

ARJUNA NEET BATCH

Atomic Structure
DPP-07

- 1. The value of n_1 for Paschen series of hydrogen spectrum is $(n_1 = orbit number in which electron falls)$
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

2. Radius of Bohr's orbit of hydrogen atom is

$$\gamma_n = 0.529 \frac{n^2}{Z} \stackrel{\circ}{A}$$

$$= 0.529 \times 10^{2} A^{\circ}$$

$$\gamma_{n} = 0.529 \text{ Å}$$

$$| \gamma_{n} = 0.53 \text{ Å}$$

3. Bohr theory is not applicable for

- (A) He⁺
- (B) Li²⁺
- (C) Be+
 - (B) H

(A) He +
$$(Z=2)$$
 \Rightarrow no of electrons = $Z-1=1$

(B)
$$L^{2+}$$
 (Z=3) => no. of electrons

(b)
$$L$$
 (2 = 4) \Rightarrow mo. af e^{-}

$$=(3)$$

$$(2 = 1)$$

What is the energy associated with 3rd energy shell of hydrogen atom

(A)
$$(2.18 \times 10^{-18} \text{ J})$$

(B) $-0.342 \times 10^{-19} \text{ J}$

(C)
$$-0.726 \times 10^{-18} \text{ J}$$

$$(D) -2.42 \times 10^{-19} J$$

$$E_{n} = -2.18 \times 10^{-18} \frac{Z^{2}}{n^{2}}$$
which we have $= -2.18 \times 10^{-18} \times (1)^{2}$

$$= -0.242 \times 10^{-18} J$$

$$= -2.42 \times 10^{-19} J$$

5. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon?

(A)
$$n = 6 \text{ to } n = 5$$

(B)
$$n = 5 \text{ to } n = 3$$

(C)
$$n = 6 \text{ to } n = 1$$

(D)
$$n = 5 \text{ to } n = 4$$

ARJUN

$$E = 2.18 \times 10^{-18} \left(\frac{1}{n_i^*} - \frac{1}{n_i^*} \right) \int atom}$$
Constant

$$E \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

$$(A) m_1 = 5, m_2 = 6$$

$$\left(\frac{1}{25} - \frac{1}{36}\right) = \frac{11}{900}$$

$$(3) \quad m_1 = 3 \quad m_2 = 5$$

$$\left(\frac{1}{9} - \frac{1}{25} \right) = \frac{16}{225}$$

(c)
$$n_1 = 1_2$$
 $n_2 = 6$

$$\left(1 - 1 \right) = 35$$

n=2

Calculate the radii of 2nd Bohr orbit of Li²⁺

- (C) 29 pm /
- (D) 56 pm/\

$$\Upsilon_n = 6.529 \quad \frac{n^2}{2} \stackrel{\circ}{A}$$

$$\gamma = \frac{0.529 \times (2)^{2}}{3} = \frac{0.529 \times 4}{3}$$

2=3

$$\gamma_n = 6.529 \frac{n^2}{Z} \mathring{A} \Rightarrow \gamma_n = 52.9 \frac{n^2}{Z} \rho_m$$

$$(A) -8.72 \times 10^{-18} / J$$

(B)
$$-4.18 \times 10^{-18} \text{ J}$$

(C)
$$-2.78 \times 10^{-18}$$
 J

(D) None of thesex

$$E = -2.18 \times 10^{-18} \frac{Z^2}{n^2} \text{ J/atem}$$

$$E = -2.18 \times 10^{-18} \times (2)^{2}$$

$$(1)^{2}$$

$$m=1$$
 $Z=2$

8. Calculate the energy associated with the 1st orbit of He+ atom. What is

$$E_{\eta} = -2.18 \times 10^{-18} \left(\frac{2^2}{h^2}\right) J/atam$$

$$E = -8.72 \times 10^{-18} \text{ J}$$

$$\gamma_h = 0.529 \frac{h^2}{Z} A^{\circ}$$

$$Y = 0.529 \text{ A}$$

$$M=1$$
 $\chi=1$

m=1 $\chi=1$ m=Y Calculate the ratio of the radius of 1st orbit of H atom to that of 4th orbit.

$$\mathcal{T}_{n} = 0.529 \frac{n^{2}}{Z} A^{\circ}$$

$$\frac{\gamma_1}{\gamma_4} = \frac{0.529 \times (1)^2}{0.529 \times (4)^2}$$

$$\left[\begin{array}{c} \gamma_1 \\ \gamma_4 \end{array} \right] = \frac{1}{16}$$

m = 3

7 = 1 10. Calculate the velocity of the electron in the third orbit of hydrogen atom.

$$\sqrt{n} = 2.19 \times 10^{6} \frac{Z_{m}}{m} m/s$$

$$\sqrt{3} = 2.19 \times 10^{6} \times \frac{1}{3} m/s$$

$$\sqrt{3} = 7.3 \times 10^{5} m/s$$

Thank You