B.Tech. Third Semester (Computer Science & Engineering) (C.B.C.S.) Winter 2022 Computer Architecture & Digital System

	ges . Thre	Hours Hours	SPM/KW/22/ Max Mark	
	Notes	1. All questions carry marks as indicated 2. Solve Question 1 OR Questions No 2 3. Solve Question 3 OR Questions No 4 4. Solve Question 5 OR Questions No 6 5. Solve Question 7 OR Questions No 16 6. Solve Question 9 OR Questions No 17 6. Due credit will be given to neatness a 8. Assume suitable data whenever neces	0 Id adequate dimensions	
1.	a)	Define and draw NAND Gate, NOR Gate with Why they are known as Universal Logic Gate	their Truth table and Logic symbol	7
	b)	Reduce the expression using k - map $f = \sum m(t)$ the real minimal expression in universal logic.	0,1,3,5,7,8,9,10,12,13) and implement	7
		OR		
2.	a)	Implement the following logic function using $8 \times 1 \text{MUX}$. $F(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13)$		7
	b)	Obtain $4 - to - 16$ decoder using $3 - to - 8$ decountion table.	oders with suitable logic diagram and	7
3.	a)	Explain Von Neuman Architecture in detail.		7
	b)	What are the Instruction formats. Explain Two Instruction	- Address and Three - Address	7
		OR		
4.	a)	What is addressing mode? Explain any six add	ressing modes.	8
	b)	What are subroutines? Explain the execution s	equence of nested subroutines.	6
5.	a)	Define and explain the control sequence of ex-	ecution of complete instruction.	7
	b)	Write down the control sequence for fetching organization	word from memory using single bus	7
		OR		
6.	a)	Explain the difference between hardwired comwith neat diagram. Illustrate the concept has memory	rol unit and microprogrammed control unit idwired control associated with a control	8

SPM/KW/22/2532

			7			
7.	a)	Multiply $(-13)\times(+27)$ using Bit - pair coding (fast multiplication) method.				
	b)	Divide 31 by 8 using Restoring Division method	7			
	OR					
8.	a)	Represent $-\frac{1}{16}$ and $\frac{1}{32}$ in IEEE single and Double Precision format	8			
	b)	Multiply $(+13)\times(+6)$ using Booth's algorithm.				
9.	a)	What is virtual memory/ Describe address translation scheme in virtual memory				
	b)	Design 4m×32 memory using 512K×8 static memory chip.				
	OR					
10.		Explain any four	14			
		i) Page table.				
		ii) Associative memory.				
		iii) Synchronous data transfer.				
		iv) Interrupts handling mechanism				
		v) Memory Interleaving				

b) Illustrate microinstruction format with example

SPM/KW/22/2532

P.T.O