[FIM] FONDAMENTI DI INFORMATICA per medicina e chirurgia high tech

L04: Complexity

Dott. Giorgio De Magistris

demagistris@diag.uniroma1.it

Corso di Laurea in Medicina e Chirurgia High Tech

135

FACOLTÀ DI INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA

Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

Analyzing algorithms

- If I want to compare two algorithms that solve the same problem
- How can I decide which algorithm is the best?
- An algorithm is evaluated based on the resources it occupies, usually time and space

Cost model

- Assume that common operations implemented in RAM have a constant time
- Each instruction is executed in a constant time
- The running time of the algorithm is the time of each instruction multiplied by the number of time each instruction is executed
- The running time is expressed as a function of the size of the input
- In many cases the size of the input is the number of elements given in input to the algorithm

Example Insertion Sort

INSERTION-SORT (A)
$$cost times$$

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $\sum_{j=2}^{n} (t_j - 1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j - 1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

Example Insertion Sort

If we consider the following identities

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

We obtain

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

Order of growth

 Assuming that the computer performs one operation in 0.1 ms (10000 operations per second)

	n			
	10	50	100	1,000
lg n	0.0003 sec	0.0006 sec	0.0007 sec	0.0010 sec
$n^{1/2}$	0.0003 sec	0.0007 sec	0.0010 sec	0.0032 sec
n	0.0010 sec	0.0050 sec	0.0100 sec	0.1000 sec
$n \lg n$	0.0033 sec	0.0282 sec	0.0664 sec	0.9966 sec
n^2	0.0100 sec	0.2500 sec	1.0000 sec	100.00 sec
n^3	0.1000 sec	12.500 sec	100.00 sec	1.1574 day
n^4	1.0000 sec	10.427 min	2.7778 hrs	3.1710 yrs
n^6	1.6667 min	18.102 day	3.1710 yrs	3171.0 cen
2^n	0.1024 sec	35.702 cen	4×10 ¹⁶ cen	1×10 ¹⁶⁶ cen
n!	362.88 sec	1×10 ⁵¹ cen	3×10 ¹⁴⁴ cen	1×10 ²⁵⁵⁴ cen

Image credit: http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html

Asymptotic Notation

- When the input is large, the constants do not affect much the value of the running time
- When analyzing the algorithm for large input the asymptotic notation is used:
 - we consider only the order of growth of the running time
 - i.e. the leading term of the formula
- Different asymptotic notations exist: Θ -notation, Ω -notation

Asymptotic Notation

- A function f(n) belongs to $\Theta(g(n))$ if there are two constants such that for large n we have that $c1g(n) \le f(n) \le c2g(n)$
- A function f(n) belongs to O(g(n)) if it is upper bounded by g(n), i.e. for large n we
 have that 0 <= f(n) <= cg(n)
- A function f(n) belongs to $\Omega(g(n))$ if it is lower bounded by g(n), i.e. for large n we have that 0 <= cg(n) <= f(n)

References

• Cormen, Thomas H., et al. Introduction to algorithms. MIT press, 2022.

Slides distribuite con Licenza Creative Commons (CC BY-NC-ND 4.0) Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale

PUOI CONDIVIDERLE ALLE SEGUENTI CONDIZIONI

(riprodurre, distribuire, comunicare o esporre in pubblico, rappresentare, eseguire e recitare questo materiale con qualsiasi mezzo e formato)

Attribuzione*

Devi riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche. Puoi fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli te o il tuo utilizzo del materiale.

Non Commerciale

Non puoi utilizzare il materiale per scopi commerciali.

Non opere derivate

Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così modificato.

Divieto di restrizioni aggiuntive

Non puoi applicare termini legali o misure tecnologiche che impongano ad altri soggetti dei vincoli giuridici a questa licenza