Quertion - 3

M- 104 42 AT 37 29 35 40 32 H! H: 36 35 32 38 39 42 34 H: H: 33 44 40 36 44 37 45. $Y_{1} = 36.5714$, $Y_{1} = 36.571$ $Y_{3} = 39.857$ Y = 37.666. -> Ho = All the di are 1. same. HI notAll the oct me equals. (m = anversing 55 N=7. M=3. 55 n= 3 ni (ri - 9) = 7 { 2 (36.5714-37.666) + (39.857-37-666)) 50-4377.

$$F = \frac{55A}{m-1} = \frac{50.777}{3-1}$$

$$\frac{55E}{N-200} = \frac{310.2781}{18}$$

= 6-88-3,

1.3324

$$SS_{E} = \sum_{i=1}^{3} \sum_{j=1}^{3} (Y_{ij} - Y_{i})^{2}$$

$$= (92 - 37 \cdot 666)^{2} + (41 - 37 \cdot 66)^{2} + (97 - 37 \cdot 66)^{2}$$

$$= (31 - 37 \cdot 666)^{2} + (36 - 37 \cdot 666)^{2} + (39 - 37 \cdot 666)^{2}$$

$$+ (32 - 37 \cdot 666)^{2} + (39 - 37 \cdot 666)^{2} + (39 - 37 \cdot 666)^{2}$$

$$+ (42 - 37 \cdot 666)^{2} + (39 - 37 \cdot 666)^{2} + (33 - 37 \cdot 666)^{2}$$

$$+ (44 - 37 \cdot 666)^{2} + (40 - 37 \cdot 666)^{2} + (36 - 37 \cdot 666)^{2}$$

$$+ (44 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (45 - 37 \cdot 666)^{2}$$

$$+ (44 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (45 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (45 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 666)^{2}$$

$$+ (37 - 37 \cdot 666)^{2} + (37 - 37 \cdot 6$$

857

2022.09.25 19

Moxibac

n= number of levos = 17 let Run = R = 10 E(R)=4= 2my m+n v(R)=0~= 13.40. (M-1)(M-2) mm-1 (13.48-1) (13.48-1) 25-1 = 5.9696 o=# 2.4432 here RLM 50, p raime; 20 ((R-4)/0) = 24 (10-13.48) 2.443L) = 2 \$ (-1.4243) z 2 x (0.0778) = [1.556.] Moxibac Patadin Max P > 0.05

8

Question - 10 Ho: The sample is random. It : the sample is not mandom. sonted data! 45 .75 88 -96 -99 99 100 - 105 110 111 117 121 (122) 126 132 133 142 14L 150 153 154 155 161 143 Ð 211 NOW, Median = 122. a) 1 (6) here, is, 21 < median; x; = 0 **(1) 3** 2 otherwise xi=1 D. 0 0 1 0 0 0 0 0 1 .1 1 00011101

$$V(T) = \sigma^2 = \frac{mn(n+m+1)}{12}$$

$$= \frac{8 \times 7 (8 + 7 + 1)}{12}$$

$$= P \phi (\phi \leq \frac{66 - 64}{74.6647})$$

P value > 40.05

so, we cannot reject null shypother;

Question . 9

no effect.

has effect.

31 39 45 47 66 78 81 8 1.3 5 7 14 -15.

36 44 49 52 52 60.

Ranks 2

To = 66 [treatment group AD TONK TURST]

n= 8

m=7. 48x(8+7+1) E(T)= M=

$$\frac{\sum YxxnK}{T} = \frac{1}{6} + 1.5 + 1.9 + 1.2 + 1.9 + 1.0}{1 + 1.5 + 1.5 + 1.6 + 1.3 + 1.1 = 1.648}$$

$$T_{-} = \frac{1}{7} = \frac{1}{4} = \frac{1}{4} = \frac{1}{8} \times \frac{19}{4} = \frac{1}{8} \times \frac{19}{4} = \frac{1}{8} \times \frac{19}{4} = \frac{1}{8} \times \frac{19}{4} \times \frac{19}{4} = \frac{1}{8} \times \frac{19}{4} \times \frac{19}{4} \times \frac{19}{4} \times \frac{19}{4} = \frac{1}{8} \times \frac{19}{4} \times \frac{1}{1} \times \frac{1}{1}$$

2 0 5 5 2 10 50

Bankt 5 2 absolute si great Š 3 W V WO diffieren ca N X w イやイ Quention -25 ±2+ Ž $^{\circ}$ 10 15 ∞ 4 7 5 \$ \$

00

2022.09.25 19:49

Statates median = 0 n=18 +2 +8 -25 ' +1 +5 .-12 -16 -18 -5 -22 +4 -21 -15 -11 1 1 0 0 1 0 9 1 1 1 1 1 1 1 0 1 1 1 5 Ii = 13. under the null, 21 In tinomial (18,18) thus, pralue, = P (18 Ii < 13) * 7 (18c12+ 18c12+ 18c11+ 18c1+ 18c9+ 18c8+ 18 - + 18 C + 18 C + 18 C 3+ 18 C 3+ 18 C 3+ 18(1+18(.) × (1/2)18 0.984558. P > 0-0 5 So, reject. Patadin Max 2022.09.25 19:49

2

2

3

Ů,

 $\lambda_{897}^{+} = \frac{(20-37\cdot26)^{1}}{37\cdot26} + \frac{(38-30.884)^{2}}{30.884} + \frac{(28-21\cdot854)^{2}}{21\cdot856} + \frac{(50-36\cdot74)^{2}}{36\cdot74} + \frac{(27-34\cdot126)^{2}}{34\cdot116} + \frac{(18-24\cdot144)^{2}}{24\cdot114}.$

= 16.4867.

X ... = +2.592 5.991

Xin > X 0.15, 12

we reject the null taxpothesis.

Ho (m=mo) (m) (m) (m) (m) (m) (m)

there are no any estact of medicine.

X 000 (X 0.05, 2

we cannot negect the null trypothoiss

Qustion: 6

0	,	Modernte	Hard	Total
ا کی	Nouma	.3****	2-8	8-6
1+ypenknin	20	38	(21.859)	
	(33.26)	(30.884)	_	
No	.50	27	(8	95.
Hyper lensian	(36.74)	(34.1160)	(24,1435)	
total	. 70	65	646	(8)
-101-07			1	•

$$k=\frac{3}{2}\frac{2}{1}\frac{2}{1}\frac{(0i)-Eij}{Eij}$$

K= \frac{5}{1=1} \frac{(0i)-Eij)^{\text{there is at Yelstim}}{Eij.} \frac{1}{\text{between typentention}} and smokers.

HI: there is not a relation between try pentention and

Patadin Max

Fo.95, m-1, (m-1)(n-1),

Fo.95, 3, 6 = 3.2888. 4.76.

Always in Both case.

Null rejected.

a	Que	tion->-	
Ø	obs. frau.	probability	Expected tres
White	141	1/4	141
Pink	291	1/2	282
hed	132	1/4	141
1	tal = 5641	•	

Ho! The distribution fits the data.

HI: The distribution does not fit the data.

$$\chi = \frac{1}{8} \cdot \frac{(05) - E()}{E()}$$

$$= \frac{(141 - 141)}{1110} + \frac{(252 - 291)}{282} + \frac{(132 - 141)}{141}$$

$$= \frac{27}{94} + \frac{27}{47} = 0.86170$$

HYPO

tot

R

$$SS_{B} = M \stackrel{2}{\geq}_{1=3} (Y.J-Y)^{2}$$

$$= 3 \times \left\{ (1.913 - 2.2775)^{2} + (1.2133 - 1.2745)^{2} + (1.24-1.2775)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.1833 - 1.2745)^{2} + (1.183 - 1.2$$

t Table

LIADIE											
cum. prob	t.50	t .75	t .so	f .es	t.so	t.ss	t.975	t.99	t .995	t.999	t.9005
one-tall	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000		0.862	1.067	1.330	1.734 1.729	2.101	2.552	2.878	3.610	3.922 3.883
19	0.000	0.688	0.861	1.066	1.328		2.093	2.539	2.861	3.579	
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
- ⊢	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence L	evel				

Table of Standard Normal Probabilities for Negative Z-scores

Table of Standard Normal Probabilities for Positive Z-scores

ż	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0,08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0,0005	0.0004	0.0004	0.0004	0.0004	0.0004	0,0004	0.0003
-3.2	0.0007	0.0007	0.0006	0,0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0,0009	0.0009	0,0008	8000,0	0.0008	0.0008	0.0007	0,0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0,0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0,0136	0.0132	0.0129	0.0125	0.0122	0.0119	0,0116	0.0113	0,0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0,0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0,1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0,0	0.5000	0.4960	0.4920	0,4880	0.4840	0.4801	0.4761	0.4721	0,4681	0.4641

1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0,0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0,7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Note that the probabilities given in this table represent the area to the LEFT of the z-score.

The area to the RIGHT of a z-score = 1 – the area to the LEFT of the z-score

DF1 $\alpha = 0.05$

DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.1	251.14	252.2	253.25	254.31
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.175	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429	1.3519	1.2539
Inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1
																_,		-,,,-,	