Data Science Portugal

June 12, 2019 Coimbra, Portugal

# Handling Missing Data with Imputation

Ricardo Cardoso Pereira

Invited Assistant Teacher @ UC & ISEC

PhD Student @ University of Coimbra (CISUC)

# Agenda

- Missing Data and its Mechanisms
- Methods to handle Missing Data
  - Case Deletion
  - Statistical Imputation
  - Machine Learning Imputation
- Issues with MNAR
- Open Challenges

#### Missing Data

- Problem often found in real-world contexts
- Occurs when values are missing for one or several features

| 23 | 87 | ?   | 12 | ? |
|----|----|-----|----|---|
| 8  | ?  | 0.3 | ?  | 5 |
| 43 | 0  | 0.4 | 56 | ? |
| 93 | ?  | 0.2 | 9  | 2 |
| 4  | 99 | 0.5 | ?  | 1 |



| 0 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |

June 12, 2019

3

#### Missing Data Mechanisms

- Describe how the missing values are related to the data
- Three different mechanisms exist
  - Missing Completely At Random (MCAR)
  - Missing At Random (MAR)
  - Missing Not At Random (MNAR)

|     | Number of cigarettes |      |     |      |
|-----|----------------------|------|-----|------|
| Age | Complete             | MCAR | MAR | MNAR |
| 15  | 2                    | 2    | ?   | 2    |
| 15  | 9                    | ?    | ?   | ?    |
| 15  | 4                    | ?    | ?   | 4    |
| 16  | 2                    | 2    | ?   | 2    |
| 16  | 2                    | 2    | ?   | 2    |
| 16  | 7                    | 7    | ?   | ?    |
| 16  | 3                    | 3    | ?   | 3    |
| 17  | 9                    | ?    | 9   | ?    |
| 17  | 6                    | 6    | 6   | ?    |
| 17  | 4                    | ?    | 4   | 4    |
| 17  | 5                    | 5    | 5   | 5    |
| 17  | 5                    | 5    | 5   | 5    |
| 18  | 7                    | ?    | 7   | ?    |
| 18  | 6                    | 6    | 6   | ?    |
| 18  | 7                    | ?    | 7   | ?    |
| 19  | 3                    | 3    | 3   | 3    |
| 19  | 8                    | ?    | 8   | ?    |
| 19  | 3                    | ?    | 3   | 3    |
| 20  | 9                    | 9    | 9   | ?    |
| 20  | 2                    | 2    | 2   | 2    |

#### Missing Completely At Random

- Occurs when the values are randomly missing
- The cause is not related to any observed or unobserved values

|     | Number of cigarettes |      |  |
|-----|----------------------|------|--|
| Age | Complete             | MCAR |  |
| 15  | 2                    | 2    |  |
| 15  | 9                    | ?    |  |
| 15  | 4                    | ?    |  |
| 16  | 2                    | 2    |  |
| 16  | 2                    | 2    |  |
| 16  | 7                    | 7    |  |
| 16  | 3                    | 3    |  |
| 17  | 9                    | ?    |  |
| 17  | 6                    | 6    |  |
| 17  | 4                    | ?    |  |
| 17  | 5                    | 5    |  |
| 17  | 5                    | 5    |  |
| 18  | 7                    | ?    |  |
| 18  | 6                    | 6    |  |
| 18  | 7                    | ?    |  |
| 19  | 3                    | 3    |  |
| 19  | 8                    | ?    |  |
| 19  | 3                    | ?    |  |
| 20  | 9                    | 9    |  |
| 20  | 2                    | 2    |  |

Number of piggrettes

## Missing At Random

- Occurs when the missing values are related to observed data
- A strong correlation exists between the missing values and an observed feature

|     | Number of cigarettes |     |  |
|-----|----------------------|-----|--|
| Age | Complete             | MAR |  |
| 15  | 2                    | ?   |  |
| 15  | 9                    | ?   |  |
| 15  | 4                    | ?   |  |
| 16  | 2                    | ?   |  |
| 16  | 2                    | ?   |  |
| 16  | 7                    | ?   |  |
| 16  | 3                    | ?   |  |
| 17  | 9                    | 9   |  |
| 17  | 6                    | 6   |  |
| 17  | 4                    | 4   |  |
| 17  | 5                    | 5   |  |
| 17  | 5                    | 5   |  |
| 18  | 7                    | 7   |  |
| 18  | 6                    | 6   |  |
| 18  | 7                    | 7   |  |
| 19  | 3                    | 3   |  |
| 19  | 8                    | 8   |  |
| 19  | 3                    | 3   |  |
| 20  | 9                    | 9   |  |
| 20  | 2                    | 2   |  |

Nivesbar of signarettes

#### Missing Not At Random

- Occurs when the missing values are related with themselves or with other unobserved values
- Often called Non-Ignorable missing data

|     | Number of cigarettes |      |  |
|-----|----------------------|------|--|
| Age | Complete             | MNAR |  |
| 15  | 2                    | 2    |  |
| 15  | 9                    | ?    |  |
| 15  | 4                    | 4    |  |
| 16  | 2                    | 2    |  |
| 16  | 2                    | 2    |  |
| 16  | 7                    | ?    |  |
| 16  | 3                    | 3    |  |
| 17  | 9                    | ?    |  |
| 17  | 6                    | ?    |  |
| 17  | 4                    | 4    |  |
| 17  | 5                    | 5    |  |
| 17  | 5                    | 5    |  |
| 18  | 7                    | ?    |  |
| 18  | 6                    | ?    |  |
| 18  | 7                    | ?    |  |
| 19  | 3                    | 3    |  |
| 19  | 8                    | ?    |  |
| 19  | 3                    | 3    |  |
| 20  | 9                    | ?    |  |
| 20  | 2                    | 2    |  |

#### Machine Learning with Missing Data

- Missing data can degrade the performance of ML models
- Some methods can cope with it (e.g., decision trees), but most don't



#### Methods to handle Missing Data



#### Case Deletion

- Records with missing values are... deleted
- In theory should only be applied with MCAR

| 23 | 87 | ?   | 12 | ? |
|----|----|-----|----|---|
| 8  | 45 | 0.3 | 7  | 5 |
| 43 | 0  | 0.4 | 56 | 8 |
| 93 | ?  | 0.2 | 9  | 2 |
| 4  | 99 | 0.5 | 36 | 1 |

Listwise Deletion

| 23 | 87 | ?   | 12 | ? |
|----|----|-----|----|---|
| 8  | ?  | 0.3 | ?  | 5 |
| 43 | 0  | 0.4 | 56 | ? |
| 93 | ?  | 0.2 | 9  | 2 |
| 4  | 99 | 0.5 | ?  | 1 |

Pairwise Deletion

## Mean/Mode Imputation

- Missing values are imputed with the mean
- The mode should be used for categorical data
- If the mechanism is not MCAR the imputation may be biased

| <b>V</b> 1 | <b>v</b> 2 | <b>v</b> 3 | <b>v</b> 4 | <b>v</b> 5 |
|------------|------------|------------|------------|------------|
| 23         | 87         | $E(V_3)$   | 12         | $E(V_5)$   |
| 8          | 45         | 0.3        | 7          | 5          |
| 43         | 0          | 0.4        | 56         | 8          |
| 93         | $E(V_2)$   | 0.2        | 9          | 2          |
| 4          | 99         | 0.5        | 36         | 1          |

#### Multiple Imputation by Chained Equations

- A series of regressions are modeled to each variable with missing data
- Each feature is modeled conditionally upon the other features
- In theory should only be applied with MAR

- The process is repeated multiple times to reduce bias
  - That's why it's called multiple imputation
  - But this concept can be applied with other methods

#### Multiple Imputation by Chained Equations



Ofir Shalev (@ofirdi) May 2018

## K-Nearest Neighbors Imputation

- Finds the *k* similar observations to the one that is being imputed
- Uses the values of the feature with missingness to generate the new value (mean, weighted mean, vote of majority, ...)
- The distance must be adjusted to the data type
  - Euclidean for numeric data
  - One-Hot Encoding to convert categorical data
  - Hamming distance for categorical data
- Is suitable for MAR and MCAR



#### Machine Learning-Based Imputation

■ The pipeline used for most regression and classification algorithms can be adapted for missing values imputation (e.g., ANN, SVM, ...)



Missing Data

**Model Training** 

**Model Prediction** 

#### Stacked Denoising Autoencoders

- Special type of ANN that tries to reproduce the input at the output layer
- The Denoising variant learns from a corrupted version of the data
- Missing data is a type of corruption

■ Is suitable for MAR and MCAR



#### What about MNAR?

- The described approaches are only valid for MAR and MCAR
- Imputation methods produce poor and biased results for MNAR
  - Expected since this mechanism is related to unobserved data
- Current solutions? --> Sensitivity Analysis
  - Try out different plausible MNAR models to see how consistent the results are
  - Multiple imputation strategies are often used
  - It's just a test, not a solution...

#### What about MNAR?

- We could ignore it but MNAR is predominant in several contexts
- Example 1: IoT
  - Data collected from sensors is missing due to external factors
- Example 2: Clinical trials
  - Participants may be quitting a study for reasons related to the outcome that is being measured

## Open Challenges

- New approaches to tackle the MNAR issues
- Identification of the missing mechanisms
- Use of generative models for imputation
  - Generative Adversarial Networks (GANs) are being used in very recent papers
- And many others...

#### **Data Science Portugal**

June 12, 2019 Coimbra, Portugal

# Handling Missing Data with Imputation Thank you! Questions?

rdpereira@dei.uc.pt

Ricardo Cardoso Pereira

Invited Assistant Teacher @ UC & ISEC PhD Student @ University of Coimbra (CISUC)