MAT 185 Lecture Notes

Hei Shing Cheung Linear Algebra, Winter 2024

MAT 185

The up-to-date version of this document can be found at https://github.com/HaysonC/skulenotes

1 Vector Space

Definition 1.0.1 (Vector Space in \mathbb{R}). This course concerns with real vector spaces. A vectors space, V, over \mathbb{R} is a collection of **object** $\mathbf{v} \in V$ s.t. the follow axioms are followed

1. Addition Axioms

(a) Closure Under Addition:

 $\mathbf{x}, \mathbf{y} \in V \implies \mathbf{x} + \mathbf{y} \in V$

(b) Associativity of Addition:

 $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V \implies (\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$

(c) Existence of Additive Identity:

 $\exists \mathbf{0} \in V \text{ such that } \mathbf{x} \in V \implies \mathbf{x} + \mathbf{0} = \mathbf{x}$

(d) Existence of Additive Inverse:

 $\forall \mathbf{x} \in V, \exists -\mathbf{x} \in V \text{ such that } \mathbf{x} + -\mathbf{x} = \mathbf{0}$

2. Scalar Multiplication Axioms

(a) Closure Under Scalar Multiplication:

 $\forall \mathbf{x} \in V \text{ and } \forall \alpha \in \mathbb{R}, \ \alpha \mathbf{x} \in V$

(b) Associativity of Scalar Multiplication:

 $\forall \mathbf{x} \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}, (\alpha \beta) \mathbf{x} = \alpha(\beta \mathbf{x})$

(c) Distributive Property of Scalar Multiplication:

 $\forall \mathbf{x} \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}, (\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$

(d) Existence of Multiplicative Identity:

 $\forall \mathbf{x} \in V, \mathbf{1}\mathbf{x} = \mathbf{x}$

Note It could be shown that the axiom imply the commutativity of in addition, namely $\forall \mathbf{x} \implies \mathbf{y} \in \mathbb{R}, \ \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$

Example \mathbb{R}^n is a vector space over \mathbb{R} , where $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$ and $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$

Theorem 1.0.2 (Cancelation, Part 1). Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, then:

$$x + z = y + z$$

Proof.

$$x + z = y + z$$

From additive inverse we know that -z exists

$$(\mathbf{x} + \mathbf{z}) + -\mathbf{z} = (\mathbf{y} + \mathbf{z}) + -\mathbf{z}$$

By order of addition we have:

$$\mathbf{x} + (\mathbf{z} + \mathbf{-z}) = \mathbf{y} + (\mathbf{z} + \mathbf{-z})$$

 $\mathbf{x} + \mathbf{0} = \mathbf{y} + \mathbf{0}$

By additive identity we have:

$$\mathbf{x} = \mathbf{y}$$

Theorem 1.0.3 (Cancelation, Part 2). Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, then:

$$z + x = z + y$$

 $x = y$

To proof that, it would require the following propostion:

Lemma 1.0.4. Let V be a vector space and $\mathbf{z} \in V$, then $-\mathbf{z} + \mathbf{z} = 0$

Proof.

We know:

$$-\mathbf{z} + \mathbf{z} = (-\mathbf{z} + \mathbf{z}) + 0$$
$$= (-\mathbf{z} + \mathbf{z}) + (-\mathbf{z} + -(-\mathbf{z}))$$

By the order of addition,

$$= -\mathbf{z} + (\mathbf{z} + (-\mathbf{z} + -(-\mathbf{z})))$$

Again, by the order of addition,

=
$$-z + ((z + -z) + -(-z))$$

= $-z + -(-z)$
= 0

Now, to prove the part 2 of the Cancelation Theorem:

Proof.

$$z + x = z + y$$

From additive inverse we know that **-z** exists

$$-z + (z + x) = -z + (z + y)$$
$$(-z + z) + x = (-z + z) + y$$

From above, we have $-\mathbf{z} + \mathbf{z} = 0$

$$0 + \mathbf{x} = 0 + \mathbf{y}$$
$$\mathbf{x} = \mathbf{y}$$

Lemma 1.0.5 (Inverse of an inverse). Let V be a vector space and $\mathbf{x} \in V$, then:

$$-(-\mathbf{x}) = \mathbf{x}$$

Proof. Assume 0, 0^* are the additive identity of V and $-\mathbf{x}$, $-\mathbf{x}^*$ are the additive inverse of \mathbf{x} . We have:

$$u + 0 = u + 0^*$$

By Cancelation Theorem, we have $0 = 0^*$. Thus, the additive identity is unique. Now, we have:

$$\mathbf{x} + \mathbf{-x} = 0$$

$$\mathbf{x} + \mathbf{-x}^* = 0$$

Thus, by the uniqueness of the additive inverse, we have:

$$x + -x = x + -x^*$$

By the Cancelation Theorem, we have:

$$-\mathbf{x} = -\mathbf{x}^*$$

Now, we have that the additive inverse is unique. Thus, -(-x) must be unique and nessarily x. \square

Additional Results from Above

- 1. The additive identity is unique
- 2. The additive inverse is unique

Definition 1.0.6 (Subtraction). Let V be a vector space and $\mathbf{x}, \mathbf{y} \in V$, then:

$$\mathbf{x} - \mathbf{y} \stackrel{\text{def}}{=} \mathbf{x} + \mathbf{y}$$

Theorem 1.0.7 (Addition is Commutative). Let V be a vector space and $\mathbf{x}, \mathbf{y} \in V$, then:

$$x + y = y + x$$

Proof.

$$\mathbf{x} + \mathbf{y} =$$

1.1 Vector Subspace

Definition 1.1.1 (Vector Subspace). Let V be a vector space and $W \subseteq V$, then W is a vector subspace of V if W is a vector space.

Theorem 1.1.2 (Subspace Test, I). Let V be a vector space over \mathbb{R} and $W \subseteq V$ with the usual addition and scalar multiplication, then W is a subspace of V iff for all $\mathbf{x}, \mathbf{y} \in W$ and $\alpha \in \mathbb{R}$:

1. Closure Under Addition:

$$\mathbf{x} + \mathbf{y} \in W$$

2. Closure Under Scalar Multiplication:

 $\alpha \mathbf{x} \in W$

3. Additive Identity:

 $\mathbf{0} \in W$

Proof. (\Rightarrow) Assume W is a subspace of V, then W is a vector space. Thus, the axioms of vector space are satisfied.

 (\Leftarrow) Assume the three conditions are satisfied, then W is a vector space. Thus, W is a subspace of V.

Definition 1.1.3 (Null Space). Let V be a vector space and $A \in {}^{m}\mathbb{R}^{n1}$, then:

$$\operatorname{null}(A) = \{ \mathbf{x} \in {}^{n}\mathbb{R} \mid A\mathbf{x} = \mathbf{0} \}$$
 (1)

is the null space of A, otherwise known as the **kernel** of A or the solution space of $A\mathbf{x} = \mathbf{0}$

We can use the Subspace Test I to show that the null space of a matrix is a subspace of $^{n}\mathbb{R}$.

1. Existence of Additive Identity:

The zero vector is in the null space of A as the trivial solution to the equation $A\mathbf{x} = \mathbf{0}$

2. Closure Under Addition:

Let $\mathbf{x}, \mathbf{y} \in \text{null}(A)$, then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Thus, $\mathbf{x} + \mathbf{y} \in \text{null}(A)$. This holds since ${}^{n}\mathbb{R}$ is a vector space.

3. Closure Under Scalar Multiplication:

Let $\mathbf{x} \in \text{null}(A)$ and $\alpha \in \mathbb{R}$, then $A(\alpha \mathbf{x}) = \alpha A \mathbf{x} = \alpha \mathbf{0} = \mathbf{0}$. Thus, $\alpha \mathbf{x} \in \text{null}(A)$. This holds since ${}^{n}\mathbb{R}^{m}$ is a vector space under usual addition and scalar multiplication.

Theorem 1.1.4 (Subspace Test, II). Let V be a vector space over \mathbb{R} and $W \subseteq V$ with the usual addition and scalar multiplication, then W is a subspace of V iff for all $\mathbf{x}, \mathbf{y} \in W$ and $\alpha, \beta \in \mathbb{R}$:

1.
$$\alpha \mathbf{x} + \beta \mathbf{y} \in W$$

¹Same as $\mathbb{R}^{m \times n}$, The set of all $m \times n$ matrices with real entries

Proof. (\Rightarrow) Assume W is a subspace of V, then W is a vector space. Thus, the axioms of vector space are satisfied.

 (\Leftarrow) Assume the condition is satisfied, then W is a vector space. Thus, W is a subspace of V. \square

Definition 1.1.5 (Intersection of Sets). Let A and B be sets, then:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$
 (2)

Definition 1.1.6 (Union of Sets). Let A and B be sets, then:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\} \tag{3}$$

1.2 Linear combinations

Definition 1.2.1 (Linear Combination). Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$, then:

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$$

is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Definition 1.2.2 (Linear independence). Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$. If the equation:

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

has only the trivial solution $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Then, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are said to be linearly independent; otherwise, they are linearly dependent.

Definition 1.2.3 (Span). Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$, then:

$$\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = \{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n \mid \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\}$$
(4)

is the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$