In [1]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt

In [3]: df = pd.read_csv("c:/mydata/Customer Churn.csv")
 df

Out[3]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mul
	0	7590- VHVEG	Female	0	Yes	No	1	No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	
	4	9237- HQITU	Female	0	No	No	2	Yes	
	•••								
	7038	6840-RESVB	Male	0	Yes	Yes	24	Yes	
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	
	7040	4801-JZAZL	Female	0	Yes	Yes	11	No	
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes	
	7042	3186-AJIEK	Male	0	No	No	66	Yes	

7043 rows × 21 columns

In [4]: df.head()

Out[4]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
	0	7590- VHVEG	Female	0	Yes	No	1	No	No
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	No
	4	9237- HQITU	Female	0	No	No	2	Yes	

5 rows × 21 columns

In [5]: df.tail()

Out[5]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mu
	7038	6840-RESVB	Male	0	Yes	Yes	24	Yes	
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	
	7040	4801-JZAZL	Female	0	Yes	Yes	11	No	
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes	
	7042	3186-AJIEK	Male	0	No	No	66	Yes	

5 rows × 21 columns

In [6]: df.describe()

Out[6]:		SeniorCitizen	tenure	MonthlyCharges
	count	7043.000000	7043.000000	7043.000000
	mean	0.162147	32.371149	64.761692
	std	0.368612	24.559481	30.090047
	min	0.000000	0.000000	18.250000
	25%	0.000000	9.000000	35.500000
	50%	0.000000	29.000000	70.350000
	75%	0.000000	55.000000	89.850000
	max	1.000000	72.000000	118.750000
In [7]:	df.isn	ull().sum()		

```
In [7]: df.isnull().sum()
```

Out[7]:	customerID	0
	gender	0
	SeniorCitizen	0
	Partner	0
	Dependents	0
	tenure	0
	PhoneService	0
	MultipleLines	0
	InternetService	0
	OnlineSecurity	0
	OnlineBackup	0
	DeviceProtection	0
	TechSupport	0
	StreamingTV	0
	StreamingMovies	0
	Contract	0
	PaperlessBilling	0
	PaymentMethod	0
	MonthlyCharges	0
	TotalCharges	0
	Churn	0
	dtype: int64	

In [13]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 7043 entries, 0 to 7042
       Data columns (total 21 columns):
                       Non-Null Count Dtype
            Column
       --- -----
                             -----
        0 customerID 7043 non-null object
1 gender 7043 non-null object
2 SeniorCitizen 7043 non-null object
7043 non-null object
           Partner
                             7043 non-null object
                            7043 non-null object
7043 non-null int64
        4 Dependents5 tenure
        6 PhoneService 7043 non-null object
7 MultipleLines 7043 non-null object
        8 InternetService 7043 non-null object
        9 OnlineSecurity 7043 non-null object
        10 OnlineBackup 7043 non-null object
        11 DeviceProtection 7043 non-null object
        12 TechSupport 7043 non-null object
13 StreamingTV 7043 non-null object
        14 StreamingMovies 7043 non-null object
        15 Contract 7043 non-null object
        16 PaperlessBilling 7043 non-null object
        17 PaymentMethod 7043 non-null object
        18 MonthlyCharges 7043 non-null float64
                               7043 non-null float64
        19 TotalCharges
        20 Churn
                               7043 non-null
                                                object
       dtypes: float64(2), int64(1), object(18)
       memory usage: 1.1+ MB
In [9]: def conv(value):
            if value == 1:
                 return "yes"
             else:
                 return "no"
         df["SeniorCitizen"] = df["SeniorCitizen"].apply(conv)
```

converted o and 1 value senior citizen to yes/no to make it easier to understand.

```
In [12]: df["TotalCharges"] = df["TotalCharges"].replace(" ","0")
    df["TotalCharges"] = df["TotalCharges"].astype("float")
```

replacing blanks with 0 as tenure is 0 and no total charges are recorded

```
In [14]: df["Churn"].value_counts()
```

```
Out[14]: Churn
    No    5174
    Yes   1869
    Name: count, dtype: int64

In [28]: ax = sns.countplot(x = "Churn", data = df)
    ax.bar_label(ax.containers[0])
    plt.title("Count of Customer Churn ")
    plt.show()
```

Count of Customer Churn


```
In [29]: plt.figure(figsize=(3,4))
  gb = df.groupby("Churn").agg({"Churn": "count"})

plt.pie(gb["Churn"], labels = gb.index, autopct = "%1.1f%%")
  plt.title("Percentage of Churned Customers")
  plt.show()
```

Percentage of Churned Customers

from the given pie chart we can conclude that 26.54% of our customers have churned ont

not let's explore the reason behind it

```
In [34]: plt.figure(figsize=(5,4))
    sns.countplot(x = "gender", data = df, hue = "Churn")
    plt.title("Churn by Gender")
    plt.show()
```



```
In [35]: plt.figure(figsize=(5,4))
    sns.countplot(x = "SeniorCitizen", data = df, hue = "Churn")
    plt.title("Churn by SeniorCitizen")
    plt.show()
```



```
In [48]: plt.figure(figsize=(5,4))
    ax = sns.countplot(x = "SeniorCitizen", data = df)
    ax.bar_label(ax.containers[0])
```

```
plt.title("Count of Customer by Senior Citizen")
plt.show()
```



```
In [43]: counts = df.groupby(['SeniorCitizen', 'Churn']).size().unstack(fill_value=0)
         percentages = counts.div(counts.sum(axis=1), axis=0) * 100
         # Plot
         fig, ax = plt.subplots(figsize=(4,4))
         # Stacked bar chart
         bottoms = [0] * len(percentages)
         for churn_category in percentages.columns:
             ax.bar(percentages.index, percentages[churn_category], bottom=bottoms, label=ch
             bottoms += percentages[churn_category]
         # Add percentages as labels
         for i, senior in enumerate(percentages.index):
             bottom = 0
             for churn_category in percentages.columns:
                 value = percentages.loc[senior, churn_category]
                 if value > 0: # Only label non-zero values
                     ax.text(i, bottom + value / 2, f"{value:.1f}%", ha="center", va="center"
                 bottom += value
         # Customization
         ax.set_title("Churn by SeniorCitizen (as % of total)")
         ax.set_xlabel("SeniorCitizen")
         ax.set_ylabel("Percentage")
         ax.set_xticks(percentages.index)
         ax.set_xticklabels(["No", "Yes"]) # Assuming 0 = No, 1 = Yes
         ax.legend(title="Churn", bbox_to_anchor = (0.9,0.9))
```

```
plt.tight_layout()
plt.show()
```


comparative a greated percentage of people in senior citizen category have churned

```
In [47]: plt.figure(figsize=(8,5))
    sns.histplot(x = "tenure", data = df, hue = "Churn", bins = 50)
    plt.show()
```


people who have used our servies for a long time have stayed and people who have used our servieces 1 and 2 months

```
In [51]: plt.figure(figsize=(4,4))
    ax = sns.countplot(x = "Contract", data = df, hue = "Churn")
    ax.bar_label(ax.containers[0])
    plt.title("Count of Customer by Contract")
    plt.show()
```


people who have month to month contract are likely to churn then from those who have 1 or 2 years of contract

```
In [52]: df.columns.values
Out[52]: array(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents',
                 'tenure', 'PhoneService', 'MultipleLines', 'InternetService',
                 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection',
                 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract',
                 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges',
                 'TotalCharges', 'Churn'], dtype=object)
In [56]: columns = [
             'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity',
             'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMov
         # Number of subplots (3 rows x 3 columns for 9 features)
         n_{cols} = 3
         n_rows = -(-len(columns) // n_cols) # Ceiling division for rows
         # Create subplots
         fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 12), constrained_layout=True)
         # Flatten axes for easier indexing
         axes = axes.flatten()
```

```
# Loop through columns and plot
for i, col in enumerate(columns):
    sns.countplot(x=col, data=df, ax=axes[i], hue = "Churn")
    axes[i].set_title(f'Countplot of {col}')
    axes[i].set_xlabel('') # Remove x-axis label for cleaner appearance
    axes[i].set_ylabel('Count')

# Hide any unused subplots if the grid is larger than the number of columns
for j in range(len(columns), len(axes)):
    axes[j].set_visible(False)

# Display the plots
plt.suptitle('Countplots for Various Features', fontsize=16, y=1.02)
plt.show()
```


The majority of customers who do nt churn tend to have services like phoneService, InternetService(Particularly DSL), and OnlineSecurity enbled

OnlineBackup, Techsupport, and StreamingTv, churn rates are noticeably higher when these services are not used or are unavailable

```
In [61]: plt.figure(figsize=(6,4))
    ax = sns.countplot(x = "PaymentMethod", data = df, hue = "Churn")
    ax.bar_label(ax.containers[0])
    ax.bar_label(ax.containers[1])
    plt.title("Count of Customer by Payment Method")
    plt.xticks(rotation = 45)
    plt.show()
```


customer is likely to churn when he is using eletronic check as a payment method