

ABC Grocery Case

Bagus Pranata

Outlines

- Introduction
- Methodology
- Exploratory Data Analysis
- Data Preprocessing
- Feature Engineering & Selection
- Modelling & Evaluation
- Prediction & Evaluation
- Results & Analysis
- Conclusion & Contingency

Introduction

Introduction

Background

ABC South America 54 Stores South America

With a consistent positive sales growth

Objective

Predict sales for each product type in each store between 31 July 2017 and 15 August 2017.

Scope & Limitation

- No new marketing and operational initiatives
- All stores work with the same characteristic and strategies
- External factors, such as. Force majeure, government intervention, does not apply

Methodology

Generally, the research consists of 8 stages from defining the problem until predicting the sales. RFR, SARIMA, and XGBoost were chosen as model candidates

Model Candidates

- Random Forest Regressor
- SARIMA
- XGBoost

Machine Learning Pipeline Model Problem Productionize Data Data Model Model Testing / **Evaluation &** Definition Collection Preprocessing Building Tuning Model Prediction Experimentation **⋈** (3) **₽ ₩** () CODE Wrangling & EDA training evaluation tuning test code code code code code MODEL 88 00 88 88 model candidates productionized model chosen (RFR, SARIMA, XGBoost) model model DATA predicted raw data training data test data data

Check NULL

date	0
store_nbr	0
product_type	0
sales	0
special_offer	0
dtype: int64	

Details of the dataset

Category	Value	Remark
Count of Unique Stores	54	
Count of Unique Product Types	33	
Number of Days or Daily Records	1,684	For each product in each store
Total Number of Records	3,000,888	

A. Sales Trends

B. Holidays

Christmas

New Year

52 01-01

Number of Zero Sales on New Year's Day

	m-d	store_nbr	sales	
0	01-01	1	0.0	
1	01-01	2	0.0	
2	01-01	3	0.0	
:	:	:	:	
22	01-01	23	0.0	
23	01-01	24	0.0	1
25	01-01	26	0.0	
:	:	:	:	Only store 2 operated or
33	01-01	34	0.0	Day
34	01-01	35	0.0	1
36	01-01	37	0.0	J
:	:	:	:	
49	01-01	50	0.0	
50	01-01	51	0.0	ND: store
51	01-01	53	0.0	NB: store operated of
	01 01		0.0	2017

0.0

	store	_nbr	date	sales
C)	25	2013-01-01	2511.618999
1	1	25	2014-01-01	4992.534400
2	2	25	2015-01-01	12773.616980
3	3	25	2016-01-01	16433.394000
	4	25	2017-01-01	12082.500997
5	5	36	2013-01-01	0.000000
6	5	36	2014-01-01	3609.531004
7	7	36	2015-01-01	0.000000
8	3	36	2016-01-01	0.000000
9	9	36	2017-01-01	0.000000

Store 36 only opened on New Year's Day 2014

C. Special Offer

Correlation to Sales

Special Offer vs Sales Trend

D. Store Performance

Daily Sales Average

Sales Ranking

E. Product Type Preference

Daily Sales Average

Sales Ranking

F. Product Sold in Stores

Data Preprocessing

Data Preprocessing

- sales lag 21 days - sales lag 365 days - rolling means 7 days (shifted 21 days)	Time Period	1 January 2017 - 30 July 2017	31 July - 15 August 2017
NB : 21 days is chosen since we should predict 16 days ahead and match the data with the same day of week	Number of Unique Records	363,122	28,512

Training Set

Test Set

Data Preprocessing

Training set example

	store_nbr	product_type	date	sales	special_offer	day of week	sales_lag21	sales_lag365	rolling_means7	encoded_product_type
2505641	25	AUTOMOTIVE	2017-01-01	5.000	0	7	5.000	4.000	2.571429	0
2505642	25	BABY CARE	2017-01-01	2.000	0	7	0.000	0.000	0.000000	1
2505643	25	BEAUTY	2017-01-01	3.000	0	7	2.000	13.000	2.285714	2
2505644	25	BEVERAGES	2017-01-01	4008.000	38	7	2448.000	5104.000	1516.142857	3
2505645	25	BOOKS	2017-01-01	0.000	0	7	0.000	0.000	0.142857	4
2505646	25	BREAD/BAKERY	2017-01-01	490.573	3	7	304.747	680.952	292.831143	5

Test set example Sales from Sales from previous 7-day average sales previous 21 days 365 days from previous 21 days rolling_means7 encoded_product_type store_nbr product_type sales special_offer day of week sales_lag21 sales_lag365 2896417 MAGAZINES 2017-08-15 2.000 1.000 4.000000 1.285714 23 24 2896418 MEATS 2017-08-15 61.225 62.073997 55.087143 2896419 PERSONAL CARE 2017-08-15 169.000 125,000 151.000000 162,714286 25 2896420 54 PET SUPPLIES 2017-08-15 0.000 0.000000 0.142857 26 2896421 PLAYERS AND ELECTRONICS 2017-08-15 2.000 3.000 6.000000 2.285714 27 2896422 54 POULTRY 2017-08-15 59.619 50.686 124,472000 65.829858 28 2896423 54 PREPARED FOODS 2017-08-15 94.000 65.000 60.000000 88.285714 29 2896424 54 PRODUCE 2017-08-15 915.371 914.959 578.231000 672.206000 30 2896425 54 SCHOOL AND OFFICE SUPPLIES 2017-08-15 0.000 0.000000 0.000000 31 2896426 SEAFOOD 2017-08-15 7,000 4.000000 2.714286 32

(1) Deciding the models

In examining the case of ABC Grocery, our objective is to predict future sales using past sales data for each store and product type. This task is typically referred to as **"Time Series Forecasting"**.

Random Forest Regressor Performance Metric Evaluation Performance Metric Evaluation

MAE

Training set: 30.03

Test set : 84.07

RMSE

Training set: 113.41

Test set : 301.35

Adjusted R2

Training set: 0.99

Test set : 0.94

XG Boost

MAE

Training set: 50.05

Test set : 87.91

RMSE

Training set: 143.88

Test set : 321.40

Adjusted R2

Training set: 0.98

Test set : 0.93

Feature Importance

Importance level	Feature (Random Forest)	Importance
1	Rolling_means7	0.290
2	Sales_lag21	0.288
3	Sales_lag365	0.211
4	Special_offer	0.115
5	encoded_product_type	0.037
6	store_nbr	0.034
7	day of week	0.023

Feature Selection

'Store_nbr' and 'day_of_week' are dropped since they show the least significance

Importance Feature (Random Forest)		
1	Sales_lag21	
2	Rolling_means7	
3	Sales_lag365	
4	Special_offer	
5	encoded_product_type	

Random Forest Regressor Hyperparameter Tuning

Before Tuning

Training set: 30.03

Test set : 84.07

Training set: 113.41

Test set : 301.35

Training set: 0.99

Test set : 0.94

After Tuning

MAE

Training set: 61.10

Test set : 83.77

RMSE

Training set: 194.02

Test set : 296.49

Adjusted R2

Training set: 0.98

Test set : 0.95

Prediction & Evaluation

Prediction and Evaluation

(1) Model Decided for Test dataset

(2) Apply the model to Predict the Test Dataset (31 July - 15 August 2023)

RFR Model

.predict

(df_test[[selected features]])

- (3) Aggregate and Visualize the prediction on general overview, each store, and each product
- (4) Evaluate the Predicted Sales vs the Actual Sales

Prediction - Actual vs Prediction Sales (Overview)

Actual vs Prediction Sales on Test dataset

Actual vs Prediction Sales on Test dataset

— Actual Sales

Predicted Sales

Prediction - Actual vs Prediction Sales (Stores)

Example of stores with high accuracy

Example of stores with moderate accuracy

Actual Sale

Predicted Sales

Prediction - Actual vs Prediction Sales (Products)

Example of products with high accuracy

—— Actual Sale

Example of product with low accuracy

Results & Analysis

Result & Analysis

Key Points

Moderately good projection (MAE ~84) ≈ 16% deviation

The higher of the sales, The better accuracy

Special offer has a positive impact on boosting sales

Differentiate the inventory management based on the projection accuracy rate

Conclusion & Contingency

Conclusion & Contingency

Conclusion

- As positive correlation exists, in business, the company can give additional special offers in stores to boost sales next time around.
- Demand uncertainty in particular items are identified based on the error values of the model.

Contingency

- ☐ Distinct models for products and store due to high variations
- ☐ Further study to see the best time lagging of projection
- ☐ Store-specific modeling
- ☐ Comprehensive analysis for product categories

Thank you

