

Ch 26 Vectors (C)

Introduction to Vectors and Scalars

Magnitude: single number. i.e. 3 km 3 is the magnitude

Scalars: quantities that can be described by a single number. I.e. temperature, length, volume, density...

A vector has both magnitude and direction.

Multiplying a vector by a scalar

Adding and subtracting vectors

The resultant of \mathbf{a} and \mathbf{b} is the sum $\mathbf{a} + \mathbf{b}$.

Subtraction of vectors: a + (-b)

Representing vectors using Cartesian components

The unit vectors in the x and y directions are \mathbf{i} and \mathbf{j} respectively.

The scalar product (dot product)

Given two vectors, **a** and **b**, their scalr product, denoted by $\mathbf{a} \cdot \mathbf{b}$, is given by $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ where θ is the angle between **a** and **b**.

 $\mathbf{j} \cdot \mathbf{i} = 1$ $\mathbf{j} \cdot \mathbf{j} = 1$ $\mathbf{i} \cdot \mathbf{j} = 0$ $\mathbf{j} \cdot \mathbf{i} = 0$

If $\mathbf{a}=a_1\mathbf{i}+a_2\mathbf{j},\ \mathbf{b}=b_1\mathbf{i}+b_2\mathbf{j}$ then $\mathbf{a}\cdot\mathbf{b}=a_1b_1+a_2b_2$