Unsupervised Surrogate Anomaly Detection Appendix

No Author Given

No Institute Given

A Importance of Learnable Shifts

Trivial solutions are a common problem also for DeepSVDD [18]. Namely when the last layer learns a zero multiplicative weight, but the learnable shift is equal to the desired c. To combat this, Ruff et. al. propose to remove the learnable shifts entirely. And while this certainly helps in making this shift impossible, it also limits how complicated a function can be learned by the neural network [14].

We show this in Figure 1, where we task neural networks to approximate a simple sinus curve. Here, we use neural networks with three layers of 100 nodes and relu activation in each hidden layer. The three networks differ only by the learnable shifts they use. While the network with learnable shifts (green) is clearly able to approximate the sinus curve, the version without learnable shifts (blue) is not able to do so. And since real anomaly representations can be much more complicated than such a simple sinus curve, we do not think that limiting the neural network complexity is a reasonable choice.

Instead, we use other methods to remove the trivial solution of a constant network. This also includes using learnable shifts in each hidden layer but not in the output layer. This setup is still able to approximate complicated functions, as is shown in orange in Figure 1.

Fig. 1: Given complicated alinear data, the functions learned by three neural networks with relu activations are shown. The network without learnable shifts cannot capture the structure of the underlying data, while both a network with learnable shifts in each layer and a network with learnable shifts in all layers except the last can describe the alinearity.

B DEAN-Fair

To illustrate the adaptability of DEAN (see Section 6), we demonstrate its modification for improved fairness on a toy example using the COMPAS dataset [20]. In this context, we consider recidivism risk as the anomaly and employ fairness as a critical performance metric. The COMPAS dataset, which contains risk scores along with demographic and criminal history features, is widely used for evaluating such algorithmic fairness.

B.1 Setup

For our fairness evaluation, we compute the AUC-ROC separately for two subgroups defined by a protected attribute (age, binarized with a threshold at 25 years) and measure the deviation between them to showcase how DEAN can be guided towards equal treatment across different demographic groups in general. We chose the AUC-ROC since it is a metric invariant to the fraction of anomalous samples and also handles non-binary anomaly scores. An ideal fairness score is 0.5, indicating no performance difference between groups. For this, we propose three adaptation strategies to improve fairness.

1. Modified Loss Function: We add a fairness regularization term to the original loss:

$$L = \sum_{\boldsymbol{x} \in X_{\text{train}}} \|f(\boldsymbol{x}) - 1\| + \theta \cdot L_{\text{fair}}$$
(1)

where

$$L_{\text{fair}} = \frac{\|L_1 - L_0\|}{\|L_1\| + \|L_0\|} \tag{2}$$

and

$$L_{1/0} = \frac{1}{\|X_{\text{(un)protected}}\|} \sum_{\boldsymbol{x} \in X_{\text{(un)protected}}} f(\boldsymbol{x})$$
(3)

Here, L_1 and L_0 denote the mean outputs for the unprotected and protected groups, respectively, and we set $\theta = 0.1$.

- **2. Submodel Pruning:** In this approach, we iteratively remove the submodel that exhibits the greatest unfairness in a greedy manner. We test pruning rates of 1%, 5%, and 10% of the ensemble.
- **3. Non-uniform Weighting:** We assign different weights to submodels in the ensemble to maximize fairness. Due to the non-continuous nature of this optimization, we employ an evolutionary algorithm to determine the optimal weights.

B.2 Results

Table 1 summarizes the AUC-ROC performance and fairness (measured as the deviation from 0.5) for each method. Each experiment is repeated five times to obtain uncertainty estimates.

Adjustment	AUC-ROC	Fairness
Baseline	0.583 ± 0.003	0.644 ± 0.020
Loss function	0.594 ± 0.012	0.453 ± 0.080
Pruning (1%)	0.583 ± 0.003	0.625 ± 0.019
Pruning (5%)	0.577 ± 0.003	0.555 ± 0.015
Pruning (10%)	0.574 ± 0.003	0.506 ± 0.014
Non-uniform weighting	0.566 ± 0.004	0.520 ± 0.011

Table 1: AUC-ROC performance and fairness deviation on the COMPAS dataset for various fairness adaptations of DEAN. Notice that the performance is better the higher the value is, while the fairness is optimal at 0.5.

The baseline model exhibits a fairness deviation of over 14%, indicating a significant bias. With as little as 1% pruning, fairness improves, and pruning 10% of the submodels nearly eliminates the bias (deviation of only 0.6%, within experimental uncertainty), albeit with a slight reduction in overall performance (approximately 1% drop). Non-uniform weighting yields a more pronounced performance drop (1.7%) and a moderate fairness improvement (2% deviation). Notably, the modified loss function further increases performance by about 1.1% but overshoots fairness slightly, resulting in a 4.7% deviation.

Overall, these experiments confirm that the DEAN framework can be effectively adapted to enhance fairness, demonstrating its versatility and potential for broader real-world applications.

C Performance Result Plots with AUC-PR

Since our results are very similar whether we use AUC-ROC or AUC-PR, we only state most of our results in AUC-ROC and add the alternative plots here.

Table 2 gives an overview of the performance for all evaluated algorithms across all datasets when using AUC-PR instead of AUC-ROC. Figure 2 shows the critical difference plot when we use AUC-PR instead of AUC-ROC to compare the performance of algorithms. Additionally, Figure 3 shows the AUC-PR score as a function of the submodels used.

Table 2: Distribution of AUC-PR performance for all evaluated algorithms. Deep learning models (blue) and shallow models (yellow) are differentiated by surrogate status (squares for surrogates, triangles for non-surrogates). Mean and median values are shown in green and purple, respectively. Pendant to Table 1 in Section 5.2.

Fig. 2: Critical difference diagrams comparing the AUC-PR performance. A lower rank indicates better performance, while algorithms with no statistically significant differences are connected by a horizontal line. DEAN is depicted in green, other deep learning algorithms in blue. Pendant to Figure 2a in Section 5.2.

Fig. 3: AUC-PR performance changes with varying ensemble size, for DEAN. It reaches 2% less performance with the first 12% (instead of 13% for AUC-ROC) of submodels. Pendant to Figure 3b in Section 5.3.

D Individual Performance Scores

We state every performance in AUC-ROC in Tables 3, 4, 5, 6, 7 and 8. We also give the same performances in AUC-PR in Tables 9, 10, 11, 12, 13 and 14.

Table 3: AUC-ROC Scores for each datasets and algorithm (1/3|low performing algorithms)

Dataset	DEAN	HROS	GOAD	ECOD	COPOD	LODA	NF	DAGMM	VAE	SOD
$\frac{Dataset}{20news^2}$	56%	44%	44%	44%	43%	46%		44%		46%
yeast	59%	42%	68%	45%	38%	55%		49%	41%	
vertebral	68%	38%	67%	41%	34%	26%		50%	50%	
$MNISTC^{identity}$	47%	49%	48%	48%	48%	48%		49%	50%	
speech	59%	49%	50%	48%	50%	50%		57%	49%	
imdb	53%	51%	54%	48%	53%	42%		46%	42%	
$20 news^5$	56%	49%	48%	48%	47%	55%		48%	53%	
WPBC	54%	53%	45%	52%	54%	58%		50%	48%	
Wilt	67%	36%	62%	38%	35%	37%		70%	50%	
$20 news^4$	59%	51%	53%	52%	50%	54%		53%	48%	
$20 news^1$	64%	50%	52%	47%	50%	54%		46%	44%	
$agnews^0$	63%	51%	53%	49%	52%	49%		49%	50%	
$20 news^3$	50%	56%	55%	55%	56%	61%		49%	41%	
$MVTecAD^{screw}$	60%	57%	52%	56%	56%	54%		50%	57%	
ALOI	55%	54%	49%	54%	53%	52%		53%	52%	
amazon	62%	57%	56%	55%	58%	61%		50%	45%	
$SVHN^6$	65%	51%	64%	53%	52%	58%		58%	52%	
$CIFAR10^3$	67%	48%	69%	52%	49%	59%		54%	57%	
$CIFAR10^5$	67%	46%	69%	51%	47%	57%		59%	53%	
$SVHN^9$	66%	51%	60%	54%	52%	54%		55%	51%	
$SVHN^3$	65%	55%	60%	57%	56%	59%		47%	50%	
$MNISTC^{rotate}$	67%	56%	48%	55%	55%	50%		53%	55%	
$CIFAR10^2$	61%	55%	59%	56%	55%	58%		55%	55%	
landsat	77%	71%	61%	36%	42%	43%		53%	57%	
$SVHN^8$	70%	50%	62%	53%	51%	56%		55%	47%	
yelp	67%	60%	61%	58%	60%	59%		59%	42%	
$agnews^3$	64%	56%	54%	56%	56%	53%		56%	50%	
$SVHN^0$	76%	50%	65%	53%	51%	59%		59%	54%	
$CIFAR10^{1}$	75%	45%	73%	52%	47%	63%		54%	53%	
$SVHN^5$	70%	57%	61%	59%	58%	64%		57%	51%	
$MVTecAD^{pill}$	62%	64%	52%	61%	65%	66%		50%	50%	
$agnews^1$	69%	58%	50%	58%	52%	58%		52%	58%	
$SVHN^4$	66%	61%	54%	61%	61%	64%		58%	62%	
$SVHN^2$	69%	58%	62%	60%	58%	64%		50%	54%	
census	63%	66%	59%	66%	67%	55%		61%	62%	
fault	75%	67%	69%	46%	45%	48%		47%	52%	
Hepatitis	44%	82%	50%	73%	81%	74%		50%	52%	
$SVHN^7$	66%	62%	62%	63%	62%	61%		56%	62%	
$SVHN^1$	68%	62%	68%	63%	61%	55%		62%	63%	
Pima	65%	70%	61%	59%	65%	62%		50%	50%	
$20 news^0$	75%	62%	61%	60%	61%	61%		56%	51%	
$CIFAR10^7$	69%	56%	71%	61%	57%	65%		60%	65%	
$MNISTC^{translate}$	85%	54%	54%	56%	56%	57%		49%	50%	
$agnews^2$	74%	63%	61%	63%	63%	62%		57%	48%	
$MVTecAD^{grid}$										
$MVTecAD^{capsule}$	$65\% \\ 66\%$	61%	66% 64%	62%	62%	59%		50% 50%	$34\% \\ 49\%$	
		67%		66%	65%	65%				
$MNISTC^{shear}$	74%	64%	59%	64%	64%	60%		54%	50%	
$\begin{array}{c} letter \\ MVTecAD^{metal}-^{nut} \end{array}$	90%	57%	51%	53%	51%	52%		53%	49%	
		63%	69%	64%	62%	67%		50%	46%	
SpamBase	68%	79%	44%	66%	69%	71%	11%	58%	50%	35%

Table 4: AUC-ROC Scores for each datasets and algorithm (1/3|high performing algorithms)

algorithms)	DEAN	LOE	LININI	CDLOE	NoTwo.l	A To	IFon	DCA	D.SVDD	OCCUM	DTE
$\frac{\text{Dataset}}{20news^2}$	56%			48%	57%			43%		46%	$\frac{D1E}{49\%}$
	50%			47%	57%					45%	49%
yeast	68%		43% $41%$	46%	59%			43% $41%$		41%	39%
$vertebral \ MNISTC^{identity}$	47%	49%			49%			41%		47%	39% 49%
				50%							
speech	59%	53%		49%	44%			49%		48%	56%
imdb	53%	54%		53%	48%			49%		48%	56%
$20 news^5$	56% 54%		50% 55%	55% 51%	57%			48% 54%		49% 54%	55% $47%$
WPBC	67%		82%		43%						
Wilt				48%	80%			24%		85%	35%
$20 news^4$	59%	55%		55%	62%			51%		52%	46%
$20 news^1$	64%	60%		51%	62%			48%		50%	47%
$agnews^0$	63%	67%		56%	59%			51%		50%	54%
20news ³	50%	55%		55%	69%			55%		53%	48%
$MVTecAD^{screw}$	60%		59%	56%	58%			60%		56%	47%
ALOI	55%	76%		55%	54%					52%	54%
amazon	62%	59%		57%	54%			56%		55%	49%
$SVHN^6$	65%		59%	55%	57%			56%		59%	59%
$CIFAR10^3$	67%		60%	62%	61%			56%		60%	57%
$CIFAR10^5$	67%	63%		60%	67%			57%		60%	59%
$SVHN^9$	66%	64%		58%	61%			57%		57%	59%
$SVHN^3$	65%	66%		58%	64%			59%		56%	60%
$MNISTC^{rotate}$	67%		67%	59%	58%			56%		54%	63%
$CIFAR10^2$	61%	65%		60%	56%			59%		59%	61%
landsat	77%		77%	67%	83%			40%		47%	58%
$SVHN^8$	70%	67%		59%	62%			57%		55%	58%
yelp	67%	67%		63%	62%			59%		57%	52%
$agnews^3$	64%		65%	60%	66%			58%		57%	60%
$SVHN^0$	76%		69%	62%	68%			59%		61%	59%
$CIFAR$ 10 1	75%		63%	63%	73%			62%		62%	72%
$SVHN^5$	70%		64%	63%	61%			62%		58%	61%
$MVTecAD^{pill}$	62%	66%	67%	64%	67%	53%	65%	64%	61%	61%	52%
$agnews^1$	69%		69%	61%	69%				57%	57%	75%
$SVHN^4$	66%	65%		63%	61%	64%	61%	60%	59%	61%	63%
$SVHN^2$	69%	69%		62%	66%			62%		60%	65%
census	63%	55%		66%	54%			71%		55%	61%
fault	75%	63%	80%	71%	73%	71%	66%	55%	54%	59%	72%
He patitis	44%	60%	53%	48%	55%	51%	82%	85%	70%	47%	83%
$SVHN^7$	66%	66%		65%	61%	67%	64%	65%	65%	66%	67%
$SVHN^1$	68%	63%	67%	66%	66%	66%	63%	65%	65%	67%	66%
Pima	65%	67%	69%	68%	58%	70%	74%	72%	64%	62%	70%
$20 news^0$	75%	78%	72%	64%	69%	64%	63%	63%	67%	61%	53%
$CIFAR10^7$	69%	71%	65%	65%	63%	61%	62%	65%	62%	68%	66%
$MNISTC^{translate}$	85%	91%	81%	66%	76%	69%	58%	61%	63%	55%	69%
$agnews^2$	74%	75%	74%	68%	64%	71%	65%	65%	61%	63%	53%
$MVTecAD^{grid}$	65%	68%		65%	73%	70%	65%	64%	67%	65%	76%
$MVTecAD^{capsule}$	66%	67%		71%	66%	64%	68%	66%	63%	65%	63%
$MNISTC^{shear}$	74%		74%	70%	68%			66%		59%	75%
letter	90%		88%	78%	76%			54%		90%	77%
$MVTecAD^{metal}$ - nut			73%	72%	72%			71%		68%	75%
SpamBase	68%		75%	70%	42%			80%		76%	67%

Table 5: AUC-ROC Scores for each datasets and algorithm (2/3|low performing algorithms)

celeba 68% 77% 64% 76% 75% 58% 80% 62% 69% 44% CIFARI0 77% 60% 76% 64% 61% 65% 48% 62% 62% 59% FashionMNIST 82% 52% 68% 60% 55% 66% 55% 66% 66% 55% 66% 66% 55% 66% 66% 55% 66% 66% 55% 66% 44%	Dataset	DEAN	HBOS	GOAD	ECOD	COPOD	LODA	NF	DAGMM	VAE	SOD
RashionMNIST6 88% 52% 68% 50% 55% 68% 55% 62% 49% waveform 73% 69% 73% 69% 67% 55% 30% 49% optdigits 99% 88% 52% 52% 60% 50% 55% 46% 11% 71% 51% 60% 11% 71% 51% 50% 51% 69% MNISTC**coale 67% 72% 66% 71% 71% 71% 50% 51% 69% CIFARIO* 74% 66% 75% 76% 70% 70% 57% 79% 66% 79% 50% 74% 60% 39% 66% 79% 50% 74% 60% 69% 72% 74% 60% 69% 72% 74% 50% 66% 69% 72% 74% 50% 66% 69% 72% 74% 50% 66% 66% 66% 66% 66%											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
optdigits 99% 88% 52% 52% 60% 50% 55% 45% 17% MNISTC** 44% 21% MPCeAD** 60% 75% 50% 55% 55% 55% 55% 55% 61% 17% MVTecAD** 67% 72% 66% 71% 71% 71% 51% 50% 55% 65% 68% 58% 61% 66% 58% 66% 79% 50% 74% 66% 58% 66% 79% 50% 74% 60% 58% 66% 58% 66% 66% 79% 50% 50% 66% 56% 66%											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
CIFARIO* 74% 66% 78% 66% 68% 58% 58% 61% 89% Cardiotocography 84% 57% 76% 79% 66% 79% 50% 74% 60% 39% CIFARIO* 77% 70% 75% 69% 69% 57% 79% 61% 71% 41% CIFARIO* 76% 70% 76% 71% 69% 69% 72% 74% 58% 65% 63% 65% 63% 66% 69% 66% 71% 41% 60% 66% 66% 77% 71% 41% 66% <td></td>											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	$MNISTC^{brightness}$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c} MNISTC^{canny_edges} \ 93\% \ 73\% \ 48\% \ 69\% \ 68\% \ 72\% \ 43\% \ 59\% \ 83\% \ 39\% \\ cover \ 50\% \ 65\% \ 98\% \ 92\% \ 88\% \ 95\% \ 50\% \ 69\% \ 50\% \ 10\% \\ magic_gamma \ 83\% \ 75\% \ 76\% \ 64\% \ 68\% \ 67\% \ 70\% \ 70\% \ 68\% \ 73\% \\ glass \ 89\% \ 85\% \ 93\% \ 65\% \ 75\% \ 67\% \ 64\% \ 50\% \ 59\% \ 68\% \\ MVTecAD^{toothbrush} \ 72\% \ 81\% \ 72\% \ 77\% \ 73\% \ 59\% \ 67\% \ 50\% \ 57\% \ 83\% \\ MVTecAD^{wood} \ 74\% \ 76\% \ 75\% \ 76\% \ 76\% \ 75\% \ 67\% \ 50\% \ 57\% \ 83\% \\ MVTecAD^{wood} \ 74\% \ 76\% \ 75\% \ 76\% \ 76\% \ 76\% \ 72\% \ 78\% \ 50\% \ 76\% \ 75\% \\ mnist \ 53\% \ 73\% \ 92\% \ 75\% \ 76\% \ 76\% \ 74\% \ 78\% \ 50\% \ 47\% \\ CIFAR10^4 \ 77\% \ 76\% \ 78\% \ 76\% \ 76\% \ 74\% \ 78\% \ 57\% \ 71\% \ 71\% \\ MNISTC^{shot_noise} \ 93\% \ 71\% \ 69\% \ 71\% \ 70\% \ 74\% \ 44\% \ 58\% \ 66\% \ 55\% \\ FashionMNIST^8 \ 93\% \ 70\% \ 79\% \ 87\% \ 76\% \ 53\% \ 92\% \ 65\% \ 78\% \ 84\% \ 79\% \ 80\% \ 69\% \ 50\% \ 76\% \ 73\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 80\% \ 69\% \ 50\% \ 76\% \ 73\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 25\% \ 89\% \ 56\% \ 90\% \ 53\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 25\% \ 89\% \ 56\% \ 90\% \ 53\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 25\% \ 89\% \ 56\% \ 90\% \ 53\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 25\% \ 89\% \ 56\% \ 90\% \ 53\% \\ backdoor \ 94\% \ 65\% \ 78\% \ 84\% \ 79\% \ 25\% \ 89\% \ 56\% \ 90\% \ 58\% \ 44\% \\ MVTecAD^{tile} \ 79\% \ 82\% \ 80\% \ 79\% \ 80\% \ 78\% \ 62\% \ 59\% \ 84\% \\ MVTecAD^{tile} \ 79\% \ 82\% \ 80\% \ 79\% \ 80\% \ 53\% \ 62\% \ 71\% \ 54\% \\ MNISTC^{2ijzag} \ 95\% \ 79\% \ 86\% \ 79\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 78\% \ 60\% \ 59\% \ 90\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 50\% \ 66\% \ 79\% \ 77\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 77\% \ 80\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 80\% \ 77\% \ 77\% \ 77\% \ 77\% \ 77\% \ 77\% \ 60\% \$											
$ \begin{array}{c} cover \\ magic.gamma \\ glass \\ glass \\ MVTecAD^{toothbrush} \\ T2W \\ T3W \\ T2W \\ T3W \\ T3W \\ T3W \\ T2W \\ T7W \\ T3W \\ T2W \\ T7W \\ T3W \\ T3W \\ T3W \\ T3W \\ T2W \\ T3W \\ T3W \\ T3W \\ T2W \\ T3W \\ T3W \\ T3W \\ T3W \\ T2W \\ T3W \\ T3W$	$MNISTC^{canny}_{-edges}$	93%									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MVTecAD^{toothbrush}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MNISTC^{shot}$ - noise										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MVTecAD^{transistor}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
wine 99% 85% 92% 68% 84% 78% 50% 50% 99% 19% $MNISTC^{zigzag}$ 95% 79% 66% 79% 77% 76% 47% 57% 62% $skin$ 97% 77% 89% 49% 47% 82% 93% 90% 50% 55% $MNISTC^{dotted_line}$ 95% 75% 68% 76% 74% 69% 66% 67% 78% 64% $FashionMNIST^2$ 92% 66% 85% 74% 70% 79% 80% 74% 65% 53% $MNISTC^{spatter}$ 93% 81% 80% 79% 79% 82% 42% 76% 49% 69% $MNISTC^{motion_blur}$ 98% 79% 78% 77% 77% 77% 44% 76% 45% 63% $musk$ 53% 100% 87% 97% 96% 99% 53% 89% 62%											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$skin$ 97% 77% 89% 49% 47% 82% 93% 90% 50% 55% $MNISTC^{dotted_line}$ 95% 75% 68% 76% 74% 69% 66% 67% 78% 64% $FashionMNIST^2$ 92% 66% 85% 74% 70% 79% 80% 74% 65% 53% $MNISTC^{spatter}$ 93% 81% 80% 79% 79% 82% 42% 76% 49% 69% $MNISTC^{motion_blur}$ 98% 79% 78% 77% 77% 77% 44% 76% 45% 63% $musk$ 53% 100% 87% 97% 96% 99% 53% 89% 50% 4% $FashionMNIST^0$ 91% 77% 81% 81% 78% 84% 59% 72% 80% 62% $smtp$ 92% 82% 84% 90% 92% 87% 96% 85% 21% 63%	$MNISTC^{zigzag}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MNISTC^{dotted}$ - line									78%	64%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MNISTC^{spatter}$				79%						
musk 53% 100% 87% 97% 96% 99% 53% 89% 50% 4% FashionMNIST ⁰ 91% 77% 81% 81% 78% 84% 59% 72% 80% 62% donors 100% 79% 50% 89% 82% 60% 67% 90% 84% 60% smtp 92% 82% 84% 90% 92% 87% 96% 85% 21% 63% FashionMNIST ³ 93% 82% 83% 84% 82% 77% 67% 58% 82% 61% MNISTC ^{fog} 100% 79% 83% 79% 78% 89% 66% 71% 49% 37% mammography 84% 84% 86% 90% 90% 90% 78% 87% 50% 64%	$MNISTC^{motion} - ^{blur}$	98%	79%				77%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100%								
donors 100% 79% 50% 89% 82% 60% 67% 90% 84% 60% $smtp$ 92% 82% 84% 90% 92% 87% 96% 85% 21% 63% $FashionMNIST^3$ 93% 82% 84% 82% 77% 67% 58% 82% 61% $MNISTC^{fog}$ 100% 79% 83% 79% 78% 89% 66% 71% 49% 37% $mammography$ 84% 84% 86% 90% 90% 90% 78% 87% 50% 64%	$Fashion MNIST^0$										
$smtp$ 92% 82% 84% 90% 92% 87% 96% 85% 21% 63% $FashionMNIST^3$ 93% 82% 83% 84% 82% 77% 67% 58% 82% 61% $MNISTC^{fog}$ 100% 79% 83% 79% 78% 89% 66% 71% 49% 37% $mammography$ 84% 84% 86% 90% 90% 90% 78% 87% 50% 64%											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fashion MNIST^3$						77%				
mammography 84% 84% 86% 90% 90% 90% 78% 87% 50% 64%	$MNISTC^{fog}$										
10103pnere 0070 1270 0270 1170 1070 1370 3070 0070 1070 0070	Ionosphere	86%	72%	82%	71%	78%	79%				

Table 6: AUC-ROC Scores for each datasets and algorithm (2/3|high performing algorithms)

algorithms)										
Dataset	DEAN				NeuTral		IFor PCA			
celeba	68%	46%	62%	59%	48%	67%	69% 80%	78%	72%	84%
$CIFAR10^9$	77%	78%	71%	71%	74%	73%	65% 70%	62%	69%	75%
$Fashion MNIST^6$	82%	82%	81%	74%	75%	78%	63% 71%	72%	65%	77%
Wave form	73%	80%	81%	83%	67%	70%	$68\% \ 64\%$	68%	84%	66%
opt digits	99%	100%	100%	89%	64%	98%	86% 52%	47%	100%	50%
$MNISTC^{scale}$	89%	94%	91%	84%	80%	83%	66% 73%	82%	65%	68%
$MVTecAD^{cable}$	67%	78%	81%	75%	71%	72%	72% $71%$	62%	74%	72%
$CIFAR10^8$	74%	76%	72%	71%	74%	73%	69% 72%	67%	72%	70%
Cardiotocography	84%	77%	76%	72%	64%	82%	79% 82%	73%	83%	51%
$CIFAR10^6$	77%	77%	79%	75%	76%	76%	74% $74%$	62%	68%	76%
InternetAds	86%	86%	82%	73%	87%	71%	47% 79%	76%	72%	73%
$CIFAR10^0$	76%	76%	75%	71%	76%	68%	71% $73%$	65%	71%	74%
campaign	73%	59%	74%	68%	78%	69%	75% $77%$	70%	69%	74%
$MNISTC^{brightness}$	93%	98%	92%	80%	80%	87%	73% $72%$	76%	66%	84%
$MVTecAD^{carpet}$	74%	77%	78%	77%	74%	74%	76% $76%$	75%	75%	71%
satellite	77%	83%	87%	84%	80%	62%	$79\% \ 66\%$	68%	87%	70%
$MVTecAD^{hazelnut}$	68%	81%	80%	77%	74%	79%	73% 72%	71%	69%	73%
annthyroid	77%	78%	78%	68%	85%	63%	92% 84%	80%	57%	58%
$MNISTC^{canny}-^{edges}$	93%	98%	93%	84%	80%	83%	73% 76%	68%	70%	80%
cover	50%		100%	69%	99%	50%	88% 94%	93%	52%	50%
magic.gamma	83%	83%	84%	76%	78%	76%	78% 71%	69%	73%	86%
glass	89%	80%		100%	97%	63%	$89\% \ 65\%$	73%	46%	59%
$MVTecAD^{toothbrush}$	72%	64%	87%	85%	88%	90%	87% 73%	76%	65%	85%
$MVTecAD^{wood}$	74%	77%	80%	77%	80%	78%	79% 78%	77%	75%	72%
mnist	53%	96%	94%	87%	98%	96%	87% 91%	87%	50%	50%
$CIFAR10^4$	77%	76%	80%	79%	78%	73%	77% 77%	79%	76%	79%
$MNISTC^{shot}$ - noise	93%	95%	96%	90%	81%	86%	78% 79%	74%	76%	84%
PageBlocks	85%	91%	66%	64%	97%	52%	92% 93%	90%	61%	66%
$FashionMNIST^{8}$	93%	93%	92%	86%	72%	88%	77% 80%	72%	75%	90%
$MVTecAD^{transistor}$	75%	85%	79%	81%	81%	74%	82% 81%	74%	81%	72%
backdoor	94%	95%	95%	83%	90%	86%	76% 64%	57%	87%	89%
vowels	94%	97%	97%	90%	98%	90%	76% 61%	79%	81%	98%
$MVTecAD^{zipper}$	77%	88%	87%	84%	90%	79%	81% 81%	78%	79%	78%
$MVTecAD^{tile}$	79%	85%	86%	83%	79%	79%	84% 80%	79%	80%	84%
$FashionMNIST^4$	90%	88%	88%	85%	87%	86%	78% 84%	84%	82%	82%
wine	99%	99%	99%	99%	84%		85% 90%	89%	90%	2%
$MNISTC^{zigzag}$	95%	96%	94%	85%	89%	89%	84% 85%	88%	78%	92%
skin	97%	93%	100%		89%	89%	89% 60%	66%	90%	92%
$MNISTC^{dotted}$ - line	95%	97%		84%	87%	87%	80% 82%	80%	80%	86%
$FashionMNIST^2$	92%	88%		89%	90%	89%	79% 83%	81%	78%	90%
$MNISTC^{spatter}$	93%	96%	93%	86%	88%	90%	83% 85%	82%	77%	90%
$MNISTC^{motion}$ - blur	98%	98%	93% 97%			90%				97%
					93%		85% 86%	84%	75%	
musk	53%		100%		100%		97% 100%		50%	46%
$Fashion MNIST^0$	91%	91%	92%		90%	90%	82% 86%	81%	81%	88%
donors	100%	99%	100%		40%	85%	92% 89%	92%	87%	99%
smtp	92%	93%		86%	78%	80%	90% 84%	78%	84%	90%
$FashionMNIST^3$	93%	93%	92%		87%	91%	83% 88%	86%	84%	93%
$MNISTC^{fog}$	100%		100%		98%	99%	89% 91%	87%	82%	99%
mammography	84%	84%		87%	74%	91%	88% 90%	91%	88%	86%
Ionosphere	86%	91%	94%	93%	95%	88%	$87\% \ 87\%$	90%	80%	93%

Table 7: AUC-ROC Scores for each datasets and algorithm (3/3|low performing algorithms)

Dataset	DEAN	HBOS	GOAD	ECOD	COPOD	LODA	NF	DAGMM	VAE	SOD
shuttle	100%	98%	82%	99%	99%	82%	9%	95%	50%	31%
pendigits	99%	94%	90%	92%	90%	88%	67%	64%	89%	21%
$MNISTC^{glass}$ - blur	100%	90%	92%	89%	88%	90%	74%	62%	52%	54%
cardio	89%	84%	95%	93%	91%	95%	90%	69%	95%	45%
http	100%	99%	1%	97%	99%	43%	99%	99%	100%	
$MVTecAD^{bottle}$	96%	96%	92%	92%	96%	95%	91%	50%	7%	97%
Stamps	89%	90%	88%	90%	91%	91%	89%	72%	91%	52%
satimage2	100%	98%	92%	97%	98%	99%	61%	99%	50%	46%
$WDB\H{C}$	100%	99%	93%	97%	100%	100%	50%	82%	50%	79%
Lymphography	100%	100%	100%	100%	100%	58%	69%	50%	94%	58%
WBC	99%	99%	99%	100%	100%	99%	85%	50%	99%	75%
$Fashion MNIST^5$	96%	92%	96%	92%	91%	94%	73%	67%	79%	78%
$MNISTC^{stripe}$	100%	99%	90%	97%	97%	98%	40%	66%	87%	52%
fraud	94%	96%	91%	95%	95%	93%	92%	93%	95%	67%
thyroid	98%	99%	74%	98%	94%	93%	99%	83%	86%	66%
$Fashion MNIST^1$	99%	92%	96%	94%	93%	95%	80%	73%	93%	76%
$Fashion MNIST^9 \\$	98%	94%	97%	95%	94%	94%	68%	83%	91%	83%
$MVTecAD^{leather}$	99%	99%	99%	97%	98%	98%	92%	50%	72%	98%
$MNISTC^{impulse}$ - noise	100%	99%	100%	98%	98%	100%	73%	98%	94%	41%
$Fashion MNIST^7$	98%	95%	96%	96%	95%	95%	91%	89%	92%	89%
breastw	100%	99%	99%	99%	100%	99%	97%	50%	100%	91%
Average	78%	71%	71%	70%	70%	69%	61%	61%	61%	56%
Rank	5.64	12.12	11.08	12.83	12.86	12.05		15.81		16.47

Table 8: AUC-ROC Scores for each datasets and algorithm (3/3|high performing algorithms)

Dataset	DEAN	LOF	KNN	CBLOF	NeuTral	AE	IFor	PCA	D.SVDD	OCSVM	DTE
$\overline{shuttle}$	100%	100%	100%	99%	100%	100%	100%	99%	99%	100%	50%
pendigits	99%	99%	100%	97%	62%	89%	98%	93%	94%	94%	98%
$MNISTC^{glass}$ - blur	100%	99%	100%	98%	96%	99%	95%	96%	97%	92%	99%
cardio	89%	93%	91%	92%	86%	91%	93%	95%	92%	94%	92%
http	100%	93%	100%	99%	100%	99%	99%	100%	100%	100%	99%
$MVTecAD^{bottle}$	96%	96%	96%	97%	96%	96%	97%	96%	96%	96%	95%
Stamps	89%	93%	95%	93%	99%	90%	92%	92%	93%	91%	92%
satimage 2	100%	99%	100%	100%	100%	99%	100%		97%	97%	50%
WDBC	100%	100%	100%	100%	96%	100%	100%	100%	100%	100%	40%
Lymphography	100%	97%	100%	100%	72%	100%	100%	100%	97%	100%	94%
WBC	99%	92%	99%	100%	72%	99%	99%	99%	93%	99%	40%
$Fashion MNIST^5$	96%	93%	96%	96%	96%	95%	93%	94%	94%	94%	95%
$MNISTC^{stripe}$	100%	100%	100%	100%	100%	100%	99%	100%	100%	97%	100%
fraud	94%	74%	97%	96%	92%	95%	96%	96%	94%	95%	96%
thy roid	98%	98%	97%	94%	99%	95%	99%	98%	97%	88%	93%
$Fashion MNIST^1$	99%	98%	99%	97%	97%	99%	95%	97%	95%	96%	99%
$Fashion MNIST^9$	98%	98%	97%	96%	98%	97%	95%	96%	96%	96%	97%
$MVTecAD^{leather}$	99%	98%	99%	99%	99%	99%	99%	99%	99%	99%	99%
$MNISTC^{impulse}$ - noise	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
$Fashion MNIST^7$	98%	97%	97%	96%	97%	97%	95%	96%	96%	96%	96%
breastw	100%	96%	100%	100%	86%	99%	100%	99%	99%	99%	91%
	= 007	0004	0004	= 004		04	- 407	=004	= 004	= 007	= 1 07
Average	78%	80%	80%	76%	75%	75%	74%	73%	72%	72%	71%
Rank	5.64	5.00	4.33	7.13	7.35	8.31	8.93	9.00	10.45	10.81	9.20

Table 9: AUC-PR Scores for each datasets and algorithm (1/3|low performing algorithms)

algorithms)	DEAN	COAD	IIDOG	EGOD	CODOD	LODA	NID	3.7.4.T	DAGMA	COD
Dataset									DAGMM	
$20 news^2$	56%	45%	44%	45%	44%	44%		52%		45%
imdb	53%	50%	48%	46%	49%	48%		44%		46%
WPBC	54%	46%	48%	47%	49%	50%		49%		45%
$MNISTC^{identity}$	47%	49%	49%	49%	49%	49%		50%		48%
vertebral	68%	58%	42%	43%	39%	37%		50%		41%
yeast	59%	61%	49%	50%	46%	54%		45%		45%
$20 news^1$	64%	50%	49%	47%	49%	45%		45%		50%
speech	59%	50%	50%	50%	52%	48%		50%		39%
$20 news^5$	56%	50%	50%	50%	48%	49%		56%		49%
$20 news^4$	59%	52%	51%	51%	50%	52%		52%		48%
$20 news^3$	50%	51%	54%	51%	56%	49%		42%		50%
Wilt	67%	57%	41%	43%	39%	42%		50%		38%
$agnews^0$	63%	51%	52%	50%	52%	46%		49%		50%
amazon	62%	54%	55%	53%	56%	49%	51%	47%	50%	52%
census	63%	52%	57%	58%	59%	39%	48%	54%	56%	53%
$CIFAR10^2$	61%	57%	52%	53%	53%	59%	53%	54%	58%	50%
$MVTecAD^{screw}$	60%	53%	59%	58%	58%	55%	47%	59%	50%	55%
ALOI	55%	50%	54%	54%	52%	57%	56%	55%	55%	54%
$MNISTC^{rotate}$	67%	49%	54%	53%	53%	55%	53%	56%	55%	50%
$CIFAR10^5$	67%	67%	47%	50%	47%	61%	55%	54%	62%	48%
$agnews^3$	64%	53%	54%	54%	54%	54%	52%	50%	53%	54%
landsat	77%	59%	68%	42%	45%	44%	45%	52%	53%	49%
$SVHN^3$	65%	59%	53%	55%	54%	56%	68%	49%	46%	54%
$CIFAR10^3$	67%	67%	50%	53%	51%	53%	47%	56%	51%	53%
$agnews^1$	69%	48%	53%	55%	49%	50%	48%	57%	51%	50%
$SVHN^9$	66%	58%	52%	54%	53%	51%	54%	51%	55%	58%
yelp	67%	58%	59%	56%	59%	54%	50%	45%	59%	54%
$SVHN^8$	70%	60%	50%	53%	52%	49%		49%		59%
$CIFAR10^1$	75%	68%	45%	49%	47%	58%		52%		50%
$SVHN^6$	65%	63%	53%	55%	54%	64%		53%		54%
$SVHN^0$	76%	62%	52%	53%	52%	56%		55%		54%
$SVHN^5$	70%	61%	56%	58%	57%	56%		50%		58%
$SVHN^1$	68%	66%	60%	60%	59%	59%		63%		48%
$20 news^0$	75%	57%	59%	58%	59%	60%		53%		59%
$SVHN^2$	69%	62%	59%	61%	59%	57%		55%		60%
Hepatitis	44%	55%	74%	60%	67%	66%		50%		50%
$SVHN^4$	66%	54%	62%	62%	62%	63%		63%		56%
Pima	65%	59%	67%	61%	67%	60%			50%	55%
fault	75%	65%	66%	47%	46%	49%		54%		62%
$MNISTC^{translate}$	85%	55%	52%	54%	54%	59%		51%		57%
$SVHN^7$	66%	60%	64%	63%	63%	67%		63%		51%
$MVTecAD^{pill}$	62%	57%	65%	64%	66%	63%		53%		67%
$CIFAR10^7$	69%	70%	58%	61%	59%	64%		64%		57%
$agnews^2$	74%	62%	63%	61%	63%	64%		50%		64%
$MNISTC^{scale}$										
$MNISIC$ $MNISTC^{shear}$	89%	51%	53%	53%	52%	60%		55%		34%
	74%	61%	64%	64%	64%	67%		52%		60%
FashionMNIST ⁶		68%	49%	55%	51%	61%		61%		47%
letter	90%	51%	54%	55%	53%	50%		49%		57%
$MVTecAD^{capsule}$	66%	69%	68%	69%	68%	63%		54%		72%
$MVTecAD^{grid}$	65%	68%	61%	64%	64%	70%	77%	44%	50%	64%

Table 10: AUC-PR Scores for each datasets and algorithm (1/3|high performing algorithms)

algorithms)											
Dataset										D.SVDD	
$20 news^2$	56%	49%		57%	44%			44%		43%	47%
imdb	53%	52%	48%	50%	49%	47%	53%	49%		45%	49%
WPBC	54%	50%	50%	46%	47%	51%	48%	52%	52%	51%	48%
$MNISTC^{identity}$	47%	50%	49%	50%	51%	49%	50%	50%	48%	49%	54%
vertebral	68%	51%	43%	60%	47%	42%	40%	42%	53%	44%	68%
yeast	59%	50%	49%	57%	48%	47%	49%	47%	48%	45%	48%
$20 news^1$	64%	60%		63%	50%	48%	48%	49%	48%	52%	53%
speech	59%	55%	53%	46%	51%			48%	51%	58%	51%
$20 news^5$	56%	53%	51%	58%	53%	50%	54%	50%	51%	55%	47%
$20 news^4$	59%	54%	49%	62%	52%	52%	48%	51%	52%	52%	51%
$20 news^3$	50%	52%	67%	67%	52%	54%	50%	55%	50%	52%	51%
Wilt	67%	89%	70%	78%	47%	36%	39%	47%	85%	40%	37%
$agnews^0$	63%	65%	60%	60%	55%	52%	51%	54%	50%	51%	58%
amazon	62%	54%	56%	57%	55%	55%	51%	55%	54%	52%	56%
census	63%	50%	59%	55%	53%	65%	56%	55%	50%	65%	53%
$CIFAR10^2$	61%	62%	58%	56%	59%	56%	58%	53%	56%	55%	56%
$MVTecAD^{screw}$	60%	55%	59%	59%	54%	63%	52%	60%	57%	61%	50%
ALOI	55%	74%	71%	55%	56%	56%	55%			56%	55%
$MNISTC^{rotate}$	67%	74%		58%	56%		62%	54%		55%	56%
$CIFAR10^5$	67%	66%		68%	59%	58%	59%	52%		53%	50%
$agnews^3$	64%	75%	64%	66%	58%			55%		57%	56%
lands at	77%	80%	75%	82%	64%			62%		42%	56%
$SVHN^3$	65%	66%		64%	57%		61%	57%		58%	52%
$CIFAR10^3$	67%	68%		64%	62%			56%		54%	59%
$agnews^1$	69%	83%		70%	57%			55%		56%	57%
$SVHN^9$	66%	66%		62%	59%			55%		59%	60%
yelp	67%	63%		62%	59%		52%			58%	60%
$SVHN^8$	70%	68%		64%	60%			56%		61%	59%
$CIFAR10^{1}$	75%	76%		73%	59%			51%		54%	55%
$SVHN^6$	65%	62%		59%	63%			56%		63%	51%
$SVHN^0$	76%	72%		67%	64%		62%	57%		59%	61%
$SVHN^5$	70%	66%		63%	63%			60%		62%	59%
$SVHN^1$	68%	58%		66%	66%			62%		56%	58%
$20 news^0$	75%	75%		69%	61%		52%			58%	62%
$SVHN^2$	69%	66%		67%	62%		65%			63%	58%
Hepatitis	44%	64%		57%	50%		87%	63%		67%	58%
$SVHN^4$	66%	61%		61%	66%			61%		62%	58%
Pima	65%		69%	59%	68%			69%		66%	68%
fault	75%	60%		71%	70%		71%			61%	72%
$MNISTC^{translate}$	85%	89%		75%	61%		70%			62%	60%
$SVHN^7$	66%	64%		61%	64%		67%			61%	62%
$MVTecAD^{pill}$		69%		68%	67%		60%			65%	60%
$CIFAR10^7$	62%						67%				
	69%	73%	73%	63%	65%					61%	57% $62%$
agnews ²	74%			65%	67%		53%			60%	
MNISTC scale	89%	91%		81%	77%		66%			69%	72%
MNISTC ^{shear}	74%	80%		67%	69%		77%			67%	62%
$Fashion MNIST^6$	82%	86%		74%	71%		77%			73%	68%
letter	90%	89%		75%	78%		79%			54%	78%
$MVTecAD^{capsule}$	66%	70%		67%	73%		68%			68%	55%
$\underline{MVTecAD^{grid}}$	65%	73%	77%	74%	69%	67%	78%	69%	67%	67%	57%

Table 11: AUC-PR Scores for each datasets and algorithm (2/3|low performing algorithms)

algorithms)										
Dataset					COPOD			VAE	DAGMM	
$\overline{MVTecAD^{metal}_{-}^{nut}}$	67%	74%	60%	62%	60%	71%	$\overline{56\%}$	48%	50%	68%
SpamBase	68%	54%	76%	61%	63%	72%	77%	50%	55%	53%
celeba	68%	66%	78%	77%	76%	58%	73%	69%	59%	42%
opt digits	99%	48%	84%	47%	52%	46%	64%	46%	45%	35%
$CIFAR10^9$	77%	75%	62%	65%	63%	71%	53%	64%	63%	59%
$CIFAR10^8$	74%	78%	63%	65%	64%	75%	56%	65%	62%	57%
$CIFAR10^6$	77%	72%	65%	66%	65%	62%	60%	61%	56%	61%
Wave form	73%	74%	64%	58%	68%	65%	77%	39%	59%	51%
$MNISTC^{brightness}$	93%	57%	60%	60%	59%	65%	51%	58%	51%	47%
$CIFAR10^0$	76%	75%	69%	69%	68%	66%	73%	64%	57%	61%
$MVTecAD^{cable}$	67%	70%	72%	72%	71%	80%		54%	50%	74%
$MNISTC^{canny}-^{edges}$		44%	67%	63%	62%	65%		81%	60%	41%
skin	97%	80%	66%	45%	44%	64%		50%	76%	50%
campaign	73%	72%	80%	77%	78%	66%		70%	54%	59%
Cardiotocography	84%	74%	63%	76%	67%	76%		59%	72%	46%
annthyroid	77%	49%	77%	79%	72%	57%		69%	70%	61%
cover	50%	97%	65%	89%	85%	89%		50%	70%	32%
$MVTecAD^{carpet}$	74%	77%	77%	73%	76%	75%		59%	50%	71%
$MVTecAD^{hazelnut}$	68%	69%	78%	73%	76%	77%		70%	64%	69%
InternetAds	86%	80%	60%	75%	75%	43%		78%	64%	43%
$MNISTC^{shot}$ - noise	93%	63%	66%	67%	66%	82%		64%	56%	52%
$CIFAR10^4$	77%	79%	75%	76%	75%	76%		71%	56%	69%
$FashionMNIST^8$	93%	74%	67%	69%	68%	76%		64%	67%	52%
$MVTecAD^{toothbrush}$	72%	75%	85%	80%	75%	54%		63%	50%	87%
backdoor	94%	67%	58%	78%	73%	38%		93%	61%	62%
$MNISTC^{zigzag}$	95%	59%	73%	73%	71%	73%		65%	57%	60%
vowels	94%	90%	67%	62%	45%	65%		58%	51%	50%
donors	100%	46%	71%	84%	78%	39%		71%	85%	62%
satellite	77%	82%	89%	67%	71%	81%		50%	82%	55%
$FashionMNIST^4$	90%	84%	65%	73%	68%	77%		68%	60%	53%
$MNISTC^{dotted}$ - line	95%	59%	70%	71%	69%	72%		78%	67%	61%
$FashionMNIST^2$	93%	83%	58%	66%	61%	77%			73%	53%
								60%		
mnist	53%	91%	68%	68%	73%	81%		50%	72%	50%
PageBlocks	85%	74%	84%	87%	83%	75%		50% 73%	91%	55% 75%
magic.gamma	83%	81%	76%	67%	71%	73%			73%	
$MVTecAD^{zipper}$	77%	75%	79%	77%	79%	75%		65%	50%	82%
$MVTecAD^{wood}$	74%	79%	79%	80%	80%	76%		80%	50%	76%
glass	89%	90%	86%	71%	79%	64%		68%	50%	82%
$MVTecAD^{transistor}$	75%	79%	83%	83%	83%	76%		80%	50%	76%
wine	99%	89%	85%	59%	71%	61%		99%	50%	35%
$MNISTC^{spatter}$	93%	78%	76%	75%	75%	79%		48%	77%	66%
$MNISTC^{motion}$ - blur	98%	73%	76%	73%	73%	82%		47%	72%	58%
$MVTecAD^{tile}$	79%	84%	86%	84%	86%	82%		58%	50%	81%
$Fashion MNIST^0$	91%	78%	73%	77%	74%	82%		78%	71%	61%
$MNISTC^{fog}$	100%	81%	73%	74%	73%	78%		45%	71%	41%
$Fashion MNIST^3$	93%	83%	77%	79%	78%	82%		79%	62%	62%
http	100%	26%	86%	75%	85%	34%		100%		32%
Stamps	89%	89%	76%	82%	77%	78%		84%	71%	48%
Ionosphere	86%	80%	62%	74%	76%	69%		79%	50%	92%
mammography	84%	89%	82%	92%	92%	89%	72%	50%	88%	58%

Table 12: AUC-PR Scores for each datasets and algorithm (2/3|high performing algorithms)

algorithms)											
Dataset	DEAN	LOF	KNN	NeuTral	CBLOF	PCA	$\overline{\text{DTE}}$	IFor	OCSVM	D.SVDD	AE
$\overline{MVTecAD^{metal}_{-nut}}$	67%	77%	78%	72%	77%		80%			71%	59%
SpamBase	68%	64%	75%	45%	70%	79%	66%			79%	72%
celeba	68%	45%	62%	49%	67%	81%	77%			76%	67%
opt digits	99%	100%	100%	66%	72%	46%	75%	79%	100%	43%	97%
$CIFAR10^9$	77%	78%	72%	75%	70%	70%	73%	67%	69%	68%	63%
$CIFAR10^8$	74%	76%	70%	74%	69%	70%	68%	66%	72%	66%	66%
$CIFAR10^6$	77%	76%	75%	75%	71%	70%	75%	67%	66%	72%	68%
Wave form	73%	84%	83%	68%	85%	62%	67%	73%	85%	51%	76%
$MNISTC^{brightness}$	93%	98%	90%	81%	77%	70%	84%	66%	62%	73%	72%
$CIFAR10^0$	76%	74%	73%	76%	70%	72%	74%	68%	70%	74%	64%
$MVTecAD^{cable}$	67%	81%	82%	71%	74%	70%	75%			65%	63%
$MNISTC^{canny}_{-edges}$	93%	97%	91%	80%	78%	72%	79%	69%	63%	84%	68%
skin	97%	83%	100%		79%		80%			60%	51%
campaign	73%	53%	74%	76%	70%	77%	75%			71%	68%
Cardiotocography	84%	75%	74%	64%	75%		55%			78%	84%
annthyroid	77%	81%	78%	83%	70%		59%			84%	61%
cover	50%		100%		59%	90%		78%		78%	51%
$MVTecAD^{carpet}$	74%	81%	81%	73%	80%	78%		78%		76%	67%
$MVTecAD^{hazelnut}$	68%	85%	82%	75%	80%	76%	79%			77%	60%
InternetAds	86%	89%	86%	86%	80%	82%	76%			82%	77%
$MNISTC^{shot}$ - noise	93%	94%	95%	79%	87%		86%			80%	74%
$CIFAR10^4$	77%	77%	80%	78%	78%	78%	79%			76%	64%
$Fashion MNIST^8$	93%	93%	89%	73%	81%			73%		73%	78%
$MVTecAD^{toothbrush}$	72%	64%	88%	87%	86%		88%			79%	56%
backdoor	94%	96%	96%	91%	72%		92%			61%	77%
$MNISTC^{zigzag}$	95%	96%	93%	88%	81%			77%		82%	73%
vowels	94%	96%	96%	98%	80%		96%			69%	89%
donors	100%	99%	100%		83%		97%			68%	89%
satellite	77%	88%	90%	79%	89%	78%	70%			77%	71%
$Fashion MNIST^4$	90%	90%	89%	86%	84%			72%		84%	74%
$MNISTC^{dotted}$ - line	95%	96%	94%	86%	81%		87%			78%	71%
$FashionMNIST^2$	93%	90%	90%	90%	86%	83%		73%		83%	78%
		96%	94%	96%	86%	90%	92% 75%			88%	96%
mnist	$53\% \\ 85\%$	$90\% \\ 92\%$	94% 70%	96%	63%	90%	74%			88%	96% 58%
PageBlocks	83%	92% 85%	86%	96% 79%	63% 79%			90% 78%		72%	79%
$magic.gamma \ MVTecAD^{zipper}$		88%	86%	79% 89%			82%			78%	79% 70%
	77%				84%						
$MVTecAD^{wood}$	74%	83%	84%	79%	83%		80%			84%	60%
$glass \\ MVTecAD^{transistor}$	89%	88%	100%		100%		61%			67%	72%
	75%	88%	83%		83%		78%			79%	66%
wine	99%	99%	99%	83%	99%		31%			86%	100%
MNISTC ^{spatter}	93%	97%	94%	87%	87%		93%			85%	77%
MNISTC motion_blur		98%	96%	91%	86%		97%			85%	83%
$MVTecAD^{tile}$	79%	88%	88%	77%	88%		87%			79%	58%
$FashionMNIST^{0}$	91%	91%	92%	91%	86%		88%			80%	81%
$MNISTC^{fog}$	100%		100%		95%		98%			85%	93%
$Fashion MNIST^3$	93%	93%	92%		87%		93%			89%	78%
http	100%	59%	100%		91%				100%	99%	99%
Stamps	89%	89%	91%	98%	90%		84%			89%	86%
Ionosphere	86%	91%	94%	94%	95%		94%			85%	88%
mammography	84%	86%	88%	74%	85%	91%	86%	90%	89%	91%	92%

Table 13: AUC-PR Scores for each datasets and algorithm (3/3|low performing algorithms)

Dataset	DEAN	GOAD	HBOS	ECOD	COPOD	LODA	NF	VAE	DAGMM	SOD
musk	53%	74%	100%	97%	95%	99%	76%	50%	92%	31%
pendigits	99%	84%	92%	90%	87%	96%	58%	88%	56%	37%
smtp	92%	89%	88%	91%	93%	92%	96%	36%	89%	65%
$MNISTC^{glass}$ - blur	100%	89%	86%	84%	83%	93%	79%	49%	63%	52%
cardio	89%	94%	85%	90%	89%	89%	91%	91%	69%	48%
shuttle	100%	87%	99%	99%	100%	90%	32%	50%	95%	42%
WBC	99%	99%	99%	100%	100%	94%	71%	99%	50%	70%
satimage 2	100%	86%	98%	98%	98%	99%	53%	50%	99%	53%
$MVTecAD^{bottle}$	96%	95%	97%	93%	97%	96%	93%	31%	50%	97%
WDBC	100%	93%	99%	98%	100%	100%	75%	50%	77%	79%
thyroid	98%	73%	99%	98%	90%	91%	99%	86%	83%	58%
$Fashion MNIST^5$	96%	97%	93%	94%	93%	96%	77%	82%	68%	76%
$MNISTC^{stripe}$	100%	86%	98%	96%	96%	99%	55%	86%	65%	51%
Lymphography	100%	100%	100%	100%	100%	96%	82%	94%	50%	49%
$Fashion MNIST^1$	99%	93%	91%	92%	91%	95%	75%	92%	73%	74%
fraud	94%	94%	97%	97%	96%	97%	95%	97%	95%	67%
$Fashion MNIST^9$	98%	97%	94%	95%	94%	95%	78%	93%	84%	81%
breastw	100%	99%	99%	99%	100%	99%	94%	100%	50%	88%
$MVTecAD^{leather}$	99%	99%	99%	97%	98%	91%	95%	82%	50%	98%
$MNISTC^{impulse}$ - noise	100%	100%	98%	97%	96%	100%	84%	95%	97%	44%
$Fashion MNIST^7 \\$	98%	97%	96%	96%	96%	97%	94%	93%	91%	90%
Average	78%	70%	69%	69%	68%	68%	64%	62%	61%	57%
Rank	5.72	10.90	12.34	12.62	12.95	12.14	14.19	14.95	15.38	16.28

Table 14: AUC-PR Scores for each datasets and algorithm (3/3|high performing algorithms)

Dataset	DEAN	LOF	KNN	NeuTral	CBLOF	PCA	DTE	IFor	OCSVM	D.SVDD	AE
\overline{musk}	53%	100%	100%	99%	100%	100%	43%	96%	75%	100%	100%
pendigits	99%	98%	100%	61%	98%	90%	98%	96%	91%	78%	84%
smtp	92%	95%	95%	77%	90%	89%	92%	80%	88%	87%	65%
$MNISTC^{glass}-^{blur}$	100%	99%	100%	94%	97%	95%	99%	91%	89%	95%	93%
cardio	89%	91%	90%	85%	89%	94%	90%	93%	91%	97%	91%
shuttle	100%	100%	99%	98%	98%	99%	75%	100%	100%	99%	99%
WBC	99%	92%	99%	73%	99%	99%	45%	99%	99%	97%	98%
satimage 2	100%	99%	100%	97%	100%	99%	75%	99%	97%	83%	99%
$MVTecAD^{bottle}$	96%	97%	97%	93%	97%	97%	97%	97%	97%	97%	87%
WDBC	100%	100%	100%	95%	100%	100%	40%	100%	100%	100%	100%
thy roid	98%	98%	97%	98%	92%	98%	93%	99%	88%	98%	85%
$Fashion MNIST^5$	96%	95%	97%	96%	96%	96%	96%	95%	96%	95%	90%
$MNISTC^{stripe}$	100%	100%	100%	98%	100%	100%	100%	99%	97%	100%	99%
Lymphography	100%	97%	100%	71%	100%	100%	94%	100%	100%	100%	100%
$Fashion MNIST^1$	99%	98%	98%	98%	94%	96%	98%	94%	94%	96%	96%
fraud	94%	71%	98%	92%	97%	97%	97%	96%	97%	96%	97%
$Fashion MNIST^9$	98%	98%	98%	96%	97%	96%	98%	95%	96%	96%	92%
breastw	100%	92%	100%	83%	100%	99%	89%	100%	99%	98%	99%
$MVTecAD^{leather}$	99%	98%	99%	97%	99%	99%	99%	99%	99%	98%	97%
$MNISTC^{impulse}$ - noise	100%	100%	100%	98%	100%	100%	100%	99%	100%	100%	100%
$Fashion MNIST^7 \\$	98%	98%	98%	95%	97%	97%	97%	97%	97%	96%	90%
Average	78%	80%	80%	75%	75%	73%	73%	72%	72%	72%	70%
Rank	5.72	4.88	4.57	7.87	7.33	8.62	8.19	9.61	10.24	9.91	11.31

References

- 1. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. In: ICLR. OpenReview.net (2020), http://dblp.uni-trier.de/db/conf/iclr/iclr2020. html#BergmanH20
- Bounsiar, A., Madden, M.G.: One-class support vector machines revisited. In: 2014 International Conference on Information Science Applications (ICISA). pp. 1–4 (2014). https://doi.org/10.1109/ICISA.2014.6847442
- Breunig, M., Kröger, P., Ng, R., Sander, J.: Lof: Identifying density-based local outliers. vol. 29, pp. 93–104 (06 2000). https://doi.org/10.1145/342009.335388
- 4. Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: A novel pcabased network anomaly detection. pp. 1 5 (07 2011). https://doi.org/10.1109/icc.2011.5962595
- Cunningham, P., Delany, S.: k-nearest neighbour classifiers. Mult Classif Syst 54 (04 2007). https://doi.org/10.1145/3459665
- Goldstein, M., Dengel, A.R.: Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm (2012)
- He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognition Letters 24(9), 1641–1650 (2003). https://doi.org/https://doi.org/10.1016/S0167-8655(03)00003-5
- 8. Kingma, D., Welling, M.: Auto-encoding variational bayes (2014)
- Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B. (eds.) Advances in Knowledge Discovery and Data Mining. pp. 831– 838. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)
- 10. Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: Copod: Copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining (ICDM) (2020). https://doi.org/10.1109/ICDM50108.2020.00135
- 11. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: Ecod: Unsupervised outlier detection using empirical cumulative distribution functions (01 2022)
- 12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM (2008)
- 13. Livernoche, V., Jain, V., Hezaveh, Y., Ravanbakhsh, S.: On diffusion modeling for anomaly detection. In: ICLR 2024 (2024), https://openreview.net/forum?id=lR3rk7ysXz
- Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from the width. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. p. 6232–6240. NIPS'17, Curran Associates Inc., Red Hook, NY, USA (2017)
- 15. Pevný, T.: Loda: Lightweight on-line detector of anomalies. Mach. Learn. $\mathbf{102}(2)$ (feb 2016). https://doi.org/10.1007/s10994-015-5521-0, https://doi.org/10.1007/s10994-015-5521-0
- Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images (2022), https://arxiv.org/abs/ 2103 16440
- 17. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning Volume 37. p. 1530–1538. ICML'15, JMLR.org (2015)
- Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: ICML (2018)

- Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. p. 4–11. MLSDA'14 (2014). https: //doi.org/10.1145/2689746.2689747
- W Flores, A., Bechtel, K., Lowenkamp, C.: False positives, false negatives, and false analyses: A rejoinder to "machine bias: There's software used across the country to predict future criminals. and it's biased against blacks.". Federal probation 80 (09 2016)
- 21. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., ki Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018), https://api.semanticscholar.org/CorpusID:51805340