Klausur "Mathematik I für Informatik und Wirtschaftsinformatik"

Fachbereich Mathematik	
Prof. Dr. Thomas Streicher	

SoSe 2018 06.09.2018

Name:		Matrikelnummer:										
Vorname:			•••••	••••	Studi	iengang	; 		• • • • • • • • • • • • • • • • • • • •			
	Aufgabe	1	2	3	4	5	6	Σ	Note			
	mögliche Punkte	7	7	20	6	10	10	60				
	erreichte Punkte											

Hinweise

Bitte füllen Sie den Kopf dieses Aufgabenblatts **jetzt** und **leserlich in Druckschrift** aus. Versehen Sie **alle Blätter** mit **Ihrem Namen** und **Ihrer Matrikelnummer**.

Sie benötigen kein eigenes Papier. Sollte der Platz unter den Aufgaben Ihnen nicht genügen, können Sie die Seiten am Ende der Klausur verwenden. Kennzeichnen Sie deutlich, zu welcher Aufgabe Ihre Lösungen gehören.

Als Hilfsmittel ist lediglich ein beidseitig handschriftlich beschriebenes DIN A4 Blatt bzw. zwei DIN A4 Seiten zugelassen.

Geräte zur elektronischen Kommunikation dürfen weder benutzt noch griffbereit gehalten werden. Ein Verstoß hiergegen wird als Täuschungsversuch gewertet.

Die Bearbeitungszeit beträgt 90 Minuten. Der Raum darf erst nach Klausurende verlassen werden.

Bedenken Sie: Wo nicht anders explizit angegeben, sind alle Ergebnisse zu begründen, etwa durch eine Rechnung. Insbesondere werden Lösungswege bewertet.

Tipp: Verschaffen Sie sich einen Gesamtüberblick über die Aufgaben, bevor Sie beginnen. Die Punktebewertung einer Aufgabe sagt nichts über ihre Schwierigkeit aus.

Die Aufgaben beginnen auf der nächsten Seite.

Viel Erfolg!

1. Aufgabe (Teilbarkeit)

(7 Punkte)

Sei $n \in \mathbb{N}_0 := \{0, 1, 2, ...\}$ mit der Darstellung

$$n = \sum_{i=0}^{k} a_i 10^i,$$

wobei $k \in \mathbb{N}_0$ und $a_i \in \{0, 1, ..., 9\}$ für alle $i \in \{0, ..., k\}$. Hierbei stellen die a_i die Ziffern der Zahl n dar. Zeigen Sie, dass

$$3|n \Leftrightarrow 3|\sum_{i=0}^{k} a_i$$

gilt, dass also die Zahl n ist genau dann durch 3 teilbar ist, wenn ihre Quersumme durch 3 teilbar ist.

2. Aufgabe (Vollständige Induktion)

(7 Punkte)

Sei $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$ und seien $M, N \subset \mathbb{N}_0$ mit $|N| = n \in \mathbb{N}_0$ und |M| = n + m + 1 mit $m \in \mathbb{N}_0$. Zeigen Sie mittels vollständiger Induktion über n:

Für alle $n, m \in \mathbb{N}_0$ gilt, dass jede Abbildung $f: M \to N$ nicht injektiv ist.

Hinweis: Halten Sie unbedingt den Formalismus der vollständigen Induktion ein.

Çii	M	6 N	V _o	b	ell	cb	ig		Fi	٠	n	= C	9	U	d	ie	h	44	agi	H	w	ial	, 0	la	M	7	Ø	ur	d .	N:	= Ø
Ind	uk	lion	w	nh	ung	L i																									
Çii	n	-1	Ľ	Га	M	,	ha	r	Λ	И	N	ùn	di	ell	ns	2	_ /	De	nd	nk		m.	17	! <i> </i>	n ₂						
K	gil	4	1	\mathcal{F}_{l}	m	1)	9	Fl	m	2)	,	a	'n	,	Vn	w	·	in	E	lem	ln	l f	iai	/ .							
Ms	o	ũł	f	'n	ich	1	in	je	khi	σ.																					
Ina	luk	lio	nel	00	ra	щ	ÇU	bu	ng	(1	V]:																			
Cur	- 4	in	Ьи	lù	bij	ges	Fi	ns	n	٤	zù	u i	di		HL	u	ag	L.													
Ina											_																				
W	- L	etr	aul	Her	0	U	1	tu	w	Zgi	L (Pw	-	n	• 1	1.	Đ	Z/	n g	ill	<i>!</i>	N	<u> </u>	α	1, .		,a	11-1	3		
1. F				_																											
		n									{a	100	, }	<u> </u>	lin	ı F	Un	hli	on .	w	n	l.	ra	ıch	ľ	V)	n	ùU	in	chl	iυ
2. F o	<u> </u>																														
		, G									le	u	,	n ₁ ,	M	12	6 f	~ ^	1(an	67.) (: /	4	, (0	de	us			
		m,																													
3. Fe			1 .				_			_										`											
											.)	7	> ,) {	ĵα	74.0	7		i	rı	A	Lock	lio	n					
	w	n vol	,	ra	e h		עוו	')	ni	щ		ina	i de	liv	i a	14	o-		, F:	N	1->	- <i>N</i>	'a	w	hn	ich	1				
												₹															_				

3. Aufgabe (Lineare Algebra)

(20 Punkte)

Gegeben sei die Matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

- (a) Bestimmen Sie alle Eigenwerte und die zugehörigen Eigenräume der Matrix. (9,5 P.)
- (b) Geben Sie den Kern, das Bild und den Rang der Matrix an. (3 P.)
- (c) Ist die Matrix invertierbar? (1 P.)
- (d) Ist die Matrix diagonalisierbar? (3 P.) Wenn ja, geben Sie eine Matrix S und eine Diagonalmatrix D an, sodass $D = S^{-1}AS$ gilt. *Hinweis*: Sie müssen die Matrix S^{-1} nicht berechnen. Eine Angabe der Matrizen D und S genügt.
- (e) Geben Sie die Eigenwerte von A^2 an. (1 P.)
- (f) Bestimmen Sie die Anzahl der Lösungen des linearen Gleichungssystems (2,5 P.)

$$Ax = \begin{pmatrix} 1 \\ 3 \\ \alpha \end{pmatrix}$$

in Abhängigkeit von $\alpha \in \mathbb{R}$.

a) Behackh dax char. Polynom:

$$p_{1}(t) = dit (A - t R) = dit \begin{pmatrix} 1 - t & 0 & 0 \\ 1 & 1 - t & 1 \\ 0 & 1 & 1 - t \end{pmatrix}$$

Galvillung

 $auh 12ii = (1 - t) \cdot dit \begin{pmatrix} 1 - t & 1 \\ 1 & 1 - t \end{pmatrix} = (1 - t) \begin{pmatrix} 1 - t & 1 \\ 1 & 1 - t \end{pmatrix}$
 $= (1 - t) \begin{pmatrix} t^{2} - 2t \end{pmatrix} = t \cdot (1 - t) \begin{pmatrix} 1 - 2 \end{pmatrix} = 0$

Mho aind $\lambda_{0} = 0$, $\lambda_{1} = 1$, $\lambda_{2} = 2$ dix EW von λ_{1} .

 $E_{0}(\lambda) = \{ \times : (\lambda \times 10) \}$
 $R_{1}(\lambda) = \{ \times : (\lambda \times 10) \}$
 $R_{2}(\lambda) = \{ \times : (\lambda \times 10) \}$
 $R_{3}(\lambda) = \{ \times : (\lambda \times 10) \}$
 $R_{4}(\lambda) = \{ \times : (\lambda \times 10) \}$
 $R_{5}(\lambda) = \{ \times : (\lambda \times 10) \}$

Si $\kappa_{1} = s$. Down git $\kappa_{2} = -s$ and $\kappa_{1} = 0$.

Dahu in $K_{2}(\lambda) = \{ \cdot : (-\frac{s}{2}) : s_{1} : s_{2} : s_{3} : s_{4} :$

F) We wollen all ~ 6 M Finden, or does $(\frac{3}{2})$ 6 Ria(1) = $< \{(\frac{3}{2}), (\frac{3}{3})\} > = \{ 1, (\frac{3}{2}), 1_2(\frac{3}{3}), 1_1, 1_2 \in \mathbb{R} \}.$ Equit: Egilt: $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \lambda_1 = 1, \quad \lambda_2 = 2 \Rightarrow z = 2.$ The Clegal (3) new fix z = 2 cm Ridd. More that $A < = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ at new fix z = 2 Garbon. Ex gilt: $A \begin{bmatrix} 3 \\ 2 \end{bmatrix}$; oleo: $\{x : Ax = \begin{bmatrix} 3 \\ 2 \end{bmatrix}\} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ then AWhen hol $Ax = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ (curindlish with Locumn) $\{x = 2 \}$

4. Aufgabe (Σ -Algebren und Relationen)

(6 Punkte)

Sei $\Sigma := (S, F, \operatorname{ar})$ eine einsortige Signatur (S besteht aus genau einer Sorte), A und B einsortige Σ -Algebren zur Signatur Σ und $h: A \to B$ ein Σ -Homomorphismus. Wir betrachten die Relation

$$x \ker(h) y \iff h(x) = h(y)$$

auf der Σ -Algebra A. Zeigen Sie, dass ker(h) eine Kongruenz auf A ist.

lu ziige	n;	1)	ke	-(h)	d	chin	er	Ág	riin	rall	no.	rck	dior	1 a	uf	1 _s	A	ď	al	le	٤6.	S	
		2)																					
			811)																	lh	ر برا		
																					7/		
1		<i>-</i> ((×																	
2u 1):																							
	CA	mm :	(Kh	niu	Mic	h B	il	h	أنما) =	hly	1) [= >	h	(y)	c h	(×	Ь	161	y 6	As I	45.
	Po	NSi	C	Ka	núil	llid	h g	Ü	h	(z)	=h	ly	1	hl	y)	=h	(2)	₹ >	, ,	ls.)=1	h/2)	
																						/s	
24 21																				' ''		,	
2u 2)							Cal	,				١						,					
Cú		,													Z1	141	61	S1 .	,	1	Lnl	yn (As
mil	h	l×1	l=h	(y,)	1-	-, 1	h(z	(n)	= 1	r (ç	'n)		€										
Wa	ω	llen	ZUE	jen:		hl	(1)	81	,-,	dn.)):	- /	HF	4 (41	,-	yn))					
سره	41																						
h	/ [[4(8		. 1.	.)1	2	1	F	3 ()	٦/ <u>.</u>	c. 1).		h/~	ر ر	1							
	('	6-1	() ***	, 4,	',,,	K m				'6'	-17	, ••	-1		,	,							
					*	=	f	2	h	ly.	1),	ا م م	hl	'Yn))								
			Δ			=										AD)							
							-•1		,	771		17	,,,,	7									

5. Aufgabe (Beweisen und Widerlegen)

(10 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr oder falsch sind. Geben Sie außerdem jeweils einen Beweis oder ein Gegenbeispiel an. Sollten Sie ein Gegenbeispiel angeben, müssen Sie zudem zeigen, dass dies ein Gegenbeispiel ist.

Sie erhalten für die richtige Antwort jeweils 0,5 und für die richtige Begründung jeweils 2 Punkte.

- (a) Sei $A \in \mathbb{R}^{n \times n}$ eine orthogonale $(n \times n)$ -Matrix. Dann gilt $\det(A) = 1$.
- (b) Seien X, Y Ringe und $\varphi: X \to Y$ ein Ringhomomorphismus. Dann ist φ injektiv.
- (c) Die Abbildung $||\cdot||: \mathbb{R}^n \to \mathbb{R}, x := (x_1, x_2, \dots, x_n) \mapsto ||x|| := \max\{|x_i|, i \in \{1, \dots, n\}\}$ ist eine Norm.
- (d) Sei

$$F_+ := \{(c_n) \text{ Folge in } \mathbb{R} : c_n > 0 \quad \forall n \in \mathbb{N}\}.$$

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\in F_+$. Ist $a_n\in O(b_n)$, dann gilt

$$\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$$
 konvergiert.

a) Folich. Rep.
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = B^{n\times n}$$
 all offmainthlich orthogonal,

observed $A = -1$.

b) Folich $A = -1$.

b) Folich $A = -1$.

 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = 0$ and Gruppenhom.

 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = 0 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Where $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 &$

1- Clagl: 1x+y1 = mas [1x;+yi]: 16 [1, n]} = max { |x, | + |y, |: 16 &1,-, n}} = max {1x;1: 16 {1,-,n}} + max { (4;1:16 {1,-,n}} = || × || + || || || || || || || d) Tolech. Si $b_n = 2$, and $a_n = \begin{cases} 1 & n \text{ girade} \\ n & \text{ ungeade} \end{cases}$ Bann wind (an), (bn) 6 F. und is gill lant = 1. (bn), also an 6 O(bn), abu (an) divergut.

6. Aufgabe (Multiple Choice) (10 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr und welche falsch sind.

Sie müssen Ihre Antworten nicht begründen.

Für jede richtig ausgefüllte Zeile bekommen Sie 1 Punkt und eine fehlerhaft oder gar nicht ausgefüllte Zeile wird mit 0 Punkten bewertet.

Sollten Sie eine Antwort korrigieren, kennzeichnen Sie eindeutig, welche Antwort gewertet werden soll. Im Zweifel wird die Antwort mit 0 Punkten bewertet.

		wahr	falsch
(a)	Die Aussagen $(A \land B) \lor (\neg A \land \neg B)$ und $(A \Leftrightarrow B)$ sind äquivalent.	×	
(b)	Seien A und B Mengen mit $A \cap B = \emptyset$. Dann ist $A \neq B$.		\boxtimes
(c)	Seien $a, n \in \mathbb{N}^* := \{1, 2, 3, \ldots\}$. Dann gilt $a^n \equiv a \pmod{n}$. $a = 16 \equiv 0 \pmod{4}$		\boxtimes
(d)	Seien $x, y \in \mathbb{Z}_{91}$. Dann gilt: $x \cdot y = 0 \Rightarrow x = 0$ oder $y = 0$.		lacktriangle
(e)	Sei $S \subset \mathbb{C}$ mit $S := \{s \in \mathbb{C} : s = 1\}$ und $\cdot_{\mathbb{C}}$ die Multiplikation zweier kompleven 7shlen. Denn ist (S_{-}) sine S_{-} when S_{-} in S_{-} and S_{-} in S_{-} in S_{-} and S_{-} in S_{-}		
inr.	xer Zahlen. Dann ist $(S, \cdot_{\mathbb{C}})$ eine Gruppe. The second is $S = S = 1 \cdot 1$	w wa sa	52 65 PW 51 15265
Mu (f)	Seien $v, w \in \mathbb{R}^3$ zwei linear unabhängige Vektoren mit $v, w \neq (0,0,0)$. Dann	×	
	ist $\{v, w, v \times w\}$ eine Basis des \mathbb{R}^3 . $v_i w_i V s w$ and lin unothorous.		
(g)	Jede orthogonale symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ ist selbstinvers.	X	
	(1 0 0) Le A.A = A.A (Render un	verens	dallung!)
(h)	Die Matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ ist positiv definit.		
	$\binom{0}{1}\binom{0}{1} = \binom{0}{3}\binom{0}{3}\binom{0}{3} > = \binom{0}{3}\binom{0}{3} > = \binom{0}{3}\binom{0}{3} > = \binom{0}{3}\binom{0}{3}\binom{0}{3} > = \binom{0}{3}\binom{0}{3}\binom{0}{3}\binom{0}{3} > = \binom{0}{3}\binom{0}{0}\binom{0}{3}\binom{0}\binom{0}{3}0$		
(i)	Sei $A \in \mathbb{R}^{n \times n}$ mit rang $(A) < n$. Dann besitzt das Gleichungssystem $Ax = b$ für		\boxtimes
	jedes $b \in \mathbb{R}^n$ mindestens eine Lösung. When $a(M) = a(M) = a(M) + $	d daw	him Loung
(j)	Sei $(\cdot \cdot)$ ein Skalarprodukt auf \mathbb{R}^n , $ \cdot $ die von $(\cdot \cdot)$ induzierte Norm auf \mathbb{R}^n und seien $v, w \in \mathbb{R}^n$ linear abhängig. Dann gilt $ (v w) = v \cdot w $.	X	
	VIW lin abhanging => es existed 10 M mit walv. Dam gill	<u>.</u>	
	1/2/2011 - 1/2/12) - 1 - 1/2/2/1 - 1/2/1 - 1/2/1 - 1/2/2/1 - 1/2/2/1 - 1/2/2/1 - 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2		

