Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

B. Tech. (CE/ME)

Winter - 2017

Course Code: SHU 301

Course Name: Engineering Mathematics III

Time: 2 Hrs. 30 Min.

Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. ATTEMPT ANY THREE.

12

- Solve $(D^2 + 5D + 6)y = e^{-2x} \sin 2x + 4x^2 e^x$.
- Using the method of variation of parameter solve $(D^2 + 4) y = 4 \sec^2 2x$.
- c) Solve by converting to Cauchy's Linear differential equation $\left[D^2 \left(2/x^2\right)\right]^2 y = 0$.
- d) Evaluate $(D^2 2D + 4)^2 y = xe^x \cos(\sqrt{3} x + \alpha)$.

de la contraction de la compa

Contd..

2. ATTEMPT ANY THREE.

a) If
$$\overline{f(s)} = \left\{ \frac{1}{s(s+1)(s+2)(s+3)} \right\}$$
, find inverse Laplace transform of $\overline{f(s)}$.

- b) State division property of Laplace transform and use it to find Laplace transform $\frac{d}{dt} \left\{ \frac{\sin t}{t} \right\}$.
- If s is sufficiently large, show using series expansion of $\tan^{-1} \{a/s\}$ that $L^{-1} \left[\tan^{-1} \{a/s\}\right] = \frac{\sin at}{a}$.
- d) Find inverse Laplace transform of $\frac{1}{s} \log \left\{ 1 + \frac{1}{s^2} \right\}$.
- 3. Solve the following partial differential equations.

a)
$$(x^2 + y^2)(p^2 + q^2) = 1$$
.

b)
$$p-2q-(y+1)e^{3x}=0$$
.

c)
$$p\cos(x+y) + q\sin(x+y) = z$$
.

d)
$$(1-y^2)x q^2 + y^2 p = 0.$$

Poar

ATTEMPT ALL.

a) Calculate the coefficient of correlation for the following data

X	1	2	3	4	5	6	7	8	9
У	9	8	10	12	11	13	14	16	15

b) Obtain lines of regression for the following data:

X	1	2	3	4	5	6	7	8	9	10
У	10	12	16	28	25	36	41	49	40	50

c) Six dice are thrown 729 times. Use Binomial distribution to find how many times do you expect at least three dice to show a five or six.

5. ATTEMPT ALL.

- a) Given $y' = y^2 + xy$, y(0) = 1 find y(0.1), y(0.2) using Runge Kutta method.
- Evaluate by means of Taylor's series expansion, the problem

$$y''-x(y')^2+y^2=0$$
, $y(0)=1$, $y'(0)=0$ at $x=0.1, 0.2$.

Evaluate by using modified euler's method, y' = y - (2x/y), y(0) = 1 in the range x = 0 to 0.2.

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Third Semester B. Tech. (CE / ME)

Winter - 2016

Course Code: SHU301

Course Name: Engineering Mathematics III

Time: 2 Hrs. 30 Min.

Max. Marks: 60

Instructions to Candidate

- 1) All questions are compulsory.
- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of normal distribution table, logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. ATTEMPT ANY THREE.

12

- a) Solve $(2x+1)^2 \frac{d^2y}{dx^2} 2(2x+1)\frac{dy}{dx} 12y = 6x$.
- b) Solve $\frac{d^2y}{dx^2} y = e^{-x} \sin e^{-x} \div \cos e^{-x}$
- c) Solve $\frac{d^4y}{dx^4} + 2\frac{d^5y}{dx^5} + y = x^2 \cos x$.
- d) Solve the equation by method of variation of parameters

$$\frac{d^3y}{dx^3} + \frac{dy}{dx} = \cos e c x.$$

12

2. ATTEMPT ANY THREE.

- a) Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s}{(s^2-a^2)(s^2-b^2)}\right\}$
- b) Find the Laplace transform of \(\frac{1-coelt}{c}\).
- Find the inverse Laplace transform of (9++4a+

Contd..

3. ATTEMPT ANY FOUR.

a)
$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$$
.

b)
$$x^2p^2 + y^2q^2 = z^2$$
.

c)
$$\frac{1}{xy}(z-2\sqrt{p+q}) = \frac{p}{y} + \frac{q}{x}$$
.

d)
$$z^2 (p^2x^2 + q^2) = 1$$
,

Solve by using method of separation of variables the partial differential equation $\frac{\partial u}{\partial x} - 2 \frac{\partial u}{\partial z} - u = 0, \ ;$ $u(x, 0) = 6e^{-3x}.$

4. ATTEMPT ALL.

- Use the fourth order Runge-Kutta method to find u(0, 2) of the initial value problem $u = -2tn^2$, u(0) = 1, using h = 0.2.
- Find the solution of u(0.1) and u(0.2) of the initial value problem $u = x(1 2u^2)$, u(0) = 1, using the first three non zero terms of the Taylor's series method and h = 0.1.
- c) Apply Gauss-Seidal method to solve the system of equations

$$6x + y + z = 105,$$

$$4x + 3y + 3z = 155,$$

$$5x + 4y - 10z = 65.$$

12

12

0:

ng

ee

Ch

f

a) Use least square method to fit second degree polynomial to the data:

X	-2	-1	0	1	2
У	15	1	1	3	19

b) Ten students got the following percentage of marks in Economics and Statistics

Roll No.	1	2	3	4
Marks in Economics	78	36	98	25
Marks in Statistics	84	51	91	60

5	6	7	8	9	10
	e de la companya de l				
75	82	90	62	65	39
68	62	86	58	53	47
	, , , ,				

Calculate the coefficient of correlation.

c) In a Poisson distribution if p(r=1)=2p(r=2) . Find p(r=3).

Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

Third Semester B. Tech. (Civil / Mechanical)

Winter - 2015

ourse Code: SHU301

ourse Name: Engineering Mathematics-III

me: 2 Hrs. 30 Min

Max. Marks: 60

structions to Candidate

- 1) All questions are compulsory.
- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and nonprogrammable calculators is permitted.
- 5) Figures to the right indicate full marks.

Attempt any THREE

12

A Solve
$$(D^2 - 2D + 4)^2 y = xe^x \cos(\sqrt{3x} + \alpha)$$

B Using the method of variation of parameters Solve $(D^2 + 2D + 1)v = 4e^{-x} \log x$

C Solve
$$\left(\frac{d^2}{dx^2} - \frac{2}{x^2}\right)^2 y = 0$$

D Solve
$$(D^2 + 9)y = \sec 3x$$

Contd..

12

A Solve
$$\frac{y-z}{yz}p + \frac{z-x}{zx}q = \frac{x-y}{xy}$$

B Solve
$$(p^2 + q^2) = (x^2 + y^2)^{-1}$$

Solve
$$(x+y)(p+q)^2 + (x-y)(p-q)^2 = 1$$

D Use least-squares method to fit a curve of the form $y = ae^{bx}$ to the data

6	5	4	3	2	1	х
1.499	2.052	2.809	3.846	5.265	7.209	у
	2.052	2.809	3.846	5.265	7.209	у

3 Attempt any THREE

12

A Find inverse Laplace transform of $\frac{1}{s^3 + a^3}$

B Prove that
$$L\{t^n\} = \frac{n!}{s^{n+1}}$$

C If
$$L\{f(t)\} = \overline{f(s)}$$
 then show that

$$L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} \overline{f(s)}$$

D Show that

$$\int_{-1}^{-1} \left\{ \frac{1}{s} \cos \frac{1}{s} \right\} = 1 - \frac{t^2}{(2!)^2} + \frac{t^4}{(4!)^2} - \frac{t^6}{(6!)^2}$$

Attempt any THREE

12

A Solve by Gauss-Seidal Method
$$x+7y-3z = -22$$
, $5x-2y+3z = 18$, $2x-y+6z = 22$

Apply Runge-Kutta method to find an approximate value of y

when
$$x = 0.2$$
 given that $\frac{dy}{dx} = x + y^2$, and $y = 1$ when $x = 0$

33 02634

12

Using Taylor's series method obtain the solution of $\frac{dy}{dx} = 3x + y^2$ and y = 1 when x = 0 Find the value of y for x = 0.1 correct to four places of decimals.

If there are 3 misprints in book of 1000 pages find the probability that a given page will contain (i) no misprint (ii) more than 2 misprint

ttempt the following

If θ be the acute angle between the two regression lines in the case of two variables x and y, show that

 $\tan \theta = \frac{1-r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$ where r, σ_x, σ_y have their usual meaning. Explain the significance where r = 0 and $r = \pm 1$

3 Using the method of separation of variable, Solve $u_{xx} = u_y + 2u$, u(0, y) = 0

$$\frac{\partial}{\partial x}u(0,y) = 1 + e^{-3y}$$

3/2 11

Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

Third Semester B. Tech. (CE / ME)

Winter - 2013

Course Code: SHU301

Course Name: Engineering Mathematics - III

Time: 2 Hrs. 30 Min. Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and nonprogrammable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Attempt any three:

(a) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \cdot \sin(\log x)$

(b) Solve
$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$

(c) Solve, by the method of variation of parameters, $y'' - 2y' + y = e^x \log x$

(d) Solve
$$\frac{d^4 y}{dx^4} + m^4 y = 0$$

- (a) Solve $(D^4 + 2D^2 + 1)y = x^2 \cos x$.
- (b) Use suitable method to solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given that $u = 3e^{-y}$ when x = 0
- (c) Solve $(2D^2 5DD' + 2D'^2)z = 5 \sin(2x + y)$
- (d) Solve $z^2(p^2+q^2+1)=a^2$

3. Attempt any three

- (a) State and prove Convolution property for Laplace transform.
- (b) Solve $\frac{dy}{dx} = x + y$ with $x_0 = 0$, $y_0 = 1$ by Euler's modified formula for x = 0.1 by taking h = 0.05
- (c) Use Runge Kutta method to find approximate value of y for x = 0.2 when $\frac{dy}{dx} = xy + y^2$ given y(0) = 1, h = 0.1.
- (d) Employ Taylor's method to obtain approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.

Attempt any three

(a) Solve $(x^2 - yz) p + (y^2 - zx)q = z^2 - xy$.

(b) Apply Gauss-Seidal method to solve the following system of equations:

$$2x-3y+20z=25$$
;

$$20x + y - 2z = 17$$
;

$$3x + 20y - z = -18$$

(c) Find Laplace transform of $\frac{e^{-at} - e^{-bt}}{t}$ hence

evaluate
$$\int_{0}^{\infty} \frac{e^{-at} - e^{-bt}}{t} dt$$

(d) Find $L^{-1} \left\{ \frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6} \right\}$

5. Attempt the following:

12

(a) Fit a second degree parabola to the following data:

X	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	1.1	1.3	1.6	2.0	2.7	3.4	4.1

- (b) The probability that a pen manufactured by a company will be defective is 1/10. If 12 such pens are manufactured find the probability that
 - i) exactly two pens will be defective
 - ii) at least two pens will be defective
 - iii) none will be defective.
- (c) Fit a normal curve to the following data

cl	ass	1-3	3-5	5-7	7-9	9-11
fre	equency	1	4	6	4	1