Khuyen Le Thi Minh – s5128

Homework 05

1. Give a non – deterinistic automaton accepting words over alphabet {a.b}, containing a subword 'abbaabb'

2. Determinise the following non – deterministic automaton (ommit the non – reachable states, if they appear in the construction).

3. Eliminate ε – transitions in the following automation

	а	b	ε
→ 1	1	_	2,4
2	_	3	3
3	3	_	_
4	5	_	_
5	_	4	4

-b,ε-

I'vesearched on the internet of the way how to remove ε – transitions and there is another way, in here it stated that every state on epsilon going to itself.

	а	b	ε
→ 1	1	_	2,4
2	_	3	3
3	3	_	_
4	5	_	_
5	_	4	4

sketch

	$oldsymbol{arepsilon}^*$	а	$arepsilon^*$
1	1	1	1,2,3,4
	2	_	_
	3	3	3
	4	5	4,5
2	2	_	_
	3	3	3
3	3	3	3
4	4	5	4,5
5	4	5	4,5
	5	_	_

	*	7	*
	$oldsymbol{arepsilon}^*$	b	$oldsymbol{arepsilon}^*$
1	1	_	_
	2	3	3
	3	_	_
	4	_	_
2	2	3	3
	3	_	_
3	3	_	_
4	4	_	_
5	4	_	_
	5	4	4