Единый государственный экзамен по ФИЗИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2026 года по ФИЗИКЕ

подготовлен федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2026 г.

Единый государственный экзамен по ФИЗИКЕ

ФИЗИКА, 11 класс. 2/42

Пояснения к демонстрационному варианту контрольных измерительных материалов единого государственного экзамена 2026 года по ФИЗИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов (КИМ) единого государственного экзамена (ЕГЭ) 2026 г. следует иметь в виду, что задания, включённые в него, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2026 г. Полный перечень элементов содержания, которые могут контролироваться на едином государственном экзамене 2026 г., приведён в кодификаторе проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания для проведения единого государственного экзамена по физике.

В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности.

В демонстрационном варианте представлено три примера заданий на позиции 26 экзаменационной работы. В реальных вариантах экзаменационной работы на данной позиции будет предложено только одно задание.

Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ в 2026 г.

Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2026 года по ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 26 заданий.

В заданиях 1–4, 7, 8, 11–13 и 16 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа № 1. Единицы измерения физических величин писать не нужно.

Other: -2.5 $_{\rm M}/c^2$.

Бланн

ФИЗИКА, 11 класс. 3 / 42

Ответом к заданиям 5, 6, 9, 10, 14, 15, 17, 18 и 20 является последовательность цифр. В заданиях 5, 9, 14 и 18 предполагается два или три верных ответа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу без пробелов, запятых и других дополнительных символов в бланк ответов N 1.

Ответ: A Б

КИМ

КИМ

КИМ

4 1

Бланк

Ответом к заданию 19 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу, не разделяя числа пробелом</u>, в бланк ответов \mathbb{N} 1.

Otbet: $(1,4 \pm 0,2)$ H.

1,40,2

Блан

Ответ к заданиям 21–26 включает в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

© 2026 Федеральная служба по надзору в сфере образования и науки

221citilicity generalit

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначе-	Множитель	Наимено-	Обозначе-	Множитель
вание	ние		вание	ние	
гига	Γ	109	санти	с	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	МК	10^{-6}
гекто	Γ	10^{2}	нано	Н	10 ⁻⁹
деци	д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
универсальная газовая постоянная	R = 8,31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} {\rm моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \mathrm{n}^2$
модуль заряда электрона	$e = 1,6 \cdot 10^{-19} $ Кл
(элементарный электрический заряд)	
постоянная Планка	$h = 6.6 \cdot 10^{-34}$ Дж·с

	3,0 -0 -
Соотношения между различными еди	ницами
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
1 атомная единица массы эквивалентна	931,5 МэВ
1 электронвольт	$1 \ 9B = 1,6 \cdot 10^{-19} \ Дж$

тисси чистиц	
электрона	$9,1\cdot10^{-31}$ кг $\approx 5,5\cdot10^{-4}$ а.е.м.
протона	$1,673 \cdot 10^{-27}$ кг $\approx 1,007$ a.e.м.
нейтрона	$1,675 \cdot 10^{-27}$ кг $\approx 1,008$ а.е.м.

Плотность		подсолнечного масла	900 кг/м ³
воды	1000 кг/м^3	алюминия	$2700 \ \text{кг/м}^3$
древесины (сосна)	400 кг/м^3	железа	7800 кг/м ³
керосина	800 кг/м ³	ртути	13 600 кг/м ³

Удельно	Удельная теплоёмкость					
воды	$4,2\cdot10^{3}$	Дж/(кг-К)		алюминия	900	Дж/(кг-К)
льда	$2,1\cdot10^{3}$	Дж/(кг·К)		меди	380	Дж/(кг-К)
железа	460	Дж/(кг-К)		чугуна	500	Дж/(кг-К)
свинца	130	Дж/(кг-К)				

Удельная	теплота
_	

парообразования воды $2,3\cdot10^6$ Дж/кг плавления свинца $2,5\cdot10^4$ Дж/кг плавления льда $3,3\cdot10^5$ Дж/кг

Нормальные условия: да	вление – 10 ⁵ Па, темпе	:ратура – 0 °С
------------------------	------------------------------------	----------------

пормильные	условия.	. давление – 10	11a, Temneparypa – 0		
Молярная мо	асса				
азота	$28 \cdot 10^{-3}$	кг/моль	гелия		кг/моль
аргона	40.10^{-3}	кг/моль	кислорода	$32 \cdot 10^{-3}$	кг/моль
водорода	2.10^{-3}	кг/моль	лития	0 10	кг/моль
воздуха	29.10^{-3}	кг/моль	неона	$20 \cdot 10^{-3}$	кг/моль
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

ФИЗИКА, 11 класс. 5 / 42

Часть 1

Ответами к заданиям 1–20 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

1 На рисунке приведён график зависимости проекции υ_x скорости тела от времени t.

Определите проекцию a_x ускорения тела в интервале времени от 10 до 20 с. Ответ запишите с учётом знака проекции.

Ответ: м/с

К системе из кубика массой $2 \, \text{кг}$ и двух невесомых пружин приложена постоянная горизонтальная сила \vec{F} (см. рисунок).

Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Жёсткость первой пружины $k_1 = 400 \text{ H/m}$. Жёсткость второй пружины $k_2 = 800 \text{ H/m}$. Удлинение второй пружины равно 2 см. Определите модуль силы F.

Ответ: Н.

3 При равномерном прямолинейном перемещении саней по горизонтальному участку пути на 50 м постоянная горизонтально направленная сила тяги совершает работу 500 Дж. Какова сила трения?

Ответ: _____ Н

Массивный шарик, подвешенный на лёгкой пружине, совершает свободные гармонические колебания вдоль вертикальной прямой. Во сколько раз нужно увеличить массу шарика, чтобы период колебаний увеличился в 1,5 раза?

Ответ: в раз(а)

Грузовик массой 10 т проезжает верхнюю точку выпуклого моста, радиус кривизны которого равен 80 м, двигаясь равномерно со скоростью 72 км/ч. Из приведённого ниже списка выберите все верные утверждения, характеризующие движение грузовика.

- 1) Сила, с которой мост действует на грузовик, меньше 40 кН и направлена вертикально вверх.
- 2) Сумма сил, действующих на грузовик, направлена вертикально вверх и перпендикулярна его скорости.
- Сила, с которой грузовик действует на мост, направлена вертикально вниз и равна 50 кН.
- 4) Сила тяжести, действующая на грузовик, равна 10 кН.
- 5) Центростремительное ускорение грузовика равно 5 m/c^2 .

Ответ:

В момент t=0 камень бросают с начальной у скоростью \vec{v}_0 под углом α к горизонту с некоторой высоты h (см. рисунок). Графики A и Б представляют собой зависимости физических величин, характеризующих движение камня в процессе полёта, от времени t.

Установите соответствие между графиками и физическими величинами, зависимость которых

от времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия камня отсчитывается от уровня y = 0.)

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) потенциальная энергия камня
- 2) проекция импульса камня на ось у
- 3) проекция ускорения камня на ось у
- 4) кинетическая энергия камня

В сосуде под поршнем находится некоторое постоянное количество идеального газа. Во сколько раз увеличится температура газа, если он перейдёт из состояния 1 в состояние 2 (см. рисунок)?

Ответ: в _______ раз(а).

На рисунке показано, как меняется давление p идеального газа в зависимости от его объёма при переходе из состояния 1 в состояние 2, а затем в состояние 3. Чему равно отношение работ газа $\frac{A_{23}}{A_{12}}$

в этих двух процессах?

Ответ:

В вертикальном цилиндре под поршнем находится 2 моль гелия. Поршень может перемещаться в цилиндре без трения. Масса гелия в цилиндре постоянна. Атмосферное давление считать постоянным. Из приведённого ниже списка выберите все верные утверждения, характеризующие изменение состояния гелия.

- 1) При сжатии гелия в цилиндре внешние силы совершают отрицательную работу.
- 2) При медленном повышении температуры давление гелия в сосуде увеличивается.
- 3) При медленном понижении температуры сила давления гелия на поршень не изменяется.
- 4) Если на поршень насыпать некоторое количество песка, не меняя температуры гелия, то давление гелия после того, как система придёт в равновесие, будет равно первоначальному давлению.
- 5) При медленном повышении температуры объём, занимаемый гелием, увеличивается.

Ответ:			

В цилиндре под поршнем долгое время находится жидкость и её насыщенный пар (см. рисунок). Как изменятся давление и концентрация молекул пара при медленном перемещении поршня вниз, если температура останется неизменной? В процессе движения поршень не касается поверхности жидкости.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Давление пара	Концентрация молекул пара

11	Силы электростатического взаимодействия между двумя точечным
	неподвижными заряженными телами равны по модулю 50 мН. Каким стане
	модуль этих сил, если заряд одного из тел увеличить в 2 раза?

Ответ: мН

Проволочная рамка вращается в постоянном однородном магнитном поле вокруг оси, перпендикулярной вектору магнитной индукции. Ось вращения лежит в плоскости рамки. Магнитный поток, пронизывающий поверхность, которая ограничена рамкой, изменяется по закону $\Phi = 4\cdot 10^{-7} \cos 100\pi t$, где все величины выражены в СИ. Модуль вектора магнитной индукции равен 2 мТл. Определите площадь рамки.

Ответ: с

На шахматной доске на расстоянии трёх клеток от вертикального плоского зеркала стоит ферзь. На сколько уменьшится расстояние между ферзём и его изображением, если его придвинуть к зеркалу на две клетки?

Ответ: на _____ клеток(-ки).

14

В идеальном колебательном контуре, состоящем из конденсатора и катушки индуктивности, происходят свободные электромагнитные колебания. Изменение заряда конденсатора в колебательном контуре с течением времени показано в таблице.

$t, 10^{-6} c$	0	1	2	3	4	5	6	7	8	9
$q, 10^{-9}$ Кл	1	0,71	0	-0,71	-1	-0,71	0	0,71	1	0,71

Выберите все верные утверждения о процессах, происходящих в контуре.

- 1) Период колебаний равен $8 \cdot 10^{-6}$ с.
- 2) Частота колебаний равна 250 кГц.
- 3) В момент времени $t = 2 \cdot 10^{-6} \, \mathrm{c}$ модуль силы тока в катушке индуктивности максимален.
- 4) В момент времени $t = 8 \cdot 10^{-6} \, \text{c}$ энергия магнитного поля катушки индуктивности максимальна.
- 5) В момент времени $t = 4 \cdot 10^{-6}$ с энергия электрического поля конденсатора минимальна.

Ответ:			

15	Участок цепи, состоящий из отрезка провода с большим удельным
	сопротивлением, подключён к клеммам источника постоянного напряжения.
	Данный отрезок провода заменили другим проводом такой же длины и из
	того же материала, но вдвое большего диаметра. Как изменились
	в результате этой замены сила тока на участке цепи и сопротивление этого
	участка? Считать, что напряжение на участке цепи сохраняется постоянным.
	Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сила тока	Сопротивление			

16	В	результате	ядерной	реакции	$_{3}^{6}$ Li + $_{1}^{2}$ H -	$\rightarrow {}_{Z}^{A}X + {}_{2}^{4}He$	образуется	ядро
	XI	имического эл	емента ^А Х	К. Каково 1	иассовое чи	сло А образов	вавшегося ядр	oa X?
	0	твет:						

17

При исследовании зависимости максимальной кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещали через различные светофильтры. В первой серии опытов использовали светофильтр, пропускающий только ультрафиолетовое излучение, а во второй — пропускающий только синий свет. В каждом опыте наблюдали явление фотоэффекта и измеряли задерживающее напряжение.

Как изменялись длина световой волны, падающей на фотоэлемент, и максимальная кинетическая энергия фотоэлектронов при переходе от первой серии опытов ко второй? Для каждой величины определите соответствующий характер её изменения:

- 1) увеличивалась
- 2) уменьшалась
- 3) не изменялась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Длина световой волны, падающей	Максимальная кинетическая
на фотоэлемент	энергия фотоэлектронов

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

- 1) Работа силы тяжести по перемещению тела между двумя заданными точками зависит только от длины соединяющей их траектории.
- 2) При прочих равных условиях диффузия протекает в твёрдых телах значительно медленнее, чем в жидкостях.
- 3) Весь электростатический заряд проводника сосредоточен на его поверхности.
- 4) Свободные электромагнитные колебания являются гармоническими, если электрический заряд на обкладках конденсатора с течением времени меняется по закону синуса или косинуса.
- 5) Атомы изотопов одного и того же химического элемента различаются числом протонов.

Ответ:		
OIBCI.		

19

Манометр проградуирован в миллиметрах ртутного столба. Запишите его показания, если абсолютная погрешность измерения давления манометром $\Delta p=3$ мм рт. ст.

Ответ: (______ ± _____) мм рт. ст.

В БЛАНК ОТВЕТОВ N_2 1 перенесите только числа, не разделяя их пробелом или другим знаком.

Ученику необходимо на опыте обнаружить зависимость электроёмкости плоского конденсатора от площади каждой из его пластин. У него имеется пять конденсаторов, характеристики которых приведены в таблице. Какие два конденсатора необходимо взять ученику, чтобы провести этот опыт?

№ конденсатора	Расстояние между пластинами, мм	Площадь пластины, см ²	Диэлектрик, заполняющий пространство между пластинами
1	0,2	20	парафин
2	0,4	30	парафин
3	0,2	20	слюда
4	0,3	10	слюда
5	0,4	10	парафин

Запишите в ответе номера выбранных конденсаторов.

Не забудьте перенести все ответы в БЛАНК ОТВЕТОВ № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи ответов на задания 21–26 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (21, 22 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

Один моль гелия участвует в циклическом процессе 1-2-3-4-1, график которого изображён на рисунке в координатах p-T, где p- давление газа, T- абсолютная температура. Постройте график цикла в координатах p-V, где p- давление газа, V- объём газа. Опираясь на законы молекулярной физики и термодинамики, сравните модуль работы газа в процессе 2-3 и модуль работы внешних сил в процессе 4-1.

Полное правильное решение каждой из задач 22–26 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

При игре в крокет на лужайке однородный дубовый шар массой m=454 г закатился в ямку с водой (см. рисунок), при этом половина шара оказалась в воде. Определите плотность дерева, если шар давит на ровное дно ямки с силой F=1,66 Н. Сделайте схематичный рисунок с указанием сил, действующих на шар.

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону $U_C = 10 \cdot \sin\left(10\,000t + \pi\right)$. Максимальное значение силы тока в контуре $I_{\text{max}} = 0.1$ А. Определите индуктивность катушки.

- В бутылке объёмом 1 л находится гелий при нормальном атмосферном давлении. Горлышко бутылки площадью 2 см² заткнуто короткой пробкой, имеющей массу 20 г. Когда бутылку поставили на стол вертикально горлышком вверх, оказалось, что если сообщить гелию в бутылке количество теплоты не менее 9 Дж, то он выталкивает пробку из горлышка. Какую минимальную постоянную силу нужно приложить к пробке, чтобы вытащить её из горлышка бутылки, не нагревая, если бутылка лежит горизонтально? Модуль силы трения, действующей на пробку, считать в обоих случаях олинаковым.
- Квадрат со стороной $a=20\,\mathrm{cm}$ расположен в плоскости главной оптической оси тонкой собирающей линзы с оптической силой $D=2\,\mathrm{дптp}$ так, что две его стороны параллельны плоскости линзы (см. рисунок). Расстояние от дальней стороны квадрата до плоскости линзы $d_1=90\,\mathrm{cm}$. Определите площадь изображения квадрата в линзе. Сделайте

рисунок, на котором постройте изображение квадрата в линзе, указав ход всех необходимых для построения лучей.

Снаряд в полёте разорвался на два равных осколка, один из которых продолжил лететь по направлению движения снаряда, а другой полетел в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков возросла за счёт энергии взрыва на величину 0,5 МДж. Модуль скорости осколка, летящего по направлению движения снаряда, равен 900 м/с, а модуль скорости второго осколка равен 100 м/с. Найдите массу снаряда. Сопротивлением воздуха и массой порохового заряда пренебречь.

Обоснуйте применимость законов, используемых для решения задачи.

или

На горизонтальном неподвижном столе лежит доска массой M=0.8 кг. На доске находится маленький брусок массой $m=200\,\mathrm{r}$. Брусок и доска связаны невесомой нерастяжимой нитью,

перекинутой через невесомый блок, который закреплён на стене (отрезки нити, не лежащие на блоке, горизонтальны). Коэффициент трения между бруском и доской $\mu_1 = 0.5$, между столом и доской $\mu_2 = 0.3$. Доску тянут вправо горизонтальной силой \vec{F} . Чему равен модуль силы \vec{F} , если модуль ускорения бруска относительно стола $a = 1 \text{ m/c}^2$? Трением в оси блока пренебречь. Сделайте рисунок с указанием сил, действующих на тела. Обоснуйте применимость законов, используемых для решения задачи.

или

Демонстрационный вариант ЕГЭ 2026 г.

Однородный рычаг AB может вращаться без трения вокруг неподвижной оси, проходящей через рычаг в точке O перпендикулярно плоскости рисунка. К левому концу рычага в точке A прикреплена нить, за которую с помощью динамометра D рычаг неподвижно удерживается в горизонтальном положении. Нить составляет с вертикалью угол, который можно измерить с помощью транспортира T. Показания динамометра (в ньютонах) и транспортира (в градусах) видны на фотографии. К точке C при помощи другой невесомой нерастяжимой нити подвешена стальная пластина (см. фотографию). Рычаг, пластина, нить и динамометр расположены в вертикальной плоскости. Массами транспортира и нитей пренебречь.

Определите массу стальной пластины, если рычаг имеет массу 50 г. Сделайте рисунок, на котором укажите все силы, действующие на рычаг и пластину. Обоснуйте применимость законов, используемых для решения задачи.

Проверьте, чтобы каждый ответ был записан рядом с правильным номером задания.

Система оценивания экзаменационной работы по физике

Задания 1-20

Правильное выполнение каждого из заданий 1–4, 7, 8, 11–13, 16, 19 и 20 оценивается 1 баллом. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа. В ответе на задание 20 порядок записи символов значения не имеет.

Правильное выполнение каждого из заданий 6, 10, 15 и 17 оценивается 2 баллами. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа: каждый символ в ответе стоит на своём месте, лишние символы в ответе отсутствуют. Выставляется 1 балл, если на любой одной позиции ответа записан не тот символ, который представлен в эталоне ответа. Во всех других случаях выставляется 0 баллов. Если количество символов в ответе больше требуемого, выставляется 0 баллов вне зависимости от того, были ли указаны все необходимые символы.

Правильное выполнение каждого из заданий 5, 9, 14 и 18 оценивается 2 баллами. В этих заданиях предполагается два или три верных ответа. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, каждый символ присутствует в ответе, в ответе отсутствуют лишние символы. Порядок записи символов в ответе значения не имеет. Выставляется 1 балл, если только один из символов, указанных в ответе, не соответствует эталону (в том числе есть один лишний символ наряду с остальными верными) или только один символ отсутствует; во всех других случаях выставляется 0 баллов.

Номер задания	Правильный ответ	Номер задания	Правильный ответ
1	-1	11	100
2	16	12	2
3	10	13	4
4	2,25	14	13
5	35	15	12
6	43	16	4
7	4	17	12
8	0,75	18	234
9	35	19	1363
10	33	20	25

Критерии оценивания выполнения заданий с развёрнутым ответом

Выполнение заданий 21–26 (с развёрнутым ответом) оценивается предметной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного экзаменуемым ответа выставляется от 0 до максимального балла.

Выполнение заданий оценивается на основании описания полного правильного ответа, за который выставляется максимальный балл, а наличие тех или иных недостатков или ошибок приводит к снижению оценки. В схеме оценивания учтены наиболее типичные ошибки или недочёты, допускаемые участниками экзамена, и определено их влияние на оценивание.

Для каждого задания 21–26 приводится авторский способ решения. Предлагаемый способ (метод) решения не является образцом решения и определяющим для построения шкалы оценивания работ экзаменуемых. Решение экзаменуемого может иметь логику, отличную от авторской логики решения (альтернативное решение). В этом случае эксперт оценивает возможность решения конкретной задачи тем способом, который выбрал экзаменуемый. Если ход решения экзаменуемого допустим, то эксперт оценивает полноту и правильность этого решения на основании того списка основных законов, формул или утверждений, которые соответствуют выбранному способу решения.

Для заданий 22–26 в схеме оценивания используются единые требования к полному правильному ответу.

Один моль гелия участвует в циклическом процессе 1-2-3-4-1, график которого изображён на рисунке в координатах p-T, где p — давление газа, T — абсолютная температура. Постройте график цикла в координатах p-V, где p — давление газа, V — объём газа. Опираясь на законы молекулярной физики и термодинамики, сравните модуль работы газа в процессе 2-3 и модуль работы внешних сил в процессе 4-1.

Возможное решение

1. Построим график цикла в координатах p–V, где p – давление газа, V – объём газа. Перестроим график цикла в этих координатах.

Процесс 1–2 при ν = const является изохорным, поскольку его график проходит через начало координат $\left(\frac{p}{T} = \text{const}\right)$. В ходе процесса абсолютная

температура и давление газа увеличились в 6 раз.

Процесс 2–3 изотермический, при ν = const его графиком в координатах p–V является гипербола. Согласно закону Бойля — Мариотта (pV = const) уменьшение давления газа в 2 раза приведёт к увеличению объёма газа в 2 раза.

Процесс 3–4 при $v = {\rm const}$ является изохорным, поскольку его график проходит через начало координат $\left(\frac{p}{T} = {\rm const}\right)$. В процессе 3–4 газ изохорно

уменьшил свою абсолютную температуру и давление в 3 раза, а в процессе 4-1- изобарно вернулся в исходное состояние согласно закону Гей-Люссака $\left(\frac{V}{T}\!=\!\mathrm{const}\right)$, уменьшив абсолютную температуру и свой объём в 2 раза (см. рисунок).

2. Работа газа в термодинамике численно равна площади фигуры под графиком в координатах, где p — давление газа, V — объём газа.

Из графика видно, что модуль работы газа в процессе 2–3 численно равен площади под гиперболой 2–3 и $A_{23}>3\,p_0\left(2V_0-V_0\right)=3\,p_0V_0$, а модуль работы внешних сил в процессе 4–1 $A_{41{
m BH}}=p_0\left(2V_0-V_0\right)=p_0V_0$.

Таким образом, $|A_{23}| > |A_{41 \text{BH}}|$.

3. Ответ: Модуль работы газа в процессе 2-3 больше модуля работы

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный	3
ответ (в данном случае: n. 3) и полное верное объяснение (в данном	
случае: $n. 1-2$) с прямым указанием наблюдаемых явлений и законов	
(в данном случае: законы изопроцессов, графическое представление	
работы в термодинамике)	
Дан правильный ответ, и приведено объяснение, но в решении	2
имеется один или несколько из следующих недостатков.	
В объяснении не указано или не используется одно из физических	
явлений, свойств, определений или один из законов (формул),	
необходимых для полного верного объяснения. (Утверждение,	
лежащее в основе объяснения, не подкреплено соответствующим	
законом, свойством, явлением, определением и т.п.)	
И (ИЛИ)	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но в них содержится один логический недочёт. И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В решении имеется неточность в указании на одно из физических	
явлений, свойств, определений, законов (формул), необходимых для	
полного верного объяснения	1
Представлено решение, соответствующее одному из следующих случаев.	1
Дан правильный ответ на вопрос задания, и приведено объяснение,	
но в нём не указаны два явления или физических закона,	
необходимых для полного верного объяснения.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не доведены до конца.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
у казаны все неооходимые для ооъяснения явления и законы,	

демонетрационный вариант ЕГ 9 2020 г. ФИЗИКА, 11 класс.	23172
закономерности, но имеющиеся рассуждения, приводящие к ответу,	
содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные	
на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

При игре в крокет на лужайке однородный дубовый шар массой m = 454 г закатился в ямку с водой (см. рисунок), при этом половина шара оказалась в воде. Определите плотность дерева, если шар давит на ровное дно ямки с силой F = 1,66 H. Сделайте схематичный рисунок с указанием сил, действующих на шар.

Возможное решени

- 1. Выберем инерциальную систему отсчёта «Лужайка».
- 2. По третьему закону Ньютона N = F
- $(\vec{N}$ сила реакции опоры).
- 3. Запишем второй закон Ньютона для шара в проекциях на ось Ох: $F_A + N - mg = 0,$

$$m = \rho V$$
, $F_A = \rho_B g \frac{V}{2} = \frac{\rho_B g m}{2}$

где V – объём шара, ρ – плотность дерева, ρ – плотность воды.

Получим $F = mg(1 - \frac{\rho_{\text{в}}}{2\rho})$, откуда:

$$\rho = \frac{mg\rho_{\text{B}}}{2(mg - F)} = \frac{0.454 \cdot 10 \cdot 1000}{2(0.454 \cdot 10 - 1.66)} \approx 790 \text{ KF/M}^3.$$

Ответ: $\rho \approx 790 \text{ кг/м}^3$

1e		
	$\int x$	
\overrightarrow{F}_{A}		
	$m\vec{g}$ O	
,	Į™g	

Критерии оценивания выполнения залания	Баллы
Критерии оценивания выполнения задания Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: третий закон Ньютона, второй закон Ньютона для шара, выражение для силы Архимеда, связь массы тела с плотностью); II) сделан рисунок с указанием сил, действующих на шар; III) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);	Баллы 2
IV) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); V) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены преобразования, направленные на решение задачи, но имеется один или несколько из следующих недостатков.	1
Записи, соответствующие пунктам II или III, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты. И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	

Демонстрационный вариант ЕГЭ 2026 г.

Максимальный балл

допущены ошибки, и (или) в математических преобразованиях/

И (ИЛИ)

Отсутствует пункт V, или в нём допущена ошибка (в том числе

Все случаи решения, которые не соответствуют вышеуказанным

вычислениях пропущены логически важные шаги.

критериям выставления оценок в 1 или 2 балла

в записи единиц измерения величины)

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону $U_C = 10 \cdot \sin \left(10\,000t + \pi\right)$. Максимальное значение силы тока в контуре $I_{\rm max} = 0,1$ А. Определите индуктивность катушки.

Возможное решение

1. Максимальное значение напряжения на конденсаторе и циклическая частота колебаний $U_{\rm max}$ = 10 B и ω = 10 000 с $^{-1}$ соответственно. По закону сохранения энергии получим:

$$\frac{CU_{\text{max}}^2}{2} = \frac{LI_{\text{max}}^2}{2},\tag{1}$$

где C — электроёмкость конденсатора, L — индуктивность катушки, $I_{\rm max}$ — максимальное значение силы тока.

2. По формуле Томсона циклическая частота

$$\omega = \frac{1}{\sqrt{LC}}. (2)$$

Объединив формулы (1) и (2), получим:

$$L = \frac{U_{\text{max}}}{\omega I_{\text{max}}} = \frac{10}{10\ 000 \cdot 0,1} = 10\ \text{м}\Gamma\text{H}.$$

Ответ: $L = 10 \,\mathrm{M}\Gamma\mathrm{H}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	2
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: закон сохранения	
энергии, формула Томсона);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Правильно записаны все необходимые положения теории,	1
физические законы, закономерности, и проведены преобразования,	
направленные на решение задачи, но имеется один или несколько	
из следующих недостатков.	
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты. И (ИЛИ)	0
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1 или 2 балла	
Максимальный балл	2

В бутылке объёмом 1 л находится гелий при нормальном атмосферном давлении. Горлышко бутылки площадью 2 см² заткнуто короткой пробкой, имеющей массу 20 г. Когда бутылку поставили на стол вертикально горлышком вверх, оказалось, что если сообщить гелию в бутылке количество теплоты не менее 9 Дж, то он выталкивает пробку из горлышка. Какую минимальную постоянную силу нужно приложить к пробке, чтобы вытащить её из горлышка бутылки, не нагревая, если бутылка лежит горизонтально? Модуль силы трения, действующей на пробку, считать в обоих случаях одинаковым.

Возможное решение

- 1. Когда бутылка расположена горизонтально (см. рис. a), давление снаружи и внутри одинаково и равно атмосферному p_0 . Поэтому при вытаскивании пробки прикладываемая извне минимальная сила согласно второму закону Ньютона уравновешивает силу трения: $F = F_{TD}$.
- 2. Когда бутылка расположена вертикально, а гелию в бутылке сообщено минимальное количество теплоты $Q = 9 \, \text{Дж}$, в момент вылета сумма всех сил, действующих на пробку, согласно второму закону Ньютона равна нулю и поэтому имеет место равенство сил: $p_0S + F_{_{\mathrm{TP}}} + mg = pS$, где p – давление гелия внутри $p_0 S = F_{\text{\tiny давл}}, \qquad pS = F_{\text{\tiny выт}}$ бутылки,

(см. рис. δ).

3. Нагревание гелия происходит изохорно. Поэтому согласно первому закону термодинамики количество теплоты O, сообщённое гелию, идёт на увеличение внутренней энергии гелия перед вылетом пробки ΔU :

$$Q = \Delta U = \Delta (\frac{3}{2} vRT) = \Delta (\frac{3}{2} pV) = \frac{3}{2} V(p - p_0).$$

- 4. Из п. 2 имеем $p p_0 = \frac{F_{\text{тр}} + mg}{S}$.
- 5. В итоге $Q = \frac{3V(F_{\rm rp} + mg)}{2S}$.
- 6. Следовательно, из выражения для сообщённого количества теплоты можем получить $F_{\rm rp} = \frac{2S}{3V}Q - mg$, откуда, с учётом пункта 1,

$$F = F_{\text{Tp}} = \frac{2QS}{3V} - mg = \frac{2 \cdot 9 \cdot 2 \cdot 10^{-4}}{3 \cdot 10^{-3}} - 0,02 \cdot 10 = 1 \text{ H}.$$

Ответ: F=1 Н

Критерии оценивания выполнения задания Приведено полное решение, включающее следующие элементы:	аллы 3
Приведено полное решение, включающее следующие элементы:	3
T) 1	
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: первый закон	
термодинамики, формула для внутренней энергии идеального	
одноатомного газа, второй закон Ньютона, формула для связи	
модуля силы давления с давлением газа);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	
Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения	
данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

или

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

Квадрат со стороной $a=20\,\mathrm{cm}$ расположен в плоскости главной оптической оси тонкой собирающей линзы с оптической силой $D=2\,\mathrm{дптp}$ так, что две его стороны параллельны плоскости линзы (см. рисунок). Расстояние от дальней стороны квадрата до плоскости линзы $d_1=90\,\mathrm{cm}$. Определите площадь изображения квадрата в линзе. Сделайте

рисунок, на котором постройте изображение квадрата в линзе, указав ход всех необходимых для построения лучей.

Возможное решение

Обозначим вершины квадрата ABCD, тогда AB = AD = a.

Для построения изображения квадрата проведём побочные оптические оси AO и BO, а также луч AB, параллельный главной оптической оси, который, преломившись, пройдёт через фокус линзы. В силу симметрии предмета относительно главной оптической оси его изображение также будет симметричным. В результате построений получим изображение квадрата ABCD в виде равнобедренной трапеции $A_1B_1C_1D_1$ (см. рисунок).

Согласно формуле оптической силы линзы $F = \frac{1}{D} = \frac{1}{2} = 0,5$ м = 50 см. Расстояние от линзы до квадрата равно $d_2 = d_1 - a = 90 - 20 = 70$ см.

По формуле тонкой линзы определим расстояния от линзы до оснований трапеции: $\frac{1}{F} = \frac{1}{d_1} + \frac{1}{f_1}$ и $\frac{1}{F} = \frac{1}{d_2} + \frac{1}{f_2}$. В итоге $f_1 = \frac{Fd_1}{d_1 - F} = \frac{50 \cdot 90}{90 - 50} = 112,5$ см и

$$f_2 = \frac{Fd_2}{d_2 - F} = \frac{50 \cdot 70}{70 - 50} = 175 \text{ cm}.$$

Демонстрационный вариант ЕГЭ 2026 г.

Высота трапеции $h = f_2 - f_1 = 175 - 112, 5 = 62,5$ см.

Используя формулу увеличения линзы для двух сторон квадрата, получим $\frac{AD}{d_1} = \frac{A_1D_1}{f_1} \quad \text{и} \quad \frac{BC}{d_2} = \frac{B_1C_1}{f_2}. \quad \text{Следовательно,} \quad A_1D_1 = \frac{f_1\cdot AD}{d_1} = \frac{112,5\cdot 20}{90} = 25 \quad \text{см}$ и $B_1C_1 = \frac{f_2\cdot BC}{d_2} = \frac{175\cdot 20}{70} = 50 \quad \text{см}.$

Площадь изображения (трапеции) определяется формулой

$$S = \frac{A_1 D_1 + B_1 C_1}{2} \cdot h = \frac{25 + 50}{2} \cdot 62, 5 \approx 2344 \text{ cm}^2.$$

Ответ: $S \approx 2344 \text{ см}^2$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула тонкой	
линзы для двух случаев, формула увеличения линзы для двух сторон	
квадрата, формула оптической силы линзы);	
II) сделан правильный рисунок, на котором построено изображение	
фигуры с указанием хода лучей в линзе;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
IV) проведены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пунктам II и III, представлены	
не в полном объёме или отсутствуют.	

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

И (ИЛИ)

Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины)

Представлены записи, соответствующие <u>одному</u> из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

Сделан только правильный рисунок, на котором построено изображение фигуры с указанием хода лучей в линзе

Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

Снаряд в полёте разорвался на два равных осколка, один из которых продолжил лететь по направлению движения снаряда, а другой полетел в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков возросла за счёт энергии взрыва на величину 0,5 МДж. Модуль скорости осколка, летящего по направлению движения снаряда, равен 900 м/с, а модуль скорости второго осколка равен 100 м/с. Найдите массу снаряда. Сопротивлением воздуха и массой порохового заряда

Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

пренебречь.

26

- 1. Задачу решим в системе отсчёта, связанной с поверхностью Земли, которую будем считать инерциальной.
- 2. Будем считать все тела материальными точками. Трением снаряда и осколков о воздух пренебрежём.
- 3. Поскольку время разрыва снаряда мало́, импульсом внешних сил (сил тяжести) можно пренебречь, а значит, для решения задачи можно воспользоваться законом сохранения импульса.
- 4. Поскольку работой силы трения мы пренебрежём (сопротивлением можно пренебречь), то в законе сохранения полной энергии будем учитывать только энергию взрыва и механическую энергию.

Решение

1. Запишем закон сохранения импульса в проекциях на ось Ox, сонаправленную со скоростью снаряда до разрыва в некоторой точке траектории, и закон сохранения энергии:

$$2m \cdot v_0 = mv_1 - mv_2; \tag{1}$$

$$2m \cdot \frac{v_0^2}{2} + \Delta E = \frac{mv_1^2}{2} + \frac{mv_2^2}{2},\tag{2}$$

где 2m – масса снаряда до взрыва; υ_0 – модуль скорости снаряда до взрыва;

- U_1 модуль скорости осколка, летящего по направлению движения снаряда;
- u_2 модуль скорости осколка, летящего в сторону, противоположную направлению движения снаряда.
- 2. Выразим v_0 из уравнения (1) и подставим в уравнение (2):

$$v_0 = \frac{v_1 - v_2}{2},$$

$2v_0^2 + \frac{2\Delta E}{m} = v_1^2 + v_2^2,$
$\frac{2\Delta E}{m} = v_1^2 + v_2^2 - \frac{2(v_1 - v_2)^2}{4},$
$\frac{2(\nu_1+\nu_2)^2}{4}=\frac{2\Delta E}{m}.$
$\frac{2(\upsilon_1 + \upsilon_2)^2}{4} = \frac{2\Delta E}{2}.$

Получим: $2m = \frac{8\Delta E}{(\nu_1 + \nu_2)^2} = \frac{8 \cdot 0.5 \cdot 10^6}{(900 + 100)^2} = 4 \text{ кг.}$

Ответ: масса снаряда равна 4 кг	
Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов	1
(закономерностей). В данном случае: выбор инерциальной системы	
отсчёта, связанной с поверхностью Земли; все тела считаются	
материальными точками; условия применимости законов	
сохранения импульса и энергии	
В обосновании отсутствует один или несколько из элементов.	0
ИЛИ	
В обосновании допущена ошибка.	
ИЛИ	
Обоснование отсутствует	
Критерий 2	T
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: законы сохранения	
энергии и импульса);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов); III) проведены необходимые математические преобразования	
III) проведены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	
neconon beam minu	

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков.	2
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе в записи единиц измерения величины)	
Представлены записи, соответствующие <u>одному</u> из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи. ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	4

или

На горизонтальном неподвижном столе лежит доска массой $M=0.8~{\rm kr}$. На доске находится маленький брусок массой $m=200~{\rm r}$. Брусок и доска связаны невесомой нерастяжимой нитью,

перекинутой через невесомый блок, который закреплён на стене (отрезки нити, не лежащие на блоке, горизонтальны). Коэффициент трения между бруском и доской $\mu_1=0.5$, между столом и доской $\mu_2=0.3$. Доску тянут вправо горизонтальной силой \vec{F} . Чему равен модуль силы \vec{F} , если модуль ускорения бруска относительно стола $a=1\,\mathrm{m/c^2}$? Трением в оси блока пренебречь. Сделайте рисунок с указанием сил, действующих на тела. Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

- 1. Задачу будем решать в инерциальной системе отсчёта, связанной с поверхностью стола.
- 2. Тела движутся поступательно, поэтому будем их описывать моделью материальной точки. Следовательно, можно использовать второй закон Ньютона, сформулированный для материальных точек. Силы, действующие на тела, постоянны, поэтому движение бруска и доски равноускоренно.
- 3. Так как нить нерастяжима, ускорения бруска и доски относительно стола равны по модулю и противоположны по направлению:

$$|\vec{a}_1| = |\vec{a}_2| = a, \quad \vec{a}_1 = -\vec{a}_2.$$
 (1)

4. Так как блок и нити невесомы и трением в оси блока можно пренебречь, то силы натяжения нити, действующие на доску и брусок, одинаковы:

$$|\vec{T}_1| = |\vec{T}_2| = T.$$
 (2)

5. Силы трения, действующие на брусок и доску, равны друг другу и противоположны по направлению по третьему закону Ньютона:

$$\vec{F}_{\rm pl} = -\vec{F}_{\rm pp2}.\tag{3}$$

6. Модули сил нормальной реакции доски \vec{N}_1 и давления бруска на доску \vec{P} также равны друг другу по третьему закону Ньютона:

$$N_1 = P. (4)$$

Решение

1. На рисунке показаны силы, действующие на брусок и на доску. Запишем второй закон Ньютона в проекциях на оси *Ох* и *Оу* выбранной системы координат. С учётом (1)–(3) получим:

$$Ma = F - F_{\text{rp1}} - F_{\text{rp3}} - T,$$

$$-ma = F_{\text{rp1}} - T,$$

$$N_{1} = mg,$$

$$N_{2} = Mg + P.$$

2. Вычтя второе уравнение из первого, найдём силу, действующую на доску:

$$F = (M+m)a + 2F_{\rm rpl} + F_{\rm rp3}.$$

3. $F_{\text{тр1}} = \mu_1 N_1 = \mu_1 mg$. С учётом (4) получим $F_{\text{тр3}} = \mu_2 N_2 = \mu_2 (M + m)g$.

В итоге

 $F = (M + m)(a + \mu_2 g) + 2\mu_1 mg = (0.8 + 0.2)(1 + 0.3 \cdot 10) + 2 \cdot 0.5 \cdot 0.2 \cdot 10 = 6 \text{ H}.$

Ответ: F = 6 Н

Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов	1
(закономерностей). В данном случае: выбор ИСО, модель	
материальной точки, условия равенства сил натяжения нити	
и равенства модулей ускорений тел	
В обосновании отсутствует один или несколько из элементов.	0
ИЛИ	
В обосновании допущена ошибка.	
ИЛИ	
Обоснование отсутствует	
Критерий 2	
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: второй и третий	
законы Ньютона, выражение для силы трения скольжения);	
II) сделан рисунок с указанием сил, действующих на тела;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	
IV) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	

демонстрационный вариант ЕГ Э 2026 г.	ФИЗИКА, 11 класс.	3//
приводящие к правильному числовому ответу (до	опускается решение	
«по частям» с промежуточными вычислениями);		
V) представлен правильный ответ с указанием	единиц измерения	
физической величины		
Правильно записаны все необходимые по	оложения теории,	2
физические законы, закономерности, и провед	цены необходимые	
преобразования, но имеется один или несколь	ько из следующих	
нелостатков		

Записи, соответствующие пунктам II или III, представлены не в полном объёме или отсутствуют.

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

И (ИЛИ)

Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины)

Представлены записи, соответствующие $\underline{\textbf{одному}}$ из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла

Максимальный балл 4

или

Однородный рычаг AB может вращаться без трения вокруг неподвижной оси, проходящей через рычаг в точке O перпендикулярно плоскости рисунка. К левому концу рычага в точке A прикреплена нить, за которую с помощью динамометра D рычаг неподвижно удерживается в горизонтальном положении. Нить составляет с вертикалью угол, который можно измерить с помощью транспортира T. Показания динамометра (в ньютонах) и транспортира (в градусах) видны на фотографии. К точке C при помощи другой невесомой нерастяжимой нити подвешена стальная пластина (см. фотографию). Рычаг, пластина, нить и динамометр расположены в вертикальной плоскости. Массами транспортира и нитей пренебречь.

Определите массу стальной пластины, если рычаг имеет массу 50 г. Сделайте рисунок, на котором укажите все силы, действующие на рычаг и пластину. Обоснуйте применимость законов, используемых для решения задачи.

Возможное решение

Обоснование

- 1. Рассмотрим задачу в системе отсчёта, связанной с Землёй. Будем считать эту систему отсчёта инерциальной (ИСО).
- 2. Опишем рычаг моделью твёрдого тела (форма и размеры тела неизменны, расстояние между любыми двумя точками тела остаётся неизменным).
- 3. Рычаг не совершает вращательного движения, поэтому сумма моментов сил относительно оси, проходящей перпендикулярно плоскости рисунка через ось вращения рычага (точку O), равна нулю.
- 4. Пластину опишем моделью материальной точки.
- 5. Пластина находится в покое относительно поступательного движения,

следовательно, векторная сумма сил, действующих на неё, равна нулю.

6. Нить, соединяющая рычаг и пластину, невесома, поэтому модуль силы натяжения нити в любой её точке один и тот же: $|\vec{T}_1| = |\vec{T}_2| = T$.

Решение

1. Сделаем схематичный рисунок, отражающий нашу модель. На рычаг действуют сила тяжести $M\vec{g}$, сила натяжения нити \vec{T}_1 , сила натяжения нити \vec{F} , а также сила реакции опоры \vec{N} , приложенная в точке O (см. рисунок). На пластину действуют сила тяжести $m\vec{g}$ и сила натяжения нити \vec{T}_2 . Пластина находится в равновесии, поэтому по второму закону Ньютона $T_2 = mg$.

2. Условие равновесия рычага относительно оси вращения, проходящей через точку ${\it O}$ и перпендикулярной плоскости чертежа, имеет вид

$$F \cdot AO\cos\alpha - T_1 \cdot CO - Mg \cdot QO = 0$$
,

где точка Q — центр рычага; момент силы \vec{N} , проходящей через ось вращения, равен нулю.

- 3. По фотографии видно, что длина всего рычага составляет 7 условных единиц (у.е.), а расстояния AO = 6 у.е., CO = 4 у.е., QO = 2.5 у.е. соответственно. По фотографии определим $\alpha = 45^{\circ}$, а F = 1.6 H .
- 4. Учитывая, что $\left|\vec{T}_1\right| = \left|\vec{T}_2\right| = T$, определим массу стальной пластины:

$$m = \frac{F \cdot AO \cos \alpha - Mg \cdot QO}{g \cdot CO} = \frac{1,6 \cdot 6 \cdot 0,707 - 0,05 \cdot 10 \cdot 2,5}{10 \cdot 4} \approx 0,14 \text{ K}.$$

Ответ: $m \approx 0.14$ кг

Критерии оценивания выполнения задания			Баллы		
Критер	ий 1				
Верно	обоснована	возможность	использования	законов	1
(законом	мерностей). В д	анном случае: вы	ыбор ИСО, модела	и твёрдого	
тела и	материальной	точки, условие	равновесия твёр	одого тела	
относип	пельно враща	тельного движ	ения, условие	равновесия	
материс	альной точки				

В обосновании отсутствует один или несколько из элементов. ИЛИ	0
В обосновании допущена ошибка. ИЛИ	
Обоснование отсутствует	
Критерий 2	
П) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: условие равновесия твёрдого тела относительно вращения, второй закон Ньютона; правильно найдены плечи сил); П) сделан рисунок с указанием сил, действующих на тела; П) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); ПУ) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); V) представлен правильный ответ с указанием единиц измерения физической величины	3
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков. Записи, соответствующие пунктам ІІ и ІІІ, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты. И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины)	2

Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла Максимальный балл

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 04.04.2023 № 233/552, зарегистрирован Минюстом России 15.05.2023 № 73314)

«81. Проверка экзаменационных работ включает в себя:

1) проверку и оценивание предметными комиссиями ответов на задания КИМ для проведения ЕГЭ с развёрнутым ответом <...>, в том числе устных ответов, в соответствии с критериями оценивания по соответствующему учебному предмету, разработка которых организуется $\operatorname{Pocoбphad3opom}^1.<...>$

По результатам первой и второй проверок эксперты независимо друг от друга выставляют первичные баллы за каждый ответ на задания КИМ для проведения ЕГЭ с развёрнутым ответом. <...>

В случае существенного расхождения в первичных баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в первичных баллах определено в критериях оценивания по соответствующему учебному предмету, разработка которых организуется Рособрнадзором.

Эксперту, осуществляющему третью проверку, предоставляется информация о первичных баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенными считаются следующие расхождения.

- 1. Расхождение между баллами, выставленными двумя экспертами за выполнение любого из заданий 21–25 и за выполнение задания 26 по критерию К2, в 2 или более балла. В этом случае третий эксперт проверяет только те ответы на задания, которые вызвали столь существенное расхождение.
- 2. Расхождение в результатах оценивания двумя экспертами ответа на одно из заданий 21–26 заключается в том, что один эксперт указал на отсутствие ответа на задание, а другой выставил за выполнение этого задания ненулевой балл. В этом случае третий эксперт проверяет только ответы на задания, которые были оценены со столь существенным расхождением.
- 3. Ситуации, в которых один эксперт указал на отсутствие ответа в экзаменационной работе, а второй эксперт выставил нулевой балл за выполнение этого задания, не являются ситуациями существенного расхождения в оценивании.

 $^{^1}$ Часть 14 статьи 59 Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».

^{© 2026} Федеральная служба по надзору в сфере образования и науки