11-§. Chiziqli uzluksiz operatorlar

Biz asosan chiziqli operatorlarni qaraymiz. Chiziqli operatorlarning aniqlanish sohasi va qiymatlar toʻplami chiziqli normalangan fazolarning qism fazolari boʻladi. Shunday qilib, bizga X va Y chiziqli normalangan fazolar berilgan boʻlsin.

11.1-ta'rif. X fazodan olingan har bir x elementga Y fazoning yagona y elementini mos qo'yuvchi

$$Ax = y$$
 $(x \in X, y \in Y)$

akslantirish operator deyiladi.

Umuman A operator X ning hamma yerida aniqlangan bo'lishi shart emas. Bu holda Ax mavjud va $Ax \in Y$ bo'lgan barcha $x \in X$ lar to'plami A operatorning aniqlanish sohasi deyiladi va D(A) bilan belgilanadi, ya'ni:

$$D(A) = \{ x \in X : Ax \text{ mavjud va } Ax \in Y \}.$$

Agar chiziqli A operator qaralayotgan bo'lsa, D(A) ning chiziqli ko'pxillilik (8.6-ta'rifga qarang) bo'lishi talab qilinadi, ya'ni agar $x, y \in D(A)$ bo'lsa, u holda ixtiyoriy $\alpha, \beta \in C$ lar uchun $\alpha x + \beta y \in D(A)$.

11.2-ta'rif. Agar ixtiyoriy $x, y \in D(A) \subset X$ elementlar va ixtiyoriy $\alpha, \beta \in C$ sonlar uchun

$$A(\alpha x + \beta y) = \alpha A x + \beta A y$$

tenglik oʻrinli boʻlsa, A ga chiziqli operator deyiladi.

11.3-ta'rif. Bizga $A: X \to Y$ operator va $x_0 \in D(A)$ nuqta berilgan bo'lsin. Agar $y_0 = Ax_0 \in Y$ ning ixtiyoriy V atrofi uchun, x_0 nuqtaning shunday U atrofi mavjud bo'lib, ixtiyoriy $x \in U \setminus D(A)$ lar uchun $Ax \in V$ bo'lsa, A operator $x = x_0$ nuqtada uzluksiz deyiladi.

11.3-ta'rifga teng kuchli quyidagi ta'riflarni keltiramiz.

11.4-ta'rif. Agar ixtiyoriy $\varepsilon > 0$ uchun shunday $\delta = \delta(\varepsilon) > 0$ mavjud bo'lib, $\|x - x_0\| < \delta$ tengsizlikni qanoatlantiruvchi barcha $x \in D(A)$ lar uchun

$$||Ax - Ax_0|| < \varepsilon$$

tengsizlik bajarilsa, A operator $x = x_0$ nuqtada uzluksiz deyiladi.

11.5-ta'rif. $Agar \ x_0$ nuqtaga yaqinlashuvchi ixtiyoriy x_n ketma-ketlik uchun $\|Ax_n - Ax_0\| \to 0$ bo'lsa, u holda A operator x_0 nuqtada uzluksiz deyiladi.

Agar A operator ixtiyoriy $x \in D(A)$ nuqtada uzluksiz boʻlsa, A uzluksiz operator deyiladi.

- **11.6-ta'rif.** $Ax = \theta$ tenglikni qanoatlantiruvchi barcha $x \in X$ lar to'plami A operatorning yadrosi deb ataladi va u KerA bilan belgilanadi.
- **11.7-ta'rif.** Biror $x \in D(A)$ uchun y = Ax bajariladigan $y \in Y$ lar to'plami A operatorning qiymatlar sohasi yoki tasviri deb ataladi va u $\operatorname{Im} A$ yoki R(A) bilan belgilanadi.

Matematik simvollar yordamida operator yadrosi va qiymatlar sohasini quyidagicha yozish mumkin:

$$Ker A = \{ x \in D(A) : Ax = \theta \},$$

$$R(A) := \operatorname{Im} A = \{ y \in Y : \text{biror } x \in D(A) \text{ uchun } y = Ax \}.$$

Chiziqli operatorning qiymatlar sohasi va yadrosi chiziqli koʻpxillilik boʻladi. Agar D(A) = X boʻlib, A uzluksiz operator boʻlsa, u holda KerA yopiq qism fazo boʻladi, ya'ni KerA = [KerA]. A operator uzluksiz boʻlgan holda ham $Im A \subset Y$ yopiq qism fazo boʻlmasligi mumkin.

Chiziqli operatorlarga misollar.

11.1-misol. X - ixtiyoriy chiziqli normalangan fazo boʻlsin.

$$Ix = x$$
, $x \in X$

akslantirish birlik operator deyiladi. Uni chiziqlilik va uzluksizlikka tekshiring.

Yechish. Bu operatorning chiziqliligi va uzluksizligi quyidagi tengliklardan bevosita kelib chiqadi:

$$I(\alpha x + \beta y) = \alpha x + \beta y = \alpha I x + \beta I y, \quad ||I(x - x_0)|| = ||x - x_0||.$$

Qoʻshimcha qilib aytishimiz mumkinki, uning aniqlanish sohasi, qiymatlar sohasi va yadrosi uchun quyidagilar oʻrinli:

$$D(I) = X$$
, $R(I) = X$, $KerI = \{\theta\}$.

11.2. X va Y ixtiyoriy chiziqli normalangan fazolar boʻlsin.

$$\Theta: X \to Y, \quad \Theta x = \theta$$

operator nol operator deyiladi. Uni chiziqlilik va uzluksizlikka tekshiring.

Yechish. Nol operatorning chiziqliligi va uzluksizligi bevosita ta'rifdan kelib chiqadi. Uning aniqlanish sohasi, qiymatlar sohasi va yadrosi uchun quyidagilar oʻrinli:

$$D(\Theta) = X$$
, $R(\Theta) = \{\theta\}$, $Ker(\Theta) = X$.

11.3. Aniqlanish sohasi $D(A)=C^{(1)}[a,b]\subset C[a,b]$ boʻlgan va C[a,b] fazoni oʻzini-oʻziga akslantiruvchi

$$A: C[a, b] \rightarrow C[a, b], \quad (Af)(x) = f'(x)$$

operatorni qaraymiz. Bu operator differensial operator deyiladi. Uni chiziqlilik va uzluksizlikka tekshiring.

Yechish. Uning chiziqli ekanligini koʻrsatamiz. Buning uchun ixtiyoriy $f,g \in D(A)$ elementlarning chiziqli kombinatsiyasi boʻlgan $\alpha f + \beta g$ elementga A operatorning ta'sirini qaraymiz:

$$(A(\alpha f + \beta g))(x) = (\alpha f(x) + \beta g(x))' = \alpha f'(x) + \beta g'(x) = \alpha (Af)(x) + \beta (Ag)(x).$$

Biz bu yerda yigʻindining hosilasi hosilalar yigʻindisiga tengligidan, hamda oʻzgarmas sonni hosila belgisi ostidan chiqarish munkinligidan foydalandik. Demak, A operator chiziqli ekan. Uni nol nuqtada uzluksizlikka tekshiramiz. Ma'lumki, $A\theta = \theta$, bu yerda $\theta - C[a, b]$ fazoning nol elementi, ya'ni $\theta(x) \equiv 0$. Endi nolga yaqinlashuvchi $f_n \in D(A)$ ketma-ketlikni tanlaymiz. Umumiylikni buzmagan holda a = 0, b = 1 deymiz.

$$f_n(x) = \frac{x^{n+1}}{n+1}, \quad \lim_{n\to\infty} ||f_n|| = \lim_{n\to\infty} \max_{0\le x\le 1} \left|\frac{x^{n+1}}{n+1}\right| = \lim_{n\to\infty} \frac{1}{n+1} = 0.$$

Ikkinchi tomondan,

$$(Af_n)(x) = x^n$$
, $\lim_{n \to \infty} ||Af_n - A\theta|| = \lim_{n \to \infty} \max_{0 \le x \le 1} |x^n| = \lim_{n \to \infty} 1 = 1 \ne 0$.

Demak, A operator nol nuqtada uzluksiz emas ekan. 11.2-teoremaga koʻra differensial operator aniqlanish sohasining barcha nuqtalarida uzilishga ega.

Uning qiymatlar sohasi va yadrosi uchun quyidagilar oʻrinli:

$$R(A) = C[a,b], \qquad KerA = \{const\}.$$

11.4. Endi C[a, b] fazoni oʻzini-oʻziga akslantiruvchi B operatorni quyidagicha aniqlaymiz:

$$(Bf)(x) = \int_{a}^{b} K(x,t)f(t)dt$$
 (11.1)

Bu operator integral operator deyiladi. Bu yerda K(x,y) funksiya $[a,b] \times [a,b]$ - kvadratda aniqlangan, uzluksiz. K(x,y) integral operatorning oʻzagi (yadrosi) deyiladi. B operatorni chiziqlilik va uzluksizlikka tekshiring.

Yechish. Ma'lumki, ixtiyoriy $f \in C[a,b]$ uchun K(x,t)f(t) funksiya x va t ning uzluksiz funksiyasidir. Matematik analiz kursidan ma'lumki,

$$\int_{a}^{b} K(x,t)f(t)dt$$

integral parametr $x \in [a,b]$ ning uzluksiz funksiyasi boʻladi. Bulardan B operatorning aniqlanish sohasi D(B) uchun D(B) = C[a,b] tenglik oʻrinli ekanligi kelib chiqadi. Integral operatorning chiziqli ekanligi integrallash amalining chiziqlilik xossasidan kelib chiqadi, ya'ni ixtiyoriy $f,g \in C[a,b]$ va $\alpha,\beta \in C$ lar uchun

$$(B(\alpha f + \beta g))(x) = \int_{a}^{b} K(x,t)(\alpha f(t) + \beta g(t))dt =$$

$$= \alpha \int_{a}^{b} K(x,t)f(t)dt + \beta \int_{a}^{b} K(x,t)g(t)dt = \alpha (Bf)(x) + \beta (Bg)(x)$$

tengliklar oʻrinli. Endi integral operator B ning uzluksiz ekanligini koʻrsatamiz. $f_0 \in C[a,b]$ ixtiyoriy tayinlangan element va $\{f_n\} \subset C[a,b]$ unga yaqinlashuvchi ixtiyoriy ketma-ketlik boʻlsin. U holda

$$||Bf_{n} - Bf_{0}|| = \max_{a \le x \le b} \left| \int_{a}^{b} K(x,t) (f_{n}(t) - f_{0}(t)) dt \right| \le$$

$$\le \max_{a \le x \le b} |f_{n}(t) - f_{0}(t)| \max_{a \le x \le b} \left| \int_{a}^{b} K(x,t) dt \right| = C \cdot ||f_{n} - f_{0}||.$$
(11.2)

Bu yerda

$$C = \max_{a \le x \le b} \int_{a}^{b} |K(x,t)| dt.$$

C ning chekli ekanligi [a,b] kesmada uzluksiz funksiyaning chegaralangan ekanligidan kelib chiqadi. Agar (11.2) tengsizlikda $n \to \infty$ da limitga o'tsak,

$$\lim_{n\to\infty} \|Bf_n - Bf_0\| \le C \cdot \lim_{n\to\infty} \|f_n - f_0\| = 0$$

ekanligini olamiz. Agar $||Bf_n - Bf_0|| \ge 0$ tengsizlikni hisobga olsak,

$$\lim_{n\to\infty} \|Bf_n - Bf_0\| = 0.$$

Shunday qilib, B integral operator ixtiyoriy nuqtada uzluksiz ekan.

B integral operatorning qiymatlar sohasi va yadrosi integral operatorning oʻzagi - K(x,y) funksiyaning berilishiga bogʻliq. Masalan, $K(x,t) \equiv 1$ boʻlsa, B operatorning qiymatlar sohasi $\operatorname{Im} B$ oʻzgarmas funksiyalardan iborat, ya'ni $\operatorname{Im} B = \{f \in C[a,b] : f(t) = const\}$, uning yadrosi KerB oʻzgarmasga ortogonal funksiyalardan iborat, ya'ni

$$KerB = \{ f \in C[a, b] : \int_a^b f(t)dt = 0 \}.$$

- **11.8-ta'rif.** Bizga X normalangan fazoning M to 'plami berilgan bo 'lsin. Agar shunday C > 0 son mavjud bo 'lib, barcha $x \in M$ uchun $||x|| \le C$ tengsizlik o 'rinli bo 'lsa, M to 'plam chegaralangan deyiladi.
- **11.9-ta'rif.** X fazoni Y fazoga akslantiruvchi A chiziqli operator berilgan bo'lsin. Agar A ning aniqlanish sohasi D(A) = X bo'lib, har qanday chegaralangan to'plamni yana chegaralangan to'plamga akslantirsa, A ga chegaralangan operator deviladi.

Chiziqli operatorning chegaralanganligini tekshirish uchun quyidagi ta'rif qulaydir.

11.10-ta'rif. $A: X \to Y$ chiziqli operator bo'lsin. Agar shunday C > 0 son mavjud bo'lib, ixtiyoriy $x \in D(A)$ uchun

$$||Ax|| \le C \cdot ||x|| \tag{11.3}$$

tengsizlik bajarilsa, A chegaralangan operator deyiladi.

11.11-ta'rif. (11.3) tengsizlikni qanoatlantiruvchi C sonlar to'plamining aniq quyi chegarasi A operatorning normasi deyiladi, va u ||A|| bilan belgilanadi, ya'ni

$$||A|| = \inf C.$$

Bu ta'rifdan ixtiyoriy $x \in D(A)$ uchun $||Ax|| \le ||A|| \cdot ||x||$ tengsizlik o'rinli ekanligi kelib chiqadi.

11.1-teorema. X normalangan fazoni Y normalangan fazoga akslantiruvchi chiziqli chegaralangan A operatorning normasi $\|A\|$ uchun

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{x \neq \theta} \frac{||Ax||}{\|x\|}$$
 (11.4)

tenglik oʻrinli.

Isbot. Quyidagicha belgilash kiritamiz

$$\alpha = \sup_{x \neq \theta} \frac{\|Ax\|}{\|x\|}.$$

A chiziqli operator boʻlgani uchun

$$\alpha = \sup_{x \neq \theta} \frac{\|Ax\|}{\|x\|} = \sup_{x \neq \theta} \|A\frac{x}{\|x\|}\| = \sup_{\|x\|=1} \|Ax\|.$$

Ixtiyoriy $x \neq 0$ uchun

$$\frac{\|Ax\|}{\|x\|} \le \alpha.$$

Demak, ixtiyoriy $x \in X$ uchun $||Ax|| \le \alpha ||x||$. Bundan esa

$$||A|| \le \alpha. \tag{11.5}$$

Aniq yuqori chegara ta'rifiga koʻra, ixtiyoriy $\varepsilon > 0$ son uchun, shunday $x_{\varepsilon} \neq \theta$ element mavjudki,

$$\alpha - \varepsilon \le \frac{\|Ax_{\varepsilon}\|}{\|x_{\varepsilon}\|} \le \|A\|$$

tengsizlik bajariladi. Bu yerdan $\varepsilon > 0$ ixtiyoriy bo'lgani uchun,

$$\alpha \le \|A\|. \tag{11.6}$$

(11.5) va (11.6) lardan $||A|| = \alpha$ tenglik kelib chiqadi. Δ

11.1-tasdiq. Chiziqli chegaralangan A operator uchun

$$\sup_{\parallel x \parallel = 1} \parallel A x \parallel = \sup_{\parallel x \parallel \le 1} \parallel A x \parallel$$

tenglik oʻrinli.

11.1-tasdiqni mustaqil isbotlang.

X chiziqli normalangan fazoni Y chiziqli normalangan fazoga akslantiruvchi chiziqli chegaralangan operatorlar toʻplamini L(X,Y) bilan belgilaymiz. Xususan, X = Y boʻlsa L(X,X) = L(X).

11.1-natija. Ixtiyoriy
$$A \in L(X,Y)$$
 va $x \in D(A)$, $||x|| = 1$ uchun $||Ax|| \le ||A||$ (11.7)

tengsizlik oʻrinli.

(11.7) tengsizlikning isboti (11.4) tengsizlikdan kelib chiqadi.

11.12-ta'rif. $A: X \to Y$ va $B: X \to Y$ chiziqli operatorlarning yig'indisi deb, $x \in D(A)$ I D(B) elementga $y = Ax + Bx \in Y$ elementni mos qo'yuvchi C = A + B operatorga aytiladi.

Ravshanki, C chiziqli operator bo'ladi. Agar A, $B \in L(X,Y)$ bo'lsa, u holda C ham chegaralangan operator bo'ladi va

$$||C|| = ||A + B|| \le ||A|| + ||B||$$
 (11.8)

tengsizlik oʻrinli. Haqiqatan ham,

$$||Cx|| = ||Ax + Bx|| \le ||Ax|| + ||Bx|| \le ||A|| \cdot ||x|| + ||B|| \cdot ||x|| \le (||A|| + ||B||) ||x||.$$

Bu yerdan (11.8) tengsizlik kelib chiqadi.

11.13-ta'rif. A chiziqli operatorning α songa ko'paytmasi x elementga α Ax elementni mos qo'yuvchi operator sifatida aniqlanadi, ya'ni

$$(\alpha A)(x) = \alpha Ax.$$

11.14-ta'rif. $A: X \to Y$ va $B: Y \to Z$ chiziqli operatorlar berilgan bo'lib $R(A) \subset D(B)$ bo'lsin. B va A operatorlarning ko'paytmasi deganda,

har bir $x \in D(A)$ ga Z fazoning z = B(Ax) elementini mos qoʻyuvchi $C = BA : X \to Z$ operator tushuniladi.

Agar A va B lar chiziqli chegaralangan operatorlar boʻlsa, u holda C ham chiziqli chegaralangan operator boʻladi va

$$\|C\| \le \|B\| \cdot \|A\| \tag{11.9}$$

tengsizlik oʻrinli. Haqiqatan ham,

$$\|Cx\|_{Z} = \|B(Ax)\|_{Z} \le \|B\| \cdot \|Ax\|_{Y} \le \|B\| \cdot \|A\| \cdot \|x\|_{Y}$$

Bu yerdan (11.9) tengsizlik kelib chiqadi.

Operatorlarni qoʻshish va koʻpaytirish assotsiativdir. Qoʻshish amali kommutativ, lekin koʻpaytirish amali kommutativ emas.

Agar X va Y lar chiziqli normalangan fazolar boʻlsa, L(X,Y) ham chiziqli normalangan fazo boʻladi, ya'ni $p:L(X,Y)\to R$,

$$p(A) = \sup_{\|x\|=1} \|Ax\|$$

funksional normaning 1-3 - shartlarini qanoatlantiradi.

- **11.2-teorema.** X normalangan fazoni Y normalangan fazoga akslantiruvchi $A: X \to Y$ chiziqli operator berilgan boʻlsin. U holda quyidagi tasdiqlar teng kuchli:
 - 1) A operator biror x_0 nuqtada uzluksiz;
 - 2) A operator uzluksiz;
 - 3) A operator chegaralangan.

Isbot. 1) \rightarrow 2). Chiziqli A operatorning biror x_0 nuqtada uzluksiz ekanligidan uning ixtiyoriy nuqtada uzluksiz ekanligini keltirib chiqaramiz.

A operator x_0 nuqtada uzluksiz boʻlganligi uchun, x_0 ga intiluvchi ixtiyoriy $\left\{x_n^0\right\}$ ketma-ketlik uchun $Ax_n^0 \to Ax_0$. Ixtiyoriy $x' \in D(A)$ nuqta uchun, $x'_n \to x'$ ekanligidan $Ax'_n \to Ax'$ kelib chiqishini koʻrsatamiz. $y'_n = x'_n - x' + x_0 \to x_0$ deymiz. U holda

$$\lim_{n \to \infty} Ay'_n = \lim_{n \to \infty} A(x'_n - x' + x_0) = \lim_{n \to \infty} (Ax'_n - Ax' + Ax_0) = Ax_0.$$

Bu esa

$$\lim_{n\to\infty} Ax'_n = Ax'$$

ekanligini bildiradi. Demak, A operator ixtiyoriy x' nuqtada uzluksiz.

 $2) \rightarrow 3$). A operatorning uzluksiz ekanligidan uning chegaralanganligi kelib chiqishini koʻrsatamiz. Teskaridan faraz qilaylik, A chiziqli operator uzluksiz boʻlsin, lekin chegaralangan boʻlmasin, ya'ni ixtiyoriy C > 0 son uchun shunday $x_c \in D(A)$ element mavjud boʻlib,

$$||Ax_c|| \ge C||x_c||$$

boʻlsin. Agar $C=n\in N$ desak, ixtiyoriy $n\in N$ uchun shunday $x_n\in D(A)$ mavjudki, $\|Ax_n\|\geq n\|x_n\|$ tengsizlik bajariladi. Quyidagi

$$\xi_n = \frac{x_n}{n \|x_n\|}$$

ketma-ketlikni qaraymiz. Koʻrinib turibdiki, $\xi_{\scriptscriptstyle n} \to \theta$, ya'ni

$$\|\xi_n - \theta\| = \left\| \frac{x_n}{n \|x_n\|} \right\| = \frac{1}{n \|x_n\|} \|x_n\| = \frac{1}{n} \to 0.$$

Ikkinchi tomondan,

$$||A\xi_{n} - A\theta|| = ||A\left(\frac{x_{n}}{n||x_{n}||}\right)|| = ||\frac{1}{n||x_{n}||}Ax_{n}|| = \frac{1}{n||x_{n}||}||Ax_{n}|| \ge 1$$

Bu qarama-qarshilik A operatorning chegaralangan ekanligini koʻrsatadi.

 $3) \rightarrow 1$). A chiziqli chegaralangan operatorning biror nuqtada uzluksizligini koʻrsatamiz.

Ta'rifga ko'ra, shunday C > 0 son mavjudki, ixtiyoriy $x \in D(A)$ uchun

$$\|Ax\|_{Y} \le C \|x\|_{X}$$

tengsizlik bajariladi. Faraz qilaylik, $\{x_n\}$ - x ga yaqinlashuvchi ixtiyoriy ketmaketlik boʻlsin, u holda $Ax_n \to Ax$ ekanligini koʻrsatamiz:

$$||Ax_n - Ax|| = ||A(x_n - x)|| \le C||x_n - x|| \to 0,$$

ya'ni $Ax_n \to Ax$. Δ

- **11.2-natija.** A chiziqli operator chegaralangan boʻlishi uchun uning uzluksiz boʻlishi zarur va yetarli.
- **11.5-misol.** Birlik va nol operatorlarning (11.1 va 11.2-misollar) chegaralangan ekanligini koʻrsatib, ularning normasini hisoblang.

Yechish. Birlik operatorning chegaralangan ekanligini koʻrsatib, normasini hisoblaymiz. Ixtiyoriy $x \in E$ uchun ||Ix|| = ||x|| tenglik oʻrinli. Ta'rifga koʻra, I chegaralangan va uning normasi 1 ga teng. Endi nol operatorning chegaralangan ekanligini koʻrsatib, uning normasini topamiz. Istalgan $x \in E$ uchun $||\Theta x|| = ||\theta|| = 0$ tenglik oʻrinli. Bundan $||\Theta|| = 0$ ekanligi kelib chiqadi. Nol operator L(X,Y) chiziqli normalangan fazoning nol elementi boʻladi.

11.6. 11.3-misolda keltirilgan $A:C[a,b] \to C[a,b]$ differensial operatorning chegaralanmagan ekanligini koʻrsating.

Yechish. Buning uchun A akslantirishda $D(A) = C^{(1)}[0,1]$ fazodagi birlik shar $B[\theta,1]$ ning tasviri chegaralanmagan toʻplam ekanligini koʻrsatish yetarli. Birlik shar $B[\theta,1]$ da yotuvchi $\{f_n\}$ ketma-ketlikni quyidagicha tanlaymiz:

$$f_n(x) = x^n$$
, $||f_n|| = \max_{0 \le x \le 1} |x^n| = 1$.

U holda

$$(A f_n)(x) = n \cdot x^{n-1}, \quad ||A f_n|| = \max_{0 \le x \le 1} |n \cdot x^n| = n.$$

Bundan

$$\lim_{n\to\infty} \|Af_n\| = \infty$$

ekanligi kelib chiqadi. Demak, differensial operator chegaralanmagan ekan.

11.7. 11.4-misolda keltirilgan $B:C[a,b] \to C[a,b]$ integral operatorning chegaralangan ekanligini koʻrsating.

Yechish. 11.4-misolda *B* operatorning uzluksiz ekanligi koʻrsatilgan edi. 11.2-natijaga koʻra, u chegaralangan boʻladi.

11.8. C[-1,1] fazoda x ga koʻpaytirish operatorini, ya'ni

$$B: C[-1,1] \to C[-1,1], \quad (Bf)(x) = x f(x)$$
 (11.10)

operatorni qaraymiz. Uning chegaralangan ekanligini koʻrsatib, normasini toping.

Yechish. B operatorning chiziqli ekanligi oson tekshiriladi. Uzluksiz funksiyalarning koʻpaytmasi uzluksiz ekanligidan B operatorning aniqlanish sohasi D(B) = C[-1,1] ekanligi kelib chiqadi. Endi B operatorning chegaralangan ekanligini koʻrsatamiz.

$$||Bf|| = \max_{-1 \le x \le 1} |xf(x)| \le \max_{-1 \le x \le 1} |x| \cdot \max_{-1 \le x \le 1} |f(x)| = 1 \cdot ||f||.$$

Bu tengsizlikdan B operatorning chegaralangan ekanligi va $||B|| \le 1$ kelib chiqadi. Ikkinchi tomondan, agar $f_0(x) = 1$ desak, u holda

$$(B f_0)(x) = x$$
, $||B f_0|| = 1$, $||B|| \ge \frac{||B f_0||}{||f_0||} = 1$

ni olamiz. Yuqoridagilardan ||B|| = 1 kelib chiqadi.

Xuddi shunday koʻrsatish mumkinki, $L_2[-1,1]$ Hilbert fazosida ham (11.10) tenglik bilan aniqlangan B operator chiziqli chegaralangan boʻlib, normasi 1 ga teng boʻladi.

11.9. Endi C₂ fazoda koʻpaytirish operatorini, ya'ni

$$A: {}^{\frown}_{2} \to {}^{\frown}_{2}, \quad (Ax)_{n} = a_{n}x_{n}, \quad \sup_{n > 1} |a_{n}| = a < \infty$$
 (11.11)

operatorni qaraymiz. Uning chegaralangan ekanligini koʻrsatib, normasini toping.

Yechish. Ixtiyoriy $x \in \binom{r}{2}$ uchun $A x \in \binom{r}{2}$ ekanligini koʻrsatamiz:

$$\sum_{n=1}^{\infty} \left| (Ax)_n \right|^2 = \sum_{n=1}^{\infty} \left| a_n x_n \right|^2 \le \sup_{n \ge 1} \left| a_n \right|^2 \sum_{n=1}^{\infty} \left| x_n \right|^2 = a^2 \| x \|^2.$$
 (11.12)

Bu munosabatlardan $D(A) = \binom{C}{2}$ ekanligini olamiz. Endi uning chiziqli ekanligini koʻrsatamiz. A operatorning aniqlanishiga koʻra

$$(A(\alpha x + \beta y))_n = a_n(\alpha x_n + \beta y_n) = \alpha a_n x_n + \beta a_n y_n = \alpha (Ax)_n + \beta (Ay)_n.$$

Demak, A chiziqli operator ekan. Uning chegaralangan ekanligi (11.12) tengsizlikdan kelib chiqadi. Bundan tashqari (11.12) tengsizlikdan $||A|| \le a$ ekanligi ham kelib chiqadi. A operatorning normasi ||A|| = a ekanligini isbotlaymiz. Buning uchun $\binom{r}{2}$ fazoda $\{e_n\}_{n=1}^{\infty}$ ortonormal sistemani ((5.8)ga qarang) olamiz. A

operatorning aniqlanishiga koʻra, ixtiyoriy $n \in N$ uchun $Ae_n = a_n e_n$ tenglik oʻrinli. Bundan va (11.7) dan

$$||A|| \ge ||Ae_n|| = ||a_ne_n|| = |a_n| \cdot ||e_n|| = |a_n|$$

munosabat kelib chiqadi. Bu tengsizlik ixtiyoriy $n \in N$ da o'rinli bo'lgani uchun

$$||A|| \ge \sup_{n \ge 1} |a_n| = a \tag{11.13}$$

ni olamiz. Demak, ||A|| = a tenglik isbotlandi. Δ

13-§. Chiziqli uzluksiz operatorlar fazosi

Bu paragrafda biz chiziqli uzluksiz (chegaralangan) operatorlar fazosi L(X,Y) ning toʻlaligi haqidagi teoremani isbotlaymiz. Operatorlar ketma-ketligining kuchsiz, kuchli (nuqtali) va tekis (norma boʻyicha) yaqinlashish ta'riflarini beramiz. Ularni misollarda tahlil qilamiz.

- **13.1-ta'rif.** Agar $\{A_n\} \subset L(X,Y)$ operatorlar ketma-ketligi uchun shunday $A \in L(X,Y)$ operator mavjud bo'lib, $\|A_n A\| \to 0$, $n \to \infty$ bo'lsa, $\{A_n\}$ operatorlar ketma-ketligi A operatorga norma bo'yicha yoki tekis yaqinlashadi deyiladi va $A_n \stackrel{u}{\longrightarrow} A$ shaklda belgilanadi.
- **13.2-ta'rif.** Agar ixtiyoriy $x \in X$ uchun $||A_n x Ax|| \to 0$ bo'lsa, $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchli yoki nuqtali yaqinlashadi deyiladi va $A_n \xrightarrow{s} A$ shaklda belgilanadi.
- **13.3-ta'rif.** Agar ixtiyoriy $f \in Y^*$ va ixtiyoriy $x \in X$ uchun $f(A_n x) \to f(A x)$ bo'lsa, $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchsiz yoki kuchsiz ma'noda $(A_n \xrightarrow{w} A)$ yaqinlashuvchi deyiladi.
 - 13.3-ta'rif Hilbert fazosida quyidagicha bo'ladi.
- **13.4-ta'rif.** Agar ixtiyoriy $x, y \in H$ uchun $(A_n x, y) \rightarrow (Ax, y)$ bo'lsa, $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchsiz yaqinlashuvchi deyiladi.

13.1-misol.
$$A_n: {}^{\frown}_2 \to {}^{\frown}_2, \quad A_n x = (\underbrace{0}_2, \underbrace{0}_2, x_1, x_2, x_3, ...)$$

operatorlar ketma- ketligining kuchli va kuchsiz ma'noda nol operatorga yaqinlashishini tekshiring.

Yechish. C_2 Hilbert fazosi boʻlganligi uchun $A_n: C_2 \to C_2$ operatorlar ketmaketligining kuchsiz ma'noda nol operatorga yaqinlashishini 13.4-ta'rifdan foydalanib tekshiramiz. Ixtiyoriy $y = (y_1, y_2, \dots) \in C_2$ uchun

$$\left| \left(A_n x, y \right) - \left(\Theta x, y \right) \right|^2 = \left| \sum_{k=1}^{\infty} x_k y_{n+k} \right|^2 \le \left\| x \right\|^2 \sum_{k=n+1}^{\infty} \left| y_k \right|^2$$
 (13.1)

munosabat o'rinli. $y \in \binom{r}{2}$ bo'lganligi uchun

$$||y||^2 = \sum_{k=1}^{\infty} |y_k|^2 < \infty.$$

Shunday ekan yaqinlashuvchi qatorning qoldigʻi

$$\sum_{k=n+1}^{\infty} |y_k|^2$$

$$\lim_{n\to\infty} \|A_n x - \Theta x\| = \lim_{n\to\infty} \|x\| = \|x\| \neq 0.$$

13.2. Quyida berilgan P_n , $Q_n \in L({}^{\frown}_2)$ operatorlar ketma-ketligining kuchli va tekis ma'noda birlik va nol operatorlarga yaqinlashishini teksiring.

$$P_n: \mathcal{C}_2 \to \mathcal{C}_2, \quad P_n x = (x_1, x_2, x_n, 0, K, 0, K),$$

 $Q_n = I - P_n, \quad Q_n x = (0, 0, K, 0, x_{n+1}, x_{n+2}, x_{n+3}, K)$

Yechish. Ixtiyoriy $x \in \binom{1}{2}$ uchun

$$\|Q_n x\|^2 = \sum_{k=1}^{\infty} |x_{n+k}|^2 \to 0, n \to \infty.$$

Chunki $x \in \binom{r}{2}$, ya'ni

$$||x||^2 = \sum_{k=1}^{\infty} |x_k|^2 < \infty.$$

Shunday ekan, oxirgi qatorning qoldigʻi

$$\sum_{k=1}^{\infty} \left| x_{n+k} \right|^2$$

 $n \to \infty$ da nolga intiladi. Demak $\{Q_n\}$ operatorlar ketma-ketligi nol operatorga kuchli ma'noda yaqinlashar ekan. Bundan $\{P_n = I - Q_n\}$ operatorlar ketma-ketligining birlik operator I ga kuchli ma'noda yaqinlashishi kelib chiqadi. Endi $\{Q_n\}$ operatorlar ketma-ketligi nol operatorga tekis ma'noda yaqinlashadimi yoki yoʻqmi, shuni tekshiramiz.

$$\|Q_n x\|^2 = \sum_{k=1}^{\infty} |x_{n+k}|^2 \le \|x\|^2$$
.

Bundan

$$||Q_n|| \le 1 \tag{13.2}$$

ekanligini olamiz. Ikkinchi tomondan, $Q_n e_{n+1} = e_{n+1}$. Bundan

$$||Q_n|| \ge ||Q_n e_{n+1}|| = 1.$$
 (13.3)

(13.2) va (13.3) dan ixtiyoriy $n \in N$ uchun $||Q_n|| = 1$ ga kelamiz. Demak, Q_n operatorlar ketma-ketligi nol operatorga tekis (norma boʻyicha) yaqinlashmaydi. Bu yerdan $\{P_n\}$ operatorlar ketma-ketligi birlik operator I ga tekis yaqinlashmasligi kelib chiqadi.

13.3. $L_2[-1/2, 1/2]$ Hilbert fazosini oʻzini-oʻziga akslantiruvchi va

$$(A_n f) = x^n f(x)$$

formula bilan aniqlanuvchi A_n operatorlar ketma-ketligining nol operatorga tekis yaqinlashishini tekshiring.

Yechish. Ixtiyoriy $f \in L_2[-1/2, 1/2]$ uchun

$$||A_n f||^2 = \int_{-1/2}^{1/2} |x^n f(x)|^2 dt \le \max_{-1/2 \le x \le 1/2} |x^{2n}| \int_{-1/2}^{1/2} |f(x)|^2 dt \le \frac{1}{2^{2n}} \cdot ||f||^2. \quad (13.4)$$

Bundan $||A_n|| \le \frac{1}{2^n}$ tengsizlikni olamiz. Agar biz $0 \le ||A_n||$ ekanligini hisobga olib, $n \to \infty$ da limitga oʻtsak,

$$\lim_{n\to\infty} ||A_n - \Theta|| = 0.$$

Shunday ekan, A_n operatorlar ketma-ketligi nol operatorga tekis yaqinlashadi.

Yuqorida kuchsiz yaqinlasuvchi operatorlar ketma-ketligi kuchli ma'noda yaqinlashmasligiga (13.1-misol) va kuchli ma'noda yaqinlashuvchi operatorlar ketma-ketligi norma boʻyicha yaqinlashmasligiga (13.2-misol) misol keltirildi.

Quyida biz tekis yaqinlashuvchi operatorlar ketma-ketligining kuchli ma'noda ham yaqinlashuvchi bo'lishini va kuchli ma'noda yaqinlashuvchi operatorlar ketma-ketligining kuchsiz ma'noda ham yaqinlashuvchi bo'lishini isbotlaymiz.

13.1-lemma. $Agar \{A_n\} \subset L(X,Y)$ operatorlar ketma-ketligi biror $A \in L(X,Y)$ operatorga tekis yaqinlashsa, u holda $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchli ma'noda ham yaqinlashuvchi boʻladi.

Isbot. Lemma shartiga koʻra $\|A_n - A\| \to 0$, $n \to \infty$. U holda ixtiyoriy $x \in X$ uchun

$$||A_n x - A x|| \le ||A_n - A|| \cdot ||x||.$$

sonli tengsizlikka ega boʻlamiz. Matematik analizdan ma'lumki, tengsizliklarda limitga oʻtish mumkin. Bunga koʻra,

$$0 \le \lim_{n \to \infty} \|A_n x - A x\| \le \lim_{n \to \infty} \|A_n - A\| \cdot \|x\| = 0.$$

Demak, $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchli ma'noda ham yaqinlashar ekan.

Shunga oʻxshash quyidagi tasdiqni, bevosita ta'rifdan foydalanib isbotlash mumkin.

13.2-lemma. $Agar \{A_n\} \subset L(X,Y)$ operatorlar ketma-ketligi biror $A \in L(X,Y)$ operatorga kuchli ma'noda yaqinlashsa, u holda $\{A_n\}$ operatorlar ketma-ketligi A operatorga kuchsiz ma'noda ham yaqinlashuvchi bo'ladi.

Isbot. Lemma shartiga koʻra, ixtiyoriy $x \in X$ uchun

$$\lim_{n\to\infty} ||A_n x - A x|| = 0.$$

U holda ixtiyoriy $x \in X$ va $f \in Y^*$ uchun

$$0 \le |f(A_n x) - f(A x)| = |f(A_n x - A x)| \le ||A_n x - A x|| \cdot ||f||$$

sonli tengsizlikka ega bo'lamiz. Bu tengsizlikda $n \to \infty$ da limitga o'tib,

$$0 \le \lim_{n \to \infty} \left| f(A_n x) - f(A x) \right| \le \lim_{n \to \infty} \left\| A_n x - A x \right\| \cdot \left\| f \right\| = 0$$

munosabatni olamiz. Demak, $\{A_n\}$ operatorlar ketma-ketligi kuchsiz ma'noda A operatorga yaqinlashar ekan.

13.1-teorema. Agar Y to 'la fazo bo 'lsa, u holda L(X,Y) fazo ham to 'la, ya 'ni Banax fazosi bo 'ladi.

Isbot. $\{A_n\}\subset L(X,Y)$ ixtiyoriy fundamental ketma-ketlik bo'lsin, ya'ni $n,m\to\infty$ da $\|A_n-A_m\|\to 0$. U holda ixtiyoriy $x\in X$ uchun

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, \quad n, m \to \infty.$$

Shuning uchun ixtiyoriy $x \in X$ da $\{A_n x\} \subset Y$ ketma-ketlik fundamentaldir. Y toʻla fazo boʻlgani uchun $\{A_n x\}$ ketma-ketlik biror $y \in Y$ elementga yaqinlashadi. Demak, har bir $x \in X$ ga $\{A_n x\}$ ketma-ketlikning limiti boʻlgan yagona $y \in Y$ element mos qoʻyilyapti. Bu moslikni $A: X \to Y$ orqali belgilaymiz:

$$Ax = \lim_{n \to \infty} A_n x = y.$$

Endi $A \in L(X,Y)$ ekanligini ko'rsatamiz. Chiziqliligi:

$$\begin{split} A\left(\alpha_1x_1+\alpha_2x_2\right) &= \lim_{n\to\infty}A_n\left(\alpha_1x_1+\alpha_2x_2\right) = \lim_{n\to\infty}\left(\alpha_1A_nx_1+\alpha_2A_nx_2\right) = \\ &= \alpha_1\lim_{n\to\infty}A_nx_1+\alpha_2\lim_{n\to\infty}A_nx_2 = \alpha_1y_1+\alpha_2y_2 = \alpha_1Ax_1+\alpha_2Ax_2 \,. \end{split}$$

Endi A ning chegaralangan ekanligini koʻrsatamiz. Shartga koʻra,

$$||A_n - A_m|| \to 0, \quad n, m \to \infty.$$

Demak, (11-§ ning 6-topshirig'iga qarang)

$$\|A_n\| - \|A_m\| \le \|A_n - A_m\| \to 0, \quad n, m \to \infty.$$

Bundan $\{\|A_n\|\}$ sonli ketma-ketlikning fundamentalligi kelib chiqadi. Haqiqiy sonlar fazosi R toʻla boʻlganligi uchun, $\{\|A_n\|\}$ sonli ketma-ketlik yaqinlashuvchidir, yaqinlashuvchi ketma-ketlik esa chegaralangan boʻladi. Ya'ni shunday K>0 son mavjudki, ixtiyoriy $n \in N$ uchun

$$||A_n|| \le K$$

tengsizlik bajariladi. Norma ta'rifidan

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le K \cdot ||x||.$$

Bundan esa

$$||Ax|| = \left| \lim_{n \to \infty} A_n x \right| = \lim_{n \to \infty} ||A_n x|| \le K \cdot ||x||.$$

Bu yerda biz normaning uzluksizligidan foydalandik. Endi $\{A_n\}$ ketma-ketlikni chiziqli operatorlar fazosi L(X,Y) da A ga yaqinlashishini koʻrsatamiz.

Ixtiyoriy $\varepsilon > 0$ son uchun shunday n_0 son mavjudki, barcha $n > n_0$, $p \in N$ va $\|x\| \le 1$ lar uchun

$$\|A_{n+p}x - A_nx\| < \varepsilon$$

tengsizlik bajariladi. Agar soʻnggi tengsizlikda $p\to\infty$ da limitga oʻtsak va normaning uzluksizligidan foydalansak, ixtiyoriy $n>n_0$ va $\|x\|\le 1$ lar uchun

$$||Ax - A_nx|| \le \varepsilon$$

tengsizlikka ega boʻlamiz. Shuning uchun ixtiyoriy $n>n_0\,$ da

$$||A - A_n|| = \sup_{\|x\| \le 1} ||Ax - A_n x|| \le \varepsilon$$

Demak, L(X,Y) fazodagi norma ma'nosida

$$\lim_{n\to\infty}A_n=A.$$

Shunday qilib, L(X,Y) fazo to'la fazo ekan. Δ

13.1-natija. X chiziqli normalangan fazoga qoʻshma boʻlgan $X^* = L(X, C)$ fazo Banax fazosidir.

Isbot. Kompleks sonlar toʻplami C toʻla fazo, shuning uchun 13.1-teoremaga koʻra, L(X,C) Banax fazosi boʻladi. Δ

13.4-misol. $L(C_2[a,b], C[a,b])$ fazoni toʻlalikka tekshiring.

Yechish. Y=C[a,b] toʻla fazo boʻlganligi uchun 13.1-teoremaga koʻra, $L(C_2[a,b],C[a,b])$ toʻla fazo, ya'ni Banax fazosi boʻladi. Δ

13.5. $L(C[a,b], C_2[a,b])$ fazo uchun 13.1-teorema sharti bajariladimi? U toʻlami?

Yechish. $Y = C_2[a,b]$ fazo toʻla boʻlmagan (3.8 va 8.12-misollarga qarang) normalangan fazo boʻlganligi uchun 13.1-teorema sharti bajarilmaydi. Shuning uchun biz $L(C[a,b], C_2[a,b])$ fazoni toʻla fazo deya olmaymiz. Aniqlik uchun a=-1, b=1 deymiz va $L(C[-1,1], C_2[-1,1])$ fazoning toʻla emasligini koʻrsatamiz. Buning uchun $C_2[-1,1]$ fazoning toʻla emasligini koʻrsatishda qoʻllanilgan (3.8-misol va 3.1-chizmaga qarang) uzluksiz funksiyalarning

$$f_n(x) = \begin{cases} -1, & x \in [-1, -1/n], \\ nx, & x \in (-1/n, 1/n) \\ 1, & x \in [1/n, 1] \end{cases}$$
 (13.5)

ketma-ketligidan foydalanib, $A_n \in L(C[-1,1], C_2[-1,1])$, $n \in N$ operatorlar ketma-ketligini quyidagicha quramiz:

$$(A_n f)(x) = f_n(x)f(x).$$
 (13.6)

 A_n operatorning chiziqli va uzluksizligi oson tekshiriladi. $\{A_n\}$ operatorlar ketma-ketligining $L(C[-1,1],C_2[-1,1])$ fazoda fundamental ekanligini koʻrsatamiz. Buning uchun $\|A_n-A_m\|$ normani hisoblaymiz:

$$||A_n - A_m|| = \sup_{\|f\| \le 1} ||A_n f - A_m f|| = \sup_{\|f\| \le 1} \sqrt{\int_{-1}^{1} |f_n(x) - f_m(x)|^2 |f(x)|^2 dx}.$$
 (13.7)

(13.7) va

$$||f|| = \max_{-1 \le x \le 1} |f(x)| \le 1$$

ekanligidan foydalansak,

$$||A_n - A_m|| \le \sqrt{\int_{-1}^{1} |f_n(x) - f_m(x)|^2 dx} = ||f_n - f_m||_{C_2[-1,1]}$$
 (13.8)

tengsizlikni olamiz. $\{f_n\}$ ketma-ketlikning $C_2[-1,1]$ fazoda fundamentalligi 3.8-misolda isbotlangan. (13.8) dan hamda $\{f_n\}$ ketma-ketlikning fundamentalligidan $\{A_n\}$ operatorlar ketma-ketligining fundamentalligi kelib chiqadi. Lekin $\{A_n\}$

operatorlar ketma-ketligi $L(C[-1,1], C_2[-1,1])$ fazoda yaqinlashuvchi emas. Teskaridan faraz qilaylik, $\{A_n\}$ operatorlar ketma-ketligi biror $A \in L(C[-1,1], C_2[-1,1])$ operatorga yaqinlashsin. U holda ixtiyoriy $f \in C[a,b]$ uchun $\lim_{n \to \infty} ||A_n f - Af|| = 0$ tenglik oʻrinli. Ikkinchi tomondan $f_0(x) \equiv 1$ uchun

$$(A_n f_0)(x) = f_n(x), \quad n \in \mathbb{N}$$

tenglik oʻrinli va $(Af_0)(x) = g_0(x)$ deylik. 3.8-misolda $\{f_n\}$ ketma-ketlikning birorta ham uzluksiz funksiyaga $C_2[-1,1]$ fazo normasida yaqinlasha olmasligi koʻrsatilgan edi, jumladan $\{A_nf_0=f_n\}$ ketma-ketlik $g_0=Af_0$ funksiyaga ham yaqinlasha olmaydi. Bu qarama qarshilik $\{A_n\}$ operatorlar ketma-ketligining yaqinlashuvchi emasligini bildiradi. Demak, $L(C[-1,1], C_2[-1,1])$ toʻla boʻlmagan normalangan fazo ekan. Δ

Banax-Shteynxaus teoremasi yordamida koʻrsatish mumkinki, agar X va Y lar Banax fazolari boʻlsa, u holda L(X,Y) fazo kuchli yaqinlashishga nisbatan ham toʻla boʻladi.

13.2-teorema. (Banax-Shteynxaus yoki tekis chegaralanganlik prinsipi). Agar chiziqli uzluksiz operatorlarning $\{A_n\}$ ketma-ketligi X Banax fazosining har bir nuqtasida chegaralangan (ya'ni har bir $x \in X$ uchun shunday $M_x > 0$ mavjud bo'lib, ixtiyoriy $n \in N$ uchun

$$||A_n x|| \le M_x \tag{13.9}$$

tengsizlik oʻrinli) boʻlsa, u holda bu operatorlarning normalaridan tuzilgan $\{\|A_n\|\}$ sonli ketma-ketlik ham chegaralangan boʻladi.

Isbot. Avvalo (13.9) shart bajarilganda shunday

$$B[a_0, r_0] = \left\{ x \in X : \|x - a_0\| \le r_0 \right\}$$

yopiq shar mavjud boʻlib, bu sharda $\{A_nx\}_{n=1}^{\infty}$ ketma-ketlik chegaralangan boʻlishini (ya'ni shunday $M_0>0$ son mavjud boʻlib, ixtiyotiy $x\in B[a_0,r_0]$ va barcha $n\in N$ larda $\|A_nx\|\leq M_0$ tengsizlik bajarilishini) koʻrsatamiz. Teskaridan faraz qilaylik,

ya'ni $\{A_n x\}_{n=1}^{\infty}$ ketma-ketlik birorta ham yopiq sharda chegaralangan bo'lmasin. Ixtiyoriy $B[x_0,\varepsilon_0]$ shar olamiz. $\{A_n x\}_{n=1}^{\infty}$ ketma-ketlik $B[x_0,\varepsilon_0/2]$ sharda chegaralanmagan bo'lgani uchun shunday $x_1 \in B[x_0,\varepsilon_0/2]$ element va n_1 nomer mavjudki, $\|A_{n_1} x_1\| > 1$ bo'ladi. A_{n_1} operatorning uzluksizligidan bu tengsizlik $B[x_1,\varepsilon_1] \subset B[x_0,\varepsilon_0/2]$ sharda ham bajariladi. $B[x_1,\varepsilon_1/2]$ sharda $\{A_n x\}_{n=1}^{\infty}$ ketma-ketlik chegaralanmagan bo'lgani uchun shunday $x_2 \in B[x_1,\varepsilon_1/2]$ element va n_2 nomer mavjudki, $\|A_{n_2} x_2\| > 2$ shart bajariladi. A_{n_2} ning uzluksizligidan bu tengsizlik $B[x_2,\varepsilon_2] \subset B[x_1,\varepsilon_1/2]$ sharda ham bajariladi va hokazo k-chi qadamda $B[x_{k-1},\varepsilon_{k-1}]$ sharning x_k nuqtasida $\|A_{n_k} x_k\| > k$ shart bajariladi. A_{n_k} ning uzluksizligidan bu tengsizlik $B[x_k,\varepsilon_k] \subset B[x_{k-1},\varepsilon_{k-1}/2]$ sharda ham bajariladi. Demak, ichma-ich joylashgan va radiuslari nolga intiluvchi

$$B[x_0, \varepsilon_0] \supset B[x_1, \varepsilon_1] \supset \Lambda \supset B[x_k, \varepsilon_k] \supset \Lambda$$

yopiq sharlar ketma-ketligining barchasiga qarashli boʻlgan $\bar{x} \in B[x_k, \varepsilon_k]$ element mavjud va barcha $k \in N$ larda $\|A_{n_k}\bar{x}\| > k$ tengsizlik bajariladi. Bu esa (13.9) ga zid. Shunday qilib, $\{A_nx\}_{n=1}^{\infty}$ ketma-ketlik chegaralangan boʻladigan $B[a_0, r_0]$ yopiq shar mavjud. Ixtiyoriy $x \in B[\theta, 1]$ uchun $x' = r_0x + a_0$ nuqta $B[a_0, r_0]$ sharda yotadi. Shuning uchun, ixtiyoriy n da $\|A_nx'\| \leq M_0$. Endi $x = r_0^{-1}(x'-a_0)$ tenglikdan foydalansak,

$$\begin{aligned} \|A_{n}x\| &= \left\| A_{n} \left(\frac{1}{r_{0}} (x' - a_{0}) \right) \right\| = \frac{1}{r_{0}} \|A_{n}x' - A_{n}a_{0}\| \leq \\ &\leq \frac{1}{r_{0}} (\|A_{n}x'\| + \|A_{n}a_{0}\|) \leq \frac{1}{r_{0}} (M_{0} + \|A_{n}a_{0}\|) \leq \frac{1}{r_{0}} (M_{0} + M_{a_{0}}) = M. \end{aligned}$$

U holda

$$||A_n|| = \sup_{\|x\| \le 1} ||A_n x|| \le M . \Delta$$

13.3-teorema. Agar X va Y lar Banax fazolari boʻlsa, u holda L(X,Y) operatorlar fazosi kuchli yaqinlashishga nisbatan toʻladir.

Isbot. Istalgan $x \in X$ da $\{A_n x\}$ ketma-ketlik yaqinlashuvchi boʻlgani uchun, har bir $x \in X$ da $\lim_{n \to \infty} A_n x$ mavjud va biz $Ax = \lim_{n \to \infty} A_n x = y$ tenglik bilan aniqlanuvchi A operatorga ega boʻlamiz. Bu operatorning chiziqliligi 13.1-teorema isbotida keltirilgan. Endi uning chegaralangan ekanligini koʻrsatamiz. Har bir $x \in X$ da $\{A_n x\}$ ketma-ketlik yaqinlashuvchi boʻlgani uchun, u chegaralangandir. Banax-Shteynxaus teoremasiga koʻra, ixtiyoriy $n \in N$ da $\|A_n\| \le M$ oʻrinli. Bundan

$$||Ax|| = \left| \lim_{n \to \infty} A_n x \right| = \lim_{n \to \infty} ||A_n x|| \le M \cdot ||x||.$$

Demak, $||A|| \le M \cdot \Delta$

13.6-misol. 13.2-misolda keltirilgan

$$P_n: {}^{\frown}_2 \to {}^{\frown}_2, P_n x = (x_1, x_2, K, x_n, 0, K, 0, K)$$

operatorlar ketma-ketligi Banax-Shteynxaus teoremasi shartlarini qanoatlantiradimi?

Yechish. $P_n: \ ^{\frown}_2 \to \ ^{\frown}_2$ operatorlar ketma-ketligi Banax-Shteynxaus teoremasi shartlarini qanoatlantiradi. Haqiqatan ham, $X = \ ^{\frown}_2$ va $Y = \ ^{\frown}_2$ - lar Banax fazolari. P_n ning chegaralangan ekanligi oson tekshiriladi. Har bir $x \in \ ^{\frown}_2$ nuqtada $\{P_n x\}$ chegaralangan ekanligi

$$\|P_n x\| = \sqrt{\sum_{k=1}^{n} |x_k|^2} \le \sqrt{\sum_{k=1}^{\infty} |x_k|^2} = \|x\| = M_x$$

munosabatdan kelib chiqadi.

13.7. $L({}^{\frown}_{2})$ fazo kuchli yaqinlashishga nisbatan toʻla fazo boʻladimi?

Yechish., $X = Y = \frac{C}{2}$ lar toʻla fazolar boʻlganligi uchun 13.3-teoremaga koʻra $L(\frac{C}{2})$ fazo kuchli yaqinlashishga nisbatan toʻla fazo boʻladi.

14-§. Teskari operatorlar

Bizga X ni Y ga akslantiruvchi A operator berilgan boʻlsin. D(A) - uning aniqlanish sohasi, $\operatorname{Im} A$ esa uning qiymatlar sohasi boʻlsin.

14.1-ta'rif. Agar ixtiyoriy $y \in \text{Im } A$ uchun Ax = y tenglama yagona yechimga ega bo'lsa, u holda A teskarilanuvchan operator deyiladi.

Agar A teskarilanuvchan operator boʻlsa, u holda ixtiyoriy $y \in \operatorname{Im} A$ ga Ax = y tenglamaning yechimi boʻlgan yagona $x \in D(A)$ element mos keladi. Bu moslikni oʻrnatuvchi operator A operatorga teskari operator deyiladi va A^{-1} bilan belgilanadi, hamda

$$A^{-1}: Y \to X$$
, $D(A^{-1}) = \operatorname{Im} A$, $\operatorname{Im} A^{-1} = D(A)$.

Bundan tashqari teskari operatorning aniqlanishidan

$$A^{-1}Ax = x, x \in D(A), AA^{-1}y = y, y \in D(A^{-1})$$
 (14.1)

tengliklar kelib chiqadi.

Endi A akslantirish X ni oʻzini-oʻziga akslantiruvchi chiziqli operator boʻlsin. Agar $B \in L(X,X) = L(X)$ operator uchun BA = I boʻlsa, u holda B operator A operatorga chap teskari operator deyiladi. Xuddi shunday, AC = I tenglik bajarilsa, C operator A ga oʻng teskari operator deyiladi.

14.1-tasdiq. Agar A operator uchun ham chap teskari, ham oʻng teskari operatorlar mavjud boʻlsa, u holda ular oʻzaro teng.

Isbot. A uchun B chap teskari, C oʻng teskari operatorlar boʻlsin, u holda

$$B = BI = B(AC) = (BA)C = IC = C. \Delta$$
 (14.2)

14.1-misol. $A: {}^{C}_{2} \to {}^{C}_{2}$, $Ax = (0, x_{1}, x_{2}, K, x_{n-1}, K)$ operatorga chap teskari operatorni toping. A oʻngga siljitish operatori deyiladi.

Yechish. $B: {}^{\frown}_2 \rightarrow {}^{\frown}_2$ bilan chapga siljitish operatorini belgilaymiz:

$$Bx = (x_2, x_3, K, x_{n+1}, K).$$

Endi BA operatorning $x \in C_2$ elementga ta'sirini qaraymiz.

$$BAx = B(Ax) = B(0, x_1, x_2, K, x_{n-1}, K) = (x_1, x_2, x_3, K, x_n, K) = Ix$$
.

Demak, B operator A uchun chap teskari operator ekan.

14.2. 14.1-misolda keltirilgan $A: {}^{\frown}_2 \to {}^{\frown}_2$ operatorga oʻng teskari operator mavjudmi?

Yechish. Faraz qilaylik, A ga oʻng teskari operator mavjud boʻlsin. Uni $C: {}^C_2 \to {}^C_2$ orqali belgilaymiz. 14.1-tasdiqqa koʻra (14.1-misolga qarang) B=C boʻladi, ya'ni

$$Cx = (x_2, x_3, K, x_{n+1}, K).$$

Endi AC operatorning $x \in \binom{n}{2}$ elementga ta'sirini qaraymiz.

$$ACx = A(Cx) = A(x_2, x_3, K, x_{n+1}, K) = (0, x_2, x_3, K, x_n, K) \neq Ix$$
.

Demak, C operator A uchun oʻng teskari operator emas ekan. Bundan A uchun oʻng teskari operatorning mavjud emasligi kelib chiqadi.

14.2-tasdiq. Agar A uchun bir vaqtda ham oʻng teskari, ham chap teskari operatorlar mavjud boʻlsa, u holda A teskarilanuvchan operator boʻladi va $A^{-1} = B = C$ tenglik oʻrinli.

14.2 tasdiqning isboti 14.1-tasdiq va (14.1) tenglikdan kelib chiqadi.

14.1-teorema. A chiziqli operatorga teskari boʻlgan A^{-1} operator ham chiziqlidir.

Isbot. Shuni aytib oʻtish kerakki, $\operatorname{Im} A = D(A^{-1})$ chiziqli koʻpxillilikdir. Shunday ekan ixtiyoriy α_1, α_2 sonlar va ixtiyoriy $y_1, y_2 \in \operatorname{Im} A$ elementlar uchun

$$A^{-1}(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2$$
 (14.3)

tenglikning toʻgʻri ekanligini koʻrsatish yetarli. $Ax_1 = y_1$ va $Ax_2 = y_2$ deymiz. A chiziqli boʻlgani uchun

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 y_1 + \alpha_2 y_2 . \tag{14.4}$$

Teskari operator ta'rifiga ko'ra,

$$x_1 = A^{-1}y_1, x_2 = A^{-1}y_2.$$

Bu tengliklarni mos ravishda α_1 va α_2 sonlarga koʻpaytirib qoʻshsak,

$$\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2$$
.

Ikkinchi tomondan, (14.4) dan va teskari operatorning ta'rifidan

$$\alpha_1 x_1 + \alpha_2 x_2 = A^{-1} (\alpha_1 y_1 + \alpha_2 y_2)$$

tenglik kelib chiqadi. Oxirgi ikki tenglik
dan (14.3) tenglikni olamiz. Δ

14.2-teorema. (Teskari operator haqida Banax teoremasi). A operator X Banax fazosini Y Banax fazosiga biyektiv akslantiruvchi chiziqli chegaralangan operator boʻlsin. U holda A^{-1} operator mavjud va chegaralangan.

Teoremani isbotlashdan oldin quyidagi lemmani isbotlaymiz.

14.1-lemma. M to plam X Banax fazosining hamma yerida zich boʻlsin. U holda ixtiyoriy nolmas $y \in X$ elementni

$$y = y_1 + y_2 + \Lambda + y_n + \Lambda$$

qatorga yoyish mumkin. Bu yerda $y_k \in M$, $\|y_k\| \le 3 \cdot 2^{-k} \cdot \|y\|$, $k \in N$.

Isbot. y_1, y_2, K elementlarni ketma-ket quramiz. M toʻplam X Banax fazosining hamma yerida zich boʻlgani uchun, shunday $y_1 \in M$ mavjudki,

$$||y-y_1|| \le \frac{||y||}{2}$$

bo'ladi. $y_2 \in M$ elementni shunday tanlaymizki,

$$||y - y_1 - y_2|| \le \frac{||y||}{4}$$

bo'lsin. Endi $y_3 \in M$ elementni shunday tanlaymizki,

$$\|y - y_1 - y_2 - y_3\| \le \frac{\|y\|}{8}$$

bajarilsin. Umuman $y_n \in M$ elementni shunday tanlaymizki,

$$\|y - y_1 - y_2 - y_3 - \Lambda - y_n\| \le \frac{\|y\|}{2^n}$$

boʻlsin. Bunday tanlash mumkin, chunki M toʻplam X ning hamma yerida zich. $y_n \in M$ elementlarning tanlanishiga koʻra

$$\lim_{n\to\infty}\left\|y-\sum_{k=1}^ny_k\right\|=0,$$

ya'ni

$$\sum_{k=1}^{\infty} y_k$$

qator yaqinlashadi va uning yigʻindisi y ga teng. Endi $y_n \in M$ elementlarning normalarini baholaymiz:

$$||y_1|| = ||y_1 - y + y|| \le ||y_1 - y|| + ||y|| \le \frac{||y||}{2} + ||y|| \le \frac{3||y||}{2},$$

$$||y_2|| = ||y_2 + y_1 - y + y - y_1|| \le ||y_2 + y_1 - y|| + ||y - y_1|| \le \frac{||y||}{4} + \frac{||y||}{2} \le \frac{3||y||}{2^2}$$

va nihoyat

$$||y_{n}|| = ||y_{n} + y_{n-1} + \Lambda + y_{1} - y + y - y_{1} - \Lambda - y_{n-1}|| \le$$

$$\le ||y_{n} + y_{n-1} + \Lambda + y_{1} - y|| + ||y - y_{1} - \Lambda - y_{n-1}|| \le \frac{||y||}{2^{n}} + \frac{||y||}{2^{n-1}} \le \frac{3||y||}{2^{n}}. \Delta$$

14.2-teoremaning isboti. A biyektiv akslantirish boʻlganligi uchun A^{-1} operator mavjud va $D(A^{-1}) = Y$. Endi Y fazoda

$$M_k = \{ y \in Y : ||A^{-1}y|| \le k ||y|| \}, k = 1,2,K,$$

toʻplamlarni qaraymiz. Y fazoning ixtiyoriy elementi M_k toʻplamlarning birortasida yotadi. Shuning uchun

$$Y = \sum_{k=1}^{\infty} M_k.$$

Ber teoremasiga koʻra, M_k toʻplamlarning birortasi qandaydir $B \subset Y$ sharda zich boʻladi. Faraz qilaylik, M_n toʻplam B sharda zich boʻlsin. B shar ichida sharsimon P qatlam olamiz, ya'ni

$$P = \{ z \in B : \beta < ||z - y_0|| < \alpha, \quad 0 < \beta < \alpha, \quad y_0 \in M_n \}.$$

P qatlamni markazi nolda boʻladigan qilib parallel koʻchiramiz va

$$P_0 = \{ z \in Y : \beta < ||z|| < \alpha \}.$$

sharsimon qatlamga ega boʻlamiz. Birorta $n_0 \in N$ uchun M_{n_0} toʻplam P_0 da zich boʻlishini koʻrsatamiz. Agar $z \in P$ I M_n boʻlsa, u holda $z-y_0 \in P_0$ boʻladi. Bundan tashqari

$$\|A^{-1}(z-y_0)\| \le \|A^{-1}z\| + \|(-1)A^{-1}y_0\| = \|A^{-1}z\| + \|A^{-1}y_0\| \le n\|z\| + n\|y_0\| = n$$

$$= n (||z - y_0| + ||y_0||) \le n (||z - y_0|| + 2||y_0||) = n ||z - y_0|| \left(1 + \frac{2||y_0||}{||z - y_0||}\right) \le$$

$$\le n ||z - y_0|| \left(1 + \frac{2||y_0||}{\beta}\right). \tag{14.5}$$

Ma'lumki, $n\left(1 + \frac{2\|y_0\|}{\beta}\right)$ miqdor z ga bog'liq emas va biz

$$n_0 = 1 + \left[n \left(1 + \frac{2 \| y_0 \|}{\beta} \right) \right]$$

deb olamiz. U holda (14.5) ga koʻra, $z-y_0\in M_{n_0}$ boʻladi. M_n toʻplamning P qatlamda zich ekanligidan M_{n_0} toʻplamning P_0 qatlamda zich ekanligi kelib chiqadi. Endi Y dan ixtiyoriy nolmas y element olamiz. Shunday λ son mavjudki, $\beta<\|\lambda\,y\|<\alpha$ tengsizlik oʻrinli, ya'ni $\lambda\,y\in P_0$ boʻladi. M_{n_0} toʻplam P_0 qatlamda zich boʻlgani uchun $\lambda\,y$ ga yaqinlashuvchi $y_k\in M_{n_0}$ ketma-ketlik qurish mumkin. U holda $y_k/\lambda\to y$. Ravshanki, $y_k\in M_{n_0}$ boʻlsa, u holda ixtiyoriy $\lambda\neq 0$ uchun $\frac{y_k}{\lambda}\in M_{n_0}$ boʻladi. Shunday qilib, M_{n_0} toʻplam $Y\setminus\{0\}$ da zich va demak, Y ning oʻzida ham zich.

Endi ixtiyoriy nolmas $y \in Y$ elementni olamiz va 14.1-lemmaga koʻra M_{n_0} toʻplamning elementlari orqali qatorga yoyamiz:

$$y = y_1 + y_2 + \Lambda + y_n + \Lambda$$
, $||y_k|| \le 3 \cdot 2^{-k} ||y||$, $k \in \mathbb{N}$.

X fazoda $x_k = A^{-1}y_k$ elementlardan tuzilgan qatorni qaraymiz:

$$\sum_{k=1}^{\infty} x_k = x_1 + x_2 + \Lambda + x_n + \Lambda = \sum_{k=1}^{\infty} A^{-1} y_k.$$
 (14.6)

Bu qator qandaydir $x \in X$ elementga yaqinlashadi, chunki

$$||x_k|| = ||A^{-1}y_k|| \le n_0 ||y_k|| \le 3n_0 \frac{||y||}{2^k}$$

va

$$||x|| = ||\sum_{k=1}^{\infty} x_k|| \le \sum_{k=1}^{\infty} ||x_k|| \le 3n_0 ||y|| \sum_{k=1}^{\infty} \frac{1}{2^k} = 3n_0 ||y||.$$

(14.6) qatorning yaqinlashuvchiligidan va A ning uzluksizligidan

$$A x = A \left(\lim_{n \to \infty} \sum_{k=1}^{n} x_k \right) = \lim_{n \to \infty} A \left(\sum_{k=1}^{n} x_k \right) = \sum_{k=1}^{\infty} A x_k = \sum_{k=1}^{\infty} y_k = y.$$

Bu yerdan $x = A^{-1}y$ ekanligi kelib chiqadi. Bundan tashqari

$$||A^{-1}y|| = ||x|| \le 3n_0 ||y||.$$

Bu yerdan

$$||A^{-1}|| \leq 3 \cdot n_0$$

tengsizlik kelib chiqadi. Shunday qilib, A^{-1} operatorning chegaralangan ekanligi isbotlandi. Δ

Berilgan operatorga teskari operatorning mavjudligini koʻrsatish birmuncha osonroq, lekin teskari operatorni topish masalasi murakkab masaladir. Shuning uchun teskari operatorni topishni soddaroq holdan, ya'ni qaralayotgan fazo oʻlchami chekli boʻlgan holdan boshlaymiz.

14.3. $A: R^3 \to R^3$, $Ax = (x_1, x_2 + x_1, x_3)$ operatorga teskari operator mavjudmi? Agar mavjud boʻlsa, uni toping.

Yechish. Berilgan A operatorga teskari operator mavjud boʻlishi uchun, ixtiyoriy $y \in \text{Im } A = R^3$ da Ax = y tenglama yagona yechimga ega boʻlishi kerak. Endi Ax = y tenglikdan x ni topamiz:

$$Ax = y \Leftrightarrow (x_1, x_2 + x_1, x_3) = (y_1, y_2, y_3).$$

Bundan

$$\begin{cases} x_1 = y_1 \\ x_1 + x_2 = y_2 \Leftrightarrow \begin{cases} x_1 = y_1 \\ x_2 = y_2 - y_1 \\ x_3 = y_3 \end{cases}$$

ya'ni

$$(x_1, x_2, x_3) = (y_1, y_2 - y_1, y_3) = A^{-1}y$$
.

Shunday qilib, A operatorga teskari operator mavjud boʻlib u

$$A^{-1}: R^3 \to R^3, A^{-1}x = (x_1, x_2 - x_1, x_3)$$

koʻrinishga ega. 14.1-teoremaga koʻra u chiziqli operator boʻladi. Δ

14.4. 14.3 misolda qaralgan $A: R^3 \to R^3$ operator teskari operatorlar haqida Banax teoremasi shartlarini qanoatlantiradimi?

Yechish. $X = R^{-3}$ va $Y = R^{-3}$ lar Banax fazolari boʻlganligi uchun A akslantirishning biyeksiya ekanligini koʻrsatish yetarli. R^{-3} fazodan ixtiyoriy ikkita turli $x = (x_1, x_2, x_3)$ va $y = (y_1, y_2, y_3)$ elementlarni olamiz va $Ax \neq Ay$ ekanligini koʻrsatamiz. Teskaridan faraz qilaylik, Ax - Ay = 0 boʻlsin. Soʻnggi tenglikdan x = y ekanligiga kelamiz. Bu qarama-qarshilik A akslantirishning inyektiv ekanligini koʻrsatadi. 14.3-misolda ixtiyoriy $y \in R^3$ uchun Ax = y tenglama yagona yechimga ega ekanligi koʻrsatilgan edi. Bu esa A akslantirishning syuryektiv ekanligini koʻrsatadi. Demak, A biyektiv akslantirish ekan. Δ

14.1. Teskari operatorlar haqida ba'zi teoremalar

Biz bu bandda operator teskarilanuvchan boʻlishining zaruriy va yetarli shartini keltiramiz. Shuningdek teskari operator mavjud va chegaralangan boʻlishining yetarli, zarur va yetarli shartlarini keltiramiz.

14.3-teorema. $A: X \to Y$ chiziqli operator teskarilanuvchan boʻlishi uchun $Ax = \theta$ tenglama faqat $x = \theta$ yechimga ega boʻlishi zarur va yetarli.

Isbot. Zaruriyligi. A teskarilanuvchan boʻlsin. U holda $Ax = \theta$ tenglama yagona yechimga ega boʻladi. A chiziqli boʻlgani uchun bu yechim $x = \theta$ boʻladi.

Yetarliligi. $Ax = \theta$ tenglama faqat nol yechimga ega boʻlsin, u holda ixtiyoriy $y \in \operatorname{Im} A$ uchun Ax = y tenglama yagona yechimga ega boʻladi. Teskarisini faraz qilaylik, biror $y \in \operatorname{Im} A$ uchun yechim ikkita boʻlsin, ya'ni $Ax_1 = y$, $Ax_2 = y$. U holda $A(x_1 - x_2) = \theta$ boʻladi. Shartga koʻra, $x_1 - x_2 = \theta$. Bundan $x_1 = x_2$. Δ

14.4-teorema. X chiziqli normalangan fazoni Y chiziqli normalangan fazoga akslantiruvchi chiziqli A operator berilgan boʻlsin. Im A da chegaralangan A^{-1}

operator mavjud boʻlishi uchun, shunday m > 0 son mavjud boʻlib, ixtiyoriy $x \in D(A)$ lar uchun

$$||Ax|| \ge m||x|| \tag{14.9}$$

tengsizlikning bajarilishi zarur va yetarli.

Isbot. Zaruriyligi. A^{-1} mavjud va chegaralangan boʻlsin, ya'ni

$$||A^{-1}y|| \le \frac{1}{m} ||y||, \forall y \in D(A^{-1}).$$

U holda

$$||Ax|| = ||y|| \ge m ||A^{-1}y|| = m ||x||.$$

Demak, (14.9) shart o'rinli.

Yetarliligi. (14.9) shartdan A operatorning oʻzaro bir qiymatli ekanligi kelib chiqadi. Teskarisini faraz qilaylik, (14.9) shart bajarilsinu A oʻzaro bir qiymatli akslantirish boʻlmasin. U holda shunday $x_1, x_2 \in D(A)$, $x_1 \neq x_2$ elementlar mavjudki,

$$Ax_1 = y,$$
 $Ax_2 = y.$

Bundan $A(x_1 - x_2) = \theta$ ekanligi kelib chiqadi. (14.9) tengsizlikka koʻra,

$$0 \le m \|x_1 - x_2\| \le \|A(x_1 - x_2)\| = 0.$$

Bu yerdan $x_1 = x_2$ qarama-qarshilikka kelamiz. Demak, A - oʻzaro bir qiymatli akslantirish ekan. Shuning uchun, teskari A^{-1} operator mavjud. Endi A^{-1} operatorning chegaralangan ekanligini koʻrsatamiz. (14.9) tengsizlikka koʻra,

$$||x|| \le \frac{1}{m} ||Ax||.$$

Ixtiyoriy $y = Ax \in \text{Im } A$ uchun

$$||A^{-1}y|| \le \frac{1}{m}||y||.$$

Bu yerdan A^{-1} operatorning chegaralangan ekanligi hamda

$$\left\|A^{-1}\right\| \leq \frac{1}{m}$$

tengsizlik kelib chiqadi. Δ

Endi 14.3 va 14.4-teorema shartlarining bajarilishiga doir misollar qaraymiz.

14.5-misol. C[0,1] fazoda x ga koʻpaytirish operatorini (11.8-misolga qarang), ya'ni

$$B: C[0; 1] \to C[0; 1], \quad (Bf)(x) = x f(x)$$

operatorni qaraymiz. Bu operator 14.3-teorema shartlarini qanoatlantiradimi? *B* teskarilanuvchan operator boʻladimi?

Yechish. B operatorning chiziqli ekanligi oson tekshiriladi. Endi Bf = 0 tenglamani, ya'ni xf(x) = 0 tenglamani qaraymiz. Bu tenglama C[0,1] fazoda faqat $f(x) \equiv 0$ yechimga ega. B operator 14.3-teorema shartlarini qanoatlantiradi. Demak, B - teskarilanuvchan operator, ya'ni B ga teskari operator mavjud.

14.6. 14.5-misolda qaralgan x ga koʻpaytirish operatori $B: C[0,1] \to C[0,1]$, 14.4-teorema shartlarini qanoatlantiradimi?

Yechish. Ma'lumki, B - chiziqli operator. B operator uchun 14.4-teoremaning (14.9) sharti bajarilmasligini koʻrsatamiz. Buning uchun C[0,1] fazoda har bir elementining normasi 1 boʻlgan

$$g_n(x) = \begin{cases} 1 - nx, & \text{agar } x \in [0, 1/n] \\ 0, & \text{agar } x \in (1/n, 1] \end{cases}$$

14.1-chizma.

ketma-ketlikni qaraymiz. Endi $\|Bg_n\|$ normani hisoblaymiz:

$$||Bg_n|| = \max_{0 \le x \le 1} |(Bg_n)(x)| = \max_{0 \le x \le 1} |xg_n(x)| = \max_{0 \le x \le 1/n} |x - nx^2| = \frac{1}{4n} ||g_n||.$$

Istalgan m > 0 son uchun shunday n_0 natural son mavjudki, $\frac{1}{4n_0} < m$ tengsizlik oʻrinli boʻladi. Bu yerdan kelib chiqadiki,

$$||Bg_n|| = \frac{1}{4n} ||g_n|| < m ||g_n||.$$

Demak, B operator uchun (14.9) tengsizlikni qanoatlantiruvchi m > 0 son mavjud emas. 14.5-misolda koʻrsatildiki, B ga teskari operator mavjud, lekin 14.4-

teoremaning sharti bajarilmaganligi uchun, B ga teskari operator chegaralanmagan boʻladi. Δ

14.7. Endi $L_2[-1,1]$ Hilbert fazosini oʻzini-oʻziga akslantiruvchi

$$A: L_2[-1, 1] \to L_2[-1, 1], (Af)(x) = (x^2 + 1)f(x)$$

operatorni qaraymiz. A operator 14.4-teorema shartlarini qanoatlantiradimi? A ga chegaralangan teskari operator mavjudmi?

Yechish. A operatorning chiziqli ekanligi oson tekshiriladi. Endi A operator uchun 14.4-teoremaning (14.9) sharti bajarilishini koʻrsatamiz. Buning uchun ||Af|| normani quyidan baholaymiz.

$$||Af||^2 = \int_{-1}^{1} |(x^2 + 1)f(x)|^2 dx \ge \int_{-1}^{1} |f(x)|^2 dx = ||f||^2.$$

Biz bu yerda $|x^2+1| \ge 1$ tengsizlikdan hamda integralning monotonlik xossalaridan foydalandik. Soʻnggi tengsizlikdan $||Af|| \ge ||f||$ tengsizlik kelib chiqadi. Bu yerda m>0 son sifatida (0,1] dagi ixtiyoriy sonni olish mumkin. 14.4-teorema tasdigʻidan foydalansak, A ga chegaralangan teskari operator mavjudligi hamda $||A^{-1}|| \le 1$ tengsizlik kelib chiqadi. Aslida $||A^{-1}|| = 1$ tenglik oʻrinli. Δ

14.5-teorema. X - Banax fazosi va $A \in L(X)$. Agar $||A|| \le q < 1$ boʻlsa, u holda I - A operator uchun chegaralangan teskari operator mavjud.

Isbot. L(X) fazoda quyidagi formal qatorni qaraymiz:

$$I + A + A^2 + \Lambda + A^n + \Lambda$$
 (14.10)

Ma'lumki, $\|A^2\| \le \|A\|^2$. Xuddi shuningdek, $\|A^n\| \le \|A\|^n$. U holda (14.10) qatorning

$$S_n = I + \sum_{k=1}^n A^k$$

qismiy yigʻindilari ketma-ketligi Koshi shartini qanoatlantiradi, ya'ni

$$\left\| S_{n+p} - S_n \right\| = \left\| A^{n+1} + A^{n+2} + \Lambda \right\| + A^{n+p} \le q^{n+1} + q^{n+2} + \Lambda + q^{n+p} \to 0, n \to \infty.$$

(14.10) qatorning qismiy yigʻindilari ketma-ketligi S_n - fundamental ekan, L(X): = L(X,X) to'la bo'lgani (13.1-teoremaga qarang) uchun

$$S_n \to S \in L(X)$$
.

Shunday qilib,

$$I + \sum_{k=1}^{\infty} A^k = S.$$

Bundan tashqari

$$S(I - A) = \lim_{n \to \infty} S_n(I - A) = \lim_{n \to \infty} \left(I + A + A^2 + \Lambda + A^n - A - A^2 - \Lambda - A^{n+1} \right) = \lim_{n \to \infty} \left(I - A^{n+1} \right) = I.$$

Xuddi shunday ko'rsatish mumkinki, (I - A)S = I. Demak, S operator I - A operator uchun teskari operator ekan. S operatorning normasi

$$\|S\| \le \sum_{n=0}^{\infty} \|A^n\| \le \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}.$$

Demak, $S = (I - A)^{-1}$ operator chegaralangan va uning normasi

$$||S|| = ||(I - A)^{-1}|| \le \frac{1}{1 - q}$$

tengsizlikni qanoatlantiradi. Δ

14.1-natija. X - Banax fazosi va $A \in L(X)$ boʻlib, $||A|| \le q < 1$ boʻlsa, u holda I + A operator uchun chegaralangan teskari operator mavjud.

Natijaning isboti 14.5-teoremadan kelib chiqadi va

$$(I+A)^{-1} = I - A + A^2 - \Lambda + (-1)^n A^n + \Lambda$$
.

14.2-lemma. $Agar \ A, B \in L(X)$ boʻlib, $A^{-1}, B^{-1} \in L(X)$ boʻlsa, u holda AB operatorga chegaralangan teskari operator mavjud va $(AB)^{-1} = B^{-1}A^{-1}$ tenglik oʻrinli.

Lemmaning isboti $ABB^{-1}A^{-1} = I$, $B^{-1}A^{-1}AB = I$ tengliklardan hamda 14.2-tasdiqdan kelib chiqadi.

14.6-teorema. $A \in L(X)$ operatorga chegaralangan teskari operator mavjud boʻlsin. Agar $A': X \to X$ operatorning normasi

$$||A'|| < \frac{1}{||A^{-1}||}$$

tengsizlikni qanoatlantirsa, u holda B = A - A' operatorga chegaralangan teskari operator mavjud.

Isbot. B operatorni quyidagicha yozib olamiz: $A - A' = A(I - A^{-1}A')$. Endi $A^{-1}A'$ operatorning normasini baholaymiz:

$$||A^{-1}A'|| \le ||A^{-1}|| \cdot ||A'|| < 1.$$

14.5-teoremaga koʻra, $I-A^{-1}A$ operatorga chegaralangan teskari operator mavjud. U holda 14.2-lemmaga koʻra, $A(I-A^{-1}A')$ operator ham teskarilanuvchan boʻladi, hamda

$$B^{-1} = (I - A^{-1}A')^{-1}A^{-1}, \quad ||B^{-1}|| \le ||(I - A^{-1}A')^{-1}|| \cdot ||A^{-1}||$$

munosabatlar oʻrinli. Δ

14.8-misol. Parametr $\lambda \in R$ ning qanday qiymatlarida

$$(I - \lambda A)f(x) = f(x) - \lambda \int_{-\pi}^{\pi} \cos x \sin y f(y) dy, \ f \in L_2[-\pi, \pi]$$

operatorga 14.5-teoremani va uning 14.1-natijasini qoʻllash mumkin?

Yechish. $A \in L(L_2[-\pi, \pi])$ ekanligini tekshiramiz. Shu maqsadda ixtiyoriy $f,g \in L_2[-\pi,\pi]$ elementlarni va ixtiyoriy $\alpha,\beta \in C$ sonlarni olamiz va A operatorning $\alpha f + \beta g$ elementga ta'sirini qaraymiz:

$$(A(\alpha f + \beta g))(x) = \int_{-\pi}^{\pi} \cos x \sin y (\alpha f + \beta g)(y) dy = \alpha \int_{-\pi}^{\pi} \cos x \sin y f(y) dy + \beta \int_{-\pi}^{\pi} \cos x \sin y g(y) dy = \alpha (A f)(x) + \beta (A g)(x).$$

Biz bu yerda integralning additivlik va bir jinslilik xossalaridan foydalandik. Endi A operatorning chegaralangan ekanligini koʻrsatamiz. Buning uchun ||Af|| norma kvadratini baholaymiz:

$$||Af||^2 = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} \cos x \sin y \, f(y) dy \right|^2 dx = \int_{-\pi}^{\pi} \cos^2 x \, dx \cdot \left| \int_{-\pi}^{\pi} \sin y \, f(y) dy \right|^2. \quad (14.11)$$

Endi Koshi-Bunyakovskiy - $|(f,g)| \le ||f|| \cdot ||g||$ tengsizligidan hamda

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x), \quad \sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

ayniyatlardan va $\cos 2x$ ning 1 ga ortogonalligidan foydalansak, (14.11) dan

$$||Af||^{2} \le \pi^{2} ||f||^{2} \tag{14.12}$$

tengsizlik kelib chiqadi. (14.12) dan

$$||Af|| \le \pi ||f|| \Rightarrow ||A|| \le \pi \tag{14.13}$$

tengsizlikka ega bo'lamiz. Ikkinchi tomondan $f_0(x) = \sin x$ desak, u holda

$$(Af_0)(x) = \pi \cos x$$
 va $||f_0|| = \sqrt{\pi}$, $||Af_0|| = \pi ||f_0||$

boʻladi. Ma'lumki,

$$||A|| \ge \frac{||Af_0||}{||f_0||} = \pi$$

va (14.13) dan foydalansak, $\|A\| = \pi$ tenglikka ega boʻlamiz. Bu yerdan barcha $\lambda \in \left(-\frac{1}{\pi}, \frac{1}{\pi}\right)$ lar uchun $\|\lambda A\| < 1$ tengsizlikning bajarilishi kelib chiqadi. Demak,

14.5-teorema va uning natijasiga koʻra, barcha
$$\lambda \in \left(-\frac{1}{\pi}, \frac{1}{\pi}\right)$$
 larda $I - \lambda A$

operatorga teskari operator mavjud va chegaralangan. 14.5-teorema shartlarining bajarilishi $I - \lambda A$ operatorga teskari operator mavjud va chegaralangan boʻlishini

ta'minlaydi. Lekin $\lambda \not\in \left(-\frac{1}{\pi}, \frac{1}{\pi}\right)$ ekanligidan $I - \lambda A$ operatorga chegaralangan

teskari operator mavjud emas degan xulosa kelib chiqmaydi. Δ

Navbatdagi misolimiz bu fikrimizni tasdiqlaydi.

14.9. Parametr
$$\lambda$$
 ning $\lambda \in \left(-\frac{1}{\pi}, \frac{1}{\pi}\right)$ qiymatlarida

$$(I - \lambda A)f(x) = f(x) - \lambda \int_{-\pi}^{\pi} \cos x \sin y f(y) dy, \ f \in L_2[-\pi, \pi]$$

operatorga 14.5-teoremani qo'llab, unga teskari operatorni toping.

Yechish. 14.8-misolda $\lambda \in \left(-\frac{1}{\pi}, \frac{1}{\pi}\right)$ qiymatlar uchun $I - \lambda A$ operatorga

teskari operator mavjudligi koʻrsatilgan edi. Bu misolga 14.5-teoremani qoʻllashimiz uchun A operatorning darajalarini hisoblashimiz kerak. Dastlab A operator kvadratini hisoblaymiz:

$$\left(A^{2}f\right)(x) = A\left(\int_{-\pi}^{\pi}\cos x\sin y \,f(y)dy\right) = \int_{-\pi}^{\pi}\cos x\sin t\left(\int_{-\pi}^{\pi}\cos t\sin y \,f(y)dy\right)dt \,. \tag{14.14}$$

(14.14) tenglikda t boʻyicha integralni hisoblash mumkin. Agar biz

$$\int_{-\pi}^{\pi} \cos t \sin t \, dt = 0$$

tenglikni hisobga olsak, $A^2=0$ ga ega boʻlamiz. Bu tenglikdan barcha $n\geq 2$ larda $A^n=0$ ekanligi kelib chiqadi. Natijada biz, $S=I+\lambda\,A=(I-\lambda\,A)^{-1}$ ga ega boʻlamiz. Haqiqatan ham,

$$(I - \lambda A)(I + \lambda A) = I + \lambda A - \lambda A - \lambda^2 A^2 = I$$

va

$$(I + \lambda A)(I - \lambda A) = I - \lambda A + \lambda A - \lambda^2 A^2 = I$$

tengliklar o'rinli. Isbot jarayonidan ma'lum bo'ldiki, barcha $\lambda \in R$ larda $I - \lambda A$ operatorga teskari operator mavjud va chegaralangan bo'ladi.

14.10. Parametr $\lambda \in R$ ning qanday qiymatlarida

$$(Bf)(x) = (1+x^2)f(x) - \lambda \int_{-1}^{1} x y f(y) dy, \quad f \in L_2[-1, 1]$$
 (14.15)

operatorga 14.6-teoremani qoʻllash mumkin?

Yechish. *B* operatorni $A - \lambda A'$ koʻrinishda yozib olamiz. $A \in L(L_2[-1, 1])$ operator sifatida (14.7-misolga qarang)

$$(Af)(x) = (x^2 + 1)f(x), f \in L_2[-1, 1]$$

ni, $A' \in L(L_2[-1, 1])$ operator sifatida esa

$$(A'f)(x) = \int_{-1}^{1} x y f(y) dy, f \in L_2[-1, 1]$$

ni olamiz. 14.7-misolda A operatorning teskarisi mavjud va $\|A^{-1}\|=1$ ekanligi koʻrsatilgan edi. 14.6-teoremani (14.15) tenglik bilan aniqlangan $B=A-\lambda A'$ operatorga qoʻllashimiz uchun

$$\|\lambda A'\| < \frac{1}{\|A^{-1}\|} = 1$$
 (14.16)

tengsizlik oʻrinli boʻladigan λ ning barcha qiymatlarini topishimiz kerak. Shu maqsadda A' operatorning normasini topamiz. Buning uchun $\|A'f\|$ norma kvadratini baholaymiz:

$$||A'f||^2 = \int_{-1}^{1} \left| \int_{-1}^{1} x \, y \, f(y) dy \right|^2 dx = \int_{-1}^{1} x^2 \, dx \cdot \left| \int_{-1}^{1} y \, f(y) dy \right|^2 \le \left(\frac{2}{3} \right)^2 ||f||^2. \quad (14.17)$$

Biz bu yerda Koshi-Bunyakovskiy tengsizligidan hamda

$$\int_{-1}^{1} x^{2} dx = \frac{2}{3}$$

tenglikdan foydalandik. (14.17) dan

$$||A'|| \le \frac{2}{3} \tag{14.18}$$

tengsizlik kelib chiqadi. Ikkinchi tomondan $f_0(x) = x$ desak, u holda

$$(A'f_0)(x) = \frac{2}{3} \cdot x = \frac{2}{3} \cdot f_0(x)$$
 va $||A'f_0|| = \frac{2}{3} \cdot ||f_0||$, $||f_0|| = \frac{2}{3}$

boʻladi. Ma'lumki,

$$||A'|| \ge \frac{||A'f_0||}{||f_0||} = \frac{2}{3}.$$
 (14.19)

(14.18) va (14.19) lardan $||A'|| = \frac{2}{3}$ tenglikka ega boʻlamiz. Bu yerdan barcha $\lambda \in \left(-\frac{3}{2}, \frac{3}{2}\right)$ lar uchun (14.16) ning, ya'ni $||\lambda A'|| < 1$ tengsizlikning bajarilishi kelib chiqadi. 14.6-teoremaga koʻra, barcha $\lambda \in \left(-\frac{3}{2}, \frac{3}{2}\right)$ larda B operatorga teskari operator mavjud va chegaralangan. 14.8-misoldagidek, $\lambda \not\in \left(-\frac{3}{2}, \frac{3}{2}\right)$ ekanligidan B

operatorga chegaralangan teskari operator mavjud emas degan xulosa kelib chiqmaydi. Δ

14.11. Quyidagi operatorning teskarilanuvchan emasligini koʻrsating

$$A: C[0,1] \to C[0,1], (Af)(x) = f(0)x + f(1)x^2.$$
 (14.20)

Yechish. Ma'lumki, chiziqli operator teskarilanuvchan bo'lishi uchun Af = 0 tenglama faqat $f(x) \equiv 0$ yechimga ega bo'lishi zarur va yetarli. (14.20) formula bilan berilgan A operator uchun $f_0(x) = x(1-x)$ funksiyani olsak, $f_0(0) = f_0(1) = 0$ bo'lgani uchun

$$(Af_0)(x) = f_0(0)x + f_0(1)x^2 \equiv 0.$$

Demak, Af = 0 tenglama nolmas f_0 yechimga ega, 14.3-teoremaga koʻra, A operator teskarilanuvchan emas. Δ .