$\begin{array}{c} {\bf Software~Requirements~Specification~for}\\ {\bf AortaGeomRecon} \end{array}$

Jingyi Lin

February 16, 2023

Contents

1	Ref	ference Material	iv								
	1.1	Table of Units	iv								
	1.2	Table of Symbols	iv								
	1.3	Abbreviations and Acronyms	V								
2	Intr	roduction	1								
	2.1	Purpose of Document	1								
	2.2	Scope of Requirements	1								
	2.3	Organization of Document	1								
3	Ger	neral System Description	1								
	3.1	System Context	2								
	3.2	User Characteristics	2								
	3.3	System Constraints	2								
4	Spe	ecific System Description	3								
	4.1	Problem Description	3								
		4.1.1 Coordinate Systems	3								
		4.1.2 Physical System Description	6								
		4.1.3 Goal Statements	6								
	4.2	Solution Characteristics Specification	7								
		4.2.1 Assumptions	8								
		4.2.2 Theoretical Models	8								
		4.2.3 General Definitions	10								
		4.2.4 Data Definitions	11								
		4.2.5 Data Types	12								
		4.2.6 Instance Models	13								
		4.2.7 Input Data Constraints	14								
		4.2.8 Properties of a Correct Solution	15								
5	Rec	quirements	15								
	5.1	Functional Requirements	16								
	5.2	Nonfunctional Requirements	16								
6	Like	ely Changes	17								
7	Unl	likely Changes	17								
8	Traceability Matrices and Graphs 1										
9		velopment Plan	18								

Revision History

Date	Version	Notes
2023-02-12	1.0	Notes

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are used as described below. For each unit, the symbol is given followed by a description of the unit and the SI name.

1.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with existing documentation for 3D Slicer program. The symbols are listed in alphabetical order.

symbol	type	description
MSE	\mathbb{R}	mean square error
MAE	\mathbb{R}	mean absolute error
RMAE	\mathbb{R}	root mean absolute error
\neg qualified_coef	\mathbb{R}	qualified center coefficient
$volume_node$	\mathbb{R}	qualified center coefficient

Table 1: Table of Symbols

use 5 mathril & qualified-coeff 3\$ to get the proper spacing. (some for volume rock)

1.3 Abbreviations and Acronyms

symbol	description
A	Assumption
A orta Geom Recon	AortaGeometryReconstructor 3D Slicer extension
DD	Data Definition
DICOM	Digital Imaging and Communications in Medicine
GD	General Definition
GS	Goal Statement
IM	Instance Model
LC	Likely Change
PS	Physical System Description
R	Requirement
SRS	Software Requirements Specification
SITK	Simple ITK
T	Theoretical Model

reed to reed to sention 30 stension the requirements abortact.

2 Introduction

This document provides an overview of the Software Requirements Specification (SRS) for the 3D Slicer extension module AortaGeomRecon. AortaGeomRecon provides a highly customizable agree a segmentation module, and an interactive user interface to apply the segmentation workflow.

2.1Purpose of Document

The main purpose of this document is to provide sufficient information to understand what AortaGeomRecon module does. The goals and theoretical models used in the AortaGeom-Recon segmentation module implementation are provided, with an emphasis on explicitly identifying assumptions and unambiguous definitions. Thornat

Scope of Requirements 2.2

The responsibilities of the user and the AortaGeomRecon are as follows:

- User Responsibilities: Users are responsible to provide appropriate inputs to the program and ensure that the inputs meet the assumptions mentioned in ??.
- AortaGeomRecon Responsibilities: Upon receiving appropriate inputs, the program is intended to perform the segmentation algorithm, and returned a vtkMRMLScalar-VolumeNode of the segment result, which can be transferred to a SITK::Image, or a numpy.ndarray. Other outputs are mentioned in reference.

2.3Organization of Document

The organization of this document follows the template for an SRS for scientific computing software proposed by Koothoor (2013) and Smith and Lai (2005). The presentation follows the standard pattern of presenting goals, theories, definitions and assumptions. The goal statements are refined to the theoretical models, and theoretical models to the instance models. For readers that would like a more bottom-up approach, they can start reading the instance models in Section ?? and trace back to find any additional information they require.

3 General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics and lists the system constraints.

Third covered in the system confest section

Image + seed unlines

3.1 System Context

Figure 1 shows the system context A circle represents an external entity outside the software, the user in this case. A rectangle represents the software system itself. Arrows are used to show the data flow between the system and its environment.

Figure 1: System Context

- User Responsibilities:
 - Provide the input data to the system
 - Ensure the input meets the necessary assumptions
 - Run the appropriate experiment to obtain the required data
 - Verify the result data meets their requirements, otherwise repeat the process with are there flooding pod, a different input value
- AortaGeomRecon Responsibilities:
 - Detect data type mismatch, such as a string of characters instead of a floating point number
 - Provide simple interactions to obtain the users' input
 - Provide visualization on the result data

3.2 User Characteristics

The end user of AortaGeomRecon have previous using experience with 3D Slicer, and it's sub modules, including Volume Rendering, and Crop volume modules. Otherwise, the end user should follow the tutorial provided in the project Github repository. The end user also have understanding on the general position of the aorta, especially the ability to point out the center of the descending aorta and the ascending aorta.

2

3.3 System Constraints

Intended environment to run the program on are the Windows 10 systems.

t rol ancessors and subst

Specific System Description 4

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which you should define the presents the assumptions, theories, definitions and finally the instance models.

Problem Description 4.1

The main purpose of AortaGeomRecon is to semi-automatically segment a 3D aorta geometry from a chest CT scan.

4.1.1 Coordinate Systems

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements?

While working with medical images, it is necessary to be familiar with the different coordinate systems of the medical literarure and how data (voxels' orientation) is interpreted in different medical and non-medical software. Each coordinate system uses one or more numbers (coordinates) to uniquely determine the position of a point (in the medical context, we refer to each point as a voxel). The purpose of this section is to introduce some of the coordinate systems related to the medical imaging. There are different coordinate systems to represent data. A knowledge of the following coordinate systems is needed to be able to work with the medical images.

Cartesian Coordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a 2D plane by a pair of numerical coordinates or in a 3D space by three numerical coordinates. We assume a right-hand Cartesian coordinate system throughout this document. ar

World Coordinate System World Coordinate System (WCS) is a Cartesian coordinate system that describes the physical coordinates associated with a model such as 4 MRI scanner or a patient. While each model has its own coordinate system, without a universal coordinate system such as WCS, they cannot interact with each other. For model interaction to be possible, their coordinate systems must be transformed into the WCS. Figure 4 shows the WCS corresponding space and axes.

Anatomical Coordinate System Anatomical coordinate system, also known as patient coordinate system, is a right-handed 3D coordinate system which describes the standard anatomical position of a human using the following 3 orthogonal planes:

• Axial / Transverse plane: is a plane parallel to the ground that separates the body into head (superior) and tail (inferior) positions.

Figure 2: World Coordinate System Space and Axes sli (2014)

- Coronal / Frontal plane: is a plane perpendicular to the ground that divides the body into front (anterior) and back (posterior) positions.
- Sagittal / Median plane: is a plane that divides the body into right and left positions.

Figure 3 shows this coordinate system.

Medical applications follow an anatomical coordinate system to store voxels in sequences. Depending on how the data is stored, this coordinate system can be divided into different bases. The most common ones are:

• LPS Coordinate System:

The LPS coordinate system, also known as DICOM (patient) coordinate system, is a left-hand coordinate system used in DICOM images. In this system, voxels are ordered from left to right in a row, rows are ordered from posterior to anterior, and slices are stored from inferior to superior. In other words, it is an LPI system. LPS stands for Left-Posterior-Superior which indicates the directions that spatial axes CIsit LPI or LPS? are increasing.

• RAS Coordinate System:

LPI is a right-hand coordinate system for voxel orientation. It stores voxels from right to left to create rows, rows from anterior to posterior to create slices and slices from superior to inferior to create volumes. This system is the preferred basis for Neurological applications such as 3dfim+ and is used in NIfTI files. The increasing position order is RAS. LPI verus RAS?

Image Coordinate System To specify locations in an image we need to know to which coordinate system it is referenced. Different software may use different orders as their index convention.

This is confusing to me.

Figure 3: Anatomical Coordinate System Space and Axes sli $\left(2014\right)$

o: I you don't need the

• Image Coordinate System for Matlab:

In Matlab, index numbering starts at the upper left corner. To express the position of point (x, y, z), we should consider that the x axis increases from left to right, the y axis increases to the bottom and the z axis increases backward.

Figure 4: Image Coordinate System Space and Axes in Matlab sli (2014)

If we are using different file formats and software, we need to transform their coordinate systems into WCS.

4.1.2 Physical System Description

We do not study the physical system for Dicom or how the data is actually generated.

4.1.3 Goal Statements

Given the DICOM image that includes patient's chest, the descending aorta center voxel coordinate, and the ascending aorta center voxel coordinate, the goal statements are:

GS1: Calculate the mean of the pixels associated with each label or segment based on the descending or ascending aorta center voxel coordinate.

GS2: Calculate the lower and upper threshold based the mean.

GS3: With the lower and upper threshold, segments structures in images based on intensity values.

Extract the 30 Segmentation of the acrta.

The goal should be don't be. It is what you want, not how to achieve it.

Your goal stutements could be react limits the other you describe in your design documents.

G84: Count the number of pixels from the segmented structures in images.

G85: Verified the new slice is qualified by compare the number of pixels of the new segmented structure to the original given slice and the previous segmented slice.

4.2 Solution Characteristics Specification

[This section specifies the information in the solution domain of the system to be developed. This section is intended to express what is required in such a way that analysts and stakeholders get a clear picture, and the latter will accept it. The purpose of this section is to reduce the problem into one expressed in mathematical terms. Mathematical expertise is used to extract the essentials from the underlying physical description of the problem, and to collect and substantiate all physical data pertinent to the problem. —TPLT]

[This section presents the solution characteristics by successively refining models. It starts with the abstract/general Theoretical Models (TMs) and refines them to the concrete/specific Instance Models (IMs). If necessary there are intermediate refinements to General Definitions (GDs). All of these refinements can potentially use Assumptions (A) and Data Definitions (DD). TMs are refined to create new models, that are called GMs or IMs. DDs are not refined; they are just used. GDs and IMs are derived, or refined, from other models. DDs are not derived; they are just given. TMs are also just given, but they are refined, not used. If a potential DD includes a derivation, then that means it is refining other models, which would make it a GD or an IM. —TPLT]

[The above makes a distinction between "refined" and "used." A model is refined to another model if it is changed by the refinement. When we change a general 3D equation to a 2D equation, we are making a refinement, by applying the assumption that the third dimension does not matter. If we use a definition, like the definition of density, we aren't refining, or changing that definition, we are just using it. —TPLT]

[The same information can be a TM in one problem and a DD in another. It is about how the information is used. In one problem the definition of acceleration can be a TM, in another it would be a DD. —TPLT]

[There is repetition between the information given in the different chunks (TM, GDs etc) with other information in the document. For instance, the meaning of the symbols, the units etc are repeated. This is so that the chunks can stand on their own when being read by a reviewer/user. It also facilitates reuse of the models in a different context. —TPLT] [The relationships between the parts of the document are show in the following figure. In this diagram "may ref" has the same role as "uses" above. The figure adds "Likely Changes," which are able to reference (use) Assumptions. —TPLT]

The instance models that govern AortaGeomRecon are presented in Subsection 4.2.6. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

4.2.1 Assumptions

[The assumptions are a refinement of the scope. The scope is general, where the assumptions are specific. All assumptions should be listed, even those that domain experts know so well that they are rarely (if ever) written down. —TPLT] [The document should not take for granted that the reader knows which assumptions have been made. In the case of unusual assumptions, it is recommended that the documentation either include, or point to, an explanation and justification for the assumption. —TPLT]

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system. The numbers given in the square brackets refer to the theoretical model [T], general definition [GD], data definition [DD], instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: [Short description of each assumption. Each assumption should have a meaningful label. Use cross-references to identify the appropriate traceability to T, GD, DD etc., using commands like dref, ddref etc. Each assumption should be atomic - that is, there should not be an explicit (or implicit) "and" in the text of an assumption. —TPLT]

4.2.2 Theoretical Models

[Theoretical models are sets of abstract mathematical equations or axioms for solving the problem described in Section "Physical System Description" (Section 4.1.2). Examples of theoretical models are physical laws, constitutive equations, relevant conversion factors, etc.—TPLT]

This section focuses on the general equations and laws that AortaGeomRecon is based on. [Modify the examples below for your problem, and add additional models as appropriate. —TPLT]

RefName: T:COE

Label: Conservation of thermal energy

Equation: $-\nabla \cdot \mathbf{q} + g = \rho C \frac{\partial T}{\partial t}$

Description: The above equation gives the conservation of energy for transient heat transfer in a material of specific heat capacity C (J kg⁻¹ °C⁻¹) and density ρ (kg m⁻³), where \mathbf{q} is the thermal flux vector (W m⁻²), g is the volumetric heat generation (W m⁻³), T is the temperature (°C), t is time (s), and ∇ is the gradient operator. For this equation to apply, other forms of energy, such as mechanical energy, are assumed to be negligible in the system (A??). In general, the material properties (ρ and C) depend on temperature.

Notes: None.

Source: http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm

Ref. By: GD??

Preconditions for T:COE: None

Derivation for T:COE: Not Applicable

["Ref. By" is used repeatedly with the different types of information. This stands for Referenced By. It means that the models, definitions and assumptions listed reference the current model, definition or assumption. This information is given for traceability. Ref. By provides a pointer in the opposite direction to what we commonly do. You still need to have a reference in the other direction pointing to the current model, definition or assumption. As an example, if T1 is referenced by G2, that means that G2 will explicitly include a reference to T1. —TPLT]

4.2.3 General Definitions

[General Definitions (GDs) are a refinement of one or more TMs, and/or of other GDs. The GDs are less abstract than the TMs. Generally the reduction in abstraction is possible through invoking (using/referencing) Assumptions. For instance, the TM could be Newton's

Law of Cooling stated abstracting. The GD could take the general law and apply it to get a 1D equation. —TPLT

This section collects the laws and equations that will be used in building the instance models.

[Some projects may not have any content for this section, but the section heading should be kept. —TPLT] [Modify the examples below for your problem, and add additional definitions as appropriate. —TPLT]

Number	GD1							
Label	Newton's law of cooling							
SI Units	$ m Wm^{-2}$							
Equation	$q(t) = h\Delta T(t)$							
Description	Newton's law of cooling describes convective cooling from a surface. The law is stated as: the rate of heat loss from a body is proportional to the difference in temperatures between the body and its surroundings.							
	q(t) is the thermal flux (W m ⁻²).							
	h is the heat transfer coefficient, assumed independent of T (A??) $(W m^{-2} {}^{\circ}C^{-1})$.							
	$\Delta T(t) = T(t) - T_{\text{env}}(t)$ is the time-dependent thermal gradient between the environment and the object (°C).							
Source	Citation here							
Ref. By	DD1, DD??							

Detailed derivation of simplified rate of change of temperature

[This may be necessary when the necessary information does not fit in the description field.—TPLT] [Derivations are important for justifying a given GD. You want it to be clear where the equation came from.—TPLT]

4.2.4 Data Definitions

[The Data Definitions are definitions of symbols and equations that are given for the problem. They are not derived; they are simply used by other models. For instance, if a problem depends on density, there may be a data definition for the equation defining density. The DDs are given information that you can use in your other modules. —TPLT]

[All Data Definitions should be used (referenced) by at least one other model. —TPLT]

This section collects and defines all the data needed to build the instance models. The dimension of each quantity is also given. [Modify the examples below for your problem, and add additional definitions as appropriate. —TPLT]

Number	DD1
Label	Heat flux out of coil
Symbol	q_C
SI Units	$ m Wm^{-2}$
Equation	$q_C(t) = h_C(T_C - T_W(t))$, over area A_C
Description	T_C is the temperature of the coil (°C). T_W is the temperature of the water (°C). The heat flux out of the coil, q_C (W m ⁻²), is found by assuming that Newton's Law of Cooling applies (A??). This law (GD1) is used on the surface of the coil, which has area A_C (m ²) and heat transfer coefficient h_C (W m ⁻² °C ⁻¹). This equation assumes that the temperature of the coil is constant over time (A??) and that it does not vary along the length of the coil (A??).
Sources	Citation here
Ref. By	IM1

4.2.5 Data Types

[This section is optional. In many scientific computing programs it isn't necessary, since the inputs and outpus are straightforward types, like reals, integers, and sequences of reals and integers. However, for some problems it is very helpful to capture the type information.
—TPLT]

[The data types are not derived; they are simply stated and used by other models. — TPLT]

[All data types must be used by at least one of the models. —TPLT]

[For the mathematical notation for expressing types, the recommendation is to use the notation of Hoffman and Strooper (1995). —TPLT]

This section collects and defines all the data types needed to document the models. [Modify the examples below for your problem, and add additional definitions as appropriate.—TPLT]

Type Name	Name for Type
Type Def	mathematical definition of the type
Description	description here
Sources	Citation here, if the type is borrowed from another source

4.2.6 Instance Models

[The motivation for this section is to reduce the problem defined in "Physical System Description" (Section 4.1.2) to one expressed in mathematical terms. The IMs are built by refining the TMs and/or GDs. This section should remain abstract. The SRS should specify the requirements without considering the implementation. —TPLT]

This section transforms the problem defined in Section 4.1 into one which is expressed in mathematical terms. It uses concrete symbols defined in Section 4.2.4 to replace the abstract symbols in the models identified in Sections 4.2.2 and 4.2.3.

The goals [reference your goals —TPLT] are solved by [reference your instance models —TPLT]. [other details, with cross-references where appropriate. —TPLT] [Modify the examples below for your problem, and add additional models as appropriate. —TPLT]

Number	IM1
Label	Energy balance on water to find T_W
Input	m_W , C_W , h_C , A_C , h_P , A_P , t_{final} , T_C , T_{init} , $T_P(t)$ from IM??
	The input is constrained so that $T_{\text{init}} \leq T_C$ (A??)
Output	$T_W(t), 0 \le t \le t_{\text{final}}, \text{ such that}$
	$\frac{dT_W}{dt} = \frac{1}{\tau_W} [(T_C - T_W(t)) + \eta (T_P(t) - T_W(t))],$
	$T_W(0) = T_P(0) = T_{\text{init}} \text{ (A??) and } T_P(t) \text{ from IM??}$
Description	T_W is the water temperature (°C).
	T_P is the PCM temperature (°C).
	T_C is the coil temperature (°C).
	$ au_W = \frac{m_W C_W}{h_C A_C}$ is a constant (s).
	$\eta = \frac{h_P A_P}{h_C A_C}$ is a constant (dimensionless).
	The above equation applies as long as the water is in liquid form, $0 < T_W < 100^{\circ}\text{C}$, where 0°C and 100°C are the melting and boiling points of water, respectively (A??, A??).
Sources	Citation here
Ref. By	IM??

Derivation of ...

[The derivation shows how the IM is derived from the TMs/GDs. In cases where the derivation cannot be described under the Description field, it will be necessary to include this subsection. —TPLT]

4.2.7 Input Data Constraints

Table 2 shows the data constraints on the input output variables. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The column for software constraints restricts the range of inputs to reasonable values. The software constraints will be helpful in the design stage for picking suitable algorithms. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 2 are listed in Table 3.

Table 2: Input Variables

Var	Physical Constraints	Software Constraints	Typical Value	Uncertainty
\overline{L}	L > 0	$L_{\min} \le L \le L_{\max}$	1.5 m	10%

(*) [you might need to add some notes or clarifications —TPLT]

Table 3: Specification Parameter Values

Var	Value
L_{\min}	0.1 m

4.2.8 Properties of a Correct Solution

A correct solution must exhibit [fill in the details —TPLT]. [These properties are in addition to the stated requirements. There is no need to repeat the requirements here. These additional properties may not exist for every problem. Examples include conservation laws (like conservation of energy or mass) and known constraints on outputs, which are usually summarized in tabular form. A sample table is shown in Table 4 —TPLT]

Table 4: Output Variables

Var	Physical Constraints
T_W	$T_{\text{init}} \leq T_W \leq T_C \text{ (by A??)}$

[This section is not for test cases or techniques for verification and validation. Those topics will be addressed in the Verification and Validation plan. —TPLT]

5 Requirements

[The requirements refine the goal statement. They will make heavy use of references to the instance models. —TPLT]

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

5.1 Functional Requirements

- R1: [Requirements for the inputs that are supplied by the user. This information has to be explicit. —TPLT]
- R2: [It isn't always required, but often echoing the inputs as part of the output is a good idea. —TPLT]
- R3: [Calculation related requirements. —TPLT]
- R4: [Verification related requirements. —TPLT]
- R5: [Output related requirements. —TPLT]

[Every IM should map to at least one requirement, but not every requirement has to map to a corresponding IM. —TPLT]

5.2 Nonfunctional Requirements

[List your nonfunctional requirements. You may consider using a fit criterion to make them verifiable. —TPLT] [The goal is for the nonfunctional requirements to be unambiguous, abstract and verifiable. This isn't easy to show succinctly, so a good strategy may be to give a "high level" view of the requirement, but allow for the details to be covered in the Verification and Validation document. —TPLT] [An absolute requirement on a quality of the system is rarely needed. For instance, an accuracy of 0.0101 % is likely fine, even if the requirement is for 0.01 % accuracy. Therefore, the emphasis will often be more on describing now well the quality is achieved, through experimentation, and possibly theory, rather than meeting some bar that was defined a priori. —TPLT] [You do not need an entry for correctness in your NFRs. The purpose of the SRS is to record the requirements that need to be satisfied for correctness. Any statement of correctness would just be redundant. Rather than discuss correctness, you can characterize how far away from the correct (true) solution you are allowed to be. This is discussed under accuracy. —TPLT]

NFR1: Accuracy [Characterize the accuracy by giving the context/use for the software. Maybe something like, "The accuracy of the computed solutions should meet the level needed for <engineering or scientific application>. The level of accuracy achieved by AortaGeomRecon shall be described following the procedure given in Section X of the Verification and Validation Plan." A link to the VnV plan would be a nice extra. —TPLT]

- NFR2: Usability [Characterize the usability by giving the context/use for the software. You should likely reference the user characteristics section. The level of usability achieved by the software shall be described following the procedure given in Section X of the Verification and Validation Plan. A link to the VnV plan would be a nice extra.—TPLT]
- NFR3: Maintainability [The effort required to make any of the likely changes listed for AortaGeomRecon should be less than FRACTION of the original development time. FRACTION is then a symbolic constant that can be defined at the end of the report. —TPLT]
- NFR4: **Portability** [This NFR is easier to write than the others. The systems that Aorta-GeomRecon should run on should be listed here. When possible the specific versions of the potential operating environments should be given. To make the NFR verifiable a statement could be made that the tests from a given section of the VnV plan can be successfully run on all of the possible operating environments. —TPLT]
 - Other NFRs that might be discussed include verifiability, understandability and reusability.

6 Likely Changes

LC1: [Give the likely changes, with a reference to the related assumption (aref), as appropriate. —TPLT]

7 Unlikely Changes

LC2: [Give the unlikely changes. The design can assume that the changes listed will not occur. —TPLT]

8 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Table 5 shows the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 6 shows the dependencies of instance models, requirements, and data constraints on each other. Table 7 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

You will have to modify these tables for your problem. —TPLT

[The traceability matrix is not generally symmetric. If GD1 uses A1, that means that GD1's derivation or presentation requires invocation of A1. A1 does not use GD1. A1 is "used by" GD1. —TPLT]

[The traceability matrix is challenging to maintain manually. Please do your best. In the future tools (like Drasil) will make this much easier. —TPLT]

	T??	T??	T??	GD1	GD??	DD1	DD??	DD??	DD??	IM1	IM??	IM??	IM??
T??													
T??			X										
T??													
GD1													
GD??	X												
DD1				X									
DD??				X									
DD??													
DD??								X					
IM1					X	X	X				X		
IM??					X		X		X	X			X
IM??		X											
IM??		X	X				X	X	X		X		

Table 5: Traceability Matrix Showing the Connections Between Items of Different Sections

The purpose of the traceability graphs is also to provide easy references on what has to be additionally modified if a certain component is changed. The arrows in the graphs represent dependencies. The component at the tail of an arrow is depended on by the component at the head of that arrow. Therefore, if a component is changed, the components that it points to should also be changed. Figure ?? shows the dependencies of theoretical models, general definitions, data definitions, instance models, likely changes, and assumptions on each other. Figure ?? shows the dependencies of instance models, requirements, and data constraints on each other.

9 Development Plan

[This section is optional. It is used to explain the plan for developing the software. In particular, this section gives a list of the order in which the requirements will be implemented. In the context of a course this is where you can indicate which requirements will be implemented as part of the course, and which will be "faked" as future work. This section can be organized as a prioritized list of requirements, or it could should the requirements that will be implemented for "phase 1", "phase 2", etc. —TPLT]

	IM1	IM??	IM??	IM??	4.2.7	R??	R??
IM1		X				X	X
IM??	X			X		X	X
IM??						X	X
IM??		X				X	X
R??							
R??						X	
R??					X		
R2	X	X				X	X
R??	X						
R??		X					
R??			X				
R??				X			
R4			X	X			
R??		X					
R??		X					

Table 6: Traceability Matrix Showing the Connections Between Requirements and Instance Models

${}$
\supset

	A??																		
T??	X																		
T??																			
T??																			
GD1		X																	
GD??			X	X	X	X													
DD1							X	X	X										
DD??			X	X						X									
DD??																			
DD??																			
IM1											X	X		X	X	X			X
IM??												X	X			X	X	X	
IM??														X					X
IM??													X					X	
LC??				X															
LC??								X											
LC??									X										
LC??											X								
LC??												X							
LC??															X				

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other Items

10 Values of Auxiliary Constants

[Show the values of the symbolic parameters introduced in the report. —TPLT]

[The definition of the requirements will likely call for SYMBOLIC_CONSTANTS. Their values are defined in this section for easy maintenance. —TPLT]

[The value of FRACTION, for the Maintainability NFR would be given here. —TPLT]

References

Coordinate systems, June 2014. URL https://www.slicer.org/wiki/Coordinate_systems.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

Nirmitha Koothoor. A document drive approach to certifying scientific computing software. Master's thesis, McMaster University, Hamilton, Ontario, Canada, 2013. URL http://hdl. handle.net/11375/13266.

W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In J. Ralyté, P. Ágerfalk, and N. Kraiem, editors, *Proceedings of the First International Workshop on Situational Requirements Engineering Processes – Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05*, pages 107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements Engineering Conference.

[The following is not part of the template, just some things to consider when filing in the template. —TPLT]

[Grammar, flow and LaTeXadvice:

- For Mac users *.DS_Store should be in .gitignore
- LATEX and formatting rules
 - Variables are italic, everything else not, includes subscripts (link to document)
 - * Conventions
 - * Watch out for implied multiplication
 - Use BibTeX
 - Use cross-referencing
- Grammar and writing rules
 - Acronyms expanded on first usage (not just in table of acronyms)
 - "In order to" should be "to"

—TPLT]

[Advice on using the template:

- Difference between physical and software constraints
- Properties of a correct solution means *additional* properties, not a restating of the requirements (may be "not applicable" for your problem). If you have a table of output constraints, then these are properties of a correct solution.
- Assumptions have to be invoked somewhere
- "Referenced by" implies that there is an explicit reference
- Think of traceability matrix, list of assumption invocations and list of reference by fields as automatically generatable
- If you say the format of the output (plot, table etc), then your requirement could be more abstract

-TPLT