

אוניברסיטת בן גוריון – שנה ד' הנדסת מערכות מידע

ניתוח טכני ואלגוטרייד.

רוצעת בולינגר – Algo Trade

חישוב רווח בר סמך ביחס למחיר המניה •

- ממוצע נע פשוט. – Algo Trade

- 1. אחד האינדיקטורים הידועים ביותר לניתוח טכני.
 - 2. לקוחים תקופה ומחשבים ממוצע נע פשוט.
- 3. לקוחים 2 תקופת קצרה וארוכה ואז רואים כיצד כשהגרפים חותכים סימן שיש שינוי מגמה

בע נע – Algo Trade

1. ממוצע נע משוקלל לינארי. (נתונים למחירים של התקופה הקרובה משקל גבוה יותר).

$$WAM = \frac{3p3 + 2p2 + 1p1}{6}$$

MACD

Daily Chart - Nasdaq 100 ETF (QQQQ)

Sponsored by

Designed for non-commercial use

To remove branding, please use Freemake Mega Pack

ביץ' - Efficient Frontier – עקום מרקוביץ'

$$\sigma_{p} = \sqrt{(W_{1}^{2} \sigma_{1}^{2} + W_{2}^{2} \sigma_{2}^{2} + 12W_{1}W_{2}R_{1,2}\sigma_{1}\sigma_{2})}$$

בסיס תיאורטי למודל מרקוביץ׳.

תוחלת תשואת תיק השקעות בשתי מניות מוגדר:

$$E(r_p) = a_1E(r_1) + a_2E(r_1)$$

כפוף ל:

$$1 = a_1 + a_2$$

2. תשואת תיק השקעות של n מניות מוגדר:

$$\mathrm{E}(r_p) = \sum_{j=1}^{n} a_j \mathrm{E}(r_j)$$

כפוף ל:

$$1 = \sum_{j=1}^{n} a_j$$

סיכון התיק של שתי מניות מוגדר:

$$\sigma_p^2 = \sigma_1^2 a_1^2 + \sigma_2^2 a_2^2 + 2a_1 a_2 Cov(r_1, r_2)$$

4. סיכון התיק של שתי n מניות מוגדר:

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \operatorname{Cov}(r_i, r_j)$$

manufacture manufacture of the second manufacture of

הגדלת התשואה והקטנת הסיכון

'עקום מרקוביץ

```
\sigma_p = \sqrt{w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + w_3^2\sigma_3^2 + 2w_1w_2\sigma_1\sigma_2\rho_{12} + 2w_1w_3\sigma_1\sigma_3\rho_{13} + 2w_2w_3\sigma_2\sigma_3\rho_{23}} (11.5) כאשר:

\sigma_p = \sqrt{w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + w_3^2\sigma_3^2 + 2w_1w_2\sigma_1\sigma_2\rho_{12} + 2w_1w_3\sigma_1\sigma_3\rho_{13} + 2w_2w_3\sigma_2\sigma_3\rho_{23}} (11.5) כאשר:

\sigma_p = \sqrt{w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + w_3^2\sigma_3^2 + 2w_1w_2\sigma_1\sigma_3\rho_{13} + 2w_2w_3\sigma_2\sigma_3\rho_{23}} (11.5) \sigma_p = \sigma_
```

11.3.2 הצגה מטריציונית ופתרון בתוכנת אקסל

נראה תחילה שימוש במטריצות עבור שלושה גורמי סיכון ולאחר מכן נציג פתרון עבור תיק החשוף ל-ח גורמי סיכון.

שונות של תיק (סטיית תקן בריבוע) מתקבלת על ידי הכפלה של המטריצות הבאות:

$$\sigma_{B}^{2} = \left(w_{1} \ w_{2} \ w_{3}\right) \begin{pmatrix} \sigma_{11}^{2} \ \sigma_{12} \ \sigma_{21} \ \sigma_{22}^{2} \ \sigma_{23} \ \sigma_{31} \ \sigma_{32} \ \sigma_{33}^{2} \end{pmatrix} \begin{pmatrix} w_{1} \ w_{2} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1} \ w_{3} \ w_{3} \ w_{3} \end{pmatrix} \begin{pmatrix} u_{1$$

הגדלת התשואה והקטנת הסיכון mmult (ctr+shift + Ent) – 'עקום מרקוביץ'

11	J3 //	1000		{=M	MULT(A	3/05 F3	650	11	_//	_//	// 33
	A	В	С	D	E	F	.00)}	1 11	1	_	-
1	11	11	Varia	nce	-Cova	riance	Matrix	H	ulation	J	K
2	-17	-//	-7		7	Tarice	WEALTIX	Caic	ulation	1/	1/
3	0.05	0	0			1 . 0.	7 0	-	_		
4	Q.	0.08	.0	X	The second second	7		- Parking Common	0.05		
5	ő	0	0.1	-	0.8	100		4 =	0.056	100000000000000000000000000000000000000	
õ					-	0,1	+	4	0.08	0.04	0.1
10		_//	1		11	1	1	1	-	//	//
3	0.05	0.035	0.04		0.05	5 6	1 6	-	D SOOT		
)	0.056	0.08	0.032	X	100	THE RESERVE TO SERVE THE PARTY OF THE PARTY			0.0025	0.0028	0.004
0	0.08	0.04	0:1		0		and the second		0.0028	0.0064	0:0032
1							0.1	4	0.004	0.0032	0.01
2	- 4	_//	k	-	111	1/	1	1	-	11	-//
		-1/	-/		1	1	1	-	1	-/-	4/
1			Р	ortf	olio Va	riance	Calcu	Intio	_		
1	//	_//	X		//	/	Carce	Jiatio	n //	//	//
L	0.5	0.3	0.2	V	0.0025	0.0028	0.004	_	0.0000	_	-
	- 4	100		^	0.0028	and the same of th	0.0032	=	0.0029	0.004	0.005
1	- 4/	1/	1		0.004	0.0032	The second second second	-//	-/-	//	//
1					0.004	0.0032	0.01				
10	11	11	1		//	11	1	1	-/-	11	1
0	0029	0.004	0.005	V	7	4	0.5	4/	0 00000	//	4
				~			0.5	_	0.00363		
11		10	//		//	/	0.3	1	//	//	//

Covariance =
$$\frac{\sum (\text{Return}_{ABC} - \text{Average}_{ABC}) * (\text{Return}_{XYZ} - \text{Average}_{XYZ})}{(\text{Sample Size}) - 1}$$

קורלציה בין שני נכסים, a ו-b, מחושבת באמצעות הנוסחה הבאה:

$$\mathbf{g} = \frac{Cov(\mathbf{y}_{a}, \mathbf{y}_{b})}{\sigma_{a} \cdot \sigma_{b}} = \frac{\left[\sum_{i=1}^{n} (y_{a,i} - \overline{y}_{a}) \cdot (y_{b,i} - \overline{y}_{b})\right] / (n-1)}{\sigma_{a} \cdot \sigma_{b}}$$
(11.16)

אם מניחים כי ממוצע התשואות הינו אפס, מקדם המתאם מחושב בצורה הבאה:

$$\rho = \frac{Cov(y_a, y_b)}{\sigma_a \cdot \sigma_b} = \frac{\left(\sum_{t=1}^{n} y_{a,t} \cdot y_{b,t}\right) / (n-1)}{\sigma_a \cdot \sigma_b}$$
(11.17)

מקדם המתאם בשיטת ה-EWMA מחושב בצורה הבאה:

$$\rho = \frac{Cov(y_1, y_2)}{\sigma_1 \cdot \sigma_2} = \frac{\sum_{t=1}^n w_t \cdot y_{1,t} \cdot y_{2,t}}{\left(1 - \sum_{t=1}^n w_t^2\right) \sqrt{\sum_{t=1}^n w_t \cdot y_{1,t}^2} \sqrt{\sum_{t=1}^n w_t \cdot y_{2,t}^2}}$$
(11.18)

.3 בסיס תיאורטי למודל מרקוביץ׳.

תוחלת תשואת תיק השקעות בשתי מניות מוגדר:

$$E(r_p) = a_1E(r_1) + a_2E(r_1)$$

כפוף ל:

$$1 = a_1 + a_2$$

2. תשואת תיק השקעות של n מניות מוגדר:

$$\mathrm{E}(r_p) = \sum_{j=1}^{n} a_j \mathrm{E}(r_j)$$

כפוף ל:

$$1 = \sum_{j=1}^{n} a_j$$

סיכון התיק של שתי מניות מוגדר:

$$\sigma_p^2 = \sigma_1^2 a_1^2 + \sigma_2^2 a_2^2 + 2a_1 a_2 Cov(r_1, r_2)$$

4. סיכון התיק של שתי n מניות מוגדר:

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \operatorname{Cov}(r_i, r_j)$$

The second process of the second process of

.5. החזית היעילה Efficient Portfolios מוגדרת בשתי מניות:

$$\min \sigma_1^2 a_1^2 + \sigma_2^2 a_2^2 + 2a_1 a_2 \operatorname{Cov}(r_1, r_2)$$

בכפוף ל:

$$a_1 \mathbf{E}(r_1) + (\alpha_2) \mathbf{E}(r_2) = \mathbf{E}(r_p)$$

$$1 = \sum_{j=1}^{n} a_j$$

פותרים את השוואת המינימום עם אילוצים, באמצעות כופלי לגרארנז, כאשר את משוואת המינימום נכפיל בחצי.

$$L = 0.5(\sigma_1^2{\alpha_1}^2 + \sigma_2^2{\alpha_2}^2 + 2\alpha_1\alpha_2\mathrm{Cov}(r_1, r_2)) + \delta_1\left(\alpha_1\mathrm{E}(r_1) + (\alpha_2)\,\mathrm{E}(r_1) - \mathrm{E}\!\left(r_p\right)\right) + \delta_2(1 - \sum_{J=1}^2\alpha_J) \tag{1}$$

פותרים את משוואה (1) באמצעות גזירה של כל משתנה במשוואה.

$$\begin{split} \frac{\partial L}{\partial a_1} &= 0.5(2\sigma_1^2 a_1 + 2a_2 \mathrm{Cov}(r_1, r_2)) + \delta_1 \big(\mathrm{E}(r_1) \big) + \delta_2 = 0 \\ \frac{\partial L}{\partial a_2} &= 0.5(2\sigma_2^2 a_2 + 2a_1 \mathrm{Cov}(r_1, r_2)) + \delta_1 \big(\mathrm{E}(r_2) \big) + \delta_2 = 0 \\ \\ \frac{\partial L}{\partial \delta_1} &= \Big(a_1 \mathrm{E}(r_1) + a_1 \mathrm{E}(r_2) - E(r_p) \Big) = 0 \\ \\ \frac{\partial L}{\partial \delta_2} &= (1 - \sum_{i=1}^2 a_i) = 0 \end{split}$$

נוצר פתרון למשוואה (1) על ידי 4 המשוואות עם 4 נעלמים, ובכך ניתן לפתור את רצף המשוואות, ולמצוא את הסיכון המינימאלי בתשואת תיק ההשקעות נתונה. מרבית תיקי השקעות מורכבים ביותר משני נכסים, לכן נראה כיצד ניתן לפתור את משוואה (1) כאשר תיק ההשקעות מורכב מ-n נכסים.

החזית היעילה Efficient Portfolios מוגדרת ב-n מניות:

$$Min \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j Cov(r_i, r_j)$$
(2)

בכפוף ל:

$$E(r_p) = \sum_{i=1}^{n} a_i E(r_i)$$

$$1 = \sum_{i=1}^{n} a_i$$

אנסח את משוואת (2) עם משוואת האילוצים באמצעות כופלי לגרארנזי, כאשר נחלק את משוואת המינימום בחצי

 $L = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(r_i, r_j) + \delta_1 * \left(E(r_p) - \sum_{i=1}^n a_i E(r_j) \right) + \delta_2 (1 - \sum_{i=1}^2 \alpha_i) \right) \tag{3}$ נגזור את משוואת (3) לגראנזי ביחס למשקל של כל מניה במשוואה, ונקבל ווקטור משקולות גרדיאנט $\overrightarrow{\nabla}$ של נגזרות למשקלי המניה בתיק ההשקעות, כדלקמן:

$$\vec{\nabla} = \begin{cases} \frac{\partial L}{\partial a_1} = \sum_{j=1}^n a_j Cov(r_i, r_j) - \delta_1(\sum_{i=1}^n E(r_j)) - \delta_2(1) \\ \frac{\partial L}{\partial a_2} = 0 \\ \vdots \\ \vdots \\ \frac{\partial L}{\partial a_n} = 0 \end{cases}$$

$$(4)$$

ונקבל $\frac{\partial L}{\delta_2}$ ו -ו $\frac{\partial L}{\delta_1}$ עייפ (3) את משוואה נגזור את בהתאמה נגזור את

$$\frac{\partial L}{\delta_1} = \left(\sum_{j=1}^n a_j E(r_j) - E(r_p)\right) \tag{5}$$

$$\frac{\partial L}{\delta_2} = \left(1 - \sum_{j=1}^2 a_j\right) \tag{6}$$

יצרנו פתרון למשוואה (2) על ידי (n+2) משוואות עם (n+2) נעלמים, נשכתב את משוואת (4) כווקטור גרדיאנט של נגזרות המשקלות, כדלקמן:

$$\vec{\nabla} = \sum a - \delta_1 \mu - \delta_2 \mathbf{1}_N = 0 \tag{7}$$

: כאשר נגדיר

. בטריצת השוניות השותפות. ב

ווקטור המשקולות של המניה.

. ווקטור התשואה של המניות μ

.של אחדים אחדים \mathbb{N}^*1 של אחדים = 1_N

אשר נכפול את משוואה (7) בהופכי של מטריצת השוניות המשותפות \sum^{-1} ונקבל את משוואה:

$$a = \delta_1 \sum^{-1} \mu + \delta_2 \sum^{-1} 1_N$$
 (8)

בפיל את המשואות (8) בווקטור $\mathbf{1}_N$ כך שנקבל:

$$1 = \delta_1 1_N \sum^{-1} \mu + \delta_2 1_N \sum^{-1} 1_N$$
 (9)

בפיל שוב את משואות (8) בווקטור התשואות μ' של המניות.

$$\mu_{p} = \delta_{1} \mu' \sum^{-1} \mu + \delta_{2} \mu' \sum^{-1} 1_{N}$$
 (10)

גדיר משתנים A, C,B.

$$1_N \sum_{-1} \mu = \mathbf{A}$$

$$\mu' \sum^{-1} \mu = \mathbf{B}$$

$$1_N \sum_{i=1}^{-1} 1_N = C$$

ונציב אותם במשוואת (9) ו-(10) ומקבלים את המשוואה הבאה.

$$1 = \delta_1 A + \delta_2 C \tag{11}$$

$$\mu_p = \delta_1 B + \delta_2 A \qquad (12)$$

.14 ו-13) ו-(11) ו-(12) ממשואת משוואת $_{_{1}}$ ו ו- $_{_{2}}$ את משוואת 13 ו-14.

$$\delta_1 = \frac{1 - \delta_2 C}{A} \tag{13}$$

$$\delta_2 = \frac{\mu_p - \delta_1 B}{A} \tag{14}$$

במשואה (13) נציב את המשתנה δ_{12} עייפ משוואה (13) ונקבל

$$\delta_1 = \frac{1 - \frac{\mu_p - \delta_1 B}{A} C}{A} \tag{15}$$

$$\delta_1 = \frac{1}{A} - \frac{(\mu_p - \delta_1 B)C}{A^2} \tag{16}$$

$$\delta_1(1 - \frac{BC}{A^2}) = \frac{1}{A} - \frac{(\mu_p C)}{A^2} \tag{17}$$

נכפיל את המשוואה (17) ב A^2 , נקבל

$$\delta_1(A^2 - BC) = A - \mu_n C \qquad (18)$$

 $(A^2 - BC)$ נכפיל את המשואות (18) ב-(1-) ונחלק ב-(19) ונקבל

$$\delta_1 = \frac{\mu_p C - A}{(BC - A^2)} \tag{19}$$

במשוואה (14) נציב את המשתנה δ_1 כפי שמבוטא במשוואה (19).

$$\delta_2 = \frac{\mu_p - \frac{\mu_p \, C - A}{(BC - A^2)} B}{A} \tag{20}$$

$$\delta_2 = \frac{B - \mu_p A}{(BC - A^2)}$$
(21)

את משתני δ_1 ו- δ_2 ממשוואות (20) את משתני δ_2 ונקבל.

$$a = \frac{\mu_p C - A}{(BC - A^2)} \sum^{-1} \mu + \frac{B - \mu_p A}{(BC - A^2)} \sum^{-1} 1_N$$
 (22)

ניתן לפתוח את הסוגריים ולרשום את משוואת (22) כדלקמן:

$$a = \frac{B\Sigma^{-1}\mathbf{1}_N - A\Sigma^{-1}\mu}{(BC - A^2)} + \mu_p \frac{C\Sigma^{-1}\mu - A\Sigma^{-1}\mathbf{1}_N}{(BC - A^2)}$$
(23)

: נגדיר ווקטור g ווקטור h כך שהם

$$g = \frac{B\Sigma^{-1}1_N - A\Sigma^{-1}\mu}{(BC - A^2)}$$
 (24)

$$h = \frac{C\Sigma^{-1}\mu - A\Sigma^{-1}1_N}{(BC - A^2)} \tag{25}$$

עייפ $\frac{C\Sigma^{-1}\mu-A\Sigma^{-1}1_N}{(BC-A^2)}$ את הביטוי (24) את הביטוי עייפ משוואה (24) את הביטוי את הביטוי משוואה (25) את הביטוי משוואה (25) ונקבל :

$$a = g + \mu_p h$$
 (26)

. כדלקמן: (2) גדיר את משוואה (26) ממשוואה (26) משוואה (26) גדיר את משוואת $\mu_{\mathfrak{p}}$

$$\sigma_{\rho}^{2} = (g + \mu_{p}h)' \sum (g + \mu_{p}h)$$
 (27)

קבלנו את משוואת מינימום סטיית התקן בתיק ההשקעות, כאשר \sum מוגדר כמטריצת שוניות משותפות.

.Mean Gini החזית היעילה ע"פ

חיים שליט ושמואל יצחקי הגדירו (2005) את החזית היעילה עייפ גייני כ

Mini w'Vw

בכפוף ל:

$$\mathrm{E}\big(r_p\big) = \sum_{i=1}^n a_j \mathrm{E}(r_i)$$

$$1 = \sum_{i=1}^{n} a_i$$

 $V = \Gamma$ כאשר $V = \Gamma$ כאשר V מוגדר כ- יפשקולות של הנכסים בתיק. $V = \Gamma$ מוגדר כ- יפשר $V = \Gamma$ מטריצה ה-Gini Correlation . חיים שליט ושלמה יצחקי (2005) מוכיחים שהאופטימום של תיק ההשקעות מקיים:

$$\Gamma_p^2 = \frac{1}{D} (C\mu_p^2 - 2A\mu_p^2 + B) \tag{4.1}$$

Var

www.tase.co.il/Heb/Pages/Homepage.aspx

הצג נתונים

נתונים יומיים

שווי שוק כולל (אלפי ש"ח) *	מדד נמוך	מדד גבוה	מדד נעילה	מדד פתיחה	מדד בסיס	תאריך
	1,555.66	1,563.54	1,561.49	1,555.66	1,560.23	26/11/2015
595,270,680	1,572.23	1,585.28	1,573.66	1,585.28	1,569.26	19/11/2015
589,889,460	1,557.49	1,573.61	1,557.49	1,570.78	1,574.12	12/11/2015
594,963,918	1,581.79	1,588.75	1,581.79	1,584.83	1,583	05/11/2015

		* Close price	adjusted for divi	idends and splits			
Aug 27, 2015	10,271.33	10,382.95	10,222.04	10,315.62	105,093,200	10,315.62	
Aug 28, 2015	10,335.92	10,336.92	10,186.07	10,298.53	76,364,700	10,298.53	

Download to Spreadsheet

First | Previous | Next | Last

חישובים.

.תשואה תיק השקעות

$$\mu_t = \operatorname{Ln}(t) - \operatorname{Ln}(t-1)$$

$$\bar{\mu} = \frac{\sum_{i=1}^{n} \mu_i}{n}$$

סטית תקן מניה 🌣

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (\mu - \bar{\mu})^2}{n-1}}$$

סטית תקן מניה 🌣

$$\sigma_{p} = \sqrt{(W_{1}^{2} \sigma_{1}^{2} + W_{2}^{2} \sigma_{2}^{2} + \sqrt{2} W_{1} W_{2} R_{1,2} \sigma_{1} \sigma_{2})}$$

חישובים.

.מקדם דעיכה, ככל שהתצפית רחוקה השפעה הולכת וקטנה

$$W = \frac{(1-\gamma)*\gamma^{(t-1)}}{(1-\gamma^n)}$$

$$\gamma$$
 דעיכה מקדם t

מודל שארפ טיוב בהשוואת יחידת סיכון לתשואה

William F Sharp •

- יחידת תשואה נבדקת ביחס לסיכון של אותה יחידה.
 - תשואת מנית מזרחי 10.5% סטיית תקן 18.5 •
 - תשואת אג"ח מזרחי 1% סטיית תקן האג"ח 1.52 •

$$\frac{10.5 - 0.1}{18.5} \cong \frac{1 - 0.1}{1.52}$$

כך שבמניות, על כל יחידת סיכון, אני מפוצה ב-0.56% תשואה באג"ח, על כל יחידת סיכון, אני מפוצה ב- 0.59% תשואה.

הוספת Solver.

Solver

			מדד נעילה -			
			ממשלתי	מדד נעילה -	מדד נעילה -	מדד נעילה -
,	Close- S&P 500	Close Dax	ר.קבועה	תל בונד 20	יתר 50	תא 25
ממוצע שבועי	0.21%	0.19%	0.11%	0.06%	0.15%	0.08%
סטיית תקן שבועית	1.95%	2.86%	0.36%	0.62%	2.66%	1.90%
ממוצע שנתי	11.58%	10.51%	5.77%	2.94%	8.00%	4.30%
סטיית תקן שנתית	14.10%	20.63%	2.59%	4.49%	19.15%	13.72%
UP	13.02%	12.62%	6.03%	3.40%	9.95%	5.70%
Down	10.14%	8.40%	5.50%	2.49%	6.04%	2.90%
DELDA	2.88%	4.21%	0.53%	0.92%	3.91%	2.80%

			מדד נעילה -			
			ממשלתי	מדד נעילה -	מדד נעילה -	מדד נעילה -
,	Close- S&P 500	Close Dax	ר.קבועה	תל בונד 20	יתר 50	תא 25
ממוצע שבועי	0.21%	0.19%	0.11%	0.06%	0.15%	0.08%
סטיית תקן שבועית	1.95%	2.86%	0.36%	0.62%	2.66%	1.90%
ממוצע שנתי	11.58%	10.51%	5.77%	2.94%	8.00%	4.30%
סטיית תקן שנתית	14.10%	20.63%	2.59%	4.49%	19.15%	13.72%
UP	13.02%	12.62%	6.03%	3.40%	9.95%	5.70%
Down	10.14%	8.40%	5.50%	2.49%	6.04%	2.90%
DELDA	2.88%	4.21%	0.53%	0.92%	3.91%	2.80%

מודל שפותח בבן גוריון.

• המודל פותח על ידי פרופ' חיים שליט בן גוריון ושלמה יצחקי ירושלים 2005.

גיני מורחב

Mean-Extended Gini •

$$-v*Cov(R,[1-F(R)]^{\wedge^{\nu-1}})$$

רמת סיכון הלקוח

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

Min: σ

 $Max: \mu$

Min: σ

 $Max: \mu$

שונות	סטיית תקן שבועית	סטיית תקן שנה	תשואה שבועית	תשואה שנתיר	ביקורת תשואה
0.00%	0.48%	3.47%	0.13%	7.00%	7.00%
0.00%	0.48%	3.47%			
			מדד נעילה -	מדד נעילה - תל	
	Close- S&P 500	Close _Dax	ממשלתי ר.קבועה	בונד 20	מדד נעילה - יתר 50
	19.50%	0.00%	74.99%	0.00%	5.51%
0.0070040000004705500/			ï		

$-v*Cov(R,[1-F(R)]^{\wedge^{\nu-1}})$

				_						
					Close- S&P	Close Da		- מדד נעילה תל בונד 20	אדד נעילה - יתר 50	- מדד נעילה תא 25
					0.21%		0.11%			0.08%
		0.13%			0.466667	0.166667	0.166667	0.166667	0.166667	0.166667
				Portfolio W	eight					
				1,	19.529	0.00%	75.53%	0.00%	4.95%	0.00%
Gin	eturn,(-RANK/N)^(V-1))	Portfolio R	Protfolio Weights Multiplied By Mean Retruns						
	Gini	٧	User Return	0.13%	0.04%	0.00%	0.08%	0.00%	0.01%	0.00%
	0.26%	2.00	0.13%							

						C	Close- S&P	Close _Dax			- מדד נעילה יתר 50	- מדד נעילה תא 25
							0.21%	0.19%	0.11%	0.06%	0.15%	0.08%
		0.13%					0.166667	0.166667	0.166667	0.166667	0.166667	0.166667
					Portfolio	Wε	eight					
						1∏	19.52%	0.00%	75.53%	0.00%	4.95%	0.00%
				_		4						
Gini	Gini (.1*V*(COV(Return,(1-RANK/N)^(V-1))					Protfolio Weights Multiplied By Mean Retruns						
(Cini V User Return			0.13	%	0.04%	0.00%	0.08%	0.00%	0.01%	0.00%	
	0.26%	2.00	0.13%									

$-v_1^*Cov(R,[1-F(R)]^{\wedge v-1})$

					Close- S&P	Close _Dax	ממשלתי ר.קבועה	- מדד נעילה תל בונד 20	מדד נעילה - יתר 50	- מדד נעילה תא 25
					0.21%	0.19%	0.11%	0.06%	0.15%	0.08%
		0.13%			0.166667	0.166667	0.166667	0.166667	0.166667	0.166667
				Portfolio V	eight					
				1	18.71%	0.00%	74.26%	0.00%	7.03%	0.00%
			V							
Gir	i=(-1*V*(COV(Re	eturn,(1	-RANK/N)^(V-1)	Portfolio Re	ı	Protfolio W	eights Multi	plied By Me	an Retruns	1
	Gini	V	User Return	0.13%	0.04%	0.00%	0.08%	0.00%	0.01%	0.00%
	0.96%	20.00	0.13%							•