WHAT IS CLAIMED IS:

1. A chip electronic component comprising:

a ceramic element;

terminal electrodes having a metal coating formed on a surface of the ceramic

element; and

5

10

a glass layer formed on at least a part of a surface of the ceramic element

where the terminal electrodes are not formed,

wherein the glass layer contains at least two species of alkali metal elements selected from Li, Na and K, and the atomic total amount of the alkali metal elements is greater than or equal to 20 atomic percent of the atomic total amount of elements except oxygen contained in the glass layer.

- 2. A chip electronic component according to Claim 1, wherein at least Li and K are included as the alkali metal elements.
- 3. A chip electronic component according to Claim 1, wherein the atomic ratio of the two species of alkali metal elements having a highest ranking among the alkali metal elements contained in the glass layer are in a ratio from 2:8 to 8:2.
- 4. A chip electronic component according to Claim 1, wherein the ceramic element contains a semi-conductive ceramic material.
- 5. A chip electronic component according to Claim 2, wherein the atomic ratio of the two species of alkali metal elements having a highest ranking among the alkali metal elements contained in the glass layer are in a ratio from 2:8 to 8:2.
- 6. A chip electronic component according to Claim 2, wherein the ceramic element contains a semi-conductive ceramic material.
- 7. A chip electronic component according to Claim 3, wherein the ceramic element contains a semi-conductive ceramic material.

8. A chip electronic component according to Claim 5, wherein the ceramic
element contains a semi-conductive ceramic material.