A UNIFIED FRAMEWORK FOR STRUCTURED PREDICTION

Wei Lu

StatNLP Research Group

Singapore University of Technology and Design

Outline

Introduction

- Decoding, Learning
- Semi-Markov, Latent CRF, Latent SSVM
- Parsing with CRF, Hybrid Tree, and Predicting Overlapping Structures
- Pipeline, Mean Field and Neural CRF

1. Introduction

Structured Prediction

Fruit flies like a banana

StatNLP.org

Part-of-Speech Tagging

Noun-Phrase Chunking

Constituency Parsing

Dependency Parsing

Semantic Parsing

LIKE(F102, B87)

Fruit flies like a banana

StatNLP.org

Semantic Parsing

Fruit flies like a banana

Sentiment Analysis

```
( neutral ) ( positive )

Fruit flies like a banana

StatNLP.org
```

Nested Chunking

NX

NX

NX

NX

INX

Fruit flies like a banana

StatNLP.org. 112

This Tutorial

- Shares a conceptually new way of thinking about building structured prediction models.
- Presents a unified structured prediction framework that encompasses classic models, and is able to model structures that standard Graphical Models cannot.
- Provides a way to rapidly prototype novel structured prediction models for new tasks.

A Unified Framework

Structured Prediction

One Assumption Structures are constructed by following a collection of discrete actions.

S: shift

L: left-arc

R:right-arc

flies

like

 \boldsymbol{a}

like

S: shift

L: left-arc

R:right-arc

Fruit

ies

S: shift

L: left-arc

R:right-arc

like

 \boldsymbol{a}

S: shift

L: left-arc

R:right-arc

S: shift

L: left-arc

R:right-arc

S: shift

L: left-arc

R:right-arc

S: shift

L: left-arc

S: shift

L: left-arc

S: shift

L: left-arc

S: shift

L: left-arc

S: shift

L: left-arc

States, Actions, Paths

States, Actions, Paths

Score of a Path

Score of a Path

tatNLP.org 1.30

Score of a Path

$$S_{\mathbf{w}}(p_1) = 7.2 + 3.5 + 0.9 + 2.0 + 3.2 - 10.2 = 6.6$$

$$S_{\mathbf{w}}(p_2) = -0.2 - 4.2 - 1.7 - 3.0 + 2.2 + 12.8 = 6.9$$

Fruit

flies

like

a

Search

Exhaustive Search
Beam Search
Heuristics Search

Fruit

flies

like

a

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

a

Fruit flies like a banana

W

$$\mathbf{f}(x,[s,a])$$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(x,[s,a])$$

Fruit

flies

like

 $\boldsymbol{\alpha}$

$$\mathbf{w} = \left[egin{array}{c} 1.2 \ dots \ -3.1 \end{array}
ight]$$

$$\mathbf{w} = egin{bmatrix} 1.2 \ dots \ -3.1 \end{bmatrix} \qquad \mathbf{f}(x,[s,a]) = \mathbf{f}\Big(x,[extbf{DNV}], extbf{D}\Big) = egin{bmatrix} 1 \ dots \ 0 \end{bmatrix}$$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit flies like

$$\mathbf{w} = \left[egin{array}{c} 1.2 \ dots \ -3.1 \end{array}
ight]$$

$$\mathbf{w} = egin{bmatrix} 1.2 \ dots \ -3.1 \end{bmatrix} \qquad \mathbf{f}(x,[s,a]) = \mathbf{f}\Big(x,[extbf{DNV}], extbf{D}\Big) = egin{bmatrix} 1 \ dots \ 0 \end{bmatrix}$$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a]) = 2.0$$

Fruit flies like

$$\mathbf{w} = \left[egin{array}{c} 1.2 \ dots \ -3.1 \end{array}
ight]$$

$$\mathbf{w} = egin{bmatrix} 1.2 \ dots \ -3.1 \end{bmatrix} \qquad \mathbf{f}(x,[s,a]) = \mathbf{f}\Big(x,[extbf{DNV}], extbf{D}\Big) = egin{bmatrix} 1 \ dots \ 0 \end{bmatrix}$$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a]) = 2.0$$

Fruit

flies

like

$$\mathbf{w} = \left[egin{array}{c} 1.2 \ dots \ -3.1 \end{array}
ight]$$

$$\mathbf{w} = egin{bmatrix} 1.2 \ dots \ -3.1 \end{bmatrix} \qquad \mathbf{f}(x,[s,a]) = \mathbf{f}\Big(x,[extbf{DNV}], extbf{D}]\Big) = egin{bmatrix} 0 \ dots \ 1 \end{bmatrix}$$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a]) = 1.8$$

Fruit

flies

like

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

a

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

 $\boldsymbol{\alpha}$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

a

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

 $\boldsymbol{\alpha}$

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

a

$$s_{\mathbf{w}}(e) = \mathbf{w} \cdot \mathbf{f}(e) = \mathbf{w} \cdot \mathbf{f}(x, [s, a])$$

Fruit

flies

like

g

Fruit

flies

like

a

Fruit

flies

like

a

like

 \boldsymbol{a}

Fruit

flies

StatNLP.org

Fruit

flies

like

a

like

Fruit

flies

StatNLP.org

A Compact Search Graph

A Compact Search Graph

A representation that contains exponentially many directed paths

Fruit flies like a banana

Decoding

Decoding

Given	Find
x,\mathbf{w}	y

The Search Problem

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

The Search Problem

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

Fruit flies

like

a

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

like

a

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}])$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$

MAP Inference

$$\max_y \mathbf{w} \cdot \mathbf{f}(x,y) = \max_y \sum_j \mathbf{w} \cdot \mathbf{f}(x,[y^j,y^{j+1}]) = 9.7$$
 $rg \max_y \mathbf{w} \cdot \mathbf{f}(x,y)$

Inference

MAP

So Far

Given the parameters w, how to search for the optimal path (and its score)

Next...

How to learn the parameters w?