MICROINSTRUCCIONES.

La unidad de control es el "cerebro" del microprocesador. Esta unidad realiza la decodificación de los códigos de operación y de los códigos de función para poder identificar la instrucción que se va a ejecutar y su tipo (Tipo I, Tipo R y Tipo J). Una vez identificada la instrucción, la unidad de control activa o no cada una de las señales de control de todo el microprocesador. De esta manera se forma un código que emite la unidad de control al que llamamos microinstrucción. Por lo tanto, podemos definir a las microinstrucciones como los códigos que emite la unidad de control para ejecutar cada instrucción del ensamblador del microprocesador.

Para entender como se realiza la ejecución de las instrucciones a través del procesador y como se generan las microinstrucciones, analicemos los ejemplos siguientes.

Ejemplo 1. Programa que genera un contador. Observe el código mostrado en la tabla 1.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #1	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #7	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
CICLO: ADD R1, R1, R0	0	0	0	0	0	1	0	0	1	1	0	0	0	0011	0	0	1
SWI R1, 5	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 1 Microinstrucciones del programa ejemplo 1.

Durante la ejecución de cada instrucción TODAS las señales de control de cada bloque del microprocesador se encuentran por defecto con cero. Lo primero que se realiza es tomar una instrucción de la memoria de programa, eso quiere decir, que se lee la localidad 0 de la memoria y se saca el primer dato de 25 bits guardado ahí. Después la unidad de control decodifica la instrucción para saber que tipo de instrucción acaba de leer de la memoria de programa. Posteriormente la unidad de control activa las correspondientes señales de control del procesador para ejecutar la instrucción.

La ejecución del programa comienza después de un reset o clear. Esto provoca que el Stack Pointer (SP) de la pila comience en cero al igual que todos contadores de programa y registros del procesador. Con el SP en cero el contador que maneja las direcciones de la memoria de programa es PC0. En este ejemplo en particular la primera instrucción a ejecutar es LI R0, #1. Esta instrucción sale de la memoria de programa y el código de operación colocado en los bits 24...20 se va directamente a la unidad de control. El código del registro R0 colocado en los bits 19...16 se coloca en el bus de entrada WRITE REGISTER del archivo de registros. El número 1 colocado en los bits 15...0 se coloca en el bus de entrada WRITE DATA del archivo de registros. La instrucción se ejecuta cuando la unidad de control activa la señal WR del archivo de registros, esto provoca que en el siguiente flanco de subida de la señal de reloj se cargue el número 1 en el registro R0 y que el valor del PC0 se incremente en uno. La siguiente instrucción LI R1, #7 se ejecuta de la misma

manera.

Después de la ejecución de las instrucciones de carga, la siguiente instrucción a ejecutar se encuentra en la dirección 2 de memoria. Esta instrucción es ADD R1, R1, R0. Esta instrucción sale de la memoria de programa y el código de operación colocado en los bits 24...20 se va directamente a la unidad de control. Como se trata de una instrucción tipo R el código de función colocado en los bits 3...0 también se va a la unidad de control. El código del registro R1 colocado en los bits 19...16 se coloca en el bus de entrada WRITE REGISTER del archivo de registros. El código del registro R1 colocado en los bits 15...12 se coloca en el bus de entrada READ REGISTER 1 del archivo de registros. Esto provoca que el número 7 almacenado en R1 pase directamente a la ALU. El código del registro R0 colocado en los bits 11...8 se coloca en el bus de entrada READ REGISTER 2 del archivo de registros. Esto provoca que el número 1 almacenado en R0 pase directamente a la ALU. La instrucción se ejecuta cuando la unidad de control coloca el código "0011" en el bus ALUOP, activa la señal WR del archivo de registros, la señal SR, la señal SWD y la señal LF del registro de banderas (La señal LF se activa con todas las instrucciones que modifican las banderas de la ALU). Esto provoca que se realice la suma de los operandos de la ALU y que el resultado de la suma se coloque en el bus de entrada WRITE REGISTER del archivo de registros. Entonces, el resultado de la suma se almacena en el registro R1 en el siguiente flanco de subida de la señal de reloj y que el valor del PC0 se incremente a tres.

Posteriormente, la siguiente instrucción a ejecutar es SWI R1, 5. Esta instrucción sale de la memoria de programa y el código de operación colocado en los bits 24...20 se va directamente a la unidad de control. El código del registro R1 colocado en los bits 19...16 se coloca en el bus de entrada READ REGISTER 2 del archivo de registros. Esto provoca que el número 8 almacenado en R1 se coloque en el bus Di15...Di0 de la memoria de datos. El número 5 colocado en los bits 15...0 se coloca en el bus de direcciones A15...A0 de la memoria de datos. La instrucción se ejecuta cuando la unidad de control activa la señal WD de la memoria de datos y la señal SDMD. Esto provoca que se escriba el número 8 en la dirección de memoria 5 en el siguiente flanco de subida de la señal de reloj y que el valor del PC0 se incremente a cuatro.

Finalmente, la última instrucción a ejecutar es B CICLO. Esta instrucción sale de la memoria de programa y el código de operación colocado en los bits 24...20 se va directamente a la unidad de control. El código colocado en los bits 19...16 no se utiliza en esta instrucción. El número 5 colocado en los bits 15...0 se coloca en el bus de entrada D15...D0 de la pila. La instrucción se ejecuta cuando la unidad de control activa la señal WPC de la pila. Esto provoca que se escriba la dirección 2 en PC0 y se de el salto a la etiqueta CICLO.

Ejemplo 2. Programa que obtiene los primeros 12 términos de la serie de Fibonacci. Observe el código mostrado en la tabla 2.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #1	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R2, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R3, #10	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
SERIE: ADD R4, R0, R1	0	0	0	0	0	1	0	0	1	1	0	0	0	0011	0	0	1
SWI R4, 72	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
ADDI R0, R1,#0	0	0	0	0	0	1	0	0	1	1	0	0	1	0011	0	0	1
ADDI R1, R4,#0	0	0	0	0	0	1	0	0	1	1	0	0	1	0011	0	0	1
ADDI R2, R2,#1	0	0	0	0	0	1	0	0	1	1	0	0	1	0011	0	0	1
BNEI R2, R3, SERIE (semiciclo positivo)	0	0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)		0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
CICLO: NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 2 Microinstrucciones del programa ejemplo 2.

Ejemplo 3. Programa que genera un contador usando una función. Observe el código mostrado en la tabla 3.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #1	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #7	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
CICLO: CALL SUMA	1	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
SWI R1, 5	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
SUMA: ADD R1, R1, R0	0	0	0	0	0	1	0	0	1	1	0	0	0	0011	0	0	1
RET	0	1	0	0	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 3 Microinstrucciones del programa ejemplo 3.

Ejemplo 4. Programa que obtiene el mayor de 3 números diferentes. Observe el código mostrado en la tabla 4.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #23	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #-45	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #165	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
BGTI R0, R1, CR0R2 (semiciclo positivo)	0	0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)	0	0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
BLTI R1, R2, R2MAY (semiciclo positivo)	0	0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)	0	0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
SWI R1, 0X20	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
CR0R2: BLTI R0, R2, R2MAY (semiciclo positivo)	0	0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)	0	0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
SWI R0, 0X20	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
R2MAY: SWI R2, 0X20	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
CICLO: NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
B CICLO	0	0	1	0 Toble	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 4 Microinstrucciones del programa ejemplo 4.

Ejemplo 6. Programa que calcula el promedio de un arreglo de 4 elementos. Observe el código mostrado en la tabla 6.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #23	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
SWI R0, 10	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
LI R0, #130	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
SWI R0, 11	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
LI R0, #70	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
SWI R0, 12	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
LI R0, #260	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
SWI R0, 13	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
LI R0, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R1, #10	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R2, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R3, #4	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
PROM: LW R4, R1, R2	0	0	0	0	0	1	0	0	1	0	0	0	0	0011	0	0	0
ADD R0, R0, R4	0	0	0	0	0	1	0	0	1	1	0	0	0	0011	0	0	1
ADDI R2, R2, #1	0	0	0	0	0	1	0	0	1	1	0	0	1	0011	0	0	1
BNEI R2, R3, PROM (semiciclo positivo)	0	0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)	0	0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
SRL R0, R0, #2	0	0	0	0	0	0	1	0	0	0	0	0	0	0000	0	0	0
SWI R0, 20	0	0	0	0	1	0	0	0	0	0	0	0	0	0000	1	1	0
CICLO: NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 5 Microinstrucciones del programa ejemplo 6.

Ejemplo 5. Programa que inicializa un arreglo. Observe el código mostrado en la tabla 5.

Instrucciones	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LI R0, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R2, #0	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
LI R3, #8	0	0	0	0	0	0	0	0	1	0	0	0	0	0000	0	0	0
INI: SW R0, 10(R2)	0	0	0	0	1	0	0	0	0	0	1	0	1	0000	0	1	0
ADDI R2, R2, #1	0	0	0	0	0	1	0	0	1	1	0	0	1	0011	0	0	1
BNEI R2, R3, INI (semiciclo positivo)		0	0	0	1	0	0	0	0	1	0	0	0	0111	0	0	0
Si la condición se cumple (semiciclo negativo)	0	0	1	1	0	0	0	0	0	0	0	1	1	0011	0	0	1
CICLO: NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0000	0	0	0
B CICLO	0	0	1	0	0	0	0	0	0	0	0	0	0	0000	0	0	0

Tabla 6 Microinstrucciones del programa ejemplo 5.

Una vez analizado los ejemplos anteriores, las microinstrucciones de cada instrucción las podemos obtener y anotar en la tabla 7. Hay que señalar que la escritura de esta tabla es otra forma de representar las microinstrucciones de cada instrucción del ensamblador.

		INSTRUCC	IONE	S DE	CARG	AYAL	MACE	IMAI	ENTO					
Instr.	Ejemplo	Significado	Có	digo d	e oper	ación			Microinstrucciones					
LI	LI Rd, #Slit16	Rd = Slit16	01	Rd	Slit16	6			WR					
LWI	LWI Rd, lit16	Rd = Mem[lit16]	02	Rd	lit16				WR SDMD SWD					
LW	LW Rd, lit12(Rt)	Rd = Mem[Rt+lit12]	23	Rd	Rt	lit12			SWD SEXT SOP2 WR ALUOP=0011					
SWI	SWI Rd, lit16	Mem[lit16] = Rd	03	Rd	lit16				SR2 SDMD WD					
SW	SW Rd, lit12(Rt)	Mem[Rt+lit12] = Rd	04	Rd	Rt	lit12			SR2 SEXT SOP2 WD ALUOP=0011					
		11	NSTR	UCCI	ONES	ARITM	ÉTICAS	6						
ADD	ADD Rd,Rt,Rs	Rd = Rt+Rs	00	Rd	Rt	Rs	S/U	00	SWD WR LF SR ALUOP=0011					
SUB	SUB Rd,Rt,Rs	Rd = Rt-Rs	00	Rd	Rt	Rs	S/U	01	SWD WR LF SR ALUOP=0111					
ADDI	ADDI Rd,Rt,#Slit12	Rd = Rt+Slit12	05	Rd	Rt	Slit12			SWD WR LF SR ALUOP=0011 SOP2					
SUBI	SUBI Rd,Rt,#Slit12	Rd = Rt-Slit12	06	Rd	Rt	Slit12			SWD WR LF SR ALUOP=0111 SOP2					
	INSTRUCCIONES LÓGICAS													
AND	AND Rd,Rt,R	Rd=Rt&Rs	00	Rd	Rt	Rs	S/U	02	SWD WR LF SR ALUOP=0000					
OR	OR Rd,Rt,Rs	Rd=Rt Rs	00	Rd	Rt	Rs	S/U	03	SWD WR LF SR ALUOP=0001					
XOR	XOR Rd,Rt,Rs	Rd=Rt ^ Rs	00	Rd	Rt	Rs	S/U	04	SWD WR LF SR ALUOP=0010					
NAND	NAND Rd,Rt,Rs	Rd=~(Rt & Rs)	00	Rd	Rt	Rs	S/U	05	SWD WR LF SR ALUOP=1101					
NOR	NOR Rd,Rt,Rs	Rd=~(Rt Rs)	00	Rd	Rt	Rs	S/U	06	SWD WR LF SR ALUOP=1100					
XNOR	NOR Rd,Rt,Rs	Rd=~(Rt ^ Rs)	00	Rd	Rt	Rs	S/U	07	SWD WR LF SR ALUOP=1010					
NOT	NOT Rd, Rs	Rd = ~Rs	00	Rd	Rs	Rs	S/U	80	SWD WR LF SR ALUOP=1101					
ANDI	ANDI Rd,Rt,#lit12	Rd=Rt & lit12	07	Rd	Rt	lit12			SWD WR LF SR ALUOP=0000 SOP2 SEXT					
ORI	ORI Rd,Rt,#lit12	Rd=Rt lit12	08	Rd	Rt	lit12			SWD WR LF SR ALUOP=0001 SOP2 SEXT					
XORI	XORI Rd,Rt,#lit12	Rd=Rt ^ lit12	09	Rd	Rt	lit12			SWD WR LF SR ALUOP=0010 SOP2 SEXT					

NANDI	NANDI Rd,Rt,#lit12	Rd=~(Rt & lit12)	10	Rd	Rt	lit12			SWD WR LF SR ALUOP=1101 SOP2 SEXT	
NORI	NORI Rd,Rt,#lit12	Rd=~(Rt lit12)	11	Rd	Rt	lit12			SWD WR LF SR ALUOP=1100 SOP2 SEXT	
XNORI	XNORI Rd,Rt,#lit12	Rd=~(Rt ^ lit12)	12	Rd	Rt	lit12			SWD WR LF SR ALUOP=1010 SOP2 SEXT	
		INST	RU	CCION	IES DI	E CORI	RIMIE	NTO		
SLL	SLL Rd,Rt,#lit4	Rd=Rt< <lit4< td=""><td>00</td><td>Rd</td><td>Rt</td><td>S/U</td><td>lit4</td><td>09</td><td>SHE DIR</td></lit4<>	00	Rd	Rt	S/U	lit4	09	SHE DIR	
SRL	SRL Rd,Rt,#lit4	Rd=Rt>>lit4	00	Rd	Rt	S/U	lit4	10	SHE	
		INSTRUCCIONES DE	SAL	TOS (COND	ICIONA	LES I	E INCO	NDICIONALES	
BEQI	BEQI Rd,Rt,Slit12	If(Rd==Rt) goto Slit12 PC = PC + Slit12	13	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
BNEI	BNEI Rd,Rt,Slit12	If(Rd!=Rt) goto Slit12 PC = PC + Slit12	14	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
BLTI	BLTI Rd,Rt,Slit12	If(Rd <rt) goto="" slit12<br="">PC = PC + Slit12</rt)>	15	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
BLETI	BLETI Rd,Rt,Slit12	If(Rd<=Rt) goto Slit12 PC = PC + Slit12	16	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
BGTI	BGTI Rd,Rt,Slit12	If(Rd>Rt) goto Slit12 PC = PC + Slit12	17	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
BGETI	BGETI Rd,Rt,Slit12	If(Rd>=Rt) goto Slit12 PC = PC + Slit12	18	Rd	Rt	Slit12			SR2 LF ALUOP=0111 WPC SDMP SOP1 SOP2 SR ALUOP=0011	
В	B lit16	PC = lit16	19	S/U	lit16				WPC	
		INSTRUCC	101	IES DE	E MAN	IEJO D	E SUE	BRUTIN	IAS	
CALL	CALL #lit16	PC(n+1) = lit16	20	S/U	lit16				UP WPC	
RET	RET RET PC = PC(n-1) 21 S/U S/U S/U S/U DW									
			ОТ	RASI	NSTR	UCCIO	NES	-		
NOP	NOP		22	S/U	S/U	S/U	S/U	S/U		

INST	UP	DW	WPC	SDMP	SR2	SWD	SHE	DIR	WR	LF	SEXT	SOP1	SOP2	ALUOP	SDMD	WD	SR
LW	0	0	0	0	0	1	0	0	1	0	0	0	0	0011	0	0	0
SUB																	
SW																	