## **Master-Thesis:**

Constructing a Knowledge Graph by extracting information from financial news articles

Rainer Gogel Matr.Nr. 1272442



## 1. Overview

## Information Extraction Pipeline and spacy pipeline



- From <u>unstructured text</u> to a <u>structured representation</u> in a Knowledge Graph
- Components: NER, Coreference Resolution, Topic Modelling
- NER, Coreference Resolution in spacy pipeline

## Knowledge Graph



- Neo4j Graph Database
- Nodes: Sentence, Company, Article, Topic
- Relationships: mentions, is\_part\_of, is\_about

### Financial News Articles





- Language: Mostly German, sometimes English
- EQS: https://www.eqs-news.com/
- dpa compact: https://mobile.traderfox.com/news/dpa-compact/

## Companies

|    | symbol √ ÷ | name                       | market_cap ♡ ÷ | sector ♥ ÷             | industry ₹                      |
|----|------------|----------------------------|----------------|------------------------|---------------------------------|
| 1  | ENGQF      | Engie SA                   | 40486721464    | Utilities              | Diversified Utilities           |
| 2  | AMUN.PA    | Amundi                     | 13606116250    | Financial Services     | Asset Management                |
| 3  | GECFF      | Gecina Société anonyme     | 8040674363     | Real Estate            | REIT - Office                   |
| 4  | GFC.PA     | Gecina                     | 7024326032     | Real Estate            | REIT - Office                   |
| 5  | GI6A.DU    | Gecina Nom                 | 7002167275     | Real Estate            | REIT - Industrial               |
| 6  | NEOEN.PA   | Neoen S.A.                 | 5871329061     | Utilities              | Renewable Utilities             |
| 7  | SPIE.PA    | SPIE SA                    | 5721606240     | Industrials            | Engineering & Construction      |
| 8  | COV.PA     | Covivio                    | 5403592988     | Real Estate            | REIT - Diversified              |
| 9  | ELIS.PA    | Elis SA                    | 5065802383     | Industrials            | Specialty Business Services     |
| 10 | RF.PA      | Eurazeo SE                 | 5044525719     | Financial Services     | Asset Management                |
| 11 | AYV.PA     | Ayvens                     | 4777173278     | Industrials            | Rental & Leasing Services       |
| 12 | CBDG.PA    | Compagnie du Cambodge      | 4002105250     | Industrials            | Railroads                       |
| 13 | BNJ.AS     | BANIJAY GROUP N.V.         | 3915025648     | Communication Services | Entertainment                   |
| 14 | TKO.PA     | Tikehau Capital            | 3853375478     | Financial Services     | Asset Management                |
| 15 | ATE.PA     | Alten S.A.                 | 3450427445     | Technology             | Information Technology Services |
| 16 | ITP.PA     | Interparfums SA            | 3357486088     | Consumer Defensive     | Household & Personal Products   |
| 17 | VRLA.PA    | Verallia Société Anonyme   | 3146123341     | Consumer Cyclical      | Packaging & Containers          |
| 18 | IDL.PA     | ID Logistics Group SA      | 2786407983     | Industrials            | Specialty Business Services     |
| 19 | FLY.PA     | Société Foncière Lyonnaise | 2757306733     | Real Estate            | REIT - Office                   |
| 20 | CRT0       | Criteo S.A.                | 2650379575     | Communication Services | Advertising Agencies            |

- Source: OpenBB: https://openbb.co/products/platform
- > 2500 European Companies

## 2. Information Extraction Pipeline

## Test different approaches for each pipeline component

## Traditional approaches

- Rule-based
- Traditional Machine Learning: HMMs, CRFs, etc.
- REGEX

## Pre-Trained LLMs

Use or fine-tune pre-trained LLMs: BERT, etc.

## Generative LLMs

Prompt LLMs --> Response

## Best approach?

## A. NER

#### INFORMATION EXTRACTION PIPELINE







## Traditional approach: REGEX



- Make REGEX-patterns: Classify each term, make optionality dependent on class
- Save and use REGEX-patterns (JSONL) in spacy pipeline

## Pre-Trained Model: GliNER

"The goal is to have entity and span embeddings in the same latent space..."



- Input: Entity type names -concat- input sentence
- Entity Embeddings Span Representation: Learned Similarity Matrix

## DEMO

#### INFORMATION EXTRACTION PIPELINE







- 1) Creation of REGEX patterns
- 2) Performance REGEX vs. GliNER Pre-Trained model

## B. Coreference Resolution

#### INFORMATION EXTRACTION PIPELINE







## Pre-Trained: Crosslingual Coreference

End-to-end Neural Coreference Resolution Architecture (Lee 2017)



Crosslingual-Coreference **AllenNLP** (Berenstein) Coref-Model (2021)

**Output: Clusters:** [[[cl1 start1, cl1 end1], [cl1 start2, cl1 end2]], [[cl2 start1, cl2 end1], [cl2 start2, cl2 end2]]]

**Embedding Model:** microsoft/Multilingual-MiniLM-L12-H384

e2e-model: LSTM, later SpanBERT/MiniLM -> Coreference Clusters

+

Crosslingual Coreference: Only <u>noun-phrases</u> of e2e-clusters

## Generative LLM





• LLM-Framework: LangChain

### Generative LLM: Data Model

```
from pydantic import BaseModel, Field
class Coreference(BaseModel):
   ....
   coref text: Ontional[str] = Field(default=None, description='The coreference substring in the text string')
   coref_with_surroundings: Optional[str] = Field(default=None, description='The coreference substring plus two words to the left and right.
class clusterHead(Basemodel):
   head_text: Optional[str] = Field(default=None, description='The string characters of the cluster head which is a company name')
   head_index_start: Optional[int] = Field(default=None, description='The position index of the first character of the cluster head substring')
   head_index_end: Optional[int] = Field(default=None, description='The position index of the last character of the cluster head substring plus one')
class Cluster(BaseModel):
   cluster_id: Optional[int] = Field(default=None, description='The identification number of the cluster provided by the user. '
                                                                'Always return the same number that was provided by the user.')
   text: Optional[str] = Field(default=None, description='The text to search in')
   cluster_head: Optional[ClusterHead] = Field(default=None, description='The cluster object which is is provided in the user message')
   coreferences: Optional[list[Coreference]] = None
class DataContainer(BaseModel):
   data_list: list[Cluster] = []
```

- Pydantic BaseModel: Type checking in Examples and Return Format
- Coreference surroundings: Indicate it with two words on each side

## Generative LLM: Few Shot Examples

```
examples = [
   Cluster(bluster_id=101, text='Der Abschwung im PC-Markt erwischt auch den Chipkonzern AMD. Im vergangenen Quartal sank der Umsatz
        cluster_head: ClusterHead(head_text='Chipkonzern AMD', head_index_start=44, head_index_end=59), coreferences [Coreference(
   Cluster():luster_id=22, text='MicroVision, Inc., ein fuehrender Anbieter von MEMS-basierten Solid-State-Lidar- und Fahrerassistenz
        cluster_head=ClusterHead(head_text='MicroVision, Inc.', head_index_start=0, head_index_end=17), coreferences=[Coreference(
   Cluster()luster_id=303, text='Der Oelkonzern BP hat im ersten Quartal die niedrigeren Oel- und Gaspreise zu spueren bekommen. Der
        cluster_head:ClusterHead head_text='Oelkonzern BP', head_index_start=4, head_index_end=17),
                    [Coreference(coref_text='BP', coref_with_surroundings='Geldzuflusses kuendigte BP am Dienstag'),
                         coref_text='Konzern', coref_with_surroundings='setzt der Konzern seine Strategie'), <code>Coreference(coref_text='</code>
            Coreference(coref_text='es', coref_with_surroundings='an, dass es Geschaefte vereinbaren')]),
   Cluster(|:luster_id=54, text="Abivax SA, ein Biotechnologieunternehmen mit einem Produkt in der klinischen Phase 3, das Therapien
        cluster_head:ClusterHead(head_text='Abivax SA', head_index_start=0, head_index_end=9),
                    ∮[Coreference(coref_text='ein Biotechnologieunternehmen', coref_with_surroundings='Abivax SA, ein Biotechnologieu
            Coreference(coref_text='Wir', coref_with_surroundings='Abivax, sagte: Wir sind stolz'), Coreference(coref_text='Wir', coref_text)
            Coreference(coref_text='uns', coref_with_surroundings='Es ermutigt uns, dass die'), Coreference(coref_text='unsere', core
```

ClusterHead: Company name found by previous NER pipeline component

## Generative LLM: Prompt + GenLLM



- Return Format: Cluster instance
- Examples: Converted to LangChain messages
- Chain: Prompt + OpenAl gpt-40
- Input: Text and ClusterHead | Company name previousely found in NER

## Containerization due to dependency issues





- Crosslingual Coreference: Request to docker container
- Generative LLM: Request to docker container and OpenAI server



#### INFORMATION EXTRACTION PIPELINE







Performance Pre-Trained Crosslingual-Coreference vs. Generative LLM

## C. Topic Modelling

#### INFORMATION EXTRACTION PIPELINE







## Traditional Topic Modelling und BERTopic

1.A.: Word Vectors (TF-IDF, Bag-of-Words)
OR

1.B.: Embeddings

- Dimension Reduction: Choose and apply a dimension reduction method on the embeddings
- Clustering: Choose and apply a clustering algorithm on the dimensionreduced embeddings
- Aggregate Text: Aggregate the text of all documents within each cluster
- Apply TF-IDF Vectorization: Apply TF-IDF vectorization to each of the per-Cluster-aggregated texts <sup>1</sup>
- Most Frequent Words: Get the most frequent words for each cluster according to TF-IDF
- Traditional: Features: Word Counts (TF-IDF, One-Hot, Bag-of-Words)
- BERTopic: <u>Features: Embeddings</u>

## Traditional Topic Modelling und BERTopic



TF-IDF



**Embeddings** 

Disappointing Results

## **Generative LLM**





• LLM-Framework: LangChain

### Generative LLM: Data Model

```
class Frame(BaseModel):
    """ DataFrame that contains the index of the DataFrame and the column "top_sent" which contains the sentences for which
    indexes: list[int] = Field(description='The indexes of the rows in the pandas DataFrame')
    sentences: list[str] = Field(default=None, description='List of sentences each for which the Topic shall be determined
    topics: list[Topic] = Field(default=None, description='List of Topic enums for each sentence in "sentences". List must
```

```
class TopicExplain(str, Enum):

""" The Topic of the sentence. Topics can only be one of the following: """

topic1 = ("Sätze mit konkreten Zahlenangaben aus Quartals- oder Jahresberichten. Die genannten Zahlen beziehen sich auf die Bilanz, den U

"Beispiele dafür sind EBIT, EBITDA, Sewinn oder Verlust vor Stevenn, Gewinn- oder Verlustmargen, der Umsatz, Veränderungen der

topic2 = "Sätze mit allgemeinen Aussagen und Einschätzungen zu Unternehmensergebnissen, die Bilanzerung und den Umsatz. Dies sind Wertung

topic3 = ("Sätze, die sich auf eine bevorstehende oder vergangene Hauptversammlung oder die Veröffentlichung von Unternehmensergebnissen

"Beispiele dafür sind die Ankündigung einer Veröffentlichung von Quartals- oder Jahresberichten oder Informationen zu bzw. Über

topic4 = "Zukunftsgerichteter Ausbilck, Prognosen, Ziele, Strategie und Pläne der Unternehmensleitung."

topic5 = "Sätze, die Kennzahlen zu Unternehmensergebnissen beinhalten, ohne dass dabei ganze Sätze gebildet werden oder die Zahlen beschn

topic6 = "Sätze, in denen die Aktivitäten und das Profil des Unternehmens dargestellt wird. Oft dienen die Sätze der positiven Selbstdars

topic7 = "Stimmrechte, Kapitalveränderungen, Dividenden, Finanzierung, Listing an Börsen, Marktkapitalisierung."

topic8 = "Sätze, in denen das vom Unternehmen angebotene Produkt, eine Produktentwicklung oder ein neue Neuerung im Hinblick auf ein Prod

topic9 = "Sätze, in denen die Herstellung des Produkts, der Produkt-Forschung, die Exploration vn Bodenschätzen, Produkt- oder Medikament

topic10 = "Konzernumbau, wichtige organisatorische Veränderungen, Restrukturierung, Werksstillegung, strategische Partnerschaften, Übern

topic11 = "Personalveränderungen im Vorstand, Aufsichtsrat, Betriebsrat oder anderer Organe im Unternehmen, Personal, Gewerkschaftem, Str

topic13 = "Einflüsse von Aussen auf die Erfolgsaussichten von Unternehmen etwa durch Subventionen, Staatliche Eingriffe, Umbrüche im Mark

topic15 = "Unfälle, Gewalt, Katastrophen"

topic16 = "Unvollständige Sätz
```

- Frame: Instance of pandas DataFrame
- Topics: 17 topics. Topic 16: Incomplete sentences, Topic 17: OTHER

## Generative LLM: Few Shot Examples

```
F Note: Konzernumbau, wichtige organisatorische Veränderungen, Restrukturierung, Werksstillegung, strategische Partnerschaften, Übernahmen top10 = [

'Comp@Name@Placeholder verwies auf die Schliessung eines Comp@Name@Placeholder-Werks in Bridgend sowie die Verlegung der Produktion nach Chin
'Der Kauf der Comp@Name@Placeholder stellt eine hervorragende Ergaenzung zu unserem wachsenden Netzwerk an internationalen Laborpartnern dar
'Nach der bereits erfolgten Verlegung zentraler Funktionen der Gesellschaft an den Standort Hamburg beabsichtigt die Comp@Name@Placeholder, in one Krebsfrueherkennung spezialisiert hat, hat heute die 'Die Comp@Name@Placeholder übernimmt die Schweizer Comp@Name@Placeholder Gruppe und erweitert damit ihre Kernkompetenz im Bereich der Luftque 'Die Comp@Name@Placeholder ist ab sofort Teil der Ingenieur-, Architektur- und Managementberatungsfirma Comp@Name@Placeholder.',
'Comp@Name@Placeholder, eines der weltweit führenden Marktforschungsunternehmen, hat ein freiwilliges öffentliches Übernahmeangebot für die Grupp@Name@Placeholder: Comp@Name@Placeholder und Comp@Name@Placeholder unterzeichnen ihre vierte gemeinsame Vereinbarung.',
'Comp@Name@Placeholder und Comp@Name@Placeholder haben ein verbindliches Eckpunktepapier fuer die erste Phase eines mehrphasigen Projekts zu 'Am 13. Mai 2022 jaehrt sich der Tag, an dem die Comp@Name@Placeholder Insolvenz anmelden musste bereits zum sechsten Mal.',
```

• Examples: Multiple examples for each of the 17 topics

## Generative LLM: Prompt + GenLLM



```
class TopicLangchain:
    def __init__(self, prompt_template: str, model_name: str = "gpt-40"):
        nest_asyncio.apply()
        self.prompt = PromptTemplate(template=prompt_template, input_variables=['user_data', "topics']).par
        self.llm = ChatOpenAI(temperature=0, model=model_name, openai_api_key=os.getenv('&PENAI_API_KEY'))
        self.llm = self.llm.with_structured_output(schema=Frame)
        self.chain = self.prompt | self.llm
        self.examples: list[BaseMessage] = convert_examples_to_messages{)
        self.topics: str = str({i.name: i.value for i in TopicExplain})
```

- **Return Format:** Frame instance
- Examples: Converted to LangChain messages
- **Chain**: Prompt + OpenAl *gpt-40*
- Input: Topics and user\_data, a Frame-converted pandas DataFrame

## Containerization due to dependency issues



Generative LLM: Request to docker container and OpenAI server

# DEMO

#### INFORMATION EXTRACTION PIPELINE







Traditional Topic Modelling: TF-IDF and BERTopic

## 3. Knowledge Graph

neo4i

## Prepare DataFrame for Knowledge Graph

#### INFORMATION EXTRACTION PIPELINE



Prepare pandas DataFrame for Knowledge Graph

## Knowledge Graph



- Neo4j Graph Database
- Nodes: Sentence, Company, Article, Topic
- Relationships: mentions, is\_part\_of, is\_about

### Load data



(a) Article



(c) Topic



(b) Sentence



(d) Company

Data from pandas DataFrame

## Enrich Knowledge Graph with external data



- SPARQL queries: Data from Wikidata, DBPedia
- Sentence Embeddings

## Cypher queries can reveal complex relations

```
1 MATCH (s:Sentence)-[:is_part_of]→(a:Article)
2    WITH s as sent, a as article, Date(a.art_datetime) as date
3    MATCH (sent)-[:mentions]→(c:Company {comp_name: 'Brenntag SE'})
4    WHERE date = Date({year: 2023, month: 5, day: 15})
5    RETURN DISTINCT article.art_text
```

(a) Cypher Query 1: Articles about Brenntag SE

```
1 MATCH (a:Article)-[:is_part_of]-(s:Sentence)-[:is_about]→(t: Topic {top_id: 'topic12'})
2 WITH s as sent, a as article, Date(a.art_datetime) as date
3 MATCH (sent)-[:mentions]→(c:Company)
4 WHERE date = Date({year: 2023, month: 5, day: 15})
5 RETURN DISTINCT c.comp_name, sent
```

(b) Cypher Query 2: Companies, Sentences about Topic12

```
1 MATCH (a:Article)-[:is_part_of]-(s:Sentence)-[:mentions]→(c: Company)
2 WITH s as sent, a as article, Date(a.art_datetime) as date
3 MATCH (sent)-[:mentions]→(c:Company)
4 WHERE date = Date({year: 2023, month: 5, day: 15}) and 'wholesale' in c.industries
5 RETURN DISTINCT c.comp_name, sent
```

(a) Cypher Query 3: Sentences about Industry Wholesale

(b) Cypher Query 4: German Companies, Sentences about Topic12

## **Graph Bot**

```
Question:
Show me all the companies and the sentences they were mentioned of articles that were published between 2023-05-02 and 2023-05-03
```

Figure 7.11.: Graph Bot - Part 1: Question

```
> Entering new GraphCypherQAChain chain...

Generated Cypher:

MATCH (s:Sentence)-[:is_part_of]->(a:Article)

WITH s as sent, a as article, Date(a.art_datetime) as art_date

MATCH (sent)-[:mentions]->(c:Company)

WHERE Date({year: 2023, month: 5, day: 2}) <= art_date <= Date({year: 2023, month: 5, day: 3})

RETURN DISTINCT c.comp_name, sent.sent_text

Full Context:

[{'c.comp_name': 'LPKF Laser & Electronics A6', 'sent.sent_text': 'Unternehmen: LPKF Laser &'}, {'c.comp_name': 'LPKF Laser & Electronics A
```

Figure 7.12.: Graph Bot - Part 2: Creating Cypher Queries

```
Answer:

LPKF Laser & Electronics AG was mentioned in the following sentences:

1. Unternehmen: LPKF Laser &

2. LPKF Laser & Electronics SE.

3. EQS-DD: LPKF Laser & Electronics SE:

Infineon Technologies AG was mentioned in the following sentences:

1. Infineon will 5 Milliarden Euro in die Erweiterung seiner Halbleiterproduktion in Dresden stecken und somit etwa 1000 m

2. EU-Kommissionspraesidentin Ursula von der Leyen sieht im Ausbau des Dresdner Chip-Werks von Infineon eine grossartige F

Societe Generale Societe anonyme was mentioned in the following sentence:

1. Societe Generale hat Stabilus nach Quartalszahlen von Hold auf Buy hochgestuft und das Kursziel auf 65 Euro belassen.
```

Figure 7.13.: Graph Bot - Part 3: Answer

## DEMO

#### INFORMATION EXTRACTION PIPELINE





TOPIC MODELLING



## 4. Conclusion

- Process can convert unstructured data to structured information
- Knowledge Graph allows for fast and efficient retrieval of previously unstructured data
  - Generative LLMs work well for information extraction
- Knowledge Graphs might be an alternative to traditional RAG