26 ottobre 2020

# ALGEBRA RELAZIONALE II

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

242

# Join, una difficoltà

Capo

Mori

Bruni

ImpiegatoRepartoRossiANeriBBianchiC

ImpiegatoRepartoCapoNeriBMoriBianchiBMori

 alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

## Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- esiste in tre versioni:
  - sinistro, destro, completo

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

244

## Join esterno

- sinistro: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
- destro: ... del secondo operando ...
- completo: ... di entrambi gli operandi ...

Basi di Dati + Laboratorio - Informatica Triennale - Corso A









250

# Join e proiezioni

•  $R_1(X_1)$ ,  $R_2(X_2)$ 

 $PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$ 

• R(X),  $X = X_1 \cup X_2$ 

 $R \supseteq (PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R))$ 

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

## Prodotto cartesiano

- un join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

#### Da def.:

 $R_1(X_1)$ ,  $R_2(X_2)$ ,  $R_1$  JOIN  $R_2$  è una relazione su  $X_1X_2$ { t su  $X_1X_2$  | esistono  $t_1 \in R_1$ e  $t_2 \in R_2$  con  $t[X_1] = t_1$  e  $t[X_2] = t_2$  }

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

252

### **Impiegati**

# Impiegato Reparto Rossi A Neri B Bianchi B

### Reparti

| Codice | Capo  |
|--------|-------|
| Α      | Mori  |
| В      | Bruni |

### Impiegati JOIN Reparti

| Impiegato | Reparto | Codice | Capo  |
|-----------|---------|--------|-------|
| Rossi     | Α       | Α      | Mori  |
| Rossi     | Α       | В      | Bruni |
| Neri      | В       | Α      | Mori  |
| Neri      | В       | В      | Bruni |
| Bianchi   | В       | Α      | Mori  |
| Bianchi   | В       | В      | Bruni |

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

 $\sigma_{\text{Condizione}} (R_1 \text{ JOIN } R_2)$ 

L'operazione viene chiamata theta-join e indicata con

R<sub>1</sub> JOIN<sub>Condizione</sub> R<sub>2</sub>

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

254

# Theta-join $(\theta)$

- La condizione C è spesso una congiunzione (AND) di atomi di confronto A<sub>1</sub> θ A<sub>2</sub> dove θ è uno degli operatori di confronto (=, >, <, ...)</li>
- se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

Basi di Dati + Laboratorio - Informatica Triennale - Corso A



## Reparti

| Impiegato | Reparto |
|-----------|---------|
| Rossi     | Α       |
| Neri      | В       |
| Bianchi   | B       |

| Codice | Capo  |
|--------|-------|
| Α      | Mori  |
| В      | Bruni |
|        |       |

 $Impiegati\ JOIN_{Reparto=Codice}\ Reparti$ 

| Impiegato | Reparto | Codice | Capo  |
|-----------|---------|--------|-------|
| Rossi     | Α       | Α      | Mori  |
| Neri      | В       | В      | Bruni |
| Bianchi   | В       | В      | Bruni |

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

256

Impiegati

### Reparti

| Impiegato | Reparto |
|-----------|---------|
| Rossi     | Α       |
| Neri      | В       |
| Bianchi   | В       |

| Reparto | Capo  |
|---------|-------|
| Α       | Mori  |
| В       | Bruni |

Impiegati JOIN Reparti

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

# Equivalenza espressioni Join

Impiegati Reparti

Impiegato Reparto Capo

Impiegati JOIN Reparti

PROJ<sub>Impiegato,Reparto,Capo</sub> ( SEL<sub>Reparto=Codice</sub>

(Impiegati JOIN REN Reparto← Codice (Reparti) ))

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

258

|                             | Esempi    |                   |     |           |  |
|-----------------------------|-----------|-------------------|-----|-----------|--|
| Impiegati                   | Matricola | Nome              | Età | Stipendio |  |
| implegati                   | 7309      | Rossi             | 34  | 45        |  |
|                             | 5998      | Bianchi           | 37  | 38        |  |
|                             | 9553      | Neri              | 42  | 35        |  |
|                             | 5698      | Bruni             | 43  | 42        |  |
|                             | 4076      | Mori              | 45  | 50        |  |
|                             | 8123      | Lupi              | 46  | 60        |  |
| Supervisione Impiegato Capo |           |                   |     |           |  |
|                             |           | 7309              |     | 5698      |  |
|                             |           | 5998              |     | 5698      |  |
|                             |           | 9553              |     | 4076      |  |
|                             |           | 5698              |     | 4076      |  |
|                             |           | 4076              |     | 8123      |  |
|                             |           | aratorio Informat |     |           |  |

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 milioni

 $\sigma_{\text{Stipendio}>40}(\text{Impiegati})$ 

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

260

| Matricola | Nome  | Età | Stipendio |
|-----------|-------|-----|-----------|
| 7309      | Rossi | 34  | <b>45</b> |
| 5698      | Bruni | 43  | 42        |
| 4076      | Mori  | 45  | <b>50</b> |
| 8123      | Luni  | 46  | 60        |

SEL<sub>Stipendio>40</sub>(Impiegati)

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40 milioni

```
\pi_{\text{Matricola, Nome, Età}} (\sigma_{\text{Stipendio}>40}(Impiegati))
```

 $\sigma_{\text{Stipendio}>40}(\pi_{\text{Matricola, Nome, Età}} \text{ (Impiegati))}$ 

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

262

| Matricola | Nome  | Età |
|-----------|-------|-----|
| 7309      | Rossi | 34  |
| 5698      | Bruni | 43  |
| 4076      | Mori  | 45  |
| 8123      | Lupi  | 46  |

```
\begin{array}{c} \mathsf{PROJ}_{\mathsf{Matricola,\ Nome,\ Et\grave{a}}} \\ \texttt{(\ SEL}_{\mathsf{Stipendio}>40}(\mathsf{Impiegati}) \end{array})
```

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

 Trovare le matricole dei capi degli impiegati che guadagnano più di 40 milioni

```
Impiegati Matricola Nome Età Stipendio
Supervisione Impiegato Capo
```

PROJ<sub>Capo</sub> (Supervisione JOIN <sub>Impiegato=Matricola</sub> (SEL<sub>Stipendio>40</sub>(Impiegati)))

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

264

 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40 milioni

```
Impiegati Matricola Nome Età Stipendio

Supervisione Impiegato Capo

PROJ<sub>Nome,Stipendio</sub> (
Impiegati JOIN Matricola=Capo
PROJ<sub>Capo</sub>(Supervisione

JOIN Impiegato=Matricola (SEL<sub>Stipendio>40</sub>(Impiegati))))
```

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

Basi di Dati + Laboratorio - Informatica Triennale - Corso A

266

 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 milioni

```
π<sub>Capo</sub> (Supervisione) -
π<sub>Capo</sub> (Supervisione

□ Impiegato=Matricola
(σ<sub>Stipendio ≤ 40</sub>(Impiegati)))
```

Basi di Dati + Laboratorio - Informatica Triennale - Corso A