

LECTURE 2: EMBEDDED SOFTWARE DEVELOPMENT

Learning Goals

- Understanding how the does the code has been compiled, and generated to an image.
- Understand how does loading/debugging process happen.
- Understand most basis concepts regarding software engineering: pooling & interrupt.
- Having knowledge on how to access peripheral via memory mapped.

- 2. Embedded Software Development Flow
- 3. Software Flow
- 4. Input/output Basic
- 5. Summary

- 2. Embedded Software Development Flow
- 3. Software Flow

- 4. Input/output Basic
- 5. Summary

Definition

Embedded software is *computer software*, written to control machines or devices that are not typically thought of as computers. It is typically specialized for the particular hardware that it runs on and has *time and memory constraints*. This term is sometimes used interchangeably with *firmware*

(wiki)

Features:

Acts directly with and on the hardware

Nguồn lực khá hạn chế

Quite limited resources.

Using a "Non-hosted environment"

Common Components:

- Reset vector
- Startup code
- Application code
- Libraries
- Interrupt/Exception Handler

What is needed to start:

- Development suites
- Development board
- Debug Adapter
- Software device driver
- Documents and other resources.

- 2. Embedded Software Development Flow
- 3. Software Flow

- 4. Input/output Basic
- 5. Summary

Software Development Steps in IDE

- Create project
- Setup project option
- Compile & Link
- Flash Program

Hành hình

Execute & Debug

Development Flow

Compilation Flow

IAR Compilation Flow

IAR Link Flow

- 2. Embedded Software Development Flow
- 3. Software Flow

- 4. Input, output and Peripherals access
- 5. Summary

Pooling

 Continuously checking the status of a peripheral; e.g. read data from an input keyboard.

Polling is relatively thang than straightforward in design and programming with the sacrifice of system performance.

Interrupt

- Device "interrupts" CPU to biểu thị indicate that it needs service.
- These events only occur if the interrupt is enabled.
- A handler (software to service the interrupt) is Thurs this executed.
- CPU returns to where it left off in the main program.

Software Flow

Fpt Software

Pooling

Interrupt

Software Flow

Interrupt Process:

cho đến khi

CPU waits until the current instruction has finished being executed.

- Save the contents of internal registers of the CPU & the state information within Control Unit
- The PC is loaded with address of the Interrupt Service Routine (ISR)
- ISR is executed.
- Return program from interrupt.

Software Flow

Interrupt Handler Features:

 Differs from subroutine because it is executed at any time due to interrupt, not due to Call

Nên thực hiện càng nhỏ càng tốt

Should be implemented as small as possible

Nên thực hiện trong thời gian ngắn.

Should be executed in short-time.

- 2. Embedded Software Development Flow
- 3. Software Flow
- 4. Input/output Basic
- 5. Summary

Accessing I/O Devices

- Computer system
 components communicate
 xuyên qua sự kết nối
 through an interconnection
 network
- Memory-mapped I/O allows
 I/O registers to be accessed
 as memory locations. As a
 result, these registers can be
 accessed using only Load
 and Store instructions

Input Output Basic

I/O Device Interface

 Provides the means for data transfer and exchange of status and control information

Includes data, status, and control registers accessible with Load and Store instructions

Memory-mapped I/O enables software to view these registers as locations in memory

- 2. Embedded Software Development Flow
- 3. Software Flow

- 4. Input/output Basic
- 5. Summary

Summary

- Embedded Software, or firmware, is program that specialized for particular processor
- Embedded software developments including: Create project, compile & link to generate imagine; load & debug in hardware
- There are two kinds of software flow: pooling & interrupt.
- Peripheral (IO) registers are memory-mapped and therefore can be accessed as the memory.

Question and Answer

Thanks for your attention!

Copyright

- This course including Lecture Presentations,
 Quiz, Mock Project, Syllabus, Assignments,
 Answers are copyright by FPT Software Corporation.
- This course also uses some information from external sources and non-confidential training document from Freescale, those materials comply with the original source licenses.