Invertability

MA(q):

$$y_t - \mu = \theta(L)\varepsilon_t$$

$$\theta(L) = (1 + \theta_1 L^1 + \theta_2 L^2 + \ldots + \theta_q L^q) = (1 - \eta_1 L)(1 - \eta_2 L) \ldots (1 - \eta_q L)$$

$$\theta(L)^{-1} = \left(\sum_{i=0}^{\infty} \eta_1^j L^j\right) \dots \left(\sum_{i=0}^{\infty} \eta_q^j L^j\right)$$

In this case, the process $\{y_t\}$ is invertible: $\varepsilon_t = \theta(L)^{-1}(y_t - \mu)$

or $\{\varepsilon_t\}$ can be expressed as a causal function of $\{y_t\}$.

What if some of $|\eta_i| > 1$?

Suppose WLOG (without loss of generality):

$$|\eta_i| < 1$$
 for i =1,...,m

$$|\eta_i| > 1$$
 for i =m+1,...,q

Create a new process:

$$y_t - \mu = \tilde{\theta}(L)\tilde{\varepsilon_t}$$

where:

$$\tilde{\theta}(L) = (1 + \tilde{\theta}_1 L^1 + \dots + \tilde{\theta}_q L^q) = (1 - \eta_1 L) \cdots (1 - \eta_m L) \cdots (1 - \frac{1}{\eta_{m+1}} L) \cdots (1 - \frac{1}{\eta_q} L)$$

$$\tilde{\varepsilon_t} \sim WN(0, \sigma^2 \eta_{m+1}^2 \cdots \eta_q^2)$$

Reminder:

ACGF of an MA(q): $y_t - \mu = \theta(L)\varepsilon_t$ ($\theta(L)$ is order q polynomial)

$$g_u(z) = \sigma^2 \theta(z) \theta(z^{-1})$$

So ACGF of \tilde{y}_t should be:

$$g_{\tilde{u}}(z) = \tilde{\sigma^2}\tilde{\theta}(z)\tilde{\theta}(z^{-1})$$

$$= \sigma^2 \eta_{m+1}^2 \eta_{m+2}^2 \cdots \eta_q^2 \cdot \{ \prod_{j=1}^m (1 - \eta_j z) \prod_{j=m+1}^q (1 - \frac{1}{\eta_j} z) \} \cdot \{ \prod_{j=1}^m (1 - \eta_j z^{-1}) \prod_{j=m+1}^q (1 - \frac{1}{\eta_j} z^{-1}) \}$$

$$= \sigma^2 \eta_{m+1}^2 \eta_{m+2}^2 \cdots \eta_q^2 \cdot \tilde{\theta(z)} \cdot \tilde{\theta}(z^{-1})$$

$$=\sigma^2\{\prod_{j=1}^m(1-\eta_jz)\prod_{j=m+1}^q(\eta_jz^{-1})(1-\eta_jz^{-1})\}\cdot\{\prod_{j=1}^m(1-\eta_jz^{-1})\prod_{j=m+1}^q(\eta_jz)(1-\eta_j^{-1}z^{-1})\}$$

$$=\sigma^2\{\prod_{j=1}^m(1-\eta_jz)\prod_{j=m+1}^q(\eta_jz^{-1}-1)\cdot\{\prod_{j=1}^m(1-\eta_jz^{-1})\prod_{j=m+1}^q(\eta_jz-1)\}$$

$$= \sigma^2 \prod_{j=1}^q (1 - \eta_j z^{-1}) \prod_{j=1}^q (1 - \eta_j z) = \sigma^2 \theta(z^{-1}) \theta(z) = g_y(z)$$

So $\{\tilde{y}_t\}$ and $\{y_t\}$ have the same ACGFs.

- This means $\{\tilde{y}_t\}$ and $\{y_t\}$ are indentical up to 2nd moments.
- The implication is that every MA(q) has many equivalent (2nd moment) representations. How many? $\implies 2^q$
- If ε_t and $\tilde{\varepsilon_t}$ are gaussian then $\{\tilde{y_t}\}$ and $\{y_t\}$ are identical.
- Only one of these representations will be invertible (only if $|\eta_j| \neq 1 \forall j$).

$$(1 - \eta_j L)^{-1} = \sum_{j=0}^{\infty} \eta_j^i L^i \not< \infty \text{ if } \eta_j \ge 1$$

Causality

Recall from last class an AR(1) $(1 - \phi L)(y_t - \mu) = \varepsilon_t$ is stationary even if $|\phi| > 1$. In this case the stationary representation is $y_t - \mu = \sum_{j=0}^{\infty} (\frac{1}{\phi})^j \varepsilon_{t+j}$

We already knew $\{y_t\}$ is stationary for $|\phi| < 1$:

$$y_t - \mu = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$

Then only case where an AR(1) is not stationary is when $|\phi| = 1$.

This extends to an AR(p):

- If any root of $\phi(L)$ is on the unit circle, $\phi(L)(y_t \mu) = \varepsilon_t$ is not stationary.
- If all roots $\phi(L)$ are above or below $\{y_t\}$ is stationary.
- But $\phi(L)$ may not have an inverse.
- If $\phi(L)^{-1}$ exists (all roots outside unit circle). Then $\{y_t\}$ is stationary <u>and</u> causal (formally a causal function of $\{\varepsilon_t\}$).

Definition:

A process $\{x_t\}$ is a causal function of $\{w_t\}$ if $\exists \psi(L) = \psi_0 + \psi_1 L^1 + \dots$

s.t.
$$x_t = \psi(L)w_t$$
 and $\sum_{j=0}^{\infty} |\psi_j| < \infty$

Causality of MA(q):

MA(q0 is always stationary. For an MA(q), $\{\varepsilon_t\}$ is a causal function of $\{y_t\}$ if all roots of $\theta(L)$ lie outside the unit circle.

• In this case the MA(q) is invertible: $\theta(L)^{-1}$ exists.

$$\varepsilon_t = \theta(L)^{-1}(y_t - \mu)$$

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t.$$