习题答案

第1章

- 1.1 (1)(a)关联,(b)、(c)非关联;
 - (2) (a)、(b)消耗功率, (c)发出功率
- 1.2 10Ω电阻
- 1.3 50Ω , 8W
- 1.4 (1)额定电流: 45.45A, 开路电压: 247.27V;
 - (2)输出电流: 23.33A, 输出电压: 233.27V, 输出功率 5.4kW;
 - (3)输出电流: 95.10A, 输出电压: 190.21V, 输出功率 18kW
- $U_2 = 10V$, $U_5 = -2V$, $U_6 = 4V$, $I_2 = 5A$, $I_5 = 4A$, $I_4 = 1A$
- $R = 16W, R_2 = 50W, R_3 = 2W, R_4 = 36W, R_3 = 8W, R_4 = 4W;$

元件2、5起电源作用,元件1、3、4、6起负载作用

- 1.7 $V_A = 8V$, $V_B = 6V$, $V_C = 18V$
- **1.8** (a) $U_{ab} = 10 \text{V}$; (b) $U_{ab} = -12 \text{V}$, I = 1.6 A; (c) $U_{ab} = -8 \text{V}$, I = -1.2 A
- 1.9 $V_{\rm A} = 12 \, {\rm V}$, $V_{\rm B} = 1 \, {\rm V}$, $V_{\rm C} = -10 \, {\rm V}$
- 1.10 选用 20Ω 电阻, $U_2 = 60 \mathrm{V}$, $I = 3 \mathrm{A}$

第2章

- **2.1** (a) $R_{ab} = 9 \Omega$; (b) $R_{ab} = 3.5 \Omega$
- 2.2 I = -1A
- 2.3 $U_{\rm o} = 11 \rm V$
- **2.4** U = 12V
- **2.5** I = 1A
- 2.6 (1) 3 条,不是, 2 个; (2) 1 个; (3) 1 个, Is 与 R1 构成的网孔。

- **2.7** (1) 1A, 0.9A; (2) I = -1.2A, (3) I = -1.2A
- **2.8** U = 18V,无影响。
- **2.10** I = 5A

第3章

3.1
$$I = 2A$$
, $I_m = 2\sqrt{2}A$, $\omega = 314$ ard/s, $f = 50$ Hz, $\phi = 60^\circ$

3.2 (2)
$$\dot{U}_1 = 220 \angle 30^{\circ} \text{V}$$
, $\dot{U}_2 = 220 \angle -90^{\circ} \text{V}$; (4) $\varphi = 120^{\circ}$

3.3 (1)
$$\dot{U}_1 = 50 \angle 53.1^{\circ} \text{V}$$
, (2) $\dot{U}_2 = (190.5 - \text{j}110)\Omega$

(3)
$$\dot{I}_1 = (1.6 + j1.2)A$$
, (4) $\dot{I}_2 = (-2 - j2)A = 2.8 \angle -135^{\circ}A$

- 3.4 14.1V, $\sqrt{2}$ A
- 3.5 (1) $Z = (94.6 + j55)\Omega$, (2) $R = 94.6\Omega$, L = 175mH

3.6 (1)
$$X_L = 31.4\Omega$$
, $X_C = 106.2\Omega$, $Z = (30 - j74.8)\Omega$

(2)
$$\dot{U}_{\rm R} = 30{\rm V}$$
, $\dot{U}_{\rm L} = {\rm j}31.4{\rm V}$, $\dot{U}_{\rm C} = -{\rm j}106.2{\rm V}$, $\dot{U} = 80.6 \angle -68.1^{\circ}{\rm V}$

3.7
$$\cos \varphi = 0.37$$
, $P = 29.82$ W, $Q = 74.96$ var, $S = 80.6$ VA

- **3.8** $R = 92\Omega$
- 3.9 (1) $\cos \varphi = 0.45$; (2) Q = 88.11 var, S = 99 VA

3.10
$$I=10\mathrm{A}$$
 , $X_{\mathrm{C}}=12\Omega$, $R_{\mathrm{1}}=X_{\mathrm{L}}=8.4\Omega$

3.11
$$I_{\rm R} = I_{\rm L} = 10{\rm A}$$
, $I_{\rm C} = 20{\rm A}$, $I = 10\sqrt{2}{\rm A}$

- 3.12 (1) C = 400PF,(2) Q = 261.7,(3) $U_{\rm C} = 261.7$ mV,(4) P = 0.33mW, 无功功率为 0。
- 3.13 $f_0 = 1592.4$ Hz, Q = 100
- **3.14** (1) $\cos \varphi = 0.76$, (2) Q = 66.84 Var
- **3.15** P = 483.5W, Q = 437.8Var, S = 653.4VA, $\cos \varphi = 0.74$

第4章

4.1
$$i_A = 4.92\sqrt{2}\sin(\omega t - 63.4^\circ)A$$
, $i_B = 4.92\sqrt{2}\sin(\omega t - 183.4^\circ)A$, $i_C = 4.92\sqrt{2}\sin(\omega t + 56.6^\circ)A$, $i_N = 0$

4.2
$$\dot{I}_{AB} = 3.1 \angle -45^{\circ} A$$
, $\dot{I}_{BC} = 3.1 \angle -165^{\circ} A$, $\dot{I}_{CA} = 3.1 \angle 75^{\circ} A$
 $\dot{I}_{A} = 5.4 \angle -75^{\circ} A$, $\dot{I}_{B} = 5.4 \angle -195^{\circ} A$, $\dot{I}_{C} = 5.4 \angle 45^{\circ} A$

4.3
$$\dot{I}_{A} = 22 \angle 0^{\circ} A$$
, $\dot{I}_{B} = 11 \angle -120^{\circ} A$, $\dot{I}_{C} = 7.3 \angle 120^{\circ} A$, $\dot{I}_{N} = 13 \angle -14^{\circ} A$

4.4
$$\dot{I}_{AB} = 11\angle 0^{\circ} A$$
, $\dot{I}_{BC} = 11\angle -30^{\circ} A$, $\dot{I}_{CA} = 11\angle 30^{\circ} A$, $\dot{I}_{A} = 11\sqrt{3}\angle -30^{\circ} A$

4.5
$$\dot{I}_{\rm A} = 4.4 \angle 0^{\circ} A$$
, $\dot{I}_{\rm B} = 4.4 \angle -30^{\circ} A$, $\dot{I}_{\rm C} = 4.4 \angle 30^{\circ} A$, $\dot{I}_{\rm N} = 12 \angle 0^{\circ} A$, $P = 968 \rm W$

4.6
$$P = 1454$$
W, $Q = 2903.5$ var, $S = 3247.2$ VA

4.7
$$P = 8866W$$
, $S = 8866VA$

4.8
$$\dot{I}_{A} = 2.2 \angle -36.9^{\circ} \text{A}$$
, $\dot{I}_{B} = 2.2 \angle -156.9^{\circ} \text{A}$, $\dot{I}_{C} = 2.2 \angle 81.3^{\circ} \text{A}$
 $P = 1161.6 \text{W}$, $Q = 871.2 \text{var}$, $S = 1452 \text{VA}$

4.9 $U_{\rm B}=145{\rm V}$, $U_{\rm C}=232{\rm V}$, C相负载烧毁。

第5章

5. 1 (a)
$$U_o = 2V$$
, (b) $U_o = 12V$

5.2 半波整流,整流作用。

5.3 (1)
$$U_{\rm L}=6{\rm V}$$
, (2) $I_{\rm L}=6{\rm mA}$, $I_{\rm R}=13{\rm mA}$, $I_{\rm Z}=7{\rm mA}$, (3) $I_{\rm Z}=I_{\rm R}=30{\rm mA}$, $I_{\rm Z}>I_{\rm Zmax}$, 稳压管烧坏。

- 5.5 T₁放大, T₂饱和, T₃截止, T₄饱和
- 5.6 T₁为 NPN 型硅管, 1 脚=C, 2 脚=E, 3 脚=B; T₂为 NPN 型锗管,
 4 脚= B, 5 脚=C, 6 脚= E, 两个晶体管都工作在放大状态。

5.7 (1)
$$I_{\rm C} = 2 \, {\rm mA}$$
, $U_{\rm CE} = 6 \, {\rm V}$; (2) $I_{\rm C} = 3.9 \, {\rm mA}$, $U_{\rm CE} = 0.3 \, {\rm V}$; (3) $I_{\rm C} = 0$, $U_{\rm CE} = 12 \, {\rm V}$

5.8 $U_{CE} = 6V$ 时,晶体管工作在放大状态, $U_{CE} = 12V$ 时,晶体管工作在 截止状态, $U_{CE} = 0.3V$ 时,晶体管工作在饱和状态。

第6章

- 6.3 (1) $I_{\rm B}=50 \mu {\rm A}$, $I_{\rm C}=2 {\rm mA}$, $U_{\rm CE}=4 {\rm V}$ (2) $I_{\rm B}=75 \mu {\rm A}$, $I_{\rm C}=3 {\rm mA}$, $U_{\rm CE}=0 {\rm V}$; Q点进入饱和区。
- 6.4 (2) $A_{\rm u} = -160$, (3) $r_{\rm i} \approx 1 \text{k}\Omega$, $r_{\rm o} = 4 \text{k}\Omega$
- 6.5 (1) 截止失真, (2) 调 R_B, 使其减小。
- 6.6 (2) $I_{\rm B} = 45.2 \mu {\rm A}$, $I_{\rm C} = 2.26 {\rm mA}$, $U_{\rm CE} = 4.09 {\rm V}$
- 6.7 (2) $A_{\rm u} = -87.2$, (3) $r_{\rm i} = 0.81 \text{k}\Omega$, $r_{\rm o} = 2 \text{k}\Omega$
- 6.8 烧坏晶体管,在R_{B1}支路中串联电位器
- 6.9 (2) $A_{ij} = -0.97$, (3) $r_{ij} = 11.37 \text{k}\Omega$, $r_{ij} = 2 \text{k}\Omega$
- 6. 10 (1) $I_{\rm B}=35.3\mu{\rm A}$, $I_{\rm E}=1.45{\rm mA}$, $U_{\rm CE}=7.65{\rm V}$ (2) $A_{\rm u}=0.98$, (3) $r_{\rm i}=47.6{\rm k}\Omega$, $r_{\rm o}=26.25\Omega$
- 6.11 (1) $A_{\rm u} = 0.99$, (2) $r_{\rm i} = 76.5 {\rm k}\Omega$, $r_{\rm o} = 26.25 \Omega$
- 6.12 (1) $r_o = 25\Omega$, 电源内阻使输出电阻变大。
- 6. 13 (2) $A_{u1} = -34.38$, $A_{u2} = -93.75$, $A_{u} = 3223.13$ (3) $r_{i} = 0.76 \text{k}\Omega$, $r_{o} = 2 \text{k}\Omega$
- 6. 14 (2) $A_{u1} = 0.96 A_{u2} = -116.28$, $A_{u} = -111.63$ (3) $r_{i} = 17.94 \text{k}\Omega$, $r_{o} = 3 \text{k}\Omega$
- 6. 15 (2) $A_{u1} = -164$, $A_{u2} = 0.99$, $A_{u} = -162.36$ (3) $r_{i} = 0.77 \text{k}\Omega$, $r_{o} = 125.2\Omega$

第7章

7.1 (a)
$$u_0 = -ku_i$$
, (b) $u_0 = ku_i$, (c) $u_0 = -(u_{i1} + u_{i2})$, (d) $u_0 = u_{i2} - u_{i1}$

7.2 (1)
$$u_o = (1 + \frac{1 + R_F}{10})u_i$$
, (2) $39k\Omega$, $89k\Omega$

7.3
$$u_0 = 6V$$

7.4
$$u_0 = 1V$$

7.5 (1)
$$u_{o1} = 2.5 \text{V}$$
, $u_{o2} = 2 \text{V}$, $u_{o} = -5 \text{V}$; (2) $R_2 = 16.7 \text{k}\Omega$

7. 12
$$u_0 = -3V \sim 3V$$

7. 13
$$u_0 = u_{i4} - (u_{i1} + u_{i2} + u_{i3})$$

7. 14
$$u_0 = 10V$$

7.15 (1)
$$i_{\rm L} = -\frac{R_2}{R_1 R_S} u_i$$
; (2) 输出恒流。

第8章

8. 1
$$Y_1 = ABC$$
, $Y_2 = \overline{A + B + C}$

8. 2
$$Y_1 = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$
, $Y_2 = \overline{A}\overline{B}\overline{C} + \overline{A}BC + AB\overline{C}$

8.3 (1)
$$Y_1 = 1$$
; (2) $Y_2 = \overline{AB} + C$; (3) $Y_3 = B$; (4) $Y_4 = A + \overline{B}C$;

(5)
$$Y_5 = A + \overline{C}DE$$
; (6) $Y_6 = A + \overline{B}C + \overline{B}D + B\overline{D}$

8.4 (1)
$$Y_1 = A\overline{B} + \overline{A}C + B\overline{C}$$
 (不唯一); (2) $Y_2 = \overline{A} + \overline{B} + \overline{C} + D$

(3)
$$Y_3(A,B,C,D) = \overline{A}\overline{B}\overline{D} + AB\overline{C} + BC\overline{D}$$
;

(4)
$$Y_4(A,B,C,D) = A\overline{C}D + ABC + \overline{A}B\overline{C} + \overline{A}CD$$
;

(5)
$$Y_5 = \overline{B} + C$$
; (6) $Y_6(A, B, C, D) = B\overline{C} + C\overline{D}$

8.5
$$Y_1 = \overline{AB}$$
 $Y_2 = \overline{\overline{AB} + A\overline{B}}$ $Y_3 = A\overline{B}$,两个1位二进制数比较电路。

8.6
$$Y = \overline{ABC} + ABC$$
; 判一致电路。

- 8.7 $Y = A + \overline{B}C + B\overline{C} = \overline{\overline{A} \cdot \overline{BC} \cdot \overline{BC}}$, 实现电路略。
- 8.8 $Y = \overline{A}\overline{B}\overline{C} + AB + BC + AC = \overline{\overline{A} + B + C} + \overline{\overline{A} + \overline{B}} + \overline{\overline{B} + \overline{C}} + \overline{\overline{A} + \overline{C}}$, 实现电路略。
- 8. 10 (1) $Y_1 = AC = m_5 + m_7$; (2) $Y_2 = m_1 + m_3 + m_4 + m_7$; (3) $Y_3 = m_0 + m_4 + m_6$

第9章

- 9.6 左移寄存器
- 9.8 同步 3 位二进制加法计数器 (同步 8 进制加法计数器)
- 9.9 9进制计数器。
- 9.10 (1) 时钟脉冲由 CP_0 输入,从 Q_0 输出,构成 2 进制计数器;
 - (2) 时钟脉冲由 CP_1 输入, $Q_0=1$,从 $Q_{.3}Q_2Q_1$ 输出,又构成 8 进制计数器;
 - (3)将 CP0和 CP1相接,外加时钟脉冲信号,分析构成 16进制计数器。
- 9.11 (a) 14 进制计数器, (b) 7 进制计数器