1 Algorithm Analysis

Algorithm analysis has two components:

1. Correctness:

- why does my program work?
- Does it produce the corre t results for valid inputs
- left to CSC236
- 2. Complexity aka "efficiency"
 - How much resources does a program use
 - time
 - space (memory)
 - bandwidth (communication)
 - It is not cow concise / elegant the code itself is.

Reviewing past ideas (csc108)

Say we have program:

We measures resources relative to a size measure of the input

- If the input is a string, we might use the length
- \bullet If the input is a natural number, we might us it or maybe log_2 of it.

We'll assume the size is a natural number and what we measure is a non-negative number therefore the measure is some function: $\mathbb{N} \to \mathbb{R}^{\geq 0}$

Define:

For $f, g: \mathbb{N} \to \mathbb{R}^{\geq 0}$, f absolutely dominates g if:

$$\forall n \in \mathbb{N}, g(n) \le f(n)$$

Given that, we can define $h, j: N \to \mathbb{R}^{\geq 0}$ by $h(n) = 2n + 3, j(n) = \frac{n}{2} + 5$ Examining this, we note that if we say 100h

$$j(n) = \frac{n}{2} + 5$$

$$\leq 200n + 5$$

$$\leq 200n + 300$$

$$= 100h(n)$$

therefore, $n \geq 0$

Formalizing this, we can say that:

Define:

h dominates j up to a control factor if:

$$\exists c \in \mathbb{R}^+, \forall n \in \mathbb{N}, j(n) \le ch(n)$$

Proof:

Let $c = 4 \in \mathbb{R}^+$. Let $n \in \mathbb{N}$ Then,

$$h(n) = 2n + 3$$

$$\leq 2n + 20$$

$$= c(\frac{n}{2} + 5)$$

$$= cj(n)$$

Example:

• Define $k: \mathbb{N} \to \mathbb{R}^{\geq 0}$ by $k(n) = n^2$

• Define $h: \mathbb{N} \to \mathbb{R}^{\geq 0}$ by h(n) = 2n + 3

We note that it is impossible to make it so that either h dominates k or k dominates g even up to a control factor, therefore we have a third situation:

Define:

For $f, g: \mathbb{N} \to \mathbb{R}^{\geq 0}$, f eventually dominates g up to a control factor if:

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \to g(n) \le cf(n)$$

This is also written as $g \in \mathcal{O}(f)$

Formally proving the given example that $h \in \mathcal{O}(k)$ would yield:

Proof:

Let
$$c = 5\mathbb{N}R^+$$

Let $n_0 = 1 \in \mathbb{R}^+$

$$h(n) = 2n + 3$$

$$\leq 2n + 3n \qquad \text{since } n \geq 1$$

$$= 5n$$

$$\leq 5n^2$$

$$= cn^2 \qquad \text{since } n \geq 1$$

$$= ck(n) \qquad \text{since } c = 5$$

CSC165 LECTURE 12 (May 17, 2022) Arthur Gao

We can also say that theo opposite is of the above statement is :

$$k \notin \mathcal{O}(h)$$
: $\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \ge n_0 \land k(n) > ch(n)$