PROFET® Preliminary BTS 725 L1

Smart Two Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Reverse battery protection¹⁾
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Overvoltage Protection)	$V_{bb(AZ)}$	43	V
Operating voltage		$V_{\rm bb(on)}$	5.0 24	V
active	channels:	one	two parallel	
On-state resistance	Ron	60	30	$m\Omega$
Nominal load current	$I_{L(NOM)}$	4.0	6.0	Α
Current limitation	I _{L(SCr)}	17	17	Α

Application

- $^{\bullet}$ μC compatible power switch with diagnostic feedback for 12 V DC grounded loads
- Most suitable for resistive and lamp loads
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS® technology. Fully protected by embedded protection functions.

Product Summary

Pin Definitions and Functions

Pin	Symbol	Function
1,10,	V _{bb}	Positive power supply voltage. Design the
11,12,		wiring for the simultaneous max. short circuit
15,16,		currents from channel 1 to 2 and also for low
19,20		thermal resistance
3	IN1	Input 1,2, activates channel 1,2 in case of
7	IN2	logic high signal
17,18	OUT1	Output 1,2, protected high-side power output
13,14	OUT2	of channel 1,2. Design the wiring for the max.
		short circuit current
4	ST1	Diagnostic feedback 1,2 of channel 1,2,
8	ST2	open drain, low on failure
2	GND1	Ground 1 of chip 1 (channel 1)
6	GND2	Ground 2 of chip 2 (channel 2)
5,9	N.C.	Not Connected

Pin configuration (top view)

V_{bb}	1 '	•	20	V_{bb}
GND1	2		19	V_{bb}
IN1	3		18	OUT1
ST1	4		17	OUT1
N.C.	5		16	V_{bb}
GND2	6		15	V_{bb}
IN2	7		14	OUT2
ST2	8		13	OUT2
N.C.	9		12	V_{bb}
V_{bb}	10		11	V_{bb}

Semiconductor Group

¹⁾ With external current limit (e.g. resistor R_{GND} =150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.

Block diagram

Two Channels; Open Load detection in on state;

Leadframe connected to pin 1, 10, 11, 12, 15, 16, 19, 20

Maximum Ratings at $T_i = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{ m bb}$	43	V
Supply voltage for full short circuit protection $T_{j,\text{start}} = -40 \dots +150^{\circ}\text{C}$	$V_{ m bb}$	24	V

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit	
Load current (Short-circuit current	, see page 5)	<i>I</i> L	self-limited	Α
Load dump protection ²⁾ $V_{\text{LoadDump}} = R_{\text{I}^{(3)}} = 2 \Omega$, $t_{\text{d}} = 200 \text{ ms}$; IN = low o each channel loaded with $R_{\text{L}} = 3$.	V _{Load dump} ⁴⁾	60	V	
Operating temperature range		$T_{\rm j}$	-40+150	°C
Storage temperature range		$T_{ m stg}$	-55+150	
Power dissipation (DC) ⁵	$T_{\rm a} = 25^{\circ}{\rm C}$:	P_{tot}	3.7	W
(all channels active)	$T_{\rm a} = 85^{\circ}{\rm C}$:		1.9	
Electrostatic discharge capability ((Human Body Model)	ESD)	V _{ESD}	1.0	kV
Input voltage (DC)		V _{IN}	-10 +16	V
Current through input pin (DC)		I _{IN}	±2.0	mA
Current through status pin (DC)		I _{ST}	±5.0	
see internal circuit diagram page 8				
Thermal resistance				
junction - soldering point ^{5),6)}	each channel:	R_{this}	12	K/W
junction - ambient ⁵⁾	one channel active:	R_{thja}	41	
•	all channels active:	,	34	

Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol		Values	}	Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

On-state resista	nce (V _{bb} to OUT)					
$I_L = 2 A$	each channel,	$T_{\rm j} = 25^{\circ}{\rm C}$:	R_{ON}	 50	60	$m\Omega$
		$T_{\rm j} = 150^{\circ}{\rm C}$:		100	120	
	two parallel channels,	$T_{\rm j} = 25^{\circ}{\rm C}$:		25	30	

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for input protection is integrated.

 $R_{\rm I}$ = internal resistance of the load dump test pulse generator

 $^{^{4)}}$ $V_{Load\ dump}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 14

Soldering point: upper side of solder edge of device pin 15. See page 14

Parameter and Conditions, each of the two channels		Symbol		Values		Unit
at T _j = 25 °C, V_{bb} = 12 V unless other	erwise specified		min	typ	max	
Nominal load current	one channel active:	$I_{L(NOM)}$	3.6	4.0		Α
two para	allel channels active:		5.5	6.0		
Device on PCB ⁵), $T_a = 85$ °C,	<i>T</i> _j ≤ 150°C					
Output current while GND disc	-	I _{L(GNDhigh)}			10	mΑ
up; $V_{bb} = 30 \text{ V}$, $V_{IN} = 0$, see						
Turn-on time	to 90% V_{OUT} :	<i>t</i> on	80	200	400	μs
Turn-off time	to 10% V_{OUT} :	t _{off}	80	230	450	
$R_{L} = 12 \Omega, T_{j} = -40 + 150^{\circ}C$						
Slew rate on		d V/dt _{on}	0.1		1	V/μs
10 to 30% V_{OUT} , $R_L = 12 \Omega$,	$T_{j} = -40 + 150$ °C:					
Slew rate off		-d V/dt _{off}	0.1		1	V/μs
70 to 40% V_{OUT} , $R_{\text{L}} = 12 \Omega$,	$T_{\rm j}$ =-40+150°C:					
Operating Parameters						
Operating voltage ⁷⁾	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(on)}$	5.0		24	V
Undervoltage shutdown	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(under)}$	3.5		5.0	V
Undervoltage restart	<i>T</i> _j =-40+150°C:	V _{bb(u rst)}			5.0	V
Undervoltage restart of charge	pump	$V_{ m bb(ucp)}$		5.6	7.0	V
see diagram page 13	$T_{\rm j} = -40 + 150$ °C:	` ' '				
Undervoltage hysteresis $\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}} - V_{\text{bb(under)}}$		$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	$T_{\rm i}$ =-40+150°C:	$V_{ m bb(over)}$	24		34	V
Overvoltage restart	$T_{\rm i}$ =-40+150°C:	V _{bb(o rst)}	23			V
Overvoltage hysteresis	$T_{\rm i}$ =-40+150°C:	$\Delta V_{ m bb(over)}$		0.5		V
Overvoltage protection ⁸⁾	$T_i = -40 + 150$ °C:	$V_{\rm bb(AZ)}$	42	47		V
$I_{bb} = 40 \text{ mA}$,					
Standby current, all channels	off $T_{\rm i} = 25^{\circ}\text{C}$:	I _{bb(off)}		20	50	μΑ
$V_{IN} = 0$	$T_{\rm i} = 150^{\circ}{\rm C}$:			29	56	•
Leakage output current (included in I _{bb(off)})		I _{L(off)}			12	μΑ
<i>V</i> IN = 0	(//	_(::,/				,
Operating current 9), $V_{IN} = 5V$,	<i>T</i> _i =-40+150°C					
$I_{\text{GND}} = I_{\text{GND1}} + I_{\text{GND2}},$	one channel on:	<i>I</i> _{GND}		1.8	3.5	mΑ
	two channels on:			3.6	7	

⁷⁾ At supply voltage increase up to V_{bb} = 5.6 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

 ⁸⁾ see also V_{ON(CL)} in circuit diagram on page 8.
 9) Add I_{ST}, if I_{ST} > 0

Parameter and Conditions, each of the two channels		Symbol		Values		Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise	specified		min	typ	max	
Protection Functions						
Initial peak short circuit current limi diagrams, page 11)	t, (see timing					
each char	nnel, $T_j = -40$ °C:	I _{L(SCp)}	27	37	47	Α
	T _j =25°C:		20	30	40	
	T _i =+150°C:		12	18	25	
two p	arallel channels	twice	the curre	nt of one	channel	
Repetitive short circuit current limit	,					
$T_{\rm i} = T_{\rm it}$	each channel	I _{L(SCr)}		17		Α
two p	arallel channels			17		
(see timing diagrams, page 11)						
Initial short circuit shutdown time	$T_{\rm j,start}$ =-40°C:	t _{off(SC)}		5		ms
	$T_{\rm j,start} = 25^{\circ}\text{C}$:			4		
(see page 10 and timing diagrams on p	•					
Thermal overload trip temperature		T_{jt}	150			°C
Thermal hysteresis		$\Delta T_{\rm jt}$		10		K
Reverse Battery						
Reverse battery voltage ¹⁰)		-V _{bb}			32	V
Drain-source diode voltage ($V_{out} > V_{L} = -4.0 \text{ A}, T_j = +150 ^{\circ}\text{C}$	/ _{bb})	-V _{ON}		610		mV
		1				
Diagnostic Characteristics			I		[
Open load detection current, (on-co		,	4.0		000	
each char	nnel, $T_{j} = -40^{\circ}\text{C}$:	I _L (OL)	10		800	mA
	$T_{\rm j} = 25^{\circ}{\rm C}$:		10		600	
	$T_{\rm j} = +150^{\circ}{\rm C}$:		10		600	
	arallel channels		the curre			
<u> </u>	$T_{\rm j}$ =-40+150°C:	$V_{OUT(OL)}$	2	3	4	V
Internal output pull down (OUT to GND), V _{OUT} = 5 V	T _j =-40+150°C:	Ro	4	10	30	kΩ

_

Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).

¹¹⁾ External pull up resistor required for open load detection in off state.

Parameter and Conditions, each of the two channels	Symbol		Values	;	Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹²⁾					
Input resistance (see circuit page 8) $T_j = -40+150$ °C:	R _I	2.5	3.5	6	kΩ
Input turn-on threshold voltage $T_j = -40+150$ °C:	$V_{IN(T+)}$	1.7		3.5	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	$V_{IN(T-)}$	1.5	-		V
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V
Off state input current $V_{IN} = 0.4 \text{ V}$: $T_j = -40+150$ °C:	I _{IN(off)}	1		50	μΑ
On state input current $V_{IN} = 5 \text{ V}$: $T_j = -40+150$ °C:	/ _{IN(on)}	20	50	90	μΑ
Delay time for status with open load after switch off (see timing diagrams, page 12), $T_i = -40+150$ °C:	t _{d(ST OL4)}	100	520	1000	μs
Status invalid after positive input slope	$t_{\sf d(ST)}$		250	600	μs
(open load) $T_{j} = -40+150$ °C:	,				
Status output (open drain)					
Zener limit voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_j = -40 + 25$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	
$T_{\rm j}$ = +150°C, $I_{\rm ST}$ = +1.6 mA:				0.6	

 $^{^{\}rm 12)}\,$ If ground resistors $\rm R_{\rm GND}$ are used, add the voltage drop across these resistors.

Truth Table

Cannel 1	Input 1	Output 1	Status 1
Cannel 2	Input 2	Output 2	Status 2
	level	level	BTS 725L1
Normal	L	L	Н
operation	Н	Н	Н
Open load	L	Z	H (L ¹³⁾)
	Н	Н	L
Short circuit	L	Н	L ¹⁴)
to V _{bb}	Н	Н	H (L ¹⁵⁾)
Overtem-	L	L	Н
perature	Н	L	L
Under-	L	L	Н
voltage	Н	L	Н
Overvoltage	L	L	Н
	Н	L	Н

L = "Low" Level

X = don't care

Z = high impedance, potential depends on external circuit

H = "High" Level Status signal valid after the time delay shown in the timing diagrams

Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe (V_{bb}) is connected to pin 1,10,11,12,15,16,19,20

External R_{GND} optional; two resistors R_{GND1}, R_{GND2} = 150 Ω or a single resistor R_{GND} = 75 Ω for reverse battery protection up to the max. operating voltage.

¹³⁾ With external resistor between output and Vbb

An external short of output to V_{bb} in the off state causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the $V_{ST low}$ signal may be errorious.

¹⁵⁾ Low resistance to $V_{
m bb}$ may be detected by no-load-detection

Input circuit (ESD protection), IN1 or IN2

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1 or ST2

ESD-Zener diode: 6.1 V typ., max 5.0 mA; $R_{ST(ON)}$ < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

overvoltage output clamp, OUT1 or OUT2

 V_{ON} clamped to $V_{\text{ON(CL)}} = 47 \text{ V typ.}$

Overvoltage protection of logic part GND1 or GND2

 V_{Z1} = 6.1 V typ., V_{Z2} = 47 V typ., R_I = 3.5 k Ω typ., R_{GND} = 150 Ω , R_{ST} = 15 k Ω nominal.

Reverse battery protection

 $R_{\text{GND}} = 150 \ \Omega, R_{\text{I}} = 3.5 \ \text{k}\Omega \text{ typ},$

Temperature protection is not active during inverse current operation.

Open-load detection, OUT1 or OUT2

ON-state diagnostic condition:

 $V_{\text{ON}} < R_{\text{ON}} \cdot I_{L(\text{OL})}$; IN high

OFF-state diagnostic condition:

 $V_{OUT} > 3 \text{ V typ.}$; IN low

GND disconnect

In case of IN = high is $V_{OUT} \approx V_{IN} - V_{IN(T+)}$. Due to $V_{GND} > 0$, no V_{ST} = low signal available.

GND disconnect with GND pull up

If $V_{GND} > V_{IN} - V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} = low$ signal available.

Typ. on-state resistance

 $R_{ON} = f(V_{bb}, T_i)$; $I_L = 2 \text{ A}$, $I_N = \text{high}$

Ron [mOhm]

Typ. open load detection current

 $I_{L(OL)} = f(V_{bb}, T_j); \text{ IN = high}$

Typ. standby current

 $I_{bb(off)} = f(T_j); V_{bb} = 9...24 \text{ V}, \text{ IN1,2} = \text{low}$

Typ. initial short circuit shutdown time

 $t_{off(SC)} = f(T_{j,start}); V_{bb} = 12 V$

toff(SC) [msec]

Timing diagrams

Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $I_{L(SCp)}=28$ A typ. of the device.

Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions ($t_{off(SC)}$ vs. $T_{i,start}$ see page 10)

Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor.

Figure 4a: Overtemperature: Reset if $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 5c: Open load: detection in ON- and OFF-state (with R_{EXT}), turn on/off to open load

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

IN = high, normal load conditions. Charge pump starts at $V_{bb(ucp)}$ = 5.6 V typ.

Figure 7a: Overvoltage:

Package and Ordering Code

Standard P-DSO-20-9 Ordering Code

BTS725L1 Q67060-S7006-A2

Definition of soldering point with temperature T_s : upper side of solder edge of device pin 15.

Printed circuit board (FR4, 1.5mm thick, one layer 70 μ m, 6cm² active heatsink area) as a reference for max. power dissipation P_{tot}, nominal load current I_{L(NOM)} and thermal resistance R_{thja}

