Problem: Minimum Spanning Trees

Kruskal's Algorithm:

(Greedy Method: smallest weighted first + no cycle)

Step 1: sort edges by lengths

Step 2: for i = 1 to |E|

select the i-th edge as a tree edge

if it induces no cycle.

23-1x

* u 和 T 之 間 可 能 有 很 多 edges key[u] 只 記 住 最 短 的 — 條 23-4a

* u 和 T 之 間 可 能 有 很 多 edges key[u] 只 記 住 最 短 的 — 條

		array	b. heap	f. heap
Steps 1~5:	Build Q	O(V)	O(V)	O(V)
Step 7:	V times Extract-Min	$O(V^2)$	O(V lg V)	O(V lg V)
Steps 8~11:	E times Decrease-Key	O(E)	O(E lg V)	O(E)
		O(V2+E)	O(E lg V)	O(E + Vlg V)

Procedure	(worst-case)	(amortized)	array		
MAKE-HEAP	Θ(1)	Θ(1)	O(1)		
Insert	$\Theta(\lg n)$	$\Theta(1)$	O(1)		
MINIMUM	$\Theta(1)$	$\Theta(1)$	O(n)	107	
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$	O(n)	(6 22.4)	
Union	$\Theta(n)$	$\Theta(1)$	O(n)	(See 22-1)	
DECREASE-KEY	$\Theta(\lg n)$	Θ(1)	O(1)		
DELETE	$\Theta(\lg n)$	$O(\lg n)$	O(1)		
build	O(n)	O(n)	O(n)		23-7×