Cultural Homophily and Collaboration in Superstar Teams

Gábor Békés* and Gianmarco I.P. Ottaviano**

* Central European University, KRTK and CEPR

** Bocconi University, Baffi-CAREFIN, IGIER, CEP and CEPR

NBER Workshop, Cambridge, MA, April 2023

Cultural Homophily and Collaboration in Superstar Teams

- ▶ Globalization mix best global expertise in multinational teams
- Key aspect of multinationality is 'cultural diversity':
 - Benefits: talent, learning and innovation ('capabilities')
 - ► Costs: communication, empathy and trust ('collaboration')
- Is there a difference in collaboration (i.e. ability to work for a common purpose) intensity by 'homophily' (i.e. tendency to associate with similar others)
 - even in superstar teams?
- Hard nut to crack:
 - ► Collaboration not observed directly
 - ▶ Difference due to 'homophily' confounded

00000

Induced vs. Choice Homophily

- Homophily = Opportunities ('induced') + Preferences ('choice')
- Opportunities vs. Preferences:
 - Distribution may mechanically determine probability of association
 - ► This confounds preference / choice
- Need to partial out 'induced' homophily to measure 'choice' homophily:
 - Option A: experiment with random team formation
 - Issue: Low external validity for highly skilled, lowly charged multinational workplace
 - Option B: observational data with adequate baseline
 - Issue: relevant (counterfactual) baseline

European Football as an allegory

Introduction

00000

- ► Teams: pro football clubs from the top-5 European leagues
 - ► Superstar team = global elite, top 5% of pro players
- New data: 5 countries, 11 million passes
- Collaboration: pass rate between player pairs
 - Team (squad) composition is exogenous to players
 - Collaboration is an individual choice
- Homophily = passer and receivers who share culture (nationality, history)

When I say Football, I mean Soccer

Related literature

Data

- Cost and benefits of diversity in multicultural teams (seminal): Lazear (1999) Lang (1986)
- Cost and benefits of diversity in broader environments (cities, plants): Ottaviano and Peri (2006, 2005) Buchholz (2021)
- Cost and benefits of diversity in multicultural teams (recent developments):
 - ► Ethnic conflict: Hjort (2014), Laurentsyeva (2019),
 - ► Team formation: Calder-Wang et al. (2021)
 - ► Hockey: Kahane et al. (2013), Football: Nüesch and Haas (2013), Tovar (2020)
- Homophily in scientific publications: Freeman and Huang (2015), AlShebli et al. (2018)
- Homophily in friendship networks: Currarini et al. (2009, 2010)
- Literature review from psychology to management: (Lawrence and Shah, 2020; Ertug et al., 2021)

Data Collection and Definitions

Data: Overview

Data

000000

- 5 top leagues (France, Germany, Spain, Italy, England),
- ▶ 8 seasons (2011/12-2018/19) every teams play with every other twice
 - ▶ 20 (18) teams per league, 14,608 games in total
 - ► 730 passes/game
- Webscraped play-by-play (event) data linked with personal info on players
 - ▶ 154 teams, each with 25-30 strong squad, regular churning (twice a year)
 - ► 10.7 million passes ('events')
 - 7,000 players from 138 countries

Raw Data: Events

- Event data 'play by play'
 - Structured text, events with features, qualifiers:
- Separately recorded with a timestamp
 - Pass between any two players
 - Web-scraped from a whoscored.com website
 - Events recorded by cameras+algorithms+humans.
- Pass events separated

Raw Data: Players

Data

000000

- Player characteristics:
 - Nationalities (possible multiple)
 - Position in team
 - Age, height
 - Player valuations over time
 - Web-scraped from a transfermarkt.com website
- Entity resolutions / coreference (accents, middle names, nicknames):
 - Matching algorithm by motifs

Measuring Cultural Homophily

Data

000000

- Characterize cultural background ('culture') = set of cultural traits transmitted across generations:
 - Such as language, history, norms, values and attitudes learned at home
- ► We measure 'culture' with four proxies:
- Nationality, colonial legacy, federal legacy, language only
 - ► Alternative: linguistic similarity
 - Not alternative: Values (WVS)
- 'cultural homophily' = more intense collaboration between player pairs with same culture

Same Culture Definition

- Same nationality (citizenship)
- Same colonial legacy different nationality
 - Argentina-Spain, England-Egypt (ruler and colony)
 - Uruguay-Argentina (colony siblings)
- Same federal legacy different nationality
 - Russia-Georgia, Croatia-Serbia
 - Scotland, Northern Ireland, Ireland
- Same language different nationality, colonial /federal legacy
 - Switzerland and Germany
 - DR Congo and France

Model (ideas)

- Model to disentangle choice from opportunity in an internally consistent way
- Model team's utility
- Player o's passing decision is determined by the comparison of team utilities across all potential receivers d = 1, ..., N.
 - Taking into account players characteristics and positions
- Homophily = shifter leading to more passes between player pairs of similar culture after controlling for variables based on the model

Data

Introduction

Simple case = Pass rate = f(receiver value and homophily)

Passers = Spanish midfielders in La Liga, N=24,299.

Model: Passer's Decision

Player o's passing decision is determined by the comparison of team utilities across all potential receivers d = 1, ..., N.

$$U^o + \beta \varphi^d U^d - \widetilde{c}^{o,d} + z^d$$

- $ightharpoonup U^o = ext{team benefit from player } o ext{ with the ball}$
- $ightharpoonup U^d = deterministic part by player d's characteristics$
- z^d realization of its random part ('shock') due to match contingencies.
- $ightharpoonup \varphi^d$ = probability of successful pass to receiver d
- β = relative importance the team attaches to passing in general ('style')
- $ightharpoonup \widetilde{c}^{o,d} =$ 'passing cost'

Model: Forward looking dynamic model

- Dynamic model
 - Passer takes into account future state of the ball.
- \triangleright 'pass rate' $p^{o.d}$ as the ratio number of passes from player o to teammate d over the total number of team passes.
 - Passer characteristics including team mates fielded with him
 - Receiver characteristics including team mates fielded with him
 - Position of players and passes
 - Time spent together when passer has the ball
- Passing cost $(\tilde{c}^{o,d})$ includes a binary same culture indicator = measure of homophily
 - ► Also: distance between players, forwardness

Model: discrete choice as benchmark

$$\ln p^{o,d} = \ln \tau^{o,d} + \ln P^o \left(\Lambda^o\right)^{-\kappa} + \ln P^d \left(\Lambda^d\right)^{-\kappa} - \kappa \gamma \log g^{o,d} - \kappa \lambda \log I^{o,d} - \log P + \varepsilon^{o,d}$$

- $ightharpoonup p^{o,d} =$ share of passes from o to d in team's total passes
- $ightharpoonup P_o$, $P_d = N$ passes made by player o /received by player d
- $ightharpoonup \Lambda^d$, Λ^d = multilateral resistance for passer / receiver
- $ightharpoonup au^{o,d} = ext{share of passes made by } o ext{ when } d ext{ is also on pitch}$
- $ightharpoonup g^{o,d}$ = frictions related to distance
- $ightharpoonup I^{o,d}$ = frictions unrelated to distance (e.g. mental effort)
- \triangleright P = total passes made by team

Estimation

- Aggregate probabilities to relative frequency
- ► Half-season level (16-20 games)
- pass rate' = number of passes from player o to teammate d
 as share of passes by o when d is on the pitch
- ▶ Estimation: Poisson (PPML) model of pass count
 - Offset time spent together

Poisson model with double player fixed effects

$$\textit{E}(\textit{pcount}_{o,d,t}|.) = \exp(\delta \textit{SameCult}_{o,d} + \textit{PassF}_{o,d,t} + \ln \textit{tau}_{o,d,t} + \upsilon_{o,t} + \upsilon_{d,t})$$

- ▶ Homophily: $SameCult_{o,d}$ as the same culture indicator (0/1).
- \triangleright Offset time spent together (τ)
 - Decision of the manager
- $\triangleright v_{o,t}$ FE: passer*half-season
- $\triangleright v_{d,t}$ FE: receiver*half-season
 - ► Team* half-season dummies soaked up

 $PassF_{o,d,t} = \gamma_1 PassDist_{o,d,t} + \gamma_2 Forwardness_{o,d,t} + \eta Position_o Position_d$

Estimation: role of fixed effects

- ▶ In estimation, use double player (*half-season) fixed effects
- Unobserved player characteristics
- Alternatives the passer faces in terms of receivers
 - ► Akin to multilateral resistance term in structural gravity

Results

Recap

Introduction

- Data: 5 leagues, 98 team/season, 8 seasons
 - Aggregated at half-seasons (16-20 games)
 - N=669K

Data

- Poisson models
 - Passer*half-season and receiver*half-season FF
 - ► FEs soak up team*half-season dummies
 - Exposure variable is time spent together
 - Includes pass frictions (distance, forwardness index)
 - Standard errors clustered P*h-s. R*h-s.

Result discussion

Data

- Core result: choice homophily premium: 2.4%
 - ► Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.

Result discussion

Data

- Core result: choice homophily premium: 2.4%
 - ► Consider a team in half-season. Partialling out pass frictions and receiver characteristics, a player will pass 2.4% more to a same culture peer.
- Passing to a same culture receiver is equally likely as passing to a different culture player valued a 10.5% more.
 - using transfer price estimations

Dissecting total homophily

Data

Core results + robustness

- Core result: choice homophily premium: 2.4%
- ► Taking into account managers decision to field players: 3.8%
- (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players

Core results + robustness

Data

- Core result: *choice* homophily premium: 2.4%
- ► Taking into account managers decision to field players: 3.8%
- ▶ (Unconditional) Same culture players tend to pass 6.2% more compared to different culture players
- Robust to a variety of specifications, partialling out
 - Physical differences
 - Assortative matching
 - Experience with club
 - Prior experience in youth club, other teams
 - Nationality specific passing style
 - Functional form specifications, such as ln(count)

Homophily is not common knowledge

Data

Introduction

- Players from different countries do pass differently
 - ► French players trained in French "national football style"

Style, captured by nation specific cross-position dummies not a confounder

- ► Homophily is more important for complex collaboration
 - ► Look at pass sequences only, homophily premium is 4.8% vs 2% for single passes.

- Homophily is present for shared nationality as well as colonial links
 - ► It is negative for federal legacy (ie USSR, Yugoslavia)
- Alternative measure of culture: shared language, similar language works but weaker
- ► Shared values (World Value Survey) no correlation at all

Dissecting culture

Dep. var: pass count	(1)	(2)	(3)	(4)
Same nationality (0/1)	0.0284*** (0.0030)	0.0302*** (0.0031)	0.0315*** (0.0031)	0.0186*** (0.0035)
Same colonial legacy $(0/1)$	0.0284*** (0.0041)	,	,	,
Same federal legacy (0/1)	-0.0223*** (0.0106)			
Just shared language (0/1)	-0.0046 (0.0070)			
LC: diff country, same language $(0/1)$, ,	0.0156*** (0.0039)	0.0140*** (0.0040)	
LC: diff country, similar language $(0/1)$		0.0111**	0.0094* (0.0045)	
Geographical proximity (neighbors) $(0/1)$,	0.0064* (0.0031)	
WVS: similar values (0/1)			,	-0.0064** (0.0029)
Observations	668,105	668,105	668,105	668,105
Pseudo R ²	0.76078	0.76077	0.76077	0.76076
passer-half_season fixed effects	✓	✓	✓	✓
receiver-half_season fixed effects Cross position dummies	√	√	√	√
Cross position dumines	√	√	√	√

Heterogeneity

- We see more of a homophily premium
 - Young players
 - Passers in larger culture groups
- No difference
 - Receiver quality

Data

Introduction

Heterogeneity by age, group size, receiver quality

Dep.var: Pass count	(1)	(2)	(3)
Same culture (any) (0/1)	0.0319***	0.0174***	0.0236***
	(0.0045)	(0.0043)	(0.0027)
Same culture (any) $(0/1) \times Passer age (0/1, 1=Experienced)$	-0.0096** (0.0048)		
Same culture (any) (0/1) \times Passer group size (1/1, 1 when N>=4)	(0.0048)	0.0146*** (0.0059)	
Same culture (any) $(0/1) \times$ Receiver quality $(0/1, 1= top 2)$, ,	0.0044
Passer group size (1/1, 1 when N>=4)		-0.0444*** (0.0075)	(0.0057)
Receiver quality $(0/1, 1= top 2)$		(0.0010)	0.0129 (0.0081)
Observations	668,105	668,105	668,105
Pseudo R ²	0.75930	0.74510	0.76077
passer-half_season fixed effects	✓	✓	✓
receiver-half_season fixed effects	\checkmark	\checkmark	✓
passer * receiver position dummies	✓	✓	✓

Investigating the mechanism

Mechanisms 1 – Cost vs bias

Data

- Till now: agnostic re what choice homophily represents
 - an efficient outcome promoting team performance
 - inefficient in-group favoritism detrimental to team.
- ▶ No silver bullet but two arguments to support efficiency
 - ▶ Performance vs diversity = noisy 0, problematic measure
- Two suggestive evidence against favoritism
- Beyond homophily, when players pass to other players of different culture, they tend to pass more to players belonging to large culture groups
- ▶ No show of lower homophily premium when under pressure

Mechanisms 1 – Cost vs bias 1

Data

- Let's focus on passes to different culture players
- Divide receivers into small (<3) or large (>3) groups
- Group size premium (different culture passes)
 - ► Homophily premium here is 3.6%

	to small	to large
from small	0	2.8%*
from large	-0.6%	1.8%*

- Beyond homophily, players tend pass more to large same culture groups
 - Account for future benefits
 - Supports efficiency argument (not favoritism)

Mechanisms 1 – Cost vs bias 2

- Do players exhibit less homophily under pressure?
- Consider key passes 2-3 passes before shot on goal
 - Really important passes
 - Under pressure from defenders
 - Sample is different = forwards and midfielders
- Homophily is unchanged

Mechanisms 2 – Motivation of players

Data

- What makes same-culture players find it easier to work together?
- ▶ Players of the same culture being able to
 - co-operate better
 - understand each other better.
 - see each other better on the pitch
- If so, does it go away once they get to know each other?

Mechanisms 2 – Motivation of players

- Look at the evolution of homophily premium over time
 - Divide receivers into newbie vs experienced groups
 - Cutoff: median time of 7 months
 - Compare homophily premium across groups

Mechanisms 2 – Motivation of players

Data

- Look at the evolution of homophily premium over time
 - Divide receivers into newbie vs experienced groups
 - Cutoff: median time of 7 months
 - Compare homophily premium across groups
- Homophily premium by receivers type
 - ▶ 1.7% among newbie receivers
 - ▶ 2.8% among experienced (=higher after time)
- Same culture players bond outside work help collaborate better

Homophily over time: shared experience

Data

	pass count				
	(1)	(2)	(3)	(4)	(5)
Same culture (any) (0/1)	0.0166 *** (0.0053)	0.0163*** (0.0053)	0.2325 (0.2156)	0.0131* (0.0078)	0.0206*** (0.0050)
Same culture (any) (0/1) \times Experience	0.0117 ** (0.0059)	0.0127**	-0.1372 (0.1924)	0.0191**	(0.0050)
Same culture (any) (0/1) \times Experience long	(0.0039)	(0.0000)	(0.1924)	(0.0000)	0.0073 (0.0059)
Observations	457,838	443,641	13,530	219,178	384,818
Pseudo R ²	0.76317	0.76431	0.83248	0.76578	0.76699
Early experience w other team	Include	Exclude	Only	Include	Include
Time with team capped	No	No	No	Yes	No
passer-half season fixed effects	✓	✓	✓	✓	✓
receiver-half season fixed effects	✓	✓	\checkmark	\checkmark	✓
Cross position D	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Contribution

- 1. Focus on everyday workplace collaboration high skilled, lowly charged context
- 2. Very large, global sample external validity
- 3. Well defined measure of collaboration at individual level
- 4. Model of baseline, both theory and empirics *L argedataset richmeasuresofi*

Mechanisms

Summary

Data

- Isolated choice homophily for shared culture
 - Even in superstar teams
 - Especially when complex tasks
 - Shared nationality + colonial history
- Spending time higher homophily premium
- ► Shared culture (language) -> lower transaction cost more likely mechanism than favoritism
- Homophily is pervasive even in teams of
 - very high-skill individuals
 - with clear common objectives and aligned incentives
 - and involved in well-defined tasks
 - activities are not particularly language-intensive.

It's hard to talk about football when Ukraine is under attack

Oleksandr Zinchenko, May 2022

Introduction

Help via Kyiv School of Economics at kse.ua/support/donation

 Introduction
 Data
 Model
 Measuring homophily
 Mechanisms
 Summary

 0000
 00000
 00000000
 00000000
 000000
 0000

Thanks for the attention

