Performing Windowing Operations on Streams

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Windowing operations on streams
Sliding and tumbling windows
Event time vs. processing time
Aggregation operations on windows
UDFs on streaming data

Stateless and Stateful Transformations

Transformations

Stateless

Transformations which are applied on a single stream entity

Stateful

Transformations which accumulate across multiple stream entities

Stateless Transformations

Each entity is operated on standalone

Speed exceeded? Alert triggered

Window Transformations

Accumulate information across a window in a stream

time

time

A window is a subset of a stream based on

- Time interval
- Count of entities
- Interval between entities

Transformations can be applied on all entities within a window

- sum, min, max, average

Tumbling, Sliding, and Global Windows

Types of Windows

Tumbling Window

Sliding Window

Count Window

Session Window

Global Window

Types of Windows

Tumbling Window

Sliding Window

Count Window

Session Window

Global Window

Types of Windows

A stream of data

Tumbling Window

Fixed window size

Non-overlapping time

Number of entities differ within a window

Tumbling Window

The window tumbles over the data, in a non-overlapping manner

Tumbling Window

Apply the sum() operation on each window

Sliding Window

Fixed window size

Overlapping time - sliding interval

Number of entities differ within a window

Sliding Window

Fixed window size

Overlapping time - sliding interval

Number of entities differ within a window

Sliding Window

Apply the sum() operation on each window

Global Window

All data in the stream in one window

Event Time and Processing Time

Time-based Windows

Tumbling and sliding windows consider entities in a fixed interval of time

Time-based Windows

Tumbling and sliding windows consider entities in a fixed interval of time

There are different notions of time that can apply to entities in a stream

Time

Event Time

Ingestion Time

Processing Time

Event Time

The time at which the event occurred at its original source

- Mobile phone, sensor, website

Usually embedded within records

Gives correct results in case of out of order or late events

Ingestion Time

The time at which the event enters the system via a source

Timestamp given by system chronologically after the event time

Cannot handle out of order events

Processing Time

The system time of the machine processing entities

Chronologically after event time and ingestion time

Non-deterministic, depends on when data arrives, how long operations take

Simple, no coordination between streams and processors

Event Time vs. Processing Time

Event Time vs. Processing Time

Event Time vs. Processing Time

Event Time vs. Processing Time

Demo

Exploring global windows, tumbling (fixed) windows, and sliding windows

How Late Is Late?

Class starts when clock strikes 9

Is 9:01 Late?

Realistically, at least some folks are going to be a minute late

Is 10:10 late?

A student is an hour late - allow in or send back?

How Late Is Late?

The professor "knows" what lateness is reasonable

Students entering within this reasonable lateness are late but OK

Students entering after this reasonable lateness are too late

"Allowed Lateness"

How Late Is Late?

Dealing with excessive lateness

A student is too late

- Option 1: Send back home
- Option 2: Allow in, continue class
- Option 3: Allow in, restart class(!)

The system "knows" what lateness is reasonable

Data entering
within this
reasonable lateness
is late but OK

Data entering after this reasonable lateness is too late

Watermark

Threshold of allowed lateness (event time)

Data entering
within this
reasonable lateness
is late but OK

Data entering after this reasonable lateness is too late

Watermark

Threshold of allowed lateness (event time)

Late Data

Data within watermark is aggregated

Data entering after this reasonable lateness is too late

Watermark

Threshold of allowed lateness (event time)

Late Data

Data within watermark is aggregated

Dropped Data

Data outside watermark is dropped

```
windowedCounts = words.groupBy(
     window(words.timestamp, "10 minutes", "5 minutes"),
     words.word
).count()
```

Simple Group-by Without Watermark

Count words in each sliding window of width 10 minutes, sliding by 5 minutes

```
windowedCounts = words \
    .withWatermark("timestamp", "12 minutes") \
    .groupBy(
          window(words.timestamp, "10 minutes", "5 minutes"),
          words.word) \
    .count()
```

Simple Group-by With Watermark

We define the watermark i.e. lateness threshold to be 12 minutes

```
windowedCounts = words \
    .withWatermark("timestamp", "12 minutes") \
    .groupBy(
        window(words.timestamp, "10 minutes", "5 minutes"),
        words.word) \
    .count()
```

Simple Group-by With Watermark

Now window triggering will be delayed by 12 minutes

Watermark

System generated or user specified

If, say network speed drops, watermark can become more lenient

Lateness = Processing Time - Event time

Watermarks and Output Modes

Append mode: Window not triggered at all until watermark elapses

- No partial updates

Update mode: Window will trigger even before watermark elapses

- Engine will keep partial counts

Complete mode: Can not be used with watermarks

Watermarks and Output Modes

No complete-mode queries

Aggregation must be event-time, or event-time window

.withWatermark must be called on same timestamp column as aggregate

.withWatermark must be called before the aggregation

One-way Guarantee

All data before watermark will definitely not be dropped

All data after watermark may or may not be dropped

More delayed the data, less likely the engine is to process the data

Demo

Using watermarks to allow late data

Demo

Using UDFs (user-defined functions) to transform data

Summary

Windowing operations on streams
Sliding and tumbling windows
Event time vs. processing time
Aggregation operations on windows
UDFs on streaming data

Up Next:

Working with Streaming Joins