Machine Learning Foundations

(機器學習基石)

Lecture 9: Linear Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 8: Noise and Error

learning can happen with target distribution $P(y|\mathbf{x})$ and low E_{in} w.r.t. err

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
- Linear Regression Algorithm
- Generalization Issue
- Linear Regression for Binary Classification
- 4 How Can Machines Learn Better?

Credit Limit Problem

 $\mathcal{Y} = \mathbb{R}$: regression

Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (\mathbf{x_0}, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

$$y \approx \sum_{i=0}^{d} \mathbf{w}_{i} x_{i}$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

 $h(\mathbf{x})$: like perceptron, but without the sign

Illustration of Linear Regression

linear regression: find lines/hyperplanes with small residuals

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{\text{in}}(h\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\underbrace{h(\mathbf{x}_n)}_{\mathbf{w}^T \mathbf{x}_n} - y_n)^2$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underset{(\mathbf{x}, y) \sim P}{\mathcal{E}} (\mathbf{w}^T \mathbf{x} - y)^2$$

next: how to minimize $E_{in}(\mathbf{w})$?

Fun Time

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- birth month
- 2 monthly income
- 3 current debt
- number of credit cards owned

Reference Answer: 2

Customers with higher monthly income should naturally be given a higher credit limit, which is captured by the positive weight on the 'monthly income' feature.

Matrix Form of $E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \left\| \begin{array}{c} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{array} \right\|^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \dots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \underbrace{\mathbf{x}}_{N \times d+1} \underbrace{\mathbf{w}}_{d+1 \times 1} - \underbrace{\mathbf{y}}_{N \times 1} \right\|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

- E_{in}(w): continuous, differentiable, convex
- necessary condition of 'best' w

$$\nabla \textit{E}_{in}(\textbf{w}) \equiv \begin{bmatrix} \frac{\partial \textit{E}_{in}}{\partial \textit{w}_0}(\textbf{w}) \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_1}(\textbf{w}) \\ \vdots \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_d}(\textbf{w}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

—not possible to 'roll down'

task: find \mathbf{w}_{LIN} such that $\nabla E_{in}(\mathbf{w}_{LIN}) = \mathbf{0}$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{X}}_{\mathbf{A}} \mathbf{w} - 2 \mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{y}}_{\mathbf{b}} + \underbrace{\mathbf{y}^T \mathbf{y}}_{\mathbf{c}} \right)$$

one w only

$$E_{in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$

$$\nabla E_{in}(w) = \frac{1}{N} \left(2aw - 2b \right)$$
simple! :-)

vector w

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$

$$\nabla E_{\rm in}(\mathbf{w}) = \frac{1}{N} (2\mathbf{A}\mathbf{w} - 2\mathbf{b})$$

similar (derived by definition)

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{LIN}$$
 such that $\frac{2}{N} (\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y}) = \nabla E_{in}(\mathbf{w}) = \mathbf{0}$

invertible X^TX

easy! unique solution

$$\mathbf{w}_{\mathsf{LIN}} = \underbrace{\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}}_{\mathsf{pseudo-inverse}} \mathbf{x}^{\dagger}$$

• often the case because $N \gg d + 1$

singular X^TX

- many optimal solutions
- · one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X^{\dagger} in other ways

practical suggestion:

 $\label{eq:continuous} \text{use } \frac{\text{well-implemented}}{\text{instead of}} \frac{\dagger}{\left(X^T X\right)^{-1}} \frac{\dagger}{X^T} \\ \text{for numerical stability when } \frac{\dagger}{\text{almost-singular}}$

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix \mathbf{X} and output vector \mathbf{y} by

$$X = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger} $(d+1)\times N$
- 3 return $\underbrace{\mathbf{w}_{LIN}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

Fun Time

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{LIN}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Reference Answer: (3)

Note that $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$. Then, a simple substitution of \mathbf{w}_{LIN} reveals the answer.

Is Linear Regression a 'Learning Algorithm'?

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

No!

- analytic (closed-form) solution, 'instantaneous'
- not improving E_{in} nor E_{out} iteratively

Yes!

- good E_{in}?yes, optimal!
- good E_{out}?
 yes, finite d_{VC} like perceptrons
- improving iteratively?
 somewhat, within an iterative pseudo-inverse routine

if $E_{out}(\mathbf{w}_{LIN})$ is good, learning 'happened'!

Benefit of Analytic Solution: 'Simpler-than-VC' Guarantee

$$\overline{E_{\text{in}}} = \underbrace{\mathcal{E}}_{\mathcal{D} \sim P^N} \Big\{ E_{\text{in}}(\mathbf{w}_{\text{LIN}} \text{ w.r.t. } \mathcal{D}) \Big\}^{\text{to be shown}} \text{ noise level} \cdot \left(1 - \frac{d+1}{N}\right)$$

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 = \frac{1}{N} \|\mathbf{y} - \mathbf{X} \mathbf{X}^{\dagger} \mathbf{y}\|^2$$

predictions
$$\frac{1}{N} \| (\underbrace{\mathbf{I}}_{\text{identity}} - \underbrace{\mathbf{X}}^{\dagger}) \mathbf{y} \|^2$$

call XX[†] the hat matrix H because it puts ∧ on **y**

Geometric View of Hat Matrix

in \mathbb{R}^N

- $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{\mathsf{LIN}}$ within the span of X columns
- $\mathbf{y} \hat{\mathbf{y}}$ smallest: $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{span}$
- H: project y to ŷ ∈ span
- I H: transform y to y $\hat{y} \perp span$

claim: trace(I - H) = N - (d + 1). Why? :-)

An Illustrative 'Proof'

- if y comes from some ideal $f(X) \in \text{span}$ plus **noise**
- **noise** transformed by I H to be $y \hat{y}$

$$\begin{split} E_{\text{in}}(\mathbf{w}_{\text{LIN}}) &= \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 &= \frac{1}{N} \|(\mathbf{I} - \mathbf{H}) \mathbf{noise}\|^2 \\ &= \frac{1}{N} (N - (d+1)) \|\mathbf{noise}\|^2 \end{split}$$

$$\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$$

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right) \text{(complicated!)}$$

The Learning Curve

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right)$$

 $\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$

- both converge to σ^2 (**noise** level) for $N \to \infty$
- expected generalization error: ^{2(d+1)}/_N
 —similar to worst-case quarantee from VC

linear regression (LinReg): learning 'happened'!

Fun Time

Which of the following property about H is not true?

- 1 H is symmetric
- $2 H^2 = H$ (double projection = single one)
- (3) $(I H)^2 = I H$ (double residual transform = single one)
- 4 none of the above

Reference Answer: (4)

You can conclude that (2) and (3) are true by their physical meanings! :-)

Linear Classification vs. Linear Regression

文本 Linear Classification

$$\mathcal{Y} = \{-1, +1\}$$

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{T}\mathbf{x})$$

$$\operatorname{err}(\hat{y}, y) = [\hat{y} \neq y]$$

NP-hard to solve in general

Linear Regression

$$\mathcal{Y} = \mathbb{R}$$

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

$$\operatorname{err}(\hat{y}, y) = (\hat{y} - y)^2$$

efficient analytic solution

$$\{-1,+1\}\subset\mathbb{R}$$
: linear regression for classification?

- 1 run LinReg on binary classification data \mathcal{D} (efficient)
- 2 return $g(\mathbf{x}) = \text{sign}(\mathbf{w}_{\text{LIN}}^T \mathbf{x})$

but explanation of this heuristic?

Relation of Two Errors

$$\operatorname{err}_{0/1} = \left[\operatorname{sign}(\mathbf{w}^T \mathbf{x}) \neq y \right] \quad \operatorname{err}_{\operatorname{sqr}} = \left(\mathbf{w}^T \mathbf{x} - y \right)^2$$

$$\operatorname{err}_{\mathsf{sqr}} = \left(\mathbf{w}^\mathsf{T} \mathbf{x} - \mathbf{y}\right)^2$$

$$err_{0/1} \le err_{sqr}$$

Linear Regression for Binary Classification

$$err_{0/1} \le err_{sqr}$$

```
classification E_{out}(\mathbf{w}) \stackrel{VC}{\leq} classification <math>E_{in}(\mathbf{w}) + \sqrt{\dots}
\leq regression E_{in}(\mathbf{w}) + \sqrt{\dots}
```

- (loose) upper bound errsqr as err to approximate err_{0/1}
- trade bound tightness for efficiency

w_{LIN}: useful baseline classifier, or as **initial PLA/pocket vector**

Fun Time

Which of the following functions are upper bounds of the pointwise 0/1 error $\llbracket \text{sign}(\mathbf{w}^T\mathbf{x}) \neq y \rrbracket$ for $y \in \{-1, +1\}$?

- $\mathbf{0} \exp(-y\mathbf{w}^T\mathbf{x})$
- **2** $\max(0, 1 y \mathbf{w}^T \mathbf{x})$
- 3 $\log_2(1 + \exp(-y\mathbf{w}^T\mathbf{x}))$
- 4 all of the above

Reference Answer: 4

Plot the curves and you'll see. Thus, all three can be used for binary classification. In fact, all three functions connect to very important algorithms in machine learning and we will discuss one of them soon in the next lecture.

Stay tuned.:-)

Summary

- When Can Machines Learn? 2 Why Can Machines Learn?

Lecture 8: Noise and Error

How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem use hyperplanes to approximate real values
- Linear Regression Algorithm analytic solution with pseudo-inverse
- Generalization Issue

$$E_{\rm out} - E_{\rm in} \approx \frac{2(d+1)}{N}$$
 on average

- Linear Regression for Binary Classification
 - 0/1 error < squared error
- next: binary classification, regression, and then?
- 4 How Can Machines Learn Better?