

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 March 2001 (15.03.2001)

PCT

(10) International Publication Number
WO 01/17571 A1

(51) International Patent Classification⁷: **A61L 27/34, 27/58** (74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

(21) International Application Number: PCT/GB00/03343

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date:

1 September 2000 (01.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:

9920732.6 3 September 1999 (03.09.1999) GB

Published:

— With international search report.

(71) Applicant (*for all designated States except US*): SULZER VASCUTEK LIMITED [GB/GB]; Newmains Avenue, Inchinnan, Renfrewshire PA4 9RR (GB).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventor; and

(75) Inventor/Applicant (*for US only*): KELSO, Karen, Anne [GB/GB]; 4 Dalgarven Mews, Kilmarnock KA3 6BJ (GB).

WO 01/17571 A1

(54) Title: SEALANT FOR VASCULAR PROSTHESES

(57) Abstract: There is described a bioresorbable sealant or coating for a prosthetic graft. The novel sealant described is based upon dextran, preferably obtained by microbial fermentation, cross-linked through reaction with formaldehyde and urea. The breakdown products of the sealant or coating are all of low molecular weight and may be easily processed by the body. A method of producing the novel sealant or coating is also described.

1 **SEALANT FOR VASCULAR PROSTHESES**

2

3 The present invention relates to a non-gelatine based
4 coating or sealant for porous vascular prostheses, and
5 to a method of making that coating or sealant.

6

7 Porous vascular prostheses constructed from textiles
8 (such as polyester) are normally woven or knitted and
9 ultimately rely on host tissue penetrating into the
10 spaces between the yarns. To function in the long term
11 the prostheses must, therefore, acquire porosity whilst
12 at implant bleeding through the prosthesis wall must be
13 prevented or at least limited to an acceptable level.

14

15 In the past this dilemma has been resolved by soaking a
16 porous textile-based prosthesis in the patient's blood
17 which then clots to form a seal. This pre-clotting
18 technique is time consuming, exposes the prosthesis to
19 potential contamination and may be ineffective in
20 patients with reduced clotting ability (either reduced

1 spontaneous blood clotting or through administration of
2 anti-platelet or anti-thrombotic medication).

3

4 More recently, vascular prostheses have been pre-sealed
5 with a variety of bioresorbable materials. The
6 sealants tried to date have tended to be protein based,
7 such as collagen, gelatin or albumen. Cross-linkers
8 such as glutaraldehyde, formaldehyde, carbodiimide or
9 isocyanates have been used to render the proteins
10 insoluble and mention may be made of EP-B-0,183,365;
11 US-A-4,747,848 and US-A-4,902,290, all of which
12 describe the preparation of cross-linked gelatin-based
13 sealants. Hydrolysis or enzymatic attack in the host
14 tissue has then gradually degraded or removed the
15 sealant from the textile to permit the necessary tissue
16 ingrowth.

17

18 The prior art protein based sealants are derived from
19 animal or human sources, which creates the potential
20 for transmission of infection. This has been
21 especially of concern following transmission of BSE to
22 humans which has greatly elevated public concern over
23 the safety of animal derived implants. Additionally,
24 although some materials, such as gelatin, are produced
25 in large commercial quantities and blended to give high
26 lot-to-lot consistency, manufacture from natural raw
27 materials always has the potential for variability
28 which creates uncertainty regarding performance of the
29 graft.

30

31 The present invention relates to a bioresorbable
32 sealant which is not animal derived but is based on

1 cross-linked dextran. Dextran is produced by a
2 fermentation process using *Leuconostoc mesenteroides*
3 bacteria growing on a sugar-based energy source, such
4 as sucrose. Partial hydrolysis of the fermentation
5 product yields dextrans of defined molecular weight.
6 These have been used widely as plasma substitutes with
7 a typical molecular weight of 40,000.

8

9 Dextrans of this molecular weight are freely water-
10 soluble. To form a useful graft sealant, the dextrans
11 must be rendered insoluble. However, dextrans are not
12 easily cross-linked as they have limited reactive sites
13 to form intermolecular bonds. The available groups are
14 almost exclusively hydroxyl (OH) groups.

15

16 British Patent No 854,715 describes the formation of a
17 dextran-based polymer by using epichlorohydrin.
18 However the epichlorohydrin-based approach forms very
19 stable cross-links so that the resultant polymer is
20 resistant to both enzymatic and hydrolytic attack and
21 does not biodegrade. Epichlorohydrin cross-linked
22 dextran is, therefore, unsuitable as a vascular graft
23 sealant as it is not bioresorbable and would not permit
24 tissue ingrowth within the timescale required. EP-B-
25 0,183,365 and US-A-4,747,848 both describe a gelatin-
26 based sealant in which the time-scale of reabsorption
27 is controllable.

28

29 To overcome this problem, a novel dextran-based polymer
30 has been produced which is bioresorbable through
31 hydrolysis in the time scale of interest.

32

1 The present invention provides a bioresorbable sealant
2 composition comprising a polymer formed by reaction
3 between dextran, formaldehyde and urea. Whilst the
4 dextran polymer product is insoluble, the polymer is
5 formed with bonds that are sufficiently labile to
6 permit resorption at an appropriate rate for tissue
7 ingrowth. Furthermore, when the cross-linked polymer
8 breaks down, it does so into simple products all of
9 which have a low molecular weight and which are easy
10 for the body to dispose of.

11

12 The term "dextran" as used herein includes naturally
13 occurring dextran (especially that obtained through
14 fermentation of micro-organisms such as *Leuconostoc*
15 *sp.*) as well as hydrophilic hydroxyl group-containing
16 derivatives of dextran, for example partially
17 depolymerized dextran, dextran glycerine glycoside or
18 hydrodextran. Also included are modified forms of
19 dextran containing other reactive groups, for example
20 carboxyl, sulphonic, sulphate, amino or substituted
21 amino groups. Mention may be made of
22 carboxymethylated dextran and dextran sulphate as examples
23 of modified dextran. Mixtures of different dextrans
24 (as defined herein) may of course also be used, where
25 appropriate.

26

27 The polymer described herein is formed in water or an
28 aqueous-based solvent. It is therefore essential that
29 the dextran selected as the initial reactant should be
30 water-soluble or in the form of swollen particles.

31

1 Dextrans having a molecular weight of 10,000 to
2 100,000, in particular 20,000 to 80,000, especially
3 30,000 to 60,000 may be used. Preferably the dextran
4 used in the invention has a typical molecular weight of
5 about 40,000.

6

7 Viewed from one aspect, therefore, the present
8 invention provides a method of forming polymerised
9 dextran for use as a biodegradable coating for a
10 prosthetic graft, said method comprising:

11

12 a) exposing a water-based solution of dextran to 2 to
13 25 (weight %) of urea and allowing the urea to
14 enter into solution to form a mixture;

15

16 b) exposing the mixture of step a) to formaldehyde;

17

18 c) heating the mixture of step b) at temperatures
19 between 20 to 250°C for a time sufficient to allow
20 polymerisation to occur.

21

22 The formaldehyde is conveniently added in the form of
23 formalin (a 37% aqueous solution of formaldehyde
24 hydrate). Alternatively, it would be possible to
25 bubble formaldehyde gas through the mixture of step (a)
26 to achieve the required reaction. The quantity of
27 formaldehyde required may be determined
28 stoichiometrically having regard to the amount of urea
29 added in step (a). We have found that an amount of
30 formaldehyde equivalent to 50 to 100% (by weight) with
31 reference to the amount of urea achieves the required

1 result, with 70 to 80% (by weight) being preferred.
2 Usually a time period of from five to 60 minutes is
3 sufficient to permit the cross-linking reaction to
4 occur.

5

6 In a further aspect, the present invention provides a
7 method of producing a non-porous graft by impregnating
8 or coating a flexible material with a mixture of
9 dextran, urea and formaldehyde, and incubating said
10 impregnated material at temperatures of from 20°C to
11 250°C for a time sufficient to facilitate cross-linking
12 of said dextran. The flexible material to be
13 impregnated or coated will usually be a macroporous (eg
14 a knitted or woven) fabric. However, non-porous or
15 microporous materials may likewise be coated, with the
16 sealant reducing blood loss after suturing.

17

18 Preferably the temperature selected is from 30°C to
19 200°C, for example is from 45°C to 160°C.

20

21 The flexible porous material to be treated by the
22 present invention may be of any conventional type or
23 construction. Particular mention may be made of
24 polyester (e.g. DACRON™) knitted or woven fabric and
25 also of PTFE-based materials. Additionally, expanded
26 PTFE may be coated as described since, although the
27 material itself is non-porous, porosity will be
28 introduced when the graft is stitched into place by the
29 surgeon. The graft may be simply immersed in the
30 reaction mixture or may be selectively dipped therein
31 (for example the graft may be placed on a mandrel and

1 "rolled" over the surface of the reaction mixture to
2 coat the external surface only). Optionally pressure
3 may be used to ensure penetration of the reaction
4 mixture into the interstices of a porous graft.

5

6 In a further aspect, the invention also provides a
7 prosthetic graft impregnated or coated with the
8 bioresorbable sealant of the invention. The graft may
9 be, for example, a knitted polyester graft.

10

11 To prevent the sealant from drying out on the graft and
12 becoming brittle in storage it is advantageous to
13 plasticise the treated graft with a biocompatible agent
14 such as glycerol. This is preferably achieved by
15 treating the sealed grafts with glycerol after cross-
16 linking of the dextran. Excess glycerol may be removed
17 by alcohol rinsing. Suitable alcohols include ethanol,
18 methanol and propanol, but other alcohols may also be
19 used.

20

21 As described above, the treated graft may be
22 plasticised. Alternatively, or additionally, the graft
23 may undergo a separate sterilisation step, for example
24 by exposure to γ -irradiation. Sterilisation may not be
25 required if the graft and coating have been formed in
26 sterile conditions.

27

28 The primary mechanism of polymerisation involves a
29 urea/formaldehyde condensation reaction, where the
30 application of high temperature and water encourages
31 polymerisation of the dextran reactant. Subsequent

1 condensation reactions involve primary hydroxyl groups
2 present on the dextran molecule. Due to the small
3 levels of urea and formaldehyde required to cause the
4 reactions it was believed the process needed only short
5 urea-formaldehyde condensate links to give good cross-
6 linking parameters. Subsequently formed bonds were
7 identified as reactive ether bonds which were subject
8 to hydrolytic degradation. Various forms of analysis
9 such as NMR and FTIR have confirmed that the
10 degradation products are of low molecular weight and
11 likely to comprise sugar units, urea, formaldehyde and
12 small complexes of the latter components. It is of
13 course possible to modify the hydroxyl groups available
14 on the dextran for reaction (see for example EP-B-
15 0,183,365).

16

17 The use of dextran sulphate is desirable since the
18 cross-linked polymer so produced contains sulphate
19 groups available for binding, for example, to the
20 heparin binding site of fibroblast growth factor.
21 Fibroblast growth factors form a large family of
22 structurally related, multifunctional proteins that
23 regulate various biological responses and have been
24 implicated in many developmental and regenerative
25 events including axial organisation, mesodermal
26 patterning, keratinocyte organisation and brain
27 development. These compounds mediate cellular
28 functions by binding to transmembrane fibroblast growth
29 factor receptors, which are protein tyrosine kinases.
30 Fibroblast growth factor receptors are activated by
31 oligomerisation and both this activation and fibroblast
32 growth factor stimulated biological responses, require

1 the presence of "heparin-like" molecules as well as
2 fibroblast growth factor.

3

4 Heparins are linear polysaccharide chains; they are
5 typically heterogeneously sulphated on alternating L-
6 iduronic and D-glycosamino sugars. A review of the
7 fibroblast growth factor molecular complexes associated
8 with heparin-like sugars has recently been undertaken
9 (DiGabriele et al., 1998; ISSN 0028-0836). Heparin
10 sulphates, the N-sulphated polysaccharide components of
11 proteoglycans, are common constituents of cell surfaces
12 and the extracellular matrix. The heparin sulphate
13 polysaccharide chain has a unique molecular design in
14 which the clusters of N and O-sulphated sugar residues,
15 separated by regions of low sulphation, determine
16 specific protein binding properties. Current data
17 indicates that relatively long specific binding
18 sequences of heparin sulphate may induce a
19 conformational change in basic fibroblast growth
20 factor, exposing a site on the protein that is
21 recognised by signal transducing receptors. There are
22 also suggestions that the core protein of plasma
23 membrane heparin sulphate-proteoglycans may participate
24 in the cell signalling process (Gallagher, 1994; ISSN
25 0939-4974).

26

27 The heparin sulphate chains are attached to various
28 protein cores, which determine the location of the
29 proteoglycan in the cell membrane and extracellular
30 matrix. The diverse functions of heparin sulphate,
31 which range from the control of blood coagulation to
32 the regulation of cell growth and adhesion, depend on

1 the capacity of the chains to activate protein ligands,
2 such as antithrombin III and members of the fibroblast
3 growth factor family. These properties are currently
4 being exploited in the development of synthetic heparin
5 sulphates as anticoagulants and promoters of wound
6 healing. Conversely organic mimics of growth factor-
7 activating saccharides could possibly be designed to
8 suppress tumour growth and prevent restenosis after
9 coronary vessel angioplasty (Stringer and Gallagher,
10 1997; ISSN 1357-2725). Earlier researchers had also
11 reported on the theory that fibroblast growth factor
12 receptors might be directly activated by a much wider
13 range of ligands, including heparin sulphate
14 proteoglycans and neural cell adhesion molecules as
15 well as related sulphonated compounds (Green et al.,
16 1996; ISSN 0265-9247). As early as 1994 research
17 groups were investigating areas which would aid the
18 design of synthetic sulphonated oligosaccharides aimed
19 at improving the bioavailability of fibroblast growth
20 factor when administered *in vivo* as a therapeutic agent.
21 (Coltrini et al., 1994; ISSN 0264-6021). Thus, Belford
22 et al (1993) in *Journal of Cellular Physiology* 157 :
23 184-189 describes the ability of several animal, plant
24 and bacterial derived polyanions as well as synthetic
25 polyanions to compete with heparin for the binding of
26 acidic fibroblast growth factor and correlates this
27 with their ability to potentiate the mitogenic and
28 neurotrophic actions of this factor. Dextran sulphate,
29 kappa-carrageenan, pentosan sulphate, polyanethole
30 sulphonate, heparin and fucoidin were shown to compete
31 for the heparin binding site on a fibroblast growth

1 factor at relatively low concentrations (<50 µg/ml).
2 The differential effects of these polyanions in
3 potentiating the biological activities of fibroblast
4 growth factor in relation to their ability to compete
5 for the heparin-binding site of a fibroblast growth
6 factor is discussed. Similarly, Hoover et al (1980)
7 (in Circulation Research 47: 578: 583) studied the in
8 vitro effects of heparin on the growth of rat aortic
9 smooth muscle cells. The results showed that there was
10 a highly specific interaction with regard to molecule
11 and cell type i.e. other polyanions. The suggestion
12 was that heparin and related dextran sulphate could in
13 some way bind to certain factors responsible for cell
14 growth and subsequent proliferation.

15

16 Non-enzymic glycosylation of basic fibroblast growth
17 factor has recently been demonstrated to decrease the
18 mitogenic activity of intracellular basic fibroblast
19 growth factor. Loss of this bioactivity has been
20 implicated in impaired wound healing and
21 microangiopathics of diabetes mellitus. In addition to
22 intracellular localisation, basic fibroblast growth
23 factor is widely distributed in the extracellular
24 matrix, primarily bound to heparin sulphate
25 proteoglycans. Nissen et al (1999) measured the effect
26 of non-enzymic glycosylation on basic fibroblast growth
27 factor bound to heparin, heparin sulphate and related
28 compounds (see Biochemical Journal 338: 637-642). When
29 heparin was added to basic fibroblast growth factor
30 prior to non-enzymic glycosylation, the mitogenic
31 activity and heparin affinity of basic fibroblast

1 growth factor were nearly completely preserved.
2 Heparin sulphate, low molecular mass heparin and the
3 polysaccharide, dextran sulphate, demonstrated a
4 similar protective effect.

5

6 The invention is now further described by reference to
7 the following, non-limiting, examples (together with a
8 comparative example).

9

10 **Example 1**

11

12 90 ml of water was added to 50 g of 40,000 molecular
13 weight dextran and manually mixed to encourage the
14 dextran to enter into solution. Afterwards the mixture
15 was placed on a magnetic stirrer and allowed to mix
16 continuously for 15 minutes or until the solution was
17 clear and particle free.

18

19 5 g of urea were then added to the solubilised dextran
20 and the mixture placed back on the magnetic stirrer for
21 a further 15 minutes to ensure that the urea had
22 entered into solution with the dextran. Finally, 10 ml
23 of formalin (a 38% (w/v) aqueous solution of
24 formaldehyde hydrate) providing 3.8 g of formaldehyde
25 was added to complete the mixture which was again
26 allowed to stir for 15 minutes. This mixture was then
27 impregnated into knitted polyester grafts using vacuum
28 techniques.

29

30 Gels were formed by placing the dextran impregnated
31 grafts in an oven at 150°C for 2 hours. During this

1 time a cross-linking reaction was taking place. Grafts
2 were washed for a minimum of four hours to ensure
3 removal of any residual formaldehyde. Finished grafts
4 were softened by exposure to 100% glycerol for 10
5 minutes followed by an alcohol wash to remove any
6 excess glycerol. Grafts were then left to air dry.

7

8 **Example 2**

9

10 92 ml of water was added to 40 g of 40,000 molecular
11 weight dextran and manually mixed to encourage the
12 dextran to enter into solution. Afterwards, the
13 mixture was placed on a magnetic stirrer and allowed to
14 mix continuously for 15 minutes or until the solution
15 was clear and particle free.

16

17 4 g of urea were then added to the solubilised dextran
18 and the mixture placed back on the magnetic stirrer for
19 a further 15 minutes to ensure that the urea had
20 entered into solution with the dextran. Finally, 8 ml
21 of formalin (38% aqueous solution of formaldehyde
22 hydrate) providing 3.04 g formaldehyde was added to
23 complete the mixture which was again allowed to stir
24 for 15 minutes. Knitted polyester grafts were vacuum
25 impregnated with this mixture.

26

27 Gels were formed by placing the grafts in an oven at
28 50°C for 12 hours. During this time a cross-linking
29 reaction was taking place. Grafts were washed for a
30 minimum of four hours to ensure removal of any residual
31 formaldehyde. Finished grafts were softened by

1 exposure to 80% (v/v, in water) glycerol for 10 minutes
2 followed by an alcohol wash to remove any excess
3 glycerol. Grafts were then left to air dry.

4

5 **Example 3 - Preparation of Dextran Blends**

6

7 Table 1: Dextran/dextran sulphate crosslinked blends

8

Dextran (g)	Dextran Sulphate (g)	Urea (g)	Formaldehyde (ml)	Water (ml)
10	0	1	2	18
9	1	1	2	18
8	2	1	2	18
7	3	1	2	18
6	4	1	2	18
5	5	1	2	18

9

10 Dextran of molecular weigh 40,000 was weighed and the
11 corresponding weight of dextran sulphate of similar
12 molecular weight were added together. The correct
13 level of water was added and the substances mixed
14 thoroughly until clear. The urea was mixed again before
15 final addition of formaldehyde. The completed
16 preparation was further mixed to ensure complete
17 solubilisation. Gels were formed when the completed
18 mix was placed in an oven for a specified time period.
19 Samples were then washed for 3 hours in continuous
20 running water.

21

22 Corresponding analysis (Dionex ion chromatography) to
23 investigate the presence of sulphate groups in each of
24 the samples showed significant detection of sulphation,

1 with least levels present in sample 1 (1 g of dextran
2 sulphate) and most in sample 5 (5 g of dextran
3 sulphate). It was proposed that the dextran sulphate
4 had become entrapped within the network of cross-linked
5 dextran chains to form an interpenetrating network with
6 the potential to offer corresponding sulphation to the
7 gels for subsequent attachment of growth factors. From
8 the results various sulphanated gels could be prepared,
9 see Examples 4 to 7.

10

11 **Example 4**

12

13 90 ml of water was added to a mixture of 30 g of 40,000
14 molecular weight dextran and 20 g of 40,000 molecular
15 weight dextran sulphate and manually mixed to encourage
16 the two forms of dextran to enter into solution with
17 each other. Afterwards, the mixture was placed on a
18 magnetic stirrer and allowed to mix continuously for 15
19 minutes or until the solution was clear and particle
20 free.

21

22 5 g of urea was added and the mixture placed back on
23 the magnetic stirrer for a further 15 minutes to ensure
24 that the urea had entered into solution with the two
25 dextran species. Finally, 10 ml of formaldehyde was
26 added to complete the mixture, which was again allowed
27 to stir for 15 minutes.

28

29 Gels were formed by placing the dextran mixture into an
30 oven at 50°C for a minimum of 12 hours. During this
31 time, a cross-linking reaction took place. The

1 subsequent dextran mixtures were washed for a minimum
2 of 3 hours under continuous running water.

3 **Example 5**

4

5 90 ml of water was added to a mixture of 25 g of 40,000
6 molecular weight dextran and 25 g of 40,000 molecular
7 weight dextran sulphate and manually mixed to encourage
8 the two forms of dextran to enter into solution with
9 each other. Afterwards the mixture was placed on a
10 magnetic stirrer and allowed to mix continuously for 15
11 minutes or until the solution was clear and particle
12 free.

13

14 5 g of urea was added and the mixture was placed back
15 on the magnetic stirrer for a further 15 minutes to
16 ensure that the urea had entered into solution with the
17 two dextran species. Finally, 10 ml of formaldehyde
18 was added to complete the mixture, which was again
19 allowed to stir for 15 minutes.

20

21 Gels were formed by placing the dextran mixture into an
22 oven at 50°C for a minimum of 12 hours. During this
23 time a cross-linking reaction took place. The
24 subsequent dextran mixtures were washed for a minimum
25 of 3 hours under continuous running water.

26

27 **Example 6**

28

29 90 ml of water was added to a mixture of 30 g of 40,000
30 molecular weight dextran and 20 g of 40,000 molecular
31 weight dextran sulphate and manually mixed to encourage

1 the two forms of dextran to enter into solution with
2 each other. Afterwards the mixture was placed on a
3 magnetic stirrer and allowed to mix continuously for 15
4 minutes or until the solution was clear and particle
5 free.

6

7 5 g of urea was added and the mixture placed back on
8 the magnetic stirrer for a further 15 minutes to ensure
9 that the urea had entered into solution with the two
10 dextran species. Finally, 10 ml of formaldehyde was
11 added to complete the mixture, which was again allowed
12 to stir for 15 minutes.

13

14 Gels were formed by placing the dextran mixture into an
15 oven at 100°C for a minimum of 2 hours. During this
16 time a cross-linking reaction took place. The
17 subsequent dextran mixtures were washed for a minimum
18 of 3 hours under continuous running water.

19

20 **Example 7**

21

22 90 ml of water was added to a mixture of 25 g of 40,000
23 molecular weight dextran and 25 g of 40,000 molecular
24 weight dextran sulphate and manually mixed to encourage
25 the two forms of dextran to enter into solution with
26 each other. Afterwards the mixture was placed on a
27 magnetic stirrer and allowed to mix continuously for 15
28 minutes or until the solution was clear and particle
29 free.

30

1 5 g of urea was added and the mixture placed back on
2 the magnetic stirrer for a further 15 minutes to ensure
3 that the urea had entered into solution with the two
4 dextran species. Finally, 10 ml of formaldehyde was
5 added to complete the mixture, which was again allowed
6 to stir for 15 minutes.

7

8 Gels were formed by placing the dextran mixture into an
9 oven at 100°C for a minimum of 2 hours. During this
10 time a cross-linking reaction took place. The
11 subsequent dextran mixtures were washed for a minimum
12 of 3 hours under continuos running water.

13

14 **Example 8 - Resorption Rates**

15

16 The resorption rate of sealant from dextran sealed
17 grafts made according to Examples 1 and 2 were
18 determined *in vitro* by incubating graft samples of
19 known weight in buffer and weighing the grafts again
20 after drying to measure the amount of sealant
21 remaining. Urea formaldehyde cross-linked dextran was
22 found to be hydrolysed at a rate comparable to the
23 gelatin sealant of EP-B-0,183,365.

24

25 The hydrolysis profiles of urea-formaldehyde cross-
26 linked dextran and formaldehyde cross-linked gelatin
27 grafts are detailed in Table 2. Hydrolysis was
28 performed at 37°C over a period of up to 4 weeks at 125
29 rpm.

30

1 Table 2

2

3 Comparative hydrolysis results for dextran and gelatin
4 coated vascular grafts. The gelatin coated grafts were
5 produced in accordance with Example 1 of EP-B-
6 0,183,365.

7

Day	% gel degraded	
	Dextran	Gelatin*
0	0	0
3	5	30
6	15	70
12	25	95
28	95	100

8

9 *Comparative Example

10

11 Example 9 - Implantation

12

13 Grafts prepared according to Example 1 were implanted
14 into the abdominal aorta of dogs for 2 weeks and 4
15 weeks respectively. Histological examination of the
16 explanted devices showed that the sealant was resorbed
17 as expected within 1 month and that the normal healing
18 process was not adversely affected.

19

1 **Claims**

2

3 1 A bioresorbable sealant composition for coating a
4 prosthetic graft, said composition comprising a
5 polymer formed by cross-linking dextran molecules
6 by formaldehyde and urea condensation.

7

8 2 The sealant as claimed in Claim 1, wherein said
9 dextran molecules include naturally occurring
10 dextran, hydrophilic hydroxyl group-containing
11 derivatives of dextran or modified forms of
12 dextran containing other reactive groups, for
13 example dextran sulphate.

14

15 3 The sealant as claimed in Claim 1, wherein said
16 naturally occurring dextran is provided by
17 fermentation using *Leuconostoc mesenteroides*
18 bacteria.

19

20 4 The sealant as claimed in any one of Claims 1 to 3
21 wherein the dextran molecules have a molecular
22 weight of 30,000 to 60,000.

23

24 5 A method of producing a substantially non-porous
25 graft by exposing at least one surface of a
26 flexible material to a mixture of dextran, urea
27 and formaldehyde, and incubating at temperatures
28 of from 20°C to 250°C for a time sufficient for
29 cross-linking of said dextran on said surface to
30 take place.

31

1 6 The method as claimed in Claim 5 wherein the
2 temperature is from 30°C to 200°C.

3

4 7 The method as claimed in either one of Claims 5
5 and 6 wherein said flexible material is a
6 polyester knitted or woven fabric, or a PTFE-based
7 material.

8

9 8 The method as claimed in Claim 7 wherein said
10 fabric material is expanded PTFE.

11

12 9 The method as claimed in any one of Claims 5 to 8
13 further including the step of practising said
14 cross-linked dextran by exposure of said coated
15 surface to glycerol and, optionally, thereafter
16 removing excess glycerol by alcohol rinsing.

17

18 10 A prosthetic graft impregnated or coated with the
19 bioresorbable sealant as claimed in any one of
20 Claims 1 to 4.

21

22 11 A method of forming polymerised dextran for use as
23 a biodegradable coating for a prosthetic graft,
24 said method comprising:

25

26 a) exposing a water-based solution of dextran to
27 2 to 25 (weight %) of urea and allowing the
28 urea to enter into solution to form a
29 mixture;

30

31 b) exposing the mixture of step a) to
32 formaldehyde;

1 c) heating the mixture of step b) at
2 temperatures between 20 to 250°C for a time
3 sufficient to allow polymerisation to occur.

4

5 12 The method as claimed in Claim 11 wherein 50 to
6 100% (by weight) of formaldehyde, by reference to
7 the weight of urea, is added.

8

9 13 The method as claimed in Claim 12 wherein 70 to
10 80% (be weight) of formaldehyde, by reference to
11 the weight of urea, is added.

12

13 14 The method as claimed in any one of Claims 11 to
14 13 wherein the temperature is from 30°C to 200°C.

15

16 15 The method as claimed in any one of Claims 11 to
17 14 wherein said dextran has a molecular weight of
18 30,000 to 60,000.

19

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/GB 00/03343

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A61L27/34 A61L27/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61L A61F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 633 032 A (SUMITOMO ELECTRIC INDUSTRIES) 11 January 1995 (1995-01-11) column 5, line 28; claims; examples 1,2 ---	1-15
Y	EP 0 183 365 A (COATS LTD J & P) 4 June 1986 (1986-06-04) cited in the application claims; examples ---	1-15
A	EP 0 742 020 A (NICEM LTD) 13 November 1996 (1996-11-13) claims; examples ---	1-15
A	US 5 851 229 A (DEPREKER JENNIFER ET AL) 22 December 1998 (1998-12-22) column 4, line 16 - line 46; claims ---	1-15 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

4 December 2000

Date of mailing of the international search report

11/12/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

ESPINOSA, M

INTERNATIONAL SEARCH REPORT

Interr	nal Application No
PCT/GB 00/03343	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 292 362 A (EATON ALEXANDER M ET AL) 8 March 1994 (1994-03-08) column 5, line 28; claims ---	1-15
A	US 4 902 290 A (WERNER HEINZ-HELMUT ET AL) 20 February 1990 (1990-02-20) cited in the application ---	
A	GB 854 715 A (AKTIEBOLAGET PHARMACIA) 23 November 1960 (1960-11-23) cited in the application ----	

INTERNATIONAL SEARCH REPORT

...information on patent family members

International Application No

PCT/GB 00/03343

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 0633032	A	11-01-1995	JP 7067895 A AU 692445 B AU 6596094 A CA 2126608 A US 5584877 A	14-03-1995 11-06-1998 05-01-1995 26-12-1994 17-12-1996
EP 0183365	A	04-06-1986	AT 83911 T AU 569645 B AU 5059385 A CA 1249490 A DE 3586941 A DE 3586941 T DK 551185 A ES 548138 D ES 8801577 A GR 852872 A IE 59421 B JP 1585374 C JP 2011258 B JP 61135651 A US 4747848 A	15-01-1993 11-02-1988 05-06-1986 31-01-1989 11-02-1993 29-04-1993 31-05-1986 16-02-1988 16-04-1988 03-04-1986 23-02-1994 31-10-1990 13-03-1990 23-06-1986 31-05-1988
EP 0742020	A	13-11-1996	JP 8294530 A CN 1142974 A US 5986168 A	12-11-1996 19-02-1997 16-11-1999
US 5851229	A	22-12-1998	AU 4414097 A EP 0941131 A WO 9810804 A	02-04-1998 15-09-1999 19-03-1998
US 5292362	A	08-03-1994	US 5209776 A AT 183656 T AU 8497991 A CA 2087957 A DE 69131556 D DE 69131556 T EP 0542880 A ES 2137930 T JP 6507376 T WO 9202238 A	11-05-1993 15-09-1999 02-03-1992 28-01-1992 30-09-1999 20-07-2000 26-05-1993 01-01-2000 25-08-1994 20-02-1992
US 4902290	A	20-02-1990	DE 3608158 A AT 66126 T BR 8701135 A CA 1283505 A DE 3772070 A DK 127987 A EP 0237037 A FI 871065 A, B, GR 3002895 T JP 1051263 B JP 1563185 C JP 62258666 A MX 165145 B NO 870809 A, B, US 4784659 A	17-09-1987 15-08-1991 05-01-1988 30-04-1991 19-09-1991 13-09-1987 16-09-1987 13-09-1987 25-01-1993 02-11-1989 12-06-1990 11-11-1987 29-10-1992 14-09-1987 15-11-1988
GB 854715	A		CH 413811 A	31-05-1966

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No

PCT/GB 00/03343

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 854715 A		DE 1418013 A SE 169293 A	17-10-1968

THIS PAGE BLANK (USPTO)