Problem: Given a point (ρ, z) , what is the minimum distance to the current sheet given by the equation: $z_{CS} = \left[\rho - R_H \tanh\left(\frac{\rho}{R_H}\right)\right] \tan\theta_S$?

Solution: The squared distance between (ρ, z) and (ρ_{CS}, z_{CS}) is given by

$$D^{2} = (\rho_{\rm CS} - \rho)^{2} + (z_{\rm CS} - z)^{2} = (\rho_{\rm CS} - \rho)^{2} + \left(\left[\rho_{\rm CS} - R_{\rm H} \tanh \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \right] \tan \theta_{\rm S} - z \right)^{2}$$

Taking $\frac{\partial D^2}{\partial \rho_{CS}}$

$$\frac{\partial D^2}{\partial \rho_{\rm CS}} = 2(\rho_{\rm CS} - \rho) + 2\left(\left[\rho_{\rm CS} - R_{\rm H}\tanh\left(\frac{\rho_{\rm CS}}{R_{\rm H}}\right)\right] \tan\theta_{\rm S} - z\right) \left[1 - R_{\rm H}\frac{\partial}{\partial \rho_{\rm CS}}\left(\tanh\left(\frac{\rho_{\rm CS}}{R_{\rm H}}\right)\right)\right] \tan\theta_{\rm S} - z$$

where,

$$\frac{\partial}{\partial \rho_{\rm CS}} \bigg(\tanh \bigg(\frac{\rho_{\rm CS}}{R_{\rm H}} \bigg) \bigg) = \bigg(1 - \tanh^2 \bigg(\frac{\rho_{\rm CS}}{R_{\rm H}} \bigg) \bigg) \frac{1}{R_{\rm H}},$$

yielding,

$$\frac{\partial D^2}{\partial \rho_{\rm CS}} = 2(\rho_{\rm CS} - \rho) + 2\left(\left[\rho_{\rm CS} - R_{\rm H}\tanh\left(\frac{\rho_{\rm CS}}{R_{\rm H}}\right)\right]\tan\theta_{\rm S} - z\right)\tanh^2\left(\frac{\rho_{\rm CS}}{R_{\rm H}}\right)\tan\theta_{\rm S}.$$

Setting $\frac{\partial D^2}{\partial \rho_{CS}} = 0$ and solving for ρ_{CS} gives the minimum distance to the current sheet, but, no closed form solution exists. However, ρ_{CS} can be found numerically via the Newton-Raphson root-finding method. This requires knowledge of the second derivative $\frac{\partial^2(D^2)}{\partial \rho_{CS}^2}$:

$$\begin{split} \frac{\partial^2(D^2)}{\partial \rho_{\text{CS}}^2} &= \frac{\partial}{\partial \rho_{\text{CS}}} \bigg(2(\rho_{\text{CS}} - \rho) + 2 \left(\left[\rho_{\text{CS}} - R_{\text{H}} \tanh \left(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \right) \right] \tan \theta_{\text{S}} - z \right) \tanh^2 \left(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \right) \tan \theta_{\text{S}} \bigg) \\ &\frac{\partial^2(D^2)}{\partial \rho_{\text{CS}}^2} = 2 + 2 \frac{\partial}{\partial \rho_{\text{CS}}} \bigg[\bigg(\left(\rho_{\text{CS}} - R_{\text{H}} \tanh \left(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \right) \right) \tan \theta_{\text{S}} - z \bigg) \tanh^2 \bigg(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \bigg) \tan \theta_{\text{S}} \bigg] \\ &= 2 + 2 \frac{\partial}{\partial \rho_{\text{CS}}} \bigg(\bigg(\rho_{\text{CS}} - R_{\text{H}} \tanh \bigg(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \bigg) \bigg) \tan \theta_{\text{S}} - z \bigg) \tanh^2 \bigg(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \bigg) \tan \theta_{\text{S}} - z \bigg) \frac{\partial}{\partial \rho_{\text{CS}}} \bigg(\tanh^2 \bigg(\frac{\rho_{\text{CS}}}{R_{\text{H}}} \bigg) \tan \theta_{\text{S}} \bigg) \bigg), \end{split}$$

where,

$$\frac{\partial}{\partial \rho_{\rm CS}} \left(\left(\rho_{\rm CS} - R_{\rm H} \tanh \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \right) \tan \theta_{\rm S} - z \right) = 1 - R_{\rm H} \left(1 - \tanh^2 \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \right) \tan \theta_{\rm S} \frac{1}{R_{\rm H}} = \tanh^2 \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \tan \theta_{\rm S},$$

and,

$$\frac{\partial}{\partial \rho_{\rm CS}} \left(\tanh^2 \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \tan \theta_{\rm S} \right) = 2 \tanh \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \left(1 - \tanh^2 \left(\frac{\rho_{\rm CS}}{R_{\rm H}} \right) \right) \frac{1}{R_{\rm H}} \tan \theta_{\rm S},$$

therefore:

$$\frac{\partial^2(D^2)}{\partial \rho_{\text{CS}}^2} = 2 + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \tan^2\theta_{\text{S}} + \frac{4}{R_{\text{H}}}\left(\left(\rho_{\text{CS}} - R_{\text{H}} \tanh\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z\right) \\ \tanh\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^2\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left(1 - \tanh^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right)\right) \tan\theta_{\text{S}} - z \\ + 2 \ln^4\left(\frac{\rho_{\text{CS}}}{R_{\text{H}}}\right) \left($$

The solutions for $\frac{\partial D^2}{\partial \rho_{\text{CS}}}$ and $\frac{\partial^2 (D^2)}{\partial \rho_{\text{CS}}^2}$ can be used along with the initial guess $\rho_0 = \rho$ to find the point on the current sheet, $(\rho_{\text{CS}}, z_{\text{CS}})$, which is the minimum distance between (ρ, z) and $(\rho_{\text{CS}}, z_{\text{CS}})$.