PLP - 9 TOPIC 9 — MORE PROOF EXAMPLES

Demirbaş & Rechnitzer

MORE EXAMPLES

A DIVISIBILITY EXAMPLE

PROPOSITION:

Let $a,b,c\in\mathbb{Z}$. If $a\mid b$ and $b\mid c$ then $a\mid c$.

We start with scratch work and assume the hypothesis is true.

- ullet So $a\mid b$ and $b\mid c$
- ullet By definition of divisibility, b=ka and $c=\ell b$ for some $k,\ell\in\mathbb{Z}$
- ullet We want to show that $a\mid c$. That is c=na for some $n\in\mathbb{Z}$.
- ullet Since $c=\ell b$ and b=ka we know $c=\ell ka$
- Since $k,\ell\in\mathbb{Z}$ we know that $k\ell\in\mathbb{Z}$ so we are done!

After scratch work we have to write the proof nice and neat for our reader

CLEANING IT UP

We need to clean up our scratch work

- make sure logic flows correctly
- no dead-ends, no scribbles, keep presentation neat and tidy
- skip very obvious steps only if very obvious to the reader (not you)
- make the text easy to read we add "hence", "we know that", "it follows that", etc
- dot-point form is okay when you are learning how to write proofs

PROOF.

We start by assuming the hypothesis to be true.

- ullet Assume that $a\mid b$ and $b\mid c$, so that b=ka and $c=\ell b$ for some $k,\ell\in\mathbb{Z}$.
- It follows that $c=k\ell a$
- Since $k\ell \in \mathbb{Z}$, we know that $a \mid c$ as required.

AN INEQUALITY

PROPOSITION:

Let $x,y\in\mathbb{R}$ then $x^2+y^2\geq 2xy$.

Scratch work:

- ullet The implication hiding here is $(x,y\in\mathbb{R}) \implies (x^2+y^2\geq 2xy)$
- ullet We don't know much about inequalities, except $(x\in\mathbb{R}) \implies (x^2\geq 0)$.
- Rearrange inequality to make it look like a square?

$$x^2+y^2-2xy\geq 0$$
 so $(x-y)^2\geq 0$

• This is what we want. The square of something is non-negative.

BE CAREFUL OF FLOW OF LOGIC

Logic flow in scratch work doesn't always match logic needed for proof.

- ullet We started from conclusion $x^2+y^2\geq 2xy$
- Reached the fact that $(x-y)^2 \ge 0$

This is backwards — very common for proofs of inequalities.

PROOF.

- ullet Assume that $x,y\in\mathbb{R}$
- ullet Since the square of any real is non-negative, we know that $(x-y)^2 \geq 0$
- ullet This implies that $x^2-2xy+y^2\geq 0$
- ullet From this $x^2+y^2\geq 2xy$ as required.