Proyecto 2: El Problema de la Mochila

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 18, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

0/1 Knapsack Se resuelve comunmente con programacion dinamica. Sea dp[i][w] el valor maximo al considerar los primeros i objetos y capacidad w.

$$dp[i][w] = \begin{cases} dp[i-1][w] & \text{si } w_i > w, \\ \max(dp[i-1][w], v_i + dp[i-1][w - w_i]) & \text{si } w_i \le w. \end{cases}$$

Unbounded Knapsack Similar al 0/1 pero permitiendo repeticiones:

$$dp[w] = \max(dp[w], v_i + dp[w - w_i]).$$

Tipo de problema: Unbounded Knapsack

Capacidad máxima: 17 Número de objetos: 7

Datos del Problema

Objeto	Costo	Valor	Cantidad
A	12.00	15.00	∞
В	7.00	6.00	∞
С	8.00	10.00	∞
D	9.00	11.00	∞
E	15.00	9.00	∞
F	2.00	17.00	∞
G	3.00	2.00	∞

Tabla de Programación Dinámica Detallada

Capacidad	A	В	С	D	E	F	G
0							0
1							0
2	0	0	0	0	0	17(1)	17
3	0	0	0	0	0	17(1)	17
4						34(2)	34
5	0	0	0	0	0	34(2)	34
6	0	0	0	0	0	51(3)	51
7		6(1)				51(3)	51
8		6(1)	10(1)	10	10	68(4)	68
9	0	6(1)	10(1)	11(1)	11	68(4)	68
10		6(1)	10(1)	11(1)	11	85(5)	85
11		6(1)	10(1)	11(1)	11	85(5)	85
12	15(1)	15	15	15	15	102(6)	102
13	15(1)	15	15	15	15	102(6)	102
14	15(1)	15	15	15	15	119(7)	119
15	15(1)	15	16(1)	16	16	119(7)	119
16	15(1)	15	20(2)	20	20	136(8)	136
17	15(1)	15	20(2)	21(1)	21	136(8)	136

Solución Óptima

Valor máximo obtenido: 136 Objetos seleccionados: F:8 Capacidad utilizada: 16