1. Représenter la structure associée à l'équation de récurrence en utilisant les blocs fonctionnels suivants .

- 2. L'algorithme associé au système est-il de type récursif ou de type non récursif?
- 3. Le système étant au repos $(e_n$ et s_n nulles pour n < 0), on souhaite étudier la réponse du système à un échelon de consigne, e_n passant à n=0 de 0 à 150 tr/min. Reproduire et compléter le tableau suivant :

n	n < 0	0	1	2	3	4	5
t(µs)	<i>t</i> < 0						
e _n (tr/min)	0	150	150	150	150	150	150
s _n (tr/min)	0.						

- **4.** Quelle est alors la valeur en régime permanent de $s_{\rm p}$, notée $s_{\rm p}$, sachant que pour t tendant vers l'infini, $s_n = s_{n-1} = s_{n-2}$?
- **5.1** Montrer que la fonction de transfert en z du système étudié peut se mettre sous la forme :

$$T(z) = \frac{0,0028z^2}{z^2 - 1,921z + 0.9238}$$

5.2 En appliquant le théorème de la valeur finale, retrouver la valeur de $s_{
m p}$ précédemment déterminée.

CORRECTION

1. Une représentation structurelle de l'algorithme est la suivante :

2. s_n dépendant de s_{n-1} et de s_{n-2} , il s'agit d'un algorithme récursif.

1-Chaîne de traitement numérique et fonctione de transfert échantillonnées

3. Les différents instants d'échantillonnage sont donnés par $nT_{\rm E}$ avec $T_{\rm E} = 50~\mu s$.

Les échantillons successifs de s sont calculés à partir de l'équation de récurrence.

n	n < 0	0	1	2	3 :	4	5
t(µs)	t < 0	.0	50	100	150	200	250
e _n (tr/min)	0	150	150	150	150	150	150
s, (tr/min)	0	0,42	1,23	2,39	3,88	5,66	7,71

4. En régime permanent, comme $s_n = s_{n-1} = s_{n-2} = s_p$, l'équation de récurrence s'écrit : $s_p = 1,921s_p - 0,9238s_p + 0,0028e_p$ où $e_p = 150$ tr/min est la valeur en régime permanent du signal d'entrée.

On a donc $s_p[1-1,921+0,9238] = 0,0028e_n$ soit encore

$$s_{\rm P} = \frac{0,0028}{0,0028} e_{\rm P} = 1 \times 150 = 150 \,\text{tr/min.}$$

5.1 La transposition de l'équation de récurrence conduit à :

$$S(z) = 1,921z^{-1}S(z) - 0,9238z^{-2}S(z) + 0,0028E(z)$$

d'où
$$S(z)[1-1,921z^{-1}+0,9238z^{-2}]=0,0028E(z)$$

et donc
$$T(z) = \frac{S(z)}{E(z)} = \frac{0,0028}{1 - 1,921z^{-1} + 0,9238z^{-2}} = \frac{0,0028z^2}{z^2 - 1,921z + 0,9238}.$$

5.2 D'après le théorème de la valeur finale, $s_p = \lim_{z \to \infty} s_n = \lim_{z \to 1} (z-1)S(z)$ avec S(z) = T(z)E(z) et $E(z) = \frac{150z}{z-1}$.

Donc
$$s_P = \lim_{z \to 1} \frac{150 \times 0,0028z^3}{z^2, -1,921z + 0,9238} = \frac{150 \times 0,0028}{1 - 1,921 + 0,9238} = 150 \text{ tr/min.}$$

Applications directes du cours

6 Échantillonnage d'un signal triangulaire

À partir d'une date choisie comme origine des temps, on échantillonne, à la fréquence $f_c = 2$ kHz, le signal s(t) suivant :

