

Arithmazium

Next (lib cf fractions.html)

Home (aaacontinued fractions toc.html)

Previous (aaacontinued fractions toc.html)

Introducing continued fractions

Donald Knuth offers a start to this rich subject in *Seminumerial Algorithms*. The general form of a continued fraction is

$$[\frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3}} = b_1 / (a_1 + b_2 / (a_2 + b_3 / a_3)) \ . \]$$

We'll look at continued fractions in which all the (b)'s are one. A convenient notation is

\[\newcommand{\sslash}{\mathbin{/\mkern-6mu/}} \sslash x_1, x_2, x_3, \ldots, x_n \sslash = \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{\cdots \frac{\rule{0in}{.1in}}{x_{n-1} + \frac{1}{x_n}}}} \ \ . \]

Sampler

One reason to study continued fractions is that they are beautiful expressions. This sampler is from Knuth and *The Handbook of Mathematical Functions*, usually known by its authors, Abramowitz & Stegun.

Continuants

Euler and others investigated the useful continuant polynomials:

 $\begin{array}{ll} 1 \& \mbox{if $n = 0$} \ x_1 \& \mbox{if $n = 1$} \ x_1 & \mbox{if $n = 1$} \ x_2, x_3, \ldots, x_n) + K_{n-2}(x_3, x_4, \ldots, x_n) & \mbox{if $n > 1$} \end{array} \ right.$

Here are the first several:

Fun facts about continuants:

- \(K_n(x_1, \ldots, x_n) \) is the sum of all terms starting with \(x_1 x_2 \ldots x_n \) and then deleting nonoverlapping pairs of consecutive variables \(x_j x_{j+1} \).
- Just the \(K_{2k} \) have a term \(1 \).
- The number of terms in $(K_n(x_1, \ldots, x_n))$ is (F_{n+1}) from the Fibonacci sequence $(0, 1, 1, 2, 3, 5, \ldots)$.

Continued fractions are quotients of K-polynomials: \[\sslash x_1, x_2, \ldots, x_n \sslash = \frac{K_{n-1}(x_2, x_3, \ldots, x_n)} {K_n(x_1, x_2, \ldots, x_n)} = \frac{1} {\frac{K_n(x_1, \ldots, x_n)} {K_{n-1}(x_2, \ldots, x_n)} \] To see this, expand the denominator: \[\frac{x_1 K_{n-1}(x_2, \ldots, x_n)} + K_{n-2}(x_3, \ldots, x_n)} {K_{n-1}(x_2, \ldots, x_n)} \] The right-hand side of the formula above is thus \[\frac{1} {x_1 + \frac{K_{n-2}(x_3, \ldots, x_n)} {K_{n-1}(x_2, \ldots, x_n)} \] which leads by induction to \[\frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_n}}} \] \] which \[\frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x

This identity \[K_n(x_1, \ldots, x_n) K_n(x_2, \ldots, x_{n+1}) - K_{n+1}(x_1, \ldots, x_{n+1}) K_{n-1}(x_2, \ldots, x_n) = (-1)^{n} \] for \(n \neq 1 \) is very useful. To verify it by induction, advance to step \(n+1 \). First expand the left-hand term to \[(x_1 K_n(x_2, \ldots, x_{n+1}) + K_{n-1}(x_3, \ldots, x_{n+1})) K_{n+1}(x_2, \ldots x_{n+2}) \ . \] Then expand the right-hand term to \[(x_1 K_{n+1}(x_2, \ldots, x_{n+2})) + K_{n}(x_3, \ldots, x_{n+2})) K_{n}(x_2, \ldots x_{n+1}) \ . \] The terms with factor \((x_1 \) cancel, leaving \[K_{n-1}(x_3, \ldots, x_{n+1}) K_{n+1}(x_2, \ldots, x_{n+2}) - K_{n}(x_3, \ldots, x_{n+2}) K_{n}(x_2, \ldots, x_{n+2}) = (-1)^{n+1} \] by the assumption for step \(n \).

Continued fractions and continuants

We can now make the remarkable connection between the K-polynomials and continued fractions: \[\sslash x_1, x_2, \ldots, x_n \sslash = \frac{1}{q_0 q_1} -\frac{1}{q_1 q_2} + \frac{1}{q_2 q_3} + \cdots + \frac{(-1)^{n-1}}{q_{n-1}q_{n}} \] where \(q_k = K_k(x_1, \ldots, x_k) \).

It's just a bit more K-polynomial algebra. Start with the continued fraction as a quotient of continuants $\[\slash x_1, \dots, x_n \slash = \frac{K_{n-1}(x_2, \dots, x_n) K_{n-1}(x_1, \dots, x_{n-1}) } {K_n(x_1, \dots, x_n) K_{n-1}(x_1, \dots, x_{n-1})} \] with the extra terms chosen in order to exploit the identity of the previous section.$

Rewriting the numerator leads to \[\frac{ (-1)^{n-1} + K_{n}(x_1, \ldots, x_{n}) K_{n-2}(x_2, \ldots, x_{n-1}) } {K_n(x_1, \ldots, x_n) K_{n-1}(x_1, \ldots, x_{n-1})} = \frac{K_{n-2}(x_2, \ldots, x_{n-1})} {K_{n-1}(x_1, \ldots, x_{n-1})} + \frac{(-1)^{n-1}}{q_{n-1}q_{n}} \] which is the inductive step.

Regular continued fractions

Every real number \(X \) with \(0 \leq X < 1 \) has a regular continued fraction defined by this process. Set \(X = X_0 \), and for every \(n \geq 0 \), if \(X_n \neq 0 \) \[A_{n+1} = \lfloor 1 / X_n \rfloor \, \\ \\ X_{n+1} = 1 / X_n - A_{n+1} \] If \(X_n = 0 \) the process stops and \(X = \sslash A_1, A_2, \ldots, A_n \sslash \).

If \(X_n \neq 0 \) then \(0 \leq X_{n+1} < 1 \), so all the \(A \)'s are positive integers. The definiton above exapnds to \[X = X_0 = $\frac{1}{A_1 + X_1} = \frac{1}{A_1 + \frac{1}{A_2 + X_2}} = \cdot \cdot \cdot$ so \[X = \sslash A_1, A_2, \ldots, A_n + X_n \sslash \] for all \(n \geq 1 \), whenever \(X_n \) is defined.

Because \(K_n(A_1, \ldots, A_{n-1}, A_{n} + Y) \) is monotoinc in \(Y \), \(X \) lies between \(\sslash A_1, \ldots, A_n \sslash \) and \(\sslash A_1, \ldots, A_n + 1 \sslash \). The alternating signs in the identity of the last section suggest that successive approximations approach \(X \) from above and below, depending on whether \(n \) is odd or even.

The $\ (A)$'s are called the partial quotients of $\ (X)$.

The accuracy of approximatioin

Regular continued fractions approach their target quickly. To see this, consider \[\begin{align} | X - \sslash A_1, \ldots, A_n \sslash | & = | \sslash A_1, \ldots, A_n + X_n \sslash - \sslash A_1, \ldots, A_n \sslash - \sslash A_1, \ldots, A_n, 1 / X_n \sslash - \sslash A_1, \ldots, A_n, 1 / X_n \sslash - \sslash A_1, \ldots, A_n, 1 / X_n \sslash | \\ & = 1 / (K_n(A_1, \ldots, A_n) K_{n+1}(A_1, \ldots, A_n, 1 / X_n)) \\ & \leq 1 / (K_n(A_1, \ldots, A_n) K_{n+1}(A_1, \ldots, A_n, A_{n+1})) \end{align} \] with the usual algebra applied in order to achieve a numerator of \(\pm 1 \) and the common denominator shown. The inequality arises because \(A_{n+1} = \lfloor 1 / X_n \rfloor \) and \(K \) is monotonic in each of its parameters.

Next (lib cf fractions.html)

Home (aaacontinued fractions toc.html)

Previous (aaacontinued fractions toc.html)