rogunta

Sin responder aún Puntúa como

 Marcar pregunta

3,0

Silicio ( $E_q = 1.1 \text{ eV}$ ;  $m_p^*/m_0 = 1.1 \text{ y } m_p^*/m_0 = 0.6$ ) que se construye realizando una impurificación con dopantes aceptores de concentración volumétrica  $N_D$  entre dos contactos metálicos, sobre un sustrato semiconductor tipo p. Suponiendo que

En la Fig. 1 se presenta una resistencia para circuitos integrados basada en

para este problema la movilidad no depende de la temperatura, responder los siguientes ítems:

- a. Obtener el valor de N<sub>D</sub> para que a 60°C la concentración de los portadores generados térmicamente sea 5 órdenes de magnitud menor que  $n_0$ . b. Sabiendo que  $d = 6.0 \mu m$ , determinar la relación entre L y W (ver Fig. 1)
- para que la resistencia a 60°C entre los contactos sea 820 Ω. c. Utilizando la relación L/W obtenida en el punto anterior, explicar cómo variaría la resistencia si la concentración de impurezas disminuye en un
- Observación: para realizar los cálculos se cuenta con toda la información disponible en las clases teóricas y en la bibliografía de la materia.

orden de magnitud.



Fig. 1

## Pregunta 2

Sin responder aún

Puntúa como 3,5

Marcar pregunta A partir de la medición de la capacidad de un diodo de juntura PN<sup>+</sup>, en la Fig. 2 se presenta la curva de la inversa al cuadrado de dicha capacitancia  $(1/C^2)$  en función de la tensión aplicada entre ánodo y cátodo, Va. El diodo tiene un área de  $2 \times 10^{-5}$  cm<sup>2</sup> y corriente de saturación inversa  $I_0 = 100$  nA.

- a. Determinar la concentración de impurezas  $N_D$  y  $N_A$  sabiendo que la curva fue medida a T = 300 K y que de la extrapolación de los puntos medidos se obtuvo X = 0,7 V.
- Explicar cómo sería la tendencia de la curva si la medición se hubiera realizado también para tensiones positivas.
- c. Obtener la corriente y caída de tensión en el diodo a temperatura 300 K, cuando se lo polariza en directa con una pila de 5 V y una resistencia de 5 kΩ. Explicar cualitativamente cómo variarán los valores calculados si la temperatura de trabajo se duplica.



Fig. 2

## Pregunta 3

Sin responder aún Puntúa como

3,5 № Marcar

pregunta

En la tabla 1 se muestran las mediciones realizadas sobre un transistor MOSFET canal N basado en Silicio ( $\varepsilon_{Si}$  = 11,7;  $\varepsilon_{ox}$  = 3,9;  $t_{ox}$  = 369 nm; 2  $|\phi_p|$  = 0,595 V;  $\phi_n$  = 0,55 V) en el régimen de saturación para T = 300 K.

n°  $V_{GS}$  (V)  $V_{DS}$  (V)  $V_{SB}$  (V)  $I_D$  ( $\mu$ A)

435

497

| 3              | 3        | 4                          | 1             | 93                  |            |
|----------------|----------|----------------------------|---------------|---------------------|------------|
| 4              | 4        | 4                          | 0             | 1069                |            |
| Tabla 1        |          |                            |               |                     |            |
| a. Calcular lo | s valore | s de γ y V <sub>TO</sub> a | partir de los | parámetros físicos, | y calcular |

3

3

- λ y k = 1/2 (μ<sub>n</sub> C'<sub>ox</sub> W/L) a partir de las mediciones de la tabla.
   b. Definir y determinar los parámetros de pequeña señal g<sub>m</sub>, r<sub>o</sub> y g<sub>mb</sub> para la medición n°3. Calcular la corriente **total** (i<sub>D</sub>) cuando se aplica una variación v<sub>as</sub> = 300 mV.
  - c. Obtener las expresiones de  $g_m$ ,  $r_o$  y  $g_{mb}$  para el régimen de triodo.