Homework Assignment 3

Information Theory, TBSI

November 30, 2017

1. Channel Capacity. Consider the DMC $Y = X + Z \mod 11$, where

$$Z = \begin{pmatrix} 1, 2, 3 \\ \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{pmatrix}$$

and $X \in \{0, 1, 2, 3, \dots, 10\}$. Assume that Z is independent of X.

- (a) Find the capacity.
- (b) What is the maximizing $p^*(x)$?

2. Cascade of binary symmetric channels. Show that a cascade of n identical independent binary symmetric channels,

$$X_0 \to BSC \to X_1 \to \cdots \to X_{n-1} \to BSC \to X_n$$

each with raw error probability p, is equivalent to a single BSC with error probability $\frac{1}{2}(1-(1-2p)^n)$ and hence that $\lim_{n\to\infty} I(X_0;X_n)=0$ if $p\neq 0,1$. No encoding or decoding takes place at the intermediate terminals X_1,\dots,X_{n-1} . Thus, the capacity of the cascade tends to zero.

3. Erasures and errors in a binary channel. Consider a channel with binary inputs that has both erasures and errors. Let the probability of error be ϵ and the probability of erasure be α

- (a) Find the capacity of this channel.
- (b) Specialize to the case of the binary symmetric channel ($\alpha=0$).
- (c) Specialize to the case of the binary erasure channel ($\epsilon=0$).

- 4. **Multipath Gaussian channel.** Consider a Gaussian noise channel with power constraint P, where the signal takes two different paths and the received noisy signals are added together at the antenna, shown as above.
 - (a) Find the capacity of this channel if Z_1 and Z_2 are jointly normal with covariance matrix

$$K_z = \begin{bmatrix} \rho \sigma^2 & \sigma^2 \\ \sigma^2 & \rho \sigma^2 \end{bmatrix}$$

- (b) What is the capacity for $\rho = 0$; $\rho = 1$; $\rho = -1$?
- 5. A parametric form for channel capacity. Consider m parallel Gaussian channels, $Y_i = X_i + Z_i$, where $Z_i \sim N(0, \lambda_i)$ and the noises X_i are independent random variables. Thus $C = \sum_{i=1}^{m} \frac{1}{2} \log(1 + \frac{(\lambda \lambda_i)^+}{\lambda_i})$ where λ is chosen to satisfy $\sum_{i=1}^{m} (\lambda \lambda_i)^+ = P$. Show that this can be rewritten in the form

$$P(\lambda) = \sum_{i:\lambda: <=\lambda} (\lambda - \lambda_i), C(\lambda) = \sum_{i:\lambda: <=\lambda} \frac{1}{2} \log \frac{\lambda}{\lambda_i}$$

Here $P(\lambda)$ is piecewise linear and $C(\lambda)$ is piecewise logarithmic in λ .

- 6. Converse of channel coding theorem. Proof that for a DMC, any sequence of $(2^{nR}, n)$ codes with maximum probability of error $\lambda^{(n)} \to 0$ must have $R \leq C$.
- 7. **Telephone channel power.** Assume a time discrete and amplitude continuous memory-less channel's input is a zero-mean gaussian random variable with variance E. Channel noise is additive gaussian noise, variance $\sigma = 1\mu W$, channel bandwidth r = 8000Hz. If a telephone signal pass through this channel, and its message rate is 64kbps. What is the minimum value of input channel power E?
- 8. **Z channel.** The Z-channel has binary input and output alphabets $\mathcal{X}, \mathcal{Y} \in \{0,1\}$ and transition probabilities p(y|x) given by the following matrix:

$$Q = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Find the capacity of the Z-channel and the maximizing input probability distribution.

- 9. **Joint typicality.** Let X_i, Y_i, Z_i be i.i.d. according to p(x, y, z). We will say that (X^n, Y^n, Z^n) is jointly typical(denoted as $(X^n, Y^n, Z^n) \in A_{\epsilon}^{(n)}$) if
 - $p(x^n) \in 2^{-n(H(X) \pm \epsilon)}$
 - $p(y^n) \in 2^{-n(H(Y)\pm\epsilon)}$
 - $p(z^n) \in 2^{-n(H(Z) \pm \epsilon)}$
 - $p(x^n, y^n) \in 2^{-n(H(X,Y) \pm \epsilon)}$
 - $p(x^n, z^n) \in 2^{-n(H(X,Z)\pm\epsilon)}$
 - $p(y^n, z^n) \in 2^{-n(H(Y,Z) \pm \epsilon)}$
 - $p(x^n, y^n, z^n) \in 2^{-n(H(X, Y, Z) \pm \epsilon)}$

Now suppose $(\widetilde{X}^n, \widetilde{Y}^n, \widetilde{Z}^n)$ is drawn according to $p(x^n)p(y^n)p(z^n)$. Thus $\widetilde{X}^n, \widetilde{Y}^n, \widetilde{Z}^n$ have the same marginals as $p(x^n, y^n, z^n)$ but are independent. Find bounds on $Pr\{(X^n, Y^n, Z^n) \in A_{\epsilon}^{(n)}\}$ in terms of the entropies H(X), H(Y), H(Z), H(X, Y), H(X, Z), H(Y, Z), H(X, Y, Z).

10. **Fano's inequality.** Message W with alphabet cardinality J, code length N, goes through a channel with capacity C, $W \to X^n \to Y^n \to \hat{X}^n \to \hat{W}$, proof that error probability P_e satisfies

$$P_e \ge \frac{1}{\log J} (R - C - \frac{1}{N})$$

in which R is the input information rate of channel.