$1. S_3$ を 3 次置換群とする。f を S_3 から $\mathbb{Z}/19\mathbb{Z}$ への準同型写像とする。

このとき、任意の $\sigma \in S_3$ に対して、 $f(\sigma) = \bar{0}$ であることを示せ。ただし、 $\mathbb{Z}/19\mathbb{Z}$ の元のことを \bar{x} $(x \in \mathbb{Z})$ のように書く。

......

 $\forall \sigma \in S_3$ に対して、 $\sigma^6 = e$ (単位元) である。

f は加法群 $\mathbb{Z}/19\mathbb{Z}$ への準同型であるので、 $f(e)=\bar{0}$ である。 $f(\sigma^6)=6f(\sigma)$ であるので、 $6f(\sigma)=\bar{0}$ である。

 $\forall \bar{m} \in \mathbb{Z}/19\mathbb{Z}$ に対して、 \bar{m} の位数は 19 の約数である。

 $f(\sigma) \in \mathbb{Z}/19\mathbb{Z}$ であるので、位数は 19 の約数だが、 $6f(\sigma) = \bar{0}$ であるので、 $f(\sigma)$ の位数は 6 と 19 の公約数となる。

よって、位数が1となることがわかるので、 $f(\sigma) = \bar{0}$ である。

2. 群 $\mathbb{Z}/8\mathbb{Z}$ を考える。 $\mathbb{Z}/8\mathbb{Z}$ の元のことを \bar{x} $(x \in \mathbb{Z})$ のように書く。 $\bar{a} \in \mathbb{Z}/8\mathbb{Z}$ に対して、群の準同型 $f_{\bar{a}}$ を次のように定義する。

$$f_{\bar{a}}: \mathbb{Z}/8\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}, \qquad \bar{x} \mapsto \bar{a} \cdot \bar{x} (= \overline{ax})$$
 (1)

このとき、 $f_{\bar{a}}$ が群 $\mathbb{Z}/8\mathbb{Z}$ の自己同型写像になるような $\bar{a}\in\mathbb{Z}/8\mathbb{Z}$ は合計何個あるか答えよ。

¶ 群 $\mathbb{Z}/8\mathbb{Z}$ の自己同型写像とは、 $\mathbb{Z}/8\mathbb{Z}$ から $\mathbb{Z}/8\mathbb{Z}$ への群の同型写像のこと。

 $\mathbb{Z}/8\mathbb{Z} = \{\bar{0}, \bar{1}, \dots, \bar{7}\}$ は有限の加法群である。よって、 $f_{\bar{a}}$ が単射であれば全射となるので、全単射であることがいえる。

よって、単射である性質 $\operatorname{Ker} f_{\bar{a}} = \{\bar{0}\}$ について調べる。

 $f_{\bar{a}}(\bar{0})=\bar{a}\bar{0}=\bar{0}$ であるので、 $\bar{x}\neq\bar{0}$ に対して $f_{\bar{a}}(\bar{x})\neq\bar{0}$ となればよい。

 $\bar{0}$ は 8 の倍数であるので、 $\bar{x}=\bar{1},\ldots,\bar{7}$ に対して ax が 8 の倍数にならないときの a を求めればよい。

つまり、奇数の場合 $f_{\bar{1}}, f_{\bar{3}}, f_{\bar{5}}, f_{\bar{7}}$ は自己同型写像である。

 $f_{\bar{0}}(\bar{1})=\bar{0}, f_{\bar{2}}(\bar{4})=\bar{0}, f_{\bar{4}}(\bar{2})=\bar{0}, f_{\bar{6}}(\bar{4})=\bar{0}$ であるので、これらは単射ではない。 よって、自己同型写像となるのは 4 つ $f_{\bar{1}}, f_{\bar{3}}, f_{\bar{5}}, f_{\bar{7}}$ である。