Practice for Higher Order ODEs

Why?

Exercise 1 Find the general solution for y''' - y'' + y' - y = 0.

Exercise 2 Find the general solution of $y^{(5)} - y^{(4)} = 0$.

Exercise 3 Find the general solution for $y^{(4)} - 5y''' + 6y'' = 0$.

Exercise 4 Find the general solution for y''' + 2y'' + 2y' = 0.

Exercise 5 Suppose the characteristic equation for an ODE is $(r-1)^2(r-2)^2=0$.

- a) Find such a differential equation.
 - b) Find its general solution.

Exercise 6 Suppose that a fourth order equation has a solution $y = 2e^{4x}x\cos x$.

- a) Find such an equation.
- b) Find the initial conditions that the given solution satisfies.

Exercise 7 Suppose that the characteristic equation of a third order differential equation has roots $\pm 2i$ and 3.

- a) What is the characteristic equation?
- b) Find the corresponding differential equation.
- c) Find the general solution.

Exercise 8 Find the general solution for the equation of Exercise .

Exercise 9 Find the general solution of

$$y^{(4)} - y''' - 5y'' - 23y' - 20y = 0.$$

Exercise 10 Find the general solution of

$$y''' - 6y'' + 13y' - 10y = 4e^x + 5e^{3x} - 20.$$

Exercise 11 Find the general solution of

$$y''' - 3y' + 2y = 2e^x - e^{3x}.$$

Exercise 12 Find the general solution of

$$y''' + 2y'' + y' + 2y = 3\cos(x) + x.$$

Exercise 13 Find the general solution of

$$y^{(4)} + 2y'' + y = 4x\cos(x) - e^{3x} + 1$$

Hint: Remember, the guess needs to make sure that no terms in it solve the homogeneous equation.

Exercise 14 Show that $y = \cos(2t)$ is a solution to $y^{(4)} + 2y''' + 9y'' + 8y' + 20y = 0$. This tells us something about the factorization of the characteristic polynomial of this DE. Factor the characteristic polynomial completely, and solve the DE.

Exercise 15 Consider

$$y''' - y'' - 8y' + 12y = 0. (1)$$

- a) Show that $y = e^{2t}$ is a solution of (1).
- b) Find the general solution to (1).
- c) Solve $y''' y'' 8y' + 12y = e^{2t}$.

Exercise 16 Let $f(x) = e^x - \cos x$, $g(x) = e^x + \cos x$, and $h(x) = \cos x$. Are f(x), g(x), and h(x) linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 17 Let f(x) = 0, $g(x) = \cos x$, and $h(x) = \sin x$. Are f(x), g(x), and h(x) linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 18 Are e^x , e^{x+1} , e^{2x} , $\sin(x)$ linearly independent? If so, show it, if not find a linear combination that works.

Exercise 19 Are x, x^2 , and x^4 linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 20 Are e^x , xe^x , and x^2e^x linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 21 Are $\sin(x)$, x, $x\sin(x)$ linearly independent? If so, show it, if not find a linear combination that works.

Exercise 22 Show that $\{e^t, te^t, e^{-t}, te^{-t}\}$ is a linearly independent set.

Exercise 23 Solve $1001y''' + 3.2y'' + \pi y' - \sqrt{4}y = 0$, y(0) = 0, y'(0) = 0, y''(0) = 0.

Exercise 24 Could $y = t^2 \cos t$ be a solution of a homogeneous DE with constant real coefficients? If so, give the minimum possible order of such a DE, and state which functions must also be solutions. If not, explain why this is impossible.

Exercise 25 Find a linear DE with constant real coefficients whose general solution is

$$y = c_1 e^{2t} + c_2 e^{-t} \cos(4t) + c_3 e^{-t} \sin(2t),$$

or explain why there is no such thing.

Exercise 26 Find an equation such that $y = xe^{-2x}\sin(3x)$ is a solution.

Exercise 27 Find an equation of minimal order such that $y = \cos(x)$, $y = \sin(x)$, $y = e^x$ are solutions.

Exercise 28 Find an equation of minimal order such that $y = \cos(x)$, $y = \sin(2x)$, $y = e^{3x}$ are solutions.

Exercise 29 Find a homogeneous DE with general solution

$$y = c_1 e^t + c_2 e^{-t} + c_3 \cos t + c_4 \sin t + c_5 t e^t + c_6 t e^{-t} + c_7 t \cos t + c_8 t \sin t.$$