Mingyang Xie

314-295-2300 • mingyang@umd.edu • LinkedIn • Google Scholar

EDUCATION

• University of Maryland, College Park
Ph.D. in Computer Science – Dean's Fellowship

Washington University in St. Louis
Bachelor of Science in Computer Science; Minor in Mathematics

GPA: 3.81 / 4.0 August 2021 - May 2026 GPA: 3.99 / 4.0 August 2017 - May 2021

PUBLICATION

- Brandon Feng*, **Mingyang Xie*** and Christopher A. Metzler. "TurbuGAN: An Adversarial Learning Approach to Spatially-varying Multiframe Blind Deconvolution with Applications to Imaging Through Turbulence", *IEEE Journal on Selected Areas in Information Theory*, 2022.
- Brandon Y. Feng*, Haiyun Guo*, **Mingyang Xie**, Vivek Boominathan, Manoj K. Sharma, Ashok Veeraraghavan, Christopher A. Metzler. "NeuWS: Neural Wavefront Shaping for Guidestar-Free Imaging Through Static and Dynamic Scattering Media", *Science Advances*, 2023.
- **Mingyang Xie***, Matt Chan* and Christopher A. Metzler. "Snapshot High-Dynamic-Range Imaging with a Polarization Camera", Under Review, 2023.
- Mingyang Xie*, Jiaming Liu*, Yu Sun, Brendt Wohlberg and Ulugbek S. Kamilov. "Joint Reconstruction and Calibration Using Regularization by Denoising with Application to Computed Tomography", *IEEE International Conference on Computer Vision Workshops (ICCVW)*, 2021.
- Yu Sun, Jiaming Liu, **Mingyang Xie**, Brendt Wohlberg and Ulugbek S. Kamilov. "CoIL: Coordinate-Based Internal Learning for Tomographic Imaging", *IEEE Transactions on Computational Imaging* (*TCI*), 2021.
- **Mingyang Xie**, Manav Kulshrestha, Shaojie Wang, Jinghan Yang, Ayan Chakrabarti, Ning Zhang and Yevgeniy Vorobeychik. "PROVES: Establishing Image Provenance using Semantic Signatures", *IEEE Winter Conference on Applications of Computer Vision (WACV)*, 2022.

RESEARCH EXPERIENCES

Imaging Through Fog Using Diffusion Model

Advised by Prof. Chris Metzler

University of Maryland June 2023 – Now

• Researched fog removal approaches using pretrained diffusion model.

Imaging Through Scattering Media by Wavefront Shaping

Advised by <u>Prof. Chris Metzler</u> & <u>Prof. Ashok Veeraraghavan</u>

University of Maryland & Rice University
June 2022 – Now

- Developed the first guidestar-free approach for wide-field-of-view & high-resolution imaging through non-sparse dynamic scattering media at 10 frames/second.
- Demonstrated that our method requires 100× less measurements than existing methods via optic experiments.
- Extended this approach to multi-planar scattering media.

Snapshot HDR Using Polarization Camera

Advised by **Prof. Chris Metzler**

University of Maryland March 2023 – May 2023

• Developed a novel methodology for capturing high dynamic range (HDR) information with minimal hardware modification to an off-the-shelf polarization camera.

Spatially Varying Multiframe Blind Deconvolution

Advised by **Prof. Chris Metzler**

University of Maryland August 2021 – May 2022

- Developed a novel self-supervised GAN with applications to imaging through turbulence.
- Demonstrated its ability to adapt to unknown distribution of turbulence and to leverage domain-specific generators.

CT Image Reconstruction with Mis-specified projection angles

Co-advised by Prof. Ulugbek Kamilov & Dr. Brendt Wohlberg

Washington University May 2020 – June 2021

• Proposed a Plug-and-Play based image reconstruction framework, enabling joint reconstruction of the unknown target image along with calibration of the forward model characterizing the imaging system.

Tomographic Projections Synthesis with NeRF.

Advised by Prof. Ulugbek Kamilov

Washington University October 2020 – February 2021

- Developed an MLP to synthesize novel tomographic projections of the target from any angle.
- Demonstrated the proposed method's ability to increase the SNR of the filtered back-projection by 5 dB.

TEACHING ASSISTANTSHIP EXPERIENCES

University of Maryland CMSC422 Introduction to Machine Learning University of Maryland CMSC426 Computer Vision

Spring 2022

Fall 2021

TECHINICAL SKILLS

Proficient Programming Languages: Python, MATLAB, C++

Other Techniques: PyTorch, TensorFlow, Keras, OpenCV, Numpy, Scipy, Scikit, Pandas, and Linux