

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

MUR-8410

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 95/21986
E21B 17/10, 17/14, 17/16		(43) International Publication Date:	17 August 1995 (17.08.95)

(21) International Application Number: PCT/NZ95/00012

(22) International Filing Date: 14 February 1995 (14.02.95)

(30) Priority Data:
250867 14 February 1994 (14.02.94) NZ

(71) Applicant (for all designated States except US): AUSTOIL DRILLING SERVICES PTY. LTD. [AU/AU]; 6 Rawlinson Street, O'Connor, Perth, W.A. 6163 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MURRAY, Geoffrey, Neil [NZ/NZ]; 19 Upland Road, RD2, New Plymouth (NZ).

(74) Agents: TERRY, John, Kinnear et al.; Baldwin, Son & Carey, 342 Lambton Quay, Wellington (NZ).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: DRILL CASING INSTALLATION EQUIPMENT WITH EXTERNAL FRICTION REDUCING MEANS

(57) Abstract

Improvements in casing installation components are described. The modified construction comprises radial support pedestals (2) incorporating rollers (3) on the outside of said support pedestals so that the rollers reduce longitudinal friction between the component and the well bore. The improvements described may be adapted for use in the construction of casing centralisers, float shoes, float collars and similar equipment which is inserted into the well bore.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

DRILL CASING INSTALLATION EQUIPMENT WITH EXTERNAL FRICTION REDUCING MEANS**Technical Field.**

The present invention relates to the construction of oil, gas, geothermal or other wells having a casing inserted into 5 the well bore, and cemented into place. More particularly, but not exclusively, the present invention relates to improvements in casing installation equipment which may find application in the construction of centralizers, float shoes and float collars.

10 Background to the Invention.

The improvements in casing installation equipment described herein may find application in the construction of float collars, float shoes and such related components as are used in casing installation. The details of such improvements are 15 discussed below with particular reference to casing centralizers, although it is understood that such techniques may be applied to the abovementioned related components.

When the drilling stage of a well is completed a casing string is lowered into the bore of the well. The casing 20 serves to prevent the collapse of unstable portions of the formation through which the well is being drilled, provide a smooth bore through which the production fluids and/or gas may flow and prevent pressure loss and/or fluid and gas migration between zones.

25 The casing is secured within the well bore by cementing. In this process, a cement slurry is pumped downward into the casing and up within the annular volume created between the casing outer wall and the bore surface. It is essential that

-2-

the cement provides a uniform shell of substantially constant thickness surrounding the casing. To this end, adequate stand-off must be maintained between the bore wall and the outside surface of the casing.

- 5 In practise, it is virtually impossible to produce a well bore which is perfectly straight. A consequence of this being that the casing frequently rests against the bore wall over portions of the well length. This problem is further exacerbated when drilling volcanic formations in which large
10 hard rock intrusions ("ghoulies") are encountered. In this latter case the drill string departs from the vertical, thereby forming a deviated bore path through which the casing string must pass.

If insufficient stand-off is maintained, the upward flow of
15 the cement slurry is impeded thus increasing the likelihood of forming cavities in the cement. Such voids can lead to the undesirable migration of gas or fluid from one zone to another. In some instances catastrophic failure of the well can result from migration of high pressure gas or fluid up
20 the outside of the casing due to inadequate cement placement.

- To provide the required degree of standoff, casing centralisers spaced apart at regular intervals along the casing string, are used to hold the casing in the centre of the well bore.
25 Casing centralisers are generally constructed in the form of a metal cage incorporating two end collars with an internal diameter such that the casing fits closely within the bore of the centraliser collars. The two collars are connected longitudinally by bow springs thereby forming a cylindrical cage which holds the casing off from the formation via the
30 resilient action of the bow springs.

-3-

Bow spring centralisers can fail in situations where pronounced well deviations produce lateral forces which compress the bow springs sufficiently to allow the casing to lie against the well bore. In this situation, inadequate stand-off may produce cement voids leading to failures as described above. In addition, the relatively flimsy construction of such centralisers can result in mechanical failures and/or jamming under conditions often encountered downhole, such as passing through key seats. A further disadvantage of bow spring centralisers is that they exhibit high axial drag or "starting force" due to the sustained tension of each bow spring against the wall of the well bore.

An alternative type of centraliser commonly used incorporates rigid metal strips tapering at each end which replace the resilient bow springs discussed above. Centralisers of this type are rigid in construction and lend themselves to cast manufacturing techniques. The collars may extend over the entire length of the centraliser thereby forming an enclosed cylinder with solid metal stand-off elements which are cast integrally or attached separately. This type of centraliser, while providing positive casing stand-off can also produce high frictional loads when 'running' the casing into the well. These frictional loads, while lower than for a bow spring centraliser, can pose a significant problem in high displacement deviated and horizontal wells with there being many instances where the well could not be properly cased. This type of centraliser, when cast in aluminium or other soft materials, is prone to wear whilst in use leading to potential loss of stand-off and consequent inferior cementation.

Many currently available centralisers exhibit hydrodynamic shortcomings including: high pressure drop; high turbulence

-4-

without enhancing cementation; and a tendency to induce cement 'roping' due to excessive turbulence and/or wide exit transitions.

5 Casing centralisers are generally secured to the casing at the junction of two casing sections. However, there is no strict requirement that the centraliser be located at this position and they may be located at any point along the casing string.

10 Centralisers are secured to the casing string via stop collars located above and/or below the centraliser body or they may be attached directly to the casing using set screws incorporated into the centraliser itself. In the latter case the centraliser is fixed axially and longitudinally and in the former it is free to rotate thereby aiding penetration
15 downhole.

Float collars are collars screwed onto the casing string and usually connect the lowermost length of casing to the rest of the string. They contain one or more valves which normally may be operated by remote means by the drilling
20 crew at the surface.

A float shoe is similar to a float collar except that it is screwed to the bottom of the lowermost length of the casing.

It is an object of the present invention to provide casing installation equipment which at least alleviates the
25 abovementioned problems, or to at least provide the public with a useful choice.

Disclosure of the Invention.

In one aspect this invention provides for improved casing installation components comprising, a component body, a

-5-

plurality of support pedestals protruding from the outer surface of said body positioned so that the casing is held substantially in the centre of the well bore, friction reducing means mounted on the outer surface of at least some 5 of the support pedestals and adapted to reduce resistance to axial movement of the component and consequently the casing string through the well bore.

Preferably the support pedestals are, in plan, tear-drop shaped and taper towards their outer surface whereby the 10 outer surface generally conforms to a cylinder having a central axis coincident with that of the body.

Preferably the friction reducing means comprises one or more rollers mounted via a roller securing means on the surface of or partially recessed into each support pedestal.

15 Preferably each roller may comprise one or more cylinders.

Most preferably each roller may comprise one or more tapering cylinders and/or barrels constructed and arranged so as to present a surface in contact with the well bore which is substantially congruent to the cross sectional 20 shape of the well bore.

Preferably each roller may have an axis of rotation substantially perpendicular to the axis of the centraliser body and parallel to the support pedestal surface.

25 Preferably the roller securing means comprises a pin inserted through a bore machined into the support pedestal arranged so as to pass through a bore machined in the roller or rollers

30 Preferably the centraliser incorporates a securing means by which the centralisers longitudinal movement in relation to the drill string is substantially constrained.

Preferably the securing means comprise set screws or the like incorporated into the body of the centraliser.

Preferably the component is a float collar.

Preferably the component is a float shoe.

- 5 The exemplary embodiment which follows is directed toward the particular application of the invention in the construction of a casing centraliser.

It is to be understood that the invention may be described in the context of other installation equipment detailed
10 above, and is in no way restricted to the particular example which follows.

An embodiment of the invention is now described by way of example in which:

Fig 1. illustrates a side and end elevation of a possible
15 configuration of a roller centraliser.

Fig 2. illustrates a detail of the roller and support pedestal along line II-II.

Fig 3. illustrates a perspective view of the centraliser shown in figures 1 and 2.

20 Fig 4. illustrates an alternative embodiment having teardrop shaped pedestals.

Fig 5. illustrates a side and end section of the centraliser of figure 4.

Best Mode for Carrying out the Invention.

Referring to figure 1, a roller centraliser 10 is shown. The centraliser body 1, is of a tubular form with a smooth bore with an internal diameter such that it fits snugly around the casing string. In use, the centraliser is positioned at either a casing join or at point between casing joints.

The roller centraliser is secured to the casing string (not shown) via a stop collar (not shown) positioned immediately above and/or below the roller centraliser. Any stop collars well known in the art may be used, such as collars in the form of rings incorporating set screws or compression means by which the stop collar is compressed around the circumference of the casing thus relying on friction to resist movement along the longitudinal axis of the casing string. Thus the roller centraliser is free to rotate around the casing but is constrained to a fixed position along the axis of the casing string.

It is also contemplated that the roller centraliser itself may incorporate securing means such as in the form of set screws adapted to fix the roller centraliser to the casing thereby inhibiting any rotational or longitudinal movement.

An advantage of allowing the roller centraliser to rotate with respect to the casing string is that in deviated wells a degree of casing rotation may be required to penetrate to the well bottom.

The roller centraliser body 1 is formed from rigid material satisfying the criteria of corrosion resistance and extreme durability (eg: a metal). To this end a solid cast construction is employed preferably using a ductile nodular iron. However, it is envisaged that other materials such as

- 8 -

injection moulded plastics or carbon fibre may be suitable depending on cost and ease of manufacture.

Support pedestals 2 can be formed integrally with the roller centraliser body 1. As shown in Fig 2, these pedestals are 5 of a radial dimension such that sufficient stand-off is maintained between the casing string and the well bore.

Roller assembly 3 comprising two tapered rollers 3a and 3b is mounted in recesses in the surface of the support pedestal by means of pin 4 inserted sideways through a bore 10 5 machined in the support pedestal and the bore of the rollers.

The pin 4 is constrained within the bore 5 by means of a brazed or arc welded infill 6.

It is envisaged that the rollers may be constructed of 15 metal. However, it is contemplated that other materials such as thermoplastics may be used.

The cross sectional shape of the rollers 3a and 3b is such that they conform to the internal surface of the well bore, thereby allowing the centraliser in conjunction with the 20 casing string, to pass freely through the well bore.

In use, cement is pumped down the outside of the casing string. The pedestals are spaced apart in such a configuration on to allow the cement to flow downward to fill the volume between the casing and well bore completely. 25 It is desirable that a degree of turbulent flow be maintained in the cement to enhance cementation, however under some conditions cement "roping" may occur resulting in cavities which can lead to casing failure as discussed above. To avoid this problem, it is envisaged that the 30 pedestals may be tear-drop in shape, thus presenting a hydrodynamically smooth obstacle around which the cement

must flow. An example of such a pedestal configuration is shown in figure 4. The tear-drop shaped pedestals 7 lie parallel to a helix on the surface of the casing body 8 and producing a "fling" effect on the surface of the roller centraliser.

The rollers 9 are shaped so as to be accommodated in the particular pedestals configuration shown. It is to be understood that the roller position is not limited to that shown and other arrangements may be suitable.

10 The pedestal shape shown has been found to be particularly suitable, however, it is envisaged that a variety of pedestal cross-sections could be employed to provide a similar result depending on the conditions.

15 It is envisaged that other roller configurations are possible, such as roller elements comprising single hollow untapered cylinders, secured in a single recess in a manner similar to that described above. However, it has been found that the tapered roller configuration illustrated in Fig. 2 when compared to the solid centraliser without rollers as 20 described above, has reduced the estimated coefficient of friction from 0.45 to 0.05 - an approximately tenfold decrease.

It is anticipated that the means by which the pins 4 are secured in the support pedestals may include peened over 25 pins, nuts, bolts, circlips, and split pins. However, these constructions are considered less reliable than the securing method shown in Fig. 2.

The distribution and number of the support pedestals on the surface of the roller centraliser body is generally as shown 30 in Fig. 1, namely five pairs of pedestals spaced radially around the body surface, and each pair 2a and 2b aligned parallel with the roller centraliser body axis. However, any

-10-

configuration which may be contemplated will be a compromise between the desired reduction in the running in friction and the hydrodynamic efficiency of the centraliser when pumping in the cement slurry.

5 Accordingly, other arrangements and numbers of pedestals are anticipated without departing from the principles of the novel technique of reducing the running in friction at the interface between the support pedestal and the well bore.

10 It is to be understood that the construction described above may be adapted to float shoes, float collars and other related items of casing installation equipment, where it is desirable to minimise running in friction.

15 Accordingly, it is to be understood that the scope of the invention is not limited to the described embodiment and therefore that numerous variations and modifications may be made to this embodiment without departing from the scope of the invention as set out in this specification.

Industrial Applicability

20 The improved casing installation equipment may find application in a variety of drilling situations such as gas, geothermal and oil.

25 It is particularly suitable in situations where a casing string is to be lowered into a well bore thereby providing a conduit through which production fluids may pass thereby avoiding pressure loss and/or migration between zones.

Claims.

1. An improved casing installation component comprising:
a component body;
5 a plurality of support pedestals protruding from
the outer surface of said body, positioned so that the
casing is held substantially in the centre of the well
bore;
10 friction reducing means mounted on the outer
surface of at least some of the support pedestals and
adapted to reduce the resistance to axial movement of
the component and subsequently the casing string
through the well bore.
2. An improved casing installation component as claimed
in claim 1 wherein the support pedestals taper towards
15 their outer surface wherein the outer surface
generally conforms to a cylinder having a central axis
coincident with that of the body.
3. An improved casing installation component as claimed
in any preceding claim wherein the friction reducing
means comprises one or more rollers mounted via a
20 roller securing means on the surface of or partially
recessed into each support pedestal.
4. An improved casing installation component as claimed
in claim 3 wherein each roller is of a substantially
cylindrical shape.
- 25 5. An improved casing installation component as claimed
in either claim 3 or claim 4 wherein each roller
comprises one or more tapering cylinders and/or
barrels constructed and arranged so as to present a
surface in contact with the well bore which is
30 substantially congruent to the cross sectional shape
of the well bore.

-12-

6. An improved casing installation component as claimed in any of claims 3 to 5 wherein each roller has an axis of rotation substantially perpendicular to the axis of the component body and parallel to the support pedestal surface.
5
7. An improved casing installation component as claimed in any preceding claim wherein the pedestal is of a shape adapted to minimize the turbulence resulting from axial fluid flow past the exterior of the component.
10
8. An improved casing installation component as claimed in any preceding claim wherein the pedestals are substantially tear-drop shaped in the axial direction of the body.
- 15 9. An improved casing installation component as claimed in claim 8 wherein axes of the tear-drop shaped pedestals lie at an angle to the axial direction of the body.
10. An improved casing installation component as claimed
20 in any of claims 2 to 6 wherein the roller securing means comprises a pin inserted through a bore machined into the support pedestal arranged so as to pass through a bore machined in the roller or rollers.
11. An improved casing installation component as claimed
25 in any preceding claim wherein the component incorporates a securing means by which the components longitudinal movement in relation to the drill string is substantially constrained.

-13-

12. An improved casing installation component as claimed in claim 8 wherein the securing means comprise set screws incorporated into the body of the component.
13. An improved casing installation component as claimed in any preceding claim wherein said component is a casing centraliser.
5
14. An improved casing installation component as claimed in any preceding claim wherein said component is a float shoe.
- 10 15. An improved casing installation component as claimed in any preceding claim wherein said component is a float collar.
16. An improved casing installation component substantially as herein described with reference to
15 the drawings.

1/4

FIG. 1.

FIG. 2.

2/4

FIGURE 3

3/4

FIGURE 4

4/4

FIGURE 5

B SECTION -

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NZ 95/00012

A. CLASSIFICATION OF SUBJECT MATTER
Int. Cl.⁶ E21B 17/10, 17/14, 17/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(6) : E21B 17/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
AU : E21B 17/10, 17/14, 17/16

Electronic data base consulted during the international search (name of data base, and where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
X,P	GB, 2275284,A, (SPEIRS) 24 August 1994	1,3
X	SU, 1810474,A, (TYUMEN) 23 April 1993 - (Derwent English Language Abstract, Week 9427, Buildings - p16)	1,2
X	SU, 1719616,A, (TYUMEN) 15 March 1992 - (Derwent English Language Abstract, Week 9307, Buildings - p8)	1,2,3
X	US, 4190123,A, (RODDY) 26 February 1980	1,2,3

Further documents are listed
in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
18 April 1995

Date of mailing of the international search report

28 APRIL 1995 (28.04.95)

Name and mailing address of the ISA/AU
AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION
PO BOX 200
WODEN ACT 2606
AUSTRALIA
Facsimile No. 06 2853929

Authorized officer

DAVID LEE

Telephone No. (06) 2832107

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NZ 95/00012**C(Continuation).****DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No.
X,P	WO, 94/23174,A (MARATHON OIL) 13 October 1994	1
X	WO, 86/06784,A (R.C.R. OILFIELD) 20 November 1986	
	(See figure 5)	1,2,3

INTERNATIONAL SEARCH REPORT

Information on patent family members.

International application No.

PCT/NZ 95/00012

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report	Patent Family Member		
GB 2275284			
SU 1810474			
SU 1719616			
US 4190123	CA 1095023		
WO 9423174	AU 64124/94		
WO 8606784	AU 59087/86	CN 86103301	US 5033558
	END OF ANNEX		