<u>Dashboard</u> / My courses / 641 ITCS306 / Homework / Homework 10

Started on Monday, 18 October 2021, 11:30 PM

State Finished

Completed on Monday, 18 October 2021, 11:39 PM

Time taken 9 mins 55 secs

Grade 11.00 out of 12.00 (92%)

Question 1

Correct

Mark 1.00 out of 1.00

Suppose we have the following data:

$$(1, 0.14), (2, 0.2), (3, 0.4), (4, 0.4), (5, 0.6)$$

We know this data fits a saturation growth rate model

$$y = a \frac{x}{x+b}$$

Using simple linear regression, find the coefficients

a, b

Select one:

a.

a = 1.56

b = 11.4

O b.

a = 1.45

b=10.12

C.

a = 1.48

b=10.01

d.

a=1.5

b=9.88

The correct answer is:

a = 1.48

b = 10.01

Question 2

Correct

Mark 1.00 out of 1.00

Using the general model for linear regression, what are the z functions for polynomial regression?

Select one:

- \bigcirc a. \$\$ z_0 =0, z_1 = 1, z_2 = 2, ..., z_m = m\$\$
- \bigcirc b. \$\$ z_0 = 1, z_1 = x, z_2 = z_3 = ... = z_m = 0\$\$
- \odot c. \$\$ z_0 = 1, z_1 = x, z_2 = x^2,...,z_m=x^m\$\$
- Od. \$\$ z 0 = 1, z 1 = x 1, z 2 = x 2, ..., z m = x m \$\$

The correct answer is: \$\$ $z_0 = 1$, $z_1 = x$, $z_2 = x^2$,..., $z_m = x^m$ \$

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

Which of the following is a matrix equation we can use to find the coefficients in linear regression?

Select one:

- \bigcirc a. \$\$ A = (Z^TZ)^{-1}Z^TY \$\$
- \bigcirc b. \$\$ A = (Z^TZ)^{-1}ZY \$\$
- \circ c. \$\$ A = (Z^TZ)Z^TY \$\$
- \bigcirc d. \$\$ A = (Z^T)^{-1}Z^TY \$\$

The correct answer is: $\$$ A = (Z^TZ)^{-1}Z^TY \$$$

Question 4

Correct

Mark 1.00 out of 1.00

Using the general model for linear regression, what are the z functions for simple linear regression?

Select one:

- \bigcirc a. \$\$ z_0 =0, z_1 = 1, z_2 = 2, ..., z_m = m\$\$
- \bullet b. \$\$ z_0 =1, z_1 = x, z_2 = z_3 =...=z_m =0\$\$
- \circ c. \$\$ z_0 = 1, z_1 = x, z_2 = x^2,...,z_m=x^m\$\$
- \bigcirc d. \$\$ z_0 =1, z_1= x_1, z_2 = x_2, ...,z_m=x_m\$\$

The correct answer is: $$$z_0 = 1, z_1 = x, z_2 = z_3 = ... = z_m = 0$$$

Question 5	
Correct	
Mark 1.00 out of 1.00	
What transformation would you use to linearize the power equation $$$ $y = ax^{b} $	
Select one:	
○ a. Find Taylor's series.	
b. Use the Laplace transform.	
c. Take the inverse of both sides (e.g. 1/y)	
d. Take logs of both sides	~
The correct answer is: Take logs of both sides	
Question 6	
Correct	
Mark 1.00 out of 1.00	
What transformation would you use to linearize the exponential equation \$\$ y = ae^{bx} ?\$\$ Select one: a. Find Taylor's series. b. Take the inverse of both sides (e.g. 1/y) c. Take natural logs of both sides d. Use the Laplace transform.	~
The correct answer is: Take natural logs of both sides	
Question 7	
Correct	
Mark 1.00 out of 1.00	
If \$\$ $y = a_0 + a_1x + a_2x^2$ \$\$ is the equation of the best fit quadratic, what is the formula for the sum of squares of the residuals if we have a dataset with n data points? Select one: a. \$\$ \sum_{i=1}^n (y_i-a_0-a_1x_i)^2 \$\$ b. \$\$ \sum_{i=1}^n (y_i-a_0-a_1x_i-a_2x_i^2)^2 \$\$	~
c. \$\$\sum_{i=1}^{n^2} (y_i-a_0-a_1x_i-a_2x_i^2)^2 \$\$	
○ d. \$\$ \sum _{i=1}^n (y_i-a_0-a_1x_i-a_2x_i^2) \$\$	

The correct answer is: $\$ \sum _{i=1}^n (y_i-a_0-a_1x_i-a_2x_i^2)^2 \$\$

Question **8**Correct

Mark 1.00 out of 1.00

What transformation would you use to linearize the saturation growth rate equation $\$ y = a\frac{x}{x+b} \text{?}\$\$

Select one:

- a. Take logs of both sides
- b. Find Taylor's series.
- c. Take the inverse of both sides (e.g. 1/y)
- d. Use the Laplace transform.

The correct answer is: Take the inverse of both sides (e.g. 1/y)

Question ${\bf 9}$

Correct

Mark 1.00 out of 1.00

Suppose we have the following data: \$\$ (1,2.5), (2,4), (3,7), (4,11), (5,18)\$\$

We know this fits an exponential model \$ $y = ae^{bx} $$ Using simple linear regression, find the coefficients \$ a, b \$

Select one:

- a. \$\$a = 1.55 \$\$ \$\$ b = 0.47 \$\$
- b. \$\$a = 1.52 \$\$ \$\$ b = 0.5 \$\$
- c. \$\$a = 1.46 \$\$ \$\$ b = 0.51 \$\$
- d. \$\$a = 1.51 \$\$ \$\$ b = 0.49 \$\$

The correct answer is: \$a = 1.52 \$ \$ b = 0.5 \$\$

Question 10

Correct

Mark 1.00 out of 1.00

Using the general model for linear regression, what are the z functions for multiple linear regression?

Select one:

- \bigcirc a. \$\$ z_0 =1, z_1 = x, z_2 = z_3 =...=z_m =0\$\$
- \bigcirc b. \$\$ z_0 = 1, z_1 = x , z_2 = x^2,..., z_m=x^m\$\$
- \odot c. \$\$ z_0 = 1, z_1 = x_1, z_2 = x_2, ..., z_m = x_m\$\$
- Od. $$$z_0 = 0, z_1 = 1, z_2 = 2, ..., z_m = m$$$

The correct answer is: \$\$ $z_0 = 1$, $z_1 = x_1$, $z_2 = x_2$, ..., $z_m = x_m$ \$\$

Question 11	
Incorrect	
Mark 0.00 out of 1.00	
If we perform multiple simple linear regression on data where the y variable depends on two independent x variables, what kind of mathematical object are we creating to model the relationship?	
Select one:	
a. line	×
O b. plane	
○ c. circle	
O d. sphere	
The correct answer is: plane	
Question 12	
Correct	
Mark 1.00 out of 1.00	
Suppose we calculate the best fit polynomial of degree m for a dataset with n data points. What is the equation of the standard error?	
Select one:	
a. \$\$\sqrt{\frac{S_r}{n-(m+1)}} \$\$	~
b. \$\$\sqrt{\frac{S_t}{n-(m+1)}} \$\$	
c. \$\$\sqrt{\frac{S_r}{n-2}} \$\$	
d. \$\$\sqrt{\frac{S_r}{n-1}} \$\$	
The correct answer is: \$\$ \sqrt{\frac{S_r}{n-(m+1)}} \$\$	
→ Homework 9	
Jump to	

Homework 11 ►