Context Is Everything: Finding Meaning Statistically in Semantic Spaces

Overview

- Simple, explicit measure of contextual word importance
- Supports **tiny contexts** (10+ sentences)
- Uses document word vector-cloud properties
- Contextually significant words define meaning
- Weighted **bag of words** model:
 - Substantially outperforms state-of-the-art for subjectivity analysis and paraphrase detection
 - Comparable to SotA for other transfer learning tests
- Applications:
 - A better sentence vector baseline
 - o Easy sentence/document summarizer via **pathfinding**
 - Contextual stop word identification
 - Improved (and context-aware) cosine distance

Current Implementation Limitations

- Long Short-term Memory (LSTM) Networks:
 - Limited because short-term
 - Document-specific context ⇒ overfitting
- tf-idf sentence embedding (vector) baseline
 - Rarer words are more important
 - Essentially sum of tf-idf weighted word vectors
 - Requires **large** document, no handling of out-of-context words, **stratified** for rare words, ignores word **similarity**
- State-of-the-art global context approaches:
 - o context vectors, deep structures, etc. (Black boxes)
 - Unsupervised barely outperform tf-idf baseline

Motivation

- Knowing what you're reading affects interpretation
- tf-idf baseline requires a large context dataset to work
- But people don't need a ton of text to establish context
 - Newspaper articles
 - Short stories
- Currently no simple baseline for global context

Datasets and Evaluation

- Words / Clauses
 - Stanford Sentiment Diverse context 9k examples
 - o 300 dimensional pretrained GloVe (42b CC) No out-of-vocabulary keys
- Sentences
 - SentEval train/dev set: Variety of transfer learning contexts
 - o fastText vecs: 600b token CC, out-of-vocab support

Algorithms: Word Vector Clouds

- Replacing tf-idf
 - o Mahalanobis distance: Normalizes for stdev and covariance
 - Distance from document word-vector cloud
 - Needs only document word-vector covariance and average
 - Works with tiny data, since word vec dimensions are normal
- Better and Context-Aware Cosine Distance: $\cos C = \frac{a^2 + b^2 c^2}{2ab}$

Algorithms: Sentence Embeddings

- Unified Clause-Word Vector Space
 - o GloVe space including both two word clauses and words
 - Importance relates clause vecs and constituent words
- Sigmoidal Sentence Embeddings
 - Calculate document average word vector and covariance
 - o For sentence, calculate each word's importance
 - Divide by double the sentence average
 - (Opt.) Ignore words in closest 20% of doc importances for sentence average
 - Corresponds closely to stop words
 - Weight by sigmoid of relative importances

Algorithms: Sentence Unembeddings

Meaning Subtraction

- \circ vec(sentence) = Σ w(vec_{word_n}) * vec_{word_n}
- Given a sentence vector and one subsentence vector, can calculate other subsentence vector
- Assume w(vec_{other}) is the avg distance, solve for vec, repeat
- o Takes 3-5 iterations to converge to several decimal places

Path-finding for Meaning Extraction

- Calculate the remaining subsentence vector
- If within m-cosine distance radius, return sentence
- Find the new words closest to the subsentence vector
- o Enqueue the sentence with the closest words appended

Test	Baseline	Unsupervised SOA (SOA*)	BOW
CR: Product Reviews Sentiment	79.2	83.1 ST-LN	79.42
MPQA: Opinion Polarity	82.4	89.3 ST-LN (90.2 ¹³	88.28
SUBJ: Subjectivity/Objectivity	90.3	93.7 ST-LN (95.5 AdaSent)	99.6
TREC: Question Type (who, what, etc)	85	92.2 ST	79.6
MRPC: Paraphrase Detection	73.6/81.7	73.0/82.0 ST	74.72/82.16
SICK-E: SICK Entailment	-	84.6 SIF (86.3 ¹¹)	78.02
SST: Movie Review	-	82.9 ST (84.6 ¹¹)	81.38

Conclusion and Future Directions

- This technique should replace the tf-idf baseline
- Can global context help generate word vectors?
- Implications for how we process information
 - Appears to suggest we overvalue slightly more salient information when combining meanings
- Linguistic implications:
 - Where does syntax come into play?
 - Can a rule-based system restricting the subset of closest words that can be chosen as the next word generate grammatical sentences with the unembedding?
- Neurological implications: Can we measure the importance (salience) of words and sentences and relate them?