Geosimulation using fields and agents

JUDITH A. VERSTEGEN & OLIVER SCHMITZ
02-09-2021, OPENGEOHUB SUMMER SCHOOL

Motivation

2/25

Defining Geosimulation

→ impact

Data-driven Spatio-tem	poral models Process-driven
Start with empirical data	Start with a theory (system description)
Based on correlations between drivers and the system state	Based on known/assumed cause-effect relations between drivers and system state
Also called: empirically-based model, statistical model, machine learning mode	Also called: process-based model, physically-based model, geosimulation model

Modelling paradigms

	Agent-based modelling (multi-agent systems)	Field-based modelling (cellular automata)
system state	Set of discrete objects	Continuous or discrete
attribute(s)	Is linked to the agent	Has a value everywhere
processes	Behavior of a single agent, potentially moving	Behavior of cells that remain in their location
	x x x x x x x x	

Systems have multiple phenomena that do not fit into one paradigm!

Example: Fields & Agents!

DaisyWorld was introduced by James Lovelock and Andrew Watson (1983), to illustrate the Gaia Hypothesis that organisms interact with

their surroundings, creating a self-regulating system.

Problem statement

Current software:

- Often departs from ABM, and approaches fields as sets of square objects
 → computationally sub-optimal
- Has separate sets of functions for fields and agents
- → No full integration between fields and agents

Campo

Phenomenon: agents or field

'Agents': Phenomenon containing >1 **Objects**, areal coverage of each Object is where it has a value

'Field': Phenomenon containing 1 **Object**, areal coverage is 'modelling area'

Phenomenon has Property Sets, Property sets have properties

Forest system: trees, stems, tree canopy, seed dispersal..

Phenomenon Trees

Property Set **Stem**Property Set **Surrounding**Property Set **Canopy**Property **NDVI**

spatial domain of each **Object**: point at stem circular centered at stem crown

Single Algebra for Agents & Fields

Syntax:

```
a = a function(b)
```

Calculates for each Object its property a as a function of property b

Referring to phenomena, property set, for instance:

```
trees.canopy.lai = a_function(trees.canopy.ndvi)
```

Framework for control flow

```
class MyFirstModel(DynamicModel):
  def initial(self):
      # functions here are run once at start
      # create/modify Phenomena for initial state of system
      # I/O using framework functions
  def dynamic(self):
      # functions are run for each time step
      # program time transition function
      # I/O using framework functions
```

Future work

- Parallelization on supercomputers via HPX
- Add more functionality to Campo
- We're interested in your case studies with fields and agents!

Contact us via:

https://campo.computationalgeography.org/

<u>judith.verstegen@wur.nl</u>

o.schmitz@uu.nl