Тема : Свойства определенных интегралов и интегрируемых функций

 1^0 Достаточные признаки интегрируемости функций. 2^0 Линейность, аддитивность и монотонность интеграла. 3^0 Интегральная теорема о среднем. 4^0 Интеграл по ориентированному промежутку. 5^0 Интеграл с переменным верхним пределом: определение, непрерывность, оценка приращения. 6^0 Производная по верхнему пределу интегрирования. Следствия. 7^0 Формула Ньютона — Лейбница. Примеры и следствия. 8^0 Формула интегрирования по частям для определенных интегралов. 9^0 Формула Тейлора с остаточным членом в интегральной форме.

 5^0 . Пусть функция f(x) определена и интегрируема на промежутке Δ . Тогда для любой точки x из Δ имеет смысл следующая функция:

$$F(x) = \int\limits_{c}^{x} f(t) \, dt, \qquad x \in \Delta.$$

Здесь c — точка из Δ . Эта функция F(x) называется интегралом с переменным верхним пределом. Аналогично, функция

$$\Phi(x) = \int\limits_x^c f(t)\,dt, \qquad x \in \Delta,$$

называется интегралом с переменным нижним пределом.

Отметим, что для всех x и c из Δ интегралы F(x) и $\Phi(x)$ заведомо определены: по условию функция f(t) интегрируема на Δ , сле-

довательно, f(t) интегрируема и на любом промежутке Δ' , вложенном в Δ .

Интегралы F(x) и $\Phi(x)$ связаны равенством

$$\Phi(x) = \int\limits_x^c f(t)\,dt = -\int\limits_c^x f(t)\,dt = -F(x).$$

Это позволяет нам ограничиться далее рассмотрением только интегралов с переменным верхним пределом. **Теорема** (о приращении интеграла). Пусть функция f(x) определена и интегрируема на промежутке Δ и $F(x) = \int\limits_{c}^{x} f(t) \, dt$, где точки c и x принадлежат Δ .

Тогда справедлива оценка

$$|F(x_2) - F(x_1)| \leqslant ||f|| \cdot |x_2 - x_1| \qquad \forall x_1, x_2 \in \Delta.$$

Здесь
$$\|f\| = \sup_{x \in \Delta} |f(x)|$$
.

Доказательство. Заметим, что из интегрируемости функции f(x) по Риману следует ограниченность этой функции на промежутке Δ , т.е. оценка

$$||f|| = \sup_{x \in \Delta} |f(x)| < +\infty.$$

Для любых двух точек x_1 и x_2 , принадлежащих Δ , имеют место соотношения

$$|F(x_2)-F(x_1)|=ig|\int\limits_c^{x_2}f(t)\,dt-\int\limits_c^{x_1}f(t)\,dtig|=ig|\int\limits_{x_1}^{x_2}f(t)\,dtig|\leqslant$$

$$\leqslant \int\limits_{x_1}^{x_2} |f(t)| \, dt \leqslant \int\limits_{x_1}^{x_2} ig(\sup\limits_{y \in \Delta} |f(y)| ig) \, dt = \|f\| \cdot |x_2 - x_1|.$$

Это и есть искомая оценка приращения интеграла F(x) с переменным верхним пределом.

Следствие. Если функция f(x) интегрируема на промежутке Δ , то интеграл F(x) с переменным верхним пределом является непрерывной на промежутке Δ функцией.

Заметим еще, что теорема о приращении интеграла с переменным пределом допускает следующую эквивалентную переформулировку:

Если функция f(x) интегрируема на промежутке Δ , то для любого промежутка Δ' такого, что $\Delta' \subset \Delta$, имеет место неравенство

$$\Big|\int\limits_{\Delta'} f(x) \, dx \Big| \leqslant \|f\| \cdot |\Delta'|.$$

 6^{0} . Интеграл с переменным пределом задает на промежутке не просто непрерывную функцию, но функцию, имеющую здесь же первую производную.

Теорема (о дифференцируемости интеграла). Если интегрируемая на промежутке Δ функция f(x) непрерывна в точке x_0 из Δ , то интеграл

$$F(x) = \int\limits_{c}^{x} f(t) \, dt, \quad ag{ iny TAE} \quad c \in \Delta,$$

имеет в точке x_0 производную и при этом $F'(x_0) = f(x_0).$

 \mathcal{L} оказательство. Для точки x из Δ , $x \neq x_0$, рассмотрим приращения

$$\Delta x = x - x_0$$
 \forall $\Delta F = F(x) - F(x_0)$.

Имеют место равенства

$$rac{\Delta F}{\Delta x} = rac{1}{\Delta x} \int \limits_{x_0}^x f(t) \, dt; \hspace{0.5cm} f(x_0) = rac{1}{\Delta x} \int \limits_{x_0}^x f(x_0) \, dt.$$

Вычитая второе равенство из первого, получаем

$$\left| rac{\Delta F}{\Delta x} - f(x_0)
ight| = rac{1}{|\Delta x|} \left| \int\limits_{x_0}^{x} (f(t) - f(x_0)) dt
ight|.$$

Из непрерывности функции f(x) в точке x_0 следует, что для любого $\varepsilon>0$ существует такое $\delta>0$, что для всех точек x из пересечения промежутка Δ с интервалом $(x_0-\delta,x_0+\delta)$ выполнена оценка $|f(x)-f(x_0)|<\varepsilon$.

Для всех таких x, $x \neq x_0$, имеем

$$\left| rac{\Delta F}{\Delta x} - f(x_0)
ight| \leqslant rac{1}{|\Delta x|} \int\limits_{x_0}^{x} \left| f(t) - f(x_0)
ight| dt \leqslant rac{arepsilon}{|\Delta x|} \int\limits_{x_0}^{x} dt = arepsilon.$$

Это означает, что существует предел

$$\lim_{x \to x_0} \frac{\Delta F}{\Delta x} = f(x_0).$$

Следовательно, интеграл F(x) имеет в точке x_0 производную, причем $F'(x_0) = f(x_0)$.

Следствие. Для любой непрерывной на промежутке Δ функции f(x) интеграл с переменным верхним пределом

$$F(x) = \int\limits_{c}^{x} f(t) \, dt, \qquad x \in \Delta$$

является для f(x) первообразной на Δ .

Из теоремы о дифференцируемости интеграла заключаем также, что

- 1. Любая непрерывная на промежутке функция имеет на этом промежутке первообразную.
- 2. Для любой непрерывной на промежутке Δ функции f(x) операция ее интегрирования с переменным верхним пределом является обратной к операции дифференцирования, т.е.

$$rac{d}{dx} \left(egin{aligned} \int \limits_{c}^{x} f(t) \, dt \end{aligned}
ight) = f(x) \qquad orall \, x \in \Delta.$$

3. Справедлива также следующая формула для производной по нижнему пределу:

$$rac{d}{dx} \left(egin{aligned} \int \limits_x^c f(t) \, dt \end{aligned}
ight) = -f(x) \qquad orall \, x \in \Delta.$$

 7^{0} . Операцию интегрирования с переменным пределом весьма удобно использовать при вычислении определенных интегралов по ориентированным промежуткам.

Теорема (формула Ньютона — Лейбница). Пусть функция f(x) интегрируема на отрезке [a,b] и имеет здесь же первообразную F(x). Тогда справедливо равенство

$$\int\limits_a^b f(x)\,dx = F(b) - F(a). \hspace{1.5cm} ext{(NL)}$$

Доказательство. Пусть сначала F(x) непрерывна на отрезке [a,b], дифференцируема на

интервале (a,b) и F'(x)=f(x) для всех x из интервала (a,b).

Пусть $au([a,b]) = \{\Delta_1,\ldots,\Delta_N\}$ задает разбиение отрезка [a,b] с узлами

$$x_0 = a < x_1 < \dots < x_{N-1} < x_N = b.$$

В этом случае приращение первообразной

на отрезке [a,b] представимо в виде

$$F(b) - F(a) = \sum_{i=1}^{N} (F(x_i) - F(x_{i-1})).$$

На каждом из отрезков $[x_{i-1},x_i]$ функция F(x) удовлетворяет условиям теоремы Лагранжа о среднем. Пользуясь этой теоремой, получаем

$$\exists \, \xi_i \in (x_{i-1}, x_i) : \quad F(x_i) - F(x_{i-1}) = f(\xi_i) \Delta x_i.$$

Подставляя эти равенства в предыдущую формулу, приходим к равенству

$$F(b) - F(a) = \sum_{i=1}^{N} f(\xi_i) \Delta x_i \equiv \sigma(f, \tau, \xi).$$
 (1)

Здесь $\sigma(f, \tau, \xi)$ обозначает интегральную сумму Римана для функции f(x), соответствующую разбиению τ отрезка [a, b] и вектору $\xi = (\xi_1, \dots, \xi_N)$.

По условию функция f(x) интегрируема на [a,b] и, следовательно, существует предел интегральных сумм Римана:

$$\lim_{|oldsymbol{ au}| o 0} \sigma(f, au, \xi) = \int\limits_a^b f(x) \, dx.$$

Пользуясь этим равенством и переходя к пределу при | au| o 0 в формуле (1), получим в итоге искомую формулу (NL).

Пусть теперь F(x) непрерывна на отрезке [a,b] и имеет первую производную F'(x)=f(x) в точках (a,b) за исключением, возможно, конечного числа точек $c_1,\ \ldots,\ c_{N-1}$. Предполагаем, что

$$c_0 = a < c_1 < \dots < c_{N-1} < c_N = b.$$

В точках c_j производная F'(x) может либо не существовать, либо не совпадать с $f(c_j)$.

К каждому из отрезков $[c_{i-1},c_i]$ применим формулу (NL):

$$\int_{c_{i-1}}^{c_i} f(x) \, dx = F(c_i) - F(c_{i-1}).$$

Суммируя эти равенства по всем i, получаем

$$\int\limits_a^b f(x)\,dx = \sum\limits_{i=1}^N \int\limits_{c_{i-1}}^{c_i} f(x)\,dx = \sum\limits_{i=1}^N \int\limits_{c_{i-1}}^{c_i} f(x)\,dx$$

$$= \sum_{i=1}^{N} (F(c_i) - F(c_{i-1})) = F(b) - F(a).$$

Таким образом, формула (NL) справедлива и во втором рассматриваемом случае.

Определение. Равенство

$$\int\limits_{a}^{b}f(x)\,dx=F(b)-F(a)$$

называется формулой Ньютона-Лейбница.

Вместо разности F(b) - F(a) часто пишут $F(x) \Big|_a^b$. Следствие. Если функция f(x) интегрируема на отрезке [a,b] и имеет здесь же первообразную F(x), то

$$F(x) = F(a) + \int_{a}^{x} f(t) dt.$$
 (2)

Равенство (2) получается из формулы (NL), если взять в последней b=x.

Следствие. Если функция f(x) непрерывна на [a,b] и имеет здесь же первообразную F(x), то найдется такая точка ξ из (a,b), что

$$\int_{a}^{b} f(x) dx = f(\xi)(b-a). \tag{3}$$

Равенство (3) следует из формулы Ньютона — Лейбница и теоремы Лагранжа о среднем значении, применененной к F(b) - F(a).

Пример. По формуле Ньютона — Лейбница получаем следующие равенства:

$$\int_{a}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} \Big|_{a}^{b} = \frac{b^{n+1} - a^{n+1}}{n+1}, \quad n = 0, 1, \ldots;$$

По той же формуле имеем

$$\int\limits_{0}^{\pi} \sin^{2}x \, dx = \int\limits_{0}^{\pi} rac{1-\cos 2x}{2} \, dx = rac{1}{2} \int\limits_{0}^{\pi} dx - rac{1}{2} \int\limits_{0}^{\pi} \cos 2x \, dx =$$

$$=rac{x}{2}\Big|_0^{\pi}-rac{1\sin 2x}{2}\Big|_0^{\pi}=rac{\pi}{2}.$$

 8^{0} . Эффективное средство для подсчета интегралов по ориентированному промежутку дает формула интегрирования по частям. Теорема (интегрирование по частям). Пусть функции u(x) и v(x) непрерывны и кусочно дифференцируемы на отрезке [a,b]. Если при ЭТОМ ПРОИЗВОДНЫЕ u'(x) И v'(x) ИНТЕГРИРУЕМЫ на том же отрезке, то имеет место равен**CTBO**

$$\int\limits_a^b u(x)v'(x)\,dx = u(x)v(x)igg|_a^b - \int\limits_a^b v(x)u'(x)\,dx. \ ext{(IbP)}$$

 \mathcal{L} оказательство. В условиях теоремы произведение $\mathbf{F}(x) = \mathbf{u}(x)\mathbf{v}(x)$ является первообразной для функции

$$f(x) = u(x)v'(x) + v(x)u'(x),$$

причем f(x) интегрируема на отрезке [a,b]. Применяя к паре функций f(x) и F(x) формулу Ньютона — Лейбница, получаем

$$\int\limits_a^b u(x)v'(x)\,dx+\int\limits_a^b v(x)u'(x)\,dx=u(x)v(x)igg|_a^b,$$

то есть искомую формулу интегрирования по частям.

 9^0 . В качестве примера применения формулы интегрирования по частям для определенных интегралов получим формулу Тейлора с остаточным членом в интегральной форме.

Теорема (формула Тейлора). Пусть функция f(x) имеет на отрезке [a,b] непрерывные производные до порядка n включительно, причем производная $f^{(n)}(x)$ кусочно дифференцируема, а производная $f^{(n+1)}(x)$ при

этом интегрируема на [a,b]. Тогда для любой точки x_0 из отрезка [a,b] выполняется следующее равенство

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t) (x - t)^n dt.$$

 \mathcal{A} оказательство. Воспользуемся индукцией по параметру n — числу слагаемых в правой части доказываемой формулы.

При n=0 доказываемая формула принимает вид

$$f(x)=f(x_0)+\int\limits_{x_0}^xf'(t)\,dt,$$

то есть совпадает с уже доказанной формулой Ньютона — Лейбница.

Далее заметим, что при всех k, $1 \leqslant k \leqslant n$, согласно формуле интегрирования по частям

имеют место равенства

$$\int\limits_{x_0}^{x} f^{(k)}(t) rac{(x-t)^{k-1}}{(k-1)!} dt = - \int\limits_{x_0}^{x} f^{(k)}(t) rac{d((x-t)^k)}{k!} =$$

$$= -\frac{1}{k!}f^{(k)}(t)(x-t)^k\Big|_{t=x_0}^{t=x} + \int_{x_0}^x f^{(k+1)}(t) \frac{(x-t)^k}{k!} dt =$$

$$=\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^k+\frac{1}{k!}\int\limits_{x_0}^{\infty}f^{(k+1)}(t)(x-t)^k\,dt.$$

В частности, при k=n имеем

$$\frac{1}{(n-1)!} \int_{x_0}^{x} f^{(n)}(t)(x-t)^{n-1} dt = \frac{1}{n!} f^{(n)}(x_0)(x-x_0)^n +$$

$$+\frac{1}{n!}\int_{x_0}^{x}f^{(n+1)}(t)(x-t)^n dt. \tag{4}$$

Предположим теперь, что при некотором натуральном n-1 выполнено искомое равенCTBO

$$f(x) = \sum_{k=0}^{m-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k +$$

$$+\frac{1}{(n-1)!}\int_{x_0}^x f^{(n)}(t)(x-t)^{n-1} dt.$$

Выразив интеграл в правой части по фор-

муле (4), получим

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^{x} f^{(n+1)}(t) \frac{(x-t)^n}{n!} dt,$$

то есть искомую формулу, соответствующую натуральному n. В соответствии с принципом математической индукции заключаем, что формула Тейлора с остаточным членом в интегральной форме верна.

Тема: Несобственные интегралы

 1^{0} . Определение несобственного интеграла: интеграл по неограниченному интервалу, интеграл от неограниченной функции. Несобственные интегралы с двумя особыми пределами интегрирования. Интегрирование степенных особенностей. 2^{0} . Свойства операции несобственного интегрирования. Примеры вычисления несобственных интегралов. 3^{0} . Критерий сходимости несобственного интеграла от неотрицательной функции. Признак совместной сходимости. Следствие. Функции сравнения, сравнения со степенными функциями. Пример. 4^{0} . Критерий Коши сходимости несобственного интеграла. Абсолютная сходимость несобственного интеграла. Лемма о сходимости абсолютно сходящихся интегралов. Условно сходящиеся несобственные интегралы. ${\bf 5^0}$. Признаки Дирихле и Абеля. Примеры.

1⁰. Интеграл Римана был нами определен для конечного промежутка интегрирования и при этом подынтегральная функция обязана была быть ограниченной.

Оказывается, что таким образом определенный интеграл допускает естественное расширение на случай, когда хотя бы одно из указанных двух условий не выполнено.

Определение. Для любой функции f(x), заданной на бесконечном промежутке $[a, +\infty)$ и интегрируемой по Риману на любом конечном отрезке вида $[a, \eta]$, предел интеграла

$$\Phi(\eta) = \int\limits_{m{a}}^{m{\eta}} f(x)\,dx$$

при $\eta \to +\infty$, если только он существует, называется несобственным интегралом от функции f(x) по бесконечному промежутку $[a, +\infty)$. Если несобственный интеграл от функции f(x) по $[a, +\infty)$ существует, то его обозначанот как $\int\limits_a^+ f(x) \, dx$ и называют также несобственным интегралом от a до $+\infty$.

Таким образом, по определению имеет место равенство

$$\int\limits_{a}^{+\infty}f(x)\,dx=\lim\limits_{\eta
ightarrow+\infty}\int\limits_{a}^{\eta}f(x)\,dx. \hspace{1.5cm} ext{(ImI)}$$

Если предел (ImI) существует и конечен, то интеграл называется *сходящимся*, а функция f(x) — интегрируемой по $[a, +\infty)$ в несобственном смысле.

Если же предел (ImI) не существует или бес- $+\infty$ конечен, то интеграл $\int\limits_a^b f(x)\,dx$ называется расходящимся.

Определение несобственного интеграла от функции по промежутку $(-\infty, b]$ дается аналогично, с помощью замены x = -t в равенстве

$$\int\limits_{-\infty}^{b}f(x)\,dx=\lim_{m{\xi} o-\infty}\int\limits_{m{\xi}}^{b}f(x)\,dx=\int\limits_{-b}^{+\infty}f(-t)\,dt.$$

Таким образом, интеграл с бесконечным нижним пределом всегда сводится к интегралу с бесконечным верхним пределом. **Пример.** Исследовать на сходимость несобственный интеграл

$$\int\limits_{1}^{+\infty}rac{dx}{x^{lpha}}$$

при разных значениях параметра lpha.

Решение. При $\alpha \neq 1$ имеем по определению

$$\int\limits_{1}^{+\infty}rac{dx}{x^{lpha}}=\lim\limits_{oldsymbol{\eta}
ightarrow+\infty}\int\limits_{1}^{oldsymbol{\eta}}rac{dx}{x^{lpha}}=$$

$$=\lim_{\eta\to+\infty} \left(\frac{x^{1-\alpha}}{1-\alpha}\right)\Big|_1^{\eta} = \lim_{\eta\to+\infty} \frac{\eta^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}.$$

Последний предел в этом равенстве равен нулю при $\alpha>1$, и следовательно, при этих α справедливо равенство

$$\int\limits_{1}^{+\infty}rac{dx}{x^{lpha}}=rac{1}{lpha-1},$$

то есть интеграл сходится. Если же $\alpha < 1$, то

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{\eta \to +\infty} \frac{\eta^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} = +\infty.$$

Пусть $\alpha = 1$. Тогда

$$\int\limits_{1}^{+\infty} rac{dx}{x} = \lim\limits_{\eta o +\infty} \int\limits_{1}^{\eta} rac{dx}{x} = \lim\limits_{\eta o +\infty} \ln\,\eta = +\infty.$$

Таким образом, интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x^{lpha}}$ сходится при

lpha > 1 и расходится при $lpha \leqslant 1$.

Расширим теперь определение интеграла на случай, когда подынтегральная функция не ограничена на промежутке интегрирования. **Определение.** Пусть функция f(x) определена на конечном промежутке [a,b) и интегрируема по Риману на любом отрезке вида $[a,\eta]\subset [a,b)$. Если f(x) — неограниченная на [a,b] функция, то предел ее первообразной

$$\Phi(\eta) = \int\limits_a^\eta f(x)\,dx$$
 ПРИ $\eta o b{-}0,$

если только он существует, называется несобственным интегралом от функции f(x) по промежутку [a,b].

Таким образом, по определению имеет ме-

сто равенство

$$\int\limits_a^b f(x)\,dx = \lim\limits_{oldsymbol{\eta} o b-0}\int\limits_a^{oldsymbol{\eta}} f(x)\,dx. \qquad \qquad ext{(ImI')}$$

Если предел ($\operatorname{Im} I'$) существует и конечен, то несобственный интеграл называется сходящимся, а функция f(x) — интегрируемой по [a,b] в несобственном смысле.

Если же предел (ImI') не существует или

бесконечен, то интеграл $\int\limits_a^b f(x)\,dx$ называется расходящимся.

Определение несобственного интеграла от функции по промежутку (a,b] для неограниченной на отрезке [a,b] функции, интегрируемой на любом отрезке вида $[\xi,b]$, где $\xi>a$, дается с помощью замены x=-t в следую-

щем равенстве:

$$\int\limits_a^b f(x)\,dx = \lim\limits_{m{\xi} o a+0}\int\limits_{m{\xi}}^b f(x)\,dx = \int\limits_{-b}^{-a} f(-t)\,dt.$$

Иногда, чтобы подчеркнуть отличие обычного интеграла Римана от несобственных интегралов этот обычный интеграл называют собственным. Пример. Исследовать на сходимость несоб- $\int_{0}^{1} \frac{dx}{x^{\alpha}}$ в зависимости от
значений вещественного параметра α .

Решение. Если $\alpha \leqslant 0$, то функция $\frac{1}{x^{\alpha}} = x^{-\alpha}$ непрерывна на отрезке [0,1] и поэтому интегрируема здесь по Риману. Следовательно, при $\alpha \leqslant 0$ рассматриваемый интеграл является собственным.

Пусть $0 < \alpha < 1$. Тогда

$$\int_{0}^{1} \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \int_{\xi}^{1} \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{\xi}^{1} = \frac{1}{1-\alpha} < +\infty,$$

то есть при этих α несобственный интеграл сходится. Если же $\alpha > 1$, то

$$\int_{0}^{1} \frac{dx}{x^{\alpha}} = \lim_{\xi \to +0} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{\xi}^{1} = \frac{1}{1-\alpha} - \lim_{\xi \to +0} \frac{\xi^{1-\alpha}}{1-\alpha} = +\infty,$$

то есть несобственный интеграл расходится.

Пусть $\alpha = 1$. Тогда имеем

$$\int\limits_0^1 rac{dx}{x} = \lim_{m{\xi} o +0} \int\limits_{m{\xi}}^1 rac{dx}{x} = -\lim_{m{\xi} o +0} \ln m{\xi} = +\infty.$$

Таким образом, несобственный интеграл $\int\limits_{1}^{1} \frac{dx}{x^{\alpha}}$ сходится при $\alpha < 1$ и расходится при 0 значениях $\alpha \geqslant 1$.

Определенные выше несобственные интегра-

лы называют также интегралами с особыми пределами (верхними или нижними). Рассматриваются также интегралы, у которых и верхний, и нижний пределы интегрирования являются особыми.

В этом случае предполагается, что подынтегральная функция f(x) определена на конечном или бесконечном интервале (a,b) и при этом интегрируема на любом отрезке вида

 $[\xi, \eta]$, вложенном в (a, b). Несобственный интеграл при этом определяется равенством

$$\int\limits_a^b f(x)\,dx = \int\limits_a^c f(x)\,dx + \int\limits_c^b f(x)\,dx,$$

где c — внутренняя точка из (a,b).

В правой части последнего равенства складываются несобственные интегралы, имеющие каждый ровно по одному особому пределу.

При этом интеграл $\int\limits_a^b f(x)\,dx$ называется сходящимся в том и только том случае, если сходятся оба интеграла $\int\limits_a^c f(x)dx$ и $\int\limits_c^b f(x)dx$.

Если же хотя бы один из них расходится, $\int\limits_a^b f(x)\,dx$ называется расходящимся.

Пример. Исследовать на сходимость несоб- $+\infty$ ственный интеграл $\int \frac{dx}{x^{\alpha}}$ с двумя особыми пределами интегрирования в зависимости от значений α .

Решение. Имеем по определению

$$\int\limits_0^{+\infty} rac{dx}{x^lpha} = \int\limits_0^1 rac{dx}{x^lpha} + \int\limits_1^\infty rac{dx}{x^lpha}.$$

Как уже установлено, при $\alpha \geqslant 1$ расходится первый несобственный интеграл $\int\limits_0^1 \frac{dx}{x^\alpha}$ в правой части, осли же $\alpha \leqslant 1$ то расходится вто-

вой части, если же $\alpha \leqslant 1$, то расходится вто-

рой интеграл $\int\limits_{1}^{} rac{dx}{x^{lpha}}$. Следовательно, исход-

ный интеграл $\int\limits_{\Omega}^{\cdot} \frac{dx}{x^{\alpha}}$ расходится при всех ве-

щественных α .

 2^0 . Многие из свойств определенного интеграла Римана распространяются и на несобственные интегралы. В частности, операция несобственного интегрирования линейна, аддитивна и монотонна.

Для несобственных интегралов справедливы формула замены переменной интегрирования и формула интегрирования по частям. В качестве упражнения сформулируйте все

эти свойства в применении к несобственным интегралам с особым верхним пределом, а также дайте их подробное обоснование.

Отдельно сформулируем аналог формулы Ньютона — Лейбница для несобственных интегралов. **Теорема** (формула Ньютона — Лейбница+). Пусть функция f(x), $x \in [a,b)$, на любом отрезке $[a,\eta] \subset [a,b)$ интегрируема по Риману и при этом имеет здесь первообразную F(x).

Тогда справедливо равенство

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to b-0} F(\eta) - F(a).$$
 (NL')

Формулу (NL') надо понимать следующим образом: если несобственный интеграл слева существует, то и предел справа первообразной $F(\eta)$ при $\eta \to b-0$ также существует. При этом имеет место формула (NL').

В частности, в формуле (NL') допускается равенство $b=+\infty$.

Пример. Вычислить несобственный интеграл

$$I=\int\limits_{-1}^{+1}rac{dx}{\sqrt{1-x^2}}.$$

Решение. Рассматриваемый несобственный интеграл I имеет два особых предела интегрирования: верхний и нижний. Для того чтобы вычислить I, сделаем замену пе-

ременной интегрирования

$$x = \sin t$$
, $-\pi/2 \leqslant t \leqslant +\pi/2$.

Тогда получим

$$\int rac{dx}{\sqrt{1-x^2}} = \int rac{\cos t \, dt}{\sqrt{1-\sin^2 t}} = \int rac{-\pi/2}{-\pi/2} dt = \pi.$$

Здесь учтено, что $\cos t \geqslant 0$ при $-\pi/2 \leqslant t \leqslant +\pi/2$.

Пример. Вычислить несобственные интегралы

$$\int\limits_0^1 \ln x \, dx \quad \mathcal{U} \quad \int\limits_1^{+\infty} \ln x \, dx.$$

Решение. Применяя формулу интегрирования по частям, получаем для первого интеграла

$$\int\limits_{0}^{1} \ln x dx = (x \ln x) \Big|_{0}^{1} - \int\limits_{0}^{1} x \, d(\ln x) = -1.$$

Здесь использовано предельное равенство

$$\lim_{x \to +0} (x \ln x) = 0.$$

Таким образом, интеграл $\int\limits_0^1 \ln x \, dx$ сходится.

Для второго же интеграла из условия при $\eta \geqslant e$ имеем

$$\int\limits_{1}^{\eta} \ln x dx \geqslant \int\limits_{e}^{\eta} \ln x dx \geqslant \int\limits_{e}^{\eta} (\ln e) dx = \eta - e.$$

Переходя здесь к пределу при $\eta \to +\infty$, за-ключаем, что второй несобственный инте-грал $\int\limits_{1}^{+\infty} \ln x \, dx$ расходится.

 3^0 . Пусть подынтегральная функция f(x) определена на промежутке [a,b) (конечном или бесконечном) и интегрируема по Риману на любом отрезке $[a,\eta]\subset [a,b)$.

Если f(x) к тому же неотрицательна, то интеграл с переменным верхним пределом

$$\Phi(\eta) = \int\limits_a^\eta f(x)\,dx, ~~\eta \in [a,b],$$

является монотонно возрастающей на промежутке [a,b) функцией и по этой причине существует предел $\Phi(\eta)$ при $\eta \to +\infty$ (конечный или бесконечный).

Таким образом, несобственный интеграл от неотрицательной функции f(x) сходится тогда и только тогда когда соответствующая ей первообразная $\Phi(\eta)$ ограничена на промежутке определения f(x).

На этом несложном замечании основаны *при- знаки сравнения* для установления сходимо- сти несобственных интегралов от неотрица- тельных функций.

Теорема (признак совместной сходимости). Пусть функции f(x) и g(x) определены и неотрицательны на промежутке [a,b) и при этом

$$f(x) = O(g(x))$$
 $\sqcap
abla \mathcal{U}$ $x o b - 0.$ (fOg)

Тогда, если интеграл $\int g(x) \, dx$ сходится, то и интеграл $\int f(x) \, dx$ также сходится. Если же интеграл $\int f(x) \, dx$ расходится, то расходится и интеграл $\int\limits_{0}^{b}g(x)\,dx$.

Доказательство. Условие (fOg) означает, что существуют такие постоянная M>0 и точка c из [a,b), что имеет место оценка

$$f(x) \leqslant Mg(x) \qquad \forall \, x \in (c,b).$$

Поэтому и в силу неотрицательности функции f(x) для любого числа η из интервала (c,b) справедливо неравенство

$$0\leqslant\int\limits_{c}^{oldsymbol{\eta}}f(x)\,dx\leqslant M\int\limits_{c}^{oldsymbol{\eta}}g(x)\,dx.$$

Переходя здесь к пределу при $\eta \to b - 0$ и учитывая, что интегралы от a до b и от c до b сходятся или расходятся одновременно, получаем оба утверждения теоремы.