

Verschiltoetsen in R

- 1-sample *t*-toets
 - Effectsterkte: Cohen's d_s
- Welch (2-sample) t-toets
 - Effectsterkte: Cohen's d_{av}
- Gepaarde t-toets
 - Effectsterkte: Cohen's d_{av}
- 1-way ANOVA
 - Effectsterkte: Eta-kwadraat: η^2

Stappenplan

- 1. Formuleer de vraag helder
- 2. Kies op basis van de soort data de juiste toets
- 3. Formuleer nul-hypothese H_0 ("alles is gelijk")
- 4. Formuleer op basis van je vraag (achtergrond informatie) de alternatieve hypothese H₁
 - 1-zijdig toetsen
 - 2-zijdig toetsen
- 5. Voer de toets uit
- 6. Formuleer de conclusie in woorden

1-sample *t*-toets

Verschilt één experimenteel gemiddelde van een referentiewaarde?

1-sample *t*-toets

De formele *t*-toets:

$$t = \frac{\text{verschil tussen gemiddelden}}{\text{fout in verschil}}$$

$$df = n - 1$$

wordt

$$t = \frac{(\bar{y} - \mu)}{s_{\bar{y}}} = \frac{\bar{y} - \mu}{s/\sqrt{n}}$$

Grenswaarde (met $\alpha = 0.05$):

2-zijdig:
$$t_{\text{krit.2}} = \text{qt} (0.975, \text{df})$$

1-zijdig:
$$t_{krit.1} = qt (0.95, df)$$

• Er is een significant verschil als:

$$|t| > t_{\text{krit.2}}$$

 Het gemiddelde is hoger dan verwacht als:

$$t > t_{\text{krit.1}}$$

 Het gemiddelde is lager dan verwacht als:

$$t < -t_{\text{krit.1}}$$

Significant of niet?

Een verschil is significant als

of (wat equivalent is)

Statistische en praktische significantie

Statistische significantie:

Is het verschil tussen gemeten gemiddelde en de referentiewaarde overtuigend? D.w.z. is het verschil (veel) groter dan de fout in dit verschil?

Significant als:
$$\left| t = \frac{\bar{y} - \mu}{s_{\bar{y}}} \right| > t_{\text{krit.2}}$$

Praktische significantie:

Is het verschil tussen gemeten gemiddelde en de referentiewaarde belangrijk? D.w.z. is het verschil (veel) groter dan de ruis is de data? Praktische significantie = effectsterkte: Cohen's d: $d_s = \frac{\bar{y} - \mu}{s}$

De effectsterkte bij een t-toets wordt meestal uitgedrukt in de waarde van Cohen's d:

Jacob Cohen

$$d_{S} = \frac{\bar{y} - \mu}{S}$$

- Cohen's d meet dus het verschil $\bar{y} \mu$ in "eenheden" van de ruis = standaarddeviatie s
- Cohen's d is dimensieloos, \pm onafhankelijk van n!
- Wat is "groot" verschil, wat is "klein" verschil? Hangt van de context af, maar algemene richtlijnen*:

Waarde Cohen's \emph{d}	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

^{*)} Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

Cohen's
$$d$$
: $d_s = \frac{y - \mu}{s}$

Berekening:

$$d_{S} = \frac{(\bar{y} - \mu)}{S} = \frac{t}{\sqrt{n}}$$

want

$$t = \frac{(\bar{y} - \mu)}{s/\sqrt{n}} = \frac{(\bar{y} - \mu)}{s} \cdot \sqrt{n} = d_s \cdot \sqrt{n}$$

Cohen's
$$d$$
: $d_s = \frac{y - \mu}{s}$

Voorbeeld: $\bar{y}=3.50$, s=0.50

0.00

2.5

3.0

3.5

4.0

Gemiddelde v

4.5

Cohen's
$$d$$
: $d_S = \frac{\bar{y} - \mu}{s}$

Voorbeeld: $\bar{y} = 3.50$, s = 0.50, $\mu = 3.25$

t = 2.23 *

Aantal metingen n en effectsterkte

- Om een "klein" verschil significant te noemen heb je veel metingen nodig...
- Om een "groot" verschil significant te noemen heb je minder metingen nodig...
- We hebben $t=d_s\cdot \sqrt{n}$, dus $t_{\rm krit.2}=d_s\cdot \sqrt{n}$, dus ${\rm qt}(0.975;n-1)=d_s*{\rm sqrt}(n)$

Waarde Cohen's d_{s}	Interpretatie	Minimum aantal metingen n voor significant verschil
0.2	Klein verschil	99
0.5	Matig verschil	18
0.8	Groot verschil	9

1-sample t-toets in R

1 vector y en waarde mu:t.test(y, mu = mu, ...)

• 1 kolom y uit dataframe M:

```
t.test(M$y, mu = mu, ...)
t.test(y, mu = mu, data = M, ...)
```

- 1- en 2-zijdig toetsen:
 - 2-zijdig: alternative="two.sided" (default)
 - 1-zijdig: alternative="less" or alternative="greater"

1-sample t-toets: samenvatting

- Meetwaarden y continu, a = 1 groep
- $H_0: \bar{y} = \mu$
- $H_1: \bar{y} \neq \mu$

of
$$\bar{y} > \mu$$
 of $\bar{y} < \mu$

$$\bar{y} < \mu$$

$$\bullet \quad t = \frac{(\bar{y} - \mu)}{s_{\bar{y}}}$$

$$df = n - 1$$

•
$$t_{\text{krit.2}} = \text{qt} (0.975, \text{df})$$

$$t_{\text{krit.1}} = \text{qt} (0.95, \text{df})$$

• H_1 als: $p < \alpha$ of

$$|t| > t_{\text{krit.2}}$$

 $|t| > t_{
m krit.2}$ of $t > t_{
m krit.1}$ of $t < -t_{
m krit.1}$

• Effectsterkte: $d_S = \frac{(\bar{y} - \mu)}{S} = \frac{t}{\sqrt{n}}$

Waarde Cohen's d : $\mid d_{\scriptscriptstyle \mathcal{S}} \mid$	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

Welch (2-sample) t-toets

Verschillen twee experimentele gemiddelden van elkaar?

Ter info!

Afleiding t-toets 2 samples (1)

De t-waarde voor twee samples is het verschil in 2 gemiddelden gedeeld door de fout in dit verschil:

$$t = \frac{\bar{y}_1 - \bar{y}_2}{s_{\bar{y}_1 - \bar{y}_2}}$$

Statistiek 1: bij de fout in een verschil $\bar{y}_1 - \bar{y}_2$ tellen de fouten in beide gemiddelden \bar{y}_1 en \bar{y}_2 kwadratisch op:

$$s_{\bar{y}_1 - \bar{y}_2}^2 = s_{\bar{y}_1}^2 + s_{\bar{y}_2}^2 = \left(\frac{s_1}{\sqrt{n_1}}\right)^2 + \left(\frac{s_2}{\sqrt{n_2}}\right)^2 = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$$

dus

$$s_{\bar{y}_1 - \bar{y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

en

$$t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Dit is de formule voor de Welch *t*-toets

Als beide varianties (standaarddeviaties) ongeveer gelijk zijn kunnen we ook de "gemiddelde" of "gepoolde" variantie s_p^2 gebruiken, waarbij

$$s_p^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 - 1 + n_2 - 1}$$

dus

$$t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{s_p^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dit is de formule voor de 2-sample *t*-toets

Ter info!

Afleiding t-toets 2 samples (2)

Voor de t-waarde voor de 2-sample t-toets, waarbij de varianties gelijk zijn ($s_1^2 = s_2^2 = s_p^2$):

$$t = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

is de kansverdeling exact bekend, namelijk een t-verdeling met

$$df = n_1 + n_2 - 2$$

vrijheidsgraden. We kunnen hiervoor dus m.b.v. qt $(0.975, n_1 + n_2 - 2)$ exacte kritische grenzen $t_{\rm krit.2}$ uitrekenen, en dezelfde logica aanhouden als bij de 1-sample t-toets! Echter, we zouden eerst moeten toetsen of beide varianties s_1^2 en s_2^2 inderdaad wel ongeveer gelijk zijn, anders zijn de kritische grenzen namelijk niet goed... Dit toetsen kan via een zogenaamde F-toets (zie dictaat op BB en het statistiekboek Miller & Miller). Statistici waarschuwen echter dat dit niet de beste manier is!

Het is beter om *altijd* de Welch *t*-toets te gebruiken:

$$t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

waarbij je dus niet per se aanneemt dat beide varianties s_1^2 en s_2^2 gelijk zijn. De kansverdeling van deze t-waarde is niet exact bekend, maar is ongeveer een t-verdeling waarbij het aantal vrijheidsgraden df (dat je nodig hebt voor het berekenen van de kritische waarden) gegeven wordt door*

$$df \approx \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \left(\frac{s_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{s_2^4}{n_2^2 \cdot (n_2 - 1)}\right)$$

De kritische waarden zijn nu te berekenen via qt (0.975, df), en de logica is verder hetzelfde als bij de 1-sample t-toets.

* Welch, B. L. (1947) "The generalization of "Student's" problem when several different population variances are involved" *Biometrika* **34**, 28–35.

2-sample *t*-toets

Liever NIET gebruiken!

De formele *t*-toets:

$$t = \frac{\text{verschil tussen gemiddelden}}{\text{fout in verschil}}$$

wordt

$$t = \frac{\overline{y}_1 - \overline{y}_2}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Grenswaarde (voor $\alpha = 0.05$):

2-zijdig:
$$t_{\text{krit.2}} = \text{qt}(0.975, \text{df})$$

1-zijdig:
$$t_{krit.1} = qt(0.95, df)$$

$df = n_1 + n_2 - 2$

$$s_p^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 - 1 + n_2 - 1}$$

• Er is een significant *verschil* tussen \bar{y}_1 en \bar{y}_2 als:

$$|t| > t_{\text{krit.2}}$$

• Gemiddelde \bar{y}_1 is *hoge*r dan \bar{y}_2 als:

$$t > t_{\text{krit.1}}$$

• Gemiddelde \bar{y}_1 is *lager* dan \bar{y}_2 als:

$$t < -t_{\text{krit.1}}$$

Welch *t*-toets

De formele *t*-toets:

$$t = \frac{\text{verschil tussen gemiddelden}}{\text{fout in verschil}}$$

wordt

$$t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Grenswaarde (voor $\alpha = 0.05$):

2-zijdig:
$$t_{\text{krit.2}} = \text{qt} (0.975, \text{df})$$

1-zijdig:
$$t_{krit.1} = qt(0.95, df)$$

$$df \approx \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{s_2^4}{n_2^2 \cdot (n_2 - 1)}\right)}$$

• Er is een significant *verschil* tussen \bar{y}_1 en \bar{y}_2 als:

$$|t| > t_{\text{krit.2}}$$

• Gemiddelde \bar{y}_1 is *hoge*r dan \bar{y}_2 als:

$$t > t_{\text{krit},1}$$

• Gemiddelde \bar{y}_1 is *lager* dan \bar{y}_2 als:

$$t < -t_{\text{krit.1}}$$

Significant of niet?

Een verschil is significant als

of (wat equivalent is)

Statistische en praktische significantie

Statistische significantie:

Is het verschil tussen gemeten gemiddelde en de referentiewaarde overtuigend? D.w.z. is het verschil (veel) groter dan de fout in dit verschil?

Significant als:
$$\left| t = \frac{\bar{y}_1 - \bar{y}_2}{s_{\bar{y}_1 - \bar{y}_2}} \right| > t_{\text{krit.2}}$$

Praktische significantie:

Is het verschil tussen gemeten gemiddelde en de referentiewaarde belangrijk? D.w.z. is het verschil (veel) groter dan de ruis is de data? Praktische significantie = effectsterkte: Cohen's d: $d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$

De effectsterkte bij een Welch t-toets wordt meestal uitgedrukt in de waarde van Cohen's d:

Jacob Cohen

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

- Cohen's d meet dus het verschil $\bar{y}_1 \bar{y}_2$ in "eenheden" van de gemiddelde ruis = gepoolde standaarddeviatie s_p
- Cohen's d is dimensieloos, \pm onafhankelijk van n!
- Wat is "groot" verschil, wat is "klein" verschil? Hangt van de context af, maar algemene richtlijnen*:

Waarde Cohen's \emph{d}	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

^{*)} Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

Cohen's
$$d$$
: $d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$

Berekening:

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p} = t \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

want

$$t = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p} \cdot \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = d_{av} \cdot \frac{1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Cohen's
$$d: d_{av} = \frac{\overline{y}_1 - \overline{y}_2}{s_p}$$

Voorbeeld: $\bar{y}_1 = 3.50$, $s_p = 0.50$

Cohen's
$$d: d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

Voorbeeld: $\bar{y}_1 = 3.50$, $\bar{y}_2 = 3.25$, $s_p = 0.50$

4.5

Gemiddelde y

^{*} Per dataset n, totaal 2n metingen

Aantal metingen n en effectsterkte

- Om een "klein" verschil significant te noemen heb je veel metingen nodig...
- Om een "groot" verschil significant te noemen heb je minder metingen nodig...
- We hebben $t = d_{\rm av}/\sqrt{\frac{1}{n} + \frac{1}{n}}$, dus $t_{\rm krit.2} = d_{\rm av} \cdot \sqrt{n/2}$, dus

$$qt(0.975; 2n - 2) = d_{av} * sqrt(n/2)$$

Waarde Cohen's $d_{ m av}$	Interpretatie	Minimum aantal metingen n per set voor significant verschil
0.2	Klein verschil	194
0.5	Matig verschil	32
0.8	Groot verschil	14

Welch t-toets in R

- 2 vectoren y.1 en y.2: t.test(y.1, y.2, ...)
- 2 kolommen y.1 en y.2 uit dataframe M: t.test(M\$y.1, M\$y.2, ...)
 - t.test(y.1, y.2, data = M, ...)
- 1 vector met y-waarden, 1 factor g, via formule:
 t.test(y ~ g, ...)
- 1 vector met y-waarden, 1 factor g uit dataframe M:

```
t.testt.test(M$y \sim M$g, ...)
t.test(y \sim g, data = M, ...)
```

- 1- en 2-zijdig toetsen*:
 - 2-zijdig: alternative="two.sided" (default)
 - 1-zijdig: alternative="less" or alternative="greater"

^{*} Let op bij 1-zijdig: R nummert de levels van de factor g standaard alfabetisch!

Welch t-toets: samenvatting

- Meetwaarden y continu, a = 2 groepen
- $H_0: \bar{y}_1 \neq \bar{y}_2$

•
$$H_1: \bar{y}_1 \neq \bar{y}_2$$
 of $\bar{y}_1 > \bar{y}_2$ of $\bar{y}_1 < \bar{y}_2$

$$\bar{y}_1 > \bar{y}_2$$

$$\bar{y}_1 < \bar{y}_2$$

•
$$t = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

•
$$t = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

$$df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \left(\frac{s_1^4}{n_1^2 \cdot (n_1 - 1)} + \frac{s_2^4}{n_2^2 \cdot (n_2 - 1)}\right)$$

•
$$t_{\text{krit.2}} = \text{qt}(0.975, \text{df})$$

$$t_{\text{krit.1}} = \text{qt}(0.95, \text{df})$$

• H_1 als: $p < \alpha$

$$\mid t \mid > t_{
m krit.2}$$
 of $t > t_{
m krit.1}$ of $t < -t_{
m krit.1}$

of
$$t < -t_{\text{krit.1}}$$

• Effectsterkte:
$$d_{av} = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p} = t \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Waarde Cohen's d : $\mid d_{\mathrm{av}} \mid$	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

Aantal metingen voor significant verschil

Cohen's d	1-sample t -toets: n metingen	Welch t -toets: n metingen per dataset
0.2	99	194
0.5	18	32
0.8	9	14
1.1	6	8
1.4	5	6
1.7	4	4
2.0	4	4
2.3	3	3
2.6	3	3
2.9	3	3
3.2	3	2
3.5	3	2

Gepaarde *t*-toets

Verschillen twee experimentele gemiddelden op basis van herhaalde metingen van elkaar?

Wel/niet gepaard?

Structuur in de verzamelde data:

- Is het een herhaalde meting van een eigenschap op hetzelfde "object" onder verschillende omstandigheden?
- Kan je niet zomaar datapunten op een andere plek in de dataset zetten?
- Spreiding per groep is niet normaal verdeeld?

Dan: gepaarde t-toets (Eng: paired t-test, repeated measures t-test)

Gepaarde *t*-toets

Als formele *t*-toets:

 $t = \frac{\text{verschil tussen gemiddelden}}{\text{fout in verschil}}$

wordt

$$t = \frac{\bar{d} - 0}{s_d / \sqrt{n_d}}$$
 aantal paren

Grenswaarde (voor $\alpha = 0.05$):

2-zijdig:
$$t_{\text{krit.2}} = \text{qt} (0.975, \text{df})$$

1-zijdig:
$$t_{krit.1} = qt (0.95, df)$$

$$d_{i} = y_{1,i} - y_{2,i}$$

$$df = n_d - 1$$

$$d_i = y_{1,i} - y_{2,i}$$

verschil per paar

• Er is een significant *verschil* tussen \bar{y}_1 en \bar{y}_2 als:

$$|t| > t_{\text{krit.2}}$$

• Gemiddelde \bar{y}_1 is *hoge*r dan \bar{y}_2 als:

$$t > t_{\text{krit.1}}$$

• Gemiddelde \bar{y}_1 is *lager* dan \bar{y}_2 als:

$$t < -t_{\text{krit.1}}$$

Significant of niet?

Een verschil is significant als

of (wat equivalent is)

Effectsterkte: Cohen's d

De effectsterkte bij een gepaarde t-toets wordt meestal uitgedrukt in de waarde van Cohen's d:

Jacob Cohen

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$$

- Cohen's d meet dus het verschil $\bar{y}_1 \bar{y}_2$ in "eenheden" van de gemiddelde ruis = gepoolde standaarddeviatie s_p
- Cohen's d is dimensieloos, \pm onafhankelijk van n!
- Wat is "groot" verschil, wat is "klein" verschil? Hangt van de context af, maar algemene richtlijnen*:

Waarde Cohen's \emph{d}	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

^{*)} Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

Effectsterkte: Cohen's d

Cohen's
$$d$$
: $d_{av} = \frac{\bar{y}_1 - \bar{y}_2}{s_p}$

Berekening:

$$d_{\text{av}} = \frac{\bar{y}_1 - \bar{y}_2}{s_p} = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{\frac{s_1^2 + s_2^2}{2}}}$$

want t is gedefinieerd op basis van s_d , de standaarddeviatie van de verschillen d_i , en dus NIET bruikbaar om $d_{\rm av}$ te berekenen!

NB. Sommige auteurs definiëren ook een andere d-waarde:

$$d_z = \frac{\overline{y}_1 - \overline{y}_2}{S_d}$$

waarbij dus gedeeld wordt door de standaarddeviatie van de verschillen! Dit levert een veel grotere effectsterkte op. Wij kiezen als effectsterkte voor de waarde van $d_{\rm av}$ i.p.v. d_z ...

Effectsterkte: Cohen's d

Cohen's
$$d: d_{av} = \frac{\overline{y}_1 - \overline{y}_2}{s_p}$$

Voorbeeld: $\bar{y}_1 = 3.50$, $s_p = 0.50$

Gepaarde t-toets in R

- 2 vectoren y.1 en y.2: t.test(y.1, y.2, paired=T, ...) • 2 kolommen y.1 en y.2 uit dataframe M: t.test(M\$y.1, M\$y.2, paired=T, ...) t.test(y.1, y.2, data = M, paired=T, ...)• 1 vector met y-waarden, 1 factor g, via formule: $t.test(y \sim g, paired=T, ...)$ • 1 vector met y-waarden, 1 factor g uit dataframe M: $t.test(M$y \sim M$g , paired=T, ...)$ $t.test(y \sim g, data = M, paired=T, ...)$ 1- en 2-zijdig toetsen*: 2-zijdig: alternative="two.sided" (default) 1-zijdig: alternative="less" or alternative="greater"
- * Let op bij 1-zijdig: R nummert de levels van de factor g standaard alfabetisch!

Gepaarde t-toets: samenvatting

- Meetwaarden y continu, a = 2 groepen
- $H_0: \bar{y}_1 \neq \bar{y}_2$

•
$$H_1: \bar{y}_1 \neq \bar{y}_2$$
 of $\bar{y}_1 > \bar{y}_2$ of $\bar{y}_1 < \bar{y}_2$

•
$$t_{\text{krit.2}} = \text{qt}(0.975, \text{df})$$
 $t_{\text{krit.1}} = \text{qt}(0.95, \text{df})$

• ${\rm H_1\,als:}\, p<\alpha$ | $t\mid >t_{
m krit.2}$ of $t>t_{
m krit.1}$ of $t<-t_{
m krit.1}$

• Effectsterkte:
$$d_{av} = \frac{(\bar{y}_1 - \bar{y}_2)}{s_p} = \frac{(\bar{y}_1 - \bar{y}_2)}{\sqrt{\frac{s_1^2 + s_2^2}{2}}}$$

Waarde Cohen's d : $\mid d_{\mathrm{av}} \mid$	Interpretatie
0.2	Klein verschil
0.5	Matig verschil
0.8	Groot verschil

1-way ANOVA

Verschillen meer dan twee experimentele gemiddelden van elkaar?

Meerdere groepen: t-toetsen?

Als je bijv. 4 groepen wilt vergelijken, zou je 6 verschillende *t*-toetsen kunnen doen:

A-B, A-C, A-D, B-C, B-D, C-D

met elk $\alpha = 0.05$ (= kans op verkeerde conclusie per toets)

Maar: totale kans op verkeerde conclusie is:

$$kans = 1 - 0.95^6 = 0.26$$

Oplossing

Analysis Of Variance (Variantieanalyse)

Ronald Fisher (1930)

1-way ANOVA: idee

Waarom vind je in situatie 1 dat er geen effect van licht is op de planthoogte, terwijl je dat in situatie 2 wel vindt?

1-way ANOVA: idee

Verhouding tussen spreiding (= variantie) *tussen* levels (groepen) en *binnen* levels:

$$F = \frac{s_{\text{tussen}}^2}{s_{\text{binnen}}^2} = \frac{MS_{\text{tussen}}}{MS_{\text{binnen}}} = \frac{MS_A}{MS_{\text{error}}} = \frac{\text{var}(\uparrow)}{\text{var}(\uparrow)}$$

$$y_{ik}$$

$$y_{ik}$$

$$y_{ik}$$

$$y_{ik}$$

$$|\text{level } i|$$

$$|\text{factor A}|$$

1-way ANOVA (fixed effects): design

1-way ANOVA: notatie

 $y_{i\bullet}$

• Elke y-waarde behoort tot i^e level (groep) van factor en is k^e meting van dat level: y_{ik}

• Gemiddelde *y* per level *i*:

• Overall gemiddelde: Y...

• Aantal metingen per level ("cel"): $n_{i\bullet} = n_c$

Mag ook verschillen per level, maar liever niet!

1-way ANOVA: data

level i (factor A) \rightarrow

1-way ANOVA: model

Effect van factor A

• Model: $y_{ik} = \mu + \alpha_i + \varepsilon_{ik}$ Error = ruis

$$y_{ik} = \bar{y}_{..} + (\bar{y}_{i.} - \bar{y}_{..}) + (y_{ik} - \bar{y}_{i.})$$

Sum of Squares ("variatie") opdeling:

$$\sum_{i=1}^{a} \sum_{k=1}^{n_c} (y_{ik} - \bar{y}_{..})^2 = \sum_{i=1}^{a} \sum_{k=1}^{n_c} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{a} \sum_{k=1}^{n_c} (y_{ik} - \bar{y}_{i.})^2$$

$$SS_{\text{tot}} = SS_A SS_{\text{between}} + SS_{\text{err}} SS_{\text{wit}}$$

1-way ANOVA: hypothese

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_a$ of

$$\alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_a = 0$$

alle levels hebben zelfde gemiddelde

of: De factor A heeft GEEN effect op y

H₁: niet zo...

niet alle levels zelfde gemiddelde

of: De factor A heeft significant effect op y

1-way ANOVA: toets

• Bereken MS's gebaseerd op SS_A en SS_{err} :

$$MS_{\rm A} = \frac{SS_{\rm A}}{a-1}$$

$$MS_{\rm err} = \frac{SS_{\rm err}}{a(n_c-1)}$$

• Ratio MS_A / MS_{err} volgt een F- verdeling:

$$F = \frac{MS_{A}}{MS_{err}} = \frac{\text{var}(\uparrow)}{\text{var}(\uparrow)}$$

$$F_{\text{crit}} = F_{a-1,a(n_c-1)}$$

1-way ANOVA: toets

Significant verschil in gemiddelden (d.w.z. H₁ waar)

als:

$$F > F_{\rm crit}$$

1-way ANOVA: toets

Significant verschil in gemiddelden (d.w.z. H₁ waar) als:

$$p < \alpha$$

p-waarden bij ANOVA

Significantie van factor A:

Zoals altijd in de statistiek:

- $p > \alpha$ geloof H_0
- $p < \alpha$ geloof H_1

Bij de 1-way ANOVA geldt:

- H_0 : géén verschil in gemiddelden, dus factor A heeft géén significant effect op y
- H₁: wel verschil in gemiddelden, dus factor A heeft wel significant effect op y

Data:

Planthoogte (cm)					
Hoeveelheid licht					
schaduw half-schaduw zon					
17.5	19.0	23.5			
10.5	22.5	27.0			
14.0	15.5	30.5			

1-way ANOVA analyse:

Anova: Single Factor								
SUMMARY								
Groups	Count	Sum	Average	Variance		n < 0	.05, dus H₁:	
schaduw	3	42	14	12.25		Licht heeft een significant effect op		
half-schaduw	3	57	19	12.25				
zon	3	81	27	12.25				
						pla	nthoogte	
ANOVA						7		
Source of Variation	SS	df	MS	F	P-value	F crit		
Between Groups	258	2	129	10.53061	0.0109	5.143253		
Within Groups	73.5	6	12.25					
Total	331.5	8						

ANOVA: effectsterkte

Sterkte verklarende effect van factor(en):

– Regressie: R^2 (of R_{adj}^2 bij model selectie)

– ANOVA: eta-kwadraat = η^2

$$\eta^2 = \frac{SS_{\text{factor}}}{SS_{\text{tot}}}$$

Zelfde interpretatie als R^2 bij regressie: fractie door die factor/interactie verklaarde variantie

waarde $oldsymbol{\eta}^2$	betekenis *
0.01	zwak effect
0.09	gematigd effect
0.25	sterk effect

^{*} Cohen, J. (1988) Statistical power analysis for the behavioral sciences (2nd ed.)

ANOVA: effectsterkte

Data:

Planthoogte (cm)					
Hoeveelheid licht					
schaduw half-schaduw zon					
17.5	19.0	23.5			
10.5	22.5	27.0			
14.0	15.5	30.5			

1-way ANOVA analyse:

ANOVA							
Source of Variation	SS	df	MS	F	P-value	F crit	eta.2
Between Groups	258	2	129	10.53061	0.0109	5.143253	0.778
Within Groups	73.5	6	12.25				
Total	331.5	8					

 $\eta^2 = \frac{258}{331.5} = 0.78$, dus 78% van alle variatie in planthoogte wordt "verklaard" door licht!

1-way ANOVA in R

• 1 vector met y-waarden, 1 factor g, via formule:

```
summary(aov(y ~ g , ...))
```

• 1 vector met y-waarden, 1 factor g uit dataframe M:

```
summary(aov(M$y \sim M$g , ...))
summary(aov(y \sim g, data = M , ...))
```