Context-Free Grammars + Languages

Alyssa Lytle

Fall 2025

1 Introduction

For this lecture we're finally going to stray *somewhat* from automata and regular languages. We're going to zoom out, in a sense, and talk about Context-Free Grammars (CFGs) and Languages (CFLs).

Just as regular expressions describe regular languages, **context-free grammars describe context-free languages**. However, context free languages can be even more powerful. In fact, the "class" of Context-Free Languages *contains* the set of Regular Languages.

CFLs are good for describing infinite sets of strings in a finite way. [Koz07] They are commonly used for describing the syntax programming languages.

Example 1

Here is an example of a Context-Free Grammar in Backus-Naur Form [Koz07]:

```
 < \text{stmt} > \text{::= } < \text{if-stmt} > | < \text{while-stmt} > | < \text{begin-stmt} > | < \text{assg-stmt} > | < \text{if-stmt} > \text{::= } \text{if } < \text{bool-expr} > \text{then } < \text{stmt} > \text{else } < \text{stmt} > | < \text{while-stmt} > \text{::= } \text{while } < \text{bool-expr} > \text{do } < \text{stmt} > | < \text{
```

Definition 1: Context Free Grammar

A context-free grammar (CFG) is a quadruple

$$G = (N, \Sigma, P, S)$$

where

- N is a finite set (the nonterminal symbols or variables)
- Σ is a finite set (the terminal symbols) dijoint from N
- P is a finite subset of $N \times (N \cup \Sigma)^*$ (the productions or rules), and
- $S \in N$ (the start symbol) [Koz07]

Common Conventions Typically nonterminals are denoted with capital letters (e.g. A, B, ...) and terminals are denoted with lowercase letters (e.g. a, b, ...). Strings in $(N \cup \Sigma)^*$ are often denoted using greek letters (e.g. $\alpha, \beta, \gamma, ...$).

Think of productions kind of like transitions. Instead of a tuple representation like (A, α) , they often have an arrow representation $A \to \alpha$.

To denote a set of productions with the same left-hand side, instead of listing them

$$A \to \alpha_1, A \to \alpha_2, A \to \alpha_3$$

You use the abbreviation

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3$$

Example 2

The nonregular set $\{a^nb^n|n\geq 0\}$ can be represented as a CFL $S\to aSb\mid \epsilon$

More specifically, in quadruple form: $G = (N, \Sigma, P, S)$, where

- $N = \{S\}$
- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb, S \rightarrow \epsilon\}$

Here's how you would derive the string a^3b^3 or aaabbb:

$$\begin{array}{ccc} S & \text{Start Symbol} \\ aSb & \text{Apply } S \rightarrow aSb \text{ from } P \\ aaSbb & \text{Apply } S \rightarrow aSb \text{ from } P \\ aaaSbbb & \text{Apply } S \rightarrow aSb \text{ from } P \\ aaabbb & \text{Apply } S \rightarrow \epsilon \text{ from } P \end{array}$$

The more common way to write this is:

$$S \xrightarrow{1}_{G} aSb \xrightarrow{1}_{G} aaSbb \xrightarrow{1}_{G} aaaSbbb \xrightarrow{1}_{G} aaabbb$$

Or
$$S \xrightarrow{4} aaabbb$$

In English you'd say "This string is derivable from the start symbol in 4 steps."

2

Definition 2: Sentential Form + Sentence

A string in $(N \cup \Sigma)^*$ derivable from the start symbol S is called a *sentential form*. A sentential form is called a *sentence* if it consists only of terminal symbols. [Koz07] (In other words, a sentence would be in Σ^* .)

Derivable Strings As we showed in the above example,

- $\alpha \xrightarrow{1} \beta$ if β can be derived from α over one step in the grammar G.
- $\alpha \xrightarrow{n}_{G} \beta$ if β can be derived from α over n steps in the grammar G.

Moreover

• $\alpha \xrightarrow{*}_{G} \beta$ if $\alpha \xrightarrow{n}_{G} \beta$ for some $n \geq 0$

This allows us to define the language of a grammar in the following way:

Definition 3

The language of the grammar G is $\{w \in \Sigma^* \mid S \xrightarrow{*}_G w\}$

1.1 Converting a DFA into a CFG

There is an easy step-by-step way to convert a DFA $M=(Q,\Sigma,\delta,s,F)$ into a CFG:

- For each $q_i \in Q$, make a nonterminal R_i
- For all transitions $\delta(q_i, x) = q_j$, $(x \in \Sigma)$, add the rule $R_i \to xR_j$
- If q_i is an accept state, add the rule $R_i \to \epsilon$
- If q_0 is the start state of the machine, make R_0 the start variable.

References

[Koz07] Dexter C Kozen. Automata and computability. Springer Science & Business Media, 2007.