CIS102 Tutorial 3 Answers

Goldsmiths College, University of London

November 14 2006

	p	q	$\neg p \land q$	q-p	$p \lor \neg q$	$p \oplus q$
	0	0	0	0	1	0
1.	0	1	1	1	0	1
	1	0	0	0	1	1
	1	1	0	0	1	0

2. p:n has exactly two digits; q:n is divisible by 3

n	р	q	$\neg p$	$\neg q$	$\neg p \land q$	q-p	$p \vee \neg q$	$p \oplus q$
1	0	0	1	1	0	0	1	0
3	0	1	1	0	1	1	0	1
17	1	0	0	1	0	0	1	1
30	1	1	0	0	0	0	1	0
48	1	1	0	0	0	0	1	0
99	1	1	0	0	0	0	1	0

 $\neg p = \{1, 3\}$

 $\neg p \land q = \{3\}$

 $p - q = \{3\}$

 $p \lor \neg q = \{1, 17, 30, 48, 99\}$

3. p: it is a vowel; q: it occurs in the word BINARY

n	р	q	$\neg p$	$\neg q$	$p \lor q$	$p \land \neg q$	$p - \neg q$
a	1	1	0	0	1	0	1
b	0	1	1		1	0	0
	0	0	1	0 1	0	0	0
c d	0	0	1	1	0	0	0
	1	0	0		1	1	0
e f	0	0	1	1 1 1	0	0	0
	0	0	1	1	0	0	0
g h	0	0	1	1	0	0	0
i	1	1	0	0	1	0	1
	0	0	1		0	0	0
j k	0	0	1	1 1	0	0	0
l	0	0	1	1	0	0	0
m	0	0	1	1	0	0	0
n	0	1	1	0	1	0	0
0	1	0	0	1	1	1	0
p	0	0	1	1	0	0	0
	0	0	1	1	0	0	0
q r	0	1	1		1	0	0
s	0	0	1	1	0	0	0
t	0	0	1	0 1 1	0	0	0
u	1	0	0		1	1	0
v	0	0	1	1 1 1	0	0	0
w	0	0	1	1	0	0	0
X	0	0	1	1	0	0	0
у	0	1	1	0	1	0	0
Z	0	0	1	1	0	0	0

it is not a vowel occurring in the word BINARY = $\neg(p \land q)$

$$p \lor q = \{a, b, e, i, n, o, r, u, y\}$$

it is either a consonant which occurs in the word BINARY or a vowel

$$p \land \neg q = \{e, o, u\}$$

it is a vowel which does not occur in the word BINARY

$$p - \neg q = \{a, i\}$$

it is a vowel which occurs in the word BINARY

4. p: n < 20; q: n is odd; r: n is divisible by 5

 $p \lor (q \land r)$ means it is a positive integer less than 20 or that it ends in a 5

$$p \lor (q \land r) = \{1, 2, 3, ..., 18, 19, 25, 35, 45, ...\}$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$(p \lor q) \land (p \lor r) = \{1, 2, 3, ..., 18, 19, 25, 35, 45, ...\}$$

5. p: n < 20; q: n is odd

(a) i. n < 20 if n is $odd \equiv q \rightarrow p$

ii.
$$n < 20$$
 only if n is $odd \equiv p \rightarrow q$

	n	р	q	$p \rightarrow q$	$q \rightarrow p$	$p \longleftrightarrow q$
	36	0	0	1	1	1
(b)	29	0	1	1	0	0
	10	1	0	0	1	0
	17	1	1	1	1	1

6. If n < 7 then n does not have three 1s in its binary representation.

7.

	p	q	$\neg q$	$p \wedge \neg q$	$\neg p$	$\neg p \lor (p \land \neg q)$
	0	0	1	0	1	1
(a)	0	1	0	0	1	1
	1	0	1	1	0	1
	1	1	0	0	0	0

(b) $\neg p \lor (p \land \neg q) \equiv \neg (p \land q) \equiv \neg p \lor \neg q$