

Tarea #2, EJERCICIOS ESTADISTICA SOCIAL

Introducción a la Estadística Social (Universidad Nacional Autónoma de Honduras)

ANGEL ISAAC CAMPOS ASENCIO 20191006922

<u>Instrucciones:</u> Resuelva los siguientes problemas de forma clara y ordenada, dejando evidencia de su trabajo resultados sin evidencia de su solución no tendrán valor.

- 1. Se lanzan dos monedas y se registran sus resultados como escudo (E) o letra (L) de sus lados que quedan arriba. Determine la probabilidad de que:
 - a) salgan dos escudos: R/ 0.25%
 - b) salgan del mismo lado: R/ 0.25%

E= (cara, cara) (escudo, cara) (cara, escudo) (escudo, escudo)

$$P(A) = 1/4 = 0.25\%$$

2. Para matrimonios que viven en cierta ciudad, la probabilidad de que el esposo veo el noticiero de las 9 p.m. es de 0.40, la probabilidad de que su esposa lo haga es de 0.60 y la probabilidad de que al menos uno de ellos lo haga es de 0.85.

Determine la probabilidad de que ambos vean el noticiero.

Esposa= B 0.60

Al menos uno = 0.85 AuB

P=(AnB) = P(A) + P(B) - P(AuB)

0.40+0.60-0.85

P(AnB) = 0.15 = 15%

La probabilidad de que ambos vean el noticiero es de 15%

3. Considere la siguiente tabla y calcule la probabilidad de:

	В	B ^c
A	12	44
A ^c	16	8

a)
$$B^c$$
: $P(B_c) = 52/80 = 0.65 = 65\%$

b)
$$A^c y B$$
: $P(A_c n B) = 16/80 = 0.2 = 20\%$

c)
$$A \circ B$$
: $P(AuB) = 56/80 - 12/80 = 0.9 = 90\%$

d) B dado
$$A^{c}$$
: $P(B/A_c) = P(A_c nB)/P(A_c) = 16/50 - 24/80 = 0.67 = 67\%$

4. En una muestra de 100 estudiantes se les preguntó si preferían tomar un curso de Matemática, inglés o Deporte. La tabla muestra los resultados según el género.

Género	Asignatura Preferida			
	Matemática	Inglés	Deporte	Total
Hombre	14	16	28	42
Mujer	4	22	16	58
Total	18	38	44	100

Si se selecciona un estudiante al azar, determine la probabilidad de que Hombre (H), Mujer (M), Matemáticas (A), Ingles (B), Deporte (C)

a) prefiera tomar un curso de inglés R/38/100 = 0.38 = 38%

b) sea hombre

$$R/58/100 = 0.58 = 58\%$$

c) sea mujer y prefiera tomar un curso de matemática R/P(MnA) = 4/100 = 0.4 = 4%

d) prefiera tomar un curso de deporte o sea hombre

$$R/P(CuH) = P(C) + P(H) - P(CnH) = 44/100 + 58/100 - 28/100 = 0.44 + 0.58 - 0.28 = 0.74 = 74\%$$

e) prefiera tomar un curso de inglés dado que sea mujer

$$R/P(B/M) = P(BnM)/P(M) = (22/100) / (42/100) = 0.52 = 52\%$$

f) ;Son los eventos ser hombre y preferir un curso de deportes independientes?

$$R/E = P(HnC) = P(H) \times P(C) = 28/100 = (58/100) \times (44/100) = 0.28 \neq 0.26$$

R/ los eventos no son independientes.

g) Mencione dos eventos mutuamente excluyentes

R/ Que el estudiante prefiera tomar el curso de deportes e inglés, que el estudiante sea hombre y mujer

5. De una muestra de 60 estudiantes de primeraño de la carrera de Sociología, 30 cursaron español, 36 estudiaron Introducción a la Investigación y 11 cursaron ambas asignaturas. Encuentre la probabilidad de que el estudiante haya cursado:

Estudiantes (A), Español (B), Introducción (C), Ambas (D)

- a) ambas asignaturas: R/11/60 = 0.18 = 18%
- b) Introducción a la Investigación, pero no español:

$$R/P(C-B) = P(C) - P(CnB) = 36/60 - 11/60 = 0.6 - 0.18 = 0.42 = 42\%$$

c) Español dado que no cursó Introducción a la Investigación:

$$R/P(B-C)=P(B)-P(BnC)=30/60-11/60=0.5-O.18=0.32=32\%$$

d) Ninguna de esas materias.

$$R/P(C-B) - P(B-C) = 0.42 - 0.32 = 0.1 = 10\%$$

6. Una muestra aleatoria con reposición de tamaño n = 2 se selecciona del conjunto {1, 2, 3} produciendo el espacio equiprobable de 9 elementos, los cuales son:

$$S = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$
. Sea la variable

aleatoria Z = la suma de los dos números de cada muestra de tamaño 2. Encuentre la función de probabilidad f(z) en forma de tabla para la variable aleatoria Z.

X	2	3	4	5	6
F(z)	1/9	2/9	3/9	4/9	1/9

7. Una variable aleatoria discreta toma todos los valores enteros entre 0 y 4 en la siguiente función de probabilidad.

х	0	1	2	3	4
f(x)	0.3	0.25	0.25	0.1	0.1

$$X=0, 1, 2, 3, 4$$

 $Rx=(0, 1, 2, 3, 4)$

- a) Complete la tabla.
- b) Calcule la media

$$R/\underline{\Sigma x_{i}} = 1$$
 $n = 5$
 n
 $x = 1/5 = 0.2$

c) Calcule la varianza

$$\frac{\sum x_i = 1}{n} (x_i - X)2 = 0.035$$

$$\frac{X = \sum x_i = 1}{n} (x_i - X)2 = 0.0087$$

- 8. Dada una distribución normal estándar (con una media de 0 y una desviación estándar de 1) Encuentre las probabilidades de que:
 - a) z sea menor o igual que -0.78 R/ P= (Z \le -0.78) = 0.217 = 22%
 - b) z sea mayor o igual que 0.18

$$R/P = (Z \ge 0.18) = 1 P(Z \le 0.18) = 1 = 0.571 = 0.428 = 43\%$$

c) z este entre -0.35 y 2.02

$$R/P=(-0.35 \le Z \le 2.02) = P(Z \le 2.02) - P(Z \le 0.35) = 0.978 - 0.363 = 0.615 = 62\%$$

d) z sea menor que 0.05 o mayor que 1.89

$$R/P=(Z \le 0.05 U \ge 1.89) = P(0.519 + 0.029) = 0.549 = 55\%$$

- 9. Dada una distribución normal estándar (con una media de 0 y una desviación estándar de 1) ¿Cuál es el valor de z si sólo el
 - a) 91% de todos los posibles valores de z son más pequeños?
 - b) 98% de todos los posibles valores de z son más grandes?
 - c) 93.76% de todos los posibles valores de z son más pequeños?
 - d) 33.55% de todos los posibles valores de z son más grandes?
- 10. Entre cuáles dos valores de z (distribuidos simétricamente alrededor de la media) estarán contenidos el
 - a) 80% de todos los posibles valores z?
 - b) 90% de todos los posibles valores z?
 - c) 99% de todos los posibles valores z?
- 11. Dada una distribución normal con una media de 5.70 y una desviación estándar de 0.50 cuál es la probabilidad de que
 - a) X = 5.50
 - b) X > 5.50
 - c) $X \le 5.10$
 - d) 5 < X < 6.9
 - e) ¿Entre cuáles dos valores de X (distribuidos simétricamente alrededor de la media) se encuentra el 90% de los valores?
- 12. Las calificaciones finales de un curso de Introducción a la Estadística Social se distribuyen de manera normal con una media de 71 y una desviación estándar de 7.5. ¿Cuál es la probabilidad de que un estudiante haya obtenido una calificación
 - a) mayor a 90%
 - b) menor a 50 %
 - c) entre 60 y 80%

- 13. El peso, en libras, de los recién nacidos en cierto hospital, tiene distribución aproximadamente normal, con promedio de 7.30 libras y desviación estándar de 1.2 libras. Si se selecciona aleatoriamente a un recién nacido en este hospital, ¿Cuál es la probabilidad de que su peso sea
 - a) menor a 5.6 libras
 - b) mayor a 9 libras
 - c) entre 5.0 y 8.4 libra

