Ejercicio Práctica 5 (de Final)

Análisis II - Matemática 3 - Análisis Matemático II

Jan Lamas

Enunciado: Sea $\alpha \in \mathbb{R}_{>0},\ U \subseteq \mathbb{R}$ intervalo / $0 \in U,\ x \in \mathcal{C}^1(U)$ / $\begin{cases} x'(t) = |x(t)|^{\alpha} \ \forall \ t \in U \\ x(0) = 0 \end{cases}$. Hallar todas las soluciones al sistema que cumplan las mismas hipótesis que x y tengan un dominio maximal.

Resolución: Para empezar, notemos que hemos de hallar intervalos U y soluciones x definidas en dichos intervalos para poder responder al problema. Para eso, comencemos con la ecuación que cumple x. Analicemos el caso de $\alpha = 1$ primero, y luego pasemos a los casos $\alpha > 1$ y $0 < \alpha < 1$.

■ Caso $\alpha = 1$: En este caso, el problema se reduce a que $x'(t) = |x(t)| \, \forall \, t \in U$, en cuyo caso, supongamos $\exists \, t_1, t_0 \in U, \, t_0 \leq t_1 \, / \, x(s) \neq 0 \, \forall \, s \in [t_0; t_1]$, entonces, gracias al Teorema de Bolzano, puesto que x es continua tenemos que en ese intervalo la función x es > 0 o < 0 pero no puede cambiar de signo, puesto que tendría una raíz, con lo que x tiene el signo constante en el intervalo $[t_0; t_1]$, lo llamaremos $\operatorname{sgn}(x) = \pm 1$, $\operatorname{con} |x| = \operatorname{sgn}(x)x$. Así sea $t_1, t_0 \in U$ como mencionados recién y $t \in [t_0; t_1] \Rightarrow \frac{x'(s)}{x(s)} = \operatorname{sgn}(x) \, \forall \, s \in [t_0; t_1] \Rightarrow \int_{t_0}^t \frac{x'(s)}{x(s)} ds = \operatorname{sgn}(x) \int_{t_0}^t ds \Rightarrow \ln|x(t)| - \ln|x(t_0)| = \operatorname{sgn}(x)(t - t_0) \Rightarrow \ln|x(t)| = \operatorname{sgn}(x)t + \ln|x(t_0)| - \operatorname{sgn}(x)t_0 = \operatorname{sgn}(x)(t + C)$ donde $C = \operatorname{sgn}(x)\ln|x(t_0)| - t_0 \in \mathbb{R}$. Así, tenemos que: $|x(t)| = e^{\operatorname{sgn}(x)(t+C)} \Rightarrow x(t) = \operatorname{sgn}(x)e^{\operatorname{sgn}(x)C}e^{\operatorname{sgn}(x)t}$, por lo tanto, si llamamos $k = \operatorname{sgn}(x)e^{\operatorname{sgn}(x)C} \in \mathbb{R} - \{0\}$ tenemos que $x(t) = ke^{\operatorname{sgn}(x)t} \, \forall \, t \in [t_0; t_1]$. Ahora que conseguimos una solución, prestémosle atención a quiénes eran t_0 y t_1 . Notemos que ellos eran simples números reales que hacían que x no se anulara entre ellos, entonces busquemos candidatos a estos t_0 y t_1 con la x que encontramos. Para eso, basta notar que como $k \neq 0$ y $e^{\operatorname{sgn}(x)t} > 0 \, \forall \, t \in \mathbb{R} \, \Rightarrow \, ke^{\operatorname{sgn}(x)t} \neq 0 \, \forall \, t \in \mathbb{R}$, lo cual nos dice que cualquier par de números t_0 , t_1 sirven, t_1 que siempre entre esos números la función x no se anula, con lo que, t_1

que queremos tomar una solución con intervalo maximal, podemos tomar como dominio a todo \mathbb{R} . Ahora, analicemos la condición inicial. Notemos que $0 \in \mathbb{R}$, con lo que no hay problema en que el valor inicial esté en el dominio, pero, nosotros queremos que x(0) = 0, pero $x(0) = k \neq 0$, lo cual nos dice que de esta familia de funciones, ninguna es solución a nuestro sistema. Analicemos el último caso que nos queda, que es el caso donde la x no es distinta de 0 para ningún valor, es decir, x = 0, o, $x(t) = 0 \,\forall\, t \in U$. Es fácil notar que x' = 0 = x y que x(0) = 0, así que $x : \mathbb{R} \to \mathbb{R} \ / \ x(t) = 0$ es solución a nuestro sistema, tiene dominio maximal, cumple las hipótesis del enunciado y es única, puesto que si vale distinta de 0 en algún lado, vimos que eso llevaría a un absurdo.

■ Caso $\alpha > 1$: Para este caso comenzamos muy parecido a lo anterior, supongamos que $\exists t_0, t_1 \in U, t_0 \leq t_0$ $t_1 \ / \ x(s) \neq 0 \ \forall \ s \in [t_0;t_1] \ \Rightarrow \ \mathrm{sgn}(x) = \pm 1$, alguno de los dos, ya que, igual que antes, al ser xcontinua, por el **Teorema de Bolzano** el signo de x es constante en el intervalo $[t_0; t_1]$. Similarmente, $|x| = \operatorname{sgn}(x)x$ y la ecuación con la que tenemos que trabajar es $x'(t) = |x(t)|^{\alpha} \ \forall \ t \in U$. Para eso, tomemos un $t \in [t_0; t_1] \Rightarrow \int_{t_0}^t \frac{x'(s)}{|x(s)|^{\alpha}} ds = \int_{t_0}^t ds \Rightarrow \frac{\operatorname{sgn}(x)}{1-\alpha} |x(t)|^{1-\alpha} - \frac{\operatorname{sgn}(x)}{1-\alpha} |x(t_0)|^{1-\alpha} = t - t_0.$ Notemos que acá estoy usando que la derivada de $\frac{\operatorname{sgn}(x)}{1-\alpha}|x(s)|^{1-\alpha}$ está bien definida y es igual a $\frac{x'(s)}{|x(s)|^{\alpha}}$, todo gracias a que $x(s) \neq 0$ en $[t_0; t_1]$. Así, tenemos que: $\frac{\operatorname{sgn}(x)}{1-\alpha}|x(t)|^{1-\alpha} = t - t_0 + \frac{\operatorname{sgn}(x)}{1-\alpha}|x(t_0)|^{1-\alpha} = t + C, \text{ donde } C = \frac{\operatorname{sgn}(x)}{1-\alpha}|x(t_0)|^{1-\alpha} - t_0 \in \mathbb{R} \implies |x(t)|^{1-\alpha} = t + C$ $\operatorname{sgn}(x)(1-\alpha)(t+C) \ \forall \ t \in [t_0;t_1]$. Notemos que esto nos introduce una restricción a la constante C, y en esencia, a lo que puede valer x en t_0 , pues como $|x(t)|^{1-\alpha} > 0$, entonces, ha de ser $\operatorname{sgn}(x)(1-\alpha)(t+C) > 0$, y dado que $1 - \alpha < 0$ por hipótesis de este caso, debe ser $sgn(x)(t + C) < 0 \ \forall \ t \in [t_0; t_1]$. Así, podemos despejar x finalmente, elevando la ecuación de antes a la $\frac{1}{1-\alpha}$ tenemos: $|x(t)| = (\mathrm{sgn}(x)(1-\alpha)(t+C))^{\frac{1}{1-\alpha}} \ \Rightarrow \ x(t) = \mathrm{sgn}(x)(\mathrm{sgn}(x)(1-\alpha)(t+C))^{\frac{1}{1-\alpha}} \ \forall \ t \in [t_0;t_1]. \ \text{Ahora que the sum of the sum$ tenemos un candidato a solución, veamos qué candidatos a t_0 y t_1 conseguimos. Dado que $\frac{1}{1-\alpha} < 0$ pues $\alpha > 1$, luego nuestro candidato a solución x nos resulta siempre no nulo, por lo que cualquier par de valores t_0, t_1 hace que se cumpla que x no se anula entre ellos. Pero nuestra condición inicial nos dice que x(0) = 0, con lo que no existen t_0, t_1 donde la solución pueda valer 0 en 0, podemos concluir que no hay soluciones que sean distintas de 0 en algún lado ya que no existe ningún par de valores t_0, t_1 que cumplieran lo que queríamos. Así, nos fijamos si x=0 es una solución de nuestro problema, en cuyo caso,

 $x' = 0 = x^{\alpha}$ y x(0) = 0, como queríamos, así, $x : \mathbb{R} \to \mathbb{R} / x(t) = 0$ es la única solución a nuestro problema definida en un intervalo maximal.

• Caso $0 < \alpha < 1$: Para este caso, el razonamiento es parecido al realizado anteriormente, sólo que cambia un poco, ya que esta vez no da todo 0 pues, bajo el mismo razonamiento que antes, si suponemos que $\exists~t_0,t_1\in U,~t_0\leq t_1~/~x(s)\neq 0~\forall~s\in [t_0;t_1]~\text{y tomamos un}~t\in [t_0;t_1],~\text{siguiendo los mismos pasos que en}$ el caso anterior llegamos a que $x(t) = \operatorname{sgn}(x)(\operatorname{sgn}(x)(1-\alpha)(t+C))^{\frac{1}{1-\alpha}}$ donde $C = \frac{\operatorname{sgn}(x)}{1-\alpha}|x(t_0)|^{1-\alpha} - t_0$. Como ahora el exponente $\frac{1}{1-\alpha}$ es positivo, el único valor donde x(t)=0 es en t=-C, y ya que queremos que x(0) = 0, ha de ser C = 0, con lo que cualesquiera sean t_0, t_1 , mientras ambos tengan el mismo signo, podemos garanatizar que x no se anulará entre ellos. Como en el caso anterior, también tenemos una restricción en la C, que sale de realizar el procedimiento del caso anterior, esto nos dice que $\operatorname{sgn}(x)(t+C) > 0 \ \forall \ t \in [t_0;t_1]$ (donde estoy tomando t_0,t_1 ambos con el mismo signo) $\Rightarrow \operatorname{sgn}(x)t > 0$, luego, si $t_0, t_1 > 0 \implies t > 0$ y sgn(x) = 1 o si no, $t_0, t_1 < 0 \implies t < 0$ y sgn(x) = -1. Esto nos dice que podemos definir a x como la solución que conseguimos antes, siempre y cuando sea negativa en los reales negativos y sea positiva en los reales positivos. Así, $x: \mathbb{R} \to \mathbb{R} \ / \ x(t) = \begin{cases} ((1-\alpha)t)^{\frac{1}{1-\alpha}} & \text{si } t \geq 0 \\ -((1-\alpha)|t|)^{\frac{1}{1-\alpha}} & \text{si } t \leq 0 \end{cases}$ es una función bien definida, vale que x(0) = 0, es una función continua pues ambas partes son continuas y tienden a 0 en 0 y está definida en un intervalo maximal. Lo único que no queda evidentemente claro es que sea una función $\mathcal{C}^1(\mathbb{R})$, ni siquiera es claro si es derivable. Veamos estas dos cosas. Primero, sabemos que x es derivable en $\mathbb{R}_{>0}$ y en $\mathbb{R}_{<0}$, así que veamos qué pasa en 0. Para eso, $\lim_{t\to 0^+} \frac{x(t)-x(0)}{t-0} = \lim_{t\to 0^+} \frac{((1-\alpha)t)^{\frac{1}{1-\alpha}}}{t} = (1-\alpha)^{\frac{1}{1-\alpha}} \lim_{t\to 0^+} t^{\frac{1}{1-\alpha}-1} = 0$ pues $\frac{1}{1-\alpha}-1>0 \Leftrightarrow \frac{1}{1-\alpha}>1 \iff 1>0$ $1-\alpha \iff 0>-\alpha \iff \alpha>0$ que sabemos que vale. De la misma manera vemos el límite que falta, $\lim_{t\to 0^-}\frac{x(t)-x(0)}{t-0}=\lim_{t\to 0^-}\frac{-((1-\alpha)|t|)^{\frac{1}{1-\alpha}}}{t}=(1-\alpha)^{\frac{1}{1-\alpha}}\lim_{t\to 0^-}(-t)^{\frac{1}{1-\alpha}-1}=0 \text{ con lo que conseguimos que }$ x es derivable en 0, y por extensión, lo es en \mathbb{R} , donde además sabemos que x'(0)=0. Nos resta ver si $x' \text{ es continua en } \mathbb{R}. \text{ Para eso, si derivamos } x \text{ conseguimos que } x'(t) = \begin{cases} ((1-\alpha)t)^{\frac{1}{1-\alpha}-1} & \text{si } t \geq 0 \\ & \text{, que } \\ ((1-\alpha)|t|)^{\frac{1}{1-\alpha}-1} & \text{si } t \leq 0 \end{cases}$ sabemos que está bien definida en 0 por los límites de recién y nos resulta continua en el origen también, ya que, como los exponentes son positivos, todo tiende a 0 en 0. Así, ya que ambas componentes de x' son continuas en $\mathbb{R}_{>0}$ y $\mathbb{R}_{<0}$ respectivamente, tenemos que x' es continua en \mathbb{R} con lo que podemos afirmar

finalmente $x \in \mathcal{C}^1(\mathbb{R})$. Rápidamente podemos ver que es solución a nuestro problema ya que si le tomamos módulo a x(t) el - de la segunda guarda se desvanece y elevar |x(t)| a la α multiplica los exponentes que tiene la x, dando $\frac{\alpha}{1-\alpha}$ en el exponente, que es igual al exponente de x', puesto que $\frac{1}{1-\alpha}-1=\frac{\alpha}{1-\alpha}$, y es la única solución que no se anula en algún lado. Miremos ese último caso, cuando x=0, este, como siempre, es solución, y así, $x:\mathbb{R}\to\mathbb{R}$ / x(t)=0 es solución al problema.

Conclusión: Hemos encontrado dos soluciones al problema, estas son:

•
$$x: \mathbb{R} \to \mathbb{R} / x(t) = 0 \ \forall \ \alpha \in \mathbb{R}_{>0}$$