Example Suppose X,,..., Xso each have mean 1.6, variance 2.2 3

and Y,,..., Y1so each have mean 3, variance 2.7.

Also suppose all two hundred rendem variables are Normal and independent. Find the probability that the sum of the 200 random variables hoes not exceed 400.

$$\rho(\chi_{1}+...+\chi_{so}+\gamma_{1}+...+\gamma_{1so}-(so)(i.6)-(iso)\frac{2.2}{(so(2.2)+iso(2.7))}$$

$$= \rho(\chi_{1}+...+\chi_{so}+\gamma_{1}+...+\gamma_{1so}-(so)(i.6)-(iso)\frac{2.2}{(so(2.2)+iso(2.7))}$$

$$= \rho(\chi_{1}+...+\chi_{so}+\gamma_{1}+...+\gamma_{1so}-(so)(i.6)-(iso)\frac{2.2}{(so(2.2)+iso(2.7))}$$

$$= \rho(\chi_{1}+...+\chi_{so}+\gamma_{1}+...+\gamma_{1so}-(so)(i.6)-(iso)\frac{2.2}{(so(2.2)+iso(2.7))}$$

$$= \rho(\chi_{1}+...+\chi_{1}+...+\chi_{1}+...+\chi_{1}+\gamma_{1}+...+\gamma_{1}+\gamma_{1}+...+\gamma_{1}+\gamma$$

 $= 1 - F_{3}(0.42)$

=1 - 0.6628

= 0.3372