

Atividade Prática 07 – Unidade Lógica e Aritmética

OBJETIVOS:

- Utilizar o CI 74181 para executar operações lógicas e aritméticas.
- Aplicar a notação complemento de 2.
- Programar as entradas de controle da ULA para executar operações.

MATERIAIS:

- 01 placa Arduino Uno
- 01 protoboard de 830 furos
- 14 resistores de 330 Ω (laranja laranja marrom)
- 01 resistor de 1 k Ω (marrom preto vermelho)
- 14 LEDs difusos
- Fios jumper macho-macho
- CI 74181

ATENÇÃO:

- Para usar o pino 0 do Arduino como saída, desconecte o fio jumper dele antes de carregar o código no Arduino. Só depois você deve encaixar o fio jumper no pino 0.
- Conecte ao GND o terminal do LED alinhado ao chanfro.

O CI 74181 implementa uma Unidade Lógica e Aritmética (ULA) de 4 bits. Seu diagrama lógico e pinagem estão no Apêndice. Seus pinos de entrada, de saída e de controle são os seguintes:

Entradas						
A, B	Entradas de dados, de 4 bits cada					
C_n	carry-input, projetada em lógica invertida. Ou seja, ela é ativada pelo nível 0					
	(LOW) e desativada pelo nível 1 (HIGH)					
Saídas						
F	Resultado da operação, de 4 bits					
$C_n + 4$	carry-output. Pode ser usada para detectar overflow. Seu resultado é exibido em					
	lógica invertida, ou seja, o nível 0 (LOW) indica que houve carry-out e o nível 1					
	(HIGH) indica que não houve carry-out (transbordamento)					
A = B	Saída de igualdade. O nível 1 indica que as palavras A e B são iguais					
G e P	Saídas de geração e propagação rápida de <i>carry</i> (não serão usadas nesta atividade)					
Controle						
S_i	Selecionam a operação a ser desempenhada pela ULA					
M	Determina o modo de operação da ULA: lógico $(M=1)$ ou aritmético $(M=0)$					

A Tabela Verdade da Figura 1 informa quais operações lógicas ou aritméticas são realizadas entre as duas entradas *A* e *B* para produzir o resultado *F*, todos de 4 bits de largura.

O Código 1 é um *modelo* de como testar o resultado de uma operação, determinada por uma combinação de seletores, a partir de um conjunto de entradas A e B. Nesse exemplo específico, o código configura os seletores da ULA para realizar a operação $F = \overline{A+B}$ (linhas 5 e 8), sobre as entradas A = 0101 e B = 1100 (linhas 11 e 12).

Selection				Active High Data		
				M = H	M = L; Arithmetic Operations	
S3	S2	S1	SO	Logic Functions	C _n = H (no carry)	C _n = L (with carry)
L	L	L	L	F = Ā	F = A	F = A Plus 1
L	L	L	Н	$F = \overline{A + B}$	F = A + B	F = (A + B) Plus 1
L	L	Н	L	$F = \overline{A}B$	$F = A + \overline{B}$	$F = (A + \overline{B}) $ Plus 1
L	L	Н	Н	F = 0	F = Minus 1 (2's Compl)	F = Zero
L	Н	L	L	$F = \overline{AB}$	F = A Plus AB	F = A Plus AB Plus 1
L	н	L	Н	$F = \overline{B}$	$F = (A + B) Plus A\overline{B}$	$F = (A + B)$ Plus $A\overline{B}$ Plus 1
L	Н	Н	L	F = A + B	F = A Minus B Minus 1	F = A Minus B
L	Н	Н	Н	$F = A\overline{B}$	F = AB Minus 1	$F = A\overline{B}$
Н	L	L	L	$F = \overline{A} + B$	F = A Plus AB	F = A Plus AB Plus 1
Н	L	L	Н	F = A + B	F = A Plus B	F = A Plus B Plus 1
Н	L	Н	L	F = B	$F = (A + \overline{B}) Plus AB$	$F = (A + \overline{B})$ Plus AB Plus 1
Н	L	Н	Н	F = AB	F = AB Minus 1	F = AB
Н	Н	L	L	F = 1	F = A Plus A	F = A Plus A Plus 1
Н	Н	L	Н	$F = A + \overline{B}$	F = (A + B) Plus A	F = (A + B) Plus A Plus 1
Н	Н	Н	L	F = A + B	$F = (A + \overline{B}) \text{ Plus A}$	$F = (A + \overline{B})$ Plus A Plus 1
Н	н	Н	Н	F = A	F = A Minus 1	F = A

Figura 1: Tabela Verdade da ULA implementada pelo CI 74181.

- Não confunda a operação lógica **OU**, indicada pelo sinal + na Figura 1, com a operação aritmética da **adição**, indicada por **P1us**.
- A subtração aritmética é indicada por Minus.

O circuito da Figura 2 mostra como a ULA deve ser conectada ao Arduino. Usando o Código 1, você fará com que o Arduino controle os seguintes sinais:

- Entradas de dados *A* (pinos 0–3) e *B* (pinos 4–7).
- Modo de operação *M* (pino 8).
- Carry-in (pino 9).
- Seletores de função S_3 – S_0 (pinos 10–13).

Além da saída de dados F, o CI 74181 exibe duas saídas de sinalização:

- Carry-out ($C_n + 4$): indica se houve transbordamento de bits (nível LOW); e
- *A* = *B*: indica se as duas palavras de entrada são iguais (nível HIGH), mas só é válido quando a operação de comparação está selecionada.

Figura 2: Conexão parcial do Arduino com o CI 74181. Complete a ligação com fios jumper entre os pinos 0–7 do Arduino e as entradas A e B da ULA.

TAREFAS

- 1. Monte o circuito da Figura 2 na **protoboard P4**, consultando a pinagem do CI 74181, no Apêndice. Dicas:
 - Conecte o CI 74181 com cuidado para não entortar os seus terminais.
 - Conecte os fios de alimentação, depois os resistores de 330 k Ω e os LEDs.
 - Use um resistor de 1 k Ω para conectar a saída A=B da ULA ao Vcc.
 - Conecte os pinos 0–3 do Arduino às entradas A_3 – A_0 da ULA.
 - Conecte os pinos 4–7 do Arduino às entradas B_3 – B_0 da ULA.
 - Conecte o pino 8 do Arduino ao seletor de modo *M* da ULA.
 - Conecte o pino 9 do Arduino ao *carry-in* C_n .
 - Conecte os pinos 10–13 do Arduino aos seletores S_0 – S_3 da ULA.
 - Conecte as saídas F_0 – F_3 da ULA ao polo *positivo* dos LEDs vermelhos.
 - Os LEDs azuis e verdes servem para indicar, em dado momento, que nível de tensão (HIGH ou LOW) o Arduino está enviando às entradas da ULA.

O CI 74181 exige da fonte de alimentação uma maior intensidade de corrente do que outros CIs. Por isso, use as trilhas horizontais da protoboard P4 para alimentar a ULA.

- 2. Para cada Experimento identificado por 01 a 06 na Folha de Respostas, proceda assim:
 - (a) Identifique qual a operação da ULA a ser examinada.
 - (b) Consultando a tabela verdade da ULA (Figura 1), determine quais valores devem ser injetados nos seletores S_i , M e C_n a fim de executar a operação examinada. Em alguns casos, pode haver mais de uma resposta correta.

- (c) Modifique o Código 1 de acordo com os valores determinados no passo anterior. Carregue o novo código no Arduino e observe os resultados.
- (d) Responda as perguntas contidas na **Folha de Respostas**, conforme os valores *exibidos* nas saídas A = B, $C_n + 4$, e F. No caso da saída $C_n + 4$, informe o valor exibido no LED, sem se importar que ela utiliza lógica invertida.
- 3. Desenhe um *diagrama lógico*, usando o bloco básico exibido no Apêndice, mostrando como uma ou mais unidades da ULA 74181 devem ser usadas para implementar os seguintes circuitos. **Ignore as saídas G, P e** *A* = *B*, **e as entradas de alimentação do CI (Vcc e GND)**.
 - (a) Um MUX 8×4 .
 - (b) Uma ULA de 8 bits.

Código 1: Código que realiza a função $F = \overline{A + B}$, para as entradas A = 0101 e B = 1100.

```
/* Seletor de Modo: HIGH - Logico; LOW - Aritmetico */
   byte M = HIGH;
2
3
   /* Seletor de Modo: HIGH - sem carry-in; LOW - tem carry-in */
4
   byte Cin = LOW;
5
   /* Seletores de funcao: S3, S2, S1, S0 */
7
   byte S[] = {LOW,LOW,LOW,HIGH};
8
9
   /* Entradas de dados */
10
                                     /* Entrada A, de 4 bits */
   byte A[] = {LOW,HIGH,LOW,HIGH};
11
  byte B[] = {HIGH,HIGH,LOW,LOW};
                                      /* Entrada B, de 4 bits */
12
13
  /* a funcao 'setup' eh executada apenas uma vez */
14
  void setup() {
15
     /* ajusta os pinos 0 a 13 como saida */
16
     for (byte i = 0; i \le 13; i++)
17
18
       pinMode(i, OUTPUT);
19
20
   /* a funcao 'loop' eh executada indefinidamente */
21
   void loop() {
22
     /* Ajusta o modo da ULA (pino 8) */
23
     digitalWrite(8, M);
24
25
     /* Ajusta o Cin (pino 9) */
26
     digitalWrite(9, Cin);
27
28
     /* Ajusta os valores de:
29
     - palavra de dados AO A1 A2 A3: pinos 0-3
30
     - palavra de dados BO B1 B2 B3: pinos 4-7
31
      seletores S3 S2 S1 S0: pinos 10-13
32
33
     * /
     for (byte i = 0; i < 4; i++) {
34
       digitalWrite(0 + i, A[i]);
35
       digitalWrite(4 + i, B[i]);
36
       digitalWrite(10 + i, S[i]);
37
38
39
```

Apêndice - Pinagem dos CIs utilizados

Figura 3: Orientação das protoboards.