Aula 3 – Conjuntos Numéricos

Questionamento: Qual a diferença entre os conjuntos numéricos $A = \{x \in \mathbb{Z}/-4 \le x < 3\}$ e B = $\{x \in \mathbb{R}/-4 \le x < 3\}$? Justifique sua resposta.

Definição de complementar de um conjunto: Dados dois conjuntos $A \in U$, tais que $A \subset U$ (U é o universo), chama-se complementar de A o conjunto pelos elementos de U que não estão em A, ou seja, U-A.

Notação: A^c ou \bar{A}

Exemplo: Sejam $A = \{x \in \mathbb{R}/x^2 < 9\}$ e $B = \{x \in \mathbb{R}/x \le 5\}$ Determine:

a) O conjunto complementar de A. b) O conjunto complementar de B. c) $\bar{A} \cap B$

Exercícios de assimilação do conteúdo:

(1) Declare se cada desigualdade é verdadeira ou

(a)
$$\frac{1}{2} \le \frac{5}{10}$$

(a)
$$\frac{1}{2} \le \frac{5}{10}$$
 (c) $1.41 < \sqrt{2}$

(b)
$$-\frac{3}{4} \le -\frac{4}{5}$$

(b)
$$-\frac{3}{4} \le -\frac{4}{5}$$
 (d) $0.666 \ge \frac{2}{3}$

(2) Expresse o intervalo em termos de desigualdades, e depois represente graficamente o intervalo:

(a)
$$(-3,0)$$

(c)
$$(-\pi, \sqrt{2}]$$

(b)
$$\left[-\frac{1}{2}, +\infty\right)$$
 (d) $\left(-\infty, 13\right)$

(d)
$$(-\infty, 13)$$

(3) Os intervalos A e B são representados na figura abaixo:

Responda os itens abaixo usando a notação de intervalos.

(a)
$$A \cup B$$

(c)
$$\mathbb{R} - A$$

(b)
$$A \cap B$$

(d)
$$B - (A \cap B)$$

(e)
$$(B-(A\cap B))\cup (A-(A\cap B))$$

(4) Encontre o conjunto indicado se $A = \{x \in$ $\mathbb{R} \mid x^2 < 1$, $B = \{x \in \mathbb{R} \mid x < 4\}$ e $C = \{ x \in \mathbb{R} \mid -1 \le x < 5 \}.$

(a)
$$B \cup C$$

(c)
$$B \cap C$$

(b)
$$A \cap C$$

(d)
$$A \cap B$$

(5) Representar os conjuntos abaixo, dos graficamente pela parte pintada em vermelho, usando a notação de intervalo e a notação de desigualdades:

Exercício de verificação da aprendizagem:

Dados os conjuntos: $A = \{x \in \mathbb{R} \mid x \le -2 \text{ ou } x > 1\}, B = \{x \in \mathbb{R} \mid -3 < x < 3\}, C = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R} \mid -2 \le x < 1\}, D = \{x \in \mathbb{R}$ (-1,2], determine $(B-\overline{A}) \cap (C \cup D)$.