Physics 1502Q: 8.2 Magnetic Force on Currents

Announcements & Reminders

- Complete prelab before lab
- Next Homework is due Monday at 11:59pm
- Next Reading Assignment is due Sunday at 11:59pm

Preview of this week and next two weeks

Su	M	Т	W	Th	F	Sa
Reading Assignment Due 11:59 PM	7 HW Due 11:59 PM	8 Intro to Magnetism/ Magnetic Force I	9	Magnetic Force II	11 Lab 6: Kirchhoff's Laws Pre-lab 6 Due before lab	12
13	14	SPRING	REC	17 ESS	18	19
Reading Assignment Due 11:59 PM	21 HW Due 11:59 PM	Magnetic Torque/Biot- Savart Law	23	Biot-Savart Law II + Exam 2 Review	25 MIDTERM EXAM #2 4 PM NO LAB/NO PRELAB	26

Forces and Torques on Currents

LEARNING GOALS

By the end of this unit, you should be able to:

- Model quantitatively how electric currents respond to magnetic fields
- Calculate the magnetic dipole moment of a current loop
- Model the torque on a current loop in a magnetic field
- Calculate the magnetic potential energy of a magnetic dipole

The Magnetic Force

$$\vec{F} = q\vec{v} \times \vec{B}$$

Magnetic Field

$$F = qvB \sin \theta$$

(for the magnitude)

Direction given according to the cross product

Question: Magnetic Field Acting on a Charged Particle

Which magnetic field causes the observed force?

B

C.

D.

E.

Question: Magnetic Field Acting on a Charged Particle

Which magnetic field causes the observed force?

B

D.

Magnetic Force on a Current

- Last class: $\vec{F} = q\vec{v} \times \vec{B}$ (force on a single charge)
- Today: We have a group of charges moving as an electric current

$$I = \frac{q}{\Delta t} \longrightarrow q = I\left(\frac{L}{v_d}\right)$$

$$v_{avg} = v_{drift} = v_d$$

$$\vec{F} = q\vec{v_d} \times \vec{B} = I\left(\frac{L}{v_d}\right)\vec{v_d} \times \vec{B}$$

 $[\vec{F} = I\vec{L} \times \vec{B}]$

Where L points in the direction of the current

Direction of Magnetic Force on Current-Carrying Wire

 Force in the direction of the right-hand rule.

 There's no force on a current-carrying wire parallel to a magnetic field.

Force on a Current-Carrying Wire

@ 2006 Brooks/Cole - Thomson

@ 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

Force on Wires Demo

Question: Magnetic Levitation

The horizontal wire can be levitated—held up against the force of gravity—if the current in the wire is:

- A. Right to left.
- B. Left to right.
- C. It can't be done with this magnetic

Question: Magnetic Levitation Answer

The horizontal wire can be levitated—held up against the force of gravity—if the current in the wire is:

- A. Right to left.
- B. Left to right.
- C. It can't be done with this magnetic

Loops of Current

A wire loop has a current of I = 1.0 mA and is held in a constant magnetic field of B = 1.0 T. What is the net force on the wire loop?

- Conceptual Analysis
- 1. Look at the force on each wire separately
- 2. Then add up the forces.

Group Activity: Loops of Current

A wire loop has a current of I = 1.0 mA and is held in a constant magnetic field of B = 1.0 T. What is the net force on the wire loop?

Draw the direction of the force for each section. (If the force = 0, then write 0)

Loops of Current

A wire loop has a current of I = 1.0 mA and is held in a constant magnetic field of B = 1.0 T. What is the net force on the wire loop?

The net force is 0, but the net torque is non-zero

Loop will tend to rotate in the magnetic field.

The magnetic field applies torque to the coil.

Torque on Wire Loops

Top View

$$\vec{\tau} = \vec{r} \times \vec{F}$$

Torque on one side $\tau = \frac{b}{2}F\sin\theta$

$$F = ILB = IaB$$

Torque on all sides

$$\tau = \frac{b}{2}IaB\sin\theta + \frac{b}{2}IaB\sin\theta$$

$$\tau = IAB \sin \theta$$

where
$$A = ab = area$$

If there are N turns, then

$$t = NIAB \sin Q$$

Side View

Question: Force on Wire Loops

If released from rest, the current loop will:

- A. Move upward.
- B. Move downward.
- C. Rotate clockwise.
- D. Rotate counterclockwise.
- E. Do something not listed here.

Question: Force on Wire Loops Answer

If released from rest, the current loop will:

- A. Move upward.
- B. Move downward.
- C. Rotate clockwise.
- D. Rotate counterclockwise.
- E. Do something not listed here.

Magnetic Dipole Moment: Multiple Loops

Magnetic Dipole Moment Vector:

$$\vec{\mu} = NI\vec{A}$$

SI unit: [A.m²]

Area vector:

Magnitude = Area

Direction uses R.H.R.

Torque on Wire Loops

$$\vec{\mu} = NI\vec{A}$$

$$t = NIAB\sin q$$

$$\tau = \mu B\sin \theta$$

In general,

$$\left(\vec{ au} = \vec{\mu} \times \vec{B} \right)$$

In this case μ is out of the page (using right hand rule)

DC Motor Demo

DC Motors

- The commutator switches the direction of the current every half cycle.
- Torque always points the same direction.

Question: Magnetic Torque

Three different orientations of a magnetic dipole moment in a constant magnetic field are shown below.

Which orientation results in the largest magnetic torque on the dipole?

Question: Magnetic Torque

Three different orientations of a magnetic dipole moment in a constant magnetic field are shown below.

Which orientation results in the largest magnetic torque on the dipole?

$$\tau = \mu B \sin \theta$$

The torque is maximum when the angle = 90° ($\sin\theta=1$)