LA ROTATION DANS LE PLAN

I) RAPPELLES ET COMPLEMENTS

1) La symétrie axiale.

Définition/Soit (*D*) une droite donnée. On dit que le point *M'* est le symétrique du point *M* par rapport à (*D*)

 1° si :M' = M si $M \in (D)$

 $2^{\circ}(D)$ est la médiatrice du segment [MM'] si $M \notin (D)$.

La relation qui lie le point M à M' s'appelle :

la symétrie axiale d'axe (D); se notre par $S_{(D)}$. On écrit : $S_{(D)}(M) = M'$.

Remarques:

1)Si $M \notin (D)$ alors $M' = S_{(D)}(M) \neq M$ et (D) est la médiatrice du segment [MM']

C'est-à-dire passe par I milieu de [MM'] et perpendiculaire à (MM').

2)Si $N \in (D)$ alors $S_{(D)}(N) = N$ on dit que N est invariant par $S_{(D)}$

3)Inversement si un point N est invariant par $S_{(D)}$ alors $N \in (D)$

Propriétés: La symétrie axiale conserve:

1)Les distances : si $M' = S_{(D)}(M)$ et $N' = S_{(D)}(N)$ alors MN = M'N'

2)Le milieu d'un segment et en générale le barycentre d'un système pondéré.

3)les mesures des angles **géométriques**

4)Le coefficient de colinéarité de deux vecteurs.

La symétrie axiale inverse les mesures des

angles orientés : $(\overline{\overrightarrow{AB}, \overrightarrow{AC}}) = -(\overline{\overrightarrow{A'B'}, \overrightarrow{A'C'}})[2\pi]$

Propriété : La symétrie axiale $S_{(\Delta)}$ est une bijection et sa bijection réciproque est elle-même

Preuve : $S(\triangle)(M) = M' \iff S(\triangle)(M') = M$

2) Les angles orientés

Définition :

Soient \vec{u} et \vec{v} deux vecteurs non nuls et soient \vec{A} et \vec{B}

deux points du plan orienté tels que $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$ l'angle orienté des demis droites [OA);

[OB) s'appelle aussi angle orienté des vecteurs \vec{u} et \vec{v} et on le note par : $(\vec{u}; \vec{v})$.la mesure de l'angle

orienté $(\vec{u}; \vec{v})$ est la mesure de l'angle orienté

([OA), [OB)) et se note par $(\overrightarrow{u}; \overrightarrow{v})$.

Propriétés :

Soient \vec{u} et \vec{v} deux vecteurs non nuls et h et k deux réels non nuls ; on a :

$$\left(\overrightarrow{v;u}\right) \equiv -\left(\overrightarrow{u;v}\right) \left[2\pi\right]$$

1)si hk > 0 alors : $(\overrightarrow{ku}; \overrightarrow{hv}) = (\overrightarrow{u}; \overrightarrow{v})[2\pi]$

2)si hk < 0 alors : $(\overrightarrow{ku}; \overrightarrow{hv}) \equiv \pi + (\overrightarrow{u}; \overrightarrow{v})[2\pi]$

II) LA ROTATION DANS LE PLAN

1) Définition:

1.1 Composition de deux symétries axiales

Activité : Soient (Δ) et (Δ') deux droites sécantes en O ; $M_1 = S_{(\Delta)}(M)$ et $M' = S_{(\Delta')}(M_1)$ et soit

 $(\vec{u}, \vec{v}) \equiv \alpha [2\pi]$ où \vec{u} vecteur directeur de (Δ) et \vec{v}

vecteur directeur de (Δ')

- 1- Quelle est l'application qui transforme M en M'.
- 2- Montrer que OM = OM'
- 3- Montrer que pour tout M dans le plan on a :

$$\left(\overline{\overrightarrow{OM}}, \overline{\overrightarrow{OM'}}\right) \equiv 2\alpha \left[2\pi\right]$$

Propriété :Soient (Δ) et (Δ ') deux droites sécantes en O; $S_{(\Delta)}$) et $S_{(\Delta')}$ les symétries axiales d'axes respectifs (Δ) et (Δ ')

soit $(\vec{u}, \vec{v}) \equiv \alpha [2\pi]$ où \vec{u} vecteur directeur de (Δ) et

 \vec{v} vecteur directeur de (Δ').

L'application $S_{(\Delta')} \circ S_{(\Delta)}$ transforme le point M en M'

tel que :
$$\begin{cases} OM = 0M' \\ \left(\overline{\overline{OM}}, \overline{0M'}\right) = 2\alpha[2\pi] \end{cases}$$

L'application $S_{(\Delta')}\circ S_{(\Delta)}$ s'appelle la rotation de centre ${\bf 0}$ et d'angle ${\bf 2}\alpha$

1.2 Définition de la rotation.

Définition: Soit Ω un point dans le plan et θ un

nombre réel, la rotation de centre Ω et d'angle θ est l'application qui transforme tout point M en M' tel que :

$$\begin{cases} \Omega M = \Omega M' \\ \left(\overline{\overline{\Omega M}}, \overline{\Omega M'}\right) \equiv \alpha \left[2\pi\right] \end{cases}$$

On la note par : R (Ω , θ)

Remarque : Si l'angle de la rotation est non nul, son centre est le seul point invariant.

Exemples :1) La symétrie centrale S_0 est la Rotation de centre O et d'angle π

2)L'identité $\Im dP$ est la rotation d'angle nul.

(Tous les points de (*P*) sont centre de cette rotation)

Exercice1: ABCD est un carré de centre O tel que : $(\overline{AB}, \overline{AD})$ positif. Soit r_A la rotation de centre A

et d'angle $\frac{\pi}{2}$ et r_{o} une rotation de centre O et d'angle α .

- 1) Déterminer $r_A(A)$; $r_A(B)$; $r_A(D)$,
- 2) Comment choisir α pour avoir $r_o(A) = B$? Comment choisir α pour avoir $r_o(A) = C$?

Solution: $r_A\left(A; \frac{\pi}{2}\right)$ et

$$r_o(O;\alpha)$$

- $r_A(A) = A$ Car le centre est le seul point invariant.
- $r_A(B) = D \operatorname{Car} \left\{ (\overline{AB}, \overline{AD}) = \frac{\pi}{2} [2\pi] \right\}$
- $r_A(D) = B'$ avec B' le symétrique de B par rapport a A

2)
$$r_o(A) = B \Leftrightarrow \alpha = \frac{\pi}{2}$$

 $r_o(A) = C \Leftrightarrow \alpha = \pi$

2) Propriétés de la rotation

Figure1

2.1 La décomposition d'une rotation

Soit R la rotation de centre O et d'angle α 1) (Δ) une droite quelconque qui passe par O et (Δ ') l'image de (Δ) par la rotation r de centre o et d'angle $\frac{\alpha}{r}$

D'après ce qui précède ($S_{(\Delta')}oS_{(\Delta)}$) est la rotation de centre O et d'angle $2\frac{\alpha}{2} = \alpha$

Donc: $S_{(\Delta')} \circ S_{(\Delta)} = R$. (Figure 1)

2) (Δ) une droite quelconque qui passe par O et (Δ ') l'image de (Δ) par

la rotation r de centre o et d'angle $-\frac{\alpha}{2}$

D'après ce qui précède (composition de deux symétries axiales)

 $S_{(\Delta)} \circ S_{(\Delta')}$ est la rotation de centre ${\it O}$

et d'angle $2\frac{\alpha}{2} = \alpha$

Donc : $S_{(\Delta)} \circ S_{(\Delta')} = R$. (figure 2)

Propriété :Soit R la rotation de centre 0 et

d'angle α ; la rotation R peut-être décomposée comme suite :

1) $R = S_{(\Delta')}oS_{(\Delta)}$ où (Δ') l'image de (Δ) par la rotation r de centre o et d'angle : $\frac{\alpha}{2}$

2) $R = S_{(\Delta)}oS_{(\Delta')}$ où (Δ') l'image de (Δ) par la rotation r de centre o et d'angle : $-\frac{\alpha}{2}$

Exercice2:

ABCD est un carré tel que : $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}})$ positif et Soit

r la rotation de centre A et d'angle $\pi/2$ Décomposer la rotation r en composée de deux symétries orthogonales

Solution: $r = S_{(AD)} \circ S_{(AC)} \operatorname{car}(AD) \cap (AC) = \{A\}$

$$\operatorname{et}\left(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}\right) = \frac{\pi}{4} [2\pi]$$

$$OU \quad r = S_{(AC)} \circ S_{(AB)} \quad \text{car} \quad (AB) \cap (AC) = \{A\}$$

$$\operatorname{et}\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}}\right) \equiv \frac{\pi}{4} [2\pi]$$

2.2 Propriété d'une rotation.

Puisque toute rotation est la composition de deux symétries axiales on peut en déduire les propriétés suivantes :

- 1)La rotation est une isométrie (elle conserve les distances) : si R(A) = A' et R(B) = B'Alors A'B' = AB
- 2) La rotation conserve le coefficient de colinéarité de deux vecteurs et par suite conserve la linéarité des points
- 3) La rotation conserve le milieu et le barycentre d'un système pondéré.
- 4) La rotation conserve les mesures des angles géométriques
- 5) La rotation conserve les mesures des angles orientés (les deux symétries qui composent la rotation inversent les mesures des angles orientés)

Applications:

Exercice3: ABC est un triangle.

On construit à l'extérieur deux triangles *ABD* et *ACE* isocèles et rectangles en A

- 1) Montrer que : BE = CD
- 2)Montrer que:

$$(BE) \perp (CD)$$

Solution:

Soit r la rotation de

centre A et d'angle $\frac{\pi}{2}$

donc: $r(D) = B \bullet$

On a:
$$\begin{cases} AC = AE \\ \left(\overline{AC, \overline{AE}}\right) = \frac{\pi}{2} [2\pi] \end{cases} \text{ donc } : \mathbf{Q} \ r(C) = E$$

Et puisque la rotation conserve les distances Alors de **1** et **2** en déduit que BE = CD

2)on a
$$r(D) = B$$
 et $r(C) = E$

Donc:
$$(\overline{\overrightarrow{CD}, \overrightarrow{EB}}) \equiv \frac{\pi}{2}$$
 par suite: $(BE) \perp (CD)$

Exercice4: ABC est un triangle tel que : $\left(\overline{AB}, \overline{AC}\right)$ positif. On construit à l'extérieur les carrés ABDE et ACFG

Soit r la rotation de centre A et d'angle $\frac{\pi}{2}$

déterminer : r(E) et r(C)

Et Montrer que : $(\overline{\overrightarrow{CA}}, \overline{\overrightarrow{CE}}) = (\overline{\overrightarrow{GA}}, \overline{\overrightarrow{GB}})[2\pi]$

Solution:

on a :
$$\begin{cases} AE = AB \\ (\overline{\overrightarrow{AE}, \overrightarrow{AB}}) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc: $r(E) = B \bullet$

Et on a :
$$\begin{cases} AC = AG \\ \left(\overline{\overrightarrow{AC}, \overrightarrow{AG}} \right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc: $\mathbf{Q}_r(C) = G$

De :
$$\P$$
 et \P en déduit que $\left(\overline{\overline{CA},\overline{CE}}\right) \equiv \left(\overline{\overline{GA},\overline{GB}}\right)[2\pi]$

Exercice5: ABCD est un carré de centre O tel que : $(\overline{0A}, \overline{0B})$ positif.

I et J deux points tels que : $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$ et

$$\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$$

Montrer que $(OI) \perp (OJ)$ et OI = OJ

Solution: il suffit de montrer

que : r(I) = J ????

On pose : r(I) = I'

On a :
$$\begin{cases} OA = OB \\ \left(\overline{\overrightarrow{OA}, \overrightarrow{OB}} \right) = \frac{\pi}{2} [2\pi] \end{cases}$$
 donc

r(A) = B

Et on a : $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$ donc : $\overrightarrow{BI'} = \frac{1}{4}\overrightarrow{BC}$ • car la

rotation conserve le coefficient de colinéarité de deux vecteurs

Et on sait que : $\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$

De $oldsymbol{0}$ et $oldsymbol{0}$ en déduit que $\overrightarrow{BI'} = \overrightarrow{BJ}$ donc I' = J

Donc
$$r(I) = J$$
 par suite :
$$\begin{cases} OI = OJ \\ (\overline{\overrightarrow{OI}, OJ}) = \frac{\pi}{2} [2\pi] \end{cases}$$

Exercice6: ABCD est un carré de centre O tel que : $\left(\overline{\overrightarrow{0A}}, \overline{\overrightarrow{0B}}\right)$ positif. Soit (D) la droite

d'angle $\frac{\pi}{2}$. E et F les images M et N

respectivement Par la rotation r

- 1) Faire une figure et Montrer que $(\mathit{EF}) \perp (\mathit{MN})$
- 2)Déterminer l'image de la droite (BD) par la rotation r
- 3)Montrer que DN = FA et (EF) || (AC)

Solution :1)

on a :
$$\mathbf{0} r(M) = E$$

et:
$$r(N) = F$$

de **0** et **2** en deduit que:

$$\left(\overline{\overrightarrow{MN}}, \overline{EF}\right) \equiv \frac{\pi}{2} [2\pi]$$

donc: $(EF) \perp (MN)$

2) on a:
$$\begin{cases} 0B = 0C \\ \left(\overline{0B}, \overline{OC}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc: $r(B) = C \bullet$

Et on a :
$$\begin{cases} 0D = 0A \\ \left(\overline{\overrightarrow{OD}, \overrightarrow{OA}}\right) = \frac{\pi}{2} [2\pi] \end{cases} \text{ donc } r(D) = A$$

de \bullet et \bullet en deduit que: r((BD)) = (AC)

3) DN = FA ???

on a:
$$\mathbf{0}_{r(D)=A}$$
 et $\mathbf{2}_{r(N)=F}$

donc: DN = FA(EF) || (AC) ???

On a:
$$(MN) \parallel (BD)$$
 et $r((BD)) = (AC)$ et

$$r((MN)) = (EF)$$

Donc : $(EF) \parallel (AC)$ car la rotation conserve le parallélisme

Exercice7: ABC est un triangle isocèles et rectangles en A tel que : $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}})$ positif et O le milieu du segment [BC]. D et E

deux points tels que :
$$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$$
 et $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$

Montrer que ODE est un triangle isocèles et rectangles en O

Solution: il suffit de

montrer que :
$$r(E) = D$$
 ????

On pose : r(E) = E'

On a :
$$\begin{cases} OA = OC \\ \left(\overline{\overrightarrow{OC}}, \overline{\overrightarrow{OA}} \right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc: $r(C) = A \bullet$

Et on a : $\begin{cases} OA = OB \\ \left(\overline{\overrightarrow{OA}}, \overline{OB}\right) = \frac{\pi}{2} [2\pi] \end{cases} \text{ donc : } r(A) = B$

Et on a : $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$ **3**

De \bigcirc et \bigcirc et \bigcirc en déduit que : $\overline{AE'} = \frac{2}{3}\overline{AB}$ \bigcirc car la

rotation conserve le coefficient de colinéarité de deux vecteurs

Et on sait que : $\overrightarrow{AD} = \frac{2}{3} \overrightarrow{AB}$

De Φ et Φ en déduit que : $\overrightarrow{AE'} = \overrightarrow{AD}$ cad E' = D

Donc: r(E) = D par suite: $\begin{cases} OE = OD \\ \left(\overline{\overrightarrow{OE}, \overrightarrow{OD}} \right) = \frac{\pi}{2} [2\pi] \end{cases}$

Donc ODE est un triangle isocèles et rectangles en O

Exercice8 : ABCD est un carré tel que : $\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}\right)$

positif. et AED et AFB deux triangles équilatéraux

Montrer que les points : E et C et F sont alignés **Solution :** soit *r* la rotation de centre A

d'angle
$$\frac{\pi}{3}$$
 : $r\left(A; \frac{\pi}{3}\right)$

et soit K l'antécédent de C par r

On a: r(B) = F

$$\operatorname{Car} \begin{cases} AB = AF \\ \left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AF}} \right) = \frac{\pi}{3} [2\pi] \end{cases}$$

Et on a : r(D) = E Car $\begin{cases} AD = AE \\ \left(\frac{\overrightarrow{AD}, \overrightarrow{AE}}{A}\right) = \frac{\pi}{3}[2\pi] \end{cases}$

Et on a: r(K) = C

donc: AK = AC et $(\overline{\overrightarrow{AK}}, \overline{\overrightarrow{AC}}) = \frac{\pi}{3} [2\pi]$

puisque : AB = BC donc B appartient à la médiatrice du segment $\begin{bmatrix} AC \end{bmatrix}$

et AD = DC donc D appartient à la médiatrice du segment $\lceil AC \rceil$

et on a :
$$AK = AC$$
 et $(\overline{\overrightarrow{AK}}, \overline{\overrightarrow{AC}}) = \frac{\pi}{3} [2\pi]$

donc : AKC est équilatéral donc K appartient à la médiatrice du segment $\lceil AC \rceil$

Donc les points : K et B et D sont alignés Et puisque la rotation conserve les alignement des points alors :les points : E et C et F sont alignés

Propriété: La rotation R (Ω , θ) est une bijection et sa bijection réciproque est la bijection R (Ω , - θ)

Preuve:
$$R(\Omega, \theta)(M) = M' \Leftrightarrow \begin{cases} \Omega M = \Omega M' \\ \left(\overline{\Omega M}, \overline{\Omega M'}\right) \equiv \theta[2\pi] \end{cases}$$

$$\iff \begin{cases} \Omega M' = \Omega M \\ \left(\overline{\Omega M'}, \overline{\Omega M}\right) = -\theta[2\pi] \end{cases} \iff R(\Omega, -\theta)(M') = M$$

Propriété: (Propriété fondamentale de la rotation) Soit $R(\Omega, \theta)$ la rotation de centre Ω et d'angle θ si R(M) = M' et R(N) = N' alors $\left(\overline{\overline{MN}}, \overline{M'N'}\right) \equiv \theta[2\pi]$

Preuve: On a:

$$\begin{split} &\left(\overline{MN'},\overline{M'N'}\right) = \left(\overline{MN'},\overline{\Omega M'}\right) + \left(\overline{\Omega M'},\overline{\Omega M'}\right) + \left(\overline{\Omega M'},\overline{M'N'}\right) [2\pi] \\ &= \left(\overline{\Omega M'},\overline{\Omega M'}\right) [2\pi] \operatorname{car}: \left(\overline{MN'},\overline{\Omega M'}\right) = \left(\overline{M'N'},\overline{\Omega M'}\right) [2\pi] \end{split}$$

(la rotation conserve la mesure des angles orientés)

$$\mathsf{D'où} : \left(\overline{\overrightarrow{MN}, \overrightarrow{\Omega M}}\right) + \left(\overline{\overrightarrow{\Omega M'}, \overrightarrow{M'N'}}\right) = 0[2\pi]$$

III) COMPOSITION DE DEUX ROTATIONS

1) Composition de deux rotations de même centre

Soient $R(\Omega,\alpha)$ et $R'(\Omega,\beta)$ deux rotations de centre Ω ; Posons $R(M) = M_1$ et $R(M_1) = M'$

$$\begin{array}{ccc}
M & \xrightarrow{R} & M_1 & \xrightarrow{R'} & M' \\
& & & & & & \\
R' \circ R & & & & & \\
\end{array}$$

$$R(M) = M_1 \iff \begin{cases} \Omega M = \Omega M_1 \\ \left(\overline{\Omega M}, \overline{\Omega M_1}\right) = \alpha [2\pi] \end{cases}$$

$$R(M_1) = M' \Leftrightarrow \begin{cases} \Omega M_1 = \Omega M' \\ \left(\overline{\Omega M_1}, \overline{\Omega M'} \right) = \beta [2\pi] \end{cases}$$

On en déduit que :
$$\begin{cases} \Omega M = \Omega M' \\ \left(\overline{\overline{\Omega M}}, \overline{\Omega M'}\right) \equiv \alpha + \beta \left[2\pi\right] \end{cases}$$

Et par suite : $R''(\Omega, \alpha+\beta)(M) = M'$

et $(R'(\Omega, \beta)o R(\Omega, \alpha))(M) = M'$

Donc $R'(\Omega, \beta)$ o $R(\Omega, \alpha) = R''(\Omega, \alpha + \beta)$.

Propriété: La composition de deux rotations R (Ω, α) et $R'(\Omega, \beta)$ de même centre Ω est la rotation de centre Ω et d'angle $(\alpha + \beta)$:

 $R'(\Omega, \beta) \ o \ R(\Omega, \alpha) = R''(\Omega, \alpha + \beta).$

Remarque : On sait que la rotation R (Ω , α) est une bijection et sa bijection

Réciproque est $R'(\Omega, -\alpha)$

Donc : $R'(\Omega, -\alpha)oR(\Omega, \alpha) = R''(\Omega, 0) = \Im dP$

2) Composition de deux rotations de centres différents.

2.1 Composition de deux symétries axiales d'axes parallèles

Soient (Δ) et (Δ ') deux droites parallèles dans le plan. $S_{(\Delta)}$ et $S_{(\Delta')}$ les symétries

Axiales d'axes respectifs (Δ) et (Δ ') On a :

$$M \xrightarrow{S_{(\Delta)}} M_1 \xrightarrow{S'_{(\Delta')}} M'$$

$$S' \circ S$$

Soit (D) une droite perpendiculaire à (Δ) A et B les intersections respectives de (D) et (Δ) et de (D) et (Δ')

Soient I_M et J_M les milieux respectifs de $[MM_1]$ et $[M_1M']$, on a :

$$\overrightarrow{MM'} = \overrightarrow{MM_1} + \overrightarrow{M_1M'} = 2\overrightarrow{I_MM_1} + 2\overrightarrow{M_1J_M}$$

$$\overrightarrow{MM'} = 2\overrightarrow{I_MJ_M} = 2\overrightarrow{AB}$$

Propriété: La composition de deux symétries axiales $S_{(\Delta)}$ et $S'_{(\Delta')}$

d'axes parallèles est la translation de vecteur \overrightarrow{AB} où A et B les intersections respectives de (D) et

 (Δ) et de (D) et (Δ') avec (D) une droite perpendiculaire à (Δ)

si (Δ) || (Δ') alors : $S'_{(\Delta')} \circ S_{(\Delta)} = t_{\overline{AB}}$

2.2 Composition de deux rotations de centres différents.

Soient $R(0,\alpha)$ et $R(\Omega,\beta)$ deux rotations dans le plan où $\Omega \neq 0$ on

S'intéresse à la nature de la transformation *R'oR* On sait que toute rotation peut être décomposée en composée

de deux symétries axiales.

Posons (Δ) = ($O\Omega$)

On a : $R = S_{(\Delta)} \circ S_{(\Delta_1)}$ où (Δ_1) est l'image de la droite (Δ) par la

rotation r_1 de centre 0 et d'angle $-\frac{\alpha}{2}$

D'autre part : $R'=S_{(\Delta_2)}\circ S_{(\Delta)}$ où (Δ_2) est l'image de la droite (Δ) par la

rotation r_2 de centre Ω et d'angle $\frac{\beta}{2}$

$$\mathsf{D'où}:\ R'\circ R = \left(S_{(\Delta_2)}\circ S_{(\Delta)}\right)\circ \left(S_{(\Delta)}\circ S_{(\Delta_1)}\right)$$

$$R'\circ R = \left(S_{(\Delta_2)}\circ \left(S_{(\Delta)}\circ S_{(\Delta)}\right)\circ S_{(\Delta_1)}\right) \text{(La composition }$$

est associative)

$$R' \circ R = S_{(\Delta_2)} \circ S_{(\Delta_1)}$$
 car $S_{(\Delta)} \circ S_{(\Delta)} = \mathcal{I}_P$

La nature de R'oR dépend de la position relative de (Δ) et (Δ')

Si (Δ) et (Δ') se coupent en J (figure 1)

Dans ce cas $R'\circ R=S_{(\Delta_2)}\circ S_{(\Delta_1)}$ est une rotation de centre J et d'angle $2\left(\overrightarrow{\overrightarrow{u};\overrightarrow{v}}\right)$ modulo 2π où \overrightarrow{u}

vecteur directeur de (Δ_1) et \vec{v} vecteur directeur de (Δ_2).

Détermination de l'angle de la rotation :2 γ

On a : $-\gamma - \frac{-\alpha}{2} + \frac{\beta}{2} = \pi [2\pi]$ (lire tous les angles

dans le sens trigonométrique)

d'où :
$$\gamma = \frac{\alpha}{2} + \frac{\beta}{2} - \pi [2\pi] \operatorname{car} (-\pi = \pi [2\pi])$$

Finalement : $2\gamma = \alpha + \beta [2\pi] \text{ car } (2\pi \equiv 0[2\pi])$

Si (Δ) et (Δ') sont parallèles (figure 2)

Dans ce cas $R' \circ R = S_{(\Delta_2)} \circ S_{(\Delta_1)}$ est une translation.

Quand est ce que (Δ) et (Δ') sont parallèles ?

$$(\Delta) \| (\Delta') \Leftrightarrow -\frac{\alpha}{2} \equiv \frac{\beta}{2} [2\pi] \Leftrightarrow \alpha + \beta \equiv 0 [2\pi]$$

(Figure 2)

Théorème: Soient $R(O,\alpha)$ et $R(\Omega,\beta)$ deux rotations dans le plan où $\Omega \neq O$

1°Si $\alpha + \beta \neq 2k\pi$ alors R'oR est une **rotation** d'angle $\alpha + \beta$

2°Si $\alpha + \beta = 2k\pi$ alors R'oR est une translation dans le plan.

Remarque :Pour déterminer les éléments de la rotation ou de la translation il est indispensable de maitriser toutes les étapes de la démonstration.

Exercice9: ABCD est un carré tel que : $\left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}\right)$ positif et Soit r la rotation de centre A et d'angle $\frac{\pi}{2}$

1) déterminer la nature de la transformation suivante : $S_{(AD)} \circ S_{(AB)}$

1)on considère les rotations suivantes : $r\left(A; \frac{\pi}{2}\right)$

et
$$r'\left(B;\frac{\pi}{2}\right)$$
 et $r''\left(C;-\frac{\pi}{2}\right)$

déterminer la nature des transformations suivante : $r \circ r'$ et $r \circ r''$

Solution :1)
$$S_{(AD)} \circ S_{(AB)} = r\left(A; 2\frac{\pi}{2}\right) = r(A; \pi) = S_A$$

2) a)
$$r \circ r'$$
 on a $A \neq B$ et $\frac{\pi}{2} + \frac{\pi}{2} = \pi \neq 2k\pi$ donc c'est

une rotation $r\left(?; \frac{\pi}{2} + \frac{\pi}{2}\right) = r\left(?; \pi\right)$ cad une symétrie

central

Déterminons le centre de la rotation $r \circ r'$?

On a: $r \circ r' = S_{(AC)} \circ S_{(AB)} \circ S_{(AB)} \circ S_{(BD)} = S_{(AC)} \circ S_{(BD)}$

Et puisque : $(AC) \cap (BD) = \{O\}$

Alors le le centre de la rotation est le point O

2) b) $r \circ r''$???

on a $A \neq C$ et $\frac{\pi}{2} + \left(-\frac{\pi}{2}\right) = 0$ donc c'est une

translation

Déterminons le vecteur de la translation $r \circ r''$?

On a:
$$r \circ r''(C) = r(r''(C)) = r(C) = C'$$

Avec:
$$\begin{cases} AC = AC' \\ \left(\overline{\overline{AC}}, \overline{\overline{AC'}}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc $r \circ r''$ est une translation de vecteur $\overrightarrow{CC'}$

Exercice10 : ABCD est un carré de centre O

tel que : $\left(\overline{\overrightarrow{0A},\overrightarrow{0B}}\right)$ négatif. Soient M, N, P et Q quatre

points dans le plan tels que : $\overrightarrow{DQ} = \frac{1}{3}\overrightarrow{DA}$ et

$$\overrightarrow{CP} = \frac{1}{3}\overrightarrow{CD}$$
 et $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$ et $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}$

la droite (AN) coupe les droites (DM) et (BP)

Respectivement en E et F

la droite (CQ) coupe les droites (DM) et (BP)

Respectivement en H et G

Soit r la rotation de centre O et d'angle $-\pi/2$

1) Faire une figure dans le cas ou : AB = 6cm

2)Montrer que : r(M) = N et r(N) = P et r(P) = Q

et r(Q) = M

3) a)Montrer que : r(F) = G

b)en déduire que : le triangle FOG est isocèle et rectangle en $\ O$

4)a) calculer : $(r \circ r)(F)$ et $(r \circ r)(E)$

4)b) en déduire que :les segments $\left[EG \right]$ et $\left[FH \right]$ ont

le même milieu

5) Montrer que : EFGH est un carré

Solution:1)

2) on a
$$\begin{cases} OA = OB \\ \left(\overline{\overrightarrow{OA}}, \overline{OB} \right) = -\frac{\pi}{2} [2\pi] \end{cases}$$
 donc: $r(A) = B$

$$\begin{cases} OB = OC \\ \left(\overline{OB}, \overline{OC} \right) = -\frac{\pi}{2} [2\pi] \end{cases} \text{ donc } : r(B) = C$$

Et puisque $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}$ et la rotation conserve le

coefficient de colinéarité de deux vecteurs

Alors:
$$\overline{r(A)r(M)} = \frac{1}{3}\overline{r(A)r(B)}$$

cad :
$$\overrightarrow{Br(M)} = \frac{1}{3}\overrightarrow{BC}$$
 et on a : $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}$

donc: r(M) = N

de meme : on montre que : r(N) = P et r(P) = Q

et r(Q) = M

3) a)on montre que : r(F) = G?

Puisque : r(N) = P et r(A) = B alors : r((AN)) = (BP)

Et Puisque : r(P) = Q et r(A) = B alors :

r((AN))=(BP)

Et puisque : r(P) = Q et r(B) = C alors :

r((BP))=(QC)

Donc: $r((AN) \cap (BP)) = r((AN)) \cap r((BP))$ car r est

une application injective

Donc: $r(\lbrace F \rbrace) = (BP) \cap (QC) = \lbrace G \rbrace$ par suite: r(F) = G

3)b)On a : r(F) = G donc : $\begin{cases} OF = OG \\ (\overline{OF}, \overline{OG}) = -\frac{\pi}{2}[2\pi] \end{cases}$

Donc : le triangle *FOG* est isocèle et rectangle

en O

4)a) On a : r(C) = D et r(Q) = M et r(B) = C

donc : r((CQ))=(DM) et puisque : r((BP))=(QC)

alors: $r((CQ) \cap (BP)) = (DM) \cap (CQ)$ cad:

 $r(\lbrace G \rbrace) = \lbrace H \rbrace \text{ donc} : r(G) = H$

on a: $(r \circ r)(F) = r(r(F)) = r(G) = H$ et on a:

r((AN)) = (BP) et r((DM)) = (AN)

donc: $r((AN) \cap (DM)) = (AN) \cap (BP)$

donc: r(E) = F

On a: $(r \circ r)(EF) = r(r(E)) = r(F) = G$

4)b)puisque r est une rotation d'angle : $-\pi/2$

alors : $r \circ r$ est une rotation d'angle :

 $2 \times (-\pi/2) = -\pi$ donc $r \circ r$ est une symétrie central et soit K son centre

Puisque on a : $(r \circ r)(F) = H$ et $(r \circ r)(E) = G$

Alors : K est le milieu des segments [EG] et [FH]

Donc : les segments $\left[EG \right]$ et $\left[FH \right]$ ont les mêmes milieux

4) puisque les segments [EG] et [FH] ont les mêmes milieux alors : EFGH est un parallélogramme et on a aussi : r(F) = G et

$$r(E) = F$$
 donc: $EF = FG$ et $(\overline{EF}, \overline{FG}) = -\frac{\pi}{2} [2\pi]$

Donc: EFGH est un carré.

Exercice11 : ABCD est un carré de centre O

tel que : $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}) = \pi/2[2\pi]$. Soient I, J, K et L les

milieux respectivement des segments [AB]et

[BC] et [CD] et [DA].

1)Déterminer les mesures des angles suivants :

$$\operatorname{a)}\!\left(\overrightarrow{AC}, \overrightarrow{AD}\right) \quad \operatorname{b)}\!\left(\overrightarrow{DA}, \overrightarrow{DB}\right) \operatorname{c)}\!\left(\overrightarrow{CD}, \overrightarrow{CA}\right) \quad \operatorname{d)}\!\left(\overrightarrow{CA}, \overrightarrow{CD}\right)$$

2)soit $S_{(AB)}$ la symétrie axiale d'axe (AB)

soit $r_{\left(A; \frac{\pi}{2}\right)}$ la rotation de centre A et d'angle $\,\pi/2\,$

et $t_{\vec{u}}$ la translation de vecteur \vec{u}

Déterminer la nature et les éléments caractéristiques des transformations suivantes :

a)
$$F = S_{(AC)} \circ S_{(BD)}$$

$$\mathsf{b)}\,G = S_{(AC)} \circ S_{(AB)}$$

c)
$$H = r_{(D;\pi)} \circ r_{(A;\pi)}$$

d)
$$K = r_{\left(C; \frac{\pi}{2}\right)} \circ r_{\left(D; \pi\right)} \circ r_{\left(A; \frac{\pi}{2}\right)}$$

Solution :1) a)les droites (AC) et (BD) et (JL) et

(IK) sont des axes de symétries du carré ABCD

On a: $S_{(AC)}(A) = A$ et $S_{(AC)}(C) = C$ et $S_{(AC)}(B) = D$

Donc on deduit que : $(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}) = -(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}})[2\pi]$

Donc: $(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}) = (\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}})[2\pi]$

Donc: $\left(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}\right) = \frac{\pi}{4} [2\pi]$

b) On a : $S_{(LI)}(A) = D$ et $S_{(LI)}(C) = B$ et $S_{(LI)}(B) = C$

Donc on deduit que : $(\overline{\overrightarrow{DA}, \overrightarrow{DB}}) = -(\overline{\overrightarrow{AD}, \overrightarrow{AC}})[2\pi]$

Donc: $(\overline{\overrightarrow{DA}}, \overline{\overrightarrow{DB}}) = (\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}})[2\pi]$

Donc:
$$(\overline{\overrightarrow{DA}, \overrightarrow{DB}}) \equiv \frac{\pi}{4} [2\pi]$$

Puisque la rotation conserve la mesure de l'angle orienté et on a : $r_{(O;\pi)}(A) = C$ et $r_{(O;\pi)}(B) = D$ et

$$r_{(O:\pi)}(C) = A \text{ alors } : \left(\overrightarrow{\overline{CD}}, \overrightarrow{CA}\right) = \left(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}}\right)[2\pi]$$

Donc:
$$\left(\overline{\overrightarrow{CD}}, \overline{\overrightarrow{CA}}\right) \equiv \frac{\pi}{4} [2\pi]$$

d) puisque :
$$\left(\overline{\overrightarrow{CD}},\overline{\overrightarrow{CA}}\right) = \frac{\pi}{4} \left[2\pi\right]$$
 alors : $\left(\overline{\overrightarrow{CA}},\overline{\overrightarrow{CD}}\right) = -\frac{\pi}{4} \left[2\pi\right]$

2)a)
$$F = S_{(AC)} \circ S_{(BD)}$$
 ??

On a:
$$(AC) \cap (BD) = \{O\}$$

Donc F est la composé de deux symétries orthogonaux d'axes qui se coupent en O

Donc: F est rotation de centre O

Et puisque : $(AC) \perp (BD)$ alors : F est une symétrie central de centre O ou $F = r_{(O;\pi)}$

2)b)
$$G = S_{(AC)} \circ S_{(AB)}$$
 ??

On a:
$$(AB) \cap (AC) = \{A\}$$
 et $(\overline{AB}, \overline{AC}) \equiv \frac{\pi}{4} [2\pi]$

Donc *G* est la composé de deux symétries orthogonaux d'axes qui se coupent en A Donc: G est rotation de centre A

$$G = r_{\left(O; 2\frac{\pi}{4}\right)} = r_{\left(O; \frac{\pi}{2}\right)}$$

2)c)
$$H = r_{(D:\pi)} \circ r_{(A:\pi)}$$
 ??

Puisque toute rotation est le composé de deux symétries axiales on peut en déduire :

$$r_{(D;\pi)} = S_{(DC)} \circ S_{(DA)}$$
 et $r_{(A;\pi)} = S_{(DA)} \circ S_{(AB)}$

Donc:
$$H = r_{(D;\pi)} \circ r_{(A;\pi)} = S_{(DC)} \circ S_{(DA)} \circ S_{(DA)} \circ S_{(AB)}$$

Et puisque :
$$S_{(DA)} \circ S_{(DA)} = I_P$$
 alors : $H = S_{(DC)} \circ S_{(AB)}$

Et puisque : $(DC) \parallel (AB)$ alors : H est une

translation et puisque : $A \in (AB)$ et D la projection du point D sur la droite (DC) alors :

$$S_{(DC)} \circ S_{(AB)} = t_{2\overrightarrow{AD}} \text{ donc}: H = t_{2\overrightarrow{AD}}$$

d)
$$K = r_{\left(C; \frac{\pi}{2}\right)} \circ r_{\left(D; \pi\right)} \circ r_{\left(A; \frac{\pi}{2}\right)}$$
 ??

Puisque toute rotation est le composé de deux symétries axiales on peut en déduire :

$$r_{\left(C;\frac{\pi}{2}\right)} = S_{\left(CA\right)} \circ S_{\left(CD\right)} \quad \text{et} \quad r_{\left(D;\pi\right)} = S_{\left(DC\right)} \circ S_{\left(DA\right)} \ \ \text{car}$$

$$\left(\overline{\overrightarrow{CD}},\overline{\overrightarrow{CA}}\right) \equiv \frac{\pi}{4} [2\pi]$$

$$\text{Et on a}: \quad r_{\left(A;\frac{\pi}{2}\right)} = S_{\left(AD\right)} \circ S_{\left(AC\right)}$$

Donc:

$$K = S_{(CA)} \circ S_{(CD)} \circ S_{(DC)} \circ S_{(AD)} \circ S_{(AC)} = S_{(CA)} \circ I_P \circ I_P \circ S_{(AC)}$$

$$K = S_{(CA)} \circ S_{(AC)} = I_P$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs

et exercices

Que l'on devient un mathématicien

