Our Results

Theorem: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using $\varepsilon^{-2} \log d$ bits of space and $O(\log d)$ update time

• Valid only for $\varepsilon < 1/d^c$

• Improves on $O(\log^2 d \log \log d)$ update time of [KNPW '11]

• Many other results for CountSketch, $\|x\|_{\infty}$ estimation etc.

Our Results

- **Theorem**: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using $\varepsilon^{-2} \log d$ bits of space and $O(\log d)$ update time
 - Valid only for $\varepsilon < 1/d^c$
 - Improves on $O(\log^2 d \log \log d)$ update time of [KNPW '11]
- Many other results for CountSketch, $||x||_{\infty}$ estimation etc.

Main Ideas