

московский ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ ФИЗИКИ И ВОЛНОВЫХ ПРОЦЕССОВ

ЗАДАНИЕ №1 по курсу «Численные методы в физике»

Выполнил: Делекторский Никита Юрьевич, студент 425 группы

Преподаватель: Шлёнов Святослав Александрович

Москва 2024

Оглавление

1.	Постановка задачи	3
2.	Листинг программы	4
2	Результаты вычислений	6
Э.	Результаты вычислении	O

1. Постановка задачи

Используя одну из библиотечных программ БПФ, выполнить дискретное комплексное преобразование Фурье для 16 действительных отсчётов.

Используемый пакет для вычисления FFT называется FFTW, представленный в библиотеке Python pyFFTW.

Сигнал, пришедший на приёмник приведён в таблице:

Значение сигнала
0.23139
0.946489
1.129215
0.725544
-0.209844
-1.140108
-1.002202
-0.646822
0.20705
1.100417
1.14222
0.585933
-0.289177
-0.950105

2. Листинг программы

```
import pyfftw
import numpy as np
import matplotlib.pyplot as plt
import scipy
# Считывание данных из файла и преобразование к
np.array
with open('17.txt', mode='r') as f:
    data = f.readlines()[1:]
data = np.array([float(x) for x in data])
marks = np.linspace(int(-data.size/2+1),
int(data.size/2), data.size, dtype='int8')
# Отрисовка графика
def show graph(x: np.array, y: np.array):
   plt.plot(x, y)
   plt.grid()
   plt.show()
def fft(a: np.array):
    with
scipy.fft.set backend(pyfftw.interfaces.scipy fft):
        pyfftw.interfaces.cache.enable()
        return scipy.fft.fft(a, norm='forward')
def ifft(a: np.array):
    with
scipy.fft.set backend(pyfftw.interfaces.scipy fft):
        pyfftw.interfaces.cache.enable()
        return scipy.fft.ifft(a)
show graph (marks, data)
data = fft(data)
show graph(marks, np.abs(np.fft.fftshift(data))**2)
```

data = ifft(data)
show_graph(marks, data)

3. Результаты вычислений

Для наглядности приведём график начальных значений.

Рис. 1. График, построенный по начальным значениям сигнала

Сделаем быстрое фурье-преобразование. Полученные данные приведены в таблице ниже:

Номер	Значение гармоник
гармоники	сигнала
-7	-0.01905 - 0.02912j
-6	-0.01284 + 0.00419j
-5	0.03893 - 0.02315j
-4	0.00234 - 0.00909j
-3	-0.00247 - 0.00194j
-2	0.13002 + 0.58430j
-1	-0.01133 + 0.01191j

0	-0.00624 - 0.00000j
1	-0.01133 - 0.01191j
2	0.13002 - 0.58430j
3	-0.00247 + 0.00194j
4	0.00234 + 0.00909j
5	0.03893 + 0.02315j
6	-0.01284 - 0.00419j
7	-0.01905 + 0.02912j
8	-0.01359 - 0.00000j

Рис. 2. График значений гармоник сигнала

Выполним обратное преобразование. Значения приведены в таблице ниже:

Номер отсчёта	Значение сигнала
0	0.01446 - 0.00000j
1	0.05916 - 0.00000j
2	0.07058 - 0.00000j
3	0.04535 - 0.00000j
4	-0.01312 - 0.00000j
5	-0.07126 - 0.00000j
6	-0.06264 - 0.00000j
7	-0.04043 - 0.00000j
8	0.01294 - 0.00000j
9	0.06878 - 0.00000j
10	0.07139 - 0.00000j
11	0.03662 - 0.00000j
12	-0.01807 - 0.00000j
13	-0.05938 - 0.00000j
14	-0.08546 - 0.00000j
15	-0.03516 - 0.00000j

Рис. 3. График обратного фурье-преобразования от спектральной плотности мощности

Как видно на рисунке 3, после обратного преобразования мы получили начальный сигнал.