Computing the Partial Word Avoidability Indices of Ternary Patterns

F. Blanchet-Sadri¹ Andrew Lohr² Shane Scott³

¹Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402–6170, USA

²Department of Mathematics, Mathematics Building, University of Mariland, College Park, MD 20742, USA

³Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan, KS 66506-2602,USA

19 May 2012

Definition - pattern, pattern variables, pattern constants

Let A and E be alphabets with $A \cap E = \emptyset$. We call the letters of E pattern variables and denote them by $\alpha, \beta, \gamma, \ldots$ A pattern is a word over the alphabet $A \cap E$. A factor $x \in A^+$ of p is called a pattern constant.

Examples: square $\alpha\alpha$

overlap $a\alpha a\alpha a$

 $\alpha\beta\beta\alpha$

 $\alpha\alpha\beta\alpha\alpha\gamma\alpha\gamma\gamma\beta\alpha\alpha\gamma\alpha$

Definition - meets, occurs, avoids

For a word $w \in A^*$ and pattern $p \in (A \cup E)^*$ we say that w meets p or p occurs in w if there exists some non-erasing morphism $h: (A \cup E)^* \to A^*$ which acts as the identity over A such that h(p) is compatible with a factor of w. We say w avoids p when it does not meet p

Examples: abab meets $\alpha\alpha$

acbcaba avoids $a\alpha a\alpha a$

 $ababaabc \diamond a \diamond cd \diamond \diamond aba$ meets $\alpha \beta \beta \alpha$

Definition - avoidable, unavoidable, k-avoidable, k-unavoidable

A pattern p is called k-avoidable if for a k letter alphabet and for any $n \in \mathbb{N}$ there is a word with n holes avoiding p, or, equivalently, if there is a word with an infinite number of holes which avoids p. If no such word exists, we say the p is k-unavoidable. If p is k-avoidable (resp. k-unavoidable) for all $k \geq 2$, we call it avoidable (resp. k-unavoidable).

Examples: $\alpha\beta$ is unavoidable.

 $\alpha\alpha$ is unavoidable for partial words.

 $\alpha\alpha$ 3-avoidable for fullwords. cubes $\alpha\alpha\alpha$ are 2-avoidable.

Definition - avoidability index, full word avoidability index

For a given pattern p we define the avoidability index $\mu(p)$ as the minimal k such that p is k-avoidable. If p is unavoidable, we say $\mu(p) = \infty$. We call $\mu'(p)$ the full word avoidability index of p, defined as the minimal k such that an infinite full word on a k letter alphabet avoids p.

Examples:
$$\mu(\alpha\beta) = \infty$$

 $\mu(\alpha\alpha\beta\beta) = 3$
Every binary pattern p length 7 or greater has $\mu(p) = 2$.
There are patterns p_4 and p_5 such that $\mu'(p_4) = 4$
and $\mu'(p_5) = 5$

Definition - DOL (Deterministic O...Lindenmeyer) system

For a morphism $f: A^* \to A^*$ and $a_0 \in A$ we call the tuple $D = (A, f, a_0)$ a *DOL system* and define the *DOL language* generated by S as the set $\{f^n(a_0) \mid n \in \mathbb{N}\}$

Example:

The Thue-Morse morphism t(a) = ab and t(b) = ba gives the DOL system $(\{a,b\},t,a)$ generating the language

 $\{\varepsilon, a, ab, abba, abbabaab, abbabaabbaababa, \ldots\}$

Definition - Fixed Point

For a DOL system (A, f, a_0) , we define the *fixed point* as

$$f^{\omega}(a_0) = \lim_{n \to \infty} f^n(a_0)$$

provided the limit exists.

Example:

The Thue-Morse word is the fixed point of the morphism t(a) = ab and t(b) = ba.

Definition - HDOL system

For a morphism $g: A^* \to B^*$ with B a secondary alphabet and a DOL system (A, f, a_0) , the tuple (A, f, a_0, B, g) is called an HDOL system. We define the HDOL language generated by H as the set $\{g \circ f^n(a_0) \mid n \in \mathbb{N}\}$

Definition - h-injected

Let A and B be alphabets. For a word $w \in B^+$ and a morphism $h: A^* \to B^*$ we say that w is h-injected from x if $x \in A^+$ is a unique word of minimal length such that w is a factor occurring once in h(x) and for all $y \in A^+$ if w is a factor of h(y) then x is a factor of y. We will say w is h-injected if such an x exists.

Definition - h-postinjected, h-preinjected

Let A and B be alphabets. For a word $w \in B^+$ and a morphism $h: A^* \to B^*$ we say that w is h-preinjected from a (respectively h-postinjected from a) if $a \in A$ such that w is compatible with Pref(h(a)) (respectively Suf(h(a))).

Definition - h-side-injected

Let A and B be alphabets. For a word $w \in B^+$ and a morphism $h: A^* \to B^*$ we say that w is h-side-injected from a if $a \in A$ such that the number

$$k_a = |\{u \in \mathsf{Pref}(\mathit{h}(a))|u \uparrow w\}| + |\{u \in \mathsf{Suf}(\mathit{h}(a))|u \uparrow w\}|$$

is exactly one, and k_b is zero for all other letters $b \in A$.

The End