

Microsoft Azure
Administrator Associate
Training(AZ-104)

Module 6

Agenda

Introduction To 01 Microsoft Azure Virtual Network

02

Vnet Components

Connecting Different 03 Vnets

Vnet Peering 04

Vnet To Vnet 05 Connection Gateway

IP Addresses In Azure 06 Vnet

IP Address 07 Allocation Method

Azure Vnet Routing 08

Azure Network 09 Interface

Subnets In Azure 10 **VNet**

11 Azure DNS

Network Security 12 Groups

Agenda

Introduction to Microsoft Azure Virtual Network

Introduction to Microsoft Azure Virtual Network IntelliPaat

Azure Virtual Network (VNet) is the fundamental building block for your private network in Azure. VNet enables many types of Azure resources, such as Azure Virtual Machines (VM) to securely communicate with each other, the Internet, and on-premises networks

Address space

Subnets

Regions

Subscription

An Address Space is a range of IP Addresses.

Azure will assign the next available IP Address from this address space to a resources in your virtual network.

Address space

Subnets

Regions

Subscription

A Subnet is a logical segment of a Virtual Network.
A Subnet is allocated a portion of a the virtual network's address space

Address space

Subnets

Regions

Subscription

Virtual Networks are scoped to a single location called a region. Multiple virtual networks from different regions can be connected together using Virtual Network Peering

Address space

Subnets

Regions

Subscription

Virtual Networks are scoped to a subscription. You can implement multiple virtual networks within each Azure subscription and Azure region.

Hands-on: Create VNET

1. Create a Virtual Network in the Azure Portal

Connecting Different VNets

Connecting different VNets

There are two ways you can connect your Azure VNets:

1. VNet Peering

2. VNet to VNet Connection Gateway

VNet Peering

VNet Peering

Virtual network peering enables you to connect to Azure virtual networks. Once peered, the virtual networks appear as one, for connectivity purposes

The traffic between virtual machines is routed through the Microsoft infrastructure, through private IP addresses only

Azure supports two types of Virtual Network Peering:

VNet peering - connecting VNets within the same Azure region

Global VNet peering - connecting VNets across Azure regions

Hands-on: Create and Configure VNET Peering

Hands-on

- 1. Enable Vnet-Vnet Peering between two Virtual Networks
- 2. Ping one machine's private IP address from another to check if the connection is successful

VNet to VNet Connection Gateway

VNet to VNet Connection Gateway

You can connect two VNets to each other using VNet-To-VNet VPN gateway connection. This connection type uses a VPN gateway to provide a secure tunnel with IPsec/IKE and functions the same way when communicating

IP Addresses

IP Addresses

You can assign IP addresses to Azure resources to communicate with other Azure resources, your on-premises network, and the Internet.

There are two types of IP addresses you can use in Azure:

- Public IP addresses: Used for communication with the Internet, including Azure public-facing services
- 2. Private IP addresses: Used for communication within an Azure virtual network (VNet) and your on-premises network, when you use a VPN gateway or ExpressRoute circuit to extend your network to Azure

IP Address Allocation Methods

IP Address Allocation Methods

There are two methods in which IP addresses are allocated:

Dynamic: Azure assigns the next available unassigned or unreserved IP address in the subnet's address range

Static: You select and assign any unassigned or unreserved IP address in the subnet's address range

IP Address Allocation Methods

Public and Private IP Allocation:

When a public IP address needs to be assigned to an Azure resource, it is dynamically allocated from a pool of available public IP address within the location the resource is created

A private IP address can be allocated with either Dynamic Allocation or Static Allocation

Hands-on: Assign Static IP to VM

Hands-on

- 1. Deploy a Virtual Machine
- 2. Go to IP Configurations and Apply a static IP address to the machine

Azure VNet Routing

Azure VNet Routing

Routing traffic between different subnets in a virtual network is taken care of by Azure

You can create your own routes to override Azure's default routing

Hands-on: Create a Route Table

Hands-on: Add Route to Route Table

Hands-on

- 1. Deploy a Routing table
- 2. Add routes to the table
- 3. Verify the routes by checking if the IP address has been redirected successfully

Azure Network Interface

Azure Network Interface

A network interface (NIC) is the interconnection between a Virtual Machine and a virtual network

A VM must have at least one NIC, but can have more than one

Multiple Network Interfaces allow a VM to connect to different subnets and send or receive traffic over the most appropriate interface

Hands-On: Create NIC

Hands-on: Attach NIC to VM

Hands-on

- 1. Create a NIC for a subnet
- 2. Attach the NIC to a Virtual Machine and verify the access changes

Azure Subnets

Azure Subnets

A subnet is a partition of your virtual network in Azure VNet

Having an organization's network divided into subnets allows it to be connected to the Internet with a single shared network address

Subnets were initially designed for solving the shortage of IP addresses over the Internet

Why Subnets?

Logical divisions

Improved network security

Improved network performance

Subnetting helps you maintain clean separations within a network. This separation helps in maintaining a large network

Why Subnets?

Logical divisions

Improved network security

Improved network performance

With logical divisions between subnets, you have greater control over who has access to what

Why Subnets?

Logical divisions

Improved network security

Improved network performance Subnetting reduces the amount of broadcast traffic by containing network broadcasts at the subnet level instead of sending all broadcasts to the entire network

Azure DNS

Smill out

Amillion .

Antaliticas

Copyright Intellipaat. All rights reserved.

Azure DNS

Azure DNS is a hosting service for DNS domains that provide name resolution by using Microsoft Azure infrastructure.

The Domain Name System, or DNS, is responsible for converting a URI to its IP address

Reliability and performance

Security

Ease of use

Alias records

In Azure DNS, each DNS query is responded to by the closest available DNS server

Reliability and performance

Security

Ease of use

Alias records

Azure DNS is based on Azure Resource Manager (ARM), which provides various security features such as Role-based access control, Activity logs, and Resource locking

Reliability and performance

Security

Ease of use

Alias records

Azure DNS can manage DNS records for your Azure services and provide DNS for your external resources as well

Reliability and performance

Security

Ease of use

Alias records

Alias Records are used to refer to an Azure resource, such as an Azure public IP address, an Azure Traffic Manager profile, or an Azure Content Delivery Network (CDN) endpoint

Hands-on: Create DNS Zone

Hands-on: Add Record Set to DNS Zone

Hands-on

- 1. Create a DNS Zone in the Azure Portal
- 2. Change the name server address in your domain name provider website and create a Record Set
- 3. Verify the website is running on the domain

Azure Private DNS

Azure Private DNS provides a reliable, secure DNS service to manage and resolve domain names in a virtual network

Private DNS allows you to use your own custom domain names rather than the Azure-provided ones

It provides name resolution for virtual machines (VMs) within a virtual network and between virtual networks

Network Security Groups

Azure Security Group

A network security group is used to encapsulate rules to filter incoming and outgoing traffic to and from several types of Azure resources

For each rule, you can specify source and destination, port, and protocol

Security Rules

Azure Security Rules

A Security Rule is used in Azure to specify some constraint on incoming or outgoing traffic.

Each rule specifies some properties

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

It is a unique name within the network security group which is used to identify and refer to a rule

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

It indicates a number between 100 and 4096. Rules are processed in priority order, with lower numbers processed before higher numbers. Once traffic matches a rule, processing stops

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

Any, or an individual IP address

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

TCP, UDP, ICMP, or others

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

It indicates whether the rule applies to inbound or outbound traffic

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

You can specify an individual or range of ports for your rules. Specifying ranges enables you to create fewer security rules

Name

Priority

Source or destination

Protocol

Direction

Port range

Action

Action indicates whether to allow or deny traffic

Hands-on: Create NSG

Hands-on: Attach NSG to a Subnet

Hands-on: Verify NSG is Applied

Hands-on

- 1. Create an NSG in the Azure portal
- 2. Associate this NSG with a subnet where the changes must be applied
- 3. Verify the connections in the NSG by verifying the resources deployed in that subnet (Virtual Machine)

Service Tags

Service Tags

A service tag is used to group IP Addresses to make it easy to apply security rules.

Service tags allow easy creation and allow to minimize complexity of rule creation.

Service Tags are managed by Azure. You cannot create or assign your own service tags.

US: 1-800-216-8930 (TOLL FREE)

support@intellipaat.com

24/7 Chat with Our Course Advisor