Teoremi sull'algebra dei limiti

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (algebra dei limiti) Siano $\{a_n\}$, $\{b_n\}$ due successioni convergenti rispettivamente ad $a \in b$. Allora valgono le seguenti formule:

$$\lim_{x \to +\infty} (a_n + b_n) = a + b \tag{1}$$

$$\lim_{x \to +\infty} (a_n - b_n) = a - b \tag{2}$$

$$\lim_{x \to +\infty} (a_n \cdot b_n) = a \cdot b \tag{3}$$

$$\lim_{x \to +\infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b} \tag{4}$$

$$\lim_{x \to +\infty} \left(a_n^{b_n} \right) = a^b \tag{5}$$

La (4) vale solo se $b_n \neq 0$ e $b \neq 0$.

Dimostrazioni:

• Dimostriamo la (1).

Per la definizione di limite, se il limite vale a+b allora si verifica che $\forall \varepsilon > 0$ $|a_n+b_n-a-b| < \varepsilon$ definitivamente. Applichiamo la disugualianza triangolare ed otteniamo: $|a_n-a+b_n-b| \leq |a_n-a|+|b_n-b| < 2\varepsilon$ per ipotesi (in quanto $a_n \to a$, $b_n \to b$). Per l'arbitrarietà di ε segue che $|a_n+b_n-a-b|$ può diventare arbitrariamente piccolo, ovvero la tesi.

- La dimostrazione per la(2) è analoga alla precedente, quindi la omettiamo.
- Dimostriamo la (3).

Ragioniamo come per la somma.

Consideriamo $|a_n \cdot b_n - a \cdot b| = |a_n b_n - a_n b + a_n b - ab| \le |a_n b_n - a_n b| + |a_n b - ab| = |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a|$. Osserivamo che $a_n \to a$, quindi a_n è definitivamente minore di $a + \varepsilon$, co-

Osserivamo che $a_n \to a$, quindi a_n è definitivamente minore di $a + \varepsilon$, comunque scelgo $\varepsilon > 0$. Quindi eseguo una maggiorazione:

 $|a_n|\cdot|b_n-b|+|b|\cdot|a_n-a|<|a+\varepsilon|\cdot|b_n-b|+|b|\cdot|a_n-a|\leq a\cdot\varepsilon+\varepsilon^2+b\cdot\varepsilon<\varepsilon\cdot(a\cdot b)<\varepsilon\cdot const.$ Dall'arbitrarietà di ε segue che:

 $\forall \varepsilon > 0 \ |a_n \cdot b_n - a \cdot b| < \varepsilon$, il limite quindi vale ab, ovvero la tesi.

• Dumostriamo la (4).

Ragioniamo come per il prodotto, costruendo delle minorazioni.

Consideriamo
$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{a_n \cdot b - b_n \cdot a}{b_n \cdot b}\right| = \frac{|(a_n b - a_n b_n) + (a_n b_n - b_n a)|}{|b_n b|} \le \frac{|a_n (b - b_n)| + |b_n (a_n - a)|}{|b_n b|}.$$
A questo punto sfruttiamo il fatto che $a_n \to a$, $b_n \to b$, ovvero $a_n < a + \varepsilon$,

In questo patho structurant in factor che $u_n \neq u$, $v_n \neq b$, over $u_n \neq u \neq \varepsilon$, $b_n < b + \varepsilon$ definitivamente, e scriviamo la maggiorazione $\frac{|a_n(b-b_n)|+|b_n(a_n-a)|}{|b_nb|} \leq \frac{|a+\varepsilon|\cdot|b_n-b|+|b+\varepsilon|\cdot|a_n-a|}{|b_nb|} \text{ definitivamente.}$ Infine, $b_n > b - \varepsilon$ definitivamente, quindi $\frac{|a+\varepsilon|\cdot|b_n-b|+|b+\varepsilon|\cdot|a_n-a|}{|b_nb|} \leq \frac{|a+\varepsilon|\cdot|b_n-b|+|b+\varepsilon|\cdot|a_n-a|}{|b|\cdot|b-\varepsilon|} \text{ Se } b \neq 0 \text{ il denominatore}$ non si annulla definitivamente, mentre il numeratore diventa più piccolo di qualsiasi costante positiva, infatti $a+\varepsilon$ e $b+\varepsilon$ sono costanti, moltiplicate per $|b_n-b|$, $|a_n-a|$, che per ipotesi tendono a 0. Ripercorrendo la catena di disuguaglianze

si ha che $\left|\frac{a_n}{b_n} - \frac{a}{b}\right| < \varepsilon$, comunque scegliamo $\varepsilon > 0$, quindi per la definizione di limite il limite cercato vale $\frac{a}{h}$, ovvero la tesi.