머신러닝 악성 사이트 탐지 모델링

KT AIVLE 27

a024138 박다민

01 데이터 처리

중복된 데이터를 어떻게 제거할까?

변수 중요도 평가

중요도를 파악하여 일부 데이터로만 검사를 시행.

테스트 데이터 처리

Test data의 결측치를 어떻게 처리하는가?

중복 데이터 제거

```
In [46]: data.shape
Out[46]: (3662, 22)

In [60]: columns = ['url_len', 'url_path_len', 'url_domain_len', 'url_hostname_len', 'url_num_dots', 'url_query_len', 'url_entropy']

In [61]: data.loc[data.duplicated(columns, keep='first')]

...

In [62]: # columns의 전 데이터들이 종목되지 않은 값을 따로 가지고 온다.
data2 = data.loc[data.duplicated(columns, keep='first')==False]

In [63]: data2.shape
Out[63]: (3037, 22)
```

로지스틱 회귀 등을 이용하여 **p-value가 0.05 이상**을 갖는 변수(feature)와 **모든 값을 0으로 갖는 변수**(url_chinese_present, html_num_tags('applet'))를 제거하였습니다. 이 후, **변수 중요도가 높은 변수들 또한 포함**하여 다시 진행하였습니다.

변수 중요도 평가


```
def plot_feature_importance(importance, names):
    feature_importance = np.array(importance)
    feature_names = np.array(names)

data={'feature_names':feature_names, 'feature_importance':feature_importance}
    fi_df = pd.DataFrame(data)

fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)

fi_df.reset_index(drop=True, inplace = True)

plt.figure(figsize=(10,8))
    sns.barplot(x='feature_importance', y='feature_names', data = fi_df)

plt.xlabel('FEATURE IMPORTANCE')
    plt.ylabel('FEATURE NAMES')
    plt.grid()

return fi_df
```

강사님이 주셨던 코드를 이용하여 변수 중요도를 파악.

0.05 이상을 갖는 변수들을 이용하기로 결정.

테스트 데이터 처리

```
In [98]: data = pd.read_csv('test_dataset_v01.csv')

결축치 조치

In [154]: #data2 = data.interpolate(method='spline', order=2) # 음수 데이터 발생

In [153]: #data3 = data.interpolate(method='polynomial', order=2) # 음수 데이터 발생

In [133]: data2 = data.interpolate(method='linear')

In [102]: data3 = data.fillna(data.median())
```

Method='linear'를 갖는 interpolate와 중앙값으로 결측치를 조치하는 fillna, 총 2가지로 나누어서 테스트를 진행하였습니다.

머신러닝 모델 선택

머신러닝 모델 선택

```
: # train 및 val 데이터 정확도 확인
  print(accuracy_score(y_val,pred1_1)) # 로지스틱
  print(accuracy_score(y_val,pred2_1)) # RandomForest
  print(accuracy_score(y_val,pred3_1)) # KNN
  print(accuracy_score(y_val,pred4_1)) # DecisionTree
  y_val.replace({-1:0}, inplace=True)
  print(accuracy_score(y_val,pred5_2)) # XGB
  y_val.replace({0:-1}, inplace=True)
  0.8155940594059405
  0.9257425742574258
  0.6794554455445545
  .O. 9146039603960396
  0.9183168316831684
```

Thank You

감사합니다