UFRJ - Universidade Federal do Rio de Janeiro

Professor: Daniel Sadoc

Alunos:

Abraham Banafo - 117074396 Claudio Netto - 113166858 Gabriel Martins Machado Christo - 117217732 Yago Alves da Costa - 115212477 Yuri Medeiros da Silva - 117061898

[WIP] Primeiro trabalho de AD: Fila M/M/1 e Ruína do apostador

O trabalho a seguir é uma versão em desenvolvimento do relatório final (work-in-progress), apesar de testes já terem sido realizados alterações são passíveis de acontecerem.

1 Introdução

O objetivo do trabalho é a implementação de um simulador orientado a eventos discretos em uma fila seguindo as políticas de atendimento First Come First Served (FCFS) com tempo de simulação virtual. Visamos compreender a fila M/M/1 e entender a relação entre a fila M/M/1 e ruína do apostador. As simulações presentes foram executadas nas máquinas do google colab, com uma T4-GPU no colab. Os casos utilizados foram analisados com X rodadas e Y amostras, exceções serão especificadas no relatório

2. Filas M/M/1

Nessa primeira parte do trabalho focaremos no desenvolvimento e estudo da fila M/M/1 visando entender

- Como se comporta em regime transiente
- Como se comporta em regime estacionário

Nos 4 cenários a seguir

Fila M/M/1	ρ	λ	μ
Cenário 1	0.5	1	2
Cenário 2	0.5	2	4
Cenário 3	1.05	1.05	1
Cenário 4	1.10	1.10	1

2.1 A implementação:

2.1.1 Intervalo de confiança

Para estimar os intervalos de confiança utilizamos o teste-t fórmula:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

 μ = media de la población \overline{x} = media de la distribución de los datos n = tamaño de la muestra s = error estándar de la muestra

Para obtermos o intervalo de confiança, na linha 22, somamos e subtraímos com o valor obtido pelo teste t.

```
1 class Estimator:
    def init (self):
      self.samples list = [] # amostras
      self.samples sum = 0.0 # Soma das amostras
      self.squares sum = 0.0 # Soma dos quadrados das amostras
      self.n = 0 # Numero de amostras
   def add sample(self, sample):
     self.samples list.append(sample)
     self.samples sum += sample
     self.squares_sum += (sample**2)
10
     self.n += 1
11
   def get_samples_list(self):
12
13
   return self.samples_list
   def mean(self):
14
     return self.samples sum / self.n
15
   def variance(self):
16
     term1 = self.squares_sum / (self.n - 1)
17
      term2 = (self.samples_sum**2) / (self.n * (self.n - 1))
19
      return term1 - term2
   def tstudent ci(self):
      term = T PERCENTILE * (math.sqrt(self.variance())/math.sqrt(N RODADAS))
22
      return self.mean() - term, self.mean() + term
   def clear(self):
23
      self.samples sum = 0.0
24
25
      self.samples list = []
      self.squares sum = 0.0
26
      self.n = 0
28
```

2.1.2 Implementação de Fila

A implementação pode ser vista no colab, futuras alterações podem ser feitas. •• simulador fila mm1.ipynb

2.2 Cenários:

Número de rodadas = 3200 mínimo de 100 clientes atendidos

2.2.1 Cenário 1

Fila M/M/1	ρ	λ	μ
Cenário 1	0.5	1	2

Média do número de clientes no sistema

média do número de clientes na fila	variância	Média W - Tempo de espera na fila	Variância W	Média de vezes que o sistema atinge o estado zero por rodada
0.487 - 0.507	1.1108 -1.1191	0.470 - 0.487	0.624 - 0.669	24.845 - 25.135

Número de rodadas = 3200 100 clientes na fila

CDF do número de clientes no sistema

Valores gerados na distribuição exponencial com base nos parâmetros de chegadas e saídas

fração de vezes que o sistema atinge o estado 0

2.2.2 Cenário 2

Fila M/M/1	ρ	λ	μ
Cenário 2	0.5	2	4

média do número de clientes na fila	variância	Média W - Tempo de espera na fila	Variância W	Média de vezes que o sistema atinge o estado zero por rodada
0.487 - 0.507	1.1108 -1.1191	0.235 - 0.243	0.624 - 0.669	24.845 - 25.135

Número de rodadas = 3200 mínimo de 100 clientes atendidos

Retirado do enunciado do trabalho: Em aula, nós argumentamos que o número médio de clientes nos sistemas 1 e 2 será o mesmo, mas que o tempo médio de espera no sistema 2 será metade daquele experimentado no sistema 1. Um dos propósitos do trabalho é você verificar que isso de fato ocorre na prática. Ou seja, você deverá verificar, na prática, que o sistema 1 se comporta como o sistema 2, mas em câmera lenta.

Observamos que realmente acontece

Valores gerados na distribuição exponencial com base nos parâmetros de chegadas e saídas

fração de vezes que o sistema atinge o estado 0

2.2.3 Cenário 3

Fila M/M/1	ρ	λ	μ
Cenário 3	1.05	1.05	1

média do número de clientes na fila TODO: colocar clientes na fila	variância	Média W - Tempo de espera na fila	Variância W	Média de vezes que o sistema atinge o estado zero por rodada
8.147 - 8.521	36.966 - 39.955	7.568 - 7.902	30.040 - 32.392	7.574 - 8.007

Número de rodadas = 3200 mínimo de 100 clientes atendidos

Analisar se existe alguma correlação porque a média de vezes que o sistema atinge o estado zero por rodada é bem próxima do tempo de espera na fila.

CDF do número de clientes no sistema

Valores gerados na distribuição exponencial com base nos parâmetros de chegadas e saídas

fração de vezes que o sistema atinge o estado 0

2.2.4 Cenário 4

Fila M/M/1	ρ	λ	μ
Cenário 4	1.10	1.10	1

média do número de clientes na fila TODO: colocar clientes na fila	variância do número de clientes na fila	Média W - Tempo de espera na fila	Variância W	Média de vezes que o sistema atinge o estado zero por rodada
9.722 - 10.140	48.492 - 52.354	8.660 -9.016	36.309 - 39.039	6.298 - 6.695

Número de rodadas = 3200 mínimo de 100 clientes atendidos

Analisar se existe alguma correlação porque a média de vezes que o sistema atinge o estado zero por rodada é bem próxima do tempo de espera na fila.

CDF do número de clientes no sistema

Valores gerados na distribuição exponencial com base nos parâmetros de chegadas e saídas

fração de vezes que o sistema atinge o estado 0

2.3 Dificuldades e Observações

Notamos que para um número grande de atendimentos no sistema, as amostras geradas pela exponencial passaram a apresentar uma distribuição normal.

Distribuição de amostras para número mínimo de atendimentos igual à 10.000

3. Ruína do Apostador

A ser desenvolvido

4. Considerações finais

4.1 Dúvidas e Dificuldades gerais

$$\rho = \left\{ \begin{array}{ll} \lambda/\mu, & \text{se } \lambda < \mu \\ 1, & \text{caso contrário} \end{array} \right.$$

pagina 14 apostila extra

- fórmula (1.8) se o p (ro) é 1 no caso onde lambda < mu, porque utilizamos o p (ro) como 1.05 e não como 1?
- Observamos também que aumentando o número mínimo de clientes a serem atendidos a amostra gerada pela exponencial começa a se aproximar de uma distribuição normal