MDL Assignment 3, Part 2

- Ayush Sharma (2019101004)
- Nitin Chandak (2019101024)

First Roll Number = 2019101004

Second Roll Number = 2019101024

Used Roll Number = 2019101004

LastFourDigitsOfRollNumber = 1004

x = 1 - (((LastFourDigitsOfRollNumber)%30 + 1) / 100) = 1 - 0.15 = 0.85

Success Reward = (RollNumber%90 + 10) = (2019101004%90 + 10) = 64

Few asusmptions:

- States are : $[(A_i, A_j), (T_i, T_j), call]$ & sorted in ascending order.
- · Whenever not specified we assume probabilities to be uniform.
- Discount factor is assumed to be 0.5.

Given Data

Positions:

• Possible Positions of an Agent or Target :

Pos_Grid	col = 0	col = 1	col = 2	col = 3
row = 0	(0, 0)	(0, 1)	(0, 2)	(0, 3)
row = 1	(1, 0)	(1, 1)	(1, 2)	(1, 3)

Target's Actions:

• Movement Probability Distribution of a Target is following:

Action	STAY	UP	DOWN	LEFT	RIGHT
Probability	0.6	0.1	0.1	0.1	0.1

- If Target try to move out of the grid world, it will remain at the same pos. with 0.1 probability.
- The calling functionality of Target is independent of its movement.

Action	Call On	Call Off
Probability	0.5	0.1

Transition probabilities for the agent :

• Since, x = 0.85 in our case. Hence, the following table:

Action	STAY	UP	DOWN	LEFT	RIGHT
Success Probability	1	0.85	0.85	0.85	0.85
Failure Probability	0	0.15	0.15	0.15	0.15

- For, failure of Non-STAY action, the agent moves in the opposite direction.
- For either of success or failure, if Agent try to move outside the grid world it will stay at the same position with given success or failure prob. resp.

Possible Observations from the Grid World:

• All observation have 100% accuracy.

Observation	Target's Position w.r.t Agent's position
ol	Same
o2	Right
о3	Below
04	Left
o5	Above
06	Not in the 1 cell neighbourhood

Rewards:

- -1 for each step that Agent takes.
- (RollNumber%90 + 10) = 64 for reaching the target before the call is turned off.

Question 1

Target Cell: (1, 0)

Observation: O6 with 100% accuracy

Therefore, initial equi-probable possible positions of the Agent: (0,1), (0,2), (0,3), (1,2) and (1,3). Also, for each cell the agent is likely to be in, the target is equally likely to be or not to be on a call.

Thus, start states are following:-

```
 S = \{ \ (0,1,1,0,0) \ , \ (0,2,1,0,0) \ , \ (0,3,1,0,0) \ , \ (1,2,1,0,0) \ , \ (1,3,1,0,0) \ , \ (0,1,1,0,1) \ , \ (0,2,1,0,1) \ , \ (0,3,1,0,1) \ , \ (1,3,1,0,1) \ \} \ \text{and all of them are equally likely.}
```

Clearly, |s| = 10.

Therefore, belief state b i.e. probability distribution over our set of states will be:

```
b(s) = 0.1 \forall s \in S
otherwise b(s) = 0.
```

Initial Belief State:

NOTE: The optimal policy file for the POMDP taking into account the obtained initial belief state b is 2019101004_2019101024.policy.

Question 2

Agent Cell: (1, 1)

As target is in one cell neighbourhood of agent & not making call. Hence, possible equi-probable positions of the target are: (0,1), (1,0), (1,1) and (1,2).

And target is not making call. Thus, start states are following:-

```
S = \{ (1,1,0,1,0), (1,1,1,0,0), (1,1,1,1,0), (1,1,1,2,0) \} \text{ and all of them are equally likely.} Clearly, |s| = 4.
```

Therefore, belief state b i.e. probability distribution over our set of states will be:

```
b(s) = 0.25 \forall s \in S
otherwise b(s) = 0.
```

Initial Belief State:

Question 3

for Q1:

The expected utility for Q1 was generated using the commands:

```
python3 code.py
   ./sarsop/src/pomdpconvert 2019101004_2019101024.pomdp
   ./sarsop/src/pomdpsol 2019101004_2019101024.pomdpx
   ./sarsop/src/pomdpsim --simLen 100 --simNum 1000 --policy-file out.policy
2019101004_2019101024.pomdpx
```

expected utility: 13.614

95% confidence interval: (12.9975, 14.2285)

Q1 output

```
Loading the model ...
  input file : 2019101004 2019101024.pomdpx
Loading the policy ...
  input file : out.policy
Simulating ...
 action selection : one-step look ahead
#Simulations | Exp Total Reward
        13.0744
13.6369
100
200
               13.6711
13.9158
 300
400
 500
               13.6625
600
               13.7338
 700
               13.4707
800
               13.5196
               13.5264
900
               13.613
1000
Finishing ...
#Simulations | Exp Total Reward | 95% Confidence Interval
 1000
        13.613
                                  (12.9975, 14.2285)
```

for Q2:

The expected utility for Q2 was generated using the commands:

```
python3 code.py
   ./sarsop/src/pomdpconvert q2.pomdp
   ./sarsop/src/pomdpsol q2.pomdpx
   ./sarsop/src/pomdpsim --simLen 100 --simNum 1000 --policy-file out.policy
q2.pomdpx
```

expected utility: 26.1293

95% confidence interval: (25.4966, 26.762)

Q2 output

```
Loading the model ...
  input file : q2.pomdpx
Loading the policy ...
 input file : out.policy
Simulating ...
 action selection : one-step look ahead
#Simulations | Exp Total Reward
          25.0127
24.9856
25.8228
 100
 200
 300
400
               26.1573
500
                26.0896
600
                26.0014
                25.9998
 700
800
                26.1
900
                26.1483
 1000
                26.1293
Finishing ...
 #Simulations | Exp Total Reward | 95% Confidence Interval
 1000
                26.1293
                                    (25.4966, 26.762)
```

statistics used: simLen: 100

simNum: 1000

Question 4

• Agent's Possible position & probability

State	(0,0)	(1,3)
Probability	0.4	0.6

• Targets's Possible position & probability. (Call of Target doesn't matter as no observation detects it.)

State	(0,1)	(0,2)	(1,1)	(1,2)
Probability	0.25	0.25	0.25	0.25

Positions (Agent, Target)	Possible Observation	Probability
[(0,0),(0,1)]	o2	0.1
[(0,0),(0,2)]	06	0.1
[(0,0),(1,1)]	06	0.1
[(0,0),(1,2)]	06	0.1
[(1,3),(0,1)]	06	0.15
[(1,3),(0,2)]	06	0.15
[(1,3),(1,1)]	06	0.15
[(1,3),(1,2)]	o4	0.15

Now we have,

```
Probability (observation) = \sum^{n}_{i=0} \{ Probability (observation \mid state) \times Probability (state) \}
```

So calculating this probability for every observation,

```
P(o1) = \Sigma (P(o1|state)*P(state)) = 0
P(o2) = \Sigma (P(o2|state)*P(state)) = (P(o2|Agent in (0,0) and Target in (0,1))*P(Agent in (0,0) and Target in (0,0)) and Target in (0,0) and Targe
in (0,1) )) = 1 * 0.1 = 0.1
P(o3) = \Sigma (P(o3|state)*P(state)) = 0
P(o4) = \Sigma (P(o4|state)*P(state)) = \{ P(o4 | (Agent in (1,3) and Target in (1,2))) * P(Agent in (1,3) and Target in (1,2)) \}
Target in (1,2)) = 1 * 0.15 = 0.15
P(o5) = \Sigma (P(o5|state)*P(state)) = 0
P(o6) = \Sigma (P(o6|state)*P(state))
= (P(o6|Agent in (0,0) and Target in (0,2)) * P(Agent in (0,0) and Target in (0,2))) +
(P(06|Agent in (0,0) and Target in (1,1)) * P(Agent in (0,0) and Target in (1,1))) +
(P(o6|Agent in (0,0) and Target in (1,2)) * P(Agent in (0,0) and Target in (1,2))) +
(P(06|Agent in and (1,3) Target in (0,1)) * P(Agent in (1,3) and Target in (0,1))) +
(P(06|Agent in and (1,3) Target in (0,2)) * P(Agent in (1,3) and Target in (0,2))) +
(P(06|Agent in (1,3) and Target in (1,1)) * P(Agent in (1,3) and Target in (1,1)))
=1*0.1+1*0.1+1*0.1+1*0.1+1*0.15+1*0.15+1*0.15=0.1+0.1+0.1+0.15+0.15+0.15
= 0.75
```

Hence, O6 is clearly the most like observation, as it has the highest probability.

Question 5

The number of policy tree obtained is equal to $|A|^N$; where

$$\begin{split} N &= \sum_{i} |o|^{i} \\ \text{for all } i \in \{\ 0,\,1,\,2,\,...\,\,,\,T\text{-}1\ \} \\ &=> N = [\ |O|_{T} - 1\]\,/\,[\ |O| \ - 1\] \end{split}$$

Where

|A| denotes the number of actions,

|O| denotes the number of observations,

And T denotes the time horizon.

For our given case:-

|A| = 5 and |O| = 6 and T is the time horizon - unknown variable.

Thus,
$$N = [6^T -1]/[6-1] = [6^T -1]/[5]$$

Therefore, total number of policy trees are $= |A|^N = 5^N$

The number of policy trees would increase exponentially as the time horizon increases because the convergence of nodes becomes more difficult as the time horizon increases. Hence, we get such a large number of policy trees.