The Singular Value Decomposition. We now know that the SVD of an $m \times n$ matrix, A is the set of three matrices, U, Σ and V, such that

- U is an m × m unitary matrix;
- $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_{min\{m,n\}})$ is a non-negative real $m \times n$ matrix, with $\sigma_1 \geqslant \sigma_2 \geqslant \dots \geqslant \sigma_{min\{m,n\}}$;
- V is an n × n unitary matrix;

and, of course,

$$A = U\Sigma V^*$$
.

We call the σ_i the "singular values" of A. RQ presented a proof of the existence of and SVD, for any complex matrix, in Lecture 7. You can see a different proof in Theorem 4.1 of Trefethen and Bau (though it appeals to a "compactness argument").

Properties of the SVD. Now we want to study some key properties of the SVD. For more, see Lecture 5 of Trefethen and Bau.

Theorem 1. The rank of A is r, the number of non-zero singular values of A.

Theorem 2.

$$||A||_2 = \sigma$$

and

$$\|A\|_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2}$$

Theorem 3. A is the sum of the r rank-one matrices

$$A = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\star}.$$

The next theorem is probably the most important: it tells us how best to approximate a matrix by one of lower rank.

Theorem 4. Let A_v be the rank-v approximation to A

$$A_{\nu} := \sum_{j=1}^{\nu} \sigma_j u_j \nu_j^{\star}.$$

Then

$$||A - A_{\nu}||_2 = \inf_{\text{rank}(X) \le \nu} ||A - X||_2 = \sigma_{\nu+1},$$

where if v = p = min(m, n), we define $\sigma_{v+1} = 0$.

The analogous result holds for the $\|\cdot\|_F$ norm, though we won't prove it.

Theorem 5.

$$||A - A_{\nu}||_{F} = \inf_{\text{rank}(X) \leqslant \nu} ||A - A_{\nu}||_{F}.$$