AMATH 732: Assignment 2.

Due Friday, Oct. 7

- 1. Read section 6.2 in Lin & Segel and do problems 5–6 on pages 204–205.
- 2. Read section 6.3 in Lin & Segel and do problems 2-4 on page 223.
- 3. Use dimensional analysis to prove the Pythagorean Theorem.
- 4. Reconsider the projectile problem when air resistance is taken into account but changing gravitational acceleration is not. The equation and initial conditions are

$$m\frac{d^2x^*}{dt^{*2}} + k\frac{dx^*}{dt^*} + mg = 0, \qquad x^*(0) = 0, \qquad \frac{dx^*}{dt^*}(0) = V,$$

where the parameter k > 0 is associated with air resistance. This is a linear drag law and is really only appropriate for objects moving 'slowly' through a fluid (e.g., think of a grain of pollen falling through the air).

- (a) When V is sufficiently small, the scalings of x and t are the same as for the projectile problem discussed in class. Why?
- (b) Introduce scaled dimensionless variables (without the *) and show that the problem becomes one in which the only parameter is $\beta = kV/mg$. Give a physical interpretation of β .
- (c) Find a power series expansion for $x(t,\beta)$ assuming small β . Find approximations to the maximum height x_m and the corresponding time t_m to $O(\beta^3)$.
- 5. This problem considers the harmonics of a piano wire.
 - (a) The displacement of an ideal piano wire, which has no bending stiffness, is described by the wave equation

$$\rho A \frac{\partial^2 y}{\partial t^2} - T \frac{\partial^2 y}{\partial x^2} = 0 \qquad 0 < x < L, \tag{1}$$

with boundary conditions y(0) = y(L) = 0. Here ρ is the mass density of the wire, A the cross-sectional area and T the tension in the wire. The eigenmodes are solutions of the form

$$y = e^{-i\omega_n t} \sin \frac{n\pi x}{L}.$$
 (2)

What are the eigenvalues ω_n ? The lowest, or fundamental, frequency ω_1 determines the note played while the higher frequencies (overtones) determine the quality of the sound made by the piano wire. The second harmonic ω_2 is one octave above the fundamental $(\omega_2/\omega_1 = 2)$, the third harmonic ω_3 is a fifth above the second harmonic $(\omega_3/\omega_2 = 3/2)$, the fourth harmonic is a fourth above the third $(\omega_4/\omega_3 = 4/3)$, etc. If all musical instruments had the same frequencies they would sound pretty much the same. In reality, the overtones are different for different instruments.

(b) A real piano wire has a small bending stiffness which modifies the overtones. Incorporating a bending stiffness term into the equation for the piano wire's displacement leads to the equation

$$\rho A \frac{\partial^2 y}{\partial t^2} - T \frac{\partial^2 y}{\partial x^2} + E A k^2 \frac{\partial^4 y}{\partial x^4} = 0, \tag{3}$$

where E is the Young's modulus and k is the radius of gyration. Nondimensionalize this equation using the lengthscale L and the time scale L/c where $c^2 = T/(A\rho)$ (c is the propagation speed in the ideal equation (1)) to obtain

$$\frac{\partial^2 y}{\partial t^2} - \frac{\partial^2 y}{\partial x^2} + \epsilon \frac{\partial^4 y}{\partial x^4} = 0, \qquad 0 < x < 1, \tag{4}$$

where y, x and t are now dimensionless scaled variables. What is ϵ ? For a piano wire a typical value for ϵ is 10^{-4} , so it is very small.

- (c) Using perturbation methods find the normal modes and eigenfrequencies of the piano wire up to and including the $O(\epsilon)$ contribution. Comment on the ratio of consecutive harmonics. Are they perfect octaves, fifths, fourths, etc.?
- 6. Stability of a satellite in orbit.

In the classical Newtonian model for the motion of a satellite in orbit around the earth the location of the satellite is governed by

$$\frac{d^2r}{dt^2} - r\frac{d\theta^2}{dt} = -\frac{GM}{r^2},\tag{5}$$

$$\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) = 0. ag{6}$$

Here G is the universal gravitational constant, M is the mass of the earth, $(r(t), \theta(t))$ are the polar coordinates of the satellite, with origin at the centre of the earth, and the second equation states that the angular moment per unit mass, $r^2 \frac{d\theta}{dt}$, is constant (Kepler's second law).

- (a) Show that a circular orbit, r = a, $\frac{d\theta}{dt} = \omega$ where a and ω are constant, is a solution of these equations. Find a relationship between a and ω (this is Kepler's third law).
- (b) Is the orbit stable? Imagine a booster rocket on the satellite gives it a small initial radial velocity ϵv (radial so the angular momentum does not change). Expand $r(t,\epsilon)$ and $\frac{d\theta}{dt}(t,\epsilon)$ in a regular perturbation expansion and determine whether or not the orbit is stable (based on the first correction to the unperturbed orbit).
- 7. (a) Consider the following sequences of functions. Are they asymptotic sequences as $x \to 0$ or as $x \to \infty$?

$$\phi_n(x) = (1+x^2)^{-n}, \quad n = 1, 2, 3, \dots,$$

$$f_n(x) = e^{(6-n)x}, \quad n = 1, 2, 3, \dots,$$

$$\psi_n(x) = \tanh^n(1/x), \quad n = 1, 2, 3, \dots,$$

$$q_n(x) = \frac{\sin(nx + \pi/n)}{x^n}, \quad n = 1, 2, 3, \dots.$$

(b) Find the asymptotic expansion for h(x) = 1/x (1st three nonzero terms), if it exists, as $x \to \infty$ in terms of each of the sequences from part (a) which form an asymptotic sequence as $x \to \infty$.

8. Explain, using the definitions of an asymptotic sequence and an asymptotic expansion, why it is correct to write

$$Ei(x) \sim \frac{e^{-x}}{x} \left(1 - \frac{1}{x} + \frac{2!}{x^2} - \frac{3!}{x^3} + \dots + (-1)^n \frac{n!}{x^n} + \dots \right) \text{ as } x \to \infty.$$
 (7)

Would you use this expansion to find Ei(2.0)? Explain.

- 9. (a) Find the asymptotic expansion for the function $Ei_{a-1}(x)$ (see notes fill in details). Show that the series is divergent.
 - (b) Plot $S_n(x, a)$ as a function of n for x = 5 and 10 for a = 2.5 and a = 10.5. For a given x and a compute the optimal number of terms to use to approximate the value of $Ei_{a-1}(x)$.