ĐÁP ÁN BÀI TẬP BIÉN THIÊN ENTHALPY TRONG CÁC PHẢN ỨNG HÓA HỌC (PHÀN 3)

Hoc tốt Hóa học 10

1. Năng lượng của một liên kết hóa học (E_b) là năng lượng cần thiết để

A. phá vỡ 2 mol liên kết đó ở thể khí, tao thành các

nguyên tử ở thể khí.

C. phá vỡ 1 mol liên kết đó ở thể khí, tạo thành các

nguyên tử ở thể khí.

B. phá vỡ 2 mol liên kết đó ở thể khí, tao thành các phân

tử ở thể khí.

D. phá võ 1 mol liên kết đó ở thể khí, tạo thành các phân

tử ở thể khí.

Năng lương của một liên kết hóa học (E_b) là năng lượng cần thiết để phá vỡ 1 mọi liên kết đó ở thể khí, tạo thành các nguyên tử ở thể khí.

2. Tổng năng lượng liên kết trong phân tử CH₄ là 1660 kJ/mol.

$$CH_{4}\left(g
ight)
ightarrow C\left(g
ight) \ + \ 4H\left(g
ight)
ight. E_{b}=1660 \ kJ/mol$$

Năng lượng liên kết trung bình của một liên kết C – H là

A. 415 kJ/mol.

B. 1660 kJ/mol.

C. 830 kJ/mol.

D. 1245 kJ/mol.

Phân tử CH_4 có 4 liên kết $C-H \rightarrow N$ ăng lượng liên kết trung bình của một liên kết C-H là $\frac{1660}{4}$ = 415 kJ/mol

3. Công thức tính nhiệt của phản ứng từ năng lượng liên kết là

A.
$$\Delta_r H_{298}^o = \sum E_b(sp) - \sum E_b(cd)$$

C. $\Delta_r H_{298}^o = -\sum E_b(cd) - \sum E_b(sp)$

$$egin{aligned} & \underline{oldsymbol{B}}.\ \Delta_r H_{298}^o = \sum E_b(cd) - \sum E_b(sp) \ & \mathrm{D.}\ \Delta_r H_{298}^o = \sum E_b(cd) + \sum E_b(sp) \end{aligned}$$

Công thức tính nhiệt của phản ứ<mark>ng từ</mark> năng lượng liên kết là $\Delta_r H^o_{298} = \sum E_b(cd) = \sum E_b(sp)$

4. Cho phản ứng tổng quát ở điều kiện chuẩn:

$$aA\left(g
ight) + \mathrm{bB}\left(g
ight)
ightarrow mM\left(g
ight) \; + \; nN\left(g
ight)$$

 $\Delta_r H^o_{298}$ của phản ứng được tính theo công thức

A. B.
$$\Delta_{r}H_{298}^{o} = aE_{b}\left(A\right) + bE_{b}\left(B\right) + mE_{b}\left(M\right) + nE_{b}\left(N\right)$$
 $\Delta_{r}H_{298}^{o} = aE_{b}\left(A\right) + bE_{b}\left(B\right) + mE_{b}\left(M\right) - nE_{b}\left(N\right)$ D. $\Delta_{r}H_{298}^{o} = aE_{b}\left(A\right) + bE_{b}\left(B\right) - mE_{b}\left(M\right) - nE_{b}\left(N\right)$

$$\Delta_r H^o_{298} = \sum E_b(cd) - \sum E_b(sp)$$

$$ightarrow\Delta_{r}H_{298}^{o}$$
 của phản ứng được tính theo công thức: $\Delta_{r}H_{298}^{o}=aE_{b}\left(A
ight)+\mathrm{b}E_{b}\left(B
ight)-\mathrm{m}E_{b}\left(M
ight)-\mathrm{n}E_{b}\left(N
ight)$

5. Cho phản ứng hóa học sau:

$$CH_4(g) + Cl_2(g) \xrightarrow{asmt} CH_3Cl(g) + HCl(g)$$

Biết năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

Liên kết	E _b (kJ/mol)	Liên kết	E _b (kJ/mol)
H – C1	427	C – C1	339
C1 – C1	243	C – H	413

Biến thiên enthalpy (kJ) của phản ứng là

$$\Delta_r H_{298}^o = 4E_b(C - H) + E_b(Cl - Cl) - [3E_b(C - H) + E_b(C - Cl) + E_b(H - Cl)]$$

= 4.413 + 243 - (3.413 + 339 + 427)
= -110 kJ.

6.

1) HOCM

HOCMAI.VN - Hệ thống Giáo dục trực tuyến của học sinh Việt Nam

Cho phản ứng hóa học sau:

 $3\mathrm{O}_2(g) o 2\mathrm{O}_3(g)$

Biết năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

Liên kết	E _b (kJ/mol)	
O = O	498	
0-0	204	

Biến thiên enthalpy (kJ) của phản ứng là

Công thức cấu tạo của O₃ là O=O→O

$$\Delta_r H^o_{298} = 3 E_b(O=O) - 2 [E_b(O=O) + E_b(O-O)]$$

$$=3.498-2(498+204)$$

$$= +90 \ kJ.$$

7. Biến thiên enthalpy của một phản ứng được ghi ở sơ đồ dưới:

Kết luận nào sau đây đúng?

A. Phản ứng tỏa nhiệt.

C. Biến thiên enthalpy của phản ứng được tính theo công thức $\Delta_r H^o_{298} = \sum \Delta_f H^o_{298}(cd) - \sum \Delta_f H^o_{298}(sp)$.

B. Năng lượng chất tham gia phản ứng nhỏ hơn năng lượng sản phẩm.

D. Biến thiên enthalpy chuẩn của phản ứng lớn hơn 0.

Phát biểu đúng: Phản ứng tỏa nhiệt.

Theo sơ đồ, ta có năng lượng chất tham gia phản ứng lớn hơn năng lượng sản phẩm $\to \Delta_r H_{208}^o < 0 \to \text{Phản ứng tỏa nhiệt.}$

8. Cho phản ứng hóa học sau:

$$2H_2(g)+O_2(g)\stackrel{t^0}{
ightarrow} 2H_2O(g)$$

Biết năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

E _b (kJ/mol)	Liên kết	E _b (kJ/mol)
432	O-H	467
498	0 7	3
	432	432 O-H

Biến thiên enthalpy (kJ) của phản ứng là

$$\Delta_r H_{298}^o = [2E_b(H - H) + E_b(O = O)] - 2[2.E_b(O - H)]$$

$$=(2.432+498)-2.2.467$$

$$= -506 \ kJ.$$

9. Cho phản ứng hóa học sau:

$$C_7H_{16}(g)+11\mathrm{O}_2(g)\stackrel{t^0}{
ightarrow}7CO_2(g)+8H_2O(g)$$
 Biết trong $\mathrm{C_7H_{16}}$

HOCMAI.VN - Hệ thống Giáo dục trực tuyến của học sinh Việt Nam

17

có 6 liên kết C-C và 16 liên kết C-H, năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

Liên kết	E _b (kJ/mol)	Liên kết	E _b (kJ/mol)
O = O	498	O-H	467
C = O	745	C-H	413
C – C	347		*

Biến thiên enthalpy (kJ) của phản ứng là

$$\Delta_r H_{298}^o = 6E_b(C-C) + 16E_b(C-H) + 11E_b(O=O) - [7.2E_b(C=O) + 8.2E_b(O-H)]$$

= 6.347 + 16.413 + 11.498 - (14.745 + 16.467)
= -3734 kJ.

10. H H

Cho hợp chất hữu cơ X có công thức cấu tạo $H-\stackrel{|}{C}-\stackrel{|}{C}-C-H$. Phản ứng đốt cháy X tạo sản phẩm CO_2 và H_2O . Biết

H H O

năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

Liên kết	E _b (kJ/mol)	Liên kết	E _b (kJ/mol)
O = O	498	O-H	467
C = O	745	C-H	413
C-C	347	IMA	AP .

Biến thiên enthalpy (kJ) của phản ứng đốt cháy hợp chất hữu cợ X là

Phản ứng đốt cháy hợp chất hữu cơ X:

$$C_{3}H_{6}O\left(g
ight) + 4~O_{2}\left(g
ight) \stackrel{t^{o}}{
ightarrow} 3CO_{2}\left(g
ight) + 3H_{2}O\left(g
ight) \ \Delta_{r}H_{298}^{o} = 6E_{b}(C-H) + 2E_{b}(C-C) + E_{b}(C=O) + 4E_{b}(O=O) - 3[2.E_{b}(C=O)] - (2.E_{b}(O-H)] \ = 6.413 + 2.347 + 745 + 4.498 - 3.2.745 - 3.2.467 \ = -1363~kJ.$$

11. Cho phản ứng hóa học sau:

$$CH_3-CH=CH_2\left(g
ight) \ + \ H_2\left(g
ight) \
ightarrow \ CH_3-CH_2-CH_3\left(g
ight)$$

Biết năng lượng liên kết của một số liên kết cộng hóa trị được cho trong bảng sau:

Liên kết	E _b (kJ/mol)	Liên kết	Eb (kJ/mol)
C = C	614	C-C	347
C-H	413	H-H	432

Biến thiên enthalpy (kJ) của phản ứng là

Hướng dẫn giải:

$$\begin{split} &\Delta_r H^o_{298} = E_b(C=C) + 6E_b(C-H) + E_b(C-C) + E_b(H-H) - 2E_b(C-C) - 8E_b(C-H) \\ &= E_b(C=C) - 2E_b(C-H) - E_b(C-C) + E_b(H-H) \\ &= 614 - 2.413 - 347 + 432 \\ &= -127 \ kJ. \end{split}$$

12. Phản ứng tổng hợp ammonia:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta_r H = -92kJ$$

HOCMAI.VN - Hệ thống Giáo dục trực tuyến của học sinh Việt Nam

Biết năng lượng liên kết (kJ/mol) của N≡N và H-H lần lượt là 946 và 436. Năng lượng liên kết của N-H trong ammonia là

D. 460 kJ.

$$egin{aligned} \Delta_r H &= E_b(N \equiv N) + 3E_b(H-H) - 2.3E_b(N-H) \ &
ightarrow E_b(N-H) = rac{92 + 946 + 3.436}{6} = 391(kJ). \end{aligned}$$

- 13. Biết biến thiên enthalpy chuẩn của quá trình " $H_2O(s) \rightarrow H_2O(l)$ " là 6,020 kJ Phát biểu nào sau đây là đúng?
 - A. Quá trình chuyển pha từ 1 mol nước ở thể rắn sang nước ở thể lỏng là quá trình tỏa nhiệt, nhiệt lương tỏa ra là 6,020 kJ.
 - C. Quá trình chuyển pha từ 1 gam nước ở thể rắn sang nước ở thể lỏng là quá trình tỏa nhiệt, nhiệt lượng tỏa ra là 6,020 kJ.
- **B**. Quá trình chuyển pha 1 mol từ nước ở thể rắn sang nước ở thể lỏng là quá trình thu nhiệt, nhiệt lương cần cung cấp là 6,020 kJ.
- D. Quá trình chuyển pha 1 gam từ nước ở thể rắn sang nước ở thể lỏng là quá trình thu nhiệt, nhiệt lượng cần cung cấp là 6,020 kJ.

Do biến thiên enthalpy chuẩn của quá trình " $H_2O(s) \rightarrow H_2O(1)$ " là 6,020 kJ > 0 \rightarrow Quá trình thu nhiệt.

- → Phát biểu đúng: Quá trình chuyển pha 1 mol từ nước ở thể rắn sang nước ở thể lỏng là quá trình thu nhiệt, nhiệt lượng cần cung cấp là 6,020 kJ.
- 14. C₂H₅OH là thành phần chính trong một mẫu cồn. Phản ứng đốt cháy C₂H₅OH xảy ra như sau:

$$C_2H_5OH\left(l
ight) + \ 3O_2\left(g
ight)
ightarrow \ 2CO_2\left(g
ight) + 3H_2O\left(l
ight)$$

$$\Delta_r H_{298}^o = -1370 \ kJ/mol$$

Biết nhiệt bay hơi của C₂H₅OH và H₂O ở 25°C lần lượt là 43 kJ/mol và 44 kJ/mol. Biến thiên enthalpy (kJ) của phản ứng $C_2H_5OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$ là

Xét các quá trình:

$$(1)~C_{2}H_{5}OH~(l) + ~3O_{2}~(g)
ightarrow rac{2CO_{2}~(g) + 3H_{2}O~(l)}{\Delta_{1}H_{298}^{o}} = -1370~kJ/mol~-$$

$$(2)~C_2H_5OH~(l)
ightarrow~C_2H_5OH~(g)$$
 $\Delta_2H_{298}^o=43~kJ/mol$

(3)
$$H_2O(l) \rightarrow H_2O(g)$$
 $\Delta_3 \frac{H_{298}^o}{I} = 44 \text{ kJ/mol} \text{ I} \text{ LIEU} - \text{KHOA HOC}$

$$(4) \ C_{2}H_{5}OH\left(g
ight) + \ 3O_{2}\left(g
ight)
ightarrow rac{2}{C}O_{2}\left(g
ight) + 3H_{2}O\left(g
ight) \qquad \Delta_{4}H_{298}^{o} = ? \ kJ/mol$$

Mối quan hệ giữa các quá trình:

Moi quan ne giura cac qua trinn:
$$C_2H_5OH\left(l
ight) + \ 3O_2\left(g
ight) \stackrel{\Delta_1H}{\longrightarrow} \ 2CO_2\left(g
ight) + 3H_2O\left(l
ight) \\ \uparrow -\Delta_2H \qquad \qquad \downarrow \Delta_3H$$

$$C_{2}H_{5}OH\left(g
ight) +\ 3O_{2}\left(g
ight) \overset{\Delta_{4}H}{\longrightarrow}\ 2CO_{2}\left(g
ight) +3H_{2}O\left(g
ight)$$

→ Biến thiên enthalpy (kJ) của phản ứng
$$C_2H_5OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$
 là $\Delta_4H^o_{298} = -\Delta_2H^o_{298} + \Delta_1H^o_{298} + \Delta_3H^o_{298} = -43 + (-1370) + 44 = -1369\,kJ$

15. Phản ứng đốt cháy chất hữu cơ X xảy ra như sau:

$$X\left(g
ight) + \mathrm{\,a}O_{2}\left(g
ight)
ightarrow \ 2CO_{2}\left(g
ight) + 3H_{2}O\left(l
ight)$$

$$\Delta_r H_{298}^o = -1413 \ kJ/mol$$

Biết nhiệt bay hơi của H₂O ở 25°C là 44 kJ/mol, tổng năng lượng liên kết của tất cả các phân tử tham gia phản ứng là 4413 kJ/mol và năng lượng liên kết C=O là 745 kJ/mol. Năng lượng liên kết trung bình giữa O và H trong H₂O(g) là

Hướng dẫn giải:

Ta có:

$$X\left(g
ight) + \, aO_{2}\left(g
ight) \stackrel{\Delta_{1}H}{\longrightarrow} \, 2CO_{2}\left(g
ight) + 3H_{2}O\left(l
ight) \ \Delta_{3}H \qquad \downarrow \Delta_{2}H \ \searrow \, \, 2CO_{2}\left(g
ight) + 3H_{2}O\left(g
ight) \
otag \Delta_{3}H = \Delta_{1}H + \Delta_{2}H = -1413 + 44 = -1369\,kJ \ \Delta_{3}H = \sum_{E_{b}\left(cd
ight)} - \left[2.2.E_{b}\left(C=O
ight)\right] - 3.2.E_{b}\left(O-H
ight) \
otag - 1369 = 4413 - 4.745 - 6.E_{b}\left(O-H
ight) \
otag + E_{b}\left(O-H
ight) = 467\,kJ/mol.$$

Shared By Fanpage: Tài Li u Khóa H c UniMap

