张量的梯度与积分推导
Wednesday, May 17, 2023 8:34 AM
四. 张星的偏邻
(一)、
小桥量场.
$y(x_i) \forall = \frac{\partial}{\partial x_i} e_i$
左梯度; り ▽ = サ(xi) = → ei = → 対極場;
左膝質,
$\overrightarrow{\nabla} \mathcal{G} = \left(\frac{\partial}{\partial x_i} \overrightarrow{e_i}\right) \mathcal{G}(x_i) = \overrightarrow{e_i} \frac{\partial \mathcal{G}}{\partial x_i}$
②. 对策的. V=Viei
②, 对代例,
拉腹; VOV = Vi ei O = Dxi (Vi ei) ei
$= \frac{\partial V_{i}}{\partial x_{i}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}} + \sqrt{\frac{\partial e_{i}}{\partial x_{j}}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}}$
$= \frac{\partial V_{i}}{\partial x_{j}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}} + V \xrightarrow{\partial \overrightarrow{e_{i}}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}}$ $= \frac{\partial V_{i}}{\partial x_{j}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}} + V \xrightarrow{\partial \overrightarrow{e_{i}}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}}$ $= \frac{\partial V_{i}}{\partial x_{j}} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}} = V_{ij} \overrightarrow{e_{i}} \otimes \overrightarrow{e_{j}}$
<u>.</u>
左横宽 V ⊗V = 3x; Ei ⊗Vj 号 = 3V; Ei ⊗ Bi
= 2Vi ej © ei = Vi, j ej © ei
因而有, $V \otimes \overline{V} = (V \otimes \overline{V})^T$ (3)、二所珠量丁=Tij ei \otimes eg
(3)、二所珠量丁=Tij ēi⊗eg

= 3 Sig Tijk Ck = 2 Tiker = Tikij Ex = 2 ji Pi (Tjrij Ci) 港下的= Tjri,则相同, 3 旋度:(Cur/) ①'对于矢量物 V = Vi ei VXV = Vi ei X 2x ej = Vi 2xi Eijk Ck = 3 Vi = 3 Vi, Sijk Ek = Vi, j Eijk Ek ② 左旋度 $\overrightarrow{\nabla} \times \overrightarrow{\nabla} = (\frac{\partial}{\partial x_i} \overrightarrow{C_i}) \times \overrightarrow{V_j} \overrightarrow{C_j} = \frac{\partial \cancel{V_j}}{\partial x_i} \overrightarrow{C_{ijk}} \overrightarrow{C_k}$ = 2 Vi Ejik er = Vij Ejik er] 右びxラニラxブ (2) 二阶张量: T=Tig G & Ex 右旋度 TXV= Tirerog X Sar er = a Tij Ei & Ejkm Em = OTIJ EJRM Ei OEM JXT = D Di X Tjr Gi & Cr

