Vaje 3

- 1. Podano imamo funkcijo $f: [-3,3] \to \mathbb{R}$ s predpisom $f(x) = \sqrt{|x|+1}$.
 - (a) Skonstruirajte interpolacijski polinom p, ki interpolira f v toč-kah -3, -2, -1, 0, 1, 2, 3. Pomagajte si z metodama polyfit in polyval.
 - (b) Skonstruirajte zlepek (odsekoma polinomsko funkcijo, sestavljeno iz dveh interpolacijskih polinomov). Polinom $p_1, p_1 : [-3, 0] \rightarrow \mathbb{R}$, interpolira f v točkah -3, -2, -1, 0, polinom $p_2, p_2 : [0, 3] \rightarrow \mathbb{R}$ pa v točkah 0, 1, 2, 3.

Narišite f, p in zlepek, sestavljen iz p_1 in p_2 .

2. Podano imamo enotsko krožnico, parametrizirano s $f(t) = [\cos(t), \sin(t)]$, $t \in [-\pi, \pi]$.

Skonstruirajte parametričen Langrangeev interpolacijski polinom p: $[-\pi,\pi] \to \mathbb{R}^2$, ki interpolira krožnico pri 6 ekvidistantnih parametrih $t_i \in [-\pi,\pi]$. Pomagajte si z metodama polyfit in polyval.

3. Za dano funkcijo $f:[0,3] \to \mathbb{R}$ in njen odvod df,

```
f = 0(x) \cos(5 * 1./(x+1));
df = 0(x) 5 * \sin(5./(1 + x)) ./ (1 + x).^2;
```

želimo skonstruirati kubični interpolacijski polinom, ki se bo časovno spreminjal glede na spreminjajoče se interpolacijske podatke.

- Prvi polinom naj interpolira f v $[0 \ 1/4 \ x_2 \ 3]$, kjer se x_2 premika od levega do desnega krajišča intervala [1/3, 29/10].
-) Drugi polinom naj interpolira f dvojno v krajiščih $[x_0, x_3]$, kjer velja $x_0 = x_1$ in $x_2 = x_3 = x_0 + 1$, parameter x_0 pa se premika od levega do desnega krajišča intervala [0,2].

Pri posodabljanju slike v zanki shranite sliko polinoma v "temp = plot()" in jo v vsakem koraku izbrišite z ukazom delete(temp). V zanki dodajte tudi pause(0.1), da bo risanje upočasnjeno.

Da boste lahko določili drugi polinom, morate prej še dopolniti metodo za izračun deljenih diferenc za kubični polinom, ki interpolira krajišči dvojno.

Numerične metode 3 - računalniške vaje

```
function d = deljeneDif_P3_2xInterp(X,Y,DY)
% function d = deljeneDif_P3_2xInterp(X,Y,DY)
% Trikotna shema za kubicni polinom za interpolacijske tock
% x0=x1<x2=x3
% X = [x0 x3], interpolacijske tocke
% Y = [y0 y3], interpolacija vrednosti
% DY = [dy0 dy3], interpolacija odvodov</pre>
```