Problem 1.

Prove that $L^{\infty}(E)$ is not separable for any E with |E| > 0.

Solution.

Take E = [0, 1] for example.

Suppose $L^{\infty}(E)$ is separable.

Then there exists a dense subset A consisting of countable elements, i.e., $A \subset L^{\infty}(E)$.

Define $f_{\alpha} = \chi_{[0,\alpha]}$ for $\alpha \in [0,1]$, where $\chi_{[0,\alpha]}$ is the indicator function for the interval $[0,\alpha]$.

If $\alpha \neq \beta$, then $||f_{\alpha} - f_{\beta}||_{\infty} = 1$.

Since A is dense, for every $\alpha \in [0, 1]$, and for every $\epsilon > 0$,

there exists $g_{\alpha} \in A$ such that

$$||g_{\alpha} - f_{\alpha}||_{\infty} < \epsilon.$$

By density, for $\beta \neq \alpha$, there is also $g_{\beta} \in A$ such that

$$||g_{\beta} - f_{\beta}||_{\infty} < \epsilon.$$

Using the triangle inequality, we get

$$||f_{\alpha} - f_{\beta}||_{\infty} \le ||f_{\alpha} - g_{\alpha}||_{\infty} + ||g_{\alpha} - g_{\beta}||_{\infty} + ||g_{\beta} - f_{\beta}||_{\infty}$$

Rearranging, we have

$$||g_{\alpha} - g_{\beta}||_{\infty} \ge ||f_{\alpha} - f_{\beta}||_{\infty} - ||f_{\alpha} - g_{\alpha}||_{\infty} - ||f_{\beta} - g_{\beta}||_{\infty}$$
$$> 1 - \epsilon - \epsilon = 1 - 2\epsilon$$

Since ϵ can be arbitrarily small, set $\epsilon = \frac{1}{4}$.

This implies $||g_{\alpha} - g_{\beta}||_{\infty} > \frac{1}{2}$. Therefore, $g_{\alpha} \neq g_{\beta}$ if $\alpha \neq \beta$.

This implies that the function mapping $\alpha \mapsto g_{\alpha}$ from [0, 1] to A is injective, i.e., "one-one."

Since [0,1] is uncountably infinite, this implies that A is also uncountably infinite.

However, A is assumed to be a countable subset of $L^{\infty}[0,1]$.

The existence of an uncountable subset $\{g_{\alpha} \mid \alpha \in [0,1]\}$ within A contradicts the countability of A.

Therefore, $L^{\infty}(E)$ is not separable.

Problem 2.

Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R}^n)$. Show that the function g defined by

$$g_f(h) = ||f(x+h) - f(x)||_p$$

is a uniformly continuous function on \mathbb{R}^n . Is the same statement true when 0 ?

The statement only holds for $1 \le p < \infty$.

Theorem: Continuous functions with compact support are dense in L^p

Let $f \in L^p(\mathbb{R}^n)$. For every $\epsilon > 0$, there exists a function k that is continuous with compact support such that:

$$||f - k||_p < \epsilon.$$

.....

We want to show $g_f(h)$ is uniformly continuous: i.e. For every $\epsilon > 0$, there exists δ such that:

$$|g_f(h_1) - g_f(h_2)| < \epsilon$$
, whenever $|h_1 - h_2| < \delta$.

We know that:

$$\begin{split} |g_f(h_1) - g_f(h_2)| &:= |\|f(x+h_1) - f(x)\|_p - \|f(x+h_2) - f(x)\|_p| \\ \text{(By Reverse Triangle Inequality)} &\leq \|f(x+h_1) - f(x+h_2)\|_p \\ \text{(By Minkowski's Inequality)} &\leq \|f(x+h_1) - k(x+h_1)\|_p + \|k(x+h_1) - k(x+h_2)\|_p \\ &+ \|f(x+h_2) - k(x+h_2)\|_p, \end{split}$$

where $\forall \epsilon > 0$:

1.

$$||f(x+h_1) - k(x+h_1)||_p < \epsilon,$$

$$||f(x+h_2) - k(x+h_2)||_p < \epsilon,$$

by the existence of a continuous function k with compact support dense in L^p ;

2.

$$||k(x+h_1) - k(x+h_2)||_p < \epsilon,$$

since k is uniformly continuous with compact support E.

Thus, the estimations above lead to:

$$||f(x+h_1) - f(x+h_2)||_p \le ||f(x+h_1) - k(x+h_1)||_p + ||k(x+h_1) - k(x+h_2)||_p$$
$$+ ||f(x+h_2) - k(x+h_2)||_p$$
$$< \epsilon + \epsilon + \epsilon = 3\epsilon.$$

Therefore, choosing δ small enough to ensure the inequality above, whenever $|h_1 - h_2| < \delta$, guarantees that:

$$|g_f(h_1) - g_f(h_2)| < 3\epsilon.$$

Hence, we have shown that $g_f(h)$ is uniformly continuous. This confirms that any L^p function with $1 \le p < \infty$ behaves such that the mapping $h \mapsto \|f(x+h) - f(x)\|_p$ is uniformly continuous on \mathbb{R}^n .

For
$$0 :$$

Minkowski's inequality fails for 0 .

To see this, take E=(0,1), $f=\chi_{(0,\frac{1}{2})},$ and $g=\chi_{(\frac{1}{2},1)}.$

Then
$$||f+g||_p = 1$$
, while $||f||_p + ||g||_p = 2^{-\frac{1}{p}} + 2^{-\frac{1}{p}} = 2 \cdot 2^{-\frac{1}{p}} = 2^{1-\frac{1}{p}} < 1$.

This demonstrates that the statement does not hold for 0 .