Programação em Lógica

Prof. A. G. Silva

18 de agosto 2016

Introdução (I)

- Paradigma de programação lógico
- Linguagens de programação lógica ou linguagens declarativas
 - Programas declarativos em vez de procedurais
 - Especificações dos resultados desejados são expressas (em vez de os procedimentos detalhados para produzi-los)
 - Sintaxe notavelmente diferente da sintaxe das linguagens funcionais e imperativas
 - Expressão de programas em uma forma de lógica simbólica
 - Processo de inferência lógico para produzir resultados

Introdução (II)

- A lógica possui uma longa história, de mais de 23 séculos, que remonta aos antigos filósofos gregos, principalmente Aristóteles, que estabeleceu os seus fundamentos de maneira sistemática
- Lógica Booleana Boole (1847) traz a lógica para o campo da matemática
- Lógica de Predicados Fregue (1879) lógica moderna
- A lógica lida com dois conceitos fundamentais
 - Verdade (teoria de modelos)
 - Prova (teoria das provas)

Introdução (III)

- Teoria dos modelos
 - Trata da validade das fórmulas lógicas é possível que uma dada fórmula apresente o valor de verdade verdadeiro (uma proposição é uma asserção declarativa, ou seja, afirma ou nega um fato, e tem um valor de verdade, que pode ser verdadeiro ou falso.)
 - ★ Tautologia sempre verdade
 - ★ Fórmula válida quando há pelo menos uma interpretação que torne a fórmula verdadeira

Introdução (IV)

- Teoria das provas
 - Dado um conjunto de axiomas e alguma regra de inferência, verificar se uma fórmula pode ser deduzida a partir dos axiomas
 - A sequência de fórmulas geradas constitui uma prova

Cálculo de predicados - Introdução (I)

- Base da programação lógica: lógica formal
- Consiste em objetos e seus relacionamentos
- Lógica formal como método para descrever proposições
- Proposições formalmente descritas podem ser verificadas em relação a sua validade

Cálculo de predicados - Introdução (II)

- A lógica simbólica pode ser usada para as três necessidades básicas da lógica formal:
 - Expressar proposições
 - Expressar os relacionamentos entre proposições
 - Descrever como novas proposições podem ser inferidas a partir de outras proposições tidas como verdadeiras
- Forte relacionamento entre lógica formal e matemática
- Muito da matemática pode ser pensado em termos de lógica

Cálculo de predicados – Introdução (III)

- Os axiomas fundamentais de teoria dos números e dos conjuntos são proposições iniciais, tidos como verdadeiros
- Teoremas são as proposições adicionais que podem ser inferidas
- A forma particular de lógica simbólica na programação lógica é chamada de cálculo de predicados de primeira ordem (ou simplesmente cálculo de predicados)

Cálculo de predicados – Proposições (I)

- Os objetos em proposições são representados por termos simples, constantes ou variáveis
- Uma constante é um símbolo que representa um objeto
- Uma variável é um símbolo capaz de representar objetos diferentes em momentos diferentes
- Uma proposição atômica é formada por um símbolo de predicado seguido por uma lista de termos entre parênteses ou termos compostos. Exemplos:

```
irmão(ricardo, joão)
casado(pai(ricardo), mãe(joão))
```

Cálculo de predicados - Proposições (II)

- Um termo composto é um elemento de uma relação matemática (aparência de uma notação de função matemática)
- Um termo composto tem duas partes:
 - Um functor, símbolo da função que nomeia a relação
 - Uma lista ordenada de parâmetros
- Um termo composto com um único parâmetro é um 1-tupla, com dois é uma 2-tupla, e assim por diante

Cálculo de predicados – Proposições (III)

• Exemplos de proposições:

```
man(jake)
like(bob, steak)
```

que dizem que {jake} é uma 1-tupla na relação man, e que {bob, steak} é uma 2-tupla na relação like.

- ► Termos simples man, jake, like, bob e steak são constantes
- Sem semântica intrínseca (pode significar que bob gosta de steak, ou que steak gosta de bob, ou que bob é de alguma forma similar a um steak

Cálculo de predicados – Proposições (IV)

- Dois modos de definição de proposições:
 - Definidas como verdadeiras: fatos
 - ▶ No qual a verdade é algo que deve ser determinado: consultas
- Proposições compostas têm duas ou mais proposições atômicas conectadas por conectores lógicos ou operadores:

Nome	Símbolo	Exemplo	Significado	
negação	\neg	$\neg a$	não <i>a</i>	
conjunção	\wedge	$a \wedge b$	a e b	
disjunção	V	$a \lor b$	a ou b	
equivalência	=	$a \equiv b$	a é equivalente a b	
implicação	\rightarrow	$a \rightarrow b$	a implica em b	
	\leftarrow	$a \leftarrow b$	b implica em a	

Cálculo de predicados - Proposições (V)

- Semântica (significado das sentenças)
 - Interpretação: associação entre proposições e valores-verdade (V ou F). Uma fórmula contendo n proposições admite 2ⁿ interpretações distintas
 - Tabela-verdade: avalia uma fórmula em cada interpretação possível

а	b	$\neg a$	$a \wedge b$	$a \lor b$	$a \rightarrow b$
F	F	V	F	F	V
F	V	V	F	V	V
V	F	F	F	V	F
V	V	F	V	V	V

Cálculo de predicados - Proposições (VI)

- Tipos de fórmulas
 - Válida (tautológica): é verdadeira em toda interpretação
 - Satisfatível (contingente): é verdadeira em alguma interpretação
 - ▶ Insatisfatível (contraditória): é verdadeira em nenhuma interpretação
- Exercício Classifique cada fórmula como válida, satisfatível ou insatisfatível
 - \triangleright $a \lor \neg a$
 - ▶ a ∧ ¬a
 - $(a \rightarrow b) \land a \rightarrow b$
 - ▶ $(a \rightarrow b) \land b \rightarrow a$
 - ▶ $(a \rightarrow b) \land \neg b \rightarrow \neg a$
 - ▶ $(a \rightarrow b) \land a \land \neg b$
 - $a \wedge (a \rightarrow b) \wedge (b \rightarrow c)$

Cálculo de predicados - Proposições (VII)

- Outros exemplos de proposições compostas:
 - ▶ $a \land b \rightarrow c$
 - ▶ $a \land \neg b \to d$ ou $(a \land (\neg b)) \to d$
 - ▶ ¬irmão(pernaEsquerda(Ricardo), João)
 - ► irmão(Ricardo, João) ∧ irmão(João, Ricardo)
 - ▶ rei(Ricardo) ∨ rei(João)
 - ▶ $\neg rei(Ricardo) \rightarrow rei(João)$
- O operador ¬ tem precedência mais alta
- ullet Os operadores \wedge , \vee e \equiv têm precedência mais alta do que \to e \leftarrow

Cálculo de predicados - Proposições (VIII)

- Variáveis podem ser introduzidas por símbolos especiais chamados de quantificadores
- O cálculo de predicados inclui dois quantificadores, onde X é uma variável e P é uma proposição:

```
Nome Exemplo Significado universal \forall X.P Para todo X, P é verdadeiro existencial \exists X.P Existe um valor de X tal que P é verdadeiro
```

• Exemplos:

```
\forall X.(\mathsf{woman}(X) \to \mathsf{human}(X))
\exists X.(\mathsf{mother}(\mathsf{mary}, X) \land \mathsf{male}(X))
```

• Os quantificadores universal e existencial têm precedência mais alta do que a de qualquer um dos operadores

Cálculo de predicados - Proposições (IX)

 Quantificadores aninhados são usados em proposições (sentenças) complexas compostas

• Exemplos:

- ► Irmãos são parentes $\forall x \forall y. \text{irmão}(x, y) \rightarrow \text{parente}(x, y)$
- ► Parentesco é uma relação simétrica $\forall x \forall y. parente(x, y) \equiv parente(y, x)$
- ► Todo mundo ama alguém ∀x∃y.ama(x, y)
- ► Existe alguém que é amado por todo mundo $\exists y \forall x.ama(x, y)$

Cálculo de predicados – Proposições (X)

• Quantificadores aninhados por meio de negação

• Exemplos:

► Todo mundo detesta cenouras ≡ n\u00e3o existe algu\u00e9m que goste de cenouras

```
\forall x. \neg gosta(x, cenouras) \equiv \neg \exists x. gosta(x, cenouras)
```

► Todo mundo gosta de sorvete ≡ não existe alguém que não goste de sorvete

```
\forall x. gosta(x, sorvete) \equiv \neg \exists x. \neg gosta(x, sorvete)
```

Cálculo de predicados – Proposições (XI)

- Exemplos de parentescos:
 - ▶ A mãe de alguém é o ancestral feminino de alguém $\forall m \forall c.$ mãe $(c) = m \equiv \text{feminino}(m) \land \text{ancestral}(m, c)$
 - ► O marido de alguém é o cônjuge masculino de alguém $\forall w \forall h. \text{marido}(h, w) \equiv \text{masculino}(h) \land \text{cônjuge}(h, w)$
 - ► Masculino e feminino são categorias disjuntas $\forall x.$ masculino $(x) \equiv \neg$ feminino(x)
 - ► Ancestral e descendente são relações inversas $\forall p \forall c.$ ancestral $(p, c) \equiv \text{descendente}(c, p)$
 - Avô é um pai do pai de alguém $\forall g \forall c.avô(g,c) \equiv \exists p.pai(g,p) \land pai(p,c)$
 - ▶ Um parente é outro descendente dos ancestrais de alguém $\forall x \forall y. \mathsf{parente}(x,y) \equiv x \neq y \land \exists p. \mathsf{ancestral}(p,x) \land \mathsf{ancestral}(p,y)$

Cálculo de predicados – Sintaxe (I)

- Formalmente, uma linguagem lógica de primeira ordem notada L(P, F, C, V) – é determinada pela especificação dos seguintes conjuntos de símbolos:
 - Um conjunto P de símbolos de predicado
 - Um conjunto F de símbolos de função
 - Um conjunto C de símbolos de constante
 - Um conjunto V de símbolos de variável
- A cada símbolo de predicado e de função é associada uma aridade, isto é, o número de argumentos do predicado e da função. Os símbolos de predicado com aridade zero são chamados símbolos proposicionais

Cálculo de predicados – Sintaxe (II)

```
<fórmula> ::= <fórmula-atômica> | ¬(<fórmula>) |
                    (< f \circ r u \mid a>_1 \land < f \circ r u \mid a>_2) \mid
                    (< f \circ r mula >_1 \lor < f \circ r mula >_2) \mid
                    (\langle f \acute{o} rmula \rangle_1 \rightarrow \langle f \acute{o} rmula \rangle_2) \mid
                    (∀<variável>.(<fórmula>)) |
                    (∃<variável>.(<fórmula>)) |
<fórmula-atômica> ::= V | F |
                                \langle predicado \rangle (\langle termo \rangle_1, \dots, \langle termo \rangle_n)
<termo> ::= <variável> | <constante> |
                 \langle \text{função} \rangle (\langle \text{termo} \rangle_1, \dots, \langle \text{termo} \rangle_n)
<constante> ::= a, b, c, d e outras palavras iniciadas por minúsculas
<variável> ::= x, y, z, w com ou sem índices
<função> ::= f, g, h e outras palavras iniciadas por minúsculas
outras palavras iniciadas por maiúsculas
```

Cálculo de predicados - Sintaxe (III)

• Exemplos:

$$Avo(a,c) \leftarrow Pai(a,b) \wedge Pai(b,c)$$

$$\neg (Ama(brutus, cesar))$$

$$Q(b) \leftarrow \forall x. ((P(x) \wedge \neg (P(a)))$$

$$\forall x. \exists y. (Gosta(y,x))$$

$$Ama(amelia, z)$$

F

Cálculo de predicados – Descrevendo fatos em lógica (I)

Marcos era um homem

• Marcos nasceu em Pompéia

Todos os que nasceram em Pompéia eram romanos

$$Romano(x) \leftarrow \forall x. Pompeano(x)$$

César era um soberano

Soberano(cesar)

Cálculo de predicados - Descrevendo fatos em lógica (II)

• Todos os romanos eram leais a César ou então odiavam-no

$$\forall x.Romano(x) \leftarrow LealA(x, cesar) \lor Odeia(x, cesar)$$

• Todo mundo é leal a alguém

$$\forall x. \exists y. LealA(x, y)$$

• As pessoas só tantam assassinar soberanos aos quais não são leais

$$\neg \textit{LealA}(x,y) \leftarrow \forall x. \forall y. \textit{Pessoas}(x) \land \textit{Soberano}(y) \land \textit{TentaAssassinar}(x,y)$$

Marcos tentou assassinar César

TentaAssassinar(marcos, cesar)

Exercícios

Descreva os seguintes fatos em lógica

- João gosta de todo o tipo de comida
- Maças são comida
- Frango é comida
- Qualquer coisa que alguém coma e não cause sua morte é comida
- Paulo come amendoim e ainda está vivo
- Susana come tudo o que Paulo come
- Carlos só gosta de cursos fáceis
- O curso de ciências é difícil
- Todos os cursos do departamento de prendas domésticas são fáceis
- BK32 é um curso de prendas domésticas

Cálculo de predicados – Representação de conhecimento (I)

- Conhecimento pode ser representado de duas formas:
 - explícita: por meio da formalização de sentenças
 - implícita: por meio de consequência lógica (fatos derivados das sentenças)
- Passos para formalização de sentenças
 - Identificamos as palavras da sentença que correspondem a conectivos
 - Identificamos as partes da sentença que correspondem a proposições atômicas e associamos a cada uma delas um símbolo proposicional
 - Escrevemos a fórmula correspondente à sentença, substituindo suas proposições atômicas pelos respectivos símbolos proposicionais e seus conectivos lógicos pelos respectivos símbolos conectivos
 - Exemplo:
 - Está chovendo.
 - * Se está chovendo, então a rua está molhada.
 - * Se a rua está molhada, então a rua está escorregadia.

Cálculo de predicados – Representação de conhecimento (II)

- Exemplo:
 - Está chovendo.
 - ▶ **Se** está chovendo, **então** a rua está molhada.
 - ▶ Se a rua está molhada, então a rua está escorregadia.
- Vocabulário:
 - a: "está chovendo"
 - b: "a rua está molhada"
 - c: "a rua está escorregadia"
- Formalização (base de conhecimento):

Exercícios

Formalize as sentenças usando sintaxe da lógica proposicional

- Se Ana é alta e magra, então ela é elegante.
- 2 Se Beto é rico, então ele não precisa de empréstimos.
- Se Caio ama a natureza, então ele ama as plantas e os animais.
- Se Denis jogar na loteria, então ele ficará rico ou desiludido.
- Se faz frio ou chove, então Eva fica em casa e vê TV.

Cálculo de predicados – Forma clausal (I)

- Cálculo de predicados é a base para linguagens de programação lógica
- Lógicas são melhores em sua forma simples: redundância deve ser minimizada
- Problema: existem muitas maneiras de definir proposições com o mesmo significado (quantidade grande de redundância)
- Ok para lógicos, mas é um problema sério em sistema automatizado
- Uma forma padrão para proposições é desejável
- A forma clausal, relativamente simples de proposições, é uma das formas padrão

Cálculo de predicados – Forma clausal (II)

- Sem perda de generalidade, todas as proposições podem ser expressas em forma clausal
- Uma proposição em forma clausal tem a seguinte sintaxe geral:

$$B_1 \vee B_2 \vee \cdots \vee B_n \leftarrow A_1 \wedge A_2 \wedge \cdots \wedge A_m$$

na qual os As e Bs são termos. O significado é: se todos os As são verdadeiros, então ao menos um B é verdadeiro

- Características:
 - Quantificadores existenciais não são necessários
 - Quantificadores universais são implícitos no uso de variáveis nas proposições atômicas
 - Nenhum operador, além da conjunção (do lado direito) e da disjunção (do lado esquerdo), é necessário

Cálculo de predicados – Forma clausal (III)

- Todas as proposições de cálculo de predicados podem ser algoritmicamente convertidas para a forma clausal
- Nilsson (1971) prova que isso pode ser feito, e mostra um algoritmo de conversão simples
- Lado direito: antecedente; Lado esquerdo: consequente
- Exemplos:

```
likes(bob,trout) ← likes(bob,fish) ∧ fish(trout)

father(louis,al) ∨ father(louis,violet) ←
    father(al,bob) ∧ mother(violet,bob) ∧ grandfather(louis,bob)
```

Cálculo de predicados – Construção da base de conhecimento

- Identificar a tarefa
- 2 Agregar conhecimento relevante
- Operation de predicados, funções e constantes
- Codificar o conhecimento geral sobre o domínio
- Odificar uma descrição da instância específica do problema
- Formular consultas ao procedimento de inferência e obter respostas
- O Depurar a base de conhecimento

Programação em Prolog (I)

- O Prolog é uma linguagem de programação baseada em lógica de primeira ordem
- Não é padronizada
- Geralmente é interpretado, mas pode ser compilado
- Algumas implementações: SICStus Prolog, Borland Turbo Prolog, GNU Prolog, SWI-Prolog, ...
 - Acessar máquina alunos.inf.ufsc.br vias SSH pela rede interna UFSC (ou remotamente via VPN)
 - O usuário é o número de matrícula (8 dígitos para a graduação)

Programação em Prolog (II)

- Prolog lida com:
 - Objetos sobre os quais queremos raciocinar (não tem o mesmo sentido que em orientação a objetos – não há métodos ou herança)
 - Relações entre objetos
 - ► Tipo chamado <u>termo</u> que engloba todos os dados e também programas nesta linguagem
- Um programa em Prolog é composto por:
 - Fatos sobre certos objetos
 - Regras de inferência
 - Perguntas sobre os objetos

Programação em Prolog (III)

- Dizemos a Prolog certos fatos e regras
- Em seguida, fazemos perguntas sobre estes fatos e regras
- Exemplo:
 - Podemos informar sobre irmãs e depois perguntar se Maria e Joana são irmãs
 - ▶ Prolog responderá sim ou não em função do que lhe dissemos
- Prolog faz muito mais do que responder sim ou não
 - ▶ Permite usar o computador como um arcabouço de fatos e regras
 - ▶ Proporciona meios de fazer inferências, indo de um fato a outro, e achando os valores das variáveis que podem levar a conclusões lógicas

Fatos

• Eis alguns exemplos de como se informam fatos a Prolog:

```
gosta(pedro, maria).
gosta(maria, pedro).
valioso(ouro).
mulher(jane).
possui(jane, ouro).
pai(pedro, maria).
entrega(romeu, livro, maria).
```

Observações

- Nomes de relações e objetos iniciam-se com letra minúscula
- O nome da relação vem primeiro, depois vem a lista de objetos separados por vírgula e envolvida em parênteses
- O ponto final é obrigatório ao final do fato
- Terminologia
 - ▶ Relações são <u>predicados</u> e os objetos a que se referem são <u>argumentos</u>
 - Chamaremos de <u>banco de dados</u> à coleção de fatos e regras que damos a Prolog para resolver um problema

Perguntas (I)

• Uma pergunta em Prolog tem a forma:

```
?- possui(maria,livro).
```

- Prolog tenta <u>unificar</u> o fato da pergunta com os fatos do banco de dados
- Dois fatos se unificam se têm o mesmo predicado e os mesmos argumentos na mesma ordem
- Se Prolog encontrar um fato que unifica com a pergunta, vai responder "sim"; caso contrário, responderá "não"

Perguntas (II)

 A resposta "não" em Prolog não significa necessariamente que o fato não é verdadeiro, mas simplesmente que Prolog não consegue <u>provar</u> o fato a partir de seu banco de dados

Considere o banco de dados:

```
humano(socrates).
humano(aristoteles).
ateniense(socrates).
e a pergunta:
?- ateniense(aristoteles).
```

• Embora seja verdade que Aristóteles tenha sido ateniense, não se pode provar isto a partir dos fatos dados.

Trabalho 1 – Parte A (entrega pelo Moodle)

 Crie uma base de conhecimento, em Prolog, para a representação da matriz curricular, por fase, e a cadeia de pré-requisitos de um curso da UFSC (verifique seu curso selecionado no enunciado do Moodle). Exemplo da Ciências da Computação:

Referências

- SEBESTA, Robert W. Conceitos de Linguagens de Programação. 5a. Ed. Porto Alegre: Bookman, 2003.
- NILSSON, N. J. Problem Solving Methods in Artificial Intelligence.
 McGraw-Hill, Nova York, Estados Unidos, 1971.
- RUSSELL, S. and NORVIG, P. *Artificial Intelligence: a Modern Approach*, 3nd Edition, Prentice-Hall, 2009 (Cap. 8 e 9).
- Notas de aula do Prof. Silvio L. Pereira.