(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 February 2002 (07.02.2002)

PCT

English

(10) International Publication Number WO 02/10199 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/US01/23232

(22) International Filing Date: 24 July 2001 (24.07.2001)

(25) Filing Language:

(26) Publication Language: English

(30) Priority Data: 60/222,504 2 August 2000 (02.08.2000) US 09/728,787 28 November 2000 (28.11.2000) US

(71) Applicant (for all designated States except US): AMGEN INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WELCHER, Andrew, A. [US/US]; 1175 Church Street, Ventura, CA 93001 (US). ELLIOTT, Gary, S. [US/US]; 2458 Chaucer Place, Thousand Oaks, CA 91362 (US).

(74) Agents: SINTICH, Sharon, M. et al.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT; TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/10199 A2

(54) Title: C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

(57) Abstract: Novel C3b/C4b CR-like polypeptides and nucleic acid molecules encoding the same. The invention also provides vectors, host cells, selective binding agents, and methods for producing C3b/C4b CR-like polypeptides. Also provided for are methods for the treatment, diagnosis, amelioration, or prevention of diseases with C3b/C4b CR-like polypeptides.

C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

This application claims the benefit of U.S.

Provisional Application No. 60/222,504, filed August 2,
2000 and U.S. Application No. 09/728,787 filed November
28, 2000, which are hereby incorporated by reference.

10 Field of the Invention

: 53:

15

20

25

30

The present invention relates to novel C3b/C4b Complement Receptor-like polypeptides and nucleic acid molecules encoding the same. The invention also relates to vectors, host cells, pharmaceutical compositions, selective binding agents and methods for producing C3b/C4b Complement Receptor-like polypeptides. Also provided for are methods for the diagnosis, treatment, amelioration, and/or prevention of diseases associated with C3b/C4b Complement Receptor-like polypeptides.

Background of the Invention

Technical advances in the identification, cloning, expression and manipulation of nucleic acid molecules and the deciphering of the human genome have greatly accelerated the discovery of novel therapeutics. Rapid nucleic acid sequencing techniques can now generate sequence information at unprecedented rates and, coupled with computational analyses, allow the assembly of overlapping sequences into partial and entire genomes and the identification of polypeptide-encoding regions. A comparison of a predicted amino acid

10

15

30

sequence against a database compilation of known amino acid sequences allows one to determine the extent of homology to previously identified sequences and/or 'structural landmarks. The cloning and expression of a polypeptide-encoding region of a nucleic acid molecule provides a polypeptide product for structural The manipulation of nucleic acid functional analyses. encoded polypeptides may confer molecules and advantageous properties on a product for use as a therapeutic.

Despite the significant technical advances in genome research over the past decade, the potential for the development of novel therapeutics based on the human genome is still largely unrealized. Many genes encoding potentially beneficial polypeptide therapeutics, or those encoding polypeptides, which may act as "targets" for therapeutic molecules, have still not been identified.

Accordingly, it is an object of the invention to identify novel polypeptides and nucleic acid molecules encoding the same, which have diagnostic or therapeutic benefit.

Summary of the Invention

25 The present invention relates to novel C3b/C4b Complement Receptor-like nucleic acid molecules and encoded polypeptides.

The invention provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

(a) the nucleotide sequence as set forth in SEQ

ID NO:1, SEQ ID NO:3, or SEQ ID NO:6;

5

15

20

25

(b) a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

- (c) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of (a) or (b), wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- (d) a nucleotide sequence complementary to any of
 (a) (c).

The invention also provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide that is at least about 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (b) a nucleotide sequence encoding an allelic variant or splice variant of the nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) a nucleotide sequence of SEQ ID NO:1, SEQ ID 30 NO:3, or SEQ ID NO:6, (a), or (b) encoding a polypeptide fragment of at least about 25 amino acid

1 500

10

residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

- (d) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or (a)-(c) comprising a fragment of at least about 16 nucleotides;
 - (e) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(d), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
 - (f) a nucleotide sequence complementary to any of(a)-(e).
- The invention further provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
- (a) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID 20 NO:7, with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (b) a nucleotide sequence encoding a polypeptide 25 as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) a nucleotide sequence encoding a polypeptide 30 as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the

polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(d) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N- terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5

- (e) a nucleotide sequence encoding a polypeptide

 10 as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID

 NO:7 with at least one modification selected from the

 group consisting of amino acid substitutions, amino

 acid insertions, amino acid deletions, C-terminal

 truncation, and N-terminal truncation, wherein the

 15 polypeptide has an activity of the polypeptide as set

 forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
 - (f) a nucleotide sequence of (a)-(e) comprising a
 fragment of at least about 16 nucleotides;
- (g) a nucleotide sequence which hybridizes under 20 moderately or highly stringent conditions to the complement of any of (a)-(f), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- (h) a nucleotide sequence complementary to any of25 (a)-(e).

The invention also provides for an isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

(a) an amino acid sequence of the mature C3b/C4b 30 Complement Receptor-like polypeptide wherein the

polypeptide comprises the amino acid sequence contained within SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and optionally further comprises an amino-terminal methionine;

- 5 (b) an amino acid sequence for an ortholog of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) an amino acid sequence that is at least about 70, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
 - (d) a fragment of the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 comprising at least about 25 amino acid residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEO ID NO:7;

20

25

(e) an amino acid sequence for an allelic variant or splice variant of either the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or at least one of (a)-(c) wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

The invention further provides for an isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

: :::::

٠...

·--√5

10

15

20

25

(a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

- (b) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (d) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- (e) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.
- Also provided are fusion polypeptides comprising the amino acid sequences of (a)-(e) above.

: 5:3:

····5

10

15

20

25

30

The present invention also provides for an expression vector comprising the isolated nucleic acid molecules as set forth herein, recombinant host cells comprising recombinant nucleic acid molecules as set forth herein, and a method of producing a C3b/C4b Complement Receptor-like polypeptide comprising culturing the host cells and optionally isolating the polypeptide so produced.

A transgenic non-human animal comprising a nucleic acid molecule encoding a C3b/C4b Complement Receptor-like polypeptide is also encompassed by the invention. The C3b/C4b Complement Receptor-like nucleic acid molecules are introduced into the animal in a manner that allows expression and increased levels of the C3b/C4b Complement Receptor-like polypeptide, which may include increased circulating levels. The transgenic non-human animal is preferably a mammal.

Also provided are derivatives of the C3b/C4b Complement Receptor-like polypeptides of the present invention.

Additionally provided are selective binding agents such as antibodies and peptides capable of specifically binding the C3b/C4b Complement Receptor-like polypeptides of the invention. Such antibodies and peptides may be agonistic or antagonistic.

the comprising Pharmaceutical compositions nucleotides, polypeptides, or selective binding agents and one ormore of the present invention pharmaceutically acceptable formulation agents are also The pharmaceutical encompassed by the invention. provide therapeutically compositions are used to effective amounts of the nucleotides or polypeptides of

the present invention. The invention is also directed to methods of using the polypeptides, nucleic acid molecules, and selective binding agents.

The C3b/C4b Complement Receptor-like polypeptides and nucleic acid molecules of the present invention may be used to treat, prevent, ameliorate, and/or detect diseases and disorders, including those recited herein.

5

.

10

15

20

25

30

The present invention also provides a method of assaying test molecules to identify a test molecule which binds to a C3b/C4b Complement Receptor-like polypeptide. The method comprises contacting a C3b/C4b Complement Receptor-like polypeptide with molecule and determining the extent of binding of the test molecule to the polypeptide. The method further. comprises determining whether such test molecules are agonists crantagonists of a C3b/C4b Complement Receptor-like polypeptide. Thė present invention further provides a method of testing the impact of molecules on the expression of C3b/C4b Complement Receptor-like polypeptide or on the activity of C3b/C4b Complement Receptor-like polypeptide.

Methods of regulating expression and modulating (i.e., increasing or decreasing) levels of a C3b/C4b Complement Receptor-like polypeptide encompassed by the invention. One method comprises administering to an animal a nucleic acid molecule encoding а C3b/C4b Complement Receptor-like polypeptide. In another method, a nucleic molecule comprising elements that regulate or modulate the expression of a C3b/C4b Complement Receptor-like polypeptide may be administered. Examples of these

5

10

15

20

25

30

methods include gene therapy, cell therapy, and antisense therapy as further described herein.

The C3b/C4b Complement Receptor-like polypeptide can be used for identifying ligands thereof. forms of "expression cloning" have been used for cloning ligands for receptors. See e.g., Davis et al., Cell, 87:1161-1169 (1996). These and other C3b/C4b Complement Receptor-like ligand cloning experiments are described in greater detail herein. Isolation of the C3b/C4b Complement Receptor-like ligand(s) allows for the identification or development of novel agonists and/or antagonists of the C3b/C4b Complement Receptorlike signaling pathway. Such agonists and antagonists include C3b/C4b Complement Receptor-like ligand(s), anti-C3b/C4b Complement Receptor-like ligand antibodies and derivatives thereof, small molecules, or antisense which oligonucleotides, can be used any of potentially treating one or more diseases or disorders, including those recited herein.

Brief Description of the Figures

Figure 1 depicts a nucleic acid sequence (SEQ ID NO:1) encoding human C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence (SEQ ID NO:2) of human C3B/C4b Complement Receptor-like polypeptide.

Figure 2 depicts a nucleic acid sequence (SEQ ID NO:6) encoding a second human C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence (SEQ ID NO:7) of human C3B/C4b Complement Receptor-like polypeptide.

Figure 3 depicts a nucleic acid sequence (SEQ ID NO:3) encoding rat C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence of rat C3b/C4b Complement Receptor-like polypeptide (SEQ ID NO:4).

Figure 4 depicts an amino acid comparison of a known human C3b/C4b Complement Receptor (SEQ ID NO:5) and the human AGP-41773 (SEQ ID NO:2).

10 Detailed Description of the Invention

The section headings used herein for are organizational purposes only and are not to construed as limiting the subject matter described. All references cited in this application are expressly incorporated by reference herein.

Definitions

·~· 5

15

20

25

30

The term "C3b/C4b Complement Receptor-like" is abbreviated herein as "C3b/C4b CR-like" and is also referred to as "AGP-41773". The terms "C3b/C4b CR-like gene" or "C3b/C4b CR-like nucleic acid molecule" or "polynucleotide" refers to a nucleic acid molecule comprising or consisting of a nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and nucleic acid molecules as defined herein.

The term "C3b/C4b CR-like polypeptide" refers to a polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and related polypeptides. Related polypeptides include: C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like

polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants, C3b/C4b CR-like polypeptide variants and C3b/C4b CR-like polypeptide derivatives. C3b/C4b CR-like polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared.

5

4.

10

25

30

The term "C3b/C4b CR-like polypeptide allelic variant" refers to one of several possible naturally occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms.

The term "C3b/C4b CR-like polypeptide derivatives" refers to the polypeptide as set forth in SEQ ID NO:2, NO:4, or SEQ ID NO:7, C3b/C4b 15 SEQ IDallelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide polypeptide C3b/C4b CR-like polypeptide splice variants, or variants, as defined herein, that have been chemically modified. 20

The term "C3b/C4b CR-like polypeptide fragment" refers to a polypeptide that comprises a truncation at the amino terminus (with or without a leader sequence) and/or a truncation at the carboxy terminus of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants and/or a C3b/C4b CR-like polypeptide variant having one or more amino acid additions or substitutions or internal deletions (wherein the resulting polypeptide is at

:::::::

10

15

20

. 25

30

'least 6 amino acids or more in length) as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. ·C3b/C4b CR-like polypeptide fragments may result from alternative RNA splicing or from in vivo protease activity. For transmembrane or membrane-bound forms of a C3b/C4b CR-like polypeptide, preferred fragments forms `include soluble such as those lacking transmembrane or membrane-binding domain. In preferred embodiments, truncations comprise about 10 amino acids, or about 20 amino acids, or about 50 amino acids, or about 75 amino acids, or about 100 amino acids, or more than about 100 amino acids. The polypeptide fragments so produced will comprise about 25 contiguous amino acids, or about 50 amino acids, or about 75 amino acids, or about 100 amine acids, or about 150 amino. acids, or about 200 amino acids. Such C3b/C4b CR-like polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies to C3b/C4b CR-like polypeptides.

The "C3b/C4b CR-like fusion polypeptide" term refers to a fusion of one or more amino acids (such as a heterologous peptide or polypeptide) at the amino or carboxy terminus of the polypeptide as set forth in SEO ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide variants, or C3b/C4b CR-like polypeptide ' variants having one or more amino acid deletions, substitutions or internal additions as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

1000

10

15

20

25

.30

The term "C3b/C4b CR-like polypeptide ortholog" refers to a polypeptide from another species that corresponds to C3b/C4b CR-like polypeptide amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. For example, mouse and human C3b/C4b CR-like polypeptides are considered orthologs of each other.

The term "C3b/C4b CR-like polypeptide splice variant" refers to a nucleic acid molecule, usually RNA, which is generated by alternative processing of intron sequences in an RNA transcript of C3b/C4b CR-like polypeptide amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

The term "C3b/C4b CR-like polypeptide variants" refers to C3b/C4b CR-like polypeptides comprising amino acid sequences having one or more amino acid sequence substitutions, deletions (such as internal deletions and/or C3b/C4b CR-like polypéptide fragments), and/or additions (such as internal additions and/or C3b/C4b CR-like fusion polypeptides) as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 (with or without a leader sequence). Variants may be naturally occurring (e.g., C3b/C4b CR-like polypeptide allelic C3b/C4b CR-like polypeptide orthologs variants, C3b/C4b CR-like polypeptide splice variants) Such C3b/C4b artificially constructed. polypeptide variants prepared from the may be corresponding nucleic acid molecules having a sequence that varies accordingly from the DNA sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6. In preferred embodiments, the variants have from

1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 50, or from 1 to 75, or from 1 to 100, or more than 100 amino acid substitutions, insertions, additions and/or deletions, wherein the substitutions may be conservative, or non-conservative, or any combination thereof.

The term "antigen" refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antibody, and additionally capable of being used in an animal to produce antibodies capable of binding to an epitope of that antigen. An antigen may have one or more epitopes.

10

30

The term "biologically active C3b/C4b CR-like polypeptides" refers to C3b/C4b CR-like polypeptides having at least one activity characteristic of the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

The terms "effective amount" and "therapeutically effective amount" each refer to the amount of a C3b/C4b CR-like polypeptide or C3b/C4b CR-like nucleic acid molecule used to support an observable level of one or more biological activities of the C3b/C4b CR-like polypeptides as set forth herein.

The term "expression vector" refers to a vector which is suitable for use in a host cell and contains nucleic acid sequences which direct and/or control the expression of heterologous nucleic acid sequences. Expression includes, but is not limited to, processes

such as transcription, translation, and RNA splicing, if introns are present.

The term "host cell" is used to refer to a cell which has been transformed, or is capable of being transformed with a nucleic acid sequence and then of expressing a selected gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent, so long as the selected gene is present.

5

10

The term "identity" as known in the art, refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by comparing the sequences. In the art, "identity" also means the 15· sequence relatedness between nucleic acid molecules or polypeptides, as the case may be, as determined by the match between strings of two or more nucleotide or two or more amino acid sequences. "Identity" measures the percent of identical matches between the smaller of two 20 (if alignments any) sequences with gap more addressed by a particular mathematical model computer program (i.e., "algorithms").

The term "similarity" is a related concept, but in contrast to "identity", refers to a measure of similarity which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are 5

: 550:

10

15

20

. 25

30

positions where there are conservative substitutions, then the percent identity remains 50%, but the per cent similarity would be 75% (15/20). 'Therefore, in cases where there are conservative substitutions, the degree of similarity between two polypeptides will be higher than the percent identity between those two polypeptides.

The term "isolated nucleic acid molecule" refers to a nucleic acid molecule of the invention that (1) has been separated from at least about 50 percent of proteins, lipids, carbohydrates or other materials with which it is naturally found when total DNA is isolated from the source cells, (2) is not linked to all or a portion of a polynucleotide to which the "isolated nucleic acid molecule" is linked in nature, operably linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably. the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) orother contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use.

"isolated polypeptide" refers polypeptide of the present invention that (1) has been separated from at least about 50 percent polynucleotides, lipids, carbohydrates or other materials with which it is naturally found when isolated from the source cell, (2) is not linked (by covalent or noncovalent interaction) to all

of a polypeptide to which the "isolated polypeptide" is linked in nature, (3) is operably linked (by covalent or noncovalent interaction) to a 'polypeptide with which it is not linked in nature, or (4) does not occur in nature. Preferably, the isolated from is substantially free any other polypeptide contaminating polypeptides or other contaminants that that would its natural environment found in therapeutic, diagnostic, interfere with its prophylactic or research use.

10

15

The term "mature C3b/C4b CR-like polypeptide" refers to a C3b/C4b CR-like polypeptide lacking a A mature C3b/C4b CR-like polypeptide leader sequence. modifications such include other may also proteolytic processing of the amino terminus (with or without a leader sequence) and/or the carboxy terminus, smaller polypeptide from a larger cleavage of а precursor, N-linked and/or O-linked glycosylation, and the like.

The term "nucleic acid sequence" or "nucleic acid 20 molecule" refers to a DNA or RNA sequence. encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-8-hydroxy-N6-methyladenosine, acetylcytosine, pseudoisocytosine, aziridinyl-cytosine, 25 uracil, 5-fluorouracil, (carboxyhydroxylmethyl) 5-carboxymethylaminomethyl-2-thiouracil, bromouracil, dihydrouracil, 5-carboxy-methylaminomethyluracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, methylpseudouracil, 1-methylguanine, 1-methylinosine, 30 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine,

7-methylquanine, 5-methylaminomethyluracil, methoxyamino-methyl-2-thiouracil, mannosylqueosine, 5' -methoxycarbonyl-methyluracil, 5methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic 5 acid, oxybutoxosine, pseudouracil, queosine, thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, 10 queosine, 2-thiocytosine, and 2,6-diaminopurine.

The term "naturally occurring" or "native" when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.

15

20 The term "operably linked" is used herein to refer to an arrangement of flanking sequences wherein the flanking sequences so described are configured or assembled so as to perform their usual function. flanking sequence operably linked to a coding 25 sequence may be capable of effecting the replication, transcription and/or translation of the sequence. For example, a coding sequence is operably linked to a promoter when the promoter is capable of directing transcription of that coding sequence. 30 flanking sequence need not be contiguous with the coding sequence, so long as it functions correctly. Thus. for example, intervening untranslated yet

'transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to 'the coding sequence.

The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of the C3b/C4b CR-like polypeptide, C3b/C4b CR-like nucleic acid molecule or C3b/C4b CR-like selective binding agent as a pharmaceutical composition.

10

15

20

The term "selective binding agent" refers to a molecule or molecules having specificity for a C3B/C4B CR-like polypeptide. As used herein, the terms, "specific" and "specificity" refer to the ability of the selective binding agents to bind to human C3b/C4b CR-like polypeptides and not to bind to human non-C3b/C4b CR-like polypeptides. It will be appreciated, however, that the selective binding agents may also bind orthologs of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, that is, interspecies versions thereof, such as mouse and rat polypeptides.

The term "transduction" is used to refer to the transfer of genes from one bacterium to another, usually by a phage. "Transduction" also refers to the acquisition and transfer of eukaryotic cellular sequences by retroviruses.

The term "transfection" is used to refer to the uptake of foreign or exogenous DNA by a cell, and a cell has been "transfected" when the exogenous DNA has

been introduced inside the cell membrane. A number of transfection techniques are well known in the art and are disclosed herein. See, for example, Graham et al., Virology, 52:456 (1973); Sambrook et al., Molecular Cloning, a laboratory Manual, Cold Spring Harbor Laboratories (New York, 1989); Davis et al., Basic Methods in Molecular Biology, Elsevier, 1986; and Chu et al., Gene, 13:197 (1981). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.

5

10

15

20

The term "transformation" as used herein refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain a new DNA. For example, a cell is transformed where it is genetically modified from its native state. Following transfection ortransduction. the transforming DNA may recombine with that of the cell by ... physically integrating into a chromosome of the cell. may be maintained transiently as an episomal element without being replicated, ormay replicate independently as a plasmid. A cell is considered to have been stably transformed when the DNA is replicated with the division of the cell.

The term "vector" is used to refer to any molecule 25 (e.g., nucleic acid, plasmid, or virus) used to transfer coding information to a host cell.

Relatedness of Nucleic Acid Molecules and/or Polypeptides

It is understood that related nucleic acid molecules include allelic or splice variants of the nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, or

SEQ ID NO:6, and include sequences which are complementary to any of the above nucleotide sequences. Related nucleic acid molecules also include a nucleotide sequence encoding a polypeptide comprising or consisting essentially of a substitution, modification, addition and/or a deletion of one or more amino acid residues compared to the polypeptide in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

Fragments include molecules which encode a polypeptide of at least about 25 amino acid residues, or about 50, or about 75, or about 100, or greater than about 100 amino acid residues of the polypeptide of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

In addition, related C3b/C4b CR-like nucleic acid molecules which include those molecules 15 nucleotide sequences which hybridize under moderately or highly stringent conditions as defined herein with the fully complementary sequence of the nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, molecule encoding a polypeptide, of a 20 polypeptide comprises the amino acid sequence as shown in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or of a nucleic acid fragment as defined herein, or of a nucleic acid fragment encoding a polypeptide as defined herein. Hybridization probes may be prepared using the C3b/C4b CR-like sequences provided herein to screen cDNA, genomic or synthetic DNA libraries for related Regions of the DNA and/or amino acid sequences. sequence of C3b/C4b CR-like polypeptide that exhibit significant identity to known sequences are readily 30 determined using sequence alignment algorithms

1::::

described herein and those regions may be used to design probes for screening.

The term "highly stringent conditions" refers to conditions that are designed to hybridization of DNA strands whose sequences are highly and complementary, to exclude hybridization significantly mismatched DNAs. Hybridization stringency is principally determined by temperature, ionic strength, and the concentration of denaturing 10 agents such as formamide. Examples of "highly stringent conditions" for hybridization and washing are 0.015M sodium chloride, 0.0015M sodium citrate at 65-68°C or 0.015M sodium chloride, 0.0015M sodium citrate, and 50% formamide at 42°C. See Sambrook, Fritsch & ... 15 Maniatis, Molecular Cloning: A Laboratory Manual, Ed., Cold Spring Harbor Laboratory, (Cold Spring Harbor, N.Y. 1989); Anderson et al., Nucleic Acid Hybridisation: a practical approach, Ch. 4, IRL Press Limited (Oxford, England).

20 More stringent conditions (such as higher temperature, lower ionic strength, higher formamide, or other denaturing agent) may also be used, however, the rate of hybridization will be affected. Other agents included in the hybridization and washing 25 buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate (NaDodSO4 or SDS), ficoll, Denhardt's solution, sonicated salmon 30 sperm DNA (or other non-complementary DNA), and dextran sulfate, although other suitable agents can also be The concentration and types of these additives used.

9.94. VIV

30

can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4, however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH. See Anderson et al., Nucleic Acid Hybridisation: a Practical Approach, Ch. 4, IRL Press Limited (Oxford, England).

Factors affecting the stability of a DNA duplex include base composition, length, and degree of base pair mismatch. Hybridization conditions can be adjusted by one skilled in the art in order to accommodate these variables and allow DNAs of different sequence relatedness to form hybrids. The melting temperature of a perfectly matched DNA duplex can be estimated by the following equation:

$$T_m$$
 (°C) = 81.5 + 16.6(log[Na+]) + 0.41(%G+C) - 600/N - 0.72(%formamide)

where N is the length of the duplex formed, [Na+] is the molar concentration of the sodium ion in the 20 solution, %G+C hybridization orwashing percentage of (guanine+cytosine) bases in the hybrid. hybrids, melting For imperfectly matched the temperature is reduced by approximately 1°C for each 1% mismatch. 25

The term "moderately stringent conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Examples of typical "moderately stringent conditions" are 0.015M sodium chloride, 0.0015M sodium citrate at

50-65°C or 0.015M sodium chloride, 0.0015M sodium citrate, and 20% formamide at 37-50°C. By way of example, a "moderately stringent" condition of 50°C in 0.015 M sodium ion will allow about a 21% mismatch.

It will be appreciated by those skilled in the art that there is no absolute distinction between "highly" and "moderately" stringent conditions. For example, at 0.015M sodium ion (no formamide), the melting temperature of perfectly matched long DNA is about 10 71°C. With a wash at 65°C (at the same ionic strength), this would allow for approximately a 6% mismatch. To capture more distantly related sequences, one skilled in the art can simply lower the temperature or raise the ionic strength.

A good estimate of the melting temperature in 1M NaCl* for oligonucleotide probes up to about 20nt is given by:

Tm = 2°C per A-T base pair + 4°C per G-C base pair

*The sodium ion concentration in 6X salt sodium 20 citrate (SSC) is 1M. See Suggs et al., Developmental Biology Using Purified Genes, p. 683, Brown and Fox (eds.) (1981).

High stringency washing conditions for oligonucleotides are usually at a temperature of 0-5°C below the Tm of the oligonucleotide in 6X SSC, 0.1% SDS.

25

In another embodiment, related nucleic acid molecules comprise or consist of a nucleotide sequence that is about 70 percent identical to the nucleotide

sequence as shown in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or comprise or consist essentially of a nucleotide sequence encoding a polypeptide that is about 70 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. In preferred embodiments, the nucleotide sequences are about 75 percent, or about 80 percent, or about 85 percent, or about 90 percent, or about 95, 96, 97, 98, or 99 percent identical to the nucleotide sequence as shown in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or the nucleotide sequences encode a polypeptide that is about 75 percent, or about 80 percent, or about 85 percent, or about 90 percent, or about 95, 96, 97, 98, or 99 percent identical to the polypeptide sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

5

10

15

20

25

30

Differences in the nucleic acid sequence may result in conservative and/or non-conservative modifications of the amino acid sequence relative to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

Conservative modifications to the amino sequence of SEO ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 (and the corresponding modifications to the encoding nucleotides) will produce C3b/C4b CR-like polypeptides having functional and chemical characteristics similar those of naturally occurring C3b/C4b polypeptide. In contrast, substantial modifications in and/or chemical characteristics functional C3b/C4b CR-like polypeptides may be accomplished by selecting substitutions in the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 that differ significantly in their effect on maintaining (a) the

t bigs.

···· 5

10

20

25

structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

For example. a "conservative amino substitution" may involve a substitution of a native . amino acid residue with a nonnative residue such that there is little or no effect on the polarity or charge . the amino acid residue at that position. Furthermore, any native residue in the polypeptide may be substituted with alanine, as previously described for "alanine scanning mutagenesis."

Conservative amino acid substitutions also encompass non-naturally occurring amino acid residues which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics, and other reversed or inverted forms of amino acid moieties.

Naturally occurring residues may be divided into classes based on common side chain properties:

- hydrophobic: norleucine, Met, Ala, Val, Leu,
 Ile;
 - 2) neutral hydrophilic: Cys, Ser, Thr, Asn,
 Gln;
 - 3) acidic: Asp, Glu;
 - 4) basic: His, Lys, Arg;
- 5) residues that influence chain orientation:
 Gly, Pro; and
 - 6) aromatic: Trp, Tyr, Phe.

For example, non-conservative substitutions may involve the exchange of a member of one of these classes for a member from another class. Such substituted residues may be introduced into regions of the human C3b/C4b CR-like polypeptide that are homologous with non-human C3b/C4b CR-like polypeptide orthologs, or into the non-homologous regions of the molecule.

5

In making such changes, the hydropathic index of Each amino acid has amino acids may be considered. 10 been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2);leucine (+3.8);(+2.8);cysteine/cystine phenylalanine (+2.5);15 methionine (+1.9); alanine (+1.8); glycine (-0.4);threonine (-0.7); serine (-0.8); tryptophan tyrosine (-1.3); proline (-1.6); histidine (-3.2); qlutamate (-3.5); qlutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

The importance of the hydropathic amino acid index 20 in conferring interactive biological function on a protein is understood in the art. Kyte et al., J. Mol. Biol., 157:105-131 (1982). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making the hydropathic index, the changes based upon substitution of amino acids whose hydropathic indices are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ± 0.5 are 30 even more particularly preferred.

: 535

10

Ιt also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functionally equivalent protein peptide thereby created orintended for use in immunological embodiments, as in present case. The greatest local hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e., with a biological property of the protein.

following hydrophilicity values have been assigned amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 \pm 1); glutamate (+3.0 \pm 15 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 \pm 1); (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8);isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). In making changes based upon 20 similar hydrophilicity values, the substitution amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even . 25 more particularly preferred. One may also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions."

Desired amino acid substitutions (whether conservative or non-conservative) can be determined by those skilled in the art at the time such substitutions are desired. For example, amino acid substitutions can

be used to identify important residues of the C3b/C4b CR-like polypeptide, or to increase or decrease the affinity of the C3b/C4b CR-like polypeptides described herein.

5 Exemplary amino acid substitutions are set forth in Table I.

Table I
Amino Acid Substitutions

Exemplary Substitutions Val, Leu, Ile	Preferred Substitutions Val
	Val
	1
Lys, Gln, Asn	Lys
Gln	Gln
Glu	Glu
Ser, Ala	Ser
Asn	Asn
Asp	Asp
Pro, Ala	Ala
Asn, Gln. Lys, Arg	Arg
Leu, Val, Met, Ala,	Leu
Phe, Norleucine	
Norleucine, Ile,	Ile
Val, Met, Ala, Phe	
Arg, 1,4 Diamino-	Arg
butyric Acid, Gln,	·
Asn	
Leu, Phe, Ile	Leu
Leu, Val, Ile, Ala,	Leu
Tyr	
Ala	Gly
Thr, Ala, Cys	Thr
Ser	Ser
Tyr, Phe	Tyr
Trp, Phe, Thr, Ser	Phe
Ile, Met, Leu, Phe,	Leu
Ala, Norleucine	
	Glu Ser, Ala Asn Asp Pro, Ala Asn, Gln. Lys, Arg Leu, Val, Met, Ala, Phe, Norleucine Norleucine, Ile, Val, Met, Ala, Phe Arg, 1,4 Diamino- butyric Acid, Gln, Asn Leu, Phe, Ile Leu, Val, Ile, Ala, Tyr Ala Thr, Ala, Cys Ser Tyr, Phe Trp, Phe, Thr, Ser Ile, Met, Leu, Phe,

5

10

15

20

25

A skilled artisan will be able to determine suitable variants of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 using well known techniques. For identifying suitable areas of the molecule that may be changed without destroying activity, one skilled in the art may target areas not believed to be important for activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence a C3b/C4b CR-like polypeptide to such similar polypeptides. With such a comparison, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will appreciated that changes in areas of a C3b/C4b CR-like polypeptide that are not conserved relative to such similar polypeptides would be less likely to adversely affect the biological activity and/or structure of the C3b/C4b CR-like polypeptide. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino for the naturally occurring residues retaining activity (conservative amino acid residue substitutions). Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.

Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a

: 555

. 10

15

20

. 25

30

C3b/C4b CR-like polypeptide that correspond to amino acid residues that are important for activity or structure in similar polypeptides. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues of C3b/C4b CR-like polypeptides.

One skilled in the art can also analyze the threedimensional structure and amino acid sequence relation to that structure in similar polypeptides. view of that information, one skilled in the art may predict the alignment of amino acid residues of a C3b/C4b CR-like polypeptide with respect to its three dimensional structure. One skilled in the art may choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important interactions with other molecules. Moreover, skilled the generate test variants in art may containing a single amino acid substitution at each desired amino acid residue. The variants can then be screened using activity assays know to those skilled in Such variants could be used to gather . information about suitable variants. For example, if one discovered that a change to a particular amino acid. residue resulted in destroyed, undesirably reduced, or unsuitable activity, variants with such a change would be avoided. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acids where further substitutions should be avoided either alone or in combination with other mutations.

PCT/US01/23232 WO 02/10199 .

.

A number of scientific publications have been devoted to the prediction of secondary structure. Moult J., Curr. Op. in Biotech., 7(4):422-427 (1996), 'Chou et al., Biochemistry, 13(2):222-245 (1974); Chou et al., Biochemistry, 113(2):211-222 (1974); Chou et al., Adv. Enzymol. Relat. Areas Mol. Biol., 47:45-148 (1978); Chou et al., Ann. Rev. Biochem., 47:251-276 and Chou et al., Biophys. J., 26:367-384 (1979). Moreover, computer programs are currently available to assist with predicting secondary structure. One method of 10 predicting secondary structure is based upon homology For example, two polypeptides or proteins modeling. which have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the 15 protein structural data base (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See Holm et al., Nucl. Acid. Res., 27(1):244-247 (1999). It has been 20 suggested (Brenner et al., Curr. Op. Struct. Biol., 7(3):369-376 (1997)) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, dramatically 25 structural prediction will gain accuracy.

Additional methods of predicting secondary structure include "threading" (Jones, D., Curr. Opin. Struct. Biol., 7(3):377-87 (1997); Sippl Structure, 4(1):15-9 (1996)), "profile analysis" (Bowie 30 et al., Science, 253:164-170 (1991); Gribskov et al., Meth. Enzym., <u>183</u>:146-159 (1990); Gribskov et al.,

Proc. Nat. Acad. Sci., 84(13):4355-4358 (1987)), and "evolutionary linkage" (See Home, supra, and Brenner, supra).

5

10

15

20

25

30

Preferred C3b/C4b CR-like polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites has been altered compared to the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. In one embodiment, C3b/C4b CR-like polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the amino acid sequence set forth in SEQ ID NO:2, SEQ An N-linked glycosylation ID NO:4, or SEQ ID NO:7. site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except prcline. The substitution(s) of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions which eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein N-linked glycosylation sites one or more (typically those that are naturally occurring) eliminated and one or more new N-linked sites are created. Additional preferred C3b/C4b CR-like variants include cysteine variants, wherein one or more cysteine residues are deleted from or substituted for another amino acid (e.g., serine) as compared to acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. Cysteine variants are useful when C3b/C4b CR-like polypeptides must be refolded into biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine

155

5

10

15

20

25

30

variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired 'cysteines.

In addition, the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID 'NO:7 or a C3b/C4b CR-like polypeptide variant may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of C3b/C4b CR-like fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain, or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant.

Fusions can be made either at the amino terminus or at the carboxy terminus of the polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant. Fusions may be direct with no linker or adapter molecule or indirect using a linker

or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically up to about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein.

5

10 In a further embodiment of the invention, the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CRlike polypeptide variant is fused to one or more domains of an Fc region of human IgG. Antibodies comprise two functionally independent parts, a variable domain known as "Fab", which kinds antigen, and a constant domain known as "Fc", which is involved in effector functions such as complement activation and attack by phagocytic cells. An Fc has a long serum 20 half-life, whereas an Fab is short-lived. Capon et Nature, 337:525-31 (1989).When constructed together with a therapeutic protein, an Fc domain can provide longer half-life or incorporate such functions as Fc receptor binding, protein A binding, complement 25 fixation and perhaps even placental transfer. Table II summarizes the use of certain Fc fusions known in the art.

TABLE II: FC FUSION WITH THERAPEUTIC PROTEINS

Form of Fc	Fusion partner	Therapeutic implications	Reference
IgG1	N-terminus of CD30-L	Hodgkin's disease; anaplastic lymphoma; T-cell leukemia	U.S. Patent No. 5,480,981
Murine Fcγ2a	IL-10	anti- inflammatory; transplant rejection	Zheng et al. (1995), J. Immunol., <u>154</u> : 5590-5600
IgG1	TNF receptor	septic shock	Fisher et al. (1996), N. Engl. J. Med., 334: 1697-1702; Van Zee et al., (1996), J. Immunol., 156: 2221-2230
IgG, IgA, IgM, or IgE (excluding the first domain)	TNF receptor	inflammation, autoimmune disorders	U.S. Pat. No. 5,808,029, issued September 15, 1998
IgG1	CD4 receptor	AIDS	Capon et al. (1989), Nature 337: 525-531
IgG1, IgG3	N-terminus of IL-2	anti-cancer, antiviral	Harvill et al. (1995), Immunotech., <u>1</u> : 95-105
IgG1	C-terminus of OPG	osteoarthritis; bone density	WO 97/23614, published July 3, 1997
IgG1	N-terminus of leptin	anti-obesity	PCT/US 97/23183, filed December 11, 1997
Human Ig Cγ1	CTLA-4	autoimmune disorders	Linsley (1991), J. Exp. Med., 174:561-569

In one example, all or a portion of the human IgG hinge, CH2 and CH3 regions may be fused at either the N-terminus or C-terminus of the C3b/C4b CR-like

: 555

30

35

'polypeptides using methods known to the skilled artisan. The resulting C3b/C4b CR-like polypeptide may be purified by use of a Protein A affinity column. Peptides and proteins fused to an Fc region have been found to exhibit a substantially greater half-life in vivo than the unfused counterpart. fusion to an Fc region allows dimerization/multimerization of the fusion polypeptide. The Fc region may be a naturally occurring Fc region, or may be altered to improve certain qualities, such as 10 qualities, circulation therapeutic time, aggregation, etc.

Identity and similarity of related nucleic acid molecules and polypeptides can be readily calculated by 15 known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 20 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., . 25 M. Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math., 48:1073 (1988).

Preferred methods to determine identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are described in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP,

1.75.

10

15

20

25

30

BLASTN, and FASTA (Altschul et al., J. Mol. Biol., 215:403-410 (1990)). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, MD 20894; Altschul et al., supra). The well known Smith Waterman algorithm may also be used to determine identity.

Certain alignment schemes for aligning two amino acid sequences may result in the matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full length sequences. Accordingly, in a preferred embodiment, the selected alignment method (GAP program) will result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.

For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, WI), two polypeptides for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3X the average diagonal; the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. A standard

comparison matrix (see Dayhoff et al., Atlas of Protein Sequence and Structure, vol. 5, supp.3 (1978) for the PAM 250 comparison matrix; Henikoff et al., Proc. Natl. Acad. Sci USA, 89:10915-10919 (1992) for the BLOSUM 62 comparison matrix) is also used by the algorithm.

Preferred parameters for a polypeptide sequence comparison include the following:

Algorithm: Needleman et al., J. Mol. Biol., 48:443-453 (1970);

10 Comparison matrix: BLOSUM 62 from Henikoff et al., Proc. Natl. Acad. Sci. USA, <u>89</u>:10915-10919 (1992);

Gap Penalty: 12

4.

20

Gap Length Penalty: 4

15 Threshold of Similarity: 0

The GAP program is useful with the above parameters. The aforementioned parameters are the default parameters for polypeptide comparisons (along with no penalty for end gaps) using the GAP algorithm.

Preferred parameters for nucleic acid molecule sequence comparisons include the following:

Algorithm: Needleman et al., J. Mol Biol., 48:443-453 (1970);

Comparison matrix: matches = +10, mismatch = 0

Gap Penalty: 50

Gap Length Penalty: 3

The GAP program is also useful with the above 30 parameters. The aforementioned parameters are the

default parameters for nucleic acid molecule comparisons.

Other exemplary algorithms, gap opening penalties, penalties, comparison extension thresholds of similarity, etc. may be used, including forth in the Program Manual, Wisconsin Package, Version 9, September, 1997. The particular choices to be made will be apparent to those of skill in the art and will depend on the specific comparison to be made, such as DNA to DNA, protein to protein, additionally, whether DNA; and protein to comparison is between given pairs of sequences which case GAP or BestFit are generally preferred) or between one sequence and a large database of sequences (in which case FASTA or BLASTA are preferred).

Synthesis

10

15

20

25

It will be appreciated by those skilled in the art the nucleic acid and polypeptide molecules described herein may be produced by recombinant and other means.

Nucleic Acid Molecules

The nucleic acid molecules encode a polypeptide comprising the amino acid sequence of a C3b/C4b CR-like polypeptide can readily be obtained in a variety of ways including, without limitation, chemical synthesis, cDNA or genomic library screening, expression library screening and/or PCR amplification of cDNA.

Recombinant DNA methods used herein are generally
those set forth in Sambrook et al., Molecular Cloning:
A Laboratory Manual, Cold Spring Harbor Laboratory

: 223

10

15

20

- 25

30

Press, Cold Spring Harbor, NY (1989), and/or Ausubel et al., eds., Current Protocols in Molecular Biology, Green Publishers Inc. and Wiley and Sons, NY (1994). The present invention provides for nucleic acid molecules as described herein and methods for obtaining the molecules.

Where a gene encoding the amino acid sequence of a C3b/C4b CR-like polypeptide has been identified from one species, all or a portion of that gene may be used as a probe to identify orthologs or related genes from the same species. The probes or primers may be used to screen cDNA libraries from various tissue sources believed to express the C3b/C4b CR-like polypeptide. In addition, part or all of a nucleic acid molecule having the sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6 may be used to screen a genomic library to identify and isolate a gene encoding the amino acid sequence of a C3b/C4b CR-like polypeptide. Typically, conditions of moderate or high stringency will be employed for screening to minimize the number of false positives obtained from the screen.

Nucleic acid molecules encoding the amino acid sequence of C3b/C4b CR-like polypeptides may also be identified by expression cloning which employs the detection of positive clones based upon a property of the expressed protein. Typically, nucleic acid libraries are screened by the binding of an antibody or other binding partner (e.g., receptor or ligand) to cloned proteins which are expressed and displayed on a host cell surface. The antibody or binding partner is modified with a detectable label to identify those cells expressing the desired clone.

Recombinant expression techniques conducted accordance with the descriptions set forth below may be followed to produce these polynucleotides express the encoded polypeptides. For example, by inserting a nucleic acid sequence which encodes the amino acid sequence of a C3b/C4b CR-like polypeptide into an appropriate vector, one skilled in the art can readily produce large quantities of the nucleotide sequence. The sequences can then be used to generate detection probes or amplification primers. Alternatively, a polynucleotide encoding the amino acid sequence of a C3b/C4b CR-like polypeptide can be inserted into an expression vector. By introducing the expression vector into an appropriate host, the encoded C3b/C4b CR-like polypeptide may be produced in large amounts.

10

15

20

25

30

Another method for obtaining a suitable nucleic acid sequence is the polymerase chain reaction (PCR). In this method, cDNA is prepared from poly(A)+RNA or total RNA using the enzyme reverse transcriptase. Two primers, typically complementary to two separate regions of cDNA (oligonucleotides) encoding the amino acid sequence of a C3b/C4b CR-like polypeptide, are then added to the cDNA along with a polymerase such as Taq polymerase, and the polymerase amplifies the cDNA region between the two primers.

Another means of preparing a nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide is chemical synthesis using methods well known to the skilled artisan such as those described by Engels et al., Angew. Chem. Intl. Ed., 28:716-734 (1989). These methods include, inter alia, the

.

····5

10

.15

phosphotriester, phosphoramidite, and H-phosphonate methods for nucleic acid synthesis. A preferred method synthesis chemical is polymer-supported synthesis using standard phosphoramidite chemistry. Typically, the DNA encoding the amino acid sequence of a C3b/C4b CR-like polypeptide will be several hundred nucleotides in length. Nucleic acids larger than about 100 nucleotides can be synthesized as several fragments using these methods. The fragments can then be ligated together to form the full length nucleotide sequence of C3b/C4b CR-like polypeptide. Usually, fragment encoding the amino terminus of the polypeptide will have an ATG, which encodes a methionine residue. This methionine may or may not be present on the mature form of the C3b/C4b CR-like polypeptide, depending on whether the polypeptide produced in the host cell is designed to be secreted from that cell. Other methods known to the skilled artisan may be used as well.

In certain embodiments, nucleic acid variants contain codons which have been altered for the optimal 20 expression of a C3b/C4b CR-like polypeptide in a given host cell. Particular codon alterations will depend the C3b/C4b CR-like polypeptide(s) and expression. Such cell(s) selected for "codon 25 optimization" can be carried out by a variety of for example, by selecting codons which are methods, preferred for use in highly expressed genes in a given host cell. Computer algorithms which incorporate codon frequency tables such as "Ecohigh.cod" for 30 preference of highly expressed bacterial genes may be used and are provided by the University of Wisconsin Package Version 9.0, Genetics Computer Group, Madison, WI. Other useful codon frequency tables include

"Celegans_high.cod", "Celegans_low.cod",
"Drosophila_high.cod", "Human_high.cod",
"Maize_high.cod", and "Yeast_high.cod".

Vectors and Host Cells

1000

٠,,,

5

10

15

20

A nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide may be inserted into an appropriate expression vector using standard ligation techniques. The vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery such that amplification of the gene and/or expression of the gene can occur). A nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide may be amplified/expressed in prokaryotic, yeast, insect (baculovirus systems), and/or eukaryotic host cells. Selection of the host cell will depend in part on whether a C3b/C4b CR-like polypeptide is to be post-translationally modified (e.g., glycosylated and/or phosphorylated). If so, yeast, insect, or mammalian host cells are preferable. For a review of expression vectors, see Meth. Enz., v.185, D.V. Goeddel, ed. Academic Press Inc., Diego, CA (1990).

Typically, expression vectors used in any of the 25 cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively "flanking sequences" in referred to as embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more 30 enhancer origin of replication, sequences, an transcriptional termination sequence, a complete intron

sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Each of these sequences is discussed below.

5

10

15

20

25

30

Optionally, the vector may contain "tag"a encoding sequence, i.e., an oligonucleotide molecule located at the 5' or 3' end of the C3b/C4b CR-like polypeptide coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis), or other "tag" such as FLAG, HA (hemaglutinin Influenza virus) or myc for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the C3b/C4b CR-like polypeptide from the host cell. Affinity purification accomplished, for example, by chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified C3b/C4b CR-like polypeptide by various means such as using certain peptidases for cleavage.

Flanking sequences may be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source) or synthetic, or the flanking sequences may be native sequences which normally function to regulate C3b/C4b CR-like polypeptide expression. As such, the source of

PCT/US01/23232 WO 02/10199 .

sequence may be any prokaryotic flanking eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.

The flanking sequences useful in the vectors of this invention may be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein other than the C3b/C4b CR-like gene flanking sequences will have been previously mapping and/or by restriction identified by endonuclease digestion and can thus be isolated from proper tissue source using the appropriate In some cases, the full restriction endonucleases. 15 nucleotide sequence of a flanking sequence may be Here, the flanking sequence may be synthesized using the methods described herein for nucleic acid synthesis or cloning.

10

20

25

30

Where all or only a portion of the flanking sequence is known, it may be obtained using PCR and/or with genomic library screening a oligonucleotide and/or flanking sequence fragments from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing a flanking sequence may be isolated from a larger piece of DNA that may contain, for example, a coding sequence Isolation may be or even another gene or genes. accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation Qiagen® column purification, using agarose gel chromatography (Chatsworth, CA), or other methods known to the skilled artisan. The selection of suitable

'enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.

155

··· 5

10

15

20

25

30

An origin of replication is typically a part of purchased those prokaryotic expression vectors commercially, and the origin aids in the amplification of the vector in a host cell. Amplification of the vector to a certain copy number can, in some cases, be important for the optimal expression of a C3b/C4b CR-If the vector of choice does not like polypeptide. contain an origin of replication site, one may be chemically synthesized based on a known sequence, and For example, the origin of ligated into the vector. replication from the plasmid pBR322 (Product No. 303-3s, New England Biolabs, Beverly, MA) is suitable for most Gram-negative bacteria and various origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV) or papillomaviruses such as HPV or BPV) useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it contains the early promoter).

A transcription termination sequence is typically located 3' of the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.

A selectable marker gene element encodes a protein necessary for the survival and growth of a host cell

PCT/US01/23232 WO 02/10199 .

.

20

25

3 C

grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance antibiotics or other toxins, e.g., 'tetracycline, or kanamycin for prokaryotic host cells, (b) complement auxotrophic deficiencies of the cell; or supply critical nutrients not available from Preferred selectable markers are the complex media. kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. A neomycin 10 resistance gene may also be used for selection in prokaryotic and eukaryotic host cells.

Other selection genes may be used to amplify the gene which will be expressed. Amplification is the process wherein genes which are in greater demand for 15 the production of a protein critical for growth are reiterated tandem within the chromosomes in successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and thymidine The mammalian cell transformants are placed kinase. under selection pressure which only the transformants are uniquely adapted to survive by virtue of the selection gene present in the vector. Selection pressure is imposed by culturing the transformed cells in which the conditions concentration selection agent in the medium is successively changed, thereby leading to the amplification of both selection gene and the DNA that encodes a C3b/C4b CRlike polypeptide. As a result, increased quantities of C3b/C4b CR-like polypeptide are synthesized from the amplified DNA.

A ribosome binding site is usually necessary for translation initiation of mRNA and is characterized by

a Shine-Dalgarno sequence (prokaryotes) or a Kozak (eukaryotes). The element is sequence typically located 3' to the promoter and 5' to the coding C3b/C4b CR-like polypeptide to sequence of a The Shine-Dalgarno sequence is varied but expressed. is typically a polypurine (i.e., having a high A-G content). Many Shine-Dalgarno sequences have been identified, each of which can be readily synthesized methods set forth herein and used prokaryotic vector.

10

15

20

25

30

A leader, or signal, sequence may be used to direct a C3b/C4b CR-like polypeptide out of the host cell. Typically, a nucleotide sequence encoding the signal sequence is positioned in the coding region of a C3b/C4b CR-like nucleic acid molecule, or directly at the 5' end of a C3b/C4b CR-like polypeptide coding region. Many signal sequences have been identified, and any of those that are functional in the selected host cell may be used in conjunction with a C3b/C4b CRlike nucleic acid molecule. Therefore, a signal sequence may be homologous (naturally occurring) or C3b/C4b CR-like gene or cDNA. heterologous to a Additionally, signal sequence may be chemically a synthesized using methods described herein. cases, the secretion of a C3b/C4b CR-like polypeptide from the host cell via the presence of a signal peptide will result in the removal of the signal peptide from the secreted C3b/C4b CR-like polypeptide. The signal sequence may be a component of the vector, or it may be a part of a C3b/C4b CR-like nucleic acid molecule that is inserted into the vector.

Included within the scope of this invention is the use of either a nucleotide sequence encoding a native

: 22:

····5

10

.15

20

25

30

C3b/C4b CR-like polypeptide signal sequence joined to a C3b/C4b CR-like polypeptide coding region nucleotide sequence encoding a heterologous sequence joined to a C3b/C4b CR-like polypeptide coding The heterologous signal sequence selected region. should be one that is recognized and processed, i.e., cleaved by a signal peptidase, by the host cell. prokaryotic host cells that do not recognize process the native C3B/C4B CR-like polypeptide signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, or heat-stable enterotoxin II leaders. For yeast the native C3B/C4B CR-like polypeptide : secretion, sequence may be substituted by the yeast signal invertase, alpha factor, or acid phosphatase leaders. In mammalian cell expression the native signal sequence is satisfactory, although other mammalian sequences may be suitable.

In some cases, such as where glycosylation desired in a eukaryotic host cell expression system, one may manipulate the various presequences to improve glycosylation or yield. For example, one may alter the peptidase cleavage site of a particular signal peptide, affect add presequences, which also may The final protein product may have, in glycosylation. the -1 position (relative to the first amino acid of the mature protein) one or more additional amino acids incident to expression, which may not have been totally For example, the final protein product may removed. have one or two amino acid residues found in the peptidase cleavage site, attached to the N-terminus. Alternatively, use of some enzyme cleavage sites may

result in a slightly truncated form of the desired C3b/C4b CR-like polypeptide, if the enzyme cuts at such area within the mature polypeptide.

5

.10

15

20

25

30

In many cases, transcription of a nucleic acid molecule is increased by the presence of one or more introns in the vector; this is particularly true where a polypeptide is produced in eukaryotic host cells, especially mammalian host cells. The introns used may be naturally occurring within the C3b/C4b CR-like gene, especially where the gene used is a full length genomic sequence or a fragment thereof. Where the intron is not naturally occurring within the gene (as for most cDNAs), the intron(s) may be obtained from another The position of the intron with respect to flanking sequences and the C3b/C4b CR-like gene is generally important, as the intron must be transcribed Thus, when a C3b/C4b CR-like cDNA to be effective. molecule is being transcribed, the preferred position for the intron is 3' to the transcription start site, and 5' to the polyA transcription termination sequence. Preferably, the intron or introns will be located on one side or the other (i.e., 5' or 3') of the cDNA such that it does not interrupt the coding sequence. including intron from any source, any prokaryotic and eukaryotic (plant or animal) organisms, may be used to practice this invention, provided that it is compatible with the host cell(s) into which it is Also included herein are synthetic introns. Optionally, more than one intron may be used in the vector.

The expression and cloning vectors of the present invention will each typically contain a promoter that is recognized by the host organism and operably linked

to the molecule encoding a C3B/C4B CR-like polypeptide. Promoters are untranscribed sequences located upstream (5') to the start codon of a structural gene (generally within about 100 1000 bp) that control to transcription of the structural gene. Promoters are into one of two conventionally grouped and constitutive promoters. inducible promoters promoters initiate increased levels Inducible transcription from DNA under their control in response to some change in culture conditions, such as the absence of a nutrient or a presence or change Constitutive promoters, on the other temperature. hand, initiate continual gene product production; that is, there is little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding a C3B/C4B CR-like polypeptide by removing the promoter from the source DNA by restriction enzyme digestion and inserting t.he desired promoter sequence into The native C3B/C4B CR-like gene promoter vector. sequence may be used to direct amplification and/or expression of a C3B/C4B CR-like nucleic acid molecule. A heterologous promoter is preferred, however, if it permits greater transcription and higher yields of the expressed protein as compared to the native promoter, and if it is compatible with the host cell system that has been selected for use.

10

.15

20

25.

Promoters suitable for use with prokaryotic hosts
include the beta-lactamase and lactose promoter systems; alkaline phosphatase, a tryptophan (trp) promoter system; and hybrid promoters such as the tac promoter. Other known bacterial promoters are also

::::

. ...

5

10

15

20

25

30

suitable. Their sequences have been published, thereby enabling one skilled in the art to ligate them to the desired DNA sequence(s), using linkers or adapters as needed to supply any useful restriction sites.

Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, e.g., heat-shock promoters and the actin promoter.

Additional promoters which may be of interest in controlling C3B/C4B CR-like gene transcription include, but are not limited to: the SV40 early promoter region (Bernoist and Chambon, Nature, 290:304-310, 1981); the CMV promoter; the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell, 22:787-797, 1980); the herpes thymidine kinase promoter (Wagner et al., Proc. Natl. Acad. Sci. USA, 78:144-1445, 1981); the regulatory sequences of the metallothionine gene (Brinster et al., Nature, 296:39-42, 1982); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff, et al., Proc. Natl. Acad. Sci. USA, 75:3727-3731, 1978); or the tac promoter (DeBoer, et al., Proc. Natl. Acad. Sci. USA, 80:21-25, 1983). Also of interest are the following

1 0.75

. 10

15

20

25

animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region which is 'active in pancreatic acinar cells (Swift et al., Cell, 38:639-646, 1984; Ornitz et al., Cold Spring Harbor Quant. Biol., 50:399-409 (1986); MacDonald, Symp. Hepatology, 7:425-515, 1987); the insulin gene control active in pancreatic beta region which is 315:115-122, Nature, 1985); immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., Cell, 38:647-658 (1984); Adames et al., Nature, 318:533-538 (1985); Alexander et al., Mol. Cell. Biol., 7:1436-1444, 1987); the mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., Cell, 45:485-495, 1986); the albumin gene control region which is active in liver (Pinkert Genes and Devel., 1:268-276, 1987); alphafetcprotein gene control region which is active in liver (Krumlauf et al., Mol. Cell. Biol., 5:1639-1648, 1985; Hammer et al., Science, 235:53-58, 1987); the alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., Genes and Devel., 1:161-171, 1987); the beta-globin gene control region which is active in myeloid cells (Mogram et al., Nature, 315:338-340, 1985; Kollias et al., Cell, 46:89-94, 1986); the myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., Cell, 48:703-712, 1987); the myosin light chain-2 gene control region which is active in skeletal muscle (Sani, Nature, 314:283-286, 1985); and the gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al.,

4

Science, 234:1372-1378, 1986).

10

15

20

25

An enhancer sequence may be inserted into the vector to increase the transcription of a DNA encoding a C3B/C4B CR-like polypeptide of the present invention by higher eukaryotes. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent. They have been found 5' and 3' to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and Typically, however, an enhancer from a virus will be The SV40 enhancer, the cytomegalovirus early used. promoter enhancer, the polyoma enhancer, and adenovirus enhancers are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer may be spliced into the vector at a position 5' or 3' to a C3B/C4B CR-like nucleic acid molecule, it is typically located at a site 5' from the promoter.

Expression vectors of the invention constructed from a starting vectór such commercially available vector. Such vectors may or may not contain all of the desired flanking sequences. Where one or more of the desired flanking sequences are already present in the vector, they may be individually obtained and ligated into the vector. Methods used for obtaining each of the sequences are well known to one skilled in the art.

Preferred vectors for practicing this invention are those which are compatible with bacterial, insect, and mammalian host cells. Such vectors include, inter

alia, pCRII, pCR3, and pcDNA3.1 (Invitrogen Company, Carlsbad, CA), pBSII (Stratagene Company, La Jolla, CA), pET15D (Novagen, Madison, WI), pGEX (Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL (BlueBacII; Invitrogen), pDSR-alpha (PCT Publication No. WO90/14363) and pFastBacDual (Gibco/BRL, Grand Island, NY).

<u>:</u> -

. 10

15

20

25

30

Additional suitable vectors include, but are not limited to, cosmids, plasmids or modified viruses, but it will be appreciated that the vector system must be compatible with the selected host cell. Such vectors include, but are not limited to plasmids such as Bluescript plasmid derivatives (a high copy number ColE1-based phagemid, Stratagene Cloning Systems Inc., La Jolla CA), PCR cloning plasmids designed for cloning Tag-amplified PCR products (e.g., TOPO™ TA Cloning Kit, PCR2.1 plasmid derivatives, Invitrogen, Carlsbad, CA), and mammalian, yeast, or virus vectors such as a expression system (pBacPAK baculovirus plasmid derivatives, Clontech, Palo Alto, CA).

After the vector has been constructed and a nucleic acid molecule encoding a C3b/C4b CR-like polypeptide has been inserted into the proper site of the vector, the completed vector may be inserted into a suitable host cell for amplification and/or polypeptide expression. The transformation of an expression vector for a C3b/C4b CR-like polypeptide into a selected host accomplished by well known may be cell methods such as transfection, infection, including calcium chloride, electroporation, microinjection, lipofection or the DEAE-dextran method or other known techniques. The method selected will in part be a

:::::

····5

10

15

. 20

25

30

٠. . .

function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., supra.

Host cells may be prokaryotic host cells (such as E. coli) or eukaryotic host cells (such as a yeast cell, an insect cell or a vertebrate cell). The host when cultured under appropriate conditions, synthesizes a C3b/C4b CR-like polypeptide which can subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity, glycosylation or phosphorylation, and ease of folding into a biologically active molecule.

A number of suitable host cells are known in the and many are available from the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110-2209. Examples include, but are limited to, mammalian cells, such as Chinese hamster ovary cells (CHO) (ATCC No. CCL61) CHO DHFRcells (Urlaub et al., Proc. Natl. Acad. Sci. 97:4216-4220 (1980)), human embryonic kidney (HEK) 293 or 293T cells (ATCC No. CRL1573), or 3T3 cells (ATCC No. CCL92). The selection of suitable mammalian host cells methods and for transformation, culture, amplification, screening and product production and purification are known in the art. Other suitable mammalian cell lines, are the monkey COS-1 (ATCC No. CRL1650) and COS-7 cell lines (ATCC No. CRL1651), and

the CV-1 cell line (ATCC No. CCL70). Further exemplary mammalian host cells include primate cell lines and rodent cell lines, including transformed cell lines. Normal diploid cells, cell strains derived from in vitro culture of primary tissue, as well as primary explants, are also suitable. Candidate cells may be genotypically deficient in the selection gene, or may contain a dominantly acting selection gene. Other suitable mammalian cell lines include but are not limited to, mouse neuroblastoma N2A cells, HeLa, mouse L-929 cells, 3T3 lines derived from Swiss, Balb-c or NIH mice, BHK or HaK hamster cell lines, which are available from the ATCC. Each of these cell lines is known by and available to those skilled in the art of protein expression.

5

10

15

20

Similarly useful as host cells suitable for the present invention are bacterial cells. For example, the various strains of *E. coli* (e.g., HB101, (ATCC No. 33694) DH5 α , DH10, and MC1061 (ATCC No. 53338)) are well-known as host cells in the field of biotechnology. Various strains of *B. subtilis*, *Pseudomonas spp.*, other *Bacillus spp.*, *Streptomyces spp.*, and the like may also be employed in this method.

Many strains of yeast cells known to those skilled in the art are also available as host cells for the expression of the polypeptides of the present invention. Preferred yeast cells include, for example, Saccharomyces cerivisae and Pichia pastoris.

Additionally, where desired, insect cell systems 30 may be utilized in the methods of the present invention. Such systems are described for example in Kitts et al., Biotechniques, 14:810-817 (1993);

Lucklow, Curr. Opin. Biotechnol., 4:564-572 (1993); and Lucklow et al. (J. Virol., 67:4566-4579 (1993). Preferred insect cells are Sf-9 and Hi5 (Invitrogen, Carlsbad, CA).

One may also use transgenic animals to express 5 C3b/C4b CR-like polypeptides. glycosylated example, one may use a transgenic milk-producing animal (a cow or goat, for example) and obtain the present glycosylated polypeptide in the animal milk. One may 10 also plants to produce C3b/C4b CR-like use polypeptides, however, in general, the glycosylation occurring in plants is different from that produced in mammalian cells, and may result in a glycosylated product which is not suitable for human therapeutic 15 use.

Polypeptide Production

: 533:

20

25

30

comprising C3b/C4b CR-like Host cells а polypeptide expression vector may be cultured using standard media well known to the skilled artisan. media will usually contain all nutrients necessary for the growth and survival of the cells. Suitable media for culturing E. coli cells include, for example, Luria Broth (LB) and/or Terrific Broth (TB). Suitable media for culturing eukaryotic cells include Roswell Park Memorial Institute medium 1640 (RPMI 1640), Minimal Essential Medium (MEM) and/or Dulbecco's Modified Eagle Medium (DMEM), all of which may be supplemented with serum and/or growth factors as indicated by the particular cell line being cultured. A suitable medium for insect cultures is Grace's medium supplemented with ·:

: ::::::

5

10

15

20

25

30

yeastolate, lactalbumin hydrolysate and/or fetal calf serum, as necessary.

Typically, an antibiotic or other compound useful for selective growth of transformed cells is added as a supplement to the media. The compound to be used will be dictated by the selectable marker element present on the plasmid with which the host cell was transformed. For example, where the selectable marker element is kanamycin resistance, the compound added to the culture medium will be kanamycin. Other compounds for selective growth include ampicillin, tetracycline, and neomycin.

amount of a C3b/C4b CR-like polypeptide produced by a host cell can be evaluated using standard methods known in the art. Such methods include, limitation. blot analysis, SDSwithout Western polyacrylamide gel electrophoresis, non-denaturing gel electrophoresis, HPLC separation, immunoprecipitation, and/or activity assays such as DNA binding gel shift assays.

If a C3b/C4b CR-like polypeptide has been designed to be secreted from the host cells, the majority of polypeptide may be found in the cell culture medium. If however, the C3b/C4b CR-like polypeptide is not secreted from the host cells, it will be present in the cytoplasm and/or the nucleus (for eukaryotic host cells) or in the cytosol (for bacterial host cells).

For a C3b/C4b CR-like polypeptide situated in the host cell cytoplasm and/or the nucleus (for eukaryotic host cells) or in the cytosol (for bacterial host cells), intracellular material (including inclusion

bodies for gram-negative bacteria) can be extracted from the host cell using any standard technique known to the skilled artisan. For example, the host cells can be lysed to release the contents of the periplasm/cytoplasm by French press, homogenization, and/or sonication followed by centrifugation.

/ - 5

10

15

20

25

30

CR-like polypeptide has formed Ιf a C3b/C4b inclusion bodies in the cytosol, the inclusion bodies can often bind to the inner and/or outer cellular membranes and thus will be found primarily in the pellet material after centrifugation. material can then be treated at pH extremes or with a chaotropic agent such as a detergent, guanidine, guanidine derivatives, urea, or urea derivatives in the presence of a reducing agent such as dithiothreitol at alkaline pH or tris carboxyethyl phosphine at acid pH to release, break apart, and solubilize the inclusion The C3b/C4b CR-like polypeptide in its now bodies. soluble analyzed form can then be using electrophoresis, immunoprecipitation or the like. If it is isolate the C3b/C4b desired to polypeptide, isolation may be accomplished standard methods such as those described herein and in Marston et al., Meth. Enz., 182:264-275 (1990).

In some cases, a C3b/C4b CR-like polypeptide may not be biologically active upon isolation. Various methods for "refolding" or converting the polypeptide to its tertiary structure and generating disulfide linkages can be used to restore biological activity. Such methods include exposing the solubilized polypeptide to a pH usually above 7 and in the presence of a particular concentration of a chaotrope. The selection of chaotrope is very similar to the choices

used for inclusion body solubilization, but usually the chaotrope is used at a lower concentration and is not as chaotropes used for necessarily the same In most cases the refolding/oxidation solubilization. solution will also contain a reducing agent or the reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential allowing for disulfide shuffling to occur in the formation of Some of the commonly the protein's cysteine bridge(s). redox couples include cysteine/cystamine, cupric chloride, (GSH)/dithiobis GSH, glutathione 2dithiothreitol(DTT)/ dithiane DTT. and 2mercaptoethanol(bME)/dithio-b(ME). A cosolvent may be used to increase the efficiency of the refolding, and the more common reagents used for this purpose include glycerol, polyethylene glycol of various molecular weights, arginine and the like.

5

10

15

20

25

30

If inclusion bodies are not formed to a significant degree upon expression of a C3b/C4b CR-like polypeptide, then the polypeptide will be found primarily in the supernatant after centrifugation of the cell homogenate. The polypeptide may be further isolated from the supernatant using methods such as those described herein.

· •

The purification of a C3b/C4b CR-like polypeptide from solution can be accomplished using a variety of techniques. If the polypeptide has been synthesized such that it contains a tag such as Hexahistidine (C3b/C4b CR-like polypeptide/hexaHis) or other small peptide such as FLAG (Eastman Kodak Co., New Haven, CT) or myc (Invitrogen, Carlsbad, CA) at either its carboxyl or amino terminus, it may be purified in a one-step process by passing the solution through an

'affinity column where the column matrix has a high affinity for the tag.

: 555

For example, polyhistidine binds with great affinity and specificity to nickel, thus an affinity column of nickel (such as the Qiagen® nickel columns) can be used for purification of C3b/C4b CR-like polypeptide/polyHis. See for example, Ausubel et al., eds., Current Protocols in Molecular Biology, Section 10.11.8, John Wiley & Sons, New York (1993).

Additionally, the C3B/C4B CR-like polypeptide may be purified through the use of a monoclonal antibody which is capable of specifically recognizing and binding to the C3B/C4B CR-like polypeptide.

Suitable procedures for purification thus include, 15 without limitation, affinity chromatography, immunoaffinity chromatography, i.on exchange chromatography, molecular sieve chromatography, High Performance Liquid · Chromatography (HPLC), electrophoresis (including native gel electrophoresis) 20 followed by gel elution, and preparative isoelectric ("Isoprime" focusing machine/technique, Scientific, San Francisco, CA). In some cases, two or more purification techniques may be combined to achieve increased purity.

25 C3b/C4b CR-like polypeptides may also be prepared by chemical synthesis methods (such as solid phase peptide synthesis) using techniques known in the art, such as those set forth by Merrifield et al., J. Am. Chem. Soc., 85:2149 (1963), Houghten et al., Proc Natl 30 Acad. Sci. USA, 82:5132 (1985), and Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co.,

: h-ph.

···· 5

10

15

20

. 25

30

Such polypeptides Rockford, IL (1984). synthesized with or without a methionine on the amino Chemically synthesized C3b/C4b CR-like terminus. polypeptides may be oxidized using methods set forth in these references to form disulfide bridges. Chemically synthesized C3b/C4b CR-like polypeptides are expected biological activity comparable have corresponding C3b/C4b CR-like polypeptides produced recombinantly or purified from natural sources, thus may be used interchangeably with a recombinant or natural C3b/C4b CR-like polypeptide.

Another means of obtaining a C3b/C4b CR-like polypeptide is via purification from biological samples such as source tissues and/or fluids in which the C3b/C4b CR-like polypeptide is naturally found. Such purification can be conducted using methods for protein purification as described herein. The presence of the C3b/C4b CR-like polypeptide during purification may be monitored using, for example, an antibody prepared against recombinantly produced C3b/C4b CR-like polypeptide or peptide fragments thereof.

. .

. .

number of additional methods for producing nucleic acids and polypeptides are known in the art, used to produce polypeptides having and can be specificity for C3b/C4b CR-like. See for example, Roberts et al., Proc. Natl. Acad. Sci., 94:12297-12303 which describes the production of fusion proteins between an mRNA and its encoded peptide. also Roberts, R., Curr. Opin. Chem. Biol., 3:268-273 U.S. patent No. 5,824,469 Additionally, (1999).describes methods of obtaining oligonucleotides capable of carrying out a specific biological function. The

procedure involves generating a heterogeneous pool of oligonucleotides, each having a 5' randomized sequence, a central preselected sequence, and a 3' randomized The resulting heterogeneous pool sequence. introduced into a population of cells that do not desired biological function. exhibit the Subpopulations of the cells are then screened for those which exhibit a predetermined biological From that subpopulation, oligonucleotides capable of carrying out the desired biological function are isolated.

U.S. Patent Nos. 5,763,192, 5,814,476, 5,723,323, and 5,817,483 describe processes for producing peptides This is done by producing stochastic . or polypeptides. genes or fragments thereof, and then introducing these into host cells which produce one or proteins encoded by the stochastic genes. The host cells are then screened to identify those clones producing peptides or polypeptides having the desired activity.

7.7

.7 . . .

Chemical Derivatives

5

10

15

20

25

30

Chemically modified derivatives of the C3b/C4b CRlike polypeptides may be prepared by one skilled in the given the disclosures set forth hereinbelow. C3b/C4b CR-like polypeptide derivatives are modified in a manner that is different, either in the type or location of the molecules naturally attached to the Derivatives may include molecules formed polypeptide. by the deletion of one or more naturally-attached chemical groups. The polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID

: b.yb.

. 10

20

25

30

NO:7, or a C3b/C4b CR-like polypeptide variant may be modified by the covalent attachment of one or more polymers. For example, the polymer selected typically water soluble so that the protein to which it does not precipitate attached in an a physiological environment. environment, such as Included within the scope of suitable polymers is a mixture of polymers. Preferably, for therapeutic use of the end-product preparation, the polymer will be pharmaceutically acceptable.

The polymers each may be of any molecular weight and may be branched or unbranched. The polymers each typically have an average molecular weight of between about 2kDa to about 100kDa (the term "about" indicating that in preparations of a water soluble polymer, some molecules will weigh more, some less, than the stated molecular weight). The average molecular weight of each polymer preferably is between about 5kDa and about 50kDa, more preferably between about 12kDa and about 40kDa and most preferably between about 20kDa and about 35kDa.

...

...

4.

Suitable water soluble polymers or mixtures thereof include, but are not limited to, N-linked or O-linked carbohydrates, sugars, phosphates, polyethylene glycol (PEG) (including the forms of PEG that have been used to derivatize proteins, including mono-(C1-C10) alkoxy- or aryloxy-polyethylene glycol), monomethoxy-polyethylene glycol, dextran (such as low molecular weight dextran, of, for example about 6 kD), cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-

polymer, polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol. Also encompassed by the present invention are bifunctional crosslinking molecules which may be used to prepare covalently attached multimers of the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant.

10

15

20

25

30

chemical derivatization may general, In performed under any suitable condition used to react a protein with an activated polymer molecule. for preparing chemical derivatives of polypeptides will generally comprise the steps of (a) reacting polypeptide with the activated polymer molecule (such as a reactive ester or aldehyde derivative of the under conditions whereby the polymer molecule) polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CRlike polypeptide variant becomes attached to one or more polymer molecules, and (b) obtaining the reaction product(s). The optimal reaction conditions will be determined based on known parameters and the desired For example, the larger the ratio of polymer molecules:protein, the greater the percentage attached polymer molecule. In one embodiment, the C3b/C4b CR-like polypeptide derivative may have single polymer molecule moiety at the amino terminus. See, for example, U.S. Patent No. 5,234,784.

The pegylation of the polypeptide specifically may be carried out by any of the pegylation reactions known in the art, as described for example in the following references: Francis et al., Focus on Growth Factors, 3:4-10 (1992); EP 0154316; EP 0401384 and U.S. Patent

No. 4,179,337. For example, pegylation may be carried out via an acylation reaction or an alkylation reaction with a reactive polyethylene glycol molecule (or an analogous reactive water-soluble polymer) as described herein. For the acylation reactions, the polymer(s) selected should have a single reactive ester group. For reductive alkylation, the polymer(s) selected should have a single reactive aldehyde group. A reactive aldehyde is, for example, polyethylene glycol propional dehyde, which is water stable, or mono C_1 - C_{10} alkoxy or aryloxy derivatives thereof (see U.S. Patent No. 5,252,714).

In another embodiment, C3b/C4b CR-like polypeptides may be chemically coupled to biotin, and the biotin/C3b/C4b CR-like polypeptide molecules which are conjugated are then allowed to bind to avidin, resulting in tetravalent avidin/biotin/C3b/C4b CR-like polypeptide molecules. C3b/C4b CR-like polypeptides may also be covalently coupled to dinitrophenol (DNP) or trinitrophenol (TNP) and the resulting conjugates precipitated with anti-DNP or anti-TNP-IgM to form decameric conjugates with a valency of 10.

Generally, conditions which may be alleviated or modulated by the administration of the present C3b/C4b CR-like polypeptide derivatives include those described herein for C3b/C4b CR-like polypeptides. However, the C3b/C4b CR-like polypeptide derivatives disclosed herein may have additional activities, enhanced or reduced biological activity, or other characteristics, such as increased or decreased half-life, as compared to the non-derivatized molecules.

'Genetically Engineered Non-Human Animals

::::::

10

15

20

25

Additionally included within the scope of the present invention are non-human animals such as mice, rats, or other rodents, rabbits, goats, or sheep, or other farm animals, in which the gene (or genes) encoding the native C3b/C4b CR-like polypeptide has (have) been disrupted ("knocked out") such that the level of expression of this gene or genes is (are) significantly decreased or completely abolished. Such animals may be prepared using techniques and methods such as those described in U.S. Patent No. 5,557,032.

The present invention further includes non-human animals such as mice, rats, or other rodents, rabbits, goats, sheep, or other farm animals, in which either the native form of the C3b/C4b CR-like gene(s) for that animal or a heterologous C3b/C4b CR-like gene(s) (are) over-expressed by the animal, thereby creating a "transgenic" animal. Such transgenic animals may be prepared using well known methods such those U.S. 5,489,743 PCT described in Patent No and application No. WO94/28122.

The present invention further includes non-human animals in which the promoter for one or more of the C3b/C4b CR-like polypeptides of the present invention is either activated or inactivated (e.g., by using homologous recombination methods) to alter the level of expression of one or more of the native C3b/C4b CR-like polypeptides.

These non-human animals may be used for drug 30 candidate screening. In such screening, the impact of a drug candidate on the animal may be measured. For

'example, drug candidates may decrease or increase the expression of the C3b/C4b CR-like gene. In certain embodiments, the amount of C3b/C4b CR-like polypeptide, that is produced may be measured after the exposure of the animal to the drug candidate. Additionally, certain embodiments, one may detect the actual impact of the drug candidate on the animal. For example, the overexpression of a particular gene may result in, or associated with, a äisease orpathological condition. In such cases, one may test a drug. candidate's ability to decrease expression of the gene or its ability to prevent or inhibit a pathological In other examples, the production of a condition. particular metabolic product such as a fragment of a polypeptide, may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product or its ability to prevent or inhibit a pathological condition.

. ...

. 41

1.

20

25

30

1.0

15

1 100

Microarray

DNA microarray will be appreciated that technology can be utilized in accordance with the present invention. DNA microarrays are miniature, high density arrays of nucleic acids positioned on a solid Each cell or element within support, such as glass. the array has numerous copies of a single species of DNA which acts as a target for hybridization for its In expression profiling using DNA cognate mRNA. microarray technology, mRNA is first extracted from a cell or tissue sample and then converted enzymatically fluorescently labeled cDNA. This material hybridized to the microarray and unbound cDNA

The expression of discrete genes removed by washing. represented on the array is then visualized quantitating the amount labeled cDNA which of is specifically bound to each target DNA. In this way, the expression of thousands of genes can be quantitated in a high throughput, parallel manner from a single sample of biological material.

This high throughput expression profiling has a broad range of applications with respect to the C3b/C4b CR-like molecules of the invention, including, but not identification and validation of limited to: the C3b/C4b CR-like disease-related genes as targets for therapeutics; molecular toxicology of C3b/C4b CR-like molecules and inhibitors thereof; stratification of populations and generation of surrogate markers for clinical trials; and enhancing C3b/C4b CR-like-related small molecule drug discovery by aiding the identification selective" compounds in high of throughput screens (HTS).

20

25

30

5

10

15

Selective Binding Agents

As used herein, the term "selective binding agent" refers to a molecule which has specificity for one or more C3b/C4b CR-like polypeptides. Suitable selective binding agents include, but are not limited to, antibodies and derivatives thereof, polypeptides, and small molecules. Suitable selective binding agents may be prepared using methods known in the art. An exemplary C3B/C4B CR-like polypeptide selective binding agent of the present invention is capable of binding a certain portion of the C3B/C4B CR-like polypeptide

thereby inhibiting the binding of the polypeptide to the C3B/C4B CR-like polypeptide receptor(s).

Selective binding agents such as antibodies and bind C3b/C4b fragments that CR-like antibody polypeptides are within the scope of the present invention. The antibodies may be polyclonal including monospecific polyclonal, monoclonal recombinant, chimeric, humanized such as CDR-grafted, human, single chain, and/or bispecific, as well as fragments, variants or derivatives thereof. Antibody fragments include those portions of the antibody which bind to an epitope on the C3B/C4B CR-like polypeptide. Examples of such fragments include Fab and F(ab') fragments generated by enzymatic cleavage of fulllength antibodies. Other binding fragments include those generated by recombinant DNA techniques, such as the expression of recombinant plasmids containing nucleic acid sequences encoding antibody variable regions.

: .

4.1

10

15

Polyclonal antibodies directed toward a C3b/C4b 20 CR-like polypeptide generally are produced in animals mice) by means of rabbits orsubcutaneous or intraperitoneal injections of C3b/C4b CR-like polypeptide and an adjuvant. It may be useful to conjugate a C3b/C4b CR-like polypeptide to a carrier 25 protein that is immunogenic in the species to be immunized, such as keyhole limpet heocyanin, serum, albumin, bovine thyroglobulin, or soybean trypsin Also, aggregating agents such as alum are inhibitor. immune response. 30 enhance the used to immunization, the animals are bled and the serum is

assayed for anti-C3b/C4b CR-like polypeptide antibody titer.

: ::::

10

15

20

25

30

Monoclonal antibodies directed toward a C3b/C4b CR-like polypeptide are produced using any method which provides for the production of antibody molecules by continuous cell lines in culture. Examples of suitable methods for preparing monoclonal antibodies include the hybridoma methods of Kohler et al., Nature, 256:495-497 (1975) and the human B-cell hybridoma method, Kozbor, Immunol., 133:3001 (1984);Brodeur al., Monoclonal Antibody Production Techniques Applications, pp. 51-63 (Marcel Dekker, Inc., New York, Also provided by the invention are hybridoma cell lines which produce monoclonal antibodies reactive with C3b/C4b CR-like polypeptides.

Monoclonal antibodies of the invention may be modified for use as therapeutics. One embodiment is a "chimeric" antibody in which a portion of the heavy and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to а particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous corresponding sequence in antibodies derived another species or belonging to another antibody class or subclass. Also included are fragments of such antibodies, so long as they exhibit the desired biological activity. See, U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci., 81:6851-6855 (1985).

In another embodiment, a monoclonal antibody of the invention is a "humanized" antibody. Methods for

humanizing non-human antibodies are well known in the See U.S. Patent Nos. 5,585,089, and 5,693,762. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. Humanization can be performed, for example, using methods described in the art (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting at least a portion of a rodent complementarity-determining region (CDR) for the corresponding regions of a human antibody.

5

10

20

25

30

Also encompassed by the invention are antibodies which bind C3b/C4b CR-like polypeptides. Using transgenic animals (e.g., mice) that are capable ... 15 of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production such antibodies are produced by immunization with a C3b/C4b CR-like antigen (i.e., having at least 6 contiguous amino acids), optionally conjugated to a carrier. See, for example, Jakobovits et al., Proc. Natl. Acad. Sci., 90:2551-2555 (1993); Jakobovits et al., Nature 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 In one method, such transgenic animals are (1993). produced by incapacitating the endogenous loci encoding the heavy and light immunoglobulin chains therein, and inserting loci encoding human heavy and light chain proteins into the genome thereof. Partially modified animals, that is those having less than the full complement of modifications, are then cross-bred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies with human

·--.5

10

15

2.0

25

30

'(rather than e.g., murine) amino acid sequences, including variable regions which are immunospecific for antigens. See PCT application these PCT/US96/05928 and PCT/US93/06926. Additional methods are described in U.S. Patent No. 5,545,807, application nos. PCT/US91/245, PCT/GB89/01207, and in EP 546073B1 and EP 546073A1. Human antibodies may also be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

In an alternative embodiment, human antibodies can be produced from phage-display libraries (Hoogenboom et al., J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol: 222:581 (1991). These processes mimic = immune selection through the display of antibody . surface o£ filamentous repertoires the on bacteriophage, and subsequent selection of phage by war. their binding to an antigen of choice. One such the technique is described in PCT Application PCT/US98/17364, which describes the isolation of high affinity and functional agonistic antibodies for MPLand msk- receptors using such an approach.

Chimeric, CDR grafted, and humanized antibodies are typically produced by recombinant methods. Nucleic acids encoding the antibodies are introduced into host cells and expressed using materials and procedures described herein. In a preferred embodiment, the antibodies are produced in mammalian host cells, such as CHO cells. Monoclonal (e.g., human) antibodies may be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

1 5.75

·-- 5

10

15

20

25

30

The anti-C3b/C4b CR-like antibodies of the invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays (Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc., 1987)) for the detection and quantitation of C3b/C4b CR-like polypeptides. The antibodies will bind C3b/C4b CR-like polypeptides with an affinity which is appropriate for the assay method being employed.

applications, in For diagnostic embodiments, anti-C3b/C4b CR-like antibodies may be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. detectable example, the moiety may For radioisotope, such as ^{3}H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , fluorescent or chemiluminescent compound, fluorescein isothiocyanate, rhodamine, or luciferin; or such as alkaline phosphatase, Oan enzyme, galactosidase, or horseradish peroxidase (Bayer et al., Meth. Enz., 184:138-163 (1990)).

Competitive binding assays rely on the ability of a labeled standard (e.g., a C3b/C4b CR-like polypeptide, or an immunologically reactive portion thereof) to compete with the test sample analyte (an C3b/C4b CR-like polypeptide) for binding with a limited amount of anti C3b/C4b CR-like antibody. The amount of a C3b/C4b CR-like polypeptide in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound,

the antibodies typically are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound.

5

10

15

20

25

30

Sandwich assays typically involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected and/or quantitated. In a sandwich assay, the test sample analyte is typically bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three part complex. See, e.g., U.S. Patent No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an antiimmunoglobulin antibody that is labeled with detectable moiety (indirect sandwich assays). example, one type of sandwich assay is an enzyme-linked immunosorbent assay (ELISA), in which the detectable moiety is an enzyme.

. .

The selective binding agents, including anti-C3b/C4b CR-like antibodies, also are useful for in vivo imaging. An antibody labeled with a detectable moiety may be administered to an animal, preferably into the bloodstream, and the presence and location of the labeled antibody in the host is assayed. The antibody may be labeled with any moiety that is detectable in an animal, whether by nuclear magnetic resonance, radiology, or other detection means known in the art.

Selective binding agents of the invention, including antibodies, may be used as therapeutics. These therapeutic agents are generally agonists or antagonists, in that they either enhance or reduce, respectively, at least one of the biological activities of a C3b/C4b CR-like polypeptide. In one embodiment, antagonist antibodies of the invention are antibodies or binding fragments thereof which are capable of specifically binding to a C3b/C4b CR-like polypeptide and which are capable of inhibiting or eliminating the functional activity of a C3b/C4b CR-like polypeptide in vivo or in vitro. In preferred embodiments, the selective binding agent, e.g., an antagonist antibody, will inhibit the functional activity of a C3b/C4b CRlike polypeptide by at least about 50%, and preferably by at least about 80%. In another embodiment, the selective binding agent may be an antibody that is capable of interacting with a C3b/C4b CR-like binding partner (a ligand or receptor) thereby inhibiting or eliminating C3b/C4b CR-like activity in vitro or in Selective binding agents, including agonist and antagonist anti-C3b/C4b CR-like antibodies, identified by screening assays which are well known in the art.

10

15

20

25 The invention also relates to a kit comprising C3b/C4b CR-like selective binding agents (such as antibodies) and other reagents useful for detecting C3b/C4b CR-like polypeptide levels in biological samples. Such reagents may include, a detectable label, blocking serum, positive and negative control samples, and detection reagents.

C3b/C4b CR-like polypeptides can be used to clone

::::: C3b/C4b CR-like ligand(s) using an "expression cloning" Radiolabeled (125-Iodine) C3b/C4b CR-like polypeptide or "affinity/activity-tagged" C3b/C4b CRlike polypeptide (such as an Fc fusion or an alkaline phosphatase fusion) can be used in binding assays to identify a cell type or cell line or tissue that expresses C3b/C4b CR-like ligand(s). RNA isolated from such cells or tissues can then be converted to cDNA, mammalian .expression into a vector, transfected into mammalian cells (for example, COS, or 10 293) to create an expression library. Radiolabeled or tagged C3b/C4b CR-like polypeptide can then be used as an affinity reagent to identify and isolate the subset of cells in this library expressing C3b/C4b CR-like ligand(s). DNA is then isolated from these cells and 15 transfected into mammalian cells to create a secondary expression library in which the fraction of cells expressing C3b/C4b CR-like ligand(s) would be many-fold higher than in the original library. This enrichment process can be repeated iteratively until a single 20 recombinant clone containing a C3b/C4b CR-like ligand Isolation of C3b/C4b CR-like ligand(s) is is isolated. useful for identifying or developing novel agonists and antagonists of the C3b/C4b CR-like signaling pathway. 25 Such agonists and antagonists include C3b/C4b CR-like ligand(s), anti-C3b/C4b CR-like ligand antibodies, small molecules or antisense oligonucleotides.

Assaying for other modulators of C3b/C4b CR-like Polypeptide activity

30

In some situations, it may be desirable to identify molecules that are modulators, *i.e.*, agonists or antagonists, of the activity of C3b/C4b CR-like

: 575

····5

10

15

20

25

30

polypeptide. Natural or synthetic molecules that modulate C3b/C4b CR-like polypeptide may be identified using one or more screening assays, such as those described herein. Such molecules may be administered either in an ex vivo manner, or in an in vivo manner by injection, or by oral delivery, implantation device, or the like.

"Test molecule(s)" refers to the molecule(s) that is/are under evaluation for the ability to modulate (i.e., increase or decrease) the activity of a C3b/C4b CR-like polypeptide. Most commonly, a test molecule directly with a C3b/C4b CR-like will interact polypeptide. However, it is also contemplated that a may also modulate C3b/C4b CR-like molecule polypeptide activity indirectly, such as by affecting C3b/C4b CR-like gene expression, or by binding to a C3b/C4b CR-like binding partner (e.g., receptor or ligand). In one embodiment, a test molecule will bind to a C3b/C4b CR-like polypeptide with an affinity constant of at least about 10⁻⁶ M, preferably about 10⁻⁸ more preferably about 10⁻⁹ M, and even preferably about 10⁻¹⁰ M.

Methods for identifying compounds which interact with C3b/C4b CR-like polypeptides are encompassed by the present invention. In certain embodiments, a C3b/C4b CR-like polypeptide is incubated with a test molecule under conditions which permit the interaction the molecule with C3b/C4b CR-like of test polypeptide, and the extent of the interaction can be The test molecule(s) can be screened in a measured. substantially purified form or in a crude mixture.

embodiments, a C3b/C4b certain polypeptide agonist or antagonist may be a protein, peptide, carbohydrate, lipid, or small molecular weight molecule which interacts with C3b/C4b CR-like polypeptide to regulate its activity. Molecules which regulate C3b/C4b CR-like polypeptide expression include nucleic acids which are complementary to nucleic acids C3b/C4b CR-like polypeptide, encoding a complementary to nucleic acids sequences which direct expression of C3b/C4b the polypeptide, and which act as anti-sense regulators of expression.

10

15

20

25

30

Once a set of test molecules has been identified as interacting with a C3b/C4b CR-like polypeptide, the molecules may be further evaluated for their ability to decrease C3b/C4b increase orCR-like polypeptide The measurement of the interaction of test activity. molecules with C3b/C4b CR-like polypeptides may be carried out in several formats, including cell-based binding assays, membrane binding assays, solution-phase assays and immunoassays. In general, test molecules are incubated with a C3b/C4b CR-like polypeptide for a specified period of time, and C3b/C4b CR-like polypeptide activity is determined by one or assays for measuring biological activity.

::

The interaction of test molecules with C3b/C4b CR-like polypeptides may also be assayed directly using polyclonal or monoclonal antibodies in an immunoassay. Alternatively, modified forms of C3b/C4b CR-like polypeptides containing epitope tags as described herein may be used in immunoassays.

* **.

10

15

20

25

30

In the event that C3b/C4b CR-like polypeptides display biological activity through an interaction with a binding partner (e.g., a receptor or a ligand), a 'variety of in vitro assays may be used to measure the binding of a C3b/C4b CR-like polypeptide to corresponding binding partner (such as a selective binding agent, receptor, or ligand). These assays may be used to screen test molecules for their ability to increase or decrease the rate and/or the extent of binding of a C3b/C4b CR-like polypeptide to its binding partner. In one assay, a C3b/C4b CR-like polypeptide is immobilized in the wells of a microtiter plate. Radiolabeled C3b/C4b CR-like binding partner example, iodinated C3b/C4b CR-like binding partner) and the test molecule(s) can then be added either one at a time (in either order) or simultaneously to the wells. After incubation, the wells can be washed and counted, using a scintillation counter, for radioactivity to determine the extent to which the binding partner bound to C3b/C4b CR-like polypeptide. Typically, molecules will be tested over range а concentrations, and a series of control wells lacking one or more elements of the test assays can be used for . accuracy in the evaluation of the results. alternative to this method involves reversing "positions" of the proteins, i.e., immobilizing C3b/C4b CR-like binding partner to the microtiter plate wells, incubating with the test molecule and radiolabeled C3b/C4b CR-like polypeptide, and determining the extent of C3b/C4b CR-like polypeptide binding. example, chapter 18, Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, New York, NY (1995).

As an alternative to radiolabelling, a C3b/C4b CRbinding partner polypeptide or its conjugated to biotin and the presence of biotinylated protein can then be detected using streptavidin linked to an enzyme, such as horseradish peroxidase (HRP) or can alkaline phosphatase (AP), that be detected colorometrically, or · by fluorescent tagging An antibody directed to a C3b/C4b CRstreptavidin. like polypeptide or to a C3b/C4b CR-like partner and conjugated to biotin may also be used and can be detected after incubation with enzyme-linked streptavidin linked to AP or HRP.

10

15

20

25

30

An C3b/C4b CR-like polypeptide or a C3b/C4b CRlike binding partner can also be immobilized attachment to agarose beads, acrylic beads or other types of such inert solid phase substrates. The substrate-protein complex can be placed in a solution containing the complementary protein and the test incubation, compound. After the beads by centrifugation, precipitated and the amount of binding between a C3b/C4b CR-like polypeptide and its binding partner can be assessed using the methods Alternatively, the substrate-protein described herein. complex can be immobilized in a column, and the test molecule and complementary protein are passed through the column. The formation of a complex between a C3b/C4b CR-like polypeptide and its binding partner can then be assessed using any of the techniques set forth herein, i.e., radiolabelling, antibody binding, or the like.

Another in vitro assay that is useful for identifying a test molecule which increases or

decreases the formation of a complex between a C3b/C4b Complement Receptor polypeptide and a C3b/C4b CR-like binding partner is a surface plasmon resonance detector system such as the BIAcore assay system (Pharmacia, Piscataway, NJ). The BIAcore system may be carried out manufacturer's protocol. the This using essentially involves the covalent binding of either C3b/C4b CR-like polypeptide or a C3b/C4b CR-like binding partner to a dextran-coated sensor chip which The test compound and the is located in a detector. other complementary protein can then be injected, either simultaneously or sequentially, into the chamber the chip. The containing sensor amount of. complementary protein that binds can be assessed based on the change in molecular mass which is physically associated with the dextran-coated side of the sensor chip; the change in molecular mass can be measured by the detector system.

10

15

20

25

In some cases, it may be desirable to evaluate two or more test compounds together for their ability to increase or decrease the formation of a complex between a C3b/C4b CR-like polypeptide and a C3b/C4b CR-like binding partner. In these cases, the assays set forth herein can be readily modified by adding such additional test compound(s) either simultaneous with, or subsequent to, the first test compound. The remainder of the steps in the assay are as set forth herein.

In vitro assays such as those described herein may be used advantageously to screen large numbers of compounds for effects on complex formation by C3b/C4b CR-like polypeptide and C3b/C4b CR-like binding

::::

10

15

20

25

30

'partner. The assays may be automated to screen compounds generated in phage display, synthetic peptide, and chemical synthesis libraries.

Compounds which increase or decrease the formation of a complex between a C3b/C4b CR-like polypeptide and a C3b/C4b CR-like binding partner may also be screened in cell culture using cells and cell lines expressing either C3b/C4b CR-like polypeptide or C3b/C4b CR-like binding partner. Cells and cell lines may be obtained from any mammal, but preferably will be from human or other primate, canine, or rodent sources. The binding of a C3b/C4b CR-like polypeptide to cells expressing C3b/C4b CR-like binding partner at the surface evaluated in the presence or absence of test molecules, and the extent of binding may be determined by, for example, flow cytometry using a biotinylated antibody to a C3b/C4b CR-like binding partner. Cell culture assays can be used advantageously to further evaluate compounds that score positive in protein binding assays described herein.

Cell cultures can also be used to screen the οf a drug candidate. For example, candidates may decrease or increase the expression of the C3b/C4b CR-like gene. In certain embodiments, the amount of C3b/C4b CR-like polypeptide that is produced may be measured after exposure of the cell culture to the drug candidate. In certain embodiments, one may detect the actual impact of the drug candidate on the cell culture. For example, the overexpression of a particular gene may have a particular impact on the cell culture. In such cases, one may test a drug candidate's ability increase to ordecrease the

'expression of the gene or its ability to prevent or inhibit a particular impact on the cell culture. In other examples, the production of a particular metabolic product such as a fragment of a polypeptide, may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product in a cell culture.

A yeast two hybrid system (Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9583 (1991)) can be used to identify novel polypeptides that bind to, or interact with, C3b/C4b CR-like polypeptides. As an example, hybrid constructs comprising DNA encoding a cytoplasmic domain of a C3b/C4b CR-like polypeptide fused to a yeast GAL4-DNA binding domain may be used as a two-hybrid bait plasmid. Positive clones emerging from the screening may be characterized further to identify interacting proteins.

. .

Internalizing Proteins

: ::::

The tat protein sequence (from HIV) can be used to 20 internalize proteins into a cell. See e.g., Falwell et al., Proc. Natl. Acad. Sci., 91:664-668 (1994). example, an 11 amino acid sequence (YGRKKRRQRRR) of the tat protein (termed the "protein transduction domain", or TAT PDT) has been described as mediating 25 delivery across the cytoplasmic membrane and the nuclear membrane of a cell. See Schwarze et al., Science, 285:1569-1572 (1999); and Nagahara et al., 4:1449-1452 (1998). Nature Medicine, In procedures, FITC-constructs (FITC-GGGGYGRKKRRQRRR) are 30 prepared which bind to cells as observed

fluorescence-activated cell sorting (FACS) analysis, and these constructs penetrate tissues after i.p. administration. Next, tat-bgal fusion proteins are constructed. Cells treated with this construct demonstrated b-gal activity. Following injection, a number of tissues, including liver, kidney, lung, heart, and brain tissue have been found to demonstrate expression using these procedures. It is believed that these constructions underwent some degree of unfolding in order to enter the cell; as such, refolding may be required after entering the cell.

It will thus be appreciated that the tat protein sequence may be used to internalize a desired protein or polypeptide into a cell. For example, using the tat protein sequence, a C3b/C4b CR-like antagonist (such as an anti-C3b/C4b CR-like selective binding agent, small molecule, soluble receptor, orantisense oligonucleotide) can be administered intracellularly to inhibit the activity of a C3b/C4b CR-like molecule. used herein, the term "C3b/C4b CR-like molecule" refers to both C3b/C4b CR-like nucleic acid molecules and C3b/C4b CR-like polypeptides as defined herein. Where desired, the C3b/C4b CR-like protein itself may also be internally administered cell to а using procedures. See also, Strauss, E., "Introducing Proteins Into the Body's Cells", Science, 285:1466-1467 (1999).

Therapeutic Uses

5

10

15

20

25

A non-exclusive list of acute and chronic diseases
which can be treated, diagnosed, ameliorated, or
prevented with the polypeptides and nucleic acids of
the invention is set forth below.

CR-related polypeptides C3b/C4b may stimulate the activation of the complement system, which acts alone and in conjunction with antibodies to destroy cells that are foreign to the host and is a main defense against bacterial and viral infections. The ability of a binding partner to bind to activate C3b/C4b CR-related polypeptide or protein may lead to complement activation. Such a binding partner can be an agonist of C3b/C4b-CR related polypeptide or antibody, protein, such as peptibody, peptide, carbohydrate, polynucleotide, or small molecular weight organic molecule. Agonists of C3b/C4b CR-related polypeptides or proteins may be used to prevent and conditions characterized by insufficient defective complement activation, such as bacterial and viral infections.

5

10

15

20

25

30

Alternatively, it may be desirable to use antagonist of C3b/C4b CR-related polypeptide or protein to block complement activation. An antagonist would be useful for preventing and treating conditions characterized by excessive complement activation, particularly immune system disorders such as rheumatoid psioriatic arthritis. inflammatory arthritis. arthritis, osteoarthritis, inflammatory joint disease, autoimmune disease, multiple sclerosis, disease, diabetes, inflammatory bowel transplant rejection, and graft versus host disease. Antagonists would also be useful for prevent or treating undesired complement-mediated damage to cells and tissues. an antagonist comprises a one embodiment, domain of a C3b/C4b CR-related polypeptide or protein.

...

. 4.

Other uses for agonists and antagonists of C3b/C4b CR-like molecules include the diagnosis, prevention and

'treatment of nervous system disorders, such as stroke, Alzheimer's disease, brain injury, and Parkinson's disease; damaged tissues, such as by wounds and burns; ischemic conditions, such as atherosclerosis, restenosis, myocardial infarction, angioplasty, hypertension, and ischemia; metabolic disorders, such as obesity, diabetes, and cachexia; and reproductive disorders, infertility, miscarriage, preterm labor and delivery, and endometriosis.

1.0

15

20

30

···· 5

: 55

C3b/C4b CR-like Compositions and Administration

Therapeutic compositions are within the scope of the present invention. Such C3B/C4B CR-like pharmaceutical compositions may comprise therapeutically effective amount of a C3b/C4b CR-like polypeptide or a C3b/C4b CR-like nucleic acid molecule in admixture with a pharmaceutically or physiologically acceptable formulation agent selected for suitability the mode of administration. Pharmaceutical compositions may comprise a therapeutically effective amount of one or more C3b/C4b CR-like selective binding admixture with a pharmaceutically in physiologically acceptable formulation agent selected for suitability with the mode of administration.

Acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed.

The pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility,

stability, rate of dissolution or release, adsorption penetration of the composition. formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, 5 arginine or lysine), antimicrobials, antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogensulfite), buffers (such as borate, bicarbonate, Triscitrates, phosphates, other organic bulking agents (such as mannitol or glycine), chelating 10 agents (such as ethylenediamine tetraacetic (EDTA)), complexing agents (such as caffeine. polyvinylpyrrolidone, beta-cyclodextrin hydroxypropyl-beta-cyclodextrin), fillers, monosaccharides, disaccharides, and other carbohydrates 15 (such as glucose, mannose, or dextrins), proteins (such as serum albumin, gelatin or immunoglobulins), coloring, flavoring and diluting agents, emulsifying hydrophilic agents, polymers (such polyvinylpyrrolidone), low molecular weight 20 polypeptides, salt-forming counterions (such as sodium), preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide), solvents (such as 25 glycerin, propylene glycol or polyethylene glycol), sugar alcohols (such as mannitol or sorbitol), suspending agents, surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such polysorbate 20, polysorbate 80, 30 tromethamine, lecithin, cholesterol, tyloxapal), stability enhancing agents (sucrose or sorbitol), tonicity enhancing agents (such as alkali metal halides (preferably sodium or potassium chloride), mannitol

: ::::

5

10

15

20

25

30

sorbitol), delivery vehicles, diluents, excipients and/or pharmaceutical adjuvants. (Remington's Pharmaceutical Sciences, 18th Edition, A.R. Gennaro, ed., Mack Publishing Company [1990]).

The optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, Remington's Pharmaceutical Sciences, supra. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the C3b/C4b CR-like molecule.

The primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution, artificial cerebrospinal fluid, possibly or materials supplemented with other common compositions for parenteral administration. buffered saline or saline mixed with serum albumin are vehicles. Other exemplary exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefor. In one embodiment of the present invention, C3b/C4b CR-like polypeptide compositions may for storage by mixing the prepared composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or Further, the C3b/C4b CR-like an aqueous solution. polypeptide product may be formulated as a lyophilizate

'using appropriate excipients such as sucrose.

: 575

10

1.5

20

. 25

30

The C3b/C4b CR-like pharmaceutical compositions for parenteral can selected delivery. Alternatively, the compositions may be selected for inhalation or for delivery through the digestive tract, The preparation orally. of such as pharmaceutically acceptable compositions is within the skill of the art.

The formulation components are present in concentrations that are acceptable to the site of administration. For example, buffers are used to maintain the composition at physiological pH or at slightly lower pH, typically within a pH range of from about 5 to about 8.

...

When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired C3b/C4b CR-like molecule in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which a C3b/C4b CR-like molecule is formulated as a sterile, isotonic solution, properly preserved. another preparation can involve the formulation of the desired molecule with an agent, such as injectable bio-erodible microspheres, particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered as a depot injection. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Other suitable

means for the introduction of the desired molecule include implantable drug delivery devices.

In one embodiment, a pharmaceutical composition may be formulated for inhalation. For example, C3b/C4b CR-like molecule may be formulated as a dry powder for inhalation. C3b/C4b CR-like polypeptide or acid molecule inhalation C3b/C4b CR-like nucleic solutions may also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions may be nebulized. Pulmonary administration is further described in PCT application no. PCT/US94/001875, which describes pulmonary delivery of chemically modified . proteins.

10

:

.15

20

25

It is also contemplated that certain formulations may be administered orally. In one embodiment of the present invention, C3b/C4b CR-like molecules which are administered in this fashion can be formulated with or those carriers customarily used in without compounding of solid dosage forms such as tablets and For example, a capsule may be designed to release the active portion of the formulation at the gastrointestinal point in the tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the C3b/C4b CRlike molecule. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed.

Another pharmaceutical composition may involve an effective quantity of C3b/C4b CR-like molecules in a mixture with non-toxic excipients which are suitable

for the manufacture of tablets. By dissolving the tablets in sterile water, or other appropriate vehicle, solutions can be prepared in unit dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.

5

C3b/C4b CR-like pharmaceutical 10 Additional compositions will be evident to those skilled in the art, including formulations involving C3b/C4b CR-like sustained- or controlled-delivery polypeptides in formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as 15 carriers, bio-erodible microparticles porous beads and depot injections, are also known to skilled in the art. See for example, PCT/US93/00829 which describes controlled release of porous polymeric microparticles for the delivery of 20 pharmaceutical compositions. Additional examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices 25 may include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid ethyl-L-glutamate (Sidman al., gamma Biopolymers, 22:547-556 (1983)), poly (2-hydroxyethylmethacrylate) (Langer et al., J. Biomed. Mater. Res., 15:167-277 (1981) and Langer, Chem. Tech., 12:98-105 30 (1982)), ethylene vinyl acetate (Langer et al., supra) poly-D(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also may include

: ::::

[~]5

10

.15

20

25

30

'liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al., Proc. Natl. Acad. Sci. USA, 82:3688-3692 (1985); EP 36,676; EP 88,046; EP 143,949.

The C3b/C4b CR-like pharmaceutical composition to be used for in vivo administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes. Where composition is lyophilized, sterilization using these methods may be conducted either prior to, or following, lyophilization and reconstitution. The composition for parenteral administration may be stored in lyophilized orin solution. In addition, parenteral . compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a pierceable by a hypodermic injection needle.

Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.

٠.;

In a specific embodiment, the present invention is directed producing to kits for a single-dose administration unit. The kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).

10

20

25

30

effective amount of a C3b/C4b CR-like pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the C3b/C4b CR-like molecule is being used, the route of administration, and the size (body weight, body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical dosage may range from about 0.1 µg/kg to up to about 100 mg/kg or more, depending on the factors mentioned above. In other embodiments, the dosage may range from 0.1 μ g/kg up to about 100 mg/kg; or 1 μ g/kg up to about 100 mg/kg; or 5 μg/kg up to about 100 mg/kg.

The frequency of dosing will depend upon the pharmacokinetic parameters of the C3b/C4b CR-like in the formulation used. Typically, molecule administer the composition until clinician will dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via implantation catheter. refinement Further device orappropriate dosage is routinely made by those ordinary skill in the art and is within the ambit of tasks routinely performed by them. Appropriate dosages

may be ascertained through use of appropriate doseresponse data.

The route of administration of the pharmaceutical composition is in accord with known methods, e.g. oral, injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes, or by sustained release systems or implantation device. Where desired, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.

5

10

15

20

25

30

Alternatively or additionally, the composition may be administered locally via implantation of a membrane, sponge, or other appropriate material on to which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed release bolus, or continuous administration.

In some cases, it may be desirable to use C3b/C4b CR-like pharmaceutical compositions in an ex vivo manner. In such instances, cells, tissues, or organs that have been removed from the patient are exposed to C3b/C4b CR-like pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.

In other cases, a C3b/C4b CR-like polypeptide can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the

polypeptide. Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. Optionally, the cells may be immortalized. In order to decrease the chance of an immunological response, the cells may be encapsulated to avoid infiltration of surrounding tissues. The encapsulation materials are biocompatible, semi-permeable polymeric typically enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.

10

15

20

25

30

Additional embodiments of the present invention methods (e.g., homologous cells and other recombinant production recombination and/or for both the in vitro production therapeutic polypeptides and for the production and delivery of therapeutic polypeptides by gene therapy or Homologous and other recombination cell therapy. methods may be used to modify a cell that contains a normally transcriptionally silent C3b/C4b CR-like gene, or an under expressed gene, and thereby produce a cell which expresses therapeutically efficacious amounts of C3b/C4b CR-like polypeptides.

. 1

Homologous recombination is a technique originally developed for targeting genes to induce or correct mutations transcriptionally active in (Kucherlapati, Prog. in Nucl. Acid Res. & Mol. Biol., 36:301, 1989). The basic technique was developed as a method for introducing specific mutations into specific regions of the mammalian genome (Thomas et al., Cell, 44:419-428, 1986; Thomas and Capecchi, Cell, 51:503-512, 1987; Doetschman et al., Proc. Natl. Acad. Sci.,

::::

. . . .

···· 5

10

15

20

25

30

*85:8583-8587, 1988) or to correct specific mutations within defective genes (Doetschman et al., Nature, 330:576-578, 1987). Exemplary homologous recombination techniques are described in U.S. Patent No. 5,272,071 (EP 9193051, EP Publication No. 505500; PCT/US90/07642, International Publication No. WO 91/09955).

Through homologous recombination, the DNA sequence to be inserted into the genome can be directed to a specific region of the gene of interest by attaching it to targeting DNA. The targeting DNA is a nucleotide sequence that is complementary (homologous) to a region of the genomic DNA. Small pieces of targeting DNA that are complementary to a specific region of the genome are put in contact with the parental strand during the DNA replication process. It is a general property of DNA that has been inserted into a cell to hybridize, recombine and therefore, with other pieces . endogenous DNA through shared homologous regions. complementary strand is attached oligonucleotide that contains a mutation or a different an additional nucleotide, it sequence or incorporated into the newly synthesized strand as a result of the recombination. As a result of the proofreading function, it is possible for the sequence of DNA to serve as the template. transferred DNA is incorporated into the genome.

Attached to these pieces of targeting DNA are regions of DNA which may interact with or control the expression of a C3b/C4b CR-like polypeptide, e.g., flanking sequences. For example, a promoter/enhancer element, a suppresser, or an exogenous transcription modulatory element is inserted in the genome of the

11.00

...5

10

intended host cell in proximity and orientation sufficient to influence the transcription encoding the desired C3b/C4b CR-like polypeptide. control element controls a portion of the DNA present in the host cell genome. Thus, the expression of the desired C3b/C4b CR-like polypeptide may be achieved not by transfection of DNA that encodes the C3b/C4b CR-like gene itself, but rather by the use of targeting DNA (containing regions of homology with the endogenous gene of interest) coupled with DNA regulatory segments that provide the endogenous gene sequence with recognizable signals for transcription of a C3b/C4b CRliké polypeptide.

exemplary method, the expression of a In an desired targeted gene in a cell (i.e., a desired 15 endogenous cellular gene) is altered via homologous recombination into the cellular genome at a preselected site, by the introduction of DNA which includes at least a regulatory sequence, an exon and a splice donor 20 These components are introduced into the chromosomal (genomic) DNA in such a manner that this, effect, results in the production transcription unit (in which the regulatory sequence, the exon and the splice donor site present in the DNA 25 construct are operatively linked to the endogenous As a result of the introduction of these components into the chromosomal DNA, the expression of the desired endogenous gene is altered.

Altered gene expression, as described herein, 30 encompasses activating (or causing to be expressed) a gene which is normally silent (unexpressed) in the cell as obtained, as well as increasing the expression of a

not expressed at physiologically which is significant levels in the cell as obtained. embodiments further encompass changing the pattern of regulation or induction such that it is different from the pattern of regulation or induction that occurs in reducing obtained, and (including cell as a. gene eliminating) the expression of which is expressed in the cell as obtained.

5

One method by which homologous recombination can increase, or cause, C3b/C4b used to 10 polypeptide production from a cell's endogenous C3b/C4b first using involves homologous CR-like qene recombination to place a recombination sequence from a site-specific recombination system (e.g., Cre/loxP, FLP/FRT) (Sauer, Current Opinion In Biotechnology, 15 5:521-527, 1994; Sauer, Methods In Enzymology, 225:890-900, 1993) upstream (that is, 5' to) of the cell's endogenous genomic C3b/C4b CR-like polypeptide coding A plasmid containing a recombination site homologous to the site that was placed just upstream of 20 the genomic C3b/C4b CR-like polypeptide coding region is introduced into the modified cell line along with the appropriate recombinase enzyme. This recombinase causes the plasmid to integrate, via the plasmid's recombination site, into the recombination site located 25 C3b/C4b upstream of the genomic polypeptide coding region in the cell line (Baubonis and Sauer, Nucleic Acids Res., 21:2025-2029, O'Gorman et al., Science, 251:1351-1355, 1991). flanking sequences known to increase transcription 30 enhancer/promoter, intron, translational (e.g., enhancer), if properly positioned in this plasmid,

! .

5

10

15

would integrate in such a manner as to create a new or modified transcriptional unit resulting in *de novo* or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene.

A further method to use the cell line in which the site specific recombination sequence had been placed just upstream of the cell's endogenous genomic C3b/C4b CR-like polypeptide coding region is to use homologous recombination to introduce a second recombination site elsewhere in the cell line's genome. The appropriate recombinase enzyme is then introduced into the tworecombination-site cell line, causing a recombination (deletion, inversion, translocation) Current Opinion In Biotechnology, supra, 1994; Sauer, Methods In Enzymology, supra. 1993) that would create a new or modified transcriptional unit resulting in de C3b/C4b novo or increased CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene.

• : , • .

...

An additional approach for increasing, or causing, 20 the expression of C3b/C4b CR-like polypeptide from a cell's endogenous C3b/C4b CR-like gene involves increasing, or causing, the expression of a gene or genes (e.g., transcription factors) and/or decreasing 25 expression of a gene or genes transcriptional repressors) in a manner which results in de novo or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like This method includes the introduction of a non-30 naturally occurring polypeptide (e.g., a polypeptide comprising a site specific DNA binding domain fused to a transcriptional factor domain) into the cell such

: ::::

٠...

10

15

20

25

30

'that de novo or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene results.

The present invention further relates to DNA constructs useful in the method of altering expression a target gene. In certain embodiments, exemplary DNA constructs comprise: (a) one or more targeting sequences; (b) a regulatory sequence; (c) an exon; and (d) an unpaired splice-donor site. targeting sequence in the DNA construct directs the integration of elements (a)-(d) into a target gene in a cell such that the elements (b)-(d) are operatively linked to sequences of the endogenous target gene. another embodiment, the DNA constructs comprise: one or more targeting sequences, (b) a regulatory sequence, (c) an exon, (d) a splice-donor site, (e) an intron, and (f) a splice-acceptor site, wherein the targeting sequence directs the integration of elements (a) - (f)such that the elements of (b) - (f)are operatively linked to the endogenous gene. The targeting sequence is homologous to the preselected in the cellular chromosomal DNA with which homologous recombination is to occur. In the construct, the exon is generally 3' of the regulatory sequence and the splice-donor site is 3' of the exon.

• •

If the sequence of a particular gene is known, such as the nucleic acid sequence of C3b/C4b CR-like polypeptide presented herein, a piece of DNA that is complementary to a selected region of the gene can be synthesized or otherwise obtained, such as by appropriate restriction of the native DNA at specific recognition sites bounding the region of interest.

100

10

15

20

25

30

'This piece serves as a targeting sequence(s) upon insertion into the cell and will hybridize to its homologous region within the genome. hybridization occurs during DNA replication, this piece of DNA, and any additional sequence attached thereto, will Okazaki fragment and will act as an incorporated into the newly synthesized daughter strand The present invention, therefore, includes of DNA. nucleotides encoding a C3b/C4b CR-like polypeptide, which nucleotides may be used as targeting sequences.

C3b/C4b CR-like polypeptide cell therapy, e.g., the implantation of cells producing C3b/C4b CR-like polypeptides, is also contemplated. This embodiment involves implanting cells capable of synthesizing and secreting a biologically active form of C3b/C4b CR-like polypeptide. Such C3b/C4b CR-like polypeptide-. producing cells can be cells that are natural producers of C3b/C4b CR-like polypeptides or may be recombinant ability produce C3b/C4b cells whose to polypeptides has been augmented by transformation with a gene encoding the desired C3b/C4b CR-like polypeptide or with a gene augmenting the expression of C3b/C4b CRlike polypeptide. Such a modification means suitable accomplished by of a vector delivering the gene as well as promoting its expression and secretion. In order to minimize a potential immunological reaction in patients being administered a C3b/C4b CR-like polypeptide, as may occur with the administration of a polypeptide of a foreign species, is preferred that the natural cells producing C3b/C4b CR-like polypeptide be of human origin and produce human C3b/C4b CR-like polypeptide. Likewise, it is preferred that the recombinant cells producing

...

5

10

15

20

25

30

C3b/C4b CR-like polypeptide be transformed with an expression vector containing a gene encoding a human C3b/C4b CR-like polypeptide.

Implanted cells may be encapsulated to avoid the infiltration of surrounding tissue. Human or non-human cells may be implanted in patients biocompatible, semipermeable polymeric enclosures or membranes that allow the release of C3b/C4b CR-like polypeptide, but that prevent the destruction of the cells by the patient's immune system or by other surrounding tissue. detrimental factors from the Alternatively, the patient's own cells, transformed to produce C3b/C4b CR-like polypeptides ex vivo, may be implanted directly into the patient without encapsulation.

Techniques for the encapsulation of living cells are known in the art, and the preparation of the encapsulated cells and their implantation in patients may be routinely accomplished. For example, Baetge et (WO95/05452; PCT/US94/09299) describe membrane al. capsules containing genetically engineered cells for effective delivery of biologically the The capsules are biocompatible and are molecules. The capsules encapsulate cells easily retrievable. transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation in vivo upon implantation into a mammalian host. The devices provide for the delivery of the molecules from living cells to specific sites within a recipient. In addition, see U.S. Patent Nos. 4,892,538, 5,011,472, and 5,106,627. A system for

1 5.55

10

15

20

25

encapsulating living cells is described in PCT Application no. PCT/US91/00157 of Aebischer et al. See also, PCT Application no. PCT/US91/00155 of Aebischer et al., Winn et al., Exper. Neurol., 113:322-329 (1991), Aebischer et al., Exper. Neurol., 111:269-275 (1991); and Tresco et al., ASAIO, 38:17-23 (1992).

In vivo and in vitro gene therapy delivery of C3b/C4b CR-like polypeptides is also envisioned. example of a gene therapy technique is to use the C3b/C4b CR-like gene (either genomic DNA, cDNA, and/or synthetic DNA) encoding a C3b/C4b CR-like polypeptide which may be operably linked to a constitutive or inducible promoter to form a "gene therapy DNA construct". The promoter may be homologous heterologous to the endogenous C3b/C4b CR-like gene, provided that it is active in the cell or tissue type into which the construct will be inserted. Other components of the gene therapy DNA construct may optionally include, DNA molecules designed for sitespecific integration (e.g., endogenous sequences useful homologous recombination), tissue-specific enhancer(s) or silencer(s), DNA molecules promoter, capable of providing a selective advantage over the parent cell, DNA molecules useful as labels to identify transformed cells, negative selection systems, cell specific binding agents (as, for example, for cell targeting), cell-specific internalization factors, and transcription factors to enhance expression by a vector as well as factors to enable vector manufacture.

.

÷ .

• >...

A gene therapy DNA construct can then be introduced into cells (either ex vivo or in vivo) using viral or non-viral vectors. One means for introducing

the gene therapy DNA construct is by means of viral vectors as described herein. Certain vectors, such as retroviral vectors, will deliver the DNA construct to the chromosomal DNA of the cells, and the gene can integrate into the chromosomal DNA. Other vectors will function as episomes, and the gene therapy DNA construct will remain in the cytoplasm.

5

10

15

20

25

30

In yet other embodiments, regulatory elements can be included for the controlled expression of C3b/C4b CR-like gene in the target cell. Such elements are turned on in response to an appropriate effector. In this way, a therapeutic polypeptide can be expressed when desired. One conventional control means involves the use of small molecule dimerizers or rapalogs (as described in WO9641865 (PCT/US96/099486); WO9731898 (PCT/US97/03137) and WO9731899 (PCT/US95/03157) used to dimerize chimeric proteins which contain a molecule-binding domain and а domain capable initiating biological process, such as a DNA-binding protein or transcriptional activation protein. dimerization of the proteins can be used to initiate transcription of the transgene.

An alternative regulation technology uses a method of storing proteins expressed from the gene of interest inside the cell as an aggregate or cluster. The gene of interest is expressed as a fusion protein that includes a conditional aggregation domain which results in the retention of the aggregated protein in the endoplasmic reticulum. The stored proteins are stable and inactive inside the cell. The proteins can be released, however, by administering a drug (e.g., small molecule ligand) that removes the conditional

aggregation domain and thereby specifically breaks apart the aggregates or clusters so that the proteins may be secreted from the cell. See, Science 287:816-817, and 826-830 (2000).

5 Other suitable control means or gene switches include, but are not limited to, the following systems. Mifepristone (RU486) is used as a progesterone antagonist. The binding of a modified progesterone receptor ligand-binding domain to the progesterone antagonist activates transcription by forming a dimer 10 of two transcription factors which then pass into the nucleus to bind DNA. The ligand binding domain is modified to eliminate the ability of the receptor to bind to the natural ligand. The modified steroid hormone receptor system is further described in U.S. 15 5,364,791; WO9640911, and WO9710337.

.

30

Yet another control system uses ecdysone (a fruit fly steroid hormone) which binds to and activates an ecdysone receptor (cytoplasmic receptor). The receptor then translocates to the nucleus to bind a specific DNA 20 response element (promoter from ecdysone-responsive gene). The ecdysone receptor includes transactivation domain/DNA-binding domain/ligandbinding domain to initiate transcription. The ecdysone 25 is further described in U.S. 5,514,578; WO9738117; WO9637609; and WO9303162.

Another ccntrol means uses positive tetracycline-controllable transactivator. This system involves a mutated tet repressor protein DNA-binding domain (mutated tet R-4 amino acid changes which resulted in a reverse tetracycline-regulated

1

....5

itransactivator protein, i.e., it binds to a tet operator in the presence of tetracycline) linked to a polypeptide which activates transcription. Such systems are described in U.S. Patent Nos. 5,464,758; 5,650,298 and 5,654,168.

Additional expression control systems and nucleic acid constructs are described in U.S. Patent Nos. 5,741,679 and 5,834,186, to Innovir Laboratories Inc.

In vivo gene therapy may be accomplished by introducing the gene encoding C3b/C4b a 10 polypeptide into cells via local injection of a C3b/C4b CR-like nucleic acid molecule or by other appropriate non-viral delivery vectors. Hefti. viral Neurobiology, 25:1418-1435 (1994). For example, a C3b/C4b CR-like nucleic acid molecule encoding 15 polypeptide may be contained in an adeno-associated virus (AAV) vector for delivery to the targeted cells International Publication. No. Johnson, (e.g., Application No. WO95/34670; International PCT/US95/07178). The recombinant AAV genome typically 20 contains AAV inverted terminal repeats flanking a DNA C3b/C4b CR-like polypeptide a encoding sequence functional promoter and linked operably to polyadenylation sequences.

1,1

. . . .

٠.,

Alternative suitable viral vectors include, but 25 are not limited to, retrovirus, adenovirus, herpes simplex virus, lentivirus, hepatitis virus, parvovirus, alphavirus, coronavirus, poxvirus, papovavirus, papilloma paramyxovirus, and rhabdovirus, U.S. Patent No. 5,672,344 describes an in 30 vectors. vivo viral-mediated gene transfer system involving a

1 ****

···· 5

10

15

20

. 25

30

'recombinant neurotrophic HSV-1 vector. U.S. Patent No. 5,399,346 provides examples of a process for providing a patient with a therapeutic protein by the delivery of human cells which have been treated in vitro to insert encoding DNA segment a therapeutic Additional methods and materials for the practice of gene therapy techniques are described in U.S. Patent, "No. 5,631,236 involving adenoviral vectors; U.S. Patent No. 5,672,510 involving retroviral vectors; and U.S. 5,635,399 involving retroviral vectors expressing cytokines.

Nonviral delivery methods include, but are not liposome-mediated transfer, naked limited to. DNA delivery (direct injection), receptor-mediated transfer (ligand-DNA complex), electroporation, calcium ' phosphate precipitation, and microparticle bombardment (e.g., gene gun). Gene therapy materials and methods may also include the use of inducible promoters, tissue-specific enhancer-promoters, DNA sequences designed for site-specific integration, DNA sequences capable of providing a selective advantage over the parent cell, labels to identify transformed cells, negative selection systems and expression control systems (safety measures), cell-specific binding agents targeting), cell-specific internalization (for cell factors, and transcription factors to enhance expression by a vector as well as methods of vector manufacture. Such additional methods and materials for the practice of gene therapy techniques are described in U.S. Patent No. 4,970,154 involving electroporation techniques; WO96/40958 involving nuclear ligands; U.S. describing No. 5,679,559 Patent а lipoprotein-

.

containing system for gene delivery; U.S. Patent No. 5,676,954 involving liposome carriers; U.S. Patent No. 5,593,875 concerning methods for calcium phosphate transfection; and U.S. Patent No. 4,945,050 wherein biologically active particles are propelled at cells at a speed whereby the particles penetrate the surface of the cells and become incorporated into the interior of the cells.

5

20

25

30

It is also contemplated that C3b/C4b CR-like gene therapy or cell therapy can further include the delivery of one or more additional polypeptide(s) in the same or a different cell(s). Such cells may be separately introduced into the patient, or the cells may be contained in a single implantable device, such as the encapsulating membrane described above, or the cells may be separately modified by means of viral vectors.

A means to increase endogenous C3b/C4b CR-like polypeptide expression in a cell via gene therapy is to insert one or more enhancer elements into the C3b/C4b polypeptide promoter, where the to increase transcriptional element(s) can serve activity of the C3b/C4b CR-like gene. The enhancer element(s) used will be selected based on the tissue in which one desires to activate the gene(s); enhancer elements known to confer promoter activation in that For example, if a gene tissue will be selected. encoding a C3b/C4b CR-like polypeptide is to be "turned on" in T-cells, the lck promoter enhancer element may functional the portion of used. Here, transcriptional element to be added may be inserted into a fragment of DNA containing the C3b/C4b CR-like

polypeptide promoter (and optionally, inserted into a vector and/or 5' and/or 3' flanking sequence(s), etc.) using standard cloning techniques. This construct, known as a "homologous recombination construct", can then be introduced into the desired cells either ex vivo or in vivo.

10

15

20

25

30

Gene therapy also can be used to decrease C3b/C4b polypeptide expression by modifying nuclectide sequence of the endogenous promoter(s). typically accomplished modification is Such homologous recombination methods. For example, a DNA molecule containing all or a portion of the promoter of the C3b/C4b CR-like gene(s) selected for inactivation can be engineered to remove and/or replace pieces of the promoter that regulate transcription. For example and/or the binding site of TATA box transcriptional activator of the promoter may deleted using standard molecular biology techniques; such deletion can inhibit promoter activity thereby repressing the transcription of the corresponding The deletion of the TATA box or C3b/C4b CR-like gene. transcription activator binding site in the promoter may be accomplished by generating a DNA construct comprising all or the relevant portion of the C3b/C4b CR-like polypeptide promoter(s) (from the same or a related species as the C3b/C4b CR-like gene(s) to be regulated) in which one or more of the TATA box and/or transcriptional activator binding substitution, deletion nucleotides are mutated via and/or insertion of one or more nucleotides. result, the TATA box and/or activator binding site has decreased activity or is rendered completely inactive. The construct will typically contain at least about 500

PCT/US01/23232 WO 02/10199

1

10

15

20

25

٠...,

; bases of DNA that correspond to the native (endogenous) DNA sequences adjacent to the promoter segment that has been modified. The construct may be introduced into the appropriate cells (either ex vivo or in vivo) either directly or via a viral vector as پہ 5 ^ک Typically, the integration of the described herein. construct into the genomic DNA of the cells will be via homologous recombination, where the 5' and 3' sequences in the promoter construct can serve to help the modified promoter region via integrate hybridization to the endogenous chromosomal DNA.

Additional Uses of C3b/C4b CR-like Nucleic Acids and Polypeptides

Nucleic acid molecules of the present invention (including those that do not themselves biologically active polypeptides) may be used to map the locations of the C3b/C4b CR-like gene and related Mapping may be done on chromosomes. genes techniques known in the art, such as PCR amplification and -in situ hybridization.

...

C3b/C4b CR-like nucleic acid molecules (including those that do not themselves encode biologically active polypeptides), may be useful as hybridization probes in diagnostic assays to test, either qualitatively or quantitatively, for the presence of a C3b/C4b CR-like DNA or corresponding RNA in mammalian tissue or bodily fluid samples.

The C3b/C4b CR-like polypeptides may be (simultaneously or sequentially) in combination with 30 or more cytokines, growth factors, antibiotics, anti-inflammatories, and/or chemotherapeutic agents as

is appropriate for the indication being treated.

5

1.0

15

25

30

methods may also be employed where it is desirable to inhibit the activity of one or more C3b/C4b CR-like polypeptides. Such inhibition may be by nucleic effected acid molecules which complementary to and hybridize to expression control sequences (triple helix formation) or to C3b/C4b CRmRNA. For example, antisense RNA molecules, which have a sequence that is complementary to at least a portion of the selected C3b/C4b CR-like gene(s) can be introduced into the cell. Anti-sense probes may be designed by available techniques using the sequence of C3b/C4b CR-like polypeptide disclosed herein. Typically, each such antisense molecule will be complementary to the start site (5' end) of each selected C3b/C4b CR-like gene. When the antisense molecule then hybridizes to the corresponding C3b/C4b CR-like mRNA, translation of this mRNA is prevented or reduced. Anti-sense inhibitors provide information relating to the decrease or absence of a C3b/C4b CRlike polypeptide in a cell or organism.

Alternatively, gene therapy may be employed to create a dominant-negative inhibitor of one or more C3b/C4b CR-like polypeptides. In this situation, the DNA encoding a mutant polypeptide of each selected C3b/C4b CR-like polypeptide can be prepared and introduced into the cells of a patient using either viral or non-viral methods as described herein. Each such mutant is typically designed to compete with endogenous polypeptide in its biological role.

In addition, a C3b/C4b CR-like polypeptide, whether biologically active or not, may be used as an

:::::

10

15

'immunogen, that is, the polypeptide contains at least epitope to which antibodies may be raised. Selective binding agents that bind to a C3b/C4b CR-like polypeptide (as described herein) may be used for in vivo and in vitro diagnostic purposes, including, but not limited to, use in labeled form to detect the presence of C3b/C4b CR-like polypeptide in a body fluid or cell sample. The antibodies may also be used to prevent, treat, or diagnose a number of diseases and disorders, including those recited herein. antibodies may bind to a C3b/C4b CR-like polypeptide so as to diminish or block at least one activity characteristic of a C3b/C4b CR-like polypeptide, or may bind to a polypeptide to increase at least one activity of a C3b/C4b CR-like characteristic polypeptide (including by increasing the pharmacokinetics of the C3b/C4b CR-like polypeptide).

WHAT IS CLAIMED

- m-y-m

25

1. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

- 5 (a) the nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6;
 - (b) a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) a nucleotide sequence which hybridizes under 10 moderately highly stringent conditions orcomplement of (a) (b), wherein the orencoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- (d) a nucleotide sequence complementary to any of (a)-(c).
- 2. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting 20 of:
 - (a) a nucleotide sequence encoding a polypeptide that is at least about 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (b) a nucleotide sequence encoding an allelic variant or splice variant of the nucleotide sequence as 30 set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, wherein the encoded polypeptide has an activity of the

polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(c) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6; (a); or (b) encoding a polypeptide fragment of at least about 25 amino acid residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5

15

- (d) a nucleotide sequence of SEQ ID NO:1, SEQ ID 10 NO:3, or SEQ ID NO:6, or (a)-(c) comprising a fragment of at least about 16 nucleotides;
 - (e) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(d), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
 - (f) a nucleotide sequence complementary to any of(a)-(c).
- 3. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
- (a) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (b) a nucleotide sequence encoding a polypeptide 30 as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein

the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

- (c) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID 5. NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
 - (d) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N- terminal truncation, wherein the polypeptide has an activity of polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEO ID NO:7;

10

(e) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID :15 NO:7 with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the 20 polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

.

- (f) a nucleotide sequence of (a)-(e) comprising a fragment of at least about 16 nucleotides;
- (g) a nucleotide sequence which hybridizes under 25 moderately or highly stringent conditions to complement of any of (a)-(f), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- (h) a nucleotide sequence complementary to any of 30 (a) - (e).

of Claims 1, 2, or 3.

....5

15

20

25

30

- 5. A host cell comprising the vector of Claim 4.
- 6. The host cell of Claim 5 that is a eukaryotic cell.
- 7. The host cell of Claim 5 that is a prokaryotic 10 cell.
 - 8. A process of producing a C3b/C4b CR-like polypeptide comprising culturing the host cell of Claim 5 under suitable conditions to express the polypeptide, and optionally isolating the polypeptide from the culture.
 - A polypeptide produced by the process of Claim
 - 10. The process of Claim 8, wherein the nucleic acid molecule comprises promoter DNA other than the promoter DNA for the native C3b/C4b CR-like polypeptide operatively linked to the DNA encoding the C3b/C4b CR-like polypeptide.
 - 11. The isolated nucleic acid molecule according to Claim 2 wherein the percent identity is determined using a computer program selected from the group consisting of GAP, BLASTP, BLASTN, FASTA, BLASTA, BLASTX, BestFit, and the Smith-Waterman algorithm.

1 0.75. 1 0.75.

·~·5

12. A process for determining whether a compound inhibits C3b/C4b CR-like polypeptide activity or production comprising exposing a cell according to Claims 5, 6, or 7 to the compound, and measuring C3b/C4b CR-like polypeptide activity or production in said cell.

- 13. An isolated polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or 10 SEQ ID NO:7.
 - 14. An isolated polypeptide comprising the amino acid sequence selected from the group consisting of:
- (a) an amino acid sequence of the mature C3b/C4b

 15 CR-like polypeptide wherein the mature polypeptide comprises the amino acid sequence contained within SEQ

 1D NO:2, SEQ ID NO:4, or SEQ ID NO:7, and optionally further comprises an amino-terminal methionine;
- (b) an amino acid sequence for an ortholog of SEQ 20 ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) an amino acid sequence that is at least about 70, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- 30 (d) a fragment of the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 comprising at least about 25 amino acid residues,

wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEO ID NO:7;

(e) an amino acid sequence for an allelic variant or splice variant of either the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or at least one of (a)-(c) wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

10

15

20

25

30

· 5

- 15. An isolated polypeptide comprising the amino acid sequence selected from the group consisting of:
- (a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (b) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (c) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- (d) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

: ::::

(e) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

- 10 16. An isolated polypeptide encoded by the nucleic acid molecule of Claims 1, 2, or 3.
- 17. The isolated polypeptide according to Claim 14 wherein the percent identity is determined using a computer program selected from the group consisting of GAP, BLASTP, BLASTN, FASTA, BLASTA, BLASTX, BestFit, and the Smith-Waterman algorithm.
- 18. An antibody produced by immunizing an animal
 20 with a peptide comprising an amino acid sequence of SEQ
 ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.
- 19. An antibody or fragment thereof that specifically binds the polypeptide of Claims 13, 14, or 25 15.
 - 20. The antibody of Claim 19 that is a monoclonal antibody.
- 21. A hybridoma that produces a monoclonal antibody that binds to a peptide comprising an amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

22. A method of detecting or quantitating the amount of C3b/C4b CR-like polypeptide using the anti-C3b/C4b CR-like antibody or fragment of Claims 18, 19, or 20.

· 5

٠.

10

15

20

- 23. A selective binding agent or fragment thereof that specifically binds at least one polypeptide wherein said polypeptide comprises the amino acid sequence selected from the group consisting of:
 - a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
 - b) a fragment of the amino acid sequence set forth in at least one of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
 - c) a naturally occurring variant of (a) or (b).
- 24. The selective binding agent of Claim 23 that is an antibody or fragment thereof.

25. The selective binding agent of Claim 23 that is a humanized antibody.

- 26. The selective binding agent of Claim 23 that 25 is a human antibody or fragment thereof.
 - 27. The selective binding agent of Claim 23 that is a polyclonal antibody or fragment thereof.
- 30 28. The selective binding agent Claim 23 that is a monoclonal antibody or fragment thereof.

29. The selective binding agent of Claim 23 that is a chimeric antibody or fragment thereof.

- 30. The selective binding agent of Claim 23 that is a CDR-grafted antibody or fragment thereof.
 - 31. The selective binding agent of Claim 23 that is an antiidiotypic antibody or fragment thereof.
- 10 32. The selective binding agent of Claim 23 which is a variable region fragment.
 - 33. The variable region fragment of Claim 32 which is a Fab or a Fab' fragment.

34. A selective binding agent or fragment thereof comprising at least one complementarity determining region with specificity for a polypeptide having the

20 ID NO:7.

15

35. The selective binding agent of Claim 23 which is bound to a detectable label.

amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ

- 25 36. The selective binding agent of Claim 23 which antagonizes C3b/C4b CR-like polypeptide biological activity.
- 37. A method for treating, preventing, or ameliorating a disease, condition, or disorder comprising administering to a patient an effective amount of a selective binding agent according to Claim 23.

38. A selective binding agent produced by immunizing an animal with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

39. A hybridoma that produces a selective binding agent capable of binding a polypeptide according to Claims 1, 2, or 3.

.10

: ::::

- 40. A composition comprising the polypeptide of Claims 13, 14, or 15 and a pharmaceutically acceptable formulation agent.
- 15 41. The composition of Claim 40 wherein the pharmaceutically acceptable formulation agent is a carrier, adjuvant, solubilizer, stabilizer, or antioxidant.
- 20 42. The composition of Claim 40 wherein the polypeptide comprises the mature amino acid sequence portion of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.
- 43. A polypeptide comprising a derivative of the polypeptide of Claims 13, 14, or 15.
 - 44. The polypeptide of Claim 43 which is covalently modified with a water-soluble polymer.
- 30 45. The polypeptide of Claim 44 wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, monomethoxy-polyethylene glycol, dextran, cellulose, poly-(N-vinyl pyrrolidone)

'polyethylene glycol, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols, and polyvinyl alcohol.

- molecule of Claims 1, 2, or 3 and a pharmaceutically acceptable formulation agent.
- 47. A composition of Claim 46 wherein said nucleic acid molecule is contained in a viral vector.
 - 48. A viral vector comprising a nucleic acid molecule of Claims 1, 2, or 3.
- 15 49. A fusion polypeptide comprising the polypeptide of Claims 13, 14, or 15 fused to a heterologous amino acid sequence.
- 50. The fusion polypeptide of Claim 49 wherein the 20 heterologous amino acid sequence is an IgG constant domain or fragment thereof.
- 51. A method for treating, preventing or ameliorating a medical condition comprising administering to a patient the polypeptide of Claims 13, 14, or 15 or the polypeptide encoded by the nucleic acid of Claims 1, 2, or 3.
- 52. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of Claims 13, 14, or 15

or the polypeptide encoded by the nucleic acid molecule of Claims 1, 2, or 3 in a sample; and

- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.
 - 53. A device, comprising:

5

25

- (a) a membrane suitable for implantation; and
- (b) cells encapsulated within said membrane,

 wherein said cells secrete a protein of Claims 13, 14,

 or 15, and wherein said membrane is permeable to said

 protein and impermeable to materials detrimental to

 said cells.
- 54. A method of identifying a compound which binds to a polypeptide comprising:
 - (a) contacting the polypeptide of Claims 13, 14, or 15 with a compound; and
- (b) determining the extent of binding of the 20 polypeptide to the compound.
 - 55. A method of modulating levels of a polypeptide in an animal comprising administering to the animal the nucleic acid molecule of Claims 1, 2, or 3.
 - 56. A transgenic non-human mammal comprising the nucleic acid molecule of Claims 1, 2, or 3.

. 1/31

Figure 1A

Map of Human C3b/C4b Complement Receptor like cDNA (SEQ ID NO:1) and Amino Acid Sequences (SEQ ID NO:2)

1 61 121 181 241 301	CCTGGGGAAGCCTCTCGGTTCCAGGAAAATGGGATGGTTGATTGCCCTAAATTGATTTTT TAAAAGAAAATTCACGAATTGGCAGCCATAGAATAGA	60 120 180 240 300 360 9
_		
361	CAGTCGGATGATAGCATTGGCTCACCTGGGTTTAAAGCTGTTTACCAAGAAATTGAAAAG	420
10	Q S D D S I G S P G F K A V Y Q E I E K	29
421	GGAGGGTGTGGGGATCCTGGAATCCCCGCCTATGGGAAGCGGACGGGCAGCAGTTTCCTC	480
30	G G C G D P G I P A Y G K R T G S S F L	49
481	CATGGAGATACACTCACCTTTGAATGCCCGGCGCCTTTGAGCTGGTGGGGGAGAGAGTT	540
. 50	H G D T L T F E C P A A F E L V G E R V	69
541	ATCACCTGTCAGCAGAACAATCAGTGGTCTGGCAACAAGCCCAGCTGTGTATTTTCATGT	600
70	I T C Q Q N N Q W S G N K P S C V F S C	89
601	TTCTTCAACTTTACGGCATCATCTGGGATTATTCTGTCACCAAATTATCCAGAGGAATAT	660
90	FFNFTASSGIILSPNYPEEY	109
661	GGGAACAACATGAACTGTGTCTGGTTGATTATCTCGGAGCCAGGAAGTCGAATTCACCTA	720
110	GNNMNCVWLIISEPGSRIHL	129
721	ATCTTTAATGATTTTGATGTTGAGCCTCAATTTGACTTTCTCGCGGTCAAGGATGATGGC	780
130	I F N D F D V E P Q F D F L A V K D D G	149
781	ATTTCTGACATAACTGTCCTGGGTACTTTTTCTGGCAATGAAGTGCCTTCCCAGCTGGCC	840
150	I S D I T V L G T F S G N E V P S Q L A	169
841	AGCAGTGGGCATATAGTTCGCTTGGAATTTCAGTCTGACCATTCCACTACTGGCAGAGGG	900
170	S S G H I V R L E F Q S D H S T T G R G	189
		0.50
901 190	TTCAACATCACTTACACCACATTTGGTCAGAATGAGTGCCATGATCCTGGCATTCCTATA F N I T Y T T F G O N E C H D P G I P I	960 209
190	r w i i i i i r d Q w E C n D r d i r i	200
961	AACGGACGACGTTTTGGTGACAGGTTTCTACTCGGGAGCTCGGTTTCTTTC	1020
210	NGRRFGDRFLLGSSVSFHCD	229
1021 230	$egin{array}{llllllllllllllllllllllllllllllllllll$	1080 249
230		. 27
1081	GTGGTCTGGAGCTCCACCGTGCCCCGCTGTGAAGCTCCATGTGGTGGACATCTGACAGCG	1140
250	V V W S S T V P R C E A P C G G H L T A	269
		1200
1141 270	TCCAGCGGAGTCATTTTGCCTCCTGGATGGCCAGGATATTATAAGGATTCTTTACATTGT SSGVILPPGWPGYYKDSLHC	1200 289
210		
1201	GAATGGATAATTGAAGCAAAACCAGGCCACTCTATCAAAATAACTTTTGACAGATTTCAG	1260
290	EWIIEAKPGHSIKITFDRFQ	309

2/31 Figure 1B

	1261	AC	AGA	GGT	CAA'	TA?	rga(CAC	CTTC	3GA(GGT	CAG	AGA	TGG	GCC	AGC	CAG	TTC	GTC	CCC	ACTG	1320
	,	T	E	V	N	Y	D	T	L	E	V	R	D	G	P	A	S	s		P		329
	1321	ΑT	CGG	CGA	GTA	CCA	CGG	CAC	CCA	GGC/	ACC	CCA	GTT	CCT	CAT	CAG	CAC	CGG	GAA	CTT	CATG	1380
	330				Y												T		N	F	M	349
٠	1381	ΤА	CCT	GCT	ልጥጥ(CAC	CAC	TGAG	CAA	CAG	CCG	СТС	CAG	CAT	CGG	CTT	CCT	CAT	CCA	CTA'	TGAG	1440
	350																	I				369
	1441	AG	TGT	GAC	GCT	TGA	GTC	GGA'	rrc	CTG	CCT	GGA	CCC	GGG	CAT	CCC	TGT	GAA	CGR	CCA	TCGC	1500
	370																	N				389
	1501	CA	.CGG	TGG.	AGA	CTT'	rgg	CAT	CAG	GTC	CAC	AGT	GAC	TTT	'CAG	CTG	TGA	CCC	GGG	GTA	CACA	1560
	390	H	G	G	D	F	G	I	R	s	T	V	T	F	s	С	D	P	G	Y	T	409
	1561																				GCCC	1620
	410	Г	s	D	D	E	P	L	V	С	E	R	N	Н	Q	. W	N	H	A	L	P	429
٠	1621																				TCCT	1680
	430	s	С	D	A	L	С	G	G	Y	1	Q	G	K	S	G	T	V	L	S	P	449
	1681	GG	GTT	TCC	AGA'	TTŤ	TTA'	TCC	AAA	CTC	TCT	AAA	CYG	CAC	GTG	GAC	CAT	'TGA	AGT	GTC	TCAT	1740
	450 ·				D										W			E	V	ន		469
	1741																	CCA	CGA	CTA	TTTA	1800
	470					_												Н				489
	1801																				GTTG	1860
	490																	G				509
	1861																				ATCA	1920
	510	_	Н	_														R			S	529
	1921																				GCCA	
	530		F	_		ន												D		-	P	549
	1981																	F			GGGA	2040 569
	550	_																				2100
	2041					GTT F	TTC S	CIG	CTT F						AGA E			.ckc X		GC1 L	TACC	589
	570		S	L	T	-	_			_		_				-				_	ATGT	
	2101 590	C	L L	G	G	G.	R	R	V	W	S	A	P	L	P	R	C	V	A	E	C	609
																	_					
	2161																					2220
	610																				Y	629
	2221																				CCTT	
	630	_		N																	L	649
																						2340
	650																	D				669
	2341																					2400
	670	s	S	s	R	P	L	G	T	F	· T	K	N	E	L	L	G	Ъ	I	L	N	689

. : . .

3/31 Figure 1C

2401 690		r 2460 709
2461		
710	FQLTYTSFDLVKCEDPGIPN	729
2521	TACGGCTATAGGATCCGTGATGAAGGCCACTTTACCGACACTGTAGTTCTGTACAGTTG	2580
730	Y G Y R I R D E G H F T D T V V L Y S C	749
2581	AACCCGGGGTACGCCATGCATGGCAGCAACACCCTGACCTGTTTGAGTGGAGACAGGAG	A 2640
750		769
750		769
2641	GTGTGGGACAAACCACTACCTTCGTGCATAGCGGAATGTGGTGGTCAGATCCATGCAGC	2700
770	V W D K P L P S C I A E C G G Q I H A A	789
2701	ACATCAGGACGAATATTGTCCCCTGGCTATCCAGCTCCGTATGACAACAACCTCCACTG	2760
790		809
790		809
2761	ACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTTCGAG	2820
810	T W I I E A D P G K T I S L H F I V F D	829
	•	
2821		
830	TEMAHDILKV W D G P V D S D I L	849
2881	CTGAAGGAGTGGAGTGGCTCCGCCCTTCCGGAGGACATCCACAGCACCTTCAACTCACT	2940
850		869
030		
2941	ACCCTGCAGTTCGACAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATCCA	3000
870	TLQFDSDFFISKSGFSIQFS	889
3001	ACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCCAAAATGGCACCCGCTATGG	A 3060
890	T S I A A T C N D P G M P O N G T R Y G	909
3061	GACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCTGGCTATCAGCTCCAA	3120
910	D S R E A G D T V T F Q C D P G Y Q L Q	929
•		
3121	GGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTTGGCAACCAGACCC	r 3180
930	GQAKITCVQLNNRFFWQPDP	. 949
3181		
950	PTCIAACGGNLTGPAGVILS	969
2241	CCCAACTACCCACAGCCGTATCCTCCTGGGAAGGAATGTGACTGGAGAGTAAAAGTGAA	3300
		989
970		909
3301	CCGGACTTTGTCATCGCCTTGATATTCAAAAGTTTCAACATGGAGCCCAGCTATGACTT	3360
		1009
230	LULVIABILKOLNMELOIDI	1009
3361	CTACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATTGGGAGTTACCAGGGCTCT	3420
		1029
3421	CAGGCCCCAGAAAGAATAGAGAGTAGCGGAAACAGCCTGTTTCTGGCATTTCGGAGTGAT	3480
1030	Q A P E R I E S S G N S L F L A F R S D	1049
2407	ለብርጥርርርርርርርርርርርርርርርርር የመመርስ ነርርር የመመረረርር እመመረት እስመመት እስከ ላይ ለመመርመ	3540
	GCCTCCGTGGCCTTTCAGGGTTCGCCATTGAATTTAAAGAGAAACCACGGGAAGCTTGT	
1050	ASVGLSGFAIEFKEKPREAC	1069

4/31 Figure 1D

:tub: 3541 1070	TTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAGCTTGGCTCC F D P G N I M N G T R V G T D F K L G S	3600 1089
··· 36.01 1090	ACCATCACCTACCAGTGTGACTCTGGCTATAAGATTCTTGACCCCTCATCCATC	3660 1109
3661 1110	GTGATTGGGGCTGATGGGAAACCCTCCTGGGACCAAGTGCTGCCCTCCTGCAATGCTCCC V I G A D G K P S W D Q V L P S C N A P	3720 1129
3721 1130	TGTGGAGGCCAGTACACGGGATCAGAAGGGGTAGTTTTATCACCAAACTACCCCCATAAT C G G Q Y T G S E G V V L S P N Y P H N	3780 1149
3781 1150	TACACAGCTGGTCAAATATGCCTCTATTCCATCACGGTACCAAAGGAATTCGTGGTCTTT Y T A G Q I C L Y S I T V P K E F V V F	3840 1169
3841 1170	GGACAGTTTGCCTATTTCCAGACAGCCCTGAATGATTTGGCAGAATTATTTGATGGAACC G Q F A Y F Q T A L N D L A E L F D G T	3900 1189
3901 1190		3960 1209
3961 1210	TTGGCTACGTCAAATCAAATTCTGCTCCGATTCAGTGCAAAGAGCGGTGCCTCTGCCCGC L A T S N Q I L L R F S A K S G A S A R	4020 1229
4021 1230	GGCTTCCACTTCGTGTATCAAGCTGTTCCTCGTACCAGTGACACCCAATGCAGCTCTGTC G F H F V Y Q A V P R T S D T Q C S S V	4080 1249
4081 1250	CCCGAGCCCAGATACGGAAGGAGAATTGGTTCTGAGTTTTCTGCCGGCTCCATCGTCCGA P E P R Y G R R I G S E F S A G S I V R	4140 1269
4141 1270		4200 1289
4201 1290	CCCAACGCCTTGGCACAGTGGAACGACACGATCCCCAGCTGTGTGGTACCCTGCAGTGGC P N A L A Q W N D T I P S C V V P C S G	4260 1309
4261 1310	AATTTCACTCAACGAAGAGGTACAATCCTGTCCCCCGGCTACCCTGAGCCATACGGAAAC N F T Q R R G T I L S P G Y P E P Y G N	4320 1329
4321 1330	AACTTGAACTGTATATGGAAGATCATAGTTACGGAGGGCTCGGGAATTCAGATCCAAGTG N L N C I W K I I V T E G S G I Q I Q V	4380 1349
4381 1350	ATCAGTTTTGCCACGGAGCAGAACTGGGGACTCCCTTGAGATCCACGATGGTGGGGATGTG I S F A T E Q N W D S L E I H D G G D V	4440 1369
, 4441 1370		4500 1389
4501 1390		4560 1409
4561 1410	CTGGAATACAAAACTGTAGGTCTTGCTGCATGCCAAGAACCAGCCCTCCCCAGCAACAGC L E Y K T V G L A A C Q E P A L P S N S	4620 1429
4621 1430	ATCAAAATCGGAGATCGGTACATGGTGAACGACGTGCTCTCCTTCCAGTGCGAGCCCGGG I K I G D R Y M V N D V L S F Q C E P G	4680 1449

5/31 Figure 1E

100	4681	TA	CAC	CCT	GCA	GGG	CG:	CTC	CCAC	AT.	rtc	CTG'	TAT	GCC.	AGG	GAC	CGT:	rcgo	CG	rtgo	BAAC	4740
	1450	Y	T	L	Q	G	R	S	Н	I	S	С	M	P	G	T	V	R	R	W	N .	1469
٠.,.	4741	TA	rcc	GTC'	TCC	CCT	GTG (CAT	rgc <i>i</i>	AAC	CTG'	rgg:	AGG	GAC	GCT	GAG	CAC	CTT	GG.	rgg:	TGTG	4800
•	1470	Y	P	s	P	L	С	I	A	T	С	G	G	T	L	s	T	L	G	G	V	1489
* * * * *	4801	AT	CCT	GAG	ccc	CGG	CTTC	CCC	AGG:	rTC'	TTA(ccc	CAA	CAA	CTT	AGA	CTG	CAC	CTG	SAG	SATC	4860
	1490	I	L	s	P _.	G	F	P	G .	s	Y	P	N	N	Г	D.	С	T	W	R	I	1509
	4861	TC	ATT.	ACC	CAT														CGAZ	AGC'	TAAT	4920
	1510	s	L	P	I	G	Y	G	A	Н	Ι	Q	F	L	N	F	s	T	E	A	N	1529
	4921	CA	TGA	CTT	CCT	rga/														ACA/	TTT	4980
	1530	Н	D	F	L	E	I	Q	N	G	P	Y	H	T	s	. P	M	Ι	G	Q	F	1549
	4981																			CCA	CTTT	5040
	1550	s	G	T	D	Г	P	A	Α	L	L	S	T	T	Н	E	Т	L	I	Н	F	1569
	5041	TA	TAG	TGA	CCA:	rtc	GCA/	AAA	CCG	GCA)	AGG	ATT	TAA	ACT	TGC'	TTA	CCA	AGC	CTA'	rga/	ATTA	5100
	1570	Y	s	D	H	s	Q	N	R	Q	G	F	K	ь	A	Y	Q	A	Y	E	L	1589
	5101	CA	GAA	CTG	TCC	AGA'	rcc/	ACC	CCCI	ATT'	TCA	GAA'	TGG	GTA	CAT	GAT(CAA	CTC	GA.	CTAC	CAGC	5160
	1590	_		С	_						_							S		_	-	1609
	5161																				rgtc	5220
	1610			Q																		1629
	5221																				rgcc	5280
	1630			С																		1649
	5281																				rga T	5340
	1650	_	_	G			V			_					Y		•	G				1669
	5341																				AGTT	5400
	1670			P																•		1689
	5401																				GAC	5460
	1690			N																		1709
	5461																				AACG	5520
	1710		P		Q				_		G			S	G		T 	A 	ь.	E	T	1729
	5521																				AGGC	5580
	1730		_	S		•									s					G		1749
	5581																				3GTT	5640
	1750			V																		1769
	5641																				STAC	5700
	1770			A																		1789
	5701																				rtcc	5760
	1790			Н																		1809
	5761	CA	GTT	GCA	GTT'	TGA (GGC	TTC:	rc T	CCC											AGTC	5820
	1810	Q	L	Q	F	E	G	S	L	P	T	С	E	A	Q	С	P	A	N	E	V	1829

6/31 Figure 1F

5821 1830	CGGACTGGATCATCGGGAGTCATTCTCAGTCCAGGGTATCCGGGTAATTATTTTAACTCC R T G S S G V I L S P G Y P G N Y F N S	5880 1849
5881	CAGACTTGCTCTTGGAGTATTAAAGTGGAACCAAACTACAACATTACCATCTTTGTGGAC	5940
1850	Q T C S W S I K V E P N Y N I T I F V D	1869
5941	ACATTTCAAAGTGAAAAGCAGTTTGATGCACTGGAAGTGTTTGATGGTTCTTCTGGGCAA	6000
1870	T F Q S E K Q F D A L E V F D G S S G Q	1889
6001	AGTCCTCTGCTAGTAGTCTTAAGTGGGAATCATACTGAACAATCAAATTTTACAAGCAGG	6060
1890	S P L L V V L S G N H T E Q S N F T S R	1909
6061	AGTAATCAGTTATATCTCCGCTGGTCCACTGACCATGCCACCAGTAAGAAAGGATTCAAG	6120
1910	S N Q L Y L R W S T D H A T S K K G F K	1929
6121 1930	ATTCGCTATGCAGCACCTTACTGCAGTTTGACCCACCCCCTGAAGAATGGGGGTATTCTA I R Y A A P Y C S L T H P L K N G G I L	6180 1949
6181	AACAGGACTGCAGGAGCGGTTGGAAGCAAAGTGCATTATTTTTGCAAGCCTGGATACCGA	6240
1950	N R T A G A V G S K V H Y F C K P G Y R	1969
6241 1970	ATGGTCGGCCACAGCAATGCAACCTGTAGACGAAACCCACTTGGCATGTACCAGTGGGAC M V G H S N A T C R R N P L G M Y Q W D	6300 1989
6301 1990	TCCCTCACGCCACTCTGCCAGGCTGTGTCCTGTGGAATCCCAGAATCCCCAGGAAACGGTSLTPLCQAVSCGIPESPGNG	6360 2009
6361	TCATTTACCGGGAACGAGTTCACTTTGGACAGTAAAGTGGTCTATGAATGTCATGAGGGC	6420
2010	S F T G N E F T L D S K V V Y E C H E G	2029
6421	TTCAAGCTTGAATCCAGCCAGCAAGCAACAGCCGTGTGTCAAGAAGATGGGCTGTGGAGT	6480
2030	F K L E S S Q Q A T A V C Q E D G L W S	2049
6481 2050	AACAAGGGGAAGCCGCCCACGTGTAAGCCGGTCGCTTGCCCCAGCATTGAAGCTCAGCTC N K G K P P T C K P V A C P S I E A Q L	6540 2069
6541	TCAGAACATGTCATCTGGAGGCTGGTTTCAGGATCCTTGAATGAGTACGGTGCTCAAGTA	6600
2070	S E H V I W R L V S G S L N E Y G A Q V	2089
6601 2090	TTGCTGAGCTGCAGTCCTGGTTACTACTTAGAAGGCTGGAGGCTCCTGCGGTGCCAGGCCLLSCSPGYYLEGWRLLRCQA	6660 2109
6661	AATGGGACGTGGAACATAGGAGATGAGAGGCCAAGCTGTCGAGTTATCTCGTGTGGAAGC	6720
2110	N G T W N I G D E R P S C R V I S C G S	2129
6721	CTTTCCTTTCCCCCAAATGGCAACAAGATTGGAACGTTGACAGTTTATGGGGCCACAGCT	6780
2130	L S F P P N G N K I G T L T V Y G A T A	2149
	ATATTTACGTGCAACACCGGCTACACGCTTGTGGGGTCTCATGTCAGAGAGTGCTTGGCA I F T C N T G Y T L V G S H V R $\mathbb E$ C L A	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6901 2190	CCGATTGTGAACGGTCACATTAGTGGAGATGGCTTCAGTTACAGAGACACGGTGGTTTAC P I V N G H I S G D G F S Y R D T V V Y	6960 2209

7/31 Figure 1G

6961	CAGTGCAATCCTGGTTTCCGGCTTGTGGGAACTTCCGTGAGGATATGCCTGC	CAAGACCAC 7020
2210	O Q C N P G F R L V G T S V R I C L Q	D H 2229
7021	AAGTGGTCTGGACAAACGCCTGTCTGTGTCCCCATCACATGTGGTCACCCTG	GAAACCCT 7080
2230	OKWSGQTPVCVPITCGHPG	S N P 2249
7081	GCCCACGGATTCACTAATGGCAGTGAGTTCAACCTGAATGATGTCGTGAATT	TCACCTGC 7140
2250		
7141	AACACGGGCTATTTGCTGCAGGGCGTGTCTCGAGCCCAGTGTCGGAGCAACG	GCCAGTGG 7200
2270		,
7201	AGTAGCCCTCTGCCCACGTGTCGAGTGGTGAACTGTTCTGATCCAGGCTTTG	STGGAAAAT 7260
2290	D S S P L P T C R V V N C S D P G F V	7 E N 2309
7261	L GCCATTCGTCACGGGCAACAGAACTTCCCTGAGAGTTTTGAGTATGGAATGA	AGTATCCTG 7320
2310	DAIRHGQQNFPESFEYGMS	S I L 2329
7321	TACCATTGCAAGAAGGGATTTTACTTGCTGGGATCTTCAGCCTTGACCTGTA	ATGGCAAAT 7380
2330	•	
7381	L GGCTTATGGGACCGATCCCTGCCCAAGTGTTTGGCTATATCGTGTGGACACC	
2350		P G V 2369
7441	L CCTGCCAACGCCGTCCTCACTGGAGAGCTGTTTACCTATGGCGCCGTCGTGC	CACTACTCC 7500
2370		
7501	TGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTGTGCCAGGAAC	
2390		
7561		
2410	O W S G A L P H C T G N N P G F C G I	P G 2429
7621		
2430 .	OTPAHGSRLGDDFKTKSLI	R F 2449
2430 · 7681	D T P A H G S R L G D D F K T K S L I L TCCTGTGAAATGGGGCACCAGCTGAGGGGGCTCCCCTGAACGCACGTGTTTGC	R F 2449 CTCAATGGG 7740
	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I	R F 2449 CTCAATGGG 7740 L N G 2469
7681	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC	R F 2449 CTCAATGGG 7740 L N G 2469 GGCACACCC 7800
7681 2450	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C	E R F 2449 ETCAATGGG 7740 E N G 2469 EGCACACCC 7800 E T P 2489
7681 2450 7741	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA	ETCAATGGG 7740 EN G 2469 EGCACACCC 7800 E T P 2489 ATCTATGCC 7860
7681 2450 7741 2470	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA T N G M I V S S D G I L F S S S V I	ETCAATGGG 7740 EN G 2469 EGCACACCC 7800 ET P 2489 ATCTATGCC 7860 EY A 2509
7681 2450 7741 2470 7801	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA T N G M I V S S D G I L F S S S V I TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCA	ETCAATGGG 7740 EN G 2469 EGCACACCC 7800 ET P 2489 ATCTATGCC 7860 EY A 2509 AATGGGACC 7920
7681 2450 7741 2470 7801 2490	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA T N G M I V S S D G I L F S S S V I TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCA C W E G Y K T S G L M T R H C T A N	ETCAATGGG 7740 EN G 2469 EGCACACCC 7800 ET P 2489 ATCTATGCC 7860 EY A 2509 AATGGGACC 7920 EG T 2529
7681 2450 7741 2470 7801 2490 7861 2510	TOTTGEGGAAGGCTACAAGACCTCAGGGCTCATGACACGCATTGCACAGCCACGTATTCCAGCCAG	E R F 2449 ETCAATGGG 7740 E N G 2469 EGCACACCC 7800 E T P 2489 ATCTATGCC 7860 E Y A 2509 AATGGGACC 7920 U G T 2529 ACACTAGCA 7980
7681 2450 7741 2470 7801 2490 7861 2510	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA T N G M I V S S D G I L F S S S V I TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCA C W E G Y K T S G L M T R H C T A N TGGACAGGCACTGCTCCCGACTGCACAATTATAAGTTGTGGGGATCCAGGCA W T G T A P D C T I I S C G D P G T	E R F 2449 ETCAATGGG 7740 E N G 2469 EGCACACCC 7800 E T P 2489 ATCTATGCC 7860 E Y A 2509 AATGGGACC 7920 N G T 2529 ACACTAGCA 7980 E L A 2549
7681 2450 7741 2470 7801 2490 7861 2510	T P A H G S R L G D D F K T K S L I TCCTGTGAAATGGGGCACCAGCTGAGGGGGCTCCCCTGAACGCACGTGTTTGC S C E M G H Q L R G S P E R T C L I TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTC S W S G L Q P V C E A V S C G N P C ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCA T N G M I V S S D G I L F S S S V I TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCA C W E G Y K T S G L M T R H C T A N TGGACAGGCACTGCTCCCGACTGCACAATTATAAGTTGTGGGGATCCAGGCA W T G T A P D C T I I S C G D P G T	E R F 2449 ETCAATGGG 7740 E N G 2469 EGCACACCC 7800 E T P 2489 ATCTATGCC 7860 E Y A 2509 AATGGGACC 7920 N G T 2529 ACACTAGCA 7980 E L A 2549 EAGTGTAAC 8040

8/31 Figure 1H

	119020 1	
8041	CCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTACCAAAGACGGCAGG	8100
	P G Y V M E A V T S A T I R C T K D G R	
8101	TGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTCTCTCAGCCGCCGCCGCCGGTGCAG	8160
	W N P S K P V C K A V L C P O P P P V O	2609
* **** · · · · · · · · · · · · · · · ·	•	
8161	AATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAGCTGCATG	8220
2610		2629
8221	GACGGTTACCAGCTCTCACTCCGCCATCCTCTCTCTGTGAAGGTCGCGGGGTGTGGAAA	8280
2630	D G Y Q L S H S A I L S C E G R G V W K	2649
82 8 ì		8340
2650	G E I P Q C L P V F C G D P G I P A E G	2669
8341	CGACTTAGTGGGAAAAGTTTCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCA	8400.
2670	RLSGKSFTYKSEVFFQCKSP	2689
,		•
8401		8460
2690	FIL V G S S R R V C Q A D G T W S G I	2709
8461		
2710	Q P T C I D P A H N T C P D P G T P H F	2729
•	GGAATACAGAATAGCTCCAGAGGCTATGAGGTTGGAAGCACGGTTTTTTTCAGGTGCAGA	8580
2730	GIQNSSRGYEVGSTVFFRCR	2749
050-	A A A COORTA COA MA MINOR A COMPACA COA CINCOCOA COMOCOCIONACION A MININA A CA MOCA CIN	0640
8581		8640 2769
2750	K G Y H I Q G S T T R T C L A N L T W S	2/09
8641	GGGATACAGACCGAATGTATACCTCATGCCTGCAGACAGCCAGAAACCCCGGCACACGCG	8700
2770		2789
2770		
8701	GATGTGAGAGCCATCGATCTTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCA	8760
2790		2809
8761	GGCTTTTTCCTCGCAGGGGGATCTGAGCACAGAACATGTAAAGCAGACATGAAATGGACA	8820
2810	G F F L A G G S E H R T C K A D M K W T	2829
	•	
8821	GGAAAGTCGCCTGTGTGTAAAAGTAAAGGAGTGAGAGAAGTTAATGAAACAGTTACTAAA	8880
2830	G. K S P V C K S K G V R E V N E T V T K	2849
8881	ACTCCAGTTCCTTCAGATGTCTTTTTCGTCAATTCACTGTGGAAGGGGTATTATGAATAT	8940
2850	TPVPSDVFFVNSLWKGYYEY	2869
	·	
8941	• • • • • • • • • • • • • • • • • • • •	
2870	LGKRQPATLTVDWFNATSSK	2889
9001		9060
2890	V N A T F S E A S P V E L K L T G I Y K	2909
9061		
2910	KEEAHLLKAFQIKGQADIF	2929
	GTAAGCAAGTTCGAAAATGACAACTGGGGACTAGATGGTTATGTGTCATCTGGACTTGAA	
2930	V S K F E N D N W G L D G Y V S S G L E	2949

9/31 Figure 1I

. m.p.b.	9181	AG.	AGG	AGG2	ATT.	rac:	rtt?	rca.	AGG'	rga:	CAT'	TCA'	TGG	AAA	AGA	CTT'	rgg:	AAA	ATT	TAA	GCTA	9240
	2950	R		Ġ	F	Т	F	Q				Н.				F	G		F	K		2969
٠	9241	GA	AAG	GCA/	AGA:	rcc:	rtt <i>i</i>	\AA	CCC	AGA'	TCA	AGA	CTC'	TTC	CAG'	rca'	TTA	CCA	CGG	CAC	CAGC	9300
	2970	E	R	Q	D	P	L	N	P	D	Q	D	s	s	s	H	Y	H	G	T	S	2989
٠,,,	9301	AG	TGG	CTC:	rgto	GCC	GC.	rgc	CAT'	rct	GGT'	TCC'	TTT	CTT	TGC'	rct:	TAA	TTT.	ATC.	AGG	GTTT	9360
	2990	s	G	s	V	A	A	A	I	L	V	P	F	F	A	L	I	L	s	G	F	
	9361	GC.	ATT"	TTAC	CCT	CTAC	CAA	ACA	CAG	AAC	GAG	ACC	AAA	AGT	TCA	ATA	CAA'	TGG	CTA'	TGC	TGGG	9420
	3010	A	F	Y	L	Y	ĸ	Н	R	T	R	P	K	V	Q	Y	N	G	Y	A	G	3029
	9421	CA	TGA	AAA(CAG	CAA:	rgg <i>i</i>	ACA	AGC	ATC	GTT	TGA	AAA	CCC	CAT	GTA'	rga'	TAC.	AAA	CTT.	AAAA	9480
	3030	H	E	N	S	N	G	Q	A	s	F	E	N	P,	M	Y	D	Т	N	L	K	3049
	9481	CC	CAC	AGAZ	AGC	CAAC	GC.	rgt	GAG	GTT	TGA	CAC	AAC'	TCT(GAAC	CAC	AGT	CTG'	TAC	AGT	GGTA	9540
	3050	P	T	E	A	K	A	V	R	F	Ð	T	Т	Г	N	T	V	С	T	v	V	3069
. ,	9541	TA	GCC	CTC	AGTO	3CC(CCA	ACA	GGA	CTG	ATT	CAT	AGC	CAT	ACC'	rct	GAT(GGA	CAA	GCA	GTGA	9600
	3070	*																				3070
	9601																				TCAA	9660
	9661	CC	TTG'	TCT	ACTO	GGC1	ATA	AGT	GCA(3CG	GGG	ATC'	rct.	ACT	CAA	ATG'	rg T	CAG	GGT	CTT	CTAC	9720
	9721	GG.	ATC	AAA	CTA	CAC	ATG	CGT'	rtt(CAT	TCC	AAA	AGT	GGG'	TTC:	raa:	ATG	CCT	GGC'	TGC.	ATCT	9780
	9781	GT.	ATG	AAA.	rca.	AGG(CAC	ACT	CCA	GGA.	AGA	CTG	CCA	CGT	CGC	GCC2	AAC	ACG'	TCA'	TAC'	TCAA	9840
	9841	TR	CCT	CAG	ACT.	rtc <i>i</i>	ATA'	(TT)	CTG	rgt'	TGC'	TGA	GAT(GCC'	rtt	CAA'	rgc:	TAA	CGT	CTG	GGCT	9900
	9901	CG	TGG	ATA:	rgr	CCC.	rca(GT	GCG(GTG.	ACA	GAA'	TGG'	TGG	CAC	CAC	GAT	ATG'	TGT	TCT	CTTG	9960
	9961	TG	TTG'	TTT:	rtc	CTT.	TTT?	AAA	CCC	CCA'	TGA	ACA	CGA	ATA	CTC.	rga.	AAA	AAA'	TAA	AAA	GCTT	10020
:	10021	TC	TGG	AAG	AAG	ACA	CCT	rtc:	rga:	rag:	AGG	CTC	ACA	CCT	ACAZ	TAP	GCT'	TCA	CTC'	rgt	CCTT	10080
	10081	CC	GAG	ACC.	rga(CAAC	3CTT	rtg	AGG	ACC'	TCA	CAG	CTC	CCC'	TGT(GTG'	TTC:	ATC'	TCT	AGG	GATG	10140
:	10141	TT	TGC	AAT:	rtc	CCAC	3TC2	AGC'	rgr"	rcT(GTC	GCA	GAA'	rgt'	T'TAZ	ATG	CAC	TAA	TTT'	rtg	CACT	10200
:	10201	AG	TGT	GTT	ATG	AAT	GAC'	CAA1	GAT	rcT(GAT	AAA	AAA	AAT	AAA:	rta:	TTT	ACA	CAG	GGT"	TATT	10260
:	10261	AC.	ACA	CTA:	rcci	ATTO	TA:	'AT	AAG	CAT'	TAT'	TTC	ATA'	TTA'	rca.	AGC'	TAA	ACA'	TTC	CCC	CATC	10320
	10321	AG	CTT	AGT'	rgg?	AGT	3TT?	AGG	GAA	AAG'	TAT'	TCC'	TAG	ATA'	rgg	CAC	AGA'	TTT'	TAA	AAG	GAAA	10380
	10381																				GAAT	10440
	10441	TC	ATT	GAA	GAG	3TC	CAA'	rga	GAA	AAA	AAC	AGA	AGC	CTC	CTT	ATT	rca(CAC	GTT"	TTC	CTCC	10500
	10501																					10560
	10561																					10620
_	10621			TGG																	0673	

10/31

Figure 2A

Map of Second Human C3b/C4b Complement Receptor like cDNA (SEQ ID NO:6) and Amino Acid Sequences (SEQ ID NO:7)

1	AC	CCT	'GAC	GGT	'TGG	TGA	TGC	TGG	GAA	GGI	GGC	AGA	CAC	CAC	ATC	GGT	CTI	GTA	CGT	GCTC	60
1	T	L	T	V	G	D	A	G	K	V	G	D	T	R	S	V	L	Y	V	L	. 20
61	AC	GGG	ATC	CAG	TGT	TCC	TGA	CCT	CAT	TGI	'GAG	CAT	GAG	CAA	CCA	GAT	GTG	GCT	ACA	TCTG	120
21	Т	G	s	s	V	P	D	Ь	I	V	s	M	S	N	Q	М	W	L	H	ь	40
121	CA	GTC	GGA	TGA	TAG	CAT	TGG	CTC	ACC	TGG	GTI	TAA	AGC	TGT	TTA	CCA	AGA	AAT	TGA	ÀAÀG	180
41	Q	s	D	D	S	I	G	S	P	G	F	K	A	V	Y	Q	E	Į	E	K	60
181	GG	AGG	GTG	TGG	GGA	TCC	TGG	TAA	CCC	CGC	CTA	TGG	GAA	GCG	GAC	:GGC	CAG	CAG	TTT	CCTC	240
61	G	G	С	G	D	P	G	I	P	A	Y	G	K	R	T	G	S	S	F	L .	80
241	CA	ŢGG	AGA	TAC	ACT	CAC	CTT	TGA	ATG	CCC	:GGC	:GGC	CTI	TGA	GCI	'GGT	'GGG	GGA	GAG	AGTT	300
81	Н	G	D	T	L	T	F	E	. C	P	A	A	F	E	, L	V	G	E	R	V	100
301	ΑT	'CAC	CTG	TCA	GCA	GAA	CAA	TCA	GTG	GTC	TGG	CAA	CAA	GCC	CAG	CTG	TGT	TTA'	TTC	ATGT	360
101	I	T	С	Q	Q	N	N	Q	W	S	G	N	K	P	S	С	V	F	s	С	120
361	TT	'CTT	'CAA	CTT	TAC	GGC	ATC	ATC	TGG	GAT	TAT	TCI	GTC	'ACC	'AAA	TTA	TCC	AGA	.GGA	TATA	420
121	F	F	N	F	T	A	s	S	G	Ι	Ι	L	S	P	N	Y	P	E	E	Y	140
421	GG	GAA	CAA	CAT	'GAA	CTG	TGT	CTC	GTI	'GA'I	LAT.	CTC	CGGA	GCC	:AGC	AAC	TCG	IAAI	TCA	CCTA	480
141	G	N	N	M	N	С	. V	W	L	I	Ι	s	E	P	G	S	R	I	Н	L	160
481	ΑT	'CTT	TAA	TGA	TTT	'TGA	TGT	'TGA	GCC	TCA	LTA	TGA	CTI	TCI	'CGC	GGT	'CAA	GGA	TGA	TGGC	540
161	I	F	Ŋ	D	F	D	V	E	P	Q	F	D	F	ь	A	V	K	D	D	G	180
541	ΓA	TTC	TGA	CAT	'AAC	TGT	CCI	'GGC	TAC	TTT	TTC	TGG	CAA	TGA	AGI	GCC	TTC	CCA	GCT	GGCC	600
181	I	S	D	I	T	V	L	G	T	F	s	G	N	E	V	P	s	Q	L	A	200
601	AG	CAG	TGG	GCA	TAT	'AGT	TCG	CTI	GGA	LTA	TCA	GTC	TGA	CCA	TTC	CAC	TAC	TGG	CAG	AGGG	660
201	s	s	G	Н	I	V	R	L	E	F	Q	s	D	Н	S	Т	T	G	R	G	220
661	TI	CAA	CAT	'CAC	TTP:	CAC	CAC	rta:	TGC	TCF	GAA	TGA	GTG	CCA	TGA	TCC	TGG	CAI	TCC	TATA	720
221	F	N	I	T	Y	T	T	F	G	Q	Ŋ	E	С	H	D	P	G	I	P	I.	240
721	AA	CGG	ACG	ACG	TTT	'TGG	TGA	CAC	GTI	TCI	'AC'I	CGG	GAG	CTC	:GGT	TTC	TTT	'CCA	CTG	TGAT	780
241		G			F		_					-		S			F		С		260
781	GA	TGC	CTI	TGT	CAA	GAC	CCA	GGC	ATC	CGA	GTC	CAT	CTAC	CTC	CAI	'AC'I	'GCA	AGA	CGG	GAAC	840
261	D	G	F	V	K	T	Q	G	s	E	S	I	T	С	Ι	L	Q	D	G	N	280
841	GI	GGI	CTG	GAG	CTC	CAC	CGT	GCC	CCC	CTG	TGA	AGC	CTCC	'ATG	TGG	TGC	ACA	TCI	GAC	AGCG	900
281	V	V	W	S	s	T	V	P	R	C	E	A	P	С	G	G	Н	L	T	A	300
901	TC	CAG	CGG	AGI	CAT	TTT	'GCC	TCC	TGG	ATC	GCC	AGG	ATA	TTA	TAA	GGA	TTC	TTT	'ACA	TTGT	960
301	s	s	G	V	I	L	P	P	G	W	P	G	Y	Y	K	D	s	L	Н	С	320
961	GA	ATG	GAI	'AA'I	TGA	AGC	'AAA	ACC	AGG	CCA	CTC	TAT:	CAA	LAAI	'AAC	TTT	TGA	CAG	ATT	TCAG	1020
321		W		•										I						-	340
1021	AC	AGA	GGI	CAA	ATTA	TGA	CAC	CTI	GGA	GGI	CAC	AGA	TGG	GCC	AGC	CAG	TTC	GTC	CCC	ACTG	1080
341	T	E	V	N	Y	D	T	L	E	V	R	D	G	P	A	s	S	s	P	L	360

1000

11/31 Figure 2B

	1081 361								ACC P							GAA N	CTT F	CATG M	1140 380
٠٠.	1141 381	TAC	 				 		CCG R									TGAG E	1200 400
t.,,	1201 401	AGT(ECT?					CCT(GAA N	CGR X		TCGC R	1260 420
	1261 421	CAC(-		 		_	_								CACA T	1320 440
	1321 441	CTA					 		TGA E		_					CGC A		GCCC P	1380 460
	1381 461	AGC'														CCT L	TTC S	TCCT P	1440 480
	1441 481	GGG'							TCT: L				GAC T		TGA E		GTC S	TCAT H	1500 500
	1501 501	GGGZ G															CTA Y	TTTA L	1560 520
	1561 521							_	CGA(GGT V	_	1620 540
	1621 541	CCT(ACC T						rgg: G				CCA(Q			GTT F	TAT. I	ATCA S	1680 560
	1681 561	GAC'					 		CAA! N			TTC. S				CCT(GGA E	GCCA P	1740 580
	1741 581	TGT(rgg' G					rgt V	GGGA G	1800 600
	1801 601	GAC:							GGGZ G					rgc A		CAA(K		TACC T	1860 620
	1861 621	TGC(CCG(R	 		GAG: S	 ACC' P		GCC P			rgt(ATGT C	1920 640
	1921 641	GGA(•													TAT Y	1980 660
	1981 661	GATA D 1																CCTT L	2040 680
	2041 681	AGA/ R 1																AGAC D	2100 700
	2101 701	AGTT S S					 											AAAC N	2160 720
	2161 721								TTC F		CAAT N		ATCT S					AGGT G	2220 740

12/31

	12/31	
2221	Figure 2C TTTCAACTCACCTATACCAGTTTTGATCTGGTAAAATGTGAGGATCCGGGCATCCCTAAC	2280
741	F Q L T Y T S F D L V K C E D P G I P N	760
2281	TACGGCTATAGGATCCGTGATGAAGGCCACTTTACCGACACTGTAGTTCTGTACAGTTGC	2340
761	YGYRIRDEGHFTDTVVLYSC	780
2341	AACCCGGGGTACGCCATGCATGGCAGCAACACCCTGACCTGTTTGAGTGGAGACAGGAGA	2400
781	N P G Y A M H G S N T L T C L S G D R R	800
2401	GTGTGGGACAAACCACTACCTTCGTGCATAGCGGAATGTGGTGGTCAGATCCATGCAGCC	2460
801	V W D K P L P S C I A E C G G Q I H A A	820
2461	ACATCAGGACGAATATTGTCCCCTGGCTATCCAGCTCCGTATGACAACAACCTCCACTGC	2520
821	T S G R I L S P G Y P A P Y D N N L H C	840
2521	ACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTTCGAC	2580
841	TWIIEADPGKTISLHFIVFD	860
2581	ACGGAGATGGCTCACGACATCCTCAAGGTCTGGGACGGCCGGTGGACAGTGACATCCTG	2640
861	TEMAHDILKV W D G P V D S D I L	880
2641	CTGAAGGAGTGGAGTGGCTCCGCCCTTCCGGAGGACATCCACAGCACCTTCAACTCACTC	2700
881	LKEWSGSALPEDIHSTFNSL	900
2701	ACCCTGCAGTTCGACAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATCCA	2760
901	TLQFDSDFFISKSGFSIQFS	920
2761	ACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCCCAAAATGGCACCCGCTATGGA	2820
921	T S I A A T C N D P G M P Q N G T R Y G	940
2821	GACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCTGGCTATCAGCTCCAA	2880
941	D S R E A G D T V T F Q C D P G Y Q L Q	960
2881	GGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTTGGCAACCAGACCCT	2940
961	G Q A K I T C V Q L N N R F F W Q P D P	980
2941	CCTACATGCATAGCTGCTTGTGGAGGGAATCTGACGGGCCCAGCAGGTGTTATTTTGTCA P T C I A A C G G N L T G P A G V I L S	3000
981		1000
3001 1001	CCCAACTACCCACAGCCGTATCCTCCTGGGAAGGAATGTGACTGGAGGTAAAAGTGAAC PNYPQPYPPGKECDWRVKVN	3060 1020
1001		1020
3061	CCGGACTTTGTCATCGCCTTGATATTCAAAAGTTTCAACATGGAGCCCAGCTATGACTTC	3120.
1021	P D F V I A L I F K S F N M E P S Y D F	1040
3121	CTACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATTGGGAGTTACCAGGGCTCT	3180
1041	LHIYEGEDSNSPLIGSYQGS	1060
3181	CAGGCCCCAGAAAGAATAGAGAGTAGCGGAAACAGCCTGTTTCTGGCATTTCGGAGTGAT	3240
1061	Q A P E R I E S S G N S L F L A F R S D	1080
3241	GCCTCCGTGGGCCTTTCAGGGTTCGCCATTGAATTTAAAGAGAAACCACGGGAAGCTTGT	3300
1081	A S V G L S G F A I E F K E K P R E A C	1100
3301	TTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAGCTTGGCTCC	3360
1101	F D P G N I M N G T R V G T D F K L G S	1120
3361		3420
1121	T I T Y Q C D S G Y K I L D P S S I T C	1140

₹.

13/31 Figure 2D

3421 1141		TGG(_												TCCC P	3480 1160
3481 1161		AGG(G													TAAT N	3540 1180
3541 1181		AGC' A	-		_										CTTT F	3600 1200
3601 1201		 GTT1 F	 			 	 		 					rgg: G	AACC T	3660 1220
3661 1221		ACA(Q												ATT L	GCCC P	3720 1240
3721 1241		TAC(TGC A	CCGC R	3780 1260
3781 1261		CCA(H									CCA: Q		CAG S		rgtc V	3840 1280
3841 1281		GCC(P										CTC(S		CGT(CCGA R	3900 1300
3901 1301		GTRO X													CGTG V	3960 1320
3961 1321		CGCC A												CAG'	rggc G	4020 1340
4021 1341	AA'I N											GCCI P			AAAC N	4080 1360
4081 1361		GAAC N										rcac Q		CCA/ Q	AGTG V	4140 1380
4141 1381	ATC I	 rtti F	 	-				_		CCAC H		rgg: G	rgg(G		rgtg V	4200 1400
4201 1401		 ACCC P	 			 	 		 					CAG: S	TACT T	4260 1420
4261 1421		CCAA Q													CCAC H	4320 1440
4321 1441		 ATAC Y	 			 	 		 							4380 1460
4381 1461															GGG G	4440 1480
	TAC Y	CTG L													BAAC N	4500 1500
		STCT S										TTC L			TGTG V	4560 1520

14/31 Figure 2E

::::	:																					4600
	4561			_																	SATC	4620
	1521	I	Ь	S	Р	G	F	Р	G	S	Y	Þ	N	N	L	ם	C	T	W	R	T	1540
٠																						
	4621			ACC																	TAAT	4680
	1541	S	L	P	I	G	Y	G	A	Н	Ι	Q	F	L	N	F	S	\mathbf{T}	E	A	N	1560
٠	ı																					
	4681	CA'	TGA(CTTC	CCT	rga?	TA.	CA	LAA	rgg/	ACC.	CTA(CA	CAC	CAG	CCC	CATO	CTAE	rggz	CA	ATTT	4740
	1561	H	D	F	L	E	I	Q	N	·G	P	Y	H	T	s	P	M	I	G	Q	F	1580
	4741	AG	CGG	CAC	GA?	CTC	CCC	GCG	GCC	CTC	3CT(3AG	CAC	AAC	GCA:	[GAZ	AAĊ(CTC	CATC	CAC	CTTT	4800
	1581	s	G	т	D	L	P	A	Α	L	L	S	T	T	Н	E	T	L	I	H	F	1600
		_	· .	_	_	_																
	4801	TA	TAC	тсьс	CAT	гтсе	CAZ	AAC	CGC	CAZ	AGGZ	TT	raa:	ACT"	rgc:	rta (CAZ	AGCO	TAT	rga/	ATTA	4860
	1601																	A			L	1620
	1001	•			••		×	••	••	×	Ŭ	•	••	_		-	*		-	~	_	
	4861	CA	מארים	OTHER	דירים	ለርጋአባ	רייי	ccc	יררי	· chela r	רי אני	יא אב	raar	מידיב	ריז תי	ייימי	ממר	ንጥ/	ימבו	מינים	CAGC	4920
							P											s				1640
	1621	Q	N	C	P	ט	P	P	P	r	Q	IA	G	1	M	1	1/4	3	ט	1	D	1040
••••		~-									~~~~		n	-ma	~ ~ mr	n			i		nama	4000
	4921																				rgtc	4980
	1641	V	G	Q	S	V	S	F	E	C	Y	Þ	G	Y	Ţ	יד	I	G	н	P	V	1660
	4981																				rgcc	5040
	1661	L	T	C	Q	H	G	I	N	R	N	W	N	Y	P	F	P	R.	С	D	A	1680
	5041	CC	TTG'	TGG	GTA(CAAC	CGT	AC!	TCT	CAC	SAAC	CGG	CAC	CAT	CTA	CTC	CCC:	rggc	CTT	rcc:	IGAT	5100
	1681	P	С	G	Y	N	V	T	s	0	N	G	T	I	Y	s	₽	G	F	P	D	1700
										_												
	5101	GA	GTA'	ŤCC	GAT	CTC	SAAC	GAC	TGC	CAT"	rtg	3CT(CAT	CAC	GGT	GCC:	rcci	AGG	3CA	CGG	AGTT	5160
	1701						K											G				1720
		-	-	•	-			_	_	_	••	_	_	_	-		_	_		_	•	
	5161	ጥአ	ር እ ጥ	רא ארי	orporo	ጉእ ሮር	יירייר	ניתיחב	እ <i>ሮ</i> አር	27/00	י ע בי	ימכי	гст	ממי	ימבור	ም የል (יידער	רכריי	سلتكارا	ריירים	GGAC	5220
	1721						L											A		W		1740
	1/21	1	_	14	r	1	ם	ם	Q	1	E	A	٧	14	ט	1	1	^	٧	**	ט	1/40
		~~				~~ ~ ~					200		nmm	~ A ~	maa.	777	77.01	. ~~	~~m	7073	3 777	E200
	5221																				AACG	5280
	1741	G	Ь	D	Q	N	S	P	Q	ь	G	٧	F.	S	G	N	T	Α	יד	E	T	1760
	5281																				AGGC	5340
	1761	A	Y	s	S	T	N	Q	V	L	L	K	F	H	s	D	F	S	N	G	G	1780
	5341	TT	CTT'	TGT	CCT	CAA!	rtro	CAC	CGC	ATT'	rca(3CT(CAA	GAA	ATG:	CA	ACC.	rcco	CCC	AGC(GTT	5400
	1781	F	F	v	L	N	F	Н	Α	F	Q	P.	K	K	C	Q	P	P	P	A	V	1800
	5401	CC	ACA	GGC	AGA	YEAA	CT.	CAC	rgac	GA'	rga:	rga:	rrr(CGA	GAT	AGG	AGA'	rrr:	rgto	AAE	GTAC	5460
	1801	P	0	A	E	М	L	T	E	D	D	D	F	E	I	G	D	F	v	ĸ	Y	1820
		-	-		_					_												
	5461	CA	CTC	מכים	ררר	7666	TAC	TAC	ጉጥጥር	ን ር ጥ	3 GG	BAC	CGA	CAT	тстс	3AC	rTG	CAAC	CTC	'AG'	TTCC	5520
	1821																	ĸ				1840
	1021	¥	_	11	-	3	•	•		•	0	•		-		•	•		_	Ü	•	1010
	5521		Curr.	~~×	بسالك	י גייים	ماتات	ranger of	ישטק	700	ላ አ 🕶 ነ	ע תיייי	י עיביים	אכים	י מיין מ	ነ ጥር ሳ	יררי	מכרי	יעע	י עיבאן	AGTC	5580
																						1860
	1841	Q	נג	Q	r'	뇬	G	5	П	P	1	U	ĸ	A	Ą	C	۳	A	IA	E	V	1000
		,													- -		 -	ne	n	n. -		
	5581																				CTCC	5640
	1861	R	T	G	s	S	G	V	I	L	S	P	G	Y	P	G	N	Y	F	N	S	1880
						•																
	5641	CA	GAC'	TTG	ĊTC:	rtg(GAG'														GGAC	5700
	1881	Q	T	С	s	W	s	I	K	v	E	P	N	Y	N	I	Ŧ	I	F	V	D	1900
		-																				

15/31 Figure 2F

: tata: 570	1 A	CAT.	TTCA	AAG	TGA	AAA	.GCA	GTI	TGA	TGC	ACI	GGA	\AG'I	GTT	TGA	TGG	TTC	TTC	TGG	GCAA	5760
190	íт	F	Q	s	E	K	Q	F	D	A	L	E	V	F	D	G	s	s	G	Q	1920
···· 576	1 A	GTC	CTCT	GCI	'AGT	'AGI	CTI	'AAG	TGG	GAA	TCA	TAC	TGF	ACA	ATC	'AAA	TTT	TAC	AAG	CAGG	5820
192		P													S	N	F	T		R	1940
``` 582	1 A	GTA	ATCA	GTT	'ATA	TCT	CCG	CTG	GTC	CAC	TGA	CCA	TGC	CAC	CAG	TAA	GAA	AGG	ATT	CAAG	5880
194	1 S	N	Q	ь	Y	L	R	W	S	T	D	H	A	T	S	K	K	G	F	K	1960
588	1 A	TTC	GCTA	TGC	AGC	ACC	TTA	CTG	CAG	TTT	'GAC	CCA	CCC	CCI	'GAA	GAA	TGG	GGG	TAT	TCTA	5940
196			Y		A	P	Y	С		L	Т	H		. L	K	N	G	G		L	1980
594 198	•	ACA( R		TGC A													GCC P			CCGA	6000
190	T 14	K	1	A	G	A	٧	G	5	ν.	V	н	1	r	C	Λ.	P	G	Y	ĸ	2000
600	1 A	TGG:	rcge	CCA	CAG	CAA	TGC	AAC	CTG	TAG	ACG	AAA	CCC	ACT	TGG	CAT	GTA	CCA	GTG	GGAC	6060
200		ıν					A							L	G	M	Y	Q	W	D	2020
	_																				
···· 606																				CGGT	6120
202	1 5	L	Т	P	L	С	Q	A	V	s	С	G	I	P	E	S	P	G	N	G	2040
612	1 T	· CAT	TAC	:CGG	GAA	CGA	GTT	CAC	ттт	'GGA	CAG	TAA	AGI	GGT	'CTA	TGA	ATG	TCA	TGA	GGGC	6180
204		F				E								V			C		E	G	2060
618																	TGG	GCT	GTG	GAGT	6240
· 206	1 F	K	L	E	S	S	Q.	Q	Α	T	A	V	C	Q	E	D	G	L	W	s	2080
624	ת ו	አ ረግ አ 7	۸۳۳	יר א י	ccc	ccc	יכאכ	C TO TO	ת תידי	ccc			'''''''	,,,,,,,	~~~		מיים	3 C C	መረን እ	GCTC	6300
208		ACA K				.GCC P	T.	C		P	V	A	C	P	S	I	IGA E	AGC A		L	6300 2100
200		•••	Ū		-	-	-	Ū	••	-	•	••	Ŭ	•	_	_	_	••	×		2100
630	1 T	CAG	ACA	TGT	CAT	'CTG	GAG	GCT	GGT	TTC	AGG	ATC	CTI	'GAA	TGA	GTA	CGG	TGC'	TCA	AGTA	6360
210	ıs	E	H	V	I	W	R	L	v	s	G	s	L	N	E	Y	G	A	Q	V	2120
		maan		· cmc	~~	m-c-c			~ <b>~</b>						~~~	~~~					
636: 212:	-	TGCI				P								GAG R				-	CCA O	GGCC	6420 2140
212			3	C	3	P	G	1	1	L	E	G	**	К	IJ	יד	R	C	Ų	A	2140
642	1. A	ATGO	GAC	GTG	GAA	CAT	AGG	AGA	TGA	GAG	GCC	AAG	CTG	TCG	AGT	TAT	CTC	GTG'	TGG.	AAGC	6480
214	1 N	G	T	W	N	I	G	D	E	R	P	s	C	R	v	I	S	С	G	S	2160
	_																				
648																				AGCT	6540
216	Г Г	S	F	P	P	N	G	M	K	Ι	G	T	L	T	V	¥	G	A	T	A	2180
654	l A	TATI	TAC	GTG	CAA	CAC	CGG	CTA	CAC	GCT	TGT	GGG	GTC	TCA	TGT	CAG	AGA	GTG	CTT	GCA	6600
218		F																			2200
					•																
																				AGAC	
220	L N	G	Ъ	W	S	G	s	E	T	R	С	L	A	G	H	C	G	s	P	D	2220
666	ı c	റവുമ	יייבייתיי	ממט	<u> </u>	יים איים	<b>ር</b> አጥ	ጥልር።	TCC	ימטמ	TCC	ርጥጥ	റൂദ	ጥጥል	ሮልሮ	מבא	ር አ ር (	CCTC	ىلىت	TAC	6720
222		I																V			2240
	•	_	•		-		-	-	-	_	-	-	_	-		_	-	-	•	•	~~.~
672																				CCAC	6780
224	L Q	C	N	P	G	F	R	L	V	G	T	s	V	R	I	C	L	Q	D	H	2260
670	,	א כיייי	oma	TO CO	አ ር ኦ	<u>አአ</u> ጥ	acc	m/m·	OMO	mom.	000	വര് സ	~ A ~	א מייריי	ייטיי	י מיטים		יססי		anom.	C040
678: 226:		AGTC W			ACA. O													G G		CCCT	6840 2280
220.		**	_	_	*	-	-	•	_	~	Ξ.	-	-	_	_	• •	•	J .	7.4	•	2200

16/31 Figure 2G

6841 2281	GCCCACGGATTCACTAATGGCAGTGAGTTCAACCTGAATGATGTCGTGAATTTCACCTGC A H G F T N G S E F N L N D V V N F T C	6900 2300
6901 2301	AACACGGGCTATTTGCTGCAGGGCGTGTCTCGAGCCCAGTGTCGGAGCAACGGCCAGTGG N T G Y L L Q G V S R A Q C R S N G Q W	6960 2320
6961 2321	AGTAGCCCTCTGCCCACGTGTCGAGTGGTGAACTGTTCTGATCCAGGCTTTGTGGAAAAT S S P L P T C R V V N C S D P G F V E N	7020 2340
7021 2341	GCCATTCGTCACGGGCAACAGAACTTCCCTGAGAGTTTTGAGTATGGAATGAGTATCCTG A I R H G Q Q N F P E S F E Y G M S I L	7080 2360
7081 2361	TACCATTGCAAGAAGGGATTTTACTTGCTGGGATCTTCAGCCTTGACCTGTATGGCAAAT Y H C K K G F Y L L G S S A L T C M A N	7140 2380
7141 2381	GGCTTATGGGACCGATCCCTGCCCAAGTGTTTGGCTATATCGTGTGGACACCCAGGGGTC G L W D R S L P K C L A I S C G H P G V	7200 2400
7201 2401	CCTGCCAACGCCGTCCTCACTGGAGAGCTGTTTACCTATGGCGCCGTCGTGCACTACTCC P A N A V L T G E L F T Y G A V V H Y S	7260 2420
7261 2421	TGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTGTGCCAGGAAGACAGTCACCCRGSSESLIGNDTRVCQEDSH	7320 2440
7321 2441	TGGAGCGGGCACTGCCCCACTGCACAGGAAATAATCCTGGATTCTGTGGTGATCCGGGG W S G A L P H C T G N N P G F C G D P G	7380 2460
7381 2461	ACCCCAGCACATGGGTCTCGGCTTGGTGATGACTTTAAGACAAAGAGTCTTCTCCGCTTC T P A H G S R L G D D F K T K S L L R F	7440 2480
7441 2481	TCCTGTGAAATGGGGCACCAGCTGAGGGGGCTCCCCTGAACGCACGTGTTTGCTCAATGGG S C E M G H Q L R G S P E R T C L L N G	7500 2500
7501 2501	TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGTCCTGTGGCAACCCTGGCACACCC S W S G L Q P V C E A V S C G N P G T P	7560 2520
7561 2521	ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTCATCTATGCC T N G M I V S S D G I L F S S S V I Y A	7620 2540
7621 25 <b>4</b> 1	TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCAATGGGACCCCCCCC	7680 2560
7681 2561	TGGACAGGCACTGCTCCCGACTGCACAATTATAAGTTGTGGGGATCCAGGCACACTAGCAWTGTTTTTTTTTT	7740 2580
7741 2581	AATGGCATCCAGTTTGGGACCGACTTCACCTTCAACAAGACTGTGAGCTATCAGTGTAACNG IQFGTDFTFNKTVSYQCN	7800 2600
7801 2601	CCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTACCAAAGACGGCAGG P G Y V M E A V T S A T I R C T K D G R	7860 2620
7861 2621	TGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTTGTCCTCAGCCGCCGCCGGTGCAGWNPSKPVCKAAVLCPQPPPVQ	7920 2640
7921 2641	AATGGAACAGTGGAGGGAAGTGATTTCCGCTGGGGCTCCAGCATAAGTTACAGCTGCATG N G T V E G S D F R W G S S I S Y S C M	7980 2660

# 17/31 Figure 2H

7981	GA	CGG	TTA	ACCA	AGCI	CTC	TC	ACTO	CCGC	CA.	rcc:	rcro	CCTC	STG	AAGO	STC	GCG	GGT	rgre	GAAA	8040
2661						s				I				E				ν	W	K	2680
8041	GG	AGA	GAT	ccc	CCCA	GTC	TC	rcco	TG	rgt:	CTC	GCGG	GAG!	ACCO	CTG	GCA?	rcco	CCGC	CAGA	AGGG	8100
2681	G	E	I	P	Q	С	L	P	V	F	C	G	D	P	G	I	P	A	E	G	2700
8101	CG	ACI	TAG	TGG	GAA	AAG	TT	CAC	CTA	\TA	AGTO	CCG	\AG'	CTI	rcT1	rccz	AGTO	GCAP	ATC	TCCA	8160
2701													V			Q				P	2720
8161	TT	TAT	'ACT	CGI	rgge	ATC	CTC	CAC	SAAC	BAGT	CTC	GCC#	AAGO	TGA	ACGO	CAC	CGTC	GAG	CGG	CATA	8220
2721	F	I	L	V	G	s	s	R	R	V	С	Q	A	D	G	T	W	S	G	I	2740
8221	CA	ACC	CAC	CTO	CAT	TGA	TCC	TGC	TCF	ATA	CAC	CCTC	3000	AGA	ACCC	TGC	TAC	CGCC	:ACA	CTTT	8280
2741		P		С						N			P		P			P		F	2760
8281	GG	AAT	'ACA	GAA	TAG	CTC	CAC	AGC	CTA	TGA	\GG7	rTGC	BAAG	CAC	GGT	TTT	TTT	CAC	GTG	CAGA	8340
2761													s		V	F			C		2780
8341	AA	AGG	CTA	CCA	TAT	TCA	AGG	TTC	CAC	GAC	TCC	CAC	CTC	CCI	TGC	CAA	TTI	CAAC	ATG	GAGT	8400
2781						Q			T				C			N	L	T	W	s	2800
8401	GG	GAT	ACA	GAC	CGA	ATG	TAT	ACC	TCA	TGC	CTO	CAC	BACA	GCC	AGA	AAC	ccc	CGGC	'ACA	CGCG	8460
2801	G	Ι	Q	T	Е	С	I	P	H	A	С	R	Q	P	E	T	P	A	Н	A	2820
8461	GA	TGT	GAG	AGC	CAT	'CGA	TCT	TCC	TAC	TTT	'CGG	CTA	CAC	CTT	'AGT	GTA	CAC	CTG	CCA	TCCA	8520
2821	D	V	R	A	Ī	D		P	T	F	G	Y	Т	L	V	Y	T	С	H	P	2840
8521	GG	CTT	TTT	CCT	'CGC	AGG	GGG	ATC	TGA	GCA	CAG	AAC	ATG	TAA	AGC	'AGA	CAT	GAA	ATG	GACA	8580
2841	G	F	F	L	A	G	G	s	E	Н	R	Т	С	К	A	D	M	K	W	T	2860
8581	GG	AAA	GTC	GCC	TGT	GTG								AGT	'TAA	TGA	AAC	'AGT	TAC	TAAA	8640
2861		K	_							G	•				N	Ε	T	V	T	K	2880
8641	AC	TCC	AGT	TCC	TTC	AGA	TGT	CTT	TTT	'CGT	CAA	TTC	ACT	GTG	GAA	.GGG	GTA	ATT	TGA	TATA	8700
2881		P	·	_	-	D							L					Y			2900
8701													CTG	GTT	CAA	TGC	AAC	AAG	CAG	TAAG	8760
2901						P							W	-			_	_	_	K	2920
8761								AGC			AGT	'GGA	GCT.	GAA	GTT	GAC	AGG	CAT	TTA	CAAG	8820
2921	V	N	A	Т	F	S	E	A	_	P	V	E	L	K	L	T	G	I	Y	K	2940
8821																					8880
2941													Ι								2960
																				rgaa .	8940
•	V						•										•				2980
8941	AG	AGG	AGG	ATT'	TAC'	TTT'	TCA	AGG	TGA	CAT	TCA	TGG	AAA	AGA	CTT	TGG.	AAA	ATT'	TAAG	3CTA	9000
2981 [°]																					3000
9001	GA	AAG(	GCA/	AGA'	TCC'	TTT?	AAA	CCC	AGA'	TCA	AGA	CTC	TTC	CAG'	TCA'	TTA	CCA	CGG	CAC	CAGC	9060
3001	E	R	Q	D	P	L .	N	P	D	Q	D	s	S	s	Н	Y	Н	G	T	s	3020
9061	AG.	rgg	CTC:	rgt	GGC(	GC.	rgc	CAT'	rcT(	GGT"	rcc'	TTT	CTT'	TGC'	гст	AAT'	TTT.	ATC	AGGO	STTT	9120
3021	S	G	S	v	A	A	A	I		V				A				s			3040

### 18/31 Figure 2I

: 55:	9121	GC	ATT'	TTA	CCT	CTA	CAA	ACA	CAG	AAC	GAG	ACC	AAA	AGT"	TCA	ATA	CAA'	TGG	CTA	TGC'	rggg	9180
	3041	A	F	Y	ь	Y	K	Н	R	T	R	P	K	v	Q	Y	N	G	Y	A	G	3060
٠	9181	CA'	rga.	AAA	CAG	CAA'	rgg	ACA	AGC												AAAA	9240
	3061	H	E	N	s	N	G	Q	A	s	F	E	N	P	M	Y	D	T	N	L	K	3080
٠	9241	CC	CAC	AGA	AGC	CAA	GGC'	rgt	GAG	GTT	TGA	CAC	AAC	TCT	GAA	CAC	AGT	CTG'	TAC	AGT	GGTA	9300
	3081	P	T	E	A	K	A	V	R	F	D	T	T	L.	N	T	v	C	T	v	V	3100
	9301	TAG	GCC	CTC	AGT	GCC	CCA	ACA	GGA	CTG	TTA	CAT	AGC	CAT	ACC	TCT	GAT	GGA	CAA	GCA	GTGA	9360
	3101	*																				3101
	9361	TT	CCT	TTG	GTG	CCA'	TAT	ACC	ACT	CTC	CCY'	TCC	ACT	CTG	GCT	TTA	CTG	CAG	CGA'	TCT	TCAA	9420
	9421	CC'	TTG	TCT	ACT	GGC.	ATA	AGT	GCA	GCG	GGG	ATC'	TCT.	ACT	CAA	ATG'	TGT(	CAG	GGT	CTT	CTAC	9480
	9481	GG	ATC	AAA	CTA	CAC	ATG	CGT	TTT	CAT	TCC	AAA	AGT	GGG	TTC	TAA	ATG	CCT	GGC	TGC	ATCT	9540
	9541	GT	ATG.	AAA'	TCA	AGG	CAC	ACT	CCA	GGA	AGA	CTG	CCA	CGT	CGC	GCC.	AAC	ACG'	TCA'	TAC	<b>TCAA</b>	9600
	9601	TR	CCT	CAG	ACT"	TTC	ATA'	rtt	CTG	TGT	TGC'	TGA	GAT	GCC'	TTT	CAA'	rgc:	TAA	CGT	CTG	GGCT	9660
	9661	CG'	TGG	ATA'	TGT	CCC	TCA	GGT	GCG	GTG	ACA	GAA'	TGG	TGG	CAC	CAC	GAT	ATG'	TGT	TCT	CTTG	9720
	9721	TG'	TTG	TTT'	TTC	CTT	TTT	AAA	CCC	CCA	TGA	ACA	CGA	ATA	CTC	TGA.	AAA	AAA'	TAA	AAA	GCTT	9780
- 1-4,	9781	TC'	TGG	AAG	AAG	ACA	CCT'	TTC	TGA	TAG.	AGG	CTC	ACA	CCT.	ACA	AAT	GCT"	TCA	CTC	TGT	CCTT	9840
	9841	CC	GAG	ACC'	TGA	CAA	GCT'	TTG	AGG.	ACC	TCA	CAG	CTC	CCC	TGT	GTG'	TTC	ATC	TCT.	AGG	GATG	9900
	9901	TT	TGC	TAA	TTC	CCA	GTC.	AGC	TGT	TCT	GTC	GCA	GAA	TGT	TTA	ATG	CAC	AAT'	TTT	TTG	CACT	9960
	9961	AG	TGT	GTT	ATG	AAT	GAC'	TAA	GAT	TCT	GAT	AAA	AAA	AAT.	AAA	TTA'	TTT	ACA	CAG	GGT"	TAT	10020
	10021	AC.	ACA	CTA'	TCC	ATT	GTA'	TAT.	AAG	CAT	TAT'	TTC	ATA	TTA	TCA	AGC'	TAA	ACA'	TTC	CCC	CATC	10080
	10081	AG	CTT	AGT	TGG.	AGT	GTT.	AGG	GAA	AAG	TAT	TCC'	TAG	ATA	TGG	CAC	AGA'	TTT	TAA	AAG	GAAA	10140
	10141	TA	CAG	TAT	TGA	CGA	GAT	TTA	TTT	TAT	TAT	TGC'	TTC	AAT	TAG	CTC	CAT	TTA	CGT	GTT	GAAT	10200
	10201	TC.	ATT	GAA	GAG	GTC	CAA	TGA	GAA	AAA	AAC	AGA.	AGC	CTC	CTT	ATT	TCA	CAC	GTT	TTC	CTCC	10260
	10261	TT	TAG	TAC	CAT	CCT	CAT	CCA	ATT	ACT	GTC'	TCT	CTG	ATA	CTA	CTT	AAT.	AGC.	AGG	GGG'	TTTG	10320
	10321	CA	GAA	ATT	TCT	GTT	TGC	CAT	GTA	AAA	CTG	TGA	ATA	GTA	ATT	TAT	TTT.	AGA'	TAG	TCG	ATGA	10380
	10381	AC	TTG	TGG	GTT	TTA	GCT	CAC	AAT	GCA	GCC'	TTC	CCT	TTT	GCA	GTG'	TTT	TTT	TTT			10433

WO 02/10199 PCT/US01/23232

### 19/31

# Figure 2

Map of Rat C3b/C4b Complement Receptor like cDNA (SEQ ID NO:3) and Amino Acid Sequences (SEQ ID NO:4)

1	GATGCCGGGAAGGTGGGGGACACCAGATCCGTCTTGTACGTGCTTACAGGCTCCAGTGTC	60
1	D A G K V G D T R S V L Y V L T G S S V	20
61	CCTGACCTCATCGTGAGCATGAGCAATCAGATGTGGCTCCACCTGCAGTCAGACGACAGC	120
21	P D L I V S M S N Q M W L H L Q S D D S	40
	·	
121	ATTGGTTCCCCAGGATTTAAAGCTGTGTACCAAGAAATCGAGAAGGGAGGCTGCGGGGAC	180
41	I G S P G F K A V Y Q E I E K G G C G D	60
181	CCTGGCATCCCAGCCTACGGGAAGCGGACTGGCAGCAGCTTCTTGCACGGGGACACGCTC	240
61	P G I P A Y G K R T G S S F L H G D T L	80
241	ACCTTTGAGTGCCAGGCAGCTTTTGAGCTGGTAGGAGAGAGTGATTACGTGCCAGAGA	300
81	T F E C Q A A F E L V G E R V I T C Q R	100
	·	
301	AACAACCAGTGGTCCGGCAACAAGCCAAGCTGTGTTTTCATGTTTCTTCAACTTCACG	360
101	N N Q W S G N K P S C V F S C F F N F T	120
•		•
361	GCGTCCTCTGGGATCATCCTGTCGCCAAACTATCCTGAGGAATATGGCAACAACATGAAT	420
121	A S S G I I L S P N Y P E E Y G N N M N	140
421	TGTGTGTGGTTGATTATCTGAGCCCGGGAGCCGGATTCACCTCATCTTCAATGATTTC	480
. 141	CVWLIISEPGSRIHLIFNDF	160
481	GATGTGGAGCCTCAGTTTGACTTCCTTGCGGTCAAAGATGATGGGATTTCTGACATCACA	540
161	DVEPQFDFLAVKDDGISDIT	180
541	GTCCTCGGGACTTTCTCTGGCAATGAGGTGCCTGCACAGCTGGCC.GCAGTGGACACATA	600
181	V L G T F S G N E V P A Q L A X S G H I	200
601	GTACGCCTGGAGTTTCAGTCCGATCACTCTACCACGGGCAGAGGGTTCAACATCATATAC	660
201	V R L E F Q S D H S T T G R G F N I I Y	220
661	ACCACATTTGGTCAGAACGAGTGTCATGACCCTGGGATCCCTGTGAATGGACGGCGCTTT	720
221	T T·F G Q N E C H D P G I P V N G R R F	240
721	GGAGACAGGTTTCTGCTGGGAAGTTCTGTGTCCTTCCACTGTGATGATGGCTTTGTGAAG	780
241	G D R F L L G S S V S F H C D D G F V K	260
781	ACTCAGGGTTCTGAGTCTATCACATGCATCTTGCAAGATGGAAACGTGGTCTGGAGCTCT	840
261	TQGSESITCILQDGNVVWSS	280
841	ACTGTCCCTCGCTGTGAAGCTCCTTGTGGTGGGCATCTGACAGCTTCTAGTGGGGTCATA	900
281	TVPRCEAPCGGHLTASSGVI	300
	• •	
901	TTACCTCCAGGATGGCCAGGATATTACAAAGATTCTTTAAATTGCGAATGGGTCATTGAA	960
301	LPPGWPGYYKDSLNCEWVIE	320
961	GCCAAACCAGGACATTCCATCAAAATAACATTTGACAGGTTCCAGACAGA	1020
321	A K P G H S I K I T F D R F Q T E V N Y	340
1021	GATACTCTGGAAGTCCGGGATGGGCCAACCAGCTCATCCCCACTGATTGGGGAGTACCAT 1	1080
341	D T L E V R D G P T S S S P L I G E Y H	360

WO 02/10199 PCT/US01/23232

## 20/31 Figure 3A

; :::::::::::::::::::::::::::::::::::::	1081	GG	CAC	CCA	GGC'	rccz	ACA	GTT(	CCT	CAT	CAG	CAC	AGG	GAA	CTA	CAT	GTA	CCT	GCT(	GTT"	<b>FACC</b>	1140
	36Í	G	T	Q	A	P	Q	F	L	1	S	T	G	N	Y	М	Y	L	L	F	T	380
٠	1141	AC'	TGA	CAG	CAG	CCG	CGC:	rag:	rgt'	rgg	CTT	CCT	CAT	CCA	CTA'	TGA	GAG'	TGT	GAC'	rcT'	IGAA	1200
	381		D												Y			V		L	E	400
٠,٠	1201	TC	TGA	CTC	CTG'	rcto	GGA	ccc	GGG	CAT	CCC'	TGT.	AAA	TGG	TCA!	rcg	GCA'	TGG	CAG'	raa:	CTTT	1260
	401	s	D	s	С	L	D	P	G	I	P	V	N	G	H	R	H	G	S.	N	F	420
	1261	GG	TAT	CAG	ATC'	rac.	AGT	GAC	CTT	CAG	CTG'	TGA	ccc	TGG	GTA	CAC	GCT	CAG'	TGA!	TGA(	CGAT	1320
	421	G	I	R	s	T	v	T	F	s	С	D	P	G	Y	T	L	s	D	D	D	440
	1321	CC	CCT	CAT	CTG'	rga(	GAAC	GAA	CCA'	TCA(	GTG	GAA	CCA	CGC	CTT	GCC(	CAG	CTG'	TGA'	rgc	CCTG	1380
	441									_					L			_	D		_	460
	1381																				CTTT	1440
	461	С	G	G	Y	I	H	G	K	S	G	Т	V	L	S	P	G	F	P	D	F	480.
	1441	TA	TCC	AAA	CTC'	rct(	GAA	CTG'	TAC	ATG	GAC	CAT	TGA	AGT	CTC	TCA'	TGG	CAA	GGG:	AGT	GCAG	1500
	481	Y	P	N	S	L	N	С	T	W	T	Ι	Е	V	S	H .	G	K	G	V	Q	500
	1501	ΑT	GAA	TTT	CCA	CAC	CTT'	TCA	CCT'	TGA	AAG	TTC	CCA	CGA	CTA'	TTT	GCT	GAT	CAC	AGA	GGAT	1560
	501	M	N	_	н	_	F			_	_	_			Y				Т		D	520
	1561	GG	GAG	TTT																	TAAG	1620
	521		_	F											V							540
	1621																				CTCC	1680
	541			L							_				I						_	560
	1681																				TGGA	1740
	561	Y	_	G 	F	N 	I 	T	F						E							580
	1741																		CCT L		TTTC	1800 600
	581											_			V			_		•	_	1860
	1801 601														GC I						GGGA	.620
					_																CAAA	1920
	1861 621			V V			A A									C		AGC. A	S		K	640
				-		_													_	•	TGAG	-
	1921 641														N							660
														~ > m		mam.	~~~				amma.	2040
	661																					2040 680
	2041	CA	እ ርጣ		CCA	NGG	አርአ	רארי	ጥርጥ	אאה	ርርጥ	מיזייזי	ጥርነል	ጥርር	מממ	CCD	റമദ	כידיכי	ריזירי	CAC	GTCA	2100
	681																				S	700
	2101	Счт	GGG	ልርሞ	ርምጥ	CAC	AAG	AAC	ፈጋጊ	acm	GAT	GGG	GCT	GGT	GCT	AAA	CAG	CAC	CTC	CAA	CCAC	2160
	701																				Н	720
	2161	СТ	'GAC	GCT	GGA	GTT	CAA	CTC	ТАА	CGG	GTC	AGA	TAC	CGC	CCA	AGG	CTT	CCA	GCT	CAC	CTAC	2220
	721																					740

21/31 Figure 3C

	rigure 3c	
2221	ACCAGTTTTGACCTAGTGAAATGTGAGGATCCAGGCATCCCTAACTATGGCTACAGGATC	2280
741		760
·		
. 2281		2340
761	RDDGHFTDTVVLYSCNPGYA	780
2341		2400
781	MHGSSTLTCLSGDRRVWDKP	800
2401	ATGCCTTCCTGTGTGGCGGAATGTGGTGGTCTCGTCCATGCAGCCACATCAGGACGCATA	2460
801	M P S C V A E C G G L V H A A T S G R I	820
301		0_0
2461	CTCTCTCCTGGCTACCCTGCCCCATATGACAACAACCTTCATTGCACTTGGACCATAGAG	2520
821	LSPGYPAPYDNNLHCTWTIE	840
2521		2580
841	ADPGKTXSLHFIVFDTETAH	860
2503	GACATCCTCAAGGTCTGGGATGGTCCAGTGGACAGCAACATCCTGCTGAAGGAGTGGAGC	2640
2581 861	D I L K V W D G P V D S N I L L K E W S	880
801		000
2641	GGCTCGGCCCTTCCTGAGGACATCCACAGCACCTTCAACTCGCTCACCCTGCAGTTCGAT	2700
881	G S A L P E D I H S T F N S L T L Q F D	900
2701		2760
901	SDFFISKSGFSIQFSTAS	920
	ACCTGCAATGACCCTGGGATGCCTCAGAATGGAACCCGCTATGGTGACAGCCGGGAACCT	2820
2761 921	T C N D P G M P Q N G T R Y G D S R E P	940
321		310
2821	GGAGACACCATCACCTTCCAGTGTGACCCTGGATACCAGCTCCAAGGGCAAGCCAAGATC	2880
941	G D T I T F Q C D P G Y Q L Q G Q A K I	960
2881		2940
961	T C V Q L N N R F F W Q P D P P S C I A	980
2941	GCTTGTGGTGGGAATCTGACAGGCCCTGCTGGAGTGATTTTATCCCCAAACTACCCACAG	3000
981		1000
301		
3001	CCATACCCTCCTGGGAAGGAGTGTGACTGGAGAATTAAGGTGAACCCAGACTTTGTCATT	3060
1001	PYPPGKECDWRIKVNPDFVI	1020
3061		3120
	ALIFKSFSMEPSYDFLHIYE	1040
2121	GGGAAGGACTCCAACAGCCCACTGATCGGAAGCTTCCAGGGTTCTCAAGCCCCAGAGAGG	3180
. 1041		1060
, 1041		
3181	ATTGAGAGCAGTGGTAACAGCCTCTTCCTGGCATTCAGGAGTGATGCCTCTGTTGGCCTG	3240
1061		1080
3241		3300
1081	S G F A I E F K E K P R E A C F D P G N	1100
222-	3 M3 3 MG3 3 OOCC 3 C3 3 CC3 MMCC> > COC3 CMM03 3 CCMCCCCCCCCC3 C3 CMM3 CCM2 MC2 * '	3360
3301		3360 1120
1101	THE GIALGIDE A DG SIVII Q	1120

22/31 Figure 3D

3361 1121	TGTGACTCTGGTTACAAGATTGTGGATCCCTCATCCATTGAGTGTGTGACAGGGGCTGATCCDSGGYKIVDPSSIECVTGACA	3420 1140
3421 1141	GGGAAGCCGTCCTGGGACCGGGCACTGCCTGCCCAAGCACCCCTGTGGAGGCCAATAC G K P S W D R A L P A C Q A P C G G Q Y	3480 1160
3481 1161	ATGGGCTCGGAGGGGTAGTTTTGTCACCAAACTACCCTCATAACTACACGGCTGGGCAG M G S E G V V L S P N Y P H N Y T A G Q	3540 1180
3541 1181	ATATGCATCTATTCCATCACGGTGCCCAAGGAATTTGTGGTGTTTTGGACAGTTTGCCTAT I C I Y S I T V P K E F V V F G Q F A Y	3600 1200
3601	TTCCAGACTGCGCTGAACGACTTGGCAGAATTGTTTGATGGAACCCATCCTCAGGCCAGG	3660
1201	F Q T A L N D L A E L F D G T H P Q A R	1220
3661	CTTCTCAGTTCTCTCTGGTTCCCATTCAGGTGAAACACTCCCGCTGGCTACATCCAAT	3720
1221	L L S S L S G S H S G E T L P L A T S N	1240
3721 1241	CAGATTCTGCTTCGCTTCAGCGCAAAGAGCGGAGCTTCTGCACGGGGTTTCCACTTCGTC Q I L L R F S A K S G A S A R G F H F V	3780 1260
3781 1261	TACCAAGCCGTCCCACGCACCAGTGACACGCAGTGCAGCTCCGTCCCTGAGCCCAGATAT Y Q A V P R T S D T Q C S S V P E P R Y	3840 1280
3841	GGGAGAAGGATTGGTTCTGAGTTCTCTGCAGGCTCCATCGTCCGATTCGAGTGCAACCCA	3900
1281	G R R I G S E F S A G S I V R F E C N P	1300
3901 1301	GGTTACCTGCTAGGCTCCACAGCCATCCGTTGTCAGTCTGTGCCAAACGCTTTGGCCGGCC	3960 1320
3961	CAGTGGAATGACACCATCCCAAGCTGTGTAGTTCCATGCAGTGGCAATTTCACTCAGAGA	4020
1321	Q W N D T I P S C V V P C S G N F T Q R	1340
4021	AGAGGGACAATCTTATCTCCAGGCTACCCTGAGCCCTATGGGAACAACCTGAACTGTGTA	4080
1341	R G T I L S P G Y P E P Y G N N L N C V	1360
4081	TGGAAGATCATAGTATCGGAGGGCTCAGGGATCCAGATCCAAGTGATTAGCTTTGCCACG	4140
1361	W K I I V S E G S G I Q I Q V I S F A T	1380
4141	GAGCAGAACTGGGACTCCCTGGAGATCCATGACGGAGAGACATGACGGCCCCCAGACTG	4200
1381	E Q N W D S L E I H D G G D M T A P R L	1400
	GGCAGCTTCTCAGGTACCACAGTGCCCGCACTGCTGAATAGCACCTCCAACCAGCTCTGC G S F S G T T V P A L L N S T S N Q L C	· 4260 1420
4261	CTGCACTTCCAGTCGGACATCAGTGTTGCCGCTGCGGGCTTTCACCTGGAATACAAAACG	4320
1421	L H F Q S D I S V A A A G F H L E Y K T	1440
	GTGGGTCTGGCTGCCAGGAACCTGCTCTCCCGAGCAACGGCATCAAGATAGGAGAC V G L A A C Q E P A L P S N G I K I G D	
4381	CGCTATATGGTGAACGATGTGCTGTCCTTCCAGTGCGAGCCTGGGTACACCTTGCAGGGC	4440
1461	R Y M V N D V L S F Q C E P G Y T L Q G	1480
4441	CGCTCACACATTTCTTGTATGCCGGGAACTGTACGTCGCTGGAACTATCCTTCCCCTCTG	4500
1481	R S H I S C M P G T V R R W N Y P S P L	1500

# 23/31 Figure 3F

4501	TGCATTGCCACCTGTGGTGGGACACTGACCAGCATGAGTGGAGTGATCCTGAGCCCAGG	C 4560
1501	C I A T C G G T L T S M S G V I L S P G	1520
4561	TTCCCAGGGTCATACCCCAACAACCTGGACTGCACCTGGAAGATATCCCTGCCCATTGG	C 4620
1521	F P G S Y P N N L D C T W K I S L P I G	1540
4621	TATGGTGCACATATCCAATTTCTGAATTTCTCAACTGAAGCCAACCATGACTACCTGGA	G 4680
1541	Y G A H I Q F L N F S T E A N H D Y L E	1560
4681	ATCCAGAATGGCCCTTACCACAGTAGTCCAATGATGGGACAGTTCAGTGGCCCTGACCT	G 4740
1561	I Q N G P Y H S S P M M G Q F S G P D L	1580
4741	CCTGCGTCACTGCTGAGCACCACACATGAAACCCTCATCCGCTTCTATAGTGACCACTC	A 4800
1581	PASLLSTTHETLIRFYSDHS	1600
4801	CAGAACCGACAAGGATTTAAACTCAGTTACCAAGCTTATGAGTTACAGAACTGCCCGGA	C 4860
1601	Q N R Q G F K L S Y Q A Y E L Q N C P D	1620
4861	CCACCCGCATTCCAGAATGGGTTCATGATCAACTCCGATTACAGCGTGGGCCAGTCGAT	C 4920
1621	PPAFQNGFMINSDYSVGQSI	1640
4921	TCATTTGAGTGCTACCCGGGCTACATCTTGCTAGGCCACCCTGTGCTCACCTGCCAGCA	T 4980
1641	SFECYPGYILLGHPVLTCQH.	1660
4981	GGCACTGACAGGAACTGGAACTACCCTTTCCCACGGTGTGACGCTCCCTGTGGGTATAA	T 5040
1661	G T D R N W N Y P F P R C D A P C G Y N	1680
5041	GTGACATCACAGAATGGCACCATTTATTCCCCTGGGTTCCCAGACGAGTATCCAATTCT	<b>3</b> 5100
1681	V T S Q N G T I Y S P G F P D E Y P I L	1700
5101	AAGGACTGCCTGTGGCTGGTCACTGTCCCTCCAGGACATGGAGTGTACATCAACTTCAC	
1701	K D C L W L V T V P P G H G V Y I N F T	1720
5161	TTGCTGCAGACTGAGGCTGTAAATGACTACATCGCTGTGTGGGATGGTCCTGACCAGAA	
1721	LLQTEAVNDYIAVWDGPDQN	1740
5221	TCGCCTCAGCTCGGGGTCTTCAGTGGAAACACTGCCCTCGAGACAGCATACAGCTCCAC	
1741	S P Q L G V F S G N T A L E T A Y S S T	1760
5281	AACCAGGTCTTGCTCAAATTCCACAGCGATTTCTCCAATGGAGGCTTCTTTGTCCTCAA	Г 5340
1761	N Q V L L K F H S D F S N G G F F V L N	1780
5341	TTTCATGCATTTCAACTGAAGAGGTGCCCGCCTCCTCCAGTAGTGCCGCAGGCTGACCTC	3 5400
1781	F H A F Q L K R C P P P P V V P Q A D L	1800
5401	CTTACAGAAGATGAAGACTTTGAAATAGGGGACTTCGTAAAGTACCAGTGCCATCCAGG	3 5460
1801		1820
5461	TACACGCTGTTGGGAAGTGACACCCTGACATGCAAGCTCAGCTCACAGCTATTGTTCCAA	A 5520
1821		1840
5521	GGCTCTCCACCTACCTGTGAAGCACAATGCCCCAGCCAATGAAGTGCGAACAGAGTCTTCT	r 5580
1841	G S P P T C E A Q C P A N E V R T E S S	1860
5581	GGGGTGATTCTCAGTCCTGGGTACCCAGGCAACTATTTTAACTCCCAGACATGTGCTTGC	5 5640
		1880

24/31 Figure 3G

	5641	AG'	TAT	TAA	AGT	GGA(	3CC2	AAA	CTT	TAA	CAT	TAC	GCT	CTT	TGT	GGA	CAC	CTT.	TCA.	\AG'	<b>IGAA</b>	5700
: CC:	1881	s			V																B	1900
٠	5701	AA	GCA.	ATT'	rga:	rgc	ACTO	GAZ	AGT	ATT'	TGA'	TGG'	TTC	TTC	TGG	GCA	AAG!	rcc'	TTI	3TT	AGTG	5760
	1901	K	Q	F	D	A	L	E	V	F	D	G	S	S	G	Q	S	P		L	V	1920
٠	5761	GT	CTT.	AAG'	TGG	<b>GAA</b> C	CCA	CAC'	TGA.	ACA	GTC	CAA'	TTT	TAC	CAG	CAG	AAG'	TAA	CCA'	rc T	GTAC	5820
,	1921	V	L	s	G	N	Н	T	E	Q	s	N	F	T	S	R	s	N	Н	ь	Y	1940
	5821	CT	CCG	CTG																	AGCT	5880
	1941	L	R	W	ន	T	D	Н	A	T,	S	K	K	G	F	K	I	R	Y	A	A	1960
	5881							_													AGGC	5940
	1961			С															T			1980
	5941																				CAGC	6000
	1981			G															G 		_	2,000
	6001																				GCTT	6060
	2001			T	_				-	-	_			-			-	_				2020
	6061					_															CAAT	6120
	2021			A															T 	G		2040
	6121																				TGCC	6180
	2041		F	_	L	_		-														2060
	6181																				GCCA	6240
	2061		_	·Q																		2080
	6241																				GCTC	6300
	2081			C											_							2100
	6301																				TAGT	6360 2120
	2101			L																	S GAAC	
				Y									-	-						W		2140
	6421						_														CCCA	6480
	2141											I		C		S	L	s	F	P	P	2160
	6481				_		_				-		_		-	_		_		-	_	6540
	2161			N																		.2180
					a. a				~m~	aa.		~~~	~~~	ama		~~~	~ »	maa	mam	ama.	03.00	6600
	6541																				GAGC S	2200
	2181																					6660
																					TGGC	
	2201			E										•				•			G	2220
	6661																					
	2221			S																		2240
	6721																					6780
	2241	r'	ĸ	L	٧	Ŀ	T	5	٧	ĸ	1	C	Ļ	Q.	ט	н	K	W	5	G	Q	2260

25/31 Figure 3H

:us: 6781 2261	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6840 2280
···· 6841 2281	AACGGCAGCGAGTTCAACCTGAATGACCTTGTGAATTTCACCTGCCATACGGGCTACCTG N G S E F N L N D L V N F T C H T G Y L	6900 2300
2281 ``` 6901	CTGCAGGGTGCCTCCCGAGCCCAATGTCGGAGCAACGGCCAGTGGAGCAGCCCCTTGCCT	6960
2301	L Q G A S R A Q C R S N G Q W S S P L P	2320
6961		
2321	ICRVVNCSDPGFVENAVRHG	2340
,		7080 2360
2341	QQNFPESFEYGTSVMYHCKK	
7081		7140
2361	G F Y L L G S S A L T C M A S G L W D R	2380
7141		7200
2381		2400
7201		7260
2401	L T G E L F T F G A T V Q Y S C K G G Q	2420
	ATTCTCACAGGCAATAGCACAAGAGTCTGCCAAGAAGACAGTCACTGGAGTGGATCCCTT	7320
2421	ILTGNSTRVCQEDSHWSGSL	2440
7321		7380
2441	PHCSGNSPGFCGDPGTPAHG	2460
7381		7440
2461		2480
7441		7500
2481	HQLRGSAERTCLVNGSWSGV	2500
7501		7560 2520
2501	Q P V C E A V S C G N P G T P T N G M I	-
	CTCAGCAGCGATGGAATCCTCTTCTCCAGCTCTGTCATCTATGCCTGCTGGGAAGGCTAC L S S D G I L F S S S V I Y A C W E G Y	7620 2540
	·	
7621		7680 2560
2541		
		2580
	GGGACAGACTTCACTTTCAACAAGACCGTGAGCTATCAGTGCAACCCTGGCTACCTGATG	
		2600
	E P P T S P T I R C T K D G T W N Q T R	2620
	CCCCTCTGCAAAGCTGTTCTATGCAGCCAGCCTCCCTCAGTGCCAAACGGAAAGGTGGAG	
2621	PLCKAVLCSQPPSVPNGKVE	2640

# 26/31 Figure 3I

7921	GG	GTC	AGA	CTT	'CCG	ATG	GGG	TGC	CAG	CAT	AAG	CTA	CAG	TTG	TGT	GGA	TGG	СТА	CCA	GCTC	7980
2641	G	S	D	F	R	W	G	A	s	I	S	Y	s	С	V	D	G	Y	Q	ь	2660
7981	TC	CCA	CTC	GGC	CAT	CCT	GTC	CTG	TGA	AGG	GCG	TGG	AGT	ATG	GAA	AGG	AGA	AGT	CCC	TCAG	8040
2661	S	H	s	A	I	L	s	С	E	G	R	G	V	W.	K	G	E	V	P	Q	2680
8041	TG	CTT	GCC	TGT	GTT	CTG	TGG	CGA	TCC	AGG	CAC	TCC	AGC	AGA	.GGG	ACG	GCI	'CAG	TGG	GAAA	8100
2681	С	L	P	V	F	С	G	D	P	G	T	P	A	E	G	R	Ь	s	G	K	2700
8101	AG	CTT	CAC	CTT	TAA	GTC	TGA	GGT	CTT	CAT	CCA	GTG	CAA	ACC	CCC	TTA:	TGI	GTT	AGT	GGGT	8160
2701	s	Ŧ	T	F	K	S	E	Ā	F	I	Q	С	K	P	Þ	F	Ų	Ţ'	Ā	G	2720
8161	TC	CTC	GAG	GAG	AAC	CTG	CCA	GGC	CGA	TGG	GAT	GTG	GAG	TGG	CAT	CCA	GCC	CAC	TTG	TATA	8220
2721	s	s	R	R	T	С	Q	A	D	G	M	W	S	G	I	Q	P	T	С	I	2740
8221	GA	TCC	AGC	CCA	CAC	CGC	TIG	CCC	AGA	CCC	CGG	CAC	TCC	CCA	CTI	TGG	<b>TAA</b> :	'ACA	GAA	TAGC	8280
2741	D .	P	A	Н	T	A	C	P	D	P	G	T	P	Н	F	G	I,	Q	N	S	2760
8281	TC	GAA	AGG	ATA	CGA	GGT	TGG	AAG	CAC	TGT	GTT	'CTT	'CAG	ATG	TAG	AAA	AGG	TTA	CCA	CATC	8340
2761	s	K	G	Y	E	V	G	s	T	V	F	F	R	C	R	K	G	Y	Н	I	2780
8341	CA	AGG	CTC	CAC	TAC	CCG	GAC	CTG	TCT	TGC	CAA	CCI	'CAC	GTG	GAG	TGG	TAA	CCA	GAC	AGAG	8400
2781	Q	G	s	· <b>T</b>	T	R	T	С	L	A	N	L	T	W	s	G	I	Q	T	E	2800
8401	TG	CAT	CCC	CCA	TGC	CTG	CCG	GCA	GCC	AGA	GAC	CCC	AGC	GCA	TGC	AGA	TGT	'GAG	AGC	CATC	8460
2801	С	I	P	Н	A	С	R	Q	P	Е	Т	P	A	Н	A	D	V	R	A	I	2820
8461	GA	TCT	TCC	AGC	TTT	TGG	CTA	CAC	CTT	AGT	CTA	CAC	CTG	TCA	TCC	AGG	TTA	TTT	CCT	TGCT	8520
2821	D	L	P	A	F	G	Y	Т	L	V	Y	T	С	Н	P	G	F	F	L	A	2840
8521			_					-												TGTT	8580
2841	•	Ģ			н		Т	С		A		M			T	G	K	s	P	V	2860
8581	_																	-	-	TTCT	8640
2861	-		s 															V			2880
8641																				ACAG	8700
2881					•				·									K		Q	2900
8701																V T	N N	A	GAC T	CTTC F	8760 2920
2901	P	A	T	L	T	V	D	W	F	N	A	T	S	S	K	•			_	CCAC	
8761 2921						V													A		8820 2940
8821	Ст	ርሮጥ	ידי⊖ידי	מממ	አርር		ጥሮል	ጥልጥ	ממי	a cc	ccc	አ _ር ር	מממ	ጥልጥ	Label	ጥርጥ	ממי	מ מרא	CTT	TGAA	8880
2941					_	_				-								K			2960
	-			-						-			_							CTCC	8940
8881																					
2961		-																G			2980
8941					-		_													TCCT	9000
2981		-																Q			3000
9001 3001	S					AGA D											G			GGCA A	9060 3020
200T	ی	T.A	3	2	-		_	.5	TA	1.1	1	¥	3	1	3	3	-	3	•	n	3020

## 27/31 Figure 3J

5:5	9061	GC'	rgco	SATI	CTC	CGTC	:ccc	TTC	TTC	CGCI	CTA	ATI	CTA	TCA	AGGC	TT:	rgc <i>i</i>	ATT:	TAC	CTC	TAC	9120
	3021	A	A	I	L	v	P	F	F	A	L.	I	L	S	G	F	Α	F	Y	L	Y	3040
	9121	<b>77</b>	n (~ n (	רא כיז	י א רי	אריא	רכא	תתת	ርጥባ	י איי	\ ጉልር	דעמי	יניניר	יתיי	ייכיריי	יככנ	ימי	מב)יו	אממ	רטמי	TAAT	9180
	3041	K	H	R	T	R	P	K	A A	Q	Y	N	G	Y	A	G	H	E	N	S	N	3060
	3041		••		-	••	•	••	•	-	_		_	_		_				_		
٠.,	9181	GG	ACAZ	AGC7	r <b>TC</b>	TTT	GAA	AAC	CCC	CATO	TA1	'GA'I	'ACA	AA	CTTA	<b>XAA</b>	ACC	CAC	AGA	GCC	CAAG	9240
د. ، ،	3061	G	Q	Α	s	F		N		M	Y	D		Ń	L	ĸ	P	T	E	A	K	3080
	9241																	3CC(	CTC	AGTO	SCCC	9300
	3081	A	V	R	F	D	Т	T	L	N	T	V	С	Т	V	V	*					3096
	9301	ככי	<b>ጉ</b> ልርረ	מארנ	ימאר	בייויי	ጥልር	ירר»	ጥልር	ירידיר	тса	TGG	מרא	AGG	'AG'	נאמי	AAT	CCT"	TTGO	STGO	CCAT	9360
	9361																				CATA	9420
	9421																				ATAC	9480
	9481																				AAGA	9540
	9541																				AATG	9600
	9601																				ACAC	9660
· ··•	9661																				TTT	9720
	9721																				TCC	9780
	9781																				GAGA	9840
	9841																				rtgc	9900
	9901																				ATCC	9960 10020
	9961																					10020
	10021																					10140
	10141																					10200
	10201																					10260
	10261																					10320
	10321																					10380
	10381																					10440
	10441	TC.	ACC	CTC	CCA	GAA'	rgca	TTC	BAG	AGT	CTA?	CTC	CACA	AGC(	CAC	ACC	CAA	GCT	CAG	AGGZ	AATC	10500
	10501																					10560
	10561																					10620
	10621																					10680
	10681																					10740
	10741																					10800
	10801																					10860
	10861																					10920 10980
	10921																					11040
	10981																					11100
	11101																					11160
	11161																					11220
	11221																					11280
	11281																					11340
	11341																					11400
	11401																					11460
	11461	AT.	ATA'	TTG	TAC	ATA:	rct#	\AG'	TT)	GAG'	rca(	CTC	AGAC	CTA	GGT	GCA.	AAA	TGC	TGA	CTT.	<b>rgga</b>	11520
	11521	GT	CTA	AAC'	TAA	CGT	CTCI	GTC	CCC	CAC	ATC	CCT	3GC(	CTC:	rrt(	CCT	GGC	CAG	TTA	CAT:	raag	11580
	11581																					11640
	11641																					11700
	11701																					11760
	11761																					11820
	11821																					11880
	11881																					11940
	11941	TG	AAT	GAC	AGG'	TTA:	rgro	CT:	rtg	AAG	CTG:	rtc?	AAC.	ľGT'	rGC"	T.L.C,	TCT	TTG	CCC	ATC.	TGC	12000

WO 02/10199 PCT/US01/23232

# 28/31

## Figure 3K

12001	CTTCAGGCTAGCTGCAATAATTTTTTTTTTTTTTTTTTT	12060
12061	ACAACAAAAGCTATTATAAAAAGGGAGAAAAGAAAGCTGGCATTATGATCAGGAAAACCA	12120
12121	TCCATTCTTGCTGCCCCCCCCCCTCCTGTCTCCACCACGCTGCTGTCACAACGTAGGTG	12180
12181	CGGAAGACCTTTTTGTACAGAGATATATTTTTTTTTATGAAGAATTTGTAAAATTATT	12240
12241	TGCTGTAATTTTTTGATTAATGTAGGTAAATTGTTAAAAAATAAATGTTTTTT	12300
12301	${\tt AAACTGTAATTTTCCCCCATAATGTAACATTACCCTCTCTAGCTGATTTTCAGTTCCAAT}$	12360
12361	${\tt CCTATTCGAACATGTATTAATATTAAGGCGGCCTGTTAAAATGAACAGTATCTTTTTTTT$	12420
12421	TGTCAAAAAAATTATAAAGAGAGTGTAACATAACCTGTGTAATGCCACCTATCTTTAAA	12480
12481	GCAAATCAGAGTTCTAATTAAATATTTAATTTTAGATTTCAAAAA	12525

## 29/31

# Figure 4A

Comparison of Human C3b/C4b Complement Receptor, "h-CR" (SEQ ID NO:5) and Human AGP-41773, "41773" (SEQ ID NO:2)

•			
h-CR	102	KSCRNPPDPVNGMVHVIKGIQFGSQIKYSCTKGYRLIGSSSATCIISGDT	151
41773	293	QNCPDPPPFQNGYM.INSDYSVGQSVSFECYPGYILIGHPVLTC.QHGIN	340
	152	VIWDNETPICDRIPCGLPPTITNGDFISTNRENFHYGSVVTYRCNPG	198
	341	RNWNYPFPRCD.APCGYNVTSQNGTIYSPGFPDEYPILKDCIWLITVPPG	389
्र •	199	SGGRKVFELVGEPSIYCTSNDDQVGIWSGPAPQCIIPNKCTPPNVEN	245
	390	HGVYINFTLLQTEAVNDYIAVWDGPDQNSPQLGVFSGNTALET	432
		GILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSR	
	433	A.YSSTNQVLLKFHSDF.SNGGFFVLNFHAFQLK	464
	296	VCQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGAASMRCTPQ	343
	465	KCQPPPAVPQAEMLTED.DDFEIGDFVKYQCHPGYTLVGTDILTCKLSSQ	513
	344	GDWSPAAPTCEVKSCDDFMGQLLNGRVLFPV	374
•	514	LQFEGSLPTCEAQCPANEVRTGSSGVILSPGYPGNYFNSQTCSWSIKVEP	563
	375	NLQLGAKVD.FVCDEGFQLKGSSASYCVLAGMES	407
-	564	NYNITIFVDTFQSEKQFDALEVFDGSSGQSPLLVVLSGNHTEQSNFTSRS	613
	408	LWNSSVPVCEQIFCPSPPVIPNGRHTGKPLEVFPFGK	444
	614	NQLYLRWSTDHATSKKGFKIRYAAPYCSLTHPLKNGGILNRTAGAVGS	661
	445	AVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGNGVWSSPAPRCGILGHCQ	494
	662	KVHYFCKPGYRMVGHSNATCRRNPLGMYQWDSLTPLCQAVS.CG	704
	495	APDHFLFAKLKTQTNASDFPIGTSLKYECRPEYYGRPFSITCLDNLV  :   :     :   :   :	541
	705	IPESPGNGSFTGNEFTLDSKVVYECHEGFKLESSQQATAVCQEDGL	750
	542	WSSPKDVCKRKSCKTPPDPVNGMVHVITDIQVGSRINYSCTT	583
	751	WSNKGKPPTCKPVACPSIEAQLSEHVIWRLVSGSLNEYGAQVLLSCSP	798
	584	GHRLIGHSSAECILSGNAAHWSTKPPICQRIPCGLPPTIANGDFISTN	631
	799	GYYLEGWRLLRCQANGTWNIGDERPSCRVISCGSLSFPPNGNKIGTL	845
	632	RENFHYGSVVTYRCNPGSGGRKVFELVGEPSIYCTSNDDQVGIWSGPAPQ	681
	846	TVYGATAIFTCNTGYTLVGSHVRECLANGLWSGSETR	882

:::::

### 30/31 Figure 4B

³ 682	CIXPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQ  :   :         :   : .	731
883	CLAGHCGSPDPIVNGHISGDGFSYRDTVVYQCNPGFRLVGTSVRICL	929
	ALNKWEPELPSCSRV.CQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGY	
930	ODHKWSGQTPVCVPITCGHPGNPAHGFTNGSEFNLNDVVNFTCNTGY	976
	DLRGAASMRCTPQGDWSPAAPTCEVKSCDDFM.GQLLNGRVLFPVNLQ	
977	LLQGVSRAQCRSNGQWSSPLPTCRVVNCSDPGFVENAIRHGQQNFPESFE	1026
`828	LGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIFCPSPPVI	877
1027		1073
878	PNGRHTGKPLEVFPFGKTVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGN	927
1074	ANAVLTGELFTYGAVVHYSCRG.SESLIGNDTRVCQEDSH	1112
928	GVWSSPAPRCGILGHCQAPDHFLFAKLKTQTNASDFPIGTSLKYE	972
1113	wsgalphctgnnpgfcgdpgtpahgsrlgddfktksllrfs	1153
973	CRPEYYGRPFSITCLDDLVWSSPKDVCKRKSCKTPPDPVNGMVHVITD	1020
1154	:               .     .	1202
1021	IQVGSRINYSCTTGHRLIGHSSAECILSGNAAHWSTKPPICQRIPCGLPP	1070
1203	ILFSSSVIYACWEGYKTSGLMTRHCTANGTWTGTAPDCTIISCGDPG	1249
1071	TIANGDFISTNRENFHYGSVVTYRCNPGSGGRKVFELVGEPSIYCTSNDD	1120
1250	TLANGIQFGTDFTFNKTVSYQCNPGYVMEAVTSATIRCTKD	1290
1121	QVGIWSGPAPQCIXPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGF	1170
1291	GRWNPSKPVCKAVLCPQPPPVQNGTVEGSDFRWGSSISYSCMDGY	1335
1171	VMKGPRRVKCQALNKWEPELPSCSRV.CQPPPDVLHAERTQRTKDNFSPG	1219
1336	CLSHSAILSCEGRGVWKGEIPQCLPVFCGDPGIPAEGRLSGK.SFTYK	1382
1220	QEVFYSCEPGYDLRGAASMRCTPQGDWSPAAPTCEVKSCDDFMGQLL	1266
1383	SEVFFQCKSPFILVGSSRRVCQADGTWSGIQPTCIDPAHNTCPD.PGTPH	1431
1267	NGRVLFPVNLQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVC	1316
1432	FGIQNSSRGYEVGSTVFFRCRKGYHIQGSTTRTC.LANLTWSGIQTEC	1478

## 31/31 Figure 4C

: 535:	` <b>;</b>		
-			
	1317	EQIFCPSPPVIPNGRHTGKPLEVFPFGKAVNYTCDPHPDRGTSFDLIGES	1366
٠.,,			
	1479	IPHACROPET.P.AHADVRAIDLPTFGYTLVYTCHPGFFLAGGS	1520
		• • •	
	1367	TIR.CTSDPOGNGVWSSPAPRC 1387	
*****			
	1521	EHRTCKADMKWTGKSPVC 1538	

-1-

SEQUENCE LISTING

110>	AMGEN,	Inc.	•			-			
120>	C3B/C4B	COMPLEM	ENT RECEPT	OR-LIKE MO	LECULES	AND U	ses ti	HEREOF	
:130>	01017/3	7498	·						
140>							•		
:141>	2001-07	-23	• •						
:150>	09/728,	787	٠				•		
:141>	2000-11	-28							
:150>	US 60/2	22,504							
:151>	2000-08	-02			•				
:160>	7			·					
:170>	PatentI	n versio	on 3.0						
<210>	1			•					
<211>	10673								
<212>	DNA								
<213>	Homo sa	piens							
<220>									
<221>	CDS								
<222>	(334)	(9540)		·					
<400> cctggg	1 gaag cct	ctcggtt	ccaggaaaat	gggatggtt	g attgo	cctaa	attga	tttt	60
taaaag	aaaa tto	acgaatt	ggcagccata	a gaatagagt	a atttc	tgtaa	agcac	cagtg	120
atagtg	atgt ttg	gaatatta	atataatgga	a ccagaggct	g tacag	tcttt	gaaag	agggt	180

cttgctacct atatatctag ggtttggctg tttaaagcag caagaccctc ctttcaggtg	240
gaagtcgatg tacttgttgc cttacctaaa agctttgaca tttctctttc ttgcaggctc	300
acgggatcca gtgttcctga cctcattgtg agc atg agc aac cag atg tgg cta Met Ser Asn Gln Met Trp Leu 1 5	354
cat ctg cag tcg gat gat agc att ggc tca cct ggg ttt aaa gct gtt His Leu Gln Ser Asp Asp Ser Ile Gly Ser Pro Gly Phe Lys Ala Val 10 15 20	402
tac caa gaa att gaa aag gga ggg tgt ggg gat cct gga atc ccc gcc Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly Asp Pro Gly Ile Pro Ala 25 30 35	450
tat ggg aag cgg acg ggc agc agt ttc ctc cat gga gat aca ctc acc Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu His Gly Asp Thr Leu Thr 40 45 50 55	498
ttt gaa tgc ccg gcg gcc ttt gag ctg gtg ggg gag aga gtt atc acc Phe Glu Cys Pro Ala Ala Phe Glu Leu Val Gly Glu Arg Val Ile Thr 60 65 70	546
tgt cag cag aac aat cag tgg tct ggc aac aag ccc agc tgt gta ttt Cys Gln Gln Asn Asn Gln Trp Ser Gly Asn Lys Pro Ser Cys Val Phe 75 80 85	594
tca tgt ttc ttc aac ttt acg gca tca tct ggg att att ctg tca cca Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser Gly Ile Ile Leu Ser Pro 90 95 100	642
aat tat cca gag gaa tat ggg aac aac atg aac tgt gtc tgg ttg att Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met Asn Cys Val Trp Leu Ile 105 110 115	690
atc tcg gag cca gga agt cga att cac cta atc ttt aat gat ttt gat Ile Ser Glu Pro Gly Ser Arg Ile His Leu Ile Phe Asn Asp Phe Asp 120 125 130 135	738
gtt gag cct caa ttt gac ttt ctc gcg gtc aag gat gat ggc att tct Val Glu Pro Gln Phe Asp Phe Leu Ala Val Lys Asp Asp Gly Ile Ser 140 145 150	786
gac ata act gtc ctg ggt act ttt tct ggc aat gaa gtg cct tcc cag Asp Ile Thr Val Leu Gly Thr Phe Ser Gly Asn Glu Val Pro Ser Gln 155 160 165	834
ctg gcc agc agt ggg cat ata gtt cgc ttg gaa ttt cag tct gac cat Leu Ala Ser Ser Gly His Ile Val Arg Leu Glu Phe Gln Ser Asp His 170 175 180	882
tcc act act ggc aga ggg ttc aac atc act tac acc aca ttt ggt cag Ser Thr Thr Gly Arg Gly Phe Asn Ile Thr Tyr Thr Thr Phe Gly Gln 185	930
aat gag tgc cat gat cct ggc att cct ata aac gga cga cgt ttt ggt Asn Glu Cys His Asp Pro Gly Ile Pro Ile Asn Gly Arg Arg Phe Gly 200 205 210 215	978
gac agg ttt cta ctc ggg agc tcg gtt tct ttc cac tgt gat ggc Asp Arg Phe Leu Gly Ser Ser Val Ser Phe His Cys Asp Asp Gly 220 225 230	1026

acc cag gga Thr Gln Gly 235		: Ile Thr Cy		1074
gtc tgg agc Val Trp Ser				1122
ctg aca gcg Leu Thr Ala		Val Ile Le		1170
tat aag gat Tyr Lys Asp 285				1218
cac tct atc His Ser Ile 300				1266
gac acc ttg Asp Thr Leu 315		Asp Gly Pr		1314
ggc gag tac Gly Glu Tyr				1362
aac ttc atg Asn Phe Met		Phe Thr Th		1410
ggc ttc ctc Gly Phe Leu 365	Ile His Tyr			1458
ctg gac ccg Leu Asp Pro 380				1506
ggc atc agg Gly Ile Arg 395		. Thr Phe Se		1554
agt gac gac Ser Asp Asp				1602
gcc ttg ccc Ala Leu Pro		Ala Leu Cy		1650
agt gga aca Ser Gly Thr 445				1698
cta aac ygc Leu Asn Xaa 460				1746
atg atc ttt Met Ile Phe 475		His Leu Gl		1794

tat tta ctg Tyr Leu Leu 490	atc aca gag Ile Thr Glu	gat gga agt Asp Gly Ser 495	ttt tcc gag Phe Ser Glu	ccc gtt gcc Pro Val Ala 500	agg 1842 Arg
ctc acc ggg Leu Thr Gly 505	tcg gtg ttg Ser Val Leu	cct cat acg Pro His Thr 510	atc aag gca lle Lys Ala 515	ggc ctg ttt Gly Leu Phe	gga 1890 Gly
			tca gac ttc Ser Asp Phe 530		
gag ggc ttc Glu Gly Phe	aat atc aca Asn Ile Thr 540	ttt tca gaa Phe Ser Glu	tat gac ctg Tyr Asp Leu 545	gag cca tgt Glu Pro Cys 550	gat 1986 Asp
			aga att ggt Arg Ile Gly		
gtg gga gac Val Gly Asp 570	tct ctg acg Ser Leu Thr	ttt tcc tgc Phe Ser Cys 575	ttc ctg gga Phe Leu Gly	tat cgt tta Tyr Arg Leu 580	gaa 2082 Glu
			ggg ggc cgc Gly Gly Arg 595		
			tgt gga gca Cys Gly Ala 610		
aat gaa gga Asn Glu Gly	aca tta ctg Thr Leu Leu 620	tet eca aat Ser Pro Asn	ttt cca tcc Phe Pro Ser 625	aat tat gat Asn Tyr Asp 630	aat 2226 Asn
			aca gaa gcc Thr Glu Ala		
			g ttt gaa gga g Phe Glu Gly		
			cgt cca ctg Arg Pro Leu 675		
aaa aat gaa Lys Asn Glu 680	ctt ctg ggg Leu Leu Gly 685	Leu Ile Leu	aac agc aca Asn Ser Thr 690	tcc aat cac Ser Asn His	ctr 2418 Xaa 695
			gac acc gac Asp Thr Asp 705		
			aaa tgt gag . Lys Cys Glu		

											cac His					2562
											atg Met 755					2610
											tgg Trp					2658
											cat His					2706
											tat Tyr					2754 [.]
											aag Lys					2802
											gac Asp 835					2850
tgg Trp 840	gac Asp	Gly 999	ccg Pro	gtg Val	gac Asp 845	agt Ser	gac Asp	atc Ile	ctg Leu	ctg Leu 850	aag Lys	gag Glu	tgg Trp	agt Ser	ggc Gly 855	2898
											aac Asn					2946
											ggc Gly				cag Gln	2994
											cca Pro					3042
											gga Gly 915	Asp				3090
ttc Phe 920	cag Gln	tgt Cys	gac Asp	cct Pro	ggc Gly 925	tat Tyr	cag Gln	ctc Leu	caa Gln	gga Gly 930	caa Gln	gcc Ala	aaa Lys	atc Ile	acc Thr 935	3138
tgt Cys	gtg Val	cag Gln	ctg Leu	aat Asn 940	aac Asn	cgg Arg	ttc Phe	ttt Phe	tgg Trp 945	caa Gln	cca Pro	gac Asp	cct Pro	cct Pro 950	aca Thr	3186
tgc Cys	ata Ile	gct Ala	gct Ala 955	tgt Cys	gga Gly	gly ggg	aat Asn	ctg Leu 960	acg Thr	ggc Gly	cca Pro	gca Ala	ggt Gly 965	gtt Val	att Ile	3234

ttg tca ccc aac tac c Leu Ser Pro Asn Tyr F 970	ca cag ccg tat Pro Gln Pro Tyr 975	cct cct ggg aag gaa Pro Pro Gly Lys Glv 980	a tgt gac 3282 1 Cys Asp
tgg aga gta aaa gtg a Trp Arg Val Lys Val A	ac ccg gac ttt Asn Pro Asp Phe 990	gtc atc gcc ttg ata Val Ile Ala Leu Ilo 995	a ttc aaa 3330 e Phe Lys
agt ttc aac atg gag Sër Phe Asn Met Glu 1000	ccc agc tat ga Pro Ser Tyr As 1005	c ttc cta cac atc p Phe Leu His Ile 1010	tat gaa 3375 Tyr Glu
ggg gaa gat tcc aac Gly Glu Asp Ser Asn 1015	agc ccc ctc at Ser Pro Leu II 1020	t ggg agt tac cag e Gly Ser Tyr Gln 1025	ggc tct 3420 Gly Ser
cag gcc cca gaa aga Gln Ala Pro Glu Arg 1030	ata gag agt ag Ile Glu Ser Se 1035	gc gga aac agc ctg er Gly Asn Ser Leu 1040	ttt ctg 3465 Phe Leu
gca ttt cgg agt gat Ala Phe Arg Ser Asp 1045	gcc tcc gtg gg Ala Ser Val G 1050	gc ctt tca ggg ttc Ly Leu Ser Gly Phe 1055	gcc att 3510 Ala Ile
gaa ttt aaa gag aaa Glu Phe Lys Glu Lys 1060	cca cgg gaa go Pro Arg Glu A 1065	ct tgt ttt gac cca la Cys Phe Asp Pro 1070	gga aat 3555 Gly Asn
ata atg aat ggg aca Ile Met Asn Gly Thr 1075	aga gtt gga ac Arg Val Gly Tl 1080	ca gac ttc aag ctt nr Asp Phe Lys Leu 1085	ggc tcc 3600 Gly Ser
acc atc acc tac cag Thr Ile Thr Tyr Gln 1090	tgt gac tct g Cys Asp Ser G 1095	gc tat aag att ctt ly Tyr Lys Ile Leu 1100	gac ccc 3645 Asp Pro
tca tcc atc acc tgt Ser Ser Ile Thr Cys 1105	gtg att ggg g Val Ile Gly A 1110	et gat ggg aaa ccc la Asp Gly Lys Pro 1115	tcc tgg 3690 Ser Trp
gac caa gtg ctg ccc Asp Gln Val Leu Pro 1120	ser Cys Asn A 1125	ct ccc tgt gga ggc la Pro Cys Gly Gly 1130	cag tac 3735 Gln Tyr
acg gga tca gaa ggg Thr Gly Ser Glu Gly 1135	gta gtt tta t Val Val Leu S 1140	ca cca aac tac ccc er Pro Asn Tyr Pro 1145	cat aat 3780 His Asn
tac aca gct ggt caa Tyr Thr Ala Gly Gln 1150	ata tgc ctc t Ile Cys Leu T 1155	at tcc atc acg gta yr Ser Ile Thr Val 1160	cca aag 3825 Pro Lys
gaa ttc gtg gtc ttt Glu Phe Val Val Phe 1165	gga cag ttt g Gly Gln Phe A 1170	cc tat ttc cag aca la Tyr Phe Gln Thr 1175	gcc ctg 3870 Ala Leu
aat gat ttg gca gaa Asn Asp Leu Ala Glu 1180	tta ttt gat g Leu Phe Asp G 1185	ga acc cat gca cag ly Thr His Ala Glr 1190	gcc aga 3915 Ala Arg
ctt ctc agc tca ctc Leu Leu Ser Ser Leu 1195	tcg ggg tct c Ser Gly Ser H 1200	ac tca ggg gaa aca is Ser Gly Glu Thr 1205	ttg ccc 3960 Leu Pro

ttg Leu 1210	Āla				caa Gln 1215										4005
ggt Gly 1225	Ala	tct Ser	gcc Ala	cgc Arg	ggc Gly 1230	Phe	cac His	ttc Phe	gtg Val	tat Tyr 1235	caa Gln	gct Ala	gtt Val	cct Pro	4050
cgt Arg 1240	Thr				caa Gln 1245	Сув									4095
gga Gly 1255	Arg	aga Arg	att Ile	ggt Gly	tct Ser 1260	Glu	ttt Phe	tct Ser	gcc Ala	ggc Gly 1265	tcc Ser	atc Ile	gtc Val	cga Arg	4140
ttc Phe 1270	Glu				gga Gly 1275	Tyr									4185
cac His 1285	Cys				ccc Pro 1290	Asn									4230
atc Ile 1300	Pro	agc Ser	tgt Cys	gtg Val	gta Val 1305	ccc Pro	tgc Cys	agt Ser	ggc	aat Asn 1310	ttc Phe	act Thr	caa Gln	cga Arg	4275
aga Arg 1315	Gly				tcc Ser 1320	Pro									4320
	Leu				tgg Trp 1335	Lys									4365
att Ile 1345	Gln	atc Ile	caa Gln	gtg Val	atc Ile 1350	Ser	ttt Phe	gcc Ala	acg Thr	gag Glu 1355	cag Gln	aac Asn	tgg Trp	gac Asp	4410
tcc Ser 1360	Leu	gag Glu	atc Ile	cac His	gat Asp 1365	ggt Gly	61 Å 888	gat Asp	gtg Val	acc Thr 1370	gca Ala	ccc Pro	aga Arg	ctg Leu	4455
gga Gly 1375	Ser				acc Thr 1380	Thr									4500
tcc Ser 1390	Asn				ctg Leu 1395										4545
gct Ala 1405	Ala				ctg Leu 1410	Glu					Gly				4590
tgc Cys 1420	Gln				ctc Leu 1425	Pro					Lys				4635
cgg Arg 1435	Tyr	atg Met	gtg Val	aac Asn	gac Asp 1440	gtg Val	ctc Leu	tcc Ser	ttc Phe	cag Gln 1445	tgc Cys	gag Glu	ccc Pro	Gly 999	4680

tac Tyr 1450	acc Thr	ctg Leu	cag Gln	ggc Gly	cgt Arg 1455	tcc Ser	cac His	att Ile	tcc Ser	tgt Cys 1460		cca Pro		acc Thr		4725
gtt Val 1465	cgc Arg	cgt Arg	tgg Trp	aac Asn	tat Tyr 1470	ccg Pro	tct Ser	ccc Pro	ctg Leu	tgc Cys 1475	att Ile	gca Ala	acc Thr	tgt Cys		4770
gga Gly 1480	G1 <b>y</b> 999	acg Thr	ctg Leu	agc Ser	acc Thr 1485	ttg Leu	ggt Gly	ggt Gly	gtg Val	atc Ile 1490	ctg Leu	agc Ser	ccc Pro	ggc Gly		4815
ttc Phe 1495	cca Pro	ggt Gly	tct Ser	tac Tyr	ccc Pro 1500	aac Asn	aac Asn	tta Leu	gac Asp	tgc Cys 1505		tgg Trp		atc Ile	٠.	4860
tca Ser 1510	tta Leu	ccc Pro	atc Ile	ggc Gly	tat Tyr 1515	Gly	gca Ala	cat His	att Ile	cag Gln 1520	ttt Phe	ctg Leu	aat Asn	ttt Phe		4905
tct Ser 1525	acc Thr	gaa Glu	gct Ala	aat Asn	cat His 1530	Asp	ttc Phe	ctt Leu	gaa Glu	att Ile 1535	caa Gln	aat Asn	gga Gly	cct Pro		4950
tac Tyr 1540	His	acc Thr	agc Ser	ccc Pro	atg Met 1545	att Ile	gga Gly	caa Gln	ttt Phe	agc Ser 1550	ggc Gly	acg Thr	gat Asp	ctc Leu		4995
ccc Pro 1555	Ala				agc Ser 1560	Thr	acg Thr	cat His	gaa Glu	acc Thr 1565	ctc Leu	atc Ile	cac His	ttt Phe		5040
tat Tyr 1570	Ser	gac Asp	cat His	tcg Ser	caa Gln 1575	aac Asn	cgg Arg	caa Gln	gga Gly	ttt Phe 1580	Lys	ctt Leu	gct Ala	tac Tyr		5085
caa Gln 1585	Āla	tat Tyr	gaa Glu	tta Leu	cag Gln 1590	aac Asn	tgt Cys	cca Pro	gat Asp	cca Pro 1595	Pro	cca Pro	ttt Phe	cag Gln		5130
aat Asn 1600	Gly	tac Tyr	atg Met	atc Ile	aac Asn 1605	Ser	gat Asp	tac Tyr	agc Ser	gtg Val 1610	Gly	caa Gln	tca Ser	gta Val		5175
tct Ser 1615	Phe	gag Glu	tgt Cys	tat Tyr	cct Pro 1620	Gly	tac Tyr	att Ile	cta Leu	ata Ile 1625	ggc	cat His	cct Pro	gtc Val		5220
ctc Leu 1630	Thr	tgt Cys	cag Gln	cat His	999 Gly 1635	atc Ile	aac Asn	aga Arg	aac Asn		Asn			ttt Phe		5265
cca Pro 1645	Arg	tgt Cys	gat Asp	gcc Ala	cct Pro 1650	Cys	G1y 999	tac Tyr	aac Asn	gta Val 1655	Thr	tct Ser	cag Gln	aac Asn		5310
ggc Gly 1660	Thr	atc Ile	tac Tyr	tcc Ser	cct Pro 1665	Gly	ttt Phe	cct Pro	gat Asp	gag Glu 1670	Tyr	ccg Pro	atc Ile	ctg Leu		5355
aag Lys 1675	Āsp	tgc Cys	att Ile	tgg Trp	ctc Leu 1680	Ile	acg Thr	gtg Val	cct Pro	cca Pro 1685	Gly	cac His	gga Gly	gtt Val		5400

tac Tyr 1690	Ile	aac Asn	ttc Phe	acc Thr	ctg Leu 1695	tta Leu	cag Gln	acg Thr	gaa Glu	gct Ala 1700	Val	aac Asn	gat Asp	tac Tyr	5445
att Ile 1705					ggt Gly 1710						Pro				5490
gtt Val 1720	Phe				aca Thr 1725										5535
aac Asn 1735	Gln				aag Lys 1740	Phe					Ser				5580
	Phe				ttc Phe 1755	His					Lys				5625
	Pro				cca Pro 1770						Thr				5670
	Phe				gat Asp 1785						Cys				5715
tac Tyr 1795	Thr	ttg Leu	gtg Val	GJA 333	acc Thr 1800	Asp	att Ile	ctg Leu	act Thr	tgc Cys 1805	Lys	ctc Leu	agt Ser	tcc Ser	5760
	Leu				ggt Gly 1815						Glu				5805
cca Pro 1825	Ala				cgg Arg 1830						Val				5850
cca Pro 1840	Gly	tat Tyr	ccg Pro	ggt Gly	aat Asn 1845	Tyr	ttt Phe	aac Asn	tcc Ser	cag Gln 1850	Thr	tgc Cys	tct Ser	tgg Trp	5895
agt Ser 1855	Ile	aaa Lys	gtg Val	gaa Glu	cca Pro 1860	Asn	tac Tyr	aac Asn	att Ile	acc Thr 1865	Ile	ttt Phe	gtg Val	gac Asp	5940
aca Thr 1870	Phe	caa Gln	agt Ser	gaa Glu	aag Lys 1875	Gln	ttt Phe	gat Asp	gca Ala	ctg Leu 1880	Glu	gtg Val	ttt Phe	gat Asp	59 <b>8</b> 5
	Ser				agt Ser 1890	Pro					Leu				6030
cat His 1900	Thr				aat Asn 1905						Asn				6075
ctc Leu 1915	Arg	tgg Trp	tcc Ser	act Thr	gac Asp 1920	His	gcc Ala	acc Thr	agt Ser	aag Lys 1925	Lys	gga Gly	ttc Phe	aag Lys	6120

att ITe 1930	Aŕg	tat Tyr	gca Ala	gca Ala	cct Pro 1935	tac Tyr	tgc Cys	agt Ser	ttg Leu	acc Thr 1940	cac His	ccc Pro	ctg Leu	aag Lys	6165
aat Asn 1945	Gly				aac Asn 1950										6210
	His			_	aag Lys 1965				_	_	Val			_	6255
aat Asn 1975	Ala	acc Thr	tgt Cys	aga Arg	cga Arg 1980	aac Asn	cca Pro	ctt Leu	ggc Gly	atg Met 1985	Tyr	cag Gln	tgg Trp	gac Asp	6300
tcc Ser 1990	Leu				tgc Cys 1995	Gln	gct Ala	gtg Val	tcc Ser	tgt Cys 2000	gga Gly	atc Ile	cca Pro	gaa Glu	6345
tcc Ser 2005	Pro	gga Gly	aac Asn	ggt Gly	tca Ser 2010	ttt Phe	acc Thr	gly ggg	aac Asn	gag Glu 2015	ttc Phe	act Thr	ttg Leu	gac Asp	6390
agt Ser 2020	Lys	gtg Val	gtc Val	tat Tyr	gaa Glu 2025	tgt Cys	cat His	gag Glu	ggc Gly	ttc Phe 2030	aag Lys	ctt Leu	gaa Glu	tcc Ser	6435
agc Ser 2035	Gln				gcc Ala 2040										6480
	Lys				ccc Pro 2055										6525
att Ile 2065	Glu				tca Ser 2070										6570
gga Gly 2080	Ser				tac Tyr 2085										6615
					gaa Glu 2100										6660
aat Asn 2110	Gly				ata Ile 2115										6705
atc Ile 2125					ctt Leu 2130										6750
gga Gly 2140	Thr	ttg Leu	aca Thr	gtt Val	tat Tyr 2145	61 y 999	gcc Ala	aca Thr	gct Ala	ata Ile 2150	ttt Phe	acg Thr	tgc Cys	aac Asn	6795
acc Thr 2155	ggc Gly	tac Tyr	acg Thr	ctt Leu	gtg Val 2160	gjå aaa	tct Ser	cat His	gtc Val	aga Arg 2165	gag Glu	tgc Cys	ttg Leu	gca Ala	6840

aat Asn 2170					ggc Gly 2175	Ser									6885
tgc Cys 2185	Gly				ccg Pro 2190										6930
ggc Gly 2200	Phe	agt Ser	tac Tyr	aga Arg	gac Asp 2205	acg Thr	gtg Val	gtt Val	tac Tyr	cag Gln 2210	tgc Cys	aat Asn	cct Pro	ggt Gly	6975
ttc Phe 2215	Arg				act Thr 2220										. 7020
aag Lys 2230	Trp	tct Ser	gga Gly	caa Gln	acg Thr 2235	Pro	gtc Val	tgt Cys	gtc Val	ccc Pro 2240	Ile	aca Thr	tgt Cys	ggt Gly	7065
cac His 2245	Pro				gcc Ala 2250	His									7110
aac Asn 2260	Leu				gtg Val 2265	Asn									7155
ctg Leu 2275	Gln	ggc Gly	gtg Val	tct Ser	cga Arg 2280	Ala	cag Gln	tgt Cys	cgg Arg	agc Ser 2285	aac Asn	ggc			7200
agt Ser 2290	Ser				acg Thr 2295	Cys					Cys				7245
ggc Gly 2305	Phe	gtg Val	gaa Glu	aat Asn	gcc Ala 2310	Ile	cgt Arg	cac His	ggg Gly	caa Gln 2315	cag Gln	aac Asn	ttc Phe	cct Pro	7290
	Ser				gga Gly 2325	Met					His			aag Lys	7335
	Phe				gga Gly 2340	Ser									7380
	Leu				tcc Ser 2355	Leu					Ala				7425
	His				cct Pro 2370	Ala					Thr				7470
ttt Phe 2380	Thr	tat Tyr	ggc	gcc Ala	gtc Val 2385	Val	cac His	tac Tyr	tcc Ser	tgc Cys 2390	Arg	gly ggg	agc Ser	gag Glu	7515
agc Ser 2395	Leu				gac Asp 2400	Thr	_		_	cag Gln 2405	Glu	_	-	_	7560

PCT/US01/23232 WO 02/10199

- 12 -

	tgg Trp 2410	Şer	ggg Gly	g gca / Ala	cto Lev	ccc Pro 2415	His	tgc Cys	aca Thr	gga Gly	a aat / Asn 2420	Ası	t cct n Pro	gga Gly	a ttc y Phe		7605
	tgt Cys 2425	Gly	gat Asp	ceg Pro	ggg Gly	acc Thr 2430	Pro	gca Ala	cat His	G17 333	tct, Ser 2435	Arg	g ctt g Lei	ggt Gly	gat Asp		7650
	gac	Phe	aag Lys	aca Thr	aag Lys	agt Ser 2445	Leu	ctc Leu	cgc Arg	ttc Phe	tcc Ser 2450	Суя	gaa Glu	a ato 1 Met	: Gly 9 999		7695
	cac His 2455	GID	ctg Leu	agg Arg	ggc	tcc Ser 2460	Pro	gaa Glu	cgc Arg	acc Thr	tgt Cys 2465	Let	g ctc 1 Lev	aat Asr	gly ggg		7740
	tca Ser 2470	Trp	tca Ser	gga Gly	ctg Leu	cag Gln 2475	Pro	gtg Val	tgt Cys	gag Glu	gcc Ala 2480	Val	g tcc Ser	tgt Cys	ggc Gly		7785
	aac Asn 2485	Pro	ggc	aca Thr	ccc Pro	acc Thr 2490	Asn	gga Gly	atg Met	att Ile	gtc Val 2495	Ser	agt Ser	gat Asp	ggc		7830
	att Ile 2500	Leu	ttc Phe	tcc Ser	agc Ser	tcg Ser 2505	gtc Val	atc Ile	tat Tyr	gcc Ala	tgc Cys 2510	Trp	gaa Glu	ggc	tac Tyr		7875
	aag Lys 2515	Thr	tca Ser	G1 999	ctc Leu	atg Met 2520	aca Thr	cgg Arg	cat His	tgc Cys	aca Thr 2525	Ala	aat Asn	G1y 999	acc Thr		7920
•	tgg Trp 2530	Inr	ggc	act Thr	gct Ala	ccc Pro 2535	gac Asp	tgc Cys	aca Thr	att Ile	ata Ile 2540	Ser	tgt Cys	61 y 393	gat Asp		7965
1	cca Pro 2545	ggc Gly	aca Thr	cta Leu	gca Ala	aat Asn 2550	gly	atc Ile	cag Gln	ttt Phe	999 Gly 2555		gac Asp		acc Thr		8010
1	tc Phe 2560	aac Asn	aag Lys	act Thr	gtg Val	agc Ser 2565	tat Tyr	cag Gln	tgt Cys	aac Asn	cca Pro 2570	ggc	tat Tyr	gtc Val	atg Met		8055
C	gaa Slu 2575	gca Ala	gtc Val	aca Thr	tcc Ser	gcc Ala 2580	act Thr	att Ile	cgc Arg	tgt Cys	acc Thr 2585	aaa Lys	gac Asp	ggc Gly	agg Arg		8100
7	:gg !rp !590	aat Asn	ccg Pro	agc Ser	aaa Lys	cct Pro 2595	gtc Val	tgc Cys	aaa Lys	gcc Ala	gtg Val 2600	ctg Leu	tgt Cys	cct Pro	cag Gln		8145
F	ecg Pro 1605	ccg Pro	ccg Pro	gtg Val	GIn	aat Asn 2610	gga Gly	aca Thr	gtg Val	gag Glu	gga Gly 2615	agt Ser	gat Asp	ttc Phe	cgc Arg		·8190
I	99 Tp 620	ggc Gly	tcc Ser	agc Ser	Пе	agt Ser 2625	tac Tyr	agc Ser	tgc Cys	atg Met	gac Asp 2630	ggt Gly	tac Tyr	cag Gln	ctc Leu		8235
S	ct er 635	cac His	tcc Ser	gcc Ala	TTG	ctc Leu 2640	tcc Ser	tgt Cys	gaa Glu	Gly	cgc Arg 2645	G1 y 999	gtg Val	tgg Trp	aaa Lys	r	8280

gga Gly 2650	gag Glu	atc Ile	ccc Pro	cag Gln	tgt Cys 2655	ctc Leu	cct Pro	gtg Val	ttc Phe	tgc Cys 2660	gga Gly	gac Asp	cct Pro	ggc	8325
atc Ile 2665					cga Arg 2670										8370
tcc Ser 2680					cag Gln 2685										8415
tcc Ser 2695					tgc Cys 2700										8460
caa Gln 2710					gat Asp 2715										8505
ggt Gly 2725					gga Gly 2730										8550
gtt Val 2740		_	_	_	ttt Phe 2745			_	_						8595
caa Gln 2755			_		cgc Arg 2760		_		_					_	8640
999 Gly 2770	Ile				tgt Cys 2775	Ile					Arg				8685
acc Thr 2785					gat Asp 2790	Val									8730
ggc Gly 2800	Tyr				tac Tyr 2805	Thr	tgc Cys	cat His	cca Pro	ggc Gly 2810	ttt Phe	ttc Phe	ctc Leu	gca Ala	8775
999 Gly 2815	Gly				aga Arg 2820	Thr									8820
	Lys				tgt Cys 2835	Lys									8865
gaa Glu 2845	Thr				act Thr 2850	Pro									8910
aat Asn 2860	Ser				999 Gly 2865	Tyr					Gly				8955
ccc Pro 2875	Ala	act Thr	cta Leu	act Thr	gtt Val 2880	gác Asp	tgg Trp	ttc Phe	aat Asn	gca Ala 2885	aca Thr	agc Ser	agt Ser	aag Lys	9000

- 14 -

gtg Val 2890	Asn	gcc Ala	acc Thr	ttc Phe	agc Ser 2895	Glu	gcc Ala	tcg Ser	cca Pro	gtg Val 2900	gag Glu			ttg Leu	9045	
aca Thr 2905	Gly	att Ile	tac Tyr	aag Lys	aag Lys 2910	Glu	gag Glu	gcc Ala	cac His	tta Leu 2915	ct <i>c</i> Leu	ctg Leu	aaa Lys	gct Ala	9090	
ttt Phe 2920	caa Gln	att Ile	aaa Lys	ggc	cag Gln 2925	gca Ala	gat Asp	att Ile	ttt Phe	gta Val 2930	agc Ser	aag Lys	ttc Phe	gaa Glu	9135	
aat Asn 2935	gac Asp	aac Asn	tgg Trp	gga Gly	cta Leu 2940	Asp	ggt Gly	tat Tyr	gtg Val	tca Ser 2945	tct Ser			gaa Glu	9180	
aga Arg 2950	Gly	gga Gly	ttt Phe	act Thr	ttt Phe 2955	Gln	ggt Gly	gac Asp	att Ile	cat His 2960	gga Gly	aaa Lys	gac Asp	ttt Phe	9225	
gga Gly 2965	aaa Lys	ttt Phe	aag Lys	cta Leu	gaa Glu 2970	agg Arg	caa Gln	gat Asp	cct Pro	tta Leu 2975	aac Asn	cca Pro	gat Asp	caa Gln	9270	
gac Asp 2980	tct Ser	tcc Ser	agt Ser	cat His	tac Tyr 2985	cac His	ggc	acc Thr	agc Ser	agt Ser 2990	ggc	tct Ser	gtg Val	gcg Ala	9315	
gct Ala 2995	gcc Ala	att Ile	ctg Leu	gtt Val	cct Pro 3000	Phe	ttt Phe	gct Ala	cta Leu	att Ile 3005	tta Leu	tca Ser	61Å 888	ttt Phe	9360	
gca Ala 3010	ttt Phe	tac Tyr	ctc Leu	tac Tyr	aaa Lys 3015	cac His	aga Arg	acg Thr	aga Arg	cca Pro 3020	aaa Lys	gtt Val	caa Gln	tac Tyr	9405	
aat Asn 3025	ggc	tat Tyr	gct Ala	ggg Gly	cat His 3030	gaa Glu	aac Asn	agc Ser	aat Asn	gga Gly 3035	caa Gln	gca Ala	tcg Ser	ttt Phe	9450	
gaa Glu 3040	aac Asn	ccc Pro	atg Met	tat Tyr	gat Asp 3045	aca Thr	aac Asn	tta Leu	aaa Lys	ccc Pro 3050	aca Thr	gaa Glu	gcc Ala	aag Lys	9495	
gct Ala 3055	gtg Val	agg Arg	ttt Phe	gac Asp	aca Thr 3060	act Thr	ctg Leu	aac Asn	aca Thr	gtc Val 3065	tgt Cys	aca Thr	gtg Val	gta Val	9540	
tagco	ctca	g tg	cccc	aaca	ggad	tgat	tc a	tago	cata	c ctc	tgat	gga	caag	cagtga	9600	
ttcct	ttgg	t go	cata	tacc	acto	tccc	yt c	cact	ctgg	c ttt	actg	cag	cgat	cttcaa	9660	
ccttg	tcta	c tg	gcat	aagt	gcag	cggg	ga t	ctct	actc	a aat	gtgt	cag	ggto	ttctac	9720	
														gcatct	9780	
														actcaa	9840	
														tgggct	9900	
														ctcttg	9960	
tgttg	cttt	t CC	tttt	taaa	cccc	catg	aa c	acga	atac	t ctg	aaaa	aaa	taaa	aagctt	10020	

tctggaagaa gacacctttc tgatagaggc tcacacctac aaatgcttca ctctgtcctt ccgagacctg acaagctttg aggacctcac agctcccctg tgtgttcatc tctagggatg tttgcaattt cccagtcagc tgttctgtcg cagaatgttt aatgcacaat tttttgcact agtgtgttat gaatgactaa gattctgata aaaaaaataa attatttaca cagggtttat 10260 acacactate cattgtatat aagcattatt teatattate aagetaaaca tteececate 10320 agcttagttg gagtgttagg gaaaagtatt cctagatatg gcacagattt taaaaggaaa 10380 tacagtattg acgagattta ttttattatt gcttcaatta gctccattta cgtgttgaat 10440 tcattgaaga ggtccaatga gaaaaaaaca gaagcctcct tatttcacac gttttcctcc 10500 tttagtacca tcctcatcca attactgtct ctctgatact acttaatagc agggggtttg 10560 cagaaatttc tgtttgccat gtaaaactgt gaatagtaat ttattttaga tagtcgatga 10620 acttgtgggt tttagctcac aatgcagcct tcccttttgc agtgtttttt ttt 10673

<210> 2

<211> 3069

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly
1 5 10 15

Ser Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys 20 25 30

Gly Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe
35 40 45

Leu His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu 50 55 60

Val Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly 65 70 75 80

Asn Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser 85 90 95

Ser Gly Ile Ile Leu Ser Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn 100 105 110 Met Asn Cys Val Trp Leu Ile Ile Ser Glu Pro Gly Ser Arg Ile His : 115

Leu Ile Phe Asn Asp Phe Asp Val Glu Pro Gln Phe Asp Phe Leu Ala

Val Lys Asp Asp Gly Ile Ser Asp Ile Thr Val Leu Gly Thr Phe Ser

Gly Asn Glu Val Pro Ser Gln Leu Ala Ser Ser Gly His Ile Val Arg 165

Leu Glu Phe Gln Ser Asp His Ser Thr Thr Gly Arg Gly Phe Asn Ile

Thr Tyr Thr Thr Phe Gly Gln Asn Glu Cys His Asp Pro Gly Ile Pro 200 195

Ile Asn Gly Arg Arg Phe Gly Asp Arg Phe Leu Leu Gly Ser Ser Val

Ser Phe His Cys Asp Asp Gly Phe Val Lys Thr Gln Gly Ser Glu Ser 230 225

Ile Thr Cys Ile Leu Gln Asp Gly Asn Val Val Trp Ser Ser Thr Val

Pro Arg Cys Glu Ala Pro Cys Gly Gly His Leu Thr Ala Ser Ser Gly

Val Ile Leu Pro Pro Gly Trp Pro Gly Tyr Tyr Lys Asp Ser Leu His 285

Cys Glu Trp Ile Ile Glu Ala Lys Pro Gly His Ser Ile Lys Ile Thr 290

Phe Asp Arg Phe Gln Thr Glu Val Asn Tyr Asp Thr Leu Glu Val Arg 310 305

Asp Gly Pro Ala Ser Ser Pro Leu Ile Gly Glu Tyr His Gly Thr 325

Gln Ala Pro Gln Phe Leu Ile Ser Thr Gly Asn Phe Met Tyr Leu Leu 340

Phe Thr Thr Asp Asn Ser Arg Ser Ser Ile Gly Phe Leu Ile His Tyr 360 365 355

Glu Ser Val Thr Leu Glu Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro 370 375 380

Val Asn Xaa His Arg His Gly Gly Asp Phe Gly Ile Arg Ser Thr Val 385 390 395 400

Thr Phe Ser Cys Asp Pro Gly Tyr Thr Leu Ser Asp Asp Glu Pro Leu 405 410 415

Val Cys Glu Arg Asn His Gln Trp Asn His Ala Leu Pro Ser Cys Asp 420 425 430

Ala Leu Cys Gly Gly Tyr Ile Gln Gly Lys Ser Gly Thr Val Leu Ser 435 440 445

Pro Gly Phe Pro Asp Phe Tyr Pro Asn Ser Leu Asn Xaa Thr Trp Thr 450 455 460

Ile Glu Val Ser His Gly Lys Gly Val Gln Met Ile Phe His Thr Phe 465 470 475 480

His Leu Glu Ser Ser His Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser 485 490 495

Phe Ser Glu Pro Val Ala Arg Leu Thr Gly Ser Val Leu Pro His Thr
500 505 510

Ile Lys Ala Gly Leu Phe Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile 515 520 525

Ser Asp Phe Ser Ile Ser Tyr Glu Gly Phe Asn Ile Thr Phe Ser Glu 530 540

Tyr Asp Leu Glu Pro Cys Asp Asp Pro Gly Val Pro Ala Phe Ser Arg 545 550 555 560

Arg Ile Gly Phe His Phe Gly Val Gly Asp Ser Leu Thr Phe Ser Cys 565 570 575

Phe Leu Gly Tyr Arg Leu Glu Gly Ala Xaa Lys Leu Thr Cys Leu Gly 580 585 590

Gly Gly Arg Arg Val Trp Ser Ala Pro Leu Pro Arg Cys Val Ala Glu
595 600 605

Cys Gly Ala Ser Val Lys Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn 610 615 620

Phe Pro Ser Asn Tyr Asp Asn Asn His Glu Cys Ile Tyr Lys Ile Glu 625 630 635 640

Thr Glu Ala Gly Lys Gly Ile His Leu Arg Thr Arg Ser Phe Gln Leu 645 650 655

Phe Glu Gly Asp Thr Leu Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser 660 665 670

Arg Pro Leu Gly Thr Phe Thr Lys Asn Glu Leu Leu Gly Leu Ile Leu 675 680 685

Asn Ser Thr Ser Asn His Xaa Trp Leu Glu Phe Asn Thr Asn Gly Ser 690 695 700

Asp Thr Asp Gln Gly Phe Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val 705 710 715 720

Lys Cys Glu Asp Pro Gly Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp 725 730 735

Glu Gly His Phe Thr Asp Thr Val Val Leu Tyr Ser Cys Asn Pro Gly 740 745 750

Tyr Ala Met His Gly Ser Asn Thr Leu Thr Cys Leu Ser Gly Asp Arg
755 760 765

Arg Val Trp Asp Lys Pro Leu Pro Ser Cys Ile Ala Glu Cys Gly Gly 770 775 780

Gln Ile His Ala Ala Thr Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro
785 790 795 800

Ala Pro Tyr Asp Asn Asn Leu His Cys Thr Trp Ile Ile Glu Ala Asp 805 810 815

Pro Gly Lys Thr Ile Ser Leu His Phe Ile Val Phe Asp Thr Glu Met 820 825 830

Ala His Asp Ile Leu Lys Val Trp Asp Gly Pro Val Asp Ser Asp Ile 835 840 845

Leu Leu Lys Glu Trp Ser Gly Ser Ala Leu Pro Glu Asp Ile His Ser 850 860

Thr Phe Asn Ser Leu Thr Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser 865 870 875 880

- Lys Ser Gly Phe Ser Ile Gln Phe Ser Thr Ser Ile Ala Ala Thr Cys
- Asn Asp Pro Gly Met Pro Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg 900 905 910
- Glu Ala Gly Asp Thr Val Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu
  915 920 925
- Gln Gly Gln Ala Lys Ile Thr Cys Val Gln Leu Asn Asn Arg Phe Phe 930 935 940
- Trp Gln Pro Asp Pro Pro Thr Cys Ile Ala Ala Cys Gly Gly Asn Leu 945 950 955 960
- Thr Gly Pro Ala Gly Val Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr 965 970 975
- Pro Pro Gly Lys Glu Cys Asp Trp Arg Val Lys Val Asn Pro Asp Phe 980 985 990
- Val Ile Ala Leu Ile Phe Lys Ser Phe Asn Met Glu Pro Ser Tyr Asp 995 1000 1005
- Phe Leu His Ile Tyr Glu Gly Glu Asp Ser Asn Ser Pro Leu Ile 1010 1015 1020
- Gly Ser Tyr Gln Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser Ser 1025 1030 1035
- Gly Asn Ser Leu Phe Leu Ala Phe Arg Ser Asp Ala Ser Val Gly 1040 1050
- Leu Ser Gly Phe Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu Ala 1055 1060 1065
- Cys Phe Asp Pro Gly Asn Ile Met Asn Gly Thr Arg Val Gly Thr 1070 1075 1080
- Asp Phe Lys Leu Gly Ser Thr Ile Thr Tyr Gln Cys Asp Ser Gly 1085 1090 1095
- Tyr Lys Ile Leu Asp Pro Ser Ser Ile Thr Cys Val Ile Gly Ala 1100 1105 1110
- Asp Gly Lys Pro Ser Trp Asp Gln Val Leu Pro Ser Cys Asn Ala 1115 1120 1125

- 20 -

Pro Cys Gly Gln Tyr Thr Gly Ser Glu Gly Val Val Leu Ser 1130 1135 1140

Pro Asn Tyr Pro His Asn Tyr Thr Ala Gly Gln Ile Cys Leu Tyr 1145 1150 1155

Ser Ile Thr Val Pro Lys Glu Phe Val Val Phe Gly Gln Phe Ala 1160 1165 1170

Tyr Phe Gln Thr Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp Gly
1175 1180 1185

Thr His Ala Gln Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser His 1190 1195 1200

Ser Gly Glu Thr Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu Leu 1205 1210 1215

Arg Phe Ser Ala Lys Ser Gly Ala Ser Ala Arg Gly Phe His Phe 1220 1225 1230

Val Tyr Gln Ala Val Pro Arg Thr Ser Asp Thr Gln Cys Ser Ser 1235 1240 1245

Val Pro Glu Pro Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe Ser 1250 1255 1260

Ala Gly Ser Ile Val Arg Phe Glu Xaa Asn Pro Gly Tyr Leu Leu 1265 1270 1275

Gln Gly Ser Thr Ala Leu His Cys Gln Ser Val Pro Asn Ala Leu 1280 1285 1290

Ala Gln Trp Asn Asp Thr Ile Pro Ser Cys Val Val Pro Cys Ser 1295 1300 1305

Gly Asn Phe Thr Gln Arg Arg Gly Thr Ile Leu Ser Pro Gly Tyr 1310 1315 1320

Pro Glu Pro Tyr Gly Asn Asn Leu Asn Cys Ile Trp Lys Ile Ile 1325 1330 1335

Val Thr Glu Gly Ser Gly Ile Gln Ile Gln Val Ile Ser Phe Ala 1340 . 1345 . 1350

Thr Glu Gln Asn Trp Asp Ser Leu Glu Ile His Asp Gly Gly Asp 1355 1360 1365

- Val Thr Ala Pro Arg Leu Gly Ser Phe Ser Gly Thr Thr Val Pro : 1370 1370 1380
- Ala Leu Leu Asn Ser Thr Ser Asn Gln Leu Tyr Leu His Phe Gln 1385 1390 1395
- Ser Asp Ile Ser Val Ala Ala Gly Phe His Leu Glu Tyr Lys .... 1400 1405 1410
- Thr Val Gly Leu Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser Asn 1415 1420 1425
- Ser Ile Lys Ile Gly Asp Arg Tyr Met Val Asn Asp Val Leu Ser 1430 1435 1440
- Phe Gln Cys Glu Pro Gly Tyr Thr Leu Gln Gly Arg Ser His Ile 1445 1450 1455
- Ser Cys Met Pro Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser Pro 1460 1465 1470
- Leu Cys Ile Ala Thr Cys Gly Gly Thr Leu Ser Thr Leu Gly Gly 1475 1480 1485
- Val Ile Leu Ser Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn Leu 1490 1495 1500
- Asp Cys Thr Trp Arg Ile Ser Leu Pro Ile Gly Tyr Gly Ala His 1505 1510 1515
- Ile Gln Phe Leu Asn Phe Ser Thr Glu Ala Asn His Asp Phe Leu 1520 1525 1530
- Glu Ile Gln Asn Gly Pro Tyr His Thr Ser Pro Met Ile Gly Gln 1535 1540 1545
- Phe Ser Gly Thr Asp Leu Pro Ala Ala Leu Leu Ser Thr Thr His 1550 1560
- Glu Thr Leu Ile His Phe Tyr Ser Asp His Ser Gln Asn Arg Gln 1565 1570 1575
- Gly Phe Lys Leu Ala Tyr Gln Ala Tyr Glu Leu Gln Asn Cys Pro 1580 1585 1590
- Asp Pro Pro Pro Phe Gln Asn Gly Tyr Met Ile Asn Ser Asp Tyr 1595 1600 1605

- Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr Pro Gly Tyr Ile
- Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly Ile Asn Arg 1625 1630 1635
- Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly Tyr 1640 1650
- Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro 1655 1660 1665
- Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr Val 1670 1675 1680
- Pro Pro Gly His Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr 1685 1690 1695
- Glu Ala Val Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln 1700 1705 1710
- Asn Ser Pro Gln Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu 1715 1720 1725
- Thr Ala Tyr Ser Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser 1730 1735 1740
- Asp Phe Ser Asn Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe 1745 1750 1755
- Gln Leu Lys Lys Cys Gln Pro Pro Pro Ala Val Pro Gln Ala Glu 1760 1765 1770
- Met Leu Thr Glu Asp Asp Asp Phe Glu Ile Gly Asp Phe Val Lys 1775 1780 1785
- Tyr Gln Cys His Pro Gly Tyr Thr Leu Val Gly Thr Asp Ile Leu 1790 1795 1800
- Thr Cys Lys Leu Ser Ser Gln Leu Gln Phe Glu Gly Ser Leu Pro 1805 1810 1815
- Thr Cys Glu Ala Gln Cys Pro Ala Asn Glu Val Arg Thr Gly Ser 1820 1825 1830
- Ser Gly Val Ile Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe Asn 1835 1840 . 1845

- Ser Gln Thr Cys Ser Trp Ser Ile Lys Val Glu Pro Asn Tyr Asn 1850 1855 1860
- Ile Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp 1865 1870 1875
- Ala Leu Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu 1880 1885 1890
- Val Val Leu Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser 1895 1900 1905
- Arg Ser Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr 1910 1915 1920
- Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser 1925 1930 1935
- Leu Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr Ala 1940 1945 1950
- Gly Ala Val Gly Ser Lys Val His Tyr Phe Cys Lys Pro Gly Tyr 1955 1960 1965
- Arg Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro Leu 1970 1975 1980
- Gly Met Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala Val 1985 1990 1995
- Ser Cys Gly Ile Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr Gly 2000 2005 2010
- Asn Glu Phe Thr Leu Asp Ser Lys Val Val Tyr Glu Cys His Glu 2015 2020 2025
- Gly Phe Lys Leu Glu Ser Ser Gln Gln Ala Thr Ala Val Cys Gln 2030 2035 2040
- Glu Asp Gly Leu Trp Ser Asn Lys Gly Lys Pro Pro Thr Cys Lys 2045 2050 2055
- Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His Val 2060 2065 2070
- Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln 2075 2080 2085

2315

Val Leu Leu Ser Cys Ser Pro Gly Tyr Tyr Leu Glu Gly Trp Arg Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp Glu Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe Pro 2120 . 2125 Pro Asn Gly Asn Lys Ile Gly Thr Leu Thr Val Tyr Gly Ala Thr Ala Ile Phe Thr Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser His 2150 2155 2160 Val Arg Glu Cys Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu Thr 2165 2170 Arg Cys Leu Ala Gly His Cys Gly Ser Pro Asp Pro Ile Val Asn 2180 2185 Gly His Ile Ser Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val Val 2200 Tyr Gln Cys Asn Pro Gly Phe Arg Leu Val Gly Thr Ser Val Arg Ile Cys Leu Gln Asp His Lys Trp Ser Gly Gln Thr Pro Val Cys 2230 Val Pro Ile Thr Cys Gly His Pro Gly Asn Pro Ala His Gly Phe Thr Asn Gly Ser Glu Phe Asn Leu Asn Asp Val Val Asn Phe Thr 2255 2260 2265 Cys Asn Thr Gly Tyr Leu Leu Gln Gly Val Ser Arg Ala Gln Cys 2270 2275 2280 Arg Ser Asn Gly Gln Trp Ser Ser Pro Leu Pro Thr Cys Arg Val 2285 2290 2295 Val Asn Cys Ser Asp Pro Gly Phe Val Glu Asn Ala Ile Arg His

Gly Gln Gln Asn Phe Pro Glu Ser Phe Glu Tyr Gly Met Ser Ile

2325

Leu Ty		His	Cys	Lys	Lys	Gly 2335	Phe	Tyr	Leu	Leu	Gly 2340	Ser	Ser	Ala
	345	Cys	Met	Ala	Asn	Gly 2350	Leu	Trp	Asp	Arg	Ser 2355	Leu	Pro	Lys
Cys Le	eu	Ala	Ile	Ser		Gly 2365		Pro	Gly	Val	Pro 2370	Ala	Asn	Ala
	eu 875	Thr	Gly	Glu	Leu	Phe 2380	Thr	Tyr	Gly		Val 2385	Val	His	Tyr
Ser Cy 23	/s 390	Arg	Gly	Ser	Glu	Ser 2395	Leu	Ile	Gly	Asn	Asp 2400	Thr	Arg	Val
Cys Gl 24	ln 105	Glu	Asp	Ser	His	Trp 2410	Ser	Gly	Ala	Leu	Pro 2415	His	Сув	Thr
Gly As	sn 120	Asn	Pro	Gly	Phe	Cys 2425	Gly	Asp	Pro	Gly	Thr 2430	Pro	Ala	His
Gly Se	er 135	Arg	Leu	Gly	Asp	Asp 2440		Lys	Thr	Lys	Ser 2445	Leu	Leu	Arg
Phe Se	er 150	Сув	Glu	Met	Gly	His 2455		Leu	Arg	Gly	Ser 2460	Pro	Glu	Arg
Thr Cy 24	/8 165	Leu	Leu	Asn		Ser 2470	Trp	Ser	Gly	Leu	Gln 2475	Pro	Val	Cys
Glu Al 24	La 180	Val	Ser	Cys	Gly	Asn 2485	Pro	Gly	Thr	Pro	Thr 2490	Asn	Gly	Met
Ile Va 24	al 195	Ser	Ser	Asp	Gly	Ile 2500	Leu	Phe	Ser	Ser	Ser 2505	Val	Ile	Tyr
Ala Cy 25	/s 510	Trp	Glu	Gly	Tyr	Lys 2515	Thr	Ser	Gly	Leu	Met 2520	Thr	Arg	His
Cys Th	nr 525	Ala	Asn	Gly	Thr	Trp 2530	Thr	Gly	Thr	Ala	Pro 2535	Asp	Cys	Thr
Ile Il 25	le 540	Ser	Cys	Gly	Asp	Pro 2545	Gly	Thr	Leu	Ala	Asn 2550	Gly	Ile	Gln
Phe Gl 25	ly 555	Thr	Asp	Phe	Thr	Phe 2560	Asn	Lys	Thr	Val	Ser 2565	Tyr	Gln	Суѕ

- Asn Pro Gly Tyr Val Met Glu Ala Val Thr Ser Ala Thr Ile Arg
- Cys Thr Lys Asp Gly Arg Trp Asn Pro Ser Lys Pro Val Cys Lys
- Ala Val Leu Cys Pro Gln Pro Pro Pro Val Gln Asn Gly Thr Val ``` 2600 2605
- Glu Gly Ser Asp Phe Arg Trp Gly Ser Ser Ile Ser Tyr Ser Cys 2615 2620
- Met Asp Gly Tyr Gln Leu Ser His Ser Ala Ile Leu Ser Cys Glu 2635 2630
- Gly Arg Gly Val Trp Lys Gly Glu Ile Pro Gln Cys Leu Pro Val 2650 2645
- Phe Cys Gly Asp Pro Gly Ile Pro Ala Glu Gly Arg Leu Ser Gly 2670 2665 2660
- Lys Ser Phe Thr Tyr Lys Ser Glu Val Phe Phe Gln Cys Lys Ser 2680
- Pro Phe Ile Leu Val Gly Ser Ser Arg Arg Val Cys Gln Ala Asp. 2690 2695
- Gly Thr Trp Ser Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala His 2710
- Asn Thr Cys Pro Asp Pro Gly Thr Pro His Phe Gly Ile Gln Asn 2725
- Ser Ser Arg Gly Tyr Glu Val Gly Ser Thr Val Phe Phe Arg Cys
- Arg Lys Gly Tyr His Ile Gln Gly Ser Thr Thr Arg Thr Cys Leu 2750 2755
- Ala Asn Leu Thr Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro His 2765 2770
- Ala Cys Arg Gln Pro Glu Thr Pro Ala His Ala Asp Val Arg Ala 2780 2785
- Ile Asp. Leu Pro Thr Phe Gly Tyr Thr Leu Val Tyr Thr Cys His 2795 2800

- Pro Gly Phe Phe Leu Ala Gly Gly Ser Glu His Arg Thr Cys Lys 2810 2815 2820
- Ala Asp Met Lys Trp Thr Gly Lys Ser Pro Val Cys Lys Ser Lys 2825 2830 2835
- Gly Val Arg Glu Val Asn Glu Thr Val Thr Lys Thr Pro Val Pro 2840 2845 2850
- Ser Asp Val Phe Phe Val Asn Ser Leu Trp Lys Gly Tyr Tyr Glu 2855 2860 2865
- Tyr Leu Gly Lys Arg Gln Pro Ala Thr Leu Thr Val Asp Trp Phe 2870 2875 2880
- Asn Ala Thr Ser Ser Lys Val Asn Ala Thr Phe Ser Glu Ala Ser 2885 2890 2895
- Pro Val Glu Leu Lys Leu Thr Gly Ile Tyr Lys Lys Glu Glu Ala 2900 2905 2910
- His Leu Leu Leu Lys Ala Phe Gln Ile Lys Gly Gln Ala Asp Ile 2915 2920 2925
- Phe Val Ser Lys Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly Tyr 2930 2935 2940
- Val Ser Ser Gly Leu Glu Arg Gly Gly Phe Thr Phe Gln Gly Asp 2945 2950 2955
- Ile His Gly Lys Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln Asp 2960 2965 2970
- Pro Leu Asn Pro Asp Gln Asp Ser Ser His Tyr His Gly Thr 2975 2980 2985
- Ser Ser Gly Ser Val Ala Ala Ala Ile Leu Val Pro Phe Phe Ala 2990 2995 3000
- Leu Ile Leu Ser Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg Thr 3005 3010 3015
- Arg Pro Lys Val Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn Ser 3020 3025 3030
- Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn Leu 3035 3040 3045

- 28 -

Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu Asn 3050 3050

Thr Val Cys Thr Val Val 3065

<210> 3

<211> 12525

<212> DNA

<213> Rattus rattus

<220>

<221> CDS

<222> (1)..(9285)

<223> N = any amino acid

<400	-													
	gcc Ala													48
	tcc Ser	_	_	_			~ ~	_	_		_	_		96
	cac His	_	_	_		_							_	144
	tac Tyr 50													192
	tac Tyr													240
	ttt Phe													288
_	tgc Cys	_	_		_					_	_	_		336
	tca Ser	_				_						_	_	384

								aac Asn								432
att Ile 145	ata Ile	tct Ser	gag Glu	ccc Pro	999 Gly 150	agc Ser	cgg Arg	att Ile	cac His	ctc Leu 155	atc Ile	ttc Phe	aat Asn	gat Asp	ttc Phe 160	480
								ctt Leu					Asp			· 528
tct Ser	gac Asp	atc Ile	aca Thr 180	gtc Val	ctc Leu	glå aaa	act Thr	ttc Phe 185	tct Ser	ggc Gly	aat Asn	gag Glu	gtg Val 190	cct Pro	gca Ala	576
cag Gln	ctg Leu	gcc Ala 195	ngc Xaa	agt Ser	gga Gly	cac His	ata Ile 200	gta Val	cgc Arg	ctg Leu	gag Glu	ttt Phe 205	cag Gln	tcc Ser	gat Asp	624
								aac Asn								672
cag Gln 225	aac Asn	gag Glu	tgt Cys	cat His	gac Asp 230	cct Pro	Gly 999	atc Ile	cct Pro	gtg Val 235	aat Asn	gga Gly	cgg Arg	cgc Arg	ttt Phe 240	720
gga Gly	gac Asp	agg Arg	ttt Phe	ctg Leu 245	ctg Leu	gga Gly	agt Ser	tct Ser	gtg Val 250	tcc Ser	ttc Phe	cac His	tgt Cys	gat Asp 255	gat Asp	768
ggc	ttt Phe	gtg Val	aag Lys 260	act Thr	cag Gln	ggt Gly	tct Ser	gag Glu 265	tct Ser	atc Ile	aca Thr	tgc Cys	atc Ile 270	ttg Leu	caa Gln	816
gat Asp	Gly	aac Asn 275	gtg Val	gtc Val	tgg Trp	agc Ser	tct Ser 280	act Thr	gtc Val	cct Pro	cgc Arg	tgt Cys 285	gaa Glu	gct Ala	cct Pro	864
tgt Cys	ggt Gly 290	gjå aaa	cat His	ctg Leu	aca Thr	gct Ala 295	tct Ser	agt Ser	Gly 999	gtc Val	ata Ile 300	tta Leu	cct Pro	cca Pro	gga Gly	912
								tta Leu								960
gcc Ala	aaa Lys	cca Pro	gga Gly	cat His 325	t <i>cc</i> Ser	atc Ile	aaa Lys	ata Ile	aca Thr 330	ttt Phe	gac Asp	agg Arg	ttc Phe	cag Gln 335	aca Thr	1008
gaa Glu	gtc Val	aat Asn	tat Tyr 340	gat Asp	act Thr	ctg Leu	gaa Glu	gtc Val 345	cgg Arg	gat Asp	Gly 999	cca Pro	acc Thr 350	agc Ser	tca Ser	1056
tcc Ser	cca Pro	ctg Leu 355	att Ile	G1 y 999	gag Glu	tac Tyr	cat His 360	ggc Gly	acc Thr	cag Gln	gct Ala	cca Pro 365	cag Gln	ttc Phe	ctc Leu	1104
atc Ile	agc Ser 370	aca Thr	Gly 999	aac Asn	tac Tyr	atg Met 375	tac Tyr	ctg Leu	ctg Leu	ttt Phe	acc Thr 380	act Thr	gac Asp	agc Ser	agc Ser	1152

cgc Arg 385	gct Ala	agt Ser	gtt Val	ggc Gly	ttc Phe 390	ctc Leu	atc Ile	cac His	tat Tyr	gag Glu 395	agt Ser	gtg Val	act Thr	ctt Leu	gaa Glu 400	120	00
tct Ser	gac Asp	tcc Ser	tgt Cys	ctg Leu 405	gac Asp	ccg Pro	ggc Gly	atc Ile	cct Pro 410	gta Val	aat Asn	ggt Gly	cat His	cgg Arg 415	cat His	124	48
ggc Gly	agt Ser	aac Asn	ttt Phe 420	ggt Gly	atc Ile	aga Arg	tct Ser	aca Thr 425	gtg Val	acc Thr	ttc Phe	agc Ser	tgt Cys 430	gac Asp	cct Pro	12:	96
gly ggg	tac Tyr	acg Thr 435	ctc Leu	agt Ser	gat Asp	gac Asp	gat Asp 440	ccc Pro	ctc Leu	atc Ile	tgt Cys	gag Glu 445	aag Lys	aac Asn	cat His	13	44
cag Gln	tgg Trp 450	aac Asn	cac His	gcc Ala	ttg Leu	ccc Pro 455	agc Ser	tgt Cys	gat Asp	gcc Ala	ctg Leu 460	tgt Cys	gga Gly	ggc	tac Tyr	13:	92
atc Ile 465	cat His	gga Gly	aag Lys	agt Ser	999 Gly 470	act Thr	gtt Val	ctt Leu	tca Ser	cca Pro 475	gga Gly	ttt Phe	cca Pro	gac Asp	ttt Phe 480	14	40
tat Tyr	cca Pro	aac Asn	tct Ser	ctg Leu 485	aac Asn	tgt Cys	aca Thr	tgg Trp	acc Thr 490	att Ile	gaa Glu	gtc Val	tct Ser	cat His 495	ggc	14	88
aag Lys	gga Gly	gtg Val	cag Gln 500	atg Met	aat Asn	ttc Phe	cac His	acc Thr 505	ttt Phe	cac His	ctt Leu	gaa Glu	agt Ser 510	tcc Ser	cac His	15	36
gac Asp	tat Tyr	ttg Leu 515	ctg Leu	atc Ile	aca Thr	gag Glu	gat Asp 520	Gly	agt Ser	ttc Phe	tca Ser	gag Glu 525	ccg Pro	gta Val	gcc Ala	15	84
agg Arg	ctc Leu 530	act Thr	Gly 999	tcg Ser	gtc Val	ctg Leu 535	cct Pro	cac His	acc Thr	att Ile	aag Lys 540	gct Ala	ggc Gly	ttg Leu	ttt Phe	16	32
gga Gly 545	aac Asn	ttc Phe	act Thr	gcg Ala	caa Gln 550	ctc Leu	agg Arg	ttc Phe	atc Ile	tct Ser 555	gac Asp	ttc Phe	tcc Ser	atc Ile	tcc Ser 560	16	
								gca Ala								17	28
gat Asp	gac Asp	cct Pro	gga Gly 580	gtc Val	cct Pro	gcc Ala	tac Tyr	agt Ser 585	cgc Arg	aga Arg	att Ile	ggg ggg	ttc Phe 590	cag Gln	ttc Phe	17	76
ggt Gly	gtg Val	ggt Gly 595	gac Asp	acc Thr	ctg Leu	gct Ala	ttc Phe 600	acc Thr	tgc Cys	ttc Phe	cag Gln	gga Gly 605	tac Tyr	cgc	tta Leu	18	24
gaa Glu	ggt Gly 610	gca Ala	acc Thr	aag Lys	ctt Leu	acc Thr 615	tgc Cys	ctg Leu	ggt Gly	G1y 999	gga Gly 620	cgc Arg	cga Arg	gtg Val	tgg Trp	18	72 ·
agt Ser 625	gca Ala	cct Pro	ctg Leu	cca Pro	agg Arg 630	tgt Cys	gtg Val	gct Ala	gaa Glu	tgt Cys 635	gga Gly	gca Ala	agc Ser	gtc Val	aaa Lys 640	19	20

									- 31	-						
					tta Leu											1968
					atc Ile											2016
					cga Arg											2064
					aag Lys											2112
					atg Met 710											2160
					aac Asn											2208
					agt Ser											2256
					tac Tyr											2304
					agc Ser											2352
					ctg Leu 790											2400
					gcg Ala											2448
					tct Ser									Asn	aac Asn	2496
					acc Thr											2544
ctc Leu	cat His 850	ttc Phe	att Ile	gtg Val	ttt Phe	gac Asp 855	act Thr	gaa Glu	acg Thr	gcg Ala	cac His 860	gac Asp	atc Ile	ctc Leu	aag Lys	2592
gtc Val 865	tgg Trp	gat Asp	ggt Gly	cca Pro	gtg Val 870	gac Asp	agc Ser	aac Asn	atc Ile	ctg Leu 875	ctg Leu	aag Lys	gag Glu	tgg Trp	agc Ser 880	2640
					gag Glu											2688

ctg Lev	cag Glņ	ttc Phe	gat Asp 900	agt Ser	gac Asp	ttc Phe	ttc Phe	atc Ile 905	agc Ser	aag Lys	tcc Ser	ggc Gly	Phe 910	Se	c atc r Ile		2736
cag Gln	ttc Phe	tct Ser 915	act Thr	tcc Ser	att Ile	gca Ala	tcc Ser 920	acc Thr	tgc Cys	aat Asn	qaA	cct Pro 925	G13	jate Me	g cct t Pro		2784
cag Gl⁄n	aat Asn 930	gga Gly	acc Thr	cgc Arg	tat Tyr	ggt Gly 935	gac Asp	agc Ser	cgg Arg	gaa Glu	cct Pro 940	gga Gly	gac Asp	ace Th:	c atc r Ile		2832
acc Thr 945	Phe	cag Gln	tgt Cys	gac Asp	cct Pro 950	gga Gly	tac Tyr	cag Gln	ctc Leu	caa Gln 955	<b>Gly</b> 999	caa Gln	gcc	aaq Ly	g atc s Ile 960		2880
act Thr	tgt Cys	gtg Val	cag Gln	ctt Leu 965	aac Asn	aac Asn	cgc Arg	ttc Phe	ttc Phe 970	tgg Trp	caa Gln	ccá Pro	gac Asp	97!	t ccg Pro		2928
tca Ser	tgc Cys	ata Ile	gct Ala 980	gct Ala	tgt Cys	ggt Gly	Gly	aat Asn 985	ctg Leu	aca Thr	ggc Gly	cct Pro	gct Ala 990	Gly	a gtg Y Val		2976
att Ile	tta Leu	tcc Ser 995	cca Pro	aac Asn	tac Tyr	cca Pro	cag Gln 1000	Pro	tac Tyr	cct Pro	cct Pro	999 999	L	ag g ys (	gag to Glu C	gt ys	3024
gac Asp	tgg Trp 1010	Arg	att Ile	aag Lys	gtg Val	aac Asn 101	Pr	a ga o As	c tt p Ph	t gt e Va	c att	e Ā			ata Ile		3069
ttc Phe	aaa Lys 1025	Ser	ttt Phe	agc Ser	atg Met	gag Glu 103	Pr	a ag o Se	t ta r Ty	c ga r As	c tto p Pho 103	e L			atc Ile		3114
	gaa Glu 1040	Gly	aag Lys	gac Asp	tcc Ser	aac Asn 104	Se	c cc r Pr	a ct o Le	g at u Il	c gga e Gly 105	y S			cag Gln		3159
ggt Gly	tct Ser 1055	caa Gln	gcc Ala	cca Pro	gag Glu	agg Arg 106	I1	t ga e Gl	g ag u Se	c ag r Se	t ggt r Gly 106	/ A	ac sn	agc Ser	ctc Leu		3204 ⁻
ttc Phe	ctg Leu 1070	Ala	ttc Phe	ag <u>g</u> Arg	agt Ser	gat Asp 107	Ala	c tc a Se:	t gt r Va	t gg 1 Gl	c ctg y Lei 108	ı S	cc (	999 999	ttt Phe		3249
	att Ile 1085	gaa Glu	ttt Phe	aaa Lys	gag Glu	aaa Lys 109	Pro	a cg	g ga g Gl	a gc	t tgo a Cys 109	3 P	tt q he i	gac Asp	cct Pro		3294
	aac Asn 1100	ata Ile	atg Met	aac Asn	999 Gly	aca Thr 110	Arg	g att	t gg e Gl	a acg	g gad r Asp 111	) Pl	tt a he 1	aag Lys	ctg Leu		3339
ggc	tct Ser 1115	aca Thr	gtt Val	acc Thr	tat Tyr	caa Gln 1120	Cys	gao S Asi	c tci p Sei	t ggi r Gly	t tac 7 Tyr 112	L	ag a	att [le	gtg Val		3384
gat Asp	ccc Pro 1130	tca Ser	tcc Ser	att Ile	gag Glu	tgt Cys 1135	Va]	g aca L Thi	ggg	g gct / Ala	gat Asp 114	G]	gg a	ys aag	ccg Pro	:	3429

tcc Ser	tgg Trp 1145	gac Asp	cgg Arg	gca Ala	ctg Leu	cct Pro 1150	gcc Ala	tgc Cys	caa Gln	gca Ala	ccc Pro 1155	tgt Cys	gga Gly	ggc Gly	3474	•
caa Gln	tac Tyr 1160	atg Met	ggc	tcg Ser	gag Glu	999 Gly 1165	gta Val	gtt Val	ttg Leu	tca Ser	cca Pro 1170	aac Asn	tac Tyr	cct Pro	3519	)
cat His	aac Asn 1175	tac Tyr	acg Thr	gct Ala	G1y 993	cag Gln 1180	ata Ile	tgc Cys	atc Ile	tat Tyr	tcc Ser 1185	atc Ile	acg Thr	gtg Val	3564	Ī
						ttt Phe 1195									3609	•
		Asn				gaa Glu 1210									3654	<b>1</b>
gcc Ala	agg Arg 1220	ctt Leu	ctc Leu	agt Ser	tct Ser	ctc Leu 1225	tct Ser	ggt Gly	tcc Ser	cat His	tca Ser 1230	ggt Gly	gaa Glu	aca Thr	3699	€
						aat Asn 1240									3744	1
aag Lys	agc Ser 1250	gga Gly	gct Ala	tct Ser	gca Ala	cgg Arg 1255	ggt Gly	ttc Phe	cac His	ttc Phe	gtc Val 1260	tac Tyr	caa Gln		3789	9
						acg Thr 1270									3834	1
aga Arg	tat Tyr 1280	Gly	aga Arg	agg Arg	att Ile	ggt Gly 1285	tct Ser	gag Glu	ttc Phe	tct Ser	gca Ala 1290	ggc Gly	tcc Ser	atc Ile	387	Э
gtc Val	cga Arg 1295	ttc Phe	gag Glu	tgc Cys	aac Asn	cca Pro 1300	ggt Gly	tac Tyr	ctg Leu	ctg Leu	caa Gln 1305	ggc Gly	tcc Ser	aca Thr	3924	4
gcc Ala	atc Ile 1310	cgt Arg	tgt Cys	cag Gln	tct Ser	gtg Val 1315	cca Pro	aac Asn	gct Ala	ttg Leu	gcc Ala 1320	cag Gln	tgg Trp	aat Asn	3969	9
gac Asp	acc Thr 1325	Ile	cca Pro	agc Ser	tgt Cys	gta Val 1330	gtt Val	cca Pro	tgc Cys	agt Ser	ggc Gly 1335	aat Asn	ttc Phe	act Thr	4014	4
		Arg				tta Leu 1345	Ser								405	9
		Asn				gta Val 1360									410	4
tca Ser	999 Gly 1370	Ile	cag Gln	atc Ile	caa Gln	gtg Val 1375	Ile	agc Ser	ttt Phe	gcc Ala	acg Thr 1380	gag Glu	cag Gln	aac Asn	414	9

	gac Asp 1385	tcc Ser	ctg Leu	gag Glu	atc Ile	cat His 1390	gac Asp	gga Gly	gga Gly	gac Asp	atg Met 1395	acg Thr	gcc Ala	ccc Pro	4194
	ctg Leu 1400														4239
	acc Thr 1415						Leu					Āsp			4284
	gcc Ala 1430														4329
	gcg Ala 1445						Leu							ata Ile	4374
	gac Asp 1460														4419
cct Pro	999 Gly 1475	Tyr	acc Thr	ttg Leu	cag Gln	ggc Gly 1480	cgc Arg	tca Ser	cac His	att Ile	tct Ser 1485	tgt Cys	atg Met	ecg Pro	4464
	act Thr 1490														4509
	tgt Cys 1505														4554
	ggc Gly 1520														4599
aag Lys	ata Ile 1535	tcc Ser	ctg Leu	ccc Pro	att Ile	ggc Gly 1540	tat Tyr	ggt Gly	gca Ala	cat His	atc Ile 1545	caa Gln	ttt Phe	ctg Leu	4644
	ttc Phe 1550												cag Gln		4689
	cct Pro 1565														4734
gac Asp	ctg Leu 1580	cct Pro	gcg Ala	tca Ser	ctg Leu	ctg Leu 1585	agc Ser	acc Thr	aca Thr	cat His	gaa Glu 1590	acc Thr	ctc Leu	atc Ile	4779
	ttc Phe 1595										gga Gly 1605				4824
	tac Tyr 1610	caa Gln	gct Ala	tat Tyr	gag Glu	tta Leu 1615	cag Gln	aac Asn	tgc Cys	ccg Pro	gac Asp 1620	cca Pro	ccc Pro	gca Ala	4869

							atc Ile 1630										4914
	Ser						tac Tyr 1645				Ile						4959
	cct Pro	gtg Val 1655	ctc Leu	acc Thr	tgc Cys	cag Gln	cat His 1660	gly ggc	act Thr	gac Asp	agg Arg	aac Asn 1665	Trp	aac Asn	tac Tyr		5004
							gct Ala 1675										5049
							tcc Ser 1690										5094
			Lys				tgg Trp 1705	Leu					Pro				5139
			Tyr				acc Thr 1720										5184
							gat Asp 1735						Ser				5229
۰	ctc Leu	999 Gly 1745	gtc Val	ttc Phe	agt Ser	gga Gly	aac Asn 1750	act Thr	gcc Ala	ctc Leu	gag Glu	aca Thr 1755	gca Ala	tac Tyr	agc Ser	:	5274
							ctc Leu 1765										5319
							aat Asn 1780										5364
							gtg Val 1795										5409
							999 Gly 1810										5454
							gga Gly 1825										5499
		tca Ser 1835					caa Gln 1840										5544
		tgc Cys 1850					gtg Val 1855					tct Ser 1860		gtg Val			5589

						ggc Gly 1870										5634
						gag Glu 1885										5679
		Thr				gaa Glu 1900										5724
						caa Gln 1915									٠.	5769
						tcc Ser 1930						Ser				5814
						aca Thr 1945										5859
						gct Ala 1960										5904
	aag Lys 1970					tta Leu 1975										5949
						tgc Cys 1990										5994
						agg Arg 2005										6039
						ctt Leu 2020										6084
cca Pro	gag Glu 2030	gct Ala	cca Pro	gga Gly	aat Asn	ggc Gly 2035	tcg Ser	ttc Phe	aca Thr	ggc Gly	aat Asn 2040	gag Glu	ttc Phe	acc Thr	•	6129
	gac Asp 2045					tat Tyr 2050										6174 ·
_	gcc Ala 2060					act Thr 2065										6219
	agc Ser 2075					cca Pro 2080										6264
	agc Ser 2090					ctg Leu 2095								ctg Leu		6309

_	tcg Ser 2105	gga Gly	tca Ser	ttg Leu	aat Asn	gaa Glu 2110	tat Tyr	gga Gly	gct Ala	caa Gln	gtt Val 2115	ctc Leu	ctc Leu	agc Ser		6354
	agt Ser 2120	cct Pro	ggc Gly	tac Tyr	ttc Phe	ttg Leu 2125	cag Gln	ggt Gly	cag Gln	agg Arg	ctg Leu 2130	ttg Leu	cag Gln	tgc Cys		6399
	gcc Ala 2135	aat Asn	999 999	acc Thr	tgg Trp	aac Asn 2140	act Thr	gag Glu	gag Glu	gac Asp	aga Arg 2145	ccc Pro	aga Arg	tgt Cys		6444
aaa Lys	gtc Val 2150	atc Ile	tcc Ser	tgt Cys	gga Gly	agc Ser 2155	ctg Leu	tcc Ser	ttt Phe	ccc Pro	cca Pro 2160	aat Asn	ggt Gly	aac Asn		6489
aag Lys	ata Ile 2165	Gly	acg Thr	.ctc Leu	act Thr	atg Met 2170	tat Tyr	gga Gly	gcc Ala	acc Thr	gcc Ala 2175	atc Ile	ttt Phe	acc Thr		<b>6534</b>
tgc Cys	aat Asn 2180	acc Thr	ggc Gly	tac Tyr	aca Thr	ctt Leu 2185	gta Val	ggc Gly	tcc Ser	cat His	gtc Val 2190	cgg Arg	gag Glu	tgc Cys	٠	6579
		Asn				agc Ser 2200						Cys				6624
ggt Gly	cat His 2210	Cys	ggc	tct Ser	cca Pro	gac Asp 2215	ccc Pro	att Ile	gtg Val	aat Asn	ggc Gly 2220	His	atc Ile	agt Ser		6669
ggc Gly	gat Asp 2225	Gly	ttc Phe	agc Ser	tac Tyr	agg Arg 2230	gac Asp	aca Thr	gtg Val	gtc Val	tac Tyr 2235	Gln	tgc Cys	aac Asn		6714
		Phe				ggc Gly 2245	acg Thr	tct Ser	gtg Val	agg Arg	att Ile 2250	Cys	ctg Leu	cag Gln		6759
gac Asp	cac His 2255	Lys	tgg Trp	tcg Ser	Gly 999	cag Gln 2260	Thr	ccc Pro	gtt Val	tgc Cys	gtc Val 2265	Pro	atc Ile	aca Thr		6804
tgt Cys	gga Gly 2270	His	cct Pro	gga Gly	aac Asn	cct Pro 2275	Ala	cat His	ggc Gly	ctc Leu	acc Thr 2280	Asn	ggc Gly	agc Ser		6849
		Asn				ctt Leu 2290	Val					His				6894
	ctg Leu 2300	Leu	cag Gln	ggt Gly	gcc Ala	tcc Ser 2305	Arg	gcc Ala	caa Gln	tgt Cys	cgg Arg 2310	Ser	aac Asn	ggc Gly		6939
		Ser				cct Pro 2320	Ile					Asn				6984
		Gly				aat Asn 2335	Ala					Gln				7029

	cca Pro 2345										atg Met 2355				7074
_	aag Lys 2360	<b>Gl</b> y 999	ttc Phe	tac Tyr	cta Leu	ctg Leu 2365	ggc	tct Ser	tct Ser	gcc Ala	ctg Leu 2370	acc Thr	tgc Cys	atg Met	7119
gca	agt Ser 2375														7164
	tgt Cys 2390														7209
	ttg Leu 2405														7254
	cag Gln 2420										tgc Cys 2430	Gln			7299
_	cac His 2435										gga Gly 2445				734 <b>4</b>
	ttt Phe 2450													ctt Leu	7389
gjå aaa	gat Asp 2465	gag Glu	ttt Phe	aag Lys	aca Thr	aag Lys 2470	agt Ser	ctt Leu	ttg Leu	cga Arg	ttc Phe 2475	tcc Ser	tgt Cys	gag. Glu	7434
	ggc Gly 2480														7479
	999 Gly 2495										gag Glu 2505				7524
	gga Gly 2510														7569
	gga Gly 2525										gcc Ala 2535				7614
	tac Tyr 2540									His	tgc Cys 2550				7659
	aca Thr 2555	tgg Trp	aca Thr	ggc Gly	aca Thr	gcc Ala 2560	cct Pro	gac Asp	tgt Cys	aca Thr	atc Ile 2565	atc Ile			. 7704
	gat Asp 2570										ttt Phe 2580				7749

ttc ac Phe Th 25	r Phe	aac Asn												7794
ctg at Leu Me . 26	t Glu	g ccc 1 Pro												7839
ggt ac Gly Th 26	r Trp													7884
Ser Gl														7929
ttc cg Phe Ar 26														7974
cag ct Gln Le 26														8019
tgg aa Trp Ly 26												ggc Gly	_	8064
cca gg Pro Gl 26														8109
ttt aa Phe Ly 27														8154
gtg gg Val Gl 27	y Ser													8199
ggc at Gly Il 27														8244
gac cc Asp Pr 27	o Gly	e act y Thr	ccc Pro	cac His	ttt Phe 2755	gga Gly	ata Ile	cag Gln	aat Asn	agc Ser 2760	tcg Ser	aaa Lys	gga Gly	8289
tac ga Tyr Gl 27	u Val	gga Gly	agc Ser	act Thr	gtg Val 2770	ttc Phe	ttc Phe	aga Arg	tgt Cys	aga Arg 2775	aaa Lys	ggt Gly	tac Tyr	8334
cac at His Il 27	e Glr	a ggc n Gly	tcc Ser	act Thr	acc Thr 2785	cgg Arg	acc Thr	tgt Cys	ctt Leu	gcc Ala 2790	aac Asn	ctc Leu	acg Thr	8379
tgg ag Trp Se 27	r Gly	a atc / Ile	cag Gln	aca Thr	gag Glu 2800	tgc Cys	atc Ile	ccc Pro	cat His	gcc Ala 2805	tgc Cys	cgg Arg	cag Gln	8424
cca ga Pro Gl 28	u Thr	c cca c Pro	gcg Ala	cat His	gca Ala 2815	gat Asp	gtg Val	aga Arg	gcc Ala	atc Ile 2820	gat Asp	ctt Leu	cca Pro	8469

gct Ala	ttt Phe 2825	ggc	tac Tyr	acc Thr	tta Leu	gtc Val 2830	Tyr	acc Thr	tgt Cys	cat His	cca Pro 2835	Gly	ttt Phe	ttc Phe		8514
Leu	gct Ala 2840	Gly										Āsp				8559
	aca Thr 2855	Gly										Val				8604
	aat Asn 2870											Āsp			•	8649
ttc Phe	atc Ile 2885	aac Asn	tcg Ser	gtg Val	tgg Trp	aag Lys 2890	Gly	tat Tyr	tat Tyr	gaa Glu	tat Tyr 2895	Leu	ggc Gly	aag Lys		8694
aga Arg	cag Gln 2900	Pro	gcg Ala	act Thr	ctc Leu	act Thr 2905	Val	gac Asp	tgg Trp	ttt Phe	aat Asn 2910	Ala	acc Thr	agc Ser		8739
	aag Lys 2915															8784
	ctg Leu 2930										cac His 2940	Leu				8829
	gcc Ala 2945															8874
	gaa Glu 2960															8919
	gag Glu 2975										ata Ile 2985				•	8964
	ttc Phe 2990															9009
	gca Ala 3005															9054
	gca Ala 3020										cta Leu 3030		cta Leu			9099
gjy aaa	ttt Phe 3035	gca Ala	ttt Phe	tac Tyr	ctc Leu	tac Tyr 3040	aaa Lys	cac His	aga Arg	aca Thr	aga Arg 3045	cca Pro	aaa Lys	gtt Val		9144
_	tac Tyr 3050	aat Asn	ggc Gly	tat Tyr	gct Ala	ggc Gly 3055	cat His	gaa Glu	aac Asn	agt Ser	aat Asn 3060	gga Gly	caa Gln	gct Ala		9189

tca ttt gaa aac ccc atg tat gat aca aac tta aaa ccc aca gag Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn Leu Lys Pro Thr Glu 3065 3070 3075	9234
gcc aag gct gtg agg ttt gac acg act ctg aac aca gtg tgt aca Ala Lys Ala Val Arg Phe Asp Thr Thr Leu Asn Thr Val Cys Thr 3080 3085 3090	9279
gtg gta tagccctcag tgccccctag gaccgactca tagccatacc tctgatggac Val Val 3095	9335
aagcagtaaa atcctttggt gccatatacc accccttct actcttacct tgctgcagca	9395
acgttggcca tcgtctgctg gcataacgca gtgggaatgt cttctccatc atgcccgagt	9455
cttctgagga tcaaattgca aatacacctt catctggaaa gtggcttata aaaagcccgg	9515
ttgctgcatc caccagaaat caagaccccg acaacagcga gggcaaggaa gactgcagag	9575
teteccagae eggtggtact taatgeetet gaettttgtg tetetgtgtg gecaggatge	9635
ctttggtgta gtcttctgag cacaccgata catccctcag gtgcggcgac aacatggtag	9695
ccacttgatg tgtgttttgt gtttttctgt tttcttttca accctatcca ctggacatga	9755
attetttaca aaagaaaage etteetggag aagaegeett etggaaaatg cacacaga	. 9815
cgctttgctt ctgccctgcc tgagacagga gctctccgga tcttcaggct ccactgggcg	9875
tecateagee actagggatg titgeagate teacagteag agetggteea teccagagtt	9935
ttttgatgct caacattttg cactagtgtg tcaagaatga ctaagtctga tttctaaaca	9995
aactatttcc acagggtttg tatccactat acattgtaca tacgcatttt ctcataccgt	10055
atteteaage aaatgatgee aetgteagtt aagtttggga tgeaaaggaa ggteteeeeg	10115
gatacagaac agattttgaa aaggagatag tgctagtaat gctgaagaag ttactctttt	10175
aattgcttct gttggccaca ttttcatgtc aaattcattg cctacttcca gtggtggaaa	10235
tgaagcccgt gtattcccct tggtatcccc ccacttcatg tgcatacgac tattgtctac	10295
accatactaa tcaataacag ggggctccag caatgtctgt tttccatgta cagatgtgaa	10355
tagtaattta ttttaggtag ctcatgaact cagttcacag tgaagtcttc ccttccggat	10415
tgtttccttt ctctgttttg taacatcacc ctcccagaat gcattgagag tctatctcac	10475
agccacaccc aagctcagag gaatcgaaag ggaaatcaaa gaagtccaaa tcagaatcgg	10535
aagggcaggc accgctcgca caccctcatg atgatctgtt ttatagatta tttgcctttc	10595
tgcaaaaaa aaatcattac agtgattttt gaaacattaa aattccttac tgatagacta	10655
tctattgtga tatatataag ataggtggta tggccaacag ggataaaata aacagcctaa	10715
agacaaggca gggctagaga aatgtctgta agaaatttca aagagaagat catgtttatt	10775
tttatttata tttgtttgat aaaagtattt ttggaaatat aatgcttatt ttattatttg	10835
acgtttcatg cacagtccac gtggtaaaaa tccccccttt gtacatccca gatttgcact	10895

WO 02/10199

gatacatggg	tcaggatgtc	atgctgatgt	tctgtttgct	gtggtgacta	cattcatgcc	10955
tagctttaag	acaggtggat	ctgtctatct	acatgatgtt	taaatgcagg	acttcccaga	11015
ggacagtggg	taacggaaca	tggcttgctt	gcggctttgg	aagttcagca	ttctgagcgt	11075
tccagaggcc	cggctgggct	ccctccttct	agcccactgt	tcttgcaagg	gctgtctgtt	11135
gtgtgccagg	gctcctgact	tcttctgctg	acactctgtc	cactgggttc	catattccag	11195
gactccatgt	cctaggaaag	agttttgaca	taggttcctc	cagccaagcc	gacacacatc	11255
cacggggttc	ctctgggctc	cacagaggtt	cttcattggc	tccctgggat	aaattcagat	11315
gatgtcagca	agagtgtgct	tctataccac	acattgagcc	aaaacaaaac	agagaacgtc	11375
agaaggtcca	cggaccagag	tgcgcaaggg	agaacagggt	tactatatat	attagatgta	11435
tataaaaaca	cacacacaaa.	catatatata	ttgtacatat	ctaagtttga	gtcactcaga	11495
ctaggtgcaa	aatgctgact	ttggagtcta	aactaacgtc	tctgtcccca	catccctggc	11555
ctctttcctg	gccagttaca	ttaagaagac	ttgacttaga	cagggcatac	atacatgcaa	11615
ggaaccacat	catcagacca	gtgtcgtttt	cctttgtgtg	caaactgacc	tacagctacc	11675
agactgcatc	atggtattta	aaaccaacat	acaatattga	gcggcactct	cagttgagag	11735
cctagctcaa	tccttcctag	gannnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnnn	11795
nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnncaccagg	tctcagaggc	attgaagacc	11855
tagcaggaca	gtcaggaaca	ccttcctcag	tgaggtctag	acttttccct	gaagcgccca	11915
gagcacagtg	aggagtcacg	ctctatgaat	gacaggttat	gtgctttgaa	gctgttcaac	11975
tgttgcttgt	ctttgcccat	cttgccttca	ggctagctgc	aataattttt	ttcttctgta	12035
aaatattttg	taaacaataa	caacaacaac	aaaagctatt	ataaaaaggg	agaaaagaaa	12095
gctggcatta	tgatcaggaa	aaccatccat	tcttgctgcc	cccccctcc	tgtctccacc	12155
acacgctgct	gtcacaacgt	aggtgcggaa	gacctttttg	tacagagata	tatttttat	12215
gaagaatttg	taaaattatt	aaatatgctg	taattttttg	attaatgtag	gtaaattgtt	12275
aaaaaataaa	tgtttttaca	atatgaaact	gtaattttcc	cccataatgt	aacattaccc	12335
tctctagctg	attttcagtt	ccaatcctat	tcgaacatgt	attaatatta	aggcggcctg	12395
ttaaaatgaa	cagtatcttt	ttttttgtca	aaaaaaatta	taaagagagt	gtaacataac	12455
ctgtgtaatg	ccacctatct	ttaaagcaaa	tcagagttct	aattaaatat	ttaattttag	12515
atttcaaaaa		•				12525

<210> 4

<211> 3095

<212> PRT

## <213> Rattus rattus

<400> 4

Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val Leu Tyr Val Leu Thr
5 10 15

Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met Ser Asn Gln Met Trp
20 25 30

Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser Pro Gly Phe Lys Ala 35 40 45

Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly Asp Pro Gly Ile Pro 50 55 60

Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu His Gly Asp Thr Leu 65 70 75 80

Thr Phe Glu Cys Gln Ala Ala Phe Glu Leu Val Gly Glu Arg Val Ile 85 90 95

Thr Cys Gln Arg Asn Asn Gln Trp Ser Gly Asn Lys Pro Ser Cys Val

Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser Gly Ile Ile Leu Ser 115 120 125

Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met Asn Cys Val Trp Leu 130 135 140

Ile Ile Ser Glu Pro Gly Ser Arg Ile His Leu Ile Phe Asn Asp Phe 145 150 155 160

Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val Lys Asp Asp Gly Ile 165 . 170 175

Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly Asn Glu Val Pro Ala 180 185 190

Gln Leu Ala Xaa Ser Gly His Ile Val Arg Leu Glu Phe Gln Ser Asp 195 200 205

His Ser Thr Thr Gly Arg Gly Phe Asn Ile Ile Tyr Thr Thr Phe Gly 210 215 220

- 44 -

Gln Asn Glu Cys His Asp Pro Gly Ile Pro Val Asn Gly Arg Arg Phe 230

Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser Phe His Cys Asp Asp

Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile Thr Cys Ile Leu Gln

Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro Arg Cys Glu Ala Pro 280 285

Cys Gly Gly His Leu Thr Ala Ser Ser Gly Val Ile Leu Pro Pro Gly 290

Trp Pro Gly Tyr Tyr Lys Asp Ser Leu Asn Cys Glu Trp Val Ile Glu -320

Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe Asp Arg Phe Gln Thr 325

Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp Gly Pro Thr Ser Ser

Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln Ala Pro Gln Phe Leu

Ile Ser Thr Gly Asn Tyr Met Tyr Leu Leu Phe Thr Thr Asp Ser Ser 375

Arg Ala Ser Val Gly Phe Leu Ile His Tyr Glu Ser Val Thr Leu Glu 395

Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val Asn Gly His Arg His 415 405

Gly Ser Asn Phe Gly IIe Arg Ser Thr Val Thr Phe Ser Cys Asp Pro

Gly Tyr Thr Leu Ser Asp Asp Pro Leu Ile Cys Glu Lys Asn His 440

Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala Leu Cys Gly Gly Tyr 450

Ile His Gly Lys Ser Gly Thr Val Leu Ser Pro Gly Phe Pro Asp Phe

Tyr Pro Asn Ser Leu Asn Cys Thr Trp Thr Ile Glu Val Ser His Gly 485 490 495

Lys Gly Val Gln Met Asn Phe His Thr Phe His Leu Glu Ser Ser His 500 505 510

Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe Ser Glu Pro Val Ala 515 520 525

Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile Lys Ala Gly Leu Phe 530 540

Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser Asp Phe Ser Ile Ser 545 550 555 560

Tyr Glu Gly Phe Asn Ile Thr Phe Ala Glu Tyr Asp Leu Glu Pro Cys 565 570 575

Asp Asp Pro Gly Val Pro Ala Tyr Ser Arg Arg Ile Gly Phe Gln Phe 580 585 590

Gly Val Gly Asp Thr Leu Ala Phe Thr Cys Phe Gln Gly Tyr Arg Leu 595 600 605

Glu Gly Ala Thr Lys Leu Thr Cys Leu Gly Gly Arg Arg Val Trp 610 615 620

Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys Gly Ala Ser Val Lys 625 630 635 640

Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe Pro Ser Asn Tyr Asp 645 650 655

Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr Glu Ala Gly Lys Gly 660 665 670

Ile His Leu Arg Ala Arg Thr Phe Gln Leu Phe Glu Gly Asp Thr Leu 675 680 685

Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser Arg Ser Leu Gly Val Phe 690 695 700

Thr Arg Ser Glu Leu Met Gly Leu Val Leu Asn Ser Thr Ser Asn His 705 710 715 720

Leu Arg Leu Glu Phe Asn Ser Asn Gly Ser Asp Thr Ala Gln Gly Phe 725 730 735

- Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys Cys Glu Asp Pro Gly 740 745 750
- Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Asp Gly His Phe Thr Asp 755 760 765
- Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr Ala Met His Gly Ser 770 780
- Ser Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg Val Trp Asp Lys Pro 785 790 795 800
- Met Pro Ser Cys Val Ala Glu Cys Gly Gly Leu Val His Ala Ala Thr 805 810 815
- Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala Pro Tyr Asp Asn Asn 820 825 830
- Leu His Cys Thr Trp Thr Ile Glu Ala Asp Pro Gly Lys Thr Xaa Ser 835 840 845
- Leu His Phe Ile Val Phe Asp Thr Glu Thr Ala His Asp Ile Leu Lys 850 855 860
- Val Trp Asp Gly Pro Val Asp Ser Asn Ile Leu Leu Lys Glu Trp Ser 865 870 875 880
- Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr Phe Asn Ser Leu Thr 885 890 895
- Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys Ser Gly Phe Ser Ile 900 905 910
- Gln Phe Ser Thr Ser Ile Ala Ser Thr Cys Asn Asp Pro Gly Met Pro 915 920 925
- Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu Pro Gly Asp Thr Ile 930 935 940
- Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln Gly Gln Ala Lys Ile 945 950 955 960
- Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp Gln Pro Asp Pro Pro 965 970 975
- Ser Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr Gly Pro Ala Gly Val 980 985 990

- Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro Pro Gly Lys Glu Cys
  1000 1005
- Asp Trp Arg Ile Lys Val Asn Pro Asp Phe Val Ile Ala Leu Ile .... 1010 1015 1020
- Phe Lys Ser Phe Ser Met Glu Pro Ser Tyr Asp Phe Leu His Ile
- Tyr Glu Gly Lys Asp Ser Asn Ser Pro Leu Ile Gly Ser Phe Gln 1040 1045 1050
- Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser Ser Gly Asn Ser Leu 1055 1060 1065
- Phe Leu Ala Phe Arg Ser Asp Ala Ser Val Gly Leu Ser Gly Phe
- Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu Ala Cys Phe Asp Pro 1085 1090 1095
- Gly Asn Ile Met Asn Gly Thr Arg Ile Gly Thr Asp Phe Lys Leu 1100 1105 1110
- Gly Ser Thr Val Thr Tyr Gln Cys Asp Ser Gly Tyr Lys Ile Val
- Asp Pro Ser Ser Ile Glu Cys Val Thr Gly Ala Asp Gly Lys Pro 1130 1135 1140
- Ser Trp Asp Arg Ala Leu Pro Ala Cys Gln Ala Pro Cys Gly Gly 1145 1150 1155
- Gln Tyr Met Gly Ser Glu Gly Val Val Leu Ser Pro Asn Tyr Pro 1160 1165 1170
- His Asn Tyr Thr Ala Gly Gln Ile Cys Ile Tyr Ser Ile Thr Val 1175 1180 1185
- Pro Lys Glu Phe Val Val Phe Gly Gln Phe Ala Tyr Phe Gln Thr 1190 1195 1200
- Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp Gly Thr His Pro Gln 1205 1210 1215
- Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser His Ser Gly Glu Thr 1220 1225 1230

PCT/US01/23232 WO 02/10199

- 48 -

Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu Leu Arg Phe Ser Ala tm. 1235

Lys Ser Gly Ala Ser Ala Arg Gly Phe His Phe Val Tyr Gln Ala 1255

Val Pro Arg Thr Ser Asp Thr Gln Cys Ser Ser Val Pro Glu Pro 1270

Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe Ser Ala Gly Ser Ile 1280 1285 1290

Val Arg Phe Glu Cys Asn Pro Gly Tyr Leu Leu Gln Gly Ser Thr 1295 1300 1305

Ala Ile Arg Cys Gln Ser Val Pro Asn Ala Leu Ala Gln Trp Asn 1315 1320 1310

Asp Thr Ile Pro Ser Cys Val Val Pro Cys Ser Gly Asn Phe Thr

Gln Arg Arg Gly Thr Ile Leu Ser Pro Gly Tyr Pro Glu Pro Tyr 1345 1350

Gly Asn Asn Leu Asn Cys Val Trp Lys Ile Ile Val Ser Glu Gly 1360

Ser Gly Ile Gln Ile Gln Val Ile Ser Phe Ala Thr Glu Gln Asn 1375 1380

Trp Asp Ser Leu Glu Ile His Asp Gly Gly Asp Met Thr Ala Pro 1390

Arg Leu Gly Ser Phe Ser Gly Thr Thr Val Pro Ala Leu Leu Asn 1405 1410 1400

Ser Thr Ser Asn Gln Leu Cys Leu His Phe Gln Ser Asp Ile Ser 1420 1425 1415

Val Ala Ala Gly Phe His Leu Glu Tyr Lys Thr Val Gly Leu 1430 1435 1440

Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser Asn Gly Ile Lys Ile 1445 1450

Gly Asp Arg Tyr Met Val Asn Asp Val Leu Ser Phe Gln Cys Glu 1460 1465 1470

- Pro Gly Tyr Thr Leu Gln Gly Arg Ser His Ile Ser Cys Met Pro 1475 1480 1485
- Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser Pro Leu Cys Ile Ala 1490 1495 1500
- Thr Cys Gly Gly Thr Leu Thr Ser Met Ser Gly Val Ile Leu Ser 1505 1510 1515
- Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn Leu Asp Cys Thr Trp
  1520 1525 1530
- Lys Ile Ser Leu Pro Ile Gly Tyr Gly Ala His Ile Gln Phe Leu 1535 1540 1545
- Asn Phe Ser Thr Glu Ala Asn His Asp Tyr Leu Glu Ile Gln Asn 1550 1560
- Gly Pro Tyr His Ser Ser Pro Met Met Gly Gln Phe Ser Gly Pro 1565 1570 1575
- Asp Leu Pro Ala Ser Leu Leu Ser Thr Thr His Glu Thr Leu Ile 1580 1585 1590
- Arg Phe Tyr Ser Asp His Ser Gln Asn Arg Gln Gly Phe Lys Leu 1595 1600 1605
- Ser Tyr Gln'Ala Tyr Glu Leu Gln Asn Cys Pro Asp Pro Pro Ala 1610 1620
- Phe Gln Asn Gly Phe Met Ile Asn Ser Asp Tyr Ser Val Gly Gln 1625 1630 1635
- Ser Ile Ser Phe Glu Cys Tyr Pro Gly Tyr Ile Leu Leu Gly His 1640 1645 1650
- Pro Val Leu Thr Cys Gln His Gly Thr Asp Arg Asn Trp Asn Tyr 1655 1660 1665
- Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly Tyr Asn Val Thr Ser 1670 1680
- Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro Asp Glu Tyr Pro 1685 1690 1695
- Ile Leu Lys Asp Cys Leu Trp Leu Val Thr Val Pro Pro Gly His 1700 1705 1710

1940

Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr Glu Ala Val Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln Asn Ser Pro Gln 1735 Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu Thr Ala Tyr Ser 1745 1750 1755 Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser Asp Phe Ser Asn 1765 1770 Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe Gln Leu Lys Arg 1775 1780 Cys Pro Pro Pro Pro Val Val Pro Gln Ala Asp Leu Leu Thr Glu 1800 1790 1795 Asp Glu Asp Phe Glu Ile Gly Asp Phe Val Lys Tyr Gln Cys His 1810 1805 Pro Gly Tyr Thr Leu Leu Gly Ser Asp Thr Leu Thr Cys Lys Leu 1825 1830 Ser Ser Gln Leu Leu Phe Gln Gly Ser Pro Pro Thr Cys Glu Ala 1840 Gln Cys Pro Ala Asn Glu Val Arg Thr Glu Ser Ser Gly Val Ile 1860 1855 Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe Asn Ser Gln Thr Cys Ala Trp Ser Ile Lys Val Glu Pro Asn Phe Asn Ile Thr Leu Phe 1880 1885 1890 Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp Ala Leu Glu Val 1895 1900 Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu Val Val Leu Ser 1910 1915 Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser Arg Ser Asn His 1930 1935 1925 Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr Ser Lys Lys Gly

- Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser Leu Thr Ser Thr 1955 1960 1965
- Leu Lys Asn Gly Gly Val Leu Asn Lys Thr Ala Gly Ala Leu Gly 1970 1975 1980
- Ser Lys Val Gln Tyr Phe Cys Lys Pro Gly Tyr Arg Met Ile Gly ... 1985 1990 1995
- His Ser Asn Ala Thr Cys Arg Arg Asn Pro Val Gly Val Tyr Gln 2000 2005 2010
- Trp Asp Ser Met Ala Pro Leu Cys Gln Ala Val Ser Cys Gly Ile 2015 2020 2025
- Pro Glu Ala Pro Gly Asn Gly Ser Phe Thr Gly Asn Glu Phe Thr 2030 2035 2040
- Leu Asp Ser Lys Val Thr Tyr Glu Cys Asn Glu Gly Phe Lys Leu 2045 2050 2055
- Asp Ala Ser Gln Gln Ala Thr Ala Val Cys Gln Glu Asp Gly Leu 2060 2065 2070
- Trp Ser Asn Arg Gly Lys Pro Pro Thr Cys Lys Pro Val Pro Cys 2075 2080 2085
- Pro Ser Ile Glu Gly Gln Leu Ser Glu His Val Leu Trp Arg Leu 2090 2095 2100
- Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln Val Leu Leu Ser 2105 2110 2115
- Cys Ser Pro Gly Tyr Phe Leu Gln Gly Gln Arg Leu Leu Gln Cys 2120 2125 2130
- Gln Ala Asn Gly Thr Trp Asn Thr Glu Glu Asp Arg Pro Arg Cys 2135 2140 2145
- Lys Ile Gly Thr Leu Thr Met Tyr Gly Ala Thr Ala Ile Phe Thr 2165 2170 2175
- Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser His Val Arg Glu Cys 2180 2185 2190

Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu Thr Arg Cys Leu Ala Gly His Cys Gly Ser Pro Asp Pro Ile Val Asn Gly His Ile Ser Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val Val Tyr Gln Cys Asn . 2230 Pro Gly Phe Arg Leu Val Gly Thr Ser Val Arg Ile Cys Leu Gln Asp His Lys Trp Ser Gly Gln Thr Pro Val Cys Val Pro Ile Thr Cys Gly His Pro Gly Asn Pro Ala His Gly Leu Thr Asn Gly Ser Glu Phe Asn Leu Asn Asp Leu Val Asn Phe Thr Cys His Thr Gly Tyr Leu Leu Gln Gly Ala Ser Arg Ala Gln Cys Arg Ser Asn Gly Gln Trp Ser Ser Pro Leu Pro Ile Cys Arg Val Val Asn Cys Ser Asp Pro Gly Phe Val Glu Asn Ala Val Arg His Gly Gln Gln Asn Phe Pro Glu Ser Phe Glu Tyr Gly Thr Ser Val Met Tyr His Cys Lys Lys Gly Phe Tyr Leu Leu Gly Ser Ser Ala Leu Thr Cys Met Ala Ser Gly Leu Trp Asp Arg Ser Leu Pro Lys Cys Leu Ala Ile Ser Cys Gly His Pro Gly Val Pro Ala Asn Ala Val Leu Thr Gly Glu Leu Phe Thr Phe Gly Ala Thr Val Gln Tyr Ser Cys Lys Gly 

Gly Gln Ile Leu Thr Gly Asn Ser Thr Arg Val Cys Gln Glu Asp

- Ser His Trp Ser Gly Ser Leu Pro His Cys Ser Gly Asn Ser Pro to 2435 2446
- Gly Phe Cys Gly Asp Pro Gly Thr Pro Ala His Gly Ser Arg Leu 2450 2460
- Gly Asp Glu Phe Lys Thr Lys Ser Leu Leu Arg Phe Ser Cys Glu 2475 2475
- Met Gly His Gln Leu Arg Gly Ser Ala Glu Arg Thr Cys Leu Val 2480 2485 2490
- Asn Gly Ser Trp Ser Gly Val Gln Pro Val Cys Glu Ala Val Ser 2495 2500 2505
- Cys Gly Asn Pro Gly Thr Pro Thr Asn Gly Met Ile Leu Ser Ser 2510 2515 2520
- Asp Gly Ile Leu Phe Ser Ser Ser Val Ile Tyr Ala Cys Trp Glu 2525 2530 2535
- Gly Tyr Lys Thr Ser Gly Leu Met Thr Arg His Cys Thr Ala Asn 2540 2545 2550
- Gly Thr Trp Thr Gly Thr Ala Pro Asp Cys Thr Ile Ile Ser Cys 2555 2560 2565
- Gly Asp Pro Gly Thr Leu Pro Asn Gly Ile Gln Phe Gly Thr Asp 2570 2580
- Phe Thr Phe Asn Lys Thr Val Ser Tyr Gln Cys Asn Pro Gly Tyr 2585 2590 2595
- Leu Met Glu Pro Pro Thr Ser Pro Thr Ile Arg Cys Thr Lys Asp 2600 2605 2610
- Gly Thr Trp Asn Gln Thr Arg Pro Leu Cys Lys Ala Val Leu Cys 2615 2620 2625
- Ser Gln Pro Pro Ser Val Pro Asn Gly Lys Val Glu Gly Ser Asp 2630 2635 2640
- Phe Arg Trp Gly Ala Ser Ile Ser Tyr Ser Cys Val Asp Gly Tyr 2645 2650 2655
- Gln Leu Ser His Ser Ala Ile Leu Ser Cys Glu Gly Arg Gly Val 2660 2665 2670

Trp Lys Gly Glu Val Pro Gln Cys Leu Pro Val Phe Cys Gly Asp 2675 Pro Gly Thr Pro Ala Glu Gly Arg Leu Ser Gly Lys Ser Phe Thr Phe Lys Ser Glu Val Phe Ile Gln Cys Lys Pro Pro Phe Val Leu 2710 Val Gly Ser Ser Arg Arg Thr Cys Gln Ala Asp Gly Met Trp Ser 2725 2720 Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala His Thr Ala Cys Pro 2740 2735 Asp Pro Gly Thr Pro His Phe Gly Ile Gln Asn Ser Ser Lys Gly 2755 2750 Tyr Glu Val Gly Ser Thr Val Phe Phe Arg Cys Arg Lys Gly Tyr 2770 27.65 His Ile Gln Gly Ser Thr Thr Arg Thr Cys Leu Ala Asn Leu Thr 2785 Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro His Ala Cys Arg Gln 2800 Pro Glu Thr Pro Ala His Ala Asp Val Arg Ala Ile Asp Leu Pro Ala Phe Gly Tyr Thr Leu Val Tyr Thr Cys His Pro Gly Phe Phe 2830 Leu Ala Gly Gly Ser Glu His Arg Thr Cys Lys Ala Asp Met Lys 2850 Trp Thr Gly Lys Ser Pro Val Cys Lys Ser Lys Gly Val Arg Glu 2855 2860 Val Asn Glu Thr Val Thr Lys Thr Pro Val Pro Ser Asp Val Phe 2870 2875 . Phe Ile Asn Ser Val Trp Lys Gly Tyr Tyr Glu Tyr Leu Gly Lys 2890 2885

Arg Gln Pro Ala Thr Leu Thr Val Asp Trp Phe Asn Ala Thr Ser

Ser Lys Val Asn Ala Thr Phe Thr Ala Ala Ser Gln Val Gln Leu 2915 2920 2925

Glu Leu Thr Gly Val Tyr Lys Lys Glu Glu Ala His Leu Leu 2930 2935 2940

Lys Ala Phe His Ile Lys Gly Pro Ala Asp Ile Phe Val Ser Lys 2945 2950 2955

Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly Tyr Val Ser Ser Gly
2960 2965 2970

Leu Glu Arg Gly Gly Phe Ser Phe Gln Gly Asp Ile His Gly Lys 2975 2980 2985

Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln Asp Pro Ser Asn Ser 2990 2995 3000

Asp Ala Asp Ser Ser Asn His Tyr Gln Gly Thr Ser Ser Gly Ser 3005 3015

Val Ala Ala Ala Ile Leu Val Pro Phe Phe Ala Leu Ile Leu Ser 3020 3025 3030

Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg Thr Arg Pro Lys Val 3035 3040 3045

Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn Ser Asn Gly Gln Ala 3050 3055 3060

Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn Leu Lys Pro Thr Glu 3065 3070 3075

Ala Lys Ala Val Arg Phe Asp Thr Thr Leu Asn Thr Val Cys Thr 3080 3085 3090

Val Val 3095

<210> 5

<211> 2527

<212> PRT

<213> Homo sapiens

<220>

<221> misc

<222> (684)..(684)

<223> X = amino acid

<220>

<221> misc

(1134)..(1134) <222>

<223> X = amino acid

<400> 5

Lys Ser Cys Arg Asn Pro Pro Asp Pro Val Asn Gly Met Val His Val

Ile Lys Gly Ile Gln Phe Gly Ser Gln Ile Lys Tyr Ser Cys Thr Lys

Gly Tyr Arg Leu Ile Gly Ser Ser Ser Ala Thr Cys Ile Ile Ser Gly

Asp Thr Gln Asn Cys Pro Asp Pro Pro Pro Phe Gln Asn Gly Tyr Met

Ile Asn Ser Asp Tyr Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr

Pro Gly Tyr Ile Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly

Ile Asn Val Ile Trp Asp Asn Glu Thr Pro Ile Cys Asp Arg Ile Pro

Cys Gly Leu Pro Pro Thr Ile Thr Asn Gly Asp Phe Ile Ser Thr Asn

Arg Glu Asn Phe His Tyr Gly Ser Val Val Thr Tyr Arg Cys Asn Pro

Gly Arg Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly 150

Tyr Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro

Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr Val Pro

Pro Gly Ser Gly Gly Arg Lys Val Phe Glu Leu Val Gly Glu Pro Ser 200

Ile Tyr Cys Thr Ser Asn Asp Asp Gln Val Gly Ile Trp Ser Gly Pro 215

Ala 225		Gln	Сув	Ile	Ile 230	Pro	Asn	Lys	Суз	Thr 235	Pro	Pro	Asn	Val	Glu 240
Asn ····	His	Gly	Val	Tyr 245	Ile	Asn	Phe	Thr	Leu 250	Leu	Gln	Thr	Glu	Ala 255	Val
Asn	qaA '	Tyr	Ile 260	Ala	Val	Trp	Asp	Gly 265	Pro	Asp	Gln	Asn	Ser 270	Pro	Gln
Leu	Gly	Val 275	Phe	Ser	Gly	Asn	Thr 280	Ala	Leu	Glu	Thr	Gly 285	Ile	Leu	Val
Ser	Asp 290	Asn	Arg	Ser	Leu	Phe 295	Ser	Leu	Asn	Glu	Val 300	Val	Glu	Phe	Arg
Cys 305	Gln	Pro	Gly	Phe	Val 310	Met	Lys	Gly	Pro	Arg 315	Arg	Val	Lys	Cys	Gln 320
Ala	Leu	Asn	Lys	Trp 325	Glu	Pro	Glu	Leu	Pro 330	Ser	Cys	Ser	Arg	Ala 335	Tyr
Ser	Ser	Thr	Asn 340	Gln	Val	Leu	Leu	Lys 345	Phe	His	Ser	Asp	Phe 350	Ser	Asn
Gly	Gly	Phe 355	Phe	Val	Leu	Asn	Phe 360	His	Ala	Phe	Gln	Leu 365	Lys	Val	Cys
Gln	Pro 370		Pro	Asp	Val	Leu 375	His	Ala	Glu	Arg	Thr 380	Gln	Arg	Asp	Lys
Asp 385	Asn	Phe	Ser	Pro	Gly 390	Gln	Glu	Val	Phe	Tyr 395	Ser	Cys	Glu	Pro	Gly 400
Tyr	Asp	Leu	Arg	Gly 405	Ala	Ala	Ser	Met	Arg 410	Сув	Thr	Pro	Gln	Lys 415	Cys
Gln	Pro	Pro	Pro 420	Ala	Val	Pro	Gln	Ala 425	Glu	Met	Leu	Thr	Glu 430	Asp	Asp
Asp	Phe	Glu 435	Ile	Gly	Asp	Phe	Val 440	ГÀВ	Tyr	Gln	Cys	His 445	Pro	Gly	Tyr
Thr	Leu 450		Gly	Thr	Asp	Ile 455	Leu	Thr	Cys	Lys	Leu 460	Ser	Ser	Gln	Gly
Asp 465	Trp	Ser	Pro	Ala	Ala 470	Pro	Thr	Cys	Glu	Val 475	Lys	Ser	Сув	Asp	Asp 480
Phe	Met	Gly	Gln	Leu 485	Leu	Asn	Gly	Arg	Leu 490		Phe	Glu	Gly	Ser 495	Leu
Pro	Thr	Суѕ	Glu 500	Ala	Gln	Сув	Pro	Ala 505	Asn	Glu	Val	Arg	Thr 510	Gly	Ser
Ser	Gly	Val 515		Leu	Ser	Pro	Gly 520		Pro	Gly	Asn	Tyr 525	Phe	Asn	Ser
Gln	Thr 530	_	Ser	Trp	Ser	11e 535	Lys	Val	Glu	Pro	Asn 540	Leu	Gln	Leu	Gly
Ala 545		Val	Asp	Phe	Val 550		Asp	Glu	Gly	Phe 555		Leu	Lys	Gly	Ser 560

Ser Ala Ser Tyr Cys Val Leu Ala Gly Met Glu Ser Asn Tyr Asn Ile 565 Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp Ala Leu Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu Val Val Leu Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser Arg Ser Leu Trp 615 Asn Ser Ser Val Pro Val Cys Glu Gln Ile Phe Cys Pro Ser Pro Pro Val Ile Pro Asn Gly Arg His Thr Gly Lys Pro Leu Glu Val Phe Pro 650 Phe Gly Lys Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser Leu Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr Ala Gly Ala Val Gly Ser Ala Val Asn Tyr Thr Cys Asp Pro His Pro Asp Arg Gly Thr Ser Phe Asp Leu Ile Gly Glu Ser Thr Ile Arg Cys Thr Ser Asp Pro Gln Gly Asn Gly Val Trp Ser Ser Pro Ala Pro Arg Cys Gly Ile Leu Gly His Cys Gln Lys Val His Tyr Phe Cys Lys Pro Gly Tyr Arg Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro Leu Gly Met Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala Val Ser Cys Gly Ala Pro Asp His Phe Leu Phe Ala Lys Leu Lys Thr Gln Thr Asn Ala Ser Asp Phe Pro Ile Gly Thr Ser Leu Lys Tyr Glu Cys Arg Pro Glu Tyr Tyr Gly Arg Pro Phe Ser Ile Thr Cys Leu Asp Asn Leu Val Ile 840 Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr Gly Asn Glu Phe Thr Leu Asp Ser Lys Val Val Tyr Glu Cys His Glu Gly Phe Lys Leu Glu Ser Ser Gln Gln Ala Thr Ala Val Cys Gln Glu Asp Gly Leu Trp Ser Ser

- Pro Lys Asp Val Cys Lys Arg Lys Ser Cys Lys Thr Pro Pro Asp Pro 900 905 910
- Val Asn Gly Met Val His Val Ile Thr Asp Ile Gln Val Gly Ser Arg 915 920 925
- Ile Asn Tyr Ser Cys Thr Thr Trp Ser Asn Lys Gly Lys Pro Pro Thr 930 935 940
- Cys Lys Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His 945 950 955 960
- Val Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln 965 970 975
- Val Leu Leu Ser Cys Ser Pro Gly His Arg Leu Ile Gly His Ser Ser
- Ala Glu Cys Ile Leu Ser Gly Asn Ala Ala His Trp Ser Thr Lys Pro 995 1000 1005
- Pro Ile Cys Gln Arg Ile Pro Cys Gly Leu Pro Pro Thr Ile Ala 1010 1015 1020
- Asn Gly Asp Phe Ile Ser Thr Asn Gly Tyr Tyr Leu Glu Gly Trp 1025 1030 1035
- Arg Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp 1040 1045 1050
- Glu Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe 1055 1060 1065
- Pro Pro Asn Gly Asn Lys Ile Gly Thr Leu Arg Glu Asn Phe His 1070 1075 1080
- Tyr Gly Ser Val Val Thr Tyr Arg Cys Asn Pro Gly Ser Gly Gly 1085 1090 1095
- Arg Lys Val Phe Glu Leu Val Gly Glu Pro Ser Ile Tyr Cys Thr 1100 1105 1110
- Ser Asn Asp Asp Gln Val Gly Ile Trp Ser Gly Pro Ala Pro Gln 1115 1120 1125
- Thr Val Tyr Gly Ala Thr Ala Ile Phe Thr Cys Asn Thr Gly Tyr 1130 1140
- Thr Leu Val Gly Ser His Val Arg Glu Cys Leu Ala Asn Gly Leu 1145 1150 1155
- Trp Ser Gly Ser Glu Thr Arg Cys Ile Xaa Pro Asn Lys Cys Thr 1160 1165 1170
- Pro Pro Asn Val Glu Asn Gly Ile Leu Val Ser Asp Asn Arg Ser 1175 1180 1185
- Leu Phe Ser Leu Asn Glu Val Val Glu Phe Arg Cys Gln Pro Gly 1190 1195 1200
- Phe Val Met Lys Gly Pro Arg Arg Val Lys Cys Gln Cys Leu Ala 1205 1210 1215

PCT/US01/23232 WO 02/10199

- 60 -

	His 12 <b>2</b> 0	Сув	Gly	Ser	Pro	Asp 1225		Ile	Val	Asn	Gly 1230	His	Ile	Ser	٠
Gly	Asp 1235	Gly	Phe	Ser	Tyr	Arg 1240	Asp	Thr	Val	Val	Tyr 1245	Gln	Cys	Asn	
	Gly 1250	Phe	Arg	Leu	Val	Gly 1255		Ser	Val	Arg	Ile 1260	Cys	Leu	Ala	
Leu	Asn 1265	Lys	Trp	Glu	Pro	Glu 1270		Pro	Ser	Сув	Ser 1275	Arg	Val	Cys	
	Pro 1280			,		1285					1290				
	Asp 1295					1300					1305				
Pro	Gly 1310	Tyr	Gln	Asp	His	Lys 1315		Ser	Gly	Gln	Thr 1320	Pro	Val	Cys	
Val	Pro 1325	Ile	Thr	Сув	Gly	His 1330		Gly	Asn	Pro	Ala 1335	His	Gly	Phe	
Thr	Asn 1340	Gly	Ser	Glu	Phe	Asn 1345		Asn	Asp	Val	Val 1350	Asn	Phe	Thr	
Cys	Asn 1355	Thr	Gly	Tyr	Asp	Leu 1360	Arg	Gly	Ala	Ala	Ser 1365	Met	Arg	Сув	
Thr	Pro 1370	Gln	Gly	Asp	Trp	Ser 1375	Pro	Ala	Ala	Pro	Thr 1380	Cys	Glu	Val	
Lys	Ser 1385		Asp	Asp	Phe	Met 1390		Gln	Leu	Leu	Asn 1395	Gly	Arg	Val	
Leu	Phe 1400	Pro	Val	Asn	Leu	Gln 1405	Leu	Leu	Gln	Gly	Val 1410	Ser	Arg	Ala	
Gln	Cys 1415	Arg	Ser	Asn	Gly	Gln 1420		Ser	Ser		Leu 1425	Pro	Thr	Сув	
Arg	Val 1430	Val	Asn	Сув	Ser	Asp 1435	Pro	Gly	Phe	Val	Glu 1440	Asn	Ala	Ile	
Arg	His 1445	Gly	Gln	Gln	Asn	Phe 1450	Pro	Glu	Ser	Phe	Glu 1455	Leu	Gly	Ala	
Lys	Val 1460	Asp	Phe	Val	Ċys	Asp 1465		Gly	Phe	Gln	Leu 1470	ГÀв	Gly	Ser	
Ser	Ala 1475	Ser	Tyr	Cys	Val	Leu 1480	Ala	Gly	Met	Glu	Ser 1485	Leu	Trp	Asn	
Ser	Ser 1490	Val	Pro	Val	Cys	Glu 1495		Ile	Phe	Cys	Pro 1500	Ser	Pro	Pro	
Val	Ile 1505	Tyr	Gly	Met	Ser	Ile 1510	Leu	Tyr	His	Сув	Lys 1515	Lys	Gly	Phe	
Tyr	Leu 1520	Leu	Gly	Ser	Ser	Ala 1525		Thr	Сув	Met	Ala 1530	Asn	Gly	Leu	

Trp Asp 1535		Ser	Leu	Pro	Lys 1540	Сув	Leu	Ala	Ile	Ser 1545	Cys	Gly	His
Pro Gly 1550		Pro	Pro	Asn	Gly 1555	Arg	His	Thr	Gly	Lys 1560	Pro	Leu	Glu
Val Phe 1565		Phe	Gly	Lys	Thr 1570	Val	Asn	Tyr	Thr	Cys 1575	Asp	Pro	His
Pro Asp 1580		Gly	Thr	Ser	Phe 1585		Leu	Ile	Gly	Glu 1590	Ser	Thr	Ile .
Arg Cys 1595		Ser	Asp	Pro	Gln 1600	Gly	Asn	Ala	Asn	Ala 1605	Val	Leu	Thr
Gly Glu 1610	Leu	Phe	Thr	Tyr	Gly 1615	Ala	Val	Val	His	Tyr 1620		Сув	Arg
Gly Ser 1625		Ser	Leu	Ile	Gly 1630	Asn	Asp	Thr	Arg	Val 1635	Cys	Gln	Glu
Asp Ser 1640		Gly	Val	Trp	Ser 1645		Pro	Ala	Pro	Arg 1650	Сув	Gly	Ile
Leu Gly 1655		Cys	Gln	Ala	Pro 1660	Asp	His	Phe	Leu	Phe 1665	Ala	Lys	Leu ·
Lys Thr 1670		Thr	Asn	Ala	Ser 1675	Asp	Phe	Pro	Ile	Gly 1680	Thr	Ser	Leu
Lys Tyr 1685		Trp	Ser	Gly	Ala 1690	Leu	Pro	His	Cys ·	Thr 1695	Gly	Asn	Asn
Pro Gly 1700		Сув	Gly	Asp	Pro 1705	Gly	Thr	Pro	Ala	His 1710	Gly	Ser	Arg
Leu Gly 1715		Asp	Phe	Lys	Thr 1720	Lys	Ser	Leu	Leu	Arg 1725	Phe	Ser	Сув
Arg Pro 1730		Tyr	Tyr	Gly	Arg 1735	Pro	Phe	Ser	Ile	Thr 1740	Cys	Leu	Asp
Asn Leu 1745		Trp	Ser	Ser	Pro 1750	Lys	Asp	Val	Cys	Lys 1755	Arg	Lys	Ser
Cys Lys 1760		Pro	Pro	Asp	Pro 1765	Val	Asn	Gly	Met	Val 1770	His	Val	Ile.
Thr Asp 1775		Glu	Met	GÌy	His 1780	Gln	Leu	Arg	Gly	Ser 1785	Pro	Glu	Arg
Thr Cys 1790		Leu	Asn	Gly	Ser 1795	Trp	Ser	Gly	Leu	Gln 1800	Pro	Val	Cys
Glu Ala 1805		Ser	Cys	Gly	Asn 1810	Pro	Gly	Thr	Pro	Thr 1815	Asn	Gly	Met
Ile Val 1820		Ser	Asp	Gly	Ile 1825	Gln	Val	Gly	Ser	Arg 1830	Ile	Asn	Tyr
Ser Cys 1835		Thr	Gly	His	Arg 1840	Leu	Ile	Gly	His	Ser 1845	Ser	Ala	Glu

Сув	Ile 1850		Ser	Gly	Asn	Ala 1855		His	Trp	Ser	Thr 1860	Lys	Pro	Pro
Ile	Cys 1865	Gln	Arg	Ile	Pro	Cys 1870	Gly	Leu	Pro	Pro	Ile 1875	Leu	Phe	Ser
Ser	Ser 1880	Val	Ile	Tyr	Ala	Cys 1885	Trp	Glu	Gly	Tyr	Lys 1890		Ser	Gly
Leu	Met 1895	Thr	Arg	His	Cys	Thr 1900	Ala	Asn	Gly	Thr	Trp 1905	Thr	Gly	Thr
Ala	Pro 1910	Asp	Сув	Thr	Ile	Ile 1915	Ser	Сув	Gly	Asp	Pro 1920		Thr	Ile
Ala	Asn 1925	Gly	Asp	Phe	Ile	Ser 1930	Thr	Asn	Arg	Glu	Asn 1935	Phe	His	Tyr
Gly	Ser 1940		Val	Thr	Tyr	Arg 1945	Сув	Asn	Pro	Gly	Ser 1950	Gly	Gly	Arg
Lys	Val 1955	Phe	Glu	Leu	Val	Gly 1960		Pro	Ser	Ile	Tyr 1965	Сув	Thr	Ser
Asn	Asp 1970	Asp	Thr	Leu	Ala	Asn 1975	Gly	Ile	Gln	Phe	Gly 1980	Thr	Asp	Phe
Thr	Phe 1985	Asn	Lys	Thr	Val	Ser 1990	Tyr	Gln	Cys	Asn	Pro 1995	Gly	Tyr	Val
Met	Glu 2000	Ala	Val	Thr	Ser	Ala 2005	Thr	Ile	Arg	Cys	Thr 2010	Lys	Asp	Gln
Val	Gly 2015	Ile	Trp	Ser	Gly	Pro 2020	Ala	Pro	Gln	Cys	Ile 2025	Xaa	Pro	naA
Lys	Cys 2030	Thr	Pro	Pro	Asn	Val 2035	Glu	Asn	Gly	Ile	Leu 2040	Val ⁻	Ser	Asp
Asn	Arg 2045	Ser	Leu	Phe	Ser	Leu 2050	Asn	Glu	Val	Val	Glü 2055	Phe	Arg	Сув
Gln	Pro 2060	Gly	Phe	Gly	Arg	Trp 2065	Asn	Pro	Ser	Lys	Pro 2070	Val	Сув	Lys
Ala	Val 2075	Leu	Сув	Pro	Gln	Pro 2080	Pro	Pro	Val	Gln	Asn 2085	Gjy	Thr	Val
Glu	Gly 2090	Ser	Asp	Phe	Ärg	Trp 2095	Gly	Ser	Ser	Ile	Ser 2100	Tyr	Ser	Cys
Met	Asp 2105	Gly	Tyr	Val	Met	Lys 2110	Gly	Pro	Arg	Arg	Val 2115	Lys	Cys	Gln
Ala	Leu 2120	Asn	Lys	Trp	Glu	Pro 2125	Glu	Leu	Pro	Ser	Cys 2130	Ser	Arg	Val
Cys	Gln 2135	Pro	Pro	Pro	Asp	Val 2140	Leu	His	Ala	Glu	Arg 2145	Thr	Gln	Arg
Asp	Lys 2150	Asp	Asn	Phe	Ser	Pro 2155	Gly	Gln	Leu	Ser	His 2160	Ser	Ala	Ile

Leu :::::		Cys	Glu	Gly	Arg	Gly 2170	Val	Trp	Lys	Gly	Glu 2175	Ile	Pro	Gln
Cys	Leu 2180	Pro	Val	Phe	Cys	Gly 2185	Asp	Pro	Gly	Ile	Pro 2190	Ala	Glu	Gly
Arg	Leu 21:95	Ser	Gly	Lys	Ser	Phe 2200	Thr	Tyr	Lys	Gln	Glu 2205	Val	Phe	Tyr
Ser	Cys 2210	Glu _.	Pro	Gly	Tyr	Asp 2215		Arg	Gly	Ala	Ala 2220	Ser	Met	Arg
Суѕ	Thr 2225	Pro	Gln	Gly	Asp	Trp 2230	Ser	Pro	Ala	Ala	Pro 2235	Thr	Сув	Glu
Val			Cys	Asp	Asp	Phe 2245		Gly	Gln	Leu	Leu 2250		Glu	Val
Phe	Phe 2255	Gln	Сув	ГЛЗ	Ser	Pro 2260	Phe	Ile	Leu	Val	Gly 2265	Ser	Ser	Arg
	Val 2270		Gln	Ala	Asp	Gly 2275	Thr	Trp	Ser	Gly	Ile 2280	Gln	Pro	Thr
Сув	Ile 2285	_	Pro	Ala	His	Asn 2290		Cys	Pro	Ąsp	Pro 2295	Gly	Thr	Pro
His	Asn 2300		Arg	Val	Leu	Phe 2305		Val	Asn	Leu	Gln 2310	Leu	Gly	Ala
Lys	Val 2315	Asp	Phe	Val	Cys	Asp 2320		Gly	Phe	Gln	Leu 2325	Lys	Gly	Ser
Ser	Ala 2330		Tyr	Cys	Val	Leu 2335		Gly	Met	Glu	Ser 2340	Leu	Trp	Asn
Ser	Ser 2345	Val	Pro	Val		Phe 2350		Ile	Gln	Asn	Ser 2355	Ser	Arg	Gly
Tyr	Glu 2360		Gly	Ser	Thr	Val 2365		Phe	Arg		Arg 2370	ГÀв	Gly	Tyr
	2375		_			Thr 2380					2385			
Trp	Ser 2390		Ile	Gln	Thr	Glu 2395		Glu	Gln	İle	Phe 2400	Cys _.	Pro	Ser
Pro	Pro 2405		Ile	Pro	Asn	Gly 2410	_	His	Thr	Gly	Lys 2415		Leu	Glu
Val	Phe 2420		Phe	Gly	Lys	Ala 2425		Asn	Tyr	Thr	Сув 2430	Asp	Pro	His
Pro	Asp 2435		Gly	Thr	Ser	Phe 2440		Leu	Ile	Gly	Glu 2445		Ile	Pro
His	Ala 2450	-	Arg	Gln	Pro	Glu 2455		Pro	Ala	His	Ala 2460	Asp	Val	Arg
Ala	Ile 2465		Leu	Pro	Thr	Phe 2470	-	Tyr	Thr	Leu	Val 2475		Thr	Cys

- 64 -

His Pro Gly Phe Phe Leu Ala Gly Gly Ser Thr Ile Arg Cys Thr 2480 Ser Asp Pro Gln Gly Asn Gly Val Trp Ser Ser Pro Ala Pro Arg ···· 2495 2500 Cys Glu His Arg Thr Cys Lys Ala Asp Met Lys Trp Thr Gly Lys Ser Pro Val Cys 2525 <210> 6 <211> \ 10433 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(9300) <400> 6 acc ctg acg gtt ggt gat gct ggg aag gtg gga gac acc aga tcg gtc 48 Thr Leu Thr Val Gly Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val ttg tac gtg ctc acg gga tcc agt gtt cct gac ctc att gtg agc atg 96 Leu Tyr Val Leu Thr Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met 25 age aac cag atg tgg cta cat ctg cag tcg gat gat age att gge tca 144 Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser 40 cct ggg ttt aaa gct gtt tac caa gaa att gaa aag gga ggg tgt ggg 192 Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly 50 240 gat cet gga ate eec gee tat ggg aag egg aeg gge age agt tte ete Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu 65 70 cat gga gat aca ctc acc ttt gaa tgc ccg gcg gcc ttt gag ctg gtg 288 His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu Val 85 ggg gag aga gtt atc acc tgt cag cag aac aat cag tgg tct ggc aac 336 Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly Asn 100 105 aag ccc agc tgt gta ttt tca tgt ttc ttc aac ttt acg gca tca tct 384 Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser

GJ À 333	att Ile 130	att Ile	ctg Leu	tca Ser	cca Pro	aat Asn 135	tat Tyr	cca Pro	gag Glu	gaa Glu	tat Tyr 140	Gly 999	aac Asn	aac Asn	atg Met	432
aac Asn 145	tgt Cys	gtc Val	tgg Trp	ttg Leu	att Ile 150	atc Ile	tcg Ser	gag Glu	cca Pro	gga Gly 155	agt Ser	cga Arg	att Ile	cac His	cta Leu 160	480
			gat Asp										Leu			528
aag Lys	gat Asp	gat Asp	ggc Gly 180	att Ile	tct Ser	gac Asp	ata Ile	act Thr 185	gtc Val	ctg Leu	ggt Gly	act Thr	ttt Phe 190	tct Ser	Gly	576
			cct Pro													624
			tct Ser													672
tac Tyr 225	acc Thr	aca Thr	ttt Phe	ggt Gly	cag Gln 230	aat Asn	gag Glu	tgc Cys	cat His	gat Asp 235	cct Pro	ggc Gly	att Ile	cct Pro	ata Ile 240	720
			cgt Arg													768
ttc Phe	cac His	tgt Cys	gat Asp 260	gat Asp	ggc	ttt Phe	gtc Val	aag Lys 265	acc Thr	cag Gln	gga Gly	tcc Ser	gag Glu 270	tcc Ser	att Ile	816
acc Thr	tgc Cys	ata Ile 275	ctg Leu	caa Gln	gac Asp	GJÀ 888	aac Asn 280	gtg Val	gtc Val	tgg Trp	agc Ser	tcc Ser 285	acc Thr	gtg Val	ccc Pro	864
cgc Arg	tgt Cys 290	gaa Glu	gct Ala	cca Pro	tgt Cys	ggt Gly 295	gga Gly	cat His	ctg Leu	aca Thr	gcg Ala 300	tcc Ser	agc Ser	gga Gly	gtc Val	912
att Ile 305	Leu	cct Pro	cct Pro	gga Gly	tgg Trp 310	cca Pro	gga Gly	tat Tyr	tat Tyr	aag Lys 315	gat Asp	tct Ser	tta Leu	cat His	tgt Cys 320	960
			att Ile													1008
			cag Gln 340													1056
															cag Gln	1104
		Gln	ttc Phe									Tyr				1152

acc Thr 385	act Thr	gac Asp	aac Asn	agc Ser	cgc Arg 390	tcc Ser	agc Ser	atc Ile	ggc	ttc Phe 395	ct <i>c</i> Leu	atc Ile	cac His	tat Tyr	gag Glu 400		1200
			ctt Leu														1248
			cgc Arg 420											Val			1296
			gac Asp										Pro				1344
_			aac Asn		_				_	_		_	_	_	_		1392
			ggc Gly														1440
61 <b>y</b> 9 <b>9</b> 9	ttt Phe	cca Pro	gat Asp	ttt Phe 485	tat Tyr	cca Pro	aac Asn	tct Ser	cta Leu 490	aac Asn	ygc Xaa	acg Thr	tgg Trp	acc Thr 495	att Ile		1488
			cat His 500													·	1536
			tcc Ser					Leu									1584
		Pro	gtt Val												atc Ile		1632
aag Lys 545	gca Ala	ggc Gly	ctg Leu	ttt Phe	gga Gly 550	aac Asn	ttc Phe	act Thr	gcc Ala	cag Gln 555	ctt Leu	cgg Arg	ttt Phe	ata Ile	tca Ser 560		1680
			att Ile														1728
			cca Pro 580														1776
			cac His														1824
ctg Leu	gga Gly 610	tat Tyr	cgt Arg	tta Leu	gaa Glu	ggt Gly 615	gcc Ala	rcc Xaa	aag Lys	ctt Leu	acc Thr 620	tgc Cys	ctg Leu	ggt Gly	gly ggg		1872
			gtg Val														1920

gga Gly	gca Ala	agt Ser	Val	aaa Lys 645	gga Gly	aat Asn	gaa Glu	gga Gly	aca Thr 650	tta Leu	ctg Leu	tct Ser	cca Pro	aat Asn 655	ttt Phe	1968
Pro	tcc Ser	aat Asn	tat Tyr 660	gat Asp	aat Asn	aac Asn	cat His	gag Glu 665	tgt Cys	atc Ile	tat Tyr	aaa Lys	ata Ile 670	gaa Glu	aca Thr	2016
gaa Glu	gcc Ala	ggc Gly 675	aag Lys	ggc Gly	atc Ile	cac His	ctt Leu 680	aga Arg	aca Thr	cga Arg	agc Ser	ttc Phe 685	cag Gln	ctg Leu	ttt Phe	2064
gaa Glu	gga Gly 690	gat Asp	act Thr	cta Leu	aag Lys	gta Val 695	tat Tyr	gat Asp	gga Gly	aaa Lys	gac Asp 700	agt Ser	tcc Ser	tca Ser	cgt Arg	2112
cca Pro 705	ctg Leu	ggc Gly	acg Thr	ttc Phe	act Thr 710	aaa Lys	aat Asn	gaa Glu	ctt Leu	ctg Leu 715	G1y 999	ctg Leu	atc Ile	cta Leu	aac Asn 720	2160
								gag Glu								2208
acc Thr	gac Asp	caa Gln	ggt Gly 740	ttt Phe	caa Gln	ctc Leu	acc Thr	tat Tyr 745	acc Thr	agt Ser	ttt Phe	gat Asp	ctg Leu 750	gta Val	aaa Lys	2256
tgt Cys	gag Glu	gat Asp 755	ccg Pro	ggc Gly	atc Ile	cct Pro	aac Asn 760	tac Tyr	ggc Gly	tat Tyr	agg Arg	atc Ile 765	cgt Arg	gat Asp	gaa Glu	2304
ggc Gly	cac His 770	ttt Phe	acc Thr	gac Asp	act Thr	gta Val 775	gtt Val	ctg Leu	tac Tyr	agt Ser	tgc Cys 780	aac Asn	ccg Pro	Gly 999	tac Tyr	2352
gcc Ala 785	atg Met	cat His	ggc Gly	agc Ser	aac Asn 790	acc Thr	ctg Leu	acc Thr	tgt Cys	ttg Leu 795	agt Ser	gga Gly	gac Asp	agg Arg	aga Arg 800	2400
								tgc Cys								2448
atc Ile	cat His	gca Ala	gcc Ala 820	aca Thr	tca Ser	gga Gly	cga Arg	ata Ile 825	ttg Leu	tcc Ser	cct Pro	ggc	tat Tyr 830	cca Pro	gct Ala	2496
								acc Thr								2544
							Phe	att Ile								2592
cac His 865	Asp	atc Ile	ctc Leu	aag Lys	gtc Val 870	tgg Trp	gac	G1 999	ccg Pro	gtg Val 875	gac Asp	agt Ser	gac Asp	atc Ile	ctg Leu 880	2640
ctg Leu	aag Lys	gag Glu	tgg Trp	agt Ser 885	ggc	tcc Ser	gcc Ala	ctt Leu	ccg Pro 890	gag Glu	gac Asp	atc Ile	cac His	agc Ser 895	acc Thr	2688

ttc Phe	aac t Asn S	Ser 1	ctc Leu 900	acc Thr	ctg Leu	cag Gln	ttc Phe	gac Asp 905	age Se:	c ga r As	ac t sp F	tc he	ttc Phe	ato Ile 910	Ser	: aag		2736
	ggc t Gly F																	2784
	cca c Pro 0 930										n G							2832
gct Ala 945	gga g Gly A	gac a Asp '	acc Thr	gt <i>c</i> Val	aca Thr 950	tt <i>c</i> Phe	cag Gln	tgt Cys	ga As	p Pı	ct c co G	gc	tat Tyr	cag	cto Lev	caa Gln 960		2880
gga Gly	caa c Gln 7	gcc a Ala i	Lys	atc Ile 965	acc Thr	tgt Cys	gtg Val	cag Gln	ct Le 97	u As	at a sn <i>P</i>	ac Asn	cgg Arg	ttc Phe	ttt Phe 975	Trp		2928
	cca c Pro A	sp 1							Ãl						ı Lev			2976
ggc	cca g Pro A	gca Ala ( 995	ggt Gly	gtt Val	att Ile	ttg Leu	tça Ser 100	Pr	са o·A	ac t sn 1	cac, Tyr	cca	ca G1: 10	n F	ccg t Pro I	at c yr P	ct ro	3024
	999 Gly 1010						) A					L As			gac Asp			3069
	atc Ile 1025						s S					: Gl			agc Ser			3114
gac Asp	ttc Phe 1040	cta Leu	cac His	ato Ile	tat Tyr	gaa Glu 104	1 G	99 9 ly G	aa lu	gat Asp	tcc	: As	n 50		ccc Pro			3159
Ile					ggc Gly		c G					ı Ar			gag Glu	_		3204
	gga Gly 1070						ı A					: As						3249
ggc	ctt Leu 1085	tca Ser	G13 333	ttc Phe	gcc Ala	att 116	∍ G	aa t lu P	tt he	aaa Lys	gaç	ı Ьу	a 's 195	cca Pro	cgg Arg	gaa Glu		3294
gct Ala	tgt Cys 1100	ttt Phe	gac Asp	cca	gga Gly	aat Asr 110	ıI	ta a le M	tg et	aat Asn	G17 335	Th.	a ir .10	aga Arg	gtt Val	gga Gly		3339
aca Thr	gac Asp 1115	ttc Phe	aag Lys	ctt	ggc Gly	tco Sei	T)	cc a hr I	tc le	acc Thr	tac	Gl	n .n .25	tgt Cys	gac Asp	tct Ser		3384
ggc Gly	tat Tyr 1130	aag Lys	att Ile	ctt Leu	gac Asp	cco Pro	S	ca t er S	cc er	atc Ile	acc	c Cy	jt 's .40	gtg Val	att Ile	gly aaa		3429

gct A <u>l</u> a		61 y 999	aaa Lys	ccc Pro	tcc Ser	tgg Trp 1150	gac Asp	caa Gln	gtg Val	ctg Leu	ccc Pro 1155	tcc Ser	tgc Cys	aat Asn	3	474
_	Pro 1160	tgt Cys	gga Gly	ggc Gly	cag Gln	tac Tyr 1165	acg Thr	gga Gly	tca Ser	gaa Glu	999 Gly 1170	gta Val	gtt Val	tta Leu	3	519
	cca Pro 1175					aat Asn 1180						Ile			3	564
						aag Lys 1195									3	609
						ctg Leu 1210									3	654
		His				aga Arg 1225									3	699
						ccc Pro 1240									3	3744
						agc Ser 1255									3	3789
						cct Pro 1270									3	834
	gtc Val 1280					tac Tyr 1285									3	8879
	gcc Ala 1295					cga Arg 1300									3	924
						ctc Leu 1315									3	3969
						acg Thr 1330									4	1014
		Asn				cga Arg 1345						Ser			4	1059
						aac Asn 1360					ata Ile 1365				4	1104
	gtt Val 1370	Thr				gga Gly 1375					gtg Val 1380				4	1149

	acg Thr 1385	gag Glu	cag Gln	aac Asn	tgg Trp	gac Asp 1390	tcc Ser	ctt Leu	gag Glu	atc Ile	cac His 1395	gat Asp	ggt Gly	gly ggg		4194
	gtg Val 1400	acc Thr	gca Ala	ccc Pro	aga Arg	ctg Leu 1405	gga Gly	agc Ser	ttc Phe	tca Ser	ggc Gly 1410	acc Thr	aca Thr	gta Val		4239
ccg Pro	gca Ala 1415	ctg Leu	ctg Leu	aac Asn	agt Ser	act Thr 1420	tcc Ser	aac Asn	caa Gln	ctc Leu	tac Tyr 1425	ctg Leu	cat His	ttc Phe		4284
cag Gln	tct Ser 1430	gac Asp	att Ile	agt Ser	gtg Val	gca Ala 1435	gct Ala	gct Ala	ggt Gly	ttc Phe	cac His 1440	ctg Leu	gaa Glu	tac Tyr		4329
aaa Lys	act Thr 1445	Val	ggt Gly	ctt Leu	gct Ala	gca Ala 1450	tgc Cys	caa Gln	gaa Glu	cca Pro	gcc Ala 1455	ctc Leu	ccc Pro	agc Ser		4374
aac Asn	agc Ser 1460	Ile	aaa Lys	atc Ile	gga Gly	gat Asp 1465	cgg Arg	tac Tyr	atg Met	gtg Val	aac Asn 1470	Asp	gtg Val	ctc Leu	٠	4419
tcc Ser	ttc Phe 1475	Gln	tgc Cys	gag Glu	ccc Pro	999 Gly 1480	tac Tyr	acc Thr	ctg Leu	cag Gln	ggc Gly 1485	cgt Arg	tcc Ser	cac His		4464
att Ile	tcc Ser 1490	Cys	atg Met	cca Pro	999 Gly	acc Thr 1495	gtt Val	cgc Arg	cgt Arg	tgg Trp	aac Asn 1500	Tyr		tct Ser		4509
ccc Pro	ctg Leu 1505	Cys	att Ile	gca Ala	acc Thr	tgt Cys 1510	Gly	G] À	acg Thr	ctg Leu	agc Ser 1515	Thr	ttg Leu	ggt Gly		4554
ggt Gly	gtg Val 1520	Ile	ctg Leu	agc Ser	ccc Pro	ggc Gly 1525	ttc Phe	cca Pro	ggt Gly	tct Ser	tac Tyr 1530	Pro	aac Asn	aac Asn	•	4599
tta Leu	gac Asp 1535	Cys	acc Thr	tgg Trp	agg Arg	atc Ile 1540	Ser	tta Leu	ccc Pro	atc Ile	ggc Gly 1545	Tyr	ggt Gly	gca Ala		4644
cat His	att Ile 1550	Gln	ttt Phe	ctg Leu	aat Asn	ttt Phe 1555	tct Ser	acc Thr	gaa Glu	gct Ala	aat Asn 1560	His	gac Asp	ttc Phe		4689
ctt Leu	gaa Glu 1565	Ile	caa Gln	aat Asn	gga Gly	cct Pro 1570	Tyr	cac His	acc Thr	agc Ser	ccc Pro 1575	Met	att Ile	gga Gly		4734
_	ttt Phe 1580	Ser	ggc	acg Thr	gat Asp	ctc Leu 1585	Pro	gcg Ala	gcc Ala	ctg Leu	ctg Leu 1590	Ser	aca Thr	acg Thr		4779
cat His	gaa Glu 1595	Thr	ctc Leu	atc Ile	cac His	ttt Phe 1600	Tyr	agt Ser	gac Asp	cat His	tcg Ser 1605	Gln	aac Asn	cgg Arg		4824
caa Gln	gga Gly 1610	Phe	aaa Lys	ctt Leu	gct Ala	tac Tyr 1615	Gln	gcc Ala	tat Tyr	gaa Glu	tta Leu 1620	Gln	aac Asn	tgt Cys		4869

cca ga Pro As	at sp 625	cca Pro	ccc Pro	cca Pro	ttt Phe	cag Gln 1630	aat Asn	Gly 999	tac Tyr	atg Met	atc Ile 1635	aac Asn	tcg Ser	gat Asp		4914
tac ac Tyr Sc	gc er 640	gtg Val	gjå aaa	caa Gln	tca Ser	gta Val 1645	tct Ser	ttc Phe	gag Glu	tgt Cys	tat Tyr 1650	cct Pro	gjå aaa	tac Tyr		4959
att ct Ile Le	ta eu 655	ata Ile	ggc Gly	cat	cct Pro	gtc Val 1660	ctc Leu	act Thr	tgt Cys	cag Gln	cat His 1665	gly aaa	atc Ile	aac Asn		5004
aga aa Arg As															• .	5049
tac aa Tyr Aa 10																5094
cct ga Pro A																5139
gtg co Val P: 1	ro 715	cca Pro	gly aaa	cac His	gga Gly	gtt Val 1720	tac Tyr	atc Ile	aac Asn	ttc Phe	acc Thr 1725	ctg Leu	tta Leu	cag Gln		5184
acg ga Thr G														-		5229
cag aa Gln Aa 1																52 <b>7</b> 4
gaa ad Glu Tl																5319
agc ga Ser As																5364
ttt ca Phe Gi																5409
gaa a Glu Mo 1						gat Asp 1810										5454
aag ta Lys T																5499
ctg ac Leu Ti																5544
cca ac Pro Ti						tgc Cys 1855							act Thr	gga Gly		5589

tca Ser	tcg Ser 1865	gga Gly	gtc Val	att Ile	ctc Leu	agt Ser 1870	cca Pro	gly ggg	tat Tyr	ccg Pro	ggt Gly 1875	aat Asn	tat Tyr	ttt Phe	5634	
	tcc Ser 1880	cag Gln	act Thr	tgc Cys	tct Ser	tgg Trp 1885	agt Ser	att Ile	aaa Lys	gtg Val	gaa Glu 1890	cca Pro	aac Asn	tac Tyr	5679	
aac Asn	att Ile 1895	acc Thr	atc Ile	ttt Phe	gtg Val	gac Asp 1900	aca Thr	ttt Phe	caa Gln	agt Ser	gaa Glu 1905	aag Lys	cag Gln	ttt Phe	5724	
gat Asp	gca Ala 1910	ctg Leu	gaa Glu	gtg Val	ttt Phe	gat Asp 1915	ggt Gly	tct Ser	tct Ser	gjå aaa	caa Gln 1920	agt Ser	cct Pro	ctg Leu	5769	
cta Leu	gta Val 1925	gtc Val	tta Leu	agt Ser	Gly 999	aat Asn 1930	cat His	act Thr	gaa Glu	caa Gln	tca Ser 1935	aat Asn	ttt Phe	aca Thr	5814	
_	agg Arg 1940	agt Ser	aat Asn	cag Gln	tta Leu	tat Tyr 1945	ctc Leu	cgc Arg	tgg Trp	tcc Ser	act Thr 1950	gac Asp	cat His	gcc Ala	5859	
	agt Ser 1955	aag Lys	aaa Lys	gga Gly	ttc Phe	aag Lys 1960	att Ile	cgc Arg	tat Tyr	gca Ala	gca Ala 1965	cct Pro	tac Tyr	tgc Cys	5904	
_	ttg Leu 1970	acc Thr	cac His	ccc Pro	ctg Leu	aag Lys 1975	aat Asn	61Å 888	ggt Gly	att Ile	cta Leu 1980	aac Asn	agg Arg	act Thr	5949	
gca Ala	gga Gly 1985	gcg Ala	gtt Val	gga Gly	agc Ser	aaa Lys 1990	gtg Val	cat His	tat Tyr	ttt Phe	tgc Cys 1995	aag Lys	cct Pro	gga Gly	5994	
	cga Arg 2000	Met	gtc Val	ggc Gly	cac His	agc Ser 2005	Asn	gca Ala	acc Thr	tgt Cys	aga Arg 2010	cga Arg	aac Asn	cca Pro	6039	
	ggc Gly 2015	Met	tac Tyr	cag Gln	tgg Trp	gac Asp 2020	Ser	ctc Leu	acg Thr	cca Pro	ctc Leu 2025	Cys	cag Gln	gct Ala	6084	
gtg Val	tcc Ser 2030	Cys	gga Gly	atc Ile	cca Pro	gaa Glu 2035	Ser	cca Pro	gga Gly	aac Asn	ggt Gly 2040	tca Ser	ttt Phe	acc Thr	6129	
gly aaa	aac Asn 2045	Glu	ttc Phę	act Thr	ttg Leu	gac Asp 2050	Ser	aaa Lys	gtg Val	gtc Val	tat Tyr 2055	gaa Glu	tgt Cys	cat His	6174	
gag Glu	ggc Gly 2060	Phe	aag Lys	ctt Leu	gaa Glu	tcc Ser 2065	Ser	cag Gln	caa Gln	gca Ala	aca Thr 2070	gcc Ala	gtg Val	tgt Cys	6219	
caa Gln	gaa Glu 2075	Asp	61 y 88 9	ctg Leu	tgg Trp	agt Ser 2080	Asn	aag Lys	Gly 999	aag Lys	ccg Pro 2085	ccc Pro	acg Thr	tgt Cys	6264	
aag Lys	ccg Pro 2090	Val	gct Ala	tgc Cys	ccc Pro	agc Ser 2095	Ile	gaa Glu	gct Ala	cag Gln	ctc Leu 2100	Ser	gaa Glu	cat His	6309	

_	atc Ile 2105	tgg Trp	agg Arg	ctg Leu	gtt Val	tca Ser 2110	Gly	tcc Ser	ttg Leu	aat Asn	gag Glu 2115	Tyr	ggt Gly	gct Ala	63!	54
	Val 2120	ttg Leu	ctg Leu	agc Ser	tgc Cys	agt Ser 2125	cct Pro	ggt Gly	tac Tyr	tac Tyr	tta Leu 2130	Glu	ggc	tgg Trp	635	99
		ctg Leu	cgg Arg	tgc Cys	cag Gln	gcc Ala 2140	Asn.	GJA aaa	acg Thr	tgg Trp	aac Asn 2145	Ile	gga Gly	gat Asp	644	14
	agg Arg 2150	cca Pro	agc Ser	tgt Cys	cga Arg	gtt Val 2155					agc Ser 2160	Leu			648	39
	cca Pro 2165	aat Asn	ggc	aac Asn	aag Lys	att Ile 2170	gga Gly	acg Thr	ttg Leu	aca Thr	gtt Val 2175	Tyr	eja aaa	gcc Ala	653	34
aca Thr	gct Ala 2180	ata Ile	ttt Phe	acg Thr	tgc Cys	aac Asn 2185	acc Thr	ggc Gly	tac Tyr	acg Thr	ctt Leu 2190	Val	GJÅ 333	tct Ser	651	79
cat His	gtc Val 2195	aga Arg	gag Glu	tgc Cys	ttg Leu	gca Ala 2200	aat Asn	<b>Gly</b> 999	ctc Leu	tgg Trp	agc Ser 2205	ggc	agc Ser	gaa Glu	. 662	24
act Thr	cga Arg 2210	tgt Cys	ctg Leu	gct Ala	ggc ggc	cac His 2215	tgc Cys	ggt Gly	tcc Ser	cca Pro	gac Asp 2220	ccg Pro	att Ile	gtg Val	666	59
aac Asn	ggt Gly 2225	cac His	att Ile	agt Ser	gga Gly	gat Asp 2230	ggc	ttc Phe	agt Ser	tac Tyr	aga Arg 2235	gac Asp	acg Thr	gtg Val	673	L 4
gtt Val	tac Tyr 2240	cag Gln	tgc Cys	aat _. Asn	cct Pro	ggt Gly 2245	ttc Phe	cgg Arg	ctt Leu	gtg Val	gga Gly 2250	act Thr	tcc Ser	gtg Val	675	59
agg Arg	ata Ile 2255	tgc Cys	ctg Leu	caa Gln	gac Asp	cac His 2260					caa Gln 2265				680	)4
tgt Cys	gtc Val 2270	ccc Pro	atc Ile	aca Thr	tgt Cys	ggt Gly 2275	cac His	cct Pro	gga Gly	aac Asn	cct Pro 2280	gcc Ala	cac His	gga Gly	684	19
ttc Phe	act Thr 2285	aat Asn	ggc Gly	agt Ser	gag Glu	ttc Phe 2290	aac Asn	ctg Leu	aat Asn	gat Asp	gtc Val 2295	gtg Val	aat Asn	ttc Phe	689	)4
acc Thr	tgc Cys 2300	aac Asn	acg Thr	ggc Gly	tat Tyr	ttg Leu 2305	ctg Leu	cag Gln	ggc Gly	gtg Val	tct Ser 2310	cga Arg	gcc Ala	cag Gln	693	19
tgt Cys	cgg Arg 2315	agc Ser	aac Asn	ggc Gly	cag Gln	tgg Trp 2320	agt Ser	agc Ser	cct Pro	ctg Leu	ccc Pro 2325	acg Thr	tgt Cys	cga Arg	698	34
gtg Val	gtg Val 2330	aac Asn	tgt Cys	tct Ser	gat Asp	cca Pro 2335	ggc Gly	ttt Phe	gtg Val	gaa Glu	aat Asn 2340	gcc Ala	att Ile	cgt Arg	702	!9

	ggg Gly 2345	caa Gln	cag Gln	aac Asn	ttc Phe	cct Pro 2350	gag Glu	agt Ser	ttt Phe	gag Glu	tat Tyr 2355	gga Gly	atg Met	agt Ser	705	74
	ctg Leu 2360	tac Tyr	cat His	tgc Cys	aag Lys	aag Lys 2365	gga Gly	ttt Phe	tac Tyr	ttg Leu	ctg Leu 2370	gga Gly	tct Ser	tca Ser	713	19
gcc Ala	ttg Leu 2375	acc Thr	tgt Cys	atg Met	gca Ala	aat Asn 2380	ggc Gly	tta Leu	tgg Trp	gac Asp	cga Arg 2385	tcc Ser	ctg Leu	ccc Pro	710	64
	tgt Cys 2390	ttg Leu	gct Ala	ata Ile	tcg Ser	tgt Cys 2395	gga Gly	cac His	cca Pro	Gly 999	gtc Val 2400	cct Pro	gcc Ala	aac Asn	720	09
gcc Ala	gtc Val 2405	Leu	act Thr	gga Gly	gag Glu	ctg Leu 2410	ttt Phe	acc Thr	tat Tyr	ggc Gly	gcc Ala 2415	gtc Val	gtg Val	cac His	72!	54
tac Tyr	tcc Ser 2420	Cys	aga Arg	61 y 888	agc Ser	gag Glu 2425	agc Ser	ctc Leu	ata Ile	ggc Gly	aac Asn 2430	gac Asp	acg Thr	aga Arg	72	99
gtg Val	tgc Cys 2435	cag Gln	gaa Glu	gac Asp	agt Ser	cac His 2440	tgg Trp	agc Ser	ggg Gly	gca Ala	ctg Leu 2445	ccc Pro	cac His	tgc Cys	73	44
aca Thr	gga Gly 2450	Asn	aat Asn	cct Pro	gga Gly	ttc Phe 2455	tgt Cys	ggt Gly	gat Asp	ccg Pro	999 Gly 2460	Thr	cca Pro	gca Ala	73	89
cat His	999 Gly 2465	Ser	cgg Arg	ctt Leu	ggt Gly	gat Asp 2470	gac Asp	ttt Phe	aag Lys	aca Thr	aag Lys 2475	Ser	ctt Leu	ctc Leu	74	34
cgc Arg	ttc Phe 2480	Ser	tgt Cys	gaa Glu	atg Met	999 Gly 2485	cac His	cag Gln	ctg Leu	agg Arg	ggc Gly 2490	Ser	cct Pro	gaa Glu	74	79
cgc Arg	acg Thr 2495	Cys	ttg Leu	ctc Leu	aat Asn	ggg Gly 2500	Ser	tgg Trp	tca Ser	gga Gly	ctg Leu 2505	Gln	ccg Pro	gtg Val	75	24
tgt Cys	gag Glu 2510	Ala	gtg Val	tcc Ser	tgt Cys	ggc Gly 2515	aac Asn	cct Pro	ggc Gly	aca Thr	ccc. Pro 2520	Thr	aac Asn	gga Gly	75	69
atg Met	att Ile 2525	Val	agt Ser	agt Ser	gat Asp	ggc Gly 2530	Ile	ctg Leu	ttc Phe	tcc Ser	agc Ser 2535	Ser	gtc Val	atc Ile	76	14
tat Tyr	gcc Ala 2540	Сув	tgg Trp	gaa Glu	ggc	tac Tyr 2545	Lys	acc Thr	tca Ser	999 999	ctc Leu 2550	Met	aca Thr	cgg Arg	76	559
cat His	tgc Cys 2555	Thr	gcc	aat Asn	<b>Gly</b>	acc Thr 2560	Trp	aca Thr	ggc Gly	act Thr	gct Ala 2565	Pro	gac Asp	tgc Cys	77	04
	att Ile 2570	Ile	agt Ser	tgt Cys	999 999	gat Asp 2575	Pro	ggc	aca Thr	cta Leu	gca Ala 2580	Asn	ggc Gly	atc	77	149

ca Gl	g ttt n Phe 2585	Gly	acc Thr	gac Asp	ttc Phe	acc Thr 2590	Phe	aac Asn	aag Lys	act Thr	gtg Val 2595	Ser	tat Tyr	cag Gln	•	7794
	t aac s Asn 2600	Pro	ggc	tat Tyr	gtc Val	atg Met 2605	gaa Glu	gca Ala	gtc Val	aca Thr	tcc Ser 2610	gcc Ala	act Thr	att Ile		7839
cg Ar	c tgt g Cys 2615	Thr	aaa Lys	gac Asp	ggc Gly	agg Arg 2620	tgg Trp	aat Asn	ccg Pro	agc Ser	aaa Lys 2625	cct Pro	gtc Val	tgc Cys		7884
аа Ьу	a gcc s Ala 2630	Val	ctg Leu	tgt Cys	cct Pro	cag Gln 2635	ccg Pro	ccg Pro	ccg Pro	gtg Val	cag Gln 2640	Asn	gga Gly	aca Thr	٠.	7929
	g gag 1 Glu 2645	Gly														7974
tg Cy	c atg s Met 2660	Asp	ggt Gly	tac Tyr	cag Gln	ctc Leu 2665	tct Ser	cac His	tcc Ser	gcc Ala	atc Ile 2670	ctc Leu	tcc Ser	tgt Cys		8019
ga G1	a ggt u Gly 2675	Arg	99 <b>9</b>	gtg Val	tgg Trp	aaa Lys 2680	gga Gly	gag Glu	atc Ile	ccc Pro	cag Gln 2685	tgt Cys	ctc Leu	cct Pro		8064
gt Va	g ttc l Phe 2690	Cys	gga Gly	gac Asp	cct Pro	ggc Gly 2695	atc Ile	ccc Pro	gca Ala	gaa Glu	999 Gly 2700	cga Arg	ctt Leu	agt Ser		8109
	g aaa y Lys 2705	Ser				aag Lys 2710										8154
tc Se	t cca r Pro 2720	Phe	ata Ile	ctc Leu	gtg Val	gga Gly 2725	tcc Ser	tcc Ser	aga Arg	aga Arg	gtc Val 2730	tgc Cys	caa Gln	gct Ala		8199
ga As	c ggc p Gly 2735	Thr	tgg Trp	agc Ser	ggc	ata Ile 2740	caa Gln	ccc Pro	acc Thr	tgc Cys	att. Ile 2745	gat Asp	cct Pro	gct Ala		8244
ca Hi	t aac s Asn 2750	Thr	tgc Cys	cca Pro	gac Asp	cct Pro 2755	ggt Gly	acg Thr	cca Pro	cac His	ttt Phe 2760	gga Gly	ata Ile	cag Gln		8289
aa As	t agc n Ser 2765	Ser	aga Arg	ggc	tat Tyr	gag Glu 2770	gtt Val	gga Gly	agc Ser	acg Thr	gtt Val 2775	ttt Phe	ttc Phe	agg Arg		8334
tg Cy	c aga s Arg 2780	Lys	ggc	tac Tyr	cat His	att Ile 2785	caa Gln	ggt Gly	tcc Ser	acg Thr	act Thr 2790	cgc Arg	acc Thr	tgc Cys		8379
	t gcc u Ala 2795	aat Asn	tta Leu	aca Thr	tgg Trp	agt Ser 2800	gly ggg	ata Ile	cag Gln	acc Thr	gaa Glu 2805	tgt .Cys	ata Ile	cct Pro		8424
	t gcc s Ala 2810										gcg Ala 2820					8469

_	atc Ile 2825	gat Asp	ctt Leu	cct Pro	act Thr	ttc Phe 2830	ggc Gly	tac Tyr	acc Thr	tta Leu	gtg Val 2835	tac Tyr	acc Thr	tgc Cys	8514
	cca Pro 2840	ggc	ttt Phe	ttc Phe	ctc Leu	gca Ala 2845	gly ggg	gga Gly	tct Ser	gag Glu	cac His 2850	aga Arg	aca Thr	tgt Cys	8559
aaa	gca	gac Asp	atg Met	aaa Lys	tgg Trp	aca Thr 2860	gga Gly	aag Lys	tcg Ser	cct Pro	gtg Val 2865	tgt Cys	aaa Lys	agt Ser	860 <b>4</b>
aaa Lys	gga Gly 2870	gtg Val	aga Arg	gaa Glu	gtt Val	aat Asn 2875	gaa Glu	aca Thr	gtt Val	act Thr	aaa Lys 2880	act Thr	cca Pro	gtt Val	8649
cct Pro	tca Ser 2885	Asp	gtc Val	ttt Phe	ttc Phe	gtc Val 2890	aat Asn	tca Ser	ctg Leu	tgg Trp	aag Lys 2895	Gly 999	tat Tyr	tat Tyr	8694
gaa Glu	tat Tyr 2900	Leu	Gly 999	aaa Lys	aga Arg	caa Gln 2905	ccc Pro	gcc Ala	act Thr	cta Leu	act Thr 2910	gtt Val	gac Asp	tgg Trp	8739
ttc Phe	aat Asn 2915	Ala	aca Thr	agc Ser	agt Ser	aag Lys 2920	gtg Val	aat Asn	gcc Ala	acc Thr	ttc Phe 2925	agc Ser	gaa Glu	gcc Ala	8784
tcg Ser	cca Pro 2930	Val	gag Glu	ctg Leu	aag Lys	ttg Leu 2935	aca Thr	ggc Gly	att Ile	tac Tyr	aag Lys 2940	Lys	gag Glu	gag Glu	8829
gcc Ala	cac His 2945	Leu	ctc Leu	ctg Leu	aaa Lys	gct Ala 2950	ttt Phe	caa Gln	att Ile	aaa Lys	ggc Gly 2955	Gln	gca Ala	gat Asp	8874
att Ile	ttt Phe 2960	Val	agc Ser	aag Lys	ttc Phe	gaa Glu 2965	aat Asn	gac Asp	aac Asn	tgg Trp	gga Gly 2970	Leu	gat Asp	ggt Gly	8919
tat Tyr	gtg Val 2975	Ser	tct Ser	gga Gly	ctt Leu	gaa Glu 2980	Arg	gga Gly	gga Gly	ttt Phe	act Thr 2985	Phe	caa Gln	ggt Gly	8964
gac Asp	att Ile 2990	His	gga Gly	aaa Lys	gac Asp	ttt Phe 2995	Gly	aaa Lys	ttt Phe	aag Lys	cta Leu 3000	Glu	agg Arg	caa Gln	9009
gat Asp	cct Pro 3005	Leu	aac Asn	cca Pro	ġat Asp	caa Gln 3010	Asp	tct Ser	tcc Ser	agt Ser	cat His 3015	Tyr	cac	ggc Gly	9054
acc Thr	agc Ser 3020	Ser	ggc Gly	tct Ser	gtg Val	gcg Ala 3025	Ala	gcc Ala	att Ile	ctg Leu	gtt Val 3030	Pro	ttc Phe	ttt Phe	9099
_	cta Leu 3035	Ile	tta Leu	tca Ser	ggg	ttt Phe 3040	Ala	ttt Phe	tac Tyr	ctc Leu	tac Tyr 3045	Lys	cac	aga Arg	9144
acg Thr	aga Arg 3050	Pro	aaa Lys	gtt Val	caa Gln	tac Tyr 3055	Asn	ggc	tat Tyr	gct Ala	3060 3060	His	gaa Glu	aac Asn	9189

agc aat gga caa gca tcg ttt gaa aac ccc atg tat gat aca aac Ser Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn 3065 3070 3075	9234
tta aaa ccc aca gaa gcc aag gct gtg agg ttt gac aca act ctg Leu Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu 3080 3085 3090	9279
aac aca gtc tgt aca gtg gta tagccctcag tgccccaaca ggactgattc Asn Thr Val Cys Thr Val Val 3095 3100	9330
atagecatae ctetgatgga caageagtga tteetttggt gecatataee acteteecyt.	.9390
ccactctggc tttactgcag cgatcttcaa ccttgtctac tggcataagt gcagcgggga	9450
tetetactea aatgtgteag ggtettetac ggateaaact acaeatgegt ttteatteea	9510
aaagtgggtt ctaaatgcct ggctgcatct gtatgaaatc aaggcacact ccaggaagac	9570
tgccacgtcg cgccaacacg tcatactcaa trcctcagac tttcatattt ctgtgttgct	9630
gagatgcctt tcaatgcaat cgtctgggct cgtggatatg tccctcaggt gcggtgacag	9690
aatggtggca ccacgatatg tgttctcttg tgttgttttt cctttttaaa cccccatgaa	9750
cacgaatact ctgaaaaaaa taaaaagctt tctggaagaa gacacctttc tgatagaggc	9810
tcacacctac aaatgettca etetgteett eegagaeetg acaagetttg aggaeetcae	9870
ageteceetg tgtgtteate tetagggatg tttgeaattt eeeagteage tgttetgteg	9930
cagaatgttt aatgcacaat tttttgcact agtgtgttat gaatgactaa gattctgata	9990
aaaaaaataa attatttaca cagggtttat acacactatc cattgtatat aagcattatt	10050
tcatattatc aagctaaaca ttcccccatc agcttagttg gagtgttagg gaaaagtatt	10110
cctagatatg gcacagattt taaaaggaaa tacagtattg acgagattta ttttattatt	10170
gcttcaatta gctccattta cgtgttgaat tcattgaaga ggtccaatga gaaaaaaaca	10230
gaageeteet tattteacae gtttteetee tttagtacea teeteateea attactgtet	10290
ctctgatact acttaatagc agggggtttg cagaaatttc tgtttgccat gtaaaactgt	10350
gaatagtaat ttattttaga tagtcgatga acttgtgggt tttagctcac aatgcagcct	10410
tecettttge agtgttttt ttt	10433

<210> 7

<211> 3100

<212> PRT

<213> Homo sapiens

Thr Leu Thr Val Gly Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val 1 5 10 15

Leu Tyr Val Leu Thr Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met 20 25 30

Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser 35 40 45

Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly 50 55 60

Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu 65 70 75 80

His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu Val

Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly Asn 100 105 110

Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser 115 120 125

Gly Ile Ile Leu Ser Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met 130 135 140

Asn Cys Val Trp Leu Ile Ile Ser Glu Pro Gly Ser Arg Ile His Leu 145 150 155 160

Ile Phe Asn Asp Phe Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val 165 170 175

Lys Asp Asp Gly Ile Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly
180 185 190

Asn Glu Val Pro Ser Gln Leu Ala Ser Ser Gly His Ile Val Arg Leu 195 200 205

Glu Phe Gln Ser Asp His Ser Thr Thr Gly Arg Gly Phe Asn Ile Thr 210 225 220

Tyr Thr Thr Phe Gly Gln Asn Glu Cys His Asp Pro Gly Ile Pro Ile 225 230 235 240

Asn Gly Arg Arg Phe Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser 245 250 255

Phe His Cys Asp Asp Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile

Thr Cys Ile Leu Gln Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro 275 280 285

Arg Cys Glu Ala Pro Cys Gly Gly His Leu Thr Ala Ser Ser Gly Val
290 295 300

Ile Leu Pro Pro Gly Trp Pro Gly Tyr Tyr Lys Asp Ser Leu His Cys 305 310 315 320

Glu Trp Ile Ile Glu Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe 325 330 335

Asp Arg Phe Gln Thr Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp 340 345 350

Gly Pro Ala Ser Ser Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln
355 360 365

Ala Pro Gln Phe Leu Ile Ser Thr Gly Asn Phe Met Tyr Leu Leu Phe 370 380

Thr Thr Asp Asn Ser Arg Ser Ser Ile Gly Phe Leu Ile His Tyr Glu 385 390 395 400

Ser Val Thr Leu Glu Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val 405 410 415

Asn Xaa His Arg His Gly Gly Asp Phe Gly Ile Arg Ser Thr Val Thr 420 425 430

Phe Ser Cys Asp Pro Gly Tyr Thr Leu Ser Asp Asp Glu Pro Leu Val 435 440 445

Cys Glu Arg Asn His Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala 450 455 460

Leu Cys Gly Gly Tyr Ile Gln Gly Lys Ser Gly Thr Val Leu Ser Pro 465 470 475 480

Gly Phe Pro Asp Phe Tyr Pro Asn Ser Leu Asn Xaa Thr Trp Thr Ile 485 490 495

Glu Val Ser His Gly Lys Gly Val Gln Met Ile Phe His Thr Phe His 500 505 510

Leu Glu Ser Ser His Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe tm ; 515 520 525

Ser Glu Pro Val Ala Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile 530 540

Lys Ala Gly Leu Phe Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser 545 550 555 560

Asp Phe Ser Ile Ser Tyr Glu Gly Phe Asn Ile Thr Phe Ser Glu Tyr 565 570 575

Asp Leu Glu Pro Cys Asp Asp Pro Gly Val Pro Ala Phe Ser Arg Arg 580 585 590

Fig. 11 Ite Gly Phe His Phe Gly Val Gly Asp Ser Leu Thr Phe Ser Cys Phe 595 600 605

Leu Gly Tyr Arg Leu Glu Gly Ala Xaa Lys Leu Thr Cys Leu Gly Gly 610 615 620

Gly Arg Arg Val Trp Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys 625 630 635 640

Gly Ala Ser Val Lys Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe 645 650 655

Pro Ser Asn Tyr Asp Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr 660 665 670

Glu Ala Gly Lys Gly Ile His Leu Arg Thr Arg Ser Phe Gln Leu Phe 675 680 685

Glu Gly Asp Thr Leu Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser Arg 690 695 700

Pro Leu Gly Thr Phe Thr Lys Asn Glu Leu Leu Gly Leu Ile Leu Asn 705 710 715 720

Ser Thr Ser Asn His Xaa Trp Leu Glu Phe Asn Thr Asn Gly Ser Asp 725 730 735

Thr Asp Gln Gly Phe Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys 740 745 750

Cys Glu Asp Pro Gly Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Glu 755 760 765

- Gly His Phe Thr Asp Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr 770 775 780
- Ala Met His Gly Ser Asn Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg 785 790 795 800
- Val Trp Asp Lys Pro Leu Pro Ser Cys Ile Ala Glu Cys Gly Gln 805 810 815
- Ile His Ala Ala Thr Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala 820 825 830
- Pro Tyr Asp Asn Asn Leu His Cys Thr Trp Ile Ile Glu Ala Asp Pro 835 840 845
- Gly Lys Thr Ile Ser Leu His Phe Ile Val Phe Asp Thr Glu Met Ala 850 855 860
- His Asp Ile Leu Lys Val Trp Asp Gly Pro Val Asp Ser Asp Ile Leu 865 870 875 886
- Leu Lys Glu Trp Ser Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr 885 890 895
- Phe Asn Ser Leu Thr Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys 900 905 910
- Ser Gly Phe Ser Ile Gln Phe Ser Thr Ser Ile Ala Ala Thr Cys Asn 915 920 925
- Asp Pro Gly Met Pro Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu 930 935 940
- Ala Gly Asp Thr Val Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln 945 950 955 960
- Gly Gln Ala Lys Ile Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp 965 970 975
- Gln Pro Asp Pro Pro Thr Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr 980 985 990
- Gly Pro Ala Gly Val Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro 995 1000 1005
- Pro Gly Lys Glu Cys Asp Trp Arg Val Lys Val Asn Pro Asp Phe 1010 1015 1020

- Val Ile Ala Leu Ile Phe Lys Ser Phe Asn Met Glu Pro Ser Tyr 1030 1025 Asp Phe Leu His Ile Tyr Glu Gly Glu Asp Ser Asn Ser Pro Leu Ile Gly Ser Tyr Gln Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser . 1060 Ser Gly Asn Ser Leu Phe Leu Ala Phe Arg Ser Asp Ala Ser Val 1075 1080 Gly Leu Ser Gly Phe Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu 1095 1090 1085 Ala Cys Phe Asp Pro Gly Asn Ile Met Asn Gly Thr Arg Val Gly 1105 1100 Thr Asp Phe Lys Leu Gly Ser Thr Ile Thr Tyr Gln Cys Asp Ser 1125 1120 1115 Gly Tyr Lys Ile Leu Asp Pro Ser Ser Ile Thr Cys Val Ile Gly 1135 Ala Asp Gly Lys Pro Ser Trp Asp Gln Val Leu Pro Ser Cys Asn 1145 1150 1155 Ala Pro Cys Gly Gly Gln Tyr Thr Gly Ser Glu Gly Val Val Leu Ser Pro Asn Tyr Pro His Asn Tyr Thr Ala Gly Gln Ile Cys Leu 1180 Tyr Ser Ile Thr Val Pro Lys Glu Phe Val Val Phe Gly Gln Phe 1200 1195 Ala Tyr Phe Gln Thr Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp 1205
  - Gly Thr His Ala Gln Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser 1220 1225 1230
  - His Ser Gly Glu Thr Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu 1235 1240 1245
  - Leu Arg Phe Ser Ala Lys Ser Gly Ala Ser Ala Arg Gly Phe His 1250 1255 1260

- Phe Val Tyr Gln Ala Val Pro Arg Thr Ser Asp Thr Gln Cys Ser 1275
- Ser Val Pro Glu Pro Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe 1280 1285 1290
- Ser Ala Gly Ser Ile Val Arg Phe Glu Xaa Asn Pro Gly Tyr Leu
  1295 1300 1305
- Leu Gln Gly Ser Thr Ala Leu His Cys Gln Ser Val Pro Asn Ala 1310 1315 1320
- Leu Ala Gln Trp Asn Asp Thr Ile Pro Ser Cys Val Val Pro Cys 1325 1330 1335
- Ser Gly Asn Phe Thr Gln Arg Gly Thr Ile Leu Ser Pro Gly 1340 1345 1350
- Tyr Pro Glu Pro Tyr Gly Asn Asn Leu Asn Cys Ile Trp Lys Ile 1355 1360 1365
- Ile Val  $\ \ \,$  Thr Glu Gly Ser Gly  $\ \ \,$  Ile Gln Ile Gln Val  $\ \ \,$  Ile Ser Phe 1370  $\ \ \,$  1375  $\ \ \,$  1380
- Ala Thr Glu Gln Asn Trp Asp Ser Leu Glu Ile His Asp Gly Gly
  1385 1390 1395
- Asp Val Thr Ala Pro Arg Leu Gly Ser Phe Ser Gly Thr Thr Val 1400 1405 1410
- Pro Ala Leu Leu Asn Ser Thr Ser Asn Gln Leu Tyr Leu His Phe 1415 1420 1425
- Gln Ser Asp Ile Ser Val Ala Ala Gly Phe His Leu Glu Tyr 1430 1435 1440
- Lys Thr Val Gly Leu Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser 1445 1450 1455
- Asn Ser Ile Lys Ile Gly Asp Arg Tyr Met Val Asn Asp Val Leu 1460 1465 1470
- Ser Phe Gln Cys Glu Pro Gly Tyr Thr Leu Gln Gly Arg Ser His 1475 1480 1485
- Ile Ser Cys Met Pro Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser 1490 1495 1500

- Pro Leu Cys Ile Ala Thr Cys Gly Gly Thr Leu Ser Thr Leu Gly 1505 1510 1515
- Gly Val Ile Leu Ser Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn 1520 1525 1530
- Leu Asp Cys Thr Trp Arg Ile Ser Leu Pro Ile Gly Tyr Gly Ala 1535 1540 1545
- His Ile Gln Phe Leu Asn Phe Ser Thr Glu Ala Asn His Asp Phe
  1550 1555 1560
- Leu Glu Ile Gln Asn Gly Pro Tyr His Thr Ser Pro Met Ile Gly 1565 1570 1575
- Gln Phe Ser Gly Thr Asp Leu Pro Ala Ala Leu Leu Ser Thr Thr 1580 1585 1590
- His Glu Thr Leu Ile His Phe Tyr Ser Asp His Ser Gln Asn Arg 1595 1600 1605
- Gln Gly Phe Lys Leu Ala Tyr Gln Ala Tyr Glu Leu Gln Asn Cys 1610 1615 1620
- Pro Asp Pro Pro Pro Phe Gln Asn Gly Tyr Met Ile Asn Ser Asp 1625 1630 1635
- Tyr Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr Pro Gly Tyr 1640 1645 1650
- Ile Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly Ile Asn 1655 1660 1665
- Arg Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly 1670 1675 1680
- Tyr Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe 1685 1690 1695
- Pro Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr 1700 1705 1710
- Val Pro Pro Gly His Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln 1715 1720 1725
- Thr Glu Ala Val Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp 1730 1735 1740

- Gln Asn Ser Pro Gln Leu Gly Val Phe Ser Gly Asn Thr Ala Leu 1745 1750 1755
- Glu Thr Ala Tyr Ser Ser Thr Asn Gln Val Leu Leu Lys Phe His 1760 1765 1770
- Ser Asp Phe Ser Asn Gly Gly Phe Phe Val Leu Asn Phe His Ala ... 1775 1780 1785
- Phe Gln Leu Lys Lys Cys Gln Pro Pro Pro Ala Val Pro Gln Ala 1790 1795 1800
- Glu Met Leu Thr Glu Asp Asp Asp Phe Glu Ile Gly Asp Phe Val 1805 1810 1815
- Lys Tyr Gln Cys His Pro Gly Tyr Thr Leu Val Gly Thr Asp Ile 1820 1825 1830
- Leu Thr Cys Lys Leu Ser Ser Gln Leu Gln Phe Glu Gly Ser Leu 1835 1840 1845
- Pro Thr Cys Glu Ala Gln Cys Pro Ala Asn Glu Val Arg Thr Gly 1850 1860
- Ser Ser Gly Val Ile Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe 1865 1870 1875
- Asn Ser Gln Thr Cys Ser Trp Ser Ile Lys Val Glu Pro Asn Tyr 1880 1885 1890
- Asn Ile Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe 1895 1900 1905
- Asp Ala Leu Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu 1910 1915 1920
- Leu Val Val Leu Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr 1925 1930 1935
- Ser Arg Ser Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala 1940 1945 1950
- Thr Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys 1955 1960 1965
- Ser Leu Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr 1970 1975 1980

- Ala Gly Ala Val Gly Ser Lys Val His Tyr Phe Cys Lys Pro Gly
- Tyr Arg Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro 2000 2005 2010
- Leu Gly Met Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala
- Val Ser Cys Gly Ile Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr 2030 2035 2040
- Gly Asn Glu Phe Thr Leu Asp Ser Lys Val Val Tyr Glu Cys His 2045 2050 2055
- Glu Gly Phe Lys Leu Glu Ser Ser Gln Gln Ala Thr Ala Val Cys 2060 2065 2070
- Gln Glu Asp Gly Leu Trp Ser Asn Lys Gly Lys Pro Pro Thr Cys 2075 2080 2085
- Lys Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His 2090 2095 2100
- Val Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala 2105 2110 2115
- Gln Val Leu Leu Ser Cys Ser Pro Gly Tyr Tyr Leu Glu Gly Trp 2120 2125 2130
- Arg Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp
- Glu Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe 2150 2160
- Pro Pro Asn Gly Asn Lys Ile Gly Thr Leu Thr Val Tyr Gly Ala 2165 2170 2175
- Thr Ala Ile Phe Thr Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser 2180 2185 2190
- His Val Arg Glu Cys Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu 2195 2200 2205
- Thr Arg Cys Leu Ala Gly His Cys Gly Ser Pro Asp Pro Ile Val 2210 2215 2220

- Asn Gly His Ile Ser Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val 2225 2230 2235
- Val Tyr Gln Cys Asn Pro Gly Phe Arg Leu Val Gly Thr Ser Val 2240 2250
- Arg Ile Cys Leu Gln Asp His Lys Trp Ser Gly Gln Thr Pro Val 2255 2260 2265
- Cys Val Pro Ile Thr Cys Gly His Pro Gly Asn Pro Ala His Gly 2270 2275 2280
- Phe Thr Asn Gly Ser Glu Phe Asn Leu Asn Asp Val Val Asn Phe 2285 2290 2295
- Thr Cys Asn Thr Gly Tyr Leu Leu Gln Gly Val Ser Arg Ala Gln 2300 2305 2310
- Cys Arg Ser Asn Gly Gln Trp Ser Ser Pro Leu Pro Thr Cys Arg 2315 2320 2325
- Val Val Asn Cys Ser Asp Pro Gly Phe Val Glu Asn Ala Ile Arg 2330 2335 2340
- His Gly Gln Gln Asn Phe Pro Glu Ser Phe Glu Tyr Gly Met Ser 2345 2350 2355
- Ile Leu Tyr His Cys Lys Lys Gly Phe Tyr Leu Leu Gly Ser Ser 2360 2365 2370
- Ala Leu Thr Cys Met Ala Asn Gly Leu Trp Asp Arg Ser Leu Pro 2375 2380 2385
- Lys Cys Leu Ala Ile Ser Cys Gly His Pro Gly Val Pro Ala Asn 2390 2395 2400
- Ala Val Leu Thr Gly Glu Leu Phe Thr Tyr Gly Ala Val Wal His 2405 2410 2415
- Tyr Ser Cys Arg Gly Ser Glu Ser Leu Ile Gly Asn Asp Thr Arg 2420 2425 2430
- Val Cys Gln Glu Asp Ser His Trp Ser Gly Ala Leu Pro His Cys 2435 2440 2445
- Thr Gly Asn Asn Pro Gly Phe Cys Gly Asp Pro Gly Thr Pro Ala 2450 2455 2460

- His Gly Ser Arg Leu Gly Asp Asp Phe Lys Thr Lys Ser Leu Leu 2465 2470 2475
- Arg Phe Ser Cys Glu Met Gly His Gln Leu Arg Gly Ser Pro Glu 2480 2485 2490
- Arg Thr Cys Leu Leu Asn Gly Ser Trp Ser Gly Leu Gln Pro Val 2495 2500 2505
- Cys Glu Ala Val Ser Cys Gly Asn Pro Gly Thr Pro Thr Asn Gly 2510 2515 2520
- Met Ile Val Ser Ser Asp Gly Ile Leu Phe Ser Ser Val Ile 2525 2530 2535
- Tyr Ala Cys Trp Glu Gly Tyr Lys Thr Ser Gly Leu Met Thr Arg 2540 2545 2550
- His Cys Thr Ala Asn Gly Thr Trp Thr Gly Thr Ala Pro Asp Cys 2555 2560 2565
- Thr Ile Ile Ser Cys Gly Asp Pro Gly Thr Leu Ala Asn Gly Ile 2570 2580
- Gln Phe Gly Thr Asp Phe Thr Phe Asn Lys Thr Val Ser Tyr Gln 2585 2590 2595
- Cys Asn Pro Gly Tyr Val Met Glu Ala Val Thr Ser Ala Thr Ile 2600 2605 2610
- Arg Cys Thr Lys Asp Gly Arg Trp Asn Pro Ser Lys Pro Val Cys 2615 2625
- Lys Ala Val Leu Cys Pro Gln Pro Pro Pro Val Gln Asn Gly Thr 2630 2635 2640
- Val Glu Gly Ser Asp Phe Arg Trp Gly Ser Ser Ile Ser Tyr Ser 2645 2650 2655
- Cys Met Asp Gly Tyr Gln Leu Ser His Ser Ala Ile Leu Ser Cys 2660 2665 2670
- Glu Gly Arg Gly Val Trp Lys Gly Glu Ile Pro Gln Cys Leu Pro 2675 2680 2685
- Val Phe Cys Gly Asp Pro Gly Ile Pro Ala Glu Gly Arg Leu Ser 2690 2695 2700

- Gly Lys Ser Phe Thr Tyr Lys Ser Glu Val Phe Phe Gln Cys Lys : 2705 2710 2715
- Ser Pro Phe Ile Leu Val Gly Ser Ser Arg Arg Val Cys Gln Ala 2720 2725 2730
- Asp Gly Thr Trp Ser Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala 2735 2740 2745
- His Asn Thr Cys Pro Asp Pro Gly Thr Pro His Phe Gly Ile Gln 2750 2755 2760
- Asn Ser Ser Arg Gly Tyr Glu Val Gly Ser Thr Val Phe Phe Arg 2765 2770 2775
- Cys Arg Lys Gly Tyr His Ile Gln Gly Ser Thr Thr Arg Thr Cys 2780 2785 2790
- Leu Ala Asn Leu Thr Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro 2795 2800 2805
- His Ala Cys Arg Gln Pro Glu Thr Pro Ala His Ala Asp Val Arg 2810 2815 2820
- Ala Ile Asp Leu Pro Thr Phe Gly Tyr Thr Leu Val Tyr Thr Cys 2825 2830 2835
- His Pro Gly Phe Phe Leu Ala Gly Gly Ser Glu His Arg Thr Cys 2840 2845 2850
- Lys Ala Asp Met Lys Trp Thr Gly Lys Ser Pro Val Cys Lys Ser 2855 2860 2865
- Lys Gly Val Arg Glu Val Asn Glu Thr Val Thr Lys Thr Pro Val 2870 2875 2880
- Pro Ser Asp Val Phe Phe Val Asn Ser Leu Trp Lys Gly Tyr Tyr 2885 2890 2895
- Glu Tyr Leu Gly Lys Arg Gln Pro Ala Thr Leu Thr Val Asp Trp 2900 2905 2910
- Phe Asn Ala Thr Ser Ser Lys Val Asn Ala Thr Phe Ser Glu Ala 2915 2920 2925
- Ser Pro Val Glu Leu Lys Leu Thr Gly Ile Tyr Lys Lys Glu Glu 2930 2940

- Ala His Leu Leu Leu Lys Ala Phe Gln Ile Lys Gly Gln Ala Asp
- Ile Phe Val Ser Lys Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly 2960 2965 2970
- Tyr Val Ser Ser Gly Leu Glu Arg Gly Gly Phe Thr Phe Gln Gly 2975 2980 2985
- Asp Ile His Gly Lys Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln 2990 2995 3000
- Asp Pro Leu Asn Pro Asp Gln Asp Ser Ser Ser His Tyr His Gly 3005 3010 3015
- Thr Ser Ser Gly Ser Val Ala Ala Ile Leu Val Pro Phe Phe 3020 3025 3030
- Ala Leu Ile Leu Ser Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg 3035 3040 3045
- Thr Arg Pro Lys Val Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn 3050 3060
- Ser Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn 3065 3070 3075
- Leu Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu 3080 3085 3085
- Asn Thr Val Cys Thr Val Val 3095 3100

.

# (19) World Intellectual Property Organization International Bureau



# 

(43) Internati nal Publication Date 7 February 2002 (07.02.2002)

**PCT** 

# (10) International Publication Number WO 02/010199 A3

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/705, A01K 67/027, A61K 38/16, C07K 16/18, C12N 5/10, 15/62, G01N 33/50
- (21) International Application Number: PCT/US01/23232
- (22) International Filing Date: 24 July 2001 (24.07.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/222.504 09/728,787 2 August 2000 (02.08.2000) US 28 November 2000 (28.11.2000) US

- (71) Applicant (for all designated States except US): AMGEN INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WELCHER, Andrew, A. [US/US]; 1175 Church Street, Ventura, CA 93001 (US). ELLIOTT, Gary, S. [US/US]; 2458 Chaucer Place, Thousand Oaks, CA 91362 (US).
- (74) Agents: SINTICH, Sharon, M. et al.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

- (81) Designated States (national): AE. AG. AL. AM. AT. AU. AZ. BA. BB. BG, BR. BY. BZ. CA. CH. CN. CO. CR. CU. CZ. DE. DK. DM. DZ. EC. EE. ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL, IN. IS. JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD. MG, MK. MN. MW. MX. MZ. NO. NZ. PL. PT. RO, RU. SD. SE. SG. SI. SK. SL. TJ. TM. TR. TT. TZ, UA, UG, US. UZ, VN, YU, ZA. ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE. LS. MW. MZ, SD, SL. SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report:

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/010199 A

(54) Title: C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

(57) Abstract: Novel C3b/C4b CR-like polypeptides and nucleic acid molecules encoding the same. The invention also provides vectors, host cells, selective binding agents, and methods for producing C3b/C4b CR-like polypeptides. Also provided for are methods for the treatment, diagnosis, amelioration, or prevention of diseases with C3b/C4b CR-like polypeptides.

### INTERNATIONAL SEARCH REPORT

Inte 'ional Application No PCT/US 01/23232

a. classification of subject matter IPC 7 C12N15/12 C07K14/705 A01K67/027 A61K38/16 C07K16/18 C12N5/10 C12N15/62 G01N33/50 . . yo. According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EMBL, EPO-Internal, SEQUENCE SEARCH, PAJ, BIOSIS, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X DATABASE EMBL [Online] 1-12. 19 July 2001 (2001-07-19) 46-48, SUN, P. ET AL.: "Mus musculus CSMD1 55,56 (Csmd1) mRNA, complete cds." retrieved from EBI Database accession no. AY017475 XP002193405 83% identity in 9483 nt overlap (285-9763:1743-11221) with SEQ ID NO:1. 95% identity in 9507 nt overlap (1-9505:1716-11221) with SEQ ID NO:3. 83.6% identity in 9525 nt overlap (1-9523:1701-11221) with SEQ ID NO:6. -/--Χ Further documents are listed in the continuation of box C. Х Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 10.05.2002 15 April 2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Schmitz, T

3

### INTERNATIONAL SEARCH REPORT

Inte ional Application No
PCT/US 01/23232

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category	Challon of document, with moleculor, where appropriate, or the	
X	DATABASE EMBL [Online] 14 February 2000 (2000-02-14) BIRREN, B. ET AL.: "Homo sapiens chromosome 2, clone RP11-564K14, complete sequence." retrieved from EBI Database accession no. AC023296 XP002193406 99.7% identity in 1292 nt overlap	1-12, 46-48, 55,56
P,X	(10673-9382:84226-85517) with SEQ ID NO:1. abstract 57% identity in 3548 nt overlap (12522-9127:81101-84494) with SEQ ID NO:3.  WO 01 36638 A (LICHENSTEIN HENRI ; VERNET CORINE (US); CURAGEN CORP (US); FERNANDE)	1-12, 14-20,
	25 May 2001 (2001-05-25)  SEQ ID NOs:31,32, "NOV16" page 49-53; table 17 60.3% identity in 829 aa overlap (1976-2804:2-830) with SEQ ID NO:2. 65% identity in 2728 nt overlap (5868-8582:294-3007) with SEQ ID NO:3. 60.3% identity in 829 aa overlap (2002-2830:2-830) with SEQ ID NO:4. 60.3% identity in 829 aa overlap (2007-2835:2-830) with SEQ ID NO:7.	22-41, 43-56
x	DATABASE SWALL [Online] 1 November 1999 (1999-11-01) NAGASE, T. ET AL.: "KIAA0927 Protein (Fragment)" retrieved from EBI Database accession no. Q9Y2E1 XP002193407 abstract 32.2% identity in 589 aa overlap (607-1176:331-894) with SEQ ID NO:2. 31% identity in 586 aa overlap (633-1202:331-894) with SEQ ID NO:4. 32.2% identity in 589 aa overlap (638-1207:331-894) with SEQ ID NO:7.	15,19, 20, 22-41, 43-45, 49-54
A	WO 98 39433 A (SMITH RICHARD ANTONY GODWIN; ADPROTECH PLC (GB); COX VIVIENNE FRAN) 11 September 1998 (1998-09-11) the whole document/	

3

### INTERNATIONAL SEARCH REPORT

ional Application No PCT/US 01/23232

C (Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	701703 0	
Category °			
	ondition of document, with undication, where appropriate, of the relevant passages		Relevant to claim No.
A	HOURCADE D ET AL: "DUPLICATION AND DIVERGENCE OF THE AMINO-TERMINAL CODING REGION OF THE COMPLEMENT RECEPTOR 1 (CR1) GENE"  JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 265, no. 2, 15 January 1990 (1990-01-15), pages 974-980, XP002072410 ISSN: 0021-9258 the whole document	·	
. 1		j	
			-
		·	
l			
.			
	·		
			•
	·		
	•		
		}	
1			
	·		
	•	ľ	i
			į.

3

### ...ernational application No. PCT/US 01/23232

### INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of it m 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	_
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210	
2. X Claims Nos.: 1c, 2d, 3f, 14d, 23, 35-39 (partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.	

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

.... Continuation of Box I.1

Although claim 52 is directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the malleged effects of the compound/composition.

Although claims 37, 51, 55 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.2

Claims Nos.: 1c, 2d, 3f, 14d, 23, 35-39 (partially)

Present claims 1c, 2d, 3f, 14d relate to an extremely large number of possible sequences. Support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the sequences claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the full length of the sequences (SEQ ID NO: 1-4, 6, 7).

Present claims 23, 35-39 relate to a selective binding agent defined by reference to a desirable characteristic or property, namely the binding to an amino acid as defined in SEQ ID NO: 2, 4, 7.

The claims cover all selective binding agents having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such selective binding agent. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the selective binding agent by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the antibodies binding to said polypeptides.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is

# FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210 the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

TEHNATIONAL SEATION HER UNI

.tormation on patent family members

Inter ional Application No PC I/US 01/23232

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0136638	A	25-05-2001	AU WO AU WO	1616801 A 0136638 A2 6229100 A 0105971 A2	30-05-2001 25-05-2001 05-02-2001 25-01-2001
WO 9839433	A	11-09-1998	AU EP WO JP	6509098 A 0979276 A1 9839433 A1 2001516212 T	22-09-1998 16-02-2000 11-09-1998 25-09-2001