mpi* - lycée montaigne informatique

TD8 - Classes de complexités (Éléments de réponse)

Exercice 1

Question 1. L'information $P_1 \leqslant_p P_2$ indique que P_1 est plus facile que P_2 . Mais on ne sait de la classe de P_2 . La réponse est **non**.

Question 2. Puisque P_1 est plus facile que P_2 , si ce dernier est dans la classe P, P_1 y est aussi. La réponse est oui.

Question 3. La réduction ne dit rien sur la classe de complexité de P_2 . La réponse est **non**.

Question 4. Là encore, la réponse est non.

Question 5. La réponse est encore non.

Question 6. À présent, on connaît les classes de complexité de P_1 et de P_2 : NP-complet. Ce sont donc à la fois des problèmes NP-difficiles et des problèmes qui appartiennent à la classe NP. Donc tout problème NP peut s'y réduire polynomialement. La réponse est **oui**.

Question 7. On ne sait sur la classe de complexité de P_2 . La réponse est **non**.

Exercice 6

Question 1. Remarquons d'abord que 3SAT appartient bien à la classe NP, pour les mêmes raisons que SAT lui-même. On montre maintenant que 3SAT est NP-difficile, en construisant une réduction polynomiale de SAT vers 3SAT.

Question 2. Un raisonnement par récurrence structurelle assure immédiatement que la formule φ' produite est en forme 3SAT, avec au maximum $3|\varphi|$ clauses.

Question 3. La démonstration est encore par récurrence structurelle sur la formule φ , et on prend comme cible l'énoncé suivant : « une valuation v pour les variables de φ satisfait φ si et seulement si elle peut être étendue en une valuation v' satisfaint $x \wedge \varphi'$ ».

- Cas d'une variable z. On a $f(z)=(z,\mathsf{V}),$ et $z\wedge\mathsf{V}$ est satisfaite par les mêmes valuations que z.
- Cas de la constante V. On a f(V) = (x, x), pour une certaine nouvelle variable x. La formule V est satisfaite par la valuation vide. La formule $x \wedge x$ est également satisfiable, satisfaite par la valuation qui à x associe V.
- Cas de la constante F. On a $f(F) = (x, \neg x)$, pour une certaine nouvelle variable x. La formule F n'est pas satisfiable. La formule $x \land \neg x$ ne l'est pas non plus.
- Cas d'une conjonction $\varphi_1 \wedge \varphi_2$. On suppose que $f(\varphi_1) = (y_1, \varphi_1')$ et $f(\varphi_2) = (y_2, \varphi_2')$, et que ces sous-formules vérifient notre hypothèse de récurrence. Par définition de f on a $f(\varphi_1 \wedge \varphi_1) = (x, \varphi')$, avec x une nouvelle variable et $\varphi' = (\neg x \vee y_1) \wedge (\neg x \vee y_2) \wedge (\neg y_1 \vee \neg y_2 \vee x) \wedge \varphi_1' \wedge \varphi_2'$.

Question 4. Montrons l'équisatisfiabilité.

 \diamond Supposons qu'il existe une valuation v satisfiant $\varphi_1 \wedge \varphi_2$. En particulier, v satisfait φ_1 , et v satisfait également φ_2 . Par hypothèses de récurrence, il existe une extension v_1' de v satisfaisant $y_1 \wedge \varphi_1$ et une extension v_2' de v satisfaisant $y_2 \wedge \varphi_2$. Du fait que chaque variable introduite par la transformation de Tseitin est neuve, les deux valuations v_1' et v_2' n'ont comme domaine commun que les variables déjà définies dans v. Sur ces variables, par hypothèse, v_1' et v_2' conservent les valeurs de v. Ainsi, l'union des deux extensions v_1' et v_2' de v est bien définie. Définissons une valuation v' par :

$$\left\{ \begin{array}{lll} v'(x) & = & \mathsf{V} \\ v'(z) & = & v(z) & & \mathrm{si} \; z \in \mathrm{dom}(v) \\ v'(z) & = & v_1'(z) & & \mathrm{si} \; z \in \mathrm{dom}(v_1') \\ v'(z) & = & v_2'(z) & & \mathrm{si} \; z \in \mathrm{dom}(v_2') \end{array} \right.$$

Comme on a $v'(x) = v_1'(y_1) = v_2' = (y_2) = \mathsf{V}$, cette valuation v' satisfait les trois clauses $\neg x \lor y_1, \neg x \lor y_2$ et $\neg y_1 \lor \neg y_2 \lor x$, et donc finalement satisfait bien $x \land \varphi'$.

 \diamond Supposons qu'il existe une valuation v' satisfiant $x \wedge \varphi'$. En particulier, v' satisfait les quatre clauses x, $\neg x \vee y_1$, $\neg x \vee y_2$ et $\neg y_1 \vee \neg y_2 \vee x$. On en déduit que, nécessairement, $v'(x) = v'(y_1) = v'(y_2) = \mathsf{V}$. Ainsi, v' satisfait à la fois y_1 et φ'_1 , et satisfait donc $y_1 \wedge \varphi'_1$. Donc, par hypothèse de récurrence, v' satisfait φ_1 . De même, on déduit que v' satisfait φ_2 . Finalement, v' satisfait bien $\varphi_1 \wedge \varphi_2$.

Question 5. Ainsi, partant d'une formule propositionnelle φ quelconque utilisant les connecteurs \land , \lor et \neg , on peut construire une formule 3SAT $x \land \varphi'$ de taille proportionnelle à $|\varphi|$, qui est satisfiable si et seulement si φ l'est. Ainsi SAT $\leqslant_{\mathbb{P}}$ 3SAT, le problème SAT se réduit polynomialement au problème 3SAT, et ce dernier est donc NP-difficile.