3 | Open Sets

3.1 Definition. Let ϱ_1 and ϱ_2 be two metrics on the same set X. We say that the metrics ϱ_1 and ϱ_2 are *equivalent* if for every $x \in X$ and for every r > 0 there exist $s_1, s_2 > 0$ such that $B_{\varrho_1}(x, s_1) \subseteq B_{\varrho_2}(x, r)$ and $B_{\varrho_2}(x, s_2) \subseteq B_{\varrho_1}(x, r)$.

3.2 Proposition. Let ϱ_1 , ϱ_2 be equivalent metrics on a set X, and let μ_1 , μ_2 be equivalent metrics on a set Y. A function $f: X \to Y$ is continuous with respect to the metrics ϱ_1 and μ_1 if and only if it is continuous with respect to the metrics ϱ_2 and μ_2 .

3.3 Example. The Eucl	idean metric d , the	orthogonal	metric ϱ_{ort}	and the	maximum	metric ϱ_{max}	are
equivalent metrics on ${\mathbb R}$	ⁿ (exercise).						

3.4 Example. The following metrics on \mathbb{R}^2 are not equivalent to one another: the Euclidean metric d, the hub metric ϱ_h , and the discrete metric ϱ_{disc} (exercise).

3.5 Definition. Let (X, ϱ) be a metric space. A subset $U \subseteq X$ is an *open set* if U is a union of (perhaps infinitely many) open balls in X: $U = \bigcup_{i \in I} B(x_i, r_i)$.

3.6 Proposition. Let (X, ϱ) be a metric space and let $U \subseteq X$. The following conditions are equivalent:

- 1) The set U is open.
- 2) For every $x \in U$ there exists $r_x > 0$ such that $B(x, r_x) \subseteq U$.

Proof. Exercise.

3.7 Proposition. Let X be a set and let ϱ_1 , ϱ_2 be two metrics on X . The following conditions are equivalent:
1) The metrics ϱ_1 and ϱ_2 are equivalent.
2) A set $U \subseteq X$ is open with respect to the metric ϱ_1 if and only if it is open with respect to the metric ϱ_2 .
3.8 Proposition. Let (X, ϱ) be a metric space.
1) The sets X and \varnothing are open sets.
2) If U_i is an open set for $i \in I$ then the set $\bigcup_{i \in I} U_i$ is open.
3) If U_1 , U_2 are open sets then the set $U_1 \cap U_2$ is open.
<i>Proof.</i> Exercise.

3.10 Proposition. Let (X, ϱ) , (Y, μ) be metric spaces and let $f: X \to Y$ be a function.	The following
conditions are equivalent:	
1) The function f is continuous.	

2) For every open set $U \subseteq Y$ the set $f^{-1}(U)$ is open in X.

3.11 Lemma. Let (X, ϱ) , (Y, μ) be metric spaces and let $f: X \to Y$ be a continuous function. If $B:=B(y_0,r)$ is an open ball in Y then the set $f^{-1}(B)$ is open in X.

Proof. Exercise.

- **3.12 Definition.** Let X be a set. A *topology* on X is a collection ${\mathfrak T}$ of subsets of X satisfying the following conditions:
 - 1) $X, \emptyset \in \mathfrak{I}$;
 - 2) If $U_i \in \mathfrak{T}$ for $i \in I$ then $\bigcup_{i \in I} U_i \in \mathfrak{T}$;
 - 3) If $U_1, U_2 \in \mathfrak{T}$ then $U_1 \cap U_2 \in \mathfrak{T}$.

Elements of T are called *open sets*.

A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a topology on X.

- **3.13 Definition.** Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces. A function $f: X \to Y$ is *continuous* if for every $U \in \mathcal{T}_Y$ we have $f^{-1}(U) \in \mathcal{T}_X$.
- **3.14 Example.** If (X, ϱ) is a metric space then X is a topological space with the topology

$$\mathfrak{T} = \{ U \subseteq X \mid U \text{ is a union of open balls} \}$$

We say that the topology T is *induced by the metric* ϱ .

3.16 Example. Let X be an arbitrary set and let

$$\mathfrak{T} = \{ \text{all subsets of } X \}$$

The topology \mathfrak{T} is called the *discrete topology* on X. If X is equipped with this topology then we say that it is a *discrete topological space*.

3.17 Example. Let X be an arbitrary set and let

$$\mathfrak{T} = \{X,\varnothing\}$$

The topology $\mathfrak T$ is called the *antidiscrete topology* on X.

3.18 Example. Let $X = \mathbb{R}$ and let

$$\mathfrak{T} = \{U \subseteq \mathbb{R} \mid U = \varnothing \text{ or } U = (\mathbb{R} \setminus S) \text{ for some finite set } S \subseteq \mathbb{R}\}$$

The topology T is called the *Zariski topology* on \mathbb{R} .

3.19 Definition. A topological space (X, \mathcal{T}) is <i>metrizable</i> if there exists a metric ϱ on X such that \mathcal{T} is the topology induced by ϱ .
3.20 Lemma. If (X, \mathfrak{T}) is a metrizable topological space and $x, y \in X$ are points such that $x \neq y$ then there exists an open set $U \subseteq X$ such that $x \in U$ and $y \notin U$.
Proof. Exercise.
3.21 Proposition. If X is a set containing more than one point then the antidiscrete topology on X i not metrizable.