Instagram Fake Account Classifier

Name: Parnika Sunda

Institution: Unified Mentor

Date: July 20, 2025

Instagram Fake Account Classifier – Data Science Project Report

1. Objective

The goal of this project is to develop a machine learning model that can classify Instagram accounts as either **fake/spammer** or **genuine**. This is based on a range of account-level features such as whether the account has a profile picture, how many followers/followings it has, if it's private, and patterns in the username/fullname.

Detecting fake accounts is essential for maintaining trust on social media platforms and can also help in spam prevention, influencer analysis, and social monitoring.

2. Dataset Overview

Two datasets were provided:

- train.csv: 576 rows × 12 columns (used to train and validate the models)
- test.csv: 120 rows × 12 columns (used to test model predictions)

Key Features:

Feature	Description
profile pic	1 if profile picture exists, else 0
nums/length username	Ratio of numeric chars in username
fullname words	Word count in full name
nums/length fullname	Ratio of numeric chars in full name
name==username	1 if name equals username
description length	Bio/description character count

external URL

1 if a link is in bio

private

1 = private account, 0 = public

#posts

Number of posts

#followers

Number of followers

#follows

Number of accounts followed

fake

Target label: 0 = genuine, 1 = fake

No missing values were found in either dataset.

3. Exploratory Data Analysis (EDA)

Class Distribution:

288 fake and 288 genuine accounts → perfectly balanced dataset

Visual Insights:

1. Profile Picture:

Accounts without profile pictures were more likely to be fake.

2. Privacy Setting:

o Public accounts had slightly more fake users, possibly to reach wider audiences.

3. Followers/Following:

- Genuine accounts had a broader follower distribution.
- Fake accounts tended to follow fewer than 1000 users.
- Binned visualizations revealed many fake accounts existed in low follower count ranges (0-50).

4. Username Patterns:

 Accounts with a high ratio of numbers in usernames had higher fake probability.

5. Heatmap + Histograms:

- Strong correlation observed between #followers, #follows, and the fake label
- Feature distributions were skewed in a way that supported class imbalance clues (e.g., lots of low-follower accounts were fake).

6. Scatter Matrix & Boxplots:

 Gave multivariate view of fake vs genuine data clusters, confirming earlier patterns.

🔖 4. Model Building

We implemented and evaluated two classification models:

1. Logistic Regression

Why? Simple, linear baseline model that's easy to interpret.

- Applied StandardScaler to normalize features.
- Model trained on 80% of data and validated on 20%.
- Evaluation Metrics:

Accuracy: 86.2% Precision(1): 93% Recall(1): 75% F1-score(1): 83% ✓ **Strength**: High precision → low false positives (when model says "fake," it's mostly correct)

 \bigwedge Weakness: Lower recall \rightarrow it missed some fake accounts.

2. Decision Tree Classifier

- ★ Why? Good for capturing non-linear relationships and providing visual insight.
 - No feature scaling needed
 - Plotted decision tree for explainability
 - Showed feature importance

text

CopyEdit

Accuracy: 87.07% Precision(1): 88% Recall(1): 83% F1-score(1): 85%

- Strength: More balanced between precision and recall
- **Strength**: Clearly interpretable via tree plot
- Important Features Identified:
 - #followers, profile pic, private, nums/length username, description length

📊 5. Model Comparison

Metric	Logistic Regression	Decision Tree
Accuracy	86.2%	87.1% 🔽
Precision (Fake)	93%	88%
Recall (Fake)	75%	83% 🔽
F1-score (Fake)	83%	85% 🔽
Explainability	X Limited	High

Conclusion:

The **Decision Tree model slightly outperformed Logistic Regression**, with a more balanced performance and higher explainability. It successfully identified key patterns among fake accounts, such as having no profile picture, low follower count, and username containing numbers.

6. Final Predictions

The best-performing model (Decision Tree) was used to make predictions on the test.csv dataset. The predicted results can be used to flag or review suspicious accounts further.

7. Future Work

- Apply ensemble models like **Random Forest** or **XGBoost** for better generalization
- Add text-based features like:
 - o Bio sentiment
 - Caption content
 - Hashtags usage

- Add time-based behavior (e.g., posting frequency, account age)
- Collect real-time Instagram data using APIs (if permitted)
- Try cross-validation and hyperparameter tuning for robustness

Final Thoughts

This project demonstrates how simple features can be powerful in identifying fake or spam accounts on social media. With further enhancement and real-time data, such models can become an essential part of digital safety and content moderation tools.