MAT1830

Lecture 13: Functions

Functions - why should you care?

Functions - why should you care?

The concept of a function is extremely important in both computer science and maths.

Functions - why should you care?

The concept of a function is extremely important in both computer science and maths.

- ► Functions (subroutines) in programming are closely related to functions in the mathematical sense.
- ▶ In the case of functional programming languages (eg. Lisp, Haskell, Rust) they are exactly functions in the mathematical sense.
- Functions are used to define a lot of important concepts in maths and theoretical computer science.

	ght of as a " nd, for each in	inputs	accepts			
--	----------------------------------	--------	---------	--	--	--

Domain: $X = \{\ldots\}$

Codomain:

Codomain:
$$Y = \{\ldots\}$$

ut	output
	<i>y</i> ₁
2	<i>y</i> ₂
š	<i>y</i> 3
	:
	ı
	ut 2

Domain:

Codomain:

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots \}$$

Codomain:
$$Y = \{\ldots\}$$

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots \}$$

A set of ordered pairs from $X \times Y$ that contains exactly one ordered pair (x, y) for each $x \in X$.

Remember: The domain and codomain are part of the function and must always be defined.

13.1 Defining functions via sets

Formally we represent a function f as a set X of possible inputs, a set Y so that every out

of possible inputs, a set Y so that every output of f is guaranteed to be in Y, and a set of (input,output) pairs from $X \times Y$. The vital property of a function is that each input gives exactly one output.

A function f consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x,y) for each $x \in X$.

When (a,b) is in this set we write f(a) = b.

The set of y values occurring in these pairs is the range of f.

Note that the range of a function is always a subset of its codomain but they may or may not be equal.

If the range of a function is equal to its codomain, we say the function is *onto*.

Formally, a function consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x, y) for each $x \in X$.

Formally, a function consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x, y) for each $x \in X$.

The set of y values occurring in these ordered pairs is called the *range* of the function.

Formally, a function consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x, y) for each $x \in X$.

The set of y values occurring in these ordered pairs is called the range of the function.

The range is always a subset of the codomain but they may not be equal. If they are equal we say the function is *onto*.

Formally, a function consists of a domain X, a codomain Y, and a set of ordered pairs from $X \times Y$ which has exactly one ordered pair (x, y) for each $x \in X$.

The set of y values occurring in these ordered pairs is called the *range* of the function.

The range is always a subset of the codomain but they may not be equal. If they are equal we say the function is *onto*.

"f is a function with domain X and codomain Y" is shortened to

$$f: X \rightarrow Y$$
.

Example Let $f: \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

Example Let $f: \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

X	f(x)
0	0
1	2
2	4
3	6

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

$$\begin{array}{c|cc}
x & f(x) \\
0 & 0 \\
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}$$

$$\{(0,0),(1,2),(2,4),(3,6)\}$$

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

f(x)
0
2
4
6

$$\{(0,0),(1,2),(2,4),(3,6)\}$$

Example Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x.

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

X	f(x)
0	0
1	2
2	4
3	6

$$\{(0,0),(1,2),(2,4),(3,6)\}$$

Example Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x.

$$\{(x,2x):x\in\mathbb{R}\}$$

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

- 0
 - •

•

2

2

3 **•**

- 3
- 4
- 5
- 6

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

The range of f is $\{0, 2, 4, 6\}$.

Example Let $f : \{0, 1, 2, 3\} \rightarrow \{0, 1, 2, 3, 4, 5, 6\}$ be defined by f(x) = 2x.

The range of f is $\{0, 2, 4, 6\}$. (So f is not onto.)

Think about $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

Think about $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

We've set the codomain to \mathbb{R} and that's fine - certainly $f(x) \in \mathbb{R}$.

Think about $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

We've set the codomain to \mathbb{R} and that's fine - certainly $f(x) \in \mathbb{R}$.

What is range of *f*?

Think about $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

We've set the codomain to \mathbb{R} and that's fine - certainly $f(x) \in \mathbb{R}$.

What is range of *f*? Hard to find and probably ugly.

Think about $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^8 + 102x^7 - 7x^5 + 20x^4 - 100x + 7$.

We've set the codomain to $\mathbb R$ and that's fine - certainly $f(x) \in \mathbb R$.

What is range of f? Hard to find and probably ugly.

Another reason is that " $\mathbb{R} \to \mathbb{R}$ functions", for example, make a nice class to consider.

Question What set of ordered pairs does $f: \{0,1,2,3\} \to \mathbb{N}$ defined by $f(x) = x^2$ correspond to?

Question What set of ordered pairs does $f:\{0,1,2,3\}\to\mathbb{N}$ defined by $f(x)=x^2$ correspond to?

 $\{(0,0),(1,1),(2,4),(3,9)\}.$

Question What set of ordered pairs does $f: \{0,1,2,3\} \to \mathbb{N}$ defined by $f(x) = x^2$ correspond to?

 $\{(0,0),(1,1),(2,4),(3,9)\}.$

Question Does $\{(0,7),(2,\pi)\}$ correspond to a function $f:\{0,1,2\}\to\mathbb{R}$?

Question What set of ordered pairs does $f:\{0,1,2,3\}\to\mathbb{N}$ defined by $f(x)=x^2$ correspond to?

$$\{(0,0),(1,1),(2,4),(3,9)\}.$$

Question Does $\{(0,7),(2,\pi)\}$ correspond to a function $f:\{0,1,2\}\to\mathbb{R}$?

No - it doesn't have an ordered pair with first coordinate 1.

Question What set of ordered pairs does $f: \{0,1,2,3\} \to \mathbb{N}$ defined by $f(x) = x^2$ correspond to?

$$\{(0,0),(1,1),(2,4),(3,9)\}.$$

Question Does $\{(0,7),(2,\pi)\}$ correspond to a function $f:\{0,1,2\}\to\mathbb{R}$?

No - it doesn't have an ordered pair with first coordinate 1.

Question Does $\{(0,7), (1,4), (2,\pi), (2,3)\}$ correspond to a function $f: \{0,1,2\} \to \mathbb{R}$?

Question What set of ordered pairs does $f:\{0,1,2,3\}\to\mathbb{N}$ defined by $f(x)=x^2$ correspond to?

$$\{(0,0),(1,1),(2,4),(3,9)\}.$$

Question Does $\{(0,7),(2,\pi)\}$ correspond to a function $f:\{0,1,2\}\to\mathbb{R}$?

No - it doesn't have an ordered pair with first coordinate 1.

Question Does $\{(0,7),(1,4),(2,\pi),(2,3)\}$ correspond to a function $f:\{0,1,2\}\to\mathbb{R}$?

No - it has two ordered pairs with first coordinate 2.

$\mathrm{square}: \mathbb{R} \to \mathbb{R}$

Examples.

1. The squaring function square (x)= x^2 with domain $\mathbb{R},$ codomain $\mathbb{R},$ and pairs

$$\{(x, x^2) : x \in \mathbb{R}\},\$$

which form what we usually call the plot of the squaring function.

The range of this function (the set of y values) is the set $\mathbb{R}^{\geqslant 0}$ of real numbers $\geqslant 0$.

$\mathrm{sqrt}:\mathbb{R}^{\geq 0}\to\mathbb{R}$

2. The square root function $\mathrm{sqrt}(x)=\sqrt{x}$ with domain $\mathbb{R}^{\geqslant 0},$ codomain $\mathbb{R},$ and pairs

$$\{(x,\sqrt{x})\ :\ x\in\mathbb{R}\ \mathrm{and}\ x\geqslant 0\}.$$

The range of this function (the set of y values) is the set $\mathbb{R}^{\geqslant 0}$.

3. The cubing function $\mathrm{cube}(x) = x^3$ with domain \mathbb{R} , codomain \mathbb{R} , and pairs

$$\{(x,x^3) : x \in \mathbb{R}\},\$$

The range of this function is the whole of the codomain \mathbb{R} , so it is onto.

For each non-empty set S of natural numbers, let f(S) be the least member of S.

For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each set X of real numbers between 0 and 1, let g(X) be the least member of X.

For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each set X of real numbers between 0 and 1, let g(X) be the least member of X.

No - $g({x : x \in \mathbb{R} \text{ and } \frac{1}{2} < x < 1})$ is not defined.

For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each set X of real numbers between 0 and 1, let g(X) be the least member of X.

No - $g({x : x \in \mathbb{R} \text{ and } \frac{1}{2} < x < 1})$ is not defined.

▶ For each circle C in the (x, y) plane, let h(C) be the minimum distance from C to the x axis.

For each non-empty set S of natural numbers, let f(S) be the least member of S.

Yes.

▶ For each set X of real numbers between 0 and 1, let g(X) be the least member of X.

No - $g({x : x \in \mathbb{R} \text{ and } \frac{1}{2} < x < 1})$ is not defined.

▶ For each circle C in the (x, y) plane, let h(C) be the minimum distance from C to the x axis.

Yes.

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest").

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest"). $s(A, B) = A \cup B$.

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest"). $s(A, B) = A \cup B$.

▶ For a pair A, B of sets of real numbers let t(A, B) be the largest set which is a subset of both A and B.

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest"). $s(A, B) = A \cup B$.

▶ For a pair A, B of sets of real numbers let t(A, B) be the largest set which is a subset of both A and B.

Yes (depending on your interpretation of "largest").

For a pair A, B of sets of real numbers let s(A, B) be the smallest set which has both A and B as subsets.

Yes (depending on your interpretation of "smallest"). $s(A, B) = A \cup B$.

▶ For a pair A, B of sets of real numbers let t(A, B) be the largest set which is a subset of both A and B.

Yes (depending on your interpretation of "largest"). $t(A, B) = A \cap B$.

13.2 Arrow notation

If f is a function with domain A and codomain B we write $f: A \rightarrow B$,

and we say that f is from A to B.

For example, we could define

square : $\mathbb{R} \to \mathbb{R}$.

We could also define square : $\mathbb{R} \to \mathbb{R}^{\geqslant 0}$.

Likewise, we could define

cube : $\mathbb{R} \to \mathbb{R}$.

However we could not define

cube : $\mathbb{R} \to \mathbb{R}^{\geqslant 0}$,

because for some $x \in \mathbb{R}$, $\mathrm{cube}(x)$ is negative.

For example, cube(-1) = -1.

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

χ²

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{x}{1}$

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

$$x^2$$
 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{y}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

 \sqrt{X}

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

 \sqrt{x} No - undefined for x < 0.

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

$$x^2$$
 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

$$\sqrt{x}$$
 No - undefined for $x < 0$.

 $\sqrt[3]{X}$

(In other words, which can be $\mathbb{R} \to \mathbb{R}$ functions?)

 x^2 Yes.

 $\frac{1}{x}$ No - undefined for x = 0.

 $\log(x)$ No - undefined for $x \leq 0$ (because $e^x > 0$ for all $x \in \mathbb{R}$).

 \sqrt{x} No - undefined for x < 0.

 $\sqrt[3]{x}$ Yes.

13.3 One-to-one functions

A function $f: X \to Y$ is one-to-one if for each y in the range of f there is only one $x \in X$ such that f(x) = y.

For example, the function $\mathrm{cube}(x)$ is one-toone because each real number y is the cube of exactly one real number x.

The function square: $\mathbb{R} \to \mathbb{R}$ is not one-toone because the real number 1 is the square of two different real numbers, 1 and -1. (In fact each real y > 0 is the square of two different real numbers, \sqrt{y} and $-\sqrt{y}$)

On the other hand, square : $\mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is one-to-one because each real number y in $\mathbb{R}^{\geqslant 0}$ is the square of only one real number in $\mathbb{R}^{\geqslant 0}$, namely \sqrt{y} .

The last example shows that the domain of a function is an important part of its description, because changing the domain can change the properties of the function.

Yes.

No.

No. $f(x_2) = f(x_3)$.

13.4 Proving a function is one-to-one

There is an equivalent way of phrasing the definition of one-to-one: a function $f: X \to Y$ is one-to-one when, for all $x_1, x_2 \in X$,

one when, for all
$$x_1, x_2 \in X$$
,
 $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

This can be useful for proving that some functions are or are not one-to-one

Example. The function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 6x + 2 is one-to-one because

$$f(x_1) = f(x_2)$$

$$\Rightarrow 6x_1 + 2 = 6x_2 + 2$$

$$\Rightarrow 6x_1 = 6x_2$$

$$\Rightarrow x_1 = x_2.$$

Example. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 1$ is not one-to-one because f(-1) = 2 and f(1) = 2 and so

$$f(-1) = f(1).$$

To show that a function $f: X \to Y$ is one-to-one we must show that, for all $x_1, x_2 \in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

To show that a function $f: X \to Y$ is one-to-one we must show that, for all $x_1, x_2 \in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

To show that a function $f:X\to Y$ is one-to-one we must show that, for all $x_1,x_2\in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

Suppose that

$$f(x_1) = f(x_2)$$
 for some $x_1, x_2 \in \mathbb{Z}$.

To show that a function $f: X \to Y$ is one-to-one we must show that, for all $x_1, x_2 \in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

Suppose that

$$f(x_1)=f(x_2) \qquad \qquad \text{for some } x_1,x_2\in\mathbb{Z}.$$
 Then $3x_1-2=3x_2-2.$

Then

To show that a function $f:X\to Y$ is one-to-one we must show that, for all $x_1,x_2\in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

Suppose that

$$f(x_1)=f(x_2)$$
 for some $x_1,x_2\in\mathbb{Z}$. Then $3x_1-2=3x_2-2$.

So $3x_1 = 3x_2 = 3x_2 = 3x_3$.

To show that a function $f:X\to Y$ is one-to-one we must show that, for all $x_1,x_2\in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

Suppose that

$$f(x_1) = f(x_2) \qquad \text{for some } x_1, x_2 \in \mathbb{Z}.$$
 Then
$$3x_1 - 2 = 3x_2 - 2.$$
 So
$$3x_1 = 3x_2.$$

So
$$x_1 = x_2$$
.

To show that a function $f: X \to Y$ is one-to-one we must show that, for all $x_1, x_2 \in X$,

if
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$.

Question Is $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 3x - 2 one-to-one?

Suppose that

$$f(x_1) = f(x_2) \qquad \text{for some } x_1, x_2 \in \mathbb{Z}.$$
 Then
$$3x_1 - 2 = 3x_2 - 2.$$
 So
$$3x_1 = 3x_2.$$
 So
$$x_1 = x_2.$$

This shows that f is one-to-one.

$$f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$$

$$f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$$

Question Is
$$f: \mathbb{Z} \to \mathbb{Z}$$
 defined by $f(x) = x^2 + 1$ one-to-one?

$$f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$$

Question Is
$$f: \mathbb{Z} \to \mathbb{Z}$$
 defined by $f(x) = x^2 + 1$ one-to-one?

No.

$$f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$$

Question Is
$$f: \mathbb{Z} \to \mathbb{Z}$$
 defined by $f(x) = x^2 + 1$ one-to-one?

No.
$$f(1) = 2$$
 and $f(-1) = 2$

$$f(x_1) = f(x_2) \text{ and } x_1 \neq x_2.$$

Question Is
$$f: \mathbb{Z} \to \mathbb{Z}$$
 defined by $f(x) = x^2 + 1$ one-to-one?

No. f(1)=2 and f(-1)=2 (and obviously $1\neq -1$)

 e^{x}

 e^{x}

 e^{x}

The range is $\{y: y \in \mathbb{R} \text{ and } y > 0\}$

 e^{x}

The range is $\{y: y \in \mathbb{R} \text{ and } y > 0\}$

The rest of these are left as an exercise.