Couniderema un modelo estadístico parametrico, determinado, hara fijar videas, por una función de deunidad $f(x, \theta)$ $\theta \in \Theta$ Podemos supener, para simplificar, $x \in \mathbb{R}^K$, $\theta \in \Theta \subset \mathbb{R}^M$ If que si $X \sim f(x, \theta)$, disponemos de una sumestra aleatoria simple de tamaño n, con sus correspondients vanidles aleatorias muestroles $X_1, ..., X_n$ ind X.

En este contexto, el espació muestral lo podemos identificar con: $\Omega = (IR^{K})^{m} = IR^{K\times m}$

Supongamos que tenemos un parametro de interés, $\Psi = g(\theta)$, con $g: \Theta \to \mathbb{R}^{q}$.

Trataremos de hallar métodos que nos permitan, dado una muestra, proponer una region en $g(\Theta)$ en la que esperamos se helle el verdodero volor de $\psi = g(\Theta)$, un "alta expectabilidad". Para ello introduciremos las signientes definiciones:

Definición 1

Una región de confianza de nivel $1-\alpha$ (o nimplemente una región de confianza $1-\alpha$), con $\alpha \in [0,1]$, para Y=g(0), es una familia de partes de g(0) indexada por $\alpha \in \Omega$:

 $\{S(z) \mid x \in \Omega \text{ con } S(z) \in \mathbb{P}(g(\Theta))\}\$ $(\mathbb{P}(g(\Theta)) : \text{ conjunto})$ de partes de $g(\Theta)$ tal que: $S(z) \subseteq g(\Theta)$

a) YOE@, {xE12 / g(0) E S(x)} Ea

donde a es el algebra de nuceros del espació muestral IL

NOTA:

ésta es una condición "técnica" de la teoría de la probabilidad

para garantizar poder habler después de "probabilidades".

b) $\forall \theta \in \Theta$, $P_{\theta} \{ z \in \Omega \mid g(\theta) \in S(z) \} = 1-\alpha$ *probabilided (dependiente del "verdadero parametro" θ)

NOTA:

Si reemplatamos la condicion (6) por:

diremos que se trata de una región de nivel superior o igual a I-d.

NOTA:

Observar que la configurza es la probabilided, fijado θ , del nuceso aleatorio: $\left\{x \in \mathcal{I} \mid g(\theta) \in S(x)\right\}$

mo es la probabilidad de, fijado $x, g(0) \in S(x)$.

Dado x propondremos como valores de g(0) aquellos que estan en S(x). Si repitieramos muchas veces el procedimiento, la frecuencia relativa del número de veces que el verdadero valor de $\psi=g(0)$ está en S(x) tendería a $1-\alpha$; el signiente esquena puede ayudar a comprenderlo:

Un caso particular, y muy utilizado, de regiones de confiança, omrre mando $g(\theta) \in \mathbb{R}$ y S(z) es un intervalo, limitado pues por sus extremos inferior y mperior $\mathcal{U}(z)$, $V(x) \in \mathbb{R}$. La exigencia a) se traduce en este coso a exigir que $\mathcal{U}(z)$ y V(z) sean estadísticos (y por tanto variables aleatorias), con $\mathcal{U}(z) \leq V(z)$ or probabilidad 1, mientres que b) se reescribe como:

$$\forall \theta \in \Theta$$
, $P_{\theta}(\mathcal{U} \leq g(\theta) \leq V) = 1-\alpha$
 $[\mathcal{U}, V]$ definirá pues un intervalo de confianza $1-\alpha$

b') en este coso se reescribe de forma obvia:

 $\forall \theta \in \Theta$, $P_{\theta}(\mathcal{U} \leqslant g(\theta) \leqslant V) \geqslant 1-\alpha$ definiendo en este coso [$\mathcal{U}_{1}V$] un tutervalo de confianta mperior o igual a $1-\alpha$.

pueden verse como estimadores por defecto y por exceso de g(0).

La construcción de regiones de confianta (o intervalos de confianta)
es una forma de implementar lo que podemos denominar

"estimación por regiones" y puede considerarse una extensión
de la estimación puntual, que podría considerarse como un

caso límite, mando S(z) contuviera siempre un único elamento de $g(\Theta)$. Como norma general, si queremos confianzas elevados tendremos regiones de confianza grandes (poco precisas, en el sentido que podremos precisar poco el velor de $\psi = g(\theta)$), mientras que regiones més precisas tendrán una confianza baja.

Los riquientes conceptos, introducidos en diversas definiciones, nos ayudaran a "calificar" el funcionamiento de las regiones de confianza.

Definición 2

Sean $S_1(x)$ y $S_2(x)$ dos regiones de confianta $I-\alpha$ para $g(\theta)$. Diremos que $S_1(x)$ es preferible a $S_2(x)$ y escribiremos $\left(S_1(x) > S_2(x)\right)$ ni y rolo ni $\forall \theta, \theta^* \in \Theta$ $P_{\theta}\left(g(\theta^*) \in S_1(x)\right) \leqslant P_{\theta}\left(g(\theta^*) \in S_2(x)\right)$

NOTA:

ha derigne (dad mos indica que con $S_1(x)$ es más dificil "cubrir" el valor erróneo $g(0^*)$ que con $S_2(x)$ (el verdadero valor rexía g(0))

Definición 3

Una región de confianta de nivel 1-a, 5(2), para g(0) diremos que es UMA (uniformly most accurate) (uniformemente más precisa) m y nóbo ni 5(2) es preferible a cualquier otra región de nivel 1-a hara g(0).

NOTA: una tal región no tiene porque exister en todas los cosos.

Definición 4

Una region de confianta 1-a prara q(0), S(x), direncos que es insergada ni y robo ni

$$\forall o, o \in \Theta$$
 $P_{\theta} (g(\tilde{o}) \in S(x)) \leq P_{\theta} (g(o) \in S(x))$

NOTA :

La derignaldad nos indica que para una región intesgada, es más fácil "inbrir" el verdadero valor g(0) que un valor erróneo g(0*).

Métodos de construcción de regiones e intervalos de confianza

Definición 5

Una función pivotal (o simplemente un pivote) para g(0) es una función $\Pi: \Omega \times g(\Theta) \to E$ (donde E para fijar ideas que tal que

- a) $\forall \theta$, la función $x \rightarrow M(x,g(\theta))$ es una variable (o vector) aleatoria/o
- b) La ley probabilistica de $\Pi(x, g(\theta))$ no depende de θ (i.e.: es la misma cuolquiera que sea el verdadero valor de θ).

Una función pivotal nos permite construir una región de

MÉTODO DEL PIVOTE

Determinement un conjunto BCE (del álgebra de muesos de E) de forma que:

$$P_{o}(\Pi(X,g(o))\in B)=I-\alpha$$
 $\forall o\in G$

1 observar que, en realidad, dicha probabilidad no depende de 0, puesto que 11 es un pivote (condición b)

Definamos:

$$S(x) = \{ \Psi \in g(\Theta) / \pi(x, \Psi) \in B \}$$

entonces $\{S(x), x \in \Omega\}$ es una región de confianza 1-x para g(0) puesto que:

 $\forall o \in G$ $\{x \mid g(o) \in S(x)\} = \{x \mid \Pi(x,g(o)) \in B\}$ pertenese al a'labra de maro de Ω (al ser $\Pi(x,g(o))$ una v.a.) y:

Veamos algunos ejemplos aplicados a intervalos de confianza.

Ejemplo 1

Sea $X \sim N(\mu, \sigma)$, $X_1, ..., X_m$ is d X. Consideremos el parámetro de interés $\mu = g(\mu, \sigma)$ (aquí, $\kappa = 1, q = 1, m = 2$).

Sabemos, par el Teorema de Fisher, que $T = \sqrt{m-1} \frac{\overline{X}_m - \mu}{\sqrt{S_m^2}}$

rique una distribución t-de Student con m-1 grados de libertad, sea acal rea el volor de $\theta = (\mu, \sigma)$. Puento que T es una función de la muestra y del parámetro de interés, de forma que T es una vaniable aleatoria cuya distribución no depende del parámetro, T es una función pivotal o pivote. Hallemos ahora un intervolo B = [-a, a] de forma que

P (TE[-a,a]) = 1-x

por tables, por ejemplo, determinamos a.

praficamente: destudent t-de student m-1 g. l.

Equivalentemente:

$$P\left(-a \leq \sqrt{m-1} \quad \frac{\overline{X}_m - \mu}{\sqrt{5_m^2}} \leq a\right) = 1 - \alpha$$

las dos designaldades son equivalentes a:

$$-a\frac{\sqrt{s_n^2}}{\sqrt{m-1}} \leq \overline{x}_m - \mu \leq a\frac{\sqrt{s_m^2}}{\sqrt{m-1}}$$

iqual a:

$$-\overline{X}_{m}-a\frac{\sqrt{S_{m}^{2}}}{\sqrt{m-1}} \leq -\mu \leq -\overline{X}_{m}+a\frac{\sqrt{S_{m}^{2}}}{\sqrt{m-1}}$$

y finalmente:

a queda determinad por a:

$$F_{T_{m-1}}(\alpha) = \lambda - \frac{\alpha}{2}$$

$$a = F_{T_{m-1}}^{-1}(1-\frac{\alpha}{2})$$

donde Former

la fracción de distribución de una t-de student con M-1 grados de libertad.

 \bar{X}_{m} - a $\frac{\sqrt{S_{m}^{2}}}{\sqrt{m-1}}$ $\leq \mu \leq \bar{X}_{m} + a \frac{\sqrt{S_{m}^{2}}}{\sqrt{m-1}}$

U(X) g(0) V(X)

† simboliza tola la muestre

YOE @

por tanto [U, V] es un intervalo de confrança para pe.

NOTA !

La elección del intervalo B = [-a, a] entre la infinitos posibles, podría demostrarse que garantiza que la longitud final del intervalo de empanta para prosóbtendo, [U(2), V(2)] es la menor posible.

Ejemplo 2

 $X \sim \mathcal{U}(0,\beta)$ $\beta 70$ $X_1,...,X_n$ i.i.d XHaller un intervalo de configure $1-\alpha$, $\alpha \in (0,1)$, para β . Observemos que n' $X \sim \mathcal{U}(0,\beta)$, entouces $Z=X/\beta \sim \mathcal{U}(0,1)$ por tauto

$$\frac{X_{(m)}}{\beta} = \frac{1}{\beta} \max_{j \in \mathbb{Z}_{1}, \dots, X_{m}} = \max_{j \in \mathbb{Z}_{m}} \left\{ \frac{X_{1}}{\beta}, \dots, \frac{X_{m}}{\beta} \right\} = \max_{j \in \mathbb{Z}_{m}} \left\{ \frac{Z_{1}}{Z_{1}}, \dots, \frac{Z_{m}}{Z_{m}} \right\}$$

de una hucción privotal o minto

concretamente, la funcion de distribución de X(m) rendia de de por:

$$F(u) = P\left(\frac{\chi_{(m)}}{\beta} \le u\right) = P\left(\frac{\chi_{(m)}$$

Determinemos a continuación un intervalo [a, b]

tal que

$$P\left(a \leq \frac{X(n)}{\beta} \leq b\right) = 1-\alpha$$

a y b deberau verifican:

$$F(a) = \alpha_1$$

$$F(b) = 1 - \alpha_2$$

$$con \alpha_1, \alpha_2 > 0 \quad \text{if } \alpha_1 + \alpha_2 = \alpha$$

En tal caso,

$$a \leq \frac{X_{(m)}}{\beta} \leq b$$

es equivalente a:

$$\frac{x_{(m)}}{b} \leqslant \beta \leqslant \frac{x_{(m)}}{a}$$

$$U(x_1 - \cdot x_m) \qquad V(x_1 - x_m)$$

Podemos escoger a y le según diversas estrategias. En el presente ejemplo parece raxoneble hocenho procurando encontrar intervalos de confianta lo más cortos posibles. La loujitud del intervalo será:

$$\ell = V - U = \chi_{(n)} \left\{ \frac{1}{a} - \frac{1}{b} \right\}$$

por tanto hay que minimitar $\left\{\frac{1}{a} - \frac{1}{b}\right\}$ terriendo en cuenta $F(a) = \alpha_1$, $F(b) = 1 - \alpha_2$, $\alpha_1, \alpha_2 > 0$ $\alpha_1 + \alpha_2 = \alpha_1$

 $F(a) = a^m = \alpha_1$ $F(b) = b^m = 1 - \alpha_2$

$$a = \sqrt{\alpha_1}$$
 $b = \sqrt{1-\alpha_2}$ y como $\alpha_2 = \alpha - \alpha_1$

bosterá minimizer a le función h: [0, α] $\rightarrow \mathbb{R}$ definide por $h(\alpha_1) = \frac{1}{\sqrt[n]{\alpha_1}} - \frac{1}{\sqrt[n]{1-\alpha_1+\alpha_1}}$

nara ello, observemos que:

$$h'(\alpha_A) = -\frac{1}{m} \frac{1}{\alpha_A^{A+\frac{1}{m}}} + \frac{1}{m} \frac{1}{(1-\alpha+\alpha_A)^{A+\frac{1}{m}}}$$

g como $\alpha_1 < 1-\alpha + \alpha_1$ resulta que h' $(\alpha_1) < 0$ siendo pues le monotona decreciente; el velor mínimo de h en $[0, \alpha]$ se hellerá cuando $\alpha_1 = \alpha$ y por tanto $\alpha_2 = 0$ Así pues, el intervalo de confianza $1-\alpha$ para β será, teniendo en cuenta que b=1 y $\alpha=\sqrt[n]{\alpha}$, ignel α :

[X(m), X(m)/Va] intervalo de confianta 1-a para p

MÉTODO DE NEYMAN

Couridereuros un modelo estadístico $X \sim f(x,0)$ una muestra electoria nimple de tamaño m, $X_1,...,X_n$ vid X, y un parametro de interes escalar $\Psi = g(0)$ $O \in \Theta$ $\Psi \in \mathbb{R}$ Quereuro, bellar un intervalo de confianta $I \leftarrow a$ para $\Psi = g(0)$. Para ello supongamos que disponenso, de un estimador de Ψ ,

 $\mathcal{U} = \mathcal{U}(x_1,...,x_m)$ con la propieded de que la ley probabilistice que n'que depende del parametro pero soilo a través de 4 = g(0), es decir su función de distribución (o de demoded) es de la ferme $T_{\mathcal{U}}(x_1, y_1(0))$. En tal caso, procederemos como n'que:

a) Determinaremos, fijado o, unos valores a y 6 de forma que

$$P_{\theta}(a \leq u \leq b) = 1-\alpha$$

como Po en realidad depende de θ a través de $\psi = g(\theta)$, resultara que a y b seran funciones de $\psi = g(\theta)$, es decir podemos escribir:

$$P_{\psi}(a(\psi) \leq u \leq b(\psi)) = 1-\alpha$$
 $\forall a \in \Theta$ con $\psi = g(a)$

NOTA:

Observese que el problema es indeterminado: podemos escoger a(4) y b(4) de forma que satisfagan:

$$f(a(4), \gamma) = \alpha_1$$

an d, y d2 30 y d1+d2=d

La determinación de «, y «, puede hacerse o bien boséndose en criterios de nimplicoded (por ejemplo imponiendo «,=«,=«/2) o bien en criterios bosados en le longitud del intervelo resultante, como veremos en algun problemo.

b) A pertir de les des dempueldedes

$$a(4) \leq u \leq b(4)$$

trataremos de heller unas desqualdades equivalents de le forme:

$$\Gamma(u) \leq \Psi \leq 5(u)$$

en este coo, como

$$P_{\psi}(r(u) \leq \psi \leq S(u)) = 1-\alpha \quad \forall o \in \Theta$$

tendriams que [r(u), s(u)] definirian un interdo de confiança 1-a.

Ejemplo 3

Sea
$$\times \sim f(x, \beta) = \begin{cases} e^{-(x-\beta)} & x \ge \beta \\ 0 & x < \beta \end{cases}$$
 con $\beta \in \mathbb{R}$

X1 --- Xm ind X Haller un intervelo de configura 1-0, (a € (0,1)), pera el prometro Podemos partir del estimador meximo-veronimil y a partir de éste heller un interdo de confianza 1-x, para p.

Determinación del MLE:

$$L_{x}(\beta) = \prod_{i=1}^{m} \left\{ e^{-(x_{i}-\beta)} \right\} = e^{-\sum_{i=1}^{m} (x_{i}-\beta)} \prod_{i=1}^{m} (x_{i})$$

riendo $x_{(n)} = \min \{x_1, \dots, x_n\}, y ni hacernos <math>\overline{x}_n = \frac{1}{m} \sum_{i=1}^m x_i$ tendremo, tambien:

 $L_{\infty}(\beta) = e^{-m(\overline{x}_{n}-\beta)} \underline{1}_{[\beta,\infty)}(x_{(n)}) = e^{-m\overline{x}_{n}} e^{m\beta} \underline{1}_{[\beta,\infty)}(x_{(n)})$

$$= e^{-m \overline{\chi}_{n}} e^{m\beta} 1_{(-\infty, \chi_{(4)}]} (\beta)$$

esta función de p (x(1) y xn son constantes, hijados los valores muestrales) es creciente en β siempre que $\beta \leq x_{(1)}$. Por tanto un máximo absoluto se obtiene mando p= xcm por tanto el MLE es:

$$\int_{S}^{*} = X_{(A)} = \min \left\{ X_{1}, \dots, X_{M} \right\}$$

La distribucción de X(1) dependerá de p, y podemos tratar de haller un intervalo de confianta 1-a parap a parter del me to do de Neyman

En primer lugar helloreurs la funcion de distribución de X(1):

$$F(u, \beta) = P_{\beta}(x_{\alpha} \leq u) = 1 - P(x_{\alpha} \geq u) = 1 - P([x_{\alpha} \geq u] \cap ... \cap [x_{\alpha} \geq u]) = 1 - P(x_{\alpha} \geq u)^{m} = 1 - P(x_{\alpha} \geq u)^{m} = 1 - P(x_{\alpha} \geq u)^{m}$$

Alway bien
$$F_{\chi}(u) = \begin{cases} 0 & u < \beta \\ \int_{\chi}^{u} e^{-(t-\beta)} dt = \left[-e^{-(t-\beta)}\right]_{\beta}^{u} = 1 - e^{-(u-\beta)} \end{cases}$$
Por tanto:

Por tauto:

$$F(u, \beta) = 1 - (1 - e^{-(u-\beta)})^m = 1 - e^{-m(u-\beta)}$$
 $u \ge \beta$
= 0 $u < \beta$

Fijemos mentalmente «, y «, de forma que «, +«=« y «,,«2>0 Resultara:

$$F(a(\beta), \beta) = 1 - e^{-m(a(\beta)-\beta)} = \alpha_1$$

 $F(b(\beta), \beta) = 1 - e^{-m(b(\beta)-\beta)} = 1 - \alpha_1$

equivelentes a:

$$\ln (A-dA) = -m (a(\beta)-\beta)$$

$$\ln (dz) = -m (b(\beta)-\beta)$$

iquel a:

$$\alpha(\beta) = \beta - \frac{1}{m} \ln (1 - \alpha_1)$$

$$b(p) = \beta - \frac{1}{n} \ln(\alpha_2)$$

portanto partiremos de las designaldedes:

 $\beta - \frac{1}{m} lu(1-\alpha_1) \leq X_{(1)} \leq \beta - \frac{1}{m} lu \alpha_2$ equirdents a:

Para determinar explicitamente el intercho habra que fifer de y de. Para ello, observenos en primer lugar que de = d-de y además, le longitud del interdo es igual a:

$$l = \frac{1}{m} \ln (1 - \alpha_1) - \frac{1}{m} \ln (\alpha_2) = \frac{1}{m} \ln (1 - \alpha_1) - \frac{1}{m} \ln (\alpha - \alpha_1)$$

0 € 0, 5 X

$$\frac{d\ell}{d\alpha_1} = \frac{1}{m} \frac{-1}{1-\alpha_1} - \frac{1}{m} \frac{-1}{\alpha - \alpha_1} = \frac{1}{m} \left(\frac{1}{\alpha - \alpha_1} - \frac{1}{1-\alpha_1} \right) > 0$$

por tanto el mínimo se deanta arando «,= o y «= «, y el intervalo resultara ser:

A veces puede resultar déficil disjoner de un pivote o conocer la ditibución exacta de un estadístico para poder aplicar el método de Neupuan; entonces podemos considerar la posibilidad de aplicar didros métodos usando aproximaciones asintotres, bosades en muestres grandes, determinando entouces intervelos de confiança o regiones confidenciales con confiança aproximedo

Arí, si consideramos una familia probabistira regular, en el sentido de garantitor las propiedades anintotices del estimador méximoverovinil, si llamamos om al MLE obtenido a partir de ma muestra de tamaño m, sabenos que en el coso en que θ sea un escalar: $\sqrt{m} \left(\theta_m^* - \theta \right) \xrightarrow{d} \sqrt{N} \left(0, \text{ var} = \frac{1}{I(\theta)} \right)$

donde I(0) es la información de Fisher. Por tanto, tendremos

siendo ques $\sqrt{m} I^{\prime k}(\theta) \left(\theta_{m}^{*} - 0\right)$ un pivote "aninto'tico": su distribución arintotica es n'empre la misma (no es un pivote ordinario ques dado m, su distribución, en general, dependerá de O) Por tanto podemos determiner un intervalo:

$$P_{\theta}\left(-\alpha\leqslant\sqrt{m}\,\mathbf{I}^{1/2}(\theta)\left(\theta_{m}^{*}-\theta\right)\leqslant\alpha\right)=1-\alpha$$

de forma aproximade, a partir de la distribución, N(0,1)

limite: P(-as Z = a) = 1-x 7 por tanto a= F_2 (1-0/2)

donde Fz es la juncion de distribución de Z, una norma estandarizada.

Observar que $P_0(-a \le \sqrt{m} I^{1/2}(0) (O_m^* - O) \le a)$ no será exactamente ignel a 1-d, solo lo será asintoticamente, pero

 $\forall \theta \in \Theta$ $P_{\theta}(-a \leq \sqrt{m} I^{1/2}(\theta)(\theta_{m}^{*}-\theta) \leq a) \simeq 1-\alpha$

a partir de $-a \leq \sqrt{m} I^{1/2}(0) (\theta_{m}^{*} - 0) \leq a$ (I)

trataremos de heller mas designal dades equivalentes de la forme:

 $U(\theta_{m,\alpha,n}^{*}) \leq \theta \leq V(\theta_{m}^{*},\alpha,m)$ (II)

dependiends de la forme punconal de I(0), denique dedes estes últimas que determinaran muestro intervalo de confranta asintotico.

El paso de (I) a (II) puede ser laborioso dependiendo de I (O). Hay un procedimiento que facilitara la obtención de intervalos de

confianta asintoticos: se tratará de una modoficación del método anterior, aplicable mando I(0) sea ma función contina.

Entonces, por les propiedades de la convergencia en probabilided,

tendremos: $I(\theta_m^*) \to I(\theta)$

puesto que on co o ; y a partir de propiedades de las convergenias en ley y en probabilidad (Teorema de Slutsky, ...) tendremos:

 $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta)} \sqrt{m} I^{1/2}(\theta) (\theta_{m}^{*} - \theta) \xrightarrow{\mathcal{L}} \mathcal{L} \sim \mathcal{N}(0,1)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta)} \sqrt{m} I^{1/2}(\theta) (\theta_{m}^{*} - \theta) \xrightarrow{\mathcal{L}} \mathcal{L} \sim \mathcal{N}(0,1)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta)} \sqrt{m} I^{1/2}(\theta) (\theta_{m}^{*} - \theta) \xrightarrow{\mathcal{L}} \mathcal{L} \sim \mathcal{N}(0,1)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta)} \sqrt{m} I^{1/2}(\theta) (\theta_{m}^{*} - \theta) \xrightarrow{\mathcal{L}} \mathcal{L} \sim \mathcal{N}(0,1)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta)} \sqrt{m} I^{1/2}(\theta) (\theta_{m}^{*} - \theta) \xrightarrow{\mathcal{L}} \mathcal{L} \sim \mathcal{N}(0,1)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta)$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*} - \theta) = \frac{I^{1/2}(\theta_{m}^{*})}{I^{1/2}(\theta_{m}^{*})} \sqrt{m} I^{1/2}(\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*})$ $\sqrt{m} I^{1/2}(\theta_{m}^{*}) (\theta_{m}^{*}) (\theta_{m}^{*}) (\theta$

Por tanto $\sqrt{m} I^{1/2}(O_m^*)(O_m^*-O)$ es también un pivote asintotico, más fácil de manejar que el anterior.

Haremos:

$$P_{\theta}\left(-a\leqslant\sqrt{m}\,I^{\frac{1}{2}}(o_{m}^{*})\left(o_{m}^{*}-o\right)\leqslant a\right)=1-\alpha$$

fijands a en términos de le distribución límite: $a = F_z^{-1}(1-\alpha_2)$ pero ahora la designal dod

$$-a \leq \sqrt{m} I^{1/2}(\theta_m^*)(\theta_m^*-\theta) \leq a$$

permite obtener jacilmente las derignaldades epinvalentes:

$$\left[\theta_{m}^{*}-\frac{\alpha}{\sqrt{m}}\frac{1}{I^{V_{2}}(\theta_{m}^{*})}\right]\leq\theta\leq\theta_{m}^{*}+\frac{\alpha}{\sqrt{m}}\frac{1}{I^{V_{2}}(\theta_{m}^{*})}$$

que definen un intervelo asintótico de confianta 1-d.

En el caso multidimensionel, DE @ CIRM, tendremos analogamente:

$$\sqrt{m} \ I^{1/2}(\theta) \left(\theta_{m}^{+} - \theta\right) \stackrel{\mathcal{I}}{\longrightarrow} \mathbb{Z} \sim N_{m}(0, \mathbb{I}) \stackrel{\mathbb{I}}{\longrightarrow} \mathbb{Z} = \lim_{n \to \infty} \int_{\mathbb{R}^{n}} \frac{I^{1/2}(\theta)}{n} \left(\theta_{m}^{+} - \theta\right) \stackrel{\mathbb{I}}{\longrightarrow} \mathbb{Z} \sim N_{m}(0, \mathbb{I})$$

si I(0) es contina, tambien:

por tanto (a partir de propiedades de la convergencia en ley)

$$m \left(O_{M}^{*} - \theta \right)^{t} I \left(O_{M}^{*} \right) \left(O_{M}^{*} - 0 \right) \xrightarrow{\mathcal{L}} \mathcal{U} \sim \chi_{m}^{2} = G \left(\frac{1}{2}, \frac{m}{2} \right)$$

private aniutotiza

que permitira una región de confianza anintotice 1-a:

Hallando a en términos de le distribucción limite:

$$P(U \leq a) = 1-\alpha$$
 $a = F_{U}(1-\alpha)$ (viendo F_{U}

la función de distribución de U)

A pointir de

 $m\left(\theta_{m}^{+}-\theta\right)^{t}$ I $\left(\theta_{m}^{+}\right)\left(\theta_{m}^{+}-\theta\right)\leqslant a$ obtenues le region de confrante , que podenos expreser como:

se trata de un elipsoide m-dimensional centrado en θ_n^* y cuyos semisjes se obtendran en términos de los vectores propios

de I (0).