From PCA To VAE: A Comprehensive Survey

Hongyue Li

CS 229 Final Project

Introduction

Dimensionality reduction is a fundamental tool in machine learning.

Transform high-dimensional data into a lower-dimensional representation

PCA -> Autoencoder

Generative modeling is an unsupervised form of machine learning where the model learns to discover the patterns in input data.

Can generate new data on its own, which is relatable to the original training dataset.

-> Factor Analysis -> Variational Autoencoders!

Dataset: MNIST Reproducible image dimension: 28*28=784

PCA

latent dim = 50

Factor Analysis

latent dim = 4

factor analysis interpolated images

Problem:

Cannot capture

non-linear features!

Variational Autoencoder (VAE)

VAE

Much Better!

Still a little bit blurred....

Disentanglement Problem

Factor Analysis On Each Digit

Difficulty in Inference

Hard to Change VAE architecture

Reparametrization Only Works for Certain Distributions:

$$z \in \mathcal{N}(\mu, \sigma^2) \longrightarrow z = \mu + \sigma \odot \epsilon$$
, where $\epsilon \in \mathcal{N}(0, 1)$

Generally Does Not Work For Discrete Variables!

My Naive Attempt:

$$\omega \sim \mathcal{N}(0, I)$$
 $\pi \sim ext{Dirichlet}(\alpha)$
 $z \sim ext{Categorical}(\pi)$
 $x|z, \omega \sim \mathcal{N}(\mu_z(x; \theta), ext{diag}(\sigma_z^2(x; \theta)))$
 $y|x \sim ext{Bernoulli}(\sigma(D_{\theta}(x))$

Gaussian Mixture VAE generated digits (with random interpolation)

Minimize $\sum \|y_i - \hat{y}_i\|_2$ Maximize $\operatorname{Var}(\{\hat{y}_i\}_{i=1}^N)$

VAE:
$$\text{ELBO}(x;q) = \mathbb{E}_{z \sim q} \log p(x|z) - D_{KL}(q||p_z)$$

PCA:

Thank You For Listening!