

Sensors 2

KON-C2004 Mechatronics Basics Raine Viitala 13.11.2024 Mechatronic machine - subsystems

Lecture topics & learning outcomes

Strain based sensors – force, torque, pressure
Magnetic sensors
Temperature sensors
Inertial sensors
Microelectromechanical systems
Sensor fusion etc.

-> Know the operating principle of multiple "other sensor" types

Force & torque

Strain gauge

Resistance changes when the gauge deforms Result affected by temperature

 $R = \rho \frac{1}{A}$

http://en.wikipedia.org/wiki/Strain_gauge

A"

14.11.2024

Wheatstone bridge for strain gauges

Zero centered, more sensitive output Temperature compensating possible

Quarter-bridge strain gauge circuit with temperature compensation

http://en.wikipedia.org/wiki/Piezoelectricity

Piezoelectricity

Piezo ~ "pressure," from Greek "to press tight, squeeze,"

Mechanical strain generates electric charge in material

- Or charge generates strain

Very high dynamics Sensors and actuators Oscillators

- Quartz clock
- Microprocessors

http://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/PiezoBendingPrinciple.gif/640px-PiezoBendingPrinciple.gif

Piezoresistivity

Mechanical strain induces a change in semiconductor's electrical resistivity

- Highly temperature sensitive
 - Can be compensated for
- Larger change than in normal strain gages
 - More sensitive sensors

Force sensors (load cell)

Strain gauge

- Measures deformation
- Stable, linear

Piezoelectric load cells

- High dynamics, very sensitive
- Small size
- Charge leaks -> measurement drifts
 - No static measurements

Torque sensors

Often strain gage based Also encoder based measurement of axle torsion

Figure Showing the Stress Developed in a Shaft Under Torsion

Pressure sensors

Piezoresistive

- Most common

Piezoelectric

- High dynamics. Drifting due to leakage.

Strain gauge Capacitive

Hall effect

Hall effect

External magnetic field causes a voltage in the sensor

- Current sensors
- Magnetic field sensors

Very high dynamics Robust sensors since no contact

- Integrated into one chip

Magnetic sensors

Magnetic switch

- Mechanical or electrical
- Magnetic field intensity
- On/off
 - Motor commutation

Magnetometer

- Senses magnitude and direction of external magnetic field
- Electric compass

A reed kapcsoló működése

Operation of the reed switch

Magnetic encoders

- Hall sensors sense the direction or the change of the magnetic field
 - E.g. gear tooth recognition

Temperature & imaging

Temperature

Thermocouple

- Change in voltage, a few μV per °C
- Temperature up to 2000 °C, fast response

Resistance temperature sensor/detector (RTD)

- Change in resistance (Pt100 100 ohm at 0 $^{\circ}C$)
- High accuracy, linear response
- Usually for temperatures below 600 °C

- Semiconductor
- Resistance changes. Exponential response -> limited range
- Temperature up to 1700 °C

http://sensorwiki.org/doku.php/sensors/temperature

Pyroelectricity

Change in temperature (infrared radiation) causes voltage difference in certain materials

Application: Passive Infrared (PIR) motion sensors

https://en.wikipedia.org/wiki/Passive_infrared_sensor#/media/File:Motion_detector.jpg

Contactless temperature measurement

All objects emit black body radiation

infrared ~ heat

Benefits from contactless sensing

- Moving objects
- Short response time
- Temperatures over 1300° C

Thermal imaging

Hyperspectral imaging

Water stress map of 160 acre walnut orchard

https://hbr.org/2014/02/what-drones-and-cropdusters-can-teach-about-minimum-viable-product

degree of infection: 90%

degree of infection: 30%

F√F_M false colour scale

https://en.wikipedia.org/wiki/Hyperspectral_imaging

Lecture task

Form groups of 2-4.

What applications can you find for hyperspectral imaging on the internet?

Prepare to introduce one in small groups

Inertial

Acceleration sensors

Navigation, inclination, vibration, input devices, screen orientation Based on

- Piezoelectricity
- Piezoresistivity
- Capacitive sensing

1 housing, 2 preloading bolt, 3 piezoelectric elements, 4 seismic mass, and 5 electric connector.

Example: wearable sensor

Accelerometer measures body vibrations

- Heart rate
- Voice

Lots of signal filtering

- FFT etc.

Gyroscope

Measures rate of angular rotation

- Bias stability (drift), angle random walk, maximum rate of change

Navigation, platform stabilization Principles

- Mechanical complex, expensive, very accurate
- **MEMS low cost & power**, often not very accurate (drift >10 deg/h)
- *Optical accurate, medium cost, shock tolerant*

MEMS sensors

MEMS

Microelectromechanical system

- Part dimensions 1-100 μm

Low power Produced like electronic circuits

- Mass manufacturing -> cheap

Photolithography

Deposit

Mask

Etch

Repeat

Dutch company ASML dominates

MEMS gyroscopes

Cheap, small, low power Error sources

- Bias error causes drift 1-1000° /h
- Acceleration (vibration)
 - Tilting causes acceleration
- Shocks
- Exceeding range

http://www.bosch-sensortec.com/de/homepage/products 3/6 axis sensors 2/inertial measurement unit 1/inertial measurement unit 2

http://www.memsjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-gyroscope.html

MEMS acceleration sensor

MEMS example: Iphone 4 gyroscope

MEMS example: Iphone 4 gyroscope

MEMS example: Iphone 4 gyroscope

http://www.memsjournal.com/2011/01/motion-sensing-in-the-iphone-4-mems-gyroscope.html

Sensor fusion

Inertial measurement unit (IMU)

2-11 degrees of freedom (DOF)

- 1-3 axis accelerometer
- 1-3 axis gyroscope
- 1-3 axis magnetometer
- "Extra" sensors
 - Pressure (altitude from atmospheric pressure)
 - GPS

Sensor fusion

Sensor fusion

Combine several sensors to increase precision

Table 1: Summary Sensor Advantages and Issues

Sensor Type	Advantages	Issues
Accelerometer	Fast.Absolute for "down".	 Cannot measure heading/yaw. Accumulated error due to jitter and noise, etc.
Gyroscope	 Fast. Measures relative orientation on all 3 axes. 	 No absolute references. Long-term bias change, which leads to heading drift.
Geomagnetic Sensor	Absolute for "heading".	 Magnetic anomaly distorts heading.

http://www.edn.com/design/sensors/4402401/2/Motion-sensors-de-mystified

Kalman filter

Algorithm to get "optimal" results from several sensors

Left: Accelerometer, Middle: Kalman fusion, Right: Gyroscope

Sensor fusion for positioning

Absolute measurement (GPS)

VS.

incremental (odometry)

Odometry= data from position sensors such as encoders in wheels and steering wheel

Summary

Everything that can be converted to voltage, current or charge can be measured

Absolute vs incremental sensors

MEMS sensors are cheap and getting more accurate

Sensor fusion

Misc.

Indirect measurements

Strain -> Pressure

Pressure ->Hydraulic force

Force -> Mass

Acceleration -> Position/velocity

Pressure -> Fluid velocity

Back emf voltage -> Motor speed

Other sensors

Electrical – voltage, current

Light – intensity, spectrum

Material concentration – pH, gas detectors etc.

Flow – air or liquid

Radiation – geiger counter

Acoustic

Other sensors – civil engineering

Humidity
Temperature
Light intensity
Carbon dioxide
Air speed
Radiation
Smoke detector

