Sous-système S34 Roue équipée

Modèle Systémique Primitif (MSP)

Diagramme flux d'énergie échangées dans le sous système S34

Cahier des Charges Fonctionnel (CdCF)

Roue Équipée Avant

Fonction Primaire	Fonction Secondaire	Critère	Unité	Niveau Flexibi	Article lité Règlement concerné
supporter	supporter la roue à l'essieu	rigidité axiale	Nm	1	1
l'ensemble F 0 des pièces F0	² respecter le CdCF du système S0 les pneus sur le	roulements	km	1000min	
d'une roue équipée	3même axe doivent être du même taille, modèle et marque	taille des roues	pouces	13aucune	T 2.5.2
F 1supporter la F1		intégrer un système de			
roue (pneu + jante)	1 supporter la roue au moyeu	maintien en position des écrous qui	binaire	oui aucune	T 2.4.1
	2supporter les roulements sur le moyeu	fixent la jante jeu radiale jeu axiale	mm mm	0aucune 0aucune	

			du capter de vitesse supporter le disque du frein au moyeu	positionnement défaut d'alignement	mm	1	1
supporter le F 2système de suspension	e F2	deg			0.01max		
		mm			0aucune		
		jeu axiale		mm	0aucune		
		2supporter la biellette de direction	couple au volant	Nm	10max		
			présence d'un système de réglage	binaire oui	aucune		
		3supporter les triangles	jeu mécanique	mm	0.01max		
			4 loger le capteur de vitesse	précision d'alignement avec la piste sur le moyeu	mm	1	1
supporter le F 3système de freinage		F3	1guider le disque de frein dans l'étrier	défaut d'alignement disque étrier défaut	deg	0.01max	
	10	2 supporter l'étrier au porte moyeu		deg	0.01max		

Roue Équipée Arrière

F	onction Primaire	Fonction Secondaire	Critère	Unité	Niveau	Flexibilit	Art é Règle conc
supporter F 0 l'ensemble des F0 pièces d'une roue équipée		supporter la roue à 1l'essieu	rigidité axiale	Nm		1	1
	supporter o l'ensemble des _{EO}	2 ^{respecter} le CdCF du vie des roulements km système S0		s km	100	0min	
	les pneus sur le même axe doivent être du même taille, modèle et marque	taille des roues	pouces	1	3aucune	T 2.5.2	
supporter la F 1roue (pneu + Fi jante)	= =	1 supporter la roue au moyeu	intégrer un système de maintien en position des écrous qui fixent la jante	binaire	oui	aucune	T 2.4.1
	, _	supporter les roulements	jeu radiale	mm		0aucune	
	junce	² sur le moyeu	jeu axiale	mm		0aucune	
		3positionner la piste du capter de vitesse	précision de positionnement	mm		1	1
	4 ^{supporter le disque du} frein au moyeu	défaut d'alignement	deg	0.0	1max		

			1supporter les roulements	jeu radiale	mm	0aucune	
supporter le F 2système de suspension			dans le porte-moyeu	jeu axiale	mm	0aucune	
	cupporter le		2supporter le <i>tripod</i>	jeu axiale	mm	0max	
		F2	3supporter les triangles	jeu mécanique	mm	0.01max	
	5			précision			
	Suspension		loger le capteur de	d'alignement avec	mm	1	1
			vitesse	la piste sur le	******	-	_
				moyeu			
supporter le F 3système de freinage			₁ guider le disque de frein	défaut			
	dans l'étrier	¹ dans l'étrier	d'alignement	deg (0.01max		
			disque étrier				
			supporter l'étrier au porte	défaut	1	0.01	
			moyeu	u anghement eulei	aeg	0.01max	
			-	axe de la roue			

Conception Conceptuelle et Architectural (CCA) su sous-système S34 roue équipée

Introduction

On rappelle ici le MSP du système S34

Architectures étudiés

Afin de réduire la contribution massique et l'apporte en inertie (Izz avec z axe normal au plan de la route) su système S34, deux configurations ont été étudiées: taille de roues 13 pouces (A1) et 10 pouces (A2).

La modélisation des pneumatiques \ref{rapp de pe}

Dans le cadre de la conception préliminaire d'un véhicule il est impératif de connaître le comportement de l'organe qui le relie au sol c'est-à-dire le pneu. Le problème majeur qui caractérise un tel modèle est le nombre de dégrées de liberté qui influencent le comportement réel de la gomme dont le pneumatique est composé. C'est pourquoi, même si traditionnellement les entreprises spécialisées utilisent des modèles qui comptent plus d'un million de paramètres, pour la conception de notre voiture, on a choisit des modèles régulièrement rencontrés dans la littérature \cite{rcd}.

Pour un pneumatique, parmi les paramètres fondamentaux on retrouve par exemple:

- le modèle du pneu et la marque qui l'a produit
- la taille de la roue (traditionnellement 10" ou 13")
- la vitesse à la quelle on fait rouler le pneu
- la pression à la quelle on gonfle le pneu
- la force avec la quelle on charge le pneu
- d'autres paramètres liés à la géométrie du système de suspension

Pour le système S0 Invictus, on utilise un modèle appelé de Pacejka '89 \cite{rcd} qui réduit la complexité d'un modèle de pneu à environ 6 paramètres. Cela permet de travailler avec un modèle simple mais suffisamment précis pour notre niveau technique.

Tout modèle mathématique nécessite aussi un réglage empirique afin de bien coller à la réalité. Dans notre cas ce calibrage est fait en partant des essais amenés par l'organisation Tire Testing Consortium (TTC). En pratique, plusieurs modèles de pneumatique pour le Formula Student ont été testé selon des pratiques assez communes dans le secteur de l'automobile.

Le code python et matlab qui réalise ce traitement est disponible :

https://github.com/EOSCogniton/STUF-2020/tree/master/MO Models/Suspension/LAS-tyres-Paceika

Choix de l'architecture

MIS-3D (Maquette d'Intégration Systémique) du S34

Maquette CATIA5 très très préliminaire réalisée uniquement avec 2 primitives : boite et cylindre

MIC-3D (Maquette d'Intégration Conceptuelle) du S34

Maquette CATIA5 très très préliminaire réalisée uniquement avec 7 primitives : sphère, boite, cylindre, cône, tore, extrusion, révolution.

MIC-3D roue équipée avant

MIC-3D roue équipée arrière

Fiche Technique Préliminaire du S34

S3: Liaison au sol

Roue équipée

Rayon de 13 pouces, largeur / 7 pouces

Presentation TOP appro

présentation du un sous système : S34 roue équipée

progrès majeur envisagé:

- le deux étriers vers le centre de gravité du véhicule pour réduire l'inertie Izz
- utiliser les modèles des pneus afin de bien respecter la F22 du S34 avant
- améliorer le système de maintient en position des roulements du S34 en étudiant l'effet d'une précontrainte axiale
- améliorer la solution technique pour le réglage des angles dans le S34 avant et arrière risque majeur identifié :
 - une précontrainte trop élevée peut baisser la vie des roulements et ne pas assurer la fonction F02