Convolutional neural networks: Finding Santa in Images

December 17, 2018

Who am I?

- Lore Dirick
 - Lore → not "Lohr" or "Lori" but "Lora"
- PhD in Business Economics, KU Leuven (Belgium)
- Worked as a curriculum developer / curriculum lead at
 DataCamp (Boston/NYC)
- Joined Flatiron School as a Senior Data Science Curriculum
 Developer in NYC in April 2018

 FLATIRON

DataCamp

About Flatiron School

- Coding bootcamp for web development, recently added data science course offerings
 - Intro to data science (60 hours)
 - Data Science bootcamp (15 weeks)
- On-line and in-person
- https://flatironschool.com/
- Several scholarship programmes to make gender parity in tech a reality (https://flatironschool.com/scholarships/women-take-tech/)
- We're hiring!! https://flatironschool.com/careers/

Outline

- Landscape of AI and where deep learning comes in
- How do computers read images? + how to in Keras
- A densely connected network + how to in Keras
- Introduction to CNNs + how to in Keras

- Some questions:
 - Who has some experience with data science?
 - Who has worked with images before?
 - Who has worked with (densely connected) neural networks before?
 - Who has worked with convolutional neural networks before?

Main resources

- Andrew Ng's Deep learning course in Coursera
- Francois Chollet "Deep Learning in Python"
 - He is also the author of Keras

For this tutorial

- https://github.com/LoreDirick/Meetup-Santa-Images
- Install Keras (https://keras.io/#installation) -- if you do not already have a preference we recommend choosing the TensorFlow backend.

About Keras

- Keras is a high-level neural networks API, written in Python
- Keras (currently) runs on three backend engines: TensorFlow, Theano, or CNTK.
- Allows the same code to run on CPU or GPU.
- Makes it easy to quickly prototype deep-learning models.
- Installation instructions: https://keras.io/

What is AI?

A branch of computer science dealing with the simulation of intelligent behavior in computers

What is Machine Learning?

An algorithm that learns from experience with respect to a given task. Performance of the task improves as the algorithm gains more experience for that task.

Supervised Learning

Unsupervised Learning

Supervised Learning

A subclass of Machine Learning algorithms that requires labeled training data.

Titanic Dataset

Questions It Can Answer:

- Classification--A or B?
- Regression--How much, or how many?
- Anomaly Detection--Is this weird?

Unsupervised Learning

A subclass of machine learning algorithms that does not require labeled training data.

Clustering

Machine Learning algorithms that make use of Neural Networks with 1 or more "hidden" layers.

Machine Learning algorithms that make use of Neural Networks with 1 or more "hidden" layers.

Machine Learning algorithms that make use of Neural Networks with 1 or more "hidden" layers.

Deep learning can deal extremely well with **unstructured data**.

<u>Use Cases</u>	<u>Example</u>
Computer Vision	Facial Recognition
Sequence Modeling	Google Translate
Natural Language Processing	Siri
Reinforcement Learning	Autonomous Vehicles

Deep Learning: strengths

- Can deal very well with unstructured data
- Extremely powerful
- Captures nonlinearity well
- Better than human performance on some tasks

Deep Learning: drawbacks

- Data Hungry
- Computationally Intensive
- "Black Box" Model practically impossible to interpret how it arrived at results

Deep learning for image classification: MNIST

Another example: Fashion MNIST

https://github.com/zalandoresearch/fashion-mnist

Deep learning for image classification

Santa or not?

How does a computer read an image?

1 image is represented by:

(n_pixels*n_pixels) * 3

Jupyter notebook

How to translate this for an image?

Deep learning for image classification: MNIST

input layer: **784** (28x28) neurons, each with values between 0 and 255

Hidden Layer: **16** hidden neurons

Output Layer: **10** classifiers for 10 digits

Source:

https://towardsdatascien ce.com/multi-layer-neur al-networks-with-sigmoi d-function-deep-learning -for-rookies-2-bf464f09e b7f

How does a computer read an image?

$$x = \begin{bmatrix} 35 \\ 19 \\ \vdots \\ 9 \\ 7 \\ \vdots \\ 4 \\ 6 \\ \vdots \end{bmatrix}$$

How does a computer read an image?

$$x^{(1)} \quad x^{(2)} \qquad x^{(l)}$$

$$\begin{bmatrix} 35 & 23 & \cdots & 1 \\ 19 & 88 & \cdots & 230 \\ \vdots & \vdots & \ddots & \vdots \\ 9 & 3 & \cdots & 222 \\ 7 & 166 & \cdots & 43 \\ \vdots & \vdots & \ddots & \vdots \\ 4 & 202 & \cdots & 98 \\ 6 & 54 & \cdots & 100 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Model building

Jupyter notebook

- How many layers/number of nodes in a layer
- Define an activation function (intuition: "activate" a neuron 0/1)
- Loss function: How the network will be able to measure its performance on the training data, and steer itself in the right direction.
- An optimizer: the mechanism through which the network will update itself based on the data it sees and its loss function.

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

- one epoch = one forward and backward pass of all training examples
- batch size = # training examples in one forward/backward pass.
 Higher batch size = bigger memory requirement
- number of iterations = number of passes (backward + forward), each
 pass using [batch size] number of examples.

Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.

Jupyter notebook

Convolutional Neural Networks: why?

- Santa example: n = 64*64*3= 12288
- 128 nodes in the first hidden layer
- Weight matrix: ~ 1.5 M weights!!

Convolutional Neural Networks: why?

Convolutional Neural Networks: why?

- 1000*1000*3
- 1000 nodes in the first hidden layer
- Weight matrix: 3 Billion parameters
- And this is just 1 layer!

Convolutional Neural Networks: why?

- Dense layers learn global patterns in their input feature space
- Convolution layers learn local patterns, and this leads to the following interesting features:
 - when a convolutional neural network recognizes a patterns in eg.
 upper-right corner of a picture, it can recognize it anywhere else.
 - Deeper convolutional neural networks can learn spatial hierarchies

3	2	3	1	8
1	9	1	3	2
2	3	5	6	6
3	2	3	5	9
1	1	2	4	5

	3			37
3	2	3	1	8
1	9	1	3	2
2	3	5	6	6
3	2	3	5	9
1	1	2	4	5

1 0 -1 1 0 -1 1 0 -1

filters acts as feature detectors from the original input image

3	2	-1 3	1	8
1	9 0	1 -1	3	2
2	3 0	-1 5	6	6
3	2	3	5	9
1	1	2	4	5

1	0	-1
1	0	-1
1	0	7

3	2	-1 3	1	8
1 1	9 0	-1 1	3	2
2 1	3	-1 5	6	6
3	2	3	5	9
1	1	2	4	5

1	0	-1
1	0	-1
1	0	-1

3	2	-1 3	1	8
1	9 0	1 -1	3	2
2	3 0	-1 5	6	6
3	2	3	5	9
1	1	2	4	5

*

1	0	-1
1	0	-1
1	0	-1

=

3	

$$3*1+1*1+2+1+0*2+0*9+0*3+3*(-1)+1*(-1)+5*(-1) = -3$$

3	2	-1 3	1	8
1	9 0	1 -1	3	2
1 2	3 0	-1 5	6	6
3	2	3	5	9
1	1	2	4	5

*

1	0	-1
1	0	-1
1	0	-1

=

-3	
©	

$$3*1+1*1+2*1+0*2+0*9+0*3+3*(-1)+1*(-1)+5*(-1) = -3$$

3	2	3	-1 1	8
1	9 1	1 0	-1 3	2
2	3	5	-1 6	6
3	2	3	5	9
1	1	2	4	5

*

1	0	-1
1	0	-1
1	0	-1

=

-3	4	

$$2*1+9*1+3*1+0*3+0*1+0*5+1*(-1)+3*(-1)+6*(-1) = 4$$

		. 13		1/2/
3	2	3	1	8
1	9	1	3	2
2	3	5	6	6
3	2	3	5	9
1	1	2	4	5

1	0	-1
1	0	-1
1	0	-1

-3	4	-7
-3	0	-8
-4	-9	-10

What if there is an edge?

8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0
8	8	8	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	24	24	0
0	24	24	0
0	24	24	0
0	24	24	0

Other filters

- Horizontal edges
- Diagonal edges
- ...
- Make network learn filters!

w_1	w_2	w_3
W_4	w_5	w ₆
w_7	w ₈	W ₉

Other filters

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	SI
	$\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array}\right]$	Be
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	G
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	(a

Operation	Filter	Convolved Image
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Problems with convolutions

- Deep networks: images shrink considerably
- More central pixels are used much more in output

Solution: padding!

Problems with convolutions

- Deep networks: images shrink considerably
- More central pixels are used much more in output

Solution: padding!

- Valid
- Same

Strided convolutions

1	6	5
7	10	9
7	10	8

Pooling layers

- Drastically downsizes feature maps
- Summarizes whether features are detected somewhere
- Is found to work well in a lot of experiments
- Only hyperparameters no parameters to learn!

Convolutions on RGB images

A full convolutional network

Back to our example!

Regularization

Regularization

Other ways to tune/improve your model

- Try different architectures: add/remove layers
- L1/L2 regularization
- Try different hyperparameters (such as the number of units per layer, optimizers,...)
- Use data augmentation

Other ways to tune/improve your model

- Try different architectures: add/remove layers
- L1/L2 regularization
- Try different hyperparameters (such as the number of units per layer, optimizers,...)
- Use data augmentation

Questions? Comments? Feedback?

Lore Dirick
Senior Data Science Curriculum Developer
lore.dirick@flatironschool.com

THANK YOU!

