

02975.000006

PATENT APPLICATION

In re application of:

TAKESHI KOYAMA, ET AL.

Application No.: 09/978,048

Filed: October 17, 2001

For: OPTICAL APPARATUS

) Examiner: Unassigned

) Group Art Unit: 2615

) February 13, 2002

Commissioner for Patents
Washington, D.C. 20231

RECEIVED

FEB 14 2002

Technology Center 2600

SUBMISSION OF PRIORITY DOCUMENTS

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed are certified copies of the following foreign applications:

2000-327096, filed October 26, 2000;

2000-327095, filed October 26, 2000;

2000-327094, filed October 26, 2000; and

2001-001938, filed January 9, 2001.

Applicants' undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicants

Registration No. 32,078

FITZPATRICK, CELLA, HARPER & SCINTO
30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200

CPW/cmc
DC MAIN 87083 * 1

日本国特許庁
JAPAN PATENT OFFICE

CFV 6 VS
Appln. No. 09/978,048
Filed - 10/17/01
Group - 265

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 Date of Application: FEB 13 2002
2000年10月26日

出願番号 Application Number: 特願 2000-327096

出願人 Applicant(s): キヤノン株式会社

RECEIVED

FEB 14 2002

Technology Center 2600

CERTIFIED COPY OF
PRIORITY DOCUMENT

2001年11月16日

特許庁長官
Commissioner,
Japan Patent Office

及川耕造

出証番号 出証特 2001-3100515

【書類名】 特許願
【整理番号】 4343041
【提出日】 平成12年10月26日
【あて先】 特許庁長官殿
【国際特許分類】 G03B 7/00
【発明の名称】 カメラ
【請求項の数】 3
【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 星 浩二
【特許出願人】
【識別番号】 000001007
【氏名又は名称】 キヤノン株式会社
【代理人】
【識別番号】 100067541
【弁理士】
【氏名又は名称】 岸田 正行
【選任した代理人】
【識別番号】 100104628
【弁理士】
【氏名又は名称】 水本 敦也
【選任した代理人】
【識別番号】 100108361
【弁理士】
【氏名又は名称】 小花 弘路
【手数料の表示】
【予納台帳番号】 044716
【納付金額】 21,000円

特2000-327096

【提出物件の目録】

【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 カメラ

【特許請求の範囲】

【請求項1】 動画撮影と静止画撮影とを共通の撮影光学系および撮像素子を用いて行うカメラであって、

前記撮影光学系の一部を構成する光学素子を光軸直交方向に変位させて振れ補正を行う際に、動画撮影時に前記撮像素子により撮影するイメージサイズを、静止画撮影時のイメージサイズよりも小さくすることを特徴とするカメラ。

【請求項2】 前記撮影光学系の焦点距離が同じである場合に、静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定することを特徴とする請求項1に記載のカメラ。

【請求項3】 前記撮影光学系が可変焦点距離のカメラであり、

焦点距離の可変範囲のうち少なくとも一部の焦点距離において、静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定することを特徴とする請求項2に記載のカメラ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、動画撮影と静止画撮影の双方が可能なカメラに関し、さらにいわゆる防振機能を有するカメラに関するものである。

【0002】

【従来の技術】

動画撮影と静止画撮影の双方が可能なカメラとして、動画撮影用にCCD撮像素子を有するとともに、静止画撮影用に銀塩フィルムの装填が可能なカメラが用いられている。

【0003】

このカメラでは、撮影レンズ光束を光路中で分割し、一方の分割光束をさらに縮小光学系を通してCCD撮像素子上に結像させ、もう一方の分割光束をCCDより大画面の銀塩フィルムに結像させるように構成されている。このようなカメ

ラでは、動画撮影が可能であるだけでなく、静止画撮影においては銀塩ならではの高画質撮影が可能である。

【0004】

また、動画撮影と静止画撮影の双方が可能なカメラとして、動画撮影と静止画撮影とで共通の撮影レンズとCCD撮像素子とビデオカメラが提案されている。

【0005】

また、上記のようなカメラには、いわゆる手振れによる像振れを補正するために、撮影レンズを構成する一部のレンズを光軸直交方向にシフト変位させるようにした防振機能付きのものが多い。

【0006】

【発明が解決しようとする課題】

しかしながら、CCD撮像素子と銀塩フィルムとを使い分けて動画撮影と静止画撮影とを行うカメラでは、上述したように光束分割手段が必要するためにカメラが大型化するという問題がある。

【0007】

また、動画撮影と静止画撮影で共通の撮影レンズとCCD撮像素子を用いるビデオカメラでは、動画撮影時に所定時間内に連続して撮影される中の1つの画像を静止画画像とするという程度であり、十分満足できる高画質の静止画画像を得ることができない。

【0008】

なお、高画質な静止画画像を得るために、レンズの収差補正をより良好に行えるようになるとレンズ系ひいてはカメラ全体が大型化し易い。また、単にCCDの画素数を多くすると、動画撮影時に要求される水準以上の過剰な高画素数を用いることになり、動画処理回路に過大な負担を求めることになる。

【0009】

さらに、上述した防振機能を備えたカメラにおいて、防振時に撮影レンズを構成する一部のレンズを光軸直交方向にシフト変位させると、撮像素子に到達する光束のうち周辺部の光量に動的なアンバランスが生じる。そして、この周辺光量のアンバランスは、特に動画撮影時に目立つものとなるおそれがある。

【0010】

そこで本発明は、小型でありながら、動画撮影時における防振に伴う光量バランスの変化を防止できるようにするとともに高画質の静止画撮影を行えるようにしたカメラを提供することを目的としている。

【0011】

【課題を解決するための手段】

上記の目的を達成するために、本発明では、動画撮影と静止画撮影とを共通の撮影光学系および摄像素子を用いて行うカメラにおいて、撮影光学系の一部を構成する光学素子を光軸直交方向に変位させて振れ補正を行う際に、動画撮影時に摄像素子により撮影するイメージサイズを、静止画撮影時のイメージサイズよりも小さくするようしている。

【0012】

すなわち、防振時に撮影するイメージサイズを静止画撮影時より動画撮影時の方を小さくすることで、防振に伴って光量アンバランスが生じ易い周辺部よりも内側の摄像エリアで動画撮影を行うことが可能となり、周辺光量のアンバランスを動画撮影時に目立たないようにすることが可能となる。したがって、撮影光学系を大型にすることなく動画撮影でも十分な防振を行うことが可能となる。

【0013】

なお、静止画撮影は瞬間を撮影するものであり、もともと周辺光量のアンバランスの許容範囲が動画撮影より広いので、イメージサイズを大きくしても防振時に生じる周辺光量のアンバランスは目立たない。

【0014】

しかも、静止画撮影のイメージサイズを大きくすることで、CCDやCMOS等の微小な受光画素の繰り返し配列を有する摄像素子を用いる場合に、静止画撮影時の画素数を動画撮影時よりも多くすることができ、静止画画像の画質を向上させることも可能である。

【0015】

また、撮影光学系の焦点距離が同じである場合に、静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定

することにより、静止画撮影時に最大絞りで撮影するときの防振時の周辺光量のアンバランスを改善することも可能となる。

【0016】

【発明の実施の形態】

図1には、本発明の実施形態であるカメラの構成を示している。また、図2、図3および図4には、上記カメラに用いる撮影レンズの数値実施例の断面図と収差図を示している。さらに、図5には上記カメラにおいて、撮影レンズの焦点距離と、焦点距離ごとに設定される最大絞りのFno.との関係を示している。また、図6には、上記カメラにおける撮影レンズのイメージサイズを示しており、図7には、無収差の理想レンズのFno.による性能の周波数特性を示している。また、図8には、上記カメラの動作シーケンスを表すフローチャートを示している。

【0017】

図1において、1はズーム撮影レンズ系（撮影光学系）であり、2は、撮影レンズ系1を構成する一部のレンズであって、光軸直交方向に変位して防振（いわゆる手振れ補正）を行う振れ補正レンズである。

【0018】

3は摄像素子であり、セルピッチ（画素配列ピッチ）が3ミクロン程度のCCDまたはCMOS等の固体摄像素子が用いられている。

【0019】

また、4は動画撮影（動画モード）と静止画撮影（静止画モード）とを切り換えるためのモード切換えスイッチである。本実施形態のカメラでは、動画撮影および静止画撮影のいずれも、共通の撮影レンズ系1と摄像素子3とを用いて行い、例えば、動画情報を不図示のビデオテープ、DVD等の記録媒体に記録し、静止画情報をスティック状又はコンパクトなメモリ素子やDVD等の記録媒体に記録する。

【0020】

9は本カメラの動作全体の制御を司るカメラ制御回路であり、5はカメラ制御回路9からの指令信号に応じて撮影レンズ系1のズーム駆動制御を行うズーム制

御回路である。

【0021】

6はカメラ制御回路9からの指令信号に応じて振れ補正レンズ2のシフト駆動制御を行う防振制御回路であり、7はカメラ制御回路9からの指令信号に応じて絞りSPの駆動制御を行う絞り制御回路である。なお、本実施形態では、絞りSPの制御によって、所定のFno.が得られるようになっている。

【0022】

8はカメラ制御回路9からの指令信号に応じて撮像素子3上における撮像エリア（イメージサイズ）の切り換え制御を行う撮像エリア制御回路である。

【0023】

次に、図8のフローチャートに従って本カメラ（主としてカメラ制御回路9）の動作を説明する。まず、不図示のメインスイッチがオンされて電源が投入され、本フローがスタートすると、ステップ（図では、Sと略す）1にて、モード切換えスイッチ4の状態を検出して、カメラが動画モードか静止画モードかを判別する。

【0024】

動画モードであるときは、ステップ2に進み、撮像エリア制御回路8を通じて、図6に示す撮像素子3の動画撮像エリア（例えば、Φ3.9又は2.34mm × 3.12mm）3dの範囲から画像を得るようにイメージサイズを設定する。

【0025】

また、続いてステップ3では、動画モードにおける撮影レンズ系1の焦点距離の可変範囲をfw～ft、すなわちワイド端からテレ端の全範囲に設定する。

【0026】

また、続いてステップ4では、動画モードにおける焦点距離に対する最大絞りのFno.を、図5に示す動画時絞り曲線d上にて制御するように設定する。本実施形態では、動画モードにおける最大絞りのFno.は、焦点距離に応じて1.65～2.2の範囲で変化することになる。

【0027】

さらに、ステップ5では、動画モードにおける最小絞りのFno.を、動画時

最小絞り（例えば、F1.1）に設定する。

【0028】

こうしてステップ6では、ステップ4にて設定された最大絞りのFno.とステップ5にて設定された最小絞りのFno.との間で動画モードでの絞りSPの制御を行う。

【0029】

そして、ステップ7では、撮影レンズ又はカメラ本体に設けられた振れ検知手段（例えば、加速度又は速度センサとセンサ出力を積分する回路から構成される）からの情報により振れ補正レンズ2を光軸直交方向にシフトさせて行う光学的な防振制御を開始する。

【0030】

次に、ステップ8では、動画モードにおいて、カメラ振れが上記振れ補正レンズ2のシフトだけでは補正しきれない（振れ補正不足）か否かを判別し、補正しきれない場合は、上述した動画撮像エリアを、撮像素子3上のより広いエリア（例えば、最大3.06mm×4.08mm）の中からシフトして切り出す、いわゆる電子防振制御を行う。

【0031】

一方、ステップ1において、静止画撮影モードである場合には、ステップ10に進み、撮像素子3上における静止画撮像エリア（例えば、Φ5.1又は3.06mm×4.08mm）から画像を得るように、動画撮影時よりも大きな（画素数が多い）イメージサイズを設定する。

【0032】

次にステップ11では、静止画モードにおける焦点距離の可変範囲を、fsw～ftの範囲、すなわち動画撮影時のワイド端からテレ端側に寄った位置からテレ端の範囲に制限する。これにより、静止が撮影時には、動画撮影時にズーム可能な広角端側のfw～fswの範囲にはズームできなくなる。

【0033】

このため、広角端側で大きな撮影レンズ系1のディストーションもしくはコマ収差、倍率色収差等の残存収差の静止画画像への影響を除くことができる。した

がって、撮影レンズ系1を大型化することなく、かつある程度必要な変倍率($f_{sw} \sim f_t$)を確保した上で、静止画画像の画質向上を図ることができる。

【0034】

また、ステップ12では、静止画モードにおける焦点距離に対する最大絞りのFno.を、図5に示す静止画時絞り曲線s上にて制御するように設定する。本実施形態では、静止画モードにおける最大絞りのFno.は、焦点距離に応じて1.83～2.88の範囲で変化することになる。

【0035】

つまり、本実施形態では、焦点距離 $f_{sw} \sim f_t$ の範囲において、動画撮影時と静止画撮影時とでは、焦点距離が同じである場合の最大絞りのFno.が、静止画撮影時の方が大きくなるように、すなわち同じ焦点距離に対して静止画撮影時は動画撮影時よりも開放Fno.が暗くなるように設定される。なお、本実施形態では、特に望遠側において動画撮影時より静止画撮影時の方が開放Fno.がより暗くなるように設定される。

さらに、ステップ13では、静止画モードにおける最小絞りのFno.を、動画撮影モードよりも明るい静止画時最小絞り(例えば、F8)に設定する。つまり、静止画モードでは、動画モード時に絞り込み可能なFno.(例えば、F11)まで絞り込むことができないようにする。

【0036】

ここで、F8～11の範囲では、Fナンバーを大きくすることによって軸上付近での光学的解像性能の幾何光学収差低減要因による性能向上よりも回折現象の物理光学的要因による性能低下が大きくなる。このため、この範囲で静止画撮影時における最小絞りのFナンバーが動画撮影時における最小絞りのFナンバーよりも小さくなるように設定している。

【0037】

こうして本実施形態では、ステップ14において、ステップ12にて設定された最大絞りのFno.とステップ13にて設定された最小絞りのFno.との間で静止画モードでの絞りSPの制御を行う。

【0038】

ここで、上記ステップ14では、静止画モードにおいて上記最大絞りおよび最小絞りとの間で絞り制御を行うが、このとき絞りによる光量調節を補うために、低輝度被写体に対しては低速シャッターもしくはストロボ（図示せず）で光量不足を補うのが望ましい。

【0039】

また、静止画撮影時の最小絞りを、動画撮影時の最小絞りより小さく（明るく）設定したことに伴い、高輝度被写体に対して光量オーバーとなることを回避するために画像素子3側での高速電子シャッターや撮影レンズ系1内の高速シャッターにより対応するのが望ましい。

【0040】

そして、ステップ15では、前述したステップ7と同様の光学的な防振制御を開始する。

【0041】

以上説明したように、本実施形態によれば、撮影レンズ系1の同じ焦点距離に対して静止画撮影時は動画撮影時よりも開放Fナンバーが暗くなるように設定されるので、明るい動画撮影を行うことができる一方で、静止画撮影時に撮影光学系の球面収差、色収差、組み立て偏心誤差等による光学性能低下を抑えることができる。したがって、小型の撮影レンズ系1において収差等を良好に補正することができ、動画処理の負担が軽くかつ明るい動画撮影と高画質の静止画撮影とが可能なカメラを実現することができる。

【0042】

なお、本実施形態では、最大絞りのF_{n o.}を、図5に示す曲線dと曲線sのように、動画撮影と静止画撮影とで完全に異なる（双方の曲線が交わることがない）特性となるように制御する場合について説明したが、焦点距離f_tの状態で動画撮影時の最大絞りのF_{n o.}を、静止画撮影時の最大絞りのF_{n o.}より小さく設定することが静止画の画質性能を良好にするために特に重要である。このため、動画撮影時に、焦点距離f_{s w}の状態で動画撮影時の最大絞りのF_{n o.}が静止画撮影時の最大絞りのF_{n o.}に一致する曲線d'を用いるようにしてもよい。

【0043】

また、本実施形態では、撮像素子3上における静止画撮影時のイメージサイズを動画撮影時のイメージサイズよりも大きくすることによって、静止画撮影時の画素数を動画撮影時に比べて多くし、これにより静止画画像の高画質化を図っているが、この場合に上述した静止画撮影時の開放Fナンバーを暗くする制御を行うことにより、撮影レンズ系1を大型化させることなく静止画の周辺収差を良好に補正することが可能となり、より高画質の静止画撮影を行うことができる。

【0044】

さらに、本実施形態では、静止画撮影時および動画撮影時の最小絞りのF no. を、絞りSPのF no. の可変範囲のうち $F = 8 \sim 11$ 程度の絞り域の範囲、すなわちF no. を大きくすることによって軸上付近での光学的解像性能の幾何光学収差低減要因による性能向上よりも回折現象の物理光学的要因による性能低下が大きくなる範囲で、静止画撮影時における最小絞りのF no. ($F = 8$) が動画撮影時における最小絞りのF no. ($F = 11$) よりも小さくなるように設定している。これにより、静止画撮影時の画質を動画撮影時の画質に比べてより良好にすることができます。

【0045】

このことを図7を用いて具体的に説明する。図7は、無収差理想レンズのF no. によるコントラストの周波数特性を示したものであり、F no. によって撮影レンズ系1の光学性能がどのように変化するかを表している。

【0046】

この図において、F no. をF 8まで絞ると、3ミクロンピッチCCDのナイキスト空間ラインペア周波数の半分の周波数である80本相当で、ほぼコントラストが50%まで低下する。もともと収差を持っている実際の撮影レンズ系1を使うと、よりコントラストが低下するので、高画質の静止画を得るために本実施形態では静止画時にはF 8より小絞りにしないように制御している。

【0047】

ここで、条件式(1)の中央項に $F_{smi n} = 8$ 、 $\lambda = 0.588$ 、 $P = 3$ を代入すると $F_{smi n} \times \lambda / P = 1.57$ となり、条件式(1)の関係を満たす。

【0048】

なお、上記式(1)において、下限値を0.4、さらには0.8にすると光量調整の可能範囲が拡大し望ましい。また、上限値を3.3あるいは2.2のようにすると回折現象による性能低下を抑えるのによりよい。

【0049】

また、本実施形態では、防振制御を行う場合における動画撮影時のイメージサイズを同じく防振制御を行う場合における静止画撮影時のイメージサイズよりも小さくし、防振に伴って光量アンバランスが生じ易い周辺部よりも内側の撮像エリアで動画撮影を行うようにしているので、動画撮影時の防振に伴う周辺光量のアンバランスを目立たなくすることができる。したがって、撮影レンズ系1を大型にすることなく動画撮影でも十分な防振を行うことができる。

【0050】

なお、瞬間を撮影する静止画撮影ではもともと周辺光量のアンバランスの許容範囲が動画撮影より広いので、イメージサイズを大きくしても防振時に生じる周辺光量のアンバランスは目立たない。

【0051】

さらに、撮影レンズ系1の焦点距離が同じである場合に、静止画撮影時における最大絞りのFno.を動画撮影時における最大絞りのFno.よりも大きく設定しているので、静止画撮影時に最大絞りで撮影するときの防振時の周辺光量のアンバランスを改善することもできる。

【0052】

なお、上記実施形態では、焦点距離の全可変範囲fw~ftのうち、一部の範囲fsw~ftにおいて、焦点距離が同じ状態での静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定する場合について説明したが、焦点距離の全可変範囲fw~ftにおいて焦点距離が同じ状態での静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定するようにしてもよい。

【0053】

また、上記実施形態では、可変焦点距離タイプの撮影レンズ系を用いる場合に

について説明したが、本発明は単焦点距離タイプの撮影レンズ系を用いる場合にも適用することができる。

【0054】

(数値実施例)

次に、表1には、本発明のカメラに用いられる撮影光学系の数値実施例を示す。

【0055】

ここで、撮影光学系は、図2に示すように、物体側から、固定の第1群レンズL1、バリエータとしての第2群レンズL2、絞りSP、第3群レンズ（振れ補正レンズ）L3、フレアストッパーFS、フォーカスレンズ・コンペンセータとしての第4群レンズL4およびフェースプレートやフィルタ等のガラスブロックGが順に配置されて構成された4群リヤーフォーカス方式のズームレンズである。

【0056】

なお、同図に第4群レンズL4の下に示した実線4aは、無限遠物体にフォーカスしているときの広角端から望遠端への変倍に伴う像面変動を補正するための第4群レンズL4の移動軌跡を示し、点線4bは近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う像面変動を補正するための第4群レンズL4の移動軌跡を示している。

【0057】

また、図2には上から順に、撮影光学系の焦点距離fw（動画撮影時の広角端）、fs w（静止画撮影時の広角端）、fm（ミドル）およびft（望遠端）での光学断面図を示している。また、図3および図4には、上記各焦点距離での収差図を示している。

【0058】

表1において、riは物体側より順にi番目の面の曲率半径、diは物体側より順にi番目の面と(i+1)番目の面の間隔（空気換算値）、Niとvi（表ではviと記す）はそれぞれ物体側より順にi番目の光学部材のガラスの屈折率とアッベ数である。

【0059】

また、14番目の非球面形状は、光軸方向にX軸、光軸直交方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、各非球面係数をK, A, B, C, D, Eとしたとき、

【0060】

【数1】

$$X = \frac{(1/R)Y^2}{1 + \sqrt{1 - (1+K)(Y/R)^2}} AH^2 + AY^2 + BY^4 + CY^6 + DY^8$$

【0061】

なる式で表している。また、例えば「e-Z」の表示は「 10^{-Z} 」を意味する。

【0062】

【表1】

$f = 4.32 \sim 42.02$	$FNo=1: 1.65 \sim$	$2\omega=48.6^\circ \sim$
r 1= 45.054	d 1= 1.40	n 1=1.84666 v 1=23.9
r 2= 25.429	d 2= 6.96	n 2=1.48749 v 2=70.2
r 3= -171.864	d 3= 0.20	
r 4= 21.420	d 4= 3.55	n 3=1.77250 v 3=49.6
r 5= 56.119	d 5= 可変	
r 6= 62.351	d 6= 0.60	n 4=1.84666 v 4=23.9
r 7= 5.298	d 7= 2.81	
r 8= -14.229	d 8= 0.50	n 5=1.78590 v 5=44.2
r 9= 137.803	d 9= 0.20	
r10= 11.940	d10= 2.74	n 6=1.84666 v 6=23.9
r11= -11.940	d11= 0.50	n 7=1.60311 v 7=60.6
r12= 19.515	d12= 可変	
r13= ∞ (絞り)	d13= 3.30	
r14= 12.798(非球面)	d14= 1.89	n 8=1.80610 v 8=40.7
r15= 99.912	d15= 3.83	
r16= 22.767	d16= 0.50	n 9=1.84666 v 9=23.9
r17= 7.926	d17= 2.70	n10=1.48749 v10=70.2
r18= -33.906	d18= 1.01	
r19= ∞	d19= 可変	
r20= 13.355	d20= 2.66	n11=1.78590 v11=44.2
r21= -13.355	d21= 0.50	n12=1.84666 v12=23.9
r22= 175.611	d22= 可変	
r23= ∞	d23= 3.60	n13=1.51633 v13=64.1
r24= ∞		

	fw	fsw	fm	ft
焦点距離	4.32	5.33	17.78	42.02
可変間隔				
d 5	0.84	3.67	15.02	19.75
d12	20.60	17.76	6.42	1.69
d19	3.44	2.91	1.12	4.12
d22	3.49	4.02	5.81	2.81

非球面係数

第14面	K	A	B	C	D	E
	-7.0131e-01	0.0000e+00	-1.8642e-05	-2.0047e-07	1.5637e-08	-1.9706e-10

【0063】

また、本数値実施例では、いわゆる4群ズームレンズにおいて第1群を繰り出してフォーカスを行う場合に比べて、前述のようなリヤーフォーカス方式を探ることにより、第1群の偏心誤差による性能劣化を防止しつつ、第1群のレンズ有効径の増大化を効果的に防止している。

【0064】

そして、絞りSPを第3群の直前又は第3群中に配置することにより、可動レンズ群による収差変動を少なくし、絞りSPより前方のレンズ群の間隔を短くして第1群レンズ径の縮小化を容易に達成している。

【0065】

【発明の効果】

以上説明したように、本発明によれば、光学素子を光軸直交方向に変位させて振れ補正（防振）を行う際ににおいて、動画撮影時に撮像素子により撮影するイメージサイズを、静止画撮影時のイメージサイズより小さくするようにしているので、防振に伴って光量アンバランスが生じ易い周辺部よりも内側の撮像エリアで動画撮影を行うことができ、周辺光量のアンバランスを動画撮影時に目立たないようにすることができる。したがって、撮影光学系を大型にすることなく動画撮影でも十分な防振を行うことができる。

【0066】

しかも、静止画撮影のイメージサイズを大きくすることで、CCDやCMOS等の微小な受光画素の繰り返し配列を有する撮像素子を用いる場合に、静止画撮影時の画素数を動画撮影時よりも多くすることができ、静止画画像の画質を向上させることもできる。

【0067】

また、撮影光学系の焦点距離が同じである場合に、静止画撮影時における最大絞りのFナンバーを動画撮影時における最大絞りのFナンバーよりも大きく設定するようすれば、静止画撮影時に最大絞りで撮影するときの防振時の周辺光量のアンバランスを改善することもできる。

【図面の簡単な説明】

【図1】

本発明の実施形態であるカメラの構成を示す概略図である。

【図2】

上記カメラに用いられる撮影レンズの数値実施例の光学断面図である。

【図3】

上記撮影レンズの数値実施例の収差図であり、上からレンズ全系の焦点距離 f_w での動画撮影時の収差図および焦点距離 $f_s w$ での静止画撮影時の収差図である。

【図4】

上記撮影レンズの数値実施例の収差図であり、上からレンズ全系の焦点距離 $f_s w$ での動画撮影時の収差図および焦点距離 f_t での静止画撮影時の収差図である。

【図5】

上記カメラでの焦点距離と最大絞りの $F_{n\circ}$ との関係を示す図である。

【図6】

上記カメラにおける撮影レンズのイメージサイズの説明図である。

【図7】

無収差理想レンズの $F_{n\circ}$ による性能を示す周波数特性図である。

【図8】

上記カメラの動作シーケンスを示すフローチャートである。

【符号の説明】

- 1 撮影レンズ系
- 2 振れ補正レンズ
- 3 摄像素子
- 4 モード切換えスイッチ
- 5 ズーム制御回路
- 6 防振制御回路
- 7 絞り制御回路
- 8 摄像エリア制御回路
- 9 カメラ制御回路

S P 絞り
F S フレアストッパー

【書類名】 図面

【図1】

特2000-327096

【図2】

【図3】

【図4】

特2000-327096

【図5】

特2000-327096

【図6】

【図7】

【図8】

【書類名】 要約書

【要約】

【課題】 シフト防振時に動画画像の周辺光量にアンバランスが目立つ。

【解決手段】 動画撮影と静止画撮影とを共通の撮影光学系1および撮像素子3を用いて行うカメラにおいて、撮影光学系の一部を構成する光学素子2を光軸直交方向に変位させて振れ補正を行う際に、動画撮影時に撮像素子により撮影するイメージサイズ3dを、静止画撮影時のイメージサイズ3sよりも小さくする。

【選択図】 図6

特2000-327096

出願人履歴情報

識別番号 [000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社