TECH CENTER 1600/2900

PATENT

wherein:

ring B and ring F, independently, and each together with the carbon atoms to which they are attached, are selected from the group consisting of:

- a) an unsaturated 6-membered carbocyclic aromatic ring in which from 1 to 3 carbon atoms may be replaced by nitrogen atoms;
- b) an unsaturated 5-membered carbocyclic aromatic ring; in which, optionally, either
 - 1) one carbon atom is replaced with an oxygen, nitrogen, or sulfur atom;
 - 2) two carbon atoms are replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or
 - 3) three carbon atoms are replaced with three nitrogen atoms;

R1 is selected from the group consisting of:

a) H, substituted or unsubstituted alkyl having from 1 to 4 carbons, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;

PATENT

- b) -C(=O)R⁹, where R⁹ is selected from the group consisting of alkyl, aryl and
- O(CH₂)_pNR¹¹R¹², wherein p is from 1 to 4; and wherein either
 - 1) R¹¹ and R¹² are each independently selected from the group consisting of H and alkyl having from 1 to 4 carbons; or
 - 2) R¹¹ and R¹² together form a linking group of the formula - $(CH_2)_2$ - X^1 - $(CH_2)_2$ -, wherein X^1 is selected from the group consisting of -O-, -S-, and -CH₂-;

R² is selected from the group consisting of H, alkyl having from 1 to 4 carbons, -OH, alkoxy having from 1 to 4 carbons, -OC(=O)R⁹, -OC(=O)NR¹¹R¹², -O(CH₂)_pNR¹¹R¹², -O(CH₂)_pOk¹⁰, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl:

R³, R⁴, R⁵ and R⁶ are each independently selected from the group consisting of:

- a) H, aryl, heteroaryl, F, Ch, Br, I, -CN, CF₃, -NO₂, -OH, -OR⁹, $-O(CH_2)_pNR^{11}R^{12}$, $-OC(=O)NR^{11}R^{12}$, $-O(CH_2)_pOR^{10}$, $-CH_2OR^{10}$, $-CH_$ $NR^{11}R^{12}$, $-NR^{10}S(=O)/R^9$, $-NR^{10}C(=O)R^9$,
- b) $-CH_2OR^{14}$, wherein R^{14} is the residue of an amino acid after the hydroxyl group of the carbox pl group is removed;
- c) $-NR^{10}C(=O)NR^{11}R^{\frac{1}{2}}$, $-CO_2R^2$, $-C(=O)R^2$, $-C(=O)NR^{11}R^{12}$, $-CH=NOR^2$, $-CO_2R^2$, -CH=NR⁹, -(CH₂)_pNR¹¹R¹², -(CH₂)_pNHR¹⁴, or -CH=NNR²R^{2A} wherein R^{2A} is the same as R²;
- d) $-S(O)_{v}R^{2}$, $-(CH_{2})_{p}S(O)_{v}R^{9}$, $-CH_{2}S(O)_{v}R^{14}$ wherein y is 0, 1 or 2;
- e) alkyl having from 1 to 8 carbons, alkenyl having from 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein
 - 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or

SEP 2 5 2002

TECH CENTER 1600/2000

PATENT

2) each alkyl, alkenyl or alkynyl group is substituted with

1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxyalkoxy, hydroxyalkylthio, alkoxy-alkylthio, F/Cl, Br, I, -CN, -NO₂, -OH, -OR⁹, - $X^2(CH_2)_pNR^{11}R^{12}$, - $X^2(CH_2)_pC(=O)NR^{11}R^{12}$, - $X^{2}(CH_{2})_{p}OC(=O)NR^{11}R^{12}$, $-X^{2}(CH_{2})_{p}CO_{2}R^{9}/X^{2}(CH_{2})_{p}S(O)_{v}R^{9}$, - $X^2(CH_2)_pNR^{10}C(=O)NR^{11}R^{12}$, $-OC(=O)R^9$, $-OCONHR^2$, -O-tetrahydropyranyl, -NR¹¹R¹², -NR¹⁰CO₂R⁹, -NR¹⁰C(=O)NR¹¹R¹², -NHC(=NH)NH₂, NR¹⁰C(=O)R⁹, $-NR^{10}S(O)_2R^9$, $-S(O)_yR^9$, $-CO_2R^2$, $-C(=0)NR^{11}R^{12}$, $-C(=O)R^2$, $-CH_2OR^{10}$, $-CH_2OR^{10}$ CH=NNR 2 R 2A , -CH=NOR 2 , -CH=NR 9 // -CH=NNHCH(N=NH)NH $_2$, -

S(=O)₂NR²R^{2A}, -P(=O)(OR¹⁰)₂, -OR¹⁴/and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is

independently either unsubstituted ϕ r is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having

from of 1 to 4 carbons;

 X^2 is O, S, or NR^{10} ;

R⁷ is

wherein:

m is 0-4;

G is a bond; or alkylene having 1 to 4 carbons, wherein the alkylene group is unsubstituted, or substituted with NR^{11A}R^{12A} or OR¹⁹;

DOCKET NO.: CEPH-0939

PATENT

 R^{11A} and R^{12A} are the same as R^{1} and R^{12} ;

R¹⁹ is selected from the group consisting of H, alkyl, acyl, and C(=O)NR^{11A}R^{12A};

 R^8 is selected from the group consisting of O(C=O)NR¹¹R¹², -CN, acyloxy, alkenyl, -O-CH₂-O-(CH₂)₂-O-CH₃, halogen and R^{1A} wherein R^{1A} is the same as R¹;

A and B are independently selected from the group consisting of O, N, S, CHR¹⁷,

C(OH)R¹⁷, C(=O), and CH₂=C; or A and B together can form -CH=CH-;

C and D are independently selected from the group consisting of a bond, O, N, S, CHR¹⁷, C(OH)R¹⁷, C(=O) and CH,=C:

E and F are independently selected from the group consisting of a bond, O, N, S, C(=0), and $CH(R^{17})$;

R¹⁷ is selected from the group consisting of H, substituted or unsubstituted alkyl, alkoxycarbonyl, and substituted or unsubstituted alkoxy; wherein:

- 1) ring J contains 0 to 3 ring heteroatoms;
- 2) any two adjacent hydroxyl groups of ring J can be joined in a dioxolane ring;
- 3) any two adjacent ring carbon atoms of ring J can be joined to form a fused aryl or heteroaryl ring;
- 4) any two adjacent ring nitrogen atoms of ring J can be joined to form a fused heterocyclic ring which can be substituted with 1 to 3 alkyl or aryl groups;

provided that:

- 1) ring J contain at least one carbon atom that is saturated;
- 2) ring J not contain two adjacent ring O atoms;
- 3) ring J contains a maximum of two ring C(=O) groups;
- 4) when G is a bond, ring J can be heteroaryl;

Rod

DOCKET NO.: CEPH-0939

PATENT

Q is selected from the group consisting of O, S/NR¹³, NR^{7A} wherein R^{7A} is the same as R⁷, CHR¹⁵, X³CH(R¹⁵), and CH(R¹⁵)X³ wherein X³ is selected from the group consisting of BO-, -S-, -CH₂-, NR^{7A}, and NR¹³;

W is selected from the group consisting of $CR^{18}R^7$ and CHR^{50} where R^{50} is alkyl having from 1 to 4 carbons, -OH, alkoxy having from 1 to 4 carbons, -OC(=O) R^9 , -OC(=O) $R^{11}R^{12}$, -O(CH₂) $_pNR^{11}R^{12}$, -O(CH₂) $_pOR^{10}$, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl;

 R^{13} is selected from the group consisting of H, $-SO_2R^9$, $-CO_2R^9$, $-C(=O)R^9$, $-C(=O)NR^{11}R^{12}$, alkyl of 1-8 carbons, alkenyl having 2-8 carbons, and either

1) the alkyl, alkenyl, or alkynyl group is unsubstituted; or

2) the alkyl, alkenyl, or alkynyl group independently is substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxylalkoxy, alkyloxy-alkoxy-alkoxy, hydroxylalkoxy, alkyloxy-alkoxy-alkoxy-alkoxy, hydroxylalkoxy, alkyloxy-alkoxy-alkoxy-alkoxy, hydroxylalkoxy, alkyloxy-alkoxy-a

R¹⁵ is selected from the group consisting of H, OR¹⁰, SR¹⁰, R^{7A}, and R¹⁶; R¹⁶ is selected from the group consisting of alkyl of 1 to 4 carbons; phenyl; naphthyl;

6

DOCKET NO.: CEPH-0939

PATENT

arylalkyl having 7 to 15 carbons, $-SO_2R^9$, $-CO_2R^9$, $-C(=O)R^9$, alkyl having 1-8 carbons; alkenyl having 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein

1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or

2) each alkyl, alkenyl, or alkynyl group is substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F/Cl, Br, I, -CN, -NO₂, -OH, -OR⁹, - X²(CH₂)_pNR¹¹R¹², -X²(CH₂)_pC(=O)NR¹¹R¹², -X²(CH₂)_pOC(=O)NR¹¹R¹², - X²(CH₂)_pCO₂R⁹, X²(CH₂)_pS(O)_yR⁹, X²(CH₂)_pNR¹⁰C(=O)NR¹¹R¹², -OC(=O)R⁹, - OCONHR², -O-tetrahydropyranyl, -NR¹¹R¹², -NR¹⁰CO₂R⁹, -NR¹⁰C(=O)NR¹¹R¹², -NHC(=NH)NH₂, NR¹⁰C(=O)R⁹, NR¹⁰S(O)₂R⁹, -S(O)_yR⁹, -CO₂R², -C(=O)NR¹¹R¹², -C(=O)R², -CH₂OR¹⁰, -CH₂NNR²R^{2A}, -CH₂NOR², -CH₂NR⁹, -CH₂NR⁹, -CH₂NR¹⁰, -CH₂NNHCH(N=NH)NH₂, -S(=O)₂NR²R^{2A}, -P(=O)(OR¹⁰)₂, -OR¹⁴, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from of 1/to 4 carbons;

R¹⁸ is selected from the group consisting of R², thioalkyl of 1-4 carbons, and halogen; A¹ and A² are selected from the group consisting of H, H; H, OR²; H, -SR²; H,

 $N(R^2)_2$; and a group wherein A^1 and A^2 together form a moiety selected from the group consisting of =0, =S, and $=NR^2$;

 B^1 and B^2 are selected from the group consisting of H, H; H, $-OR^2$; H, $-SR^2$; H, $N(R^2)_2$; and a group wherein B^1 and B^2 together form a moiety selected from the group consisting of =O, =S, and $=NR^2$; with the proviso that at least one of the pairs A^1 and A^2 , or B^1 and B^2 , form =O;

with the proviso that when Q is NH or NR^{7A}, and in any R⁷ or R^{7A} group m is 0 and G is a bond, R⁸ is H, and R⁷ or R^{7A} contains one ring hetero oxygen atom at position A in a 5- or

Con

PATENT

6-membered ring, then B cannot be CHR¹⁷ where R¹⁷ is substituted or unsubstituted alkyl; and

with the further provise that the compound of Formula I contains one R^7 or R^{7A} group or both an R^7 and R^{7A} group.

41. (Amended) The compound of claim 37 wherein the constituent variables of the compounds of Formula II are selected in accordance with the following table:

				17				
A1A2	B1B2	R3	A/h	В	C	D	Е	F
H2	O	Н //	∕ o ∥	CH2	bond	bond	bond	hond
H2	Ο	Н	o *	CH2		bond		
H2	O	Н	0	CH2		bond		
H2	O	Н /	C(OH		CH2			
H2	0	3-Br	9	CH2		bond		
H2	0	3-CH2OCH2-CH3	0	CH2				
H2	Ŏ	3-CH2QCH2-CH2QCH3	•			bond		
H2	Ö		0	CH2		bond		bond
	0	H	O	CH2	CH2	CH2	CH2	bond
H2	<u> </u>	<u>H</u> *	CH2	0	CH2	CH2	CH2	bond

64. (Amended) A pharmaceutical composition for treating prostate disorders comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

73. (Amended) A method for treating prostate disorders which comprises administering to a host in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1.

Please add new claim 95:

--95. (New) The compound of claim 21 wherein R^1 , R^3 , R^4 and R^6 are each H; A_1,A_2 is H,H; B_1,B_2 is =0, Q is $NHC)R^5$ is H or alkoxy; W is $CR^{18}R^7$ where R^{18} is H; G is a bond; m is 1; R^8 is OH or $-C(=0)R^9$ where R^9 is alkyl; A is O; B, C and D are each CHR^{17} where R^{17} is H; and E and F are each a bond.--