

Kiểm tra 15 phút

■ Viết biểu thức Boolean và lập bảng chân trị cho mạch sau:

Chỉ sử dụng cổng NOR, vẽ lại mạch logic của mạch trên

Kiểm tra 15 phút

■ Viết biểu thức Boolean và lập bảng chân trị cho mạch sau:

- Chỉ sử dụng cổng NAND, vẽ lại mạch logic của mạch trên
- Chứng minh bằng đại số Boolean biểu thức sau:

$$COMF_{\overline{A.B} + \overline{A.B}} = \overline{A.B} + A.\overline{B} = RING$$

NHẬP MÔN MẠCH SỐ

CHƯƠNG 3: ĐẠI SỐ BOOLEAN VÀ CÁC CỔNG LOGIC (tt)

Nội dung

- Tổng quan
- Cổng logic AND, OR, NOT
- Cổng logic NAND, NOR
- Cổng logic XOR, XNOR
- Thiết kế mạch số từ biểu thức logic
- Xác định biểu thức logic của một mạch số
- Phân tích giá trị ngõ ra của một mạch số
- Đại số BOOMAPUTER ENGINEERING

Nội dung

- Tổng quan
- Cổng logic AND, OR, NOT
- Cổng logic NAND, NOR
- Cổng logic XOR, XNOR
- Thiết kế mạch số từ biểu thức logic
- Xác định biểu thức logic của một mạch số
- Phân tích giá trị ngõ ra của một mạch số
- Đại số BOOMAPUTER ENGINEERING

Đánh giá outputs của mạch logic sau:

- Bước 1: Lập bảng sự thật và liệt kê tất cả các inputs có trong mạch logic tổ hợp
- Bước 2: Tạo ra một cột trong bảng sự thật cho mỗi tín hiệu

Node u đã được điển vào như là kết quả của phần bù của tín hiệu input A

Α	В	С	<u>u</u> =	v= AB	w= BC	X= V+W
0	0	0				
0	0	1				0.0.
0	1	0				90)
0	1	1			8	50:
1	0	0				
1	0	1				
1	1	0	7			
1	1	1				

Bước 3: Điền vào các giá trị tín hiệu của cột node v

Α	В	С	n=	v= AB	w= BC	
0	0	0	1	Ab	ВС	V+W
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

COMPUTER ENGI

 $v = \overline{AB}$ — Node v sẽ có giá trị HIGH

Khi A (node u) là HIGH và B là HIGH

Bước 4: Dự đoán trước giá trị tín hiệu của node w là outputs của cổng logic BC

Α	В	С	u= A	v= ĀB	w= BC	X= V+W
0	0	0	1	0		
0	0	1	1	0		
0	1	0	1	1		
0	1	1	1	1		
1	0	0	0	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	0	0		

Node w là HIGH khi và chỉ khi B là HIGH và cả C là HIGH

■ Bước 5: Kết hợp một cách logic 2 cột v và w để dự đoán cho output x

Α	В	С	<u>u</u> = A	<u>v</u> = AB	w= BC	X= V+W
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	1	

Từ biểu thức x = v + w, thì x sẽ là HIGH khi v OR w là HIGH

Hãy phân tích giá trị ngõ ra của mạch logic sau:

Nội dung

- Tổng quan
- Cổng logic AND, OR, NOT
- Cổng logic NAND, NOR
- Cổng logic XOR, XNOR
- Thiết kế mạch số từ biểu thức logic
- Xác định biểu thức logic của một mạch số
- Phân tích giá trị ngõ ra của một mạch số
- Đại số Boolean | UTER ENGINEERING

Đại số Boolean

- Máy tính kỹ thuật số là tổng hợp các mạch logic được thực hiện dựa trên những biểu thức của đại số Boolean (biểu thức Boolean)
- Biểu thức Boolean càng đơn giản, thì mạch thực hiện càng nhỏ → giá thành rẻ hơn, tiêu tốn ít công suất hơn, và thực hiện nhanh hơn mạch phức tạp
- Dựa vào các **định luật Boolean** sẽ giúp ta đơn giản được các biểu thức Boolean về dạng đơn giản nhất

Định luật Boolean I

Định Luật 1 nếu một cổng AND-2 có 1 ngõ vào bằng 0, thì ngõ ra sẽ bằng 0 bất kể giá trị ngõ vào còn lại.

$$(3) \quad x \cdot x = x$$

Định Luật 3 xét từng trường hợp Nếu x = 0, thì $0 \cdot 0 = 0$ Nếu x = 1, thì $1 \cdot 1 = 1$ Do đó, $x \cdot x = x$

Định Luật 2 nếu một cổng AND-2 có 1 ngõ vào bằng 1, thì ngõ ra sẽ bằng giá trị với ngõ vào còn lại.

Định Luật 4 có thể chứng minh bằng cách tương tự

Định luật Boolean II

Định Luật 5 nếu một cổng OR-2 có 1 ngõ vào bằng 0, thì ngõ ra sẽ bằng giá trị với ngõ vào còn lại

Định Luật 6

nếu một cổng OR-2 có 1 ngõ vào bằng 1, thì ngõ ra sẽ bằng 1 bất kể giá trị ngõ vào còn lại

Định Luật 7 có thể chứng minh bằng cách kiểm tra cả hai giá trị của x:

$$0 + 0 = 0$$
 and $1 + 1 = 1$

Định Luật 8 có thể chứng minh một cách tương tự

(8)
$$x + \bar{x} = 1$$

Định luật Boolean III

- PHÉP GIAO HOÁN

$$(9) \quad \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$

$$(10) \quad x \cdot y = y \cdot x$$

- PHÉP LIÊN KẾT / KẾT HỢP

(11)
$$x + (y + z) = (x + y) + z = x + y + z$$

(12)
$$x.(y.z) = (x.y).z = x.y.z$$

- PHÉP PHÂN PHỐI

(13a)
$$x.(y + z) = x.y + x.z$$

(13b)
$$(w + x).(y + z) = w.y + x.y + w.z + x.z$$

(13c)
$$x + yz = (x + y)(x + z)$$

Định luật Boolean IV

- Định Luật Đa Biến
- Định Luật (14) và (15) không gặp trong đại số thông thường.

(14)
$$x + \underline{x}y = x$$

(15a) $\underline{x} + xy = \underline{x} + y$
(15b) $\underline{x} + xy = \underline{x} + y$

Định luật Boolean V

- Tính đối ngẫu (Duality)
 - Hai biểu thức được gọi là đối ngẫu của nhau khi ta thay phép toán AND bằng OR, phép toán OR bằng AND, 0 thành 1 và 1 thành 0
- Ví dụ:

$$1 + 1 = 1$$

$$1 + 0 = 0 + 1 = 1$$

$$0 + 0 = 0$$

$$0.0 = 0$$

$$0.1 = 1.0 = 0$$

$$1.1 = 1$$

Định Luật **DeMorgan's** là phương pháp cực kỳ hữu ích trong việc đơn giản hóa các biểu thức trong đó một tích hay tổng của các biến được đảo ngược

$$(16) \quad (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

$$(17) \quad (\overline{x \cdot y}) = \overline{x} + \overline{y}$$

Mạch tương đương với ngụ ý của Định Luật (16)

$$(16) \quad (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

Mạch tương đương với ngụ ý của Định luật (17)

$$(17) \quad (\overline{x \cdot y}) = \overline{x} + \overline{y}$$

- Áp dụng định luật DeMorgan's để biến đổi qua lại giữa:
 - □ AND ⇔ NOR
 - ☐ OR ⇔ NAND
- Các bước thực hiện như sau:
 - ☐ Nghịch đảo tất cả input và output trong cổng logic cơ bản:
 - * Thêm ký hiệu dấu bù (bong bóng) tại ngõ vào/ngõ ra không có
 - * Xóa ký hiệu dấu bù (bong bóng) tại ngõ vào/ngõ ra có sẵn

Ví Dụ #1

Ap dụng các định luật Boolean để đơn giản biểu thức sau đây: $F(X,Y,Z) = (X+Y)(X+\overline{Y})(\overline{XZ})$

Ví Dụ #2

Áp dụng định luật DeMorgan để đơn giản các biểu thức sau:

(i)
$$\overline{(M + \overline{N})(\overline{M} + N)}$$

(ii)
$$(\overline{A} + \overline{C} + \overline{D})$$

Tóm tắt nội dung chương học

- Qua Phần 2 Chương 3, sinh viên cần nắm những nội dung chính sau:
 - ☐ Phương pháp phân tích giá trị ngõ ra của một mạch số cho trước
 - ☐ Các định luật Boolean
 - Úng dựng định luật Boolean trong việc tối ưu thiết kế một mạch số