Matemática C Lista de exercícios - 06

1. Escreva as expressões abaixo na notação de potência e simplifique, se possível.

$$a)\sqrt{3}$$

$$(c)\sqrt[4]{5^2}$$

b)
$$\frac{1}{\sqrt{3}}$$
 $d)\sqrt[3]{-2}$

$$d)\sqrt[3]{-2}$$

Respostas:

a)
$$3^{1/2}$$

$$b)3^{-1/2}$$

a)
$$3^{1/2}$$
 b) $3^{-1/2}$ c) $5^{1/2}$ d) $-2^{1/3}$

2. Escreva as expressões abaixo na notação de raízes.

$$a)5^{2,5}$$

$$c)3^{-5/2}$$

$$b)(-3)^{5/3}$$
 $d)-3^{1/2}$

$$d)-3^{1/2}$$

Respostas:

a)
$$\sqrt{5^5}$$

$$b)\sqrt[3]{(-3)^5}$$

a)
$$\sqrt{5^5}$$
 b) $\sqrt[3]{(-3)^5}$ c) $\frac{1}{\sqrt{3^5}}$ d) $-\sqrt{3}$

3. Simplifique as expressões, eliminando expoentes negativos, caso existam:

a)
$$\frac{5^4}{5^6}$$

g)
$$\left(-\frac{1}{4}\right)^3$$

n)
$$\left(\frac{5}{3}\right)^3 \left(\frac{2}{3}\right)^2$$

b)
$$\frac{5^4}{5^{-2}}$$

h)
$$\frac{3^2}{11^0}$$

b)
$$(\frac{3}{11^0})$$
 b) $(\frac{3}{11^0})$ c) $(\frac{2}{5})^3(-5)^4$ c) $(\frac{3}{5})^3(\frac{2}{3})^{-2}$ c) $(\frac{5}{3})^3(\frac{2}{3})^{-2}$ c) $(\frac{5}{3})^3(\frac{2}{3})^{-2}$ c) $(\frac{3}{4})^2(\frac{3}{2})^{-3}$ c) $(\frac{3}{4})^2(\frac{3}{4})^{-3}$ c) $(\frac{3}{4})^2(\frac{3}{4})^{-3}$ c) $(\frac{3}{4})^2(\frac{3}{4})^{-2}$ c) $(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^{-2}$ c) $(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^{-2}$ c) $(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^{-2}$ c) $(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{4})^2(\frac{3}{$

c)
$$\frac{5^{-3}}{5^{-7}}$$

i)
$$\frac{3^0}{11^2}$$

p)
$$\left(\frac{5}{3}\right)^3 \left(\frac{2}{3}\right)^{-2}$$

d)
$$(\frac{2}{6})^3$$

j)
$$\frac{3}{4^{-2}}$$

q)
$$\left(\frac{3}{4}\right)^2 \left(\frac{3}{2}\right)^{-3}$$

c)
$$\frac{5^{-3}}{5^{-7}}$$

d) $\left(\frac{2}{6}\right)^3$
e) $\left(\frac{1}{8}\right)^{-2}$

1)
$$\frac{3^3}{4^{-2}}$$

s)
$$451 \pm 450$$

f)
$$\left(-\frac{1}{5}\right)^2$$

m)
$$\left(\frac{2}{5}\right)^0 5^{-2}$$

t)
$$3^{101} - 2 \cdot 3^{100}$$

Respostas:

a)
$$\frac{1}{5^2}$$
 h) 3^2 o) 40
b) 5^6 i) $\frac{1}{11^2}$ p) $\frac{5^3}{3 \cdot 2^2}$
c) 5^4 j) $\frac{4^2}{3^3}$ q) $\frac{1}{6}$
d) $\frac{1}{3^3}$ k) $\frac{1}{4^2 3^3}$ r) $\frac{3}{4}$
e) 8^2 l) $3^3 4^2$ r) $\frac{3}{4}$
f) $\frac{1}{5^2}$ m) $\frac{1}{5^2}$ s) $5 \cdot 4^{50}$
g) $-\frac{1}{4^3}$ n) $\frac{5^3 2^2}{3^5}$ t) 3^{100}

Fonte: Francisco Magalhães Gomes (2018, p. 70)

- 4. Identifique as funções exponenciais. Para aquelas que são funções exponenciais da forma $f(x) = c a^x$ determine o valor de c e o valor da base a. Para aquelas que não são, explique por que não.
 - a) $y = x^{1/3}$
- b) $v = 3^{-x}$
- d) y = ...e) $y = -2 \cdot 5^{-x}$
- c) $y = 2(4^x)$
- 5. Calcule o valor exato da função para o valor de x dado.
 - a) $f(x) = 3.5^x$ para x = 0 b) $f(x) = 6.3^x$ para x = -2 c) $f(x) = 8.4^x$ para x = -3/2
- 6. Esboce o gráfico das seguintes funções e identifique o domínio e a imagem das mesmas.

a)
$$f(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$$
 b) $f(x) = e^x$ c) $f(x) = \left(\frac{1}{e}\right)^x = e^{-x}$ d) $f(x) = \frac{1}{2}e^x$

e)
$$f(x) = e^x + 1$$
 g) $f(x) = -2^x$

Obs.: O número e = 2,718291... (*Número de Euler*) é um número irracional de grande utilidade em cálculos de diferentes áreas do conhecimento. A função exponencial de base $e, f(x) = e^x$ é denominada de função exponencial natural. No exercício 3, você pode usar a tecla da calculadora \cdot ou fazer e=2,72

- 7. Uma bola cai de uma altura de 30 m e salta, cada vez que toca o chão, dois terços da altura da qual caiu. Seja h(n) a altura da bola no salto de número n.
- a) Determine expressão matemática que descreve a situação.
- b) Represente geometricamente a situação descrita acima.
- c) Qual é o número do salto quando a altura da bola for de 20 metros?
- d) Quando ocorrer o salto de número sete, qual a altura da bola?

- 8. Ao concluir um dia de trabalho, um corretor da bolsa de valores construiu uma tabela em que cada linha apresentava o preço y, em reais, de cada ação de uma empresa, após x horas de início do pregão. Esse estudo revelou que cada ponto (x, y) pertence à função exponencial $y = (3/2)^x$.
- a) Esboce o gráfico da função $y = (3/2)^x$.
- b) Sabendo que o pregão teve exatamente 4 horas de duração, calcule o preço mínimo e o preço máximo de cada ação dessa empresa durante esse dia.
- 9. Encontre a função exponencial $f(x) = Ca^x$ cujo gráfico é dado abaixo.

- 10. Em pesquisa realizada, constatou-se que a população P de determinada bactéria cresce segundo a expressão $P(t) = 25.2^t$ em que t representa o tempo em horas. Para atingir uma população de 204800 bactérias, qual será o tempo necessário?
- 11. a) Associe a função dada a seu gráfico. b) explique como fazer a escolha.

II)

A)
$$f(x) = 3^x$$

B)
$$f(x) = 2^{-x}$$

C)
$$f(x) = -2^x$$

B)
$$f(x) = 2^{-x}$$
 C) $f(x) = -2^{x}$ D) $f(x) = -0.5^{x}$ E) $f(x) = 3^{-x} - 2$

E)
$$f(x) = 3^{-x} - 2$$

- 12. Projeta-se que, daqui a t anos, a população de um certo país será de $P(t) = 50e^{0.02t}$ milhões.
- a) Qual é a população atual?
- b) Qual será a população daqui a 30 anos?
- 13. A quantidade em uma amostra radioativa remanescente após t anos é dada por uma função da forma $Q(t) = Q_0 e^{-0,0001}$ t. Ao fim de 5000 anos, restam 2000 gramas da substância. Quantos gramas havia inicialmente? (Res.: 3 297,44)
- 14. Determine a função exponencial que satisfaz as condições dadas:
 - a) Valor inicial igual a 5, crescente com taxa de 17% ao ano.
 - b) Valor inicial igual a 52, crescente com taxa de 2,3% ao dia.
 - c) Valor inicial igual a 28900, decrescente com taxa de 2,6% ao ano.
 - d) Valor inicial da massa igual a 592 gramas, caindo pela metade a cada 6 anos.
- 15. Qual o montante acumulado por um capital de R\$ 6.000,00, aplicados a uma taxa de juros compostos de 4% ao mês, durante 4 meses e 20 dias? Resp.: R\$ 7.205,10
- 16. Apliquei R\$1.000,00 e após um mês obtive um montante de R\$ 1.300,00. Calcule a taxa mensal de juros compostos utilizada nesta aplicação. R\$ 30%a.m.

Respostas:

- 4)
- a) não é uma função exponencial, pois a base é variável e o expoente é constante. É uma função potência.
- b) função exponencial
- c) função exponencial, com valor de c = 2 e valor da base igual a 4.
- d) não é uma função exponencial, pois a base é variável.
- e) função exponencial, com valor de c = -2 e valor da base igual a 1/5.
- f) não é uma função exponencial, pois o expoente é constante. É uma função constante.

5)

a)
$$f(0) = 3$$

b)
$$f(-2)=2/3$$

a)
$$f(0)=3$$
 b) $f(-2)=2/3$ c) $f(-3/2)=8\cdot 4^{-3/2}=\frac{8}{4^{3/2}}=\frac{8}{\sqrt{4}^3}=1$

e)

7)
$$h(n) = 30(2/3)^n$$

b)
$$y_{minimo} = 1 e y_{maximo} = 5.06$$

a)
$$f(x) = 3(2^x)$$

b)
$$f(x) = 2(1/3)^x$$

10) 13 horas

12)

a) 50 milhões b) 91105940 pessoas

14) a)
$$f(x) = 5.(1,17)^x$$
, $(x \text{ anos})$ b) $f(x) = 52.(1,023)^x$, $(x \text{ dias})$ c) $f(x) = 28900.(0,974)^x$, $x \text{ anos}$ d) $f(x) = 592.2^{-x/6}$, $(x \text{ anos})$

b)
$$f(x) = 52.(1,023)^x, (x \ dias)$$

c)
$$f(x) = 28900.(0.974)^x$$
, x anos

d)
$$f(x) = 592.2^{-x/6}, (x \ anos)$$