Vectors, Lines, Planes

Parametric Equations of Lines, Planes

Parametric Equations of Lines

Parametric Equations

11.5.1 THEOREM

(a) The line in 2-space that passes through the point $P_0(x_0, y_0)$ and is parallel to the nonzero vector $\mathbf{v} = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$ has parametric equations

$$x = x_0 + at, \quad y = y_0 + bt$$
 (1)

(b) The line in 3-space that passes through the point $P_0(x_0, y_0, z_0)$ and is parallel to the nonzero vector $\mathbf{v} = \langle a, b, c \rangle = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ has parametric equations

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$ (2)

Straight-Line Equations (2D)

$$vertical \ line \qquad x=a.$$

$$horizontal \ line \qquad y=b.$$

$$point\text{-}slope \ form \qquad y-y_0=m(x-x_0).$$

$$slope\text{-}intercept \ form \qquad y=mx+b. \qquad (y=b \ \text{at } x=0)$$

$$two\text{-}intercept \ form \qquad \frac{x}{a}+\frac{y}{b}=1. \qquad (x\text{-}intercept \ a; y\text{-}intercept \ b)$$

$$general \ form \qquad Ax+By+C=0. \qquad (A \ \text{and} \ B \ \text{not} \ \text{both} \ 0)$$

Parametric equations of the line passing points P_{θ} and P:

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$

Vector Equation of a line

Example 1: Find parametric equations of the line L passing through the points (4, 2) and parallel to $\mathbf{v} = \langle -1, 5 \rangle$.

Example 2: Find parametric equations of the line L passing through the points (1, 2, -3) and parallel to $\mathbf{v} = 4\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}$.

Example 3: Let L_1 and L_2 be the lines

$$L_1$$
: $x = 1 + 4t$, $y = 5 - 4t$, $z = -1 + 5t$
 L_2 : $x = 2 + 8t$, $y = 4 - 3t$, $z = 5 + t$

- (a) Are the lines parallel?
- (b) Do the lines intersect?

Planes determined by a point and a normal vector

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Planes determined by a point and a normal vector

11.6.1 THEOREM If a, b, c, and d are constants, and a, b, and c are not all zero, then the graph of the equation

$$ax + by + cz + d = 0 ag{6}$$

is a plane that has the vector $\mathbf{n} = \langle a, b, c \rangle$ as a normal.

General form of a plane

11.6.2 THEOREM The distance D between a point $P_0(x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
(10)

In 3D the **distance** d between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Distance between a point and a plane

