Tertiary interactions of contiguous hydrophobic residues in peptides.

Theme: Intra Protein Interactions

Not all intra-protein interactions involve structural motifs

Structured Protein

Peptides and IDPs

Modules are traditionally assigned by secondary structure

Residue

Secondary Structure

Contacts between residues are hard to interpret

Residue by residue contacts for val66 BDNF

Residue by residue contacts for met66 BDNF

Modules are traditionally assigned by secondary structure

Residue

Secondary Structure

Contiguous Hydrophobic clusters

Blobulation defines clusters by hydrophobicity

AYFTQRNHLSTFRGGS

Blobulated Sequence

Blobulation offers a cleaner method to observe tertiary interactions

Blob-blob contact population map of BDNF with val66 and met66 respectively. Population is the ratio of frames blobs were in contact over total frames of the simulation

Blobulation gives insight into cluster contacts

Blob-blob contact population map of BDNF with val66 and met66 respectively. Population is the ratio of frames blobs were in contact over total frames of the simulation

Difference between contact frequency of V66 to M66

Zooming into blob reveals key residue contact

Residue contacts within blob h2b. For val66 met66 and difference between each respectively

Met-met interaction in BDNF between residue 66 and residue 95

Main Question: How do h-blobs influence tertiary

interactions in peptides?

Preliminary Work

VMD Blobulation GUI

- Prior to joining the lab, blobulating a protein in VMD was an arduous task
 - 1. Blobulate sequence on webapp
 - 2. Download data table
 - 3. Load protein into VMD
 - 4. Run a script to set values
 - 5. Create Graphical representation for each blob

- New tool is a convenient alternative
 - Load protein into VMD
 - 2. Blobulated with the GUI

Model peptide in new cartoon

Model peptide blobulated

Simulation(s)

Main Question: How do h-blobs influence tertiary

interactions in peptides?

Aims: Overview

Aim 1

Main Question: How do hydrophobic properties such as length, and residue composition affect tertiary interactions in peptides?

Run 5 simulations with the following sequences

Analyses: Radius of gyration, blob-blob contacts, and create network diagrams

Aim 2

Main Question: Do polar blobs influence h-blobs interactions?

Run 4 simulations with the following sequences

Analyses: Radius of gyration, blob-blob contacts, and create network diagrams

Aim 1: How do h-blob properties affect tertiary interactions

- Run 5 simulations of different peptide sequences each with a control sequence
- Simulation time of 1 us each
- Measure radius of gyration, and blob blob contacts through every frame of simulation
- Create network diagrams off blob blob contact data
- Measure change in compactness between the experimental sequence and the respective control sequence

Aim 1: Sequences are made off threshold parameters

We will run these sequences in atomistic MD simulations

h-blobs

NNNNLLLLLNNNN

p-blobs

NNNNLLLLLNNNNLLLLLNNNNLLLLLLNNNN

NNNNI I I I INNNNI I I I INNNN

Negative Control: Testing if the order of amino acids influence tertiary interactions

For each simulation

Aim 1: Long stretches of hydrophobicity

We will run these sequences in atomistic MD simulations

p-blobs

Aim 1: Could h-blob quantity match length?

We will run these sequences in atomistic MD simulations

NNNNLLLLLNNNNLLLLLNNNNLLLLLNNNN

Aim 1: Do stronger hydrophobic residues influence tertiary interactions?

We will run these sequences in atomistic MD simulations

p-blobs

These sequences focus more on the residue composition.

Aim 1: Expectation of contacts from more contacts to less

Hypothesis: Blob properties correlate to tertiary interactions

Length of blobs

Residue composition of blobs

Radius of Gyration

Non-Compact Peptide

Compact Peptide

Blob-Blob Contacts

Blob-Blob Contacts: A measurement of contact over time

$$%Population = \frac{Frames of Blobs Contacts}{Total Frames}$$

Network Diagrams: Examining connections for intra protein interactions

Network Diagrams: visualize blob contacts in a different context

Image of a potential network diagram for our model peptide.

Using D_e from blob-blob contact frequency

Aim 1: How do hydrophobic properties such as length, residue composition affect tertiary interactions in peptides?

 Determine the most compact sequence by running simulations with different peptides.

 Find the sequence with the most enriched blob-blob contacts.

 Demonstrate the average distance of blob-blob contacts in 2d space with network diagrams.

Deliverables

1 us of simulation each

Analyzing: Radius of Gyration, Blob-Blob Contacts, Network Diagrams

Aim 2: Do polar blobs influence h-blobs interactions?

- Take 2 sequences from aim 1 that have the lowest radius of gyration from control sequence.
- Manipulate the p-blobs, increasing length of p-blobs or changing residues inside p-blobs
- Run 4 simulations of different peptide sequences each with a control sequence
- Simulation time of 1 us each
- Measure radius of gyration, and blob blob contacts through every frame of simulation
- Create network diagrams off blob blob contact data

Aim 2: Breaking tertiary interactions with p-blobs

Manipulate their p-blobs

Most change from aim 1 to least changed

1 us of simulation each

Analyzing: Radius of Gyration, Blob-Blob Contacts, Network Diagrams

Summary

Main Question: How do h-blobs influence tertiary interactions in peptides?

Aim 1 main question: How do hydrophobic properties such as length and residue composition affect tertiary interactions in peptides?

Aim 2 main question: Do polar blobs influence h-blobs interactions?

Acknowledgements

Brannigan Lab

- Grace Brannigan
- Ezry Santiago
- Connor Pitman
- Jesse Sandberg
- Jahmal Ennis
- Regina Salzer
- Lindsey Riggs
- Alejandro Dagnino

Ruchi Lohia

Questions?