ROS Framework Tutorial

Walking Module

Walking Module
– Initial Pose –

Contents

1. Background

- 1) Representation of Pose
- 2) Pattern Generation
- 3) Balance Algorithm

2. Walking Module

- 1) Overview
- 2) Topic and Service List
- 3) Example

1) Representation of Pose

- the walking module is using global coordinate system.
- All pose is represented x, y, z, roll, pitch, yaw.
- All unit is meter and radian.

$${}^{G}T_{O}$$

$$= {}^{G}t_{O}(x, y, z){}^{G}R_{O}(\phi_{roll}, \theta_{pitch}, \psi_{yaw})$$

$$= t(x, y, z)R_{z}(\psi)R_{y}(\theta)R_{x}(\phi)$$

$$= \begin{bmatrix} c\psi c\theta & c\psi s\theta s\phi - s\psi c\phi & c\psi s\theta c\phi + s\psi s\phi & x \\ s\psi c\theta & s\psi s\theta s\phi + c\psi c\phi & s\psi s\theta c\phi - c\psi s\phi & y \\ -s\theta & c\theta s\phi & c\theta c\phi & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

O : Object Cooridinate

 $c\phi : \cos \phi$ $s\phi : \sin \phi$

2) Pattern Generation

- COB(Center of Body) is at the middle of hip joints.
- LF(Left Foot) and RF(Right Foot) is at the middle of each feet.

3) Balance Algorithm

- The sensory feedback balance algorithm is used.
- The result of balance algorithm is ${}^{COB}T_{COB^*}$, ${}^{RF}T_{RF^*}$, ${}^{LF}T_{LF^*}$

1) Overview

2) Topic and Service List

	Name	Description	
Topic (Publish)	/robotis/walking/status_message		The status message from walking module
Service (Server)	<pre>/robotis/walking/get_reference_ste p_data</pre>	req	Empty
		res	Reference Step Data
	/robotis/walking/add_step_data	req	"Auto Start" and "Step Data Array"
		res	Processing Result for Request
	/pobotic/volking/volking stock	req	Empty
	/robotis/walking/walking_start		Processing Result for Request
	/robotis/walking/remove_existing_s	req	Empty
	tep_data		Processing Result for Request
	/robotis/walking/set_balance_param	req	All of Desired Balancing Parameter
		res	Processing Result for Request
	/robotis/walking/is_running		Empty
			Running or Not

3) Example

- Overview
 - User can choose 6 kinds of step data. (forward/backward, leftward/rightward, turn left/right)
 - User can turn balance on or off.

Example

← Service → Internal Data

Topic

3) Example

- Initial Pose
 - Before using walking control, the robot should be moved to initial pose

3) Example

- Set Mode
 - After move to initial pose, the motion mode of leg joints is changed to "walking control mode".

3) Example

Balance On/Off

3) Example

Balance On/Off

/robotis/walking/set_balance_param						
	Variable Type	Variable Name	Description			
Request	BalanceParam	balance_param	All of parameter for balancing algorithm			
Result	int32	result	The processing result of "balance_param" 0x00 : There is no error. 0x02 : The walking module is not enable. 0x20 : Previous request is not finished 0x40 : The time constant is zero or negative.			

3) Example

■ Balance On/Off – Balance Parameter for Floor Condition

```
####### cob offset #######
                                          in KINDRED
cob x offset m : -0.01
                                          : Carpet
cob y offset m : 0.0
####### FeedForward #####
hip roll swap angle rad : 0.008 # 0.0174532925 rad = 1 deg
######### Gain #######
#by gyro
gyro gain : 0.8
#by imu
foot roll angle gain : -1.0
foot pitch angle gain : -1.0
#bv ft sensor
foot x force gain : 0.1
foot y force gain
                    : 0.1
foot z force gain
                    : -0.02
foot_roll torque gain : 0.002
foot pitch torque gain: 0.0015
######## TIME CONSTANT ########
#by imu
foot roll angle time constant : 0.1
foot pitch angle time constant: 0.1
#bv ft
foot x force time constant
                            : 0.2
foot y force time constant
                            : 0.2
foot z force time constant : 0.2
foot roll torque time constant : 0.2
foot pitch torque time constant: 0.2
```

```
####### cob offset #######
                               in ROBOTIS
cob x offset m : -0.01
                                :Hard Floor
cob y offset m : 0.0
####### FeedForward #####
hip roll swap angle rad : 0.008
######### Gain #######
#by gyro
gyro gain: 0.5
#by imu
foot roll angle gain : -1.0
foot pitch angle gain : -1.0
#by ft sensor
foot x force gain : 0.1
                    : 0.1
foot y force gain
foot z force gain
                    : -0.02
foot roll torque gain : 0.002
foot pitch torque gain: 0.0015
######### TIME CONSTANT #########
#bv imu
foot roll angle time constant : 0.2
foot pitch angle time constant: 0.2
#bv ft
foot x force time constant
                              : 0.2
foot y force time constant
                              : 0.2
foot z force time constant : 0.2
foot roll torque time constant : 0.2
foot pitch torque time constant: 0.2
```


3) Example

Balance On/Off – Balance Parameter for Floor Condition

```
####### cob offset #######
                                          in KINDRED
cob x offset m : -0.01
                                          : carpet
cob y offset m : 0.0
####### FeedForward #####
hip roll swap angle rad : 0.008 # 0.0174532925 rad = 1 deg
######### Gain #######
#by gyro
gyro gain : 0.8
#by imu
foot roll angle gain : -1.0
foot pitch angle gain : -1.0
#bv ft sensor
foot x force gain : 0.1
foot y force gain
                    : 0.1
foot z force gain
                    : -0.02
foot_roll torque gain : 0.002
foot pitch torque gain: 0.0015
######### TIME CONSTANT #########
#by imu
foot roll angle time constant : 0.1
foot pitch angle time constant: 0.1
#bv ft
foot x force time constant
                            : 0.2
foot y force time constant : 0.2
foot z force time constant : 0.2
foot roll torque time constant : 0.2
foot pitch torque time constant: 0.2
```

```
####### cob offset #######
                               in ROBOTIS
cob x offset m : -0.01
                                :Hard Floor
cob y offset m : 0.0
####### FeedForward #####
hip roll swap angle rad : 0.008
######### Gain #######
#by gyro
gyro gain: 0.5
#by imu
foot roll angle gain : -1.0
foot pitch angle gain : -1.0
#by ft sensor
foot x force gain : 0.1
foot y force gain
                     : 0.1
foot z force gain
                     : -0.02
foot roll torque gain : 0.002
foot pitch torque gain: 0.0015
########## TIME CONSTANT ##########
#bv imu
foot roll angle time constant : 0.2
foot pitch angle time constant: 0.2
#bv ft
foot x force time constant
                               : 0.2
foot y force time constant
                               : 0.2
foot z force time constant : 0.2
foot roll torque time constant : 0.2
foot pitch torque time constant: 0.2
```


3) Example

■ Balance On/Off – Balance Parameter

```
###### cob offset ######
cob x offset m : -0.01
cob y offset m: 0.0
###### FeedForward #####
hip roll swap angle rad : 0.008 # 0.0174532925 rad = 1 deg
######### Gain #######
#by gyro
gyro gain: 0.8
#by imu
foot roll angle gain : -1.0
foot pitch angle gain: -1.0
#by ft sensor
foot x force gain : 0.1
foot y force gain
                    : 0.1
foot z force gain
                    : -0.02
foot roll torque gain : 0.002
foot pitch torque gain: 0.0015
```

If user wants to turn off the balance algorithm, these gains should be zero.

3) Example

3) Example

Add step data to walking module

3) Example

Add step data to walking module

/robotis/walking/add_step_data						
	Variable Type	Variable Name	Description			
Request	bool	auto_start	If "auto_start" is true, the robot will start walking automatically.			
	bool	remove_existing _step_data	if "remove_existing_step_data" is true, all of the previous added step data are removed.			
	StepData[]	step_data_array	step data array of user specified			
Result	int32	result	The processing result of "add_step_data" 0x00 : There is no error. 0x02 : The walking module is not enable. 0x04 : There is some problem in step time data. 0x08 : There is some problem in step position data. 0x400 : The robot is walking now.			

3) Example

Add step data to walking module - StepData

```
#### Step Position Data
## MovingFootFlag
# LFootMove = 1:
 RFootMove = 2:
# NFootMove = 3:
           moving foot
int16
### Unit [meter, rad]
float32
           foot z swap
float32 body z swap
float32
       torso yaw angle rad
PoseXYZRPY left foot pose
PoseXYZRPY
           right foot pose
PoseZRPY
           body pose
```

```
#### StepTimeData
## WalkingStateFlag
 InWalkingStarting = 0;
 InWalking = 1;
# InWalkingEnding = 2;
int16 walking state
l## Unit [sec]
float32 abs step time
# dsp ratio >= 0.0 && dsp ratio < 1.0
 recommand value is 0.2
float32 dsp ratio
```


3) Example

