Выравнивания. Продолжение.

Алгоритмы в биоинформатике

Мелешко Дмитрий meleshko.dmitrii@gmail.com

Что было на прошлой лекции?

- о Дали определение выравнивания и веса выравнивания.
- о Узнали что замены неравноценны.
- Обсудили как устроены матрицы замен BLOSUM и РАМ.
- о Обсудили что один длинный гэп более вероятен чем много коротких.
- Использовали субаддитивные функции штрафов за гэпы, в частности линейную.

Что будет на этой лекции?

- Обсудим затраты памяти на выравнивание, научимся экономить.
- о Поговорим про идеи альтернативных алгоритмов выравнивания.

Алгоритмы выравнивания и память

```
• Needleman-Wunsch O(n^2)
• Gotoh's O(n^2)
```

Smith/Waterman $O(n^2)$

Алгоритмы выравнивания и память

Найдем выравнивание X и Y хромосом человека.

$$size(X) = 156040895 \sim 10^8$$

$$size(Y) = 57227415 \sim 10^7$$

Нам понадобится больше $10^{15}\,\mathrm{бит}$

Леммы:

° Пусть D(a,b) расстояние выравнивания, тогда $D(a^{-1},b^{-1})=D(a,b)$, где x^{-1} последовательноств обратном порядке.

Леммы:

- ° Пусть D(a,b) расстояние выравнивания, тогда $D(a^{-1},b^{-1}) = D(a,b)$, где x^{-1} последовательноств обратном порядке.
- \circ Пусть P(a,b) путь выравнивания в матрице выравнивания. Тогда для любой позиции (i,j) принадлежащей пути, оптимальное выравнивание таких префиксов a_i и b_j также соответствует этому пути

Доказательство:

По индукции.

Доказательство:

По индукции.

База индукции: ОРТ (0, 0) = 0.

Доказательство:

По индукции.

База индукции: ОРТ (0, 0) = 0.

Гипотеза: Допустим, что это правда для всех (i', j') таких что i' + j' < i + j.

Доказательство:

По индукции.

База индукции: ОРТ (0, 0) = 0.

Гипотеза: Допустим, что это правда для всех (i', j') таких что i' + j' < i + j.

Доказательство:

По индукции.

```
База индукции: ОРТ (0,0)=0.
 Гипотеза: Допустим, что это правда для всех (i',j') таких что i'+j'< i+j.
 Доказательство: последнее ребро в пути (i,j) is from (i-1,\ j-1),\ (i-1,\ j),\ or\ (i,\ j-1)
```

Доказательство:

По индукции.

База индукции: ОРТ (0, 0) = 0.

Гипотеза: Допустим, что это правда для всех (i', j') таких что i' + j' < i + j.

Доказательство: последнее ребро в пути (i, j) is from (i - 1, j - 1), (i - 1, j), or (i, j - 1)

$$f(i,j) = \min\{\alpha_{x_iy_j} + f(i-1,j-1), \ \delta + f(i-1,j), \ \delta + f(i,j-1)\}$$

$$= \min\{\alpha_{x_iy_j} + OPT(i-1,j-1), \ \delta + OPT(i-1,j), \ \delta + OPT(i,j-1)\}$$

$$= OPT(i,j) \quad \blacksquare$$
Bellman equation

a = —GAT | TACA b = AAGAG | TAC-

Следствие

2) 1-вызов GA|T против AAG|AG 2-вызов TA|CA против T|AC

Получается что если $a=a_l+a_r$, то найдется такой индекс i, что для $b_l=b[\ldots i],\, b_r=b[i\ldots]$ выполняется $D(a,b)=D(a_l,b_l)+D(a_r,b_r)$ но такого индекса где $D(a,b)>D(a_l,b_l)+D(a_r,b_r)$ точно не найдется.

Значит можно выравнивать суффикс и префикс и искать минимум!

	G	Α	Т				,		
0	1	2	3	6	6	7	7	8	Α
1	1	1	2	5	5	6	6	7	Α
2	2	1	2	4	4	5	5	6	G
3	2	2	2	3	4	4	4	5	Α
4	3	2	3	2	3	3	3	4	G
5	4	3	3	1)2	2	2	3	Т
6	5	4	3	2	1	2	T	2	Α
7	6	5	4	3	2	1	Τ-	1	С
8	7	6	5	4	3	2	1	0	
				Т	Α	С	Α		
	1 2 3 4 5 6 7	1 1 2 2 3 2 4 3 5 4 6 5 7 6	1 1 1 2 2 1 3 2 2 4 3 2 5 4 3 6 5 4 7 6 5	1 1 1 2 2 2 1 2 3 2 2 2 4 3 2 3 5 4 3 3 6 5 4 3 7 6 5 4	1 1 1 2 5 2 2 1 2 4 3 2 2 2 3 4 3 2 3 2 5 4 3 3 1 6 5 4 3 2 7 6 5 4 3	1 1 1 2 5 5 2 2 1 2 4 4 3 2 2 2 3 4 4 3 2 3 2 3 5 4 3 3 1 2 6 5 4 3 2 1 7 6 5 4 3 2 8 7 6 5 4 3	1 1 1 2 5 5 6 2 2 1 2 4 4 5 3 2 2 2 3 4 4 4 3 2 3 2 3 3 5 4 3 3 1 2 2 6 5 4 3 2 1 2 7 6 5 4 3 2 1 8 7 6 5 4 3 2	1 1 1 2 5 5 6 6 2 2 1 2 4 4 5 5 3 2 2 2 3 4 4 4 4 3 2 3 2 3 3 5 4 3 3 1 2 2 2 6 5 4 3 2 1 2 1 7 6 5 4 3 2 1 1 8 7 6 5 4 3 2 1	1 1 1 2 5 5 6 6 7 2 2 1 2 4 4 5 5 6 3 2 2 2 3 4 4 4 5 4 3 2 3 2 3 3 4 5 4 3 3 1 2 2 2 3 6 5 4 3 2 1 2 1 2 7 6 5 4 3 2 1 1 1 8 7 6 5 4 3 2 1 0

$$a_l = GAT$$
, $a_r = TACA$

- 1. Разбиваем a пополам, $a=a_{..\frac{1}{2}}+a_{\frac{1}{2}..}$
- 2. Находим расстояние выравнивание от $a_{..\frac{1}{2}}$ до всех префиксов b и то же самое для $a_{\frac{1}{2}..}^{-1}$ и b^{-1}
- 3. Находим разбиение b такое, при котором минимально $D(a_{..\frac{1}{2}},b_l)+D(a_{\frac{1}{2}..},b_r)$, записываем, где это произошло.
- 4. Запускаемся рекурсивно на $a_{..\frac{1}{2}}, b_l$ и на $a_{\frac{1}{2}..}, b_r$

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(AGTACGCA, TATGC)

		Т	Α	Т	G	С
	0	-2	-4	-6	-8	-10
Α	-2	-1	0	-2	-4	-6
G	-4	-3	-2	-1	0	-2
Т	-6	-2	-4	0	-2	-1
Α	-8	-4	0	-2	-1	-3

NW(rev(CGCA), rev(b))

		С	G	Т	Α	T
	0	-2	-4	-6	-8	-10
Α	-2	-1	-3	-5	-4	-6
С	-4	0	-2	-4	-6	-5
G	-6	-2	2	0	-2	-4
С	-8	-4	0	1	-1	-3

a = AGTA|CGCA, b = TA|TGC

H(AGTACGCA, TATGC)

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

		Т	Α	Т	G	С	
	0	-2	-4	-6	-8	-10	
Α	-2	-1	0	-2	-4	-6	
G	-4	-3	-2	1	0	-2	
T	-6	-2	-4	0	-2	-1	
Α	-8	-4	0	-2	-1	-3	101

NW(rev(CGCA), rev(b))

		С	G	Т	Α	Т
	0	-2	-4	-6	-8	-10
Α	-2	-1	-3	-5	-4	-6
С	-4	0	-2	-4	-6	-5
G	-6	-2	2	0	-2	-4
С	-8	-4	0	1	-1	-3

a = AGTACGCA b = TATGCудаления и вставки -2совпадения 2мутации -1

H(AGTACGCA, TATGC)

		Т	Α	Т	G	С	
	0	-2	-4	-6	-8	-10	
Α	-2	-1	0	-2	-4	-6	
G	-4	-3	-2	-1	0	-2	
T	-6	-2	-4	0	-2	-1	
A	-8	-4	0	-2	-1	-3	711

NW(rev(CGCA), rev(b))

			С	G	Т	Α	Т
		0	-2	-4	-6	-8	-10
	Α	-2	-1	-3	-5	-4	-6
	С	-4	0	-2	-4	-6	-5
	G	-6	-2	2	0	-2	-4
#	С	-8	-4	0	1	-1	-3

ScoreL =
$$[-8,-4,0,-2,-1,-3]$$

rev(ScoreR) = $[-3,-1,1,0,-4,-8]$
Sum = $[-11,-5,1,-2,-5,-11]$

a = AGTACGCA b = TATGC удаления и вставки -2 совпадения 2 мутации -1

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \dots =$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j)$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \frac{n}{4}(m-i-j) + \frac{n}{4}(m-i-j)$$

$$nm + \frac{n}{2}(m-i) + \frac{n}{2}(i) + \frac{n}{4}(m-i-j) + \frac{n}{4}(j) + \frac{n}{4}(i-k) + \frac{n}{4}(k) + \dots =$$

$$= nm + \frac{n}{2}m + \frac{n}{4}m + \dots = nm \sum_{t=0}^{\log_2(n)} \frac{1}{2^t} \le 2nm \Rightarrow O(nm)$$

Алгоритм Хиршберга. Оценка.

1. По памяти O(n)

- 2. По времени $O(n^2)$
- 3. Используется асимптотически меньше памяти, а скорость хуже только на константу!

Метод четырех русских

Метод четырех русских

Блок-функция

Если мы считаем данную функцию за O(t^2), то расстояние выравнивания можно посчитать за ?

Блок-функция

Если мы считаем данную функцию за O(t^2), то расстояние выравнивания можно посчитать за O(n^2)

Блок-функция

Если мы считаем данную функцию за O(t^2), то расстояние выравнивания можно посчитать за O(n^2)

Однако эту функцию можно посчитать за O(t)

Упрощения и предположения

Рассчитываем обычный edit distance: гэпы и мисматчи стоят 1, а совпадения 0.

Размер алфавита Σ - константа.

n = k(t-1) для некоторого целого k (блоки идеально покрывают матрицу, пересекаясь ровно по одной строке/столбцу)

Предпосчитаем функцию f

Предпосчитаем f(x) для всех возможных $x = (\bot , \sim, \{) \}$.

Сколько существует различых х?

Предпосчитаем функцию f

Предпосчитаем f(x) для всех возможных $x = (\bot , \sim, \{) \}$.

Сколько существует различых х?

Расчитать каждую стоит $O(t^2)$, и всего получается $O((n+1)^{2t-1}|\Sigma|^{2t}t^2) = O(n^2)$. Плохо!

Хитрость заключается в понимании того, что на самом деле существует меньше принципиально возможных различных входных данных для х.

Элементы строк и столбцов во входных данных не являются независимыми.

Пусть, D — матрица, а D(i,j) — значение в позиции i,j.

Лемма: Соседние значения D в строке, столбце или диагонали отличаются не более чем на 1.

Строка матрицы кодируется как изначальное значение плюс вектор над {-1,0,1}:

Пример. $567767 \rightarrow 5110-11$

Определение. Вектор отступов — это кодировка строки или столбца, как указано выше, за исключением того, что первая запись имеет значение 0.

Пример. $567767 \rightarrow 0\ 1\ 1\ 0\ 0\ -1\ 1$

Итак, по первому значению и вектору смещения вы можете восстановить строку или столбец.

Теорема. из векторов отступов для ———— можно посчитать вектор отступов для

I	C+3	C+2	C+I	C+2
Í	C+2	+ C	C+I	C+I
I	C+I	C+I	V C +	-C+1
0	C	C	-C+ K	-C+2
	0	0	I	I

Анализ быстродействия

Всего $3^{2(t-1)}$ векторов.

Всего $3^{2(t-1)} |\Sigma|^{2t}$ возможных входов в f.

Вычисление всех f(x) занимает $O((3|\Sigma|)^{2t}t^2)$.

Предположим $t = \log_{2|\Sigma|} n$, мы получим $O(n(\log n)^2)$

Как быстро находить значения f

Анализ быстродействия

Всего блоков $O(n^2/t^2)$.

Если поиск f(x) занимает O(t), то заполнить матрицу $O(tn^2/t^2) = O(n^2/t)$

Если t = O(log n) то:

 $O(n^2/\log n + n(\log n)^2) = O(n^2/\log n)$

На практике

Удобно брать t = const.

Не дает асимптотического ускорения, но работает быстрее в const раз.

acaacg

acaacg\$

acaacg\$ \$acaacg

```
acaacg$
$acaacg
g$acaacg
```

```
acaacg$
$acaacg
g$acaac
cg$acaa
acg$aca
aacg$ac
caacg$a
```

```
$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```



```
acaacg$

†?
gc$aaac
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
g$acaac
caacg$a
$ a c a a c g
a a c g $ a c
acaacg$
acg$aca
cg$acaa
```

```
$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

\$ a c a a c g aacg\$ac acaacg\$ acg\$aca caacg\$a cg\$acaa g\$acaac

\$ a c a a c g aacg\$ac acaacg\$ acg\$aca caacg\$a cg\$acaa g\$acaac

\$ a c a a c g aacg\$ac acaacg\$ acg\$aca caacg\$a cg\$acaa g\$acaac

g \$

c a

\$ a

a a

a C

a C

cg

\$ a c a a c g

aacg\$ac

acaacg\$

acg\$aca

caacg\$a

cg\$acaa

g\$acaac

\$ a

a a

a c

ac

c a

cg

g \$

\$acaacg

aacg\$ac

acaacg\$

acg\$aca

caacg\$a

cg\$acaa

g\$acaac

\$ a a a ac ac ca cg g \$

\$ a c a a c g aacg\$ac acaacg\$ a cg\$aca caacg\$a cg\$acaa g\$acaac

g\$a c a a \$ a c a a c aca acg cg\$

\$	a	C	
a	a	C	
a	C	a	
a	C	g	
C	a	a	
C	g	\$	
g	\$	a	

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
$ a c
a a c
aca
acg
caa
cg$
g$a
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
g$ac
caac
$ a c a
aacg
acaa
acg$
cg$a
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
$ a c a
aacg
acaa
acg$
caac
cg$a
g$ac
```

```
$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
g$aca
caacg
$ a c a a
aacg$
acaac
acg$a
cg$ac
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
$ a c a a
aacg$
acaac
acg$a
caacg
cg$ac
g$aca
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

```
g$acaa
caacg$
$ a c a a c
a a c g $ a
acaacg
acg$ac
cg$aca
```

```
$ a c a a c g
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac
```

\$ a c a a c a a c g \$ a acaacg acg\$ac caacg\$ cg\$aca g\$acaa

g\$acaac caacg\$a \$ a c a a c g a a c g \$ a c acaacg\$ acg\$aca cg\$acaa

\$acaacg aacg\$ac acaacg\$ acg\$aca caacg\$a cg\$acaa g\$acaac

```
$<sub>1</sub> a c a a c g
a<sub>1</sub> a c g $ a c
a, caacg$
a, cg$aca
c<sub>1</sub> a a c g $ a
c, g$acaa
g<sub>1</sub>$acaac
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca
C<sub>1</sub> a a c g $ a
c, g$acaa
g<sub>1</sub>$acaac
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca
c<sub>1</sub> a a c g $ a
c, g$acaa
g<sub>1</sub>$acaac
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a<sub>a</sub>cg$aca
c<sub>1</sub> a a c g $ a
c<sub>2</sub>g$acaa
g<sub>1</sub> $ a c a a c
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca
c<sub>1</sub> a a c g $ a
c, g$acaa
g<sub>1</sub>$acaac
```

aa₃cg\$ac aC₁aacg\$ aC₂g\$aca \$₁ a c a a c g₁ a₁ a c g \$ a c a, caacg\$₁ a₃cg\$aca c₁ a a c g \$ a c, g\$acaa g₁ \$ a c a a c

a₁ a₃ c g \$ a c a₂ c₁ a a c g \$ a₃ c₂ g \$ a c a \$₁ a c a a c g₁ a₁ a c g \$ a c a, caacg\$₁ a₃cg\$aca c₁ a a c g \$ a c, g \$ a c a a g₁ \$ a c a a c

\$₁ a c a a c g₁ a₁ a c g \$ a c a, caacg\$₁ a, cg\$aca c₁ a a c g \$ a c, g\$acaa g₁\$acaac

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a, cg$aca
c<sub>1</sub> a a c g $ a
c, g$acaa
g<sub>1</sub>$acaac
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g $ a c a a
g<sub>1</sub>$acaac
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

\$₁ a₂ c₁ a₁ a₃ c₂ g₁ a₁ a₂ c₂ g₁ \$₁ a₂ c₁ a₂ c₁ a₁ a₃ c₂ g₁ \$₁ a₂ c₂ g₁ \$₁ a₂ c₁ a₁ c₁ a₁ a₃ c₂ g₁ \$₁ a₂ c, g, \$, a, c, a, a, a, g₁\$₁a₂c₁a₁a₂c₂

```
S<sub>1</sub> a<sub>2</sub> c<sub>1</sub> a<sub>1</sub> a<sub>3</sub> c<sub>2</sub> g<sub>1</sub>
a<sub>1</sub> a<sub>3</sub> c<sub>2</sub> g<sub>1</sub> $<sub>1</sub> a<sub>2</sub> c<sub>1</sub>
a, c, a, a, c, g, $,
a, c, g, $, a, c, a,
C<sub>1</sub> a<sub>1</sub> a<sub>2</sub> c<sub>2</sub> g<sub>1</sub> $<sub>1</sub> a<sub>2</sub>
c, g, $, a, c, a, a,
g<sub>1</sub>$<sub>1</sub>a<sub>2</sub>c<sub>1</sub>a<sub>1</sub>a<sub>2</sub>c<sub>2</sub>
```

acaacg\$

- O. a c a a c g \$
- 1. caacg\$
- 2. a a c g \$
- 3. a c g \$
- 4. c g \$
- 5. g \$
- 6. \$

```
2. a a c g $
O. a c a a c g $
3. a c g $
1. c a a c g $
4. c g $
5. g $
```

6. \$ a c a a c g 2. a a c g \$ a c 0. a c a a c g \$ 3. a c g \$ a c a 1. c a a c g \$ a 4. c g \$ a c a a 5.g\$acaac

Suffix array and BWT

- 6. \$ a c a a c g
- 2. a a c g \$ a c
- O. a c a a c g \$
- 3. acg\$aca
- 1. caacg\$a
- 4. c g \$ a c a a
- 5. g \$ a c a a c

Suffix array and BWT

$$B[i] = $$$
 if $S[i] = 0$

$$B[i] = X[S[i] - 1]$$
 otherwise

```
R_L(W) = min \{k: W \text{ is prefix of } X_{S[k]} \}

R_H(W) = max \{k: W \text{ is prefix of } X_{S[k]} \}
```

$$C(x) = |\{0 \le j \le n-2 : X[j] < x\}|$$

acaacg\$

$$C(a) = 0$$
, $C(c) = 3$, $C(g) = 5$, ...

```
6. $
2. a a c g $
 O. a c a a c g $
3. a c g $
 1. caacg$
4. c g $
_5. g $
```

$$O(x, i) = | \{0 \le j \le i : B[j] = x \} |$$

gc\$aaac

$$O(a, 0) = 0$$
, $O(a, 1) = 0$, $O(a, 2) = 0$, $O(a, 3) = 1$, $O(a, 4) = 2$, ...


```
S<sub>1</sub> a c a a c g<sub>1</sub> 0
a<sub>1</sub> acg$ac<sub>1</sub> 0
a, caacg$<sub>1</sub>0
a<sub>3</sub> cg$aca<sub>1</sub> 1
c, a a c g $ a, 2
c, g$acaa<sub>3</sub>3
g Sacaac 3
```

$$$$_1$ a c a a c g_1 0$ a_1 a c g $$ a c_1 0$ O(a, 1) = 0$ a_2 c a a c g $$_1 0$ a_3 c g $$ a c a_1 1$ c_1 a a c g $$_2 2$ c_2 g $$ a c a a_3 3$ g $$ a c a a c 3$$$

$$a_1$$
 a c a a c g_1 0
 a_1 a c g \$ a c_1 0 $O(a, 1) = 0$
 a_2 c a a c g \$ 0
 a_3 c g \$ a c a_1 1
 c_1 a a c g \$ a_2 2
 c_2 g \$ a c a a a_3 3
 g \$ a c a a a_3 3
 g \$ a c a a a_3 3

```
acgt
S<sub>1</sub> a c a a c g<sub>1</sub> 0010
a<sub>1</sub> a c g $ a c<sub>1</sub> 0 1 1 0
a, caacg$<sub>1</sub> 0110
a<sub>3</sub> cg$aca<sub>1</sub> 1110
c<sub>1</sub> a a c g $ a<sub>2</sub> 2 1 1 0
c<sub>2</sub> g $ a c a a<sub>3</sub> 3 1 1 0
g Sacaac 3210
```

First-last property

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

$$R_{L}(xW) = C(x) + O(x, R_{L}(W) - 1)$$

$$R_{H}(xW) = C(x) + O(x, R_{H}(W)) - 1$$

$$R_{I}("")=0$$

$$R_{H}("") = Ien(X) - 1$$

a caacg\$

acaacg\$

ca

acaacg\$

ca

sacaacg\$

acaacgs a₁ a c g \$ a c₁ a, caacg\$₁ a₃ cg\$aca₁ C₁ a a c g \$ a₂ c, g \$ a c a a₃ g Sacaac

ca

sacaacg\$

acaacg a₁ a c g \$ a c₁ a, caacg\$₁ a, cg\$aca₁ c₁ a a c g \$ a₂ c, g \$ a c a a₃ g Sacaac

ca

```
$\frac{a.c.g.s}{acaacg.s}$
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g $ a c a a<sub>3</sub>
g Sacaac
```

ca

```
$\frac{a.c.g.s}{acaacg.s}$
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g $ a c a a<sub>3</sub>
g Sacaac
```

\$\frac{a.c.g.s}{acaacg.s}\$ ca a₁ a c g \$ a c₁ a, caacg\$ acg\$aca₁ c₁ a a c g \$ a₂ c, g\$acaa₃ g Sacaac

```
$\frac{a.c.g.s}{acaacg.s}$
ca
                  a<sub>1</sub> a c g $ a c<sub>1</sub>
                  a, caacg$
                  ag$aca<sub>1</sub>
                  c<sub>1</sub> a a c g $ a<sub>2</sub>
                  c, g$acaa<sub>3</sub>
                  g Sacaac
```

$$R_{L}(xW) = C(x) + O(x, R_{L}(W) - 1)$$

$$R_{H}(xW) = C(x) + O(x, R_{H}(W)) - 1$$

$$R_{I}("")=0$$

$$R_{H}("") = Ien(X) - 1$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

acgt S₁ a c a a c g₁ 0010 a₁ a c g \$ a c₁ 0 1 1 0 a₂ caacg\$₁ 0110 a, cg\$aca, 1110 c, a a c g \$ a, 2 1 1 0 c₂ g \$ a c a a₃ 3 1 1 0 g Sacaac 3210

aac

$$C(\$) = 0$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

acgt S₁ a c a a c g₁ 0010 a₁ a c g \$ a c₁ 0 1 1 0 a₂ caacg\$₁ 0110 a₃cg\$aca₁1110 c, a a c g \$ a, 2 1 1 0 c₂ g \$ a c a a₃ 3 1 1 0 g Sacaac 3210

aac

$$R_{I}("")=0$$

$$R_{H}("") = 6$$

acgt S₁ a c a a c g₁ 0010 a₁ a c g \$ a c₁ 0 1 1 0 a, caacg\$, 0110 a, cg\$aca, 1110 c, a a c g \$ a, 2 1 1 0 c, g \$ a c a a, 3 1 1 0 g Sacaac 3210

$$R_{1}(xW) = C(x) + O(x, R_{1}(W) - 1)$$

$$R_{H}(xW) = C(x) + O(x, R_{H}(W)) - 1$$


```
acgt
S<sub>1</sub> a c a a c g<sub>1</sub> 0010
a<sub>1</sub> a c g $ a c<sub>1</sub> 0 1 1 0
a<sub>2</sub> caacg$<sub>1</sub> 0110
a<sub>3</sub>cg$aca<sub>1</sub>1110
c, a a c g $ a, 2 1 1 0
c, g $ a c a a, 3 1 1 0
g Sacaac 3210
```

$$R_{1}(c) = C(c) + O(c, R_{1}("") - 1)$$

$$R_{H}(c) = C(c) + O(c, R_{H}("")) - 1$$


```
acgt
S<sub>1</sub> a c a a c g<sub>1</sub> 0010
a<sub>1</sub> a c g $ a c<sub>1</sub> 0 1 1 0
a<sub>2</sub> caacg$<sub>1</sub> 0110
a<sub>3</sub>cg$aca<sub>1</sub>1110
c, a a c g $ a, 2 1 1 0
c, g $ a c a a, 3 1 1 0
g Sacaac 3210
```

$$R_{L}(c) = C(c) + O(c, -1)$$

$$R_{H}(c) = C(c) + O(c, 6) - 1$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(c) = C(c) + 0$$

$$R_{H}(c) = C(c) + 2 - 1$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(c) = 4 + 0 = 4$$

$$R_{H}(c) = 4 + 2 - 1 = 5$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(ac) = C(a) + O(a, R_{l}(c) - 1)$$

$$R_{H}(ac) = C(a) + O(a, R_{H}(c)) - 1$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

aac

$$C(\$) = 0$$

$$C(a) = 1$$

$$R_{l}(ac) = C(a) + O(a, 3)$$

$$R_{H}(ac) = C(a) + O(a, 5) - 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

aac

$$C(\$) = 0$$

$$C(a) = 1$$

$$R_{l}(ac) = C(a) + O(a, 3)$$

$$R_{H}(ac) = C(a) + O(a, 5) - 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

aac

$$R_{l}(ac) = C(a) + 1$$

$$R_{H}(ac) = C(a) + 3 - 1$$

$$C(c) = 4$$

C(\$) = 0

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(ac) = C(a) + 1$$

$$R_{H}(ac) = C(a) + 3 - 1$$

$$C(\$) = 0$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(ac) = 1 + 1 = 2$$

$$R_{H}(ac) = 1 + 3 - 1 = 3$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(g) = 6$$

$$C(t) = 7$$

aac

$$R_{L}(aac) = C(a) + O(a, R_{L}(ac) - 1)$$

$$R_{H}(aac) = C(a) + O(a, R_{H}(ac)) - 1$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$C(g) = 6$$

$$C(t) = 7$$

acgt S₁ a c a a c g₁ 0010 a₁ a c g \$ a c₁ 0 1 1 0 a₂ caacg\$₁ 0110 a₃cg\$aca₁1110 c, a a c g \$ a, 2 1 1 0 c, g \$ a c a a, 3 1 1 0 g Sacaac 3210

$$C(\$) = 0$$

$$C(a) = 1$$

$$R_{l}(aac) = C(a) + O(a, 2 - 1)$$

$$R_{H}(aac) = C(a) + O(a, 3) - 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$C(\$) = 0$$

$$C(a) = 1$$

$$R_{l}(aac) = C(a) + 0$$

$$R_{H}(aac) = C(a) + 1 - 1$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$a c g t$$
 $$_1 a c a a c g_1 0010$
 $a_1 a c g $_1 0110$
 $a_2 c a a c g $_1 0110$
 $a_3 c g $_1 110$
 $c_1 a a c g $_2 110$
 $c_2 g $_1 a c a a_3 3110$
 $g $_1 a c a a c_3 3210$

$$R_{l}(aac) = 1 + 0 = 1$$

$$R_{H}(aac) = 1 + 1 - 1 = 1$$

$$C(\$) = 0$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

$$R_{l}(aac) = 1$$

$$R_H(aac) = 1$$

$$C(\$) = 0$$

$$C(c) = 4$$

$$C(g) = 6$$

$$C(t) = 7$$

For how long does it work?

For how long does it work? O(m)

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca<sub>1</sub>
C<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$ a caacg<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
 a<sub>2</sub> caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
 c<sub>1</sub> a a c g $ a<sub>2</sub>
c<sub>2</sub> g $ a c a a<sub>3</sub>
g<sub>1</sub> $ a c a a c<sub>2</sub>
```

```
Sacaacg<sub>1</sub>
acg$ac<sub>1</sub>
a<sub>2</sub> caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> aacg$a<sub>2</sub>
c<sub>2</sub> g $ a c a a<sub>3</sub>
g<sub>1</sub> $ a c a a c<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a<sub>2</sub> caacg$<sub>1</sub>
a, cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c<sub>2</sub> g $ a c a a<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a<sub>2</sub> caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c<sub>2</sub>g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g $ a c a a<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub> $ a c a a c<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
C<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub>cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

\$₁ a c a a c g₁ a₁ a c g \$ a c₁ a, caacg\$₁ a₃ cg\$aca₁ c₁ a a c g \$ a₂ c₂ g \$ a c a a₃ g₁\$acaac₂


```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
C<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

c c a

\$₁ a c a a c g₁ a₁ a c g \$ a c₁ a, caacg\$₁ a₃ cg\$aca₁ c₁ a a c g \$ a₂ c₂ g \$ a c a a₃ g₁\$acaac₂


```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

aca

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c, g$acaa<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

aca

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a, caacg$
a<sub>3</sub> cg$aca<sub>1</sub>
C<sub>1</sub> a a c g $ a<sub>2</sub>
c, g $ a c a a<sub>3</sub>
g<sub>1</sub> $ a c a a c<sub>2</sub>
```

aca

```
$<sub>1</sub> a c a a c g<sub>1</sub>
a<sub>1</sub> a c g $ a c<sub>1</sub>
a<sub>2</sub> caacg$<sub>1</sub>
a<sub>3</sub> cg$aca<sub>1</sub>
c<sub>1</sub> a a c g $ a<sub>2</sub>
c<sub>2</sub> g $ a c a a<sub>3</sub>
g<sub>1</sub>$acaac<sub>2</sub>
```

