Linear Discriminant Analysis Explained

James Taylor

We assume that our data come from k populations π_1, \ldots, π_k with respective prior probabilities $\gamma_1, \ldots, \gamma_k$. We further assume that in the population π_i the pdf of $X = (X_1, \ldots, X_p)$ is multivariate normal with mean vector μ_i and covariance matrix Σ . That is, all populations have their own mean vector, but they all share the same covariance matrix. Thus,

$$f_i(x) := p(X = x \mid Y = i) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_i)^T \Sigma^{-1} (x - \mu_i)\right]$$

The LDA classifier assigns x to the population π_i for which $p(Y = i \mid X = x)$ is largest. By Bayes theorem,

$$p(Y = i | X = x) = \frac{p(X = x | Y = i)p(Y = i)}{p(X = x)}$$
$$= \frac{\gamma_i}{p(X = x)} f_i(x)$$

Since p(X = x) does not depend on i, it can be treated as a constant. So x will be assigned to the population π_i for which $\gamma_i f_i(x)$, or equivalently, $\log \gamma_i f_i(x)$ is largest. Now,

$$\log(\gamma_i f_i(x)) = \log(f_i(x)) + \log(\gamma_i)$$

$$= \log\left(\frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu_i)^T \Sigma^{-1}(x - \mu_i)\right]\right) + \log(\gamma_i)$$

$$= \log\left(\frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}}\right) + \left[-\frac{1}{2}(x - \mu_i)^T \Sigma^{-1}(x - \mu_i)\right] + \log(\gamma_i)$$

Again, notice that the first term on the last line does not depend on i and thus can also be treated as a constant. Therefore, x will be assigned to the population π_i for which

$$-\frac{1}{2}(x-\mu_i)^T \Sigma^{-1}(x-\mu_i) + \log(\gamma_i)$$

is the largest. We can simplify this further:

$$-\frac{1}{2}(x-\mu_i)^T \Sigma^{-1}(x-\mu_i) + \log(\gamma_i) = -\frac{1}{2} \left[x^T \Sigma^{-1} x + \mu_i^T \Sigma^{-1} \mu_i - x^T \Sigma^{-1} \mu_i - \mu_i^T \Sigma^{-1} x \right] + \log(\gamma_i)$$
$$= -\frac{1}{2} \left[x^T \Sigma^{-1} x + \mu_i^T \Sigma^{-1} \mu_i \right] + \mu_i^T \Sigma^{-1} x + \log(\gamma_i)$$

and since $x^T \Sigma^{-1} x$ doesn't depend on i, it suffices to assign x to the population π_i whose linear discriminant function

$$d_i^L(x) = -\frac{1}{2}\mu_i^T \Sigma^{-1} \mu_i + \mu_i^T \Sigma^{-1} x + \log(\gamma_i)$$

is largest when evaluated at x.

Note: Setting $d_{i0} = -\frac{1}{2}\mu_i^T \Sigma^{-1} \mu_i$ and $d_{ij} = \text{jth element of } \mu_i^T \Sigma^{-1}$ we have

$$d_i^L(x) = d_{i0} + d_{i1}x_1 + \dots + d_{ip}x_p$$

= $d_i \cdot (1, x)$

Note: We will need to estimate the prior probabilities γ_i , the population mean vectors μ_i , and the covariance matrix Σ . The latter two are estimated by the sample mean vectors and the pooled covariance matrix, respectively.