

# Posets of twisted involutions in Coxeter groups

Christian Hoffmeister July 15, 2012 2 Contents

## **Contents**

| 1 | Miscellaneous                                                | 3  |
|---|--------------------------------------------------------------|----|
| 2 | Zweizykel in der getwisteten schwachen Ordnung               | 5  |
| 3 | Algorithmus zur Berechnung der getwisteten schwachen Ordnung | 7  |
| A | Source codes                                                 | 10 |
| В | Bibliography                                                 | 15 |

## 1 Miscellaneous

**Definition 1.1** (Geodesic). Let (W, S) be a Coxeter system and  $w, u \in W$  with  $\rho(u) - \rho(w) = n$ . Each sequence  $w = w_0 < w_1 < \ldots < w_n = u$  is called a geodesic from w to u.

**Question 1.2.** Let (W, S) be a Coxeter system,  $\theta : W \to W$  an automorphism of W with  $\theta^2 = \mathrm{id}$  and  $\theta(S) = S$ , and  $K \subset S$  a subset of S generating a finite subgroup of W with  $\theta(K) = K$ . Futhermore let  $T, S_1, S_2, S_3 \subset S$  be four pairwise disjoint sets of generators. For which Coxeter groups W does the implication

$$w \in w_K C_{T \cup S_i}, i = 1, 2, 3 \Rightarrow w \in w_K C_T \tag{1.2.1}$$

hold for any possible K,  $\theta$ , T,  $S_1$ ,  $S_2$ ,  $S_3$  and w?

**Proposition 1.3.** Let (W,S) be a Coxeter system and  $K,T,S_1,S_2,S_3$  be like in Question 1.2. Suppose we have  $w \in W$  and  $a_1,\ldots,a_n \in T \cup S_1,b_1,\ldots,b_n \in T \cup S_2,c_1,\ldots,c_n \in T \cup S_3$  with

$$w = w_K \underline{a_1 \cdots a_n}$$
$$= w_K \underline{b_1 \cdots b_n}$$
$$= w_K c_1 \cdots c_n$$

and (1.2.1) does not hold for these three expressions, i.e.  $w \notin w_K C_T$ . Then there exist  $t_1, \ldots, t_m \in T$  and  $a'_1, \ldots, a'_{n-m} \in T \cup S_1, b'_1, \ldots, b'_{n-m} \in T \cup S_2, c'_1, \ldots, c'_{n-m} \in T \cup S_3$  such that

$$w\underline{t_1 \dots t_m} = w_K \underline{a'_1 \dots a'_{n-m}}$$

$$= w_K \underline{b'_1 \dots b'_{n-m}}$$

$$= w_K c'_1 \dots c'_{n-m}$$

with  $a'_{n-m}$ ,  $b'_{n-m}$ ,  $c'_{n-m} \notin T$ .

*Proof.* Suppose at least one element of  $a_n, b_n, c_n$  to be in T, for example  $a_n \in T$ . Then we can apply  $\underline{a_n}$  to all three expressions. Since  $\rho(w\underline{a_n}) < \rho(w)$  the exchange condition for  $\mathcal{I}_{\theta}$  [Hultman, 2007, Proposition 3.10] yields

$$w\underline{a_n} = w_K \underline{a_1 \cdots a_n a_n} = w_K \underline{a_1 \cdots a_{n-1}}$$

$$= w_K \underline{b_1 \cdots b_n a_n} = w_K \underline{b_1 \cdots \hat{b_i} \cdots b_n}$$

$$= w_K \underline{c_1 \cdots c_n a_n} = w_K \underline{c_1 \cdots \hat{c_j} \cdots c_n}$$

where  $\hat{\cdot}$  means omission. The omission cannot occur within  $w_K$  since all three expressions are still of same twisted length and in the first expression we can see, that  $w_K \leq w_{\underline{a_n}}$  still holds. This step can be repeated until  $w = w_K$  or  $a_n, b_n, c_n \notin T$ .

**Lemma 1.4.** A counterexample to Question 1.2 can only exist, if there is an element  $u \in wC_T$  and three distinct generators  $s_1, s_2, s_3 \in D_r(u)$  such that  $us_i \notin wC_T$  for i = 1, 2, 3.

*Proof.* According to Proposition 1.3.

**Lemma 1.5.** A counterexample to Question 1.2 can only exist, if there are three not neseccarily distinct elements  $a, b, c \in w_K C_{S \setminus T}$ , three distinct generators  $s_1 \in A_r(a)$ ,  $s_2 \in A_r(b)$ ,  $s_3 \in A_r(c)$  and an element  $u \notin w_K C_{S \setminus T}$  such that

$$as_1 = bs_2 = cs_3 = u.$$

*Proof.* If there is a counterexample, then the two residuums  $w_K C_{S \setminus T}$  and  $w C_T$  are disjunct. Since we are only interested in w with  $w_K \le w$  it follows, that any geodesic from  $w_K$  to w is contained in the union set of both residuums. Hence having one element in  $u \in w C_T$  with three distinct generators  $s_1, s_2, s_3$  with  $u\underline{s_i} \notin w C_T$  is equivalent to having three elements  $a, b, c \notin w C_T$  and the same three generator  $s_1, s_2, s_3$  with  $as_1 = bs_2 = cs_3 = u \in w C_T$ .  $\square$ 

## 2 Zweizykel in der getwisteten schwachen Ordnung

**Definition 2.1** (Ein- und beidseitige Wirkung). Seien (W, S) ein Coxetersystem,  $w \in W$  und  $s \in S$ . Falls  $w\underline{s} = \theta(s)ws$  ist, so sagen wir, dass s beidseitig auf w wirkt. Andernfalls sagen wir s wirkt einseitig auf w.

**Definition 2.2** (Ein- und beidseitige endende Gesamtwirkung). Seien (W, S) ein Coxetersystem,  $w \in W$  und  $s_1, \ldots, s_n \in S$ . Falls  $ws_1 \cdots s_n = \theta(s_n)(ws_1 \cdots s_{n-1})s_n$  ist, so sagen wir, dass  $s_1 \cdots s_n$  eine beidseitig endende Gesamtwirkung auf w hat. Andernfalls sagen wir  $s_1 \cdots s_n$  hat eine einseitig endende Gesamtwirkung auf w.

**Definition 2.3.** Seien (W, S) ein Coxetersystem und  $s, t \in S$  zwei verschiedene Erzeuger. Wir definieren:

$$[st]^n := egin{cases} (st)^{rac{n}{2}}, & n ext{ gerade} \ (st)^{rac{n-1}{2}}s, & n ext{ ungerade} \end{cases}$$

**Definition 2.4** (Zweizykel). Seien (W,S) ein Coxetersystem und  $s,t\in S$  zwei verschiedene Erzeuger. Dann nennen wir  $wC_{\{s,t\}}$  den von s und t erzeugten Zweizykel bezüglich w.

Assumption 2.5. Seien (W, S) ein Coxetersystem und  $s, t \in S$  zwei verschiedene Erzeuger von W. Dann gilt:

- 1. Sei  $m=\operatorname{ord}(st)<\infty$ . Falls  $w\underline{[st]^n}\neq w$  ist für alle  $n\in\mathbb{N}, n<2m$ , dann gilt  $w(st)^{2m}=w$ .
- 2. In  $wC_{\{s,t\}}$  existieren keine drei Elemente derselben getwisteten Länge.
- 3. Falls *s* einseitig auf *w* wirkt, dann gilt  $w\underline{s}\underline{t} < w\underline{s}$  oder  $w\underline{t} > w$ .
- 4. Sei  $w[\underline{st}]^n = w$  für ein  $n \in \mathbb{N}$ . Dann ist n gerade und es gilt eine der beiden folgenden Eigenschaften:
  - a) Für jedes  $m \in \mathbb{N}$  hat das Element  $[st]^m$  genau dann eine beidseitig endende Gesamtwirkung auf w, wenn  $[st]^{n/2+m}$  eine beidseitig endende Gesamtwirkung auf w hat.
  - b) Für jedes  $m \in \mathbb{N}$  hat das Element  $[st]^m$  genau dann eine beidseitig endende Gesamtwirkung auf w, wenn  $[st]^{n-m+1}$  eine beidseitig endende Gesamtwirkung auf w hat.

Remark 2.6. Item 2.5.2 bedeutet, dass Zweizykel in einem gewissen Sinne konkav sind. Item 2.5.3 bedeutet, dass innerhalb eines Zweizykels einseitige Wirkungen ausschließlich am bzgl. der getwisteten Länge oberen oder unteren Ende auftreten können. Item 2.5.4 bedeutet, dass in einem Zweizykel die ein- und beidseitigen Wirkungen achsen- oder punktsymmetrisch verteilt sind.

**Lemma 2.7** (Item 2.5.2). *Proof.* Let (W, S) be a Coxeter system,  $w \in W$  with rank w = k,  $s, t \in S$  with  $s \neq t$ . Without loss of generality we can choose w such that  $w < w\underline{s}$  and

 $w < w\underline{t}$ . Assume the existence of an element  $u \in wC_{\{s,t\}}$  with  $u\underline{s} < u$  and  $u\underline{t} < u$ . Then [Hultman, 2007, Lemma 3.8] yields  $s,t \in D_R(u)$ . By using [Hultman, 2007, Lemma 3.9] we conclude that  $w\underline{s} \leq u$  and  $w\underline{t} \leq u$ . Hence there cannot exist more than two Elements of same twisted length.

If no such u exists, then  $wC_{\{s,t\}} = w \cup \{w[\underline{st}]^n : n \in \mathbb{N}\} \cup \{w[\underline{ts}]^n : n \in \mathbb{N}\}$  and the assumption still holds.

# 3 Algorithmus zur Berechnung der getwisteten schwachen Ordnung

Wir wollen nun einen Algorithmus zur Berechnung der getwisteten schwachen Ordnung  $Wk(\theta)$  einer beliebigen Coxetergruppe W erarbeiten. Also Ausgangspunkt werden wir den Algorithmus aus [Haas and Helmnick, 2012, Algorithm 3.1.1] verwenden, der im wesentlichen benutzt, dass für jede getwistete Involution  $w \in \mathcal{I}_{\theta}$  entweder  $w\underline{s} < w$  oder aber  $w\underline{s} > w$  gilt.

```
Algorithm 3.1 (Algorithmus 1).
```

```
1: procedure TwistedWeakOrderingAlgorithm1(W)
                                                                                V \leftarrow \{(e,0)\}
         E \leftarrow \{\}
 3:
         for k \leftarrow 0 to k_{\text{max}} do
 4:
             for all (w, k_w) \in V with k_w = k do
 5:
                  for all s \in S with \nexists(\cdot, w, s) \in E do
 6:
                                                                     \triangleright Nur die s, die nicht schon nach w
    führen
                       y \leftarrow ws
 7:
                       z \leftarrow \theta(s)y
 8:
                       if z = w then
 9:
                                                                             ⊳ s operiert ungetwistet auf w
                           x \leftarrow y
10:
11:
                           t \leftarrow s
                       else
12:
                                                                                 ⊳ s operiert getwistet auf w
13:
                           x \leftarrow z
                           t \leftarrow \underline{s}
14:
                       end if
15:
16:
                       isNew \leftarrow true
                       for all (w', k_{w'}) \in V with k_{w'} = k + 1 do \triangleright Prüfen, ob x nicht schon in
17:
    V liegt
                           if x = w' then
18:
                                isNew \leftarrow \mathbf{false}
19:
                           end if
20:
                       end for
21:
                       if isNew = true then
22:
                           V \leftarrow V \cup \{(x, k+1)\}
23:
                           E \leftarrow E \cup \{(w, x, t)\}
24:
25:
                           E \leftarrow E \cup \{(w, x, t)\}
26:
                       end if
27:
                  end for
28:
             end for
29:
30:
              k \leftarrow k + 1
```

|                |           | Timings     |           | Element compares |               |         |
|----------------|-----------|-------------|-----------|------------------|---------------|---------|
| W              | Wk(id, W) | $\rho(w_0)$ | TWOA1     | TWOA2            | TWOA1         | TWOA2   |
| $A_9$          | 9496      | 25          | 00:02.180 | 00:01.372        | 13,531,414    | 42,156  |
| $A_{10}$       | 35696     | 30          | 00:31.442 | 00:06.276        | 185,791,174   | 173,356 |
| $A_{11}$       | 140152    | 36          | 11:04.241 | 00:29.830        | 2,778,111,763 | 737,313 |
| E <sub>6</sub> | 892       | 20          | 00:03.044 | 00:00.268        | 85,857        | 2,347   |
| E <sub>7</sub> | 10208     | 35          | 06:11.728 | 00:02.840        | 7,785,186     | 29,687  |
| $E_8$          | 199952    | 64          | _         | 11:03.278        | _             | 682,227 |

Table 3.1: Benchmark

```
31: end for
32: return (V, E) \triangleright The poset graph
33: end procedure
```

Dieser Algorithmus berechnet alle getwisteten Involutionen und deren getwistete Länge  $(w,k_w)$  und deren Relationen (w',w,s) bzw.  $(w',w,\underline{s})$ . Zu bemerken ist, dass zur Berechnung der getwisteten Involutionen der Länge k nur die Knoten aus V benötigt werden, mit der getwisteten Länge k-1 und k sowie die Kanten aus E, die Knoten der Länge k-2 und k-1 bzw. k-1 und k verbinden. Alle vorherigen Ergebnisse können schon persistiert werden, so dass nie das komplette Ergebnis im Speicher gehalten werden muss.

Eine Operation, die hier als elementar angenommen wurde ist der Vergleich von Elementen in W. Für bestimmte Gruppen wie z.B. die  $A_n$ , welche je isomorph zu Sym(n+1) sind, lässt sich der Vergleich von Element effizient implementieren. Will man jedoch mit Coxetergruppen im Allgemeinen arbeiten, so liegt W als frei präsentierte Gruppe vor und der Vergleich von Element is eine sehr aufwendige Operation. Bei Algorithm 3.1 muss jedes potentiell neue Element x mit allen schon bekannten w' von gleicher getwisteter Länge verglichen werden um zu bestimmen, ob x wirklich ein noch nicht bekanntes Element aus  $\mathcal{I}_{\theta}$  ist.

#### **Algorithm 3.2** (Algorithmus 2).

```
1: procedure TwistedWeakOrderingAlgorithm2(W) \triangleright W sei die Coxetergruppe

2: V \leftarrow \{(e,0)\}

3: E \leftarrow \{\}

4: for k \leftarrow 0 to k_{\text{max}} do

5: TODO

6: end for

7: return (V,E) \triangleright The poset graph

8: end procedure
```

Im Anhang findet sich eine Implementierung der Algorithms 3.1 and 3.2 in GAP 4.5.4. Table  $\ref{thm:space}$  zeigt ein Benchmark anhand von fünf ausgewählten Coxetergruppen. Dabei sind die  $A_n$  als symmetrische Gruppen implementiert und die  $E_n$  als frei präsen-

tierte Gruppen. Ausgeführt wurden die Messungen auf einem Intel Core i5-3570k mit vier Kernen zu je 3,40 GHz. Der Algorithmus ist dabei aber nur single threaded und kann so nur auf einem Kern laufen. Um die Messergebnisse nicht durch Limitierungen des Datenspeichers zu beeinflussen, wurden die Daten in diesem Benchmark nicht stückweise persistiert sondern ausschließlich berechnet.

Wie zu erwarten ist der Geschwindigkeitsgewinn bei den Coxetergruppen vom Typ  $E_n$  deutlich größer, da in diesem Fall die Elementvergleiche deutlich aufwendiger sind als bei Gruppen vom Typ  $A_n$ .

### A Source codes

```
1 LoadPackage("io");
3
   Read("misc.gap");
   Read("coxeter.gap");
4
   Read("twistedinvolutionweakordering-persist.gap");
7
   TwistedInvolutionDeduceNodeAndEdgeFromGraph := function(matrix, startNode, startLabel,
        labels)
8
        local rank, comb, trace, possibleEqualNodes, e, k, n;
9
10
       rank := -1/2 + Sqrt(1/4 + 2*Length(matrix)) + 1;
       possibleEqualNodes := [];
11
12
13
        for comb in List(Filtered(labels, label -> label <> startLabel), label -> rec(
            startNode := startNode, s := [startLabel, label], m := CoxeterMatrixEntry(
            matrix, rank, startLabel, label))) do
14
            trace := [];
15
            k := 1;
16
            n := comb.startNode;
17
18
            Add(trace, rec(node := n, edge := rec(label := comb.s[1], type := -1)));
19
2.0
            while k < comb.m do
                e := FindElement(n.inEdges, e -> e.label = comb.s[k mod 2 + 1]);
21
22
                if e = fail then break; fi;
23
                n := e.source;
24
25
                Add(trace, rec(node := n, edge := e));
26
                k := k + 1;
2.7
            od:
28
29
            while k > 0 do
30
                e := FindElement(n.outEdges, e -> e.label = comb.s[k mod 2 + 1]);
31
                if e = fail then break; fi;
32
                n := e.target;
33
34
                Add(trace, rec(node := n, edge := e));
35
                k := k - 1;
36
            od:
37
38
            if k <> 0 then continue; fi;
39
40
            if Length(trace) = 2*comb.m then
41
                return rec(result := 0, node := trace[Length(trace)].node, type := trace[
                    comb.m + 1].edge.type, trace := trace);
            fi;
42.
43
44
            if Length(trace) >= 4 then
                if trace[Length(trace) / 2 + 1].edge.type <> trace[Length(trace) / 2].edge.
45
                    type then
46
                    # cannot be equal
47
                else
                    if trace[Length(trace)].edge.type = 0 then
48
49
                        return rec(result := 0, node := trace[Length(trace)].node, type :=
                             0, trace := trace);
50
                    else
51
                        Add(possibleEqualNodes, trace[Length(trace)].node);
52
                    fi;
```

```
54
             else
 55
                  Add(possibleEqualNodes, trace[Length(trace)].node);
56
             fi;
 57
         od:
58
59
         return rec(result := -1, possibleEqualNodes := possibleEqualNodes);
60
    end:
 61
62
    # Calculates the poset Wk(theta).
    TwistedInvolutionWeakOrdering := function (filename, W, matrix, theta)
63
         local persistInfo, maxOrder, nodes, edges, absNodeIndex, absEdgeIndex, prevNode,
             currNode, newEdge,
65
             label, type, deduction, startTime, endTime, S, k, i, s, x, y, n;
66
 67
         persistInfo := TwistedInvolutionWeakOrderingPersistResultsInit(filename);
68
69
         S := GeneratorsOfGroup(W);
70
         maxOrder := Minimum([Maximum(Concatenation(matrix, [1])), 5]);
 71
         nodes := [ [ ], [ rec(element := One(W), twistedLength := 0, inEdges := [ ], outEdges ] 
              := [], absIndex := 1) ];
 72
         edges := [ [], [] ];
73
         absNodeIndex := 2;
 74
         absEdgeIndex := 1;
 75
         k := 0;
76
 77
         while Length(nodes[2]) > 0 do
78
             if not IsFinite(W) then
79
                  if k > 200 or absNodeIndex > 10000 then
80
                      break:
81
                  fi;
82
             fi;
83
             for i in [1..Length(nodes[2])] do
84
                 Print(k, " ", i, "
86
87
                  prevNode := nodes[2][i];
88
                  for label in Filtered([1..Length(S)], n -> Position(List(prevNode.inEdges,
                      e \rightarrow e.label), n) = fail) do
                      deduction := TwistedInvolutionDeduceNodeAndEdgeFromGraph(matrix,
89
                          prevNode, label, [1..Length(S)]);
90
91
                      if deduction.result = 0 then
92
                          type := deduction.type;
93
                          currNode := deduction.node;
94
                      elif deduction.result = 1 then
95
                          type := deduction.type:
96
 97
                          currNode := rec(element := y, twistedLength := k + 1, inEdges :=
                               [], outEdges := [], absIndex := absNodeIndex);
98
                          Add(nodes[1], currNode);
99
100
                          absNodeIndex := absNodeIndex + 1;
101
                      else
102
                          x := prevNode.element;
103
                          s := S[label];
104
105
                          type := 1;
                          y := s^theta*x*s;
106
                          \quad \textbf{if} \ (\texttt{CoxeterElementsCompare}(\texttt{x}, \ \texttt{y})) \ \textbf{then} \\
107
                              y := x * s;
```

53

fi:

109

```
type := 0;
110
111
                         currNode := FindElement(deduction.possibleEqualNodes, n ->
112
                              CoxeterElementsCompare(n.element, y));
113
                         if currNode = fail then
114
115
                             currNode := rec(element := y, twistedLength := k + 1, inEdges
                                  := [], outEdges := [], absIndex := absNodeIndex);
116
                             Add(nodes[1], currNode);
117
118
                             absNodeIndex := absNodeIndex + 1;
119
                         fi;
                     fi;
120
121
122
                     newEdge := rec(source := prevNode, target := currNode, label := label,
                         type := type, absIndex := absEdgeIndex);
123
124
                     Add(edges[1], newEdge);
125
                     Add(currNode.inEdges, newEdge);
126
                     Add(prevNode.outEdges, newEdge);
127
128
                     absEdgeIndex := absEdgeIndex + 1;
129
                 od:
130
            od;
131
             TwistedInvolutionWeakOrderingPersistResults(persistInfo, nodes[2], edges[2]);
132
133
134
            Add(nodes, [], 1);
135
             Add(edges, [], 1);
136
             if (Length(nodes) > maxOrder + 1) then
137
                 for n in nodes[maxOrder + 2] do
138
                     n.inEdges := [];
139
                     n.outEdges := [];
140
141
                 Remove(nodes, maxOrder + 2);
142
                 Remove(edges, maxOrder + 2);
143
             fi;
144
             k := k + 1;
145
         od:
146
147
         TwistedInvolutionWeakOrderingPersistResultsInfo(persistInfo, W, matrix, theta,
             absNodeIndex - 1, k - 1);
148
         TwistedInvolutionWeakOrderingPersistResultsClose(persistInfo);
149
         return rec(numNodes := absNodeIndex - 1, numEdges := absEdgeIndex - 1,
150
             maxTwistedLength := k - 1);
151
    end;
152
153
    # Calculates the poset Wk(theta).
    TwistedInvolutionWeakOrdering1 := function (filename, W, matrix, theta)
154
155
         local persistInfo, maxOrder, nodes, edges, absNodeIndex, absEdgeIndex, prevNode,
             currNode, newEdge,
156
             label, type, deduction, startTime, endTime, S, k, i, s, x, y, n;
157
158
         persistInfo := TwistedInvolutionWeakOrderingPersistResultsInit(filename);
159
160
         S := GeneratorsOfGroup(W);
161
         maxOrder := Minimum([Maximum(Concatenation(matrix, [1])), 5]);
162
         nodes := [ [], [ rec(element := One(W), twistedLength := 0, inEdges := [], outEdges
              := [], absIndex := 1) ];
```

```
163
         edges := [ [], [] ];
164
         absNodeIndex := 2;
165
         absEdgeIndex := 1;
166
         k := 0;
167
168
         while Length(nodes[2]) > 0 do
             if not IsFinite(W) then
169
170
                 if k > 200 or absNodeIndex > 10000 then
171
                      break;
172
                  fi:
             fi:
173
174
175
             for i in [1..Length(nodes[2])] do
                 Print(k, " ", i, "
                                              \r");
176
177
178
                 prevNode := nodes[2][i];
179
                 for label in Filtered([1..Length(S)], n -> Position(List(prevNode.inEdges,
                      e \rightarrow e.label), n) = fail) do
180
                      x := prevNode.element;
181
                      s := S[label];
182
183
                      type := 1;
184
                      y := s^theta*x*s;
185
                      if (CoxeterElementsCompare(x, y)) then
186
                          y := x * s;
187
                          type := 0;
                      fi;
188
189
190
                      currNode := FindElement(nodes[1], n -> CoxeterElementsCompare(n.element
                          , y));
191
192
                      if currNode = fail then
                          currNode := rec(element := y, twistedLength := k + 1, inEdges :=
193
                               [], outEdges := [], absIndex := absNodeIndex);
194
                          Add(nodes[1], currNode);
195
196
                          absNodeIndex := absNodeIndex + 1;
197
                      fi;
198
                      newEdge := rec(source := prevNode, target := currNode, label := label,
199
                          type := type, absIndex := absEdgeIndex);
200
201
                      Add(edges[1], newEdge);
                      Add(currNode.inEdges, newEdge);
202
203
                      Add(prevNode.outEdges, newEdge);
204
205
                      absEdgeIndex := absEdgeIndex + 1;
206
                 od;
207
             od:
208
             TwistedInvolutionWeakOrderingPersistResults(persistInfo, nodes[2], edges[2]);
209
210
             Add(nodes, [], 1);
211
212
             Add(edges, [], 1);
213
             if (Length(nodes) > maxOrder + 1) then
214
                  for n in nodes[maxOrder + 2] do
215
                      n.inEdges := [];
216
                      n.outEdges := [];
217
                 od:
218
                 Remove(nodes, maxOrder + 2);
219
                 Remove(edges, maxOrder + 2);
```

```
220
                                   fi:
221
                                   k := k + 1;
222
223
224
                        Twisted Involution Weak Ordering Persist Results Info (persist Info, W, matrix, theta, the tangle of the context of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info, W, matrix, the tangle of the persist Results Info (persist Info (persi
                                    absNodeIndex - 1, k - 1);
225
                        TwistedInvolutionWeakOrderingPersistResultsClose(persistInfo);
226
227
                        return rec(numNodes := absNodeIndex - 1, numEdges := absEdgeIndex - 1,
                                   maxTwistedLength := k - 1);
228
             end:
229
230
            TwistedInvolutionWeakOrderungResiduum := function (vertex, labels)
231
                        local visited, queue, residuum, current, edge;
232
233
                        visited := [ vertex ];
234
                        queue := [ vertex ];
235
                        residuum := [];
236
                        while Length(queue) > 0 do
237
238
                                   current := queue[1];
239
                                   Remove(queue, 1);
240
                                   Add(residuum, current);
241
242
                                   for edge in current.outEdges do
243
                                               if edge.label in labels and not edge.target in visited then
244
                                                          Add(visited, edge.target);
245
                                                          Add(queue, edge.target);
246
                                              fi;
                                   od;
247
248
                        od;
249
250
                        return residuum;
251
             end:
252
253
            TwistedInvolutionWeakOrderungLongestWord := function (vertex, labels)
254
                       local current;
255
256
                        current := vertex;
257
258
                        while Length(Filtered(current.outEdges, e -> e.label in labels)) > 0 do
259
                                   current := Filtered(current.outEdges, e -> e.label in labels)[1].target;
260
261
262
                        return current;
263
            end;
```

# **B** Bibliography

- R. Haas and A. G. Helmnick. Algorithms for twisted involutions in weyl groups. *Algebra Colloquium* 19, 2012.
- A. Hultman. The combinatorics of twisted involutions in coxeter groups. *Transactions of the American Mathematical Society, Volume 359*, pages 2787–2798, 2007.
- J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press, 1992.