Introduction

Représenter ce réseau sous la forme d'un **graphe** où les routeurs sont les sommets.

Comment peut-on le qualifier ?

Quels chemins permettent de relier M1 à M11 ?

1. Identifier les différents sous-réseaux.

2. Vérifier que les adresses des machines concordent.

Les routeurs servent à guider les paquets d'un sousréseau à un autre, grâce à leurs tables de routage.

Initialisation des tables de routage

Les routeurs A et G commencent par initialiser leur table avec les informations sur les réseaux auxquels ils sont directement connectés :

Routeur	Réseau	Moyen de l'atteindre
Α	172.168.0.0	eth0
	192.168.7.0	eth1
	172.169.0.0	eth2
G	10.0.0.0	eth0
	192.168.7.0	eth1

Cette table ne suffit pas pour réussir à communiquer dans l'ensemble du réseau.

Que se passerait-il si M1 voulait communiquer avec M5 ?

On pourrait finir de remplir les tables de routage des routeurs A et G à la main : c'est le routage statique.

Plutôt, on utilise des **protocoles de routage** : c'est le *routage dynamique*.

RIP

Routing Information Protocol (RIP) est basé sur deux règles :

- L'envoi périodique de la table de routage de chaque routeur aux routeurs de ses réseaux locaux.
- Un décompte du nombre de routeurs (= de sauts) traversés qui est la métrique permettant de déterminer le plus court chemin pour atteindre un destinataire.

Table de routage avec RIP

Voici la table de notre réseau, après application de RIP :

Routeur	Réseau	Moyen de l'atteindre	Métrique
Α	172.168.0.0	eth0	0
	192.168.7.0	eth1	0
	172.169.0.0	eth2	0
	10.0.0.0	192.168.7.2	1
G	10.0.0.0	eth0	0
	192.168.7.0	eth1	0
	172.168.0.0	192.168.7.1	1
	172.169.0.0	192.168.7.1	1

Table de routage avec RIP

Voici la table de notre réseau, après application de RIP :

Routeur	Réseau	Moyen de l'atteindre	Métrique
Α	172.168.0.0	eth0	0
	192.168.7.0	eth1	0
	172.169.0.0	eth2	0
	10.0.0.0	Routeur G	1
G	10.0.0.0	eth0	0
	192.168.7.0	eth1	0
	172.168.0.0	Routeur A	1
	172.169.0.0	Routeur A	1

Exercice

A partir de ce réseau représenté sous forme de graphe, appliquer RIP pour déterminer le plus court chemin de M1 à M11.

Problème de RIP

Qu'est-ce que RIP ne prend pas en compte ?

Problème de RIP

Qu'est-ce que RIP ne prend pas en compte ?

Que le plus court chemin entre deux machines dépend du débit des connexions empruntées.

OSPF

Le protocole **Open Short Path First (OSPF)** fonctionne également sur un échange périodique des tables de routage entre routeurs voisins.

La différence est que la métrique utilisée est fonction du débit de la connexion entre les routeurs :

$$co\hat{u}t = \frac{10^8}{d\acute{e}bit}$$

Un *coût* est associé à chaque connexion. Le débit est en bits par seconde.

Exercice

Les débits des connexions entre routeurs sont indiqués ci-dessus en Mb/s :

- A B: 10
- A-H:1
- B D: 100
- C D: 10
- C H: 10
- D-E:10
- E-F:100
- F-G:1
- H-F:10

Ajouter les coûts des connexions au graphe et appliquer OSPF pour déterminer le plus court chemin entre M1 et M11.

Algorithme du plus court chemin

En pratique, l'algorithme de Dijkstra permet de trouver *le plus court chemin* dans un graphe pondéré en identifiant celui dont la somme des poids est minimale.

Algorithme de Dijkstra

Algorithme du plus court chemin

Algorithme du plus court chemin

- Initialisation du tableau avec la valeur « ∞ » pour tous les sommets, sauf la source, mise à 0.
- Mise à jour de la valeur des sommets voisins avec la valeur du sommet de départ + le poids de arête permettant de l'atteindre.
- On réitère ces étapes à partir du sommet associé à la **plus petite distance**, non déjà traité. Si une valeur de distance est déjà attribuée à un sommet, on ne met celle-ci à jour que si la nouvelle est **inférieure**.
- L'algorithme s'arrête lorsque l'on arrive au sommet destination.