

sment Report

on

"STUDENT PERFORMACE PREDICTION"

submitted as partial fulfillment for the award

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

CSE AIML

By

Name (202401100400174)

Under the supervision of

"Abhishek shukla"

KIET Group of Institutions, Ghaziabad

Affiliated to

Dr. A.P.J. Abdul Kalam Technical University, Lucknow (Formerly UPTU)

May, 2025

STUDENT PERFORMANCE PREDICTION

Student performance prediction involves using historical academic and personal data to forecast how a student is likely to perform in the future. Machine learning models analyze patterns in various factors such as:

- **Demographics** (age, gender, family background)
- Academic records (grades, attendance, study hours)
- Behavioral data (participation, discipline records)

The goal is to:

- Identify students at risk of underperforming
- Offer personalized support or interventions
- Improve teaching strategies and academic outcomes

Common algorithms used include Linear Regression, Decision

Decision Random Forest, and **Support Vector Machines**. These models can predict final grades, exam scores, or even pass/fail outcomes with considerable accuracy.

Overall, it's a powerful tool for data-driven decision-making in education.

METHODOLOGY

1. Problem Definition

Define the objective:

Predict student performance (e.g., final grade or score) based on various input features like study time, attendance, socio-economic factors, etc.

2. Data Collection

Use a dataset containing:

- Academic records (grades, attendance)
- Demographic info (age, gender, parental education)
- Behavioral aspects (study time, failures, support)

3. Data Preprocessing

- Handle Missing Values: Fill or drop missing data
- Data Cleaning: Remove duplicates, fix inconsistencies
- **Encoding**: Convert categorical variables using one-hot encoding or label encoding
- **Feature Scaling** (optional): Normalize or standardize if needed for some models

4. Exploratory Data Analysis (EDA)

- Analyze relationships between features and the target
- Visualize using histograms, boxplots, heatmaps
- Check for multicollinearity and distribution

5. Model Building

Train models:

Linear Regression

- Random Forest Regressor
- Decision Tree
- XGBoost, etc.

6. Model Evaluation

Use metrics like:

- MAE (Mean Absolute Error)
- MSE / RMSE (Mean Squared Error)
- R² Score (explains variance)

Visualize:

- Actual vs Predicted
- Residual plots

7. Model Optimization

- Hyperparameter tuning (Grid Search, Randomized Search)
- Cross-validation for stable results

CODE

```
import pandas as pd
df = pd.read csv('8. Student Performance Prediction.csv')
print("First 5 rows:")
print(df.head())
print("\nDataset Info:")
print("\nMissing Values:")
print(df.isnull().sum())
import matplotlib.pyplot as plt
print("\nColumn Names:", df.columns)
plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
categorical cols = df.select dtypes(include='object').columns
df = pd.get dummies(df, columns=categorical cols, drop first=True)
y = df.iloc[:, -1]
from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
from sklearn.ensemble import RandomForestRegressor
```

```
# Step 8: Evaluate the model
y_pred = model.predict(X_test)

print("\nModel Evaluation:")
print("MAE:", mean_absolute_error(y_test, y_pred))
print("MSE:", mean_squared_error(y_test, y_pred))

print("RMSE:", np.sqrt(mean_squared_error(y_test, y_pred)))
print("R2 Score:", r2_score(y_test, y_pred))
```

OUTPUT

REFRENCES

Kaggle :- https://www.kaggle.com/datasets chatgpt