

Grafos e Algoritmos Computacionais

Single Source Shortest Path: Algoritmo de Dijkstra

Prof. André Britto

Problema: Dado um grafo G, com peso nas arestas, (direcionado ou não) e vértice s em G, encontrar o caminho de menor tamanho entre todos os vértices de G e s.

- Peso nas arestas :
 - considerar inteiro n\u00e3o negativo.
 - reflete o tamanho (distância) do caminho entre dois vértices, extremos da aresta.

Em geral, algoritmos de caminhos mínimos se baseiam na seguinte propriedade: um caminho mínimo entre dois vértices contém outros caminhos mínimos.

- Simplificação: vamos na realidade determinar os comprimentos desses caminhos, ao invés do caminho explicitamente.
- Suposição: dígrafo com u como origem

- Guloso
- Passos:
 - Manter um conjunto S de vértices para os quais já se sabe a menor distância até s.

- Guloso
- Passos:
 - Manter um conjunto S de vértices para os quais já se sabe a menor distância até s.
 - Inicialmente que distância sabemos ?

- Guloso
- Passos:
 - Manter um conjunto S de vértices para os quais já se sabe a menor distância até s.
 - Inicialmente que distância sabemos ? $(s \in S)$

- Guloso
- Passos:
 - Manter um conjunto S de vértices para os quais já se sabe a menor distância até s.
 - Inicialmente que distância sabemos ? $(s \in S)$
 - a cada passo escolher um vértice v∈VG-S, cuja distância estimada para s é mínima, para adicionar a S.

- Guloso
- Passos:
 - Manter um conjunto S de vértices para os quais já se sabe a menor distância até s.
 - Inicialmente que distância sabemos ? $(s \in S)$
 - a cada passo escolher um vértice v∈VG-S, cuja distância estimada para s é mínima, para adicionar a S.
 - Atualizar as estimativas de distâncias dos vértices adjacentes ao vértice v em relação a s.

Problema:

- Dado um vértice s, e todo vértice w, dentre todos caminhos sendo s o início determinar:
 - (i) um caminho entre s e qualquer vértice w
 - (ii) a soma dos pesos entre s e w seja mínima.
- Propriedade $P \Rightarrow (s,w)$ é um caminho.

Critério $\alpha \implies$ a soma dos pesos entre v e w seja mínima.

Q	d	V
1	0	1
2	œ	2
3	œ	3
4	∞	4
<i>5</i>	∞	5

Q	
1	
2	
3	
4	
<i>5</i>	

_	
d	V
0	1
∞	2
∞	3
∞	4
œ	5

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```


Q	d	V
2	0	1
<i>3</i>	∞	2
4	œ	3
5	∞	4
	œ	<i>5</i>

Q	
2	
3	
4	
<i>5</i>	

d	V
0	1
∞	2
∞	3
∞	4
∞	5

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
```


Q
2
3
4
5

d	V
0	1
10	2
∞	3
∞	4
∞	5

Q	
2	
<i>3</i>	
4	
5	

Q	
2	
<i>3</i>	
4	
5	

d	V
0	1
10	2
3	3
00	4
∞	<i>5</i>

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
```


	_		
Q		d	V
2		0	1
<i>3</i>		10	2
4		<i>3</i>	3
5		∞	4
		œ	<i>5</i>

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);

fim
```


Q	d	V
2	0	1
4	10	2
5	3	3
	∞	4
	∞	<i>5</i>

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
fim
```

Exemplo (origem no vértice 1)

10 > 3+4

Q	d
2	0
4	10
5	3
	∞

5

 ∞

Q	
2	
4	
<i>5</i>	

d	V
0	1
7	2
3	3
00	4
∞	<i>5</i>

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
```


Q	
2	
4	
<i>5</i>	

d	V
0	1
7	2
3	3
∞	4
∞	<i>5</i>

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```


Q
2
4
<i>5</i>

d	V
0	1
7	2
3	3
11	4
œ	<i>5</i>

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```

Exemplo (origem no vértice 1)

Q	
2	
4	4
<i>5</i>	
	1

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```

 ∞

Q	d
2	0
4	7
<i>5</i>	3
	11

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
fim
```


d	V
0	1
7	2
3	3
11	4
<i>5</i>	<i>5</i>
	0 7 3 11

```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);

fim

fim
```



```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
    fim
```


Q	d	V
2	0	1
4	7	2
	3	3
	11	4
	5	5


```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```


d	V	
0	1	
7	2	
3	3	
11	4	
5	<i>5</i>	

```
10
```

```
enquanto Q \neq \emptyset faça
início
     v := extrairMinimo(Q);
     S := S \cup \{v\};
     para todo w \in Adj(v)
     faça
         início
             Se d[w] > d[v] + peso(v,w)
             então
               d[w] := d[v] + peso(v,w);
         fim
fim
```


d	V
0	1
7	2
3	3
11	4
5	<i>5</i>

```
10
```

```
enquanto Q \neq \emptyset faça
início
      v := extrairMinimo(Q);
     S := S \cup \{v\};
     para todo w \in Adj(v)
     faça
         início
             Se d[w] > d[v] + peso(v,w)
             então
                d[w] := d[v] + peso(v,w);
         fim
fim
```


d	V
0	1
7	2
3	3
9	4
5	<i>5</i>

```
10
                4
```

```
enquanto Q \neq \emptyset faça
início
      v := extrairMinimo(0);
     S := S \cup \{v\};
     para todo w \in Adj(v)
     faça
         início
             Se d[w] > d[v] + peso(v,w)
             então
                d[w] := d[v] + peso(v,w);
         fim
fim
```



```
enquanto Q ≠ Ø faça
início

v := extrairMinimo(Q);

S := S ∪ {v};

para todo w ∈ Adj(v)

faça
    início
    Se d[w] > d[v] + peso(v,w)
    então
    d[w] := d[v] + peso(v,w);

fim
```


Q	d	V
	0	1
	7	2
	3	3
	9	4
	5	5

Algoritmo de Dijkstra: Exemplo

Exemplo (origem no vértice 1)

1
2
<i>3</i>
4
5

```
enquanto Q ≠ Ø faça
início

    v := extrairMinimo(Q);
    S := S ∪ {v};
    para todo w ∈ Adj(v)
    faça
        início
        Se d[w] > d[v] + peso(v,w)
        então
        d[w] := d[v] + peso(v,w);
        fim
fim
```

```
algoritmo dijkstra(G, V, s)
 \{dados: um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices de v
vértice s como origem, d[v] denota distância estimada de
um vértice v ao vértice origem s}
Procedimento inicialização (G, V, s)
início
                       S := \emptyset;
                       Q := V;
                       d[s] := 0;
                      para para todos v \in V e v \neq s faça
                                               início
                                                                             d[v] := \infty;
                                               fim
fim
```

```
algoritmo dijkstra(G, V, s)
 \{dados: um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices, um grafo G, onde V é seu conjunto de vértices de v
vértice s como origem, d[v] denota distância estimada de
um vértice v ao vértice origem s}
Procedimento inicialização (G, V, s)
início
                     S := \emptyset
                     Q := V; \leftarrow Fila de prioridade com chave d[v]
                     d[s] := 0;
                    para para todos v \in V e v \neq s faça
                                          início
                                                                     d[v] := \infty;
                                          fim
fim
```

```
início
   inicialização (G, V, s);
   enquanto Q \neq \emptyset faça
      início
          v := extrairMinimo(Q);
          S := S \cup \{v\};
          para todo w \in Adj(v) faça
             início
                 Se d[w] > d[v] + peso(v,w) então
                    d[w] := d[v] + peso(v,w);
             fim
      fim
fim
```


início

```
inicialização(G,V,s);
enquanto Q ≠ Ø faça
  início
  v := extrairMinimo(Q);
  S := S ∪ {v};
  para todo w ∈ Adj(v) faça
  início
```

O processo de *relaxar* uma aresta (*v*, *w*) consiste em testar se podemos melhorar o caminho mínimo até w que encontramos até agora passando por v e, em caso positivo, atualizar *d[w]*. Uma etapa de relaxamento pode diminuir o valor da estimativa do caminho mínimo d[w] e atualizar o atributo predecessor de *w*.

```
Se d[w] > d[v] + peso(v,w) então d[w] := d[v] + peso(v,w);
```

fim

fim

Relaxamento

• A complexidade do algoritmo depende diretamente de que estrutura de dados será utilizada para realizar as funções de inserção, mudança de chave, extrair mínimo da fila de prioridade.

```
Procedimento inicialização (G, V, s)
início
   S := \emptyset;
   Q := V;
   d[s] := 0;
   para para todos v \in V e v \neq s faça
       início
           d[v] := \infty;
       fim
fim
```

```
Procedimento inicialização (G, V, s)
início
   S := \emptyset; \rightarrow O(1)
   Q := V
   d[s] := 0;
   para para todos v \in V e v \neq s faça
       início
           d[v] := \infty;
       fim
fim
```

```
Procedimento inicialização (G, V, s)
início
   S = \emptyset; \rightarrow 0(1)
   Q = V; \rightarrow O(|V|)
   d[s] = 0;
   para para todos v \in V e v \neq s faça
       início
            d[v] = \infty;
       fim
fim
```

```
Procedimento inicialização (G, V, s)
início
   S = \emptyset; \rightarrow 0(1)
   Q = V; \rightarrow O(|V|)
   d[s] = 0; \rightarrow 0(1)
   para para todos v \in V e v \neq s faça
       início
            d[v] = \infty;
       fim
fim
```

```
Procedimento inicialização (G, V, s)
início
   S = \emptyset; \rightarrow 0(1)
   Q = V; \rightarrow O(|V|)
   d[s] = 0; \rightarrow 0(1)
   para para todos v \in V e v \neq s faça
       início
                                                  O(|V|)
            d[v] = \infty;
       fim
fim
```

```
Procedimento inicialização (G, V, s)
início
   S := \emptyset; \rightarrow O(1)
   Q := V; \rightarrow O(|V|)
   d[s] := 0; \rightarrow O(1)
   para para todos v \in V e v \neq s faça
       início
                                                 O(|V|)
            d[v] := \infty;
       fim
fim
```

```
enquanto Q \neq \emptyset faça
    início
    v := extrairMinimo(Q);
    S := S \cup \{v\};
    para todo w \in Adj(v) faça
        início
        Se d[w] > d[v] + peso(v,w) então
        d[w] := d[v] + peso(v,w);
    fim
fim
```



```
enquanto Q \neq \emptyset faça

início

v := \operatorname{extrairMinimo}(Q); \rightarrow O(|V| | Extrair Minimo|)

S := S \cup \{v\};

para todo w \in \operatorname{Adj}(v) faça

início

Se d[w] > d[v] + \operatorname{peso}(v, w) então

d[w] := d[v] + \operatorname{peso}(v, w);

fim

fim
```



```
enquanto Q \neq \emptyset faça
    início
    v := extrairMinimo(Q); \rightarrow O(|V||Extrair Minimo|)
    S := S \cup \{v\}; \rightarrow O(|V|)
    para todo w \in Adj(v) faça
        início
        Se d[w] > d[v] + peso(v,w) então
        d[w] := d[v] + peso(v,w);
    fim
    fim
```



```
enquanto Q \neq \emptyset faça início  v := \operatorname{extrairMinimo}(Q); \rightarrow O(|V| | \operatorname{Extrair Minimo}|)  S := S \cup \{v\}; \rightarrow O(|V|) para todo w \in \operatorname{Adj}(v) faça início  \operatorname{Se d[w]} > \operatorname{d[v]} + \operatorname{peso}(v,w) \operatorname{então}  \operatorname{d[w]} := \operatorname{d[v]} + \operatorname{peso}(v,w); fim fim
```



```
O(|V|) + O(|V||Extrair Minimo|) + O(|E||Mudança de Chave|)
```

```
enquanto Q \neq \emptyset faça

início

v := extrairMinimo(Q); \rightarrow O(|V||Extrair Minimo|)

S := S \cup \{v\}; \rightarrow O(|V|)

para todo w \in Adj(v) faça

início

Se d[w] > d[v] + peso(v,w) então
d[w] := d[v] + peso(v,w);

fim
```


Ex.: Utilizando um Heap

```
O(|V|) + O(|V|\log|V|) + O(|E|\log|V|) = O((|V|+|E|)\log|V|)
```

```
enquanto Q \neq \emptyset faça

início

v := extrairMinimo(Q); \rightarrow O(|V||Extrair Minimo|)

S := S \cup \{v\}; \rightarrow O(|V|)

para todo w \in Adj(v) faça

início

Se d[w] > d[v] + peso(v,w) então
d[w] := d[v] + peso(v,w);

fim
```


Single Source Shortest Path

E se todos os pesos forem 1 ? Existe uma estratégia melhor ?

Single Source Shortest Path

- E se todos os pesos forem 1 ? Existe uma estratégia melhor ?
 - Sim! Trocar a Fila de Prioridade por uma Fila.
 - Que algoritmo é este e qual sua complexidade ?

Single Source Shortest Path

- E se todos os pesos forem 1 ? Existe uma estratégia melhor ?
 - Sim! Trocar a Fila de Prioridade por uma Fila.
 - Que algoritmo é este e qual sua complexidade ?
 - Busca em largura.
 - Complexidade O(/V/+/E/)

Referências

Seção 24.3 do Cormen, Introduction to Algorithms, MIT Press, 2001.

Adaptado do material da Profa. Leila Silva.

Seção 3.3 do Grafos: conceitos, algoritmos e aplicações. Goldbarg, E. e Goldbarg M. Elsevier, 2012