Einleitung

#Definiton 0.1:

Numerische Mathematik ist die Kunst der fehlerbehafteten rechnerischen Lösung kontinuierlicher Probleme

- "Fehlerbehaftet" Kontrolle über die in der Rechnung entstehenden fehler hat
- "Kontinuierlich" in $\mathbb R$ und $\mathbb C$
- "Rechnerisch" Verfahren die auf die Benutzung eines Computers zugeschnitten sind

1. Gleitkommazahlen

Zahlendarstellung im Stellenwertsystem zur Basis $\beta \in \mathbb{N}_{\geq 2}$. Für jedes $x \in \mathbb{R}$ gibt es ein Vorzeichen $v \in \{-1, +1\}$ und eine Ziffernfolge $(z_k)_{k \in \mathbb{Z}_{\leq n}}$ mit $z_k \in \{0, \dots, \beta-1\}$, wobei $n \in \mathbb{N}$, und $x = v * \sum_{k = -\infty}^n z_k \beta^k$. Nicht alle bis auf endliche viele Nachkommastellen gleich $\beta-1$ sind, diese Darstellung nennt man Festkommadarstellung.

#Definiton 1.1

Sei $\beta \in \mathbb{N}_{\geq 2}$. Eine **Gleitkommazahl** zur Basis β mit **Mantissenlänge** l hat die Form m x β^e , mit Exponenten $e \in \mathbb{Z}$ und Mantisse $m \in \mathbb{R}$

Wenn $1 \le |m| < \beta$, also die Vorkommastelle von 0 verschieden ist, heißt die Gleitkommazahl normalisiert.

Mantisse: Anzahl der gezeigten zahlen ohne Potenz $(1.4*10^4$ hat Mantissenlänge 2 (normalisiert))

Beispiele > 12

1.1 Technische Gleitkommazahlen

In Computern wird ein Bit für das Vorzeichen verwendet (hidden Bit)

IEEE - 754 - Binärformat

Seien $r,p\in\mathbb{N}^*$ und $B:=2^{r-1}-1$ der Biaswert. Biased exponent $E:=(e_r\dots e_0)_2$ und $M:=(m_p\dots m_0)_2$

- $0 < E < 2^r 1$: Die normalisierte Gleitkommazahl $(-1)^v*(1+rac{M}{2r})$ x 2^{E-B} der Mantissenlänge p+1 wird dargestellt.
- E = 0: Die subnormale Gleitkommazahlen $(-1)^v * \frac{M}{2v} * 2^{1-B}$ wird dargestellt. Ihr Mantissenlänge ist $\leq p$. (+0,-0)
- $E=2^r-1:(-1)^v*\infty$ wird dargestellt, falls M = 0. Ist M > 0, so wird keine Zahl dargestellt

Offenbar gibt es prinzipiell für jedes $M \neq 0$ ein anderes NaN, doch Bedeutungsunterschiede zwischen den Nans sind im Standard zum Teil gefragt. NaNs sind die Lösung der Ungleichung $x \neq x$. NaNs werden für nicht-initialisierte Variablen sowie für die undefinierte oder nicht-reele arithmetische Ausdrücke verwenden.

Beispiele > 13

Posit-Formate

Eine Abfolge von $n\in\mathbb{N}_{\geq 5}$ Bits b_{n-1},\dots,b_0 wird im Posit-Format so interpretiert.

- Sonderfälle
 - alle Bits $0 \rightarrow 0$
 - wenn $b_{n-1}=1$ und alle anderen Bits 0 sind wird NaR (not a Real)
- $ullet v:=b_{n-1}$ ist das Vorzeichenbit
- Es sei $i\in\{0,\ldots,n-2\}$ so, dass $b_{n-2}=b_{n-3}=\ldots=b_i$ und $b_{i-1}=1-b_i$. Die Bitfolge b_{n-2},\ldots,b_{i-1} heißt **Regime**
 - ullet es sei k:=i+1-n<0 falls $b_{n-2}=1$ und $k:=n-2-i\geq 0$ sonst
- Es sei E := 0, falls $i \le 1$. Es sei $E := b_0$, falls i = 2. Ansonsten sei $E := (b_{i-2}b_{i-3})_2$.
- Es sei F := 0, falls $i \leq 3$. Ansonstten sei $F := \frac{(b_{i-3} \dots b_0)_2}{2^{i-3}}$. F o Nachkommateil

i: die Anzahl von Bits bis das Regime beginnt von rechts

Regime: bei $v = 0 \rightarrow$ bis das erste mal 0 von links erscheint, $v \rightarrow 1$ andersrum

k = wenn der b_{n-2} bit von rechts 1 ist \rightarrow k = n-2-i sonst k = i+1-n

E = bits nach Regime (rechts davon)

Die repräsentierte Zahl ist $(1-3v+F)*2^{(1-2v)*(4k+E+v)}$

Beispiel 1.5