Tutorial: Timer Interrupt & PWM Output

I. Overview

In this lab, you will learn how to set up MCU Timers for Timer Interrupt and PWM output.

Objectives of this lab are learning how to

- Configure registers of Timers(TIMx)
- Generate Timer Interrupt
- Generate PWM signals

Preparation:

- You need to study the following registers: Timer(Advanced and General Purpose, TIMx) in 'STM Reference Manual'
- User defined APIs for GPIO and External Interrupt control

II. Tutorial – Timer Interrupt / No Output

A. Timer Registers: TIMx

• List TIMx registers for this LAB

Class	Register Name	Description
TIMx	TIMx_CR1	TIMx control register 1
	TIMx_PSC	TIMx prescaler register
	TIMx _ARR	TIMx auto-reload register
	TIMx_DIER	TIMx DMA Interrupt Enable register
	TIMx BDTR	TIM1(only) break and dead-time register

Block Diagram for General Purpose Timer

• TIM TypeDef: <stm32f411xe.h>

```
typedef struct
                             /*!< TIM control register 1,
    IO uint32 t CR1;
                                                                        Address offset: 0x00 */
   IO uint32_t CR2;
                             /*!< TIM control register 2,
                                                                        Address offset: 0x04 */
                             /*!< TIM slave mode control register,
   IO uint32 t SMCR;
                                                                        Address offset: 0x08 */
  __IO uint32_t DIER;
                             /*!< TIM DMA/interrupt enable register,
                                                                        Address offset: 0x0C */
                             /*!< TIM status register,
   IO uint32 t SR;
                                                                        Address offset: 0x10 */
   IO uint32 t EGR;
                             /*!< TIM event generation register,
                                                                         Address offset: 0x14 */
                             /*!< TIM capture/compare mode register 1, Address offset: 0x18 */
    IO uint32 t CCMR1;
                             /*!< TIM capture/compare mode register 2, Address offset: 0x1C */
   IO uint32 t CCMR2;
                             /*! < TIM capture/compare enable register, Address offset: 0x20 */
   IO uint32 t CCER;
                             /*!< TIM counter register,
    IO uint32 t CNT;
                                                                        Address offset: 0x24 */
   IO uint32_t PSC;
                             /*!< TIM prescaler,</pre>
                                                                        Address offset: 0x28 */
                             /*!< TIM auto-reload register,
   _IO uint32_t ARR;
                                                                        Address offset: 0x2C */
    IO uint32 t RCR;
                             /*! < TIM repetition counter register,
                                                                         Address offset: 0x30 */
   IO uint32 t CCR1;
                             /*!< TIM capture/compare register 1,</pre>
                                                                        Address offset: 0x34 */
                             /*!< TIM capture/compare register 2,</pre>
   IO uint32 t CCR2;
                                                                        Address offset: 0x38 */
    IO uint32 t CCR3;
                             /*!< TIM capture/compare register 3,
                                                                         Address offset: 0x3C */
   IO uint32_t CCR4;
                             /*!< TIM capture/compare register 4,
                                                                        Address offset: 0x40 */
                             /*!< TIM break and dead-time register,
                                                                        Address offset: 0x44 */
   _IO uint32_t BDTR;
    IO uint32 t DCR;
                             /*!< TIM DMA control register,
                                                                         Address offset: 0x48 */
                             /*!< TIM DMA address for full transfer,
    IO uint32 t DMAR;
                                                                        Address offset: 0x4C */
    IO uint32 t OR;
                             /*! < TIM option register,
                                                                         Address offset: 0x50 */
} TIM_TypeDef;
```

```
#define TIM2 ((TIM_TypeDef *) TIM2_BASE)
#define TIM3 ((TIM_TypeDef *) TIM3_BASE)
#define TIM4 ((TIM_TypeDef *) TIM4_BASE)
#define TIM5 ((TIM_TypeDef *) TIM4_BASE)

/*!< APB1 peripherals */
#define TIM2_BASE (APB1PERIPH_BASE + 0x0000UL)
#define TIM3_BASE (APB1PERIPH_BASE + 0x0400UL)
#define TIM4_BASE (APB1PERIPH_BASE + 0x0800UL)
#define TIM5_BASE (APB1PERIPH_BASE + 0x0800UL)
#define TIM5_BASE (APB1PERIPH_BASE + 0x0C00UL)
```

B. Register Initialization Process

Process of Timer(TIMx) register initiation: Timer Interrupt of Over/Underflow of Counter

```
System Clock setting
1. RCC setting (HSE/PLL)
Timer setting
1. Enable Timer Peripheral Clock
                                       (RCC_APB1ENR)
2. Set Counting Direction
                                       (TIMx_CR1 \rightarrow DIR)
3. Set Timer Clock Pre-scaler value
                                       (TIMx PSC\rightarrowPSC[15:0])
4. Set Auto-reload value
                                       (TIMx ARR->ARR)
5. Enable Timer DMA/Interrupt.
                                      (TIMx DIER→UIE)
                                       (TIMx CR1→CEN)
6. Enable counter
NVIC setting
1. Enable TIMx Interrupt:
                                       NVIC EnableIRQ(TIMx IRQn)
2. Set interrupt Priority
                                       NVIC SetPriority(TIMx IRQn,2)
```

C. Exercise

- Timer interrupt for every 1 sec.
- System CLK is PLL 84MHz for STM32F411RE
- Use Counter of TIM2: Up-counting, Timer2_CLK = 100 kHz, COUNT CLK=1 kHz

1. Fill in the table

Port/Pin	Description	Register setting	
RCC	PLL Initialization	RCC_PLL_init(); EC_SYS_CLK =EC_PLL= 84,000,000	
	Enable Timer Peripheral Clock: TIM2	RCC->APB1ENR =1 «0	
TIM2	TIM2 counting direction: DIR0	TIM2->CR1 & = $\sim (1 \ll 0)$	
	Set Timer Clock Pre-scaler value 84MHz To 100kHz	TIM2->PSC	
	Set Auto-reload value: With 100kHz, counting of 1kHz	TIM2->ARR	
	Enable Timer DMA/Interrupt	TIM2->DIER	
	Enable Counter	TIM2->CR1	
NVIC	Set TIM2_IRQn with Priority 2, and enable	NVIC_SetPriority(,); NVIC_EnableIRQ();	

2. Firmware Programming

- Create a new project and name the project as 'Tutorial_TIMER_Interrupt'.
- Create a new item called 'main.c'
- Then, using timer interrupt ("void TIM2_IRQHandler(void)"), make LED LD2 turn On and Off in every 1 sec: ON for 1sec, OFF for 1 sec etc.

```
void TIM2_IRQHandler(void) {
   if ((TIM2->SR & TIM SR UIF) != 0) { //UIF pended;

   // your code goes here
   // your code goes here

}
   TIM2->SR &= ~TIM_SR_UIF; // Clear UIF flag
}
```

III. Tutorial – PWM Output

A. Timer Registers: TIMx

• List TIMx registers: Timer Setting

Class	Register Name	Description
TIMx	TIMx CR1	TIMx control register 1
	TIMx PSC	TIMx prescaler register
	TIMx _ARR	TIMx auto-reload register
	TIMx_DIER	TIMx DMA Interrupt Enable register
	TIMx BDTR	TIM1(only) break and dead-time register

• List TIMx registers: PWM output

Class	Register Name	Description
TIMx	TIMx CCMRn	TIMx capture/compare mode register for nth channel
	TIMx CCRn	TIMx capture/compare register for nth channel
	TIMx CCER	TIMx capture/compare output enable register
	TIMx_BDTR	TIM1(only) break and dead-time register

Block Diagram for General Purpose Timer

Figure 114. Output stage of capture/compare channel (channel 1)

B. Register Initialization Process

Process of Timer(TIMx) PWM output register initiation

GPIO Pin setting

- 1. Set RCC for GPIO
- 2. AF(TIMx) mode selection for Pin y in GPIOx

Timer setting:

- 1. Enable Timer peripheral Clock (RCC_APB1ENR)
- 2. Set Counting direction (TIMx_CR1→DIR)
- 3. Set Timer clock Pre-scaler value (TIMx_PSC \rightarrow PSC[15:0])
- 4. Set Auto-reload value (TIMx ARR->ARR)
- 5. Enable Counter $(TIMx_CR1 \rightarrow CEN)$

PWM Out setting:

- 1. Set PWM Output mode (TIMx CCMR →OCnM)
- 2. Set CompareCapture value (TIMx_CCRn->CCR)
- 3. Select Output Polarity (TIMx_CCER→CCyP)
- 4. Enable CompareCaptureOutput (TIMx_CCER→CCyE)

C. Exercise

PWM output of period 1kHz with duty ratio 50%. PWM Out on pin PA 5 (TIM2 CH1)

- Timer Clock
 - System CLK is PLL 84MHz for STM32F411RE
 - Use Counter of TIM2: Up-counting, Timer2 CLK = 100 kHz, COUNT CLK=1 kHz
- PWM output: TIM2 CH1 / PA 5
 - There are several pins for TIM2CH1. We will use GPIO Pin5 (LD2) for tutorial
 - Set the GPIO pin as Alternate function (AF) for TIM2 / No pull-up & No pull-down / High speed / Push-Pull
 - PWM mode 1, Duty ratio 50%

3. Fill in the table

Port/Pin	Description	Register setting	
RCC	PLL Initialization	RCC_PLL_init(); EC_SYS_CLK =EC_PLL= 84,000,000	
	Enable Timer Peripheral Clock: TIM2	RCC->APB1ENR =1 «0	
TIM2 (Timer setting)	TIM2 counting direction: DIR0	TIM2->CR1 & = $\sim (1 \ll 0)$	
	Set Timer Clock Pre-scaler value 84MHz To 100kHz	TIM2->PSC	
	Set Auto-reload value: With 100kHz, counting of 1kHz	TIM2->ARR	
	Enable Timer DMA/Interrupt	TIM2->DIER	
	Enable Counter	TIM2->CR1	
GPIOA	Set GPIOA pin 5 as Alternate Function mode: 10	GPIOA->MODER &=~ GPIOA->MODER =	
	GPIOA Alternate Function Selection: AF1(TIM2/TMI5) AFRL 5[3:0]=0001	GPIOA->AFR[0]	
	AF Output as No-PUPD, Push-Pull, Very High Speed.	// write your HAL API	
TIM2 (PWM setting)	Enable auto-reload preload	TIM2_CR1	
	Output compare mode as PWM mode1	TIM2_CCMRn	
	Set CCR value for 50% duty ratio: (ARR+1)/2	TIM2_CCR1	
	Output as active high	TIM2_CCER	
	Enable Compare and Capture output	TIM2_CCER	

4. Firmware Programming

- Create a new project and name the project as 'Tutorial_TIMER_PWMout'.
- Give PWM output of 0%, 50%, 100% of 1kHz PWM
- Check the brightness of LD2 (PA5) for each different Duty ratio
- Change to 50% Duty ratio of 10kHz frequency PWM

```
17 #define LED_PIN 5
    void setup(void);
20
21 □int main(void) {
      // Initialiization -----
23
      RCC_PLL_init();
                                            // System Clock = 84MHz
      24
25
26
27
28
      // TEMP: TIMER Register Initialization -----
      TIM_TypeDef *TIMx;
29
30
      TIMx = TIM2;
31
    // GPIO: ALTERNATIVE function setting
32
33
      GPIOA->AFR[0]
                                                           // AF1 at PA5 = TIM2_CH1 (p.150)
34
      // TIMER: PWM setting
35
36
      RCC->APB1ENR |=
                                                           // Enable TIMER clock
37
                                                           // Direction Up-count
38
39
      TIMx->CR1 &=
40
      TIMx->PSC =
                                                           // f_cnt = 10kHz
41
42
43
      TIMx->ARR =
                                                           // Auto-reload: Upcounting (0...ARR).
44
      TIMx->CCMR1 &= ~TIM_CCMR1_OC1M;
                                                           // Clear ouput compare mode bits for channel 1
      TIMx->CCMR1 |=
TIMx->CCMR1 |= TIM_CCMR1_OC1PE;
                                                          // OC1M = 110 for PWM Mode 1 output on ch1
// Output 1 preload enable (make CCR1 value changable)
45
46
47
48
49
50
      TIMx->CCER &= ~TIM_CCER_CC1P;
TIMx->CCER |=
TIMx->CCR1 =
                                                          // select output polarity: active high
// Enable output for chl
                                                           // Output Compare Register for channel 1
51
52
53
      TIMx->CR1 |= TIM_CR1_CEN;
                                                           // Enable counter
54
      // Inifinite Loop -----
55
56
     while(1){
57
          //Create the code to change the brightness of LED as 10kHZ (use "delay(100)")
59 -
60
60 // Initialiization
61
    void setup(void)
62 🖵 {
      RCC_PLL_init();
                                              // System Clock = 84MHz
63
64
                                               // for delay_ms()
      SysTick_init();
65
66
```

Appendix

1. Pin Configuration of NUCLE-F411RE

Figure 19. NUCLEO-F411RE

Table 29. ST morpho connector on NUCLEO-F401RE, NUCLEO-F411RE, NUCLEO-F446RE

CN7 odd pins CN7 even pins CN10 odd pins CN10 even pins					ven pins		
Pin	Name	Name	Pin	Pin	Name	Name	Pin
1	PC10	PC11	2	1	PC9	PC8	2
3	PC12	PD2	4	3	PB8	PC6	4
5	VDD	E5V	6	5	PB9	PC5	6
7	BOOT0 ⁽¹⁾	GND	8	7	AVDD	U5V ⁽²⁾	8
9	-	-	10	9	GND	-	10
11	-	IOREF	12	11	PA5	PA12	12
13	PA13 ⁽³⁾	RESET	14	13	PA6	PA11	14
15	PA14 ⁽³⁾	+3.3V	16	15	PA7	PB12	16
17	PA15	+5V	18	17	PB6	-	18
19	GND	GND	20	19	PC7	GND	20
21	PB7	GND	22	21	PA9	PB2	22
23	PC13	VIN	24	23	PA8	PB1	24
25	PC14	-	26	25	PB10	PB15	26
27	PC15	PA0	28	27	PB4	PB14	28
29	PH0	PA1	30	29	PB5	PB13	30
31	PH1	PA4	32	31	PB3	AGND	32
33	VBAT	PB0	34	33	PA10	PC4	34
35	PC2	PC1 or PB9 ⁽⁴⁾	36	35	PA2	-	36
37	PC3	PC0 or PB8 ⁽⁴⁾	38	37	PA3	-	38

Default state of BOOT0 is 0. It can be set to 1 when a jumper is on pin5-7 of CN7. Two unused jumpers are available on CN11 and CN12 (bottom side of the board).

U5V is 5 V power from ST-LINK/V2-1 USB connector and it rises before +5V.

^{3.} PA13 and PA14 share with SWD signals connected to ST-LINK/V2-1, it is not recommend to use them as IO pins if ST-LINK part is not cut.

^{4.} Refer to Table 10: Solder bridges for details.

2. Timer GPIO pinout for STM32f411

Timer PinOut Map

Advanced Timer

Timer	Channel	Port	Pin
	1	Α	8
	1N	Α	7
		В	13
	2	Α	9
	2N	В	0
1		В	14
	3	Α	10
	3N	В	1
		В	15
	4		
	4N		

General Purpose Timer

Timer	Channel	Port	Pin
		Α	0
	1	Α	5
		Α	15
2	2	Α	1
	2	В	3
	3	В	10
	4		
	1	Α	6
		В	4
		С	6
3	2	В	5
	2	С	7
	3	С	8
	4	С	9
	1	В	6
4	2	В	7
4	3	В	8
	4	В	9