ECE/CS/ME 539 - Fall 2024 — Activity Solution 22

Problem 1 Solution

Given:

$$A = \begin{bmatrix} 1 & 5 & -2 & 4 \\ -2 & 2 & 4 & -1 \\ 1 & -2 & 3 & -3 \\ 6 & 3 & 6 & 1 \end{bmatrix}, \quad K = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(a) Convolution of A with K (Stride = 1, No Padding)

- 1. Position (1,1): $(1 \cdot 1) + (5 \cdot 0) + (-2 \cdot 0) + (2 \cdot -1) = 1 2 = -1$
- 2. Position (1,2): $(5 \cdot 1) + (-2 \cdot 0) + (2 \cdot 0) + (4 \cdot -1) = 5 4 = 1$
- 3. Position (1,3): $(-2 \cdot 1) + (4 \cdot 0) + (4 \cdot 0) + (-1 \cdot -1) = -2 + 1 = -1$
- 4. Position (2,1): $(-2 \cdot 1) + (2 \cdot 0) + (1 \cdot 0) + (-2 \cdot -1) = -2 + 2 = 0$
- 5. Position (2,2): $(2 \cdot 1) + (4 \cdot 0) + (-2 \cdot 0) + (3 \cdot -1) = 2 3 = -1$
- 6. Position (2,3): $(4 \cdot 1) + (-1 \cdot 0) + (3 \cdot 0) + (-3 \cdot -1) = 4 + 3 = 7$
- 7. Position (3,1): $(1 \cdot 1) + (-2 \cdot 0) + (6 \cdot 0) + (3 \cdot -1) = 1 3 = -2$
- 8. Position (3,2): $(-2 \cdot 1) + (3 \cdot 0) + (3 \cdot 0) + (6 \cdot -1) = -2 6 = -8$
- 9. Position (3,3): $(3 \cdot 1) + (-3 \cdot 0) + (6 \cdot 0) + (1 \cdot -1) = 3 1 = 2$

Thus, the resulting matrix A * K is:

$$A * K = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -1 & 7 \\ -2 & -8 & 2 \end{bmatrix}$$

(b) Convolution of A with K (Stride = 2, No Padding)

- 1. Position (1,1): $(1 \cdot 1) + (5 \cdot 0) + (-2 \cdot 0) + (2 \cdot -1) = 1 2 = -1$
- 2. Position (1,2): $(-2 \cdot 1) + (4 \cdot 0) + (4 \cdot 0) + (-1 \cdot -1) = -2 + 1 = -1$
- 3. Position (2,1): $(1 \cdot 1) + (-2 \cdot 0) + (6 \cdot 0) + (3 \cdot -1) = 1 3 = -2$
- 4. Position (2,2): $(3 \cdot 1) + (-3 \cdot 0) + (6 \cdot 0) + (1 \cdot -1) = 3 1 = 2$

Thus, the resulting matrix A * K with stride 2 is:

$$A * K = \begin{bmatrix} -1 & -1 \\ -2 & 2 \end{bmatrix}$$

1

Problem 2 Solution

Given:

The Sobel operators are:

$$S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad S_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

(a) Sobel X and Sobel Y Convolution Results

The convolution results with Sobel X (G_x) and Sobel Y (G_y) are given by:

$$G_x = \begin{bmatrix} 20 & 0 & -20 & -30 & 30 & 20 & 0 & -20 \\ 20 & 0 & -20 & -40 & 40 & 20 & 0 & -20 \\ 20 & 0 & -20 & -30 & 30 & 20 & 0 & -20 \\ 20 & 10 & -10 & -10 & 10 & 10 & 0 & -20 \\ 30 & 30 & 0 & 0 & 0 & 0 & 0 & -30 \\ 40 & 40 & 0 & 0 & 0 & 0 & 0 & -40 \\ 40 & 40 & 0 & 0 & 0 & 0 & 0 & -30 \end{bmatrix}$$

(b) Analyzing Results

After calculating for the central and edge areas, we observe that high values in S_x and S_y convolutions will appear along regions with sharp intensity changes.

(c) Gradient Magnitude Calculation

The gradient magnitude at each location is calculated as:

$$|\nabla I| = \sqrt{G_x^2 + G_y^2}$$

The computed gradient magnitudes for each cell in W are as follows:

$ \nabla I =$	28.28	20.00	28.28	31.62	31.62	28.28	20.00	28.28
	20.00	0.00	20.00	40.00	40.00	20.00	0.00	20.00
	28.28	20.00	28.28	31.62	31.62	28.28	20.00	28.28
	28.28	14.14	14.14	31.6228	31.6228	14.1421	0.00	20.00
	31.62	42.4264	40.00	40.0000	40.0000	40.0000	40.0000	42.4264
	40.00	40.00	0.00	0.00	0.00	0.00	0.00	40.00
	42.4264	42.4264	0.00	0.00	0.00	0.00	0.00	40.00
	31.6228	42.4264	40.00	40.00	40.00	40.00	40.00	42.4264