Math 453 HW11

Name: Changyu Wu

CWID: A20337986

1. Sec 4.4 #2

The idea is that $z_i - z_{i+1}$ equals the number of parts of size i in the conjugate, for i = 1, 2, ..., k, and we define $z_{k+1} := 0$ therefore, the conjugate of this partition is $\sum_{i=0}^k i(z_i - z_{i+1})$

2. Sec 4.4 #3

The statement is true. Let n=2k+1, where k is any integer, because n is odd. We can draw a self-conjugate Ferrers diagram like so:

Therefore, there exists at least one partition that's self-conjugate

3. Sec 4.4 #4

We know that

$$P(n, 2) = P(n - 2, at most 2 parts)$$

Begin with Theorem 4.4.2 and we get

P(m, at most 2 parts) = P(m, largets part at most 2)

Therefore, the OGF for the partitions of m with at most 2 parts is

$$\sum_{m>0} P(m, at \ most \ 2 \ parts) x^m = \frac{1}{(1-x)(1-x^2)}$$

The right-hand side can be written as

$$\frac{1}{(1-x)(1-x^2)} = \frac{1}{(1-x)(1-x)(1+x)} = \frac{A}{(1-x)^2} + \frac{B}{1-x} + \frac{C}{1+x}$$

Solve the equation and we get:

$$\begin{cases} A = \frac{1}{2} \\ B = \frac{1}{4} \\ C = \frac{1}{4} \end{cases}$$

Therefore, the decomposition makes right-hand side

$$\frac{1}{(1-x)(1-x^2)} = \frac{1/2}{(1-x)^2} + \frac{1/4}{1-x} + \frac{1/4}{1-(-x)}$$

Then, we seek the coefficient of x^m in

$$\frac{1}{2} \sum_{m>0} \left(\binom{2}{m} \right) x^m + \frac{1}{4} \sum_{m>0} \left(\binom{1}{m} \right) x^m + \frac{1}{4} \sum_{m>0} x^{-m}$$

Therefore

$$P(m, at\ most\ 2\ parts) = \frac{1}{2} \left(\binom{2}{m} \right) + \frac{1}{4} \left(\binom{1}{m} \right) + \frac{(-1)^n}{4}$$

By simplifying the first 2 terms

$$\frac{1}{2}\left(\binom{2}{m}\right) + \frac{1}{4}\left(\binom{1}{m}\right) = \frac{2m+3}{4}$$

Therefore

$$P(n, at \ most \ 2 \ parts) = \frac{2n+3+(-1)^n}{4}$$

Replace n with n-2 in this equation and we get

$$P(n-2, at\ most\ 2\ parts) = \frac{2(n-2)+3+(-1)^{n-2}}{4} = \frac{2n-1+(-1)^n}{4}$$

Since

$$P(n,2) = P(n-2, at most 2 parts)$$

We conclude that

$$P(n,2) = \left\{ \frac{2n-1+(-1)^n}{4} \right\}$$

4. Sec 5.2 #1

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 3 & 2 & 8 & 7 & 1 & 5 & 4 \end{pmatrix} = (1,6)(2,3)(4,8)(5,7)$$

Therefore, 4 cycles

5. Sec 5.2 #2

(1)
$$\binom{5}{1.4} \cdot 4! + \binom{5}{2.3} \cdot 2! \cdot 3! = 240$$

(2)
$$\binom{5}{1,1,3} \cdot 3! + \binom{5}{1,2,2} \cdot 2! \cdot 2! = 60 + 400 = 460$$

6. Sec 5.2 #3

(a)
$$\pi^{-1} = (153)(2)(46)$$
 and $\tau^{-1} = (123456)$

(b)
$$\pi \circ \tau = (1 \ 4 \ 5 \ 6)(2 \ 3)$$
 and $\tau \circ \pi = (1 \ 2)(3 \ 4 \ 5 \ 6)$

(c)
$$\pi^{-1} \circ (\tau \circ \pi^2) = (1 \ 6 \ 3 \ 4)(2 \ 5)$$

(d)
$$\pi^{-2} = (1\ 3\ 5)(2)(4)(6)$$
 and $\tau^{-3} = (1\ 4)(2\ 5)(3\ 6)$

7. Sec 5.2 #4

- (1) (R,\cdot) is not a group because not every element in has an inverse. For example, let e=1, when a=0, there does not exist an x that could make $a\cdot x=e$ or $x\cdot a=e$
- (2) (R,\cdot) is a group if 0 is not an element
 - 1. Closure: for any $a, b \in G$, we have $a \cdot b \in G$
 - 2. Associativity: For each $a, b, c \in G$, we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - 3. Existence of an identity: There exists an element $e \in G$, which is 1, such that for each $a \in G$, we have $a \cdot e = a$ and $e \cdot a = a$
 - 4. Existence of inverse: Let $e=1\in G$, for each $a\in G$, there exists $x\in G$ such that $a\cdot x=e$, where $x=\frac{1}{a}$, and $x\cdot a=e$

Therefore, without 0 in the set, (R, \cdot) is a group

8. Sec 5.2 #9

motion	product of disjoint cycles				
I	(1)(2)(3)(4)(5)(6)(7)(8)(9)				
R_1	(1 3 9 7)(2 6 8 4)(5)				
R_2	(19)(28)(37)(46)(5)				
R_3	(1793)(2486)(5)				
F_1	(1)(24)(37)(5)(68)(9)				
F_2	(13)(2)(46)(5)(79)(8)				
F_3	(19)(26)(3)(48)(5)(7)				
F_4	(17)(28)(39)(4)(5)(6)				

9. Sec 5.2 #12

(a)
$$\pi^2 = \pi \circ \pi = (1)(2)(3)(4)(5)$$

 $\pi^3 = \pi \circ \pi \circ \pi = (1 \ 3 \ 4)(2 \ 5)$

(b) Symmetries of a pentagon:

motion	two-line form	product of disjoint cycles			
I	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$	(1)(2)(3)(4)(5)			
R_1	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$	(1 2 3 4 5)			
R_2	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}$	(1 3 5 2 4)			
R_3	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$	(1 4 2 5 3)			
R_4	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$	(15432)			
F_1	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix}$	(1)(25)(53)			
F_2	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$	(13)(2)(45)			

F ₃	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$	(15)(24)(3)
F_4	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$	(12)(35)(4)
F_5	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$	(14)(23)(5)

Therefore, the group table for the symmetries of a pentagon is

0	I	R_1	R_2	R_3	R_4	F_1	F_2	F_3	F_4	F_5
I	I	R_1	R_2	R_3	R_4	F_1	F_2	F_3	F_4	F_5
R_1	R_1	R_2	R_3	R_4	I	F_4	F_5	F_1	F_2	F_3
R_2	R_2	R_3	R_4	I	R_1	F_2	F_3	F_4	F_5	F_1
R_3	R_3	R_4	I	R_1	R_2	F_5	F_1	F_2	F_3	F_4
R_4	R_4	Ι	R_1	R_2	R_3	F_3	F_4	F_5	F_1	F_2
F_1	F_1	F_3	F_5	F_2	F_4	I	R_3	R_1	R_4	R_2
F_2	F_2	F_4	F_1	F_3	F_5	R_2	I	R_3	R_1	R_4
F_3	F_3	F_5	F_2	F_4	F_1	R_4	R_2	I	R_3	R_1
F_4	F_4	F_1	F_3	F_5	F_2	R_1	R_4	R_2	Ι	R_3
F_5	F_5	F_2	F_4	F_1	F_3	R_3	R_1	R_4	R_2	I