

Time-of-Day Neural Style Transfer for Architectural Photographs

Yingshu Chen¹ Tuan-Anh Vu¹ Ka-Chun Shum¹ Binh-Son Hua² Sai-Kit Yeung¹ ¹The Hong Kong University of Science and Technology ²VinAl Research

INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY 2022 August 1-3, Caltech, Pasadena

Motivation and Problem

- Architectural photography style transfer is challenging due to its special composition of dynamic sky and static foreground.
- Generic neural style transfer and image-toimage translation treat the architectural image a single entity without knowing the foreground and background, leading to the mismatched chrominance destroyed and geometric features of the original architecture.
- Task: given an architectural photo and the style reference, we transfer styles of background and foreground separately while keeping the foreground geometry intact.

correct semantic style (Ours)

Methodology

Architectural style transfer framework contains three main modules: segmentation, image translation and blending optimization. Segmented foreground and background images are fed into the translation network respectively. The translated and blended image $x_{1\to 2}$ with input source x_1 can be further refined by blending optimization module.

Contributions

- 1) A new problem setting for style transfer: photorealistic style transfer for architectural photographs of different times of day.
- two-branch image-to-image translation with disentanglement network representation that separately considers style transfer for image foreground and background respectively, accompanied with simple but effective **geometry losses** designed for image content preservation.
- 3) A new dataset of architectural photographs and an extensive benchmark for architectural style transfer.

Experiments

Ablation Study segmentation & blending optimization

	e-SSIM↑	Acc↑	IS↑	IoU↑		
Ours-whole	0.6838	0.8282	2.5240	0.7410		
Ours	0.6359	0.9486	2.7290	0.7257		
Ours-opt	0.8094	0.9007	2.6127	0.7715		
phole: w/o segmentation; opt: with blending optimization						

	w/o $\mathcal{L}_{kl} + \mathcal{L}_{gd}$	w/o \mathcal{L}_{kl}	w/o \mathcal{L}_{gd}	$\mid \mathcal{L}_{total} \mid$
e-SSIM↑	0.4800	0.5539	0.5159	0.6359
Acc↑	0.8934	0.9201	0.9265	0.9486
IS↑	2.6858	2.7183	2.7241	2.7290
IoU↑	0.6056	0.6536	0.6612	0.7257

geometry losses

Quantitative Evaluation

	DRIT++	MUNIT	FUNIT	DSMAP	StarGANv2	AdaIN	SANet	AdaAttN	LST	Ours
e-SSIM↑	0.5214	0.5653	0.4959	0.4790	0.4778	0.4962	0.4854	0.5194	0.4903	0.6359
Acc↑	0.8903	0.8678	0.77.14	<u>0.9106</u>	0.8788	0.7352	0.6193	0.6443	0.7071	0.9486
IS↑	2.6160	2.5916	2.5903	2.6580	2.6088	2.4082	2.1062	2.0928	1.7299	2.7290
IoU↑	0.6915	0.7382	0.5473	0.4975	0.4100	0.6642	0.7183	0.6532	0.6264	0.7257

Experiments

Qualitative Comparisons

Comparison to image-to-image translation methods

Comparison to neural style transfer methods

References

[1] X. Huang and S. Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization", ICCV 2017. [2] H. Wu, S. Zheng, J. Zhang, and K. Huang, "GP-GAN: Towards realistic high-resolution image blending,"ACMMM 2019.