

MÁSTER EN INGENIERÍA EN SISTEMAS DE DECISIÓN

Curso Académico 2018/2019

Trabajo Fin de Máster

Marco de trabajo para evaluar la relevancia de los artículos en el dominio científico

Autor: Adrián Alonso Barriuso

Tutor: Dr. Alberto Fernández Isabel

Dedicado a

mi familia, pareja, amigos y a todos los que me aguantan, en el buen sentido.

Agradecimientos

4 AGRADECIMIENTOS

Resumen

Summary

8 SUMMARY

Índice general

1.	Intro	roducción					
	1.1.	Contexto	13				
		1.1.1. Dominio de aplicación	13				
	1.2.	Objetivos	13				
		1.2.1. Objetivo General	13				
		1.2.2. Objetivos específicos	13				
	1.3.	Estructura de la memoria	13				
2.	Esta	do del arte	15				
	2.1.	Algoritmos de reputación	15				
	2.2.	Obtención de relevancias	15				
3.	Prop	puesta	17				
	3.1.	Arquitectura general	17				
	3.2.	Creación del lexicón de relevancias	18				
	3.3.	Creación del la red neuronal	18				
	3.4.	Estimación de relevancias de artículos	18				
4.	Exp	erimentos y resultados	21				
	4.1.	Planificación temporal	21				
	4.2.	Experimentos	21				
5.	Con	clusiones	23				
Bil	Bibliografía						

10 ÍNDICE GENERAL

Índice de figuras

3.1.	Arquitectura general		18
3.2.	Arquitectura general		19
3.3.	Arquitectura general		19
4.1.	Diagrama de Gantt de	l desarrollo	21

Introducción

- 1.1. Contexto
- 1.1.1. Dominio de aplicación
- 1.2. Objetivos
- 1.2.1. Objetivo General
- 1.2.2. Objetivos específicos

1.3. Estructura de la memoria

- 1. Estado del arte:
- 2. Propuesta:
- 3. Experimentos y resultados:
- 4. Conclusiones:

Estado del arte

- 2.1. Algoritmos de reputación
- 2.2. Obtención de relevancias

Propuesta

En este capítulo, se describe la propuesta del sistema completo, definiendo entradas y salidas explicadas a nivel de diseño. Se empieza con una subsección donde se ve la arquitectura y el propósito general y después se entra en detalle para cada uno de los módulos en las subsiguientes secciones.

3.1. Arquitectura general

En la Figura 3.3, se pueden observar el módulo principal: *Relevance estimator module*, que es el encargado de estimar las relevancias de los artículos de entrada, y sus correspondientes submódulos: *Text processor, Reputation calculator y Relevance calculator*. Se cuenta además, con dos fuentes de información precalculadas utilizadas por el submódulo *Relevance calculator*, a saber, *Relevance lexicon* que consiste en cuatro lexicones[1] de relevancias de términos médicos y *Neural network*, que consiste en cuatro modelos entrenados de redes neuronales convolucionales (CNN)[2] por sus siglas en inglés. Por otra parte, se cuenta con un módulo de visualización(*Visualization*), que se utiliza para ver la salida del sistema y para proporcionar la entrada (*Text*). Por último, se utiliza una fuente de información externa en tiempo real (*Web information resources*).

En primer lugar se entra en detalle en cómo se construye Relevance lexicon, después Neural network y, por último, Relevance estimator module.

Figura 3.1: Arquitectura general

3.2. Creación del lexicón de relevancias

3.3. Creación del la red neuronal

3.4. Estimación de relevancias de artículos

Figura 3.2: Arquitectura de generación de lexicones

Figura 3.3: Flujo de trabajo

Experimentos y resultados

4.1. Planificación temporal

En la Figura 4.1 se puede ver un diagrama de Gantt[3] que refleja el tiempo empleado en cada una de las fases del proyecto.

4.2. Experimentos

Figura 4.1: Diagrama de Gantt del desarrollo

Conclusiones

Bibliografía

- [1] James Pustejovsky. The generative lexicon. *Computational linguistics*, 17(4):409–441, 1991.
- [2] Soujanya Poria, Erik Cambria, and Alexander Gelbukh. Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In *Proceedings of the 2015 conference on empirical methods in natural language processing*, pages 2539–2544, 2015.
- [3] James M Wilson. Gantt charts: A centenary appreciation. *European Journal of Operational Research*, 149(2):430–437, 2003.