Залача 1

Пусть $\boldsymbol{\xi} = [\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3]^T$ — координатный столбец вектора \mathbf{x} в базисе $\{\mathbf{e}\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.

Используя метод Лагранжа, привести квадратичную форму $A(\mathbf{x}, \mathbf{x})$ к каноническому виду, найти её ранг, положительный и отрицательный индексы инерции, если в базисе $\{\mathbf{e}\}$ она имеет вид:

1)
$$A(\mathbf{x}, \mathbf{x}) = 5\xi_1^2 - 4\xi_1\xi_2 - 2\xi_1\xi_3 + \xi_2^2 + \xi_3^2$$
;

2)
$$A(\mathbf{x}, \mathbf{x}) = -\xi_1^2 + 2\xi_1\xi_3 + 2\xi_2^2 - \xi_3^2$$
;

3)
$$A(\mathbf{x}, \mathbf{x}) = \xi_1^2 - 2\xi_1\xi_2 + 2\xi_1\xi_3 + \xi_2^2 - 2\xi_2\xi_3 + \xi_3^2$$
;

4)
$$A(\mathbf{x}, \mathbf{x}) = -5\xi_1^2 - 8\xi_1\xi_2 + 6\xi_1\xi_3 - 5\xi_2^2 + 6\xi_2\xi_3 - 2\xi_3^2$$
;

5)
$$A(\mathbf{x}, \mathbf{x}) = 2\xi_1 \xi_2 - 2\xi_2 \xi_3$$
.

Ответы:

1)
$$r = 2$$
, $i_{+} = 2$, $i_{-} = 0$;

2)
$$r = 2$$
, $i_{\perp} = 1$, $i_{-} = 1$;

3)
$$r = 1$$
, $i_{\perp} = 1$, $i_{\perp} = 0$;

4)
$$r = 2$$
, $i_1 = 0$, $i_2 = 2$;

5)
$$r = 2$$
, $i_{\perp} = 1$, $i_{-} = 1$.

Задача 2

Пусть $\boldsymbol{\xi} = [\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3]^T$ — координатный столбец вектора \mathbf{x} в базисе $\{\mathbf{e}\} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.

Используя метод Якоби, привести квадратичную форму $A(\mathbf{x},\mathbf{x})$ к каноническому виду и установить её знакоопределённость, если в базисе $\{\mathbf{e}\}$ она имеет вид:

1)
$$A(\mathbf{x}, \mathbf{x}) = 2\xi_1^2 - 2\xi_1\xi_2 - 2\xi_1\xi_3 + \xi_2^2$$
;

2)
$$A(\mathbf{x}, \mathbf{x}) = 5\xi_1^2 - 4\xi_1\xi_2 - 2\xi_1\xi_3 + 2\xi_2^2 - 2\xi_2\xi_3 + 2\xi_3^2$$
;

3)
$$A(\mathbf{x}, \mathbf{x}) = 3\xi_1^2 + 2\xi_2^2 - 4\xi_2\xi_3 + 3\xi_2^2$$

4)
$$A(\mathbf{x}, \mathbf{x}) = -2\xi_1^2 + 4\xi_1\xi_2 - 7\xi_2^2 + 4\xi_2\xi_3 - 2\xi_3^2$$
;

5)
$$A(\mathbf{x}, \mathbf{x}) = 3\xi_1^2 - 4\xi_1\xi_2 + 2\xi_1\xi_3 - 2\xi_2^2 + 2\xi_2\xi_3 - \xi_3^2$$
.

Ответы:

1)
$$A(\mathbf{x}, \mathbf{x}) = \frac{1}{2}\xi_1^2 + 2\xi_2^2 - \xi_3^2$$
, форма не является знакоопределённой;

2)
$$A(\mathbf{x},\mathbf{x}) = \frac{1}{5}\xi_1^2 + \frac{5}{6}\xi_2^2 + 6\xi_3^2$$
, $A(\mathbf{x},\mathbf{x}) > 0$ для любого вектора $\mathbf{x} \neq \mathbf{0}$;

3)
$$A(\mathbf{x},\mathbf{x}) = \frac{1}{3}\xi_1^2 + \frac{1}{2}\xi_2^2 + \xi_3^2$$
, $A(\mathbf{x},\mathbf{x}) > 0$ для любого вектора $\mathbf{x} \neq \mathbf{0}$;

4)
$$A(\mathbf{x},\mathbf{x}) = -\frac{1}{2}\xi_1^2 - \frac{1}{5}\xi_2^2 - \frac{5}{6}\xi_3^2$$
, $A(\mathbf{x},\mathbf{x}) < 0$ для любого вектора $\mathbf{x} \neq \mathbf{O}$;

5)
$$A(\mathbf{x}, \mathbf{x}) = \frac{1}{3}\xi_1^2 - \frac{2}{7}\xi_2^2 - 2\xi_3^2$$
, форма не является знакоопределённой.

18.05.2018 23:39:23

Задача 3

Пусть в некотором базисе $\{e\}$ квадратичная форма $A(\mathbf{x},\mathbf{x})$ имеет матрицу \mathbf{A} . Доказать, что:

- 1) ранг матрицы А совпадает с рангом формы и не зависит от выбора базиса;
- 2) знак определителя матрицы А не зависит от базиса.

Задача 4

Пусть квадратичная форма $A(\mathbf{x}, \mathbf{x})$ в некотором базисе имеет матрицу $\mathbf{A}_{n \times n} = \| a_{ii} \|$ и пусть

$$\Delta_{1} = a_{11}, \ \Delta_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \ \Delta_{k} = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix}, \dots, \ \Delta_{n} = |\mathbf{A}|$$

- главные миноры матрицы А.

Доказать утверждения (критерий Сильвестра):

- 1) квадратичная форма $A(\mathbf{x}, \mathbf{x})$ положительно определена тогда и только тогда, когда все главные миноры её матрицы положительны, т.е. $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$,...;
- 2) квадратичная форма $A(\mathbf{x}, \mathbf{x})$ отрицательно определена тогда и только тогда, когда главные миноры её матрицы образуют знакопеременную последовательность, т.е. $\Delta_1 < 0, \ \Delta_2 > 0, \ \Delta_3 < 0, \ \Delta_4 > 0, \dots$

18.05.2018 23:39:23