Práctica: Técnicas de interpolación

Nota Preliminar: Para la realización de esta práctica se requieren los siguientes conceptos: Espacio vectorial de polinomios, Base canónica, Base de Lagrange, Base de Newton, Sistemas lineales, Direferencias divididas, Error de Interpolación.

1. Encuentre los polinomios de menor grado posible que interpolen a los siguientes conjuntos de datos, usando las bases canónica, de Lagrange y de Newton

2. Dada la siguiente tabla de datos:

- a) Halle el polinomio de interpolación de grado menor ó igual a 3 utilizando las bases de Lagrange y Newton.
- b) Escriba ambos polinomios en la forma $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ con el fin de verificar que son el mismo polinomio, pero escrito de forma distinta.
- 3. Dado $p_2(x) = 5x^2 6x 3$, y los puntos:

- a) Verifique que p_2 interpola a los puntos de la tabla anterior.
- b) Utilice p_2 para obtener otro polinomio de grado menor ó igual a 3 que interpole la siguiente tabla de datos.

4. Obtenga una aproximación a $\sqrt{3}$, utilizando un polinomio de interpolación de grado menor ó igual a 2, que aproxima a la función 3^x en los nodos $x_0 = 0.25$, $x_1 = 0.75$, y $x_2 = 1$.

1

5. Se tiene la siguiente tabla de datos:

- a) Calcule el polinomio interpolante usando diferencias divididas.
- b) Si los datos anteriores se amplian con el punto (x, y) = (4, 3), determine el nuevo polinomio de interpolación.
- 6. Complete la tabla de diferencias divididas de una cierta función f

$$x_0 = 0.0$$
 $f[x_0]$
 $x_1 = 0.4$ $f[x_1]$ $f[x_0, x_1]$
 $f[x_1, x_2] = 10$
 $f[x_0, x_1, x_2] = \frac{50}{7}$
 $f[x_1, x_2] = 10$

7. Sean $q_2(x)$ y $r_2(x)$ los polinomios de grado 2 que interpolan a siguientes conjuntos de puntos respectivamnte $\{(1, y_0), (3, y_1), (6, y_2)\}$ y $\{(1, y_0), (3, y_1), (4, y_4)\}$. Muestre que el polinomio

$$p(x) = \frac{(x-4)q_2(x)}{2} - \frac{(x-6)r_2(x)}{2},$$

interpola al conjunto de puntos $\{(1, y_0), (3, y_1), (6, y_2), (4, y_4)\}$. Determine el grado de p.

8. Demuestre que si g interpola a la función f en los nodos $x_0, x_1, \ldots, x_{n-1}$, y si la función h interpola a f en los nodos x_1, x_2, \ldots, x_n , entonces la función

$$r(x) = g(x) + \frac{x_0 - x}{x_n - x_0} [g(x) - h(x)],$$

interpola a f en los nodos $x_0, x_1, x_2, \dots, x_{n-1}, x_n$. Observe que h y g no necesariamente son polinomios.

- 9. Considere los puntos (x_i, y_i) con $i = 0, 1, \dots n$, y asuma que los x_i son distintos entre sí. Demuestre que
 - a) Existe un único polinomio p, de grado menor ó igual a n que satisface las n+1 condiciones $p(x_i) = y_i$ con $0 \le i \le n$.
 - b) Existen infinitos polinomios de grado mayor a n que interpolan los n+1 puntos dados.
- 10. Demuestre que para toda x

$$\sum_{i=0}^{n} l_i(x) = 1,$$

2

donde l_i representa al i-ésimo polinomio de Lagrange.

- 11. Considere la función $f(x) = \frac{1}{2}2^x$.
 - a) Calcule el polinomio p(x) que interpola a f(x) en los nodos $x_0=0,\ x_1=1,\ x_2=2$ y $x_3=3.$
 - b) Calcule el error relativo que se comete al aproximar $f(\frac{3}{2})$ mediante $p(\frac{3}{2})$.
- 12. Sea la tabla de datos correspondientes a la función $f(x) = e^x$

- a) Calcule el polinomio p_3 que interpole a la tabla de datos.
- b) Calcule una cota para el error de interpolación en $x = \frac{4}{5}$.
- c) Calcule el error exacto, $e = |f(\frac{4}{5}) p_3(\frac{4}{5})|$, y compare con la cota obtenida en el ítem anterior.
- 13. Se quiere aproximar la función $f(x) = \frac{1}{4}x^{-1}$ en el intervalo [1, 3] utilizando interpolación polinomial con 3 nodos equidistantes en dicho intervalo. ¿Cúal es el error máximo teórico que se cometerá en x = 1.7?. ¿Cúal es el error real?
- 14. Se desea construir una tabla de datos para interpolar a la función e^x , con nodos uniformemente espaciados a una distancia h en el intervalo [0,1]. Determine el valor de h para que el error de interpolación lineal, en ese intervalo, esté acotado por 5×10^{-5} .
- 15. ¿Cuántos nodos igualmente espaciados se deben tomar para interpolar a la función $f(x) = e^x$ en el intervalo [-1,1], de tal manera que el error en la interpolación esté acotado por $\frac{1}{2} \times 10^{-4}$.