# 南昌大学物理实验报告

| 课程名称:_          | 大学物理实验          |                |
|-----------------|-----------------|----------------|
| 实验名称:_          | 交流电桥            |                |
| 学院: <u>信息</u> ] | <u> </u>        | 自动化 153 班      |
| 学生姓名:_          | <u>廖俊智</u> 学号:  | 6101215073     |
| 实验地点:_          | 基础实验大楼          | 座位号: <u>20</u> |
| 实验时间:           | 第 10 周星期四上午 9 ) | 点 45 开始        |

# 一、 实验目的:

- 1、了解交流电桥的特点和平衡调节的方法。
- 2、使用交流电桥测量电容及其损耗。
- 3、使用交流电桥测量电感及其品质因数。

### 二、实验原理:

在交流电路中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz以下时可采用谐振式检流计;音频范围可采用耳机作为平衡指示器;音频或更高的频率可采用电子指零仪器;也有可用电子示波器或交流毫安表作为平衡指示器。

## 1、测量电感

电路图如右图, 各阻抗

$$\begin{cases} \dot{Z}_1 = R_1 / (1 + j \varpi C_s R_1) \\ \dot{Z}_2 = R_2 \\ \dot{Z}_3 = R_3 \\ \dot{Z}_4 = R' + R_X + j \varpi L_X = R + j \varpi L_X \end{cases}$$

平衡时有 
$$\begin{cases} L_X = R_2 R_3 C_s \\ R = R' + R_X = R_2 R_3 / R_1 \end{cases}$$



#### 2、测量电容

电路图如右图, 各阻抗

$$\begin{cases} \dot{Z}_1 = R_1 \\ \dot{Z}_2 = R_2 \\ \dot{Z}_3 = R_X + \frac{1}{j\varpi C_X} \\ \dot{Z}_4 = R_s + \frac{1}{j\varpi C_s} \end{cases}$$

平衡时有 
$$\begin{cases} C_X = \frac{R_2}{R_1} C_S \\ R_X = \frac{R_1}{R_2} R_S \end{cases}$$



# 三、实验内容和步骤:

#### (1). 电容的测量

按照实验原理图完成导线的连接,并将频率调到 1000Hz;

分别将 Cn 和 Ra 调到 1uF, 1k  $\Omega$  , 0.1uF, 100  $\Omega$  , 0.01uF, 10  $\Omega$  , 调整 Rn, Rb 的阻值,使指针的偏转 到达一个最小值,分别记录 Rn, Rb 的大小;

# (2). 电感的测量

按照实验原理图完成导线的连接,并将频率调到 100Hz;

分别将 Cn 和 Ra 调到 1uF,  $1k\Omega$ , 0.1uF,  $10k\Omega$ , 0.01uF,  $100k\Omega$ , 调整 Rn, Rb 的阻值,使指针的偏转到达一个最小值,分别记录 Rn, Rb 的大小;

# 四、数据处理

## (1). 电容的测量

| Ξ. |     |         |               |               |               |               |           |
|----|-----|---------|---------------|---------------|---------------|---------------|-----------|
|    |     | Cn (uF) | $R_a(\Omega)$ | $R_b(\Omega)$ | $R_n(\Omega)$ | $R_c(\Omega)$ | $C_x(uF)$ |
|    | 第一次 | 1       | 1000          | 1038          | 0.3           | 0.289         | 1.038     |
|    | 第二次 | 0.1     | 100           | 1034          | 2.3           | 0.222         | 1.034     |
|    | 第三次 | 0.01    | 10            | 1030          | 2.3           | 0.022         | 1.030     |

$$Rc = \frac{R_{a}}{R_{b}} Rn \qquad Cx = \frac{R_{b}}{R_{a}} Cn$$

由上述两式得 Rc<sub>1</sub>=0.289 Ω, Cx<sub>1</sub>=1.038uF:

 $Rc_2=0.222 \Omega$ ,  $Cx_2=1.034uF$ :

 $Rc_3=2.233 \Omega$ ,  $Cx_3=1.030uF$ :

所以;

$$\overline{Cx} = (Cx1 + Cx2 + Cx3)/3 = 1.034uF$$

#### (2).电感的测量

|     | Cn (uF) | Ra(KΩ) | Rb(Ω) | $Rn(\Omega)$ | Rc(\O) | Lx(H) |
|-----|---------|--------|-------|--------------|--------|-------|
| 第一次 | 1       | 1      | 28    | 9362.3       | 2.99   | 9.362 |
| 第二次 | 0.1     | 10     | 17    | 9367.3       | 18.15  | 9.367 |
| 第三次 | 0.01    | 100    | 6     | 9369.3       | 64.09  | 9.369 |

$$Lx = RaRbCn$$

$$Rc = \frac{Rb}{Rn} Ra$$

由上式得 Rc1=2.99Ω, Lx1=9.362H

Rc1=18.15  $\Omega$ , Lx2=9.367H

Rc1=64.09  $\Omega$ , Lx3=9.369H;

$$\overline{Lx} = (Lx1 + Lx2 + Lx3)/3 = 9.366H$$

# 五:注意事项

音频信号源的输出电压约有二十伏,电桥平衡时,阻抗以几十欧到几千欧为好,阻值过大,电桥收敛性差,阻值过小,调节粗燥,元件发热,精度低。

- (2) 平衡电桥的过程中, 电阻箱调节都应从几百欧开始, 左右试探, 比例臂配合调。
- (3)平衡指示器在电桥不平衡时应取灵敏度较低的档,用晶体管毫伏表时应取量程较大的档。接近平衡时再选用高灵敏度量程

# 五:误差分析:

- 1、仪器测数不稳定
- 2、估读时误差过大

# 六:思考题:

1、利用下面两个图求出 Lx 和 Rx 的有关公式, 此电路在调平衡时是否方便?

答: 对于第一个图有  $L_{x} = \frac{R_{1}}{R_{2}}L_{s}$  ,  $R_{x} = \frac{R_{1}}{R_{2}}R - R_{3}$  , 对于第二个图有  $L_{x} = \frac{C_{1}R_{2}R_{3}}{R_{1}^{2}C_{1}^{2}\omega + 1}$  ,  $R_{x} = \frac{R_{1}C_{1}^{2}R_{2}R_{3}\omega^{2}}{R_{1}^{2}C_{1}^{2}\omega^{2} + 1}$  。 从图中来看,这两个电路在调平衡时都不是很方便,因为电桥的各个臂的阻抗差距比较大,不容易匹配,同时在同一个臂中使用两个二阶元件容易造成互相干扰。

2. 本实验中所用的平衡指示器是否足够灵敏?如果选用灵敏度比它高或低的平衡指示器,后果如何?答:不灵敏;灵敏度更低的会使在很大范围内电桥都平衡,误差很大;而灵敏度更低的也不行,在离平衡较远时,电压过大。

# 七、附上原始数据;



|   |                 |        | 100000    |         |         |
|---|-----------------|--------|-----------|---------|---------|
|   | 地名              | 1000HZ |           |         |         |
|   | Gu              | Ra     | Rn        | Po      |         |
|   | INT.            | Iku    | 0130      | 10380   |         |
| 3 | 0.144           | 1001   | 230       | 1034a   |         |
|   | 0.01 MF         | 101    | 235       | 10305   |         |
|   |                 |        |           |         |         |
|   | 2.00            | 200 HZ |           |         |         |
| ı | Cin             | Ra     | Rn        | Rb.     |         |
| Ī | O.I.W. O. J. W. | Iku /  | 936230    | 28r.    |         |
| ı | 0.014           | loka . | 9367.32   | 172     |         |
| ٦ |                 | looks. | 9369.30   | 6.n     |         |
|   | 廖俊怡             | Biotes | 3-3472 61 | o/n5073 | 7.8     |
| ł |                 |        |           | -11.    | UZ      |
|   |                 |        |           | (FOT)   |         |
|   |                 |        |           | (un     | 17      |
|   |                 |        |           |         |         |
| ı |                 |        |           |         |         |
| 1 |                 |        |           |         |         |
|   |                 |        | -         |         | more al |



