8

Since the z transform of the exponential function is

8

$$\mathcal{Z}[e^{-at}] = \frac{1}{1 - e^{-aT}z^{-1}}$$

we have

$$X(z) = \mathcal{Z} \left[\sin \omega t \right] = \mathcal{Z} \left[\frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right) \right]$$

$$= \frac{1}{2j} \left(\frac{1}{1 - e^{j\omega T} z^{-1}} - \frac{1}{1 - e^{-j\omega T} z^{-1}} \right)$$

$$= \frac{1}{2j} \frac{\left(e^{j\omega T} - e^{-j\omega T} \right) z^{-1}}{1 - \left(e^{j\omega T} + e^{-j\omega T} \right) z^{-1}}$$

$$= \frac{z^{-1} \sin \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$$

$$= \frac{z \sin \omega T}{z^{2} - 2z \cos \omega T + 1}$$

Example 2-1

Obtain the z transform of the cosine function

$$x(t) = \begin{cases} \cos \omega t, & 0 \le t \\ 0, & t < 0 \end{cases}$$

If we proceed in a manner similar to the way we treated the z transform of the sine function, we have

$$X(z) = \mathcal{Z} \left[\cos \omega t \right] = \frac{1}{2} \mathcal{Z} \left[e^{i\omega t} + e^{-j\omega t} \right]$$

$$= \frac{1}{2} \left(\frac{1}{1 - e^{i\omega T} z^{-1}} + \frac{1}{1 - e^{-i\omega T} z^{-1}} \right]$$

$$= \frac{1}{2} \frac{2 - (e^{-j\omega T} + e^{-j\omega T}) z^{-1}}{1 - (e^{j\omega T} + e^{-j\omega T}) z^{-1} + z^{-2}}$$

$$= \frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$$

$$= \frac{z^{2} - z \cos \omega T}{z^{2} - 2z \cos \omega T + 1}$$

Example 2-2

Obtain the z transform of

$$X(s) = \frac{1}{s(s+1)}$$

Whenever a function in s is given, one approach for finding the corresponding z transform is to convert X(s) into x(t) and then find the z transform of x(t). Another approach is to expand X(s) into partial fractions and use a z transform table to find the z transforms of the expanded terms. Still other approaches will be discussed in Section 3–3.

Sec. 2-3 z Transforms of Elementary Functions

The inverse Laplace transform of X(s) is

$$x(t) = 1 - e^{-t}, \quad 0 \le t$$

Hence,

$$X(z) = \mathcal{Z} \left[1 - e^{-t} \right] = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-T} z^{-1}}$$

$$= \frac{(1 - e^{-T})z^{-1}}{(1 - z^{-1})(1 - e^{-T} z^{-1})}$$

$$= \frac{(1 - e^{-T})z}{(z - 1)(z - e^{-T})}$$

Comments. Just as in working with the Laplace transformation, a table of z transforms of commonly encountered functions is very useful for solving problems in the field of discrete-time systems. Table 2–1 is such a table.

TABLE 2-1 TABLE OF Z TRANSFORMS

X(z)	1	z -k	$\frac{1}{1-z^{-1}}$	$\frac{1}{1-e^{-aT}z^{-1}}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	$\frac{T^2 z^{-1} (1 + z^{-1})}{(1 - z^{-1})^3}$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
x(kT) or $x(k)$	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	$\delta_0(n-k)$ 1, $n=k$ 0, $n \neq k$	1(k)	e-akī	kT	$(kT)^2$	$(kT)^3$	$1 - e^{-akT}$	$e^{-bkT} - e^{-bkT}$	kTe^{-akT}	$(1-akT)e^{-akT}$
x(t)	1		1(t)	وسقا	ţ	f ²	t^3	$1 - e^{-at}$	e ^{-at} e ^{-bt}	Le ^{-at}	$(1-at)e^{-at}$
X(s)	. #	l	s	$\frac{1}{s+a}$	1128	2 <u> </u> 8	6 S ⁴	$\frac{a}{s(s+a)}$	$\frac{b-a}{(s+a)(s+b)}$	$\frac{1}{(s+a)^2}$	$\frac{s}{(s+a)^2}$
	1.	2,	3.	4.	5.	6.	7.	8	.6	10.	11.

(s.188*)			$\frac{1}{z}$									it system is a second						ega Ser ser
	X(z)	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$	$\frac{z^{-1}\sin \omega T}{1 - 2z^{-1}\cos \omega T + z^{-2}}$	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$	$\frac{e^{-aT}z^{-1}\sin\omega T}{1-2e^{-aT}z^{-1}\cos\omega T+e^{-2aT}z^{-2}}$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$	$\frac{1}{1-az^{-1}}$	$\frac{z^{-1}}{1-az^{-1}}$	$\frac{z^{-1}}{(1-az^{-1})^2}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$	$\frac{1}{1+az^{-1}}$	$\frac{z^{-2}}{(1-z^{-1})^3}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$	$\frac{z^{-2}}{(1-az^{-1})^3}$	$\frac{z^{-m+1}}{(1-az^{-1})^m}$
	x(kT) or $x(k)$	$(kT)^2e^{-akT}$	$akT - 1 + e^{-akT}$	$\sin \omega kT$	cos wk T	$e^{-akT}\sin\omega kT$	$e^{-akT}\cos\omega kT$	a,k	a^{k-1} $k = 1, 2, 3, \dots$	ka ^{k - 1}	k ² a ^{k-1}	k^3a^{k-1}	k^4a^{k-1}	$a^k \cos k\pi$	$\frac{k(k-1)}{2!}$	$\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}$	$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{n+2}{a^{k-m+1}}$
ned)	x(t)	1 ² e ^{-ai}	$at-1+e^{-at}$	sin <i>od</i>	cos eat	e ^{-a} sin wt	e ^{-at} cos wt								_	<u>k(k - </u>		$\frac{k(k-1)\cdots(k-m+2)}{(m-1)!}a^{k-m+1}$
TABLE 2-1 (continued)	X(s)	$\frac{2}{(s+a)^3}$	$\frac{a^2}{s^2(s+a)}$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{s}{s^2+\omega^2}$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{s+a}{(s+a)^2+\omega^2}$											<u>k(</u> .
TABL		12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.

Unless otherwise noted, $k = 0, 1, 2, 3, \ldots$ x(kT) = x(k) = 0, for k < 0.

Sec. 2-4 Important Properties and Theorems of the z Transform

2-4 IMPORTANT PROPERTIES AND THEOREMS OF THE Z TRANSFORM

The use of the z transform method in the analysis of discrete-time control systems may be facilitated if theorems of the z transform are referred to. In this section we present important properties and useful theorems of the z transform. We assume that the time function x(t) is z-transformable and that x(t) is zero for t < 0.

Multiplication by a Constant. If X(z) is the z transform of x(t), then

$$\mathbb{Z}[\alpha(t)] = a \mathbb{Z}[x(t)] = aX(z)$$

where a is a constant.

To prove this, note that by definition

$$\mathcal{Z}[ax(t)] = \sum_{k=0}^{\infty} ax(kT)z^{-k} = a\sum_{k=0}^{\infty} x(kT)z^{-k} = aX(z)$$

erty: linearity. This means that, if f(k) and g(k) are z-transformable and α and β Linearity of the z Transform. The z transform possesses an important propare scalars, then x(k) formed by a linear combination

$$x(k) = \alpha f(k) + \beta g(k)$$

has the z transform

$$X(z) = \alpha F(z) + \beta G(z)$$

where F(z) and G(z) are the z transforms of f(k) and g(k), respectively.

The linearity property can be proved by referring to Equation (2-2) as follows:

$$X(z) = \mathcal{Z}[x(k)] = \mathcal{Z}[\alpha f(k) + \beta g(k)]$$

$$= \sum_{k=0}^{\infty} [\alpha f(k) + \beta g(k)] z^{-k}$$

$$= \alpha \sum_{k=0}^{\infty} f(k) z^{-k} + \beta \sum_{k=0}^{\infty} g(k) z^{-k}$$

$$= \alpha \mathcal{Z}[f(k)] + \beta \mathcal{Z}[g(k)]$$

$$= \alpha \mathcal{Z}[f(k)] + \beta \mathcal{Z}[g(k)]$$

Multiplication by a^k. If X(z) is the z transform of x(k), then the z transform of $a^k x(k)$ can be given by $X(a^{-1}z)$:

$$\mathcal{Z}[a^k x(k)] = X(a^{-1}z) \tag{2-6}$$

This can be proved as follows:

$$Z[a^k x(k)] = \sum_{k=0}^{\infty} a^k x(k) z^{-k} = \sum_{k=0}^{\infty} x(k) (a^{-1} z)^{-k}$$
$$= X(a^{-1} z)$$

Shifting Theorem. The shifting theorem presented here is also referred to as the real translation theorem. If x(t) = 0 for t < 0 and x(t) has the z transform X(z),

x(t) = 0, for t < 0.

TABLE 2-2 IMPORTANT PROPERTIES AND THEOREMS OF THE Z TRANSFORM

60

																			,			-
TABLE 2-2 IMPORTANT PROPERTIES AND THEOREMS OF THE Z TRANSFORM	$\mathcal{Z}[x(t)]$ or $\mathcal{Z}[x(k)]$	aX(z)	$aX_1(z) + bX_2(z)$	zX(z) - zx(0)	$z^2 X(z) - z^2 x(0) - zx(T)$	$z^2 X(z) - z^2 x(0) - zx(1)$	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \cdots - zx(kT - T)$	$\dot{z}_{-k}X(z)$	$z^k X(z) - z^k x(0) - z^{k-1} x(1) - \dots - zx(k-1)$	$z^{-k}X(z)$	$-Tz\frac{d}{dz}X(z)$	$-z\frac{d}{dz}X(z)$	$X(ze^{aT})$	$X(ze^a)$	$\left(rac{z}{z} ight)X$	$-zrac{d}{dz}X\left(rac{z}{a} ight)$	$\lim_{z\to\infty} X(z)$ if the limit exists	$\lim_{z\to 1} [(1-z^{-1})X(z)]$ if $(1-z^{-1})X(z)$ is analytic on and outside the unit circle	$(1-z^{-1})X(z)$	(z-1)X(z)-zx(0)	$\frac{1}{1-z^{-1}}X(z)$	
E 2-2 IMPORTANI PROPERTI	x(t) or $x(k)$	ax(t)	$ax_1(t) + bx_2(t)$	x(t+T) or $x(k+1)$	x(t+2T)	x(k + 2)	x(t+kT)	x(t-kT)	x(n+k)	x(n-k)	$\alpha(t)$	kx(k)	$e^{-at} \chi(t)$	$e^{-ak}x(k)$	$a^k x(k)$	$ka^kx(k)$	x(0)	$\chi(\infty)$	$\nabla x(k) = x(k) - x(k-1)$	$\Delta x(k) = x(k+1) - x(k)$	$\sum_{k=0}^{n} x(k)$	
Z Z		1-	2.	w.	4.	5.	9	7.	∞.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	

The Inverse z Transform Sec. 2-5

Figure 2-3 Two different continuous-time functions, $x_1(t)$ and $x_2(t)$, that have the same values at $t = 0, T, 2T, \ldots$

- 1. Direct division method
- 2. Computational method
- 3. Partial-fraction-expansion method
 - 4. Inversion integral method

In obtaining the inverse z transform, we assume, as usual, that the time sequence x(kT) or x(k) is zero for k < 0.

Before we present the four methods, however, a few comments on poles and zeros of the pulse transfer function are in order. Poles and Zeros in the z Plane. In engineering applications of the z transform method, X(z) may have the form

$$X(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{z^n + a_1 z^{n-1} + \dots + a_n} \qquad (m \le n)$$
 (2-17)

or

$$X(z) = \frac{b_0(z-z_1)(z-z_2)\cdots(z-z_m)}{(z-p_1)(z-p_2)\cdots(z-p_n)}$$

where the p_i 's (i = 1, 2, ..., n) are the poles of X(z) and the z_i 's (j = 1, 2, ..., m)the zeros of X(z).

linear continuous-time control systems, we often use a graphical display in the zThe locations of the poles and zeros of X(z) determine the characteristics of x(k), the sequence of values or numbers. As in the case of the s plane analysis of plane of the locations of the poles and zeros of X(z).

 $\left(-z\frac{d}{dz}\right)^m X(z)$

X(z)Y(z)

 $\sum_{k=0}^{n} x(kT)y(nT - kT)$

23.

 $\sum_{k=0}^{\infty} x(k)$

24.

 $k^m x(k)$

22.

X(1)

 $\frac{\partial}{\partial a}X(z,a)$

 $\frac{\partial}{\partial a}x(t,a)$

21.

Note that in control engineering and signal processing X(z) is frequently expressed as a ratio of polynomials in z^{-1} , as follows:

$$X(z) = \frac{b_0 z^{-(n-m)} + b_1 z^{-(n-m+1)} + \dots + b_m z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$$
(2-18)