CIS 700:

"algorithms for Big Data"

Lecture 10: Massively Parallel Algorithms

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us

Computational Model

- Input: size n
- *M* machines, space *S* on each ($S = n^{\alpha}$, $0 < \alpha < 1$)
 - Constant overhead in total space: $\mathbf{M} \cdot \mathbf{S} = O(\mathbf{n})$
- Output: solution to a problem (often size O(n))
 - Doesn't fit on a single machine ($S \ll n$)

Computational Model

- Computation/Communication in R rounds:
 - Every machine performs a **near-linear time** computation => Total running time $O(n^{1+o(1)}R)$
 - Every machine sends/receives at most S bits of information => Total communication O(nR).

MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
 Pros:
 - Inspired by modern systems (Hadoop, MapReduce, Dryad, ...)
 - Few parameters, **simple** to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - #Rounds is an information-theoretic measure => can prove unconditional lower bounds
 - Between linear sketching and streaming with sorting

Sorting: Terasort

- Sorting n keys on $M = O(n^{1-\alpha})$ machines
 - Would like to partition keys uniformly into blocks: first n/M, second n/M, etc.
 - Sort the keys locally on each machine
- Build an approximate histogram:
 - Each machine takes a sample of size s
 - All $M * s \leq S = n^{\alpha}$ samples are sorted locally
 - Blocks are computed based on the samples
- By Chernoff bound $\mathbf{M} * \mathbf{s} = O\left(\frac{\log n}{\epsilon^2}\right)$ samples suffice to compute al block sizes with $\pm \epsilon \mathbf{n}$ error
- Take $\epsilon = \frac{n^{\alpha-1}}{2}$: error O(S); $\mathbf{M} * \mathbf{S} = \widetilde{O}(n^{2-2\alpha}) = O(M^2) \le O(n^{\alpha})$ for $\alpha \ge 2/3$

Algorithms for Graphs

- Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size) Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

VS.

Algorithm for Connectivity

- Version of Boruvka's algorithm
- Repeat $O(\log n)$ times:
 - Each component chooses a neighboring component
 - All pairs of chosen components get merged
- How to avoid chaining?
- If the graph of components is bipartite and only one side gets to choose then no chaining
- Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: **N** edges of an undirected graph.

Notation:

- For $v \in V$ let $\pi(v)$ be its id in the data
- $\Gamma(S) \equiv \text{set of neighbors of a subset of vertices } S \subseteq V$.

Labels:

- Algorithms assigns a label $\ell(v)$ to each v.
- Let $L_v \subseteq V$ be the set of vertices with the label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

- Some vertices will be called active.
- Every set L_{ν} will have exactly one active vertex.

Algorithm for Connectivity

- Mark every vertex as **active** and let $\ell(v) = \pi(v)$.
- For phases $i = 1, 2, ..., O(\log N)$ do:
 - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in L_v as **leaders**.
 - For every **active non-leader** vertex w, find the smallest **leader**(with respect to π) vertex $w^* \in \Gamma(L_w)$.
 - If w^* is not empty, mark w **passive** and relabel each vertex with label w by w^* .
- Output the set of CCs, where vertices having the same label according to ℓ are in the same component.

Algorithm for Connectivity: Analysis

- If $\ell(u) = \ell(v)$ then u and v are in the same CC.
- Unique labels w.h.p after $O(\log N)$ phases.
- For every CC # active vertices reduces by a constant factor in every phase.
 - Half of the active vertices declared as non-leaders.
 - Fix an active **non-leader** vertex \boldsymbol{v} .
 - If at least two different labels in the CC of v then there is an edge (v', u) such that $\ell(v) = \ell(v')$ and $\ell(v') \neq \ell(u)$.
 - u marked as a leader with probability 1/2; in expectation half of the active non-leader vertices will change their label.
 - Overall, expect 1/4 of labels to disappear.
 - By Chernoff after $O(\log N)$ phases # of active labels in every connected component will drop to one w.h.p.

Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
 - O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
 - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t π) vertex w* $\in \Gamma(L_w)$
 - Each (non-leader, leader) edges sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT)
 [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

Applications

- Using same reductions as in streaming:
 - Bipartiteness
 - k-connectivity
 - Cut-sparsification