Das Argument der Lösungsfunktion f, geschrieben in der Form $\omega t - \vec{k}\vec{r} + \phi$. Beschreibt den Schwingungszustand der Welle.

Lineare partielle Differentialgleichung zweiter Ordnung im Ort und in der Zeit für die Funktion $f(\vec{r},t)$. Beschreibt die räumliche und zeitliche Ausbreitung der Welle:

$$\Delta f(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2 f(\vec{r},t)}{\partial t^2} = 0$$

Normale der Wellenfront.

Wellenfläche, die Orte \vec{r} , an denen f zu vorgegebener Zeit dieselbe Phase hat. Wellen sind im Raum periodisch, es gibt also unendlich viele Wellenfronten. Nach Form der Front unterscheidet man ebene Wellen, Zylinderwellen und Kugelwellen.

 \vec{e} , \vec{k} , auf 1 normierter Wellenzahlvektor.

Wellenvektor, \vec{k} , in der Lösung der Wellengleichung auftretender konstanter Vektor. Die Ebenen gleicher Phase bewegen sich parallel zueinander mit der Geschwindigkeit c in Richtung von \vec{k} .

c, Geschwindigkeit, mit der sich die Wellenfronten der Welle bewegen:

$$c = \lambda f = \frac{\lambda}{T} = \frac{\omega}{|\vec{k}|}$$

k, Betrag des Wellenzahlvektors \vec{k} .