算法基础 Foundation of Algorithms

余启帆 中国科学技术大学

2022年1月6日

目录

第	0 章	绪论		1
第	一部	分基	基础知识	3
第	1章	算法	既念	5
	1.1	算法的	9作用	5
		1.1.1	一些概念	5
			1 算法	5
			2 问题	5
			3 问题实例	5
			4 算法的正确性	5
		1.1.2	算法与问题求解	5
			1 问题求解的过程	5
	1.2	作为一	一种技术的算法	5
第	2 章	算法基		7
	2.1	何为第	[法?	7
		2.1.1	插入排序	7
		2.1.2	循环不变式	7
			1 初始化	7
			2 保持	7
			3 终止	7
		2.1.3	用循环表达式证明插入排序算法的正确性	7
			1 初始化	7
			2 保持	7
			3 终止	7
		2.1.4	算法的正确性	7
	2.2	分析第		7
		2.2.1	···· 计算模型 · · · · · · · · · · · · · · · · · · ·	7
			1 Random-access Machine(RAM 模型)	7

		2.2.2	影响运行时间的主要因素	8
			1 输入规模	8
			2 输入数据的分布	8
			3 将算法的运行时间描述成输入规模的函数	8
			4 * 算法实现所用的底层数据结构	8
		2.2.3		8
			and the second s	8
			2 运行时间	8
				8
	2.3	设计算		8
				8
		2.011		8
				8
				8
				8
		2.3.2		8
		2.0.2		Ĉ
竺	3 章	函数的]增长	1
ᄼ	3.1	渐近记		
	3.1	3.1.1	Θ -notation	
		3.1.2	O-notation	
		0.1.0	Ω -notation	. Ј
第	4 章	分治策	1	3
		4.0.4	求解递归式的方法 1	3
			1 代入法 1	3
			2 递归树法 1	3
			3 主方法 1	3
	4.1	代入法	(数学归纳法)	3
	4.2	递归树	(用于估算紧致解)	3
	4.3	主方法	(主定理) 1	3
he he	- 	V 11	F I → W + I	_
弗	—	万 扫	i 序与选择	อ์
第			2较的排序算法 1	
	5.1	排序基	本概念	7
		5.1.1	稳定性	. 7
		5.1.2	内排序与外排序	7

		5.1.3 前述排序算法	17
		1 插入排序	17
		2 归并排序	17
	5.2	简单排序 & Shell 排序	17
		5.2.1 简单选择排序	17
		5.2.2 冒泡排序	17
		5.2.3 Shell 排序	17
	5.3	堆排序	17
		5.3.1 二叉堆	17
		5.3.2 大根堆、小根堆	18
		5.3.3 维护堆	18
		5.3.4 建堆	18
		5.3.5 堆排序	18
	5.4	快速排序	18
第	6 章		19
	6.1	排序算法的下界	
		1 决策树模型	
	6.2	计数排序	
	6.3	基数排序	19
		6.3.1 思想	19
		6.3.2 性能分析	19
	6.4	桶排序	19
笙	7 章		21
713		选择问题	
		最大值和最小值	
		1	
		2 同时找最大值 & 最小值	
	7.3	平均性能为 $\Theta(n)$ 的选择算法	
<u> </u>	— ఫ п		00
弗	二部	分 算法设计基本策略	23
第	15 章	。 5 动态规划法	25
	15.1	动态规划原理	25
		15.1.1 最优化问题	
		15.1.2 最优子结构 (最优性原理)	
		1 最优子结构	
		2 判断是否具有"最优子结构"	25

		15.1.3		25
		15.1.4	动态规划法求解步骤	25
			1 2	25
			2	25
			3	26
			4	26
	15.2	钢条切	割问题	26
		15.2.1	递推式	26
		15.2.2	计算	26
			1 自底向上方法	26
			2 自顶向下方法 - 带记忆功能的递归	26
		15.2.3	重构解	26
		15.2.4	时间复杂度	26
	15.3	矩阵链	乘问题	26
		15.3.1	时间复杂度	27
	15.4	最长公	共子序列	27
		15.4.1	问题	27
		15.4.2	刻画最长公共子序列的特征	27
		15.4.3	构造递归解	27
		15.4.4	设计 Bottom-up 方法求解	28
		15.4.5	Further: 输出所有 LCS	28
	15.5	最优二	叉检索树	28
		15.5.1	改进: 时间复杂度为 $O(n^2)$ 的算法	28
		- ^ \		
第		贪心		31
	16.1			31
		16.1.1	贪心算法 :	
			1 最优子结构	
			2	
		16.1.2		31
				31
				31
	16.2			31
			最优子结构与动态规划法 :	
				32
				32
				32
	16.3			33
		16.3.1	代价	33

		16.3.2	Further:	k 进制	Huffman	编码		 	 	 				33
第	17 章	重 平摊	分析											35
	17.1	聚合分	析					 	 	 				35
		17.1.1	栈操作.					 	 	 				35
		17.1.2	二进制计	数器递	增			 	 	 				35
	17.2	核算法	(会计法))				 	 	 				35
		17.2.1	栈操作.					 	 	 				35
		17.2.2	二进制计	数器.				 	 	 				35
	17.3	势能法						 	 	 				35
		17.3.1	栈操作.					 	 	 				36
			1	Push()				 	 	 				36
			2	Pop()				 	 	 				36
			3	MultiI	Pop()			 	 	 				36
		17.3.2	二进制计	数器.				 	 	 				36
	17.4	动态表						 	 	 				37
		17.4.1	聚合法.					 	 	 				37
		17.4.2	会计法.					 	 	 				37
		17.4.3	势能法.					 	 	 				37
第	18 章	5 分治	法											39
			数组问题	(Max	Subarray,	MS)		 	 	 				39
			分治法求											
		18.1.2	线性扫描	黄法.				 	 	 				39
	18.2	矩阵乘	法的 Stra	asssen j	算法			 	 	 				40
第	四部	分言	⑤级数据	结构										41
第		二分												43
	12.1		二叉检索											
			中序遍历											
			二分检索											
	12.2		叉检索树											
		12.2.1	指定关键	津字				 	 	 				43
			最小关键											
		12.2.3	前驱和后	5继				 	 	 				43
			1	后继(中序遍历)		 	 	 				43
			2	先序遍	通历寻找后	后继的	顺序	 	 	 				43
	12.3	插入和	無旧金											43

		12.3.1	* 删除	£ .						•		 •	 						43
第	13 章	红黑林	对																45
	13.1	红黑树的	的性质	卮.									 						45
	13.2	旋转.											 						45
		13.2.1	左旋	& 柱	了旋								 						45
	13.3	插入 .											 						45
		13.3.1	看作_	二分	检索	[树	插)	\结	点				 						45
	13.4	删除.											 						45
第	14 章	重 数据约	吉构的	扩	胀														47
	14.1	动态顺风	亨统计	 .									 						47
		14.1.1	扩张										 						47
		14.1.2	基本控	喿作									 						47
			1		选择	革.							 						47
			2		排戶	ž.							 						47
		14.1.3	维护										 						47
	14.2	数据结构	构的扩	一张									 						47
		14.2.1	步骤										 						47
	14.3	区间树											 						47
		14.3.1	查找										 						48
			1		证明	月算	法正		性			 •	 						48
第	19 章	Fibo	nacci	堆															49
	19.1	结构 .											 						49
	19.2	基本操作	作 .										 						49
		19.2.1	Make										 						49
		19.2.2																	
		19.2.3	Get-N	Λ in									 						49
		19.2.4																	
		19.2.5	_																
		19.2.6	Decre	ease-	Key	7 .							 						49
		19.2.7																	
第	21 章	■ 用于ス	不相 交	⋷集₁	合的	数‡	居结	构											51
210		不相交织											 				 		
		不相交																	
	- · -	21.2.1																	
	21.3	不相交织																	
		21.3.1																	

	羊			
第五部分 图算法				53
第 22 章 基本的图算法				55
22.1 图的表示			 	 . 55
22.1.1 数据结构	j		 	 . 55
1	邻接表		 	 . 55
2	邻接矩阵		 	 . 55
22.2 广度优先搜索,	Breadth-first Sear	ch, BFS	 	 . 55
1	搜索		 	 . 55
2	遍历		 	 . 55
22.3 深度优先搜索,	Deep-first Search,	DFS	 	 . 55
22.3.1 时间戳.			 	 . 55
22.3.2 4 种形式	的边 (有向图).		 	 . 56
1	树边		 	 . 56
2	回边 (后向边)		 	 . 56
3	前向边		 	 . 56
4	交叉边 (横向边)		 	 . 56
22.3.3 无向图的	为边		 	 . 56
1	树边		 	 . 56
2	非树边		 	 . 56
22.4 Topo 排序			 	 . 56
22.5 强连通分量			 	 . 56
第 23 章 最小生成树				57
第 23 草 取小主成例 23.1 最小生成树的形				
	·成 轻边			
1 23.2 贪心算法	•			
23.2.3 SOIIII .			 	 . 57
第 24 章 单源最短路径	:			59
24.1 Bellman-Ford 算	注法		 	 . 59
24.1.1 松弛操作	F		 	 . 59
24.1.2 计算最短	豆路径		 	 . 59
24.1.3 优化			 	 . 59

		有向无环图 (DAG) 图中的单源最短路径	
第	25.1 25.2	近 所有结点对的最短路径问题 最短路径与矩阵乘法	61
第	六部	6分 算法问题	3
第	30 章	では、 Total Angle Ang Total Angle	65
	30.1	大整数的乘法	65
	30.2	矩阵乘法的 Strassen 算法	65
	30.3	多项式与快速 Fourier 变换	65
		30.3.1 多项式的表示	65
		1 从系数到点值	65
		30.3.2 DFT & FFT	65
		1 离散 Fourier 变换, DFT	65
		2 快速 Fourier 变换, FFT	65
		30.3.3 高效 FFT 实现	65
		1 位逆序变换与蝴蝶操作	65
第	32 章		67
	32.1	Brute-Force 算法 (朴素字符串匹配)	67
		Rabin-Karp 算法	
	32.3	FSM 字符串匹配	67
	32.4	Knuth-Morris-Pratt 算法 (KMP)	67
考	试范围		68
		32.4.1 红黑树的插入删除	68
		32.4.2 主方法	68
		32.4.3 课本 Bookmarks	68

第0章 绪论

第一部分

基础知识

第1章 算法概念

1.1 算法的作用

1.1.1 一些概念

- 1 算法
- (1) 输入
- (2) 输出
- † Announced above the program!
- 2 问题
- 3 问题实例

例题 1.1 (排序)

- (1) 稳定排序
- (2) 不稳定排序
- † 就地排序
- 计数排序 (Counting Sort)
- 4 算法的正确性
- † 正确性
- †有限性

1.1.2 算法与问题求解

应用问题 ⇒ 计算问题

- 1 问题求解的过程
- (1) 将一个应用问题, 加以分析, 给出相关的 (数学、计算) 模型;
- (2) 将应用问题及其模型 ⇒ 具体的计算问题;
- (3) 选择和设计有效求解这些计算问题的算法, 进行性能分析;
- (4) 选择合适的数据结构, 将算法加以实现, 设计出求解应用问题的系统或程序.

1.2 作为一种技术的算法

第 2 章 算法基础

2.1 何为算法?

- 2.1.1 插入排序
- 2.1.2 循环不变式
- †抽取什么作为"循环不变式"?
- 1 初始化
- 2 保持
- 3 终止

2.1.3 用循环表达式证明插入排序算法的正确性

第 j 次循环时, $A[1\cdots j-1]$ 已经有序, 插入 A[j] 后, $A[1\cdots j]$ 仍然有序

- 1 初始化 $A[1 \cdots j-1] = A[1]$ 有序
- **2** 保持 一次循环后, $A[1 \cdots i]$ 仍然有序
- **3** 终止 每次迭代 $j \leftarrow 1$, 因此必有 j = n + 1 时, 循环终止.

2.1.4 算法的正确性

- † 功能正确: 输入输出行为正确
- † 正确性的分类
- (1) 部分正确性: 要求算法若返回结果, 返回结果时, 这一结果是正确的;
- (2) 完全正确性: 要求算法必须能够结束.

2.2 分析算法

- †通常用
 - ▷ 运行时间
 - ▷ 内存空间

来评判算法需要的资源

† 客观标准 评价体系 计算模型

2.2.1 计算模型

1 Random-access Machine(RAM 模型)

- (1) 单位时间运算
- (2) 单位时间内存访问
- (3) 不区分数据类型

2.2.2 影响运行时间的主要因素

- 1 输入规模 number of **bits**
- †明确"输入规模"和"运行时间"的概念
- 2 输入数据的分布
- 3 将算法的运行时间描述成输入规模的函数
- 4 * 算法实现所用的底层数据结构

2.2.3 基本概念

- 1 输入规模
- (1) 项数
- (2) 最大数的位数
- 2 运行时间 基本操作数与机器无关,运行每行需要常量时间
- 3 最好、最坏、平均运行时间
- † 通常用最坏运行时间来衡量

抽象常数 C, 考虑运行时间的主要贡献 (首项)

2.3 设计算法

2.3.1 分治法

分解 - 解决 - 合并

- † 子问题规模不一定相同
- 1 Merge Sort 对 n 个元素排序 \Longrightarrow 对 $\frac{n}{2}$ 个元素排序 \Longrightarrow \cdots \Longrightarrow 合并
- 2 监视哨(哨兵) 在数组中增加一个不出现的特殊数字/字符,从而减少变量的比较次数.
- **3 使用哨兵的归并排序** 通过需要复制的项数控制循环的终止, 在两组数据末端均添上 ∞ , 从而一组数据复制完后, 被复制的总是另一组数据.
 - 4 不使用哨兵的归并排序 当一个数组被复制完后,直接将另一数组的剩余部分复制.

2.3.2 分析分治算法

$$T(n) = \begin{cases} O(1), & n \leq c, \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), & \text{else} \end{cases}$$
 (2.1)

† D(n): 分解所需的时间 † C(n): 合并所需的时间

1 归并排序的时间复杂度

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ 2T\left(\frac{n}{2}\right) + \Theta(n), & n > 1 \end{cases} \implies T(n) = \Theta(n\log n)$$
 (2.2)

第3章 函数的增长

3.1 渐近记号

3.1.1 Θ -notation

$$f(n) = \Theta(g(n)) \iff C_1 g(n) \leqslant f(n) \leqslant C_2 g(n) \tag{3.1}$$

3.1.2 O-notation

$$f(n) = O(g(n)) \iff 0 \leqslant f(n) \leqslant Cg(n) \tag{3.2}$$

† f(n) 无穷大的阶不大于 g(n) 的阶

† 若
$$f(n) = \Theta(g(n)) \implies f(n) = O(g(n))$$

3.1.3 Ω -notation

$$f(n) = \Omega(g(n)) \iff 0 \leqslant Cg(n) \leqslant f(n) \tag{3.3}$$

† O(n) 和 $\Omega(n)$ 分别是 O(n) 的右半和左半

第 4 章 分治策略

4.0.4 求解递归式的方法

- 1 代入法
- 2 递归树法
- 3 主方法

4.1 代入法 (数学归纳法)

$$T(n) = 2T\left(\left\lceil \frac{n}{2} \right\rceil + 17\right) + n\tag{4.1}$$

$$g(m) = T(m+17) (4.2)$$

$$\implies S(n) = 2g\left(\frac{n}{2}\right) + n \tag{4.3}$$

4.2 递归树 (用于估算紧致解)

先分解,后合并

4.3 主方法 (主定理)

定理 4.1 (主定理) 递归式

$$T(n) = aT\left(\frac{n}{b}\right) + f(n), \quad a \geqslant 1, \ b > 1, \tag{4.4}$$

- (1) 若 $\exists \varepsilon > 0, f(n) = O(n^{\log_b a \varepsilon}), 则 T(n) = \Theta(n^{\log_b a});$
- †主要贡献来自 $aT\left(\frac{n}{b}\right)$
- (2) 若 $f(n) = \Theta(n^{\log_b a} \lg^k n)$ $(k \ge 0)$, 则 $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$;
- †特别地, k = 0 时, 若 $f(n) = \Theta(n^{\log_b a})$, 则 $T(n) = \Theta(n^{\log_b a} \lg n)$;
- (3) 若 $\exists \varepsilon > 0$, $f(n) = \Omega(n^{\log_b a + \varepsilon})$, 且 $\exists c < 1$, $\forall n > N$, 有 $af\left(\frac{n}{b}\right) \leqslant cf(n)$, 则 $T(n) = \Theta(f(n))$.

†主要贡献来自 f(n).

注意 $\varepsilon > 0$ 的存在性问题!

第二部分

排序与选择

第 5 章 基于比较的排序算法

5.1 排序基本概念

5.1.1 稳定性

相同数值顺序在排序前后不变

5.1.2 内排序与外排序

排序过程是否全部在内存中进行

5.1.3 前述排序算法

- 1 插入排序
- 2 归并排序

5.2 简单排序 & Shell 排序

5.2.1 简单选择排序

每次未排序子数组的最小值调整至最前面 † 不稳定, $\Theta(n^2)$

5.2.2 冒泡排序

每次比较相邻两元素

5.2.3 Shell 排序

对于同一组数据,调用多次插入排序反而比只用一次插入排序要快: $n^2 \ge 3 \cdot \left(\frac{n}{3}\right)^2$ † 2-有序或 3-有序序列至多 n 次比较变为 1- 有序序列 (间隔为 2 的序列分别有序) † 4-有序或 6-有序至多 n 次比较变为 3- 有序序列.

5.3 堆排序

5.3.1 二叉堆

完全二叉树

本书中:

- (1) 完全二叉树: 指"满二叉树"
- (2) 满二叉树: 指"严格二叉树"
- (1) 完全二叉树
- (2) 满二叉树
- (3) 严格二叉树: 每个非叶结点有且只有两个子节点

5.3.2 大根堆、小根堆

堆排序中使用大根堆

堆用数组存储: 第 i 个结点的左右叶子结点分别是 2i, 2i + 1 高度: 边的高度 = $[\log n]$ (数据结构中定义为结点的高度)

5.3.3 维护堆

大根堆调整: 递归

5.3.4 建堆

自底向上,从最后一个结点的父节点开始做大根堆调整时间复杂度: O(n)

† 为何不是 $O(n \log n)$?

5.3.5 堆排序

将堆顶元素和堆尾元素交换, 然后剥离最后一个元素, 调整新的堆为大根堆

5.4 快速排序

† 分治思想: 先划分, 后合并

† 归并排序: 先各自排序, 后合并(合并时工作较多)

第 6 章 线性时间排序算法

6.1 排序算法的下界

任何基于比较的排序算法最坏情况时间复杂度必须为 $\Omega(n \log n)$

1 决策树模型 至少有 n! 个叶结点, 至少有 2n! + 1, 因此高度至少为

$$h \geqslant \lfloor \log_2(2n! + 1) \rfloor \geqslant \lg(n!) = \Omega(n \lg n) \tag{6.1}$$

6.2 计数排序

† 稳定排序

6.3 基数排序

6.3.1 思想

从最低位开始, 依次对每一位进行稳定排序 (例如, 选取计数排序)

6.3.2 性能分析

For *n b*-bit binary numbers, view *r*-bit as a digit, then number of digit $d = \left\lceil \frac{b}{r} \right\rceil$,

$$T(n) = \Theta\left(\frac{b}{r} \cdot (n+2^r)\right) \tag{6.2}$$

Optimal value r:

$$r = \begin{cases} b, & b < \lfloor \log n \rfloor, \\ \lfloor \log n \rfloor, & b \geqslant \lfloor \log n \rfloor \end{cases}$$
(6.3)

6.4 桶排序

第7章 选择问题

† 中值:
$$\left| \frac{n+1}{2} \right|$$

7.1 选择问题

第i小的元素:有且只有i-1个元素比它小

7.2 最大值和最小值

- 1 找最大值/最小值
- **2** 同时找最大值 & 最小值 先找最大值, 再找最小值, 这样至少需要 2n-3 次比较.

同时找最大值 & 最小值问题需要元素间比较次数至少为 $\left\lceil \frac{3n}{2} \right\rceil - 2$

证明 所有元素都可以划分为以下 4 种类型, 记:

N: 从未参与比较;

S: 参与过比较, 总是小;

L: 参与过比较, 总是大;

M: 参与过比较, 时大时小.

每次比较:

N:N:可得到两个信息(元素改变一次身份记为一条信息)

N: S, N: L: 最坏情况只能获得一个信息

S:L,M:L,M:S,M:M: 最坏情况只能获得 0 个信息

初始: $n \uparrow N$

结束: $1 \uparrow S$, $1 \uparrow L$, $n-2 \uparrow M$

需要 $1+1+2\times(n-2)=2n-2$ 次信息转换.

希望比较次数尽可能少,因此每次比较获取信息尽可能多,因此优先安排 N:N 型比较,最多 $\left\lfloor \frac{n}{2} \right\rfloor$ 次,获得 $\left\lfloor \frac{n}{2} \right\rfloor \times 2$ 条信息,还需 $2n-2-\left\lfloor \frac{n}{2} \right\rfloor \times 2=2 \times \left\lceil \frac{n}{2} \right\rceil -2$ 次比较,因此总共

至少需要
$$\left\lfloor \frac{n}{2} \right\rfloor + 2 \times \left\lceil \frac{n}{2} \right\rceil - 2 = \left\lceil \frac{3n}{2} \right\rceil - 2$$

7.3 平均性能为 $\Theta(n)$ 的选择算法

† 沿用快速排序中 Partition 的递归算法

第三部分 算法设计基本策略

第 15 章 动态规划法

15.1 动态规划原理

动态规划适用于子问题重叠的情况,每个子问题只求解一次,然后存储求解结果,而分治法可能对于同一个子问题反复求解.

15.1.1 最优化问题

包含一组约束条件 + 一个优化函数

- † 可行解
- † 最优解

15.1.2 最优子结构 (最优性原理)

1 最优子结构 "乘法原理": 已经进行一部分决策, 剩下的决策要对于已经达成的状态进行最优的决策

如果一个问题的最优解包含其子问题的最优解,则称此问题具有"最优子结构"

- † 全局最优一定局部最优
 - ▷ 剪切法

用动态规划方法求解问题, 用子问题的最优解来构造原问题的最优解.

- 2 判断是否具有"最优子结构"
- (1) 无权最短路径: 具有最优子结构
- (2) 无权最长简单路径: 不具有最优子结构, 子问题的解可以使原问题的解出现环路 (非简单路径)

15.1.3 重叠子问题

- (1) 反复求解重叠子问题 ⇒ 动态规划法 (备忘)
- (2) 每次生成不同子问题 ⇒ 分治法
- † 通过是否带备忘功能来区分

15.1.4 动态规划法求解步骤

- 1 刻画一个最优解的结构特征: 最优子结构, 全局最优一定局部最优
- **2** 递归地定义最优解的值:列出递推式,并化简 (可能可以通过修改递推式减少需要求解的子问题数量,如钢条切割问题)

- **3** 计算最优解的值,通常采用自底向上或带记忆功能的自顶向下方法 (从子问题的解构造原问题的解),同时记录用于重构最优解的辅助信息
 - 4 利用计算出的信息构造一个最优解: 递归输出
 - † 区分最优解的值和最优解,分别对应最优结果和方案. 例如,在导航问题中,
 - ▷ 值: 时间
 - ▷ 最优解: 路线

15.2 钢条切割问题

15.2.1 递推式

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \cdots, r_{n-1} + r_1\}$$
(15.1)

求解每个子问题:

$$r_1 + r_{n-1} = p_1 + r_{n-1} (15.2)$$

$$r_2 + r_{n-2} = \max\{p_1 + p_1 + r_{n-2}, p_2 + r_{n-2}\}$$
(15.3)

- † 划线问题已经在前一个子问题中被解决, 不用再考虑
 - ▷ 每次只用考虑 1 个新的子问题

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$
 (15.4)

- 讨论 (1) 当 $P[1 \cdots n]$ 满足什么条件时, 不需要切分? (不需切分的充分条件)
- 讨论 (2) 是否存在必要条件? (不需切分的必要条件)

15.2.2 计算

- 1 自底向上方法 先求解规模较小的子问题
- 2 自顶向下方法 带记忆功能的递归 始终维护同一个数组
- †避免重复求解子问题是动态规划法的核心!

15.2.3 重构解

维护数组 s[j] 表示长为 j 的钢条从 (s[j], s[j] + 1) 中间切分.

15.2.4 时间复杂度

$$\Theta(n)$$
 个子问题 $\Longrightarrow T(n) = O(n^2)$

15.3 矩阵链乘问题

$$n$$
 个矩阵链乘的排列数: 卡特兰数 $\frac{1}{n+1} \binom{2n}{n}$

考虑计算 A_i, \dots, A_i 这 j-i+1 个矩阵所需的最小乘法次数.

只需知道 $p = [p_0, p_1, \dots, p_n]$ 这 n+1 个数, 从而 $A_1: p_0 \times p_1, A_2: p_1 \times p_2, \dots, A_i:$ $p_{i-1} \times p_i, \cdots$

假设从 A_k 处划分最优, 则 $A_i\cdots A_k$, $A_{k+1}\cdots A_j$ 的方案也应当是最优的 (全局最优一定 局部最优 ⇒ 满足最优性原理 ⇒ 可以用动态规划法求解)

记 m[i,j] 是计算 A_i, \dots, A_i 所需的最小乘法次数, 则

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \}$$
(15.5)

然后用 Bottom-Up 方法求解 m[i,j] 对 $i,j=\{1,2,\cdots,n-1\}\times\{i+1,\cdots,n\}$ 循环 $\iff l(=j-i), i = \{1, 2, \dots, n-1\} \times \{1, 2, \dots, n-l\}$ 循环, 类似于求和的交换顺序:

$$\sum_{i} \sum_{j} \cdot = \sum_{j-i} \sum_{i} \cdot \tag{15.6}$$

先对每一个固定的 j-i 去求和

时间复杂度 15.3.1

 $\Theta(n^2)$ 个子问题 $\Longrightarrow T(n) = O(n^3)$

最长公共子序列 15.4

† 注意区分子序列和子串!

15.4.1 问题

问题 15.1 (最长公共子序列, Longest-common-subsequence, LCS) 两个序列 X = $\{x_1, x_2, \dots, x_m\}, Y = \{y_1, y_2, \dots, y_n\}, \, \text{\vec{x}} \, X, Y \, \text{\circlearrowleft} \, \text{\not{E}} \, \text{$

按照动态规划法的 4 个步骤求解.

刻画最长公共子序列的特征

定理 15.1 (LCS 的最优子结构) 设 $Z = \{z_1, z_2, \cdots, z_k\}$ 是 X, Y 的任意 LCS. 考虑 X,Y,Z 的最后一个元素.

- (1) 若 $x_m = y_n$, 则 $z_k = x_m = y_n$ 且 Z_{k-1} 是 X_{m-1}, Y_{n-1} 的一个 LCS;
- (2) 若 $x_m \neq y_n$,
 - (a) 则 $z_k \neq x_m$ 表示 Z 是 X_{m-1}, Y 的一个 LCS:
 - (b) 则 $z_k \neq y_m$ 表示 $Z \in X, Y_{m-1}$ 的一个 LCS.

15.4.3 构造递归解

定义 X_i, Y_i 的 LCS 长度

$$c[i,j] = \begin{cases} 0, & i = 0 \text{ or } j = 0\\ c[i-1,j-1]+1, & i,j > 0, \ x_i = y_j\\ \max(c[i,j-1], c[i-1,j]), & i,j > 0, \ x_i \neq y_j \end{cases}$$
(15.7)

15.4.4 设计 Bottom-up 方法求解

```
1  c[0, 1..n] = c[1..n, 0] = 0
2  for i = 1 to n:
3    for j = 1 to n:
4    # Calculate c[i, j]
```

15.4.5 Further: 输出所有 LCS

记录所有可能的路径 b[i,j], 注意到不同的 LCS \iff 斜边不同, 因此遍历输出时, 考虑两层递归:

- (1) 主递归: 对每条不同斜边进行 DF 遍历, 对走过斜边后的下一个点 (斜边左上角的点) 进入辅助递归
 - (2) 辅助递归: 返回从每个点出发可达的第一条斜边
 - † 大大降低时间复杂度!

15.5 最优二叉检索树

结点 k_i , 伪结点 $d_i:(k_i,k_{i+1})$, 平均检索深度定义为平均访问的结点数量

$$E[depth] = \sum_{i=1}^{n} (depth(k_i) + 1) \cdot p_i + \sum_{i=0}^{n} (depth(d_i) + 1) \cdot q_i$$
 (15.8)

† 也有称为"比较数"的, 但这种称呼并不确切, 要注意检索到 k_i 与 d_{i-1}, d_i 的比较次数相同

† 若概率相同 ⇒ 折半查找树

最优二叉检索树: 期望检索代价最小的二叉检索树

结点 k_1, k_2, \cdots, k_n , 伪结点 d_0, d_1, \cdots, d_n

包含 k_i, \dots, k_i 的子树概率之和

$$w[i,j] = \sum_{k=i}^{j} p_k + \sum_{k=i-1}^{j} q_k$$
 (15.9)

最小代价递归公式

$$e[i,j] = \begin{cases} q_{i-1}, & j = i-1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\}, & i \le j \end{cases}$$
(15.10)

辅助数组 r[i,j] 记录包含 k_i, \dots, k_j 的子树的根节点 k_r .

15.5.1 改进: 时间复杂度为 $O(n^2)$ 的算法

仍是 3 层循环, 减小循环范围:

 $K_{i\cdots i}$ 比 $K_{i\cdots i-1}$ 多 2 个结点: K_i, d_i

设 $K_{i\cdots j-1}$ 的解为 K_{r_1} , 直接将 2 个结点加到右子树, 右边子树变"重", 因此后者最优解 的根节点 $r_0 \ge r_1$

设 $K_{i+1\cdots j}$ 的解为 K_{r_2} , 同理有 $r_0 \leqslant r_2$

 $\implies r_1 \leqslant r_0 \leqslant r_2$

即,循环范围改为

 $1 \quad | \mathbf{for} \quad r = r[i,j-1] \quad \mathbf{to} \quad r[i+1,j]$

对于同一个 l, 不同的 i, r 的循环范围不重叠 \Longrightarrow 对同一个 l, 时间复杂度为 $\Theta(n) \Longrightarrow$ 总的时间复杂度 $\Theta(n^2)$.

¹这是因为 r[i+1,(j+1)-1] = r[i+1,j], 即下一次 i 循环的 r 下界 = 上一次循环的上界.

第 16 章 贪心算法

- †逐步构造局部最优解
- † 替代动态规划法, 求解最优化问题

16.1 贪心算法原理

16.1.1 贪心算法

- 1 最优子结构 全局最优一定局部最优
- 2 贪心选择性质 局部最优一定全局最优
- † 可用贪心算法: 其中一个最优选择为贪心选择

通过对输入进行预处理或使用合适的数据结构 (通常是优先队列), 可以减少贪心选择时要考虑的选项数, 使算法更高效.

- † NP 完全问题
- † TSP 问题: 贪心策略求解平均获得最优解 85% 的问题

16.1.2 是否能用贪心算法求解?

- 1 0-1 背包问题 金块不可拆分
- 2 分数背包问题 金块可拆分

都具有最优子结构, 但只有后者具有贪心选择性质, 能够用贪心算法求解.

16.2 活动选择问题

- † 对同一资源进行安排
 - ▷ 排课表

问题 16.1 (活动选择问题) 求解最大相容的活动个数及相应集合

† 只要求活动个数最大, 并不要求资源利用的总时长最长.

16.2.1 最优子结构与动态规划法

定义

- (1) 集合 $S_{ij} = \{a_k | f_i \leq s_k < f_k \leq s_j\}$ 为在 a_i 结束之后开始且在 a_j 开始之前结束的活动集合.
 - (2) A_{ij} 为 S_{ij} 中最大相容子集,

(3) $c[i, j] = |A_{ij}|$ 动态规划法

$$c[i,j] = \begin{cases} 0, & S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\}, & S_{ij} \neq \emptyset. \end{cases}$$
 (16.1)

† 每个问题生成两个子问题 ⇒ 指数时间 ⇒ 如何让其中一个子问题退化?

16.2.2 贪心算法

选择 a_m 为 S_{ij} 中最早结束的活动

$$f_m = \min\left\{f_k \middle| a_k \in S_{ij}\right\} \tag{16.2}$$

† 就是 S_{ij} 中的第一个活动

定理 16.1 a_m 在 $S_k = \{a_i | s_i \ge f_k\}$ 的某个最大相容活动子集中.

提示 将某个最大相容活动子集中最早结束的活动用 a_m 替代.

算法 16.1 (活动选择问题, 贪心算法) 反复选择最早结束的活动, 保留与此活动兼容的活动, 重复此过程.

† 贪心算法通常都是自顶向下设计: 做出一个选择, 然后求解剩下的子问题.

16.2.3 递归贪心算法

```
def recursive_activity_selector(s: list, f: list, i, j):
1
2
       # f has been sorted by increasing order.
3
       m = i + 1
       while m \le j and s[m] \le f[i]:
4
           m += 1
6
       if m <= j:
           return [m] + recursive_activity_selector(s, f, m, j)
7
8
       else:
9
           return []
10
11
12
   # Initial call
   recursive_activity_selector(s, f, 0, n)
```

16.2.4 迭代贪心算法

```
def iterative_activity_selector(s, f):
    n = len(s)
    A = [1]  # earliest finished activity
    k = 1
    for m in range(2, n + 1):
        if s[m] >= f[k]:  # k is the last activity in A.
```

时间复杂度: O(n)

16.3 Huffman 编码

16.3.1 代价

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c) = \sum_{e \in \text{Internal nodes}} e.freq$$
 (16.3)

加权外部路径长度最小的二叉树

$$E = \sum_{x \in Leaves} depth(x) \times w(x)$$
 (16.4)

† 不唯一

16.3.2 Further: k 进制 Huffman 编码

如果是 k 进制编码, 是否可以直接构造一个 k 叉树?

- † 以三进制为例, 可能无法构成一个完整的三叉树
 - ▷ 不是最优的! 因为结点会优先成为深度更大的叶子.
- † 当 k-1|n-1 时, 仍然可以用原来的算法
 - \triangleright 总共 n 棵树 \Longrightarrow 1 棵树, 减少 n-1 棵; 但 $k \Longrightarrow$ 1 每次减少 k-1 棵树
- ▷ 不满足上述条件时, 可以通过补全一个或多个权重为 0 的叶子结点来实现
- L24 + Huffman 编码

第 17 章 平摊分析

17.1 聚合分析

17.1.1 栈操作

n 个 Pop(), Push(), MultiPop() 序列构成的操作总代价为 O(n), 因为对于初始为空栈的情况, 最多 Pop() n 次 \Longrightarrow 平摊代价 O(1).

17.1.2 二进制计数器递增

遇到 1 改成 0, 直到遇到 0 改成 1.

第 0 位, 每次都改变;

第 1 位, 每 21 次变一次;

第 k 位, 每 2^k 次变一次

n 次操作总代价

$$n + \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2^2} \right\rfloor + \dots + \left\lfloor \frac{n}{2^k} \right\rfloor + \dots \leqslant \sum_{i=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor \leqslant \sum_{i=0}^{\lfloor \log n \rfloor} \frac{n}{2^i} \leqslant 2n$$
 (17.1)

17.2 核算法 (会计法)

† 提前支付

17.2.1 栈操作

将所有代价都赋予 Push() 操作, 每次代价为 2, 一次用于自身 Push() 操作, 另一次留给 Pop() 操作.

17.2.2 二进制计数器

每次给 2 块钱, 一次操作消耗 1 块钱, 各位中 1 的个数表示剩余钱数, 因此 O(2n) 代价足够.

17.3 势能法

平摊代价

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \tag{17.2}$$

总平摊代价 (总代价)

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$
(17.3)

若存在某种势函数的定义, 使得 $\Phi(D_n) \geqslant \Phi(D_0)$, 则

$$\sum_{i=1}^{n} \hat{c}_i \geqslant \sum_{i=1}^{n} c_i,\tag{17.4}$$

即 $\sum_{i=1}^{n} \hat{c}_i$ 给出了总代价 $\sum_{i=1}^{n} c_i$ 的一个上界, 用于平摊分析估计代价.

17.3.1 栈操作

定义 $\Phi(D_i)$ 为栈 D_i 中元素个数,则各操作的势函数变化、平摊代价如下:

1 Push()

$$\Phi(D_i) = \Phi(D_{i-1}) + 1 \tag{17.5}$$

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2 \tag{17.6}$$

2 Pop()

$$\Phi(D_i) = \Phi(D_{i-1}) - 1 \tag{17.7}$$

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 - 1 = 0 \tag{17.8}$$

3 MultiPop()

$$\Phi(D_i) = \Phi(D_{i-1}) - \min(k, s) \tag{17.9}$$

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = \min(k, s) - \min(k, s) = 0$$
(17.10)

 $\dagger \min(k,s) = \Phi(D_{i-1})$

† 只有 Push() 操作有平摊代价.

思考 对于栈操作, 势函数是否可以有别的定义方法?

17.3.2 二进制计数器

定义 $\Phi(D_i)$ 为计数器 D_i 中 1 的个数.

设第i次操作之前, 计数器中有b个1; 第i次操作时, 将t个1改为0, 则

$$c_i \leqslant t + 1 \tag{17.11}$$

$$\Phi(D_i) - \Phi(D_{i-1}) \leqslant (b - t + 1) - b = 1 - t \tag{17.12}$$

$$\implies \hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \leqslant 2 \tag{17.13}$$

17.4 动态表

每次扩张翻倍

装载因子 $\alpha(T)$.

满时扩张, $\alpha(T) < \frac{1}{4}$ 时收缩.

† $\alpha(T)$ 收缩的阈值不能设置为 $\frac{1}{2}$, 否则在扩张边缘反复横跳下面对此问题用前述 3 种方法分别讨论.

17.4.1 聚合法

n 次 Insert() 操作, 最多 $\log n$ 次扩张,

$$c_i = \begin{cases} i, & i - 1 = 2^k, \\ 1, & \text{else} \end{cases}$$
 (17.14)

$$\implies \sum_{i=1}^{n} c_i \leqslant n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + 2n = 3n$$
 (17.15)

17.4.2 会计法

Insert() 操作的平摊代价为 3:

- (1) 自身插入操作
- (2) 移动自身
- (3) 造成其它数据第二次移动

长度为 m 时存储可用代价为 0, 当长度为 2m 时, 新插入的 m 项携带了自身移动所需的代价, 同时存储了造成前 m 个数据移动所需的代价.

17.4.3 势能法

$$\Phi(T) = 2 \times T.num - T.size \geqslant 0 \tag{17.16}$$

- † 表满时为 T.size
- †扩张后为0

每次积累 2, 另外还有一次用于自身操作, 平摊代价仍为 3.

按照第 i 次操作是否触发扩张来计算 \hat{c}_i .

第 18 章 分治法

18.1 最大子数组问题 (Max Subarray, MS)

18.1.1 分治法求解

A[low..high] = A[low..mid] + A[mid..high] 的 MS 为 A[i..j], 则必为 3 种情况之一:

- (1) $[i,j] \subset [low,mid]$: 子问题
- (2) $[i,j] \subset [mid, high]$: 子问题
- (3) $i \leq mid \leq j$: 分别向左、向右扫描, 获得最大收益

18.1.2 线性扫描算法

从左往右扫描直至第一个 > 0 的开始计算 sum, 记录 max 值的位置及和, 直至 sum < 0 时开始重新记录扫描, 得到若干个局部最大值, 最后比较这些最大值即可.

```
def linear_scan_max_subarray(A: list):
1
     """Solve maximum subarray problem using linear scan
2
3
     Args:
4
       A (list): array
5
6
7
     Returns:
       m, low, high: max sum, lower bound, upper bound
8
9
     m = -INFTY
10
     low, high = -1, -1
11
12
     # temp variables
     m_r = 0
13
     low_r = 0
14
     for i in range(0, len(A)):
15
       m_r += A[i]
16
       if m_r > m:
                      # find a new maximum subarray
17
         low, high = low_r, i
18
19
         m = m_r
       if m_r < 0: # previous accumulation is useless, abandon and restart
20
         m_r = 0
21
```

```
22 | low_r = i + 1
23 | return m, low, high
```

18.2 矩阵乘法的 Strasssen 算法

第四部分 高级数据结构

第 12 章 二分检索树

12.1 什么是二叉检索树

12.1.1 中序遍历

得到有序序列

12.1.2 二分检索

- (1) 折半查找
- (2) Fibonacci 查找
- (3) ...

12.2 查询二叉检索树

- 12.2.1 指定关键字
- 12.2.2 最小关键字和最大关键字
- 12.2.3 前驱和后继
- 1 后继 (中序遍历)
- (1) x 有右子树: 右子树的最小值为后继;
- (2) x 没有右子树: 找最近的父节点, 使得 x 在 y 的左子树中
- 思考 先序遍历/后序遍历的前驱/后继如何找?

2 先序遍历寻找后继的顺序

- (1) 左孩子
- (2) 右孩子
- (3) 最近的有右孩子的父亲的右孩子

12.3 插入和删除

12.3.1 * 删除

- (1) 左子树为 NIL: 用右子树替换
- (2) 右子树为 NIL:
- (3) 左右子树均非空, 后继为右儿子: 用右儿子替换

(4) 找后继: $z \leftarrow y, y \leftarrow x$

Figure 12.1 (图 12.4) 二叉检索树的删除

第 13 章 红黑树

定义 13.1 (红黑树) 平衡二叉检索树

13.1 红黑树的性质

满足下述红黑性质的二叉检索树:

- (1) 每个结点为红/黑
- (2) 根结点为黑
- (3) 叶子结点 (NIL) 为黑
- (4) 红结点的子结点为黑
- †不可能有两个红结点为父子关系
- (5) 每个结点, 到任何一个叶子结点的路径上的黑结点的个数相同
- †黑高度相同

13.2 旋转

13.2.1 左旋 & 右旋

- (1) LL
- (2) RR
- (3) LR
- (4) RL

思考 空的平衡二叉树至少需要插入多少个结点,才能使上述旋转操作至少各出现一次?

13.3 插入

13.3.1 看作二分检索树插入结点

需要更改结点颜色

总是插入红色结点, 然后自下而上调整颜色

13.4 删除

二叉树操作 + 颜色调整

第 14 章 数据结构的扩张

14.1 动态顺序统计

14.1.1 扩张

红黑树结点增加域 size 记录包含其本身的内部结点数,则

$$x.size = x.left.size + x.right.size + 1 (14.1)$$

14.1.2 基本操作

1 选择 选择以x 为根的树中第i 小的结点

1 OS-Select(x, i)

递归实现

2 排序 返回以T 为根的树中x 的排序

1 OS-Rank(T, x)

循环实现, 也可以有递归版本

14.1.3 维护

左右旋操作 size 域发生变化, 只与其左右结点的 size 值有关.

14.2 数据结构的扩张

14.2.1 步骤

- (1) 选择基础数据结构
- (2) 确定附加信息
- (3) 检验原基本操作下附加信息的维护没有增加时间复杂度
- †例如,二叉树下,通常要求附加信息只与其左右结点的附加信息有关
- (4) 定义新的基本操作
- †这是扩张数据结构的真正目的

14.3 区间树

以 x.low 左端点作为关键字, 增加域 x.max 为以 x 为根节点的子树的最大右端点

Figure 14.1 区间树 Interval-Search() 算法的正确性

14.3.1 查找

1 证明算法正确性

第 19 章 Fibonacci 堆

- † 可合并堆
 - ▷ 二叉堆不可合并 (合并代价大)
- 19.1 结构
- 19.2 基本操作
 - 19.2.1 Make
 - 19.2.2 Insert
 - 19.2.3 Get-Min
 - 19.2.4 Merge
 - 19.2.5 Extract-Min
 - 19.2.6 Decrease-Key
 - 19.2.7 Delete

第 21 章 用于不相交集合的数据结构

21.1 不相交集合的操作

沿父节点路径找到根节点, 比较两个结点的根节点确定其是否处于同一个集合中.

21.2 不相交集合的链表表示

21.2.1 合并

将较短的表合并到较长的表中, 需要更新被合并表的每一个结点的 head 域.

21.3 不相交集合森林

- 21.3.1 静态链表
- 21.3.2 按秩合并
- 21.3.3 路径压缩

Listing 21.1 并查集

```
1 def find_set(x: Set):
2     if x != x.p:
3          x.p = find_set(x.p)
4     return x.p
```

第五部分

图算法

第 22 章 基本的图算法

22.1 图的表示

22.1.1 数据结构

- 1 邻接表 存储的是结点的 index!
- 2 邻接矩阵

22.2 广度优先搜索, Breadth-first Search, BFS

注意 此处为搜索, 只能搜索到一个连通分量

1 搜索

1 | Search(G, u) # Search a connected component of u in G

2 遍历

1 Traverse(G) # Visit every vertex of G

每个顶点有3种颜色:

- (1) WHITE: 未访问
- (2) GRAY: 已访问, 但邻接点未访问完
- (3) BLACK: 已访问, 且邻接点已访问

维护一个队列, 按入队顺序进行访问

树的层次遍历也可以按此算法

22.3 深度优先搜索, Deep-first Search, DFS

注意 区分搜索和遍历! 此处为遍历

若干个连通分量(?)

关键结点/关键边: 删去后图不连通

22.3.1 时间戳

发现时间 u.d, 完成时间 u.f

后续用于搜索关键结点/关键边时很有用!

思考 怎么利用?怎么找?

22.3.2 4 种形式的边 (有向图)

- 1 树边 构成一颗深度优先树
- 2 回边 (后向边) 子孙 → 祖先, 是从祖先那来的, 这会构成一个环
- 3 前向边 祖先 → 子孙, 已经从子孙的子孙访问过了
- **4 交叉边 (横向边)** 子孙 → 子孙, 子孙之间的边, 已经从兄弟的结点访问过了 有向图的最小生成树 (?) ⇒ 都不一定存在

22.3.3 无向图的边

- 1 树边
- 2 非树边

22.4 Topo 排序

- (1) DFS
- (2) 按完成时间逆向排序
- (3) 构成 TOPO 排序链表

22.5 强连通分量

双向连通子图

- (1) 深度优先遍历
- (2) 转置图上按完成时间逆向遍历, 无法继续发现新结点时, 找到一个强连通分量

第 23 章 最小生成树

†连通无向图

23.1 最小生成树的形成

1 轻边

23.2 贪心算法

23.2.1 Kruskal

将边排序后一一加入, 每次选择不构成环路的最小边需要用到分离集合数据结构

适用于稀疏图

算法 23.1 (Kruskal) 使用分离集合数据结构

- (1) 初始化: 每个结点为一个集合
- (2) 生成: 每次选择横跨不同集合的轻边, 加入最小生成树, 同时合并结点集合
- (3) 终止: 所有结点合并为一个集合

23.2.2 Prim

将结点一一并入,每次选择与已并入结点集合相连最小的边

算法 23.2 (Prim) 维护一个优先队列, 将连接 v 与已在集合 S 中的结点的最小边作为 key.

- (1) 初始化: 随机选择一个结点 v_0 , 其余结点入队, 关键字为 $key = w(u, v_0)$;
- (2) 生成: 提取最小值结点 v_i , 并入集合 S 中, 更新关键字: 可能为原来的值或 $w(u, v_i)$;
- (3) 终止: 队列为空

23.2.3 Sollin

初始:每个顶点视为一棵树

每次每棵树同时选择连向其它树的最小邻边,合并树

- † 适合并行
 - ▷ 单处理器计算时间复杂度高
- † 类似于 Kruskal 算法同时做多个选择

第 24 章 单源最短路径

24.1 Bellman-Ford 算法

24.1.1 松弛操作

距离矢量算法, 泛洪, 每个结点向其相邻的结点传递结点可达信息.

24.1.2 计算最短路径

泛洪 |V|-1 次, 每次对所有边进行松弛操作.

24.1.3 优化

可以通过设置 flag, 记录本轮泛洪过程中是否有最短路径长度发生改变, 若没有, 则循环终止.

24.2 有向无环图 (DAG) 图中的单源最短路径

按照 Topo 排序结果进行泛洪, 只需泛洪一次

24.3 Dijkstra 算法

要求所有边权重都为非负值!

- † 最小生成树的 Prim 算法: 每次加入距离当前集合最近的结点;
- † 单源最短路径的 Dijkstra 算法: 每次加入距离源点 s 最近的结点
 - ▷ 每次对新加入的结点的出边进行松弛操作

第 25 章 所有结点对的最短路径问题

25.1 最短路径与矩阵乘法

若用 Bellman-Ford 算法, 利用矩阵表示优化时间复杂度 † 矩阵形式的思想!!!

25.2 Floyd-Warshall 算法

 $d_{ii}^{(k)}$ 定义为 $i \to j$ 途径顶点序号最大为 k 的最短路径长度

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & k = 0, \\ \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right\} \stackrel{\dagger}{=} \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k)} + d_{kj}^{(k)}\right\}, & k \geqslant 1 \end{cases}$$
 (25.1)

- † 处说明, 可以在原地进行迭代, 只需要维护一个矩阵即可.
- † 同时计算前驱矩阵
- † D⁽ⁿ⁾ 给出最终结果

25.3 Johnson 算法

如何改进 Dijstra 算法, 使得其适用于负权值?

重新赋予权重

定理 25.1 $\forall h: V \to \mathbb{R}$, 定义如下新的权重即可保证新定义的权重下的最短路径与先前一致

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v) \tag{25.2}$$

算法 25.1 (Johnson) 调整边的权值, 使得 $\hat{w}(u,v) \ge 0$, 然后对每一个结点调用 Dijkstra 算法, 求各结点对的最短路径.

- (1) 加入新的顶点 $G' = G \cup \{s\}$, 调用 Bellman-Ford 算法计算其到各个顶点的最短路径 长度 $\delta(s,u) := h(u)$
- (2) 定义新的权值 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$, 在新的权值下, 对每个顶点调用 Dijkstra 算法计算最短路径长度 $\hat{d}(u,v)$
 - (3) 回溯: 原图的最短路径长度为 $d(u,v) = \hat{d}(u,v) + h(v) h(u)$

第六部分

算法问题

第 30 章 分治法

30.1 大整数的乘法

 $X = \overline{ab}, Y = \overline{cd},$ 相乘分 2 段进行

4 次乘法 ⇒ 没有改进

减少乘法次数: $XY = ac \cdot ((a-b)(c-d) - ac - bd) \cdot bd$

30.2 矩阵乘法的 Strassen 算法

30.3 多项式与快速 Fourier 变换

多项式相乘: $\Theta(n^2)$

若用 FFT 实现, $\Theta(n \lg n) \implies$ 代入 x = 2, 10, 实现大整数的乘法

30.3.1 多项式的表示

多项式的系数表示 $\iff n$ 个点的值

若能建立对应,则多项式乘法可以将对应点的值相乘,然后对应求出系数.

1 从系数到点值 秦九韶算法, $\Theta(n)$

30.3.2 DFT & FFT

1 离散 Fourier 变换, DFT

$$A(x) = \sum_{j=0}^{n-1} a_j x^j \leftrightarrow \mathbf{a} = (a_0, a_1, \cdot, a_{n-1})$$
(30.1)

的 DFT

$$y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \omega_n^{kj} \leftrightarrow \mathbf{y} = (y_0, y_1, \dots, y_{n-1})$$
 (30.2)

2 快速 Fourier 变换, FFT

30.3.3 高效 FFT 实现

1 位逆序变换与蝴蝶操作

† 例如, 长度为 8 的序列, 4 = 100, 逆序 $\Longrightarrow 001 \Longrightarrow$ 第 1 位.

第 32 章 串匹配算法

文本: $T[1\cdots n]$

模式: $P[1 \cdots m], m \leq n$ (通常 $n \gg m$)

串匹配原理: 滑动窗口模型

32.1 Brute-Force 算法 (朴素字符串匹配)

32.2 Rabin-Karp 算法

对长为 m 的串, 定义 hash 函数, 若函数值相同, 再进行窗口内部比较, 否则直接跳过. 对无向图深度优先遍历后, 如何在 $\Theta(1)$ 判断顶点 u,v 是否在同一个连通片上? 邻接表: 顶点数组增加域, 表示所在连通片 (第几轮搜索被搜索到)

- 32.3 FSM 字符串匹配
- 32.4 Knuth-Morris-Pratt 算法 (KMP)

时间复杂度分析:与底层数据结构、数据分布有关

渐近记号

排序: 只考书上有的 (增量排序不考)

矩阵乘法公式不用背(?)

* 递归方程求解 3 种方法

排序: * 堆排序, 堆没有插入删除的基本操作, 二叉堆看作优先队列 (有插入删除操作), * 快速排序 (Partition), 线性时间排序 (计数、基数、桶排序)

选择问题: 同时找最大最小值 (最少比较次数的证明方法), 顺序统计

高级数据结构: 二分检索树 (遍历), 红黑树插入删除, 数据结构扩张, 分离集合数据结构 (路径压缩, 按秩合并)

动态规划, 贪心算法, 平摊分析: * 例子 (0-1 背包, 普通背包), 最优性原理, 平摊分析 FFT: 时间复杂度, 做 FFT 变换

图算法: BFS, DFS, 遍历 & 搜索, 最小生成树, Dijkstra 不适用权值 < 0 的边 ⇒ Johnson

串匹配: BM 算法, Quick-Search 算法不考, FSM 状态机的状态表, KMP 算法 Pi 函数, RK 算法

各种需要计算的表项 (动态规划法...)

TODO

- 32.4.1 红黑树的插入删除
- 32.4.2 主方法
- 32.4.3 课本 Bookmarks