Análisis Matemático I: Numeros Reales y Complejos

Presentaciones de Clase

Universidad de Murcia

Curso 2008-2009

lacktriangle Definición axiomática de $\mathbb R$

Objetivos

• Definir (y entender) \mathbb{R} introducido axiomáticamente.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- 2 Saber deducir propiedades de os números reales a partir de los axiomas.
- 3 Comprender y utilizar los conceptos de supremo e ínfimo.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.
- Omprender y utilizar los conceptos de supremo e ínfimo.
- 4 Conocer el principio de inducción y saber utilizarlo.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.
- Omprender y utilizar los conceptos de supremo e ínfimo.
- 4 Conocer el principio de inducción y saber utilizarlo.
- lacktriangle Conocer la unicidad de $\mathbb R$

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.
- Omprender y utilizar los conceptos de supremo e ínfimo.
- Onocer el principio de inducción y saber utilizarlo.
- lacktriangle Conocer la unicidad de $\mathbb R$
- O Conocer la representación geométrica de los números reales.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.
- Omprender y utilizar los conceptos de supremo e ínfimo.
- 4 Conocer el principio de inducción y saber utilizarlo.
- lacktriangle Conocer la unicidad de $\mathbb R$
- O Conocer la representación geométrica de los números reales.
- O Definir (y entender) los números complejos.

- **1** Definir (y entender) \mathbb{R} introducido axiomáticamente.
- Saber deducir propiedades de os números reales a partir de los axiomas.
- Omprender y utilizar los conceptos de supremo e ínfimo.
- 4 Conocer el principio de inducción y saber utilizarlo.
- lacktriangle Conocer la unicidad de $\mathbb R$
- O Conocer la representación geométrica de los números reales.
- O Definir (y entender) los números complejos.
- Onocer la representación geométrica de los números complejos.

Definición axiomática de $\mathbb R$

Definición

Existe un cuerpo totalmente ordenado y completo que recibe el nombre de cuerpo de los números reales y se denota por \mathbb{R} .

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

①
$$x + (y + z) = (x + y) + z$$
 para todo $x, y, z \in \mathbb{R}$ (asociativa),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- ① x + (y + z) = (x + y) + z para todo $x, y, z \in \mathbb{R}$ (asociativa),
- 2 x+y=y+x para todo $x,y \in \mathbb{R}$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- ① x + (y + z) = (x + y) + z para todo $x, y, z \in \mathbb{R}$ (asociativa),
- 2 x+y=y+x para todo $x,y \in \mathbb{R}$ (conmutativa),
- $\mbox{\Large 3}$ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto x + y \qquad \qquad (x,y) \mapsto x \cdot y$$

- ① x + (y + z) = (x + y) + z para todo $x, y, z \in \mathbb{R}$ (asociativa),
- 2 x+y=y+x para todo $x,y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en \mathbb{R} denotado con 0 que cumple x+0=x para todo $x \in \mathbb{R}$ (elemento neutro de la suma),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- 2 x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- ③ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- 2 x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- ③ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- **9** para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto x + y \qquad \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- ③ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- **4** para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto x + y \qquad \qquad (x,y) \mapsto x \cdot y$$

- ① x+(y+z)=(x+y)+z para todo $x,y,z\in\mathbb{R}$ (asociativa),
- 2 x+y=y+x para todo $x,y\in\mathbb{R}$ (conmutativa),
- ③ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **③** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- **9** para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- ③ existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto x + y \qquad \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- **1** existe un elemento en $\mathbb R$ distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb R$

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- \mathbf{o} $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- ② existe un elemento en \mathbb{R} distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb{R}$ (elemento neutro del producto),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **③** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- **1** existe un elemento en $\mathbb R$ distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb R$ (elemento neutro del producto),
- ① para cada $x \in \mathbb{R}$ con $x \neq 0$ existe $x'' \in \mathbb{R}$ con la propiedad de que $x \cdot x'' = 1$, dicho x'' se denota mediante $\frac{1}{x}$ o también mediante x^{-1}

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- 2 x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- ② existe un elemento en $\mathbb R$ distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb R$ (elemento neutro del producto),
- **1** para cada $x \in \mathbb{R}$ con $x \neq 0$ existe $x'' \in \mathbb{R}$ con la propiedad de que $x \cdot x'' = 1$, dicho x'' se denota mediante $\frac{1}{x}$ o también mediante x^{-1} (elemento inverso),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- 2 x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- ② existe un elemento en $\mathbb R$ distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb R$ (elemento neutro del producto),

$$\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \qquad \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
(x,y) \mapsto x + y \qquad (x,y) \mapsto x \cdot y$$

- 2 x + y = y + x para todo $x, y \in \mathbb{R}$ (conmutativa),
- **3** existe un elemento en $\mathbb R$ denotado con 0 que cumple x+0=x para todo $x\in\mathbb R$ (elemento neutro de la suma),
- ① para cada $x \in \mathbb{R}$ existe $x' \in \mathbb{R}$ con la propiedad de que x + x' = 0, dicho x' se denota con -x (elemento opuesto),
- **5** $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ para todo $x, y, z \in \mathbb{R}$ (asociativa),
- **6** $x \cdot y = y \cdot x$ para todo $x, y \in \mathbb{R}$ (conmutativa),
- ② existe un elemento en $\mathbb R$ distinto de 0, denotado con 1, con la propiedad de que $1 \cdot x = x$ para todo $x \in \mathbb R$ (elemento neutro del producto),
- ③ para cada $x \in \mathbb{R}$ con $x \neq 0$ existe $x'' \in \mathbb{R}$ con la propiedad de que $x \cdot x'' = 1$, dicho x'' se denota mediante $\frac{1}{x}$ o también mediante x^{-1} (elemento inverso),

Significa que existe una relación binaria denotada con \leq con las siguientes propiedades:

Significa que existe una relación binaria denotada con \leq con las siguientes propiedades:

 $0 x \le x$ para todo $x \in \mathbb{R}$ (reflexiva),

- $\mathbf{0} \quad x \leq x \text{ para todo } x \in \mathbb{R} \text{ (reflexiva)},$

- $\mathbf{0} \quad x \leq x \text{ para todo } x \in \mathbb{R} \text{ (reflexiva)},$
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0} \ x \leq y \ \mathbf{e} \ y \leq x \ \mathrm{implican} \ x = y \ (\mathrm{antisim\acute{e}trica}),$
- $2 x \le y \text{ e } y \le z \text{ implican } x \le z \text{ para todo } x, y, z \in \mathbb{R}$

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0} \quad x \leq y \text{ e } y \leq x \text{ implican } x = y \text{ (antisimétrica)},$
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0} \quad x \leq y \text{ e } y \leq x \text{ implican } x = y \text{ (antisimétrica)},$
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **3** para cada dos elementos $x,y\in\mathbb{R}$ se cumple una de las dos relaciones: x< y ó y< x

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0} \quad x \leq y \text{ e } y \leq x \text{ implican } x = y \text{ (antisimétrica)},$
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- para cada dos elementos $x,y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),

- $0 x \le x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **13** para cada dos elementos $x, y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $A \le y$ implies $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$,

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **13** para cada dos elementos $x, y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $x \le y$ implica $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$, (compatibilidad del orden con la suma),

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **13** para cada dos elementos $x, y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $x \le y$ implica $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$, (compatibilidad del orden con la suma),
- **(b)** $x \le y$ y $0 \le z$ implies $x \cdot z \le y \cdot z$ para todo $x, y, z \in \mathbb{R}$

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **13** para cada dos elementos $x, y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $x \le y$ implica $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$, (compatibilidad del orden con la suma),
- **ⓑ** $x \le y$ y $0 \le z$ implica $x \cdot z \le y \cdot z$ para todo $x, y, z \in \mathbb{R}$ (compatibilidad del orden con el producto).

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- para cada dos elementos $x, y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $x \le y$ implica $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$, (compatibilidad del orden con la suma),
- **ⓑ** $x \le y$ y $0 \le z$ implica $x \cdot z \le y \cdot z$ para todo $x, y, z \in \mathbb{R}$ (compatibilidad del orden con el producto).
- **1** $x \ge y$ significa, por definición, lo mismo que $y \le x$;

- $\mathbf{0}$ $x \leq x$ para todo $x \in \mathbb{R}$ (reflexiva),
- $\mathbf{0}$ $x \le y$ e $y \le x$ implican x = y (antisimétrica),
- $x \le y$ e $y \le z$ implican $x \le z$ para todo $x, y, z \in \mathbb{R}$ (transitiva),
- **3** para cada dos elementos $x,y \in \mathbb{R}$ se cumple una de las dos relaciones: $x \le y$ ó $y \le x$ (el orden es total),
- $x \le y$ implica $x + z \le y + z$ para todo $x, y, z \in \mathbb{R}$, (compatibilidad del orden con la suma),
- **ⓑ** $x \le y$ y $0 \le z$ implica $x \cdot z \le y \cdot z$ para todo $x, y, z \in \mathbb{R}$ (compatibilidad del orden con el producto).
- **1** $x \ge y$ significa, por definición, lo mismo que $y \le x$;
- 2 si $x \le y$ siendo $x \ne y$ entonces escribiremos x < y o, indistintamente, y > x.

Todo subconjunto no vacío de ${\mathbb R}$ acotado superiormente tiene supremo.

Todo subconjunto no vacío de ${\mathbb R}$ acotado superiormente tiene supremo.

Definición: cota superior

Un conjunto $\emptyset \neq A \subset \mathbb{R}$ se dice acotado superiormente si existe $M \in \mathbb{R}$ con la propiedad de que $a \leq M$, para todo $a \in A$; M se llama una cota superior de A.

Todo subconjunto no vacío de ${\mathbb R}$ acotado superiormente tiene supremo.

Definición: cota superior

Un conjunto $\emptyset \neq A \subset \mathbb{R}$ se dice acotado superiormente si existe $M \in \mathbb{R}$ con la propiedad de que $a \leq M$, para todo $a \in A$; M se llama una cota superior de A.

Definición: supremo

Se dice que $\alpha \in \mathbb{R}$ es supremo de A (y se escribe $\alpha = \sup A$) si α es cota superior de A y además cualquier otra cota superior M de A cumple que $\alpha \leq M$.

Todo subconjunto no vacío de ${\mathbb R}$ acotado superiormente tiene supremo.

Definición: cota superior

Un conjunto $\emptyset \neq A \subset \mathbb{R}$ se dice acotado superiormente si existe $M \in \mathbb{R}$ con la propiedad de que $a \leq M$, para todo $a \in A$; M se llama una cota superior de A.

Definición: supremo

Se dice que $\alpha \in \mathbb{R}$ es supremo de A (y se escribe $\alpha = \sup A$) si α es cota superior de A y además cualquier otra cota superior M de A cumple que $\alpha \leq M$.

Supremo

 $\alpha \in \mathbb{R}$ es supremo de A si:

- 2 Para cada $\varepsilon > 0$, existe $x_{\varepsilon} \in M$ tal que $\alpha \varepsilon < x_{\varepsilon}$.

Todo subconjunto no vacío de $\ensuremath{\mathbb{R}}$ acotado superiormente tiene supremo.

Definición: cota superior

Un conjunto $\emptyset \neq A \subset \mathbb{R}$ se dice acotado superiormente si existe $M \in \mathbb{R}$ con la propiedad de que $a \leq M$, para todo $a \in A$; M se llama una cota superior de A.

Definición: supremo

Se dice que $\alpha \in \mathbb{R}$ es supremo de A (y se escribe $\alpha = \sup A$) si α es cota superior de A y además cualquier otra cota superior M de A cumple que $\alpha \leq M$.

Supremo

 $\alpha \in \mathbb{R}$ es supremo de A si:

- $\mathbf{0}$ $x \leq \alpha$, para cada $x \in M$;
- 2 Para cada $\varepsilon > 0$, existe $x_{\varepsilon} \in M$ tal que $\alpha \varepsilon < x_{\varepsilon}$.

Completitud

En $\mathbb R$ cada conjunto no vacío acotado superiormente posee una cota superior que es la menor de todas las cotas superiores.

Proposición

En \mathbb{R} (y, en general, en cualquier cuerpo totalmente ordenado) se tiene:

Los elementos neutros, opuesto e inverso son únicos.

Proposición

- Los elementos neutros, opuesto e inverso son únicos.
- **2** $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.

Proposición Propos

- Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.

Proposición

- Los elementos neutros, opuesto e inverso son únicos.
- 2 $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- **4** c < 0 equivale a -c > 0.

Proposición

- Los elementos neutros, opuesto e inverso son únicos.
- 2 $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- $\mathbf{0}$ c < 0 equivale a -c > 0.
- **5** $(-1) \cdot a = -a$ y por tanto $(-a) \cdot b = -(ab)$.

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- \circ c < 0 equivale a -c > 0.
- **5** $(-1) \cdot a = -a$ y por tanto $(-a) \cdot b = -(ab)$.
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- $\mathbf{0}$ c < 0 equivale a -c > 0.
- $(-1) \cdot a = -a \text{ y por tanto } (-a) \cdot b = -(ab).$
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
- $a \le b \Leftrightarrow -a \ge -b.$

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- 4 c < 0 equivale a c > 0.
- $(-1) \cdot a = -a \text{ y por tanto } (-a) \cdot b = -(ab).$
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
- **3** Si c < 0 entonces $a \le b$ y $ac \ge bc$ son equivalentes.

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- $\mathbf{0}$ c < 0 equivale a -c > 0.
- **5** $(-1) \cdot a = -a$ y por tanto $(-a) \cdot b = -(ab)$.
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
- **3** Si c < 0 entonces $a \le b$ y $ac \ge bc$ son equivalentes.
- 9 Si $a \neq 0$ entonces $a \cdot a > 0$; en particular 1 > 0.

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- **3** Las fórmulas a = b y a b = 0 son equivalentes. Si $b \neq 0$ también son equivalentes las fórmulas a = b y $a \cdot \frac{1}{b} = 1$.
- $\mathbf{0}$ c < 0 equivale a -c > 0.
- $(-1) \cdot a = -a \text{ y por tanto } (-a) \cdot b = -(ab).$
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
- **3** Si c < 0 entonces $a \le b$ y $ac \ge bc$ son equivalentes.
- 9 Si $a \neq 0$ entonces $a \cdot a > 0$; en particular 1 > 0.

Proposición

- 1 Los elementos neutros, opuesto e inverso son únicos.
- 2 $a \cdot 0 = 0$ para todo $a \in \mathbb{R}$.
- 3 Las fórmulas a=b y a-b=0 son equivalentes. Si $b\neq 0$ también son equivalentes las fórmulas a=b y $a\cdot \frac{1}{b}=1$.
- $\mathbf{0}$ c < 0 equivale a -c > 0.
- $(-1) \cdot a = -a \text{ y por tanto } (-a) \cdot b = -(ab).$
- **6** Si $a \le b$ y $c \le d$ entonces $a + c \le b + d$.
- **3** Si c < 0 entonces $a \le b$ y $ac \ge bc$ son equivalentes.
- **9** Si $a \neq 0$ entonces $a \cdot a > 0$; en particular 1 > 0.
- $0 a > 0 \Leftrightarrow \frac{1}{a} > 0.$

Cotas inferiores. Ínfimos

27 Octubre 2008.

Definición

Un subconjunto no vacío $A \subset \mathbb{R}$ se dice acotado inferiormente si existe $M \in \mathbb{R}$ tal que $M \leq a$ para todo $a \in A$. Cualquier valor M que cumpla la relación anterior se llama una cota inferior de A. Si existe $\alpha \in \mathbb{R}$ que es cota inferior de A y además cumple que $M \leq \alpha$ para cualquier otra cota inferior M de A, entonces α se llama ínfimo de A y se denota en la forma $\alpha = \inf A$.

Cotas inferiores. Ínfimos

27 Octubre 2008.

Definición

Un subconjunto no vacío $A \subset \mathbb{R}$ se dice acotado inferiormente si existe $M \in \mathbb{R}$ tal que $M \leq a$ para todo $a \in A$. Cualquier valor M que cumpla la relación anterior se llama una cota inferior de A. Si existe $\alpha \in \mathbb{R}$ que es cota inferior de A y además cumple que $M \leq \alpha$ para cualquier otra cota inferior M de A, entonces α se llama ínfimo de A y se denota en la forma $\alpha = \inf A$.

Proposición

Si en un cuerpo ordenado se verifica el axioma del supremo, entonces todo subconjunto no vacío acotado inferiormente tiene ínfimo.

Números naturales: N

Definición

Un conjunto $I \subset \mathbb{R}$ se llama inductivo si cumple las siguientes condiciones:

- 1 ∈ I.
- Si $x \in I$ entonces $x + 1 \in I$.

Números naturales: N

Definición

Un conjunto $I \subset \mathbb{R}$ se llama inductivo si cumple las siguientes condiciones:

- 1 ∈ I.
- Si $x \in I$ entonces $x + 1 \in I$.

Observación

- \bullet \mathbb{R} es un conjunto inductivo.
- La intersección de conjuntos inductivos es inductivo.

Números naturales: ℕ

Definición

Un conjunto $I \subset \mathbb{R}$ se llama inductivo si cumple las siguientes condiciones:

- $1 \in I$.
- Si $x \in I$ entonces $x + 1 \in I$.

Observación

- \bullet \mathbb{R} es un conjunto inductivo.
- La intersección de conjuntos inductivos es inductivo.

Definición

Se llama conjunto de los números naturales y se denota con $\ensuremath{\mathbb{N}}$ al siguiente conjunto

 $\mathbb{N} := \bigcap \{I : \text{ donde } I \text{ es un conjunto inductivo de } \mathbb{R}\}.$

Números naturales: N

Corolario (Método de Inducción)

Cualquier subconjunto $S \subset \mathbb{N}$ que satisfaga las siguientes propiedades

- **1** $\in S$,
- ② si $n \in S$ entonces $n+1 \in S$,

verifica que $S = \mathbb{N}$.

Números naturales: N

Corolario (Método de Inducción)

Cualquier subconjunto $S \subset \mathbb{N}$ que satisfaga las siguientes propiedades

- **1** $\in S$,
- 2 si $n \in S$ entonces $n+1 \in S$,

verifica que $S = \mathbb{N}$.

Los primeros elementos de $\ensuremath{\mathbb{N}}$ se denotan de la siguiente manera:

El método de inducción es usado con frecuencia en la demostración de fórmulas y resultados relativos a números naturales.

El método de inducción es usado con frecuencia en la demostración de fórmulas y resultados relativos a números naturales.

Ejemplo

Para cualquier número natural $n \ge 1$ se verifica que $4^n > n^2$.

El método de inducción es usado con frecuencia en la demostración de fórmulas y resultados relativos a números naturales.

Ejemplo

Para cualquier número natural $n \ge 1$ se verifica que $4^n > n^2$.

Ejemplo

Para cualquier número natural $n \ge 1$ y $x \in \mathbb{R}, x \ge -1$ se tiene que $(1+x)^n \ge 1+nx$.

El método de inducción es usado con frecuencia en la demostración de fórmulas y resultados relativos a números naturales.

Ejemplo

Para cualquier número natural $n \ge 1$ se verifica que $4^n > n^2$.

Ejemplo

Para cualquier número natural $n \ge 1$ y $x \in \mathbb{R}, x \ge -1$ se tiene que $(1+x)^n \ge 1+nx$.

Observación

- **1** La formulación del método de inducción tiene dos propiedades. A) $1 \in S$ B) si $n \in S$ entonces $n+1 \in S$.
- ② Si $S \subset \mathbb{N}$ es tal que $N \in S$ y $n \in S$ entonces $n+1 \in S$, entonces $S = \{N, N+1, N+2, \dots\}$.

Corolario, Método de inducción, versión fuerte

Sea $S \subset \mathbb{N}$ que cumple las siguientes propiedades:

1 0 1 0 0 1 0 0

2 si $1,2,\ldots,n\in S$ entonces $n+1\in S$

Entonces $S = \mathbb{N}$.

Corolario, Método de inducción, versión fuerte

Sea $S \subset \mathbb{N}$ que cumple las siguientes propiedades:

- **①** 1 ∈ S
- \bigcirc si $1,2,\ldots,n\in S$ entonces $n+1\in S$

Entonces $S = \mathbb{N}$.

Ejemplo, Teorema Fundamental de la Aritmética

Todo número entero n > 2 es primo o producto de números primos.

Definición

El conjunto de los números enteros $\mathbb Z$ y el de los números racionales $\mathbb Q$ están definidos del siguiente modo:

- ② $\mathbb{Q} := \{m \cdot \frac{1}{n} : m \in \mathbb{Z} \text{ y } n \in \mathbb{N}\}$. El número real $m \cdot \frac{1}{n}$ se denota indistintamente como $\frac{m}{n}$ o como m/n.

Definición

El conjunto de los números enteros $\mathbb Z$ y el de los números racionales $\mathbb Q$ están definidos del siguiente modo:

- ② $\mathbb{Q} := \{m \cdot \frac{1}{n} : m \in \mathbb{Z} \text{ y } n \in \mathbb{N}\}$. El número real $m \cdot \frac{1}{n}$ se denota indistintamente como $\frac{m}{n}$ o como m/n.

Proposición

El cuerpo $\mathbb R$ tiene la propiedad arquimediana, es decir, dados $x,y \in \mathbb R$, con 0 < y, existe $n \in \mathbb N$ tal que x < ny.

Definición

El conjunto de los números enteros $\mathbb Z$ y el de los números racionales $\mathbb Q$ están definidos del siguiente modo:

- ② $\mathbb{Q} := \{m \cdot \frac{1}{n} : m \in \mathbb{Z} \text{ y } n \in \mathbb{N}\}$. El número real $m \cdot \frac{1}{n}$ se denota indistintamente como $\frac{m}{n}$ o como m/n.

Proposición Propos

El cuerpo $\mathbb R$ tiene la propiedad arquimediana, es decir, dados $x,y \in \mathbb R$, con 0 < y, existe $n \in \mathbb N$ tal que x < ny.

Proposición

- N no está acotado superiormente.
- ullet no está acotado ni superior ni inferiormente.

Proposición

Todo subconjunto no vacío A de $\mathbb N$ tiene primer elemento.

Proposición

Todo subconjunto no vacío A de $\mathbb N$ tiene primer elemento.

Proposición

Para cada $x \in \mathbb{R}$ existe un único número entero m que verifica $m \le x < m+1$.

Proposición

Todo subconjunto no vacío A de $\mathbb N$ tiene primer elemento.

Proposición

Para cada $x \in \mathbb{R}$ existe un único número entero m que verifica $m \le x < m+1$.

Definición

Sea $x \in \mathbb{R}$, el único número entero m que verifica

$$m \le x < m+1$$

se llama parte entera de x y se denota con [x], es decir [x] := m.

Proposición

Todo subconjunto no vacío A de $\mathbb N$ tiene primer elemento.

Proposición

Para cada $x \in \mathbb{R}$ existe un único número entero m que verifica $m \le x < m+1$.

Definición

Sea $x \in \mathbb{R}$, el único número entero m que verifica

$$m \le x < m+1$$

se llama parte entera de x y se denota con [x], es decir [x] := m.

Proposición

Si $x, y \in \mathbb{R}$, con x < y, entonces existe $r \in \mathbb{Q}$ tal que x < r < y.

Definición

En un cuerpo ordenado X, si $x=y^2$ se dice que y es una raíz cuadrada de x. Es muy fácil observar que si y es una raíz cuadrada de x, -y también es una raíz cuadrada de x, que x no puede tener más raíces cuadradas.

Definición

En un cuerpo ordenado X, si $x=y^2$ se dice que y es una raíz cuadrada de x. Es muy fácil observar que si y es una raíz cuadrada de x, -y también es una raíz cuadrada de x, que x no puede tener más raíces cuadradas.

Proposición

No existe ningún número racional cuyo cuadrado sea 2.

Definición

En un cuerpo ordenado X, si $x=y^2$ se dice que y es una raíz cuadrada de x. Es muy fácil observar que si y es una raíz cuadrada de x, -y también es una raíz cuadrada de x, que x no puede tener más raíces cuadradas.

Proposición Propos

No existe ningún número racional cuyo cuadrado sea 2.

Definición

$$(1+\varepsilon)^n < 1+3^n\varepsilon$$
 si $n \in \mathbb{N}$ y $0 < \varepsilon < 1$; (1)

Definición

En un cuerpo ordenado X, si $x=y^2$ se dice que y es una raíz cuadrada de x. Es muy fácil observar que si y es una raíz cuadrada de x, -y también es una raíz cuadrada de x, que x no puede tener más raíces cuadradas.

Proposición

No existe ningún número racional cuyo cuadrado sea 2.

Definición

$$(1+\varepsilon)^n < 1+3^n\varepsilon$$
 si $n \in \mathbb{N}$ y $0 < \varepsilon < 1$; (1)

Proposición

Si $0 < r \in \mathbb{Q}$ cumple $r^2 < 2$, entonces existe $t \in \mathbb{Q}$ tal que r < t y $r^2 < t^2 < 2$. Análogamente si $0 < s \in \mathbb{Q}$ cumple $s^2 > 2$, entonces existe $w \in \mathbb{Q}$ tal que 0 < w < s y $s^2 > w^2 > 2$.

Además las afirmaciones anteriores son también ciertas si los números reales r y s no son racionales.

Definición

En un cuerpo ordenado X, si $x=y^2$ se dice que y es una raíz cuadrada de x. Es muy fácil observar que si y es una raíz cuadrada de x, -y también es una raíz cuadrada de x, que x no puede tener más raíces cuadradas.

Proposición

No existe ningún número racional cuyo cuadrado sea 2.

Definición

$$(1+\varepsilon)^n < 1+3^n\varepsilon$$
 si $n \in \mathbb{N}$ y $0 < \varepsilon < 1$; (1)

Proposición

Si $0 < r \in \mathbb{Q}$ cumple $r^2 < 2$, entonces existe $t \in \mathbb{Q}$ tal que r < t y $r^2 < t^2 < 2$. Análogamente si $0 < s \in \mathbb{Q}$ cumple $s^2 > 2$, entonces existe $w \in \mathbb{Q}$ tal que 0 < w < s y $s^2 > w^2 > 2$.

Además las afirmaciones anteriores son también ciertas si los números reales r y s no son racionales.

Proposición

Existe un número $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ tal que $\alpha^2 = 2$. Además

$$\alpha = \sup\{0 \le r \in \mathbb{Q}: \ r^2 < 2\}$$

Proposición

Existe un número $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ tal que $\alpha^2 = 2$. Además

$$\alpha = \sup\{0 \le r \in \mathbb{Q}: \ r^2 < 2\}$$

Proposición

Si $x, y \in \mathbb{R}$, x < y, entonces existe $z \in \mathbb{R} \setminus \mathbb{Q}$ tal que x < z < y.

