Name: Tanjim Reza

Student ID: 20101065

Course: CSE330

Section : 10

Assignment : 07

$$\sin(n) = 2 - n^2$$

Here,
$$f(m) = -n^2 + 2 - \sin(m) = 0$$

$$\Rightarrow$$
 $f'(n) = -2m - \cos(n)$

$$f(0) = 2$$

$$f(2) = -2.909297$$

Here
$$f(1) \cdot f(2) < 0$$

Root lies in (1) and (2),
$$n_0 = \frac{3}{2} = 1.5$$

,	n	Mo	P (Mo)	f'(Mo)	NI	Update
	1	1.5	-1.247495	-3'070737	1.093747	$N_0 = N_1$
	2.	1'093747	-0.084637	-2.646654	1.061768	$M_0 = \mathcal{H}_1$
	3	1.061768	-0.00024	-2.610866	1'06155	No= 21
	4	1.06155	0	-2.610619	1.06155	No = M,
	There	force,	the root i	s 1.06122	after	4 iteration

Ams: to the que no; Problem - B

Secant Method: The secant method is a noot finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function. It is considered to be the most effective approach to find the root of a non linear function.

The foremula

$$n_{k+1} = n_k - f(n_k) \left(\frac{n_k - n_{k-1}}{f(n_k) - f(n_{k-1})} \right)$$

Secart Method Algorithm:

In the secant method, if no and no are the initial guesses the the next approximate

formula

$$n_2 = n_1 - \frac{f(n_1)(n_1 - n_0)}{f(n_1) - f(n_0)}$$

Now, the algorithm of the method:

Step 013 Start

Step 02° finding no and no as moc M1

Stepe 03°

$$m_2 = m_1 - \frac{f(m_1) (m_1 - m_0)}{f(m_0) - f(m_0)}$$

Step 048

If $f(m_2)=0$ then m_2 is exact root Flse $m_0=m_1$, $m_1=m_2$

Step 05%

Repeat 3, 4 until P(x f(mx) =0 OTC)

Given,

$$f(m) = m^3 - x - 1$$

 $f(0) = -1$
 $f(1) = -1$
 $f(2) = 5$

In this case,
$$f(1) \cdot f(2) < 0$$

1st iteration:

$$m_0 = 1$$
 $m_1 = 2$
 $f(m_0) = -1$
 $f(m_1) = 5$
 $m_2 = m_1 - \frac{f(m_1)(m_1 - m_0)}{f(m_1) - f(m_0)}$
 $= 2 - \frac{5 \cdot 1}{5 - (-1)}$
 $= \frac{x}{6}$

= 1,1667

$$M_1 = 2$$
, $M_2 = 1.167$

$$M_3 = M_2 - \frac{(-0.579)(1.167-2)}{(-0.579)-(5)}$$

3rd Herations

$$f(M3) = -0.285$$

$$m_4 = m_3 - \frac{f(n_3)(n_3 - n_2)}{f(n_3) - f(n_2)}$$

$$= 1.337$$

4th iteration:

$$n_5 = n_4 - \frac{f(n_4)(n_4 - n_3)}{f(n_4) - f(n_3)}$$

5th iteration

 $n_4 = 1.337$, $n_5 = 1.324$ $f(n_4) = 0.054$, $f(n_5) = -0.004$ $f(n_5) (n_5 - n_4)$

 $m_6 = n_5 - \frac{f(m_5)(m_5 - n_4)}{f(n_5) - f(m_4)}$

= 1.325

 $: f(n_6) = 0$

. . Using secant Method in 5th iteration, the root is 1.325.