

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół 2: 1.Kulig Mateusz 2.Ryś Przemysław

AGH	Wyo	iział FilS	2.Rys Przemysław			
Fizyka		techniczna				
Laboratorium Technik Jądrowych						
Rok akademicki: 2022/2023		Semestr V	Grupa: 3			
Temat ćwiczenia:						
Pomiar wilgotności materiałów przemysłowych metodą neutronową						
Data wykonania ćwiczenia		Data oddania sprawozdania	Ocena			
	01.12.2022	15.12.2022				

1 Wstęp teoretyczny

Pomiar wilgotności danego materiału to pomiar ilości wody w tym materiałe, czyli jeśli dany materiał w stanie suchym, to zawiera nieznaczne ilości wodoru, bądź ilość wodoru w nim jest dobrze znana. Wówczas pomiar ilości wody w materiałe możemy utożsamić z pomiarem zawartości wodoru. Pomiar wilgotności materiałów przemysłowych metodą neutronową polega na odpowiednim wykorzystaniu oddziaływania neutronów z jądrami wodoru. Jądra wodoru mają bardzo zbliżoną masę do masy neutronu, zatem wykorzystując klasyczny model zderzenia centralnego dwóch kul o takich samych masach, wodór bardzo dobrze spowalnia neutrony. Przekrój czynny na oddziaływanie neutronów jest odwrotnie proporcjonalny do prędkości neutronów, zatem możemy powiązać ze sobą liczbę zliczeń neutronów i zawartość wodoru w badanej próbce.

2 Aparatura

W skład aparatury wchodziły następujące przyrządy:

Rys. 1

- 1 Źródło neutronów Pu + Be
- 2 Korpus z tarnamidu
- 3 Miejsce na próbkę analizowanego materiału
- 4 Liczniki neutronów
- 5 Blacha kadmowa
- 6 Przedwzmacniacz
- 7 Reflektor grafitowy
- Linijka Potrzebna do wyznaczenia objętości próbek
- 7 próbek wyznaczników
- 8 próbek do zbadania

3 Analiza danych

3.1 Cechowanie metody

Przeprowadzenie doświadczenia rozpoczęliśmy od eksperymentalnego wyznaczenia zależności między liczbą zliczeń rejestrowanych przez liczniki, a zawartością wodoru (Z_H) w próbkach. Do dyspozycji mieliśmy 7 próbek wzorcowych, których masy (m_{prbki}) były podane. Zawartość procentową wodoru dla próbek wzorcowych odczytaliśmy z tablic. Następnie każdą z próbek wzorcowych umieszczaliśmy w neutronowym mierniku wodoru, oraz przez 100 sekund wykonywaliśmy pomiar ilości zliczeń neutronów(J). Wszystkie powyższe wartości zawarliśmy w tabeli 1. Następnie za pomocą wzoru

$$Z_H \cdot m_{prbki} \cdot 0,01 = m_H. \tag{1}$$

wyznaczyliśmy masę wodoru w próbce (m_H) dla każdego materiału, a wyniki przedstawiliśmy w przedostatniej kolumnie w tabeli 1. Jako że ilość zliczeń nie zależy od masy wodoru w próbce, a od jego gęstości na jednostkę objętości (ρ_H) , gestość wodoru w próbce wyznaczyliśmy za pomocą wzoru

$$\rho_H = \frac{m_H}{V},\tag{2}$$

w którym V to objętość próbki. Wymiary wszystkich próbek były takie same i miały wartości: promień podstawy próbki - r = 5[cm], wysokość próbki - h = 4,5[cm], czyli objętość V była identyczna w każdym przypadku i wynosiła

$$V = \pi r^2 h = \pi \cdot 5^2 \cdot 4, 5 = 353, 43 [\text{cm}^3]. \tag{3}$$

Gęstość wodoru w każdej próbce zawarliśmy w ostatniej kolumnie tabeli 1. W ostatnim kroku wykonaliśmy cechowanie neutronowego miernika wodoru, wyznaczając korelacje między liczbą zliczeń i gęstością wodoru dla próbek wzorcowych w postaci prostej. Korzystając z funkcji "REGLINP()"przy wykorzystaniu programu Microsoft Excel otrzymaliśmy współczynniki prostej regresji, które wynoszą odpowiednio: $a=403396,27[\frac{\mathrm{cm}^3}{\mathrm{g}}],\,b=7819,06.$ Zależność liczby zliczeń od gęstości wodoru w próbce przedstawiliśmy na wykresie 2 wraz z dopasowaną prostą daną wzorem

$$J = 403396, 27\rho_H + 7819, 06. (4)$$

m 1 4 m 1 1		, · 1	1 . , . 1	/1 1 1		
Tab. 1: Tabela zestawiajaca	i wartosci zawarto	sci wodorii w s	zaleznosci od	nrobki i ich	zawartosci pr	ocentowei
Tab. 1. Tabela Zestawiające	i wai iosci zawai io	bei wodora w z	zaiczności od	probin rich	Zawar tober pr	occiioowcj.

Numer wzorca	Materiał	Zawartość wodoru [%]	Liczba zliczeń	Waga próbki [g]	Waga wodoru [g]	Gęstość wodoru w próbce $\left[\frac{g}{cm^3}\right]$
1	teflon	0	9408	766,3	0,00	0
2	gips	2,05	16273	434,46	8,91	0,025
3	lak	5,45	39628	538,2	29,33	0,083
4	rezokard	6,42	43299	478,44	30,72	0,087
5	pleksiglas	8,08	47607	414,5	33,49	0,095
6	tarnamid B	8,89	50801	436,25	38,78	0,110
7	parafina	15,1	59824	295,4	44,61	0,126

Rys. 2: Liczba zliczeń neutronów w zależności od ich gęstości w badanej próbce.

3.2 Obliczanie zawartości wodoru w nieznanych próbkach

W następnym kroku przekształciliśmy wzór 4 otrzymując formułę na gęstość wodoru w próbce (wzór 5), którą z kolei wykorzystaliśmy w przekształconym wzorze 1 na zawartość procentową wodoru w próbce (wzór 6). Wyniki dla poszczególnych próbek zawarte zostały w tabeli 2.

$$\rho = \frac{J - b}{a},\tag{5}$$

$$Z_H = \frac{\rho \cdot V}{m_{prbki}} \cdot 100[\%],\tag{6}$$

Tab. 2: Tabela wyznaczonych zawartości procentowych wodoru w zależności od liczby zliczeń dla danej substancji.

Wzorzec	Zawartość [%]	Zliczenia	Waga [g]	Materiał
P-1	4,96	18092	181,31	drewno sosnowe
P-2	9,99	50205	371,6	asfalt
P-3	1,00	13658	511,34	gips z piaskiem
P-4	0,72	12683	590,2	cement związany
P-5	0,76	12984	593,58	cement związany
P-6	8,58	48607	416,6	
P-7	8,71	51528	439,47	
P-8	9,24	55347	450,7	tarnamid

3.3 Pomiary liczby zliczeń dla parafiny

W celu sprawdzenia poprawności działania aparatury pomiarowej w trakcie przeprowadzania eksperymentu, wykonywaliśmy kontrolne pomiary dla parafiny. Otrzymaliśmy w ten sposób 4 wartości przedstawione w tabeli 3 oraz na wykresie 3. Jak widać wahania liczby zliczeń dla parafiny mieszczą się w jednym odchyleniu standardowym, zatem aparatura działała poprawnie przez cały czas trwania eksperymentu.

Tab. 3: Ilość zliczeń dla parafiny w trakcie trwania eksperymentu.

Pomiar	Liczba zliczeń
1	59824
2	59818
3	59535
4	59515
Średnia	59673
Niepewność	244,28

Rys. 3: Liczba zliczeń neutronów dla parafiny w zależności od numeru pomiaru.