Guião Aula Teorico-prática 1

Matemática Discreta

Breve apresentação da unidade curricular
Início da matéria

SOMATÓRIOS E CÁLCULO DE FORMAS FECHADAS DE SOMATÓRIOS (Caps 4 e 5 do livro)

SOMATÓRIOS E CÁLCULO DE FORMAS FECHADAS DE SOMATÓRIOS

(Caps 4 e 5 do livro)

Em CDI I:

Prove por indução que para qualquer $n \in \mathbb{N}_1$ se verifica a igualdade

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

SOMATÓRIOS E CÁLCULO DE FORMAS FECHADAS DE SOMATÓRIOS

(Caps 4 e 5 do livro)

Em CDI I:

Prove por indução que para qualquer $n \in \mathbb{N}_1$ se verifica a igualdade

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

Em EMD:

Encontre uma forma fechada para

$$\sum_{k=1}^{n} \frac{1}{k^3 + 3k^2 + k}$$

APLICAÇÕES

Entre outras: análise da eficiência de algoritmos imperativos

Algorithm	Time Compl	Space Complexity		
	Best	Average	Worst	Worst
Quicksort	Ω(n log(n))	θ(n log(n))	0(n^2)	0(log(n))
<u>Mergesort</u>	Ω(n log(n))	θ(n log(n))	O(n log(n))	0(n)
Timsort	Ω(n)	θ(n log(n))	O(n log(n))	0(n)
<u>Heapsort</u>	Ω(n log(n))	θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	Ω(n)	Θ(n^2)	0(n^2)	0(1)
Insertion Sort	Ω(n)	Θ(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	Θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	θ(n log(n))	0(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\theta(n(\log(n))^2)$	O(n(log(n))^2)	0(1)
Bucket Sort	Ω(n+k)	Θ(n+k)	0(n^2)	0(n)
Radix Sort	Ω(nk)	Θ(nk)	O(nk)	0(n+k)
Counting Sort	Ω(n+k)	Θ(n+k)	0(n+k)	0(k)
Cubesort	Ω(n)	θ(n log(n))	0(n log(n))	0(n)

NOTAÇÃO

CALCULAR FORMAS FECHADAS DE SOMATÓRIOS

Existem vários métodos: o método a usar depende do tipo de somatório

$$\sum_{k=n}^n u_k \qquad (p,n\in\mathbb{N}), n\geq p$$

Exemplos

u_k	perturbação da soma (cap 4)	cálculo finito explícito (cap 5)	cálculo finito implícito (cap 5)
$a_n k^n + \ldots + a_1 k + a_0$ (polinómio)	√		(potência fatorial com expoente natural)
$\frac{p(x)}{q(x)}$ $(p(x), q(x) \text{ polinómios})$			(potência fatorial com expoente negativo)
a^k ou $k^p a^k$ $(a \in \mathbb{R}, p \in \mathbb{Z})$	√	√	√ (integração finita por partes)

CÁLCULO (INFINITESIMAL)

$$f: \mathbb{R} \to \mathbb{R}$$

Derivada:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
ou

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x}$

Teorema fundamental do cálculo

$$\int_a^b f'(x)dx = f(b) - f(a)$$

CÁLCULO FINITO

$$u:\mathbb{N} o \mathbb{R}$$
 (sucessões)

Derivada finita:

 $(u: \mathbb{Z} \to \mathbb{R})$

 $u_n' = u_{n+1} - u_n$

Teorema fundamental do cálculo finito

$$\sum_{i}(u_k)' = u_{n+1} - u_p$$

CÁLCULO FINITO

 $\underline{\mathsf{DEFINI} \tilde{\mathsf{AO}}}_{:} \; u_k \; (k \in \mathbb{N}) \; \; \mathsf{sucess\~ao}$

OUTRA NOTAÇÃO:

EXEMPLOS/EXERCÍCIOS:

• Lista 1 1.1b) $u_k = 3k$

• Lista 1 1.1c) $u_k = k^2$

Também existem regras de derivação (soma, produto, quociente,..)

• Lista 1 2.1b) Soma: $(u_k + v_k)' = u'_k + v'_k$

• Lista 1 2.1c) Produto:
$$(u_k \times v_k)' = u'_k \times v_{k+1} + u_k \times v'_k$$
 (TPC)

TEOREMA FUNDAMENTAL DO CÁLCULO FINITO: u_k $(k \in \mathbb{N})$ sucessão

Justificação:

Cálculo de formas fechadas de somatórios

PRIMEIRO MÉTODO:

• útil para somatórios $\sum_{k=p}^{n} u_k$ com

$$u_k = a^k$$
 ou $u_k = k^p a^k$ $(a \in \mathbb{R}, p \in \mathbb{N})$

ullet baseia-se diretamente na derivada finita de u_k e no TFCF

EXEMPLO:	Calcular	forma	fechada	para

$$\sum_{k=0}^{n} 5^k \qquad \text{(Lista 1 2.2 b))}$$

1. Derivada finita do termo geral

2. Aplicar somatório a ambos os lados da igualdade anterior, e depois aplicar TFCF ao lado esquerdo

3. Manipular igualdade anterior para obter forma fechada pretendida

EXEMPLO: Calcular forma fechada para
$$\left[\sum_{k=0}^{n} k2^{k}\right]$$
. (Lista 1 2.2 h))

1. Derivada finita do termo geral

2. Aplicar somatório a ambos os lados da igualdade anterior, e depois aplicar TFCF ao lado esquerdo

3. Manipular igualdade anterior para obter forma fechada pretendida