

Scuola di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Magistrale in Informatica

Quality And Certification

STATIC ANALYSIS TOOLS FOR LLVM CLANG

EDOARDO DINI, FRANCESCO TERROSI

6326113

Anno Accademico 2018-2019

CONTENTS

1	Intro	oductio	n 3
	1.1	Projec	t Assignment 3
	1.2	Overv	iew 4
	1.3	Static	Analysis 5
	1.4	LLVM	I-Clang Compiler 6
2	Clar	ng Anal	lysis 7
	2.1	Introd	uction 7
	2.2	Analy	sis Methodology 8
	2.3	Unde	rstand 8
		2.3.1	Understand Project 8
		_	Understand Output Format 10
		2.3.3	Understand Results 11
		2.3.4	CLang Static Analyzer 19
		2.3.5	Reports Summary 19
		2.3.6	Understand Performances 23

INTRODUCTION

1.1 PROJECT ASSIGNMENT

The scope of this project is to perform a static analysis of the Clang compiler source code available at https://llvm.org/, https://clang.llvm.org/. In details, the project consists in:

- Analyze the C/C++ source code for the Clang project, using different tools for static analysis. The minimum number of tools that shall be selected is 2, and mandatorily it shall be used Understand++ and Clang static analyzer.
- Discuss the output of the different tools and their performance.

Some possible tools for static analysis are:

- Understand++ https://scitools.com/student/
- SonarCube https://www.sonarqube.org/
- Cert C Rosechecker (also available pre-installed in a Virtual Machine) https://www.cert.org/secure-coding/tools/rosecheckers.cfm
- Clang static analyzer
- Cppcheck
- Many others can be retrieved from:
 - https://www.owasp.org/index.php/Source_Code_Analysis_Tools
 - https://en.wikipedia.org/wiki/List_of_tools_for_static_ code_analysis#C,_C++

4 INTRODUCTION

Depending on the characteristics of the selected tool, it is recommended to comment on:

- the output of the static analyzers with respect to the computed metrics
- compliance to coding rules as MISRA, CERT C, ISO/IET 17961
- correct/missed/false detection.

It is recommended to compare the output of the tools with the information that is already available about the source code and provided by the developers, especially in terms of existing weaknesses of the software.

1.2 OVERVIEW

The scope of this work is to analyze the Clang compiler with a set of static analyzer tools, in order to detect violations to common and accepted coding rules (such as MISRA) and security weaknesses such as the ones pointed in the CWE (Common Weaknesses Enumerator).

Several tools were used for this purpose:

- Understand
- Clang Static Analyzer
- CppChecker
- Flawfinder
- Sonarqube
- Rosechecker

Unfortunately, not all of them were applicable for this work, due to the complexity of the project's architecture or the inflexibility of the tool. After collecting results from this tool, these were then compared in terms of:

- Violations found
- Performances
- Rules used to detect violations
- Easiness of the tool

1.3 STATIC ANALYSIS

Static Analysis is a technique used to analyse softwares without actually executing them.

In general this methodology relies on tools that inspect the source code in order to detect violations with respect to a set of well-defined rules. These tools usually operate by checking the syntax of the code, the semantic, the execution flow...

There are several advantages when adopting this technique:

- First of all, by checking the actual source code, it is possible to identify the direct cause of a vulnerability/bug
- If it is used during the design/development process of a software, it improves its cleanness and correcteness
- The analysis is done with (almost) zero interactions by the human operator

The tools used to perform the analysis can be distinguished with the respect to the phase in which the analysis is performed:

- Unit Level
 - → The analysis takes place within a specific program (or a part of it) without taking into account interactions with other programs
- Technology Level
 - → Analysis takes into account the interactions between unit programs, having a more general overview of a project
- System Level
 - → The analysis consider the interaction between unit programs but without being limited to a specific technology
- Business Level
 - → The analysis also takes into account aspects related to business processes implemented in the software system

In our work we are interested in **Unit Level Analysis**.

1.4 LLVM-CLANG COMPILER

The LLVM compiler infrastructure project is a "collection of modular and reusable compiler and toolchain technologies" used to develop compiler front ends and back ends [1]. It is a middle-layer between the frontend (C, C++, Python...) and the backend (low-level hardware-dependent assembly). The high-level source code is translated into LLVM bitcode, where optimization and analysis is performed before being translated to low-level code.

The Clang compiler is a C/C++ (and several others) compiler frontend that uses the LLVM infrastracture.

The project is structured in a complex hierarchy of directories and files, referencing each others. This was one of the two reasons that forced us to work on a sub-part of the project: the **tools/libclang** directory. The other reason was that some files made some of the static analyzers crash in unexpected manners, probably because of some sort of overflow.

Figure 1: As we can see from this example, the same warning is displayed multiple times. This is most likely an overflow on the specific check

CLANG ANALYSIS

2.1 INTRODUCTION

In this chapter it will be described the analysis process for all the tools used.

Understand is indeed the tools that gives the most accurate results in terms of checks, since it incorporates C/C++ MISRA standards, a beta version of the **CLang Static Analyzer**, which is a static analysis tool provided by the LLVM developers, and many other quality checks offered by SciTools itself.

A simpler but also quite effective tool is **Cppcheck** which is designed to "provide unique code analysis to detect bugs and to focus on detecting undefined behaviour and dangerous coding constructs" [2]. Also, as pointed by the developers, its main focus is to "detect only real errors in the code (i.e. have very few false positives)". Cppcheck refers to the *Common Weakness Enumeration* standard for the analysis, a formal list of security issues published by the MITRE institute. It is also possible to check MISRA-C project compliance but it requires to buy the standard so this feature was not used.

The last used tool is **flawfinder** which puts its focus more on security flaws rather than quality issues. This tool incorporates an option to run the analysis in order to detect possible false positives in an automated manner. This tools uses the CWE standard as Cppcheck does.

Other tools such as **SonarQube** and **Cert C Rosechecker** were used but due to their characteristics they were unusable for our purpose.

2.2 ANALYSIS METHODOLOGY

The LLVM Clang compiler was analized with all the tools listed above. Since some issues arose while analyzing the whole project, as it was pointed in the previous section, a representative subset of it was chosen. In particular the folder **src/tool/libclang** was analyzed because it has been observed that the source files in this folder contained much of the compiler logic. This was the input folder for all the static analysis tools used.

After the output was produced, the second phase of the analysis can start. Since the output format of the various tool is hetherogenous, it was necessary to convert them in excel sheets in order to collect evidences about what files were the most vulnerable/contained more bugs.

2.3 UNDERSTAND

Understand is a very powerful tool for static analysis that can be used to analyze software written in multiple languages suchs as Java, Ada, Cobol, Python, C/C++... Among the tools used, it is the only one that comes with a nice and user-friendly user interface that allows users to navigate through the software files.

2.3.1 Understand Project

First of all, it must be created an *Understand Project*. In this first step you are asked to select the language of the software (C/C++ in our case study) and the directories to analyze.

Figure 2: The whole subdirectory tools/libclang is imported in the Understand project in order to run the analysis.

When the files are loaded in the program, the analysis can be run simply by opening the *codecheck perspective* and selecting which standard should guide it.

Figure 3: The MISRA standard is incorporated in Understand, as well as the Clang Static Analyzer. Generic checks are also offered by the tool as *SciTools Recommended Checks* and *AllChecks*, some of which are redundant.

- *SciTools' Recommended Checks* This is a small set (17 items) of generic good programming rules
- Published Standards This section contains the published standards supported by Understand
 - It was used the MISRA-C++ 2008 due to the nature of the source files (.cpp) and because one of the goals of this project was to check the Clang compiler compliance to MISRA rules.
- *Clang Static Analyzer* Is an implementation of the tool incorporated in Understand.
- All Checks This is a collection of checks which consists of generic good programming rules and some of the MISRA rules. Despite its name, not all the checks are included for real, this is the reason why it is not correct to use only this option for a consistent analysis.

2.3.2 Understand Output Format

When the analysis ends, it is possible to navigate through different perspectives of what has been observed. For example it is possible to list results *by file*, in order to check which issues are present in each file (and at which line of code) and what files contains the most issues. Another possibility is to display result *by check*, that is: for each rule (e.g. MISRA) how many times it has been violated and where (in terms of files). Two very interesting features offered by Understand are the:

- Result Locator
- Result Treemap

The first one offers the possibility to navigate through the findings, filtering them by file, by violation and some other options, giving the possibility to jump to the desired *vulnerable* line of code in the source file. The result treemap instead gives you a graphic representation of the files vulnerabilities, in terms of criticity and quantity. These characteristics can be viewed graphically using colored boxes, where the meaning of the color/dimension of the boxes can be defined by the user.

Mastering the options of these two powerful features gives to the user much more control of the analysis and a wider perspective of the whole project quality.

Figure 4: Result Treemap view.

All the output perspectives can be exported in suitable formats (e.g. Treemap is exported in .png files while lists of violations are exported in .txt or .html files) that facilitate the second phase of the analysis.

2.3.3 Understand Results

As it has been said in the introduction, multiple analysis with different checks were ran:

- a) MISRA-C++ 2008
- b) SciTools' Recommended Checks
- c) All Checks
- d) Clang Static Analyzer
- a) This check is based on the MISRA-C++ 2008 standard, which is a standard developed for the quality of C++ source files.

Results has been sorted by files and by MISRA rules. After that a compact view of these was produced showing the numbers of violations for each MISRA and for each file.

Analyzing the reports it can be observed that:

- The total number of violations in the libclang folder is 8450
- The first three rules that were violated the most are:
 - 1. MISRA08_7-1-1 A variable which is not modified shall be const qualified 1845 violations.

If a variable does not need to be modified, then it shall be declared with const qualification so that it cannot be modified. A non-parametric variable will then require its initialization at the point of declaration. Also, future maintenance cannot accidentally modify the value.

2. MISRA08_6-4-1 - An if condition construct shall be followed by a compund statement. The else keyword shall be followed by either a compound statement or another if statement - 1239 violations.

If the bodies of these constructs are not compound statements, then errors can occur if a developer fails to add the required braces when attempting to change a single statement body to a multistatement body. Requiring that the body of these constructs shall be a compound statement (enclosed within braces) ensures that these errors cannot arise.

- 3. MISRAo8_o-1-10 **All defined functions called** 733 violations. Functions or procedures that are not called may be symptomatic of a serious problem, such as missing paths.
- The first three files that contains the most violations are:
 - 1. CIndex.cpp 3828 violations.
 - 2. CXType.cpp 757 violations.
 - 3. CXCursor.cpp 558 violations.

Looking at the complete report, considerations can be made on the following aspects:

- Some of the violations found (e.g. MISRAo8_o-1-10) include for sure some false-positive, due to the fact that the analysis was performed on a small subset of the complete project. Maybe the violation count for these rules could be reduced by performing a more comprehensive analysis.
- The violations distribution is reasonable, that is that most of the files have a similar issues count and the same can be said for MISRA rules.

There is an exception both for files and for MISRA:

FILE: CIndex.cpp (3828 violations wrt 8450 total violations)

MISRA: MISRA08_7-1-1 (1845 violations wrt 8450 total violations)

- Using the Result Treemap feature it is possible to observe that the NumberOfViolations/CountLineCode ratio varies between [0.27 - 1.75].
- Combining the use of the Result Treemap and Result Locator it is observable that the first 3 files in terms of NumberOfViolations/CountLineCode ratio are relatively small files compared to the others.

Figure 5: Result Treemap where files are sorted by NumberOfViolations/CountLineCode ratio. Darker boxes indicates more distinct violation types while wider boxes indicate higher ratio.

- b) SciTools Recommended Checks is a set of 17 quality checks based on code quality conventions that does not follow any precise standard. Results has been sorted by files and by the checkID provided by Understand. The postprocess phase was very similar to the previous one in order to obtain a compact view of data.
 - The total number of violations in the **libclang** folder is 3299 (roughly 1000 violations less than the MISRA-check).
 - The first three checks that were violated the most are:
 - 1. RECOMMENDED_16 Each variable declaration should have a comment 1774 violations.
 - 2. RECOMMENDED_13 Every defined function shall be called at least once 733 violations.
 - 3. RECOMMENDED_08 -All fixed values will be defined constants 405 violations.
 - The first three files that contains the most violations are:
 - 1. CIndex.cpp 1472 violations.
 - 2. CXType.cpp 266 violations.
 - 3. CXCursor.cpp 250 violations.

As it can be noticed by these data, the three files that have the most violations are the same as in the MISRA analysis.

Looking at the complete dataset and comparing it to the previous one, the following considerations can be made:

- The *RECOMMENDED_13* plays a similar role as the MISRAo8_0-1-10. We can expect that when the analysis runs on the whole project the count number of this violation (*Every defined function shall be called at least once*) drops.
- The RECOMMENDED_16 check may seem too exaggerated but, if we think to big project as LLVM-Clang is, where multiple teams cooperate writing different chunks of code, this check become reasonable.

- The violations distribution with respect to files is quite odd. It can be observed that the average of the violations count is approximately 100. If we exclude the CIndex.cpp file the average drops approximately to 55.
- There is an exception both for files and for check, as we saw in the previous section:

FILE: CIndex.cpp (1472 violations wrt 3299 total violations)

MISRA: RECOMMENDED_16(1774 violations wrt 3299 total violations)

 Using the Result Treemap feature it is possible to observe that the NumberOfViolations/CountLineCode ratio varies between [0.09 - 0.39].

Figure 6: Result Treemap where files are sorted by NumberOfViolations. As you can see the file CIndex.cpp covers almost half of the area.

Figure 7: Despite the result in the previous figure, the NumberOfViolations/LineOfCode ratio is quite homogeneous.

c) The *AllChecks* check set is the biggest among the provided ones. It includes most of the checks already seen in the previous sections, plus some completely new checks.

Results has been sorted by files and by the checkID provided by Understand. The postprocess phase was very similar to the previous one in order to obtain a compact view of data.

- The total number of violations in the **libclang** folder is 30604 (indeed a very huge number compared to the previous ones).
- The first three checks that were violated the most are:
 - 1. CPP_Looo Calls to COTS (Commercial Off The Shelf) library functions that might throw an exception, must be enclosed in a try block 5921 violations.
 - 2. CPP_Ioo5 **Identifier name reuse** This check is concerned about variables' names. It requires that, in the same file, a different name is given to every different variable 3546 violations.
 - 3. CPP_Voo6 -A variable which is not modified should be const qualified same as MISRA analysis 1845 violations.
- The first three files that contains the most violations are:
 - 1. CIndex.cpp 14004 violations.
 - 2. CXType.cpp 2311 violations.
 - 3. CXIndexDataConsumer.cpp 2078 violations.

It is noticeable that, with this set of checks, the third file with most violations is *CXIndexDataConsumer.cpp* instead of *CIndex.cpp*. Let's now proceed with some considerations on this analysis as well:

Since this analysis include the previous ones, we assume that there
are false-positives but they are caused mostly by the fact that the
inspection was done on a subpart of the project. We don't have
evidences of false-positives among the most common violations
(see the complete excel report for more details).

- The most frequent violation is of a new kind. It is an important vulnerability that was pointed by none of the other analysis. This is quite odd since this is a quite important rule, well accepted by the developer community.
- The violations distribution with respect to files is similar to the previous ones.
- The violations distribution with respect to checks is almost uniformly distributed. This behaviour is gradually lost when the violations count goes over approximately 400)
- As well as the previous analysis, there is an exception both for files and for checks:
- FILE: CIndex.cpp (14004 violations wrt 30604 total violations, almost half of the total)
- MISRA: CPP_Looo(5921 violations wrt 30604 total violations. Recall that the second most common check had more than 2000 violations less)
 - Using the Result Treemap feature it is possible to observe that the NumberOfViolations/CountLineCode ratio varies between [1 -5.45]

Figure 8: The CIndex.cpp file covers almost half of the total area also in this figure.

Figure 9: Even if the proportion of the max/min of the ratio is similar to the previous, the ratio distribution itself is quite sparse (it ranges between 1 and 5.5), as well as the first analysis.

d) The *Clang Static Analyzer* check set is an implementation of the Clang Static Analyzer tool, developed as part of the LLVM-Clang project. The Clang Static Analyzer itself has not been used since it requires the build of the *whole* project to scan it. Moreover the increased knowledge of Understand and the presence of this set of checks embedded in the tool led us to the choice of using this implementation rather than the standalone tool.

This analysis did not find any violation. This seems reasonable since the metrics and quality practices chosen during the development of the LLVM-Clang compiler are probably the same metrics and checks implemented in the analyzer.

2.3.4 Reports Summary

In this conclusive section for the Understand analyzer, will be presented a summary of the most important observations along with some cross-checks. Summaries of the data collected throughout these analysis are reported at the end of this paragraph.

- All the analysis agreed that CIndex.cpp is the file with the largest violations count. The violations number of this file is usually very large, compared to the others.
- CXType.cpp is always the second file with the largest violations count. There are variations from the third position onwards, for example: CXCursor.cpp appears 2 times in the third position, while CXIndexDataConsumer.cpp appears 1 time.
- Looking at the violationsCount/countLineCode ratio, it is observable that across the three analysis the min/max proportion is very similar ($\approx 5.5 \pm 1$).
- It seems reasonable that using the metrics chosen by the project developers to analyze the source code no violations are found while, when different metrics are used, there are some violations.
- In some cases the violated metrics could be considered as a warning (e.g. to write a comment for every variable helps to keep the project well documented) while in some other cases (e.g. do not use trycatch construct) they are critical issues.

- Very likely, in these analyses, there are some false positives. This is because of the fact that the analyses were not performed on the whole project (e.g. functions that are never called in the analyzed modules could be called somewhere else).
- Some duplicated violations were reported when performing the analysis using the MISRA set. This is likely to be attributable to a possible overflow issue that has been noted also in the very first phase of the use of Understand. The duplicated issues had been removed in order to clean the dataset. No duplications were found using the other sets of rules.

MISRA	Tot
MISRA08_0-1-1	1
MISRA08_0-1-10	733 139
MISRA08_0-1-11 MISRA08_0-1-3	139
MISRA08_0-1-4	51
MISRA08_0-1-5	4
MISRA08_0-1-7	48
MISRA08_10-3-2	24
MISRA08 11-0-1	5
MISRA08_12-1-2	2
MISRA08_12-1-3	11
MISRA08_14-7-1	10
MISRA08_16-0-1	9
MISRA08_16-0-2	30
MISRA08_16-0-3	9
MISRA08_16-0-4	27
MISRA08_16-0-6	9
MISRA08_16-0-7	3
MISRA08_16-2-1	36
MISRA08_16-2-2	27
MISRA08_16-3-1	5
MISRA08_16-3-2	9
MISRA08_17-0-1 MISRA08_17-0-2	3
MISRA08_17-0-2 MISRA08_18-0-1	2
MISRA08_18-0-3	1
MISRA08_18-4-1	90
MISRA08_2-10-1	300
MISRA08_2-10-2	55
MISRA08_2-10-4	11
MISRA08_2-10-5	13
MISRA08_27-0-1	4
MISRA08_2-7-3	11
MISRA08_3-1-1	95
MISRA08_3-1-2	3
MISRA08_3-2-1	15
MISRA08_3-2-3	11
MISRA08_3-2-4	53
MISRA08_3-3-1	386
MISRA08_3-3-2	1
MISRA08_3-9-2	176
MISRA08_4-5-1 MISRA08_4-5-3	1
MISRA08_4-5-3 MISRA08_5-2-10	33
MISRA08_6-3-1	38
MISRA08_6-4-1	1239
MISRA08_6-4-2	34
MISRA08_6-4-5	695
MISRA08_6-4-6	134
MISRA08_6-4-8	2
MISRA08_6-5-1	63
MISRA08_6-5-2	52
MISRA08_6-5-4	2
MISRA08_6-6-2	3
MISRA08_6-6-4	4
MISRA08_6-6-5	563
MISRA08_7-1-1	1845
MISRA08_7-1-2	148
MISRA08_7-3-1	528
MISRA08_7-3-4	52
MISRA08_7-3-5	2
MISRA08_7-5-4	21
MISRA08_8-0-1 MISRA08_8-4-2	20
MISRA08_8-4-2 MISRA08_8-4-4	421
MISRA08_8-5-1	23
MISRA08_8-5-1 MISRA08_9-3-1	3
MISRA08_9-3-3	37
MISRA08_9-5-1	1
Total	8450

File	Tot
ARCMigrate.cpp	46
BuildSystem.cpp	101
CIndex.cpp	3828
CIndexCodeCompletion.cpp	346
CIndexCXX.cpp	55
CIndexDiagnostic.cpp	249
CIndexDiagnostic.h	42
CIndexer.cpp	59
CIndexer.h	30
CIndexHigh.cpp	199
CIndexInclusionStack.cpp	24
CIndexUSRs.cpp	58
CLog.h	70
CursorVisitor.h	62
CXComment.cpp	246
CXComment.h	7
CXCompilationDatabase.cpp	105
CXCursor.cpp	558
CXCursor.h	38
CXIndexDataConsumer.cpp	518
CXIndexDataConsumer.h	120
CXLoadedDiagnostic.cpp	131
CXLoadedDiagnostic.h	20
CXSourceLocation.cpp	162
CXSourceLocation.h	14
CXStoredDiagnostic.cpp	23
CXString.cpp	69
CXString.h	9
CXTranslationUnit.h	28
CXType.cpp	757
CXType.h	3
Index_Internal.h	22
Indexing.cpp	451
Total	8450

Figure 10: Summary of the MISRA checks

ARCMigrate.cpp BuildSystem.cpp	9 18 1472 104
	1472
CIndex.cpp	104
CIndexCodeCompletion.cpp	
CIndexCXX.cpp	22
CIndexDiagnostic.cpp	99
CIndexDiagnostic.h	10
CIndexer.cpp	11
CIndexer.h	11
CIndexHigh.cpp	82
CIndexInclusionStack.cpp	14
CIndexUSRs.cpp	35
CLog.h	19
CursorVisitor.h	27
CXComment.cpp	90
CXComment.h	9
CXCompilationDatabase.cpp	33
CXCursor.cpp	250
CXCursor.h	16
CXIndexDataConsumer.cpp	221
CXIndexDataConsumer.h	102
CXLoadedDiagnostic.cpp	34
CXLoadedDiagnostic.h	15
CXSourceLocation.cpp	67
CXSourceLocation.h	12
CXStoredDiagnostic.cpp	6
CXString.cpp	27
CXString.h	7
CXTranslationUnit.h	14
CXType.cpp	266
Index_Internal.h	4
Indexing.cpp	193
Total	3299

Reccomended Check	Tot
RECOMMENDED_00	11
RECOMMENDED_01	57
RECOMMENDED_02	15
RECOMMENDED_04	3
RECOMMENDED_05	111
RECOMMENDED_06	4
RECOMMENDED_07	30
RECOMMENDED_08	405
RECOMMENDED_10	12
RECOMMENDED_12	1
RECOMMENDED_13	733
RECOMMENDED_14	143
RECOMMENDED_16	1774
Total	3299

Figure 11: Summary of the SciTools Recommended Checks

File	lot
ARCMigrate.cpp	17
BuildSystem.cpp	64
CIndex.cpp	1400
CIndexCodeCompletion.cpp	109
CIndexCXX.cpp	18
CIndexDiagnostic.cpp	80
CIndexDiagnostic.h	17
CIndexer.cpp	16
CIndexer.h	11
CIndexHigh.cpp	75
CIndexInclusionStack.cpp	12
CIndexUSRs.cpp	24
CLog.h	17
CursorVisitor.h	24
CXComment.cpp	76
CXComment.h	5
CXCompilationDatabase.cpp	34
CXCursor.cpp	182
CXCursor.h	47
CXIndexDataConsumer.cpp	207
CXIndexDataConsumer.h	55
CXLoadedDiagnostic.cpp	46
CXLoadedDiagnostic.h	110
CXSourceLocation.cpp	58
CXSourceLocation.h	7
CXStoredDiagnostic.cpp	14
CXString.cpp	23
CXString.h	6-
CXTranslationUnit.h	8
CXType.cpp	231
CXType.h	1
Index_Internal.h	3
Indexing.cpp	148
Total	3060

Check	Tot	Check	Tot
AC_01	21	CPP_F000	12
CPP_026	33	CPP_F001	12
CPP_B001	65	CPP_F002	3
CPP_C000	11	CPP_F003	731
CPP_C003	652	CPP_F004	1082
CPP_C006	2	CPP_F006	419
CPP_C009	11	CPP_F007	5
CPP_C013	38	CPP_F009	118
CPP_C014	33	CPP_F010	111
CPP_C015	63	CPP_F011	373
CPP_C016	1289	CPP_F014	37
CPP_C017	1323	CPP_F015	19
CPP_C020	52	CPP_F019	148
CPP_C021	2	CPP_F020	2
CPP_C023	3	CPP_F022	121
CPP C024	57	CPP F023	24
CPP C025	4	CPP H003	125
CPP C026	4	CPP H006	95
CPP_C027	5	CPP_H007	31
CPP_C029	563	CPP_I000	11
CPP_C031	130	CPP_I001	333
CPP_C032	2	CPP_I002	1374
CPP_C033	687	CPP_I003	34
CPP_C034	1	CPP_I004	529
CPP_C036	382	CPP_I005	3546
CPP_D001	15	CPP_I007	4
CPP_D002	20	CPP_I008	44
CPP_D007	373	CPP_I010	55
CPP_D009	2	CPP_I011	72
CPP_D011	386	CPP_I012	13
CPP_D012	13	CPP_I013	31
CPP_D013	53	CPP_I015	139
CPP_D014	386	CPP_I016	8
CPP_D016	85	CPP_L000	5921
CPP_D022	376	CPP_L001	1
CPP_D023	2	CPP_L003	4
CPP_D025	388	CPP_L004	1
CPP_D026	11	CPP_M000	90
CPP_D029	12	CPP_P001	9
CPP_D031	4	CPP_P003	269
CPP_E004	15	CPP_P004	30
CPP_E015	2	CPP_P006	5
CPP_E016	1	CPP_P008	24

Check	Tot
CPP_F000	12
CPP_F001	12
CPP_F002	3
CPP_F003	731
CPP_F004	1082
CPP_F006	419
CPP_F007	5
CPP_F009	118
CPP_F010	111
CPP_F011	373
CPP_F014	37
CPP_F015	19
CPP_F019	148
CPP_F020	2
CPP_F022	121
CPP_F023	24
CPP H003	125
CPP H006	95
CPP H007	31
CPP 1000	11
CPP 1001	333
CPP 1002	1374
CPP_I003	34
CPP_I004	529
CPP_I005	3546
CPP 1007	4
CPP_I008	44
CPP_I010	55
CPP_I011	72
CPP_I012	13
CPP_I013	31
CPP_I015	139
CPP 1016	8
CPP L000	5921
CPP L001	1
CPP L003	4
CPP L004	1
CPP_M000	90
CPP P001	9
CPP P003	269
CPP P004	30
CPP P006	5
CDD DUUS	2/

Check	Tot
CPP_P009	9
CPP_P012	12
CPP_P013	27
CPP_P015	209
CPP_P017	9
CPP_P019	30
CPP_P020	27
CPP_P021	3
CPP_P022	36
CPP_P023	1
CPP_P024	9
CPP_P025	3
CPP_P026	9
CPP_P029	14
CPP_S000	1
CPP T000	176
CPP U001	48
CPP U002	48
CPP U003	139
CPP U005	9
CPP_U006	5
CPP V000	405
CPP_V001	86
CPP_V002	12
CPP_V003	69
CPP_V004	51
CPP_V005	12
CPP_V006	1845
CPP_V007	143
CPP_V009	52
CPP_V010	1775
CPP_V011	23
CPP_V012	24
EFFECTIVECPP_22	69
METRIC_00	149
METRIC_01	61
METRIC_02	1136
METRIC_03	166
METRIC_04	37
METRIC_05	3
METRIC_06	26
METRIC_07	18
METRIC_08	26
Tatal	2000
Total	30604

Figure 12: Summary of the AllChecks checks

2.3.5 Understand Performances

Understand is a very powerful tool, that comes with an easy-to-use user-interface and that gives a lot of informations about the performed analysis (e.g. result Treemap, result Locator, sort by check/file...) On the other hand, it is not a lightweight program: we experienced unexpected crashes during analyses, issues duplication and a slow execution time in general. These are some of the main reasons that forced us to work on a subset of the LLVM-Clang compiler.

Compared to the tools that will be presented in the next sections, this is indeed the most efficient in terms of *informations* and *versatility* (The various views it offers are a very powerful tool to navigate through the data). On the other hand, in terms of actual performance, it was the slowest one.

2.4 CPPCHECK

BIBLIOGRAPHY

- [1] Wikipedia https://en.wikipedia.org/wiki/LLVM (Cited on page 6.)
- [2] Cppcheck http://cppcheck.sourceforge.net/ (Cited on page 7.)