Relatório 04: Medidas com Osciloscópio

Daniel de Sousa Cipriano - RA 233228 Thyago Martins Paula Santos - RA 237752 Otavio Araujo Valderrama - RA 254099

1. TEXTO PRINCIPAL

Nesse experimento nosso objetivo foi estudar as medições feitas através de um osciloscópio para diferentes tipos de circuitos. O osciloscópio é um equipamento capaz de medir e exibir sinais de ondas para corrente alternada, medindo a tensão elétrica em função do tempo, fornecendo mais detalhes de medição. Junto ao osciloscópio, utiliza-se um equipamento capaz de produzir tensões alternadas, chamado gerador de funções. O gerador de funções gera sinais dos mais variados tipos (senoidal, triangular e quadradas), além de ser altamente configurável, consegue ajustar informações como frequência, fase, entre outros.

Esses aparelhos operam em sistemas de corrente alternada. Circuitos de corrente alternada são aqueles em que a corrente e a tensão (V_{CA}) mudam de polaridade com o tempo. Quando pensamos na tensão alternada, podemos descrevê-la como periódica, assim sendo possível relacioná-la ao tempo através da Equação 1 (Caso de tensão alternada senoidal).

$$V = V_{nn} * sen(\omega t + \phi)$$
 (1) V_{pp} : máxima amplitude da tensão $\omega = 2\pi f$ (frequência angular) $\phi = fase$

A "tensão pico-a-pico" Vpp é descrita na Equação 2, sendo a amplitude de tensão senoidal que varia de "pico", Vp, em "pico", dada por $V_{pp}=2*V_p$ (2). Tendo em mente essas relações podemos encontrar a tensão alternada, a qual é geralmente especificada pela sua tensão eficaz, ou valor quadrático médio (V_{rms}). A tensão eficaz pode ser interpretada como o valor de tensão contínua capaz de dissipar a mesma energia da tensão alternada, representada pela Equação 3.

$$V_{rms} = \frac{V_p}{\sqrt{2}} \quad (3)$$

Os materiais utilizados no experimento foram: osciloscópio, gerador de função, multímetro, resistores de $100~\Omega$, $1~k\Omega$ e $4.7~k\Omega$, diodo de Si, LED, capacitor de 4.7~nF. Foram montados 4 circuitos com diferentes configurações e funções, são eles: divisor de tensão resistivo, retificador de meia onda com o diodo de Si, filtro RC com onda senoidal e quadrática e circuito utilizando um diodo emissor de luz (LED). Foram feitas simulações no software Tinker Cad das três primeiras configurações citadas, expressas nas figuras, Figura 1, Figura 2 e Figura 3. Note que como o osciloscópio e gerador de funções presentes no Tinker Cad são simples e possuem apenas um canal para análise, é necessário realizar a troca de posição do fio verde(osciloscópio), para alternar entre visualização de onda para tensão de entrada e saída. Foram medidas variáveis características dessas duas ondas, sendo, tensão máxima e mínima, período, amplitude, frequência, tensão eficaz e a diferença de fase.

Para o circuito divisor de tensão, ajustamos a frequência em 100 Hz e amplitude em 2 V, observando o efeito de divisor de tensão comparando as duas tensões de entrada e saída, para resistências de 1 k Ω , sendo gerado o gráfico expresso na Figura 4. Com os resultados coletados, observamos que o valor de tensão eficaz obtido com multímetro Vm = $(0,681\pm0,02)$ V, se assemelha ao valor obtido com osciloscópio Vrms = $(0,693\pm0,05)$. Analisando também a função de um divisor de tensão, temos que há pouca alteração na fase e frequência das ondas, porém, há alteração na tensão máxima e mínima, já que, esse circuito opera dividindo a tensão total de forma ponderada aos valores de resistência. Sabendo se que a relação para tensão de entrada(Vin) e saída(Vout) do divisor de tensão é dada pela Equação 4: $Vout = Vin \frac{R^2}{R^1+R^2}$ (4). Temos para os resistores utilizados, $Vout = \frac{Vin}{2}$. A curva obtida para esse circuito confirma essa relação.

No caso do circuito retificador de meia onda, um diodo de Si é usado para que a corrente possa passar somente com o diodo em polarização direta, esse sistema opera com uma amplitude de 5V e frequência de 100 Hz. Podemos observar que para tensões de entrada abaixo de aproximadamente 2 V, a tensão de saída se torna nula, isso

ocorre pois para tensões abaixo desse valor, o diodo passa a operar como um curto- circuito, bloqueando a corrente. Notamos também que para o diodo em condução de corrente, a tensão de saída correspondente é menor que a tensão de entrada e pode ser expressa pela Equação 5: Vout = Vin - Vref (5), na qual Vref representa a tensão de referência em que o diodo alterna de curto-circuito para condução, no caso de aproximadamente 2 V, a divisão de corrente entre os dois canais diminui as tensões medidas. Temos também que a frequência é coincidente entre os dois canais, como podemos ver na diferença de fase que é mínima.

Para o circuito utilizando filtro RC, foram obtidos dados de tensão de entrada e saída, para três variações de frequência, são elas 30 Hz, 3 kHz e 300 kHz. Temos que um capacitor gera uma reatância capacitiva medida em ohms, que em corrente alternada, gera o bloqueio da passagem de corrente. O valor da reatância capacitiva depende do tempo de carga e descarga do capacitor, quanto mais tempo recebendo carga, maior será a reatância que bloqueará o fluxo de corrente e vice-versa. O valor de reatância capacitiva(Xc) de um capacitor pode ser estimado pela Equação 6: $Xc = \frac{1}{2\pi fC}$ (6), na qual f representa a frequência e C a capacitância.

No experimento, podemos observar essa relação através das curvas de tensão alternada do circuito com filtro RC para diferentes frequências. Dado que o valor da capacitância C = 4,7 nF, para a situação de frequência igual a 30 Hz (Figura 6), podemos observar que a tensão de saída se torna quase nula, devido ao baixo valor de frequência que implica na alta reatância do capacitor, bloqueando a passagem de corrente. Para a configuração de frequência igual a 3 kHz (Figura 7), observamos que a tensão de saída já não é mais nula, porém atinge valores mais baixos, a reatância capacitiva ainda bloqueia parte da corrente. Já na situação de frequência igual a 300 kHz (Figura 8), visualizamos uma variação de tensão de saída que quase se iguala a tensão de entrada, confirmando a situação de baixa reatância para frequências muito altas, com pouco bloqueio de corrente.

Essa relação também pode ser observada analisando a curva de tensão de saída para o circuito com filtro RC com tensão de entrada variando em ondas quadradas (Figura 9). Nota-se que na borda de subida da tensão de entrada, na qual o valor de tensão atinge um pico alto, a tensão de saída decai exponencialmente. Enquanto que, na borda de descida da tensão de entrada, a qual atinge valores baixos, a tensão de saída cresce exponencialmente. Nos valores intermediários nos quais a tensão permanece aproximadamente constante, a tensão de saída possui o mesmo comportamento e permanece sem grandes variações. Esse comportamento confirma a hipótese citada anteriormente e proporciona uma melhor forma de se visualizar graficamente os processos de carga e descarga do capacitor.

Pensando no circuito com o diodo emissor de luz, com o aumento da frequência o LED "pisca" de forma mais intensa, até por volta dos 38 Hz para ondas quadradas, 37 Hz para ondas senoidais e 39 Hz para as triangulares, O LED "pisca" de forma tão rápida que não é possível a percepção a olho nu. Sendo notável que o formato da onda altera a "intensidade" da luz produzida pelo LED. Ondas quadradas produzem uma maior intensidade e ondas senoidais uma intensidade menor, quando comparada com as quadradas, sendo que para "dente-de-serra", o LED tem menor intensidade que as duas anteriores. Isso acontece porque a onda quadrada ideal alterna regularmente e instantaneamente entre os dois níveis, que podem ou não incluir o zero.

[1] Halliday D; Resnick R; Merrill J. Fundamentos de Física vol.3, Eletromagnetismo, 3ª Edição, LTC, RJ, 1995. Cap. 24 e 26

2. FIGURAS E TABELAS

Fig. 4: Gráfico de curvas senoidais em tensão alternada por tempo, para o divisor de tensão

Fig. 5: Gráfico de curvas senoidais em tensão alternada por tempo, para o retificador de meia onda

Fig. 6: Gráfico de curvas senoidais em tensão alternada por tempo, para o filtro RC, freqûencia de entrada igual a 30 Hz Gráfico de curvas senoidais em tensão alternada para o filtro RC: Frequência de 3 kHz

Fig. 7: Gráfico de curvas senoidais em tensão alternada por tempo, para o filtro RC, freqûencia de entrada igual a 3 kHz

Fig. 8: Gráfico de curvas senoidais em tensão alternada por tempo, para o filtro RC, freqûencia de entrada igual a 300 kHz

Gráfico de onda quadrada em tensão alternada para o filtro RC

Fig. 9: Gráfico de onda quadrada de tensão alternada por tempo e curva exponencial de tensão de saída, para o filtro RC

77.	10	7D 1 1	1	1. 1				1	1	. ~
HIO	III	Tahela	de	resultados	nara	n	circuito	divisor	de	tensan
1 15.	10.	Inocia	uc	resultations	para	\mathbf{c}	Cucuio	airisoi	uc	ichsao

	Vpp(V)	ΔVpp	Vmax(V)	ΔVmax	Vmin(V)	ΔVmin	Frequencia(Hz)	ΔFrequencia	Periodo(s)	ΔPeriodo	Vrms (V)	ΔVrms	Fase(graus)	ΔFase	Vrms multimetro(V)	ΔVrms multimetro
PONTO A(ch1)	1,96	0,01	0,98	0,01	-0,98	0,01	99,9	0,1	0,01	0,01	0,693	0,005	[-2,2,-1,4]	0,9	0,681	0,002
PONTO B(ch2)	0,98	0,01	0,49	0,08	-0,49	0,08	99,9	0,2	0,01	0,02	0,346	0,004	[-1,4; 1,4]	0,9	0,343	0,002

Fig. 11: Tabela de resultados para o circuito retificador de meia onda

	Vpp(V)	ΔVpp	Vmax(V)	ΛVmax	vmin(V)	ΔVmin	Frequencia(Hz)	ΔFrequencia	Periodo(s)	ΔPeriodo	Fase(graus)	ΔFase
DONITO		pp			(1)			- Li requericia	(-)	2		
PONTO												
C(ch1)	4,96	0,01	2,48	0,08	-2,48	0,08	100	0,1	0,01	0,01	[12,2; 15,1]	3
PONTO												
D(ch2)	0,48	0,01	0,2	0,3	-0,2	0,3	100	0,2	0,01	0,02	[-12,2; -15,1]	3

Fig. 12: Tabela de resultados para o circuito filtro RC

Vpp(V)	ΔVpp	Vmax(V)	Δ Vmax	Vmin(V)	Δ Vmin	Fase(graus)	Δ Fase	Frequência
4,88	0,01	2,44	0,08	-2,44	0,08	-21,2	0,2	
4,02	0,01	2,01	0,07	-2,01	0,07	21,2	0,2	300 kHz
5,04	0,11	2,52	0,08	-2,52	0,08	-86,4		
1,48	0,03	0,74	0,02	-0,74	0,02	86,4	1,9	3 kHz
5	0,11	2,5	0,1	-2,5	0,1	-107		
0,8	0,01	0,4	0,1	-0,4	0,1	107	2	30 Hz
	4,88 4,02 5,04 1,48	4,88 0,01 4,02 0,01 5,04 0,11 1,48 0,03 5 0,11	4,88 0,01 2,44 4,02 0,01 2,01 5,04 0,11 2,52 1,48 0,03 0,74 5 0,11 2,5	4,88 0,01 2,44 0,08 4,02 0,01 2,01 0,07 5,04 0,11 2,52 0,08 1,48 0,03 0,74 0,02 5 0,11 2,5 0,1	4,88 0,01 2,44 0,08 -2,44 4,02 0,01 2,01 0,07 -2,01 5,04 0,11 2,52 0,08 -2,52 1,48 0,03 0,74 0,02 -0,74 5 0,11 2,5 0,1 -2,5	4,88 0,01 2,44 0,08 -2,44 0,08 4,02 0,01 2,01 0,07 -2,01 0,07 5,04 0,11 2,52 0,08 -2,52 0,08 1,48 0,03 0,74 0,02 -0,74 0,02 5 0,11 2,5 0,1 -2,5 0,1	4,88 0,01 2,44 0,08 -2,44 0,08 -21,2 4,02 0,01 2,01 0,07 -2,01 0,07 21,2 5,04 0,11 2,52 0,08 -2,52 0,08 -86,4 1,48 0,03 0,74 0,02 -0,74 0,02 86,4 5 0,11 2,5 0,1 -2,5 0,1 -107	4,88 0,01 2,44 0,08 -2,44 0,08 -21,2 0,2 4,02 0,01 2,01 0,07 -2,01 0,07 21,2 0,2 5,04 0,11 2,52 0,08 -2,52 0,08 -86,4 1,48 0,03 0,74 0,02 -0,74 0,02 86,4 1,9 5 0,11 2,5 0,1 -2,5 0,1 -107

3. INCERTEZAS

Tensão medida por multímetro:

leitura:
$$\sigma_l = \frac{0,001}{2\sqrt{3}} = 3 * 10^{-4} V$$
; calibragem: $\sigma_c = \frac{(3\%*Vm + 2*0,001)*2}{2\sqrt{3}} = 0,0017 * Vm + 0,0011 V$

combinada:
$$\sigma_t = \sqrt{\sigma_l^2 + \sigma_c^2} V$$

Tensão medida pelo osciloscópio:

leitura:
$$\sigma_l = \frac{a}{2\sqrt{3}} = \frac{0.01}{2\sqrt{3}} = 3 * 10^{-3} V$$

calibragem:
$$\sigma_c = (Vm * 0.03 + 0.1 * fator de escala + 0.001) \frac{2}{2\sqrt{3}}$$
; combinada: $\sigma_t = \sqrt{\sigma_l^2 + \sigma_c^2}$

Tempo medido pelo osciloscópio:

leitura:
$$\sigma_l = \frac{0.1}{2\sqrt{3}} = 0$$
, 03 ms

calibragem:
$$\sigma_c = (Tm * 0, 1 + 0,004 * fator de escala + 0, 4) * \frac{2}{2\sqrt{3}}$$
 ms; combinada: $\sigma_t = \sqrt{\sigma_l^2 + \sigma_c^2}$ ms

Incertezas associadas a frequência:

$$f = \frac{1}{T} \qquad \qquad \sigma_f = \sqrt{\sigma_T^2 * \left(-\frac{1}{T^2}\right)^2}$$

Incerteza associada à tensão pico a pico:

Incertezas associadas à tensão de pico:

$$V_p = \frac{V_{pp}}{2} \qquad \qquad \sigma_p = \sqrt{\left(\frac{1}{2}\right)^2 * \sigma_{Vpp}^2}$$

Incerteza associada à tensão eficaz:

Incerteza associada à diferença de fase:

$$\phi = arcsen(\frac{v}{v_p}) - \omega t \qquad \sigma_{\phi} = \sqrt{(\frac{\Delta \phi}{\Delta v} * \sigma_v^2)^2 + (\frac{\Delta \phi}{\Delta v pp} * \sigma_{vpp}^2)^2 + (\frac{\Delta \phi}{\Delta w} * \sigma_w^2)^2 + (\frac{\Delta \phi}{\Delta t} * \sigma_t^2)^2}$$