MCO60408 MICROCONTROLADORES

Aula 08 – Temporizadores/Contadores

SUMÁRIO

- Temporizadores/Contadores;
- TIMER0/TIMER1/TIMER2;
 - Modo Normal;
 - Modo CTC;
 - Modo PWM Rápido;
 - Modo PWM com Fase Corrigida;
 - Modo PWM com Fase e Frequência Corrigidas;
- Registradores;
- Configuração dos Temporizadores;
- Bibliotecas LS / R2R;
- Exercício;
- Leitura Recomendada.

TEMPORIZADORES/CONTADORES

TEMPORIZADORES/CONTADORES

- São baseados em um circuito contador que incrementa um registrador a cada número específico de ciclos de relógio;
- São periféricos especializados em marcar a passagem do tempo, sem carregar a CPU;
- Quando ocorre o estouro do contador (overflow), uma interrupção pode ser ativada;
 - Permite a execução de código a intervalos regulares de tempo.
- O ATmega328 possui três temporizadores, sendo dois contadores de 8 bits (TIMER0 e TIMER2) e um contador de 16 bits (TIMER1).

$$t_{estouro} = \frac{(TOP + 1) \times prescaler}{f_{osc}}$$

TEMPORIZADORES/CONTADORES

Funcionamento de um temporizador/contador do Atmega.

Supondo um TC de 8 bits (Conta até o valor TOP 255), trabalhando com uma frequência de 1 MHz, sem divisor de frequência, o tempo para seu estouro é:

$$t_{estouro} = \frac{(255+1) \times 1}{1 \text{ MHz}} = 256 \mu s$$

Supondo um TC de 16 bits (Conta até o valor TOP 65535), trabalhando com uma frequência de 16 MHz, com divisor de frequência de 64, o tempo para seu estouro é de:

$$t_{estouro} = \frac{(65535 + 1) \times 64}{16 \text{ MHz}} = 0,262 \text{s}$$

MODULAÇÃO POR LARGURA DE PULSO – PWM

O uso desses sinais é baseado no conceito de valor médio de uma forma de onda periódica.

Dispositivos eletrônicos podem ser controladores com sinal de PWM:

- Motores;
- Lâmpadas;
- LEDs;
- fontes chaveadas;
- circuitos inversores, etc.

O valor médio de uma forma de onda é controlado pelo tempo em que o sinal fica em nível lógico alto durante um determinado intervalo tempo. No PWM é chamado de Ciclo ativo (*Duty Cycle*).

MODULAÇÃO POR LARGURA DE PULSO – PWM

PWM com período T e ciclo ativo de 0%, 25%, 50%, 75% e 100%.

O calculo do valor médio de um sinal digital e dado por:

$$V_{m\acute{e}dio} = \frac{Amplitude\ M\'{a}xima}{Per\'{i}odo} \times (Tempo\ Ativo\ no\ Periodo)$$

TIMER0/TIMER1/TIMER2

TIMERO/TIMER1/TIMER2

- o O TIMERO e o TIMER2 são temporizadores/ contadores de uso geral de 8 bits;
 - Possuem duas saídas de comparação independentes (OCnA, OCnB);
 - Suportam geração de sinal PWM (*Pulse Width Modulation*).
- o O TIMER1 é um temporizador/contador de uso geral de 16 bits;
 - Possui duas saídas de comparação independentes (OC1A, OC1B);
 - Suportam geração de sinal PWM (*Pulse Width Modulation*);
 - Suporta medição de duração de sinal.

Definições importantes:

O contador atinge **BOTTOM** quando seu valor se torna 0x00;

O contador atinge **MAX** quando seu valor se torna **0xFF** (8 bits) ou **0xFFFF** (16 bits);

O contador de 8 bits atinge **TOP** quando seu valor se torna igual ao maior valor de contagem. Pode ser igual a **MAX** ou igual ao valor de **OCRnA**, dependendo do modo de operação;

O contador de 16 bits atinge TOP quando seu valor se torna igual ao maior valor de Pode contagem. ser 0x00FF.igual a 0x01FF. 0x03FFou valor igual ao de OCR1A ou de ICR1. dependendo do modo de operação.

ATMEGA328

DO

TEMPORIZADORES

IAGRAMA

TIMERO/TIMER1/TIMER2

- o Modos de operação:
 - O TIMERO e o TIMER2 permitem o funcionamento em quatro modos de operação:
 - Modo normal;
 - Modo CTC (Clear Timer on Compare match);
 - Modo PWM rápido (fast PWM);
 - Modo PWM com fase corrigida (phase correct PWM).
 - O TIMER1 permite o funcionamento em cinco modos de operação:
 - Modo normal;
 - Modo CTC (Clear Timer on Compare match);
 - Modo PWM rápido (fast PWM);
 - Modo PWM com fase corrigida (phase correct PWM);
 - Modo PWM com fase e frequência corrigidas (phase and frequency correct PWM).

Modo Normal

Modo Normal

- Modo normal;
 - Modo de operação mais simples;
 - A direção de contagem é sempre crescente e o contador não é limpo automaticamente na comparação;
 - O valor de TCNTn conta de BOTTOM até MAX e reinicia em BOTTOM;
 - A flag TOVn (Timer/Counter Overflow Flag) é setada no mesmo ciclo de relógio em que TCNTn se torna igual a zero;
 - A *flag* TOVn é setada por *hardware* e será limpa por *hardware* após o atendimento da interrupção;
 - O valor de TCNTn pode ser modificado por *software* a qualquer momento;

Modo Normal

Modo normal;

- As saídas de comparação podem ser utilizadas para gerar interrupções a cada intervalo de tempo;
- Utilizar as saídas de comparação para gerar sinais PWM em modo normal não é recomendado, uma vez que ocupará muito processamento da CPU;
- A frequência de estouro do contador é dada pela equação a seguir, com N sendo o *prescaler*.

$$f_{timer} = \frac{f_{clk_I/O}}{N \cdot (MAX + 1)}$$

Modo CTC

Modo CTC

- Modo CTC (Clear Timer on Compare match) ou (limpeza do contador na igualdade de comparação);
 - A resolução do contador é manipulada através de um registrador de comparação;
 - OCRnA (8 bits);
 - OCR1A ou ICR1 (16 bits).
 - O valor do contador (TCNTn) é zerado quando ele atinge o valor gravado no registrador de comparação;
 - O registrador de comparação define o valor de topo para o contador e, consequentemente, sua resolução;
 - Este modo permite controle maior da frequência de trabalho do contador.

Modo CTC

- Modo PWM Rápido (Fast PWM);
 - Provê geração de onda em alta frequência.
 - Atuar em rampa simples, contando de BOTTOM a TOP e reiniciando de BOTTOM.
 - No modo de saída de comparação não inversora, OCnx é limpo na comparação entre TCNTn e OCRnx, e setado em BOTTOM.
 - No modo de saída de comparação inversora, OCnx é setado na comparação entre TCNTn e OCRnx, e limpo em BOTTOM.
 - O valor de OCnx não estará visível no *port* a menos que o bit de direção do *port* esteja configurado como saída.

- Modo PWM Rápido (Fast PWM);
 - Devido à operação em rampa simples, a frequência do PWM pode ser o dobro dos modos PWM com correção de fase que operam em duas rampas;
 - Modo ideal para controle de operações de retificação, regulação de energia e conversão D/A.
 - o O aumento da frequência diminui o tamanho dos componentes externos, reduzindo o tamanho e custo total.
 - A flag TOVn é setada cada vez que o contador atinge TOP. Se a interrupção estiver habilitada, a rotina de interrupção pode ser utilizada para modificar o valor de comparação.

$$f_{OCnxPWM} = \frac{f_{clk_I/O}}{N \cdot (TOP + 1)}$$

Modo PWM com Fase Corrigida

Modo PWM com Fase Corrigida

- Provê um sinal PWM de alta resolução e fase corrigida.
 - O modo opera em rampa dupla, ou seja, o contador conta de BOTTOM a TOP e depois retorna de TOP a BOTTOM. Ao final da rampa crescente, ao atingir TOP, o contador permanece um ciclo re relógio em TOP antes de inverter a direção da contagem.
- Em modo não inversor, OCnx é limpo na comparação na rampa crescente e setado na comparação na rampa decrescente. No modo inversor, a operação é o oposto do modo não inversor.
- A frequência de operação do PWM é menor que no modo PWM rápido, porém, devido à simetria da onda gerada, este modo é ideal para aplicações de controle de motores.

Modo PWM com Fase Corrigida

Modo PWM com Fase e Frequência Corrigidas

Modo PWM com Fase e Frequência Corrigidas

- Provê um sinal PWM de alta resolução e fase e frequência corrigidas.
 - O modo opera em rampa dupla com dupla comparação, ou seja, o contador conta de BOTTOM a TOP e depois retorna de TOP a BOTTOM. Ao final da rampa crescente, ao atingir TOP, o contador permanece um ciclo re relógio em TOP antes de inverter a direção da contagem.
- Em modo não inversor, OCnx é limpo na comparação na rampa crescente e setado na comparação na rampa decrescente. No modo inversor, a operação é o oposto do modo não inversor.
- A frequência de operação do PWM é menor que no modo PWM rápido, porém, devido à simetria da onda gerada, este modo é ideal para aplicações de controle de motores.

Modo PWM com Fase e Frequência Corrigidas

- o O funcionamento dos temporizadores é mediado por registradores de controle e de valores:
 - Timer/Counter Control Register A.

TCCR0A - Timer/Counter Control Register A

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
TCCR1A -	Timer/C	ounter1 (Control R	Register A	١				
Dit	7	6	E	4	2	0	4	0	

Bit	7	6	5	4	3	2	1	0	_
(0x80)	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR2A - Timer/Counter Control Register A

Bit	7	6	5	4	3	2	1	0	
(0xB0)	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	TCCR2A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Timer/Counter Control Register B.

TCCR0B – Timer/Counter Control Register B

Bit	7	6	5	4	3	2	1	0	_
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCCR1B – Timer/Counter1 Control Register B

Bit	7	6	5	4	3	2	1	0	_
(0x81)	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TCCR2B – Timer/Counter Control Register B

Bit	7	6	5	4	3	2	1	0	_
(0xB1)	FOC2A	FOC2B	-	_	WGM22	CS22	CS21	CS20	TCCR2B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- Timer/Counter Control Register C.
 - Disponível apenas para o TIMER1.

TCCR1C – Timer/Counter1 Control Register C

Bit	7	6	5	4	3	2	1	0	_
(0x82)	FOC1A	FOC1B	-	_	-	-	-	_	TCCR1C
Read/Write	R/W	R/W	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	

- Timer/Counter Register.
 - Armazena o valor do contador, é incrementado a cada ciclo do relógio do temporizador.

TCNT0 - Timer/Counter Register

Bit	7	6	5	4	3	2	1	0	_			
0x26 (0x46)		TCNT0[7:0]										
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•			
Initial Value	0	0	0	0	0	0	0	0				

TCNT1H and TCNT1L - Timer/Counter1

Bit	7	6	5	4	3	2	1	0	_		
(0x85)				TCNT	1[15:8]				TCNT1H		
(0x84)		TCNT1[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			

TCNT2

TCNT2 – Timer/Counter Register

Bit	7	6	5	4	3	2	1	0					
(0xB2)		TCNT2[7:0]											
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Initial Value	0	0	0	0	0	0	0	0					

- Output Compare Register A.
 - o Armazena o valor de comparação A.

OCR0A - Output Compare Register A

Bit	7	6	5	4	3	2	1	0	_		
0x27 (0x47)		OCR0A[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•		
Initial Value	0	0	0	0	0	0	0	0			

OCR1AH and OCR1AL – Output Compare Register 1 A

Bit	7	6	5	4	3	2	1	0	_	
(0x89)				OCR1	A[15:8]				OCR1AH	
(88x0)	OCR1A[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•	
Initial Value	0	0	0	0	0	0	0	0		

OCR2A – Output Compare Register A

Bit	7	6	5	4	3	2	1	0			
(0xB3)		OCR2A[7:0]									
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			

- Output Compare Register B.
 - o Armazena o valor de comparação B.

OCR0B - Output Compare Register B

Bit	7	6	5	4	3	2	1	0	_
0x28 (0x48)				OCR0	B[7:0]				OCR0B
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

OCR1BH and OCR1BL - Output Compare Register 1 B

Bit	7	6	5	4	3	2	1	0	_	
(0x8B)				OCR1	B[15:8]				OCR1BH	
(0x8A)		OCR1B[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•	
Initial Value	0	0	0	0	0	0	0	0		

OCR2B

OCR2B - Output Compare Register B

Bit	7	6	5	4	3	2	1	0				
(0xB4)		OCR2B[7:0]										
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Initial Value	0	0	0	0	0	0	0	0				

- Input Capture Register.
 - Pode ser utilizado para contar o tempo entre pulsos no pino externo ICP.

ICR1H and ICR1L - Input Capture Register 1

Bit	7	6	5	4	3	2	1	0	_
(0x87)				ICR1	[15:8]				ICR1H
(0x86)				ICR1	[7:0]				ICR1L
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- Timer/Counter Interrupt Mask Register.
 - o Máscara de interrupções dos temporizadores.

TIMSK0 – Timer/Counter Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	_
(0x6E)	-	-	-	_	-	OCIE0B	OCIE0A	TOIE0	TIMSK0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TIMSK1 - Timer/Counter1 Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	_
(0x6F)	_	-	ICIE1	_	_	OCIE1B	OCIE1A	TOIE1	TIMSK1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TIMSK2 – Timer/Counter2 Interrupt Mask Register

Bit	7	6	5	4	3	2	. 1	0	_
(0x70)	-	-	_	_	_	OCIE2B	OCIE2A	TOIE2	TIMSK2
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

REGISTRADORES

- Timer/Counter Interrupt Flag Register.
 - o Sinaliza as interrupções dos temporizadores.

TIFR0 – Timer/Counter 0 Interrupt Flag Register

			•	•					
Bit	7	6	5	4	3	2	1	0	_
0x15 (0x35)	-	-	_	-	-	OCF0B	OCF0A	TOV0	TIFR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
TIFR1 – Ti	mer/Cou	nter1 In	terrupt Fl	ag Regi	ster				
Rit	7	6	5	1	3	2	1	0	

Bit	7	6	5	4	3	2	1	0	_
0x16 (0x36)	-	_	ICF1	_	-	OCF1B	OCF1A	TOV1	TIFR1
Read/Write	R	R	R/W	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TIFR2

TIFR2 – Timer/Counter2 Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0
0x17 (0x37)	-	-	_	-	-	OCF2B	OCF2A	TOV2
Read/Write	R	R	R	R	R	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

REGISTRADORES

- Asynchronous Status Register.
 - Registrador de controle e estado do temporizador assíncrono.

ASSR – Asynchronous Status Register

Bit	7	6	5	4	3	2	1	0	
(0xB6)	ı	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	ASSR
Read/Write	R	R/W	R/W	R	R	R	R	R	•
Initial Value	0	0	0	0	0	0	0	0	

- General Timer/Counter Control Register.
 - Registrador de controle geral dos temporizadores. GTCCR General Timer/Counter Control Register

Bit	7	6	5	4	3	2	1	0	
0x23 (0x43)	TSM	-	-	-	-	-	PSRASY	PSRSYNC	GTCCR
Read/Write	R/W	R	R	R	R	R	R/W	R/W	'
Initial Value	0	0	0	0	0	0	0	0	

Configuração dos Temporizadores

Configuração dos Temporizadores

- Existem diversas configurações distintas para os temporizadores do ATmega328;
- Para facilitar o entendimento, as configurações foram subdividas nos seguintes tópicos:
 - Prescaler do relógio;
 - Modo de funcionamento;
 - Comportamento das saídas de comparação A e B;
 - Interrupções;
 - Captura de eventos;
 - Forçar comparação;
 - Configuração de valores e níveis.

Todos os temporizadores do Atmega328 possuem seleção individual, tanto para a fonte do relógio quanto para seu *prescaler*. TIMERO e TIMER1

Os temporizadores 0 e 1 permitem oito configurações de relógio: desligado, relógio principal sem *prescaler*, relógio principal com *prescaler* de 8, 64, 256 e 1024 e pino externo (T0 e T1) na borda de subida e de descida.

TIMER2

O temporizador 2 também permite oito configurações de relógio: desligado, relógio principal sem *prescaler* e relógio principal com *prescaler* de 8, 32, 64, 128, 256 e 1024. Este temporizador não permite fonte de relógio baseado em pino externo.

CS12	CS11	CS10	Descrição
0	0	0	Sem fonte de <i>clock</i> (TC1 parado).
0	0	1	clock/1 (prescaler = 1) sem prescaler.
0	1	0	clock/8 (prescaler = 8) .
0	1	1	clock/64 (prescaler = 64).
1	0	0	clock/256 (prescaler = 256).
1	0	1	clock/1024(prescaler = 1024).
1	1	0	Fonte de <i>clock</i> externa no pino T1 (contagem na borda de descida).
1	1	1	Fonte de <i>clock</i> externa no pino T1 (contagem na borda de subida).

CS22	CS21	CS20	Descrição
0	0	0	Sem fonte de clock (TC2 parado)
0	0	1	clock/1 (prescaler=1) - sem prescaler
0	1	0	clock/8 (prescaler = 8)
0	1	1	clock/32 (prescaler = 32)
1	0	0	clock/64 (prescaler = 64)
1	0	1	clock/128 (prescaler = 128)
1	1	0	clock/256 (prescaler = 256)
1	1	1	clock/1024 (prescaler = 1024)

TIMERO e TIMER1

O prescaler do relógio dos temporizadores 0 e 1 é configurado através dos bits 2, 1 e 0 do registrador de controle TCCR0B e TCCR1B, respectivamente.

TIMER2

O prescaler do relógio do temporizador 2 é configurado através dos bits 2, 1 e 0 do registrador de controle TCCR2B.

Modo	WGM02	WGM01	WGM00	Modo de Operação TC	TOP	Atualização de OCR0A no valor:	Sinalização do bit TOV0 no valor:
0	0	0	0	Normal	0xFF	Imediata	0xFF
1	0	0	1	PWM com fase corrigida	0xFF	0xFF	0x00
2	0	1	0	CTC	OCR0A	Imediata	0xFF
3	0	1	1	PWM rápido	0xFF	0x00	0xFF
4	1	0	0	Reservado	-	-	-
5	1	0	1	PWM com fase corrigida	OCR0A	OCR0A	0x00
6	1	1	0	Reservado	-	-	-
7	1	1	1	PWM rápido	OCR0A	0x00	OCR0A

TIMERO e TIMER2

A seleção do modo de funcionamento dos temporizadores 0 e 2 é realizada pela configuração do pino 3 do registrador de controle B (TCCR0B e TCCR2B, respectivamente) e dos pinos 1 e 0 do registrador de controle A (TCCR0A e TCCR2A, respectivamente).

MODO DE FUNCIONAMENTO

TIMER1

A seleção do modo de funcionamento do temporizador 1 é realizada pela configuração dos pinos 4 e 3 do registrador de controle B (TCCR1B) e dos pinos 1 e 0 do registrador de controle A (TCCR1A).

COMnA1	COMnA0	Description
0	0	Normal port operation, OCnA disconnected.
0	1	Toggle OCnA on Compare Match
1	0	Clear OCnA on Compare Match
1	1	Set OCnA on Compare Match

COMnB1	COMnB0	Description
0	0	Normal port operation, OCnB disconnected.
0	1	Toggle OCnB on Compare Match
1	0	Clear OCnB on Compare Match
1	1	Set OCnB on Compare Match

DE

E B

As saída de comparação A e B são configuradas de individualmente. As funções implementadas em cada pino externo (OCnA e OCnB) dependem do modo de funcionamento.

A função dos pinos é configurada nos bits 7 e 6 (saída A) e 5 e 4 (saída B) do registrador de controle A dos temporizadores 0, 1 e 2 (TCCR0A, TCCR1A e TCCR2A).

Modo não PWM

Nos modos não PWM (Normal e CTC), as saídas В e podem ser configuradas como portsnormais, ou para inverterem, limparem ou setarem durante a comparação.

COMnA1	COMnA0	Description
0	0	Normal port operation, OCnA disconnected.
0	1	WGMn2 = 0: Normal Port Operation, OCnA Disconnected. WGMn2 = 1: Toggle OCnA on Compare Match.
1	0	Clear OCnA on Compare Match, set OCnA at BOTTOM, (non-inverting mode).
1	1	Set OCnA on Compare Match, clear OCnA at BOTTOM, (inverting mode).

COMnB1	COMnB0	Description
0	0	Normal port operation, OCnB disconnected.
0	1	Reserved
1	0	Clear OCnB on Compare Match, set OCnB at BOTTOM, (non-inverting mode).
1	1	Set OCnB on Compare Match, clear OCnB at BOTTOM, (inverting mode).

COM1A1/ COM1B1	COM1A0/ COM1B0	Description
0	0	Normal port operation, OC1A/OC1B disconnected.
0	1	WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B disconnected.
1	0	Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at BOTTOM (non-inverting mode)
1	1	Set OC1A/OC1B on Compare Match, clear OC1A/OC1B at BOTTOM (inverting mode)

COMPORTAMENTO Comparação

E B

Modo PWM Rápido

No modo PWM rápido, as saídas podem ser configuradas para operação normal do *port*, inversão na comparação com A, ou nos modos não inversor (limpa na comparação e seta em BOTTOM) e inversor (seta na comparação e limpa em BOTTOM).

COMnA1	COMnA0	Description
0	0	Normal port operation, OCnA disconnected.
0	1	WGM02 = 0: Normal Port Operation, OCnA Disconnected. WGM02 = 1: Toggle OCnA on Compare Match.
1	0	Clear OCnA on Compare Match when up-counting. Set OCnA on Compare Match when down-counting.
1	1	Set OCnA on Compare Match when up-counting. Clear OCnA on Compare Match when down-counting.

COMnB1	COMnB0	Description
0	0	Normal port operation, OCnB disconnected.
0	1	Reserved
1	0	Clear OCnB on Compare Match when up-counting. Set OCnB on Compare Match when down-counting.
1	1	Set OCnB on Compare Match when up-counting. Clear OCnB on Compare Match when down-counting.

COM1A1/ COM1B1	COM1A0/ COM1B0	Description
0	0	Normal port operation, OC1A/OC1B disconnected.
0	1	WGM13:0 = 9 or 11: Toggle OC1A on Compare Match, OC1B disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B disconnected.
1	0	Clear OC1A/OC1B on Compare Match when upcounting. Set OC1A/OC1B on Compare Match when downcounting.
1	1	Set OC1A/OC1B on Compare Match when up- counting. Clear OC1A/OC1B on Compare Match when downcounting.

COMPORTAMENTO

E B

Modo PWM com Fase Corrigida / PWM com Fase e Frequência Corrigidas

Nos modos PWM com Fase Corrigida e PWM com Fase Frequência е Corrigidas, as saídas podem configuradas para operação normal do port, inversão na comparação com A, ou nos modos não inversor (limpa na comparação durante a contagem crescente e seta na comparação durante a contagem decrescente) inversor (seta na comparação durante a contagem crescente e limpa na comparação durante a contagem decrescente).

Interrupções

- Bit **OCIEnB** do registrador **TIMSKn**;
 - Habilita a interrupção por comparação com **OCRnB**, ou seja, quando o bit **OCFnB** no registrador **TIFRn** for setado.
- Bit **OCIEnA** do registrador **TIMSKn**;
 - Habilita a interrupção por comparação com OCRnA, ou seja, quando o bit OCFnA no registrador TIFRn for setado.
- Bit **TOIEn** do registrador **TIMSKn**;
 - Habilita a interrupção por estouro do contador, ou seja, quando o bit TOVn no registrador TIFRn for setado.
- Bit ICIE1 do registrador TIMSK1;
 - Habilita a interrupção por captura do contador, ou seja, quando o bit ICF1 no registrador TIFR1 for setado.

CAPTURA DE EVENTOS

• Bit ICNC1 do registrador TCCR1B;

• Setar este bit ativa o cancelador de ruído da captura de eventos. Quando ativo, o pino de captura de eventos (ICP1) é filtrado. A função filtro requer quatro amostras sucessivas do pino ICP1, logo a captura de eventos é atrasada quatro ciclos de relógio quando o cancelador de ruídos estiver ativo.

• Bit ICES1 do registrador TCCR1B;

- Seleciona a borda de subida (setado) ou de descida (limpo) utilizada para disparar a captura de eventos.
- Quando o registrador **ICR1** é utilizado como valor TOP, o pino ICP1 é desconectado e, consequentemente, a função de captura de eventos é desativada.

FORÇAR COMPARAÇÃO

- Bit FOCnx do registrador TCCRnB/TCCR1C;
 - O bit somente estará ativo nos modos não-PWM. Setar este pino irá forçar a comparação com x, atuando em OCnx, porém não gera interrupção, nem limpa o timer no modo CTC.
 - Para compatibilidade com dispositivos futuros, deve ser escrito em zero quando atualizar o registrador TCCRnB/TCCR1C em modo PWM.

Configurar Valores e Níveis

- Registrador do contador **TCNTn**;
 - Registrador de 8/16 bits que armazena o valor do contador. Incrementa a cada número definido de ciclos de relógio.
- Registrador de comparação com x **OCRnx**;
 - Registrador de 8/16 bits que armazena o valor para comparação com x. Pode ser utilizado para gerar formas de onda ou para gerar interrupções.
- Registrador do contador ICR1;
 - Registrador de 16 bits que é atualizado com o valor do contador (TCNT1) a cada vez que um evento ocorre no pino ICP1 (ou na saída do Comparador Analógico para o TIMER1). O registrador pode ser usado para definir o valor TOP do contador.

EXEMPLOS

• HABILITANDO A INTERRUPÇÃO POR ESTOURO DO TCO

```
#define F CPU 16000000UL
      #include <avr/io.h>
9
      #include <avr/interrupt.h>
10
     #define cpl bit(y,bit) (y^=(1<<bit)) //troca o estado lógico do bit x da variável Y
11
12
      #define LED PB5
13
14
     ISR(TIMERO OVF vect)
                               //interrupção do TCO
15
16
    □ {
17
         cpl bit (PORTB, LED);
18
19
20
     int main()
   □ {
   DDRB = 0b00100000; //somente pino do LED como saída
      PORTB = 0b11011111;
                                      //apaga LED e habilita pull-ups nos pinos não utilizados
23
24
      TCCROB = (1<<CSO2) | (1<<CSO0); //TCO com prescaler de 1024, a 16 MHz gera uma interrupção a cada 16,384 ms
25
                                 //habilita a interrupção do TCO
        TIMSK0 = 1 << TOIE0;
                                          //habilita interrupções globais
27
         sei();
28
29
         while (1)
30
            //Aqui vai o código, a cada estouro do TCO o programa desvia para ISR(TIMERO OVF vect)
31
32
33
```

EXEMPLOS

HABILITANDO PWM

```
#define F CPU 16000000UL
      #include <avr/io.h>
     int main (void)
9
          DDRD = 0b01100000; //pinos OCOB e OCOA (PD5 e PD6) como saída
10
                                     //zera saídas e habilita pull-ups nos pinos não utilizados
        PORTD = 0b10011111;
11
12
13
      //MODO CTC
      TCCR0A = 0b01010010;
TCCR0B = 0b00000001;
                                    //habilita OCOA e OCOB para trocar de estado na iqualdade de comparação
14
                                      //liga TCO com prescaler = 1.
15
       OCR0A = 200;
                                       //maximo valor de contagem
16
17
                                       //deslocamento de OCOB em relação a OCOA
        OCROB = 100;
18
19
          while (1)
20
21
             //O programa principal vai aqui
22
23
24
```

EXEMPLOS

• HABILITANDO INTERRUPÇÃO POR TC1

```
#define F CPU 16000000UL
      #include <avr/io.h>
     #include <avr/interrupt.h>
11
     #define cpl bit(y,bit) (y^=(1<<bit)) //troca o estado lógico do bit x da variável Y
13
      #define LED PB5
14
15
     ISR (TIMER1 OVF vect)
                                 //interrupção do TC1
16
17
    □ {
         cpl_bit(PORTB,LED);
18
19
20
    int main()
22
    □ {
23
         DDRB = 0b00100000; //somente pino do LED como saída
                                      //apaga LED e habilita pull-ups nos pinos não utilizados
24
         PORTB = 0b11011111;
25
         TCCR1B = (1<<CS12) | (1<<CS10); //TC1 com prescaler de 1024, a 16 MHz gera uma interrupção a cada 4,19 s
26
                                         //habilita a interrupção do TC1
         TIMSK1 = 1 << TOIE1;
                                           //habilita interrupções globais
28
         sei();
29
30
         while (1)
31
             //Aqui vai o código, a cada estouro do TC1 o programa desvia para ISR(TIMER1 OVF vect)
32
33
34
```

EXEMPLOS TC2 COM CRISTAL EXTERNO DE 32,768 KHZ ROTINA PARA IMPLEMENTAR UM RELÓGIO E PISCAR UM LED

```
//frequência de operação de 1 MHz
9
      #define F CPU 1000000UL
10
      #include <avr/io.h>
11
      #include <avr/interrupt.h>
12
      #define cpl bit(Y,bit x) (Y^=(1<<bit x)) //complementa bit
13
14
      #define LED PB5
15
16
      volatile unsigned char segundos, minutos, horas;
17
18
      ISR(TIMER2 OVF vect) //entrada aqui a cada 1 segundo
19
                              //rotina para contagem das horas, minutos e segundos
20
    □ {
        cpl bit(PORTB, LED); //pisca LED
21
22
23
         segundos++;
24
         if (segundos == 60)
25
26
27
             segundos = 0;
28
           minutos++;
29
             if (minutos == 60)
30
31
32
                 minutos = 0:
33
                          horas++;
34
                if (horas == 24)
35
36
                     horas = 0;
37
38
39
```

EXEMPLOS TC2 COM CRISTAL EXTERNO DE 32,768 KHZ ROTINA PARA IMPLEMENTAR UM RELÓGIO E PISCAR UM LED

```
41
     int main()
    □ {
42
43
          DDRB = 0b00100000;
                                          //cristal ext., não importa a config. os pinos TOSC1 e TOSC2
44
          PORTB= 0b11011111;
                                          //pull-ups habilitados nos pinos não utilizados
45
          ASSR = 1 << AS2:
46
                                          //habilita o cristal externo para o contador de tempo real
          TCCR2B = (1<<CS20) | (1<<CS20); /*prescaler = 128, freq. p/ o contador -> 32.768/128 = 256 Hz.
47
                                           Como o contador é de 8 bits, ele conta 256 vezes,
48
49
                                           resultando em um estouro preciso a cada 1 segundo*/
                                           //habilita interrupção do TC2
50
          TIMSK2 = 1 << TOIE2;
51
                                           //habilita interrupção global
52
          sei();
53
54
          while (1)
                                           //código principal (display, ajuste de hora, minutos, etc..)
55
          {}
56
```


- As bibliotecas LS são formadas por três camadas de arquivos:
 - Arquivo de configurações do projeto;
 - Arquivo LS_defines.h, que deve ser modificado de acordo com as configurações de hardware do projeto em questão. Linhas devem ser comentadas e valores modificados, porém nada pode ser excluído do arquivo.
 - Arquivos de configuração de microcontrolador;
 - Arquivos H e C do microcontrolador. Contém as configurações dos registradores e dos periféricos do microcontrolador. Não deve ser alterado pelo usuário.
 - Arquivos de módulos externos;
 - Arquivos H e C de módulos específicos (LCD, teclado, etc.).
 Não deve ser alterado pelo usuário.

• Licença:

- As bibliotecas LS fazem parte de um projeto mantido pela R2R Tecnologia Empresa Júnior. Empresa júnior do Departamento Acadêmico de Eletrônica do campus Florianópolis do IFSC.
- As bibliotecas LS podem ser utilizadas em projetos acadêmicos ou comerciais, contanto que não sejam modificadas. Se houver a necessidade de alteração das bibliotecas, entrar em contato com a R2R Tecnologia. Se utilizadas em projetos acadêmicos, devem ser citados e referenciados em relatórios, TCCs, monografias, dissertações, teses, artigos e outros documentos técnico-científicos.

- o LS_ATmega328.h / LS_ATmega328.c
 - Download:
 - http://pastebin.com/GYE107Yc
 - http://pastebin.com/VcqvrBkw
 - Prescaler do relógio do Timer0/ Timer1;
 - timer0ClockDisable()

timer1ClockDisable()

- timer0ClockPrescallerOff() timer1ClockPrescallerOff()
- timer0ClockPrescaller8()

timer1ClockPrescaller8()

- timer0ClockPrescaller64() timer1ClockPrescaller64()
- timer0ClockPrescaller256() timer1ClockPrescaller256()
- timer0ClockPrescaller1024() timer1ClockPrescaller1024()
- timer0ClockT0FallingEdge() timer1ClockT1FallingEdge()
- Aire and Clash-MoDising Flags A. Aire and Clash-MtDising Flags

- Prescaler do relógio do Timer1;
 - timer2ClockDisable()
 - timer2ClockPrescallerOff()
 - timer2ClockPrescaller8()
 - timer2ClockPrescaller32()
 - timer2ClockPrescaller64()
 - timer2ClockPrescaller128()
 - timer2ClockPrescaller256()
 - timer2ClockPrescaller1024()
- Modo de funcionamento do Timer0/Timer1/Timer2;
 - timer0NormalMode()
 - o timer1NormalMode()
 - timer2NormalMode()
 - timer1CTCICR1Mode()

- o timerOCTCMode()
- timer1CTCMode()
- timer2CTCMode()
- timer0FastPWMMaxMode()
- timer1FastPWM8bitsMode()
- timer1FastPWM9bitsMode()
- timer1FastPWM10bitsMode()
- timer2FastPWMMaxMode()
- timer0FastPWMOCR0AMode()
- timer1FastPWMOCR1AMode()
- timer2FastPWMOCR2AMode()
- timer1FastPWMICR1Mode()
- timer0PhaseCorrectPWMMaxMode()
- timer1PhaseCorrectPWM8bitsMode()
- timer1PhaseCorrectPWM9bitsMode()

- timer1PhaseCorrectPWM10bitsMode()
- timer2PhaseCorrectPWMMaxMode()
- timer0PhaseCorrectPWMOCR0AMode()
- timer1PhaseCorrectPWMOCR1AMode()
- timer2PhaseCorrectPWMOCR2AMode()
- timer1PhaseCorrectPWMICR1Mode()
- timer1PhaseFrequencyCorrectPWMICR1Mode()
- timer1PhaseFrequencyCorrectPWMOCR1AMode()
- Comportamento das saídas de comparação A
 - timer0OC0AOff()
 - o timer1OC1AOff()
 - timer2OC2AOff()

- timer0OC0AToggleOnCompare()
- timer1OC1AToggleOnCompare()
- timer2OC2AToggleOnCompare()
- timer0OC0AClearOnCompare()
- timer1OC1AClearOnCompare()
- timer2OC2AClearOnCompare()
- timer0OC0ASetOnCompare()
- timer1OC1ASetOnCompare()
- timer2OC2ASetOnCompare()
- timer0OC0ANonInvertedMode()
- timer1OC1ANonInvertedMode()
- timer2OC2ANonInvertedMode()
- timer0OC0AInvertedMode()
- timer1OC1AInvertedMode()
- timer2OC2AInvertedMode()

- Comportamento das saídas de comparação B
 - o timerOOC0BOff()
 - timer1OC1BOff()
 - timer2OC2BOff()
 - timer0OC0BToggleOnCompare()
 - timer1OC1BToggleOnCompare()
 - timer2OC2BToggleOnCompare()
 - timer0OC0BClearOnCompare()
 - timer1OC1BClearOnCompare()
 - timer2OC2BClearOnCompare()
 - timer0OC0BSetOnCompare()
 - timer1OC1BSetOnCompare()
 - timer2OC2BSetOnCompare()
 - o timerOOC0BNonInvertedMode()
 - timer1OC1BNonInvertedMode()

- timer2OC2BNonInvertedMode()
- timer0OC0BInvertedMode()
- timer1OC1BInvertedMode()
- timer2OC2BInvertedMode()
- Captura de eventos
 - timer1EnableInputCaptureNoiseCanceler()
 - timer1DisableInputCaptureNoiseCanceler()
 - timer1InputCaptureOnFallingEdge()
 - timer1InputCaptureOnRisingEdge()
- Interrupção de estouro
 - timer0ActivateOverflowInterrupt()
 - timer1ActivateOverflowInterrupt()
 - timer2ActivateOverflowInterrupt()

- timer0DeactivateOverflowInterrupt()
- timer1DeactivateOverflowInterrupt()
- timer2DeactivateOverflowInterrupt()
- timer0ClearOverflowInterruptRequest()
- timer1ClearOverflowInterruptRequest()
- timer2ClearOverflowInterruptRequest()
- Interrupção de comparação com A
 - o timer0ActivateCompareAInterrupt()
 - timer1ActivateCompareAInterrupt()
 - timer2ActivateCompareAInterrupt()
 - timer0DeactivateCompareAInterrupt()
 - timer1DeactivateCompareAInterrupt()
 - timer2DeactivateCompareAInterrupt()

- timer0ClearCompareAInterruptRequest()
- timer1ClearCompareAInterruptRequest()
- timer2ClearCompareAInterruptRequest()
- Interrupção de comparação com B
 - timer0ActivateCompareBInterrupt()
 - timer1ActivateCompareBInterrupt()
 - timer2ActivateCompareBInterrupt()
 - timer0DeactivateCompareBInterrupt()
 - timer1DeactivateCompareBInterrupt()
 - timer2DeactivateCompareBInterrupt()
 - timer0ClearCompareBInterruptRequest()
 - timer1ClearCompareBInterruptRequest()
 - timer2ClearCompareBInterruptRequest()

- Interrupção de captura de eventos
 - timer1ActivateInputCaptureInterrupt()
 - timer1DeactivateInputCaptureInterrupt()
 - timer1ClearInputCaptureInterruptRequest()
- Forçar comparação
 - timer0ForceCompareA()
 - timer1ForceCompareA()
 - timer2ForceCompareA()
 - timer0ForceCompareB()
 - timer1ForceCompareB()
 - timer2ForceCompareB()

- Valor do contador
 - timer0SetCounterValue(value)
 - timer1SetCounterValue(value)
 - timer2SetCounterValue(value)
 - timer0GetCounterValue()
 - timer1GetCounterValue()
 - timer2GetCounterValue()
- Valor do comparador A
 - timer0SetCompareAValue(value)
 - timer1SetCompareAValue(value)
 - timer2SetCompareAValue(value)
 - timer0GetCompareAValue()
 - timer1GetCompareAValue()
 - timer2GetCompareAValue()

- Valor do comparador B
 - timer0SetCompareBValue(value)
 - timer1SetCompareBValue(value)
 - timer2SetCompareBValue(value)
 - timer0GetCompareBValue()
 - timer1GetCompareBValue()
 - timer2GetCompareBValue()
- Valor da captura de eventos
 - timer1SetInputCaptureValue(value)
 - timer1GetInputCaptureValue()

EXERCÍCIO

EXERCÍCIO 01

LEITURA RECOMENDADA

LEITURA RECOMENDADA

- Leitura obrigatória:
 - LIMA, VILLAÇA Cap 9;
- Leitura recomendada;
 - Datasheet Cap 15, 16, 17 e 18.

MCO60408 MICROCONTROLADORES

Aula 08 – Temporizadores/Contadores

Leandro Schwarz