

Urban Computing

Dr. Mitra Baratchi

28 September 2020

Leiden Institute of Advanced Computer Science - Leiden University

Fourth Session: Urban Computing - Processing spatio—temporal data

Table of Contents

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- 3. Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory filtering
 - Trajectory segmentation
 - Trajectory pattern mining (next session)

Preliminaries

Table of content

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- 3. Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory pattern mining (next session)

Examples

Real-world processes being studied in many domains are inherently spatio-temporal in nature including:

- Climate science
- Neuroscience
- Social sciences
- Transportation
- Earth sciences

Example

Figure 1: Example spatio-temporal data, NO2 emissions

Essence of spatio-temporal data

- Temporal and spatial auto-correlation: Nearby values in space and time tend to be alike
- **Spatial heterogeneity:** as we move away from a central point similarities decrease
- Temporal non-stationarity: as time passes similarities decrease
- Multiple-scale patterns: Daily (temporal scale 1) and seasonal (temporal scale 2) patterns within a patch of land (spatial scale 1) within a landscape (spatial scale 2)

What are spatio-temporal datasets?

- Spatio-temporal databases are an extension of spatial databases
- A spatio-temporal database embodies spatial, temporal, and spatio-temporal database concepts:
 - Geometry changing over time
 - Location of objects moving over invariant geometry

Spatio-temporal phenomena

- Spatio-temporal processes: variables which are dependent on space and time ←
 - Weather
 - Population
- 2. Moving object: an object moving over space
 - People's trajectories
 - Cars' trajectories

How can we deal with spatio-temporal data?

- How did we deal with spatial data?
- Can we extend those methods to spatio-temporal data?

Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial	Spatio-temporal		
Geo-statistical	Spatio-temporal point referenced		
Spatial point	Spatio-temporal event		
Lattice	Spatio-temporal raster		

Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial	Spatio-temporal	
Geo-statistical	Spatio-temporal point referenced	
Spatial point	Spatio-temporal event	
Lattice	Spatio-temporal raster	

Spatio-temporal point reference data

- Measurements of a continuous spatio-temporal field over a set of fixed reference points in space and time
 - Meteorological variables
 - Temperature
 - Humidity

Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial	Spatio-temporal		
Geo-statistical	Spatio-temporal point referenced		
Spatial point	Spatio-temporal event		
Lattice	Spatio-temporal raster		

Spatio-temporal event processes

- Random points in space and time denoting where and when the event occurred
 - Crime event
 - Road accidents

Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial	Spatio-temporal		
Geo-statistical	Spatio-temporal point referenced		
Spatial point	Spatio-temporal event		
Lattice	Spatio-temporal raster		

Spatio-temporal raster processes

- Aggregated values over discrete regions of space and periods of time
 - Demographic information
 - Population increase in a city over a year

Spatio-temporal phenomena

- 1. **Spatio-temporal processes:** variables which are dependent on space and time
 - Weather
 - Population
- 2. **Moving object:** an object moving over space ←
 - People's trajectories
 - Cars' trajectories

Moving objects

- Trajectories: Multi-dimensional sequences containing a temporally ordered list of locations visited by the moving object
- What can we do by analysis of trajectory data?
 - Studying moving objects: Can we cluster a collection of trajectories into a small set of representative groups?
 - Studying locations: Are there frequent sequences of locations within the trajectories that are traversed by multiple moving bodies?

Table of content

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory pattern mining (next session)

Data types (processes) and data instances

Figure 2: Spatio-temporal data instances and data types that can be used to represent them to algorithms as data instances

Methods for processing spatio-temporal data

Spatio-temporal statistics

Many statistical methods designed for spatial data can be extended to the spatio-temporal data:

- Spatio-temporal auto-correlation
- Space-time forecasting (auto-regressive models)
- Spatio-temporal kriging (interpolation)
- Spatio-temporal k-function (e.g., k-nearest neighbors)
- ...

Table of content

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory pattern mining (next session)

Auto-regressive models for spatio-temporal data

 Y_n , Y_t are vectors of dependent variables of size n. ϕ , λ , ρ are model parameters. c is a constant. ϵ represents the noise term. W_n is the spatial weights matrix

- Auto-regressive
 - $x_t = c + \sum_{i=1}^p \phi_i x_{t-i} + \epsilon_t$
- Spatial Auto-Regressive model (SAR)
 - $y_n = c + \lambda \sum_{m \neq n} w_{n,m} y_m + \epsilon_n$,
 - $w_{n,m}y_n$ is referred to as the spatial lag term in the models
 - How we use W determines global and local effect
- Space-Time Autoregressive model (STAR)

•
$$y_{n,t} = c + \sum_{m \neq n} \sum_{\tau=1}^{p} \phi_{\tau} w_{n,m,\tau} y_{m,t-\tau} + \epsilon_{n,t}$$

Exercise: try to derive the equivalent if a spatio-temporal moving average model

Methods for processing moving object data (spatio-temporal trajectories)

How does trajectory data look like?

Trajectory data, moving object data

- Lagrangian motion data: Allows collecting data of the movement of one entity globally
 - GPS
- Eulerian motion data: Allows collecting data of movement of many entities in restricted spaces
 - Wifi scanning
 - RFID
 - Video surveillance

What are different ways we can look at trajectory data?

We can query a trajectory dataset in different ways. Thus, we can study the data in different ways.

Query type	Location	Entity	time
1	Fixed	Fixed	Variable
2	Fixed	Variable	Variable
3	Variable	Fixed	Variable
4	Variable	Variable	Variable

Table 1: Different ways of looking at trajectory data

Patterns to extract from moving object data

Each type of query allows extracting a different type of pattern:

Individual

- Frequent
- Periodic
- Outliers

Social

- Flock
- Leadership
- Convergence
- Encounter

Spatial

- Spatial interactions
- Spatial functions

Table of content

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- 3. Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory filtering
 - Trajectory segmentation
 - Trajectory pattern mining (next session

Pre-processing trajectory data

- In which ways can we pre-process trajectory data?
 - Reduce the size of data → Trajectory compression
 - Remove noise → Trajectory filtering
 - $\bullet \ \ \mathsf{Create} \ \mathsf{workable} \ \mathsf{instances} \ \to \ \mathsf{Trajectory} \ \mathsf{segmentation}$

Trajectory compression

- Goal: reducing the dimensionality of the trajectory
- Task: Reducing the size of trajectory while preserving the precision
- Good for:
 - Efficiency (computationally) in pattern mining
 - Efficiency (energy consumption) in data collection procedure: the location of an object can be reported to the server when the precision reduces according to an error threshold.
 - Efficiency (storage)
- **Essence:** finding appropriate techniques and error measures for use in algorithms and performance evaluation.

Techniques for trajectory compression

- Uniform sampling
- Douglas-Peuker ←
- TD-TR
- Window-based algorithms (sliding window, open window, etc.)
- ..

Douglas-Peuker, Also known as Ramer-Douglas-Peucker

- Widely used in cartography and computer graphics
- Tries to estimate the original trajectory with one that has smaller number of points
- Iterative end-point fit algorithm
 - Recursively divides the line and approximates based on an error threshold
 - The optimization problem is formulated such that it minimizes the "area" between the original function and the approximate line segments
- Douglas-Peuker does not necessarily find a globally optimal solution

Douglas-Peuker approach

Figure 3: Step 1

Figure 4: Step 2

Trajectory compression

Error metrics used for implementing trajectory compression:

- Euclidean distance: perpendicular distance between a point and a line
 - Only takes into account the geometric aspect of the trajectory representation without considering the temporal characteristics
- Time synchronized euclidean distance: Is a time-distance ratio metric
 - $SED(A, B, C) = \sqrt{(x'_B x_B)^2 + (y'_B y_B)^2}$
 - where $x_B' = x_A + \frac{x_c x_A}{t_c t_A}(t_B t_A)$ and $y_B' = y_A + \frac{y_c y_A}{t_c t_A}(t_B t_A)$

Trajectory compression: Mode of operation

Batch:

- Leads to high quality approximation due to access to full trajectories
- It is not practical in many applications

Online:

- Typically limits the scope within a window
- Certain trajectory properties can be preserved based on the application's needs
- Intelligently select some negligible location points to retain a satisfactory approximated trajectory

Trajectory compression: Sliding window algorithm

- Main idea: Fitting the location points in a growing sliding window with a valid line segment
- Continues to grow the sliding window until the approximation error exceeds some threshold

Figure 5: Sliding window algorithm

Trajectory filtering

- Spatial trajectories are often noisy because of the sensing technology
- Filtering techniques are used to smooth the noise and potentially decrease the error in the measurements
- ullet This noise is different from the ϵ we had in the autoregressive models
- Trajectory model:
 - $\mathbf{z}_i = \mathbf{x_i} + \mathbf{v_i} \rightarrow \mathsf{Measurement}$
 - $\mathbf{x}_i = (x_i, y_i) \rightarrow \text{True position}$
 - $\mathbf{v}_i \in N(0,R) \rightarrow \text{Noise}$

Trajectory filtering

Figure 6: Raw noisy data, **Z**

Figure 7: True position **X**

Figure 8: Estimated position $\hat{\mathbf{X}}$

Techniques for trajectory filtering

- Median filter
- Mean filter
- Kalman filter
- Particle filter
- ..

Filtering techniques

Mean filter

•
$$\hat{\mathbf{x}_i} = \frac{1}{n} \sum_{j=i-n+1}^{i} \mathbf{z}_j$$

- Median filter
 - $\bullet \ \hat{\mathbf{x}_i} = \textit{median}\{\mathbf{z}_{i-n+1}, \mathbf{z}_{i-n+2}, ..., \mathbf{z}_{i-1}, \mathbf{z}_i\}$

Mean and Median Filter

Figure 9: The result of applying the mean and the median filters

1

 $^{^1}$ Yu Zheng and Xiaofang Zhou. Computing with spatial trajectories. Springer Science & Business Media, 2011.

Properties of filters

Mean filter:

- \bullet Causal \to depends on the values in the past
- ullet If the trajectory changes suddenly the effect on the trajectory is only gradually seen o It introduces a lag
- Sensitive to outliers

Median filter:

Not sensitive to outliers

Median and mean filters

• Advantage:

• Simple and effective in smoothing trajectories

• Disadvantages:

- Both suffer from the lag problem
- They are not designed to help estimate higher order variables like speed and acceleration
- In fact they might reduce the estimation accuracy of higher order variables

Advanced filters

- Advanced techniques that reduce lag and estimate the trajectory based on more than just location information
- State-space models:
 - Kalman filter
 - Particle filter

State and observations

- States: Things that you cannot measure directly but are interested in estimating
- Examples:
 - The true location
 - The true speed
- Observations: Noisy measurements from sensors
- Examples
 - GPS fixes
 - Acceleration

- First use: estimating trajectory of a space craft to the moon and back (There is no GPS trajectory in the space!)
- General idea: estimating the state variables from noisy observations by incorporating the physical domain knowledge
 - ightarrow Optimal estimation algorithm
 - true location
 - speed
 - acceleration
- Applications:
 - Error correction
 - Data fusion: When measurements are available from various sensors but mixed with noise

- Formulation of Kalman filter makes a distinction between what is measured as observations and what is estimated as states
 - Measurement model: How measurements are related to the states
 - **Dynamics model:** How previous states are related to future states

Measurement model

$$\mathbf{z}_i = x_i + v_i$$
 Noise vector $\mathbf{x}_i = (x_i, y_i)$ $\mathbf{v}_i \in N(0, R)$

Original trajectory model

$$\mathbf{z}_{i} = \begin{bmatrix} z_{i}(x) \\ z_{i}(y) \end{bmatrix}$$

Noisy measurements of the trajectory data

$$\mathbf{z}_i = H_i \mathbf{x}_i + \mathbf{v}_i$$

Relationship between measurement and state vector

$$\mathbf{x}_i = egin{bmatrix} x_i \\ y_i \\ y_i \\ s_i^{(X)} \\ s_i^{(y)} \end{bmatrix}$$
 True unknown coordinates

True unknown velocity

State vector

$$H_i = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Measurement matrix

- Kalman filter gives estimates for the state vector \mathbf{x}_i
- H_i is the measurement matrix translating between x_i and z_i
 and matching the dimensionality of z_i and v_i

Dynamics model

$$\mathbf{x}_i = \phi_{i-1}\mathbf{x}_{i-1} + \mathbf{w}_{i-1}$$
 $\phi_{i-1} = egin{bmatrix} 1 & 0 & \Delta t_i & 0 \ 0 & 1 & 0 & \Delta t_i \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$

System matrix

- Approximates how the state vector x_i changes with time
- w_i is the Gaussian noise term

A two-step algorithm that

- **Step 1:** Using the dynamics model extrapolates the current state to the next state
- Step 2: Incorporates the current measurement to make new estimates (weighted average of predicted state and the measurement)

2

²image source: (Roger R. Labbe. *Kalman and Bayesian Filters in Python*. Available: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python. 2015)

Advantages:

- No lag effect
- Richer state vector (velocity and location)
- It can incorporate more physical knowledge explaining how speed, time and displacement are related to each other
- It can be used to incorporate input from other sensors
- It can be used to incorporate uncertainty (using a covariance matrix)

Limitations:

- To initialize the filter we need to have assumptions about the initial state and the uncertainty of the initial state
- The requirement is having a linear dynamic model
- It uses continuous variables without having a way to represent discrete variables like:
 - The mode of transportation
 - Activity

Particle filter

- Also makes disctinction between measurement and dynamics model
- To formulate these models it does not limit itself to physical movement parameters
- Has less strict assumptions about the linearity of equations and the noise model
- More general and less efficient

Particle filter

Measurement model:

- A conditional Gaussian distribution with covariance matrix R_i
- $p(\mathbf{z}_i|\mathbf{x}_i) = N((x_i,y_i),R_i),$

• Dynamics model:

- Probability distribution $p(\mathbf{x}_i|\mathbf{x}_{i-1})$
- It samples from the dynamics models
- Instead of formalizing it we generate random samples of x_{i+1}
 from x_i
- Each generated sample is referred to as a particle
- Computation time and accuracy both depend on the number of particles

Stops and Moves

- Trajectories are considered as a collection of stops and moves³
- For many applications semantics of points in trajectories are more important than shapes
- Interest regions
 - Stay points
 - Activity regions
 - The path between two points of interest

³Andrey Tietbohl Palma et al. "A clustering-based approach for discovering interesting places in trajectories". In: *Proceedings of the 2008 ACM symposium on Applied computing.* ACM. 2008, pp. 863–868.

Stops and moves

Figure 10: Stops and moves in a trajectory⁴

⁴Image source: (Palma et al., "A clustering-based approach for discovering interesting places in trajectories")

Not only a spatial clustering task

Challenge:

- We cannot only look at where point are clustered spatially
- We want to find places that one trajectory has stopped but not only the overlap of a lot of trajectories
- We want to find meaningful stops where a lot of trajectories stop and not any random stop
- Example approach: based on DBSCAN clustering⁵

 $^{^{5}\}mbox{Palma}$ et al., "A clustering-based approach for discovering interesting places in trajectories".

Lessons learned

Spatio-temporal processes:

- Extension of spatial process (geo-statistic, point, lattice processes)
- Spatio-temporal auto-regressive as a combination of auto-regressive and spatial auto-regressive

Moving objects:

- Technology allows collection of trajectory data of moving object data in different ways:
 - Lagrangian: One individual visiting many locations
 - Eulerian: Many individuals passing one location
- Different patterns can be extracted from data based on how we query the ID of moving objects and locations

Lessons learned (continued)

- Trajectory pre-processing:
 - Trajectory compression: summarize the trajectory data to key points, save space, save communication, efficient processing
 - Douglas-peuker (batch mode)
 - Window-based (online)
 - Trajectory filtering: GPS sensors produce noisy and only approximate location data
 - Mean, Median filters: simple, lag problem
 - State-space filters: defining a measurement (measurement, state relation) and dynamics model (past state, future state relation)
 - Kalman filter (physics laws, inflexible), Particle filter (flexible, slow)
 - Trajectory segmentation: Extracting region of interest by extending DBSCAN clustering

Table of content

- 1. Preliminaries
 - What is spatio-temporal data?
 - How do we represent spatio-temporal data?
- 2. Methods for processing spatio-temporal data
 - Auto-regressive models for spatio-temporal data
- 3. Methods for processing moving object data (spatio-temporal trajectories)
 - Trajectory pre-processing
 - Trajectory pattern mining (next session)

End of theory!