2
          = 234000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 190000 N
                                                              M_{\star}
                                                                        = -8140000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 71500 N
                                                                        = 200000 \text{ N/mm}^2
          = 261000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 140000 N
                                                              M_{\star}
                                                                        = -8900000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 80000 N
                                                                        = 200000 \text{ N/mm}^2
          = 288000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 91500 N
                                                                      M_{\star}
                                                                                 = -3170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 250 \text{ N/mm}^2
           = 60300 N
                                                                                 = 200000 \text{ N/mm}^2
           = 196000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 99900 N	M _t	= 143000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 66100 N	M_x	= -3490000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 109000 N
                                                                M_{\star}
                                                                          = -3930000 Nmm
T_y \\ M_t
                                                                          = 250 \text{ N/mm}^2
          = 48700 N
                                                                          = 200000 \text{ N/mm}^2
          = 161000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 79500 N
                                                               M_{\star}
                                                                         = -4230000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 54400 N
                                                                         = 200000 \text{ N/mm}^2
          = 175000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 139000 N
                                                                      M_{\star}
                                                                                 = -7770000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 96500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 300000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 153000 N	M,	= 221000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 105000 N	M_x	= -8660000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	-	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_{\xi}$, =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{\alpha}$	₁ =	σ_{tresca}	, =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 167000 N
                                                                      M_{\star}
                                                                                 = -9600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 78100 N
                                                                                 = 200000 \text{ N/mm}^2
           = 247000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                       M_{\star}
                                                                                  = -10400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 250 \text{ N/mm}^2
           = 87300 N
                                                                                  = 200000 \text{ N/mm}^2
           = 273000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 97700 N
                                                                        M_{\star}
                                                                                    = -2980000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 250 \text{ N/mm}^2
            = 56100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 193000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 106000 N	M _t	= 141000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 61400 N	M_x	= -3280000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 116000 N
                                                                        M_{\star}
                                                                                   = -3720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 250 \text{ N/mm}^2
           = 45300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 85200 N
                                                                        M_{\star}
                                                                                    = -4000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 250 \text{ N/mm}^2
           = 50700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 171000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 163000 N
                                                                        M_{\star}
                                                                                   = -7570000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 250 \text{ N/mm}^2
           = 93200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 325000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 180000 N
                                                                M_{\star}
                                                                          = -8440000 Nmm
                                                                          = 250 \text{ N/mm}^2
          = 102000 N
                                                                          = 200000 \text{ N/mm}^2
          = 240000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 197000 N
                                                                M_{\star}
                                                                           = -9360000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 75400 N
                                                                           = 200000 \text{ N/mm}^2
          = 268000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 145000 N
                                                                       M_{\star}
                                                                                   = -10200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 250 \text{ N/mm}^2
           = 84200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 295000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 102000 N
                                                                M_{\star}
                                                                           = -3070000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 59400 N
                                                                           = 200000 \text{ N/mm}^2
          = 217000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 112000 N	M _t	= 158000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 65100 N	M_x	= -3380000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 123000 N
                                                                M_{\star}
                                                                           = -3840000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 47900 N
                                                                           = 200000 \text{ N/mm}^2
          = 179000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 90300 N	M _t	= 195000 Nmm	σ_{a}	= 250 N/mm ²	G	= 73000 N/mm ²
T_y	= 53600 N	M_x	= -4130000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 152000 N
                                                                        M_{\star}
                                                                                   = -7700000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 250 \text{ N/mm}^2
           = 95700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 325000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 168000 N
                                                                       M_{\star}
                                                                                   = -8590000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 250 \text{ N/mm}^2
           = 104000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 240000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 184000 N
                                                                      M_{\star}
                                                                                 = -9530000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 77400 N
                                                                                 = 200000 \text{ N/mm}^2
           = 268000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 136000 N
                                                                     M_{\star}
                                                                                = -10400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                = 250 \text{ N/mm}^2
           = 86500 N
                                                                                = 200000 \text{ N/mm}^2
           = 296000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 112000 N
                                                              M_{\star}
                                                                        = -3120000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 60700 N
                                                                        = 200000 \text{ N/mm}^2
          = 226000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 123000 N	M _t	= 166000 Nmm		$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 66700 N	M_x	= -3440000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{vc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{v})_{d}$	=	σ_{tresca}	=	•	
		,					

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 135000 N
                                                              M_{\star}
                                                                        = -3890000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 48800 N
                                                                        = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 99200 N
                                                               M_{\star}
                                                                         = -4200000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 54700 N
                                                                         = 200000 \text{ N/mm}^2
          = 203000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 164000 N
                                                              M_{\star}
                                                                        = -7560000 Nmm
                                                                         = 250 \text{ N/mm}^2
          = 93300 N
                                                                        = 200000 \text{ N/mm}^2
          = 327000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                             \sigma_{\text{IId}}
                                                                                                                             \sigma_{tresca} =
                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _t	= 242000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 102000 N	M_x	= -8440000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 198000 N
                                                                      M_{\star}
                                                                                 = -9340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 250 \text{ N/mm}^2
           = 75500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 269000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 146000 N
                                                              M_{\star}
                                                                        = -10200000 Nmm
                                                                        = 250 \text{ N/mm}^2
          = 84400 N
                                                                        = 200000 \text{ N/mm}^2
          = 298000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                            \sigma_{tresca} =
                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 108000 N
                                                                M_{\star}
                                                                           = -3850000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 66100 N
                                                                           = 200000 \text{ N/mm}^2
          = 231000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 119000 N	M,	= 170000 Nmm	σ_{a}	$= 250 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 72400 N	M_x	= -4260000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	=	σ_{tresca}	=	•	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

23.05.16

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 131000 N
                                                                M_{\star}
                                                                           = -4790000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 53400 N
                                                                           = 200000 \text{ N/mm}^2
          = 192000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 96500 N
                                                                 M_{\star}
                                                                           = -5200000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 59700 N
                                                                           = 200000 \text{ N/mm}^2
          = 210000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                        M_{\star}
                                                                                   = -4770000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 250 \text{ N/mm}^2
           = 73400 N
                                                                                   = 200000 \text{ N/mm}^2
           = 252000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 129000 N
                                                                M_{\star}
                                                                           = -5290000 Nmm
                                                                           = 250 \text{ N/mm}^2
          = 80400 N
                                                                           = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```