

## Electrical and Electronics Engineering Institute University of the Philippines, Diliman, Quezon City

# EE 214 Probability and Random Processes in Electrical Engineering

Study Guide: Module 0

## **Expected Duration:**

1 Week (Sept 20-24, 2021)

# **Objectives**

The objectives for this module are to:

- review the concept of set and probability theory
- compute for joint and conditional probabilities of events
- determine whether events are independent

#### Introduction

This module covers probability theory. This topic is expected to have been covered in a prerequisite undergraduate course and is meant only as a review.

# **Activity: Diagnostic Quiz**

The only requirement for this module is the diagnostic quiz, which you need to complete before you can proceed with the rest of the course. You can start by trying out the **diagnostic quiz** in UVLe. You are given multiple tries to pass the quiz so there should be no harm trying it first. If you missed some items in the quiz, feel free to review the materials we've prepared and collated. Note that some topics in the diagnostic quiz are on random variables, which is part of Module 1. Should you need to review these topics, you may check the list of topics and corresponding materials you can use for review.

The detailed topics and corresponding materials for this module are as follows:

| Topic                   | <b>Reading Materials</b> | Video/s                    | Others        |
|-------------------------|--------------------------|----------------------------|---------------|
| Sample Spaces and       |                          | MIT OCW Probability Models |               |
| Axioms of Probability   | Ref 1: 1.2 - 1.2         | and Axioms <sup>1</sup>    | Ref 2: Chap 3 |
|                         |                          | MIT OCW Conditioning and   |               |
| Conditional Probability | Ref 1: 1.3               | Baye's Rule <sup>2</sup>   | Ref 2: Chap 4 |

<sup>&</sup>lt;sup>1</sup> https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-i/lecture-1/#?w=535

<sup>&</sup>lt;sup>2</sup> https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-i/lecture-2/#?w=535



# Electrical and Electronics Engineering Institute University of the Philippines, Diliman, Quezon City

| Baye's theorem and Total |            |                                   |  |
|--------------------------|------------|-----------------------------------|--|
| Probability              | Ref 1: 1.4 | MIT OCW Independence <sup>3</sup> |  |

# References:

[1] Bertsekas, Dimitri, and John Tsitsiklis. Introduction to Probability. 2nd ed. Athena Scientific, 2008. ISBN: 9781886529236.

[2] Kay, Steven. Intuitive Probability and Random Processes using MATLAB. Springer, 2005. ISBN: 978-0387241579

\_

<sup>&</sup>lt;sup>3</sup> https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041sc-probabilistic-systems-analysis-and-applied-probability-fall-2013/unit-i/lecture-3/#?w=535