

Tarea 2

Profesor: Pablo Barceló

Auxiliares: Javier Oliva, Bernardo Subercaseaux

Ayudantes: Joaquín Cruz, Heinich Porro, Lucas Torrealba, Florencia Yáñez

Instrucciones.-

- Seguir el reglamento de políticas de colaboración publicado en material docente.
- Deberá entregar un único archivo en formato .zip, que, por cada pregunta, deberá contener un código y un archivo en formato .pdf con sus demostraciones y, de ser necesario, la explicación del código.
- Procure que sus demostraciones sean claras, sin ambigüedades y ordenadas. Se recomienda, aunque no es obligatorio, que elabore sus informes usando L^AT_EX. Cabe mencionar que pueden entregar archivos escaneados.
- Puede programar en cualquiera de los siguientes lenguajes: Python3, Java, C++.
- Su código debe recibir input y escribir output de la manera descrita, no introduzca nada adicional. Debe imprimir un salto de línea ('\n') al final de cada línea impresa.

P1.- Asumiremos distribuciones de probabilidad uniformes.

Sea $I_n = \{1, ..., n\}$ y $\pi = \pi_1, ..., \pi_n$ una permutación de I_n . Se dice que p es punto fijo de π si $\pi_p = p$. Lo que nos interesa es calcular la probabilidad de obtener k puntos fijos y la esperanza de la cantidad de puntos fijos de una permutación π cualquiera de I_n . Para esto procederemos de la siguiente manera:

Definimos $D_{k,n}$ como la cantidad de permutaciones π en I_n que tienen k puntos fijos.

- 1. Indique $D_{0,0}$, $D_{0,1}$ y demuestre que $D_{0,n} = (n-1)(D_{0,n-1} + D_{0,n-2}) \ \forall n \geq 2$. (Puede ser útil ver el factor n-1 como la cantidad de formas de escoger $\pi_1 \neq 1$).
- 2. Usando inducción y el resultado anterior, demuestre que $D_{0,n} = nD_{0,n-1} + (-1)^n \ \forall n \geq 1$.
- 3. Divida la anterior ecuación de recurrencia por n! y encuentre una fórmula para $D_{0,n}$ que no sea de recurrencia (No se preocupe si queda una suma). Usando este resultado, obtenga $D_{k,n}$ para $k \in \{0, ..., n\}$.
- 4. Calcule la probabilidad de tener k puntos fijos y la esperanza de la cantidad de puntos fijos con n fijo.
 - Hint : utilice las variables aleatorias X como la cantidad de puntos fijos y $X_k = [k \text{ es punto fijo}]$
- 5. ¿Qué ocurre con las probabilidades cuando $n \to \infty$? ¿Y con la esperanza? Calcule la esperanza de otra forma y concluya que $\sum_{k=0}^{n-1} \sum_{j=0}^{n-k-1} \frac{(-1)^j}{j!k!} = 1$
- 6. Estudie la probabilidad de tener k puntos fijos con n fijo mediante una simulación. Entregue un gráfico variando k y otro variando n. ¿Qué puede decir?

Tarea 2

P2.- Sea $V = \{a, b\}$ un conjunto de nombres de variables, $C = \{1, 2\}$ subconjunto de los naturales (Se pueden considerar ambos como conjuntos de símbolos). Se define \mathcal{EXP} como un conjunto de expresiones sobre $\Sigma = \{+, *, =, (,)\} \cup V \cup C$ como:

- Regla Base: Si $a \in V \cup C$ entonces $a \in \mathcal{EXP}$
- Regla 2: Si $a, b \in \mathcal{EXP}$ entonces $(a + b) \in \mathcal{EXP}$
- Regla 3: Si $a, b \in \mathcal{EXP}$ entonces $(a * b) \in \mathcal{EXP}$
- Regla 4: Si $a, b \in \mathcal{EXP}$ entonces $(a == b) \in \mathcal{EXP}$
- 1. Sea a_n la cantidad de expresiones en \mathcal{EXP} distintas con largo n. Entregue una relación de recurrencia para a_n .
- 2. Programe una función cantidad que reciba como parámetro un natural n y entregue a_n .
- 3. Programe una función es Exp que reciba como parámetro un string y entregue verdadero si pertenece a \mathcal{EXP} o falso si no.
- 4. Entregue un archivo expresiones.{py,java,cpp} que reciba por entrada estándar un string s e imprima 2 enteros a,b donde a es booleano que representa si $s \in \mathcal{EXP}$ y b es $a_{|s|}$. **EJEMPLOS:**

Entrada 1: Entrada 2: a + b (a + (a + 1)) Salida 1: Salida 2: $0 \ 0$ $1 \ 512$

Tarea 2 2