11 - Feb 13 Lecture

- Column space
- Nullspace
- Basis
- Finding basis for Null (A)
- Finding basis for Col(A)
- Finding basis for Span $(\vec{v_1}, ..., \vec{v_k})$

Addition to Last Lecture	H is a subspace if all of the following are true:
	1) Õ ∈ H
	2) ū, v ∈ H ⇒ ū+ v ∈ H
	3) vi∈H and ceR ⇒ cvi∈H
	-
	If T is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, Range(T) is a subspace of \mathbb{R}^m and
	Ker(T) is a subspace of IR ⁿ .
Column Space	The column space of a matrix A, denoted Col(A), is the set of all linear
(Matrix version of	combinations of the columns of A.
Range)	• If a1,, am are the columns of A, then Col(A) = Span(a1,, an).
	• If T(v) = Av for all v, then Col(A) = Range(T).
Nullspace	The nullspace of A, denoted Null (A), is the set of all vectors v such
(Matrix version of	that $A\vec{v} = \vec{0}$
Ker)	• If $T(\vec{v}) = A\vec{v}$ for all \vec{v} , then Null(A) = Ker(T).
Basis Context:	Span of something usually includes something redundant
	\hookrightarrow Span (a1,, an) is often equivalent to Span (a1,, an-1).
	"A basis is what's left after knocking out all the redundant information".
	, <u>n</u>
	A basis for a subspace H of IRM is a linearly independent set of vectors
	that span H.
	* i.e. Span (h1,, hk) = H.
	You can <u>always</u> write a basis for a subspace of R ⁿ .

Ex 1:	Show that $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ is a basis of \mathbb{R}^3 .
	Show that $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ is a basis of \mathbb{R}^3 . $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $H = \mathbb{R}^3 \rightarrow n = 3$ by definition
	These vectors are linearly independent since the only solution is the trivial
	$Solution c_1 = c_2 = c_3 = 0.$
	To show spanning, we show $c_1\vec{e_1} + c_2\vec{e_2} + c_3\vec{e_3} = \vec{x}$ is consistent for all of the
	subspace (in this case, for all $\hat{x} \in H$).
	[x1] Being able to write this out
	subspace (in this case, for all $\vec{x} \in H$). $ \begin{bmatrix} x_1 \\ \vec{x} = x_2 \end{bmatrix}, \text{ then } x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3} = \vec{x} $ Shows spanning.
	[X ₃]
	As \vec{x} was an arbitrary vector of H, we conclude that $H = \text{Span}(\vec{e_1}, \vec{e_2}, \vec{e_3})$.
	Therefore, $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ is a basis of \mathbb{R}^3 .
Ex 2.	[17[17[17
	0 1 is also a basis for R ³ .
	[0][0][1]

Finding a Basis for Null (A)

When solving $A\vec{x} = \vec{0}$, we can write the answer in parametric vector form.

Recall that the general form of parametric vector form is:

[constants] + free variable[:] + free variable[:] + ... + free variable[:]

The non-constant vectors of the parametric vector form will form a basis.

non-constant vectors form a basis

The algorithm for finding a basis for Null(A) is:

- 1) Solve for the solutions of A when Ax = o.
- 2) Write the solution for Ax = o in parametric vector form.
- 3) Remove the constant vector.

Note: $\{\}$ is a basis for $\{\vec{0}\}$. Cempty set

Ex: Find a basis for Null (A).

$$A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A\vec{x} = \vec{0} = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix} R_2' = R_2 + R_1 \qquad X_1 - X_3 = 0 \rightarrow X_1 = t$$

$$\sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix} R_1' = R_1 - R_2 \qquad X_2 + 3X_3 = 0 \rightarrow X_2 = -3t$$

$$X_1 & X_2 & X_3 \\ B & B & F \\ \hline (remove in next step)$$

$$Solution: \vec{X} = \begin{bmatrix} t \\ -3t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} \text{ for all } t \in \mathbb{R}.$$

$$1 \text{ Innearly independent spanning set for Null(A)}$$

$$\text{Therefore, } \left\{ \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} \right\} \text{ is a basis for Null(A)}.$$

Finding Basis for Col(A) The pivot columns of A form a basis for Col(A).

The algorithm for finding a basis for Col(A) is:

- 1) Calculate a REF of A (RREF works as well).
- 2) Identify the pivot positions.
- 3) The columns of A corresponding to those pivot positions form a basis for Col(A).

Note that the columns with the pivot positions in the RREF of matrix A are NOT what we are looking for. We are looking for the corresponding columns in the ORIGINAL matrix A.

Ex: Find a basis for Col(A)
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} R_2' = R_2 + R_1$$

$$pivot columns pivot position$$
these are the columns of A, NOT of the RREF of A.

This tells us that
$$\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$
 is a basis for Col(A).

1.0	The elecuithm for finding a basic for C ()
nd Basis for	The algorithm for finding a basis for $S_{pan}(\vec{v_1},,\vec{v_k})$ is:
Span $(\vec{v_1}, \dots, \vec{v_k})$	1) Make a matrix with $\vec{v_1},, \vec{v_k}$ as the columns (even if they're row vectors).
	2) Row reduce the matrix.
	3) The vectors corresponding to pivot columns form a basis.
	4) Rewrite the vectors as row vectors if they were originally row vectors.

Add to last sec?	H is a subspace of R" if (all of the following):
	1) 0 e H
	2) û, v̂ ∈ H ⇒ û +v̂ ∈ H
	3) û ∈ H ceR ⇒ cû ∈ H
	If T is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, Range (T) is a subspace of \mathbb{R}^m and
	Ker(T) is a subspace of IR ⁿ .
Column Space	The column space of a matix A, denoted Col(A), is the
(matrix equiv. of Range)	set of all linear combinations of the columns of A.
	If a,,, am are the columns of A, then Col(A) = Span (a,,,an)
	If $T(\vec{v}) = A\vec{v}$ for all \vec{v} then $Col(A) = Range(T)$.
	J
Nu II space	The null space of A, Null (A), is the set of all vectors \vec{v} s.t. $A\vec{v} = \vec{0}$.
(matrix equiv of Ker)	
•	If T(v) = Av for all v, then Null (A) = Ker (T)
Basis	Span usually has something redundant.
	span (a1,,an) span (a1,,an-1)
	Basis: what's left after knocking out all redundant info
	(only in regards to a supspace)
	A basis for a subspace H of Rn is a linearly independent set of vectors
	that span H.
	i.e. span $(\vec{h}_1, \dots, \vec{h}_k) = H$
	You can always write a basis for a subspace of 12".
nside: liast lec.)	
Rn is a subspace of Rm	Standard basis of 123:
	- [] - [o] (H= R ³ , n=3 in definition)
	$\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Linearly independent $\sqrt{\frac{1}{2}}$
	These vectors are linearly independent. (c1 = c2 = c3 = 0)
	To show spanning, we show cie, + czez+czez = x is consistent for all x ∈ H. (for all of subspace)
	<u> </u>

	[x,]	1				
x =	ΧZ	, then	x, è, +	x2 e2 +	x3 e3	= x
	_ X3 _					

As \vec{x} was an arbitrary vector of H, we conclude that $H = \text{Span}(\vec{e_1}, \vec{e_2}, \vec{e_3})$ "H is contained inside span (e, e, e, e)"

revised. As x was an arbitrary vector of H, e1, e2, e3 & H, and H is a subspace, then H= span (e1, e2, e3).

 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ is a basis of \mathbb{R}^3

Finding a basis for Null(A) ... we have an algo for this.

When solving $A\vec{x} = \vec{0}$ we can write the answer in parametric vector form.

veminder of general form

If we obtain the parametric vector form using free vars as shown in class, non-constant vectors will form a basis.

Finding basis for Null(A) Ex.	Find a basis for Null (A)	
"get nullspace"		
•	$A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$	
	م م م ا ا ع ا ۱ ا ع ا ۱ ا ع ا ۱ ا	
	$A\vec{x} = \vec{0} \implies \begin{bmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix} R_2 = R_2 + R_1$	
	$\sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix} R_1' = R_1 - R_2$	
	вв F	
	$x_3 = t$	
	$x_1 - x_3 = 0 \implies x_1 = t$	
	$x_2 + 3x_3 = 0 \implies x_2 = -3t$	
	In parametric vector form, the solution set is:	
	· · ·	
	t -3 for all te R	
	[1]	
	((1, 1)	
	$\therefore \left\{ \begin{bmatrix} 1 \\ -3 \end{bmatrix} \right\} \text{ is a basis for Null(A)}.$	
	([,])	
	vector (lin-indp.)	
	"Method gives lin. ind., spanning set for Null (A)."	
	$\begin{cases} \begin{cases} \\ \\ \end{aligned} \end{cases}$	
	$\left\{ \right\}$ is a basis for $\left\{ \overrightarrow{0}\right\} $.	

Finding basis for col(A)	For finding a basis for Col(A), the pivot columns of A form a basis for Col(A).
	The algo is to calculate a REF of A (RREF works) and identify the pivot positions. The columns of A corresponding to those pivot positions form a
Ex:	basis for Col(A). $A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix}$ Columns of A!] Not of RREF of A.
mistaks common	This tells us that $\left\{\begin{bmatrix} 1\\-1\end{bmatrix},\begin{bmatrix} 1\\0\end{bmatrix}\right\}$ is a basis for $Col(A)$.
	Finding a basis for span $(\overrightarrow{v_1},,\overrightarrow{v_k})$
	1) make a matrix wl $\vec{v_1},,\vec{v_k}$ as the <u>columns</u> . (even if they're now vectors) 2) Row reduce the matrix
	3) The vectors corresponding to pivot columns form a basis. (rewrite as row vectors if they were row vectors)