Unidad Nº 6/Punteros, strings, asignación dinámica de memoria: Actividades sugeridas.

Preguntas orientadoras

1)	De	acuerdo a lo mencionado en filminas anteriores, identifique la potencialidad del tipo
	de	variable puntero. ¿Qué cuestiones resuelve?.
2)	Со	mplete los siguientes espacios.
	a.	Un puntero es una variable que contiene como valor
	b.	Los tres valores que pueden utilizarse para inicializar un puntero son,
		·
	c.	El operador regresa la posición en memoria donde está almacenado su
		operando.
	d.	El operador regresa el valor del objeto hacia el cual apunta su operando.
	e.	La función se utiliza para asignar memoria de forma dinámica.
	f.	La función asigna memoria dinámicamente para un arreglo que inicializa los
		elementos a cero.
	g.	La función modifica el tamaño de un bloque de memoria previamente
		asignada.
	h.	La función libera la zona de memoria para que pueda ser reutilizada.
3)	Pai	ra cada una de las siguientes, escriba un enunciado que ejecute la tarea indicada.
	Su	ponga que se han declarado las variables de punto flotante number1=7.3 y number2.
	a.	Declare la variable fptr que sea un puntero a un flotante.
	b.	Asigne la dirección de la variable number1 al puntero fptr.
	c.	Imprima el valor del objeto señalado por fptr.
	d.	Asigne el valor del objeto al que señala con fptr a la variable number2.
	e.	Imprima el valor de number2.
	f.	Imprima la dirección de number1 utilizando %p.
	g.	Imprima la dirección almacenada en fptr. Utilice el especificador de conversión %p.

4) Escriba un enunciado para cada una de las siguientes operaciones. Suponga que la variable c de tipo int, y las variables d, e, y f del tipo float, la variable cptr es del tipo

char* y los arreglos s1[100] y s2[100] son del tipo char.

INGENIERÍA EN COMPUTACIÓN. Programación Estructurada (4D1)

- a. Convierta en una letra mayúscula, el caracter almacenado en c y asigne el mismo a
 c.
- b. Determine si lo almacenado en c es un dígito.
- c. Convierta la cadena "1234567" a long e imprima el valor.
- d. Determine si el valor de la variable c es un caracter de control.
- e. Lea desde el teclado una línea de texto al arreglo s1. No utilice scanf.
- f. Imprima lo almacenado en s1 sin utilizar printf.
- g. Asigne a ptr la posición de la última ocurrencia de c en s1.
- h. Imprima el valor de c sin utilizar printf.
- i. Convierta la cadena "8.63582" a double e imprima el valor.
- j. Determine si el valor de c es una letra.
- k. Lea un caracter del teclado y almacene dicho carácter en c.
- I. Asigne a ptr la posición de la primer ocurrencia de s2 en s1.
- m. Determine si el valor de c es un caracter de impresión.
- n. Lea los valores float a partir de la cadena "1.37 10.3 9.432".
- o. Copie la cadena almacenada en s2 al arreglo s1.
- p. Compare la cadena s1 con la cadena s2 e imprima el resultado.
- q. Agregue 10 caracteres de la cadena en s2 a s1.
- r. Determine la longitud de s1 e imprima el resultado.
- s. Convierta la cadena "-21" a int e imprima el valor.

Ejercicios

1) En la siguiente imagen se muestra una función que permite calcular el valor promedio de un vector de N flotantes. Reescriba la función mediante notación y aritmética de punteros.

```
float promedio(float datos[], int cantidad_datos)

int indice = 0;
float suma = 0;
float media = 0;

for (indice = 0; indice < cantidad_datos; indice++)
{
    suma = suma + datos[indice];
}

media = suma/cantidad_datos;
return media;
}</pre>
```

- 2) Escribir un programa que permita ordenar de manera ascendente y descendente un vector de enteros de longitud desconocida. Nota: No se puede usar la función de librería *qsort*, usted debe investigar los algoritmos de ordenamiento por su cuenta.
- 3) Escribir un programa que permita testear una función llamada longitud_cadena, la cual debe recibir un puntero a *char* y retornar la cantidad de caracteres incluído el carácter "\n".
- 4) Escribir un programa que permita testear una función propia, que realice la misma operación que la función de librería *strcopy*.
- 5) Escribir un programa que permita sumar dos matrices de las mismas dimensiones. El usuario debe ingresar la cantidad de filas y columnas de cada una, luego se debe mostrar en pantalla el resultado. Nota: Suponga la que las matrices son A y B, entonces el resultado de la suma se debe guardar en A.
- 6) Escribir un programa que permita ingresar una matriz de mxn, calcular la matriz transpuesta de la matriz ingresada e imprimir el resultado en pantalla. Nota: Intente encontrar la solución más eficiente.

Actividades extra

1) Refactorice el ejercicio Extra 1 de la guía 5.1 haciendo uso de punteros.