Distancia de un punto a un plano

Recordemos que para medir distancias entre puntos utilizamos la norma con la fórmula:

$$d(A,B) = ||B - A||.$$

Dados un punto $P \in \mathbb{R}^3$ y un plano Π definimos la distancia entre ellos, $d(P,\Pi)$, como la que hay entre el punto P y el punto de Π más cercano a P.

Ejemplo 1. Dados P=(1,-3,8) y $\Pi:-x+y+4z=10$, hallar el punto de Π más cercano a P y calcular la distancia entre P y Π .

Solución: En el gráfico podemos ver que el punto R que buscamos está sobre la recta \mathbb{L} perpendicular a Π que pasa por P. Efectivamente, si tomamos otro punto Q en el plano, el segmento que mide su distancia a P es la hipotenusa del triángulo rectángulo PRQ y por lo tanto su longitud es mayor que la del cateto \overline{RP} .

Para hallar R buscamos la intersección de la recta $\mathbb L$ con el plano Π .

En primer lugar, hallamos una ecuación paramétrica de la recta L.

Como vector director nos sirve el vector normal del plano y como punto de paso tenemos a *P*:

$$\mathbb{L}$$
 : $\lambda(-1,1,4) + (1,-3,8)$

El punto que buscamos lo encontramos como $R \in \mathbb{L} \cap \Pi$.

Como R debe pertenecer a \mathbb{L} , para algún $\lambda \in \mathbb{R}$,

$$R = \lambda(-1, 1, 4) + (1, -3, 8) = (-\lambda + 1, \lambda - 3, 4\lambda + 8).$$

Reemplazando en la ecuación del plano obtenemos

$$-(-\lambda+1)+(\lambda-3)+4(4\lambda+8)=10$$
 \iff $18\lambda+28=10$ \iff $\lambda=-1$

y, entonces, el punto que buscamos es R = -1(-1, 1, 4) + (1, -3, 8) = (2, -4, 4).

Con este punto calculamos la distancia de P al plano Π

$$d(P,\Pi) = d(P,R) = \|(2,-4,4) - (1,-3,8)\| = \sqrt{18}$$

Respuesta: El punto de Π más cercano a P es R=(2,-4,4) y la distancia de P a Π es $\sqrt{18}$.

Fórmula para la distancia entre un punto y un plano

Si Π es el plano de vector normal N=(a,b,c) que pasa por el punto Q, podemos calcular la distancia de un punto $P=(x_P,y_P,z_P)$ al plano Π , con el procedimiento visto en el ejemplo anterior:

- i) Buscamos la recta \mathbb{L} perpendicular a Π que pasa por P.
- ii) Hallamos el punto R de la intersección entre \mathbb{L} y Π .
- iii) Calculamos $d(P,\Pi) = d(P,R)$.
- i) La recta perpendicular al plano que pasa por P es \mathbb{L} : $\lambda N + P$.
- ii) Para el punto *R* más cercano a *P* vale, como antes:

$$R = \lambda N + P$$
 para algún valor de $\lambda \in \mathbb{R}$

y cumple la ecuación del plano Π :

$$(R-O)\cdot N=0$$

Reemplazando la expresión de R como punto de la recta \mathbb{L} en la ecuación del plano

$$(\lambda N + P - Q) \cdot N = 0$$

podemos despejar λ :

$$\lambda N \cdot N + (P - Q) \cdot N = 0 \iff \lambda N \cdot N = (Q - P) \cdot N \iff \lambda = \frac{(Q - P) \cdot N}{N \cdot N}$$

Recordando que $N \cdot N = ||N||^2$ tenemos

$$\lambda = \frac{(Q - P) \cdot N}{\|N\|^2}$$

y

$$R = \frac{(Q - P) \cdot N}{\|N\|^2} N + P$$
 o $R = \frac{d - P \cdot N}{\|N\|^2} N + P$ (con $d = Q \cdot N$)

iii) La distancia entre P y el plano Π queda expresada en términos de P, N y Q:

$$d(P,\Pi) = \|R - P\| = \left\| \left(\frac{(Q - P) \cdot N}{\|N\|^2} N + P \right) - P \right\| = \left\| \frac{(Q - P) \cdot N}{\|N\|^2} N \right\|$$

Podemos simplificar esta fórmula teniendo en cuenta que el cociente $\frac{(Q-P)\cdot N}{\|N\|^2}$ es un escalar y la norma de N es un número positivo:

$$d(P,\Pi) = \left| \frac{(Q-P) \cdot N}{\|N\|^2} \right| \|N\| = \frac{|(Q-P) \cdot N|}{\|N\|^2} \|N\| = \frac{|(Q-P) \cdot N|}{\|N\|}$$

$$d(P,\Pi) = \frac{|(Q-P) \cdot N|}{\|N\|}$$

que, en términos de las coordenadas de los vectores y con $d = Q \cdot N$, se puede expresar

$$d(P,\Pi) = \frac{|ax_P + by_P + cz_P - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Observación:

Al punto R del plano más cercano al punto P se lo denomina *proyección ortogonal* de P sobre el plano Π y se lo puede calcular con las fórmulas obtenidas en la deducción anterior:

$$R = \frac{(Q - P) \cdot N}{\|N\|^2} N + P$$
 o $R = \frac{d - P \cdot N}{\|N\|^2} N + P$ (si $\Pi : ax + by + cz = d$)

Si aplicamos estas fórmulas en el Ejemplo 1 obtenemos:

$$d((1, -3, 8), \Pi) = \frac{|-1 + (-3) + 4 \cdot 8 - 10|}{\sqrt{(-1)^2 + 1^2 + 4^2}} = \frac{|18|}{\sqrt{18}} = \sqrt{18}$$

y

$$R = \frac{10 - (1, -3, 8) \cdot (-1, 1, 4)}{\|(-1, 1, 4)\|^2} (-1, 1, 4) + (1, -3, 8) = \frac{10 - 28}{18} (-1, 1, 4) + (1, -3, 8) = (2, -4, 4).$$

Ejemplo 2. Hallar los puntos de la recta \mathbb{L} : $\lambda(-2,1,2) + (2,3,0)$ que están a distancia $\sqrt{6}$ del plano Π : -x + 2y + 7z = 2.

Solución: Si P es un punto de la recta \mathbb{L} , debe cumplir

$$P = \lambda(-2, 1, 2) + (2, 3, 0) = (-2\lambda + 2, \lambda + 3, 2\lambda)$$

para algún valor de $\lambda \in \mathbb{R}$.

Usamos la fórmula para la distancia al plano

$$d(P,\Pi) = \frac{|-x_P + 2y_P + 7z_P - 2|}{\sqrt{(-1)^2 + 2^2 + 7^2}}$$

y reemplazamos las coordenadas de P para despejar los valores de λ que dan lugar a puntos de la recta que están a distancia $\sqrt{6}$ de Π :

$$d(P,\Pi) = \frac{|-(-2\lambda+2)+2(\lambda+3)+7(2\lambda)-2|}{\sqrt{(-1)^2+2^2+7^2}} = \sqrt{6}$$
$$\frac{|2\lambda-2+2\lambda+6+14\lambda-2|}{\sqrt{54}} = \sqrt{6}$$
$$|18\lambda+2| = \sqrt{6}\sqrt{54} = 18$$

El módulo nos lleva a dos posibilidades:

i)
$$18\lambda_1 + 2 = 18$$

ii)
$$18\lambda_2 + 2 = -18$$

De i) se obtiene $\lambda_1=\frac{8}{9}$ y de ii) $\lambda_2=-\frac{10}{9}$, lo que nos da dos puntos en la recta:

$$P_1 = \frac{8}{9}(-2,1,2) + (2,3,0) = \left(\frac{2}{9}, \frac{35}{9}, \frac{16}{9}\right)$$

$$P_2 = -\frac{10}{9}(-2,1,2) + (2,3,0) = \left(\frac{38}{9}, \frac{17}{9}, -\frac{20}{9}\right)$$

Respuesta: Los puntos buscados son
$$P_1=\left(\frac{2}{9},\frac{35}{9},\frac{16}{9}\right)$$
 y $P_2=\left(\frac{38}{9},\frac{17}{9},-\frac{20}{9}\right)$.

Verificación:

$$d(P_1, \Pi) = \frac{\left| -\frac{2}{9} + 2\frac{35}{9} + 7\frac{16}{9} - 2 \right|}{\sqrt{(-1)^2 + 2^2 + 7^2}} = \frac{|18|}{\sqrt{54}} = \sqrt{6}$$
$$d(P_2, \Pi) = \frac{\left| -\frac{38}{9} + 2\frac{17}{9} + 7\left(-\frac{20}{9} \right) - 2 \right|}{\sqrt{(-1)^2 + 2^2 + 7^2}} = \frac{|-18|}{\sqrt{54}} = \sqrt{6}$$

Ejemplo 3. Hallar los puntos $P \in \mathbb{R}^3$ que están a distancia $\sqrt{6}$ del plano $\Pi : -x + 2y + 7z = 2$.

Solución: Si tomamos P = (x, y, z), la condición de la distancia se cumple si se satisface la ecuación

$$d(P,\Pi) = \frac{|-x+2y+7z-2|}{\sqrt{(-1)^2+2^2+7^2}} = \sqrt{6}$$

que reagrupando nos conduce a

$$|-x+2y+7z-2| = \sqrt{6}\sqrt{54} = 18.$$

Esto equivale a que valga alguna de las dos igualdades siguientes:

i)
$$-x + 2y + 7z - 2 = 18$$
 \iff $-x + 2y + 7z = 20$

ii)
$$-x + 2y + 7z - 2 = -18$$
 \iff $-x + 2y + 7z = -16$

Cada una de estas ecuaciones describe un plano de soluciones.

Respuesta: Los puntos $P \in \mathbb{R}^3$ que están a distancia $\sqrt{6}$ del plano Π son los pertenecientes a los planos $\Pi_1: -x+2y+7z=20$ y $\Pi_2: -x+2y+7z=-16$.

Observación:

En este problema, el plano Π y la distancia que buscamos son los mismos que en el Ejemplo 2. Los puntos P_1 y P_2 que encontramos en ese ejemplo pueden verse como las intersecciones entre los planos Π_1 y Π_2 con la recta \mathbb{L} .

Ejemplo 4. Si $\Pi_1 : y + 4z = 1$ y $\Pi_2 : -x + 10y + z = -21$, hallar todos los puntos $P \in \mathbb{R}^3$ que verifican: $2 d(P, \Pi_1) = \sqrt{6} d(P, \Pi_2)$.

Solución: Si tomamos P = (x, y, z), las fórmulas para la distancia de P a cada plano quedan:

$$d(P,\Pi_1) = \frac{|y+4z-1|}{\sqrt{1^2+4^2}}$$

$$d(P,\Pi_2) = \frac{|-x+10y+z-(-21)|}{\sqrt{(-1)^2+10^2+1^2}}$$

Planteando la relación que buscamos entre las distancias nos queda la igualdad

$$2\frac{|y+4z-1|}{\sqrt{17}} = \sqrt{6}\frac{|-x+10y+z-(-21)|}{\sqrt{102}} \iff \frac{2|y+4z-1|}{\sqrt{17}} = \frac{|-x+10y+z+21|}{\sqrt{17}}.$$

Simplificando llegamos a la igualdad

$$2|y + 4z - 1| = |-x + 10y + z + 21|.$$

Esta igualdad equivale a que valga alguna de las dos igualdades siguientes:

i)
$$2(y+4z-1) = (-x+10y+z+21)$$
 \iff $x-8y+7z=23$

ii)
$$2(y+4z-1) = -(-x+10y+z+21)$$
 \iff $-x+12y+9z=-19$

Cada una de estas ecuaciones representa un plano de soluciones.

Respuesta: Los puntos P que verifican la relación $2d(P,\Pi_1) = \sqrt{6}d(P,\Pi_2)$ son los de los planos $\Pi_3: x-8y+7z=23$ y $\Pi_4: -x+12y+9z=-19$.

Ejemplo 5. Dados el plano $\Pi: 2x+3y-6z=3$ y la recta $\mathbb{L}: \lambda(-1,2,3)+(2,2,0)$, hallar la ecuación paramétrica de una recta \mathbb{L}' que cumpla simultáneamente:

$$\mathbb{L} \cap \mathbb{L}' \neq \emptyset$$
 y $d(P,\Pi) = 2 \ \forall P \in \mathbb{L}'$.

Solución: Buscamos un vector director \mathbf{v} y un punto de paso Q para \mathbb{L}' que garanticen simultáneamente

 $\mathbb{L} \cap \mathbb{L}' \neq \emptyset$:

i) Debe existir al menos un punto S que cumpla $S \in \mathbb{L}$ y $S \in \mathbb{L}'$.

$$y d(P,\Pi) = 2 \quad \forall P \in \mathbb{L}'$$
:

Esta condición dice literalmente que la distancia al plano debe ser la misma para todos los puntos de \mathbb{L}' y esto implica que \mathbb{L}' debe ser paralela al plano Π .

ii)
$$\mathbb{L}' \parallel \Pi \iff \mathbf{v} \perp (2,3,-6)$$

Además, el punto de paso Q tiene que cumplir

iii)
$$d(Q, \Pi) = 2$$
.

El punto S de i), por pertenecer a \mathbb{L}' , tiene que cumplir la condición de la distancia. Si tomamos Q = S como punto de paso de la recta, se cumplirán simultáneamente las condiciones i) y iii). Calculemos entonces S como un punto de \mathbb{L} a distancia 2 del plano Π .

Si $S \in \mathbb{L}$, debe cumplir $S = \lambda(-1,2,3) + (2,2,0) = (-\lambda + 2,2\lambda + 2,3\lambda)$ para algún $\lambda \in \mathbb{R}$. Reemplazando en la fórmula de la distancia a Π

$$d(S,\Pi) = \frac{|2x_S + 3y_S - 6z_S - 3|}{\sqrt{2^2 + 3^2 + (-6)^2}}$$

podemos despejar λ

$$d(S,\Pi) = \frac{|2(-\lambda+2) + 3(2\lambda+2) - 6(3\lambda) - 3|}{7} = 2$$
$$|-14\lambda + 7| = 14$$

es decir,

$$-14\lambda + 7 = 14$$
 o $-14\lambda + 7 = -14$.

Tenemos dos soluciones: $\lambda_1 = -\frac{1}{2}$ y $\lambda_2 = \frac{3}{2}$.

Como el problema nos pide una sola recta podemos elegir cualquiera de los dos valores, por ejemplo con $\lambda_1=-\frac{1}{2}$ obtenemos el punto

$$S = -\frac{1}{2}(-1,2,3) + (2,2,0) = \left(\frac{5}{2},1,-\frac{3}{2}\right).$$

Nos queda la condición ii), que podemos hacer que se cumpla con cualquier vector ortogonal a (2,3,-6), por ejemplo, (0,2,1).

Respuesta: Una recta
$$\mathbb{L}'$$
 que cumple lo pedido es \mathbb{L}' : $\lambda(0,2,1)+\left(\frac{5}{2},1,-\frac{3}{2}\right)$.

Verificación:

 $\mathbb{L} \cap \mathbb{L}' \neq \emptyset$:

$$\left(rac{5}{2},1,-rac{3}{2}
ight)\in\mathbb{L}$$
: Se obtiene con $\lambda=-rac{1}{2}$ en la ecuación paramétrica.

$$\left(\frac{5}{2},1,-\frac{3}{2}\right)\in\mathbb{L}'\!\!:$$
 Lo usamos como punto de paso.

$$d(P,\Pi) = 2 \quad \forall P \in \mathbb{L}'$$
:

$$\mathbb{L}' \parallel \Pi : (0,2,1) \cdot (2,3,-6) = 0.$$

$$d\left(\left(\frac{5}{2},1,-\frac{3}{2}\right),\Pi\right) = \frac{\left|2\frac{5}{2}+3\cdot1-6\left(-\frac{3}{2}\right)-3\right|}{\sqrt{2^2+3^2+(-6)^2}} = \frac{|5+3+9-3|}{7} = \frac{|14|}{7} = \frac{14}{7} = 2.$$