

Varianta 032

Subjectul I

a)
$$2\sqrt{5}$$
. b) 1. c) a=-1, b=0. d) $\sqrt{15}$. e) a= $\frac{4\sqrt{2}}{3}$. f) $\frac{1}{6}$

Subjectul II

1. a) 2 elemente inversabile: $\hat{1}$, $\hat{3}$. b) soluțiile ecuației sunt $\hat{0}$, $\hat{2}$;

c)
$$\hat{1} \cdot \hat{2} \cdot + \hat{2} \cdot \hat{3} + \hat{3} \cdot \hat{1} = \hat{3}$$
. d) $2^4 = 16$. e) $\frac{8}{16} = \frac{1}{2}$.

2. a) x=-1 asimptotă verticală. b) $\lim_{x\to\infty} \frac{x^2+x+1}{x^2+x} = 1$.

c)
$$f'(x) = \frac{x^2 + 2x}{(x+1)^2}$$
. d) $f''(x) = \frac{2}{(x+1)^3} \Rightarrow f''(x) < 0$ pentru $x \in (-\infty, -1) \Rightarrow f$ concavă pe $(-\infty, -1)$.

e)
$$\lim_{x \to \infty} \frac{1}{x^2} \int_{0}^{x} \left(t + \frac{1}{t+1} \right) dt = \lim_{x \to \infty} \frac{1}{x^2} \left(\frac{x^2}{2} + \ln(x+1) \right) = \frac{1}{2} + \lim_{x \to \infty} \frac{\ln(x+1)}{x^2} = \frac{1}{2}$$
.

Subjectul III

a)
$$z=w=0 \Rightarrow f(0)=2f(0) \Rightarrow f(0)=0$$
. $z=w=1 \Rightarrow f(1\cdot 1)=f(1)f(1) \Rightarrow f(1)^2=f(1) \Rightarrow f(1)=0$ sau $f(1)=1$, dar $f(1)=0$ este contradicție cu f injectivă.

b)
$$f(z_1+z_2)=f(z_1)+f(z_2)$$
 adevărat. $P(n) \rightarrow P(n+1)$:

Presupunem $f(z_1+z_2+...+z_n)=$

$$=f(z_1)+f(z_2)+...+f(z_n)$$
 adevarata și demonstrăm că

$$f(z_1+z_2+...+z_n+z_{n+1})=f(z_1)+f(z_2)+...+f(z_n)+f(z_{n+1}).$$

Avem
$$f(z_1+z_2+...+z_n+z_{n+1})=f(z_1+z_2+...+z_n)+f(z_{n+1})=f(z_1)+f(z_2)+...+f(z_n)+f(z_{n+1})$$
.

c)
$$z_1=z_2=...z_n=1 \Rightarrow f(n)=nf(1)=n \Rightarrow f(n)=n$$
, oricare ar fi $n \in \mathbb{N}$.

Avem
$$f(z+(-z))=f(z)+f(-z) \Rightarrow 0=f(z)+f(-z) \Rightarrow f(-z)=-f(z) \ \forall z \in \mathbf{Z} \Rightarrow f(x)=x, \ \forall \ x \in \mathbf{Z}.$$

Avem1=f(1)=f
$$\left(\frac{n}{n}\right)$$
=f $\left(\frac{1}{n}+...+\frac{1}{n}\right)$ =f $\left(\frac{1}{n}\right)$ +...+f $\left(\frac{1}{n}\right)$ =nf $\left(\frac{1}{n}\right)$ \Rightarrow f $\left(\frac{1}{n}\right)$ = $\frac{1}{n}$,

$$f\left(\frac{m}{n}\right) = f\left(\frac{1}{n} + \dots + \frac{1}{n}\right) = f\left(\frac{1}{n}\right) + \dots + f\left(\frac{1}{n}\right) = mf\left(\frac{1}{n}\right) = \frac{m}{n}$$
, deci f(r)= r, oricare ar fi $r \in \mathbb{Q}$.

d) Fig
$$x > 0 \Rightarrow f(x) = f(\sqrt{x} \cdot \sqrt{x}) = (f(\sqrt{x}))^2 > 0$$
.

e) Fie
$$x_1 < x_2$$
, $x_2-x_1>0 \Rightarrow f(x_2-x_1)>f(0) \Rightarrow f(x_2)-f(x_1)>0 \Rightarrow f(x_1)< f(x_2)$.

f) Fie
$$x \in \mathbf{R} \setminus \mathbf{Q}$$
. Pentru orice numere rationale x_1, x_2 cu $x_1 < x < x_2$ avem $f(x_1) < f(x) < f(x_2)$ $\Leftrightarrow x_1 < f(x) < x_2$ si cum x_1, x_2 sunt arbitrare rezulta $f(x) = x$. In concluzie, tinand seama si de c), rezulta $f(x) = x, \forall x \in \mathbf{R}$

g)
$$f(i \cdot i) = f(i) \cdot f(i) \Rightarrow f(-1) = (f(i))^2 \Rightarrow f^2(i) = -1 \Rightarrow f(i) = -i \text{ sau } f(i) = i$$
.

h)
$$f(z) = f(a+bi) = f(a)+f(i)\cdot f(b) \Rightarrow f(a)+if(b) = a+bi = z, f(a)-if(b) = a-bi = z$$
.

Subjectul IV

a)
$$f_1(x) = \int_0^x f_0(t) dt = \int_0^x (t - \sin t) dt = \frac{t^2}{2} \Big|_0^x + \cos t \Big|_0^x = \cos x - \cos 0 + \frac{x^2}{2} = \cos x + \frac{x^2}{2} - 1, \forall x \in [0, \infty)$$

b)
$$f_1(x) = x - \sin x \Rightarrow f_1(x) = 1 - \cos x$$
; $\cos x \le 1$, $\forall x \in R \Rightarrow 1 - \cos x \ge 0 \Rightarrow f_1(x) \ge 0 \Rightarrow f$ convexages

c) pt n = 0 verificarea este facuta. Sa demonstram ca
$$P(n) \rightarrow P(n+1)$$
: $f_{2n+2}(x) = \int_{0}^{x} f_{2n+1}(t) dt$

$$f_{2n+1}(x) = \int_{0}^{x} f_{2n}(t) dt = \int_{0}^{x} \left[(-1)^{n} \left(-\sin t + \frac{t}{1!} - \frac{t^{3}}{3!} + \dots + (-1)^{n} \frac{t^{2n+1}}{(2n+1)!} \right) \right] dt =$$

$$= (-1)^{n} \left(\cos x - 1 + \frac{x^{2}}{2!} - \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n+2}}{(2n+2)!} \right) \Rightarrow$$

$$f_{2n+2}(x) = \int_{0}^{x} (-1)^{n} \left[\cos t - 1 + \frac{t^{2}}{2!} - \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2n+2}}{(2n+2)!} \right] dt =$$

$$= (-1)^{n+1} \left(-\sin x + \frac{x}{1!} - \frac{x^{3}}{3!} + \dots + (-1)^{n} \frac{x^{2n+3}}{(2n+3)!} \right)$$

d) prin inductie : pentru
$$n = 0$$
 este evident; $f_n(x) \ge 0 \Rightarrow \int_0^x f_n(t) dt \ge 0 \Rightarrow f_{n+1}(x) \ge 0$

e)
$$f_n(x) \ge 0 \Rightarrow f_{4n}(x) \ge 0 \Rightarrow (-1)^{2n} \left(-\sin x + \frac{x}{1!} - \frac{x^3}{3!} + ... + (-1)^{2n} \frac{x^{4n+1}}{(4n+1)!} \right) > 0 \Rightarrow$$

$$\frac{x}{1!} - \frac{x^3}{3!} + ... + (-1)^{2n} \frac{x^{4n+1}}{(4n+1)!} > \sin x, f_{2(2n-1)}(x) \ge 0 \Rightarrow \text{membrul stang al inegalitatii}$$

f) din e)
$$\Rightarrow$$
 0 < sin x - $\frac{x}{1!}$ + $\frac{x^3}{3!}$ + ... - $\frac{x^{4n-1}}{(4n-1)!}$ < $\frac{x^{4n+1}}{(4n+1)!}$ $\xrightarrow{n \to \infty}$ 0

g) presupunem
$$\sin 1 \in \mathbf{Q}$$
 si deci exista $p \in \mathbf{Z}, q \in \mathbf{N}^*$ asfel incat $\sin 1 = \frac{p}{q}$. Din e) \Rightarrow

$$1 - \frac{1}{3!} + \dots - \frac{1}{(4n-1)!} < \sin 1 < 1 - \frac{1}{3!} + \dots - \frac{1}{(4n+1)!}, \forall n \in \mathbb{N}$$

In particular
$$1 - \frac{1}{3!} + \dots - \frac{1}{(4q-1)!} < \frac{p}{q} < 1 - \frac{1}{3!} + \dots - \frac{1}{(4q+1)!} \Rightarrow$$

$$-\frac{1}{(4q-1)!} < \frac{p}{q} - 1 + \frac{1}{3!} + \dots - \frac{1}{(4q-3)!} < 0 \Rightarrow -1 < (4q-1)! \left(\frac{p}{q} - 1 + \frac{1}{3!} + \dots - \frac{1}{(4q-3)!} \right) < 0$$

Cum
$$(4q-1)!$$
 $\left(\frac{p}{q}-1+\frac{1}{3!}+...-\frac{1}{(4q-3)!}\right) \in \mathbb{Z}$ obtinem contradictie.