	MW//	Environmental Analysis Teaching	Date: 3/12/2018	Number: 75B v0.1
	POMONA	and Research Laboratory		
		Standard Operating Procedure	Title: Flash EA and IRMS	
	POMONA COLLEGE	Approved By: TBD	Revision Date: M	arch 15, 2018

1. Scope and Application

- 1.1 The scope of this SOP covers how to operate the IRMS for certified users.
- 1.2 The applications of this SOP are for the Thermo Scientific Delta V Serice IRMS.

2. Summary of Method

2.1 This SOP describes how to 1) prepare samples, 2) prepare instrument, 3) set up sequence, 4) run samples, 5) clean up samples; and 6) data reduction.

Contents

L	Scope and Application	1
2	Summary of Method	1
3	Acknowledgements	3
4	Definitions	3
5	Biases and Interferences	3
3	Health and Safety Safety and Personnnel Protective Equipment	3
7	Personnel & Training Responsibilities	3
8	Required Materials and Apparati	3
9	Reagents and Standards	3
10	Estimated Time	3
11	Sample Collection, Preservation, and Storage	4
12	Sample Preparation Starting up Instrument	4

Author: Kyle McCarty and Marc Los Huertos

File: B'Flash'IRMS'v01.tex

13 Instrument Warm-Up and Zero Enrichment Tests Turning On the Instrument that has been Off	4 4
14 Prepare Sequence – Isodat	5
15 Run Sequence	5
16 End-of-Run Shut Down and Clean Up	6
17 Data Analysis and Calculations	6
18 QC/QA Criteria	6
19 Trouble Shooting	6
20 References	6

Author: Kyle McCarty and Marc Los Huertos

- 3. Acknowledgements
- 4. Definitions
 - **4.1** Term1: is...
- 5. Biases and Interferences
 - **5.1** Biases and interferences can come from...
- 6. Health and Safety
 - **6.1** Describe the risk...

Safety and Personnnel Protective Equipment

- 7. Personnel & Training Responsibilities
 - **7.1** Researchers training is required before this the procedures in this method can be used...
 - **7.2** Researchers using this SOP should be trained for the following SOPs:
 - SOP01 Laboratory Safety
 - SOP75A Becomming an IRMS User
 - SOPXX Using the Metler WXTE
- 8. Required Materials and Apparati
 - **8.1** Item 1 w/catalog number!
 - **8.2** Item 2
- 9. Reagents and Standards
- 10. Estimated Time
 - 10.1 This procedure requires XX minutes...

Author: Kyle McCarty and Marc Los Huertos

Page: 3 of 6

11. Sample Collection, Preservation, and Storage

12. Sample Preparation

- 12.1 Sample preparation will take place in the wet lab SGM Rm 133 and isotope analysis will take place at the David W. and Claire B. Oxtoby Environmental Isotope lab https://sites.google.com/view/pomonaeageolabs/oxtoby-isotope-lab (SGM Rm 135).
- 12.2 Soil or sediment cores will be weighed into an aluminum crucible and oven-dried at 105°C
- 12.3 Samples and standards are submitted to an elemental analysis (EA) to determine the elemental composition of carbon and nitrogen.
- 12.4 Amounts needed for the isotopic analyses are based on the results of the elemental analysis, an example calculator is found here: http://stableisotopefacility.ucdavis.edu/sample-weight-calculator.html
- 12.5 Samples are weighed accordingly into tin capsules (0.5 20 mg) with 2 parts tungsten oxide (WO3).
- 12.6 Calibrated internal standards are prepared as a reference for every batch of samples.
- 12.7 Isotopic composition of carbon, nitrogen and sulfur are determined by the analysis of CO2 and N2, produced by combustion on a VarioEL III Elemental Analyzer followed by "trap and purge" separation and on-line analysis by continuous-flow with an Isotope Ratio Mass Spectrometer (ThermoFisher Delta V Plus) with attached ThermoFisher GasBench, Flash IRMS EA and TC/EA.

Starting up Instrument

12.8 You can start the instrument warm-up procesdures...

13. Instrument Warm-Up and Zero Enrichment Tests

13.1 Check gas tank and regulated pressures:

He?

O2?

N2?

Turning On the Instrument that has been Off

13.2 Make sure gases valves are turned on. Make sure compressed air is connected.

Author: Kyle McCarty and Marc Los Huertos

Page: 4 of 6

- 13.3 check that the needle value is closed
- 13.4 Switch the system with MAIN SWITCH
- 13.5 Switch on the computer and start Isodat
- 13.6 Switch on pumps at the Control Panel
- 13.7 MS State panel, swithch on all heater you need...
- 13.8 In the Acessories toolobar of Isodata cline on the ion source...
- **13.9** The instrument will be stable in 24-48 hours.
- 13.10 Start the machine...
- **13.11** check the vacuum, the should be ??
- 13.12 Introduce Gas to the Continuous Flow System
- 13.13 Focus Settings

14. Prepare Sequence - Isodat

- **14.1** Open the Acquisition tool of Isodat software and open a new file and select the sequence icon.
- **14.2** Define the number of samples.
- **14.3** Select the appropriate method. If you do not have a prepared method, contact the manager for assistance.
- 14.4 Make sure Peak Center has a green check mark
- 14.5 Enter text to identify the sample in the "Identifier 1" column.
- **14.6** Make sure each sample has a method, you can use an autofill function to accomplish this.

15. Run Sequence

- 15.1 Click on the "Start" button.
- **15.2** Enter a file name, where the extension .seq is added automatically. The file convention used in the lab is:

YYYYMMDD_Project_SamplesIDs_Username.seq

Author: Kyle McCarty and Marc Los Huertos

16. End-of-Run Shut Down and Clean Up

16.1

- 17. Data Analysis and Calculations
- 18. QC/QA Criteria
- 19. Trouble Shooting
- 20. References
 - **20.1** APHA, AWWA. WEF. (2012) Standard Methods for examination of water and wastewater. 22nd American Public Health Association (Eds.). Washington. 1360 pp. (2014).

Author: Kyle McCarty and Marc Los Huertos