1 Équilibre, Stabilité, Oscillations

1.1 Équilibre

En équilibre un état ne change pas. Sa dérivée est donc par conséquent nulle

1.1.1 Temps discret

Si le système est homogène alors $\bar{x} = A\bar{x}$ si \bar{x} est un vecteur propre A avec une valeur propre de A unité, alors tout vecteur propre \bar{x} est point d'équilibre, sinon seulement l'origine est un équilibre

Si le système est non-homogène alors $\bar{x} = A\bar{x} + b$ ou $\bar{x} = (I - A)^{-1}b$ si I n'est pas une valeur propre, alors il y a l'équilibre différent de 0

1.1.2 Temps continu

Si le système est homogène: $A\bar{x} = 0$ Si A est non singulière, 0 est le seul équilibre, sinon il peut y en avoir d'autres Si le système est non-homogène à entrée constante: $A\bar{x} + b = 0$ ou $\bar{x} = -A^{-1}b$ si A est non singulière il y a une solution unique

- En général, 0 est un point d'équilibre pour les systèmes à temps discret et continus
- I est valeur propre critique pour les systèmes discrets, 0 est valeur propre critique pour les systèmes continus

1.2 Stabilité

Un point d'équilibre est stable si, quand il est perturbé, il tend à retourner à sa position initial, ou si au minimum il ne diverge pas. $x(t+1) - \bar{x} = Ax(t) + b - A\bar{x} - b \ z(t+1) = Az(t)z(t) = x(t) - \bar{x}$

On peut déterminer la stabilité du système avec ces pôles en boucles fermé.

1.2.1 Temps discret

stable

instable

marginalement stable

1.2.2 Temps continu

1.3 Oscillations

Les valeurs propres nous parlent de la stabilité d'un système Elles nous parlent également de son comportement Les valeurs propres peuvent s'écrire $\lambda = \mu + j\omega$ si $\omega \neq 0$ alors il y aura des oscillations A chaque λ il existe un $e^{\lambda} = e^{\mu}(\cos(\omega t) + j\sin(\omega t))$