

Geofferey Hinton's summary of findings up to today

- We initialized the weights in a stupid way
- We used the wrong type of non-linearity

Problem of Sigmoid

WhyRelu ?
$$f x = \max(0, x)$$

Sigmoid vs ReLU

Cost function

Activation function

PRACTICE

Geofferey Hinton's summary of findings up to today

Same ReLU but different speed.. Why?

Breakthrough

Breakthrough in 2006 and 2007 by Hinton and Bengio

•	Neural networks with many layers really could be trained well, if the weights are initialized in a clever way rather th an randomly.
•	Deep machine learning methods are more efficient for difficult problems than shallow methods.
•	Rebranding to <u>Deep Nets</u> , <u>Deep Learning</u>

Greedy Layer-Wise Training

DBN 사용 vs 미사용 모델 성능 비교 논문 결과

Table 1. Algorithm accuracy (%)

Algorithm	Accuracy 1	Accuracy 2	Accuracy 3	Accuracy 4	Accuracy 5	Mean Accuracy
DBN	95.00	90.00	95.00	98.75	91.25	94.00
BP	50.00	25.00	50.00	50.00	25.00	40.00
P-DBN	98.75	92.50	98.75	91.25	92.50	94.75
P-BP	50.00	50.00	25.00	50.00	26.25	40.25

Gradient vanishing vs Gaussian mixture weight initialization

Xavier Initialization

출처: Standford university

He Initialization

출처: Standford university

$$\hat{x} = \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$y = \gamma \hat{x} + \beta$$

$$\bar{x} = \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$y = \gamma \hat{x} + \beta$$

Advantages of Batch Normalization

Geofferey Hinton's summary of findings up to today

- Our computers were millions of times too slow → 병렬처리
- We initialized the weights in a stupid way
- We used the wrong type of non-linearity

딥러닝에서도 과적합?

Dropout

Dropout

Dropout

Waaaait a second... How could this possibly be a good idea?

