Néhány logikai és halmazelméleti fogalom és tétel

Logika

Állítás (A logikai műveletek tulajdonságai).

- 1. $A \lor A \Leftrightarrow A$, $A \land A \Leftrightarrow A$ (idempotencia)
- 2. $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C, A \land (B \land C) \Leftrightarrow (A \land B) \land C \ (asszociativitás)$
- 3. $A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$ (kommutativitás)
- 4. $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ (disztributivitás)
- 5. $(A \lor B) \land A \Leftrightarrow A$, $(A \land B) \lor A \Leftrightarrow A$ (abszorpció, azaz elnyelési tulajdonság)
- 6. $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B, \neg (A \land B) \Leftrightarrow \neg A \lor \neg B \ (De\ Morgan\ szabályok)$
- 7. $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (a kontrapozíció tétele)
- 8. $((A \Rightarrow B) \land A) \Rightarrow B \pmod{ponens}$
- 9. $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ (szillogizmus)
- 10. $((A \Rightarrow B) \land (B \Rightarrow A)) \Leftrightarrow (A \Leftrightarrow B)$

Halmazok

 $\emptyset = \{\}$ jelöli az **üres halmaz**t, vagyis azt a halmazt, amelynek nincs eleme. Az olyan halmazt, amelynek elemei szintén mind halmazok, **halmezrendszer**nek is hívják.

Definíció (**Részhalmaz**). Az A halmaz **részhalmaza** a B halmaznak: $A \subseteq B$, ha A minden eleme B-nek is eleme, azaz

$$\forall x (x \in A \Rightarrow x \in B).$$

Ha $A \subseteq B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subseteq B$.

Definíció (**Halmazok uniója**). Az A és B halmazok **uniója**: $A \cup B$ az a halmaz, mely pontosan az A és a B elemeit tartalmazza: $A \cup B = \{x | x \in A \lor x \in B\}$.

Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\bigcup \mathscr{A} = \bigcup \{A : A \in \mathscr{A}\} = \bigcup_{A \in \mathscr{A}} A$ az a halmaz, mely az \mathscr{A} összes elemének elemét tartalmazza:

$$\cup \mathscr{A} = \{x | \exists A \in \mathscr{A} : x \in A\}.$$

Speciálisan: $A \cup B = \cup \{A, B\}$.

Definíció (Halmazok metszete). Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és B közös elemeit tartalmazza: $A \cap B = \{x : x \in A \land x \in B\}$.

Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cap \mathscr{A} = \cap \{A : A \in \mathscr{A}\} = \cap_{A \in \mathscr{A}} A$ a következő halmaz:

$$\cap \mathscr{A} = \{x \mid \forall A \in \mathscr{A} : x \in A\}.$$

Speciálisan: $A \cap B = \bigcap \{A, B\}.$

Állítás (Az unió tulajdonságai).

- 1. $A \cup \emptyset = A$
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$ (asszociativitás)
- 3. $A \cup B = B \cup A$ (kommutativitás)
- 4. $A \cup A = A$ (idempotencia)
- 5. $A \subseteq B \Leftrightarrow A \cup B = B$

Állítás (A metszet tulajdonságai).

- 1. $A \cap \emptyset = \emptyset$
- 2. $A \cap (B \cap C) = (A \cap B) \cap C$ (asszociativitás)
- 3. $A \cap B = B \cap A$ (kommutativitás)
- 4. $A \cap A = A$ (idempotencia)
- $5. \ A \subseteq B \Leftrightarrow A \cap B = A$

Állítás (Az unió és metszet disztributivitási tulajdonságai).

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Definíció (Halmazok különbsége). Az A és Bhalmazok különbsége az $A\setminus B=\{x\in A:x\notin B\}$ halmaz.

Definíció (Halmaz komplementere). Egy rögzített X alaphalmaz és $A \subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A} = A' = X \setminus A$ halmaz.

Állítás (Különbség kifejezése komplementer segítségével). $A \setminus B = A \cap \overline{B}$.

Állítás (Komplementer tulajdonságai). $Legyen\ X\ az\ alaphalmaz.$

- 1. $\overline{\overline{A}} = A;$
- 2. $\overline{\emptyset} = X$;
- 3. $\overline{X} = \emptyset$;
- 4. $A \cap \overline{A} = \emptyset$;
- 5. $A \cup \overline{A} = X$;
- 6. $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$;
- 7. $\overline{A \cap B} = \overline{A} \cup \overline{B}$;
- 8. $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

A 7. és 8. összefüggések az ún. De Morgan szabályok.

Definíció (Szimmetrikus differencia). Az A és B halmazok szimmetrikus differenciája az $A \triangle B = (A \setminus B) \cup (B \setminus A)$ halmaz.

Állítás (Szimmetrikus differencia kifejezése másképpen). $A\triangle B=(A\cup B)\setminus (B\cap A).$