Durée : 1 heure. Aucun document autorisé. Ce contrôle sera noté sur 10 points.

Corrigé en rouge (peut-être indication toute seule).

Commentaire en bleu.

1. (2 pts) Questions de cours :

a) Rappelez la comparaison séries-intégrales, puis montrez la divergence de la série de Bertrand $\sum_{n\geq 2} \frac{1}{n\ln(n)}.$

Soit f(x) une fonction continue **positive décroissante vers 0** sur $[0, +\infty[$. Alors la série $\sum_{n\geq 0} f(n)$ et l'intégrale $\int_0^{+\infty} f(t)dt$ sont de la même nature. On l'applique à $f(x) = \frac{1}{x \ln(x)}$ définie sur $[2, +\infty[$, en calculant

$$\int_{2}^{+\infty} \frac{1}{t \ln(t)} dt = \int_{2}^{+\infty} \frac{1}{\ln(t)} d\ln(t) = \int_{\ln(2)}^{+\infty} \frac{1}{t} dt$$

qui diverge.

b) Rappelez pourquoi si $(f_n)_n$ est une suite de fonctions bornées sur un intervalle I qui converge uniformément vers f, alors f est bornée sur I.

Soit $N \in \mathbb{N}$ tel que $|f_N(x) - f(x)| \le 1$ pour tout $x \in I$. On a alors

$$|f(x)| \le |f_N(x)| + 1 \le ||f_N||_{\infty} + 1$$

pour tout $x \in I$.

- 2. (3 pts) Déterminer la nature des suites de nombres suivantes :
 - a) $\sum_{n\geq 1} \frac{1}{n+\ln(n)^2}$. Divergente par équivalence : $\frac{1}{n+\ln(n)^2} \sim \frac{1}{n}$.
 - b) $\sum_{n\geq 2} \left(\frac{\ln(n)}{n}\right)^2$. (Indication : comparaison avec une série de Riemann.)

Convergente par comparaison : $\left(\frac{\ln(n)}{n}\right)^2 \sim o(\frac{1}{n^{3/2}})$.

- c) $\sum_{n\geq 2} n e^{-n^2+n}$. Convergente par le critère de d'Alembert : $\frac{(n+1)e^{-(n+1)^2+(n+1)}}{ne^{-n^2+n}} = \frac{n+1}{n}e^{-2n} \to 0$.
- 3. (2 pt) Déterminez si la suite de fonctions $f_n(x) = nxe^{-nx}$ converge uniformément sur $I = [1/10, +\infty[$, respectivement sur $I = [0, +\infty[$.

Oui pour $I=[1/10,+\infty[$, car si $n\geq 10,$ $\|f_n\|_{\infty}=\frac{n}{10}e^{-\frac{n}{10}}\to 0$. Non pour $I=[0,+\infty[$, car f_n converge simplement vers 0 mais $f_n(\frac{1}{n})=e^{-1}\not\to 0$.

- **4.** (3 pts) Vrai ou faux : jusitifiez si l'énoncé est vrai, donnez-en un contre-exemple s'il est faux. Soit $\sum_{n>0} a_n$ une série de nombres.
 - a) Si elle converge, alors $\lim_n \sqrt[n]{|a_n|} \le 1$ dès que la limite existe. Vrai, comme contraposé du critère de Cauchy, ou par comparaison avec la série géométrique.
 - b) Si elle converge, alors $\sum_{n\geq 0} a_n^2$ converge. (Indication : séries altérnées.) Faux, contre-exemple : $a_n = \frac{(-1)^n}{\sqrt{n}}$.
 - c) Si elle diverge et si $a_n \ge 0$, alors $a_n \ne 0$, $n \to +\infty$. Faux, contre-exemple : $a_n = \frac{1}{n}$.

Soit $(f_n)_n \in \mathcal{C}^0([0,1],\mathbb{C})^{\mathbb{N}}$ une **suite** de fonctions.

d) Si f_n converge simplement vers une function $f \in C^0([0,1],\mathbb{C})$ et si $\int_0^1 f_n \to \int_0^1 f$, alors la convergence $f_n \to f$ est uniforme sur [0,1]. (Indication: on peut supposer f=0.)

Faux, contre-exemple: la suite dans l'exercice 3.

Si on impose la décroissance de la suite, i.e. $f_n(x) \geq f_{n+1}(x)$, alors la convergence de la suite des

intégrales est due au théorème de convergence dominée, et la convergence uniforme est due au théorème de Dini.

- e) Si $0 \le f_n \le 1$ et $f_{n+1} \le f_n$, alors f_n converge simplement. Vrai, par la convergence monotone.
- f) Si $0 \le f_n \le 1$ et $f_{n+1} \le f_n$, alors f_n converge uniformément. Faux, contre-exemple : $f_n(x) = e^{-nx}$.
- **5.** (3 pts) Considérons la série de fonctions $\sum_{n\geq 1} (-1)^{n-1} \frac{x^n}{\sqrt{n}}$.
 - a) Montrez que si $x \in]-1,1]$, la série converge. Critère d'Abel pour $\sum_{n>1} (-1)^{n-1} x^n \frac{1}{\sqrt{n}}$.
 - b) Montrez que la série converge uniformément sur [-a, a] si 0 < a < 1. En fait, elle converge uniformément.

Les trois questions suivantes sont étroitement reliées :

c) Écrivez le critère de Cauchy pour la convergence uniforme de la série (i.e. pour la convergence uniforme de la suite des sommes partielles de la série) sur]-1,0].

$$\forall \epsilon > 0, \exists N, \forall n \geq m \geq N, \forall x \in]-1, 0]$$
, on a

$$|f_n(x) - f_m(x)| \le \epsilon. \tag{*}$$

- d) Qu'obtenez vous lorsque $x \to (-1)^+$? (Ceci devrait correspondre au critère de Cauchy pour une série de nombres que vous préciserez.)
 - L'inégalité reste vraie pour x=-1. C'est le critère de Cauchy pour la série harmonique $\sum_{n\geq 1}\frac{1}{n}$.
- e) En déduisez que la convergence de la série n'est pas uniforme sur] 1,0].
 S'il y avait la convergence uniforme sur] 1,0], alors la série harmonique convergerait, ce qui est contradictoire.

Petite remarque: la convergence sur [0, 1] est pourtant uniforme (Théorème d'Abel radial).