ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет Технологий Искусственного Интеллекта

Теория вероятностей и продвинутая математическая статистика

Расчетно-графическая работа №1

Выполнили студенты группы Ј3211:

Денисов Илья Дмитриевич

ИСУ: 465741

Лапшин Максим Константинович

ИСУ: 466465

Содержание

1	Задача №1: Распределение пар обуви					
	1.1	Формулировка задачи	3			
	1.2	Анализ	3			
	1.3	В Аналитическое решение				
	1.4	Асимптотика	4			
	1.5	Метод Монте-Карло	5			
	1.6	Приближённое решение Монте-Карло	5			
2	Задача №2: Геометрическая вероятность разлома стержня					
	2.1	Формулировка задачи	6			
	2.2	Графическая интерпретация задачи	6			
	2.3	Область интереса				
	2.4	Вычисление вероятности через площади	7			
	2.5	Вывод	8			
3	Задача №3: Условное распределение суммы геометрических величин					
	3.1	Условие	9			
	3.2	2 Аналитическое решение				
		3.2.1 1. Совместная вероятность $P(X=i,X+Y=j)$	9			
		3.2.2 2. Вероятность $P(X + Y = j)$	9			
		3.2.3	10			
	3.3	Интерпретация результата	10			
4	Задача №4: Генерация случайных чисел со сложной плотностью 1					
	4.1	Условие				
	4.2	Аналитическое решение	11			
		4.2.1 1. Анализ плотности и поиск функции распределения	11			
		4.2.2 2. Метод обратного преобразования	12			
		4.2.3 3. Метод отклонения (Rejection Sampling)	12			
5	Зад	Задача №5: Преобразование случайной величины с тяжелым хвостом				
	5.1	Условие	14			
	5.2	Решение	14			
		5.2.1 1. Нахождение нормирующей константы c	14			
		5.2.2 2. Плотность и функция распределения X	14			
		5.2.3	15			
		5.2.4 4. Распределение $Y = X^4$	16			
		5.2.5 5. Итоговые формулы	17			

6	Зад	ача №	6: Преобразование Рэлея в нормальное распределение	18		
	6.1	Услов	ие	18		
	6.2	Решен	ше	18		
		6.2.1	1. Совместное распределение (R,Θ)	18		
		6.2.2	2. Переход к новым переменным (X,Y)	18		
		6.2.3	3. Якобиан преобразования	18		
		6.2.4	4. Совместная плотность (X,Y)	19		
		6.2.5	5. Проверка независимости и маргинальных распределений	19		
		6.2.6	6. Числовые характеристики	19		
		6.2.7	Итоговый ответ	20		
7	Задача №7: Анализ двумерного дискретного распределения					
	7.1	Исход	ные данные	21		
		7.1.1	1.1. Значения случайных величин	21		
		7.1.2	1.2. Таблица совместных вероятностей $P(X = x_i, Y = y_j)$	21		
	7.2	Решен	пие	21		
		7.2.1	2. Пропущенное значение вероятности	21		
		7.2.2	3. Маргинальные распределения	21		
		7.2.3	4. Распределение $U=g(X,Y)$	22		
		7.2.4	5. Числовые характеристики			
		7.2.5	6. Ковариация и корреляция	24		
		7.2.6	7. Проверка на независимость			
		7.2.7	8. Заключение	24		

1 Задача №1: Распределение пар обуви

1.1 Формулировка задачи

Предположим, что у каждого ребёнка есть своя уникальная пара ботинок: левый и правый. Всего имеется n левых и n правых ботинок. Каждый ребёнок берёт один левый и один правый ботинок, причём:

- Левые ботинки распределяются случайно между детьми (т.е. случайная перестановка левых ботинок),
- Правые ботинки также распределяются случайно,
- Выбор левых и правых ботинок независим.

Нас интересует следующее событие: ни один ребёнок не получил оба своих собственных ботинка, т.е. для каждого ребёнка хотя бы один из двух ботинков — чужой. Иными словами, не существует ни одного ребёнка, у которого и левый, и правый ботинки — его собственные.

1.2 Анализ

Обозначим:

- Пусть L случайная перестановка левых ботинок: L(i) номер владельца левого ботинка, доставшегося ребёнку i.
- \bullet Аналогично, R(i) номер владельца правого ботинка у ребёнка i.

Тогда ребёнок i получил свою пару, если L(i) = i и R(i) = i. Нас интересует вероятность события:

$$A = \{ \forall i \in \{1, \dots, n\} :$$
не $(L(i) = i \text{ и } R(i) = i) \}$.

То есть, ни для одного i не выполняется одновременно L(i) = i и R(i) = i.

1.3 Аналитическое решение

Поскольку перестановки L и R независимы и равномерны по всем n! перестановкам, то общее число исходов равно $(n!)^2$. Обозначим через X — число детей, получивших свою пару. Мы хотим найти P(X=0).

Для этого воспользуемся принципом включения-исключения. Пусть A_i — событие, что ребёнок i получил свою пару (т.е. L(i) = i и R(i) = i). Тогда:

$$P(X=0) = 1 - P\left(\bigcup_{i=1}^{n} A_i\right).$$

По формуле включения-исключения:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}}).$$

Теперь найдём $P(A_{i_1} \cap \cdots \cap A_{i_k})$. Чтобы все k указанных детей получили свои пары, необходимо:

- В перестановке $L: L(i_j) = i_j$ для всех j = 1..k,
- В перестановке $R: R(i_j) = i_j$ для всех j = 1..k.

То есть, фиксированы k позиций в обеих перестановках. Остальные n-k элементов могут быть переставлены произвольно. Число таких перестановок: (n-k)! для L, и столько же для R. Итого: $((n-k)!)^2$ благоприятных исходов. Общее число исходов: $(n!)^2$. Следовательно:

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{((n-k)!)^2}{(n!)^2}.$$

Число способов выбрать k детей: $\binom{n}{k}$. Поэтому:

$$P(X=0) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{((n-k)!)^2}{(n!)^2}.$$

Упростим:

$$P(X=0) = \frac{1}{(n!)^2} \sum_{k=0}^{n} (-1)^k \binom{n}{k} ((n-k)!)^2.$$

Можно также переписать, сделав замену m = n - k:

$$P(X=0) = \frac{1}{(n!)^2} \sum_{m=0}^{n} (-1)^{n-m} \binom{n}{m} (m!)^2.$$

Но удобнее оставить в первоначальном виде:

$$P_n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{n!}{(n-k)!}\right)^2.$$

Это и есть точная аналитическая формула.

1.4 Асимптотика

Заметим, что при больших n, вероятность того, что конкретный ребёнок получит свою пару, равна:

$$P(A_i) = P(L(i) = i) \cdot P(R(i) = i) = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2}.$$

Тогда ожидаемое число детей с полной парой:

$$E[X] = n \cdot \frac{1}{n^2} = \frac{1}{n} \to 0.$$

Это наводит на мысль, что $P(X=0) \to 1$ при $n \to \infty$. Более точно, можно показать (через разложение выше), что:

$$P_n = 1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right).$$

Но точное значение лучше вычислять по формуле.

1.5 Метод Монте-Карло

Алгоритм имитации:

- 1. Задать n.
- 2. Выполнить N экспериментов:
 - Сгенерировать случайную перестановку L из $\{1, \ldots, n\}$.
 - Сгенерировать случайную перестановку R.
 - Проверить, существует ли i, такое что L[i] = i+1 и R[i] = i+1 (если индексация с 0).
 - ullet Если ни для одного i это не выполняется засчитать успех.
- 3. Вероятность \approx (число успехов) / N.

1.6 Приближённое решение Монте-Карло

Реализовано в Jupyter Notebook.

2 Задача №2: Геометрическая вероятность разлома стержня

2.1 Формулировка задачи

Рассмотрим стержень длиной 200 мм, который ломают в двух случайных точках. Каждая точка излома выбирается независимо и равномерно на отрезке [0, 200]. Требуется найти вероятность того, что хотя бы одна из трёх получившихся частей имеет длину не более 10 мм.

2.2 Графическая интерпретация задачи

Рассмотрим пространство всех возможных исходов разлома стержня длиной 200 мм в двух случайных точках. Поскольку каждая точка излома выбирается независимо и равномерно на отрезке [0, 200], совокупность всех исходов можно представить как квадрат со стороной 200 на плоскости координат (X_1, X_2) , где:

- \bullet ось X_1 положение первой точки излома,
- ullet ось X_2 положение второй точки излома.

Каждая точка внутри этого квадрата соответствует одному возможному способу разлома стержня.

2.3 Область интереса

Нас интересует вероятность того, что хотя бы одна из трёх получившихся частей имеет длину не более 10 мм. Это событие является дополнением к тому, что все три части длиннее 10 мм. Геометрически условие «все части > 10 мм» задаёт следующие ограничения на (X_1, X_2) :

- 1. Обе точки должны лежать внутри отрезка [10, 190], иначе крайняя часть будет короче 10 мм.
- 2. Расстояние между точками должно быть больше 10 мм, иначе средняя часть будет слишком короткой.

Эти условия вырезают из квадрата центральную шестиугольную область, ограниченную:

- вертикальными линиями x = 10 и x = 190,
- горизонтальными линиями y = 10 и y = 190,
- диагоналями y = x + 10 и y = x 10.

Вся эта шестиугольная область соответствует благоприятным исходам для события «все части > 10 мм».

2.4 Вычисление вероятности через площади

Поскольку распределение равномерное, вероятность любого события равна отношению площади соответствующей области к площади всего квадрата.

- Площадь всего квадрата: $200 \times 200 = 40000$.
- Площадь шестиугольника (все части > 10 мм): 28 900.
- Площадь области, где хотя бы одна часть < 10 мм: $40\,000 28\,900 = 11\,100$.
- Искомая вероятность:

$$P = \frac{11\,100}{40\,000} = 0.2775.$$

Рис. 1: Графическое представление вероятности разлома стержня длиной 200 мм. Квадрат 200×200 показывает пространство всех возможных исходов для точек излома X_1 и X_2 . Зелёный шестиугольник соответствует случаям, когда все три части стержня длиннее 10 мм, а остальная область (27.75% площади) — случаям, когда хотя бы одна часть короче или равна 10 мм.

2.5 Вывод

Графическая интерпретация позволяет наглядно увидеть, что искомое событие занимает около 27.75% всей области возможных исходов. Это подтверждает аналитический результат и демонстрирует мощь геометрической вероятности: сложная задача о разломе стержня сводится к простому вычислению площадей на плоскости.

Таким образом, вероятность того, что при двух случайных разломах стержня длиной $200~\rm mm$ хотя бы одна из частей окажется короче или равной $10~\rm mm$, составляет $0.2775~\rm (или 27.75\%)$.

Задача №3: Условное распределение суммы геометрических величин

3.1 Условие

Пусть X и Y — независимые случайные величины, распределённые по геометрическому закону с параметром $p \in (0,1)$, то есть:

$$P(X = i) = P(Y = i) = (1 - p)^{i} p, \quad i = 0, 1, 2, \dots$$

Требуется найти условную вероятность:

$$P(X = i \mid X + Y = j).$$

3.2 Аналитическое решение

3.2.1 1. Совместная вероятность P(X = i, X + Y = j)

Событие $\{X=i,X+Y=j\}$ эквивалентно событию $\{X=i,Y=j-i\}$. Так как X и Y независимы, имеем:

$$P(X = i, Y = j - i) = P(X = i) \cdot P(Y = j - i).$$

Подставляем формулы для геометрического распределения:

$$P(X = i, Y = j - i) = [(1 - p)^{i}p] \cdot [(1 - p)^{j-i}p] = (1 - p)^{j}p^{2}.$$

Это верно при условии $0 \le i \le j$, иначе вероятность равна 0.

3.2.2 2. Вероятность P(X + Y = j)

Случайная величина Z = X + Y принимает значение j, если $X = i, Y = j - i, i = 0, 1, \dots, j$. Все эти события несовместны, поэтому:

$$P(X + Y = j) = \sum_{i=0}^{j} P(X = i, Y = j - i).$$

Подставляем полученное ранее выражение:

$$P(X+Y=j) = \sum_{j=0}^{j} (1-p)^{j} p^{2} = (1-p)^{j} p^{2} \cdot (j+1).$$

3.2.3 3. Условная вероятность $P(X = i \mid X + Y = j)$

По определению условной вероятности:

$$P(X = i \mid X + Y = j) = \frac{P(X = i, X + Y = j)}{P(X + Y = j)}.$$

Подставляем найденные выражения:

$$P(X = i \mid X + Y = j) = \frac{(1 - p)^{j} p^{2}}{(1 - p)^{j} p^{2} (j + 1)} = \frac{1}{j + 1}.$$

Окончательный ответ:

$$P(X = i \mid X + Y = j) = \frac{1}{j+1}, \quad 0 \le i \le j.$$

3.3 Интерпретация результата

Полученный результат означает, что при условии X+Y=j случайная величина X распределена равномерно на множестве $\{0,1,\ldots,j\}$. Это характерное свойство для суммы независимых одинаково распределённых геометрических случайных величин.

4 Задача №4: Генерация случайных чисел со сложной плотностью

4.1 Условие

Дана плотность распределения:

$$p(x) = \frac{3x^2}{2\pi} e^{-\frac{(5-x^3)^2}{2}}.$$

Требуется:

- 1. Реализовать генерацию случайных чисел методом, встроенным в scipy.stats.rv_continuous.
- 2. Реализовать генерацию с помощью обратного преобразования (метод обратной функции).
- 3. Реализовать генерацию методом отклонения (rejection sampling).

4.2 Аналитическое решение

4.2.1 1. Анализ плотности и поиск функции распределения

Плотность:

$$p(x) = \frac{3x^2}{2\pi}e^{-\frac{(5-x^3)^2}{2}}.$$

Заметим, что она содержит выражение $(5-x^3)$ в экспоненте. Это напоминает плотность нормального распределения, но с заменой переменной.

Замена переменной Введём новую переменную:

$$t = x^3 \implies x = t^{1/3}, \quad dx = \frac{1}{3}t^{-2/3}dt.$$

Тогда плотность преобразуется:

$$p(x)dx = \frac{3x^2}{2\pi}e^{-\frac{(5-t)^2}{2}} \cdot \frac{1}{3}t^{-2/3}dt.$$

Сокращаем 3 и замечаем, что $x^2 \cdot t^{-2/3} = t^{2/3} \cdot t^{-2/3} = 1$:

$$p(x)dx = \frac{1}{2\pi}e^{-\frac{(5-t)^2}{2}}dt.$$

Это — плотность нормального распределения N(5,1) для переменной t.

Функция распределения F(x)

$$F(x) = P(X \le x) = P(T \le x^3) = \Phi\left(\frac{x^3 - 5}{1}\right) = \Phi(x^3 - 5),$$

где Ф — функция стандартного нормального распределения.

4.2.2 2. Метод обратного преобразования

Чтобы сгенерировать X, нужно решить уравнение:

$$F(X) = U, \quad U \sim U(0, 1).$$

$$\Phi(X^3 - 5) = U \implies X^3 - 5 = \Phi^{-1}(U).$$

$$X = (5 + \Phi^{-1}(U))^{1/3}.$$

Таким образом, для генерации X достаточно взять квантиль нормального распределения и преобразовать по этой формуле.

4.2.3 3. Метод отклонения (Rejection Sampling)

Обоснование метода Пусть f(x) — целевая плотность, g(x) — вспомогательная плотность, из которой мы умеем генерировать, и c — такая константа, что:

$$f(x) \le c \cdot g(x) \quad \forall x.$$

Алгоритм:

- 1. Генерируем $Y \sim g(y)$.
- 2. Генерируем $U \sim U(0, 1)$.
- 3. Если $U \leq \frac{f(Y)}{c \cdot q(Y)}$, принимаем X = Y, иначе повторяем.

Применение к нашей плотности Мы уже выяснили, что $T = X^3 \sim N(5,1)$. Значит, можно взять g(x) — такую, чтобы из неё было легко генерировать, и которая мажорирует f(x). Например, можно сгенерировать $T \sim N(5,1)$, а затем положить $X = T^{1/3}$. Это точный метод, а не rejection sampling, и он эквивалентен обратному преобразованию.

Если же мы хотим применить rejection sampling напрямую к p(x), можно выбрать g(x) в виде, например, равномерного распределения на достаточно большом интервале или другого подходящего распределения, и подобрать c так, чтобы $c \cdot g(x) \ge p(x)$.

Пример выбора g(x) Заметим, что p(x) сосредоточена в области, где $x^3 \approx 5$, т.е. $x \approx \sqrt[3]{5} \approx 1.71$. Максимум p(x) достигается при $x = \sqrt[3]{5}$:

$$p_{\text{max}} = \frac{3 \cdot 5^{2/3}}{2\pi} \approx \frac{3 \cdot 2.924}{2.5066} \approx 3.5.$$

Можно взять g(x)= Uniform[a,b], где $a\approx 1,\ b\approx 2.5,\$ и $c=(b-a)\cdot p_{\max}\approx 1.5\cdot 3.5\approx 5.25.$ Тогда:

$$f(x) \le c \cdot g(x) = \frac{5.25}{1.5} = 3.5$$
 Ha [1, 2.5].

И алгоритм будет работать.

5 Задача №5: Преобразование случайной величины с тяжелым хвостом

5.1 Условие

Дана плотность распределения:

$$f_X(x) = \frac{c}{x^8} \cdot 1(|x| \ge 2),$$

и случайная величина $Y = X^4$. Требуется найти нормирующую константу c, плотность $f_X(x)$, числовые характеристики X, а также плотность и функцию распределения Y.

5.2 Решение

5.2.1 1. Нахождение нормирующей константы c

Данная плотность $f_X(x) = \frac{c}{x^8} \cdot 1(|x| \ge 2)$ определена только для $|x| \ge 2$. Для нормировки плотности должно выполняться:

$$1 = \int_{-\infty}^{\infty} f_X(x) \, dx = 2 \int_{2}^{\infty} \frac{c}{x^8} \, dx.$$

Вычислим интеграл:

$$\int_{2}^{\infty} x^{-8} dx = \left[\frac{x^{-7}}{-7} \right]_{2}^{\infty} = \frac{1}{7 \cdot 2^{7}} = \frac{1}{7 \cdot 128} = \frac{1}{896}.$$

Тогда:

$$1 = 2c \cdot \frac{1}{896} = \frac{c}{448} \implies c = 448.$$

Итог: нормирующая константа c = 448.

5.2.2 2. Плотность и функция распределения X

Плотность:

$$f_X(x) = \begin{cases} \frac{448}{x^8}, & |x| \ge 2, \\ 0, & |x| < 2. \end{cases}$$

Функция распределения $F_X(x)$:

• При x < -2:

$$F_X(x) = \int_{-\infty}^x \frac{448}{t^8} dt.$$

Замена u=-t, тогда du=-dt, пределы: $t=-\infty \to u=+\infty,\, t=x \to u=-x$:

$$F_X(x) = \int_{+\infty}^{-x} \frac{448}{u^8} (-du) = \int_{-x}^{\infty} \frac{448}{u^8} du = 448 \cdot \left[\frac{u^{-7}}{-7} \right]_{-x}^{\infty} = \frac{448}{7|x|^7} = \frac{64}{|x|^7}.$$

• При $-2 \le x < 2$:

$$F_X(x) = F_X(-2) = \frac{64}{2^7} = \frac{64}{128} = \frac{1}{2}.$$

• При $x \ge 2$:

$$F_X(x) = \frac{1}{2} + \int_2^x \frac{448}{t^8} dt = \frac{1}{2} + 448 \cdot \left[\frac{t^{-7}}{-7} \right]_2^x = \frac{1}{2} - \frac{448}{7} \left(\frac{1}{x^7} - \frac{1}{2^7} \right) = \frac{1}{2} - \frac{64}{x^7} + \frac{64}{128} = 1 - \frac{64}{x^7}.$$

Итог:

$$F_X(x) = \begin{cases} \frac{64}{|x|^7}, & x < -2, \\ \frac{1}{2}, & -2 \le x < 2, \\ 1 - \frac{64}{x^7}, & x \ge 2. \end{cases}$$

5.2.3 3. Числовые характеристики X

Математическое ожидание

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

Функция $xf_X(x)$ нечётная, а область симметрична относительно 0, поэтому:

$$E[X] = 0.$$

Дисперсия

$$E[X^{2}] = 2 \int_{2}^{\infty} x^{2} \cdot \frac{448}{x^{8}} dx = 896 \int_{2}^{\infty} x^{-6} dx.$$

$$\int_{2}^{\infty} x^{-6} dx = \left[\frac{x^{-5}}{-5} \right]_{2}^{\infty} = \frac{1}{5 \cdot 2^{5}} = \frac{1}{160}.$$

$$E[X^{2}] = 896 \cdot \frac{1}{160} = \frac{896}{160} = \frac{28}{5} = 5.6.$$

$$\sigma_{X} = \sqrt{E[X^{2}]} = \sqrt{\frac{28}{5}}.$$

Мода Плотность $f_X(x) = \frac{448}{x^8}$ убывает при $|x| \ge 2$, значит, максимум достигается в точках $x = \pm 2$.

Медиана

$$F_X(m) = \frac{1}{2}.$$

Из вида $F_X(x)$ видно, что $F_X(x) = \frac{1}{2}$ для всех $x \in [-2,2)$. Обычно выбирают m=0.

Асимметрия Распределение симметрично относительно нуля, поэтому все нечётные центральные моменты равны 0, включая коэффициент асимметрии.

Эксцесс

$$\gamma_2 = \frac{E[X^4]}{\sigma_X^4} - 3.$$

$$E[X^4] = 2 \int_2^\infty x^4 \cdot \frac{448}{x^8} dx = 896 \int_2^\infty x^{-4} dx.$$

$$\int_2^\infty x^{-4} dx = \left[\frac{x^{-3}}{-3}\right]_2^\infty = \frac{1}{3 \cdot 2^3} = \frac{1}{24}.$$

$$E[X^4] = 896 \cdot \frac{1}{24} = \frac{896}{24} = \frac{112}{3}.$$

$$\sigma_X^4 = \left(\frac{28}{5}\right)^2 = \frac{784}{25}.$$

$$\gamma_2 = \frac{\frac{112}{384}}{\frac{784}{25}} - 3 = \frac{112 \cdot 25}{3 \cdot 784} - 3 = \frac{25}{21} - 3 = \frac{25 - 63}{21} = -\frac{38}{21} \approx -1.8095.$$

5.2.4 4. Распределение $Y = X^4$

Область значений Так как $|X| \ge 2$, то $Y \ge 16$.

Функция распределения $F_Y(y)$ При y < 16: $F_Y(y) = 0$. При $y \ge 16$:

$$F_Y(y) = P(X^4 \le y) = P(|X| \le y^{1/4}) = P(-y^{1/4} \le X \le y^{1/4}).$$

Но $|X| \geq 2$, поэтому при $y \geq 16$ имеем $y^{1/4} \geq 2$, и:

$$F_Y(y) = P(-y^{1/4} \le X \le y^{1/4}) = P(2 \le X \le y^{1/4}) + P(-y^{1/4} \le X \le -2).$$

Из симметрии:

$$= 2 \cdot P(2 \le X \le y^{1/4}) = 2 \left[F_X(y^{1/4}) - F_X(2) \right].$$

$$F_X(2) = 1 - \frac{64}{2^7} = 1 - \frac{64}{128} = \frac{1}{2}, \quad F_X(y^{1/4}) = 1 - \frac{64}{y^{7/4}}.$$

$$F_Y(y) = 2 \left(1 - \frac{64}{y^{7/4}} - \frac{1}{2} \right) = 1 - \frac{128}{y^{7/4}}.$$

Плотность $f_Y(y)$

$$f_Y(y) = F_Y'(y) = 128 \cdot \frac{7}{4} y^{\frac{7}{4} - 1} = \frac{224}{y^{11/4}}, \quad y \ge 16.$$

Проверка нормировки

$$\int_{16}^{\infty} \frac{224}{y^{11/4}} \, dy = 224 \cdot \left[\frac{y^{-7/4}}{-\frac{7}{4}} \right]_{16}^{\infty} = 224 \cdot \frac{4}{7} \cdot 16^{-7/4} = 128 \cdot (2^4)^{-7/4} = 128 \cdot 2^{-7} = \frac{128}{128} = 1.$$

Нормировка верна.

5.2.5 5. Итоговые формулы

- Нормирующая константа: c = 448.
- Плотность:

$$f_X(x) = \begin{cases} \frac{448}{x^8}, & |x| \ge 2, \\ 0, & |x| < 2. \end{cases}$$

• Функция распределения:

$$F_X(x) = \begin{cases} \frac{64}{|x|^7}, & x < -2, \\ \frac{1}{2}, & -2 \le x < 2, \\ 1 - \frac{64}{x^7}, & x \ge 2. \end{cases}$$

- Математическое ожидание: E[X] = 0.
- Дисперсия: $\sigma_X^2 = \frac{28}{5}$.
- Мода: $x = \pm 2$.
- Медиана: m=0 (или любая точка в [-2,2)).
- Эксцесс: $\gamma_2 \approx -1.8095$.
- Плотность Y:

$$f_Y(y) = \frac{224}{y^{11/4}}, \quad y \ge 16.$$

• Функция распределения Y:

$$F_Y(y) = 1 - \frac{128}{y^{7/4}}, \quad y \ge 16.$$

6 Задача №6: Преобразование Рэлея в нормальное распределение

6.1 Условие

Пусть случайная величина R имеет распределение Рэлея с плотностью:

$$f_R(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \cdot 1(r \ge 0),$$

где $\sigma > 0$, и пусть $\Theta \sim U[0, 2\pi]$. Показать, что величины

$$X = R\cos\Theta, \quad Y = R\sin\Theta$$

независимы и распределены нормально с параметрами $N(0, \sigma^2)$, если R и Θ независимы.

6.2 Решение

6.2.1 1. Совместное распределение (R, Θ)

Поскольку R и Θ независимы, их совместная плотность равна произведению плотностей:

$$p_{R,\Theta}(r,\theta) = f_R(r) \cdot f_{\Theta}(\theta) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \cdot \frac{1}{2\pi},$$

где $r \ge 0, \, \theta \in [0, 2\pi).$

6.2.2 2. Переход к новым переменным (X, Y)

Введём преобразование:

$$X = R\cos\Theta, \quad Y = R\sin\Theta.$$

Обратное преобразование:

$$R = \sqrt{X^2 + Y^2}, \quad \Theta = 2(Y, X),$$

где 2 — двухаргументный арктангенс, определяющий угол однозначно на $[0,2\pi).$

6.2.3 3. Якобиан преобразования

Матрица Якоби перехода от (R,Θ) к (X,Y):

$$J = \begin{pmatrix} \frac{\partial X}{\partial R} & \frac{\partial X}{\partial \Theta} \\ \frac{\partial Y}{\partial R} & \frac{\partial Y}{\partial \Theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -R \sin \theta \\ \sin \theta & R \cos \theta \end{pmatrix}.$$

Определитель:

$$\det J = \cos \theta \cdot R \cos \theta - (-R \sin \theta) \cdot \sin \theta = R \cos^2 \theta + R \sin^2 \theta = R.$$

Следовательно:

$$|\det J| = R.$$

Для обратного преобразования $(X,Y) \to (R,\Theta)$ модуль якобиана равен:

$$|\det J^{-1}| = \frac{1}{R} = \frac{1}{\sqrt{X^2 + Y^2}}.$$

6.2.4 4. Совместная плотность (X, Y)

По формуле преобразования случайных векторов:

$$p_{X,Y}(x,y) = p_{R,\Theta}(r(x,y), \theta(x,y)) \cdot |\det J^{-1}|.$$

Подставляем:

$$p_{X,Y}(x,y) = \left[\frac{r}{\sigma^2}e^{-\frac{r^2}{2\sigma^2}} \cdot \frac{1}{2\pi}\right] \cdot \frac{1}{r},$$

где $r = \sqrt{x^2 + y^2}$. Заметим, что r в числителе и знаменателе сокращается:

$$p_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right).$$

6.2.5 5. Проверка независимости и маргинальных распределений

Совместная плотность распадается в произведение:

$$p_{X,Y}(x,y) = \left[\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}\right] \cdot \left[\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{y^2}{2\sigma^2}}\right].$$

Это — произведение двух плотностей нормального распределения $N(0, \sigma^2)$. Следовательно:

- $X \sim N(0, \sigma^2),$
- $Y \sim N(0, \sigma^2),$
- \bullet X и Y независимы.

6.2.6 6. Числовые характеристики

- Математическое ожидание: E[X] = E[Y] = 0,
- Дисперсия: $D[X] = D[Y] = \sigma^2$,
- Ковариация: Cov(X,Y)=0 (так как X и Y независимы).

6.2.7 Итоговый ответ

$$X \sim N(0, \sigma^2), \quad Y \sim N(0, \sigma^2), \quad X$$
 и Y независимы.

7 Задача №7: Анализ двумерного дискретного распределения

7.1 Исходные данные

7.1.1 1.1. Значения случайных величин

- X: -5, -4, 13, 17.
- Y: -6, -3, 0, 8, 9.

7.1.2 1.2. Таблица совместных вероятностей $P(X = x_i, Y = y_i)$

$$X \setminus Y$$
 -6
 -3
 0
 8
 9
 -5
 0.02
 0.07
 0.08
 0.03
 0.03
 -4
 0.11
 0.03
 0.02
 0.03
 0.06
 13
 0.01
 0.02
 0.04
 0.04
 0.08
 17
 0.02
 0.11
 0.06
 0.04
 0.10

7.2 Решение

7.2.1 2. Пропущенное значение вероятности

Сумма известных вероятностей:

$$S = 0.02 + 0.07 + 0.08 + 0.03 + 0.03 + 0.01 + 0.03 + 0.02 + 0.03 + 0.06 + 0.01 + 0.02 + 0.04 + 0.04 + 0.08 + 0.02 + 0.11 + 0.02 + 0.01 + 0.02 + 0.03 + 0.03 + 0.02 + 0.02 + 0.0$$

Пропущенная вероятность:

$$p = 1 - 0.97 = 0.03$$
.

7.2.2 3. Маргинальные распределения

3.1. Распределение X

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j).$$

3.2. Распределение Y

$$P(Y = y_j) = \sum_{i} P(X = x_i, Y = y_j).$$

7.2.3 4. Распределение U = g(X, Y)

4.1. Функция преобразования

$$g(X,Y) = (-1)^{|X|+|Y|} - (-1)^{|XY|}.$$

4.2. Вычисленные значения ${\it U}$

4.3. Распределение U

$$\begin{array}{c|cccc} u & -2 & 0 & 2 \\ \hline P(U) & 0.43 & 0.16 & 0.41 \end{array}$$

7.2.4 5. Числовые характеристики

5.1. Для случайной величины X

• Математическое ожидание:

$$E[X] = (-5)(0.23) + (-4)(0.25) + 13(0.19) + 17(0.33) = 5.93.$$

• Дисперсия:

$$E[X^{2}] = 25(0.23) + 16(0.25) + 169(0.19) + 289(0.33) = 137.23,$$
$$Var(X) = 137.23 - (5.93)^{2} = 102.0651.$$

• Среднее квадратическое отклонение:

$$\sigma_X = \sqrt{102.0651} \approx 10.103.$$

- Мода: 17 (вероятность 0.33).
- Медиана: 13 (так как $P(X \le 13) = 0.67 \ge 0.5$).

5.2. Для случайной величины Y

• Математическое ожидание:

$$E[Y] = (-6)(0.16) + (-3)(0.23) + 0(0.20) + 8(0.14) + 9(0.27) = 1.90.$$

• Дисперсия:

$$E[Y^2] = 36(0.16) + 9(0.23) + 0(0.20) + 64(0.14) + 81(0.27) = 38.66,$$
$$Var(Y) = 38.66 - (1.90)^2 = 35.05.$$

• Среднее квадратическое отклонение:

$$\sigma_Y = \sqrt{35.05} \approx 5.920.$$

- Мода: 9 (вероятность 0.27).
- Медиана: 0 (так как $P(Y \le 0) = 0.59 \ge 0.5$).

5.3. Коэффициенты асимметрии и эксцесса

• Асимметрия:

$$\gamma_1 = \frac{E[(X - E[X])^3]}{\sigma_X^3}.$$

• Эксцесс:

$$\gamma_2 = \frac{E[(X - E[X])^4]}{\sigma_X^4} - 3.$$

7.2.5 6. Ковариация и корреляция

6.1. Ковариация

$$E[XY] = \sum_{i,j} x_i y_j P(X = x_i, Y = y_j) = 24.03,$$
$$Cov(X, Y) = E[XY] - E[X]E[Y] = 24.03 - (5.93)(1.90) = 12.763.$$

6.2. Коэффициент корреляции

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{12.763}{(10.103)(5.920)} \approx 0.213.$$

7.2.6 7. Проверка на независимость

Проверяем условие независимости:

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j) \quad \forall i, j.$$

Пример:

$$P(X = -5, Y = -6) = 0.02, \quad P(X = -5) \cdot P(Y = -6) = 0.23 \cdot 0.16 = 0.0368.$$

Условие не выполняется, следовательно, X и Y зависимы.

7.2.7 8. Заключение

В ходе решения найдены все требуемые характеристики совместного распределения (X,Y). Установлено, что X и Y являются зависимыми случайными величинами с положительной корреляцией ($\rho \approx 0.213$).