Produit scalaire 1/2

I - Définition

<u>A – Rappel</u>

Soit un vecteur \overrightarrow{u} et deux points A et B tels que $\overrightarrow{u} = \overrightarrow{AB}$. La norme du vecteur \overrightarrow{u} , notée \mathbb{I} \overrightarrow{u} \mathbb{I} , est la distance AB.

B - Produit scalaire

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan.

On appelle produit scalaire de \overrightarrow{u} par \overrightarrow{v} , noté \overrightarrow{u} . \overrightarrow{v} , le

nombre réel défini par :

- $\overrightarrow{u}.\overrightarrow{v}=0$, si l'un des deux vecteurs \overrightarrow{u} et \overrightarrow{v} est nul
- \overrightarrow{u} . $\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos(\overrightarrow{u}; \overrightarrow{v})$, dans le cas contraire.

Remarque : Pour tout vecteur \overrightarrow{u} et \overrightarrow{v} , on a : \overrightarrow{u} . $\overrightarrow{v} = \overrightarrow{v}$. \overrightarrow{u}

C - Opérations

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} , on a :

1. Bilinéarité

- $\overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u}.\overrightarrow{v}+\overrightarrow{u}.\overrightarrow{w}$
- $\overrightarrow{u}.(\overrightarrow{kv}) = \overrightarrow{ku}.\overrightarrow{v}$, avec k un nombre réel.

2. Identités remarquables

- $(\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + 2\overrightarrow{u}.\overrightarrow{v} + \overrightarrow{v}^2$
- $(\overrightarrow{u} \overrightarrow{v})^2 = \overrightarrow{u}^2 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$
- $(\overrightarrow{u} + \overrightarrow{v})(\overrightarrow{u} \overrightarrow{v}) = \overrightarrow{u}^2 \overrightarrow{v}^2$

II - Relation avec la norme

<u>A – Formules</u>

- $\overrightarrow{u}.\overrightarrow{v} = \frac{1}{2}(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 \|\overrightarrow{u} \overrightarrow{v}\|^2) \text{ et } \overrightarrow{u}.\overrightarrow{v} = \frac{1}{2}(\|\overrightarrow{u} + \overrightarrow{v}\|^2 \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2)$
- $\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 BC^2)$

B - Théorème d'Al Kashi

Dans un triangle ABC, avec les notation de Fig 1, on a : $a^2 = b^2 + c^2 - 2bc\cos(\hat{A})$

