# Hands-on Lab: Advanced Relational Model Concepts

Estimated time needed: 15 minutes

## Introduction

In this module, you have learned about advanced relational concepts such as functional dependencies, multi-valued dependencies, and candidate keys.

Review your knowledge:

- Functional dependency (FD): This refers to a relationship between attributes where the value of one attribute uniquely determines the value of another.
- Multi-valued dependency (MVD): This describes a relationship between attributes where one attribute determines a set of possible values for another.
- Candidate key: This denotes a minimal set of attributes that uniquely identifies each row in a relation.

Now, in this lab, let's apply the concepts learned in this module to a real-world example of a database.

# **Objectives**

After completing this lab, you will be able to evaluate your knowledge of Advanced relational model concepts.

Here you are going to:

- Apply advanced relational concepts like functional dependencies, multi-valued dependencies, and candidate keys to the "Car Dealership" database schema.
- Identify constraints within the schema based on these concepts.
- Understand the impact of these concepts on data integrity and manipulation.

### **Exercise**

In this exercise, we will work on a relational database schema called Car Dealership, designed to keep track of automobile sales in a car dealership.

Schema diagram for the Car Dealership relational database:



#### **Relational instance of SALE:**

| Salesperson_id | Serial_no | Date       | Sale_price |           |
|----------------|-----------|------------|------------|-----------|
| 10001          | 1we4ds87  | 12/03/2020 | \$         | 10,000.00 |
| 10005          | d63jw3ty  | 12/03/2020 | \$         | 5,000.00  |
| 10009          | sy63bjd1  | 13/03/2020 | \$         | 25,000.00 |
| 10001          | k2k4edr8  | 13/03/2020 | \$         | 49,000.00 |
| 10051          | w3r334ac  | 13/03/2020 | \$         | 8,000.00  |

Now, let's go through some questions based on the above database schema of Car Dealership and the relational instance of SALE:

- 1. Identify FDs in the Car Dealership schema:
  - A. Analyze each pair of attributes in each relation (Car, Sale, Salesperson, Customer).
  - B. For each pair, consider if the value of one attribute always determines the value of the other.
  - C. List all identified FDs for each relation.

#### Car:

- Serial\_no -> (Model, Manufacturer, Price)
- Model -> Manufacturer

#### Sale:

- Salesperson id -> Serial no
- Serial no -> Date
- Serial\_no -> Sale\_Price

#### Salesperson:

- Salesperson id -> Name
- Salesperson id -> Phone

#### 2. Explore MVDs:

- A. Consider if any attribute in the schema determines a set of possible values for another.
- B. For example, does "Car Model" determine a set of possible values for "Sale Price"?
- C. List any identified MVDs for the schema.
  - ▼ Answer

No MVDs are explicitly identified in the given schema.

- 3. Determine candidate keys:
  - A. Analyze each relation and identify any subset of attributes that uniquely identifies each row.
  - B. Remember, a candidate key must not contain any redundant attributes.
  - C. List all identified candidate keys for each relation.

#### ▼ Answer

- Car: Serial no
- Sale: Serial no , Date
- Salesperson: Salesperson id
- 4. Discuss the implications:
  - A. How do the identified FDs and MVDs impact data integrity and manipulation in the schema?
  - B. Could any data inconsistencies arise due to violating these constraints?
  - C. How do candidate keys affect query optimization and data retrieval?
    - ▼ Answer

A. Data Integrity: The identified FDs and candidate keys help ensure data integrity by preventing inconsistencies:

- Changing Serial no automatically updates dependent attributes in Car.
- Serial\_no and Date prevents duplicate sales and ensures association with correct car and salesperson.
- Unique keys (Serial\_No, Salesperson\_id ) guarantee distinct, identifiable entities.

Data Manipulation: FDs guide proper data updates. Modifying VIN requires cascading changes to dependent attributes.

- B. Potential Inconsistencies due to Constraint Violations:
  - Incorrect data updates: Forgetting to update dependent attributes when modifying a
    determining attribute (e.g., changing Serial\_no without updating Model) can lead to
    inconsistencies.
  - Duplicate data: if Serial No doesn't determine Price, multiple entries with the same car could have different prices.
  - Inaccurate queries: A salesperson selling a non-existent car if Salesperson\_id doesn't determine Serial\_no.
- C. Effects on query optimization and data retrieval:
  - Impact of candidate keys: Unique candidate keys (Serial\_no for Car, Serial\_no for Sale, etc.) significantly improve query performance by creating efficient indexing mechanisms.
  - Fast lookups: Queries using candidate keys can quickly locate specific rows without scanning the entire table, resulting in faster data retrieval.
  - Reduced redundancy: Candidate keys eliminate redundant identifiers, resulting in smaller data storage requirements and potentially faster table scans for non-indexed searches.

# Congratulations! You have completed this lab and are ready for the next topic.

**Author: Shubhra Das** 



