

Contexto e Escopo

Contexto

- Competições universitárias
- Foguetes experimentais
- ◆ Capital Rocket Team
- Propulsão híbrida

Problema

- ◆ Abastecimento: óxido nitroso (N2O)
- Segurança da base de lançamento
- ◆ Telemetria
- ◆ Estação de controle e monitoramento

Escopo

- ◆ Fase 1 (antes do lançamento):
 - Controle remoto do sistema de abastecimento
 - ♦ Comando de ignição
- ◆ Fase 2 (durante o voo):
 - Recebimento de dados de localização (GPS)
 - ♦ Coleta de telemetria (altitude, temperatura e pressão)

Solução

ELETRÔNICA

Áreas de Atuação

- ◆ Telemetria
- Sensoriamento do foguete
- ◆ Interface do usuário

Telemetria

- Necessidade de uma distância segura para o acompanhamento do lançamento
- Comunicação entre a RGS, a base de lançamento e o foguete

Sensores do Foguete

 \longrightarrow

- Aferição do peso do foguete medido durante a fase 1
- ◆ Dados: altitude, velocidade e localização geográfica (GPS)

Sensores do Foguete

Módulo GPS GY-NEO6MV2 (uBlox).

Figura 13 – Célula de carga - 50 kg.

Sensor de pressão e temperatura BMP280 (Bosch).

Interface do usuário

Ponto de controle 02

- Descrição detalhada das conexões entre os componentes
- ♦ Integração dos dados de telemetria com software
- ♦ Integração acionamento das válvulas definidas pela Estrutura e Energia
- ◆ Integração com Estrutura e Energia para o acionamento da ignição
- Diagrama esquemático geral

Ponto de controle 03

- ♦ Validação das Integrações com software, energia e estrutura
- ♦ Construção do Manual do usuário
- ◆ Detalhamento de possíveis futuros aprimoramentos para o projeto

ENERGIA

Solução de energia

- ♦ Dimensionamento do sistema de alimentação
 - ♦ Sistema eletrônico
 - Sistema de ignição
- ◆ Carregador de bateria

Consumo dos componentes eletrônicos

	Tensão	Corrente	Potência
Tela	12 V	1 A	12 W
Single Board Computer	5 V	2 A	10 W
Teclado e botões	5 V	250 mA	1,25 W
Altímetro	3 V	1 μΑ	$3\mu\mathrm{W}$
GPS	5 V	10 mA	500 mW
Balança (célula de carga)	10 V	100 mA	1 W
Módulo base	5 V	500 mA	2,5 W
Módulo foguete	5 V	500 mA	2,5 W
Módulo maleta	5 V	500 mA	2,5 W

Alimentação do sistema

- ←

- ◆ Tensão 12 V
- ◆ Potência total:32,25 W → 35 W
- ◆ Tempo de utilização:2h → 3h

- ◆ Lei de Ohm
- ◆ Considerando uma descarga de até 40%

Capacidade em Ah = 21,87 Ah Capacidade selecionada \rightarrow 30 Ah

Escolha da bateria

Tipos de bateria mais comuns

- ◆ Chumbo-ácido
- ♦ Níquel-cadmio
- ♦ Níquel-hidreto
- ◆ Lítio

Características importantes para o sistema:

- ◆ Leve e compacta
- Ciclos de carga e descarga
- Sem efeito memória

Bateria selecionada

- ◆ Lítio 12 V e 30Ah
- Unipower
- Bateria Lítio Ferro Fosfato -LiFePO4
- ◆ 4,6 kg
- ◆ 125 mm X 166 mm X 175mm

Regulador de tensão

- ♦ Módulos "step down"
- ◆ Modelo LM2596
- ◆ Três unidades:
 - ♦ 3 V
 - ♦ 5 V
 - ♦ 10 V

Carregador de bateria

Solução inicial:

- Off grid
- Placas fotovoltaícas

Desnecessário devido ao tempo de utilização reduzido

Solução final:

- On grid
- ♦ Carregador de bateria

Próximos passos

Bateria

Diagrama elétrico;

Carregador

 Dimensionamento e definição do sistema de carregamento;

Integração

- Manual de manutenção de baterias e carregamento;
- Diagramas elétricos e de alimentação integrados ao CAD;

ESTRUTURA

Partes principais

- "Maleta" (estrutura principal);
- Divisórias, para 3 espaços internos;
- Placa de acesso inferior;
- Placa de acesso superior;
- Componentes de conexão;

Materiais

	MDF	PRFV	PRFC	PLA	ABS
Comunicação com os subsistemas	Bom	Bom	Bom	Bom	Bom
Usabilidade e ergonomia	Bom	Razoável	Razoável	Bom	Bom
Custo	Bom	Bom	Ruim	Razoável	Razoável
Propriedades mecânica	Bom	Razoável	Bom	Razoável	Razoável
Densidade	Bom	Razoável	Bom	Bom	Bom

Escolha para a estrutura principal: MDF

MDF

- Comunicação com os subsistemas: Permite que ondas eletromagnéticas possam fluir através dele.
- Densidade: Entre 0,5 e0,8 g/cm³

Usinabilidade: Alta usinabilidade, além de ter ótima aceitação de revestimentos.

- Custo:
 - \Diamond 3 mm \rightarrow R\$36,81
 - \Diamond 6 mm \rightarrow R\$62,50
- Propriedades mecânicas: Alta relação entre resistência mecânica e massa específica, homogeneidade.

66

Sistema de abastecimento

 \sim

Componentes pré-estabelecidos

Atuador

Atuadores elétricos

♦ Atuadores pneumáticos

Estrutura principal

- Definição dos esforços;
- Simulações e diagramas estruturais;

Integração

- Integração dos componentes em modelo;
- Desenho técnico, cotagens e plantas finais;
- Manual de montagem e construção

Sistema de abastecimento

- Calcular o torque;
- Dimensionar estrutura adaptadora;
- Definição do servo-motor atuador;

SOFTWARE

Fase 1

- Comandos de abastecimento
- ♦ Comandos de ignição
- ♦ Acompanhamento do peso durante o abastecimento

Fase 2

- ◆ Acompanhamento de voo
- ◆ GPS
- ◆ Altitude
- ♦ Velocidade
- Pressão e temperatura
- ◆ Treinamento e inferencia do algoritmo de ML

Arquitetura

Evolução

- ◆ Início do levantamento do Dataset
- ◆ Detalhamento da arquitetura Diagrama de sequência
- Detalhamento do requisitos Storytelling

Ponto de controle 2 - Próximos passos

- Detalhamento da arquitetura
- Configuração e criação dos serviços
- Alinhamento com equipe de eletronica para comunicação com o microcontrolador
- Arquitetura da informação e prototipação

- Detalhamento dos requisitos
- Levantamento do Dataset a partir de softwares de simulação
- ◆ Escolha do algoritmo

Ponto de controle 3 - Próximos passos

- Desenvolvimento dos serviços de armazenamento e consulta dos dados de telemetria
- Desenvolvimento do serviço de interface
- ◆ Treinar algoritmo de ML
- Diagrama de integração
- Guia de uso do software
- ◆ Guia de instalação

Obrigado!