

Seminar: Convex Geometry

Approximation of Convex Bodies and Applications

Ao Wei

TUM School of Computation, Information and Technology Technical University of Munich

June 12th, 2025

Outline

- Löwner-John's Ellipsoids
- Reverse Isoperimetric Inequality
- Asymptotic best Approximation by Polytopes
- 4 Heurisitic Principle

Introduction to John's Ellipsoids John's Theorem

Theorem 1 (John's Ellipsoid Theorem). Let $C \subset \mathbb{R}^d$ be a convex body. Then there exists an ellipsoid E of maximum volume in C (called the **John ellipsoid**) such that if c is the center of E, then the following inclusions hold:

$$E \subseteq C \subseteq c + d(E - c),$$

In particular, if C is symmetric in origin, then the tighter bound holds:

$$E \subseteq C \subseteq c + \sqrt{d(E - c)},$$

Introduction to John's Ellipsoids 2d samples

Asymmetric:

Introduction to John's Ellipsoids 2d samples

Symmetric:

Uniqueness and John's Characterization TheoremTheorem

Theorem 2. If $C \subset \mathbb{R}^d$ be a convex body, then the inner ellipsoid of maximal volume is unique.

Theorem 3 (John's Characterization). Let $C \in \mathcal{C}_p$ be symmetric in origin and $B^d \subseteq C$. Then the following statements are equivalent:

- (i) B^d is the unique John's Ellipsoid in C
- (ii) There are $u_i \in B^d \cap bdC$ and $\lambda_i > 0$, i=1,...,m, where $d \leq m \leq \frac{1}{2}d(d+1)$, such that

$$I = \sum \lambda_i u_i \otimes u_i , \sum \lambda_i = d.$$

John's Characterization Theorem Illustration of the theorem

John's Characterization Theorem Proof Sketch

 \mathcal{P} : set of all symmetric positive definite $d \times d$ matrices, which is an open convex cone with apex at the origin;

 $\mathcal{E} = \{ A \in \mathcal{P} : Au \cdot v \le h_C(v) \text{ for all } u, v \in bd \ B^d \};$

 $\mathcal{D}=\{A\in\mathcal{P}:det(A)\geq 1\}$ is a closed, smooth and strictly convex set in \mathcal{P} with non-empty interior;

 \mathcal{K} : the support cone of \mathcal{E} at I;

 \mathcal{N} : the normal cone of \mathcal{E} at I;

 ${\mathcal H}$: the unique support hyperplane of ${\mathcal D}$ at I.

Proof Sketch

Def: A convex body is in *John's position* when its John's Ellipsoid is B^d **Sample (2d):**

Def: $\delta^{BM}(\|\cdot\|_1, \|\cdot\|_2) = \inf\{\lambda \geq 1 : \exists T \in GL(d), s.t. B_{\|\cdot\|_1} \subseteq TB_{\|\cdot\|_2} \subseteq \lambda B_{\|\cdot\|_1}\}.$

Other Def: $\delta^{BM}(X,Y)=\inf\{\|T\|\|T^{-1}\|:T\in GL(X,Y)\},\,X,Y$ be two d-dim vector spaces.

Def: $\mathcal{N}(\mathbb{E}^d)$ is the set of all normed spaces on \mathbb{E}^d , endowed with δ^{BM} .

Corollary 1. $\delta^{BM}(\|\cdot\|,|\cdot|) \leq \sqrt{d}$, where $\|\cdot\|$ is the Euclidean norm and $|\cdot| \in \mathcal{N}(\mathbb{E}^d)$

Outline

- 1 Löwner-John's Ellipsoids
- Reverse Isoperimetric Inequality
- Asymptotic best Approximation by Polytopes
- 4 Heurisitic Principle

Reverse Isoperimetric Inequality Recall Isoperimetric Inequality

Recall: Isoperimetric Inequality:

Among all bodies of given volume in \mathbb{R}^d , the Euclidean ball minimizes surface area. Which is, given a convex body $K\subset\mathbb{R}^d$ and S(K) and V(K) being its surface area and volume, we have:

$$\frac{S(B^d)}{V(B^d)^{\frac{d-1}{d}}} \le \frac{S(K)}{V(K)^{\frac{d-1}{d}}}$$

Def: *Isoperimetric quotient* : $\frac{S(K)}{V(K)^{\frac{d-1}{d}}}$

Reverse Isoperimetric Inequality

Theorem 4. Let $C \in C_p$ be symmetric in origin, and T is the transformation makes C into John's position, then:

$$\frac{S(TC)}{V(TC)^{\frac{d-1}{d}}} \le 2d.$$

In particular, the equality holds iff C is a parallelotope.

Reverse Isoperimetric Inequality Ball vs. Cube by n-dims

Lemma 1 (Brascamp-Lieb inequality). Let $u_i \in S^{d-1}$, $\lambda_i > 0$, s.t.

$$I = \sum \lambda_i u_i \otimes u_i , \sum \lambda_i = d.$$

and let f_i be non-negative measurable functions on \mathbb{R} , then:

$$\int_{\mathbb{R}^d} \prod_i f_i (u_i \cdot x)^{\lambda_i} dx \le \prod_i \left(\int_{\mathbb{R}} f_i(t) dt \right)^{\lambda_i}.$$

Lemma 2 (Minkowski Surface Area).

$$S(C) = \lim_{\epsilon \to +0} \frac{V(C + \epsilon B^d) - V(C)}{\epsilon}.$$

Outline

- Löwner-John's Ellipsoids
- Reverse Isoperimetric Inequality
- Asymptotic best Approximation by Polytopes
- 4 Heurisitic Principle

Polytope Approximation of Ellipsoid

d=2: result and example

Recall the fact: The best inscribed n-polygon in circle is the regular polygon.

Easy to see: The best inscribed n-polygon in an ellipse is the affine image of the regular n-polygon in the unit circle.

Polytope Approximation of Ellipsoid

In dimension d>2, finding the best n-facet approximation of the Euclidean ball is already difficult, so obtaining such approximations for general ellipsoids is equally challenging.

Some known results:

- 1. (*Lindelöf, 19th century*) Any optimal polyhedron circumscribed about a Euclidean ball touches each face at its centroid.
- 2. (Ákos G.Horváth, Zsolt Lángi, 2014) For the best polyhedron inscribed in the S^{d-1} with fixed |V|, the following cases are solved:
 - a) |V| = d + 2, for any dimensions d;
 - b) |V| = d + 3, for odd dimensions d find the maximum volume over the family of all polytopes; and for even dimensions d, over the family of not cyclic polytopes.

Asymptotic Formula approximation by circumscribed convex polytopes

Def:

 $\mathcal{P}^{c}_{(n)}(C)$: all polytopes circumscribed to C and have n facets;

$$\delta(C, \mathcal{P}^{c}_{(n)}(C)) = \min\{\delta(C, P) : P \in \mathcal{P}^{c}_{(n)}(C)\};$$

Symmetric difference metric: $\delta^V(C,D) = V(C\Delta D) = V((C/D) \cup (D/C));$

Affine surface area: $\kappa_C > 0$ is the Gauss curvature

$$A(C) = \int_{bd \ C} \kappa_C(x)^{\frac{1}{d+1}} d\sigma(x)$$

Theorem 5. Let $C \in \mathcal{C}_p$ be of class \mathcal{C}^2 with Gauss curvature $\kappa_C > 0$. Then there is a constant $\delta > 0$, depending only on d, such that

$$\delta^{V}(C, \mathcal{P}_{(n)}^{c}) \sim \frac{\delta}{2} A(C)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}} as n \to \infty.$$

Asymptotic FormulaStrategy behind the Proof

Step 1: Prove the lower bound

$$\delta^V(C, \mathcal{P}_{(n)}^c) \ge \frac{\delta}{2\lambda^{f(d)}}...$$

Use local quadratic approximation, apply Zador's theorem, and do global integration;

Step 2: Prove the upper bound

$$\delta^{V}(C, \mathcal{P}_{(n)}^{c}) \leq \frac{\lambda^{g(d)}\delta}{2}...$$

To construct a specific polytope achieving this rate by doing curvature-weighted sampling, build circumscribed polytope and estimate volume excess.

Theorem 6. Let $P_n \in \mathcal{P}_{(n)}$, n = d + 1, ..., be polytopes with minimum isoperimetric quotient amongst all polytopes in $\mathcal{P}_{(n)}$. Then there is a constant $\delta > 0$, depending only on d, such that

$$\frac{S(P_n)^d}{V(P_n)^{d-1}} \sim d^d V(B^d) + \frac{d^d \delta}{2} S(B^d)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}} \text{ as } n \to \infty.$$

Asymptotic Formula similar concequence for inscribed polytope

Theorem 7. Let C be as defined before, then there is a constant $\gamma > 0$, depending only on d, such that

$$\delta^{V}(C, \mathcal{P}_{(n)}^{i}) \sim \frac{\gamma}{2} A(C)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}} \ as \ n \to \infty.$$

Outline

- 1 Löwner-John's Ellipsoids
- Reverse Isoperimetric Inequality
- Asymptotic best Approximation by Polytopes
- 4 Heurisitic Principle

Approximated by random polytopes

Def: Let $C \in \mathbb{R}^n$ be a convex body. A random polytope is the convex hull of finitely N points $[x_1,...,x_N]$ in C that are chosen at random with respect to a probability measure \mathbb{P} . Denote the expected volume

$$\mathbb{E}(C,N) = \int_{K^N} V([x_1,...,x_N]) d\mathbb{P}$$

Theorem 8. (J. Prochno, C. Schütt, E. M. Werne) Let $f: \partial K \to \mathbb{R}_{>0}$ be a density function, i.e. $\int_{\partial K} f(x) d\mu(x) = 1$, then we have

$$\lim_{N \to \infty} \frac{V(C) - \mathbb{E}(f, N)}{N^{-\frac{2}{n-1}}} = c_n \int_{\partial K} \left(\frac{\kappa(x)}{f(x)^2}\right)^{\frac{1}{n-1}} d\mu_{\partial K}(x).$$

The minimum of right-hand integral is attained for the normalized affine surface area measure.

Heurisitic Observations

Precise approximation difference:

$$\delta^{V}(C, \mathcal{P}_{(n)}^{i}) \sim c_{d}A(C)^{\frac{d+1}{d-1}}n^{-\frac{2}{d-1}} \ as \ n \to \infty;$$

Random approximation difference(Q_k is convex hull of k random points):

$$\mathbb{E}(\delta^{V}(C, Q_{k})) \sim \tilde{c}_{d}A(C)k^{-\frac{2}{d+1}} \text{ as } k \to \infty;$$

$$n := \mathbb{E}(|V(Q_{k})|) \sim \tilde{c}_{d}A(C)k^{\frac{d-1}{d+1}} \text{ as } k \to \infty;$$

$$\Rightarrow \mathbb{E}(\delta^{V}(C, Q_{k})) \sim \tilde{c}_{d}^{\frac{d+1}{d-1}}A(C)^{\frac{d+1}{d-1}}n^{-\frac{2}{d-1}} \text{ as } n \to \infty.$$

 \Rightarrow In high dimensions, random approximation is **almost as good as** best approximation.

References

- 1. Gruber, P.M. Convex and Discrete Geometry, Springer, 2007.
- 2. Ball, K. Reverse isoperimetric inequalities, Proc. Amer. Math. Soc. 1991.
- 3. Prochno, J. Best and random approximation of a convex body by a polytope, 2021.
- 4. Horváth, Á.G. Maximum volume polytopes inscribed in the unit sphere, 2014.
- 5. Osserman, R. *The Isoperimetric Inequality, Bulletin of the American Mathematical Society*, Vol. 84, No. 6 (1978), pp. 1182–1238.

Thank you!

Questions?