DOMINANCE REGIONS FOR AFFINE CLUSTER ALGEBRAS

NATHAN READING, DYLAN RUPEL, AND SALVATORE STELLA

ABSTRACT. NEED THIS

Contents

1.	Background]
2.	First main result	4
3.	Extending to extended exchange matrices	7
4.	Affine type	(
References		10

1. Background

We assume the basic definitions of exchange matrices and of matrix mutation. Given a sequence $\mathbf{k} = k_m \cdots k_1$ of indices in $\{1, \dots, n\}$, we read the sequence from right to left for the purposes of matrix mutation. That is, $\mu_{\mathbf{k}}(B)$ means $\mu_{k_m}(\mu_{k_{m-1}}(\cdots(\mu_{k_1}(B))\cdots))$. We write \mathbf{k}^{-1} for $k_1 \cdots k_m$, the reverse of \mathbf{k} . Throughout, we will use without comment the fact that matrix mutation commutes with the maps $B \mapsto -B$ and $B \mapsto B^T$.

Given an exchange matrix B, the **mutation map** $\eta_{\mathbf{k}}^B : \mathbb{R}^n \to \mathbb{R}^n$ takes the input vector in \mathbb{R}^n , places it as an additional row below B, mutates the resulting matrix according to the sequence \mathbf{k} , and outputs the bottom row of the mutated matrix. In this paper, it is convenient to think of vectors in \mathbb{R}^n as column vectors, and also, the mutation maps we need use transposes B^T of exchange matrices. Thus we write maps $\eta_{\mathbf{k}}^{B^T}$. This map takes a vector, places it as an additional *column* to the right of B (not B^T), does mutations according to \mathbf{k} , and reads the rightmost column of the mutated matrix.

Given a vector $\lambda \in \mathbb{R}^n$, define $\mathcal{P}^B_{\lambda,\mathbf{k}} = \left(\eta^{B^T}_{\mathbf{k}}\right)^{-1} \left\{\eta^{B^T}_{\mathbf{k}}(\lambda) + B_t\alpha : \alpha \in \mathbb{R}^n, \alpha \geq 0\right\}$, where the symbol \geq denotes componentwise comparison. (Throughout the paper, we will define sets indexed by vectors $\alpha \in \mathbb{R}^n$ with $\alpha \geq 0$, or sometimes $\alpha \in \mathbb{R}^m$ with $\alpha \geq 0$. When we can do so without confusion, we will omit the explicit statement that $\alpha \in \mathbb{R}^n$ or $\alpha \in \mathbb{R}^m$.) Define the **dominance region** of λ with respect to B to be $\mathcal{P}^B_{\lambda} = \bigcap_{\mathbf{k}} \mathcal{P}^B_{\lambda,\mathbf{k}}$, where the intersection is over all sequences \mathbf{k} .

Lemma 1.1. If
$$\lambda' = \eta_{\mathbf{k}}^{B^T}(\lambda)$$
 and $B' = \mu_{\mathbf{k}}(B)$, then $\eta_{\mathbf{k}}^{B^T}(\mathcal{P}_{\lambda}^B) = \mathcal{P}_{\lambda'}^{B'}$.

Nathan Reading was partially supported by the Simons Foundation under award number 581608 and by the National Science Foundation under award number DMS-2054489. Dylan Rupel was partially supported by ????. Salvatore Stella was partially supported by ????.

Proof. For any ℓ ,

$$\eta_{\mathbf{k}}^{B^{T}}(\mathcal{P}_{\lambda,\ell}^{B}) = \eta_{\mathbf{k}}^{B^{T}} \left(\left(\eta_{\ell}^{B^{T}} \right)^{-1} \left\{ \eta_{\ell}^{B^{T}}(\lambda) + B_{t}\alpha : \alpha \geq 0 \right\} \right)$$

$$= \left(\eta_{\ell}^{B^{T}} \eta_{\mathbf{k}^{-1}}^{\mu_{\mathbf{k}}(B)^{T}} \right)^{-1} \left\{ \eta_{\ell}^{B^{T}}(\lambda) + B_{t}\alpha : \alpha \geq 0 \right\}$$

$$= \left(\eta_{\ell \mathbf{k}^{-1}}^{\mu_{\mathbf{k}}(B)^{T}} \right)^{-1} \left\{ \eta_{\ell \mathbf{k}^{-1}}^{\mu_{\mathbf{k}}(B)^{T}} \left(\eta_{\mathbf{k}}^{B^{T}}(\lambda) \right) + B_{t}\alpha : \alpha \geq 0 \right\}.$$
Thus $\eta_{\mathbf{k}}^{B^{T}}(\mathcal{P}_{\lambda}^{B}) = \bigcap_{\ell} \mathcal{P}_{\lambda',\ell \mathbf{k}^{-1}}^{B'} = \mathcal{P}_{\lambda'}^{B'}.$

Thus $\eta_{\mathbf{k}}^{B'}(\mathcal{P}_{\lambda}^{B}) = \bigcap_{\ell} \mathcal{P}_{\lambda',\ell\mathbf{k}^{-1}}^{B'} = \mathcal{P}_{\lambda'}^{B'}$. \Box For seeds t_0 and t and an exchange matrix B, let $C_{t}^{B;t_0}$ be the matrix whose

For seeds t_0 and t and an exchange matrix B, let $C_t^{B;t_0}$ be the matrix whose columns are the C-vectors at t relative to the initial seed t_0 with exchange matrix B. Each column of $C_t^{B;t_0}$ is nonzero and all of its nonzero entries have the same sign. (This is "sign-coherence of C-vectors", which was implicitly conjectured in [1] and proved as [2, Corollary 5.5].) Thus we will refer to the sign of a column of $C_t^{B;t_0}$. For $\mathbf{k} = k_m \cdots k_1$, define seeds t_1, \ldots, t_m by $t_0 \xrightarrow{k_1} t_1 \xrightarrow{k_2} \cdots \xrightarrow{k_m} t_m$. The sequence \mathbf{k} is a green sequence for an exchange matrix B if column k_ℓ of $C_{\ell-1}^{B;t_0}$ is positive for all ℓ with $1 \le \ell < m$. A maximal green sequence for B is a green sequence that cannot be extended. That is, the sequence \mathbf{k} is a maximal green sequence for B if it is a green sequence for B. A maximal proved proved

Let $G_t^{B;t_0}$ be the matrix whose columns are the **g**-vectors at t relative to the initial seed t_0 with exchange matrix B. Let $\operatorname{Cone}_t^{B;t_0}$ be the nonnegative linear span of the columns of $G_t^{B;t_0}$. For each $k \in \{1,\ldots,n\}$, the entries in the k^{th} row of $G_t^{B;t_0}$ are not all zero and the nonzero entries have the same sign. (This is "sign-coherence of **g**-vectors", conjectured as [1, Conjecture 6.13] and proved as [2, Theorem 5.11].) Thus all vectors in $\operatorname{Cone}_t^{B;t_0}$ all have weakly the same sign in the k^{th} position. The inverse of $G_t^{B;t_0}$ is $\left(C_t^{-B^T;t_0}\right)^T$. (This is [3, Theorem 1.2] or [4, Theorem 1.1] and [4, Theorem 3.30].) Thus $\operatorname{Cone}_t^{B;t_0} = \left\{x \in \mathbb{R}^n : x^T C_t^{-B^T;t_0} \geq 0\right\}$, where 0 is a row vector and " \geq " means componentwise comparison.

Given \mathbf{k} with $t_0 = k_1 - k_2 - k_2 - k_3 - k_4 - k_4$, let B_i be the exchange matrix at t_i , so that in particular, $B_0 = B$. The map $\eta_{\mathbf{k}}^{B^T}$ is $\eta_{k_m}^{B^T_{m-1}} \circ \cdots \circ \eta_{k_2}^{B^T_1} \circ \eta_{k_1}^{B^T_0}$. The definition of each $\eta_{k_i}^{B^T_{i-1}}$ has two cases, separated by the hyperplane $x_{k_i} = 0$. Two vectors are in the same **domain of definition** of $\eta_{\mathbf{k}}^{B^T}$ if, at every step, the same case applies for the two vectors. (Both cases apply on the hyperplane, so domains of definition are closed.) In particular, $\eta_{\mathbf{k}}^{B^T}$ is linear in each of its domains of definition, but the domains of linearity of $\eta_{\mathbf{k}}^{B^T}$ can be larger than its domains of definition.

There is a fan \mathcal{F}_{B^T} called the **mutation fan** for B^T [5, Definition 5.12]. We will not need the details of the definition, but roughly, the cones of \mathcal{F}_{B^T} are the intersections of domains of definition of all mutation maps $\eta_{\mathbf{k}}^{B^T}$, as \mathbf{k} varies. Thus for each \mathbf{k} , each cone of \mathcal{F}_{B^T} is contained in a domain of definition of $\eta_{\mathbf{k}}^{B^T}$, and the

mutation map $\eta_{\mathbf{k}}^{B^T}$ is linear on every cone of \mathcal{F}_{B^T} [5, Proposition 5.3]. Every cone $\operatorname{Cone}_t^{B;t_0}$ is a maximal cone in the mutation fan \mathcal{F}_{B^T} [5, Proposition 8.13]. Thus in particular, the mutation map $\eta_{\mathbf{k}}^{B^T}$ is linear on every cone $\operatorname{Cone}_t^{B;t_0}$. Furthermore, $\operatorname{Cone}_t^{B_m;t_m} = \eta_{\mathbf{k}}^{B^T} \left(\operatorname{Cone}_t^{B;t_0}\right)$ for every seed t. (This amounts to the initial seed mutation formula for **g**-vectors, conjectured as [1, Conjecture 7.12] and shown in [3, Proposition 4.2(v)] to follow from sign-coherence of C-vectors. The restatement in terms of mutation maps is [5, Conjecture 8.11].)

Remark 1.2. As written, [5, Proposition 8.13] is conditional on "sign-coherence of C-vectors", which was a conjecture but is now a theorem [2, Corollary 5.5].

We will need to relate the cones $\operatorname{Cone}_t^{B;t_0}$ and $\operatorname{Cone}_t^{-B^T;t_0}$. It is immediate from [5, Proposition 7.5] and the skew-symmetry of B that $-B^T$ is a **rescaling** of B, meaning that there is a diagonal matrix Σ with positive entries on the diagonal such that $-B^T = \Sigma^{-1}B\Sigma$. Therefore, [5, Proposition 8.20] says that the i^{th} column of $G_t^{-B^T;t_0}$ is a positive scalar multiple of the i^{th} column of $\Sigma G_t^{B;t_0}$. (In the statement of [5, Proposition 8.20], Σ is multiplied on the right, because there **g**-vectors are row vectors rather than column vectors.) Thus we have the following fact.

Lemma 1.3. The k^{th} entries of vectors in $Cone_t^{B;t_0}$ have the same sign as the k^{th} entries of vectors in $Cone_t^{-B^T;t_0}$.

For $k \in \{1, \ldots, n\}$, let J_k be the $n \times n$ matrix that agrees with the identity matrix except that J_k has -1 in position kk. For an $n \times n$ matrix M and $k \in \{1, \ldots, n\}$, let $M^{\bullet k}$ be the matrix that agrees with M in column k and has zeros everywhere outside of column k. Let $M^{k \bullet}$ be the matrix that agrees with M in row k and has zeros everywhere outside of row k.

Given a real number a, let $[a]_+$ denote $\max(a,0)$. Given a matrix $M=[m_{ij}]$, define $[M]_+$ to be the matrix whose ij-entry is $[m_{ij}]_+$. Given an exchange matrix B, an index $k \in \{1, \ldots, n\}$ and a sign $\varepsilon \in \{\pm 1\}$, define matrices

$$E_{\varepsilon,k}^{B} = J_k + [\varepsilon B]_{+}^{\bullet k}$$
$$F_{\varepsilon,k}^{B} = J_k + [-\varepsilon B]_{+}^{k\bullet}.$$

Each matrix $E_{\varepsilon,k}^B$ is its own inverse, and each $F_{\varepsilon,k}^B$ is its own inverse. The following is essentially a result of [3], although it is not stated there in this form. ①

Lemma 1.4. For $k \in \{1, ..., n\}$ and either choice of $\varepsilon \in \{\pm 1\}$, the mutation of B at k is $\mu_k(B) = E_{\varepsilon,k}^B B F_{\varepsilon,k}^B$.

Proof. We expand the product $(J_k + [\varepsilon B]_+^{\bullet k})B(J_k + [-\varepsilon B]_+^{k\bullet})$ to four terms. The term $[\varepsilon B]_+^{\bullet k}B[-\varepsilon B]_+^{k\bullet}$ is zero because $b_{kk} = 0$. The term $[\varepsilon B]_+^{\bullet k}BJ_k$ is $[\varepsilon B]_+^{\bullet k}B^{k\bullet}J_k$, which equals $[\varepsilon B]_+^{\bullet k}B^{k\bullet}$. Similarly, the term $J_kB[-\varepsilon B]_+^{k\bullet}$ equals $B^{\bullet k}[-\varepsilon B]_+^{k\bullet}$ Both Thus the ij-entry of $E_{\varepsilon,k}^BBF_{\varepsilon,k}^B$ is

$$\begin{cases} -b_{ij} & \text{if } k \in \{i, j\} \\ b_{ij} & \text{otherwise} \end{cases} + \begin{cases} |b_{ik}|b_{kj} & \text{if } \operatorname{sgn} b_{ik} = \varepsilon \\ 0 & \text{otherwise} \end{cases} + \begin{cases} b_{ik}|b_{kj}| & \text{if } \operatorname{sgn} b_{kj} = -\varepsilon \\ 0 & \text{otherwise} \end{cases}$$
. This coincides with the ij -entry of $\mu_k(B)$.

Given a matrix M, write $M_{\text{col}(i)}$ for the i^{th} column of M. We observe that $(MN)_{\text{col }i} = M(N)_{\text{col }i}$.

1. Do I have this attribution right? N

Lemma 1.5. Suppose $B = [b_{ij}]$ is an exchange matrix, let $k \in \{1, ..., n\}$, and choose a sign $\varepsilon \in \{\pm 1\}$.

- 1. $(E_{\varepsilon,k}^B B)_{\operatorname{col} i} = J_k(B)_{\operatorname{col} i} + b_{ki}([\varepsilon B]_+)_{\operatorname{col} k}.$ 2. $(E_{\varepsilon,k}^B B)_{\operatorname{col} k} = (E_{-\varepsilon,k}^B B)_{\operatorname{col} k} = B_{\operatorname{col} k}.$ 3. $(E_{-\varepsilon,k}^B B)_{\operatorname{col} i} = (E_{\varepsilon,k}^B B)_{\operatorname{col} i} \varepsilon b_{ki} B_{\operatorname{col} k}.$

Proof. The first two assertions follow immediately from the fact that $(MN)_{\text{col }i} =$ $M(N)_{\text{col }i}$ and the fact that $b_{kk}=0$. The first assertion (for ε and $-\varepsilon$) implies that $(E_{-\varepsilon,k}^B B)_{\text{col }i} = (E_{\varepsilon,k}^B B)_{\text{col }i} - b_{ki}([\varepsilon B]_+ - [-\varepsilon B]_+)_{\text{col }k}$. The third assertion follows.

We will also need the following simple fact about nonnegative linear spans. Given a set S of vectors, let $_{\mathbf{span}}^{\mathbf{pos}}(S)$ denote the nonnegative linear span of S. For $k \in$ $\{1,\ldots,n\}$ and $\varepsilon\in\{\pm 1\}$, let $S_{k,\varepsilon}$ be the set of vectors in S whose k^{th} entry has sign strictly agreeing with ε .

Lemma 1.6. Suppose λ is a vector in \mathbb{R}^n whose k^{th} λ_k has $\varepsilon \lambda_k \leq 0$. Then

$$\begin{split} \left\{\lambda + \underset{\mathbf{span}}{^{\mathbf{pos}}}(S)\right\} \cap \left\{x \in \mathbb{R}^n : \varepsilon x_k \geq 0\right\} \\ &= \left\{\lambda + \underset{\mathbf{span}}{^{\mathbf{pos}}}(S)\right\} \cap \left\{x \in \mathbb{R}^n : x_k = 0\right\} + \underset{\mathbf{span}}{^{\mathbf{pos}}}(S_{k,\varepsilon}). \end{split}$$

Proof. The set on the right side is certainly contained in the set on the right side. If x is an element of the left side, then x is λ plus a nonzero element y of $_{\mathbf{span}}^{\mathbf{pos}}(S_{k,\varepsilon})$ plus an element z of $_{\mathbf{span}}^{\mathbf{pos}}(S\setminus S_{k,\varepsilon})$. Since the sign of $\varepsilon x\geq 0$ and $\varepsilon \lambda \leq 0$, there exists t with $0 \leq t \leq 1$ such that $\lambda + ty + z$ has k^{th} entry 0. We see that $x = (\lambda + ty + z) + (1 - t)y$ is an element of the right side.

2. First main result

Let B_0 be an exchange matrix. For a sequence $\mathbf{k} = k_m \cdots k_1$ of indices, define seeds $t_1, \ldots, t_m = t$ by $t_0 - \frac{k_1}{t_1} - t_1 - \frac{k_2}{t_2} - \cdots - \frac{k_m}{t_m} - t_m = t$. We will prove the following theorem.

Theorem 2.1. Suppose $\mathbf{k} = k_m \cdots k_1$ and $t_0 \frac{k_1}{m} t_1 \frac{k_2}{m} \cdots \frac{k_m}{m} t_m = t$. If $\mathbf{k}^{-1} = k_1 \cdots k_m$ is a red sequence for B_t , then for any λ in the domain of definition of $\eta_{\mathbf{L}}^{B_0^T}$ that contains $\operatorname{Cone}_t^{B_0;t_0}$

$$\mathcal{P}_{\lambda,\mathbf{k}}^{B_0} \subseteq \left\{ \lambda + G_t^{B_0;t_0} B_t \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\} = \left\{ \lambda + B_0 C_t^{B_0;t_0} \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\}.$$

Since
$$\left(\eta_{\mathbf{k}}^{B_0^T}\right)^{-1} = \eta_{\mathbf{k}^{-1}}^{B_t^T}$$
, we have $\mathcal{P}_{\lambda,\mathbf{k}}^{B_0} = \eta_{\mathbf{k}^{-1}}^{B_t^T} \left\{ \eta_{\mathbf{k}}^{B_0^T}(\lambda) + B_t \alpha : \alpha \ge 0 \right\}$. Let D

be the domain of definition of $\eta_{\mathbf{k}}^{B_0^T}$ that contains $\mathrm{Cone}_t^{B_0;t_0}$. Then $\eta_{\mathbf{k}^{-1}}^{B_t^T}$ is linear on $\eta_{\mathbf{k}}^{B_0^T}(D)$. Let $\mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T}$ be the linear map that agrees with $\eta_{\mathbf{k}^{-1}}^{B_t^T}$ on $\eta_{\mathbf{k}}^{B_0^T}(D)$.

Proposition 2.2. The matrix for $\mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T}$, acting on column vectors, is $G_t^{B_0;t_0}$.

Proof. By [5, Proposition 8.13], $\operatorname{Cone}_{t}^{B_{0};t_{0}} = \eta_{\mathbf{k}^{-1}}^{B_{t}^{T}}((\mathbb{R}_{\geq 0})^{n})$, and therefore also $\eta_{\mathbf{k}}^{B_0^T}\left(\mathrm{Cone}_t^{B_0;t_0}\right) = (\mathbb{R}_{\geq 0})^n$. The proof of [5, Proposition 8.13] shows not only an equality of cones, but also that $\eta_{\mathbf{k}^{-1}}^{B_t^T}$ takes the extreme ray of $(\mathbb{R}_{\geq 0})^n$ spanned by e_i

to the extreme ray of $\operatorname{Cone}_t^{B_0;t_0}$ spanned by the i^{th} **g**-vector at t relative to $B_0;t_0$, where the total order on these **g**-vectors at t is obtained from the order e_1,\ldots,e_n on **g**-vectors at t_0 by the sequence **k** of mutations.

We now apply a result of [3], namely that $G_t^{B_0;t_0}B_t=B_0C_t^{B_0;t_0}$. This fact follows from the proof of [3, Proposition 1.3], or from [1, (6.14)], as explained in [3, Remark 2.1]. Since $G_t^{B_0;t_0}$ is the matrix for $\mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T}$ and since $\mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T}\eta_{\mathbf{k}}^{B_0^T}(\lambda)=\lambda$, we have the following proposition.

Proposition 2.3.

$$\mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T} \left\{ \eta_{\mathbf{k}}^{B_0^T}(\lambda) + B_t \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\} = \left\{ \lambda + G_t^{B_0; t_0} B_t \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\}$$
$$= \left\{ \lambda + B_0 C_t^{B_0; t_0} \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\}.$$

In light of Proposition 2.3, the conclusion of Theorem 2.1 is equivalent to

$$\mathcal{P}_{\lambda,\mathbf{k}}^{B_0} \subseteq \mathcal{L}_{\mathbf{k}^{-1}}^{B_t^T} \Big\{ \eta_{\mathbf{k}}^{B_0^T}(\lambda) + B_t \alpha : \alpha \ge 0 \Big\}.$$

Proof of Theorem 2.1. We will prove that $P_{\lambda,\mathbf{k}}^{B_0} \subseteq \left\{\lambda + B_0 C_t^{B_0;t_0} \alpha : \alpha \geq 0\right\}$, by induction on m (the length of \mathbf{k}). The base case, where $\mathbf{k} = \emptyset$, is true because $C_{t_0}^{B_0;t_0}$ is the identity matrix and $\mathcal{P}_{\lambda,\emptyset} = \{\lambda + B_0 \alpha : \alpha \geq 0\}$.

is the identity matrix and $\mathcal{P}_{\lambda,\emptyset} = \{\lambda + B_0\alpha : \alpha \geq 0\}$. [3, Proposition 1.4] says that $C_t^{B_0;t_0} = F_{\varepsilon,k_1}^{B_1}C_t^{B_1;t_1}$, where ε is the sign of the k_1 -column of $C_{t_1}^{-B_t;t}$. (The hypothesis that \mathbf{k}^{-1} is a red sequence for B_t determines ε , but we leave ε unspecified for now in order to highlight later where this hypothesis is relevant.) By Lemma 1.4 and because $E_{\varepsilon,k_1}^{B_1}$ and $F_{\varepsilon,k_1}^{B_1}$ are their own inverses,

$$\left\{\lambda + B_0 C_t^{B_0;t_0} \alpha : \alpha \ge 0\right\} = \left\{\lambda + B_0 F_{\varepsilon,k_1}^{B_1} C_t^{B_1;t_1} \alpha : \alpha \ge 0\right\}
= \left\{\lambda + E_{\varepsilon,k_1}^{B_1} B_1 C_t^{B_1;t_1} \alpha : \alpha \ge 0\right\}
= E_{\varepsilon,k_1}^{B_1} \left\{E_{\varepsilon,k_1}^{B_1} \lambda + B_1 C_t^{B_1;t_1} \alpha : \alpha \ge 0\right\}.$$

The map $\eta_{\mathbf{k}}^{B_0^T}$ is linear on $\mathrm{Cone}_t^{B_0;t_0}$. This map is $\eta_{\mathbf{k}}^{B_0^T} = \eta_{k_m}^{B_{m-1}^T} \circ \cdots \circ \eta_{k_2}^{B_1^T} \circ \eta_{k_1}^{B_0^T}$. The map $\eta_{k_1}^{B_0^T}$ restricts to a linear map from $\mathrm{Cone}_t^{B_0;t_0}$ to $\mathrm{Cone}_t^{B_1;t_1}$. The inverse of $\eta_{k_1}^{B_0^T}$ is $\eta_{k_1}^{B_1^T}$. We claim that $E_{\varepsilon,k_1}^{B_1}$ is the matrix for the linear map on column vectors that agrees with $\eta_{k_1}^{B_1^T}$ on $\mathrm{Cone}_t^{B_1;t_1}$. Since $E_{\varepsilon,k_1}^{B_1}$ is its own inverse, the claim is equivalent to saying that implies that $E_{\varepsilon,k_1}^{B_1}$ is the linear map that agrees with $\eta_{k_1}^{B_0^T}$ on $\mathrm{Cone}_t^{B_0;t_0}$.

By [3, (1.13)], ε is the sign of the k_1 -column of $(G_t^{-B_1^T;t_1})^T$. That is, ε is the sign of the k_1 -row of $G_t^{-B_1^T;t_1}$, or in other words, the sign of the k_1 -entry of vectors in $\operatorname{Cone}_t^{-B_1^T;t_1}$. By Lemma 1.3, ε is the sign of the k_1 -entry of vectors in $\operatorname{Cone}_t^{B_1;t_1}$, which is the sign that determines how $\eta_{k_1}^{B_1^T}$ acts on $\operatorname{Cone}_t^{B_1;t_1}$. One easily checks that the action of $\eta_{k_1}^{B_1^T}$ on vectors whose k_1 -entry has sign ε is precisely the action of $E_{\varepsilon,k_1}^{B_1}$.

Let $\lambda' = \eta_{k_1}^{B_0^T}(\lambda)$, so that λ' is in the same domain of definition of $\eta_{k_m\cdots k_2}^{B_1^T}$ as $\mathrm{Cone}_t^{B_1;t_1}$ and so that $\lambda' = E_{\varepsilon,k_1}^{B_1}\lambda$. By induction on m,

$$\eta_{k_2\cdots k_m}^{B_t^T} \Big\{ \eta_{k_m\cdots k_2}^{B_1^T}(\lambda') + B_t\alpha : \alpha \geq 0 \Big\} \subseteq \Big\{ \lambda' + B_1C_t^{B_1;t_1}\alpha : \alpha \geq 0 \Big\}.$$

Applying the homeomorphism $\eta_{k_1}^{B_1^T}$ to both sides, we obtain

$$\eta_{\mathbf{k}^{-1}}^{B_{t}^{T}} \Big\{ \eta_{\mathbf{k}}^{B_{0}^{T}}(\lambda') + B_{t}\alpha : \alpha \geq 0 \Big\} \subseteq \eta_{k_{1}}^{B_{1}^{T}} \Big\{ \lambda' + B_{1}C_{t}^{B_{1};t_{1}}\alpha : \alpha \geq 0 \Big\}.$$

In light of (2.1), we can complete the proof by showing that

$$\eta_{k_1}^{B_1^T} \Big\{ \lambda' + B_1 C_t^{B_1;t_1} \alpha : \alpha \geq 0 \Big\} \subseteq E_{\varepsilon,k_1}^{B_1} \Big\{ \lambda' + B_1 C_t^{B_1;t_1} \alpha : \alpha \geq 0 \Big\}.$$

We have seen that $E^{B_1}_{\varepsilon,k_1}$ is the linear map that agrees with $\eta^{B_1^T}_{k_1}$ on the set $\{x\in\mathbb{R}^n: \operatorname{sgn} x_{k_1}=\varepsilon\}$. We can similarly check that $E^{B_1}_{-\varepsilon,k_1}$ is the linear map that agrees with $\eta^{B_1^T}_{k_1}$ on $\{x\in\mathbb{R}^n: \operatorname{sgn} x_{k_1}=-\varepsilon\}$. Thus $\eta^{B_1^T}_{k_1}\left\{\lambda'+B_1C^{B_1;t_1}_t\alpha:\alpha\geq 0\right\}$ is

$$(U \cap \{x \in \mathbb{R}^n : \operatorname{sgn} x_{k_1} = -\varepsilon\}) \cup (V \cap \{x \in \mathbb{R}^n : \operatorname{sgn} x_{k_1} = \varepsilon\}),$$

where

$$\begin{split} U &= E^{B_1}_{\varepsilon,k_1} \left\{ \lambda' + B_1 C^{B_1;t_1}_t \alpha : \alpha \geq 0 \right\} = E^{B_1}_{\varepsilon,k_1} \lambda' + \underset{\mathbf{span}}{\mathbf{pos}} \left\{ \left(E^{B_1}_{\varepsilon,k_1} B_1 C^{B_1;t_1}_t \right)_{\operatorname{col}\,i} \right\}_{i=1}^n \\ V &= E^{B_1}_{-\varepsilon,k_1} \left\{ \lambda' + B_1 C^{B_1;t_1}_t \alpha : \alpha \geq 0 \right\} = E^{B_1}_{-\varepsilon,k_1} \lambda' + \underset{\mathbf{span}}{\mathbf{pos}} \left\{ \left(E^{B_1}_{\varepsilon,k_1} B_1 C^{B_1;t_1}_t \right)_{\operatorname{col}\,i} \right\}_{i=1}^n, \end{split}$$

where span denotes the nonnegative linear span of a set of vectors.

We need to show that $V \cap \{x \in \mathbb{R}^n : \operatorname{sgn} x_{k_1} = \varepsilon\} \subseteq U$. Since $\eta_{k_1}^{B_1^T}$ is a homeomorphism, $U \cap \{x \in \mathbb{R}^n : x_{k_1} = 0\} = V \cap \{x \in \mathbb{R}^n : x_{k_1} = 0\}$. By Lemma 1.6, any vector in $V \cap \{x \in \mathbb{R}^n : \operatorname{sgn} x_{k_1} = \varepsilon\}$ equals a vector in $V \cap \{x \in \mathbb{R}^n : x_{k_1} = 0\}$ plus a positive combination of vectors $\left(E_{-\varepsilon,k_1}^{B_1}B_1C_t^{B_1;t_1}\right)_{\operatorname{col} i}$ whose k_1 -entry has sign ε . Therefore, it suffices to show that every vector $\left(E_{-\varepsilon,k_1}^{B_1}B_1C_t^{B_1;t_1}\right)_{\operatorname{col} i}$ whose k_1 -entry has sign ε is in $\sup_{\operatorname{span}} \left\{\left(E_{\varepsilon,k_1}^{B_1}B_1C_t^{B_1;t_1}\right)_{\operatorname{col} i}\right\}_{i=1}^n$.

k₁-entry has sign ε is in $\sup_{\text{span}}^{\text{pos}} \left\{ \left(E_{\varepsilon,k_1}^{B_1} B_1 C_t^{B_1;t_1} \right)_{\text{col } i} \right\}_{i=1}^n$.

As a temporary shorthand, write b_{ij} for the entries of B_1 and write k for k_1 . Suppose $v_i = \left(E_{-\varepsilon,k}^{B_1} B_1 C_t^{B_1;t_1} \right)_{\text{col } i}$ for some i and suppose the k-entry of v_i has sign ε . Write M for $E_{-\varepsilon,k}^{B_1} B_1$ and write N for $E_{\varepsilon,k}^{B_1} B_1$. Lemma 1.5.1 implies that $M_{kj} = -b_{kj}$ for all j. Lemma 1.5.3 implies that if $\varepsilon M_{kj} \geq 0$, then $M_{\text{col } j} = N_{\text{col } j} + |b_{kj}| N_{\text{col } k}$. Similarly, if $\varepsilon M_{kj} \leq 0$, then $M_{\text{col } j} = N_{\text{col } j} - |b_{kj}| N_{\text{col } k}$.

 $N_{\operatorname{col} j} + |b_{kj}| N_{\operatorname{col} k}$. Similarly, if $\varepsilon M_{kj} \leq 0$, then $M_{\operatorname{col} j} = N_{\operatorname{col} j} - |b_{kj}| N_{\operatorname{col} k}$. Now $v_i = E_{-\varepsilon,k}^{B_1} B_1 \left(C_t^{B_1;t_1} \right)_{\operatorname{col} i}$, and $\left(C_t^{B_1;t_1} \right)_{\operatorname{col} i}$ has a sign $\delta \in \{\pm 1\}$, meaning that it is not zero and all of its nonzero entries have sign δ . (This is "sign-coherence of C-vectors". See Remark 1.2.) Thus there are nonnegative numbers γ_j such that $v_i = \delta \sum_{j=1}^n \gamma_j M_{\operatorname{col} j}$. Write $\{1, \ldots, n\} = S \cup T$ with $S \cup T = \emptyset$ such that $\varepsilon M_{kj} \geq 0$

for all $j \in S$ and $\varepsilon M_{kj} \leq 0$ for all $j \in T$. Then

$$\begin{split} v_i &= \delta \sum_{j \in S} \gamma_j M_{\operatorname{col}\,j} + \delta \sum_{j \in T} \gamma_j M_{\operatorname{col}\,j} \\ &= \delta \sum_{j \in S} \gamma_j (N_{\operatorname{col}\,j} + |b_{kj}| N_{\operatorname{col}\,k}) + \delta \sum_{j \in T} \gamma_j (N_{\operatorname{col}\,j} - |b_{kj}| N_{\operatorname{col}\,k}) \\ &= \delta \sum_{j = 1}^n \gamma_j N_{\operatorname{col}\,j} - \delta \sum_{j = 1}^n \varepsilon \gamma_j b_{kj} N_{\operatorname{col}\,k} \\ &= N \left(C_t^{B_1;t_1} \right)_{\operatorname{col}\,i} + \delta \sum_{j = 1}^n \varepsilon \gamma_j M_{kj} N_{\operatorname{col}\,k} \\ &= N \left(C_t^{B_1;t_1} \right)_{\operatorname{col}\,i} + \sigma N_{\operatorname{col}\,k}. \end{split}$$

where $\sigma = \varepsilon \delta \sum_{j=1}^{n} \gamma_j M_{kj}$ is a positive scalar, because $\delta \sum_{j=1}^{n} \gamma_j M_{kj}$ is the k-entry of v_i , which has sign ε .

As noted above, ε is the sign of the k_1 -entry of vectors in $\operatorname{Cone}_t^{-B_1^T;t_1}$. Since $\operatorname{Cone}_t^{-B_1^T;t_1} = \left\{ x \in \mathbb{R}^n : x^T C_t^{B_1;t_1} \geq 0 \right\}$, the rows of $\left(C_t^{B_1;t_1} \right)^{-1}$ span the extreme rays of $\operatorname{Cone}_t^{-B_1^T;t_1}$. In particular $\left(C_t^{B_1;t_1} \right)^{-1} (\varepsilon e_k)$ has nonnegative entries. Thus $C_t^{B_1;t_1} \left(C_t^{B_1;t_1} \right)^{-1} (\varepsilon e_k) = \varepsilon e_k$ is a nonnegative linear combination of columns of $C_t^{B_1;t_1}$.

Now, the hypothesis that \mathbf{k}^{-1} is a red sequence for B_t , or equivalently a green sequence for $-B_t$, says that $\varepsilon = +1$, so that e_k is a nonnegative linear combination of columns of $C_t^{B_1;t_1}$. Thus $N_{\operatorname{col}\,k} = Ne_k$ is a nonnegative linear combination of columns of $NC_t^{B_1;t_1}$. We have shown that $v_i = N\left(C_t^{B_1;t_1}\right)_{\operatorname{col}\,i} + \sigma N_{\operatorname{col}\,k}$ is a nonnegative linear combination of columns of $NC_t^{B_1;t_1}$. In other words, v_i is in $\Pr_{\operatorname{span}}\left\{\left(E_{\varepsilon,k_1}^{B_1}B_1C_t^{B_1;t_1}\right)_{\operatorname{col}\,i}\right\}_{i=1}^n, \text{ as desired.}$

3. Extending to extended exchange matrices

We follow [1] in considering $m \times n$ extended exchange matrices \tilde{B} that are "tall", in the sense that $m \geq n$. We will also consider $m \times m$ matrices related to \tilde{B} : Writing \tilde{B} in block form $\begin{bmatrix} B \\ E \end{bmatrix}$, let \mathbf{B} be the matrix with block form $\begin{bmatrix} B \\ E \end{bmatrix}$. Most importantly, \mathbf{B} is skew-symmetrizable and agrees with \tilde{B} in columns 1 to n. Throughout, if we have defined an extended exchange matrix \tilde{B} , without comment we will take B to be the underlying exchange matrix and \mathbf{B} to be the associated $m \times m$ matrix.

The matrix **B** defines mutation maps $\eta_{\mathbf{k}}^{\mathbf{B}^T}$ that act on \mathbb{R}^m rather than \mathbb{R}^n , but without exception we will only consider mutations in positions $1, \ldots, n$. Also, given **B**, a sequence $\mathbf{k} = k_m \cdots k_1$ of indices in $\{1, \ldots, n\}$, and seeds t_1, \ldots, t_m by $t_0 \xrightarrow{k_1} t_1 \xrightarrow{k_2} \cdots \xrightarrow{k_m} t_m = t$, there are associated matrices of **g**-vectors and C-vectors, which we write as $\mathbf{G}_t^{\mathbf{B};t_0}$ and $\mathbf{C}_t^{\mathbf{B};t_0}$. Since **k** only contains indices in

 $\{1,\ldots,n\}$, these matrices have block forms

$$\mathbf{G}_t^{\mathbf{B};t_0} = \begin{bmatrix} G_t^{B;t_0} & 0 \\ * & I_{m-n} \end{bmatrix} \quad \text{ and } \quad \mathbf{C}_t^{\mathbf{B};t_0} = \begin{bmatrix} C_t^{B;t_0} & * \\ 0 & I_{m-n} \end{bmatrix},$$

where I_{m-n} is the identity matrix.

Given a vector
$$\lambda \in \mathbb{R}^m$$
, define $\mathcal{P}_{\lambda, \mathbf{k}}^{\tilde{B}} = \left(\eta_{\mathbf{k}}^{\mathbf{B}^T}\right)^{-1} \left\{\eta_{\mathbf{k}}^{\mathbf{B}^T}(\lambda) + \tilde{B}_t \alpha : \alpha \in \mathbb{R}^n, \alpha \geq 0\right\}$.

Define the **dominance region** $\mathcal{P}_{\lambda}^{\tilde{B}}$ of λ with respect to \tilde{B} to be the intersection $\bigcap_{\mathbf{k}} \mathcal{P}_{\lambda, \mathbf{k}}^{B}$ all sequences \mathbf{k} of indices in $\{1, \ldots, n\}$.

Since **k** consists only of indices in $\{1,\ldots,n\}$, the domains of definition of $\eta_{\mathbf{k}}^{\mathbf{B}^T}$ are determined by the domains of definition of $\eta_{\mathbf{k}}^{B^T}$. Specifically, each domain of definition of $\eta_{\mathbf{k}}^{\mathbf{B}^T}$ is the set of vectors whose projection to \mathbb{R}^n (ignoring the last m-n entries) is a domain of definition of $\eta_{\mathbf{k}}^{B^T}$. Accordingly, we define $\mathrm{Cone}_t^{\tilde{B};t_0}$ to be the set of vectors in \mathbb{R}^m whose projection to \mathbb{R}^n is in $\mathrm{Cone}_t^{B;t_0}$. Since $\mathrm{Cone}_t^{B_m;t_m} = \eta_{\mathbf{k}}^{B^T}\left(\mathrm{Cone}_t^{\tilde{B};t_0}\right)$ for every seed t, also $\mathrm{Cone}_t^{\tilde{B}_m;t_m} = \eta_{\mathbf{k}}^{\mathbf{B}^T}\left(\mathrm{Cone}_t^{\tilde{B};t_0}\right)$ for every seed t

To understand dominance regions $\mathcal{P}_{\lambda}^{\tilde{B}}$, it is enough to consider the case where λ has nonzero entries only in positions $1,\ldots,n$. Other dominance regions are obtained by translation, as explained in the following lemma. The lemma is an immediate consequence of the fact that domains of definition of $\eta_{\mathbf{k}}^{\mathbf{B}^T}$ depend only on the first n coordinates.

Lemma 3.1. If λ and λ' are vectors in \mathbb{R}^m that agree in the first n coordinates, then $\mathcal{P}_{\lambda'}^{\tilde{B}} = \mathcal{P}_{\lambda}^{\tilde{B}} - \lambda + \lambda'$.

Lemma 1.1 immediately implies the following lemma.

Lemma 3.2. If
$$\lambda' = \eta_{\mathbf{k}}^{\mathbf{B}^T}$$
 and $\tilde{B}' = \mu_{\mathbf{k}}(\tilde{B})$, then $\eta_{\mathbf{k}}^{\mathbf{B}'}(\mathcal{P}_{\lambda}^{\tilde{B}}) = \mathcal{P}_{\lambda'}^{\tilde{B}'}$.

We will prove the following extension of Theorem 2.1 and an important corollary.

Theorem 3.3. Suppose $\mathbf{k} = k_m \cdots k_1$ is a sequence of indices in $\{1, \dots, n\}$ and $t_0 \xrightarrow{k_1} t_1 \xrightarrow{k_2} \cdots \xrightarrow{k_m} t_m = t$. If $\mathbf{k}^{-1} = k_1 \cdots k_m$ is a red sequence for B_t , then for any λ in the domain of definition of $\eta_{\mathbf{k}}^{\mathbf{B}_0^T}$ that contains $\operatorname{Cone}_t^{B_0;t_0}$,

$$\mathcal{P}_{\lambda,\mathbf{k}}^{\tilde{B}_0} \subseteq \left\{ \lambda + \mathbf{G}_t^{\mathbf{B}_0;t_0} \tilde{B}_t \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\} = \left\{ \lambda + \tilde{B}_0 C_t^{B_0;t_0} \alpha : \alpha \in \mathbb{R}^n, \alpha \ge 0 \right\}.$$

Proof. First, we notice that $\mathbf{k}^{-1} = k_1 \cdots k_m$ is a red sequence for \mathbf{B}_t , or in other words, \mathbf{k} is a green sequence for $-\mathbf{B}_t$. Indeed, since $\mathbf{C}_{t_{\ell-1}}^{-\mathbf{B};t_0} = \begin{bmatrix} C_{t_{\ell-1}}^{-\mathbf{B};t_0} & * \\ 0 & I_{m-n} \end{bmatrix}$, the sign of column k_ℓ of $\mathbf{C}_{t_{\ell-1}}^{-\mathbf{B};t_0}$ equals the sign of column k_ℓ of $C_{t_{\ell-1}}^{-\mathbf{B};t_0}$ whenever $1 \leq \ell < k$. Thus Theorem 2.1 says that

$$\mathcal{P}_{\lambda,\mathbf{k}}^{\mathbf{B}_0} \subseteq \Big\{\lambda + \mathbf{G}_t^{\mathbf{B}_0;t_0}\mathbf{B}_t\alpha : \alpha \in \mathbb{R}^m, \alpha \geq 0\Big\} = \Big\{\lambda + \mathbf{B}_0\mathbf{C}_t^{\mathbf{B}_0;t_0}\alpha : \alpha \in \mathbb{R}^m, \alpha \geq 0\Big\}.$$

The assertion of Theorem 3.3 is that the same holds even when, in each term, the conditions $\alpha \in \mathbb{R}^m$, $\alpha \geq 0$ are strengthened by requiring that α is zero in coordinates $n+1,\ldots,m$.

Thus we run through the proof of Theorem 2.1 with **B** replacing B and m replacing n throughout and these additional conditions on α in all relevant expressions. There is no effect on the argument until the point of showing that $V \cap \{x \in \mathbb{R}^m : \operatorname{sgn} x_{k_1} = \varepsilon\} \subseteq U$. Here, we need to show that every vector $v_i = 0$

 $\left(E_{-\varepsilon,k_1}^{\mathbf{B_1}}\mathbf{B_1}\mathbf{C}_t^{\mathbf{B_1};t_1}\right)_{\mathrm{col}\,i} \text{ with } i \in \{1,\ldots,n\} \text{ whose } k_1\text{-entry has sign } \varepsilon \text{ is contained in } \sup_{\mathbf{span}} \left\{ \left(E_{\varepsilon,k_1}^{\mathbf{B_1}}\mathbf{B_1}\mathbf{C}_t^{\mathbf{B_1};t_1}\right)_{\mathrm{col}\,i}\right\}_{i=1}^n. \text{ We argue as in the proof of Theorem 2.1 that } v_i = N\left(\mathbf{C}_t^{\mathbf{B_1};t_1}\right)_{\mathrm{col}\,i} + \sigma N_{\mathrm{col}\,k} \text{ and that } \varepsilon e_k \text{ is a nonnegative linear combination of columns of } \mathbf{C}_t^{\mathbf{B_1};t_1}. \text{ Since } \mathbf{C}_t^{\mathbf{B};t_0} = \begin{bmatrix} C_t^{B;t_0} & * \\ 0 & I_{m-n} \end{bmatrix}, \text{ we conclude that } \varepsilon e_k \text{ is a nonnegative linear combination of columns 1 through } n \text{ of } \mathbf{C}_t^{\mathbf{B_1};t_1}. \text{ Thus } v_i \text{ is a nonnegative linear combination of columns 1 through } n \text{ of } N\mathbf{C}_t^{\mathbf{B_1};t_1} \text{ as desired.}$

Corollary 3.4. Suppose \tilde{B}_0 is an extended exchange matrix with linearly independent columns. Suppose t is a seed in the exchange graph for $\tilde{B}_0; t_0$ and take $\lambda \in \operatorname{Cone}_t^{\tilde{B}_0; t_0}$. If there exists a maximal red sequence for B_t , then $\mathcal{P}_{\lambda}^{\tilde{B}_0} = {\lambda}$.

Proof. Let t' be the seed at the end of the maximal red sequence for B_t . There exists $\ell = \ell_q \ell_{q-1} \cdots \ell_1$ with $t_0 = t'_0 \frac{\ell_1}{-\ell_1} t'_1 \frac{\ell_2}{-\ell_2} \cdots \frac{\ell_q}{-\ell_q} t'_q = t'$. Let $\lambda' = \eta_{\ell}^{\mathbf{B}_0^T}(\lambda)$. Lemma 3.2 says $\eta_{\ell}^{\mathbf{B}_0^T}(\mathcal{P}_{\lambda}^{\tilde{B}_0}) = \mathcal{P}_{\lambda'}^{\tilde{B}_{t'}}$. Thus it is enough to prove that $\mathcal{P}_{\lambda'}^{\tilde{B}_{t'}} = \{\lambda'\}$. Since $\eta_{\ell}^{\mathbf{B}_0^T}\left(\operatorname{Cone}_t^{\tilde{B}_0;t_0}\right) = \operatorname{Cone}_t^{\tilde{B}_{t'};t'}$, we have reduced the proof to the case where there is a maximal red sequence for B_t starting from t and ending at t_0 .

Working in that reduction, let $\mathbf{k} = k_m \cdots k_1$ be the reverse of the maximal red sequence and define seeds $t_0 \stackrel{k_1}{\longrightarrow} t_1 \stackrel{k_2}{\longrightarrow} \cdots \stackrel{k_m}{\longrightarrow} t_m = t$. Then Theorem 3.3 says that $\mathcal{P}_{\lambda,\mathbf{k}}^{\tilde{B}_0} \subseteq \left\{\lambda + \tilde{B}_0 C_t^{B_0;t_0}\alpha : \alpha \in \mathbb{R}^n, \alpha \geq 0\right\}$.

Since \mathbf{k}^{-1} is a maximal red sequence for B_t , or in other words a maximal green sequence for $-B_t$, every column of $C_{t_0}^{-B_t;t}$ has negative sign, so $\operatorname{Cone}_{t_0}^{B_t^T;t} = \left\{x \in \mathbb{R}^n : x^T C_{t_0}^{-B_t;t} \geq 0\right\}$ consists of vectors with nonpositive entries. Since $(\mathbb{R}_{\leq 0})^n$ is a cone in the mutation fan \mathcal{F}_{-B_t} (for example, combining [5, Proposition 7.1], [5, Proposition 8.9], and sign-coherence of C-vectors) and also $\operatorname{Cone}_{t_0}^{B_t^T;t}$ is a cone in \mathcal{F}_{-B_t} , we see that $\operatorname{Cone}_{t_0}^{B_t^T;t} = (\mathbb{R}_{\leq 0})^n$. Thus, up to permuting columns, $C_{t_0}^{-B_t;t}$ is the negative of the identity matrix. We see that $\mathcal{P}_{\lambda,\mathbf{k}}^{\bar{B}_0} \subseteq \left\{\lambda - \tilde{B}_0\alpha : \alpha \in \mathbb{R}^n, \alpha \geq 0\right\}$.

Since also $\mathcal{P}_{\lambda,\emptyset}^{\tilde{B}_0} \Big\{ \lambda + \tilde{B}_0 \alpha : \alpha \geq 0 \Big\}$, and since the columns of \tilde{B}_0 are linearly independent, we conclude that $\mathcal{P}_{\lambda}^{\tilde{B}_0} = \{\lambda\}$.

4. Affine type

Let B_0 be acyclic of affine type, indexed so that entries above the diagonal are nonnegative. Then $n(n-1)\cdots 1$ is a maximal green sequence for B_0 and $12\cdots n$ is a maximal red sequence for B_0 . Take λ in the imaginary cone. Let t be any seed such that $\operatorname{Cone}_t^{B_0;t_0}$ has n-2 rays on the boundary of the imaginary wall \mathfrak{d}_∞ such that λ is in the imaginary cone spanned by those n-2 rays and the imaginary ray. Let $\mathbf{k} = k_m \cdots k_1$ be a sequence such that $t_0 \xrightarrow{k_1} t_1 \xrightarrow{k_2} \cdots \xrightarrow{k_m} t_m = t$. (Probably we need to address greenness or redness of this sequence, which we can presumably do pretty easily with the sortable elements stuff.)

Let \tilde{B}_0 be an extension of B_0 that has linearly independent columns. Computations show that

$$\mathcal{P}_{\lambda,\mathbf{k}}^{\tilde{B}_0} \cap \mathcal{P}_{\lambda,\mathbf{k}n(n-1)\cdots 1}^{\tilde{B}_0} \cap \mathfrak{d}_{\infty} = \left\{\lambda + x\tilde{B}_0\delta : x \in \mathbb{R}\right\} \cap \mathfrak{d}_{\infty}.$$

Either that or it's

$$\mathcal{P}_{\lambda,\mathbf{k}}^{\tilde{B}_0} \cap \mathcal{P}_{\lambda,\mathbf{k}12\cdots n}^{\tilde{B}_0} \cap \mathfrak{d}_{\infty} = \left\{\lambda + x\tilde{B}_0\delta : x \in \mathbb{R}\right\} \cap \mathfrak{d}_{\infty}.$$

References

- S. Fomin and A. Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math., 143(1):112–164, 2007.
- [2] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.
- [3] T. Nakanishi and A. Zelevinsky. On tropical dualities in cluster algebras. In Algebraic groups and quantum groups, volume 565 of Contemp. Math., pages 217–226. Amer. Math. Soc., Providence, RI, 2012.
- [4] N. Reading and D. E Speyer. Combinatorial frameworks for cluster algebras. (1):109–173, 2016.
- [5] Nathan Reading. Universal geometric cluster algebras. Math. Z., 277(1-2):499-547, 2014.
- (N. Reading) Department of Mathematics, North Carolina State University, Raleigh, NC, USA
 - (D. Rupel) NEED THIS
 - (S. Stella) NEED THIS