

SCC0201 - Introdução à Ciência da Computação II

Relatório do Projeto 1

Alunos NUSP
Alec Campos Aoki 15436800
Fernando Valentim Torres 15452340

Análise Teórica

Força Bruta

☐ Implementação

```
#include "../brute.h"

int brute(ITEM **itemList, int maxWeight, int itemsQuantity) {
   if (itemsQuantity == 0 || maxWeight == 0) { //O(1)
      return 0; //O(1)
   }
   int itemWeight = getWeight(itemList[itemsQuantity - 1]); //O(1)
   if (itemWeight > maxWeight) //O(1)
      return brute(itemList, maxWeight, itemsQuantity - 1); //T(n-1)
   int bestPathIncludingTheItem = //O(1)
      getValue(itemList[itemsQuantity - 1]) + //O(1)
      brute(itemList, maxWeight - itemWeight, itemsQuantity - 1); //T(n-1)
   int bestPathExcludingTheItem = brute(itemList, maxWeight, itemsQuantity - 1); //T(n-1)
   return maxBetween(bestPathExcludingTheItem, bestPathIncludingTheItem); //O(1)
}
// T(n) = c, n=0 (caso base)
// T(n) = 2*T(n-1) + 2*n*c, n>0
```

□ Equações de Recorrência/Análise de Complexidade

A implementação força bruta consiste de testar todos os casos possíveis; isto é feito criando, a cada item, dois caminhos: o de incluílo e o de não incluí-lo. Obviamente, nos casos em que adicionar o item

é impossível (peso máximo da mochila ultrapassado), a única possibilidade é o de não incluí-lo. O caso base é quando não há mais itens a serem checados, ou a mochila já se encontra cheia. Analisando o código, chegamos em sua equação de recorrência (ver comentários no código abaixo). Resolvendo a árvore de recorrência, temos que a complexidade do algoritmo de força bruta é $O(2^n)$, ou seja, exponencial. Essa complexidade é coerente com a lógica do algoritmo, visto que ele checa todos os casos possíveis, e a taxa de crescimento exponencial é uma das mais rápidas possíveis, tornando este o método mais lento dentre os 3.

Algoritmo Guloso

□ Implementação


```
int greedy(ITEM **itemList, int maxWeight, int itemsQuantity) {
   quicksort(itemList, 0, itemsQuantity - 1); //O(n^2) pior caso, O(n*log(n)) caso médio
   float biggestMoneyAmount = 0; //O(1)
   for (int i = 0; i < itemsQuantity; i++) { //O(n)
      int itemWeight = getWeight(itemList[i]); //O(1)
      if (itemWeight <= maxWeight) { //O(1)
            maxWeight -= itemWeight; //O(1)
            biggestMoneyAmount += getValue(itemList[i]); //O(1)
      }
   }
   return biggestMoneyAmount; //O(1)
}
//Análise de recorrência não aplicável. T(n) = O(n^2)</pre>
```

□ Equações de Recorrência/Análise de Complexidade

O algoritmo guloso funciona selecionando os arquivos com a maior relação $\frac{valor}{peso}$. Para isso, o vetor precisa estar ordenado. Em nossa implementação, calculamos todas as relações e as ordenamos usando o algoritmo quicksort, que tem complexidade $O(n^2)$ em seu pior caso. Após o quicksort, a única operação dependente do tamanho da entrada é um laço for que percorre o vetor ordenado, ou seja, tem complexidade O(n). Levando como limite superior a função de maior taxa de crescimento, temos $T(n) = \theta(n^2)$. Não há recursão, logo, não há caso base. Importante notar que esse algoritmo não garante uma solução ótima (não alcança a melhor resposta em 100% dos casos) para o problema da mochila 0/1 pois nesse problema devemos incluir ou excluir o item em sua totalidade (não podemos dividí-lo, como no problema da mochila fracionada). Podemos mostrar que o algoritmo guloso não é valido no problema 0/1 usando um exemplo: suponhamos uma mochila de peso 6, 1 item de valor 10 e peso 5 (relação = 2), e 2 itens de valores 5.5 e peso 3 (relação = 1,83); o primeiro item tem maior relação e seria escolhido pelo algoritmo guloso, mas os dois outros itens juntos resultam em um valor maior, apesar de terem uma relação menor. Esse método é o segundo mais eficiente dentre os três (a taxa de crescimento de n^2 é menor que 2^n), apesar de não conseguir atingir a resposta certa para todos os casos. Selecionando um algoritmo de ordenação com pior caso menor que n^2 , como o mergesort (O(n * log(n))), o limite superior passa a ser a checagem do vetor de razões, ou seia, O(n).

Programação Dinâmica

☐ Implementação

☐ Equações de Recorrência/Análise de Complexidade

A solução do problema utilizando programação dinâmica consiste em *indiretamente* "testar" todas as possibilidades, sem necessariamente calculá-las repetidamente, por meio do uso do método da tabulação. Começamos construindo uma tabela com as colunas sendo os pesos máximos da mochila, e as linhas sendo cada item inserido. Analisamos coluna a coluna para cada linha; se conseguimos incluir o item da linha, verificamos se seu valor é superior ao definido para a mesma coluna, mas na linha anterior; se for, escrevemos esse valor na tabela, senão copiamos o valor da linha anterior.

Vamos dividir a análise de complexidade dessa solução em duas: uma chamada de *estados únicos* e outra chamada de *cache*. A complexidade de cache se refere à complexidade de cada execucação da função (sem considerar recursões). Analisando o código acima, temos dois laços *for*; o primeiro tem limites [0, n], n a quantidade de itens recebidas, e o segundo tem limites [0, w], w o peso máximo maximo da mochila. Ambos são incrementados 1 a 1. Isso nos dá uma complexidade de cache de O(nw). A complexidade de estados únicos se refere à chamadas recursivas (ou seja, o total de vezes que a função será chamada). Nesse caso, com a função sendo chamada somente uma vez (ela não é recursiva), temos que a complexidade de estados dela é O(1). A complexidade de todo algoritmo pode ser dado unindo essas duas complexidades, o

que resulta em O(nw). Podemos pensar, também, que por estarmos preenchendo uma matriz n por w, temos O(nw).

Análise Empírica

Gráficos

Força bruta $(O(2^n))$

Guloso $(O(n^2))$

1

5

10

20

30

40

50

3

6

 24

2561

8228.6

38672

197499

Programação dinâmica (O(nw))

Eixo X: quantidade de itens (n)

Eixo Y: tempo de execução (em nanosegundos)

x_2	y_2	x_3	y_3
1	1.6	1	1.3
5	3	5	5
10	5.33	10	14.3
20	11	20	70
30	15.6	30	145
40	7	40	42
50	7	50	83
60	30.3	60	439
70	42	70	524.6
80	42.3	80	812.3
90	55	90	954
100	58	100	1067.3
500	269	500	14268
750	524	750	39628.6
	1		

Discussões

□ Resultados Obtidos (Comparação)

Conforme esperado, temos que a programação dinâmica é notávelmente mais eficiente que os outros dois métodos (como indicado por sua complexidade e implementação). Analogamente, temos que o algoritmo de força bruta é o menos eficiente (como também indicado por sua complexidade e implementação).

☐ Análise Teórica x Empírica

Conforme observável pelo gráfico, temos que, a grosso modo, cada algoritmo realmente opera conforme sua notação *big O*. No entanto, devido à própria natureza da notação, além de fatores inerentes ao computador que roda o código, o próprio código e os casos testes, que podem causar resultados que fogem do padrão esperado (como as quedas súbitas no tempo de execução observados no algoritmo guloso e na programação dinâmica), temos algumas divergências do comportamento puramente teórico esperado.