IE531: Algorithms for Data Analytics Midterm Exam Spring, 2018

Instructions

1.	. A (correct) answer that is not accompanied by an appropriate justification
	will not be given any credit. Make sure you answer all questions.

2. Try to finish on time.

Instructions

1. (25 points) (Rank (and Determinant) of a Matrix) Consider the matrix A shown below, where $x \in \mathcal{R}$ is a real-valued variable.

$$\mathbf{A} = \left(\begin{array}{ccccc} 1 & 3 & 5 & 7 & 0 \\ 2 & 4 & 6 & 8 & 0 \\ 0 & 0 & 0 & 0 & x \end{array} \right)$$

- (a) (2 points) What is the value of x that makes Rank(A) as small as possible?
- (b) (2 points) What is the smallest possible value for Rank(A)?
- (c) (2 points) What is the value of x that makes Rank(A) as large as possible?
- (d) (2 points) What is the largest possible value for Rank(A)?
- \rightarrow (e) (2 points) What is the value of x that ensures there is a solution to the equation Ax = y, where $y = (1 \ 1 \ 0)^T$?
- \rightarrow (f) (2 points) What is the value of x that ensures there is a solution to the equation Ax = y, where $y = (1 \ 0 \ 1)^T$?
- (g) (2 points) Suppose X and Y are arbitrary matrices, is it possible for rank(X+Y) > rank(X) + rank(Y)?
 - (h) (2 points) Suppose z is a $n \times 1$ column. What are the number of rows and number of columns of zz^T ? What is $rank(zz^T)$?
 - (i) (2 points) If X is an $n \times n$, square matrix with rank(X) < n, what is det(X)?
- (j) (7 points) If **X** is an $n \times n$, square matrix, where the (i, j)-th entry, $\mathbf{X}_{i,j} = i + j$, what is $rank(\mathbf{X})$?

To receive full-credit for this problem, make sure you give me an explanation for your answers.

2. (25 points) (Generating Constrained, High-Dimensional RVs) The d-dimensional Unit-Cube is defined as

$$C = \{x \in \mathbb{R}^d \mid 0 \le x_i \le 1, i = 1, 2, ..., d\}$$

That is, C is a collection of d-dimensional vectors where each entry/component of the vector is in the closed-interval [0, 1].

- (a) (10 points) How would you generate points Uniformly at Random in C? I am looking to see some pseudo-code, along with an informal justification for why your code will pick any point in C with equal probability.
- (b) (15 points) How would you generate points Uniformly at Random on the ((d-1)-dimensional) surface of C? I am looking to see some pseudo-code, along with an informal justification for why your code will pick any point on the (d-1-dimensional) surface of C with equal probability.

Some Observations (Start)

If you understand what is meant by the term "((d-1)-dimensional) surface of C," you can skip this factoid. You may want to think about solving problem 4b by trying your hand for the special-cases of d = 1, 2, 3, 4 first (this in itself will get you no points!), and then generalize it to arbitrary values of d.

A 1-dimensional Unit-Cube is the Unit-Interval [0, 1]. There are 2-many 0-dimensional surfaces (i.e. points) on this Unit-cube, and they are the points 0 and 1.

A 2-dimensional Unit-Cube is a square with unit-length sides. There are 4-many 1-dimensional surfaces (i.e. lines) on this Unit-cube, and they are the four lines that define the square.

A 3-dimensional Unit-Cube is a cube with unit-length sides. There are 6-many 2-dimensional surfaces (i.e. areas) on this Unit-cube, and they are the six square-areas that define the cube.

There are 8-many 3-dimensional surfaces (i.e. volumes) in a 4-dimensional Unit-Cube.

Some Observations (End)

3. (25 points) Consider the following SVD of a matrix $A = UDV^T$, where

$$\underbrace{ \begin{pmatrix} 4.7511 & 1.9078 & 0.9344 & 3.2316 \\ 0.1722 & 3.8276 & 2.4488 & 3.5468 \\ 2.1937 & 3.9760 & 2.2279 & 3.7734 \end{pmatrix} }_{=\mathbf{A}} = \underbrace{ \begin{pmatrix} -0.5493 & -0.7744 & -0.3139 \\ -0.5379 & 0.6152 & -0.5763 \\ -0.6394 & 0.1477 & 0.7545 \end{pmatrix} }_{=\mathbf{U}} \underbrace{ \begin{pmatrix} 9.8247 & 0 & 0 \\ 0 & 3.7411 & 0 \\ 0 & 0 & 0.2958 \end{pmatrix} }_{=\mathbf{D}}$$

$$\underbrace{ \begin{pmatrix} -0.4179 & -0.5750 & -0.3313 & -0.6205 \\ -0.8685 & 0.3915 & 0.2973 & 0.0633 \\ 0.2178 & 0.6594 & -0.0800 & -0.7151 \end{pmatrix} }_{=\mathbf{V}^T}$$

- (a) (5 points) What is the best-possible rank 1 approximation to A? (PS: No need to carry out the multiplication; just give me the form/structure)
- (b) (5 points) What is the best-possible rank 2 approximation to A? (PS: No need to carry out the multiplication; just give me the form/structure)
- (c) (5 points) What is the best-possible rank 3 approximation to A? (PS: No need to carry out the multiplication; just give me the form/structure)

- (d) (10 points) What is the best-possible rank 4 approximation to A? (PS: No need to carry out the multiplication; just give me the form/structure)
- 4. (25 *points*) MCMC-MH: We need to generate identically-distributed samples $X \sim f(x)$ according to some (complicated) PDF $f(\bullet)$ that can be computed upto a proportionality constant.

Assume that for right now, you have a present value $x^{(j)}$ for $X \sim f(x)$. You have access to a known/well-understood *Proposal Distribution* $q(\bullet)$ that is conditioned on $x^{(j)}$. You get a sample $\widehat{x} \sim q(x \mid x^{(j)})$, you set $x^{(j+1)} = \widehat{x}$ with probability

$$p(\widehat{x}, x^{(j)}) = \min\left\{1, \frac{f(\widehat{x})}{f(x^{(j)})} \times \frac{q(x^{(j)} \mid \widehat{x})}{q(\widehat{x} \mid x^{(j)})}\right\}. \tag{1}$$

The sequence of (not necessarily independent) samples $\{x^{(j)}\}_{j=1}^{\infty}$ will be distributed according f(x). In many cases, we will pick *Proposal Distributions* that are symmetric, that is, $q(x^{(j)} \mid \widehat{x}) = q(\widehat{x} \mid x^{(j)})$, in which case the above expression simplifies to

$$p(\widehat{x}, x^{(j)}) = \min\left\{1, \frac{f(\widehat{x})}{f(x^{(j)})}\right\}. \tag{2}$$

- (a) (7.5 points) Show that $q(\widehat{x} \mid x^{(j)}) = N(x^{(j)}, 1)$ (i.e. it returns r.v.'s that are Normally-distributed with mean $x^{(j)}$ with variance of 1) is a symmetric distribution (cf. the definition/discussion above).
- (b) $(7.5 \ points)$ Suppose $q(\widehat{x} \mid x^{(j)}) = \text{Uniform}(x^{(j)}, x^{(j)} + 10)$ (i.e. it returns r.v.'s that are Uniformly-distributed between $x^{(j)}$ and $x^{(j)} + 10$). Is this *Proposal Distribution* symmetric? Explain your answer (or, you get no points!)
- (c) (10 points) As a follow-on to problem 4b, which version of the acceptance probability would you use Equation 1? Equation 2? Explain your answer (ps. This is a trick-question, just saying!).