N°51 p148

- 1. En 2015, cette personne aura $2000 \times 1,03 + 150 = 2210$ € sur son compte épargne. En 2016, elle aura $2210 \times 1,03 + 150 = 2426,3$ € sur son compte épargne.
- 2. D'une année à l'autre, le solde disponible sur le compte épargne augmente de 3 % grâce aux intérêts. Il est donc multiplié par 1,03. De plus, chaque année la personne dépose 150 $\mathfrak C$ sur son compte épargne, on ajoute donc 150 au solde disponible. Ainsi, pour tout entier naturel n, on a $u_{n+1}=1,03u_n+150$.
- 3. Pour tout entier naturel n, on a $v_{n+1} = u_{n+1} + 5000$

$$= 1.03u_n + 150 + 5000$$

$$=1,03u_n+5150$$

$$=1.03\left(u_n + \frac{5150}{1.03}\right)$$

$$=1.03(u_n+5000)$$

$$= 1.03v_n$$
.

Donc (v_n) est une suite géométrique de raison q = 1,03 et de premier terme $v_0 = u_0 + 5000 = 7000$.

4. Pour tout entier naturel n, on a $v_n = v_0 \times q^n = 7000 \times 1{,}03^n$.

D'où
$$u_n = v_n - 5000 = 7000 \times 1{,}03^n - 5000.$$

- 5. Comme 1,03>1, on a $\lim_{n\to+\infty}1,03^n=+\infty$. D'où, par produit, $\lim_{n\to+\infty}7000\times1,03^n=+\infty$. Ainsi, par somme, on a $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}7000\times1,03^n-5000=+\infty$.
- 6. (a) L'appel programme(4000) renvoie 9.
 - (b) Au bout de 9 ans, le solde disponible sur le compte épargne dépassera les 4000 €.

N°49 p147

- 1. (a) La formule saisie dans la cellule B3 est = $B2/(RACINE(B2^2+1))$.
 - (b) La suite (r_n) semble être décroissante.
 - (c) La suite (r_n) semble converger vers 0.
- 2. Soit $n \in \mathbb{N}$. On note P_n la proposition : « $0 < r_n \le 1$ ». On souhaite démontrer que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : Pour n = 0. On a $r_0 = 1$ donc $0 < r_0 \le 1$. On en déduit que P_0 est vraie.

Hérédité: On considère un entier naturel k quelconque tel que P_k est vraie (hypothèse de récurrence), autrement dit tel que $0 < r_k \le 1$. On souhaite démontrer que P_{k+1} est vraie, autrement dit que $0 < r_{k+1} \le 1$.

Par hypothèse de récurrence, on a $0 < r_k \le 1$. Comme la fonction $x \mapsto x^2 + 1$ est strictement croissante sur $[0; +\infty[$, on a $0^2 + 1 < r_k^2 + 1 \le 1^2 + 1 \Leftrightarrow 1 < r_k^2 + 1 \le 2$.

De plus, la fonction racine carrée est croissante sur $[0; +\infty[$, d'où $\sqrt{1} < \sqrt{r_k^2 + 1} \leqslant \sqrt{2} \Leftrightarrow 1 < \sqrt{r_k^2 + 1} \leqslant \sqrt{2}$.

Comme la fonction inverse est décroissante sur $]0; +\infty[$, on a alors $1 > \frac{1}{\sqrt{r_k^2 + 1}} \geqslant \frac{1}{\sqrt{2}} > 0$.

Enfin, par hypothèse de récurrence, on a $r_k > 0$ d'où $r_k > \frac{r_k}{\sqrt{r_k^2 + 1}} > 0 \Leftrightarrow 1 \geqslant r_k > r_{k+1} > 0$, par hypothèse de récurrence.

Ainsi, P_0 est vraie et, pour tout entier k, lorsque P_k est vraie, alors P_{k+1} est vraie aussi. Par le principe de récurrence, on en déduit que, pour tout $n \in \mathbb{N}$, P_n est vraie donc $0 < r_n \le 1$.

3. D'après la question précédente, pour tout entier naturel n on a $r_{n+1} < r_n$ donc la suite (r_n) est décroissante.

4. Comme la suite (r_n) est décroissante et minorée, alors elle converge.

5.
$$\ell = \frac{\ell}{\sqrt{\ell^2 + 1}} \Leftrightarrow \ell(\sqrt{\ell^2 + 1} - 1) = 0$$

$$\Leftrightarrow \ell = 0 \text{ ou } \sqrt{\ell^2 + 1} - 1 = 0$$

$$\Leftrightarrow \ell = 0 \text{ ou } \ell^2 + 1 = 1$$

$$\Leftrightarrow \ell = 0$$
 ou $\ell = 0$

Donc la suite (r_n) converge vers 0.