

通信网理论基础

第四章 网内业务分析第二节 通信网的业务模型与分析

北京邮电大学 信息与通信工程学院

授课教师: 武穆清

电子信箱: wumuqing@bupt.edu.cn

实验室主页: www.bupt-bcnl.cn

本章内容

- 4.1 排队论基础
- 4.2 通信网的业务模型与分析
- 4.3 提高网络效率的一些措施
- 4.4 多址接入系统

4.2 通信网的业务模型与分析

- 4.2.1. 各种测度和指标
- 业务量(话务量)
 - = 定义: 在指定时间内, 线路被占用的总时间
 - = 例:
 - ≡若某线路有m条信道
 - ≡在观察时间T内

 Δ 第r条信道被占用 Qr 秒

■则该线路上(m条信道上)的业务量(话务量)为:

$$Q = \sum_{r=1}^{m} Qr$$

≡业务量的另一种表达形式为:

$$Q = Q(t,T) = \int_{t}^{t+T} R(t)dt$$

 Δ 其中, $\mathbf{R}(\mathbf{t})$ 是在时刻 \mathbf{t} 被占用的信道数

Δ T是观察时间

 $\Delta \mathbf{R}(t)$ 是时刻 t 的一个随机变量

 ΔQ 是R(t)在t 到t + T内的累计值,也是一个随机变量 Δ 并且是起始时刻t 和观察时间T的函数

=量纲

- ≡业务量的量纲是时间
- ≡例: 若一个信道代表一个电话话路

 Δ 则业务量(话务量)的单位是: 秒话路、秒呼

 Δ

小时话路、小时呼 天话路

=业务量的另几种表达形式

 $Q = \lambda tT$

△ 礼:呼叫强度,即单位时间内到达到呼叫数

单位: 呼/小时

 Δ t: 每一呼叫平均占用时长,单位: 分钟

 Δ T:观察时间,单位:分钟

△ Q : 业务量, 单位: 分钟呼

 Δt_i : 第i个呼叫占用的时长

$$= Q = Ct$$

 $C = \sum_{i} C_{i}$

Δ C: 在观察时间T内到达的呼叫次数

△ ★:每一呼叫平均占用时长,单位:小时

=业务量三要素

≡时间范围

≡呼叫强度

≡呼叫占用时长

- 业务强度(话务量强度)(呼叫量)

- =定义
 - ≡线路占用时间与观察时间之比

$$\equiv$$
业务强度 $a = \frac{\text{w务量}}{\text{观察时间}} = \frac{Q}{T}$ (爱尔朗Erlang)

≡亦即:线路占用率,在观察时间T内,线路被占用的百分比

=量纲

- ≡业务强度: 无量纲
- ≡业务强度的单位是: 爱尔朗Erlang

=一些结论

 \equiv

- ≡具有m条信道的线路中,实际能承载的业务强度不大于m
- ≡若用户发出的实际业务强度超过此限制

△则肯定有些呼叫被拒绝

≡实际上,即使业务强度小于m,有时也可能有呼叫被拒绝

=业务强度(话务量强度)的另外几种表达式

$$= \frac{1}{T} \int_{t}^{t+T} R(t)dt$$

$$a = \frac{Q}{T} = \lambda \bar{t}$$

△单位时间内的话务量

- 与排队论中的参数相对应
 - =信道数m相当于服务窗口数
 - =单位时间内平均呼叫数相当于顾客到达率 九
 - = 每次呼叫占用线路的平均时间相当于平均服务时间-

$$\equiv$$
 所以,业务量强度 $a=\lambda \dot{t}=rac{\lambda}{\mu}=
ho$

= 当业务量强度 $a \ge m$ 时

$$\equiv$$
相当于: $\rho = \frac{\lambda}{m\mu} \ge 1$

- ≡此时不拒绝系统将是不稳定的
- ≡对于拒绝系统,当然还是稳定的 △只是有拒绝现象而已

=纯随机呼叫

- ≡用户数为无限多
- ≡用户间相互独立
- \equiv 若每个用户的呼叫率为 λ_0 ,而且趋于零

$$\Delta$$
则总呼叫率为: $\lambda = \lim_{N \to \infty} N \lambda_0$

ΔN为用户数

 Δ 此时, Δt 内出现一个呼叫的概率为: $\lambda \cdot \Delta t$

=准随机呼叫

■在实际通信网中,不存在严格的纯随机呼叫 △因为,用户数总是有限的

≡设用户数N为有限值,用户间相互独立

 $\Delta \lambda_0$: 单位时间内每用户平均呼叫次数

Δ γ : 已被接受服务的用户数

 Δ 则呼叫到达率为: $(N-\gamma)\cdot\lambda_0$

 Δ 此时,在 Δt 内到达一个呼叫的概率为:

$$(N-\gamma)\cdot\lambda_0\cdot\Delta t$$

≡当N较大时,准随机呼叫可近似地作为纯随 机呼叫处理

ΔN愈大,这种近似愈合理

=拒绝系统

≡重复呼叫

△若用户的某次呼叫被拒绝

△则该用户通常会继续呼叫,甚至连续呼叫

△称之为重复呼叫

≡重复呼叫增加了原有呼叫的复杂性

△在用户足够多的情况下,且重复呼叫不严重时

△可以将重复呼叫视为新的用户呼叫

△仍作为纯随机呼叫处理

△只是增加了呼叫率

△拒绝越多,重复呼叫越频繁,增加也越甚

△ (纯随机模型也将越不切合实际)

△也就越偏离纯随机模型

-阻塞率和呼损

- =截止型排队系统
 - ≡实际的通信网及其子系统中

△为了工作的稳定,多采用截止型排队系统

- ≡截止型排队系统会导致阻塞和呼损
 - △系统处于拒绝状态时,系统是阻塞的
 - △从用户的角度看,如果再有呼叫到达,就 将产生呼损
 - △阻塞率和呼损都是指拒绝状态占全部状态 的百分比

=阻塞率

≡时间阻塞率

△总观察时间内,阻塞时间所占的百分比:

$$TC = p_N = \frac{$$
 阻塞时间
 总观察时间

 Δ TC: Time Congestion

 Δ 时间阻塞率 p_N 就是排队论中截止队长为N时的概率

△也就是系统处于N状态的时间占总时间的 百分比

△或者说,系统队列已满,不允许再排入的 状态的时间占总时间的百分比

≡呼叫阻塞率 (呼损)

△被拒绝的呼叫次数占总呼叫次数的百分比

$$CC = p_c = \frac{被拒绝的呼叫次数}$$
 总呼叫次数

 Δ CC: Call Congestion

 Δ 呼损:呼叫损失率,就是指的这个呼叫阻塞率

≡辨异

 Δp_N 相当于在随机(任意)时刻观察系统处于状态N的概率

 Δp_c 相当于在顾客到达时刻系统处于状态N的概率 Δ 一般来说,由于阻塞期间可能没有顾客到达

 Δ 所以: $p_c \leq p_n$

△纯随机呼叫情况下, 顾客以泊松流到达, 则有 $p_c = p_n$

=呼损与转接次数的关系

- ≡转接次数越多,呼损越大
- ≡设网内的源宿端间,某有向径上,有 / 条边

$$\Delta$$
各边上的呼损为: p_{ci} $(i=1,2,\cdots\gamma)$

△则该径上源宿端间的呼损为:

$$p_c = 1 - \prod_{i=1}^{\gamma} (1 - p_{ci})$$

- 时延

- = 时延是通信网中的另一重要指标
- 一时延是指消息进入通信网后,直到利用完网络资源所需的时间
 - ≡包括:等待时间、服务时间、传输时延、 处理时间

=传输时延:

- ≡在电信网中,传输时延一般是较小的
- ≡只有在卫星电路中,会带来较大的传输时延

=处理时延:

- 与消息的内容有关,一般可从技术上缩短处理时间
- ≡这部分时间往往是恒定的。

=等待时间:

- 在延迟拒绝系统中,延迟主要来自等待时间
- ■如数据传输系统和计算机通信系统等非实时性业务
 - △通常采用这种方式
 - △ 只要节点的存储量足够大, 几乎可以做到不拒绝
 - △ 即近似于非截止型的排队系统
- 对于实时业务,如电话业务,通常采用即时拒绝方式
 - Δ 则等待时间几乎为零,但呼损就会出现较多
 - △ 为了减少呼损,电话业务也可采用延迟拒绝方式
 - △ 当前电话网中采用"呼叫等待"的补充业务来实现延迟拒绝
 - △ 不过,一旦接通,则电话业务不再容许大的延迟
 - △ 所以,在实时业务中,时延就不包括服务时间
- =可见,不同的业务,对时延的要求是不同的

- 通过量和信道利用率

- =在所有的呼叫中,
 - ≡有一部分是被拒绝的,
 - ≡另一部分是实际通过网络的
- =通过量
 - ≡单位时间内通过网络的业务量称为通过量
 - $\equiv T_r = a(1 p_c)$ 爱尔朗

 Δa : 业务量强度, 即 λ / μ

 Δp_c : 呼损

- \equiv 有时,也用单位时间内通过网络的呼叫次数作为通过量 T_r
- $\equiv T_r = \lambda(1 p_c) \quad (呼/秒)$
- ≡通常使用前者

=信道利用率

≡若线路的容量为Cr

$$\equiv \mathfrak{N} \quad \eta = \frac{T_r}{C_r}$$

≡例:

 Δ 若某条线路可通m路电话,其容量为m爱尔朗

△则信道利用率相当于排队模型中的窗口占用率或 系统效率

$$\Delta$$
即: $\eta = \frac{a(1-p_n)}{m}$ 来自于 M/M/m(n) 的公式

△这与上面的定义是完全一致的

=全网通过量和全网效率

■ 若通信网中有M条边,相当于M条线路

≡全网通过量

△ 是从各端进入网内,且能到达宿端的业务量

$$\Delta \text{ Pp:} \quad T = \sum_{r=1}^{n} a_r (1 - p_c)$$

 Δa_r : 是从第r端进入网络的业务量强度

 Δp_c : 是这些业务量强度在网中被阻塞的百分比

≡全网效率

 Δ 是各线路的通过量 T_r 之和与各线路的容量之和的比值

$$egin{aligned} egin{aligned} egin{aligned} \sum_{r=1}^{M} T_r \ \sum_{r=1}^{M} C_r \end{aligned}$$

r=1 Δ 注意: 各线路的通过量之和 $\sum_{r=1}^{M} T_r$ 并不是全网通过量

△因为有些信息流要经过几条边才能从源端到达宿端

4.2.2. 业务分析举例

- 用排队论分析通信网中业务问题的步骤
 - = 先确定模型
 - ≡常用的模型有

 $\Delta M/M/c$ (n)

 $\Delta M/D/1$

 Δ M / Er / 1

- = 第二步是定义状态变量
 - ≡这关系到求解的难易程度
 - △选择状态变量要便于计算
 - △并使结果具有可用性
 - △有些情况下,还要选用多维的变量
 - Δ 维数越多, 计算就越复杂

- ≡常用的状态变量有
 - △队列长度
 - △占用线数
- ≡通信网中的业务分析一般只限于稳态
 - △很少涉及暂态
 - △ 暂态也不易得到简洁的结果
- = 第三步是列出状态方程
 - ≡对于M/M问题
 - △可先画出状态转移图
 - △列出稳态方程:
 - 进入某状态的概率 = 离开该状态的概率
- = 第四步是求解状态方程
 - ≡并计算所需的目标参量
 - ≡计算网络的质量指标和性能指标

- 例1: 有限用户即时拒绝系统的分析

- = 交换站有N个用户
 - ≡每个用户的呼叫率为 λ₀
 - ≡有m条中继线
 - \equiv 用户占线时间服从均值为 $\frac{1}{\mu}$ 的负指数分布
 - ■截止队长 n = m
 - \equiv 若用户之间相互独立 Δ 则总呼叫率为 $N\lambda_0$

- = 电路交换的电话系统 属于此类服务系统
 - =相当于 M/M/m/n(=m)/N/FCFS

- =选用占线数 k 作为状态变量
- = 状态转移关系

≡ 状态转移图:

■根据状态转移图列出系统方程:

$$\begin{cases} [(N-k)\lambda_0 + k\mu] p_k = (N-k+1)\lambda_0 p_{k-1} + (k+1)\mu \cdot p_{k+1} & (0 < k < m) \quad 即 m-1 个 方程 \\ N\lambda_0 p_0 = \mu \cdot p_1 \\ m\mu \ p_m = (N-m+1)\lambda_0 p_{m-1} \end{cases}$$

$$\equiv$$
 归一条件: $\sum_{r=0}^{m} p_r = 1$

=求解方程组

$$\equiv \diamondsuit \ \rho = \frac{\lambda_0}{\mu} \ , \ \ \texttt{用递推法可解出:}$$

$$p_1 = N\rho \cdot p_0 = C_N^1 \rho \cdot p_0$$

$$p_2 = \frac{\left[(N-1)\rho + 1\right]p_1 - N\rho \cdot p_0}{2} = C_N^2 \rho^2 p_0$$

$$\equiv$$
 通解为: $p_k = C_N^k \rho^k p_0$

■ 利用归一条件,可解出:

$$p_0 = \frac{1}{\sum_{k=0}^{m} C_N^k \rho^k}$$

■ 时间阻塞率或 拒绝概率 为

$$\Delta \qquad p_m = C_N^m \rho^m p_0 = \frac{C_N^m \rho^m}{\sum_{r=0}^m C_N^r \rho^r}$$

■ 呼叫阻塞率 或 呼损 为

$$\Delta \qquad p_{c} = \frac{(N-m)\lambda_{0}p_{m}}{\sum_{r=0}^{m}(N-r)\lambda_{0}p_{r}} = \frac{C_{N-1}^{m}\rho^{m}}{\sum_{r=0}^{m}C_{N-1}^{r}\rho^{r}}$$

≡ 线路利用率

$$\Delta \qquad \eta = \sum_{k=0}^{m} \frac{k}{m} \, p_k = \frac{p_0}{m} \sum_{k=0}^{m} C_N^k k \rho^k = \frac{N\rho}{m} \cdot \frac{\sum_{k=0}^{m} C_{N-1}^k \rho^k}{\sum_{k=0}^{m} C_N^k \rho^k}$$

≡现以 \mathbf{m} =2、 $N\rho$ =1 为例作数值计算 \mathbf{p}_2 、 \mathbf{p}_c 、 η

\equiv 现以m=1~20,N=2~80, $N\rho=1$ 为例 Δ 作利用率 η 的数值计算:

■ 现以m=1~20, N=2~200, ρ = 0.01 为例 Δ 作利用率 η 的数值计算:

= 现以m=1~20, N=2~200, $\rho=0.1$ 为例 Δ 作利用率 η 的数值计算:

■ 现以m=10,N=2~200, ρ =0.01~0.4 为例 Δ 作利用率 η 的数值计算:

■ 现以m=10,N=2~200, ρ =0.01~0.4 为例 Δ 作呼损 p_c 的数值计算:

= 现以m=1~40,N=200, ρ =0.01~0.4为例 Δ 作呼损 p_c 的数值计算:

- 例2: 主备线即时拒绝系统

- = 交换站有两种输出线
 - ≡A是主用线
 - ≡B是备用线

 Δ 当A线被占用时,再有呼叫到来就占用B线来传输

≡ 当两条线路都忙时,新呼叫则损失

 Δ 到达率: 服从均值为 λ 的负指数分布

 Δ 服务率: 服从均值为 μ 的负指数分布

 Δ 这不是一个标准的M/M/2,因为两个窗口之间有优先级

=选择状态变量

≡ 此处,一个状态变量已不能表达系统的状态

■ 令二维矢量(x, y)为系统状态

 Δx : 表示主用线A的状态

 Δy : 表示备用线B的状态

 $\Delta 0$:表示"空闲"

△1:表示"占线"

≡ 状态集为: {00, 01, 10, 11}

=系统的状态转移图为:

=稳态的状态方程

$$\equiv \begin{cases} \lambda p_{00} = \mu(p_{01} + p_{10}) \\ (\lambda + \mu) p_{01} = \mu \cdot p_{11} \\ 2\mu \cdot p_{11} = \lambda(p_{01} + p_{10}) \end{cases}$$

- 以上四个方程中,只有三个是独立的
- 所以需附加概率归一条件:

$$p_{00} + p_{01} + p_{10} + p_{11} = 1$$

=求解方程组

$$\rho = \frac{\lambda}{\mu}$$

$$\Delta \quad p_{00} = \frac{2}{2+2\rho+\rho^2}$$

$$p_{10} = \frac{\rho(2+\rho)}{(1+\rho)(2+2\rho+\rho^2)}$$

$$p_{11} = \frac{\rho^2}{2 + 2\rho + \rho^2}$$

■ P₁₀: 是主用线A的阻塞概率

 $= P_{01}$: 是备用线B的阻塞概率

 $= P_{II}$: 是系统的阻塞概率,也就是呼损

■ 系统的线路利用率为:

$$\eta = \frac{1}{2}(p_{01} + p_{10}) + p_{11} = \frac{\rho(1+\rho)}{2+2\rho+\rho^2}$$

$$= 50\% \cdot (p_{01} + p_{10}) + 100\% p_{11}$$

- 若系统中的A线和B线不分主备
 - △ 则成为标准的M/M/2(2) 问题
 - Δ M/M/2(2)中的 P_0 对应于该系统中的 P_{00}
 - ΔP_1 等于 $P_{10} + P_{01}$
 - ΔP_2 等于 P_{11} ,即呼损
 - △ 线路利用率与本系统一致
 - Δ 可见,在本例的条件下,若不分主备,系统的性能并无变化
 - △ 但是,若备用线可以另作它用,则情况就不同了
 - △ 请见下例

- 例3: 公用备线即时拒绝系统
 - = 两个业务流分别送到系统的A和B两个处理单元
 - ≡两个输入可认为是两组独立用户

△也可以认为是两种不同性质的业务

- ≡系统有三个输出
 - △ A线和B线为各自的专用线
 - Δ C线为共用的备用线,可接受A、B两种业务
 - Δ 当专用线忙时,都可使用C线
- ≡假设: 指数分布的情况
 - Δ 两个到达率分别为 λ 和 λ
 - Δ 三线的服务率均为 μ
- ≡这是一种三窗口的排队系统
 - △但不是标准的
 - △无法使用前面的公式

=选择状态变量

■取(x,y,z)作为系统的状态变量

 $\Delta x, y, z$ 分别表示A、B、C三线的忙闲

△以"1"代表占用

△以"0"代表空闲

■对于即时拒绝系统,状态矢量集为:

 Δ {000, 001, 010, 011, 100, 101, 110, 111}

=稳态的状态方程

$$(\lambda_{1} + \lambda_{2}) p_{000} = \mu(p_{010} + p_{001} + p_{100})$$

$$(\lambda_{1} + \lambda_{2} + \mu) p_{001} = \mu(p_{011} + p_{101})$$

$$(\lambda_{1} + \lambda_{2} + \mu) p_{010} = \lambda_{2} p_{000} + \mu(p_{011} + p_{110})$$

$$(\lambda_{1} + \lambda_{2} + \mu) p_{100} = \lambda_{1} p_{000} + \mu(p_{110} + p_{101})$$

$$(\lambda_{1} + \lambda_{2} + \mu) p_{011} = \lambda_{2} (p_{010} + p_{001}) + \mu p_{111}$$

$$(\lambda_{1} + \lambda_{2} + 2\mu) p_{110} = \lambda_{1} p_{010} + \lambda_{2} p_{100} + \mu p_{111}$$

$$(\lambda_{2} + 2\mu) p_{101} = \lambda_{1} (p_{001} + p_{100}) + \mu p_{111}$$

$$(\lambda_{2} + 2\mu) p_{101} = \lambda_{1} (p_{001} + p_{100}) + \mu p_{111}$$

$$3\mu p_{111} = \lambda_{1} p_{011} + (\lambda_{1} + \lambda_{2}) p_{110} + \lambda_{2} p_{101}$$

= 归一条件:

$$p_{000} + p_{001} + p_{010} + p_{011} + p_{100} + p_{101} + p_{110} + p_{111} = 1$$

=求解方程组

$$≡$$
 为简化起见,令 $\lambda_1 = \lambda_2 = \lambda$ $\rho = \frac{\lambda}{\mu}$ \equiv 可解得:

$$p_{000} = \frac{3 + 7\rho + 5\rho^2}{\Delta} \qquad p_{001} = \frac{\rho^2 (4\rho + 3)}{\Delta}$$

$$p_{010} = p_{100} = \frac{\rho(3+5.5\rho+3\rho^2)}{\Delta}$$

$$p_{011} = p_{101} = \frac{\rho^2 (4\rho + 3)(0.5 + \rho)}{\Delta}$$

$$p_{110} = \frac{\rho^2 (2\rho + 4\rho + 3)}{\Lambda} \qquad p_{111} = \frac{\rho^3 (4\rho^2 + 6\rho + 3)}{\Delta}$$

$$\Delta$$
其中: $\Delta = (1+\rho)(3+10\rho+15\rho^2+12\rho^3+4\rho^4)$

$$\mathbf{A}$$
 本 \mathbf{A} 弟 用 \mathbf{P} 的 呼 损 : $p_{CA} = p_{101} + p_{111}$

$$\mathbf{B}$$
 B 端 用 户 的 呼 损 : $p_{CB} = p_{011} + p_{111}$

$$\Delta$$
 可见:
$$p_{CA} = p_{CB} = \frac{\rho^2 (3 + 16\rho + 20\rho^2 + 8\rho^3)}{2\Lambda}$$

$$= 线路利用率为: \eta = \frac{1}{3}(p_{001} + p_{010} + p_{100}) + \frac{2}{3}(p_{011} + p_{101} + p_{110}) + 100\% \cdot p_{111}$$

$$= \frac{\rho}{3\Delta}(6 + 26\rho + 47\rho^2 + 38\rho^3 + 12\rho^4)$$

=公用备线系统与自用备线系统的比较

- 即本例的公用备线系统(三线系统)代替前例两个自用备线系统的情况
- ≡ 信道利用率的比较:
 - △两个自用备线系统将配备四条信道
 - △ 而本例的公用备线系统仅配备三条信道
 - Δ 所以,信道利用率必然会提高 η_{h} =40%

$$\eta$$
公备 = 48.5%

△ 计算过程

$$\eta_{\text{AB}} = \frac{\rho(1+\rho)}{2+2\rho+\rho^2} = \frac{1\times(1+1)}{2+2+1} = \frac{2}{5} = 40\%$$

$$\eta_{\triangle A} = \frac{\rho}{3\Delta} \cdot (6 + 26\rho + 47\rho^2 + 38\rho^3 + 12\rho^4)$$

$$= \frac{\rho(6 + 26\rho + 47\rho^2 + 38\rho^3 + 12\rho^4)}{3(1+\rho)(3+10\rho+15\rho^2+12\rho^3+4\rho^4)}$$

$$= \frac{1 \times (6 + 26 + 47 + 38 + 12)}{3 \times (1+1)(3+10+15+12+4)}$$

$$= \frac{129}{3 \times 2 \times 44}$$

$$= \frac{3 \times 43}{3 \times 2 \times 44}$$

$$= 48.5\%$$

≡ 呼损的比较:

$$\Delta \Leftrightarrow \rho = 1$$

 Δ 自用备线系统的呼损: $p_{11} = 0.2$

 Δ 公用备线系统的呼损: $p_c = 0.26$

△可见,呼损有所增加,是节省一条备用线的代价

 Δ 若 ρ << 1 , 则可得近似式:

$$p_{11} \approx \frac{\rho^2}{2} (1 - \rho)$$
 $p_C \approx \frac{\rho^2}{2} (1 + \rho)$

△ 此时,二者的差别不大

≡ 结论

△ 在业务量不太大的情况下,采用公用备线系统是很合 算的

△ 但在业务量较大时,采用这种方式就要考虑呼损指标

- 例4: 优先制排队系统
 - = 前面三例都是即时拒绝系统
 - ≡下面考虑允许排队等待的优先制服务方式
 - =系统描述
 - ≡有n个业务流共用一条线路
 - △事先规定各自的优先级
 - ≡优先级最高的队,只要线路有空即可占用
 - ≡优先级较低的队
 - △ 必须在优先级高的队无呼叫等待时
 - △且线路有空的情况下
 - △才能占用线路

- △甚至可以强行中断正在占用线路的优先级低的业务流
- △这称为强拆
- △半自动接续的电话网就曾采用这种机制

=以两队输入,一条输出线的情况为例

- A队有优先权
- ■B队只能在A队无呼叫等待时才能占用输出线
- 但占用后,不因A队有呼叫到达而被强拆

=选择状态变量

- 系统的状态取决于
 - △ 线路的忙闲
 - △ A、B两队待处理的呼叫数
- 令t为线路状态

$$\Delta t = 1$$
表示占用

$$\Delta t = 0$$
表示空闲

- 令r与s分别表示A、B两队中等待的呼叫数
 - △ r和s中不包括正在传输的呼叫
 - Δ n_r 和 n_s 分别为两队的截止队长

- Δ r与s必然也是零
- Δ 这是系统空闲状态,称之为"0"状态

 Δ 需用一个二维矢量 (r, s) 来代表系统状态

= 状态转移图

= 稳态下的系统状态方程

$$= t = 0, r = s = 0$$
:

$$(\lambda_1 + \lambda_2) p_0 = \mu p_{00}$$

$$= t = 1, r = s = 0$$
:

$$(\lambda_1 + \lambda_2 + \mu) p_{00} = (\lambda_1 + \lambda_2) p_0 + \mu (p_{01} + p_{10})$$

$$\equiv$$
 t = 1, r = 0, 0 < s < n_s:

$$(\lambda_1 + \lambda_2 + \mu)p_{0S} = \lambda_2 p_{0,S-1} + \mu(p_{1S} + p_{0,S+1})$$

$$= t = 1, 0 < r < n_r, s = 0$$
:

$$(\lambda_1 + \lambda_2 + \mu)p_{r0} = \lambda_1 p_{r-1,0} + \mu p_{r+1,0}$$

$$\equiv t = 1, 0 < r < n_r, 0 < s < n_s$$
:

$$\equiv \mathbf{t} = \mathbf{1}, \quad \mathbf{0} < \mathbf{r} < \mathbf{n_r}, \quad \mathbf{0} < \mathbf{s} < \mathbf{n_s}: \quad (\lambda_1 + \lambda_2 + \mu) p_{rs} = \lambda_1 p_{r-1,s} + \lambda_2 p_{r,s-1} + \mu p_{r+1,s}$$

$$\equiv$$
 t = 1, r = n_r , s < n_s :

$$(\lambda_2 + \mu) p_{n_r s} = \lambda_1 p_{n_r - 1, s} + \lambda_2 p_{n_r, s - 1}$$

$$\equiv$$
 t = 1, r < n_r, s = n_s:

$$(\lambda_1 + \mu)p_{rn_s} = \lambda_1 p_{r-1,n_s} + \lambda_2 p_{r,n_s-1} + \mu p_{r+1,n_s}$$

$$\equiv$$
 t = 1, r = n_r , s = n_s :

$$\mu p_{n_r n_s} = \lambda_1 p_{n_r - 1, n_s} + \lambda_2 p_{n_r, n_s - 1}$$

$$p_0 + \sum_{s=0}^{n_s} \sum_{r=0}^{n_r} p_{r,s} = 1$$

≡ 在以上方程中

 Δ 当r或s出现负值时, $p_{rs}=0$

△这些方程构成一个二维的差分方程

△求通解相当困难

= 求解一个特例

 \equiv 设A队为不拒绝型的,即 $n_r = \infty$

 Δ 当B队为即时拒绝的,

 Δ 即 $n_s=0$, 亦即s=0

■ 这样, 状态转移图就只剩下 "0"状态 和最左一列:

= 系统状态方程也简化为:

$$\begin{split} (\lambda_1 + \lambda_2) \, p_0 &= \mu p_{00} \\ (\lambda_1 + \mu) \, p_{00} &= (\lambda_1 + \lambda_2) \, p_0 + \mu p_{10} \\ (\lambda_1 + \mu) \, p_{r0} &= \lambda_1 \, p_{r-1,0} + \mu p_{r+1,0} \quad (r > 0) \end{split}$$

$$\equiv$$
 归一条件: $p_0 + \sum_{r=0}^{\infty} p_{r,0} = 1$

■ 此系统相当于M/M/1+ "0"态

■上面方程组中的最后一式为齐次一维差分方程

$$\mu p_{r+1,0} - (\lambda_1 + \mu) p_{r0} + \lambda_1 p_{r-1,0} = 0$$

 Δ 可令通解为: $p_{ro} = p_{oo} = x^r$

$$\Delta$$
 代入后可解得: $x = \frac{\lambda_1}{\mu}$ 或 1

 Δ 由于r可以趋于无限大,故应舍去 x = 1 解

$$\Delta$$
 而保留下 $x = \rho_1 = \frac{\lambda_1}{\mu}$ 解

 Δ 并要求 $\rho_1 < 1$

 Δ 再代入前两式的任一式,可求得: $p_{00} = (\rho_1 + \rho_2)p_0$

 Δ 再利用归一条件求 p_a :

$$p_0 + (\rho_1 + \rho_2) p_0 \sum_{r=0}^{\infty} \rho_1^r = 1 \qquad p_0 = \frac{1 - \rho_1}{1 + \rho_2}$$

$$\Delta$$
 于是,得通解:
$$p_{r0} = \frac{(1-\rho_1)(\rho_1+\rho_2)\rho_1^r}{(1+\rho_2)}$$

■ B队的拒绝概率(呼损)为:
$$P_C = 1 - p_0 = \frac{\rho_1 + \rho_2}{1 + \rho_2}$$

$$\Delta$$
 信道利用率将为:
$$\eta = 1 - p_0 = \frac{\rho_1 + \rho_2}{1 + \rho_2}$$

■ A队的平均等待时间为:

$$\overline{w} = \frac{1}{\mu} \sum_{r=0}^{\infty} (r+1) P_{r0} = \frac{1}{\mu} E[r+1] = \frac{1}{\mu} \cdot \frac{\rho_1 + \rho_2}{(1+\rho_2)(1-\rho_1)}$$

≡ 若B队不存在,则此系统成为标准的 M/M/1系统

$$\Delta$$
 此时,平均等待时间将为: $\overline{w_0} = \frac{1}{\mu} \cdot \frac{\rho_1}{(1-\rho_1)}$

$$\Delta$$
 信道利用率将为: $\eta_0 = \rho_1$

到京都電大學 BEDING UNIVERSITY OF POSTS AND TELECOMMUNIV

■ 可见,加上了B队,即使利用优先制,A队的平均等待时间 也会有所增加

$$\Delta$$
 但信道的利用率也有所提高,实际上: $\frac{w}{w_0} = \frac{(\rho_1 + \rho_2)}{\rho_1(1 + \rho_2)} = \frac{\eta}{\eta_0} \ge 1$

△ 这表明,信道利用率的提高是以优先队的等待时间增大为代价的

- B队的呼损与信道利用率相等
 - △ 这样的呼损是相当高的
 - Δ 要降低B队的呼损,可容许B队有一个呼叫排队等待
 - Δ 这时,s=0或s=1,可先求解 s=0时的一维差分方程
 - Δ 只是它的特征解已不再是 $x = \rho_1$,因为一维差分方程中将出现 λ_2
 - Δ 解出后,再求解s=1的方程
 - Δ 当然, 计算过程要比举例复杂得多
- 如果系统有m条信道
 - Δ 则系统性能会进一步提高
 - Δ 就像前面曾研究的M/M/m系统比M/M/1系统要好一样
 - Δ 当然,求解就会更加困难

- 例5: 两次排队问题

= 系统描述

- ≡在这种系统中,信息包首先送入队列A
- ≡再由容量为C₁bit/s的信道送到队列B
- ≡最后再由容量为C2bit/s的信道送出系统
- ≡假设
 - △ 输入信息流为泊松流
 - Δ 到达率为 λ 包/秒
 - △ 每包的平均比特数为a
 - △ 且信息包长服从负指数分布
 - Δ 队列A和B不限制队长,即构成不拒绝系统
- \equiv 信道 \mathbb{C}_1 的服务率 $\mu_1 = \mathbb{C}_1/a$ (包/秒)
- \equiv 信道 \mathbb{C}_2 的服务率 $\mu_2 = C_2/a$ (包/秒)

= 选择状态变量

- ≡设r和s分别为队列A和B的队列长度(包括正在传送的信息包)
- ≡选择(r, s)为状态变量

 C_2

= 状态转移图

 C_1

=稳态下系统状态方程

$$\Delta \mathbf{r} = \mathbf{s} = \mathbf{0}$$
:

$$\lambda p_{00} = \mu_2 p_{01}$$

$$\Delta s = 0$$
:

$$(\lambda + \mu_1) p_{r0} = \lambda p_{r-1,0} + \mu_2 p_{r1}$$

$$\Delta \mathbf{r} = \mathbf{0}$$
:

$$(\lambda + \mu_2)p_{0S} = \mu_1 p_{1,S-1} + \mu_2 p_{0,S+1}$$

$$\Delta \mathbf{r} > \mathbf{0}, \ \mathbf{s} > \mathbf{0} : (\lambda + \mu_1 + \mu_2) p_{rs} = \lambda p_{r-1,s} + \mu_1 p_{r+1,s-1} + \mu_2 p_{r,s+1}$$

$$\sum_{s=0}^{\infty} \sum_{r=0}^{\infty} p_{rs} = 1$$

= 求解方程组

$$\equiv$$
 试用解: $p_{rs} = p_{00}x^ry^s$

$$= 代入第一式, 可得: y = \frac{\lambda}{\mu_2} = \rho_2$$

$$= \mathcal{C} \lambda = \mathcal{C} \lambda = \mathcal{C} \lambda = \mathcal{C} \lambda$$

$$= \text{代入第一式,可符.} \qquad \mu_2$$

$$\equiv \text{代入第二式,可得:} \qquad x = \frac{\lambda}{\mu_2} = \rho_1$$

■ 再代入其它各式,验证这样的x, y均满足方程

 \equiv 所以得到联合概率 p_{rs} 的通式: $p_{rs} = p_{00} \cdot \rho_1^r \cdot \rho_2^s$

≡ 利用归一条件求出 p_{00} :

$$\Delta \qquad p_{00} \sum_{r} \sum_{s} \rho_{1}^{r} \rho_{2}^{s} = p_{00} \cdot \frac{1}{(1 - \rho_{1})(1 - \rho_{2})} = 1$$

$$\Delta$$
 $p_{00} = (1 - \rho_1)(1 - \rho_2)$

≡ 所以:

$$p_{rs} = (1 - \rho_1)(1 - \rho_2)\rho_1^r \rho_2^s$$

■ 从这个解可以看出,一个重要结论

△r和s是两个相互独立的随机变量

 Δ 也就是说,在这样的系统中,两个排队过程是相互独立的

=系统的性能指标

≡信息包在系统中的总时间: (或者说,平均时延)

≡信道利用率

 Δ 信道 C_1 的利用率: $\eta_1 = \rho_1$

 Δ 信道 \mathbb{C}_2 的利用率: $\eta_2 = \rho_2$

 Δ 总的信道利用率: $\eta = \frac{1}{2}(\rho_1 + \rho_2)$

 Δ 可见,只有 ρ_1 <1且 ρ_2 <1时,系统才能稳定工作

=从本例可以看出一个重要结论

 \equiv 对于 M / M 排队系统,其输出过程,即顾客离去的规律仍是一个以输入到达率 λ 为平均值的泊松流

■ [证明]:

- Δ 为更具普遍性,现以M/M/m为例
- Δ 来计算 Δt 内有顾客离去的概率
- Δ 当队长为k时,设有顾客离去的概率为 $a_k \cdot \Delta t$

$$\Delta \text{ M}: \quad a_k = \begin{cases} 0 & , & k=0 \\ k\mu & , & 0 \le k \le m \\ m\mu & , & k \ge m \end{cases}$$

$$\Delta$$
 则离去率为: $\lambda' = \sum_{k=0}^{\infty} a_k p_k$

 Δ 用M/M/m中得到的 p_k 代入,得到:

$$\lambda' = \sum_{k=0}^{m} k\mu \frac{(\lambda/\mu)^k}{k!} p_0 + \sum_{k=m+1}^{\infty} m\mu \cdot \frac{m^m}{m!} (\frac{\lambda}{m\mu})^k p_0$$

$$= \lambda p_0 \left[\sum_{r=0}^{m-1} \frac{(\lambda/\mu)^r}{r!} + \frac{(\lambda/\mu)^m}{m!} \cdot \frac{1}{1 - \lambda/m\mu} \right]$$

$$= \lambda$$

$$P_{0} = \left[\sum_{k=0}^{c-1} \frac{1}{k!} \left(\frac{\lambda}{\mu} \right)^{k} + \frac{1}{c!} \cdot \frac{1}{1-\rho} \cdot \left(\frac{\lambda}{\mu} \right)^{c} \right]^{-1}$$

$$P_{n} = \left\{ \frac{1}{n!} \cdot \left(\frac{\lambda}{\mu} \right)^{n} \cdot P_{0} \qquad (n < c) \right\}$$

$$\left\{ \frac{1}{c! \cdot c^{n-c}} \left(\frac{\lambda}{\mu} \right)^{n} \cdot P_{0} \qquad (n \ge c) \right\}$$

- Δ 因为:方括号内值的倒数恰 \mathcal{G} $\mathcal{G$
- △ 这就证明了: 输出过程与输 入过程有同样的规律
- Δ 这个结论与前面的独立性结 论合在一起, 称为输出定理

$$\lambda' = \sum_{k=0}^{m} k \mu \frac{(\lambda / \mu)^{k}}{k!} p_{0} + \sum_{k=m+1}^{\infty} m \mu \cdot \frac{m^{m}}{m!} (\frac{\lambda}{m \mu})^{k} p_{0}$$

$$= \mu p_{0} \left[\sum_{k=1}^{m} k \frac{(\lambda / \mu)^{k}}{k!} + \frac{(\lambda / \mu)^{m}}{m!} \sum_{k=m+1}^{\infty} m \cdot \frac{m^{m}}{m^{k}} (\frac{\lambda}{\mu})^{k-m} \right]$$

$$= \mu p_{0} \left[\sum_{k=1}^{m} \frac{(\lambda / \mu)^{k}}{(k-1)!} + \frac{(\lambda / \mu)^{m}}{m!} \sum_{k=m+1}^{\infty} m \cdot (\frac{\lambda}{m \mu})^{k-m} \right]$$

$$= \mu p_{0} \left[\sum_{r=0}^{m-1} \frac{(\lambda / \mu)^{r+1}}{r!} + \frac{(\lambda / \mu)^{m+1}}{m!} \sum_{k=m+1}^{\infty} (\frac{\lambda}{m \mu})^{k-m-1} \right]$$

$$= \mu p_{0} \left[\sum_{r=0}^{m-1} \frac{(\lambda / \mu)^{r+1}}{r!} + \frac{(\lambda / \mu)^{m+1}}{m!} \sum_{r=0}^{\infty} (\frac{\lambda}{m \mu})^{r} \right]$$

$$= \lambda p_{0} \left[\sum_{r=0}^{m-1} \frac{(\lambda / \mu)^{r}}{r!} + \frac{(\lambda / \mu)^{m}}{m!} \cdot \frac{1}{1 - \lambda / m \mu} \right]$$

$$= \lambda$$

- = 从本例引出的定理 - 输出定理
 - M/M/m不拒绝排队系统的输出过程与输入过程相 互独立
 - ≡ 并具有同样的分布规律
 - \equiv 即都是以输入到达率 λ 为均值的泊松流
 - ≡ 这个定理在信息转接的计算中应用很广
 - △它使多次排队系统简化为各自独立的排队问题
 - △并从各分系统的性能来计算总性能
 - ≡ 但是,若各排队系统的截止队长等参数有限制时
 - △输出过程就不具有此性质了
 - △就需要像前面那样去求联合概率了
 - △ 并且r和s也不会相互独立了
 - 对于非M/M/m系统
 - Δ 如M/D/1等系统,也不具备此性质
 - △所以,限制了输出定理的使用范围

- 对于多次排队系统
 - Δ 一旦有一个子系统不是M/M/m类型的
 - △则此子系统之前的各排队 过程仍然是相互独立的
 - △但在它以后就不成立了

- 作业:

- = (周先生著)第266页: 4.8, 4.9
- = (周先生著)第267页: 4.10, 4.11
- = (张琳著)第79页: 2.10, 2.11

(本节结束)