Python与金融计算

条件波动率模型的估计与检验

蒋志强*、储丽娅#

*zqjiang.ecust@qq.com *cherry_8621@163.com

金融时间序列特征

- > 收益率尖峰厚尾
- > 波动率集聚(自相关)
- > 正负冲击的非对称性

传统线性回归模型无效

波动率

Volatility clustering

- "large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes."
 - -Mandelbrot (1963)

波动率

收益率 → 波动率

- > 反应市场的不确定性程度
- > 信息流的度量:高波动率,大信息冲击
- ➢ 特点:时变、集聚
- > 简单估计:收益率的绝对值

金融时序胖尾特征 → 建模改进

- ◆ 条件波动:ARCH和GARCH
- ◆ 其他分布形式:t分布、GED分布等

条件波动率
$$\sigma_t = \sqrt{\text{Var}[r_t|\mathbf{I}_{t-1}]}$$

- \triangleright I_{t-1} 投资者在 t-1 时刻所拥有的信息
- ➤ Var[•|I_{t-1}] 基于信息集I_{t-1}的条件方差

条件波动率、非条件波动率

条件方差、非条件方差

收益率观察值的样本方差是非条件方差的一个估计值

收益率模型 $\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$

- $> \mu_t = E(r_t | \mathbf{I}_{t-1})$ 收益率条件期望
- $> \sigma_t$ 条件波动率,信息集 I_{t-1} 的非负函数
- \triangleright \mathbf{I}_{t-1} 表示时刻 t-1 的信息集
- $\succ \varepsilon_t$ 是一个白噪声过程
- $> Z_t$ 满足标准正态分布,IID

收益率模型 $\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$

μ_t 的设定:

- > 常数
- > ARMA过程

$$r_t = \phi_0 + \sum_{p=1}^{P} \phi_p r_{t-p} + \sum_{q=1}^{Q} \theta_q \epsilon_{t-q} + \epsilon_t$$

有: $Var[r_t|I_{t-1}] = \sigma_t^2$

收益率模型
$$\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$$

σ_t^2 的设定:

- > ARCH
- > GARCH
- > EGARCH
- > ARCH-M

收益率模型 $\begin{cases} r_t = \mu_t + \epsilon_t \\ \epsilon_t \equiv \sigma_t z_t, \end{cases}$

Z_i 的设定:

- > 标准正态分布
- > 标准t分布
- > 标准的广义误差分布
- > 混合正态分布
- **>**

> **ARCH**(1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2, \quad \alpha_0 > 0, 0 < \alpha_1 < 1.$$

\triangleright ARCH(q)

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 \equiv \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- **《 保证** $\sigma_t^2 > 0$,要求 $\alpha_i > 0$ (i = 0, 1, ..., q)
- \checkmark 保证平稳,要求 $\sum_{i=1}^{q} \alpha_i < 1$

➤ ARCH(1)的性质

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2, \quad \alpha_0 > 0, 0 < \alpha_1 < 1.$$

$$\triangleright$$
 均值 $E[\epsilon_t]=0$

$$E[\epsilon_t] = 0.$$

$$ightharpoonup$$
 方差 $Var[\epsilon_t] = \frac{\alpha_0}{1 - \alpha_1}$

》峰度
$$Kurt[\epsilon_t] = 3\frac{1 - \alpha_1^2}{1 - 3\alpha_1^2} > 3$$
, $0 < \alpha_1 < 1/\sqrt{3}$

尖峰胖尾

基于ARCH(1)的收益率模拟

1.设置模型参数

$$\mu = 0.033\%$$
, $\alpha_0 = 1.52 \times 10^{-4}$, $\alpha_1 = 0.4735$, $\sigma_0^2 = 2.89 \times 10^{-4}$

2.利用标准正态分布产生随机数

$$Z_0, Z_1, Z_2, \cdots, Z_T$$

3. 迭代计算下式

$$\epsilon_t = \sigma_t z_t,$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2,$$

$$r_t = \mu + \epsilon_t.$$

$$\epsilon_t = \sigma_t z_t$$

ARCH(1)的模拟

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2,$$

$$r_t = \mu + \epsilon_t$$
.

ARCH效应检验(条件异方差?)

Engle(1982)'s ARCH test

• Denote $\hat{\epsilon}_t$ as the demeaned return series, and run regression:

$$\hat{\epsilon}_t^2 = \alpha_0 + \alpha_1 \hat{\epsilon}_{t-1}^2 + \alpha_2 \hat{\epsilon}_{t-2}^2 + \dots + \alpha_m \hat{\epsilon}_{t-m}^2 + u_t.$$

• Record the R^2 of the regression, then under the null hypothesis of no ARCH effect

$$T \cdot R^2 \stackrel{a}{\sim} \chi^2(m)$$
.

GARCH

 \succ GARCH(p, q)

$$\sigma_t^2 = \omega + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

- ✓ 保证 $\sigma_t^2 > 0$,要求 α_i $\beta_i > 0$ (i = 0,1,...,q)
- ✓ 保证平稳,要求

$$\sum_{i=1}^{p} \beta_i + \sum_{i=1}^{q} \alpha_i < 1$$

GARCH

➢ GARCH(1, 1)的性质

$$\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2$$

$$\omega > 0, \beta_1 > 0, \alpha_1 > 0, \beta_1 + \alpha_1 < 1$$

$$E[\epsilon_t] = 0$$

$$Var(\epsilon_t) = \frac{\omega}{1 - (\beta_1 + \alpha_1)}$$

尖峰胖尾

GARCH

基于GARCH(1, 1)的收益率模拟

1.设置模型参数

$$\mu = 0.0245\%, \omega = 5.18 \times 10^{-6}, \beta_1 = 0.8869, \alpha_1 = 0.1010, \sigma_0^2 = 0.0207^2$$

2.利用标准正态分布产生随机数

$$Z_0, Z_1, Z_2, \cdots, Z_T$$

3. 迭代计算下式

$$\epsilon_t = \sigma_t Z_t$$

$$\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2$$

$$r_t = \mu_t + \epsilon_t$$

EGARCH

 \succ EGARCH(p, q)

$$\log \sigma_t^2 = \omega + \sum_{i=1}^p \beta_i \log \sigma_{t-i}^2 + \sum_{i=1}^q \alpha_i (|z_{t-i}| - E|z_{t-i}|) + \sum_{i=1}^q \theta_i z_{t-i}$$

✓ **杠杆效应** Leverage effect: $\theta_i < 0$

ARCH-M

> ARCH-M

$$\begin{cases} r_t = \mu_t + \epsilon_t \\ \mu_t \equiv \mu + \delta \sigma_t, & \delta > 0 \\ \epsilon_t = \sigma_t z_t. \end{cases}$$

✓ 风险溢价 Risk premium: $\delta \sigma_t$

其他模型

Nonlinear GARCH (NGARCH) model: Engle and Ng (1993)

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha (\epsilon_{t-1} - \theta \sigma_{t-1})^2,$$

Quadratic GARCH (QGARCH) model: Sentana (1995)

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha \epsilon_{t-1}^2 + \theta \epsilon_{t-1};$$

 QJR-GARCH model or threshold GARCH (TGARCH) model: Glosten, Jagannathan, and Runkle (1993)

$$\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha \epsilon_{t-1}^2 + \theta \epsilon_{t-1}^2 \cdot \mathbf{1}_{\{\epsilon_{t-1} \ge 0\}}.$$

 Similar to EGARCH, the NGARCH, QGARCH, and TGARCH models also can describe leverage effect

Z_t 设定

> 标准正态分布

$$f(z_t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z_t^2}{2}}$$

➢ 标准 t 分布

$$g(x) = \frac{\Gamma((v+1)/2)}{\sqrt{v\pi}\Gamma(v/2)} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2},$$

$$f(z_t) = \sigma g(\sigma z_t), \quad \sigma \equiv \sqrt{v/(v-2)}.$$
 $v(v > 2)$

Z_t 设定

> 标准的广义误差分布

$$f(z_t) = \frac{\nu \exp[-(1/2)|z_t/\lambda|^{\nu}]}{\lambda 2^{(1+1/\nu)}\Gamma(1/\nu)}, \quad 0 < \nu \le \infty,$$
$$\lambda \equiv \left[\frac{2^{-2/\nu}\Gamma(1/\nu)}{\Gamma(3/\nu)}\right]^{1/2}$$

> 混合正态分布

$$z_t \sim \text{mixed normal}(\lambda, \eta) = \begin{cases} N(0, \sigma^2) & \text{with probability}(1 - \eta) \\ N(0, \lambda \sigma^2) & \text{with probability} \end{cases}$$

where $\sigma^2 \equiv 1/(1 - \eta + \lambda \eta)$ to make the variance of z_t equal to 1.

ARCH(1)参数估计

ARCH(1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2. \end{cases}$$

Conditional density:

$$f(r_t|r_{t-1}) = \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left[-\frac{(r_t - \mu)^2}{2\sigma_t^2}\right].$$

Log likelihood function:

$$L(\theta) \equiv \ln f(r_T, \dots, r_t | r_0) = \sum_{t=1}^{T} \ln f(r_t | r_{t-1})$$

$$= -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2}$$

GARCH(1, 1)参数估计

GARCH(1,1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2, \end{cases}$$

Log likelihood function:

$$L(\theta) \equiv -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2},$$

where
$$\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2$$
.

• Initial value σ_0^2 : Bollerslev proposes using sample variance:

$$\hat{\sigma}^2 \equiv \frac{1}{T} \sum_{t=1}^{T} (r_t - \mu)^2$$

EARCH(1, 1)参数估计

EGARCH(1,1) model:

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \log \sigma_t^2 = \omega + \beta_1 \log \sigma_{t-1}^2 + \alpha_1(|z_{t-1}| - E|z_{t-1}|) + \theta z_{t-1}. \end{cases}$$

Log likelihood function:

$$L(\theta) \equiv -\frac{T}{2} \ln(2\pi) - \sum_{t=1}^{T} \ln \sigma_t - \frac{1}{2} \sum_{t=1}^{T} \frac{(r_t - \mu)^2}{\sigma_t^2},$$

where

$$\sigma_t^2 = \exp\left[\omega + \beta_1 \log \sigma_{t-1}^2 + \alpha_1(|z_{t-1}| - E|z_{t-1}|) + \theta z_{t-1}\right].$$

• Initial value σ_0^2 :

$$\hat{\sigma}^2 \equiv \frac{1}{T} \sum_{t=1}^{T} (r_t - \mu)^2$$

检验冲击 Z_t 的ARCH效应

$$\begin{cases} r_t = \mu + \epsilon_t \\ \epsilon_t = \sigma_t z_t, \quad z_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2, \end{cases}$$

- 1. 利用估计参数计算 ε_t
- 2. 设 $\sigma_0=0$, 计算 σ_t
- 3. 计算冲击 $Z_t = \varepsilon_t / \sigma_t$
- 4. 利用archtest检验 Z_t