ДИСЦИПЛИНА	Математическое моделирование прикладных задач		
	(полное наименование дисциплины без сокращений)		
ИНСТИТУТ	информационных технологий		
КАФЕДРА	прикладной математики		
	(полное наименование кафедры)		
ВИД УЧЕБНОГО	Материалы для практических/семинарских занятий		
МАТЕРИАЛА	(в соответствии с пп.1-11)		
ПРЕПОДАВАТЕЛЬ	Даева Софья Георгиевна		
	(фамилия, имя, отчество)		
CEMECTP	6, 2023-2024		

(указать семестр обучения, учебный год)

Математическое моделирование прикладных задач.

Практика 2

Модель кредитования

Рассматривается модель выплат кредита. Условия : берётся кредит на n лет. Банковский процент : p: 0 . Для ежегодного погашения кредита будем выплачивать <math>r. Сумма, взятая в кредит : Q.

В начале первого года сумма равна Q_0 . В конце — после повышения суммы и до выплаты : $(1+p)*Q_0$. В самом конце — после выплаты : $(1+p)*Q_0-r$. Это значение равно Q_1 .

Тогда:

$$Q_1 = (1+p) * Q_0 - r = Q_0 - (r - p * Q_0)$$
$$Q_2 = Q_1 - (r - p * Q_1)$$

. . .

$$Q_n = Q_{n-1} - (r - p * Q_{n-1}) = 0$$

Выразим
$$Q_{n-1}$$
: $0 = (1+p) * Q_{n-1} - r = Q_{n-1} = \frac{r}{1+p}$.

Тогда мы можем выразить Q_{n-2} : $Q_{n-1}=Q_{n-2}*(1+p)-r$. Разделим всё равенство на 1+p: Получим $Q_{n-2}=\frac{r}{p+1}+\frac{Q_{n-1}}{p+1}=\frac{r}{p+1}+\frac{r}{(p+1)^2}$

В таком случае мы можем выразить Q_0 в виде суммы: $Q_0 = \sum_{i=1}^n \frac{r}{(1+p)^i} = \frac{r}{1+p} \left(1 + \frac{1}{1+p} + \frac{1}{(1+p)^2} + \dots + \frac{1}{(1+p)^{n-1}}\right)$. В скобочках очевидна геометрическая прогрессия с первым элементом, равным 1, и знаменателем, равным $\frac{1}{1+p}$. Сумма геометрической прогрессии $S_n = \frac{b(1-q^n)}{1-q}$.

Тогда:

$$Q_0 = \frac{r}{1+p} * \frac{1*\left(1-\left(\frac{1}{1+p}\right)^n\right)}{1-\frac{1}{1+p}} = \frac{r}{1+p} * \frac{\frac{(1+p)^n-1}{(1+p)^n}}{\frac{1-1+p}{1+p}} = \frac{r}{1+p} * \frac{(1+p)^n-1}{p*(1+p)^{n-1}} = \frac{r}{p} * \left(1-\frac{1}{(1+p)^n}\right)$$
(1)

При очень малых p можно считать, что $(1+p)^n \approx 1+np$

Тогда формула (1) приобретает вид
$$Q_0 = \frac{r}{p} * (1 - \frac{1}{1 + np})$$

При такой модели выплаты составят nr, а коэффициент переплаты : $\frac{nr}{Q_0}$ или $\frac{np}{1-\left(\frac{1}{1+p}\right)^n}$

Задание:

Написать программу «Ипотечный калькулятор».

Входные данные:

- сумма кредита;
- количество лет, на которые берется кредит;
- годовая процентная ставка.

<u>Выходные данные:</u> таблица вида 1. Предполагается, что период равен одному месяцу.

Таблица 1. Выходные данные

Период	Задолженность на	Ежемесячный	Остаток по
	начало периода	платеж	задолженности