

Which factors are contributing to Greenhouse gas emissions in Italy?

Bayesian analysis

David Fernandez, Alessia Leo Folliero

May 12, 2023

- **▶** Introduction
- ► Data description
- ► Theoretical framework
- ► Models and results
- **▶** Conclusions

Table of Contents

1 Introduction

- **▶** Introduction
- Data description
- Theoretical framework
- Models and results
- **▶** Conclusions

Which factors are contributing to Greenhouse gas emissions in Italy?

What are Greenhouse gases? 1

1 Introduction

¹Greenhouse gas emissions: https://bit.ly/423jXKk

How do they affect the climate? ²

1 Introduction

- increase in temperature
- increased frequency of severe storms
- increases in droughts
- warming rising ocean

²The consequences of the greenhouse effect: from desertification to floods: https://bit.ly/4oQZcjq

Table of Contents

2 Data description

- ► Introduction
- ► Data description
- ▶ Theoretical framework
- Models and results
- ▶ Conclusions

- T = 30, from 1990 to 2020
- Frequency: yearly
- 19 variables, including net greenhouse gas emissions per capita
- Variables scaled and transformed in first differences

Data2 Data description

Features	Unit of measure			
Net greenhouse gas emissions	tonnes per capita			
Environmental taxes	percentage of GDP			
GDP pc	Constant 2010 US dollars			
Industrial production	Index 2015=100			
Energy imp dep	percentage			
Naturalgas imports	Million m^3			
Oil imports	Thousand tonnes			
Total energy supply	Gigawatt-hour			
Gross electricity production	Gigawatt-hour			
Share of land under permanent crops	percentage			

Data2 Data description

Features	Unit of measure
Area harvested Rice	Area ha
Fertilizer used per area of cropland	kg per ha
Share in land area Forest Land	percentage
Rail tracks KM	km
Length of motorways	km
Number of motorcycle	Units
Total freight loaded and unloaded	tonnes
Livestock heads	Thousand heads
RES capacity	Megawatt

Table of Contents

3 Theoretical framework

- ► Introduction
- Data description
- ► Theoretical framework
- Models and results
- **▶** Conclusions

The VAR(p) for Y_t is defined as (Canova and Ciccarelli, 2013):

$$\mathbf{Y}_{t} = \mathbf{A}_{0} + \mathbf{A}_{1}\mathbf{Y}_{t-1} + ... + \mathbf{A}_{p}\mathbf{Y}_{t-p} + \mathbf{e}_{t} \quad \mathbf{e}_{t} \sim \mathbf{N}(0, \Sigma)$$
 (1)

The Likelihood function of a VAR(p) model can be decomposed (Canova, 2007) into the product of a Normal density for β and a Wishart density for Σ^{-1} :

$$\mathcal{L}(\mathbf{y}|\beta,\Sigma) \propto \mathbb{N}(\beta|\beta_{ols},\Sigma,X,\mathbf{Y}) \times \mathbb{W}(\Sigma^{-1}|\mathbf{Y},X,\beta_{ols},df)$$
 (2)

Prior and posterior densities for β

3 Theoretical framework

Our prior for the vector of coefficients β is $\{\beta|\gamma_1,...,\gamma_n,\Sigma\}$ \sim multivariate normal (μ_n,Λ_n) , describing a conditional posterior density:

$$\pi(\beta|\Sigma, \mathbf{y}) \propto \exp\{-0.5(\mathbf{y} - \mathbf{X}\beta)'(I_T \otimes \Sigma^{-1})(\mathbf{y} - \mathbf{X}\beta)\} \\ \cdot \exp\{-0.5(\beta - \mu_\beta)'V_\beta^{-1}(\beta - \mu_\beta)\} \sim N(\mathbf{A}, \mathbf{B})$$
(3)

where $B = V_{\beta}^{-1} + X'(I_T \otimes \Sigma^{-1})X$, and $A = B^{-1}(V_{\beta}^{-1}\beta_0 + X'(I_T \otimes \Sigma^{-1})\gamma)$, μ_{β} is the mean over β and V_{β} the variance

Prior and posterior densities for Σ^{-1}

3 Theoretical framework

Our prior for the matrix of variance covariance of errors $\{\Sigma^{-1}$ is $\Sigma|\gamma_1,...,\gamma_n,\beta\}\sim \text{inverse-Wishart}(\nu_n,\mathcal{S}_n^{-1}), \text{describing a conditional posterior density:}$

$$\pi(\Sigma|\beta, \gamma) \propto |\Sigma|^{\frac{-\nu_0 + T + n + 1}{2}} \cdot exp\{-0.5 \cdot tr(S_0 \Sigma^{-1})\}$$

$$\cdot exp\{-0.5 \cdot tr(\sum_{t=1}^{T} (\gamma_t - X_t \beta)'(\gamma_t - X_t \beta) \Sigma^{-1})\}$$

$$\sim iW(\nu_0 + T, S_0 + \Sigma(\gamma_t - X_t \beta)(\gamma_t - X_t \beta)')$$
(4)

Gibbs sampler steps

3 Theoretical framework

- 1. sample $\beta^{(s+1)}$ from its full conditional density:
 - 1.1 compute A and B from $y_1, ..., y_n$ and $\Sigma^{(0)}$ using OLS;
 - 1.2 sample $\beta^{(s+1)} \sim \text{multivariate normal}(A, B)$.
- 2. sample $\Sigma^{(s+1)}$ from its full conditional distribution:
 - **2.1** compute S_n from $y_1, ..., y_T$ and $\beta^{(s+1)}$;
 - $\textbf{2.2 sample} \ \Sigma^{(s+1)} \sim \text{inverse-Wishart}(\nu_0 + T, \mathcal{S}_0 + \Sigma(\mathbf{y}_t \mathbf{X}_t \boldsymbol{\beta}^{(s+1)})(\mathbf{y}_t \mathbf{X}_t \boldsymbol{\beta}^{(s+1)})^{'})$

Number of iterations are set to 20,000 with a burn-in of 2,000

Gibbs sampler, prior beliefs

3 Theoretical framework

1.
$$\beta_0 = \beta_{OLS}$$

2.
$$V_{\beta}^{-1} = I_T$$

3.
$$\Sigma^{-1} = \Sigma_{OLS}^{-1}$$

4.
$$\nu_0 = 2 * n$$

5.
$$S_0 = T_T$$

Table of Contents

4 Models and results

- ► Introduction
- Data description
- Theoretical framework
- ► Models and results
- ► Conclusions

Models lags were selected by applying the Schwartz Information Criterion to the different subsets of data described All models are VAR(1), described in the following table:

	y_t^1	γ_t^2	y_t^3
Model 1	Greenhouse gas	Harvested rice	Permanent crops
Model 2	Greenhouse gas	Energy imports dependency	Oil imports
Model 3	Greenhouse gas	GDP per capita	Fertilizer

Model 1 $\hat{\beta}$ and $\hat{\Sigma}$ 4 Models and results

Model 1 $\hat{\beta}$	$greenhouse_{t-1}$		$rice_{t-1}$		$crops_{t-1}$		const	
	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$
$greenhouse_t$	0.14	0.14	0.08	0.08	0.14	0.14	-0.08	-0.08
$rice_t$	-0.99	-0.99	0.21	0.21	0.04	0.04	-0.01	-0.01
$crops_t$	-0.38	-0.38	0.03	0.02	-0.20	-0.20	-0.01	-0.01

Model 1 $\hat{\Sigma}$	$greenhouse_{t-1}$		rice	t-1	$crops_{t-1}$		
	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	
$greenhouse_{t-1}$	0.07	0.11	0.03	0.02	0.00	0.00	
$rice_{t-1}$	0.03	0.02	0.71	0.69	0.12	0.11	
$crops_{t-1}$	0.00	0.00	0.12	0.11	0.82	0.79	

GIRF, Impulse = harvested rice, Response = greenhouse gas

GIRF, Impulse = permanent crops, Response = greenhouse gas

Model 2 $\hat{\beta}$ and $\hat{\Sigma}$ 4 Models and results

Model 2 $\hat{\beta}$	$greenhouse_{t-1}$		$energy_dep_{t-1}$		oil_imports ₁		const	
	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$
greenhouse _t	-0.06	-0.06	0.12	0.12	0.19	0.20	-0.07	-0.07
$energy_dep_t$	0.14	0.14	-0.51	-0.51	-0.02	-0.02	-0.12	-0.12
$oil_imports_t$	0.01	0.01	-0.02	-0.02	-0.04	-0.04	-0.10	-0.10

Model 2 $\hat{\Sigma}$	$greenhouse_{t-1}$		energ	y_dep_{t-1}	$oil_imports_1$		
	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	$\hat{\Sigma}_{ols}$ $\hat{\Sigma}_{B}$		$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	
$greenhouse_{t-1}$	0.09	0.12	0.09	0.08	0.09	0.08	
$energy_dep_{t-1}$	0.09	0.08	0.33	0.33	0.12	0.11	
$oil_imports_{t-1}$	0.09	0.08	0.12	0.11	0.13	0.16	

GIRF, Impulse = energy_imp_dep_1, Response = greenhouse gas

GIRF, Impulse = oil imports 1, Response = greenhouse gas

Model 3 $\hat{\beta}$ and $\hat{\Sigma}$ 4 Models and results

Model3 \hat{eta}	$greenhouse_{t-1}$		GDP_{t-1}		$fertilizer_{t-1}$		const	
	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$	$\hat{\beta}_{ols}$	$\hat{\beta}_B$
$greenhouse_t$	-0.25	-0.18	0.39	0.33	0.10	0.10	-0.13	-0.12
GDP_t	0.17	0.19	0.17	0.14	0.01	0.01	0.03	0.03
fertilizer _t	-0.52	-0.35	-0.29	0.17	0.35	0.31	-0.11	-0.09

Model 3 $\hat{\Sigma}$	$greenhouse_{t-1}$		GDI	r_{t-1}	$fertilizer_{t-1}$		
	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	$\hat{\Sigma}_{ols}$	$\hat{\Sigma}_B$	
$greenhouse_{t-1}$	0.09	0.12	0.09	0.08	0.07	0.06	
GDP_{t-1}	0.09	0.08	0.20	0.22	0.06	0.05	
$fertilizer_{t-1}$	0.07	0.06	0.06	0.05	0.32	0.33	

GIRF, Impulse = GDP_pc_1, Response = greenhouse gas

GIRF, Impulse = fertilizer 1, Response = greenhouse gas

GIRF summary 4 Models and results

Models	M1		Ma	2	Мз		
n-ahead	rice	crops	ener imp	oil imp	gdp pc	fertilizer	
0	0.03	0.01	0.26	0.51	0.38	0.19	
1	0.11	0.15	0.17	0.25	0.29	0.11	
2	-0.02	0.00	-0.05	-0.03	0.03	0.03	
3	0.00	0.00	0.04	0.04	0.04	0.01	
4	0.00	0.00	-0.01	-0.01	0.00	0.00	
5	0.00	0.00	0.01	0.01	0.01	0.00	

GIR-based FEVD of Net Greenhouse gas emissions per capita

GIR-based FEVD of Net Greenhouse gas emissions per capita

GIR-based FEVD of Net Greenhouse gas emissions per capita

Table of Contents

5 Conclusions

- ▶ Introduction
- Data description
- Theoretical framework
- ▶ Models and results
- **▶** Conclusions

Conclusions and further improvements

5 Conclusions

- OLS and Bayesian estimate were practically the same
- all the modelled variables have a positive increase in greenhouse gases emissions
- oil imports, GDP pc and energy dependency are the variables with the higher impact on greenhouse gases emissions
- a larger VAR model including all the variables here tested could provide further insights

Thanks!