ML5G-I-176:

Adoption of the ITU-T's Architecture in IEEE 802.11 WLANs

Francesc Wilhelmi & Vishnu Ram

francisco.wilhelmi@upf.edu & vishnu.n@ieee.org

Berlin, November, 2019

Table of contents

- Introduction
- ITU Logical ML Architecture
- 3 ML for IEEE 802.11 WLANs
- 4 Adoption of the ML Architecture in IEEE 802.11 WLANs
- 6 Conclusions & Future work

Introduction

- Introduction

NOTE: this work is based on the work in Wilhelmi et al. "A Flexible Machine Learning-Aware Architecture for Future WLANs" [1].

Goals

- Proof-of-concept adoption of the ITU-T's architecture
- Insights on specific underlay (IEEE 802.11 WLANs)
- 3 Impact on academia

Scope

- Realization of the ML pipeline in WLANs
- Past adoption: main challenges & current mechanisms
- ML Architecture-enabled use cases in WLANs (PHY & MAC)

- ITU Logical ML Architecture

Learning approaches

Figure 1: ITU-T's logical ML architecture for future networks [2].

Outline

- 3 ML for IEEE 802.11 WLANs

Deployment modes in IEEE 802.11 WLANs

Figure 2: Deployment modes in IEEE 802.11 WLANs.

Flexible technology:

- Ad-hoc (IBSS)
- Residential (BSS)
- Enterprise (ESS)

Computation paradigms:

- Edge-oriented
- Cloud-oriented

The ITU-T's flexible architecture fits perfectly

ML-enabled use cases (I)

- OFDMA-based smart network slicing
- Cloud-Based User Association and Handover
- Inference-Based Coordinated Scheduling
- Reinforcement Learning-Based Spatial Reuse

ML-enabled use cases (II)

Figure 3: ML-oriented network slicing OFDMA.

- 4 Adoption of the ML Architecture in IEEE 802.11 WLANs

Compute a solution

- Network dynamics (users' mobility, variable traffic patterns...)
- Adversarial setting unleashed
- Legacy devices
- Limited computation and storage resources

Enable communication-based ML models

• Limited communication resources (unlicensed band)

Other inter-domain challenges

- Security
- Interoperability

Opportunities for fast adoption

Feature	Amendments	Opportunities for ML application
Information	802.11k/r/v	A given ML mechanism can use information
gathering		about the network topology or RF measure-
		ments to infer the behavior of other devices or
		to extract important environmental characteris-
		tics.
Interoperability	802.11f/u	Interoperability with other networks can be
		used to perform coordinated operations (e.g.,
		scheduling, resource allocation). Besides, inter-
		AP communication procedures can enable cen-
		tralized/coordinated mechanisms (e.g., feder-
		ated learning).
Security	802.11w	ML mechanisms can use management frames
		that are protected so that a higher level of se-
		curity is granted.
Validation	802.11t	Performance evaluation in WLANs through test
		metrics can be of great utility to define opti-
		mization goals within the ML operation.

Hybrid AP (re)association and handover

- Function generation (prediction) at the cloud
- New situations handled at the edge
- Re-adjustment of the model based on new data (online)

Figure 4: Hybrid AP (re)association and handover.

Figure 5: Realization of the ITU's ML architecture for IEEE 802.11 WLANs through a hybrid ML-based solution for AP (re)association and handover.

Realization example

Figure 6: Realization of the ITU's ML architecture for IEEE 802.11 WLANs through a hybrid ML-based solution for AP (re)association and handover.

Realization example

Figure 7: Realization of the ITU's ML architecture for IEEE 802.11 WLANs through a hybrid ML-based solution for AP (re)association and handover.

vianagement and Otenestration in WEITIVS

- The MLFO deploys, monitors & orchestrates the ML operation [3]
- Some responsibilities:
 - Process use case information from intents
 - Ensure that use case requirements are met
 - Identify entities and provide chaining
 - React to misbehavior
- Some specific challenges:
 - Network devices on/off: also APs in WLANs
 - Synchronization: bigger challenge for independent BSSs
 - Lack of information: legacy devices
 - Adversarial setting: address clashing interests

Management and Orchestration - Example

Figure 8: MLFO operation for adjusting the sandbox parameters based on its accuracy for representing the actual performance of the network.

Outline

- Introduction
- 2 ITU Logical ML Architecture
- 3 ML for IEEE 802.11 WLANS
- 4 Adoption of the ML Architecture in IEEE 802.11 WLANs
- 6 Conclusions & Future work

Conclusions

- ML as an intrinsic part of future networks (5G/6G)
- Role of the ITU-T's ML-aware architecture

Open issues

- Data handling (how and where to store data? how to assess the expiry of data?)
- Orchestration (behavior of several ML approaches in conjunction, ML operation distribution, heterogeneity...)
- Robustness (how to deal with uncertainty? how to prevent network failures?)

Future contributions

• Potential and pitfalls of network simulators as a sandbox

Any questions?

Francesc Wilhelmi, Ph.D. candidate

francisco.wilhelmi@upf.edu

Department of Communication and Information Technologies Universitat Pompeu Fabra (Barcelona)

References

Wilhelmi, F., Barrachina-Muñoz, S., Bellalta, B., Cano, C., Jonsson A., & Ram, V. (2019).

"A Flexible Machine Learning-Aware Architecture for Future WLANs", arXiv preprint arXiv:1907.04141.

Barrachina-Muñoz, S., Wilhelmi, F., Selinis, I., & Bellalta, B. (2019).

"Komondor: a Wireless Network Simulator for Next-Generation High-Density WLANs", in 2019 Wireless Days (WD). IEEE, pp. 1–8.

ML5G-I-172 (2019).

"Requirements, architecture and design for machine learning function or chestrator"