

목 차

Τ.	준비하기	∠p
	1.1. PC 사양	2p
	1.2 인터페이스 구성을 위한 준비물	2p
	1.3 Windows 방화벽 및 백신	3р
	1.4 카메라 사용 시 주의사항	4р
2.	설치 가이드	6р
	2.1 MCam40 설치	6р
	2.2 MCam40 파일 구성	6p
		7p
	2.3 네트워크 환경 설정	
3.	2.3 네트워크 환경 설정	
	2.4 카메라 IP 설정 (MVIPConfig 사용법)	13p
	2.4 카메라 IP 설정 (MVIPConfig 사용법)	13p
	2.4 카메라 IP 설정 (MVIPConfig 사용법)	13 p 17 p
	2.4 카메라 IP 설정 (MVIPConfig 사용법) CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control	
	CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control 4.2 Image Format Control	
	CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control 4.2 Image Format Control 4.3 Acquisition Control	
	CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control 4.2 Image Format Control 4.3 Acquisition Control 4.4 Digital IO Control	
	CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control 4.2 Image Format Control 4.3 Acquisition Control 4.4 Digital IO Control 4.5 Counter and Timer Control	
	CamGuide UI 소개 CamGuide Feature 설명 4.1 Device Control 4.2 Image Format Control 4.3 Acquisition Control 4.4 Digital IO Control 4.5 Counter and Timer Control 4.6 Analog Control	

1. 준비하기

1.1 PC 사양

① GigE 인터페이스

▶ CPU: Intel Core 2 Duo, 2.4GHz 이상

▶ RAM: 2GB 이상

▶ O/S: Windows XP 이상(32bit/64bit)

▶ LAN Card : Intel PRO/1000xT 이상

▶ VGA: PCI x 16, VRAM DDR2 RAM 256MB 이상

② USB 인터페이스

▶ CPU: Intel Core 2 Duo, 1.6GHz 이상

▶ RAM: 2GB 이상

▶ O/S: Windows XP 이상(32bit/64bit)

▶ USB Port : 최소 1개 이상의 USB2.0 Port

1.2 인터페이스 구성을 위한 준비물

- ① GigE 인터페이스
 - ▶ CREVIS GigE 카메라
 - ► CREVIS Mcam40(SDK)

CREVIS GigE 카메라를 사용하기 위해 사용자의 PC에 CREVIS에서 제공하는 SDK가 설치되어야 합니다. SDK는 아래 링크에서 다운로드 가능합니다.

http://www.crevis.co.kr/kor/support/download/MCam40_SDK.zip

- ▶ 카테고리5E 또는 그 이상의 성능을 가진 네트워크 케이블
- ▶ 카메라 전원 케이블

CREVIS GigE 카메라 작동을 위해 12V의 전압이 필요합니다.

카메라 전원 케이블은 별도로 구매하셔야 됩니다.

PoE 모듈을 사용하실 경우 별도의 전원 케이블이 필요하지 않습니다.

- ② USB 인터페이스
 - ▶ CREVIS USB 카메라
 - ► CREVIS Mcam40(SDK)

 CREVIS USB 카메라를 사용하기 위해 사용자의 PC에 CREVIS에서 제공하는 SDK가 설치되어야 합니다. SDK는 아래 링크에서 다운로드 가능합니다.

http://www.crevis.co.kr/kor/support/download/MCam40_SDK.zip

▶ Mini-B 타입 USB 케이블 또는 12핀 전원 케이블

1.3 Window 방화벽 및 백신

- ▶ CREVIS GigE 카메라의 안정적인 패킷 전송과 연결을 위해서 Windows 방화벽 및 백신을 해제 및 예외 항목으로 설정해야 합니다.
- ▶ Windows 방화벽 설정 방법
- ① Windows XP

시작 \rightarrow 제어판 \rightarrow 보안센터 \rightarrow Windows 방화벽 \rightarrow Windows 방화벽 설정 또는 해제 \rightarrow Windows 방화벽 사용 안 함

② Windows 7

시작 → 제어판 → Windows 방화벽 → Windows 방화벽 설정 또는 해제

1.4 카메라 사용 시 주의사항

- 1) 사용 온도: 0~40℃
 - ▶ 주변 온도 변화에 따라 데이터 출력 값이 변할 수 있으므로 가급적 주변 온도를 일정하게 유지하시기 바랍니다.
 - ▶ GiqE 인터페이스 카메라의 경우 방열 대책을 강구해야 합니다. (고온주의)
- 2) 누수 및 습기 주의
 - ▶ 제품 자체에 방수 기능이 없으므로 지나친 습기에 노출되지 않도록 주의 하시기 바랍니다.
- 3) 화기
 - ▶ 소비전력은 사용 환경에 따라 차이가 나지만 전력 소비량이 높으므로 제품 주변을 밀폐 시키거나 공기 흐름을 차단하지 않고 통풍이 잘되는 환경을 유지하시기 바랍니다.

- 4) 제품 성능은 케이블 특성에 따라 달라질 수도 있습니다.
- 5) Gigabit EtherNet의 경우 영상 패킷은 CPU 점유율이 높아지면 잃어버릴 확률이 높으므로 이미지 획득 중에는 CPU의 점유율을 50% 이상 초과하지 않을 것을 권장합니다.
- 6) 하나의 랜 포트에 허브를 이용하여 2대 이상의 카메라 연결 시 대역폭 문제가 발생할 수 있습니다.
- 7) GigE 카메라의 경우 UDP 통신을 하기 때문에 데이터 전송을 보장하지 못합니다. 그렇기 때 문에, Packet Size와 Packet Delay, Transfer Delay 등의 기능을 사용하여 대역폭을 넘지 않게 사용하는 것이 중요합니다.
- 8) Windows7 환경에서 Filter Driver를 적용하려면 관리자 권한으로 실행되어야 합니다.
- 9) Packet Size의 경우 사이즈가 클수록 패킷 손실률이 감소합니다. 단, 네트워크 카드에서 설 정한 점보패킷(점보프레임)보다 높을 경우 패킷 손실이 발생할 수 있습니다.
- # 점보프레임 9016바이트 기준 권장 Packet Size: 8192
- 10) GigE 인터페이스 카메라 상태에 따른 후면 LED
- ▶ CamGuide 및 MVIPConfig 사용 전 후면 LED가 정상 연결 상태인지 확인하시기 바랍니다.

Power 연결 시

Lan케이블 연결 시 (카메라 IP설정 단계) (이미지 획득 대기)

정상 연결

이미지 획득 중 (상단LED 점멸)

2. 설치 가이드

2.1 MCam40 설치

- 1) PC에 연결된 모든 카메라를 제거 합니다.
- 2) PC의 모든 윈도우 기반 프로그램을 종료합니다.
- 3) Mcam40 설치 후 PC를 재부팅 합니다.
 - ▶다운로드 링크: http://www.crevis.co.kr/kor/support/download/MCam40_SDK.zip
 - ▶ MCam40 설치파일 차이점 (x64, wow64, x86)
 - MCam40_SDK_V4.1.0.1_wow64.exe
 - MCam40_SDK_V4.1.0.1_x64.exe
 - MCam40_SDK_V4.1.0.1_x86.exe
 - ① ... x64.exe : 64비트 운영체제용 SDK 설치 파일
 - ② ... x86.exe : 32비트 운영체제용 SDK 설치 파일
 - ③ ... wow64.exe: 64비트 운영체제 + 32비트용 개발프로그램 사용 시 설치 파일

2.2 MCam40 파일 구성

MCam40

📆 CamGuide

MVIPConfig

X Uninstall MCam40

Documents

GenICam GenTL

GenICam SFNC

■ Installation Guide
② User Manual

☑ VirtualFG40

Examples

C#.Net

N C++

NB.Net

№ VB60

1 CamGuide : CamGuide 실행 파일

MVIPConfig: 카메라 IP 설정 프로그램

2.3 네트워크 환경 설정

1) 카메라와 PC의 안정적인 통신을 위해 사용하지 않는 네트워크는 Disabled 해주시기 바랍니다.

2) 장치관리자 \rightarrow 네트워크 어댑터 \rightarrow 속성 \rightarrow 고급 \rightarrow 점보패킷(점보프레임) \rightarrow 최대사이즈 로 설정

3) 장치관리자 → 네트워크 어댑터 → 속성 → 고급 → 전송버퍼, 수신버퍼 최대사이즈로 설정

4) 장치관리자 → 네트워크 어댑터 → 속성 → 고급 → 인터럽트 조절 속도 최대로 설정

2.4카메라 IP 설정 (MVIPConfig 사용법)

1) TCP/IP 등록 정보를 등록합니다.

제어판 → 네트워크 및 공유 센터 → 어댑터 설정 변경 → 로컬 영역 연결 속성

→ Internet Protocol Version 4(RCP/IPv4) 속성

- 2) 시작 → 모든프로그램 → CREVIS → MCam40 → MVIPConfig 실행 후 Camera의 IP주소, Subnet Mask 및 Gateway를 설정합니다.
 - ① 카메라의 IP주소는 연결된 포트의 IP주소와 세번째 영역까지 동일하게 입력합니다.
 - ② Subnet Mask는 255.255.255.0으로 동일하게 입력합니다.
 - ③ 카메라의 Gateway는 연결된 포트의 IP 주소를 입력합니다.

- 3) 한 포트에 여러 대의 카메라 사용 시 IP 설정 방법 예시
 - ▶ 각 카메라는 중복되지 않는 고유한 IP주소를 가져야 합니다.

Subnet A	IP 주소	Subnet Mask	Gateway
로컬 영역 연결1	169.254.100.1	255.255.255.0	-
Camera 1	169.254.100.2	255.255.255.0	169.254.100.1
Camera 2	169.254.100.3	255.255.255.0	169.254.100.1

Subnet B	IP 주소	Subnet Mask	Gateway
로컬 영역 연결2	169.254.200.1	255.255.255.0	-
Camera 3	169.254.200.2	255.255.255.0	169.254.200.1
Camera 4	169.254.200.3	255.255.255.0	169.254.200.1

3. CamGuide UI 소개

▮ 메뉴

항 목	설 명
Grab Single	한 장의 이미지를 획득합니다.
Grab Continuous	계속하여 이미지를 획득합니다.
S/W Grab Continuous	소프트웨어 트리거를 통해 계속하여 이미지를 획득합니다.
Stop	이미지 획득을 멈춥니다.
Zoom-in	이미지를 확대하여 보여줍니다
	이미지를 축소하여 보여줍니다.
Z Zoom Fit	화면 크기에 맞추어 이미지를 보여줍니다.
Zoom 1:1	실제 크기로 이미지를 보여줍니다.
Save Image (Display)	현재 보여지는 이미지를 저장합니다.
Save Image (Receive)	획득한 이미지를 저장합니다.

☑ 디스플레이 영역

- ▶ 카메라가 획득 중인 이미지가 보여지는 영역 입니다.
- ▶ 여러 대의 카메라가 획득하는 영상을 다양한 방식으로 출력 가능합니다.

① Single Tab 방식

② Multi Tab 방식

③ Dual Tab 방식

▶ 상태 표시줄

Frame Count: 0, undelivered: 0 FPS: 0.00

① Frame Count : 획득된 이미지의 수

② Undelivered: 카메라로부터 PC에 제대로 전달되지 못한 이미지의 수

③ FPS: 초당 획득되는 이미지의 수

3 Device View

▶ PC에 연결된 카메라의 목록을 보여줍니다.

▶ 카메라 모델명과 시리얼번호를 확인할 수 있습니다.

Feature Properties

- ▶ 카메라의 정보 및 기능 설정 목록을 보여줍니다.
- ▶ 카메라의 기능 설정 값을 조정하여 사용자가 원하는 형태로 이미지 획득이 가능합니다.

5 출력창

▶ Feature Properties 영역에서 선택된 기능에 대한 설명을 보여주는 영역입니다.

4. CamGuide Feature 설명

▶ 이 매뉴얼에는 주요 Feature들에 대한 내용만 수록 되어있습니다. 수록 되지 않은 다른 항목 들에 대해서는 GenICam_SFNC 문서를 참조하시기 바랍니다.

▶ GenICam_SFNC 문서 위치 : 시작 - 모든 프로그램 – CREVIS - MCam40 – Documents

4.1 Device Control

D 1 C . I	
Device Control	
Device Vendor Name	Crevis Co., LTD
Device Model Name	MV-KQ60G
Device Manufacturer Info	CREVIS URL:http://
Device Version	1.9.1.5
Device ID	22251520001
Device User ID	MAIN
Device Scan Type	Areascan

1) Device Vendor Name : 카메라 판매 회사명

2) Device Model Name : 카메라 모델명

3) Device Manufacturer Info : 카메라 제조사 정보

4) Device Version : 카메라 F/W 버전

5) Device ID : 카메라 시리얼번호

6) Device User ID: 카메라 사용자 별칭을 설정합니다.

7) Device Scan Type : 카메라 스캔 방식

4.2 Image Format Control

Image Format Control	
Width Max	2592
Height Max	1944
Width	2592
Height	1944
Offset X	0
Offset Y	0
Binning Horizontal	1
BinningVertical	1
Decimation Horizontal	1
Decimation Vertical	1
Reverse Mode	Off
Pixel Format	BayerGR 8
Bayer Order Pixel Format	Bayer GR
Test Pattern	Off

1) Width Max: 이미지 가로축의 최대 픽셀 수

2) Height Max : 이미지 세로축의 최대 픽셀 수

3) Width: 이미지의 가로축 픽셀 수를 설정합니다.

4) Height: 이미지의 세로축 픽셀 수를 설정합니다.

5) Offset X: 관심영역(ROI)의 X 오프셋을 설정합니다.

6) Offset Y: 관심영역(ROI)의 Y 오프셋을 설정합니다.

7) Binning Horizontal 또는 Binning Vertical

- ① 인접한 두 개의 픽셀의 비용을 합산하여 빛에 대한 카메라의 반응을 증가시키는 기능
- ② 이미지 센서 내에서 인접한 두 픽셀이 합산되어 하나의 픽셀로 내보내집니다.
- ③ Binning Horizontal의 경우 Width가 절반으로 줄어들고 Binning Vertical의 경우 Height 가 반으로 줄어듭니다.
- ④ Binning의 값이 1로 되어있는 경우 Binning기능을 사용하고 있지 않음을 나타냅니다.
- ⑤ Binning 사용 시 고려 사항
 - 빛에 대한 반응 증가

 Binning 기능의 사용은 빛에 대한 카메라의 반응을 크게 증가 시킵니다. 그렇기 때
 문에 Binning을 사용할 때, 획득된 영상은 과다 노출된 것처럼 보일 수 있습니다.
 - 이미지 찌그러짐
 Binning 기능을 사용할 경우 인접한 두 픽셀이 합산되기 때문에 이미지가 찌그러져
 나타납니다.
- 8) Reverse Mode: 이미지를 좌우 또는 상하로 반전하여 나타냅니다.
- 9) Pixel Format : 카메라가 제공하는 픽셀 형식을 선택합니다.
- 10) Test Pattern: 테스트 패턴의 종류를 선택할 수 있습니다.

4.3 Acquisition Control

Acquisition Control	
Acquisition Mode	Continuous
Acquisition Start	Execute
Acquisition Stop	Execute
Acquisition Frame Count	3
Trigger Selector	Frame Start
Trigger Mode	Off
Trigger Software	Execute
Trigger Source	Line 1
Trigger Activation	Rising Edge
Trigger Delay	0.000000
Transfer Delay	0
Exposure Mode	Timed
Exposure Time	66547.750000
Exposure Auto	Off
Auto Exposure Target	128
Exposure Update Feature	Execute
Acquisition Frame Rate Enable	Off

1) Acquisition Mode: 카메라의 이미지 획득 모드를 설정합니다.

① Single Frame: 1장의 이미지를 획득합니다.

② Multi Frame: Acquisition Frame Count에 설정된 값만큼 이미지를 획득합니다.

③ Continuous : Acquisition Stop 명령이 실행될 때 까지 계속하여 이미지를 획득합니다.

2) Acquisition Start : 실행 시 이미지 획득을 시작합니다.

3) Acquisition Stop: 실행 시 이미지 획득을 멈춥니다.

4) Acquisition Frame Count : 획득할 이미지의 수를 설정합니다.

5) Trigger Mode : 트리거 모드를 On/Off 할 수 있습니다.

6) Trigger Software: Trigger Source 값이 Software일 경우 트리거를 발생시킵니다.

7) Trigger Source : 트리거 방식을 지정합니다.

① Line1, Line2: 트리거 소스를 외부 입력으로 지정

② Software : 트리거 소스를 내부 신호로 지정

8) Trigger Activation : 트리거 활성화 모드를 지정합니다.

① Rising Edge: 트리거가 신호의 Rising Edge에서 유효하도록 지정합니다.

② Falling Edge: 트리거가 신호의 Falling Edge에서 유효하도록 지정합니다.

- 9) Trigger Delay: 트리거 신호가 적용되고 활성화 되기까지의 지연을 지정합니다.(us 단위)
- 10) Transfer Delay: 데이터 전송의 지연을 지정합니다.
 - 여러 대의 카메라로 동시에 영상을 획득할 때, 동시에 Data를 받으면 패킷 손실이 발생할수 있습니다. 이러한 경우 Transfer Delay를 설정하여 순차적으로 데이터를 전송함으로써 패킷손실을 줄일 수 있습니다.
- 11) Exposure Mode: 노광의 동작 모드를 설정합니다.
 - ① Timed: Exposure Time에 설정된 시간 동안 노광합니다.
 - ② Trigger Width: 트리거 신호의 펄스 폭만큼의 시간 동안 노광합니다.
- 12) Exposure Time : 노광시간을 지정합니다.
- 13) Exposure Auto : 노광시간을 자동으로 설정합니다.
 - ① Off: Exposure Time에 설정한 시간 만큼 노광합니다.
 - ② Once: 적용한 시점에 한 번만 자동으로 노광시간이 설정됩니다.
 - ③ Continuous : 계속하여 자동으로 노광시간이 설정됩니다.
- 14) Auto Exposure Target : 노광시간 자동 설정을 위한 기준 값을 지정합니다.
- **15) Acquisition Frame Rate Enable**: Acquisition Frame Rate 사용 여부를 지정합니다.
 - ① Off: Free-run 모드로 동작
 - ② On: Acquisition Frame Rate에 설정된 fps로 이미지 획득
- 16) Acquisition Frame Rate : 이미지를 획득할 fps를 설정합니다.

4.4 Digital IO Control

Digital IO Control	
Line Selector	Line 1
Line Mode	Input
Line Inverter	True
Line Status	True
Lille Status	True
Line Stauts Update Feature	Execute
Line Stauts Update Feature	

1) Line Selector : 외부 장치 구성을 위한 커넥터의 물리적 라인을 선택합니다.

2) Line Mode: 물리적 라인이 입/출력 중 어떤 용도로 사용되는지 보여줍니다.

3) Line Inverter : 선택한 입출력라인의 신호를 반전합니다.

4) Line Status : 선택한 입력 또는 출력라인의 상태를 보여줍니다.

5) Line Source : 선택한 라인의 출력 소스를 선택합니다.

- Line Mode가 Output인 경우에만 활성화 됩니다.

6) User Output Selector: User Output 레지스터를 선택합니다.

7) User Output Value: User Output Selector 에 의해 선택된 비트의 값을 설정합니다.

4.5 Counter And Timer Control

Counter And Timer Control	
Timer Selector	Timer 1
Timer Duration	0.000000
Timer Delay	0.000000

1) Timer Selector : 타이머 구성을 선택합니다.

2) Timer Duration : 타이머의 시간을 설정합니다. (us 단위)

3) Timer Delay : 타이머를 시작하기 전 트리거 수신 시 적용할 지연시간을 설정합니다.

4.6 Analog Control

Analog Control	
Gain Selector	All
Gain Raw	14
Gain Auto	Off
Gain Update Feature	Execute
Black Level Selector	All
Black Level Raw	0
Balance Ratio Selector	Red
Balance Ratio	1.532227
Balance White Auto	Off
Balance Update Feature	Execute
Defect Filter Enable	▼ True

- 1) Gain Raw: Gain 값을 설정합니다.
- 조명 상태가 좋지 않아 이미지가 어두운 경우 Gain을 사용하면 밝은 영상을 획득할 수 있습니다.
- Gain은 카메라에 들어온 이미지 신호 자체를 증폭시키는 것이기 때문에 노이즈 신호 또한 같이 증폭이 됩니다. 따라서, Gain 값을 높게 설정할 경우 노이즈가 심한 이미지가 획득 될 수 있으므로 사용 상 주의하셔야 합니다.
- 2) Gain Auto : Gain값을 자동으로 설정합니다.
- 3) Balance Ratio Selector : White Balance를 위한 기준 색을 설정합니다.
- 4) Balance Ratio: Balance Ratio Selector에서 설정한 기준 색의 성분 비율을 설정합니다.
- 5) Balance White Auto : 자동으로 White Balance를 조정합니다.
 - ① Off: 사용자가 Balance Ratio를 통해 조정하는 경우에 사용됩니다.
 - ② Once: 적용한 시점에 한 번만 자동으로 White Balance를 조정합니다..
 - ③ Continuous : 계속하여 자동으로 White Balance를 조정합니다.

4.7 Transport Layer Control

Transport Layer Control	
Payload Size	5038848
Gev Version Major	1
Gev Version Minor	2
	_
Gev Device Mode Is Big Endian	✓ True
Gev Device Mode Character Set	UTF 8
Gev Interface Selector	0
Gev MACAddress	0014F700BE4B
Supported Option Selector	User Defined Name
Gev Supported Option	✓ True
Gev Current IPConfiguration LLA	✓ True
Gev Current IPConfiguration DHCP	▼ True
Gev Current IPConfiguration Persiste	True
Gev Current IPAddress	A9FEDCB6
Gev Current Subnet Mask	FFFF0000
Gev Current Default Gateway	00000000
Gev First URL	Local:XmlVersion.1
Gev Second URL	File:XmlVersion.1.2
Gev Number Of Interfaces	1
Gev Persistent IPAddress	
Gev Persistent Subnet Mask	
Gev Persistent Default Gateway	
Gev Message Channel Count	1
Gev Stream Channel Count	1
Gev Heartbeat Timeout	3000
Gev GVCP Heartbeat Disable	True
Gev Timestamp Tick Frequency	62500000
Gev Timestamp Control Latch	Execute
Gev Timestamp Control Reset	Execute
Gev Timestamp Value	0
Gev CCP	Exclusive Access
Gev MCPHost Port	0000E6E1
Gev MCDA	A9FE9307
Gev MCTT	0
Gev MCRC	0
Gev MCSP	00000000
Gev Stream Channel Selector	0
Gev SCPInterface Index	0
Gev SCPHost Port	00000000
Gev SCPSFire Test Packet	True
Gev SCPSDo Not Fragment	True
Gev SCPSDo Not Fragment Gev SCPSBig Endian	True
_	
Gev SCPSBig Endian	True
Gev SCPSBig Endian Gev SCPSPacket Size	1 True 9152

- 1) Gev Heartbeat Timeout : Heartbeat 제한 시간을 설정합니다. (ms 단위)
 - PC와 카메라가 연결되어 있을 때, 카메라가 영상 획득 중이 아니어도 연결이 정상적으로 되고 있는지 확인하는 기능입니다.
 - 예를 들어, Gev Heartbeat Timeout의 값을 3000으로 설정한다면 3초 이내에 신호가 확인 이 안될 경우 PC와 카메라 간 연결이 끊어진 것으로 간주합니다.
- 2) Gev GVCP Heartbeat Disable: Heartbeat Timeout의 사용 여부를 지정합니다.
- 3) Gev SCPSPacket Size: 한 번에 전송할 패킷의 크기를 설정합니다.
 - Gev SCPSPacket Size 설정 시 패킷의 크기가 점보프레임(또는 점보패킷)을 초과하지 않도록 설정해야 합니다.
 - 점보프레임(또는 점보패킷) 9K 바이트 기준 권장 패킷 사이즈는 8192 입니다.
- 4) Gev SCPD : Packet Delay를 설정합니다.
 - Packet Delay 기능은 카메라로부터 출력되는 각 패킷들 사이에 지연을 추가하여 데이터 출력율을 낮추어 대역폭을 초과하지 않도록 하는 기능입니다.(패킷 손실 예방)

4.8 User Set Control

User Set Control	
User Set Selector	User Set 3
User Set Load	Execute
User Set Save	Execute

- 1) User Set Selector: 카메라 설정 값을 저장하고 로드 하기 위한 번호를 지정합니다.
- 2) User Set Load: User Set Selector에 선택된 번호에 저장된 카메라 설정 값을 불러옵니다.
- 3) User Set Save: 현재 설정된 Feature 값을 User Set Selector에 선택된 번호에 저장합니다.

4.9 Device Option Control

Device Option Control	
Device Filter Driver Mode	Off
Device Command Timeout	400
Device Command Retry Number	3
Device Stream Timeout	400
Device Missing Packet Display	Off
Device Use Packet Resend	▼ True
Device Max Packet Resend Count	10
Device Find Max Packet Size.	Execute
Device Max Packet Size	0

1) Device Filter Driver Mode

- 기능
 - ① 각 프레임에 대해 수신된 패킷의 순서를 체크합니다.
 - ② 손실된 패킷을 검출하면 일정시간 대기합니다.
 - ③ 패킷이 일정시간 내 도착하지 않는 경우 누락된 패킷에 대한 재전송 요청을 보냅니다.

2) Device Missing Packet Display

수신된 패킷이 손실되었을 경우 해당 패킷의 프레임을 화면에 출력할 것인지 설정합니다.

3) Device Use Packet Resend

- 수신된 패킷이 손실되었을 경우 카메라에 패킷 재전송 요청 전달 여부를 설정합니다.
- Packet Resend 기능 사용 시 카메라가 내부버퍼에 패킷을 가지고 있을 경우 패킷을 다시 전송합니다.
- 4) Device Max Packet Resend Count: 최대 몇 번의 패킷 재전송 요청할 지 설정합니다.

5.자주 발생하는 문제와 해결법

Q1. 카메라의 전원이 들어갔는지 아닌지 알고 싶습니다.

A1. 카메라의 LED 를 확인하시면 됩니다. 두 개의 LED 중 하단의 LED 가 점등되어 있으면 카메라 전원이 들어가는 상태입니다.

Power 연결 시

Lan케이블 연결 시 (카메라 IP설정 단계)

정상 연결 (이미지 획득 대기)

이미지 획득 중

Q2. 카메라 IP 설정

A2. 카메라는 동일 네트워크 상에서 유일한 IP 주소를 가져야 합니다. 카메라와 호스트 컨트롤러는 동일한 Subnet Mask 를 가져야 합니다. 카메라의 IP 는 DHCP(동적 IP 설정) 또는 Static IP(정적 IP 설정) 두 가지 중 하나로 설정할 수 있습니다.

Q3. 영상 획득이 이루어지질 않습니다.

A3-1. 방화벽 또는 백신이 설정되어 있는지 확인 하시기 바랍니다.

A3-2. Feature Properties 의 Trigger Mode 가 On 으로 설정되어 있는지 확인 하시기 바랍니다.

Q4. 영상은 들어오는데 Undelivered Image 가 급격히 늘어납니다.

A4-1. 점보패킷, Packet Size 및 Packet Delay 설정을 확인하십시오. 크래비스 카메라의 경우 기본 Packet Delay 는 Frame Rate 가 떨어지지 않는 범위 내에서 최대 값이 0으로 설정되어 있습니다.

A4-2. Packet Size 가 클수록 패킷 손실률이 감소합니다. 단, 설정된 점보패킷(점보프레임)을 초과하지 않도록 하는 것이 중요합니다.

Q5. MVIPConfig 실행이 되지 않습니다.

A5. .NET Framework 3.5 를 설치하시기 바랍니다.