컴퓨터과학기초

^{4주차} 논리게이트

인하공업전문대학 컴퓨터정보과

이수정 교수

차례

Ch.3 디지털 코드

- 4. 에러검출코드
- 5. 영숫자코드

1) 패리티 비트

- 짝수패리티(even parity): 데이터에서 1의 개수를 짝수 개로 맞춤
- 홀수패리티(odd parity) : 데이터에서 1의 개수를 홀수 개로 맞춤
- 패리티 비트는 데이터 전송과정에서 에러 검사를 위한 추가 비트 패리티는 단지 에러 검출만 가능하며, 여러 비트에 에러가 발생할 경우에는 검출이 안될 수도 있음

■ 7비트 ASCII 코드에 패리티 비트를 추가한 코드

데이터	짝수패리티	홀수패리티
•••	•••	•••
A	0 1000001	1 1000001
В	0 1000010	1 1000010
C	1 1000011	0 1000011
D	0 1000100	1 1000100
•••	•••	•••

■ 병렬 패리티(parallel parity)

• 패리티를 블록 데이터에 적용해서 가로와 세로 데이터들에 대해서 패리티를 적용하면 에 러를 검출하여 그 위치를 찾아 정정할 수 있다.

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	1	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	0	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

원래 데이터 블록

가로세로 모두 1 의 개수가 짝수임 에러가 발생한 블록

가로세로 회색 부분에 1의 개수 가 홀수임: 겹치는 부분 에러

- 데이터 전송 시스템에서 패리티 비트를 사용한 에러 검출
 - 에러를 검출하기 위하여 송신측에 패리티 발생기를 구성하고 수신측에는 패리티 검출기를 구성하여 그 출력을 보고 에러 발생 여부를 판단

짝수 패리티Y=0(에러 없음), Y=1(에러 발생)홀수 패리티Y=1(에러 없음), Y=0(에러 발생)

2) 에러 정정 코드: 해밍코드(Hamming Code)

- 에러를 정정할 수 있는 코드
- 추가적으로 많은 비트가 필요하므로 많은 양의 데이터 전달이 필요
- 데이터 비트와 패리티 비트와의 관계

$$2^{p-1} - p + 1 \le d \le 2^p - p - 1$$

p는 패리티 비트의 수, d는 데이터 비트의 수, $p \ge 2$

- p=4일 때, 2⁴⁻¹ 4 + 1 ≤ d ≤2⁴ 4 1이므로 5 ≤ d ≤ 11이다.
- 따라서 데이터 비트수가 5개 이상 11개 이하일 때 패리티는 4개가 필요하다.

- 패리티 비트의 위치는 앞에서 부터 1, 2, 4, 8, 16, … 번째이다.
- 데이터 비트는 나머지 위치에 순서대로 들어간다.
- 해밍코드에서는 짝수 패리티를 사용

$P_1 = D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11}$
$P_2 = D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11}$
$P_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_{12}$
$P_8 = D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12}$

비트 위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
P ₁ 영역	√		✓		✓		✓		√		√	
P ₂ 영역		√	√			√	√			√	✓	
P ₄ 영역				✓	√	√	√					√
P ₈ 영역								√	√	√	√	√

For Example

P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
		0		0	1	0		1	1	1	0

$$P_1 = D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus P_5 \oplus P_6 \oplus P$$

$$P_2 = D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$P_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_{12} = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$P_8 = D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

■ 해밍코드에서 패리티 비트 생성 과정

비트위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
원본 데이터			0		0	1	0		1	1	1	0
P_1 영역	0		0		0		0		1		1	
P_2 영역		1	0			1	0			1	1	
P_4 영역				1	0	1	0					0
P ₈ 영역								1	1	1	1	0
			1		+				+	1	+	—
생성된 코드	0	1	0	1	0	1	0	1	1	1	1	0

생성된 패리티

■ 해밍코드에서 패리티 비트 검사 과정

전송된데이터: 010111011110

P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
0	1	0	1	1	1	0	1	1	1	1	0

☞ 패리티들을 포함하여검사
$$P_1=P_1\oplus D_3\oplus D_5\oplus D_7\oplus D_9\oplus D_{11}=0\oplus 0\oplus 1\oplus 0\oplus 1\oplus 1=1$$

$$P_2 = P_2 \oplus D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$P_4 = P_4 \oplus D_5 \oplus D_6 \oplus D_7 \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$P_8 = P_8 \oplus D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

- 검사된 패리티를 $P_8 P_4 P_2 P_1$ 순서대로 정렬
- 모든 패리티가 0이면 에러 없음
- 하나라도 1이 있으면 에러 발생: 결과가 0101이므로 에러 있음
- 0101을 10진수로 바꾸면 5이며, 수신된 데이터에서 앞에서 5번째 비트 0101**1**1011110에 에러가 발생 한 것이므로 010101011110으로 바꾸어 주면 에러가 정정된다.

■ 해밍코드에서 에러가 발생한 경우 교정

P11P2계산0		1	2	3	4	5	6	7	8	9	10	11	12
		P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
Error 해밍코드		0	1	0	1	1	1	0	1	1	1	1	0
P_1 계산	1	0		0		1		0		1		1	
P11P2계산0			1	0			1	0			1	1	
P ₄ 계산 1					1	1	1	0					0
P ₈ 계산 0									1	1	1	1	0

 $P_8P_4P_2P_1 = 0101 = 5:5$ 번째 비트에 에러 발생, $1 \to 0$ 으로 교정

1) ASCII(American Standard Code for Information Interchange) 코드

- 미국 국립 표준 연구소(ANSI)가 제정한 정보 교환용 미국 표준 코드
- 128가지의 문자를 표현 가능

■ ASCII 코드의 구성

parity		zone bit			digi	t bit	
7	6	5	4	3	2	1	0
	1	0	0	영문	문자 A~C	0(0001~1	111)
C	1	0	1	영문	₽자 P~Z	(0000~1	010)
	0	1	1	숫	자 0~9((0000~100	01)

■ 표준 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	TAB	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	:	#	\$	%	&	,	()	*	+	,	ı	•	/
3	0	1	2	3	4	5	6	7	8	9	:	• •		Ш	^	?
4	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	<	_
6	,	a	b	c	d	e	f	g	h	i	j	k		m	n	0
7	р	q	r	S	t	u	V	W	X	у	Z	{		}	?	DEL

■ 확장 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
8	Ç	ü	é	â	ä	à	å	ç	ê	ë	è	ï	î	ì	Ä	Å
9	É	æ	Æ	ô	ö	ò	û	ù	ÿ	Ö	Ü	¢	£	¥	Pt	f
A	á	í	ó	ú	ñ	Ñ	a	О	ن	Г	٦	1/2	1/4	i	«	»
В		******			4	=	-	П	7	4		╗	1	Ш	٦	٦
C	L		Т	H		+	F	ŀ	L	F	<u> </u>	ī	ŀ	=	#	上
D	Ш	=	П	Ш	L	F	Г	#	+	J	Г					
E	α	β	Γ	π	Σ	σ	μ	τ	Φ	Θ	Ω	δ	∞	Ø	3	\cap
F	≡	土	2	<u> </u>	ſ	J	<u>-</u>	a	0	•	•	√	n	2		

2) 표준 BCD(Binary Code Decimal) 코드

- 6비트로 하나의 문자를 표현
- 최대 64문자까지 표현 가능한 코드

코드의 구성

parity	zone	e bit	digit bit					
6	5	4	3	0				
	1	1	영문자 A~I(0001~1001)					
	1	0	영문자 J~R(0001~1001)					
C	0	1	영문자 S~Z(0010~1001)					
	0	0	숫자 0~9(0001~1010)					
	혼	용	특수문자 및 기타문자					

■ 표준 BCD 코드표

문자	C ZZ8421								
A	0 110001	J	1 100001	S	1 010010	1	0 000001	=	0 001011
В	0 110010	K	1 100010	T	0 010011	2	0 000010	>	1 001100
C	1 110011	L	0 100011	U	1 010100	3	1 000011	+	0 010000
D	0 110100	M	1 100100	V	0 010101	4	0 000100	,	1 011011
Е	1 110101	N	0 100101	W	0 010110	5	1 000101)	0 011100
F	1 110110	О	0 100110	X	1 010111	6	1 000110	%	1 011101
G	0 110111	P	1 100111	Y	1 011000	7	0 000111	?	0 011111
Н	0 111000	Q	1 101000	Z	0 011001	8	0 001000	_	1 100001
I	1 111001	R	0 101001			9	1 001001	@	1 111010
						0	1 001010	\$	1 111111

3) EBCDIC(Extended Binary Coded Decimal Interchange Code) 코드

- 대형 컴퓨터와 IBM 계열 컴퓨터에서 많이 사용되고 있는 8비트 코드(IBM에서 개발)
- 256종류의 문자 코드를 표현할 수 있는 영숫자 코드

코드의 구성

b_9	$b_8 b_7 b_6 b_5$	$b_4 b_3 b_2 b_1$
패리티	존(zone)	디지트(digit)
1	4	4

b_8b_7		$b_6 b_5$	
0 0	통신제어문자		
0 1	특수문자		
		0 0	a ∼i
1 0	소문자	0 1	j~r
1 0		1 0	S~Z
		1 1	
		0 0	A~I
1 1	대문자/숫자	0 1	J~R
1 1	네군자/굿자 	1 0	S~Z
		1 1	0~9

■ EBCDIC 코드표

16진		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	2진	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	NUL	SOH	STX	ETX		НТ		DEL				VT	FF	CR	SO	SI
1	0001	DLE						BS		CAN	EM			IFS	IGS	IRS	IUS
2	0010						LF	ETB	ESC						ENQ	ACK	BEL
3	0011			SYN					EOT						NAK		SUB
4	0100	space										[•		(+	
5	0101	&										!	\$	*)		٨
6	0110	-	/										,	%	_	>	?
7	0111										`	:	#	@	í	=	"
8	1000		a	b	c	d	e	f	g	h	i						
9	1001		j	k	1	m	n	О	p	q	r						
A	1010		~	S	t	u	v	W	X	у	Z						
В	1011																
C	1100	{	A	В	С	D	Е	F	G	Н	I						
D	1101	}	J	K	L	M	N	О	P	Q	R						
E	1110	\		S	T	U	V	W	X	Y	Z						
F	1111	0	1	2	3	4	5	6	7	8	9						

4) 유니코드(Unicode)

- ASCII 코드의 한계성을 극복하기 위하여 개발된 인터넷 시대의 표준
- 유니코드 컨소시엄(IBM, Novell, Microsoft, DEC, Apple 등)에 의해서 32(UTF-32), 16(UTF-16), 8bit(UTF-8)의 세 가지 기본 코드
- 미국, 유럽, 동아시아, 아프리카, 아시아 태평양 지역 등의 주요 언어들에 적용될 수 있다.
- 유니코드는 유럽, 중동, 아시아 등 거의 대부분의 문자를 포함하고 있으며, 10만개 이상의 문자로 구성되어 있다.
- 특히 아시아의 중국, 일본, 한국, 타이완, 베트남, 싱가포르에서 사용하는 표의 문자(한자) 70,207개를 나타낼 수 있다.
- 구두표시, 수학기호, 전문기호, 기하학적 모양, 딩벳 기호 등을 포함
- 앞으로도 계속해서 산업계의 요구나 새로운 문자들을 추가하여 나갈 것이다.

5) 한글코드

- 한글은 ASCII코드를 기반으로 16비트를 사용하여 하나의 문자를 표현
- ▶ 조합형과 완성형으로 분류

 조합형으로 표현된 한글은 때에 따라서 다른 응용프로그램에서는 사용할 수 없는 문자들이 많다.

조 합 형 조합형은 자음과 모음으로 조합 가능한 모든 한글을 사용할 수 있으며, 심지어 우리나라 고어(古語)까지 취급할 수 있는 장점이 있으나, 출력 시 다시 모아 써야 하는 불편이 있다는 것이 단점이다.

두번째 바이트							,	첫반	선째	바(기트				
1															
		=	초성	}			-	중성	ļ			-	종성	}	

완 성 형

• 1987년 정부가 한국표준으로 정한 것으로 가장 많이 사용되는 한글 음절을 2 바이트의 2진수와 1 대 1로 대응하여 표현하는 방법

차례:논리게이트

- 1. 논리 레벨
- 2. NOT 게이트와 버퍼 게이트
- 3. AND 게이트
- 4. OR 게이트
- 5. NAND 게이트

- 6. NOR게이트
- 7. XOR게이트
- 8. XNOR 게이트
- 9. 정논리와 부논리
- 10. 게이트의 전기적 특성

1. 논리 레벨

- 논리회로: 하드웨어를 구성하는 기본 요소인 논리게이트로 구성
- ▶ 논리게이트
 - 한 개 이상의 입력과 하나의 출력으로 구성되는 전자회로
 - 두 가지(0, 1) 신호를 발생하는 기능을 가진 장치
- 디지털 시스템: 여러 가지 논리게이트가 모여 구성
 - 기본이 되는 논리게이트 : AND, OR, NOT
 - 조합으로 만든 논리게이트: NAND, NOR, XOR, XNOR

1. 논리 레벨

■ TTL과 CMOS 논리 레벨 정의 영역

• 논리 1 : high 전압

• 논리 0 : low 전압

Transistor

디지털 회로에서 전자스위치로 사용되는 반도체 소자. 베이스에 적절한 전압을 인가하여 컬렉터-에미터접합이 개방 또는 단락된 스위치처럼 동작

1) NOT 게이트

- 한 개의 입력과 한 개의 출력을 갖는 게이트
- 논리 부정
- 인버터(inverter)

진리표	동작파형	논리기호
A F 0 1 1 0	입력 A 1 0 1 0 출력 F 0 1 0 1	A—— F

논리식
$F = \overline{A} = A'$

2) 出 因 (buffer)

- 입력된 신호를 변경하지 않고, 입력된 신호 그대로를 출력하는 게이트로 단순한 전송을 의미
- 입력 신호가 1인 경우에는 출력 신호는 1, 입력 신호가 0인 경우에는 출력 신호는 0

- 3상태(tri-state) 버퍼
 - 출력이 3개 레벨
 (High, Low, 하이 임 피던스) 중의 하나를 갖는 논리소자
 - 하이 임피던스: 입력 과 출력이 연결되어 있지 않은 상태

	진리표	논리기호	핀 배치도
제어 입력 이 Low 일 때	$egin{array}{c ccccc} A & ar{E} & F & \\ \hline 0 & 0 & 0 & \\ 1 & 0 & 1 & \\ \hline 0 & 1 & \text{Hi-Z} & \\ 1 & 1 & \text{Hi-Z} & \\ \hline \end{array}$	$A \longrightarrow F$	V _{CC} 4 ^C 4A 4Y 3C 3A 3Y 14 13 12 11 10 9 8 74125
제어 입력 이 High 일 때	A E F 0 0 Hi-Z 1 0 Hi-Z 0 1 0 1 1 1	$A \longrightarrow F$	V _{CC} 4C 4A 4Y 3C 3A 3Y 14 13 12 11 10 9 8 1 1 2 3 4 5 6 7 1C 1A 1Y 2C 2A 2Y GND 74126

- AND 게이트의 기본 개념(2입력)

- 2개 이상의 입력에 1개의 출력. 논리곱(logical product)
- 입력이 모두 1(on)인 경우에만 출력은 1(on)
- 입력 중에 O(off)인 것이 하나라도 있을 경우에는 출력은 O(off)

진리표	동작파형	논리기호
A B F 0 0 0 0 1 0	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	$A \longrightarrow F$
1 0 0 1 1 1	F 0 0 0 1 0	논리식 $F = AB = A \cdot B$

■ AND 게이트의 회로 표현과 IC

AND 게이트의기본 개념(3입력)

	신	<u>리뾰</u>	
A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

동작기	파형
$\mathcal{O} \cap \mathcal{O}$	710

논리식

$$F = ABC = A \cdot B \cdot C$$

논리기호

■ AND 게이트를 이용한 자동차 좌석벨트 경보 시스템

- 점화스위치(A)가 켜지고(High) 좌석벨트(B)가 풀려있는 상태(High)를 감지
- 점화스위치가 켜지면 타이머가 작동되어 타이머 C가 30초 동안 High로 유지
- 점화 스위치가 켜지고, 좌석벨트가 풀려있고, 타이머가 작동하는 3가지 조건하에서 AND 게이트의 출력은 High. 운전자에게 주의를 환기시키는 경보음이 울리게 된다.
- 30초간 경보음 동작 후에는 경보음은 울리지 않으며, 처음부터 좌석벨트가 채워져 있으면 경보음은 울리지 않는다.

OR 게이트의 기본 개념(2입력)

- 입력이 모두 0인 경우에만 출력은 0
- 입력 중에 1이 하나라도 있으면, 출력은 1

진리표		Ŧ	동작파형	논리식
	A B	F	A 0 0 1 1 0	F = A + B
	0 0	0		
	0 1	1	B 0 1 0 1 0	논리기호
	1 0	1	F 0 1 1 1 0	
	1 1	1		$A \longrightarrow F$

OR 게이트의 회로 표현과 IC

OR 게이트의 회로 표현과 IC

진리표	동작파형	논리식
A B C F 0 0 0 0	A 0 0 0 0 1 1 1 1 0	F = A + B + C
0 0 1 1	B 0 0 1 1 0 0 1 1 0	
0 1 0 1	C = 0 1 0 1 0 1 0 1 0	논리기호
0 1 1 1	F = 0 1 1 1 1 1 1 0	A
1 0 0 1		R F
1 0 1 1		
1 1 0 1		
1 1 1 1		

OR 게이트를 이용한 침입 탐지 시스템

- 일반 가정에서 출입문 1개와 창문 2개가 있다고 가정
- 출입문과 창문에 설치된 각 센서는 자기 스위치(magnetic switch)로서 문이 열려 있을 때 High를 출력하고, 닫혀 있을 때에는 Low를 출력

■ NAND 게이트의 기본 개념(2입력)

- 입력이 모두 1인 경우에만 출력은 0, 그렇지 않을 경우에는 출력은 1
- AND 게이트와는 반대로 작동하는 게이트
- NOT AND의 의미로 'NAND 게이트'라고 부른다.

진리표	동작파형	논리식
A B F	4 0 0 1 1 0	$F = \overline{AB} = \overline{A \cdot B}$
0 0 1	A 0 0 1 1 0	
0 1 1	B 0 1 0 1 0	논리기호
1 0 1		$A \longrightarrow P$
1 1 0	F 1 1 1 0 1	В
		$A \longrightarrow F$

■ NAND 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 F 1 1 1 1 1 1 0 1	$F = \overline{ABC} = \overline{A \cdot B \cdot C}$ 본리기호 $A \longrightarrow C$ $C \longrightarrow C$

■ NAND 게이트의 IC

NOR 게이트의 기본 개념(2입력)

- 입력이 모두 0인 경우에만 출력은 1, 입력 중에 하나라도 1이 있는 경우는 출력은 0
- OR 게이트와는 반대로 작동하는 게이트로, NOT OR의 의미로 'NOR 게이트'라고 부른다.

진리표	동작파형	논리식
A B F	$A 0 0 \boxed{1} 1 0$	$F = \overline{A + B}$
0 0 1 0	$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$	논리기호
1 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \longrightarrow B \longrightarrow F$
1 1 0		$A \longrightarrow F$
		> > > F

NOR 게이트의 기본 개념(3입력)

진리표	동작파형	논리식
A B C F 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 1 0 0 0 0 0 0 0 1	$F = \overline{A} + \overline{B} + \overline{C}$ 논리기호 $A \longrightarrow C \longrightarrow C \longrightarrow C$

NOR 게이트 IC

