COMP4901K/Math4824B Machine Learning for Natural Language Processing

Lecture 1: Introduction

Instructor: Yangqiu Song

Logistics

Instructor: Yangqiu Song

Email: yqsong@cse.ust.hk

- Canvas (<u>https://canvas.ust.hk</u>)
 - Lecture notes
 - Assigments
 - Projects
- TAs
 - Tianqing Fang: <u>tfangaa@connect.ust.hk</u>
 - Zizheng Lin: zlinai@connect.ust.hk

Background of this Course

- Purpose of this course
 - Currently a topic course for senior undergraduate students
 - Enrich their experience on text data analytics
 - Equip them with powerful analytic tools for future career
 - Target to be a future elective course for the Data Science and Technology (DSCT) program
 - http://dsct.ust.hk/
- Shared Course Codes COMP4901K/Math4824B
 - Math students can replace final project with a survey paper

More about this Course

- The course covers the knowledge from both CSE and Math areas:
 - The fundamental machine learning models that deal with real natural language processing problems.
 - The programming and analytic tools such as Python to deal with real natural language processing problems.
 - Many example code will be provided
 - The problem solving skill for real natural language processing problems, such as building end to end system to deal with a certain problem.

So

- It's not a pure machine learning course
- It's not a pure NLP course
- We can cover more modern and advanced learning algorithms for NLP tasks
- Will be under "Restricted Deep Learning Electives" in CSE programs
 - Among the courses needed to satisfy our Area requirement (for a total of min. 15 credits), only one course among these "Restricted DL Electives" can be used to count as one of those 5 courses.

Prerequisites

- Linear Algebra (MATH 2111 or MATH 2121)
- Programming (COMP 2011/2012)
- Discrete Math (COMP 2711 or Math 2343)

More about this Course

- It's a data science course
- We will have a lot of practicing opportunities to make sense of using text data
 - To understand text data problems arising in the areas of commerce and industry etc.
 - To model text data problems using different mathematical tools.
 - To design and implement efficient algorithms to solve different NLP problems.
 - To interpret the results provided by different algorithms and apply them to the data problems to gain meaningful insights or offer predictions.

Goals of this Course

- Learn about the problems and possibilities of natural language analysis:
 - What are the major issues?
 - What are the major solutions?
 - How well do they work?
 - How do they work?
- At the end you should:
 - Agree that language is subtle and interesting!
 - Feel some ownership over the algorithms
 - Be able to assess NLP problems
 - Know which solutions to apply when, and how
 - Be able to read papers in the field

Today

- Why NLP is difficult
- How to solve it (in general)?
- What we'll do in this course

Natural Language

- Understanding language is a very complex thing
- But something that humans are amazingly good at

Artificial Intelligence: Turing Test

- Replacement of "Can machines think?"
 - Behavioral test
 - not just natural language understanding
- Natural language conversation
 - Imitation game (1950)
 - Human?
 - Computer?

The Al Winter

- Al winter: 1974–80 and 1987–93
 - 1966: the failure of machine translation,
 - 1970: the abandonment of connectionism,
 - 1971–75: DARPA's frustration with the Speech Understanding Research program at Carnegie Mellon University,
 - 1973: the large decrease in AI research in the United Kingdom in response to the Lighthill report,
 - 1973–74: DARPA's cutbacks to academic AI research in general,
 - 1987: the collapse of the Lisp machine market,
 - 1988: the cancellation of new spending on AI by the Strategic Computing Initiative,
 - 1993: expert systems slowly reaching the bottom, and
 - 1990s: the quiet disappearance of the fifth-generation computer project's original goals.

Enabled by Big Data

1971–75: DARPA's frustration with the Speech Understanding

"Watson is a question answering (QA) computing system that

IBM built to apply advanced

- natural language processing,
- information retrieval,
- knowledge representation,
- automated reasoning, and
- machine learning technologies
- to the field of open domain question answering."

In 2011, Watson competed on Jeopardy! against former winners Brad Rutter and Ken Jennings. Watson received the first place prize of \$1 million.

Enabled by Big Data

Startup Companies (2015)

Which Artificial Intelligence Categories Are Seeing the Most Innovation? by ::: Venture Scanner

Number of Exits (Acquisitions and IPOs, 2017)

What's Special about Human Language?

- A human language is a discrete/symbolic/categorical signaling system
 - With very minor exceptions for expressive signaling ("I loooove it." "Whoomppaaa")
- Large vocabulary, symbolic encoding of words creates a problem for machine learning – sparsity!

Face Toy

Why is NLP Difficult?

Variability and ambiguity everywhere

Words are Ambiguous (have multiple meanings)

I know that.

I know that block.

I know that blocks the sun.

I know that block blocks the sun.

More Examples of Ambiguity

Get the cat with the gloves.

Language Subtleties

- Adjective order and placement
 - A big black dog
 - A big black scary dog
 - A big scary dog
 - A scary big dog
 - A black big dog
- Antonyms
 - Which sizes go together?
 - Big and little
 - Big and small
 - Large and small
 - X Large and little

Levels of Linguistic Analysis: Analogy with Programming Languages

Pragmatics: what does it do?

implemented the right algorithm

Semantics: what does it mean?

no implementation bugs

Syntax: what is grammatical?

no compiler errors

Morphology: basic unit of words

naming your world

Analogy with Programming Languages

- Syntax: no compiler errors
- Semantics: no implementation bugs
- Pragmatics: implemented the right algorithm

- Different syntax, same semantics (5):
 - -2+3<->3+2
- Good semantics, bad pragmatics:
 - correct implementation of deep neural network
 - for estimating coin flip prob.

How to do natural language processing?

The Role of Memorization

- Children learn words quickly
 - As many as 9 words/day
 - Often only need one exposure to associate meaning with word
 - Can make mistakes, e.g., overgeneralization
 "I goed to the store."
 - Exactly how they do this is still under study

The Role of Memorization

- Dogs can do word association too!
 - Rico, a border collie in Germany
 - Knows the names of each of 100 toys
 - Can retrieve items called out to him with over 90% accuracy.
 - Can also learn and remember the names of unfamiliar toys after just one encounter, putting him on a par with a three-year-old child.

https://en.wikipedia.org/wiki/Rico (dog)

But there is too much to memorize!

establish

establishment

the church of England as the official state church.

disestablishment

antidisestablishment

antidisestablishmentarian

antidisestablishmentarianism

is a political philosophy that is opposed to the separation of church and state.

Rules and Memorization

- Current thinking in psycholinguistics is that we use a combination of rules and memorization
 - However, this is very controversial
- Mechanism:
 - If there is an applicable rule, apply it
 - However, if there is a memorized version, that takes precedence.
 (Important for irregular words.)
 - Artists paint "still lifes"
 - Not "still lives"
 - Past tense of
 - think \rightarrow thought
 - blink \rightarrow blinked

Representation of Meaning

- I know that block blocks the sun.
 - How do we represent the meanings of "block"?
 - How do we represent "I know"?
 - How does that differ from "I know that."?
 - Who is "I"?
 - How do we indicate that we are talking about earth's sun vs. some other planet's sun?
 - When did this take place? What if I move the block? What if I move my viewpoint? How do we represent this?

How to tackle these problems?

- The field was stuck for quite some time.
- A new approach started around 1990
 - Well, not really new, but the first time around, in the 50's, they didn't have the text, disk space, or GHz
- Main idea: combine memorizing and rules
- How to do it:
 - Get large text collections (corpora)
 - Compute statistics over the words in those collections
- Surprisingly effective
 - Even better now with the Web

NLP ?= Machine Learning

- To be successful, a machine learner needs bias/assumptions; for NLP, that might be linguistic theory/representations.
- Computer representation of language is not directly observable.
- Early connections to information theory (1940s)
- Symbolic, probabilistic, and connectionist ML have all seen NLP as a source of inspiring applications.

NLP ?= Linguistics

- NLP must contend with NL data as found in the world
- NLP ≈ computational linguistics
- Linguistics has begun to use tools originating in NLP!

Desiderata for NLP Methods

(ordered arbitrarily)

- Sensitivity to a wide range of the phenomena and constraints in human language
- Generality across different languages, genres, styles, and modalities
- Computational efficiency at construction time and runtime
- Strong formal guarantees (e.g., convergence, statistical efficiency, consistency, robustness, etc.)
- High accuracy when judged against expert annotations and/or task-specific performance

Fields with Connections to NLP

- Machine learning
- Linguistics (including psycho-, socio-, descriptive, and theoretical)
- Cognitive science
- Information theory
- Logic
- Theory of computation
- Data science
- Social and political science
- Psychology
- Economics
- Education

Fields with Connections to Machine Learning

- NLP
- Data mining/Data science
- Bioinformatics
- Fintech
- Computer vision
- Multimedia analysis
- Social and political science
- Psychology
- Economics
- Education

This Course: Machine learning for NLP

- mid-1970s: HMMs for speech recognition → probabilistic models
- early 2000s: conditional random fields for part-of-speech tagging → structured prediction
- early 2000s: latent Dirichlet allocation for modeling text documents → topic modeling
- mid 2010s: sequence-to-sequence models for machine translation → neural networks with memory/state

We will select some of the important topics

Nowadays: Deep learning for NLP

Sequence models

Memory models

Attention models

Real-World Applications of NLP

- Spelling suggestions/corrections
- Grammar checking
- Information extraction
- Text categorization
- Automated customer service
 - Conversational agents
 - Question answering
- Speech recognition (limited)
- Machine translation
- Social media analysis
- Rich visual understanding
- Mining legal, medical, or scholarly literature

What We'll Do in this Course

- Learn fundamental machine learning models for NLP
 - Classification models
 - Language models
 - Sequence labeling models
 - Advance NLP tasks using deep learning
- Use NLTK (Natural Language ToolKit) and Tensorflow/PyTorch to try out various algorithms
 - Some assignment will be to do some exercises

What We'll Do in this Course

- Adopt a large text collection
- Use a wide range of NLP techniques to process it
- Release the results for others to use

How to analyze a big collection?

Your ideas go here with a project

Labs

No lab in the first week

- TAs will give you some illustrations to show you how to implement algorithms dealing with NLP problem
- You will be asked to submit your results after the tutorial as assigments.
- Some free computational resources to use
 - https://www.kaggle.com/docs/notebooks
 - https://www.kaggle.com/dansbecker/running-kaggle-kernelswith-a-gpu

Course Information

- Work load and grading:
 - Assignments (30%)
 - Mostly for lab, sometimes a quiz released in Canvas
 - Very simple, you will get points by trying our code and submitting results
 - Projects and Presentation (30%)
 - Project (20%): a team based project
 - For students enrolled in Math4824B, you can select to do a survey paper.
 - Proposal (5%): the proposal deadline will be around mid-term
 - Up to 3 students in each group
 - In-class Presentation (10%): present what you have done in the project/survey
 - Midterm
 - Final exam (40%)
 - Academic integrity policy
 - Late submission: score got reduced (time based)
 - Plagiarism: all involved parties will get zero

Implementation of Bonus Points

- For each student, up to three bonus credit tickets can be earned by
 - Step 1: Answer a question in the class
 - Step 2: After the class, you need to send me an email and let me know your name and your name shown in Zoom which I can check the recorded video
- Application of the tickets
 - Add 1 out of 100 points
 - Maximally you can get 3 points to boot you with one level
 - E.g., A → A+