

ISC 2018 05/26/2018

Hardware Topologies Working Group

Motivations

- New architectures become increasingly complex
 - Memory hierarchy
 - Numa effects
- Application developpers need features to:
 - Deal with hardware characteristics (Caches, Interconnect, Cores, NUMA nodes, etc.)
 - Deal with low level tools (hwloc, libnuma, etc.)
- Expected performance improvements
 - Improved locality
 - Improved communication performance

Working Group Statement

- MPI is hardware-agnostic
 - And should remain so
 - But doesn't prevent nor encourages the application to access the underlying HW
- Issues
 - How to discover HW resources in a MPI application?
 - How to leverage the HW resources?
- Questions
 - What is the right level of abstraction?
 - Which MPI constructs could leverage HW topologies?
 - What are the interactions with other programming models?

Three Directions Discussed

- The implicit access to the HW topology
 - The HW topology can be accessed through MPI abstractions
- The explicit access to the HW topology
 - A HW topology description can be accessed by the user directly
- The mapping and binding of MPI processes
 - Borderline, but a very important point
 - Related to process managers/RJMS

Implicit access to HW topologies

- Current proposal:
 - Creation of so-called hierarchical communicators
 - A communicator corresponds to a specific level in the HW hierarchy
 - Based on the MPI_Comm_split_type function
 - Introduce a new split_type value: wpi_comm_type_physical_topology
- Prototype implementation available: Hsplit
 - External library (for now)
 - Available at : http://mpi-topology.gforge.inria.fr/
 - hwloc/netloc-based implementation

Explicit access

- Determination of processes coordinates and neighborhoods
 - MPI_T interface
 - Dedicated functions (E.g. Fujitsu's extensions)

Table 5.1 Rank query interface function list

Function name	Function overview
FJMPI_Topology_get_dimension	Gets the number of dimensions given to MPI_COMM_WORLD
FJMPI_Topology_get_shape	Gets the process shape given to MPI_COMM_WORLD
FJMPI_Topology_rank2x	Gets the X coordinate value from the rank number
FJMPI_Topology_rank2xy	Gets the XY coordinate value from the rank number
FJMPI_Topology_rank2xyz	Gets the XYZ coordinate value from the rank number
FJMPI_Topology_x2rank	Gets the rank number from the X coordinate value
FJMPI_Topology_xy2rank	Gets the rank number from the XY coordinate value
FJMPI_Topology_xyz2rank	Gets the rank number from the XYZ coordinate value

Mapping/binding

- Difficult issue
 - "Outside the scope of the standard"
 - Involves RJMS, process managers, MPI applications
 - At what level (e.g MPI_Bind)?
 - Identify the possible interactions
 - Binding is easy, mapping not so
 - Even worse in hybrid, dynamic cases
- Not very user-friendly
 - Changes from one implementation version to the other
 - Not portable
- Standardize mpiexec/mpirun parameters?

Join us!

- Github: https://github.com/mpiwg-hw-topology
 - Teleconferences on regular basis
 - The minutes are available
- We need
 - Feedback from application developers
 - More use cases