Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures

Knittle & Jeanloz, Science, Vol. 251 (5000), 1991

Observations

The Core-Mantle boundary and the lowermost mantle exhibit radial and lateral heterogeneities in seismic velocities, velocity gradients, discontinuities and scattering.

Previous interpretation

The CMB is a *thermal* boundary layer which support a thermal gradient of *over* 1000K over ~200 Km.

Suggested model

 D" is also a chemical boundary layer between the silicate mantle and the iron core

- May support the 1000K gradient, by allowing density variations to counteract the thermal buoyancy forces
- Can also explain lateral heterogeneities

Lab Experiments

Objective:

Recreate the CMB in miniature, within a 200µm sample in a laser heated diamond-cell

Tools:

- Iron foils embedded in a silicate matrix (x4)
- Laser heating melted the iron (not the silicates)
- Pressure resemble CMB's (≥ 70 GPa)
- Two comparison samples: one not heated and under pressure; one heated and under low pressure.

Experiment Results

 All 4 samples had reaction zones between iron and silicates

Experiment Results – Contd.

 Resolution of microprobe readings ≤ 2µm (determined using the pressure-only sample).

- Observed composition gradients:
 - Diffusion of O, Mg, Si : 4-7μm
 - Diffusion of Fe: at least 12 μm
- Migration of elements much stronger under higher pressures

- Note penetration of Fe into unmelted silicate matrix:
 - migration along grain boundaries?
 - Soret diffusion of heaviest component?

Thermodynamics

Proposed balanced equation:

$$Mg_xFe_{1-x}SiO_3 + 3[(1-x)-s]Fe = xMgSiO_3 + sSiO_2 + [3(1-x)-2s]FeO + [(1-x)-s]FeSi$$

By assuming amount of FeSi equal to SiO_2

$$Mg_{0.9}Fe_{0.1}SiO_3 + 0.15Fe = 0.9MgSiO_3 + 0.2SiO_2 + 0.05FeO + 0.05FeSi$$

Sign of thermodynamic driving force:

- —By calculating the volume change
- —By experiments with higher Fe content

Result: the reaction is **favored** under high pressure and higher Fe content (See Fig 8-9)

Implications on the CMB

- The proposed reaction inevitably takes place in D"
- Can cause strong heterogeneity in density, elastic properties and electrical conductivity
- Implications on the magnetic field –due to lateral variations in electric conductivity (Secular variations?)

See Buffet, 1996; Busse&Witch, 1992

 Implications on mantle dynamics due to variations in thermal conductivity (Manga&Jeanloz, 1996)

Length and time scales

Short time/length scale:

- Mantle rocks in direct contact with core iron react rapidly.
- The reaction zone will penetrate upwards on order of 10¹-10² meters, based on capillary rise along grain boundaries

Long time/length scales:

- The reaction zone will be swept upwards by slow mantle convection. Will expose fresh rock to reaction.
- Reacted material is denser cannot rise very high → will form the D" layer

Implications on outer core

- Reaction products, mainly Oxygen, swept into the core by the rapid outer convection.
- May explain why the density is lower by 10% of pure liquid iron

Conclusions

- Preferred model
 - Vigorous chemical reaction between liquid iron of the outer core and the crystalline silicates of the lower mantle.
 - Dissolving of mantle O,Mg and Si into the core
 - Dissolving of core Fe into the mantle.

