## RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical to the structured arrays just described, but with one additional feature: fields can be accessed as attributes rather than as dictionary keys. Recall that we previously accessed the ages by writing:

```
In[15]: data['age']
Out[15]: array([25, 45, 37, 19], dtype=int32)
```

If we view our data as a record array instead, we can access this with slightly fewer keystrokes:

```
In[16]: data_rec = data.view(np.recarray)
       data rec.age
Out[16]: array([25, 45, 37, 19], dtype=int32)
```

The downside is that for record arrays, there is some extra overhead involved in accessing the fields, even when using the same syntax. We can see this here:

```
In[17]: %timeit data['age']
       %timeit data_rec['age']
       %timeit data rec.age
1000000 loops, best of 3: 241 ns per loop
100000 loops, best of 3: 4.61 µs per loop
100000 loops, best of 3: 7.27 µs per loop
```

Whether the more convenient notation is worth the additional overhead will depend on your own application.

## On to Pandas

This section on structured and record arrays is purposely at the end of this chapter, because it leads so well into the next package we will cover: Pandas. Structured arrays like the ones discussed here are good to know about for certain situations, especially in case you're using NumPy arrays to map onto binary data formats in C, Fortran, or another language. For day-to-day use of structured data, the Pandas package is a much better choice, and we'll dive into a full discussion of it in the next chapter.

## **Data Manipulation with Pandas**

In the previous chapter, we dove into detail on NumPy and its ndarray object, which provides efficient storage and manipulation of dense typed arrays in Python. Here we'll build on this knowledge by looking in detail at the data structures provided by the Pandas library. Pandas is a newer package built on top of NumPy, and provides an efficient implementation of a DataFrame. DataFrames are essentially multidimensional arrays with attached row and column labels, and often with heterogeneous types and/or missing data. As well as offering a convenient storage interface for labeled data, Pandas implements a number of powerful data operations familiar to users of both database frameworks and spreadsheet programs.

As we saw, NumPy's ndarray data structure provides essential features for the type of clean, well-organized data typically seen in numerical computing tasks. While it serves this purpose very well, its limitations become clear when we need more flexibility (attaching labels to data, working with missing data, etc.) and when attempting operations that do not map well to element-wise broadcasting (groupings, pivots, etc.), each of which is an important piece of analyzing the less structured data available in many forms in the world around us. Pandas, and in particular its Series and DataFrame objects, builds on the NumPy array structure and provides efficient access to these sorts of "data munging" tasks that occupy much of a data scientist's time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and related structures effectively. We will use examples drawn from real datasets where appropriate, but these examples are not necessarily the focus.

## **Installing and Using Pandas**

Installing Pandas on your system requires NumPy to be installed, and if you're building the library from source, requires the appropriate tools to compile the C and