Towards Meaningful Visual Abstraction of Mathematical Notation

Volker Sorge

MathJax Consortium joint work with Davide Cervone and Peter Krautzberger

This work was partially supported by the Alfred P. Sloan Foundation.

Washington DC, 13 July 2015

Introduction

- Generation of responsive equations in MathJax
- MathJax is a JavaScript library for rendering Mathematics in all browsers
- Can take LATEX, AsciiMath, and MathML as input
- Generates browser output, e.g. HTML/CSS, SVG
- Standard Maths rendering solution for: stackexchange, wordpress blogs, mediawiki, etc.
- Internal format is MathML

Introduction (ctd.)

- Content has to be displayed well, regardless of the form factor
- Responsiveness is ubiquitous
- Reading/browsing is more and more dominated by mobile devices
- There is a need to work on responsiveness for advanced content
- Mathematics is particularly challenging
- Authoring is still mainly geared towards static print
- Most content is created from LATEX or AsciiMath which is not "web friendly"

Responsive Web Content

- Responsive design enhances a core feature of HTML: reflow
- Originally focused on re-arranging and optimising content
- New tools transform the content itself
 - cropping images
 - abstracting icons
 - modifying tables

Reflow in Mathematics

- Combines the properties of text, tables, and graphics into a single problem
- Good line-breaking algorithms exist for print
- They are often counter-productive on the web
- Damage legibility of larger equations beyond repair
- Content is usually created with print in mind
 - Manual line breaks
 - arrangements across tabular layout
 - Tweaks of spacing, etc.
- Sensible reflow is much harder to accomplish.

Responsive Equations

- Automatic reflow adapting to form factor of display
- Intelligent linebreaking
 - Don't break in the middle of an expression
- Chunking: Abstracting over large elements
 - Find meaningful subexpressions
- Adapt tabular layout to different screen sizes

Example

$$\begin{split} I_{\nu}(\nu^{-1},1) &= \underbrace{\frac{\pi^2}{4} \ln \left(\frac{(1+\nu)^{1+\nu}}{\nu^{\nu}} \right) - \frac{7\zeta(3)}{8}\nu}_{\text{Let this be C}} + 2\int_{1}^{\frac{1-\nu}{1+\nu}} \frac{\chi_3(\nu)}{(1+\nu)^2} \mathrm{d}\nu \\ &= C - \frac{2\chi_3(\nu)}{1+\nu} \Big|_{1}^{\frac{1-\nu}{1+\nu}} + 2\int_{1}^{\frac{1-\nu}{1+\nu}} \frac{\chi_2(\nu)}{\nu(1+\nu)} \mathrm{d}\nu \\ &= C + (1-\nu)\chi_3\left(\frac{1-\nu}{1+\nu}\right) - \frac{7\zeta(3)}{8} - 2\chi_2(\nu)\ln(1+\nu) \Big|_{1}^{\frac{1-\nu}{1+\nu}} + \int_{1}^{\frac{1-\nu}{1+\nu}} \frac{\ln(1+\nu)\ln(1+\nu)}{\nu} \mathrm{d}\nu \\ &= C + (1-\nu)\chi_3\left(\frac{1-\nu}{1+\nu}\right) - \frac{7\zeta(3)}{8} + 2\chi_2\left(\frac{1-\nu}{1+\nu}\right)\ln\left(\frac{1+\nu}{2}\right) + \frac{\pi^2}{4}\ln 2 \\ &+ \frac{1}{2}\int_{1}^{\frac{1-\nu}{1+\nu}} \frac{\ln^2(1+\nu) - \ln^2(1-\nu) + \ln^2\left(\frac{1-\nu}{1+\nu}\right)}{\nu} \mathrm{d}\nu \end{split}$$

Example of mathematics "in the wild" taken from math.stackexchange.com.

Responsive Equations in MathJax

- reduce the size of equations by abstracting well-defined parts of formulas without obscuring the overall structure of an expression
- embedding a semantic structure into the MathML representation underlying the rendering process
- collapsing mathematically meaningful sub-expressions
- exploit information also for linebreaking

Semantic Enrichment

- Basis is semantic tree transformation of MathML elements
- Uses a rule based implementation implemented in a speech rule engine (SRE)
- SRE drives math interpretation in ChromeVox (Google) and MathML-Cloud (Benetech)
- Mainly based on interpreting meaning of symbols.
- Rewrite syntax tree into a term tree.

Semantic Tree Example

$$ax^2 + bx + c = 0$$

is rewritten from its Presentation MathML representation into its semantic interpretation:

Main Heuristics

- Determine potential function applications,
- break up symbol sequences into elided products respecting spaced element,
- combine bracketed expressions as much as possible,
- recognise scope and nesting of big operators (e.g., sums, integrals),
- distinguish tables into matrices, vectors, and case statements,
- combine punctuated expressions and determine the meaning of ellipses.

"Type of Semantic"

- A shallow interpretation rather than a full blown semantic markup language
- "Semantics of display"
- Aims to stay faithful to a given notation, without fixing too much semantics
- Originally developed to deal mainly with K-12 Mathematics
- Well honed on some quite horrible MathML input
- But it's heuristic, hence with limitations
- Useful intermediary step towards further semantic enrichment

Combining Semantic and MathML

- MathML is internal representation in MathJax
- Embed the semantic interpretation directly using HTML5 data attributes
- Alternative view on the MathML element, by providing an orthogonal tree structure
- No exposure to the outside yet
- Some issues with embedding:
 - Adds some mrow elements, invisible elements.
 - Collapsed elements have to be noted explicitly.
 - Special cases for mfenced, mmultiscripts

Rendering Enhancements

- Initial enrichment can already lead to enhanced rendering
- E.g. breaking up single mrows with stretchy characters:
 Before

$$\left|\tau_0\right| = \left|\sum_m \left(a_b + b_m\right)\right|$$

After

$$| au_0| = \left|\sum_m \left(a_b + b_m\right)\right|$$

• Similar effects for line breaking

Responsive Equations

- Targets "casual reading", i.e. reader browses without the need for full details
- Collapse and re-arrange sub-expressions on small screens to provide the reader with a meaningful overview of the expression
- Realise an interface for exploration of collapsed equations.

Exploring Equations

- Subexpressions over a certain complexity are hidden
- Complexity measure mainly aims at shortening an equation
- Collapsed parts are represented by a simple meaning Unicode construction, ◀X►.
 E.g.,

$$\blacktriangleleft$$
() \triangleright , \blacktriangleleft f() \triangleright , \blacktriangleleft + \triangleright , \blacktriangleleft \checkmark \triangleright

Exploring Equations (ctd.)

- standard maction elements on collapsible parts of equation
- maction toggles to show or hide those parts
- exploration via expanding and collapsing nested layers of the equation

Discussion

- UX is not ideal:
 - collapse can be accidentally triggered
 - expansion via single steps only
- Complexity measure mainly tries to determine visual layout size. Other measures could capture a notion of interestingness, etc.
- Display vs exploration
 - do not save any more space.
 - Stepwise exploration might still be interesting.

accidentally triggered
$$\frac{1}{\blacktriangleleft \bullet} = 1 + 4/\bullet$$
• expansion via single steps only
$$\frac{1}{(\blacktriangleleft \sqrt{\bullet} - \phi) e^{\frac{2}{5}\pi}} = 1 + \frac{e^{-2\pi}}{1 + 4/\bullet}$$
complexity measure mainly ies to determine visual yout size. Other measures ould capture a notion of terestingness, etc.
$$\frac{1}{(\sqrt[4]{\sqrt{\bullet} - \phi}) e^{\frac{2}{5}\pi}} = 1 + \frac{e^{-2\pi}}{1 + \frac{e^{-4\pi}}{1 + 4/\bullet}}$$
• Sometimes collapsed parts do not save any more space.
$$\frac{1}{(\sqrt[4]{\sqrt{\bullet} - \phi}) e^{\frac{2}{5}\pi}} = 1 + \frac{e^{-2\pi}}{1 + \frac{e^{-4\pi}}{1 + \frac{e^{-6\pi}}{1 + \frac{e^{-6\pi}}}}}}}$$

Accessiblity Unit

- Exploit semantic information directly for voicing of equations
- Use collapsed equations for intelligent summarisation
- Interactive exploration with respect to current maction units for improved chunking
- Further assistive technology support
 - Make information available for other AT systems
 - Push data attributes into the actual DOM content as micro data that can be exploited by some AT and Accessibility APIs

Conclusion

- Responsive equations with collapsing and enhanced line breaking
- Semantics is shallow but effective
- Good results with mathematics in the wild
- Work on breaking up tables and tabular alignment.
- Intelligent accessibility via summarisation etc.
- Support of assistive technology

Demo this evening.

Web References

Demo:

- http://mathjax.github.io/MathJax-RespEq/ Semantics-Lab/Struik.html
- http://mathjax.github.io/MathJax-RespEq/ Semantics-Lab/Semantics-Lab-TeX.html
- http://mathjax.github.io/MathJax-RespEq/
 Semantics-Lab/Semantics-Lab-TeX-linebreaking.html

Systems:

- https://github.com/mathjax/MathJax/
- https://github.com/mathjax/MathJax-RespEq/
- https://github.com/zorkow/speech-rule-engine/
- https://github.com/mathjax/MathJax-node/