Math 526 - Statistics II, Spring 2023

Midterm exam

Due: Tuesday, April 18, by 8:00PM

Problem: The dataset provided consists of independent and identically acquired datapoints w. Each w is generated by one out of a total of 4 clusters and follows the statistics

$$w|s \sim \mathsf{Normal}\left(\mu_s, \frac{1}{ au}\right)$$
 .

The cluster locations μ_{σ_m} are known and have the values

$$\mu_{\sigma_1} = 1,$$
 $\mu_{\sigma_2} = 2,$ $\mu_{\sigma_3} = 3,$ $\mu_{\sigma_4} = 4.$

The precision τ is the same for all clusters and has an unknown value.

- 1. Formulate a Bayesian model for cluster analysis. Make your own choices for the necessary priors and briefly reason on your selection.
- 2. Describe a Markov chain Monte Carlo scheme to sample from your model's posterior.
- 3. Implement your Markov chain Monte Carlo scheme and generate samples to characterize the joint posterior probability distribution of your model.
- 4. Estimate the probability that datapoints w_{15} and w_{25} stem from the same cluster.