Appunti di Elettrotecnica

Nicola Ferru

10 ottobre 2022

0.1 Argomenti

l'elettrotecnica è la tecnica dell'energia elettrica, cio
è le possibili applicazioni degli effetti prodotti dalle cariche, ferme o in movimento.

Capitolo 1

Circuiti magnetici

1.1 Introduzione

Definizione 1. In elettromagnetismo si definisce la densità di corrente J che misura la quantità di corrente che fluisce attraverso l'unità di superficie normale alla direzione del flusso di corrente.

$$i = \frac{dq}{dt} \left[\frac{C}{s} \right] = \frac{dq}{dt} [A] \tag{1.1}$$

1.1.1 Principi di conservazione delle cariche

Definizione 2. Una carica non può essere creata né distrutta, è una legge neturale e la formula è

$$\nabla * j + \frac{\partial \rho}{\partial t} = 0 \tag{1.2}$$

Densita di carica (dipendono dalla coordinate spaziali)

- Volumica: $\partial = \lim_{\Delta v \to 0} \frac{\Delta q}{\Delta v} \left(\frac{C}{m^3} \right)$
- Superficiale: $\partial = \lim_{\Delta x \to 0} \frac{\Delta q}{\Delta s} \left(\frac{C}{m^2} \right)$
- Lineare: $\partial = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta s} \left(\frac{C}{m} \right)$

1.1.2 COSTRUZIONE DI UNA TEORIA

- Definire le quantitò base
- Postulare òe relazioni fondamentali
- Specificare le regole di operazione (cioè la Matematica)

1.1.3 Teorema dei campi

- Quantità basilari: Sorgenti, Campi (La sorgente di un campo elettromagnetico è invariabilmente una carica elettrica, a riposo o in moto);
- Postulati Fondamentali: EQUAZIONI DI MAXWELL;

• Regole Operative: Calcolo vettoriale.

1.1.4 Equazioni di Maxwell

Forma Differenziale	forma Integrale	
$\nabla * E = rotE = -\frac{\partial B}{\partial t}$ $\nabla * H = \bar{J} + \frac{\partial D}{\partial t}$	$\oint E * dl = - \int_{S} \frac{\partial D}{\partial t} * dS$	L. Faraday
$\nabla * H = \bar{J} + \frac{\partial D}{\partial t}$	$\oint H * dl = I + \int_{S} \frac{\partial D}{\partial t} * dS$	L. Ampére
$\nabla * D = \rho$	$\oint H * dl = Q$	L. Gauss
$\nabla * B = 0$	$\oint D * dS = Q$	L. Gauss

- Teorema di Stokes: $\int_S (\nabla * A) * dS = \oint A * \bar{A}l$
- Teorema della divergenza: $\int_V \nabla *A*dV = \oint_S A*dS$

1.1.5 Quantità basilari nello studio dei campi

campo	quantità	simbolo	unità
Elettrico	intensità di flusso elettrico	Е	$\frac{V}{m}$
	densità di flusso elettrico	D	$\frac{C}{m^2}$
Magnetico	densità di flusso magnetico	В	$T = V * s/m^2$
	intensità di campo magnetico	H	A/m
hline		1	'

- $\bullet~E$ è l'unico vettore necessario per lo studio del campo stazionario nel vuoto
- $\bullet\,$ D è utile nello studio del campo elettrico in mezzi materiali
- $\bullet\;B$ è l'unico vettore necessario per lo studio della magnetostatica nel vuoto
- ullet H è utile nello studio dei campi magnetici nei mezzi materiali.

1.2 Campo elettrico

- $F = k \frac{Q*q}{r^2} \overrightarrow{r}$ Legge di Coulomb
- $E = \frac{F}{q} = k \frac{Q}{r^2} \overrightarrow{r}$ Campo Elettrico
- dL = E * dl Lavoro Elementare
- $\int_A^B E*dl = V_B V_A$ Differenza di potenziale

$$Q = \oint D * dS$$

D= Densità di Flusso Elettrico