CS301 Data Structure and Algorithms

LECTURE 13: MINIMUM SPANNING TREE

Pandav Patel Assistant Professor

Computer Engineering Department Dharmsinh Desai University Nadiad, Gujarat, India

OBJECTIVE MINIMUM SPANNING TREE (MST) ALGORITHMS TO FIND MST

OBJECTIVE

- To understand what is spanning tree for a graph
- To understand what is minimum spanning tree (MST) for a graph
- To learns algorithms to find out MST for a given graph

OVERVIEW

- 1 Objective
- 2 MINIMUM SPANNING TREE (MST)
 - What is spanning tree?
 - What is Minimum Spanning Tree (MST)
- 3 Algorithms to find MST
 - Kruskal's algorithm
 - Prim's algorithm

WHAT IS SPANNING TREE?

- What is tree?
 - A connected acyclic undirected graph
- \blacksquare Spanning tree for an undirected graph G(V, E) is
 - Connected subgraph (subset of E) without cycles which includes all the vertices (V)
- How many edges in the spanning tree of a graph with *V* vertices?
 - Always V 1.
 - If it is less than V-1, then all vertices can not be connected.
 - If it is more than V-1, then it must contain a cycle and hence it will not be tree anymore.
- Can a graph have more than one spanning tree?

WHAT IS SPANNING TREE? (CONT...)

WHAT IS SPANNING TREE? (CONT...)

WHAT IS MINIMUM SPANNING TREE (MST)?

- Spanning tree with minimum cost (sum of weights of edges included in spanning tree) is called Minimum Spanning Tree (MST)
- Is MST unique?
 - Yes, If edge weights of a graph are distinct
 - There may be more than one MST for a graph if edge weights are not unique

- Edges are sorted in ascending order of their weights
- Sets are used to detect cycle in the tree. Initially each vertex has its own set
- Picks edges one by one in ascending order
- If two endpoints of an edge are in the same set then it forms a cycle. Otherwise that edge is added to the spanning tree and sets corresponding to endpoints are combined

6 A-F

5 D-I

8 A-E ο Δ-R

9 A-B 11 A-G

12 G-I

14 C-D

6 A-F 8 A-E

9 A-B

11 A-G

12 G-I 14 C-D

11 A-G 12 G-I 14 C-D

8 A-E9 A-B

9 A-B

11 A-G

12 G-I

14 C-D

- Is it guaranteed that Kruskal's algo will produce optimal solution (tree with least possible weight)? proof? Let us prove it by contradiction (Assumption: All edges of the graph have unique weight). Link to relevant NPTEL video
 - Assume that Kruskal's algorithm picks following edges. $K_1, K_2...$ are representing weights of respective edges
 - \blacksquare $K_1 < K_2 < K_3..... < K_i.... < K_{V-1}$
 - Say there exists an optimal spanning tree with less weight than one produced by Kruskal's algo. Edges are as follow
 - $O_1 < O_2 < O_3..... < O_i.... < O_{V-1}$
 - Assume $K_j = O_j$ for all j < i. In other words i^{th} edge is the first edge with different weight in both trees
 - K_i can not be greater than O_i , otherwise Kruskal's algo would have picked O_i over K_i . As Picking O_i can not form cycle because K_1 to K_{i-1} is same as O_1 to O_{i-1} . If it forms cycle in Kruskal's by picking O_i then it would have formed cycle in optimal solution as well. It is contradiction as tree can not contain cycle
 - Can K_i be smaller than O_i ?

- Continuing from previous slide...
- Can K_i be smaller than O_i ? If so...
- Add K_i to optimal tree. It will form a cycle. Say O_p , O_q , O_r , and K_i are part of the cycle
- If K_i is not the largest among O_p , O_q , O_r , and K_i then largest edge can be removed and K_i be added to optimal tree and it will reduce its weight. Means original optimal tree was not actually optimal. Hence the contradiction.
- So K_i should be the largest of all the edges in the cycle. In that case O_p , O_q and O_r must be from O_1 to O_{i-1} , as they all need to be smaller than K_i (hence they must be smaller than O_i). As O_p , O_q and O_r are less than K_i , they must be present in K_1 to K_{i-1} . And in that case they would have formed a cycle in tree produced by Kruskal's algorithm (K_p , K_q , K_r , and K_i), which is a contradiction as it is spanning tree which could not have a cycle
- Algorithm works fine when there are edges with same weight in the graph. We assumed that edge weights are unique just to simplify our proof.
- When edges with same weights are present graph may have more than one MST

- How would you implement Kruskal's algorithm? What data structures are required?
- How to maintain sets? Using hashmap? What is the time complexity of merging two hashmaps?
- Any other data structure? What will be the complexity of find and union for that data structure?
- What is overall complexity of your approach?
- By using a data structure called union set, complexity can be reduced to E*log(E)
 - Click this to learn disjoint set data structure

PRIM'S ALGORITHM

- Cut the graph into two sets. Let us call them *S* and *S'*. A vertex is picked at random and is added to *S*. Rest of the vertices are part of *S'*
- Smallest edge that is connecting a vertex in *S* and another vertex in *S'* is added to the solution and its endpoint in *S'* is moved from *S'* to *S*
- \blacksquare Repeat above step until S' becomes empty
- NOTE: Edges connecting two sets will change as vertex moves from *S'* to *S*

$$S = \{F\}$$

 $S' = \{A, B, C, D, E, G, H, I\}$

- Cost: 0
- Red edges are part of MST and blue edges are connecting two sets
- \blacksquare Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H\}$$

 $S' = \{A, B, C, D, E, G, I\}$

- Cost: 4
- Red edges are part of MST and blue edges are connecting two sets
- Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G\}$$

 $S' = \{A, B, C, D, E, I\}$

- Cost: 5
- Red edges are part of MST and blue edges are connecting two sets
- Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G, A\}$$

 $S' = \{B, C, D, E, I\}$

- Cost: 11
- Red edges are part of MST and blue edges are connecting two sets
- \blacksquare Red vertices are present in S, rest of the vertices are in S'
- Note: Edge with weight 11 changed from blue to black

$$S = \{F, H, G, A, E\}$$

 $S' = \{B, C, D, I\}$

- Cost: 19
- Red edges are part of MST and blue edges are connecting two sets
- \blacksquare Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G, A, E, D\}$$

 $S' = \{B, C, I\}$

- Cost: 20
- Red edges are part of MST and blue edges are connecting two sets
- Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G, A, E, D, I\}$$

 $S' = \{B, C\}$

- Cost: 23
- Red edges are part of MST and blue edges are connecting two sets
- Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G, A, E, D, I, B\}$$

 $S' = \{C\}$

- Cost: 32
- Red edges are part of MST and blue edges are connecting two sets
- \blacksquare Red vertices are present in S, rest of the vertices are in S'

$$S = \{F, H, G, A, E, D, I, B, C\}$$

 $S' = \{\}$

- Cost: 34
- Red edges are part of MST and blue edges are connecting two sets
- Red vertices are present in S, rest of the vertices are in S'

- Prim's algorithm is based on that fact that minimum edge between two sets of a cut will always be part of MST. (Assumption: All edges have distinct weight. In case edges have same weights then one of the two must be part of the MST)
 - Proof? Let us prove it by contradiction. Link to relevant NPTEL video
 - Say at some point while running Prim's algo, there is a minimum edge *e* connecting two sets of the cut which is not included in MST
 - So if we add edge e to MST then it will create a cycle
 - And that cycle must contain at least one edge (other than edge *e*) which is connecting the two sets (at that point during execution of prim's algo). Because if no such edge is present in the cycle then how are endpoints of edge *e* connected in MST? MST must have at least one edge which connects two sets.
 - Now we can remove one edge from the cycle and reduce the cost of spanning tree.
 - Should we remove edge *e* or the other edge with more weight than edge *e* (other edge must have more weight than edge *e* as edge *e* is *minimum* edge connecting two sets at that time)? We must remove the other edge. Hence we prove that edge *e* will be part of the MST

- How would you implement Prim's algorithm? What data structures are required?
- How to maintain list of edges across sets? How will you update them after inclusion of new edge in to the solution
- Any other data structure that can be used?
- What is overall complexity of your approach?
- By using a *heap* data structure, complexity can be reduced to **E*log(E)**
 - We will learn *heap* data structure in coming days