

IAA6007: Computer Architecture Ch.5. Basic Computer Organization and Design

Wooil Kim
Dept. of Computer Science & Engineering
Incheon National University

2019 Fall

Outline

- 5.1 Instruction codes
- 5.2 Computer registers
- 5.3 Computer Instructions
- 5.4 Timing and control
- 5.5 Instruction cycle
- 5.6 Memory reference instructions
- 5.7 Input-output and interrupt
- 5.8 Complete computer description
- 5.9 Design of basic computer
- 5.10 Design of accumulator logic

5.1 Instruction codes

- A program a set of instruction
- An instruction specifies a sequence microoperations

Figure 5-1

Stored program organization.

Processor register (accumulator or AC)

5.1 Instruction codes

- Accumulator (AC)
 - Computers that have a single processor register usually assign to it the name accumulator
- Effective address (유효주소)
 - When the second part of the instruction specifies
 - i) an operand (피연산자) immediate
 - ii) the address of an operand direct address
 - iii) the address of a memory word where the address of the operand can be found – indirect address
 - The indirect address instruction needs two references to memory to fetch an operand
 - Effective address address of the operand

5.1 Instruction codes

Figure 5-2 Demonstration of direct and indirect address.

5.2 Computer registers

- A basic computer having a memory unit with a capacity of 4096 words & 16-bit word
- List of registers
 - Data Register (DR, 16),
 Address Register (AR, 12)
 - Accumulator (AC, 16),
 Instruction Register (IR, 16)
 - Program Counter (PC, 12),
 Temporary Register (TR, 16)
 - Input Register (INPR, 8),
 Output Register (OUTR, 8)

Memory 4096 words 16 bits per word

Figure 5-3 Basic computer registers and memory.

5.2 Computer registers

- Common bus system
 - Outputs of registers/memory are selected by selection inputs S₂S₁S₀
 - $S_2S_1S_0 = 011$: BUS <- DR
 - $S_2S_1S_0 = 111$: BUS <- M[AR]
 - When AR or PC is selected 4 most significant bits are set to 0's
 - When AR or PC receives information from bus only 12 least significant bits are transferred
 - For INPR and OUTR, 8 least significant bits are transferred

Figure 5-4 Basic computer registers connected to a common bus.

5.2 Computer registers

- Common bus system
 - Registers with LD, INR, & CLR

• Figure 2-11

- Registers with LD
 - Figure 2-7

- Register transfer using bus and operation performed in AL circuit can occur during the same clock cycle
 - $S_2S_1S_0 = 100$, LD(DR, AC) = 1
 - DR \leftarrow AC, AC \leftarrow DR

Figure 5-4 Basic computer registers connected to a common bus.

5.3 Computer Instructions

Instruction format

Figure 5-5 Basic computer instruction formats.

5.3 Computer Instructions

Instruction set

TABLE 5-2 Basic Computer Instructions

	Hexadec	imal code				
Symbol	I = 0	I = 1	Description			
AND	0xxx	8xxx	AND memory word to AC			
ADD	1xxx	9xxx	Add memory word to AC			
LDA	2xxx	Axxx	Load memory word to AC			
STA	3xxx	Bxxx	Store content of AC in memory			
BUN	4xxx	Cxxx	Branch unconditionally			
BSA	5xxx	Dxxx	Branch and save return address			
ISZ	6xxx	Exxx	Increment and skip if zero			
CLA	78	000	Clear AC			
CLE	74	00	Clear E			
CMA	72	.00	Complement AC			
CME	7100		Complement E			
CIR	7080		Circulate right AC and E			
CIL			Circulate left AC and E			
INC			Increment AC			
SPA			Skip next instruction if AC positive			
SNA			Skip next instruction if AC negative			
SZA	7004		Skip next instruction if AC zero			
SZE	70	02	Skip next instruction if E is 0			
HLT	70	01	Halt computer			
INP	F8	800	Input character to AC			
OUT	F4	400	Output character from AC			
SKI	F	200	Skip on input flag			
SKO	F	100	Skip on output flag			
ION	F	080	Interrupt on			
IOF	F)40	Interrupt off			

5.4 Timing and control

Control unit of basic computer

3x8 decoder

14	13	12	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Figure 5-6 Control unit of basic computer.

5.4 Timing and control

The sequence counter SC can be incremented or cleared synchronously

Relation between the clock Clock

• Ex) $D_3T_4 : SC \leftarrow 0$

Figure 5-7 Example of control timing signals.

5.4 Timing and control

- Relation between the clock transition and timing signal
 - Ex) T_0 : AC \leftarrow PC
 - During the time T₀ is active, PC is loaded onto the bus and LD of AC is enabled
 - The actual transfer occurs at the end of the clock cycle when clock goes through a positive transition

- Instruction cycle consists of
 - 1. Fetch
 - 2. Decode
 - 3. Read effective address (if indirect address)
 - 4. Execute
- Fetch and decode
 - Initially, PC is loaded with the address of the first instruction and SC is cleared to 0
 - $T_0: AR \leftarrow PC$
 - $T_1 : IR \leftarrow M[AR], PC \leftarrow PC + 1$
 - $T_2: D_0,..., D_7 \leftarrow Decode IR(12 14), AR \leftarrow IR(0 11), I \leftarrow IR(15)$
 - It is assumed that memory cycle time is less than the clock time

 $T_0: AR \leftarrow PC$

 $T_1 : IR \leftarrow M[AR], PC \leftarrow PC + 1$

Figure 5-8 Register transfers for the fetch phase.

- Determine the type of instruction
 - $D_7'IT_3 : AR \leftarrow M[AR]$
 - $D_7'I'T_3$: Nothing
 - D₇I'T₃: Execute a register reference instruction
 - D₇IT₃: Execute an I/O instruction

Figure 5-9 Flowchart for instruction cycle (initial configuration).

Register reference instruction

15			12	11
0	1	1	1	Register operation

• B_i specifies the operation type $(B_0 \sim B_{11})$

- (b) Register reference instruction
- Ex) CLA: 0111 1000 0000 0000 = 7800, B₁₁ = 1 (see Table 5-2)

TABLE 5-3 Execution of Register-Reference Instructions

 $D_7I'T_3 = r$ (common to all register-reference instructions) $IR(i) = B_i$ [bit in IR(0-11) that specifies the operation]

	<i>r</i> :	$SC \leftarrow 0$	Clear SC
CLA	rB_{11} :	$AC \leftarrow 0$	Clear AC
CLE	rB_{10} :	$E \leftarrow 0$	Clear E
CMA	rB_9 :	$AC \leftarrow \overline{AC}$	Complement AC
CME	rB_8 :	$E \leftarrow \overline{E}$	Complement E
CIR	rB_7 :	$AC \leftarrow \text{shr } AC, AC(15) \leftarrow E, E \leftarrow AC(0)$	Circulate right
CIL	rB_6 :	$AC \leftarrow \text{shl } AC, AC(0) \leftarrow E, E \leftarrow AC(15)$	Circulate left
INC	rB_5 :	$AC \leftarrow AC + 1$	Increment AC
SPA	rB_4 :	If $(AC(15) = 0)$ then $(PC \leftarrow PC + 1)$	Skip if positive
SNA	rB_3 :	If $(AC(15) = 1)$ then $(PC \leftarrow PC + 1)$	Skip if negative
SZA	rB_2 :	If $(AC = 0)$ then $PC \leftarrow PC + 1$	Skip if AC zero
SZE	rB_1 :	If $(E = 0)$ then $(PC \leftarrow PC + 1)$	Skip if E zero
HLT	rB_0 :	$S \leftarrow 0$ (S is a start-stop flip-flop)	Halt computer

BUN

BSA

ISZ

4xxx

5xxx

6xxx

Cxxx

Dxxx

Exxx

- AND: and to AC
 - Direct: 0000, Indirect: 1000
 - D_0T_4 : DR \leftarrow M[AR]
 - D_0T_5 : AC \leftarrow AC \land DR, SC \leftarrow 0
- ADD: add to AC
 - Direct: 0001, Indirect: 1001
 - $D_1T_4: DR \leftarrow M[AR]$
 - D_1T_5 : AC \leftarrow AC + DR, E \leftarrow C_{out} , SC \leftarrow 0

	I	Opcode	Address		
	(a) Memory	– reference instruction		
Symbol	I = 0	I = 1	Description		
AND 0xxx		8xxx	AND memory word to AC		
ADD 1xxx		9xxx	Add memory word to AC		
LDA	2xxx	Axxx	Load memory word to AC		
STA	3xxx	Bxxx	Store content of AC in memory		

Branch unconditionally

Increment and skip if zero

Branch and save return address

LDA: load to AC

- D_2T_4 : DR \leftarrow M[AR]
- D_2T_5 : AC \leftarrow DR, SC \leftarrow 0
- STA: store AC
 - $D_3T_4: M[AR] \leftarrow AC, SC \leftarrow 0$

TABLE 5-4 Memory-Reference Instructions

Symbol		Symbolic description
AND	D_0	$AC \leftarrow AC \land M[AR]$
ADD	D_1	$AC \leftarrow AC + M[AR], E \leftarrow C_{\text{out}}$
LDA	D_2	$AC \leftarrow M[AR]$
STA	D_3	$M[AR] \leftarrow AC$
BUN	D_4	$PC \leftarrow AR$
BSA	D_5	$M[AR] \leftarrow PC, PC \leftarrow AR + 1$
ISZ	D_6	$M[AR] \leftarrow M[AR] + 1$, If $M[AR] + 1 = 0$ then $PC \leftarrow PC + 1$

- BSA: branch and save return address
 - D_5T_4 : M[AR] \leftarrow PC, AR \leftarrow AR + 1
 - D_5T_5 : PC \leftarrow AR, SC \leftarrow 0

Figure 5-10 Example of BSA instruction execution.

(a) Memory, PC, and AR at time T_4

(b) Memory and PC after execution

19

- BUN: branch unconditionally
 - $D_4T_4 : PC \leftarrow AR, SC \leftarrow 0$

- ISZ: increment and skip if zero
 - $D_6T_4: DR \leftarrow M[AR]$
 - D_6T_5 : DR \leftarrow DR + 1
 - D_6T_6 : M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

Control flowchart

Figure 5-11 Flowchart for memory-reference instructions.

Figure 5-12 Input-output configuration.

- Initially, FGI is set to 0
 - A new data from input device → INPR, FGI is set to 1
 - The data in INPR → AC, FGI is cleared to 0

- Initially, FGO is set to 1
 - A new data from AC → OUTR, FGO is cleared to 0
 - The data in OUTR → output device, FGO is set to 1

FGI/FGO = 1

New data ready for input to/output from computer (AC)

Input-output instructions

TABLE 5-5 Input-Output Instructions

```
D_7IT_3 = p (common to all input-output instructions)
IR(i) = B_i [bit in IR(6-11) that specifies the instruction]
                  SC \leftarrow 0
                                                            Clear SC
INP
         pB_{11}: AC(0-7) \leftarrow INPR, FGI \leftarrow 0
                                                            Input character
         pB_{10}: OUTR \leftarrow AC(0-7), FGO \leftarrow 0
OUT
                                                            Output character
                  If (FGI = 1) then (PC \leftarrow PC + 1)
SKI
          pB_9:
                                                            Skip on input flag
SKO
                  If (FGO = 1) then (PC \leftarrow PC + 1)
          pB_8:
                                                            Skip on output flag
ION
                  IEN \leftarrow 1
          pB_7:
                                                            Interrupt enable on
IOF
                  IEN \leftarrow 0
                                                            Interrupt enable off
          pB_6:
```


Program controlled transfer

Loop: SKI

BUN Loop ← waste a lot of time
INP in checking the flag

- Program interrupt
 - Let the external device inform the computer when it is ready for transfer
 - Does not check the flags while the computer is running a program
 - Interrupt flip-flop R
 - When R = 0 the computer goes through an instruction cycle
 - If R = 1 it goes through an interrupt cycle
 - Return address is stored in a specific location

Figure 5-13 Flowchart for interrupt cycle.

- Interrupt cycle is a hardware implementation of a branch and save return address operation
- Interrupt cycle
 - (i) store return address in location 0, M[0] ← PC
 - (ii) branch to location 0, PC ← 1
 - (iii) IEN \leftarrow 0, R \leftarrow 0

Figure 5-14 Demonstration of the interrupt cycle.

- Condition for setting R
 - T₀'T₁'T₂'(IEN)(FGI + FGO) : R ← 1
- This procedure can be done with the following sequence of micro-operations:
 - RT₀: AR \leftarrow 0, TR \leftarrow PC
 - RT₁: M[AR] \leftarrow TR, PC \leftarrow 0
 - RT₂: PC \leftarrow PC + 1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0
- Modified fetch phase: fetch and decode phase use the three control signals
 - R'T₀, R'T₁, R'T₂ instead of T₀, T₁, T₂

5.8 Complete computer description

Figure 5-15 Flowchart for computer operation.

5.8 Complete computer description

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

(Patricipal	TAGE STATE	0.00
Fetch	$R'T_0$:	$AR \leftarrow PC$
	$R'T_1$:	$IR \leftarrow M[AR], PC \leftarrow PC + 1$
Decode	$R'T_2$:	$D_0, \ldots, D_7 \leftarrow \text{Decode } IR(12-14),$
		$AR \leftarrow IR(0-11), I \leftarrow IR(15)$
Indirect	$D_7^iIT_3$:	
Interrupt:		
$T_0'T_1'T_2'(IEN)$	(FGI + FGO):	$R \leftarrow 1$
	RT_0 :	$AR \leftarrow 0$, $TR \leftarrow PC$
	RT_1 :	$M[AR] \leftarrow TR$, $PC \leftarrow 0$
	RT_2 :	$PC \leftarrow PC + 1$, $IEN \leftarrow 0$, $R \leftarrow 0$, $SC \leftarrow 0$
Memory-reference	e:	A STATE OF THE PROPERTY OF THE PARTY OF THE
AND	D_0T_4 :	$DR \leftarrow M[AR]$
	D_0T_5 :	$AC \leftarrow AC \land DR, SC \leftarrow 0$
ADD	D_1T_4 :	$DR \leftarrow M[AR]$
	D_1T_5 :	$AC \leftarrow AC + DR$, $E \leftarrow C_{out}$, $SC \leftarrow 0$
LDA	D_2T_4 :	$DR \leftarrow M[AR]$
	D_2T_5 :	$AC \leftarrow DR$, $SC \leftarrow 0$
STA	D_3T_4 :	$M[AR] \leftarrow AC$, $SC \leftarrow 0$
BUN	D_4T_4 :	$PC \leftarrow AR$, $SC \leftarrow 0$
BSA	D_5T_4 :	$M[AR] \leftarrow PC$, $AR \leftarrow AR + 1$
	D_5T_5 :	$PC \leftarrow AR$, $SC \leftarrow 0$
ISZ	D_6T_4 :	$DR \leftarrow M[AR]$
	D_6T_5 :	$DR \leftarrow DR + 1$
	D_6T_6 :	$M[AR] \leftarrow DR$, if $(DR = 0)$ then $(PC \leftarrow PC + 1)$, $SC \leftarrow 0$

5.8 Complete computer description


```
Register-reference:
                              D_7I'T_3 = r (common to all register-reference instructions)
                              IR(i) = B_i (i = 0, 1, 2, ..., 11)
                                  r: SC ←0
  CLA
                               rB_{11}: AC \leftarrow 0
  CLE
                               rB_{10}: E \leftarrow 0
  CMA
                               rB_0: AC \leftarrow AC
                               rB_s: E \leftarrow \overline{E}
  CME
  CIR
                               rB_7: AC \leftarrow \operatorname{shr} AC, AC(15) \leftarrow E, E \leftarrow AC(0)
  CIL
                               rB_6: AC \leftarrow shl\ AC, AC(0) \leftarrow E, E \leftarrow AC(15)
  INC
                               rB \leftarrow AC \leftarrow AC + 1
  SPA
                               rB_4: If (AC(15) = 0) then (PC \leftarrow PC + 1)
  SNA
                               rB_3: If (AC(15) = 1) then (PC \leftarrow PC + 1)
  SZA
                               rB_2: If (AC = 0) then PC \leftarrow PC + 1
  SZE
                                       If (E=0) then (PC \leftarrow PC + 1)
                               rB_1:
  HLT
                                        S \leftarrow 0
                               rB_0:
Input-output:
                             D_2IT_3 = p (common to all input-output instructions)
                             IR(i) = B_i (i = 6, 7, 8, 9, 10, 11)
                                 p: SC ←0
  INP
                              pB_{11}: AC(0-7) \leftarrow INPR. FGI \leftarrow 0
  OUT
                              pB_{10}: OUTR \leftarrow AC(0-7), FGO \leftarrow 0
  SKI
                               pB_9: If (FGI = 1) then (PC \leftarrow PC + 1)
  SKO
                                      If (FGO = 1) then (PC \leftarrow PC + 1)
                               pB_8:
  ION
                                        IEN \leftarrow 1
                               pB_7:
  IOF
                                        IEN \leftarrow 0
                               pB_6:
```


- The basic computer consists of the following components
 - A memory unit: 4096 (=2¹²) words x 16 bit
 - Nine register: AR, PC, DR, AC, IR, TR, OUTR, INPR, SC
 - Seven flip-flop: I, S, E, R, IEN, FGI, FGO
 - Two decoders 3 x 8, 4 x 16
 - 16-bit common bus
 - Control logic gates
 - Adder and logic circuit

- Control functions for
 - Registers, Memory read/write
 - Flip-flops (set/clear/complement)
 - Common bus (S_0, S_1, S_2)
 - Adder and logic circuit

Figure 5-6 Control unit of basic computer.

Figure 5-4 Basic computer registers connected to a common bus.

- Control of registers; ex) AR register
 - Statements that change the content of AR
 - $R'T_0$: AR \leftarrow PC
 - $R'T_2 : AR \leftarrow IR(0 11)$
 - $D_7'IT_3:AR \leftarrow M[AR]$
 - $RT_0 : AR \leftarrow 0$
 - D_5T_4 : AR \leftarrow AR + 1
 - Control functions
 - LD(AR) = $R'T_0 + R'T_2 + D_7'IT_3$
 - $CLR(AR) = RT_0$
 - INR(AR) = D_5T_4

Figure 5-16 Control gates associated with AR.

- Control function for reading input of memory
 - Find the statements including "← M[AR]"
 - Read = R'T1 + $D_7'IT_3 + (D_0 + D_1 + D_2 + D_6)T_4$

- Control of single flip-flops
 - Control of IEN
 - $pB_7 : IEN \leftarrow 1$
 - pB_6 : IEN $\leftarrow 0$
 - $RT_2 : IEN \leftarrow 0$

Figure 5-17 Control inputs for IEN.

Control of common bus

TABLE 5-7 Encoder for Bus Selection Circuit

Inputs						(Output	Register selected		
x_1 x_2	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	S_2	S_1	S_0	for bus
0	0	0	0	0	0	0	0	0	0	None
1	0	0	0	0	0	0	0	0	1	AR
0	1	0	0	0	0	0	0	1	0	PC
0	0	1	0	0	0	0	0	1	1	DR
0	0	0	1	0	0	0	1	0	0	AC
0	0	0	0	1	0	0	1	0	1	IR
0	0	0	0	0	1	0	1	1	0	TR
0	0	0	0	0	0	1	1	1	1	Memory

Boolean function for the encoder

• S0 =
$$x_1 + x_3 + x_5 + x_7$$

•
$$S1 = x_2 + x_3 + x_6 + x_7$$

• S2 =
$$x_4 + x_5 + x_6 + x_7$$

Figure 5-18 Encoder for bus selection inputs.

- Ex) to find the logic that makes x₁ = 1, find all the register transfer statements that have AR as a source
 - $D_4T_4 : PC \leftarrow AR$
 - $D_5T_5 : PC \leftarrow AR$
 - $x_1 = D_4 T_4 + D_5 T_5$
- Select memory as a source = read memory
 - $x_7 = R'T1 + D_7'IT_3 + (D_0 + D_1 + D_2 + D_6)T_4$

gates

The statements that change the content of AC

16 Adder and Accumulator 16 16 logic register From DR circuit (AC)To bus From INPR -INR CLR LD Clock Control

Figure 5-19 Circuits associated with AC.

The statements that change the content of AC

 $D_0T_5 : AC \leftarrow AC \wedge DR$

 $D_1T_5 : AC \leftarrow AC + DR$

 $D_2T_5 : AC \leftarrow DR$

 $pB_{11} : AC(0-7) \leftarrow INPR$

 $rB_9 : AC \leftarrow (AC)'$

 rB_7 : AC \leftarrow shr AC, AC(15) \leftarrow E

 rB_6 : AC \leftarrow shl AC, AC(0) \leftarrow E

 $rB_{11}:AC \leftarrow 0$

 rB_5 : Ac \leftarrow AC + 1

Control of AC register

 $D_0T_5 : AC \leftarrow AC \wedge DR$

 $D_1T_5 : AC \leftarrow AC + DR$

 $D_2T_5 : AC \leftarrow DR$

 $pB_{11} : AC(0-7) \leftarrow INPR$

 $rB_{q}: AC \leftarrow (AC)'$

 $rB_7 : AC \leftarrow shr AC, AC(15) \leftarrow E$

 rB_6 : AC \leftarrow shl AC, AC(0) \leftarrow E

 $rB_{11}:AC \leftarrow 0$

 rB_5 : Ac \leftarrow AC + 1

Figure 5-20 Gate structure for controlling the LD, INR, and CLR of AC.

Adder and logic circuit

Figure 5-21 One stage of adder and logic circuit.

IAA6UU/: Computer Arcnitecture; wikim@inu.ac.kr

Problems

- 5-2, 5-3, 5-4, 5-6, 5-9, 5-10, 5-12,
- 5-13, 5-18, 5-19, 5-21, 5-22, 5-23