3. Известно, что кобальт (II) может образовывать в водных растворах 4, 6, а иногда — и 5-координированные комплексы. Для определения состава комплекса иона кобальта (II) с 2,2'-бипиридином были записаны электронные спектры поглощения растворов перхлората кобальта и 2,2'-бипиридина (bpy) при длине волны 560 нм. Регистрация спектров проводилась в кювете с длиной оптического пути 2.0 см. Значения оптической плотности (D) приведены в таблице:

С(Со), ммоль/л	1.10-2	9.10-3	8.10-3	7·10-3	6.10-3	5.10-3	4.10-3	3.10-3	2.10-3	1.10-3	0
С(bpy), ммоль/л	0	1.10-3	2.10-3	3.10-3	4.10-3	5.10-3	6.10-3	7·10-3	8.10-3	9.10-3	1.10-2
D	0	0.105	0.214	0.322	0.428	0.536	0.642	0.745	0.642	0.321	0

- 1) Определите состав образующегося комплекса.
- 2) Приведите структурные формулы возможных изомеров данного комплекса. Назовите их.
- 3) Какой из комплексов кобальта с 2,2'-бипиридином, 3,3'-бипиридином или 4,4'- бипиридином имеет, по Вашему мнению, наибольшие значения константы устойчивости? Ответ обоснуйте.

№ 3

- 1) В задаче в явном виде описано установление состава комплекса методом изомолярных серий (метод Жоба-Остромысленского). Построив график зависимости оптической раствора плотности OT соотношения компонентов, получаем, зависимость что имеет максимум при соотношении bpy:Со = 3:1, следовательно, состав образующегося комплекса – $[Co(bpy)_3]^{2+}$.
- 0.75
- 2) Данный комплекс существует в виде двух оптических образование комплексов [Co(bpy)₃(H₂O)₃]²⁺ (ос- и гран-изомеры), [Co(bpy)₃(H₂O)₂]²⁺ (цис- и транс-изомеры).
- Комплекс с 2,2'-бипиридином должен иметь наибольшую константу устойчивости вследствие хелатного эффекта.

Рекомендации к оцениванию:

1. Определение состава образующегося комплекса без построения графика — 2 балла 4 балла

2. Указание на существование изомеров – по 0.5 балла

4 балла 2 балла

3. Упоминание о хелатном эффекте

ИТОГО: 10 баллов