Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Emergence in Organic Computing systems

Emergence in Organic Computing / intelligent systems

- Why do we have to consider emergence in OC systems?
- Do we want do explicitly design emergent effects?
 - → Hardly possible...
- Emergence is not something we want to design, but something that will appear automatically!
 - Emergence is the result of interactions between a set of self-organised entities.
 - OC systems consist of a set of self-organised interacting entities.
 - → We have to be aware of emergence: positive and negative!
 - In technical systems: How to be aware of something?
 - → We need to measure it!

Structural Emergence

- Assumption: a number of similar individuals interacting
- (Structural) emergence shows as:
 - patterns in time and/or space
 - patterns (order) at the system level.
 - patterns have properties not existent in the individuals
- How can we measure emergence?
 - Patterns ⇔ order
 - Entropy is a measure of order! ⇒ How is emergence related to entropy?
 - Note: Order per se says nothing about self-organisation.

Quantification of emergence

Goal: Assign a high emergence value to a system, which is perceived as emergent!

Approach:

- Basis: non-formal definitions
- Emergence is always associated with patterns (symmetry breaks).
- This corresponds to structural emergence.
- Patterns represent order.
- Order can be measured in terms of entropy (inversely proportional).
- Therefore, we must 1) define entropy and 2) relate it to emergence!

Where is more order? Left or right?

Right: higher entropy

• Left: more structure

Order is subjective!

- The perception of order depends on the view of the observer.
- The purpose and the sensory equipment of the observer determine the view.
- A system can be rated as orderly or disorderly dependent on the utility.

Views and order

- "Order" or "disorder" depends on
 - the purpose and
 - the view (aspect).
- A view is determined by the selection of certain attributes (or a group of attributes) of an object.
- Example:

View	x position	colour
y 1	higher order	same order
	lower order	same order

The view is influenced by the pre-processing of sensory data.

Order and entropy

- Entropy is a thermodynamic state variable.
 - High entropy ⇔ high probability.
 - Clausius: Entropy of a closed system never decreases.
- Entropy: measure of (dis)order (high entropy = low order). $S = k_{\rm B} \cdot \ln(\Omega)$
- Statistical definition of entropy (S):
 - $k_B = 1.38 * 10^{23} \frac{J}{K}$ (the *Boltzmann* constant, "average kinetic energy of an ideal gas particle at a temperature of 1 Kelvin")
 - Ω = probability of the current macroscopic state (= the current number of possible states of the particles in the system / total number of possible states)

- Right: higher Ω , higher entropy
- Left: lower Ω , lower entropy

Shannon's entropy

Definition from information theory (Shannon):

- Entropy is a measure of information.
- Message source M, alphabet Z:

$$EntropyH(M) = -K \cdot \sum_{j=1}^{|Z|} p_j \cdot ld p_j$$

- p_j = probability for occurrence
 of symbol z_i ∈ Z in message source M
- Entropy H is a measure for random information in a system (or a message source M).
- K is a constant (can be neglected).
- High information content ⇔ low predictability
- Low information content ⇔ high predictability

Shannon's entropy (2)

Example:

- Stream of 2 symbols (0 and 1)
- with probabilities p and (1 p)
- H = p Id p (1 p) Id (1 p)

Shannon's entropy (3)

- $H = H_{max}$ is desirable, if a channel must transport the maximal "newness" value per (physical) step.
- In case of H < H_{max}
 - The channel transports useless information (redundancy $R = H_{max} H$).
 - Known information burdens the channel but does not increase the knowledge of the receiver.
- A Shannon channel is "good", if it transports the maximum amount of information:

$$\rightarrow R = 0!$$

Measuring entropy in OC systems

Approach: Use the statistical definition of entropy!

- 1. Select a (discrete, enumerable) attribute A of the system with possible values a_i.
- 2. Observe all system elements e_i and their respective value of A (one a_i for each e_i).
- 3. Transform into a probability distribution over the attribute values a_i (e.g. relative frequency).
- 4. Determine $H_A = -\sum_j p_j ldp_j$

System entropy

- Each attribute X has some entropy H_X.
- System entropy: $H_S = \sum_X H_X$
- Characterisation of a system by:
 - a) System entropy (however: low expressiveness)
 - b) Vector of attribute entropies (fingerprint): (HA, HB, HC...)

Example for the quantification of emergence

1. Chosen attribute: discrete value of x coordinate { 0, 1, 2, 3 }

2. and 3. Count and calculate relative frequency.

Position:	0	1	2	3
Frequency:	3	2	6	5
р	3/16	2/16	6/16	5/16

4. Calculate entropy

$$H_x = -\left(\frac{3}{16}ld\frac{3}{16} + \frac{2}{16}ld\frac{2}{16} + \frac{6}{16}ld\frac{6}{16} + \frac{5}{16}ld\frac{5}{16}\right)$$

= 1,72bit / element

Emergence definition (first try)

- Definition: Emergence (first try)
 - Emergence is a decrease of entropy over time (from a start state to an end state):

$$M = \Delta H = H_{Start} - H_{end}$$

- \Rightarrow Emergence ($\Delta H > 0$) if order increases $H_{End} < H_{Start}$
- The process that leads to this must be self-organised (not e.g. human-induced).
- Problem: The observation of emergent phenomena frequently involves a change of abstraction level.

Emergence definition

- Change of view to a higher abstraction level
 ⇒ positive ∆H (thus "higher order") but not due to an emergent process!
- Thus: $\Delta H = \Delta H_{view} + \Delta H_{emergence}$
- Definition: Emergence
 - Emergence is a decrease of entropy over time (from a start state to an end state):

$$M = \Delta H_{emergence} = \Delta H - \Delta H_{view} = H_{start} - H_{end} - \Delta H_{view}$$

The process that causes this must be self-organised (not e.g. human-induced).

Example: Abstraction level change

- Observation 1 of x coordinate: 32-bit floating point
- Observation 2 of x coordinate: quantization to 256 values (8 bit integer)
- Quantization results in entropy difference:

$$-\Delta H = 24 \frac{bit}{element}$$

$$-\Delta H = \Delta H_{view}$$

-
$$Emergence M = \Delta H_{emergence} = 0$$

Quantification of abstraction change

Consider a system S at time t = 0

attribute value	frequency
0	1
0,5	2
1	3
1,5	2
2	2

Quantification of abstraction change (2)

Something happened from t = 0 to t = 1

A	0 - 14 -		
Assume:	Seit-o	rdanised	process!

attribute value	frequency
0	2
0,5	2
1	2
1,5	1
2	3

Quantification of abstraction change (3)

Numerical precision changed from double to int

attribute value	frequency
0	4
0,5	
1	3
1,5	
2	3

Different state (self-organisation) AND abstraction level

$$H_{x}^{1} = -\left(\frac{4}{10} * ld \frac{4}{10} + \frac{3}{10} * ld \frac{3}{10} + \frac{3}{10} * ld \frac{3}{10}\right)$$

 $H_x^1 = 1,57095059445$

Quantification of abstraction change (4)

What happened? Did order increase?

Let's calculate the emergence *M*:

$$M = H_{\chi}^0 - H_{\chi}^1$$

$$M = 2,24643934467 - 1,57095059445$$

$$M = 0,67548875022$$

Result: Increase in terms of order (decrease of entropy)!

But: Subtract influence of ΔH_{view} (i.e. abstraction change)!

Quantification of abstraction change (5)

First step: adjust the abstraction at time t = 0:

attribute value	frequency
0	3
0,5	
1	5
1,5	
2	2

Now, ΔH_{view} calculates:

$$\bullet \quad \Delta H_{view} = H_x^0 - H_x^{\prime 0}$$

•
$$\Delta H_{view} = 2,24643934467 - 1,48547529723$$

•
$$\Delta H_{view} = 0.76096404744$$

• Thus, we have an *increase* in terms of *order*, caused by the abstraction level change (less uniformly distributed)!

Quantification of ΔH_{view} (2)

• If we compare the states at t = 0 and t = 1 on the same level of abstraction, we see a *decrease of order*, due to a *higher degree* of *uniform distribution*!

Quantification of ΔH_{view} (3)

Final step: subtract ΔH_{view} from the emergence M calculated before:

$$\bullet \quad M = H_x^0 - H_x^1 - \Delta H_{view}$$

- M = 2,24643934467 1,57095059445 0,76096404744
- M = -0.08547529722
- And. Ta-da!
- Now, we get a negative emergence value M which indicates an *increase* in terms of *entropy* from time t=0 to t=1, given the change in the level of abstraction.

How to utilise emergence information?

- Emergence can be calculated for a given system for different attributes.
- It can be used as an early indicator of (emergent) ordering processes.
- System emergence (the total of all attribute emergence values) is not selective enough.
- More interesting: Emergence fingerprint for all relevant attributes.
- Open questions:
 - Which attributes are relevant?
 - What is positive (wanted) and negative (unwanted) emergence?
 - How can we identify results of self-organised processes?

Emergence fingerprint

- Emergence fingerprint = visualisation of all (relevant) attribute emergence values of a system.
 - Visualisation as *n*-dimensional Kiviat graph
- Example
 - x-position, y-position, colour, state, direction, intention

Example: cannibalistic behaviour of chicken

Problem

- TiHo Hannover
- Chicken stock in large farms
- Thousands of chicken in one shed
- Slightly injured chicken
 - Other chicken start to attack them
 - ... until they die
 - Bad for chicken (→ dead) and owner (→ cost)
- What to do?
 - Noise disturbs chicken, they let up from injured chicken.
 - But: Noise is bad (stress level) ⇒ use it sparingly

Yellow: food source

White: chicken with heading

Red: injured chicken

Emergence fingerprint (2)

Pattern 1: $M_x = 0.181$, $M_y = 0.177$, $M_{direction} = 0.091$

Emergence fingerprint (3)

Pattern 2: $M_x = 0.226$, $M_y = 0.237$, $M_{direction} = 0.046$

Emergence fingerprint (4)

Pattern 3: $M_x = 0.359$, $M_y = 0.328$, $M_{direction} = 0.041$

Emergence fingerprint (5)

Emergence fingerprint (6)

$$v = \frac{x}{\Delta t}$$
$$y = v \times \tau$$

Δt Observation period τ Prediction period

Cluster formation

Summary: quantification of emergence

Process

- 1. Quantify entropy for each attribute.
- 2. Calculate emergence (M) for each attribute: $M = \Delta H = H_{Start} H_{end} \Delta H_{view}$
- 3. Δ H_{view} is the (possible) change of abstraction when observing H_{Start} and H_{end}, e.g. converting *float* to *int* values.
- 4. a) Determine the system emergence as sum over all attributes.
 - b) Illustrate as "fingerprint".
- 5. Is this due to self-organisation?

Agenda

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

Until now:

- Regarded emergence as the difference between an entropy at the beginning of some process and at the end.
- Discrete entropy difference (DED):

$$DED[x] = H_{start}[x] - H_{end}[x]$$

- A process is called emergent if DED[x] > 0 and the process is selforganised.
- What if we do not know if self-organisation is in place?
- Entropy values are computed for different attributes which leads to a so-called emergence fingerprint – and this fingerprint serves as basis for certain decisions, e.g., concerning interactions with the system S.

Approach:

- We want to measure the amount of information we gain when we know that a categorical variable x has value i'.
- In a probabilistic framework: probability p(x = i').
- Another unrelated, categorical attribute y and a value j': p(y = j').
- This information measure has to be additive: If we knew the values of both attributes, the two information values are added.
- Hence: use $-\ln p(x=i')$ and $-\ln p(y=j')$ (which are always non-negative)
- If we observe both values, the amount of information for this observation of statistically independent variables gets:

$$-\ln(p(x = i', y = j')) = -\ln p(x = i') - \ln p(y = j')$$

From probabilities to entropy

- We are not interested in specific values of an attribute.
- Instead: We are interested in expected values.
- Hence: determine the expectation of the information with respect to the corresponding distribution.
- This is exactly the entropy, i.e., for a variable x with a corresponding distribution p(x) we get:

$$H[x] = -\sum_{x} p(x) \ln p(x)$$

- Then: sum up over all possible values of x again.
- Entropy describes the expected amount of information which we gain when we observe x.

Limitations of the previous approach

Measure may be unsatisfying in some applications due to:

- 1. There are many attributes with continuous values in practical applications.
- Many applications are multi-variate, i.e., based on several (categorical and continuous) attributes.
- The former problem (1) is solved by categorisation of continuous attributes.
 - → Could be problematic as entropy measurements depend on size and position of the chosen "bins".
- The latter (2) is solved by analysing the fingerprints.
 - → If this analysis is conducted automatically, the different entropy values must be combined at some time.

Approach:

- Multivariate entropy measure for continuous variables.
- Combine all attributes into a vector x.
 Then: continuous entropy (also known as differential entropy) is:

$$H[x] = -\int p(x) \ln p(x) dx$$

- where p is the joint density of x.
- p combines all attributes, i.e. several continuous random variables.
- For simplicity: assume that we only have continuous variables.
 →Hybrid (categorical/continuous) approaches are possible.
- Please note: a continuous entropy (in contrast to a categorical one) may have negative values.

Continuous vs. discrete entropy

$$H[x] = -\int p(x) \ln p(x) dx$$

$$H[x] = -\sum_{x}^{|Z_x|} p(x) \ln p(x)$$

Density

- Approach relies on estimating the density of a continuous variable.
- Neglect (by now) the functional form of the density function (e.g. to assume that it is Gaussian).
- Then: a non-parametric density estimation approach can be used.
- Assume: given a set X of N observations of x (i.e., samples): $x_0, ..., x_{N-1}$.
- Goal: estimate p(x') for arbitrary x' (not necessarily $x \in X$).
- Idea: count all samples in a certain environment around x' and divide this number by the size of the environment.

Density (2)

Alternative (smoother):

 Use Parzen window approach, i.e. a kernel density estimator based on a Gaussian kernel:

$$p(x') \approx \frac{1}{N} \sum_{x_n \in X} \frac{1}{(2\pi h^2)^{\frac{D}{2}}} \exp(-\frac{1}{2} \frac{||x' - x_n||^2}{h^2})$$

- where D is the dimensionality of x and h is a user-defined parameter.
- h depends on the data set X there are a number of heuristics to estimate h (e.g. h is set to the average distance of the ten nearest neighbours from each sample, averaged over the entire data set).

Evaluation of the integral

- Continuous entropy model contains integral.
 - → How to evaluate this?
- Remember: data set X contains samples x_n distributed according to p (i.e., $x_n \sim p$).
- Hence: Entropy can be approximated

$$\widehat{H}[x] \approx -\frac{1}{N} \sum_{x_n \in X} \ln p(x_n)$$

- where the $p(x_n)$ are estimated using the Parzen approach.
- Note: this discrete approximation of the entropy does not sum up over discrete points in the input space situated on a regular grid.
- Hence: take their non-uniform distribution into account by a correcting factor $\frac{1}{P(x_n)}$.
 - → Corresponds to the concept of importance sampling.

From entropy to emergence

- The static approach defines emergence using a difference of entropy values.
 → Emergence is considered as a change of order within a system.
- Here, we define emergence as an unexpected or unpredictable change of the distribution underlying the observed samples.
- Then: use divergence measure to compare two density functions,
 i.e. p(x) at t₀ and q(x) at t₁.
- Possible measure is Kullback-Leibler (KL) divergence KL(p||q).
- Also known as relative entropy.
- Compares two probability density functions.

$$KL(p||q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx$$

Limitations of Kulback-Leibler

- KL divergence is not a true metric since it is not symmetric.
- However:
 - $KL(p||q) \ge 0$ and
 - KL(p||q) = 0 only if q(x) = p(x).
- We measure the expected amount of information contained in a new distribution with respect to the original distribution of samples and not with respect to the new distribution:

$$KL(p||q) = -\int p(x) \ln q(x) \ dx + \int p(x) \ln p(x) \ dx$$

There are concepts for symmetric variants (neglected here).

Application of the measures

Measures are applicable to emergence quantification:

- Abstraction from the technical system.
- Consider only distributions of samples in the attribute space.
- Assumption: observation of a number of processes "generating" samples.
- Goal: comparison of the distributions underlying the observed samples.
- Concept: estimation of the distributions at two different points in time, an earlier one (p) and a later one (q).
- Instead of assuming that we get a set of observations at each (discrete)
 point in time: one single observation at each point in time (these points are
 considered as equidistant in time).

Application of the measures (2)

Sliding window:

- Estimate p and q in sliding data windows.
- Windows have fixed length, must be:
 - long enough to estimate p and q with sufficient reliability.
 - short enough to allow for the assumption that the observed processes are nearly timeinvariant in these windows.

Distinguish:

- First (earlier) time interval is fixed at a certain point in time, whereas the second interval moves along the time axis with the current point in time.
 → Online application.
- Both windows move along the time axis in a fixed temporal distance.
 → Distance d is important parameter of the measurement technique.

Application of the measures (3)

- Estimation of densities *p* and *q*: non-parametric or model-based approaches.
 - → Depending on application.
- Hybrid approaches are possible as well.
- If both densities are estimated in a non-parametric approach:
 - \rightarrow Either using the sampling points in the first set of observations $(x_n \sim p)$ or those given in the second $(x_n \sim q)$.
- Suggestion: Evaluate both intervals and average measures.
 - → Get more robust estimates.
- Comparison leads to 'degree' of emergence. In addition:
 - Detection of processes that disappear (i.e., components become obsolete).
 - Detection of newly emerging processes (i.e., new components are required).
 - → Novelty detection.
 - Detection of components that change their characteristics (i.e., components change their parameters such as centre or mixing coefficients).
 - → Concept drift.

Emergence detection

- Based on probabilistic (or information-theoretic) considerations.
- May be used to determine 'degree' of emergence.
- Contrast to previous approach:
 - Applicable in cases with continuous attributes,
 - Applicable if several attributes have to be combined,
 - Applicable if application allows for model-based density estimates.
- Measures can assess emergence gradually.
- Can further be used to detect novel situations or phenomena such as concept drift.
- In organic systems:
 - Monitor the overall distribution by combining measures for different components.
 - Supervise components individually.

- A first example: water temples in Bali
- A second example: ants
- Emergence
- Term definition
- Quantification of emergence
- A refined approach to emergence quantification
- Conclusion and further readings

From self-organised order to emergence

- Nature as inspiration: Complexity is handled by self-organised order.
- Order is observer- and goal-dependent!
- Self-organised order consists of purposeful self-organisation processes and additional emergent phenomena.
- Same ingredients in organic systems → same processes expected!
- Consequence: We have to measure and master emergence.
- Approach:
 - Observe behaviour of system
 - Measure order (i.e. based on entropy)
 - Compare measures at different points.

Conclusion (2)

This chapter:

- Demonstrated how self-organised order appears in natural, technical and social systems.
- Highlighted the control of complexity by self-organisation and emergence.
- Defined the term 'emergence' and its relation to self-organisation.
- Explained how emergence is quantification for systems with discrete attributes.
- Refined this quantification concept to be applicable to continuous attributes and their combinations.

By now, students should be able to:

- Explain the relation between selforganisation and emergence.
- Briefly summarise the term emergence.
- Give examples for emergent phenomena, e.g. in nature.
- Quantify emergence in technical systems based on discrete attributes.
- Outline how emergence detection is done for systems with continuous attributes.

Further readings

- Steven Johnson: "Emergence The connected lives of ants, brains, cities, and software", Scribner publishers, New York, 2001.
- Nelson Fernandez, Carlos Maldonado, Carlos Gershenson: "Information Measures of Complexity, Emergence, Self-organisation, Homeostasis, and Autopoiesis", online available at: http://arxiv.org/pdf/1304.1842v1.
- Moez Mnif and Christian Müller-Schloer: "Quantitative Emergence", in: "Organic Computing A Paradigm Shift for Complex Systems, pages 39 52, 2011, Birkhäuser Verlag, Basel, CH. DOI: 10.1007/978-3-0348-0130-0_2
- Dominik Fisch, Martin Jänicke, Bernhard Sick and Christian Müller-Schloer, "Quantitative Emergence - A Refined Approach Based on Divergence Measures," 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Budapest, 2010, pp. 94-103. DOI: 10.1109/SASO.2010.31
- Deborah Johnson: "Ants At Work: How An Insect Society Is Organised".
 Free Press 2011, New York (USA) and London (UK), ISBN: 9781451665703.

Questions ...?