EXAMEN

Deuxième Session

Vendredi 24 Juin (durée 3h)

Exercice 1. Calculer $I = \iint_A e^{y/x} dxdy$ où $A = \{(x,y) \in \mathbb{R}^2 / x + y \ge 0, x - y \ge 0, 1 \le x \le 2\}$. (On pourra commencer par dessiner A).

Exercice 2. On se place dans \mathbb{R}^3 muni de sa structure euclidienne canonique. Soient a et b des paramètres fixés. On considère l'endomorphisme u de \mathbb{R}^3 dont la matrice dans la base canonique est:

$$A = \frac{1}{6} \begin{pmatrix} 5a+b & 2a & -a \\ 2a & 2a+b & 2a \\ -a & 2a & 5a+b \end{pmatrix}$$

- 1. On suppose que a = 1 et b = 0.
 - (a) Montrer que u est diagonalisable dans une base orthonormée de \mathbb{R}^3 .
 - (b) Montrer que $\{0,1\}$ est l'ensemble des valeurs propres de u et construire une base orthonormée $\underline{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbb{R}^3 dans laquelle u se diagonalise.
 - (c) Montrer que u est un projecteur orthogonal sur un sous-espace vectoriel de \mathbb{R}^3 que l'on déterminera.(On pourra d'abord calculer $u \circ u$).
- 2. Lorsque a et b sont quelconques, montrer que u se diagonalise encore dans $\underline{\varepsilon}$ et donner les valeurs propres de u ainsi que son polynôme caractéristique.
- 3. Lorsque a=2 et b=-6 , montrer que $\,u\,$ est une symétrie orthogonale par rapport à un plan.
- 4. Soit q la forme quadratique sur \mathbb{R}^3 définie par:

$$q(x, y, z) = 2x^{2} + y^{2} + 2z^{2} + \frac{1}{3}(4xy - 2xz + 4yz).$$

Montrer que q est définie positive et donner une base q-orthogonale de \mathbb{R}^3 . (On pourra utiliser la question 2.)

Exercice 3. Rappelons que pour chaque $n \in \mathbb{N}$ on note Z^n l'application $\mathbb{C} \to \mathbb{C}$, $z \mapsto z^n$. Soit $\sum a_n Z^n$ une série entière dont la somme s est solution de l'équation différentielle:

$$2xs'(x) + s(x) = \frac{1}{1+x}$$
 , (où $x \in]-1, +\infty[$).

- 1. Montrer que, si on admet que son rayon de convergence R vérifie $0 < R \le 1$, les coefficients de cette série entière sont: $\forall n \in \mathbb{N}, a_n = \frac{(-1)^n}{2n+1}$ (On pourra développer la fonction $x \mapsto \frac{1}{1+x}$ en série entière).
- 2. Calculer le rayon de convergence R de cette série entière.
- 3. Calculer s(x) lorsque $0 \le x < R$. (On pourra commencer par calculer $xs(x^2)$).
- 4. Lorsque -R < x < 0, montrer que:

$$s(x) = \frac{1}{2\sqrt{-x}} \ln(\frac{1+\sqrt{-x}}{1-\sqrt{-x}}).$$

(On pourra commencer par développer la fonction $x\mapsto \frac{1}{2}\ln(\frac{1+x}{1-x})$, puis calculer $xs(-x^2)$).

Exercice 4. Pour tout x, t > 0, on pose $f(x, t) = \frac{\sin t}{t} e^{-tx}$.

- 1. Montrer que, pour tout x fixé, les fonctions $t\mapsto f(x,t)$ et $t\mapsto \frac{\partial f}{\partial x}(x,t)$ sont intégrables sur $]0,+\infty[$. (On pourra utiliser la majoration $|\sin t|\leq |t|$).
- 2. Pour tout x>0 on pose $F(x)=\int_0^{+\infty}f(x,t)\mathrm{d}t$. Montrer que la fonction $F:x\mapsto F(x)$ est de classe C^1 sur $]0,+\infty[$. (On pourra tout d'abord montrer qu'elle est de classe C^1 sur $]a,+\infty[$, pour tout a>0).
- 3. En effectuant une double intégration par parties, montrer que $\forall x > 0, F'(x) = \frac{-1}{1+x^2}$.
- 4. (a) Montrer que $\forall x > 0, |F(x)| \le \frac{1}{x}$ et en déduire que $\lim_{x \to +\infty} F(x) = 0$.
 - (b) Calculer F(x) pour tout x > 0.