Generative Adversarial Networks

Solomon HARVEY, Alexandros KOUVATSEAS, Théo COURTY
Team GANdalf
Data Science Lab
Paris Dauphine University

6 November 2024

Plan

- Introduction
- f-GAN
 - Theory
 - Feature Embedding
 - Optimization
 - Results
 - Future Experimentation
- WGAN
 - Motivation
 - Wasserstein Distance
 - Model
 - Algorithm
 - Preliminary Results
 - Future Experimentation
- General Results

Introduction

- Objective: Training and Optimization of Generative Adversarial Networks (GANs), to be applied to data generation using MNIST Dataset
- Methods:
 - VanillaGAN
 - f-GAN (Variational divergence minimization)
 - W-GAN (Emphasis on Wasserstein Distance)

Figure: Example of a label, and a generated prediction

f-gan: Theory behind the method

• f-GANs extend the traditional GAN framework, by leveraging f-divergence for training. They allow any f-divergence $\mathcal{D}_f(\mathcal{P}||\mathcal{Q})$ defined as:

$$\mathcal{D}_f(\mathcal{P}||\mathcal{Q}) = \int_{\mathcal{X}} q(x) f(\frac{p(x)}{q(x)}) dx$$

Where f must be a convex function

• Training overview: The importance of the training comes with the use of a variational function $T_{\omega}(x)$ and a generator Q_{θ} that are trained:

$$F(\theta,\omega) = \mathbb{E}_{x \sim P}[T_{\omega}(x)] - \mathbb{E}_{x \sim Q_{\theta}}[f^{*}(T_{\omega}(x))]$$

- f^* represents a convex conjugate of the function f
- The variational function can be analyzed like: $T_{\omega}(x) = g_f(V_{\omega}(x))$, where g_f represents an activation function.

Optimization for f-GAN: Choice of optimizer

- Problem: Huge losses values for some f-divergence (especially KL) during the first epochs. Can even go to NaN!
- Optimizer used : Adam
 - ullet Momentum orders $eta_1=0.5$ and $eta_2=0.999$
 - Learning rate $\alpha = 2 \times 10^{-4}$
 - Use of weight decay $w = 10^{-3} 10^{-5}$ for the discriminator (form of L2 regularization)
- Gradient clipping to prevent exploding gradients
 - If $\|\nabla L\| \geq c$ then $\nabla L = c \frac{\nabla L}{\|\nabla L\|}$
 - We use c = 1 (arbitrary)
- These choices of optimization do not always work for $\alpha \sim 10^{-4}$.

Optimization for f-GAN: Pre-training

- Or, as jensen-shannon f-divergence results in stable convergence, we use it to pre-train the model (4 – 6 epochs) and then switch to other f-divergence.
- It helps stabilize the convergence
- Allows for higher $\alpha \ (\sim 10^{-3} 10^{-4})$ and lower $w \ (\sim 10^{-5} 10^{-6})$

Figure: Convergence for KL f-GAN

Pretraining JS (6 epochs)

Figure: 6 epochs Jensen-Shannon f-GAN used for pre-train the other models

KL pretrained with JS

Figure: f-GAN using Kullback-Leibler f-divergence pretrained with 6 epochs of Jensen-Shannon f-GAN

Future Experimentation

Optimizer Tuning

- Experiment with different optimizers, such as RMSProp or SAdjust learning rates and momentum parameters for both the generator and the discriminator to observe their impact on convergence.
- Adjust learning rates and momentum parameters for both the generator and the discriminator.

Divergence Choice

 Try different pre-training techniques, with different divergence functions, to stabilize the convergence and manage to get better results.

Regularization Techniques

- Increase the range of weight decay values (L2 regularization) and observe if it prevents large fluctuations in loss.
- Apply gradient penalty (used in WGAN) to avoid issues with weight clipping, which could stabilize the training process.

WGAN Motivation

- Many f-divergences require the two distributions to overlap (which is not automatic, especially when considering a high-dimensional manifold), causing vanishing gradients that halt the generator's progress.
- Thus we look towards a metric that measures distance in a more broad sense, not necessarily requiring distribution overlap.

Definition (Wasserstein Distance)

Let P and Q be two probability distributions and denote by $\Pi(P,Q)$ the set of probability distributions whose marginals are P and Q. We call Wasserstein distance between P and Q the distance

$$W(P,Q) = \inf_{\gamma \in \Pi(P,Q)} \mathbb{E}_{(x,y) \sim \gamma} ||x - y||.$$

Intuitively, W(P, Q) measures the minimal effort required to move mass around to change P into Q, or Q into P.

Theorem (Kantorovich-Rubinstein Duality)

For all probability distributions P and Q, we have

$$W(P,Q) = \sup_{\|f\|_{I} \le 1} \left\{ \mathbb{E}_{\mathbf{x} \sim P}[f(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim Q}[f(\mathbf{x})] \right\}$$

where $\|\cdot\|_L$ denotes the Lipschitz seminorm.

Definition (Wasserstein GAN)

• A Wasserstein GAN is a GAN whose goal is to solve the min-max problem

$$\inf_{\theta} \sup_{-c \leqslant w \leqslant c} \left\{ \mathbb{E}_{\mathbf{x} \sim P_{\mathsf{data}}}[f_w(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim Z}[f_w \circ g_\theta(\mathbf{z})] \right\}$$

where c is clipping constant, simulating a Lipschtiz constant.

 By the Kantorovich-Rubinstein duality, the problem can be reformulated as first approximating up to a multiplicative constant

$$W(P_{\mathsf{data}}, P_{ heta}) pprox \sup_{-c \leqslant w \leqslant c} \left\{ \mathbb{E}_{\mathsf{x} \sim P_{\mathsf{data}}}[f_w(\mathsf{x})] - \mathbb{E}_{\mathsf{z} \sim \mathcal{Z}}[f_w \circ g_{ heta}(\mathsf{z})] \right\}$$

and then solving

$$\inf_{\theta} W(P_{\mathsf{data}}, P_{\theta}).$$

WGAN Model (Continued)

Definition (Wasserstein GAN) (Continued)

• Hence the critic loss is equal to

$$\begin{split} L_{\text{crit}}(w) &= \mathbb{E}_{z \sim Z}[f_w \circ g_\theta(z)] - \mathbb{E}_{x \sim P_{\text{data}}}[f_w(x)] \\ &= \text{mean}(\text{fake data scores}) - \text{mean}(\text{real data scores}). \end{split}$$

And the generator loss is equal to

$$L_{\text{gen}}(\theta) = -\mathbb{E}_{z \sim Z}[f_w \circ g_{\theta}(z)]$$

= -mean(fake data scores).

WGAN Algorithm

WGAN Algorithm

```
require \alpha (learning rate), c (clipping parameter), m (batch size), n_{critic} (number of
critic iterations per generator iteration)
initialize w_0 (critic parameters), \theta_0 (generator parameters)
while \theta has not converged do
     for 0 \le t \le n_{critic} do
           Sample a batch \{x_i\}_{i=1}^m \sim P_{\text{data}}
           Sample a batch \{z_i\}_{i=1}^m \sim Z
           \delta_w \leftarrow \nabla_w \left[ \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z_i)) - \frac{1}{m} \sum_{i=1}^m f_w(x_i) \right]
           w \leftarrow w - \alpha \cdot \mathsf{RMSProp}(w, \delta_w)
           w \leftarrow \text{clip}(w, -c, c)
     end for
     Sample a batch \{z_i\}_{i=1}^m \sim Z
     \delta_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z_{i}))
     \theta \leftarrow \theta - \alpha \cdot \mathsf{RMSProp}(\theta, \delta_{\theta})
end while
```

Preliminary WGAN Results

Preliminary WGAN Results (Continued)

Future Experimentation

WGAN

- Use more epochs or pretrain.
- Use gradient penalty instead of weight clipping.
- Use Adam optimizer for generator.
- Modify critic architecture (not recommended by literature).

General Results

Model	VanillaGAN	f-GAN	W-GAN
FID	50.14	44.36	94.79
Precision	0.47	0.54	0.63
Recall	0.15	0.19	0.16
Time	97.38	103.84	106.05

Table: Results between the models