Практическое задание к уроку 1 "Линейное пространство. Основные понятия".

Часть 1

1. Исследовать на линейную зависимость:

$$f_1(x) = e^x, f_2(x) = 1, f_3(x) = x + 1, f_4(x) = x - e^x.$$

Вектор $f_4(x)$ яаляется линейной комбинацией векторов $f_3(x)$, $f_2(x)$, $f_1(x)$:

$$f_3(x) = x + f_2(x) \ f_4(x) = f_3(x) - f_2(x) - f_1(x)$$

$$f_4(x)=f_3(x)-f_2(x)-f_1(x)$$

Из чего следует, что $f_1(x)=e^x, f_2(x)=1, f_3(x)=x+1$ и $f_4(x)=x-e^x$ линейно зависимы.

2. Исследовать на линейную зависимость:

 $f_1(x) = 2$, $f_2(x) = x$, $f_3(x) = x^2$, $f_4(x) = (x+1)^2$.

Вектор
$$f_4(x)$$
 яаляется линейной комбинацией векторов $f_3(x)$, $f_2(x)$, $f_1(x)$:

$$f_4(x)=(x+1)^2=x^2+2x+1=f_3(x)+f_1(x)f_2(x)+rac{1}{2}f_1(x)$$

Из чего следует, что $f_1(x)=2, f_2(x)=x, f_3(x)=x^2$ и $f_4(x)=(x+1)^2$ линейно зависимы.

3. Найти координаты вектора $x=(2,3,5)\in\mathbb{R}^3$ в базисе $b_1=(0,0,10),$ $b_2=(2,0,0),$

 $b_3 = (0, 1, 0).$ $x = (2,3,5) = (2,0,0) + (0,3,0) + (0,0,5) = 1 \cdot (2,0,0) + 3 \cdot (0,1,0) + \frac{1}{2}(0,0,10) = \frac{1}{2} \cdot b_1$

$$+1\cdot b_2+3\cdot b_3$$
 Координатами вектора x в базисе $b_1=(0,0,10)$, $b_2=(2,0,0)$, $b_3=(0,1,0)$ являются $(\frac12,1,3)$.

4. Найти координаты вектора $3x^2 - 2x + 2 \in \mathbb{R}^3[x]$:

а в базисе 1, x, x^2 ;

5. Установить, является ли линейным подпространством:

координаты вектора $3x^2-2x+2$ в базисе $1, x, x^2$ равны (2, -2, 3)

б в базисе x^2 , x-1, 1.

координаты вектора $3x^2-2x+2$ в базисе x^2 , x-1, 1 равны (3,-2,0)

а. совокупность всех векторов трехмерного пространства, у которых по крайней мере одна из первых двух координат равна нулю;

Не является линейным подпространством, так как в случае $a=(0,a_2,a_3)$ и $b=(b_1,0,b_2)$ сумма $a+b=(0+b_1,a_2+0,a_3+b_3)=(b_1,a_2,a_3+b_3)$, где начальная координата не соответствует векторам a и b.

Являются линейным подпространством, так как при $a=(u_1+u_2+u_3)$ и $b=(u_4+u_5)$ $a+b=(u_1+u_2+u_3+u_4+u_5)$

б. все векторы, являющиеся линейными комбинациями данных векторов $\{u_1, u_2, \dots, u_n\}$.

Часть 2

1. Найти скалярное произведение векторов $x,y\in\mathbb{R}$: a.

import numpy as np

x = np.array([0, -3, 6]) y = np.array([-4, 7, 9])

x = (0, -3, 6), y = (-4, 7, 9);

In [1]:

In [3]:

print(f'Скалярное произведение векторов x и y равняется $\{np.dot(x,y)\}'\}$

print(f'Скалярное произведение векторов x и y равняется $\{np.dot(x,y)\}'\}$

 $(x,y) = (0 \cdot (-4) + (-3) \cdot 7 + 6 \cdot 9) = 33$

x = (7, -4, 0, 1), y = (-3, 1, 11, 2).

Скалярное произведение векторов х и у равняется 33

 $(x,y) = 7 \cdot (-3) + (-4) \cdot 1 + 0 \cdot 11 + 1 \cdot 2 = -23$

Скалярное произведение векторов х и у равняется -23 **2.** Найти нормы векторов (4,2,4) и (12,3,4) и угол между ними.

$$\ell_2 = \sqrt{4^2 + 2^2 + 4^2} = 6; \ell_2 = \sqrt{12^2 + 3^2 + 4^2} = 13$$

$$cos\alpha = \frac{(x,y)}{\|x\| \cdot \|y\|} = \frac{4 \cdot 12 + 2 \cdot 3 + 4 \cdot 4}{6 \cdot 13} = \frac{70}{78} = 0.897435897$$
 a = np.array([4, 2, 4]) b = np.array([12, 3, 4])

print(f'Hopma векторов l1:\n a = {np.linalg.norm(a, ord = 1)}\n b = {np.linalg.norm(b, ord = 1)}\n b = {np.linalg.norm(b print(f'Hopma векторов l2:\n a = {np.linalg.norm(a, ord = 2)}\n b = {np.linalg.norm(b, ord = 2)}\n b = {np.linalg.norm(b print(f'Угол между векторами а и b равен: \n{np.dot(a,b)/ (np.linalg.norm(a, ord=2)*np

 $\ell_1 = |4| + |2| + |4| = 10; \ell_1 = |12| + |3| + |4| = 19$

Норма векторов l1: a = 10.0b = 19.0Норма векторов 12: a = 6.0b = 13.0

Будет ли линейное пространство евклидовым, если за скалярное произведение принять:

а. произведение длин векторов;

Согласно принятой аксиоме:

0.8974358974358975

Угол между векторами а и b равен:

 $\|x_1\| = \sqrt{4^2 + 0} = 4$

 $(x_1 + x_2, y) = (x_1, y) + (x_2, y);$

 $||x_2|| = \sqrt{0+2^2} = 2$

 $||y|| = \sqrt{0 + 3^2} = 3$ $\|x_1 + x_2\| = \sqrt{4^2 + 3^2} = 5$

Определим: $x_1 = (4,0), x_2 = (0,2), y = (0,3)$

$$\|x_1+x_2\|\cdot\|y\|=\|x_1\|\cdot\|y\|+\|x_2\|\cdot\|y\|=4\cdot 3+2\cdot 3=18$$
 $18 \neq 15$ Пространство не будет евклидовым 6. утроенное обычное скалярное произведение векторов? $a=(x,y);3a$ Пространство будет евклидовым

 $(x,z) = 1/\sqrt{2} \cdot 0 + (-1/\sqrt{2}) \cdot 0 + 0 \cdot 1 = 0$

Пространство будет евклидовым

4. Какие из нижеперечисленных векторов образуют ортонормированный базис в линейном пространстве \mathbb{R}^3 : a. (1,0,0),(0,0,1);

6. $x = (1/\sqrt{2}, -1/\sqrt{2}, 0), y = (1/\sqrt{2}, 1/\sqrt{2}, 0), z = (0, 0, 1);$

 $(x,y) = 1/\sqrt{2} \cdot 1/\sqrt{2} + (-1/\sqrt{2}) \cdot 1/\sqrt{2} + 0 = 0$

не образуют базис

образуют базис

$$(y,z)=1/\sqrt{2}\cdot 0+1/\sqrt{2}\cdot 0+0\cdot 1=0$$
 в. $(1/2,-1/2,0),(0,1/2,1/2),(0,0,1);$

$$(x,y) = rac{1}{2} \cdot 0 + (-rac{1}{2}) \cdot rac{1}{2} + 0 \cdot rac{1}{2} = -0.25$$
 $(x,z) = rac{1}{2} \cdot 0 + (-rac{1}{2}) \cdot 0 + 0 \cdot 1 = 0$

$$(y,z) = 0 + rac{1}{2} \cdot 0 + rac{1}{2} \cdot 1 = 0.5$$

 $\mathbf{z}. (1,0,0), (0,1,0), (0,0,1)$

не образуют базис

образуют