1 1.1 Solutions

1. With $S_1 = \{2, 3, 5, 7\}$, $S_2 = \{2, 4, 5, 8, 9\}$ and $U = \{1 : 10\}$ compute $\overline{S_1} \cup S_2$.

Solution: $\overline{S_1} \cup S_2 = \{1, 2, 4, 5, 6, 8, 9, 10\}.$

2. With $S_1 = \{2, 3, 5, 7\}$ and $S_2 = \{2, 4, 5, 8, 9\}$, compute $S_1 \times S_2$ and $S_2 \times S_1$.

Solution: $S_1 \times S_2 = \{(2,2), (2,4), (2,5), (2,8), (2,9), (3,2), (3,4), (3,5), (3,8), (3,9), (5,2), (5,4), (5,5), (5,8), (5,9), (7,2), (7,4), (7,5), (7,8), (7,9)\}.$ $S_2 \times S_1 = \{(2,2), (4,2), (5,2), (8,2), (9,2), (2,3), (4,3), (5,3), (8,3), (9,3), (2,5), (4,5), (5,5), (8,5), (9,5), (2,7), (4,7), (5,7), (8,7), (9,7)\}.$

3. For $S = \{2, 5, 6, 8\}$ and $T = \{2, 4, 6, 8\}$, compute $|S \cap T| + |S \cup T|$.

Solution: $|S \cap T| + |S \cup T| = 3 + 5 = 8$.

4. What relation between two sets S and T must hold so that $|S \cup T| = |S| + |T|$.

Solution: S and T must be two disjoint sets.

5. ** Show that for all sets S and T, $S - T = S \cap \overline{T}$.

Solution: Suppose $x \in S - T$. Then $x \in S$ and $x \notin T$, which means $x \in S$ and $x \in \overline{T}$, that is $x \in S \cap \overline{T}$. So $S - T \subseteq S \cap \overline{T}$. Conversely, if $x \in S \cap \overline{T}$, then $x \in S$ and $x \notin T$, which means $x \in S - T$. That is $S \cap \overline{T} \subseteq S - T$. Therefore $S - T = S \cap \overline{T}$.

6. ** Prove De Morgan's laws, Equations (1.2) and (1.3) by showing that an element x is in the set on one side of the equality, then it must also be in the set on the other side.

Solution: For Equation (1.2), suppose $x \in \overline{S_1 \cup S_2}$. Then $x \notin S_1 \cup S_2$, which means that x cannot be in S_1 or in S_2 , that is $x \in \overline{S_1} \cap \overline{S_2}$. So $\overline{S_1 \cup S_2} \subseteq \overline{S_1} \cap \overline{S_2}$. Conversely, if $x \in \overline{S_1} \cap \overline{S_2}$, then x is not in S_1 and x is not in S_2 , that is, $x \in \overline{S_1 \cup S_2}$. So $\overline{S_1} \cap \overline{S_2} \subseteq \overline{S_1 \cup S_2}$. Therefore $\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2}$.

Similar arguments apply for Equation (1.3).

7. Show that if $S_1 \subseteq S_2$ then $\overline{S_2} \subseteq \overline{S_1}$.

Solution: Suppose $x \in \overline{S_2}$ which means x is not in S_2 . Since S_1 is a subset of S_2 , so x cannot be in S_1 , that is $x \in \overline{S_1}$. So $\overline{S_2} \subseteq \overline{S_1}$.

8. Show that $S_1 = S_2$ if and only if $S_1 \cup S_2 = S_1 \cap S_2$.

Solution: If $S_1 = S_2$, then obviously $S_1 \cup S_2 = S_1 \cap S_2 (= S_1 = S_2)$. Conversely, since $S_1 \cap S_2 \subseteq S_1 \subseteq S_1 \cup S_2$, so $S_1 \cup S_2 = S_1 \cap S_2$ means $S_1 = S_1 \cup S_2$. The reasoning gives $S_2 = S_1 \cup S_2$. Therefore $S_1 = S_2$.

9. Use induction on the size of S to show that if S is a finite set, then $\left|2^{S}\right|=2^{|S|}$.

Solution: For $S = \emptyset$, $2^S = \{\emptyset\}$ which means |S| = 0 and $2^{|S|} = 1$. Suppose the conjecture, $\left|2^S\right| = 2^{|S|}$ is true for all sets S with |S| = 0, 1, ..., n.

Let $S_{n+1} = S_n \cup \{x_{n+1}\}$ be a set of length n+1 where $|S_n| = n$ with $2^{S_n} = \{S_{n,1}, ..., S_{n,2^n}\}$. Since the power set $2^{S_{n+1}} = 2^{S_n} \cup (\{S_{n,1} \cup \{x_{n+1}\}, ..., \{S_{n,2^n} \cup \{x_{n+1}\}\})$, so $|2^{S_{n+1}}| = |2^{S_n}| + |2^{S_n}| = 2|2^{S_n}| = 2(2^n) = 2^{n+1}$. This completes the inductive proof.

10. Show that if S_1 and S_2 are finite sets with $|S_1| = n$ and $|S_2| = m$, then

$$|S_1 \cup S_2| \le n + m.$$

Solution: Since $S_1 \cup S_2 = S_1 \cup (S_2 - S_1)$ and $S_1 \cap (S_2 - S_1) = \emptyset$, so $|S_1 \cup S_2| = |S_1| + |S_2 - S_1| \le |S_1| + |S_2| = n + m$.

1 1.2

1. How many substrings aab are in ww^Rw , where w = aabbab?

Solution: Since $ww^Rw = aabbabbabbaaaabbab$, there are only two substrings of aab.

2. ** Use induction on n to show that $|u^n| = n |u|$ for all strings u and all n.

Solution: For $n = 1, |u^1| = |u|$. Assume $|u^k| = k|u|$ holds for k = 1, 2, ..., n, then

$$|u^{n+1}| = |u^n u| = |u^n| + |u| = n|u| + |u| = (n+1)|u|.$$

3. The reverse of a string, introduced informally above, can be defined more precisely by the recursive rules

$$a^{R} = a,$$
$$(wa)^{R} = aw^{R},$$

for all $a \in \Sigma$, $w \in \Sigma^*$. Use this to prove that

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

Solution: Many string identities can be proved by induction. Suppose that $(uv)^R = v^R u^R$ for all $u \in \Sigma^*$ and all v of length n. Take now a string of length n+1, say w=va. Then

$$(uw)^R = (uva)^R$$

= $a(uv)^R$, by the definition of the reverse
= av^Ru^R , by the inductive assumption
= w^Ru^R .

By induction then, the result holds for all strings.

4. Prove that $(w^R)^R = w$ for all $w \in \Sigma^*$.

Solution:

Let $w = w_1 w_2 ... w_n$ be an arbitrary string of length n where $w_1, w_2, ..., w_n$ are symbols in Σ . Then apply the result of Exercise 3 repeatedly, we have

$$w^{R} = (w_{1}w_{2}...w_{n})^{R} = w_{n}(w_{1}w_{2}...w_{n-1})^{R} = w_{n}w_{n-1}(w_{1}w_{2}...w_{n-2})^{R}$$
$$= = w_{n}w_{n-1}...w_{1}.$$

similarly

$$(w^R)^R = (w_n w_{n-1}...w_1)^R = w_1 w_2...w_n = w.$$

5. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaa? Which strings are in L^4 ?

Solution: Since abaabaaabaa can be decomposed into strings ab, aa, baa, the string is in L^* . Similarly, aaaabaaaa and baaaaabaa are in L^* . However, there is no possible decomposition for baaaaabaaaab, so this string is not in L^* . The strings aaaabaaaa and baaaaabaa are in L^4 .

6. ** Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe \overline{L} .

Solution: $\overline{L} = \{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^+ : |w| \ge 3\}.$