Accepted Manuscript

Occurrence of extended spectrum β-lactamase and AmpC genes among multidrugresistant *Escherichia coli* and emergence of ST131 from poultry meat in Thailand

Uttapoln Tansawai, Donruedee Sanguansermsri, Anamai Na-udom, Timothy R. Walsh, Pannika R. Niumsup

PII: \$0956-7135(17)30376-6

DOI: 10.1016/j.foodcont.2017.07.028

Reference: JFCO 5721

To appear in: Food Control

Please cite this article as: Uttapoln Tansawai, Donruedee Sanguansermsri, Anamai Na-udom, Timothy R. Walsh, Pannika R. Niumsup, Occurrence of extended spectrum -lactamase and AmpC genes among multidrug-resistant Escherichia coli and emergence of ST131 from poultry meat in Thailand, (2017), doi: 10.1016/j.foodcont.2017.07.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Title: Occurrence of extended spectrum β-lactamase and AmpC genes among 1 multidrug-resistant Escherichia coli and emergence of ST131 from poultry meat in 2 3 Thailand 4 Uttapoln Tansawai ^a, Donruedee Sanguansermsri ^{a, b}, Anamai Na-udom ^c, Timothy R. 5 Walsh d and Pannika R. Niumsup a, b, * 6 7 ^a Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan 8 9 University, Phitsanulok, 65000, Thailand. ^b Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan 10 University, Phitsanulok, 65000, Thailand. 11 ^c Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 12 65000, Thailand. 13 ^d Department of Medical Microbiology and Infectious Disease, Institute of Infection and 14 Immunity, UHW Main Building, Heath Park Hospital, Cardiff, CF14 4XN, UK. 15 16 * Corresponding author. Department of Microbiology and Parasitology, Faculty of 17 Medical Science, Naresuan University, Phitsanulok, 65000, Thailand. Tel: +66 89 18 8565063; Fax: 66 55 964770. 19 E-mail address: pannikan@nu.ac.th (P.R. Niumsup). 20 21 22 23 24 25

ABSTRACT

っ	7
_	/

28	This study investigated the prevalence of antibiotic-resistant Escherichia coli using
29	extended-spectrum $\beta\text{-lactamase}$ (ESBL) and AmpC $\beta\text{-lactamase}$ as exemplars of
30	multidrug-resistant phenotypes in poultry meat samples taken from open-air and
31	supermarkets in Phitsanulok province, Northern Thailand. Two hundred and fifty poultry
32	meat samples from open-air ($n = 147$) and supermarkets ($n = 103$) were analyzed. In total,
33	143 cefotaxime-resistant <i>E. coli</i> isolates comprising 78 isolates (53.1%) from open-air
34	markets and 65 isolates (63.1%) from supermarkets were obtained. No significant
35	difference could be observed in the prevalence of ESBL-positive <i>E. coli</i> between samples
36	taken from open-air (70.5%) and supermarkets (69.2%). ESBL genotypes comprised of
37	$bla_{\text{CTX-M-group 1}}$ (69%), $bla_{\text{CTX-M-group 9}}$ (13%), $bla_{\text{TEM-116}}$ (1%), $bla_{\text{SHV-2a}}$ (1%) and $bla_{\text{SHV-12}}$
38	(1%) were detected. 39.5% of the ESBL-negative $E.\ coli$ possessed bla_{CMY-2} . The $bla_{CTX-M-1}$
39	$_{\text{group 1}}$, $bla_{\text{CTX-M-group 9}}$ and $bla_{\text{CMY-2}}$ were successfully transferred into $E.\ coli$ by conjugation
40	at high frequencies. Repetitive palindromic-PCR of some $bla_{\text{CTX-M}}$ and $bla_{\text{CMY-2}}$ -positive E .
41	coli isolates revealed identical DNA patterns suggesting clonal spread. Phylogenetic
42	grouping and MLST analysis revealed that 3 isolates were E. coli ST131. Of these, 2
43	isolates were ESBL-negative and carried $bla_{\text{CMY-2}}$. The other isolate was ESBL-positive
44	and carried $bla_{\text{TEM-116}}$. This is the first study to demonstrate ESBL and AmpC genotypes in
45	E. coli and the first discovery of human pathogen ST131 from Thai poultry meat. Our data
46	raises serious concerns for food safety and biosecurity in the Thai food industry.
47	

Keywords: poultry; meat; ESBL; CTX-M; AmpC; CMY-2; E. coli; ST131

1. Introduction

Resistance to broad spectrum β -lactams such as third-generation cephalosporins,
monobactam and carbapenems in Enterobacteriaceae, especially Escherichia coli, is
rapidly increasing (Pitout, 2013). Reports on extended-spectrum β -lactamase (ESBL)
and/or AmpC β -lactamase-producing Enterobacteriaceae from clinical and environmental
samples are continuously published from the majority of countries indicating a worldwide
dissemination. Several types of ESBLs have been reported such as SHV, TEM and CTX-
M. CTX-M is the most prevalent ESBL while CMY-2 is frequently encountered AmpC in
human infections. ESBL- and AmpC-encoding genes are usually associated with mobile
genetic elements which strongly facilitate their spread within a bacterial population
(Jacoby 2009; Poirel, Bonnin, & Nordmann, 2012).
Contamination of meat with antibiotic-resistant bacteria has the potential to transfer
to humans and is a clear public health concern. Several studies have shown that meat,
especially poultry meat, is an important reservoir of antibiotic-resistant E. coli (Nguyen et
al., 2016; Schwaiger et al., 2012). The prevalence of ESBL- and AmpC-positive E. coli as
well as their respective resistant genes in different types of meat even in organic meat has
been reported from several countries (Cohen Stuart et al., 2012; Egea et al., 2012;
Ghodousi, Bonura, Di Noto, & Mammina, 2015; Kawamura, Goto, Nakane, & Arakawa,
2014). Furthermore, transmission of ESBL and AmpC-positive E. coli from meat to
human has been previously reported outside Thailand (Overdevest et al., 2011; Vincent et
al., 2010).
In Thailand, consumption of poultry meat is popular. Meat is often sold in open-air
markets, traditional Thai markets which are seen extensively throughout the country, and
western-style supermarkets which are becoming increasingly popular throughout Thailand.

75	Previous studies in Thailand have revealed the presence of antibiotic-resistant
76	Enterobacteriaceae isolates in chicken meat and chicken rectal swab including those
77	producing ESBL (Boonyasiri et al., 2014; Chaisatit, Tribuddharat, Pulsrikarn, &
78	Dejsirilert, 2012; Trongjit, Angkittitrakul, & Chuanchuen, 2016). However, the prevalence
79	of ESBL- and/or AmpC-producing E. coli from meat samples in Thailand remains poorly
30	understood. This study investigated the prevalence of ESBL- and AmpC-encoding genes
31	from poultry meat samples obtained from both open-air and supermarkets as well as
32	determined E. coli pathogenicity groups.
33	
34	2. Materials and Methods
35	2.1 Samplings
36	Samplings of fresh poultry meat were performed in 29 open-air markets and 22
37	supermarkets in Phitsanulok province, Northern Thailand. A total of 250 poultry meat
38	samples (chicken = 218, duck = 14, bird = 18) from open-air markets ($n = 147$) and
39	supermarkets ($n = 103$) were sampled. Frozen poultry meat was excluded from the study.
90	All samples were originated from Thailand. Samples were maintained at 4 °C and
91	processed immediately.
92	
93	2.2 Isolation and identification of third generation cephalosporin-resistant E. coli
94	Twenty-five grams of each sample were homogenized with a Stomacher in 225 mL
95	buffered peptone water (Oxoid, Basingstroke, UK). Then, 10 mL of this homogenate were
96	enriched in 90 ml EE broth (Becton, Dickinson and Company, MD, USA) for 24 h at 37
97	$^{\circ}\text{C}.$ The enrichment was plated onto EMB agar (Oxoid) supplemented with 2 $\mu\text{g/mL}$
98	cefotaxime (as an exemplar of broad-spectrum cephalosporins) (Sigma Aldrich, MO,
99	USA) and incubated under aerobic condition for 24 h at 37 °C. Presumptive E. coli

colonies isolated from each sample were subcultured on Tryptic Soy Agar and incubated
as described above for further characterizations. Species identification was performed by
using RapID TM ONE System (REMEL Inc., KS, USA) according to the manufacturers'
instructions and confirmed by sequencing of 16S rRNA gene (Lane, 1991).

2.3 Antimicrobial susceptibility and ESBL detection

All isolates were tested for susceptibility to 18 antimicrobial agents by disk diffusion method according to Clinical Laboratory Standards Institute (CLSI) protocols and the results were evaluated according to CLSI criteria (CLSI, 2013). The antibiotics tested were ampicillin, cefoxitin, ceftazidime, cefotaxime, cefpodoxime, cefepime, aztreonam, imipenem, amoxicillin/clavulanic acid, ampicillin/sulbactam, amikacin, gentamicin, doxycycline, tetracycline, ciprofloxacin, levofloxacin, chloramphenicol, and trimethoprim-sulfamethoxazole. Isolates showing intermediate results were considered as resistant. Minimum Inhibitory Concentration (MICs) were determined by broth microdilution method according to CLSI guidelines (CLSI, 2013). The MIC of each antimicrobial agent was defined as the lowest concentration, which inhibited visible growth of the organism.

Isolates were tested for ESBL production by combination disk method with ceftazidime and cefotxime in the presence or absence of clavulanic acid, according to CLSI guidelines (CLSI, 2013).

2.4 Screening for ESBL- and AmpC-encoding genes by PCR and sequencing

All ESBL-producing isolates were investigated for the presence of ESBL-encoding genes; bla_{TEM} , bla_{SHV} and $bla_{\text{CTX-M}}$, by PCR as previously described (Dallenne, Da Costa, Decré, Favier, & Arlet, 2010; Woodford, Fagan, & Ellington, 2006). Isolates showing

125	resistance to cefoxitin were examined for the presence of AmpC-encoding genes by
126	multiplex PCR (Pérez-Pérez, & Hanson, 2002). PCR products were analyzed by agarose
127	gel electrophoresis.
128	Selected PCR products were analyzed by DNA sequencing. Amplicons were
129	purified using a DNA purification kit (RBC Bioscience, New Taipei City, Taiwan) and
130	sequenced by First BASE Laboratories (Selangor, Malaysia). The obtained sequences were
131	compared with those available in the GenBank database using the BLAST algorithm
132	available on the National Center for Biotechnology Information (NCBI) website
133	(http://www.ncbi.nlm.nih.gov).
134	
135	2.5 Conjugation experiments
136	To investigate the transfer of antibiotic resistance, conjugation experiments were
137	carried out by broth mating method using rifampin-resistant $\it E.~coli~DH5\alpha$ as the recipient.
138	Cultures of donor and recipient cells were mixed and incubated overnight at 37 °C without
139	shaking. Transconjugants were selected on Tryptic Soy Agar supplemented with rifampin
140	(16 $\mu g/mL$) and cefotaxime (1 $\mu g/mL$). Conjugation frequency was expressed as the
141	number of transconjugants divided by the number of recipient cells. Transferrable of
142	antibiotic-resistant gene was confirmed by PCR. MICs of transconjugants were determined
143	by broth microdilution method.
144	
145	2.6 Repetitive-palindromic polymerase chain reaction (Rep-PCR)
146	E. coli isolates carrying either ESBL- or AmpC genes were typed by rep-PCR as
147	described previously by Versalovic, Koeuth, and Lupski (1991).
148	

150	2.7 Phylogenetic grouping and multilocus sequence typing (MLST) analysis
151	Phylogenetic group (A, B1, B2 and D) of ESBL- and pAmpC-producing E. coli
152	was performed by a multiplex PCR assay for chuA, yjaA and DNA fragment TspE4C2 as
153	previously described (Clermont, Bonacorsi, & Bingen, 2000). Isolate belonging to group
154	B2 was investigated for the presence of pabB gene by PCR (Clermont et al., 2009). MLST
155	was performed by amplification and sequencing of 7 housekeeping genes (adk, fumC,
156	gyrB, icd, mdh, purA and recA) according to the protocols from E. coli MLST website
157	(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli).
158	
159	2.8 Statistical analysis
160	Fisher's exact test was used to compare proportions using Minitab software version
161	15. The differences were considered statistically significant at $p < 0.05$.
162	
163	3. Results
164	3.1 Isolation of cefotaxime-resistant (Ctx-R) E. coli from poultry meat samples and ESBL
165	production
166	In this study, 250 poultry meat samples from open-air markets and supermarkets in
167	Phitsanulok province, Northern Thailand were analyzed (Table 1). In total, 143 Ctx-R E.
168	coli isolates comprising 78 isolates (53.1%, 95% CI = 45.0–61.1%) from open-air markets
169	and 65 isolates (63.1%, 95% $CI = 53.8-72.4\%$) from supermarkets were obtained. The
170	percentages of Ctx-R E. coli isolates were not statistically different between samples
171	obtained from open-air and supermarkets (p = 0.121). Of the 143 isolates, 70.5% (55/78,
172	95% $CI = 60.4-80.6\%$) and 69.2% (45/65, 95% $CI = 58.0-80.5\%$) from open-air and
173	supermarkets, respectively, were ESBL-positive.

3	2 A	ntim	icro	bial	SUSCE	ntihil	lity	testing
٥.			ucro	vicui	Busce	puou	uuy	icount

Antimicrobial susceptibility of *E. coli* isolates recovered from poultry meat samples was determined (Table 2). β -Lactam susceptibility test revealed that all 143 *E. coli* isolates were resistant to ampicillin, cefotaxime and cefpodoxime and >90% were resistant to aztreonam and ceftazidime. Resistance to amoxicillin/clavulanate and ampicillin/sulbactam was 60.1% and 82.5%, respectively. A small number of isolates were resistant to imipenem (16.1%). High resistant rates (>60%) were also observed for cefepime, amikacin, doxycycline, tetracycline and ciprofloxacin. Furthermore, we observed that ESBL-positive isolates showed significantly higher resistant rates to cefepime, gentamicin, doxycycline, tetracycline, levofloxacin and trimethoprim/sulfamethoxaole (p < 0.05) than the ESBL-negative isolates (Table 2). In contrast, ESBL-negative isolates showed significantly higher resistant rates to cefoxitin, amoxicillin/clavulanate and ampicillin/sulbactam (p < 0.05).

3.3 Detection of antibiotic-resistant genes

Of the 143 Ctx-R isolates, 100 were shown to be ESBL-positive (Table 2).

Detection of ESBL- and AmpC-encoding genes in Ctx-R E. coli isolates was performed

and results were shown in Table 3. Of the 100 ESBL-positive isolates, 82 were found to

carry genes encoding for $bla_{\text{CTX-M}}$. $bla_{\text{CTX-M-group 1}}$ was the most prevalent (n = 69, 69%),

followed by $bla_{\text{CTX-M-group 9}}$ (n = 13, 13%). bla_{TEM} and bla_{SHV} -related ESBL-genes were

also found i.e. $bla_{\text{TEM-116}}$ (n = 1, 1%), $bla_{\text{SHV-2a}}$ (n = 1, 1%) and $bla_{\text{SHV-12}}$ (n = 1, 1%).

Additionally, from the 43 ESBL-negative isolates, 17 (39.5%) were shown to be bla_{CMY-2}-

197 positive.

200	3.4 Cc	niugation	experiments
200	J.7 Ct	nijuguion	слрегинения

Conjugation experiments were performed with randomly selected *E. coli* containing $bla_{\text{CTX-M-group 1}}$ (7 isolates), $bla_{\text{CTX-M-group 9}}$ (2 isolates) and $bla_{\text{CMY-2}}$ (3 isolates) as donors. The $bla_{\text{CTX-M-group 1}}$, $bla_{\text{CTX-M-group 9}}$ and $bla_{\text{CMY-2}}$ genes from donor isolates could be transferred to the recipient strain *E. coli* DH5 α with conjugation frequencies of 10^{-5} - 10^{-2} , 10^{-4} and 10^{-7} - 10^{-5} , respectively (Table 4). The presence of $bla_{\text{CTX-M-group 1}}$, $bla_{\text{CTX-M-group 9}}$ and $bla_{\text{CMY-2}}$ in transconjugants was confirmed by PCR. The cefotaxime MICs were markedly increased in transconjugants carrying $bla_{\text{CTX-M}}$ (> 128 fold) and $bla_{\text{CMY-2}}$ (> 16-32 fold) compared with the recipient strain *E. coli* DH5 α (Table 4).

3.5 Typing of ESBL- and AmpC-positive E. coli by rep-PCR

The DNA profiles of $bla_{\text{CTX-M}}$ and $bla_{\text{CMY-2}}$ -positive $E.\ coli$ generated with rep-PCR primers showed diverse banding patterns. However, the identical rep-PCR profiles in some $E.\ coli$ isolates were detected. The representative rep-PCR patterns of the isolates were shown in Fig. 1. Rep-PCR analysis differentiated 69 and 13 isolates of $bla_{\text{CTX-M}}$ group 1- and $bla_{\text{CTX-M}}$ group 9-positive $E.\ coli$ into 34 and 9 distinct patterns, respectively. However, the identical patterns among isolates carrying $bla_{\text{CTX-M}}$ group 1 (Fig. 1A, Lanes 1 & 5, 2 & 3 and 4 & 6) and $bla_{\text{CTX-M}}$ group 9 (Fig. 1B, Lanes 1 & 2 and 3 & 4) were found. In addition, a total of 11 distinct DNA profiles were found among 17 $bla_{\text{CMY-2}}$ -positive $E.\ coli$ and identical DNA patterns were detected (Fig. 1C, Lanes 1-3). Importantly, $bla_{\text{CTX-M}}$ group 1-positive $E.\ coli$ isolates recovered from different open-air and supermarkets shared the same rep-PCR pattern (Fig. 1A). In addition, we found that 22 isolates carried an identical rep-PCR type but different CTX-M genes i.e. $bla_{\text{CTX-M}}$ group 1 (n = 19) and $bla_{\text{CTX-M}}$ group 9 (n = 3).

225	3.6 Phylogen	netic groui	oing and a	analysis of	sequence type	(ST)
	J.O I ITYTO ZOI	iciic group	ing circa c	aricity bib Of	bequeriee type	101

Phylogenetic grouping of 85 ESBL- and 17 AmpC-positive *E. coli* isolates were determined. The results showed that 51% belonged to group A, 27.5% to group B1 and 17.6% to group D. Only 4 isolates (3.9%) belonged to group B2 (Table 5). The prevalence of $bla_{\text{CTX-M}}$ was significantly higher in the commensal phylogroups A and B1 than pathogenic groups B2 and D (p < 0.001). In contrast, the prevalence of $bla_{\text{CMY-2}}$ was significantly higher in the pathogenic phylogroups D and B2 than commensal groups A and B1 (p = 0.002). Of the 4 isolates, belonging to group B2, 3 isolates contained the pabB gene, which is specific for subgroup I/ O25b. These 3 isolates were identified as ST131, by MLST analysis. One carried $bla_{\text{TEM-116}}$ and 2 carried $bla_{\text{CMY-2}}$.

4. Discussion

In this study, poultry meat samples from open-air and supermarkets in Phitsanulok province, Northern Thailand were analyzed and a total of 143 Ctx-R *E. coli* isolates were recovered from all types of poultry meat (chicken, duck and bird, Table 1).

A previous study in Thailand revealed the presence of ESBL-positive *E. coli* from chicken meat however a limited number of meat samples were investigated (Boonyasiri et al., 2014). In contrast, we found a comparatively high prevalence of ESBL-positive *E. coli* isolates from open-air (70.5%) and supermarkets (69.2%).

Antimicrobial susceptibility test of 143 Ctx-R *E. coli* isolates revealed the high resistant rates for broad-spectrum cephalosporins, aztreonam and ciprofloxacin (Table 2). These results were different from those reported previously from Thailand where *E. coli* obtained from chicken meat was mainly susceptible to third generation cephalosporins and ciprofloxacin (Chaisatit, Tribuddharat, Pulsrikarn, & Dejsirilert, 2012). Interestingly, ESBL-positive *E. coli* isolates showed significantly higher resistance rates to many

250	antibiotics than ESBL-negative isolates, consistent with the common feature of ESBL-
251	positive bacteria (Woerther, Burdet, Chachaty, & Andremont, 2013). In addition, we found
252	that all <i>E. coli</i> isolates, regardless of the ESBL production, exhibited multidrug-resistant
253	(MDR) phenotype as defined by Magiorakos et al. (2012).
254	$bla_{\mathrm{CTX-M}}$ was commonly found among ESBL-positive isolates, although genes
255	encoding for TEM-, and SHV-type ESBLs such as $bla_{\text{TEM-116}}$, $bla_{\text{SHV-2a}}$ and $bla_{\text{SHV-12}}$ were
256	also detected (Table 3). Similar results were found in other studies which reported the
257	predominance of $bla_{\text{CTX-M}}$ in poultry meat samples (Cohen Stuart et al., 2012; Kawamura,
258	Goto, Nakane, & Arakawa, 2014; Nguyen et al., 2016). The high prevalence of $bla_{\text{CTX-M}}$
259	seen in this study coincided with the report on community-acquired CTX-M-positive
260	infections in Thailand (Apisarnthanarak et al., 2007). For almost all ESBL-negative E. coli
261	isolates, resistance to cefoxitin was noted (Table 2) suggesting that AmpC may be
262	responsible for cefotaxime-resistant phenotypes. Accordingly, $bla_{\text{CMY-2}}$ was found in
263	39.5% of ESBL-negative isolates.
264	For the rest of E. coli isolates, neither ESBL- nor AmpC-encoding genes were
265	detected and were not further investigated. It is possible that overexpression of
266	chromosomally-encoded AmpC β -lactamases, efflux pump overexpression or outer
267	membrane alteration may contribute to reduced susceptibility to antibiotics (Pitout, 2013).
268	It is also interesting to note that distribution of ESBL-genes was similar between open-air
269	and supermarkets. In contrast, $bla_{\text{CMY-2}}$ was found more frequently in poultry meat taken
270	from open-air markets (Table 3).
271	Conjugation experiments revealed that bla_{CTX-M} and bla_{CMY-2} were successfully
272	transferred to $E.\ coli\ DH5\alpha$ at high frequencies. The increased cefotaxime MICs in
273	transconjugants suggested that $bla_{\text{CTX-M}}$ and $bla_{\text{CMY-2}}$ are responsible for cefotaxime
274	resistance. These results are consistent with the fact that horizontal gene transfer plays a

275	major role in the spread of $bla_{\text{CTX-M}}$ and $bla_{\text{CMY-2}}$ in $E.\ coli$ (Woerther, Burdet, Chachaty, &
276	Andremont, 2013; Sidjabat et al., 2014). Genotypic analysis of $bla_{\text{CTX-M}}$ and $bla_{\text{CMY-2}}$ -
277	positive E. coli by rep-PCR revealed the genetic diversity among these isolates. However,
278	identical genotypes were found among isolates carrying the same genes suggesting the
279	clonal spread of MDR E. coli in poultry meat samples. This observation is further
280	supported by the same genotypes being found in isolates obtained from open-air and
281	supermarkets. Moreover, we found 22 identical isolates carrying different bla _{CTX-M}
282	inferring the recent transfer of $bla_{\text{CTX-M}}$ among dominant Thai $E.\ coli$ clades.
283	Typing divided the E. coli isolates into 4 phylogenetic groups. Groups A and B1
284	constitute mainly the commensal strains while extra-intestinal pathogenic strains belong to
285	groups B2 and D (Clermont, Bonacorsi, & Bingen, 2000). In this study, the majority of E.
286	$coli$ isolates carrying ESBL-genes ($bla_{\text{CTX-M}}$, bla_{SHV} or bla_{TEM}) significantly belonged to
287	the low virulent groups A and B1. Similar results had been reported from E. coli isolates
288	recovered from poultry meat in Spain and the Netherlands (Egea et al., 2012; Kluytmans et
289	al., 2013). Our results suggest that <i>E. coli</i> isolates of the commensal origin may contribute
290	to the dissemination of MDR E. coli within the community. It is also interesting to note
291	that most bla _{CMY-2} -positive E. coli belonged to phylogroup D, consistent with previous
292	reports (Oteo et al., 2010; Tamang et al., 2012).
293	Among the extraintestinal E. coli, O25b-ST 131, belonging to the phylogenetic
294	group B2, has emerged as a highly virulent human pathogen worldwide. E. coli O25b-
295	ST131 usually exhibits multidrug resistance and produces various types of ESBLs and
296	AmpC. ST131 has been reported from different origins such as animals, environments and
297	humans. Although the widespread occurrence of E. coli ST131 has been documented, its
298	presence in raw meat is rare (Nicolas-Chanoine, Bertrand, & Madec, 2014). Previous
299	studies in the Netherlands and Spain which many ESBL-producing E. coli isolates from

300	poultry meat were investigated but no ST131 was identified (Cohen Stuart et al., 2012;
301	Egea et al., 2012; Overdevest et al., 2011). However other studies in Italy, Japan and
302	Canada have reported the contamination of E. coli ST131 in poultry meat samples
303	(Ghodousi, Bonura, Di Noto, & Mammina, 2015; Kawamura, Goto, Nakane, & Arakawa,
304	2014; Vincent et al., 2010). In our study, 3 MDR E. coli isolates were identified as E. coli
305	B2-O25b ST131. Of these, 2 isolates were ESBL-negative and carried bla_{CMY-2} . The other
306	ST131 isolate was an ESBL-positive and carried <i>bla</i> _{TEM-116} , the infrequent ESBL-gene
307	found among ST131 isolates. In Thailand, all E. coli ST131 reported, to date, were
308	recovered from clinical specimen (Netikul et al., 2014). Given the fact that E. coli ST131
309	is associated predominantly with community-onset urinary tract infections, our finding of
310	ST131 isolates suggest that poultry meat could contribute to the dissemination of MDR
311	and virulent E. coli within Thai community.
312	Our data demonstrates that poultry meat in Thailand acts as a reservoir for MDR E.
313	coli especially those producing ESBL and AmpC. This is the first analysis of ESBL and
314	AmpC genes and the first discovery of human pathogen ST131 from Thai poultry meat.
315	Our results indicate that poultry meat may be a source of transmission of the MDR ST131
316	in Thailand.
317	
318	
319	
320	
321	
322	
323	
324	

2	2	5
J	_	J

Acknowledg	gments
------------	--------

This work was supported by Naresuan University (R2558B072). U. Tansawai was supported by the Royal Golden Jubilee-PhD Program from Thailand Research Fund and Rajamangala University of Technology Lanna (PHD/0054/2555). We would like to thank staffs at the Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University for their technical assistance.

350	References
351	Apisarnthanarak, A., Kiratisin, P., Saifon, P., Kitphati, R., Dejsirilert, S., & Mundy, L.M.
352	(2007). Clinical and molecular epidemiology of community-onset, extended-
353	spectrum β -lactamase-producing <i>Escherichia coli</i> infections in Thailand: a case-
354	case-control study. American Journal of Infection Control, 35, 606-612.
355	Boonyasiri, A., Tangkoskul, T., Seenama, C., Saiyarin, J., Tiengrim, S., & Thamlikitkul,
356	V. (2014). Prevalence of antibiotic resistant bacteria in healthy adults, foods, food
357	animals, and the environment in selected areas in Thailand. Pathogens and Global
358	Health, 108, 235-245.
359	Chaisatit, C., Tribuddharat, C., Pulsrikarn, C., & Dejsirilert, S. (2012). Molecular
360	characterization of antibiotic-resistant bacteria in contaminated chicken meat sold
361	at supermarkets in Bangkok, Thailand. Japanese Journal of Infectious Disease, 65
362	527-534.
363	Clermont, O., Bonacorsi, S., & Bingen E. (2000). Rapid and simple determination of the
364	Escherichia coli phylogenetic group. Applied and Environmental Microbiology,
365	66, 4555-4558.
366	Clermont, O., Dhanji, H., Upton, M., Gibreel, T., Fox, A., Boyd, D., et al. (2009). Rapid
367	detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M
368	15-producing strains. Journal of Antimicrobial Chemotherapy, 64, 274-277.
369	Clinical and Laboratory Standards Institute (CLSI) (2013). Performance standards for
370	antimicrobial susceptibility testing; twenty-third informational supplement.
371	Document M100-S23. Wayne, PA: CLSI.
372	Cohen Stuart, J., van den Munckhof, T., Voets, G., Scharringa, J., Fluit, A., & Hall, M.L.
373	(2012). Comparison of ESBL contamination in organic and conventional retail
374	chicken meat. International Journal of Food Microbiology, 154, 212-214.

375	Dallenne, C., Da Costa, A., Decré, D., Favier, C., & Arlet, G. (2010). Development of a
376	set of multiplex PCR assays for the detection of genes encoding important β -
377	lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 65,
378	490-495.
379	Egea, P., López-Cerero, L., Torres, E., Gómez-Sánchez Mdel, C., Serrano, L., Navarro
380	Sánchez-Ortiz, M.D., et al. (2012). Increased raw poultry meat colonization by
381	extended spectrum β -lactamase-producing <i>Escherichia coli</i> in the south of Spain.
382	International Journal of Food Microbiology, 159, 69-73.
383	Ghodousi, A., Bonura, C., Di Noto, A.M., & Mammina, C. (2015). Extended-spectrum β-
384	lactamase, AmpC-producing, and fluoroquinolone-resistant Escherichia coli in
385	retail broiler chicken meat, Italy. Foodborne Pathogens and Disease, 12, 619-625.
386	Jacoby, G.A. (2009). AmpC β-lactamases. <i>Clinical Microbiology Reviews</i> , 22: 161-182.
387	Kawamura, K., Goto, K., Nakane, K., & Arakawa, Y. (2014). Molecular epidemiology of
388	extended-spectrum β-lactamases and isolated from retail foods including chicken
389	meat in Japan. Foodborne Pathogens and Disease, 11, 104-110.
390	Kluytmans, J.A., Overdevest, I.T., Willemsen, I., Kluytmans-van den Bergh, M.F., van der
391	Zwaluw, K., Heck, M., et al. (2013). Extended-spectrum β-lactamase-producing
392	Escherichia coli from retail chicken meat and humans: comparison of strains,
393	plasmids, resistance genes, and virulence factors. Clinical Infectious Diseases, 56,
394	478-487.
395	Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt, & M. Goodfellow
396	(Eds.), Nucleic acid techniques in bacterial systematics (pp. 115-175). Chichester,
397	United Kingdom: John Wiley and Sons.
398	Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., et
399	al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant

400	bacteria: an international expert proposal for interim standard definitions for
401	acquired resistance. Clinical Microbiology Infection, 18, 268-281.
402	Netikul, T., Sidjabat, H.E., Paterson, D.L., Kamolvit, W., Tantisiriwat, W., Steen, J.A., et
403	al. (2014). Characterization of an IncN2-type $bla_{\rm NDM-1}$ -carrying plasmid in
404	Escherichia coli ST131 and Klebsiella pneumoniae ST11 and ST15 isolates in
405	Thailand. Journal Antimicrobial Chemotherapy, 69, 3161-3163.
406	Nguyen, D. P., Nguyen, T.A., Le, T.H., Tran, N.M., Ngo, T.P., Dang, V.C., et al. (2016).
407	Dissemination of extended-spectrum β -lactamase- and AmpC β -lactamase-
408	producing Escherichia coli within the food distribution system of Ho Chi Minh
409	City, Vietnam. BioMed Research International 2016, 8182096.
410	Nicolas-Chanoine, M.H., Bertrand, X., & Madec, J.Y. (2014). Escherichia coli ST131, an
411	intriguing clonal group. Clinical Microbiology Reviews, 27, 543-574.
412	Oteo, J., Cercenado, E., Cuevas, O., Bautista, V., Delgado-Iribarren, A., Orden, B., et al.
413	(2010). AmpC β-lactamases in <i>Escherichia coli</i> : emergence of CMY-2-producing
414	virulent phylogroup D isolates belonging mainly to STs 57, 115, 354, 393, and
415	420, and phylogroup B2 isolates belonging to the international clone O25b-ST131
416	Diagnostic Microbiology and Infectious Disease, 67, 270-276.
417	Overdevest, I., Willemsen, I., Rijnsburger, M., Eustace, A., Xu, L., Hawkey, P., et al.
418	(2011). Extended-spectrum β-lactamase genes of <i>Escherichia coli</i> in chicken meat
419	and humans, The Netherlands. Emerging Infectious Diseases, 17, 1216-1222.
420	Pérez-Pérez, F.J., & Hanson, N.D. (2002). Detection of plasmid-mediated AmpC $\beta\text{-}$
421	lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical
422	Microbiology, 4, 2153-2162.

123	Pitout, J,D. (2013). Enterobacteriaceae that produce extended-spectrum β -lactamases and			
124	AmpC β -lactamases in the community: the tip of the iceberg?. <i>Current</i>			
125	Pharmaceutical Design, 19, 257-263.			
126	Poirel, L., Bonnin, R.A., & Nordmann, P. (2012). Genetic support and diversity of			
127	acquired extended-spectrum β-lactamases in Gram-negative rods. <i>Infection</i> ,			
128	Genetics and Evolution, 12, 883-893.			
129	Schwaiger, K., Huther, S., Hölzel, C., Kämpf, P., & Bauer, J. (2012). Prevalence of			
430	antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat			
431	purchased at the slaughterhouse and at retail in Bavaria, Germany. International			
132	Journal of Food Microbiology, 154, 206-211.			
133	Sidjabat, H.E., Seah, K.Y., Coleman, L., Sartor, A., Derrington, P., Heney, C., et al.			
134	(2014). Expansive spread of IncI1 plasmids carrying bla _{CMY-2} amongst Escherichia			
435	coli. International Journal of Antimicrobial Agents, 44, 203-208.			
436	Tamang, M.D., Nam, H.M., Jang, G.C., Kim, S.R., Chae, M.H., Jung, S.C., et al. (2012).			
137	Molecular characterization of extended-spectrum β -lactamase-producing and			
138	plasmid-mediated AmpC β-lactamase-producing <i>Escherichia coli</i> isolated from			
139	stray dogs in South Korea. Antimicrobial Agents and Chemotherapy, 56, 2705-			
140	2712.			
141	Trongjit, S., Angkittitrakul, S., & Chuanchuen, R. (2016). Occurrence and molecular			
142	characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs			
143	and meat products in Thailand and Cambodia provinces. Microbiology and			
144	Immunology, 60, 575-585.			
145	Versalovic, J., Koeuth, T., & Lupski, J.R. (1991). Distribution of repetitive DNA			
146	sequences in eubacteria and application to fingerprinting of bacterial genomes.			
147	Nucleic Acids Research, 19, 6823-6831.			

148	Vincent, C., Boerlin, P., Daignault, D., Dozois, C.M., Dutil, L., Galanakis, C., et al.
149	(2010). Food reservoir for Escherichia coli causing urinary tract infections.
450	Emerging infectious diseases, 16, 88-95.
151	Woerther, P.L., Burdet, C., Chachaty, E., & Andremont, A. (2013). Trends in human fecal
152	carriage of extended-spectrum β -lactamases in the community: toward the
453	globalization of CTX-M. Clinical Microbiology Reviews, 26, 744-758.
154	Woodford, N., Fagan, E.J., & Ellington, M.J. (2006). Multiplex PCR for rapid detection of
155	genes encoding CTX-M extended-spectrum β -lactamases. Journal of Antimicrobian
456	Chemotherapy, 57, 154-155.
157	
158	
159	
460	
461	
462	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	

473	
474	
475	Figure Caption
476	
477	Fig. 1. Representative rep-PCR profiles of the cefotaxime-resistant $E.\ coli$ carrying bla_{CTX}
478	$_{\text{M-group 1}}$ (A), $bla_{\text{CTX-M-group 9}}$ (B) and $bla_{\text{CMY-2}}$ (C), respectively.
479	M1, 1 kb Sharp Ladder (RBC Bioscience, New Taipei City, Taiwan)
480	M2, 100 bp Ladder RTU (GeneDireX, Taipei City, Taiwan)

Table 1 Occurrence of cefotaxime-resistant *E. coli* from poultry meat samples

Types of

No. of

No. of ESBL-

Samples

E. coli

positive *E.coli*

open air markets (n = 147)

Chicken (n = 126)

69

46

Duck (n = 3)

0

0

Bird (*n*= 18)

9

9

Total

78 (53.1%)

55 (70.5%)

supermarkets (n = 103)

Chicken (n = 92)

61

41

Duck (n = 11)

4

4

Total

65 (63.1%)

45 (69.2%)

Table 2 Antimicrobial resistance (%) among cefotaxime-resistant *E. coli* isolates

Antimicrobial agents	Total $(n = 143)$	ES	BL production	
		$\overline{\text{ESBL-positive } (n=100)}$	ESBL-negative $(n = 43)$	p values
ampicillin	100	100	100	NS
cefoxitin	41.3	17.0	97.7	< 0.001
ceftazidime	93	90	100	0.033
cefotaxime	100	100	100	NS
cefodoxime	100	100	100	NS
cefepime	60.1	83.0	7.0	< 0.001
aztreonam	95.8	96.0	95.3	NS
imipenem	16.1	16.0	16.3	NS
amoxicillin/clavulanate	60.1	43.0	100	< 0.001
ampicillin/sulbactam	82.5	75.0	100	< 0.001
amikacin	72	72.0	72.1	1
gentamicin	57.3	67.0	34.9	< 0.001
doxycycline	62.9	78.0	27.9	< 0.001
tetracycline	71.3	86.0	37.2	< 0.001
ciprofloxacin	62.9	64.0	60.5	NS
levofloxacin	26.6	34.0	9.3	0.002
chloramphenicol	34.3	39.0	23.3	NS
trimethoprim/sulfamethoxazole	45.5	59.0	14.0	< 0.001

NS, Not significance

Table 3 Prevalence of genes encoding for ESBL and AmpC among cefotaxime-resistant E. coli isolates.

β-lactamase genes	ESBL-positive E. $coli$ ($n = 100$) ESBL-negative E. $coli$ ($n = 43$)					
	open-air markets $(n = 55)$	supermar $(n = 45)$	rkets Total	open-air markets $(n = 23)$	supermarkets $(n = 20)$	Total
bla _{CTX-M} group 1	25	18	43	0	0	0
$bla_{\text{CTX-M group 1}} + bla_{\text{TEM-1}}$	12	14	26	0	0	0
bla _{CTX-M group} 9	5	1	6	0	0	0
$bla_{\text{CTX-M group 9}} + bla_{\text{TEM-1}}$	2	5	7	0	0	0
bla _{SHV-2a}	1	0	1	0	0	0
$bla_{ m SHV-12}$	0	1	1	0	0	0
bla _{TEM-116}	1	0	1	0	0	0
bla _{CMY-2}	0	0	0	14	2	16
$bla_{\text{CMY-2}} + bla_{\text{TEM-1}}$	0	0	0	1	0	1
Total	46	39	85	15	2	17

Table 4 Conjugation frequency, transferred gene and cefotaxime MICs for E. coli DH5α and the respective transconjugants

Strain	Frequency of transfer	Transferred gene	Cefotaxime MIC (μg/mL)
E. coli DH5α ^a	-	-	< 0.0625
EC2_Tc	4.2×10^{-3}	bla _{CTX-group 1}	> 8
EC103_Tc	2.6×10^{-3}	bla _{CTX-group 1}	> 8
EC107_Tc	4.4×10^{-3}	bla _{CTX-group 1}	> 8
EC109_Tc	6.8 x10 ⁻⁵	$bla_{ ext{CTX-group 1}}$	> 8
EC121_Tc	2.5 x10 ⁻⁵	bla _{CTX} -group 1	> 8
EC129_Tc	8.1 x10 ⁻²	bla _{CTX-group 1}	> 8
EC146_Tc	7.5×10^{-2}	bla _{CTX-group 1}	> 8
EC70_Tc	2.4 x10 ⁻⁴	bla _{CTX-group} 9	> 8
EC119_Tc	4.7 x10 ⁻⁴	bla _{CTX-group} 9	> 8
EC125_Tc	1.5×10^{-5}	$bla_{\mathrm{CMY-2}}$	2
EC128_Tc	1.6×10^{-6}	$bla_{\mathrm{CMY-2}}$	1

EC132_Tc

 1.9×10^{-7}

bla_{CMY-2}

1

^a rifampin-resistant *E. coli* DH5α was used a recipient strain.

Tc, transconjugant

Table 5 Distribution of ESBL- and AmpC-encoding genes among $E.\ coli$ phylogroups (n=102)

Phylogenetic groups	No. (%) of isolates producing:				Total (%)
	bla _{TEM-116}	$bla_{ m SHV}$	bla _{CTX-M}	bla _{CMY-2}	
A	0 (0)	1 (1.0)	50 (49.0)	1 (1.0)	52 (51.0)
B1	0 (0)	1 (1.0)	26 (25.5)	1 (1.0)	28 (27.5)
B2	1 (1.0)	0 (0)	0 (0)	3 (2.9)	4 (3.9)
D	0 (0)	0 (0)	6 (5.9)	12 (11.7)	18 (17.6)
Total	1 (1.0)	2 (2.0)	82 (80.4)	17 (16.6)	102 (100)

Figl 1

Highlights

High prevalence of ESBL-producing *E. coli* in poultry meat in Thailand was observed.

E. coli carrying bla_{CTX-M} and bla_{CMY-2} isolates were found in poultry meat samples.

Clonal spread of *bla*_{CTX-M} and *bla*_{CMY-2}-positive *E. coli* from poultry meat was detected.

E. coli ST131 isolates carrying $bla_{\text{TEM-116}}$ or $bla_{\text{CMY-2}}$ have emerged from poultry meat.