Eigenvalues and Eigenvectors

Zed

November 16, 2016

1

1.1 Subspaces

- $\cdot \mathbb{R}$, \mathbb{C} field of real and complex numbers.
- · Colspace of $A^{m \times n}$:

$$C(\mathbf{A}) := \operatorname{span} \left\{ \operatorname{Cols}(\mathbf{A}) \right\} \subseteq \mathbb{R}^n$$

And $Dim(\mathcal{C}(\mathbf{A})) = r$. r is rank of \mathbf{A} .

· Rowspace of $A^{m \times n}$:

$$\mathcal{R}(\boldsymbol{A}) := \operatorname{span} \left\{ \operatorname{Rows}(\boldsymbol{A}) \right\} = \mathcal{C}(\boldsymbol{A}^{\top}) \subseteq \mathbb{R}^{m}$$

And $Dim(\mathcal{R}(\mathbf{A})) = r$.

· Nullspace of $\mathbf{A}^{m \times n}$:

$$\mathcal{N}(\boldsymbol{A}) := \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} = 0 \} \subset \mathbb{R}^n$$

 $Dim(\mathcal{N}(\mathbf{A})) = n - r.$

 $\mathcal{N}(\mathbf{A}^{\top}) := \{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{x} = 0 \} \subset \mathbb{R}^{m}. \ \operatorname{Dim}(\mathcal{N}(\mathbf{A}^{\top})) = m - r.$

 $\mathbf{2}$

- · Eigval λ , eigvec \boldsymbol{v} such that: $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v}$.
- \cdot cv is also an eigvec corresponding to λ , but only linearly indep. eigvecs are counted.
- · \mathbf{A} is $n \times n$ square, then the characteristic polynomial of \mathbf{A} is defined as.

$$P_{\boldsymbol{A}}(t) := \det(t\boldsymbol{I} - \boldsymbol{A})$$

- · λ is eigval of $\mathbf{A} \iff P_{\mathbf{A}}(\lambda) = 0 \iff \lambda$ is root of $P_{\mathbf{A}}(t) = 0$. Proof. (\Rightarrow) λ is eigval of \mathbf{A} : ($\lambda \mathbf{I} - \mathbf{A}$) $\mathbf{v} = 0$. \mathbf{v} is an eigvec of \mathbf{A} , so $\mathbf{v} \neq 0 \Rightarrow \mathbf{v} \in \mathcal{N}(\mathbf{A})$. Hence $\text{Dim}(\mathcal{N}(\mathbf{A})) > 0 \Rightarrow r < n$. \square
- · $P_{\mathbf{A}}(t)$ can be represented as, sence we know the roots,

$$P_{\mathbf{A}}(t) = \prod_{j=1}^{n} (t - \lambda_j)$$

· D being diagonal matrix, then $P_D = \prod_{j=1}^n (t - d_j)$, which implies that $\lambda_j = d_j$, diagonal entries. Moreover, $De_j = d_j e_j$, so the j-th eigence is e_j unit vec.

2 2

· L being lower triangular, then $P_L = \prod_{j=1}^n (t - L_{jj})$, which implies that $\lambda_j = d_j$. The last col of lower tri is $L_{nn}e_n$, therefore $Le_n = L_{nn}e_n$, i.e. the last eigence is e_n unit vector. We can not tell about other eigences. Similar for U. $Ue_1 = U_{11}e_1$, i.e. the first eigence of U is e_1 unit vector.

- $\lambda(A)$ is the set of all eigvals of A, it is acturally the spectrum of A.
- · If $\lambda \in \lambda(\mathbf{A})$ is a root of multiplicity m_{λ} of $P_{\mathbf{A}}(t) = 0$, define m_{λ} as multiplicity of eigval λ .
- · Square matrix **A** has exactly n eigvals $(\lambda \in \mathbb{C})$, counted with multiplicity, i.e.

$$\sum_{\lambda \in \lambda(\mathbf{A})} m_{\lambda} = n$$

This is because, due to fundamental principal of algebra, $P_{\mathbf{A}}(t) = 0$ has exactly n roots, counted with multiplicity.

· Eigenspace (eigspace) of λ : $V_{\lambda} := \{ v : Av = \lambda v \}$, i.e. the set of all eigensector corresponding to λ . Dim (V_{λ}) is the number of linearly indep. eigensector corresponding to λ . We have

$$1 \leq \text{Dim}(V_{\lambda}) \leq m_{\lambda}$$

Thm. eigvecs corresponding to different eigvals of A are linearly indep.

Proof. Let $v_1, ..., v_p$ correspond to different eigends of $A: \lambda_1, ..., \lambda_p \ (p \le n)$. It suffices to show

$$c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p = \mathbf{0} \Rightarrow c_1 = \dots = c_p = 0$$

Show by contradiction: suppose otherwise, i.e.

$$(\dagger): c_1 \mathbf{v}_1 + ... + c_{p-1} \mathbf{v}_{p-1} = \mathbf{v}_p$$

Apply \boldsymbol{A} both sides:

$$\mathbf{A}(c_1 \mathbf{v}_1 + \dots + c_{p-1} \mathbf{v}_{p-1}) = \mathbf{A} \mathbf{v}_p$$

$$c_1 \lambda_1 \mathbf{v}_1 + \dots + c_{p-1} \lambda_{p-1} \mathbf{v}_{p-1} = \lambda_p \mathbf{v}_p$$
(1)

 $(\dagger) \times \lambda_p$, substracted from last equation:

$$\sum_{j=1}^{p-1} c_j (\lambda_1 - \lambda_p) \boldsymbol{v}_j = \lambda_p \boldsymbol{v}_p - \lambda_p \boldsymbol{v}_p = 0$$

Which is not possible since $\exists c_j \neq 0$, and $(\lambda_j - \lambda_p) \neq 0 \ \forall j$. Contradiction. \Box

- · \mathbf{A} singular $\iff 0 \in \lambda(\mathbf{A})$. Proof. $\det(0\mathbf{I} - \mathbf{A}) = 0 \iff \mathbf{A}$ singular. \square
- · \boldsymbol{A} invertible. $\lambda \in \lambda(\boldsymbol{A}), \ \boldsymbol{v} \in V_{\lambda}(\boldsymbol{A})$. Then $\frac{1}{\lambda} \in \lambda(\boldsymbol{A}^{-1}), \ \boldsymbol{v} \in V_{\frac{1}{\lambda}}(\boldsymbol{A}^{-1})$. Proof. $\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v} \Rightarrow \boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{A}^{-1}\boldsymbol{v} \Rightarrow \frac{1}{\lambda}\boldsymbol{v} = \boldsymbol{A}^{-1}\boldsymbol{v}$.
- · \boldsymbol{A} has eigtuple $(\lambda, \boldsymbol{v})$, then \boldsymbol{A}^k with (λ^k, v) . $P(\boldsymbol{A})$ is a polynomial of \boldsymbol{A} , has eigtuple $(P(\lambda), \boldsymbol{v})$.