AE 434 – Spacecraft Control

Chapter 1: Mathematical modeling

1.1 Linearization and Laplace transforms

(Dorf & Bishop: Ch.2.3 - 2.4)

Spring 2023

Course overview

Modeling a physical system

- Linearization of non-linear models
- ODEs and their solutions with Laplace transforms
- Transfer functions
- Block diagrams
- State-space models

Analysis

- Time response
- Steady-state error and PID control
- Stability: Routh-Hurwitz criterion

Design control laws

- Root LocusFrequency responseLead/Lag compensators
- Pole placement
- Introduction to Optimal control

Linear Approximation

- Nature tends to behave nonlinearly
- A great majority of physical systems are linear within some range of the variables
 - > Behavior can often be **modeled as linear** within certain domains
- Linear systems satisfy **principle of superposition**
 - For a linear system, it is necessary that the excitation x1(t) + x2(t) result in a response y1(t) + y2(t)
- The magnitude scale factor must be preserved in a linear system
 - This is the property of **homogeneity**

Linearization via Taylor Series

- We will use the **Taylor Series** expansion of functions
- Consider nonlinear function f(x) and suppose that $f(\bar{x}) = 0$
- \bar{x} is an equilibrium point of $\dot{x} = f(x)$
- The Taylor Series expansion around equilibrium point becomes:

$$f(x) = f(\bar{x}) + \frac{df}{dx}\Big|_{x=\bar{x}} (x - \bar{x}) + \frac{1}{2} \left. \frac{d^2 f}{dx^2} \right|_{x=\bar{x}} (x - \bar{x})^2 + \frac{1}{6} \left. \frac{d^3 f}{dx^3} \right|_{x=\bar{x}} (x - \bar{x})^3 + \cdots$$

$$f(x) = f(\bar{x}) + \underbrace{\frac{df}{dx}\Big|_{x=\bar{x}}}_{x} (x - \bar{x}) + \text{ higher order terms.}$$

$$\delta \dot{x} = a\delta x$$

• Note that this linear model is valid **only** near the equilibrium point (how "near" depends on how nonlinear the function is).

Linearization via Taylor Series

$$T(t) = MgL\theta(t)$$

- This approximation is reasonably accurate for $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$
- The response of the linear model for the swing through $\pm 30^{\circ}$ is within 5% of the actual nonlinear pendulum response.

Laplace transform

- To understand and control complex systems, one must obtain quantitative mathematical models
- Systems under consideration are dynamic in nature, the descriptive equations are usually **differential equations**.
- DEs are inconvenient to work with from a controls perspective
- If these equations can be **linearized**, then the **Laplace transform** can be used to simplify the method of solution

Laplace transform definition

- In order to solve an ordinary differential equation (ODE), transforming it into an algebraic equation (AE) might be required.
- This is done by using the Laplace transform (\mathcal{L}) :

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt = \mathcal{L}\{f(t)\} \quad \text{with } s = \sigma + j\omega \text{ (complex variable)}$$

F(s) is the Laplace transform of f(t)

- Using the Laplace transform, we can find the solution to a complicated ODE easily.
- The inverse Laplace (\mathcal{L}^{-1}) is then applied to convert the ODE solution from the s-domain to the time domain

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{+st} ds$$

Laplace transforms

How to use them to solve ODEs:

- 1. Obtain the linearized differential equations
- 2. Obtain the Laplace transformation of the ODE
- 3. Solve the resulting algebraic equation for the transform of the variable of interest (Partial fraction expansion)
- 4. Apply to inverse Laplace to obtain ODE solution in time domain

Main Laplace transforms (1)

• Unit step function : $f(t) = u_s(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty 1 \cdot e^{-st}dt = -\frac{1}{s}[e^{-st}]_0^\infty = \frac{1}{s}$$

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty t \cdot e^{-st}dt = -\frac{1}{s}[te^{-st}]_0^\infty + \frac{1}{s}\int_0^\infty e^{-st}dt = \frac{1}{s^2}$$

Main Laplace transforms (2)

• Unit impulse function :
$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$
 $F(s) = 1$

• Exponential function :
$$f(t) = \begin{cases} e^{-\alpha t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$
 $F(s) = \frac{1}{s + \alpha}$

$$F(s) = \frac{1}{s+\alpha}$$

$$f(t) = \sin(\omega t)$$

$$\longrightarrow$$

$$f(t) = \sin(\omega t)$$
 \longrightarrow $F(s) = \frac{\omega}{s^2 + \omega^2}$

$$f(t) = cos(\omega t)$$

$$\longrightarrow$$

$$f(t) = cos(\omega t)$$
 \longrightarrow $F(s) = \frac{s}{s^2 + \omega^2}$

LT table

From Dorf & Bishop

f(t)	F(s)
Step function, $u(t)$	<u>f(s)</u>
	S
e ^{-at}	$\frac{1}{s+a}$
$\sin \omega t$	·
Sili Wi	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t$	s
	$\frac{s}{s^2 + \omega^2}$
_f n	$\frac{n!}{s^{n+1}}$
1k £(4)	3
$f^{(k)}(t) = \frac{d^k f(t)}{dt^k}$	$s^{k} F(s) - s^{k-1} f(0^{-}) - s^{k-2} f'(0^{-})$ $f^{(k-1)}(0^{-})$
t t	
$\int_{0}^{t} f(t) dt$	$\frac{F(s)}{s} + \frac{1}{s} \int_{0}^{\infty} f(t) dt$
$-\infty$	s s s s s s s s s s
impulse function $\delta(t)$	1
$e^{-at} \sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos \omega t$,
e Cos wi	$\frac{s+a}{(s+a)^2+\omega^2}$
1	
$\frac{1}{\omega} \left[(\alpha - a)^2 + \omega^2 \right]^{1/2} e^{-at} \sin(\omega t + \phi),$	$\frac{s+\alpha}{(s+a)^2+\omega^2}$
. 1 ω	$(s+u)+\omega$
$\phi = \tan^{-1} \frac{\omega}{\alpha - a}$	
$\frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} \sin \omega_n \sqrt{1-\zeta^2} t, \ \zeta < 1$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
V - 3	4
$\frac{1}{a^2+\omega^2}+\frac{1}{\omega\sqrt{a^2+\omega^2}}e^{-at}\sin(\omega t-\phi),$	$\frac{1}{s[(s+a)^2+\omega^2]}$
	$S[(s+u)^{-}+\omega^{-}]$
$\phi = \tan^{-1} \frac{\omega}{-a}$	
$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi),$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
V - S	$\overline{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
$\phi = \cos^{-1}\zeta, \zeta < 1$	
$\frac{\alpha}{a^2 + \omega^2} + \frac{1}{\omega} \left[\frac{(\alpha - a)^2 + \omega^2}{a^2 + \omega^2} \right]^{1/2} e^{-at} \sin(\omega t + \phi).$	$\frac{s+\alpha}{a[(a+a)^2+a^2]}$
$a^2 + \omega^2 + \frac{1}{\omega} \left[a^2 + \omega^2 \right] e^{-\sin(\omega t + \phi)}$	$S[(s+a) + \omega^2]$
$\phi = \tan^{-1} \frac{\omega}{\alpha - a} - \tan^{-1} \frac{\omega}{-a}$	
$\alpha - a$ — a	

Properties of the Laplace transform

• Linearity $\mathcal{L}\left\{\alpha_1 f_1(t) + \alpha_2 f_2(t)\right\} = \alpha_1 F_1(s) + \alpha_2 F_2(s)$

• Differentiation
$$\mathcal{L}\left\{f'(t)\right\}=sF(s)-f(0)$$

$$\mathcal{L}\{f''(t)\}=s^2F(s)-sf(0)-f'(0)$$

• Integration $\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s} \qquad \qquad f(t) \longrightarrow \int \int f(t)dt \qquad F(s) \longrightarrow \frac{F(s)}{s}$

t-domain

s-domain

In-class example

Example: Solve the following differential eq:
$$\ddot{x} + 2\dot{x} + 5\dot{x} = 3$$
for $\chi(0) = \chi(0) = 0$.

applying $LT: S^2 \chi(s) + 2s \chi(s) + 5\chi(s) = 3/s$

$$\chi(s) = \frac{3}{5} \cdot \frac{1}{5^2 + 2s + 5} = \frac{A}{5} + \frac{Bs + C}{5^2 + 2s + 5}$$

Solving: $(A+B)S^2 + (2A+C)S + 5A = 3$

$$A = 3/s$$

$$2A + C = 0 \Rightarrow C = -6/s$$

$$A+B = 0 \Rightarrow B = -3/s$$

$$\chi(s) = \frac{3}{5} \cdot \frac{1}{5} - \frac{3}{5} \cdot \frac{5^2 + 2s + 5}{5^2 + 2s + 5} = \frac{3}{5} \cdot \frac{1}{5} - \frac{3}{5} \cdot \frac{(s+2)}{5}$$

$$\chi(s) = \frac{3}{5} \cdot \frac{1}{5} - \frac{3}{5} \cdot \frac{(s+1)^2 + 2^2}{5^2 + 2s + 5} = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{(s+1)^2 + 2^2}{5}$$

$$\chi(s) = \frac{3}{5} \cdot \frac{1}{5} - \frac{3}{5} \cdot \frac{(s+1)^2 + 2^2}{5 \cdot 5} = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{(s+1)^2 + 2^2}{5} = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{(s+1)^2 + 2^2}{5 \cdot 5} = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1$$

Final Value Theorem

- It is usually desired to determine the steady-state or final value of the response
- Final value theorem: $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$ iff $\lim_{t\to\infty} f(t)$ exists

Example:
$$F(s) = 1 * \frac{1}{s+1}$$
 Impulse response (* 1)

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s * \frac{1}{s+1} = 0$$

The system returns to zero after being disturbed by a short impulse.

• Initial value theorem: $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$