

Présenté par :

Samir SI-MOHAMMED Pr Ad ENS De Lyon - LIP - Stackeo F samir.si-mohammed@ens-lyon.fr Encadré par :

Pr Adlen KSENTINI (EURECOM)
Pr Yacine CHALLAL (ESI)
Pr Amar BALLA (ESI)

Sommaire

- Contexte
- Concepts fondamentaux
- Orchestration de vols
- Optimisation de vols
- Synthèse

Contexte

Projet Européen

Partenaire Académique

Plateforme 5G

- Objectifs
- 1. Développement d'un contrôleur pour l'orchestration de vols de drones sur des réseaux 5G.
- 2. Proposition de solutions pour l'optimisation de vols de drones sur des réseaux 5G.

Concepts Fondamentaux

Software Defined Networking

- Simplifie la gestion du réseau, introduit la programmabilité en centralisant logiquement l'intelligence du réseau.
- Sépare les éléments qui composent un réseau (tels que le flux de données et le flux de contrôle)
 - Couche contrôle : Slice Orchestrator

Architecture SDN (Tijare et Vasudevan, 2016)

Network Slicing

 Assure la personnalisation des services et l'isolation dans une infrastructure physique, en permettant la séparation logique et physique des ressources.

- Un Slice réseau est un réseau virtuel avec un but bien précis.
 - Application : Vols de drones.

Catégories de Service 5G (Ji et al., 2018)

Orchestration de vols

Slice Orchestrator

 Slice Orchestrator servant de vis-à-vis entre 5GEVE et le système 5G!Drones.

Architecture du système UAV 5G!Drones

1. Slice Orchestrator

Besoins fonctionnels

Le Slice Orchestrator doit permettre de :

- Créer, modifier, supprimer et redéployer des Slices réseau.
- Lister les Slices réseau créés.
- Afficher les temps de création et de suppression de Slices réseau.
- Rediriger l'utilisateur vers une page de suivi de performances (KPI Monitoring) d'un Slice.

Slice Orchestrator

Ensemble des méthodes développées pour l'API Nord de 5GEVE (Swagger).

Slice Orchestrator API

This interface provides the offered methods of our Slice Orchestrator API, their parameters and their responses

API Nord du Slice Orchestrator

- Rôles du Portail Web :
 - Transmission des demandes de gestion de Slices au Slice Orchestrator.
 - Collecte des mesures KPIs (Key Performance Indicators).

Architecture du Portail Web

- Introduction d'informations à travers des formulaires sur le Portail Web (Flask).
- Informations réparties en Métadonnées, Radio et Cloud.

Formulaire NSD

Architecture 5GEVE-Sophia Antipolis

Intégration du Slice Orchestrator et Portail Web dans 5GEVE.

 Ouverture d'un socket sur l'application Serveur sous le nom DNS.

```
HOST = 'gps-server.eurecom.mec'  # The server's hostname or IP address

#HOST = '172.29.248.16'

#HOST = '192.168.12.167'

PORT = 65432  # The port used by the server
```

Socket HOST

Transition du trafic depuis le client vers le Serveur.

Logs Application GPS

Optimisation de vols

Optimisation d'architecture

 Architecture permettant la planification et gestion de vols de drones sur des réseaux 5G et faisant intervenir l'ensemble des parties prenantes.

Architecture de vol

Optimisation de plan de vols

 Modélisation du réseau en forme hexagonale, où chaque groupe de régions est couvert par un Serveur d'Application.

Topologie du réseau

Optimisation de plan de vols

- Modélisation sous forme de graphe où les nœuds sont les régions, et les arêtes la distance entre elles.
- Distance entre nœuds égale à 1 s'ils sont sous la couverture du même Serveur, C sinon.

Structure du graphe

 Probabilité de surcharge de la région destination ajoutée aux poids.

$$C_{nj}$$
 $w_{(i,j)(n,j)}(t) = 1 + P_{nj}(t)$ C_{ij} $w_{(i,j)(k,m)}(t) = C + P_{km}(t)$ C_{km}

 Paramètres dotés de coefficients afin de pouvoir diriger l'algorithme.

 $w_{(i,j)(k,m)} = \begin{cases} 1 + (1-\alpha) P_{km}(t) \operatorname{si} j = m \\ C + \alpha P_{km}(t), \operatorname{sinon} \end{cases}$

- $0<\alpha<1$

Poids des arêtes

Problème du Plus Court Chemin

Optimisation de vols

$$w_{(i,j)(k,m)} = \begin{cases} 1 + (1-\alpha) P_{km}(t) si j = m \\ C + \alpha P_{km}(t), sinon \end{cases}$$

 Scenario 1 : Plus de poids est donné à la Migration de Service, i.e. Migrer un Service est plus coûteux que traverser une cellule chargée.

Résultats Scénario 1

 Scenario 2 : Plus de poids est donné à la Surcharge des Cellules, i.e.
 Traverser une cellule chargée est plus coûteux que Migrer un Service.

Résultats du Scénario 2

Drone utilisé

Télécommande de drone

Pixhawk 4 Autopilot

ARDU Pilot Mission Planner


```
from dronekit import *
     import time
     import ison
     from datetime import datetime, date
     with open('telemetry_info.json', 'w') as json_file:
             json.dump(init, json_file)
    telemetry_infos = []
    def fill_info(info):
            with open('telemetry_info.json', 'r+') as file:
                     data = json.load(file)
14
                     data.update(info)
                     file.seek(0)
                     json.dump(data, file, sort_keys=True, indent=2)
2.0
    #vehicle = connect('127.0.0.1:14550', wait_ready=True)
    vehicle = connect('127.0.0.1:14550', wait_ready=False)
    #vehicle.mode = VehicleHode("HISSION")
    while (True):
            # vehicle is an instance of the Vehicle class
             print ("Autopilot Firmware version: ", vehicle.version)
             #print ("Autopilot capabilities (supports ftp): ", vehicle.capabilities.ftp)
             print ("Global Location: ", vehicle.location.global_frame)
             print ("Global Location (relative altitude): ", vehicle.location.global_relative_frame)
36
             print ("Local Location: ", vehicle.location.local_frame)
             print ("Attitude: ", vehicle.attitude)
             print ("Velocity: ", vehicle.velocity)
             print ("GP5: ", vehicle.gps_0)
             print ("Groundspeed: ", vehicle.groundspeed)
             print ("Airspeed: ", vehicle.airspeed)
             print ("Gimbal status: ", vehicle.gimbal)
             print ("Battery: ", vehicle.battery)
             print ("EKF OK?: ", vehicle.ekf_ok)
             print ("Last Meartbeat: ", vehicle.last_heartbeat)
             print ("Rangefinder: ", vehicle.rangefinder)
             print ("Rangefinder distance: ", vehicle.rangefinder.distance)
             print ("Rangefinder voltage: ", vehicle, rangefinder.voltage)
42
             print ("Heading: " , vehicle.heading)
44
             print ("Is Armable?: ", vehicle.is_armable)
             print ("System status: ", vehicle.system_status.state)
             print ("Mode: ", vehicle.mode.name) # settable
46
             print ("Armed: ", vehicle.armed)
```

Application de télémétrie Dronekit

Mini-PC

Configuration Mini-PC

Synthèse

Perspectives

- Opérations de Data Mining sur les KPI en plus de leur collecte.
- Gestion de l'aspect sécurité et isolation des Slices lors de la création, et au cours de l'exécution.
- Lien entre le Portail Web et l'UTM pour effectuer une validation synchronisée des plans de vol.

Conclusion

- Résultats ayant rendu la plateforme 5GEVE utilisable par les partenaires du projet 5G!Drones.
- Architecture adoptée par les partenaires du projet : Gain en temps de négociations, grâce à la concordance des vues des différents métiers (Réseau et Aviation).
- Optimisation des vols de drones en termes de Relocations de Service, et accroissement du contrôle des pilotes durant les missions critiques.

Publications issues du PFE

- Publication acceptée à une Conférence Internationale IEEE GLOBECOM
 2020: 'Samir Si-Mohammed, Adlen Ksentini, Maha Bouaziz, Yacine Challal et Amar Balla. « UAV mission optimization in 5G: On reducing MEC service relocation », IEEE Global Communications Conference, Taipei, Taiwa, December 2020'.
- Publication soumise à un Journal International IEEE Vehicular Magazine: 'Samir Si-Mohammed, Maha Bouaziz, Hamed Hellaoui, Oussama Bekkouche, Adlen Ksentini, Tarik Taleb, Lechoslaw Tomaszewski, Thomas Lutz, Gokul Srinivasan, Tanel Jarvet et Pawel Montowtt. « Supporting UAV Services in 5G Networks: New architecture integrating 5G with U-space», IEEE Vehicular Magazine'.

Merci pour votre attention!

