EE2023 Signals & Systems Quiz Semester 2 AY2017/18

Date: 8 March 2018 Time Allowed: 1.5 hours

Instructions:

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz. However, you are allowed to bring one self-prepared, both sides handwritten A4-size crib sheet.
- 3. Tables of formulas are given on Pages 11 and 12.
- 4. Programmable and/or graphic calculators are not allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name:	 	 	
Matric # :			

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1	The	periodic signal $x(t)$ is given by	
		$x(t) = 4\cos(6\pi t) + 3\sin(15\pi t + \pi/3) + 7e^{j9\pi t}$	
	(a)	What is the fundamental frequency and period of $x(t)$?	(2 marks)
	(b)	Determine the Fourier Series coefficients of $x(t)$.	(4 marks)
	(c)	Determine the Fourier transform, $X(f)$, of $x(t)$.	(2 marks)
	(d)	What is the average power of $x(t)$?	(2 marks)
Q.1	ANSV	WER	

Q.1 ANSWER ~ continued

(4 marks)

Q.2 (a) Determine the Fourier transform, X(f), of the signal x(t) shown in Figure Q2(a) which is given by:

Figure Q.2(a)

(b) The periodic signal $x_p(t)$ is obtained by repeating the generating function x(t) at a period of 5 seconds and is shown in Figure Q.2(b).

Figure Q.2(b)

- i. Derive an expression for $x_p(t)$ in terms of x(t). (2 marks)
- ii. Determine the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$. (4 marks)

Q.2 ANSWER

Q.2 ANSWER ~ continued

Q.3 The Fourier transform, X(f), of a signal x(t) is shown in Figure Q3.

Figure Q.3

Consider also the signal $y(t) = x(t) \cos(20\pi t)$.

(a) If the bandwidth of x(t) is B = 4 Hz, sketch and label the magnitude spectrum of y(t).

(3 marks)

(b) If y(t) is sampled at a sampling frequency of 30 Hz to give the sampled signal $y_s(t)$, obtain the expression for $y_s(t)$ in terms of the comb function.

(3 marks)

(c) Sketch the magnitude spectrum of the sampled signal $y_s(t)$.

(4 marks)

\mathbf{O}	1.3	AN	IS	W	ER
\sim	•	7 TT.	1	* * .	-

Q.3 ANSWER ~ continued

Q.4 A signal $x(t) = 2 \operatorname{tri}\left(\frac{t-1}{2}\right)$ is sent through a filter to produce y(t) as shown in Figure Q.4. The impulse response of the filter is given by $h(t) = 4 \operatorname{tri}\left(\frac{t-2}{2}\right)$.

- Figure Q.4
- (a) Find the spectrum, Y(f), of y(t). Hence, determine the 1st-null bandwidth of y(t).

(5 marks)

(b) Find the maximum value of y(t) and the time at which this maximum occurs.

(5 marks)

Q.4 ANSWE	R
-----------	---

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$
Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS			
	x(t)	X(f)	
Constant	K	$K\delta(f)$	
Unit Impulse	$\delta(t)$	1	
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$	
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$	
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$	
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$	
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$	
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$	
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$	
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$	
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp\!\left(-\alpha^2\pi^2f^2\right)$	
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$	

FOURIER TRANSFORM PROPERTIES			
	Time-domain	Frequency-domain	
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$	
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$	
Duality	X(t)	x(-f)	
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$	
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$	
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$	
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$	
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$	
Integration in the time-domain	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$	

Trigonometric Identities		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = 0.5 \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = -0.5j \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5\left[\cos(\alpha - \beta) + \cos(\alpha + \beta)\right]$	
$\sin^2(\theta) = 0.5 [1 - \cos(2\theta)]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$	
$\cos^2(\theta) = 0.5 [1 + \cos(2\theta)]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos[\theta + \tan^{-1}(S/C)]$	

Complex Unit (j) \rightarrow $(j = \sqrt{-1} = e^{j\pi/2} = e^{j90^{\circ}})$ $(-j = \frac{1}{j} = e^{-j\pi/2} = e^{-j90^{\circ}})$ $(j^2 = -1)$

Definitions of Basic Functions

Rectangle:

$$rect\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & elsewhere \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$