

for com in components:

(++ containers

are zero intexed

([com. nodel - 1] [com. nodel - 1] +=

[com. Value]

(nodel cant be 0)

c ontinue

plse:

$$C_{n}\left[com \cdot node 2 - 1\right]\left[com \cdot node 2 - 1\right] + = \frac{1}{com \cdot value}$$

$$C_{n}\left[com \cdot node 1 - 1\right]\left[com \cdot node 2 - 1\right] = -\frac{1}{com \cdot value}$$

$$C_{n}\left[com \cdot node 2 - 1\right]\left[com \cdot node 1 - 1\right] = -\frac{1}{com \cdot value}$$

return G

2.) Construct B matrix by analysing voltage sources:

let
$$N = highest_node_number (Netlist)$$
let $m = number_ot_voltage_sources (Netlist)$
let $B = Matrix(n, m)$

3. Construct (matrix by computing BT:

(More complex when dealing with dependent sources)

(More complex when dealing with dependent sources)

let
$$m = number_of_Voltage_Sources(Nethist)$$

let $D = Mutrix(m_1m) \Rightarrow All zero by default$

return D

6.) Construct 2:

let
$$N = \text{highest_node_number}(\text{Netlist})$$

let $m = \text{number_of_voltage_sources}(\text{Netlist})$

let $Z = \text{Array}(\text{N+m})$

size

return ZT (Need column vector)

7.) Combine G, B, C, D into matrix A:

Probably not very efficient => (reate matrix A in beginning and construct in place
[Identical algorithm but avoids construction of extra matrixes)

8.) (ompute inverse of A:

Use library