

Grafové algoritmy (cesty)

7. 11. 2017

zimný semester 2017/2018

Opakovanie – Teória grafov

- G = (V vrcholy, E hrany)
- Kalingradské mosty
 Nájsť prechádzku mestom, ktorá prejde všetky mosty práve raz.
 - **Eulerov cyklus** ak je počet hrán pri každom vrchole (stupeň) párny
 - Eulerov t'ah ak práve dva vrcholy majú nepárny stupeň

Opakovanie – sled, ťah, cesta

- **Sled** (walk) v grafe je ľubovoľná striedajúca sa postupnosť vrcholov a hrán grafu: $v_1,(v_1,v_2),v_2,(v_2,v_3),v_3,...,(v_{k-1},v_k),v_k$
- Ťah (tour) je taký sled, v ktorom sa žiadna hrana neopakuje
- Cesta (path) je taký sled, v ktorom sa žiaden vrchol neopakuje

$$1-3 \text{ sled: } (1,\{1,2\},2,\{2,5\},5,\\\{5,6\},6,\{6,5\},5,\{5,7\},7,\{7,6\},6,\{6,5\},5,\{5,2\},2,\{2,3\},3).$$

$$1-3 \text{ fah: } (1,\{1,2\},2,\{2,5\},5,\{5,6\},6,\{6,7\},7,\{7,5\},5,\{5,3\},3).$$

$$1-3 \text{ cesta: } (1,\{1,4\},4,\{4,6\},6,\{6,7\},7,\{7,5\},5,\{5,3\},3).$$

Teória grafov – ohodnotený graf

- Hranám priradíme ohodnotenie, zobrazenie w
 - w je hranové ohodnotenie w: E → ℝ
 w(e) = c (hovoríme, že hrana e má ohodnotenie c)
 - Graf G = (V,E,w) nazývame **ohodnotený graf** (weighted graph)
- Ohodnotenie nazývame aj
 - Váha (weight)
 - Cena (cost)
 - Dĺžka (length)
 - ...

	1	2	3	4	5
1	-	3	7	-	-
2	5	-	-	-	-
3	-	1	-	9	2
4	-	-	-	-	-
5	-	-	-	-	-

- Rôzne typy ohodnotení
 - Vrcholové ohodnotenie (vertex weight)
 - Viacero ohodnotení zároveň (napr. dĺžka hrany a cena hrany)

Teória grafov – najkratšia cesta

- Dĺžka sledu, ťahu, cesty v hranovo ohodnotenom grafe nazveme súčet ohodnotení jeho hrán
 - Ak máme sled, tak ohodnotenie každej hrany započítame toľkokrát, koľkokrát sa hrana v slede nachádza
 - Dĺžka sledu, ťahu, cesty ak je to len jeden vrchol je 0.
 - · V prípade neohodnoteného grafu, je dĺžka počet hrán.
- Najkratšia x-y cesta v hranovo ohodnotenom grafe G je tá zo všetkých x-y ciest v G, ktorá má najmenšiu dĺžku
- Najkratšia x-y cesta v neohodnotenom grafe?
 - Najmenšia dĺžka (počet hrán) cesty z vrcholu x do vrcholu
 - Prehľadávanie do šírky

Najkratšia cesta v neohodnotenom grafe

Prehľadávanie do šírky

Strom prehľadávania do šírky (z vrcholu x) zodpovedá **stromu najkratších ciest** (z vrcholu x)

Najkratšia cesta v neohodnotenom grafe

Najkratšia cesta v ohodnotenom grafe

- Predpokladajme <u>nezáporné</u> ohodnotenia hrán w(e) ≥ 0
- Počiatočný vrchol u
- Pre každý ďalší vrchol i ∈ V nás zaujíma najkratšia cesta.
- Ako si budeme cestu pamätat?
 - Stačí nám vo vrchole i uchovať predposledný (tzn. predchádzajúci) vrchol na u-i ceste.
- Celú u-i cestu (postupnosť vrcholov a hrán z vrcholu u do vrcholu i) vieme potom ľahko rekonštruovať využitím predchádzajúceho vrcholu (predchádzajúci vrchol máme uchovaný pre každý vrchol z množiny V)

Najkratšia cesta v ohodnotenom grafe (2)

- Predpokladajme <u>nezáporné</u> ohodnotenia hrán w(e) ≥ 0
- Počiatočný vrchol u
- Pre každý ďalší vrchol i ∈ V nás zaujíma najkratšia cesta.
- Ako budeme určovať najkratšiu cestu do vrcholu i?
 - Začneme s nejakou cestou, ktorú budeme postupne zlepšovať, až sa nebude dať zlepšiť, a bude to skutočne najkratšia u-i cesta.
- Cesta, ktorú si pre vrchol i pamätáme, teda nemusí byť najkratšia u-i cesta, teda jej dĺžka je horné ohraničenie dĺžky (skutočne) najkratšej cesty.

Najkratšia cesta v ohodnotenom grafe (3)

- Predpokladajme <u>nezáporné</u> ohodnotenia hrán w(e) ≥ 0
- Počiatočný vrchol u
- Pre každý ďalší vrchol i ∈ V si budeme udržiavať:
 - t(i) horné ohraničenie na dĺžku (aktuálne) najkratšej u-i cesty
 - p(i) predposledný vrchol v doteraz nájdenej najlepšej ceste (rodič v strome najkratších ciest)
- Algoritmus hľadania najkratšej cesty: opakované znižovanie (relaxácia) horného ohraničenia na dĺžku najkratšej cesty pre každý vrchol, až sa horné ohraničenie bude rovnať váhe najkratšej cesty

Relaxácia hrany

Napr.

- Relaxácia hrany e=(u,v) s ohodnotením w(e)=2
 - Číslo vnútri vrcholu je horné ohraničenie dĺžky najkratšej cesty
 - a) Pred relaxáciou platí t(v) > t(u)+w(e), preto sa t(v) zmenší
 - b) Pred relaxáciou platí $t(v) \le t(u)+w(e)$, preto sa t(v) nezmení

Základná schéma algoritmu

- 1. Inicializácia (počiatočný vrchol u) $t(u) = 0, t(v) = \infty$ pre $v \in V$ a $v \neq u$, a p(v) = 0
- 2. Ak existuje orientovaná hrana $e=(x,y) \in E$, pre ktorú platí: t(y) > t(x)+w(e), tak
 - Relaxuj hranu t(y) = t(x)+w(e)
 - Zapamätaj predchodcu p(y) = x
 - Chod' na krok 2.
- 3. Koniec, našli sme strom najkratších ciest z vrcholu u. (otázka na zamyslenie: je tento strom unikátny?)
- Ak t(i) = ∞, tak vrchol i nie je dosiahnuteľný z vrcholu u, inak najkratšia u-i cesta má dĺžku t(i) a je opačná (spätná) k ceste:
 - i, p(i), p(p(i)), p(p(p(i))),, u

e	(1,3)	(2,4)	(3,2)	(3,5)	(4,3)	(4,6)	(5,1)	(5,2)	(5,6)
w(e)	30	30	10	60	80	20	30	90	150

e=(i,j)	<i>t(i)</i> \	w(e)	1	2	3	4	5	6
					t(v)	p(v)		
-			∞	∞	∞	∞	0	∞
(5,1)	0	30	30 5					
(5,2)	0	90		90 5				
(5,6)	0	150						150 5
(1,3)	30	30			60 1			
(2,4)	90	30				120 2		
(3, 2)	60	10		70 3				
(4, 6)	120	20						140 4
(2, 4)	70	30				100 2		
(4, 6)	100	20						120 4

e	(1,3)	(2,4)	(3,2)	(3,5)	(4,3)	(4,6)	(5,1)	(5, 2)	(5,6)
w(e)	30	30	10	60	80	20	30	90	150

e=(i,j)	t(i)	w(e)	1	2	3	4	5	6
					t(v)	p(v)		
-			∞	∞	∞	∞	0	∞
(5,1)	0	30	30 5					
(5,2)	0	90		90 5				
(5,6)	0	150						150 5
(1,3)	30	30			60 1			
(2,4)	90	30				120 2		
(3, 2)	60	10		70 3				
(4, 6)	120	20						140 4
(2, 4)	70	30				100 2		
(4, 6)	100	20						120 4

е	(1,3)	(2,4)	(3, 2)	(3,5)	(4,3)	(4,6)	(5,1)	(5, 2)	(5, 6) 150
w(e)	30	30	10	60	80	20	30	90	150

e=(i,j)	t(i)	w(e)	1	2	3	4	5	6
					t(v)	p(v)		
-			$ \infty $	∞	∞	∞	0	∞
(5,1)	0	30	30 5					
(5, 2)	0	90		90 5				
(5,6)	0	150						150 5
(1,3)	30	30			60 1			
(2,4)	90	30				120 2		
(3, 2)	60	10		70 3				
(4,6)	120	20						140 4
(2,4)	70	30				100 2		
(4,6)	100	20						120 4

e	(1,3)	(2,4)	(3,2)	(3,5)	(4,3)	(4,6)	(5,1)	(5,2)	(5,6)
w(e)	30	30	10	60	80	20	30	90	150

e=(i,j)	t(i)	w(e)	1	2	3	4	5	6
					t(v)	p(v)		
-			∞	∞	∞	∞	0	∞
(5,1)	0	30	30 5					
(5,2)	0	90		90 5				
(5,6)	0	150						150 5
(1,3)	30	30			60 1			
(2,4)	90	30				120 2		
(3, 2)	60	10		70 3				
(4,6)	120	20						140 4
(2,4)	70	30				100 2		
(4, 6)	100	20						120 4

Dijkstrov algoritmus

- Najkratšia u-v cesta v orientovanom grafe
- Predpoklad: <u>nezáporné</u> váhy hrán w(e) ≥ 0
- Inicializácia a relaxácia
- Udržiavame množinu vrcholov s ∈ S, ktorých dĺžky najkratších u-s ciest sú už <u>definitívne</u> určené
- Opakovane vyberieme vrchol x ∈ V S s najmenším horným ohraničením dĺžky najkratšej cesty:
 - Relaxujeme všetky hrany vychádzajúce z x
 - Vrchol x pridáme do S

Dijkstrov algoritmus – implementácia

- Najkratšie cesty z u = strom najkratších ciest z u
- Predpoklad: <u>nezáporné</u> váhy hrán w(e) ≥ 0

```
Dijkstra(G, w, u)
1 Inicializuj-počiatok(G, u)
2 S ← Ø
3 PQ ← V(G)
4 while PQ ≠ Ø
5 do x ← Extrakt-Min(PQ)
6 S ← S ∪ {x}
7 for každý vrchol y ∈ Neigh(x)
8 do Relax(x, y, w)
```

PQ - min-prioritný rad

Dijkstrov algoritmus – dôkaz správnosti

- Vždy keď zaraďujeme vrchol x do množiny S (riadok 6), platí, že t(x) je dĺžka najkratšej u-x cesty.
- Predpokladajme, že to neplatí:
 - Nech je x je prvý taký vrchol, že to neplatí (dĺžka t(x) nie je dĺžka najkratšej u-x cesty)
 - Existuje teda nejaká kratšia u-x cesta, a na tejto ceste nájdime prvý vrchol y taký, že y ∉ S
 - Keďže to je kratšia cesta a platí w(p₂) ≥ 0 tak t(y) < t(x)
 - Tiež platí t(x) ≤ t(y) pretože sme vybrali x skôr na pridanie do S.
 - Spor.

Dijkstrov algoritmus – modifikácia

- Najkratšia u-v cesta v orientovanom grafe
- Predpoklad: nezáporné váhy hrán w(e) ≥ 0

```
Dijkstra(G, w, u, v)
1 Inicializuj-počiatok(G, u)
2 S ← Ø
3 PQ ← V(G)
4 while PQ ≠ Ø
5 do x ← Extrakt-Min(PQ)
6 if x = v then STOP.
7 S ← S ∪ {x}
8 for každý vrchol y ∈ Neigh(x)
9 do Relax(x, y, w)
```

PQ - min-prioritný rad

Dijkstrov algoritmus – odhad zložitosti

- Počet vrcholov N=|V|, počet hrán M=|E|
- Q vo vektore:
 - Extract-Min O(N), opakuje sa N krát, spolu $O(N^2)$
 - každý vrchol sa vkladá do S práve raz.
 - každá hrana sa relaxuje (v jednom smere) práve raz
 - $O(N^2 + M) = O(N^2)$
- Q v binárnej halde:
 - Extract-Min O(log N), opakuje sa N krát
 - vytvorenie binárnej haldy O(N)
 - relaxovanie sa zrealizuje pomocou operácie Decrease-Key O(log N)
 - stále je M opakovaní
 - O((N + M) * log N) = O(M * log N)
 ak sú všetky vrcholy dosiahnuteľné z východiska

Teória grafov – vzdialenosť

- Vzdialenosť vrcholov u a v je dĺžka d(u,v) najkratšej u-v cesty
- Excentricita vrcholu x:
 e(x) = max { d(x,y) | y ∈ V }
- Polomer (rádius) grafu G=(V,E):
 r(G) = min { e(x) | x ∈ V }
- Priemer (diameter) grafu G=(V,E): d(G) = max { e(x) | x ∈ V } (platí d(G) = max { d(x,y) | x,y ∈ V })
- Centrum grafu G=(V,E) vrcholy v ∈ V také, že:
 e(v) = r(G)

Čo keď sú ohodnotenia záporné?

Napr.

- Počiatočný vrchol s
- Vnútri vrcholov je vpísaná dĺžka najkratšieho sledu
 - V prípade ak v grafe nie je záporný cyklus, tak dĺžky najkratších sledov sú konečné, a rovnaké ako dĺžka najkratšej cesty
 - Ak môže byť záporný cyklus, má zmysel uvažovať najkratšiu dĺžku cesty (sledu, v ktorom sa neopakujú vrcholy)?

Určite má, ale zatiaľ ľudstvo nepozná efektívny algoritmus ako to riešiť, viac neskôr...

Bellman-Fordov algoritmus

- Ohodnotenia hrán môžu byť záporné
- Algoritmus zistí, ak existuje v grafe záporný cyklus dosiahnuteľný z počiatočného vrcholu, inak (ak neexistuje) nájde strom a dĺžky najkratších ciest z počiatočného vrcholu
- 1. Inicializácia
- 2. Relaxácia: N-1 prechodov cez všetky hrany grafu
- Test na záporné cykly
 (ešte jeden pokus o relaxáciu; ak sa podarí, znamená to, že existuje záporný cyklus)

(dôkaz správnosti ako cvičenie: ukázať, že alebo nájde najkratšie cesty alebo vyhlási, že graf obsahuje záporný cyklus)

Bellman-Fordov algoritmus – implementácia

```
Bellman-Ford(G, w, s)
1 Inicializuj-počiatok(G, s)
2 for i ← 1 to N - 1
3   do for každú hranu e=(u,v) ∈ E
4        do Relax(u, v, w)
5 for každú hranu e=(u,v) ∈ E
6   do if t[v] > t[u]+w(e)
7        then return CONTAINS_NEGATIVE_CYCLE
8 return OK
```


- inicializácia (riadok 1) potrebuje O(N)
- každý z N 1 prechodov (riadky 2–4) potrebuje O(M)
- záverečný test (riadky 5–8) potrebuje O(M).
- celkovo O(N*M)

Najkratšie cesty z každého vrcholu do každého

- Ak graf neobsahuje záporné hrany
 - Spustiť z každého vrcholu Dijkstrov algoritmus
 N*O(N²) = O(N³) ak použijeme vektor
 N*O(M log N) = O(N*M log N) ak použijeme min-haldu
- Ak obsahuje záporné hrany
 - Spustiť (pomalší) Bellman-Fordov algoritmus z každého vrcholu N*O(N*M) = O(N²*M)
 na hustých grafoch to je O(N⁴)
- Chceme to lepšie $O(N^3)$ aj pre záporné hrany
 - Samozrejme chceme aj detekciu záporného cyklu :)

Floydov algoritmus

- Vzdialenosť (dĺžka najkratšej cesty)
 z každého vrcholu do všetkých ostatných
- Uvažujeme cez ktoré vrcholy ide najkratšia cesta
- V k-tom kroku: zaujímajú nás najkratšie cesty medzi každou dvojicou vrcholov i,j také že cesta ide po vrcholoch z množiny {1, 2, ..., k}
- Algoritmus postupuje pre k=1, 2, ..., N nakoniec teda budú určené najkratšie cesty medzi každou dvojicou vrcholov také, že idú cez všetky vrcholy {1, ..., k=N }

Floydov algoritmus

Dĺžky najkratších ciest v kroku k určíme induktívne z dĺžok najkratších ciest z kroku k-1 nasledovne:

- Ak vrchol k **nie je** na najkratšej ceste idúcej cez vrcholy {1,...,k}, tak sa použije najkratšia cesta idúca cez {1,...,k-1}
- Ak vrchol k je na najkratšej ceste idúcej cez {1,...,k}, a podcesty p₁ a p₂ už môžu obsahovať len {1,...,k-1}.

Floydov algoritmus – rekurzívny zápis

• Označme $d_{ij}^{(k)}$ dĺžku najkratšej cesty z vrcholu i do j takej, že ide len cez vrcholy množiny $\{1, ..., k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{at } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{at } k \ge 1. \end{cases}$$

• Označme $\pi_{ij}^{(k)}$ predposledný vrchol najkratšej cesty z i do j (cez vrcholy z $\{1,...,k\}$) ak existuje.

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & ak \ i = j \quad \text{alebo} \quad w_{ij} = \infty \ , \\ i & ak \ i \neq j \quad \text{a} \quad w_{ij} < \infty \ . \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & ak \ d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ , \\ \pi_{kj}^{(k-1)} & ak \ d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ . \end{cases}$$

Floydov algoritmus – implementácia

```
Floyd (W)

1 d(0) = W

2 for k \leftarrow 1 to N

3 for i \leftarrow 1 to N

4 for j \leftarrow 1 to N

5 d(k)_{ij} = min(d(k-1)_{ij}, d(k-1)_{ik} + d(k-1)_{kj})

6 return d(n)
```

- Zložitosť: O(N³)
 - Pamäťová zložitosť N matíc NxN (cvičenie je to potrebné?)
- Detekcia záporných cyklov
 - Inicializovat' $d(0)_{ii} = \infty$
 - Na koniec bude d(n)_{ii} dĺžka najkratšieho i-i cyklu
- Warshallov algoritmus: jednoduchý variant na určenie tranzitívneho uzáveru grafu

Teória grafov – tranzitívny uzáver / redukcia

■ Digraf je **tranzitívny**, ak platí $(u,v),(v,w) \in E \Rightarrow (u,w) \in E$

- Tranzitívny uzáver grafu G je minimálny tranzitívny digraf obsahujúci ako podgraf graf G
- Tranzitívna redukcia grafu G je minimálny podgraf so všetkými vrcholmi, s rovnakou dosiahnuteľnosťou ako G

a) Digraf

o) Tranzitívny uzáver

c) Tranzitívna redukcia

$d_{ij}^{(0)}$	1	2	3	4	5
1	0	6	3	2	∞
2	∞	0	5	∞	∞
3	∞	∞	0	∞	7
4	∞	3	∞	0	4
5	1	∞	∞	∞	0

$\pi_{ij}^{(0)}$	1	2	3	4	5
1	1	1	1	1	∞
2	∞	2	2	∞	∞
3	∞	∞	3	∞	3
4	∞	4	∞	4	4
5	5	∞	∞	∞	5

	1	2	3	4	5
$\lceil 1 \rceil$	1	1	1	1	∞
2	∞	2	2	∞	∞
3	∞	∞	3	∞	3
4	∞	4	∞	4	4
5	5	∞	∞	∞	5

	-
1/	 - 1
n	

		1	2	3	4	5
	1	1	1	1	1	∞
Ī	2	∞	2	2	∞	∞
Ī	3	∞	∞	3	∞	3
	4	∞	4	∞	4	4
	5	5	1	1	1	5

$$k = 2$$

		1	2	3	4	5
	1	0	6	3	2	∞
	2	∞	0	5	∞	∞
	3	8	∞	0	8	7
Γ	4	∞	3	8	0	4
	5	1	7	4	3	0

		1	2	3	4	5
\prod	1	1	1	1	1	∞
	2	∞	2	2	∞	∞
	3	∞	∞	3	∞	3
	4	∞	4	2	4	4
	5	5	1	1	1	5

_						
		1	2	3	4	5
ſ	1	0	6	3	2	10
l	2	∞	0	5	∞	12
	3	∞	∞	0	∞	7
	4	8	3	8	0	4
	5	1	7	4	3	0

k	=	4
---	---	---

	1	2	3	4	5
1	0	5	3	2	6
2	∞	0	5	∞	12
3	∞	∞	0	∞	7
4	∞	3	8	0	4
5	1	6	4	3	0

/	 h
`	 J

r	\ _					
		1	2	3	4	5
ſ	1	0	5	3	2	6
	2	13	0	5	15	12
	3	6	13	0	10	7
	4	5	3	8	0	4
	5	1	6	4	3	0

Ī		1	2	3	4	5
	1	1	1	1	1	3
l	2	∞	2	2	∞	3
	3	∞	∞	3	8	3
	4	8	4	2	4	4
	5	5	1	1	1	5

	1	2	3	4	5
1	1	4	1	1	4
2	∞	2	2	∞	3
3	∞	∞	3	∞	3
4	∞	4	4	4	4
5	5	4	1	1	5

	1	2	3	4	5
1	1	4	1	1	4
1 2 3 4 5	1 5 5 5 5	2	2	1	3
3	5	4	3	1	3
4	5	4	2	4	4
5	5	4	1	1	5

•		
v		h
n	_	J

$d_{ij}^{(k)}$	1	2	3	4	5
1	0	5	3	2	6
2	13	0	5	15	12
3	6	13	0	10	7
4	5	3	8	0	4
5	1	6	4	3	0

_						
	$\pi_{ij}^{(k)}$	1	2	3	4	5
ſ	1	1	4	1	1	4
	2	5	2	2	1	3
	3	5	4	3	1	3
	4	5	4	2	4	4
	5	5	4	1	1	5

Najkratšia 3-4 cesta je (3, (3, 5), 5, (5, 1), 1, (1, 4), 4) a má dĺžku 10.

Grafové algoritmy (kostry)

7. 11. 2017

zimný semester 2017/2018

Teória grafov – kostra

- Kostra (spanning tree) strom, ktorý obsahuje všetky vrcholy grafu
 - <u>Súvislý</u> podgraf bez cyklov
- Cena (váha) kostry je súčet ohodnotení jej hrán
- Najlacnejšia kostra (minimum spanning tree) je kostra s najmenšou cenou

Je táto kostra jediná najlacnejšia?

Všeobecná schéma

Pažravý (greedy) algoritmus, ktorý pridáva hrany do kostry, až pokým nie je hotová:

 V nasledujúcej časti budeme riešiť, ako vybrať takúto hranu

Všeobecná schéme

- Rez grafu sa nazýva množina prvkov súvislého grafu, po odstránení ktorých sa graf rozpadne na dva komponenty (S a V-S) a žiadna podmnožina rezu nemá túto vlastnosť. (ak je rez vrchol = artikulácia, ak hrana = most)
- Rez rešpektuje množinu hrán A, ak žiadna hrana z A nepretína rez. Ľahká hrana je hrana, ktorá pretína rez, a má najmenšiu váhu spomedzi takých čo pretínajú rez.

Všeobecná schéme

- Ľahké hrany (medzi S a V-S):
 (c,d) cena 7.
- Podmnožina hrán A je šedá.
- Hociktorú z ľahkých hrán môžeme pridať (bude v nejakej min. kostre).

Inak nakreslené: hrany rezu idú len medzi S a V-S

Algoritmy na výpočet minimálnej kostry grafu

- Rôznym spôsobom určujú, ktorú hranu vyberú a pridajú do "vytváranej kostry"
- Kruskalov algoritmus (1956)
 - Množina A je les, ktorého vrcholy sú všetky vrcholy grafu G
 - V jednom kroku vyberie najlacnejšiu hranu, spomedzi hrán spájajúcich rôzne komponenty
- Primov algoritmus (1957)
 - Množina A je jeden strom
 - V jednom kroku vyberie najlacnejšiu hranu spomedzi hrán spájajúcich vrchol v strome s vrcholom, ktorý nie je v strome
 - Objavil ho už Vojtěch Jarník v roku 1930!
 Jarníkov algoritmus

Martin Kruskal

Robert Prim

Kruskalov algoritmus

- Potrebujeme ešte dátovú štruktúru pre reprezentáciu disjunktných množín:
 - Make-Set(v) vytvoriť triviálnu (jednoprvkovú) množinu {v}
 - Find-Set(v) nájsť identifikátor množiny, v ktorej je prvok v
 - Union(u,v) spojiť množiny v ktorých sú prvky u a v

Kruskalov algoritmus – ukážka

Kruskalov algoritmus – ukážka

Kruskalov algoritmu – zložitosť

- Kritické je usporiadanie hrán O(M log M)
- Potom M krát voláme operácie union-find
 - Dobrá implementácia union-find má zložitosť operácií "skoro konštantnú"
- Celkovo teda O(M log M)

Dátová štruktúra pre disjunktné množiny

Reprezentácia lesom

- a) Dve disjunktné množiny:
 {b,c,h,e} s reprezentantom c
 {d,f,g} s reprezentantom f
- b) Spojenie UNION(e,g): množina {b,c,d,e,f,g,h} s reprezentantom f


```
MAKE-SET(x)

1 p<sub>x</sub> = x

UNION(x,y)

1 p<sub>FIND-SET(x)</sub> = FIND-SET(y)
```

Dátová štruktúra pre disjunktné množiny (2)

 Po viacerých vykonaniach UNION môžu byť cesty príliš dlhé – skrátime (môžeme aj vyvažovať;)

- Kompresia cesty:
- Zložitosť:O(log*N)

```
FIND-SET(x)
1 if x ≠ p<sub>x</sub>
2 then p<sub>x</sub> = FIND-SET(p<sub>x</sub>)
3 return p<sub>x</sub>
```

Primov (Jarníkov) algoritmus

- Pri tvorbe minimálnej kostry sa udržuje rez medzi spracovanými (kostrou) a ešte nespracovanými vrcholmi
- Inicializácia:
 Vybrať ľubovoľný vrchol a označiť ho ako spracovaný
- 2. Z rezu vybrať najlacnejšiu hranu e a vložiť ju do vytváranej minimálnej kostry.
- 3. Nespracovaný vrchol hrany e označiť ako spracovaný.
- 4. Opakovať krok 2 pokým nie sú spracované všetky vrcholy.

Objavitelia (nezávisle na sebe): 1930 Jarník, 1957 Prim, 1959 Dijkstra

Primov algoritmus – implementácia

G je súvislý graf, w ohodnotenie hrán, r počiatočný vrchol

```
MST-Prim (G, w, r)
1 for každý vrchol u ∈ V
2 key \leftarrow \infty, p_{\parallel} \leftarrow NIL
3 PQ ← V
4 key<sub>r</sub> \leftarrow 0 (úprava hodnoty koreňa r v min-halde)
5 while PQ \neq \emptyset
6 u ← Extract-Min (PQ)
7 for každý v \in Neigh(u)
          if v \in PQ and w(u, v) < key
              p_v \leftarrow u_{\bullet}
              key_v \leftarrow w(u, v) (úprava min-haldy)
10
```

Q je min-halda, key, priorita vrcholu v min-halde

Primov algoritmus – ukážka

Primov algoritmus – zložitosť

Využitím min-haldy O(M log N):

```
MST-Prim (G, w, r)
     O(N) 1 for každý vrchol u \in V
           2 key<sub>u</sub> \leftarrow \infty, p<sub>u</sub> \leftarrow NIL
     O(N) 3 PQ \leftarrow V
                                  (úprava priority v min-halde)
           4 \text{ key}_r \leftarrow 0
     O(N) 5 while PQ \neq \emptyset
O(NlogN) 6 u ← Extract-Min (PQ)
  O(N+M) 7 for každý v \in Neigh(u)
  O(N+M) 8 if v \in PQ and w(u, v) < key_v
                          p_v \leftarrow u
                         key_v \leftarrow w(u, v) (úprava min-haldy)
O(MlogN) 10
```

- Využitím vektoru s priamym prístupom O(N²):
 - Riadok 6 bude O(N)
 - Riadok 10 bude $O(M) = O(N^2)$

Opakovanie – bludiská

- Čo môžeme reprezentovať grafom?
- Mapy (bludisko s miestnosťami prepojenými chodbami)
 - Graf: vrchol = políčko, hrana = dá sa prejsť medzi políčkami

Postačuje nám LEN grafová reprezentácia!

Čo robí dobré bludisko?

- Kedy je bludisko náročné?
 - Dlho blúdim skúšam nejakú vetvu, keď nakoniec zistím, že nie je správna, musím sa vrátiť a skúsiť inú možnosť
 - Teória grafov: Medzi dvoma miestami v bludisku existuje len jedna cesta, a teda nie je ľahké (si na križovatke) zvoliť tú správnu
- Kedy je bludisko ľahké?
 - Skoro hocijako idem a hneď prídem do cieľa, nemusím sa vracať a skúšať inú možnosť
 - Teória grafov: Medzi dvoma miestami v bludisku existuje viacero ciest, a teda sa mi ľahko stane, že si (na križovatke) zvolím nejakú správnu

Ako vytvoriť dobré bludisko?

- Vizuálne požiadavky nemáme:
 - Bludisko by sa mohlo skladať z nejakých opakujúcich sa vzorov (napr. špirála), ale náhodný vzor pôsobí neprekonateľnejšie – dlhšie blúdenie :)
- Budeme teda vytvárať bludisko, v ktorom:
 - Medzi ľubovoľnými dvoma miestami v bludisku existuje najviac jedna cesta, a teda nie je ľahké (si na križovatke) zvoliť tú správnu
 - Medzi ľubovoľnými dvoma miestami v bludisku existuje aspoň jedna cesta, aby sme využili dostupnú plochu bludiska čo najviac (na blúdenie)
- Čo nato hovorí teória grafov?

Generovanie bludiska

- Bludisko 2D pole miestností N x N
 - Graf: vrchol = políčko (miestnosť so stenami)
 hrana = dá sa prejsť medzi políčkami

- Začneme s úplne zamurovaným bludiskom:
 - každá miestnosť má všetky steny (hore, doprava, dole, doľava)
 - Graf s N x N vrcholmi, bez hrán
- Úloha:
 - Steny prebúrať tak, aby vzniklo bludisko!
 - Pridávať hrany tak, aby nakoniec medzi ľubovoľnými dvoma vrcholmi bola práve jedna cesta

Generovanie bludiska

- Začneme s úplne zamurovaným bludiskom.
- Pridávať hrany (prebúrať steny) tak, aby nakoniec medzi ľubovoľnými dvoma vrcholmi bola práve jedna cesta.
- Skúšam hrany v náhodnom poradí, pridám hranu len ak nevznikne cyklus (detekcia cyklu: union-find):

```
Generate-Maze(N)
1 E ← Ø
2 W ← množina stien (možné hrany)
3 randomShuffle(W)
4 for každú stenu (u,v) ∈ W
6 do if Find-Set(u) ≠ Find-Set(v)
7 then E ← E ∪ {(u, v)}
8 Union(u, v)
9 return E
```


Grafové algoritmy (párovanie)

7. 11. 2017

zimný semester 2017/2018

Teória grafov - Párovanie

 Daný je (neorientovaný) graf, párovanie* (matching) nazývame množinu hrán, ktoré nemajú spoločný vrchol

- Množina nezávislých hrán
- Vrchol incidujúci s hranou v párovaní nazývame spárovaný (matched) alebo pokrytý, ostatné nespárované (unmatched, free) alebo nepokryté

^{*} slovenská literatúra zvyčajne uvádza tento pojem ako "párenie", čo ale zodpovedá skôr anglickému "mating" (viď Google Image Search), budeme preto používať vhodnejší český pojem "párovaní" ...

Teória grafov - Najpočetnejšie párovanie

Maximálne párovanie – taká množina hrán M, že ak do nej pridám nejakú ďalšiu hranu, už to nebude párovanie:

 Najpočetnejšie (maximum-cardinality) párovanie je párovanie, ktoré obsahuje najväčší možný počet hrán.

 Ak je každý vrchol spárovaný nazývame ho perfektné (alebo úplné) párovanie. Napr. (b)

Teória grafov - Najpočetnejšie párovanie (2)

Alternujúca cesta – postupnosť hrán, v ktorej sa striedajú hrany patriace a nepatriace do párovania:

■ **Zväčšujúca** cesta – alternujúca cesta, ktorej krajné vrcholy sú nespárované.

Berge 1957:

Párovanie je najpočetnejšie ⇔ neexistuje zväčšujúca cesta.

Ako nájdem najpočetnejšie párovanie?

- Nájdem zväčšujúcu cestu
- V párovaní vymením hrany na zväčšujúcej ceste:
 - Tie hrany, ktoré patria do párovania odstránim z párovania, a
 - tie hrany ktoré nepatria do párovania pridám do párovania.

Napr.:
A--B
C---D
E---F

Ako nájdem najpočetnejšie párovanie? (2)

- Uvažujme párovanie M a najpočetnejšie párovanie M'
- Označme k=|M'| |M|, potom párovanie M obsahuje k vrcholovo nezávislých zväčšujúcich ciest.
- Množina M'

 M (symetrická diferencia) je množina hrán, ktoré sú v M' alebo M ale nie v oboch naraz.
- Každý vrchol je incidentný s najviac dvomi hranami
 v M'

 M. Súvislé komponenty podgrafu indukovaného hranami M'

 M sú preto (jednoduché) cesty a cykly.
- Na každej takejto ceste alebo cykle sa striedajú hrany množín M' a M.

Ako nájdem najpočetnejšie párovanie? (3)

- Na každej takejto ceste alebo cykle sa striedajú hrany množín M' a M.
- Každý cyklus obsahuje rovnaký počet hrán z M' ako z M.
- Každá cesta obsahuje rovnaký počet hrán z M' ako z M až na jednu. Cesta, ktorá obsahuje o jednu hranu z M' viac ako z M je zväčšujúca.
- V množine M ⊕ M' je práve k hrán viac z M' ako z M, teda podgraf indukovaný hranami M ⊕ M' obsahuje k vrcholovo nezávislých zväčšujúcich ciest pre M.
- Dôsledok:
 Pre M existuje zväčšujúca cesta dĺžky najviac n/k.

Teória grafov - Bipartitné párovanie

- Dôležitý špeciálny prípad: párovanie v bipartitnom grafe
- Bipartitný graf je taký graf, v ktorom sa dajú vrcholy rozdeliť do dvoch (disjunktných) množín tak, aby hrany išli len medzi vrcholmi v rôznych množinách
- Napr.

Ako zistím, či je graf bipartitný?

Sú tieto grafy bipartitné?

Graf nie je bipartitný ⇔ obsahuje cyklus nepárnej dĺžky.

Algoritmus:
 Ofarbujem vrcholy dvoma farbami. Začnem v nejakom vrchole, susedov ofarbím inou farbou ...

Najpočetnejšie párovanie v bipartitnom grafe

- X,Y partície vrcholov (neorientovaného) grafu
- Počas behu algoritmu budeme meniť smer hrán
 - Ak hrana nepatrí do aktuálneho párovania, smer bude z X do Y
 - Ak hrana patrí do aktuálneho párovania, bude smer zY do X

```
BIPARTITE-MATCHING(G):

1 Začni s prázdnym párovaním.

2 Pre všetky hrany nastav smer z X do Y.

3 while ∃nespárovaný vrchol x ∈ X do

4 prehľadávanie z x až do nespárovaného vrcholu v Y

5 if podarilo sa dosiahnuť nespárovaný vrcholov v Y then

6 zväčši párovanie využitím nájdenej zväčšujúcej cesty

7 obráť smer všetkých hrán na zväčšujúcej ceste

8 else

9 odstráň všetky navštívené vrcholy
```

Algoritmus zväčšujúcich polociest – ukážka

Prehľadávaj z vrcholu A

Zväčšujúca cesta $A \rightarrow D$:

Zmena smeru hrán na zväčšujúcej ceste:

Algoritmus zväčšujúcich polociest – ukážka (2)

Prehľadávaj z vrcholu B

Zväčšujúca cesta

$$B \rightarrow D \rightarrow A \rightarrow E$$
:

Zmena smeru hrán na zväčšujúcej ceste:

Algoritmus zväčšujúcich polociest – ukážka (3)

Prehľadávaj z vrcholu C

Zväčšujúca cesta $C \rightarrow E \rightarrow A \rightarrow D \rightarrow B \rightarrow F$:

 Zložitosť: O(M) jeden prechod Celkovo O(NM)

Zmena smeru hrán na zväčšujúcej ceste:

Otázka z publika

- Prečo v algoritme meníme smer (orientáciu) hrán?
- Odpoveď: Preto, aby každá cesta v takto upravenom grafe bola alternujúca cesta (pre aktuálne párovanie).
- Graf, ktorý priebežne upravujeme (zmenou orientácie hrán) je grafom alternujúcich ciest.
- Okrem toho, že každá cesta v tomto grafe je alternujúca, tak každá x-y cesta ($x \in X, y \in Y$) je zväčšujúca cesta!
- Preto môžeme použiť akýkoľvek algoritmus na hľadanie ciest začínajúcich v X a končiacich v Y nato, aby sme našli nejakú zväčšujúcu cestu.

Hopcroft-Karpov algoritmus

- 1. Začni prehľadávanie do šírky zo všetkých nespárovaných vrcholov (vlož všetky do počiatočného radu), vytvoríme vrstevný podgraf G' obsahujúci všetky <u>najkratšie</u> zväčšujúce cesty. (prehľadávanie prerušíme na vrstve, v ktorej sa nachádza prvý nespárovaný vrchol)
- 2. Ak neexistuje zväčšujúca cesta, KONIEC.
- Nájdi vrcholovo nezávislé cesty v G' pre každý začiatočný vrchol jednu. (Prehľadávanie do hĺbky)
- 4. Zväčši existujúce párovanie využitím týchto ciest. Choď na Krok 1.

Hopcroft-Karpov algoritmus – Ukážka

Prehľadávanie do šírky z A, B, C: G' bude celý graf

■ Prehľadávanie do hĺbky nájde cesty: A→D, B→E:

Zväčšíme párovanie:

Hopcroft-Karpov algoritmus – Ukážka

Prehľadávanie do šírky z C, vznikne podgraf:

■ Prehľadávanie do hĺbky nájde cestu: C→E→B→F:

Zväčšíme párovanie:

Hopcroft-Karpov algoritmus – Zložitosť

- Jedna fáza: O(M)
 - Konštrukcia podgrafu (prehľadávanie do šírky z každého nespárovaného vrcholu) – navštívime každú hranu najviac raz
 - Určenie vrcholovo nezávislých ciest (prehľadávanie do hĺbky najviac z každého nespárovaného vrcholu podgrafu) – navštívime každú hranu najviac raz
- Počet fáz: najviac $2N^{\frac{1}{2}} + 1$, celkovo teda $O(N^{\frac{1}{2}}M)$
 - Po k-tej fáze bude mať ďalšia (ak existuje) zväčšujúca cesta dĺžku aspoň 2k+1, a teda najpočetnejšie párovanie je najviac o n/(2k+1) početnejšie ako existujúce, a teda prebehne ešte naviac n/(2k+1)+1 fáz.
 - Celkovo najviac prebehne k + n/(2k+1)+1 fáz (pre ľubovoľné k), pre k= $(N/2)^{\frac{1}{2}}$ máme $2N^{\frac{1}{2}}$ + 1

Párovanie – Ohodnotené grafy

- Všeobecnejší problém:
 Ak má každé hrana e=(i,j) váhu (cenu) w(e)
 - Hrana i → j označuje cenu priradenia j-tej úlohy i-temu pracovníkovi.
- Najlacnejšie párovanie v bipartitnom grafe
 - Hľadáme priradenie úloh, ktoré má najnižšiu cenu.
 - Maďarská metóda (Hungarian method)
- Najdrahšie párovanie (s najvyššou celkovou cenou hrán)
 - Trasformácia na úlohu o najlacnejšom párovaní: nová cena hrany w'(e) bude maximum z cien mínus w(e)
- Najdrahšie / najlacnejšie perfektné párovanie
- Najdrahšie / najlacnejšie najpočetnejšie párovanie
- Rozšírenie na všeobecné (nie len bipartitné) grafy

Zovšeobecnenie – Toky (Network flow)

- Transportné siete abstrakcia fyzických tokov (voda, ropa, materiál všeobecne) modelovanú v grafoch
- Intuitívna predstava:
 - Sústava rúr rôznych veľkostí (kapacitné ohraničenia)
 - Prepojená na križovatkách, v ktorých sú regulátory prietoku a smeru toku
 - Sústava je vyvážená vtedy, keď množstvo, ktoré odteká z uzlu je rovné množstvu, ktoré tam priteká.

■ Teória grafov: každé hrana má dve ohodnotenia c_{ij} kapacita rúry $i \rightarrow j$, a f_{ij} prietok $i \rightarrow j$

Maximálny tok (maxflow)

- Pre daný orientovaný graf G s danými kapacitami hrán a dvoma vyznačenými vrcholmi s a t, úloha je nájsť:
- Priradenie f (tok) ohodnotenia hrán f_{ij} také, že spĺňajú kapacitné ohraničenia hrán, podmienku kontinuity (tok sa vo vrcholoch nestráca) a množstvo, ktoré tečie z vrcholu s do vrcholu t je čo najväčšie možné.

 Ford-Fulkersonov algoritmus zväčšujúcich polociest

 Dajú sa takto modelovať rôzne typy úloh...

- Daný je bipartitný graf G=(XUY, E), vytvor transportnú sieť G' nasledovne:
 - Orientácia hrán bude z X do Y
 - Pridaj nové vrcholy s a t
 - Pridaj hranu z s do každého vrcholu $x \in X$
 - Pridaj hranu z každého vrcholu y ∈ Y do t
 - Všetky kapacity budú 1
- Vyrieš úlohu o maximálnom toku v sieti G'
 - Hrany v nájdenom (maximálnom) toku budú zodpovedať najpočetnejšiemu párovaniu v G

- Toky sú celočíselné
- Z každého $x \in X$ vyberieme (do toku) najviac jednu hranu (lebo kapacita hrany s,x je $c_{sx} = 1$)

■ Do každého y ∈ Y pôjde najviac jedna jednotka toku

(lebo c_{yt} = 1)

 Ak by sme vybrali viac hrán, nebol by to vyvážený tok

Resp. môžeme modelovať
 zložitejšie úlohy (napr.
 priradenie viacerých k jednému)

Ak existuje párovanie obsahujúce k hrán v G, tak existuje tok veľkosti k v G' a opačne platí tiež.

Grafové algoritmy (Hamiltonovské grafy)

7. 11. 2017

zimný semester 2017/2018

Teória grafov – Hamiltonovský sled, cesta, cyklus

- Hamiltonovský sled v grafe G je taký sled, ktorý obsahuje všetky vrcholy grafu G.
- Hamiltonovská cesta je taký hamiltonovský sled, ktorý neobsahuje rovnaké hrany
- Hamiltonovský cyklus je taký hamiltonovský sled,
 v ktorom sa okrem prvého a posledného vrcholu žiaden
 vrchol nevyskytuje viac než raz

Hamiltonovská cesta – Ukážka

Prechod koňom po šachovnici

