Национальный исследовательский университет информационных технологий, механики и оптики Факультет программной инженерии и компьютерной техники

Курсовая работа по дискретной математике «Синтез комбинационных схем»

Выполнил: Лысенко Данила Сергеевич

Группа: Р3110

Вариант: 18

Преподаватель: Поляков Владимир Иванович

Задание первой части

Условия, при которых $f = 1$	Условия, при которых $f = d$
$2 \le x_1x_2 - x_3x_4x_5 \le 4$	$ x_1x_2-x_3x_4x_5 =1$

Выполнение первой части курсовой работы

Составляем таблицу истинности функции:

N	$x_1 x_2 x_3 x_4 x_5$	x_1x_2	$(x_1x_2)_{10}$	$x_3 x_4 x_5$	$(x_3x_4x_5)_{10}$	-	f
0	00000	00	0	000	0	0	0
1	00001	00	0	001	1	1	d
2	00010	00	0	010	2	2	1
3	00011	00	0	011	3	3	1
4	00100	00	0	100	4	4	1
5	00101	00	0	101	5	5	0
6	00110	00	0	110	6	6	0
7	00111	00	0	111	7	7	0
8	01000	01	1	000	0	1	d
9	01001	01	1	001	1	0	0
10	01010	01	1	010	2	1	d
11	01011	01	1	011	3	2	1
12	01100	01	1	100	4	3	1
13	01101	01	1	101	5	4	1
14	01110	01	1	110	6	5	0
15	01111	01	1	111	7	6	0
16	10000	10	2	000	0	2	1
17	10001	10	2	001	1	1	d
18	10010	10	2	010	2	0	0
19	10011	10	2	011	3	1	d
20	10100	10	2	100	4	2	1
21	10101	10	2	101	5	3	1
22	10110	10	2	110	6	4	1
23	10111	10	2	111	7	5	0
24	11000	11	3	000	0	3	1
25	11001	11	3	001	1	2	1
26	11010	11	3	010	2	1	d
27	11011	11	3	011	3	0	0
28	11100	11	3	100	4	1	d
29	11101	11	3	101	5	2	1
30	11110	11	3	110	6	3	1
31	11111	11	3	111	7	4	1

Представляем булевую функцию в аналитическом виде.

КДНФ = $\bar{x}_1\bar{x}_2\bar{x}_3x_4\bar{x}_5$ \vee $\bar{x}_1\bar{x}_2\bar{x}_3x_4x_5$ \vee $\bar{x}_1\bar{x}_2x_3\bar{x}_4\bar{x}_5$ \vee $\bar{x}_1x_2\bar{x}_3x_4x_5$ \vee $\bar{x}_1x_2x_3\bar{x}_4\bar{x}_5$ \vee $\bar{x}_1x_2x_3\bar{x}_4$

 $KKH\Phi = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor \bar{x}_3 \lor x_4 \lor \bar{x}_5)(x_1 \lor x_2 \lor \bar{x}_3 \lor \bar{x}_4 \lor x_5)(x_1 \lor x_2 \lor \bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5)(x_1 \lor \bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5)$

Минимизируем булевую функцию методом Квайна-Мак-Класки. Для этого сначала найдем простые импиканты (максимальные кубы):

$K^0 \cup N(f)$	$K^{1}\left(f\right)$	$K^{2}\left(f\right)$	$K^3(f)$	Z(f)
1.00001 v	1. 000X1 v 1-6	1. X00X1 1-19 2-14	1. 1XX0X 6-13	1XX0X
2.00010 v	2. X0001 v 1-9	2. 0X01X 3-15 4-13	7-11	X00X1
3.00100 v	3. 0001X v 2-6	3. XX100 5-24 6-18	8-10	0X01X
4.01000 v	4. 0X010 v 2-7	4. X10X0 7-26 9-16		XX100
5.10000 v	5. 0X100 v 3-8	5. X1X00 8-27 9-18	$K^4(f) = \emptyset$	X10X0
6.00011 v	6. X0100 v 3-10	6. 10X0X v 10-22 11-20	() , ,	X1X00
7.01010 v	7. 010X0 v 4-7	7. 1X00X v 10-25 12-21		X110X
8.01100 v	8. 01X00 v 4-8	8. 1XX00 v 11-27 12-24		1X1X0
9.10001 v	9. X1000 v 4-11	9. X110X 17-33 18-28		11XX0
10.10100 v	10. 1000X v 5-9	10. 1XX01 v 20-31 21-29		111XX
11.11000 v	11. 10X00 v 5-10	11. 1X10X v 22-33 24-29		
12.01011 v	12. 1X000 v 5-11	12. 1X1X0 23-34 24-30		
13.01101 v	13. 0X011 v 6-12	13. 11X0X v 25-33 27-31		
14.10011 v	14. X0011 v 6-14	14. 11XX0 26-34 27-32		
15.10101 v	15. 0101X v 7-12	15. 111XX 33-36 34-35		
16.10110 v	16. X1010 v 7-18			
17.11001 v	17. 0110X v 8-13			
18.11010 v	18. X1100 v 8-19			
19.11100 v	19. 100X1 v 9-14			
20.11101 v	20. 10X01 v 9-15			
21.11110 v	21. 1X001 v 9-17			
22. 11111 v	22. 1010X v 10-15			
22. 11111 V	23. 101X0 v 10-16			
	24. 1X100 v 10-19			
	25. 1100X v 11-17			
	26. 110X0 v 11-18			
	27. 11X00 v 11-19			
	28. X1101 v 13-20			
	29. 1X101 v 15-20			
	30. 1X110 v 16-21			
	31. 11X01 v 17-20			
	32. 11X10 v 18-21			
	33. 1110X v 19-20			
	34. 111X0 v 19-21			
	35. 111X1 v 20-22			
	36. 1111X v 21-22			

Составим импликантную таблицу:

Простые	0-кубы														
импиканты	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	0	0	0	1	1	1	0	0	0	0	1	1	1	1	1
	0	0	1	0	1	1	0	1	1	1	0	0	1	1	1
	1	1	0	1	0	0	0	0	0	1	0	0	0	1	1
	0	1	0	1	0	1	0	0	1	0	0	1	1	0	1
1XX0X							*	*	*		*	*	*		
X00X1		*													
0X01X	*	*		*											
XX100			*		*			*							
X10X0											*				
X1X00					*						*				
X110X					*	*							*		
1X1X0								*		*				*	
11XX0											*			*	
111XX													*	*	*

Импликанты 1, 3, 4, 7, 8, 10 являются существенными. При вычеркивании из таблицы строк, соответствующие этим импликантам, а также столбцов, соответствующих вершинам, покрываемыми существенными импликантами таблица полностью сокращается. Соответственно, ядро покрытия является минимальным покрытием функции.

$$T = \{1XX0X, 0X01X, XX100, X110X, 1X1X0, 111XX\}$$

$$f = x_1\bar{x}_4 \lor \bar{x}_1\bar{x}_3x_4 \lor x_3\bar{x}_4\bar{x}_5 \lor x_2x_3\bar{x}_4 \lor x_1x_3\bar{x}_5 \lor x_1x_2x_3$$

Минимизируем булевую функцию на картах Карно и определим МДНФ:

Получаем С
$$_{min}(f) = egin{cases} 1XX0X\\0X01X\\XX100\\X110X\\1X1X0\\111XX \end{pmatrix} egin{cases} 1\\2\\3\\4\\5\\6 \end{pmatrix} S^a = 17, S^b = 23$$

$$f = x_1 \bar{x}_4 \lor \bar{x}_1 \bar{x}_3 x_4 \lor x_3 \bar{x}_4 \bar{x}_5 \lor x_2 x_3 \bar{x}_4 \lor x_1 x_3 \bar{x}_5 \lor x_1 x_2 x_3$$

Таким же образом определим МКНФ:

Получаем
$$C_{min}(\bar{f})=egin{pmatrix} 0X11X\\0X00X\\1X01X\\001X1\\X0111 \end{pmatrix} egin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix} S^a=17, S^b=22$$

$$f = (x_1 \vee \bar{x}_3 \vee \bar{x}_4)(x_1 \vee x_3 \vee x_4)(\bar{x}_1 \vee x_3 \vee \bar{x}_4)(x_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_5)(x_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5)$$

Теперь преобразуем минимальные формы булевой функции.

Факторное преобразование для МДНФ:

$$f = x_1 \bar{x}_4 \vee \bar{x}_1 \bar{x}_3 x_4 \vee x_3 \bar{x}_4 \bar{x}_5 \vee x_2 x_3 \bar{x}_4 \vee x_1 x_3 \bar{x}_5 \vee x_1 x_2 x_3 ; S^Q = 22$$

$$f = (\bar{x}_5 \vee x_2)(\bar{x}_4 \vee x_1)x_3 \vee x_1\bar{x}_4 \vee \bar{x}_1\bar{x}_3x_4; S^Q = 15$$

Декомпозиция полученного выражения:

$$\varphi = x_1 \vee \bar{x}_4$$
; $\overline{\varphi} = \bar{x}_1 x_4$

$$f = (\bar{x}_5 \vee x_2) \varphi x_3 \vee x_1 \bar{x}_4 \vee \bar{\varphi} \bar{x}_3; S^Q = 15$$

Факторное преобразование для МКНФ:

$$f = (x_1 \vee \bar{x}_3 \vee \bar{x}_4)(x_1 \vee x_3 \vee x_4)(\bar{x}_1 \vee x_3 \vee \bar{x}_4)(x_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_5)(x_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5);$$

$$S^Q = 22$$

$$S^Q = 23$$

Декомпозиция полученного выражения:

$$\bar{b} = x_1 \vee \bar{x}_4; \ b = \bar{x}_1 x_4$$

$$f = (\bar{b} \vee \bar{x}_3)(x_1\bar{x}_4 \vee (x_3 \vee b)(x_2 \vee \bar{x}_3 \vee \bar{x}_5)); S^Q = 23$$

Синтез комбинационных схем в булевом базисе:

С парафазными выходами. $S^Q = 15; T = 4\tau$

С однофазными выходами. $S^Q = 16; T = 5\tau$

Синтез комбинационных схем в универсальных базисах

Базис ИЛИ-НЕ:

$$\varphi = \overline{x_1 \downarrow \overline{x_4}}$$

$$f = \overline{((x_2 \downarrow \overline{x_5}) \downarrow \overline{\varphi} \downarrow \overline{x_3}) \downarrow (\overline{x_1} \downarrow x_4) \downarrow (\varphi \downarrow x_3)}$$

$$S^Q = 18; T = 5\tau$$

Базис И-НЕ:

$$\varphi = \overline{x_1} \mid x_4$$

$$f = \overline{((\overline{x_2} \mid x_5) \mid \varphi \mid x_3)} \mid \overline{(x_1 \mid \overline{x_4})} \mid \overline{(\overline{\varphi} \mid \overline{x_3})}$$

$$S^Q = 16; T = 4\tau$$

Синтез комбинационных схем в сокращенных базисах

Базис ИЛИ, НЕ:

$$\varphi = \overline{x_4} \vee x_1$$

$$f = \overline{\overline{(\overline{x_5} \vee x_2)}} \vee \overline{\varphi} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_1} \vee \overline{\varphi} \vee x_3$$

$$S^Q = 19; T = 5\tau$$

Базис И, НЕ

$$\varphi = \overline{x_1} \wedge x_4$$

$$f = (b \wedge x_3) \wedge (\overline{x_1} \wedge \overline{x_4} \wedge \overline{b} \wedge \overline{x_3} (\overline{\overline{x_2}} \wedge \overline{x_3} \wedge \overline{x_5}))$$

$$S^Q = 22; T = 7\tau$$

Построение схемы в универсальном базисе с учетом заданного коэффициента объединения по входам

$$f = \overline{((((x_2 \downarrow \overline{x_5}) \downarrow \overline{\varphi}) \downarrow \overline{x_3}) \downarrow (\overline{x_1} \downarrow x_4))} \downarrow (\varphi \downarrow x_3)$$

$$S^Q = 24; T = 8\tau$$

