Jogo de Pratos

Prova Fase 3 - OBI2024

Depois de perder tudo no Jogo do Poder, só resta uma coisa para Jonathan: O Jogo de Pratos. O objetivo do jogo é muito simples: obter a maior quantidade de pratos possível. Entretanto, para atingir esse objetivo será necessário muito planejamento.

A principal maneira de obter mais pratos no jogo é através de "efeitos". Cada efeito pode ser representado por um par de inteiros (a,b). Se o jogador possui x pratos antes de um efeito entrar em ação, ele passa a possuir $a \cdot x + b$ pratos depois do efeito. Dizemos que a é o fator multiplicativo do efeito e b é o fator aditivo do efeito.

Existem dois tipos de efeitos: feitiços e refeições. Jonathan possui N feitiços e M refeições. Cada feitiço pode ser usado quantas vezes o Jonathan quiser, mas ele só tem mana para usar feitiços K vezes no total. Enquanto isso, refeições podem ser usadas uma vez cada, mas Jonathan pode escolher a ordem que elas são utilizadas. Note que tanto feitiços quanto refeições são efeitos, e portanto funcionam da maneira descrita acima quando ativados.

A fim de obter uma quantidade insana de pratos, Jonathan irá fazer um "combo", combinando vários desses efeitos. Sendo assim, Jonathan irá utilizar todos os feitiços que decidir e logo depois usará todas as refeições em certa ordem.

Por exemplo, se os feitiços disponíveis forem (2,0),(3,0),(1,2),(2,1), as refeições disponíveis forem (2,3),(4,2),(7,1) e Jonathan pode usar 3 feitiços, ele poderia escolher utilizar os feitiços 4,2,4 e depois usar as refeições 2,1,3. Sendo assim, caso ele começasse com 1 prato, esse seria o processo que sua quantidade de pratos passaria:

- Jonathan começa com 1 prato. Ao usar o feitiço 4 representado por (2,1) ele fica com $2 \cdot 1 + 1 = 3$ pratos.
- Jonathan está com 3 pratos. Ao usar o feitiço 2 representado por (3,0) ele fica com $3 \cdot 3 + 0 = 9$ pratos.
- Jonathan está com 9 pratos. Ao usar o feitiço 4 representado por (2,1) ele fica com $2 \cdot 9 + 1 = 19$ pratos.
- Jonathan está com 19 pratos. Ao usar a refeição 2 representada por (4,2) ele fica com $4\cdot19+2=78$ pratos.
- Jonathan está com 78 pratos. Ao usar a refeição 1 representada por (2,3) ele fica com 2.78+3=159 pratos.
- Jonathan está com 159 pratos. Ao usar a refeição 3 representada por (7,1) ele fica com $7 \cdot 159 + 1 = 1114$ pratos.

Sendo assim, Jonathan termina com 1114 pratos. Note que essa não necessariamente é a decisão que maximiza a quantidade de pratos.

Como há muitas possibilidades de cumprir sua tarefa, Jonathan pediu sua ajuda! Ele te fará Q perguntas, e em cada uma delas ele quer saber qual é o maior número de pratos alcançável a partir de alguma estratégia válida ao começar com uma quantidade x de pratos. Lembre-se que em uma estratégia válida, Jonathan usará refeições apenas **depois** dos feitiços. Como essa resposta pode ser muito grande, imprima ela módulo $10^9 + 7$.

IMPORTANTE: A resposta não é o maior módulo possível, e sim o módulo do maior número de pratos. Ou seja, o maximização deve ocorrer **antes** de considerar o módulo.

Entrada

A primeira linha de entrada possui 3 inteiros N, M e K, o número de feitiços, o número de refeições e a quantidade de feitiços que Jonathan pode utilizar.

A segunda linha de entrada possui N inteiros: a_1, a_2, \ldots, a_N , os fatores multiplicativos dos feitiços.

A terceira linha de entrada possui N inteiros: b_1, b_2, \ldots, b_N , os fatores aditivos dos feitiços.

A quarta linha de entrada possui M inteiros: a'_1, a'_2, \ldots, a'_M , os fatores multiplicativos das refeições.

A quinta linha de entrada possui M inteiros: b'_1, b'_2, \ldots, b'_M , os fatores aditivos das refeições.

A sexta linha de entrada possui um único inteiro Q, o número de perguntas que Jonathan fará para você.

A sétima linha de entrada possui Q inteiros x_1, x_2, \ldots, x_Q , a quantidade de pratos inicial para cada pergunta.

Saída

Seu programa deve imprimir Q linhas, cada uma com um único inteiro: a resposta para cada uma das perguntas de Jonathan, módulo $10^9 + 7$.

Restrições

- $1 \le N \le 10^5$
- $1 \le M \le 10^5$
- $1 \le K \le 10^9$
- $1 \le a_i, a_i' \le 10^9$
- $0 \le b_i, b'_i \le 10^9$
- $a_i + b_i > 1, a'_i + b'_i > 1$, ou seja, nunca haverá um efeito representado por (1,0)
- $1 \le Q \le 10^5$
- $1 \le x_i \le 10^9$

Informações sobre a pontuação

A tarefa vale 100 pontos. Estes pontos estão distribuídos em subtarefas, cada uma com suas restrições adicionais às definidas acima.

- Subtarefa 1 (0 pontos): Esta subtarefa é composta apenas pelos exemplos mostrados abaixo. Ela não vale pontos, serve apenas para que você verifique se o seu programa imprime o resultado correto para os exemplos.
- Subtarefa 2 (7 pontos): N = M = K = 2
- Subtarefa 3 (13 pontos): M = 1, Q = 1, é garantido que a quantidade final de pratos da resposta será menor que $10^9 + 7$, ou seja, a resposta não será grande o suficiente para que seja necessário considerar o módulo.
- Subtarefa 4 (15 pontos): $N, Q, K \le 500, M = 1$.
- Subtarefa 5 (24 pontos): $N, Q, K, M \le 500$.

- Subtarefa 6 (19 pontos): $N, Q \le 3000$
- Subtarefa 7 (22 pontos): Sem restrições adicionais.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
2 2 2	185
2 3	
3 2	
5 2	
5 2	
1	
1	

Explicação do exemplo 1: Os feitiços disponíveis são (2,3) e (3,2), enquanto as refeições são (5,5) e (2,2).

Há duas possíveis soluções ótimas nesse caso:

- Usar os feitiços na ordem 1,2 e as refeições na ordem 2,1, totalizando (((1 · 2 + 3) · 3 + 2) · 2 + 2) · 5 + 5 = 185 pratos.
- Usar os feitiços na ordem 2, 2 e as refeições na ordem 2, 1, totalizando (((1 · 3 + 2) · 3 + 2) · 2 + 2) · 5 + 5 = 185 pratos.

Note que esse exemplo satisfaz a subtarefa 2.

Exemplo de entrada 2	Exemplo de saída 2	
5 1 1000000000	1	
1 1 1 1 1	100	
5 4 3 2 1	20000001	
1	200000002	
35		
4		
1 100 200000001 200000002		

Explicação do exemplo 2: A resposta para a primeira pergunta consiste em usar o feitiço 1 todas as 10^9 vezes, e logo depois usar a refeição 1. Com essa estratégia, Jonathan consegue 5000000036 pratos.

Note que 5000000036 módulo $10^9 + 7$ é igual a 1, pois o resto da divisão de 5000000036 por $10^9 + 7$ é 1.

Exemplo de entrada 3	Exemplo de saída 3	
4 3 3 2 3 1 2 0 0 2 1 2 4 7 3 2 1 4 1 2 10000 3	1611 3123 15120099 4635	

 $Explicação \ do \ exemplo \ 3:$ Este é o exemplo mostrado no enunciado, com algumas perguntas adicionais.

Exemplo de entrada 4	Exemplo de saída 4
2 2 2	707385849
1000000 2000000	678713849
32 57	650041849
32 32	621369849
5 9	592697849
5	
1 2 3 4 5	

Explicação do exemplo 4: Esse exemplo satisfaz a subtarefa 2.

Exemplo de entrada 5 Exe	emplo de saída 5
5 4 1000 843 807989 325717 452373 639688 388457 329 524139 933016 888648 755670 919486 987 647772 75628 922474 745349 644	013087 815085 387086 959080 531074