MEASURING DISTANCE BETWEEN TWO DATA POINTS

FOR CONTINUOUS VARS. IN \mathbb{R}^2 : $\{(\chi_1, y_1), (\chi_1, y_1), \dots, (\chi_n, y_n)\}$

① Euclidean -
$$\varepsilon = \sqrt{\left(x_1 - x_2\right)^2 + \left(y_1 - y_2\right)^2}$$

② Manhattan -
$$d = |x_1 - x_2| + |y_2 - y_1|$$

$$\bigcirc$$
 Supremum $- d = \max(|x_2 - x_1|, |y_2 - y_1|)$

FOR DISCRETE VARS. i.e., all data must be binary 0-1

$$\label{eq:definition} \text{7} \quad \text{Hamming} \quad \text{-} \quad d = \sum \, {}^n_{i=1} \, |x_i - y_i|$$

8 SIMPLE MATCHING COEFFICIENT (SMC)

distance (proximity) is commonly used to measure similarity; thats the Whole idea behind KNN which happens to use euclidean distance.

$$\text{Cosine similarity} = \frac{\langle \overrightarrow{a}, \overrightarrow{b} \rangle}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}$$

- is bounded by -1 and 1
- is similar to the Pearson correlation coef:

• e.g.)

Consider two vectors, ${\bf A}$ and ${\bf B}$, each with two elements (for simplicity in a 2D space). For instance:

Vector	Element 1	Element 2	
Α	a1	a2	
В	b1	b2	

The cosine similarity is calculated by taking the dot product of A and B (which is $a1 \times b1 + a2 \times b2$) and dividing it by the product of the magnitudes of A and B. The magnitude of a vector ${\bf V}$ with elements v1 and v2 is calculated as $\sqrt{v1^2+v2^2}$.

The chart above illustrates two vectors, A (in red) and B (in blue), originating from the same point (the origin) in a two-dimensional space. The angle between these two vectors represents the basis for calculating their cosine similarity. In this context, a smaller angle corresponds to a higher cosine similarity, indicating that the two vectors are more similar in direction. [>-]

• HAMMING IS USED TO COMPARE TWO SUBJECTS BASED ON HOW MANY MUTUALLY EXCLUSIVE ATTRIBUTES THEY SHARE; HAMMING IS TYPICALLY BETTER SUITED FOR THE "STRICTLY" BINARY CASE

FOR EXAMPLE:		subject 1		subject 2	
	Sex	male	<i>‡</i>	Woman	0
	Birthplace	۱A	<i>‡</i>	MN	0
	race	black	丰	white	0
	age	Gen Z	=	Gen Z	1
	Status	middle class	=	middle class	1

subject 1 and subject 2 share two out-of five mutually exclusive, binary attributes. Hence, the Hamming distance between them is 2/5 = .4 or in other words subject 1 and subject 2 are 40% alike.

• JACCARD, ON THE OTHER HAND, DOES NOT HAVE THE "MUTUALLY EXCLUSIVE" REQUIREMENT OF ITS BASES; JACCARD IS TYPICALLY BETTER SUITED FOR <u>CATEGORICAL</u> DATA ANALYSIS FOR EXAMPLE:

HOBBIES Subject 2

Golf, Soccor, Golf, Basketball,
$$\Rightarrow$$
 JACCARD DISTANCE = $\frac{3}{5}$ = .6

Fravel travel