Álgebra Linear

Fco. Leonardo Bezerra M. 2019.1

(leonardobluesummers@gmail.com)

Aulas 16, 17, 18, 19 e 20

Transformações Lineares

Transformação Linear

- ▶ Definição: Sejam V e W dois espaços vetoriais. Uma transformação linear é uma função de V em W, T: V
 → W, que satisfaz as seguintes condições:
 - I. Para quaisquer \mathbf{u} e \mathbf{v} em V:

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

II. Para quaisquer $k \in \mathbb{R}$ e $\mathbf{v} \in \mathbb{R}$:

$$T(k\mathbf{v}) = kT(\mathbf{v})$$

- Verifique os EVs nas TLs.
 - 1. $V = \mathbb{R} \text{ e } W = \mathbb{R} / \text{T: } \mathbf{x} \rightarrow 3\mathbf{x};$
 - 2. $V = \mathbb{R}^2$ e $W = \mathbb{R}^3 / T$: $(x, y) \rightarrow (3x, -y, 2x 3y)$;
 - 3. $V = \mathbb{R}^4$ e $W = \mathbb{R} / T$: $(x, y, z, w) \rightarrow (x 2y 2z + 3w)$;

Testes – TL

- Sempre realizaremos 2 testes:
 - 1. Para \mathbf{u} , $\mathbf{w} \in V$, $T(\mathbf{u} + \mathbf{w}) \in W$ e $T(\mathbf{u} + \mathbf{w}) = T(\mathbf{u}) + T(\mathbf{w})$?;
 - 2. Para $\mathbf{u} \in V \in k \in \mathbb{R}$, $T(k\mathbf{u}) \in W \in T(k\mathbf{u}) = kT(\mathbf{u})$?;

- ➤ Verifique se as seguintes transformações são TLs:
 - 1. T(x) = ax; Sim.
 - 2. T(x) = ax + b; Não.
 - 3. T(x, y) = (2x, -x + y, -7y); Sim.
 - 4. T(x, y, z) = (x y, y + z); Sim.
 - 5. $T(x, y, z) = ((x y)^2, z^2); N\tilde{a}o.$

Assim, para $\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + ... + a_n \mathbf{v_n}$ temos $T(\mathbf{v}) = a_1 T(\mathbf{v_1}) + a_2 T(\mathbf{v_2}) + ... + a_n T(\mathbf{v_n})$. Uma TL pode então ser representada como uma matriz.

Exemplo:

$$L_{\mathbf{A}}: \mathbf{R}^{2} \to \mathbf{R}^{3}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \longmapsto \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2x_{1} \\ 0 \\ x_{1} + x_{2} \end{bmatrix}$$

$$L_{\mathbf{A}}(x_{1}, x_{2}) = (2x_{1}, 0, x_{1} + x_{2})$$

TLs do Plano no Plano

Expansão (ou Contração) Uniforme: $T: \mathbb{R}^2 \to \mathbb{R}^2$,

$$\alpha \in \mathbb{R}, \mathbf{v} = \alpha \mathbf{v}.$$

Por exemplo: $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{v} \mapsto 2\mathbf{v}$$
, ou $T(x, y) = 2(x, y)$

Esta função leva cada vetor do plano num vetor de mesma direção e sentido de v, mas de módulo maior.

Reflexão na Origem: $T: \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{v} = -\mathbf{v}$.

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ $\mathbf{v} \mapsto -\mathbf{v}$, ou seja, T(x, y) = (-x, -y)

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

\triangleright Rotação de um ângulo θ (sentido anti-horário):

 $x' = r \cos(\alpha + \theta) = r \cos\alpha \cos\theta - r \sin\alpha \sin\theta$

Mas $r \cos \theta = x e r \sin \theta = y$.

Então $x' = x \cos \theta - y \sin \theta$.

Analogamente, $y' = r \operatorname{sen} (\alpha + \theta) = r (\operatorname{sen} \alpha \cos \theta + \cos \alpha \operatorname{sen} \theta) = y \cos \theta + x \operatorname{sen} \theta$.

Assim $\mathbf{R}_{\theta}(x, y) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)$ ou na forma coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x \cos \theta - y \sin \theta \\ y \cos \theta + x \sin \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Consideremos o caso particular onde $\theta = \frac{\pi}{2}$. Neste caso, $\cos \theta = 0$ e sen $\theta = 1$.

Então,
$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -y \\ x \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Cisalhamento Horizontal: $T(x, y) = (x + \alpha y, y), \alpha \in \mathbb{R}.$

Por exemplo: T(x, y) = (x + 2y, y)

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x + 2y \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Translação (transformação não-linear): $T(x, y) = (x + a, y + b), a, b \in \mathbb{R}.$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Esta é uma translação do plano segundo o vetor (a, b) e, a menos que a = b = 0, T não é linear.

Conceitos e Teoremas

- **Teorema:** Dados dois espaços vetoriais reais $V \in W$, e uma base de V, $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$, sejam $\mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_n}$ elementos arbitrários de W. Então, existe uma única aplicação linear $T: V \to W$ tal que $T(\mathbf{v_1}) = \mathbf{w_1}$, $T(\mathbf{v_2}) = \mathbf{w_2}, ..., T(\mathbf{v_n}) = \mathbf{w_n}$.
- Ou seja, se $\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$ Então:

$$T(\mathbf{v}) = a_1 T(\mathbf{v_1}) + a_2 T(\mathbf{v_2}) + \dots + a_n T(\mathbf{v_n}).$$

= $a_1 \mathbf{w_1} + a_2 \mathbf{w_2} + \dots + a_n \mathbf{w_n}$

- Determine a TL a partir de uma base:
 - 1. $V = \mathbb{R}^2$ e $W = \mathbb{R}^2 / T(1, -1) = (-2, 5)$ e T(0, 1) = (-1, 3).
 - T(x, y) = |-3x y, 8x + 3y|
 - 2. $V = \mathbb{R}^2$ e $W = \mathbb{R}^3 / T(-1, 1) = (3, 2, 1)$ e T(0, -2) = (1, 1, 0).
 - T(x, y) = |(-7x y)/2, (-5x y)/2, -x|.
 - 3. $V = \mathbb{R}^2$ e $W = \mathbb{R} / T(1, 2) = 0$ e T(0, 4) = -2.
 - T(x, y) = (2x y)/2.

Definição: Dada uma transformação $T: V \to W$, dizemos que T é *injetora* se dados \mathbf{u} , $\mathbf{v} \in V$ com $T(\mathbf{u})$ = $T(\mathbf{v})$ tivermos $\mathbf{u} = \mathbf{v}$. Ou equivalentemente, T é *injetora* se dados \mathbf{u} , $\mathbf{v} \in V$ com $\mathbf{u} \neq \mathbf{v}$, então $T(\mathbf{u}) \neq T(\mathbf{v})$.

• Ou seja, *T* é *injetora* se as imagens de vetores distintos são distintas.

▶ **Definição:** Uma transformação $T: V \rightarrow W$ será sobrejetora se a imagem de T coincidir com W, ou seja, T(V) = W.

• Ou seja, $T \notin sobrejetora$ se dado $\mathbf{w} \in W$, existir $\mathbf{v} \in V$ tal que $T(\mathbf{v}) = \mathbf{w}$.

Definição: Seja $T: V \to W$ uma aplicação linear. A *imagem* de T é o conjunto de vetores $\mathbf{w} \in W$ tais que existe um vetor $\mathbf{v} \in V$, que satisfaz $T(\mathbf{v}) = \mathbf{w}$.

• Ou seja, $Im(T) = \{ \mathbf{w} \in W ; T(\mathbf{v}) = \mathbf{w} \text{ para algum } \mathbf{v} \in V \}.$

• Im(T) é, portanto, um sub-espaço vetorial de W.

- **Definição:** Seja T: V → W uma transformação linear. O conjunto de todos os vetores $\mathbf{v} \in V$ tais que $T(\mathbf{v}) = \mathbf{0}$ é chamado núcleo de T, sendo denominado ker(T).
- Ou seja,

$$ker(T) = \{ \mathbf{v} \in V; T(\mathbf{v}) = \mathbf{0} \}.$$

• ker(T) é, portanto, um sub-conjunto vetorial de V.

Exemplo 1:

 $T: \mathbb{R}^2 \to \mathbb{R}$ $(x, y) \to x + y$

Neste caso temos $ker T = \{(x, y) \in \mathbb{R}^2; x + y = 0\}$, isto é, ker T é a reta y = -x. Podemos dizer ainda que $ker T = \{(x, -x); x \in \mathbb{R}\} = \{x(1, -1); x \in \mathbb{R}\} = \{(1, -1)\}$. $Im T = \mathbb{R}$, pois dado $\mathbf{w} \in \mathbb{R}$, $\mathbf{w} = T(\mathbf{w}, 0)$.

- **Teorema:** Seja $T: V \to W$ uma transformação linear. Então $ker(T) = \{0\}$ se, e somente se, $T \in injetora$.
- **Teorema:** Seja $T: V \to W$ uma transformação linear. Então dim $ker(T) + \dim Im(T) = \dim V$.
- ightharpoonup Corolário: Se dim $V=\dim W$ então T é injetora se, e somente se, T é sobrejetora.
- Corolário: Seja $T: V \to W$ uma transformação linear *injetora*. Se dim $V = \dim W$ então se $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ é uma base de V, $\{T(\mathbf{v_1}), T(\mathbf{v_2}), ..., T(\mathbf{v_n})\}$ é base de W.

Dimensão

Fraction Teorema: Seja $T: V \to W$ uma transformação linear e α e β sejam bases de V e W respectivamente. Então:

- dim Im(T) = posto de $[T]_{\alpha \to \beta}$;
- dim ker(T) = nulidade de $[T]_{\alpha \to \beta}$. = n° de colunas – posto de $[T]_{\alpha \to \beta}$.

- Determine a imagem, o núcleo e suas dimensões para as TLs:
 - 1. T(x, y) = (2x, -x + y, -7y);
 - $ker(T) = \{(0, 0)\}, dim = 0; Im(T) = (a, b, -7b, -7a/2), dim = 2.$
 - 2. T(x, y, z) = (x y, y + z);
 - $ker(T) = \{(y, y, -y)\}, dim = 1; Im(T) = (a, b), dim = 2.$
 - 3. T(x, y, z) = (x 4y + 4z, 3x + y + 8z);
 - $ker(T) = \{(-36z/13, 4z/13, z)\}, dim = 1; Im(T) = (a, b), dim = 2.$
 - 4. T(x, y, z) = (x + 2y z, y + 2z, x + 3y + z);
 - $ker(T) = \{(5z, -2z, z)\}, dim = 1; Im(T) = (a, b, a + b), dim = 2.$

Matriz da TL

- > Se o domínio e a imagem estão nas bases canônicas:
 - 1. A matriz da TL é composta pelos valores de T na base do domínio.
 - 2. As dimensões da matriz são inversas às dimensões dos espaços. $(T = \mathbb{R}^2 \to \mathbb{R}^3, \log_{\beta} [T]_{\beta} = A_{3x2}).$
- > Se o domínio e a imagem estão em outras bases:
 - 1. A matriz da TL é composta pelos pesos dos vetores na base da imagem.
 - 2. Para isso, encontramos os valores de T nos vetores da base do domínio e os representamos utilizando a base da imagem.

Exemplo 1:

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x, y, z) = (2x + y - z, 3x - 2y + 4z). Sejam $\beta = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ e $\beta' = \{(1, 3), (1, 4)\}$. Procuremos $[T]_{\beta'}^{\beta}$.

Calculando T nos elementos da base β , temos:

$$T(1, 1, 1) = (2, 5) = 3(1, 3) - 1(1, 4)$$

 $T(1, 1, 0) = (3, 1) = 11(1, 3) - 8(1, 4)$
 $T(1, 0, 0) = (2, 3) = 5(1, 3) - 3(1, 4)$

$$[T]^{\beta}_{\beta'} = \begin{bmatrix} 3 & 11 & 5 \\ -1 & -8 & -3 \end{bmatrix}$$

Exemplo 2:

Seja T a transformação linear do Exemplo 1 e sejam $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ e $\beta' = \{(1, 0), (0, 1)\}$.

Calculemos $[T]^{\beta}_{\beta'}$.

$$T(1, 0, 0) = (2, 3) \approx 2(1, 0) + 3(0, 1)$$

 $T(0, 1, 0) = (1, -2) \approx 1(1, 0) - 2(0, 1)$
 $T(0, 0, 1) = (-1, 4) \approx -1(1, 0) + 4(0, 1)$

Então

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix}$$

Exemplo 4: Dadas as bases $\beta = \{(1, 1), (0, 1)\}$ de \mathbb{R}^2 e $\beta' = \{(0, 3, 0), (-1, 0, 0), (0, 1, 1)\}$ de \mathbb{R}^3 , encontremos a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cuja matriz é

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$$

Interpretando a matriz, temos:

$$T(1, 1) = 0(0, 3, 0) - 1(-1, 0, 0) - 1(0, 1, 1) = (1, -1, -1)$$

 $T(0, 1) = 2(0, 3, 0) + 0(-1, 0, 0) + 3(0, 1, 1) = (0, 9, 3)$

Devemos encontrar agora T(x, y). Para isto escrevemos (x, y) em relação à base β :

$$(x, y) = x(1, 1) + (y - x)(0, 1)$$

Aplicando T e usando a linearidade, temos:

$$T(x, y) = xT(1, 1) + (y - x)T(0, 1)$$

= $x(1, -1, -1) + (y - x)(0, 9, 3)$
= $(x, 9y - 10x, 3y - 4x)$

Exemplo: Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

onde $\alpha = \{(1, 0), (0, 1)\}$ é base de \mathbb{R}^2 , $\beta = \{(1, 0, 1), (-2, 0, 1), (0, 1, 0)\}$ é base de \mathbb{R}^3 . Queremos saber qual é a imagem do vetor $\mathbf{v} = (2, -3)$ pela aplicação T. Para isto, achamos as coordenadas do vetor \mathbf{v} em relação à base α ,

obtendo $[\mathbf{v}]_{\alpha} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, a seguir, usando o teorema, temos

$$[T\mathbf{v}]_{\beta} = [T]_{\beta}^{\alpha} [\mathbf{v}]_{\alpha} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -13 \end{bmatrix}$$

ou seja,

$$T$$
v = 5(1, 0, 1) - 3(-2, 0, 1) - 13(0, 1, 0)
= (11, -13, 2)

TL Composta

Feorema: Sejam T_1 : V o W e T_2 : W o U transformações lineares e α, β e γ sejam bases de V, W e U, respectivamente. Então a composta de T_1 com T_2 , $T_1 o T_2$: V o U, é linear e:

$$[T]_{\alpha \to \gamma} = [T]_{\beta \to \gamma} [T]_{\alpha \to \beta};$$

Exemplo 1: Consideremos uma expansão do plano \mathbb{R}^2 dada por $T_1(x, y) = 2(x, y)$, e um cisalhamento dado por $T_2(x, y) = (x + 2y, y)$.

As matrizes (em relação à base canônica de R2, ξ) das transformações são

$$[T_1]_{\xi}^{\hat{\xi}} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{e} \quad [T_2]_{\xi}^{\hat{\xi}} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Então, a matriz (em relação à base canônica de \mathbb{R}^2) da aplicação que expande e cisalha (que é justamente a composta $T_2 \circ T_1$) será

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix}$$

Exemplo 2: Sejam as transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ cujas matrizes são

$$[T_1]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \quad e \quad [T_2]^{\beta}_{\gamma} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

em relação às bases $\alpha = \{(1, 0), (0, 2)\}, \beta = \{(\frac{1}{3}, 0, -3), (1, 1, 15), (2, 0, 5)\}$ e $\gamma = \{(2, 0), (1, 1)\}$. Queremos encontrar a transformação linear composta $T_2 \circ T_1: \mathbb{R}^2 \to \mathbb{R}^2$, ou seja, precisamos achar $(T_2 \circ T_1)(x, y)$. Para isto, usamos o teorema anterior para achar a matriz da composta.

$$\begin{bmatrix} T_2 \circ T_1 \end{bmatrix}_{\gamma}^{\alpha} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

Escrevemos agora as coordenadas do vetor (x, y) em relação à base α .

$$[(x, y)]_{\alpha} = \begin{bmatrix} x \\ \frac{y}{2} \end{bmatrix}$$

Então, usando o teorema 5.4.6, temos

$$[(T_2 \circ T_1)(x, y)]_{\gamma} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \frac{y}{2} \end{bmatrix} = \begin{bmatrix} x - y \\ 0 \end{bmatrix}$$

Portanto, $(T_2 \circ T_1)(x, y) = (x - y)(2, 0) + 0(1, 1) = (2x - 2y, 0)$.

TL Inversa

Corolário: Se $T: V \to W$ é uma transformação linear inversível e α e β são bases de V e W. Então $T^{-1}: V \to W$, é linear e:

$$[T^{-1}]_{\alpha \to \beta} = ([T]_{\alpha \to \beta})^{-1}.$$

Corolário: Seja $T: V \to W$ uma transformação linear e α e β bases de V e W. Então T é inversível se, e somente se, det $[T]_{\alpha \to \beta} \neq 0$;

Exemplo: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por

$$[T]^{\xi}_{\xi} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

onde ξ é a base canônica de \mathbb{R}^2 . Como det $[T]_{\xi}^{\xi} = 1$, o corolário 5.4.9 afirma que T é inversível. Pelo corolário 5.4.8 sabemos que

$$[T^{-1}]_{\xi}^{\xi} = ([T]_{\xi}^{\xi})^{-1} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$

Então
$$[T^{-1}(x, y)]_{\xi} = [T^{-1}]_{\xi}^{\xi} \begin{bmatrix} x \\ y \end{bmatrix}_{\xi} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - 4y \\ -2x + 3y \end{bmatrix},$$

ou seja,
$$T^{-1}(x, y) = (3x - 4y, -2x + 3y)$$
.

EXERCÍCIOS PROPOSTOS

Página 171 a 175, exercícios 1 a 3, 4, 5 a 7, 11, 13, 15, 19, 23, 24, 28.

BIBLIOGRAFIA

BOLDRINI, José Luiz et al. **Álgebra linear**. Harper & Row, 1980.

$2^a AP - 07/05/19$