МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет	
Кафедра	
Направление подготовки	
ВЫПУСКНАЯ КВАЛИФИКАЦИ	ОННАЯ РАБОТА БАКАЛАВРА
(Фамилия, Имя, С	тчество автора)
Тема работы	
«К защите допущена»	Научный руководитель
Заведующий кафедрой	ученая степень, звание
ученая степень, звание	должность, место работы
	/
(фамилия , И., О.) / (подпись, МП)	(фамилия , И., О.) / (подпись, МП)
«»20г.	«»20г.
	Дата защиты: «»20г

СОДЕРЖАНИЕ

BE	ведение	3
1.	ПОСТАНОВКА ЗАДАЧИ	4
	1.1. Существующие работы	4
	1.2. Теорема Пифагора	5
	1.3. Пример листинга	5
	1.4. Пример рисунка	6
2.	РАЗРАБОТАННЫЙ ПОДХОД	7
	2.1. Определения	7
	2.2. Теоремы	7
	2.3. Алгоритмы	8
3.	РЕЗУЛЬТАТЫ	9
3A	КЛЮЧЕНИЕ	10
CI	ІИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11
ПІ	РИЛОЖЕНИЕ	12
	П.1. Первая глава приложения	12

ВВЕДЕНИЕ

Данная работа является примером оформления текста ВКР. В качестве примера ссылки на литературу, можно упомянуть язык Java [1], который исполняется на виртуальной машине JVM [2].

Завершение введения отдельным параграфом со сноской 1.

 $^{^{1}}$ Любая дополнительная информация может вынесена в сноску, включая форматирование *текста* и формул $(\sum_{i=1}^{n} i)$.

1. ПОСТАНОВКА ЗАДАЧИ

Постановка задачи и обзор существующих работ.

1.1. Существующие работы

Эта секция исключительно для примеров вложенных списков.

- 1. Первый элемент
- 2. Второй элемент
 - 1. Первый вложенный элемент
 - 2. Второй вложенный элемент
- 3. Третий элемент

И перечисление без порядка:

- Какой-то элемент
- Следующий элемент
 - Новый вложенный элемент
 - Еще вложенный элемент
- Последний элемент

А также вперемешку:

- Какой-то элемент
- Следующий элемент
 - 1. Первый вложенный элемент
 - 2. Второй вложенный элемент
- Последний элемент

1.2. Теорема Пифагора

Основная формулировка содержит алгебраические действия — в прямоугольном треугольнике, длины катетов которого равны a и b, а длина гипотенузы — c, выполнено соотношение:

$$a^2 + b^2 = c^2.$$

Для того чтобы ссылаться на формулы, их можно нумеровать следующим образом:

$$a^2 + b^2 = c^2 (1.1)$$

Теперь можно сослаться на формулу 1.1 где угодно в тексте.

1.3. Пример листинга

Ниже в листинге 1.1 представлен пример вычисления факториала на языке Python.

Листинг 1.1: Вычисление факториала числа п

```
def fact(n):
if (n==1 or n==0):
   return 1
else:
   return n * fact(n - 1)
```

1.4. Пример рисунка

Далее на рис. 1.1 и 1.2 представлены примеры вставки изображений в работу.

Рис. 1.1: Пример рисунка в формате png 1.1a и в формате svg после конвертации в pdf 1.1б

Всегда лучше выбирать рисунки в векторном формате (.svg, .pdf и.т.п), либо рисовать прямо в \LaTeX с помощью \Tau $\ifmmode k$ \i

Рис. 1.2: Таблица виртуальных методов для класса С

2. РАЗРАБОТАННЫЙ ПОДХОД

2.1. Определения

Определение 2.1. Четным числом называется целое число, которое представимо в виде произведения числа 2 и другого целого числа.

Определение 2.2. Нечетным числом называется целое число, которое **не** представимо в виде произведения числа 2 и другого целого числа.

2.2. Теоремы

Теорема 2.1. Сумма двух четных целых всегда четная.

Доказательство. Пусть даны два целых числа $x, y \in \mathbb{Z}$. По определению 2.1, существуют такие целые числа $a, b \in \mathbb{Z}$, что x и y могут быть записаны следующим образом:

$$x = 2a$$

$$y = 2b$$

Тогда их сумма также удовлетворяет определению 2.1, а значит является четным числом:

$$x + y = 2a + 2b = 2(a + b).$$

Следствие 2.2. Сумма п четных целых всегда четная.

2.3. Алгоритмы

Далее приведен алгорим 2.1 для вычисления наибольшего общего делителя.

Алгоритм 2.1. Поиск наибольшего общего делителя (НОД) двух неотрицательных целых чисел a u b, rде a > b.

- 1. Инициализировать переменные а и в аргументами;
- 2. Пока $b \neq 0$:
 - 2.1 Вычислить остаток r от деления a на b: $r \leftarrow a \mod b$;
 - 2.2 Обновить переменные $a \leftarrow b, b \leftarrow r;$
- 3. Вернуть значение а в качестве результата.

3. РЕЗУЛЬТАТЫ

Тут приводится некоторое описание проведенных замеров, окружение, в котором они проводились и представляются итоговые результаты².

Таблица 3.1: Замеры производительности бенчмарка Вепсһ

Версия	Время (сек)	Кол-во запросов в сек.	Точность (%)
Base	12.34	567	0.89
Opt	10.12	600	0.95
Opt+	9.87	610	0.98
Deopt	15.67	520	0.75

Также приводится анализ полученных результатов, в котором полезно подчеркнуть не только замеры на которых произошли улучшения или ухудшения, но и почему они там произошли, и как можно было бы этого избежать.

²В тексте работы лучше приводить не только отрендеренные графики, но и таблицы с финальными данными, а также доверительные интервалы для каждой метрики.

ЗАКЛЮЧЕНИЕ

Основные результаты работы:

- Первый результат;
- Второй результат;
- Третий результат;
- Последний результат.

Направление дальнейших работ:

- Улучшить алгоритм;
- Провести анализ данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Gosling J. The Java language specification. Addison-Wesley Professional, 2000.
- 2. Lindholm T. и др. The Java virtual machine specification. Pearson Education, 2014.

ПРИЛОЖЕНИЕ

П.1. Первая глава приложения

В приложение обычно выносятся длинные листинги и таблицы.