

Revision question sets

A.C. NORMAN

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/4.0/

Warm up problems: don't forget ESAU!

- 1 If an object of mass 5 kg experiences a force of 3 N, what is its acceleration?
- **2** A car's speed increases from $25 \,\mathrm{m/s}$ to $60 \,\mathrm{m/s}$ in $5 \,\mathrm{s}$. What is its acceleration?
- 3 If the mass of the car is $1200 \, \text{kg}$, what is its final kinetic energy at $60 \, \text{m/s}$?
- **4** How many protons, neutrons and electrons are there in a $^{108}\mathrm{Ag^+}$ ion?
- **5** If a 9 V battery is connected to a circuit of resistance 45Ω , what current flows?

Solutions (1)

1
$$F = ma$$
, $a = \frac{F}{m} = \frac{3 \text{ N}}{5 \text{ kg}} = 0.6 \text{ m/s}^2$

2
$$a = \frac{\Delta v}{t} = \frac{60 \text{ m/s} - 25 \text{ m/s}}{5 \text{ s}} = \frac{35 \text{ m/s}}{5 \text{ s}} = 7 \text{ m/s}^2$$

3
$$KE = \frac{1}{2}mv^2 = \frac{1}{2} \times 1200 \,\mathrm{kg} \times (60 \,\mathrm{m/s})^2 = 2160000 \,\mathrm{J}$$

4 47 protons, 61 neutrons and 46 electrons

5
$$V = IR$$
, $I = \frac{V}{R} = \frac{9 \text{ V}}{45 \Omega} = 0.2 \text{ A}$

Warm up problems (2): use ESAU!

- 1 If a charge of 2 C flows through an ammeter in 5 s, what will the current read?
- **2** A car starting at a speed of 5 m/s accelerates at 3 m/s^2 for 12 s. What is its final speed?
- **3** If a battery supplies a current of 0.8 A for 28 s, what charge has flowed?
- **4** A pure gold ring has mass $15\,\mathrm{g}$ and gold has density $19.6\,\mathrm{g/cm^3}$. What is its volume?
- **5** If a lightbulb has a current of 1.2 A flowing through it, how long will it take for 90 C of charge to flow through it?

Solutions (2)

1
$$I = \frac{Q}{t} = \frac{2C}{5s} = 0.4A$$

- 2 $a = \frac{\Delta v}{t}$, $\Delta v = at = 3 \, \text{m/s}^2 \times 12 \, \text{s} = 36 \, \text{m/s}$ Starting speed = 5 m/s, so final speed = 41 m/s.
- **3** $Q = It = 0.8 \,\mathrm{s} \times 28 \,\mathrm{s} = 22.4 \,\mathrm{C}$
- **4** $\rho = \frac{m}{V}$, $V = \frac{m}{\rho} = \frac{15 \,\mathrm{g}}{19.6 \,\mathrm{g/cm^3}} = 0.77 \,\mathrm{cm^3}$
- **5** Q = It, $t = \frac{Q}{I} = \frac{90 \text{ C}}{1.2 \text{ A}} = 75 \text{ s}$

Warm up problems (3): use ESAU!

- 1 A car drives 82.0 miles in 3 h 46 min. What is its average speed
 - (a) in mph?
 - (b) in m/s? [Hint: 1 mile = 1600 m]
- **2** A Nissan LEAF accelerates to 27.5 m/s from rest in 11.5 s. What is its acceleration?
- **3** An electric car charging point supplies a voltage of 394 V and a current of 104 A.
 - (a) What is the resistance of the car charging (connected to the charging point)?
 - (b) The car is connected for 29 min. How much charge has flowed?

Solutions (3)

1 (a)
$$v = \frac{d}{t} = \frac{82.0 \text{ mile}}{3 \text{ h} + \frac{46}{60} \text{ h}} = 21.8 \text{ mph}$$

(b) $21.8 \frac{\text{mile}}{\text{h}} \times \frac{1600 \text{ m}}{\text{mile}} \times \frac{1 \text{ h}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}} = 9.7 \text{ m/s}$
2 $a = \frac{\Delta v}{t} = \frac{27.5 \text{ m/s}}{11.5 \text{ s}} = 2.39 \text{ m/s}^2$
3 (a) $V = IR$, $R = \frac{V}{I} = \frac{394 \text{ V}}{104 \text{ A}} = 3.79 \Omega$
(b) $Q = It = 29 \text{ min} \times \frac{60 \text{ s}}{\text{min}} \times 104 \text{ A} = 181 000 \text{ C}$

Warm up problems (4): use ESAU!

- **1** A solar panel generates 300 J of electrical energy for every 1400 J of light energy. What is its efficiency?
- **2** A flashlamp bulb operates at a voltage of 2.5 V and a current of 0.3 A. What is its resistance?
- **3** A Nissan LEAF has mass $1557 \,\mathrm{kg}$. If it accelerates at $2.3 \,\mathrm{m/s^2}$, what is the unbalanced force on it?
- **4** A man has mass of 77.5 kg. What is his weight on the Moon (gravitational field strength = $1.63 \,\text{N/kg}$)?
- **5** A laser beam entering water (refractive index = 1.33) refracts at 12° to the normal. What was the angle of incidence?

Solutions (4)

1 efficiency =
$$\frac{\text{diseful energy out}}{\text{total energy in}} \times 100\% = \frac{300 \text{ J}}{1400 \text{ J}} \times 100\% = 21.4\%$$
2 $V = IR$, $R = \frac{V}{I} = \frac{2.5 \text{ V}}{0.3 \text{ A}} = 8.33 \Omega$
3 $F = ma = 1557 \text{ kg} \times 2.3 \text{ m/s}^2 = 3580 \text{ N}$
4 $W = mg = 77.5 \text{ kg} \times 1.63 \text{ N/kg}$
5 $n = \frac{\sin(\text{big})}{\sin(\text{small})}$, $\sin(\text{big}) = n \sin(\text{small}) = 1.33 \times \sin(12^\circ) = 0.27652 \dots$

big= $\sin^{-1}(0.27652...) = 16.1^{\circ}$

Warm up problems (5): use ESAU!

- 1 A light beam hits glass (refractive index = 1.52) at an angle of incidence of 48° . What is the angle of refraction?
- **2** A man pushed a car 8 m, doing 1800 J of work in the process. What force did he push the car with?
- **3** 78 C of charge flow through an ammeter in 32.5 s. What current does the ammeter read?
- **4** A marble of mass 25 g rolls at 0.6 m/s along a track. What is its kinetic energy?
- **5** 45 C of electrical charge leave a 9 V battery. How much energy does this charge carry?

Solutions (5)

1
$$n = \frac{\sin(\text{big})}{\sin(\text{small})}$$
,
 $\sin(\text{small}) = \frac{\sin(\text{big})}{n} = \frac{\sin(48^\circ)}{1.52} = 0.488911...$
 $\text{small} = \sin^{-1}(0.488911...) = 29.3^\circ$

2
$$W = Fd$$
, $F = \frac{W}{d} = \frac{1800 \text{ J}}{8 \text{ m}} = 225 \text{ N}$

3
$$Q = It$$
, $I = \frac{Q}{t} = \frac{78 \text{ C}}{32.5 \text{ s}} = 2.4 \text{ A}$

4 KE =
$$\frac{1}{2}mv^2 = \frac{1}{2} \times 0.025 \text{ kg} \times (0.6 \text{ m/s})^2 = 4.5 \times 10^{-3} \text{ J}$$

5
$$E = QV = 45 \text{ C} \times 9 \text{ V} = 405 \text{ J}$$