Краткое описание разработанного интерфейса программы и функционала устройства для управленя микроклиматом фитокамеры

1. Общее устройство комплекса

комплексное устройство призвано контролировать микроклимат компактной фитокамеры для выращивания скороспелых культур по типу микрозелени или салата. Устройство располагает компонентами для ввода/вывода данных, исполнительными органами и датчиками. Вся система питается от внешнего източника питания от 5 В. особенностью устройства данного является связь контроллеров посредством цифровых пинов через делитель напряжения для обмена данными с помощью цифрового последовательного порта (Serial port). Контроллер ESP32 отвечает за основную логику всей системы, вывод данных на ЖК дисплей, переход от одного режима в другой, а контроллер Arduino Mega за опрос датчиков и включение/выключение исполнительных органов системы. Ниже, на рисунке 1, приведена монтажная схема устройства.

Рисунок 1. — Монтажная схема комплекса

Как видно из монтажной схемы, данное устройство состоит из следующих компонентов: контроллера (ESP32), контроллера (Arduino Mega), датчика температуры и влажности воздуха (DHT11), адресуемой светодиодной ленты (WS2812B), блока из 8-и модулей реле (Jbtek 8), модуля SD картридера, модуля реального времени (DS1302), энкодера вращения (Bondar BBI-32), ЖК дисплея 20х4 с I2C интерфейсом. Ниже, на рисунке 2, приведена уже собранная иллюстрация устройства.

<u>А</u> - контроллер (ESP32); <u>В</u> - контроллер (Arduino Mega); <u>С</u> - ЖК дисплей 20x4 с I2C интерфейсом; <u>D</u> - энкодер вращения (Bondar BBI-32); <u>E</u> - датчик температуры и влажности воздуха (DHT11); <u>F</u> - модуль SD картридера; <u>G</u> - блок из 8-и модулей реле (Jbtek 8); <u>H</u> - модуль реального времени (DS1302); <u>I</u> - адресуемая светодиодная лента (WS2812B); Рисунок 2. — Собранная модель устройства

Данное устройство функционирует в двух режимах работы, а именно в веб-ориентированнам и ручном. Подробный разбор особенностей работы в вышеуказанных режимах рассматривается ниже.

Листинг программ загруженных на контроллеры приведены по ссылкам ниже.

ESP32: https://github.com/Yerlan999/SmartGreenHouse-
https://github.com/Yerlan999/SmartGreenHouse-
https://github.com/Yerlan999/SmartGreenHouse-
https://github.com/Yerlan999/SmartGreenHouse-
https://github.com/Yerlan999/SmartGreenHouse/Advanced_Combined_GUI/Advanced_Combined_GUI/Ino

Arduino Mega: https://github.com/Yerlan999/SmartGreenHouse-KazATU/blob/main/Automatic_GreenHouse/Arduino_to_ESP32_date_exchange.ino
e/Arduino_to_ESP32_date_exchange.ino

2. Веб-ориентированный режим работы.

Данный режим предназначен для осуществленя контроля за микроклиматом фитокамеры посредством внесении изменении в систему через веб-страницу, создаваемую на микроконтроллере ESP32. Этот контроллер позволяет подключаться к доступной WiFi сети и хостить (публиковать) веб-страницы, так как обладает встроенным WiFi модулем.

При влючении, устройство автоматическии осуществляет поиск доступных WiFi сетей или точек доступа, данные которых уже заранее внесены в прошивку программы. Количество таких известных сетей можно вносить неограниченное количество раз. Веб-страничный режим работы, (далее онлайн режим работы), составлен таким образом, что при подключении к одной из уже известных точек доступа или WiFi сети выводит основные данные этой самой сети, такие как: IP адрес страницы, по которому располагается веб-страница, название сети и пароль. На самой нижней строке ЖК дисплея производится вывод текущей даты и времени полученной от устройства распространяющий сеть. Пример приведен на рисунке 3, ниже. Важно заметить, что по IP адресу можно будет пройти к веб-странице только при подкючении к указанной сети на нижней строке.

192.168.21.248
Le petit dejeuner 2
DoesGodReallyExist
2022-06-19 22:18

Рисунок 3. — Пример вывода данных о подключенной сети.

При переходе по IP адресу ползователя встретит окошко ввода данных входа. Данное окошко запрашивает входные данные устройства. Пример приведен на рисунке 4. В данном случае, входными данными являются "micro" для имени и для пароля.

Connexion

http://192.168.21.248 nécessite un nom d'utilisateur et un mot de passe. Votre connexion à ce site n'est pas privée Nom d'utilisateur

Nom d'utilisateur

Mot de passe

Annuler Connexion

Рисунок 4. — Окошко ввода входных данных.

После успешной валидации данных, пользователя встретит следующий интерфейс, приведенный на рисунке 5. Данный интерфейс состоит из раздела показании значении с датчиков и раздела осуществления контроля над основными параметрами системы.

Рисунок 5. — Веб-интерфейс программы.

Ниже находится кнопка для перехода в раздел настроек в котором может осуществлятся корректировка значении интервала времени обмена данными между контроллерами и яркость светодиодной ленты. Иллюстрация приведена на рисунке 6.

Интервал обновления(сек) :			
30		Задать	
Яркость светодиодной ленты:			
7		Задать	
<u>Главная</u>			
<	О	III	
Рисунок 6. — Раздел настроек			

Контроль параметров системы производится посредством ввода необходимого значения в ячейку кнопки контроля и подтверждения через

нажатия на кнопку "Задать". После чего в разделе отображения значении датчиков соответствующий раздел окрасится в красный цвет, тем самым подтверждая что осуществляется слежение за значением системы. Пример данного процесса приведен на рисунке 7.

Рисунок 7. — Задание параметра системы температуры воздуха

Также данная кнопка может в обычном режиме включать и выключать исполнительный огран системы посредством дополнительной кнопки "Включить" или "Выключить". По выше описанной логике функционируют и другие системы, такие как: валжность воздуха, уровень воды в баке, уровень углекислого газа, температура воды.

Совсем иным функционалом обладает системы слежения за освещением и поливом растении. Параметры данных систем преимущественно контролируются через конроль времени, реализованный в виде двух основных режимов. Первый режим позволяет задавть время начала и продолжительность полива с вожможностью ставить на ежедневный повтор. Второй режим дает возможность задавать продолжительность полива и продолжительность паузы. Важно заметить, что для перехода кнопки контроля во второй режим необходимо нажать на кнопку контроля соответстующей системы два раза. Пример кнопок

контроля приведены на рисунке 8 ниже. Более подробный пример приведен на рисунке 9.

Рисунок 8. — Задание параметра систем полива и освещения.

Рисунок 9. — Пример более полного контроля систем.

Данный режим работы при потере WiFi сети автоматический переходит в ручной режим работы, который будет подробно описан ниже. Также онлайн режим с определенной периодичностью, назначаемый в разделе настройки, совершает поиск известных сетей и точек доступа, а при нахождении обратно возвращается в веб-ориентированный режим. Переход от одного режима к другому производится без потери данных и основных параметров систем заданных пользователем, так как подключенный модуль SD картридера осуществляет запись всех параметров системы и ведет учет текущий значении с датчиков для дальнейшего их анализа.

3. Ручной режим работы.

Ручной режим работы полностью сообщен с онлайн режимом работы и отзеркаливает его. Для управления и ввода данных в систему пользователю необходимо вращать энкодер, который имеет нельколько состоянии. Данный энкодер можно вращать в обе стороны, нажимать, нажимать и удерживать, нажимать и вращать в обе стороны. Общая логика контроля приведена на рисунке 10.

Рисунок 10. — Окна меню и логика контроля ручного режима.

Красные стрелки - переход нажатием энкодера. Синие стрелки - переход нажатием(удержанием) и вращением энкодера. Данные переходы между меню осуществляется лишь при том условии, если указатель ">" установлен на заглавии соответсвующего режима. Пример данного состояния приведен на рисунке 11.

>Temperature curr value:28 2022-06-19 22:20

Рисунок 11. — Пример правильного рсположения указателя ">" для перехода между окнами меню.

Для внесения изменении в параметры системы необходимо пройти в интересующее пользователя меню и направить указатель на соответствующую ячейку. На рисукнке 12 показан пример установленмя параметров времени системы полива. Данная ячейка имеет особенность в том, что для внесения часов и минут пользователю необходимо нажать на энкодер один и два раза соответственно. То есть, при виде указателя " - " вносятся часы, а при " = " минуты времени системы. Все остальные ячейки всех систем требуют лишь одного нажатся для внесения изменении.

```
Water Clock
=time:0:0 dur:0
repeat:0
2022-06-19 22:24
```

Рисунок 12. — Пример правильного рсположения указателя ">" для внесения изменении в систему полива.

За вывод текущего времени в ручном режиме отвечает модуль реального времени DS1302. Пример уже установленных значении для системы освещения проиллюстрирован на рисунке 13 ниже.

Рисунок 12. — Пример внесенных изменении в систему освещения.

Для закрепления уже внесенных данных пользователем, необходимо пройти указателем ">" в заголовок соответствущей системы и нажать удерживая энкодер. Показателем установления внесенных значении служит символ "*", иллюстрирующий о том что внесенные значения установленны и системы начала контроль системы по данным праметрам. Стоит заметить, что нельзя устанавливать другой режим контроля при осуществлении контроля по другому режиму в рамках одной системы. То есть, для установки нового режима необходимо снять текущий повторным нажатием и удержанием энкодера на заголовке режима с символом "*". А также, нельзя менять значения ячеек в режиме в котором уже осуществляется контроль, то есть установлен символ "*".

На рисунке 13 показан меню настроек в ручном режиме.

```
>Settings
timing:30
led bright:15
2022-06-19 22:23
```

Рисунок 13. — Меню настроек в ручном режиме.

Далее на рисунке 14 показаны примеры меню некоторых остальных систем.

Рисунок 14. — Примеры других меню систем.

4. Преимущества и недостатки устройства.

Преимущества:

- Возможность подключения к нескольким точкам доступа и/или WiFi сетям
- Полная сообщенность онлайн и ручных режимов управления

- Способность восстанавливать параметры режимов при потере питания
- Автоматическое переключение между режимами при петере или нахождении WiFi сети и/или точки доступа.

Недостатки:

- Переполнение очереди шлюза (buffer) цифрового последовательного канала (Serial), что в некоторых случаях приводит к некорректным данным от датчиков. (Данный недостаток нивелировается при помощи логического фильтрирования значении. Например показания датчиков не могут быть -1 или 0)
- Постепенное накопление отставания времени на модуле реального времени DS1302, что не наблюдается в онлайн режиме, так как система полагается на время локальной сети.

6. Выводы

Разработанное устройство предназначено для осуществления контроля основных параметров системы микроклимата фитокамеры. Данная система включает в себя режимы веб-ориентированного и ручного режимов.