Simulation of paintball shot

A project by Kevin Wallimann, Andri Schmidt and Marc Maetz

December 17, 2013

- 1 Introduction
 - Inspiration Expected challenges
- 2 Approach
- 3 Implementation

Low level High level Difficulties

4 Demonstration

Tricks

5 Conclusion

- Initial project idea:
 Paintball shot on wall
- Final project:
 Paintball shot on simple objects

Inspiration Expected challenges

Video

Inspiration Expected challenges

Expected challenges

- OpenGL
 - showing simple objects
- SPH solver
 - time to make it work as expected

Approach

- SPH solver
- Collision handling with no library but boundary boxes

Why?

- SPH solver
 - splashes and droplets
- Collision handling with no library but boundary boxes
 - late attacket
 - · risk of heavy time investission

Low level

- C++ 11
 - eigen
- OpenGL
 - glsl
 - glm

High level

- 1 Shot with gravitation
- 2 Collision detection
- 3 On impact the SPH simulation starts

Difficulties

- Debugging
- general code
- parameter tuning
- coordinates: simulation space \leftrightarrow window space
- many particles behaving like a ball
- sticky paint on object with given resolution

Tricks

- many particles behaving like a ball
 - particle-particle forces ignored before collision
- sticky paint on object
 - velocity dependent trace on object

$$\mathbf{v}=\mathbf{v}_{\parallel}+\mathbf{v}_{\perp}.$$

- "|" and "⊥" describe angle between particle velocity and surface
- set $v_{\perp} = 0$ after collision

Sticky paint on object

Trace handling

SPH particle

Resulting trace

$$\mathbf{v}_{\parallel} = 0$$
 $|\mathbf{v}|$ big

$$\mathbf{v}_{\parallel} \neq 0$$
 $|\mathbf{v}|$ big

$$egin{aligned} \mathbf{v}_\parallel &= 0 \ |\mathbf{v}| \ \mathsf{small} \end{aligned}$$

$$|\mathbf{v}_{\parallel} \neq 0$$

 $|\mathbf{v}|$ smal

Demonstration

Performance

 Real time simulation for simple objects (500 vertices)

Limitations

 No complex objects because of simple collision handling

What we learned

- OpenGL
- Blend

What we would do different

Start collision handling earlier