GAMBikes

Beltran 22/10/2019

TO DO LIST

- READ DATA
- SUMMARISE DATA
- GAM

LIBRARIES & SEED

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(knitr)
library(ISLR)
library(boot)
library(splines)
library(ggplot2)
library(gam)
## Loading required package: foreach
## Loaded gam 1.16.1
library(skimr)
## Attaching package: 'skimr'
## The following object is masked from 'package:knitr':
##
##
       kable
```

```
## The following object is masked from 'package:stats':
##
       filter
##
library(car)
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:boot':
##
##
       logit
## The following object is masked from 'package:dplyr':
##
##
       recode
library(corrplot)
## corrplot 0.84 loaded
set.seed(123)
```

ANALISIS EXPLORATORIO

READ DATA

```
bikes <- read.csv("day.csv")</pre>
```

SUMMARISE DATA

Comprobamos la distribución de las variables a través de la representación de su histrograma. También observo estadísticos tales como los cuartiles, media, mediana y desviación típica.

```
skim(bikes)
```

```
## Skim summary statistics
## n obs: 731
## n variables: 16
## -- Variable type:factor -----
##
  variable missing complete
                            n n_unique
                                                          top_counts
                      731 731
                                731 201: 1, 201: 1, 201: 1, 201: 1
##
     dteday
                0
##
   ordered
     FALSE
##
```

```
##
##
      -- Variable type:integer -------
            variable missing complete
##
                                                                     n
                                                                                 mean
                                                                                                      sd p0
                                                                                                                        p25 p50
                                                                                                                                                 p75
##
                                           0
                                                         731 731
                casual
                                                                           848.18
                                                                                              686.62
                                                                                                              2
                                                                                                                    315.5
                                                                                                                                  713 1096
##
                      cnt
                                           0
                                                         731 731 4504.35
                                                                                            1937.21 22 3152
                                           0
                                                                               0.029
                                                                                                                         0
##
                                                        731 731
                                                                                                  0.17
                                                                                                              0
                                                                                                                                       0
              holiday
##
              instant
                                           0
                                                         731 731
                                                                           366
                                                                                              211.17
                                                                                                               1
                                                                                                                     183.5
                                                                                                                                   366
                                                                                                                                             548.5
##
                    mnth
                                           0
                                                         731 731
                                                                               6.52
                                                                                                  3.45
                                                                                                              1
                                                                                                                         4
                                                                                                                                       7
                                                                                                                                                10
##
       registered
                                           0
                                                        731 731 3656.17
                                                                                            1560.26 20 2497
                                                                                                                                  3662 4776.5
                                                                                                                         2
##
                season
                                           0
                                                        731 731
                                                                               2.5
                                                                                                  1.11
                                                                                                              1
                                                                                                                                       3
                                                                                                                                                 3
##
       weathersit
                                           0
                                                         731 731
                                                                                1.4
                                                                                                  0.54
                                                                                                              1
                                                                                                                         1
                                                                                                                                                 2
                                                                                                                                       1
                                                         731 731
                                                                                                  2
                                                                                                                                                 5
##
              weekday
                                           0
                                                                                3
                                                                                                               0
                                                                                                                         1
                                                                                                                                       3
##
                                                         731 731
                                                                               0.68
                                                                                                  0.47
                                                                                                              0
                                                                                                                         0
                                                                                                                                                 1
       workingday
                                           0
                                                                                                                                       1
                                                                                                  0.5
##
                        yr
                                                         731 731
                                                                                0.5
                                                                                                                                                 1
##
       p100
                          hist
##
        3410 <U+2587><U+2587><U+2585><U+2582><U+2581><U+2581><U+2581><U+2581>
##
       8714 <U+2582><U+2585><U+2585><U+2587><U+2587><U+2585><U+2585><U+2585><U+2585>
##
              1 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
##
          731 <U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587>
##
            12 <U+2587><U+2585><U+2587><U+2585><U+2585><U+2587>
##
       6946 <U+2581><U+2585><U+2585><U+2586><U+2587><U+2585><U+2583>
              4 <U+2587><U+2581><U+2581><U+2581><U+2587><U+2581><U+2587><U+2581><U+2587>
##
##
              3 <U+2587><U+2581><U+2581><U+2585><U+2581><U+2581><U+2581><U+2581><U+2581>
              6 <U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587>
##
##
              1 <U+2583><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
##
              1 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2
##
##
      -- Variable type:numeric -----
##
          variable missing complete
                                                                                                    p0 p25 p50 p75 p100
                                                                   n mean
                                                                                        sd
##
                                        0
                                                       731 731 0.47 0.16 0.079 0.34 0.49 0.61 0.84
                atemp
##
                    hum
                                        0
                                                       731 731 0.63 0.14
                                                                                              0
                                                                                                          0.52 0.63 0.73 0.97
##
                  temp
                                        0
                                                       731 731 0.5 0.18 0.059 0.34 0.5 0.66 0.86
##
        windspeed
                                                       731 731 0.19 0.077 0.022 0.13 0.18 0.23 0.51
##
                hist
        <U+2581><U+2585><U+2587><U+2587><U+2587><U+2587><U+2581>
##
        <U+2581><U+2581><U+2581><U+2583><U+2587><U+2587><U+2585><U+2582>
##
##
       <U+2581><U+2583><U+2587><U+2586><U+2586><U+2587><U+2582>
        <U+2582><U+2586><U+2587><U+2586><U+2581><U+2581><U+2581>
##
```

Observo que disponemos de un data set con 731 observaciones correpsondientes a 16 variables. No existen valores omitidos en ninguna de las variables. La variable 'instant' muestra únicamente el índice de cada uno de los registros, por tanto, es redundante ya que R de por sí ya indeza los registros. Procedo a eliminarla.

```
bikes <- select(bikes, -instant)</pre>
```

Ahora el data set presenta un total de 15 variables.

Se comprueba que las variables "casual" y "registered" presentan una alta correlación con la variable "cnt", esto se debo a que ambas forman parte de la última puesto que "cnt" resulta de la suma de "casual" y "registered". Para el posterior análisis no se tendrán en cuenta ninguna de las dos, ni "casual", ni "registered".

PREDICTION

MULTIPLE PREDICTORS: GAM

DOF

Calculo los grados de libertad de casa una de las variables numéricas. Estos serán los grados de libertad óptimos. El cálculo se realiza mediante cross-validation.

```
DOFtemp <- smooth.spline(bikes$temp, bikes$cnt, cv = TRUE) #DOF of temp
DOFatemp <- smooth.spline(bikes$atemp, bikes$cnt, cv = TRUE) #DOF of atemp
DOFhum <- smooth.spline(bikes$hum, bikes$cnt, cv = TRUE) #DOF of hum
DOFwindspeed <- smooth.spline(bikes$windspeed, bikes$cnt, cv = TRUE) #DOF of windspeed

DOFtemp; DOFatemp; DOFhum; DOFwindspeed

## Call:
## smooth.spline(x = bikes$temp, y = bikes$cnt, cv = TRUE)

##
## Smoothing Parameter spar= 0.8750699 lambda= 0.002094182 (12 iterations)
```

```
## Equivalent Degrees of Freedom (Df): 9.103704
## Penalized Criterion (RSS): 1016814001
## PRESS(1.o.o. CV): 2020811
## Call:
## smooth.spline(x = bikes$atemp, y = bikes$cnt, cv = TRUE)
##
## Smoothing Parameter spar= 0.9259008 lambda= 0.00235741 (10 iterations)
## Equivalent Degrees of Freedom (Df): 8.805497
## Penalized Criterion (RSS): 1357061571
## PRESS(1.o.o. CV): 2019174
## Call:
## smooth.spline(x = bikes$hum, y = bikes$cnt, cv = TRUE)
## Smoothing Parameter spar= 1.126702 lambda= 0.02912609 (14 iterations)
## Equivalent Degrees of Freedom (Df): 4.548876
## Penalized Criterion (RSS): 2086803858
## PRESS(1.o.o. CV): 3465906
## Call:
## smooth.spline(x = bikes$windspeed, y = bikes$cnt, cv = TRUE)
## Smoothing Parameter spar= 1.064815 lambda= 0.009147958 (13 iterations)
## Equivalent Degrees of Freedom (Df): 6.007664
## Penalized Criterion (RSS): 2310995339
## PRESS(1.o.o. CV): 3552035
```

PLOTTING

```
ggplot(data = bikes, aes(x = cnt, y = temp)) + geom_point(color = 'gray') +
    geom_smooth(method = 'loess', span = 0.2) +
    geom_smooth(method = 'loess', span = 0.5, color = 'red') +
    theme_bw()
```



```
ggplot(data = bikes, aes(x = cnt, y = atemp)) + geom_point(color = 'gray') +
   geom_smooth(method = 'loess', span = 0.2) +
   geom_smooth(method = 'loess', span = 0.5, color = 'red') +
   theme_bw()
```



```
ggplot(data = bikes, aes(x = cnt, y = hum)) + geom_point(color = 'gray') +
   geom_smooth(method = 'loess', span = 0.2) +
   geom_smooth(method = 'loess', span = 0.5, color = 'red') +
   theme_bw()
```



```
ggplot(data = bikes, aes(x = cnt, y = windspeed)) + geom_point(color = 'gray') +
    geom_smooth(method = 'loess', span = 0.2) +
    geom_smooth(method = 'loess', span = 0.5, color = 'red') +
    theme_bw()
```


MAKING MODELS

En primer lugar paso a tipo factor las variables categóricas no dummies.

```
bikes$season <- as.factor(bikes$season)
bikes$mnth <- as.factor(bikes$mnth)
bikes$weekday <- as.factor(bikes$weekday)
bikes$weathersit <- as.factor(bikes$weathersit)

train <- sample(nrow(bikes), 0.7*nrow(bikes))
bikes_train <- bikes[train,] # muestra de entrenamiento
bikes_test <- bikes[-train,] # muestra de test</pre>
```

Divido la muestra en train y test. Calculo cada uno de los modelos sobre el train. Realizo la predicción sobre el test, calculo el error medio y aquel modelo con menor error medio es el que pondré a prueba sobre la población total.

```
# En este modelo incluyo únicamente las variables cuantitativas modeloGam1 \leftarrow gam(cnt \sim s(atemp, df = 8.805497) + s(hum, df = 8.805497) + s(temp, df = 9.103704) + s(windspeed, df = 6.007664), data = bikes_train)
```

```
## Warning in model.matrix.default(mt, mf, contrasts): non-list contrasts
## argument ignored
```

```
plot(modeloGam1, se = TRUE, col = "red")
```


El primer modelo únicamente es elaborado incluyendo las variables cuantitativas de la muestra, excluyo toda variable categórica y/o dummie.

summary(modeloGam1)

```
##
  Call: gam(formula = cnt \sim s(atemp, df = 8.805497) + s(hum, df = 8.805497) +
##
       s(temp, df = 9.103704) + s(windspeed, df = 6.007664), data = bikes_train)
## Deviance Residuals:
##
       Min
                10
                    Median
                                30
                                       Max
   -2665.3
           -928.4
                    -107.0
                             962.9
                                    2737.7
##
##
##
  (Dispersion Parameter for gaussian family taken to be 1483173)
##
       Null Deviance: 1836652654 on 510 degrees of freedom
##
  Residual Deviance: 707886099 on 477.2783 degrees of freedom
  AIC: 8745.866
##
##
## Number of Local Scoring Iterations: 18
##
## Anova for Parametric Effects
##
                                   Df
                                          Sum Sq
                                                   Mean Sq F value
                                                                       Pr(>F)
## s(atemp, df = 8.805497)
                                 1.00 613516778 613516778 413.6516 < 2.2e-16
## s(hum, df = 8.805497)
                                 1.00 100600714 100600714 67.8281 1.726e-15
## s(temp, df = 9.103704)
                                 1.00
                                       10490686
                                                 10490686
                                                             7.0731 0.008088
## s(windspeed, df = 6.007664)
                                                 74884972 50.4897 4.386e-12
                                 1.00
                                       74884972
```

```
## Residuals
                              477.28 707886099
                                                 1483173
##
## s(atemp, df = 8.805497)
## s(hum, df = 8.805497)
                              ***
## s(temp, df = 9.103704)
## s(windspeed, df = 6.007664) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
                              Npar Df Npar F
                                                 Pr(F)
##
## (Intercept)
## s(atemp, df = 8.805497)
                                  7.8 10.845 8.127e-14 ***
## s(hum, df = 8.805497)
                                  7.8 5.213 3.656e-06 ***
## s(temp, df = 9.103704)
                                  8.1 34.604 < 2.2e-16 ***
## s(windspeed, df = 6.007664)
                                  5.0 0.913
                                                0.4726
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

El p-value obtenido para la función del predictor "windspeed" (0.4726) no muestra evidencias de que la relación entre cnt y windspeed no sea lineal, lo que lleva a preguntarse si sería mejor emplear un ajuste lineal en lugar de una smooth spline, reduciendo así la complejidad del modelo.

A continuación procedo a realizar la predicción del modelo sobre la parte test de la muestra.

```
prediccion_modeloGam1 <- predict(modeloGam1, bikes_test)
error_modeloGam1 <- mean((prediccion_modeloGam1 - bikes_test$cnt)^2)
error_modeloGam1</pre>
```

[1] 1629602

El error medio sobre el test de este primer modelo es de \pm 1276,559 bicicletas, es decir, \pm 1277 bicicletas aproximadamente.

El segundo modelo incorpora todas las variables del DataSet a excepción de "dteday".

summary(modeloGam2)

```
##
## Call: gam(formula = cnt \sim s(atemp, df = 8.805497) + s(hum, df = 8.805497) +
       s(temp, df = 9.103704) + s(windspeed, df = 6.007664) + season +
##
##
       yr + mnth + holiday + weekday + workingday + weathersit,
       data = bikes train)
##
  Deviance Residuals:
##
       Min
##
                  1Q
                       Median
                                    3Q
                                             Max
  -2921.45
            -295.85
                        23.05
                                385.69
                                        1717.74
##
##
## (Dispersion Parameter for gaussian family taken to be 393771.5)
##
       Null Deviance: 1836652654 on 510 degrees of freedom
##
## Residual Deviance: 178488067 on 453.2783 degrees of freedom
  AIC: 8089.83
## Number of Local Scoring Iterations: 20
## Anova for Parametric Effects
                                   Df
                                          Sum Sq
                                                   Mean Sq
                                                             F value
                                                                        Pr(>F)
## s(atemp, df = 8.805497)
                                 1.00 653112956 653112956 1658.6090 < 2.2e-16
## s(hum, df = 8.805497)
                                 1.00
                                       95645757
                                                  95645757 242.8966 < 2.2e-16
## s(temp, df = 9.103704)
                                       12095373
                                                 12095373
                                                            30.7167 5.074e-08
                                 1.00
```

```
## s(windspeed, df = 6.007664)
                                1.00 72785897 72785897 184.8430 < 2.2e-16
## season
                                3.00 69644308 23214769 58.9549 < 2.2e-16
## yr
                                1.00 471316716 471316716 1196.9295 < 2.2e-16
## mnth
                               11.00 12404826
                                                1127711
                                                            2.8639 0.0012042
## holiday
                                1.00
                                       3477613
                                                 3477613
                                                            8.8316 0.0031182
                                6.00 10804339 1800723 4.5730 0.0001608
## weekday
## weathersit
                                2.00 41246348 20623174 52.3735 < 2.2e-16
## Residuals
                                                  393771
                              453.28 178488067
##
## s(atemp, df = 8.805497)
## s(hum, df = 8.805497)
## s(temp, df = 9.103704)
                               ***
## s(windspeed, df = 6.007664) ***
## season
## yr
                               ***
## mnth
## holiday
                               **
## weekday
## weathersit
                               ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
##
                              Npar Df Npar F
                                                 Pr(F)
## (Intercept)
## s(atemp, df = 8.805497)
                                  7.8 5.701 8.295e-07 ***
## s(hum, df = 8.805497)
                                  7.8 2.085 0.0373217 *
## s(temp, df = 9.103704)
                                  8.1 40.271 < 2.2e-16 ***
## s(windspeed, df = 6.007664)
                                  5.0 4.325 0.0007391 ***
## season
## yr
## mnth
## holiday
## weekday
## workingday
## weathersit
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
prediccion_modeloGam2 <- predict(modeloGam2, bikes_test)</pre>
error_modeloGam2 <- mean((prediccion_modeloGam2 - bikes_test$cnt)^2)</pre>
error_modeloGam2
```

[1] 501094

El error medio sobre el test de este segundo modelo es de \pm 707,88 bicicletas, es decir, \pm 708 bicicletas aproximadamente.

```
sqrt(error_modeloGam2)
```

```
## [1] 707.88
```

El segundo modelo presenta un error menor. Es por ello que procedo a predecir sobre toda la muestra y calcular el error total.

```
prediccionTotal <- predict(modeloGam2, bikes)
errorTotal <- mean((prediccionTotal - bikes$cnt)^2)
sqrt(errorTotal)</pre>
```

[1] 628.4721

El error medio sobre la población del modelo finalmente elegigo es de \pm 628,47 bicicletas, lo que significa que se equivoca por término medio en \pm 629 bicicletas.

```
modelos <- c('Modelo Gam 1', 'Modelo Gam 2')
error <- c(sqrt(error_modeloGam1), sqrt(error_modeloGam2))
df <- data.frame(modelos, error)
ggplot(df, aes( x = modelos, y = error)) + geom_col()</pre>
```


El segundo modelo presenta un error un 45% menor que el primer modelo en comparación.