$$\frac{1}{2} P(n|0) = \frac{1}{9} \exp(-n/0)$$

$$L(0|n) = \frac{1}{12} \log \frac{1}{12} (\frac{1}{9} \exp(-n/0))$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} \log \frac{1}{12} \exp(-n/0)$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac{1}{20} L(0|n) = \frac{1}{12} (-n/0) + n/0 = 0 \quad \text{for mile estim}$$

$$\frac$$

= [(+ log ri) = 0 - D for MLE

Scanned by CamScanner

$$\frac{2}{2} P(x|M, E) = \frac{1}{(2\pi)^{M_2}|E|^{N_2}} \left[\frac{1}{2}(x-n)^T E^{-1}(x-n) \right] = \frac{2}{2} \left[\frac{1}{(2\pi)^{M_2}|E|^{N_2}} \left[\frac{1}{2}(x-n)^T E^{-1}(x-n) \right] \right] = \frac{1}{2} \left[\frac{1}{(2\pi)^{M_2}|E|^{N_2}} \left[\frac{1}{(2\pi)^{M_2}} \left(\frac{1}{(2\pi)^{M_2}} \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \left(\frac{1}{(2\pi)^{M_2}} \right) \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \left(\frac{1}{(2\pi)^{M_2}} \right) \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \left(\frac{1}{(2\pi)^{M_2}} \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \left(\frac{1}{(2\pi)^{M_2}} \right) - \frac{1}{2} \left(\frac{1}{(2\pi)^{M_2}} \right) - \frac{$$

ッ M= ININ; The mean in = 12 mg L(x/M, Z) = - N luy (Z) - 1 Z (2n-m) T Z - (2n-m) 32 = - 0 (Neg [2]) - 1 2 2 (2n-m) T 2 - (2n-m) Common we need some identity to derive this,

ATAX = to [ATAN] = to [NATA]

Sular 1 to [AB] = Tais kil ake ble = Sikjeble = bj = BT $\frac{\partial}{\partial A}(x^TAx) = \frac{\partial}{\partial A} to(xx^TA) = (xx^T)^T = xx^T \dots (i)$ TA to [BA] = BT De Roglal = TAI Tay AT = I A - Madrix of cafactors.

Taij Now we need to prove,

2 1Al = A ... (ii) 1 Al = Z(-1) i + i aij Mij minor Daij = I(-1)i+imij = Ã L(MM, E) = N log/2-1/-1/2 to [(2n-m) (2n-m) [2-1] $\frac{\partial L}{\partial \Sigma'} = \frac{N}{2} \sum_{m=1}^{\infty} \frac{1}{2} \frac{1}{2} (x_n - w) (x_n - w)^T = 0$ $|\tilde{Z}_{mL}| = \frac{1}{N} \sum_{i \geq 1}^{N} (2n-m)(2n-m)^{+}$ b = [x] = [x] = [x] = [x] = [x] = [x][E[Mn]=M] For a particular sample in might be different from M. somet but their average will get close to M as the # of such sample increases. So, Mr is an unbiased estimators.

E[]= [M2)-N E[M2] Let's derive for simple variable, we can generalite that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not that for multi variable case (as dimensionality should not page variance) NOWO [X] = E[X] N - E[X]2 E[Mi]] = F+M2 & E[M] = F/N+M2 $\mathbb{E}\left[S^{2}\right] = \frac{N(\mathbb{F}^{2}+M^{2}) - N(\mathbb{F}^{2}/N+M^{2})}{N} = \left(\frac{N-1}{N}\right)\mathbb{F}^{2}$ for multivariable + 2 [E [2 m] = [N-1] 2 As, Etîmi] + î vit is an brased co, too even it comple size increase Im will not approach trove variance, 80 biased estimator

R(Xx+1/n)= 1(0.4+0.5+0.1)- 1=5 b 1=5 R((1/x) = 1/2 P((2/x) + 1/3 P((3/x)) $= 10 \times 0.5 + 100 \times 0.1 = 5 + 10 = 15$ $R((2|x) = \lambda_{21}P(C_1|x) + \lambda_{23}P((3|x))$ $= 1 \times 0.4 + 100 \times 0.1 = 0.4 + 10 = 10.4$ P(13/N) = 731 P((1/N)+ 1/32 P((2/N) $= 1 \times 0.4 + 10 \times 0.5 = 0.4 + 5 = 5.4$ $R(\alpha_{k+1}|\chi) \angle R(C_{1}|\chi)$, $R(\alpha_{k+1}|\chi) \angle R(C_{2}|\chi)$ (Roose pejert) R(XX+1/N) L R((3/N)

Problem 3

1. Error rates fo	or MGC with full cov	matrix on Boston 50				
F1	F2	F3	F4	F5	Mean	SD
0.2475	0.2079	0.2079	0.1881	0.1782	0.2059	0.0237
2. Error rates fo	or MGC with full cov	matrix on Boston 75				
F1	F2	F3	F4	F5	Mean	SD
0.1980	0.3069	0.2673	0.2970	0.2376	0.2613	0.0398
3. Error rates fo	or MGC with full cov	matrix on Digits		·	·	·
F1	F2	F3	F4	F5	Mean	SD
0.0362	0.0389	0.0835	0.0445	0.0389	0.0484	0.0177
4. Error rates fo	or MGC with diagonal	cov matrix on Boston	50		'	-
F1	F2	F3	F4	F5	Mean	SD
0.2277	0.1980	0.1584	0.2277	0.3168	0.2257	0.0521
5. Error rates fo	or MGC with diagonal	cov matrix on Boston?	75			-
F1	F2	F3	F4	F5	Mean	SD
0.2871	0.4158	0.2673	0.2277	0.2871	0.2970	0.0632
6 Frror rates fo	or MGC with diagonal	cov matrix on Digits	1			-
F1	F2	F3	F4	F5	Mean	SD
0.1281	0.0947	0.1086	0.1058	0.1197	0.1114	0.0115
7 Error rates f	or LogisticRegression	with Rocton50	· ·	1	1	1
F1	F2	F3	F4	F5	Mean	SD
0.1386	0.1287	0.1485	0.1089	0.1485	0.1346	0.0148
O Erway vatas fo	or LogisticRegression	with Destan75		l	l	l .
F1	F2	F3	F4	F5	Mean	SD
0.0990	0.1584	0.1683	0.0792	0.0297	0.1069	0.0514
	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 212.02	11120	1	******
	or LogisticRegression					1.
F1	F2	F3	F4	F5	Mean	SD
0.0334	0.0362	0.0696	0.0222	0.0389	0.0401	0.0158