Building an Image Classifier for Detecting Corrosion

DSB 602 – Capstone Project Beau Lambert

Corrosion

- Corrosion
 - A natural process that coverts a refined metal into a more chemically stable metal oxide
- Corrosion of oilfield equipment and processing facilities
 - Common occurrence that poses serious threat to integrity of the facilities
 - Direct total costs due to corrosion are in the billions of dollars each year
 - Visual inspection of corrosion can give insight into the degree of corrosion that is occurring
 - It is hoped to be able to use computer vision to be able to identify corrosion onsite

Problem Statement

- This project's goal is demonstrating proof of concept that computer vision can be used to identify corrosion
- Due to the lack of availability of open oilfield corrosion datasets, this project will use a generalized multi-class corrosion dataset with 5 different classes of corrosion
- This dataset has images that have been annotated with expert corrosion ratings obtained over 10 years of laboratory corrosion testing by material scientists
- Build an image classification model to detect corrosion from images
 - Classify images into multiple (5 different) categories
 - 5 being max corrosion
 - 9 being min corrosion
- Will use accuracy metric
 - Want to beat the baseline accuracy of 20%

What is Computer Vision?

- Goal is to have computers see and understand pictures, videos, and other digital imagery, much like a human would
- Automating visual processing that is normally done by humans
 - Obstructions in road for autonomous vehicles
 - Detecting defects before shipping to customers
 - Reading a CT scan with better accuracy than a human
- Computer vision techniques identify patterns in data
- ML experts train complex models on vast amounts of visual data with the computer eventually learning to distinguish differences between images
- Well-annotated data is the foundation of training a good computer vision model

Problem Solving Workflow

Source Data Data Handling

Pytorch ImageFolder Transform DataLoader

Augmentation

Modeling

ResNet18

Simple CNN

Tune Model

Cross Entropy Loss Adam Accuracy Final Model

Torch.save

Visualization Grad-CAM

Corrosion Image Data

- The dataset is from WPI-ARL (Worcester Polytechnic Institute):
 - https://arl.wpi.edu/corrosion_dataset/
- Data is split into train, val, and test sets
 - 0.8, 0.1, 0.1 respectively
- Data specifics:
 - Images are of panels that have been scribed with a tungsten carbide pen and then placed in a corrosive environment
 - 600 images
 - Balanced classes (120 images each)
 - 5 classes of corrosion determined by expert materials scientists

Figure 3: Scribe corrosion rating scale. *Top:* Discrete corrosion rating assigned for each mm measurement range, i.e. rating 10 is 0 mm, rating 0 is 16+ mm (higher ratings mean less corrosion). *Bottom:* mm measurements of average scribe corrosion width for a panel.

Corrosion Image Data – Three sample images per corrosion rating class 5 - 9 from the data set

Augmentations – A batch (32 samples) of augmented train set

Labels: ['6', '6', '5', '8', '6', '7', '9', '9', '7', '6', '7', '8', '7', '5', '6', '6', '8', '9', '5', '8', '7', '6', '7', '6', '9', '6', '6', '8', '7', '5', '9', '7']

- Random horizontal flipping
- Random cropping
- Random erasing
- Color jitter

- Gaussian Blur
- Random rotation by 45o
- Random invert

Modeling

- Technologies used
 - pandas
 - OS
 - cv2
 - glob
 - Sklearn confusion_matrix
 - Torch
 - AutoImageProcessor
 - Transforms
 - TensorDataset
 - DataLoader
 - Resnet18
 - Accuracy → 43.33%

Grad-CAM (Gradient-weighted Class Activation Mapping)

What is Grad-CAM?

- A visualization technique that provides visual explanations for decisions from CNNs
- It produces course localization maps that highlight important regions in the input image for predicting a particular class
- Why is Grad-CAM important for visualizations?
 - Understanding why a model makes certain predictions can enhance transparency and trust
 - Highlighting regions on the input that were significant for the prediction makes the decision process of the Model more interpretable
 - Investigating why a model misclassified an input can provide insights into how to improve it

How does it work?

- Preprocess input image
- Perform a forward pass
- Identify target layer
- Backward Pass
- Compute heatmap
- Visualize the heatmap

Grad – CAM Visualization (Test set)

Grad – CAM Visualization (Train Set)

Conclusions

- Data set was a source of images with labeled classes of corrosion by expert corrosion materials scientists
- PyTorch provided a convenient methodology to preprocess, classify, and transform images in addition to augmentation with class labels to carry out computer vision modeling
- A model using Resenet18 was developed that surpassed the metric of greater than baseline accuracy of 20%
- This proof on concept indicates that it could be possible to use computer vision technology to automate corrosion detection from images

Future Work

- Collect more images to improve the accuracy of the model
- Experiment with the augmentation parameters to see if accuracy can be improved
 - A very aggressive augmentation transform was used
 - This could be introducing noise into the model
- Expand technology to look at oilfield corrosion
- Once expanded to oilfield corrosion, build a dashboard or visualization interface for the end users, i.e. the oilfield operators.

Questions?