

Complexity

by Chin-Huang Lin

在之前的投影片中.....

- 我們提到資訊之芽會教你......
 - 如何比較兩個演算法,哪一個比較「好」?
- 問題是:什麼叫做好?

Sproud

對一個程式來說.....

- 如果.....,你會覺得好
 - 時間花得少 (運行速度)
 - ex. C_r_m_ vs I_t_rn_t Ex_lo_e_
 - 空間花得少
 - ex. Fi_ef_x vs Ch_o_e
 - 正確率較高
 - ex. B_td_f_nd_r vs M_Af_e
 - 相容性較高
 - ex. W_nd_ws vs L_n_x
 - 開發成本低
- ♪ 平衡是很重要的事情
 - ♪ 美國進行人口普查,在沒有電腦前每10年進行一次,完成一次的統計需要7.5年 → 等 你查完小孩子都長大了
 - ♪ 如果今天只是要知道人口的分佈,其實抽查的實用性會高得多
 - ♪ 有了讀卡機(最早的電腦)之後,6周即可統計完成

怎麼衡量?

- 實測通常最精準!
- 但,怎麼預測?
- 相容性、開發成本通常仰賴實做方式與實做者評估
- 正確率有很多面向
 - 實做細節
 - Case 數量
 - 理論分析
- 時間、空間?

一些瓶頸

- 每種操作所需時間略有差異
 - ex. 除法比加法慢、記憶體存取根據區塊不同也有差異
- 小時候胖不是胖
 - ex. $3x^2 < 10x$ if x < 4
 - 通常輸入規模很小的時候,時間的差異很小!
 - 我們在意輸入規模很大的時候的情形

Sproud

複雜度的概念

- 乘法比加法慢,但.....
 - 老師出長期作業,有兩種方案
 - 1. 每天算 10 題乘法
 - 2. 第一天算 1 題加法,第二天算 2 題加法,第三天算 3 題加法.....
 - 你會選哪一種作業?
 - 假設算一題加法需要 5 秒,算一題乘法需要 20 秒
 - 到了第 n 天,方案 1 花了 10*n*20 = 200n 的時間寫作業
 - 到了第 n 天,方案 2 花了 $(n+1)*n/2*5 = 2.5(n^2+n)$ 的時間寫作業
 - 如果 n 很小,例如 n=3,那麼方案 2 比較好
 - 如果 n 很大,例如 n = 365 呢?
 - → 方案 2 需要的操作數的「量級」比較多 (複雜),所以長期作業應該選方案 1 比較輕鬆

量級?

- 以動物為例.....
- 簡單來說,他們「成長」的速度是不同等級的!
- 極限的概念 1
 - 對於兩個函數 f(n) 與 g(n),當 n 趨近於無窮大,誰會比較大?
- 超級比一比:
 - $3n^2 + n + 20$ vs 100n
 - n^{100} vs 2^n
 - n^2 vs $10n\log n$
 - 100^n vs n!
 - $30 * 2^n \text{ vs } 3^n$
 - 100n vs 200n

100n vs 200n?

- 極限的概念 2
 - 如果 $\frac{f(n)}{g(n)}$ 在 n 趨近於無限大時趨近於 o,那麼我們說 f(n) 比 g(n) 小
 - 如果 $\frac{f(n)}{g(n)}$ 在 n 趨近於無限大時趨近於無限大,那麼我們說 f(n) 比 g(n) 大
 - 否則我們說兩者一樣量級
- 再次超級比一比
 - $3n^2 + n + 20$ vs 100n
 - n^{100} vs 2^n
 - n^2 vs $10n\log n$
 - 100^n vs n!
 - $30 * 2^n \text{ vs } 3^n$
 - 100n vs 200n
- 量級的實務意義:科技的進步到底有沒有辦法彌補兩者的差異?

常見量級比較

• 在一台每秒可進行10億次運算的電腦上的話.....

n	n	$n \log_2 n$	n^2	n^3	n^4	n^{10}	2^n
10	$.01 \mu s$.03µs	$.1 \mu s$	$1\mu s$	10μs	10 <i>s</i>	$1\mu s$
20	.02µs	.09µs	.4 <i>μs</i>	8µs	160μs	2.84 <i>h</i>	1ms
30	.03µs	.15 <i>μs</i>	.9µs	27μs	810μs	6.83 <i>d</i>	1 <i>s</i>
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121 <i>d</i>	18m
50	.05µs	.28µs	2.5 <i>μs</i>	125μs	6.25 <i>ms</i>	3.1 <i>y</i>	13 <i>d</i>
100	.10µs	.66µs	10μs	1ms	100ms	3171 <i>y</i>	4
							$* 10^{13} y$
10^{3}	$1\mu s$	9.96 <i>μs</i>	1ms	1 <i>s</i>	16.67 <i>m</i>	3.17 * 10 ¹³ y	32 * 10 ²⁸³ y
104	10μs	130μs	100ms	16.67 <i>m</i>	115.7 <i>d</i>	3.17	
	,	,				* 10 ²³ y	
10^{5}	100μs	1.66ms	10 <i>s</i>	11.57 <i>d</i>	3171 <i>y</i>	3.17	
						$* 10^{33} y$	
10 ⁶	1ms	19.92ms	16.67m	31.71 <i>y</i>	3.17_	3.17	
					* 10 ⁷ y	* 10 ⁴³ y	

複雜度的概念

- 我們假設所有的操作都需要花費一樣的時間!包括
 - 加減乘除
 - 取餘數
 - 位運算
 - 存取記憶體
 - 判斷運算子
 - 賦值運算子
 - •
- 把所有操作需要的「次數」都計算出來
- 看看量級的大小 (複雜度),並且評估執行時間
 - ex. $3n^2 + 2n + 7$,n = 2000,運行時間應該是 **12004007** 的常數倍
- 目前計算機的運算速度約為每秒 2000 萬~8000 萬次運算

一些符號

- 每次都要列出式子,很麻煩
- 常數其實不重要!
- 大歐符號 (Big-O)
 - 記為 O(f(n))
 - 其中 f(n) 是複雜度量級的上界
 - 假設實際運行的時間為 g(n) ,那麼在 n 趨近於無限大時,有 $\frac{f(n)}{g(n)}$ 趨近於某常數或者 $\frac{f(n)}{g(n)}$ 趨近於無限大
 - ex. $3n^3 + 5n^2 + 10n + 3 \in O(n^3)$
 - ex. $f(n) \in O(n^2)$, $\exists f(n) \in O(n^3)$
 - ex. $1000 \in O(1)$
 - 通常會取最緊的上界

練習時間

- $3n^2 + n + 20$ vs 100n
 - $0(n^2)$ vs 0(n)
- n^{100} vs 2^n
 - $0(n^{100})$ vs $0(2^n)$
- n^2 vs $10n\log n$
 - $0(n^2)$ vs $0(n\log n)$
- 100^n vs n!
 - $0(100^n)$ vs 0(n!)
- $30 * 2^n \text{ vs } 3^n$
 - $0(2^n)$ vs $0(3^n)$
- 100n vs 200n
 - 0(n) vs 0(n)

其他符號

- 小歐符號 (Little-o)
 - 記為 o(f(n))
 - 其中 f(n) 為複雜度量級的**嚴格**上界
 - 假設實際運行的時間為 g(n) ,那麼在 n 趨近於無限大時 , $\frac{f(n)}{g(n)}$ 趨近於無限大
 - ex. $3n^3 + 5n^2 + 10n + 3 \notin o(n^3)$
 - ex. $3n^3 + 5n^2 + 10n + 3 \in o(n^4)$
 - ex. $f(n) \in o(n^2)$, $\mathfrak{M} f(n) \in o(n^3)$

其他符號

• Big-omega

- 記為 Ω(f(n))
- 其中 f(n) 為複雜度量級的下界
- ex. $3n^3 + 5n^2 + 10n + 3 \in \Omega(n^3)$
- ex. $f(n) \in \Omega(n^2)$, $\exists f(n) \in \Omega(n)$

Little-omega

- 記為 ω(f(n))
- 其中 f(n) 為複雜度量級的**嚴格**下界
- ex. $3n^3 + 5n^2 + 10n + 3 \in \omega(n^2)$
- ex. $3n^3 + 5n^2 + 10n + 3 \notin \omega(n^3)$

其他符號

- Big-theta
 - 記為 Θ(f(n))
 - 其中 f(n) 為複雜度量級的嚴格上下界 (完全相同!)
 - ex. $3n^3 + 5n^2 + 10n + 3 \in \Theta(n^3)$
 - ex. $3n^3 + 5n^2 + 10n + 3 \notin \Theta(n^4)$
 - ex. $3n^3 + 5n^2 + 10n + 3 \notin \Theta(n^2)$
- 一般來說 (至少在 2014 資訊之芽), 我們最常用到 Big-O 和 Big-theta

如果時間不穩定?

- 通常我們不能夠容忍最壞情況非常糟,儘管出現機率不高
- 多數情況我們總是關注算法中最壞的 case
- ex. 插入排序法
 - **1.** 從 1~*n* 依序取出當前第 *i* 個元素
 - 2. 把當前元素往前移動到正確的位置
 - ex. 3 2 1 4
 - 1. 3 2 1 4
 - 2. **2** 3 1 4
 - 3. 2 **1** 3 4
 - 4. 1 2 3 4
 - 5. 1 2 3 4
 - best case: 一開始就排好,O(n)

想—想.....

- 複雜度的全名實際上是「漸近複雜度」,你覺得是為什麼呢?(提示:跟漸近線有點關係)
- 複雜度評估有什麼關鍵的壞處?總是選擇複雜度低的方式就一定好嗎?
- 上次上課時介紹了質數的檢測方式以及優化。試著分析一下複雜度各是多少吧!(篩法除外數學成份過重)
- $O(f(n) + g(n)) = O(\max(f(n), g(n)))$, 其中 max 函數會取其中量級較大的函數。這是 為什麼呢?
- 實務中,如果一個算法空間複雜度很高但時間複雜度較低,另一個算法時間複雜度很高但空間複雜度較低,哪一個算法在小範圍的時候比較實際?哪一個算法大範圍的時候比較實際?為什麼?

Sproud