极限

February 20, 2017

1 数列

数列最一般的表示

$$a_1, a_2, \cdots, a_n, \cdots$$
 (1)

 a_n 是数列的第 n 项,称为数列的<mark>通项</mark>。数列常记为 $\{a_n\}$ 。

收敛数列: 当n变得越来越大时,项 a_n 就越来越接近某一个常数a。

设 $\{a_n\}$ 是一个数列,a 是一个实数。若对于任意给定的 $\epsilon>0$,存在一个 $N\in\mathcal{N}^*$,使得凡是 n>N 时,都有

$$|a_n - a| < \epsilon \tag{2}$$

就说数列 $\{a_n\}$ 当 n 趋向无穷大时,以 a 为极限,记成

$$\lim_{n \to \infty} a_n = a , \qquad (3)$$

简记为 $a_n \to a(n \to \infty)$ 。数列 $\{a_n\}$ 收敛于 a。存在极限的数列称为收敛数列。不收敛的数列称为发散数列。

2 收敛数列的性质

关于 a 对称的开区间 $(a - \epsilon, a + \epsilon)$ 为 a 的 ϵ 一 领域。

数列 $\{a_n\}$ 当 $n \to \infty$ 时收敛于实数 a指:对任意的 $\epsilon > 0$,总存在 $N \in \mathcal{N}^*$,使得数列中除有限多项 a_1, a_2, \dots, a_N 可能是例外,其他的项均落在 a 的 ϵ — 领域中。

Theorem 2.1

若数列 a_n 收敛,则它只有一个极限。即收敛数列的极限是唯一的。

设 $\{a_n\}$ 是一个数列。若存在一个实数 A,使得 $a_n \leq A$ 对一切 $n \in \mathcal{N}^*$ 成立,则称 $\{a_n\}$ 是有上界的,A 是这数列的一个上界。

有下界的数列

若数列 $\{a_n\}$ 既有上界,又有下界,则称它是一个有界数列。

Theorem 2.2

收敛数列必是有界的。

设 $\{a_n\}$ 是一个数列, $k_i \in \mathcal{N}^*(i=1,2,3\cdots)$ 且满足 $k_1 < k_2 < k_3\cdots$,那么数列 $\{a_{k_n}\}$ 叫做 $\{a_n\}$ 的一个子列。

Theorem 2.3

设收敛数列 $\{a_n\}$ 的极限是 a,那么 $\{a_n\}$ 的任何子列都收敛到 a。

Theorem 2.4: 极限的四则运算

设 $\{a_n\}$ 和 $\{b_n\}$ 都是收敛数列,则 $\{a_n \pm b_n\}$, $\{a_n b_n\}$ 也是收敛数列。若 $\lim_{n \to \infty} b_n \neq 0$,则 $\left\{\frac{a_n}{b_n}\right\}$ 也收敛,且

- 1. $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n ;$
- 2. $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n ;$

特别若 c 是常数,则 $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$;

3.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \ (\sharp \psi \lim_{n \to \infty} b_n \neq 0).$$

若收敛数列 $\{a_n\}$ 的极限等于 0,则这个数列称为无穷小数列,简称无穷小。

Theorem 2.5

- 1. $\{a_n\}$ 为无穷小的充分必要条件是 $\{|a_n|\}$ 是无穷小;
- 2. 两个无穷小之和 (或差) 仍是无穷小;
- 3. 设 $\{a_n\}$ 为无穷小, $\{c_n\}$ 为有界数列,那么 $\{c_na_n\}$ 也是无穷小;
- 4. 设 $0 \le a_n \le b_n$, $n \in \mathcal{N}^*$, 若 $\{b_n\}$ 为无穷小, 那么 $\{a_n\}$ 也是无穷小;
- 5. $\lim_{n\to\infty} a_n = a$ 的充分必要条件是 $|a_n a|$ 是无穷小。

Theorem 2.6: 夹逼原理

设 $a_n \leqslant b_n \leqslant c_n$, $n \in \mathcal{N}^*$, 且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 那么 $\lim_{n \to \infty} b_n = a$.

Theorem 2.7

- 1. 设 $\lim_{n\to\infty}a_n=a,\ \alpha,\beta$ 满足 $\alpha< a< \beta,\$ 当 n 充分大时有 $a_n>\alpha$;同样,当 n 充分大时有 $a_n<\beta$;
- 2. 设 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$, 且 a < b, 当 n 充分大时一定有 $a_n < b_n$;
- 3. 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 且当 n 充分大时 $a_n \leqslant b_n$, 有 $a \leqslant b$.

3 数列极限概念的推广

若数列 $\{a_n\}$ 适合条件:对任何正数 A,都存在 $N\in\mathcal{N}^*$,使得凡是 n>N 时,都有 $a_n>A$,称数列 $\{a_n\}$ 趋向于 $+\infty$ 。记作

$$\lim_{n \to \infty} a_n = +\infty \tag{4}$$

若对于任何正数 A,都存在 $N \in \mathcal{N}^*$ 使得凡是 n > N 时有 $a_n < -A$,称数列 $\{a_n\}$ 趋向于 $-\infty$,记作

$$\lim_{n \to \infty} a_n = -\infty \tag{5}$$

- 4 单调数列
- 5 自然对数底e
- 6 基本列和收敛定理
- 7 上确界和下确界
- 8 有限覆盖定理
- 9 上极限和下极限
- 10 Stolz 定理
- 11 数列极限的应用