Chapter 6: Equivalence relations and partial orders

CS1231 Discrete Structures

Wong Tin Lok

National University of Singapore

2022/23 Semester 2

Mathematics is the art of giving the same name to different things.

Poincaré (1908)

Plan

- equivalence relations
 - reflexivity, symmetry, transitivity
 - equivalence classes
- ▶ partial orders and total orders ≤
 - antisymmetry and totality
 - Well-Ordering Principle

iacket right shoe left shoe right sock left sock belt trousers shirt

What does the equality relation satisfy?

- (1) Every object is equal to itself.
- (2) If x is equal to y, then y is in equal to x.
- (3) If x is equal to y, and y is equal to z, then x is equal to z.

Definition 6.1.1

Let A be a set and R be a relation on A.

(1) R is *reflexive* if every element of A is R-related to itself, i.e.,

$$\forall x \in A \ (x R x).$$

(2) R is symmetric if x is R-related to y implies y is R-related to x, for all $x, y \in A$, i.e.,

$$\forall x, y \in A \ (x R \ y \Rightarrow y R \ x).$$

(3) R is *transitive* if x is R-related to y and y is R-related to z imply x is R-related to z, for all $x, y, z \in A$, i.e.,

$$\forall x, y, z \in A \ (x R \ y \land y R \ z \Rightarrow x R \ z).$$

A finite relation

Example 6.1.2

Let R be the relation represented by the following arrow diagram.

- ► Then *R* is reflexive.
- ▶ It is not symmetric because b R a but a R b.
- ▶ It is transitive, as one can show by exhaustion:

a
$$R$$
 a \wedge a R a \Rightarrow a R a;
b R a \wedge a R a \Rightarrow b R a;
b R b \wedge b R a \Rightarrow b R a;
b R b \wedge b R b \Rightarrow b R b;
b R b \wedge b R c \Rightarrow b R c;
b R b \wedge b R c \Rightarrow b R c;
b R c \wedge c R a \Rightarrow b R a;
b R c \wedge c R b \Rightarrow b R b;
c R c \wedge c R b \Rightarrow c R b;
c R c \wedge c R b \Rightarrow c R b;
c R c \wedge c R b \Rightarrow c R b;
c R c \wedge c R b \Rightarrow c R c;
c R c \wedge c R b \Rightarrow c R c;
c R c \wedge c R c \Rightarrow c R c;

b c

and all the others instances are vacuously true.

Equality and inclusion

Example 6.1.3

Let R denote the equality relation on a set A, i.e., for all $x, y \in A$,

$$x R y \Leftrightarrow x = y.$$

$$x R_0 y \Leftrightarrow x \subseteq y$$

Inequalities

Exercise 6.1.5

Let R denote the non-strict less-than relation on \mathbb{Q} , i.e., for all $x,y\in\mathbb{Q}$,

$$x R y \Leftrightarrow x \leqslant y$$
.

Is R reflexive? Is R symmetric? Is R transitive? \varnothing 6a

Exercise 6.1.6

Let R' denote the strict less-than relation on \mathbb{Q} , i.e., for all $x,y\in\mathbb{Q}$,

$$x R' y \Leftrightarrow x < y.$$

Is R reflexive? Is R symmetric? Is R transitive? 6b

Divisibility

Example 6.1.8

Let R denote the divisibility relation on \mathbb{Z}^+ , i.e., for all $x, y \in \mathbb{Z}^+$,

$$x R y \Leftrightarrow x \mid y$$
.

metric, but transitive.

 $\exists k \in \mathbb{Z} \ (kx = y)$

Then R is reflexive, not symmetric, but transitive.

Proof

(reflexivity) For each $a \in \mathbb{Z}^+$, we know $a = a \times 1$ and so $a \mid a$ by the definition of divisibility.

(non-symmetry) Note $1 \mid 2$ but $2 \nmid 1$.

(transitivity) Let $a,b,c\in\mathbb{Z}^+$ such that $a\mid b$ and $b\mid c$. Use the definition of divisibility to find $k,\ell\in\mathbb{Z}$ such that b=ak and $c=b\ell$. Then

$$c = b\ell = (ak)\ell = a(k\ell)$$

where $k\ell \in \mathbb{Z}$. Thus $a \mid c$ by the definition of divisibility.

Exercises on reflexivity, symmetry, and transitivity

Exercise 6.1.9

Let $A = \{1,2,3\}$ and $R = \{(1,1),(1,2),(2,1),(3,2)\}$. View R as a relation on A. Is R reflexive? Is R symmetric? Is R transitive?

Let R be a relation on a set A. Prove that R is transitive if and only if $R \circ R \subseteq R$.

Equivalence relations

Definition 6.1.11

An equivalence relation is a relation that is reflexive, symmetric and transitive.

Example 6.1.12

The equality relation on a set, as defined in Example 6.1.3, is an equivalence relation.

Convention 6.1.13

People usually use equality-like symbols such as \sim , \approx , \simeq , \cong , and \equiv to denote equivalence relations. These symbols are often defined and redefined to mean different equivalence relations in different situations. We may read \sim as "is equivalent to".

A finite equivalence relation

Example 6.1.14

Let ${\it R}$ be the relation represented by the arrow diagram below.

- ▶ Then *R* is reflexive, symmetric and transitive.
- ► So it is an equivalence relation.

Equivalence classes

Definition 6.2.1

Let \sim be an equivalence relation on a set A. For each $x \in A$, the *equivalence class* of x with respect to \sim , denoted $[x]_{\sim}$, is defined by

where $x \in A$.

$$[x]_{\sim} = \{ y \in A : x \sim y \}.$$

Example 6.2.2

Let A be a set. The equivalence classes with respect to the equality relation on A are of the form

$$[x] = \{ v \in A : x = v \} = \{x\}.$$

Example 6.2.3

If R is the equivalence relation represented by the arrow diagram on the right, then

$$[\mathsf{a}] = \{\mathsf{a}\} \quad \mathsf{and} \quad [\mathsf{b}] = \{\mathsf{b},\mathsf{c}\} = [\mathsf{c}].$$

Question

Is every element contained in a unique equivalence class?

When there is no risk of confusion, we may drop the subscript.

the set of all elements of A that x is \sim -related to

Partitions

Definition 6.3.1 and Remark 6.3.2 (special version)

 S_1, S_2, \dots are nonempty subsets of A such that every element of A is in exactly one S_i

- Call $\mathscr{C} = \{S_1, S_2, \dots\}$ a partition of a set A if
- (0) each S_i is a nonempty subset of A, i.e., $\forall i \ (\emptyset \neq S_i \subseteq A)$;
- (1) every element of A is in some S_i , i.e., $\forall x \in A \ \exists i \ (x \in S_i)$; and
- (2) if some S_i and S_j have a nonempty intersection, then they are equal, i.e., $\forall i, j \ (S_i \cap S_j \neq \varnothing \Rightarrow S_i = S_j)$.

The S_i 's are called the *components* of the partition.

Example 6.3.3

One partition of the set $A = \{1, 2, 3\}$ is $\{\{1\}, \{2, 3\}\}$. The others are $\{\{1\}, \{2\}, \{3\}\}, \{\{2\}, \{1, 3\}\}, \{\{3\}, \{1, 2\}\}, \{\{1, 2, 3\}\}.$

Example 6.3.4

One partition of \mathbb{Z} is $\{\{2k: k \in \mathbb{Z}\}, \{2k+1: k \in \mathbb{Z}\}\}.$

odd

Equivalence classes are nonempty

Lemma 6.3.5

Let \sim be an equivalence relation on a set A.

- (1) $x \in [x]$ for all $x \in A$.
- (2) Any equivalence class is nonempty.

Proof

- (1) Let $x \in A$. Then $x \sim x$ by reflexivity. So $x \in [x]$ by the definition of [x].
- (2) Any equivalence class is of the form [x] for some $x \in A$, and so it must be nonempty by (1).

The intersection of two distinct equivalence classes is empty

Lemma 6.3.6

Let \sim be an equivalence relation on a set A.

For all $x, y \in A$, if $[x] \cap [y] \neq \emptyset$, then [x] = [y].

Proof

- ▶ Assume $[x] \cap [y] \neq \emptyset$.
- ▶ Say, we have $w \in [x] \cap [y]$, so that $w \in [x]$ and $w \in [y]$ by the definition of \cap .
- Say, we have $w \in [x] \cap [y]$, so that $w \in [x]$ and $w \in [y]$ by the definition of [x] and [y].
- We show $[x] \subseteq [y]$.

 Take $z \in [x]$.
 - Take $z \in [x]$. - Then $x \sim z$ by the definition of [x].
 - By symmetry, we know from (*) that $w\sim x$.
 - Altogether we have $y \sim w \sim x \sim z$.
 - So transitivity tells us $y \sim z$.
 - Thus $z \in [y]$ by the definition of [y].
- ▶ Similarly, one can show $[y] \subseteq [x]$.
- Thus [x] = [y].

(*)

[x]

[v]

The equivalence classes form a partition

Definition 6.3.8

Let A be a set and \sim be an equivalence relation on A. Denote by A/\sim the set of all equivalence classes with respect to \sim , i.e.,

$$A/\sim = \{[x]_{\sim} : x \in A\}.$$

We may read A/\sim as "the quotient of A by \sim ".

Example 6.3.9

Let A be a set. Then A/= is equal to $\{\{x\}: x \in A\}$.

Example 6.3.10

If R is the equivalence relation on the set $A = \{a, b, c\}$ represented by the arrow diagram on the right, then

$${\cal A}/{\sim}=\{[a],[b],[c]\}=\big\{\{a\},\{b,c\},\{b,c\}\big\}=\big\{\{a\},\{b,c\}\big\}.$$

Theorem 6.3.11

Let \sim be an equivalence relation on a set A. Then A/\sim is a partition of A.

Informal descriptions of the terms

1.	underlying set	Α	the set to be "partitioned"	/ B P
2.	components	S	subsets of A, mutually disjoint, together union to A	F K
3.	partition	\mathscr{C}	the set of all components	\ M E
4.	same-component relation	\sim	equivalence relation	
1	alauluiaa aat A		the set of alleutions	

Quick check

Question 6.3.7

Consider an equivalence relation. Is it true that if x is an element of an equivalence class S, then S = [x]?

Motivating examples of partial orders

- (1) the "must be done before (or at the same time as)" relation on the set of all tasks
- (2) the "is done before (or at the same time as)" relation on the set of all tasks

Motivating examples of partial orders: a closer look

- (1) the "must be done before (or at the same time as)" relation on the set of all tasks
- (2) the "is done before (or at the same time as)" relation on the set of all tasks
 - ► Each such relation has two versions: one with the parenthetical phrase, and one without. They have the same mathematical content. We focus on the former.
 - So all such relations are reflexive and transitive.
 - ▶ No multi-tasking is allowed, i.e., if *R* is one of the relations above, then

$$\forall x, y \ (x R y \land y R x \Rightarrow x = y).$$
 (antisymmetry)

- There may be x, y such that x need not be done before y, and y need not be done before x, i.e., maybe $\exists x, y \ (x \not R \ y \land y \not R \ x)$ if R is the relation in (1). (partiality)
- ► However, as time is linear and there is no multi-tasking, for all tasks x, y, either x is done before or at the same time as y, or y is done before or at the same time as x, i.e., $\forall x, y \ (x \ R \ y \lor y \ R \ x)$ if R is the relation in (2). (totality)
- ▶ Here "partiality" means "possibly partial", while "total" means "necessarily total".

Partial orders

Definition 6.4.1

Let A be a set and R be a relation on A.

- (1) R is antisymmetric if $\forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$.
- R is a (non-strict) partial order if R is reflexive, antisymmetric, and transitive.
- (4) R is a *(non-strict) total order* if R is a partial order and $\forall x, y \in A$ $(x R y \lor y R x)$.

Note 6.4.2

A total order is always a partial order.

Example 6.4.3

Let R denote the non-strict less-than relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R y \Leftrightarrow x \leqslant y.$$

Then R is antisymmetric. In fact, it is a total order.

Further examples of partial orders

ther examples of partial orders Example 6.4.4 Let R_0 denote the subset relation on a set U of sets, i.e., for all $x, y \in U$, $\{-1\}$

$$x R_0 y \Leftrightarrow x \subseteq y.$$

Then R is antisymmetric. It is always a partial order, but it may not be a total order. {-1} is not a subset of {1}

Let R_1 denote the divisibility relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$.

there exists a
$$k : kx = y$$

there exists a k: kx = y

$$\times R_1 \ y \Leftrightarrow \times y \ y$$

NOT antisymmetric as -1 | 1 and 1 | -1 but 1 =/= -1

Is R_1 antisymmetric? Is R_1 a partial order? Is R_1 a total order?

Example 6.4.6

Let
$$R_2$$
 denote the divisibility relation on \mathbb{Z}^+ , i.e., for all $x,y\in\mathbb{Z}^+$,

$$x R_2 y \Leftrightarrow x \mid y$$
. 2 does not divide 3 & 3 does not divide 2

Is R_2 antisymmetric? Is R_2 a partial order? Is R_2 a total order?

neither is {1} a subset of {-1}

Well-Ordering Principle

 $\underbrace{1 \in S \text{ and } 1 \leqslant x}_{\text{for all } x \in S}$

Example 6.4.8

- (1) $S = \{x \in \mathbb{Z}_{\geq 0} : 0 < x < 5\}$ has smallest element 1.
- (2) $S^{\sharp} = \{x \in \mathbb{Q}_{\geqslant 0} : 0 < x < 5\}$ has no smallest element because if $x \in S^{\sharp}$, then $x/2 \in S^{\sharp}$ and x/2 < x.

Theorem 6.4.9 (Well-Ordering Principle)

Let $b \in \mathbb{Z}$ and $S \subseteq \mathbb{Z}_{\geqslant b}$. If $S \neq \emptyset$, then S has a smallest element.

Why the Well-Ordering Principle

- lt is useful in proving the termination of algorithms.
- ▶ It can be used as an alternative to induction.

5#

Theorem 6.4.9 (Well-Ordering Principle)

Let $b \in \mathbb{Z}$ and $S \subseteq \mathbb{Z}_{\geq b}$. If $S \neq \emptyset$, then S has a smallest element.

Proof We prove the contrapositive. Assume that S has no smallest element.

As $S \subseteq \mathbb{Z}_{\geqslant b}$, it suffices to show that $n \notin S$ for all $n \in \mathbb{Z}_{\geqslant b}$. We prove

this by Strong MI on n. (Here c = b.) P(b)(Base step: show that $P(b), P(b+1), \dots, P(c)$ are true.) If $b \in S$, then b is the

smallest element of S because $S \subseteq \mathbb{Z}_{\geq b}$, which contradicts our assumption. So $b \notin S$.

 $\forall k \in \mathbb{Z}_{\geq b} \ (P(b) \wedge \cdots \wedge P(k) \Rightarrow P(k+1))$

(Induction step: show that $\forall k \in \mathbb{Z}_{\geq c} \ (P(b) \land \cdots \land P(k) \Rightarrow P(k+1))$ is true.) Let $k \in \mathbb{Z}_{>b}$ such that $b, \ldots, k \notin S$. If $k+1 \in S$, then k+1 is the smallest element of S because $S \subseteq \mathbb{Z}_{\geqslant b}$, which contradicts our assumption. So $k+1 \notin S$.

Hence $\forall n \in \mathbb{Z}_{\geq h}$ P(n) by Strong MI.

 $k+1 \bullet \not \in S$

 $b+1 \stackrel{\vdots}{\bullet} \not\in \mathcal{S}$

b• ∉ S

Summary

Let A be a set and R be a relation on A.

Definition 6.3.1. A *partition* of A is a set $\mathscr C$ of *nonempty* subsets of A such that $\forall x \in A \ \exists ! S \in \mathscr C \ (x \in S).$

Definitions 6.1.1 and 6.1.11. Call R an equivalence relation on A if

- ▶ (symmetry) $\forall x, y \in A$ $(x R y \Rightarrow y R x)$; and
- ▶ (transitivity) $\forall x, y, z \in A \ (x R y \land y R z \Rightarrow x R z).$

Theorem 6.3.11. The equivalence classes with respect to an equivalence relation on A form a partition of A.

Definition 6.4.1(1,2). Call R a partial order on A if R is reflexive, transitive, and

- ▶ (antisymmetry) $\forall x, y \in A$ $(x R y \land y R x \Rightarrow x = y)$.
- Definition 6.4.1(4). A partial order R on A is a *total order* if $\forall x, y \in A$ ($x R y \lor y R x$).

Well-Ordering Principle. Let $b \in \mathbb{Z}$ and $S \subseteq \mathbb{Z}_{\geqslant b}$. If $S \neq \emptyset$, then S has a smallest element.