

工作汇报

Gu Rui 1

¹School of Information Science and Engineering, Lanzhou University npukujui11@gmail.com

March 16, 2024

- ① 模型结构
 - Architecture
 - Sub-Model
 - Swin Transformer Block
- ② 模型贡献
- ③ 实验计划
 - 模型构建
 - 数据集
 - 训练

蒲州大兽

LANZHOU UNIVERSITY

Patch Expanding

Swin Transformer

Block

Swin Transformer

Block

LN

E

K+1

贡献

- ✓ 首先,提出了一种结合卷积神经网络 (CNN) 和 Transformer 的并行架构用于 弱光图像增强。
- ✓ 其次,提出了一个深度语义模块,该模块融合了 Swin Transformer 分支,使 CNN 分支能够有效捕获图像的长距离特征。
- √ 最后,将深度可分离卷积融合进 CNN 分支中,应用于轻量级网络用于提取图像的局部特征。

- 基于 PyTorch 进行模型的搭建、训练和评估;
- 基于 scikit-image 库计算 PSNR、SSIM 等评价指标;
- 构建 U-Net 基本架构模型;
- 实现 Swin Transformer 块中的LocalselfAttention类,PositionEncoding类,PositionEmbedding类

Low-light Dataset

Name	Number	Format	Real/Syn	Video
LOL(?)	500	RGB	Real	
SCIE(?)	4,413	RGB	Real	
VE-LOL-L(?)	2,500	RGB	Real+Syn	

Table: Summary of paired training datasets. 'Syn' represents Synthetic.

Train

- √ Baseline Model
- √ Ablation Study

Performance Evaluation

- **√**PSNR
- √SSIM
- **√**LPIPS

Loss Function

✓休伯损失函数和 SSIM 损失函数

$$L_{loss} = \alpha J_{Huber}(\delta) + \beta \mathcal{L}^{SSIM}(P)$$
 (1)

✓休伯损失函数, SSIM 损失函数, Perceptual 损失函数 (耗费更多训练时间)

$$L_{loss} = \alpha J_{Huber}(\delta) + \beta \mathcal{L}^{SSIM}(P) + \gamma \ell_{feat}^{\phi,j}(\hat{y}, y)$$
 (2)

Thank you!