

DISSERTATION

Cool Science

ausgeführt am Atominstitut

der Technische Universität Wien Fakultät für Physik

unter der Anleitung von
Univ.Prof. Dipl.-Ing. Dr.techn. Gorge Hammond

Projektass. Dr.rer.nat Rodney MacKay MSc. Projektass. Dr.techn. Dr.techn. Dr.techn. Dipl.-Ing. Samantha Carter

durch

Daniel Jackson

Matrikelnummer: 9-18-27-15-21-36 Stadionallee 2 1020 Wien

Wien, am 25.03.2020

"The Setesh guard's nose drips." ${\it Teal'C}$

Contents

1	Electron beam setup						
	1.1 Charatarization of a working CRT						
	1.2	High Voltage Power Supply HVPS	3				
Todo list							
Re	eferei	nces	5				

1 Electron beam setup

- chapter about electron beam setup
- Charakterisierung der intakten CRT -> Frank
- Charakterisierung HVPS -> Frank
- Skizze inkl. externe Power Supplies, wie wird die CRT betrieben?
- Heater Wie sieht der Innen aus? CRT Mount??

1.1 Charatarization of a working CRT

HAMEG HM507 oscilloscopes were used for testing purposes. These contain a D14-363GY/123[1] CRT hereinafter abbreviated as 'D14', 'tube', or 'CRT'. Although the HM507 has only a bandwidth of 0 MHz to 50 MHz, which is not sufficient for the hyperfine splitting frequency of 461.7 MHz of ³⁹K, it was used nevertheless because of its simple construction and availability. A schematic view of the device is shown in fig. 1.1 with the back pin arrangement in fig. 1.2.

http://www.to

The voltages and currents of the necessary pins to drive the CRT were measured 14 using a 2.5 kV probe with an attenuation ratio of and are summarized in table 1.1. It 15 was not possible to measure pin g3 directly. Therefore a HVPS (section 1.2) was used to set a voltage and the beam diameter was observed. The best focus was achieved

model number 1:100 or 100:1

with a voltage of $-1.813 \times 10^3 \,\mathrm{V}$.

13

Figure 1.1: Electrode configuration (from [tubedata])

how to cite figure

 $\textbf{Figure 1.2:} \ \operatorname{Pin} \ \operatorname{arrangement}, \ \operatorname{bottom} \ \operatorname{view} \ (\operatorname{from} \ [\mathbf{tubedata}])$

how to cite figure

Table 1.1: D14-363GY/123 CRT pin measurements

		,	
number	pin	voltage/V	${\rm current}/\mu A$
1	f	-1.99×10^{3}	86.6×10^{3}
2	k	-2.00	-7.6
3	g1	-2.03	0
4	g3	-	-1.813×10^{3}
5	i.c.	71.7	0.1
6	g5	64.0	7.2
12	g2, g4	71.0	0
14	f	-1.97×10^{3}	-86.2×10^3

1.2 High Voltage Power Supply HVPS

- ² To produce high DC voltages to drive the CRT, 4 HCP 14-6500[2] power supplies were
- $_3$ used. They were named 'HVPS 1' to 'HVPS 4' and can provide up to $\pm 6.5\,\mathrm{kV}$ DC and
- ⁴ 2 mA. To connect the output to the CRT pins, BNC cables were refitted with a save
- 5 high voltage (SHV) connector on one side while on the other end the BNC connector
- 6 was kept. The output was measured with a 6 kV probe and the ripple was determined
- $_{7}$ to be between 116 mV and 204 mV. The breakdown voltages is around 3 kV.

find exact value big yellow prob

somewhere 2-4 exact value

Todo list

	http://www.tobiastiecke.nl/archive/PotassiumProperties.pdf	1	2
	model number	1	3
	1:100 or 100:1	1	4
	how to cite figure	2	5
	how to cite figure	2	6
	find exact value of big yellow probe	3	7
1	somewhere 2-4 find exact value	3	

1

References

- ³ [1] Frank Philipse. *D14363GY123*. URL: https://frank.pocnet.net/sheets/186/d/ D14363GY123.pdf (visited on 03/10/2020).
- ⁵ [2] FuG Elektronik GmbH. HVPS Series HCP. URL: https://www.fug-elektronik. de/wp-content/uploads/pdf/Datasheets/EN/HCP_data_sheet.pdf (visited on 03/23/2020).