

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/014310

International filing date: 15 December 2004 (15.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 009 952.9

Filing date: 01 March 2004 (01.03.2004)

Date of receipt at the International Bureau: 09 February 2005 (09.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 10 2004 009 952.9

Anmeldetag: 01. März 2004

Anmelder/Inhaber: Sirs-Lab GmbH, 07745 Jena/DE

Bezeichnung: Verfahren zur Erkennung von Sepsis

IPC: C 12 Q 1/68

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. Januar 2005
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Hoß", is placed below the typed name "Der Präsident".

Beschreibung

Verfahren zur Erkennung von Sepsis.

5 Die vorliegende Erfindung betrifft ein Verfahren zur *in vitro* Unterscheidung zwischen generalisierten, inflammatorischen, nichtinfektiösen Zuständen und generalisierten, inflammatorischen, infektiösen Zuständen gemäß Anspruch 1.

10 Die im folgenden verwendeten Begriffe „generalisierter, inflammatorischer, nichtinfektiöser Zustand“ entspricht der Definition SIRS nach [1] und „generalisierter, inflammatorischer, infektiöser Zustand“ entspricht der Definition Sepsis nach [1].

15 Insbesondere betrifft die vorliegende Erfindung die Anwendung von Genaktivitätsmarkern für die Diagnose der Sepsis.

20 Weiterhin betrifft die vorliegende Erfindung neue Diagnosemöglichkeiten, die sich aus experimentell abgesicherten Erkenntnissen im Zusammenhang mit dem Auftreten von Änderungen der Genaktivitäten (Transkription) bei Patienten mit SIRS und Sepsis ableiten lassen.

25 Trotz Fortschritte im pathophysiologischen Verständnis und der supportiven Behandlung von Intensivpatienten sind generalisierte inflammatorische Zustände wie SIRS und Sepsis, definiert entsprechend der ACCP/SCCM Konsensuskonferenz aus dem Jahre 1992 [1], bei Patienten auf Intensivstationen sehr häufig auftretende und erheblich zur Sterblichkeit beitragende Erkrankungen [2-3]. Die Sterblichkeit beträgt ca. 20 % bei SIRS, ca. 40 % bei Sepsis und steigt bei Entwicklung von multiplen Organfunktionen bis auf 70-80 % an [4-6]. Der Morbiditäts- und 30 Letalitätsbeitrag von SIRS und Sepsis ist von fachübergreifender klinisch-medizinischer Bedeutung, denn dadurch werden in zunehmendem Maße die Behandlungserfolge der fortgeschrittensten Therapieverfahren zahlreicher medizinischer Fachgebiete (z.B. Traumatologie, Neurochirurgie, Herz-

/Lungenchirurgie, Viszeralchirurgie, Transplantationsmedizin, Hämatologie/Onkologie, etc.) gefährdet, denen ohne Ausnahme eine Erhöhung des Krankheitsrisikos für SIRS und Sepsis immanent ist. Dies drückt sich auch im kontinuierlichen Anstieg der Häufigkeit der Sepsis aus: zwischen 1979 und 5 1987 um 139% von 73,6 auf 176 Krankheitsfälle je 100.000 Krankenhauspatienten) [7]. Die Senkung der Morbidität und Letalität einer Vielzahl von schwer erkrankten Patienten ist daher an einen gleichzeitigen Fortschritt in der Vorbeugung, Behandlung und insbesondere der Erkennung und Verlaufsbeobachtung der Sepsis und schweren Sepsis gebunden.

10 Auf molekularer Ebene wird als Sepsis ein Krankheitsbild bezeichnet, welches durch pathogene Mikroorganismen verursacht wird. Auf dem Boden der Erschöpfung Infektionsort-naher, molekularer Kontroll- und Regulationsmöglichkeiten entwickelt sich eine generalisierte, den ganzen 15 Organismus umfassende Entzündungsreaktion, die für die vom Arzt nachgewiesenen klinischen Symptome/Diagnosekriterien/SIRS-Kriterien nach [1] verantwortlich ist. Dieser generalisierte, inflammatorische Zustand (als Sepsis nach [1] definiert) geht mit Zeichen der Aktivierung verschiedener Zellsysteme (endotheliale Zellen, aber auch aller leukozytären Zellsysteme und 20 vor allem des Monozyten/ Makrophagensystems) einher. Schließlich schädigen molekulare Mechanismen, die eigentlich den Wirt gegen invasive Mikroorganismen schützen sollen, dessen eigene Organe/Gewebe und tragen so entscheidend zur Entwicklung der vom Kliniker gefürchteten Organdysfunktionen bei [8-11].

25 Der Sepsisbegriff hat im Laufe der Zeit einen erheblichen Bedeutungswandel erfahren. Eine Infektion bzw. der dringliche Verdacht auf eine Infektion sind auch heute noch wesentlicher Bestandteil aktueller Sepsisdefinitionen. Besondere Berücksichtigung findet jedoch dabei die Beschreibung 30 Infektionsort-ferner Organfehlfunktionen im Rahmen der inflammatorischen Wirtsreaktion. Im internationalen Schrifttum haben sich zwischenzeitlich die Kriterien der Konsensuskonferenz des „American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference

(ACCP/SCCM)“ aus dem Jahr 1992 am breitesten zur Definition des Sepsis-Begriffs durchgesetzt [1]. Entsprechend dieser Kriterien [1] werden die klinisch definierten Schweregrade „systemic inflammatory response syndrom“ (SIRS), „Sepsis“, „severe Sepsis“ und „septic shock“ unterschieden. Als SIRS wird dabei die systemische Antwort des inflammatorischen Systems auf einen infektiösen oder nichtinfektiösen Reiz definiert. Dazu müssen mindestens zwei der folgenden klinischen Kriterien erfüllt sein: Fieber $>38^{\circ}\text{C}$ oder Hypothermie $<36^{\circ}\text{C}$, eine Leukozytose $>12\text{G/l}$ oder eine Leukopenie $<4\text{G/l}$ bzw. eine Linksverschiebung im Differentialblutbild, eine Herzfrequenz von über 90/min, eine Tachypnoe >20 Atemzüge/min oder ein PaCO_2 (Partialdruck des Kohlendioxid im arteriellen Blut) $<4,3\text{ kPa}$. Als Sepsis werden solche klinischen Zustände definiert, bei denen die SIRS-Kriterien erfüllt sind und ursächlich eine Infektion nachgewiesen wird oder zumindest sehr wahrscheinlich ist. Eine schwere Sepsis ist vom zusätzlichen Auftreten von Organfehlfunktionen gekennzeichnet. Häufige Organfehlfunktionen sind Änderungen der Bewusstseinslage, eine Oligurie, eine Laktazidose oder eine Sepsis-induzierte Hypotension mit einem systolischen Blutdruck von weniger als 90 mmHg bzw. ein Druckabfall um mehr als 40 mmHg vom Ausgangswert. Wenn eine solche Hypotension nicht durch die Verabreichung von Kristalloiden und/oder Kolloiden zu beheben ist und es zusätzlich zu einer Katecholaminpflichtigkeit des Patienten kommt, so spricht man von einem septischen Schock. Dieser wird bei etwa 20 % aller Sepsispatienten nachgewiesen.

Sepsis ist das klinische Ergebnis von komplexen und stark heterogenen molekularen Vorgängen, die gekennzeichnet sind durch eine Einbeziehung von vielen Komponenten und deren Wechselwirkungen auf jeder organisatorischen Ebene des menschlichen Körpers: Gene, Zellen, Gewebe, Organe. Die Komplexität der zugrunde liegenden biologischen und immunologischen Prozesse haben viele Arten von Forschungsstudien hervorgerufen, die einen weiten Bereich klinischer Aspekte umfassen. Eines der hieraus zu erkennenden Ergebnisse war, dass die Bewertung neuer Sepsis-Therapien durch relativ unspezifische, klinisch-basierte Einschlusskriterien, welche die molekularen Mechanismen in nicht ausreichender Weise wiedergeben, erschwert wird [12].

Gleichfalls bestehen auf Grund der mangelnden Spezifität der heutigen Sepsis- und SIRS-Diagnose beim Kliniker große Unsicherheiten, ab welchem Zeitpunkt ein Patient einer spezialisierten Therapie, beispielsweise mit Antibiotika, die ihrerseits beträchtliche Nebenwirkungen haben können, zugeführt werden soll

5 [12]. So zeigte eine von der European Society of Intensive Care Medicine (ESICM) durchgeführte Umfrage, dass 71 % der befragten Ärzte Unsicherheit bei der Diagnosestellung einer Sepsis, trotz langjähriger klinischer Erfahrungen, hatten [22].

10 Bahnbrechende Entdeckungen in Molekularbiologie und Immunologie während der letzten zwei Jahrzehnte ließen ein vertieftes, mehr an den grundlegenden Mechanismen orientiertes Verständnis der Sepsis entstehen. Das dadurch entstandene Wissen um relevante Targets bildete wiederum die Basis für die Entwicklung gezielter und adjuvanter Therapiekonzepte, welche hauptsächlich
15 auf der Neutralisierung wesentlicher Sepsismediatoren beruhen [13-16]. Eine Ursache für das Scheitern fast aller immunmodulatorischer Therapieansätze in klinischen Studien - trotz Effektivität im Tierexperiment - wird in der nur schlechten Korrelation zwischen den klinischen, eher symptomatisch orientierten Diagnosekriterien und den grundlegenden Mechanismen einer
20 generalisierten Immunantwort gesehen [12, 17-18].

Rückblickend erstaunt dies nicht, da bereits gesunde Menschen bei alltäglichen Verrichtungen Veränderungen der Herz- bzw. Atemfrequenz aufweisen können, welche per Definition bereits die Diagnose eines SIRS zuließen. Bei

25 Berücksichtigung unserer heutigen biomedizinischen Möglichkeiten muss es als Anachronismus erscheinen, dass jährlich 751.000 Patienten in den USA anhand o.g. ACCP/SCCM Kriterien diagnostiziert, klassifiziert und behandelt werden. Von namhaften Autoren wird deshalb schon lange kritisiert, dass zu Lasten einer verbesserten Sepsisdiagnose in der vergangenen Dekade zuviel
30 Energie und finanzielle Ressourcen für die Suche nach einem „magic bullet“ der Sepsistherapie aufgewendet wurden [19]. Auch fordern kürzlich publizierte Expertenmeinungen, dass zu einem besseren pathophysiologischen Verständnis der Sepsis eine Modifizierung der Konsensuskriterien nach [1]

erforderlich ist [20-21]. Außerdem besteht unter vielen Medizinern Einigung darüber, dass die Konsensuskriterien nach [1] keiner spezifischen Definition von Sepsis entsprechen. So zeigte eine von der European Society of Intensive Care Medicine (ESICM) durchgeführte Umfrage, dass 71 % der befragten Ärzte 5 Unsicherheit bei der Diagnosestellung einer Sepsis, trotz langjähriger klinischer Erfahrungen, hatten [22].

Aufgrund der oben genannten Probleme mit der Anwendung der Konsensuskriterien nach [1] werden unter Intensivmedizinern Vorschläge für 10 eine sensitivere und spezifische Definitionen der verschiedenen Schweregrade der Sepsis diskutiert [2,23]. Neu ist dabei vor allem, dass molekulare Veränderungen direkt in die Beurteilung der Schwere einer Sepsis, aber auch den Einschluss in innovative Behandlungsverfahren der Sepsis (wie z.B. die Therapie mit aktiviertem rekombinanten Protein C) einbezogen werden sollen. 15 Dieser Konsensusprozess [23], der gegenwärtig von fünf internationalen Fachgesellschaften getragen wird, ist zum gegenwärtigen Zeitpunkt noch längst nicht abgeschlossen. Ziel ist die Etablierung eines Systems zur Schweregradbeurteilung der Sepsis, das es ermöglicht, Patienten anhand ihrer individuellen Patientenreaktion auf der Basis ihrer prädisponierenden 20 Bedingungen, der Art und des Ausmaßes der Infektion, der Art und der Schwere der Wirtsantwort sowie des Grads der begleitenden Organdysfunktionen zu klassifizieren. Das beschriebene System wird mit PIRO, abkürzt nach den englischen Begriffen für „Predisposition“, „Insult Infection“, „Response“ und „Organ dysfunction“, bezeichnet. Davon kann dann die 25 individuelle Wahrscheinlichkeit des Überlebens sowie des potentiellen Ansprechens auf die Therapie abgeleitet werden [23]. Gleichfalls sollen nichtinfektiöse Zustände, die gegenwärtig nach [1] unter dem Begriff SIRS subsummiert werden, entsprechend der individuellen Schwere des SIRS genauer klassifiziert werden. Auch hierfür werden Biomarker gesucht, die die 30 Schwere des SIRS auch auf molekularer Ebene widerspiegeln und eine klare Abgrenzung von infektiösen Zuständen (gegenwärtig als Sepsis nach [1] klassifiziert) ermöglichen. Ähnliche Stadieneinteilungen werden bereits heute von anderen medizinischen Fachdisziplinen mit Erfolg angewendet,

beispielsweise zur Klassifizierung der verschiedenen Krankheitsstadien im Bereich der Onkologie verwendet (TNM System, [24]).

Ein wesentliches Kriterium für die Diagnose einer Sepsis ist neben der generalisierten Entzündungsreaktion der Nachweis einer Infektion. Aus [25] ist jedoch bekannt, dass beispielsweise von ca. 8500 Blutkulturen aus einer inneren medizinischen Abteilung nur bei ca. 15% aller Blutkulturen der Erreger bestimmt werden konnte. Von dem im gleichen Zeitraum (1 Jahr) bestimmten Blutkulturen einer Anästhesiologischen Intensivstation konnten sogar nur bei ca. 10% aller Blutkulturen die Krankheitserreger nachgewiesen werden. Diese Untersuchungen belegen die Problematik, einen frühzeitigen Nachweis der Infektion und somit einer frühe Diagnose der Sepsis zu ermöglichen. Als Ursache für den fehlenden Nachweis der Krankheitserreger mittels Blutkulturen können die mangelnde Eignung der Methode des Anzüchtens spezieller Erreger im allgemeinen sowie die meist oft begleitend eingesetzte Antibiotikatherapie, die dazu führt, dass die Erreger nicht mehr metabolisch aktiv und somit nicht anzuzüchten sind, im speziellen angesehen werden.

Verglichen mit den Konsensuskriterien nach [1] sollen in der Zukunft zusätzliche molekulare Parameter in die Diagnosestellung einbezogen werden [23], um so eine verbesserte Korrelation der molekularen inflammatorischen/immunologischen Wirtsantwort mit dem Schweregrad der Sepsis zu ermöglichen. Nach solchen molekularen Biomarkern wird derzeit von verschiedenen wissenschaftlichen und kommerziellen Gruppen intensiv gesucht, da bisherige Parameter wie z.B. die Bestimmung des C-reaktiven Proteins oder des Procalcitonins nicht allen klinischen Anforderungen gerecht werden [26]. Auch aufgrund der unzureichenden Spezifität und Sensivität der Konsensuskriterien nach [1] und des mangelhaften oder verspäteten Nachweises der Ursache der Infektion besteht daher ein dringender Bedarf für neue diagnostische Verfahren, welche die Fähigkeit des Fachmanns verbessern sollen, eine Sepsis frühzeitig zu diagnostizieren, im klinischen Verlauf vergleichbar zu gestalten und bezüglich der individuellen Prognose und dem Ansprechen auf spezifische Behandlungen Aussagen abzuleiten.

Technologische Fortschritte, insbesondere die Entwicklung der Mikroarray-Technologie, versetzen den Fachmann nun in die Lage, 10000 oder mehr Gene und deren Genprodukte gleichzeitig zu vergleichen. Die Anwendung solcher 5 Mikroarray-Technologien kann nun Hinweise auf den Status von Gesundheit, Regulationsmechanismen, biochemischer Wechselwirkungen und Signalübertragungsnetzwerken geben. Das Verbessern des Verständnisses darüber, wie ein Organismus auf Infektionen reagiert, sollte die Entwicklung von verstärkten Erkennungs-, Diagnose- und Behandlungsmodalitäten für Sepsis- 10 Erkrankungen erleichtern.

Microarrays stammen vom „Southern blotting“ [27] ab, was die erste Herangehensweise darstellt, DNA-Moleküle in einer räumlich ansprechbaren Art und Weise auf einer festen Matrix zu immobilisieren. Die ersten Mikroarrays 15 bestanden aus DNA-Fragmenten, oft mit unbekannter Sequenz, und wurden auf eine poröse Membran (normalerweise Nylon) punktweise aufgebracht. Routinegemäß wurden cDNA, genomische DNA oder Plasmid-Bibliotheken verwendet, und das hybridisierte Material wurde mit einer radioaktiven Gruppe markiert [28-30].

Kürzlich hat es die Verwendung von Glas als Substrat und Fluoreszenz zur 20 Detektion zusammen mit der Entwicklung neuer Technologien für die Synthese und für das Aufbringen der Nukleinsäuren in sehr hohen Dichten erlaubt, die Nukleinsäurearrays zu miniaturisierten bei gleichzeitiger Erhöhung des 25 experimentellen Durchsatzes und des Informationsgehaltes [31-33].

Weiterhin ist aus WO 03/002763 bekannt, dass Microarrays grundsätzlich für 30 die Diagnose von Sepsis und Sepsisähnlichen Zuständen verwendet werden können.

Eine Begründung für die Anwendbarkeit der Microarray-Technologie wurde zunächst durch klinische Untersuchungen auf dem Gebiet der Krebsforschung 35 geliefert. Hier haben Expressionsprofile ihre Nützlichkeit bei der Identifizierung

von Aktivitäten einzelner Gene oder Gengruppen gezeigt, die mit bestimmten klinischen Phänotypen korrelieren [34]. Durch die Analyse vieler Proben, die von Individuen mit oder ohne akute Leukämie oder diffusen B-Zell Lymphomen stammten, wurden Genexpressionsmarker (RNA) gefunden und anschließend für die klinisch relevante Klassifizierung dieser Krebsarten angewandt [34,35]. Golub et al. haben herausgefunden, daß verlässliche Vorhersagen nicht aufgrund von irgendeinem einzelnen Gen gemacht werden können, aber daß Vorhersagen, die auf der Veränderung der Transkription von 53 Genen (ausgewählt aus über 6000 Genen, die auf den Arrays vertreten waren) basieren, sehr genau sind [34].

Alisadeh et al. [35] untersuchten große B-Zell Lymphome (DLBCL). Die Autoren erarbeiteten Expressionsprofile mit einem „Lymphochip“, einem Microarray, der 18 000 Klone komplementärer DNA trug und entwickelt worden war, um Gene zu überwachen, die in normale und abnormale Lymphozytenentwicklung involviert sind. Unter Anwendung von Cluster-Analysen waren sie in der Lage, DLBCL in zwei Kategorien einzuteilen, welche starke Unterschiede bezüglich der Überlebenschancen der Patienten aufzeigten. Die Genexpressionsprofile dieser Untergruppen entsprachen zwei bedeutsamen Stadien der B-Zelldifferenzierung.

Auch auf dem Gebiet der Neurobiologie sind eine Vielzahl von Studien zur Identifizierung von Genaktivitätsmarkern mittels Microarray-Technologie durchgeführt worden [36]. Gleiches gilt für die Untersuchung der molekularen Veränderungen, welche durch einzelne Bestandteile von bakteriellen Gram negativen Erregern (z.B. unter Verwendung von Stimulationsexperimenten mit Lipopolysacchariden) ausgelöst werden [37]. Solche Untersuchungen werden in der Regel mittels dem Fachmann bekannten zellulären Modellsystemen, z.B. menschlichen Endothelzellkulturen in [38], oder in menschlichen leukozytären Zellkulturen [41], oder auch mittels Untersuchungen menschlicher Gewebe, nicht aber Blut, z.B. in [39], durchgeführt. Dabei richtet sich das experimentelle Bestreben jeweils auf die Identifizierung bislang unbekannter Teilnehmer der zellulären Signalübertragungswege, um auf diesem Wege die molekulare Natur

einer Entzündung besser beschreiben zu können. Alternativ werden regelmäßig für solche Fragestellungen auch Tierexperimente, z.B. in Mäusen siehe auch [40], durchgeführt.

- 5 Ein weiteres Beispiel für die Verwendung der differentiellen Genexpression zur vertiefenden Untersuchung der molekularen Vorgänge bei einer generalisierten Entzündungsreaktion konnte in [42] auf der Basis cDNA basierter Mikroarrays gezeigt werden.
- 10 Die Messung von Genexpressionsprofilen zur Unterscheidung zwischen SIRS entsprechend [1] und Sepsis entsprechend [1] wurde noch nicht beschrieben.

Ausgangspunkt für die in der vorliegenden Patentanmeldung offenbarten Erfindung ist die Erkenntnis, daß Genaktivitäten verschiedener Gene in biologischen Proben eines Individuums, bei dem Sepsis-typische Krankheitserscheinungen (entsprechend der Definition in [1]) festgestellt werden, sich von den Genaktivitäten der gleichen Gene in Proben von Individuen, bei denen eine SIRS diagnostiziert wurde, unterscheiden. Diese Unterschiede in den Genaktivitäten lassen es somit zu, Patienten mit einer Sepsis, also einer zusätzlichen infektiösen Komplikation, von Patienten ohne diese infektiöse Komplikation (SIRS entsprechend [1]) zu unterscheiden. Wie bereits an anderer Stelle dargelegt, ist diese Unterscheidung bislang mit erheblichen Nachteilen verbunden, aber für die Einleitung einer spezialisierten, medizinischen Therapie und damit für das Verbessern der individuellen Prognose für das Überleben sehr bedeutungsvoll.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das die Unterscheidung zwischen generalisierten, inflammatorischen, nichtinfektiösen Zuständen (SIRS entsprechend [1]) und generalisierten, inflammatorischen, infektiösen Zuständen (Sepsis entsprechend [1]) ermöglicht.

Diese Aufgabe wird durch ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.

Weiterhin liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine
5 Verwendungsmöglichkeit von Markern in einem Verfahren gemäß Anspruch 1-25 zur Verfügung zu stellen.

Diese Aufgabe wird durch die Verwendung gemäß Anspruch 26-32 gelöst.

10 Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man in einer Probe einer biologischen Flüssigkeit eines Individuums die Aktivität eines oder mehrerer Markergene bestimmt und aus der festgestellten Anwesenheit und/oder Menge des bestimmten Genprodukts zwischen SIRS und Sepsis (beides entsprechend [1]) unterscheiden kann.

15 Eine Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur *in vitro* Unterscheidung zwischen SIRS und Sepsis, wobei es folgende Schritte umfasst:

a) Isolieren von Proben-RNA aus einer biologischen Probe;

20 b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]) spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren MarkerIn-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung SIRS und Sepsis spezifisches Gen oder Genfragment ist;

c) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;

30 d) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]) spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

35 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA

hybridisiert und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfasst und gegebenenfalls in Form einer Kalibrierkurve oder -tabelle ablegt.

5 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.

10 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.

15 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des therapeutischen Verlaufs und zur Risikoabschätzung für Patienten eingesetzt wird.

20 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.

25 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.

30 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß es sich bei der biologischen Probe um die eines Menschen handelt.

35 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das zur Unterscheidung SIRS und Sepsis spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQ-ID No. 1 bis SEQ-ID No. 91, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

40 Diese Sequenzen mit der Sequenz ID: 1 bis zur Sequenz ID: 91 sind durch den Umfang der vorliegenden Erfindung mit umfaßt und sind dem angefügten 42- seitigen, 91 Sequenzen umfassenden, Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen offenbart. Dieses Sequenzprotokoll beinhaltet

zudem eine Zuordnung der einzelnen Sequenzen mit der Sequenz ID: 1 bis zur Sequenz ID: 91 zu deren GenBank Accession Nr. (Internet-Zugang über <http://www.ncbi.nlm.nih.gov/>).

5 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die immobilisierten oder freien Sonden markiert werden. Für diese Ausführungsform finden selbstkomplementäre Oligonukleotide, so genannte Molecular beacons, als Sonden Verwendung. Sie tragen an ihren Enden ein Fluorophor/Quencher-Paar, so daß sie in Abwesenheit einer komplementären

10 Sequenz in einer gefalteten Haarnadelstruktur vorliegen und erst mit einer entsprechenden Probensequenz ein Fluoreszenzsignal liefern. Die Haarnadelstruktur der Molecular Beacons ist so lange stabil, bis die Probe an der spezifischen Fängersequenzsequenz hybridisiert, was zu einer Konformationsänderung und damit auch Freisetzung der Reporterfluoreszenz

15 führt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.

20 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.

25 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.

30 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.

35 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die als DNA von den in Anspruch 10 aufgelisteten Genen ersetzt wird durch von deren RNA abgeleiteten Sequenzen, synthetische Analoga, Aptamere sowie Peptidonukleinsäuren.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die synthetische Analoga der Gene 5-100, insbesondere ca. 70 Basenpaare umfassen.

5 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ^{32}P , ^{14}C , ^{125}I , ^{155}Eu , ^{33}P oder ^3H verwendet wird.

10 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

15 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate dieselbe Markierung tragen.

20 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate unterschiedliche Markierungen tragen.

25 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die DNA-Sonden auf Glas oder Kunststoff, immobilisiert werden.

30 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen DNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.

35 Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen DNA Moleküle mittels elektrostatischer- und/oder Dipol-Dipol- und/oder hydrophobische Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.

40 Eine weiter Ausführungsform der Erfindung besteht in der Verwendung von rekombinant oder synthetisch hergestellten, zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]) spezifischen Nukleinsäuresequenzen,

Partialsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis -Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und 5 Behandlung von SIRS und Sepsis.

Es ist dem Fachmann klar, daß die in den Ansprüchen dargelegten einzelnen Merkmale der Erfindung ohne Einschränkung beliebig miteinander kombinierbar sind.

10

Als Markergene im Sinne der Erfindung werden alle abgeleiteten DNA-Sequenzen, Partialsequenzen und synthetischen Analoga (beispielsweise Peptido-Nukleinsäuren, PNA) verstanden. Die auf Bestimmung der Genexpression auf RNA-Ebene bezogene Beschreibung der Erfindung stellt 15 keine Einschränkung sondern nur eine beispielhafte Anwendung dar.

Die auf Blut bezogene Beschreibung der Erfindung stellt nur eine beispielhafte Anwendung der Erfindung dar. Als biologische Flüssigkeiten im Sinne der Erfindung werden alle Körperflüssigkeiten des Menschen verstanden.

20

Eine Anwendung des erfindungsgemäßen Verfahrens liegt in der Messung der differentiellen Genexpression zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]). Hierzu wird die RNA aus dem Vollblut von entsprechenden Patienten und einer Kontrollprobe eines gesunden Probanden oder nicht-infektiösen Patienten isoliert. Die RNA wird anschließend markiert, beispielsweise radioaktiv mit ^{32}P oder mit Farbstoffmolekülen (Fluoreszenz). Als 25 Markierungsmoleküle können alle im Stand der Technik zu diesem Zwecke bekannten Moleküle und/oder Detektionssignale eingesetzt werden. Entsprechende Moleküle und/oder Verfahren sind dem Fachmann ebenfalls 30 bekannt.

Die so markierte RNA wird anschließend mit auf einem Microarray immobilisierten DNA-Molekülen hybridisiert. Die auf dem Microarray

immobilisierten DNA-Moleküle stellen eine spezifische Auswahl der Gene gemäß Anspruch 10 dieser Erfindung zur Unterscheidung SIRS und Sepsis dar.

Die Intensitätssignale der hybridisierten Moleküle werden im Anschluss durch geeignete Messgeräte (Phosporimager, Microarray-Scanner) gemessen und durch weitere softwaregestützte Auswertungen analysiert. Aus den gemessenen Signalintensitäten werden die Expressionsverhältnisse zwischen der Patientenprobe und der Kontrolle bestimmt. Aus den Expressionsverhältnissen der unter- und/oder überregulierten Gene lassen sich, wie in den nachstehend dargestellten Experimenten, Rückschlüsse auf die Unterscheidung SIRS und Sepsis ziehen.

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Messung der differentiellen Genexpression für die therapiebegleitende Bestimmung der Wahrscheinlichkeit, daß Patienten auf die geplante Therapie ansprechen werden, und/oder für die Bestimmung des Ansprechens auf eine spezialisierte Therapie und/oder auf die Festlegung des Therapieendes im Sinne eines „drug monitoring“ bei Patienten mit SIRS und Sepsis. Hierzu wird aus den in zeitlichen Abständen gesammelten Blutproben des Patienten die RNA (Proben-RNA) isoliert. Die verschiedenen RNA-Proben werden zusammen mit der Kontrollprobe markiert und mit ausgewählten Genen gemäß dem Anspruch 10, welche auf einem Microarray immobilisiert sind, hybridisiert. Aus den jeweiligen Expressionsverhältnissen lässt sich somit beurteilen, welche Wahrscheinlichkeit besteht, daß Patienten auf die geplante Therapie ansprechen werden und/oder ob die begonnene Therapie wirksam ist und/oder wie lange die Patienten noch entsprechend therapiert werden müssen und/oder ob der maximale Therapieeffekt mit der verwendeten Dosis und Dauer schon erreicht worden ist.

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Verwendung der RNA der Gene nach Anspruch 10 zur Gewinnung von quantitativen Informationen durch Hybridisierungs-unabhängige Verfahren, insbesondere enzymatische oder chemische Hydrolyse, anschließende

Quantifizierung der Nukleinsäuren und/oder von Derivaten und/oder Fragmenten derselben

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der
5 Verwendung der Genaktivitäten zur Unterscheidung SIRS und Sepsis für die elektronischen Weiterverarbeitung zum Zweck der Herstellung von Software für Diagnosezwecke (z.B. für Patientendatenmanagementsystemen), oder Expertensystemen zur Modellierung von zellulärer Signalübertragungswegen oder zum Zweck der Computer-gestützten Modellierung von
10 Entzündungszuständen auch in Modellorganismen wie beispielsweise *C. elegans* oder *Saccharomyces cerevisiae*.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aufgrund der Beschreibung des Ausführungsbeispiels.

Ausführungsbeispiel:

Untersuchungen zur differentiellen Genexpression zur Unterscheidung von generalisierten, inflammatorischen, nichtinfektiösen Zuständen (entsprechend

5 SIRS nach [1]) und generalisierten, inflammatorischen, infektiösen Zuständen (entsprechend Sepsis nach [1]).

Für die Messung der differentiellen Genexpression zur Unterscheidung SIRS und Sepsis wurden Untersuchungen von Vollblutproben von Patienten, welche

10 auf einer operativen Intensivstation behandelt wurden, durchgeführt.

Es wurden Vollblutproben von fünf männlichen und einer weiblichen Patienten/in abgenommen (Patientenproben). Jeder dieser Patienten entwickelte im Rahmen seiner intensivmedizinischen Betreuung nach einer

15 Bypass-Operation eine Sepsis. Die Patientenproben wurden sofort (innerhalb von 12 Stunden) nach erstmaliger Diagnose einer Sepsis entsprechend der Klassifikation nach [1] entnommen. Ausgewählte Charakteristika der Patienten mit Sepsis sind in Tabelle 1 dargestellt. Dabei werden Angaben zum Alter, Geschlecht, der Ursache der Sepsis (siehe Diagnose) sowie klinischer

20 Schwere, gemessen anhand der im klinischen Schrifttum gut belegten APACHE-II- und SOFA-Scores (jeweils in Punkten), gemacht. Gleichfalls sind die Plasmaproteinspiegel von Procalcitonin (PCT), einem neuartigen Sepsismarker, das Center of Disease (CDC)-Kriterium (siehe <http://www.cdc.gov>) und der individuelle Überlebensstatus angegeben.

25

Als Kontrollproben dienten Vollblutproben der gleichen Patienten. Diese wurden jeweils am 1. Tag postoperativ abgenommen. Zu diesem Zeitpunkt hatte jeder ein operationsbedingtes SIRS definiert entsprechend [1] (aufgrund des Einsatzes der Herz-Lungen-Maschine).

Tabelle 1: Daten der Patientengruppe

Patient	Alter	Geschlecht	Probe	Diagnose	Klassifikation nach [1]	APACHE-II Score [Punkte]	SOFA Score [Punkte]	PCT [ng/ml]	CDC-Kriterien	Überlebensstatus
Patient 1	60	männlich	Kontrolle	3-Gefäß-KHK	SIRS	9	6	5,38	Pneumonie	überlebt
			Probe		Sepsis		11	13,1		
Patient 2	80	weiblich	Kontrolle	Aortenklappenstenose	SIRS	14	8	2,09	Pneumonie	verstorben
			Probe		Sepsis		8	3,81		
Patient 3	76	männlich	Kontrolle	Mitralklappensuffizienz	SIRS	15	9	9,11	Pneumonie	überlebt
			Probe		Sepsis		10	1,2		
Patient 4	61	männlich	Kontrolle	Mitralklappenstenose	SIRS	11	12	14,5	Intraabdominelle Infektion	verstorben
			Probe		Sepsis		21	44		
Patient 5	63	männlich	Kontrolle	Atherosklerotische Herzkrankheit	SIRS	12	11	1,23	Fokus unklar	verstorben
			Probe		Sepsis		14	3,64		
Patient 6	65	männlich	Kontrolle	Atherosklerotische Herzkrankheit	SIRS	16	8	4,22	Pneumonie	überlebt*
			Probe		Sepsis		5	0,3		

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen des PAXGene Blood RNA Kit gemäß den Vorgaben des Herstellers (Qiagen) isoliert. Im Anschluss wurde aus der totalen RNA die doppelsträngige cDNA mittels reverser Transkription unter Verwendung des Agilent Low RNA Input Fluorescent Amplification Kit (Agilent) nach dem Protokoll des Herstellers synthetisiert, wobei am Poly-A-Ende der cDNA ein T7 RNA Polymerase-Promoter angehängt wurde. Anschließend wurde die cDNA unter Verwendung des T7 RNA Polymerase-Promoters und gleichzeitiger Einfügen von Fluoreszenz-Nukleotiden Cy3/Cy5-Cytosintriphosphat (Amersham) in cRNA synthetisiert, welche als Hybridisierungsmoleküle dienten. Alle RNA-Proben wurden in zwei Aliquote geteilt, wovon ein Aliquot mit Cy3-CTP und das andere Aliquot mit Cy5-CTP markiert wurde. Dadurch konnte jede Kohybridisierung zweifach unter Nutzung der umgekehrten RNA/Fluoreszenzfarbstoff-Kombination durchgeführt werden.

Jede der vorbereiteten Kombination der Hybridisierungsmoleküle wurde sowohl mit dem Microarray 1A Oligo als 1B Oligo der Fa. Agilent entsprechend dem Protokoll des Herstellers hybridisiert. Zusammen enthalten diese beiden Microarrays 36000 Gene und ESTs (Expressed Sequence Tags). Die Fluoreszenzsignale der hybridisierten Moleküle wurden mittels eines Auslesegerätes (Agilent DNA Microarray Scanner) gemessen und mit der Software Agilent Feature Software berechnet.

25

Auswertung

Für die Auswertung wurde die mittlere Intensität eines Spots als der Medianwert zugehörigen der Spotpixel bestimmt.

Korrektur systematischer Fehler:

30 Von dem Median der Spotpixel wurde der Median der Pixel des lokalen Hintergrunds abgezogen. Für alle weiteren Berechnungen wurden die Signale mittels arcus sinus hyperbolicus transformiert. Die Normalisierung erfolgte nach dem Ansatz von Huber et al. [43]. Dabei wurden der additive und der multiplikative Bias innerhalb eines Microarrays aus 70% der vorhandenen

Genproben geschätzt. Korrigiert wurden dann die Intensität-Signale aus dem roten Kanal.

Statistischer Vergleich

5 Für den Vergleich wurde der gepaarte Student-Test verwendet. Der Test wurde unabhängig für beide experimentellen Bedingungen durchgeführt. Für die Auswahl der differenziert exprimierten Gene wurden der zugehörige p-Wert und die mittlere Expressionsänderung innerhalb der Gruppe bewertet.

10 Ergebnisse

Für die Gruppe der ausgewählten Gene gilt, dass in beiden Experimenten der zugehörige p-Wert kleiner als 0.05 und die mittlere Expressionsänderung größer als 1.2 war.

15 Die Höhe des Expressionsverhältnisses jedes Gens stellte das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse waren die Gene, die in den Patientenproben gegenüber Kontrollproben am meisten überexprimiert bzw. unterexprimiert wurden.

20 Aus Tabelle 2 ist ersichtlich, dass 51 Gene der Patientenprobe gefunden wurden, die in der Patientenprobe gegenüber der Kontrollprobe signifikant überexprimiert waren. Weiterhin wird aus Tabelle 3 deutlich, dass 17 Gene der Patientenprobe gegenüber der Kontrollprobe signifikant unterexprimiert waren. Aus den Ergebnissen wird deutlich, dass die in Tabelle 2 und Tabelle 3 aufgeführten Genaktivitäten zwischen generalisierten, inflammatorischen, infektiösen Zuständen (entsprechend Sepsis nach [1]) und generalisierten, inflammatorischen, nichtinfektiösen Zuständen (entsprechend SIRS nach [1]) unterscheiden. Somit stellen die aufgeführten Genaktivitäten Marker für eine Unterscheidung zwischen SIRS und Sepsis dar.

Tabelle 2: Signifikant gesteigerte Genaktivitäten in Proben von Patienten mit Sepsis nach [1], dargestellt als deren relatives Verhältnis zu den korrespondierenden Genaktivitäten des selben Patienten im Zustand SIRS nach [1]

GenBank Acc. Number	HUGO-Name	mean: Cy5vsCy3	mean: Cy3vsCy5	p: Cy5vsCy3	p: Cy3vsCy5	Seq.-ID
NM_006986.2	MAGED1	1,33	1,36	0,01	0,01	1
NM_005319.1	H1F2	1,21	1,09	0,01	0,01	2
NM_001925.1	DEFA4	1,16	1,26	0,00	0,00	3
NM_006516.1	SLC2A1	1,02	0,84	0,02	0,02	4
D87452.1	IHPK1	0,97	0,88	0,01	0,01	5
NM_020070.1	IGLL1	0,97	0,98	0,02	0,01	6
NM_022771.1	FLJ12085	0,97	0,90	0,00	0,00	7
NM_001738.1	CA1	0,88	0,89	0,00	0,00	9
L05148.1	ZAP70	0,82	0,74	0,02	0,01	10
BC021275.1	FLJ32987	0,68	0,65	0,03	0,01	13
NM_005321.1	H1F4	0,65	0,61	0,01	0,01	15
NM_005564.1	LCN2	0,58	0,60	0,01	0,00	17
NM_003250.1	THRA	0,56	0,45	0,04	0,02	18
NM_005067.1	SIAH2	0,54	0,54	0,00	0,00	19
NM_016417.1	LOC51218	0,49	0,30	0,01	0,04	21
NM_005764.1	DD96	0,47	0,60	0,04	0,01	22
NM_033445.1	H2AFA	0,46	0,40	0,00	0,04	23
M18728.1	CEACAM6	0,45	0,29	0,01	0,03	24
NM_003516.1	H2AFO	0,43	0,47	0,05	0,05	27
NM_018639.1	LOC55884	0,43	0,28	0,04	0,04	28
BC029812.1	ZNF145	0,40	0,27	0,02	0,02	29
NM_021052.1	H2AFA	0,39	0,42	0,04	0,04	30
NM_001911.1	CTSG	0,39	0,42	0,02	0,01	31
NM_005907.1	MAN1A1	0,38	0,28	0,01	0,05	32
NM_003523.1	H2BFH	0,37	0,32	0,04	0,05	33
NM_015523.1	DKFZP566E144	0,37	0,29	0,01	0,01	34
NM_003527.4	H2BFN	0,37	0,32	0,03	0,04	35
NM_015277.1	NEDD4L	0,34	0,32	0,00	0,00	36
NM_000250.1	MPO	0,33	0,30	0,01	0,02	37
NM_015972.1	LOC51082	0,33	0,31	0,04	0,03	39
NM_021063.1	H2BFB	0,33	0,38	0,05	0,02	39
NM_017802.1	FLJ20397	0,32	0,33	0,03	0,04	40
NM_003258.1	TK1	0,32	0,37	0,04	0,03	41
NM_003514.2	H2AFN	0,31	0,30	0,02	0,01	43
NM_031894.1	FTHL17	0,29	0,33	0,04	0,03	44
AJ296290.1	PRKWNK1	0,29	0,32	0,01	0,01	45
NM_016614.1	AD022	0,28	0,21	0,00	0,04	47
NM_021064.2	H2AFP	0,26	0,29	0,03	0,04	48
NM_006563.1	KLF1	0,26	0,39	0,01	0,01	49
NM_004617.1	TM4SF4	0,25	0,22	0,00	0,00	50
NM_006875.1	PIM2	0,25	0,25	0,04	0,05	51
NM_016068.1	LOC51024	0,24	0,33	0,03	0,01	52
NM_002466.1	MYBL2	0,24	0,34	0,04	0,01	53
NM_021014.1	SSX3	0,24	0,41	0,00	0,00	54
NM_003779.2	B4GALT3	0,22	0,30	0,01	0,01	55
NM_003511.2	H2AFI	0,20	0,25	0,04	0,02	56
BC017356.1	IGHM	1,81	1,53	0,00	0,01	78
AB007950.2	KIAA0481	1,03	1,05	0,02	0,01	79

X17263.1	IGKV1D-12	0,96	0,94	0,04	0,04	81
U65404.1	KLF1	0,62	0,54	0,03	0,04	87
K03195.1	SLC2A1	0,29	0,25	0,03	0,00	90

Tabelle 3: Signifikant reduzierte Genaktivitäten in Proben von Patienten mit Sepsis nach [1], dargestellt als deren relatives Verhältnis zu den korrespondierenden Genaktivitäten des selben Patienten im Zustand SIRS nach [1]

GenBank Accession Number	HUGO-Name	mean: Cy5vsCy3	mean: Cy3vsCy5	p: Cy5vsCy3	p: Cy3vsCy5	Seq.-ID
NM_000576.1	IL1B	-0,21	-0,22	0,05	0,00	58
NM_003022.1	SH3BGRL	-0,26	-0,31	0,01	0,00	61
NM_000581.1	GPX1	-0,26	-0,32	0,01	0,00	62
NM_016274.1	LOC51177	-0,30	-0,29	0,02	0,05	63
BC013980.1	BOP1	-0,30	-0,23	0,01	0,04	64
X00457.1	HLA-DPA1	-0,31	-0,21	0,01	0,04	65
NM_001671.2	ASGR1	-0,38	-0,41	0,03	0,03	66
NM_000072.1	CD36	-0,38	-0,38	0,02	0,02	67
BC005943.1	LOC55974	-0,42	-0,30	0,02	0,01	68
NM_004331.1	BNIP3L	-0,44	-0,35	0,01	0,01	69
NM_002925.2	RGS10	-0,49	-0,40	0,00	0,00	70
NM_002923.1	RGS2	-0,55	-0,67	0,03	0,02	71
J03041.1	HLA-DPB1	-0,56	-0,51	0,00	0,01	72
NM_000239.1	LYZ	-0,57	-0,64	0,02	0,02	73
NM_000345.2	SNCA	-0,65	-0,61	0,03	0,02	74
NM_000358.1	TGFBI	-0,75	-0,66	0,01	0,02	76
NM_000184.1	HBG2	-0,94	-0,84	0,03	0,05	77

5 Diese in Tabelle 2 und 3 charakteristischen Veränderungen sind für das erfindungsgemäße Verfahren gemäß Anspruch 1 ausnutzbar.

Die in den Tabellen 2 und 3 aufgeführten GenBank Accession Nummern
10 10 (Internet-Zugang über <http://www.ncbi.nlm.nih.gov/>) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 42-seitigen Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen jeweils einer Sequenz ID (Sequenz ID: 1 bis zur Sequenz ID: 91) zugeordnet. Dieses Sequenzprotokoll ist Teil der vorliegenden Erfindung.

15

Referenzen

- 5 1. Bone RC, Balk RA, Cerra FB, Dellinger EP, Fein AM, Knaus WA, Schein RM, Sibbald WJ, the ACCP/SCCM Consensus Conference Committee (1992) Definitions for Sepsis and organ failure and guidelines for the use of innovative therapies in Sepsis. *Chest* 101,1656–1662; und *Crit Care Med* 1992; 20: 864-874.
- 10 2. Marshall JC, Vincent JL, Fink MP, Cook DJ, Rubenfeld G, Foster D, Fisher CJ Jr, Faist E, Reinhart K (2003) Measures, markers, and mediators: toward a staging system for clinical Sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25-26, 2000. *Crit Care Med*. 31:1560-7.
- 15 3. Alberti C, Brun-Buisson C, Goodman SV, Guidici D, Granton J, Moreno R, Smithies M, Thomas O, Artigas A, Le Gall JR; European Sepsis Group (2003) Influence of systemic inflammatory response syndrome and Sepsis on outcome of critically ill infected patients. *Am J Respir Crit Care Med*. 168:77-84.
- 20 4. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B: Incidence, risk factors, and outcome of severe Sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. *JAMA* 1995; 274: 968-974
- 25 5. Le-Gall JR, Lemeshow S, Leleu G, Klar J, Huillard J, Rue M, Teres D, Artigas A: Customized probability models for early severe Sepsis in adult intensive care patients. Intensive Care Unit Scoring Group. *JAMA* 1995; 273: 644-650

6. Brun-Buisson C, Roudot-Thoraval F, Girou E, Grenier-Sennelier C, Durand-Zaleski I. (2003) The costs of septic syndromes in the intensive care unit and influence of hospital-acquired Sepsis. *Intensive Care Med.* [Epub ahead of print]

5 7. Increase in National Hospital Discharge Survey rates for septicemia--United States, 1979-1987. *MMWR Morb Mortal Wkly Rep* 1990 ; 39: 31-34

8. Bone, R. C. Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions. *Ann Intern Med* 1991; 114: 332-333

10

9. Matot, I., C. L. Sprung, et al. Definition of sepsis. *Intensive Care Med* 2001; 27 (suppl): S3-S9.

15

10. Friedland, J. S., J. C. Porter, et al. Plasma proinflammatory cytokine concentrations, Acute Physiology and Chronic Health Evaluation (APACHE) III scores and survival in patients in an intensive care unit. *Crit Care Med* 1996; 24: 1775-1781.

20

11. Beutler, B., A. Poltorak, et al. Sepsis and evolution of the innate immune response. *Crit Care Med* 2001; 29: S2-S6.

25

12. Vincent JL, Angus D, Annane D, et al. (2001) Clinical expert round table discussion (session 5) at the Margaux Conference on Critical Illness: outcomes of clinical trials in Sepsis: lessons learned. *Crit Care Med* 29:S136-137.

30

13. Abraham, E., Laterre P. F., et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. *Crit Care Med* 2001; 29: 503-510

14. Abraham, E., Reinhart K., et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter,

randomized, placebo-controlled, single-blind, dose escalation study. Crit Care Med 2001; 29: 2081-2089

15. Pittet, D., Harbarth S., et al. Impact of immunomodulating therapy on
5 morbidity in patients with severe sepsis. Am J Respir Crit Care Med 1999;
160: 852-857

16. Abraham, E., Marshall J. C., et al. Sepsis and mediator-directed therapy:
10 rethinking the target populations. Mediator-directed therapy in sepsis:
rethinking the target populations. Toronto, Canada, 31 October-1 November
1998. Mol Med Today 1999; 5: 56-58.40-43

17. Abraham, E., Raffin T. A. Sepsis therapy trials. Continued disappointment or
15 reason for hope? JAMA 1994; 271: 1876-1878.

18. Zeni F., Freeman B., et al. Anti-inflammatory therapies to treat sepsis and
20 septic shock: a reassessment. Crit Care Med 1997; 25: 1095-1100

19. Bone, R. C. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457-
469

20. Marshall JC (2000) SIRS and MODS: What is there relevance to the science
25 and practise of intensive care?, Shock 14:586-589

21. Vincent J-L (1997) Dear SIRS, I'm sorry to say that I don't like you. Crit Car
Med 25:372-374

22. Ramsay G, Gerlach H, Levy MM et al (2003) An international sepsis survey:
30 As tudy of doctor's knowledge and perception about sepsis. Crit Care Med
31

23. Levy MM, Fink MP, Marshall JC et al. (2003) 2001
35 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference.
Crit Care Med Vol 31, No 4

24. <http://www.krebsinformation.de/tnm-system.html> (Stand 1. März 2004)

25. Straube E (2003) Sepsis – microbiological diagnosis. Infection 31:284

26. Rußwurm S. (2002) Procalcitonin als Marker bakterieller Infektionen und Sepsis: Einfluss sepsisrelevanter Bedingungen auf die Expression von Procalcitonin, Habilitationsschrift eingereicht bei der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena

5

27. Southern EM (1974) An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. *Anal Biochem* 62:317-318

10

28. Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. *J Mol Biol* 12:829-842

15

29. Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. *Trends Genet* 7: 314-317

30. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. *Nucl Acid Res* 7:1541-1552

20

31. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. *Science* 251:767-773

25

32. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. *Proc Natl Acad Sci USA* 91:5022-5026

30

33. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* 270:467-470

34. Golub TR, Slonim DK, Tamayo P, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. *Science* 286:531-537

5 35. Alizadeh AA, Eisen MB, Davis RE, et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. *Nature* 403:503-511

10 36. Henry GL, Zito K, Dubnau J, (2003) Chipping away at brain function: mining for insights with microarrays. *Current Opinion in Neurobiology*, 13:570-576

15 37. Fillion I, Ouellet N, Simard M, et al. (2002) Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. *J Immunol.*;166(12):7353-61.

38. Zhao B, Bowden RA, Stavchansky SA, Bowman PD (2001) Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. *Am J Physiol Cell Physiol.* Nov;281(5):C1587-95.

20 39. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C et al. (2001) Molecular signatures of Sepsis: multiorgan gene expression profiles of systemic inflammation. *Am J Pathol.* 159(4):1199-209.

25 40. Cobb JP, Laramie JM, Stormo GD et al. (2002) Sepsis gene expression profiling: Murine splenic compared with hepatic response determined by using complementary DNA microarrays. *Crit Care Med* Vol. 30, No.12, 2711-2721

41. Pathan N, Hemingway CA, Alizadeh AA, et al. (2004) Role of interleukine 6 in myocardial dysfunction of meningococcal septic shock. *The Lancet* Vol. 363 Nr. 9404: 203-209

42. Eiling K, Kotsch K, Strohmeyer J-C et al. (2003) Identification of differentially expressed genes during systemic inflammatory response syndrome using cDNA microarrays. *Infection* 31:301

5 43. Huber W, Heydebreck A, Sueltmann H, et al. (2003) Parameter estimation for the calibration and variance stabilization of microarray data. *Stat. Appl. in Gen. and Mol. Biol.*. Volume 2: No 1, Article 3

Sequenz ID: 1 (NM_006986)

GGCACGGAGAGTGCCTGCTGAGAGCCGAGCCCAGCAATCCGATCCTCTGAGTCGTGAAGAAGGGAGGCAGCGAGG
GGGTTGGGTTGGGCTGAGGCAAGCCCCAGGCTCGCTTGCCAGAGGACAGGAGCCATGGCTCAGAAAATGGAC
TGTGGTGCCTGCTCCAGGCTGAGGCTCCGTAGAACAGACGCGCTTGCTTATGCAGACCTTGATGGAGGC
CATCCAGATCTCAGGGCTCACCTACTAACCGAGGCCACCGCAGCTGCTAGTCCCAGAGTTCACAGCCCCAACTGCCA
ATGAGATGGCTGACATTCACTAACCAGGCCACCGCAGCTGCTAGTCCCAGAGTTCACAGCCCCAACTGCCA
GGCCCAAATGGTGTCTATGATTCTCAGGCTCATATGCCAAGGATGTGCCAACACGCAGGCCAAGGCAGCCTTAA
GTCCCAAATGCTACCTCCAAGGTCAAATGTCCTATGATTTCAGGCTAGAACCCACTGGTGAGTTAGCTGCTA
ACAAGTCTGAGATGGCTTCAGGCCAGAACGCACTACTAACAGTGGCCAAATGCCACCTACAATTCTCAGTCT
CTCAATGCCAATGACCTGGCAACAGCAGGCCAAGGCCCTTCAAGGCTTGGAAATGATACCACTAACAGCCCCAACAGC
TGATACCCAGACCCAGAACATGTAATCAGGCCAAATGCCACTTCCAGGCTGACATAGAGACCGACCCAGGTATCTG
AACCTGACGGTCACTGCACAGACATCAGCAGATGGTCCCAGGCTCAGAACATCTGGAGTCCCCGACAATAATTGGGC
AAGAGGCCAGAACGATTAACCTGAATGTTGAAGAGAACAGCAGTGGGATCAGAGGCCAGGCCCCACTGGCTGCAGG
GACCTGGAGGTCTGACCCAGTTCCAGTGACCACTCAGAACCCACCTGGCCACCCCCAATGTGCTCTGGCAGACGCCAT
TGGCTGGCAGAACCCCTCAGGCTGGCAAACAGACAGGCCAGGAGACCCCCACCCAGCAGTCAGAGGCCCTCAGCTAGG
CAGACCCCCACCAGGCCCTGGCAGAACCCAGTCGCTGGCAGAACCCAGTGAATTGGCAAACCCAGTAATCTGGCAGAACCC
AGTGAATCTGGCCAAACCCATTGTCTGGCCGGCCCTGTTGCTGGCGAACATCCACTGGCCTGGCAGAACATCCACCTGGAT
GGCAGACTCCACCTGGATGGCAGACCCCCACCGGGCTGGCAGGGCTCTCAGACTGGCAAGGTCTCCTGACTGGCGCTA
CCACCCGACTGGCACTGCCACCTGATTGGCCACTTCCACTGACTGGCAGTACCCACCTGACTGGATCCCCGCTGATG
CCAATTCCACCTGACTGGCAGAACCTGCGCCCCCTCGCTAACCTGCGCCCTCTCCAACTCGCGTGCCTCACAGAAC
GGTGTGACAGGCCAGATGTTGGCCCTTCTCAGGAAAGAGCAAATAAGTGGTCAAGTACTTGTGCTTAAGGAC
ACACAAAGGTGCCATCAAGCCTCAGAAATGCTGAGAGATATCATCCGTGAATACACTGATGTTATCCAGAAATCAT
TGAACGTGCACTGTTGCTCTAGAGAAGAAATTGGGATTCAACTGAAAGAAATTGACAAAGAACACCTGTATATTC
TCATCAGTACCCCCGAGTCCCTGGCTGGCATACTGGGAACGACCAAAGAACACACCCAAAGCTCGTCTCCTTGGTGA
CTGGGTGTCACTCATGAATGGCAACCGTGCCAGTGGCTGAGGCTGCTGGGAGGACTACGCAAGATGGACTCGTGC
TGGGTGAGACATCCCCCTTGGAGATCTAAGGAAACTTCTCACCTATGAGTTGTTAAAGCAGAAATACCTGGACTACA
GACGAGTGCCAACAGCAACCCCCCGGAGTATGAGTTCTCTGGGGCTCCGTTACCATGAGACTAGCAAGATGAAA
GTGCTGAGATTCACTGAGGGTTCAAGAAAGAGACCCCTCGTGACTGGACTGACAGTTCATGAGGCTGAGATGAGGC
CTTGGATGCTCTGGATGCTGCTGAGCTGAGGCCAGGGCTGAAGCAAGAACCCGATGGAAATTGGAGATGAGG
CTGTGCTGGCCCTGGAGCTGGATGACATTGAGTTGAGCTGCTGACCTGGGATGAGGAAGGAGATTGGAGATCCC
TGGTCCAGAATTCCATTACCTCTGGCCAGATACCACCAAGTCCCGCTCCAGATTCCCTCAGACCTTTGCCGTC
CATTATTGGCTGGTGTACAGCCAGTGCCTGCAACTTGGCTGCAATTGGTTCTCTGGGGTGTGAGTGAG
ATGTTGGATATTGCTATCAATCGCAGTAGTCTTCCCCTGTGAGCTGAAGCCTCAGATTCTTCTAAACACAGCTATC
TAGAGAGCCACATCTGTTGACTGAAAGTGGCATGCAAGATAATTGCTGTTGAGCTACAGCTTTTCTTCCC
CTTGTGTGCTGTCAAGTTGGTATCAGAAATAACATTGAAATTGCAAAGTGAaaaaaaaaaaaaaaaaaaaaaa

Sequenz ID: 2 (NM_005319)

ATGTCCGAGACTGCTCTGCCGCTCCCGCTGCCGGCTCCTGGGGAGAAGGCCCTGTAAGAACAGAAGGCCAAAAA
GGCTGGGGTACGCCCTGCTAAGGCTCGGCTCCCGGTGTCAGAGCTCATCAGGCCCTGCTTAAAGAGC
GTAGCGGAGTTCTCTGGCTGCTCTGAAAAAGCGTTGGCTGCCGGCTATGATGTTGGAGAAAACACAGCCGTATC
ACTTGGTCTCAAGAGCCTGGTGAAGCAAGGGCACTCTGGTGCACCGAACAGGACCCGGCTGCTCTTAAACT
ACAAGAAGGCCCTCCGGGAAGCCAAGGCCAAGGGTAAAGGCCAGGAACCAACCTAAGAACCCAGTTGGGG
CAGCCAAGAAGGCCAAGAACGGCGCTGGCGCGCAACTCGAAGAACAGCGCTAAGAACACCCGAAGAACAGCGAAGAAC
CCGCCGCGCCACTGTAACCAAGAAAGTGGCTAACAGGCCAAGGGCAAGGTTGCGAAGGCCAAGAACAGCTGCCAA
AAGTGTGCTAAGGCTGTGAAGGCCAAGGCCAGGTTGTCAAGCCTAAGAACAGGCCAGGGCGCCAAAGAACAAAT
AG

Sequenz ID: 3 (NM_001925)

GTCTGCCCTCTGCTGCCCTGCTAGCTTGAGGATCTGTCACCCAGCCATGAGGATTATGCCCTCCTGCTGCTAT
TCTCTGGTAGGCCCTCCAGGTCCGGCAGGCCACTCCAGGCAAGAGGTGATGAGGCTCCAGGCCAGGAGCAGCGTGGC
CAGAACAGCAGGACATATCTATTCTTGCATGGATAAAAGCTCTGCTCTCAGGTTCTGGCTCAACAAAGGGCATG
GTCTGCTCTGCAAGATTAGTATTCTGCCGGCAACAGAACCTCGTGTGGACTGCTCATTGGTGGTGTGAGTTAC
ATACTGCTGACCGCTGTCGATTAACGTTCTGCTGCAAGAACAGGAAATGTCATGCTGGAACGCCATCATCGGTGGTGT
CTTCACATGCTCTGCAAGCTGAGCTTGTGAGAACAGGAAATGAGCTACAGAACAGGAAATGGT
TGTTCTCCTATACTTGTCTTAACATCTTGTATATATCTCGTAACAAG

Sequenz ID: 4 (NM_006516)

TAGTCGGGGTCCCCGAGTGAAGCACGCCAGGGAGCAGGAGACCAACGACGGGGTGGAGTCAGAGTCGAGTGGAGT
CCCCGGACGGAGCACGCCAGCAGCTGAGCGGGAGAGGCCGCTGCCAGGCCAGCGTACCGGGCGCAGCCAGAG
CCACCAAGCGCAGCGCTGCCAGGCCAGCAGCAAGAACAGCTGACGGGTGCGCTCATGCTGGCTGTGGAGGAGCAGTGC
TTGGCTCCCTGCAAGTTGGCTACAACACTGGAGTCATCAATGCCCCCCAGAACGGTGTAGCAGGAGTTCTACAACCAGACA
TGGGTCCACCGCTATGGGGAGAGCATCTGCCACCGCTCACACGCTCTGGTCCCTCTCAGTGGCCTTCTGT
TGGGGCATGATTGGCTCTCTGTGGCTTAACCGCTTGGCCGGGAATTCAATGCTGATGATGAACC

TGCTGGCCTCGTGTCCGCCGTGCTATGGGCTTCTCGAAACTGGCAAGTCCTTGAGATGCTGATCCTGGGCCCTTC
 ATCATCGGTGTACTCGGCCCTGACCACAGGCTCGTGCCCATGATGTGGTGAAGTGTCAACCCACAGCCTTCGTGG
 GCCCTGGGCACCCCTGCACCAGCTGGGCATCGTCGCGCATCCTCATCGCCAGGTGTTCGGCCCTGGACTCCATCATGG
 GCAACAAGGACCTGTGGCCCTGCTGAGCATCATCTCATCCGGCCCTGCTGAGCTGATCGTGCACCGTGTGCCCTCTGC
 CCCGAGAGTCCCCGCTTCTGCTCATCAACCGCAACGAGGAACCGGCCAAGAGTGTGCTAAAGAACGCTGCGCGGAC
 AGCTGACGTGACCCATGACCTGCAGGAGATGAAGGAAGAGAGTCGGCAGATGATGCGGGAGAAGAACGCTGACCATCTGG
 AGCTGTTCCGCTCCCCGCTACCGCCAGCCATCCTCATCGCTGTGGTGCAGCTGCCCAGCAGCTGTCTGGCCTC
 AACGCTGTCTTCTATTACTCCACGAGCATCTCGAGAACGGGGGGTGAGCAGCCTGTGATGCCACCATGGCTCCGG
 TATCGTCAACACGGCCTTCACTGCGTGTGCTTTGTGGTGGAGCGAGCAGGCCGGACCTGCACCTCATAGCC
 TCGCTGGCATGGGGGTTGTGCCATACTCATGACCATCGCGTAGCAGCTGGAGCAGCTACCCCTGGATGTCCTATCTG
 AGCATCGTGGCCATCTTGGCTTGTGCCCTTGAAGTGGTCTGGCCCATCCCAGGTTCATGTCGGCTGA
 CTTCAGCCAGGGTCCACGTCAGCTGCATTGCCGTGAGCCTCTCCAAGTGGACCTCAAATTTCATTGTGGCATGT
 GCTTCCAGTATGTGGAGCAACTGTTGCTCCCTACGTCCTCATCATCTCACTGTCCTGGTTCTGTTCTCATCTC
 ACCTACTCAAAGTCTGAGACTAAAGGCCGACCTCGATGAGATCGCTTCCGGCTTCCGGCAGGGGGAGCCAGCC
 AAGTGATAAGACACCCGAGGAGCTGTTCCATCCCTGGGGGTGATTCCAAGTGTGAGTCGCCAGATCACAGCC
 GCCTGCTCCCAGCAGCCCTAAGGATCTCAGGAGCAGGGAGCTGGATGAGACTTCAAACCTGACAGATGTCAGCC
 AGCCGGGCTGGGCTCTTCTCAGGCCAGCAATGATGTCAGAAGAATATTCAAGGACTTAACGGCTCCAGGATTAA
 CAAAAGCAAGACTGTTGCTCAAATCTATTCAAGACAAGCAACAGGTTTATAATTTTTATTACTGATTGTTATTAA
 ATATCAGCTGAGTCTCTGTGCCCATCCAGGCTTCACTGTCACCCAGCTGAATGGTCCATGCTGAGGGTGGAGACTAAGCCT
 TCGAGACACTGCCCTCTCACCCAGCTAATCTGAGGGCTGGACCTATGCTTAAGGACACACTAATGAACTATGAA
 ACAAAAGCTTCTATCCAGGAGGTGGCTATGCCACCCGTTCTGCTGGCCTGGATCTCCCACTCTAGGGGTCAGGCTC
 ATTAGGATTGCCCTTCCATCTCTTACCAACCAACTCAAATTAAATCTTCTTACCTGAGACCAGTGGGAGCA
 CTGGAGTCAGGGAGGAGAGGGGAAGGGCCAGTCTGGGCTGCCGGTTCTAGTCTCTTGCAGTGGGAGGACACTATT
 ACCATGAGAAGAGGGCTGGGGAGGCTGCAAACACTCACTGCTCAAGAACATGGAGACTCTGCCCTGTGTATAGA
 TGCAAGATATTATATATATTGGTTGTCATATTAAACAGACACTAAGTTAGTATATCTGGACAAGCAACCT
 GTAAATACACCACCTCACTCTGTTACTTACCTAAACAGATATAATGGCTGGTTTAGAAACATGGTTTGAAATGCT
 TGTGGATTGAGGGTAGGAGGTTGGATGGGAGTGGAGACAGAACGTAAGTGGGTTGCAACCACCTGCAACGGCTTAGACTTC
 GACTCAGGATCCAGTCCCTTACACGTCACCTCTCATCAGTGTCTCTTGCTCAAAATCTGTTGATCCCTGTTACCCAGA
 GAATATATACATTCTTATCTTGACATCAAGGATTCTACATATTGATAGTTGGTGGTCAAAAAAAACACTAGTT
 TTGTGCCAGCGTGTGCTCAGGCTTGAATGCAATTGGTGAATGTGAAGGGAA

Sequenz ID: 5 (D87452)

CTTGTTGTTGATCCGTACCACTGGCAGGCCGGAGCTGACCAAGCGGCCGGTGAGAGGCCGCTGTAGCGGTGCTCA
 GCCACCTGTGCTGCCAGGGGCCGGCGAACCTGGAGGCCGGGGCCAGCTCCGTAGGGAGCCGTGGCG
 TCGGTGCCCGGGCGGGCAGGACAGAAATAATAAGCTGAATAGAATCTGACCATGGCTTTCACCTGCCAGGACCTTCTA
 TGTAGCTCTCTTGTGGCCATGTGCTGCATCTCTGCCCTCAGTGTGCAACTGGCCCCAACGCAATGTGTGTTGT
 CAAACCATGGAAGTGGGAGTATGGCAAGAACGCAAGTGGCTGGAGACCGGGAGTGTCTGGAGGCCCTCATCCA
 CCAAGTAGGCGGACACAGCAGCATGATGCGTTACGACGATCACACTGTCAGGCCCTCATCTCCGGAACAGCGCT
 TTTACGAGTCCCTCCCTGCCAAATGAAGGAGTTCAACCTGTAATACAAGGCTGGTATCTGCTGTTGAGGGGAG
 AGTGTGGTTACATCAACTTAGTGGCTATCTTATGTGGAAAGTGTGAGACTGTGGAACAGGATGACACAAACAGAACGGG
 AACCTCGCGCAAACACTCCGCCGGAGCCTGACCGGTACGGCAGTGGCAGTGGCACCACAGGAGGAGAACGCCAGC
 TCCCTGAGACCTCTGAGAGCTCACAGGAGCAAAGACTCGAAGGTTGAGCTGCACGCCACTCAGAGGTCCCTTC
 CAGATGCTAGATGCCAACAGTGGCTTGAGTTCTGAGAACGATCAGCCACAACCCCTGGAGCCTGCGTTGTACAAGCAGCA
 GCTGAGCCGATCGCTCCGAGTCCAAGGACCGAACGCTCTACAAGTCTCTGCTGAGAACGCTGAGCACCACCTCA
 AGTACCCCTGCGTGTGGACCTGAAGATGGGACGGCAGCATGGCGATGACGCGTCAGCTGAGAACGGCAGCCGGAG
 ATGCGGAAATGCGAGGAGCACATCGCACGCCGCTGGGCTCAGGGCTCGGGCATGCGTACCGAGCTGGACACAGG
 GCATTACCTCTGCAAGAACAGTACTATGCCGGCTGGCTCTCCATTGAGGCTTCCGCAATGCCCTCATCAATATCTGC
 ACAATGCCCTGGACCTGCGACGTGACCTGTTGAGCCTATCTGAGCAAACGCGGGCTGAGAACGCTGCTGGAGCGG
 CAGGCCCTTCTACCGCTTCACTCCAGTCCCTGCTGTATGATGCCAGGAGTGGCCGGCTGAGTCCCTGCCCTGGA
 CCGCCGGTCTGAGATGCGTCTCAAGCACCTGGACATGGCTCCCTGAGGTTGGCTCATCCTGTTGGCCCCAGCACGCC
 CCAGCAACACCAAGGCCGGAGGGCTCCCTCTCAGGCCAACGGTGGATGTCGGCATGATTGACTTGCACACAGCACA
 TTCAAGGGCTCCGGGATGACCCACCGTGCATGATGGGCCAGACAGGCTACGTTGGCTGGAGAACCTCATCAG
 CATCATGGAACAGATGCGGAGCAGAACGACTAGGCCCTGTTCTGGGCCCCAGAACCCCTCTCCACTGCAGGCAG
 GGACCATTTGTTCTGAGACAGACTGCTTTAAAGGGTTATATTCTCTTGGTGTAAACTAAAA
 GAAATGTTTAGCTGAGCTGGAATCCATATATAAAAGTGAAGGAGGGCAGAACACAGGCCCTCTCAGCCAGGCTCC
 TCAGCTTGTGGCTCTGACTGGTGTGCTCAGGCTGCCCTAGGAAGGAAGAGGTGCCCCCTGGCTGGCAGCAGGGAC
 AGGGTCCCTGGACATTGGTTCTGTCTAGATCTTGTGAGATCTGTCAGGCTGCAGGCCCTGCTGATTGTAAGGTA
 GCCCTGGCTGGTGCAGGCCCTCCACGCCACTCTCCCTGTTCCCTGAGGCTCTGGGCCATTCT
 TGGGGCTTCCAGTCTATGCTGTGGTGTGAGCTGTTAATAGGTGCCCTCAGGGCACCACAGGCTGACTGCA
 CAAAGCTGGACCCATCCCTCGGTCTGACCTTAGCATGGGCTAGATTAATGAAGCTGGCTGAGGCCAACTTATGGCAGA
 GGGCGGCCCTGGGCCCCAGGACCTGTTGGCACGTGACAGGTTGGCACCTGCTCATTCGAAACAGCCTCTCA
 CCAAGTCCCTGCTAAGAACGCCACTCCCTCCACCCACTGAAGTGGGGATAGCTGGTGTCTAGCAGGCCCTCAGG
 GCCTCTGGTGGCTCTGCCAGACAGTATTGCAAGTCTGCTATGGTGGAGTCTTCTCCTCAAGTTCGGCAGC

TGTGCTGCTGGATGGCTGCTCCAGGGCTCAAGGGCTGTTGTCGCTCAGGGCTCATTTCCCCAGGCCAAGT
TCAAGGCAGCAGCCTTGTGAGGCGCTTGGCCCTGGGCCAGGGAAACTTAAAGCTTTTGCTCACAGGGACG
TGGTATGGGCCCTGGTGCAGGTGCCACATTCTGCTAATGAGACTTGTCTGATCAGTCTGGTCCATCAGTTGTC
CATGTGTCGGCTGCCAGCCCCCTGGATCCTCCCCCTGGTGTAGCCTGTCATTAGTATATACTCATTCCCT
CATGCTTCCTCAGCAGAACACTTCACTTGTAGGGTGAGCTTGTCCCCGTCCACAGGTGTTGCCCTTT
ATAAAGACCTGTAGCAGAATAAATTGGTGTTCCTGTTGACCCAGCACCATTCTGTTGAGGAGTGTACCTTCT
ACCCCTAGTGGGGCAGTGGGGCTTGAGGGAGTGTACCTTCTCATGGTTTAGTCATTGGCTGCCAGCCCTT
AATGGCACAGATCTGTCCTCTAACAGATGCCAGGGAGGTGACACCGATTCTAGCCATTGCCAAGGTTAGCACCCCTCTC
CTTGAGCCCTAGGGCCACACTGTTCAATTGTCACTTGTAGGCAAGTGCCTGTTGGCTTAAAGGTAAGCCTGCCAGCTG
AGAAGCCTGGTAACTGTAGACTCATTCTGGTCTTAAAGATGCAAGCCTCTTAAGGGCTCTTGATGGATGCCATCT
CTCCTAGCCCCCAGCCCTGGTGCCTGGGGCAGGTTCCATTCTTGGGGCTGGAGGGACAGCTGCCCTGTTCTG
GTCACAAATTACAGTCTCTCCTGTACCAATTCTGTGGCTTCAGCCATTGGGGCAGTAGCCCTCATTAGTGTAGATAG
TCATTCCCTGGTAGGGTGGAGGGTAAGACATAGGGCTGGAACTGTTGGACCTTGTGGGATGTCCTGTGCCCTCCAG
ATTCCCTAGATTCTGGGAGGAGGGCTGCCGATTCTGCTGCTCTCACAGCAGCAAGCTGCACCCACTACATTCA
ATTTCTGGCACTACAAAGAGTGGGAAGGGCTGGATTGCTGCTCTTAGAGCAGGGCCCTCTTCA
TTGGACACCTGGAGACCCAGCCCTGTTATTAAATGGTAGTGGCAAGTGTGTGCAACTGTCTGCCACTGCTTCTCC
CTGCCCATGCCAGAGAGGCCCTGCTGCCAGGGCCAGGCCATTAGCCCCAACTTGGGAAACAAAGTGAACATGGGAT
CATGGGTTGGGTGCTCAGGTGAGCCCTCTCTATAGTGTCTCCCTGGGCCAGCTGACACCAGCCCCCTGAGGGTGGGGTG
GGACGGGTGGTGTCTAAAGAGGAAGGGGACCAAGTGTAGCAACTTGGCAAGGGACCCACCCCTCTCTGGGCCCTGTG
SAGTAGGCACTGGGATTCCATCAAGGGCTGGCACCTGTGCTAGTTACGTAGCCGCTGTCACCGCCTCACTCC
CATGACGTTCCCTAGATGCAAGACTGTTGAACATTAAAGCTGTACAATTGGTTATGTTGTGCTGACTAAATA
ATTTAATGAGGAAAAAAATAATGGAGAACCCCTGGGAAGGACCTGGTTCTTGCTCTCGGGAACTGTAAGCCCTCGC
GTTCTGGGAATCGCTCTCTGCTGCTCTTCTGGAAAGCTAACGCTGTCTCCACGCCCGAGGCTGCGCCGGTGGCTCC
GCCGCACTGGCTTGGACCTTGGCTGCGGGGGAGGGGGTGCTGGTCCGAGCCGCTCTTCTGACACCTAG
CGCTGCCGCCCCGCTTGTGCTGAGGTCGTTGATGTCAAAATAAGCCGCTAGAACCGG

Sequenz ID: 6 (NM_020070)

GGCCACATGGACTGGGGTGCATGGACAGCTGCTGCCAGCGAGAGGGACCACTCTAGGGAGCCCACACT
GCAAGTCAGGCCACAAGGACCTCTGACCCCTGAGGGCCGATGAGGCCAGGGACAGGCCAGGGGGGCTTGAGGCCCTGGT
GAGCCAGGCCAACCTCAGGCAGCGCTGGCCCTGCTGCTGGGTCTGGCCGTGTAACCCTGGCTGCTGCGCCC
AACAGCTGCATCGCAGAGCAGGGCCCTGGGCCCTGGAGCCCTGGAGGAAGCAGCCGGTCCAGCCTGAGGAGGCCGGTGGG
GCAGGTTCTGCTCCAGCGCGCTCCTGGACTGGCCCCAGGTGCTGGCCCCGGGTTCAATCCAAGCATAACTCAGTG
ACGCATGTGTTGGCAGCGGGACCCAGCTCACCGTTTAAGTCAGCCCAAGGCCACCCCTCGGTCACTCTGTTCCCGCC
GTCCTCTGAGGAGCTCAAGCCAACAAGGCTACGCTGGTGTCTCATGAATGACTTTATCCGGAATCTTGACGGTGA
CCTGGAAGGCAGATGGTACCCCATCACCCAGGGCGTGGAGATGACCACGCCCTCCAAACAGAGCAACAAGTACGGG
GCCAGCAGCTACCTGAGCCTGACGCCCGAGCAGTGGAGGTCCCGCAGAAGCTACAGCTGCCAGGTCACTGACGAAGGGAG
CACCGTGGAGAAGACGGTGGCCCTGCAGAATGTTCATAGGTTCCCAGCCCCACCCAAAGGCCTGGAGCTGCA
GATCCCAGGGGAAGGGTCTCTCTGCATCCCAAGCCATCCAGCCCT

Sequenz ID: 7 (NM 022771)

TACCAAGGCACGCCAGGAAACATGGCCGGCGGGGTGTTGTGAGCGGGAAAGATTATATGAAACAAGAAGGAGTATAT
TCACCTCATCTTGTGAAAGACCAATGACCAAGACGGCTTGTGATTTCAGGAATATTACGTGTTTAGAAAAGGATGCCGA
AGTAATAGTGGACTGGGGACCATGGATGATGCTTGTAGATTCTCTAGTATTCTCTATGCTAGAAAAGGACTCCAGTCAG
TTGTAGAATGGACTCAGGCCAAAAGAAAGAGGTCTAGGATCAGAACATCTGAACAGTTACGAAGCAGAATGGGAC
ATGGTTAATACAGTTCAATTAAAAGGAAACCACATACCAATGGAGATGCTCCAAGTCATAGAAAATGGAAAAGCAAATG
GTCATTCTGTTGACAGACCTGAAATCAATCAAGCAAAACAAAGAGGTATGGCTGGCTTATTGGTATTCT
GTCTAAAGGATGACGTCGTTCTCCCTGCTCTACACTTCATCAAGGAGATAGCAAACACTACTGATTGAATCTCTGAAAAA
TATGTGGTATTGTGTGAATCTCACAGGATAAAAGAACACTTCTTGTGAATTGTCAAGATAAGAGTCTTCACAGTCTT
TGAAAATCTTCTGATGAGCCAGCATATGGTTAATACAAAAAATTAAAAGGACCTTATACGGCAACTATGATAGGAT
TTTCCAAAGTCACAAACTACATTGTGACAGTTGAGAGGCAGCGATCCCTCTACACATCAACGACCACCTCAGAAAATG
GCAGATTCTTAGTGTGCTATTCCAGGTCTAAAGATAATCAACAAGAAGAACCGAGATTGAGTCATACAAGAAT
TGATTGGGGAACGCCCTGTGTTCAAAAGGAGAGAACCGGTACTGGAGAACATGGACTAAGAACATTGATTCTGAAG
GAAGAATTAAATGTAGATAATATGAAGCAGATGATATTAGGGGGACTTAGTCATGCATTGAGAAAGCAAGCATGG
AAATTCTCTGGGTTATTCCCTGGGACAGTACCAAGGAGGAAAGAACCCATTACAAAAGCAAAAAACTGATGAATA
CTTCAGAATGAAACTGCAGTGGAAATCCATGCCAGGAACAAGAGAAAATTGAGGTTAAGAGATTATAGAAC
TTATCGAAAAGATGTTAACAGAACAGATCGAACAAACAAGTTATGAAGGCCAAGATAATCCAGGGTTATTCT
CATGACATTGATGACCTACTGTATGATTAGGATATGTCAGGGAAATGAGTGAATTACTTCCCTCT
TTTATATGTGATGGAAAATGAAGTGGATGCCTTGTGCTTGCCTCTTACATGGACCAATGCATCAGAATTGAAAG
AACAAATGCAAGGCATGAAGACCCAGCTAATTCTAGCTGAGTACCTTACTTCGATTGTTAGACAGTGGATTGCA
TTAGAATCTCAGGACTCTGGATACCTTATTGGCTCAGGGCTTTAATCAGATTCAAAGGGAAATTAGTTCT
AGATATTCTCGATTATGGGAGGTAAATGTTGACCGAACTACCATGACAAATTCCATCTCTGTGCTATT
TGGAAATCAGAAAAGCAGCAAATAATGGAAAAGCATTATGGCTCAATGAAATACCTAACGATATCAATGAATTG
AAAATTGATGTGGAAGAGATAACTCTGCAAGGAGAACATGCAAGGAAATTGCCACAAGC

AGTCTGTGAGATCCTGGGCTTCAAGGCGGTGAAGTTACAACACCAAGATTAGACGTTGGTGAAGACGAAATGTTGTCATGACTCCTTGTCTACATCTGCATTCAAGTAATGCCTTGCCTACACTCTCTGCCAGTGGAGCCAGAAATGACAGCCCCAACACAGATACCACTAGTGTCTCAGATGTCAGATTAAACACCTGCATGATCACTGTTCTGCTTTGGAAAGAGACACTTTGTTGCAACCCTTTCAAGTACTTGAAGTTGAAATTGAAATCTTGGTATTGATCATGCTTTAAGGTTATGTAAGAAAGTGTACTGATGTTCTACATTAAAGCTTACAAAGATTAAACTAATTATTTGTTAGTTACTTCTACCAAATAGCCTTCCCTTTCGATAACATTCTCAGTATTTTATAGCCAAGTACATTTATTTCTTGTGCTGATGAACTGGAATTGGATAAATATTGCAAGTGGATGAGTGGAAATTATGCACTTGAACCAATTCACTTGTGTTAAGCTTATTGGGTTTCAGATTGATTAAATTAAATGTTGAGGCTTCTATAGCATTCTAAGCTGAGAAGTAGATTGTTACCCAGTAATGAAATAAAATAAAATAAAAGG

Sequenz ID: 8 (Y14737)

AGCCCAGCACTAGAAGTCGGCGGTGTTCCATTGGTGTGATCAGCACTGAACACAGAGGACTCACCATGGAGTTGGGCTG
AGCTGGGTTTCCTCGTTGCTCTTTAAGAGGTGTCAGTGCAGGTGCAAGCTGGTGGAGTCTGGGGGAGGCCTGGTCCA
GCCTGGGAGGTCCCTGAGACTCTCCGTGCAAGCCTGGATTACCTTCAGTAATTATGGCATGCACTGGTCCGCCAGG
CTCCAGGCAAGGGGCTGGAGTGGGTGGCAGCTATATGGTATGATGGAAGTAATAAAACTATGCAAGACTCCGTGAAGGGC
CGATTCAACCATCTCCAGAGACAATTCCAAGAACAGCTGTATATGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGT
GTATTATTGTGCGAGAGAGGGTGGTGGTACGATATACTACGGTGACTIONACTATGGATACTACTTTGACTACTGGGGCC
AGGGAACCTGGTACCGTCTCCCTAGCCTCCACCAAGGGCCATCGGTCTTCCCCCTGGCACCTCCTCAAGAGCACC
TCTGGGGGACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTGGAACTCAGGGCC
CCTGACCAGCGCGTGCACACCTCCGGCTGCTCACAGTCTCAGGACTCTACTCCCTCAGCAGCGTGGTGAACCGTGC
CTCCAGCAGCTGGCACCCAGACCTACATCTGAAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTT
AGCCCAAAATCTGTGACAAAACCTACACATGCCAACCGTGCCAGCACCTGAACCTCTGGGGGACCGTCACTCTTCC
CTTCCCCCCTAACCCAGGACACCCATGATCTCCGGACCCCTGAGGTACATGCGTGGTGGTGGACCGTGAACCG
AAGACCCGTAGGTCAAGTCAACTGGTACGGTGGACGGCGTGGAGGTGCAATAATGCCAACGACAAGCCGCGGGAGGAGCAG
TACAACAGCACGTACCGTGTGGTCAAGCTCCTCACCGTCTGCAACCAGGACTGGTGAATGGCAAGGAGTACAAGTGC
GGTCTCCAACAAAGCCCTCCCAGCCCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCCGAGAACACCAGGTGT
ACACCCCTGCCCTACCCGGAGGAGATGACCAAGAACCGGTGACCTGCTGGTCAAAGGCTTCTATCCCA
GACATGCCGTGGAGTGGGAGAGCAATGGCAGCCGGAGAACAAACTACAAGACCAAGCCCTCCCGTGTGGACTCCGACGG
CTCCCTCTCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGAAACGTCTTCTCATGCTCCGTGATGC
ATGAGGGCTCTGACAAACCACTACACGCAAGAGGCTCTCCGTCCCCGGTAAATGAGTGCAGGCCGGCAAGCCCC
CGCTCCCCGGGCTCGCGGTGCAAGGAGATGCTGGCACGAGGATGCTACATACTTCCCCAGGCACCCAGCATGGAA
ATAAAAGCACCCACCACTGCCCTGGGCCCTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 9 (NM 001738)

GTGGTACCCAGTCCTCAGGTGCAACCCCCCTGCGTGGTCCCTGTGGCAGCCTTCTCTCATTAGAGCTGTTCCACAGA
GGTAGTAAAAGAACGTGGATTTCAGATTCAAGTTCACTTIGCAAGAGAAAAAGAAAACCTAGTAGAAGATAATGGAAGTCCAGA
CTGGGGATATGACAAAAATGGTCCCTGAACAATGGAGCAAGCTGTATCCCATTGCCAATGAAATAACCAATCCCTG
TTGATATTAACCAAGTGAACCAACATGACACCTCTGTAAACCTATTAGTGTCTCCTACAAACCCAGGCACAGCAGCAA
GAAATTATCAATGTGGGCATTCTTCCATGTAAATTGAGGACAACGATAACCGATCAGTGTGAAAGGTGGTCCCTT
CTCTGACAGCTACAGGCTCTTCAGTTCACTGGGCAGTACAATGAGCATGGTTAGAACATACAGTGGATG
GTCAAATATTCTGCCAGCTCACGTAGCTACTGGAATTCTGCAAAGTACTCCAGCCTGCTGAAGCTGCCCTAAAG
GTAGGTTGGCAGTTATGGTGTITGATGAAGGTTGGTGGAGGCCAACCAAAGCTGAGAAAGTACTTGTGCCCC
CAAGCAATTAAACCAAGGGCAAACGAGCCCCATTCAAATTTGACCCCTACTCTCCTCCTCATCCCTGGATT
TCTGGACCTACCCCTGGCTCTGACTCATCCTCTTTATGAGAGTGTAACTTGGATCATGTAAGGAGAGCATCAGT
GTCAGCTCAGAGCAGCTGGACAATTCCGCAGCCTCTATCAAATGTTGAAGGGTGTAAACGCTGCCCCATGCAGCACAA
CAACCGCCCAACCCAACTCTGAAGGGCAGAACAGTGTAGAGGCTCATTITGATGATTCTGAGAAGAAACTGTCCCTCCT
CAAGAACACAGCCCTGCTCTGACATAATCCAGTTAAATAATTTAAGAAATAATTATTCAAATTAGCAAG
ACAGCATGCCCTCAATCAATCTGAAAACCTAAAGAAACTTAAATTAGTCTACTGCTTAATTCAAATAATTAGT
AAGCTAGCAAATAGTAACTGTAAGCATAAGCTTACCTTAAATTCAAGTTAGTTGAGGAATTCTTAAATTACAAC
AAGTGTGATTGATGCTTATTTTCTAGTTATTGAAACCAATAATTAAATTCTCTTCT

Sequenz ID: 10 (L05148)

5'-GGAGTACGGCTGGCTGCTGGGGCTATGGCAGGGCAGGAGCTGAGCAGACACCAGGCCCTCCGGCAGGCCCTGGCCCACCGTG
GGCCTCAGAGCTGCTGGGGCATTCAAGACCGGCTCTCCATTGGCATTGGGACCAGAGACCCGCAAGTGGCCTGTT
GCCTGGACATCCACCTGTACGTCCCCAGGTTCGGGAGGCCAGGGGCGATGCCAGACCCCGGGCGCACCTGCCCTCT
TCTACGGCAGCATCGCGTGCAGGGCAGGAGCACCTGAGCTGGCGGGCATGGCGACGGCTCTTCCTGCTGCGC
CAGTGCCTGCGCTCGCTGGCGCTATGTGCTGCTGTCAGATGCGCTTCCACACTTCCATCGAGGCCA
GCTCAACGGCACCTACGCCATTGCCGGCGCAAAGCGCACTGTGGACGGCAGAGCTCTGCGAGTTCTACTCGCGCAGC
CCGACGGGCTGCCCTGCAACCTGCGCAAGCGTGCACCGGCCGTCGGGCCCTGAGCCGAGCCGGGGCTTCGACTGC
CTGCGAGACGCCATGGTGCCTGACTACGTGCGCCAGACGTGGAAAGCTGGAGGGCAGGGCCCTGGAGCAGGCCATCATCAG
CCAGGCCCGCAGGTGGAGAAAGCTATTGCTACGACGGCCCACCGAGCGGATGCCCTGGTACACAGCAGCCTGACCGTG
AGGAGGGCGAGCGCAAACCTTACTCTGGGGCGCAGACCGACGGCAAGTTCCTGCTGAGGCCGGAGGGCAGGGCACA
TACGCCCTGTCCTCATCTATGGGAAAGACGGTGTACCAACTACCTCATCAGCCAAGACAAGGGCGGGCAAGTACTGCATTCC

CGAGGGCACCAAGTTGACACGCTCTGGCAGCTGGAGTATCTGAAGCTGAAGGGGACGGGCTCATCTACTGCCGAG
AGGAGGCCCTGCCAACACAGCAGTGCCAGCAACGCCCTAGGGCTGCTCTCCACACTCCCAGCCCACCCATCCACGTTG
ACTCATCTCAGAGACGAATCGACACCCCTCAACTCAGATGGATACACCCCTGAGCCAGCAGCATAACGTCAGAGACAA
ACCGCGGCCGATGCCATGGACACGAGCGTGTATGAGAGCCCTACAGCGACCCAGAGGAGCTCAAGGACAAGAAGCTCT
TCCTGAAGCGATAACCTCTCATAGCTGACATTGAACTTGGCTCGGCAACTTGGCTCAGTGCAGGCCAGGGCTGTAC
CGCATGCGAAGAACGAGATCGAGCTGGCCATCAAGGTGCTGAAGCAGGGCACGGAGAACGGAGACACGGAAGAGATGAT
GCGCAGGCGCAGATCATGCACCAAGCTGGACAACCCCTACATCGTGCAGGCCATGGCTCTGCCAGGCCAGGCCCTCA
TGCTGGTCACTGGAGATGGCTGGGGCGGGCGCTGCACAAGTTCTGGTGGCAAGAGGGAGATCCCTGTGAGCAAT
GTGGCCGAGCTGCTGCACCAAGGTGTCATGGGATGAAGTACCTGGAGGAGAACACTTGTGCAACCGTGAACCTGGCCG
CCGCAACGTCCTGTTAACCGGCACTACGCCAAGATCAGCGACTTGGCTCTCCAAAGCACTGGGTCAGCAGACA
GCTACTACACTGCCGCTCAGCAGGGAACTGGCCGCTCAAGTGGTACGCACCCGAATGCATCAACTCCGCAAGTTCTCC
AGCCGACCGATGTCGGAGCTATGGGTCACCATGTGGAGGCCCTGCTCACGCCAGAACGCCCTACAAGAACGATGAA
AGGGCCGGAGGTATGGCTTCATCGAGCAGGGCAAGCGGATGGAGTCCCACCAAGAGTGTCCACCGAACACTGTACGCAC
TCATGAGTGAATGTCGGATCTACAAGTGGAGGATGCCGACTTCTGACCGTGGAGCAGCGCATGCGAGCCTGTATAC
TACAGCTGGCAGCAAGGTGGAAGGGCCCCCAGGCAGCACACAGAACGGCTGAGGCTGCCCTGAGCTCCCGCTGC
CCAGGGGAGCCCTCACGCCGGCTTCCCCACCCCTAGCCCACCCAGGTCTGCCAGTCTGGCTGAGCCCTGCTTGGT
TGTCTCCACACACAGCTGGCTGTTAGGGGTGTCAGGCCACACCGGCTTGCATTGCCGCTGGCCCCCTGTCC
TCTCTGGCTGGGGAGCAGGGAGGTCCGGAGGGTGCAGCTGCTGGCTGAGCTCCGGCTGGCTGGCTCCGGAGGGCCCTG
AGCTGAGGGCATTGCTTACACGGATGCCCTCCCCCTGGGCCCTGACATTGGAGCCTGGCATCCTCAGGTGGTCAAGCGTA
CATCACCAAGAACCCAGCTCCCTTGTAAAAAACCACAG

sequenz ID: 11 (X59314)
AGATCTCCTGAGGTCAAGACAAGCCAGACAACCTGGTGAATGAAACCCCATCTCTACTAAAAACAAAAACA
GAAACAACAAAAAAGAAGAGCCCTCTGGTTAACCTTGTATGTGAGACGATTATGATGAGATAGATCCAGATTGAA
AACTGGTCACCCAGGAATTAAATTGCTGCTGGAGGGCACAAAATTGCTCTCTTCTTTCTTACACTGGGCT
CTTGGCTCTAAATGTAGAGGCTCACATCATTCTCCCTGTGAGGCGCTGGACAGAGAGCTCTTATGCTGTTCACTCACCA
GGTCCAAGGCAGAGTAGATTCTAATATTGAGTTGAACATTCTGAACAGTTATCCTGGGAAACAGTAGATACCAGACA
GCCCTGAACTGGCTCCAGGCCGCTTTTATTGAGGCTCTCAGTTCAGCAGTGCTGTGGGGATGGCCTGTTCTATA
CTCTAGATTGACTGGGAGGGAAATCAAGCCAGATGGCATTCACCTCCCAGAGATGTATCCTAGACACACATTCCACATTG
TCAGGGTTCTGGTCTTCTTACAGTCATGCCCTACACAGTGTGTCCTACAAAAGGTCCGAACCTTCACCTTCAGATCC
TTCTTCCCTGATTGTGGGCAAATTGGCTGAATCTAGTTCTGTTTATTCCAAGGACAATTATATCACATTGTTCA
AGAAGAGACATTCCCCCTGCCCGTCAACCTTCCACACCAGTCACCCACCAGGTGATTGCAATTGTCCTAGGG
TGGACCCCTCCCTGTGAGTCTGAGATAAAAGCTCAGCTCATCCTTGCTTGAUTGATCAGGACTCCTCAGTTCA
TTCTCACCATGAGGCTCCCTGCTCAGCTCTGGGCTGCTAATGCTCTGGTCCCTGGTAAGGACAGAAAGAGATGAGGG
AGGACAACCTGGGTGGGAGGTGAGCTCTGTGGGCTCCACAGCTTCACATGTTTATTCCAATAATGTGATAGAGGCACATGG
TCTATGCTCCAGGGAAATGGAATTCAAGGTTGTCTTATGAATAATCAGGATTCACTCCAGGGAAACGATGACCAAGTGTCT
GATTAAGAACCTGAAAAAAAGAGTCCCTGTGGCTAATAAATAATGGGTCTATTAGAAAGTCTACTTTCATGATA
TAAATCAAACATTAAAAATGTAACGTAAATTATATCACAGAGAAATTATGAAAGTGTCTCATATGTATCTATATA
AACTTGCACCTCTCTGTTATTATTCAAGGATCCAGTGAGGATATTGTGATGACCCAGACTCCACTCTCCCTGCCCGTCAC
CCCTGGAGAGCCGCCCTCCATCTCTGCAAGGTCTAGTCAGGCTCTGGATAGTGTGATGGAAACACCTATTGGACT
TACCTGCAGAACGCCAGGGCAGTCACAGCTCTGATCTATACGCTTCTATCGGGCTCTGGAGTCCCAGACAGG
AGTGGCAGTGGGTCAAGGCACTGATTCAACACTGAAACATCAGCAGGGTGGAGGCTGAGGATGGAGTTATTACTG
ATGCAACGTATAGAGTTCCTCCACAGTGGTACAGCCCTGAACAGAAACCTCCCTGCTGTGGTCCCAGCTGCTCAC
ATGCACTGCTGTCTGGGAGCAGGTCAAGCAGCGTCTCTGAGTCTGCAAAAGAGGAGGCTGTTGAGAATACAGGGCAGG
GTTGCTCTGAGGACTCTGCTCTGGACTACAGGTGATGCCACTAAACATGGCTAATTTCATTTTGTAGAGTC
GGTCTTCAACCATGTTGCCAGGCTGTTGCTAAACATGGGCTCAAGCCACCCACCTGACTTGGCCTCCAAACGTC
GCAGTACAGTGTGAGGCCACTGCCAGGTCAGCACCCCTGTTATGTTCTGTCACCTGCCACAGCCTGACTCTCATAA
CCAACAGGAAATGAGGAGGTCTAGGGCCCTGTGAGTAAAACACTGGGATGATAGGGAAAGGGAGAATGGAATCTCATCT
GAATCCTCCCTGCCTACATTGTTAAATTATTGAGCAAAAGGGCAGACTACTGATCATTTCTGGCAAAACATG
TTGAGTACATTAGGGTTAACAGTTGGTAC

Sequenz ID: 12 (BC030814)
GATCAGGACTCCTCAGTCACCTCTACAATGAGGCTCCCTGCTCAGCTCCTGGGCTGCTAATGCTCTGGGTCTCTGG
ATCCAGTGGGATATTGTGATGACTCAGTCTCCACTCTCCCTGCCGTACCCCTGGAGAGGCCGCCTCCATCTCCTGCA
GGTCTAGTCAGAGCCTCTGCATAGTGATGGATACAACATTGGATTGGTACCTGCAGAAGCCAGGGCAGTCCTCACAG
CTCCTGATCTATTGGTTCTAATCGGGCTCCGGGTCCTGACAGGTCAGTGGCAGTGGATCAGGCACAGATTAC
ACTGAAAATCAGCAAAGTGGAGGCTGAGGATGTTGGGATTATTACTGCATGCAAGGTCTACAAACTCCTCAGACGTTG
GCCAAGGGACCAAGGTGGAAATCAAACGAACGTGGCTGCACCATCTGTCTCATCTCCGCCATCTGATGAGCAGTTG
AAATCTGGAACGTGCTCTGTTGTGCTGAATAACTTCTATCCAGAGAGGCCAAAGTACAGTGGAAAGGTGGATAA
CACCCCTCCAATCGGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCC
TGACGCTGAGCAAAGCAGACTACGAGAAAACACAAAGTCTACGCCCTGCGAAGTCACCCATCAGGGCTGAGCTGCCCGTC
ACAAAGAGCTTCAACAGGGGAGAGTGTAGAGGGAGAAGTGCCCCCACCTGCTCTCAGTTCCAGCCTGACCCCTCCCC
TCCCTTGGCCTCTGACCCCTTCCACAGGGGACCTACCCCTATTGCGTCTCCAGCTCATCTTCACCTCACCCCCCT

CCTCCTCCTGGCTTAATTATGCTAATGTTGGAGGAGAATGAATAAAAGTGAATCTTGAAAAA
AAAAAAAAAA

Sequenz ID: 13 (BC021275)

GGCACGGGCTCAACCACAGACTACACTTGTGAACTGGCTCCTGGGCCATGAGGCTGTCACTGCCACTGCTGCTGCTG
CTGCTGGGAGCCTGGGCCATCCAGGGGCCCTGGGACAGGGGCCACTCACAGCCACAGCCCACAACAGGATGATGA
GGAGATGTACTCAGCCCACATGCCGCTCACCTGCCTGTGATGCCCTGCAGAGCTGTGGCTTACCAAGATGTGGCAAATC
TGGCAAAGGCAGAGACCAACTTCATAACCTCAAACCTCTGGGGGCGGGAGCTGAGCAGTTGGCTACACGGATGTC
CTGGACCGGAGCTGCCAGACTGGCAGGACTACGGAGTTGAGAAGTGGACCAAGTGAACAGTCTCACAGGCCAGG
ACTTAGCAGGGGCCAGGCCAAGCATAGCGTGTGAGGGTACAGGGGCCCTGGCTTACCAAGGCTCTCCAGGACATGTT
TGCACTAATTGGGGAGTTGGAGAAGACAGATCTATGAAGCCCACCAACAAGGCCAGGGCTCTGGAGGCTTGC
TGTGGGGACCCCAGGGGCCCTGCAGAGAAGGTGTAGCCACAAGAGAAGAGCTTAGTCCTGGACTCTACCCCTC
TGAAAGAAGCTGGGCTTGCCTGACGGTCTCCACTCCGTCAGGCCAGGGAGGGCAGGAAGCCCTGCTGTG
CTGCCATCCTGCCCTCCAGCCTCAGGGCACTCGGGCTGGTGGAGTCAACGCCCTCCCTGGACTCAAAT
AAAACCCAGTGAACCTCAAAAAAAAAAA

Sequenz ID: 14 (BC020889)

GTCCCGGAAATTGAAATGGCTGACGGGCTGCTGACGGGCCGGTCTGGAGGCAGCGGCCATGGCGCCGGAGCGCACG
GGCTGGCGGTGGAGCAGGAGCTGGCGTCTCTGGAGAAAGTTTTCAAGAAGAAGTGAAGTCAAGATGAAGAACCAATTG
CTTTCTGGGGAGTCTGGCGTTTTATTAAAGGCTGTTATGTGAAAGCCAAGAAGATGAAAGGATTGTTCTGTTGAC
ACAAATGTAAGTGTGCCGGATTACTCCAGGATCATCGTTCTCCGAAGATCTTAATGAGGACATTGTGGAGAGAAA
ATCCGAATTATTGTCCTCTGAACAAACAGGGAGAATATCTGATCCCACCTCACCATTGAGAACCAAGAGATTGTTGAC
ATTGTCGACCTCTGAAAAATGTGATCCTACAGAAAGTGGAGCTGGATAATCAGATAGTTACTGCTACCCAGAGCAAT
ATCTGTGATGAAGACAGTGTACAGAGACCTGCTACACTTATGACAGAAACAAGTGTACACAGCTGTGGCCACTCGT
ATATGGTGGTGAGACCAAAATGGTGGAAACAGCCTTAACCCAGATGCCGTATCTGACTAATTAAAGTCATTGCTGA
CTGCATAGCTTTTCTGAGAGGCTCCATTGATTAGCATATTATTACCAATGAATTGAAACCA
GGGCTTTTTTTGGGTGATGTAACCAACTCCCCGCCACCAAAATAATTAAAGTCACATTGTTATCTTA
TTAGGTAATCACTCTTAATTATATGTCATACTCTAAGTATCAAATCTCATGTCACCTGAAAGAGGTA
TGCTCTCTAGGAAACAGTTCTAGCATTAAACAAATAACAGGGAGAAAATAAAACTCAAGGAGTGAAATCAGGA
GGTGTAAAAATGTCCTCGCATTCCCCCGCTTTTTTTGACTTTGCTTGGAGGCCAGAGCTTCCGCAT
TTCTTTACTATTCTTTTAAAAAAAGTTCACTGTGTAGAGAACATATATGCATAACATAGGTCAATTATATGTC
ATTAGAAAATAAAATTGGAAACATGTTCTAGAACACTAGTTACAAAATAATTAAAGGTGAAATCTCTAAATTATAA
AAGTAGCAAATAATGCTAAATTAAATATTGGACATAACAGACTTGGAGCAGATGATAACAGACTCTTTT
ATAATCAGGTTAGTGTAAAGAAATTGCCATTGAAACAAATCCATTGTAACGAACTTATGAAATATATGTT
GTACGTATTCTCTAGCACAGTCTGAGCAATTAAATAGATTCTAAAGAAAA
AAAAAAAAAA

Sequenz ID: 15 (NM_005321)

ATGTCCGAGACTGCCCTGCCGCCCTGCTCCGGCCCTGGCGAGAACACTCCGTGAAGAACAGGCCCAAGTC
TGCAGGTGCGGCCAACGCCAACAGCTCTGGGCCCTCAAGAAAGCGCTGGCAGCCGCTGGCTATGACGTGGAGAAA
ACACAGCCGATC
AGCTGGGTCTCAAGAGCCTGGTGGAGCAAGGGCACCTGGTGCAGACCAAGGGCACGGCGCGCTGGGTTCTTCAA
ACACT
ACAAGAACGGGCCCTCTGGGAAGCCAAGCCTAAAGCTAAAGCTAAAGGCAAGGCCAACAGGCCAGCAGGAG
CGCGAAGAACGCCAACAGAGCGACGGGGCGCCACCCCCAACAGAGCGCCAAGAACAGGCCAACAGGCCAGGAG
CCGGCTGCAGCTGGAGCCTAAACCAAGCGCTAAACCAAGGCCAACAGGCCAACAGGCCAGCCAAGGCCAACAGG
CCCAGCGAACGGCCAAGCAGTTAAACCAAGCGCTAAACCAAGGCCAACAGGCCAACAGGCCAACAGGCCAACAGG
CGGCAGCCAAGAAAAGTAG

Sequenz ID: 16 (X57817)

AGCTTCCCTCTCCCTCACCTCCTCACTCACTGTGCAAGGGCCTGGGCCAGTCTGTGCTGACTCAGCCACCTCAGC
GTCTGGGACCCCCGGCAGAGGGTCACCATCTCTGTTCTGGAAAGCAGCTCAACATCGGAAGTAATACTGTA
AAACTGGT
ACCAGCAGCTCCAGGAACGGCCCAAACCTCTCATCTATCGTAATAATCAGGGCCCTCAGGGTCCCTGACCGATTC
TCTGGCTCAAGTCTGGCACCTCAGCCTCCCTGGCCATCGTGGCTCCAGTGTGAGGATGAGGCTGATTATTACTGTC
AGCATGGATGACAGCCTGAATGGTGGTATTGGCGGGAGGGACCAAGCTGACCGTCTAGGTGAGCCAAAGGCTGCC
CCTCGGTCACTCTGTTCCGCCCTCTGAGGAGCTCAAGCCAACAAGGCCACACTGGTGTCTCATAAAGTACTTC
TACCCGGAGCCGTGACAGTGGCTGGAGGAGCAGATAGCAGCCCCGTCAAGGCCAGGAGGACCAACACCCCTCAA
ACAAAGCAACAACAAGTACGCCAGCAGCTATCTGAGCCTGACGCCCTGAGCAGTGGAAAGTCCCACAGAACAGCTACAGCT
GCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCTACAGAAATGTTCAAGGTTCTCAACCCCTCACCC
CCACCAAGGGAGACTAGAGCTGCAGGATCC

Sequenz ID: 17 (NM_005564)

ATGCCCTAGGTCTCTGTGGCTGGGCCCTAGCCCTGTTGGGGCTCTGCATGCCAGGCCAGGACTCCACCTCAGACCT
GATCCCAGCCCCACCTCTGAGCAAGGTCCTCTGAGCAGCAACTCCAGGACAACCAATTCCAGGGAAAGTGGTATG
TAGGCCCTGGCAGGGAAATGCAATTCTCAGAGAACAGAACAGGCCAAAGATGATGCCACCATCTATGAGCTGAAAGAA

GACAAGAGCTACAATGTCACCTCCGCTCTGTTAGGAAAAAGAAGTGTGACTACTGGATCAGGACTTTGTTCCAGGTTG
CCAGCCCCGGCGAGTTCACGCTGGCAACATTAAGAGTTACCTGGATTAACGAGTTACCTCGTCCGAGTGGTGAGCACCA
ACTACAAACCAGCATGCTATGGTGTCTCAAGAAAGTTCTCAAAACAGGGAGTACTCAAGATCACCTCTACGGGAGA
ACCAAGGAGCTGACTTCGGAACAAAGGAGAACCTCATCCGCTCTCAAATATCTGGGCTCCCTGAAAACCACATCGT
CTTCCTGTCCCAATCGACCAGTGTATCGACGGCTGA

Sequenz ID: 18 (NM_003250)

CGCGTCGCTGCCAGCCGGTCCGGCCACGCACTGGATCTCTGGACAGGACAAGACTCCGAAGCTACTCCCCAGC
ACACAGCCCCGGACCCACAAACCCAGCTGCCCCCAGCCCTCCACCTGCACCTCCCTGGCCCTCCCACGGCCGCCCC
CTTGGCGGGCGATGGTGTGAAAGGCAAGTGTGAGGGGGTATCATGGGTGTGCCCCAGGCTGGGTGGCAG
GGGGTGGGTGGCCTGTGGGTGTGCCGGGGCAGTGTGCCACCCAGTCTCTGGCGTGGAGGGCATCTGGAT
GGAATTGAAGTGAATGAAACAGAAGGCAAGCAAGGGAGTGTGGGTCAAGACCCAGAGGAGAACAGTGCACGGTCACCAAG
ATGGAAAGCAGAAAAGAAAGAACGGCAATGTTCCCTGAAAAGCAGCATGTCAGGGTATATCCCTAGTTACCTGGACAAA
GACGAGCAGTGTGCGTGTGGGACAAGGCAACTGGTTATCACTACCGCTGTATCACTTGTGAGGGCTGCAAGGGCTT
CTTCGCCGACAATCCAGAACCTCCATCCCACCTATTCTGCAAATATGACAGTGTGTGTCATTGACAAGATCA
CCCGCAATCAGTGCCAGCTGCGCTTAAGAAGTGCATGCCGTGCCATGGCATGGACTTGGTCTAGATGACTCG
AAGGGGTGGCAAGCGTAAGCTGATTGAGCAGAACCGGGAGCGCGCGGAAGGAGGAGATGATCCGATCACTGCAGCA
GCGACCAGAGCCACTCTGAAGAGTGGATCTGATCCACATTGCCACAGAGGCCATCGCAGCACCAATGCCAGGGCA
GCCATTGAAACAGAGGGGAAATTCTGCCGATGACATTGCCAGTCACCCATTGTCTCCATGCCAGGGAGAACAG
TGGACCTGGAAGCCTCAGCGAGTTTACCAAGATCATCACCCCGGCCATCACCGTGTGGACTTGCACAAAAAAACT
CCCATGTTCTCCGAGCTGCCCTGCGAAGGACCATCCTCCTGAAGGGGTGCTGCATGGAGATCATGTCCTGCGGG
CGGCTGTCGCTACGACCCCTGAGAGCGACACCCCTGACGCTGAGTGGGAGATGGCTGTCAAGCGGGAGCAGCTCAAGAAT
GGCGGCTGGCGTAGTCTCCGACGCCATCTCGAACTGGGCAAGTCACTCTGCCCTTAACCTGGATGACACGGAAAGT
GGCTCTGCTGCCAGGTGTGCTTAATGTCACAGACGCCCTGGCTGTGTGGACAAGATCGAGAACAGTCA
AGGCGTACCTGCTGGCTCGAGCACTACGTCACCCAGCAAAACACAACTTCCGCACTTCTGCCCAAGCTGCTGTGATG
AAGGAGAGAGAAGTGCAGAGTCGATTCTGTACAAGGGGGCAGCGGGCAGAACGGCCGGCGGGTACTGGCGTCTCA
CCCGGAAGGACAGCAGCTCTCGGAATGCTGTGTTAGGGTCCGGCAGGTCGGCAGCTTGAGCAGCAGCTTGGTGAAG
CGGGAAAGTCTCCAAGGGCCGGTCTTCAGCACAGAGGCCGAAGAGGCCAGCAGCGTCTCTGGAGCTGCTCCACCGA
AGCGGAATTCTCCATGCCAGCGGTGTGGGAAGACGACAGCAGTGGAGGCGACTCCCGAGCTCTGAGGAGGA
ACCGGAGGTCTGCGAGGACCTGGCAGGCAATGCAAGCTCTCCCTGAAGGCCCCCAGAACGGCGATGGGAAGGAGAACAGGA
GTGCCATACCTCTCCCAGGCTCTGCCCAAGAGCAGGAGGTGCTGAAAGCTGGGAGCTGGCTCAGCAGGGCTGGT
CACCTCCCATCCCGTAAGACCACTTCCCTCCTCAGCAGCCAAACATGCCAGACTCCCTGCTTTGCTGTGTAGTT
CCCTCTGCCCTGGGATGCCCTTCCCCCTTCTGCCCTGGCAACATCTTACTTGTCTTGAAGGCCCAACTCAAGTGTCA
CCTCTTCCCCAGCTCCCCCAGGGAGAACATAG

Sequenz ID: 19 (NM 005067)

ATGAGCCGGCGCTCTCCACGGGCCCCAGCGCTAATAAACCTGCAAGCAGCCGCCGCCAGCCCCAGCACACTCC
GTCCCCGGCTGCGCCGGCGCCACCATCTGGCTGCGGGCCCCGGCTCGCCGGTGGCCGCCGGCGGGCGG
TGATCTCGGGCCCCGGCGCGGGCCGGCCGGTGTCCCCGCAAGCACCACGAGCTGACTCGCTCTCGAGTGT
CGGTCTGCTTGAATATGTCCTGCCTCTATTCTGCACTGCCAGGCCGGCACCTGGTGTGAACCAATGCCGCCAGAA
TTGAGCTGCTGCCGACGTGCAGGGGCCCTGACGCCAGCATCAGGAACCTGGCTATGGAGAAGGTGGCTCGGCCAG
CCTGTTCCCTGTAAGTATGCCACCAAGGGCTGTTCCCTGACCCCTGACCCATACGGAGAAACAGAACATGAAGACATA
TGTGAATACCGTCCCTACTCCTGCCATGTCCTGGTGTCCCTGCAAGTGGCAGGGGCCCTGGAAGCTGTGATGTCCCA
TCTCATGCAAGCCCACAAGAGCATTAACCAACCCCTCAGGGAGAACATCGCTTTCTAGCTACAGACATTAACGGCAG
GGCTGTCGACTGGGTGATGTCAGTCATGTTGGCATCACTTCATGCTGGTGTGGAGAACAGAGAACAGTACGAA
GGCCACCAAGCAGTTTTGCCATGTCCTGCTCATGGCACCCGCAAGCAAGCCGAGAACCTTGCCCTACAGACTGGAGTT
GAATGGGAACCGGGGAGATTGACCTGGGAGGCCACGCCCGTTCGATTCATGACGGTGTGGCTGGCCATCATGAACA
GCGACTGCCCTGTTTCGACACAGCCATAGCACATTTTGCAAGATAATGGGAACCTGGAAATCAATGTTACTATTC
ACATGTTGTCATGA

Sequenz ID: 20 (AJ010446)

GTCTCAGTCAGGACACAGCATTGGACATGAGGGTCCCCGCTCAGCTCCTGGGGCTCTGCTACTTCGGCTCCGAGGTGCCA
GATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCGCGTCTGTAGGAGACAGAGTCACCATCACTTGCGGGCA
AGTCAGAGCATTAGCAGCTATTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCTAAGCTCCTGATCTATGCTGCATC
CAGTTGCAAAGTGGGTCCCATCAAGGTTAGTGGCAGTGGATCTGGACAGATTCACTCTCACCATCAGCAGTCTGC
AACCTGAAGATTTCAGTTACTACTGTCAACAGAGTTACAGGACCCCCCGTGGACGTTGGCCAAGGGACCAAGGTG
GAAATCAAACGAACGTGGCTGCACCATCTGTCCTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGAAACTGCCTC
TGTTGTGCTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTACAGTGGAGGTGATAACGCCCTCCAATCGGGTA
ACTCCCAGGAGAGTGTACAGAGCAGGACAGCACCTACAGCCTCAGCAGCACCTGAGCTGAGCAAAGCA
GACTACGGAGA

Sequenz ID: 21 (NM_016417)

CCCGCAAGTGTACCTCAATGGCGAGTTGTAGGGGGCTGTGACATTCTCTGCAGATGCACCAAGAATGGGACTTGGTGG
AAGAACTGAAAAGCTGGGATCCACTCCGCCCTTGTAGATGAAAAGAACCAAGACTCCAAGTGAGGGCGGCCAAGT
CCTCGCTGAGCAGAGGGAGCCGTTATGTCAGAGACTCACTGCCAGAAAAGCCTAACCAATTGGTTTCACTATTG
AGACCGCAACTGCTTGCACTTGGTTCATGAGCAGTTGGTATTAGTGGTCTGGTGGCTAAGAAT
ATTTTATTGTGGACTTAATTACAACCACTGCACTGTAATGATGTCAGTGTATTATGATATTGCTGTAACAAAATTCA
TTCTTATATTGTCACTTATTCTTGCCTGATTCAAGTAAATAGGAGCTTGGAAATCATTATTGACCCCTCTGCA
AATGTGTCAGTCTCAAAGAGAGTATCCTCCCCAAATTGTGTTAGCTCTTTGTTATGGAAAATGGTGGACAAAAAA
AGAAAATGTGATAACTGGGCGTTTTAAATAACTCCAGCACAGGGATGCTGTGCATGCTGAGTTGATCCGA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 22 (NM_005764)

GGAGTTAGGTTAAGTCTTAAATTCCAAAGCTGTAATCATTATTTCAATTCTCAAAGTGTGATGGCCTTGTGTTTGC
TCCTCTCCTCCAGGGCCAGACTGAGCCAGGTTGATTCAGGCGGACACCAATAGACTCCACAGCAGCTCCAGGAGCCA
GACACCGCGGCCAGAAGCAAGGCTAGGAGCTGCTGCAGCCATGTCGGCCCTCAGCCTCCTAACCTGGGCTGCTCAG
GCAGTGCACCTGCCAGCTGCAAGGCCCTGGGAACCTTCAGCCCTGGATGCAAGGGCTTATGCGGTGGCGTGT
CCTGGCCTCGTGCATGCCATTGCAAGTCACCAACTCTGGTGCCTGGGAACAGATGGAAGGTACTCTGATGGCGGCCAGTTCAAGGTCCAGT
CCGTGAAACAAGGAGATGGAGTCTGGTGGGAACAGATGGAAGGTACTCTGATGGCGGCCAGTTCAAGGTCCAGT
GAGCATGAGAATGCTATGAGAATGTGCCCGAGGAGGAAGGCAAGGTCCGCAGCACCCGATGTAACCTCTGTGGCT
TAACCCCAAGACTCCCAGGCACATGGGATGGATGTCAGTGTCTACCACCAAGCCCCCTCTTGTGGAAATCTG
AAATAGTGGGCTGACTCCCTCCAGCCCCATGCCGCCCTACCCGCCCTGAAAGTATAGCCAGCCAAGGGTGGAGCTCAGA
CCGTGCTAGGTTGGGCTCGGCTGTGGCCCTGGGTCTCTGCTCAGCTCAGAAGAGCCTCTGGAGAGGACAGTCAGC
TGAGCACCTCCCATCTGCTCACACGCTCTCCCCATAACTATGAAATGGCCCTAATTCTGTGAAATAAGACTTTT
GTATTCTGGGCTGAGGCTCAGCAACAGCCCCCTCAGGCTCCAAA

Sequenz ID: 23 (NM_033445)

CTCGCTTTCGGTGCCTGCTTTTCTGACTCGGAAATGTCCGGTCGTGTAAGCAGGGTGGCAAGGCGCG
CAAGGCTAACGCGCCTCGCGCGCGCCGGCTGAGTTCCCGTGGGCCGCGTCAACGGGTTGCTCCGCAAGGGCAACT
ATTGAGCGCGTGGCGCCGGCGCCGGCTATCTGGCCCGGTGCTCGAGTACTTGACTGCCAGATCCTGGAGCTT
GCCGCAACGCGCGCGACAACAAGAAGACGCGCATATCCCGGCCACCTGCAGCTGGCATCCGCAACGACGAGGA
GCTCAACAAGCTGCTGGGCCGCGTGAACATCGCGCAGGGTGGCGTCTGCCAACATCCAGGCCGACTGCTGCCAAGA
AGACGGAGAGGCCACCAAGGCAAGGCAAGTGAAGGCCGCCGCCGCCGGGGCCCTTGTGGACATAAAGGCTC
TTTCAGAGCCACCTACCATCTGAGAAAAGAGCGCACTGATCTGCAAGTCTTATAGGCCGGAGGCCCTGATCACCC
AGGCTCATGAATGAGCGCAGTGGCAATGGGAAGGGCGAACGGGAACCCAGACCCCTGGGACTGATTGGCTGCATAACT
TGCAGGGTGGCAACGTTCTGTTAAACAACAGGGAACCCCTGTCACAGGTGGCACCCCTTGTCTTGAGTCCCACCC
AAAACCTCTAGTAGGTTTAAACACGCTACCGTAAAGGTGTCTCATAATTACTAGTGAACAAGTCTCTGACTCTAG
CAAGGTICCCGTGGTCAAGTACAGAATGCAATTCTTAATGATTATCTGATATTAAAGTATTATGATCTCTA
AAAAAAAAAAAAAAA

Sequenz ID: 24 (M18728)

GGCTCAAGCTCTACAAAAGAGTGGACAGAGAACAGCAGAGACCATGGGACCCCCCTCAGCCCCCTCCCTGCAGA
TTGCATGCTCCCTGGAAAGGAGGTCTGCTCACAGCTCATTCTAACCTCTGAAACCCACCCACTGCCAGCTCAC
TATTGAATCCACGCCATTCAATGTCGAGAGGGAAAGGAGGTCTCTACTGCCAACACCTGCCAGAATGTTATTG
GTTACAGCTGGTACAAAGCGAAAGAGTGGATGCAACAGCTTAATTGTAGGATATGTAATAGGAACCTAACAGCTACC
CCAGGGCCCGCATACAGTGGCGAGAGACAATATACCCCAATGCACTCCGCTGATCCAGAACGTCACCCAGAACATGACAC
AGGATTCTATACCTACAAGTCATAAGTCAGATCTGTGAATGAAGAACGCAACCGACAGTCCATGTATACCCGGAGC
TGCCCAAGCCCTCATCTCCAGCAACAACCTCAACCCCGTGGAGGACAAGGATGCTGTGGCTTACCTGTGAACCTGAG
GTTCAAGACACAACCTACCTGTGGTGGTAAATGGTCAGAGCCCTCCGGTCAGTCCAGGCCGACTGTCCAATGGCAA
CATGACCCCTCACTCACTCAGCGTCAAAAGGAACGATGCAAGGATCCTATGAATGTGAAATACAGAACCCAGCGAGTGC
ACCGCAGTGCACCGAGTCACCCCTGAATGCTCTATGGCCAGATGTCCTCAGTCTCCACATTCCCCCTCAAAGGCCAATTACCGT
CCAGGGAAAATCTGAACCTCTGCCACGCGAGCTCTAACCCACCTGCAACAGTACTCTGGTTTATCAATGGGACGTT
CCAGCAATCCACACAAGAGCTTTATCCCCAACATCACTGTGAATAATAGCGGATCCTATATGTCAGGCCAAGCCCATAACT
CAGCCACTGGCCTCAATAGGACCACAGTCACGATGATCACAGTCTCTGGAAAGTGTCTCTGTCAGCTGTGGCCACC
GTCGGCATCAGGATGGAGTGTGGCCAGGGTGGCTGTGATATAGCAGCCCTGGTGTATTTGATATTTCAGGAAGACT
GGCAGATTGGACAGACCCCTGAATTCTCTAGCTCTCCAAATCCCATTGAAACCAACTAAAACAAGGTCTG
CTCTGCTCTGAAGCCCTATATGCTGGAGATGGACAACCTAACATGAAATTTAAAGGAAAACCCCTAGGCCGAGGTGTG
TGCCACTCAGAGACTTCACCTAACCTAGAGACAGTCACCTGAAACCATGGTGGAGAAATTGACGACTTCACACTATGGAC
AGCTTTCCCAAGATGTCAAAACAAGACTCCCTCATGATAAGGCTTACCCCTTAAATTGCTCTGCTTATGCC
TGCCTCTTCGCTTGGCAGGGATGATGCTGCAATTAGTATTGCAAGAAGTAGCTCAGAGGGTAACCTAACAGAGTGT
AGATCTATCTTGCAATCCCAACGTTTACATAAAAGAGATCCTTGTGACCTGACATTAGCAGC
TTAACACAGCCGTGTCAAATGTACAGTGGCTTTCAAGAGTTGGACTCTAGACTCACCTGTTCTCACTCCCTG
TTAACACAGCCGTGTCAAATGTACAGTGGCTTTCAAGAGTTGGACTCTAGACTCACCTGTTCTCACTCCCTG

TGACACTTGTGTAACATGGCTAAATACAATGGGTATCGCTGAGACTAAGTTGAGAAATTAAACAAATGTGCTGCTTG
GTAAAATGGCTACACTCATCTGACTCATTCTTATTCTATTAGTTGTTGTATCTTGCCTAAGGTGCGTAGTCCAA
CTCTGGTATTACCCCTCTAAATAGTCATACTAGTAGTCATACTCCCTGGGTAGTGATTCTCTAAAGCTTAAATGTC
TGCATGCAGCCAGCCATCAAATAGTGAATGGTCTCTTGGCTGGAATTACAAAACCTAGAGAAATGTGTCATCAGGAG
AACATCATAACCCATGAAGGATAAAAGCCCCAAATGGTGGTAAGTGTAAATAGCAGCTAATGCTTAAGATTGGTCACAC
TCTCACCTAGGTGAGCGCATTGAGCCAGTGGTGCCTAAATGCTACATACTCCAACTGAAATGTTAGGAAGAAGATAGATC
CAATTAAAAAAATAAAACCAATTAAAAAAAGAACACAGGAGATTCCAGTCTACTTGAGTTAGCATAATACAG
AAGTCCCCTCTACTTTAACCTTACAAAAAGTAACCTGAACTAATCTGATGTTAACCAATGTATTATTCTGTGGTTC
TGTTCCCTGTTCCAATTGACAAAACCCACTGTTCTGTATTGTTAGGCCAGGGGAGCTACTGTACTTGAGAG
TGGTGCTGCTTAATTCAAAATCACAAATAAGCCAATTAGCTCTATAACT

Sequenz ID: 25 (BC030813)

GAGGAACTGCTCAGTTAGGACCCAGACGGAACCATGGAAGGCCCAGCGCAGCTCTTCCCTGCTACTCTGGCTCCC
AGATACCACTGGAGAAATAGTGTGATGACCGAGTCTCCAGCCACCCCTGTCTGTCTCCAGGGAAAGAGCCACCCCTCTCCT
GCAGGGCCAGTCAGAGTGTACAGCAACTTAGCTGGTACCCAGCAGACACCTGGGAGTCTCCAGGCTCGTCATCTAT
GGTGCATCCAGCAGGGCCAGTGGTGTCCAGCCAGGTTAGTGGCAGTGGGTCTGGACAGAGTTACTCTCACCACAG
CAGCCTGCAGTCAGAAGATTGAGTTACTGTAGCAGTATAAAAGTGGCCGCACACTTTGGCCAGGGGACCA
AGCTGGACATCAAACGAACAGTGTGGCTGACCATCTGCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGAACT
GCCTCTGTTGTGCTGCTGAATAACTTCTATCCAGGGAGGCCAAAGTACAGTGAAGGTGATAACGCCCTCCAATC
GGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCACCTACAGCCTCAGCAGCACCTGACGCTGAGCA
AGCAGACTACGAGAAACACAAAGTCTACGCCCTGCGAAGTCACCCATCAGGGCCTGAGCTGCCGTACAAGAGCTC
AACAGGGGAGAGTGTAGAGGGAGAAAGTGCCTCCACGCTCAGTCCACCTCACCCTCCCTCCTTGG
TGACCCCTTTTCAACAGGGGACCTACCCCTATTGCGGTCTCAGCTCATCTTCACCTCACCCCCCTCCCTCCTTGG
CTTAAATTATGCTAATGTTGGAGGAGAATGAATAAAAGTGAATCTTGCAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 26 (BC030813)

GAGGAACTGCTCAGTTAGGACCCAGACGGAACCATGGAAGGCCCAGCGCAGCTCTTCCCTGCTACTCTGGCTCCC
AGATACCACTGGAGAAATAGTGTGATGACCGAGTCTCCAGCCACCCCTGTCTGTCTCCAGGGAAAGAGCCACCCCTCTCCT
GCAGGGCCAGTCAGAGTGTACAGCAACTTAGCTGGTACCCAGCAGACACCTGGGAGTCTCCAGGCTCGTCATCTAT
GGTGCATCCAGCAGGGCCAGTGGTGTCCAGCCAGGTTAGTGGCAGTGGGTCTGGACAGAGTTACTCTCACCACAG
CAGCCTGCAGTCAGAAGATTGAGTTACTGTAGCAGTATAAAAGTGGCCGCACACTTTGGCCAGGGGACCA
AGCTGGACATCAAACGAACAGTGTGGCTGACCATCTGCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGAACT
GCCTCTGTTGTGCTGCTGAATAACTTCTATCCAGGGAGGCCAAAGTACAGTGAAGGTGATAACGCCCTCCAATC
GGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCACCTACAGCCTCAGCAGCACCTGACGCTGCCGTACAAGAGCTC
AACAGGGGAGAGTGTAGAGGGAGAAAGTGCCTCCACGCTCAGTCCAGGCTGACCCCCCTCCATCTTGG
TGACCCCTTTTCAACAGGGGACCTACCCCTATTGCGGTCTCAGCTCATCTTCACCTCACCCCCCTCCCTCCTTGG
CTTAAATTATGCTAATGTTGGAGGAGAATGAATAAAAGTGAATCTTGCAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 27 (NM_003516)

CGACTTCCCGATGCCAGGCAGGAGTTCTCTCGGTGACTACTATCGCTGTATGCTGGTGGCAAGCAAGGAGGC
AAGGCCGCCAAGGCCAAGTCGCGCTCGTCCCGCGCTGGCCTCAGTCCCGGTAGGGCGAGTGCATCGCTGCTGCG
CAAAGGCAACTACCGGGAGCGAGTGGGGCGGGCGCCGCTACATGGCTGCGGTCTCGAGTATCTGACCGCCGAGA
TCCTGGAGCTGGGGCAACCGGGCTCGGACAACAAGAAGACGCGCATCATCCCTCGTCACCTCAGCTGCCATCCG
AACGACGAGGAACATGAAACAAGCTGCTGGCAAAGTCACCATCGCCAGGGCGGTCTGGCTAACATCCAGGCCGTACT
GCTCCCTAAGAAGACGGAGAGTCACCAAGGCAAAGGGCAAGTGAGGCTGACGTCGGCCCAAGTGGGCCAGGCCG
CCCGTCTCGAAGGGCACCTGTGAACCTCAAAGGCTCTTCAAGGCCACCCACGTTCAAAAGAGTTGTTAAT
GCTG

Sequenz ID: 28 (NM_018639)

ACGAGGCCTGGCGGGGGCGGGCGGGGGGGCATGAGGGCCCGCGGCCGGGGCTGAGGCGCCGCCGCGCTGCC
GGGGGGCGCTCGCTCCATGGAGGCCGGAGAGGAACCGCTGCTGCTGCCACTCAAGCCGGCGCCCCCACC
AGTTTGTGAAAGTCCAGCTGTGAAACCTGGAGCGTCGCCTCTCCCGAGATGGCTCTGGTTGCTGGTCTCAAGGA
CACTGCATCGTCAAACCTGATCCCTGGCGTGGAGGAGCAGTTACCTCTAAAGGTTGAAGCCAAGGCCAAGTAG
AAAAAATGAGACGAAAGGGGGGGAGCCAAAAGAGAAGACGCTGGACTGTGGTCAGATTGTCAGTGGGGCTGGCCTCA
GCCCGTGGCTTCCCAACCCAGCAGGAAGCTGCGACGCCACCCCAAGTCCCCGATGTCCTTGCTGGTTCT
GCTACGGGACTCAACGATGGCAGATCAAGATCTGGAGGTGAGACAGGGCTCTGCTTTGAATCTTCCGGCCACCA
AGATGTCGTGAGAGATCTGAGCTTCACACCCAGTGGCAGTTGATTTGGTCTCCGCGTCACGGGATAAGACTCTCGCA
TCTGGGACCTGAATAAACACGGTAAACAGATTCAAGTGTATCGGGCCACCTGCAGTGGGTTACTGCTGTTCACTCC
CCAGACTGCAGCATGCTGTGCTGAGCTGGAGAGAAGTCGGCTTTCTATGGAGGAGTGGCTACACGTTAATTG
GAAGCTAGAGGGCCATCAAAGCAGTGTGACTCTCCCGACTCTGCCCTGCTTGTACGGCTTCTTACG

ATACCAATGTGATTATGTGGGACCCCTACACCGGCGAAAGGCTGAGGTCACTCCACACACCCAGGTTGACCCCGCCATG
GATGACAGTGACGTCACATAGCTCACTGAGATCTGTGCTTCTCTCAGAAGGCTTGTACCTGCCACGGTGGCAGA
TGACAGACTCCTCAGGATCTGGCCCTGGAACTGAAAACCTCCATTGCATTTGCTCTATGACCAATGGGCTTGCTGCA
CATTTTTCCACATGGTGGAGTCATTGCCACAGGGACAAGAGATGGCACGTCAGTTCTGGACAGCTCCTAGGGTCTG
TCCTCACTGAAGCACTTATGCCGAAAGGCCCTCGAAGTTCTTAACAACCTTACCAAGTCCTAGCAGTCCAACTCCCAA
GAAAATGAAAGAGTTCTCACATACAGGACTTTAAGCAACACCACTTGTGCTTCTTGATGAAATAGCATTCTGGGATTGT
CTGTCAAAGGGAGTTGCTGGAATAATGGGCCAACATCTGGTCTTGATGAAATAGCATTCTGGCATGTGAAAGTCAGTCT
AATGTAGCAAACAGATTCCAGTGTACTAGTCATGGATCTTCTCCCTGGCATGTGAAAGTCAGTCTAGAGGAAGA
GATTCCACTTGCACGGCAACAGAGCCTACGTTAAATTTCAGTCCAGTTATGAAACAGCAAGTGTGAACTCTTCTGCT
TGTTTGATTCAAAGTGCAGTTACTGATGTTGTTGATTATGCAACTAAGTAGGCTCCAGAGCCTCTCTAGTGGCAGA
GCAGCTCACACTCCCTCCGCTGGAACCGATGGCTTCTGCCTAGTACTTATCCTTGTGTTCTGATGCACTGGTAGCATTG
GTTCAAGTTCTCCCTGCTGTTGTCAGAGTTGCTGTTGATGTTGGCCAAGTGCTTCTTCTTGTGACCTGACCTG
CAGGACAGTTCTGGAGCCATTGGTATGAGGTATTAAATTAGCTTAACAAATTACAGGGACTCAGAGGCCGTGCT
CCTGACCGATCCAGACACTTACTGGCTTTTTTTTTTTAAACAAATGGTGTGCATGTGAGGAAATGACAAATT
GTATGTCAGATTATAACAGGATGTTCTAAACCGCATGACTATTCAAGATGGTACAACAGTGTGTTCTGATTATCTAA
AGCATCATATTATTGTATTCTCAACAGATGTTAAAGGTACAACAGTGTGTTCTGATTATCTAAACCATAGTAC
TTAATTGAACAGTGTGAAAGATGCTTAAATTGTGTAAGAATTGGTGTAGTCATGACTTTAGTGATACTCTTATGAC
GAGATCTGTCCTGCTGTTAACTCATTGGATTAACTCAGCTGGTTCAACTCTACTGCGAAACAAAATAGCTCCTTAA
AAGTACTGTTCTCCCTCAGTGGCATGTAGTTATCTAAAGACACCTCATTCAAACAAAACCTGCCCTAGGAAAATT
TATATTAAATTATTAAAGAAATACAACATCTTATTCTTAGCTTCAAAAAAAAAAAAAAA

Sequenz ID: 29 (BC029812)

GGGCGATGAGAGCGGGTACTGCGAAGTGCCTGGCGATGCTGCTGCCCGGTGATACGGAGAGCAACAGTTCCCCAGC
AACACCCCTCCCCGACACAGGCACACACCCCCCGACAGGCACGCACACCCACAGTGCCTGGCTCGCTGCCCTC
CTCTATTGGCCCAAGGAAGCCACCCAGCCCCGCCACGCAGAGCCAGAGGAAAGAAAGCCTCATGCCCTGAGCCGAGGGG
AGCACCATGGATCTGACAAAAATGGGATGACTGAGCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
CCAGATGCGGCTGGCGGGACTTGTGCGATGTGGTATCATGGTGGACAGCCAGGGAGTTCCACGCCACCGGACGGTGC
TGGCCTGACCAGCAAGATGTTGAGATCCTTCCACCGCATAGTCACACTATACTTGGACTTCTCGCCAAAG
ACCTTCCAGCAGATTCTGGAGTATGCATATACAGCCACGCTGCAAGCCAAGGGGGACCTGGATGACCTGCTGTATGC
GGCGAGATCCTGGAGATCGAGTACCTGGAGGAACAGTGCCTGAAGATGCTGGAGACCATCCAGGCCCTAGACGACAATG
ACACGGAGGCCACATGGCCATGGCGATGGCGGGCGAGGAAGAAGAGGACCGCAAGGCTCGGTACCTCAAGAACATCTTCATC
TCGAAGCATTCCAGCGAGGGAGAGTGGGTATGCCAGTGTGGCTGGACAGAGCCTCCCTGGGCCATGGTGGACAGAGCC
TTCAGTCTCCACTCATTGGTCTTCAGCCATGAGTCCCACCAAGGCTGCAAGTGGACAGTTGATGACCATAGGACAGT
CTCTCTGCAGGGAACTCTCAGCCACCTGCAGGGCCCGAGGAGGCCAACTCTGGCTGGGGGTGGCGGCACCCCTGGGGTG
GCTGAGGTGAAGACGGAGATGATGCGAGGTGGATGAGGTGCCAGGCCAGGGCTGGGCCAGGGAGTCCAGCATCTC
AGGAGGGATGGGGACAAGGGTGGAGGAAGAGGCAAAGAGGGCCCTGGGACCCGACTCGAAGCAGCGTCACTCAGAGT
CTAGGGAGCTACACTATGGGGAGAGGAGGTGGCAGCGAGGTGCCACCCCGACTGAGGCTGCCAGGCCAGGGCCACTGGC
CGACCTGAGCACCCAGCACCCCCCGCTGAGAAGCATCTGGCATCTACTCCGTGTTGCCAACACAAGGTGACGCTGT
ATTGAGCATGCCGCTTGCCTGAGCTGAGGAGGAGCTGTTCAAGCAAGCTGGGGAGCTGGCTGTTGGCATGAAGTCAGAG
CCGGGACCATCGGAGAGCAGTGCAGCGTGTGGGTCAGCTCCTGATAACGAGGCTGTGAGCAGCACAGGAAGCT
CACAGTGGGATGAAGACGTACGGGTGCGAGCTGCGGAAGCGGTTCTGGATAGTTGCGCTGAGAATGCACTTAC
TGGCTATTAGCGGGTGCCAAAGCCTTGTCTGTGATCAGTGCAGGTCACAGTTCTGAAGGAGGATGCCCTGGAGACA
CACAGGCAGACCCATACTGGCACTGACATGGCGTCTTCTGTCTGCTGTGTTGGAAAGCGCTTCCAGGCGCAGAGCGCACT
GCAGCAGCACATGGAGGTCCACGCCGGCTGCGCAGCTACATCTGCACTGAGTGCACCGCACCTCCCCAGCCACACGG
CTCTCAAACGCCACCTGCGCTCACATACAGGCACCCACTACGAGTGTGAGTTCTGAGCTGCTTCCGGGATGAG
AGCACACTCAAGAGCCACAAACGCATCCACACGGGTGAGAAACCCACTACGAGTGCACAGTGGCTGGCAAGAAGTTGAGCCT
CAAGCATCAGCTGGAGACGCACATAGGGTGCACACAGGTGAGAAGCCCTTGTGAGTGTAACTCTGCCACAGCGCTCCC
GGGACTACTCGGCCATGATCAAGCACCTGAGAACGCACACGGCGCTGCCCTACAGTGCACCATCTGCACAGAGTAC
TGCCCCAGCCTCCCTCATGCAAGAACCATGAAGGGCCACAGGCCAGGGAGATCCCGCCGACTGGAGGAGTAA
GACGTACCTCTACTGTGCTATGTGTAAGGGAGGCCGCGGGCGTGGAGGCCAGGCCAGGAAAGAAGAGTTGG
AGTGAGATGAAGGAAGGACTATGACAAATAAAAAAAAAAAAAA

Sequenz ID: 30 (NM_021052)

ATGTCTGGACGTGAAAGCAAGGCGCAAAGCTGGGAAAGCTAAACGCTTCTCCAGGGCCGGTCTTCAGTTCC
AGTTGGCCGTGTGCAACGCCCTCCCGAAAGGCAACTACTCCGAACGAGTCGGGGCGCGCTCCAGTGTACCTGGCAG
CGGTGCTGGAATATCTGACGGCCGAGATCTTAGAGCTAGCTGGCAACGCCGCTCGCACAATAAGAACAGCCGATCATC
CCGCCACCTGCACTGAGCTAGCCATCCGCAACGACGGAGGAGCTAATAAGCTTCTAGGTGCGTGAACATCGCGCAGGGCGG
TGTCTGCCAACATCCAGGGCGTATTGCTGCCTAAGAACAGGGAGGCCACATAAGGCAAGGGCAAGTGA

Sequenz ID: 31 (NM_001911)

CAGGAAAGATGCGGCCACTCTGCTTGTGGCTTCTCCCTACCCACTGGGCTGAGGCAGGGAGATCATCGGAGGC
CGGGAGAGCAGGCCCACTCCGCCCTACATGGCGTATCTCAGATCCAGAGTCAGAGCAGATGTGGAGG

GTTCCCTGGTGGAGAAGACTTTGTGCTGACAGCAGCTCATTGCTGGGGAAAGCAATATAAATGTCACCCCTGGCGCCCAACA
ATATCCAGAGACGGAAAACACCCAGCAACACATCACTGCGCGCAGAGCCATCCGCCACCCCTCAATATAATCAGCGGACC
ATCCAGAATGACATCATGTTATTGCGAGCTGAGCAGAAGAGTCAGACGGAATCGAAACCGTGAACCCAGTGGCTCTGCCCTAG
AGCCCGAGGGACTGAGACCCGGGAGCGCTGTGCACTGTGGCCGGCTGGGGCAGGGTCAGCATGAGGAGGGAAACAGATA
CACTCCAGAGGGTGCAGCTGAGAGTGCAGAGGGATAGGCAGTGCCTCCGATCTCGGTTCTACGACCCCCGAGGGCAG
ATTGTGTTGGGGACCGGGAGGAAACGGAAGGGCTGCCCTCAAGGGGGATTCCGGAGGGCCCTGTGTAAACATGTGGC
CCACGGCATCGTCTCCTATGAAAGTGTGTCAGGGGTTCTCCAGAAGTCTCACCAAGGGTCTCAAGTTCTGCCCTGGA
TAAGGACAACAAATGAGAAGCTCAAATGCTGGATCAGATGGAGACCCCCCTGTGACTGACTCTCTCGGGGACACA
GGCCAGCTCCACAGTGTGCCAGAGCCTAATAACGTCCACAGAGTATAAAATAACC

Sequenz ID: 32 (NM_005907)

CCAACTTATTTAAAACAAAACAATTGTAGGTATTATTATACCACTTCACAGATGATGATAATGAGACCAATAGAAG
TTAAATAACTTGCACAAAGGCCACACAGCTGGTGAATGGAGAACGAATTAAAATCAAGTGAGCATAATTCTAAAAGC
CATCTCTCGTTAGTGTTCCTACTATCCAGGTCTGCCCTTGCTTATTAACTGAAGTTAAGGCATCCTTACCTGTGAT
CACCTAGCCTCTCAGTTGGGGGATCATTACAGGGTTTTAATCCTCAAGGACAGTGGCCTACATTTGTTCCCACGAAA
CTTATTATACATGTCAAGGATGACCTCAGGACAGTACAGCAAGGACACAGTGGCCTACATTTGTTCCCACGAAA
TGACTGGGCATAATCTCAGATCATCTCTTAAAGAATGTGGAAACATCAGCAGAAGAATATTAGTCTTATACAAGTCA
AATCCAAAATGACACATGTGAAACTAATAGAGCTGACTTTCAGCCATGATAGCTTGGCACACCTCACATCCCTGTT
CAACCTCTCCCTCAACGGAGAGCTGCAATTCTGGAAATTCTGTGTGACTTTCCACTTGCCTGTCATTT
AAGGTGAACATTCTAGTTGCTAAGAAAACCCCTTCTTCAATTGGAAATGAAACAGCAATTTTATTACTTTGACCTTA
ATGAGTTGCTGCCCTCAATCTTCTAGGCCCTCATCACGCTCTGCCCTGGCGATCTCTGCCAGACTCC
CCAAGCTGCTAGCGGGTCTGTCCTCCACTCCAGCCCCGCCCTGCAGCCGGCCGACCACAAGCCCCGGGGGG
GCGCGCCGAGGACGCCGAGGGCGAGCCCGCCGCGAGGGGGCAGGGGGGGACCCGGGGAGGGGGGGCTGGAGG
ACAACCTGGCCAGGATCGCGAAAACACAGAGCGGGCTCTCAGGGAAAGCCAAGGAGACCCCTGAGAAGCTGCCCGAGGAG
ATCCAAAGAGACATCCTACTGGAGAAGAAGGGCCAGGACCAGCTGCGTACAAGGCCGCGTTAGGAGCTGCC
CCGGTGGACTCGTGCCTCAATCGGGTGGAGAGCCGGGAGCCGCCAGCCGAGAAAAGGGCAAAGA
TCAAAGAGATGATGAAACATGCTGGAAATAATTATAAGGTTATGCTGGGATTAAATGAACCTAAACCTATATCAAAA
GGAGGCCATTCAAGCAGTTGTTGGTAACATCAAAGGAGCAACTATAGTAGATGCCCTGGATACACTTTTATTATGGA
AATGAAACATGAATTGAGAAGCAAAATCATGGGTTGAAGAAAATTAGATTAAATGTGAATGCTGAAATTCTGCT
TTGAAGTAAATACGTTGTTGGTGACTACTCTCAGCCTACTATCTGCTGGAGAAGAGATTTCGAAAGAAAGCA
GTGGAACCTGGGAAAATTGCTACCTGCATTCTACACTCCCTCTGGAAATACCTTGGGATTGCTGAATATGAAAAGTGG
TATTGGAGGAACCTGGCCCTGGGCTCTGGAGGCAGCAGTATTCTGGAGAATTGGAACCTGCAATTGGAGTTATGC
ACTTGAGCCACTTATCAGGAAACCCATCTTGTGAAAGGTAATGAATATTGAAACAGTACTGAACAACTGGAAAAA
CCACAAGGCCATTCTAACTATCTGAATCCCAGTAGTGGACAGTGGGTCACATCATGTATCAGTTGAGGACTTGG
AGACAGCTTCTATGAGTATTGCTGAAGGCCTGGTAATGCTGACAAGACAGATCTGGAAAGCTAAGAAGATGTATTG
ATGCTGTTCAGGCTATGAGACTCATTGATCCGAAGTCTAGCAGCGGACTAACTTATATCGCAGAGTGGAAAAGGGC
CTCCTGGAGCACAAGATGGGCCACCTGACCTGCTCGGGGGCATGTCGACTCGGGCTGATGCGAGCTCCGAAG
CATGGCCCAACACTACCTGAACCTGGGCTGAAATTGCCGACTTGTGATGAATCATATAATCGAACATTATGAAAC
TGGGACAGCTTCAAGATTGATGGTGTGAAAGCCATCGCTACAAGACAAAATGAAAATACTACATCTACGG
CCAGAAAGTTATGGAGACTTACATGTATATGTGGAGACTGACTCATGATCCAAGTACAGGAAATGGGCCGGAGCGT
AGGCCTTGGAAAACCATTGAGAGTGAATGGAGGCTATTAGGCTAAGGGATGTTACCTCTCATGAGAGTTATG
TGTGAGTGCAGAGTTCTCTGGCAGAGACATTGAAATATTGTACCTAATATTCTGACGACGATCTCTTCCA
CTGGAGCATTGGATCTTCAATAGCGAGGCACATCTCTCCCTATCCCTCTAAAGATAAAAAGGAAGTTGAAATCAGAGA
GGAATAAAAAGACATTATATTCTGCTCCATTCCCTCACTGTATACCTTAATAATTCTTCTGGTAATCAG
GCACATGATGAACCTTGATTAGTAGGCTGTGATTAAGTTCTTAATTGTTGAGTCTTATGTTATTATCATAGG
TATAGTGGACCTAAATTCTTATCATATCTTATAATTGAGCCAGTGATCCACAGTTTTGTTATGTTTTAAG
TAACCTATTATCTCTGGATTTCATGAAGGTGTAATATGTTTTGTTAAACTGAATAGAATTGATAGCGATGACCTTT
AATTATAATTGATTGACTGCAAAACTTTCTCTCAAGAGGAGATGATGCTGCTTAAGCTGTAATGTTG
ATGTTGCAAAAGCCATAATAAAGTATAAAAAGCTTTCTTACAATTGATGTTAATCTGGTTGCTGTCCAC
CAGAGACAGATCTCTGTGACAGCCTCTTATGCAGGGCTATCATTATTGATAGAATGCTCTAAAATACTTCACTCA
CATTGTAATTCAAATTAGAAAGTCATTCAAAGGTATGTCATGTTGACCTCATTGATCGGAAACTGCACTGATATT
GTTGGTTAATTATATTAGTGTGTTCTATTGAAAAA

Sequenz ID: 33 (NM_003523)

ATGCCTGAGCCAGCGAAATCCGCTCCGCCGAAGAAGGGCTCCAAGAAGGCCGTGACCAAGGCCAGAAGAAGGACAG
CAAGAACGCAAGCGCAGGCCAAGGGAGAGCTACTCCGTATACGTGACAAGGTGCTGAAACAGGTCCACCCGACACCG
GCATCTCTCTAAAGCCATGGGATCATGAATTCTTGTCAACGACATCTCGAGCGCATGCCGGCGAGGGCTCCCGC
CTGGCGCATTACACAAAGCGCTCGACCATCACCTCAGGGAGATCCAGACGGCCGTGCGCCTGCTGCTTCCGGGAGCT
GGCCAAGCACGCTGTGTCAGAGGGACCAAGGCCGTTACCAAGTACACCAGCTCCAAGTAA

Sequenz ID: 34 (NM_015523)

GGGGCGACGTTAGCGACTATTGCGCCTGCGCCAGCGCCGGCTGCGAGACTGGGGCGTGGCTGCTGGTCCCGGGTGTG
CTAGGGGGCTCCCTGGCTCAGGCTGTTGCGGGGTGAGGTGGAGTCACGGACGGTTGGGGCCGAGGTGTCCCGCGA

AGGTGGCGCAGCCATGGCGCAGGGAGAGCATGGCTCAGCGATGGCTGGGTGGACCTGGAGATGACAGGATTGGACA
 TTGAGAAGGACAGATTATTGAGATGGCTGTGATAACTGACTCTGATCTCAACATTTGGCTGAAGGTCTAACCTG
 ATTATAAAACAACCAGATGAGTTGCTGGACAGCATGTCAGATTGGTGAAGGAGCATCACGGAGGTCTGGCTTACCAA
 GGCAGTGAAGGGAGAGTACAATTACATTGAGCAGGAGTATGAATTCTGCTTGTACGACAGCAGACTCCTCAG
 GGCTCTGTCACATTGAGGAAATTCAAGTTCATGAAGATAAGAAGTCTTGACAAATACATGCCAGTGTACGAAACAT
 CTTCATTATAGAATAATTGATGTGAGCACTGTTAAAGAACTGTCAGACGCTGGTATCCAGAAGAAATATGAAATTGACC
 AAAGAAGGCTGCTTCTCATAGGGCACTTGTGACATTAGTGAAGACATCAAAGAGCTTCAGTTTACCGAAATAACATCT
 TCAAGAAAAAAATAGATGAAAAGAAGAGGAAATTATAGAAAATGGGAAATGAGAAGACCGTGAGTTGATGCCAGTTA
 TCATGCTGCCACTACATCGTTATCTGGAGGCAACTCTGGTTTTTTTCTCACGCTGATGGCTTGGCAGAGCACCT
 TCGGTTAACTTGATCTCCAGATTGATTACTCAAGCAGACACGAAATACTATTTCCTTAATATGCTGTTCC
 ATTATGACACAGCAGCTCCTTGTAAAGTACCAAGGTATGTCATCCCTGGTACATATATGCAATTGCTTTAACCAATT
 TCTTTGTTAAATAAAATAAGTAAATAAGCTAGTTCTATTGAAATGCAAAAAAAAAAAAAAA

Sequenz ID: 35 (NM_003527)

ATTCTGTTATTGAGTGCTCTTCACCTCTCCGCCATGCCGACCCGGCTAAATCTGCTCTGCCAAAAAGGGC
 TCCAAGAAAGCCGAACCAAGGCCAGAAAAAGGACGGCAAGAAGCGCAAGCGCAGCCGAAAGAGAGTACTCTATCTA
 CGTGACAAGGTGCTGAAGCAAGTCCACCCGACACCGGCATCTCATCGAAGGCCATGGGCATCATGAACCTCTCGTCA
 ATGACATCTTGAGCGCATCGTGGCAGGCTCCGCTGGCATTACAACAAGCGCTGACCATCACCTCCAGGGAG
 ATCCAGACGGCGTGCCTGCTGCTGCCGGGAGCTGGCCAAGCACGCCGTGCGAGGGCACAAAGGCCGTACCAA
 GTACACCAAGCTCCAAGTGAGCTCGCAGCAATCAAAGGCTTTAGAGCCACTCAC

Sequenz ID: 36 (NM_015277)

GGGCACTGCTTAAACTGGGAAGGAGGAAGACGAGGCCAGGGAGGCCGGAGGGTCACCAAGGTAGATTCCAGCAGCGCT
 AGTCCAGCTGAACACTTCCAGCCTGTTTCAGCAGCTTGAGGAAAAGTATAGTGTGATCCGTATGTGAAACTTTCTATT
 GTACGTAGCGGATGAGAATAGAGAACTTGCTTGGTCCAGACAAAAACAAATTAAAAAGACACTGAACCCAAAATGGAATG
 AAGAATTATTTCAGGGTAAACCCATCTAACATCACAGACTCTATTGAGTATTGACAAAATAGACTGACACGAGAC
 GACTTCCCTGGGCCAGGTGGACGTGCCCCCTTAGTCACCTTCCGACAGAAAGATCCAACCATGGAGCGACCCATACATTAA
 GGACTTTCTCTCAGACCAAGAAGTCATAAGTCTGAGTTAAGGGATTTTGCGATTGAAAATGGCTATATGCCAAAAAA
 ATGGAGGTCAAGATGAGAAGAAACAGTGACCAAGAGGGATGACATGGAGCATGGATGGAGTTGACTCAAATGACTCG
 GCTTCTCAGCACCAAGAGGAACCTCCCTCTGCCCTCCGGGTGGAGAAAAGTGGACAATTAGGCCAAC
 TTACTATGTCACCACAAACACCGGACACTCAGTGGCACAGACCAAGCCTGATGGACGTGCTCTGGAGTCGGACAAATA
 ACATCAGACAGATCAACCAGGAGGCAGCACACGGCGCTCCGCTCCGAGGCACATCAGCGAAGACTTGGAGCCGAG
 CCCTCGGAGGGCGGGGATGCCCCGAGCCTGGAGACCATTTCAGAGGAAGTGAATATCGCTGGAGACTCTCGTCT
 GGCTCTGCCACCACCGCCTCCAGGATCTGGACCGCCCTCAGGAGCTGTCAGAGGAACTAAGCAGAAGGCTTC
 AGACTCCAGACTCCAATGGGAACAGTTGAGCTCTTGATTCAAAGAGAACCCCTCTCAAGGTTGAGGTATGCACT
 GTCACCGACGCACTGAGAACAGGGCATCTACCACCGCCAGTGGCCAGCTGGAGAGCGCGTTCATCAACTGTCAC
 GGGTGGTGGAGGAACCAACGCCATCAGTGGCTATGTACATACCACGCCGGTCTGCCCTCAGGCTGGAGAAAGAAAAG
 ATGCTAAGGGCGCACATACTATGTCATACAAACATCGAACACAACTTGGACTCGACCTATCATGCACTGAGAA
 GATGGTGCCTCCGGATCAGGCCACAAACAGTAACAAACCATCTAACGACCTCAGATCCGCCGCTCGTAGCCTCAGCTC
 GCCAACAGTAACTTATCTGCCCGCTGGAGGGTCCAAGGACTCACCGTACGTCGGCTGTGAAAGACACCCTTCCA
 CCCACAGTCCCCACAGCCATCACCTACAACCTCCCCAAACCACACAAAGTCACACAGAGCTTGTGCCACCCGGC
 GGGAAATGAGGATAGGCCAACGGCGGCCCTCTCATGATCATACACAAAGACTACACACCTGGAGATCCACG
 TTGAAATTCCAGTACATATGCGGTCAAAGACATCTTAAACCCCAATGACCTGGCCCCCTCTGGCTGGAG
 AAAGAATTCACTGGATGGCGAACGTTTATATGATCATATAGCAAATTACTCAGTGGAGAACCCAAGACTGCA
 AACCCAGCTATTACTGGTCCGGCTGTCCTTACTCCAGAGAATTAAAGCAGAAATATGACTACTTCAGGAAGAAATTAAA
 GAAACCTGCTGATATCCCCAATAGGTTGAAATGAAACTTCACAGAAATAACATATTGAGAAGACTCTGAGAATTAA
 TGTCCGTGAAAGACAGATGCTCTAAAGACTAGACTGTGGATTGAGTTGAATCAGAGAAAGGTCTTGACTATGGGGT
 GTGCCAGAGAATGGTTCTCTACTGTCCTAAAGAGATGTTCAACCCCTACTACGCCCTTGTGAGTACTCTGCCACGG
 CAACTACACCCCTCAGATCAACCTAAATTCAAGGCCCTGTAATGAGGATCATTGCTCTACTCACTTTATTGGAAGAG
 TTGCTGGTCTGGCGTATTTCATGGGAAGCTTCTAGATGGTTCTTCATTAGACCAATTAAAGATGATGTTGGAGAAG
 CAGATAACCCCTGAATGACATGGAATCTGGATAGTGAATATTACAACTCTTGAATGGATCTGGAGAACCCCTAC
 TGAGCTGGACCTCATGTTCTGCATAGACGAAGAAAATTTGGACAGACATATCAAGTGGATTGAGGCCAACGGTCA
 AAATAATGGTCACAAATGAAAACAAAAGGGAAATATATGACTTAGTCATCCAGTGGAGATTGTAACAGGGTCCAGAAG
 CAGATGAACGCATTCTGGAGGGATTCAAGAACACTTCCTTATTGATTGATTAACAGGATGAAACGGTCA
 GTTGCTCATGTGGCCCTCGGTGATGGATGGAATGACTGGAGACAGCATTCTATTACAAGAACGGTACTGCCAA
 ACCACCCCGTCATTCACTGGTTCTGGAGGGCTGTGACTCATGGACGCCAAAGCGTATCCGGTACTGCAGTTGTC
 ACAGGGACATCGCGAGTACCTATGAATGGATTGCGCAACTTATGGTCTTCAATGGTCTCAGCTGTTACAATAGAGCA
 ATGGGGCAGTCTGGAGAAAATGCCCCAGAGCTCACACATGCTTAAATGCCCTTGACTTACCTCATATGAAACCTTGAAG
 ATTTCAGAGAGAAACTTCTCATGGCCGGAAAATGCTCAAGGATTGAGGGGGATTAAGCACCCTGTACCTGGGG
 GTGGTTGTTCTCAAGCAAGTTCTGCTGACTTTGCAATTGCTAACAGACTTTGAGAGGGCAGTGGCAGAGAGCAG
 CTGAGGAGCATGGCCCTGGAGGCCAGCCTTACCCACCGCACTGTCACAGTGGATGCCGGAACCTGGTCCAGCTGAG
 TTCTGCTTCCCACCAAAATTCAACTGGTGTGATGTCACACTATTACATTTCAGGAGGACTTAATGCTATT
 GTTGTGCCTCTGAGGCAAAGCCCTAATAAAATTTCACATCCTTAAACAAAAAA

Sequenz ID: 37 (NM_000250)

GACAATATCAGGTGAGCTGGAGGTGGGTCCTTGGAAAGCTGGATGACAGCAGCTGGCAAGGGGATAAGAGAGCAGTGA
GCCCTCCCTCAAGGAGGTCTGGCTTATCCATAGACAGGGCCCTGAGGTGGGCTGAGGTACAAAGGGGATTGAGC
AGCCCAGGAGAAGAGAGATGGGGTTCCTCTCTCTCTCAGATGCATGGTGGACTTAGGACCTTGTGGCTGGGCTGG
GGTCTCACTGCAGAGATGAAGCTGCTCTGGCCCTAGCAGGCTCTGCCATTCTGGCCACGCCAGCCCTGAGAAG
TGCTGCTCCAGCTGTCTGGGGAGGTGGACACCTCGTGGTGCAGCTCCATGGAGGAGGCAAGCAGCTGGGACA
AGGCCTACAAGGAGCGGGAGAAGCATCAAGCAGCGGCTCGCAGCGCTCAGCCAGCCCCATGGAACCTCTATCCTAC
TTCAAGCAGCGGTGGCAGCACCAGGACGGCGGTGAGGGCCGCTGACTACCTGCACGTGGCTTAGACCTGCTGGAGAG
GAAGCTGCGGTCCCTGTGGCGAAGGCCATTCAATGTCAGTGTGCAGGCCGCCAGCTGAATGTGTTGCAAGT
CAAGGGCTGCGCTACCAGGACGTGGGGTGAATTGCCGGAGCAGGACAATAACCGCACCATCACCGGGATGTGCAAC
AACAGACGAGCCCCACGCTGGGGCCTCCAACCGTGCCTTGTGCCTGGCTGCCGGAGGAGTATGAGGACGGCTTCTC
TCTTCCCTACGGCTGGACGCCGGGTCAGCGCAACGGCTCCCGGTGGCTCTGGCTCGCGGGTCTCCAACGAGATCG
TGCCTCCCACTGATCAGCTGACTCCGGACCAGGAGCGCTCACTCATGTCAGATGGGCCAGCTGGGAC
GACCTCGACTTCACCCCTGAGCCGGCCGCCGGGCTCTCGTCACTGGCGTCAACTGCCAGCTGCGTTGAGCA
GCCGCCCCGCTTCCCGCTCAAGATCCCACCAATGACCCCCGATCAAGAACCAAGCCGACTGCATCCCCTTCCG
CCTGCCGGCTTGGCCGGAGCAACATCACCATCGCAACAGATCAACCGCTCACTCCCTCGTGGACGCCAGCATG
GTGTACGGCAGCAGGAGGCCCTGGCAGGAACCTGCGCAACATGTCACAGCTGGGCTGCTGGCGTCAACCAGCG
CTTCAAGACAACGGCCGGGGCTGTCGCCCCTTGACAACCTGACGATGACCCCTGTCCTCCTACCAACCGCTAGCG
CATCCCCCTGTCCTGGCAGGGACACCGTTCAGTGGAGATGACCCGAGCTCACCTCCATGCACACCCCTTACTCGG
AGCACAACGGCTGGCACAGAGCTCAAGAGCTGAAACCTAGGTGGGATGGGAGAGGCTTACCAAGGAAGCCGGAA
GATCGGGGGCATGGTCCAGATCATCACTTACCGGACTACCTGCCCTGGTGTGGGCCAACGGCATGAGGAAGT
ACCTGCCACGTACCGTCTACAATGACTCAGTGGACCCACGATCGCCAACGTCTTACCAATGCCCTCGCTACGGC
CACACCTCATCCAACCCCTCATGTCGCTGGACAATCGTACAGGCCATGGAAACCAACCCCGTGTCCCCCTCAG
CAGGGTCTTTTTCGCTCTGGAGGTGCTGCTGGAGGTGGCATTGACCCATCCTCGGGGCTCATGCCACCCCTG
CCAAGCTGAATCGTACAGAACAAATTGCACTGGATGAGATCCGGAGCGATTGTTGAGCAGGTGATGAGGATTGGGCTG
GACCTGCTGCTGTCGACATGCACTGCGAGCAGGGACACGCCCTCCAGGATAACAATGCCCTGGAGGCGTTCTGTGG
CCCGCAGCTGAAACTGTGGCCAGCTGGCAGCGTGTGAGGAACCTGAAATTGGCAGGAAACTGATGGAGCAGTATG
GCACGCCAACACATCGACATCTGGATGGCGCGTGTCCAGCGCTCTGAGCGCAAAGGCCGTGGGCCACTCCTC
GCCTGCATCGTACCCAGTCAAGGAGCTCCGGATGGTGTGGTCTGGGAGAAGGAGCTGGTCAAG
GCAGCAGCGACAGGCCCTGGCCAGATCTCATGGCCCGGATCATCTGCGACAACACAGGATCACCACCGTGTCAAGA
ACAACATCTCATGTCACACTCATATCCCGGGACTTGTCAACTGCACTACCTTCTGCATTGAAACCTGGCTTCTGG
AGGGAGCCTCTAGAGGCCAGGTAAAGGGGTGCAAGCAGTGGAGGGTATATCTGGGCTGCCAGTTGGAAACCACGGAGAT
CTCCTGCCCTAGATGAGGCCAGGCCCTGGTGTGGTGTGAGAAAATGAGTGTACTAGACGTTCATTTGTGTGCTCAT
GTATGTGCAAGTATAAAATTGGCTTTCATGCGTGTGTGTGAGACATGGGAGGTGTTCATGGGTTATGTGTAT
GTGCCATTATGTGAGTGTGTGTGTGATGAGAAACTAGTGTGAGGAGCAGAGCGGACTGGTGGAGGAGC
ACAGCTCAGGAACAGACTGCGCTGGTCCAATCTGGCTGTGGCTGTGAGCTATGTGACCTGAGCAAATTACCT
CCTAAACAAGAGTTTCTCTGTAATTACATCTGTCATGGTTCTGGAGGGCCACTTGTATCCTCTGGTCTTC
ATTATTGAGCACCTACTACATGCAAGCACTGTACTAGGCGTGAGAACATATAGAGGCAAGAAAGAGATACCAAGATG
CCATCTGTGTCCTGGTTAGCGAGAGCTGGCGCTGGAGGGATAAGCCAGCTGCAGCTGGGCTGTGGTTGA
TTATGGGCCAGGCCAGGCTCAGGCCATGGCTCCCTTTCTGTACCTTACCCCTGATTCTGCTTATTCACTGAAG
TCTCTGAAGAGGAACGGGCTGTTGCCCTTCTGTACCTTATTGCTCCAAATGTTATGATAATAAGGCACCG
CTGATGGGACCTCC

Sequenz ID: 38 (NM_015972)

GCCTCCCTCCTGCTCGCTCCCGCCTCGCGCTATGGGACAGAGCCCCGATCCGCCAGCACCCACCTGAGGATCCAGA
AACCGCCCCAGCGATGGAAAGGGATCAGGAGCTGGAGAGAAAATATCTGGATTGAAAGACCTCAATGGCTGAAGCGAGA
GGAAGACAGCCCTGGAAATGGTCCAGGCAGCTGGAAACAGATAGACACTGTGTGACATTGTATTGACGAGGAAGACCAT
ACCCTAGGAAATTCTCTACGTTACATGATCATGAAGAACCGGAAGTGGAAATTGGTTACACTACGACCCATCCTC
AGAGAGCAAATTAAATTACGATTCAAGACTCGAGGTACCTCCAGCTGTGAGGCATTTCAAGAGAGGCCGTAATGAGC
TCATGAATGTCTGCCAACATGTGCTGACAAGTTGAGGCCAGCATAAAGGACTATAAGGATCAAAAGCAAGCAGAAAT
GAATCCACATTCTAGTCCTTATGCACTGAGTACAGCATACTCTGTCCTCAGAAAGCGTGATTCTAGCTGTTGACCCCTG
GAATCTCTGCAAGAACCTCTGATTCTCTAATAAAATTCCCTTTTATTTAAAAA
AAAAAA

Sequenz ID: 39 (NM_021063)

ATGCCTGAACCTACCAAGTCTGCTCTGCCCAAGAAGGGCTCCAAGAAGGCCGTGACTAAGGCTCAGAAGAAGGACGG
GAAGAAGCGCAAGCGCAGGCCAAGGAGAGCTATTCACTGATGTCAGGAGCTGAAGCAGGTCCATCCGACACCG
GCATCTCTCCAAGGCAATGGGATCATGAATTCTCGTCAACGACATCTCGAGCGCATCGAGCGAGGCTTCCCGC
CTGGCGCATTACAACAAGCGCTCGACCATCACCTCCAGGGAGATCCAGACGCCGTGCGCCTGCTGCTTCCGGGGAGCT
GGCAAGCACGCCGTGCGAGGGCACCAAGGCCGTACCAAGTACACCAAGTCCAGTAA

Sequenz ID: 40 (NM_017802)

AGACACGTGGTCCGGTGGAAAGTGTCCCTGCTGCAGCAGGAGCTCACGCTGGGAGGGCAGACACATGGTCCCGTGGAAAG
TGTCCCTGCTGCAAGCAGGAGCGCTAGTGTCTGGGAGGGCGGACACGTGGCTCCGGCAGAAGTGTCCGCCAGCAGGAGCG
CTCGTGTGGAAAGGTAGACACGTGGCCGGCGGAAGTATCCTGCGAGCAGGAGCTGGCGCTGGGAGGGCAGACAA
CGTGGTCCGGCGAAGTGTCTGCTGCAGCCAGCGGGAGCTCGCCTGGGAGGGAGACAGGCCCTGCCCTGGGAGGAAGCC
CTGCCACACGTCGTGCCACGCTGAGGGCTGTCTGCAGCCCTCCAAGACCCGAGATGCGCTGAAGCTGTTCTCCAT
CCTGTCCACCGTGTCTCAGAGCCACGGACACCATAACTCCAGGGCAGTTCCAGCTACCTCGAGACGGTGACAA
AGGACATCCTGGCCCCAATCTGCACTGGCATGCCAGGGAGGACAGCCGCCATCCGACGGCTGCCGTGCTGCCTGCCTC
TGGCGCTCACAGCAGCGAGGTCTGCTGCCAGAGCAGATAAGGGACGTGCAGGAAACACTGATGCCCAAGGCTCTGAC
CACCTGGAGGAGGATTGAAAGATGACCGCAGTGTCTCATGCCGTATTATCAACACGTTCTAAAAACCTGGCGGCA
TGACGGATCCAGAGAAACTCATCAAGATTATCTGCACTCTAAACGCTAGATGACGTGTCCAACGATGTGAGGATG
GCAGCCGCTCCACCTGGTACCTGGCTGCAGTGTCAAGGGTGCACAGCAAATCTACTATCAGAGCAGTGTCCA
GTACCTGTACCGAGAGTTGCTGGTTCACCTGACGATCCAGAGAGGGCATTCCAGGATGCAATTAGAGGTCTCTCAAAG
AGGGCAGCGGGCTTCCCAGATCTCTGGTAGGGAGACGGAGGCCGTCATCCACAAGCACCGCTCGGCCACCTACTG
GAGCAGCTCTGCAAGCATGTGCAAGGCCGTGCCAGCACACAGTGACCCAGCTGGTTTCAGGCCACGGCACACCCCTGT
CACCTGAGCCAGAGTTGTGGCTTAAATCTCATAAACAAGGCACCTCTGTGCCAGCAGTGAGACTGTGACAGCAAGAA
TGTACTCCTCAGGACACCTGGCCGCTTCTCCCTGAAATAACAGCCTCTGAGTGGATTCTGCATGTTATGIGATTG
TGTTCAAGAGGGCTCCAAACATCTGCACTGATTTGAAATTAAAGTAAGTCCAGCCGCTCCCTCCGAGC
TCAGCAGCATCTAGATTAAAGCCTCACGTGCGCAGCTGGTCACTGAACTATTGGCTGCATCTGCTTAGTG
GAAGGTTTTACCTACTTAACAAAAAAAGAAGCCAAAGTGATTAGAAAGAAATGAAATCTCTTTGGTTCTGT
ACTGAAATTAAATATCTCAGTAACAGACTAAAGGAATTAGAACACTTACCAAGATTTCTCTGTTAA
TATATACTGGGACTTAAAGTTATATGCTGGTCAACGGTATTTAAGTCGGTAAATGCTAACAGTGTGAAAACAA
TATTTCATGAGATCTAAATTGTTGCCCCATAGGTAGCAGGAAAGTAAAGTTGCACTTCCCTCTCGCACATTCTACAC
CCAAGTGCCTAAAGATCTCATTGTAAGTGGTAGTGTACCGGAAGCCATTGTTACACGGGAAATGCGTATAT
ATTITCAACAAATATTAAACGTTATACCTCATGTTGAAAATTAAATTAAATTGTTAAAAAAAAAAAAAA
AA

Sequenz ID: 41 (NM_003258)

ACTTACTGGGGACGGCCTGGAGAGTACTGGGTTCTGAACTTCCGGAGGGCGCAATGAGCTGCATTAACCTGCCAC
TGTGCTGCCCCGCTCCCCCAGCAAGACCCGGGGCAGATCCAGGTGATTCTCGGCCGATGTTCTCAGGAAAAGCACAG
AGTTGATGAGACCGCTCGCTCGCTCCAGATTGCTCAGTACAAGTGCCCTGGTATCAAGTATGCCAAAGACACTCGCTAC
AGCAGCAGCTCTGCACACATGACCGAACACCATGGAGGCCGTGCCCTGCTCCGAGACGTGGCCAGGAGGC
CCTGGCGTGGCTGTCAAGCATGACGAGGGCAGTTTCCCTGACATCATGGAGTTCTGCAGGCCATGGCAAC
CCGGGAAGACCGTAATTGCTGCACTGGATGGGACCTTCCAGAGGAAGCCATTGGGGCCATCCTGAACCTGGTGC
CTGGCGAGACGCTGGTGAAGCTGACGGCGGTGTGCATGGAGTGCTTCCGGAAAGCCGCTATAACCAAGAGGCTGG
AGAGAAGGAGGTGAGGTGATTGGGGAGCAGACAAGTACCAACTCCGTGTGCGCTCTGCTACTTCAAGAAGGC
GCCAGCCTGCCGGCGGACAACAAAGAGAACTGCCAGTGCAGGAAAGCCAGGGAGCCGGCTGGCTGCCAGGAAGCT
TTTGGCCCACAGCAGATTCTGCAATGCAGCCCTGCAACTGAGGGACCTGCAAGGGCCGCCCTCCCTCTGCCACTG
CCGCCTACTGGACGCTGGCTGATGCTGCCAGCCACTCCAGGAGGAAGTCCGGAGGGCTGGAGGGTGC
CCCTCTGGGAACCTCTCTTGTGGCTGCCACCTGCCGATGCTCCCTCTCCTACCCACTGGTCTGCTTAAAG
TCCCTCTCAGCTGCTGGGACGATGCCAGGCTGGAGCTGGCCCCGCTTGGTGGCTGGATCTGGCACACTCCCT
TTGGGGTAGGGACAGAGCCCCACGCTGTTGACATCAGCCTGCTTCTCCCTCTGCCCTTCACTGCTGAGTTCT
GTTCTCCCTGGGAAGCCTGTGCCAGCACCTTGAGCCTGGCCACACTGAGGCTTAGGCCTCTGCCCTGGATGGCT
CCCACCCCTCCCCTGAGGATGCCCTGGATTACGCCCTCTGTTCTTCTGGCTCAAAGCCCTCCTACCTCTGGT
GGTTCCACAGGAACAACAGCATCTTACCAAGATGGGTGCACCAACCTGCTGGACTTGGATCCCAGGGCTTATC
TCTTCAAGTGTGGAGAGGGCAGGGTCCACGCCCTGTCTGAGTTATGAAATTAAACTAATT

Sequenz ID: 42 (BC011906)

GGCACGAGGGCGCAAGCCGCAAGATGGCGGGCTGGGCTGGCCGCTGAGGCGGGTGGCATGGCTCTGCTGCTGC
GGAGCCCCCGCTGCCGCCGGAGCTGCTGGCCCGGCGACTCTATCACAAGAAGGTTGTTGATCATATGAAAAT
CCTAGAAACGTGGGTCCCTGACAAGACATCTAAATGTTGAACTGGACTGCTGGGGGCTCCAGCATGTGGTGACGT
AATGAAATTACAGATTCAAGTGGATGAAAAGGGAGATTGGGATGCTAGGTTAAACATTTGGCTGTGGTTCCGCAA
TTGCCTCCAGCTCATTAGCCACTGAATGGTGAAGGAAAGACGGTGGAGGAAGCCTGACTATCAAAACACAGATATC
GCCAAGGAGCTGCTCCCTCCCGTGAAGAAGCTGACTGCTCATGCTGGCTGAAGATGCAATCAAGGCCGCCCTGGCTGA
TTACAAATTGAAACAAGAACCCAAAAGGGAGGGAGCAGAGAAGAAATGAGCCCTCCCTGCCAGCAGGCCA
CACCAGCTTTCCCACCTGCTGTGCACTGAGTGTCTGAGGCTTCAAGGCCCTCCACTGAGGCTATGAGATA
CGCACAATACTTGCTGTTCACTGAGTGTCTGAGGCTTCAAGCAGGAAACACAGTTCATTGTTCTGAAATCCTG
TTCAGCCCATTGATCGCCTTAACCTAGTTAATGTTGAGTGTCTGAGCTGAGAACTGAAATTGATAAT
GAAGTTGCAAGTTGATAGGCCGTGAAGTGCATAAGTATCTAATTGACCTGAAATTGAGGGAAATTACAGTA
GAATGCCCTGGTCTGAATATTGATAGAACCAATTGTTGACATAAAACAGATCTGCCATATATATATGTATA
ATAATAAAATAATGGAAGATGAAAAAA

Sequenz ID: 43 (NM_003514)

ACTCACTTCTGACTTAGGCCACAGGTCGTTTACCATGTCGGACGTGGCAAGCAGGGCGGCAAGGCTCGCGCAAGGC
CAAAACCGCTCCTAGAGCTGGCTCAATTCTGTAGGACGAGTCACCGCCTGCTCCGCAAGGGCAACTACGCTG
AGCGGGTCGGGGCGCGCGCCGGTTACCTGGCGGCGTGGAGTACCTAACGCGAGATCCTGGAGCTGGCGGGC
AACGCAGCCCCGCGACAACAAAAAGACCCGATCATCCCGGCCACTTGAGCTGGCCATCGCAACGACGAGGAGCTAA
CAAGCTGCTTGGTAAAGTACCATGCTCAGGGCGGTGTTCTGCTAACATCCAGGCCACTGCTCCCCAAGAAGACTG
AGAGCCACCACAAAGCTAAGGGCAAGTAAGGGCTGAACCTTAAATGTAACATTACAAGACAAAAGGCTTTAGAG
CCACCCA

Sequenz ID: 44 (NM_031894)

GGCCACCCGCCCTTCACTATCCGCCATTCTTGTACCTCAGCTGCTGCCCTCGCTACCGCACCGACTTCGCCCGTGTGCT
CGCCTGCACTTGCCTGCCCCATGGCCACCGCCAGCGTGCAGGTGCGCCAGAAGTACGACACCAACTGCGACGCC
GCCATCAACAGCACATCACGCTGGAGCTACACCTCTACCTGTACCTGTATGGCTTCTACTTCAACCGGGACGA
CGTGGCCCTGGAGAACCTCTCCGCTACTTCCCTGCGCTGTGGACGACAAAATGGAGCATGCCAGAAGCTGATGAGGC
TGCAGAACCTGCGGGTGGCACATTCGCTTACGATATCAGGAAGGCCAGAGTCCAAGGCTGGGAGAGCGGGCTCGTG
GCCATGGAGTCCGCCCTCCACCTGGAGAAGAACGTCACCCAGAGCCTGCTGGATCTGTACCTAGCTGGCCGGAGAACGG
CGACCCCCAGCTGTGCCACTTCCTGGAGAGCCACTACCTGACAGGAGCAAGTCAAGACCATCAAAGAGCTGGGTGGCTACG
TGAGCAACCTGCGCAAGATTGTTCCCCGGAGGCCGGCTGGCTGAGTACCTGCTGACAAGCTCACCTGGCGGCC
GTCAAAGAGACTTGAGGCCAGATGGGCCAACAGGCCACGGGTCCTCCCTGGCTCAGGCCACTAGGCAGGGCGTGCAT
GTTGCCCTTCAGAACGTTCTTCAGTTTATCTTCAGTTTACCATGTTAGCAAAAAGTTATCTGGTTCTCAAAG
DATAAAAGGTGTCCATAAAAAAAAAAAAAAA

Sequenz ID: 45 (AJ296290)

ATGTCTGGCGGCCGAGAGAACGAGAGCAGCAGCACTCCGGTTCCCTGTTCTCTGCCGCCGCTCTGCCCGGCTCAGGCC
TGCTCCAGCTCCGATTCTCCGTGGGGAGAAACTGGAGGCCGCGCCGACGCTGTGACCGGCAGGACCGAGGAGT
ACAGGGCCGCCGCCACACTATGGACAAGGACAGCCGTGGGGCGGCCGACCACTACCACCACTGAGCACCGCTTCTC
CGCCGGAGCGTCATCTGCACCTCAATGCCACTGCGCTGGAGCTTCCCGCCTTCCCTTTCCCTGCCAGGCCAGCAT
CCCCGGCTGTCCCGCAGAGTGTCCACCGGAGCCACCGGGAGAGACCGTGAACGCCACCGCCACTTCCAGGTAG
CCCAGCAGCTCCAGCCGCTGCCGCCCTGGGAACAGGCCGTGCGGGCCCTGCCCTGACTGTCCCCAGCAGTAC
AGCAAAGACGCCAGTGTCCAGCCTAGCCTGTGGGGAGCAAAGAGGAAGCCGCCGGCGAGAAGTGGCAGCGGG
CGGCAGGCCAAGGAGCCACAGGAGAACGGAGCCAGCAGCAGGATGATCGAAGAGCTGGAGACCAAGGCCGTGGAA
TGTCTAACGATGGCGTTCTCAAGTTGACATCGAAATCGCAGAGGCTCTTAAGACGGTCTACAAAGGTCTGGAC
ACTGAAACCACCGTGGAGTCGCTGGTGAACTGCAGGATGAAAGATTAACAAAGTCTGAGAGGAGAGATTAAAGA
AGAAGCTGAAATGTTAAAGGTCTTCAGCATCCAAATTGTTAGATTGATTTATGATTCTGGGAATCCACAGTAAAGGAA
AGAAGTGCATTGTTGGTGAACCTATGACGTCTGGAACACTTAAAGTATCTGAAAGGTTAAAGTGTATGAG
ATCAAAGTTCTAAAGAACGACTGGTCCGTCAGATCCTTAAAGGTTCTCAGTTCTCATCTGAACTCCACCTATCATCA
CCGCGATCTTAAATGTGACAACATCTTATCACGGGCCACTGGCTCAGTCAAGATTGGAGACCTGGCTCTGGCAACCC
TGAAGCGGGCTTCTTGTCCAAGAGTGTGATAGGTACCCAGAGTTCATGGCCCTGAGATGTATGAGGAGAAATATGAT
GAATCGTTGACGTTATGCTTGGATGTGCATGCTGAGATGGCTACATCTGAAATATCCTACTCGGAGTGCCAAA
TGCTGCGCAGATCTACCGTGCCTGACAGTGGGGTGAAGCCAGGCTTGTGACAAGTGTGAAATTCTGAAAGTGAAGG
AAATTATTGAAGGATGCATACGACAAACAAAGATGAAAGATATTCCATCAAAGACCTTTGAACCATGCTTCTCCAA
GGAAACAGGAGTACGGGAGATTAGCAGAGGAAGATGTGGAGAAAAAATAGCCATAAAATTATGGCTACGTATG
ATAATTAAAGAAATTAAAGGAAAATACAAAGATAATGAAGCTATTGAGTTTCTTGTATTAGAGAGAGATGTCCAG
AAGATGTTGACAAGAAATGGTAGAGCTGGTATGTCTGTGAAGGTGATCACAAGACCATGGCTAAAGCTATCAAAGAC
AGAGTATCATTAAATTAAGAGGAAACGAGAGCAGGGCAGTTGGTACGGGAGGGAGCAAAGAAAAAAAGCAGGAAGAG
CAGTCTCAAACAGCAGGTAGAACATTCAGTGTCTCCAGACAGGAATCAAGCAGCTCCCTTGCTAGCACCGGCATAC
CTACTGCTTCTACACTTCAGCTTCAGTTCTACACAAGTGAAGAACCTGAGGGAGATCTGTCTCAGAATCAACATCAACAACT
CAGTACCGAGCAACCCAGTATATCTGTGTTATCTGATGGGACGGTTGACAGTGGTCAGGGATCTCTGTCTCAGAATC
TCGAGTGGAGCAGGCCAACAGACAGTCTTCATATGGTCCCAACATGAACAGGCCACATTCTACAGGCCACAGTCCAGGGCATA
TACCTTCTACTGTCCAAGCACAGTCTCAGGCCATGGGGTATATCCACCCCTCAAGTGTGGCACAGGGCAGAGCAGGGT
CAGCCATCTCAAGTAGCTAACAGGGTTCATCTCCCAACCCATACAACATCTCAGCAGGCCACAGTGGAGAAATACAGCA
GACAGCCCCCTCTCAACAGACAGTCAGTATTCTACAGACATCAACCTCCAGTGAGGCCACTACTGACAGGCCAG
TGAGTCAGCCTCAAGCTCCACAAAGTCTGCTCAAGTATCAGCTGGAAAACAGCTTCCAGTTCCAGGCTACTCTGGCT
ATCCAAGGCAGAACCTCAGATCCCAGTTGCGACACAACCCCTGGTTGTTCCAGTCCACTCTGGCTCATTTCTCCAGT
GGGACAGCCGCTCCTACTCTCTGCTCCCTCAGTACCCCTGCTCTCAGATTCCCATATCAACTCCTCATGTGTCTACGG
CTCAGACAGGTTCTCATCTCCCTCAGTACCCCTGCTCTCAGTACCCCTGCTCTCAGATTCCCATATCAACTCCTCATGTGTCTACGG
ACAACAGCTGCGATCCCAGGGTATCAACTGTGGTCTAGTCAGCTTCAACCCCTCTGACGCCAGTCACTGCT
AAGTCAGGTTCACCCACAGCTCCTACAACCAGCAGTTCACTGAGGAGATGGAAATACCAGCTAACCTGGACAAGCTGCTGAGG
TTCCACTTCTCTGGAGATGTTCTGATGGAGGCTTCCACCTGACTGCCACCACTGAGTACCCAGGAGATTCAAATATT
GCTCCCTCTTCCAACGTTGCTCTGTTGATCCATTCTACAGTCTTCTATCCCCTCCCATGCCAGAGAAGTACTGGCTAC
ACCTGGTACTTCCCACAGTGGTGCAGCCTTATGTGAAATCAAATCTTGTGTTCTATGGGTGGTGTAGGAGGAGCAGG
TTCAAGTGTCCCAGGCCAGGAGGAGTTAGCACAAGCCCCACTACATCTCCAGAAGCAGTTGGAGAGTACTCAG
GGAGTCTCTCAGGGTCTCTGAGGCCAGTTGAGCACAGGCCACCACTTGGCTTCTC
TGTAGACAGTGCACATTCAAGATGTTGCTTCAGGTATGAGTGTAGGCAATGAGAACGTCCTCATCTCCAGTGGAAAGGCATG

AAGGAAGAACTACAAACGGCATTACCGAAAATCTGAAGGAGTCGCTCTGACATGAAAAACTTCAGGCCAAAATTA
AGAATTGAAATGTTCAAATAAAGGAGACCGAGTAGTAGAATGTCATTAGAGACTCATAATAGAAAATGGTTACATT
CAAATTGACCTAGATGGTGACAACCCGAGGAGATAGCAACAATTATGGTGACAATGACTTTATTCTAGCAATAGAGA
GAGAGTCGTTGGATCAAGTGCAGAGAAATTATTGAAAAGCTGATGAAATGCTCAGTGAGGATGTCAGTGTGGAACCA
GAGGGTGTAGCAGGGATTGGAGAGTCTACAAGGAAAGGATGACTATGGCTTTCAGGTTCTCAGAAATTGGAAGGAGAGTT
CAAACAAACCAATTCTCGCTTCCATGCCACAGCAAATAGGCTTCCACTCAGTTACTCAAGTGTTCATTCTG
CGGGAGGCGGTTATAGTGAGTCTGTGCCAGAAAGCCGATTACGAGAATCAAAAGTTTCCCAGTGAAATAACAGAT
ACAGTTGCTGCCTACAGCTCAGAGCCTGGAATGAACTTGCTCACTCTGCATCCCTAGTCTACACAGGCC
TTCTGAACCTAGACGTGCCAAATGACAGAAGGACCCAAACAGCACCTCCAAACTTAGTCATACAGGACCAACATTTC
CAGTAGTACCTCCTTCTTAAGTAGCATTGCTGGAGTCCAAACCACAGCAGCAGGCCACAGCACCAGTCCCTGCAACAAGC
AGCCCTCTAATGACATTCCACATCAGTAATTCTGAGGTTACAGTGCCTACTGAAGAGGGATTGCTGGAGTTGC
CACCAGCACAGGTGTGGTAACCTCAGGTGGTCTCCCATACCACCTGTGTGAATCACCAGTACTTCCAGCGTAGTT
CAAGTATCACAATACCTGAGTTGCTCAATATCTACTACATCCCCGTCACTTCAGTCCCCACATCCACATCTGAGATC
GTTGTTCTAGTACAGCACTGTATCTCAGTAACAGTTTCAGCAACTTCAGCCTCTGCAGGGGGCAGTACTGCTACCC
AGGTCTAAGCCTCAGCTGAGTATCTCAGCAGGGCAGCAGGAGCACTACTGTGGGAGGCCACATTAACATCAGTTCTA
CCACCACTTCATTCCAAGCACAGCTCACAGCTGTCCATTAGCTTAGCAGCAGTACTTCTACTCCTACTTTAGCTGAA
ACCGTGGTAGTTAGCGCACACTCACTAGATAAGACATCTCATAGCAGTACAACGGATTGGCTTCTCCCTCTGCA
ATCTTCTCTCCCTCTGGAGCAGGAGTGTCTAGTTATTTCTCAGGCTGGTGGCTGCATCCTTGGTCAATTCC
CAGTGATAGCTTCTACTCCTATTCTCCCCAAGCAGCAGGACCTACTTCACACCTTATTACCCCAAGTACCTAGTATC
CACCCTGGTACAGCCTGTTGCCAATGCTGCTGTAGCAGACACTAATTCTAGTCAGCCTCAACCAGCCTTGG
CACCAGGCCCATACTCATTGCTGAGTAGATTCTGATACACAACCCAAAGCTCTGGATTGATGACATAAAGA
CTCTAGAAGAAAAGCTGCGGTCTCTGTCAGTGAACACAGCTCATCTGGAGCTCAGCATGCTCTGTCACTGGAGACC
TCACCTAGTCATAGAGAGCACTGTACACCCAGGCACTTCAACTACTGCTGTTGCACCAAGCAAACCTCTGACTTCTAC
AAAGTACTTGCTTACCCACCAAACTTACCAACTAGGAACAGTGTCTTGGCAGTTACACCAGTGGTCACACCTGGGCAAG
TTTCTACCCCAAGTCAGCACTACTACATCAGGAGTGAACCTGGAAACTGCTCCCTCCAAGCCACCTCTAACTAAGGCTCG
GTGCTGCCAGTGGTACTGAACCTCCAGCAGGTACTCTACCCAGCAGCAGCTGCCACCTTCCAGGACCTTCTA
CCAGTCCCAGCAACCTCTAGAGGATCTGATGCTCAATTGAGAAGAACACTTAGTCAGAGATTATCACAGTGACTTCTG
CGGTTGGCTGTCCATGGGGCTCCAACAGCAATCACAGAAGCAGGAACACAGCCTCAGAAGGGTGTCTCAAGTC
AAAGAAGGCCCTGCTCTAGCAACTAGTCAGGAGCTGGTTTTAAGATGGGACGATTTCAGGTTCTGTCAGCAG
CGGTCAGGAAAGGGTAAAATAAGTCAGAAGATGCAAAGTCTGTCATTGAAATCCAGCACCTCAGAGTCCTCAG
TGCTATCAAGTAGTAGTCCAGAGAGTACCTGGTGAACACCAGAGCCGAATGGCATAACCCTGGTATCTCTTCAGAT
GTGCCAGAGAGTGGCCACAAAACACTACTGCCCTCAGAGGCCAAAGTCAGACACTGGGAGCCTACCAAGGTTGGACGTT
GGTACAACACTACAGCAAACAAAGTGGTCGTTCTGTATCAAAACTGAGGACAAGATCACTGACACAAAGAAAGAAG
GACCAGTGGCATCTCCCTTTATGGATTGAAACAAGCTGTTCTCTGCTGTGATACCAAGAAAAGAGAAGCCTGAA
CTGTCAGGCCCTCACATCTAAATGGGGCTTCTGACCCGGAGGCCGTTTTAAGTAGGGATGTGGATGATGGTTC
CGGTAGTCCACACTCGCCCCATCAGCTGAGCTCAAAGAGCCTCTAGCCAGAATCTAAGTCAGGCTTAGTAATT
TTAACCTCTTACATGAGTAGCAGACATGAGTCAGATATGAGAAGACTTAAAGTTAGAGCTGCGACGACTACGA
GATAAACATCTCAAAGAGATTAGGACCTGCAGAGTCGCCAGAACGATGAAATTGAAATCTTGATACCAAACGG
GGTCCCCCTGCTGTTAATTCAGGCTGCTCCCTTTAGGGAGAAGACGAGCACCCACTAAAGCAAAGGAGCA
ATCTAGTCGAAGCAGTTCTGGGAATAAAAGCCCCCAGCTTCAAGGTAACCTGCTGGTCAGAGTGCAGCTTCAGTC
GCACCCCCAGCAGACCTCCACCTCTGGCAACATCCCAGAGTCCGGCAGAATCAGCTGTTACAGCCCTTAAGCC
CTCCCTCCAGTGCACACCTCTATTCAAGCTTCAACAGTGTGGGCCATTCTAGTACCAAGCCTTCTGCTCCAGGTC
AAGGAACCAGCAGCACAAACACTGTTGGGCAACAGTGAACAGCCAAGCCGCCAGCTCAGCTCTGCCATGACGTC
AGCAGGAAGGGCACATTACAGATGACTTGCAAACTGGTAGACAATTGGGCCAGATGCCATGAATCTCTCAGG
GAGAGGAAGCAAAGGGCACATGAATTACGAGGGCCCTGGAAATGGCAAGGAAGTTCTGCTGCCACCTGGCAACTGT
CCATGACCTCGAACCTGGGGCTCTGCCCTCTGCAAGCTACCTCTAGGTCACTTCACCAAGTCTATG
TGCCCCCCCACAGCAAGTATGGCTTCCAGTACCCCAATTGGGCTCAATTGGAGTGGACGGGTTGGCCAGCAC
ACTTGGCCAGTTCCAACCTGTGGGAACCTGCTCCTTGCAAGATTCAACATCAGCAATTGCAAGAAATCC
CCCCAGGGCTCCAACCTGCGGACCACTAG

Sequenz ID: 46 (BC026989)

GGCGCGCGTGAACGGGCTCCCGGGACCATGCTGCGGCCACAGCGGCCGGAGACTGCGAGCTGGGGCCTCCCTCTACG
AGCTGGGGCTACAGGCAGCCGCCCTCTCTCTCTCCACCTCCACCTCCACTTCCCTCTCCACG
ACGGCCCCCTCTCCCCAAGGCTGCGGGAGAACGGGGAGGCCAGGAGGAGCAGCAGCAGCAGCTGCCAGGCCCCGGGTCAGG
CGCGCACCCGGGGCAGCGCCGGGGAGGCCAGGAGGAGCAGCAGCAGCAGCTGCCAGGCCCCGGGTCAG
AGCGGAAGCGCATGCAAGGACTGAAACCTGGCCATGGACGCCCTGCGCAGGTCATCTGCCCTACTCAGCGCGCACTGC
CAGGGCGGCCGCAAGCTCTCAAGATAGCCACGCTGCTGCTGCCCGCAACTACATCTACTGCTGGCAGC
GCTGCAGGAGCTGCCCGCGCTGGCGAGGGCGCCGGCCGCCGCGCCTGCTGCTGGCAGGCTG
TCGCCGCCCGCCGGCTCCGTGTTGCTGGCGCCGGCGTAGGACCCCCCGACGCCGCTGCCCGCCAG
TCGCTGGCGCTGGACGAGCCCGTGGCCAGTTGCTCTCCCGGCCGGCGCAGGCCGAGGCCCCGGCTG
CGCGTGTGCAAGTTCCCGCACCTGGTCCCGGCCAGCCTGGGCCCTGGCCCGTGCAGGCCAATTCT
GGGCCCTGGGCTGGGGCGCACCTGGGCCCTCCCTGCTCAGCTCTCGGCCCTGCTCCCTG
AGCGAGGCCAGCAAGGAAAGCATTGCAACCTCCAGTCCAGAGGAAGGGACTGCTGGCAG
CCCCCTTCCCCGCC

CCCCCTGGGACGTTAAAGTGACCAGAGCGGATGTTGATGGCGCCTCGGGCAGTTGGGTTCTGGTCGGTCCAGCGGCTT
 CTTAGGCAGAAAGTGCCTCGCTCACCCAGCACATCTCTCCTGTCGGAGTGCAGCGCCTCGCGGGCGATGAGT
 AGAACTTAGGGCGCCTGCGTGGTGGCGCAGGGCGGGTGCAGCGAGAGGCCATCCCGAGCGCTATCTCCCCGGAGCG
 GAGCACGCCGGCTCCCAGTACTAGGGGCTGCGCTCGAGCAGTGGCGGGGGCGGAGGGGTTCTTTCCCTCTCCG
 CCAGAGGCCACGGCGCCCTGTTCCCGGGCCAGGTCTATCAAAGGAGGCTGCCGAACCTCAAGAGGCAGAAAAGA
 CCAGTTAGGCGGTGCAGACGGTCTGGGACGACGGACGGACCCCTCGCGGACAGGTGGTGGCGTGGGGTGC
 TGGGTAGGGCGAGGACAACGCAGGGTGCCTGGGACGTTGGGACTCTTGTAGACAGCAGTGGTGGAGAGCTG
 TATTTAAAGACTCGGTATCCAGTGTGTTGCGCAGAGAGTTTCGCTCTTAAATCTGGGGTTCTTAGAAAGCAAC
 AGAACTCGAGATTACCTTCGTTCCCTTCCCCAAAAGTAGCGTAACCAACATTTAAAGCTGCTTAAACAGAAAACC
 AACCGCCTTGCACTCAGTGTCCCGATTACTAAATAGTAACCAAGGGCTCTCACAGTCGCCGCTGTCAAGAGCGCT
 AATGAACGTTCTCATTAACACGCAGGAGTACCGGGAGCCCTGAACCGCCGCTGCTCGCGGATCCAGCTGCGTGGCG
 ACGGCGGGAAAGGCCTTCCGCTGTTCTCAGCGGGCCGGGCTTGACCAAGCGCCGCCAGGTCTCCTCTGCCG
 TCTTGAGTTGAAGAGCTACATACGTAGTCAGTTGCAATTGTTACAGACGTTAACAAATTCTTACCCAGGTTATGC
 TATGACCTTCCGAGTTACTTGTATTTCTATGTTAAGGTTGGTTGGTAGTAGCCGAATTAACTGGCAGTT
 TATTTACTCTAACCTTGTTCTGACGGTGTACAGAATCAACAAATAAACATTAAAGTCTGATTTAAAAAAA
 AAAAAAAA

Sequenz ID: 47 (NM_016614)

GCAGAGGCGCAGGTAGATGGAGTTGGGGAGTTGCCTGGAGGGCGGGAGGGAGGGCGGAGGAAGAGGGCGAGCCTGAGG
 GAAAAAGCGGCCACTTCTGTGTGAGGTTTGCTCGCTCGGTGCAAGCTGCGATGCCGAGTGGCTCAGTGCCTCTGGCC
 AGAACGACTGGGAGATGGAAGGGCTCTGAACCTCTACTTCGAGCCTCCGGTGGAGGAGAGCGCCTTGAACGCCGACC
 GAAACCATCTCTGAGCCAAGACCTATGTTGACCTAACCAATGAAGAAACAACGATTCCACCAACTTCTAAACATCAGCC
 CATCTGAAGATACTCAGCAAGAAATGGCAGCATGTTCTCTCATTACCTGGAATATTGATGGATTAGATCTAAACAAT
 CTGTCAGAGAGGGCTCGAGGGGTGTGTTCTACTTAGCTTGACAGCCCAGATGTGATATTCTACAGGAAGTTATTCC
 CCCATATTATAGCTACCTAAAGAAGAGATCAAGTAATTATGAGATTATTACAGGTATGAAGAAGGATATTACAGCTA
 TAATGTTGAAGAAATCAAGAGTGAATTAAAAGCCAAGAGATTATTCTTTCAAGTACCAAAATGATGAGAAACCTT
 TTATGTTGTCATGTGAACGTTGTCAGGAAATGAGCTTGCCTATGACATCCCATTGGAGAGCACCAGAGGGCATGTC
 GGAACGAATGAATCAGTTAAAGAAAATGCAAGAGGCTCCAGAGTCAGCTACAGTTATATTGAGG
 ATACAAATCTAAGGGATCGAGAGGTTACAGATGTGGTGGTTACCAACAAATTGTTGAGTGTCTGGAGTTGGC
 AAACCTAAACATTGCCAGTACATGGGATACACAAATGAACCTAACTTGGAAATACTGCTGTTGAAACTTCGTT
 TGATCGAATATTTCAGAGCAGCAGCAGAAGAGGGACACATTATTCCCGAAGTTGGACCTTCTGGATTAGAAAAC
 TGGACTGTGGTAGATTCTCTAGTGTACTGGGTCTCTGTGCAACTAGATATAATTGAAATGCTTTCAAGT
 TGGGTTTGCCCTGATTGTTGCAAATACAATTCCACCTCTGGAAAGGTAGTTGCTGTGGAGGAATAATGTA
 ATCATTTGTCACAGAAAACCAACTATGATTATGTTGTTGTTGAGATTACATTAAAGATTAATGTTATTAAAC
 GAACACATTCTGCATTCAAGGATGTGAGGCCATTAAATAAAAAGGGCACAAGCCTGTCAGAGTTTCAACGGTGT
 AGCTGCCAGCTGGATTCCAACAGGTACCCATTGTCTGTGAGCTATGTTATTGTTCCATTCAAGGCCAGAAATAG
 TTAATATTAAAGTCTCAAAGAAAACATAAGAGATTATTGAGTTCTGGACTGGATCCTTATTTCATAAGTT
 CAGATCATCTTAATGAAATGCCATGATTATCTGAGTTAAGTAGATGACAGCTATTCTACATCAGACTGATT
 CAGCTAATTACATAATTGGTAAGCTATAATTGAAACCTATGGCTTAAACTCCTTTGATTCTCATGTT
 AGTCATGTTGTCACAGAGGCCAAAGTTAAGCTGTGATGTTAAATCGGTTGATAGCACCAGGGACATTCTCAA
 AAATAAAATGCATGAAGAGACATGCCATTAGTTGCTAATTGTAATGAAATGCTTACAGGAAGTAAATGCA
 ATTACTTTAAGTGTGCTTAAAGAAAATATTCTCCCAAGAGAAATTAAATAAGAATTGTTATTGTTAAAAA
 AAAAAAAA

Sequenz ID: 48 (NM_021064)

TGTGGTTGCTCGTAGTGAGTTGGCTCGCTATGTCGGACGTTGGCAAGCAGGGAGGCCAAGCCCGGCTAAGGCCAAGAC
 TCGCTCTCTAGGGCCGGTCTCCAGTTCCCGTGGGGCGAGTGCACCGCCCTGCTCCGAAAGGCCAATATGCCGAGCGGG
 TCGGGCCGGCGCGCCGGTGTATCTGGCAGCGGTGCTGGAGTACCTGACCGCCGAGATCTGGAACTGGCGGGCAACGCC
 GCGCGACAACAAGAAGACCCGATCATCCCGCGTATCTCCAACTGCCATCGCAACGACGAGGAGCTCAACAAGCT
 GCTGGCAAAGTCACCATGCCACAGGGCGGTGTCCTGCCAACATTAGGCCGCTACTGCCAAAAAGACTGAGAGCC
 ACCACAAGGCCAGGGCAAGTAACATCTGACTAGTTGTCAGCTCAAGTAAATCGAGTCCAAACCAACGGCT
 TTCAGGGCCACCCA

Sequenz ID: 49 (NM_006563)

TCAGAGTTCACGAGGCAGCCAGGAAGAGGAGGCTTGAGGCCAGGGGGGGCACCAGCCAGCCATGCCACAGCGAGAC
 CGCCTGCCCTCCATCAGCACACTGACCGCCCTGGGCCCCCTCCCGAACACAGGATGACTCTCTCAAGTGGTGGCGCT
 CCGAAGAGGCGCAGGACATGGGCCGGTCTCTGACCCCACTGGAGCCGCCCTCCACGTGAAGTCTGAGGGACCAGGCC
 GGGGAGGAAGAGGACGATGAGAGGGGGCGGGACGCCACCTGGGACCTGGATCTCTCTCCTACCAACTTCTCGGGCCCGGA
 GCGCGGTGGCGCGCCCCAGACCTGCGCTCTGGCGCCAGCGAGGCCCTCCAGGGCGCAATATCCGCCGCCGCCGAGACTC
 TGGGCGCATATGCTGGCGCCGGGGCTGGTGGCTGGCTTTGGGTTGGAGGATCACTCGGGTTGGGTTGCGCCCTGCG
 CTGCGAGCCCGGGCTCCGACGCCCTCTGCTGGGCCAGGCCCTGGCTCCAGCCCCGGGGCCGAGGCCAAGGGCGCTGGCGCT
 GCAACCGGTGACCCGGGGCCGGCGCCGGCTCTCGGGTGGCTACTTCCCGCGGACCGGGCTTCAGTGCCTGCGCGT
 CGGGCGCCCCCTACGGGCTACTGTCGGGTACCCCGCGATGACCCGGCCTCAGTACCAAGGGCACTTCCAGCTTTC

CGCGGGCTCCAGGGACCCGCGCCCGTCCGCCACGTCCCCCTCCTGAGTTGGGACCCGGGACGGTGGGCAC
TGGACTGGGGGACTGCAGAGATCCAGGTGTGATAGCCGAGACCGGCCATCCAAGCGAGGGCAGCTGCTGGGC
GCAAGAGGCAGGCAGCGCACACGTGCGCACCCTGGGTTGCCAGAGACTACACCAAGAGACTCCCACCTGAAGGC
CTGCGCACGCACACAGGGAGAAGCCATACGCCCTCACGTGGAGGGCTGCCAGCTGCCACGTGCTTTTCGGCTCTGACC
GACCCGCCACTACCGAAACACACGGGCAGCGCCCTTCCGCTGCCAGCTGCCACGTGCTTTTCGGCTCTGACC
ACCTGGCCTGACATGAAGGCCACCTTGAA

Sequenz ID: 50 (NM_004617)

AGCAACTCCAAGGACACAGTTCACAGAAATTGGTTCTCAGCCCCAAAATCTGATTGAATTGGAGACAATTACAAGGAC
TCTCTGGCCAAAAACCCCTGAAGAGGCCCGTGAAGGGAGGCAGTGAGGAGCTTTGATTGCTGACCTGTGCTTACACC
CCAGAATGTGCACTGGGGCTGTGCCAGATGCCCTGGGGGACCCCTATCCCCCTGCTTTTTGGCTTCTGGCTAAC
ATCCTGTTATTTCTGGAGGAAAGTGTAGATGACAACAGACCACCTTCCAAAGAGATCTGGTTTCGGAGGAAT
ATTAGGAACGGGGCTGTGATGATCTTCCCTGCCCTGGTCTTGGGCTGAGAAACAATGACTGCTGTTGGCTGCG
GCAACAGGGGCTGTGGAAGCGATTGCGATGTTCACCTCCACGATATTGCTGTTGGGATTCTTGGGAGCTGGATAC
TCGTTTATCTCATCTCAGCCATTCAATCAACAAGGGCTTAAATGCCCTATGCCAAATAGTACATGGGGCTACCCCTCCA
CGACGGGGATTATCTCAATGTAGGGCTTATGGAAACAAGTGCAGAGGGCTCTCAATGTGGTCCCTGGAATCTGACCC
TCTTCTCCATCCTCTGGTCTGGAGGAAATCCAGATGGTTCTGCGCCATCCAGGTGGTCAATGCCCTCTGGGACC
CTCTGTGGGACTGCCAGTGGTGTGGCTGCTGTGGGAGATGGACCCGTTAAACCTCCGAGATGAGCTGCTCAGACTC
TACAGCATGACGACTACAATTCTTCAATAAAACTCTTCTTGAATTATAATTCTTATCTGCTTCTAGCTG
TAAAGCTTAGAAAAGGAGTTATTCTTCTTCCAACCAGCTTGTGAGTTAGAATTGGTATTCTCAAATAAAA
TAGTTGGCCACTTAACAAATTGATTATAATCTTCAAAATTAGTCTTTTGAATTACCAACAGGTTAAAGC
ATATTTCATGATTTTTATTACAAATGTAATGATAAAGTCACATGACTGCCATACTACTTCTTGTATATAAA
GATGTTTATATCTTGGAAAGTTTACATAATCAAAGGAAGAAAGCACATTAAATGAGAAACTAACAGCCAATTCTGT
TTTAAGAGGAAAAGAATGATTGATGTATCCTAAGTATTGTTATTGTGTCTTTGCTGCTTGTGAGTTGCT
TGTGACTGATCTTGTGAGGCTGTATCATGGCTAGGGTCTTTATGTTAAATTAAACCTGAATTAGAGGTAAAC
GT

Sequenz ID: 51 (NM_006875)

GAATTCCGGCACAGCGCGCGCGAATCTCAACGCTGCCGCTGCCGGCGCTTCCGGGCCACCAGTTCTCTGCTTCC
ACCTGGCGCCCCCAGCCCTGGCTCCCAGCTGCCCTGCCAGCTGCCCTGCCAGCTGCCCTGCCAGCTGCCCTGCC
GCTCAATCTGCCAGGCCACCTCCATGTTGACCAAGCCTCTACAGGGGCCCTCCGCCCGCCCCCGGACCCCCACGCC
CGCCAGGAGGAAGGATCGGGAAAGCGTTGAGGCCAGTATCGACTGCCCTCTGGTAAGGGGGCTTGGCACC
GTCTTCGAGGACACCGCCTCACAGATCGACTCCAGGTGGCCATCAAAGTGAATTCCCCGAATCGTGTGCTGGCTGGTC
CCCCCTGTCACTCAGTCACATGCCACTCGAAGTCGCACTGCTATGAAAGTGGTGCAGGTGGTGGCACCCCTGGCG
TGATCCGCTGCTTGACTGGTTGAGACACAGGAAGGCTTCACTGCTGGTCTCGAGCGGCCCTTGGCCAGGATCTC
TTTGACTATATCACAGAGAAAGGGCCACTGGGTGAAGGCCAAGCCGCTGCTTCTTGGCAAGTAGTGGCAGCCATCCA
GCACTGCCATTCCGGAGTTGTCCATCGTGCACATCAAGGATGAGAACATCCTGATAGACCTACGCCGTGGCTGTCCA
AACTCATTGATTGGTCTGGTGCCTGCTTCACTGATGAACCTACACTGACTTTGATGGACAAGGGTGTACAGCCCC
CCAGAGTGGATCTCTGACACCAGTACCATGCACTCCGCCACTGCTGGTCACTGGCATTCTCTATGACATGGT
GTGTGGGACATTCCCTTGAGAGGGACCAGGAGATTCTGGAAGGCTGAGCTCCACTCCAGCCATGCTCCCCAGACT
GTGTGCCCTAATCCGCCGGTGCCTGGCCCCAAACCTCTCCGACCCCTCACTGGAAGAGATCCTGCTGGACCCCTGG
GCAACACCAGCGAGGATGTTACCCCTCAACCCCTCAAAGGAGGCCCTGCCCTTGGCTGGCTTGTACCCCT
AAGCCCTGGCTGGCTGGCTGGCCCCAATGGTCAGAAGAGCCATCCCATGGCCATGTCACAGGGATAGATGGACATT
GTTGACTGGTTTACAGGTCAATTACCAAGTCATTAAGTCCAGTATTACTAAGGTAAGGGATTGAGGATCAGGGTTAGA
AGACATAAACCAAGTTGCCAGTCCCTTCCCAATCTACAAAGGAGCCTTCCAGAACCTGTTGGCTTGGG
GGAGGGGGAACTCTGCTTCTCATTTGCTAAGGAAGTTATTGGTGAAGTTGTTCCATTGGAGGCTTGGG
TTATTGTTGATGATGTGTCACCCACATTGGCACCTCTACTACCACACAAACTAGTTCATATGCTTTACTTGGG
AAGGGTGCTTCCCTTCAATACCCAGTAGCTTTATTGTTAGGAAAGGACCCCTTCCAGCTAGGGTCCCATTG
GGTCAAGCTGCTTACCTGCCCTAGGCCAGGATTTTTATTGGGGAGGTAATGCCCTGGTTACCCAAAGGCTTCTT
TTTTTTTTTTTTGGGTGAGGGCCTACTTGTATTCCAAAGTGTCTTATTCTGTTGAGAACAACTTAA
TCCATAATTGGGAAGGAATGGAAGGACACCAACCCGGACACCACAGAACATAGGATGGGATGGTTTTGGGG
GATGGGCTAGGGAAATAAGGCTTGCTTTGTTCTGGGCCCTCCAAATTGCAAGATTGGCAACCTCCT
CTGAGCCGGGATTGTCCAATTACTAAATGTAATAATCACGTATTGTGGGAGGGAGTTCAAGTGTGCCCTCTT
TTTCTGCCCTGGATTATTAAAAAGCCATGTGTGAAACCCACTATTAAATAAGTAATAGAATCAGAAAAAAA
AAAAAAA

Sequenz ID: 52 (NM_016068)

AGTGGTTCTCCGCCACTGGCATGGAGACTGTGGCACAGTAGACTGTAGTGTGAGGCTCGGGGGGGCAGTGGC
CATGGAGGCCGTGCTGAACGAGCTGGTGTCTGAGGACCTGCTGAAGTTGAAAAGAAATTCTAGTCTGAGAAGGCAG
CAGGCTGGTGTCCAAGAGCACGCAGTTGAGTACGCCCTGGTGCCTGGTGCAGAACAGGTACAATGATGACATCCGTAAA
GGCATCGTGTGCCAGGGAGCTGCTGCCAAAGGGAGCAAGGAGAACAGCGGGATTACGTCTTCTACCTGGCGTGG
GAACCTACCGCTCAAGGAATACGAGAAGGCCCTAAAGTACGTCCGCCGGTGTGAGACAGAGCCCCAGAACACCAGG
CCAAGGAACGGAGCGCTATTGACAAGGCCATGAAGAAAGATGGACTCGTGGGATGCCATCGTGGGAGGCATGGCC

CTGGGTGTGGCGGGACTGGCCGGACTCATCGGACTTGTGTCCAAGTCAAATCTGAAGGAGACGCCAG
GAGAACGCTCCAGGAGGGCTGTCCATCTCGCTGTCTTCCCTGTTCTCCCCCTGCCCGGCTCTATCCTGTGG
CCTTCAGCTAATTCTGCTCCCTGAGATTGCTCCTCAGCCCCATCATGTGTTGGATGAGTGTAAATAAACGGG
CTGTGGCTTGGAAA

Sequenz ID: 53 (NM_002466)

GCTGACGCCCTCGAGCGCGCCGGGGGGGGGGGGGGAGCGGGCGGAGCAGCCCCGGTCTGACCCCCGGCTCCGCTCG
GGCTCTGCCGGGGGGGGGGGGAGCGCGCGCGTCCGGGGGGGGATGTCTCGCGGAGCGCGCTGCGAGGATCTGGAT
GAGCTGCACTACCAGGACACAGATTAGCTAGATGTGCCGGAGCAGAGGGATAGCAAGTCAAGGTCAGGACATGCCA
GGACGAGCAGCTGAGGGCCCTGGTGAGGCAGTGGACAGCAGGACTGGAAGTTCTGGCCAGCCACTTCCCTAACCGCA
CTGACCCAGCAATGCCAGTACAGGTGGCTGAGGTTGAAATCCAGACCTGTCAAGGGCCATGGACAAAGAGGAAGAC
AAAAAGTCATCGAGCTGGTAAGAAGTATGGCACAAGCAGTGGACACTGATTGCAAGCACCTGAAGGCCGGCTGG
GAAGCAGTGGCGTGAACGCTGGCACAACCACCTCAACCTGAGGTGAAGAAGTCTTGTGGACCGAGGAGGACCGCA
TCATCTCGAGGGCCCACAAGGTGCTGGCAACCGCTGGGGAGATCGCCAAGATGTTGCAAGGAGGACAGACAATGCT
GTGAAGAATCACTGAACTCTACCATCAAAGGAAGGTGGACACAGGAGGCTTCTGAGCAGTCAAAGACTGCAAGCC
CCCAGTGTACTTGTGCTGGAGGACAGGACGGCCCTCCAGGTGCCAGGGCCAGGAAGGAGGAAACTTGCAGGACCCACATCG
TGACCAACTGGCCCTCCGCTCTACATAAAGGAGGAGGAAAACAGTGGAGGAGGAAACTTGCAGGACCCACATCG
AAGGAACAGGAGGCCATCGGTACAGATCTGGACGAGTGCAGACACAGGAGGCTTGGAGGAATTCCCGAACGCGTGGAGGA
CCAGGAAGGCTCCCCACAGAAACGAGGCTGCTTACAAGTGGGTGGAGGAGCTAACCTCTCATCCCCGCTGTGG
TTCTAGCCTCTCTGAAGCCCTGGACTGTGATCGAGTCGGACCCCTGATGCTTGTGACCTGAGTAAATTGACCTCCCT
AGGAACCATCTGAGAGGACAGTATCAACAACAGCCTAGTCAGCTGCAAGCGTACATCAGCAGCAAGTCTGCCACC
CCGCCAGCCTCCGCCCTGGTGGCCAGTGTGACCGAGTACCGCCCTGGATGGCCACACCATCTCAGACACTGAGCCGGAGCA
GCCGGGGCGAGCTGATCCCCATCTCCCCCAGCACTGAACTGGGGCTCTGGCATGGCACACCGCCCTGTGCTCAAG
CGCAGAGGAAGAGGCGTGTGGCTCTGCCCCCTGTCACTGAGAATAGCACCAGTGTGCTTCTGGAACACTTCTGTAACAG
CCTCACGCCAAGAGCACACCTGTTAACACCTGCCCTCTGCCCTCCAGTTCTGAACTTCTGGAACAAACAGGACA
CATTGGAGCTGGAGAGGCCCTGCTGACATCCACCCAGTGTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
GACAAGACACCCCTGACAGAAACATGCTGCGTTGTAACCCCCAGATCAGAAGTACTCCATGGACAACACTCCCCACAC
GCCAACCCCGTCAAGAACGCCCTGGAGAAGTACGGACCCCTGAAAGGCCCTGCCACAGACCCCGCACCTGGAGGAGGAG
TGAAGGAGGTGCTGCGTCTGAGGCTGGCATCGAAGTCACTCATCGAGGAGCAGACATCAGGCCGAGAAGCAGAAGAGGAAG
CCTGGGCTGCCGGAGGCCATCAAGAAAGTCCGAAGTCTCTGGCTCTGACATTGTTGAGGATGAGGATGAGCTGAT
GATGTCACACTGCCAAGTCTCTATCTGCGACAACCTGCCCTTCAAACACTCTCCAGCCTCACCTGTGAGGTATCA
AAGAAGACAACAGCTGCTCAACCAGGGCTTCTGCGAGGCAAGCCGAGAAGGAGCAGTGGCCAGAAGCCCCGAAGC
CACTTCACGACACCTGCCCTATGTCAGTGCCTGGAAGACGGTGGCCTGCCGGGGGAGCAGGAGCAGCTTTCATGCA
GGAGAAAGCCGGCAGCTCTGGCCGCTGAAAGCCAGCCACATCTCGGACCCCTCATCTGCTCTGAGGTGTTGAGG
GTGTCACTGGCCATTCTCATGTTTACAGGGGTTGTTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
TCCTGCAAGGGAGCCTCTGCCACCAGCCCTCCCCAGACTCTCAGGTGGAGGCAACAGGGCCATGTGCTGCCCTGTGCC
GAGCCAGCTGGGGCGCTCTGGTCTAACAAACAGTCCACTTCCAGGTCTGCCCTGGTCCCTCCCAAGGCCACA
GGGAGCTCGTCAGCTCTCCAAGCCACGTCAGGCTGGCTCATCTCAGACCTGCTTAGGATGGGGATGTGGCCA
GGGTGCTCTGTGCTCACCCCTCTTGGTGCATTGGAGAATAAAATTGCTCTCTTTG

Sequenz ID: 54 (NM_021014)

AGATTCTCTTGGATTCTCAAATCAGAGTCAGACTACTCCCTGTGCCATGAACGGAGATGACACCTTGAAGG
AGACCCACGGTTGGTGTCAAAATACCAAGAGAAGATACAAAGGCCCTCGATGATATTGCCAAATACTTCTCAAGGAAGA
GTGGAAAAGATGAAAGTCTGGAGAAATCGTCTATGTGTATATGAAGAGAAGTATGAGGCACTGACTAAACTAGGTT
TCAAGGCCATCCCTCCATCTTCTGCTGAACTAACAGGGTCAACAGACTTCCAGGGGAATGATTGATAATGACCCCTAAC
CGTGGGAATCAGGTTCAACGCTCTCAGATGACTCTTGGCAGGCTCCAGGGAAATCTCCCGAAGATCATGCCAAGAACGCC
AGCAGAGGAAGGAAATGTTGAAGGAAGTGCAGAGCATCTGGCCACAAACAGATGGGAACACAGCTGTGCCCCCG
GAAAACCAACTACCTCTGAGAAGGATTAACATGATATCTGGACCCAAAAGGGGGGAGACATGCCCTGGAGGCCACAGACTGCGT
GAGAGAAAGCAGCTGGTGATTGAGAGATCAGCGATCCTGAGGAAGGAGTGTGAGTAACCTCCCTGGGGATATGACA
CATGCCCATGATGAGAAGCAGAACGCTGGTACGCAACATGGGAGTGGCTGGACCCCTGGTACAGGTG
AGCAAGTGAAGCAAGTGTACAAACAGTGTGAAAGGCTCATTTCTTAGATGAGTACGATATTAGCGT
TTCCATTGATTCTGAGTGTGTCATTCTGTTAGATGAAACATTTCAGTGTGAGGAGCAAGACATACTTAATGCTA
TTTGTTGTTGTTGATCCATGCCACCTACCTAGGAAAGTATTGTCAGTACCTCTGCACTGGACAGCATTACCCCT
CTCTCCCTAGATGTAAGTACTGAGGGCAGTCTGAGTGTGTTAATTTCAGATTCTCTGCACTGGACAGCATTACCC
AAC
TGCCATGCGTCTGGTCAAGGCTCCCTCACTCTGTTCTGGTCACTGGTCACTGGTACTCCCTCATCCGATTCCCG
TCAGTGAAGTAAATAAACCTTGTCAAACGTTAAAAAAAAAAAAAA

Sequenz ID: 55 (NM_003779)

ATGACCGCAGACCCGCCCGCAGGCCGCTTCAAGATGGCGCAGCGATGCCCTGGCTGTTGGGGTGGCGGTG
ACGACAGGCAAAAGACCAAGCTGGTCCCAGATTGCTGCTGGAGTGGAGCCTTCTGCCCCCTGTGACA
TTTCCAATTAGATAATGCTCACATCTGTCCTCCCCGGGACCCCTGGAGCCCCCATGATCCCTAACAGACAGCTT
GAACCTAGATCTCACCCCCAGGATGTTGCGGAGGCTGGAGCGGCCTGCACTGGCAGCTGGCCCTGCTGTGGCTCCAGC

TGGCTGTCATGATGTACCTGTCACTGGGGGGCTTCCGAAGTCTCAGTGCCTATTGGCCGAGATCAGGGACCGACATT
 GACTATTCTCACCTCGTGTACAGTAACCTCAGTCACCTGCCTGGGGCCCCAGGGGGTCCCTCAGCTCCTCAAGG
 TCTGCCCTACTGTCAGAACGATCTCCCTCTTCTAGGGTCTGTGCGGTCTTAGCCCAGTGCATCACTGGCAG
 AGATTGTGGAGCGGAATCCCCGGGTAGAACCAGGGGGCCGGTACCGCCCTGCAGGTGTGAGCCCCGCTCCGAACAGCC
 ATCATTGTCATCGTGCCTCATCGTGCCTCGTGTACCCACCTGCCTGCTACCCACCTGCACCCCCCTTGTGAGCGGCCAGCA
 GCTTGCTTATGGCATCTATGTCATCCACCAGGCTGGAAATGGAACATTAAACAGGGCAAAACTGTTGAACGTTGGGTGC
 GAGAGGGCCCTGCGTGTAGAAGAGTGGACTGCCTTCTGACGATGTCAGGACATCTGCCCAGAAAATGACCACAATCTG
 TATGTGTGTGACCCCCGGGACCCCGCATGTTGCGTGTAGAACAAAGTTGGATACAGCCTCCGTACCCCCAGTA
 CTTCGGAGGGAGTCAGCACTTACTCCGACAGTACCTGAAAGATGAATGGCTTCCCAATGAAATACTGGGCTGGGTG
 GTGAGGAGTCAGCACATTGCTACCAAGGGTGCCTGGCTGGATGAAGATCTCCTGGGCCCCACATCTGTAGGACACTAT
 AAGATGGTGAAGCACCGAGGAGATAAGGGAATGAGGAAATCCCCACAGATTGACACTTGCCTGGTCCGTACCCAGAAATC
 CTGGACGCAAGATGGGATGAACACTGACATACCAAGTGTGCGTGTAGAGAGCTGGGGCCTTATACCAACATCACAG
 CAGACATTGGGACTGACCCCTGGGGCTCCTGGGCTCTGGGACCTGTTACCCACCTGGTCTCCCAAGCCTCCGT
 CAAGAGATGCTGAAACGCCGGCCCCAGCCAGGCTGGGCTCTATCTACTGCCAACACACAGCCCTCCGAGGTTCA
 CTGACTCCTCTTCTGTCTACCTTAATCATGAAACCGAATTCTGGGTTGTATTCTCCCCACCCCTCAGCTCCTCACTG
 TTCTCAGAGGGATGTGAGGGAACTGAACCTGTTGCGCTAGGGGGTAGGGGCTCTCCACTGCTGGACTGGAGC
 TGGGCTCTGTAGACCTGAGGGTCCCTCTCTAGGGTCTCTGTAGGGCTTATGACTGTGAATCTGTATGATGAT
 TTTATGTGACGATTCTAGGAGTCCCTGCCCCTAGAGTAGGAGCAGGGCTGGACCCCAAGCCCCCTCCCTTCCATGGAG
 AGAAGAGTGTATCTGGCTTCTCCCGAACCTGTGAATATTATTATGGTTCCCGGAAGTTGGTGTGAAGG
 AGCCCCCTCCCTGGCATTCTGCTATGTTGAATAGCTCCCTTCTGGCTCAGGGGCTGGATTGGATTTGAT
 ATTTCTAATAAAGGACTTGTCTCC

Sequenz ID: 56 (NM_003511)

GTTCCCTCCATTATCGTTCTCGTATGTCGGGACGCCAAGCAGGGAGGAAAGCTCGGCCAAAGCCAAGACCCGC
 TCTTCTCGTGCCTCTCCAGTTCCCTGGGCGAGTCACCGACTGCTCCGAAGGGAACTATGCTGAGCGGGTCGG
 GGCGCGCGCCGGTGTACCTGGCGGGTGCTGGAGTACCTGACTGCCAGATCTGGAGCTGGGGCAACGCCGCC
 GCGACAACAAGAACCCGCAATTATCCCGGCCACTGCACTGGCCATCCGCAACGACGAGGAGCTCAACAAGCTGCTG
 GGCAAGTAACCATCGTCAGGGTGGTGTCTGCCAACATCCAGGCTGTGCTACTGCCAAGAACGACCGAGAGTCACCA
 CAAGGCCAAAGGCAAATAATGTCATAGAACACTTCCAATACAACGGCTCTTCAGAGCCACCTA

Sequenz ID: 57 (J02854)

ACTTCTCGCACCAAGGGAAAGCCCCACCCACAGAACGCAAGATGTCCAGCAAGCGGGCAAAGCCAAGGCCACCAAGAA
 CGGGCCACAGCGGGCACATCCAATGTCCTCGCAATGTTGACAGTCCCAGATCCAGGAGTTAACGGAGCTTCAACA
 TGATTGACCAGAACCGTGATGGCTTATTGACAAGGAGGACCTGCACGACATGCTGGCCTCGCTGGGAAAGAACCCACA
 GACGAATACCTGGAGGGCATGATGAGCGAGGCCGGGGCCATACAACCTCACCATGTTCTCACCATGTTGGGAGAA
 GCTGAACGGCACGGACCCGAGGATGTGATTGCAACGCCCTTGCTGCTGACGAGGAATCTCAGGTTCATCCATG
 AGGACCACTCCGGAAGCTGTCACCACATGGGTGACCGCTTCACAGATGAGGAAGTGGACGAGATGTACGGGAGGCA
 CCCGTTGATAAGAAAGGCAACTCAACTACGTTGAGGTCACCGCATTCTCAAACATGGCGCAAGGATAAACACGACTA
 GGCCATCCCCAGCCCCCTGACACCCAGCCCCGCCAGTCACCCCTCCCCGACACACCCGTCATACCAGCTCCCTGCC
 ATGACCCCTCGCTCAGGGATCCCCCTTGAGGGTTAGGGTCCCTGAGTGAAGAAACAGGCCAGGAGAGTGCCTG
 AGCTGAGGCAGATGTTCCACAGTGACCCAGAGCCCTGGCTATAGTCTGTGACCCCTCCAAGGAAAGACCACCTC
 GGGACATGGGCTGGAGGGCAGGACCTAGAGGCACCAAGGGAAACCGCATTCCGGGGTGTCCCCGAGGAGGAAGGAA
 GCCTCTGTGTGCCCTCAGGAGGAAGAGGCCCTGAGTCTGGATCAGACACCCCTCACGTGTATCCCACACAAATGCA
 AGCTCACCAAGGCTCCCTCTAGTCCCTACACCCCTGACGCCAGATGCCACACCCACGCCACGCCATGGG
 AGTGTGCTCAGGAGTCGGGGCAGCGTACATGTCAGAGGGGGCAGAATCTCAATAGAGGACTGAGACAACATG

Sequenz ID: 58 (NM_000576)

ACCAACCTCTCGAGGCACAAGGCACAAACAGGCTGCTGGGATTCTCTTCAGCCAATCTTCATTGCTCAAGTGTCTGAA
 GCAGCCATGGCAGAAGTACCTGAGCTGCCAGTGAATGAGCTTATTACAGTGGCAATGAGGAGTACTGTTCTTGA
 AGCTGATGGCCCTAAACAGATGAAGTGTCTCTTCAGGACCTGGACCTCTGGCTGGATGGCGCATCAGCTACGAA
 TCTCCGACCACCACTACAGCAAGGGCTTCAGGACAGGAGAAATGACCTGACCTTCTTCTTCTACCTTGAAGAAGAACCTATCTTCT
 CGACACATGGGATAACAGGGCTTATGTCAGGATCACGACTGACCTGACGATCAGTCACTGAACTGACGCTCCGGACTCACAGCAAA
 AAAGCTTGGTGTGATGTCGGTCCATATGAACTGAAAGCTCCACCTCCAGGGACAGGAGTGGAGCAACAAGTGGTGT
 TCCATGTCCTTGTACAAGGAGAAGAAAGTAATGACAAAATACCTGTCGGCTTGGGCTCAAGGAAAAGAATCTGTACCT
 GTCCTGCGTGTGAAAGATGATAAGCCACTCTACAGCTGGAGAGTGTAGATCCAAAATACCCAAAGAAGAAGATGG
 AAAAGCGATTGTTGTCACAAAGATAGAAATCAATAACAAGCTGAAATTGAGTCTGCCAGTCCCCAACTGGTACATC
 AGCACCTCTCAAGCAGAAAACATGCCGTCTCCGGAGGGACCAAGGGCGCCAGGATAACTGACTCACCAGTCA
 ATTGTCATTCTCTAAAGAGAGCTGTACCCAGAGAGTCCTGCTGAATGAGCTCAATCCCTAGGGCTGGCAGAAAGG
 GAACAGAAAGGTTTTGAGTACGGCTATAGCCTGGACTTCTGTTGTCACACCAACTGCCACTGCCCTGCTTGT
 AGTGCTAAGAGGACTCCTGTCCATGCCAGGACAGTCAGCTCTCTCCAGGGCAATCCCCAGCCCTTGTGA
 GCCAGGGCTCTCACCTCTCTACTCACTTAAAGCCCGCTGACAGAAACCACGCCACATTGGTCTAAGAAACCC
 CTGTCATTGCTCCACATTGATGAGCAACCGCTCCATTATTTATTGTTGTTATTGAT

CTAATTATTCAAGGGGCAAGAGTAGCAGTCTGTAAAAGAGCCTAGTTTAATAGCTATGGAATCAATTCAATT
TGGACTGGTGTGCTCTTTAAATCAAGTCCTTAAATTAAGACTGAAAATATAAGCTCAGATTATTAAATGGGAATA
TTTATAAAATGAGCAATATCAACTGTTCATGGTCTGAAATAACTTCTCTGAAG

Sequenz ID: 59 (BC027613)

AGCGTGGGTAAGCAAAAGCAACAGCTAAGCAGCTCCTGGAGAAAACCTGAAATTCAACTTGTCAAGAGAAGGGT
CTTGTACGTGCCTAAGTCTAGGCCTCTGACGTGAGCATGGCTGAGAGTGAGGACCGCTCCCTGAGGATGTTCTGGT
AGGGAAAACGGAAAGTGCACAGCAACACCATCTGGAGAGGAAATCTTGATCTAGAATTGCTGCC
AAGCTGTTACCAAGAAGTCAAGCATCCGGATGGCAGGGAGAGACCTCTTGTAGACACTCCAGGGCTC
TTTGACACCAAGGAGAGCCTGGACACCACCTGCAAGGAAATCAGCGCTGCATCATCTCCTCTGCCCAGGGCCCCATG
TATTGTCCTAGTTCTGCTGCTGGCGCTACACAGAGGAGGCAGAAACCGTTGCATTGATCAAGGCTGTCTTGGG
AGTCAGCCATGAAGCACATGGTCATCTGTTCACTCGAAAGAAGAGTGGAGGGCCAGAGCTTCCATGACTTCATAGCA
GATGCGGATGTGGCCTAAAAGCATCGTCAGGAGTGCAGGAAACGCTGCTGCCCCTAGAACAGCAAGAAAACAG
TAAGGCAGAGAAGTCAAGTCAGGAGTGGAGCTGATAGAGAAAATGGTCAGTGAACGAAGGGCTTACT
TTTCTGATGACATATAAGGACACAGAGGAAAGGCTGAAACACAGGGAGGGTTGAGGAAATCTACACTGACCA
TTAAATGAAGAAATTAAACTAGTAGAAGAGGATAAGCATAAAATCAGAGGAAGAAAAGGAGAAAGAAATTAAATTACTAA
ATTAAAATATGATGAAAAAATAAAAATATAAGGAAAGAACCTGAGAGAAATATATTAAAGATGTTTAATAGGATT
GGAAGATGTTTCAGAAATAGGCATAGGTTTGTGAAATGTAAGTTTATTCTCTAATTACTGTGATTGTTAA
TGGATGAATTGTTGCAAGAGATAGTAGAGAAATACCTCCTCCCTAGCTTATTAAAGGTATCATTGATAAAATAA
AATAAAATATGTTAATGTATATAATGTGATTAAATATATATACACACATTGTGAAATAATGAAATAA
GTAATTAAACACATCTAAAACAAAAAAAAAAAAAA

Sequenz ID: 60 (AK057590)

TTTTAGTCTGACTTAGGCCAAAATAGAAAAAGAGCTATGTCAGAAGGCAATGGCATGAGATCAAAGGCCAG
GGACCCCGACAGGGCAGGCAGAGCTCTGGCTTGGGTGGGTGTTGTGGGGTTATTCTGCTCCGCC
GGAAAGGCCAGGAGCCCTCGGATTGGCTCTGAGCTCTGCTGCCCTGCTGGTTTCGCGGACTCCCTGGTCC
TCAGAAATGTAGACAGGATGGCAAATGGAATCCCATCTCCCTCTCTCTTCACTTAAATTACCTCTCCATA
CGGACTGAAAGTGGCTTGAGTGATAATAGAGAAGTGAAGCTGTTTCAGCCTAAATTATCTCCAGAACGGCTTCTGTT
TCTTCATTAGAAGAGATGCGCTTCTCAGGTTCCAGGTGAGCCGGATAGCCCTGGCTGAGGAGTCCAGAGAATAGTT
CCTTCTGGTGTCTCTCTCACGAAGCCAAGAGGGGATCTCATGAGGGACCTGAATAAACATGCCGCTGGTT
AATTCCACATGTTTCATGTCAGTCAGTGAATTCTACAGTCTGGTGAAGAACACGAAGAAGACTAATCCAGAG
ATAAAAGAAAAACCTGCCATTTGAAAGATGTGAAGGGGAGGTGAACACACGCTTACGCCAAACACTAAGTAGATG
AGGCCTGGGCCGTTCTCATACCCCCGGAAACCATACTTACCATTTGATGTCAGCTGCAGGCCAGTGTGGCACA
GAGCAGGGACTCAGGAAGCCTTGTCACTAAAGTAAGAGCCTCTGGAGTACAGTGCATGGGTCGGCTGGCCAGCCC
CAGGCAGCAGATCTGGTATTGGCTGAGGAAAGAGCACTGCGCTTGGAGTCAGTAAGATCTGCCACCTCTGAGCTC
ATCAGCAAATGAGGATAAAGATAACTATAGTTGCCAGCCTGACAGGGTTGTTGAAGGTTCACATAAG
TGATGATATGCAAATGCTTGTAACTTAGGAGGTGCTATTGCTAAAGTCTAATGGAGAATTATAACATCCAGGAGT
TAAGGAGTTCTAATGCTAAATGAAATGCTAAGATCTTAGCAAGAAAGGATTAAGAAGGACTTTCTCCATATTG
ATTTTGTAAATGGAGTTAAATATTGCTCTAGAGACTGAGAAATTGATTGGTTCTTAACTCCTATTCTTCTTT
CTTCTTAAATTTTAAAAAAACTCTTGAATAGTTACCTTCTTATTTGGCTGTTTGTCCAGGACATGAAACCTC
CCCAGTAGACTGCACTGGTCCAAGAAATGGGCCACTGGATGATACTGCTTACCAACGAGTGCAGGCCAGTGAACCTC
AGTTGTGAGGTTCAATGAGGGCTGGCCCTGCCACATAATCCTCTGAGGGAGATGATGACAATTCACTGCTGATTAA
GCCATTCTGCTTACTGTAATTAGAAGGAAATAACCCCAGAAATACAAGGAAATTAGCAAGATAAGGAACCCCTGCTGCT
ACCTAAACATCCATCTAAACAAAGATGTTGGCTTGAAGGAAAGAGTTGGTCTCAAGACTGTTCTGACAGTT
AATTTCAAGAAGACTGAAAGACTGAAATTATCATTGTTGAGAATTCTCTAGGTCTCAGTAACCCCTGCAACCAGCAGTTG
GGTGGTCAGTGCCAGCAAATAGGAGTGGTGGCTTCTCTGGTATAAGATTCTAATTGGAAATTGGT
ACCATTCTCCCTCTAGAAACACATTACTCCCAAATAATTGTAACGGGAGGTGATGAGGAAGAACCAAGTGA
ATCAGAGGCCACCTACATGACCATGCAACCCAGTTGGCTTCTGAGGTCAAGATCGGAAACAACCTACTTGA
CAGGTGGGAAATGCCAAAACACAGCAAGCCTTGTAGAAGAATGGAGAGTCCCTCATCTCAGCAGCGTGGAGACTC
TCTCTGTGTGCTGGCCACTCTACCACTGATTTCAGACTCCGCTCTCCAGTGTCTCTGTCATTGTTG
GTCAATACACTGAGGAGATGGAGAATTGGAGCTGGCAGAGAGACTGGACAGCTGGAGGAACGGGCTGAGGGAG
GGGAGCATGGACTGGCTCTGGAGTGGGACACTGGCCCTGGAAACCGAGCTGAGCTGAGTGGCCTCA
GATCAGACCCCTCTGTGGGAGGGTCTAGTGGATGAGTTACTGGGAAAGAATCAGAGATAAACCAACCCAAATC

Sequenz ID: 61 (NM 003022)

AATAAGTAGATATCGTAGAAATAGTGTGTTACCTGCCAAGCCATCCTGTATACACCAATGATTTACAAAGAAAACACC
CTTCCCTCCTCTGCCATTACTATGGCAACTTAAGTGTATCGCAGCTCACATTAAAAGGAGAAAGAGAAATAACCTG
TCTCTCATTCTAAGTGCCTCATTAAATTTCATGAACAAGAATATGTACCTTTGATGCTATATTACTGCGATTAAA
AAGTTCTTGCAGGTAAATGTTATGTATAGTTAACAGTTAATTCCTATCGTAATTATAACATTCCATTCTTGTAGA
TGAAACTCTACATATGAACCACAGATTCTGAGCTCTAAATGTAGCCTTCATTGCACATTCACTGATCAGAATAGA
TATCCTTTACACGCCAAAAGCAATAGATTCACTCAGTGGACAAGTTCCTGTTAACTACACAGCTATGATGGAATCA
TATATCCAAGTTCCTGCCTCAGTGAATATGCATATGTATCATGAAGTGGATGCCAAGTAAGCTTAAATGCATTC
TCTAGCAAAGAGATTAGACTTTAAATAACTCTTATAAAACAGGTTGGCAGTCACTTCCCAAGATTGGTTCCCTGAGT
TTTGTAAAACAATCTTAGTAGTTGCCGTTAAACAACACTCACAACTCGTAATGCTACTATTCTAAGATATCTT
ACCTTTTATTCAGTTAGCCATGTATTGTATGAGTGTATTAGCTAAAGCAGTGAGAATCTTTCTATGCCCTATTCC
AGCAAAAAGTAGAAGTATCAAATAAAAGGGCAACTTTAAATATTAAAGCCTGAAGACTCTAAAGACAAGAAACAT
GGCCTAAATAACCAACATAGATTACAGTAGTAACTTCACACTACCTTATTACCAAAGCAAAACACCTCTTACTTAAAC
TACATTATCATGTATATCTATTGTATGCTGGTCTTTACTTTGCCAAATCAACATATAATGAAGAGATGCCCTTGT
GATGAGATTCAAACCTGATGCTATGCTTAAATAACTCAGTACTTTAGAAACATAAAAAAAAAAAAAAAA
AAA

Sequenz ID: 62 (NM_000581)

CGACCCCTCGAGGGGCCAGCTTGGAAAGGTAACGGACCGCTGCCCTGGTTGCCCTGGCAGACCAAGACATGCCCTG
CTGCTCTTCCGGCTTAGGAGGAGCACCGCTCCGCTCGGGCGACTCTCCAGCCTTCTGCTGAGGAGGGCCGAG
CTCCGGTAGGGCGGGGCCGGATGAGGCGGGACCTCAGGCCCGAAAACCTGCTGCCACGTGACCCGCCGCC
CTAAAGGAGGCCCTGCTGGCTCCCTACAGTGTGTTGGGCCCTCGCTGGCTTCTGGACAATTGCCAT
TGTCGCTGCTGGCTAGCGCGGCCAGCTGGTGTATGCCCTCTCGCGCGCCGTTGGCGGGAGCCTG
TGAGCCTGGCTCCCTGCGGGCAAGGTACTACTTATCGAGAAATGTGGCTCCCTCTGAGGACACCAGGTCGGGACTAC
ACCCAGATGAACGAGCTGCAGCGCCTCGGACCCGGGCTGGTGTGCTCGCTTCCGTGCAACCAGTTGGCA
TCAGGAGAACGCAAGAACGAGAGATTCTGAATTCCCTCAAGTACGTCCGGCTGGTGTGGTGGCTGAGCCAACTTCA
TGCTCTTCGAGAAGTGCAGGGTGAACGGTGCAGGGCGCACCCCTCTTCGCTTCCGTGCAACGATGTGCTGGAA
AGCGACGACGCCACCGCGCTATGACGGACCCCAAGCTCATCACCTGGCTCCGGTGTGCGCAACGATGTGCTGGAA
CTTGAGAAGTTCTGGTGGCCCTGACGGTGTGCCCCCTACCGCAGGTACAGCCGCCCTCCAGACCATTGACATCGAGC
CTGACATCGAAGGCCCTGCTGTCTCAAGGGCCAGCTGTGCTAGGGGCCCTCTACCCGGCTGCTTGGCAGTTGAG
TGCTGCTGCTCGGGGGTTTCATCTATGAGGGTGTTCCTCTAAACCTACGAGGGAGGAACACCTTGATCTTACAGA
AAATACCACCTCGAGATGGTGCTGGTCTGTTGATCCCAGTCTCTGCCAGACCAAGGCAGTTCCCCACTAATAAGT
GCCGGGTGTCAGCA

Sequenz ID: 63 (NM_016274)

GAATTCGCCAAGCGGGACCTCAGGATGGAAACCAGCAGCCGCACCGCCGAGAAGGTGGCTGGTCCGGAAATTCT
CGGGAAAGGGATTTCAAGGGAGATTGGAAAAACCGCTATGTGGTGTGAAAGGGGACCAGCTCACATCTGAGAAG
GAGGTAAGGATGAGAAAATTCAAGAGGTATTGACCTGAGTGAATGAGAAAGTGTGAAGAGCTCCGGAAAGTCAA
GAGCAGGAGCAAGAAAATCATAGCAAGTTACTCTGCCACTCCAAACAGCCGTAACACGGCACCCACCTGATCT
TCCCTGCAGTGAGTCCAGAAGAGAAGGAATCGTGGATCAATGCCCTCAACTCTGCCATCACCGAGCCAAGAACCGTATC
TTGGATGAGGTACCGGTTGAGGAGGACAGTATCTGCCATCCCACCTCGAGACAGGGCAAAATCCAGCACTCCGCG
CCCCAACAGGGACACCTAATGGCTGTGGCTTCCACCTCACCTCGATGGATGCTGACCTTGGACTTGATCCAAG
GAAGACCCCTCCCTGAGGAACCAACCTCTGTGCTGAGAGCTTGGTGTGACCTGGACAAGTCTGTGGCCAGCTG
GCAGGGAGCCGGGGAGAGCGGACTCAGACCGCATCCAGGCCCTCCGCAAGCAGCCGGCAAGCAGTCTCTCCGACCTTGGGA
AAAAACAGACAAAGGGCACCTACACCCCCCAGCAGCCAAAGAAGTGTGACGCCACAGAGAAAGGCCGCTGCCCTCCC
TGGAGGAGATCCTATCTCAGGGGATGCTGCCTCTGCCCGACCCCTCCAGCTGCCGGTGTGAGGAACCCCAACCCCTGCC
CTCCCCAACCGGGGAGCTGTCCGGATCCAGGACCTGGTAGCAAGGAAACTGGAGGAGACTCAGGAGCTCTGGCAGA
GGTCAGGGACTGGAGATGGGAAGCGAAAGGCCAAGGACCCCTCGGCTCCGCCGGATTCTGAGTCAGAGCAGCTGC
TGCTGGAGACGGAACGGCTGCTGGAGGGCATCTGAATTGGAGGCCAGGAAAGAGGGTGTGAGGAGGAG
CTGAGAGACCTGTACAGACAGATGGACCTGCAGACCCCGGACTCCCACCTCAGACAGACACCACCCGCACAGTCAGTACCG
GAAGACCTGATGTGAGGGCAGGGTGGGTCTG

Sequenz ID: 64 (BC013980)

GGCACCGAGGGCTGTGCGGGTGGCGCCGGCGCGGGTGGGCATGGCGGGTTCGCGGGTGCAGGGCGCACGGCGGCC
GAGCGTGCAGGGAGAACGGCGGTCTGAGCCCCAAGTGGAGCCTGAGCCGAGCAGCCCGATTCTGCACCT
CTCCCTCTCAGCCACAGCACCCGAGCGATTCTGGCTCTGCCACAGCAGGAGAGTGTGTTCTCAGGCCTGGAAATTCC
GGCAGTGACAGCAGTGAGGATGATGACGAAGGCAGCAGGAGGGAGAGGACGGACCCCTGATGACGAGGGCACAGTGG
GATTTAAAGACCACTGAGGAGCAGGTCAGGCCAGCACTCTGCCAGGGACAGAGATGGCGAGCGCCGGATTGGGG
ATGAGTATGCGGAGGACAGCTGTGAGGAGGACATCCGGAACACGGTGGCAAGTGCCTTGGAGTGGTACGATGAC
TTCCCCCACGTGGCTACGACCTGGATGGCAGGGCATCTACAGCCCCCTGCCAGCCGGATGAGCTGGACAGTCT
GGACAAGATGGACGATCTGACTACTGGCGCACCGTGCAGGAGCCGATGACAGGGGGGACCTGAGACTGACGGATGAGC
AGGTGGCCCTGGTGCAGGGCTGCAGAGTGGCCAGTTGGGGATGTTGGGCTTCAACCCCTATGAGCCGGCTGTCGACTTC
TTCAGGGGGACCTCATGATCCACCCGGTGCAGGAAACGCCGGGAGCAAGCGCAGCTCATCCCCCTCCCTGGTGGAGAA
GGAGAAGGTCTCGCATGGTGACGCCATCAAGATGGCTGGATCCAGCCTGCCGGCCCCGAGACCCACCCAGCT

TCTATGACCTGTGGCCCAGGAGGACCCAACGCCGTGCTGGCGCCACAAGATGACGTACCTGCTCCAAAGCTGGCC
CTGCCAGGCCACGCCGAGTCGTACAACCCACCCCTGAATACTGCTCAGCGAGGAGCGCTTGGCGTGGGAACAGCA
GGAGCCAGCGAGAGGAAGCTGAGCTTTGCCACGCAAGTCCCGAGCCTGCGGGCGTGCCTGCCTACGGACGCTTCA
TCCAGGAACGCTTCGAGCGCTGCCGTGACCTGTACCTGCCCCACGGCAAGATGAGGGTGAATGTAGACCCCTGAG
GACCTCATCCCCAAGCTGCCCGAGGGACCTGCAGCCCTTCCCCACGTGCCAGGCCCTGGTCTACAGGGGCCACAG
TGACCTGTCCGGTGCCTCAGTGTCTCTCTGGGGCCAGTGGCTGGTTCAAGGCTCTGACGACGGCTCCCTGCGGCTCT
GGGAGGTGGCACTGCCCGTGTGAGGACTGTTCCCGTGGGGCGTGGTGAAGAGTGTGGCCTGGAACCCACGCC
GCTGTCTGCCCTGGTGGCTGAGGCCGTGAGGACTCGGTCTGCTGAACCCAGCTCTGGGGACCGGCTGGTGGCGGG
CAGCACAGATCAGTGTGAGGCCCTCGTCCCGCCCTGAGGAGCCCCCTTGCAAGCAGGCCCTGGCTGGAGGGCTCAG
AGGAGGAGGCCAAGTGGCCCTGCCGATCGCACGGGAAGCCAGTGACGCCAGGTGACCTGGCACCGGGTGG
GACTACCTGGCCCTGGTGTGCCACCCAAGGCCACACCCAGGTCTGATTCACCAAGCTGAGGCCGTGCCAGGCC
TCCGTCGCCCGAGCCACGGACAGGTGAGCGACTGGCCTTCCACCCCTGCCGGCCCTTCTGGTGGCTGGCCTCCAGC
GCAGCGTCCGCTTACACCTGCTGCCAGGAGCTCACCAAGAAGCTGATGCCAACCTGCAAGTGGGTGTCCAGCC
GCGGTGCACCCCTGAGGTGACAACGTCATCTGTGAGCTACAGTACAGCAAGCTGGTGTGGTTGACCTGGATCTTCCAC
CAAGCCATACAGGATGCTGAGACACCACAAGAAGGCTCTGCGGGCTGTGGCCTTCAACCCCGCGTACCCACTCTTGCGT
CAGGCTGGACGACGGCAGTGTCTGCAATGGTACAATGACCTTCTGCAAGAACCCCTTGTGGTGG
GTCAGGGTGTGAAGGGACACGTGCTGACCCGAGATCTGGGAGTGTGGACGTCACTTCCACCCACCCAGCCGGTGG
CTTCTCCTCGGGGCAGACGGACTGTCCGCTCTCACCTAGCTGTTCTGCGCTGGGTGGTGTGCTGA
AGTCAACAGAGCCTTACCCGTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 65 (X00457)

GGAGCTGGGCCATCAAGGGGACCATGTGCAACTTATGCCGTTTGACAGACGATAGACCAACAGGGAGTTA
TGTGGAATTGATGAAGATGAGATGTTCTATGTGGATCTGGACAAGAAGGAGACCGTCTGGCATCTGGAGGAGTTGGC
CAAGCCTTTCTTCTGAGGCTCAGGGGGCTGGCTAACATTGCTATATTGAACAACAACCTGATACCTGATCCAGCG
TTCAACACACACTCAGGCCACCAACGATCCCCCTGAGGTGACCGTGTGTTCCAAGGAGCCTGTGGAGCTGGCCAGCCA
ACACCCATCTGCCACATTGACAAGTTCTTCCACCAAGTGTCAACGTCACGTGGCTGTGCAACGGGAGCTGGTCACT
GAGGGTGTGCTGAGAGCCTTCTGCCAGAACAGATTACAGCTTCCAAGTTCATTACCTGACCTTGTGCCCTC
AGCAGAGGACTTCTATGACTGCAAGGGTGGAGCACTGGGCTTGGACCCAGCCGCTCTCAAGCACTGGAGGCCAAGAGC
CAATCCAGATGCCGAGACAACGGAGACTGTGCTGTGCCCCCTGGCTGGGCTAGTGGCTTCACTCGTGG
ACCGTCTCATCATAAAGTCTCTGCGTCTGGCCATGACCCCCGGCCAGGGGACCTGTGAAATACTGTAAGGTGAC
AAAATATCTGAACAGAACAGAGACTTAGGAGAGATCTGAACCTCAGTGCCTACAAACTCCATCTCAGCTTTCTCTCA
CTTCATGTGAAACTACTCCAGTGGCTACTGAATTGCTGACCCCTCAAGCTCTGCTCTTATCATTACCTCAAAGCAGT
CATTCCTTAGTAAAGTTCAACAAATAGAAATTATGACACTTTGGTAGCACTAATATGGAGATTATCCTTCATTGAG
CCTTTATCCTGTTCTCTTGAAGAGCCCTCACTGTCACCTTCCGAGAATACCCAAGACCAATAAAACTTCAG
TATTTCAG

Sequenz ID: 66 (NM_001671)

GGGGCCCAGGCCCTCTATGGACCTGCCGCTCCCTCCATTGTCCACGGCTGCCACCCACCCATTCTCCAAGC
TTCAGCCCCCTCTTGTGGCATCTGCACAGCACTGAAGAACCTGGGAATCAGACCCCTGAGCAATCCCAG
GTCCAGGCCAGCCCTATCATGACCAAGGAGTATCAAGACCTCAGCATCTGGACAATGAGGAGAGTGACCAACATCAGC
AGAAAAGGCCACCTCTCCCCAGCCCTCTGCCAGCGTCTGTGCTCCGGACCTGCCCTGCTCTCCCTGG
CAGCCTCTGCTGTTGTGATCGGATCCAAAACCTCCAGTCAGGAGGAGCTGCCGGCCTGAG
AGAGACGTTAGCAACTTCACAGCGAGCACGGAGGCCAGGTCAAGGGCTTGAGCACCCAGGGAGGAATGTGGGAAGAA
AGATGAAGTCGCTAGACTCCAGCTGGAGAACAGCAGAACAGAGCTGAGTGAAGATCACTCCAGCCTGCTGCCACGTG
AAGCAGTTCGTCGCTGACCTGCCAGCTGAGCTGCTGAGATGGCGCGCTCCAGGGCAATGGCTCAGAAAGGACCTGCTG
CCCGGTCAACTGGGTGGAGCACGAGCGCAGCTGCTACTGGTCTCTCGCTCCGGAGGCCCTGGCTGACCCGACAAC
ACTGCCGGCTGGAGGAGCGCACCTGGTGGTACGTCCTGGAGGAGCAGAAATTGTCCAGCACACATAGGCCCT
GTGAACACCTGGATGGGCCCTCACGACCAAAACGGGCCCTGGAAAGTGGTGGACGGGACGGACTACGAGACGGCTTCAA
GAACCTGGAGGCCGAGCAGCCGAGCAGTGGTACGCCACGGGCTGGAGGAGGCCAGCTGCCCCACTTACCGACG
ACGGCCGCTGGAAACGACGACGACTGGCAGAGGCCCTACCGCTGGTCTGCCAGAGCACAGCTGGACAAGGCCAGCC
CCACCTCTCTTAAATTATCTTCAATGCCCTGACCTGCCAGGGGATGGGAATCCGCCCATCTGGGGC
CTCTCTGCTTCTCGGGAAATTTCATCTAGGATTAAAGGGAAAGGGAGTAGGGTGTGTTCCGAAGGTGAGGAGC
TTGAAACCCGTGGCGTTCTGCAAGGTTATCATTGAACTTTTTTTAAAGAGTAAAAGAAATATAC
CTAAA

Sequenz ID: 67 (NM_000072)

GGGGATGCAACTAAGTTGCTGAGACAAGGGAAAGAGAGATGAGGAACCAAGAGCTGTAGAAACCACTTTAATCATATCCAG
GAGTTGCAAGAACAGGTGCTTAACACTAATTCACTCCTGAAACAAGAAAATGGCTGTGACCGGAACTGTGGCTCA
TCGCTGGGCTGTCATTGGTGTGCTCTGGCTGTGTTGGAGGTATTCTAATGCCAGTGGAGACCTGCTTATCCAGAAG
ACAATTAAAAGCAAGTTGCTCTGAAAGGATCAATTGCTTTAAAATGGGTAAAACAGGCACAGAACAGTTCACAG
ACAGTTTGGATCTTGATGTGCAAAATCCACAGGAAGTGTGATGAAACAGCACCAACATTCAAGTAAAGCAAAAGAGGTC
CTTATACGTACAGAGTTCGTTCTAGCCAAGGAAAATGTAACCCAGGACGCTGAGGACAACACAGTCTCTGCCAG
CCCAATGGTGCCTCTCGAACCTCACTACAGTTGAAACAGAGGCTGACAACCTCACAGTTCTCAATCTGGCTGTGGC

AGCTGCATCCCATACTATCAAATCAATTGTTCAAATGATCCTCAATTCACTTAAACAAGTCAAAATCTTCTATGT
TCCAAGTCAGAACCTTGAGAGAACTGTTATGGGGCTATAGGGATCCATTGGAGTTAGTGTGAGTTGGGTCGTA
ACAGTTGGTCTGTTTATCCTTACAACAATACTGCAGATGGAGTTATAAAGTTCAATGGAAAAGATAACATAAGTAA
AGTTGCCATAATCGACACATATAAAGGAAAAGGAATCTGTCCTATTGGGAAAGTCAGTGCACATGATTAATGGTACAG
ATGCAGCCTCATTCACCTTGTGAGAAAAGCCAGGTATGCAGTTCTTCTCTGATATTGCAGGTCAATCTAT
GCTGTATTGAATCCGACGTTAACATCTGAAAGGAATCCCTGTGATAGATCTGTTCTCCATCCAAGGCCTTGCCCTC
AGTTGAAAACCCAGACAACTATTGTTCTGCACAGAAAAAATTATCTAAAAAATTGTACATCATATGGTGTGCTAGACA
TCAGCAAATGCAAAGAAGGGAGACCTGTCATTTCACTTCCCTCATTTCTGATGCAAGTCCTGATGTTCAGAACCT
ATTGATGGATTAACCCAAATGAAAGAACATAGGACATACTGGATATTCAACCTATAACTGGATTCACTTTACAATT
TGCAAAACGGCTGCAGGTCAACCTATTGGTCAAGGCATCAGAAAAAATTCAAGTATTAAAGAACATCTGAAGAGGAAC
TTGTCGCTATTCTTGGCTTAATGAGACTGGGACATTGGTGTGAGAAGGCAACATGTCAGTAAGTCAACTGGA
AAAATAACCTCCCTGGCCTGATAGAAATGATCTACTCAGTGTGGTGTGATGTTGCTTATGATTTCATA
TTGTCGATGCAGATGCAAAGAACATAAAGTACCATATTAGGCATATATATTCTAGACATGTCAGCCACTGATCATT
GTTTCACTTATCAAAGAGAAAGTACATATTAGGCATATATATTCTAGACATGTCAGCCACTGATCATT
ATAGGTAATAACCTATAAAATTATCACGCAGACTAAAGTATCTTAATTCTGGGAGAAATGAGATAAAAGAT
GTACTTGTGACCATTGTAACAATAGCACAATAAGCACTGTGCCAAAGTGTCCAAAAAA

Sequenz ID: 68 (BC005943)

AGGCTCGCGCGGGCGCTGGCGGGATCCGACTCTAGTCGAATGGAGGGCGGGCTTCTGGACTCGCTCATTAC
GAGCATGCGTGGTCTCACCTTGGCATGTTCTCCGCGGCTCTCGGACCTCAGGCACATGCAATGACCCGGAGTGT
ACAACGTCCAGTCCCTGCCTTCTCACCACGAAAGTCACAAACACCTGGGCTGGCTGAGTTATGGGCTTGAAGGGAG
CGGGATCCTCATCGTCGTCACACACAGTGGGTCTGCCTCAGACCCCTGTATATCTTGGCATATCTGCA
CGGAAGCGTGTGTGCTCCTACAGACTGCAACCCCTGCTAGGGCTTCTCCTGGGTTATGGCTACTTTGGCTCCTGG
ACCAACCCGAGGCGGCTTCAGCAGTTGGGCTTCTGCACTGTCACCATCAGCATGTAACCTCACCAC
CTGACTTGGCTAAGGTGATTCACAAACTAAATCAACCAATGTCCTCTACCCACTCACCATTGTA
GCCTCTGGCTCTATGGGTTGACTCAGAGATCCCTATATCATGGTGTCAACTTCCAGGAATCGTCA
TATCCGCTTCTGGCTTCTGGAGTACCCCCCAGGAGCAAGACAGGAACACTGTCCTGCAACACTGAGGCTGTC
CTGACCACTGGGACCTTAGTGCCTGACTGAACCAAAGAGACCTCCTGGTTAGCTGGCCAGCTCCAG
GTGCAGTGGTTGTGGAAACAAGAGATGACTTTGAGGATAAAAGGACCAAGAAAAGCTTACTAGATGATTGATTGG
GGCCTAGGAGATGAAATCACTTTTATTTAGAGATTTTTAATTGGAGGTTGGGTGCAATCTTAA
ATGCCCTAAAGGCCGGCGGGCTCACGCCGTAAATCCCAGCACTTGGGAGGCAAGGTGGGCGGATGCC
GTCAGGAGTTCAAGACCAACCTGACTAACATGGTAAACCCATCTCTACTAAAATACAAAATTAGCCAGG
CACATGCCGTAAATCCCAGATACTGGGAGGCTGAGGCAAGGAAATTGCTGAACCCAGGAGGTTGCA
TGAGATCGTGCCTATTGTGATATGAATATGCCCTATATGCTGATATGAATATGCC
CCATAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 69 (NM_004331)

GCGGGGACTCGGCTTGTGTTGCTGCTGAGTGCGGAGACGGCTGCTGCTGCCAGTCGTCCGA
CGATGTCGCCCCACCTAGTCGAGCCGCCGCCCTGCACAACAACAACAACTGCGAGGAAATGAGCAGTCTCTG
CCCCCGCCGGCCGGCTCAACAGTTCTGGGTGGAGCTACCCATGAACAGCAGCAATGGCAATGATAATGCA
GAATCAGGACAGAGTAGTCCAGAGGCAGTTCTCACTGACAGGCCCTCGCCACAAGAAGATGGCAGATCATGTT
GATGTTGAAATGCACACCAGCAGGGACATAGCTCTCAGTCAGAAGAAGAAGTTGAGAAGGGAGAAGGAAGTC
TTTGAAGAAAAGTGGACTGGTATCAGACTGGTCCAGTAGACCCGAAACATTCCACCCAGGAGTTCA
ACCTAAACGTTCTGTCTTAAAGCATGAGGAAAAGTGGACCCATGAAGAAAGGGGTATTTCTCC
AAGGTGTTCACTCCATCTCTCTTCTCATGTTGGCTTGGGCTAGGCATCTATAATTGAAAGCGACTGAG
ACCCCTGCCAGCACCTACTGAGGAAAAGGAAAGGCCCTGGAAATGCGTGTGACCTGTGAAGTGGT
AGCTTATTGAAACTTGAGACCATTTGTAAGCATGACCCAACTTACCCCTGTTTACATATC
AAATTCAATTTTATTCAAACCTGTTGAGGCAATTACTAACCCTTTGGCCTGAAGACATT
TCCTAACAGAGTTACTGTTGAGGCAATTGCAAGGGCTTCTTCCGAAATGCCAC
GGCAATGCTATTCTCTAAAGAGATCAGGTTAGGAAATGTTGAGGCAATT
CTACCATCTCTCTTAAACAGAGATCAGGTTAGGAAATGTTGAGGCAATT
CAAGACAAAGGCAAGTTCCCTAACAGTTGAGGCAATT
ACAAAAAAATCTGGCAATAAAAAAAATTTAAACAAAAAAAGGCAAGGCACA
ACAAAAAAATCTGGCAATAAAAAAAATTTAAACAAAAAAAGGCAAGGCACA

Sequenz ID: 70 (NM_002925)

GGATTGTTGGTCTCGTGGAACTTCTCAGGTGGACACCAGAGCATGGAACACATCCACGACAGCGATGGCAGTCCAGCA
GCAGCACCAGAGCCTCAAGAGCACAGCAAATGGCGGATCCCTGGAGAATCTGCTGGAGACCCAGAAGGC
AGATTAGGAAATTAAAAAGGAATTCAAGTGAAGAAAATGTTGTTGGCTAGCATGTAAGATTAAAGAAAAT
GCAAGATAAGACCGAGATGCAAGGAAAAGGCAAGGGAGATCTACATGACCTTCTGTCAGCAAGGC
ACGTGGAGGGCAGTCTCGGCTCAACGAGAACATCTGGAGAAGAACCGACCCCTCTGATGTT
ATCCTTAATCTCATGAAGTACGACAGCTACAGCCCTTCTTAAGTCTGACTT
AGGTTGTTAAAACACAAGCGAGCTTCTAGTTGAGGCAATT
AGGAAAGAGATTGCTGATGCTAAACTGCAGCTAAAGAGCTTCCAGAATT
TATAACACATGAGCCCCAAAAAGC

CGGGACTGGCAGCTTAAGAAGCAAAGGAATTCCCTCTCAGGACGTGCCGGTTATCATTGCTTGTATTGTAAGGA
CTGAAATGTACAAAACCTTCAT

Sequenz ID: 71 (NM_002923)

AAAACAGCCGGGCTCCAGCGGAGAACGATAATGCAAAGTGTATGTTCTTGGCTGTTCAACACGGACTGCAGACCCATG
GACAAGAGCGCAGGCAGTGGCCACAAGAGCGAGGAGAACGAGAAAAGATGAAACGGACCCCTTTAAAAGATTGGAAGAC
CCGTTGAGCTACTTCTACAAAATTCCCTACTCCTGGGAAGCCTAAACCGGAAAAAAAGCAAACAGCAAGCTTCA
TCAAGCCTTCTCAGGAGAACAGCTGTGGTCAGAAGCATTGACGAGCTGCTAGCCAGCAAATATGGCTTGCTGCA
TTCAGGGTTTTAAAGCTGGAAGAAAATATTGAAATTCTGCTGCCCTGTGAAGACTTCAAAAAACCAA
ATCACCCCCAAAAGCTGCTCATAAGCAAGGAAAATATATACTGACTTCATAGAAAAGGAAGCTCCAAAAGAGATAAACAA
TAGATTTCAAACAAAACCTGATTGCCAGAAATATACAAGAGCTACAAGTGGCTGCTTACAACCTGCCAGAAAAGG
GTATACAGCTTGATGGAGAACAACTCTTATCCTCGTTCTGGAGTCAGAATTCTACCAAGGACTTGTGAAAAAGCCACA
AATCACACAGAGCCTCATGTCACATGAAATGTAAGGGAGCCAGAAATGGAGGACATTCAATTCTTCTGAGGG
GAAGGACTGTGACCTGCCATAAGACTGACCTTGAATTGAGCTGGGTGTTAGGAAACATCACTCAGAAACTATTGATTC
AAAGTTGGTAGTGAATCAGGAAGCCAGTAACTGACTAGGAGAAGCTGGTATCAGAACAGCTCCCTCACTGTGACAGA
ACGCAAGAAGGGAAATAGGTGGTCTGAACGTGGTCTCACTCTGAAAAGCAGGAATGTAAGATGATGAAAGAGACAATGT
AAATCTGTTGGTCAAAAGCATTAAATCAATAGATCTGGATTATGGCTTAGGTTAGGATCAGTAACAGTGAAGTGTAACTATG
TAAATCGATCCATGTTACACATAGTAGTTAGGATTAGTCAACAGTGAAGTGTAACTATGCAAGGGTATT
GAAGTCTTATGACCACAGATCATCAGTACTGTTGCTCATGTAATGCTAAACTGAAATGGCCGTGTTGATTGTA
AAATGATGTTGAAATAGAATGAGTGTATGGTGTGAAACTGCACTGGTCCGTTGAGTGCCTAAACTGTCTTGA
GCAGCTACACTTGAAGTGGTCTTGAATACTTTAATAAAATTATTGATAAATAATATTG

Sequenz ID: 72 (J03041)

AGCTCCCTTAGCGAGTCCTCTTCTGACTGCAGCTTTTCAATTGCCATCCTTCCAGCACCAGTGGTCT
GCAGGTTCTGCGGCCCCCGACAGTGGCTCTGACGGCGTACTGATGGTGTGCTCACATCTGTTGCTCAGGGCAGGG
CCACTCCAGAGAATTACCTTCCAGGGACGGCAGGAATGCTACCGTTAATGGACACAGCCCTCTGGAGAGATA
ATCTACAACCGGGAGGAGTTCGCGCCTCGACAGCAGCTGGGGAGTCCGGGGCGGTGACGGAGCTGGGGCGGCTGC
TGCAGGAGTACTGAAACGCCAGAAGGACATCCTGGAGGAGAACGGGAGTGCAGACACAACACTACG
AGCTGGCGGGCCATGACCTGCAAGCGCGAGTCCAGGCTAGGGTAATGTTCCCCCTCAAGAAGGGCCCTGCAG
CACCAACCTGCTGCTGCCACGTGACGGATTCTACCCAGGCAGCATTCAAGTCCGATGGTCTGAATGGACAGGA
GGAAACAGCTGGGCTGTTCCACCAACCTGATCGTAATGGAGACTGGACCTCCAGATCTGGTGTGCTGGAAATGA
CCCCCAGCAGGGAGATGTCACACCTGCCAAGTGGAGCACACCAGCCTGGATAGTCTGTCACCGTGGAGTGGAAAGGCA
CAGTCTGATTCTGCCCCGAGTAAGACATTGACGGAGCTGGGCTTCGTCGGCTCATCATCTGTTGGAGTGGCAT
CTTCATGCACAGGAGGAGCAAGAAAGTCAACGAGGATCTGCATAAACAGGGCTCTGAGCTACTGAAAGACTATTG
GCCTTAGGAAAGCATTGCTGTTGCTTAGCATCTGCTCCAGGACAGACCTCAACTTCAAATTGATACTGCTGC
CAAGAAGTGTCTGAAGTCAGTTCTATCATTGCTCTTGAATTCAAAGCACTGTTCTCACTGGCCTCCAACCA
TGTTCCCTCTCTTAGCACACAAATAATCAAACCCAAACA

Sequenz ID: 73 (NM_000239)

CTAGCACTCTGACCTAGCAGTCACATGAAGGCTCTCATTGTTCTGGGCTTGTCTCCCTTCTGTTACGGTCCAGGGCA
GTCTTGAAAGGTGTGAGTTGCCAGAACTCTGAAAAGATTGGATGGCTACAGGGAAATCAGCCTAGCAAAC
GATGTGTTGCCAAATGGGAGAGTGGTACAAACACAGGACTCAAACACTACAATGCTGGAGACAGAACGACTGATTA
GGGATTTCTCAGATAGCCCTACTGGTGTAAATGATGGCAAAACCCAGGAGCAGTTAATGCCCTGTCTTATTC
GCAGTCTTGCTGCAAGATAACATCGTGTGCTAGCTTGTGCAAAGAGGGTTGTCCTGATCCACAAGGCTT
GCATGGTGGCATGGAGAAATCGTGTCAAACAGAGATGTCCTGTCAGTGTGTCAGGTTGTGGAGTGTAACTCCAGAA
TTTCTCTCTCACCTCATTTGTCCTCTCACATTAAGGGAGTAGGAATTAAAGTGAAGGGTCAACTACCAATTATTC
CCTTCAAACAAATAATATTTTACAGAAGCAGGAGCAAATATGGCTTCTCTCAAGAGATATAATGTTCACTAATGTG
GTTATTTCATTAAGCCTACACATTTCAGTTGCAAATAGAAACTAATACTGGTGAAGGATTACCTAAACCTTGGT
TATCAAACATCTCCAGTACATTCCGTTCTTTTTTTGAGACAGTCTGCTGTCGCCAGGCTGGAGTGCAGT
GGCGCAATCTGGCTCACTGCAACCTCACCTCCGGTTCAGCCATTCTCCTGCTCAGCCTCCGAGTAGCTGGGAT
TACGGGCGCCGCCACACGCCGCTAATTGTTGTTAGTAGAGACAGGGTTCACCGTGTAGCCACTGCGCCGGC
CTCGATCTCTGACCTTGTGATCCACCCACCTCGGCCTCCAAAGTGCTGGATTACAGGCGTAGCCACTGCGCCGGC
CACATTCAAGTCTTATCAAAGAAATAACCCAGACTTAATCTGAAATGATGATTAGCCAAATATTAAGTAAAAAAT
AAGAAAAGGTTATCTAAATAGATCTTAGGCAAATACCAAGCTGATGAAGGCATCTGATGCTTCACTGTCAGTCATC
TCCAAAACAGTAAAAATAACCACTTTGTTGGCAATATGAAATTAAAGGAGTGAAGACACAAATGATAGAAACA
GAATGCCCTGAATTGAGAATTGATTCTTAAAGTGTGTTCTTCAATTGCTGTTCTTAAATTGATTAATTAAATT
CATGTATTATGATTAAATCTGAGGGCAGATGAGCTTACAAGTATTGAAATAATTACTAATTACAAATGTGAAGTTAT
GCATGATGAAAAATAACAAACATTCTAATTAAAGGCTTGCACAC

Sequenz ID: 74 (NM_000345)

GGAGTGGCATTGACGACAGTGTGGTAAAGGAATTCAATTAGCCATGGATGTATTGATGAAAGGACTTCAAGGCCA
AGGAGGGAGTTGGCTGCTGAGAAAACAAACAGGGTGTGGCAGAAGCAGCAGGAAAGACAAAGAGGGTGTCTC
TATGTAAGGCTCCAAAACCAAGGAGGGAGTGGTGCATGGTGTGGCAACAGTGGCTGAGAAGACCAAGAGCAAGTGAACAA

TGTTGGAGGAGCAGTGGTACGGGTGTACAGCAGTAGCCCAGAAGACAGTGGAGGGAGCAGGGAGCATTGCAGCAGCA
CTGGCTTGTCAAAAGGACCAGTTGGCAAGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTG
GATCCTGACAATGAGGTTATGAAATGCCCTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCTAAGAAATATCTT
GCTCCCAGTTCTGAGATCTGCTACAGATGTTCCATCCTGTACAAGTGTCAAGTCCAAATGTGCCAGTCAGCATT
TCTCAAAGTTTACAGTGTATCTGAAGTCTTCCATCAGCAGTGATTGAAGTATCTGTACCTGCCCACTCAGCATT
CGGTGCTTCCCTTCACTGAAGTGAATACATGGTAGCAGGGCTTGTGCTGTGGATTGTCAGTCAATCTACGAT
GTTAAAACAAATTAAAACACCTAAGTACTACCACTTATTCTAAATCCTCACTATTTTTGTTGCTGTGTTCAAGAA
GTTGTTAGTGTATTGCTATCATATATTATAAGATTGTTAGGTGCTTTAATGATACTGTCAAGAATAATGACGTATTG
TGAAATTGTTAATATATAACTAAAAATATGTGAGCATGAAACTATGCACCTATAACTAAATGAAATT
ACCATTGCGATGTGTTTATTCACTTGTGTTGATATAAAATGGTGAGAATTAAAATAAAACGTTATCTCATTGCAA
AATATTATTATTTTATCCCATCTCACTTAAATAATAAAATCATGCTTATAAGCAACATGAATTAGAAACTGACACAAAG
GACAAAAATATAAAGTTATTAAATAGCCATTGAGAAGGGAGGAAATTAGAGGAGTAGAGAAAATGGAACATTAAACCT
ACACTCGGAATTCCCTGAAGCAACACTGCCAGAAGTGTGTTGGTATGCACTGGTCTTAAAGTGGCTGTGATTAA
TTGAAAGTGGGGTGTGAAGACCCCAACTACTATTGTAGAGTGGTCTATTCTCCCTCAATCTGTCAATGTTGCTT
ATGTATTGTTGGGAACTGTTGTTGATGTGTTATAATTGTTACATTGTTAATTGAGCCTTTATTAAACATA
TATTGTTATTGTTGCTCGAAATAATTGTTAGTAAATCTATTGTCGATATTGGTGTGAATGCTGACCTTC
ACAATAAATAATATTGCGACCATG

Sequenz ID: 75 (NM_007308)

ATTCATTAGCCATGGATGTATTGATGAAAGGACTTCAAGGCCAAGGAGGGAGTTGTGGCTGCTGAGAAAACCA
CAGGGTGTGGCAGAAGCAGCAGGAAGACAAAAGAGGGTTCTCATGTAGGCCTCAAAACCAAGGAGGGAGTGGT
ATGGTGTGGCAACAGTGGCTGAGAAGACCAAGAGCAAGTGCACAAATGTTGGAGGAGCAGTGGTACGGGTGACAGC
AGTAGCCCAGAAGACAGTGGAGGGAGCAGGGAGCATTGCAAGCAGCCACTGGCTTGTCAAAAGGACCAGTGGCAAGG
AAGGGTATCAAGACTACGAACCTAAGAAATATCTTGCTCCAGTTCTGAGATCTGCTGACAGATGTTCA
TCCGTACAAGTGTCACTTCAATGTGCCAGTCATGACATTCTCAAAGTTTACAGTGTATCTGAAGTCTTCCAT
CAGCAGTGATTGAAGTATCTGTACCTGCCCACTCAGCATTGGTCTCCCTTCACTGAAGTGAATACTGGTAGC
AGGGCTTGTGTGCTGGATTGCTGTTGAGTAAACAAATTAAACACCTAAGTGTACTACCACT
TATTCTAAATCTCACTATTGTTGCTGTTGAGTAAACAAATTAAACACCTAAGTGTACTACCACT
TAGGTGTCTTTAATGATACTGTCTAAGAATAATGACGTATTGTGAAATTGTTAATATATAACTAAATGTT
GAGCATGAAACTATGCACCTATAAAACTAAATGAAATTTCACATTGCGATGTGTTTATTCACTTGTGTTGTA
TATAATGGTGAGAATTAAAATAAAACGTTATCTCATGCAAAATATTGTTATTCTCCATCTCACTTAAATAATA
AAATCATGCTTATAAGCAACATGAATTAGAAACTGACACAAAGGACAAAATATAAGTTATTAAATAGCCATTGAAAGAA
GGAGGAATTAGAGGAGGAAATGGAACATTAACCTACACTCGGAATT

Sequenz ID: 76 (NM_000358)

GCTTGGCCGTCGGTCGCTAGCTCGCTGGTGCAGCGTCGTCCATGGCGCTTCTCGTGCAGCTGCTGGCTCTGCC
CTGGCTCTGGCCCTGGGCCCGCCGACCCCTGGCGGTCCGCCAAGTCGCCCTACCAAGCTGGTCTGCAGCACAGCAG
GCTCCGGGCCAGCACGCCAACGTTATGGCAACTAGGAAGTACTTCACCAACT
GCAAGCAGTGGTACCAAAGGAAATCTGTGGAAATCAACAGTCATCAGCTACGAGTGCTGTGGATATGAAAAGGTC
CTGGGGAGAAGGGCTGCCAGCAGCCCTACCACTCTCAAACCTTACGAGACCCGGAGTCGGTGGATCCACCCAC
AGCTGTACACGGACCGCACGGAGAAGCTGAGGCCCTGAGATGGAGGGCCGGCAGCTTCACCATCTGCCCTAGCA
GAGGCCCTGGCCTTGGCAGCTGAAGTGTGGACTCCCTGGTCAGCAATGTCACATTGAGCTGCTCAATGCCCTC
CGCTACCATATGGTGGCAGCGAGTCTGACTGATGAGCTGAAACACGGCATGCCCTCACCTCTATGTACCAAGATTC
CAACATCCAGATCCACCACTATCTAAATGGGATTGTAACCTGTGAACTGTGCCCCGGCTCTGAAAGCCGACCCACATGCAA
CCAACGGGGTGGTGCACCTCATCGATAAGGTCTCACCACATCACCAACACATCCAGCAGATCATTGAGATCGAGGAC
ACCTTGTGAGACCCCTTGGGCTGTGTCATCAGGGCTCAACACGATGCTTGAAGGTAACGCCAGTACACGCTTT
GGCCCGACCAATGAGGCTTCAGAGAAGATCCCTAGTGAGACTTGAACCGTATCTGGCGACCCAGAAGCCCTGAGAG
ACCTGCTGAACACACATCTTGAAGTCACTGAGCTATGTGCTGAGGCCATGTTGCGGGCTGTGAGAGACCCCTGGAG
GGCACGGACACTGGAGGTGGGCTGAGCGGGGACATGCTCACTCAACGGGAAGGGCATCTCCAATAAGACATCT
AGCCACCAACGGGGTGTACCTACATTGATGAGCTACTCATCCAGACTCAGCCAAAGACACTATTGAAATTGGCTGAG
AGTCTGATGTGTCACAGCATTGACCTTTCAGACAAGCCGGCTCGGAATCATCTCTGGAAGTGAGCGGTGACC
CTCCTGGCTCCCTGAATTCTGTATTCAAAGATGGAACCCCTCAATTGATGCCCATACAAGGAATTGCTTGGAAACCA
CATAAATTAAAGACCACTGGCTCTAAGTATCTGTACCATGGACAGACCTGGAAACTCTGGCGCAAAACTGAGAG
TTTTGTTTATGTAATAGCTCTGCAATTGAGAACAGCTGCATCGCGGCCACGACAAGGGGGAGGTACGGGACCC
TTCACGGATGGACCGGGTGTGACCCCTCAATGGGACTGTGATGGATGTGCTGAAGGGAGACAATCGCTTACG
GGTAGCTGCCATCCAGTCTGAGGACTGACGGAGACCCCTCAACCGGGAGGGAGTCTACACAGTCTTGCTCCACAA
AAGCCTTCCGAGCCCTGCCACCAAGAGAACGGAGCAGACTCTGGGAGATGCCAGGAACCTGCAACATCTGAA
CACATTGGTGTGAAATCTGGTAGGGAGGCATCGGGGCTCTGGCGGCTAAAGTCTCTCCAAGGTGACAAGCTGGA
AGTCAGCTGAAAAACAATGTGGTAGTGTCAACAAGGAGCCTGTTGCCAGGCCTGACATCATGGCACA
TGGCAGCATTGCAACAGACCTCAGCAACAGACCTCAGGAAAGAGGGAGTGAACCTGCA
GAGATCTCAAACAGCATCAGCGTTTCCAGGGCTCCAGGGCTGTGCGACTAGCCCTGCTATCAAAGTT
AGAGAGGATGAAGCATTAGCTTGAAGCACTACAGGAGGAATGCCACACGGCAGCTCCGCCAATTCTCTCAGATT
ACAGAGACTGTTGAATGTTCAAAACCAAGTATCACACTTAATGTACATGGGCCGACCATAATGAGATGTGAGCCT

TGTGCATGTGGGGAGGGAGAGAGATGTACTTTAAATCATGTTCCCCCTAACATGGCTGTTAACCCACTGCATG
CAGAACTTGGATGTCACTGCCTGACATTCACTTCCAGAGAGGACCTATCCAAATGTGGAATTGACTGCCTATGCCAAG
TCCCTGGAAAAGGAGCTTCAGTATTGTTGGGCTCATAAAACATGAATCAAGCAATCCAGCCTCATGGGAAGTCCTGGCAC
AGTTTTGTAAAGCCCTTGACAGCTGGAGAAATGGCATCATTATAAGCTATGAGTTGAAATGTTCTGTCAAATGTGTCT
CACATCTACACGIGGCCITGGAGGCTTTATGGGGCCCTGTCAGGTAGAAAAGAAATGGTATGTAGAGCTAGATTCCC
TATTGTGACAGAGCCATGGTGTGTTGTAATAAAAACCAAAGAAACATA

Sequenz ID: 77 (NM_000184)

ACACTCGCTTCTGGAACGCTGAGGTATCAATAAGCTCTAGTCCAGACGCCATGGTCATTTCACAGAGGAGGACAAG
GCTACTATCACAAGCCTGTGGGGCAAGGTGAATGTGGAAGATGCTGGAGGAGAAACCTGGAAAGGCTCTGGTTGCTA
CCCATGGACCCAGAGGTTCTTGACAGCTTGGCAACCTGTCCCTGCCATCATGGGAACCCCAAAGTCAAGG
CACATGGCAAGAAGGTGCTGACTTCCTGGAGATGCCATAAAGCACCTGGATGATCTCAAGGGCACCTTGCCCAGCTG
AGTGAACACTGCACTGTGACAAGCTGCATGGATCTGAGAAACTTCAGCTCCTGGGAAATGTGCTGGTGCACCGTTGGC
AATCCATTTCGGCAAAGAATTCAACCCCTGAGGTGAGGCTTGGCAGAAGATGGTACTGGAGTGGCCAGTGGCCCTGT
CCTCCAGATAACCACTGAGCTACTGCCATGATGCAGAGCTTCAAGGATAGGCTTATTCTGCAAGCAATACAAATAAT
AAATCTATTCTGCTAAGAGATCAC

Sequenz ID: 78 (BC017356)

GGCACAGGGTCATGGACCTCTGACAAGAACATGAAACACCTGTGGTTCTCCTCCTGGTGGCAGCTCCAGATG
GTCCTGTCCCAGGTGCAAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGAGACCCCTGCCACCTGCC
TATGGTGGGTCTTCAGTGGTTACTATTGGAGCTGGATTGCCAGCCCCAGGGAGGGCTGGAGTGATTGGGAA
TCATCATAGTGGAAAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGCTCAAGAAC
GCTCTCCCTGAAGTTGAGCTCTGTGAACGCCGCGACACGGCTGTGATTACTGTGCGAGAGTTATTACTAGGGCGAGTC
CTGGCACAGACGGGAGGTACGGTATGGACGCTGGGGCCAAGGGACCACGGTACCGCTCCCTCAGGGAGTGATCC
CCAACCCCTTCCCTCGCTCTGTGAGAATTCCCGTCCGATACGAGCAGCGTGGCCGTTGGCTGCCCTCGCACAGGA
CTTCCTTCCGACTCCATCATTCTCTGGAAATACAAGAACAACTCTGACATCAGCAGCACCCGGGCTTCCATCAG
TCCTGAGAGGGGCAAGTACGCAGCCACCTCACAGGTGCTGCTGCCCTCAAGGACGTACAGGGCACAGAC
GTGGTGTGCAAAGTCCAGCACCCCAACGGCAACAAAGAAAAGAACGTGCTCTCCAGTGTGAGTGGCTC
AGTGAACGCTTCTGCTCCCACCCCGCAGGGCTTCCGGCAACCCCGCAAGTCCAGTCACTGCCCAGGCCACGGGTT
TCAGTCCCAGATTCAAGGTGCTGGCTGCCGAGGGGAAGCAGGTGGGGCTGGCTCACCACGGACCAGGTGAG
GCTGAGGCCAAAGAGTCTGGGCCACGACCTACAAGGTGACAGCAGCACACTGACCATCAAAGAGAGCGACTGGCT
GAGCATGTTACCTGCCGCGTGGATCACAGGGCTGACCTTCCAGCAGAATGCGCTCTCATGTGTC
AGACAGCCATCCGGTCTCGCCATCCCCCATCTTGCAGCATCTCCTCACCAGTCCACCAAGTGCACCTGCC
GTCACAGACCTGACCACCTATGACAGCGTGACCATCTCTGGACCCGCCAGAATGGCAAGCTGTGAAAACCCAC
CATCTCGAGAGCCACCCAAATGCCACTTCAAGGCCGTTGGGTGAGGCCAGCATCTGCGAGGATGACTGAAATT
AGAGGTTACGTGACCGTGACCCACACAGACCTGCCACTGAAGCAGACCATCTCCGGCCAAGGGGGTGGCC
CTGCACAGGCCGATGTCTACTGCTGCCACCAGCCGGAGCAGCTGAACCTGCCGGAGTGCCACCATCAGTGC
GGTACGGCTCTCTCCCGCGACGCTCTCGTGAGTGCAGAGGGGGCAGGCCCTGTCCCCGGAGAAGTATGTGA
CCAGGCCCAATGCCGAGCCCCAGGGCCAGGGCGTACTTCGCCCCACAGCAGTCTGCCGAGGATGACTGAAATT
AACACGGGGGAGACCTACACTGCGTGGCCATGAGGCCCTGCCAACAGGGTACCCGAGAGGACCGTGGACAAGTC
CCGAGGGGGAGGTGAGCGCCGACGAGGGAGGGCTTGAGAACCTGTGGGCCACCGCCTCCACCTCAT
CTGAGCCTCTCTACAGTACCAACCGTCACCTGTTCAAGGTGAAATGATCCAAACAGAACATGGAGAC
GGAGAACTCAAAGGGGCGAGCCTCCGGGTCTGGGTCTGCCGCTGCGTGGCTGTGGCACGTGTTCT
CGGCCCTCCAGTTGCTCTCACACAGGCTTCTCGACCCGAGGGGGCTGGCTGGCAGGCCACGGTGG
TCTACCCACACTGCTTGCTGTATAACGCTTGTGAAATAATGCACATTATCCATGAAAAA
AAAAAAAAAAAAAAAA

Sequenz ID: 79 (AB007950)

CAGAACCGAAAGAACTGTTCACATGGAGCTGTTATTTCCGGCCTGAGGTTGCCAGACAATTGGCAGCTGTCTTGA
ATATATCTCTATCAATTAAACAGCAGCTGAGATAAATAATGCACCTTGCCGAACGCCACAGGGACTGCAGGCTCAG
GCTTCTCAAGCCAGCTACCGTCCAGCTGAGCAGATGTCAGCCAAGGAAGAACCTAGATGCCCTGGAAATTGATGCC
TCACAGTTATTTCTCCAGAGGGAGGTGCAAGGTCTGGCTAGGGAAACGGAAAGGACTCTGTTGCAATTAAAGCTG
TATCCTATGGCAGGCCACTAAGGAGCTACCCAGAATAAGCCAATGCCATTCTCATTTGGCTGAGCAGCTCAGAGTC
AGGAAGTCAGAGCGCAGAAATCCAGCAGCTGTCAAGAGGCTCCATGTTGGCCACGGTCTGAAGCAGCCTGTC
CGCCGTCGGTCTGGGAAAGGGAGCACCAGCAGCTCAGGATTCCAGCAGCATCAGCAGCAGGGTATGTCC
TGACTCCCCAGATGAGAAGGAGCGCTCCGGAGATGCATCGCTCTCCAGCCATGTCCTGCCACGACCTGCC
GGCCACCGCCTCAACCGCGTGCTGAGCAGATCCGCTCCGGCCCTCCATCAAGCGGGGCCAGCCTGCACAGCAGC
AGTGGGGGGCAGCAGCGGGAGCAGCAGCGGGCAGCAAGAGTAGCTCCCTGGAGGCCAGCGTGGCAGGCC
GCTGCCAAGGCCAGGGACAGCAGGCCATCTGCACCCAGCAGCAGGCCAGTGGCTCCCGCTCTCC
CCGACACTGCTCTGCTGGCCAGGGCAGCAACGTGTAACCTCCTGGCTGAGGAGGGCGAAGGCATGGGACAAGGTC
GATAAGGGAGACCTGGTGGCCCTGAGCCTCCCCGGGCCAGGGTACCCGACGCCACGCCATCAGCTGGAC
TGGGGCAGCGGACCCAGCGGACCAAGGCCAGGACATTGACCACTGCACCAAGAGATCCTGAAGATC
AGATTGAGCAGGAGGCTCGCGACGACAATGTGGGGAGTACTGAAACTGGCAACACGCGGACAAGCAGCAGGTGTCA

CGCATCAAGCAAGTGGTCAAGAAGAAGAACAGAAGTCAGCCCAGACCATCGCCCAGCTGCACAAGAAGCTGGAGCACTA
 CCGCCGGCGCCTGAAGGGAGATTGAGCAGAACGGGCCCTCGCGCAGGCCAAGGACGTGCTGCAGGGACATGCAGCAGGGC
 TGAAGGACGTGGCGCCAACGTGCGCAGGCATCAGCGGCTTGGGGGTGGCGTGGAGGGCGTCAAGGGCAGCCTC
 TCTGGCCTCTCACAGGCCACCCACACCGCCGTGGTCAAGGCCCCGGAGTTGCAGCCTCATCGCAACAAGTTGG
 CAGTGCCTGACAACATCGCCCACCTGAAGGACCCCTGGAAGATGGGCCCTGAGGAGGCAGCCGGCACTGAGCGGCA
 GTGCCACACTCGTCTCCAGCCCCAAGTATGGCAGCGATGATGAGTGCCTCAGGCCAGCGCAGCTCAGCAGGGCAGGC
 AGCAACTCTGGGCTGGGCTGGTGGGCGCTGGGAGCCCTAAGTCCAATGCACTGTATGGTGCCTCTGGAAACCTGG
 TGCTCTGCTGGAAGAGCTACGGGAGATCAAGGAGGGACAGTCTCACCTGGAGGACTCCATGGAAGACCTGAAGACTCAGC
 TGCAAGAGGACTACACCTACATGACCCAGTGCCTGCAGGAGGCAGCTACAGGTATGAGCGGCTGGAGGAGCAGCTCAC
 GACCTGACTGAGCTTCATCAGAACGAGATGACGAACCTGAAGCAGGAGCTGGCAGCATGGAGGAGAAGGTGGCCTACCA
 GTCTATGAGAGGGCACGGACATCCAGGAGGCCGGAGTCTGCCTGACCCGGGTACCCAAGCTGGAGCTGCAGCAGC
 AACAGCAGCAGGGTACAGCTGGAGGGCGTGGAGAATGCCACGCGCAGGGCGCTGGCAAGTTCATCAACGTGATC
 CTGGCCTCATGGCGTGTGCTGGTGTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 CATCACCAGCACCCCTCTGGCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 ACAGTGTGCTGCCAGCTGAGTGGCCAGCCACACCAACCCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
 GGACCCCTGGACTCTTGTGTGCTCAGTTGGCTCTGCCAAACTGTCCATTCCAGCAGCTGCTGCTGCTGCTGCTG
 TACTTGCTTCTGCTGCTGACACCTCTCCCTGTTGAGGAGCTTGAAGGGAGCTAGAATGCACTGGGACTACCTGG
 ACCTGTGGCCAAGTGGCAGAGGTGGACATGGGTTGGATTGTTGATTATTTATAGTTACACAAGGACTCTCCCAG
 CTGACCCCTCAGGATGCCCCAAGTCAAGGAAGACCATAAGAATAGGAGGAGGGCTGCCTCAACTTCTCTAGGAAAGA
 CCCACCTCGGAGATAGCTACGGTTCTGGAGATGGTGGAGATGGTGGAGAGTGGAGGAGACTGAGGGAGGAGGCTG
 GCGCAGAGAACACAGGGATGGGAGGGCTAGCCTCGGGCACCTCAGGGCAGAGAGCAGGCTCAGAGCAGCTA
 GTGGAGCTCAGCATCCCCACCCACCCCTCTCCCTGAGAGCTGATTGAGGCCCTCTGGGCTGGCTCTGCA
 GGCCAGGTGGGTGGCCTGTTTCCCTCTGTTCTTCTGCTGCTGACTGGATCTGTTATTTCAGGGAAACAGGCC
 CAGGGCCCCCTGAGCTCACCTAAGCCCTAGGCCTGAGAGTGTGTTGGTCTATTATTTATTATTTGTTCC
 TTTGTTCCCTACCCGTGCCCCAGTGTCTCCCTGCTGAGTACCAAGGAGGTCTGCCCCATCTCTGAAGCCAG
 GGCCTCCATTCCATTAGCCTTGGATCATCCTGGCTGGAGAAGTGGGACGCCACCCAGCCCACTATCCCAA
 GCAGCCCTACAGCCGGATGGGAGGCACGTGGCTCTCTTATCCGTCTATTATTTGTAAGTGTATTGTTG
 AGGTTGTTGTTAAGGCTCTGGAGTGTGTTGATGGTTCTTACATCCAGGCTCCATGGGACTTC
 TAAGAAGAGAGGGATTCTGGAAAAGGAGAGAGGAATCCCTAGAGCAGGAAAGCAGTGCTGCCAGCTGTTG
 CCTCCTGAGAAATAATCCTCTAAATTTCAAACC

Sequenz ID: 80 (AP001232)

CGATAGGATGACTCAAAGGACAATGCCAAATACAGTGACGGAAAGGGGAACTAGAAGGGCACACATTATGTTGGGA
 ATATAAAAGTGGTACCAACAGTTGGAGAACTGACACTGAATATAATCCCTTTAATCCAGCCCTTCACTCAGAAATGT
 GTACAGATGTGACAGAAAGAAATGTGCAATAACACTGGCCGGCGCAGTGGCTCAAGCCTGTAATCCAGCACTTGG
 GAGGCTGAGGCGAGCAGATCACAGGTGAGGAGTGGCTGAGGAGCCAAATATGGTGAAGGCTCT
 ATACAAAAATTAGCTGGCGTGGTGGCGGACGCCCTAGTCCAGCTACTAGGAGGCTGAGGAGAAGATCGCTGAA
 CCCGGAGGTGGCAGGCTGAGGAGATCATGCCACTGCACTCCAGCCTGGGTGACAGGGTGGAGACTACATCTCAA
 AAATAAAATAAAATAAAATAAAATAAAATAAAATAAAATAACACTCATAGCATTATTAGTGTAGGCCCCAAACT
 GGGAAATATTCTAAACAAATCAAGAGTAATTGAAATAAAATAAGGAGTAGGTGACATAACATTAAACTATGGATGA
 GAAAATATAAAAGCTACTACATCCATGAATGTTGTTGATCTTACTAGCATAATAATGCGAAAAGACGTTAGAA
 AAAAGCTCACTATCCATGATTCTTTTATATAGTTCAAAACGCCATCACTAAATCAATGTTACTGAAAGTGT
 TAAATTGCACTGGAGAAGAGTGGGCTAATGTTGGAGGAGACAGAAGGTGCTCTAGGAGACGGGAGTGTCTG
 CTTGGTACGGTTGTTACAGTGTGTCATCTGAAAATTATTAAACCTGCTTACATATAATTGTTGAGTGCATATA
 CACATGTTGAGATTGTGAATATACTGTTGAGTTTATCTTACATGAACTTCTTACATGAACTTCTTACATGAA
 TAATGTTATTGCAACCAATCAATGCACTCTAACATTCTTACATGAACTTCTTACATGAACTTCTTACATGAA
 TTTTCACATTCCATCTGAAACCAGGGCACCAATGAAAGGAGCCAGGGTTACAAGGTTACCAACTCTTGTG
 ATCAGGAACACATGAGTCACTATAATCTTCTTATTTTGTGCTGGAAAGCATCAAATTCTAAGCTACTCAAATGT
 ATTGCAATTAAATGATGGTCTCTATTACCCCTAAATGACGAACTTAAAGTCAATATTGTTAGAATCAGAACAA
 GCTTCAATGTTTTCACTTTATTCACTGAAAGACACTGGTAATTTCACATATAAAAGTGAATAAAACATA
 CACAAAATTATACTTGCTATATCCTTCAGTAAAGAGATGACTAAAACCCAGATAGATTGTTGATAGGAATTATTCA
 AGATCATCCAGCTAGTGTGAGAGCATCACTTAGAATTCTGGTGAACCCCTTTAGGACAAGCTGTTCTAAATAATTCT
 AAAGATGTGCCAGTAACCTGCTAAGAACATTGAAAGTACAAGTTTGTGAGATATGTTCTTCTTCTGGTCCA
 CACTTAAGAGCTTCTGGATCATGTTGACTCTATGTTAACCAACTTGAATTGCACTGTTCCAAACCTGCTG
 CATTTTCATTCCACCAGCAGTGCAAAAGATTCTATTGCAACCTATGCAATGAGAAGAAAAACCTGAGTGT
 GAGGTATTAGAAGAACTAGAATATATCCAGATGTAAGAAAATAACCAAGGTAGCTTAGAGATGCCATTAAATAGTT
 TTTAAATTCTCTAGTCTTCCAAACCTGGTACATGTTTACTACCTGGTGGACTCACTCGCAATGGT
 AGAGTGGGAATGGACTCAGGAAGTGGAAAAGTCCCTCAGACAAGGAAGAACTGGTCAAGACACAAACTAAGGAGT
 TAATCGGAATGAAAGACGGGATCTGAGGAAAGTGAAGTGAAGAATTTCTTCTAGGAAGGAGTAACTTAAGCAGAA
 CCTGTTCTTAGGATGTGCTGCTTAGGATCTGTTGTTCTGGACTAGTGCCTGACATAAAAGGACTGAGCACTG
 CATCTCTTCTCTACTAATTAACTTTGTTGTCAGTTGTTGTAATTCTTATATAGAGTGAATGATCTGAAAGGTT
 GATGTTTATTAAATAAAATGACCAACCGTGAAGTGAATCTAAACAGATAGAATGGGAAATAACTGAAAGA
 ACAAAATATAAAACGTATATGTCATATTGCTTTGTTGCTATATAATTAAATTGAAAGTCAAGGA

AAATACTGGTTATTAAATTTCATCTATTAAACCAGTATGGTAAAACCTGTATTGCCCTCAATTATGATTCC
AATTTGCATGAGTAATATTGCGTTAGTCAGATTACAAATTAAATTGCGTTGCATTATGCTTATATTG
AGGAATTTCCTATGGAATGACTTCAGATTACACACATTAACTTAGGTAGATTAACTTATAGGTTGTTGAT
TTTATCCTCACCAACATTCTTACAATCACAAACCACAGCTCCTCTTGAGCAACCGACTTACTCATCTT
ATCAGCTGTAATACATTTCAGGGTTCTAGTTCAAAACCTTATGCATATCATAATTACTTGTCAAATTAAA
AATTTCTTCATATTTCAGTTCAATAGAAAATGCATGCAGTATAATTCTTTATAAAACTTGCACATT
TCAAATATAATTACATTGATTACTGGGAGTTCAAGGCCAGGACTCTGAAGCAAGCCTGACATTATCTTGAAA
AAAATAACCTTACATTCTGAAATTGTATTATGAAATATATGTGTTCTCATTAAATGTTGAATACA
ATTGTGACTCCATTGAATTACACTCATTAGTAGTTAACAGACATGAAATTATTCTCAGATTACATTCTTAC
TGGTTCTTCTAAGGACTCATTCTCCTAGGAAATGTTAATTCTCAGGTTAACCTTCTACTCTGTTCTGTC
TGAGCTCTCTTATTATCTAATGTCATGATTCTCCTTGAAAACAAAAGTGTACTCTAGTTGCTTCCATATC
ACTGTTTGATCAATTGCAATTGCTATAATTGCTTGAATATGGGTTGTTAATGATGAGTTGTT
TATTCTTCTTATATTGAGCAGTTAACAGAACTATGCTTACATTCTGATAATTACATATTGTGCTATTCTC
CTAGTTATATATTCTTATTGATTGAAATGCAAACATAATGTTAGAAATGTTCTGGAGTCCACAAGAGTGT
TTTTTACTTAACCTTCTTATTGTTACAACATCTTCTTCAATTACTGTTAATGATGAAATAATCAATGATGGTTAAT
AACACAATTATAATGTTGGTCCATAATTGCACTTTATTAGTCCATTATGGTTCTTATTGATCTTCTC
CACTCACTAATTCAATTAAATTAGTAATATAAAATTGTTACTATCTGCAAAACAAACCACCTAACAGATATCA
ACATATCCAGTTGAGGTTCTCCACAATCTCTAAACATATTCTCCACCCACCATCAAGTTAACAAATTTC
AAATTCTTATCAATGTAGTTATTCTTCTACATGTATTCTTAAAGCTGTTATTCTTAAACATTATAAA
GGATGTCATACTAGTGAAGTCAATTATTAAATTCTTCTTATGTCAGATATTGTTATTCTCTAAGAATT
TTTATCTCTAGGGCATGAAATATGCTTCTATACCCCTTGTAGAGGATTACTCTGGGCTTCTATATT
TACAATTATTGATGATTAATATTGATATGGAATAGAATTAAAGATTCTTCTATATAACAGATACTGAATTGATC
CAGTATGATTAATTATTACTTCTACTACTTGAAGTAGCACTTTATTGAAATCAAATGACTACGCATGGTGGAG
CAGTTCTGGATTCTCAAACATGATTGAACGGCTAATTGTTGACACTCACTGATACCATATTCTGTAA
CTTACAGGCTTGGTATTGTTAGTATTAGTCTCCAACATTATTCTTATCTTAGCAAGACTGTCTGGTTACTTTGAT
TTGAATGTTCATATATATTAAAGTAATGTCATTGCAACAATTCTGAGATTGTTATTGAAATGTT
CAACAAATTAGGGAGAATATACACTATTAAAGTCTCCAATTGAGCATGGTCAACCTTCATTATTGAGTTTC
TTTATTCTTATCAACTGCATTGTCATTTGTCATTCTGGTTGTTGAACATATTGACTTTATTGGCAT
ATTGTTAAAGAAAATTGCAAAGTAATATAAGAACTCCAATGTATACGTTACCCAAATTCAATTAGTAACCATAGATGA
CTTCTACTTCCAATTCTTCTATATTGAGTTGGCATCTAGTTACTACTGATTCAAGAACATCACC
ATGACACATTACAATTGACATCATTACTATTCTTGTAGTTGTTAGGTGTTCTGGGCTGACCAAGATTCTGCT
TGGGATTCTTACATGGATGAGTCAGATAGCAGCTGGGATGGAGTCATAAAAGGTGGCAATTGAGCTATAGGAT
GAGCCTCAGCTGAGGCTGTAATCTCAGTGTCTGGCTTCTGTACACTTCTCGAAGAGTACCAAGACAGAT
GTTTATAACCTCTTATGACTTACTATAGCCTCAGAACAGACACATAGTGTACTTCTATACAATTATAGGTTACTAAGA
TTCCAAGGGGGAAAAGTATGCTAATATGCTTAAAGGAAATTCAACATCACACTATTAGAGGAACATAAGATGG
AAGATCTTGTGACTATCTGGAGTATCCAGTTGGCAACTCTCTACGCTTGGTAAATCAATCACATTACTGTATGC
AACATATACTAATTCTCATCTGCAACATCTACAAACTATTCCCATGATGGTGGTAAGTTAAAGTCAAGATCTCTC
TAGATCAGACTCTGTCAGTTGAGCCTTGGCCATAGTCTCTAAATAGCACCTGCTCCCCCTATCCACTAACAGATTG
TGAACAAATGATGAGACAGGACTAGGATGCAACATACTTGACAGACAAATGCTGTAGATACTCCCTTCAGGAAGAAGGCACT
GAGCTCAAATTCCACAGAGCATAAAGCCACAGCTTCTGGCTTCTGCTTAAATGCTGTGTTTAAAT
TTTCTCTCAAACATGACTTTCTTTTATTGGCTTGGAAATAATGTAATTATTAAACATGAA
CTCATGAGGATCAAGTCAGGCAAACCTTAAATGTTGGAAATCTTATAGGATAAATTATTCTTCTTTTGT
GTGTGTAATTCTTTTATTATGAAAGATTGGGATGATGTGCAACCTGCAAGGTTGTTACATATGTATACA
TGTGCCATGTTGGTGTGCTGCACTCTTAACCTGGCTTGTGATGTTGGCTTACATGCTTCTTCTTCT
TCCCACCCCACAACAGGCCCCGGTGTGATGTTCCCTTCTGTGTCATGTTCTTCAATTCCCACCTATG
AGTGAGAACATGCACTGTTGGTTTTGTCCTTGTGATAGTTGCTGAGAACATGATAGTTCCAGCTTCAATTCCC
TACAAAGGACATGAACTCATCTTTTATGGCTGCAACAGTATTCCATGGTGTATATGTGCCACATTCTTAATCCAGT
CTATCATTGTTGGACATTGGGTTGGTCCAAGTCTTGTCAATTGTGAATAGTGCACAAATAACATACGTGTATGCG
TCTTATAGCAGCATGATTATATTCTTGGGTATATACCCAGTAATGGGATGGCAGGGTCAAATGGTATTCTAGTTC
TAGATCCCTGAGGAATCACCAACTGATTCCACAATTGTAATTAGTTACAGTCCCACCAAGTGTAAAAGTGT
CTATTCTCCACATCCTCTCAGCACCTGTTGTCCTGACTTTTAATGATTGTCATTCTAACTGGTGTGAGATGCTGT
CTCATTGTTGGTTGATTTGCAATTCTCTGATGGCCAGTGTGATGAGCAATTCTCATGTCCTGTTGGCTGCATAAA
GTCTTCTTTGAGGTGTGTCATATCCTTGGCCACTTTGATGGGTTGTTGTTTTCTTAAATTGTT
TGAGTTCAATTGTAAGATTCTGGATATTAGCCCTTGTGAGTAGGTTGCAAAATTTCTCCATTCTATATGTTGC
CTGTTCACTCTGATGGTAGTTCTTGTGCAAGGCTCTTAGTTAATTAGATCCATTCTCAATTGGCTT
TGTTGCCATTGCTTTGGTTAGACATGAAGTCCTGCCATGCCATGCTTGTGAAATGATATTGCTAGGTTCT
CTAGGGTTTCTAGGTTAGGTCTAACATTAAAGTCTTAACTGTAATTGTTGATAAGGTGTAAGAAAG
GGATCCAGTTCACTACATATGGCTAGCCAGTTCCAGCACCATTATAAAATAGGAATCTTCCCCATT
GTTTTGTCAGGTTGCAAAAGATCTGATGGGTTGAGATATGTTGCAACTATTCTGAGGTCTGTTCTGTTCCATTGG
TTGTTATCTCTGTTGGTACAGTACCATGCTGTTGGTTATTGAGCCTGTTAGTATAGTTGAAGTCAGGTAGTGTG
ATGCCCTCAGCGTTGTTCTTGGCTTAGGATTGACTTGGCAATGCCCTTGGTTCCATATGAACATTAAAGT
AGTTTTCTAATTCTGTGAAGAAAGTCAGGGTAGCTGATGGGATGACATTGAATCTAAATTACCTGGCAGTA

TGGCCATTTACAATATTGATTCTCCTACCCATGAGCATGGAATGTTCTTCCATTGTTGTATCCTCTTTATTCA
 TTGAGCAGTGGTTGTAGTTCTCCTTGAAGAGGTCCTTCACATCTCTTGAAGCTGGATTCTTAGGTATTATTCTCTT
 TGTAGCAATTGTGAATGGGAGGTTCACTCAAACACTGTACTTTTATCCCTTCAAGCAACTTCATCAAACAAACAATA
 ATGAGTTTAGCAGTGTCTCTATGTGATCAAACACTCTCATTATCCTTGAGGCAGTTAATGTAACACTTCTCATT
 AATTCTTGTGTTCACTTATTATGAATTTTCTTGAAATTACACTGTAAGGCATGGATTTTTATTTCAGTTA
 TAGTCGGTATGGCTTGTATAAAATTCTCACATTCTTGTCTTGCCTTCAACTCTAAATCCCCAAATTCTG
 TTAGTATGGTAACTGACCTCATATCTGATCCATTGTATGGAACATTCCAGGTTAGGTTCATACCAAGAAAATGAC
 TCTGTATTCAAGGCCACTTGAATTAATAGCTGTATCAGTGATTATTATGATGACCATGGTCTTATAAGGTTCATATA
 ACATGCTTGTGGTCACTTGCAATTAGTCATCATCAGAACAGACAGCTGAGCTGAGGACTGAGGAATGTTGTGGTGT
 TTGGAGTATTATAAGCGAGGGGTTCCACATAGTCCCTCATAGACTGAAGACACTGGGGAAAGGAGCATCCGTGTG
 TGACAGCTGTGAAATAATCTGTTCTGGAACAAGAAGCTCCAAAATATCACAGCCTGGGATGACTTGTGTGCTTCC
 GAGCATTGGCTACATATCAAAGCCGTATTAGTGGCTGTTCCCTGGCTCAGGGCAGGTGTCTGCCTCAGCCATGTACA
 TAATGGACATAAGGAGCTCAACTCTCTGCTGCTGATCCCAGATGAGGAAGGATTATGAGGAGGTGCAC
 ATGATGGTGAATTGCTTCTCTCATGTAAGTGAATTCTTAGTACCTTTTGGTCTGACATTGATTCTCAT
 GGAGCACTCACAGTGTGAGTAACATGATAAGCTCATAGAGTGGATGTTAACCTCACTGACATTGCTTATGTG
 ATTTTTCAAAAAAAATTCAAGATGTCAATGAGAATTGTCGCCCTCAGTTTATTATTTTAACTTTG
 TTTAGTTCAAGGATATATGTGAAGTTGTTACATAACTGAACTGTGCCATGGGGTTCTGACAGATTACTTGT
 CACCCAGGTATTATTCCCAGTGCCTAATGTTGTGTTCATGAGTTCTCAATTTCAGTTCTGACAAAGGTTGAGGAAGCAAGCC
 CCTATCCAGAACCTAGTGTCTGATGGTGAAGTGCACACAGACTGAGGTAGATTGCTCCACAAATCAGCAGCCT
 TAGCCTGAAGATGCAGGGTACTGTTACTGTCACAAACATCAAATCTGCCTCTCATGTCAGCAAAGTCAAGG
 AGTGAATGATCCAGTGTATCTGTCAGTTACTCATACATAATTGATAAGTCAAGTCAAGGAGCTCAGTGAAG
 AGATTGAAATATTAGTTCTGTGATAACAGAACACACAGATTGTAATCACATATCATGGTGGAAATTGCTCTTA
 CACTTAATATATGTGAAATTGGCAAATGACTTAAACACTTTACCTGTTTTATCTCTAATAAAGAAAATAAG
 AAGTAACTATACCATAAAGACTATTATAATAATTAGTAATTGAAACTTATAAAATGTTATAACTTCAATGTATTAA
 AACTAAATAATTACTAATAATTCAATTATAATTGCTACATCTTAAATTATGTAAGTCCAGTGTGTTCCCAAATACTGT
 TTTCTTGACGTTATTACAAAATTATGATTTTCCCTAAAACCTCCACTATGTTAAATAGCAGATAAAATTATTCTCAT
 GCCAAGCTGCTAAAACAGATATAAAAGCTGGACAAAATATAAAAAGCTGATACTCTAAGGTACCATGTACCTCGAAT
 AAGTGCATGTAAAGCATCTGACTCCATTGGTGTGTTGATCAGTGACAGCTTCAATCACCACCTCCACTTCCC
 TTCCACCACATATTGTGCAACTGCCTGCAGGACAGTCACACTCATAGATCCTCAGCAATGCAAGATGACATATCTCA
 GTCCAACATAAAAACTCAGCCCTCTGTGTAACTCGAGCCAGCTTACCCAGTGTGCAATCCTGCTTCCCGAGAT
 TCCCTGTGAGTTAGAAAATTCTCCAAATTCTCTTGTACATGGAGTGTCAACAGCTTCACCATAATACTAAT
 TAGAAAAGATCCATCTCACCTCCGTGGGTGACCACAAAATGCCAAGAGAGCAAGTATTGATGAAATCAAGAAAATAAG
 GTAAGCTTATGAACTGAATATTGTTGTCCTCAGTCACTCAGGAGGCTGAGGCAGGAGAATCAATTGAAACCCAGGAGCAGAGGTTG
 CAGTGAGCCAAGATTGCAACACTGCACTCCAGCCTGGTGCAGAGCGAAACTCCATCTCAAAAAAAAGAAAAAAAG
 AGACCAAATCTATTAGGCCATTCTGCACTGCTACAAAGAAATACTGAGACTGGTGTATTATAAGAAAAGAGTTTACT
 GCTCACATTCTGCAAGGCTTGTAGGAAGCATGATGCTGCACTGCTCAGCTCTGGGAAGGCCAGGAAGCTTAC
 TTATGATGGAAGGCTAAGGGTAGTAGGCCATTCAACAGGCCAGAGAAAGAGCAGAAGAGAGAGAAGGAGTTGCCATA
 TGCTTTAAATAAGCAGATCTCATGAGAAACTCGCTATCATGAGAACAGCAGGACCAAGAAGAGATGGTGTAAACTGTTCATGAG
 AAATCTATCTCCATGATCCAGTCACCTCCCATCAGGCCCTGACTGCAACTACTGGGATTACAATTCCACATGATATTGA
 GCAGTAACAAATATGCAAACAAACATCTTACCCCTGGGCTCTCTCAAATCTCATGCTCTTTCACATTCTCAAATACA
 ATAATTCTTCCATATCTGCCAAAGCTTACCTTATTGTAATTAAACAAAAGTCCAAAGTCAAAGTTAAAGGCC
 ACATCTGATACTCATATTCTCCACTGATAAGTCTGAAATTCAAACAGTTATCTACTTTCAACAAACATCAAAGGCC
 AAATCCCATTGATTAGTCACAGCAGGAATTAAAACCTAGGAAAATATCTATTGAGAAATAAGTACCATGTTGATATA
 GCCACATATTCTCAACTTAGCCTAGGATTTCAGATTCTGAAATCATGTCACACTGTGTGCACTCTAGTATGGCA
 CCAATAGCATCTCACCTCCACTTTAGAAGTAGCTCAATCAATTCTAAACTTTTCAATTGAGTTCTGAAATATTCTAA
 GTGATGCGTAGGACTATATTGTCAGGAAATTACTCAGGAACATCCACTGGTGGTACCACTATGTTTAAAGAG
 ACCAGTCCCTCTCTCCCTCACGTCATCAACATTCCAGTGTGAAATGCCATGATGAAATATTGACATTAAAGAG
 TGAGCATAATTATTAAATCAGTATTCTCTATTGAGAGCAGGCTTAAGTAGAACTGAAATTCTGAAAAAAATAAAAG
 TAAAAGAGAATCAGATAGTGTCTGAGTTCTCATGCAACTATAACAAACTCACAGACTGGGAAATTATAAAACAAATA
 ATATTATTCTCACAGTTCTGAGGTTCAAGACTCTAGGATCAAGATGCTAACAGATTGAGTGTGCGGTGAAGCTGCTGG
 TGGAGGCCAGAAAAGGCAAGGAGACAAATTGAACTCTGCACTGCACTGGCAACAGAGATGGAAGGGCCAGGCAGCTCT
 CTGAAATCTCTATATAAGGCCATTAACTCCATTATTAAGGGCAGAGGCCATGACTTAATCACTTCCAAAGGGTTCTA
 CCTTTTAATATCAACTTAGGCTTAAATTCCAAACATTAAGTTGAAACATCACAAACATCTAAACCATAGCAGATGGGAC
 TAGACAATTCTAACAAAGTCAGCACATAACCATATAGGAGGAGTGCAGAAAAGCAGCTGCCCTGGTACCTTGTGACCAAG
 ACTTTCTTACAAAAGGGTCTCTAGCAATATTCAACACCAGTGTGACATGACATGTTGATACTGTGTAACCTTGA
 TAGGATGTAATGAAAGACACATCCCTGCTGTAATATTCTGCAAAAATGAAAATCTGACTTTAATCAATAGAAAATACC
 AAACAATAGAACTTAAGGGACATTCTGAAAATAACAGCCAGCAGCATAAATCAAAGTTCAAGGATTCTCAAACAAAGA
 CTAAAAAGCTGTCAGAGATTGAGGAAATTAGAAAGCATGAAACTGAATGCAATATGGGATCCAGAAATTATTCTA

AAACATTAAGTAAATGGTAAATACATGTATCAGTGGAAAGCTCAGTGAATTCAAATGTAGATTGTAACCTCGITA
ATAATAGTGGATTAACCATTAAATGTTAAAGCTATTGAGTACTAGAAAAATCAGTTAAATGATTTATTCAGCAA
AACTATCCTTAAAGAAAAGAAAAGAAGCCGTGACTAGCATATATGTCCTATAAGAAACTCAGGAAGAAATCCTTCAGAAT
TCAGAATCACAGTAAATGACAATGAACAGTAATTAAATCCATGAAATTAAATGAAAGCTTCATAAATATACTTACCTCA
ACTCATATGTTGTGATGTTACGAAAACACTGAATCTTGTGATAGATATCAGAGTTGCAGITCCCTGGTAGGTTAGAGG
CAGAAGCTATTGACTAGAAAGGTGAATGAAGGCAGCATGTGAGAATTCTAAATCATTCAATTTGTATCTGGTAGTGA
ATGTGAGTACTTTATTGGTTGAGCAGTGAACATGTTGCACCTTACTCAGGGCACAATTATTTGATTATAAAATTA
ACAGCAAACCAAGACCCCTTCAACACACATGAAGAAAAAAATAAGAAGCACCAATTTACAGAAACTCAGCCGTATTA
AAGAGAAGTGAACAAGCACTGGAAAATACTAGGAAGTAAAAAAATGACAGTAAACACAGTAAACATAGAAATATATC
CTGTCCTAACAGGCTGCATAGATTGTTATTCTGCCAGTTTTCTCAAGCATAACAAATATGTTGTCATAGGAAAGG
CCCCCATACCCCTGCACATATCATGTTATTCTATACCACTGCACCCACAGGGGATTGTCATATTGTCCTCCAGGGAGG
ACCTTCCCTGCAAGTCTGAGATAAAAGCTCAGCACCAACCTGACTTGAATAATTAGGACTCCTCAGGTACCTCTCA
CAATGAGGCTCTGCTCAGCTCTGGGCTGCTAATGCTCTGGTCTGGTGAAGAGAGATGAGGGAGGAG
AATGGGGTGGGAGGGTGAACCTGGGGCCCCATTGCTCCCATGTGTTCTGTCATGTTAGATGTGACGTCTG
TACTCAGGATGGGGCTGTAACCTTTATATCTGCTGAGTAAGGCATGTGAGGTTAGATCTGTAAGAATGAGGAAGAT
TCCAGAAGGAACAAAGACAGTCTCCGGTGAAGACTCTAACAGAGAAAGGGAAATGGTAGAGGAAACTCTAGCACTC
AAAGCACTCTGCTGCTGTTGAAAATATGTTTATTTGAAATTATATTACTAGGGCTGTAATCAAATTAAAAAT
TGATTAGCCTGAAATAAAATAACAGAAGAAAAATTATTTAAAGTTGCTTAAAGTTCTACATAACCTTGCACTTCTC
TCTCATTATTCAGGATCCAGTGGGATATTGTGATGACCCAGACTCCACTCTCGCCTGTCACCCCTGGACAGCCGG
CTCCATCTCCTCAGGCTAGTCAAAGCCTCGTACACAGTGTGAAACACCTACTTGAGTTGGCTTCAGCAGAGGCCA
CCAGCCTCAAGACTCTAATTATAAGGTTCTAACCGGTTCTGGGCTCCAGACAGATTAGTGGCAGTGGG
GGGACAGATTCAACAGTAAAATCAGCAGGGTGGAGCTGAGGATGTGGGGTTTATTACTGCACGCAAGCTACACAAT
TTCCCTCACACAGTGGTACAGCCCTGAACAAAAACCTCCGCTGGAGTGGCCAGCTGCTCAAGTGTGTTCTCTGG
GAGCAGTTGAAACAGAATCTCTATCTGATGAGATAAACATGTGGAGAACAGTCAAGGGCAACAGGTTGCATCTGAGGGTCT
GTCCCATGGGTGCTCAGTTGACGTAGGCAAAACCTGTTCAAGGCCCTGTCAGCTGCAACAGCCTGGCATGGCATAA
GCCATAGGAAACCAAGAGGTGATCCAGCTGCACAGGTAATAGACTGCCCTGAGGGAGAGCTTAAGAAAATCTATTC
CAATCTCCCTGCCTGCTGCAATTGGAAATAAGACTTAAAGAGGTAATAACCAAGACAAGTAACCCAGATTGTTGCA
ACACTGAAATAATATCTTGAGGTTAGCAGTTAAAGTCTATATTAGGAGGATAATAATGTGTTAATATCCAAAATTGAA
CTTTCAACTTCTAATTCTTCTTCTCACCACCTATCTCCCACACATATTGATGGTGGAAAGAGCCTC
CGCACAAGCTGTCATCATGAGGGAGCTGGATGAGGCAATTAGTGAATACTGGGATTTAGCCTCAGAATGGACTTTGT
AAATTGGTGAGAGATAGAAAATATGAATGCTAAATTATTTATTGCTTCATATTGTTCTGTCAGAGAAAAGGATAG
TTTTGAAATTCTAGAAGTTGAGTTCTATAAACAGAAACTTAAACTAGAAGACATAGGTTAGAATTACCTCATAGAA
CACTGAAATAACACAGAATGATGTGCGATTCTTCCCCAAATGTAAGAGTTGAGACAGTGGGCCACTCAAGAAT
GGGAGAATTATGAAAGATAGTGGAGGTCAACTATGGCCAATAACCTGCTTTGACTTACATTAGGTACAGTTGTGGA
TGACAGTACTGTGGGGTTGGTGTATAAAACTCAGAAAGGAGCCAATGTCTTCTTATGAAGAATCACAGAGGAGA
AAAGTATCACTCCCTGGCTCATGGGTGAGCCTGACCCTGCAAGTTCAAGGAAAGTAGTCATCAAGAATGATCTT
TTAGTTCTGCAATCATCAAATGTTATTGAAAGTTCTGCAATAGACTGAGGTCTGTGACTTAGTCACAGTC
TAAAACAACCCAGAGTGCATGTGGTTGGGTTGAGAACACAAATCATGCAGTGGCATGTAACCTGAAGTCCAATA
GAGCCTACATCAATTGGGAGCAGTGGCAATGACCAATAATCCATGATTCAAGACATGTATTGAAATGGTCTGCGC
AGAATTATCAACACAAAATCCATGAATCCTGTATGGGAGTTCTGTCTTAGACCAAGCCAAAGACTGC
ATGTCATCAAACACAGCCAATGTTCTGGAGAACACTATCTGTGAGTTGAGGCTGCATTGCAACCAAAGAGGCA
GCCAGATTCTCTTCAACAGATGAGTTCTGCTGTGCAAGCAGAACTTGGGCTCAAATGCCAACCTGGCAAAT
ATGGCAGGAGAACAAAAGTCAGGTAAGCATCAGCTCAATTAGAGAGGATTCTCTCACCCCTGGAATTAGATTACCTAG
GCCTTATTCTGTCACGTGTTCTGTGATGTTATAATTCTACAAATTGTTGATTGTTACCTTCTGAGCAGTTGCTTAA
GGGCTTTAACACAAATGTTATTGTCACCTGGGAGTGGAGATAACTTTCTACAAATAATGTTTAGAAATGACAATT
TGGTATTCAATTGTCATGAAAAGAATAATGGTTCTACATGAAATTATAGTCATGTTGAGGTTCTGTTACACAAATGTT
CATGAAAATGAACCTCATTCTACCTCTAGTAGTAATTGTTAGAAAATATAGTCATGTTGAGGTTCTGTTACACAAAT
ATGCCCTAAAAGTATTCTAAACTATCATGACATGATGAAAGTAAAGGGGATTGAAATCAGCAGGACAACATA
CTCTTCTCTGTTAAGGAAGTAAACCATATTAGAAATGACTGTATATTCTACAGATAATGTCATGTTGAGGAAAGT
TAAAATCAAATTGAGGAGAGAAAATCCAGAAAAAAATGGATTGCAAGACGTTGTAACATAGGAAAGAATGACA
ATCCTCAAAGTATTCTGTCACATATTCAAAGTGGAGAACACATGCACTGAACTTAAATGTTAATGATTACACTCACA
ATCACTCTGTTGGGGCTGGAGATACTGCACACAGACTGTTAGCAAGACACTCACTGGGACGCTGCGTTGTGATGGC
CCCACATACAAACCTCAAGGAGGCTCAGCCTCTCAATGCAAGCAGGAGCAGCTGGGACGCTGCGTTGTGATGGC
GGTGGCTCAGTTAGAGATGGCTGGAGAGGCCATGAGGTTCTGAGTCACAAACACTGGCTCTCTTC
TGTGTAACAGGGCTAGAGGCCCTCCAGGACAATTCTAGAGGCCCTCTCCATTCTCCAAATTAGTCAGCTGACACCC
CAGACTCTCCAGGAAGTGGTTGTCATGTCCTCCCTGCAACAGCCACTAAAGTTCCCTACTGCTGTCAGTGAATGCA
ACTTAGTCACATCACTGGGAGGCGACCCTAGTGTATCCTGACTCTCACCTGCTGCCACTGACTGACTTCA
TCTCCCTTCTGAGTCAGTCACTCTACCAACCATCAGGAGAATGAAAAGCTGCTGCAATGCAATTGAGTGTGGCT
TGAGCAAATCAAAGCTCACAGGAGTCTCAAACATGACACCAATAATAATTCTGATAATTACTATTGGACTTT
TTCTCTTCAATTCTGGAAGTAATTGAGAATTATTTGAAACTCTTAGAAACACTTAGTATATGTTAGTAGGTTAGTAA
CTAGTTTGTCTACTGGTTATTGTTGCTTGTGAGGCCATGATGGGAGTGTAAAATACTGAAGACAAAGAGATAC
ATTTAGAATTAAAGCATACTGTACATTGGCTCTTCCACACCACTGCAACCCACAGGGGATGTGCAATTGTCCTTAGG
AATGAACCTCCCTGTGAGTCTGGAGAAAAGCTCAGCTGTAACCTGCCTTAACTGATCAGGACTCCTCAGTC
AACTGTCACCC

CTCACAGTGAGGTTCCCTGCTCAGCTCTGGGGCTGCTAATGCTTGGGTTCTGGTAAGGACAGAGGAGATGAGGGAGG
AGAATGGGTGGGAGGGTGAGCTCTGGGGCCCCACTGTCAACCCTGTGTTCCGTCCACATGTTAGATGACGCTGTCT
TGTGCTCAGGATAAAATGTATGGTGGCACTTTATATGTGAAAGAGTGAGGAAGATTCAGAAAAAGCAAAGACCTGTG
CTCTGGTGAGATTCTGACATAGAAAGAGGAGGGTAGCATAAGTGACTTCATAGGGCAACTTGGGCTTCAAAATGTCT
GTTTTTTTTAATTGAATTTTGGTGCATGAATCAAATTACACACACTCACACACACACACACAC
GCCGAATAACAATTATTTAGCATTAAATAATTGTAGAGAAATTATGATAATGTCATGATTACATAACATTGACTTC
TTTTTATATTACTTTAGGATCTGTGGAAATTGTGATGACCCAGACTCCACTCTCTGCCGTACCAATGGAGAG
CCGGCCTCCATCTCTGAGGTCTAGTCAGAACCTTACATGGTAATGGATACACCTATTGTATTAGTCCCTGAGAA
GCCAGGCCACTCTCACAGCTCTGATCTGTAGGACTTCCAATCAGTTCTGCCCTCCACACAGGTTCTCCCAATGG
GAGGAGAGAGTAGACCACTGATCCCCAGATAATACAGGACTAGTTCAACCTTGGAAAGCTGGTCTATATCCTATGGT
TAAATAGGCATTGTGATACGACCTGAAATAACATTGGACAAGAACTTCACTAACAAATTGAGTCAGTAAGACTTACGGC
CTGTGTGACGACACATAACCGTGAGTTGCAGTGGTGCAGGTAGGGACAGATTATGCTTAAGATCAGTAGGGT
GGAGGCTGAGGATCTGGCTATTACAACCTGCCACACACTCTACAATATCCTCCACATGGTTCAGCACCAAACAAAAG
CTCCTGCTTGGATTGTCCCAGCTGCCAAATTAGTTCCTACTGAGGAGTAGACAGGGTATATTCTCTAAATCTATGT
AACAGGAAGATGTTGGTGAACCTCAGGGGATTAGTATGAAAGCTACACCTCAGGCATCACACATAAGATCACTCAGCAGTC
GCAGCCTAGCATGGCAGAACCTACAGAAGATGCAAGTGCCTCTGAGCCAGGAGACAGGAGGAAGGGAGGAAAG
GTGACTTAGCTCATCTCAATCTCTCTTGCATACATTGTCACCACTGTCAGCTACACACAAC
AGGCTGATACATGACAACATAGCACTGGTATATTCTGGTATTGGCTTAGCAGTTACTAGTATATATTAAATGGGA
GAATATTGGTGGTGTAAACACATTGCTATCTCCCTTACCCCAGTTGTACTTTACACTGTTCTCGGCACACATTCTCC
CCAGGACTGGAGCATTACAGGGTTTATGTTACTGTTCTATGGGAGTAAAAAGAAAACGATTACATCTTGTAC
AGCTAGGCTGGGATGTCCTGGCCAAGCTGAAAATGTGAAAATAAGAGTATGAAATTATTAAAGTATTCTGGAT
AAAGACTACTATCCATGAACAGCTCCTGCAGCTGTGCCAGCCTGCTCATTCTCTGCTGATTGCTGATGTCAG
ACAACCCCTGTTCTGAAGACTCTTAATAGGCTGTCACACCTCTGTCAGGAGTCAGTCTCAGGACACAGCATGG
ACATGAGGGTCCCCACTCAGCTCCAGGGCTCTGCTGCCGCTCCAGGTAAAGGATGGAGAACACTAGGAATTACT
CAGCCAATGTCCTAGTACACGCTGCCCTTCAAGGAAATCATCTTACAAATAGTGTGTTGATATTGTTTATGTC
CCAGGAGTCAGATGTGATTTCAGATGACTCAGTCTCCATCTCCCTGACTGCATCTGAGGAGAGAGTCACCATCAC
TTGCTGGCGAGTCAGGGCATTGCAATTATTAAAGCTAGTATCAGTAGAAACTAGAGAATCTCTCTAAGCTCCTGATCT
ATGCTGATCCAGTTGCAATTGGGCTCCGTACGGTTCAAGTGGCAGTAGGTCTGGGACACATTCAACATTCTCAC
CATCAGGAGCCTGCAACCTGAAGATGTTAACTTATTACTGCTATAGACTACAGCAGCCATTCTAGAGTGTACAGG
TCATAAAATAACCCCCAGGGAGCAGAAGTATGACTCATGGCTGCCCAAGGTGCTTCACTGGTGCCTCCATCTGTC
GAGTGTGTTCTCAGGTCAGCCAAGATTAAAGGTTTGTAGGAATGGTCAAGACTCTCATCTGATTCTAATTCTTT
CTTCCTGCTTAGCCCCAGCAGCACAGACATGACACTATCTCTCTGATTAAATAAAGGATAGCAATTACAATACCTGAAG
AATCTGTGTTATTGCTCCATTGGGTCAAGATTAAAGAGAAACACTCTACAGATTGCCAGAGGATTGTTAA
ACAGGGAAATTAGAGTTGAATATAACAAACTGGGAGTGTGGTAGTTAGGGAGCTGACACTAGAAACACGGAGTCCTGG
AGGTCTGCCAGAACGCCAGAGTCATCAGCGCTAAAGGATGGCTATCTAACCATATAGTCTCTTGTCTAGGAAGTC
CGTATGCGAAGATGCTGATGCTATCAGTTGTGCACTCACCAGGTGATTCTCCAGTCCTATCTCAGTGAACATGT
TTGCTACCGGTGCAAGAAATTGAAATCGCCTTCTTCAACCTTCAAAATGATGAGAGGTCTCTCTTGTAGTA
CTACAAGAAACCATAGAGGTTAAATGGGTTCAAGGAAAGGTGCTTTAGAAATCATGGTAATATGAGGAATTACAGCC
AAAGTGGATAAGTATTCCAAAATCTCAGAATTTCAGGTATGGGTTGCTCAGAATACATTGGATGTTCTACAT
GTATTATTAGAAAGTTGGTATTATTGCAAGAAAATTAAAGCTGAAAGTAAAGAAAAAAATGACAACACATTGCTT
AATACATAGCAATCCTTGACAACATTGACAAACAAACAAGAACACCTATAGGTGCATGTCAG
TTCTCTTAATATAAGGACATTGCTACTTAAATTGTCAGATTCCAGTGGCATTCTCAGCGTCACTATGAACACA
CTACAAATGCAAGTAGCAGATGTGCTTCTAGACCTTGTGCATGATAACCTGCACTTCAACTAGTTAAGAGGTAACGTAC
GGGTGTTCAAGAAGCCAAGTTAGAAGACATTACTTCTAGCTAAAGATTCTTCTCCACAGTGAGGACATT
GTTAAACCACTTAAATTATGCTGCTTTATTCTAATTGCAAAATTACATTCAAAATATTAAATATTCTAA
AAGTGAACAAACTTATTGATGATCAAAACTTCTGATGTTAAATGCAAGTAAACGTTTGTAGAAACTT
GACTTAACAAAGTAAAGAATAATTAAATTGCTGACTGTTTAGAGAACATTAGGATACCAATTGCTGGTCA
TGTTGAAAATTGTTGCTCTTGTGCTGCCCTCCATACAAATGTTGTGCTTGGCTAGGCCCTTCTGATCCAAATGA
AACACAACTCTAAAGGCAGAACACCCTCAACTAAGCTCTCCCTGATGCCACATCATTGTTATCTAAACATCTT
AACAAAGAAAATATCTGCTTAGTTATTACCGCTGAGTTAGGCACTGTCATGTTCCGTAAGTGCAC
TTCCCTAAGTGAGGTGAATTTCACCTTAATTCTCATATCATTAGCTTAAATTCTCTCTAAGTGTCTTAAATGGATGACT
AAATATTATATTGCTATCAGATTGATAACATGCTATCTATGACTGGATGTTGTAATTATATTGGTCA
CTTTCACCCAGGGTGTGATGTCAGAAAAGGCTGTTAGGCTGAGTGAGAATTCTATCTAGATCACATATCA
TGTGCTTCTCTGCTTATATCCCTGCTTCTCTGCTCACCATTACTAGATTCTAGGATGTCATGTTCCGTAAGTGCAC
TTGTTAGGAACTAAATTGTTGTTGCTTCTTGTGTTACCCCTAAATGCTCTAGTTGTTCTTCTCTGGTCA
TGACAGAAATGGTGGAAATGAAAGAGTTTGGAAACTTCTCCCAAGTACACCTTCACTTGTGCTTCTAGGGATCTT
TCTGAGGGCCCTGAAGCTCCTCAAAGAGCAACACTCAAGTACCCACAGTGCTGAGGTGAGGGTGAC
CAGATGAGAAGCACCAGGTTCTGACCCCTCAGGTACCAATGCCATTCTGAGAACACAGAACATGCTGTC
AGGTAACAGACAATGATGCTGTCATAGGCAGGGACAACCTCTGGGTGATCTCTAATCTACACACCGCTT
TGTGCAATGCTTATATCAATCAGAGTCAGGTTCTCTCTCTTAAATAGTCTCCAGAACCTCTGCTTAC
CTCATTTCTACATGCTGCTCTTCTCTTAAATCAGTAAATCAGTTTGTGTTCTCTCTCTAGGTATCAAGG
AAGCAGTTACTAATGCTGCTCTAAGTTCAATTGGATCTCATTCTGAAATAGAGTCACAAATATTATCTAA
CTGTCAGACGTTATCTGGCAAGGCCGAAATCAATTGCTTCTGAGGAGACAGAGCTTAACTCTTATAGATT
CTGTCAGACGTTATCTGGCAAGGCCGAAATCAATTGCTTCTGAGGAGACAGAGCTTAACTCTTATAGATT

GCCTAGTAAATTGCTTATGTGAAACTTGGCAATAATAGAATCTACCTAAAGGTCTCTTACAATTATAACAAGGT
AAAGCATTACAATAGTATCTAATCATTATATGTGCTGGTATTAAATTTGTTGTTACTATTATGATAACATTTAGCACTG
TAATAATCATTATTATCATCACTAGACTAATTAGAAGAGAGTTAGGAGAAACAATCTTAATTCTAATCCAAGGATGTT
CATCTATAGCCACATTAGTTCTGAGATGGGATTTCACTGACTCACAATTCTAAATGCTAATGATTTGTTCTT
GATCTATACTAATGCTCAGACTTCAATCATGCCACCCAGATGGGTCATTGCAATTCTCATCATTATCA
TAACTTATCCTATGAAAGGTTAGAATGTCATATTGCTGCTTCTTACAATACTTCTTCTGCTTTAAACCTTT
CTCATTCTTCTACTACATCTGCCATAACTAAAAACAAACTCAGGTTTCCAGGATGGCATGCTCTGTGCTAA
AGATGTTGTTCATCTCTTACTCTGAGATGGGACAATTATTCCTAAACTCAGGCCCTCTCTAATACCTCAGAGG
TATAGGGCATAAAAGGAAAGAAAAAGCATATGATGAGTGTGATTGACAATTGAAAGGCTACCTCACCTTTGTA
AGTCATCTATTCTTCTGCAAGGGTTTCAAGTGTGCTTATTTAAACACGTATGACTTCTTCAACACACTTTCT
TCTCTAAATCTTCTCCAAAAGGCCAGTCAGATAACTGTGTTAAAGTGGTGCACCTTCTGTATATCCT
CTCTATATATACCCAAAAGTTCCATTCTCTCTAACATTGTTCTTCAATTACATCCAAAGGAAACAAATTCTTAAATT
TTCAGATAATAACTTAAATTGGAGAAGTACATATTCTAGAAATAACTGTGATGCTATGAGCCACATGTTCTTA
ACTGAGGGACCAGAACCTTATTCCACAAAGAGTGTGCTGATGCTGACTAAATGGTACAAATGGTATCTCAG
TCTCCTCAGCAGAAGTAGCTCAGGGCAAGCTGTTCTATCCATTGATTGCTGAGTATTCAAGTGCTAGAAAATTATG
TTTTCTAACAGTTGATTCTGACTGTTCTTCAATTGTTGTTACACTACATTAAATAATCTCATTCTCTGGGTT
TTTTCTCAGGCTATTACATTAAATGGTAAATGCCATCATAGTAACATTGCTTAAAGGCAACTCATTTATTG
TTCATATTCTCTATTGTCAGTAAGTGTGAAAGAGGGTAAAGCCTAAGGAAACATAAAAAAAATGTTCTAGACAGGAA
TAGGTTATTCTCAGAAAGTCAGCAAATAACCAAAACAGTGTGATAGAAGCAGCTGGCTTAATTAGCTTGTCCAAG
CTCCTTCTCAGAACACCAGAACATTTGGACACAGCAAAGCAGTGTAAAGGGAAATTATAGCACTAAATGCTCAG
AGAACAGCAGGAAACATCTAAACGACACCTTACATCACAAATTAAACTGAGAACAGCAAGAGCAAACAAATTCA
AGCTAGCAGAACAGAACAAACTAAGATCAGAGCAGAACTGAAGGGAGATAGAGAACAGCAAACACTCTCAAAAAAA
ATCAATGAATCCAGGAGCTTTTTGAAAAGAGCAACAAATAAGATAAAACACTAGCCAGACTAATAAGAAGAAA
GAGAGAAGAATGAAATAACACATAAAATGATAAAAGGAGGTATCACCCTGATCCCAGAAATAACAAACTACCATCA
GAGAATACTATAAACACCTCTAACAAATAACTAGAAAATCTAGAATAATGGATAAATTCTCGACACATACACCCCTC
CCAAGTCTAAACCCAGGAAAATTGAAATCCCTGAGTAGACCAACAACAAAGTCTGAAATTGAGGAGCTAATTAGCCT
ACCAACCAAAAAAGTCCAGGGCCAGATGGATTCAAGCCGAAATTCTACCGGTAGAAAAGAGCTGGTACCTTCTT
CTGAAAATATTCCACACAATAGAAAAGAAATACTCCCTAACCTGTTTATGAGGCCAGCATCACCCTGATAACAAA
ACCTGGCAAAGACACACACAAAAAGAAAATTTCAGGCCAATTATCATGATAAACATTGATGCAAAACCTCTATAAAA
TACTGGCAAACCGAATCCAGCAGCACATCTAACAAAGCTTATCCACCCATGATCAAGTGGCTTCTCCCTGGGATGCAAGG
CTGGCTTAACATATGCAAATCAATAATGTAATCCATCACACAAACAGAACCAATGACAAAACCATGATTATCTCAA
TAGATGAGAAAGGGTCTTGATAAAATTCAATACCTCTCATGCTAAAACACTCTCAATAATCTAGGTATTGATGGAATG
TATCTAAAATAAGAGCTATTGACAAACCCACGGCCAAGATCATATTGAAATGGCAAACACTGGACATATTCTG
TCAAATACCGGACAAGACAAGGATGCCCTCTCACCCTCTATTCAATATAGTATTGAAAGTCTGGGAAAGGGCAAT
CAGGCAAGAGAAGGAAATAAGCATATTCAAATAGGAAGAGAGGAGTCAAATTGCTCTTTGAGATTACATGATTG
TATACTTAGAAAACCCCATGGTCTCAGCCCCAATCTCTTAAGCTGATAAGCAACTCAGCAAAGTCTCAGGATAACAAG
ATCAATGTGCAAACATCACAGCATTCTATATCAATAATAGACAAACAGAGGCCAATCATGCAACTCCCATT
CACAAATTGCTACAAAGAGAATAAAAACCTAGGAATACAGCTACAAGGGATGTGAAGGATCTCTCAAGGAGAACTACA
AACCACTGCTCAAGGAAATAAGAGGAGCAGAACAAATGGAAAAACATTCCATGCTCATGGATAAGAAGAATCAATATC
GTGAAAATGGCCATACTGCAACAGTAAATTATAGATTCAATGCTTCAAGGCTACAGTAACCAAACAGCATGGTACTGGTACCAA
TAGAAAAAAACTACTTTAAATTGATCATGAACTAAAAAGAGGCCACATAGCAAGAACATCTAGACAGGAAACAA
CTGGAGGCATACGCTACCTGACTTCAAAACTATATTACAAGGCTACAGTAACCAAACAGCATGGTACTGGTACCAA
ACAGATATATAGACAAATGGAACAGAACAGAGGCCCTCAGACAGATGCTGAGAGGATGTGAGAAATAGGAATGCTTTA
CACTGTTGGTGGGAGTGTAAATTAGTCCAAACCATGTTGGAAGACAGTGTGGCATTCTCTCAAGGATCTAGAACCGGAAAT
ACCATTGACCCAGCAATCCATTACTAGGTATATGAGGTTAAATTAATCTTACTATAAGATGCTGACAC
ATATGTTATTGCGGCACTGTTTACAATACCAATGACTTGGACCAACCCAAATGCCATCAATGAGAGACTGGATAAAAG
AAAATGTTGACATATAACCCATGGAATACTATGCAAGCCATAAAAAGGATGAGTTATGCTTTGAGGGACATGGATG
AAGCTGGAAGCCATCTCTCAGCAAACAAACACAAGAACGCGAACCCACCGCGTGTCTCATTGATAAGTGGGAG
TTGATCAGTGAGAACAAATGGACACAGGGAGGAGAATGTTATACCCAGGGCTGTTGGGGGGCTAGGGGAAC
AGTAGCATTGGGAGAACAAACTTAATGAGATGACAAGTTGATGTTGAGCAACACCACATGGCATGTCACCTATGT
AACAAACCTGCACTTCTGCCATGATCCCAGAACCTTAAAGTATAATAAAACATTTTTAAAGGGTTTATTG
TTCATATTAAATTGATCACCATTAATAGGATATGTTGACATTGTTGAAATTCTGCTGCACTGAGGTTGCACTTCT
TTTTGTTTTGCTAAAATAAAAGGTATGAAATCTAATCAGTAGAAGACTTCAACAAATGCAACTTAAAGGAG
TTCTCTAAAATAACTGCCAGTACACTTCAAGGTTCAAAATCATGAAAGAACAAACTAAAAACTGTCACAATTG
AAATATTAAAGGACACAATAATTAAATGCACTGTTGAGGATTTGAAATTGTTCTGGAACATAAAAGAAGGAGATTACTGAA
AAAATCAGTGAACATACGAGGGATTCAAAATTACTTAATTAAATAGCATTGCAATTGTTATGTTGAGGATCTGATAACT
TACCTATAGTTACGCTGATGTTGACATTACAGAAGAGCTAGTGGAGAGTACATGAGAACAAATCTTATTATATTG
CAAATTAAAGTCTAAAACATTCAATGTTATTAAATAATAAAATAATTAAACATAACAAAGGACATGGAT
TCTTATGAAACAAATTCAACAGATTCACTGTTTCAATTGTTGTTCAATCATCTGTTAAAGACAATCTGGCTCCC
ATTATGTTAGAGAACATTCACTTACTGGTCAATTCTAGAATATGCAAAAGGCAATTGTTACAGATTGTTGAGTGCATTCCC
TGAAAATGTAACATAGTGTGAGGTTACATATATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTG
TTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTGTTATTG
TGCGATCTCGGCTCACTGCAAGCCTCCGCTCCAGGGTCACTGAGCCCCCTGAGTAGCTGGGACTA

CAGGTGTGCGTCACCAAGCCTGGCTAATTTTGTATTTTAGAGATGGGGTTCAACATGTTGCCAGGCTGGTCT
CAAACCTCTGACCTCAGGTGATCTGCCACCTCAACCTCCAAAGTGTGGCATTACAGTCATGCCACCGTCCCAGC
CAAGAGTTAATATTGTTAAGTGCACGATTCTCTCAAAACCGTGGGTATTGAGTCAAATTCTTACTTCAGAATTACT
TATGTTTAACATATCTATGTCCTTCAGTGTGCTGTATTCATTTAAATTCAATTAGAAGGCACTCTCTTTA
TTGTTACAGAGAGATTGTTAATCCTCTCAGCAAAATATGAGAAAGACAAATTAGCATAAACATGAAAGAATATG
AAATCGTTTCAGCGCTCTGAAAATTGCAAAGTATAAAACATTAAACTGTATACTATTCAACATGAAAGAATATG
TTTGAGTAAGGAAGGAATTATGCTGTAGCCTTGTGGATTCTCCCTTCATCTCCGCTCTGTCAGCATGAAT
TGCAGATCTGGGTTTAATGAGGATGTCAGCTGCACTGAGTGGACTTGAGTTGAGGTGGAGAGTC
AAGCAAGATCCTTCAGTGTTCAGCTAAATGTGATGAATTCTGCAGGAATGAAACAGAGCAAGCTAGTTCAAACGAGG
GCTCTAGCTGGGCAAGTGTACACCAAGCTGAAAGTTACTAGTGGACTCTGGAAAGTGTAGGAATGATAGAATTGCTAA
ATAATGTCAGACAGATTCTGGTACCTAAAGCTGCCATTGAAATAACAGGGATCAAAGGGGGCAGTCAAAGGTA
AAACAGAGGAGATAAGAACTGGCTACATTGTTAGTACACTTTCAAGAACACACAGATGAATAGGTTATGAGTTCA
CACATTGGGAAAAACCCATTGCTATGATCTCTTCCAGGACCTTAGCCAGCAGCTATTCAAAATCTATATGTTA
CTTGACTCCAGACACTTCTCTATCTACACTAATTGATGAACATGTGCTGTGCTCAGATGTAAGATAACTCAAGGTAGTA
TTTGACAGCCATGCTGACCGTTGCCATAGTGTGGACACAGTCCACACTTACACAAACATATGATGCCAAGCCATT
CAAGAGGAAGCCCAGCTGTTCTCATTGGTCTTGTGATTCTTGTGTTGCTTATTTCTTTCTTTCTTTCTTT
TTTGTATTATCTCTGGCATTAGCTGATCAGGAAACCCATGATATCATAGAGAGAGCTGATGCAAGGTTAAGTTG
AGAGAGAAAAGTGTATATAAGGAACATCTGATGGAATGAAGCATGCCCTCTGAATCTGCTTGAACCCAGTC
CTAAACTACCATCTGCATCCAAATATTGAATGGTCTGAGCTCACCTGATCTTAAATTGGTGAGAGTCACATTCTCAG
TTTATGAGGGCAGCTTAGTCACCTAATTATTAGTCAAACAGTCACACTACTCATGGACATGCCCTACATGGACCCCTGTGA
TTTTGAGAGCTGATTTGAGTAGTGTGTTGTTGTTGTTATTTGGGGCATTTCAGGATCTG
TCAGGAACTGTAGAGATTTCTGTGACTCTTTGGTCTGCTGATGGAGGTTACAGAGTTCTCATCTAATAT
AGATTATCTAGCACCAGGCAATGTGCTGGATCTCATGGCTGAAGTGCAGAGAGGCAATTGCAATTAAACTCAAACCTACTA
CAGAATATTTCTTCTCAGGTTATTCAAAAGACAGCCTTCCAAGTTAGCTGATAAAATGGGATGGTATAGTAAACC
CAAGTGCAAAATGCAATTGTCACACTCTAGGATGGCTTAACCAAGTAATGTGCTTATTGCTAGTGGTGGAAAGTACAAGG
TGCAATTATTTCTTACTTTGGAGGGATAAGCCAGCATGACTCATACCCCTTTATAACACACTTGACATCTCTCTA
ATGTGACAAGCCCTGATGTTGGGGCGTGCATCCCACCCCTAGAGCACATGTGTTTACAAGAAATTGAGTTCT
TACAATGTCAGCTCATCACGCTAAATTACATGATGTCAATATAGTGTGATGCTTGTGGAACGTTCACAAAGCT
TTTCAGCCTACATTGTGACAGAGAGCAGGAGAGTTAACATAGTCTGGACGAGACTGAGGATGTGAGCTGTTATTCA
CCCAGATAACTGCAGACTCTCCAGAGATGGCGATGGACTCTGCCCTACTCTGAGCTGTGCCCTGGGTCTGGTCAAG
CCCTGCAGAGCCTCAGCGGAGCTCGTCAGGTGCCAGCAGAGGGCGTTCACACCCCTCATGGAAGGGCCGGGAGG
GCGCTCTGGCAACAGTGATTTCTGTTATTAAACCCAGCAGGACATCCCCATAATTGCAATTGATCTGTTCTCT
ATGTGAAGAGGCCCTGCCTCTGGTATCTAAAGAGGTTCTCTGGGATGTGGCATGACCAAACACTGACAAGTC
GGCAGGAAGATGTCGCACACTCATGGTTCTGCTGCTCTGGGTTCCAGGTGAGAAATTGCAACAAACCTAGG
CGGAGATATTCTTCAATCTGTAATTCTTCTCATGGGACTCTGCAATAGGTGATTGGCTGATTTAAACCTA
ATTTTAAATGTAATGCAATTCTTCTCATGCTCTGCAAGATTAAAGGTGATTTCATACACAGATATTGTTG
ACTGATGTTGCTGATATTTCAGCCTCCAGGGGTTGAAATTGTGCTGACTCAGTCTCCAGACTTCTAGTC
AAAGGAGAAAAGTCACCATCACCTGCCAGTCAGGACATTGGTAGTACCTGACGGTACCGAGCAGAAACAGATC
AGTCTCCAAAGCTCTCATCAAGTATGCTCCAGTCAGGACATTGGTAGTACCTGACGGTACCGAGCAGTGGATCTGG
ACAGATTCTACCCCTACCATCAATGCTGGAAAGCTGAAGATGTCAGCGTATTACTGTCATCAGAGTAGTGT
TACACTGTGTTACAACCCAGAACAAAAGTAGTCAGCCTGGCTGAACGGAGAAACTGGGTGATACCCCTAGAATACTTC
ATTGTTGCAGGTGCTTGGGGCAATGAGTTAACAAATCAATGAACTGCTGCCCTACCCAGCAGAGGAAACTAGAG
TACTGCTGCATACTTCTCATTTAAATGATTATTCAATAGTTTGGGGTATAGTGGTTTATTTCATG
GATAAGTTCTTAGTGGTATGCTGAGATTGGGACCTGTTACTTGAGCAGTCATGTCATGTC
TTCTAGCCTTCACCTCCCTCTATCCTCTCCAGTCCAAAGTCATTATCATTCTACGCTTGCATCCTC
ATAGCTAGCTCCACTTACAGATGAAACATATAGGTTCTCATGCTGAGTTACTTCATTTAGAATAATAGCCTCAG
CTTCATCCATGTTGCTGCAAAGTCATTATTGTTCTGTTCTGTTTATGGCTGAGAAGTATTGTTGTTGTTG
CCACATTCTTATCCACCGTTGCTGATTGGCACTTATGGTGGTTCATATTGGTAAAGGAAATGTGCTGGAC
TAAACATGCAATGTCATGTTCTTCTACTAACATTGTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
TGCTGAACGTGAATGGTATTCTACTTTAGTTCTTAAGGAATCTCCATACTGTTCTTCTATAGTGGTTGTTG
ATTCCCACCAAGCTGTAAGTGTCCCTCTCACCAACATCCATGCCAATATCTATTATTGACATTTCAT
GCCATTCTGCTGAGTAAGGTGGTATTCAAGGCTATGGTACCAAAACAGCATGGTCTAGTATAAAAGGCACAT
AGATCAATGGAACACAATAGAGAACACAGAAATAACCCAAAGCTTATAACCAACTGATCTCAACAAAGCATACAATA
ACAAACAGTGGGAAAGGACACCCATTCAATAATTGGTACTGGAAAAACTGGCAAGCCACAGGTAGAAGAATAAAACTG
GATCTTCATATCTCACCTTACGAAAATCAGCTCAAGATGAACTCAAGGCTTAAATCTAAGAACACTGAAACCATATAAAT
TCTAGAAGATAACATTGGAAAAACTCCTCTAGACCTTGGCTTACTGAGAAGAATTGACTAAGACCCAAAAGGAAATG
CCACAAAAACAAAAATAAAATAATGGAACCTAACTAAGCTAAAAGCTCTACATAGCAAACAGACAACCCACAAAGTG
GGAGAAAATTACACAAACTGTCATCTGTTGAGGAATAACCAAGAATCTATGAGGAACCTCAAACAAATCAGTAAGAAA
AAACAAATAATCCACCAAAAGTGGCAAAGAATATGAACAGACAATTCTCAAAGAAGATATACAAACGCCAACAAA
TACATAGAAAATGCTCCACATCACTAAATTATCAGGAAAATGCAAATTAGACCATAATGACATACTTCGCTTTACCC
ATATTACTTCAAAACTACATGGACAGTTGTTGAGGTACCTCTCCCTTCTTCCATAAAACTATCTTACAAGTG
GTTAAAACATTAGATTCTCTCAGAGCTACAGTTCTCATTATAGCAAAGAGTTAAAGGGTAAAGATTAGGAAAC
AAGCAGGTGATGCCCTAGAGCTAGTGCACAGAACATCCATGGATTGAGGTTCAAGTTATTGTTGAGGTTCA
GGGGTGTGA

CAAATTAAATTCTATTCCAAAGCAGCCCCCTGAAGCATGATGTTGTTAAGTCAGATTAACGTTAAGGTTCACTTCACC
AGTGCAGCATTCAACTGAGAAATTCAAGGAAATGCTGAATATTGGGTTGCGATTCTGAAAATCTGAAACTGGTCCACGGAAAATGTA
ACTATAGACATTTCTTCTGGGATTGAAAAGGAGACTTTCAAAAAGAACATTACCTGGAATAAAAACCAGAAGGA
TCCAGAGCCCTTGTGAGCAGTCTAGGGAGCAGGACAAGATTCCAGGCCAAGGAAGTGAATTAGAACATCCTCGATTC
CCTAATAAGAATAACTTCACCAAAAGTTGAGTGTACCAAGGCACAACTAACATGTCAGAGAAAATAGTCTGGAGCTCAGATG
AGGTGGAAAACCTCAATGGGCAATTATGTTATATCTTGCCTGACATATGAAATACAGGGGGCAACCCCTCACCCCTGAG
AGTAAATATTCTTTCTGTGTATCAGAGGTATTGTTATGTCCTTCCATCCACCTCCAAAATCAAACACTGCAGTTGA
ATTTCCTTTTAAAGGAAATTCAACCATTCTGATTATAGGACAGTATCTGCTCTAGAATTTTAATACCAA
GAGCAACTCAGCTATTGTTTACTTTGTTCTGTGACATTAGTCACCTCAAATAATTGGATACAA
GTAGTCATTGAGAAAACAGACATATCAGATTGGTGTATTTGTTGAGTGTACTTCACCGTATTGGTCAACAAAGTT
ATATCGTTTCAATACATTATGTTATCACATATATTACACAAAGTGAATGACTACTACAAGAAATTGATTTCTA
CATTATGGTATCAGGACAGTCACCAAGTCTTACAGGGTAGTTCAAGTTGAGACACCCCTCATGTCAGAGAAAACCTCAA
ATTGTGTGCCATGATTGGTAAACCCAAATGGCAAGAAAAGGTGAGGAAGAGGTAACATTGAGATACTTTGTTG
AATGTCGTGAGCTGTTGTTGAAACATGCTGTTCCAACCGTATTCACTCATGCTATGACTATTCCAA
AGCTTCCCCATCAGGACTTTCTTGCATCAAAACCCATGGAAAAGGAATTACTCATAGTCATGTCAGTCTGGCCTGATAT
TGGATGCTGCTGAGGTCACTCATCACACCCCTCCCCCACCTCCAGGGACAGACACCCCTGACCCCTCCATCAAGCCCC
TCCCACGTGAGGGCCTTCTCTGCCTACTGGACATCTTACATGAAAATCGAGTTATCTAATTCAAGATGATGCTTG
TTACTCCTATATATGTTCTTCATGTCAGTGGATCTTTCAACTATAAAAGTAGTTAATTGTCCTTAGCTGAGGG
GAAGCCATGATATCTTCAATAAAAATAACATATTGTCATTAAATGGATTAAACATAATATCGGAGTTTCAG
GAACAATTCAAAGCCATCATGTGAGGGTTAGGAGCATTGAGTAAATAAGACAATTGGATCCAAAGTACTGATATTCA
TAGGAAATGAGCCATTCAAGAGAACATACACAGTGAAGAAGTGAATTCACAGTCAAGATAGCTGATAATTGAT
AAATTCAAGGCAGTGGCATGTTGATCTGGAGGGCAGACCATTATTATGCGGACCAGGGAGGTCTGGGGTCATAC
TGGAGATGCTCTGAACGGTGAGGAGGCAGCCAAGTGAACATAGGAACAGCAAAGACCATAGGATCATCAGAGAAGGGC
AGGGACTGGGAGATTCAAGGAAACCATGTCATTGCAATTGAAAAGCCAACCAAGTACCCATAATAAAGATGTCCTGAT
TTTATTCTTTAAGGAGAAAATTATACTAATATCTTCAACACACCTGACCTGGTCAACCCATAACATGAAATG
TTCCCTGGCTCAGAAGCTGGAAGTTCAGTTGTCATCCCTGTTGTAAGTCTGCAGGTCCACAAAGCCCCCTCCCTGCCAC
TCAAGCCCTTATCAGTGGGTTGGTGTGCTCCTTAAAGGTTGGGATCACCTGAGGGCAGAGAACACTGGACCTGGGCTCT
GGCCCTGGGTCTGGCATCAGCTATGGAGCTCATGTGACAGGGTTCTATGTCCTGCTGAGATAACAGACCATCGC
TCAGCAAGCCCAGCATTCTCCGCTGATCAGCCAAACACAGTCTCTGGAGGCTGTAGAGTGAGACATCATTAAAC
ACTGGGAAGAGTTGTTCTTCACCTCAGATTCCAGTGGCAACATTGTTGGGCCCAGATTCCAGCTTCTCCCTCA
GTATCTCAAGACAGAGAGAGTTCCATCACCAGCCTAGAACAGATGAATCCAGGGAAAGGTTCAAAGATCCACCCA
TGTGTTGTCACATTGGCATGGTCCACCCCTGCTGGCACGGTGGTCTGGGAGACACTTCCTTAACCTTCAGCA
GCTCGAGTACCTGATGACATTGCTGATTATTGTCATGAAACTGTATCCTCTCACCTGGTAAACACTTGCAGTCCCC
GCCACAAATAATGTAATTAGAATTAAACATGTTCTCAGTTACACTAGCTACATTCAAGTGTCAAGT
GCCACATATGACTAATGGCTACCCATTGTCAGCATAATGTAAGACATTGTTATTGTCCTTAGAAAATTATTGCTTAA
AACCGCTCTAAATGTTGACAAGTGTCCCTCATTGTTATAAGTCAGACATAAATCTCACCAGCGTTAGTCTGGAAA
ACTGGGAGTCCTCAGAAGCTCCAGTGGTCAACCAACTGTGGCTCTCAGATCTGCTCTGGAAAGAGTTCCAGAATAAC
GGGAATGAGCCTGGCTGACAGATCCATAAAAGAGGACCTTGATTTCCCTCCAGCCCCCTGCCATTAGCCTGGGAGGG
TCTCTCACACCCCTTTCTCTCTCCAAAACACTACATTTCAGCATTTCACATGGATTTCAGAACCTAATTCTTAATG
TTTGTGAGCAACATCTTCTGGATATCCCTGTCCTCAACTTGGACTGGTTATCAAGGGAGGGTGTCTTGTGTT
CTCTTATAGGATCTGGCTACTGTGATGGATGTAATTAGGATCTGCTCATCATTACCATGAAAAGACTCACCGTCAAGGATT
CTGGGACTCAGCATCTAAACATCCTATAAGATGTCATGTCACCAACAGCAGTGGCAGACAAACCCACAGTAA
CACCAAGGAAATAAGCCTGATCTTAAATGTTACTAGGAAAATCAACAGGGATATTGAGGCTAAATGAGGTCTCATTTAT
GACCTAGATTACATGGGAGGAGCTGCCAGTGCACGTGAGTTGGGAAACTCCCTCTGCTCTGCTGAGACTGGAA
GCCCAAGCTTCTCCACCGCTGGTGTATCCCAACCCCTACCTGATGTGGCTGAATCCAGGGAGGGAGGG
CTGCCAATGGCTCCCTGGATGGTTCTCCCTGTTACACACAGCCACTGGGCCATGTGCTACTCTGCTCACAAAGGC
CACCAAGGGAGGACCTGCCACCCCTGAGCTCTGGGACAAAAGTCCCTCAGTTGGGTCTAGAACCAACTGCCCATCTCC
CCAGCACCTGCTGCTGTGATTCCCCAGACCCCGTCAGGACAGTCAGTGTCTTAGCAATGGGAGGGTACCGCT
CAGCCCAGAATGGATGTAGGTTGGTCTGAGCTTCTGACCCCTCAGGCTGTGAGTGAAGGGGCCATGGGTGGT
CAACCAATTGCTGGTTAAATGTTGTCATTTTAAATGAAACTGAGGTTACATTGCAAAATATACCTATGCACTGAA
ATCTATTAAACATATAAGTGTGATATTATACTTATTCTTAATATAGATGCAAGTATATCAAATGTATAATATAATT
ATATCTAAATATTATGATATTAAATGAAAGGTTACATTACAATATACCTATGCACTGAAATTGTTG
TTAATTACTTATCTAAATATTATGATATTAAATGAAAGGTTACATTACAATATACCTATGCACTGAAATTGTTG
TTAAGGTTGTTATTAGCATGTCATGTTCTTTCTTAACAGAACAGAGCCTGCTGAGTAAAGACTCTGGGACAT
TTGCTGTTCTCCTTCTTGTACTCCAGCAGGGCCCAGGCCATGCAGAACATCAGTGAAGGAGAGCTGAGAGCAGCCAGCTC
CAGGAGCTCAGGCCAGCCCTAAGGGTCTGTATCTGAGACTTTCAACTGGCAGTGGACTCTATGCTTGGTGCAGGCC
CATAGAAGTATGAGCAGTTCTCCCTGAAACCCCTGCCAGGGCAGCTGTGGGAGGACCTTGGTCTCCCTCCAAAGTCC
TCAGCCCCATGGCTCAAGAGAGCAGCTACTCTCCACAGCCAGGGCCAGAGCCAGTCAGTCAAGTTGCAAGCTT
CACCTAGTCCTGGGTGAGGACCCATTCCAAATCTCTCCTATTATCCCTAAACTGAAAGCCTGCTCTGGTCTTAA
ATGCAAGGCCACATTACGCAATTCTAAAGCTAAAGATGTCGTATGAGAAATCAGAAATTGATTTCATTTCT
CAGAGCCTGGCTTCTCCAGCTGTATCAGATGCAAGTGTCTACGTTCTCCCTATACAACCTTAACCTAGAAC
GCGAAATTAAATGTAACAAAGCTTGGCAGCTATGCACTGAGCAGTCATCCCCCTTCTCCCTGGTGTAGGGCACCAAC
TATGTCCTGCCGTACATGGTGAGGGTGGTGAATTCTCCAGCTCAGGATGGGAGCAGGGATTAGGGCACATGTGATCA

GCTCCAAAATGATAATGTCAGAGGAGTGGGCAAGGATCATGGAAAATGGTATACCTCAGAAAAGGACAGAAAGTGAAG
 AGCTTGTCTTGATTTCTCTGTAAACAGTTAAGAGAGGATATGATGCTTAGAGCTGCCAATCCTCTTGAGACCAG
 GGGCATTACAACAAGAATGAAAAGCCAGTGATAATGCAAGGTGCAAAGCAAAATGTAGTAACAATCTGGGCCTTCAG
 CTGTCACCAAGCTGTGACCAACCTAACGTTAACCTCAGACTCTTGTCACTTAAACCATTACTATTATT
 CTTGCACTTGTCTAAAATTATTCCAACTTATCATAAAAGACACTTAAGAGAAAAGATCTGGCTGGCCACAGACTGT
 GCTTCAGAAGAAGAAACATATTACAGAAGTGTGTTGTAAGAGCTGTGAGGCATGAAGGGCAGGAAACATGATAAG
 TGATATTCTCCCTGGCACCTCGTCTGCTATGCCATGGCAAGAGAAAACAAACATGCCAAGAGTTCTCAATTCT
 GCTCTTCAATTCTCCTTATATCCTAACGATGAAACATCCCTTGTCTCCTTAATTCTCCCTTCC
 AAGGTCACTGAAATTGTGTCAGAAGAAGACAGGAAACGGTGAAGAAAAGATAAAACCTGGTGTACTGTGCATTCTCAAC
 ACCAACATGGTCTGCAAGTTCCTCCCTCTCAGTGGTTCTTATGGGAAGTGTGCTGGCTCAGCCAGGTCTCG
 TCAGAGGTTGCATTGGAGCGTTACTAAGCAAAGCTTCAGGTAGTTAGTGTGGATTCCCAGGAGAGTAGCAGGATGG
 TGGGTCTGATTCCAGCATGAGGAGGCCAGAATGAGACCTGGGGAAAGGCTGTGGGTGTGGGAAGAATGGATTAGAA
 CTCAGACCTGTAGGCCACGGCCTTGGAAACCAATAGTGTACACTAAACAGATGGAGCTCAGGGAAATCTGGTTAAAGG
 TGTTATAGTCATTGTCTGTTATGTTCTAGTGTCTACAGGAACTGGATTATGGAAAGTTTATTGTGAAATA
 ATGTACATGAAACCCATTGCCATAGTGTGAGTCACATGTTAGTGTAGAATAACTATTAAAGAATTGATTGAAATA
 CATATGGTAATAATATCTCCATGCTCTTCTAAGATACTCAAGGTGCAATTAAAGAAAATGGTATATAAAA
 TGTGCATATAATGTGTGTGTGTATGTTATGGCACACATATACACTCTCAGGGTGCATATTGGTTAACTCTCA
 CAATACCCATGACTTCAAAGTGTCCATTGACATGGTCACTGGGATTGAAGGCCAGGTCTGGCTTAGTGT
 GTCACATGGTCAGCAAATGCCAAAGTCACATGGTCACTGGGATTGAAGGCCAGGTCTGGCTTAGTGT
 TTCTACGTGGCACTTCATCCCAGGTTGAGCCAAAGCCTATAAATAGGAAGAAGGGACATAAAACAGTGTGAA
 CCACAGCTCCCTGCTGCCTGTCTCATGCCAGGCTGGCCCTAATCTTAAACTAGCCCCCTCTGTGGTTCTCTCAA
 ATATAACCCCTCTCG

Sequenz ID: 81 (X17263)

CTGCAGCTGCCAGCCTGGCCATCCCCTGCTCATTTGCATGTTCCCAGAGCACAGTCTCTGACCTGAAGACTTATT
 AACAGGCTGATCACACCCCTGTGCAGGAGTCAGACCCAGTCAGGACACAGCATGGACATGAGGGCCCCGCTCAGCTCTG
 GGGCTCTGCTGCTGGTCCCAGGTAAGAAAGGAGAACACTAGGATTATACTCGGTAGTGTGCTGAGTACTGCTTTA
 CTATTCAAGGAACCTCTCTTACAGCATGATTAATTGTGTGGACATTGTTTTATGTTCCAATCTCAGGTTCCAGATGC
 GACATCCAGATGACCCAGTCCTCATCTCTGTGTCTGCATCTGAGGAGACAGAGTCACCACACTTGTGGCGAGTC
 GGGTATTAGCAGCTGGTAGGCTGGTACAGCAGAAACCAGGGAAAGCCCTAAGCTCCTGATCTATGCTGCATCCAGTT
 TGCAAAGTGGGTCCCATCAAGGTTAGCGGGCAGTGGATCTGGACAGATTCACTCTCACTATCAGCAGCCTGAGCCT
 GAAGATTGCAACTTACTATTGTCAACAGGTAACAGTTCCCTCCACAGTGTACCAACCCGAACATAACCCCCAG
 GGAAGCAGATGTGTGAAGCTGGCTGCCAGCTGCTCCCTGATGCCCTCATTGGCTGAGAGTGTGCTCAGATGCAG
 CCACACTCTGATGGTGTGTAGAGGGTAGGTGAAATGCCCTGACCCCTAATTCTTCTTCTCAGCCCCAACT
 GCACAGACATAGCAATGCATCTCTGATTGATAAAACAGAGATCATGACACTTGAGGAGTCTAGTTATGGCTTCAGC
 TTGAA

Sequenz ID: 82 (AK054816)

GCATTGTGCTGAAGCTGCCGGGCTGCTACGGCACCGCGGGGCTGCAGAAAACCGGGGCAAGGGCGGGCTGCTTG
 CGCTATGGCTGGCAGTCAGGACATATTGATGCCATCGTGTGGCGATGAGAGGTTCTATGGGAAGGGTATCGGGAAAG
 TATGAAGAAGGAGTAGTTGGGTGATGGAGGGAAAGGAGCATGGCACGCTGATGGAGGCAAATCGGGTCTGAG
 CGGGTCTACCAAGGTTTGCTTGCATGGAAATGTCTACTGCACAGTTGCCACACTGAGAAGGACAGCAGAAAGAT
 AAGGTTCTAGAATCATTGATGGAATGATCCAGAAATTCCCTTATGATGACCCACTTACGATAAAACTCCATGAAGACT
 TAGACAAGATCAGAGGAAATTAAACAGTTTGTGTTACTCAATGTTAGCCAGACTTAAATTAGTGTGAG
 TCCGGACTTCATTGAGGAGGATGGATGAACAGAGACCGAACGTCGAGGAACAGATGTGTGTGACGTGTTAGAAA
 TCGGGTAAGGGCCAGACGGTGTGGGAGGGCAGTGTGTTCAITGGGAGGGTGGGCTCGGCCGTGGGAGGGCT
 TCCCTCCCTGGGTTTCTGCCGTGTGTACCTTGGTGCCGCTTGGGCTCTCACACATGCCCTTGTGGCTGAA
 GCCGTCCTGGCAGAGCCCTGTGCAATTGACTTGACAGCCTCCGGCAGCACAGGCTAGCTGGTCTGGGAGGTT
 GGCTCTGGTAGGGTTAGTCACCAAGGCTGGACTGAAGGAGTTATTATTATTATTATTGAAATGAGAGAGAT
 GGTTGCCCGAATGAGGCTATGGGAGGGTTGGACGGGTGCTGTGCCGATGTCGAGGCCATTGTGTGCCAGGGCTG
 CGGGACGTGCCCTCCGTGTTATTAAATCCCTCAGGAGGCCACAAGATGGGTGTTATTCTCATTTACAGGGAGGG
 GGGGAGACGCGAAGGGATTGCCCTGGCTAAGGGCACCCAGCAGCAGAGCTAGGACTCCGCCCTAAGGTGTGCCCACT
 GCCACCAGGCACAGCCCTCCGGAAATGCACAGGGAGTCCCTGCCCTCCAGGGCCACAGGTCTGCCAAGCCT
 CACGGAGCACGGGGAGTCTGGGTGGCAGTTACCTGGGATCTGGAGACGTTCTGCCAGACTGGCTGGGGTTTC
 CTGCTCAACAGTGTGGACGGAACCCGGCCTGTCCTCCCCACCCGGGCCGCCATAGCCAGCCCTCCGTACCT
 CTTCACCGCACCCCTCGGACTGCCCCAAGGCCCCCGCCGCTCCAGCGCCGCGCAGCCACCGCCGCCGCCCT
 CCTTAGTCGCCCATGACGACCGCGTCCACCTCGCAGGTGCCAGAACACTACCACAGGACTCAGAGGCCCATCAC
 CGCCAGATCAACCTGGAGCTACGCCCTACGTTACCTGTCCATGTCTACTACTTGACCGCGATGATGTGGCTT
 GAAGAACTTGGCAAATACTTCTTACCAATCTCATGAGGAGGGAAACATGCTGAGAAACTGATGAAGCTGCAGAAC
 AACGAGGTGGCCGAATCTTCCTCAGGATATCAAGAAACCAGAGCTGTGATGACTGGAGAGGCCAGTGAATGCAATGGAG
 TGTGCATTACATTGGAAAAAAATGTGAATCAGTCACTACTGAACTGCAAAACTGGCACTGACAAAAATGACCCCCA
 TTTGTGTGACTTCATTGAGACACATTACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTGACCAACT
 TCGCAGATGGAGCGCCGAATCTGGCTGGCGGAATATCTCTTGACAAAGCACACCCCTGGGAGACAGTGTGAAATGAA

AGCTAACGCCCTGGGCTAATTCCTCCATAGCCGTGGGTGACTTCCCTGGTACCCAAGGCAGTGCATGCATGTTGGGGTTT
CCTTTACCTTTCTATAAGTTGTACCAAAACATCCACTTAAGTTCTTGATTTGTACCCATTCTCAAATAAGAAATT
GGTACCC

Sequenz ID: 83 (BC012758)

GGCACGAGGCGTCCGTGCTGGTCTCCGTCGCCGGCCGTCTAGGTCTCCGGCCCTCCCAAGCCGCTCCGTGCC
CTTGGCGGCCCGGCCGAGCCCTGGCGCTCCCTGCCGGGCCGAGGCCGCTGCCAGCGCGCC
CCCGGAAACCGGTGCGCGCCGACTGCCGCTCTGTCCGGCGTGCCTGGTGCCTCTGGGCCGAGGAGGACGGG
CCCTTCCCGTCCCCGAGTGCACGACTGCTGCCAGCGCCCGTGGAGGCCGAGGCCGCTCAGCGCCGCT
TCTGGCGCTCGAGGAGGCCGCGGCCGCGACGGCCGCGCAGCGAGGCCGCTGCAGCTGCTGTGCCGCG
CCGACGCCGGCCGCTCTGCCGCTGCCGTATGGCTGCCGGCCCGAGGCCGCCGAGTGGAACCGCGCTGGAGGAAG
GCGCTGCCGCGCAAGGAGAACAAAGGGCTGTGAAATCATGAGAAAGGACTTGAATGACGCCGGGACCTGCATGGCCA
GGCAGAGTCAGCAGCTGCAGTGTGAGGGACACGTGATGGACCGTAGGAAGAAGGACTGACCGACTACAAGAAGCTGC
GGGCCTCTTGTGGAGGAGGAGGAGCATTCTCGAGGAGGCTGAGAAGGAGGAGGGCTCCCTGAGGACGAGCTGGCT
GACCCCACTGAGCGGTTAGGTCACTGCTGCAGGCCGCTCGGAGCTGGAGAACGACATGCAACCTGGGCTCAGCAT
GCTGCTGAGTGTAGGCCAACCCGTGGCAGTCCAGAGCTGGAGGCAGGAGGATGGATCCTCATCTCCATGGGAAGTG
TCAGCGTGTGGCTGCCAGGGAGCGTGGCAGGCCCTGGCTGGTCCATCTACATAGTTGCGTGTGTTAACAAATGTCC
ATTATCCTCACCCGTGTTGGGGCTGCAAACACCTCCCGTAGAGGCTGGACCTGAGGACCCCTTCCCACC
TGTGCCCGTCCCTTCTGAAGTCCCTAGCCACAGCCCATCCTCCATGAGTCCGGCAGCTCTGGGCTATGCCCTTCCCCTGG
CACCCCATCTGCCCTCACCTCGTCATCCAGGGACCCAGACCCCTGCACCTCATGGGCCAACAGATCCTGGCAGGT
CTGAGGTGCACCAATTGAGTGTGGATTGGGTTAGCATCCAGAAAGAACATGCGCATGACGCTCTGTGAAGGCTGG
ACTCAGGTCTTCAGGGAGAGAACAGGAAAGACTGGATTGCACCTGATGCCCTCTGAGGAGGCCCTCTGGAGGTG
GGCGTGGGCCGCCAGCCTATCCAAGTGCCTCTGTCCACCTCCCCCTCTGGCCCCCACCACCTCTGTGCCCTCC
CAGGAGCCCTCCCTGTGCTCACCTGCCCTCCGAGAGGAAGCCTCTTCTGTGTTCCCTGGGTGAGGGGCTGGCAGG
TGGCTAACCCATTAGCATCTCCAGGCCCTGCCATGGTGTCTCATCTGCTGTTATCTCTAGCTCTTCCCTCTCCCC
TTTCCTTAGTAGTGAATTGCAAAGCTGTAGCAGTAGCTCAGTTGCCCTGCAGCATCCTGTGTGAGATAAAATTAG
TCGACAGAAACTCAGCACTGGGACAGGATTGCAAAGTGGGACATAGATGCAGACAGTGTGAGATTGGGATAGC
CGGGCTTGTGAGCGGTGCCCATTTCCAGATGAACCTTCAAGGCCCTCTGAGTCCCCGGCCCTGGTGCAGTGTCTGTGA
GTTGACCTGCCAGCGTGTGGCTCAATGCTGAATAAAAGTGGGTTGTGCAAAAAAAAAAAAAAA

Sequenz ID: 84 (M97164)

CGGCCGGCGCCCATAGCCAGCCCTCCGTACACCTCTCACCGCACCCCTGGACTGCCCAAGGCCCGCCGCTCCA
GCGCCGGCGAGCCACCGCCGCCGCCCTCTCTTAGTCGCCGACATGACGACCGCGTCCACCTCGCAGGTGCGCC
AGAACTACCACCAGGACTCAGAGGCCCATCACACCGCAGATCAACCTGGAGCTACGCCTCTACGTTACCTGTCC
ATGTCTTACTACTTGACCGCGATGATGGCTTGAAGAACTTGCAAATACTTCTTACCAATCTCATGAGGAGAG
GGAACATGCTGAGAAACTGATGAAGCTGAGAACCAACGAGGTGGCGAATCTTCTTCAGGATATCAAGAAACCAGACT
GTGATGACTGGGAGAGCGGGCTGAATGCAATGGAGTGTGCATTACATTGGAAAAAAATGTGAATCAGTCACTACTGGAA
CTGCACAAAAGTGGCACTGACAAAAATGACCCCCATTGTGTGACTTCATTGAGACACATTACCTGAATGAGCAGGTGAA
AGCCATCAAAGAATTGGGTGACCACGTGACCAACTGCGCAAGATGGAGCGCCGAATCTGGCTTGGCGGAATATCTCT
TTGACAAGCACACCTGGGAGACAGTGATAATGAAAGCTAACGGCTCGGGCTAATTTCCTCATAGCCGTGGGTGACTTCC
GGTCACCAAGGCAGTGCATGCATGTTGGGTTCTTACCTTCTATAAGTTGTACCAAAACATCCACTTAAGTTC
TGATTTGTACCATTCATCAAAAGAAATTGGTACCCAGGTGTTGCTTGTGAGGTCTGGATGAATCAGAAATCTA
CCAGGCTATCTCAGATTCTTAAGTGCCTGTTAGTCTAATCACACTAATCAGAAAGAAACGAGTATTGTATT
TATTAAACTCATTAGTTGGGAGTACTAAGGTGTGGCTGTTGATTAGATAGAACTAAGGGTTCCCGACTCTGA
ATCCAGAGTCTGAGTTAAATGTTCCAATGGTTAGTCTAGCTTCACTAGTTTATGAATAAAAGGCAATTAAAGGCTG

Sequenz ID: 85 (BC035379)

CAGGCTGAGGCCTGCGCACCTCAGCCCACGACCTGCCCGCTGGGAGGTGCGGGCCGCTGGCCAGGCCCTGACCGC
AACCTGGCCCAGAGCCCCCAGCCCTCAGGCAAGGTTCTCCGGTGAAGCCACAGCCTGCCACCTGTCTGATCTCCCCAC
CGAGAAGGCCCCGCCCTCCCGCTGCAGCCCCACAGCATGCAGCCCCAGGAGAGCCACGTCCACTATAGTAGGTGGGAGG
ACGGCAGCAGGGACGGAGTCAGCCTAGGGCTGTGTCAGCACAGAACAGAGGCCCTCACGCTGCCGAGGATCTCCCAGAGG
CTGTGCAAGGGCAAGCTGGGATGCCATGAAGGTGCTGGGCGGCGTGGCCCTCTCTGGATCATCTTCATCCTGGCTA
CCTCACAGGCTACTATGTGCAAGTCAAATAAATGCTGCCCGCATGCACGCGGGGGCTGGCCGAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sequenz ID: 86 (BC034419)

AGGTGACCCCCATTGTGCATTTCTGGAAACCTACTACCTGAATGACGAGGTGAAGTCTATCAAAGAACTAGGTGACC
ACGTGACAACACTTAGTGAAGATGGGGGCCCCGGATGCTGGCTGGCGGAGTACCTTTGACACACATACCTGGAAAT
GAAAACAAGCAGAACTAACGCCACGAGCTGCCTCCAGGCTAGTGGATCAAAGACCAAAAGTCAGCTGTCTCTGCT
TTCTGCCCTTAAATCACCTCATCTTATATTCTCTGTTACTATCCCTCAATAAGTGAATTGTAGAAAAAAA
AAAAAAAAAAAAA

Sequenz ID: 87 (U65404)

GGAAGAGGAGGCTGAGGCCAGGGTGGGCACCAGCCAGCCATGCCACAGCCGAGACGCCCTGCCCTCATCAGCACA
CTGACCGCCCTGGCCCCCTCCCGACACACAGGATGACTCCTCAAGTGGTGGCCCTCGAAGAGGCCAGGACATGGG
CCCAGGCTCTCCTGACCCCACGGAGCCCTCCACGTGAAGTCTGAGGACCAGCCGGGGAGGAAGAGGACGATGAGA
GGGGCGCGGACGCCACCTGGACCTGGATCTCTCCTCACCAACTCTCGGGCCCGAGGCCGGTGGCGCCCGAGACC
TGCCTCTGGGCCAGCAGGGCTCGGGCGCAATATCCGCCGCCGAGACTCTGGGCATATGCTGGGCC
GGGGCTGGTGGCTGGCTTTGGGTTGGAGGATCACTCGGGTGGGCTGCCCTGCGAGGCCGGCTCCGAGC
CCTCGTGGGCCAGCCCTGGCTCCAGCCCGGGCCAGGCCAAGGGCTGGCGTGCACCCGGTGTACCCGGGCC
GGCGCCGGCTCCTGGGTGGTACTTCCCGGGACCGGGCTTCACTGCGCTGCGAGTCGGGCCCTACGGCTACT
GTCCGGTACCCCGCGATGTACCCGGCCCTCAGTACCAAGGGACTTCAGCTCTCCGGGCCAGGGACCCGCGC
CCGGTCCGCCACGTCCCCCTTCTGAGTTGGGACCCGGACGGTGGCACTGGACTCGGGGACTGCAGAG
GATCCAGGTGTGATAGCCGAGACCGCCATCCAAGCGAGGCCACGTTCTGGCGCAAGAGGACGGAGCGCACAC
GTGCGCGACCCGGTTGCGCAAGAGCTACACCAAGAGCTCCACCTGAAGGCGCATCTGCGCACGACACAGGGAGA
AGCCATACGCTGACGTGGGAGGCTGGGCTGGAGATTGCGCCTGGACAGCTGACCGCCACTACCGAAACAC
GGGGCAGGCCCTTCCGCTGCCAGCTCTGCCACGTGCTTTTGCCTGCTGACCACTGCCCTGACATGAAGCG
CACCTTGAGCCCTGCCCTGGCACTTGGACTCTCTCTAGTGAATGGGGATGGACAAGAAGCCTGTTGGTCTCTC
ACACGGACGCGCGTGACACAATGCTGGGTTTCCCACGATGGACCCCTCTGGACTCGCGTCCAAAGATCCAC
CCAAATATCAAACACGGACCCATAGACAGCCCTGGGGAGCCTTACGAAAATCGACAAGCCTCAGGCCACAGGGGA
GCCACACAGAGATGTCAAACCTGCGTCAAACCCAGTGAAGACAGACGCCAAATAACGGACTCAGTGGACACTCAGAC
CAGCTCCAGATGCCCTGGACAGCAGGAGAGGGTGTGGGATGAGGCTCCAGAGACCCCTGGTCTAGAAAGCGGCTCC
TGAAGGTCCCTATTGTGGCTGATATTAACTGTCAATGGTTAGGGTCTATAAAATGCCCTCCAGATAAAAAAAA
AAAAAAAAAAA

Sequenz ID: 88 (AF001893)

AGGAATTCTCTGGGCTTGGGAATTAGTGCCTGGGTGAGCCAAGAAAACTAATTAAATAGTAAGTTGTTAGT
GTTGGTTAAGTTGTTGCTTGAAGTGAAGTGTAGAAACTTCCAAAGTGCTAGAAACTTAAAGTGCACACAGACA
AACTAACAAACAAAATTGTTTGCTTGTACAAGGTGGGAAGACTGAAGAAGTGTAACTGAAAACAGGTGACACAG
AGTCACAGTTCCGAGAACCAAAGGGAGGGGTGTGATGCCATCTCACAGGAGGGAAATGTCTTACAGCCTCC
TCCGGTGGCCAAGACAGCCCTGTTCAAGGGTTGTTGGGTTGGGTGTATCAAGTGAATTAGTCACTGAA
AGATGGCGTCAGACTTGACAGCAGATCAGCATCTCGCTGCCCTTAGCAACTTAGTGGTGAATTGAAACT
GTGAAGGTGTGATTGGTCACTGGAGCTGGAAAGTCTAGAAAAGCCTGTAAATGCCTATATTGGGCTTTAACGTATT
AAGGGACCACTTAAGACGAGATTAGATGGGCTCTCTGGATTGTTCTCCTATTGTCACAGGTGTTGTGAATTGAAAAT
CATGAGCGAAGTGAATTGCAATTGAAATTCAAGGGAAATTAGTATGTAATCGCCTTACGAAACACATCTGGTCTTT
TCTGTGTTGGTCATATTAAATGGAAAATTGGCTATCTAGTATCTCAAAATTGTTAGTCTTGTAAACAACCAA
AACCTTGTGGTCAGTAAAATTAAATTGGTAGACAGAACATGTACCTTGCTAAGGTTAGAATGAATAATT
TGTATTAAATTGAATGTTGTGTTTAAATGAGCCAAGACTAGAGGGAAACTATCACCTAAACAGTTGG
AAACAAAGACCTAAAAGGGAAGGGGATGGGATTGTTGGGGAGACAGTGGCGAGGTGCTTACTACATGTGATCTG
AAACCTGCTTGGTCTGAGCTGCGTCTATTGAATTGGTAAAGTAATACCAATGGCTTTTATCATTCCCTCTCCCT
TTAAGTTTCACTGAAATTAAAATCATGGTTATTGGTATCTGTTGGGATCTTCTGTCTCTGGGTCATTGGTAA
ATGTTAAAATATGTTGACATGGTAGTTCACTGTTGAGGTTCTGTTGAAACTGTTGAGGTTCTGTTGAAACTG
ATTAGAGTGTATTAGTCACGCATGTATGGGAAGTAGTCTCGGGTATGTTGAGGTTCTGTTGAAACTGTTGAAAGT
GGTGAAGTACTGGTATGTTGCTGTGTTGAGGTTCTGTTGAAACTGTTGAGGTTCTGTTGAAACTGTTGAAAGT
TTCCCTTACAGACAAAATAAGTTGAGGTTCTGTTGAAACTGTTGAGGTTCTGTTGAAACTGTTGAGGTTCTGTTG
TATCACATTGCTCTCATACGACTTGGAGTATCTCATATTGTTGAGGTTCTGTTGAAACTGTTGAGGTTCTGTTG
AAGGCCATGTAGGAGAGCATGGTAACACAGATAGAAACTGGTATTATCCAAGTGGCTGAGACTGCTGAGTGGGATG
GGATCTGCTCTGTTGAGGTTGGTAATCATGGGTTGAAATGTGATGAAACCAACTCAAGCCAATGAAGGTGGGTGT
AGGTGGGAGGAGTACTTGGCCATAATTAAAACATTACCTGGTTAGAGGTTCTAAGGGTACTTATTGGTGTGTTG
GGGAAAGGCTGAATAAAACAGAAAATGGACACATAATATGCATATTCCATAGTCTTGGGAGGCTGGAATGCCCCTGG
TTTGGGCTAAGTGTATGCGTAATTCTACCTCACTAAAGAATTGCGCTGTTTTTCTCTGGTGAATGACTAAAC
GTCTGGCTTCCCTGCTGCGTCTACAGTAAGCAAGCAGAGGCTGCGAACAGGTGTGAGCAGGATCACGTTGGAATCTG
AGGATACATCTGGCTTGCACACTGCCCTCTGTCTCTGGGACTGTTCTGCTGCTGACTGCTGTTCTGTTACCT
CTTGGGTTGTAAGGTTGCTTACAGGAGACAAACTTGGGCTGAGAATGGAAGCCACTGCCAGCCTCTGCTGAGAAG
GAAGGGCTTGTCAAAGGGAGCAGCAAGGGAGGCTGTTCTACTCACCTGGCCTGTTGCGCTGAGAAGGGAGATAA
GGGCTGAACGGGACTAGCCAGGGGACCAACAAATGGTGGGGATCATGACCTGAAGGATTCTTCTCCATGAG
CTGCAAGGGCTGGTGGCGTCTGCAACTGTGTCTATTGCGCTGCGCTTATATCTGGTGAACCCCTCACGTGTACA
CTACTGACAAACGGGTGGAGTGTGCTGGGAGAAGTCAGTGTGCGCCACCTAGTAAACCTCTGTGTGCTCATGGCAT
CTCCAAGATGGGGACTGCTGTGCAAGATCCAGGGTCTCTGCTGCAACTCCTTCCCTGGATGCCAGAAA

AATGGCTTTGGTCATATAGATGAATTCTACAGTAGTGAAGTCTGAGATTACTGCACCGGTACACTGAGTAGTGTACA
TTGTACCCAATATGTGGTTTTATACCTTGCCCCCTCTTACCCCTCCCACCTTGAGTCTCTAGTGTCCATTATGTAC
TCTGTATACTTGTACCCATAAGTTAGCTCTCACTTATAAGTGAGAACACACAGTATTGGTTCCATTCTGAGT
TGCTTCACTTAGAATAATATCCTCCAGCTCCATCCAAAATTGCTGCAAAAAAAAAACACAAACATTATTTGTTC
TTTTTATTGCTAAGTCATATTCCATGGTAGAGATAACCACATTTTATTCTACACTGTTGATGGGTTGGTCC
ACATCTTGCAATTGTGACTTGTACTGCCATCAAGTGTCTTCTGGTATAATGACTCTTCTGGTAGATACCCA
GGAGTGGGATTGCTAGATCAAATGGTTCTTAACATTCTCTGGATCTATTCTGGAAATTAGGCTCAGTTTG
TTGTTGTTGTTAATAAAATGCAATGGAATGTAATGATCATCCTACATTCTGTTAAATCTGGTAAATGGAGGCTA
GAACACTCCTGTAAGGCAAGAATATTCTCTGTTGAACTCAAATACACAGAACGGTAAATCTCAATCTTAATCTT
GATTCAAGGACACAAACATGGCTCTTCTTACTTGCTTCTTAATTGTTTAATTGTTAATGTTGAGCATTCTGAATCTC
CTATCCAATACAAAAACTAGGACAATACAGACAGTAACCTCTGGTACAATGAACACTCCTCTCCACTTAAATTAA
ATTTACACTGATGAAATTGAAATAGCAAAATTAAATGACTAAATACTGCTTGTATTGTTCCAGGCTGTCATA
TTAACATTCTATAATTCTTTCTTTATGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTT
TTGGGGTACAATGGCTTGGTCAATATATGAGTTCTACAGTAGTGAAGTCTGAGATTACTACACCTCCACTTAT
GTGGTCCCACACCACCCGCCCTGCCACCCCCCTAGGCAAGGTAATAATCATCCTGAATCCTGGGTT
TATCTCACTTGCTTCTTTCAATAATTGCAAAGAACATGATCTAAATGTTGTTCTCAGTGTCTTGTAGAAGTGTATG
TTTAGCTGTTCTAGAGAAAATTATTGATCTGCAATTGAAACATTCTCATTTAACCATGGTAAGATTCA
GCCCTGCCAGGGGATAGTCATTAGTTGTTACTGGATAGGCTCATGTGACTACACCTCAGTTAGTTGTT
GTTCTCCATCCATGGTCACTAGGTTGCCCTCAGCCTCTCACAAACACTGTTCTCAGTGTCTTGTAGAAGTGTATG
GGGTGTTTCTCCTACACAGAGTTGAAAGGTGACGACAACAGTTGCCACTACCAATCCCCCACCTCCAGAGGGT
CCAGTGTACCAAGTTGCTGTGTTCTGCTACACCTCGCTTATTCACTTCCATTGTTACTGAAAAACGTGTTGCA
GGTTTCTTTCTATAGAAGTGGTAAATGCTATTGTCCTGCTACATTGATTACTTTTCTATTAAACAGTAGGG
AGATGCCTGGGAGTACACAGAGAACTGCCCTATTGTTCAACTTCTGCACTGTTGAGTTAGCCATTCTGC
TGTAAATGAAATTACAGTATTCTAATCTTTGATATTACAAACAGTTCTGTCGATCATCGTCATAACACACCCCTG
TGCACAATGCATGAGTGTCTCAGGGTAGGTACCAAGAACAGTAAATTCTGGTCAAGGGCTGAGTCCGACATT
CTCCATTGCCCCGTTGCCCTCAGAGTGGGTGCTCAGCTTGCATACCTAAGTATGAGAGTATCTGTTGTTCATATCC
TCTACGACGCTCCATATATGAAACTTAAGTTCTGCTAGTTGCCATCTTGATCTATCATGTTGAGCTACTAAG
ACTGTAATTGGTACAGTAGATTCTGTCATCTGTTGTAATTAGCATTCATGGCTTAATGTCAGAACAGGCCCCAGG
GTCCAAGACATATAATCATGATAATTGTCAGGTTATAATTGTTAAATTGCTTGTATGTCAGTGTCTGTTGATGC
CCAACCCAGTGCTCTGCACCCAGGTACACTGTGGCTTGTCTGCTTATGCCCTGCACTGAGAACGTGCTGAA
GACCAAAATTATGCAAGATTAGGTAAGTCCATGGCTATTGTTATTGTTATTGTCAGGGCTGAGTGGCTGTGGA
GTGTATGAAATTATAATCACTGGTCTTGTAAATTAAACACTATAGAAAAAAGGCCATGAGAACGATAAAAGTTC
CTCTATAATCCGGACCCCTAACAGATAACTAACATGACAACCTCATTATATTCTCAGACATTCTGGCTGTGGATG
TACTAAAATGTTCTATTATTCTGCCCTAAAGGAATCATACAAAGGTGACTGTTATTGTTATGGCTCTATAACAT
GTCATATTGTCAGTGTGGTATGGTCAATTAAACCAATTCTAGTGTGAGGTTATTGCACTTCTCTAGCCA
TCTCAAAGTGTGCTGCCGGATCTCTTGCATCCCTCTGGGTCAGAGCTGAGGCAACCCAGAGGCACTGCTGAGGAG
GCAGCATCTGAGGTGCTTACCTGCTCTGGCTTGGCACATCTGGTGGTGCACACTGTTGAGATGGGTTGAAA
GCACGTGCTGCCAAATAGAATAATGTTGGCCTCCTCATGTCGGTGGAAACTGGGTAACACTGCGTAGTGGCTGCA
GCTGCCGTGTCATACCGGAATCGAGTATAACACGGTGCCTGGCTTAGCACAAAACAGTAGTGGCTCTGCAGGCCCCAGA
GTCTAACTCTGGTATTCTTCCCTAACAGATTAAACCAAAACAAACTATTCTAGGAAAGCGTCTGACATT
TAAAAAGGGTATTAAATGATCTTCTACTGTTGTTAGTTGTTGAAATTCTAAGTGGCATCTGGTCTGG
GGAGTGTGCTGCCCTGCCCTCCGCTGGGCAAGCGTGGCTTCAGGGGCTAACGCACACATTCTGCTTCT
AAGGGGCCACATGCCAGGAGTCAGGTGAGGCCCGCTTGGCTTACCTCATAGGGTCACTCATAGGGCACAGG
GAGCAGAACATTGTCACACAGCGAGGCCACCCCGCTTGGCATCTGCCCTGGGACTTACTACCTCTAGAACAGGAAATAC
CTGAGTTCTCTGGCCTCAGCTCTAGAGTGACTGGTGTGCTGCTCTGTTACTCTCTGTCAGGTTGACAACACTGTTGA
CCCACATCTGTCGTCAAAGCAACGGCCCTGCCCTGGGCTCTGCTCTGTCAGGCCACAGGCAACGTTGCTAGT
TTCCTTCCAGTTAATTCACTTATGAAATAGATGTTGAAACCTGTCAGGCCATCTGCAACATGTTGAACTTCAAAAC
CCTGTTGGTGTGTCAGGCAATTCTCTAACCCCCCAGCCTCCCTCCACAGAGGCCACCGTCAAGGCCAGTTGCTG
AGTTCTTCCAGAGAACCTGTTGATGTTGAAAGCTGTCAGGGCTGGGTACACCCACAGCCTGCTTGCAGTGTGGAC
TGTGAGTTACTAGTACATCTAGGTAAGCACCGCATATCTGTTATTGTCATGTCAGGCCCTGGTCTTCAACATCTGTTG
AGCGTGTGTTGAAATTACCCATTCCCTTTGGGAAACCATTAAGTTGTTCAGCAATTGTTACTGTTGAGAACGTT
CGCATATCTGTCACATGGGTTTATGTCATGGCAAGTATATCTGTCAGGAGGTTGGCCATTGACATT
GCACAGCATGTCAAATTCTAAATATGATGGACACCCCCAGCTCCACCTCAAGGGAGGTTGGCCATTGACATT
CACACCTCACCCAGGCTGCCCTAACCTGGTTATTGTCATGTCAGGAGAACAGTGGAAAATAGTATTAAATTGAGTT
GGATTGTT
AAATACATTCTATTCTCACTAATCTTAAAGTTTATTGTAATATTGCTCTTGTGTTGTTGTTGTTGTTGTTGTTGTTGTT
TATATATGTTATATATATATACAT
TATATATATATATATACATATATATACATATATACATATTCTTATGGTCTGGATTGTTGAGTAGTTGTTGAA
AGGCTAACCTCAGCTGAAGAGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTT
ACTCTATCTAGACTTAATTCTAGCATAACAAAGTGCAGGGTTAGTTAGCCTGTTGCTTACACCATTCTGGCTAATA
CAGCTATTAACTATTGATCTGTCATTACGTCGCCAGTTCTAACAGGTTTACATAGTGAATCTGCACTTCAAAATAGC
GAAGGGAGGCCACCTCATTCTACTTCCAGAATTCTCTGGCTATTCCAGGCTGCATGTTACCTAACGTT
CTGTGATGTCTCATGCCGTTGCTTCTTATGCAAGAATAAGGTACGTCTTCCATCCACTCACGTCATTTGAC

TTTGCATTACACAGAAAGCTGGTCTGGTCTACCTCGGCATCTAGTTGTCCTCACTGCCCCCTAGCCGACCCACC
 CCATCTGACTGACTACCCCACAGAGTACTTTTACGTTGCTCTGCCATAATGGTACTTGATACTGTCACGCC
 GACAGTGTCCAGTTCAGTGGCTTGCAGTGAAATGCTCCGTACACACTGTCTTGTAAAAATGCCAGTAAGTTCATA
 CAAACCCAGCTGCACCCAAAGGTACATTCAGAGAGCGTAGGGCTGGGATGGGTTTCCAAGGCTCTGCCACTGTGT
 GGCTAGCTCTCCACTGGAAAGTCTGTGTACCCGAATGTGGAGTGGAGTCTGTCTAGTGTCCAGCACCTGACCC
 TGTGCCAACCCCTCAAGCCTATTCCGTGTCCACAGCCTGCTGGAACTTTTACAAAATATGTTGCCATGCTGGAC
 CCTGGGACTGGACATAAGCCCCCTGGCAGCCTTTCATGTCACCCAAAGGGTAATTGTCCTACTGGTGGTGTAAAG
 ATGAGTTAGGGTACTGCTAATAGACATTGTAATCTTATTTATGTTATTTATTACCGGTTTCCATT
 ATGATGGAAATATTGTTCTAAGAAATTTTATTCTTCTAATATTGAGATAAAATTCACTGTTGAAATGTT
 CTATTCACTGGCTTTAGTATTTGCTATGTTGTCAGAACATCGACACTTCATTCTAGAACACTTTGTCATCCCA
 AACAGACGCTCTGATTCAAAAAAATTAACCTCCTACCTGTCCTCTCCCTAGTCTTGGTAACCTTGTATACTGGT
 AAACTTGTTGTCTCTGTGTGAATTGCTTACATTCTAGGGGCTCATATAAGTGTAACTACAGTACTGGCTTCTT
 TCTGGCTGTTGATTCACTTAGGGTTTCAGGGTTCATTGTCAGCATATAACAGTACTGGCTTCTT
 TCTGGCTGAAATAATATTCACTGTATGGATAGACCCATTGGTATTACACATCATTTGGACATTGGATTATTCT
 GGTTTTGGCTATTATGAACAAATGGTCTATGAACAGTGTGCTACAAGTTGTTGTGAACATATGTTCAATTCTC
 ATTATATACCTAGGAGTAGAAATTACTGGGTCAATGGTAACTGTATTTTGAGGAACGTGCAAACACTATTCCCACGT
 CCATGACCAATTTCACATTCCCACAGTAAGTAAGGGTTCATTTCTGCGCATTGTCAGCATGGGCTTGGCCAC
 GACTTTCTGGTTATAATCATTCAATGAGTGTGAAGTAGCCTCTGGTGCATTGGATTGCAATTCTGATGAGTGT
 GCTATCAAGCACCTTGCTGGTGTGGCCATATGTTGAGTGTCTGGAGAAGTGTCTGAGCCTTGGCCAC
 TTTAATTAGGGTTGTCTTTTATTACTGAGTTGTAAGAGTTCTTATATATTCTGATTAGACCTTATCAGAT
 ATGGTTTGCAAATATTCTCCATTCTGTTGTTTCACTTATCGATAATGTCCTAGACATATAATAAT
 TGTTTTAAAAGTACTGATTGGCTGTCAAGGTGGCTACGCTTGTAACTCCAGCACTTGGAGACTGAGGG
 GTGGATCATATGAGGAGGCTAGGAGTTCAGGTCAGCCTGGCAGCATAGCAGAAACTGTCTACTAAAATACAAA
 ATTAGTCAGGCATGGTGGTGCACGTCTGTAATACCAAGCTCTCAGGAGGAGGAGCATGAGCAGGAG
 GAGGAGGTTGCAGTGTGAGATCATGCCAGGGCAACAGAATGAGACTTGTAAAAA

Sequenz ID: 89 (AK097876)

AATGAGGCCAGCTGGACTACGCCAGACAACTGGGAGAGCCGGGACTCGCCCGTTCCGCGGAACGCCGGAAAGGGGTC
 ACCTCCTGATGAAGTTCCGGTTCCGGTGTCAAGCGCGGTGAATTGCCATGGCAATGCGTGGCGCGCTGTGCGTG
 TTGGCTCTGGAGGTAGTGGGCTAGGCCGGGGGTATCCGCTCTCCAGCTTAGGTGAGCGTCCCCGGCGCTC
 CGGAGGCCGCGCCGCATGCAGTCGTGGCGGGAGCCGGAGCGCTGACCGGGGTTCCAGCGCTGGGCCAG
 TGGCTCTGGACTTTCCCTGGCTCCGCCACGTGGAGCTGAGGCTCTGGGCTTCCGCTCCGGCGCGATTATT
 CTCTAGAACAGTTTCAATTAAAGTGTAAAGCGCTTTGCTGTGATTCTCTGGTTTTTTTTCT
 TCCCTTTGTAGAGACGGAATTGGCGGGGGCGGGGGTCATGTCTACTTTTGCCTAGGCTGGTCTGAACCTC
 TGGCTCAAGGGATCCTCCTGCCCTCTTAAAGTGTGGATTACAGCGTGAAGCCACGCCGGGGCGCTCTG
 AGTTTCAGCCTCGTGGCCCTCCAGCTTTAACCTGTGGCTAGGATCAGGAAAGGTTGTTGAATGGGAAC
 GAAGTGAATTGCTCGTCAAAACGTTCTGAGCAGCCGCTGGGTGCTAGGCGAGTGCAGCGCGGAATGTCAGG
 GAGACCTGGTGCCAAAGCTGGACCCATCGTGAGAAATGAGAACAGATAAAAGCAGTGTGGAGTGCAGAGGAGACA
 AAGCAAGCCTCATCAGGCCATTGCTGCTCTGCTCTCCCTGACTTACCACTGCTTGAACATATAACAGTTATTACTA
 CCTGGTTATTGACTTCCATCCAGCACTCAGTTTATTCACTGCTGTACCTCAGTGCCTAGGACGATGCTTGGAA
 GAGTGTCTCTATTGGCGGGAAAGAATAACCGAAGAGCAGGACAGTGGACTTGCTACATACTGTA
 GCACAGGGTTGGTGGTACCTCGAGCACACCAGACTTGCAAGAAAAGCATACTCCAGAGGAAGCTGAGGCATGCC
 CTCGAGAGCCAGCTGTCATGTCAATTCTCTGATAGTTCTGGTACTGTCAGGCCAGGTGATAATGACTGGGCTA
 TGTCTTATCTATCCGCAACAGTAAGAGAAGCTTGCAGTCAGATATTGTTAGCAGATGGAGTGTCTGTTGAAC
 ACTAAGTACTGCCACAAGTTACTTTTTTTAAACTTTGAGTATTCTTAACTATGTTGCTGGAGGTGATCTGTT
 ATGCTTGAGAGTGTGAAATTAAACATGAAAATCATGTCAGTGAGTCTTCAAATACTTCCGCTGATGAAAC
 CTGAGCCTAGTAAACTATGAAAGTAAACCTGGCACATTACCCGAAAGTCTCAATGTCATATTTCACCCCC
 CATCAATATT
 ATTGATGATTGCTCATTCTAATGTTGGACCTGAAATTACCAAGGTGCTTAAAGAATCTTTGTTGTTTCAGATT
 GATTCCAGGTAATCAGAGGAACAGAACATGAACAGAAATATGAGAAAAGCTATTATGCA
 GAGAAGCATAATTGTTG
 TTCAGAAGTCCAGCATCTGGTGCACCTAACAAATAGAGAAATATTAAACTCTTCCAAAAT

Sequenz ID: 90 (K03195)

TAGTCGGGGTCCCGAGTGGAGCACGCCAGGGAGCAGGAGACCAAACGACGGGGTGGAGTCAGAGTCGAGTGGAGT
 CCCCCGGACGGGAGCACGAGGCCATGGGGAGAGGCCGCTGCCAGGCCACCCGGCTACCCGGCCAGCCAGAG
 CCACCCAGCGCAGCGCTGCCATGGAGGCCAGCAGCAAGAAGCTGACGGGTGCGCTCATGCTGGCTGGAGGAGCAGTGC
 TTGGCTCCCTGCACTGGTACAACACTGGAGTCATCAATGCCACAGCTGGTCCCTCTCAGTGGCATCTTCT
 TGGGTCCACCGCTATGGGAGAGCATCTGCCACACGCTCACCACGCTCTGGTCCCTCTCAGTGGCATCTTCT
 TGGGGCATGATTGGCTCTCTGTGGCTTTCGTTAACCGCTTGGCGGGCGGAATTCAATGCTGATGATGAACC
 TGCTGGCTTCGTCGCGCCGTGCTCATGGCTTCGAAACTGGCAAGTCTTGTGAGATGCTGATCCTGGCCGCTC
 ATCATCGGTGTGACTGCGCCTGACCAAGGCTTCGTCGGCCATGTATGTTGGTGAAGTGTCAACCCACAGCCTTC
 GGGCCCTGGGACCCCTGCAACAGCTGGCATCGTCGGCATCTCATGCCACAGGTGTTGGACTCCATCATGG
 GCAACAGGACCTGTCGGCCCTGCTGAGCATCTCATCCCAGGCGCTGCTGAGTCAGTGCATGTC
 CCCGAGAGTCCCCGCTCCTGCTCATCAACCGCAACGAGGAGAACCGGGCAAGAGTGTGCTAAAGAAGCTGCG
 GGGAC

AGCTGACGTGACCATGACCTGCAGGAGATGAAGGAAGAGAGTCGGCAGATGATGCGGGAGAAGAAGGTACCCATCCTGG
AGCTGTCCGCTCCCCGCCTACCGCCAGCCCATCTCATCGCTGTGGTGCAGCTGTCCCAGCAGCTGTCTGGCCTC
AACGCTGTCTCTATTACTCCACGAGCATCTCGAGAAGGCAGGGGTGCAGCAGCCTGTGTATGCCACCATGGCTCCGG
TATCGTCAACACGCCCTCACTGTCGTGCGTGTGTTGTGGTGGAGCGAGCAGGCCGGCGAACCTGCACCTCATAGGCC
TCGCTGGCATGGGGTTGTGCCATACTCATGACCATCGCCTAGCACTGCTGGAGCAGCTACCCCTGGATGTCTTATCTG
AGCATCGTGGCCATCTTGGCTTGTGGCCTCTTGAAGTGGTCCCTGGCCCATCCATGGTTCATCGTGGCTGAAC
CTTCAGCCAGGGTCCACGTCAGCATTGCCGTTGAGGCTCTCAACTGGACCTCAAATTCTATTGTGGCATGT
GCTTCCAGTATGTGGAGCAACTGTGTGGCCCTACGTCTTACATCTTCACTGTGTCTGGTCTGTCTCATCTC
ACCTACTTCAAAGTTCTGAGACTAAAGGCCGACCTCGATGAGATCGCTTCCGGCTTCCGGCAGGGGGAGCCAGC
AAAGTATAAGACACCCGAGGAGCTTCCATCCCCCTGGGGCTGATTCCAAGTGTGAGTCGCCAGATCACCGCCG
GCCGCTCCCAGCAGCCCTAAGGATCTCAGGAGCACAGGAGCTGGATGAGACTTCAAACCTGACAGATGTCAGCC
AGCCGGCCTGGGCTCCTTCTCCAGCAGCAATGATGTCCAGAAGAAATATTCAAGGACTTAACGGCTCCAGGATTTAA
CAAAAGCAAGACTGTGCTCAAATCTATTCAAGACAAGCAACAGGTTTATAATTTTTATTACTGATTTGTTATT
ATATCAGCCTGAGTCTCCTGTGCCACATCCCAGGCTTACCCCTGAATGGTCCATGCCCTGAGGGTGGAGACTAAC
GTCGAGACACTTGCTTCTTACCCAGCTAATCTGTAGGGCTGGACCTATGCTCTAAGGACACACTAAC
CTACAAAGCTCTATCCCAGGAGGTGGCTATGCCACCCGTTCTGCTGGCCTGGATCTCCCAC
CATTAGGATTTGCCCTTCCATCTCTTCAACCAACACTCAAATTAAATCTTCTTACCTGAGACCAGTGGAGCA
CTGGAGTGCAGGGAGGAGAGGGGAAGGGCAGTCTGGCTGCCGGTTCTAGTCTCTTGCACGTAGGGCCACACTATT
ACCATGAGAAGAGGGCTGTGGAGCCTGCAAACACTCACTGCTCAAGAAGACATGGAGACTCTGCCCTGTTGTATAGA
TGCAAGATATTATATATATTGGTTGTCAATATTAAATACAGACACTAAGTTATAGTATATCTGGACAAGCCAAC
TTAAATACACCACCTCACTCTTACTTACCTAAACAGATATAATGGTGGTTTTAGAAACATGGTTTGAAATGCT
GTGGATTGAGGGTAGGAGGTTGGATGGGAGTGGAGACAGAAAGTAAGTGGGTTGCAACCACGTCAACGGCTTAGACTTC
GAECTCAGGATCCAGTCCCTAACGTACCTCTCATCAGTGTCTTGTCTCAAAAATCTGTTGATCCCTGTTACCCAGA
GAATATATACATTCTTATCTTGACATTCAAGGCATTCTATCACATATTGATAGTTGGTGTCAAAAAACACTAGTT
TTGTGCCAGCGTGTGACCATGCTCAGGCTTGAATGCAATTATTGAAATGTGAAGGGAA

Sequenz ID: 91 (X05875)

GCACGGAGGGCAGAGACCCCGAGCCCCAGCCCCACCATGACCCCTGGCGCCACTCGCGTGTCTTCTCGCCTGT
GTCCTGCCGGCCTGCTGCTGGGGGGCACCGCGTGGCCTCGAGATTGTGGGGGGCGCGAGCGCGCCACCGCGTG
GCCCTTCATGGTGTCCCTGCAGCTGCGCGAGGCCACTCTCGGGCGCCACCCCTGATTGCGCCCAACTTCGT
CGCGCACTGCGTGGCGAATGTAACGTCGCGCGTGGGTGGTCTGGGAGGCCATAACCTCTCGCGGGGGAGGCC
ACCCGGCAGGTGTTGCCGTGCAGCGCATCTCGAAAACGGCTACGACCCCGTAAACTGCTCAACGACATCGT
CCAGCTCAACGGGTGGCCACCATCAACGCCAACGTGCAGGTGGCCACGGTCCCTGCGGCTCAGGGACGCC
GGGTGCACTGCCCTGGCCATGGGCTGGGCTCTGGGAGGAACCGTGGGATGCCAGCGTCTGAGGAGCTCAACGTG
ACGGTGGTGAAGTCCCTCTGCCGTGCAGCAACGTCCTGCACTCTCGTGAAGGGGCCAGGCCGGCTGTTGGGA
CTCCGGCAGCCCCCTGGTCTGCAACGGCTAAACTCCACGGAATTGCTCCTTGTCCGGGGAGGCTGCCCTCAGGGCTCT
ACCCCGATGCCATTGCCGGTGGCACAGTTGTAACACTGGATCGACTCTATCATCCAACGCTCCGAGGACAAC
CCCCACCCCCGGGACCCGGACCCGGCAGCAGGACCCACTGAGAAGGGCTGCCGGTACCTCAGCTGCCACAC
ACTCTCAGCATCTGGCAAAATAACATTCTGTGTTGT

SL0506A1 Ansprüche vom 1. März 2004
Sepsis – Biochip III
SIRS-Lab, Jena

Ansprüche

5 1. Verfahren zur *in vitro* Unterscheidung von generalisierten, inflammatoryischen, nichtinfektiösen Zuständen und generalisierten, inflammatoryischen, infektiösen Zuständen,

dadurch gekennzeichnet, daß

10 es folgende Schritte umfasst:

- a) Isolieren von Proben-RNA aus einer biologischen Probe;
- 15 b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- 20 c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- d) In-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung von zwischen SIRS und Sepsis spezifisches Gen oder Genfragment ist;
- 25 e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

35 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA hybridisiert

SL0506A1 Ansprüche vom 1. März 2004
Sepsis – Biochip III
SIRS-Lab, Jena

und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfasst und gegebenenfalls in Form einer Kalibrierkurve oder –tabelle ablegt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß nicht veränderte Gene aus der Proben- und/oder Kontroll-RNA als Bezugsgene für die Quantifizierung genutzt werden.

4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.

5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.

10 6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des klinischen Verlaufs, zur individuellen Risikoabschätzung für Patienten, zur Abschätzung des wahrscheinlichen Ansprechens auf eine spezifische Behandlung sowie zur post mortem Diagnose zur Unterscheidung von SIRS und Sepsis eingesetzt wird.

15 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.

20 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.

25 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei der biologischen Probe um die eines Menschen handelt.

30 10. Verfahren nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, daß das zur Unterscheidung zwischen SIRS und Sepsis spezifische Gen und/oder Genfragment ausgewählt wird aus der Gruppe bestehend aus

SL0506A1 Ansprüche vom 1. März 2004
Sepsis – Biochip III
SIRS-Lab, Jena

SEQ-ID No. 1 bis SEQ-ID No. 91, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

5 11. Verfahren nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.

12. Verfahren nach einem der Ansprüche 1 bis 11 dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.

10 13. Verfahren nach einem der Ansprüche 1 bis 12 dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.

15 14. Verfahren nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.

15. Verfahren nach einem der Ansprüche 1 bis 14 dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.

20 16. Verfahren nach einem der Ansprüche 1 bis 15 dadurch gekennzeichnet, daß die in Anspruch 10 aufgelisteten Gene oder Genfragmente und/oder von deren RNA abgeleiteten Sequenzen ersetzt werden durch synthetische Analoga, Aptamere sowie Peptidonukleinsäuren.

25 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet daß die synthetische Analoga der Gene 5-100, insbesondere ca. 70 Basenpaare umfassen.

30 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ^{32}P , ^{14}C , ^{125}I , ^{155}Ep , ^{33}P oder ^3H verwendet wird.

35 19. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere

SL0506A1 Ansprüche vom 1. März 2004
Sepsis – Biochip III
SIRS-Lab, Jena

ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

5

20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate dieselbe Markierung tragen.

10

21. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate unterschiedliche Markierungen tragen.

15

22. Verfahren nach einem der Ansprüche 1-19, dadurch gekennzeichnet, dass die immobilisierten oder nichtimmobilisierten Sonden eine Markierung tragen.

20

23. Verfahren nach einem der Ansprüche 1 bis 22 dadurch gekennzeichnet, daß die DNA-Sonden auf Glas oder Kunststoff, immobilisiert werden.

25

24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die einzelnen DNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.

25

25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die einzelnen DNA Moleküle mittels elektrostatischer- und/oder Dipol-Dipol- und/oder hydrophobe Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.

30

26. Verwendung von rekombinant oder synthetisch hergestellten, für die Unterscheidung zwischen SIRS und Sepsis spezifischen Nukleinsäuresequenzen, Partialsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum

35

SL0506A1 Ansprüche vom 1. März 2004
Sepsis – Biochip III
SIRS-Lab, Jena

vorgesehen sind, zur Vorbeugung und Behandlung von zwischen SIRS und Sepsis.

27. Verwendung der RNA der Gene und/oder Genfragmente nach Anspruch 10 zur Gewinnung von quantitativen Informationen über die Genaktivität durch Hybridisierungs-unabhängige Verfahren, insbesondere enzymatische und/oder chemische Hydrolyse und/oder Amplifikationsverfahren, vorzugsweise PCR, anschließende Quantifizierung der Nukleinsäuren und/oder von Derivaten und/oder Fragmenten derselben.

28. Verwendung von Genaktivitäten der Gene und/oder Genfragmente gemäß Anspruch 10, die spezifisch für SIRS oder Sepsis sind zum Wirkstoffscreening in Modellorganismen.

29. Verwendung von Genaktivitäten nach Anspruch 1-25 welche auf zellulärer Ebene durch Genaktivitäten der Gene und/oder Genfragmente nach Anspruch 10 moduliert werden.

30. Verwendung der Gene und/oder Genfragmente nach Anspruch 10 zum Erhalt von Informationen über einen Sepsis- oder SIRS-Zustand, für die elektronische Weiterverarbeitung.

31. Verwendung von Genaktivitätsdaten für die Herstellung von Software für Diagnosezwecke und/oder Patientendatenmanagementsystemen

32. Verwendung von Genaktivitätsdaten für die Herstellung von Expertensystemen zur Modellierung von zelluläreren Signalübertragungswegen.

Zusammenfassung

5 Die vorliegende Erfindung betrifft ein Verfahren zur *in vitro* Unterscheidung von generalisierten, inflammatorischen, nichtinfektiösen Zuständen und generalisierten, inflammatorischen, infektiösen Zuständen, mit den Schritten:

- a) Isolieren von Proben-RNA aus einer biologischen Probe
- b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker
- c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
- d) In-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung von zwischen SIRS und Sepsis spezifisches Gen oder Genfragment ist;
- e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA; und
- 20 f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.