Задача 1

Даны точки A(1,2,1), B(1,0,-1) и C(-1,2,-1).

Определить координаты векторов \overline{AB} , \overline{BC} , \overline{CA} .

Otbet: $\overline{AB} = \{0, -2, -2\}, \ \overline{BC} = \{-2, 2, 0\}, \ \overline{CA} = \{2, 0, 2\}.$

Задача 2

Даны векторы $\overline{AB} = \{1, -1, 0\}, \ \overline{CD} = \{-2, 1, 3\}.$

Определить координаты точек A и D, если известно, что B(2,1,-1), C(1,-2,-2).

Ответ: A(1,2,-1), D(-1,-1,1).

Задача 3

Даны векторы $\mathbf{a} = \{2, 2, -1, \}$, $\mathbf{b} = \{-1, 1, 1\}$ и $\mathbf{c} = \{1, 0, -1\}$.

Определить координаты векторов $\mathbf{g} = 2\mathbf{b} - \mathbf{a} + 3\mathbf{c}$ и $\mathbf{h} = 2\mathbf{c} - 2\mathbf{a} - \mathbf{b}$.

Otbet: $\mathbf{g} = \{-1,0,0\}, \mathbf{h} = \{-1,-5,-1\}.$

Залача 4

Представить вектор c в виде линейной комбинации векторов a и b, если:

- 1) $\mathbf{a} = \{2,3\}, \mathbf{b} = \{-1,1\} \text{ if } \mathbf{c} = \{5,5\};$
- 2) $\mathbf{a} = \{-1,3\}, \mathbf{b} = \{4,2\} \text{ if } \mathbf{c} = \{7,7\}.$

Ответы:

- 1) c = 2a b,
- 2) c = a + 2b.

Залача 5

Представить вектор **d** в виде линейной комбинации векторов a, b и c, если:

- 1) $\mathbf{a} = \{2, -1, 1\}, \mathbf{b} = \{1, 1, 0\}, \mathbf{c} = \{0, 2, -1\} \text{ if } \mathbf{d} = \{2, -4, 2\};$
- 2) $\mathbf{a} = \{1, 1, -1\}, \mathbf{b} = \{-1, 0, 1\}, \mathbf{c} = \{1, -2, 0\} \text{ if } \mathbf{d} = \{0, 0, 1\}.$

Ответы:

- 1) d = 2a 2b,
- 2) $\mathbf{d} = 2\mathbf{a} + 3\mathbf{b} + \mathbf{c}$.

Залача 6 (*)

Даны векторы $\mathbf{a} = \{-5, 2\}, \mathbf{b} = \{-5, 4\}$ и $\mathbf{c} = \{-4, 2\}$.

Подобрать числа α и γ так, чтобы векторы α **a** , **b** и γ **c** образовали треугольник, если начало вектора **b** совместить с концом вектора α **a** , а конец – с началом вектора γ **c** .

Otbet: $\alpha = 3$, $\gamma = -5$.

Задача 7

Определить, лежат ли на одной прямой линии точки A(3,2,4), B(4,6,5) и C(1,-6,2).

Ответ: да, точки A, B и C лежат на одной прямой.

Задача 8

Пусть в декартовой прямоугольной системе координат вектор $\mathbf{a} = \{x, y, z\}$.

Доказать, что $x = \Pr_{O_x}(\mathbf{a}), y = \Pr_{O_y}(\mathbf{a}), z = \Pr_{O_z}(\mathbf{a}).$

Залача 9

Найти ортогональную проекцию точки M(1,2,3) на ось Oz и на плоскость Oxy.

Ответ: ортогональная проекция точки M на ось Oz – это точка $M_z(0,0,3)$, на плоскость Oxy – это точка $M_{xy}(1,2,0)$.

16.09.2014 9:11:24

Задача 10 (*)

Пусть в декартовой прямоугольной системе координат вектор $\mathbf{a} = \{x, y, z\}$.

Доказать, что направляющие косинусы $\cos(\alpha)$, $\cos(\beta)$ и $\cos(\gamma)$ вектора **a** удовлетворяют следующим соотношениям:

1)
$$\cos(\alpha) = \frac{x}{|\mathbf{a}|}, \cos(\beta) = \frac{y}{|\mathbf{a}|}, \cos(\gamma) = \frac{z}{|\mathbf{a}|};$$

2)
$$\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1$$
.

16.09.2014 9:11:24