概率论与数理统计 第八次作业参考题解

2023.11.13

Q1. 不正确。强大数定律只保证**以概率** 1 **收敛**,弱大数定律只保证**依概率收敛**,参考概率导论(Bertsekas, 第 2 版)5.2 节例 5.4 (Page 233) 和 5.5 节例 5.13 (Page 243)。

Q2. 记 $Y_n = \sum_{i=1}^n (X_i - \mu_i), \forall \epsilon > 0$,应用 Chebyshev 不等式:

$$\mathbf{P}\left\{\left|\frac{Y_n}{n}\right| \geq \epsilon\right\} \leq \frac{1}{n^2\epsilon^2} \mathrm{Var}[Y_n] = \frac{1}{n^2\epsilon^2} \sum_{i=1}^n \sigma_i^2 < \frac{c}{n\epsilon^2}.$$

Q3. 假设 $\{X_i\}_i$ 独立同分布且具有有限的期望 μ 和方差 σ^2 , 记

$$\Phi_n(x) := P\left\{\frac{\sqrt{n}}{\sigma}(\overline{X} - \mu) \le x\right\},\,$$

 $\forall \epsilon > 0, \forall \delta > 0$,可以先后证明:

- 1. 存在足够大的 $A_{\delta} > 0$ 使得 $\Phi(A_{\delta}) \geq 1 \delta$ 。
- 2. 由中心极限定理 $\lim_{n} \Phi_{n}(x) = \Phi(x)$ 知存在足够大正整数 $N_{1} > 0$ 使得

$$|\Phi_n(A_{\delta}) - \Phi(A_{\delta})| < \delta, |\Phi_n(-A_{\delta}) - \Phi(-A_{\delta})| < \delta, \forall n \ge N_1.$$

3. 取足够大正整数 N_2 使得 $\frac{\epsilon\sqrt{N_2}}{\sigma} > A_\delta$ 。从而当 $n > \max\{N_1, N_2\}$ 时,

$$P\left\{\left|\overline{X} - \mu\right| \ge \epsilon\right\} \le 1 - \Phi_n\left(\frac{\epsilon\sqrt{n}}{\sigma}\right) + \Phi_n\left(-\frac{\epsilon\sqrt{n}}{\sigma}\right) \le 1 - \Phi_n(A_\delta) + \Phi_n(-A_\delta)$$
$$\le 1 - (\Phi(A_\delta) - \delta) + (\Phi(-A_\delta) + \delta) \le 4\delta.$$

即证 $\lim_{n} P\{|\overline{X} - \mu| \ge \epsilon\} = 0, \forall \epsilon > 0.$

Q4. 注意到恒等式

$$S^{2} - \sigma^{2} = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} - \sigma^{2} \right] - \frac{n}{n-1} (\overline{X} - \mu)^{2} - \frac{\sigma^{2}}{n-1}.$$

应用弱大数定律知

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2-\sigma^2\stackrel{\mathrm{P}}{\to}0, \overline{X}-\mu\stackrel{\mathrm{P}}{\to}0.$$

结合**依概率收敛**的四则运算性质¹立即得 $S^2 - \sigma^2 \stackrel{P}{\rightarrow} 0$ 。

Q5. 参考概率导论(Bertsekas, 第2版)5.5节习题13的推导(Page 251)。

Q6. 应用强大数定律知 $\overline{X} \xrightarrow{\text{a.s.}} 2, \overline{Y} \xrightarrow{\text{a.s.}} 5$, 结合 **Q5** 结论得到

$$\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} Y_i} = \frac{\overline{X}}{\overline{Y}} \xrightarrow{\text{a.s.}} \frac{2}{5}.$$

Q7. 直接应用中心极限定理。

$$n\mu = 20, \sqrt{n}\sigma = \sqrt{10}, P(X = 20) = P\left(\frac{X - 20}{\sqrt{10}} = 0\right) \approx \Phi\left(\frac{0.5}{\sqrt{10}}\right) - \Phi\left(\frac{-0.5}{\sqrt{10}}\right) = 0.1256.$$

以及精确值

$$P(X = 20) = 2^{-40} {40 \choose 20} \approx 0.1254.$$

Q8. 事故数 $Y = \sum_{i=1}^{n} X_i \sim B(n, p)$,其中 $n = 10000, p = 0.001, \mu = 10, \sigma = \sqrt{9.99}$,公司获得至少毛利润 m 千元的概率为

$$p_m = P(20 - Y \ge m) = P\left(\frac{Y - 10}{\sqrt{9.99}} \le \frac{10 - m}{\sqrt{9.99}}\right) \approx \Phi\left(\frac{10.5 - m}{\sqrt{9.99}}\right).$$

- (1) 公司能够获利概率 $p_0 \approx \Phi\left(\frac{10.5}{\sqrt{9.99}}\right) = 0.9996$,是大概率事件,故定价合理。
- (2) 所求即 $p_4 \approx \Phi\left(\frac{6.5}{\sqrt{9.99}}\right) = 0.9801$.
- (3) 所求即 $\Phi\left(\frac{10.5-m}{\sqrt{9.99}}\right) = 0.95$,解得 m = 5.3011 千元。

Q9. $X_i \sim \mathrm{U}(-1,1), \mathrm{E}[\overline{X}] = 0, \mathrm{Var}[\overline{X}] = \frac{1}{3n}$,所求 n 次测量平均误差低于 ϵ 的概率为

$$p_{n,\epsilon} = \mathrm{P}\left(\left|\overline{X}\right| < \epsilon\right) = \mathrm{P}\left(\left|\sqrt{3n}\overline{X}\right| < \sqrt{3n}\epsilon\right) \approx 2\Phi\left(\sqrt{3n}\epsilon\right) - 1,$$

一 1四则运算性质指的是,若 $X_n \stackrel{\mathrm{P}}{\to} a, Y_n \stackrel{\mathrm{P}}{\to} b$,则有 $cX_n, X_n \pm Y_n, X_nY_n$ 分别依概率收敛到 $ca, a \pm b, ab$ 。若还满足 $Y_n \neq 0, b \neq 0$,则 $X_n/Y_n \stackrel{\mathrm{P}}{\to} a/b$ 。证明留作练习。

- (1) $p_{25,0.2} \approx 2\Phi(\sqrt{75} \times 0.2) 1 = 0.9167.$
- (2) 所求即 $2\Phi(\sqrt{3n}\epsilon) 1 \ge 1 \alpha$, 对 $\epsilon = 0.2, \alpha = 0.05$ 解得 $n \ge 33$ 。
- (3) 由 Chebyshev 不等式得

$$P(|\overline{X}| < \epsilon) \ge 1 - \frac{Var[\overline{X}]}{\epsilon^2} = 1 - \frac{1}{3n\epsilon^2},$$

对 $\epsilon = 0.2, \alpha = 0.05$, $\diamondsuit 1 - \frac{1}{3n\epsilon^2} \ge 1 - \alpha$ 解得 $n \ge 167$ 。

Q10. $X \sim B(5000, 0.8), E[X] = 4000, Var[X] = 800, 所求即$

$$P\left(\left|\frac{X}{5000} - 0.8\right| \le \epsilon\right) P\left(\left|\frac{X - 4000}{\sqrt{800}}\right| \le \frac{5000\epsilon}{\sqrt{800}}\right) \approx 2\Phi\left(\frac{5000\epsilon + 0.5}{\sqrt{800}}\right) - 1,$$

令 $2\Phi\left(\frac{5000\epsilon+0.5}{\sqrt{800}}\right)-1=0.99$ 解得 $\epsilon=0.0145$,对应合格品数的范围 [3927,4073]。

Q11. 讨论略,参考概率导论 (Bertsekas,第2版)5.4节例5.11 (Page 239)。

Q12.

(1) 记 $X_i = \mathbb{1}_{\{\hat{\pi}i \in L_{\mathbb{R}}\}}$,则

$$Y_n = \prod_{i=1}^{n} 1.7^{X_i} 0.5^{1-X_i}, \ln Y_n = \sum_{i=1}^{n} \left[\ln(3.4)X_i + \ln(0.5) \right],$$

由中心极限定理知 $\ln Y_n$ 近似服从正态分布 $\mathcal{N}\left(n\ln\frac{\sqrt{3.4}}{2},\frac{n}{4}\ln^2(3.4)\right)$ 。

(2) 利用独立性,

$$E[Y_n] = \prod_{i=1}^n E[1.7^{X_i}0.5^{1-X_i}] = 1.1^n.$$

(3) 应用强大数定律知 $\overline{X} \xrightarrow{\text{a.s.}} \frac{1}{2}$,从而可以进一步验证

$$Y_n = \left(1.7^{\overline{X}}0.5^{1-\overline{X}}\right)^n \xrightarrow{\text{a.s.}} 0.$$

Q13.

(1) 由 $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[X_i, +\infty]}(x)$ 计算知

$$E[F_n(x)] = F(x), Var[F_n(x)] = \frac{F(x)[1 - F(x)]}{n}.$$

 $(2) \forall x > 0$,由 SLLN 知

$$P(\lim_{n\to\infty} F_n(x) = F(x)) = 1.$$

Q14. 预期是均匀分布和正态分布对应的实验结果符合中心极限定理,Cauchy 分布不符合。