EE 241 MIDTERM 1 FAII 2021

Name:

Number:

1) (10 p)Implement the boolean equation

$$\overline{((AB+CDE)F+G)}$$

using complementary CMOS.

2)(20) Given the curcuit below

- a) Drive the Sop
- b) implement the sop using complementary CMOS
- 3) Given the truth table below:

Χ	Y	B _{IN}	D	B_{OUT}	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

a)(5) Drive sop for Bout (use k-maps)

1 of 3

- c)(5)implement Bout in 8-to-1 mux
- d)(10)implement Bout in 4-to-1 mux. Hint : use x and y as select signals and attach each input to the appropriate choice of 0,1 or Bin
- 4)(25) You are to design a system that synchronizes a button press to a clock signal: when you press the button your output should be high only for one cycle. A sample timing diagram is shown below where bi is system input and bo is system output.

- a) (5) Draw the state diagram.
- b) (5) Write down the truth table for fsm
- c) (5) Calculate output and next state logic.
- d) (10)Implement your FSM in verilog using behavioral blocks.
- 5)(25) Table 1: Truth Table.

Table 1: Truth Table.

sw[2]	sw[1]	sw[0]	led[2]	led[1]	led[0]
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	0	1

2 of 3 13.11.2021 14:11

- a)(5) For the truth table of Table 1. Use Karnaugh Map to simplify the Output LED.
- b) (5)Draw logic gates circuit for the simplified output LED from your answer in (a).
- c) (5) Write a Verilog design source module of the simplified output LED using dataflow modelling.
- d) (10)Write a Testbench module that simulates all combinations of the output LED. Good Luck

3 of 3