L4 Enzyme functional nature

Ravikrishnan Elangovan,

Department of Biochemical Engg and Biotechnology

Indian Institute of Technology - Delhi

Enzymes are catalyst,
That accelerate chemical reactions

Mostly enzymes are proteins, some RNA enzymes also exist

Progress of reaction

Enzyme catalytic power

TABLE 14.1 A Comparison of Enzyme-Catalyzed Reactions a	nd Their Uncatalyzed Counterpa	rts		
Reaction	Enzyme	Uncatalyzed Rate, ν_u (sec ⁻¹)	Catalyzed Rate, v_e (sec ⁻¹)	$v_{\rm e}/v_{\rm u}$
Fructose-1,6-bisP \longrightarrow fructose-6-P + P _i	Fructose-1,6-bisphosphatase	2×10^{-20}	21	1.05×10^{21}
$(Glucose)_n + H_2O \longrightarrow (glucose)_{n-2} + maltose$	β -amylase	1.9×10^{-15}	1.4×10^{3}	7.2×10^{17}
DNA, RNA cleavage	Staphylococcal nuclease	7×10^{-16}	95	1.4×10^{17}
CH_3 $-O$ $-PO_3^{2-}$ + H_2O \longrightarrow CH_3OH + HPO_4^{2-}	Alkaline phosphatase	1×10^{-15}	14	1.4×10^{16}
$\begin{array}{c} O \\ H_2N-C-NH_2+2H_2O+H^+ \longrightarrow 2NH_4^++HCO_3^- \\ O \\ \parallel \end{array}$	Urease	3×10^{-10}	3 × 10 ⁴	1 × 10 ¹⁴
$R-C-O-CH_2CH_3 + H_2O \longrightarrow RCOOH + HOCH_2CH_3$	Chymotrypsin	1×10^{-10}	1×10^2	1×10^{12}
Glucose + ATP → Glucose-6-P + ADP	Hexokinase	$<1 \times 10^{-13}$	1.3×10^{-3}	$>1.3 \times 10^{10}$
$CH_3CH_2OH + NAD^+ \longrightarrow CH_3CH + NADH + H^+$ $CO_2 + H_2O \longrightarrow HCO_3^- + H^+$ $Creatine + ATP \longrightarrow Cr-P + ADP$	Alcohol dehydrogenase Carbonic anhydrase Creatine kinase	10-2	10 ⁵	$>4.5 \times 10^6$ 1×10^7 $>1.33 \times 10^4$

Adapted from Koshland, D., 1956. Molecular geometry in enzyme action. *Journal of Cellular Comparative Physiology,* Supp. 1, **47:**217; and Wolfenden, R., 2006. Degrees of difficulty of water-consuming reactions in the absence of enzymes. *Chemical Reviews* **106**:3379–3396.

Enzyme specificity

Enzyme specificity:

- Molecular recognition based on shape and charge of the molecule at atomic level
- Even chiral groups will be distinguished

Yellow- hydrophobic Blue – positively charged Red – negatively charged

Enzyme cofactors and coenzymes

Cofactors: Are non protein components that are required for function of an Enzyme

e.g., Ca2+ ions

Prosthetic group: Organic molecule cofactor, tightly bound to enzyme. Eg., Haem group

Coenzyme: Organic molecule cofactor. They are chemically changed in course of enzymatic reaction Eg., NADH

TABLE 1	TABLE 13.2 Enzyme Cofactors: Some Metal Ions and Coenzymes and the Enzymes with Which They Are Associated			
Metal Ions and Some Enzymes That Require Them		Coenzymes Serving as Transient Carriers of Specific Atoms or Functional Groups		
Metal Ion	Enzyme	Coenzyme	Entity Transferred	Representative Enzymes Using Coenzymes
Fe ²⁺ or	Cytochrome oxidase	Thiamine pyrophosphate (TPP)	Aldehydes	Pyruvate dehydrogenase
Fe ³⁺	Catalase	Flavin adenine dinucleotide (FAD)	Hydrogen atoms	Succinate dehydrogenase
	Peroxidase	Nicotinamide adenine dinucleotide (NAD)	Hydride ion (:H ⁻)	Alcohol dehydrogenase
Cu ²⁺	Cytochrome oxidase			
Zn ²⁺	DNA polymerase	Coenzyme A (CoA)	Acyl groups	Acetyl-CoA carboxylase
	Carbonic anhydrase	Pyridoxal phosphate (PLP)	Amino groups	Aspartate aminotransferase
	Alcohol dehydrogenase			
Mg ²⁺	Hexokinase	5'-Deoxyadenosylcobalamin (vitamin B ₁₂)	H atoms and alkyl groups	Methylmalonyl-CoA mutase
	Glucose-6-phosphatase			
Mn ²⁺	Arginase	Biotin (biocytin)	CO ₂	Propionyl-CoA carboxylase
K ⁺	Pyruvate kinase (also requires Mg ²⁺)	Tetrahydrofolate (THF)	Other one-carbon groups, such as formyl and methyl	Thymidylate synthase
Ni ²⁺	Urease		groups	
Mo	Nitrate reductase			
Se	Glutathione peroxidase			

Enzyme kinetics

Michaelis-Menten equation

$$v = \frac{V_{\text{max}}[S]}{K_m + [S]}$$

$$k_2 = \frac{V_{\text{max}}}{[E_T]} = k_{\text{cat}}$$

TABLE 13.3 K _m Values for Some Enzymes			
Enzyme	Substrate	K_m (m M)	
Carbonic anhydrase	CO ₂	12	
Chymotrypsin	N-Benzoyltyrosinamide	2.5	
	Acetyl-L-tryptophanamide	5	
	N-Formyltyrosinamide	12	
	N-Acetyltyrosinamide	32	
	Glycyltyrosinamide	122	
Hexokinase	Glucose	0.15	
	Fructose	1.5	
β -Galactosidase	T	4	

TABLE 13.4	Values of k_{cat} (Turnover Number) for Some Enzymes		
Enzyme		k_{cat} (sec ⁻¹)	
Catalase		40,000,000	
Carbonic anhydrase		1,000,000	
Acetylcholinesterase		14,000	
Penicillinase		2,000	
Lactate dehydrogenase		1,000	
Chymotrypsin		100	
DNA polymerase I		15	
Lysozyme		0.5	

Catalytic efficiency of an Enzyme

1-	_	V_{max}	_	1-
κ_2	_	$[E_T]$	_	κ _{ca}

TABLE 13.5	Enzymes Whose k_{cat}/K_m Approaches the Diffusion-Controlled Rate of Association with Substrate				
Enzyme		Substrate	k_{cat} (sec ⁻¹)	<i>K_m</i> (<i>M</i>)	k_{cat}/K_m ($M^{-1} \text{ sec}^{-1}$)
Acetylcholines	terase	Acetylcholine	1.4×10 ⁴	9×10 ⁻⁵	1.6×10 ⁸
Carbonic anhy	drase	CO_2	1×10 ⁶	0.012	8.3×10 ⁷
		HCO ₃ ⁻	4×10 ⁵	0.026	1.5×10^{7}
Catalase		H_2O_2	4×10^{7}	1.1	4×10^{7}
Crotonase		Crotonyl-CoA	5.7×10^{3}	2×10^{-5}	2.8×10^{8}
Fumarase		Fumarate	800	5×10 ⁻⁶	1.6×10^{8}
		Malate	900	2.5×10^{-5}	3.6×10^{7}
Triosephospha isomerase	te	Glyceraldehyde- 3-phosphate*	4.3×10 ³	1.8×10 ⁻⁵	2.4×10 ⁸
β -Lactamase		Benzylpenicillin	2×10 ³	2×10 ⁻⁵	1×10 ⁸

 $^{{}^*}K_m$ for glyceraldehyde-3-phosphate is calculated on the basis that only 3.8% of the substrate in solution is unhydrated and therefore reactive with the enzyme. Adapted from Fersht, A., 1985. *Enzyme Structure and Mechanism*, 2nd ed. New York: W. H. Freeman.

Enzyme activity as function of pH

Optimum pH of Some Enzymes			
Enzyme Optimum pH			
Pepsin	1.5		
Catalase	7.6		
Trypsin	7.7		
Fumarase	7.8		
Ribonuclease	7.8		
Arginase	9.7		

A decrease in pH (more acidic) causes an increase in the concentration of hydrogen ions (H+) in solution, which can cause the ionization of acidic functional groups such as carboxyl groups (-COOH) resulting in the formation of carboxylate groups (-COO-). This can cause the enzyme to lose its activity by altering its shape and function. Similarly, an increase in pH (more basic) can cause the ionization of basic functional groups such as amino groups (-NH3+) and this can also affect the enzyme's activity.

FIGURE 13.12 The effect of temperature on enzyme activity.

Enzyme thermodynamics

Mechanism: Catalysts Lower the Free Energy of Activation for a Reaction

Transition state (a) Average free $\Delta G_{T_1}^{\ddagger} > \Delta G_{T_2}^{\ddagger}$ energy of A at T_9 at T_9 Free energy, G Average free energy of A at T_1 Average free energy of P at T_9 Average free energy of P at T_1

Progress of reaction

Gibbs free energy

Thermodynamics: changes in free energy, entropy, ...

$$\Delta G = \Delta H - T \cdot \Delta S$$
$$\Delta G = (\Delta U + P \cdot \Delta V) - T \cdot \Delta S$$

- For nearly all biochemical reactions ΔV is small and ΔH is almost equal to ΔU
- Hence, we can write:

$$\Delta G = \Delta U - T \cdot \Delta S$$

If ΔG is negative

Energy was released, products are simpler, greater entropy (2nd Law of Thermodynamics)

Exergonic / exothermic reaction (spontaneous)

If ΔG is positive

Energy input, product more complex, energy needed to go against 2nd Law

Endergonic / endothermic (non-spontaneous)

The Enthalpic term

- Changes in bonding
- van der Waals
- Hydrogen bonding
- Charge interactions

The Entropic term

- Changes the arrangement of the solvent or counterions
- Reflects the degrees of freedom
- Rotational & Translational changes

Protein folding

Figure 10.13 The Molecules of Life (© Garland Science 2013)

Protein folding is a spontaneous process?

 $\Delta G < 0$???

Enthalpy change in protein folding

lack of stable van der Waals contacts

13

Figure 10.15 The Molecules of Life (© Garland Science 2013)

Entropy change in protein folding

Entropy contribution from water

Figure 10.21 The Molecules of Life (© Garland Science 2013)

Figure 10.22 The Molecules of Life (© Garland Science 2013)

Figure 10.23 The Molecules of Life (© Garland Science 2013)

Enzyme mechanism

Mechanism: Catalysts Lower the Free Energy of Activation for a Reaction

Transition state (a) Average free $\Delta G_{T_1}^{\ddagger} > \Delta G_{T_2}^{\ddagger}$ energy of A at T_9 at T_9 Free energy, G Average free energy of A at T_1 Average free energy of P at T_9 Average free energy of P at T_1

Progress of reaction

Thank you