CLAIM AMENDMENTS

The following listing of the claims replaces all prior versions, and listings, of the claims in the application.

 (Currently Amended) A semiconductive film obtained by: feeding a resin composition to an extruder, the resin composition comprising;

poly(ether ether ketone),

at least one other thermoplastic resin, the at least one other thermoplastic resin in a proportion of at most 5 parts by weight per 100 parts by weight of the poly(ether ether ketone), and

conductive carbon black having a DBP oil absorption within a range of 30 to 700 ml/100 g in a proportion of 5 to 40 parts by weight per 100 parts by weight of the poly(ether ether ketone) to an extruder,

melt-extruding the resin composition in the form of a film from a die, the lip clearance of which has been controlled to at most 1.0 mm, and

then cooling and solidifying the film in a molten state at a cooling temperature in a range of 60 to 120°C, wherein the semiconductive film has the following properties (a) to (c):

- (a) the average value of its thickness being within a range of 30 to 250 μm , and the maximum value of the thickness being within a range of 1 to 1.2 times as much as the minimum value thereof,
- (b) the average value of its volume resistivity being within a range of 1.0×10^2 to $1.0\times10^{14}~\Omega cm$, and the maximum value of the volume resistivity being within a range of 1 to 10 times as much as the minimum value thereof, and

- (c) the number of reciprocating folds required up to cutting as determined by using a strip-like specimen having a width of 15 mm under conditions of a chuck bending angle of 135° right and left, a folding speed of 175 c/s and a load of 9.8 N per 100 μ m of a thickness in accordance with "Testing Method for Folding Endurance by MIT Tester" as prescribed in JIS P 8115 being at least 10,000 times.
- 2. (Original) The semiconductive film according to claim 1, which further has property (d) that the tensile elongation at break in its any direction is at least 10% as measured by using a specimen having a width of 10 mm and a length of 100 mm under conditions of a crosshead speed of 50 mm/min and an interchuck interval of 50 mm by means of a tensile tester in accordance with JIS K 7113.
- 3. (Original) The semiconductive film according to claim 1, which further has property (e) that the modulus in tension in its any direction is at least 1.8 GPa as measured by using a specimen having a width of 10 mm and a length of 100 mm under conditions of a crosshead speed of 50 mm/min and an interchuck interval of 50 mm by means of a tensile tester in accordance with JIS K 7113.
- 4. (Original) The semiconductive film according to claim 1, which further has property (f) that a ratio (M/T) of tear strength (M) in the extruding direction (MD) of the film to tear strength (T) in a direction (TD) perpendicular to the extruding direction as determined in accordance with JIS K 6252 is within a range of 2/3 to 3/2.

- 5-7. (Canceled).
- (Previously Presented) The semiconductive film according to claim 1, wherein the conductive carbon black has a volatile matter content of at most 1.5% by weight.
- 9. (Previously Presented) The semiconductive film according to claim 1, wherein the conductive carbon black has a volume resistivity lower than $10^2~\Omega cm$.
- (Previously Presented) The semiconductive film according to claim 1, wherein the conductive carbon black is acetylene black or oil furnace black or a mixture thereof.
- (Previously Presented) A charge controlling member formed with the semiconductive film according to claim 1.
- 12. (Original) The charge controlling member according to claim 11, which is a semiconductive covered roller obtained by covering a roller base with a tube formed from the semiconductive film.
- (Original) The charge controlling member according to claim 11, which is a semiconductive belt formed from the semiconductive film.

Application No. 10/574,783 Attorney Docket No. NISH.0001

14. (Withdrawn) A process for producing a semiconductive film, which comprises feeding a resin composition comprising poly (ether ether ketone) and a conductive filler in a proportion of 5 to 40 parts by weight per 100 parts by weight of the poly (ether ether ketone) to an extruder, melt-extruding the resin composition in the form of a film from a T-die, the lip clearance of which has been controlled to at most 1.0 mm, while controlling the temperature of the resin composition within a range of 350 to 410°C, and then bringing the film in the molten state into contact with a cooling roll controlled to a temperature within a range of 60 to 120°C to cool and solidify the film.

- (Withdrawn) The production process according to claim 14, wherein the lip clearance of the T-die is controlled to at most 0.7 mm.
- 16. (Withdrawn) The production process according to claim 14, which provides, after the cooling and solidification, a semiconductive film having the following properties (a) to (c):
- (a) the average value of its thickness being within a range of 30 to 250 µm, and the maximum value of the thickness being within a range of 1 to 1.3 times as much as the minimum value thereof.
- (b) the average value of its volume resistivity being within a range of 1.0×10^2 to $1.0 \times 10^{14}\Omega$ cm, and the maximum value of the volume resistivity being within a range of 1 to 30 times as much as the minimum value thereof, and
- (c) the number of reciprocating folds required up to cutting as determined by under conditions of a chuck bending angle of 135° right and left, a folding speed of 175 c/s and a load

of 9.8 N per $100 \mu m$ of a thickness in accordance with "Testing Method for Folding Endurance by MIT Tester" as prescribed in JIS P 8115 being at least 5,000 times.

- 17. (Withdrawn) A process for producing a semiconductive film, which comprises feeding a resin composition comprising poly(ether ether ketone) and a conductive filler in a proportion of 5 to 40 parts by weight per 100 parts by weight of the poly (ether ether ketone) to an extruder, melt-extruding the resin composition in the form of a tubular film from a ring die, the lip clearance of which has been controlled to at most 1.0 mm, while controlling the temperature of the resin composition within a range of 350 to 410°C, and then cooling and solidifying the tubular film in the molten state through a cooling mandrel controlled to a temperature within a range of 60 to 120°C.
- 18. (Withdrawn) The production process according to claim 17, wherein the lip clearance of the ring die is controlled to at most 0.7 mm.
- 19. (Withdrawn) The production process according to claim 17, which provides, after the cooling and solidification, a semiconductive film having the following properties (a) to (c):
- (a) the average value of its thickness being within a range of 30 to 250 μ m, and the maximum value of the thickness being within a range of 1 to 1.3 times as much as the minimum value thereof.
- (b) the average value of its volume resistivity being within a range of 1.0×10^2 to $1.0 \times 10^{14} \Omega$ cm, and the maximum value of the volume resistivity being within a range of 1 to 30 times as much as the minimum value thereof, and

Application No. 10/574,783 Attorney Docket No. NISH.0001

- (c) the number of reciprocating folds required up to cutting as determined under conditions of a chuck bending angle of 135° right and left, a folding speed of 175 c/s and a load of 9.8 N per 100 μ m of a thickness in accordance with "Testing Method for Folding Endurance by MIT Tester" as prescribed in JIS P 8115 being at least 5,000 times.
- (Previously Presented) The semiconductive film according to claim 1, wherein the conductive carbon black has a DBP oil absorption within a range of 100 to 400 ml/100g.
- 21. (Previously Presented) The semiconductive film according to claim 1, wherein the maximum value of the volume resistivity being within a range of 1 to 5 times as much as the minimum value thereof.
- (Previously Presented) The semiconductive film according to claim 1, wherein the number of reciprocating folds is at least 20,000 times.
- 23. (Previously Presented) The semiconductive film according to claim 1, wherein the semiconductor film is obtained by feeding the resin composition to the extruder, melt-extruding the resin composition in the form of a film from the die, the lip clearance of which has been controlled to at most 1.0 mm, and then cooling and solidifying the film in a molten state by a cooling temperature in a range of 70 to 100°C.
- (Previously Presented) The semiconductive film according to claim 1, wherein the semiconductor film is obtained by feeding the resin composition to the extruder, melt-extruding

the resin composition in the form of a film from the die, the lip clearance of which has been controlled to at most 1.0 mm, and then cooling and solidifying the film in a molten state by a cooling temperature in a range of 80 to 90° C.

25. (New) The semiconductive film according to claim 1, wherein the poly(ether ether ketone) is a homopolymer having a structural unit represented by the following formula (1):

26. (New) The semiconductive film according to claim 25, wherein the resin composition comprises the poly(ether ether ketone) resin and does not comprise the at least one other thermoplastic resin.