INTERROGACIÓN 1 MAT1620

PUNTAJE Y SOLUCIÓN PREGUNTA DE DESARROLLO

La siguiente pauta se encuentra evaluada con nota entre 1.0 y 7.0.

En la respectiva pregunta en la plataforma CANVAS se declaró que la pregunta de desarrollo tenía asignado 5 puntos. Es por esto que el puntaje definitiva de esta pregunta (el que está publicado en Labmat) se obtiene multiplicando el puntaje de esta pauta por el factor 5/7.

Por ejemplo, si según esta pauta mi nota en esta pregunta es un 5,5 entonces mi puntaje en Labmat(en la pregunta de desarrollo) debiera ser:

$$5.5 \cdot \frac{5}{7} = 3.9.$$

1. DESARROLLO FORMA 1

Considere la función

$$f(x,y) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + y^2 - 2y + 1,$$

definida sobre la región

$$D = \{(x,y) : x \ge 0, y \ge 0, x + y \le 1\}.$$

Determine los máximos y los mínimos absolutos de f.

SOLUCIÓN:

Para analizar los máximos y mínimos de la función, comenzaremos por el interior de su dominio. Aquí podemos determinar puntos críticos haciendo $\nabla f(x,y) = (0,0)$.

$$f_x(x,y) = x^2 - 3x + 2 = 0$$

$$f_y(x,y) = 2y - 2 = 0$$

Este tiene por solución a los puntos (1,1); (2,1). Pero ninguno de ellos se encuentra en el interior del dominio pedido. Por lo tanto no tenemos

máximos o mínimos locales en el interior.

A continuación pasamos a analizar la función en la frontera de su dominio.

Comenzamos analizando los puntos para los cuales x=0, en este caso la función se convierte en

$$f(x) = y^2 - 2y + 1,$$

Que no posee puntos críticos en el interior del segmento para $y \in (0, 1)$. Pero el vértice $P_1(0, 1)$ si clasifica como candidato a máximo o mínimo absoluto

A continuación analizamos los puntos para los cuales $y = 0, x \in (0, 1)$ en este caso la función se convierte en:

$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + 1,$$

función que no posee puntos críticos en su interior pero al igual que antes, el vértice $P_2(1,0)$ clasifica como candidato a max. o min.

Finalmente analizamos los puntos que satisfacen y = 1 - x para $x \in (0,1)$. En este conjunto la función se convierte en

$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x$$

Función que no posee puntos críticos.

En resumen, tenemos que los candidatos son los puntos P_1 , P_2 y además el tercer vértice $P_3(0,0)$. Para concluir comparamos los valores de la función en cada uno de ellos.

$$f(P_1) = 0$$
, $f(P_2) = \frac{11}{6}$, $f(P_3) = 1$.

De donde tenemos que f alcanzan su valor máximo en P_1 y su valor mínimo en P_2 .

Asignación de puntaje:

• Asignar 0,5 puntos por calcular el gradiente de f.

- Asignar 1,0 punto por analizar los puntos criticos en el interior de la región dada.
- Asignar 1,0 por analizar de manera correcta en **cada uno** de los bordes de la región. Esta sección asigna 3 puntos en total.
- Asignar 1,5 puntos por determinar de manera correct el máximo y minimo pedido.
- Agregar 1 punto base.

2. DESARROLLO FORMA 2.

Determine los valores máximos y mínimos absolutos de

$$f(x,y) = 3 + xy - x - 2y$$

sobre la región encerrada por el triángulo de vértices (1,0); (5,0); (1,4) **SOLUCIÓN:**

Sabemos que debemos analizar tanto en el interior del triángulo dado, como en su frontera. En primer lugar miramos en el interior, para ello buscamos puntos que satisfagan $\nabla f(x,y) = (0,0)$, en este caso

$$(y-1, x-2) = (0, 0).$$

Luego $P_1 = (2, 1)$ es el primero de los puntos críticos (Notemos que P_1 en efecto es un punto del interior del triángulo).

A continuación revisamos en la frontera del triángulo, para ello sea:

$$S_1 = \{(x, y) : x = t, y = 0; t \in [1, 5]\}.$$

Sobre este conjunto f(t,0) = 3 - t y los únicos puntos críticos que aporta son los extremos $P_2 = (1,0)$; $P_3 = (5,0)$.

Sea ahora

$$S_2 = \{(x, y) : x = t, y = 5 - t; t \in [5, 1]\}.$$

Sobre este conjunto $f(t, 5-t) = -t^2 + 6t - t$ tiene por puntos críticos $P_4 = (3, 2), P_5 = (1, 4).$

Finalmente sobre el conjunto $S_3:\{(x,y):x=1,y=t;t\in[4,0]\}$ no encontramos nuevos puntos críticos.

Para determinar cuales puntos generan los máximos y mínimos absolutos, evaluamos en la función y comparamos (podemos hacer esto ya que la función es continua sobre un conjunto cerrado y acotado).

$$f(P_1) = 1,$$
 $f(P_2) = f(P_4) = 2,$ $f(P_3) = f(P_5) = -2.$

Luego los puntos P_2 , P_4 son los puntos donde se obtiene el máximo y P_3 , P_5 donde se obtiene el mínimo absoluto.

Asignación de puntaje:

- \bullet Asignar 0,5 puntos por calcular el gradiente de f.
- Asignar 1,0 punto por analizar los puntos criticos en el interior de la región dada.
- Asignar 1,0 por analizar de manera correcta en **cada uno** de los bordes de la región. Esta sección asigna 3 puntos en total.
- Asignar 1,5 puntos por determinar de manera correct el máximo y minimo pedido.
- Agregar 1 punto base.