Regra 1: Inicializar o Estado do Sistema

- Condição: Quando o sistema é iniciado.
- Ação: Configurar o estado inicial do drone e as propriedades do obstáculo.

Detalhes:

- estado_drone ← 'Descolagem'
- posicao_atual ← 'Base'
- $posicao_drone \leftarrow POSICOES['Base']$
- destino \leftarrow POSICOES['A']
- proximo_destino ← 'A'
- $\bullet \quad movimento_completo \leftarrow False$
- $\bullet \quad obstaculo_y \leftarrow \frac{ALTURA OBSTACULO_ALTURA}{2}$
- obstaculo_direcao $\leftarrow 1 \#$ (1 para baixo, -1 para cima)

• Regra 2: Transição de Estado do Drone

- Ação: Atualizar o estado do drone para "Em Rota".
- Detalhes:
 - estado_drone ← 'Em Rota'

Regra 3: Definir o Próximo Destino

- Condição: Se movimento_completo = True, estado_drone = 'Em Rota', e evitando_obstaculo = False.
- Ação: Atualizar a posição atual, definir o próximo destino e reconfigurar o estado de movimento.

Detalhes:

- posicao_atual ← proximo_destino
- proximo_destino ← ação_obter_proxima_posicao(posicao_atual)
- $destino \leftarrow POSICOES[proximo_destino]$
- movimento_completo \leftarrow False
- rota_alternativa \leftarrow None

Regra 4: Atualizar a Posição do Obstáculo

- Condição: Sempre que a função de atualização de estado é chamada.
- Ação: Mover o obstáculo verticalmente de acordo com a direção atual e inverter a direção se atingir os limites.

Cálculos:

- obstaculo_y \leftarrow obstaculo_y + OBSTACULO_VELOCIDADE \times obstaculo_direcao
- Se obstaculo_y \leq 0 ou obstaculo_y + OBSTACULO_ALTURA \geq ALTURA, então obstaculo_direcao \leftarrow -obstaculo_direcao

- Regra 5: Movimento em Direção ao Destino
 - Condição: Se movimento_completo = False e não há rota alternativa ativa.
 - Ação: Calcular o novo posicionamento do drone e atualizar a sua posição.
 - Cálculos:
 - $x1, y1 \leftarrow \text{posicao_drone}$
 - $x2, y2 \leftarrow \text{destino}$
 - $dx \leftarrow x2 x1$
 - $dy \leftarrow y2 y1$
 - distancia $\leftarrow \sqrt{dx^2 + dy^2}$
 - Se distancia ≥ velocidade, então:
 - $fator \leftarrow velocidade/distancia$
 - novo_x $\leftarrow x1 + dx \times fator$
 - novo_y $\leftarrow y1 + \mathrm{dy} \times \mathrm{fator}$
 - $\bullet \quad posicao_drone \leftarrow (novo_x, novo_y)$
- Regra 6: Verificação de Colisão
 - Condição: Se R5 está ativo (drone em movimento).
 - Ação: Verificar se a trajetória do drone cruzará o obstáculo e, se sim, calcular uma rota alternativa.
 - Cálculos:
 - Se $\min(x1, \text{novo_x}) \leq \text{LARGURA}//2 \leq \max(x1, \text{novo_x})$, então:
 - Calcular a interseção y no ponto onde $x = \mathrm{LARGURA}//2$:
 - $t \leftarrow \frac{\text{LARGURA}//2 x1}{\text{novo}_x x1}$
 - $y_{\text{intersecao}} \leftarrow y1 + t \times (\text{novo_y} y1)$
 - - Ativar evitando_obstaculo e calcular rota_alternativa

Regra 7: Movimento na Rota Alternativa

- Condição: Se evitando_obstaculo = True.
- Ação: Calcular e seguir uma rota alternativa até que o obstáculo seja evitado.
- Cálculos:
 - Atualizar destino ← rota_alternativa

• Regra 8: Atualização da Próxima Posição

- Condição: Quando o drone alcança um destino.
- Ação: Determinar o próximo destino na sequência.
- Cálculos:
 - ordem $\leftarrow ['A', 'B', 'C', 'D', 'Base']$
 - $idx \leftarrow \text{ordem.index(posicao_atual)}$
 - proximo_destino \leftarrow ordem[(idx + 1)%len(ordem)]