深圳大学实验报告

课程名称:	电路分析	
实验项目名称:	实验五 一阶 RC 电路的响应测试	
学院 <u>:</u>		
专业 <u>:</u>		
指导教师 <u>:</u>	刘昕宇	
报告人:学	号 <u>: </u> 班级 :	
实验时间:	2024年05月21日	
实验报告提交时间	:2024年05月24日	

教务部制

一、实验目的

- 1. 初步掌握用示波器观察电信号波形,定量测出正弦信号和脉冲信号的 波形参数。
- 2. 测定 RC 一阶电路的零输入响应、零状态响应及完全响应。
- 3. 学习电路时间常数的测量方法。
- 4. 掌握有关微分电路和积分电路的概念。
- 5. 进一步学会用示波器观测波形。

二、实验仪器

- 1 数字示波器 TDS1012C-SC
- 2 双通道函数/任意波形发生器 DG1022
- 3 一阶二阶动态电路实验模块

三、实验内容:

- 1. 示波器功能检查
- (1)打开示波器电源。按下默认设置按钮。系统会将探头选项默认的衰减设 置为 10X。
- (2)取出示波器探头,将探头的衰减设置为 X10,探头连接到示波器上的通 道 1。要进行此操作,请将探头连接器上的插槽对准 CH 1 BNC 上的凸键,按 下即可连接,然后向右转动将探头锁定到位。将探头端部和基准导线连接到"探 头补偿"终端上。
- (3)按下"自动设置"按钮。几秒钟后,可看到显示一条约 5V 峰-峰值的 1 kHz 方波。
- (4)完成示波器功能检查后,需要将衰减调整到 1 倍,示波器设置过程如下: "探头 1X Voltage"-"电压"-"衰减 1X",将探头的衰减设置为 X1。
- 2. 观察波形及对电压和频率的测量
- (1)用信号发生器分别产生如下电信号,并将所观察到的正弦波和方波按比例绘出。
- (2)电压和频率测量数据记录
- 3. 从如图 6-3 所示电路板上选 $R=10K\Omega$, C=3300pF 组成如图 6-1(b)所示 的 RC 充放电电路。Ui 为脉冲信号发生器输出的 Um=3V、f=1kHz 的方波电压信号,并通过 22 两根同轴电缆线,将激励源 Ui 和响应 UC 的信号分别连至示波器的两个输入口 YA 和 YB。这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出 时间常数 τ ,并用方格纸按 1:1 的比例描绘波形。 改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。
- 4. 令 R=10KΩ,C=0.1μF,观察并描绘响应的波形,继续增大 C 之值, 定性地观察对响应的影响。
- 5. 令 $C=0.01\mu F$, $R=100\Omega$,组成如图 6-2(a)所示的微分电路。在同样的方 波激励信号(Um=3V,f=1KHz)作用下,观测并描绘激励与响应的波形。 增减 R 之值,定性地观察对响应的影响,并作记录。

四、实验过程及步骤

- 1. 检查示波器和信号发生器功能是否正常
- 2. 选 $R=10K\Omega$,C=3300pF 组成 RC 充放电电路。Ui 为脉冲信号发生器输出的 Um=3V、f=1kHz 的方波电压信号,并通过 22 两根同轴电缆线,将激励源 Ui 和响应 UC 的信号分别连至示波器的两个输入口 YA 和 YB。观察激励与响应的变化规律,测算出 时间常数 τ 。
- 3. 令 $R=10K\Omega$, $C=0.1\mu F$,观察并描绘响应的波形,继续增大 C 之值, 定性地观察 对响应的影响。
- 4. 令 $C=0.01\mu F$, $R=100\Omega$,组成微分电路。在同样的方 波激励信号(Um=3V,f=1KHz)作用下,观测并描绘激励与响应的波形。 增减 R 之值,定性地观察对响应的影响,并作记录。

五、实验结果及讨论

(4)完成示波器功能检查后,需要将衰减调整到1倍,示波器设置过程如下:

"探头 IX Voltage" - "电压" - "衰减 IX",将探头的衰减设置为 X1。

- 2. 观察波形及对电压和频率的测量
- (1)用信号发生器分别产生如下电信号,并将所观察到的正弦波和方波按比例绘出。

1 à E

(2)电压和频率测量数据记录于表 5-1。

		表 5-	1 电压和频	页率数据表	Ę		- R
信号发生器	器参数设置	示波器观测数据					
电压 V _{P-P}	频率 f(Hz)	V/div	垂直格数	V'_{P-P}	Time/div	水平格数	f'(Hz)
200mV	100	50mV	4	27.8mV	5ms	2	100Hz
500mV	1k	200mV	77-2.5	58.4ml	500US	2	IK
1V	10k	50mV	2	112mV	50 us	2	lok
3V	100k	100	3	356 mV	5 US	2	100 K

3. 从如图 6-3 所示电路板上选 R=10KΩ, C=3300pF 组成如图 6-1(b)所示

以 - a 大块土土即 (注)[注 D C 示性的布层及其标称值, 各开关的通断位置

深圳大学学生实验报告用纸

指导教师批阅意见:	
N/±\7-2-	
成绩评定:	
	指导教师签字:
	年 月 日
备注:	