Classical Mechanics from the context of the course PHY 321: Classical Mechanics 1

Kaedon Cleland-Host

February 1, 2021

Contents

1	Standard Units			
2	ntroduction	3		
	.1 Notation	3		
	.2 2d Numerical Motion	3		
	2.2.1 Earth Sun Gravitational System	3		

Chapter 1

Standard Units

In physics it's often important to have precisely defined units for the purposes of making very accurate measurements or simply having a coherent unit system. It's possible to derive all necessary units from five measurements of **length**, **mass**, **time**, **current**, **and temperature**. The standard SI units for these properties are listed bellow:

Type	Unit	Definition	
Length	Meter(m)	Length of distance light in a vacuum travels in $\frac{1}{299792458}$ seconds	
Mass	Kilogram(kg)	Defined by fixing the Planck's constant $h = 6.62607015 \times 10^{-34} kg \ m^2 s^{-1}$	
Time	Second(s)	Defined by fixing the ground-state hyperfine transition frequency of the caesium-133	
		atom, to be $9192631770s^{-1}$	
Current	Ampere(A)	Defined by fixing the charge of an electron as $1.602176634 \times 10^{-19} A \cdot s$	
Temperature	Kelvin(K) Defined by fixing the value of the Boltzmann constant k to $1.380649 \times 10^{-23} kg \cdot m^2 s^{-2} K^{-1}$		

Common prefixes are listed bellow:

Prefix	Symbol	Definition
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

Chapter 2

Introduction

2.1 Notation

2.2 2d Numerical Motion

Example. Let's consider a 2d system with gravity and air resistance.

 $\mathbf{v} = (v_x, v_y)$

We define initial condition when t = 0

 $v_x(0) = v_{0x}$ $v_y(0) = v_{0y}$

 $\mathbf{F} = -m\gamma \mathbf{v}(t) - mg\mathbf{j}$

Now applying $\mathbf{F} = m\mathbf{a}$ we find that

 $\mathbf{a} = -\gamma \mathbf{v}(t) - g\mathbf{j}$ $a_x = -\gamma v_x(t)$

 $a_y = -\gamma v_y(t) - g$

First, lets solve for the x-component:

 $\frac{dv_x}{dt} = -\gamma v_x$

 $\int \frac{dv_x}{v_x} = \int -\gamma dt$

 $\ln \frac{v_x}{v_{0x}} = -\gamma t$

 $v_x(t) = v_{0x}e^{-\gamma t}$

 $x(t) = x_0 + \frac{v_{0x}}{\gamma} (1 - e^{-\gamma t})$

Now, lets solve for the y-component:

$$\frac{dv_y}{dt} = -\gamma v_y - g$$

$$\int \frac{dv_y}{v_y - \frac{g}{\gamma}} = \int -\gamma dt$$

$$\ln \frac{v_y - \frac{g}{\gamma}}{v_{y0} - \frac{g}{\gamma}} = -\gamma t$$

$$v_y(t) = (v_{y0} - \frac{g}{\gamma})e^{-\gamma t} + g\gamma$$

$$y(t) = y_0 - g\frac{t}{\gamma} + (v_{oy} + \frac{g}{\gamma})(1 - e^{-\gamma t})\frac{1}{\gamma}$$

2.2.1 Earth Sun Gravitational System

$$\mathbf{F} = G \frac{m_1 m_2 \mathbf{r}}{\mathbf{r}^3}$$

$$\mathbf{r} = \sqrt{x^2 + y^2}$$