Motivation:

- inner product $\langle , \rangle \in V^* \otimes V^* \implies$ For subspaces $k, L \equiv V$, $k \perp_{<,>} L$ (i.e. $\langle v, w \rangle = 0$) won-deg, symmetric, non-negative implies $k \cap L = \{0\}$.
- eg. $V = IR^2 = Span Se_1, e_2$ L= $Span Se_1$, ω any "stew" product. Then $\omega(\lambda e_1, \Psi e_1) = \lambda \eta \omega(e_1, e_1) = 0$
- eg. $\omega(v_1e_1+v_2e_2, w_1e_1+w_2e_2) := \det(v_1 w_1)$
- Su, there are essential differences between symmetric and arti-symmetric 2-tensory

Denote by
$$S_{K}$$
 the K -th symmetric group, associate $\sigma \in S_{K}$ $sgn(\sigma) = \begin{cases} -1 & \text{if } \sigma \text{ is an odd permutation} \\ 1 & \text{if } \sigma \text{ is an even permutation} \end{cases}$

eg. $\sigma = \begin{cases} 1 \ge 3 + 5 \\ 2 3 1 5 4 \end{cases} \in S_{\sigma}$ $sgn(\sigma) = -1$ b/c $\sigma = (12)(13)(45)$
 $V^{*} \otimes \cdots \otimes V^{*} (=V^{*}, \otimes_{K})$

$$V^* \otimes \cdots \otimes V^* (= V^{*, \otimes k})$$

$$(AATK)$$

$$T \in V^*, \otimes k | \sigma \cdot T = T$$

$$(V, \dots, V_k) := T (V_{\sigma(k)} \dots, V_{\sigma(k)})$$

$$\sum_{k} V_{*}^{*} = \left\{ T \in V_{*}^{*}, \otimes_{k} \middle| \sigma \cdot T = T \right\}$$

$$\left(\sigma \cdot T \right) (N^{*}, \dots, N^{k}) := T \left(N^{*}, \otimes_{k} \middle| \sigma \cdot T = S^{*}, \otimes_{k} \middle| \sigma \cdot T \right)$$

$$\left(\sigma \cdot T \right) (N^{*}, \dots, N^{k}) := T \left(N^{*}, \otimes_{k} \middle| \sigma \cdot T = S^{*}, \otimes_{k} \middle| \sigma \cdot T \right)$$

$$Sym(T) := \frac{1}{k!} \sum_{\sigma \in S_{k}} \sigma \cdot T \qquad A(t(T)) := \frac{1}{k!} \sum_{\sigma \in S_{k}} sgn(\sigma)(\sigma \cdot T)$$

e.g.
$$V^{*,\otimes 2}$$
 $V \otimes W \longrightarrow Sym (V \otimes W) = \frac{1}{2}(V \otimes W + W \otimes V)$
 $V \otimes W \longrightarrow A(t (V \otimes W)) = \frac{1}{2}(V \otimes W - W \otimes V)$

Note that $V \otimes W = Sym (V \otimes W) + A(t + V \otimes W)$. (*)

Ruk. The relation (*) is misleading — most cases this fails.

e.g. $V^* = (IR^3)^*$ and consider dual basis $\{e^1, e^2, e^3\}$ of $(IR^3)^*$
 $IR^3 = Spanise, e_3, e_3\}$

Suppose $e^1 \otimes e^2 \otimes e^3 = A + B^2$

Then

 $(e^1 \otimes e^2 \otimes e^3)(e_1, e_3, e_3) = I = a(e_1, e_3, e_3) + b(e_3, e_3, e_3)$
 $(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_1) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^2 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3, e_3) = 0$
 $G(e^1 \otimes e^3 \otimes e^3)(e_3, e_3,$

Both 5KV* and NKV* are interesting, but let us focus on NKV*. • $\bigoplus \Lambda^k V^*$ is an associative super-commutatitive algebra exterior algebra as β wedge (k+1)! A(t) = A(t) A(t) = A(t)(= Firi REZENCO) (D. XOB)) $- (\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$ - ans = (-1) kl sna (=) if one of a, & lies in Neven V*, then on B=Bna) Ruk () Neven V* is an associative and commutatitive (sub) algebra e.g. a, B = 1 1/2, then $(\alpha \wedge \beta)(v, w) = (\alpha \otimes \beta)(v, w) - (\beta \otimes \alpha)(v, w) = \alpha(v)\beta(w) - \alpha(w)\beta(v)$

e.g.
$$\alpha \in \Lambda^1 V^*$$
 and $\beta \in \Lambda^2 V^*$, then

Exe Suppose
$$\{e', \dots, e''\}$$
 is a basis of V^* , then
$$\begin{cases}
e^{i_1} \wedge \dots \wedge e^{i_k} \mid 1 \leq i_1 < \dots < i_k \leq n
\end{cases}$$

form a basis of
$$V^*, \otimes K$$
. Therefore dim $V^{*,\otimes K} = \binom{n}{K} = \frac{n!}{k!(n-K)!}$.

$$\Rightarrow \text{ 2} \quad V^* \wedge \cdots \wedge V^* \text{ has dim} = 1 \ \left(= \text{span} \left\{ e^! \wedge \cdots \wedge e^n \right\} \right)$$

$$= n \quad \text{vectors}$$
where $\left(e^! \wedge \cdots \wedge e^n \right) \left(v_1, \cdots, v_n \right) = \det \left(v_1, \cdots, v_n \right)$