Digital Systems Design

Computer Design

Introduction

- The computer consists of a central processor unit, a memory unit and an input-output unit.
- The logic design of the central processor unit will be derived here.
- The design process is divided into six phases:
 - The decomposition of the digital computer into registers which specify the general configuration of the system.
 - The specification of computer instructions.
 - The formulation of a timing and control network.
 - The listing of the register-transfer operations needed to execute all computer instructions.
 - The design of the processor section.
 - The design of the control section.

System Configuration

Master-clock generator is a common clock-pulse source which generates a periodic train of pulses.

Symbolic designation	Name	Number of bits	Function 2
A	Accumulator register	16	Processor register
В	Memory buffer register	16	Holds contents of memory word
PC	Program counter	12	Holds address of next instruction
MAR	Memory address register	12	Holds address of memory word
I	Instruction register	4	Holds current operation-code
E	Extension flip-flop	1	Accumulator extension
F	Fetch flip-flop	1	Controls fetch and execute cycles
S	Start-stop flip-flop	1	Starts and stops computer
G	Sequence register	2	Provides timing signals
N	Input register	9	Holds information from input device
U	Output register	9	Holds information for output device

Computer Instructions

• The instructions must be chosen carefully to supply sufficient capabilities to the system for sovling a wide range of data processing problems.

Instruction Formats Data Formats Magnitude (negative numbers in 2's complement) Sign Address Operation 15 12 15 10 (a) Arithmetic operand (a) Memory-reference instruction Type of register operation or test Logical word Code 0110 (b) Logical operand (b) Register-reference instruction Type of input-output operation or test Character Code 0111 Character 13 16 | 15 . 12 (c) Input/output data (c) Input/output instruction

Computer Instructions Memory-reference Instructions

• Six memory-reference instructions for the computer are listed in the table.

• The hexadecimal code listed is an equivalent hexadecimal number of the binary

code adopted for the operation-code.

Symbol	Hexa- decimal code	Description	Function
AND	0 m*	AND to A	$A \leftarrow A \wedge M^{+}$
ADD	1 m	Add to A	$A \leftarrow A \land M^*$ $A \leftarrow A + M, E \leftarrow Carry$
STO	2 m	Store in A	$M \leftarrow A + M, E \leftarrow Carry$ $M \leftarrow A$
ISZ	3 m	Increment and skip if zero	$M \leftarrow M + 1$, if $(M + 1 = 0)$ then
BSB	4 m	Branch to subroutine	$(PC \leftarrow PC + 1)$ $M \leftarrow PC + 5000, PC \leftarrow m + 1$
BUN	5-m	Branch unconditionally	$PC \leftarrow m$

^{*}m is the address part of the instruction. M is the memory word addressed by m.

Computer Instructions Register-reference Instructions

• Each register-reference instruction has an operation-code 0110 (hexadecimal 6) and contains a single 1 in one of the remaining 12 bits of the instruction.

Symbol	Hexa- decimal code	Description	Function
CLA	6800	Clear A	<i>A</i> ← 0
CLE	6400	Clear E	$E \leftarrow 0$
CMA	6200	Complement A	$A \leftarrow \overline{A}$
CME	6100	Complement E	$E \leftarrow E$
SHR	6080	Shift-right A and E	$A \leftarrow \operatorname{shr} A, A_{16} \leftarrow E, E \leftarrow A_1$
SHL	6040	Shift-left A and E	$A \leftarrow \text{shl } A, A_1 \leftarrow E, E \leftarrow A_1$
INC	6020	Increment A	$A \leftarrow A + 1$
SPA	6010	Skip on positive A	· · · · · ·
SNA	6008	Skip on negative A	If $(A_{16} = 0)$ then $(PC \leftarrow PC + 1)$
SZA	6004	Skip on zero A	If $(A_{16} = 1)$ then $(PC \leftarrow PC + 1)$
SZE	6002	Skip on zero E	If $(A = 0)$ then $(PC \leftarrow PC + 1)$
HLT	6001	Halt computer	If $(E = 0)$ then $(PC \leftarrow PC + 1)$ $S \leftarrow 0$

Computer Instructions Input-Output Instructions

- The computer has four input-output instructions and they are listed in the table.
- These instructions have an operation code 0111 (hexadecimal 7) and each contains a single 1 in one of the remaining 12 bits of the instruction.

	Hexadecimal	7	·
Symbol	code	Description	* Function
SKI	7800	Skip on input flag	If $(N_9 = !)$ then $(PC \leftarrow PC + !)$
INP	7400	Input to A	$A_{i-3} \leftarrow N_{i-8}, N_9 \leftarrow 0$
-SKO	- 7200	Skip on output flag	If $(U_9 = 1)$ then $(PC \leftarrow PC + 1)$
OUT	7100	Output from A	$U_{1-8} \leftarrow \dot{z}_{1-8}, U_9 \leftarrow 0$

Timing and Control

• A certain number of timing variables are available in the control unit to sequence the operation in the proper order.

Execution of Instructions

- Once a "start" switch is activated, the computer sequence follows a basic pattern.
 - An instruction whose address is in *PC* is read from memory.
 - Its operation part is transferred to register *I* and *PC* is incremented by 1 to prepare it for the next instruction.
 - The words read from memory into the *B* register can be either instructions or data.
 - Flip-flop *F* determines:
 - when F = 0, it is an instruction and cycle is instruction fetch cycle.
 - when F = 1, it is data and cycle is data execution cycle.

Execution of Instructions Fetch Cycle

- An instruction is read from memory during the fetch cycle.
- The operation code in the *I* register is decoded at time t_3 .

 F't₁: $B \leftarrow M$, $PC \leftarrow PC + 1$ F't₂: $I \leftarrow B(OP)$

 $F't_0: MAR \leftarrow PC$

• When an operation code 0, 1, 2, 3, or 4 is encountered, the computer has to go to an execute cycle to access the memory again. This condition is detected by:

$$F'(q_0 + q_1 + q_2 + q_3 + q_4)t_3$$
: $F \leftarrow 1$

$F't_0$:	$MAR \leftarrow PC$	Transfer instruction address
$F't_1$:	_ _	Read instruction, increment PC
$F't_2$:	$I \leftarrow B(OP)$	Transfer operation code
$F'(q_0+q_1+q_2+q_3+q_4)t_3$:	$F \leftarrow 1$	Go to execute cycle
q_5t_3 :	$PC \leftarrow B(AD)$	Branch unconditionally (BUN)
q_6t_3 :	See Table 11-8	Register-reference instruction
q_7t_3 :	See Table 11-9	Input-output instruction

Execution of Instructions Execute Cycle

• At the end of the fetch cycle, the address part of *B* register is transferred to *MAR*.

$$Ft_0$$
: $MAR \leftarrow B(AD)$

$$F(q_0 + q_1 + q_3)t_1: B \leftarrow M$$

• The particular decoded instruction is executed with timing variables t_2 and t_3 . At t_3

$$Ft_3$$
: $F \leftarrow 0$

Ft_0 : $F(q_0 + q_1 + q_3)t_1$: $F(t_2 + t_3)$: Ft_3 :	$MAR \leftarrow B(AD)$ $B \leftarrow M$ See Table 11-7 $F \leftarrow 0$	Transfer address part Read operand Execute memory-reference instruction Return to fetch cycle
---	--	---

Execution of Instructions Execute Cycle

AND ADD STO	Fq_1t_3 :	$A \leftarrow A \wedge B$ $A \leftarrow A + B, E \leftarrow \text{carry}$ $B \leftarrow A$	AND microoperation Add microoperation Transfer A to B
ISZ	-		Store in memory Increment memory word Store back in memory
BSB	$Fq_3B_2t_3$: Fq_4t_2 :	$PC \leftarrow PC + 1$ $B(AD) \leftarrow PC, B(OP) \leftarrow 0101,$	Skip if $B_r = 1$ ($B = 0$)
,	Fq_4t_3 ;	$M \leftarrow B, PC \leftarrow PC + 1$	Store return address, increment address in PC