

شبكههاى عصبى كانولوشني

Convolutional Neural Networks

نتایج ILSVRC

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015) شبکه ResNet برنده مسابقه ۱LSVRC'15 با خطای ۳.۵۷٪ شد

• با ۱۵۲ لایه، انقلابی در عمق شبکههای کانولوشنی به وجود آورد

Iterations

- اگر تعداد لایههای کانولوشنی ساده را بسیار زیاد کنیم چه اتفاقی میافتد؟
- چرا شبکه عمیقتر هم در آموزش و هم در آزمون عملکرد ضعیفتری دارد؟
 - البته مشكل از overfitting نيست!
 - فرضیه: مشکل در مسئله بهینهسازی است
 - بهینهسازی مدلهای عمیقتر دشوارتر است
- عملکرد مدلهای عمیقتر باید حداقل به خوبی مدلهای با عمق کمتر باشد
 - می توان وزنهای مدل کم عمق را به لایه های نخست شبکه عمیق کپی کرد و لایه های اضافی را به گونه ای تنظیم کرد که نگاشت همانی را انجام دهند
- ایده ResNet آن است که لایههای شبکه بجای آموختن نگاشت مطلوب، باقیمانده آن را یاد بگیرند

ليهها بايد H(x) F(x) = H(x) - x بياموزند

34-layer residual 7x7 conv, 64, /2 7x7 conv, 64, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv. 64 3x3 conv, 64 3x3 conv, 64

ResNet

• از تعداد زیادی بلوک باقیمانده تشکیل شده است

• هر بلوک باقیمانده دارای ۲ لایه کانولوشنی ۳×۳ است

• به طور دورهای، تعداد فیلترها ۲ برابر شده و رزولوشن مکانی نصف میشود

• در ابتدا دارای یک لایه کانولوشنی است

• پس از آخرین بلوک باقیمانده، ابعاد دادهها با استفاده از Average Pooling کاهش می اید و یک لایه FC برای دسته بندی استفاده می شود

• برای مسئله ImageNet عمقهای مختلف شبکه شامل ۳۴، ۵۰، ۱۰۱ و ۱۵۲ استفاده شدهاند

• در شبکههای عمیقتر، از لایه کانولوشنی ۱×۱ برای بهبود بهرهوری استفاده شده است

layer name	output size	18-layer	34-layer	34-layer 50-layer 101-layer		152-layer				
conv1	112×112	7×7, 64, stride 2								
	56×56	3×3 max pool, stride 2								
conv2_x		$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $				
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $				
	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9 7.6×10^9		11.3×10 ⁹				

Inception V4

• ورودی همانی به ماژول Inception افزوده شده است

مقايسه

Available models

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMohile	23 MR	0 744	N 919	5 326 716	_

انتقال یادگیری

• چطور می شود از دانشی که توسط شبکههای عمیق برای حل مسائل پیچیدهای مانند ImageNet بدست آمده است برای حل یک مسئله دیگر استفاده کرد؟

TRADITIONAL MACHINE LEARNING

TRANSFER LEARNING

- یک رویکرد رایج و بسیار مؤثر برای استفاده از یادگیری عمیق در مجموعه دادههای تصویری کوچک، استفاده از یک شبکه پیشآموخته است
- یک شبکه پیش آموخته، شبکهای است که وزنهای آن قبلاً بر روی یک مجموعه داده بزرگ آموزش دیده و ذخیره شده است

- یک رویکرد رایج و بسیار مؤثر برای استفاده از یادگیری عمیق در مجموعه دادههای تصویری کوچک، استفاده از یک شبکه پیش آموخته است
- یک شبکه پیش آموخته، شبکهای است که وزنهای آن قبلاً بر روی یک مجموعه داده بزرگ آموزش دیده و ذخیره شده است
- اگر مجموعه داده اولیه به اندازه کافی بزرگ و عمومی باشد، ویژگیهای سلسلهمراتبی آموخته شده توسط شبکه میتواند به طور موثر به عنوان یک مدل عمومی از دنیای بصری عمل کند
 - ویژگیهای آن میتواند برای بسیاری از مسائل بینایی کامپیوتری مختلف مفید باشد
- این قابلیت جابجایی ویژگیهای آموختهشده در مسائل مختلف، مزیت کلیدی یادگیری عمیق در مقایسه با بسیاری از رویکردهای قدیمی تر است

- یک شبکه کانولوشنی بزرگ را در نظر بگیرید که بر روی مجموعه داده ImageNet آموزش دیده است
 - ۱٫۴ میلیون تصویر برچسب خورده از ۱٬۰۰۰ کلاس مختلف (شامل چندین حیوان)
 - انتظار داریم در مسئله دستهبندی سگ و گربه عملکرد بسیار خوبی داشته باشد
 - در ادامه از معماری VGG16 استفاده می کنیم

- دو روش رایج برای استفاده از یک شبکه پیش آموخته وجود دارد:
 - استخراج ویژگی (feature extraction)
 - تنظیم دقیق (fine tuning)

• استفاده از بازنماییهای آموخته شده توسط شبکه قبلی برای استخراج ویژگی از نمونههای جدید - از این ویژگیها برای آموزش یک دستهبند جدید استفاده میشود

- استفاده از بازنماییهای آموخته شده توسط شبکه قبلی برای استخراج ویژگی از نمونههای جدید
 - از این ویژگیها برای آموزش یک دستهبند جدید استفاده میشود

• نقشههای ویژگی یک شبکه کانولوشنی برابر با نقشههای حضور مفاهیم عمومی روی یک تصویر هستند

• بازنماییهایی که توسط دستهبند کاملا متصل آموخته میشوند، مختص مجموعه کلاسهایی است که مدل بر روی آنها آموزش داده شده است

- سطح عمومی بودن (و بنابراین قابلیت استفاده مجدد) بازنماییها به عمق لایه در مدل بستگی دارد
- لایههای ابتدایی ویژگیهای محلّی و بسیار عمومی (مانند لبههای بصری، رنگها و بافتها) را استخراج می کنند
 - به تدریج ویژگیها انتزاعی تر و خاص تر می شوند (مانند "گوش گربه" یا "چشم سگ")
- اگر مجموعه داده جدید به طور اساسی متفاوت باشد، بهتر است فقط از چند لایه اول استفاده شود

