Fundamentals of Cryptography Homework 5

周书予

2000013060@stu.pku.edu.cn

November 22, 2022

Problem 1

Part A

Define f_{Gen} to be a $\{0,1\}^* \to \{0,1\}^*$ function such that

$$f_{\mathsf{Gen}}(x) = pk$$

where

$$\mathsf{Gen}(1^n; x) = (pk, sk)$$

we use such notation to indicate that PPT algorithm Gen takes 1^n as input and x as its random tape.

We are going to prove that f_{Gen} is an OWF. FSOC assume that there is a PPT adversary \mathcal{A} such that

$$\Pr_{\substack{x \leftarrow \$ \\ x' \leftarrow \mathcal{A}(f_{\mathsf{Gen}}(x))}} \left[f_{\mathsf{Gen}}(x') = f_{\mathsf{Gen}}(x) \right] \geqslant \frac{1}{\mathrm{poly}(n)}$$

then another adversary \mathcal{A}' simply calls \mathcal{A} to get the "correct random tape" x' with at least 1/poly(n) probability, and thus it obtains sk such that $\forall m, \mathsf{Dec}(sk, \mathsf{Enc}(pk, m)) = m$, which gives \mathcal{A}' the capability to break (Gen, Enc, Dec) as a CPA-secure public-key encryption scheme, a contradiction.

Thus such \mathcal{A} does not exist, making f_{Gen} an OWF.

Problem 2

Suppose there is a PPT distinguisher \mathcal{D} who breaks matrix DDH assumption, i.e.

$$\left| \Pr \left[\mathcal{D}(g, g^{\vec{a}}, g^{\vec{b}}, g^{\vec{a} \otimes \vec{b}}) = 1 \right] - \Pr \left[\mathcal{D}(g, g^{\vec{a}}, g^{\vec{b}}, g^C) = 1 \right] \right| \geqslant \frac{1}{\text{poly}(n)}$$

where \vec{a} and \vec{b} are of length h, w respectively, \otimes means tensor product, C is of shape $h \times w$, h, w = poly(n).

Now Let us construct another distinguisher \mathcal{D}' which distinguishes (g, g^a, g^b, g^{ab}) from (g, g^a, g^b, g^c) . It works as follows:

• Take input (g, g^a, g^b, v)

- Randomly choose $i \in [h]$ and $j \in [w]$
- Randomly choose a_1, \dots, a_h and b_1, \dots, b_w , calculate $g^{a_1}, \dots, g^{a_h}, g^{b_1}, \dots, g^{b_w}$, but not for a_i and b_j . Let $g^{a_i} = g^a$ and $g^{b_j} = g^b$ (which means a_i and b_j may be unknown to \mathcal{D}')
- Generate $C \in G^{h \times w}$ such that

$$C_{i',j'} = \begin{cases} g^{a_{i'}b_{j'}}, & (i',j') < (i,j) \\ v, & (i',j') = (i,j) \\ g^{\$}, & (i',j') > (i,j) \end{cases}$$

Notice that when (i', j') < (i, j), either $a_{i'}$ or $b_{j'}$ is known to \mathcal{D}' , so it can calculate $g^{a_{i'}b_{j'}}$ as either $(g^{b_{j'}})^{a_{i'}}$ or $(g^{a_{i'}})^{b_{j'}}$.

• Output $\mathcal{D}(g, g^{\vec{a}}, g^{\vec{b}}, C)$.

We denote

$$P_{n,m,\$} = \Pr \left[\mathcal{D}'(g, g^a, g^b, v) = 1 \middle| (i, j) = (n, m), v \leftarrow g^{\$} \right]$$

$$P_{n,m,ab} = \Pr \left[\mathcal{D}'(g, g^a, g^b, v) = 1 \middle| (i, j) = (n, m), v = g^{ab} \right]$$

Notice that

$$P_{1,1,\$} = \Pr \left[\mathcal{D}(g, g^{\vec{a}}, g^{\vec{b}}, g^C) = 1 \right]$$

$$P_{h,w,ab} = \Pr \left[\mathcal{D}(g, g^{\vec{a}}, g^{\vec{b}}, g^{\vec{a} \otimes \vec{b}}) = 1 \right]$$

$$P_{n,m,ab} = P_{n,m+1,\$}$$

which indicates

$$\left| \Pr \left[\mathcal{D}'(g, g^a, g^b, g^{ab}) = 1 \right] - \Pr \left[\mathcal{D}'(g, g^a, g^b, g^c) = 1 \right] \right| = \frac{1}{hw} \left| \sum_{n,m} P_{n,m,ab} - \sum_{n,m} P_{n,m,\$} \right|$$

$$= \frac{1}{hw} \left| P_{h,w,ab} - P_{1,1,\$} \right|$$

$$\geqslant \frac{1}{hw} \cdot \frac{1}{\text{poly}(n)}$$

thus \mathcal{D}' distinguishes (g, g^a, g^b, g^{ab}) from (g, g^a, g^b, g^c) with non-negligiable adventage, which breaks DDH assumption.

Problem 3

Part A

Since p, q are both safe primes, $e_i \nmid \varphi(N) = (p-1)(q-1)$, which means that e_i is invertable moduled $\varphi(N)$, i.e. there exists d_i such that $e_i d_i \equiv 1 \mod \varphi(N)$.

With $\varphi(N)$, s and e_i given, d_i can be calculated by 辗转相除 in poly(n)-time, thus it can be efficient to calculate $f(k,i) = s^{1/e_i} = s^{d_i} \mod N$.

Part B

Given
$$k_S=(N,t)$$
, we know that $t=s^{\prod_{i\in S}1/e_i}=s^{\prod_{i\in S}d_i}$, so
$$\mathsf{Eval}(k_S=(N,t),S,i)=t^{\prod_{j\in S,j\neq i}e_j} \bmod N=s^{d_i\cdot\prod_{j\in S,j\neq i}e_jd_j}=s^{d_i}=f(k,i)$$

Part C