

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Amino Acids

Amino Acids

Part A General structure					
An amino acid is an organic molecule, containing a central atom bound to a hydrogen atom and to three other chemical groups: group (NH $_2$), group (COOH), and					
group/side-chain - which is the part that differs in structure among different amino acids.					
There are standard amino acids that are coded for by the universal genetic code. Of these					
standard amino acids, humans can only synthesise 11, and so we have to get the other 9 from our diet.					
These 9 amino acids are sometimes called amino acids.					
Items:					
$ \boxed{20 \text{an amino} \text{an alcohol} \text{oxygen} \text{a carboxyl} \text{essential} \text{carbon} \text{an R} \text{dispensable} \boxed{100} \text{a nitrate} } $					

Part B Amino acid or not?

Figure 1: The molecular structures of six organic molecules (a-f).

Which of the organic molecules in Figure 1 are amino acids? Select all that apply.

- а
- h
- d
- ϵ
- none of them

Part C Dipeptide identification

Figure 2: The molecular structures of two amino acids: alanine and glycine.

Figure 2 shows the molecular structures of two amino acids: alanine and glycine. Which molecule below represents the dipeptide that would be formed from these amino acids?

Molecule A

$$\begin{array}{c} O \\ H \\ HO - C - CH - N - CH - C - OH \\ C \\ CH_{3} \end{array}$$

Molecule B

Molecule C

Molecule D

- () A

Created for isaacphysics.org by Lewis Thomson

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Protein Primary Structure

Protein Primary Structure

Part A The building blocks					
Proteins are polymers made up of $\ \ \ \ \ \ \ \ \ \ \ \ \ $					
A chain of two amino acids is called a A chain of many amino acids is called a					
The sequence of amino acids is called the of the protein.					
secondary structure quaternary structure amino acids monomers polypeptide diamide glucose dipeptide primary structure monosaccharides tertiary structure polyamine					
Part B Formation and breakdown					
Amino acids join together by the process of $\$. During this process, the $\$ group (NH $_2$) of one amino acid reacts with the $\$ group (COOH) of another amino acid to form a $\$ bond and $\$.					
Proteins are broken down into amino acids by the process of During this process, is used to break apart the bond.					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					

Part C Polypeptide possibilities

There are 20 different standard amino acids that are used to build proteins. How many primary structures could be produced for a protein that is 50 amino acids long? Give your answer to 2 significant figures.

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 3 - Proteins

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Levels of Protein Structure

Levels of Protein Structure

Part A Levels overview						
Match the terms to the definitions.						
: the association of several polypeptides with each other and (in some cases) with non-protein						
groups e.g. haemoglobin is made of four polypeptides and four haem groups (iron-containing organic						
molecules). Not all proteins have this level of structure, as some are only made of one polypeptide.						
: the folding of the polypeptide due to hydrogen bonds between the ${ m H}$ of one amino acid's ${ m NH}$						
group (within the peptide bond) and the O of another amino acid's CO group (within the peptide bond).						
Depending on the amino acid sequence, these hydrogen bonds can cause the polypeptide chain to form a						
tight coil ($lpha$ -helix) or a long, snaking chain (eta -sheet).						
: the sequence of amino acids in the polypeptide (e.g. methionine-alanine-glycine-tyrosine).						
: the folding of the polypeptide due to interactions between R side-chains of different amino acids	;					
(which are able to interact due to coiling/zig-zagging caused by hydrogen bonds). These interactions include	,					
ionic bonds (between carboxyl and amino groups within the R side-chains), disulfide bridges (between the ${ m S}$						
of one amino acid and the ${ m S}$ of another), and hydrophilic/hydrophobic interactions (i.e. the polypeptide will						
fold such that hydrophilic R side-chains are on the outside, and hydrophobic R side-chains are on the inside).					
Items:						
Primary structure Secondary structure Tertiary structure Quaternary structure						

Part B Primary structure

Which of these describes the primary structure of a protein? Select all that apply.							
	the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions						
	the association between multiple protein-subunits and non-protein groups to form a single, large protein						
	the coiling of a polypeptide chain to form an $lpha$ -helix						
	the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine						
	the snaking of a polypeptide chain to form a β -sheet						
Part C	Secondary structure						
	Secondary structure of these describes the secondary structure of a protein? Select all that apply.						
Which							
Which	of these describes the secondary structure of a protein? Select all that apply.						
Which	of these describes the secondary structure of a protein? Select all that apply. the coiling of a polypeptide chain to form an $lpha$ -helix						
Which	of these describes the secondary structure of a protein? Select all that apply. the coiling of a polypeptide chain to form an α -helix the snaking of a polypeptide chain to form a β -sheet						
Which	of these describes the secondary structure of a protein? Select all that apply. the coiling of a polypeptide chain to form an α -helix the snaking of a polypeptide chain to form a β -sheet the association between multiple protein-subunits and non-protein groups to form a single, large protein						

Part D Tertiary structure

Which of these describes the tertiary structure of a protein? Select all that apply.	
the coiling of a polypeptide chain to form an $lpha$ -helix	
the association between multiple protein-subunits and non-protein groups to form a single, large protein	
the snaking of a polypeptide chain to form a eta -sheet	
the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions	
the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine	
Part E Quaternary structure	
Part E Quaternary structure Which of these describes the quaternary structure of a protein? Select all that apply.	
Which of these describes the quaternary structure of a protein? Select all that apply.	
Which of these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic	
Which of these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions	
 Which of these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions the snaking of a polypeptide chain to form a β-sheet 	
 Which of these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions the snaking of a polypeptide chain to form a β-sheet the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine 	

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 3 - Proteins

Home Gameboard Biology Biochemistry Proteins Tertiary Structure Interactions 1

Tertiary Structure Interactions 1

Within a polypeptide, the R groups/side-chains of amino acids interact with each other, and with the surrounding water, to produce the tertiary structure of the protein.

Figure 1 shows a selection of eight amino acids.

Figure 1: The chemical structures of eight amino acids.

In each part below, identify the amino acids whose R groups could form the given bond type with other amino acids within the same polypeptide.

Part A lonic bonds

Which a	amino acids could form ionic bonds with other amino acids within the same polypeptide?
	alanine
	arginine
	aspartic acid
	cysteine
	glutamine
	leucine
	phenylalanine
	serine
	none of the above
Part B	Hydrogen bonds
	Hydrogen bonds amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide?
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide?
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide?
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid cysteine
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid cysteine glutamine
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid cysteine glutamine leucine
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid cysteine glutamine leucine phenylalanine
	amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide? alanine arginine aspartic acid cysteine glutamine leucine phenylalanine serine

Part C Disulfide bridges

Which a	amino acids could form disulfide bridges with other amino acids within the same polypeptide?
	alanine
	arginine
	aspartic acid
	cysteine
	glutamine
	leucine
	phenylalanine
	serine
	none of the above

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 3 - Proteins

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Tertiary Structure Interactions 2

Tertiary Structure Interactions 2

Within a polypeptide, the R groups/side-chains of amino acids interact with each other, and with the surrounding water, to produce the tertiary structure of the protein.

Figure 1 shows a selection of eight amino acids.

Figure 1: The chemical structures of eight amino acids.

Part A Hydrophilic interactions

Which amino acids would be involved in hydrophilic interactions?
arginine
aspartic acid
glutamic acid
lysine
phenylalanine
serine
threonine
valine
none of the above
Part B Hydrophobic interactions
Part B Hydrophobic interactions Which amino acids would be involved in hydrophobic interactions?
Which amino acids would be involved in hydrophobic interactions?
Which amino acids would be involved in hydrophobic interactions? arginine
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid lysine
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid lysine phenylalanine
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid lysine phenylalanine serine
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid lysine phenylalanine serine threonine
Which amino acids would be involved in hydrophobic interactions? arginine aspartic acid glutamic acid lysine phenylalanine serine threonine valine

Part C Tertiary structure

Which of the following statements explain how hydrophilic and hydrophobic interactions affect the tertiary structure of a protein? Select all that apply.
hydrophilic R groups cluster together on the inside of the protein
hydrophilic R groups are found on the outside of the protein
hydrophobic R groups cluster together on the inside of the protein
hydrophobic R groups are found on the outside of the protein
hydrophilic R groups cause the formation of $α$ -helices and hydrophobic R groups cause the formation of $β$ -sheets
hydrophobic R groups cause the formation of $α$ -helices and hydrophilic R groups cause the formation of $β$ -sheets

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 3 - Proteins

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Types of Proteins

Types of Proteins

Part A Definitions

Most proteins can be categorized as either fibrous or globular, based on their structures.

Fill in the table below, comparing fibrous and globular proteins.

	Fibrous	Globular
Primary structure		
Tertiary/quaternary structure		
Solubility in water		
Function(s)		

ı	4		
-	ТΩ	m	9
	1		

structural	soluble	chemical interactions	repetitive sequence	insoluble	complex: highly folded
non-repetiti	ve sequenc	simple: long & linea	r		

Part B Fibrous proteins

Which of the following are examples of fibrous proteins? Select all that apply.		
lpha-amylase (the enzyme that breaks down starch into disaccharides and trisaccharides)		
collagen (a major component of tendons, ligaments, bones, and skin)		
elastin (the protein that gives elasticity to blood vessel walls)		
haemoglobin (the protein that transports oxygen through the bloodstream)		
insulin (the hormone that causes cells to increase their uptake of glucose and convert it to glycogen and/or triglycerides)		
keratin (a type of protein found in hair, nails, and skin)		
Part C Globular proteins		
Part C Globular proteins Which of the following are examples of globular proteins? Select all that apply.		
Which of the following are examples of globular proteins? Select all that apply.		
Which of the following are examples of globular proteins? Select all that apply. α -amylase (the enzyme that breaks down starch into disaccharides and trisaccharides)		
Which of the following are examples of globular proteins? Select all that apply. α-amylase (the enzyme that breaks down starch into disaccharides and trisaccharides) collagen (a major component of tendons, ligaments, bones, and skin)		
Which of the following are examples of globular proteins? Select all that apply. α-amylase (the enzyme that breaks down starch into disaccharides and trisaccharides) collagen (a major component of tendons, ligaments, bones, and skin) elastin (the protein that gives elasticity to blood vessel walls)		
Which of the following are examples of globular proteins? Select all that apply. α-amylase (the enzyme that breaks down starch into disaccharides and trisaccharides) collagen (a major component of tendons, ligaments, bones, and skin) elastin (the protein that gives elasticity to blood vessel walls) haemoglobin (the protein that transports oxygen through the bloodstream)		
Which of the following are examples of globular proteins? Select all that apply. α-amylase (the enzyme that breaks down starch into disaccharides and trisaccharides) collagen (a major component of tendons, ligaments, bones, and skin) elastin (the protein that gives elasticity to blood vessel walls) haemoglobin (the protein that transports oxygen through the bloodstream) insulin (the hormone that causes cells to increase their uptake of glucose and convert it to glycogen and/or triglycerides)		

Part D Conjugated proteins

Conjugated proteins are proteins that have a non-protein component, which is called a .	
is a conjugated protein, as it is made of four polypeptides - each bound to a haem group (an organic molecule containing).	
Examples of other non-protein components include carbohydrates and lipids.	
Items:	

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 3 - Proteins

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Proteins Protein Practicals

Protein Practicals

Part A Testing for proteins		
What is the name of the test used to determine if proteins are present in a solution?		
Fill in the blanks to explain how this test works. The protein solution is added to		
Items: [peptide bonds] [carboxyl groups] [an alkaline solution] [blue] [red] [purple] [an acidic solution] [R side-chains]		

Part B Thin-layer chromatography

Figure 1: A thin-layer chromatography (TLC) plate was prepared for one solution ("Solution X"), which contained three amino acids. After 10 minutes, the plate was removed and sprayed with ninhydrin spray to visualise the amino acids (labelled A-C).

In Figure 1, the solvent front (top dotted line) had moved a distance of $18 \, \mathrm{cm}$ above the baseline (bottom dotted line). "A" moved $11.0 \, \mathrm{cm}$. "B" moved $6.8 \, \mathrm{cm}$. "C" moved $2.3 \, \mathrm{cm}$. The retention factor (R_f) values for some amino acids are given in the table below.

Amino acid	$\mathit{R}_{\!f}$ value
alanine	0.38
arginine	0.20
cysteine	0.40
glutamine	0.13
methionine	0.55
phenylalanine	0.68
serine	0.27
threonine	0.35
valine	0.61

vvnich a	amino acids are present in solution X?
	alanine
	arginine
	cysteine

Created for isaacphysics.org by Lewis Thomson