Общая теория автоматов при сделанных выше допущениях разбивается на две большие части, которым присвоены названия абстрактной теории автоматов и структурной теории автоматов. Различие между ними заключается в том, что в абстрактной теории не учитываются структура как самого автомата, так и структуры его входных и выходных сигналов. Входные и выходные сигналы рассматриваются при этом просто как буквы двух фиксированных для данного автомата алфавитов: входного и выходного. Не интересуясь способом построения автомата, абстрактная теория изучает лишь те переходы, которые претерпевает автомат под воздействием входных сигналов, и те выходные сигналы, которые он при этом выдает.

В противоположность абстрактной теории, структурная теория автоматов учитывает структуры автомата и его входных и выходных сигналов. В структурной теории изучаются способы построения автоматов из нескольких элементарных автоматов, способы кодирования входных и выходных сигналов элементарными сигналами, передаваемыми по реальным входным и выходным каналам.

Таким образом, *структурная* теория автоматов является *продолжением* и *дальнейшим развитием* абстрактной теории. В частности, *задача синтеза* идеализированного (без учета переходных процессов) цифрового автомата естественным образом *подразделяется на этапы абстрактного и структурного синтеза*.

Математической моделью является так называемый **абстрактный автомат**, определенный как 6-компонентный кортеж: $S=(A, Z, W, \delta, \lambda, a_1)$ у которого:

- 1. A={a₁, a₂, ..., a_m} множество состояний (внутренний алфавит),
- 2. $Z=\{z_1, z_2, ..., z_f\}$ множество входных сигналов (входной алфавит),
- 3. $W=\{w_1, w_2, ..., w_g\}$ множество выходных сигналов (выходной алфавит),
- 4. δ : A•Z→A функция переходов, реализующая отображение D $_{\delta}$ \subseteq A•Z в A. Иными словами функция δ некоторым парам "состояние входной сигнал" (а $_{m}$, z_{f}) ставит в соответствие состояния автомата a_{s} = δ (a_{m} , z_{f}), a_{s} ∈A,
- 5. λ : A•Z \to W функция выходов, реализующая отображение $D_{\lambda} \subseteq$ A•Z на W. Функция λ некоторым парам "состояние входной сигнал" (a_m, z_f) ставит в соответствие выходные сигналы автомата $W_g = \lambda(a_m, z_f)$, $W_g \in W$,
- 6. а ∈А начальное состояние автомата.

Под **алфавитом** здесь понимается непустое множество попарно различных символов. **Элементы алфавита** называются **буквами**, а **конечная упорядоченная последовательность букв - словом** в данном алфавите.

Рис. 5.2. Абстрактный автомат

Абстрактный автомат (рис. 5.2) имеет один вход и один выход. Автомат работает в дискретном времени, принимающем целые неотрицательные значения t=0,1,2,... В каждый момент t дискретного времени автомат находится в некотором состоянии a(t) из множества состояний автомата, причем в начальный момент t=0 он всегда находится в начальном состоянии a(0)=a1. В момент t, будучи в состоянии a(t), автомат способен воспринять на входе букву входного алфавита $z(t) \in Z$. В соответствии с функцией выходов он выдаст в тот же момент времени t букву выходного алфавита $z(t) \in X$ 0 и в соответствии с функцией переходов перейдет в следующее состояние $z(t+1)=\delta[a(t),z(t)]$, $z(t)\in X$ 1, $z(t)\in X$ 2.

На практике наибольшее распространение получили два класса автоматов - автоматы Мили (Mealy) и Мура (Moore).

Закон функционирования автомата Мили задается уравнениями:

$$a(t+1) = \delta(a(t), z(t)); w(t) = \lambda(a(t), z(t)),$$
 где $t = 0,1,2,...$

Закон функционирования автомата Мура задается уравнениями:

$$a(t+1)=\delta(a(t), z(t)); w(t)=\lambda(a(t)),$$
 где $t=0,1,2,...$

Из сравнения законов функционирования видно, что, в отличие от автомата Мили, выходной сигнал в автомате Мура зависит только от текущего состояния автомата и в явном виде не зависит от входного сигнала. Для полного задания автомата Мили или Мура дополнительно к законам функционирования, необходимо указать начальное состояние и определить внутренний, входной и выходной алфавиты.

Кроме автоматов Мили и Мура иногда оказывается удобным пользоваться совмещенной моделью автомата, так называемым С- автоматом.

Под абстрактным С- автоматом будем понимать математическую модель дискретного устройства, определяемую восьмикомпонентным вектором

S=(A, Z, W, U, δ , λ_1 , λ_2 , a_1), y которого:

- 1. A={a₁, a₂, ..., a_m} множество состояний;
- 2. Z={z₁, z₂, ..., z_f} входной алфавит;
- 3. W={w₁, w₂, ..., w_q} выходной алфавит типа 1;
- 4. U={u₁, u₂,...,u_h} выходной алфавит типа 2;
- 5. δ : A Z → A функция переходов, реализующая отображение D $_{\delta}$ ⊆A•Z в A;

- 6. λ_1 : A Z → W функция выходов, реализующая отображение D_{λ_1} \subseteq A•Z в W;
- 7. $\lambda_2 : A \to U$ функция выходов, реализующая отображение $D_{\lambda 2} \subseteq A$ в U;
- 8. $a_1 \in A$ начальное состояние автомата.

Абстрактный С-автомат можно представить в виде устройства с одним входом, на который поступают сигналы из входного алфавита Z, и двумя выходами, на которых появляются сигналы из алфавитов W и U. Отличие C-автомата от моделей Мили и Мура состоит в том, что он одновременно реализует две функции выходов λ_1 и λ_2 , каждая из которых характерна для этих моделей в отдельности. Закон функционирования C- автомата можно описать следующими уравнениями: $a(t+1)=\delta(a(t),z(t)); w(t)=\lambda_1(a(t),z(t)); u(t)=\lambda_2(a(t)),$ где t=0,1,2,...

Выходной сигнал $U_h=\lambda_2(a_m)$ выдается все время, пока автомат находится в состоянии a_m . Выходной сигнал $Wg=\lambda_1(a_m,z_f)$ выдается во время действия входного сигнала Z_f при нахождении автомата в состоянии a_m .

Рассмотренные выше абстрактные автоматы можно разделить на:

- 1. полностью определенные и частичные;
- 2. детерминированные и вероятностные.

Полностью определенным называется абстрактный цифровой автомат, у которого функция переходов и функция выходов определены для всех пар (a_i, z_i).

Частичным называется абстрактный автомат, у которого функция переходов или функция выходов, или обе эти функции определены не для всех пар (a_i, z_j) .

К **детерминированным** относятся автоматы, у которых выполнено условие однозначности переходов: автомат, находящийся в некотором состоянии a_i , под действием любого входного сигнала z_j не может перейти более, чем в одно состояние.

В противном случае это будет **вероятностный автомат**, в котором при заданном состоянии а_і и заданном входном сигнале z_і возможен переход с заданной вероятностью в различные состояния.

Абстрактный автомат называется **конечным**, если конечны множества $A = \{a_1, a_2, ..., a_m\}$, $Z = \{z_1, z_2, ..., z_f\}$, $W = \{w_1, w_2, ..., w_g\}$. Автомат носит название **инициального**, если в нем выделено начальное состояние **a**₁.

Вслед за этапом абстрактного синтеза автоматов следует **этап структурного синтеза**, целью которого является построение схемы, реализующей автомат из элементов заданного типа. Если абстрактный автомат был лишь математической моделью, проектируемого устройства, то в структурном автомате учитывается структура входных и выходных сигналов автомата, а также его внутренне устройство на уровне логических

схем. Основной задачей структурной теории автоматов является разработка общих методов построения структурных схем автоматов.

В отличие от абстрактного автомата, имеющего один вход и один выход (рис. 5.3.а), на которые поступают сигналы во входном и выходят в выходном $W=\{W_1,...,W_G\}$ алфавитах, структурный автомат (рис. 5.3.б) имеет L входных каналов $x_1,x_2,...,x_L$ и N выходных $y_1,y_2,...,y_N$ на каждом из которых присутствует сигнал структурного алфавита.

Рис.5.3. Абстрактный (а) и структурный (б) автоматы

Обычно в качестве структурного используется двоичный алфавит. В этом случае каждому входному сигналу Z_F абстрактного автомата соответствует некоторый двоичный вектор (I_{f1} , I_{f2} ,..., I_{fL}), где $I_{fL} \in \{0,1\}$.

Очевидно, что для представления (кодирования) входных сигналов $Z_1,...,Z_F$ абстрактного автомата различными двоичными векторами должно быть выполнено условие $L \ge \log_2 F$, аналогично $N \ge \log_2 G$. Например, $Z=\{Z_1,Z_2,Z_3,Z_4\}$ и $W=\{W_1,W_2,W_3\}$, тогда $L \ge \log_2 4=2$ и $N \ge \log_2 3=2$

Закодировать входные и выходные сигналы можно, например, так: Z_1 = 00, Z_2 = 01, Z_3 = 10, Z_4 = 11, W_1 = 00, W_2 = 01 и W_3 = 11.