Back-Propagation

COMP4211

Back-Propagation

Nonlinear activation functions + multi-layer networks

requires more sophisticated learning algorithms

Back-propagation

Idea: Gradient descent

- start with initial value for w
- repeat until convergence
 - compute the gradient vector of the error function for current w
 - move in the opposite direction

How to Compute the Gradient?

- define an error function which is a differentiable function of the network outputs
- network with differentiable activation functions
 → outputs are differentiable functions of input and of the weights (and biases)
- ullet error is a differentiable function of the weights

chain rule

$$x \to u \to y, \qquad \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Network with One Sigmoid Unit

we first derive gradient decent rules to train one sigmoid unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} (t - o)^2 = \frac{1}{2} 2 (t - o) \frac{\partial}{\partial w_i} (t - o)$$

$$= (t - o) \left(-\frac{\partial o}{\partial w_i} \right) = -(t - o) \frac{\partial o}{\partial net} \frac{\partial net}{\partial w_i}$$

$$\frac{\partial o}{\partial net} = \frac{\partial \sigma(net)}{\partial net} = o(1 - o), \quad \frac{\partial net}{\partial w_i} = \frac{\partial (w'x)}{\partial w_i} = x_i$$

$$\frac{\partial E}{\partial w_i} = -(t - o) o(1 - o) x_i$$

MLP

- No output units
- ullet error for one training example: $E_d = \sum_{k=1}^{N_o} (t_{d,k} o_{d,k})^2$

COMP4211

Error Gradient of Weights to Output Unit k

 w_{kj} : weight for the link from unit j to (output) unit k

$$\begin{split} \frac{\partial E_d}{\partial w_{kj}} &= \frac{1}{2} \frac{\partial}{\partial w_{kj}} \sum_{m=1}^{N_o} (t_{d,m} - o_{d,m})^2 \quad \text{(dropping d for simplicity)} \\ &= \frac{1}{2} \frac{\partial}{\partial w_{kj}} (t_k - o_k)^2 = (t_k - o_k) \frac{\partial (-o_k)}{\partial w_{kj}} \\ &= -(t_k - o_k) \frac{\partial o_k}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{kj}} \\ &= -\underbrace{(t_k - o_k)o_k (1 - o_k)}_{\delta_k = -\frac{\partial E_d}{\partial net_k}} \cdot u_j \quad (u_j \text{ is the output of unit j}) \end{split}$$

Error Gradient of Weights to Hidden Unit j

Error Gradient of Weights to Hidden Unit j...

• note that i may be an input unit. In that case, u_i is just x_i

Weight Update Rule

• output weight: $\Delta w_{kj} = \eta \delta_k u_j$

$$\delta_k = o_k(1-o_k)(t_k-o_k)$$

• hidden weight: $\Delta w_{ji} = \eta \delta_j u_i$

$$\delta_j = u_j(1-u_j)\left[\sum_{k=1}^{N_o} \delta_k w_{kj}\right]$$

 we need to "propagate error back" when computing the gradient ector

Backpropagation Algorithm (Stochastic Version)

```
begin
    initialize all weights to small random numbers;
    repeat
         for each training example do
              /* propagate input forward
              input the example and compute the network outputs;
              /* propagate errors backward
              for each output unit k do \delta_k \leftarrow o_k(1-o_k)(t_k-o_k);
              for each hidden unit j do \delta_i \leftarrow o_i (1 - o_i) \sum_{k=1}^{N_o} w_{ki} \frac{\delta_k}{\delta_k};
              /* update weights
              for each network weight w_{ii} (weight from i to j) do
                  \Delta w_{ii} = \eta \delta_i u_i;
                  w_{ii} \leftarrow w_{ii} + \Delta w_{ii};
              end
         end
    until convergence;
end
```

Backpropagation Algorithm (Batch Version)

```
begin
     initialize all weights to small random numbers;
     repeat
         for each (i,j) do initialize each \Delta w_{ii} to zero;
         for each training example do
              /* propagate input forward
                                                                                 */
              input the example and compute the network outputs;
              /* propagate errors backward
              for each output unit k do \delta_k \leftarrow o_k(1-o_k)(t_k-o_k);
              for each hidden unit j do \delta_i \leftarrow o_i(1-o_i) \sum_{k=1}^{N_o} w_{kj} \frac{\delta_k}{\delta_k};
              for each (i, j) do \Delta w_{ii} \leftarrow \Delta w_{ii} + \eta \delta_i u_i;
         end
         /* update weights
         for each network weight w_{ii} (weight from i to j) do
              w_{ii} \leftarrow w_{ii} + \Delta w_{ii};
         end
     until convergence:
end
```

Practical Details

how to initialize the weight values?

• initialize to some small random values

when to stop training?

- after a fixed number of iterations through the loop
- ② once the training error falls below some threshold
- stop at a minimum of the error on the validation set

Speed

- testing is fast
- training can be very slow in networks with multiple hidden layers

How to speed up BP training?

- use of momentum term
 - give each weight some inertia or momentum

$$\Delta w_{ji}(t+1) = -\eta \frac{\partial E}{\partial w_{ji}} + \alpha \Delta w_{ji}(t)$$

- $0 < \alpha < 1$: momentum parameter (e.g., $\alpha = 0.9$)
- $oldsymbol{0}$ dynamic adapt η
- i higher-order information of error surface
- more sophisticated optimization algorithms

Local Minima

The error surface can have multiple local minima

Gradient descent is only guaranteed to converge toward some local minimum, and not necessarily to the global minimum

Local Minima...

how to escape from locally optimal solutions?

• train multiple networks using the same data, but initialize each network with different random weights