Collection of arbitrary mathematical facts

Inhaltsverzeichnis

1	Set	Theory	2			
	1.1	Zorn's Lemma	2			
2	Alge	ebra	3			
	2.1	Cauchy-Schwarz	3			
	2.2	Sylow Theorems	3			
	2.3	Mordell's inequality	4			
	2.4	Facts about finite rings	4			
3	Prol	pabilities	5			
	3.1	Chernoff-Hoeffding	5			
4	Ana	lysis	5			
	4.1	Inequalities	5			
	4.2		6			
5	Тор	ology	6			
	5.1		6			
6	Discrete 6					
	6.1	Gamma Function	6			
7	Functional analysis 6					
	7.1	Minkowski-functional	6			
	7.2	Kolmogorov's normability criterion	7			
	7.3	Baire's theorem	7			
	7.4	Open mapping theorem	7			
		7.4.1 Lemma	7			
	7.5	Hahn-Banach dominated extension theorem	8			
	7.6	Banach-Alaoglu	8			
8	Ope	rator theory	8			
	-	· · · · · · · · · · · · · · · · · · ·	8			
	-					

	8.2	l^p spaces	8
	8.3	Riesz lemma	9
	8.4	Compact Operators and spaces	9
	8.5	Arzela-Ascoli	9
	8.6	Proposition of Schauder	9
	8.7	Closed range theorem	10
9	(Alg	gebraic) Number Theory	10
9	` -	gebraic) Number Theory Propositions (from Neukirch)	
9	9.1	•	10
9	9.1 9.2	Propositions (from Neukirch)	10 10
9	9.1 9.2 9.3	Propositions (from Neukirch)	10 10 11

An undeniable fact: It holds $0 \in \mathbb{N}$. If you do not see that this is obviously, inarguably true, then you are lost.

1 Set Theory

1.1 Zorn's Lemma

Let X be a partially ordered set, in which every chain has an upper bound. Then X has a maximal element.

Proof Show that the set $\mathcal{X} \subseteq 2^X$ of chains in X has a maximal element, so X has a maximal chain (whose upper bound then is the required maximal element).

Let $f: 2^X \setminus \{\emptyset\} \to X$ be a choice function for X, so $f(S) \in S$ for each $S \subseteq X$. Then define

$$g: \mathcal{X} \to \mathcal{X}, \quad C \mapsto \begin{cases} C, & \text{if } C \text{ maximal} \\ C \cup \{f(\{x \in X \mid x \text{ comparable with } C\})\}, & \text{otherwise} \end{cases}$$

where we say that an element $x \in X$ is comparable with a set $S \subseteq X$, if x is comparable with s for all $s \in S$.

Definition Tower Call a subset $\mathcal{T} \subseteq \mathcal{X}$ tower, if

- $\emptyset \in \mathcal{T}$
- If $C \in \mathcal{T}$, then $g(C) \in \mathcal{T}$
- If $S \subseteq T$ is a chain, then $\bigcup S \in T$

The intersection of towers is a tower, so have a smallest tower $\mathcal{R} := \bigcap \{ \mathcal{T} \subseteq \mathcal{X} \mid \mathcal{T} \text{ tower} \}$ in \mathcal{X} . We show that \mathcal{R} is a chain. Consider the set $\mathcal{C} := \{ A \in \mathcal{R} \mid A \text{ comparable to } \mathcal{R} \}$ of comparable elements in \mathcal{R} .

Show \mathcal{C} is a tower, so $\mathcal{R} = \mathcal{C}$ and therefore, \mathcal{R} is a chain.

Trivially, we have $\emptyset \in \mathcal{C}$ as $\emptyset \subseteq A$ for each $A \in \mathcal{R}$. For a chain $\mathcal{S} \subseteq \mathcal{C}$ and any $A \in \mathcal{R}$, have either $A \subseteq S$ for some $S \in \mathcal{S}$, so $A \subseteq \bigcup \mathcal{S}$, or $S \subseteq A$ for each $S \in \mathcal{S}$, so $\bigcup \mathcal{S} \subseteq A$. Therefore, it is left to show that for \mathcal{C} is closed under g. Let $B \in \mathcal{C}$.

Show The set $\mathcal{U} := \{A \in \mathcal{R} \mid A \subseteq B \vee g(B) \subseteq A\} \subseteq \mathcal{R}$ is a tower. It then follows that $\mathcal{R} = \mathcal{U}$, so for each $A \in \mathcal{R}$, have $A \subseteq B \subseteq g(B)$ or $g(B) \subseteq A$. Hence, g(B) is comparable to \mathcal{R} . Obviously, $\emptyset \in \mathcal{U}$ and for a chain $\mathcal{S} \subset \mathcal{U}$, also $\bigcup \mathcal{S} \in \mathcal{U}$. Additionally, for $U \in \mathcal{U}$, have:

If $g(B) \subseteq U$, then also $g(B) \subseteq g(U)$.

Otherwise, $U \subseteq B$. If B = U, then $g(B) \subseteq g(U)$, so we may assume $U \subsetneq B$. We have that $U \in \mathcal{R}$, so $g(U) \in \mathcal{R}$ (because \mathcal{R} is a tower) and therefore, B is comparable to g(U). $\Rightarrow g(U) \subseteq B$, because if $B \subsetneq g(U)$, we would have $U \subsetneq B \subsetneq g(U)$, however, $g(U) \setminus U$ has at most one element. Hence, $g(U) \in \mathcal{U}$, so $\mathcal{U} = \mathcal{C} = \mathcal{R}$ are towers.

Show The set $C := \bigcup \mathcal{R}$ is a maximal element in \mathcal{X} .

 \mathcal{R} is a chain and a tower, so $C \in \mathcal{R}$. We also have $g(C) \in \mathcal{R}$, as \mathcal{R} is a tower. $\Rightarrow g(C) \subseteq C$ and therefore C = g(C), so C is maximal in \mathcal{X} by definition of g.

2 Algebra

2.1 Cauchy-Schwarz

For $x, y \in V$ inner product space, have

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

Proof idea Start with

$$\langle x, x \rangle \left\langle y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x, \ y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \right\rangle \ge 0$$

2.2 Sylow Theorems

For a finite group G with $|G| = n = p^e m$, $p \in \mathbb{P}$, $p \perp m$ have:

- There is $U \leq G$ with $|U| = p^e$
- For $U, V \leq G$ with $|U| = |V| = p^e$ have $U = qVq^{-1}$ for $q \in G$
- Let s be the count of $U \leq G$, $|U| = p^e$. Then s|m and $s \equiv 1 \mod p$

Proof idea Use group operations, for 1. on $\chi := \{U \leq G \mid |U| = p^e\}$, for 2. on $\chi := \{gU \mid g \in G\}$ and for 3. on $\chi := \{U \leq G \mid |U| = p^e\}$ with conjugation.

2.3 Mordell's inequality

Have $\gamma_d \leq \gamma_{d-1}^{(d-1)/(d-2)}$. Inductively, it follows $\gamma_d \leq \gamma_k^{(d-1)/(k-1)}$ (γ here is Hermite's constant).

Proof Let L be a d-rank lattice for which Hermite's constant is reached, with dual L^* and $x \in L^*$ with $||x|| = \lambda(L^*)$.

$$\Rightarrow \left(\langle x \rangle^{\perp} \cap L\right)^{*} = \pi_{\langle x \rangle^{\perp}}(L^{*}) \Rightarrow \operatorname{vol}(L^{*}) = \|x\| \operatorname{vol}\left(\langle x \rangle^{\perp} \cup L\right)^{*}$$

$$\Rightarrow \sqrt{\gamma_{n-1}}^{1-n} \lambda(L)^{n-1} \leq \operatorname{vol}\left(\langle x \rangle^{\perp} \cap L\right) = \|x\| \operatorname{vol}(L) \leq \sqrt{\gamma_{n}} \operatorname{vol}(L^{*})^{\frac{1}{n}} \operatorname{vol}(L)$$

$$\Rightarrow \sqrt{\gamma_{n}} \sqrt{\gamma_{n-1}}^{n-1} \geq \frac{\lambda(L)^{n-1}}{\operatorname{vol}(L)^{\frac{n-1}{n}}} = \sqrt{\gamma_{n}}^{n-1} \Rightarrow \sqrt{\gamma_{n}}^{n-2} \geq \sqrt{\gamma_{n-1}}^{n-1}$$

where M^* denotes the unique "dual" of M in $\langle M \rangle$.

2.4 Facts about finite rings

• \mathbb{F}_q^* is cyclic for $q = p^n$

Proof By the theorem on finitly generated abelian groups, have

$$\mathbb{F}_q^* \cong \mathbb{Z}/n_1\mathbb{Z} \times ... \times \mathbb{Z}/n_s\mathbb{Z}$$

with $n_1|...|n_s$. Assume s>1 and $n_1\neq 1$. Then $n_s< N:=|\mathbb{F}_q^*|$. For $x\in \mathbb{F}_q^*$, have therefore that $\operatorname{ord}(x)|n_s$, so p(x)=0 with $p(X):=X^{n_s}-1$. But this is a contradiction, as p is a polynomial of degree n_s with $N>n_s$ roots in the field \mathbb{F}_q .

• $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ is cyclic if p > 2 or $\alpha \leq 2$

Proof Use induction over α .

 $\alpha = 1$ Follows directly from the previous point, as $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$ as rings.

 $\alpha > 1$ Consider the canonical ring homomorphism

$$\pi: \mathbb{Z}/p^{\alpha}\mathbb{Z} \to (\mathbb{Z}/p^{\alpha}\mathbb{Z}) / ([p^{\alpha-1}]), \quad x \mapsto [x]$$

Then the restriction of π to $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$

$$f: (\mathbb{Z}/p^{\alpha}\mathbb{Z})^* \to \left((\mathbb{Z}/p^{\alpha}\mathbb{Z}) / ([p^{\alpha-1}]) \right)^*, \quad x \mapsto \pi(x)$$

is a surjective group homomorphism. We have

$$\ker(f) = \pi^{-1}(\{1\}) = 1 + ([p^{\alpha - 1}]) = \left\{1 + k[p^{\alpha - 1}] \mid k \in \{0, ..., p - 1\}\right\}$$

As $[p^{\alpha-1}]^2 = 0$, have $\ker(f) = \langle 1 + [p^{\alpha-1}] \rangle$ by the binomial theorem. On the other hand, by the second isomorphism theorem, have the ring isomorphy $((\mathbb{Z}/p^{\alpha}\mathbb{Z}) / ([p^{\alpha-1}])) \cong \mathbb{Z}/p^{\alpha-1}\mathbb{Z}$, which is cyclic by the induction hypothesis. Therefore, $G/\operatorname{im}(f) \cong \ker(f)$ yields:

$$(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*/\langle 1+[p^{\alpha-1}]\rangle\cong\langle [g]\rangle$$
 for some $g\in(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$

Assume now that $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ is not cyclic. Then $\operatorname{ord}(g) \neq (p-1)p^{\alpha-1}$, so $\operatorname{ord}(g) = (p-1)p^{\alpha-2}$, as $\operatorname{ord}(1+[p^{\alpha-1}]) = p$. If $\alpha = 2$, then $\operatorname{ord}(g) = p-1 \perp p$, and the Chinese Remainder theorem yields that

$$(\mathbb{Z}/p^{\alpha}\mathbb{Z})^* \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/(p-1)p^{\alpha-2}\mathbb{Z} \cong \mathbb{Z}/(p-1)p^{\alpha-1}\mathbb{Z}$$

and we are done. Therefore, let $\alpha > 2$ and p > 2 and consider the mapping

$$\phi: \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/(p-1)p^{\alpha-2}\mathbb{Z} \to (\mathbb{Z}/p^{\alpha}\mathbb{Z})^*, \quad (k,n) \mapsto (1+k[p^{\alpha-1}])g^n$$

which is a homomorphism, as $(1+k[p^{\alpha-1}])(1+l[p^{\alpha-1}])=1+(l+k)[p^{\alpha-1}]$ and $\operatorname{ord}(g)=(p-1)p^{\alpha-2}$ and bijective, so an isomorphism. How to continue from here?

3 Probabilities

3.1 Chernoff-Hoeffding

 $X_1,...,X_n$ independent, $0 \le X_i \le 1$. Then

$$\Pr\left[\sum X_i - \operatorname{E}\left[\sum X_i\right] \ge t\right] \le \exp\left(-2\frac{t^2}{n}\right)$$

4 Analysis

4.1 Inequalities

Young's inequality

$$xy \le \frac{x^p}{p} + \frac{y^q}{q} \text{ for } \frac{1}{p} + \frac{1}{q} = 1, \ x, y \ge 0$$

Proof By convexity of log, have

$$\frac{1}{p}\log x^p + \frac{1}{q}\log y^q \le \log\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right)$$

$$\Rightarrow \log(xy) \le \log\left(\frac{1}{p}x^p + \frac{1}{q}y^q\right)$$

Hölder's inequality For measurable functions f,g and $\frac{1}{p} + \frac{1}{q} = 1$ (w.r.t measure μ) have:

$$||fg||_1 = \int |fg| d\mu \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \left(\int |g|^q d\mu\right)^{\frac{1}{q}} = ||f||_p ||g||_q$$

Proof By Young's inequality have

$$\begin{split} &\frac{|fg|}{\|f\|_p \|g\|_q} \leq \frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^q}{q\|f\|_q^q} \\ \Rightarrow &\frac{|fg|}{\|f\|_p \|g\|_q} \leq \frac{1}{p\|f\|_p^p} \|f\|_p^p + \frac{1}{q\|g\|_q^q} \|f\|_q^q = 1 \end{split}$$

4.2 Transformation

 $\phi: U \to \mathbb{R}^n$ injective. Then

$$\int_{\phi(U)} f(x)dx = \int_{U} f(\phi(x))|\det(D\phi)(u)|dx$$

5 Topology

5.1 Tychonoffs Theorem

For a collection of compact topological spaces $(X_i)_{i\in I}$ the product space $\prod_{i\in I} X_i$ is compact.

6 Discrete

6.1 Gamma Function

Defined for $\mathbb{C} \setminus -\mathbb{N}$. Possible definitions:

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt \text{ if } \operatorname{Re}(z) > 0$$

$$\frac{1}{\Gamma(z)} = \lim_{n \to \infty} \binom{n+z-1}{n} n^{1-z}$$

We get

$$\Gamma(z+1) = z\Gamma(z)$$

7 Functional analysis

7.1 Minkowski-functional

For an absorbing set $A \subseteq X$ the functional

$$p_A: X \to \mathbb{R}, \quad x \mapsto \inf\{t \ge 0 \mid x \in tA\}$$

is

• subadditive if A is convex

- homogenous if A is balanced
- point-separating if A is bounded and X Hausdorff

7.2 Kolmogorov's normability criterion

X is normable, iff an open, bounded, convex set $A \subseteq X$ exists.

Proof idea Use the Minkowski-functional for $\tilde{A} = A \cap -A$ which is open, nonempty, bounded, convex.

7.3 Baire's theorem

X complete and metric, $(A_n)_n$ open and dense $\Rightarrow \bigcap A_n$ is dense.

Proof idea For each $y \in X$, construct sequence $(x_n)_n$ with

$$x_n \in B_{\frac{1}{n}}(y) \cap \left(\bigcap_{k \le n} A_n\right) \Rightarrow y = \lim x_n \in \operatorname{cl}\left(\bigcap_{i \le k} A_i\right) \text{ for all } k$$

7.4 Open mapping theorem

X, Y Banach and $T: X \to Y$ linear, continuous and surjective. Then T is open.

Proof idea

$$\bigcup_{K \in \mathbb{N}} \operatorname{cl} \left(T(B_K(0)) \right) = Y \ \Rightarrow \ \operatorname{cl} \left(T(B_K(0)) \right)^{\circ} \neq \emptyset \text{ for some } K$$

by Baire's theorem. It follows that $B_{\epsilon}(0) \subseteq T(B_1(0))$, so T is open, by the following lemma:

7.4.1 Lemma

Let $T \in \mathcal{L}(X,Y)$ such that $0 \in \text{cl}(T(B_X))^{\circ} \neq \emptyset$. Then $0 \in T(B_X)^{\circ}$, where $B_X = B_1(0)$ is the unit ball.

Proof The idea is, that T is linear and continuous, so we can work with series. Let $y \in \epsilon B_Y \subseteq \operatorname{cl}(T(B_X))$. Recursively construct sequences $(x_n)_{n \in \mathbb{N}}$ in X and $(y_n)_{n \in \mathbb{N}}$ in Y with

$$y_0 = y$$
, $||y_n|| < 2^{-n}\epsilon$,
 $||x_n|| < 2^{-n}$, $||y_n - T(x_n)|| < 2^{-n-1}\epsilon$
 $y_{n+1} = y_n - T(x_n)$

This is possible as $T(2^{-n}B_X)$ is dense in $2^{-n}\epsilon B_Y$ for each $n \in \mathbb{N}$. By completeness of X have then that $\sum_n x_n$ converges to $x \in X$. Therefore, $T(x) = \sum_n T(x_n) = \sum_n y_n - y_{n+1} = y_0 = y$ as $y_n \to 0$ for $n \to 0$.

7.5 Hahn-Banach dominated extension theorem

Let X be a \mathbb{R} -vector space, $p: X \to \mathbb{R}$ sublinear (i.e. subadditive and homogenous w.r.t $\lambda \geq 0$) and $Y \subseteq X$ a subspace. A form $f: Y \to \mathbb{R}$ with $f \leq p$ can be extended to $F: X \to \mathbb{R}$ with $F \leq p$.

Proof idea Let $F: U \to \mathbb{R}$ be the maximal element (exists by Zorn's lemma) in

$$\left\{F:U\to\mathbb{R}\mid Y\subseteq U\subseteq X,\ F\big|_Y=f,\ F\leq p\right\}$$

Then U = X, as for $v \in X \setminus U$ have $p(v + y) - F(y) \ge \lambda \ge F(z) - p(z - v)$ for $y, z \in U$ by the reverse triangle inequality. Then $F'(u + tv) := F(u) + \lambda t$ is greater than F.

7.6 Banach-Alaoglu

 $V \subseteq X$ neighborhood of $0 \Rightarrow K = \{\phi \in X' \mid |\phi(V)| \le 1\}$ compact w.r.t weak-*-topology (weakest topology on X' so that all $\hat{x} \in X''$ are continuous, $\hat{x} : X' \to \mathbb{K}, \ \phi \mapsto \phi(x)$).

Proof idea Let $\gamma(x) > 0$ with $x \in \gamma(x)V$ for all $x \in X$. Then

$$\mathbb{K}^X = \underset{x \in X}{\times} \mathbb{K} \implies K \subseteq \underset{x \in X}{\times} B_{\gamma(x)}(0)$$
 compact by Tychonoff's theorem

The topologies on the sets match, as the weak-*-topology on K has a local base of finite intersections of $\hat{x_i}^{-1}(]-\epsilon_i,\epsilon_i[)$ and

$$\underset{x \in X}{\textstyle \times} B_{\gamma(x)}(0) \cap X' \text{ has one of sets } \bigcap_{1 \leq i \leq n}] - \epsilon_i, \epsilon_i [\times \underset{x \neq x_i}{\textstyle \times} \mathbb{K} \cap X'$$

8 Operator theory

8.1 Neumann series

Let $T \in \mathcal{L}(X)$. If $\sum_{n \in \mathbb{N}} T^n$ converges, then 1 - T is invertible with

$$(1-T)^{-1} = \sum_{n \in \mathbb{N}} T^n$$

To get convergence, it is sufficient to have ||T|| < 1 and X is complete.

8.2 l^p spaces

Note that from 4.1 we get that $l^p \simeq (l^q)'$ for p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

8.3 Riesz lemma

Let $U \subseteq \text{closed subspace of a normed space. For } \delta > 0 \text{ have then } x \in X \text{ with } ||x|| = 1$ and distance greater than $1 - \delta$ from U.

Proof idea Consider any $x \in X \setminus U$ and an almost closest point $u \in U$. Then scale x - u appropriately.

8.4 Compact Operators and spaces

From 8.3 one can conclude that the unit ball B_X is compact iff dim $X < \infty$. Therefore, consider operators $T \in \mathcal{L}(X,Y)$ such that $\operatorname{cl}(T(B_X))$ compact, these are a Banach space $\mathcal{K}(X,Y)$.

Proof idea To show that $\mathcal{K}(X,Y)$ is closed in $\mathcal{L}(X,Y)$, consider diagonal sequences.

8.5 Arzela-Ascoli

Let X be a compact topological space. Then the continuous functions C(X) from X to \mathbb{R} are normed via $\|\cdot\|_{\infty}$. If a $M \subseteq C(X)$ is bounded, closed and equicontinuous (i.e. $\forall x \in X, \epsilon > 0$ \exists neighborhood N of $x \forall x \in M : x(N) \subseteq B_{\epsilon}(x(s))$), then M is compact.

Proof Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in M. As X is compact, it is separable, so have $X = \{s_n \mid n \in \mathbb{N}\}$. Therefore, recursively construct subsequences

$$\left(x_n^{(k)}\right)_{n\in\mathbb{N}}$$
 such that $\left(x_n^{(k)}(s_k)\right)_{n\in\mathbb{N}}$ converges

and consider the diagonal sequence $(y_n)_{n\in\mathbb{N}}$. Then $(y_n(s_k))_{n\in\mathbb{N}}$ converges for each $k\in\mathbb{N}$. By equicontinuity, have for each $k\in\mathbb{N}$ a neighborhood N_k of s_k such that $\forall x\in M:$ $x(N_k)\subseteq B_\epsilon(x(s_k))$. Therefore, there is a subcover N_i for $i\in I$ finite. As $(y_n(s_k))_{n\in\mathbb{N}}$ converges for each k, it simultaneously converges for each $i\in I$. This yields that $(y_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence w.r.t $\|\cdot\|_{\infty}$.

8.6 Proposition of Schauder

For $T \in \mathcal{L}(X,Y)$ between Banach-spaces, have that T is compact if and only if $T' \in \mathcal{L}(Y',X')$ is compact.

Proof Prove \Rightarrow , the other direction follows. Then $K := \operatorname{cl}(T(B_X))$ is compact metric space. For $(y'_n)_{n \in \mathbb{N}}$ have

$$\left(y_n'\big|_K\right)_{n\in\mathbb{N}}$$
 is a sequence in $C(K)$

It also fulfills the conditions of 8.5, so there is a convergent subsequence indexed by $(n_k)_{k\in\mathbb{N}}$. Then also $(T'y_{n_k})_{k\in\mathbb{N}}$ converges, so $T'(B_{Y'})$ is relatively compact.

8.7 Closed range theorem

Let X, Y be Banach spaces, $T \in \mathcal{L}(X, Y)$. The the following are equivalent

- ran(T) closed
- $\operatorname{ran}(T) = (\ker(T'))_{\perp}$
- ran(T') closed
- $\operatorname{ran}(T') = (\ker(T))^{\perp}$

Proof Show (ii) \Leftrightarrow (iv), the rest is relatively easy. Let $x' \in (\ker(T))^{\perp}$. Then have $z' : \operatorname{ran}(T) \to \mathbb{K}$ linear with $z' \circ T = x'$ (isomorphism theorem). A complex computation using the open mapping theorem shows that z' is continuous. A Hahn-Banach extension of z' to Y then yields a preimage under T' of x'.

For the other direction, consider $Z := \operatorname{cl}(\operatorname{ran}(T))$. By the Hahn-Banach theorem, we can extend functionals on Z to functionals on Y, so $\operatorname{ran}(T') \simeq Z'$ by the isomorphism $\operatorname{ran}(T') \to Z', \ T'(y') \mapsto y'\big|_{Z}$.

Therefore, for all $y' \in Y'$ have that $||y'||_Z || \le c ||y' \circ T||$ where c > 0.

Consider any $y \in Z$ with $||y|| \le 1$. If $y \notin \operatorname{cl}(T(2cB_X))$, the Hahn-Banach separation theorem yields $y' \in Y'$ such that

$$2c||y'\circ T|| = \sup(2c(y'\circ T)(B_X)) \le y'(y) = ||y'|_Z(y)|| \le ||y'|_Z|| \le c||y'\circ T||$$

a contradiction. Therefore, $\operatorname{cl}(T(B_X))^{\circ} \neq \emptyset$ and so $\tilde{T}: X \to Z, \ x \mapsto T(x)$ is open by 7.4.1. It follows that $\operatorname{ran}(T) = \operatorname{ran}(\tilde{T})$ is closed, as X is closed.

9 (Algebraic) Number Theory

9.1 Propositions (from Neukirch)

Let K/\mathbb{Q} separable and \mathcal{O}_K integral closure of \mathbb{Z} .

- **2.9** For $\alpha_1, ..., \alpha_n \in \mathcal{O}_K$ basis of K, then $d(\alpha_1, ..., \alpha_n)\mathcal{O}_K \subseteq \alpha_1\mathbb{Z} + ... + \alpha_n\mathbb{Z}$.
- **2.10** Each finitly generated \mathcal{O}_K -module $M \subseteq K$ is a free \mathbb{Z} -module.
- **3.1** \mathcal{O}_K is a Dedekind domain, so noetherian, integrally closed and each prime ideal $p \neq 0$ is maximal.
- **3.3** Each ideal except (0), (1) has a unique factorization in prime ideals (up to order).

9.2 Minkowski's theorem (Neukirch 4.4)

Let V be a n-dimensional euclidean vector space, $\Gamma \subseteq V$ be a complete lattice, $X \subseteq V$ convex and balanced with $\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma)$, then $X \cap \Gamma \neq \emptyset$.

9.3 Dirichlet's unit theorem

For K/\mathbb{Q} finite with ring of integers \mathcal{O}_K , have $\mathcal{O}_K^* \cong \mu(K) \oplus G$, where $\mu(K)$ are the roots of unity and G is a free group of rank r+s-1, where r is the number of real \mathbb{Q} -embeddings $K \to \mathbb{R}$ and s is the number of conjugate pairs of complex \mathbb{Q} -embeddings $K \to \mathbb{C}$.

9.4 Square number fields

For a square-free $D \in \mathbb{Z}$, $D \neq 0, 1$ have $K = \mathbb{Q}(\sqrt{D})$. Then $d := d_K = D$ if $D \equiv 1 \mod 4$ and $d := d_K = 4D$ otherwise. Furthermore, $\mathcal{O}_K = \mathbb{Z}[\frac{1}{2}(d_K + \sqrt{d_K})]$.

In the case D > 1, have that $\mathcal{O}_K^* = \langle \epsilon_1 \rangle$, where $\epsilon_1 = \frac{1}{2}(\bar{x} + y\sqrt{d_K})$ for the smallest solution $x, y \geq 0$ of $x^2 - dy^2 = -4$ (or ... = 4 if this has no integral solution).

In the case D < 0, have that

$$\mathcal{O}_{K}^{*} = \begin{cases} \{1, -1, i, -i\} & \text{if } D = -1\\ \left\{e^{\frac{2\pi i k}{6}} \middle| k \in \{0, ..., 5\}\right\} & \text{if } D = -3\\ \{1, -1\} & \text{otherwise} \end{cases}$$

Proof idea of the second part For $\epsilon = \frac{1}{2}(u + v\sqrt{d_K}) \in \mathcal{O}_K^*$ with $\epsilon^{-1} = \frac{1}{2}(w + t\sqrt{d_K})$ have

$$uw + dtv = 4$$
, $ut + vw = 0$ \Rightarrow $w(u^2 - dv^2) = 4u$, $u(w^2 - dt^2) = 4w$

so $(u^2-dv^2)(w^2-dt^2)=16$. By using $u\equiv dv\mod 2$, $w\equiv dt\mod 2$ and $d\equiv d^2\mod 4$ get that u,v also fulfill the equation (as $u^2-dv^2,w^2-dt^2\equiv 0\mod 4$). By Dirichlet's unit theorem, have that $\mathcal{O}_K^*=\langle\epsilon\rangle$ for $\epsilon=\frac{1}{2}(u+v\sqrt{d_K})$. Wlog have that $u,v\geq 0$ (maybe use ϵ^{-1}), then $\epsilon_1=\epsilon^k$, k>0. It must hold k=1, otherwise u,v would solve $x^2-dy^2=\pm 4$ with $u^2+dv^2< x^2+dy^2$ (which we consider as "smaller").

9.5 Ramification (DE: Verzweigung)

Let \mathcal{R} be a Dedekind domain, K = Quot(l) and \mathcal{O} integral closure of \mathcal{R} in field extension L|K. Then \mathcal{O} is a Dedekind domain.

For a prime ideal \mathfrak{p} in \mathcal{R} , have

- **8.2** L|K separable $\Rightarrow \sum e_i f_i = n := [L:K]$ where $\mathfrak{p}\mathcal{O} = \mathfrak{B}_1^{e_1}...\mathfrak{B}_r^{e_r}$ is the factorization of \mathfrak{p} into prime ideals in \mathcal{O} and $f_i = [\mathcal{O}/\mathfrak{B}_i : \mathcal{R}/\mathfrak{p}]$. The proof uses the CRT and the properties of $\mathcal{O}/\mathfrak{B}_i$ as \mathcal{R}/\mathfrak{p} -vector space.
- **8.3** Let $L = K(\alpha)$ for an integral, primitive element $\alpha \in \mathcal{O}$. Then $\mathfrak{p} = \mathfrak{B}_1^{e_1}...\mathfrak{B}_r^{e_r}$ for $\mathfrak{B}_i = \mathfrak{p}\mathcal{O} + p_i(\alpha)\mathcal{O}$, where the minimal polynomial p of α splits into irreducible factors mod $\mathfrak{p}\mathcal{O}$

$$p(X) \equiv p_1(X)^{e_1} \dots p_r(X)^{e_r} \mod \mathfrak{p}\mathcal{O}$$

Also have $f_i = \deg(p_i)$