

Single Deep CNN Features to Detect Neurodegenerative Diseases and Context Behind the Detection: Alzheimer's, Parkinson's, Dementia

Capstone Project (CSE 498)

Supervised by

Milon Biswas

Assistant Professor

Department of CSE

Bangladesh university of Business and Technology (BUBT)

Submitted by		
Mohammad Sabbir Ahmed	17183103004	
Syeda Nowshin Ibnat	17183103020	
Rakibul Ahasan	17183103022	
Sheikh Abu Hanif	17183103043	
Nusrat Jahan Anka	17183103008	
Intake: 39(1) Dept of CSE_BURT		

Intake: 39(1), Dept. of CSE, BUBT

Presented Date: 21-11-2021

Contents

01.	Introduction	06.	Literature Review	11.	Impact of Society
02.	Problem Statement	07.	Gantt Chart	12.	Sustainability
03. F	Problem Background	08.	Problem Analysis	13.	Research Flow
04.	Motivation	09.	Research Methodology	14.	Conclusion
05.	Objectives	10.	Ethics	15.	Reference

Introduction

Neurodegenerative diseases occur when nerve cells in the brain or peripheral nervous system lose function over time and ultimately die. Alzheimer's disease, Parkinson's disease, and dementia are most common examples of degenerative neurodegenerative disease. Through our work we are willing to detect these three diseases at a time by a DL model.

Problem Statement

Identifying neurodegenerative diseases with proper explanation using one model is quite challenging.

Problem Background

- The present neurodegenerative diseases detection system only detects one disease.
- Identifying neurodegenerative diseases and behind the reason of appearing is a deadly problem that needs to be solved.
- Due to the similarities in disease phenotypes, accurate detection of neurodegenerative diseases, including the context behind the detection is problematic.

Motivation

Detect the disease in early stage.

Detect three disease at a time.

To reduce wasting time & cost.

Objectives

- Get decent accuracy using a suitable MRI dataset.
- Use XAI to know the context behind the detection.
- Comparing the existing architectures with the proposed one for neurodegenerative diseases detection.

Literature Review

Title / Question	Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Objectives/ Goal	They found 3 problems and their goal is to solve these problems:
	1. The classification performance is difficult to compare across studies due to variations in components such as participant selection, image preprocessing, or validation procedure.
	2. These studies are hardly reproducible because their frameworks are not publicly accessible and because implementation details are lacking.

Methodology/ Theory	They proposed a solution:
	1. Performed a systematic literature Review. To do so, they Identified
	four main types of approaches:
	i) 2D slice-level,
	ii) 3D patch-level,
	iii) ROI-based and
	iv) 3D subject-level CNN
	 Their second contribution is the extension of an open-source framework for the classification of AD using CNN and T1-weighted MRI. The framework comprises previously developed tools to automatically convert ADNI, AIBL, and OASIS data into the BIDS standard, and a modular set of image preprocessing procedures, classification architectures, and evaluation procedures dedicated to deep learning. Finally, they used this framework to rigorously compare different CNN architectures.

Test	Experiments are conducted using ADNI dataset.
Experiment	
Simulation/	A total of 9540 images were used for training the network and 4193
Test Data	images for testing.
Result / Conclusion	Model accuracy is 98.57% and the validation accuracy is 87.72%.
Obstacles/ Challenges	Fails to interpret the reasoning behind the result obtained.

Title / Question	Deep Learning-Based Alzheimer Disease Detection.
Objectives / Goal	The objective of this work is to present a framework based on deep convolutional neural networks for Alzheimer's disease detection in terms of accuracy.
Methodology/	The proposed methodology consists of two steps- preprocessing and
Theory	1) For preprocessing, MRI samples were converted into JPEG slices in the MATLAB tool. 2) For network training, the architecture consists of three sets of convolutional and max-pooling layers.
Software Tools	Anaconda, Keras, Tensor- flow

Test/	When downloading data from the ADNI database, NII has selected
Experiment	the format data.
	In order to obtain the data with the same parameters to avoid many other problems in processing procedure, the pre-processed data were preferred here.
	The steps of pre-processing include gradient unwarping and a nonparametric non-uniformed bias correction (N3) algorithm, both can be done with Grinder Pipeline. The structural MR images were obtained from 3.0 tesla SIEMENS scanners.
Simulation/ Test Data	http://adni.loni.usc.edu/ Data has been selected from different phases of ADNI.In the first group 785 normal controllers, 542 MCI patients, and 336 AD

Title/ Question	Auto-Detection of Alzheimer's Disease Using Deep Convolutional		
	Neural Network		
Objectives/Goal	The objective of this work is to present a DCNN for diagnosing the		
****	diseases of AD/MCI and Achieve a high level of accuracy.		
Methodology/Th	For this work, Firstly, the structural MRIs are pre-processed in a		
eory	strict pipeline. Then, instead of parcellating regions of interest, Each		
	volume is re-sliced and resliced images put into a DCNN		
	directly. Finally, four stages of Alzheimer's are identified.		
Software Tools	Adni database, grinder pipeline(data processing framework),		
	FSL-BET toolbox(brain extraction),3.0 tesla SIEMENS		
	scanners,SPM toolbox (segmented brain into GM, WM, and CSF)		

	patients from ADNI1 and ADNI-GO were picked. In the second
	group, 1106 normal controllers, 1583 early mild cognitive
	impairment (EMCI), 1304 late mild cognitive impairment (LMCI),
	and 336 NC were picked. The age of all the subjects ranges from 60
	to 85 years old. There is no noticeable difference between these
	three groups in terms of gender and age.
Result/	The accuracy of classifying NC with AD is 95.45%, the accuracy of
Conclusion	classifying NC with MCI is 95.39% and the accuracy of classifying
	NC with AD is 93.97%. The convolutional neural network
	framework implemented here offers much more accuracy. The
	results show that the DCNN outperforms existing methods.
	AD patients are much smaller than the groups of EMCI, LMCI, and normal controllers.
Obstacles/	
Challenges	The Challenges in this paper, Selecting data from different stages of
	ADNI, AD/MCI detection using DCNN, MRI data collection, and
	data processing.

Automatic Alzheimer's Disease Recognition from MRI Data Using
Deep Learning Method.
To get the highest accuracy.
Resulting in an accurate recognition.
convolutional neural network (CNN) with deep learning
Tensorflow, google collab etc.
Testing CNN is being proposed to extract seven middle cross-sections
as patches. Since not all patches are abnormal in AD cases, only when
all seven patches were classified as NC, here, considered the data as
NC.

Simulation/Test	The MRI data acquired from Alzheimer's Disease Neuroimaging
Data	Initiative (ADNI) database
Result / Conclusion	This paper achieved sensitivity at a patch level is 0.69 and specificity is 0.98. When using the AD detection rule which was mentioned in the
	testing section, the case level sensitivity is 1 and specificity is 0.93.
Obstacles/Challe nges	In the structure, every one of the three groups is made up of three layers, including a convolutional layer, a pooling layer, and a normalization layer which was really challenging.

Title/ Question	Deep learning based diagnosis of Parkinson's disease using
	convolutional neural network.
Objectives/ Goal	The objective of the work is to present a new approach in the field of
	deep learning models that are able to help the clinicians in the
	diagnosis of Parkinson's disease and yield an objective and better
	patient group classification in the near future.
Methodology/Theor	The MR image database, pre-processing of the MR images, CNN
y	AlexNet architecture, Transfer learning applied to the pre-trained
	AlexNet model and the classification accuracy measures to evaluate
	the model for given input image dataset
Software Tools	AlexNet, PET, SPECT, PPMI database.
Test / Experiment	MR image dataset used in this work includes the Healthy Control and
	Parkinson's disease subjects considered from the PPMI database.
	AlexNet architecture is able to achieve an accuracy of 88.90%.

Simulation/	AlexNet has been pre-trained with colour images of size 227 X 227
Test Data	pixels and processes them in its respective layers, from input to
	output. The image dataset with 80% of the input data is used for
	training and the remaining 20% is used for testing.
Result/ Conclusion	The model is trained to learn the low level to high level features and
	the classification results are validated. An AUC value of 0.9618 is
	reported from the ROC curve which shows a better discriminative
	proficiency of the proposed deep learning model
Obstacles/	MRI data collection and data processing.
Challenges	

Gantt Chart

Gantt Chart Cont.

Problem Analysis

1

The existing approaches can detect one disease at a time.

2

Costly and time consuming.

3

Accuracy rate wasn't satisfactory.

Research Methodology

Ethics

We are working on detecting neurodegenerative diseases: Alzheimer's, Parkinson's, Dementia, and the context behind the detection. We got our datasets from Oasis, Kaggle & PPMI. Our collected datasets are open source. From their written description these datasets were approved to show openly.

Impact of Society

It is essential in order to treat patients at an early stage.

Sustainability

From previous works obtaining highest result we took inspiration and made a decision of using Deep Learning to get better result.

Through our proposed approach we are willing to detect three diseases which wasn't been done yet so with huge hope, we think our work will fulfill the sustainability.

Research Flow

Conclusion

In our society, there are a significant number of senior persons who suffer from neurodegenerative diseases. By this work, we will be able to detect three diseases at a time which will be beneficial for medical professionals.

Reference

[1] J. Wen *et al.*, "Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation," *Med. Image Anal.*, vol. 63, p. 101694, 2020, doi: 10.1016/j.media.2020.101694.

[2] S. S. Kundaram and K. C. Pathak, *Deep Learning-Based Alzheimer Disease Detection*, vol. 673. Springer Singapore, 2021.

Reference cont.

- [3] L. Yue *et al.*, "Auto-detection of alzheimer's disease using deep convolutional neural networks," *ICNC-FSKD 2018 14th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov.*, pp. 228–234, 2018, doi: 10.1109/FSKD.2018.8687207.
- [4] Suhuai Luo, Xuechen Li, Jiaming Li, "Automatic Alzheimer's Disease Recognition from MRI Data Using Deep Learning Method", Journal of Applied Mathematics and Physics, 2017, 5, 1892-1898

Reference cont.

[5] S. Sivaranjani and C. M. Sujatha, "Deep learning based diagnosis of Parkinson's disease using convolutional neural network," 2019, [Online]. Available:

https://doi.org/10.1007/s11042-019-7469-8.

