CSC301 HW9

Alex Zhang

April 2023

Question 1

Question 2

Based on the recurrence, I can draw the following recursive table:

level	problem size	costper problem	total cost
0	n	C- logkn	C. logkn
1	n/2	C. log + 1/2	C. logkn/z
		,	
d	n/2d	c. logkn/zd	C. logkn/z
		,	
	n/2L =	, C,	
2	/2-1	С	ζ,

From this table, since there are total L+1 levels and $L=\log_2 n$, the total work will be,

$$c \cdot \sum_{d=0}^{\log_2 n - 1} \log^k(n/2^d) + c'$$

doing transformation for each addition part,

$$c \cdot \sum_{d=0}^{\log_2 n - 1} (\log_2 n - \log_2 2^d)^k + c'$$

Case 1: Big-Oh

Since $\log_2 2^d = d$ and $d \ge 0$, $(\log_2 n - \log_2 2^d)^k$ will always smaller than $\log_2^k n$. This shows that

$$c \cdot \sum_{d=0}^{\log_2 n - 1} (\log_2 n - \log_2 2^d)^k + c' \le c \cdot \sum_{d=0}^{\log_2 n - 1} (\log_2 n)^k + c'$$

$$c \cdot \sum_{d=0}^{\log_2 n - 1} \log^k (n/2^d) + c' \le c \cdot \sum_{d=0}^{\log_2 n - 1} (\log_2 n)^k + c'$$

$$= c \cdot \log_2 n \cdot (\log_2 n)^k + c'$$

$$= c \cdot \log_2^{k+1} n + c'$$

$$(1)$$

Because c and c' are both constant, let $g(n) = \log_2^{k+1} n$, $f(n) = \sum_{d=0}^{\log_2 n-1} \log^k(n/2^d) + c'$, if c, N > 0 $f(n) \le c \cdot g(n)$

for all $n \geq N$, then

$$f(n) = O(g(n)) = O(\log_2^{k+1} n)$$

Case 2: Big-Omega

Generally speaking, the following inequality,

$$\frac{\sum_{d=0}^{\log_2 n - 1} \log_2^k(n/2^d)}{10} \le \sum_{d=0}^{\log_2 n - 1} \log_2^k(n/2^d)$$

holds true.

Question 3