

AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Technika cyfrowa

TIMER

Dulewicz Antoni Smyda Tomasz

5 MAJA 2024

Spis treści

1	Treść ćwiczenia	2
2	Opis rozwiązania	2
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 4 5 7
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 11 12 14 15 17 18 20 21 22
5	Transkoder dla alarmu	24
6	Komparator	24
7	Układ testujący	2 6

1 Treść ćwiczenia

Korzystając wyłącznie z wybranych przerzutników oraz dowolnych bramek logicznych, proszę zaprojektować czterobitowy układ TIMER, odmierzający ustawiany za pomocą przełączników czas (od 0 do 15).

Po wciśnięciu przycisku START, układ rozpoczyna odmierzanie czasu do tyłu (proszę dobrać częstotliwość tak, aby efekt był dobrze widoczny na ekranie). Po wyzerowaniu się licznika czasu, układ powinien się zatrzymać i włączyć alarm świetlny wykorzystujący diodę LED. Po ponownym wciśnięciu przycisku START, układ powinien wyłączyć alarm i ponownie rozpocząć odmierzanie ustawionego na przełącznikach czasu.

Aktualny wskazywany przez układ czas proszę pokazywać na wyświetlaczach siedmiosegmentowych.

2 Opis rozwiązania

Na początku tworzymy tabelę prawdy, która reprezentuje stany logiczne transkodera dla przerzutników typu T. Następnie przy pomocy tabel Karnaugh wyprowadzamy funkcje logiczne reprezentujące ten układ i przechodzimy do części projektowania układu w programie Multisim oraz testujemy go za pomocą układu testujacego.

3 Transkoder dla przerzutników

Rysunek 1: Makieta transkodera dla przerzutników

Rysunek 2: Schemat podukładu transkodera

3.1 Tabela prawdy

Przejście	D	С	В	A	D_{+}	C_{+}	$\mathrm{B}_{\scriptscriptstyle{+}}$	A_{+}	Y_4	Y_3	Y_2	Y_1
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0	0	0	1
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0	0	0	1
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0	0	0	1
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0	0	0	1
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0	0	0	1
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0	0	0	1
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0	0	0	1
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0	0	0	1
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0	0	0	0

Tabela 1: Tabela prawdy dla transkodera

T	Q_t	Q_{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

Tabela 2: Tabela prawdy dla przerzutnika typu T

3.2 Tabele prawdy, tabele Karnaugh i schematy dla poszczególnych wyjść

Na podstawie tabeli prawdy tworzymy tabele Karnaugh dla wyjść transkodera. Zaznaczamy największe grupy pól z jedynkami i zapisujemy powstałą formułę. Szkicujemy schemat układu, następnie projektujemy w Multisimie.

3.2.1 Wyjście Y_4

Przejście	D	С	В	A	D_{+}	C_{+}	B_{+}	A_{+}	Y_4
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	0
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	0
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 3: Tabela prawdy dla wyjścia \mathbf{Y}_4

Rysunek 3: Tabela Karnaugh dla wyjścia \mathbf{Y}_4

$$Y_4 = \overline{DCBA}$$

Rysunek 4: Schemat dla wyjścia \mathbf{Y}_4

Rysunek 5: Projekt dla wyjścia \mathbf{Y}_4

$3.2.2 \quad \text{Wyj\'scie } Y_3$

Przejście	D	С	В	A	D_{+}	C_{+}	$\mathrm{B}_{\scriptscriptstyle{+}}$	A_{+}	Y_3
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	0
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	0
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	0
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	0
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 4: Tabela prawdy dla wyjścia \mathbf{Y}_3

			B	A	
		00	01	11	10
	00	0	0	0	0
DC	01	1	0	0	0
DC	11	1	0	0	0
	10	1	0	0	0

Rysunek 6: Tabela Karnaugh dla wyjścia Y_3

$$Y_3 = \overline{CBA} + \overline{DCBA}$$

Rysunek 7: Schemat dla wyjścia \mathbf{Y}_3

Rysunek 8: Projekt dla wyjścia \mathbf{Y}_3

3.2.3 Wyjście Y_2

Przejście	D	С	В	A	D_{+}	$\mathrm{C}_{\scriptscriptstyle{+}}$	$\mathrm{B}_{\scriptscriptstyle{+}}$	A_{+}	Y_2
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	0
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	0
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	0
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	0
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	0
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	0
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	0
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	0
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 5: Tabela prawdy dla wyjścia \mathbf{Y}_2

Rysunek 9: Tabela Karnaugh dla wyjścia \mathbf{Y}_2

$$Y_2 = \overline{CBA} + \overline{DCBA} + \overline{BA}$$

Rysunek 10: Schemat dla wyjścia \mathbf{Y}_2

Rysunek 11: Projekt dla wyjścia \mathbf{Y}_2

${\bf 3.2.4}\quad {\bf Wyj\acute{s}cie}\ {\bf Y_1}$

Przejście	D	С	В	A	D_{+}	C_{+}	B_{+}	A_{+}	Y_1
$15 \rightarrow 14$	1	1	1	1	1	1	1	0	1
$14 \rightarrow 13$	1	1	1	0	1	1	0	1	1
$13 \rightarrow 12$	1	1	0	1	1	1	0	0	1
$12 \rightarrow 11$	1	1	0	0	1	0	1	1	1
$11 \rightarrow 10$	1	0	1	1	1	0	1	0	1
$10 \rightarrow 9$	1	0	1	0	1	0	0	1	1
$9 \rightarrow 8$	1	0	0	1	1	0	0	0	1
$8 \rightarrow 7$	1	0	0	0	0	1	1	1	1
$7 \rightarrow 6$	0	1	1	1	0	1	1	0	1
$6 \rightarrow 5$	0	1	1	0	0	1	0	1	1
$5 \rightarrow 4$	0	1	0	1	0	1	0	0	1
$4 \rightarrow 3$	0	1	0	0	0	0	1	1	1
$3 \rightarrow 2$	0	0	1	1	0	0	1	0	1
$2 \rightarrow 1$	0	0	1	0	0	0	0	1	1
$1 \rightarrow 0$	0	0	0	1	0	0	0	0	1
$0 \rightarrow 0$	0	0	0	0	0	0	0	0	0

Tabela 6: Tabela prawdy dla wyjścia \mathbf{Y}_1

Rysunek 12: Tabela Karnaugh dla wyjścia \mathbf{Y}_1

$$Y_1 = D + C + B + A$$

Rysunek 13: Schemat dla wyjścia \mathbf{Y}_1

Rysunek 14: Projekt dla wyjścia \mathbf{Y}_1

4 Transkoder liczby 4-bitowej na liczbę 9-bitową

Rysunek 16: Schemat podukładu transkodera

Rysunek 17: Schemat dwucyfrowego wyświetlacza 7-segmentowego

DEC	D	C	В	A	\mathbf{B}_1	\mathbf{C}_1	\mathbf{A}_2	\mathbf{B}_2	\mathbf{C}_2	\mathbf{D}_2	\mathbf{E}_2	\mathbf{F}_2	\mathbf{G}_2
0	0	0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	0	0	1	1	0	0	0	0
2	0	0	1	0	0	0	1	1	0	1	1	0	1
3	0	0	1	1	0	0	1	1	1	1	0	0	1
4	0	1	0	0	0	0	0	1	1	0	0	1	1
5	0	1	0	1	0	0	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	0	1	1	1	1	1
7	0	1	1	1	0	0	1	1	1	0	0	0	0
8	1	0	0	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	0	0	1	1	1	1	0	1	1
10	1	0	1	0	1	1	1	1	1	1	1	1	0
11	1	0	1	1	1	1	0	1	1	0	0	0	0
12	1	1	0	0	1	1	1	1	0	1	1	0	1
13	1	1	0	1	1	1	1	1	1	1	0	0	1
14	1	1	1	0	1	1	0	1	1	0	0	1	1
15	1	1	1	1	1	1	1	0	1	1	0	1	1

Tabela 7: Tabela prawdy dla wszystkich wyjść

4.1 Wyjście B_1

DEC	D	C	В	A	\mathbf{B}_1
0	0	0	0	0	0
1	0	0	0	1	0
1 2 3	0	0	1	0	0
	0	0	1	1	0
4	0	1	1 1 0	0	0
4 5 6 7 8 9	0	1		1	0 0 0 0 0 0
6	0	1	0 1 1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0		1	
10	1	0 0	0 1 1 0	0	0 1 1 1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Tabela 8: Tabela prawdy dla wyjścia ${\bf B_1}$

Rysunek 18: Tabela Karnaugh dla wyjścia ${\bf B}_1$

$$B_1 = DC + DB$$

Rysunek 20: Projekt dla wyjścia ${\bf B}_1$

Rysunek 19: Schemat dla wyjścia ${\bf B}_1$

4.2 Wyjście C_1

DEC	D	C	В	A	\mathbf{C}_1
0	0	0	0	0	0
1	0	0	0	1	0
2 3	0	0	1	0	0
3	0	0	1 0	1	0
4	0	1	0	0	0
4 5	0	1	0	1	0
6	0	1		0	0
6 7	0	1 1 0	1 1 0	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1 1 0	1	1
12	1	1 1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Tabela 9: Tabela prawdy dla wyjścia C_1

Rysunek 21: Tabela Karnaugh dla wyjścia C_1

$$C_1 = DC + DB$$

Rysunek 22: Schemat dla wyjścia C_1

4.3 Wyjście A_2

DEC	D	C	В	A	\mathbf{A}_2
0	0	0	0	0	1
1	0	0	0	1	0
2 3	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	1 0	1
4 5 6 7 8 9	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1 0	1
10	1	0	1	0	1
11	1	0	1	1 0	0
12	1	1	0	0	1
13	1	1	0	1 0	1
14	1	1	1	0	0
15	1	1	1	1	1

Tabela 10: Tabela prawdy dla wyjścia $\mathbf{A_2}$

Rysunek 24: Tabela Karnaugh dla wyjścia ${\bf A}_2$

$$A_2 = \overline{DB} + \overline{CA} + \overline{DB} + \overline{\overline{CA}}$$

Rysunek 25: Schemat dla wyjścia ${\rm A}_2$

Rysunek 26: Projekt dla wyjścia A_2

4.4 Wyjście B₂

DEC	D	\mathbf{C}	В	A	\mathbf{B}_2
0	0	0	0	0	1
1	0	0	0	1	1
1 2 3	0	0	1	0	1
3	0	0	1	1 0	1
4	0	1	0		1
5	0	1	0	1 0	0
6	0	1	1	0	0
5 6 7 8 9	0	1	1	1	1
8	1	0	0	1 0 1	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1 0	1
12	1	1	0	0	1
13	1	1	0	1 0	1
14	1	1	1	0	1
15	1	1	1	1	0

Tabela 11: Tabela prawdy dla wyjścia $\mathbf{B_2}$

Rysunek 27: Tabela Karnaugh dla wyjścia B₂

$$B_2 = \overline{C} + \overline{B}\overline{A} + D\overline{B} + D\overline{A} + \overline{D}BA$$

../bramki/b2.png figures/b2.png

Rysunek 28: Schemat dla wyjścia B_2

Rysunek 29: Projekt dla wyjścia B_2

4.5 Wyjście C_2

DEC	D	C	В	A	\mathbf{C}_2
0	0	0	0	0	1
1	0	0	0	1	1
1 2 3	0	0	1	0	0
	0	0	1 1	1	1
4 5 6 7 8 9	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0 0 0	1	0	1
11	1	0	1 1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Tabela 12: Tabela prawdy dla wyjścia $\mathrm{C}_{\mathbf{2}}$

Rysunek 30: Tabela Karnaugh dla wyjścia C_2

$$C_2 = \overline{DC} + A + \overline{CB} + \overline{\overline{DB}}$$

Rysunek 31: Schemat dla wyjścia C_2

Rysunek 32: Projekt dla wyjścia C_2

4.6 Wyjście D_2

DEC	D	\mathbf{C}	В	A	\mathbf{D}_2
0	0	0	0	0	1
1	0	0	0	1	0
2 3	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
4 5	0	1	0	1	1
6	0	1	1	0	1
6 7 8 9	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

Tabela 13: Tabela prawdy dla wyjścia $\mathbf{D_2}$

Rysunek 33: Tabela Karnaugh dla wyjścia D_2

$$D_2 = \overline{DB} + \overline{CBA} + \overline{DCA} + \overline{CA} + \overline{DBA} + \overline{DCB}$$

Rysunek 34: Schemat dla wyjścia D_2

Rysunek 35: Projekt dla wyjścia D₂

4.7 Wyjście E_2

DEC	D	C	В	A	\mathbf{E}_2
0	0	0	0	0	1
1	0	0	0	1	0
2 3	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
4 5 6 7 8	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Tabela 14: Tabela prawdy dla wyjścia $\mathbf{E_2}$

Rysunek 36: Tabela Karnaugh dla wyjścia $\rm E_2$

$$E_2 = \overline{DBA} + \overline{CA} + \overline{DBA}$$

Rysunek 37: Schemat dla wyjścia E_2

Rysunek 38: Projekt dla wyjścia E_2

4.8 Wyjście F_2

DEC	D	C	В	A	\mathbf{F}_2
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0 0 0	0	1	1	0 0
4	0	1 1	0	0	1 1
5	0 0 0	1	0	1	1
6	0	1	1	0	1
6 7	0	1	1	1	1 0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1 0 0 0
14	1	1	1	0	1
15	1	1	1	1	1

Tabela 15: Tabela prawdy dla wyjścia $\mathbf{F_2}$

Rysunek 39: Tabela Karnaugh dla wyjścia ${\rm F}_2$

$$F_2 = D\overline{C}\overline{B} + \overline{D}C\overline{B} + DCB + CB\overline{A} + DB\overline{A} + \overline{C}\overline{B}\overline{A}$$

4.9 Wyjście G₂

DEC	D	\mathbf{C}	В	A	\mathbf{G}_2
0	0	0	0	0	0
1	0	0	0	1	0
2 3	0	0	1	0	1
	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
5 6 7 8	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Tabela 16: Tabela prawdy dla wyjścia G_2

Rysunek 40: Tabela Karnaugh dla wyjścia G_2

$$G_2 = \overline{DB} + \overline{DC} + \overline{CB} + \overline{DCB} + \overline{AC}$$

Rysunek 41: Projekt dla wyjścia G_2

5 Transkoder dla alarmu

DEC	D	\mathbf{C}	В	A	Y
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
1 2 3 4 5 6 7 8 9	0	1	0	1 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
5	0	1 1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0 0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1		0
12	1	1	0	1 0	0 0 0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Tabela 17: Tabela prawdy dla wyjścia Y

Łatwo zauważyć, że tabelę prawdy realizuje czterowejściowa bramka NOR.

Rysunek 42: Makieta transkodera dla alarmu

Rysunek 43: Schemat transkodera dla alarmu

6 Komparator

Komparator dla każdego wyjścia transkodera dla przerzutników (T_i) porównuje je z oczekiwanym wyjściem (O_i) i jeżeli którakolwiek para bitów się różni na wyjściu pojawia się sygnał logiczny 1.

$\mathbf{T_{i}}$	O_i	Y_i
0	0	0
1	0	1
1	1	0
0	1	1

Tabela 18: Tabela prawdy dla wyjścia pojedynczego podukładu komparatora \mathbf{Y}_i dla $i \in \{1,2,3,4\}$

Łatwo zauważyć, że taką tabelę realizuje bramka XOR.

$\mathbf{Y_1}$	$\mathbf{Y_2}$	$\mathbf{Y_3}$	$\mathbf{Y_4}$	Error
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1 1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Tabela 19: Tabela prawdy dla wyjścia Error

Łatwo zauważyć, że taką tabelę realizuje czterowejściowa bramka OR.

Rysunek 44: Projekt komparatora

7 Układ testujący

Rysunek 46: Analizator stanów logicznych

Rysunek 45: Generator słów

Rysunek 47: Ustawienia generatora słów

Rysunek 48: Wykres analizatora stanów logicznych

Rysunek 49: Wynik dla poprawnego transkodera

Rysunek 50: Wynik dla błędnego transkodera