

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Algoritmos e Estruturas de Dados III | Prof. Hayala Curto

Lista de Exercícios 2 1 ponto

A lista deve ser feita individualmente ou em grupos de no máximo 2 alunos.

Penalidade por atraso: a cada dia corrido de atraso, a nota será penalizada em 0,5 ponto.

Penalidade por cópia: trabalhos iguais não são aceitos (nota 0).

Parte teórica (0,5 ponto)

Lista Invertida

- 1 Em qual contexto é recomendado usar lista invertida?
- 2 Quais as vantagens do uso de índices invertidos sobre as outras formas de índices?
- 3 O que são os termos não significativos *(stop words)* que devem ser retirados do conjunto de termos indexados em índices invertidos?
- 4 Descreva um exemplo de um contexto do uso de arquivos em que a lista invertida seria importante. Mostre a entidade do seu exemplo, os campos e a aplicação da lista invertida.

Compressão de dados

- 1 Uma compressão sem perdas é caracterizada por?
- 2 Calcule a entropia (o tamanho médio em bits dos símbolos) da seguinte mensagem:
- A ARANHA ARRANHA A RÃ
- 3 Quantos bits são necessários para se representar a mensagem abaixo usando a codificação de Huffman, Shannon Fano, LZ77, LZ78 e LZW?
- A ARANHA ARRANHA A RÃ
- 4 Quantos bits são necessários para se representar a mensagem abaixo usando a codificação de Huffman, Shannon Fano, LZ77, LZ78 e LZW?

BOTE A BOTA NO BOTE E TIRE O POTE DO BOTE

Pontifícia Universidade Católica de Minas Gerais

Instituto de Ciências Exatas e Informática Algoritmos e Estruturas de Dados III | Prof. Hayala Curto

5 - Considere que uma determinada implementação do LZW usa o seguinte dicionário inicial, em que o símbolo _ (posição 27) representa o espaço em branco e que possui 1024 posições.

1	Α	9	I	17	Q	25	Υ
2	В	10	J	18	R	26	Z
3	С	11	K	19	S	27	
4	D	12	L	20	Т		
5	Ε	13	М	21	U		
6	F	14	Ν	22	٧		
7	G	15	0	23	W		
8	Н	16	Р	24	Х		

Usando esse dicionário inicial, decodifique a seguinte mensagem:

13, 1, 28, 5, 27, 28, 14, 4, 15, 21, 32, 21, 4, 1, 18

6 - Considere que uma determinada implementação do LZW usa o seguinte dicionário inicial, em que o símbolo _ (posição 27) representa o espaço em branco e que possui 1024 posições.

1	Α	9	Ι	17	Q	25	Υ
2	В	10	J	18	R	26	Z
3	С	11	K	19	S	27	
4	D	12	L	20	Т		
5	Е	13	М	21	U		
6	F	14	Ν	22	٧		
7	G	15	0	23	W		
8	Н	16	Р	24	Х		

Usando esse dicionário inicial, codifique a seguinte mensagem:

MARA AGARRA E AMARRA A ARARA

Represente os valores separando-os por um único espaço em branco (ex.: 13 10 20 ...)

7 - Quantos bits são necessários para se representar a mensagem abaixo usando a codificação de Huffman, Shannon Fano, LZ77, LZ78 e LZW?

O_PEITO_DO_PÉ_DO_PEDRO_É_PRETO.

Pontifícia Universidade Católica de Minas Gerais

Instituto de Ciências Exatas e Informática

Algoritmos e Estruturas de Dados III | Prof. Hayala Curto

8 - Quantos bits são necessários para se representar a mensagem abaixo usando a codificação de Huffman, Shannon Fano, LZ77, LZ78 e LZW?

A_BANDA_DOS_URUBUS_BATUCA_MUITO

Casamento de padrões

1 -	Cor	isidere d	prim	eiro teste	de b	ousca d	o padrão	CANOA	no texto	abaixo,	usando d	o algoritmo	Boyer-Mod	re:
ΙA	NA	CANOA,	RIO	ABAIXO										

Qual será o deslocamento por caráter ruim nesse teste específico?

2 - Considere o primeiro teste de busca do padrão CANOA no texto abaixo, usando o algoritmo Boyer-Moore:

IA NA CANOA, RIO ABAIXO

Qual será o deslocamento por sufixo bom nesse teste específico?

- 3 Qual é a principal vantagem do algoritmo de busca KMP sobre o algoritmo da força bruta?
- 4 Qual é a representação correta do vetor de transições de falhas do padrão ABCABCAC no algoritmo KMP?
- 5 Se criarmos um diagrama de estados para a busca dos termos abaixo por Aho-Corasick, esse diagrama de estados conterá quantos estados?

Termos de busca:

FACA, FOICE, CABO, CORTE

- 6 Qual é a complexidade (de tempo) de um casamento de padrões por Aho-Corasick, considerando a busca de *m* padrões em um texto de *n* caracteres?
- 7 Qual é a distância de edição entre os padrões CULTURA e SUTURAS?

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Algoritmos e Estruturas de Dados III | Prof. Hayala Curto

8 - Qual será o valor da célula destacada em vermelho, no quadro de casamento aproximado de padrões abaixo, usando o cálculo de distância de Levenshtein?

		S	Α	С	Ι
	0	1	2		
С	1	1	2		
Α	2	2			
Р					
I					
M					

9 - Usando o algoritmo de Boyer-Moore, faça a busca de TODAS as ocorrências do padrão IARA no texto abaixo (não pare na primeira ocorrência, você precisa testar toda o texto).

A IARA AMARRA A ARARA DE ARARAQUARA

Represente todos os testes e, a cada um deles, indique o deslocamento por caráter ruim (DCR) e o deslocamento por sufixo bom (DSB) calculados e circule aquele que foi usado. Lembre-se que, quando o padrão for encontrado, o deslocamento é de apenas 1 posição.

Parte Implementação (0,5 ponto)

- 1 Implemente os seguintes algoritmos:
 - Compactação:
 - Huffman
 - LZW
 - Casamento de padrões
 - Boyer Moore