

الامتحان الوطني الموحد للبكالوريا

+\$\text{NAK+ | MC\PO\$\text{O}\$

الدورة الاستدراكية 2018 -الموضوع-

RS24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة	
9	المعامل	شعبة العلوم الرياضية: "أ " و " ب "	الشعبة أو المسلك	

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من أربعة تمارين مستقلة فيما بينها.
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة	D 0
_2	RS

24

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: الرياضيات – شعبة العلوم الرياضة "أ" و"بب"

التمرين 1: (3.5نقط)

نذكر أن
$$(M_2(i),+,i)$$
 حلقة واحدية صفر ها المصفوفة المنعدمة $O=\{0,+,+,i\}$ و وحدتها نذكر أن $O=\{0,+,+,i\}$

.4 معده حقيقي بعده
$$(M_2(\mathbf{j}_1),+,.)$$
 و أن $I=egin{pmatrix} \mathfrak{A} & 0\ddot{0} \\ \vdots \\ 0 & 1\ddot{\overline{\phi}} \end{pmatrix}$

$$E = \{M(x,y)/(x,y)\hat{1}_{j}^{2}\}$$
 و نعتبر المجموعة $M(x,y) = \{0, \frac{\partial x}{\partial y}, \frac{\partial y}{\partial y}\}$ نضع نصب نصب المجموعة $M(x,y) = \{0, \frac{\partial y}{\partial y}, \frac{\partial y}{\partial y}\}$ الكل

$$(M_2(i),+)$$
 بين أن E زمرة جزئية للزمرة (0.5

$$(M_2(i),+,.)$$
بين أن E فضاء متجهي جزئي للفضاء المتجهي E 0.5

. 2 هو
$$(E,+,.)$$
 هو 2 سبن أن بعد الفضاء المتجهى الحقيقى $(E,+,.)$

" "بين أن
$$E$$
 مستقر بالنسبة للقانون و " السبة القانون ال السبة القانون ال " السبة الس

بين أن
$$(E,+,')$$
 حلقة تبادلية.

$$M_2(i)$$
 من $M(x',y')$ و $M(x,y)$ من $M(x,y)$

ليكن
$$\mathbf{j}$$
 التطبيق المعرف من \mathbf{t} نحو \mathbf{E} بما يلي: لكل عدد عقدي مكتوب على شكله

$$j(z)=M(x,y)$$
 ، $z=x+iy$ الجبري

$$T$$
" أ) بين أن E مستقر بالنسبة للقانون D

$$(E,T)$$
 نحو (f,f) نحو (f,f) نحو انحو (f,f)

زمرة تبادلية.
$$E^*=E$$
 - $\{O\}$ زمرة تبادلية. $E^*=E$

.
$$E$$
 في X + » في النسبة للقانون X في X . X

بین أن
$$(E,+,T)$$
 جسم تبادلي.

التمرين 2: (3.5 نقط)

$$h(z)=i\hat{\mathbf{g}}\frac{z-2i\ddot{\mathbf{o}}}{z-i\ddot{\dot{\mathbf{o}}}}$$
نضع $z\,\hat{\mathbf{l}}\,$ £ - $\{i\}$ عدد عقدي -1

(E):
$$z^2$$
 - $2iz$ - $2=0$ المعادلة: \pm في \pm (\pm 0.5

$$\left(O,e_1,e_2
ight)$$
ستوی العقدي منسوب إلى معلم متعامد ممنظم مباشر -2

$$Re(a)=1$$
:نرمز ب a و b لحلى المعادلة

$$z$$
و لكل $B(b)$ و $A(a)$ و $M'(h(z))$ و المقط $M(z)$ و المقط z أ \pm - $\{i,a,b\}$ و الكل

و
$$h(z)$$
 و a و b بالتوالي.

الصفحة 3	RS 24	الامتدان الوطني الموحد للبكالوريا – الحورة الاستحراكية 2018 — الموضوع	
4		– مادة: الرياخياب <i>ت — </i> شعبة العلوم الرياخة "أ" و"ببـ"	
		$\frac{h(z)-a}{h(z)-b} = -\frac{z-a}{z-b}$ ان بین أن:	75
		$(M'B,M'A)^{\circ}$ $p + (MB,MA)$ [2p] نا استنتج أن: $(2p)$	75
		عبين أنه إذا كانت النقط M و A و B مستقيمية فإن النقط M و A و B مستقيمية.	0.5
	رة.	بين أنه إذا كانت النقط M و A و B غير مستقيمية فإن النقط M و A و B و ' M متداور M	0.5
		التمرين 3: (3 نقط) نرمي قطعة نقدية غير مغشوشة في الهواء 10 مرات متتالية. ليكن X المتغير العشوائي الذي يربط كل نتيجة ممكنة بتردد ظهور الوجه"Pile" (أي عدد مرات الحصول على"Pile" مقسوم على 10)	
		1-أ) حدد القيم الممكنة للمتغير X.	1
		$X = \frac{1}{2}$ ب) احسب احتمال الحدث:	1
		2- ما هو احتمال الحدث: X أكبر من أو يساوي $\frac{9}{10}$ ؟	1
		التمرين 4 (10 نقط) التمرين 4 (10 نقط) التكن f الدالة العددية المعرفة على المجال f بما يلي:	
		$f(0) = 0$ $f(x) = \sqrt{x(\ln x)^2} (x > 0)$	
		(C)منحناها في معلم متعامد ممنظم منظم (C) .	
		$(f(x)) = \frac{e^{\frac{1}{4}} \ln e^{\frac{1}{4}} \frac{\ddot{o}^2}{\frac{1}{60}}}{e^{\frac{1}{4}} \ln e^{\frac{1}{4}}}$ (یمکن ملاحظة أن f بین أن f متصلة علی الیمین في $e^{\frac{1}{4}}$ (یمکن ملاحظة أن f بین أن f متصلة علی الیمین في $e^{\frac{1}{4}}$).5
		ب) احسب $f(x)$ و $\lim_{x \to +\infty} \frac{f(x)}{x}$ و $\lim_{x \to +\infty} \frac{f(x)}{x}$ ثم أول مبيانيا النتيجة المحصل عليها.	75
		ادرس اشتقاق f على اليمين في 0 ثم أول مبيانيا النتيجة المحصل عليها. f	75
		$x>0$ بين أن f قابلة للاشتقاق على $0,+\infty$ ثم احسب $f'(x)$ لكل $f'(x)$ لكل 0.7	75
	$(\forall x \in$	$[0,1]$ $0 \le \sqrt{x} (\ln x)^2 \le \left(\frac{4}{e}\right)^2$. استنتج أن: $[0,+\infty[$ على f على f على ادرس تغيرات الدالمة f على ا	1
).5
		$F(x) = \int_{x}^{1} f(t)dt$ نضع: $x \ge 0$ نصع -3	
		F F N N N N N N N N N N N N N N N N N N	

أ) بين أن الدالة F قابلة للاشتقاق على المجال $[0,+\infty]$.

. [0,+ ∞ [کل F علی F علی F لکل F لکل F استنتج رتابة

0.5

1

الصفحة 4	RS 24	الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: الرياضيات – شعبة العلوم الرياضة "أ" و"بب"	
		$x>0$ لكل $\int_{t}^{1} \sqrt{t} \ln t. dt$ المكاملة بالأجزاء احسب المجاراء احسب المكاملة بالأجزاء احسب	0.75
		$F(x) = -\frac{2}{3}x\sqrt{x}(\ln x)^2 + \frac{8}{9}x\sqrt{x}\ln x - \frac{16}{27}x\sqrt{x} + \frac{16}{27} : x > 0$ بین أن لکل (ب	0.75
		ج) استنتج مساحة الحيز المستوي المحصور بين المنحنى (C) و المستقيمات المعرفة	1
		y=0 و $x=1$ و $x=0$	
		$u_n = \int_{\frac{1}{n}}^{1} f(x) dx$ 0: نضع غير منعدم n نضع غير منعدم	
		$(u_n)_{n\geq 1}$ أ) بين أن المتتالية $(u_n)_{n\geq 1}$ محدودة و رتيبة قطعا.	1
		. $\lim_{n o +\infty} u_n$ بين أن المتتالية $\left(u_n ight)_{n \geq 1}$ متقاربة ثم احسب بين أن المتتالية	0.75

انتهى