

JUN 09 2003

Attorney Docket No. ABACP0106US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT application of:

Applicants: Andreas Wittmann et al.

Serial No: 09/993,824

Filed: November 6, 2001

Title: ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS

Art Unit: 2828

Examiner: Dung T. Nguyen

POWER OF ATTORNEY BY ASSIGNEE OF ENTIRE INTEREST
(REVOCATION OF PRIOR POWERS)

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

The assignee of the entire right, title and interest of the above identified patent application, hereby revokes all powers of attorney previously given and hereby appoints the following attorneys to prosecute and transact all business in the Patent and Trademark Office connected with the above referenced application.

Mark D. Saralino, Registration No. 34,243

Send correspondence and direct telephone calls to:

Mark D. Saralino, Esq.
RENNER, OTTO, BOISSELLE & SKLAR
1621 Euclid Avenue, 19th Floor
Cleveland, Ohio 44115

Tel: 216-621-1113
Fax: 216-621-6165

The undersigned has reviewed all the documents in the chain of title of the patent application identified above and, to the best of the undersigned's knowledge and belief, title is in the assignee identified below.

A statement under 37 CFR 3.73(b) is submitted herewith.

The undersigned further declares that he is empowered to act on behalf of the assignee, and that all statements made herein of his own knowledge are true, and that all statements made on information and belief are believed to be true; and further, that these statements are made with the knowledge that willful false statements, and the like so made, are punishable by fine or imprisonment, or both, under Section 1001, Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

BOOKHAM TECHNOLOGY PLC

Date: 2 June 2003

By: Haydn Jones
Haydn Jones
Intellectual Property Manager

RECEIVED
JUN 11 2003
TC 2800 MAIL ROOM

JUN 09 2003

PTO/SB/96 (08-00)

Approved for use through 10/31/2002. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket No. ABACP0106US

STATEMENT UNDER 37 CFR 3.73(b)Applicant/Patent Owner: Andreas Wittmann, et al.Application No./Patent No.: 09/993,824 Filed/Issue Date: November 6, 2001Entitled: ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERSBOOKHAM TECHNOLOGY PLC, a Corporation

(Name of Assignee)

(Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)

states that it is:

 the assignee of the entire right, title, and interest; or an assignee of less than the entire right, title and interest.

The extent (by, percentage) of its ownership interest is _____ %

in the patent application/patent identified above by virtue of either:

A. [] An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel _____, Frame _____, or for which a copy thereof is attached.

OR

B. [] A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as shown below:

1. From: Andreas Wittmann, et al. To: Nortel Networks Corp.The document was recorded in the United States Patent and Trademark Office at Reel 012329, Frame 0214, or for which a copy thereof is attached.2. From: Nortel Networks Corp. To: BOOKHAM TECHNOLOGY PLC

The document was recorded in the United States Patent and Trademark Office at Reel _____, Frame _____, or for which a copy thereof is attached.

3. From: _____ To: _____

The document was recorded in the United States Patent and Trademark Office at Reel _____, Frame _____, or for which a copy thereof is attached.

[] Additional documents in the chain of title are listed on a supplemental sheet.

[X] Copies of assignments or other documents in the chain of title are attached.

[NOTE: A separate copy (i.e., the original assignment document or a true copy of the original document) must be submitted to Assignment Division in accordance with 37 CFR Part 3, if the assignment is to be recorded in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.

2 June 2003

Date

Haydn Jones

Typed or printed name

Haydn Jones

Signature

Intellectual Property Manager

Title

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

RECEIVED
JUN 11 2003
TC 2800 MAIL ROOM

**AMENDMENT TO THE
PATENT ASSIGNMENT AGREEMENT**

This Amendment (this "Amendment"), effective as of November 8, 2002, to the Patent Assignment Agreement made on November 8, 2002 (the "PAA") is hereby made by and among NORTEL NETWORKS CORPORATION, a corporation duly incorporated under the laws of Canada, having its executive offices at 8200 Dixie Road, Suite 100, Brampton, Ontario L6T 5P6 Canada, and each of its subsidiaries that are listed on the signature pages hereto (collectively, the "Assigning Parties") and BOOKHAM TECHNOLOGY PLC, a public limited company incorporated under the laws of England and Wales having its executive offices at 90 Milton Park, Abingdon, Oxfordshire OX14, 4RY United Kingdom (the "Assignee") (each of the Assigning Parties and Assignee, a "Party" and, collectively, the "Parties").

WHEREAS, the Parties, having entered into the PAA, desire to amend the PAA to update the schedule of patents, patent applications and invention disclosures attached thereto.

NOW THEREFORE, in consideration of the foregoing premises and the mutual terms and conditions set forth herein, and for U.S. \$1.00 (ONE DOLLAR) and other good and valuable consideration, receipt and adequacy of which is hereby acknowledged, the Parties hereby agree that the PAA be, and is, amended as follows:

1. Schedule A of the PAA is deleted in its entirety and replaced with the new Schedule A attached hereto.
2. Except as expressly amended by this Amendment, all of the terms, covenants and conditions of the PAA shall remain unamended and in full force and effect.
3. This Amendment is hereby incorporated in, and forms a part of, the PAA. For the avoidance of doubt, this Amendment shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles.
4. This Amendment shall be binding on, and shall inure to the benefit of, the Parties and their respective successors and assigns.
5. This Amendment may be executed in any number of counterparts, each of which shall be deemed to be an original but all of which shall constitute one and the same instrument.

[Remainder of page intentionally left blank]

IN WITNESS WHEREOF, the Parties have duly executed this Amendment as of
the date first above written.

**NORTEL NETWORKS
CORPORATION**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS
INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

NORTEL NETWORKS LIMITED

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS PROPERTIES
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS
TECHNOLOGY CORPORATION**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (ASIA)
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS (SWITZERLAND)
GmbH**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (U.K.)
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS HPOCS
INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS PHOTONICS
PTY LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS SHANNON
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

BOOKHAM TECHNOLOGY PLC

By: _____

Name: _____

Title: _____

January, 2003

On this 6th day of December, 2002, before me appeared Khurshid Begum, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of the Assigning Parties with authority to do so.

~~Province~~ State of Ontario)
~~Region~~ County of Peel) ss. for me

On this 18th day of December, 2002, before me appeared Philip Davis, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of Bookham Technology plc with authority to do so.

State of Maryland)
County of St. John's) ss.

Stuart Capel.

STUART P. B. CAPEL
SOLICITOR & NOTARY PUBLIC
6 EAST SAINT HELEN STREET
ABINGDON, OXON, OX14 5EW
TEL: 01235 - 523411
FAX: 01235 - 533283

SCHEDULE A

Disclosure No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All Inventors With Dept No/Ser	Application Title
10289RO	PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY	CA	2,269,298				PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY
10289RO	PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY	US	09/294,114	6,222,200			PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY
10412RO	EXTERNAL CAVITY LASER	US	09/688,873				EXTERNAL CAVITY LASER USING ANGLE-TUNED FILTER AND METHOD OF MAKING SAME
10413ID	FIBRE TERMINATION COMPOUND GRADED INDEX LENSES	US	09/750,874				FIBRE TERMINATION COMPOUND GRADED INDEX LENSES
10485RO	ELECTRICALLY CONTROLLED OPTICAL ATTENUATOR WITH COPLANAR ELECTRODES	US	09/726,409				ELECTROCHROMIC OPTICAL ATTENUATOR
10509RO	ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS	US	09/472,121	6,287,401			ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS
10509RO	ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS	CA	2,328,279				ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS
11006ID	MODULATOR ASSEMBLIES	US	09/496,917				MODULATOR ASSEMBLIES
11920ID	PUMPED OPTICAL AMPLIFICATION DEVICE	US	09/557,891				PUMPED OPTICAL AMPLIFICATION DEVICE
11945ID	A RAMAN FIBRE LASER	US	09/573,238				A RAMAN FIBRE LASER
11954ID	A RAMAN FIBRE LASER	US	09/573,236				A RAMAN FIBRE LASER
12242RO	INVERTED INP/INGAAS AVALANCHE PHOTODIODE	US	09/733,060				EPITAXIALLY GROWN AVALANCHE PHOTODIODE
12339ID	OPTICAL FIBER DEVICE	US	09/653,985				OPTICAL FIBER DEVICE
12349RO	COMPACT CHIP LABELING USING STEPPER TECHNOLOGY.	CA	2,320,612				COMPACT CHIP LABELING USING STEPPER TECHNOLOGY
12349RO	COMPACT CHIP LABELING USING STEPPER TECHNOLOGY.	US	09/688,366				COMPACT CHIP LABELING USING STEPPER TECHNOLOGY
12526RO	SELF ADJUSTING APPARATUS FOR GRIPPING AND MICRO-MANIPULATING CERAMIC SUBSTRATES	US	09/660,542	6,409,241			APPARATUS FOR GRIPPING CERAMIC SUBSTRATES
12615ID	PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE	US	09/676,256				PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE
12634RO	BE DOPING OF INP	US	09/741,350				STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS
12665RO	PRINT QUALITY TEST STRUCTURE FOR DEVICE MANUFACTURING.	US	09/667,620				PRINT QUALITY TEST STRUCTURE FOR LITHOGRAPHIC DEVICE MANUFACTURING
12686ID	GLASS FIBER FIXATIVE AND FIXING PROCESS	US	09/698,800				GLASS FIBER FIXATIVE AND FIXING PROCESS
12715RO	METHOD OF MAKING GRATINGS ON TUNABLE LASER DEVICES	US	09/667,622				METHODS FOR MAKING PATTERNS IN RADIATION SENSITIVE POLYMERS

Disclosure No.	Disclosure Title	City	Serial No.	Patent No.	Issue Date	Status	Inventor's Name Dept. No.	Application Title
12800AU	SPLIT-BEAM FOURIER FILTER	US	08/793,729	5,930,441				SPLIT-BEAM FOURIER FILTER
12841ID	INTEGRATED OPTICAL TRANSMITTER	US	09/616,659					INTEGRATED OPTICAL TRANSMITTER
12847RO	BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER	CA	2,328,641					CONFINEMENT LAYER OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
12847RO	BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER	US	10/014,807					CONFINEMENT LAYER OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
12849ID	OPTICAL AMPLIFIER METHOD AND APPARATUS	US	09/710,372					OPTICAL AMPLIFIER METHOD AND APPARATUS
12849ID	OPTICAL AMPLIFIER METHOD AND APPARATUS	WO	PCT/GB01/04944					OPTICAL AMPLIFIER METHOD AND APPARATUS
12948ID	OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE	US	09/731,434					OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE
12948ID	OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE	CA	2,364,383					OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINENWIDTH	US	08/726,049	6,041,071				ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINENWIDTH SEMICONDUCTOR LASER
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINENWIDTH	US	60/004,620					AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINENWIDTH
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINENWIDTH	US	09/532,529					ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINENWIDTH SEMICONDUCTOR LASER
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	0			Mailed Application	TAYEBATI, PARVIZ (7043-5010439), VAKHSHOORI, DARYOOSH (7068-5010442)	LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	60/099,252					LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	60/099,308					LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	09/386,604					LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	CA	2,317,133					LASER WITH SETTABLE WAVELENGTHS
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	60/148,017					SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	09/636,817					SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	WO	PCT/US00/21904			Nat'l Phase Filed		SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	CA	2,381,662					SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	EP	973357.7					SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE

Disclosure No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All Inventors with Dept. Nos.	Application Title
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	60/148,148				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	WO	PCT/US00/21905		Nat'l Phase Filed		DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	09/636,807				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	CA	2,381,665				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	EP	00957375.9				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13391RO	MONOLITHICALLY INTEGRATED OPTICALLY PUMPED EDGE EMITTING SEMICONDUCTOR LASER	US	09/987,785				MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE-EMITTING SEMICONDUCTOR LASER
13417RO	GRATING ETCHING WITH INP MASKING	US	09/750,124				METHOD OF ETCHING PATTERNS INTO EPITAXIAL MATERIAL
13444CK	MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS	US	09/859,938				MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS
13444CK	MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS	WO	PCT/US01/14918				MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	US	09/821,580				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	EP	02251194.3				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	CA	2,374,557				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13495ID	OPTICAL MODULATORS	US	09/679,165	6,377,717			OPTICAL MODULATORS
13502RO	ANGLED OUTPUT BALL TAPERED OPTICAL FIBER TERMINATION	US	09/735,571				OPTICAL FIBER TERMINATION
13524RO	A STATISTICAL MODEL USED TO CONTROL THE LASING WAVELENGTH OF SEMICONDUCTOR LASERS	US	10/196,956				A METHOD AND SYSTEM FOR FABRICATING SEMICONDUCTOR LASERS
13544RO	SEMICONDUCTOR LASERS	US	10/141,914				SEMICONDUCTOR LASER
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	US	09/709,646				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	CA	2,361,683				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	EP	01309541.9				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13591ID	OPTICAL MODULATORS	GB	0031241.3				OPTICAL MODULATORS

Patent No.	Disclosure Type	Ctry	Serial No.	Patent No.	Issue Date	Patent Inventors with Depth NCs	Application Info
13591ID	OPTICAL MODULATORS	WO	PCT/GB01/05582				OPTICAL MODULATOR
13614ID	OPTICAL PULSE GENERATION	US	09/993,849				OPTICAL PULSE GENERATION
13614ID	OPTICAL PULSE GENERATION	WO	PCT/GB02/03664				OPTICAL PULSE GENERATION
13721RO	AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AND UNIFORMITY CROSS A WAFER	US	0		Mailed Application	QIAN, YAHONG (C115-0531819,1), AN, SERGUEI (SC33-0510038,1)	AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AND UNIFORMITY CROSS A WAFER
13813RO	HIGH POWER LASER DIODE AND METHOD OF FABRICATION THEREOF	US	10/141,862				MONOLITHICALLY INTEGRATED HIGH POWER LASER OPTICAL DEVICE
13816RO	APPARATUS FOR MONITORING THE OUTPUT POWER OF DIODE LASERS AND MODULATORS				Unfiled		
14224ID	ISOLATION OF MICROWAVE TRANSMISSION LINES	US	10/032,416				ISOLATION OF MICROWAVE TRANSMISSION LINES
14404RO	HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER	US	10/027,229				HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
14429ID	OPTICAL BEAM SAMPLING MONITOR	US	10/006,509				OPTICAL BEAM SAMPLING MONITOR
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	CA	2,292,769				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	EP	99919257.8				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	JP	11-552490				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	US	09/063,173	6,204,560			TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	KR	10-1999-7012042				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	WO	PCT/EP99/02665		Nat'l Phase Filed		A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD

Disclosure No.	Disclosure Title	Country	Serial No.	Patent No.	Sub Status	All Inventors (Name)	Current Application Info
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	JP	0			DAETWYLER, ANDREAS (-GPS4097856), DEUTSCH, URS (EXTR-GPS4097859), HARDER, CHRISTOPH (AA54-5050202), HEUBERGER, WILHELM (EXTR-GPS4097866), LATTA, ERNST-EBERHARD (EXTR-GPS4097878), JAKUBOWICZ, ABRAM (-GPS4097872), OOSENBROUG, ALBERTUS (-GPS4097875)	A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14434JD	STABILIZED LASER SOURCE	EP	99810837.7				STABILIZED LASER SOURCE
14434JD	STABILIZED LASER SOURCE	US	10/049,886				STABILIZED LASER SOURCE
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	EP	99811030.8				SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	WO	PCT/IB00/01530		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR OPTICAL FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	US	PCT/IB00/01530		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	CA	2,390,916		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14480RO	GAIN COUPLED DISTRIBUTED FEEDBACK LASER USING SELF-ASSEMBLED QUANTUM DOTS				Unfiled		
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	US	09/852,994				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	CA	2,385,653				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	EP	2405380.3				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	JP	2002-134066				HIGH POWER SEMICONDUCTOR LASER DIODE
14551JD	CARRIER DESIGN FOR MODULES WITH HIGH POWER LASER DIODES	US	10/026,150				HIGH POWER LASER CARRIER
14552JD	ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS	US	09/993,824				ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS
14592ID	OPTICAL COMPONENT ALIGNMENT TECHNIQUE	US	10/024,972				GIMBALED LENS MOUNT AND ALIGNMENT ASSEMBLY FOR A SENSITIVE OPTICAL ALIGNMENT
14676RO	ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS	US	60/334,013				ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS

Disclosure No.	Disclosure Title	CTY	Serial No.	Patent No.	Sub Status	All Inventors with Filing Date No.	Application Title
14676RO	ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS	US	10/025,866				ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS COUPLED-COUPLED GRATINGS
14681ID	THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES	US	10/032,421				THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES
14716RO	WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS	US	10/073,101				WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS
14794RO	A METHOD FOR MAKING FLOATING GRATINGS	US	10/259,745				METHOD AND APPARATUS FOR FLOATING GRATINGS IN DFB (DISTRIBUTED FEEDBACK) LASERS
14854RO	A METHOD FOR MINIMIZING CROSSTALK DUE TO LASER WAVELENGTH VARIATIONS WITH NON-IDEAL FILTERS				Unfiled		
14864RO	POLARIZATION AND WAVELENGTH INDEPENDENT MHZ SPEED OPTICAL ATTENUATOR	US	10/190,592				CURRENT TUNED MACH-ZEHNDER OPTICAL ATTENUATOR
14942RO	RE-CIRCULATING OPTICAL PULSE GENERATOR	US	10/116,168				RE-CIRCULATING OPTICAL PULSE GENERATOR
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446				MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446				MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446				MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15093RO	MULTIPLE-CONTACT SEMICONDUCTOR OPTICAL AMPLIFIERS	US	60/414,404				MULTIPLE-CONTACT OPTICAL AMPLIFIERS
15095RO	FREQUENCY IDENTIFICATION WITH A FREQUENCY LOCKER	US	10/108,856				FREQUENCY IDENTIFICATION WITH FREQUENCY LOCKER
15113CK	METHOD TO IMPROVE TEMPERATURE STABILITY OF FREQUENCY LOCKER IN OPTOELECTRONIC MODULES	US	10/165,465				WAVELENGTH STABILIZED OPTICAL DEVICE
15116JD	NEW STRAIGHT-FLARED-STRAIGHT WAVEGUIDE DESIGN	US	10/131,335				HIGH POWER SEMICONDUCTOR LASER DIODE AND METHOD FOR MAKING SUCH A DIODE
15117JD	PUMP LASER DIODE WITH IMPROVED WAVELENGTH STABILITY	US	0				*PUMP LASER DIODE WITH IMPROVED WAVELENGTH STABILITY
15138ID	AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT	US	10/161,523				AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT

DISCLOSURE NO.	Disclosure Title	COPY	Serial No.	PATENT NO.	STATUS	All Inventors with Dept. No.	Application Number
15142RO	SINGLE MODE, HIGH INDEX CONTRAST POLYMER FLEXIBLE WAVEGUIDES	US	60/352,572				FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS
15142RO	SINGLE MODE, HIGH INDEX CONTRAST POLYMER FLEXIBLE WAVEGUIDES	US	60/352,572				FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS
15150RO	METHOD FOR INTEGRATING A LASER WITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP	US	0		Mailed Application	GLEW, RICK (C116-2819324), BETTY, IAN (5C33-0519725), GREENSPAN, JONATHAN (C116-0262541)	METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIAL GROWTH STEP
15150RO	METHOD FOR INTEGRATING A LASER WITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP	US	0		Mailed Application	GLEW, RICK (C116-2819324), BETTY, IAN (5C33-0519725), GREENSPAN, JONATHAN (C116-0262541)	METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIAL GROWTH STEP
15164RO	A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER.	US	0		Mailed Application	GLEW, RICK (C116-2819324), REID, BENOIT (5C32-0531388), LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15164RO	A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER.	US	0		Mailed Application	GLEW, RICK (C116-2819324), REID, BENOIT (5C32-0531388), LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15181ID	LASER TRANSMITTER	US	60/391,648				LASER TRANSMITTER
15181ID	LASER TRANSMITTER	US	60/391,648				LASER TRANSMITTER
15193RO	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER	US	60/380,261				OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER
15193RO	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER	US			Mailed Application	EL-REFAEI, HATEM (5C33-0273812), JONES, TREVOR (C115-1342592,2), YEVICK, D (EXTR-GPS0380642,2)	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER
15320RO	ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP	US	0		Mailed Application	PROSYK, KELVIN (5C33-0526051), BETTY, IAN (5C33-0519725)	ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP
15338RO	HIGH POWER DISTRIBUTED FEEDBACK LASER				Unfiled		
15386JD	RIDGE WAVEGUIDE LASER DIODE WITH COMPLEX INDEX GUIDING LAYER	US	0		Mailed Application	TRAUT, SILKE (4212-5050415), SCHMIDT, BERTHOLD (AA54-5050359,4), SVERDLOV, BORIS (AA54-5050400,1), THIES, ACHIM (4212-5050409,1)	HIGH POWER SEMICONDUCTOR LASER DIODE AND METHOD FOR MAKING SUCH A DIODE
15389JD	LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBACK				Unfiled		

DISCLOSURE REF. NO.	DISCLOSURE TITLE	CITY	Serial No.	Patent No.	Support Status	All inventors with Dept. Nos.	Application title
15390RO	ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE	US	60/404,166				ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE
15390RO	ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE	US	60/404,166				ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE
15399JD	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER	US	60/390,882				A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15399JD	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER	US			Mailed Application	LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568,1), SCHMIDT, BERTHOLD (AA54-5050359,2), REID, BENOIT (5C32-0531388,2), KNIGHT, D. GORDON (C116-1529664,1)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15502RO	A P-SUBSTRATE SELF-ALIGNED LASER STRUCTURE WITH IRON DOPED CURRENT BLOCKING LAYERS				Unfiled		
15507RO	A MAGNETO-OPTIC NONRECIPROCAL WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS				Unfiled		
15558RO	MANUFACTURE OF A GRATING TEMPLATE AND ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR.				Unfiled		
15592RO	ETCHING OF INDEX- OR GAIN-COUPLED GRATINGS INTO INGAASP MATERIAL USING IN-SITU ETCHING IN A GROWTH REACTOR				Unfiled		
15649JD	LASER STRUCTURE WITH LARGE OPTICAL SUPERLATTICE WAVEGUIDE				Unfiled		
15655RO	HIGH TEMPERATURE OPERATION LASER DIODES				Unfiled		
15656RO	FABRICATION OF A BURIED HETEROSTRUCTURE LASER WITH AN INGAASP ACTIVE LAYER USING IN-SITU ETCHING IN A GROWTH REACTOR				unfiled		
HQ0054	SUPERIMPOSED GRATING WDM TUNABLE LASERS	CA	2,228,683	2,228,683			SUPERIMPOSED GRATING WDM TUNABLE LASERS
HQ0054	SUPERIMPOSED GRATING WDM TUNABLE LASERS	US	09/253,129	6,141,370			SUPERIMPOSED GRATING WDM TUNABLE LASERS

Disclosure No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All Inventors with Dept No's	Application Title
ID0032	OPTO ELECTRONIC COMPONENTS	US	08/319,435	5,534,442			OPTO ELECTRONIC COMPONENTS
ID0079	SEMICONDUCTOR - SLICE CLEAVING	GB	9216363.3	2 269 268			SEMICONDUCTOR - SLICE CLEAVING
ID0079	SEMICONDUCTOR - SLICE CLEAVING	US	08/093,766	5,393,707			SEMICONDUCTOR - SLICE CLEAVING
ID0094	HYBRID OPTIC SOLUTION	DE	95307824.3	695 04 280.7			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	FR	95307824.3	0 713 271			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	GB	9423282.4	2 295 265			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	JP	293046/1995				HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	US	08/560,312	5,668,823			HYBRID OPTIC SOLUTION
ID0134	SEMICONDUCTOR ETCHING PROCESS	FR	94301114.8	0 614 214			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	GB	94301114.8	0 614 214			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	DE	69401370.6	69401370.6			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	GB	9303257.1	2 275 364			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	JP	6-45068				SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	US	08/197,071	5,419,804			SEMICONDUCTOR ETCHING PROCESS
ID0137	PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS	GB	9417975.1	2 293 248			PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS
ID0137	PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS	US	08/507,613	5,574,811			PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS
ID0170	INJECTION LASER AND PHOTOSENSOR ASSEMBLY	US	08/201,473	5,365,534			INJECTION LASER AND PHOTOSENSOR ASSEMBLY
ID0193	FILAMENT COOLER	GB	9404290.0	2 287 244			FILAMENT COOLER
ID0193	FILAMENT COOLER	US	08/388,151	5,568,728			FILAMENT COOLER
ID0199	CO & COUNTER-PUMPED OPTICAL AMPLIFIER	US	08/303,367	5,542,011			CO & COUNTER-PUMPED OPTICAL AMPLIFIER
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	US	08/303,374	5,530,580			ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	EP	94306216.6	0 643 317	Nat'l Phase Filed		ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	GB	9417001.6	2 281 785			ELECTRO ABSORPTION OPTICAL MODULATORS

DISCLOSURE DATE	COPYRIGHT SERIAL NO.	PATENT NO.	STATUS	ALL INVENTORS WITHIN THE SAME	APPLICATION NUMBER
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	DE 94306216.6	694 26 796.1		ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	FR 94306216.6	0 643 317		ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	JP 216309/94			ELECTRO ABSORPTION OPTICAL MODULATORS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	DE 94305060.9	694 10 032.3		PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	FR 94305060.9	0 636 912		PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	GB 9315789.9	2 280 544		PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	GB 94305060.9	0 636 912		PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	JP 180288/94			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	US 08/283,264	5,522,000		PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0237	DIRECT AMPLITUDE MODULATION OF LASERS	US 08/216,301	5,502,741		DIRECT AMPLITUDE MODULATION OF LASERS
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	EP 96301377.6	0 732 739	Nat'l Phase Filed	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	JP 52013/96			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	US 08/612,314	5,933,707		IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	GB 96301377.6	0 732 739		IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	DE 96301377.6	696 18 264.5		IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING

ID	Disclosure Date	City	Serial No.	Patent No.	Subj. Sects	All Inventors with Dept. No.	Application Title
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	FR	96301377.6	0 732 739			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0287	POLARISATION-INSENSITIVE OPTICAL MODULATORS	DE	195 28 165.9				POLARISATION-INSENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-INSENSITIVE OPTICAL MODULATORS	GB	9515400.1	2 291 979			POLARISATION-INSENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-INSENSITIVE OPTICAL MODULATORS	FR	9509417	2723485			POLARISATION-INSENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-INSENSITIVE OPTICAL MODULATORS	US	08/510,752	6,275,321			POLARISATION-INSENSITIVE OPTICAL MODULATORS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	EP	95308872.1	0 717 297	Nat'l Phase Filed		OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	GB	9425022.2	2 296 101			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	US	08/570,983	5,570,444			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	DE	95308872.1	695 26 563.6			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	GB	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	FR	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	IT	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0311	OPTICAL AMPLIFIER	DE	96308900.8	696 03 935.4			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	EP	96308900.8	0 779 689	Nat'l Phase Filed		OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	IT	96308900.8	0 779 689			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	FR	96308900.8	0 779 689			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	GB	9525766.3	2 308 222			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	US	08/760,175	5,872,649			OPTICAL AMPLIFIER
ID0348	LASERS	EB	PCT/GB96/01406		Nat'l Phase Filed		LASERS
ID0384	HERMETIC OPTICAL FIBRE FEED-THROUGH	GB	9515004.1	2 303 467			HERMETIC OPTICAL FIBRE FEED-THROUGH
ID0384	HERMETIC OPTICAL FIBRE FEED-THROUGH	US	08/684,128	5,664,043			HERMETIC OPTICAL FIBRE FEED-THROUGH

ID No	Disclosure Title	CTY	Serial No.	Patent No	Publ Sub Status	All Inventors with Depository	Application Title
ID0426	ETALON ARRANGEMENT	EP	97305110.5				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	JP	179766/1997				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	JP	179766/1997				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	CA	2,203,845	2,203,845			ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	US	08/848,337	5,828,689			ETALON ARRANGEMENT
ID0431	SEMICONDUCTOR LASERS	DE	97901693.8	697 00 830.4			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	EP	97901693.8	0 876 696	Nat'l Phase Filed		SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	FR	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	GB	9601703.3	2 309 581			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	GB	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	IT	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	JP	526680/1997				SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	US	09/091,684	6,058,125			SEMICONDUCTOR LASERS
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	EP	97902473.4	0 879 435	Nat'l Phase Filed		SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	GB	9602564.8	2 310 052			CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	JP	528272/1997				CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	US	08/952,676	5,985,086			CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	DE	97902473.4	697 10 047.2			SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	IT	97902473.4	0 879 435			SECURING AN OPTICAL FIBRE IN A V-GROOVE

Disc No	Disclosure Title	Ctry	Serial No	Patent No	Sub Status	All Inventors with Dep't No	Application Life
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	FR	97902473.4	0 879 435			SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	WO	PCT/GB97/00320		Nat'l Phase Filed		CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	JP	507707/1998				SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	US	09/214,634	6,188,118			SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	CA	2,258,178				SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	EP	97933796.1				SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	WO	PCT/GB97/02053		Nat'l Phase Filed		SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	EP	98303274.9				DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	US	08/865,760	5,901,164			DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	CA	2,235,179				DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	JP	146072/1998				DIRECT AMPLITUDE MODULATION OF LASERS
ID0687	OPTICAL TRANSMITTER OUTPUT MONITORING TAP	US	08/984,894	6,124,956			OPTICAL TRANSMITTER OUTPUT MONITORING TAP
ID0691	BONDING RIDGE STRUCTURE LASER DIODES TO SUBSTRATES	US	09/072,810	6,075,800			BONDING RIDGE STRUCTURE LASER DIODES TO SUBSTRATES
ID0764	A REMOVABLY COATED OPTICAL FIBRE	US	09/374,807	6,351,589			REMOVABLY COATED OPTICAL FIBRE
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	EP	98309206.5				ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	JP	365470/1998				ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	US	08/997,752	5,956,437			ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	CA	2,254,148				ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR

DISC NO	DISCLOSURE TITLE	CITY	SERIAL NO	PATENT NO	STATUS	ALL INVENTORS WITHIN PATENT NO	APPLICATION TITLE
ID0908	SEMICONDUCTOR OPTO-ELECTRONIC DEVICE PACKAGING	US	09/070,899	6,407,438			SEMICONDUCTOR OPTO-ELECTRONIC DEVICE PACKAGING
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	EP	00301124.4				INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	US	09/280,360	6,240,221			INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	CA	2,299,794				INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID8512	INJECTION LASER PACKAGES	US	06/514,066	4,615,031			INJECTION LASER PACKAGES
ID8512	INJECTION LASER PACKAGES	GB	8317959	2 124 402			INJECTION LASER PACKAGES
ID8850	OPTICAL AMPLIFIERS	US	06/888,274	4,720,684			OPTICAL AMPLIFIERS
ID8850	OPTICAL AMPLIFIERS	CA	469,211	1,245,328			OPTICAL AMPLIFIERS
ID8852	MANUFACTURING OPTICAL FIBRE	US	06/736,327	4,608,276			MANUFACTURING OPTICAL FIBRE
ID8852	MANUFACTURING OPTICAL FIBRE	CA	482,229	1,261,632			MANUFACTURING OPTICAL FIBRE
ID8960	OPTICAL FIBRE MANUFACTURE	US	06/940,232	4,735,648			OPTICAL FIBRE MANUFACTURE
ID9003	COATING OPTICAL FIBRES	DE	85306977.1	356 83 25.2			COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	JP	222908/85	2029150			COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	US	06/782,930	4,631,078			COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	GB	85306977.1	0 178 107			COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	CA	492,574	1,226,411			COATING OPTICAL FIBRES
ID9186	LASER MANUFACTURE	US	07/296,946	4,949,352			LASER MANUFACTURE
ID9186	LASER MANUFACTURE	GB	8512321	2 175 442			LASER MANUFACTURE
ID9209	TUBE FURNACE	US	06/858,617	4,748,307			TUBE FURNACE
ID9312	OPTICAL FIBRE MANUFACTURE	US	06/896,518	4,793,840			OPTICAL FIBRE MANUFACTURE
ID9312	OPTICAL FIBRE MANUFACTURE	GB	8520945	2 179 339			OPTICAL FIBRE MANUFACTURE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	DE	365 02 56.1	365 02 56.1			OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	FR	86306868.0	0 216 548			OPTICAL FIBRE CABLE HAVING SLOTTED CORE

ID No.	Disclosure Date	Ctry	Serial No.	Patent No.	Subj Status	All Inventors with Dept. Nos.	Application Title
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	GB	86306868.0	0 216 548			OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	NZ	217514	217514			OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	US	07/636,902	RE34,516			OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9379	OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER	US	06/934,440	4,772,086			OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER
ID9379	OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER	GB	8530797	2 184 255			OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER
ID9495	LASER ARRAY	DE	87302417.8	376 44 10.6			LASER ARRAY
ID9495	LASER ARRAY	JP	129591/87	2511969			LASER ARRAY
ID9495	LASER ARRAY	US	07/032,779	4,760,580			LASER ARRAY
ID9552	OPTICAL FIBRE CABLES	DE	3883556.8	3883556.8			OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	FR	88300817.9	0 278 648			OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	GB	8703255	2 201 008			OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	US	07/154,866	4,830,459			OPTICAL FIBRE CABLES
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	DE	88306994.0	388 13 01.7			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	FR	88306994.0	0 304 182			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	GB	8719590	2 208 944			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	GB	88306994.0	0 304 182			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	NL	88306994.0	0 304 182			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	SE	88306994.0	0 304 182			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	US	07/230,057	4,988,159			FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9617	EDGE EMITTING LIGHT EMISSIVE DIODE	US	07/239,403	4,937,638			EDGE EMITTING LIGHT EMISSIVE DIODE
ID9661	WAVEGUIDE TO OPTO-ELECTRONIC TRANSDUCER	GB	8823873.8	2 213 957			WAVEGUIDE TO OPTO-ELECTRONIC TRANSDUCER

ID	Disclosure Info	Ctry	Serial No.	Patent No.	Sub Status	All Inventors with Depn Nos.	Application Ref.
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	DE	690 20 050.1	690 20 050.1			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	FR	90305474.0	0 400 853			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	GB	8912458.0	2 232 260			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	JP	141220/1990	2991238			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	US	07/531,791	5,083,090			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9716	CARB ON COATING OF OPTICAL FIBRES	DE	690 10 282.8	0 400 938			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	FR	90305776.8	0 400 938			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	GB	9011933.0	2 236 331			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	JP	141221/1990	2866707			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	US	07/531,859	5,062,687			CARB ON COATING OF OPTICAL FIBRES
ID9731	BONDING A SEMICONDUCTOR TO A SUBSTRATE	GB	8818522.8	2 221 570			BONDING A SEMICONDUCTOR TO A SUBSTRATE
ID9742	OPTICAL FILTERS	GB	8823078.4	2 223 324			OPTICAL FILTERS
ID9750	DIFFRACTION GRATING	DE	68928711.9	0365125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	FR	89308702.3	0 365 125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	GB	8821898.7	2 222 891			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	IT	22874/BE/98	0 365 125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	US	07/579,081	5,029,981			DIFFRACTION GRATING

Disclosure No.	Disclosure Date	City	Serial No.	Patent No.	Subj.	All Inventors with Status	Appn. No.	Application Title
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608				DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608				DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608				DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	NL	89308702.3	0 365 125				DIFFRACTION GRATING
ID9752	VAPOUR PHASE PROCESSING	GB	8823233.5	2 223 509				VAPOUR PHASE PROCESSING
ID9763	MULTICHANNEL CAVITY LASER	DE	89312024.6	689 18 238.4				MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	FR	89312024.6	0 370 739				MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	GB	8827385.9	2 225 482				MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	US	07/625,818	5,115,444				MULTICHANNEL CAVITY LASER
ID9774	INTEGRATED OPTICS ASYMMETRIC Y-COUPLER	GB	8902391.5	2 227 854				INTEGRATED OPTICS ASYMMETRIC Y-COUPLER
ID9806	OPTICAL FIBRE CABLE	US	07/544,678	5,082,380				OPTICAL FIBRE CABLE
ID9837	AERIAL OPTICAL FIBRE CABLE	US	07/596,381	5,050,960				AERIAL OPTICAL FIBRE CABLE
ID9856	SEMICONDUCTOR OPTICAL SOURCE	GB	8924725.8	2 237 654				SEMICONDUCTOR OPTICAL SOURCE
ID9870	RING LASER	FR	90309362.3	0 419 059				RING LASER
ID9870	RING LASER	GB	8921295.5	2 236 426				RING LASER
ID9870	RING LASER	DE	69003780.5	0 419 059				RING LASER
ID9870	RING LASER	JP	249922/1990	3004336				RING LASER
ID9870	RING LASER	US	07/583,590	5,056,096				RING LASER
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	FR	90304772.8	0401971				OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	CA	2,013,849	2,013,849				OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	DE	90304772.8	0401971				OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	EP	90304772.8	0401971				OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	US	07/363,006	4,934,774				OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE

DISC No	Disclosure Title	Ctry	Serial No	Patent No	Sub Status	All Inventors with Dept. Nos	Application Name
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	US	07/501,990	5,035,916			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	GB	90304772.8	0401971			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0166	A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM AN OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER	US	08/710,775	5,703,980			A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	CA	2,209,548				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	EP	97111629.8				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	JP	9-185588				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	08/677,922	5,793,913			A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	09/079,480	6,158,901			A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	09/584,792	6,391,214			METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
RE1009	FIBER OPTIC COUPLER	CA	476,580	1,258,787			FIBER OPTIC COUPLER
RE1009	FIBER OPTIC COUPLER	US	07/442,878	4,950,046			FIBER OPTIC COUPLER
RE1037	OPTICAL SIGNAL MODULATORS	CA	507,411	1,257,923			OPTICAL SIGNAL MODULATORS
RE1037	OPTICAL SIGNAL MODULATORS	US	06/856,887	4,730,171			OPTICAL SIGNAL MODULATORS
RO1624	HERMETIC OPTICAL ATTENUATOR	US	06/233,500	4,695,125			HERMETIC OPTICAL ATTENUATOR

DISCLOSURE NO.	DISCLOSURE TITLE	CITY	Serial No.	Patent No.	Sub States	All Inventors with Dept. No's	Application Title
RO1807	DIFFUSION EQUIPMENT	CA	416,834	1,204,986			DIFFUSION EQUIPMENT
RO1807	DIFFUSION EQUIPMENT	US	06/446,441	4,493,287			DIFFUSION EQUIPMENT
RO1809	A PLANAR NARROW-STRIPE LASER WITH IMPROVED CHARGE CARRIER CONFINEMENT	US	06/448,383	4,530,099			A PLANAR NARROW-STRIPE LASER WITH IMPROVED CHARGE CARRIER CONFINEMENT
RO1882	MELT DISPENSING LIQUID PHASE EPITAXY BOAT	CA	448,169	1,201,220			MELT DISPENSING LIQUID PHASE EPITAXY BOAT
RO1882	MELT DISPENSING LIQUID PHASE EPITAXY BOAT	US	06/583,985	4,574,730			MELT DISPENSING LIQUID PHASE EPITAXY BOAT
RO1903	METHOD FOR SCREENING LASER DIODES	CA	447,814	1,196,080			METHOD FOR SCREENING LASER DIODES
RO1903	METHOD FOR SCREENING LASER DIODES	US	06/582,956	4,489,477			METHOD FOR SCREENING LASER DIODES
RO1944	PHASED LINEAR LASER ARRAY	CA	465,981	1,238,707			PHASED LINEAR LASER ARRAY
RO1944	PHASED LINEAR LASER ARRAY	US	06/663,424	4,661,962			PHASED LINEAR LASER ARRAY
RO1961	ZINC DIFFUSION INTO INDIUM PHOSPHIDE	CA	495,084	1,290,656			ZINC DIFFUSION INTO INDIUM PHOSPHIDE
RO1961	ZINC DIFFUSION INTO INDIUM PHOSPHIDE	US	07/243,138	4,889,830			ZINC DIFFUSION INTO INDIUM PHOSPHIDE
RO1987	DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE	CA	483,077	1,238,973			DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE
RO1987	DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE	US	06/673,644	4,660,207			DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE
RO1994	A SURFACE EMITTING LASER	CA	474,029	1,238,971			A SURFACE EMITTING LASER
RO1994	A SURFACE EMITTING LASER	US	06/701,839	4,675,877			A SURFACE EMITTING LASER
RO2005	A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER	US	06/701,707	4,675,876			A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER
RO2005	A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER	CA	474,030	1,238,972			A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER
RO2268	AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE	CA	562,885	1,293,179			AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE
RO2268	AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE	US	07/179,834	4,859,628			AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE

DISC-NP	Disclosure Date	CN	Serial No.	Patent No.	Sub Status	All Inventors with Dept No	Other Application file
RO2314	MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES	US	07/176,120	4,847,665			MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES
RO2349	GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY	US	07/201,155	4,849,373			GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY
RO2349	GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY	CA	568,369	1,313,107			GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY
RO2461	OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION	US	07/369,883	4,969,712			OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION
RO2468	PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE	CA	2,018,900	2,018,900			PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE
RO2468	PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE	US	07/385,599	4,953,006			PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE
RO2564	LASER DIODE STRUCTURE	FR	91908207.3	0 530 212			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	DE	91908207.3	691 07 845.9			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	GB	91908207.3	0 530 212			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	US	07/522,015	4,989,214			LASER DIODE STRUCTURE
RO2579	MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER	US	07/582,464	5,050,953			MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER
RO2579	MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER	GB	91185124	2 248 968			MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER
RO2714	APPARATUS FOR USE WITH ANALYTICAL MEASURING INSTRUMENTS	US	07/996,411	5,350,923			APPARATUS FOR USE WITH ANALYTICAL MEASURING INSTRUMENTS
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	DE	94915483.5	694 08 144.2			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	FR	94915483.5	0 708 930			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION

DISC No.	Disclosure title	Ctry	Serial No.	Patent No.	Sub- Status	All inventors with Dept No(s)	Application title
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	GB	94915483.5	0 708 930			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	JP	7-504252-95	2691638			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	US	08/091,708	5,363,457			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2788	METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES	US	08/118,273	5,345,459			METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES
RO2799	GAIN COUPLED DFB LASER WITH INDEX COUPLING COMPENSATION	US	08/170,074	5,452,318			GAIN COUPLED DFB LASER WITH INDEX COUPLING COMPENSATION
RO2809	METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES	US	08/158,545	5,586,207			METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES
RO2817	CIRCULAR GRATING LASERS	US	08/158,543	5,448,581			CIRCULAR GRATING LASERS
RO2875	CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER SPLITTING	US	08/450,841	5,524,076			CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER SPLITTING
RO2879	SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE	US	08/242,653	5,483,547			SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	GB	9513146.2	2 302 738			SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	JP	8-188293				SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	CA	2,176,099	2,176,099			SEMICONDUCTOR MODULATOR WITH A SHIFT

Disc No.	Disclosure Title	Ctry	Serial No.	Patent No.	Subj to PCT	All Inventors with Status	Dep'n No.s	Application Title
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	US	08/612,555	5,694,504				SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2969	METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL	US	08/450,839	5,567,659				METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL
RO2974	MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY	US	08/413,555	5,536,085				MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	CA	2,209,455					COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	EP	97304743.4					COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	JP	9-174942					COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	US	08/675,757	5,799,119				COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO3007	BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER	US	08/728,991	6,028,875				BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	GB	9700985.6	2 309 335				THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	JP	9-009795					THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	US	08/977,371	5,960,014				THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3066	LASER DIODE AND METHOD OF FABRICATION THEREOF	US	09/093,399	6,151,347				LASER DIODE AND METHOD OF FABRICATION THEREOF

Disc No	Disclosure title	Ctry	Serial No	Patent No	Sub Status	All Inventors with Dept/No	Application File No
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	CA	2,220,240	2,220,240			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	EP	97308615.0				CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	US	08/745,168	5,778,113			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	US	09/057,602	5,991,471			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3092	POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE	US	08/686,355	5,777,793			POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	CA	2,209,558				WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	EP	97111630.6	0 818 859	Nat'l Phase Filed		WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	US	08/680,284	5,825,792			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	JP	9-186204				WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	GB	97111630.6	0 818 859			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	DE	97111630.6	697 11 126.1			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	FR	97111630.6	0 818 859			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS

ID	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	FAIR Inventory with Dep. Nos.	Application Info
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	EP	98307439.4				TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	JP	10-264323				TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	US	08/933,529	5,936,994			TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3479	DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH GAIN MODULATION	US	08/953,015	6,026,110			DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH GAIN MODULATION
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	EP	98310111.4				SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	JP	10-366380				SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	US	08/998,071	6,104,739			SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3746	ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION	US	08/994,453	5,869,398			ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	WO	PCT/CA99/01067				A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	CA	2,310,604				A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	EP	99973441.1				A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	JP	2000-588867				A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER

Disc No	Disclosure title	Ctry	Serial No	Patent No	Sub Status	All Inventors with Dept No	Application title
RO4144	COMPACT PROGRAMMABLE MATRIX OF STRONGLY COMPLEX COUPLED DFB LASERS FOR WIDE AND CONTINUOUS SINGLE WAVELENGTH	US	09/209,860	6,201,824			STRONGLY COMPLEX COUPLED DFB LASERS SERIES
RO4324	CONTINUOUSLY TUNABLE HIGH REPETITION RATE SHORT PULSE GENERATION USING DUAL MODE HIGHLY GAIN-COUPLED DFB LASER DIODES	US	09/213,088				GENERATION OF SHORT OPTICAL PULSES USING STRONGLY COMPLEX COUPLED DFB LASERS
RO4416	VARIABLE OPTICAL ATTENUATOR	US	09/388,628	6,246,826			VARIABLE OPTICAL ATTENUATOR WITH PROFILED BLADE
RO4504	ACTIVE REFLECTION MODULATOR	US	09/409,036				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	WO	PCT/CA00/00856		Natl Phase Filed		COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	CA	2,351,381				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	EP	947728.2				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	JP	2001-527411				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM

Disc No	Disclosure title	Ctry	Serial No	Patent No	Sub Status	All Inventors with Dept No	Application title
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	CA	2,311,961				SLOTTED MONOLITHIC OPTICAL WAVEGUIDES
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	EP	304657				PHASE ADJUSTER USING SLOTTED, CONCATENATED WAVEGUIDES AND THERMO-OPTIC OR ELECTRO-OPTIC INSERTS
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	US	09/346,320	6,424,755			SLOTTED MONOLITHIC OPTICAL WAVEGUIDES
11550RO	HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH	CA	2,355,450				HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH
11550RO	HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH	US	09/672,703				HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH
12801AU	FIBRE OPTIC CIRCULATOR	EP	96940631.3				FIBRE OPTIC CIRCULATOR
12801AU	FIBRE OPTIC CIRCULATOR	US	08/942,601	6,014,475			FIBRE OPTIC CIRCULATOR
12802AU	OPTICAL FILTERING METHOD AND DEVICE	CA	2,318,674				OPTICAL FILTERING METHOD AND DEVICE
12802AU	OPTICAL FILTERING METHOD AND DEVICE	US	09/660,147	6,466,704			OPTICAL FILTERING METHOD AND DEVICE
12802AU	OPTICAL FILTERING METHOD AND DEVICE	WO	PCT/AU00/00735				OPTICAL FILTERING METHOD AND DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	CA	2,313,311				REFLECTIVE NON RECIPROCAL OPTICAL DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	EP	202289.5				REFLECTIVE NON RECIPROCAL OPTICAL DEVICE

Disc No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	Application Status
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	US	09/345,027	6,263,131		REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	US	09/610,601	6,415,077		REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE
12804AU	WAVELENGTH DEPENDENT ISOLATOR	CA	10/129828		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
12804AU	WAVELENGTH DEPENDENT ISOLATOR	US	PCT/AU00/01380		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
12804AU	WAVELENGTH DEPENDENT ISOLATOR	WO	PCT/AU00/01380		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
13240AU	POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE	US	09/736,095			POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE
14081ID	FIBRE OPTICAL COMPONENT	US	09/888,888			FIBRE OPTICAL COMPONENT
14669AU	VARIABLE ATTENUATION AND SPECTRAL SLOPE OPTICAL DEVICE	US	10/218,267			VARIABLE ATTENUATION AND SPECTRAL SLOPE OPTICAL DEVICE
15087ID	AN OPTICAL GRATING DEVICE	US	10/109,916			AN OPTICAL GRATING DEVICE
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	DE	95308065.2	695 27 251.9		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	EP	95308065.2	0 713 109	Nat'l Phase Filed	WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	FR	95308065.2	0 713 109		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	GB	9521916.8	2 295 245		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	JP	293047/1995			WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	US	08/557,857	5,703,976		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0226	OPTICAL WAVEGUIDE GRATINGS	GB	9318670.8	2 281 787		OPTICAL WAVEGUIDE GRATINGS
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	DE	95308201.3	695 25 223.2		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	EP	95308201.3	0 713 110	Nat'l Phase Filed	OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	FR	95308201.3	0 713 110		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	GB	9523489.4	2 295 247		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	US	08/558,709	5,638,473		OPTICAL WAVEGUIDE GRATING FILTER
ID0309	BRAGG GRATINGS IN WAVEGUIDES	US	08/647,795	5,730,888		BRAGG GRATINGS IN WAVEGUIDES
ID0355	ALL-FIBRE OPTICAL FILTER	DE	96302352.8	696 22 778.9		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	EP	96302352.8	0 736 784	Nat'l Phase Filed	OPTICAL NOTCH FILTER MANUFACTURE

Disc No	Disclosure Title	Ctry	Serial No	Patent No	Sub Status	Application Title
ID0355	ALL-FIBRE OPTICAL FILTER	FR	96302352.8	0 736 784		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	GB	96302352.8	0 736 784		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	US	08/628,579	5,708,740		ALL-FIBRE OPTICAL FILTER
ID0421	PLANAR WAVEGUIDES	US	08/842,021	5,904,491		PLANAR WAVEGUIDES
ID0423	PLANAR WAVEGUIDE CLADDING	US	08/842,022	5,885,881		PLANAR WAVEGUIDE CLADDING
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	CA	2,241,189			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	DE	97906822.8	697 09 330.1		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	EP	97906822.8	0 891 570	Nat'l Phase Filed	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	FR	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	GB	9605320.2	2 311 145		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	GB	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	IT	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	JP	532348/1997			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	US	09/101,276			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	WO	PCT/GB97/00606		Nat'l Phase Filed	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	CA	2,239,118			WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	DE	97900292	697 02 299.4	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	EP	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	FR	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	GB	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY

ID	Disclosure Title	Cntry	Serial No.	Patent No.	Std. Status	Application Title
ID0449	WAVEGUIDE PAIR WITH CLADDING	IT	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	JP	524974/1997			WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	US	09/091,257	6,044,192		WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	WO	PCT/GB97/00040		Nat'l Phase Filed	WAVEGUIDE PAIR WITH CLADDING
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	CA	2,211,244			OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	GB	9715185.6	2 316 185		MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	JP	209343/97			MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	US	08/896,092	6,115,518		OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	CA	2,282,939			OPTICAL EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	DE	99306728.9	699 01 419.0		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	EP	99306728.9	1 009 078	Nat'l Phase Filed	OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	FR	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	GB	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	IT	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	US	09/209,387	6,321,000		OPTICAL EQUALIZER
ID8550	OPTICAL FIBRES	GB	8230675	2 129 152		OPTICAL FIBRES

ID/Serial No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	Application Title
ID9170	BEAM SPLITTER/COMBERS	CA	500,513	1,288,267		BEAM SPLITTER/COMBERS
ID9170	BEAM SPLITTER/COMBERS	GB	8503506	2 170 920		BEAM SPLITTER/COMBERS
ID9170	BEAM SPLITTER/COMBERS	US	06/819,125	4,756,589		BEAM SPLITTER/COMBERS
ID9441	DIRECTIONAL COUPLER	DE	378 25 37.2	378 25 37.2		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	FR	87302418.6	0 246 737		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	GB	8612660	2 190 762		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	JP	118687/87	2022576		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	US	07/032,783	4,801,185		DIRECTIONAL COUPLER
ID9579	GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS	GB	8716382	2 207 254		GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS
ID9730	DOPED ELEMENTS	GB	8820848.3	2 222 400		DOPED ELEMENTS
ID9758	"OPTICAL WAVEGUIDE TAPER HAVING CORE, INTERLAYER AND CLADDING"	GB	8926061.6	2 238 396		"OPTICAL WAVEGUIDE TAPER HAVING CORE, INTERLAYER AND CLADDING"
RO2922	POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION	US	08/329,923	5,488,679		POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION