newton's laws of motion are three physical laws that, <u>q.1</u> tagether, laid the foundation for classical mechanics. They describe the relationship between a Ans. body and the forces acting upon it, and its mation in response to those forces. More precisely, the first law defines the force qualitatively, the second law affers a quantitative measure of the force, and the third asserts that a single isolated force daesn't exist. These three laws have been expressed in several ways, over nearly three centuries, [a] and ean be summarised as follows: First law In an inertial frame of reference, an object either remains at rest ar continues to move at a Constant Velocity, unless acted upon by a force.[2][3] Second law In an inertial frame of reference, the vector sum of

the forces f an an abject is equal to the mass m of that object multiplied by the acceleration a of the object: f = ma. (It is assumed here that the mass m is canstant - see below.)

Third law

when are body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

The three laws of motion were first compiled by Isaac

Newton in his Philasophi
Page No

	Mathematical Principles of Natural
	Philosophy), first published in 1687.[4] newton used
	them to explain and investigate the motion of many
	physical objects and systems. [5] Far example, in the
	third valume of the text, newton showed that these laws
	of mation, combined with his law of universal
	gravitation, explained Kepler's laws of planetary
	motion.
97.3	Some also describe a fourth law which states that
	forces add up like vectors, that is, that forces obey
	the principle of superposition[6][7][8]
· · · · · · · · · · · · · · · · · · ·	
	<i>j</i>
•	

Page No...