Множественное выравнивание кодирующих последовательностей с учётом сдвигов рамки считывания

Студент: Батусов П. В.

Руководитель: Страшнов П. В.

Поиск гомологий в биологических последовательностях

Задача выравнивания

ДНК предка: ...AAACTGATGCAACGTGA...

ДНК потомка: ...AATCTTTGATACCTGA...

Выравнивание – общепринятый способ отражения "родства" двух последовательностей нуклеотидов или аминокислотных остатков

Seq1: ...AAAC--TGATGCAACGTGA...

Seq2: ...AATCTTTGAT---ACCTGA...

Выравнивание

Классические методы поиска гомологий

Алгоритм Смита-Ватермана

- Строит локальное выравнивание двух последовательностей
- $O(len(S_1) \cdot len(S_2))$

Алгоритм Нидлмана-Вунша

- Строит глобальное выравнивание двух последовательностей
- $O(len(S_1) \cdot len(S_2))$

Алгоритм Нидлмана-Вунша

- S(a,b) похожесть символов а и b
- Линейный штраф за разрыв d

Базис:

- $F_{0,i} = d \cdot j$
- $F_{i,0} = d \cdot i$

Итерационная формула:

$$F_{i,j} = max \begin{cases} F_{i-1,j-1} + S_{A_i,B_j} \\ F_{i-1,j} + d \\ F_{i,j-1} + d \end{cases}$$

A
$$\Gamma$$
T $\mathbf{\Pi}$ A10 -1 -4 -3 Γ -1 7 -3 -5 \mathbf{T} -4 -3 8 0 $\mathbf{\Pi}$ -3 -5 0 9

Алгоритм Смита-Ватермана

$$F_{i,j} = max \begin{cases} F_{i-1,j-1} + S_{A_i,B_j} \\ F_{i-1,j} + D_{A_i} \\ F_{i,j-1} + I_{B_j} \\ 0 \end{cases}$$

Множественное выравнивание Выравнивание в кубе

Сложность алгоритма для n-мерного случая:

$$O((2^n - 1) \prod_{i=1}^n len(A_i))$$

Выравнивание выравниваний Алгоритм Clustal

$$f(f(f(...f(f(A_1,A_2),A_3)...),A_{n-1}),A_n)$$

Открытые рамки считывания

Открытая рамка считывания (OPC) - нуклеотидная последовательность нуклеиновой кислоты (ДНК или РНК), потенциально способная кодировать белок.

Трёхступенчатый подход

Идея алгоритма

- Трансляция исходной последовательности нуклеотидов по всем возможным рамкам считывания
- Выравнивание последовательности аминокислот «классическими» алгоритмами
- Трансляция полученного белка обратно в последовательность нуклеотидов

Проблемы

- Алгоритм не учитывает возможные изменения рамки считывания
- Невозможность расширения до задачи множественного выравнивания

Двухуровневое выравнивание

Идея алгоритма

- штраф за выравнивание является сочетанием двух штрафов: на аминокислотном и нуклеотидном уровнях
- инсерции допустимы только на аминокислотном уровне (запрет на сдвиг рамки считывания)

Проблемы

Высокая вычислительная сложность

MACSE

Алгоритм основан на идее двухуровневого выравнивания, но имеет меньшую вычислительную сложность и позволяет строить множественные выравнивания, с учетом открытых рамок считывания.

МАСЅЕ производит выравнивание выравниваний, выбирая порядок через дерево-подсказку, как и алгоритм Clustal.

Общая схема работы алгоритма

Чтение и разбор входного потока

```
Входные данные
                                      Структура для хранения
Последовательности в формате
                                        последовательности
FASTA:
> Идентификатор #1
                                  struct BioSeq {
                                     std::string name;
последовательность 1
                                     std::string;
последовательность 1
> Идентификатор #2
последовательность 2
```

Алгоритм кластеризации UPGMA

- 1. Перед началом работы алгоритма рассчитывается матрица расстояний между объектами. Каждый объект образует свой собственный кластер.
- 2. Ищется минимальное значение, соответствующее расстоянию между двумя наиболее близкими кластерами. Найденные кластеры объединяются, образуя новый кластер.
- 3. Расстояние между кластерами (*u*,*v*) и *w* определяется согласно формуле:

$$D((u,v),w) = \frac{T_u D_{u,w} + T_v D_{v,w}}{T_u + T_v}$$

	1	2	3	4	5
1	0	2.06	4.03	6.32	2.08
2	2.06	0	3.50	4.12	5.43
3	4.03	3.50	0	2.25	3.65
4	6.32	4.12	2.25	0	4.81
5	2.08	5.43	3.65	4.81	0

Объединение профилей

Разрыв рамки			
Количество нуклеотидов	Последний геп у второго триплета	Последний геп у первого триплета	Без гепа в конце триплета
	X		X
1		X	X
	-xx	-X-	-XX
	-x-	-xx	-XX
	-xx		-XX
2		-XX	X
			X
			-XX
	XXX	XX-	XXX
	XX-	XXX	XXX
	XXX	-X-	XXX
	-X-	XXX	-XX
	XXX	X	-XX
	X	XXX	XXX
	XXX		XXX
3		XXX	X-X
			XXX
			X
			X-X
			XXX
			X
			XXX

```
struct Profile {
  std::vector<BioSeq*>
  sequences;
  ...
};

new_profile =
    profile1 + profile2
```

Тестирование

MACSE

>Gorilla

ATGGGCTGTGTGCAATGTAAGGATAAAGAA---GCAACAAAACTGACGGAGGAGGGAGGGCAGCCTGAACCAGAGCTCTGGG!TA >Otolemur

ATGGGCTGTGTGCAATGTAAGGATAAAGAA---GCAACAAAACTGACGGAGGAGCGGGACGGCAGCCTGAACCAGAGCTCCGGG!TA >Equus

ATGGGCTGTGTGCAATGTAAGGATAAAGAA---GCAACAAAACTGACAGAGGGGGGGGGCGGCAGCCTGAACCAGAGCTCCGGG!TA

Свой вариант выравнивания

>Gorilla

ATGGGCTGTGTGCAATGTAAGGATAAAGAAGCAACAAAACTGACGGAGGAGGGGACGGCAGCCTGAACCAGAGCTCTGGG-TA >Otolemur

ATGGGCTGTGTGCAATGTAAGGATAAAGAAGCAACAAAACTGACGGAGGAGCGGGACGGCAGCCTGAACCAGAGCTCCGGG-TA >Equus