

Project proposal by Michelle Emmert, Juan Hamdan, Laura Sanchis und Gloria Timm

Our Data

28 images of nuclei

N2DH-GOWT1

GFP transfected GOWT1 mouse embryonic stem cells

N2DL-HeLa

Histone 2B (H2B)-GFP expressing HeLa cells

™ NIH3T3

mouse embyonic fibroblast – CD tagged (EGFP)

- (1) Osuna, E. et al. 2007. Large-Scale Automated Analysis of Location Patterns in Randomly Tagged 3T3 Cells
- (2) Maska, M. et al. 2014. A benchmark for comparison of cell tracking algorithms

Our goal

Input: Microscopic images

Preprocessing & filtering

<u>Segmentation</u>:

Support vector machine

Data mining: Counting nuclei

Output: Segmented image & number of nuclei

Our goal

Input: Microscopic images

Preprocessing & filtering

<u>Segmentation</u>:

Support vector machine

Data mining: Counting nuclei

Output: Segmented image & number of nuclei

quantify degree of malignancy (= grading)

Determining Our Image Segmentation Quality

Dice Score

Evaluating the quality of the segmentation quantitatively

Dice Score

Planned analysis steps

- → Write code for Dice-Score function
- Unit-testing
- Write code for synthetic images

Characteristics of the first Milestone

Measure for evaluating our model

Support Vector machine

decision function → hyperplane

Phase 1: training phase

Phase 2: generalization phase

Support Vector machine

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge +1 \quad \text{for } y_i = +1$$

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$
 for $y_i = -1$

Planned analysis steps

- Implement a support vector machine
- evaluate the performance of our SVM

Characteristics of the second Milestone

— label pixels as ,cell nucleus' or ,background'

Pre-processing

Pre-processing steps:

- 1. Noise reduction
- 2. Super-pixel segmentation

Desired effect:

- 1. Average local pixel intensity values
- 2. Separate nuclei which appear fused

https://www.mathworks.com/help/images/ref/imgaussfilt.html

Krig, S. 2014. Computer Vision Metrics. Survey, Taxonomy, and Analysis.

Pre-processing

Planned analysis steps

- → *Methods*:
 - 1. 2D Gaussian filter

- http://www.cmm.minesparistech.fr/~beucher/wtshed.html
- Gradient-ascend-based super pixel algorithms,
 e.g. Watershed

Characteristics of the third Milestone

Improve Dice Score of segmentation method through better image quality

Timeline

Thank you for listening!

Other options to be explored

- testing model on further data → compare results

(e.g. Broad Bioimage Benchmark Collection 001)

→ used in: Nosova SA, Turlapov VE (2019) Detection of Brain Cells in Optical Microscopy Based on Textural Features with Machine Learning Methods. Program Comput Soft 45, 171–179

https://bbbc.broadinstitute.org/BBBC001

- advanced pre-processing

e.g. high-pass filter

