IN THE CLAIMS:

1. (Original) A compound of the following formula:

wherein

 R^1 is hydrogen, C_{1-6} alkyl or C_{2-6} alkenyl wherein said alkyl and alkenyl groups are optionally substituted with C_{3-6} cycloalkyl, $-SR^6$, $-SR^7$, $-SOR^6$, $-SOR^7$, $-SO_2R^6$,

-SO₂R⁷, -SO₂CH(R⁷)(R⁹), -OR⁷, -OR⁶, -N(R⁷)₂, one to six halo, aryl, heteroaryl or heterocycyl wherein said aryl, heteroaryl and heterocycyl groups are optionally substituted with one or two substitutents independently selected from the group consisting of C_{1-6} alkyl, halo, hydroxyalkyl, hydroxy, alkoxy and keto;

 R^2 is hydrogen, C_{1-6} alkyl or C_{2-6} alkenyl wherein said alkyl and alkenyl groups are optionally substituted with C_{3-6} cycloalkyl, $-SR^6$, $-SR^7$, $-SOR^6$, $-SOR^7$, $-SO_2R^6$, $-SO_2R^7$, $-SO_2CH(R^7)(R^9)$, $-OR^7$, $-OR^6$, $-N(R^7)_2$, one to six halo, aryl, heteroaryl or heterocycyl wherein said aryl, heteroaryl and heterocycyl groups are optionally substituted with one or two substitutents independently selected from the group consisting of C_{1-6} alkyl, halo, hydroxyalkyl, hydroxy, alkoxy or keto; or

R¹ and R² can be taken together with the carbon atom to which they are attached to form a C₃₋₈ cycloalkyl or heterocycyl ring wherein said ring system is optionally substituted with one or two substituents independently selected from the group consisting of C₁₋₆ alkyl, hydroxyalkyl, haloalkyl and halo;

each R^3 is independently selected from the group consisting of hydrogen, halo and C_{1-2} alkyl wherein said alkyl group is optionally substituted with halo; or two R^3 groups can be taken together with the carbon atom to which they are attached to form a C_{3-4} cycloalkyl ring, wherein said group is optionally substituted with halo;

D is C_{1-3} alkyl, C_{2-3} alkenyl, C_{2-3} alkynyl, aryl, heteroaryl, C_{3-8} cycloalkyl or heterocycyl wherein each said aryl, heteroaryl, cycloalkyl and heterocycyl groups, which may be monocyclic or bicyclic, is optionally substituted on either the carbon or the heteroatom with one to five substituents independently selected from the group consisting of C_{1-6} alkyl, haloalkyl, halo, keto, alkoxy, $-SR^6$, $-SR^7$, $-OR^6$, $-OR^7$, $N(R^7)_2$, $-SO_2R^6$ and $-SO_2R^8$;

E is C₂₋₃ alkenyl, C₂₋₃ alkynyl, aryl, heteroaryl, C₃₋₈ cycloalkyl or heterocycyl wherein each said aryl, heteroaryl, cycloalkyl and heterocycyl groups, which may be monocyclic or bicyclic, is optionally substituted on either the carbon or the heteroatom with one to five substituents independently selected from the group consisting of C₁₋₆ alkyl, haloalkyl, halo, keto, alkoxy, -SR⁶, -SR⁷, -OR⁶, -OR⁷, N(R⁷)₂, -SO₂R⁶ and -SO₂R⁸;

R⁵ is hydrogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkyloxy, halo, nitro, cyano, aryl, heteroaryl, C₃₋₈ cycloalkyl, heterocyclyl,-C(O)OR⁸, -C(O)OSi[CH (CH₃)₂]₃, -OR⁶, -OR⁸, -C(O)R⁸, $- R^{8}C(O)R^{6}, -C(O)R^{6}, -C(O)N(R^{a})(R^{b}),$ $-C(O)N(R^7)(R^7)$, $-C(O)N(R^8)(R^9)$, $-C(R^8)(R^9)OH$, $-SO_mR^7$, $-SO_mR^6$, $-R^8SR^6$, $-R^6$, $-C(R^6)_3$, $-R^6$ $C(R^8)(R^9)N(R^6)_2$, $-NR^8C(O)NR^8S(O)_2R^6$, $-SO_mN(R^c)(R^d)$, $-SO_mCH(R^8)(R^9)$, $-SO_m(C_1-R^8)(R^9)N(R^6)_2$, $-NR^8C(O)NR^8S(O)_2R^6$, $-SO_mN(R^c)(R^d)$, $-SO_mCH(R^8)(R^9)$, $-SO_m(C_1-R^6)$ 6alkyl)C(O)(C0-6alkyl)NR10, $-SO_m(C_{1-6alkyl})N(R^{10})_2$, $-SO_m(C_{1-6alkyl})R^{10}$; $-SO_m(C_{3-6alkyl})N(R^{10})_2$, $-SO_m(C_{1-6alkyl})R^{10}$; $-SO_m(C_{3-6alkyl})R^{10}$ $(R^8)C(O)(R^7)$, $(R^8)C(O)(R^7)$, $(R^8)C(O)(R^7)$, $(R^8)C(O)(R^7)$, $(R^8)(R^9)$, $N(R^8)C(O)N(R^8)(R^6)$, $-N(R^8)C(O)R^6$, $-N(R^8)C(O)R^8$, $-N(R^8)C(O)OR^8$, $-N(R^8)SO_2(R^8)$, - $C(R^8)(R^9)NR^8C(R^8)(R^9)R^6$, $-C(R^8)(R^9)N(R^8)R^6$, $-C(R^8)(R^9)N(R^8)(R^9)$, $-C(R^8)(R^9)N^8C(R^9)N^8C(R^9)$ $C(R^8)(R^9)SC(R^8)(R^9)(R^6)$, R^8S_{-} , $-C(R^a)(R^b)Nr^aC(R^a)(R^b)(R^6)$, $-C(R^a)(R^b)N(R^a)(R^b)$, $-C(R^a)(R^b)N(R^a)(R^b)$ $C(R^a)(R^b)C(R^a)(R^b)N(R^a)(R^b)$, $-C(O)C(R^a)(R^b)N(R^a)(R^b)$, $-C(R^a)(R^b)N(R^a)C(O)(R^6)$, $-C(R^a)(R^b)N(R^a)(R^b)N(R^a)$ $C(O)C(R^a)(R^b)S(R^a)$, $C(R^a)(R^b)C(O)N(R^a)(R^b)$, $-B(OH)_2$, $-OCH_2O$ - or 4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl; wherein said groups are optionally substituted on either the carbon or the heteroatom with one to five substituents independently selected from the group consisting of C₁₋₆ alkyl, halo, keto, cyano, haloalkyl, hydroxyalkyl, -OR⁶, -OR⁷, -NO₂, -NH₂, -NHS(O)₂R⁸, - $R^6SO_2R^7$, $-SO_2R^7$, $-SO(R^7)$, $-SR^7$, $-SR^6$, $-SO_mN(R^c)(R^d)$, $-SO_mN(R^8)C(O)(R^7)$, $-SO_mN(R^8)C(O)(R^7)$, $-SO_mN(R^8)C(O)(R^7)$, $-SO_mN(R^8)C(O)(R^7)$, $-SO_mN(R^8)C(O)(R^7)$, $-SO_mN(R^8)C(O)(R^8)$ $C(R^8)(R^9)N(R^8)(R^9)$, $-C(R^8)(R^9)OH$, -COOH, $-C(O)(O)(R^7)$, $-C(O)(O)C(R^7)$ 3, - $C(R^a)(R^b)C(O)N(R^a)(R^b)$, $-C(O)(R^a)$, $-N(R^8)C(R^8)(R^9)(R^6)$, $-N(R^8)CO(R^6)$, $-NH(CH_2)_2OH$, NHC(O)OR⁸, -Si(CH₃)₃, heterocyclyl, aryl, heteroaryl, (C₁-4alkyl)heteroaryl and (C₁-4alkyl)aryl;

 R^6 is hydrogen, aryl, aryl(C_{1-4})alkyl, (C_{1-4} alkyl)aryl, heteroaryl, heteroaryl(C_{1-4})alkyl, (C_{1-4} alkyl)heteroaryl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl(C_{1-4})alkyl, or heterocyclyl(C_{1-4})alkyl wherein said groups can be optionally substituted with one, two, or three substituents independently selected from the group consisting of halo, alkoxy and - SO_2R^7 ;

 R^7 is hydrogen or C_{1-6} alkyl which is optionally substituted with one, two, or three substituents independently selected from the group consisting of halo, alkoxy, cyano, -N(R^8)(R^9) and -SR⁸;

R8 is hydrogen or C₁₋₆ alkyl

R⁹ is hydrogen or C₁₋₆ alkyl;

 R^{10} is hydrogen, C_{1-6} alkyl, cyano, aryl, heteroaryl, heterocyclyl, SO_m heteroaryl, $(C=N)O(C_{1-6}$ alkyl) or $(C_{1-6}$ alkyl)NH(SO_m)heteroaryl;

 R^a is hydrogen, C_{1-6} alkyl, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)hydroxyl, $-O(C_{1-6}$ alkyl), hydroxyl, halo, aryl, heteroaryl, C_{3-8} cycloalkyl or heterocyclyl, wherein said alkyl, aryl, heteroaryl, C_{3-8} cycloalkyl and heterocycyl can be optionally substituted on either the carbon or the heteroatom with one, two, or three substituents independently selected from C_{1-6} alkyl or halo;

Rb is hydrogen, C₁₋₆ alkyl, (C₁₋₆ alkyl)aryl, (C₁₋₆ alkyl)hydroxyl, alkoxyl, hydroxyl, halo, aryl, heteroaryl, C₃₋₈ cycloalkyl or heterocycyl, wherein said alkyl, aryl, heteroaryl, C₃₋₈ cycloalkyl and heterocycyl can be optionally substituted on either the carbon or the heteroatom with one, two, or three substituents independently selected from group consisting of C₁₋₆ alkyl and halo; or Ra and Rb can be taken together with the carbon atom to which they are attached or are between them to form a C₃₋₈ cycloalkyl ring or C₃₋₈ heterocycyl ring wherein said 3-8 membered ring system may be optionally substituted with one or two substituents independently selected from C₁₋₆ alkyl and halo:

R^c is hydrogen or C₁₋₆ alkyl which is optionally substituted with one, two, or three substituents independently selected from the group consisting of halo and -OR⁶;

Rd is hydrogen or C₁₋₆ alkyl which is optionally substituted with one, two, or three substituents independently selected from the group consisting of halo and -OR⁶; or

 R^c and R^d can be taken together with the nitrogen atom to which they are attached or are between them to form a C_{3-8} heterocycyl ring which is optionally substituted with one or two substituents independently selected from the group consisting of C_{1-6} alkyl, halo hydroxyalkyl, hydroxy, alkoxy, and keto;

n is an integer from one to three;

m is an integer from zero to two;

p is an integer from one to three;

or a pharmaceutically acceptable salts, stereoisomers or N-oxide derivatives thereof.

- 2. (Original) The compound of Claim 1 wherein n is two.
- 3. (Original) The compound of Claim 2 wherein D is aryl or heteroaryl and E is aryl or heteroaryl..
- 4. (Original) The compound of Claim 2 wherein each R³ is independently selected from hydrogen or halo.
- 5. (Original) The compound of Claim 3 wherein R^5 is $-SO_mR^7$, $-SO_mR^6$, $-R^8SR^6$, $SO_mN(R^c)(R^d)$, $-SO_mCH(R^8)(R^9)$, $-SO_m(C_{1-6}alkyl)C(O)(C_{0-6}alkyl)NR^{10}$, $-SO_m(C_{1-6}alkyl)N(R^{10})_2$, $-SO_m(C_{1-6}alkyl)R^{10}$; $-SO_m(C_{3-8}cycloalkyl)R^{10}$; $-SO_2N(R^8)C(O)(R^7)$ or $-SO_2(R^8)C(O)N(R^7)_2$; wherein said groups are optionally substituted on either the carbon or the heteroatom with one to five substituents independently selected from the group consisting of C_{1-6} alkyl, halo, keto, cyano, haloalkyl, hydroxyalkyl, $-OR^6$, $-OR^7$, $-NO_2$, $-NH_2$, $-NHS(O)_2R^8$, $-R^6SO_2R^7$, $-SO_2R^7$, $-SO(R^7)$, $-SR^7$, $-SR^6$, $-SO_mN(R^c)(R^d)$, $-SO_mN(R^8)C(O)(R^7)$, $-C(R^8)(R^9)N(R^8)(R^9)$, $-C(R^8)(R^9)OH$, -COOH, $-C(O)(O)(R^7)$, $-C(O)(O)C(R^7)_3$, $-C(R^a)(R^b)C(O)N(R^a)(R^b)$, $-C(O)(R^a)$, $-N(R^8)C(R^8)(R^9)(R^6)$, $-N(R^8)CO(R^6)$, $-NH(CH_2)_2OH$, $-NHC(O)OR^8$, $-Si(CH_3)_3$, heterocyclyl, aryl, heteroaryl, $(C_{1-4}alkyl)$ heteroaryl and $(C_{1-4}alkyl)$ aryl.
- 6. (Original) The compound of Claim 5 wherein R^1 is hydrogen, R^2 is hydrogen, or R^1 and R^2 can be taken together with the carbon atom to which they are attached to form a C_{3-8} cycloalkyl ring wherein said ring system is optionally substituted with one or two substituents independently selected from C_{1-6} alkyl, hydroxyalkyl, haloalkyl, or halo.
 - 7. (Original) The compound of Claim 1 selected from:

2-(2-bromophenyl)-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-[4'-(methylthio)-1,1'-biphenyl-2-yl] cyclohexanecarboxamide;

N-(1-cyanocyclopropyl)-5,5-difluoro-2-[4'-(methylthio)-1,1'-biphenyl-2-yl] cyclohexanecarboxamide;

2-[4'-(benzyloxy)-1,1'-biphenyl-2-yl]-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-hydroxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-fluoro-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(methylsulfonyl)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-fluoro-1,1'-biphenyl-2-yl) cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-vinyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-cyclopropyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-[5-(methylsulfonyl)-4'-(methylthio)-1,1'-biphenyl-2-yl] cyclohexanecarboxamide;

N-(1-cyanocyclopropyl)-5,5-difluoro-2-[5-(methylsulfonyl)-4'-(methylthio)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-{4'-[(fluoromethyl)thio]-1,1'-biphenyl-2-yl} cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2'-methyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-methyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-ethyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-propyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(3'-isopropyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-isopropyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

2-(4'-tert-butyl-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[3'-(trifluoromethyl)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-(3'-fluoro-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2'-fluoro-1,l'-biphenyl-2-yl)cyclohexanecarboxamide;

2-(4'-chloro-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

2-(3'-chloro-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[3'-(hydroxymethyl)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

2'-(2-{[(cyanomethyl)amino]carbonyl}cyclohexyl)-1,1'-biphenyl-3-carboxylic acid;

2'-(2-{[(cyanomethyl)amino]carbonyl}cyclohexyl)-1,1'-biphenyl-4-carboxylic acid;

N-(cyanomethyl)-2-(3'-methoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2'-ethoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-ethoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(3'-isopropoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-isopropoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-phenoxy-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(trifluoromethoxy)-1,1'-biphenyl-2-yl] cyclohexanecarboxamide;

N-(cyanomethyl)-2-[2'-(methylthio)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-[3'-(methylthio)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(ethylthio)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

2-(3'-amino-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(dimethylamino)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-(3'-nitro-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

2-[3'-(acetylamino)-1,1'-biphenyl-2-yl]-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(4'-isobutyl-1,1'-biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2-pyridin-4-ylphenyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2-quinolin-8-ylphenyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[2-(2-methoxypyrimidin-5-yl)phenyl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2-pyridin-3-ylphenyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2-thien-3-ylphenyl)cyclohexanecarboxamide;

2-(4'-acetyl-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(1,1':2',1"-terphenyl-2-yl)cyclohexanecarboxamide;

2-(4'-cyano-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

2-(3'-cyano-1,1'-biphenyl-2-yl)-N-(cyanomethyl)cyclohexanecarboxamide;

6-(3-bromophenyl)-N-(cyanomethyl)cyclohex-3-ene-1-carboxamide;

2-(3-bromophenyl)-N-(cyanomethyl)cyclohexanecarboxamide;

tert-butyl 4-[3'-(2-{[(cyanomethyl)amino]carbonyl}cyclohexyl)-1,1'-biphenyl-4-yl] piperazine-1-carboxylate;

N-(cyanomethyl)-2-(4'-piperazin-1-yl-1,1'-biphenyl-3-yl)cyclohexanecarboxamide;

2-(3-bromophenyl)-N-(cyanomethyl)-4-methylcyclopentanecarboxamide;

N-(cyanomethyl)-2-(4'-methoxy-1,1'-biphenyl-3-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(methylthio)-1,1'-biphenyl-3-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(methylsulfonyl)-1,1'-biphenyl-3-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-(5-phenyl-1,3-oxazol-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(5-phenyl-1,3-thiazol-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-(5-phenyl-1,3-thiazol-2-yl)cyclohexanecarboxamide;

2-(2-bromophenyl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-(methylthio)-1,1'-biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-2-phenylcyclohexanecarboxamide;

N-(cyanomethyl)-5,5-dichloro-2-[4'-(methylthio)-1,1'-biphenyl-2-yl] cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{1-methyl-3-[4-(methylthio)phenyl]-1H-pyrazol-4-yl}cyclohexanecarboxamide;

6-(2-bromophenyl)-N-(cyanomethyl)spiro[2.5]octane-5-carboxamide;

2-(3-bromo-1-methyl-1H-pyrazol-4-yl)-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-6-[4'-(methylthio)-1,1'-biphenyl-2-yl]spiro[2.5]octane-5-carboxamide;

2-(2-bromophenyl)-5,5-dichloro-N-(cyanomethyl)cyclohexanecarboxamide;

2-(3-bromo-1-methyl-1H-pyrazol-4-yl)-5,5-dichloro-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-{(Z)-2-[4-(methylthio)phenyl]ethenyl}cyclohexanecarboxamide;

N-(cyanomethyl)-2-{2-[4-(methylthio)phenyl]ethyl}cyclohexanecarboxamide;

N-(cyanomethyl)-2-{(Z)-2-[4-(methylsulfonyl)phenyl]ethenyl} cyclohexanecarboxamide;

N-(cyanomethyl)-2-{2-[4-(methylsulfonyl)phenyl]ethyl}cyclohexanecarboxamide;

N-(cyanomethyl)-2-((Z)-2-{4-[(trifluoromethyl)thio]phenyl}ethenyl) cyclohexanecarboxamide;

N-(cyanomethyl)-2-{(E)-2-[4-(methylsulfonyl)phenyl]ethenyl} cyclohexanecarboxamide;

N-(cyanomethyl)-2-(2-{4-{(trifluoromethyl)thio}phenyl}ethyl) cyclohexanecarboxamide;

N-(cyanomethyl)-2-ethynylcyclohexanecarboxamide;

N-(cyanomethyl)-2-{[4-(methylthio)phenyl]ethynyl}cyclohexanecarboxamide;

N-(cyanomethyl)-2-{[4-(methylsulfonyl)phenyl]ethynyl}cyclohexanecarboxamide;

N-(cyanomethyl)-2-({4-[(trifluoromethyl)thio]phenyl}ethynyl) cyclohexanecarboxamide;

N-(cyanomethyl)-2-(phenylethynyl)cyclohexanecarboxamide;

2-[(4-bromophenyl)ethynyl]-N-(cyanomethyl)cyclohexanecarboxamide;

2-(1,1'-biphenyl-4-ylethynyl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-{[4'-(methylthio)-1,1'-biphenyl-4-yl]ethynyl} cyclohexanecarboxamide;

N-(cyanomethyl)-2-[(3-fluorophenyl)ethynyl]cyclohexanecarboxamide;

2-[(3-chlorophenyl)ethynyl]-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-[(4-pyridin-4-ylphenyl)ethynyl]cyclohexanecarboxamide;

2-[(3-bromophenyl)ethynyl]-N-(cyanomethyl)cyclohexanecarboxamide;

2-(1,1'-biphenyl-3-ylethynyl)-N-(cyanomethyl)cyclohexanecarboxamide;

2-[(2-bromophenyl)ethynyl]-N-(cyanomethyl)cyclohexanecarboxamide;

2-(1,1'-biphenyl-2-ylethynyl)-N-(cyanomethyl)cyclohexanecarboxamide;

N-(cyanomethyl)-2-{[4-(6-methoxypyridin-2-yl)thien-3-yl]ethynyl} cyclohexanecarboxamide;

N-(cyanomethyl)-2-{4'-[(cyanomethyl)thio]biphenyl-2-yl}-5,5-difluorocyclohexanecarboxamide;

2-{4'-[(2-amino-2-oxoethyl)thio]biphenyl-2-yl}-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-2-[4'-({2-[(cyanomethyl)amino]-2-oxoethyl}thio)biphenyl-2-yl]-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(2-pyridin-2-ylethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(pyridin-2-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(pyridin-3-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(pyridin-4-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

2-{4'-[(1H-benzimidazol-2-ylmethyl)thio]biphenyl-2-yl}-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

2-{4'-[(1H-benzimidazol-6-ylmethyl)thio]biphenyl-2-yl}-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(1H-imidazol-4-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(1H-imidazol-2-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

 $N-(cyanomethyl)-5,5-difluoro-2-[4'-(\{[1-(1H-imidazol-2-ylmethyl)-1H-imidazol-2-yl]methyl\}thio)biphenyl-2-yl]cyclohexanecarboxamide;$

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[2-(1H-imidazol-4-yl)ethyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[2-(1H-imidazol-2-yl)ethyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[(1-methylpiperidin-4-yl)methyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[2-(1-methylpiperidin-4-yl)ethyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-[2'-fluoro-4'-(methylthio)biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[(5-phenyl-1H-imidazol-2-yl)methyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(2-pyridin-4-ylethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-[4'-({2-[(pyridin-2-ylsulfonyl)amino]ethyl}thio)biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{[2-((pyridin-2-ylsulfonyl){2-[(pyridin-2-ylsulfonyl)amino]ethyl}amino)ethyl]thio}biphenyl-2-yl)cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-{4'-[(1H-tetrazol-5-ylmethyl)thio]biphenyl-2-yl}cyclohexanecarboxamide;

2-{4'-[(1-cyanocyclopropyl)thio]biphenyl-2-yl}-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

methyl 1-{[2'-(2-{[(cyanomethyl)amino]carbonyl}-4,4-difluorocyclohexyl)biphenyl-4-yl]thio}cyclopropanecarboximidoate;

2-(4'-{[2-(1H-benzimidazol-2-yl)ethyl]thio}biphenyl-2-yl)-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

2-{4'-[(1H-benzimidazol-7-ylmethyl)thio]biphenyl-2-yl}-N-(cyanomethyl)-5,5-difluorocyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-[4'-({2-[(methylsulfonyl)amino]ethyl}thio)biphenyl-2-yl]cyclohexanecarboxamide;

N-(cyanomethyl)-5,5-difluoro-2-(4'-{2-[(methylsulfonyl)amino]ethyl}biphenyl-2-yl)cyclohexanecarboxamide;

or a pharmaceutically acceptable salt or stereoisomer thereof.

- 8. (Original) A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically acceptable carrier.
- 9. (Currently Amended) A method of treating The use of a compound of Claim 1 in the preparation of a medicament useful for the treatment of: osteoporosis, glucocorticoid induced osteoporosis, Paget's disease, abnormally increased bone turnover, periodontal disease, tooth loss, bone fractures, rheumatoid arthritis, osteoarthritis, periprosthetic osteolysis, osteogenesis imperfecta, atherosclerosis, obesity, chronic obstructive pulmonary disease, metastatic bone disease, hypercalcemia of malignancy or multiple myeloma in a mammal in need thereof by administering a therapeutically effective amount of a compound according to Claim 1.
- and another agent selected from the group consisting of: an organic bisphosphonate, an estrogen receptor modulator, an estrogen receptor beta modulator, an androgen receptor modulator, an inhibitor of osteoclast proton ATPase, an inhibitor of HMG-CoA reductase, an integrin receptor antagonist, or an osteoblast anabolic agent, a Nonsteroidal anti-inflammatory drug, a selective cyclooxygenase-2 inhibitor, an inhibitor of interleukin-1 beta, a LOX/COX inhibitor and the pharmaceutically acceptable salts and mixtures thereof.
- 11. (Currently Amended) A method of treating The use of a compound of Claim 1 and another agent selected from the group consisting of: an organic bisphosphonate, an estrogen receptor modulator, an androgen receptor modulator, an inhibitor of osteoclast proton ATPase, an inhibitor of HMG CoA reductase, an integrin receptor antagonist, an osteoblast anabolic agent, a Nonsteroidal anti-inflammatory drug, a selective cyclooxygenase 2 inhibitor, an inhibitor of interleukin 1 beta, a LOX/COX inhibitor and the pharmaceutically acceptable salts and mixtures thereof, in the preparation of a medicament useful for the treatment of: osteoporosis, glucocorticoid induced osteoporosis, Paget's disease, abnormally increased bone turnover, periodontal disease, tooth loss, bone fractures, rheumatoid arthritis, osteoarthritis, periprosthetic osteolysis, osteogenesis imperfecta, atherosclerosis, obesity, chronic obstructive pulmonary disease, metastatic bone disease,

hypercalcemia of malignancy or multiple myeloma in a mammal in need thereof <u>by administering a</u> therapeutically effective amount of a composition of Claim 10.