Test 1 for CS2334 (02)

October 11, 2004

1.(4 pts) A linear system of equations is given below.

$$3x + y - z = 0$$

$$-6x + 2z = -4$$

$$3x - 3y = 9$$

- (a) Express this system as $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Show the augmented matrix for this system.
- (b) Use Gaussian elimination and back substitution to solve this system of equations.
- (c) Find A = LU, where L is unit lower- Δ and U is upper- Δ .
- (d) Find det(A).
- **2.(3 pts)** Given

$$A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & -2 & 3 \\ 2 & 3 & 2 \end{bmatrix}$$

- (a) Find $det(M_{21})$, $det(M_{22})$, and $det(M_{23})$.
- (b) Find the cofactors A_{21} , A_{22} , and A_{23} .
- (c) Compute det(A) from the results of (b) and find A^{-1} .
- **3.(3 pts)** Mark \bigcirc if the statement is *true*, otherwise mark \times if the statement is *false*.
 - (a) If $A, B \in \mathbb{R}^{n \times n}$ are nonsingular, then $(A + B)^{-1} = B^{-1} + A^{-1}$.
 - (b) The product of unit lower- Δ matrices is also unit lower- Δ .
 - (c) $det(\alpha A) = \alpha det(A)$, where α is a constant.
 - (d) $J \in \mathbb{R}^{n \times n}$, where $J = [a_{ij}]$ with $a_{i,j} = 1$ if j i = 1 else $a_{ij} = 0$, then J^n is a zero matrix.

Keys for Test 1 of CS2334 (02)

October 11, 2004

1(a)

$$A = \begin{bmatrix} 3 & 1 & -1 \\ -6 & 0 & 2 \\ 3 & -3 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -4 \\ 9 \end{bmatrix}$$

The augmented matrix is $[A \mid \mathbf{b}]$

1(b)
$$\mathbf{b} = [1, -2, 1]^t$$

1(c)

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2(a)
$$det(M_{21}) = -8$$
, $det(M_{22}) = -2$, and $det(M_{23}) = 5$

2(b)
$$A_{21} = 8, A_{22} = -2, \text{ and } A_{23} = -5$$

2(c)
$$det(A) = -3, A^{-1} = \frac{1}{3}[13, -8, -14; -4, 2, 5; -7, 5, 8].$$

3.
$$(a) \times, (b) \bigcirc, (c) \times, (d) \bigcirc.$$

Test 2 for CS2334

November 8, 2004

(5 pts) 1. Mark \bigcirc if the statement is *true*, and mark \times otherwise.

- ()(a) Let $R^+ = \{x | x > 0\}$. For $\forall x, y \in R^+$ and $\alpha \in R^+$, the addition \oplus and scalar multiplication \odot are defined as $x \oplus y = xy$ and $\alpha \odot x = x^{\alpha}$, respectively. Under these definitions, R^+ is a vector space over R^+ .
- ()(b) For $\forall \mathbf{x} = [x_1, x_2]^t$, $\mathbf{y} = [y_1, y_2]^t$ in R^2 and $\alpha \in R$, the vector addition \oplus and scalar multiplication \odot are defined as $\mathbf{x} \oplus \mathbf{y} = [x_1 + y_1 + 1, x_2 + y_2 + 1]^t$ and $\alpha \odot \mathbf{x} = [\alpha x_1, \alpha x_2]^t$, respectively. Under these definitions, R^2 is a vector space over R.
- ()(c) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ span \mathbb{R}^n , then they are linearly independent.
- ()(d) If $V = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for V.
- ()(e) Let $A \in \mathbb{R}^{m \times n}$, then $R(A) \subset \mathbb{R}^m$ and $Null(A) \subset \mathbb{R}^n$.
- ()(f) Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transform defined by $L(\mathbf{x}) = A\mathbf{x}$, where $A \in \mathbb{R}^{n \times n}$, then $Ker(L) = \mathbf{0}$ iff A is nonsingular.
- ()(g) An affine transform is a linear transform.

(15 pts) 2. Answer each of the following questions.

- (A) Express $\mathbf{x} = [6, 3, 1]$ as a linear combination of $\mathbf{u} = [1, 1, 1]$, $\mathbf{v} = [1, 1, 0]$, $\mathbf{w} = [1, 0, 0]$.
- **(B)** Prove or disaprove that $\{[3, 1, -4]^t, [2, 5, 6]^t, [1, 4, 8]^t\}$ is a basis for \mathbb{R}^3 .
- (C) The rank of A is _____, where

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{array} \right]$$

- **(D)** $dim(Null(A)) = \underline{\hspace{1cm}}$, where A is as defined in **(C)**.
- (E) Find a basis for R(A), where A is as defined in (C).
- (F) Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^3$ and let $L: R^3 \to R^2$ be a linear transformation such that $L(\mathbf{x}) = [1, 0]^t$, $L(\mathbf{y}) = [0, 1]^t$, $L(\mathbf{z}) = [1, -1]^t$. Then $L(2\mathbf{x} 3\mathbf{y} + 4\mathbf{z}) = \underline{\hspace{1cm}}$
- (G) Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $L([1,0,0]^t) = [1,1]^t$, $L([0,1,0]^t) = [1,-1]^t$, $L([0,0,1]^t) = [1,0]^t$. Then $Ker(L) = \underline{\hspace{1cm}}$
- (H) Let $H \in R^{2\times 2}$ be a Householder matrix defined by $H = I 2\mathbf{u}\mathbf{u}^t$, where $\mathbf{u} = [1/2, \sqrt{3}/2]^t$. Then $H^tH = \underline{\hspace{1cm}}$

Solutions for Test 2 of CS2334

November 8, 2004

(5 pts) 1. Mark \bigcirc if the statement is *true*, and mark \times otherwise.

- (\bigcirc)(a) Let $V = R^+ = \{x | x > 0\}$. For $\forall x, y \in V$ and $\alpha \in R^+$, the addition \oplus and scalar multiplication \odot are defined as $x \oplus y = xy$ and $\alpha \odot x = x^{\alpha}$, respectively. Under these definitions, V is a vector space over R^+ .
- (×)(b) For $\forall \mathbf{x} = [x_1, x_2]^t$, $\mathbf{y} = [y_1, y_2]^t$ in R^2 and $\alpha \in R$, the vector addition \oplus and scalar multiplication \odot are defined as $\mathbf{x} \oplus \mathbf{y} = [x_1 + y_1 + 1, x_2 + y_2 + 1]^t$ and $\alpha \odot \mathbf{x} = [\alpha x_1, \alpha x_2]^t$, respectively. Under these definitions, R^2 is a vector space over R.
- $(\bigcirc(\mathbf{c}) \text{ If } \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n \text{ span } \mathbb{R}^n, \text{ then they are linearly independent.}$
- (×)(d) If $V = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for V.
- (\bigcirc)(e) Let $A \in \mathbb{R}^{m \times n}$, then $R(A) \subset \mathbb{R}^m$ and $Null(A) \subset \mathbb{R}^n$.
- (())(f) Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transform defined by $L(\mathbf{x}) = A\mathbf{x}$, where $A \in \mathbb{R}^{n \times n}$, then $Ker(L) = \mathbf{0}$ iff A is nonsingular.
- $(\times)(g)$ An affine transform is a linear transform.

(15 pts) 2. Answer each of the following questions.

- (A) Express $\mathbf{x} = [6, 3, 1]$ as a linear combination of $\mathbf{u} = [1, 1, 1]$, $\mathbf{v} = [1, 1, 0]$, $\mathbf{w} = [1, 0, 0]$. [Answer] $\mathbf{x} = \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}$
- **(B)** Prove or disaprove that $\{[3, 1, -4]^t, [2, 5, 6]^t, [1, 4, 8]^t\}$ is a basis for \mathbb{R}^3 . [Answer] It is a basis since the corresponding determinant is nonzero.
- (C) The rank of A is 2, where

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{array} \right]$$

- (D) $dim(Null(A)) = \underline{2}$, where A is as defined in (C).
- **(E)** Find a basis for R(A), where A is as defined in **(C)**. [Answer] $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\-3\\1 \end{bmatrix} \right\}$
- (F) Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^3$ and let $L: R^3 \to R^2$ be a linear transformation such that $L(\mathbf{x}) = [1, 0]^t$, $L(\mathbf{y}) = [0, 1]^t$, $L(\mathbf{z}) = [1, -1]^t$. Then $L(2\mathbf{x} 3\mathbf{y} + 4\mathbf{z}) = \underline{[6, -7]^t}$
- (G) Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $L([1,0,0]^t) = [1,1]^t$, $L([0,1,0]^t) = [1,-1]^t$, $L([0,0,1]^t) = [1,0]^t$. Then $Ker(L) = \underline{\{\alpha[1,1,-2]^t\}}$
- (H) Let $H \in \mathbb{R}^{2\times 2}$ be a Householder matrix defined by $H = I 2\mathbf{u}\mathbf{u}^t$, where $\mathbf{u} = [1/2, \sqrt{3}/2]^t$. Then $H^tH = \underline{I_2}$

Test 3 for CS2334

December 6, 2004

(10 pts) 1. Mark \bigcirc if the statement is true, and mark \times otherwise.

- (a) A set of nonzero orthogonal vectors are linearly independent.
- (b) A set of nonzero orthonormal vectors in \mathbb{R}^n must be a basis.
- (c) Every square matrix can be factored as QR, where Q is orthogonal and R is upper- Δ .
- (d) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 1$, then \mathbf{x} and \mathbf{y} are linearly independent.
- (e) If U, V, W are vector subspaces of \mathbb{R}^n such that $U \perp V$ and $V \perp W, U \perp W$.
- (f) If $A \in \mathbb{R}^{m \times n}$, then AA^t and A^tA have the same rank.
- (g) Let $Q_1, Q_2, \dots, Q_m \in \mathbb{R}^{n \times n}$ be orthogonal, then $\prod_{i=1}^m Q_i$ is also orthogonal.
- (h) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be linearly independent vectors in R^3 , then any Gram-Schmidt orthogonalization process constructs the unique orthonormal basis.
- (i) A Householder matrix is symmetric, orthogonal, and has determinant 1.
- (j) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Then \mathbf{x} and \mathbf{y} are orthonormal.
- (k) In \mathbb{R}^n , if **p** is the projection of **b** along the line **a**, then $\mathbf{a}^t(\mathbf{b} \mathbf{p}) = 0$.

(10 pts) 2. Choose the best solution in the following questions.

- (a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be orthonormal vectors, then $\|2\mathbf{u} 4\mathbf{v} + 4\mathbf{w}\|_2 =$
 - (1) 4, (2) 5, (3) 6, (4) 7, (5) none.
- (b) Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and \mathbf{y} is
 - $(1) \frac{\pi}{6}, (2) \frac{\pi}{4}, (3) \frac{\pi}{3}, (4) \frac{\pi}{2}, (5)$ none.
- (c) Let $V = \{[b, 0, a]^t | a, b \in R\} \subset R^3$, then $dim(V^{\perp}) = ?$
 - (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
- (d) Let $\mathbf{u} = [1, 2, 3, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t$ is
 - (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
- (e) Let $A \in \mathbb{R}^{m \times n}$ have rank r, then dim(Null(A)) + dim(R(A)) =?
 - (1) m-r, (2) n-r, (3) m, (4) n, (5) none.
- (f) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, the least squares solution of $A\mathbf{x} = \mathbf{b}$ is
 - $(1) [-1, -1]^t$, $(2) [0, 1]^t$, $(3) [1, 0]^t$, $(4) [1, 1]^t$, (5) none.
- (g) Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix and define (i) orthogonal, (ii) symmetric, (iii) $||H\mathbf{x}||_2 = 1$ for $\mathbf{x} \in \mathbb{R}^n$. What statements of (i), (ii), (iii) are true?
 - (1) (i),(ii) only, (2) (i),(iii) only, (3) (i),(ii),(iii), (4) (ii),(iii) only, (5) (iii) only.
- (h) Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then det(Q) = ?
 - (1) 1, (2) -1, (3) n, (4) \sqrt{n} , (5) none.
- (i) Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{b} = [2, 4, 6]^t$, then the projection of \mathbf{b} onto the line \mathbf{a} is
 - (1) **a**, (2) 2**a**, (3) 4**a**, (4) 6**a**, (5) none.
- (j) Let $f, g \in C[-1, 1]$, and define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then $\langle \sin 2\pi x, \sin 2\pi x \rangle = ?$
 - (1) 0, (2) 1, (3) 2π , (4) 4π , (5) none.

(3 pts) 3. Find the point on the line y = 2x + 1 that is closest to $[5, 2]^t$.

(3 pts) 4. Let $\mathbf{a}_1 = [1, 1, 0]^t$, $\mathbf{a}_2 = [2, 3, 0]^t$, and $\mathbf{b} = [4, 5, 6]^t$. Find the projection vector of \mathbf{b} onto the plane that is spanned by the vectors $\mathbf{a}_1 = [1, 1, 0]^t$ and $\mathbf{a}_2 = [2, 3, 0]^t$.

(4 pts) 5. (a) Find the best least squares fitting line to the data $[-1,0]^t$, $[0,1]^t$, $[1,3]^t$, $[2,9]^t$, (b) plot your linear function from (a) along with the data on a coordinate system.

Solutions for Test 3

December 06, 2004

- (10 pts) 1. Mark \bigcirc if the statement is true, and mark \times otherwise.
- (()) (a) A set of nonzero orthogonal vectors are linearly independent.
- (\times) (b) A set of nonzero orthonormal vectors in \mathbb{R}^n must be a basis.
- (\bigcirc) (c) Every square matrix can be factored as QR, where Q is orthogonal and R is upper- Δ .
- (x) (d) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 1$, then \mathbf{x} and \mathbf{y} are linearly independent.
- (×) (e) If U, V, W are vector subspaces of \mathbb{R}^n such that $U \perp V$ and $V \perp W, U \perp W$.
- (O) (f) If $A \in \mathbb{R}^{m \times n}$, then AA^t and A^tA have the same rank.
- (O) (g) Let $Q_1, Q_2, \dots, Q_m \in \mathbb{R}^{n \times n}$ be orthogonal, then $\prod_{i=1}^m Q_i$ is also orthogonal.
- (×) (h) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be linearly independent vectors in \mathbb{R}^3 , then any Gram-Schmidt orthogonalization process constructs the unique orthonormal basis.
- (\times) (i) A Householder matrix is symmetric, orthogonal, and has determinant 1.
- (x) (j) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Then \mathbf{x} and \mathbf{y} are orthonormal.
- (()) (k) In \mathbb{R}^n , if **p** is the projection vector of **b** along the line **a**, then $\mathbf{a}^t(\mathbf{b} \mathbf{p}) = 0$.
- (3 pts) 3. Find the point on the line y = 2x + 1 that is closest to $[5,2]^t$. Ans: $[1.4,3.8]^t$
- (3 pts) 4. Let $\mathbf{a}_1 = [1, 1, 0]^t$, $\mathbf{a}_2 = [2, 3, 0]^t$, and $\mathbf{b} = [4, 5, 6]^t$. Find the projection vector of \mathbf{b} onto the plane that is spanned by the vectors $\mathbf{a}_1 = [1, 1, 0]^t$ and $\mathbf{a}_2 = [2, 3, 0]^t$. Ans: $[4, 5, 0]^t$
- (4 pts) 5. (a) Find the best least squares fitting line to the data $[-1,0]^t$, $[0,1]^t$, $[1,3]^t$, $[2,9]^t$, (b) plot your linear function from (a) along with the data on a coordinate system. bfAns: (a) $\underline{y} = 2.9x + 1.8$.

(10 pts) 2. Choose the best solution in the following questions.

- [3 (a)] Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be orthonormal vectors, then $\|2\mathbf{u} 4\mathbf{v} + 4\mathbf{w}\|_2 =$
 - (1) 4, (2) 5, (3) 6, (4) 7, (5) none.
- [4 (b)] Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and \mathbf{y} is
 - $(1) \frac{\pi}{6}, (2) \frac{\pi}{4}, (3) \frac{\pi}{3}, (4) \frac{\pi}{2}, (5)$ none.
- [1 (c)] Let $V = \{[b, 0, a]^t | a, b \in R\} \subset R^3$, then $dim(V^{\perp}) = ?$
 - (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
- [1 (d)] Let $\mathbf{u} = [1, 2, 3, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t$ is
 - (1) 1, (2) 2, (3) 3, (4) 4, (5) none.
- [4 (e)] Let $A \in \mathbb{R}^{m \times n}$ have rank r, then dim(Null(A)) + dim(R(A)) =?
 - (1) m-r, (2) n-r, (3) m, (4) n, (5) none.
- $\begin{bmatrix} \mathbf{4} & (\mathbf{f}) \end{bmatrix} \text{ Let } A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \text{ the least squares solution of } A\mathbf{x} = \mathbf{b} \text{ is}$
 - $(1) [-1, -1]^t$, $(2) [0, 1]^t$, $(3) [1, 0]^t$, $(4) [1, 1]^t$, (5) none.
- [1 (g)] Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix and define (i) orthogonal, (ii) symmetric, (iii) $||H\mathbf{x}||_2 = 1$ for $\mathbf{x} \in \mathbb{R}^n$. What statements of (i), (ii), (iii) are true?
 - (1) (i),(ii) only, (2) (i),(iii) only, (3) (i),(ii),(iii), (4) (ii),(iii) only, (5) (iii) only.
- [5 (h)] Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then det(Q) = ?
 - (1) 1, (2) -1, (3) n, (4) \sqrt{n} , (5) none.
- [3 (i)] Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{b} = [2, 4, 6]^t$, then the projection of \mathbf{b} onto the line \mathbf{a} is
 - (1) **a**, (2) 2**a**, (3) 4**a**, (4) 6**a**, (5) none.
- [2 (j)] Let $f, g \in C[-1, 1]$, and define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then $\langle \sin 2\pi x, \sin 2\pi x \rangle = ?$
 - (1) 0, (2) 1, (3) 2π , (4) 4π , (5) none.

Test 4 for CS2334(02) 10:10-11:59 am, January 3, 2005

(15 pts) 1. Mark \bigcirc if the statement is true, and mark \times otherwise.

- (a) The eigenvalues of a real symmetric matrix must be real.
- (b) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, then there exists a unit lower- Δ matrix L and an upper- Δ matrix U such that A = LU.
- (c) Let $A \in \mathbb{R}^{n \times n}$. If $A^t = A$ and det(A) > 0, then A is positive definite.
- (d) Let $A \in \mathbb{R}^{n \times n}$ be positive definite. If λ is an eigenvalue of A with a corresponding eigenvector \mathbf{v} , then $\frac{1}{\lambda}$ must be the eigenvalue A^{-1} with a corresponding eigenvector \mathbf{v} .
- (e) Let $A \in \mathbb{R}^{n \times n}$. Then the sum of eigenvalues equals the trace of A.
- (f) A is singular iff $0 \in \lambda(A)$.
- (g) The determinant of a tridiagonal matrix is the product of its diagonal elements.
- (h) Every positive definite matrix has the same set of eigenvalues and singular values.
- (i) Every negative definite matrix must be singular.
- (j) A real diagonally dominant matrix must be positive definitive.
- (k) For a real matrix, the eigenvectors corresponding to distinct eigenvalues are orthogonal.
- (1) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ iff \mathbf{x} and \mathbf{y} are orthonormal.
- (m) Each Markov matrix M has $(||M||_1 = 1)$.
- (n) Every Householder matrix H has $||H||_2 = 1$ and |H| = 1.
- (o) In \mathbb{R}^n , if **p** is the projection of **b** along the line **a**, then $\mathbf{a}^t(\mathbf{b} \mathbf{p}) = 0$.

(15 pts) 2. Choose the best answer in the following questions.

- (a) Let $V = \{[a-b, b-c, 0]^t | a, b, c \in R\} \subset R^3$, then $dim(V^{\perp}) = ?$ (1) 0, (2) 1, (3) 2, (4) 3, (5) none.
- (b) Define $E(a) = I a\mathbf{e}_3\mathbf{e}_2^t \in R^{n \times n}$, if $a \neq 0$, then the inverse matrix of E(a) is (1) $E(a^{-1})$, (2) $E(-a^{-1})$, (3) E(a), (4) E(-a), (5) none.
- (c) Let $A \in \mathbb{R}^{m \times n}$ have rank k and let CS(A) be the column space of A, then dim(Null(A)) + dim(CS(A)) = ?
 - (1) m, (2) n, (3) m k, (4) n k, (5) none.
- (d) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, the least squares solution of $A\mathbf{x} = \mathbf{b}$ is
 - $(1) \ [1,1]^t, \ (2) \ [-1,-1]^t, \ (3) \ [0,1]^t, \ (4) \ [1,0]^t, \ (5) \ \mathrm{none}.$
- (e) Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then det(Q) = ?
 - (1) 1, (2) 1 or -1, (3) -1, (4) n, (5) none.
- (f) Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $0, 2, 4, \dots, 2(n-1)$. Then trace(A) = ?
 - (1) n^2 , (2) n(n-1), (3) n(n+1), (4) n, (5) none.
- (g) Let $V = Span([1,1,1]^t) \subset \mathbb{R}^3$, then $dim(V^{\perp}) = ?$
 - (1) 0, (2) 1, (3) 2, (4) 3, (5) none.
- (h) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, then the condition for $A\mathbf{x} = \mathbf{b}$ must have a solution in \mathbb{R}^m is
 - (1) $m \ge n$, (2) m < n, (3) m = n, (4) $m \ne n$, (5) none.
- (i) Let $L \in \mathbb{R}^{n \times n}$ be a unit lower triangular matrix, what is det(L) + trace(L)?
 - (1) 1, (2) n, (3) n+1, (4) n^2 , (5) none.
- (j) Let $A \in \mathbb{R}^{m \times n}$ have $Null(A) = Span(\mathbf{e}_1)$ and m > n, what is the rank of A?
 - (1) n, (2) m, (3) n 1, (4) m 1, (5) none.
- (k) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be orthonormal vectors, then $||2\mathbf{u} 4\mathbf{v} + 4\mathbf{w}||_2 =$
 - (1) 4, (2) 5, (3) 6, (4) 7, (5) none.

(1) Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and \mathbf{y} is

$$(1) \frac{\pi}{6}$$
, $(2) \frac{\pi}{4}$, $(3) \frac{\pi}{3}$, $(4) \frac{\pi}{2}$, (5) none.

(m) Let $\mathbf{u} = [1, 2, 3, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t$ is

$$(1)$$
 1, (2) 2, (3) 3, (4) 4, (5) none.

(n) Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then $||Q||_2 = ?$

(1) 0, (2) 1, (3)
$$-1$$
, (4) \sqrt{n} , (5) none.

(o) Let $A \in \mathbb{R}^{n \times n}$ have diagonal elements $1, 3, 5, \dots, (2n-1)$. The sum of eigenvalues of A is

(1)
$$n$$
, (2) n^2 , (3) $n(n-1)$, (4) $n(n+1)$, (5) none.

(5 pts) 3. Let
$$A = \begin{bmatrix} 2 & 1 \\ & & \\ 1 & 2 \end{bmatrix}$$

- (a) Find det(A) and A^{-1} .
- (b) Find the eigenvalues and corresponding eigenvectors for A.
- (c) Find an orthogonal matrix U such that U^tAU is diagonal.
- (d) Give a singular value decomposition for A.

(5 pts) 4. Let A be a real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ and corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$. For each $\mathbf{x} \in \mathbb{R}^n$, the Rayleigh quotient $\rho(\mathbf{x})$ is defined by

$$\rho(\mathbf{x}) = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$$

- (a) For $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{u}_i$ with $\sum_{i=1}^n c_i^2 = 1$, prove that $\rho(\mathbf{x}) = \sum_{i=1}^n \lambda_i c_i^2$
- **(b)** Show that $\lambda_n \leq \rho(\mathbf{x}) \leq \lambda_1$
- (c) Show that for $\mathbf{x} \neq \mathbf{0}$, $Min\{\rho(\mathbf{x})\} = \lambda_n$ and $Max\{\rho(\mathbf{x})\} = \lambda_1$

(10 pts) 5. Let
$$B = \begin{bmatrix} -3 & 2 & 0 & 0 \\ 2 & -3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

- (a) Find the eigenvalues and corresponding eigenvectors of B.
- (b) Write the spectrum decomposition of B.
- (c) Find the singular values of B.
- (d) Find e^B .
- (e) Find $||B||_2$ and $||B||_1$.

Solutions for Test 4 of CS2334(02)

10:10-11:59 am, January 3, 2005

(15 pts) 1. Mark \bigcirc if the statement is true, and mark \times otherwise.

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
О	X	X	О	О	О	X	О
(i)	(i)	(k)	(1)	(m)	(n)	(o)	
(-)	(3)	()	(-)	()	()	(0)	

(15 pts) 2. Choose the best answer in the following questions.

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
2	4	2	4	2	2	3	5
(i)	(j)	(k)	(l)	(m)	(n)	(o)	
3	3	3	4	1	2	2	

(5 pts) 3. Let
$$A = \begin{bmatrix} 2 & 1 \\ & & \\ 1 & 2 \end{bmatrix}$$

(a)
$$det(A) = 3$$
 and $A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ & & \\ -1 & 2 \end{bmatrix}$

(b)
$$\lambda(A) = \{3, 1\}$$
 and $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ & & \\ 1 & -1 \end{bmatrix}$

(c) As was given in (b).

(d) $A = UDU^t$, where D = diag(3, 1).

(5 pts) *4. Skip.

(10 pts) 5.

(a)
$$\lambda(A) = \{4, 2, -1, -5\}.$$

(c)
$$\sigma(A) = \{5, 4, 2, 1\}.$$

(e)
$$||B||_2 = 5$$
, $||B||_1 = 5$.