Aufgabe 11

Gruppe 4

Modell	# DNN-Parameter	DNN-Accuracy(Test)	Test-WER
	(Epoch_Ir_Train_Evaluation)		
Baseline	13_0.001_0.7004_0.6619	0.6485967298113164	8.110344827586207
	"lr": 0.001,		
	"batch_size": 1,		
	"epochs": 50,		
	"window_size": 25e-3,		
	"hop_size": 10e-3,		
	"feature_type": "MFCC_D_DD",		
	"n_filters": 40,		
	"fbank_fmin": 0,		
	"fbank_fmax": 8000,		
	"num_ceps": 13,		
	"left_context": 10,		
	"right_context": 10,		
Best	9_0.000001_0.8392_0.7920	0.79522086562379	0.896551724137931
	Siehe nächste Seite		

Baseline Best

Best:

- 1. BLSTM Layer nach den FC-Layers
- 2. Learning Rate: ein StepLR scheduler wurde implementiert mit gamma=0.1 und step=4. bei 10 Epochen, also dass die learning rate bei 0.0001 startet und dann nach der 4. Epoche auf 0.00001 und nach der 8. auf 0.000001 sinkt.

Verwenden Sie <u>train2.py</u> und <u>model2.py</u>, um dieses verbesserte Modell zu trainieren.

```
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
x = self.relu(x)
# print(x.shape)

x, _ = self.blstm(x)
# print(x.shape)

x = self.fc4(x)
# batch_size, sequence_leng
# x = x.view(batch_size, set
```