

ΣΧΟΛΗ Η.Μ.Μ.Υ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ

Δ/ντης: Καθηγητής Μιχάλης Ζερβάκης

Διδάσκοντας: Επ. Καθηγητης Ν. Μπεκιάρης - Λυμπέρης

Ε.ΔΙ.Π. Μανόλης Ντουντουνάκης

1

ΣΥΣ201

(3η Εργαστηριακή άσκηση)

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΤΡΟΠΟΣ ΔΟΥΛΕΙΑΣ

Πριν το Εργαστήριο:

- Μελέτη, της θεωρίας της εργαστηριακής άσκησης
- Μελέτη, από το βιβλίο θεωρίας, των χαρακτηριστικών του υπό παρατήρηση συστήματος

Στο Εργαστήριο:

Μετα το Εργαστήριο:

Σε κάθε μέτρηση ή ομάδα μετρήσεων, προσπαθήστε να απαντήσετε σε ερωτήσεις όπως τι μετρώ, γιατί μετρώ, ποιος είναι ο στόχος κλπ.

Σύνταξη Εργαστηριακής αναφοράς:

Προσεκτικά, με σαφήνεια και λιτότητα, απαντώντας στις ερωτήσεις, δείξτε ότι έχετε καταλάβει τι μελετήσατε, και έχετε γίνει «γνώστης» της σχετικής περιοχής

MEASUDEMENT & CONTROL TECHNOLOGY

Technical Details

CASSY-Interfaces and CASSY Lab 2

The CASSY family consists of various hardware components and the dedicated software package CASSY Lab 2.

CASSY Lab 2 CASSY Lab 2 is a modern 32-bit software, applicable for Windows XP/Vista/7 with the following features:

Data recording
Multimeter
Oscilloscope
XY-plotter
FFT-analysis
Variety of evaluation aids
Export of measurement data and diagrams.

LD Didactic Page 8 of 94

Νέα Δομή Ασκήσεων

- Υλοποιούμε τη συνδεσμολογία
- Φορτώνουμε το αντίστοιχο «αρχείο» του πειράματος
 - Pυθμίζουμε slider
 - F9
 - Zoom & Marker

Διαφορετική «λογική» σε σχέση με ΣΥΣ401

- Λιγότερες μετρήσεις
- Στοχευμένες, μετρήσεις
 - Έμφαση στην αξιολόγηση κατανόηση των αποτελεσμάτων - μετρήσεων

Σύστημα Ελέγχου Διεργασίας

- Σκοπός ενός συστήματος αυτόματου ελέγχου διεργασίας είναι να διατηρεί σταθερή την έξοδό του σε επίδραση διαταραχών (απορρίπτει τις διαταραχές που οφείλονται σε μεταβολές του φορτίου κλπ.)
- Η συνολική συνάρτηση μεταφοράς με αρνητική ανάδραση είναι:

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)D(s)}$$

- Ο ελεγκτής ενεργοποιείται σύμφωνα με την ύπαρξη ή όχι σφάλματος: σφάλμα(e)= set point R(s) B(s) μεταβλητή διεργασίας.
- Συνάρτηση μεταφοράς κλειστού βρόγχου:

$$\frac{C(s)}{R(s)} = \frac{G(s)D(s)}{1 + G(s)D(s)}$$

Απαραίτητη προϋπόθεση: Σύγκλιση

Τρόποι Σύγκλισης:

- Ασύμπτωτική
- Εκθετική

Διαδικασία σχεδίασης

Μια προτεινόμενη μέθοδος σχεδίασης δίνεται ως ακολούθως:

- Προδιαγραφές καλής απόδοσης
- Εννοιολογικός σχεδιασμός
- Μαθηματική μοντελοποίηση
- Εγκυρότητα μοντέλου και αναγνώριση μοντέλων
- Ανάλυση του μαθηματικού μοντέλου
- Τροποποίηση και επαναλήψεις
- Κατασκευή και έλεγχος

PID ελεγκτής (73406)

11/02/15

Digital PID ελεγκτής (734064)

734 061 PID Controller is also possible

Επιλογή είδους ελεγκτή

Controlled system step response	Primary con- trolled variables	Applicable controllers	Inapplicable controllers
ΔXA t	Flow-through transport	I , <u>PI</u>	P, PD, PID
	Mixture	I, <u>PI</u> , <u>PID</u>	P,PD
	Pressure	P, Pl	1
	Fluid level	P reference PI disturbance	1!
	Level course	PD reference PID disturbance	1!

	Controller				
Controlled system	P	1	PI	PD	PID
net dead time			+		
P element		+	+		
PT1 with little dead time	+	+	+	+	++
PT2 with little dead time	+		+		++
Higher order system					++
I element and delay	+		+	++	++

^{+:} appropriate controller type ++: particularly appropriate controller type

ΣΗΜΑΝΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ ΣΧΕΔΙΑΣΤΗ ΜΗΧΑΝΙΚΟΥ

- Επιλογή, μεθόδου σχεδίασης ελεγκτή
- Επιλογή, Σύνθεσης Δομής (P, PI, PD, PID) ελεγκτή

Απλοποιημένο Δευτεροβάθμιο Σύστημα

Analysis of the step response $K_0 = \qquad \qquad T_0 = \qquad \qquad T_U = \\ K_S = \frac{\Delta U_m}{\Delta U_N} \qquad \qquad T_1 = \frac{T_0}{3} = 0.37T_S \qquad \qquad T_2 = \frac{T_U}{3 - e} \approx 3.33T_U \\ \qquad \qquad \qquad T_1 = \qquad \qquad T_2 = \qquad \qquad T_2 = \frac{T_0}{3 - e} \approx 3.33T_U$

DLD DIDACTIC 6 by LD DIDACTIC

Unladen Motor: Z = 0 V

Determination of the system gain: $K_S = \frac{\Delta U_{\text{\tiny MX}}}{\Delta U_{\text{\tiny DV}}} -> K_S = \frac{2.00}{2.00} = 1$

The time constants are determined with the tangent at the inflection point: $T_U = 0.13 \text{ sec}$ $T_S = 1.15 \text{ sec}$.

A substituted system of n similar PT1 elements is determined by T_U and T_S .

K _S = 1	T _S = 1.15 sec	T _U = 0.13 sec
$K_S = \frac{\Delta U_{\text{nx}}}{\Delta U_{IN}}$	$T_1 = \frac{T_S}{e} \approx 0.37 T_S$	$T_2 = \frac{T_U}{3 - e} \approx 3.33 T_U$
	T ₁ = 0.43 sec	T ₂ = 0.43 sec
$n \approx \frac{T_U}{T_S} \cdot 10 + 1$	n = 2	

Temperature Controled System

3. Temperature controlled system

- Μελέτη συστημάτωνΓΧΑ με πολύ μεγάλεςχρονικές σταθερές
- Εισαγωγή στο ψηφιακό έλεγχο (digital PID)

11/02/15 19 ¹⁹

Χαρακτηριστικά θερμικών συστημάτων

- Μέθοδος CHR (γιατί;)
- Ελεγκτής PID (γιατί;)
- Σύγκλιση ασυμπτωτική (εξηγείστε;)

Σύστημα θερμοκρασίας Temperature Controlled System

•ΠΡΑΓΜΑΤΙΚΟ ΣΥΣΤΗΜΑ

- •Σύστημα με μεγάλη χρονική σταθερά
- •Μηχανικό ανάλογο (ΤΕΙ ΜΠΔ)
- •Αρχικοποίηση «Κρύωμα»

Αρχικοποίηση – «Κρύωμα»

ΑΝΟΙΚΤΟ ΣΥΣΤΗΜΑ – ΧΩΡΙΣ ΑΝΑΔΡΑΣΗ

ΑΝΟΙΚΤΟ ΣΥΣΤΗΜΑ – ΧΩΡΙΣ ΑΝΑΔΡΑΣΗ

Αναλογικός Έλεγχος με PID ελεγκτή

P με CHR για 20% overshoot και reference aperiodic control

PI, με CHR, για 20% overshoot και reference aperiodic control

PID, με CHR, για 20% overshoot και reference aperiodic control

Προτιμάται:

- Παρατήρηση της αποτελεσματικότητας του ελεγκτή σε προβλήματα tracking, αντί σε βηματική απόκριση (γιατί;)
- Σε προβλήματα tracking, για τη μέθοδο CHR, επιλέγουμε πάντα με 0% (γιατί;)