Introduction to Galois Theory

Yunsheng Lu

University of Virginia

January 7, 2022

polynomial ring: Let R be a ring, and we write R[x] to be the set of all polynomials with coefficients from R. R[x] is also a ring and R is a subring of R[x].

irreducible: Let F be a field and $f(x) \in F[x]$. Then f(x) is irreducible over F. if f(x) cannot be expressed as f(x) = p(x)g(x), where both $p(x), g(x) \in F[x]$ are nonconstant polynomials.

maximal ideal: A nontrivial proper ideal $I \subseteq \text{ring } R$ is maximal ideal if the only ideals J in R s.t. $I \subseteq J \subseteq R$ are J = I and J = R.

Theorem

Let F be a field. A nontrivial ideal $I = \langle p(x) \rangle$, then **TFAE**:

- I a maximal ideal in F[x]
- p(x) is irreducible over F
- F[x] is a field

Motivating Question

- 1. Give a field both contains \mathbb{Q} and $\sqrt{2}$ Answer: $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$
- 2. What's the smallest field containing both $\mathbb Q$ and $\sqrt{2}$

Theorem

Let F, E be field and $E \subseteq F$, and $\alpha \in E$, then

- **①** $F[\alpha] = \{f(\alpha) \mid f(x) \in F[x]\}$ is the smallest subring containing both F and α
- ② $F(\alpha) = \{f(\alpha)/g(\alpha) \mid f(x), g(x) \in F[x], g(\alpha) \neq 0\}$ is the smallest field containing both F and α

notice: if $F[\alpha]$ is already a field, then $F[\alpha] = F(\alpha)$

Answer: $\mathbb{Q}(\sqrt{2})$

Definition (extension)

Let F, E be fields. If F is a subfield of E, then E is an **extension field** of F. In the previous example, E is said to be obtained by adjoining α to F. If E is an extension of F, then we denote the field extension to be E/F.

Definition (algebraic extension & transcendental extension)

 $\alpha \in E$ is **algebraic** over F if \exists nonzero $f(x) \in F[x]$, s.t. $f(\alpha) = 0$. A field extension E/F is called **algebraic** if every element in E is algebraic over F. Otherwise, it's called **transendental extension**.

Example

algebraic extension: $\mathbb{Q}(\sqrt{3})$ transcendental extension: $\mathbb{Q}(\pi)$

Theorem

(Papantonopoulou, p312) Let F be a subfield of E, and $\alpha \in E$ be algebraic over F, then exist unique monic polynomial $p(x) \in F[x]$, s.t.

- $p(\alpha) = 0$
- if $f(x) \in F[x]$ s.t. $f(\alpha) = 0$, then p(x) divides f(x)

Such p(x) is called the **minimal polynomial** of α

Let α be a zero of an irreducible polynomial p(x) over field F. Define $\phi: F[x] \mapsto \mathbb{C}: \phi(f(x)) = f(\alpha)$.

 $Im(\phi) = \{f(\alpha) \mid f(x) \in F[x]\} = F[\alpha] = F(\alpha)$ $Ker(\phi) = \langle p(x) \rangle$ By FT of Ring Homomorphism, $Im(\phi) \cong F[x]/Ker(\phi)$, we have:

$$F(\alpha) \cong F[x]/$$

Definition (degree of α and degree of E/F)

The of α over F, denoted as $deg\ F(\alpha)$ is $deg\ p(x)$, where p(x) is the minimal polynomial of α over F. The degree of the field extension E/F is defined to the dimension of E over F, denoted as E

Theorem

Let $F \subseteq E$ be fields, $\alpha \in E$ be algebraic over F with deg $F(\alpha) = n$, then:

- $F(\alpha) \cong F[x]/< p(x) >$
- $\{\alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a basis for vector space $F(\alpha)$ over F
- $\dim_F F(\alpha) = \deg F(\alpha) = \deg p(x)$

Definition (split)

Let F be a field, $f(x) \in F[x]$ a non-constant polynomial, and E an extension field of F. Then f(x) **splits** over E if f(x) can be factorized as: $f(x) = u(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$, $u \in F$ (note: repeat roots allowed)

Definition (splitting field)

The extension field K is a **splitting field** for the polynomial $f(x) \in F[x]$ if f(x) factors completely into linear factors in K[x] and K is the "smallest" such field.

Example

• $f(x) = x^2 - 2$: the splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{2})$

Definition (Primitive)

A generator of the cyclic group of all the n^{th} roots of the unity. Let $\zeta_n=e^{2\pi i/n}$, then every other primitives should be ζ_n^k , where $\gcd(k,n)=1$

Definition (Cyclotomic Field)

The splitting field of the polynomial x^n-1 over \mathbb{Q} , denoted as $\mathbb{Q}(\zeta_n)$

Example (n=6, let
$$\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
)
$$\zeta_6 = e^{2\pi i/6} = \frac{1}{2} + \frac{\sqrt{3}}{2}i = -\omega^2$$

$$\zeta_6^2 = \omega \quad \zeta_6^3 = -1 \quad \zeta_6^4 = \omega^2 \quad \zeta_6^5 = -\omega \quad \zeta_6^6 = 1$$

$$\mathbb{Q}(\zeta_6) = \mathbb{Q}(\sqrt{3})$$

$$deg_{\mathbb{Q}}(\mathbb{Q}(\zeta_6)) = [E : K] = 2$$

Definition (F-automorphism)

Let E be an extension field of F, then an automorphism $\phi: E \mapsto E$ is called F-automorphism if $\phi(a) = a$ for all $a \in F$

Notice:

- Aut(E), the set of all automorphisms over E forms a group
- the set of all automorphisms that fix F forms a group
- the set of all F-automorphism is a subgroup of Aut(E)

Definition (Aut(E/F))

The set of all F-automorphism over E is denoted as Aut(E/F)

Definition (fixed field)

If H is a subgroup of Aut(E), then the elements fixed by H forms a subfield of E, and is called **fixed field**, dentoted as E^H .

Property of *F*-automorphism

• for any $\phi \in Aut(E/F)$, $f(x) \in F[x]$, $\alpha \in E$, α is a zero of f(x) if and only if $\phi(\alpha)$ is a zero of f(x) $\phi(f(\alpha)) = \phi(a_n\alpha^n + \cdots + a_1\alpha + a_0) = a_n(\phi(\alpha))^n + \ldots + a_1\phi(\alpha) + a_0$

Theorem (for simple extension)

Let $E = F(\alpha)$, then for any $\phi \in Aut(E/F)$, ϕ is completely determined by $\phi(\alpha)$.

Theorem (for iterated extension)

Let $E = F(\alpha_1, \alpha_2, \dots \alpha_s)$, then for any $\phi \in Aut(E/F)$, ϕ is completely determined by $\phi(\alpha_i)$, for $1 \le i \le s$.

Example $(\mathbb{Q}(\sqrt{2}))$

let
$$\delta(\sqrt{2}) = -\sqrt{2}$$
, $\iota(\sqrt{2}) = \sqrt{2}$, then $|Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q})| = [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$

Question: Aut|K/F| = [K : F]? counterexample: $\mathbb{Q}(2^{1/3})$

Definition (separable)

Let $f(x) \in F[x]$ a polynomial over F. Then f(x) is **separable** if all its zeros have multiplicity 1 in its splitting field. An element $\alpha \in F$ is **separable** if its *minimal polynomial* is separable.

useful technique: for irreducible $f(x) \in F[x]$, f(x) is separable iff f'(x) is not zero polynomial. If char F=0, then irreducible f(x) is separable over F

Theorem

E is the splitting field of separable f(x) over $F \implies |\mathit{Aut}(E/F)| = [E:F]$

Definition (Galois extension & Galois group)

Let E be a field extension of F, E is **Galois** if $|\operatorname{Aut}(E/F)| = [E:F]$. If E is a Galois extension of F, then $\operatorname{Aut}(E/F)$ is called Galois group, and denoted as $\operatorname{Gal}(E/F)$

Properties of Galois extension E/F (Dummit and Foote, p574)

- K is the splitting field of a separable polynomial over F
- fields where F is the set of elements precisely fixed by Aut(E/F)
- finite, normal, separable extension

Theorem (Fundamental Theorem of Galois Theory)

Let E be a Galois extension of a field F then there exists a bijection between the normal subgroup of the Galois group H and the intermediate extension K/F.

- For any subgroup H of Gal(E/F), the corresponding fixed field, denoted E^H , is the set of those elements of E which are fixed by every automorphism in H.
- 2 For any intermediate field K of E/F, the corresponding subgroup is Aut(E/K), that is, the set of those automorphisms in Gal(E/F) which fix every element of K.

Example $(\mathbb{Q}(\sqrt{2},\sqrt{3}))$

$$f = \begin{cases} f(\sqrt{2}) = -\sqrt{2} \\ f(\sqrt{3}) = \sqrt{3} \end{cases} \qquad g = \begin{cases} g(\sqrt{2}) = \sqrt{2} \\ g(\sqrt{3}) = -\sqrt{3} \end{cases}$$

Then $Aut(\mathbb{Q}(\sqrt{2},\sqrt{3})) = \{1,f,g,fg\}$, and

Theorem

(Dummit and Foote, p596)

The Galois group of the cyclotomic field $\mathbb{Q}(\zeta_n)$ of n^{th} roots of unity is isomorphic to the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^*$. The isomorphism is explicitly given by the map: $\phi: (\mathbb{Z}/n\mathbb{Z})^\times \mapsto \text{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q})$, where $\phi(a) = \sigma_a$, and $\sigma_a(\zeta_n) = (\zeta_n)^a$ (note: ζ_n is primitive n^{th} root and $\gcd(a,n)=1$)

Proof.

- ϕ is well-defined, since ζ_n is a primitive n^{th} root, σ_a is indeed an automorphism on cyclotomic field.
- 2 ϕ is homomorphism: $(\sigma_a \sigma_b)(\zeta_n) = \sigma_a(\zeta_n^b) = (\zeta_n^b)^a = (\zeta_n)^{ab} = \sigma_{ab}(\zeta_n)$
- \odot ϕ is bijection

Definition (Legendre symbol)

Let p be an odd prime, for any interger a, define:

Theorem (Quadratic Reciprocity Law)

Let $p \neq q$ also be odd prime. Quadratic Reciprocity Law states that:

$$(\frac{q}{p})(\frac{p}{q}) = \begin{cases} -1 & \text{if both } p, q \equiv 3 \mod 4 \\ 1 & \text{if either } p \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 4 \end{cases}$$

Example

Let
$$p = 3, q = 7$$
,

then by definition: $(\frac{7}{3})=1$, because $4^2=7+3*3$

then by Q.R.: because both $4,7 \equiv 4 \mod 3$, then $(\frac{3}{7})(\frac{7}{3}) = -1$ so $(\frac{3}{7}) = -1$, so 7x+3 cannot be a square for any $x \in \mathbb{Z}$

Lemma

Let Z be a cyclic group of even order, Z has a unique element of order 2, denoted as "-1". If $a \in Z$, then $x^2 \equiv a$ has two solutions if $a^n = 1$ and no solution if $a^n = -1$

by lemma, q be odd prime, $Z=F_q^{\times}$, then we'll have: $\left(\frac{a}{q}\right)\equiv a^{\frac{q-1}{2}}\mod q$ by $\left(\frac{ab}{q}\right)=\left(\frac{a}{q}\right)\left(\frac{b}{q}\right)$: we have $\left(\frac{-1}{q}\right)=\left(-1\right)^{\frac{q-1}{2}}$

recall the isomorphism: $\phi: (\mathbb{Z}/n\mathbb{Z})^{\times} \mapsto \operatorname{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q})$, where $\phi(a) = \sigma_a$, and $\sigma_a(\zeta_n) = (\zeta_n)^a$, let $R = \mathbb{Z}[\zeta]$. By applying the theorem, for $u \in R$, we can have $u^q - \delta_1(u)$ is a multiple of q in R

Define: $G = \sum_{a \mod p} (\frac{a}{p}) \zeta^a$, also denote $p^* = \begin{cases} p & \text{if } p \equiv 1 \mod 4 \\ -p & \text{if } p \equiv 3 \mod 4 \end{cases}$, then $G^2 = p^*$ and we can deduce that $\sqrt{p^*} \subseteq \mathbb{Q}[\zeta_p]$.

We can also prove that $\delta_q(G) = (\frac{q}{p})G \implies \delta_q(G) = (\frac{q}{p})\sqrt{p^*}$. Thus we can prove the quadratic reciprocity law.