代数系统部分作业

姓名:	_班级:	_学号:	_班级序号:

一. 填空

1. 令 $Z_8 = \{0,1,2,3,4,5,6,7\}$, $+_8$ 表示模 8 加法,则在群 < $Z_8,+_8 >$ 中, 2 的阶数是______, 3 的阶数是

_____, 6的阶数是____。

2. 设 *A*={a, b, c, d} , *A* 上二元运算如下:

*	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

那么代数系统 < A, * > 的幺元是______,b 的逆元为______。c 的逆元为_____。

3. 以下两个置换是 S_5 中的置换,其中

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$

A. 在群中消去律成立; B. 循环群的生成元的阶数和群的阶数相同;

C. 素数阶群存在非平凡子群; D.阶数大于1的群中可能存在零元。

5. 设S是非负整数集,×是关于数的普通乘法运算,则

A. $\langle S, \times \rangle$ 是群; B. $\langle S, \times \rangle$ 是有幺元的半群;

C. $\langle S, \times \rangle$ 是无幺元的半群; D. $\langle S, \times \rangle$ 不是群,也不是半群。

6. 在 3 元对称群中,元素 $a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ 的阶数是_____

二. 证明与解答

1. 证明: $\langle R - \{0\}, \times \rangle$ 构成群,并且为阿贝尔群。

2. 已知 R 为实数集, $S = R - \{-1\}$,在集合 S 上定义二元运算*,如下:

$$a * b = a + b + ab$$

证明< S,*>是群。

3. 求循环群 < Z_{16} , + $_{16}$ > 的各阶子群,这里 Z_{16} = {0,1,2,···,15}, + $_{16}$ 为模 16 的加法。

4. 写出群 $\left\langle Z_{9},+_{9}\right\rangle$ 中各元素关于子群 $\left\langle \left\{ 0,3,6\right\} ,+_{9}\right\rangle$ 的陪集,其中 $+_{9}$ 为模 9 的加法。