## Part 1: Boolean Simplification

### **Question 1:**

EQ1: AB'C+A'BC'+A'B'C

EQ2: ABC+AB'C+A'BC'+A'B'C

Simplifying EQ1: A'B + AB'C + ABC'

B'C(A+A') + A'BC'

B'C1+A'BC' B'C+A'BC'

Simplifying EQ2: A'B + ABC + ACD' + BCD

B(AC + A') + ACD' + BCD

B(C + A') + ACD' + BCD

BC + BA'+ACD'+BCD

BC + BA'+ACD'

### **Question 2**

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

Sum of Products (SOP) Form:

**Product of Sums (POS) Form:** 

# Part 2: 3-input Boolean Circuit Simplification using Laws

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

POS expression: (A+B+C)(A+B'+C')(A'+B+C)

Simplified expression: AC+BC'+CB'

```
module Part_1(
    input A,
    input B,
    input C,
    input D,
    output F,
    output FS
);

assign F = (~A&~B&C&~D) | (~A&B&C&~D) | (~A&B&C&D) | (A&~B&C&~D);
    assign FS = (~A&C&B) | (C&~D&~B) | (C&~D&~A);
endmodule
```







Part 3: 4-input Boolean Circuit Simplification using Laws

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |

| Α | В | С | D | F |
|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

Original expression: A'B'CD'+A'BCD'+A'BCD+AB'CD' Simplified expression:

```
module Part_1(
    input A,
    input B,
    input C,
    output F,
    output FS
);

assign F = (~A|~B|C)&(~A|B|~C)&(A|~B|C)&(A|B|~C)&(A|B|C);
    assign FS = (~B&~C&A) | (C&B);
endmodule
```







Part 4: Boolean Simplification using K-Maps (Get equation -> Make circuit)

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

```
module Part_1(
    input A,
    input B,
    input C,
    input D,
    output FPOS,
    output FSOP
    );

assign FPOS = (~A|~B|~C) & (C|A|B) & (C|A|D) & (~D|B) & (~D|~C);
    assign FSOP = (~A&C&~D) | (A&~B&~D) | (B&~C&A) | (B&~C&D);
endmodule
```







### K-Map:

| CD\AB | 00   | 01     | 11 | 10   |
|-------|------|--------|----|------|
| 00    | 0    | 0      | 0  | 1 V  |
| 01    | 0    | 1 V    | 0  | 1 /\ |
| 11    | 1 -> | <- 1 ∧ | 0  | 0    |
| 10    | <- 1 | 0      | 0  | 1 -> |

### **Overall Deliverables and Q&A**

What form of Boolean equations is an ANDs of ORs?

- Product of Sums (POS)
   What form of Boolean equations is an ORs of ANDs?
- Sum of Products (SOP)
   How many logic gates comprise a 3-variable term?
- A minimum of 2 gates (AND, OR, or NOT) depending on the term.
   What does a logic gate represent within the physical realm of computers?
- A logic gate represents a fundamental building block of digital circuits that perform logical operations on binary inputs.