

公開実用・昭和63- 164689

Best Available Copy

⑯ 日本国特許庁 (JP)

⑪ 実用新案出願公開

⑫ 公開実用新案公報 (U)

昭63- 164689

⑬ Int.CI.¹
F 16 L 37/28

識別記号

厅内整理番号
6636-3H

⑭ 公開 昭和63年(1988)10月26日

審査請求 未請求 (全 頁)

⑮ 考案の名称 逆止弁付管継手

⑯ 実 願 昭62- 56838

⑰ 出 願 昭62(1987)4月14日

⑱ 考案者 脇田 祥太郎 大阪府堺市金岡町1304番地 ダイキン工業株式会社金岡工場内

⑲ 考案者 鈴木 利光 大阪府堺市金岡町1304番地 ダイキン工業株式会社金岡工場内

⑳ 考案者 松川 輝美 大阪府堺市金岡町1304番地 ダイキン工業株式会社金岡工場内

㉑ 出願人 ダイキン工業株式会社 大阪府大阪市北区中崎西2丁目4番12号 梅田センタービル

㉒ 代理人 弁理士 西教 圭一郎 外1名

Best Available Copy

明 稼 書

1、考案の名称

逆止弁付管締手

2、実用新案登録請求の範囲

締手本体12に形成した通路15内に、その締手本体12の一端部12bから他端部12c側に向けてばね18によつて弁体17を付勢して逆止弁を構成し、前記一端部12b側の通路15には押棒13を挿入してその他端部12cに管31などを接続した状態で押棒13によつて弁体17を前記ばね18のはね力に抗して開弁状態とする逆止弁付管締手において、

締手本体12の前記一端部12bには袖直角断面がC字状であつて、半径方向外方に弾発力を有するばね受け部材16を挿入し、ばね受け部材16は締手本体12の前記他端部12c側の端面で前記ばね18を受け、締手本体12の前記一端部12bではね受け部材16の一端部をかしめによつて支持し、締手本体12の前記一端部12bは管11などにろう付溶接されることを特徴とする

逆止弁付管継手。

3、考案の詳細な説明

産業上の利用分野

本考案は、冷凍回路の冷媒ガス充填部や圧力計などの取付部のように通常時閉塞状態とされ、所定時ガス注入器具や圧力計などの取付部となるような個所に取付けて使用される逆止弁付管継手に関する。

従来の技術

第6図は典型的な先行技術の断面図である。従来からの逆止弁付管継手1は、冷媒ガスなどの流体が通過する管2の外周面にろう付溶接などによつて固定された接続端部3と、この接続端部3に接続される継手本体4とから構成される。継手本体4には、その一端部4a(第6図の右方端部)に冷媒ガス充填部や圧力計などを接続するための接続管を接続する際に、管2から冷媒ガスなどの流体が外部に排出されるのを防ぐために逆止弁が内蔵されている。この継手本体4の他端部4b(第6図の左方端部)の外周面にはねじ5が刻設され

ており、接続端部3の内周面に刻設されている雌ねじ6に螺合して継手本体4が接続端部3に接続される。

考案が解決しようとする問題点

このような先行技術では、継手本体を管に接続するためには接続端部を別途に必要とする。したがってコストが高くつくとともに、取付け作業に手間がかかる。

本考案の目的は、上述の技術的課題を解決し、コストの低減を図ることができ、かつ取付け作業の作業性が向上するようにした逆止弁付管継手を提供することである。

問題点を解決するための手段

本考案は、継手本体に形成した通路内に、その継手本体の一端部から他端部側に向けてばねによって弁体を付勢して逆止弁を構成し、前記他端部側の通路には押棒を挿入してその他端部に管などを接続した状態で押棒によつて弁体を前記ばねのばね力に抗して開弁状態とする逆止弁付管継手において、

継手本体の前記一端部には軸直角断面がC字状であつて、半径方向外方に弾发力を有するばね受け部材を挿入し、ばね受け部材は継手本体の前記他端部側の端面で前記ばねを受け、継手本体の前記一端部ではばね受け部材の一端部をかしめによつて支持し、継手本体の前記一端部は管などにろう付溶接されることを特徴とする逆止弁付管継手である。

作用

本考案に従えば、継手本体に内蔵される弁体を一端部から他端部側に付勢するばねを受けるばね受け部材を継手本体の一端部側から挿入する。次に継手本体の一端部がかしめられ、ばね受け部材の一端部が支持される。このとき、ばね受け部材は軸直角断面がC字状であつて、半径方向外方に弾发力を有するため、継手本体の内周面に弾発的に当接する。したがつてばねのばね力によつてばね受け部材が継手本体の一端部側から抜出ることが防がれ、組立作業を容易に行なうことができる。このようにして組立てられた管継手はその継手本

体の一端部が冷媒ガスなどの流体が流過する管などに直接ろう付溶接される。したがつて先行技術の項で説明したような接続端部を別途設ける必要がなく作業性が向上する。

実施例

第1図は本考案の一実施例の断面図である。逆止弁付管継手10は、冷媒ガスなどの流体が流過する管11に一端部12bがろう付溶接によつて接続される継手本体12と、この継手本体12の他端部12c側に挿入される押棒13と、継手本体12の他端部12c側に螺着されるフレアナット14とを含む。継手本体12は、その中央部に軸線方向に沿つて一直線状に通路15が形成される。この通路15は、継手本体12の一端部12b側に挿入されるばね受け部材16を収納する収納孔15aと、弁体17およびこの弁体17とはね受け部材16との間に介在されるコイルばね18を収納する弁室15bと、弁孔15cと、軸孔15dとを有する。継手本体12の一端部12bは、管11の外周面にろう付溶接される。またこの一

端部 12b には、薄肉状の筒部 19 が突設され、この筒部 19 の端部は全周に亘ってかしめられる。これによつてばね受け部材 16 が支持される。なお、かしめは筒部 19 の端部の全周でなくとも一部分であつてもよい。

ばね受け部材 16 は、第 2 図に示すように軸直角断面が C 字状であり、周方向に分断されて構成される。したがつてこのばね受け部材 16 は半径方向外方に弾発力を有し、収納孔 15a 内に収納された状態では収納孔 15a の内面に弾發的に当接している。ばね受け部材 16 は、たとえば日本工業規格によるスピリングピンによつて実現される。なお、このばね受け部材 16 の他端部側の端面周縁部は段差面 20 に当接しており、この端面にコイルばね 18 の一端が受けられ、コイルばね 18 の他端は弁体 17 に当接して構成される。したがつて弁体 17 は、コイルばね 18 のばね力によつて弁座 21 に着座する方向に付勢される。

前記ばね受け部材 16 は、その軸線方向長さが比較的長く形成されており、したがつて握手本体

12の一端部12bがろう付溶接される際にコイルばね18への熱伝達が抑えられ、したがつてコイルばね18の特性に影響を与えることが防がれる。

押棒13は、円錐台状の頭部13aと、軸部13bと、軸部13bに連なり弁体17に当接することができる作動部13cとを有する。軸部13bには周方向全周にわたって四溝13dが形成される。この四溝13dには、押棒13の抜出しを防ぐための抜止め用の環状のばね13eが装着される。頭部13aおよび軸部13bには、軸線方向に延びる軸孔13fと、この軸孔13fに連なる径孔13gとが形成される。径孔13gは第3図に示すようにその一端が軸孔13fに連通し、半径方向外方に延び、その他端が軸孔15dに開口している。径孔13gの開口部は、前記四溝13dよりも作動部13c寄りに形成されている。したがつて軸孔13fは、弁体17が開弁状態であるときには弁室15bと連通している。通常状態では、作動部13cは、コイルばね18のばね力に抗して弁体

17を弁座21から離反した開弁状態に維持される。頭部13aと繼手本体12の他端部12cとの間には、銅製パッキン25が介在される。頭部13aには盲栓26が装着され、盲栓26、押棒13および繼手本体12の他端部12c側を外凹してフレアナット14が装着される。このフレアナット14には、雌ねじ27が刻設されており、この雌ねじ27が繼手本体12の他端部12c側外周に刻設されている雄ねじ28に螺合してフレアナット14が装着される。これによつて押棒13の作動部13cが、弁体17をコイルばね16のばね力に抗して押圧し、開弁状態となり、また押棒13の頭部13aと繼手本体12の他端部12c側との間でパッキン25が挟圧され、さらに頭部13aの当接面13a1とフレアナット14の傾斜面14aとの間で、盲栓26の傾斜部26aが挟圧され、こうして繼手本体12から管11内の流体が外部に漏洩することが防がれる。なお繼手本体12には、6角状端面を有する掛合部12aが形成され、フレアナット14の掛合部14cと前記

掛合部 1 2 a とにそれぞれスパナなどを引掛けて
フレアナット 1 4 を継手本体 1 2 に着脱するこ
とができるよう構成されている。

第4図は継手本体 1 2 の他端部 1 2 c 側に圧力
計 3 0 を接続した状態を示す断面図である。第1
図をも参照して、圧力計 3 0 に連通する管 3 1 を
継手本体 1 2 に接続するにあたっては、フレアナ
ット 1 4 を継手本体 1 2 から取外す。これによつ
て押棒 1 3 へのフレアナット 1 4 からの押圧力が
解除され、したがつて弁体 1 7 はコイルばね 1 8
のばね力によつて継手本体 1 2 の他端部 1 2 c 側
に変位し、弁座 2 1 に着座し閉弁状態となる。し
たがつて管 1 1 から冷媒ガスが外部に流出するこ
とが防がれる。なお押棒 1 3 は、弁体 1 7 の変位
によつて管 1 1 から離反する方向に変位するけれ
ども、抜止め用のばね 1 3 e の働きによつて押棒
1 3 が継手本体 1 2 から脱落することが防がれる。

このようにしてフレアナット 1 4 を取外した後、
盲栓 2 6 を取外し、管 3 1 の端部に形成されてい
るフレア加工された口金 3 2 を押棒 1 3 の頭部 1

3aに当接させ、このような状態でフレアナット14を繩手本体12の他端部12cに螺合する。これによつて押棒13は、弁体17をコイルばね18のばね力に抗して管11側に押圧し、これによつて開弁状態となる。したがつて管11の冷媒ガスは弁室15b、弁孔15c、径孔13g、軸孔13fを介して管31に導かれ、圧力計30に与えられる。なお圧力計30に代えてガス冷媒充填部を装着してもよく、このような場合には管31、繩手本体12を介して冷媒ガスが管11内に供給される。

第5図は繩手本体12の組立て手順を説明するための図である。まず繩手本体12の一端部12bから弁体17およびコイルばね18を挿入し、次にばね受け部材16を一端部12b側からその他端部12c側の端面が段差面20に当接するまで挿入する。次に繩手本体12の一端部12b側の筒部19の端部全周をかしめ、ばね受け部材16の一端部を支持する。このとき、ばね受け部材16は、軸直角断面がC字状に形成されており、

したがつて半径方向外方に弾発力を有している。そのため収納孔 15a にはね受け部材 16 が収納された状態で、収納孔 15a の内周面に弾發的に当接するため、コイルばね 18 のばね力によつて継手本体 12 の一端部 12b 側から抜出てしまうことが防がれる。このようにして継手本体 12 が組立てられた後、棒 35 を継手本体 12 の一端部 12b 側から弁体 17 に当接するまで挿入し、その棒 35 の端部を木槌 36 などで叩く。これによつて弁体 17 が弁座 21 に適合してなじみ、弁体 17 が弁座 21 に着座している状態における気密性が向上される。また、このようにはね受け部材 16 がC字状に形成されているため、その中央に空間が存在し、かつコイルばね 18 を用いることによつてもまたその中央に空間が存在することができ、これによつて組立てた後、棒 35 および木槌 36 を用いて弁体 17 側を弁座 21 のなじませる作業を行なうことができる。

このようにして組立てられた継手本体 12 は、その一端部 12b が管 11 にろう付け溶接される。

このときばね受け部材 16 は、その軸線方向長さが比較的長く、したがつてろう付け溶接時にコイルばね 13 に熱が伝わることが防がれ、ばね 13 の特性を劣化させることが防がれる。

効 果

以上のように本考案によれば、繼手本体の一端部を管などに直接ろう付けすることができるため、先行技術のように、接続端部などを設ける必要がなく作業性が向上される。また一端部側に軸直角断面が C 字状で、半径方向外方に弾発力を有するばね部材を挿入するため、繼手本体の一端部のろう付部分の強度が向上される。また、これによつて繼手本体の肉厚を薄くして、ろう付け予熱時間の短縮化およびろう付け作業の容易化を図ることができる。

4、図面の簡単な説明

第 1 図は本考案の一実施例の断面図、第 2 図は第 1 図の切断面線 II-II から見た断面図、第 3 図は第 1 図の切断面線 III-III から見た断面図、第 4 図は繼手本体 12 の他端部側に圧力計を接続した

状態を示す断面図、第5図は継手本体12の組立て状態を説明するための図、第6図は典型的な先行技術の断面図である。

10…逆止弁付管継手、11…管、12…継手本体、13…押棒、14…フレアナット、15…通路、16…ばね受け部材、17…弁体、18…コイルばね、26…盲栓、30…圧力計、31…管

代理人弁理士西教圭一郎

第1図

10 逆止弁付管継手

1052
実用63-164689
弁理士一郎教主
代理人

第 2 図

第 3 図

1053

実開63-164689

代理人

弁理士 西教圭一郎

第4図

1054
実用新案登録第639
代理人: 西畠幸一郎

第5図

第6図

1055
実用

164689

代理人 施理士 西牧圭一郎

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.