Extended Mathematical Proofs for The Divine Algorithm

Quantum Theology Research Group

February 15, 2025

Abstract

This document extends the mathematical framework with advanced proofs and derivations supporting the quantum computational approach to demonstrating the necessity of a self-existent being.

1 Advanced Quantum Formalism

1.1 Quantum State Space

Definition 1.1 (Contingent State Space). The space of contingent quantum states \mathcal{H}_C is defined as:

$$\mathcal{H}_C = \{ |\psi\rangle \in \mathcal{H} : \exists U(t), |\phi\rangle \text{ s.t. } |\psi\rangle = U(t) |\phi\rangle \}$$
 (1)

Theorem 1.2 (Incompleteness of Contingent States). No set of contingent states $\{|\psi_i\rangle\}$ can form a complete basis for \mathcal{H} .

Proof. Assume by contradiction that $\{|\psi_i\rangle\}$ is complete. Then:

$$\sum_{i} |\psi_{i}\rangle \langle \psi_{i}| = \mathbb{1}$$
 (2)

$$\implies \operatorname{Tr}(\sum_{i} |\psi_{i}\rangle \langle \psi_{i}| \, \hat{N}) = \operatorname{Tr}(\hat{N})$$
(3)

$$\implies \sum_{i} \langle \psi_{i} | \hat{N} | \psi_{i} \rangle = n \tag{4}$$

But for contingent states, $\langle \psi_i | \hat{N} | \psi_i \rangle = 0$, contradiction.

2 Modal Logic Extensions

2.1 Quantum-Modal Bridge Theorems

Theorem 2.1 (Modal Completeness). The quantum-modal correspondence Φ preserves logical completeness:

$$\vDash_{Q} \phi \iff \vDash_{K} \Phi(\phi) \tag{5}$$

where \vDash_Q is quantum validity and \vDash_K is Kripke validity.

Proof. Let ϕ be valid in quantum logic. Then for all quantum states $|\psi\rangle$:

$$\langle \psi | \, \hat{\phi} \, | \psi \rangle = 1 \tag{6}$$

$$\implies \Phi(\langle \psi | \hat{\phi} | \psi \rangle) = 1 \tag{7}$$

$$\implies \mathfrak{M}, w \models \Phi(\phi) \text{ for all } w \in W$$
 (8)

The converse follows similarly.

3 Statistical Framework

3.1 Bayesian Analysis

Theorem 3.1 (Necessity Detection Criterion). Given measurement data D, the posterior probability of necessity satisfies:

$$P(\text{necessary}|D) = \frac{P(D|\text{necessary})P(\text{necessary})}{P(D)} > 1 - \epsilon$$
 (9)

where:

$$P(D|\text{necessary}) = \frac{1}{Z} \exp\left(-\beta \sum_{i=1}^{n} w_i M_i\right)$$
 (10)

Proof. Using Bayes' theorem and the principle of maximum entropy:

$$P(\text{necessary}|D) = \frac{P(D|\text{necessary})P(\text{necessary})}{P(D)}$$
(11)
$$= \frac{P(D|\text{necessary})P(\text{necessary})}{P(D|\text{necessary})P(\text{necessary}) + P(D|\neg\text{necessary})P(\neg\text{necessary})}$$
(12)

$$> 1 - \epsilon$$
 (13)

where ϵ is the significance level.

4 Quantum Thermodynamic Analysis

4.1 Entropy Production

Theorem 4.1 (Entropy Growth). In a purely contingent system, the entropy production rate is bounded below:

$$\frac{dS}{dt} \ge \gamma \sum_{i,j} |\langle \psi_i | \hat{C}_{ij} | \psi_j \rangle|^2 \tag{14}$$

where γ is the minimum coupling strength.

Proof. From the quantum master equation:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar}[H, \rho] + \mathcal{L}[\rho] \tag{15}$$

$$\frac{dS}{dt} = -\text{Tr}(\frac{d\rho}{dt}\ln\rho) \tag{16}$$

$$\geq \gamma \sum_{i,j} |\langle \psi_i | \hat{C}_{ij} | \psi_j \rangle|^2 \tag{17}$$

5 Computational Complexity

Theorem 5.1 (Necessity Decision Problem). The problem of deciding whether a quantum system requires a necessary being is PSPACE-complete.

Proof. Reduction from TQBF (True Quantified Boolean Formula):

- 1. Convert TQBF instance to quantum circuit
- 2. Map quantifiers to necessity operators
- 3. System requires necessary being iff TQBF is true