

Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics

DS925 (v1.9) November 28, 2017

Preliminary Product Specification

Summary

The Xilinx® Zynq® UltraScale+ $^{\text{TM}}$ MPSoCs are available in -3, -2, -1 speed grades, with -3E devices having the highest performance. The -2LE and -1LI devices can operate at a V_{CCINT} voltage at 0.85V or 0.72V and are screened for lower maximum static power. When operated at $V_{\text{CCINT}} = 0.85V$, using -2LE and -1LI devices, the speed specification for the L devices is the same as the -2I or -1I speed grades. When operated at $V_{\text{CCINT}} = 0.72V$, the -2LE and -1LI performance and static and dynamic power is reduced.

DC and AC characteristics are specified in extended (E), industrial (I), and expanded (Q) temperature ranges. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade extended device are the same as for a -1 speed grade industrial device). However, only selected speed grades and/or devices are available in each temperature range.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

This data sheet, part of an overall set of documentation on the Zynq UltraScale+ MPSoCs, is available on the Xilinx website at www.xilinx.com/documentation.

DC Characteristics

Absolute Maximum Ratings

Table 1: Absolute Maximum Ratings(1)

Symbol	Description	Min	Max	Units				
Processor System (PS)								
V _{CC_PSINTFP}	PS primary logic full-power domain supply voltage.	-0.500	1.000	V				
V _{CC_PSINTLP}	PS primary logic low-power domain supply voltage.	-0.500	1.000	V				
V _{CC_PSAUX}	PS auxiliary supply voltage.	-0.500	2.000	V				
V _{CC_PSINTFP_DDR}	PS DDR controller and PHY supply voltage.	-0.500	1.000	V				
V _{CC_PSADC}	PS SYSMON ADC supply voltage relative to GND_PSADC.	-0.500	2.000	V				
V _{CC_PSPLL}	PS PLL supply voltage.	-0.500	1.320	V				
V _{PS_MGTRAVCC}	PS-GTR supply voltage.	-0.500	1.000	V				
V _{PS_MGTRAVTT}	PS-GTR termination voltage.	-0.500	2.000	V				
V _{PS_MGTREFCLK}	PS-GTR reference clock input voltage.	-0.500	1.100	V				
V _{PS_MGTRIN}	PS-GTR receiver input voltage.	-0.500	1.100	V				

[©] Copyright 2015–2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

Table 1: Absolute Maximum Ratings(1) (Cont'd)

Symbol	Description	Min	Max	Units
V _{CCO_PSDDR}	PS DDR I/O supply voltage.	-0.500	1.650	V
V _{CC_PSDDR_PLL}	PS DDR PLL supply voltage.	-0.500	2.000	V
V _{CCO_PSIO}	PS I/O supply.	-0.500	3.630	V
v (2)	PS I/O input voltage.	-0.500	V _{CCO_PSIO} + 0.550	V
V _{PSIN} ⁽²⁾	PS DDR I/O input voltage.	-0.500	$V_{CCO_PSDDR} + 0.550$	V
V _{CC_PSBATT}	PS battery-backed RAM and battery-backed real-time clock (RTC) supply voltage.	-0.500	2.000	V
Programmabl	e Logic (PL)			
V _{CCINT}	Internal supply voltage.	-0.500	1.000	V
V _{CCINT_IO} (3)	Internal supply voltage for the I/O banks.	-0.500	1.000	V
V _{CCAUX}	Auxiliary supply voltage.	-0.500	2.000	V
V _{CCBRAM}	Supply voltage for the block RAM memories.	-0.500	1.000	V
V	Output drivers supply voltage for HD I/O banks.	-0.500	3.400	V
V_{CCO}	Output drivers supply voltage for HP I/O banks.	-0.500	2.000	V
V _{CCAUX_IO} ⁽⁴⁾	Auxiliary supply voltage for the I/O banks.	-0.500	2.000	V
V_{REF}	Input reference voltage.	-0.500	2.000	V
V _{IN} (2)(5)(6)	I/O input voltage for HD I/O banks.	-0.550	V _{CCO} + 0.550	V
VINCEXCEX	I/O input voltage for HP I/O banks.	-0.550	V _{CCO} + 0.550	V
I _{DC}	Available output current at the pad.	-20	20	mA
I _{RMS}	Available RMS output current at the pad.	-20	20	mA
GTH or GTY T	ransceiver			
V _{MGTAVCC}	Analog supply voltage for transceiver circuits.	-0.500	1.000	V
V _{MGTAVTT}	Analog supply voltage for transceiver termination circuits.	-0.500	1.300	V
V _{MGTVCCAUX}	Auxiliary analog Quad PLL (QPLL) voltage supply for transceivers.	-0.500	1.900	V
V _{MGTREFCLK}	Transceiver reference clock absolute input voltage.	-0.500	1.300	V
V _{MGTAVTTRCAL}	Analog supply voltage for the resistor calibration circuit of the transceiver column.	-0.500	1.300	V
V _{IN}	Receiver (RXP/RXN) and transmitter (TXP/TXN) absolute input voltage.	-0.500	1.200	V
I _{DCIN-FLOAT}	DC input current for receiver input pins DC coupled RX termination = floating. (7)	_	10	mA
I _{DCIN-MGTAVTT}	DC input current for receiver input pins DC coupled RX termination = $V_{MGTAVTT}$.	_	10	mA
I _{DCIN-GND}	DC input current for receiver input pins DC coupled RX termination = GND. (8)	-	0	mA
I _{DCIN-PROG}	DC input current for receiver input pins DC coupled RX termination = programmable. (9)		0	mA
I _{DCOUT-FLOAT}	DC output current for transmitter pins DC coupled RX termination = floating.	_	6	mA
I _{DCOUT-MGTAVTT}	DC output current for transmitter pins DC coupled RX termination = $V_{MGTAVTT}$.	_	6	mA

Table 1: Absolute Maximum Ratings(1) (Cont'd)

Symbol	Description	Min	Max	Units			
Video Codec U	Video Codec Unit						
V _{CCINT_VCU}	Internal supply voltage for the video codec unit.	-0.500	1.000	V			
PL System Mo	nitor						
V _{CCADC}	PL System Monitor supply relative to GNDADC.	-0.500	2.000	V			
V _{REFP}	PL System Monitor reference input relative to GNDADC.	-0.500	2.000	V			
Temperature (11)						
T _{STG}	Storage temperature (ambient).	-65	150	°C			
	Maximum dry rework soldering temperature.	-	260	°C			
T _{SOL}	Maximum reflow soldering temperature for SBVA484, SFVA625, and SFVC784 packages.	-	250	°C			
	Maximum reflow soldering temperature for FBVB900, FFVC900, FFVB1156, FFVC1156, FFVB1517, FFVC1760, FFVD1760, and FFVE1924 packages.	-	245	°C			
Tj	Maximum junction temperature.	_	125	°C			

- Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
- 2. When operating outside of the recommended operating conditions, refer to Table 6, Table 7, and Table 8 for maximum overshoot and undershoot specifications.
- 3. V_{CCINT_IO} must be connected to V_{CCBRAM} .
- 4. V_{CCAUX} 10 must be connected to V_{CCAUX}.
- 5. The lower absolute voltage specification always applies.
- 6. For I/O operation, see the UltraScale Architecture SelectIO Resources User Guide (UG571).
- 7. AC coupled operation is not supported for RX termination = floating.
- For GTY transceivers, DC coupled operation is not supported for RX termination = GND.
- 9. DC coupled operation is not supported for RX termination = programmable.
- 10. For more information on supported GTH or GTY transceiver terminations see the *UltraScale Architecture GTH Transceiver User Guide* (UG576) or *UltraScale Architecture GTY Transceiver User Guide* (UG578).
- 11. For soldering guidelines and thermal considerations, see the *Zynq UltraScale+ MPSoC Packaging and Pinout Specifications* (UG1075).

Recommended Operating Conditions

Table 2: Recommended Operating Conditions (1)(2)

Symbol	Description	Min	Тур	Max	Units
Processor Syste	m				
	PS full-power domain supply voltage.	0.808	0.850	0.892	V
V _{CC_PSINTFP} (3)	For -1LI and -2LE (V _{CCINT} = 0.72V) devices: PS full-power domain supply voltage.	0.808	0.850	0.892	V
	For -3E devices: PS full-power domain supply voltage.	0.873	0.900	0.927	V
	PS low-power domain supply voltage.	0.808	0.850	0.892	V
V _{CC_PSINTLP}	For -1LI and -2LE (V _{CCINT} = 0.72V) devices: PS low-power domain supply voltage.	0.808	0.850	0.892	V
	For -3E devices: PS low-power domain supply voltage.	0.873	0.900	0.927	V
V _{CC_PSAUX}	PS auxiliary supply voltage.	1.710	1.800	1.890	V
	PS DDR controller and PHY supply voltage.	0.808	0.850	0.892	V
V _{CC_PSINTFP_DDR} (3)	For -1LI and -2LE (V _{CCINT} = 0.72V) devices: PS DDR controller and PHY supply voltage.	0.808	0.850	0.892	V
	For -3E devices: PS DDR controller and PHY supply voltage.	0.873	0.900	0.927	V
V _{CC_PSADC}	PS SYSMON ADC supply voltage relative to GND_PSADC.	1.710	1.800	1.890	V
V _{CC_PSPLL}	PS PLL supply voltage.	1.164	1.200	1.236	V
V _{PS_MGTRAVCC} ⁽⁴⁾	PS-GTR supply voltage.	0.825	0.850	0.875	V
V _{PS_MGTRAVTT} ⁽⁴⁾	PS-GTR termination voltage.	1.746	1.800	1.854	V
V _{CCO_PSDDR} (5)	PS DDR I/O supply voltage.	1.06	_	1.575	V
V _{CC_PSDDR_PLL}	PS DDR PLL supply voltage.	1.710	1.800	1.890	V
V _{CCO_PSIO} ⁽⁶⁾	PS I/O supply.	1.710	1	3.465	V
V	PS I/O input voltage.	-0.200	l	$V_{CCO_PSIO} + 0.200$	V
V _{PSIN}	PS DDR I/O input voltage.	-0.200	1	V _{CCO_PSDDR} + 0.200	
V _{CC_PSBATT} (7)	PS battery-backed RAM and battery-backed real-time clock (RTC) supply voltage.	1.200	-	1.500	V
Programmable I	_ogic				
	PL internal supply voltage.	0.825	0.850	0.876	V
V _{CCINT}	For -1LI and -2LE ($V_{CCINT} = 0.72V$) devices: PL internal supply voltage.	0.698	0.720	0.742	V
	For -3E devices: PL internal supply voltage.	0.873	0.900	0.927	V
	PL internal supply voltage for the I/O banks.	0.825	0.850	0.876	V
V _{CCINT_IO} ⁽⁸⁾	For -1LI and -2LE (V _{CCINT} = 0.72V) devices: PL internal supply voltage for the I/O banks.	0.825	0.850	0.876	V
	For -3E devices: PL internal supply voltage for the I/O banks.	0.873	0.900	0.927	V
Vacanti	Block RAM supply voltage.	0.825	0.850	0.876	V
V _{CCBRAM}	For -3E devices: block RAM supply voltage.	0.873	0.900	0.927	V
V _{CCAUX}	Auxiliary supply voltage.	1.746	1.800	1.854	V

Table 2: Recommended Operating Conditions (1)(2) (Cont'd)

Symbol	Description	Min	Тур	Max	Units
v (9)	Supply voltage for HD I/O banks.	1.140	-	3.400	V
V _{CCO} ⁽⁹⁾	Supply voltage for HP I/O banks.	0.950	_	1.900	V
V _{CCAUX_IO} (10)	Auxiliary I/O supply voltage.	1.746	1.800	1.854	V
V _{IN} ⁽¹¹⁾	I/O input voltage.	-0.200	-	V _{CCO} + 0.200	V
I _{IN} ⁽¹²⁾	Maximum current through any PL or PS pin in a powered or unpowered bank when forward biasing the clamp diode.		_	10	mA
GTH or GTY Tra	nsceiver	'			
V _{MGTAVCC} ⁽¹³⁾	Analog supply voltage for the GTH or GTY transceiver.	0.873	0.900	0.927	V
V _{MGTAVTT} ⁽¹³⁾	Analog supply voltage for the GTH or GTY transmitter and receiver termination circuits.	1.164	1.200	1.236	V
V _{MGTVCCAUX} (13)	Auxiliary analog QPLL voltage supply for the transceivers.	1.746	1.800	1.854	V
V _{MGTAVTTRCAL} (13)	Analog supply voltage for the resistor calibration circuit of the GTH or GTY transceiver column.	1.164	1.200	1.236	V
VCU					
V _{CCINT_VCU}	Internal supply voltage for the VCU.	0.873	0.900	0.927	V
PL System Moni	tor		ı	1	1
V _{CCADC}	PL System Monitor supply relative to GNDADC.	1.746	1.800	1.854	V
V _{REFP}	PL System Monitor externally supplied reference voltage relative to GNDADC.	1.200	1.250	1.300	V

Table 2: Recommended Operating Conditions (1)(2) (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature					
	Junction temperature operating range for extended (E) temperature devices. (15)	0	-	100	°C
т (14)	Junction temperature operating range for industrial (I) temperature devices.	-40	_	100	°C
T _j ⁽¹⁴⁾	Junction temperature operating range for automotive (Q) temperature devices.	-40	_	125	°C
	Junction temperature operating range for eFUSE programming.	-40	_	125	°C

- All voltages are relative to GND.
- 2. For the design of the power distribution system consult *UltraScale Architecture PCB Design Guide* (UG583).
- 3. V_{CC PSINTEP DDR} must be tied to V_{CC PSINTEP}.
- Each voltage listed requires filtering as described in UltraScale Architecture PCB Design Guide (UG583).
- 5. Includes V_{CCO_PSDDR} of 1.2V, 1.35V, 1.5V at $\pm 5\%$ and 1.1V ± 0.07 V/ ± 0.04 V depending upon the tolerances required by specific memory standards.
- 6. Applies to all PS I/O supply banks. Includes $V_{CCO\ PSIO}$ of 1.8V, 2.5V, and 3.3V at $\pm 5\%$.
- If the battery-backed RAM or RTC is not used, connect V_{CC_PSBATT} to GND or V_{CC_PSAUX}. The V_{CC_PSAUX} maximum of 1.89V is acceptable on an unused V_{CC_PSBATT}.
- 8. V_{CCINT_IO} must be connected to V_{CCBRAM} .
- 9. Includes V_{CCO} of 1.0V (HP I/O only), 1.2V, 1.35V, 1.5V, 1.8V, 2.5V (HD I/O only) at $\pm 5\%$, and 3.3V (HD I/O only) at $\pm 3/-5\%$.
- 10. $V_{CCAUX\ IO}$ must be connected to V_{CCAUX} .
- 11. The lower absolute voltage specification always applies.
- 12. A total of 200 mA per bank should not be exceeded.
- 13. Each voltage listed requires filtering as described in *UltraScale Architecture GTH Transceiver User Guide* (<u>UG576</u>) or *UltraScale Architecture GTY Transceiver User Guide* (<u>UG578</u>).
- 14. Xilinx recommends measuring the Tj of a device using the system monitor as described in the *UltraScale Architecture System Monitor User Guide* (UG580). The SYSMON temperature measurement errors (that are described in Table 69 and Table 124) must be accounted for in your design. For example, when using the PL system monitor with an external reference of 1.25V, when SYSMON reports 97°C, there is a measurement error ±3°C. A reading of 97°C is considered the maximum adjusted Tj (100°C 3°C = 97°C).
- 15. Devices labeled with the speed/temperature grade of -2LE can operate for a limited time at a junction temperature between 100°C and 110°C. Timing parameters adhere to the same speed file at 110°C as they do below 110°C, regardless of operating voltage (nominal voltage of 0.85V or a low-voltage of 0.72V). Operation up to Tj = 110°C is limited to 1% of the device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 1% of the device lifetime.

Available Speed Grades and Operating Voltages

Table 3 describes the speed grades per device and the V_{CCINT} operating supply voltages for the full-power, low-power, and DDR domains. For more information on selecting devices and speed grades, see the *UltraScale Architecture and Product Overview* (DS890).

Table 3: Available Speed Grades and Operating Voltages

Speed Grade	V _{CCINT}	V _{CC_PSINTLP}	V _{CC_PSINTFP}	V _{CC_PSINTFP_DDR}	Units
-3E	0.90	0.90	0.90	0.90	V
-2E	0.85	0.85	0.85	0.85	V
-21	0.85	0.85	0.85	0.85	V
-2LE	0.85	0.85	0.85	0.85	V
-1E	0.85	0.85	0.85	0.85	V
-11	0.85	0.85	0.85	0.85	V
-10	0.85	0.85	0.85	0.85	V
-1LI	0.85	0.85	0.85	0.85	V
-2LE	0.72	0.85	0.85	0.85	V
-1LI	0.72	0.85	0.85	0.85	V

DC Characteristics Over Recommended Operating Conditions

Table 4: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ ⁽¹⁾	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost).	0.68	_	-	V
V _{DRAUX}	Data retention V_{CCAUX} voltage (below which configuration data might be lost).	1.5	_	_	V
I _{REF}	V _{REF} leakage current per pin.	-	_	15	μΑ
IL	Input or output leakage current per pin (sample-tested).(2)	-	_	15	μΑ
C (3)	Die input capacitance at the pad (HP I/O).	-	_	3.1	pF
C _{IN} (3)	Die input capacitance at the pad (HD I/O).	_	_	4.75	pF
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 3.3V$.	75	_	190	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 2.5V$.	50	_	169	μΑ
I _{RPU}	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.8V$.	60	_	120	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.5V$.	30	_	120	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO} = 1.2V$.	10	_	100	μΑ
ı	Pad pull-down (when selected) at V _{IN} = 3.3V.	60	_	200	μΑ
I _{RPD}	Pad pull-down (when selected) at V _{IN} = 1.8V.	29	_	120	μΑ
ICCADCONPL	Analog supply current for the PL SYSMON circuits in the power-up state.	-	_	8	mA
I _{CCADCONPS}	Analog supply current for the PS SYSMON circuits in the power-up state.	_	_	10	mA
I _{CCADCOFFPL}	Analog supply current for the PL SYSMON circuits in the power-down state.	-	_	1.5	mA
I _{CCADCOFFPS}	Analog supply current for the PS SYSMON circuits in the power-down state.	-	_	1.8	mA

Table 4: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ ⁽¹⁾	Max	Units
	Battery supply current at $V_{CC_PSBATT} = 1.50V$, RTC enabled.	_	_	3650	nA
(4)(5)	Battery supply current at V _{CC_PSBATT} = 1.50V, RTC disabled.	_	_	650	nA
I _{CC_PSBATT} (4)(5)	Battery supply current at V _{CC_PSBATT} = 1.20V, RTC enabled.	_	_	3150	nA
	Battery supply current at V _{CC_PSBATT} = 1.20V, RTC disabled.	_	_	150	nA
I _{PSFS} ⁽⁶⁾	PS V _{CC_PSAUX} additional supply current during eFUSE programming.	_	_	115	mA
Calibrated progra	ammable on-die termination (DCI) in HP I/O banks $^{(8)}$ (measur	ed per JED	EC specific	cation)	
	The venin equivalent resistance of programmable input termination to $V_{CCO}/2$ where ODT = RTT_40.	-10% ⁽⁷⁾	40	+10% ⁽⁷⁾	Ω
	The venin equivalent resistance of programmable input termination to $V_{\text{CCO}}/2$ where $\text{ODT} = \text{RTT_48}$.	-10% ⁽⁷⁾	48	+10% ⁽⁷⁾	Ω
	The venin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ where ODT = RTT_60.	-10% ⁽⁷⁾	60	+10% ⁽⁷⁾	Ω
R ⁽⁹⁾	Programmable input termination to V_{CCO} where ODT = RTT_40.	-10% ⁽⁷⁾	40	+10% ⁽⁷⁾	Ω
K. 7	Programmable input termination to V_{CCO} where ODT = RTT_48.	-10% ⁽⁷⁾	48	+10% ⁽⁷⁾	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_60.	-10% ⁽⁷⁾	60	+10% ⁽⁷⁾	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_120.	-10% ⁽⁷⁾	120	+10% ⁽⁷⁾	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_240.	-10% ⁽⁷⁾	240	+10% ⁽⁷⁾	Ω
Uncalibrated pro	grammable on-die termination in HP I/Os banks (measured pe	er JEDEC sp	pecification)	
	The venin equivalent resistance of programmable input termination to $V_{\text{CCO}}/2$ where $\text{ODT} = \text{RTT}_40$.	-50%	40	+50%	Ω
	The venin equivalent resistance of programmable input termination to $V_{\text{CCO}}/2$ where ODT = RTT_48.	-50%	48	+50%	Ω
	The venin equivalent resistance of programmable input termination to $V_{\text{CCO}}/2$ where $\text{ODT} = \text{RTT_60}$.	-50%	60	+50%	Ω
R ⁽⁹⁾	Programmable input termination to V_{CCO} where ODT = RTT_40.	-50%	40	+50%	Ω
K. 7	Programmable input termination to V_{CCO} where ODT = RTT_48.	-50%	48	+50%	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_60.	-50%	60	+50%	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_120.	-50%	120	+50%	Ω
	Programmable input termination to V_{CCO} where ODT = RTT_240.	-50%	240	+50%	Ω
Uncalibrated prog	grammable on-die termination in HD I/O banks (measured per	r JEDEC sp	ecification))	
R ⁽⁹⁾	The venin equivalent resistance of programmable input termination to $V_{\text{CCO}}/2$ where $\text{ODT} = \text{RTT}_48$.	-50%	48	+50%	Ω
Internal V _{REF}	50% V _{CCO}	V _{CCO} x 0.49	V _{CCO} x 0.50	V _{CCO} x 0.51	V
KEF	70% V _{CCO}	V _{CCO} x 0.69	V _{CCO} x 0.70	V _{CCO} x 0.71	V

Table 4: DC Characteristics Over Recommended Operating Conditions (Cont'd)

Symbol	Description	Min	Typ ⁽¹⁾	Max	Units
Differential termination	Programmable differential termination (TERM_100) for HP I/O banks.	-35%	100	+35%	Ω
n	Temperature diode ideality factor.	-	1.026	-	_
r	Temperature diode series resistance.	_	2	_	Ω

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. For HP I/O banks with a V_{CCO} of 1.8V and separated V_{CCO} and V_{CCAUX_IO} power supplies, the I_L maximum current is 70 μ A.
- 3. This measurement represents the die capacitance at the pad, not including the package.
- 4. Maximum value specified for worst case process at 25°C.
- 5. I_{CC PSBATT} is measured when the battery-backed RAM (BBRAM) is enabled.
- 6. Do not program eFUSE during device configuration (e.g., during configuration, during configuration readback, or when readback CRC is active).
- 7. If VRP resides at a different bank (DCI cascade), the range increases to ±15%.
- 8. VRP resistor tolerance is $(240\Omega \pm 1\%)$
- On-die input termination resistance, for more information see the UltraScale Architecture SelectIO Resources User Guide (UG571).

Table 5: PS MIO Pull-up and Pull-down Current

Symbol	Description	Min	Max	Units
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 3.3V$.	20	80	μΑ
I _{RPU} ⁽¹⁾	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 2.5V$.	20	80	μΑ
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 1.8V$.	15	65	μΑ
	Pad pull-down (when selected) at V _{IN} = 3.3V.	20	80	μA
I _{RPD}	Pad pull-down (when selected) at V _{IN} = 2.5V.	20	80	μΑ
	Pad pull-down (when selected) at V _{IN} = 1.8V.	15	65	μΑ

Notes:

1. After power-on, the reset values of the MIO pin configuration registers enable and select the PS MIO pull-ups.

VIN Maximum Allowed AC Voltage Overshoot and Undershoot

Table 6: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for HD I/O Banks⁽¹⁾⁽²⁾

AC Voltage Overshoot	% of UI at -40°C to 125°C	AC Voltage Undershoot	% of UI at -40°C to 125°C
V _{CCO} + 0.30	100%	-0.30	100%
V _{CCO} + 0.35	100%	-0.35	90%
V _{CCO} + 0.40	100%	-0.40	78%
V _{CCO} + 0.45	100%	-0.45	40%
V _{CCO} + 0.50	100%	-0.50	24%
V _{CCO} + 0.55	100%	-0.55	18.0%
V _{CCO} + 0.60	100%	-0.60	13.0%
V _{CCO} + 0.65	100%	-0.65	10.8%
V _{CCO} + 0.70	92%	-0.70	9.0%
V _{CCO} + 0.75	92%	-0.75	7.0%
V _{CCO} + 0.80	92%	-0.80	6.0%
V _{CCO} + 0.85	92%	-0.85	5.0%
V _{CCO} + 0.90	92%	-0.90	4.0%
V _{CCO} + 0.95	92%	-0.95	2.5%

Notes:

- 1. A total of 200 mA per bank should not be exceeded.
- 2. For UI smaller than 20 µs.

Table 7: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for HP I/O Banks⁽¹⁾⁽²⁾

AC Voltage Overshoot	% of UI at -40°C to 125°C	AC Voltage Undershoot	% of UI at -40°C to 125°C
V _{CCO} + 0.30	100%	-0.30	100%
V _{CCO} + 0.35	100%	-0.35	100%
V _{CCO} + 0.40	92%	-0.40	92%
V _{CCO} + 0.45	50%	-0.45	50%
V _{CCO} + 0.50	20%	-0.50	20%
V _{CCO} + 0.55	10%	-0.55	10%
V _{CCO} + 0.60	6%	-0.60	6%
V _{CCO} + 0.65	2%	-0.65	2%
V _{CCO} + 0.70	2%	-0.70	2%

- 1. A total of 200 mA per bank should not be exceeded.
- 2. For UI smaller than 20 µs.

Table 8: V_{PSIN} Maximum Allowed AC Voltage Overshoot and Undershoot for PS I/O Banks⁽¹⁾⁽²⁾

AC Voltage Overshoot	% of UI at -40°C to 125°C	AC Voltage Undershoot	% of UI at -40°C to 125°C
$V_{CCO_PSIO} + 0.30$	100%	-0.30	100%
V _{CCO_PSIO} + 0.35	100%	-0.35	75%
V _{CCO_PSIO} + 0.40	100%	-0.40	45%
V _{CCO_PSIO} + 0.45	100%	-0.45	40%
V _{CCO_PSIO} + 0.50	75%	-0.50	10%
V _{CCO_PSIO} + 0.55	75%	-0.55	6%
V _{CCO_PSIO} + 0.60	60%	-0.60	2%
V _{CCO_PSIO} + 0.65	30%	-0.65	0%
V _{CCO_PSIO} + 0.70	20%	-0.70	0%
V _{CCO_PSIO} + 0.75	10%	-0.75	0%
V _{CCO_PSIO} + 0.80	10%	-0.80	0%
V _{CCO_PSIO} + 0.85	8%	-0.85	0%
V _{CCO_PSIO} + 0.90	6%	-0.90	0%
V _{CCO_PSIO} + 0.95	6%	-0.95	0%

- 1. A total of 200 mA per bank should not be exceeded.
- 2. For UI smaller than 20 µs.

Quiescent Supply Current

Table 9: Typical Quiescent Supply Current(1)(2)(3)(4)

			Vo		ed Grade perating		es	
Symbol	Description	Device	0.90V	0.8	85 V	0.7	′2V	Units
			-3	-2	-1	-2	-1	-
		XCZU2	N/A	393	393	344	344	mA
		XCZU3	N/A	393	393	344	344	mA
		XCZU4	719	684	684	601	601	mA
		XCZU5	719	684	684	601	601	mA
		XCZU6	1629	1549	1549	1358	1358	mA
		XCZU7	1263	1201	1201	1055	1055	mA
I _{CCINTQ}	Quiescent V _{CCINT} supply current.	XCZU9	1629	1549	1549	1358	1358	mA
		XCZU11	1786	1699	1699	1491	1491	mA
		XCZU15	1987	1890	1890	1660	1660	mA
		XCZU17	2728	2594	2594	2275	2275	mA
		XCZU19	2728	2594	2594	2275	2275	mA
		XAZU2	N/A	N/A	393	N/A	344	mA
		XAZU3	N/A	N/A	393	N/A	344	mA
		XCZU2	N/A	44	44	44	44	mA
		XCZU3	N/A	44	44	44	44	mA
		XCZU4	61	59	59	59	59	mA
		XCZU5	61	59	59	59	59	mA
		XCZU6	61	59	59	59	59	mA
		XCZU7	120	115	115	115	115	mA
I _{CCINT_IOQ}	Quiescent V _{CCINT_IO} supply current.	XCZU9	61	59	59	59	59	mA
		XCZU11	120	115	115	115	115	mA
		XCZU15	61	59	59	59	59	mA
		XCZU17	164	158	158	158	158	mA
		XCZU19	164	158	158	158	158	mA
		XAZU2	N/A	N/A	44	N/A	44	mA
		XAZU3	N/A	N/A	44	N/A	44	mA
I _{CCOQ}	Quiescent V _{CCO} supply current.	All devices	1	1	1	1	1	mA

Table 9: Typical Quiescent Supply Current(1)(2)(3)(4) (Cont'd)

			V		d Grade erating	and Voltage	es	Limita
Symbol	Description	Device	0.90V	0.8	5 V	0.7	′2V	Units
			-3	-2	-1	-2	-1	
		XCZU2	N/A	55	55	55	55	mA
		XCZU3	N/A	55	55	55	55	mA
		XCZU4	90	90	90	90	90	mA
		XCZU5	90	90	90	90	90	mA
		XCZU6	227	227	227	227	227	mA
		XCZU7	174	174	174	174	174	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current.	XCZU9	227	227	227	227	227	mA
		XCZU11	255	255	255	255	255	mA
		XCZU15	266	266	266	266	266	mA
		XCZU17	396	396	396	396	396	mA
		XCZU19	396	396	396	396	396	mA
		XAZU2	N/A	N/A	55	N/A	55	mA
		XAZU3	N/A	N/A	55	N/A	55	mA
		XCZU2	N/A	26	26	26	26	mA
		XCZU3	N/A	26	26	26	26	mA
		XCZU4	32	32	32	32	32	mA
		XCZU5	32	32	32	32	32	mA
		XCZU6	33	33	33	33	33	mA
		XCZU7	56	56	56	56	56	mA
I _{CCAUX_IOQ}	Quiescent V _{CCAUX_IO} supply current.	XCZU9	33	33	33	33	33	mA
	_	XCZU11	56	56	56	56	56	mA
		XCZU15	33	33	33	33	33	mA
		XCZU17	74	74	74	74	74	mA
		XCZU19	74	74	74	74	74	mA
		XAZU2	N/A	N/A	26	N/A	26	mA
		XAZU3	N/A	N/A	26	N/A	26	mA

Table 9: Typical Quiescent Supply Current(1)(2)(3)(4) (Cont'd)

			Speed Grade and V _{CCINT} Operating Voltages					I India
Symbol	Description	Device	0.90V	0.85V		0.72V		Units
			-3	-2	-1	-2	-1	
		XCZU2	N/A	6	6	6	6	mA
		XCZU3	N/A	6	6	6	6	mA
		XCZU4	9	9	9	9	9	mA
		XCZU5	9	9	9	9	9	mA
	Quiescent V _{CCBRAM} supply current.	XCZU6	25	24	24	24	24	mA
		XCZU7	16	15	15	15	15	mA
I _{CCBRAMQ}		XCZU9	25	24	24	24	24	mA
		XCZU11	23	22	22	22	22	mA
		XCZU15	29	28	28	28	28	mA
		XCZU17	37	35	35	35	35	mA
		XCZU19	37	35	35	35	35	mA
		XAZU2	N/A	N/A	6	N/A	6	mA
		XAZU3	N/A	N/A	6	N/A	6	mA

- 1. Typical values are specified at nominal voltage, 85° C junction temperatures (T_{j}) with single-ended Select IO^{TM} resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at www.xilinx.com/power) to estimate static power consumption for conditions or supplies other than those specified.
- 4. Typical values depend upon your configuration. To accurately estimate all PS supply currents, use the interactive XPE spreadsheet tool.

Power Supply Sequencing

PS Power-On/Off Power Supply Sequencing

The low-power domain (LPD) must operate before the full-power domain (FPD) can function. The low-power and full-power domains can be powered simultaneously. The PS_POR_B input must be asserted to GND during the power-on sequence (see Table 37). The FPD (when used) must be powered before PS_POR_B is released.

To achieve minimum current draw and ensure that the I/Os are 3-stated at power-on, the recommended power-on sequence for the low-power domain (LPD) is listed. The recommended power-off sequence is the reverse of the power-on sequence.

- 1. V_{CC PSINTLP}
- 2. $V_{CC\ PSAUX}$, $V_{CC\ PSADC}$, and $V_{CC\ PSPLL}$ in any order or simultaneously.
- 3. V_{CCO PSIO}

To achieve minimum current draw and ensure that the I/Os are 3-stated at power-on, the recommended power-on sequence for the full-power domain (FPD) is listed. The recommended power-off sequence is the reverse of the power-on sequence.

- 1. $V_{CC\ PSINTEP}$ and $V_{CC\ PSINTEP\ DDR}$ driven from the same supply source.
- 2. V_{PS MGTRAVCC} and V_{CC PSDDR PLL} in any order or simultaneously.
- 3. $V_{PS_MGTRAVTT}$ and $V_{CCO\ PSDDR}$ in any order or simultaneously.

PL Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT_IO}/V_{CCBRAM} , V_{CCINT_VCU} , V_{CCAUX}/V_{CCAUX_IO} , and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCINT_IO}/V_{CCBRAM} have the same recommended voltage levels, they can be powered by the same supply and ramped simultaneously. V_{CCINT_IO} must be connected to V_{CCBRAM} . If V_{CCAUX}/V_{CCAUX_IO} and V_{CCO} have the same recommended voltage levels, they can be powered by the same supply and ramped simultaneously. V_{CCAUX} and V_{CCAUX_IO} must be connected together. V_{CCADC} and V_{REF} can be powered at any time and have no power-up sequencing requirements.

The recommended power-on sequence to achieve minimum current draw for the GTH or GTY transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVTT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from $V_{MGTAVTT}$ can be higher than specifications during power-up and power-down.

PS-PL Power Sequencing

The PS and PL power supplies are fully independent. All PS power supplies can be powered before or after any PL power supplies. The PS and PL power regions are isolated to prevent damage.

Power Supply Requirements

Table 10 shows the minimum current, in addition to I_{CCQ} maximum, required by each Zynq UltraScale+ device for proper power-on and configuration. If the current minimums shown in Table 10 are met, the device powers on after all supplies have passed through their power-on reset threshold voltages. The device must not be configured until after V_{CCINT} is applied. Once initialized and configured, use the Xilinx Power Estimator (XPE) tools to estimate current drain on these supplies.

Table 10: Power-on Current by Device (1)

I _{CC} Min =	I _{CCQ} +	XCZU2 XAZU2	XCZU3 XAZU3	XCZU4	XCZU5	XCZU6	XCZU7	XCZU9	XCZU11	XCZU15	XCZU17	XCZU19	Units
I _{CCINTMIN}	I _{CCINTQ} +	464	464	770	770	1800	1514	1800	1961	2242	3433	3433	mA
I _{CCINT_IOMIN} + I _{CCBRAMMIN}	I _{CCBRAMQ} + I _{CCINT_IOQ} +	155	155	257	257	600	505	600	654	748	1145	1145	mA
I _{CCOMIN}	I _{CCOQ} +	50	50	50	50	50	50	50	55	63	96	96	mA
I _{CCAUXMIN} + I _{CCAUX_IOMIN}	I _{CCAUXQ} + I _{CCAUX_IOQ} +	111	111	386	386	650	362	650	709	810	1240	1240	mA

Table 11 shows the power supply ramp time.

Table 11: Power Supply Ramp Time

Symbol	Description	Min	Max	Units
T _{VCCINT}	Ramp time from GND to 95% of V _{CCINT} .	0.2	40	ms
T _{VCCINT_IO}	Ramp time from GND to 95% of V _{CCINT_IO} .	0.2	40	ms
T _{VCCINT_VCU}	Ramp time from GND to 95% of V _{CCINT_VCU} .	0.2	40	ms
T _{VCCO}	Ramp time from GND to 95% of V_{CCO} .	0.2	40	ms
T _{VCCAUX}	Ramp time from GND to 95% of V _{CCAUX} .	0.2	40	ms
T _{VCCBRAM}	Ramp time from GND to 95% of V _{CCBRAM} .	0.2	40	ms
T _{MGTAVCC}	Ramp time from GND to 95% of V _{MGTAVCC} .	0.2	40	ms
T _{MGTAVTT}	Ramp time from GND to 95% of V _{MGTAVTT} .	0.2	40	ms
T _{MGTVCCAUX}	Ramp time from GND to 95% of V _{MGTVCCAUX} .	0.2	40	ms
T _{VCC_PSINTFP}	Ramp time from GND to 95% of V _{CC_PSINTFP} .	0.2	40	ms
T _{VCC_PSINTLP}	Ramp time from GND to 95% of V _{CC_PSINTLP} .	0.2	40	ms
T _{VCC_PSAUX}	Ramp time from GND to 95% of V _{CC_PSAUX} .	0.2	40	ms
T _{VCC_PSINTFP_DDR}	Ramp time from GND to 95% of V _{CC_PSINTFP_DDR} .	0.2	40	ms
T _{VCC_PSADC}	Ramp time from GND to 95% of V _{CC_PSADC} .	0.2	40	ms
T _{VCC_PSPLL}	Ramp time from GND to 95% of V _{CC_PSPLL} .	0.2	40	ms
T _{PS_MGTRAVCC}	Ramp time from GND to 95% of V _{CC_MGTRAVCC} .	0.2	40	ms

Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at <u>www.xilinx.com/power</u>) to estimate power-on current for all supplies.

Table 11: Power Supply Ramp Time (Cont'd)

Symbol	Description	Min	Max	Units
T _{PS_MGTRAVTT}	Ramp time from GND to 95% of V _{CC_MGTRAVTT} .	0.2	40	ms
T _{VCCO_PSDDR}	Ramp time from GND to 95% of V _{CCO_PSDDR} .	0.2	40	ms
T _{VCC_PSDDR_PLL}	Ramp time from GND to 95% of V _{CC_PSDDR_PLL} .	0.2	40	ms
T _{VCCO_PSIO}	Ramp time from GND to 95% of V _{CCO_PSIO} .	0.2	40	ms

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

PS I/O Levels

Table 12: PS MIO and CONFIG DC Input and Output Levels (1)

1/0	I/O V _{IL}		V	′ін	V_{OL}	V _{OH}	I _{OL}	I _{OH}
Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
LVCMOS33	-0.300	0.800	2.000	V _{CCO_PSIO}	0.40	2.40	12	-12
LVCMOS25	-0.300	0.700	1.700	$V_{CCO_PSIO} + 0.30$	0.70	1.70	12	-12
LVCMOS18	-0.300	35% V _{CCO_PSIO}	65% V _{CCO_PSIO}	$V_{CCO_PSIO} + 0.30$	0.45	V _{CCO_PSIO} - 0.45	12	-12

Notes:

1. Tested according to relevant specifications.

Table 13: PS DDR DC Input and Output Levels (1)

DDR	V _{IL}		VI	Н	V _{OL} ⁽²⁾	V _{OH} ⁽²⁾	I _{OL}	I _{OH}
Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
DDR4	0.000	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO_PSDDR}	0.8 x V _{CCO_PSDDR} - 0.150	0.8 x V _{CCO_PSDDR} + 0.150	10	-0.1
LPDDR4	0.000	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO_PSDDR}	0.3 x V _{CCO_PSDDR} - 0.150	0.3 x V _{CCO_PSDDR} + 0.150	0.1	-10
DDR3	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO_PSDDR}	0.5 x V _{CCO_PSDDR} - 0.175	0.5 x V _{CCO_PSDDR} + 0.175	8	-8
LPDDR3	0.000	V _{REF} - 0.100	V _{REF} + 0.100	V _{CCO_PSDDR}	0.5 x V _{CCO_PSDDR} - 0.150	0.5 x V _{CCO_PSDDR} + 0.150	8	-8
DDR3L	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO_PSDDR}	0.5 x V _{CCO_PSDDR} - 0.150	0.5 x V _{CCO_PSDDR} + 0.150	8	-8

- 1. Tested according to relevant specifications.
- 2. DDR4 V_{OL}/V_{OH} specifications are only applicable for DQ/DQS pins.

PL I/O Levels

Table 14: SelectIO DC Input and Output Levels For HD I/O Banks (1)(2)

1/0		V _{IL}	V	IН	V _{OL}	V _{OH}	I _{OL}	I _{OH}
Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	0.400	V _{CCO} - 0.400	8.0	-8.0
HSTL_I_18	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	0.400	V _{CCO} - 0.400	8.0	-8.0
HSUL_12	-0.300	V _{REF} - 0.130	$V_{REF} + 0.130$	$V_{CCO} + 0.300$	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	$V_{CCO} + 0.300$	0.400	$V_{CCO} - 0.400$	Note 3	Note 3
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	$V_{CCO} + 0.300$	0.450	$V_{CCO} - 0.450$	Note 4	Note 4
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	$V_{CCO} + 0.300$	0.450	V _{CCO} - 0.450	Note 4	Note 4
LVCMOS25	-0.300	0.700	1.700	$V_{CCO} + 0.300$	0.400	$V_{CCO} - 0.400$	Note 4	Note 4
LVCMOS33	-0.300	0.800	2.000	3.400	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVTTL	-0.300	0.800	2.000	3.400	0.400	2.400	Note 4	Note 4
SSTL12	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	V _{CCO} /2 – 0.150	$V_{CCO}/2 + 0.150$	14.25	-14.25
SSTL135	-0.300	V _{REF} - 0.090	$V_{REF} + 0.090$	$V_{CCO} + 0.300$	V _{CCO} /2 – 0.150	$V_{CCO}/2 + 0.150$	8.9	-8.9
SSTL135_II	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	$V_{CCO} + 0.300$	V _{CCO} /2 – 0.150	$V_{CCO}/2 + 0.150$	13.0	-13.0
SSTL15	-0.300	V _{REF} - 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	V _{CCO} /2 – 0.175	$V_{CCO}/2 + 0.175$	8.9	-8.9
SSTL15_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	V _{CCO} /2 – 0.175	$V_{CCO}/2 + 0.175$	13.0	-13.0
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	$V_{CCO} + 0.300$	V _{CCO} /2 - 0.470	$V_{CCO}/2 + 0.470$	8.0	-8.0
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	$V_{CCO} + 0.300$	V _{CCO} /2 - 0.600	$V_{CCO}/2 + 0.600$	13.4	-13.4

- 1. Tested according to relevant specifications.
- 2. Standards specified using the default I/O standard configuration. For details, see the *UltraScale Architecture SelectIO Resources User Guide* (<u>UG571</u>).
- 3. Supported drive strengths of 4, 8, or 12 mA in HD I/O banks.
- 4. Supported drive strengths of 4, 8, 12, or 16 mA in HD I/O banks.

Table 15: SelectIO DC Input and Output Levels for HP I/O Banks (1)(2)(3)

1/0		V _{IL}	V	IН	V _{OL}	V _{OH}	I _{OL}	I _{OH}
Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	$V_{CCO} + 0.300$	0.400	V _{CCO} - 0.400	5.8	-5.8
HSTL_I_12	-0.300	V _{REF} – 0.080	V _{REF} + 0.080	$V_{CCO} + 0.300$	25% V _{CCO}	75% V _{CCO}	4.1	-4.1
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	6.2	-6.2
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVDCI_15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	7.0	-7.0
LVDCI_18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	7.0	-7.0
SSTL12	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	$V_{CCO}/2 + 0.150$	8.0	-8.0
SSTL135	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	$V_{CCO} + 0.300$	V _{CCO} /2 - 0.150	$V_{CCO}/2 + 0.150$	9.0	-9.0
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 – 0.175	V _{CCO} /2 + 0.175	10.0	-10.0
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.470	$V_{CCO}/2 + 0.470$	7.0	-7.0
MIPI_DPHY_ DCI_LP ⁽⁶⁾	-0.300	0.550	0.880	V _{CCO} + 0.300	0.050	1.100	0.01	-0.01

- 1. Tested according to relevant specifications.
- Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture SelectIO Resources User Guide (UG571).
- 3. POD10 and POD12 DC input and output levels are shown in Table 16, Table 20, Table 21, and Table 22.
- 4. Supported drive strengths of 2, 4, 6, or 8 mA in HP I/O banks.
- 5. Supported drive strengths of 2, 4, 6, 8, or 12 mA in HP I/O banks.
- 6. Low-power option for MIPI_DPHY_DCI.

Table 16: DC Input Levels for Single-ended POD10 and POD12 I/O Standards(1)(2)

1/0	V	IL	V	IH .
Standard	V, Min	V, Max	V, Min	V, Max
POD10	-0.300	V _{REF} – 0.068	V _{REF} + 0.068	V _{CCO} + 0.300
POD12	-0.300	V _{REF} – 0.068	V _{REF} + 0.068	V _{CCO} + 0.300

- 1. Tested according to relevant specifications.
- 2. Standards specified using the default I/O standard configuration. For details, see the *UltraScale Architecture SelectIO Resources User Guide* (UG571).

Table 17: Differential SelectIO DC Input and Output Levels

1/0	V _{ICM} (V) (1)		V _{ID} (V) ⁽²⁾		V _{ILHS} (3)	V _{IHHS} (3)	V _{OCM} (V) ⁽⁴⁾		(4)	V	$V_{OD}(V)^{(5)}$			
Standard	Min	Тур	Max	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
SUB_LVDS ⁽⁸⁾	0.500	0.900	1.300	0.070	_	-	_	-	0.700	0.900	1.100	0.100	0.150	0.200
LVPECL	0.300	1.200	1.425	0.100	0.350	0.600	_	_	_	_	_	_	_	_
SLVS_400_18	0.070	0.200	0.330	0.140	_	0.450	_	_	_	_	_	_	_	_
SLVS_400_25	0.070	0.200	0.330	0.140	_	0.450	_	_	_	_	_	_	_	_
MIPI_DPHY_ DCI_HS ⁽⁹⁾	0.070	_	0.330	0.070	_	_	-0.040	0.460	0.150	0.200	0.250	0.140	0.200	0.270

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q \overline{Q})$.
- 3. V_{IHHS} and V_{ILHS} are the single-ended input high and low voltages, respectively.
- 4. V_{OCM} is the output common mode voltage.
- 5. V_{OD} is the output differential voltage (Q \overline{Q}).
- 6. LVDS_25 is specified in Table 23.
- 7. LVDS is specified in Table 24.
- 8. Only the SUB_LVDS receiver is supported in HD I/O banks.
- 9. High-speed option for MIPI_DPHY_DCI. The V_{ID} maximum is aligned with the standard's specification. A higher V_{ID} is acceptable as long as the V_{IN} specification is also met.

Table 18: Complementary Differential SelectIO DC Input and Output Levels for HD I/O Banks

I/O Standard	VI	_{CM} (V)	(1)	V _{ID} ((V) (2)	V _{OL} (V) (3)	V _{OH} (V) ⁽⁴⁾	I _{OL}	I _{OH}
170 Standard	Min	Тур	Max	Min	Max	Max	Min	mA	mA
DIFF_HSTL_I	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} - 0.400	8.0	-8.0
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	-	0.400	$V_{CCO} - 0.400$	8.0	-8.0
DIFF_HSUL_12	0.300	0.600	0.850	0.100	_	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
DIFF_SSTL12	0.300	0.600	0.850	0.100	-	$(V_{CCO}/2) - 0.150$	$(V_{CCO}/2) + 0.150$	14.25	-14.25
DIFF_SSTL135	0.300	0.675	1.000	0.100	-	$(V_{CCO}/2) - 0.150$	$(V_{CCO}/2) + 0.150$	8.9	-8.9
DIFF_SSTL135_II	0.300	0.675	1.000	0.100	-	$(V_{CCO}/2) - 0.150$	$(V_{CCO}/2) + 0.150$	13.0	-13.0
DIFF_SSTL15	0.300	0.750	1.125	0.100	-	$(V_{CCO}/2) - 0.175$	(V _{CCO} /2) + 0.175	8.9	-8.9
DIFF_SSTL15_II	0.300	0.750	1.125	0.100	-	$(V_{CCO}/2) - 0.175$	$(V_{CCO}/2) + 0.175$	13.0	-13.0
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	-	(V _{CCO} /2) - 0.470	$(V_{CCO}/2) + 0.470$	8.0	-8.0
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	_	$(V_{CCO}/2) - 0.600$	$(V_{CCO}/2) + 0.600$	13.4	-13.4

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage.
- 3. V_{OL} is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

Table 19: Complementary Differential SelectIO DC Input and Output Levels for HP I/O Banks (1)

I/O Standard	V _I	_{CM} (V)	(2)	V _{ID} (V) ⁽³⁾		V _{OL} (V) ⁽⁴⁾	V _{OH} (V) ⁽⁵⁾	I _{OL}	I _{OH}
170 Standard	Min	Тур	Max	Min	Max	Max	Min	mA	mA
DIFF_HSTL_I	0.680	V _{CCO} /2	$(V_{CCO}/2) + 0.150$	0.100	-	0.400	V _{CCO} - 0.400	5.8	-5.8
DIFF_HSTL_I_12	0.400 x V _{CCO}	V _{CCO} /2	0.600 x V _{CCO}	0.100	_	0.250 x V _{CCO}	0.750 x V _{CCO}	4.1	-4.1
DIFF_HSTL_I_18	(V _{CCO} /2) - 0.175	V _{CCO} /2	$(V_{CCO}/2) + 0.175$	0.100	_	0.400	$V_{CCO} - 0.400$	6.2	-6.2
DIFF_HSUL_12	$(V_{CCO}/2) - 0.120$	V _{CCO} /2	$(V_{CCO}/2) + 0.120$	0.100	_	$20\% V_{CCO}$	80% V _{CCO}	0.1	-0.1
DIFF_SSTL12	(V _{CCO} /2) – 0.150	V _{CCO} /2	$(V_{CCO}/2) + 0.150$	0.100	_	$(V_{CCO}/2) - 0.150$	$(V_{CCO}/2) + 0.150$	8.0	-8.0
DIFF_SSTL135	(V _{CCO} /2) – 0.150	V _{CCO} /2	$(V_{CCO}/2) + 0.150$	0.100	_	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	9.0	-9.0
DIFF_SSTL15	(V _{CCO} /2) – 0.175	V _{CCO} /2	$(V_{CCO}/2) + 0.175$	0.100	_	(V _{CCO} /2) - 0.175	$(V_{CCO}/2) + 0.175$	10.0	-10.0
DIFF_SSTL18_I	(V _{CCO} /2) - 0.175	V _{CCO} /2	$(V_{CCO}/2) + 0.175$	0.100	_	(V _{CCO} /2) - 0.470	$(V_{CCO}/2) + 0.470$	7.0	-7.0

- 1. DIFF_POD10 and DIFF_POD12 HP I/O bank specifications are shown in Table 20, Table 21, and Table 22.
- 2. V_{ICM} is the input common mode voltage.
- 3. V_{ID} is the input differential voltage.
- 4. V_{OL} is the single-ended low-output voltage.
- 5. V_{OH} is the single-ended high-output voltage.

Table 20: DC Input Levels for Differential POD10 and POD12 I/O Standards (1)(2)

I/O Standard		V _{ICM} (V)	V _{ID} (V)		
170 Standard	Min	Тур	Max	Min	Max
DIFF_POD10	0.63	0.70	0.77	0.14	_
DIFF_POD12	0.76	0.84	0.92	0.16	-

Notes:

- 1. Tested according to relevant specifications.
- 2. Standards specified using the default I/O standard configuration. For details, see the *UltraScale Architecture SelectIO Resources User Guide* (UG571).

Table 21: DC Output Levels for Single-ended and Differential POD10 and POD12 Standards (1)(2)

Symbol	Description	V _{OUT}	Min	Тур	Max	Units
R _{OL}	Pull-down resistance.	V _{OM_DC} (as described in Table 22)	36	40	44	Ω
R _{OH}	Pull-up resistance.	V _{OM_DC} (as described in Table 22)	36	40	44	Ω

- 1. Tested according to relevant specifications.
- 2. Standards specified using the default I/O standard configuration. For details, see the *UltraScale Architecture SelectIO Resources User Guide* (UG571).

Table 22: Table 21 Definitions for DC Output Levels for POD Standards

Symbol	Description	All Speed Grades	Units
V_{OM_DC}	DC output Mid measurement level (for IV curve linearity).	0.8 x V _{CCO}	V

LVDS DC Specifications (LVDS_25)

The LVDS_25 standard is available in the HD I/O banks. See the *UltraScale Architecture SelectIO Resources User Guide* (UG571) for more information.

Table 23: LVDS_25 DC Specifications

Symbol	DC Parameter	Min	Тур	Max	Units
V _{CCO} ⁽¹⁾	Supply voltage.	2.375	2.500	2.625	V
V _{IDIFF}	Differential input voltage: $(\underline{Q} - \overline{Q})$, $\underline{Q} = \text{High}$ $(\overline{Q} - Q)$, $\overline{Q} = \text{High}$	100	350	600 ⁽²⁾	mV
V _{ICM}	Input common-mode voltage.	0.300	1.200	1.425	V

Notes:

- 1. LVDS_25 in HD I/O banks supports inputs only. LVDS_25 inputs without internal termination have no V_{CCO} requirements. Any V_{CCO} can be chosen as long as the input voltage levels do not violate the *Recommended Operating Condition* (Table 2) specification for the V_{IN} I/O pin voltage.
- 2. Maximum V_{IDIFF} value is specified for the maximum V_{ICM} specification. With a lower V_{ICM} , a higher V_{DIFF} is tolerated only when the recommended operating conditions and overshoot/undershoot V_{IN} specifications are maintained.

LVDS DC Specifications (LVDS)

The LVDS standard is available in the HP I/O banks. See the *UltraScale Architecture SelectIO Resources User Guide* (UG571) for more information.

Table 24: LVDS DC Specifications

Symbol	DC Parameter Conditions		Min	Тур	Max	Units
V _{CCO} ⁽¹⁾	Supply voltage.		1.710	1.800	1.890	V
V _{ODIFF} ⁽²⁾	Differential output voltage: $(Q - \overline{Q})$, $Q = \text{High}$ $(\overline{Q} - Q)$, $\overline{Q} = \text{High}$	$R_T = 100\Omega$ across Q and \overline{Q} signals	247	350	454	mV
V _{OCM} ⁽²⁾	Output common-mode voltage.	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF} (3)	Differential input voltage: $(\underline{Q} - \overline{Q}), \ \underline{Q} = \text{High}$ $(\overline{Q} - Q), \ \overline{Q} = \text{High}$			350	600(3)	mV
V _{ICM_DC} ⁽⁴⁾	Input common-mode voltage (DC coupling).			1.200	1.425	V
V _{ICM_AC} ⁽⁵⁾	Input common-mode voltage (AC coupling).			_	1.100	V

- In HP I/O banks, when LVDS is used with input-only functionality, it can be placed in a bank where the V_{CCO} levels are different from the specified level only if internal differential termination is not used. In this scenario, V_{CCO} must be chosen to ensure the input pin voltage levels do not violate the *Recommended Operating Condition* (Table 2) specification for the V_{IN} I/O pin voltage.
- 2. V_{OCM} and V_{ODIFF} values are for LVDS_PRE_EMPHASIS = FALSE.
- Maximum V_{IDIFF} value is specified for the maximum V_{ICM} specification. With a lower V_{ICM}, a higher V_{DIFF} is tolerated only when the recommended operating conditions and overshoot/undershoot V_{IN} specifications are maintained.
- Input common mode voltage for DC coupled configurations. EQUALIZATION = EQ_NONE (Default).
- External input common mode voltage specification for AC coupled configurations. EQUALIZATION = EQ_LEVEL0, EQ_LEVEL1, EQ_LEVEL2, EQ_LEVEL3, EQ_LEVEL4.

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in the Vivado® Design Suite as outlined in Table 25.

Table 25: Speed Specification Version By Device

2017.4	Device
1.17	XCZU2CG, XCZU2EG, XCZU3CG, XCZU3EG, XCZU4CG, XCZU4EG, XCZU4EV, XCZU5CG, XCZU5EG, XCZU5EG, XCZU5EG, XCZU6CG, XCZU6CG, XCZU7CG, XCZU7EG, XCZU7EV, XCZU9CG, XCZU9EG, XCZU11EG, XCZU15EG, XCZU17EG, XCZU19EG XAZU2EG, XAZU3EG

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Zynq UltraScale+ MPSoC.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 26 correlates the current status of the Zynq UltraScale+ MPSoC on a per speed grade basis. See Table 3 for operating voltages listed by speed grade.

Table 26: Speed Grade Designations by Device

Dovice	Speed Grade, 1	Temperature Ranges,	and V _{CCINT} Operating Voltages
Device	Advance	Preliminary	Production
XCZU2CG			$ \begin{array}{l} -2 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -1 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -2 \text{LE (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{LE (V}_{\text{CCINT}} = 0.72 \text{V),} \\ -1 \text{LI (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{LI (V}_{\text{CCINT}} = 0.72 \text{V)} \end{array} $
XCZU2EG			$ \begin{array}{l} -2 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -1 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -2 \text{LE (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{LE (V}_{\text{CCINT}} = 0.72 \text{V),} \\ -1 \text{LI (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{LI (V}_{\text{CCINT}} = 0.72 \text{V)} \end{array} $
XCZU3CG			$ \begin{array}{l} -2 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -1 \text{E (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{I (V}_{\text{CCINT}} = 0.85 \text{V)} \\ -2 \text{LE (V}_{\text{CCINT}} = 0.85 \text{V), } -2 \text{LE (V}_{\text{CCINT}} = 0.72 \text{V), } \\ -1 \text{LI (V}_{\text{CCINT}} = 0.85 \text{V), } -1 \text{LI (V}_{\text{CCINT}} = 0.72 \text{V)} \end{array} $
XCZU3EG			$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V), \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \end{array} $
XCZU4CG	-2LE $(V_{CCINT} = 0.85V)$ -1LI $(V_{CCINT} = 0.85V)$ -2LE $(V_{CCINT} = 0.72V)$ -1LI $(V_{CCINT} = 0.72V)$		-2E (V _{CCINT} = 0.85V), -2I (V _{CCINT} = 0.85V) -1E (V _{CCINT} = 0.85V), -1I (V _{CCINT} = 0.85V)
XCZU4EG	-3E (V _{CCINT} = 0.90V) -2LE (V _{CCINT} = 0.85V) -1LI (V _{CCINT} = 0.85V) -2LE (V _{CCINT} = 0.72V) -1LI (V _{CCINT} = 0.72V)		-2E (V _{CCINT} = 0.85V), -2I (V _{CCINT} = 0.85V) -1E (V _{CCINT} = 0.85V), -1I (V _{CCINT} = 0.85V)
XCZU4EV	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E (V _{CCINT} = 0.85V), -2I (V _{CCINT} = 0.85V) -1E (V _{CCINT} = 0.85V), -1I (V _{CCINT} = 0.85V)
XCZU5CG	-2LE $(V_{CCINT} = 0.85V)$ -1LI $(V_{CCINT} = 0.85V)$ -2LE $(V_{CCINT} = 0.72V)$ -1LI $(V_{CCINT} = 0.72V)$		-2E (V _{CCINT} = 0.85V), -2I (V _{CCINT} = 0.85V) -1E (V _{CCINT} = 0.85V), -1I (V _{CCINT} = 0.85V)

Table 26: Speed Grade Designations by Device (Cont'd)

Dovice	Speed Grade,	Геmperature Ranges,	and V _{CCINT} Operating Voltages
Device	Advance	Preliminary	Production
XCZU5EG	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$)
XCZU5EV	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$)
XCZU6CG			$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \end{array} $
XCZU6EG	-3E (V _{CCINT} = 0.90V)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.85V$), -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.85V$), -1LI ($V_{CCINT} = 0.72V$)
XCZU7CG	-2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$)
XCZU7EG	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$)
XCZU7EV	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E ($V_{CCINT} = 0.85V$), -2I ($V_{CCINT} = 0.85V$) -1E ($V_{CCINT} = 0.85V$), -1I ($V_{CCINT} = 0.85V$)
XCZU9CG			$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \end{array} $
XCZU9EG	-3E (V _{CCINT} = 0.90V)		$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \end{array} $
XCZU11EG	-3E ($V_{CCINT} = 0.90V$) -2LE ($V_{CCINT} = 0.85V$) -1LI ($V_{CCINT} = 0.85V$) -2LE ($V_{CCINT} = 0.72V$) -1LI ($V_{CCINT} = 0.72V$)		-2E (V _{CCINT} = 0.85V) -2I (V _{CCINT} = 0.85V) -1E (V _{CCINT} = 0.85V) -1I (V _{CCINT} = 0.85V)

Table 26: Speed Grade Designations by Device (Cont'd)

Dovice	Speed Grade, Te	mperature Ranges, a	and V _{CCINT} Operating Voltages
Device	Advance	Preliminary	Production
XCZU15EG	-3E (V _{CCINT} = 0.90V)		$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \\ \end{array} $
XCZU17EG	-3E (V _{CCINT} = 0.90V)		$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \\ \end{array} $
XCZU19EG	-3E (V _{CCINT} = 0.90V)		$ \begin{array}{l} -2 E \; (V_{CCINT} = 0.85 V), \; -2 I \; (V_{CCINT} = 0.85 V) \\ -1 E \; (V_{CCINT} = 0.85 V), \; -1 I \; (V_{CCINT} = 0.85 V) \\ -2 LE \; (V_{CCINT} = 0.85 V), \; -2 LE \; (V_{CCINT} = 0.72 V) \\ -1 LI \; (V_{CCINT} = 0.85 V), \; -1 LI \; (V_{CCINT} = 0.72 V) \\ \end{array} $
XAZU2EG			-1I $(V_{CCINT} = 0.85V)$ -1Q $(V_{CCINT} = 0.85V)$ -1LI $(V_{CCINT} = 0.72V)$
XAZU3EG			-1I $(V_{CCINT} = 0.85V)$ -1Q $(V_{CCINT} = 0.85V)$ -1LI $(V_{CCINT} = 0.72V)$

^{1.} The lowest power -1L and -2L devices, where $V_{CCINT} = 0.72V$, are listed in the Vivado Design Suite as -1LV and -2LV respectively.

Production Silicon and Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 27 lists the production released Zynq UltraScale+ MPSoC, speed grade, and the minimum corresponding supported speed specification version and Vivado software revisions. The Vivado software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 27: Zynq UltraScale+ MPSoC Device Production Software and Speed Specification Release

	Speed Grade and V _{CCINT} Operating Voltages									
Device	0.90V		0.85	/			0.72V			
	-3	-2	-1	-2L	-1L	-2L	-1L			
XCZU2CG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU2EG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU3CG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU3EG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU4CG	N/A	Vivado tools	2017.4 v1.17							
XCZU4EG		Vivado tools	2017.4 v1.17							
XCZU4EV		Vivado tools	2017.4 v1.17							
XCZU5CG	N/A	Vivado tools	2017.4 v1.17							
XCZU5EG		Vivado tools	2017.4 v1.17							
XCZU5EV		Vivado tools	2017.4 v1.17							
XCZU6CG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU6EG		Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU7CG	N/A	Vivado tools	2017.4 v1.17							
XCZU7EG		Vivado tools	2017.4 v1.17							
XCZU7EV		Vivado tools	2017.4 v1.17							
XCZU9CG	N/A	Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU9EG		Vivado tools	2017.1 v1.10		Vivado tools	2017.3.1 v1	.16			
XCZU11EG		Vivado tools	2017.3 v1.15							
XCZU15EG		Vivado tools	2017.2 v1.12		Vivado tools	2017.3.1 v1	.16			
XCZU17EG		Vivado tools	2017.2.1 v1.13		Vivado tool	s 2017.4 v1.	17			
XCZU19EG		Vivado tools	2017.2.1 v1.13		Vivado tools	s 2017.4 v1.	17			
XAZU2EG	N/A	N/A	Vivado tools 2017.3 v1.15	N/A	N/A	N/A	Vivado tools 2017.3.1 v1.16			
XAZU3EG	N/A	N/A	Vivado tools 2017.3 v1.15	N/A	N/A	N/A	Vivado tools 2017.3.1 v1.16			

- 1. See Table 3 for the complete list of operating voltages by speed grade.
- 2. Blank entries indicate a device and/or speed grade in Advance or Preliminary status.

Processor System (PS) Performance Characteristics

Table 28: Processor Performance

Symbol	Description	•	Units		
	Description	-3	-2	-1	Units
F _{APUMAX}	Maximum APU clock frequency.	1500	1333	1200	MHz
F _{RPUMAX}	Maximum RPU clock frequency.	600	533	500	MHz
F _{GPUMAX}	Maximum GPU clock frequency.	667	600	600	MHz

Table 29: Configuration and Security Unit Performance

Symbol	Description		Units		
Symbol	Description	-3	-2	-1	Units
F _{CSUCIBMAX}	Maximum CSU crypto interface block frequency.	400	400	400	MHz

Table 30: PS DDR Performance

			Speed Grade						
Memory Standard	Package	DRAM Type	-3		-2		-1		Units
o tanaara			Min	Max	Min	Max	Min	Max	
		Single rank component	664	2400	664	2400	664	2400	Mb/s
	All FFV packages, FBVB900, and SFVC784	1 rank DIMM ⁽¹⁾⁽²⁾	664	2133	664	2133	664	2133	Mb/s
	. 272700, and 0. 7070.	2 rank DIMM ⁽¹⁾⁽³⁾	664	1866	664	1866	664	1866	Mb/s
		Single rank component	664	2133	664	2133	664	2133	Mb/s
DDR4 ⁽⁴⁾	SFVA625	1 rank DIMM ⁽¹⁾⁽²⁾	664	1866	664	1866	664	1866	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1600	664	1600	664	1600	Mb/s
	SBVA484	Single rank component	664	1066	664	1066	664	1066	Mb/s
		1 rank DIMM ⁽¹⁾⁽²⁾	664	1066	664	1066	664	1066	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1066	664	1066	664	1066	Mb/s
	All FFV packages,	Single die package ⁽⁷⁾	664	2400	664	2400	664	2400	Mb/s
	FBVB900 and SFVC784	Dual die package ⁽⁶⁾⁽⁷⁾	664	2133	664	2133	664	2133	Mb/s
LPDDR4 ⁽⁵⁾	SFVA625	Single die package ⁽⁷⁾	664	2133	664	2133	664	2133	Mb/s
LPDDR4(9)	3FVA025	Dual die package ⁽⁶⁾⁽⁷⁾	664	1866	664	1866	664	1866	Mb/s
	SBVA484	Single die package ⁽⁷⁾	664	1066	664	1066	664	1066	Mb/s
	JDVA404	Dual die package ⁽⁶⁾⁽⁷⁾	664	1066	664	1066	664	1066	Mb/s

Table 30: PS DDR Performance (Cont'd)

				:	Speed	Grade	;		
Memory Standard	Package	DRAM Type	-	3	-	2	-	1	Units
Standard			Min	Max	Min	Max	Min	Max	
		Single rank component	664	2133	664	2133	664	2133	Mb/s
	All FFV packages, FBVB900 and SFVC784	1 rank DIMM ⁽¹⁾⁽²⁾	664	1866	664	1866	664	1866	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1600	664	1600	664	1600	Mb/s
		Single rank component	664	1866	664	1866	664	1866	Mb/s
DDR3	SFVA625	1 rank DIMM ⁽¹⁾⁽²⁾	664	1600	664	1600	664	1600	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1333	664	1333	664	1333	Mb/s
		Single rank component	664	1066	664	1066	664	1066	Mb/s
	SBVA484	1 rank DIMM ⁽¹⁾⁽²⁾	664	1066	664	1066	664	1066	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1066	664	1066	664	1066	Mb/s
	All FFV packages, FBVB900 and SFVC784	Single rank component	664	1866	664	1866	664	1866	Mb/s
		1 rank DIMM ⁽¹⁾⁽²⁾	664	1600	664	1600	664	1600	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1333	664	1333	664	1333	Mb/s
	SFVA625	Single rank component	664	1600	664	1600	664	1600	Mb/s
DDR3L		1 rank DIMM ⁽¹⁾⁽²⁾	664	1333	664	1333	664	1333	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1066	664	1066	664	1066	Mb/s
		Single rank component	664	1066	664	1066	664	1066	Mb/s
	SBVA484	1 rank DIMM ⁽¹⁾⁽²⁾	664	1066	664	1066	664	1066	Mb/s
		2 rank DIMM ⁽¹⁾⁽³⁾	664	1066	664	1066	664	1066	Mb/s
	All FFV packages,	Single die package ⁽⁸⁾	664	1600	664	1600	664	1600	Mb/s
	FBVB900 and SFVC784	Dual die package ⁽⁸⁾	664	1333	664	1333	664	1333	Mb/s
LPDDR3	SFVA625	Single die package ⁽⁸⁾	664	1333	664	1333	664	1333	Mb/s
LPDDK3	SFVA020	Dual die package ⁽⁸⁾	664	1066	664	1066	664	1066	Mb/s
	SBVA484	Single die package ⁽⁸⁾	664	1066	664	1066	664	1066	Mb/s
	SDVA404	Dual die package ⁽⁸⁾	664	1066	664	1066	664	1066	Mb/s

- 1. Dual in-line memory module (DIMM) includes RDIMM, SODIMM, and UDIMM.
- 2. Includes: 1 rank 1 slot, dual-die package 2 rank.
- 3. Includes: 2 rank 1 slot.
- 4. The JEDEC JESD79-4B standard for DDR4 SDRAM limits the maximum t_{CK} to 1.6 ns. Because of this limitation, Xilinx recommends working with your DRAM vendor to verify support for data rates at or less than 1066 Mb/s.
- 5. Byte-mode LPDDR4 devices are not supported.
- 6. Dual die package includes single die with ECC.
- 7. LPDDR4 support is only available as a 32-bit interface.
- 8. 64-bit LPDDR3 interface performance values are defined without ECC support.

Table 31: PS NAND NV-DDR Synchronous Performance

Memory Standard	Mode	-3	-2	-1	Units
		Max	Max	Max	
	5	200	200	200	Mb/s
	4	166.6	166.6	166.6	Mb/s
NV-DDR ⁽¹⁾	3	133.3	133.3	133.3	Mb/s
NV-DDR	2	100	100	100	Mb/s
	1	66.6	66.6	66.6	Mb/s
	0	40	40	40	Mb/s

Table 32: PS NAND SDR Asynchronous Performance

			Speed Grade		
Memory Standard	Mode	-3	-2	-1	Units
		Max	Max	Max	
	5	50	50	50	Mb/s
	4	40	40	40	Mb/s
SDR ⁽¹⁾ (2)	3	33.3	33.3	33.3	Mb/s
SDR(1)(2)	2	28.5	28.5	28.5	Mb/s
	1	20	20	20	Mb/s
	0	10	10	10	Mb/s

Table 33: PS-PL Interface Performance

Symbol	Description	Min	Max	Units
F _{EMIOGEMCLK}	EMIO gigabit Ethernet controller maximum frequency.	-	125	MHz
F _{EMIOSDCLK}	EMIO SD controller maximum frequency.	_	25	MHz
F _{EMIOSPICLK}	EMIO SPI controller maximum frequency.	-	25	MHz
F _{EMIOTRACECLK}	EMIO trace controller maximum frequency.	-	125	MHz
F _{FCIDMACLK}	Flow control interface DMA maximum frequency.	-	333	MHz
F _{AXICLK}	Maximum AXI interface performance.	-	333	MHz
F _{DPLIVEVIDEO}	DisplayPort controller live video interface maximum frequency.	-	300	MHz

^{1.} The PS NAND memory controller interface for NV-DDR switching characteristics meets the requirements of the ONFI 3.1 specification.

^{1.} The PS NAND memory controller interface for SDR switching characteristics meets the requirements of the ONFI 3.1 specification.

^{2.} The NAND controller reference clock frequency maximum is 83 MHz.

PS Switching Characteristics

PS Clocks

Table 34: PS Reference Clock Requirements (1)

Symbol	Description	Min	Тур	Max	Units
T _{RMSJPSCLK}	PS_REF_CLK input RMS clock jitter.	-	-	3	ps
T _{PJPSCLK}	PS_REF_CLK input period jitter (peak-to-peak). Number of clock cycles = 10,000	_	_	50	ps
T _{DCPSCLK}	PS_REF_CLK duty cycle.	45	-	55	%
T _{RFPSCLK}	PS_REF_CLK rise time (20%-80%) and fall time (80%-20%).	_	_	2.22	ns
F _{PSCLK}	PS_REF_CLK frequency.	27	-	60	MHz

Notes:

Table 35: PS RTC Crystal Requirements (1)

Symbol	Description	Min	Тур	Max	Units
F _{XTAL}	Parallel resonance crystal frequency.	_	32.8	_	KHz
T _{FTXTAL}	Frequency tolerance.	-20	-	20	ppm
C _{XTAL}	Load capacitance for crystal parallel resonance.	_	12.5	_	pF
R _{ESR}	Crystal ESR (16.8 and 19.2 MHz).	_	70	_	ΚΩ
C _{SHUNT}	Crystal shunt capacitance.	-	1.4	_	pF

Table 36: PS PLL Switching Characteristics

Symbol	Description		Speed Grade				
Symbol		-3	-2	-1	— Units		
F _{LOCKPSPLL}	PLL maximum lock time.	100	100	100	μs		
F _{PSPLLMAX}	PLL maximum output frequency.	1600	1600	1600	MHz		
F _{PSPLLMIN}	PLL minimum output frequency.	750	750	750	MHz		
F _{PSPLLVCOMAX}	PLL maximum VCO frequency.	3000	3000	3000	MHz		
F _{PSPLLVCOMIN}	PLL minimum VCO frequency.	1500	1500	1500	MHz		

The values in this table are applicable to alternative PS reference clock inputs ALT_REF_CLK, AUX_REF_CLK, and VIDEO_CLK.

^{1.} Required board components: Feedback resistor = 4.7 M Ω , PCB and pad capacitance = 1.5 pF, C₁ and C₂ capacitance = 21 pF.

Table 37: PS Reset Assertion Timing Requirements

Symbol	Description	Min	Тур	Max	Units
T _{PSPOR}	Required PS_POR_B assertion time. (1)	10	-	-	μs
T _{PSRST}	Required PS_SRST_B assertion time.	3	_	_	PS_REF_CLK Clock Cycles

Table 38: PS Clocks Switching Characteristics

Symbol	Description	5	Units		
Symbol	Description	-3	-2	-1	Units
F _{TOPSW_MAINMAX}	FPD AXI interconnect clock maximum frequency.	600	533	533	MHz
F _{TOPSW_LSBUSMAX}	FPD APB bus clock maximum frequency.	100	100	100	MHz
F _{GDMAMAX}	FPD-DMA controller clock maximum frequency.	600	600	600	MHz
F _{DPDMAMAX}	DisplayPort controller clock maximum frequency.	600	600	600	MHz
F _{LPD_SWITCH_CTRLMAX}	LPD AXI interconnect clock maximum frequency.	600	500	500	MHz
F _{LPD_LSBUS_CTRLMAX}	LPD APB bus clock maximum frequency.	100	100	100	MHz
F _{ADMAMAX}	LPD-DMA maximum frequency.	600	500	500	MHz
F _{APLL_TO_LPDMAX}	APLL_TO_LPD maximum frequency.	533	533	533	MHz
F _{DPLL_TO_LPDMAX}	DPLL_TO_LPD maximum frequency.	533	533	533	MHz
F _{VPLL_TO_LPDMAX}	VPLL_TO_LPD maximum frequency.	533	533	533	MHz
F _{IOPLL_TO_LPDMAX}	IOPLL_TO_LPD maximum frequency.	533	533	533	MHz
F _{RPLL_TO_FPDMAX}	RPLL_TO_FPD maximum frequency.	533	533	533	MHz

PS_POR_B must be asserted Low at power-up and continue to be asserted for a duration of T_{PSPOR} after all the PS supply voltages reach minimum levels. PS_POR_B must be asserted Low for the duration of T_{POR} when the PS and PL power-up at the same time and the application uses both the PS and PL after power-up.

PS Configuration

Table 39: Processor Configuration Access Port Switching Characteristics

		,	s	Units			
Symbol	Description	0.90V	0.90V 0.85V			0.72V	
		-3	-2	-1	-2	-1	
F _{PCAPCK}	Maximum processor configuration access port (PCAP) frequency.	200	200	200	150	150	MHz

Table 40: Boundary-Scan Port Switching Characteristics

		Speed Grade and V _{CCINT} Operating Voltages					Units	
Symbol	Description	0.90V 0.8		0.85 V		0.72V		
		-3	-2	-1	-2	-1		
F _{TCK}	JTAG clock maximum frequency.	25	25	25	15	15	MHz	
T_{TAPTCK}/T_{TCKTAP}	TMS and TDI setup and hold.	4.0/2.0	4.0/2.0	4.0/2.0	5.0/2.0	5.0/2.0	ns, Min	
T _{TCKTDO}	TCK falling edge to TDO output.	16.1	16.1	16.1	24	24	ns, Max	

Notes:

1. The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength.

PS Interface Specifications

PS Quad-SPI Controller Interface

Table 41: Generic Quad-SPI Interface(1)

Symbol	Description	Load Conditions ⁽²⁾	Min	Max	Units
	evice clock frequency operating at 150 MHz. BV I/O standard.	Loopback enab	led. LV	CMOS 1	.8V or
T _{DCQSPICLK1}	Quad-SPI clock duty cycle.	15 pF	45	55	%
T _{QSPISSSCLK1}	Slave select asserted to next clock edge.	15 pF	5.0	_	ns
T _{QSPISCLKSS1}	Clock edge to slave select deasserted.	15 pF	5.0	_	ns
T _{QSPICKO1}	Clock to output delay, all outputs.	15 pF	2.9	4.5	ns
T _{QSPIDCK1}	Setup time, all inputs.	15 pF	0.9	_	ns
T _{QSPICKD1}	Hold time, all inputs.	15 pF	1.0	_	ns
F _{QSPICLK1}	Quad-SPI device clock frequency.	15 pF		150	MHz
F _{QSPIREFCLK1}	Quad-SPI reference clock frequency.	15 pF		300	MHz
	evice clock frequency operating at 100 MHz. BV I/O standard.	Loopback enab	led. LV	CMOS 1	.8V or
T	Overal CDI alerate determinate	15 pF	45	55	%
T _{DCQSPICLK2}	Quad-SPI clock duty cycle.	30 pF 15 pF	45	55	%
т	Clave calcut asserted to payt alack adds	15 pF	5.0	_	ns
T _{QSPISSSCLK2}	Slave select asserted to next clock edge.	30 pF	5.0	_	ns
т	Clask adds to clave calcut decounted	15 pF 5.0 –	_	ns	
T _{QSPISCLKSS2}	Clock edge to slave select deasserted.	30 pF	5.0	_	ns
-		15 pF	3.2	7.4	ns
T _{QSPICKO2}	Clock to output delay, all outputs.	30 pF	3.2	7.4	ns
т	Cotum times all impute	15 pF	2.3	_	ns
T _{QSPIDCK2}	Setup time, all inputs.	30 pF	2.3	_	ns
т	Hold time, all inputs	15 pF	0.0	_	ns
T _{QSPICKD2}	Hold time, all inputs.	30 pF	0.0	_	ns
Г	Ound CDI device cleak fraguency	15 pF	-	100	MHz
F _{QSPICLK2}	Quad-SPI device clock frequency.	30 pF	_	100	MHz
г	Overal CDI reference along for more	15 pF	-	200	MHz
F _{QSPIREFCLK2}	Quad-SPI reference clock frequency.	30 pF	_	200	MHz

Table 41: Generic Quad-SPI Interface(1) (Cont'd)

Symbol	Description	Load Conditions ⁽²⁾	Min	Max	Units
Quad-SPI destandard.	evice clock frequency operating at 40 MHz.	Loopback disable	ed. LVC	MOS 1.	8V I/O
т	Quad-SPI clock duty cycle.	15 pF	45	55	%
T _{DCQSPICLK3}	Quad-3FT clock duty cycle.	30 pF	45	55	%
т	Slave select asserted to next clock edge. (3)	15 pF	7.0	_	ns
T _{QSPISSSCLK3}	Slave select asserted to flext clock edge.	30 pF	7.0	_	ns
т	Clock edge to slave select deasserted.	15 pF	7.0	_	ns
T _{QSPISCLKSS3}	Clock edge to slave select deasselted.	30 pF	7.0	_	ns
т	Clock to output dolay, all outputs	15 pF		ns	
T _{QSPICKO3}	Clock to output delay, all outputs.	30 pF	5.2	14.8	ns
т	Saturatime all inputs	15 pF 13.4 - 30 pF 14.1 - 15 pF 0.0 - 30 pF 0.0 - 30 pF - 160 30 pF - 160 15 pF - 40 30 pF - 40	ns		
T _{QSPIDCK3}	Setup time, all inputs.	30 pF	14.1	_	ns
т	Hold time, all inputs	15 pF	0.0	_	ns
T _{QSPICKD3}	Hold time, all inputs.	30 pF	0.0	_	ns
Г	Quad-SPI reference clock frequency.	15 pF	_	160	MHz
F _{QSPIREFCLK3}	Quad-SPI reference clock frequency.	30 pF	_	160	MHz
Г	Out of CDI plants from your out	15 pF	_	40	MHz
F _{QSPICLK3}	Quad-SPI clock frequency.	30 pF	_	40	MHz
Quad-SPI destandard.	evice clock frequency operating at 40 MHz.	Loopback disable	ed. LVC	MOS 3.	3V I/O
T	Overal CDI stanta distriction	15 pF	45	55	%
T _{DCQSPICLK4}	Quad-SPI clock duty cycle.	30 pF	45	55	%
		15 pF	7.0	_	ns
T _{QSPISSSCLK4}	Slave select asserted to next clock edge. (3)	30 pF	7.0	_	ns
-		15 pF	7.0	_	ns
T _{QSPISCLKSS4}	Clock edge to slave select deasserted.	30 pF	7.0	_	ns
T		15 pF	5.2	14.8	ns
T _{QSPICKO4}	Clock to output delay, all outputs.	30 pF	5.2	14.8	ns
т	Cotum times all impute	15 pF	13.9	_	ns
T _{QSPIDCK4}	Setup time, all inputs.	30 pF	14.9	_	ns
т	Hald time and immedia	15 pF	0.0	_	ns
T _{QSPICKD4}	Hold time, all inputs.	30 pF	0.0	_	ns
Г	Outed CDI reference clearly fire survey.	15 pF	_	160	MHz
F _{QSPIREFCLK4}	Quad-SPI reference clock frequency.	30 pF	_	160	MHz
г	Overal CDI also to for any over	15 pF	_	40	MHz
F _{QSPICLK4}	Quad-SPI clock frequency.	30 pF	_	40	MHz

- 1. The test conditions are configured for the generic Quad-SPI interface at 150/100 MHz with a 12 mA drive strength and fast
- 2. 30 pF loads are for dual-parallel stacked or stacked modes.
- T_{QSPISSSCLK3} and T_{QSPISSSCLK4} are only valid when two reference clock cycles are programmed between the chip select and clock.

Table 42: Linear Quad-SPI Interface(1)

Symbol	Description	Load Conditions ⁽²⁾	Min	Max	Units
	evice clock frequency operating at 100 MB BV I/O standard.	dz. Loopback enab	led. LV	CMOS 1.8	8V or
		15 pF	45	55	%
T _{DCQSPICLK5}	Quad-SPI clock duty cycle.	30 pF	45	55	%
_	2)	15 pF	5.0	_	ns
T _{QSPISSSCLK5}	Slave select asserted to next clock edge. (3)	30 pF	5.0	_	ns
-		15 pF	5.0	_	ns
T _{QSPISCLKSS5}	Clock edge to slave select deasserted.	30 pF	5.0	_	ns
-		15 pF	3.2	7.4	ns
T _{QSPICKO5}	Clock to output delay, all outputs.	30 pF	3.2	7.4	ns
т	Catura time all impute	15 pF	2.4	_	ns
T _{QSPIDCK5}	Setup time, all inputs.	30 pF	2.4	_	ns
т	Hold time and importa	15 pF	0.0	_	ns
T _{QSPICKD5}	Hold time, all inputs.	30 pF	0.0	_	ns
F	Overal CDI metanana alamb francisco	15 pF	-	200	MHz
F _{QSPIREFCLK5}	Quad-SPI reference clock frequency.	30 pF	-	200	MHz
F _{QSPICLK5}	Ouad CDI decides alsoly fragrupped	15 pF	ı	100	MHz
	Quad-SPI device clock frequency.	30 pF	-	100	MHz
Quad-SPI d standard.	evice clock frequency operating at 40 MHz	z. Loopback disabl	ed. LVC	MOS 1.8	V I/O
		15 pF	45	55	%
T _{DCQSPICLK6}	Quad-SPI clock duty cycle.	30 pF	45	55	%
-		15 pF	7.0	_	ns
T _{QSPISSSCLK6}	Slave select asserted to next clock edge.	30 pF	7.0	_	ns
т		15 pF	7.0	_	ns
T _{QSPISCLKSS6}	Clock edge to slave select deasserted.	30 pF	7.0	_	ns
-		15 pF	5.2	14.8	ns
T _{QSPICKO6}	Clock to output delay, all outputs.	30 pF	5.2	14.8	ns
т	Satura time, all inputs	15 pF	13.4	_	ns
T _{QSPIDCK6}	Setup time, all inputs.	30 pF	13.4	_	ns
Т	Hold time, all inputs.	15 pF	0.0	_	ns
T _{QSPICKD6}	noid time, all lilputs.	30 pF	0.0	-	ns
	Ouad SDI reference clock fraguency	15 pF	_	160	MHz
F _{QSPIREFCLK6}	Quad-SPI reference clock frequency.	30 pF	-	160	MHz
F	Ouad SDI davice clock frequency	15 pF	-	40	MHz
F _{QSPICLK6}	Quad-SPI device clock frequency.	30 pF		40	MHz

Table 42: Linear Quad-SPI Interface(1) (Cont'd)

Symbol	Description	Load Conditions ⁽²⁾	Min	Max	Units
Quad-SPI d standard.	evice clock frequency operating at 40 MHz. L	oopback disable	ed. LVC	MOS 3.	3V I/O
т	Quad-SPI clock duty cycle.	15 pF	45	55	%
T _{DCQSPICLK7}	Quad-3r1 clock duty cycle.	30 pF	45	55	%
т	Slave select asserted to next clock edge.	15 pF 7.0 – r	ns		
T _{QSPISSSCLK7}	Slave select asserted to flext clock edge.	30 pF	7.0	_	ns
	Clock edge to slave select deasserted.	15 pF	7.0	7.0 – ns	ns
T _{QSPISCLKSS7}	olock edge to slave select deasselled.	30 pF	7.0	_	ns
т	Clock to output delay, all outputs.	15 pF	5.2	14.8	ns
T _{QSPICKO7}		30 pF	5.2	14.8	ns
т	Setup time, all inputs.	15 pF	14.0	_	ns
T _{QSPIDCK7}	Setup time, all inputs.	30 pF	14.0	_	ns
т	Hold time, all inputs.	15 pF	0.0	_	ns
T _{QSPICKD7}	riola time, all inputs.	30 pF	0.0	_	ns
Е	Quad-SPI reference clock frequency.	15 pF	_	160	MHz
F _{QSPIREFCLK7}	Quad-3FT Telefence clock frequency.	30 pF	-	160	MHz
Е	Ouad SPI davice clock frequency	15 pF	_	40	MHz
F _{QSPICLK7}	Quad-SPI device clock frequency.	30 pF	_	40	MHz

- The test conditions are configured for the linear Quad-SPI interface at 100 MHz with a 12 mA drive strength and fast slew rate.
- 2. 30 pF loads are for stacked modes.
- 3. T_{OSPISSSCLK5} is only valid when two reference clock cycles are programmed between chip select and clock.

PS USB Interface

Table 43: ULPI Interface(1)

Symbol	Description	Min	Max	Units
T _{ULPIDCK}	Input setup to ULPI clock, all inputs.	4.5	_	ns
T _{ULPICKD}	Input hold to ULPI clock, all inputs.	0	_	ns
T _{ULPICKO}	ULPI clock to output valid, all outputs.	2.0	8.86	ns
F _{ULPICLK}	ULPI reference clock frequency.	_	60	MHz

Notes:

1. The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

PS Gigabit Ethernet Controller Interface

Table 44: RGMII Interface(1)

Symbol	Description	Min	Max	Units
T _{DCGEMTXCLK}	Transmit clock duty cycle.	45	55	%
T _{GEMTXCKO}	TXD output clock to out time.	-0.5	0.5	ns
T _{GEMRXDCK}	RXD input setup time.	0.8	_	ns
T _{GEMRXCKD}	RXD input hold time.	0.8	_	ns
T _{MDIOCLK}	MDC output clock period.	400	_	ns
T _{MDIOCKL}	MDC low time.	160	_	ns
T _{MDIOCKH}	MDC high time.	160	_	ns
T _{MDIODCK}	MDIO input data setup time.	80	_	ns
T _{MDIOCKD}	MDIO input data hold time.	0.0	_	ns
T _{MDIOCKO}	MDIO output data delay time.	-1.0	15	ns
F _{GETXCLK}	RGMII_TX_CLK transmit clock frequency.	_	125	MHz
F _{GERXCLK}	RGMII_RX_CLK receive clock frequency.	_	125	MHz
F _{ENET_REF_CLK}	Ethernet reference clock frequency.	_	125	MHz

Notes:

PS SD/SDIO Controller Interface

Table 45: SD/SDIO Interface(1)

Symbol	Description	Min	Max	Units
SD/SDIO In	terface DDR50 Mode			<u> </u>
T _{DCDDRCLK}	SD device clock duty cycle.	45	55	%
T _{SDDDRCK01}	Clock to output delay, data. (2)	1.0	6.8	ns
T _{SDDRIVW}	Input valid data window. (3)	3.5	_	ns
T _{SDDDRDCK2}	Input setup time, command.	4.7	_	ns
T _{SDDDRCKD2}	Input hold time, command.	1.5	_	ns
T _{SDDDRCKO2}	Clock to output delay, command.	1.0	13.8	ns
F _{SDDDRCLK}	High-speed mode SD device clock frequency.	_	50	MHz
SD/SDIO In	terface SDR104			
T _{DCSDHSCLK1}	SD device clock duty cycle.	40	60	%
T _{SDSDRCK01}	Clock to output delay, all outputs. (2)	1.0	3.2	ns
T _{SDSDR1IVW}	Input valid data window. (3)	0.5	_	UI
F _{SDSDRCLK1}	SDR104 mode device clock frequency.	_	200	MHz
SD/SDIO In	terface SDR50/25			•
T _{DCSDHSCLK2}	SD device clock duty cycle.	40	60	%
T _{SDSDRCKO2}	Clock to output delay, all outputs. (2)	1.0	6.8	ns
T _{SDSDR2IVW}	Input valid data window. (3)	0.3	_	UI

The test conditions are configured to the LVCMOS 2.5V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

Table 45: SD/SDIO Interface⁽¹⁾ (Cont'd)

Symbol	Description	Min	Max	Units
_	SDR50 mode device clock frequency.	_	100	MHz
F _{SDSDRCLK2}	SDR25 mode device clock frequency.	_	50	MHz
SD/SDIO In	terface SDR12			
T _{DCSDHSCLK3}	SD device clock duty cycle.	40	60	%
T _{SDSDRCKO3}	Clock to output delay, all outputs.	1.0	36.8	ns
T _{SDSDRDCK3}	Input setup time, all inputs.	10.0	_	ns
T _{SDSDRCKD3}	Input hold time, all inputs.	1.5	_	ns
F _{SDSDRCLK3}	SDR12 mode device clock frequency.	_	25	MHz
SD/SDIO In	terface High-Speed Mode	,		
T _{DCSDHSCLK}	SD device clock duty cycle.	47	53	%
T _{SDHSCKO}	Clock to output delay, all outputs. (2)	2.2	13.8	ns
T _{SDHSDIVW}	Input valid data window.(3)	0.35	_	UI
F _{SDHSCLK}	High-speed mode SD device clock frequency.	_	50	MHz
SD/SDIO In	terface Standard Mode			
T _{DCSDSCLK}	SD device clock duty cycle.	45	55	%
T _{SDSCKO}	Clock to output delay, all outputs.	-2.0	4.5	ns
T _{SDSDCK}	Input setup time, all inputs.	2.0	_	ns
T _{SDSCKD}	Input hold time, all inputs.	2.0	_	ns
F _{SDIDCLK}	Clock frequency in identification mode.	_	400	KHz
F _{SDSCLK}	Standard SD device clock frequency.	_	19	MHz

The test conditions SD/SDIO standard mode (default speed mode) use an 8 mA drive strength, fast slew rate, and a 30 pF load. For SD/SDIO high-speed mode, the test conditions use a 12 mA drive strength, fast slew rate, and a 30 pF load. For other SD/SDIO modes, the test conditions use a 12 mA drive strength, fast slew rate, and a 15 pF load.

^{2.} This specification is achieved using pre-determined DLL tuning.

^{3.} This specification is required for capturing input data using DLL tuning.

PS eMMC Standard Interface

Table 46: eMMC Standard Interface(1)

Symbol	Description	Min	Max	Units
eMMC Standar	d Interface			
T _{DCEMMCHSCLK}	eMMC clock duty cycle.	45	55	%
T _{EMMCHSCKO}	Clock to output delay, all outputs.	-2.0	4.5	ns
T _{EMMCHSDCK}	Input setup time, all inputs.	2.0	_	ns
T _{EMMCHSCKD}	Input hold time, all inputs.	2.0	_	ns
F _{EMMCHSCLK}	eMMC clock frequency.	_	25	MHz
eMMC High-Sp	eed SDR Interface	,		
T _{DCEMMCHSCLK}	eMMC high-speed SDR clock duty cycle.	45	55	%
T _{EMMCHSCKO}	Clock to output delay, all outputs. (2)	3.2	16.8	ns
T _{EMMCHSDIVW}	Input valid data window. (3)	0.4	_	UI
F _{EMMCHSCLK}	eMMC high speed SDR clock frequency.	_	50	MHz
eMMC High-Sp	eed DDR Interface	,		
T _{DCEMMCDDRCLK}	eMMC high-speed DDR clock duty cycle.	45	55	%
T _{EMMCDDRSCK01}	Data clock to output delay. (2)	2.7	7.3	ns
T _{EMMCSDRIVW}	Input valid data window. (3)	3.5	_	ns
T _{EMMCDDRSCKO2}	Command clock to output delay.	3.2	16	ns
T _{EMMCDDRDCK2}	Command input setup time.	3.9	_	ns
T _{EMMCDDRCKD2}	Command input hold time.	2.5	_	ns
F _{EMMCDDRCLK}	eMMC high-speed DDR clock frequency.	_	50	MHz
eMMC HS200 I	nterface	,		
T _{DCEMMCHS200CLK}	eMMC HS200 clock duty cycle.	40	60	%
T _{EMMCHS200CKO}	Clock to output delay, all outputs. (2)	1.0	3.4	ns
T _{EMMCSDR1IVW}	Input valid data window. (3)	0.4	_	UI
F _{EMMCHS200CLK}	eMMC HS200 clock frequency.	_	200	MHz

^{1.} The test conditions for eMMC standard mode use an 8 mA drive strength, fast slew rate, and a 30 pF load. For eMMC high-speed mode, the test conditions use a 12 mA drive strength, fast slew rate, and a 30 pF load. For other eMMC modes, the test conditions use a 12 mA drive strength, fast slew rate, and a 15 pF load.

^{2.} This specification is achieved using pre-determined DLL tuning.

^{3.} This specification is required for capturing input data using DLL tuning.

PS I2C Controller Interface

Table 47: I2C Interface(1)

Symbol	Description	Min	Max	Units
I 2C Fast-mo	de Interface			
T _{I2CFCKL}	SCL Low time.	1.3	_	μs
T _{I2CFCKH}	SCL High time.	0.6	_	μs
T _{I2CFCKO}	SDA clock to out delay.	_	900	ns
T _{I2CFDCK}	SDA input setup time.	100	_	ns
F _{12CFCLK}	SCL clock frequency.	_	400	KHz
12C Standar	d-mode Interface	,	T.	
T _{I2CSCKL}	SCL Low time.	4.7	_	μs
T _{I2CSCKH}	SCL High time.	4.0	_	μs
T _{I2CSCKO}	SDA clock to out delay.	_	3450	ns
T _{I2CSDCK}	SDA input setup time.	250	_	ns
F _{12CSCLK}	SCL clock frequency.	_	100	KHz

^{1.} The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

PS SPI Controller Interface

Table 48: SPI Interfaces (1)

Symbol	Description	Min	Max	Units
SPI Master Ir	nterface			
T _{DCMSPICLK}	SPI master mode clock duty cycle.	45	55	%
T _{MSPISSSCLK}	Slave select asserted to first active clock edge.	1 ⁽²⁾	_	F _{SPI_REF_CLK} cycles
T _{MSPISCLKSS}	Last active clock edge to slave select deasserted.	1 ⁽²⁾	_	F _{SPI_REF_CLK} cycles
T _{MSPIDCK}	Input setup time for MISO.	-2.0	_	ns
T _{MSPICKD}	Input hold time for MISO.	0.3	_	F _{MSPICLK} cycles
T _{MSPICKO}	MOSI and slave select clock to out delay.	-2.0	5.0	ns
F _{MSPICLK}	SPI master device clock frequency.	_	50	MHz
F _{SPI_REF_CLK}	SPI reference clock frequency.	-	200	MHz
SPI Slave Int	erface		•	"
T _{SSPISSSCLK}	Slave select asserted to first active clock edge.	2	-	F _{SPI_REF_CLK} cycles
T _{SSPISCLKSS}	Last active clock edge to slave select deasserted.	2	_	F _{SPI_REF_CLK} cycles
T _{SSPIDCK}	Input setup time for MOSI.	5.0	_	ns
T _{SSPICKD}	Input hold time for MOSI.	1	_	F _{SPI_REF_CLK} cycles
T _{SSPICKO}	MISO clock to out delay.	0.0	13.0	ns
F _{SSPICLK}	SPI slave mode device clock frequency.	-	25	MHz
F _{SPI_REF_CLK}	SPI reference clock frequency.	-	200	MHz

Notes:

- The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 30 pF load.
- 2. Valid when two SPI_REF_CLK delays are programmed between CS and CLK for $T_{MSPISSSCLK}$, and between CLK and CS for $T_{MSPISCLKSS}$ in the SPI delay_reg0 register.

PS CAN Controller Interface

Table 49: CAN Interface(1)

Symbol	Description	Min	Max	Units
T _{PWCANRX}	Receive pulse width.	1.0	_	μs
T _{PWCANTX}	Transmit pulse width.	1.0	_	μs
Е	Internally sourced CAN reference clock frequency.	_	100	MHz
FCAN_REF_CLK	Externally sourced CAN reference clock frequency.	_	40	MHz

Notes:

 The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

PS DAP Interface

Table 50: DAP Interface(1)

Symbol	Description ⁽²⁾	Min	Max	Units
T _{PDAPDCK}	PS DAP input setup time.	3.0	_	ns
T _{PDAPCKD}	PS DAP input hold time.	2.0	_	ns
T _{PDAPCKO}	PS DAP clock to out delay.	_	10.86	ns
T _{PDAPCLK}	PS DAP clock frequency.	_	44	MHz

Notes:

- The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.
- 2. PS DAP interface signals connect to MIO pins.

PS UART Interface

Table 51: UART Interface(1)

Symbol	Description	Min	Max	Units
BAUD _{TXMAX}	Transmit baud rate.	_	6.25	Mb/s
BAUD _{RXMAX}	Receive baud rate.	_	6.25	Mb/s
F _{UART_REF_CLK}	UART reference clock frequency.	_	100	MHz

Notes:

 The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

PS General Purpose I/O Interface

Table 52: General Purpose I/O (GPIO) Interface

Symbol	Description	Min	Max	Units
T _{PWGPIOH}	Input High pulse width.	10 x 1/F _{LPD_LSBUS_CTRLMAX}	-	μs
T _{PWGPIOL}	Input Low pulse width.	10 x 1/F _{LPD_LSBUS_CTRLMAX}	_	μs

PS Trace Interface

Table 53: Trace Interface(1)

Symbol	Description	Min	Max	Units
T _{TCECKO}	Trace clock to output delay, all outputs.	-0.5	0.5	ns
T _{DCTCECLK}	Trace clock duty cycle.	45	55	%
F _{TCECLK}	Trace clock frequency.	_	125	MHz

Notes:

 The test conditions are configured to the LVCMOS 3.3V I/O standard with a 12 mA drive strength, fast slew rate, and a 15 pF load.

PS Triple-timer Counter Interface

Table 54: Triple-timer Counter Interface

Symbol	Description	Min	Max	Units
T _{PWTTCOCLK}	Triple-timer counter output clock pulse width.	60.4	_	ns
F _{TTCOCLK}	Triple-timer counter output clock frequency.	_	16.5	MHz
T _{TTCICLKL}	Triple-timer counter input clock high pulse width.	1.5 x 1/F _{LPD_LSBUS_CTRLMAX}	-	ns
T _{TTCICLKH}	Triple-timer counter input clock low pulse width.	1.5 x 1/F _{LPD_LSBUS_CTRLMAX}	-	ns
F _{TTCICLK}	Triple-timer counter input clock frequency.	_	F _{LPD_LSBUS_CTRLMAX} /3	MHz

Notes:

PS Watchdog Timer Interface

Table 55: Watchdog Timer Interface

Symbol	Symbol Description		Max	Units
F _{WDTCLK}	Watchdog timer input clock frequency.	_	100	MHz

^{1.} All timing values assume an ideal external input clock. Your actual timing budget must account for additional external clock jitter.

PS-GTR Transceiver

Table 56: PS-GTR Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPIN}	Differential peak-to-peak input voltage (external AC coupled).		100	-	1200	mV
V _{IN}	Single-ended input voltage. Vo pin referenced to GND.	Itage measured at the	75	_	V _{PS_MGTRAVCC}	mV
V _{CMIN}	Common mode input voltage.		-	0	_	mV
D _{VPPOUT}	Differential peak-to-peak output voltage. (1)	Transmitter output swing is set to maximum value.	800	-	-	mV
V _{CMOUTAC}	Common mode output voltage: based).	AC coupled (equation	V _{PS_MGTRAVCC} - D _{VPPOUT} /2		o _{OUT} /2	mV
R _{IN}	Differential input resistance.		_	100	_	Ω
R _{OUT}	Differential output resistance.		-	100	_	Ω
R _{MGTRREF}	Resistor value between calibration resistor pin to GND.		497.5	500	502.5	Ω
T _{OSKEW}	Transmitter output pair (TXP and TXN) intra-pair skew (All packages).		_	-	20	ps
C _{EXT}	Recommended external AC cou	ıpling capacitor. ⁽²⁾	_	100	_	nF

Table 57: PS-GTR Transceiver Clock DC Input Level Specification

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage.	250	_	2000	mV
R _{IN}	Differential input resistance.	_	100	_	Ω
C _{EXT}	Required external AC coupling capacitor.	_	10	_	nF

Table 58: PS-GTR Transceiver Performance

Symbol	Description		Units		
	Description	-3	-2	-1	Ullits
F _{GTRMAX}	PS-GTR maximum line rate.	6.0	6.0	6.0	Gb/s
F _{GTRMIN}	PS-GTR minimum line rate.	1.25	1.25	1.25	Gb/s

Table 59: PS-GTR Transceiver PLL/Lock Time Adaptation

Symbol	Description		Тур	Max	Units
T _{LOCK}	Initial PLL lock.	_	-	0.11	ms
T _{DLOCK}	Clock recovery phase acquisition and adaptation time.	_	1	24 x 10 ⁶	UI

^{1.} The output swing and pre-emphasis levels are programmable using the attributes discussed in the *Zynq UltraScale+ MPSoC Technical Reference Manual* (UG1085), and can result in values lower than reported in this table.

^{2.} Other values can be used as appropriate to conform to specific protocols and standards.

Table 60: PS-GTR Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	Al	I Speed Grad	des	Units		
Symbol	Description	Conditions	Min	Тур	Max	Units		
		PCI Express	100 MHz					
		SATA	125 MHz	or 150 MHz				
F _{GCLK}	Reference clock frequencies supported.	USB 3.0	26 MHz,	26 MHz, 52 MHz, or 100 MHz				
		DisplayPort	27 MHz, 108 MHz, or 135 MHz					
		SGMII	125 MHz					
T _{RCLK}	Reference clock rise time.	20% – 80%	_	200	_	ps		
T _{FCLK}	Reference clock fall time.	80% – 20%	_	200	_	ps		
		Transceiver PLL only.	40	_	60	%		
T _{DCREF}	Reference clock duty cycle.	USB 3.0 with reference clock <40 MHz.	47.5	_	52.5	%		

Table 61: PS-GTR Transceiver Reference Clock Oscillator Selection Phase Noise Mask

Symbol	Description	Offset Frequency	Min	Тур	Max	Units
		100	_	_	-102	
		1 KHz	-	-	-124	
	PLL reference clock select phase noise mask	10 KHz	_	_	-132	dDo/Uz
	at REFCLK frequency = 25 MHz.	100 KHz	_	_	-139	dBc/Hz
		1 MHz	-	-	-152	
		10 MHz	_	_	-154	
		100	_	-	-96	
		1 KHz	-	-	-118	
	PLL reference clock select phase noise mask	10 KHz	_	-	-126	dDo/Us
	at REFCLK frequency = 50 MHz.	100 KHz	_	-	-133	dBc/Hz
		1 MHz	_	_	-146	
		10 MHz	_	_	-148	
	PLL reference clock select phase noise mask at REFCLK frequency = 100 MHz.	100	_	_	-90	dBc/Hz
		1 KHz	_	_	-112	
DLI		10 KHz	_	_	-120	
PLL _{REFCLKMASK}		100 KHz	_	_	-127	
		1 MHz	_	_	-140	
		10 MHz	_	_	-142	
		100	_	_	-88	
		1 KHz	_	_	-110	
	PLL reference clock select phase noise mask	10 KHz	_	_	-118	-ID - /I I-
	at REFCLK frequency = 125 MHz.	100 KHz	_	_	-125	dBc/Hz
		1 MHz	_	_	-138	
		10 MHz	_	_	-140	
		100	_	_	-86	
		1 KHz	_	_	-108	
	PLL reference clock select phase noise mask	10 KHz	_	_	-116	dDa /U-
	at REFCLK frequency = 150 MHz.	100 KHz	_	_	-123	dBc/Hz
		1 MHz	_	_	-136	
		10 MHz	_	_	-138	

Notos

Table 62: PS-GTR Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTRTX}	Serial data rate range.		1.25	_	6.0	Gb/s
T _{RTX}	TX rise time.	20%-80%	_	65	_	ps
T _{FTX}	TX fall time.	80%–20%	ı	65	_	ps

^{1.} For reference clock frequencies not in this table, use the phase noise mask for the nearest reference clock frequency.

Table 63: PS-GTR Transceiver Receiver Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTRRX}	Serial data rate.		1.25	_	6	Gb/s
RX _{SST}	Receiver spread-spectrum tracking.	Modulated at 33 KHz	-5000	-	0	ppm
RX _{PPMTOL}	Data/REFCLK PPM offset tolerance.	All data rates	-350	-	350	ppm

Table 64: PCI Express Protocol Characteristics (PS-GTR Transceivers) (1)

_										
Standard	Description	Line Rate (Mb/s)	Min	Max	Units					
PCI Express Transmitter Jitter Generation										
PCI Express Gen 1	Total transmitter jitter.	2500	-	0.25	UI					
PCI Express Gen 2	Total transmitter jitter.	5000	-	0.25	UI					
PCI Express Receive	er High Frequency Jitter Tole	ance								
PCI Express Gen 1	Total receiver jitter tolerance.	2500	0.65	_	UI					
	Receiver inherent timing error.	5000	0.4	-	UI					
PCI Express Gen 2 ⁽²⁾	Receiver inherent deterministic timing error.	5000	0.3	_	UI					

- 1. Tested per card electromechanical (CEM) methodology.
- 2. Between 1 MHz and 10 MHz the minimum sinusoidal jitter roll-off with a slope of 20 dB/decade.

Table 65: Serial ATA (SATA) Protocol Characteristics (PS-GTR Transceivers)

Standard	Description	Line Rate (Mb/s)	Min	Max	Units							
Serial ATA Transmit	Serial ATA Transmitter Jitter Generation											
SATA Gen 1	Total transmitter jitter.	1500	-	0.37	UI							
SATA Gen 2	Total transmitter jitter.	3000	-	0.37	UI							
SATA Gen 3	Total transmitter jitter.	6000	-	0.52	UI							
Serial ATA Receiver	High Frequency Jitter Tolera	nce										
SATA Gen 1	Total receiver jitter tolerance.	1500	0.27	_	UI							
SATA Gen 2	Total receiver jitter tolerance.	3000	0.27	_	UI							
SATA Gen 3	Total receiver jitter tolerance.	6000	0.16	_	UI							

Table 66: DisplayPort Protocol Characteristics (PS-GTR Transceivers) (1)

Standard	Description	Line Rate (Mb/s)	Min	Max	Units
DisplayPort Transm	itter Jitter Generation				
RBR	Total transmitter jitter.	1620	_	0.42	UI
HBR	Total transmitter jitter.	2700	-	0.42	UI
HBR2 D10.2	Total transmitter jitter.	5400	-	0.40	UI
HBR2 CPAT	Total transmitter jitter.	5400	-	0.58	UI

Notes:

1. Only the transmitter is supported.

Table 67: USB 3.0 Protocol Characteristics (PS-GTR Transceivers)

Standard	Description	Line Rate (Mb/s)	Min	Max	Units
USB 3.0 Transmitter	Jitter Generation				
USB 3.0	Total transmitter jitter.	5000	_	0.66	UI
USB 3.0 Receiver Hi	gh Frequency Jitter Tolerance	e			
USB 3.0	Total receiver jitter tolerance.	5000	0.2	_	UI

Table 68: Serial-GMII Protocol Characteristics (PS-GTR Transceivers)

Standard	Description	Line Rate (Mb/s)	Min	Max	Units
Serial-GMII Transm	itter Jitter Generation				
SGMII	Deterministic transmitter jitter.	1250	_	0.25	UI
Serial-GMII Receive	r High Frequency Jitter Toler	ance		•	
SGMII	Total receiver jitter tolerance.	1250	0.25	_	UI

PS System Monitor Specifications

Table 69: PS SYSMON Specifications

Parameter	Comments	Conditions	Min	Тур	Max	Units
$V_{CC_PSADC} = 1.8V \pm 3\%, T_j$	= -40 °C to 100 °C, typical val	ues at T _j = 40°C				
ADC Accuracy $(T_j = -5!)$	5°C to 125°C) ⁽¹⁾					
Resolution	10	_	_	Bits		
Sample rate	_	_	1	MS/s		
RMS code noise	On-chip reference		_	1	_	LSBs
On-Chip Sensor Accura						
Tomporature concer error		$T_j = -55$ °C to 110°C	_	_	±3.5	°C
Temperature sensor error		$T_j = 110^{\circ}C \text{ to } 125^{\circ}C$	_	_	±5	°C
	Supply voltages less than or electrically connected to $V_{\text{CC_PSADC}}$.	$T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-	_	±1	%
Supply sensor error (2) Supply voltages nominally at 1.8V but with the potential to go above $V_{\text{CC_PSADC}}$.		$T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	_	±1.5	%
Supply voltages nominally in the 2.0V to 3.3V range.		$T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	_	±2.5	%

- ADC offset errors are removed by enabling the ADC automatic offset calibration feature. The values are specified for when this feature is enabled.
- 2. Supply sensor offset and gain errors are removed by enabling the automatic offset and gain calibration feature. The values are specified for when this feature is enabled.

Programmable Logic (PL) Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Zynq UltraScale+ MPSoC. These values are subject to the same guidelines as the AC Switching Characteristics, page 23. In each table, the I/O bank type is either high performance (HP) or high density (HD).

Table 70: LVDS Component Mode Performance

		Speed Grade and V _{CCINT} Operating Voltages										
Description	I/O Bank	0.9	VOV		0.8	5 V			0.7	′2V		Units
Description	Туре	-	3	-	2	-	1	-	2	-	1	Units
	31	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
LVDS TX DDR (OSERDES 4:1, 8:1)	HP	0	1250	0	1250	0	1250	0	1250	0	1250	Mb/s
LVDS TX SDR (OSERDES 2:1, 4:1)	HP	0	625	0	625	0	625	0	625	0	625	Mb/s
LVDS RX DDR (ISERDES 1:4, 1:8)(1)	HP	0	1250	0	1250	0	1250	0	1250	0	1250	Mb/s
LVDS RX DDR	HD	0	250	0	250	0	250	0	250	0	250	Mb/s
LVDS RX SDR (ISERDES 1:2, 1:4) ⁽¹⁾	HP	0	625	0	625	0	625	0	625	0	625	Mb/s
LVDS RX SDR	HD	0	125	0	125	0	125	0	125	0	125	Mb/s

Notes:

Table 71: LVDS Native Mode Performance (1)(2)

			Speed Grade and V _{CCINT} Operating Voltages										
Description	DATA_WIDTH	I/O Bank	0.9	OV		0.8	5 V		0.		′2V		Units
Description		Туре	-3	-3 ⁽³⁾		-2 ⁽³⁾		-1		(3)	-1		Units
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
LVDS TX DDR	4	HP	375	1600	375	1600	375	1260	375	1400	375	1260	Mb/s
(TX_BITSLICE)	8	1117	375	1600	375	1600	375	1260	375	1600	375	1260	Mb/s
LVDS TX SDR	4	HP	187.5	800	187.5	800	187.5	630	187.5	700	187.5	630	Mb/s
(TX_BITSLICE)	8	1115	187.5	800	187.5	800	187.5	630	187.5	800	187.5	630	Mb/s
LVDS RX DDR	4	HP	375	1600	375	1600	375	1260	375	1400	375	1260	Mb/s
(RX_BITSLICE) ⁽⁴⁾	8	ПЕ	375	1600	375	1600	375	1260	375	1600	375	1260	Mb/s
LVDS RX SDR (RX_BITSLICE) ⁽⁴⁾	4	HP	187.5	800	187.5	800	187.5	630	187.5	700	187.5	630	Mb/s
	8	ПЕ	187.5	800	187.5	800	187.5	630	187.5	800	187.5	630	Mb/s

- Native mode is supported through the <u>High-Speed SelectIO Interface Wizard</u> available with the Vivado Design Suite. The
 performance values assume a source-synchronous interface.
- 2. PLL settings can restrict the minimum allowable data rate. For example, when using the PLL with CLKOUTPHY_MODE = VCO_HALF the minimum frequency is PLL_F_{VCOMIN}/2.
- 3. In the SBVA484 package, the maximum data rate is 1260 Mb/s for DDR interfaces and 630 Mb/s for SDR interfaces.
- 4. LVDS receivers are typically bounded with certain applications to achieve maximum performance. Package skews are not included and should be removed through PCB routing.

LVDS receivers are typically bounded with certain applications to achieve maximum performance. Package skews are not included and should be removed through PCB routing.

Table 72: MIPI D-PHY Performance

	1/0	Speed Grade and V _{CCINT} Operating Voltages							
Description	Bank Type	0.90V 0.85V		35 V	0.7	′2V	Units		
		-3 ⁽¹⁾	-2 ⁽¹⁾	-1	-2	-1			
MIPI D-PHY transmitter or receiver.	HP	1500	1500	1260	1260	1260	Mb/s		

1. In the SBVA484 package, the data rate is 1260 Mb/s.

Table 73: LVDS Native-Mode 1000BASE-X Support (1)

	I/O Bank Type	Speed Grade and V _{CCINT} Operating Voltages									
Description		0.90V	0.72V								
		-3	-2	-1	-2	-1					
1000BASE-X	HP	Yes									

Notes:

1. 1000BASE-X support is based on the *IEEE Standard for CSMA/CD Access Method and Physical Layer Specifications* (IEEE Std 802.3-2008).

Table 74 provides the maximum data rates for applicable memory standards using the Zynq UltraScale+ MPSoC memory PHY. Refer to Memory Interfaces for the complete list of memory interface standards supported and detailed specifications. The final performance of the memory interface is determined through a complete design implemented in the Vivado Design Suite, following guidelines in the *UltraScale Architecture PCB Design Guide* (UG583), electrical analysis, and characterization of the system.

Table 74: Maximum Physical Interface (PHY) Rate for Memory Interfaces

			Speed G	rade and	V _{CCINT} O	perating '	Voltages	
Memory Standard	Package ⁽¹⁾	DRAM Type	0.90V	0.8	35 V	0.7	'2V	Units
o tarraar a			-3	-2	-1	-2	-1	
		Single rank component	2666	2666	2400	2400	2133	Mb/s
All FFV packages	1 rank DIMM ⁽²⁾⁽³⁾⁽⁴⁾	2400	2400	2133	2133	1866	Mb/s	
	and FBVB900	2 rank DIMM ⁽²⁾⁽⁵⁾	2133	2133	1866	1866	1600	Mb/s
DDR4		4 rank DIMM ⁽²⁾⁽⁶⁾	1600	1600	1333	1333	N/A	Mb/s
		Single rank component	2400	2400	2133	2133	1866	Mb/s
	SFVC784	1 rank DIMM ⁽²⁾⁽³⁾	2133	2133	1866	1866	1600	Mb/s
		2 rank DIMM ⁽²⁾⁽⁵⁾	1866	1866	1600	1600	1600	Mb/s
		Single rank component	2133	2133	2133	2133	1866	Mb/s
	All FFV packages	1 rank DIMM ⁽²⁾⁽³⁾	1866	1866	1866	1866	1600	Mb/s
	and FBVB900	2 rank DIMM ⁽²⁾⁽⁵⁾	1600	1600	1600	1600	1333	Mb/s
DDR3		4 rank DIMM ⁽²⁾⁽⁶⁾	1066	1066	1066	1066	800	Mb/s
פאטט		Single rank component	1866	1866	1866	1866	1600	Mb/s
CE)	SFVC784	1 rank DIMM ⁽²⁾⁽³⁾	1600	1600	1600	1600	1600	Mb/s
	SF VC / 84	2 rank DIMM ⁽²⁾⁽⁵⁾	1600	1600	1600	1600	1333	Mb/s
		4 rank DIMM ⁽²⁾⁽⁶⁾	1066	1066	1066	1066	800	Mb/s

Table 74: Maximum Physical Interface (PHY) Rate for Memory Interfaces (Cont'd)

			Speed G	rade and	V _{CCINT} O	perating '	Voltages	
Memory Standard	Package ⁽¹⁾	DRAM Type	0.90V	0.8	5 V	0.7	'2V	Units
o tarraar a			-3	-2	-1	-2	-1	
		Single rank component	1866	1866	1866	1866	1600	Mb/s
	All FFV packages	1 rank DIMM ⁽²⁾⁽³⁾	1600	1600	1600	1600	1333	Mb/s
	and FBVB900	2 rank DIMM ⁽²⁾⁽⁵⁾	1333	1333	1333	1333	1066	Mb/s
DDR3L		4 rank DIMM ⁽²⁾⁽⁶⁾	800	800	800	800	606	Mb/s
DDK3L		Single rank component	1600	1600	1600	1600	1600	Mb/s
	SFVC784	1 rank DIMM ⁽²⁾⁽³⁾	1600	1600	1600	1600	1333	Mb/s
	3FVC/64	2 rank DIMM ⁽²⁾⁽⁵⁾	1333	1333	1333	1333	1066	Mb/s
		4 rank DIMM ⁽²⁾⁽⁶⁾	800	800	800	800	606	Mb/s
QDR II+	All	Single rank component ⁽⁷⁾	633	633	600	600	550	MHz
RLDRAM 3	All FFV packages and FBVB900	Single rank component	1200	1200	1066	1066	933	MHz
	SFVC784	Single rank component	1066	1066	933	933	800	MHz
QDR IV XP	All	Single rank component	1066	1066	1066	933	933	MHz
LPDDR3	All	Single rank component	1600	1600	1600	1600	1600	Mb/s

- The SBVA484 and SFVA625 packages do not support the PL memory interfaces.
- 2. Dual in-line memory module (DIMM) includes RDIMM, SODIMM, UDIMM, and LRDIMM.
- 3. Includes: 1 rank 1 slot, DDP 2 rank, LRDIMM 2 or 4 rank 1 slot.
- 4. For the DDR4 DDP components at -3 and -2 speed grades and V_{CCINT} = 0.85V, the maximum data rate is 2133 Mb/s for six or more DDP devices. For five or less DDP devices, use the single rank DIMM data rates for the -3 and -2 speed grades at 0.85V.
- 5. Includes: 2 rank 1 slot, 1 rank 2 slot, LRDIMM 2 rank 2 slot.
- 6. Includes: 2 rank 2 slot, 4 rank 1 slot.
- 7. The QDRII+ performance specifications are for burst-length 4 (BL = 4) implementations.

Programmable Logic (PL) Switching Characteristics

Table 75 (high-density IOB (HD)) and Table 76 (high-performance IOB (HP)) summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays.

- T_{INBUF_DELAY_PAD_I} is the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer.
- T_{OUTBUF_DELAY_O_PAD} is the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.
- T_{OUTBUF_DELAY_TD_PAD} is the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. In HP I/O banks, the internal DCI termination turn-on time is always faster than T_{OUTBUF_DELAY_TD_PAD} when the DCITERMDISABLE pin is used. In HD I/O banks, the on-die termination turn-on time is always faster than T_{OUTBUF_DELAY_TD_PAD} when the INTERMDISABLE pin is used.

IOB High Density (HD) Switching Characteristics

Table 75: IOB High Density (HD) Switching Characteristics

	T	NBUF_	DELAY	_PAD_	<u>.</u> I	To	UTBUF.	_DELA	Y_O_P	AD	Tol	JTBUF_	DELAY	_TD_P	AD	
I/O Standards	0.90V	0.8	5 V	0.7	/2V	0.90V		5 V		72V	0.90V	0.8	5 V	0.7	/2V	Units
	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
DIFF_HSTL_I_18_F	0.723	0.978	1.058	0.978	1.058	1.440	1.574	1.718	1.966	2.101	1.160	1.160	1.271	1.515	1.544	ns
DIFF_HSTL_I_18_S	0.723	0.978	1.058	0.978	1.058	1.672	1.805	1.950	2.197	2.333	1.748	1.748	1.867	2.103	2.104	ns
DIFF_HSTL_I_F	0.723	0.978	1.058	0.978	1.058	1.493	1.611	1.762	2.003	2.145	1.313	1.313	1.417	1.668	1.668	ns
DIFF_HSTL_I_S	0.723	0.978	1.058	0.978	1.058	1.626	1.798	1.913	2.190	2.296	1.630	1.630	1.780	1.985	1.986	ns
DIFF_HSUL_12_F	0.646	0.911	0.977	0.911	0.977	1.423	1.573	1.703	1.965	2.086	1.222	1.222	1.335	1.577	1.578	ns
DIFF_HSUL_12_S	0.646	0.911	0.977	0.911	0.977	1.583	1.711	1.864	2.103	2.247	1.536	1.536	1.665	1.891	1.891	ns
DIFF_SSTL12_F	0.646	0.906	0.977	0.906	0.977	1.507	1.643	1.792	2.035	2.175	1.285	1.285	1.423	1.640	1.640	ns
DIFF_SSTL12_S	0.646	0.906	0.977	0.906	0.977	1.656	1.784	1.948	2.176	2.331	1.567	1.567	1.706	1.922	1.922	ns
DIFF_SSTL135_F	0.657	0.927	0.995	0.927	0.995	1.488	1.625	1.765	2.017	2.148	1.341	1.341	1.458	1.696	1.696	ns
DIFF_SSTL135_II_F	0.657	0.927	0.995	0.927	0.995	1.490	1.623	1.770	2.015	2.153	1.325	1.325	1.470	1.680	1.689	ns
DIFF_SSTL135_II_S	0.657	0.927	0.995	0.927	0.995	1.624	1.768	1.916	2.160	2.299	1.722	1.722	1.911	2.077	2.078	ns
DIFF_SSTL135_S	0.657	0.927	0.995	0.927	0.995	1.726	1.869	2.025	2.261	2.408	1.814	1.814	1.976	2.169	2.169	ns
DIFF_SSTL15_F	0.690	0.928	1.020	0.928	1.020	1.489	1.628	1.771	2.020	2.154	1.374	1.374	1.483	1.729	1.729	ns
DIFF_SSTL15_II_F	0.690	0.928	1.020	0.928	1.020	1.504	1.622	1.778	2.014	2.161	1.356	1.356	1.442	1.711	1.712	ns
DIFF_SSTL15_II_S	0.690	0.928	1.020	0.928	1.020	1.699	1.821	1.987	2.213	2.370	1.895	1.895	2.047	2.250	2.250	ns
DIFF_SSTL15_S	0.690	0.928	1.020	0.928	1.020	1.682	1.824	1.977	2.216	2.360	1.743	1.743	1.907	2.098	2.098	ns
DIFF_SSTL18_II_F	0.723	0.961	1.038	0.961	1.038	1.602	1.729	1.880	2.121	2.263	1.377	1.377	1.492	1.732	1.732	ns
DIFF_SSTL18_II_S	0.723	0.961	1.038	0.961	1.038	1.678	1.796	1.965	2.188	2.348	1.616	1.616	1.800	1.971	1.972	ns
DIFF_SSTL18_I_F	0.723	0.961	1.038	0.961	1.038	1.469	1.609	1.755	2.001	2.138	1.220	1.220	1.313	1.575	1.575	ns
DIFF_SSTL18_I_S	0.723	0.961	1.038	0.961	1.038	1.658	1.786	1.942	2.178	2.325	1.677	1.677	1.836	2.032	2.033	ns
HSTL_I_18_F	0.704	0.947	1.021	0.947	1.021	1.440	1.574	1.718	1.966	2.101	1.160	1.160	1.271	1.515	1.544	ns
HSTL_I_18_S	0.704	0.947	1.021	0.947	1.021	1.672	1.805	1.950	2.197	2.333	1.748	1.748	1.867	2.103	2.104	ns

Table 75: IOB High Density (HD) Switching Characteristics (Cont'd)

T _{INBUF_DELAY_PAD_I}								_DELA	-		-	ITRIIE	_DELAY	TD D	ΛD	
I/O Standards	0.90V	0.8			2V	0.90V		_DLLA		72V	0.90V			0.7		Units
170 Standards	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	Jonnes
HSTL_I_F		0.856									1.313					ns
HSTL_I_S	0.598	0.856	0.900	0.856	0.900	1.626	1.798	1.913	2.190	2.296	1.630	1.630	1.780	1.985	1.986	ns
HSUL_12_F	0.562	0.780	0.867	0.780	0.867	1.423	1.573	1.703	1.965	2.086	1.222	1.222	1.335	1.577	1.578	ns
HSUL_12_S	0.562	0.780	0.867	0.780	0.867	1.583	1.711	1.864	2.103	2.247	1.536	1.536	1.665	1.891	1.891	ns
LVCMOS12_F_12	0.611	0.918	0.976	0.918	0.976	1.582	1.689	1.856	2.081	2.239	1.202	1.202	1.317	1.557	1.557	ns
LVCMOS12_F_4	0.611	0.918	0.976	0.918	0.976	1.644	1.742	1.922	2.134	2.305	1.353	1.353	1.478	1.708	1.708	ns
LVCMOS12_F_8	0.611	0.918	0.976	0.918	0.976	1.598	1.714	1.879	2.106	2.262	1.292	1.292	1.432	1.647	1.647	ns
LVCMOS12_S_12	0.611	0.918	0.976	0.918	0.976	1.949	2.073	2.247	2.465	2.630	1.581	1.581	1.717	1.936	1.937	ns
LVCMOS12_S_4	0.611	0.918	0.976	0.918	0.976	1.916	1.979	2.182	2.371	2.565	1.633	1.633	1.772	1.988	1.989	ns
LVCMOS12_S_8	0.611	0.918	0.976	0.918	0.976	2.062	2.205	2.406	2.597	2.789	1.767	1.767	1.928	2.122	2.123	ns
LVCMOS15_F_12	0.625	0.905	0.958	0.905	0.958	1.621	1.713	1.892	2.105	2.275	1.275	1.275	1.428	1.630	1.630	ns
LVCMOS15_F_16	0.625	0.905	0.958	0.905	0.958	1.595	1.722	1.881	2.114	2.264	1.260	1.260	1.407	1.615	1.615	ns
LVCMOS15_F_4	0.625	0.905	0.958	0.905	0.958	1.677	1.825	1.959	2.217	2.342	1.453	1.453	1.557	1.808	1.809	ns
LVCMOS15_F_8	0.625	0.905	0.958	0.905	0.958	1.651	1.778	1.930	2.170	2.313	1.378	1.378	1.458	1.733	1.733	ns
LVCMOS15_S_12	0.625	0.905	0.958	0.905	0.958	1.866	1.991	2.139	2.383	2.522	1.516	1.516	1.648	1.871	1.871	ns
LVCMOS15_S_16	0.625	0.905	0.958	0.905	0.958	2.102	2.172	2.389	2.564	2.772	1.707	1.707	1.888	2.062	2.062	ns
LVCMOS15_S_4	0.625	0.905	0.958	0.905	0.958	2.204	2.313	2.483	2.705	2.866	1.952	1.952	2.123	2.307	2.307	ns
LVCMOS15_S_8	0.625	0.905	0.958	0.905	0.958	2.102	2.170	2.400	2.562	2.783	1.817	1.817	1.984	2.172	2.173	ns
LVCMOS18_F_12	0.660	0.915	0.958	0.915	0.958	1.671	1.805	1.962	2.197	2.345	1.383	1.383	1.471	1.738	1.738	ns
LVCMOS18_F_16	0.660	0.915	0.958	0.915	0.958	1.628	1.785	1.917	2.177	2.300	1.338	1.338	1.446	1.693	1.693	ns
LVCMOS18_F_4	0.660	0.915	0.958	0.915	0.958	1.745	1.868	2.013	2.260	2.396	1.472	1.472	1.599	1.827	1.832	ns
LVCMOS18_F_8	0.660	0.915	0.958	0.915	0.958	1.715	1.797	1.979	2.189	2.362	1.384	1.384	1.487	1.739	1.739	ns
LVCMOS18_S_12	0.660	0.915	0.958	0.915	0.958	2.093	2.201	2.408	2.593	2.791	1.762	1.762	1.894	2.117	2.118	ns
LVCMOS18_S_16	0.660	0.915	0.958	0.915	0.958	2.032	2.173	2.362	2.565	2.745	1.702	1.702	1.834	2.057	2.057	ns
LVCMOS18_S_4	0.660	0.915	0.958	0.915	0.958	2.272	2.346	2.567	2.738	2.950	1.951	1.951	2.092	2.306	2.306	ns
LVCMOS18_S_8	0.660	0.915	0.958	0.915	0.958	2.205	2.292	2.511	2.684	2.894	1.848	1.848	2.008	2.203	2.204	ns
LVCMOS25_F_12	0.813	0.988	1.042	0.988	1.042	2.153	2.153	2.453	2.545	2.836	1.692	1.692	1.856	2.047	2.047	ns
LVCMOS25_F_16	0.813	0.988	1.042	0.988	1.042	2.105	2.105	2.406	2.497	2.789	1.623	1.623	1.786	1.978	1.979	ns
LVCMOS25_F_4	0.813	0.988	1.042	0.988	1.042	2.247	2.344	2.554	2.736	2.937	1.842	1.842	2.039	2.197	2.197	ns
LVCMOS25_F_8	0.813	0.988	1.042	0.988	1.042	2.184	2.184	2.516	2.576	2.899	1.726	1.726	1.910	2.081	2.081	ns
LVCMOS25_S_12	0.813	0.988	1.042	0.988	1.042	2.480	2.558	2.840	2.950	3.223	1.971	1.971	2.194	2.326	2.327	ns
LVCMOS25_S_16	0.813	0.988	1.042	0.988	1.042	2.449	2.449	2.740	2.841	3.123	1.852	1.852	2.063	2.207	2.207	ns
LVCMOS25_S_4	0.813	0.988	1.042	0.988	1.042	2.754	2.770	3.066	3.162	3.449	2.224	2.224	2.458	2.579	2.579	ns
LVCMOS25_S_8	0.813	0.988	1.042	0.988	1.042	2.639	2.663	2.963	3.055	3.346	2.091	2.091	2.373	2.446	2.446	ns
LVCMOS33_F_12	1.154	1.154	1.213	1.154	1.213	2.388	2.415	2.651	2.807	3.034	1.754	1.754	1.915	2.109	2.109	ns
LVCMOS33_F_16	1.154	1.154	1.213	1.154	1.213	2.311	2.383	2.603	2.775	2.986	1.734	1.734	1.869	2.089	2.089	ns
LVCMOS33_F_4	1.154	1.154	1.213	1.154	1.213	2.483	2.541	2.765	2.933	3.148	1.932	1.932	2.135	2.287	2.287	ns
LVCMOS33_F_8	1.154	1.154	1.213	1.154	1.213	2.542	2.603	2.822	2.995	3.205	1.937	1.937	2.130	2.292	2.294	ns
LVCMOS33_S_12	1.154	1.154	1.213	1.154	1.213	2.705	2.705	3.047	3.097	3.430	2.049	2.049	2.318	2.404	2.404	ns
LVCMOS33_S_16	1.154	1.154	1.213	1.154	1.213	2.714	2.714	3.024	3.106	3.407	2.028	2.028	2.232	2.383	2.383	ns
LVCMOS33_S_4	1.154	1.154	1.213	1.154	1.213	2.974	2.999	3.340	3.391	3.723	2.320	2.320	2.610	2.675	2.675	ns

Table 75: IOB High Density (HD) Switching Characteristics (Cont'd)

	T	T _{INBUF_DELAY_PAD_I} 0.90V 0.85V 0.72V				To	UTBUF.	_DELA	Y_O_P	AD	Tol	JTBUF_	DELAY	_TD_P	AD	
I/O Standards	0.90V	0.8	85 V	0.7	′2V	0.90V	0.8	5 V	0.7	72V	0.90V	0.8	85 V	0.7	′2V	Units
	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
LVCMOS33_S_8	1.154	1.154	1.213	1.154	1.213	2.894	2.929	3.260	3.321	3.643	2.260	2.260	2.532	2.615	2.616	ns
LVDS_25	0.830	1.003	1.116	1.003	1.116	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVPECL	0.830	1.003	1.116	1.003	1.116	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVTTL_F_12	1.159	1.164	1.223	1.164	1.223	2.388	2.415	2.651	2.807	3.034	1.754	1.754	1.915	2.109	2.109	ns
LVTTL_F_16	1.159	1.164	1.223	1.164	1.223	2.433	2.464	2.732	2.856	3.115	1.750	1.750	1.986	2.105	2.117	ns
LVTTL_F_4	1.159	1.164	1.223	1.164	1.223	2.483	2.541	2.765	2.933	3.148	1.932	1.932	2.135	2.287	2.287	ns
LVTTL_F_8	1.159	1.164	1.223	1.164	1.223	2.512	2.582	2.787	2.974	3.170	1.910	1.910	2.063	2.265	2.265	ns
LVTTL_S_12	1.159	1.164	1.223	1.164	1.223	2.731	2.731	3.075	3.123	3.458	2.072	2.072	2.343	2.427	2.427	ns
LVTTL_S_16	1.159	1.164	1.223	1.164	1.223	2.714	2.714	3.024	3.106	3.407	2.028	2.028	2.232	2.383	2.383	ns
LVTTL_S_4	1.159	1.164	1.223	1.164	1.223	2.974	2.999	3.340	3.391	3.723	2.320	2.320	2.610	2.675	2.675	ns
LVTTL_S_8	1.159	1.164	1.223	1.164	1.223	2.894	2.929	3.260	3.321	3.643	2.260	2.260	2.532	2.615	2.616	ns
SLVS_400_25	0.848	1.020	1.136	1.020	1.136	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
SSTL12_F	0.562	0.780	0.867	0.780	0.867	1.507	1.643	1.792	2.035	2.175	1.285	1.285	1.423	1.640	1.640	ns
SSTL12_S	0.562	0.780	0.867	0.780	0.867	1.656	1.784	1.948	2.176	2.331	1.567	1.567	1.706	1.922	1.922	ns
SSTL135_F	0.581	0.798	0.881	0.798	0.881	1.488	1.625	1.765	2.017	2.148	1.341	1.341	1.458	1.696	1.696	ns
SSTL135_II_F	0.581	0.798	0.881	0.798	0.881	1.504	1.623	1.770	2.015	2.153	1.325	1.325	1.470	1.680	1.689	ns
SSTL135_II_S	0.581	0.798	0.881	0.798	0.881	1.624	1.768	1.916	2.160	2.299	1.722	1.722	1.911	2.077	2.078	ns
SSTL135_S	0.581	0.798	0.881	0.798	0.881	1.726	1.869	2.025	2.261	2.408	1.814	1.814	1.976	2.169	2.169	ns
SSTL15_F	0.581	0.838	0.880	0.838	0.880	1.474	1.612	1.754	2.004	2.137	1.357	1.357	1.464	1.712	1.713	ns
SSTL15_II_F	0.581	0.838	0.880	0.838	0.880	1.518	1.622	1.778	2.014	2.161	1.356	1.356	1.442	1.711	1.712	ns
SSTL15_II_S	0.581	0.838	0.880	0.838	0.880	1.699	1.821	1.987	2.213	2.370	1.895	1.895	2.047	2.250	2.250	ns
SSTL15_S	0.581	0.838	0.880	0.838	0.880	1.682	1.824	1.977	2.216	2.360	1.743	1.743	1.907	2.098	2.098	ns
SSTL18_II_F	0.704	0.947	1.021	0.947	1.021	1.629	1.729	1.880	2.121	2.263	1.377	1.377	1.492	1.732	1.732	ns
SSTL18_II_S	0.704	0.947	1.021	0.947	1.021	1.678	1.796	1.965	2.188	2.348	1.616	1.616	1.800	1.971	1.972	ns
SSTL18_I_F	0.704	0.947	1.021	0.947	1.021	1.496	1.609	1.755	2.001	2.138	1.220	1.220	1.313	1.575	1.575	ns
SSTL18_I_S	0.704	0.947	1.021	0.947	1.021	1.675	1.786	1.942	2.178	2.325	1.677	1.677	1.836	2.032	2.033	ns
SUB_LVDS	0.721	1.002	1.036	1.002	1.036	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns

IOB High Performance (HP) Switching Characteristics

Table 76: IOB High Performance (HP) Switching Characteristics

	Tı	T _{INBUF_DELAY_PAD_I}					UTRUF	_DELA	Y O P	ΔD	TOL	JTBUF_	DFI AV	/ TD F	PAD	
I/O Standards	0.90V		.522, (. 35 V		-· /2V	0.90V		_522,\ 35 V		'2V	0.90V		55V		72V	Units
	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
DIFF_HSTL_I_12_F	0.288	0.394	0.402	0.394	0.402	0.410	0.423	0.443	0.423	0.443	0.514	0.553	0.582	0.553	0.582	ns
DIFF_HSTL_I_12_M	0.288	0.394	0.402	0.394	0.402	0.552	0.552	0.583	0.552	0.583	0.632	0.641	0.679	0.641	0.679	ns
DIFF_HSTL_I_12_S	0.288	0.394	0.402	0.394	0.402	0.752	0.752	0.800	0.752	0.800	0.813	0.813	0.868	0.813	0.868	ns
DIFF_HSTL_I_18_F	0.259	0.319	0.339	0.319	0.339	0.439	0.456	0.474	0.456	0.474	0.549	0.576	0.606	0.576	0.606	ns
DIFF_HSTL_I_18_M	0.259	0.319	0.339	0.319	0.339	0.563	0.570	0.603	0.570	0.603	0.636	0.653	0.692	0.653	0.692	ns
DIFF_HSTL_I_18_S	0.259	0.319	0.339	0.319	0.339	0.782	0.782	0.834	0.782	0.834	0.816	0.816	0.871	0.816	0.871	ns
DIFF_HSTL_I_DCI_12_F	0.288	0.394	0.402	0.394	0.402	0.393	0.406	0.429	0.406	0.429	0.502	0.534	0.564	0.534	0.564	ns
DIFF_HSTL_I_DCI_12_M	0.288	0.394	0.402	0.394	0.402	0.546	0.557	0.587	0.557	0.587	0.636	0.653	0.694	0.653	0.694	ns
DIFF_HSTL_I_DCI_12_S	0.288	0.394	0.402	0.394	0.402	0.755	0.755	0.806	0.755	0.806	0.842	0.842	0.907	0.842	0.907	ns
DIFF_HSTL_I_DCI_18_F	0.259	0.323	0.339	0.323	0.339	0.422	0.445	0.461	0.445	0.461	0.509	0.566	0.595	0.566	0.595	ns
DIFF_HSTL_I_DCI_18_M	0.259	0.323	0.339	0.323	0.339	0.546	0.555	0.586	0.555	0.586	0.626	0.643	0.684	0.643	0.684	ns
DIFF_HSTL_I_DCI_18_S	0.259	0.323	0.339	0.323	0.339	0.762	0.762	0.818	0.762	0.818	0.836	0.836	0.900	0.836	0.900	ns
DIFF_HSTL_I_DCI_F	0.335	0.397	0.417	0.397	0.417	0.407	0.431	0.445	0.431	0.445	0.517	0.555	0.575	0.555	0.575	ns
DIFF_HSTL_I_DCI_M	0.335	0.397	0.417	0.397	0.417	0.549	0.553	0.583	0.553	0.583	0.634	0.644	0.684	0.644	0.684	ns
DIFF_HSTL_I_DCI_S	0.335	0.397	0.417	0.397	0.417	0.767	0.767	0.823	0.767	0.823	0.848	0.848	0.912	0.848	0.912	ns
DIFF_HSTL_I_F	0.304	0.404	0.417	0.404	0.417	0.409	0.423	0.443	0.423	0.443	0.514	0.549	0.581	0.549	0.581	ns
DIFF_HSTL_I_M	0.304	0.404	0.417	0.404	0.417	0.549	0.555	0.586	0.555	0.586	0.624	0.640	0.677	0.640	0.677	ns
DIFF_HSTL_I_S	0.304	0.404	0.417	0.404	0.417	0.767	0.767	0.818	0.767	0.818	0.811	0.811	0.866	0.811	0.866	ns
DIFF_HSUL_12_DCI_F	0.320	0.381	0.400	0.381	0.400	0.411	0.425	0.443	0.425	0.443	0.520	0.558	0.586	0.558	0.586	ns
DIFF_HSUL_12_DCI_M	0.320	0.381	0.400	0.381	0.400	0.546	0.557	0.587	0.557	0.587	0.636	0.653	0.694	0.653	0.694	ns
DIFF_HSUL_12_DCI_S	0.320	0.381	0.400	0.381	0.400	0.737	0.737	0.787	0.737	0.787	0.822	0.822	0.885	0.822	0.885	ns
DIFF_HSUL_12_F	0.322	0.394	0.402	0.394	0.402	0.394	0.412	0.430	0.412	0.430	0.494	0.538	0.566	0.538	0.566	ns
DIFF_HSUL_12_M	0.322	0.394	0.402	0.394	0.402	0.552	0.552	0.583	0.552	0.583	0.632	0.641	0.679	0.641	0.679	ns
DIFF_HSUL_12_S	0.322	0.394	0.402	0.394	0.402	0.752	0.752	0.800	0.752	0.800	0.813	0.813	0.868	0.813	0.868	ns
DIFF_POD10_DCI_F	0.289	0.411	0.430	0.411	0.430	0.407	0.425	0.444	0.425	0.444	0.512	0.555	0.584	0.555	0.584	ns
DIFF_POD10_DCI_M	0.289	0.411	0.430	0.411	0.430	0.533	0.542	0.571	0.542	0.571	0.618	0.640	0.681	0.640	0.681	ns
DIFF_POD10_DCI_S	0.289	0.411	0.430	0.411	0.430	0.754	0.754	0.815	0.754	0.815	0.850	0.850	0.917	0.850	0.917	ns
DIFF_POD10_F	0.288	0.411	0.433	0.411	0.433	0.425	0.438	0.459	0.438	0.459	0.531	0.569	0.601	0.569	0.601	ns
DIFF_POD10_M	0.288	0.411	0.433	0.411	0.433	0.519	0.538	0.568	0.538	0.568	0.589	0.630	0.667	0.630	0.667	ns
DIFF_POD10_S	0.288	0.411	0.433	0.411	0.433	0.752	0.766	0.821	0.766	0.821	0.821	0.836	0.894	0.836	0.894	ns
DIFF_POD12_DCI_F	0.320	0.407	0.432	0.407	0.432	0.411	0.425	0.443	0.425	0.443	0.519	0.558	0.586	0.558	0.586	ns
DIFF_POD12_DCI_M	0.320	0.407	0.432	0.407	0.432	0.516	0.543	0.572	0.543	0.572	0.602	0.638	0.678	0.638	0.678	ns
DIFF_POD12_DCI_S	0.320	0.407	0.432	0.407	0.432	0.740	0.772	0.822	0.772	0.822	0.833	0.862	0.929	0.862	0.929	ns
DIFF_POD12_F	0.305	0.409	0.430	0.409	0.430	0.438	0.455	0.476	0.455	0.476	0.549	0.595	0.626	0.595	0.626	ns
DIFF_POD12_M	0.305	0.409	0.430	0.409	0.430	0.551	0.551	0.582	0.551	0.582	0.632	0.641	0.679	0.641	0.679	ns
DIFF_POD12_S	0.305	0.409	0.430	0.409	0.430	0.749	0.767	0.817	0.767	0.817	0.818	0.832	0.889	0.832	0.889	ns
DIFF_SSTL12_DCI_F	0.303	0.381	0.400	0.381	0.400	0.411	0.425	0.443	0.425	0.443	0.520	0.558	0.586	0.558	0.586	ns
DIFF_SSTL12_DCI_M	0.303	0.381	0.400	0.381	0.400	0.549	0.557	0.587	0.557	0.587	0.643	0.654	0.694	0.654	0.694	ns
DIFF_SSTL12_DCI_S	0.303	0.381	0.400	0.381	0.400	0.754	0.754	0.803	0.754	0.803	0.842	0.842	0.908	0.842	0.908	ns

Table 76: IOB High Performance (HP) Switching Characteristics (Cont'd)

<u> </u>	T _{INBUF_DELAY_PAD_I}								Y_O_P		1	JTBUF_	DEL AV	/ TD F	PAD	
I/O Standards	0.90V		55V		_' 72V	0.90V		_DELA 35V		72V	0.90V		_DELA 85V		'2V	Units
.,	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
DIFF_SSTL12_F		0.394	0.402	0.394	0.402	0.394		0.430	0.412	0.430	0.494	0.538	0.566		0.566	ns
DIFF_SSTL12_M	0.288	0.394	0.402	0.394	0.402	0.550	0.553	0.584	0.553	0.584	0.630	0.641	0.676	0.641	0.676	ns
DIFF_SSTL12_S											0.823					ns
DIFF_SSTL135_DCI_F	0.303	0.371	0.402	0.371	0.402	0.392	0.411	0.428	0.411	0.428	0.494	0.537	0.565	0.537	0.565	ns
DIFF_SSTL135_DCI_M	0.303	0.371	0.402	0.371	0.402	0.551	0.551	0.582	0.551	0.582	0.643	0.645	0.685	0.645	0.685	ns
DIFF_SSTL135_DCI_S	0.303	0.371	0.402	0.371	0.402	0.746	0.746	0.799	0.746	0.799	0.829	0.829	0.893	0.829	0.893	ns
DIFF_SSTL135_F	0.289	0.375	0.402	0.375	0.402	0.393	0.408	0.428	0.408	0.428	0.491	0.528	0.561	0.528	0.561	ns
DIFF_SSTL135_M	0.289	0.375	0.402	0.375	0.402	0.548	0.555	0.585	0.555	0.585	0.621	0.641	0.679	0.641	0.679	ns
DIFF_SSTL135_S	0.289	0.375	0.402	0.375	0.402	0.772	0.772	0.823	0.772	0.823	0.827	0.827	0.878	0.827	0.878	ns
DIFF_SSTL15_DCI_F	0.335	0.397	0.417	0.397	0.417	0.394	0.412	0.429	0.412	0.429	0.497	0.531	0.563	0.531	0.563	ns
DIFF_SSTL15_DCI_M	0.335	0.397	0.417	0.397	0.417	0.549	0.553	0.583	0.553	0.583	0.632	0.645	0.685	0.645	0.685	ns
DIFF_SSTL15_DCI_S	0.335	0.397	0.417	0.397	0.417	0.768	0.768	0.822	0.768	0.822	0.847	0.847	0.912	0.847	0.912	ns
DIFF_SSTL15_F	0.304	0.404	0.417	0.404	0.417	0.409	0.424	0.445	0.424	0.445	0.513	0.551	0.577	0.551	0.577	ns
DIFF_SSTL15_M	0.304	0.404	0.417	0.404	0.417	0.547	0.554	0.585	0.554	0.585	0.624	0.639	0.677	0.639	0.677	ns
DIFF_SSTL15_S	0.304	0.404	0.417	0.404	0.417	0.767	0.767	0.817	0.767	0.817	0.813	0.813	0.867	0.813	0.867	ns
DIFF_SSTL18_I_DCI_F	0.256	0.320	0.336	0.320	0.336	0.422	0.445	0.461	0.445	0.461	0.540	0.566	0.595	0.566	0.595	ns
DIFF_SSTL18_I_DCI_M	0.256	0.320	0.336	0.320	0.336	0.552	0.554	0.585	0.554	0.585	0.629	0.644	0.683	0.644	0.683	ns
DIFF_SSTL18_I_DCI_S	0.256	0.320	0.336	0.320	0.336	0.762	0.762	0.818	0.762	0.818	0.837	0.837	0.899	0.837	0.899	ns
DIFF_SSTL18_I_F	0.256	0.316	0.336	0.316	0.336	0.439	0.454	0.476	0.454	0.476	0.549	0.578	0.608	0.578	0.608	ns
DIFF_SSTL18_I_M	0.256	0.316	0.336	0.316	0.336	0.567	0.571	0.603	0.571	0.603	0.535	0.652	0.692	0.652	0.692	ns
DIFF_SSTL18_I_S	0.256	0.316	0.336	0.316	0.336	0.782	0.782	0.835	0.782	0.835	0.816	0.816	0.870	0.816	0.870	ns
HSLVDCI_15_F	0.336	0.393	0.415	0.393	0.415	0.407	0.425	0.443	0.425	0.443	0.513	0.548	0.579	0.548	0.579	ns
HSLVDCI_15_M	0.336	0.393	0.415	0.393	0.415	0.548	0.552	0.581	0.552	0.581	0.635	0.644	0.684	0.644	0.684	ns
HSLVDCI_15_S	0.336	0.393	0.415	0.393	0.415	0.748	0.748	0.802	0.748	0.802	0.827	0.827	0.890	0.827	0.890	ns
HSLVDCI_18_F	0.367	0.424	0.447	0.424	0.447	0.424	0.445	0.461	0.445	0.461	0.541	0.566	0.595	0.566	0.595	ns
HSLVDCI_18_M	0.367	0.424	0.447	0.424	0.447	0.563	0.567	0.598	0.567	0.598	0.647	0.658	0.699	0.658	0.699	ns
HSLVDCI_18_S	0.367	0.424	0.447	0.424	0.447	0.761	0.761	0.817	0.761	0.817	0.836	0.836	0.900	0.836	0.900	ns
HSTL_I_12_F	0.322	0.378	0.399	0.378	0.399	0.410	0.423	0.443	0.423	0.443	0.514	0.553	0.582	0.553	0.582	ns
HSTL_I_12_M	0.322	0.378	0.399	0.378	0.399	0.551	0.551	0.582	0.551	0.582	0.632	0.642	0.679	0.642	0.679	ns
HSTL_I_12_S	0.322	0.378	0.399	0.378	0.399	0.750	0.750	0.799	0.750	0.799	0.813	0.813	0.868	0.813	0.868	ns
HSTL_I_18_F	0.258	0.322	0.339	0.322	0.339	0.439	0.456	0.474	0.456	0.474	0.549	0.576	0.606	0.576	0.606	ns
HSTL_I_18_M	0.258	0.322	0.339	0.322	0.339	0.562	0.569	0.602	0.569	0.602	0.637	0.653	0.692	0.653	0.692	ns
HSTL_I_18_S	0.258	0.322	0.339	0.322	0.339	0.781	0.781	0.833	0.781	0.833	0.816	0.816	0.871	0.816	0.871	ns
HSTL_I_DCI_12_F	0.322	0.378	0.399	0.378	0.399	0.393	0.406	0.429	0.406	0.429	0.502	0.534	0.564	0.534	0.564	ns
HSTL_I_DCI_12_M	0.322	0.378	0.399	0.378	0.399	0.551	0.556	0.586	0.556	0.586	0.644	0.654	0.694	0.654	0.694	ns
HSTL_I_DCI_12_S	0.322	0.378	0.399	0.378	0.399	0.754	0.754	0.803	0.754	0.803	0.842	0.842	0.907	0.842	0.907	ns
HSTL_I_DCI_18_F	0.258	0.321	0.339	0.321	0.339	0.422	0.445	0.461	0.445	0.461	0.509	0.566	0.595	0.566	0.595	ns
HSTL_I_DCI_18_M	0.258	0.321	0.339	0.321	0.339	0.551	0.554	0.585	0.554	0.585	0.634	0.643	0.684	0.643	0.684	ns
HSTL_I_DCI_18_S	0.258	0.321	0.339	0.321	0.339	0.761	0.761	0.817	0.761	0.817	0.836	0.836	0.900	0.836	0.900	ns
HSTL_I_DCI_F	0.288	0.393	0.415	0.393	0.415	0.407	0.431	0.445	0.431	0.445	0.517	0.555	0.575	0.555	0.575	ns
HSTL_I_DCI_M	0.288	0.393	0.415	0.393	0.415	0.548	0.552	0.581	0.552	0.581	0.635	0.644	0.684	0.644	0.684	ns

Table 76: IOB High Performance (HP) Switching Characteristics (Cont'd)

	T _{INBUF_DELAY_PAD_I}								Y_O_P		1	JTBUF_	DEL AV	/ TD F	PAD	
I/O Standards	0.90V		5V		_' 72V	0.90V		_DELA 35V		72V	0.90V				/2V	Units
.,	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
HSTL_I_DCI_S	0.288	0.393	0.415	0.393	0.415	0.766		0.821	0.766	0.821	0.847	0.847	0.912	0.847	0.912	ns
HSTL_I_F	0.322	0.378	0.399	0.378	0.399	0.409	0.423	0.443	0.423	0.443	0.514	0.549	0.581	0.549	0.581	ns
HSTL_I_M						0.548										ns
HSTL_I_S						0.766										ns
HSUL_12_DCI_F						0.411										
HSUL_12_DCI_M	0.319	0.378	0.399	0.378	0.399	0.551	0.556	0.586	0.556	0.586	0.644	0.654	0.694	0.654	0.694	ns
HSUL_12_DCI_S	0.319	0.378	0.399	0.378	0.399	0.736	0.736	0.784	0.736	0.784	0.821	0.821	0.886	0.821	0.886	ns
HSUL_12_F	0.305	0.378	0.399	0.378	0.399	0.394	0.412	0.430	0.412	0.430	0.494	0.538	0.566	0.538	0.566	ns
HSUL_12_M	0.305	0.378	0.399	0.378	0.399	0.551	0.551	0.582	0.551	0.582	0.632	0.642	0.679	0.642	0.679	ns
HSUL_12_S	0.305	0.378	0.399	0.378	0.399	0.750	0.750	0.799	0.750	0.799	0.813	0.813	0.868	0.813	0.868	ns
LVCMOS12_F_2	0.443	0.512	0.555	0.512	0.555	0.657	0.672	0.692	0.672	0.692	0.862	0.898	0.922	0.898	0.922	ns
LVCMOS12_F_4	0.443	0.512	0.555	0.512	0.555	0.486	0.504	0.521	0.504	0.521	0.645	0.664	0.693	0.664	0.693	ns
LVCMOS12_F_6	0.443	0.512	0.555	0.512	0.555	0.469	0.485	0.507	0.485	0.507	0.585	0.634	0.669	0.634	0.669	ns
LVCMOS12_F_8	0.443	0.512	0.555	0.512	0.555	0.457	0.465	0.489	0.465	0.489	0.592	0.611	0.666	0.611	0.666	ns
LVCMOS12_M_2	0.443	0.512	0.555	0.512	0.555	0.687	0.708	0.727	0.708	0.727	0.889	0.916	0.945	0.916	0.945	ns
LVCMOS12_M_4	0.443	0.512	0.555	0.512	0.555	0.533	0.550	0.573	0.550	0.573	0.629	0.664	0.690	0.664	0.690	ns
LVCMOS12_M_6	0.443	0.512	0.555	0.512	0.555	0.520	0.527	0.554	0.527	0.554	0.608	0.622	0.652	0.622	0.652	ns
LVCMOS12_M_8	0.443	0.512	0.555	0.512	0.555	0.532	0.540	0.571	0.540	0.571	0.606	0.614	0.649	0.614	0.649	ns
LVCMOS12_S_2	0.443	0.512	0.555	0.512	0.555	0.767	0.767	0.803	0.767	0.803	0.981	0.990	1.024	0.990	1.024	ns
LVCMOS12_S_4	0.443	0.512	0.555	0.512	0.555	0.666	0.666	0.704	0.666	0.704	0.803	0.803	0.848	0.803	0.848	ns
LVCMOS12_S_6	0.443	0.512	0.555	0.512	0.555	0.657	0.657	0.695	0.657	0.695	0.732	0.732	0.774	0.732	0.774	ns
LVCMOS12_S_8	0.443	0.512	0.555	0.512	0.555	0.708	0.708	0.761	0.708	0.761	0.745	0.745	0.790	0.745	0.790	ns
LVCMOS15_F_12	0.368	0.414	0.445	0.414	0.445	0.485	0.500	0.522	0.500	0.522	0.584	0.647	0.682	0.647	0.682	ns
LVCMOS15_F_2	0.368	0.414	0.445	0.414	0.445	0.686	0.702	0.722	0.702	0.722	0.893	0.919	0.940	0.919	0.940	ns
LVCMOS15_F_4	0.368	0.414	0.445	0.414	0.445	0.567	0.579	0.601	0.579	0.601	0.727	0.755	0.781	0.755	0.781	ns
LVCMOS15_F_6	0.368	0.414	0.445	0.414	0.445	0.533	0.547	0.569	0.547	0.569	0.684	0.711	0.742	0.711	0.742	ns
LVCMOS15_F_8	0.368	0.414	0.445	0.414	0.445	0.500	0.518	0.538	0.518	0.538	0.635	0.686	0.703	0.686	0.703	ns
LVCMOS15_M_12	0.368	0.414	0.445	0.414	0.445	0.607	0.607	0.644	0.607	0.644	0.637	0.637	0.676	0.637	0.676	ns
LVCMOS15_M_2	0.368	0.414	0.445	0.414	0.445	0.736	0.741	0.770	0.741	0.770	0.929	0.938	0.962	0.938	0.962	ns
LVCMOS15_M_4	0.368	0.414	0.445	0.414	0.445	0.610	0.625	0.651	0.625	0.651	0.733	0.754	0.786	0.754	0.786	ns
LVCMOS15_M_6	0.368	0.414	0.445	0.414	0.445	0.564	0.576	0.604	0.576	0.604	0.655	0.674	0.710	0.674	0.710	ns
LVCMOS15_M_8						0.565										
LVCMOS15_S_12						0.788										
LVCMOS15_S_2						0.829										
LVCMOS15_S_4						0.687										
LVCMOS15_S_6						0.671										
LVCMOS15_S_8						0.704										
LVCMOS18_F_12						0.564										
LVCMOS18_F_2						0.723										
LVCMOS18_F_4						0.598										
LVCMOS18_F_6	0.352	0.418	0.445	0.418	0.445	0.598	0.603	0.633	0.603	0.633	0.781	0.781	0.808	0.781	0.808	ns

Table 76: IOB High Performance (HP) Switching Characteristics (Cont'd)

3	T _{INBUF_DELAY_PAD_I}								Y_O_P		-	JTBUF_	DELAY	/ TD E	PAD	
I/O Standards	0.90V		55V		_' 72V	0.90V		_DELA 35V		72V	0.90V		_DELA 85V		'2V	Units
	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
LVCMOS18_F_8	0.352	0.418	0.445	0.418	0.445	0.567		0.600	0.573	0.600	0.712	0.733	0.767		0.767	ns
LVCMOS18_M_12	0.352	0.418	0.445	0.418	0.445	0.640	0.640	0.678	0.640	0.678	0.670	0.670	0.709	0.670	0.709	ns
LVCMOS18_M_2						0.785										
LVCMOS18_M_4						0.658										
LVCMOS18_M_6						0.625										
LVCMOS18_M_8	0.352	0.418	0.445	0.418	0.445	0.626	0.626	0.661	0.626	0.661	0.705	0.705	0.746	0.705	0.746	ns
LVCMOS18_S_12	0.352	0.418	0.445	0.418	0.445	0.795	0.795	0.861	0.795	0.861	0.683	0.683	0.721	0.683	0.721	ns
LVCMOS18_S_2	0.352	0.418	0.445	0.418	0.445	0.861	0.862	0.897	0.862	0.897	1.061	1.076	1.098	1.076	1.098	ns
LVCMOS18_S_4	0.352	0.418	0.445	0.418	0.445	0.716	0.716	0.758	0.716	0.758	0.829	0.829	0.872	0.829	0.872	ns
LVCMOS18_S_6	0.352	0.418	0.445	0.418	0.445	0.682	0.682	0.724	0.682	0.724	0.724	0.724	0.762	0.724	0.762	ns
LVCMOS18_S_8	0.352	0.418	0.445	0.418	0.445	0.707	0.707	0.760	0.707	0.760	0.709	0.709	0.745	0.709	0.745	ns
LVDCI_15_F	0.369	0.425	0.462	0.425	0.462	0.407	0.426	0.443	0.426	0.443	0.514	0.548	0.581	0.548	0.581	ns
LVDCI_15_M	0.369	0.425	0.462	0.425	0.462	0.549	0.553	0.582	0.553	0.582	0.632	0.645	0.685	0.645	0.685	ns
LVDCI_15_S	0.369	0.425	0.462	0.425	0.462	0.749	0.749	0.803	0.749	0.803	0.821	0.821	0.890	0.821	0.890	ns
LVDCI_18_F	0.367	0.414	0.447	0.414	0.447	0.422	0.441	0.459	0.441	0.459	0.541	0.560	0.589	0.560	0.589	ns
LVDCI_18_M	0.367	0.414	0.447	0.414	0.447	0.546	0.554	0.585	0.554	0.585	0.622	0.644	0.683	0.644	0.683	ns
LVDCI_18_S	0.367	0.414	0.447	0.414	0.447	0.760	0.760	0.818	0.760	0.818	0.837	0.837	0.899	0.837	0.899	ns
LVDS	0.508	0.539	0.620	0.539	0.620	0.626	0.626	0.662	0.626	0.662	960.447	960.447	960.447	960.447	960.447	ns
MIPI_DPHY_DCI_HS	0.305	0.386	0.415	0.386	0.415	0.489	0.502	0.522	0.502	0.522	N/A	N/A	N/A	N/A	N/A	ns
MIPI_DPHY_DCI_LP	8.438	8.438	8.792	8.438	8.792	0.895	0.914	0.937	0.914	0.937	N/A	N/A	N/A	N/A	N/A	ns
POD10_DCI_F	0.336	0.408	0.430	0.408	0.430	0.407	0.425	0.444	0.425	0.444	0.512	0.555	0.584	0.555	0.584	ns
POD10_DCI_M	0.336	0.408	0.430	0.408	0.430	0.533	0.542	0.571	0.542	0.571	0.618	0.640	0.681	0.640	0.681	ns
POD10_DCI_S	0.336	0.408	0.430	0.408	0.430	0.724	0.754	0.815	0.754	0.815	0.815	0.850	0.917	0.850	0.917	ns
POD10_F	0.336	0.407	0.430	0.407	0.430	0.425	0.438	0.459	0.438	0.459	0.531	0.569	0.601	0.569	0.601	ns
POD10_M	0.336	0.407	0.430	0.407	0.430	0.519	0.538	0.568	0.538	0.568	0.589	0.630	0.667	0.630	0.667	ns
POD10_S	0.336	0.407	0.430	0.407	0.430	0.752	0.766	0.821	0.766	0.821	0.821	0.836	0.894	0.836	0.894	ns
POD12_DCI_F						0.411										
POD12_DCI_M	0.336	0.409	0.431	0.409	0.431	0.516	0.543	0.572	0.543	0.572	0.602	0.638	0.678	0.638	0.678	ns
POD12_DCI_S	0.336	0.409	0.431	0.409	0.431	0.740	0.772	0.822	0.772	0.822	0.833	0.862	0.929	0.862	0.929	ns
POD12_F						0.438										
POD12_M	0.336	0.409	0.431	0.409	0.431	0.551	0.551	0.582	0.551	0.582	0.632	0.641	0.679	0.641	0.679	ns
POD12_S	0.336	0.409	0.431	0.409	0.431	0.749	0.767	0.817	0.767	0.817	0.818	0.832	0.889	0.832	0.889	ns
SLVS_400_18	0.492						N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
SSTL12_DCI_F						0.411										
SSTL12_DCI_M						0.549										
SSTL12_DCI_S						0.754										
SSTL12_F						0.394										
SSTL12_M						0.550										
SSTL12_S						0.758										
SSTL135_DCI_F						0.392										
SSTL135_DCI_M	0.341	0.366	0.399	0.366	0.399	0.551	0.551	0.582	0.551	0.582	0.643	0.645	0.685	0.645	0.685	ns

Table 76: IOB High Performance (HP) Switching Characteristics (Cont'd)

	Tı	T _{INBUF_DELAY_PAD_I}						_DELA	Y_O_P	AD	Tol	JTBUF_	DELAY	_TD_F	PAD	
I/O Standards	0.90V	0.8	5 V	0.7	/2V	0.90V	0.8	35 V	0.7	′2V	0.90V	0.8	5 V	0.7	′2V	Units
	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	-3	-2	-1	-2	-1	
SSTL135_DCI_S	0.341	0.366	0.399	0.366	0.399	0.746	0.746	0.799	0.746	0.799	0.829	0.829	0.893	0.829	0.893	ns
SSTL135_F	0.321	0.378	0.399	0.378	0.399	0.393	0.408	0.428	0.408	0.428	0.491	0.528	0.561	0.528	0.561	ns
SSTL135_M	0.321	0.378	0.399	0.378	0.399	0.548	0.555	0.585	0.555	0.585	0.621	0.641	0.679	0.641	0.679	ns
SSTL135_S	0.321	0.378	0.399	0.378	0.399	0.772	0.772	0.823	0.772	0.823	0.827	0.827	0.878	0.827	0.878	ns
SSTL15_DCI_F	0.319	0.402	0.417	0.402	0.417	0.394	0.412	0.429	0.412	0.429	0.497	0.531	0.563	0.531	0.563	ns
SSTL15_DCI_M	0.319	0.402	0.417	0.402	0.417	0.549	0.553	0.583	0.553	0.583	0.632	0.645	0.685	0.645	0.685	ns
SSTL15_DCI_S	0.319	0.402	0.417	0.402	0.417	0.768	0.768	0.822	0.768	0.822	0.847	0.847	0.912	0.847	0.912	ns
SSTL15_F	0.320	0.371	0.400	0.371	0.400	0.393	0.408	0.428	0.408	0.428	0.494	0.530	0.556	0.530	0.556	ns
SSTL15_M	0.320	0.371	0.400	0.371	0.400	0.547	0.554	0.585	0.554	0.585	0.624	0.639	0.677	0.639	0.677	ns
SSTL15_S	0.320	0.371	0.400	0.371	0.400	0.767	0.767	0.817	0.767	0.817	0.813	0.813	0.867	0.813	0.867	ns
SSTL18_I_DCI_F	0.256	0.329	0.336	0.329	0.336	0.422	0.445	0.461	0.445	0.461	0.540	0.566	0.595	0.566	0.595	ns
SSTL18_I_DCI_M	0.256	0.329	0.336	0.329	0.336	0.552	0.554	0.585	0.554	0.585	0.629	0.644	0.683	0.644	0.683	ns
SSTL18_I_DCI_S	0.256	0.329	0.336	0.329	0.336	0.762	0.762	0.818	0.762	0.818	0.837	0.837	0.899	0.837	0.899	ns
SSTL18_I_F	0.259	0.316	0.337	0.316	0.337	0.439	0.454	0.476	0.454	0.476	0.549	0.578	0.608	0.578	0.608	ns
SSTL18_I_M	0.259	0.316	0.337	0.316	0.337	0.567	0.571	0.603	0.571	0.603	0.535	0.652	0.692	0.652	0.692	ns
SSTL18_I_S	0.259	0.316	0.337	0.316	0.337	0.782	0.782	0.835	0.782	0.835	0.816	0.816	0.870	0.816	0.870	ns
SUB_LVDS	0.508	0.539	0.620	0.539	0.620	0.658	0.660	0.692	0.660	0.692	907.387	969.863	969.863	969.863	969.863	ns

IOB 3-state Output Switching Characteristics

Table 77 specifies the values of T_{OUTBUF_DELAY_TE_PAD} and T_{INBUF_DELAY_IBUFDIS_O}.

- T_{OUTBUF_DELAY_TE_PAD} is the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state).
- T_{INBUF_DELAY_IBUFDIS_O} is the IOB delay from IBUFDISABLE to O output.
- In HP I/O banks, the internal DCI termination turn-off time is always faster than T_{OUTBUF_DELAY_TE_PAD} when the DCITERMDISABLE pin is used.
- In HD I/O banks, the internal IN_TERM termination turn-off time is always faster than T_{OUTBUF_DELAY_TE_PAD} when the INTERMDISABLE pin is used.

Table 77: IOB 3-state Output Switching Characteristics

		,	Spee V _{CCINT} O	ed Grade perating		3	
Symbol	Description	0.90V	0.8	85 V	0.7	'2V	Units
		-3	-2	-1	-2	-1	
T	T input to pad high-impedance for HD I/O banks	6.167	6.318	6.369	6.699	6.752	ns
T _{OUTBUF} DELAY_TE_PAD	T input to pad high-impedance for HP I/O banks	5.330	5.330	5.341	5.330	5.341	ns
т	IBUF turn-on time from IBUFDISABLE to O output for HD I/O banks	2.266	2.266	2.430	2.266	2.430	ns
T _{INBUF_DELAY_IBUFDIS_O}	IBUF turn-on time from IBUFDISABLE to O output for HP I/O banks	0.873	0.936	1.037	0.936	1.037	ns

Input Delay Measurement Methodology

Table 78 shows the test setup parameters used for measuring input delay.

Table 78: Input Delay Measurement Methodology

Description	I/O Standard Attribute	V _L ⁽¹⁾⁽²⁾	V _H ⁽¹⁾⁽²⁾	V _{MEAS} (1) (4) (6)	V _{REF} (1)(3)(5)
LVCMOS, 1.2V	LVCMOS12	0.1	1.1	0.6	_
LVCMOS, LVDCI, HSLVDCI, 1.5V	LVCMOS15, LVDCI_15, HSLVDCI_15	0.1	1.4	0.75	_
LVCMOS, LVDCI, HSLVDCI, 1.8V	LVCMOS18, LVDCI_18, HSLVDCI_18	0.1	1.7	0.9	_
LVCMOS, 2.5V	LVCMOS25	0.1	2.4	1.25	_
LVCMOS, 3.3V	LVCMOS33	0.1	3.2	1.65	_
LVTTL, 3.3V	LVTTL	0.1	3.2	1.65	_
HSTL (high-speed transceiver logic), class I, 1.2V	HSTL_I_12	V _{REF} – 0.25	V _{REF} + 0.25	V _{REF}	0.6
HSTL, class I, 1.5V	HSTL_I	V _{REF} – 0.325	V _{REF} + 0.325	V _{REF}	0.75

Table 78: Input Delay Measurement Methodology (Cont'd)

Description	I/O Standard Attribute	V _L ⁽¹⁾⁽²⁾	V _H ⁽¹⁾⁽²⁾	V _{MEAS} (1) (4) (6)	V _{REF} (1)(3)(5)
HSTL, class I, 1.8V	HSTL_I_18	V _{REF} - 0.4	V _{REF} + 0.4	V_{REF}	0.9
HSUL (high-speed unterminated logic), 1.2V	HSUL_12	V _{REF} – 0.25	V _{REF} + 0.25	V _{REF}	0.6
SSTL12 (stub series terminated logic), 1.2V	SSTL12	V _{REF} – 0.25	V _{REF} + 0.25	V _{REF}	0.6
SSTL135 and SSTL135 class II, 1.35V	SSTL135, SSTL135_II	V _{REF} – 0.2875	V _{REF} + 0.2875	V _{REF}	0.675
SSTL15 and SSTL15 class II, 1.5V	SSTL15, SSTL15_II	V _{REF} – 0.325	V _{REF} + 0.325	V _{REF}	0.75
SSTL18, class I and II, 1.8V	SSTL18_I, SSTL18_II	V _{REF} – 0.4	V _{REF} + 0.4	V _{REF}	0.9
POD10, 1.0V	POD10	V _{REF} – 0.2	V _{REF} + 0.2	V_{REF}	0.7
POD12, 1.2V	POD12	V _{REF} - 0.24	V _{REF} + 0.24	V _{REF}	0.84
DIFF_HSTL, class I, 1.2V	DIFF_HSTL_I_12	0.6 – 0.25	0.6 + 0.25	0(6)	_
DIFF_HSTL, class I, 1.5V	DIFF_HSTL_I	0.75 - 0.325	0.75 + 0.325	0(6)	_
DIFF_HSTL, class I, 1.8V	DIFF_HSTL_I_18	0.9 - 0.4	0.9 + 0.4	0(6)	_
DIFF_HSUL, 1.2V	DIFF_HSUL_12	0.6 – 0.25	0.6 + 0.25	0(6)	_
DIFF_SSTL, 1.2V	DIFF_SSTL12	0.6 - 0.25	0.6 + 0.25	0(6)	_
DIFF_SSTL135 and DIFF_SSTL135 class II, 1.35V	DIFF_SSTL135, DIFF_SSTL135_II	0.675 – 0.2875	0.675 + 0.2875	0(6)	_
DIFF_SSTL15 and DIFF_SSTL15 class II, 1.5V	DIFF_SSTL15, DIFF_SSTL15_II	0.75 – 0.325	0.75 + 0.325	0(6)	_
DIFF_SSTL18_I, DIFF_SSTL18_II, 1.8V	DIFF_SSTL18_I, DIFF_SSTL18_II	0.9 - 0.4	0.9 + 0.4	0(6)	_
DIFF_POD10, 1.0V	DIFF_POD10	0.5 - 0.2	0.5 + 0.2	0(6)	_
DIFF_POD12, 1.2V	DIFF_POD12	0.6 – 0.25	0.6 + 0.25	0(6)	-
LVDS (low-voltage differential signaling), 1.8V	LVDS	0.9 – 0.125	0.9 + 0.125	0(6)	_
LVDS_25, 2.5V	LVDS_25	1.25 – 0.125	1.25 + 0.125	0(6)	_
SUB_LVDS, 1.8V	SUB_LVDS	0.9 – 0.125	0.9 + 0.125	0(6)	_
SLVS, 1.8V	SLVS_400_18	0.9 – 0.125	0.9 + 0.125	0(6)	-
SLVS, 2.5V	SLVS_400_25	1.25 – 0.125	1.25 + 0.125	0(6)	_
LVPECL, 2.5V	LVPECL	1.25 – 0.125	1.25 + 0.125	0(6)	_
MIPI D-PHY (high speed) 1.2V	MIPI_DPHY_DCI_HS	0.2 - 0.125	0.2 + 0.125	0(6)	_
MIPI D-PHY (low power) 1.2V	MIPI_DPHY_DCI_LP	0.715 - 0.2	0.715 + 0.2	0(6)	_

- 1. The input delay measurement methodology parameters for LVDCI/HSLVDCI are the same for LVCMOS standards of the same voltage. Parameters for all other DCI standards are the same for the corresponding non-DCI standards.
- 2. Input waveform switches between V_L and V_H .
- Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst case of these measurements. V_{REF} values listed are typical.
- 4. Input voltage level from which measurement starts.
- This is an input voltage reference that bears no relation to the V_{REF}/V_{MEAS} parameters found in IBIS models and/or noted in Figure 1.
- The value given is the differential input voltage.

Output Delay Measurement Methodology

Output delays are measured with short output traces. Standard termination was used for all testing. The propagation delay of the trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 1 and Figure 2.

Figure 1: Single-Ended Test Setup

Figure 2: Differential Test Setup

Parameters V_{REF} , R_{REF} , C_{REF} , and V_{MEAS} fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using this method:

- 1. Simulate the output driver of choice into the generalized test setup using values from Table 79.
- 2. Record the time to V_{MEAS}.
- 3. Simulate the output driver of choice into the actual PCB trace and load using the appropriate IBIS model or capacitance value to represent the load.
- 4. Record the time to V_{MFAS} .
- 5. Compare the results of step 2 and step 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace.

Table 79: Output Delay Measurement Methodology

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
LVCMOS, 1.2V	LVCMOS12	1M	0	0.6	0
LVCMOS, 1.5V	LVCMOS15	1M	0	0.75	0
LVCMOS, 1.8V	LVCMOS18	1M	0	0.9	0
LVCMOS, 2.5V	LVCMOS25	1M	0	1.25	0
LVCMOS, 3.3V	LVCMOS33	1M	0	1.65	0
LVTTL, 3.3V	LVTTL	1M	0	1.65	0
LVDCI, HSLVDCI, 1.5V	LVDCI_15, HSLVDCI_15	50	0	V _{REF}	0.75
LVDCI, HSLVDCI, 1.8V	LVDCI_15, HSLVDCI_18	50	0	V_{REF}	0.9
HSTL (high-speed transceiver logic), class I, 1.2V	HSTL_I_12	50	0	V_{REF}	0.6
HSTL, class I, 1.5V	HSTL_I	50	0	V _{REF}	0.75
HSTL, class I, 1.8V	HSTL_I_18	50	0	V_{REF}	0.9
HSUL (high-speed unterminated logic), 1.2V	HSUL_12	50	0	V _{REF}	0.6
SSTL12 (stub series terminated logic), 1.2V	SSTL12	50	0	V_{REF}	0.6
SSTL135 and SSTL135 class II, 1.35V	SSTL135, SSTL135_II	50	0	V _{REF}	0.675
SSTL15 and SSTL15 class II, 1.5V	SSTL15, SSTL15_II	50	0	V_{REF}	0.75
SSTL18, class I and class II, 1.8V	SSTL18_I, SSTL18_II	50	0	V_{REF}	0.9
POD10, 1.0V	POD10	50	0	V _{REF}	1.0
POD12, 1.2V	POD12	50	0	V_{REF}	1.2
DIFF_HSTL, class I, 1.2V	DIFF_HSTL_I_12	50	0	V_{REF}	0.6
DIFF_HSTL, class I, 1.5V	DIFF_HSTL_I	50	0	V _{REF}	0.75
DIFF_HSTL, class I, 1.8V	DIFF_HSTL_I_18	50	0	V_{REF}	0.9
DIFF_HSUL, 1.2V	DIFF_HSUL_12	50	0	V_{REF}	0.6
DIFF_SSTL12, 1.2V	DIFF_SSTL12	50	0	V_{REF}	0.6
DIFF_SSTL135 and DIFF_SSTL135 class II, 1.35V	DIFF_SSTL135, DIFF_SSTL135_II	50	0	V _{REF}	0.675
DIFF_SSTL15 and DIFF_SSTL15 class II, 1.5V	DIFF_SSTL15, DIFF_SSTL15_II	50	0	V _{REF}	0.75
DIFF_SSTL18, class I and II, 1.8V	DIFF_SSTL18_I, DIFF_SSTL18_II	50	0	V _{REF}	0.9
DIFF_POD10, 1.0V	DIFF_POD10	50	0	V _{REF}	1.0
DIFF_POD12, 1.2V	DIFF_POD12	50	0	V _{REF}	1.2
LVDS (low-voltage differential signaling), 1.8V	LVDS	100	0	0(2)	0
SUB_LVDS, 1.8V	SUB_LVDS	100	0	0(2)	0
MIPI D-PHY (high speed) 1.2V	MIPI_DPHY_DCI_HS	100	0	0(2)	0
MIPI D-PHY (low power) 1.2V	MIPI_DPHY_DCI_LP	1M	0	0.6	0

- 1. C_{REF} is the capacitance of the probe, nominally 0 pF.
- 2. The value given is the differential output voltage.

Block RAM and FIFO Switching Characteristics

Table 80: Block RAM and FIFO Switching Characteristics

				ed Grade perating		S	
Symbol	Description	0.90V	0.8	35 V	0.7	72V	Units
		-3	-2	-1	-2	-1	
Maximum Fi	requency						
F _{MAX_WF_NC}	Block RAM (WRITE_FIRST and NO_CHANGE modes).	825	738	645	585	516	MHz
F _{MAX_RF}	Block RAM (READ_FIRST mode).	718	637	575	510	460	MHz
F _{MAX_FIFO}	FIFO in all modes without ECC.	825	738	645	585	516	MHz
	Block RAM and FIFO in ECC configuration without PIPELINE.	718	637	575	510	460	MHz
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration with PIPELINE and Block RAM in WRITE_FIRST or NO_CHANGE mode.	825	738	645	585	516	MHz
T _{PW} ⁽¹⁾	Minimum pulse width.	495	542	543	577	578	ps
Block RAM a	and FIFO Clock-to-Out Delays						
T _{RCKO_DO}	Clock CLK to DOUT output (without output register).	0.91	1.02	1.11	1.46	1.53	ns, Max
T _{RCKO_DO_REG}	Clock CLK to DOUT output (with output register).	0.27	0.29	0.30	0.42	0.44	ns, Max

The MMCM and PLL DUTY_CYCLE attribute should be set to 50% to meet the pulse-width requirements at the higher frequencies.

UltraRAM Switching Characteristics

The *UltraScale Architecture and Product Overview* (DS890) lists the Zynq UltraScale+ MPSoC that include this memory.

Table 81: UltraRAM Switching Characteristics

		,	1					
Symbol	Description	0.90V	0.8	35 V	0.72V		Units	
		-3	-2	-1	-2	-1		
Maximum Freque	ncy			•				
F _{MAX}	UltraRAM maximum frequency with OREG_B = True.	650	600	575	500	481	MHz	
F _{MAX_ECC_NOPIPELINE}	UltraRAM maximum frequency with OREG_B = False and EN_ECC_RD_B = True.	435	400	386	312	303	MHz	
F _{MAX_NOPIPELINE}	UltraRAM maximum frequency with OREG_B = False and EN_ECC_RD_B = False.	528	500	478	404	389	MHz	
T _{PW} ⁽¹⁾	Minimum pulse width.	650	700	730	800	832	ps	
T _{RSTPW}	Asynchronous reset minimum pulse width. One cycle required.	1 clock cycle						

Notes:

Input/Output Delay Switching Characteristics

Table 82: Input/Output Delay Switching Characteristics

		Speed Grade and V _{CCINT} Operating Voltages						
Symbol	Description	0.90V	0.8	5 V	0.72V		Units	
		-3	-2	-1	-2	-1		
	Reference clock frequency for IDELAYCTRL (in component mode).		;	300 to 800)		MHz	
F _{REFCLK}	Reference clock frequency when using BITSLICE_CONTROL with REFCLK (in native mode (for RX_BITSLICE only)).	300 to 800						
	Reference clock frequency for BITSLICE_CONTROL with PLL_CLK (in native mode). (1)	300 to 2666.67	300 to 2666.67	300 to 2400	300 to 2400	300 to 2133	MHz	
T _{MINPER_CLK}	Minimum period for IODELAY clock.	3.195 3.195 3.195 3.195 3.195					ns	
T _{MINPER_RST}	Minimum reset pulse width.	52.00					ns	
T _{IDELAY_RESOLUTION} / T _{ODELAY_RESOLUTION}	IDELAY/ODELAY chain resolution.		ps					

Notes:

 PLL settings could restrict the minimum allowable data rate. For example, when using a PLL with CLKOUTPHY_MODE = VCO_HALF, the minimum frequency is PLL_FVCOMIN/2.

^{1.} The MMCM and PLL DUTY_CYCLE attribute should be set to 50% to meet the pulse-width requirements at the higher frequencies.

DSP48 Slice Switching Characteristics

Table 83: DSP48 Slice Switching Characteristics

			i				
Symbol	Description	0.90V	0.90V 0.85V		0.72	2V ⁽¹⁾	Units
		-3	-2	-1	-2	-1	
Maximum Frequency							
F _{MAX}	With all registers used.	891	775	645	644	600	MHz
F _{MAX_PATDET}	With pattern detector.	794	687	571	562	524	MHz
F _{MAX_MULT_NOMREG}	Two register multiply without MREG.	635	544	456	440	413	MHz
F _{MAX_MULT_NOMREG_PATDET}	Two register multiply without MREG with pattern detect.	577	492	410	395	371	MHz
F _{MAX_PREADD_NOADREG}	Without ADREG.	655	565	468	453	423	MHz
F _{MAX_NOPIPELINEREG}	Without pipeline registers (MREG, ADREG).	483	410	338	323	304	MHz
F _{MAX_NOPIPELINEREG_PATDET}	Without pipeline registers (MREG, ADREG) with pattern detect.	448	379	314	299	280	MHz

Notes:

Clock Buffers and Networks

Table 84: Clock Buffers Switching Characteristics

	Description							
Symbol		0.90V	0.85V		0.7	/2V	Units	
		-3	-2	-1	-2	-1		
Global C	lock Switching Characteristics (Including	BUFGCTI	RL)					
F _{MAX}	Maximum frequency of a global clock tree (BUFG).	891	775	667	725	667	MHz	
Global C	lock Buffer with Input Divide Capability (E	BUFGCE_	DIV)					
F _{MAX}	Maximum frequency of a global clock buffer with input divide capability (BUFGCE_DIV).	891	775	667	725	667	MHz	
Global C	Clock Buffer with Clock Enable (BUFGCE)							
F _{MAX}	Maximum frequency of a global clock buffer with clock enable (BUFGCE).	891	775	667	725	667	MHz	
Leaf Clo	ck Buffer with Clock Enable (BUFCE_LEAF))						
F _{MAX}	Maximum frequency of a leaf clock buffer with clock enable (BUFCE_LEAF).	891	775	667	725	667	MHz	
GTH or	GTH or GTY Clock Buffer with Clock Enable and Clock Input Divide Capability (BUFG_GT)							
F _{MAX}	Maximum frequency of a serial transceiver clock buffer with clock enable and clock input divide capability.	512	512	512	512	512	MHz	

^{1.} For devices operating at the lower power $V_{CCINT} = 0.72V$ voltages, DSP cascades that cross clock region boundaries might operate below the specified F_{MAX} .

MMCM Switching Characteristics

Table 85: MMCM Specification

		Speed Grade and V _{CCINT} Operating Voltages					
Symbol	Description	0.90V 0.85V			0.7	Units	
		-3	-2	-1	-2	-1	
MMCM_F _{INMAX}	Maximum input clock frequency.	1066	933	800	933	800	MHz
MMCM_F _{INMIN}	Minimum input clock frequency.	10	10	10	10	10	MHz
MMCM_F _{INJITTER}	Maximum input clock period jitter.	<	20% of c	lock input	period or	1 ns Ma	x
	Input duty cycle range: 10-49 MHz.			25–75			%
	Input duty cycle range: 50–199 MHz.			30–70			%
MMCM_F _{INDUTY}	Input duty cycle range: 200–399 MHz.			35–65			%
	Input duty cycle range: 400–499 MHz.			40-60			%
	Input duty cycle range: >500 MHz.			45–55			%
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase shift clock frequency.	0.01	0.01	0.01	0.01	0.01	MHz
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase shift clock frequency.	550	500	450	500	450	MHz
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency.		800	800	800	800	MHz
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency.	1600	1600	1600	1600	1600	MHz
MMCM_F _{BANDWIDTH}	Low MMCM bandwidth at typical. (1)	1.00	1.00	1.00	1.00	1.00	MHz
	High MMCM bandwidth at typical. (1)	4.00	4.00	4.00	4.00	4.00	MHz
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs. (2)	0.12	0.12	0.12	0.12	0.12	ns
MMCM_T _{OUTJITTER}	MMCM output jitter.			Note	e 3	1	
MMCM_T _{OUTDUTY}	MMCM output clock duty cycle precision. (4)	0.165	0.20	0.20	0.20	0.20	ns
MMCM_T _{LOCKMAX}	MMCM maximum lock time for MMCM_F _{PFDMIN} .	100	100	100	100	100	μs
MMCM_F _{OUTMAX}	MMCM maximum output frequency.	891	775	667	725	667	MHz
MMCM_F _{OUTMIN}	MMCM minimum output frequency. (4)(5)	6.25	6.25	6.25	6.25	6.25	MHz
MMCM_T _{EXTFDVAR}	External clock feedback variation.	<	20% of c	lock input	period or	1 ns Ma	X
MMCM_RST _{MINPULSE}	Minimum reset pulse width.	5.00	5.00	5.00	5.00	5.00	ns
MMCM_F _{PFDMAX}	Maximum frequency at the phase frequency detector.	550	500	450	500	450	MHz
MMCM_F _{PFDMIN}	Minimum frequency at the phase frequency detector.	10	10	10	10	10	MHz
MMCM_T _{FBDELAY}	Maximum delay in the feedback path.		5 ns	Max or or	ne clock c	ycle	
MMCM_F _{DPRCLK_MAX}	Maximum DRP clock frequency	250	250	250	250	250	MHz

- 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any MMCM outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard.
- 4. Includes global clock buffer.
- 5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

PLL Switching Characteristics

Table 86: PLL Specification(1)

		Speed Grade and V _{CCINT} Operating Voltages					
Symbol	Description	0.90V 0.8		85 V	0.7	0.72V	
		-3	-2	-1	-2	-1	
PLL_F _{INMAX}	Maximum input clock frequency.	1066	933	800	933	800	MHz
PLL_F _{INMIN}	Minimum input clock frequency.	70	70	70	70	70	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter.	<	20% of c	lock input	period or	1 ns Max	<
	Input duty cycle range: 70-399 MHz.			35–65			%
PLL_F _{INDUTY}	Input duty cycle range: 400-499 MHz.			40–60			%
	Input duty cycle range: >500 MHz.			45–55			%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency.	750	750	750	750	750	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency.	1500	1500	1500	1500	1500	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs. (2)	0.12	0.12	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter.	Note 3					
PLL_T _{OUTDUTY}	PLL CLKOUTO, CLKOUTOB, CLKOUT1, CLKOUT1B duty-cycle precision. (4)	0.165	0.20	0.20	0.20	0.20	ns
PLL_T _{LOCKMAX}	PLL maximum lock time.	100				11	μs
PLL_F _{OUTMAX}	PLL maximum output frequency at CLKOUTO, CLKOUTOB, CLKOUT1, CLKOUT1B.	891	775	667	725	667	MHz
_ 001W/A	PLL maximum output frequency at CLKOUTPHY.	2667	2667	2400	2400	2133	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency at CLKOUTO, CLKOUTOB, CLKOUT1, CLKOUT1B. (5)	5.86	5.86	5.86	5.86	5.86	MHz
oo miiiv	PLL minimum output frequency at CLKOUTPHY.	2 x VCO mode: 1500, 1 x VCO 0.5 x VCO mode: 375		x VCO mo e: 375	de: 750	MHz	
PLL_RST _{MINPULSE}	Minimum reset pulse width.	5.00	5.00	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector.	667.5	667.5	667.5	667.5	667.5	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector.	70	70	70	70	70	MHz
PLL_F _{BANDWIDTH}	PLL bandwidth at typical.	14	14	14	14	14	MHz
PLL_F _{DPRCLK_MAX}	Maximum DRP clock frequency	250	250	250	250	250	MHz

- 1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the loop filter frequencies.
- 2. The static offset is measured between any PLL outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard.
- 4. Includes global clock buffer.
- 5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

The pin-to-pin numbers in Table 87 through Table 89 are based on the clock root placement in the center of the device. The actual pin-to-pin values will vary if the root placement selected is different. Consult the Vivado Design Suite timing report for the actual pin-to-pin values.

Table 87: Global Clock Input to Output Delay Without MMCM (Near Clock Region)

	Description		V	es				
Symbol		Device	0.90V	0.8	35 V	0.7	72V	Units
			-3	-2	-1	-2	-1	
SSTL15 Glob	oal Clock Input to Output Delay u	sing Outp	ut Flip-F	Flop, Fas	st Slew F	Rate, <i>wii</i>	thout Mi	исм.
T _{ICKOF}	Global clock input and output flip-flop	XCZU2	N/A	4.90	5.28	6.08	6.51	ns
	without MMCM (near clock region).	XCZU3	N/A	4.90	5.28	6.08	6.51	ns
		XCZU4	4.66	5.53	5.95	6.90	7.49	ns
		XCZU5	4.66	5.53	5.95	6.90	7.49	ns
		XCZU6	5.10	5.91	6.35	7.48	8.03	ns
		XCZU7	5.48	6.54	7.01	8.17	8.76	ns
		XCZU9	5.10	5.91	6.35	7.48	8.03	ns
		XCZU11	5.46	6.49	6.96	8.16	8.91	ns
		XCZU15	5.24	6.09	6.55	7.75	8.33	ns
		XCZU17	5.80	6.90	7.40	8.68	9.32	ns
		XCZU19	5.80	6.90	7.40	8.68	9.32	ns
		XAZU2	N/A	N/A	5.28	N/A	6.51	ns
		XAZU3	N/A	N/A	5.28	N/A	6.51	ns

This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible I/O and CLB flip-flops are clocked by the global clock net.

Table 88: Global Clock Input to Output Delay Without MMCM (Far Clock Region)

			V	s	limita			
Symbol	Description	Device	0.90V	0.8	35V	0.7	/2V	Units
			-3	-2	-1	-2	-1	
SSTL15 Glob	oal Clock Input to Output Delay u	ısing Out _l	out Flip-	Flop, Fas	st Slew F	Rate, <i>wi</i>	thout MN	исм.
T _{ICKOF_FAR}	Global clock input and output flip-flop	XCZU2	N/A	5.27	5.68	6.59	7.06	ns
	without MMCM (far clock region).	XCZU3	N/A	5.27	5.68	6.59	7.06	ns
		XCZU4	4.83	5.73	6.17	7.17	7.79	ns
		XCZU5	4.83	5.73	6.17	7.17	7.79	ns
		XCZU6	5.45	6.49	6.97	8.16	8.76	ns
		XCZU7	5.48	6.54	7.01	8.17	8.76	ns
		XCZU9	5.45	6.49	6.97	8.16	8.76	ns
		XCZU11	5.80	6.91	7.41	8.72	9.52	ns
		XCZU15	5.44	6.49	6.96	8.16	8.77	ns
		XCZU17	6.31	7.53	8.07	9.52	10.23	ns
		XCZU19	6.31	7.53	8.07	9.52	10.23	ns
		XAZU2	N/A	N/A	5.68	N/A	7.06	ns
		XAZU3	N/A	N/A	5.68	N/A	7.06	ns

^{1.} This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible I/O and CLB flip-flops are clocked by the global clock net.

Table 89: Global Clock Input to Output Delay With MMCM

		Device	V	s				
Symbol	Description		0.90V	0.8	35 V	0.7	/2V	Units
			-3	-2	-1	-2	-1	
SSTL15 Glob	al Clock Input to Output Delay u	sing Outp	out Flip-l	Flop, Fas	st Slew F	Rate, wit	h MMCN	/ 1.
T _{ICKOFMMCMCC}	Global clock input and output	XCZU2	N/A	2.22	2.43	2.87	3.00	ns
	flip-flop with MMCM.	XCZU3	N/A	2.22	2.43	2.87	3.00	ns
		XCZU4	2.24	2.24	2.47	2.90	3.08	ns
		XCZU5	2.24	2.24	2.47	2.90	3.08	ns
		XCZU6	2.15	2.15	2.36	2.80	2.95	ns
		XCZU7	2.32	2.32	2.55	3.00	3.15	ns
		XCZU9	2.15	2.15	2.36	2.80	2.95	ns
		XCZU11	2.30	2.30	2.51	2.99	3.20	ns
		XCZU15	2.18	2.18	2.38	2.82	2.98	ns
		XCZU17	2.44	2.44	2.66	3.15	3.33	ns
		XCZU19	2.44	2.44	2.66	3.15	3.33	ns
		XAZU2	N/A	N/A	2.43	N/A	3.00	ns
		XAZU3	N/A	N/A	2.43	N/A	3.00	ns

^{1.} This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible I/O and CLB flip-flops are clocked by the global clock net.

^{2.} MMCM output jitter is already included in the timing calculation.

Device Pin-to-Pin Input Parameter Guidelines

The pin-to-pin numbers in Table 90 and Table 91 are based on the clock root placement in the center of the device. The actual pin-to-pin values will vary if the root placement selected is different. Consult the Vivado Design Suite timing report for the actual pin-to-pin values.

Table 90: Global Clock Input Setup and Hold With 3.3V HD I/O without MMCM

				v	es	Unite			
Symbol	Description		Device	0.90V	0.8	5 V	0.7	′2V	Units
				-3	-2	-1	-2	-1	1
Input Setup and	Hold Time Relative to	Global	Clock Inp	ut Signa	al using	SSTL15	Standa	rd. ⁽¹⁾⁽²⁾	(3)
T _{PSFD_ZU2}	Global clock input and	Setup	XCZU2	N/A	2.27	2.37	3.54	3.82	ns
T _{PHFD_ZU2}	input flip-flop (or latch) without MMCM.	Hold	ACZU2	IV/A	-0.36	-0.36	-1.03	-1.03	ns
T _{PSFD_ZU3}		Setup	XCZU3	N/A	2.27	2.37	3.54	3.82	ns
T _{PHFD_ZU3}		Hold	XCZU3	IV/A	-0.36	-0.36	-1.03	-1.03	ns
T _{PSFD_ZU4}		Setup	XCZU4	1.52	2.30	2.39	3.56	3.81	ns
T _{PHFD_ZU4}		Hold	XCZ04	-0.37	-0.37	-0.37	-1.05	-1.05	ns
T _{PSFD_ZU5}		Setup	XCZU5	1.52	2.30	2.39	3.56	3.81	ns
T _{PHFD_ZU5}		Hold	ACZUS	-0.37	-0.37	-0.37	-1.05	-1.05	ns
T _{PSFD_ZU6}		Setup	XCZU6	1.07	1.79	1.86	2.85	3.06	ns
T _{PHFD_ZU6}		Hold	XCZOO	-0.05	-0.05	-0.05	-0.60	-0.60	ns
T _{PSFD_ZU7}		Setup	XCZU7	1.54	2.32	2.42	3.59	3.87	ns
T _{PHFD_ZU7}		Hold	ACZU7	-0.40	-0.40	-0.40	-1.10	-1.10	ns
T _{PSFD_ZU9}		Setup	XCZU9	1.07	1.79	1.86	2.85	3.06	ns
T _{PHFD_ZU9}		Hold	ACZU9	-0.05	-0.05	-0.05	-0.60	-0.60	ns
T _{PSFD_ZU11}		Setup	XCZU11	1.51	2.28	2.38	3.54	3.79	ns
T _{PHFD_ZU11}		Hold	ACZUTT	-0.38	-0.38	-0.38	-1.05	-1.05	ns
T _{PSFD_ZU15}		Setup	XCZU15	1.06	1.79	1.85	2.84	3.05	ns
T _{PHFD_ZU15}		Hold	ACZUIS	-0.04	-0.04	-0.04	-0.60	-0.60	ns
T _{PSFD_ZU17}		Setup	XCZU17	1.52	2.29	2.38	3.56	3.83	ns
T _{PHFD_ZU17}		Hold	ACZUTY	-0.38	-0.38	-0.38	-1.08	-1.08	ns
T _{PSFD_ZU19}		Setup	XCZU19	1.52	2.29	2.38	3.56	3.83	ns
T _{PHFD_ZU19}	S	Hold	XCZU19	-0.38	-0.38	-0.38	-1.08	-1.08	ns
T _{PSFD_XAZU2}		Setup	XAZU2	N/A	N/A	2.37	N/A	3.82	ns
T _{PHFD_XAZU2}		Hold	VALUZ	N/A	N/A	-0.36	N/A	-1.03	ns
T _{PSFD_XAZU3}		Setup	XAZU3	N/A	N/A	2.37	N/A	3.82	ns
T _{PSFD_XAZU2}		Hold	AALUU	N/A	N/A	-0.36	N/A	-1.03	ns

- 1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, slowest temperature, and slowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, fastest temperature, and fastest voltage.
- 2. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible I/O and CLB flip-flops are clocked by the global clock net.
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 91: Global Clock Input Setup and Hold With MMCM

			Speed Grade and V _{CCINT} Operating Voltages						
Symbol	Description		Device	0.90V	0.8	5V	0.72V		Units
				-3	-2	-1	-2	-1	1
Input Setup and	Hold Time Relative to	Global (Clock Inp	ut Signa	al using	SSTL15	Standa	rd. ⁽¹⁾⁽²⁾	(3)
T _{PSMMCMCC_ZU2}	Global clock input and	Setup	XCZU2	N/A	1.83	1.96	1.83	1.96	ns
T _{PHMMCMCC_ZU2}	input flip-flop (or latch) with MMCM.	Hold	XCZU2	IV/A	-0.19	-0.19	-0.24	-0.24	ns
T _{PSMMCMCC_ZU3}		Setup	XCZU3	N/A	1.83	1.96	1.83	1.96	ns
T _{PHMMCMCC_ZU3}		Hold	XCZ03	IV/A	-0.19	-0.19	-0.24	-0.24	ns
T _{PSMMCMCC_ZU4}		Setup	XCZU4	1.82	1.82	1.94	1.82	1.94	ns
T _{PHMMCMCC_ZU4}		Hold	ACZU4	-0.16	-0.16	-0.16	-0.25	-0.25	ns
T _{PSMMCMCC_ZU5}		Setup	XCZU5	1.82	1.82	1.94	1.82	1.94	ns
T _{PHMMCMCC_ZU5}		Hold	ACZUS	-0.16	-0.16	-0.16	-0.25	-0.25	ns
T _{PSMMCMCC_ZU6}		Setup	XCZU6	2.00	2.00	2.12	2.00	2.12	ns
T _{PHMMCMCC_ZU6}		Hold	ACZUO	-0.11	-0.11	-0.11	-0.18	-0.18	ns
T _{PSMMCMCC_ZU7}		Setup	XCZU7	1.91	1.91	2.02	1.91	2.02	ns
T _{PHMMCMCC_ZU7}		Hold	ACZU/	-0.14	-0.14	-0.14	-0.18	-0.18	ns
T _{PSMMCMCC_ZU9}		Setup	XCZU9	2.00	2.00	2.12	2.00	2.12	ns
T _{PHMMCMCC_ZU9}		Hold	ACZU9	-0.11	-0.11	-0.11	-0.18	-0.18	ns
T _{PSMMCMCC_ZU11}		Setup	XCZU11	1.89	1.89	2.02	1.89	2.02	ns
T _{PHMMCMCC_ZU11}		Hold	ACZUTI	-0.20	-0.20	-0.20	-0.25	-0.25	ns
T _{PSMMCMCC_ZU15}		Setup	XCZU15	1.99	1.99	2.12	1.99	2.12	ns
T _{PHMMCMCC_ZU15}		Hold	ACZUIS	-0.10	-0.10	-0.10	-0.16	-0.16	ns
T _{PSMMCMCC_ZU17}		Setup	XCZU17	1.89	1.89	2.03	1.89	2.03	ns
T _{PHMMCMCC_ZU17}		Hold	ACZUTI	-0.16	-0.16	-0.16	-0.23	-0.23	ns
T _{PSMMCMCC_ZU19}		Setup	XCZU19	1.89	1.89	2.03	1.89	2.03	ns
T _{PHMMCMCC_ZU19}	S	Hold	ACZUI9	-0.16	-0.16	-0.16	-0.23	-0.23	ns
T _{PSMMCMCC_XAZU2}		Setup	V	N/A	N/A	1.96	N/A	1.96	ns
T _{PHMMCMCC_XAZU2}		Hold XAZU2	N/A	N/A	-0.19	N/A	-0.24	ns	
T _{PSMMCMCC_XAZU3}		Setup	XAZU3	N/A	N/A	1.96	N/A	1.96	ns
T _{PHMMCMCC_XAZU3}		Hold	AAZUS	N/A	N/A	-0.19	N/A	-0.24	ns

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, slowest temperature, and slowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, fastest temperature, and fastest voltage.
- 2. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible I/O and CLB flip-flops are clocked by the global clock net.
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 92: Sampling Window

	Speed Grade and V _{CCINT} Operating Voltages							
Description	0.90V	0.8	35 V	0.7	Units			
	-3	-2	-1	-2	-1			
T _{SAMP_BUFG} ⁽¹⁾	510	610	610	610	610	ps		
T _{SAMP_NATIVE_DPA}	100	100	125	125	150	ps		
T _{SAMP_NATIVE_BISC}	60	60	85	85	110	ps		

Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for clock transmitter and receiver data-valid windows.

Table 93: Package Skew

Symbol	Description	Device	Package	Value	Units
			SBVA484	105	ps
		XCZU2	SFVA625	108	ps
			SFVC784	93	ps
			SBVA484	105	ps
		XCZU3	SFVA625	108	ps
			SFVC784	93	ps
		VC7114	SFVC784	133	ps
		XCZU4	FBVB900	159	ps
		VCZLIE	SFVC784	133	ps
		XCZU5	FBVB900	159	ps
		XCZU6	FFVC900	119	ps
PKGSKEW	Package Skew		FFVB1156	134	ps
		XCZU7	FBVB900	141	ps
			FFVC1156	175	ps
			FFVF1517	305	ps
		VC7110	FFVC900	119	ps
		XCZU9	FFVB1156	134	ps
			FFVC1156	170	ps
		VC71111	FFVB1517	176	ps
		XCZU11	FFVF1517	186	ps
			FFVC1760	215	ps
		VC7111E	FFVC900	118	ps
		XCZU15	FFVB1156	132	ps

^{1.} This parameter indicates the total sampling error of the Zynq UltraScale+ MPSoC DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include: CLKO MMCM jitter, MMCM accuracy (phase offset), and MMCM phase shift resolution. These measurements do not include package or clock tree skew.

Table 93: Package Skew (Cont'd)

Symbol	Description	Device	Package	Value	Units
			FFVB1517	221	ps
		XCZU17	FFVC1760	226	ps
		XCZ017	FFVD1760	178	ps
			FFVE1924	174	ps
			FFVB1517	221	ps
		XCZU19	FFVC1760	226	ps
PKGSKEW	Packago Skow (cont/d)		FFVD1760	178	ps
PNGSNEW	Package Skew (cont'd)		FFVE1924	174	ps
		XAZU2EG	SBVA484	105	ps
			SFVA625	108	ps
			SFVA784	93	ps
			SBVA484	105	ps
		XAZU3EG	SFVA625	108	ps
			SFVA784	93	ps

- 1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.
- 2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

GTH Transceiver Specifications

The *UltraScale Architecture and Product Overview* (<u>DS890</u>) lists the Zynq UltraScale+ MPSoCs that include the GTH transceivers.

GTH Transceiver DC Input and Output Levels

Table 94 summarizes the DC specifications of the GTH transceivers in Zynq UltraScale+ MPSoC. Consult the *UltraScale Architecture GTH Transceiver User Guide* (UG576) for further details.

Table 94: GTH Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
		>10.3125 Gb/s	150	-	1250	mV
DV_PPIN	Differential peak-to-peak input voltage (external AC coupled).	6.6 Gb/s to 10.3125 Gb/s	150	_	1250	mV
	Transfer (community or apreal).	≤ 6.6 Gb/s	150	_	2000	mV
V _{IN}	Single-ended input voltage. Voltage measured at the pin referenced to GND.	DC coupled V _{MGTAVTT} = 1.2V	-400	_	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage.	DC coupled V _{MGTAVTT} = 1.2V	_	– 2/3 V _{MGTAVTT}		mV
D _{VPPOUT}	Differential peak-to-peak output voltage. (1)	Transmitter output swing is set to 11111	800	_	_	mV
		V _{MGT}	mV			
V _{CMOUTDC}	Common mode output voltage: DC coupled (equation based).	When remote RX termination is floating	V _{MG} -	mV		
		When remote RX is terminated to $V_{RX_TERM}^{(2)}$	V _{MGTAVTT} -D _V	mV		
$V_{CMOUTAC}$	Common mode output voltage: AC	coupled (equation based).	V _{MG} -	TAVTT - D _{VPPOU}	_T /2	mV
R _{IN}	Differential input resistance.		_	100	_	Ω
R _{OUT}	Differential output resistance.		100		Ω	
T _{OSKEW}	Transmitter output pair (TXP and (all packages).	_	_	10	ps	
C _{EXT}	Recommended external AC coupling	ng capacitor.(3)	_	100	_	nF

^{1.} The output swing and pre-emphasis levels are programmable using the attributes discussed in the *UltraScale Architecture GTH Transceiver User Guide* (UG576), and can result in values lower than reported in this table.

^{2.} V_{RX TERM} is the remote RX termination voltage.

^{3.} Other values can be used as appropriate to conform to specific protocols and standards.

X16653-060917

Figure 3: Single-Ended Peak-to-Peak Voltage

Figure 4: Differential Peak-to-Peak Voltage

Table 95 and Table 96 summarize the DC specifications of the GTH transceivers input and output clocks in Zynq UltraScale+ MPSoC. Consult the *UltraScale Architecture GTH Transceiver User Guide* (<u>UG576</u>) for further details.

Table 95: GTH Transceiver Clock Input Level Specification

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage.	250	-	2000	mV
R _{IN}	Differential input resistance.	_	100	-	Ω
C _{EXT}	Required external AC coupling capacitor.	_	10	1	nF

Table 96: GTH Transceiver Clock Output Level Specification

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Output Low voltage for P and N.	$R_T = 100\Omega$ across P and N signals	100	_	330	mV
V _{OH}	Output High voltage for P and N.	$R_T = 100\Omega$ across P and N signals	500	_	700	mV
V _{DDOUT}	Differential output voltage. (P–N), P = High (N–P), N = High	$R_T = 100\Omega$ across P and N signals	300	-	430	mV
V _{CMOUT}	Common mode voltage.	$R_T = 100\Omega$ across P and N signals	300	_	500	mV

GTH Transceiver Switching Characteristics

Consult the UltraScale Architecture GTH Transceiver User Guide (UG576) for further information.

Table 97: GTH Transceiver Performance

				Sp	eed Gr	ade ar	nd V _{CC}	INT Op	erating	y Volta	iges		
Symbol	Description	Output Divider	0.9	VOV		0.8	35 V			0.	72V		Units
		2111431	-	3	-	2	-	1	-	2	-	·1	
F _{GTHMAX}	GTH maximum	line rate.	16.3	75 ⁽¹⁾	16.3	16.375 ⁽¹⁾ 12.5		2.5	12.5		10.3125		Gb/s
F _{GTHMIN}	GTH minimum	line rate.	0	.5	0	.5	0	.5	0	.5	C).5	Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	4	12.5	4	12.5	4	8.5	4	8.5	4	8.5	Gb/s
	001111	2	2	6.25	2	6.25	2	4.25	2	4.25	2	4.25	Gb/s
F _{GTHCRANGE}	CPLL line rate range ⁽²⁾ .	4	1	3.125	1	3.125	1	2.125	1	2.125	1	2.125	Gb/s
	l ange	8	0.5	1.5625	0.5	1.5625	0.5	1.0625	0.5	1.0625	0.5	1.0625	Gb/s
		16					N	I/A					Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	9.8	16.375	9.8	16.375	9.8	12.5	9.8	12.5	9.8	10.3125	Gb/s
	ODLI O Ilia	2	4.9	8.1875	4.9	8.1875	4.9	8.15	4.9	8.1875	4.9	8.15	Gb/s
F _{GTHQRANGE1}	QPLL0 line rate range ⁽³⁾ .	4	2.45	4.0938	2.45	4.0938	2.45	4.075	2.45	4.0938	2.45	4.075	Gb/s
		8	1.225	2.0469	1.225	2.0469	1.225	2.0375	1.225	2.0469	1.225	2.0375	Gb/s
		16	0.6125	1.0234	0.6125	1.0234	0.6125	1.0188	0.6125	1.0234	0.6125	1.0188	Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	8.0	13.0	8.0	13.0	8.0	12.5	8.0	12.5	8.0	10.3125	Gb/s
	00114	2	4.0	6.5	4.0	6.5	4.0	6.5	4.0	6.5	4.0	6.5	Gb/s
F _{GTHQRANGE2}	QPLL1 line rate range ⁽⁴⁾ .	4	2.0	3.25	2.0	3.25	2.0	3.25	2.0	3.25	2.0	3.25	Gb/s
	. a.e. age	8	1.0	1.625	1.0	1.625	1.0	1.625	1.0	1.625	1.0	1.625	Gb/s
		16	0.5	0.8125	0.5	0.8125	0.5	0.8125	0.5	0.8125	0.5	0.8125	Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
F _{CPLLRANGE}	CPLL frequenc	y range.	2	6.25	2	6.25	2	4.25	2	4.25	2	4.25	GHz
F _{QPLLORANGE}	QPLL0 frequency range.		9.8	16.375	9.8	16.375	9.8	16.375	9.8	16.375	9.8	16.375	GHz
F _{QPLL1RANGE}	QPLL1 frequen range.	су	8	13	8	13	8	13	8	13	8	13	GHz

- 1. GTH transceiver line rates in the SFVC784 package support data rates up to 12.5 Gb/s.
- 2. The values listed are the rounded results of the calculated equation (2 x CPLL_Frequency)/Output_Divider.
- 3. The values listed are the rounded results of the calculated equation (QPLL0_Frequency)/Output_Divider.
- 4. The values listed are the rounded results of the calculated equation (QPLL1_Frequency)/Output_Divider.

Table 98: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description	All Speed Grades	Units
F _{GTHDRPCLK}	GTHDRPCLK maximum frequency.	250	MHz

Table 99: GTH Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	AII	Units		
	Description	Conditions	Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range.		60	-	820	MHz
T _{RCLK}	Reference clock rise time.	20% – 80%	_	200	-	ps
T _{FCLK}	Reference clock fall time.	80% – 20%	_	200	_	ps
T _{DCREF}	Reference clock duty cycle.	Transceiver PLL only	40	50	60	%

Table 100: GTH Transceiver Reference Clock Oscillator Selection Phase Noise Mask

Symbol	Description	Offset Frequency	Min	Тур	Max	Units
QPLL _{REFCLKMASK} ⁽¹⁾⁽²⁾	QPLL0/QPLL1 reference clock select	10 kHz	_	_	-105	
	phase noise mask at	100 kHz	1	-	-124	dBc/Hz
	REFCLK frequency = 312.5 MHz.	1 MHz	_	_	-130	
		10 kHz	_	_	-105	
CDLI (1)(2)	CPLL reference clock select phase noise mask at REFCLK frequency = 312.5 MHz.	100 kHz	_	_	-124	dBc/Hz
CPLL _{REFCLKMASK} ⁽¹⁾⁽²⁾		1 MHz	_	_	-130	
		50 MHz	_	_	-140	

- For reference clock frequencies other than 312.5 MHz, adjust the phase-noise mask values by 20 x Log(N/312.5) where N
 is the new reference clock frequency in MHz.
- 2. This reference clock phase-noise mask is superseded by any reference clock phase-noise mask that is specified in a supported protocol, e.g., PCIe.

Table 101: GTH Transceiver PLL/Lock Time Adaptation

Symbol	Description	Conditions	AII :	Units		
Symbol	Description	Conditions	Min	Тур	Max	Units
T _{LOCK}	Initial PLL lock.		_	_	1	ms
T _{DLOCK}	Clock recovery phase acquisition and adaptation time for decision feedback equalizer (DFE).	After the PLL is locked to the reference clock, this is the time it takes to lock	-	50,000	37 x 10 ⁶	UI
	Clock recovery phase acquisition and adaptation time for low-power mode (LPM) when the DFE is disabled.	the clock data recovery (CDR) to the data present at the input.	-	50,000	2.3 x 10 ⁶	UI

Table 102: GTH Transceiver User Clock Switching Characteristics (1)

Symbol		Speed Grade and V _{CCINT} Operating Voltages							
	Description	(Bit)		0.90V	0.85 V		0.72V		Units
		Internal Logic	Interconnect Logic	-3 ⁽²⁾	-2 ⁽²⁾ (3)	-1 ⁽⁴⁾⁽⁵⁾	-2 ⁽³⁾	-1 ⁽⁵⁾	
F _{TXOUTPMA}	TXOUTCLK max from OUTCLKP		ency sourced	511.719	511.719	390.625	390.625	322.266	MHz
F _{RXOUTPMA}	RXOUTCLK maximum frequency sourced from OUTCLKPMA			511.719	511.719	390.625	390.625	322.266	MHz

Table 102: GTH Transceiver User Clock Switching Characteristics (1) (Cont'd)

		Data Width Conditions (Bit)		Speed Grade and V _{CCINT} Operating Voltages					
Symbol	Description		(ВП)	0.90V 0.85V		85 V	0.72V		Units
		Internal Logic	Interconnect Logic	-3 ⁽²⁾	-2(2)(3)	-1(4)(5)	-2(3)	-1 ⁽⁵⁾	
F _{TXOUTPROGDIV}	TXOUTCLK max from TXPROGD		ency sourced	511.719	511.719	511.719	511.719	511.719	MHz
F _{RXOUTPROGDIV}	RXOUTCLK max from RXPROGD		iency sourced	511.719	511.719	511.719	511.719	511.719	MHz
		16	16, 32	511.719	511.719	390.625	390.625	322.266	MHz
F	TXUSRCLK ⁽⁶⁾	32	32, 64	511.719	511.719	390.625	390.625	322.266	MHz
F _{TXIN}	frequency	20	20, 40	409.375	409.375	312.500	312.500	257.813	MHz
		40	40, 80	409.375	409.375	312.500	312.500	257.813	MHz
		16	16, 32	511.719	511.719	390.625	390.625	322.266	MHz
F _{RXIN}	RXUSRCLK ⁽⁶⁾ maximum frequency	32	32, 64	511.719	511.719	390.625	390.625	322.266	MHz
		20	20, 40	409.375	409.375	312.500	312.500	257.813	MHz
		40	40, 80	409.375	409.375	312.500	312.500	257.813	MHz
	TXUSRCLK2 ⁽⁶⁾ maximum frequency	16	16	511.719	511.719	390.625	390.625	322.266	MHz
		16	32	255.859	255.859	195.313	195.313	161.133	MHz
		32	32	511.719	511.719	390.625	390.625	322.266	MHz
F _{TXIN2}		32	64	255.859	255.859	195.313	195.313	161.133	MHz
'IXIN2		20	20	409.375	409.375	312.500	312.500	257.813	MHz
		20	40	204.688	204.688	156.250	156.250	128.906	MHz
		40	40	409.375	409.375	312.500	312.500	257.813	MHz
		40	80	204.688	204.688	156.250	156.250	128.906	MHz
		16	16	511.719	511.719	390.625	390.625	322.266	MHz
		16	32	255.859	255.859	195.313	195.313	161.133	MHz
		32	32	511.719	511.719	390.625	390.625	322.266	MHz
F	RXUSRCLK2 ⁽⁶⁾	32	64	255.859	255.859	195.313	195.313	161.133	MHz
F _{RXIN2}	maximum frequency	20	20	409.375	409.375	312.500	312.500	257.813	MHz
		20	40	204.688	204.688	156.250	156.250	128.906	MHz
		40	40	409.375	409.375	312.500	312.500	257.813	MHz
		40	80	204.688	204.688	156.250	156.250	128.906	MHz

- 1. Clocking must be implemented as described in *UltraScale Architecture GTH Transceiver User Guide* (<u>UG576</u>).
- 2. For speed grades -3E, -2E, and -2I, a 16-bit and 20-bit internal data path can only be used for line rates less than 8.1875 Gb/s.
- 3. For speed grade -2LE, a 16-bit and 20-bit internal data path can only be used for line rates less than 8.1875 Gb/s when $V_{CCINT} = 0.85V$ or 6.25 Gb/s when $V_{CCINT} = 0.72V$.
- 4. For speed grades -1E and -1I, a 16-bit and 20-bit internal data path can only be used for line rates less than 6.25 Gb/s.
- 5. For speed grade -1LI, a 16-bit and 20-bit internal data path can only be used for line rates less than 6.25 Gb/s when $V_{CCINT} = 0.85V$ or 5.15625 Gb/s when $V_{CCINT} = 0.72V$.
- 6. When the gearbox is used, these maximums refer to the XCLK. For more information, see the *Valid Data Width Combinations for TX Asynchronous Gearbox* table in the *UltraScale Architecture GTH Transceiver User Guide* (UG576).

Table 103: GTH Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTHTX}	Serial data rate range		0.500	_	F _{GTHMAX}	Gb/s
T _{RTX}	TX rise time	20%–80%	_	21	_	ps
T _{FTX}	TX fall time	80%–20%	_	21	_	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		-	_	500.00	ps
T _{J16.375}	Total jitter ⁽²⁾⁽⁴⁾	14 275 Ch/o	_	_	0.28	UI
D _{J16.375}	Deterministic jitter ⁽²⁾⁽⁴⁾	16.375 Gb/s	_	_	0.17	UI
T _{J15.0}	Total jitter ⁽²⁾⁽⁴⁾	15.0 Gb/s	-	_	0.28	UI
D _{J15.0}	Deterministic jitter ⁽²⁾⁽⁴⁾	15.0 Gb/S	_	_	0.17	UI
T _{J14.1}	Total jitter ⁽²⁾⁽⁴⁾	14.1 Gb/s	_	_	0.28	UI
D _{J14.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	14.1 GD/S	-	_	0.17	UI
T _{J14.1}	Total jitter ⁽²⁾⁽⁴⁾	14 025 Ch/o	_	_	0.28	UI
D _{J14.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	14.025 Gb/s	_	_	0.17	UI
T _{J13.1}	Total jitter ⁽²⁾⁽⁴⁾	13.1 Gb/s	_	_	0.28	UI
D _{J13.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	13.1 Gb/S	_	_	0.17	UI
T _{J12.5_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	12 F Ch/c	_	_	0.28	UI
D _{J12.5_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	12.5 Gb/s	_	_	0.17	UI
T _{J12.5_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	12 F Ch /-	_	_	0.33	UI
D _{J12.5_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	12.5 Gb/s	_	_	0.17	UI
T _{J11.3_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	11 2 Ch /-	_	_	0.28	UI
D _{J11.3_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	11.3 Gb/s	_	_	0.17	UI
T _{J10.3125_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	10 2125 Ch/s	_	_	0.28	UI
D _{J10.3125_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	10.3125 Gb/s	_	-	0.17	UI
T _{J10.3125_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	10.212F.Ch/o	_	_	0.33	UI
D _{J10.3125_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	10.3125 Gb/s	_	_	0.17	UI
T _{J9.953_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	0.052.Ch/s	_	-	0.28	UI
D _{J9.953_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	9.953 Gb/s	_	_	0.17	UI
T _{J9.953_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	0.052.Ch/s	_	_	0.33	UI
D _{J9.953_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	9.953 Gb/s	_	_	0.17	UI
T _{J8.0}	Total jitter ⁽³⁾⁽⁴⁾	0.0 Ch/o	_	_	0.32	UI
D _{J8.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	8.0 Gb/s	_	_	0.17	UI
T _{J6.6}	Total jitter ⁽³⁾⁽⁴⁾	/ / 61-/-	_	_	0.30	UI
D _{J6.6}	Deterministic jitter ⁽³⁾⁽⁴⁾	6.6 Gb/s	_	_	0.15	UI
T _{J5.0}	Total jitter ⁽³⁾⁽⁴⁾	F 0 Ch/o	_	_	0.30	UI
D _{J5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	_	_	0.15	UI
T _{J4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25 Ch/-	_	_	0.30	UI
D _{J4.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.25 Gb/s	_	_	0.15	UI
T _{J4.0}	Total jitter ⁽³⁾⁽⁴⁾	4.0.01.4	_	_	0.32	UI
D _{J4.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.0 Gb/s	_	_	0.16	UI
T _{J3.20}	Total jitter ⁽³⁾⁽⁴⁾	2 22 Ct / (E)	_	_	0.20	UI
D _{J3.20}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁵⁾	_	_	0.10	UI

Table 103: GTH Transceiver Transmitter Switching Characteristics (Cont'd)

Symbol	Description	Condition	Min	Тур	Max	Units
T _{J2.5}	Total jitter ⁽³⁾⁽⁴⁾	2.5 Gb/s ⁽⁶⁾	-	-	0.20	UI
D _{J2.5}	Deterministic jitter ⁽³⁾⁽⁴⁾	2.5 Gb/5(-)	_	_	0.10	UI
T _{J1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Gb/s ⁽⁷⁾	_	_	0.15	UI
D _{J1.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	1.25 GD/S	_	-	0.06	UI
T _{J500}	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/s ⁽⁸⁾	_	-	0.10	UI
D _{J500}	Deterministic jitter ⁽³⁾⁽⁴⁾	300 MD/S(9)	_	_	0.03	UI

- 1. Using same REFCLK input with TX phase alignment enabled for up to four consecutive transmitters (one fully populated GTH Quad) at the maximum line rate.
- 2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 4. All jitter values are based on a bit-error ratio of 10⁻¹².
- 5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 6. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.
- 8. CPLL frequency at 2.0 GHz and TXOUT_DIV = 8.

Table 104: GTH Transceiver Receiver Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTHRX}	Serial data rate		0.500	_	F _{GTHMAX}	Gb/s
R _{XSST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated at 33 kHz	-5000	_	0	ppm
R _{XRL}	Run length (CID)		-	_	256	UI
		Bit rates ≤ 6.6 Gb/s	-1250	_	1250	ppm
R _{XPPMTOL}	Data/REFCLK PPM offset tolerance	Bit rates > 6.6 Gb/s and ≤ 8.0 Gb/s	-700	_	700	ppm
		Bit rates > 8.0 Gb/s	-200	_	200	ppm
SJ Jitter Tolei	rance ⁽²⁾			11		
J _{T_SJ16.375}	Sinusoidal jitter (QPLL)(3)	16.375 Gb/s	0.30	_	_	UI
J _{T_SJ15.0}	Sinusoidal jitter (QPLL)(3)	15.0 Gb/s	0.30	_	_	UI
J _{T_SJ14.1}	Sinusoidal jitter (QPLL)(3)	14.1 Gb/s	0.30	_	_	UI
J _{T_SJ13.1}	Sinusoidal jitter (QPLL)(3)	13.1 Gb/s	0.30	_	_	UI
J _{T_SJ12.5}	Sinusoidal jitter (QPLL)(3)	12.5 Gb/s	0.30	_	_	UI
J _{T_SJ11.3}	Sinusoidal jitter (QPLL)(3)	11.3 Gb/s	0.30	_	_	UI
J _{T_SJ10.32_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	10.32 Gb/s	0.30	_	_	UI
J _{T_SJ10.32_CPLL}	Sinusoidal jitter (CPLL)(3)	10.32 Gb/s	0.30	_	_	UI
J _{T_SJ9.953_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	9.953 Gb/s	0.30	_	_	UI
J _{T_SJ9.953_CPLL}	Sinusoidal jitter (CPLL)(3)	9.953 Gb/s	0.30	_	_	UI
J _{T_SJ8.0}	Sinusoidal jitter (QPLL) ⁽³⁾	8.0 Gb/s	0.42	_	_	UI
J _{T_SJ6.6_CPLL}	Sinusoidal jitter (CPLL)(3)	6.6 Gb/s	0.44	_	_	UI
J _{T_SJ5.0}	Sinusoidal jitter (CPLL)(3)	5.0 Gb/s	0.44	_	_	UI
J _{T_SJ4.25}	Sinusoidal jitter (CPLL)(3)	4.25 Gb/s	0.44	_	_	UI
J _{T_SJ3.2}	Sinusoidal jitter (CPLL) ⁽³⁾	3.2 Gb/s ⁽⁴⁾	0.45	_	_	UI

Table 104: GTH Transceiver Receiver Switching Characteristics (Cont'd)

Symbol	Description	Condition	Min	Тур	Max	Units				
J _{T_SJ2.5}	Sinusoidal jitter (CPLL) ⁽³⁾	2.5 Gb/s ⁽⁵⁾	0.30	_	_	UI				
J _{T_SJ1.25}	Sinusoidal jitter (CPLL) ⁽³⁾	1.25 Gb/s ⁽⁶⁾	0.30	_	_	UI				
J _{T_SJ500}	Sinusoidal jitter (CPLL)(3)	500 Mb/s ⁽⁷⁾	0.30	_	_	UI				
SJ Jitter Tolerance with Stressed Eye ⁽²⁾										
J _{T_TJSE3.2}	Total jitter with stressed eye ⁽⁸⁾	3.2 Gb/s	0.70	_	_	UI				
J _{T_TJSE6.6}	Total fitter with stressed eye	6.6 Gb/s	0.70	_	_	UI				
J _{T_SJSE3.2}	Sinusoidal jitter with stressed eye ⁽⁸⁾	3.2 Gb/s	0.10	-	_	UI				
J _{T_SJSE6.6}	Sinusoluai jittei witti stressed eye	6.6 Gb/s	0.10	_	_	UI				

- 1. Using RXOUT_DIV = 1, 2, and 4.
- 2. All jitter values are based on a bit error ratio of 10^{-12} .
- 3. The frequency of the injected sinusoidal jitter is 80 MHz.
- 4. CPLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. CPLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 6. CPLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 7. CPLL frequency at 2.0 GHz and RXOUT_DIV = 8.
- 8. Composite jitter with RX equalizer enabled. DFE disabled.

GTH Transceiver Electrical Compliance

The *UltraScale Architecture GTH Transceiver User Guide* (<u>UG576</u>) contains recommended use modes that ensure compliance for the protocols listed in Table 105. The transceiver wizard provides the recommended settings for those use cases and for protocol specific characteristics.

Table 105: GTH Transceiver Protocol List

Protocol	Specification	Serial Rate (Gb/s)	Electrical Compliance
CAUI-10	IEEE 802.3-2012	10.3125	Compliant
nPPI	IEEE 802.3-2012	10.3125	Compliant
10GBASE-KR ⁽¹⁾	IEEE 802.3-2012	10.3125	Compliant
40GBASE-KR	IEEE 802.3-2012	10.3125	Compliant
SFP+	SFF-8431 (SR and LR)	9.95328-11.10	Compliant
XFP	INF-8077i, revision 4.5	10.3125	Compliant
RXAUI	CEI-6G-SR	6.25	Compliant
XAUI	IEEE 802.3-2012	3.125	Compliant
1000BASE-X	IEEE 802.3-2012	1.25	Compliant
5.0G Ethernet	IEEE 802.3bx (PAR)	5	Compliant
2.5G Ethernet	IEEE 802.3bx (PAR)	2.5	Compliant
HiGig, HiGig+, HiGig2	IEEE 802.3-2012	3.74, 6.6	Compliant
OTU2	ITU G.8251	10.709225	Compliant
OTU4 (OTL4.10)	OIF-CEI-11G-SR	11.180997	Compliant
OC-3/12/48/192	GR-253-CORE	0.1555–9.956	Compliant
TFI-5	OIF-TFI5-0.1.0	2.488	Compliant
Interlaken	OIF-CEI-6G, OIF-CEI-11G-SR	4.25–12.5	Compliant
PCIe Gen1, 2, 3	PCI Express base 3.0	2.5, 5.0, and 8.0	Compliant
SDI ⁽²⁾	SMPTE 424M-2006	0.27-2.97	Compliant
UHD-SDI ⁽²⁾	SMPTE ST-2081 6G, SMPTE ST-2082 12G	6 and 12	Compliant
Hybrid memory cube (HMC)	HMC-15G-SR	10, 12.5, and 15.0	Compliant
MoSys Bandwidth Engine	CEI-11-SR and CEI-11-SR (overclocked)	10.3125, 15.5	Compliant
CPRI	CPRI_v_6_1_2014-07-01	0.6144–12.165	Compliant
HDMI ⁽²⁾	HDMI 2.0	All	Compliant
Passive optical network (PON)	10G-EPON, 1G-EPON, NG-PON2, XG-PON, and 2.5G-PON	0.155–10.3125	Compliant
JESD204a/b	OIF-CEI-6G, OIF-CEI-11G	3.125–12.5	Compliant
Serial RapidIO	RapidIO specification 3.1	1.25–10.3125	Compliant
DisplayPort ⁽²⁾	DP 1.2B CTS	1.62-5.4	Compliant
Fibre channel	FC-PI-4	1.0625-14.025	Compliant
SATA Gen1, 2, 3	Serial ATA revision 3.0 specification	1.5, 3.0, and 6.0	Compliant
SAS Gen1, 2, 3	T10/BSR INCITS 519	3.0, 6.0, and 12.0	Compliant
SFI-5	OIF-SFI5-01.0	0.625-12.5	Compliant
Aurora	CEI-6G, CEI-11G-LR	up to 11.180997	Compliant

- 1. The transition time of the transmitter is faster than the IEEE Std 802.3-2012 specification.
- 2. This protocol requires external circuitry to achieve compliance.

GTY Transceiver Specifications

The *UltraScale Architecture and Product Overview* (<u>DS890</u>) lists the Zynq UltraScale+ MPSoCs that include the GTY transceivers.

GTY Transceiver DC Input and Output Levels

Table 106 and Table 107 summarize the DC specifications of the GTY transceivers in Zynq UltraScale+MPSoCs. Consult the *UltraScale Architecture GTY Transceiver User Guide* (UG578) for further details.

Table 106: GTY Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
		>10.3125 Gb/s	150	_	1250	mV
DV_PPIN	Differential peak-to-peak input voltage (external AC coupled)	6.6 Gb/s to 10.3125 Gb/s	150	_	1250	mV
	Tenage (enternarité de apreu)	≤ 6.6 Gb/s	150	_	2000	mV
V _{IN}	Single-ended input voltage. Voltage measured at the pin referenced to GND.	DC coupled V _{MGTAVTT} = 1.2V	-400	_	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	DC coupled V _{MGTAVTT} = 1.2V	– 2/3 V _{MGTAVTT}		_	mV
D _{VPPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to 11111	800 –		_	mV
		When remote RX is terminated to GND	V _{MGT}	_{UT} /4	mV	
V _{CMOUTDC}	Common mode output voltage: DC coupled (equation based)	When remote RX termination is floating	V _{MG}	_T /2	mV	
		When remote RX is terminated to $V_{RX_TERM}^{(2)}$	V _{MGTAVTT} - D _\	$\frac{VPPOUT}{4} - \left(\frac{V_{MGTAVT}}{2}\right)$	$\frac{T^{-V}RX_TERM}{2}$	mV
V _{CMOUTAC}	Common mode output voltage: AC coupled	Equation based	V _{MG}	_{TAVTT} – D _{VPPOU}	_T /2	mV
R _{IN}	Differential input resistance		_ 100 _			Ω
R _{OUT}	Differential output resistance		-	100	_	Ω
T _{OSKEW}	Transmitter output pair (TXP and	TXN) intra-pair skew	-	_	10	ps
C _{EXT}	Recommended external AC coupli	ng capacitor ⁽³⁾	_	100	_	nF

- 1. The output swing and pre-emphasis levels are programmable using the GTY transceiver attributes discussed in the *UltraScale Architecture GTY Transceiver User Guide* (UG578) and can result in values lower than reported in this table.
- 2. $V_{RX\ TERM}$ is the remote RX termination voltage.
- 3. Other values can be used as appropriate to conform to specific protocols and standards.

X16653-060917

Figure 5: Single-Ended Peak-to-Peak Voltage

Figure 6: Differential Peak-to-Peak Voltage

Table 107 and Table 108 summarize the DC specifications of the clock input of the GTY transceivers in Zynq UltraScale+ MPSoCs. Consult the *UltraScale Architecture GTY Transceiver User Guide* (<u>UG578</u>) for further details.

Table 107: GTY Transceiver Clock DC Input Level Specification

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	250	-	2000	mV
R _{IN}	Differential input resistance	_	100	_	Ω
C _{EXT}	Required external AC coupling capacitor	_	10	_	nF

Table 108: GTY Transceiver Clock Output Level Specification

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Output Low voltage for P and N	$R_T = 100\Omega$ across P and N signals	100	_	330	mV
V_{OH}	Output High voltage for P and N	$R_T = 100\Omega$ across P and N signals	500	-	700	mV
V _{DDOUT}	Differential output voltage (P-N), P = High (N-P), N = High	$R_T = 100\Omega$ across P and N signals	300	-	430	mV
V _{CMOUT}	Common mode voltage	$R_T = 100\Omega$ across P and N signals	300	_	500	mV

GTY Transceiver Switching Characteristics

Consult the *UltraScale Architecture GTY Transceiver User Guide* (<u>UG578</u>) for further information.

Table 109: GTY Transceiver Performance

				Sp	eed G	ade ar	nd V _{CC}	INT Ope	rating	Voltaç	ges		
Symbol	Description	Output Divider	0.0	90V		0.8	85 V			0.7	72V		Units
		Dividei	-3		-	-2		-1 -		-2	-1		
F _{GTYMAX}	GTY maximur rate	n line	32	2.75	28	.21	25.	7813	28.21		1	2.5	Gb/s
F _{GTYMIN}	GTY minimum	line rate	C).5	C	.5	().5	C).5	C).5	Gb/s
	-		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	4.0	12.5	4.0	12.5	4.0	8.5	4.0	12.5	4.0	8.5	Gb/s
		2	2.0	6.25	2.0	6.25	2.0	4.25	2.0	6.25	2.0	4.25	Gb/s
F	CPLL line	4	1.0	3.125	1.0	3.125	1.0	2.125	1.0	3.125	1.0	2.125	Gb/s
F _{GTYCRANGE}	rate range ⁽¹⁾	8	0.5	1.5625	0.5	1.5625	0.5	1.0625	0.5	1.5625	0.5	1.0625	Gb/s
		16					N	I/A				Gb/s	
		32					N	I/A					Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	19.6	32.75	19.6	28.21	19.6	25.7813	19.6	28.21	N	I/A	Gb/s
		1	9.8	16.375	9.8	16.375	9.8	12.5	9.8	16.375	9.8	12.5	Gb/s
F	QPLL0 line	2	4.9	8.1875	4.9	8.1875	4.9	8.1875	4.9	8.1875	4.9	8.1875	Gb/s
F _{GTYQRANGE1}	rate range ⁽²⁾	4	2.45	4.0938	2.45	4.0938	2.45	4.0938	2.45	4.0938	2.45	4.0938	Gb/s
		8	1.225	2.0469	1.225	2.0469	1.225	2.0469	1.225	2.0469	1.225	2.0469	Gb/s
		16	0.6125	1.0234	0.6125	1.0234	0.6125	1.0234	0.6125	1.0234	0.6125	1.0234	Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		1	16.0	26.0	16.0	26.0	16.0	25.7813	16.0	26.0	N	I/A	Gb/s
		1	8.0	13.0	8.0	13.0	8.0	12.5	8.0	13.0	8.0	12.5	Gb/s
Г	QPLL1 line	2	4.0	6.5	4.0	6.5	4.0	6.5	4.0	6.5	4.0	6.5	Gb/s
F _{GTYQRANGE2}	rate range ⁽³⁾	4	2.0	3.25	2.0	3.25	2.0	3.25	2.0	3.25	2.0	3.25	Gb/s
		8	1.0	1.625	1.0	1.625	1.0	1.625	1.0	1.625	1.0	1.625	Gb/s
		16	0.5	0.8125	0.5	0.8125	0.5	0.8125	0.5	0.8125	0.5	0.8125	Gb/s
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
F _{CPLLRANGE}	CPLL frequence	cy range	2.0	6.25	2.0	6.25	2.0	4.25	2.0	6.25	2.0	4.25	GHz
F _{QPLLORANGE}	QPLL0 frequerange	ncy	9.8	16.375	9.8	16.375	9.8	16.375	9.8	16.375	9.8	16.375	GHz
F _{QPLL1RANGE}	QPLL1 frequerange	ncy	8.0	13.0	8.0	13.0	8.0	13.0	8.0	13.0	8.0	13.0	GHz

- 1. The values listed are the rounded results of the calculated equation (2 x CPLL_Frequency)/Output_Divider.
- 2. The values listed are the rounded results of the calculated equation (2 x QPLL0_Frequency)/Output_Divider.
- 3. The values listed are the rounded results of the calculated equation (2 x QPLL1_Frequency)/Output_Divider.

Table 110: GTY Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description	All Speed Grades	Units
F _{GTYDRPCLK}	GTYDRPCLK maximum frequency.	250	MHz

Table 111: GTY Transceiver Reference Clock Switching Characteristics

Symbol	Description	Conditions	All	Units		
Symbol	Description	Conditions	Min	Тур	Max	Offics
F _{GCLK}	Reference clock frequency range.	60	-	820	MHz	
T _{RCLK}	Reference clock rise time.	20% – 80%	_	200	_	ps
T _{FCLK}	Reference clock fall time.	80% – 20%	_	200	_	ps
T _{DCREF}	Reference clock duty cycle.	Transceiver PLL only	40	50	60	%

Table 112: GTY Transceiver Reference Clock Oscillator Selection Phase Noise Mask(1)

Symbol	Description	Offset Frequency	Min	Тур	Max	Units	
	QPLL0/QPLL1 reference clock select	10 kHz	_	-	-112		
	phase noise mask at	100 kHz	_	_	-128	dBc/Hz	
	REFCLK frequency = 156.25 MHz.	1 MHz	_	_	-145		
	OPLLO/OPLL1 reference clock select	10 kHz	_	_	-103		
QPLL _{REFCLKMASK}	phase noise mask at	100 kHz	_	_	-123	dBc/Hz	
	REFCLK frequency = 312.5 MHz.	1 MHz	_	_	-143		
	QPLL0/QPLL1 reference clock select	10 kHz	_	_	-98		
	phase noise mask at	100 kHz	_	_	-117	dBc/Hz	
	REFCLK frequency =625 MHz.	1 MHz	_	_	-140		
		10 kHz	_	_	-112		
	CPLL reference clock select phase noise	100 kHz	_	_	-128	dBc/Hz	
	mask at REFCLK frequency = 156.25 MHz.	1 MHz	_	_	-145		
	. ,	50 MHz	_	_	-145	-	
		10 kHz	_	_	-103		
CDLI	CPLL reference clock select phase noise	100 kHz	_	_	-123	-ID - /I I -	
CPLL _{REFCLKMASK}	mask at REFCLK frequency = 312.5 MHz.	1 MHz	_	_	-143	dBc/Hz	
		50 MHz	_	_	-145	1	
		10 kHz	_	_	-98		
	CPLL reference clock select phase noise	100 kHz	_	_	-117	dBc/Hz	
	mask at REFCLK frequency = 625 MHz.	1 MHz	_	_	-140		
		50 MHz	_	_	-144		

- 1. For reference clock frequencies not in this table, use the phase-noise mask for the nearest reference clock frequency.
- 2. This reference clock phase-noise mask is superseded by any reference clock phase-noise mask that is specified in a supported protocol, e.g., PCIe.

Table 113: GTY Transceiver PLL/Lock Time Adaptation

Symbol	Description	Conditions	All	Units			
Зуппон	Description	Conditions	Min	Тур	Max	Oilles	
T _{LOCK}	Initial PLL lock.	-	-	1	ms		
т	Clock recovery phase acquisition and adaptation time for decision feedback equalizer (DFE).	After the PLL is locked to the reference clock, this is the time it takes to lock	-	50,000	37 x 10 ⁶	UI	
	Clock recovery phase acquisition and adaptation time for low-power mode (LPM) when the DFE is disabled.	the clock data recovery (CDR) to the data present at the input.	_	50,000	2.3 x 10 ⁶	UI	

Table 114: GTY Transceiver User Clock Switching Characteristics (1)

		Data Width Conditions (Bit)			Spec V _{CCINT} O	ed Grade perating			
Symbol	Description			0.90V	0.85V		0.72V		Units
		Internal Logic	Interconnect Logic	-3(2)	-2 ⁽²⁾ (3)	-1(4)(5)	-2 ⁽³⁾	-1 ⁽⁵⁾	
F _{TXOUTPMA}	TXOUTCLK maxifrom OUTCLKPM		ency sourced	511.719	511.719	402.833	402.833	322.266	MHz
F _{RXOUTPMA}	RXOUTCLK max from OUTCLKPM		ency sourced	511.719	511.719	402.833	402.833	322.266	MHz
F _{TXOUTPROGDIV}		TXOUTCLK maximum frequency sourced from TXPROGDIVCLK				511.719	511.719	511.719	MHz
F _{RXOUTPROGDIV}		RXOUTCLK maximum frequency sourced from RXPROGDIVCLK				511.719	511.719	511.719	MHz
		16	16, 32	511.719	511.719	390.625	390.625	322.266	MHz
		32	32, 64	511.719	511.719	390.625	390.625	322.266	MHz
E	TXUSRCLK ⁽⁶⁾ maximum	64	64, 128	511.719	440.781	402.832	402.832	195.313	MHz
F _{TXIN}	frequency	20	20, 40	409.375	409.375	312.500	312.500	257.813	MHz
		40	40, 80	409.375	409.375	312.500	350.000	257.813	MHz
		80	80, 160	409.375	352.625	322.266	352.625	156.250	MHz
		16	16, 32	511.719	511.719	390.625	390.625	322.266	MHz
		32	32, 64	511.719	511.719	390.625	390.625	322.266	MHz
_	RXUSRCLK ⁽⁶⁾	64	64, 128	511.719	440.781	402.832	402.832	195.313	MHz
F _{RXIN}	requency	20	20, 40	409.375	409.375	312.500	312.500	257.813	MHz
		40	40, 80	409.375	409.375	312.500	350.000	257.813	MHz
		80	80, 160	409.375	352.625	322.266	352.625	156.250	MHz

Table 114: GTY Transceiver User Clock Switching Characteristics (1) (Cont'd)

		Data Width Conditions (Bit)			Spec V _{CCINT} O	ed Grade perating		;	
Symbol	Description	'	(ВП)	0.90V	0.85V		0.72V		Units
		Internal Logic	Interconnect Logic	-3(2)	-2(2)(3)	-1(4)(5)	-2(3)	-1 ⁽⁵⁾	
		16	16	511.719	511.719	390.625	390.625	322.266	MHz
		16	32	255.859	255.859	195.313	195.313	161.133	MHz
		32	32	511.719	511.719	390.625	390.625	322.266	MHz
		32	64	255.859	255.859	195.313	195.313	161.133	MHz
		64	64	511.719	440.781	402.832	402.832	195.313	MHz
_	TXUSRCLK2 ⁽⁶⁾ maximum	64	128	255.859	220.391	201.416	201.416	97.656	MHz
F _{TXIN2}	frequency	20	20	409.375	409.375	312.500	312.500	257.813	MHz
		20	40	204.688	204.688	156.250	156.250	128.906	MHz
		40	40	409.375	409.375	312.500	350.000	257.813	MHz
		40	80	204.688	204.688	156.250	175.000	128.906	MHz
		80	80	409.375	352.625	322.266	352.625	156.250	MHz
		80	160	204.688	176.313	161.133	176.313	78.125	MHz
		16	16	511.719	511.719	390.625	390.625	322.266	MHz
		16	32	255.859	255.859	195.313	195.313	161.133	MHz
		32	32	511.719	511.719	390.625	390.625	322.266	MHz
		32	64	255.859	255.859	195.313	195.313	161.133	MHz
		64	64	511.719	440.781	402.832	402.832	195.313	MHz
_	RXUSRCLK2 ⁽⁶⁾ maximum	64	128	255.859	220.391	201.416	201.416	97.656	MHz
F _{RXIN2}	frequency	20	20	409.375	409.375	312.500	312.500	257.813	MHz
		20	40	204.688	204.688	156.250	156.250	128.906	MHz
		40	40	409.375	409.375	312.500	350.000	257.813	MHz
		40	80	204.688	204.688	156.250	175.000	128.906	MHz
		80	80	409.375	352.625	322.266	352.625	156.250	MHz
		80	160	204.688	176.313	161.133	176.313	78.125	MHz

- 1. Clocking must be implemented as described in the *UltraScale Architecture GTY Transceiver User Guide* (<u>UG578</u>).
- 2. For speed grades -3E, -2E, and -2I, a 16-bit and 20-bit internal data path can only be used for line rates less than 8.1875 Gb/s.
- 3. For speed grade -2LE, a 16-bit and 20-bit internal data path can only be used for line rates less than 8.1875 Gb/s when $V_{CCINT} = 0.85V$ or 6.25 Gb/s when $V_{CCINT} = 0.72V$.
- 4. For speed grades -1E and -1I, a 16-bit and 20-bit internal data path can only be used for line rates less than 6.25 Gb/s.
- 5. For speed grade -1LI, a 16-bit and 20-bit internal data path can only be used for line rates less than 6.25 Gb/s when $V_{CCINT} = 0.85V$ or 5.15625 Gb/s when $V_{CCINT} = 0.72V$.
- 6. When the gearbox is used, these maximums refer to the XCLK. For more information, see the *Valid Data Width Combinations for TX Asynchronous Gearbox* table in the *UltraScale Architecture GTY Transceiver User Guide* (UG578).

Table 115: GTY Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTYTX}	Serial data rate range		0.500	_	F _{GTYMAX}	Gb/s
T _{RTX}	TX rise time	20%–80%	_	21	_	ps
T _{FTX}	TX fall time	80%–20%	_	21	_	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		_	_	500.00	ps
T _{J32.75}	Total jitter ⁽²⁾⁽⁴⁾	22.75.05./-	_	_	0.35	UI
D _{J32.75}	Deterministic jitter ⁽²⁾⁽⁴⁾	32.75 Gb/s	_	_	0.19	UI
T _{J28.21}	Total jitter ⁽²⁾⁽⁴⁾	20.21.Ch/s	_	-	0.28	UI
D _{J28.21}	Deterministic jitter ⁽²⁾⁽⁴⁾	28.21 Gb/s	_	_	0.17	UI
T _{J16.375}	Total jitter ⁽²⁾⁽⁴⁾	1/ 275 Ch/s	_	_	0.28	UI
D _{J16.375}	Deterministic jitter ⁽²⁾⁽⁴⁾	16.375 Gb/s	_	-	0.17	UI
T _{J15.0}	Total jitter ⁽²⁾⁽⁴⁾	15.0 Ch/c	_	_	0.28	UI
D _{J15.0}	Deterministic jitter ⁽²⁾⁽⁴⁾	15.0 Gb/s	_	_	0.17	UI
T _{J14.1}	Total jitter ⁽²⁾⁽⁴⁾	1 4 1 Cl- /-	_	_	0.28	UI
D _{J14.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	14.1 Gb/s	_	_	0.17	UI
T _{J14.1}	Total jitter ⁽²⁾⁽⁴⁾	14.005.01./	_	_	0.28	UI
D _{J14.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	14.025 Gb/s	_	_	0.17	UI
T _{J13.1}	Total jitter ⁽²⁾⁽⁴⁾	12.1 Ch/-	_	_	0.28	UI
D _{J13.1}	Deterministic jitter ⁽²⁾⁽⁴⁾	13.1 Gb/s	_	_	0.17	UI
T _{J12.5_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	40.5.01./	_	_	0.28	UI
D _{J12.5_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	12.5 Gb/s	_	_	0.17	UI
T _{J12.5_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	12 F Ch/c	_	_	0.33	UI
D _{J12.5} _CPLL	Deterministic jitter ⁽³⁾⁽⁴⁾	12.5 Gb/s	_	-	0.17	UI
T _{J11.3_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	11 2 Ch/o	_	_	0.28	UI
D _{J11.3_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	11.3 Gb/s	_	_	0.17	UI
T _{J10.3125_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	10.212F.Cb/c	_	_	0.28	UI
D _{J10.3125_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	10.3125 Gb/s	_	_	0.17	UI
T _{J10.3125_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	10.2125 Ch/s	_	_	0.33	UI
D _{J10.3125_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	10.3125 Gb/s	_	-	0.17	UI
T _{J9.953_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	0.052.Ch/s	_	_	0.28	UI
D _{J9.953_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	9.953 Gb/s	_	_	0.17	UI
T _{J9.953_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	0.052.Ch/s	_	-	0.33	UI
D _{J9.953_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	9.953 Gb/s	_	_	0.17	UI
T _{J8.0}	Total jitter ⁽³⁾⁽⁴⁾	0.0 Ch/o	_	_	0.32	UI
D _{J8.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	8.0 Gb/s	_	_	0.17	UI
T _{J6.6}	Total jitter ⁽³⁾⁽⁴⁾	4 4 0 1 / 2	_	_	0.30	UI
D _{J6.6}	Deterministic jitter ⁽³⁾⁽⁴⁾	6.6 Gb/s	_	_	0.15	UI
T _{J5.0}	Total jitter ⁽³⁾⁽⁴⁾	F 0 05 /-	_	_	0.30	UI
D _{J5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	_	_	0.15	UI
T _{J4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25.05/s	_	_	0.30	UI
D _{J4.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.25 Gb/s	_	_	0.15	UI

Table 115: GTY Transceiver Transmitter Switching Characteristics (Cont'd)

Symbol	Description	Condition	Min	Тур	Max	Units
T _{J3.20}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁵⁾	-	-	0.20	UI
D _{J3.20}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s(*/	_	-	0.10	UI
T _{J2.5}	Total jitter ⁽³⁾⁽⁴⁾	2.5 Gb/s ⁽⁶⁾	-	_	0.20	UI
D _{J2.5}	Deterministic jitter ⁽³⁾⁽⁴⁾	2.5 Gb/S(°)		-	0.10	UI
T _{J1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Gb/s ⁽⁷⁾	-	-	0.15	UI
D _{J1.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	1.25 Gb/S(*/	-	_	0.06	UI
T _{J500}	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/s ⁽⁸⁾	_	-	0.10	UI
D _{J500}	Deterministic jitter ⁽³⁾⁽⁴⁾	300 100/5(9)	_	_	0.03	UI

- Using same REFCLK input with TX phase alignment enabled for up to four consecutive transmitters (one fully populated GTY Quad) at maximum line rate.
- 2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 4. All jitter values are based on a bit-error ratio of 10⁻¹².
- 5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 6. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.
- 8. CPLL frequency at 2.0 GHz and TXOUT_DIV = 8.

Table 116: GTY Transceiver Receiver Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTYRX}	Serial data rate		0.500	_	F _{GTYMAX}	Gb/s
R _{XSST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated at 33 kHz	-5000	_	0	ppm
R _{XRL}	Run length (CID)		_	_	256	UI
		Bit rates ≤ 6.6 Gb/s	-1250	_	1250	ppm
R _{XPPMTOL}	Data/REFCLK PPM offset tolerance	Bit rates > 6.6 Gb/s and ≤ 8.0 Gb/s	-700	_	700	ppm
		Bit rates > 8.0 Gb/s	-200	_	200	ppm
SJ Jitter Tole	rance ⁽²⁾					
J _{T_SJ32.75}	Sinusoidal jitter (QPLL) ⁽³⁾	32.75 Gb/s	0.25	_	_	UI
J _{T_SJ28.21}	Sinusoidal jitter (QPLL) ⁽³⁾	28.21 Gb/s	0.30	_	_	UI
J _{T_SJ16.375}	Sinusoidal jitter (QPLL) ⁽³⁾	16.375 Gb/s	0.30	_	_	UI
J _{T_SJ15.0}	Sinusoidal jitter (QPLL) ⁽³⁾	15.0 Gb/s	0.30	_	_	UI
J _{T_SJ14.1}	Sinusoidal jitter (QPLL) ⁽³⁾	14.1 Gb/s	0.30	_	_	UI
J _{T_SJ13.1}	Sinusoidal jitter (QPLL) ⁽³⁾	13.1 Gb/s	0.30	_	_	UI
J _{T_SJ12.5}	Sinusoidal jitter (QPLL)(3)	12.5 Gb/s	0.30	_	_	UI
J _{T_SJ11.3}	Sinusoidal jitter (QPLL) ⁽³⁾	11.3 Gb/s	0.30	_	_	UI
J _{T_SJ10.32_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	10.32 Gb/s	0.30	_	_	UI
J _{T_SJ10.32_CPLL}	Sinusoidal jitter (CPLL)(3)	10.32 Gb/s	0.30	_	_	UI
J _{T_SJ9.953_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	9.953 Gb/s	0.30	_	-	UI
J _{T_SJ9.953_CPLL}	Sinusoidal jitter (CPLL)(3)	9.953 Gb/s	0.30	_	-	UI
J _{T_SJ8.0}	Sinusoidal jitter (CPLL)(3)	8.0 Gb/s	0.42	_	-	UI
J _{T_SJ6.6}	Sinusoidal jitter (CPLL)(3)	6.6 Gb/s	0.44	_	_	UI
J _{T_SJ5.0}	Sinusoidal jitter (CPLL)(3)	5.0 Gb/s	0.44	_	_	UI
J _{T_SJ4.25}	Sinusoidal jitter (CPLL)(3)	4.25 Gb/s	0.44	_	_	UI
J _{T_SJ3.2}	Sinusoidal jitter (CPLL)(3)	3.2 Gb/s ⁽⁴⁾	0.45	_	_	UI
J _{T_SJ2.5}	Sinusoidal jitter (CPLL)(3)	2.5 Gb/s ⁽⁵⁾	0.30	_	_	UI
J _{T_SJ1.25}	Sinusoidal jitter (CPLL)(3)	1.25 Gb/s ⁽⁶⁾	0.30	_	_	UI
J _{T_SJ500}	Sinusoidal jitter (CPLL)(3)	500 Mb/s ⁽⁷⁾	0.30	_	_	UI
SJ Jitter Tole	rance with Stressed Eye ⁽²⁾		•			
J _{T_TJSE3.2}	Total litter with stressed eve(8)	3.2 Gb/s	0.70	_	_	UI
J _{T_TJSE6.6}	Total jitter with stressed eye ⁽⁸⁾	6.6 Gb/s	0.70	_	_	UI
J _{T_SJSE3.2}	Sinusoidal jitter with stressed eye ⁽⁸⁾	3.2 Gb/s	0.10	_	_	UI
J _{T_SJSE6.6}	- Sinusuluai jittei with stressed eye	6.6 Gb/s	0.10	_	_	UI

- 1. Using RXOUT_DIV = 1, 2, and 4.
- 2. All jitter values are based on a bit error ratio of 10^{-12} .
- 3. The frequency of the injected sinusoidal jitter is 80 MHz.
- 4. CPLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. CPLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 6. CPLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 7. CPLL frequency at 2.0 GHz and RXOUT_DIV = 8.
- 8. Composite jitter with RX equalizer enabled. DFE disabled.

GTY Transceiver Electrical Compliance

The *UltraScale Architecture GTY Transceiver User Guide* (<u>UG578</u>) contains recommended use modes that ensure compliance for the protocols listed in <u>Table 117</u>. The transceiver wizard provides the recommended settings for those use cases and for protocol specific characteristics.

Table 117: GTY Transceiver Protocol List

Protocol	Specification	Serial Rate (Gb/s)	Electrical Compliance
CAUI-4	IEEE 802.3-2012	25.78125	Compliant
28 Gb/s backplane	CEI-25G-LR	25–28.05	Compliant
Interlaken	OIF-CEI-6G, OIF-CEI-11GSR, OIF-CEI-28G-MR	4.25–25.78125	Compliant
100GBASE-KR4	IEEE 802.3bj-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
100GBASE-CR4	IEEE 802.3bj-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
50GBASE-KR4	IEEE 802.3by-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
50GBASE-CR4	IEEE 802.3by-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
25GBASE-KR4	IEEE 802.3by-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
25GBASE-CR4	IEEE 802.3by-2014, CEI-25G-LR	25.78125	Compliant ⁽¹⁾
OTU4 (OTL4.4) CFP2	OIF-CEI-28G-VSR	27.952493-32.75	Compliant
OTU4 (OTL4.4) CFP	OIF-CEI-11G-MR	11.18–13.1	Compliant
CAUI-10	IEEE 802.3-2012	10.3125	Compliant
nPPI	IEEE 802.3-2012	10.3125	Compliant
10GBASE-KR ⁽²⁾	IEEE 802.3-2012	10.3125	Compliant
SFP+	SFF-8431 (SR and LR)	9.95328-11.10	Compliant
XFP	INF-8077i, revision 4.5	10.3125	Compliant
RXAUI	CEI-6G-SR	6.25	Compliant
XAUI	IEEE 802.3-2012	3.125	Compliant
1000BASE-X	IEEE 802.3-2012	1.25	Compliant
5.0G Ethernet	IEEE 802.3bx (PAR)	5	Compliant
2.5G Ethernet	IEEE 802.3bx (PAR)	2.5	Compliant
HiGig, HiGig+, HiGig2	IEEE 802.3-2012	3.74, 6.6	Compliant
QSGMII	QSGMII v1.2 (Cisco System, ENG-46158)	5	Compliant
OTU2	ITU G.8251	10.709225	Compliant
OTU4 (OTL4.10)	OIF-CEI-11G-SR	11.180997	Compliant
OC-3/12/48/192	GR-253-CORE	0.1555–9.956	Compliant
PCIe Gen1, 2, 3	PCI Express base 3.0	2.5, 5.0, and 8.0	Compliant
SDI ⁽³⁾	SMPTE 424M-2006	0.27-2.97	Compliant
UHD-SDI ⁽³⁾	SMPTE ST-2081 6G, SMPTE ST-2082 12G	6 and 12	Compliant
Hybrid memory cube (HMC)	HMC-15G-SR	10, 12.5, and 15.0	Compliant
MoSys bandwidth engine	CEI-11-SR and CEI-11-SR (overclocked)	10.3125, 15.5	Compliant
CPRI	CPRI_v_6_1_2014-07-01	0.6144–12.165	Compliant
Passive optical network (PON)	10G-EPON, 1G-EPON, NG-PON2, XG-PON, and 2.5G-PON	0.155–10.3125	Compliant
JESD204a/b	OIF-CEI-6G, OIF-CEI-11G	3.125–12.5	Compliant

Table 117: GTY Transceiver Protocol List (Cont'd)

Protocol	Specification	Serial Rate (Gb/s)	Electrical Compliance
Serial RapidIO	RapidIO specification 3.1	1.25–10.3125	Compliant
DisplayPort	DP 1.2B CTS	1.62-5.4	Compliant ⁽³⁾
Fibre channel	FC-PI-4	1.0625-14.025	Compliant
SATA Gen1, 2, 3	Serial ATA revision 3.0 specification	1.5, 3.0, and 6.0	Compliant
SAS Gen1, 2, 3	T10/BSR INCITS 519	3.0, 6.0, and 12.0	Compliant
SFI-5	OIF-SFI5-01.0	0.625 - 12.5	Compliant
Aurora	CEI-6G, CEI-11G-LR	All rates	Compliant

- 1. 25 dB loss at Nyquist without FEC.
- 2. The transition time of the transmitter is faster than the IEEE Std 802.3-2012 specification.
- 3. This protocol requires external circuitry to achieve compliance.

Integrated Interface Block for Interlaken

More information and documentation on solutions using the integrated interface block for Interlaken can be found at <u>UltraScale+ Interlaken</u>. The *UltraScale Architecture and Product Overview* (<u>DS890</u>) lists how many blocks are in each Zynq UltraScale+ MPSoC. This section describes the following Interlaken configurations.

- 12 x 12.5 Gb/s protocol and lane logic mode (Table 118).
- 6 x 25.78125 Gb/s and 6 x 28.21 Gb/s protocol and lane logic mode (Table 119).
- 12 x 25.78125 Gb/s lane logic only mode (Table 120).

Zynq UltraScale+ MPSoCs in the SFVC784 package are only supported using the 12 x 12.5 Gb/s Interlaken configuration. See the F_{GTHMAX} maximum line rates.

Table 118: Maximum Performance for Interlaken 12 x 12.5 Gb/s Protocol and Lane Logic Mode Designs

			Speed Grade and V _{CCINT} Operating Voltages									
Symbol	Description	0.90V			0.85V				0.7	′2V		Units
		-	-3		-2		-1		2	-1		
F _{RX_SERDES_CLK}	Receive serializer/ deserializer clock	195.32		195.32 195.32		195.32		195.32		MHz		
F _{TX_SERDES_CLK}	Transmit serializer/ deserializer clock	195.32		195	5.32	195.32		195.32		195.32		MHz
F _{DRP_CLK}	Dynamic reconfiguration port clock	250.00		250.00		250.00		250.00		250.00		MHz
		Min ⁽¹⁾	Max	Min ⁽¹⁾	Max	Min ⁽¹⁾	Max	Min ⁽¹⁾	Max	Min ⁽¹⁾	Max	
F _{CORE_CLK}	Interlaken core clock	300.00	322.27	300.00	322.27	300.00	322.27	300.00	322.27	300.00	322.27	MHz
F _{LBUS_CLK}	Interlaken local bus clock	300.00	322.27	300.00	322.27	300.00	322.27	300.00	322.27	300.00	322.27	MHz

Notes:

1. These are the minimum clock frequencies at the maximum lane performance.

Table 119: Maximum Performance for Interlaken 6 x 25.78125 Gb/s and 6 x 28.21 Gb/s Protocol and Lane Logic Mode Designs

		Speed Grade and V _{CCINT} Operating Voltages										
Symbol	Description		0.90V		0.85V				0.72V	1		Units
		-3 ⁽¹⁾		-2(-2 ⁽¹⁾ -1		1	-2		-	1	
F _{RX_SERDES_CLK}	Receive serializer/ deserializer clock	440.	440.79		.79	N/A		402.84		N.	/A	MHz
F _{TX_SERDES_CLK}	Transmit serializer/ deserializer clock	440.	440.79		.79	N/A		402.84		N.	/A	MHz
F _{DRP_CLK}	Dynamic reconfiguration port clock	250.00 250.00		N.	/A	250.	00	N.	/A	MHz		
		Min ⁽²⁾	Max	Min ⁽²⁾	Max	Min	Max	Min ⁽²⁾	Max	Min	Max	
F _{CORE_CLK}	Interlaken core clock	412.50 ⁽³⁾	479.20	412.50 ⁽³⁾	479.20	N.	/A	412.50	429.69	N.	/A	MHz
F _{LBUS_CLK}	Interlaken local bus clock	300.00(4)	349.52	300.00(4)	349.52	N.	/A	300.00	349.52	N.	/A	MHz

- 1. 6 x 28.21 mode is only supported in the -2 (V_{CCINT}=0.85V) and -3 (V_{CCINT}=0.90V) speed grades.
- 2. These are the minimum clock frequencies at the maximum lane performance.
- 3. The minimum value for CORE_CLK is 451.36 MHz for the 6 x 28.21 Gb/s protocol.
- 4. The minimum value for LBUS_CLK is 330.00 MHz for the 6 x 28.21 Gb/s protocol.

Table 120: Maximum Performance for Interlaken 12 x 25.78125 Gb/s Lane Logic Only Mode Designs

		Speed Grade and V _{CCINT} Operating Voltages							
Symbol	Description	0.90V	0.85	V	0.72	Units			
		-3	-2	-1	-2	-1			
F _{RX_SERDES_CLK}	Receive serializer/ deserializer clock	402.84	402.84	N/A	N/A	N/A	MHz		
F _{TX_SERDES_CLK}	Transmit serializer/ deserializer clock	402.84	402.84	N/A	N/A	N/A	MHz		
F _{DRP_CLK}	Dynamic reconfiguration port clock	250.00	250.00	N/A	N/A	N/A	MHz		
F _{CORE_CLK}	Interlaken core clock	412.50	412.50	N/A	N/A	N/A	MHz		
F _{LBUS_CLK}	Interlaken local bus clock	349.52	349.52	N/A	N/A	N/A	MHz		

Integrated Interface Block for 100G Ethernet MAC and PCS

More information and documentation on solutions using the integrated 100 Gb/s Ethernet block can be found at <u>UltraScale+ Integrated 100G Ethernet MAC/PCS</u>. The <u>UltraScale Architecture and Product Overview</u> (<u>DS890</u>) lists how many blocks are in each Zynq UltraScale+ MPSoC.

Table 121: Maximum Performance for 100G Ethernet Designs

		Speed Grade and V _{CCINT} Operating Voltages						
Symbol	Description	0.90V	0.85V		0.7	Units		
		-3	-2 ⁽¹⁾	-1	-2	-1 ⁽²⁾		
F _{TX_CLK}	Transmit clock	390.625	390.625	322.223	322.223	322.223	MHz	
F _{RX_CLK}	Receive clock	390.625	390.625	322.223	322.223	322.223	MHz	
F _{RX_SERDES_CLK}	Receive serializer/deserializer clock	390.625	390.625	322.223	322.223	322.223	MHz	
F _{DRP_CLK}	Dynamic reconfiguration port clock	250.00	250.00	250.00	250.00	250.00	MHz	

Notes:

Integrated Interface Block for PCI Express Designs

More information and documentation on solutions for PCI Express designs can be found at <u>PCI Express</u>. The *UltraScale Architecture and Product Overview* (<u>DS890</u>) lists the Zynq UltraScale+ MPSoCs that include this block.

Table 122: Maximum Performance for PCI Express Designs (1)(2)

		Speed Grade and V _{CCINT} Operating Voltages						
Symbol	Description	0.90V 0.85V		0.72	Units			
		-3	-2	-1	-2	-1		
F _{PIPECLK}	Pipe clock maximum frequency.	250.00	250.00	250.00	250.00	250.00	MHz	
F _{CORECLK}	Core clock maximum frequency.	500.00	500.00	500.00	250.00	250.00	MHz	
F _{DRPCLK}	DRP clock maximum frequency.	250.00	250.00	250.00	250.00	250.00	MHz	
F _{MCAPCLK}	MCAP clock maximum frequency.	125.00	125.00	125.00	125.00	125.00	MHz	

- 1. PCI Express Gen4 operation is supported for x1, x2, x4, and x8 widths.
- 2. PCI Express Gen4 operation is supported in -3E, -2E, and -2I speed grades.
- 3. PCI Express Gen3 x16 operation is not supported when $V_{CCINT} = 0.72V$.

^{1.} The maximum clock frequency of 390.625 MHz only applies to the CAUI-10 interface. The maximum clock frequency for the CAUI-4 interface is 322.223 MHz.

The CAUI-4 interface is not supported by -1L speed grade devices where V_{CCINT}=0.72V.

Video Codec Performance

The *UltraScale Architecture and Product Overview* (DS890) lists the Zynq UltraScale+ MPSoC EV devices that include the Video Codec unit (VCU).

Table 123: VCU Performance

	Speed Grade and V _{CCINT} Operating Voltages ⁽¹⁾						
Description	0.90V 0.85V		0.7	Units			
	-3	-2	-1	-2	-1		
Video Codec decoder block maximum frequency (H.264/5 10-bit 4:2:2)	667	667	667	667	667	MHz	

Notes:

PL System Monitor Specifications

Table 124: PL SYSMON Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units	
$V_{CCADC} = 1.8V \pm 3\%, V_{REFP} =$	= 1.25V, V _I	$_{REFN} = OV$, ADCCLK = 5.2 MHz, $T_j = -40^{\circ}C$	to 100°0	C, typical	values at	$T_j = 40^{\circ}C$	
ADC Accuracy ⁽¹⁾							
Resolution			10	-	-	Bits	
Integral nonlinearity ⁽²⁾	INL		_	_	±1.5	LSBs	
Differential nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	LSBs	
Offset error		Offset calibration enabled	_	_	±2	LSBs	
Gain error			_	-	±0.4	%	
Sample rate			_	_	0.2	MS/s	
DMC I		External 1.25V reference		-	1	LSBs	
RMS code noise		On-chip reference	_	1	_	LSBs	
ADC Accuracy at Extend	ed Tempe	eratures					
Resolution		$T_j = -55^{\circ}C \text{ to } 125^{\circ}C$	10	_	_	Bits	
Integral nonlinearity ⁽²⁾	INL	$T_j = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	_	-	±1.5		
Differential nonlinearity	DNL	No missing codes, guaranteed monotonic ($T_j = -55^{\circ}\text{C}$ to 125°C)	_	_	±1	1 LSBs	
Analog Inputs ⁽²⁾	<u>'</u>				1		
		Unipolar operation	0	_	1	V	
ADC in such some some		Bipolar operation	-0.5	_	+0.5	V	
ADC input ranges		Unipolar common mode range (FS input)	0	_	+0.5	V	
		Bipolar common mode range (FS input)	+0.5	_	+0.6	V	
Maximum external channel input ranges		Adjacent channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	-	V _{CCADC}	V	

^{1.} The supply voltage for the VCU (V_{CCINT_VCU}) is specified in Table 2.

Table 124: PL SYSMON Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
On-Chip Sensor Accuracy						
		$T_j = -55$ °C to 125°C (with external REF)	_	_	±3	°C
Temperature sensor error ⁽¹⁾⁽³	3)	$T_j = -55$ °C to 110°C (with internal REF)	_	_	±3.5	°C
		$T_j = 110$ °C to 125°C (with internal REF)	_	_	±5	°C
		Supply voltages 0.72V to 1.2V, $T_j = -40^{\circ}\text{C}$ to 100°C (with external REF)	-	_	±0.5	%
		Supply voltages 0.72V to 1.2V, $T_j = -55$ °C to 125°C (with external REF)	_	-	±1.0	%
		All other supply voltages, $T_j = -40$ °C to 100°C (with external REF)	_	_	±1.0	%
Supply sensor error ⁽⁴⁾		All other supply voltages, $T_j = -55$ °C to 125°C (with external REF)	I	-	±2.0	%
Supply sensor entorm		Supply voltages 0.72V to 1.2V, $T_j = -40$ °C to 100°C (with internal REF)	_	_	±1.0	%
		Supply voltages 0.72V to 1.2V, $T_j = -55$ °C to 125°C (with internal REF)	_	-	±2.0	%
		All other supply voltages, $T_j = -40$ °C to 100°C (with internal REF)	_	-	±1.5	%
		All other supply voltages, $T_j = -55$ °C to 125°C (with internal REF)	_	_	±2.5	%
Conversion Rate ⁽⁵⁾						
Conversion time—continuous	t _{CONV}	Number of ADCCLK cycles	26	-	32	Cycles
Conversion time—event	t _{CONV}	Number of ADCCLK cycles	_	-	21	Cycles
DRP clock frequency	DCLK	DRP clock frequency	8	_	250	MHz
ADC clock frequency	ADCCLK	Derived from DCLK	1	-	5.2	MHz
DCLK duty cycle			40	_	60	%
SYSMON Reference ⁽⁶⁾						
External reference	V_{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-chip reference		Ground V_{REFP} pin to AGND, $T_j = -40^{\circ}C$ to $100^{\circ}C$	1.2375	1.25	1.2625	V
		Ground V_{REFP} pin to AGND, $T_j = -55^{\circ}C$ to 125°C	1.225	1.25	1.275	V

- ADC offset errors are removed by enabling the ADC automatic offset calibration feature. The values are specified for when this feature is enabled.
- See the Analog Input section in the UltraScale Architecture System Monitor User Guide (UG580).
- 3. When reading temperature values directly from the PMBus interface, the SYSMON has a +4°C offset due to the transfer function used by the PMBus application. For example, the external REF temperature sensor error's range of ±3°C becomes +1°C to +7°C when the temperature is read through the PMBus interface.
- 4. Supply sensor offset and gain errors are removed by enabling the automatic offset and gain calibration feature. The values are specified for when this feature is enabled.
- 5. See the Adjusting the Acquisition Settling Time section in the UltraScale Architecture System Monitor User Guide (UG580).
- 6. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted.

PL SYSMON I2C/PMBus Interfaces

Table 125: PL SYSMON I2C Fast Mode Interface Switching Characteristics (1)

Symbol	Description	Min	Max	Units
T _{SMFCKL}	SCL Low time	1.3	-	μs
T _{SMFCKH}	SCL High time	0.6	-	μs
T _{SMFCKO}	SDAO clock-to-out delay	-	900	ns
T _{SMFDCK}	SDAI setup time	100	-	ns
F _{SMFCLK}	SCL clock frequency	-	400	kHz

Notes:

Table 126: PL SYSMON I2C Standard Mode Interface Switching Characteristics (1)

Symbol	Description	Min	Max	Units
T _{SMSCKL}	SCL Low time	4.7	-	μs
T _{SMSCKH}	SCL High time	4.0	_	μs
T _{SMSCKO}	SDAO clock-to-out delay	_	3450	ns
T _{SMSDCK}	SDAI setup time	250	-	ns
F _{SMSCLK}	SCL clock frequency	_	100	kHz

Notes:

1. The test conditions are configured to the LVCMOS 1.8V I/O standard.

^{1.} The test conditions are configured to the LVCMOS 1.8V I/O standard.

Configuration Switching Characteristics

Table 127: Configuration Switching Characteristics

		Speed Grade and V _{CCINT} Operating Voltages					
Symbol	Description	0.90V 0.85V		0.72V		Units	
		-3	-2	-1	-2	-1	
PL Power-up Ti	ming Characteristics	•					
T _{PL}	PS_PROG_B PL latency.	7.5	7.5	7.5	7.5	7.5	ms, Max
	Power-on reset from PL power-on to	65	65	65	65	65	ms, Max
T _{POR}	PL ready to configure (40 ms maximum ramp rate).	0	0	0	0	0	ms, Min
	Power-on reset from PL power-on to PL	15	15	15	15	15	ms, Max
	ready to configure with POR override (2 ms maximum ramp rate).	5	5	5	5	5	ms, Min
T _{PS_PROG_B}	PL program pulse width.	250	250	250	250	250	ns, Min
Internal Configu	uration Access Port	!	!				
F _{ICAPCK}	Internal configuration access port (ICAPE3).	200	200	200	150	150	MHz, Max
DNA Port Switch	hing						
F _{DNACK}	DNA port frequency (DNA_PORT).	200	200	200	175	175	MHz, Max
STARTUPE3 Por	ts	1	II.	ı	ı	1	
F _{CFGMCLK}	STARTUPE3 CFGMCLK output frequency.	50.00	50.00	50.00	50.00	50.00	MHz, Typ
F _{CFGMCLKTOL}	STARTUPE3 CFGMCLK output frequency tolerance.	±15	±15	±15	±15	±15	%, Max
T _{DCI_MATCH}	Specifies a stall in the startup cycle until the digitally controlled impedance (DCI) match signals are asserted.	4	4	4	4	4	ms, Max

Revision History

The following table shows the revision history for this document.

Date	Version	Description of Revisions
11/28/2017	1.9	Updated Table 25, Table 26, and Table 27 to production for the following devices/speed/temperature grades in Vivado Design Suite 2017.4 v1.17. XCZU4CG/XCZU4EG/XCZU4EV: -2E, -2I, -1E, -1I XCZU5CG/XCZU5EG/XCZU5EV: -2E, -2I, -1E, -1I XCZU7CG/XCZU7EG/XCZU7EV: -2E, -2I, -1E, -1I XCZU17EG: -2LE and -1LI XCZU19EG: -2LE and -1LI Revised the F _{REFCLK} descriptions in Table 82. Added values to Table 93. Revised the
4.2.42.42.2.2		F _{GTYQRANGE2} -1 speed grade minimum in Table 109.
10/26/2017	1.8	In Table 1, corrected the minimum voltage for the PL System Monitor section. Added Note 4 to Table 2. Added Note 1 to Table 5. Updated Table 25, Table 26, and Table 27 to production for the following
		devices/speed/temperature grades in Vivado Design Suite 2017.3.1 v1.16. XCZU2CG/XCZU2EG: -2LE and -1LI XCZU3CG/XCZU3EG: -2LE and -1LI
		XCZU6CG/XCZU6EG: -2LE and -1LI XCZU9CG/XCZU9EG: -2LE and -1LI XCZU15EG: -2LE and -1LI
		XAZU2EG/XAZU3EG: -1LI Also updated speed file data for this release in Table 87, Table 88, Table 89, Table 90, and Table 91. Added specifications for Quad-SPI device clock frequency operating at 40 MHz with
10/05/2017	1.7	loopback disabled to Table 41 and Table 42. Corrected the speed file version in Table 25 and Table 27 for production release of XAZU2EG and XAZU3EG with -1I and -1Q speed/temperature ranges and the XCZU11EG:
10/03/2017	1.6	-2E, -2I, -1E, -1I to Vivado Design Suite 2017.3 v1.15. In Table 1, because the voltages are covered in Table 6, removed the note on V _{IN} for I/O input voltage for HD I/O banks. Updated T _{SOL} by package in Table 1. In Table 2, updated V _{CCINT_VCU} . Added Note 2 to Table 6 and Table 8. Added the XAZU2EG and XAZU3EG production devices in -1I and -1Q speed/temperature
		ranges using Vivado Design Suite 2017.3 v1.14. In Table 25, Table 26, and Table 27, updated the XCZU11EG: -2E, -2I, -1E, -1I to production in Vivado Design Suite 2017.3 v1.14. Also updated speed file data for this release in Table 87, Table 88, Table 89, Table 90, and Table 91.
09/01/2017	1.5	Updated Table 25, Table 26, and Table 27 to production release for the following devices/speed/temperature grades in Vivado Design Suite 2017.2.1. XCZU17EG: -2E, -2I, -1E, -1I
		XCZU19EG: -2E, -2I, -1E, -1I
		In Table 45, revised the minimum T _{SDSDRDCK3} value.
		In Table 76, revised the $T_{OUTBUF_DELAY_O_PAD}$ -2 (V_{CCINT} = 0.85V) values for DIFF_SSTL135_S, DIFF_SSTL15_DCI_S, DIFF_SSTL15_S, DIFF_SSTL18_I_DCI_S, and DIFF_SSTL18_I_S.
		Revised some of the -3E and -1LI/-2LE ($V_{\rm CCINT}=0.72V$) speed files in Table 75, Table 76, Table 77, Table 88, Table 89, Table 90, and Table 91.
		Revised the Integrated Interface Block for Interlaken section.

Date	Version	Description of Revisions
06/28/2017	1.4	Updated Table 25, Table 26, and Table 27 to production release for the following devices/speed/temperature grades in Vivado Design Suite 2017.2.
		XCZU15EG: -2E, -2I, -1E, -1I
		Updated Note 15 in Table 2 for clarity. Updated Table 14 to remove Note 3, Note 6, and the MIPI_DPHY_DCI_LP row. These changes are because the DCI and POD standards are not supported in HD I/O banks.
		Added Note 5 to Table 30. Updated descriptions in Table 38. Revised the -3E and -1LI/-2LE ($V_{\rm CCINT}=0.72V$) speed files in Table 75, Table 76, Table 77, Table 87, Table 88, Table 89, Table 90, and Table 91. Updated the $F_{\rm MAX}$ symbol names and values in Table 81. Added Note 1 to Table 83. Added Note 3 to Table 122.
04/20/2017	1.3	Updated Table 25, Table 26, and Table 27 to production release for the following devices/speed/temperature grades in Vivado Design Suite 2017.1.
		XCZU2CG and XCZU2EG: -2E, -2I, -1E, -1I
		XCZU3CG and XCZU3EG: -2E, -2I, -1E, -1I
		XCZU6CG and XCZU6EG: -2E, -2I, -1E, -1I
		XCZU9CG and XCZU9EG: -2E, -2I, -1E, -1I
		Added -2E ($V_{CCINT} = 0.85V$) speed grade where applicable. Removed -3E speed grade from the XCZU2 and XCZU3 devices in Table 26 and where applicable.
		In Table 1, updated values and Note 2. In Table 2, added or updated many of the notes. Updated Table 4 including the notes and added Note 6. Moved and updated Table 5. Added Table 8. Updated Table 9 and added Note 4. Updated Table 10 and added Note 1.
		Revised V_{ICM} in Table 23. Updated Table 30 and removed Note 1. Added Table 31 and Table 32. Updated Table 33 and removed F_{FTMCLK} . Updated T_{RFPSCLK} in Table 34. Updated Note 1 in Table 37. Updated Table 39. Removed the <i>PS NAND Memory Controller Interface</i> section. Significant changes to Table 41 and removed Note 3. Significant changes to Table 42 and updated Note 1. Removed $F_{\text{TSU_REF_CLK}}$ from Table 44. Revised Table 45 and added Note 2 and Note 3. Revised Table 46 and added Note 2 and Note 3. Updated Table 48. Updated Table 51 and removed Note 2. Revised Table 52. Revised many of the tables in the PS-GTR Transceiver section. Revised Table 70 and Table 71. Removed Note 8 from Table 74.
		Updated the values in Table 75, Table 76, Table 77, Table 80, Table 87, Table 88, Table 89, Table 90, and Table 91 to the Vivado Design Suite 2017.1 speed specifications.
		Updated the values in Table 81 and Table 82. Added values to Table 92. Updated Table 93. Revised D _{VPPOUT} in Table 94. Update the values in Table 96. Added Note 6 to Table 102. Updated Table 103 and Table 104. Revised D _{VPPOUT} in Table 106. Updated the values in Table 108. In Table 109 updated the -1 (0.85V) specifications and removed Note 1. In Table 114 updated the -1 (0.85V) specifications and added Note 6. In Table 115 and Table 116, added the 28.21 jitter tolerance values and revised the notes. Revised the Integrated Interface Block for Interlaken and Integrated Interface Block for 100G Ethernet MAC and PCS sections. Revised the Configuration Switching Characteristics section. Removed the <i>eFUSE Programming Conditions</i> table and added the specifications to Table 2 and Table 3.

Date	Version	Description of Revisions
02/10/2017	1.2	Updated some of the maximum voltages in the Processor System (PS) section and other specifications in the Programmable Logic (PL) and GTH or GTY Transceiver sections of Table 1. Updated Table 2, Table 4, Table 6, Table 7, and Table 9. Revised the Power Supply Sequencing section including Table 10. Added PS and VCU ramp times to Table 11. Revised VoDIFF in Table 24. Updated Table 25. Added Note 1 to Table 26. Table 30 replaces the previous three PS memory performance tables. Added values to Table 34, Table 37, and Table 38. Deleted the waveforms in the PS Switching Characteristics section (Figures 1-16 and Figures 25-26). Revised values in the PS NAND Memory Controller Interface section. Added and updated data in Table 40. Added Note 3 to Table 41. Added Note 3 to Table 42. Added Note 1 to Table 45. Updated Table 48 and removed Note 3. Added data to Table 56. Updated Table 60. Added Table 61. Updated Table 63. Revised Table 69. Added data to Table 70. Added Note 2 to Table 71. Updated Table 74 and added Note 4. Updated V _L and V _H values in Table 78. Added T _{MINPER_CLK} , revised F _{REFCLK} , and Note 1 to Table 82. Added MMCM_F _{DPRCLK_MAX} to Table 85 and PLL_F _{DPRCLK_MAX} to Table 86. Added data to Table 94, Table 96, Table 98, Table 101, and updated the note references in Table 102. Updated Table 103 and added Note 8. Updated Table 104 and added Note 7. Added more protocols, Note 1 and Note 2 to Table 105. Removed the <i>GTH Transceiver Protocol Jitter Characteristics</i> section because it is covered in Table 105. Added Note 2 to Table 109. Added data to Table 106, Table 108, Table 110, Table 113. Added Note 2 to Table 112. Added note references in Table 114. Updated Table 115 and added Note 8. Updated Table 116 and added Note 7. Added more protocols and Note 3 to Table 117. Removed the <i>GTY Transceiver Protocol Jitter Characteristics</i> section because it is covered in Table 117. Revised Table 124. Added T _{POR} and updated F _{ICAPCK} in Table 127. Updated the Automotive Applications Disclaimer.
06/20/2016	1.1	Updated the Summary description. In Table 1, revised V _{IN} for HP I/O banks and added clarifications to some descriptions and symbols. Added I _{RPU} , I _{RPD} , and Note 5 to Table 2 and updated V _{PS_MGTRAVCC} , the PL System Monitor section, and Note 3 and Note 6. Updated Note 5 in Table 4. Updated the PS Power-On/Off Power Supply Sequencing section including all the voltage supply names. Added MIPI_DPHY_DCI to Table 14, Table 15, and Table 17. Updated Table 23, including removing the V _{CCO} specification and adding Note 1. Added Note 1 to Table 24. Updated Table 25 speed specifications for Vivado Design Suite 2016.1. Added values to Table 28. Updated the -2 value in Table 29. Added F _{DPLIVEVIDEO} and updated F _{FCIDMACLK} in Table 33. Added VoC frequencies to Table 36. Added the T _{PSPOR} minimum to Table 37 and updated Note 1. Added Table 38. Added value delineation over V _{CCINT} operating voltages in Table 39. Revised values for F _{TCK} and T _{TAPTCK} /T _{TCKTAP} in Table 40 and added value delineation over V _{CCINT} operating voltages. Updated the <i>PS NAND Memory Controller Interface</i> section. Revised some units and Note 1 in Table 41 and Table 42. Removed Figure 6: Quad-SPI Interface (Feedback Clock Disabled) Timing. Updated Note 1 of Table 43. Added F _{TSI_REF_CLK} to Table 44 and updated Note 1. In Table 45, revised T _{DCSDHSCLK2} , and T _{DCSDHSCLK3} and Note 1. In Table 46, revised Note 1. In Table 47, revised Note 1. Revised Table 50, Table 51, and Table 53, revised Note 1. Updated Table 71. Replaced Table 74. Updated Table 75 and Table 53, revised Note 1. Updated Table 79. In Table 80, added the Block RAM and FIFO Clock-to-Out Delays section. Updated the R _{IN} and C _{EXT} values in Table 57 and Table 95. Updated the -2 (0.72V) and -1 (0.72V) values and added Note 1 to Table 97. Added Table 100 and Table 112. Added Note 2 to Table 106. Revised data in Table 109. Revised Table 114. Revised data and added notes in the Integrated Interface Block for Interlaken section and Table 121. Moved Table 123. Revised INL in Table
11/24/2015	1.0	Initial Xilinx release.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.