Gradient Descent

Nipun Batra

January 28, 2024

IIT Gandhinagar

Revision

Contour Plot And Gradients

Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

Contour Plot And Gradients

$$z = f(x, y) = x^{2} + y^{2}$$
Surface Plot
$$z = 40$$

$$z = 20$$

$$z = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 = 50$$

$$0 =$$

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in f(x,y)

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Introduction

Optimization algorithms

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(\theta) = (y - X\theta)^{T} (y - X\theta) \tag{1}$$

ullet Note, here heta is the parameter vector

Optimization algorithms

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)
- We will focus on minimization
- Goal:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} f(\theta) \tag{2}$$

Introduction

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm
- It is a local search algorithm/greedy

Gradient Descent Algorithm

- 1. Initialize θ to some random value
- 2. Compute the gradient of the cost function at θ , $\nabla f(\theta)$
- 3. For Iteration i (i = 1, 2, ...) or until convergence:
 - $\theta_i \leftarrow \theta_{i-1} \alpha \nabla f(\theta_{i-1})$

Taylor's Series

Taylor's Series

- Taylor's series is a way to approximate a function f(x) around a point x_0 using a polynomial
- The polynomial is given by

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (3)

The vector form of the above equation is given by:

$$f(\vec{x}) = f(\vec{x_0}) + \nabla f(\vec{x_0})^T (\vec{x} - \vec{x_0}) + \frac{1}{2} (\vec{x} - \vec{x_0})^T \nabla^2 f(\vec{x_0}) (\vec{x} - \vec{x_0}) + \dots$$
(4)

• where $\nabla^2 f(\vec{x_0})$ is the Hessian matrix and $\nabla f(\vec{x_0})$ is the gradient vector

Taylor's Series

- Let us consider $f(x) = \cos(x)$ and $x_0 = 0$
- Then, we have:
- $f(x_0) = \cos(0) = 1$
- $f'(x_0) = -\sin(0) = 0$
- $f''(x_0) = -\cos(0) = -1$
- We can write the second order Taylor's series as:
- $f(x) = 1 + 0(x 0) + \frac{-1}{2!}(x 0)^2 = 1 \frac{x^2}{2}$

Taylor's series

- Let us consider another example: $f(x) = x^2 + 2$ and $x_0 = 2$
- Question: How does the first order Taylor's series approximation look like?
- First order Taylor's series approximation is given by:

•
$$f(x) = f(x_0) + f'(x_0)(x - x_0) = 6 + 4(x - 2) = 4x - 2$$

Taylor's Series (Alternative form)

• We have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
 (5)

- Let us consider $x = x_0 + \Delta x$ where Δx is a small quantity
- Then, we have:

$$f(x_0 + \Delta x) = f(x_0) + \frac{f'(x_0)}{1!} \Delta x + \frac{f''(x_0)}{2!} \Delta x^2 + \dots$$
 (6)

- Let us assume Δx is small enough such that Δx^2 and higher order terms can be ignored
- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$

Taylor's Series to Gradient Descent

- Then, we have: $f(x_0 + \Delta x) \approx f(x_0) + \frac{f'(x_0)}{1!} \Delta x$
- Or, in vector form: $f(\vec{x_0} + \Delta \vec{x}) \approx f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f(\vec{x_0} + \Delta \vec{x})$ is minimized
- This is equivalent to minimizing $f(\vec{x_0}) + \nabla f(\vec{x_0})^T \Delta \vec{x}$
- This happens when vectors $\nabla f(\vec{x_0})$ and $\Delta \vec{x}$ are at phase angle of 180°
- This happens when $\Delta \vec{x} = -\alpha \nabla f(\vec{x_0})$ where α is a scalar
- This is the gradient descent algorithm: $\vec{x_1} = \vec{x_0} \alpha \nabla f(\vec{x_0})$

Effect of learning rate

Gradient Descent for linear regression

• Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I(f(x_i|\theta), y_i) = (f(x_i|\theta) y_i)^2$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $MSE(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(x_i|\theta) y_i)^2$
- **Objective function** is the most general term for any function that you optimize during training.

Gradient Descent: Example

Learn $y=\theta_0+\theta_1x$ on following dataset, using gradient descent where initially $(\theta_0,\theta_1)=(4,0)$ and step-size, $\alpha=0.1$, for 2 iterations.

x	у
1	1
2	2
3	3

Gradient Descent: Example

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$\mathsf{MSE} = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

Difference between SSE and MSE

$$\sum \epsilon_i^2$$
 increases as the number of examples increase

So, we use MSE

$$MSE = \frac{1}{n} \sum_{i} \epsilon_i^2$$

Here n denotes the number of samples