Package 'metanetwork'

December 5, 2022

Title Handling and Representing Trophic Networks in Space and Time

Type Package

```
Version 0.7.0
Date 2022-12-04
Description A toolbox to handle and represent trophic networks in space or time across aggrega-
     tion levels. This package contains a layout algorithm specifically designed for trophic net-
     works, using dimension reduction on a diffusion graph kernel and trophic levels. Impor-
     tantly, this package provides a layout method applicable for large trophic networks.
License GPL-3
URL https://github.com/MarcOhlmann/metanetwork,
     https://marcohlmann.github.io/metanetwork/
NeedsCompilation no
Repository CRAN
Date/Publication 2022-12-05 14:10:02 UTC
RoxygenNote 7.2.0
BugReports https://github.com/MarcOhlmann/metanetwork/issues
biocViews
Imports GGally, network, ggplot2, intergraph, dplyr, igraph, Matrix,
     visNetwork, grDevices, RColorBrewer, magrittr, ggimage, rlang,
Suggests spelling, testthat, covr, knitr, markdown, rmarkdown
Language en-US
Config/testthat/edition 3
Author Marc Ohlmann [aut, cre] (<a href="https://orcid.org/0000-0003-3772-3969">https://orcid.org/0000-0003-3772-3969</a>),
     Jimmy Garnier [aut, ctb],
     Laurent Vuillon [aut, ctb]
Maintainer Marc Ohlmann <marcohlmann@live.fr>
Depends R (>= 3.5.0)
```

2 append_agg_nets

R topics documented:

	append_agg_nets	2
	attach_layout	3
	build_metanet	5
	compute_TL	6
	diff_plot	7
	extract_networks	9
	ggmetanet	10
	ggnet.default	12
	group_layout.default	13
	is.metanetwork	13
	metanet_build_pipe	14
	metanet_pipe	15
	meta_angola	16
	meta_norway	17
	meta_vrtb	18
	plot_trophicTable	18
	print	19
	TL_tsne.default	20
	vismetaNetwork	21
	visNetwork.default	22
	%>%	23
		_
Index		2 4
appeı	nd_agg_nets append aggregated networks	

Description

Method to append aggregated metawebs and local networks using the hierarchy described in trophicTable

Usage

```
append_agg_nets(metanetwork)
## S3 method for class 'metanetwork'
append_agg_nets(metanetwork)
```

Arguments

metanetwork object of class 'metanetwork'

Details

It uses the network aggregation method developed in Ohlmann et al. 2019. It computes group abundances and edge probabilities of the aggregated networks.

attach_layout 3

Value

an object of class 'metanetwork', with aggregated networks appended to the network list. NULL

References

Ohlmann, M., Miele, V., Dray, S., Chalmandrier, L., O connor, L., & Thuiller, W. 2019. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology letters, 22 4, 737-747.

See Also

```
plot_trophicTable()
```

Examples

```
library(metanetwork)
data(meta_angola)
meta_angola = append_agg_nets(meta_angola)
names(meta_angola)
```

attach_layout

compute and attach metanetwork layouts

Description

Method to compute 'TL-tsne' and 'group-TL-tsne' layouts and save it as node attributes of the focal network.

Usage

```
attach_layout(
  metanetwork,
  g = NULL,
  beta = 0.1,
  mode = "TL-tsne",
  TL_tsne.config = TL_tsne.default,
  res = NULL,
  group_layout.config = group_layout.default
)

## S3 method for class 'metanetwork'
  attach_layout(
  metanetwork,
  g = NULL,
  beta = 0.1,
  mode = "TL-tsne",
```

4 attach_layout

```
TL_tsne.config = TL_tsne.default,
  res = NULL,
  group_layout.config = group_layout.default
)
```

Arguments

metanetwork object of class 'metanetwork'

g character indicating the name of the network for which the 'TL-tsne' layout is computed, default is 'metaweb'

beta the diffusion parameter of the diffusion kernel, a positive scalar controlling the squeezing of the network, default is 0.1

mode 'TL-tsne' or 'group-TL-tsne', default is 'TL-tsne'.

TL_tsne.config configuration list for mode 'TL-tsne', default is TL_tsne.default

res resolution for the 'group-TL-tsne' layout

group_layout.config

configuration list for mode 'group-TL-tsne', default is group_layout.default

Details

The 'TL-tsne' layout is a diffusion based layout algorithm specifically designed for trophic networks. In metanetwork, first axis is the trophic level (see compute_TL method) whereas the second axis is computed using a diffusion graph kernel (Kondor & Lafferty 2002) and tsne dimension reduction algorithm to (see van der Maaten & Hinton (2008) and 'tsne' R package). Let A be the adjacency matrix of the considered network and D its degree diagonal matrix. The Laplacian matrix of the symmetrised network is defined by:

$$L = D - A - t(A)$$

The diffusion graph kernel is:

$$K = exp(-beta * L)$$

It is a similarity matrix between nodes according to a diffusion process. beta is the diffusion constant, it must be provided by the user. beta parameter influences the layout by grouping together similar paths (see pyramid vignette). Each node of the focal network has an attribute layout_beta_VALUE. If this function is run several times for a given beta value, repetitions of the layout algorithm will be stored as node attributes.

The 'group-TL-tsne' layout is a variation of 'TL-tsne layout. For a focal network, it mixes 'TL-tsne' layout at the desired aggregated level with the layout_with_graphopt function from igraph. It clusters nodes belonging to the same group. 'group-TL-tsne' layout is recommended for large networks since you only need to compute 'TL-tsne' at the aggregated network that is much smaller than the focal network. group_layout.config allows controlling the overall size of the groups.

build_metanet 5

Value

an object of class 'metanetwork', with the computed layout added as node attribute of the considered network

NULL

References

Kondor, R. I., & Lafferty, J. (2002, July). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th international conference on machine learning (Vol. 2002, pp. 315-322). Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).

See Also

```
ggmetanet(), vismetaNetwork(),group_layout.default
```

Examples

```
library(metanetwork)
library(igraph)
# on angola dataset (metaweb)
data("meta_angola")
meta_angola = attach_layout(meta_angola,beta = 0.05)
V(meta_angola$metaweb)$layout_beta0.05
```

build_metanet

Build metanetwork object

Description

Build metanetwork object

Usage

```
build_metanet(
  metaweb,
  abTable = NULL,
  trophicTable = NULL,
  compute_local_nets = TRUE
)
```

Arguments

metaweb

metaweb of the metanetwork, object of class 'graph', 'matrix', 'data.frame' or 'dgCMatrix'. Metaweb needs to be directed and connected. This argument must be non-null.

6 compute_TL

abTable node abundances in local networks, matrix of class 'matrix', columns must have

names corresponding to node labels of the metaweb, rows are node abundances in local networks. Default is null, in that case, uniform abundances are assigned

trophicTable a 'matrix' or 'data.frame' indicating hierarchy of the nodes. Names of the

columns correspond to the different resolutions. It indicates the membership

of each node of the metaweb. Default is null.

compute_local_nets

a boolean, indicates whether local networks must be computed or not. Default

is TRUE

Value

an object of S3 class 'metanetwork'

Examples

```
library(metanetwork)
library(igraph)
#with a single metaweb
g = igraph::make_ring(5,directed = TRUE)
meta = build_metanet(g)

#on Angola dataset (re-building the dataset)
data("meta_angola")
metaweb = meta_angola$metaweb
abTable = meta_angola$abTable
trophicTable = meta_angola$trophicTable
meta_angola = build_metanet(metaweb,abTable,trophicTable)
print(meta_angola)
```

compute_TL

compute trophic levels

Description

Method to compute trophic levels using graph Laplacian using the method described in MacKay et al 2020.

Usage

```
compute_TL(metanetwork)

## S3 method for class 'metanetwork'
compute_TL(metanetwork)
```

Arguments

metanetwork object of class 'metanetwork'

diff_plot 7

Details

Let A be the adjacency matrix of the considered network and D its degree diagonal matrix. The Laplacian matrix of the symmetrised network is defined by:

$$L = D - A - t(A)$$

With v = indegree(G) - outdegree(G) the imbalance degree vector, the trophic level x is defined as the solution of:

$$Lx = v$$

For a connected network, the solution is unique up to a translation. We then fix the minimum trophic level value at 0 thus fixing trophic levels of all others species. Local networks may be disconnected due to sampling effect. In that case, we fix the minimum value on each connected component.

Value

an object of class 'metanetwork', with computed trophic levels stored as node attribute TL NULL

References

MacKay, R. S., Johnson, S., & Sansom, B. (2020). How directed is a directed network? Royal Society open science, 7(9), 201138.

Examples

```
library(metanetwork)
library(igraph)

#on angola dataset
data(meta_angola)
meta_angola = compute_TL(meta_angola)
V(meta_angola$metaweb)$TL
```

diff_plot

plot difference network

Description

Function to represent difference between two networks belonging to a metanetwork with specific layout ('TL-tsne' or group 'TL-tsne') using either 'ggnet' or 'visNetwork' visualisation. This function represent the difference between g1 and g2 (g1-g2).

8 diff_plot

Usage

```
diff_plot(
 metanetwork,
 g1,
 g2,
 beta = 0.1,
 mode = "TL-tsne",
 vis_tool = "ggnet",
  edge_thrs = NULL,
  layout_metaweb = FALSE,
  flip_coords = FALSE,
 alpha_per_group = NULL,
 alpha_per_node = NULL,
 TL_tsne.config = TL_tsne.default,
 nrep_ly = 1,
 ggnet.config = ggnet.default,
 visNetwork.config = visNetwork.default
)
```

Arguments

metanetwork	object of class 'metanetwork'			
g1	network (of class 'igraph') of metanetwork			
g2	network (of class 'igraph') of metanetwork			
beta	the diffusion parameter of the diffusion kernel, a positive scalar controlling the squeezing of the network			
mode	mode used for layout, either 'TL-tsne' or 'group-TL-tsne' (see attach_layout()). Default is 'TL-tsne'			
vis_tool	a character indicating the visualisation tool, either 'ggnet' or visNetwork			
edge_thrs	if non-null, a numeric (between 0 and 1) indicating an edge threshold for the representation			
layout_metaweb	a boolean indicating whether the layout of the metaweb should be used to represent the difference network. to use metaweb layout = T, you need first to compute 'TL-tsne' layout for the metaweb for this beta value using attach_layout()			
flip_coords	a boolean indicating whether coordinates should be flipped. In that case, y-axis is the trophic level and x-axis is the layout axis			
alpha_per_group				
	<pre>controlling alpha per group (only for 'ggnet' vis), a list of format list(resolutions = "XX", groups = XX, alpha_focal = XX, alpha_hidden = XX), see example</pre>			
alpha_per_node	<pre>controlling alpha per node (only for 'ggnet' vis), a list of format list(nodes = XX,alpha_focal = XX,alpha_hidden = XX), see example</pre>			
TL_tsne.config	configuration list for mode 'TL-tsne', default is TL_tsne.default			
nrep_ly	If several layouts for this beta value are attached to the metaweb (if layout_metaweb = T), index of the layout to use, see attach_layout()			

extract_networks 9

```
ggnet.config configuration list for ggnet representation, default is ggnet.default
visNetwork.config
```

configuration list for visNetwork representation, default is visNetwork.default

Value

an object of class ggplot or visNetwork, representation of the difference network

See Also

```
attach_layout()
```

Examples

```
#on Angola dataset
library(igraph)
library(metanetwork)

data(meta_angola)

diff_plot(g1 = meta_angola$X2003,g2 = meta_angola$X1986,metanetwork = meta_angola,
beta = 0.05)
```

extract_networks

extract networks from a metanetwork object

Description

Function to extract metawebs and local networks from a metanetwork object

Usage

```
extract_networks(metanetwork)
```

Arguments

metanetwork the object whose networks need to be extracted

Details

```
Return a list of 'igraph' objects
```

Value

a list of igraph objects with attributes computed by metanetwork

10 ggmetanet

Examples

```
library(metanetwork)
data("meta_angola")
nets = extract_networks(meta_angola)
sapply(nets,class)
```

ggmetanet

ggmetanet

Description

Function that provides network static representation (using 'ggnet') from a 'metanetwork' object using 'TL-tsne' or 'group-TL-tsne' layout.

Usage

```
ggmetanet(
 metanetwork,
  g = NULL,
  beta = 0.1,
  legend = NULL,
 mode = "TL-tsne",
  edge_thrs = NULL,
  layout_metaweb = FALSE,
  nrep_1y = 1,
  flip_coords = FALSE,
  diff_plot_bool = FALSE,
  alpha_per_group = NULL,
  alpha_per_node = NULL,
  alpha_interactive = FALSE,
  ggnet.config = ggnet.default,
 TL_tsne.config = TL_tsne.default
)
```

Arguments

metanetwork	object of class metanetwork
g	network (igraph object) to represent, default is metaweb
beta	the diffusion parameter of the diffusion kernel, a positive scalar controlling the vertical squeezing of the network
legend	resolution for the legend, legend resolution must be a coarser resolution than the resolution of g , default is $NULL$
mode	mode used for layout, 'TL-tsne' or 'group-TL-tsne' Default is 'TL-tsne'. This argument can also be a two-column matrix for custom layout.
edge_thrs	if non-null, a numeric (between 0 and 1) indicating an edge threshold for the representation $\ \ $

ggmetanet 11

layout_metaweb a boolean indicating whether the layout of the metaweb should be used to represent the network to use metaweb layout = TRUE, you need first to compute metaweb layout for this beta value using attach_layout() nrep_ly If several layouts for this beta value are attached to the metaweb (if layout_metaweb = T), index of the layout to use, see attach_layout() flip_coords a boolean indicating whether coordinates should be flipped. diff_plot_bool boolean, do not edit by hand alpha_per_group controlling alpha per group (only for 'ggnet' vis), a list of format list(resolutions = "XX", groups = XX, alpha_focal = XX, alpha_hidden = XX), see example alpha_per_node controlling alpha per node (only for 'ggnet' vis), a list of format list(nodes = XX, alpha_focal = XX, alpha_hidden = XX), see example In that case, y-axis is the trophic level and x-axis is the layout axis alpha_interactive a boolean indicating whether alpha (that is node transparency) should be asked in interactive mode to the user configuration list for ggnet representation, default is ggnet.default ggnet.config TL_tsne.config configuration list for mode 'TL-tsne', default is TL_tsne.default

Details

At each call of the function with 'TL-tsne' layout, it computes a layout for the current beta value. If a layout is already attached to the current network, it uses directly this layout (without computing). This function provides many static visualisation tools:

- customising ggnet parameters wrapped in ggnet.config
- legending using the trophicTable
- playing on group transparency (alpha)
- using the metaweb layout
- building a legend for large networks.

Value

an object of class ggplot, the current network representation

See Also

```
attach_layout(),ggnet.default
```

Examples

```
library(metanetwork)
library(igraph)

#lattice example
g = make_lattice(dim = 2,length = 4,directed = TRUE)
#building metanetwork and computing trophic levels
```

12 ggnet.default

```
meta0 = build_metanet(g)
meta0 = compute_TL(meta0)
ggmetanet(meta0)
#storing layout
meta0 = attach_layout(meta0)
ggmetanet(meta0)
#custom ggnet parameters
ggnet.custom = ggnet.default
ggnet.custom$label = TRUE
ggnet.custom\$edge.alpha = 0.5
ggnet.custom alpha = 0.7
ggnet.custom$arrow.size = 1
ggnet.custom$max_size = 12
# using pre-computed layout and custom ggnet parametersfor vertebrates metaweb
data("meta_vrtb")
#custom ggnet parameters
ggnet.custom = ggnet.default
ggnet.custom$label = TRUE
ggnet.custom\$edge.alpha = 0.5
ggnet.custom alpha = 0.7
ggnet.custom$arrow.size = 1
ggnet.custom$max_size = 12
#at SBM group level
beta = 0.005
ggmetanet(meta_vrtb,g = meta_vrtb$metaweb_group,flip_coords = TRUE,
         beta = beta,legend = "group",
         ggnet.config = ggnet.custom,edge_thrs = 0.1)
```

ggnet.default

Default configuration for ggnet

Description

A list with parameters customizing ggmetanet representation (see ggnet documentations)

Usage

```
ggnet.default
```

Format

An object of class metanetwork_config of length 16.

group_layout.default 13

Examples

```
# display all default settings
ggnet.default

# create a new settings
ggnet.custom = ggnet.default
ggnet.custom$edge.size = 2
ggnet.custom
```

group_layout.default Default configuration for group-TL-tsne layout

Description

A list with parameters customizing group-TL-tsne layout

Usage

```
group_layout.default
```

Format

An object of class list of length 3.

Examples

```
# display all default settings
group_layout.default

# create a new settings object with n_neighbors set to 5
group_layout.custom = group_layout.default
group_layout.custom$group_height = 10
group_layout.custom
```

is.metanetwork

Test of belonging to class metanetwork

Description

Return a boolean indicating whether the object belongs to class metanetwork

Usage

```
is.metanetwork(metanetwork)
## S3 method for class 'metanetwork'
is.metanetwork(metanetwork)
```

Arguments

```
metanetwork the object to test
```

Value

```
a boolean indicating whether the object belongs to class {\tt metanetwork} {\tt NULL}
```

Examples

```
library(metanetwork)
library(igraph)

g = make_ring(5,directed = TRUE)
meta = build_metanet(g)
is.metanetwork(meta)
#on Angola dataset
data("meta_angola")
is.metanetwork(meta_angola)
```

metanet_build_pipe

Build and execute 'metanetwork' pipeline

Description

Method executing the whole metanetwork pipeline, including building 'metanetwork' object (build_metanet,append_agg_rcompute_TL, attach_layout)

Usage

```
metanet_build_pipe(
  metaweb,
  abTable = NULL,
  trophicTable = NULL,
  compute_local_nets = TRUE,
  verbose = TRUE,
  beta = 0.1
)
```

metanet_pipe 15

Arguments

abTable

metaweb metaweb of the metanetwork, object of class 'graph', 'matrix', 'data.frame' or 'dgCMatrix'. Metaweb needs to be directed and connected. This parameter must be non-null.

abundances of nodes in local networks, matrix of class 'matrix', columns must have names corresponding to node labels of the metaweb, rows are node abundances of the metaweb.

dances in local networks. Default is null, in that case, uniform abundances are

assigned

trophicTable a 'matrix' or 'data.frame' indicating hierarchy of the nodes. Names of the

columns correspond to the different resolutions. It indicates the membership

of each node of the metaweb. Default is null.

compute_local_nets

a boolean, indicates whether local networks must be computed or not. Default

is TRUE

verbose a boolean indicating whether message along the pipeline should be printed

beta the diffusion parameter of the diffusion kernel, a positive scalar controlling the

squeezing of the network

Value

object of class 'metanetwork', with computed layout stored as node attribute

Examples

```
library(metanetwork)
library(igraph)

g = make_lattice(dimvector = c(4,4),2,3,directed = TRUE)
meta0 = metanet_build_pipe(g)
ggmetanet(meta0)
```

metanet_pipe

Execute 'metanetwork' pipeline

Description

Method executing the whole metanetwork pipeline for the initial metanetwork object (append_agg_nets, compute_TL, attach_layout)

Usage

```
metanet_pipe(metanetwork, beta = 0.1, verbose = TRUE)
## S3 method for class 'metanetwork'
metanet_pipe(metanetwork, beta = 0.1, verbose = TRUE)
```

16 meta_angola

Arguments

metanetwork object of class 'metanetwork'

beta the diffusion parameter of the diffusion kernel, a positive scalar controlling the

squeezing of the network

verbose a boolean indicating whether message along the pipeline should be printed

Value

object of class 'metanetwork', with computed trophic levels and layout stored as node attribute NULL

Examples

```
library(metanetwork)
library(igraph)

g = make_lattice(dimvector = c(4,4),2,3,directed = TRUE)
meta0 = build_metanet(g)
meta0 = metanet_pipe(meta0)
ggmetanet(meta0)
```

meta_angola

Angola fishery metanetwork metanetwork built from: Angelini & Velho 2011, Data from: Angelini, R., Velho, VF. (2011) Ecosystem structure and trophic analysis of Angolan fishery landings. Scientia Marina 75(2)

Description

Angola fishery metanetwork metanetwork built from: Angelini & Velho 2011, Data from: Angelini, R., Velho, VF. (2011) Ecosystem structure and trophic analysis of Angolan fishery landings. Scientia Marina 75(2)

Usage

```
data(meta_angola)
```

Format

A object of class 'metanetwork'

The metaweb from Angelini & Velho 2011, containing 28 groups and 127 interactions, a igraph object

metawle Table Abundance table built from biomass at two dates: 1986 and 2003, a matrix

trophicTable Taxonomic table, a three column data.frame with three different taxonomic levels (species (or group), phylum and kingdom)

meta_norway 17

Source

https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1254

meta_norway

Norway soil metanetwork metanetwork built from: Calderon-Sanou et al. 2021, Data from: Calderon-Sanou, I., Munkemuller, T., Zinger, L., Schimann, H., Yoccoz, N. G., Gielly, L., ... & Thuiller, W. (2021). Cascading effects of moth outbreaks on subarctic soil food webs. Scientific reports, 11(1), 1-12.

Description

Norway soil metanetwork metanetwork built from: Calderon-Sanou et al. 2021, Data from: Calderon-Sanou, I., Munkemuller, T., Zinger, L., Schimann, H., Yoccoz, N. G., Gielly, L., ... & Thuiller, W. (2021). Cascading effects of moth outbreaks on subarctic soil food webs. Scientific reports, 11(1), 1-12.

Usage

data(meta_norway)

Format

A object of class 'metanetwork'

The metaweb from Calderon-Sanou et al. 2021, containing 40 groups and 204 interactions, a igraph object

metasteTable Abundance table built from eDNA data in disturbed (moth outbreaks) and non-disturbed sites, a matrix

trophicTable Trophic table, a three column data.frame with three different taxonomic levels (trophic_group, trophic_class and taxa)

Source

https://www.nature.com/articles/s41598-021-94227-z

18 plot_trophicTable

meta_vrtb

European vertebrates metanetwork metanetwork built using data from: O'Connor, L. M., Pollock, L. J., Braga, J., Ficetola, G. F., Maiorano, L., Martinez-Almoyna, C., ... & Thuiller, W. (2020). Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. Journal of Biogeography, 47(1), 181-192. and Maiorano, L., Montemaggiori, A., Ficetola, G. F., O'connor, L., & Thuiller, W. (2020). TETRA-EU 1.0: a species-level trophic metaweb of European tetrapods. Global Ecology and Biogeography, 29(9), 1452-1457.

Description

European vertebrates metanetwork metanetwork built using data from: O'Connor, L. M., Pollock, L. J., Braga, J., Ficetola, G. F., Maiorano, L., Martinez-Almoyna, C., ... & Thuiller, W. (2020). Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. Journal of Biogeography, 47(1), 181-192. and Maiorano, L., Montemaggiori, A., Ficetola, G. F., O'connor, L., & Thuiller, W. (2020). TETRA-EU 1.0: a species-level trophic metaweb of European tetrapods. Global Ecology and Biogeography, 29(9), 1452-1457.

Usage

data(meta_vrtb)

Format

A object of class 'metanetwork'

The metaweb from Maiorano et al. 2020, O'Connor et al 2020, containing 1101 species and 49013 interactions, a igraph object

metatrephicTable Trophic table, a two columns data.frame with a column containing species name and a column containing Stochastic Block Model groups inferred in O'Connor et al 2020

Source

https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.13138,https://onlinelibrary. wiley.com/doi/abs/10.1111/jbi.13773

plot_trophicTable

Plot trophic groups hierarchy

Description

Function to represent trophic groups hierarchy provided by trophicTable

print 19

Usage

```
plot_trophicTable(metanetwork, res = "all", ggnet.config = ggnet.default)
```

Arguments

metanetwork object of class 'metanetwork'

res resolutions included in the hierarchy representation. Default is "all" (all resolu-

tions are then included) but can be also a vector of given resolutions

ggnet.config configuration list for ggnet representation, default is ggnet.default

Value

object of class 'ggnet', representation of group hierarchy

Examples

```
library(metanetwork)
#on Angola data_set
data("meta_angola")
plot_trophicTable(meta_angola)
```

print

print metanetwork

Description

Print method for class metanetwork

Usage

```
print(metanetwork)
## S3 method for class 'metanetwork'
print(metanetwork)
```

Arguments

metanetwork object of class 'metanetwork'

Value

character indicating number of nodes and edges of the metaweb, available resolutions and number of local networks

NULL

20 TL_tsne.default

Examples

```
library(metanetwork)
library(igraph)

g = make_ring(5,directed = TRUE)
meta = build_metanet(g)
print(meta)

#on Angola dataset
data("meta_angola")
print(meta_angola)

#on Norway dataset
data("meta_norway")
print(meta_norway)
```

TL_tsne.default

Default configuration for the diffusion kernel based t-sne

Description

A list with parameters customizing configuration for the diffusion kernel based t-sne (see 'tsne' R package documentation)

Usage

```
TL_tsne.default
```

Format

An object of class metanetwork_config of length 11.

Examples

```
# display all default settings
TL_tsne.default

# create a new settings object with n_neighbors set to 5
TL_tsne.custom = TL_tsne.default
TL_tsne.custom$max_iter = 5
TL_tsne.custom
```

vismetaNetwork 21

etwork	
--------	--

Description

Function that provides network dynamic representation (using 'visNetwork') from a 'metanetwork' object with a layout based on a diffusion kernel

Usage

```
vismetaNetwork(
  metanetwork,
  g = NULL,
  beta = 0.1,
  legend = NULL,
  mode = "TL-tsne",
  edge_thrs = NULL,
  layout_metaweb = FALSE,
  nrep_ly = 1,
  flip_coords = FALSE,
  diff_plot_bool = FALSE,
  x_y_range = c(100, 100),
  visNetwork.config = visNetwork.default,
  TL_tsne.config = TL_tsne.default
)
```

Arguments

metanetwork	object of class metanetwork
g	network (igraph object) to represent, default is metaweb
beta	the diffusion parameter of the diffusion kernel, a positive scalar controlling the vertical squeezing of the network
legend	resolution for the legend, legend resolution must be a coarser resolution than the resolution of g, default is NULL
mode	mode used for layout, 'TL-tsne' for trophic level t-sne. Default is 'TL-tsne'
edge_thrs	if non-null, a numeric (between 0 and 1) indicating an edge threshold for the representation
layout_metaweb	a boolean indicating whether the layout of the metaweb should be used to represent the network to use metaweb layout = T, you need first to compute metaweb layout for this beta value using attach_layout()
nrep_ly	If several layouts for this beta value are attached to the metaweb (if layout_metaweb = T), index of the layout to use, see attach_layout()
flip_coords	a boolean indicating whether coordinates should be flipped. In that case, y-axis is the trophic level and x-axis is the layout axis

22 visNetwork.default

```
diff_plot_bool boolean, do not edit by hand

x_y_range a two dimension numeric vector, indicating dilatation of x,y axis

visNetwork.config

configuration list for visNetwork representation, default is visNetwork.default

TL_tsne.config configuration list for mode 'TL-tsne', default is TL_tsne.default
```

Value

object of class 'visNetwork', dynamic representation of the current network

Examples

```
library(metanetwork)
library(igraph)
data("meta_angola")
## Return htmlwidget
# on angola dataset
meta_angola = attach_layout(meta_angola, beta = 0.05)
vismetaNetwork(meta_angola, beta = 0.05)
```

visNetwork.default

Default configuration for visNetwork

Description

A list with parameters customizing visNetwork visualisation (see visNetwork documentations)

Usage

```
visNetwork.default
```

Format

An object of class metanetwork_config of length 4.

Examples

```
# display all default settings
visNetwork.default

# create a new settings
visNetwork.custom = visNetwork.default
visNetwork.custom$label.size = 10
visNetwork.custom
```

%>%

%>%	Pipe		

Description

Like dplyr, metanetwork also uses the pipe function, %>% to turn function composition into a series of imperative statements.

Value

an object of the class of the output of the last called method/function

Examples

```
library(metanetwork)
data("meta_angola")
meta_angola %>% attach_layout() %>% ggmetanet()
```

Index

```
* datasets
    ggnet.default, 12
    group_layout.default, 13
    meta_angola, 16
    meta_norway, 17
    meta_vrtb, 18
    TL_tsne.default, 20
    visNetwork.default, 22
%>%, <del>23</del>
{\tt append\_agg\_nets}, 2
attach_layout, 3
attach_layout(), 9, 11
build_metanet, 5
compute_TL, 6
diff_plot, 7
extract_networks, 9
ggmetanet, 10
ggmetanet(), 5
ggnet.default, 11, 12
group_layout.default, 5, 13
is.metanetwork, 13
meta_angola, 16
meta_norway, 17
meta_vrtb, 18
metanet_build_pipe, 14
metanet_pipe, 15
plot_trophicTable, 18
plot_trophicTable(), 3
print, 19
\mathsf{TL\_tsne.default}, 20
vismetaNetwork, 21
vismetaNetwork(), 5
visNetwork.default, 22
```