Average Variance

J. Poland

Risk Anomal

Data

Variance De composition

Results

Out of Sample

Allocation

Explaination

Conclusion

Don't Throw out the Return with the Risk: Average Variance Portfolio Management

Jeramia Poland

Indian School of Business

April 2, 2018

Risk Anomaly

Data

Variance De composition

Results

In Sample Out of Sample

Allocation

Explainatio

Conclusion

How Risky is your Aversion?

 Higher Return is better than lower return, lower risk is better than higher risk

Risk Anomaly

Data

Variance De composition

Results In Sample

Asset

E. ... Latara et a ...

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk

Data

Variance D composition

Results
In Sample
Out of Sample

Asset

Evolaination

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times

Results
In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times
- Are you giving up potential returns?

Risk Anomaly

Data

Variance De composition

Results In Sample

Asset Allocation

Allocation

Conclusion

Equity Premium

Equity Premium

• Markowitz (1952) - formal portfolio variance, return optimization

Volatility Managed Market Investment

Risk Anomaly

Data

Variance De composition

Results In Sample

Asset

E. alainatian

Conclusions

Equity Premium

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform

Volatility Managed Market Investment

Risk Anomaly

Data

Variance De composition

Results In Sample

Out of Sample

Empletentier

Conclusions

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Volatility Managed Market Investment

Risk Anomaly

Data

Variance De composition

Results In Sample

Out of Sample

Enable to a dis-

Conclusions

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Volatility Managed Market Investment
 - W_tR_{st} where R_{st} is the monthly return to the CRSP market portfolio in month t.

Risk Anomaly

Data

Variance Do composition

Results In Sample

Out of Sample
Asset

Empletentia

Explaination

Conclusions

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Volatility Managed Market Investment
 - W_tR_{st} where R_{st} is the monthly return to the CRSP market portfolio in month t.
 - $\sigma^2(r_{s,t-1})$ is the variance, where $r_{s,t-1}$ is the series of daily returns of the CRSP market portfolio for month t-1

Asset Allocation

Explainatio

Conclusions

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying
- Volatility Managed Market Investment
 - W_tR_{st} where R_{st} is the monthly return to the CRSP market portfolio in month t.
 - $\sigma^2(r_{s,t-1})$ is the variance, where $r_{s,t-1}$ is the series of daily returns of the CRSP market portfolio for month t-1
 - $W_t = \frac{1}{\sigma^2(r_{s,t-1})}$ is the investment weight on the CRSP market portfolio for month t

Risk Anomaly

Data

Variance Documents

Result

In Consulta

Out of Samp

Asset

_

Conclusion

Moreira and Muir 2017

Figure 3. Cumulative returns to the volatility-managed market return. The top panel plots the cumulative returns to a buy-and-held strategy versus a volatility-managed strategy for the market portfolio from 1926 to 2015. The y-axis is on a log scale and both strategies have the same uncenditional monthly standard deviation. The lower left panel plots relling one-year returns from each strategy and the lower right panel shows the drawdown or onch strategy.

Average Variance

J. Poland

Risk Anomaly

Data

Variance De composition

Result

In Sample
Out of Sample

Allocation

Explainatio

Conclusions

Variance Decomposition

Market Variance

Average Variance

J. Poland

Risk Anomaly

Data

Variance De composition

Results

In Sample

Asset

Allocation

Схріаніаціо

Conclusion

Variance Decomposition

Market Variance

 Campbell, Lettau, and Xu (2001) - variance of individual assets vs market variance and CAPM

Risk Anomaly

Data

Variance De composition

Results

Out of Sample

Allocation

Explaination

Conclusion

Variance Decomposition

Market Variance

- Campbell, Lettau, and Xu (2001) variance of individual assets vs market variance and CAPM
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var

Average Variance

J. Poland

Risk Anomaly

Variance Decomposition

Market Variance

- Campbell, Lettau, and Xu (2001) variance of individual assets vs market variance and CAPM
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var

Avg Var and Avg Cor

$$R_{s,t} = \sum_{1}^{N} w_{n,t} R_{n,t}$$

$$\sigma^{2}(r_{s,t}) = \sum_{n=1}^{N} \sum_{m=1}^{N} w_{n,t} w_{m,t} \sigma_{n,t}^{2} \sigma_{m,t}^{2} \rho_{n,m,t}$$

$$\sigma_{s,t}^{2} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \times \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

$$AV_{t} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \text{ and } AC_{t} = \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

$$= \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \text{ and } AC_{t} = \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

Allocatio

Explaination

Conclusions

Pollet and Wilson 2010 - Risk

Table: 1963Q2:2007Q1

			SV_{t+1}		
AC_t	0.014*** (0.005)		0.005 (0.005)		
AV_t		0.144*** (0.023)	0.136*** (0.024)		0.188*** (0.042)
SV_t				0.310*** (0.072)	-0.156 (0.124)
Constant	0.002 (0.001)	0.002** (0.001)	0.001 (0.001)	0.003*** (0.001)	0.001** (0.001)
Observations R ²	176 0.042	176 0.184	176 0.096	176 0.096	176 0.191
Adjusted R ²	0.037	0.179	0.091	0.091	0.182

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Risk Anomaly

Pollet and Wilson 2010 - Returns

Table: 1963Q2:2007Q1

			RET_{t+1}		
AC_t	0.215*** (0.068)		0.248*** (0.072)		
AV_t		-0.116 (0.347)	-0.512 (0.356)		-1.746*** (0.615)
SV_t				1.466 (1.026)	5.795*** (1.828)
Constant	-0.038** (0.017)	0.014 (0.010)	-0.034** (0.017)	0.005 (0.008)	0.022** (0.010)
Observations R ²	176 0.054	176 0.001	176 0.065	176 0.012	176 0.056
Adjusted R ²	0.049	-0.005	0.054	0.006	0.045

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Risk Anomaly

Variance De

Results

In Sample
Out of Sample

Asset

Evalainatio

Conclusions

Average Variance

• Timing leverage by variance generates higher returns

Risk Anomaly

Variance Decomposition

Results

In Sample Out of Sample

Allocation

Explamatio

Conclusion

- Timing leverage by variance generates higher returns
- Market variance contains average correlation

Risk Anomaly

Data

Variance Decomposition

Results
In Sample
Out of Sample

Allocation

Conclusion

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns

Б.

Variance De composition

Results
In Sample
Out of Sample

Allocation

Explainatio

Conclusion

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns
- $W_t = \frac{1}{AV_{t-1}}$ is the investment weight on the CRSP market portfolio

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns
- $W_t = \frac{1}{AV_{t-1}}$ is the investment weight on the CRSP market portfolio

Data

Variance De composition

Results In Sample

Asset

Explainatio

- Apramatic

Conclusions

CRSP daily returns

- NYSE daily return (1926-2017)
- NYSE-AMEX daily returns (1962-2017)
- NASDAQ daily returns (1974-2017)
- Monthly Variance Stats and MCAP of gaming industry

Asaif Manela's Website

- ICRF = $\frac{MarEqt}{MarEqt + BookDbt}$ He, Kelly, Manela (2017)
- $LF_{AEM} = \frac{FinAsst}{FinAsst-BankDbt}$ Adrian, Etula and Muir (2014)
- BC = year on year increase in bank credit Gandhi (2016)

NYSE

• Δ MD = month to month change in Margin Debt

Risk Anomaly

Data

Variance Decomposition

In Sample
Out of Sample
Asset

Evalainatio

Conclusion

Summary Stats

Monthly 1962M6:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RFT	655	0 410	4.460	-26.134	14 814	0.081
AC	655	0.410	0.129	-20.134 0.019	0 762	0.620
AV	655	0.201	0.129	0.019	10 416	0.667
SV	655	0.200	0.406	0.006	5.664	0.551
-						

Monthly 1926M7:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RET	1,085	0.495	5.371	-34.523	33.188	0.106
AC	1,085	0.276	0.134	0.019	0.762	0.610
AV	1,085	0.881	1.281	0.154	19.540	0.718
SV	1,085	0.248	0.502	0.006	5.808	0.612

Average Variance Variance Prediction J. Poland Sample 1962M6:2016M12 SV_{t+1} 0.005*** AC_t 0.010*** (0.001)(0.001) AV_t 0.261*** 0.234*** 0.123*** (0.016)(0.017)(0.035)

654

0.297

0.296

Results In Sample

-0.001**

(0.0003)

654

0.110

0.109

 SV_t

 R^2

Note:

Constant

Observations

Adjusted R²

(0.033)(0.074)-0.000010.001*** -0.001***0.0004** (0.0002)(0.0001)(0.0003)(0.0002)

654

0.320

0.318

0.320***

654

0.317

0.315

11/31

0.551***

654

0.304

0.303

*p < 0.1; **p < 0.05; **** $p < 0.01 < \ge >$

Average Variance **AV** Prediction J. Poland Sample 1962M6:2016M12 AV_{t+1} AC_t 0.014***-0.001Results (0.003)(0.002)In Sample AV_t 0.667*** 0 674*** 1.030*** (0.029)(0.031)(0.065) SV_t 1.092*** -0.844***(0.070)(0.135)Constant 0.004*** 0.003*** 0.006*** 0.003*** 0.001*** (0.001)(0.0003)(0.0003)(0.001)(0.0004)Observations 654 654 654 654 654 R^2 0.048 0 445 0.273 0 446 0.477 Adjusted R² 0.046 0.445 0.272 0.4440.475 Note: *p<0.1; **p<0.05; ***p<0.01990

12 / 31

Average Variance Return Prediction J. Poland Sample 1962M6:2016M12 RET_{t+1} AC_t 0.017 0.037*** Results (0.013)(0.014)In Sample AV_t -0.678***-0.877***-0.905*(0.203)(0.216)(0.463) SV_t 0.526 -1.174***(0.426)(0.969)Constant -0.00010.009*** 0.007*** 0.001 0.010***

(0.004)(0.002)(0.002)(0.004)(0.003)Observations 655 655 655 655 655 R^2 0.002 0.017 0.012 0.0270.017 Adjusted R² 0.001 0.015 0.010 0.024 0.014 Note: *p < 0.1; **p < 0.05; ***p < 0.01 =

13/31

Average Variance

J. Poland

Risk Anomal

Variance De

Results

In Sample
Out of Sample

Allocation

Out-of-Sample Tests

• Divide the sample 1962:06 - 2016:12 into 15% training 85% prediction

Risk Anomaly

Data

Variance De composition

Results

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.

Risk Anomaly

Data

Variance De composition

Results

In Sample
Out of Sample

Asset

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.

Results

Out of Sample

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{s=1}^{t-1}$

Out of Sample

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$
- Each following month the "training" window expands by one month

Out of Sample Stats

- $y_t \hat{y}_{x,t} = e_{x,t}$: forecast error of preditor x
- $\frac{1}{T}\sum_{1}^{T}(e_{x,t})^2 = MSFE_x$: mean squared forecast error based on predictor x

R_{oos}^2 Campbell and Thompson 2007

- $R_{os}^2 = 1 \frac{MSFE_x}{MSFF_x}$
- R_{os}^2 = proportional reduction in MSFE

MSE-F Mcracken 2004

- MSE-F = $T imes rac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{x,t}^2)}{MSEF}$
- MSE-F = F-type test for significance in squared residual (like in sample regression)

composition

Results In Sample

Out of Sample
Asset

Allocation

Explainatio

Conclusion

Out of Sample Stats

- R_{oos}^2 and MSE-F test improvement in forecast accuracy relative to a benchmark
- Encompassing tests impose the greater requirement that the benchmark have no valuable forecasting information

ENC-NEW Mcracken and Clark 2009

- ENC-NEW = $T imes rac{rac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{b,t} e_{x,t})}{\textit{MSFE}_x}$
- ENC-NEW = F-type statistic on the imporvement of including the benchmark

ENC-HLN Harvey, Lebourne and Newbold 1998

- Optimal forecast $= \hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts from x and the benchmark

Out of Sample Results

Table: 1970M7:2016M12

Benchmark: Historical Average

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	25.414*	189.790***	160.994**	1***
AV_{t+1}	Monthly	38.11**	342.979***	355.228**	0.967***
RET_{t+1}	Monthly	-0.059	-0.328	3.493**	0.478

Benchmark: SV_t

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	4.041	23.454***	25.409**	0.929*
AV_{t+1}	Monthly	26.853	204.485***	135.494**	1***
RET_{t+1}	Monthly	2.116	12.043***	8.2**	1

Out of Sample

- I · ··

Explainatio

Conclusions

Out of Sample Results

Table: 1932M2:1962M6

Benchmark: Historical Average

Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
Monthly	49.972***	367.592***	397.183**	0.931***
Monthly	50.747**	379.160***	409.061**	0.932***
Monthly	-8.708	-29.479	-9.96	0
	Bend	chmark: SV _t		
Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
Monthly	-1.289	-4.682	76.562**	0.485*
Monthly	11.328	47.013***	121.513**	0.62**
Monthly	-6.098	-21.152	-6.192	0
	Monthly Monthly Monthly Sample Monthly Monthly	$\begin{array}{ccc} \mbox{Monthly} & 49.972^{***} \\ \mbox{Monthly} & 50.747^{**} \\ \mbox{Monthly} & -8.708 \\ \mbox{Benc} \\ \mbox{Sample} & R_{oos}^2 \\ \mbox{Monthly} & -1.289 \\ \mbox{Monthly} & 11.328 \\ \end{array}$	$\begin{array}{ccccc} \text{Monthly} & 49.972^{***} & 367.592^{***} \\ \text{Monthly} & 50.747^{**} & 379.160^{***} \\ \text{Monthly} & -8.708 & -29.479 \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Asset

Allocation

Investment Weight

 $w_{AV,t} = \frac{c_{AV}}{AV_{t-1}}$ and $w_{SV,t} = \frac{c_{SV}}{SV_{t-1}}$ c is a constant used to equalize the standard deviation of strategies to the buy and hold

Strategy Investment Weight

Statistic	N	Mean	St. Dev.	Min	Max
$W_{SV,t}$	1,085	1.290	1.412	0.017	16.193
$W_{AV,t}$	1,085	1.301	0.710	0.033	4.253

Risk Anomaly

Data

Variance De composition

Result

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

Performance Measures

 $\bullet \ \mathsf{RET} = \mathsf{annualized} \ \mathsf{average} \ \mathsf{log} \ \mathsf{excess} \ \mathsf{return}$

Results In Sample

Asset

Allocation

Explainatio

Conclusions

- ullet RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

Results

Out of Sample

Asset Allocation

Explaination

Conclusions

- RET = annualized average log excess return
- Sharpe $=\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance

• Sortino =
$$\frac{\mathbb{E}[R_x - 0]}{\sqrt{\int_{-\infty}^{0} (0 - R_x)^2 f(R_x) dR}}$$
, return for downside

- RET = annualized average log excess return
- Sharpe = $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$, return for downside
- Kappa(n) = $\frac{\mathbb{E}[R_x-0]}{\sqrt[q]{LPM_a}}$, where LPM is lower partial moment Kappa[2] = Sortino

Conclusion

- RET = annualized average log excess return
- Sharpe $= \frac{\mathbb{E}[R_x]}{\sigma(R_x)}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^0 (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa(n) = $\frac{\mathbb{E}[R_x-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa[2] = Sortino
- UpsidePotential $=\frac{\mathbb{E}[(R_{x}-0)_{+}]}{\sqrt{\mathbb{E}[(R_{x}-0)_{-}^{2}]}}$, dollar of average gain for downside risk

- RET = annualized average log excess return
- Sharpe $=\frac{\mathbb{E}[R_{\mathsf{x}}]}{\sigma(R_{\mathsf{x}})}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa(n) = $\frac{\mathbb{E}[R_x-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa[2] = Sortino
- UpsidePotential $=\frac{\mathbb{E}[(R_x-0)_+]}{\sqrt{\mathbb{E}[(R_x-0)_-^2]}}$, dollar of average gain for downside risk
- Rachev = $\frac{ETL_{\alpha}(r_f x'r)}{ETL_{\beta}(x'r r_f)}$ where $ETL_{\alpha} = \frac{1}{\alpha} \int_{0}^{\alpha} VaR_{q}(X) dq$, dollar of possible extreme gain for dollar of possible extreme loss

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

Performance

1926M7:2016M12

Strategy	RET	Sharpe	Sortino	Kappa	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	8.598	0.462	0.722	0.132	0.650	1.151
AV	9.677	0.520	0.778	0.150	0.706	0.972

1962M6:2016M12

Strategy	RET	Sharpe	Sortino	Kappa	${\sf UpsidePotential}$	Rachev
ВН	5.112	0.332	0.463	0.089	0.635	0.826
SV	7.311	0.406	0.647	0.122	0.663	1.212
AV	7.857	0.470	0.702	0.139	0.719	0.987

Risk Anomaly

Risk Anomaly

Variance D

Results
In Sample

Asset Allocation

Evalaination

Conclusions

Drawdowns

St	trategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
	ВН	82	-84.803	-8.069	188	11.549	154	7.207
	SV	65	-63.508	-11.162	246	14.954	135	7.446
	AV	87	-60.208	-9.014	205	10.851	135	5.034

Data

Variance Do

Results
In Sample

Asset

Explaination

Conclusion

Risk over Reward

The higher excess returns of low-risk strategies (assets) comes from a preference for the lottery like extreme returns possible from higher risk investments - Barberis and Huang (2008); Brunnermeier, Gollier, and Parker (2007); Asness, Frazzini, Gorsmen, Pedersen (2016)

In Sample

Asset

Explaination

Conclusion

Risk over Reward

- The higher excess returns of low-risk strategies (assets) comes from a preference for the lottery like extreme returns possible from higher risk investments Barberis and Huang (2008); Brunnermeier, Gollier, and Parker (2007); Asness, Frazzini, Gorsmen, Pedersen (2016)
- Leverage constraints prevent investors from taking the low-risk position - Black (1972)

Risk Anoma

Data

Variance De composition

Results In Sample

Out of Sample

Explaination

Conclusion

Lottery

 For lotter preferences to explain the higher returns of either SV or AV, the Buy and Hold strategy must be more lottery-like than either

11151171110

Data

composition

Results In Sample

Asset

Explaination

Conclusion

Lottery

- For lotter preferences to explain the higher returns of either SV or AV, the Buy and Hold strategy must be more lottery-like than either
- It is not

Risk Anomaly

Variance De

Results

In Sample Out of Sample

Asset

Explaination

Conclusion

Lottery

 For lotter preferences to explain the higher returns of either SV or AV, the Buy and Hold strategy must be more lottery-like than either

MAX1

- It is not

		1717 (7 (1			JIVI/ I/C	_
Strategy	Mean	Median	Sd	Mean	Median	Sd
ВН	1.776	1.422	1.398	2.186	1.971	1.046
SV	1.569	1.258	1.243	3.229	2.167	4.661
AV	1.796	1.650	0.960	2.884	1.691	4.992
		MAX5			SMAX	5
Strategy	Mean	Median	Sd	Mean	Median	Sd
ВН	1.134	0.922	0.774	1.410	1.341	0.540
SV	1.023	0.842	0.787	2.084	1.377	2.765
AV	1.164	1.088	0.534	1.827	1.121	2.833
				4 D > 4 B > 4	医医闭塞区	₹ 990

SMAX1

(1)

(0.029)Explaination BH*GMCAP -0.000-0.000

(0.000)(0.000)

GMCAP ₅₀₀			0.524	0.660
BH*GMCAP ₅₀₀			(0.998) -18.636 (24.213)	(0.948) -15.823 (22.993)
Controls	FF-3	FF-5	FF-3	FF-5

525

0.775

0.772

525

0.749

0.747

525

=0.775

0.772

25/31

525

0.749

0.747

Observations

Adjusted R²

 R^2

Performance Issues

Weights [0,1.5]

Strategy	RET	Sharpe	Sortino	Карра	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	6.171	0.467	0.691	0.128	0.667	0.982
AV	7.885	0.486	0.706	0.133	0.683	0.896

Weights [0,1]

Strategy	RET	Sharpe	Sortino	Карра	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	4.649	0.433	0.619	0.113	0.646	0.897
AV	5.814	0.447	0.632	0.117	0.657	0.845

Average Variance

J. Poland

Risk Anomaly
Data
Variance De- composition
composition

Explaination

Leverage

ВН	AV										
	0.724*** (0.027)	0.805*** (0.029)	0.788*** (0.042)	0.843*** (0.041)	0.804*** (0.033)	0.889*** (0.035)	0.858*** (0.025)	0.900*** (0.026)			
LF _{AEM}	0.178*** (0.038)	0.134*** (0.037)									
BH*LF _{AEM}	1.231*** (0.352)	1.508*** (0.341)									
ICRF			0.0004 (0.026)	0.006 (0.025)							
BH*ICRF			0.301 (0.196)	0.308 (0.188)							
вс					-0.0002 (0.0002)	-0.0001 (0.0002)					
вн*вс					0.001 (0.004)	-0.003 (0.004)					
Δ MD ₁₉₈₄							0.00000 (0.00000)	0.00000 (0.00000)			
BH*Δ MD ₁₉₈₄							0.00002*** (0.00000)	0.00002*** (0.00000)			
Controls	FF-3	FF-5	FF-3	FF-5	FF-3	FF-5	FF-3	FF-5			
Observations R ² Adjusted R ²	396 0.764 0.761	396 0.785 0.781	396 0.748 0.745	396 0.771 0.767	432 0.739 0.736	432 0.761 0.757	431 0.772 0.770	431 0.791 0.788			

Average Variance

J. Poland

Explai

Note*

AV										
ВН	0.596*** (0.065)	0.675*** (0.065)	0.445*** (0.097)	0.619*** (0.102)	0.561*** (0.075)	0.661*** (0.075)				
Broker _{call}	-0.0004 (0.0005)	-0.001 (0.0005)								
BH*Broker _{call}	0.033*** (0.012)	0.039*** (0.012)								
Bank _{call}			0.00002 (0.001)	0.00005 (0.001)						
BH*Bank _{call}			0.061*** (0.013)	0.044*** (0.013)						
$Bank_{\mathit{Prime}}$					-0.001 (0.0004)	-0.001				
BH*Bank _{Prime}					0.037*** (0.011)	0.033*** (0.010)				
Observations R ² Adjusted R ²	336 0.678 0.673	336 0.712 0.706	265 0.802 0.798	265 0.818 0.813	395 0.729 0.726	395 0.753 0.749				

Leverage

Results
In Sample
Out of Sample

Allocation

Explaination

Conclusions

Conclusions

 Market variation contains average correlation which is compensated by higher returns

Risk Anomaly

Data

Variance De composition

Results
In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not

Variance Do

Results
In Sample
Out of Sample

Allocation

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures

Variance Documents

Results
In Sample
Out of Sample

Asset

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures
- Neither SV nor AV can be expained as behavior, lottery preference stories

Allocation

Explaination

Conclusions

- Market variation contains average correlation which is compensated by higher returns
- SV management throws out return with risk, AV does not
- AV out performs in all most all measures
- Neither SV nor AV can be expained as behavior, lottery preference stories
- Leverage constraints are a better explaination of the returns to SV and AV above the market

Risk Anomaly

Data

Variance D composition

Results In Sample

Out of Sample

Allocation

Explainatio

- Portfolio performance significance
- Different c adjustments (don't require knowing the BH variance)
- Subsample robust stats Inoune and Rossi (2012)
- Expand the left hand side international / portfolio of equity indexes
- AV utility gains

Risk Anomaly

Data

Variance D compositio

Result

In Sample
Out of Sampl

Asset

Evolainatio

Conclusions

Time Series

Monthly Measures of Daily Return Statistics

