CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Classificação

Prof.º: Manoel Limeira juniorlimeiras@gmail.com

Agenda

- Algoritmos
 - Árvore de Decisão
 - Naive Bayes
 - KNN
- Avaliação de Classificadores

Modelo de classificação com Árvore de Decisão

Árvores de Decisão

- A sua representação é intuitiva e torna o modelo de classificação resultante fácil de se utilizar e de ser entendido
- A precisão de suas previsões, em geral, possui taxas de acertos competitivas em relação a de outros modelos
- Algoritmos rápidos e escaláveis podem ser implementados para a construção de árvores de decisão, considerando-se grandes bases de treinamento

Árvores de Decisão

Primeiro Nó: raiz da árvore

Folhas: valores de classes

<u>Nó interno + Aresta</u> = condição

Árvores de Decisão ⇒ Regras de Classificação

- Cada caminho da raiz até a folha representa uma regra, definida como a conjunção das condições percorridas, implicando no valor da classe encontrada na folha
- A árvore deve ser definida de forma que, para um mesmo registro, haja um e apenas um caminho da raiz até a folha

Regras de classificação obtidas a partir da árvore de decisão:

Árvore de Decisão ou Árvore de Classificação Salário

$$(Sal \le 5k) \Rightarrow Classe = B$$

 $(Sal > 5k) ^ (Idade > 40) \Rightarrow Classe = C$

 $(Sal > 5k) ^ (Idade \le 40) ^ (Emprego = Autônomo) \Rightarrow Classe = A$

 $(Sal > 5k) ^ (Idade \le 40) ^ ((Emprego = Indústria) ^ (Emprego = Pesquisa)) \Rightarrow Classe = B$

Algoritmo ID3

Utilizado para construir árvores de decisão

Entrada

- base de treinamento que contém os registros
- lista dos atributos independentes
- definição do atributo dependente (alvo ou objetivo)

Saída

 – árvore de decisão que permite classificar (definir o valor do atributo dependente) um novo registro a partir de seus atributos independentes

Algoritmo ID3 - Como Escolher o Atributo?

- O algoritmo ID3 utiliza uma medida conhecida como Ganho de Informação que se baseia no conceito de entropia
- Trata-se de uma heurística para selecionar o atributo, tentando minimizar o número de testes necessários para classificar os registros das partições resultantes
- Mede quão bem um determinado atributo separa os registros de treino de acordo com o valor da classe
- O atributo com maior Ganho de Informação é escolhido como atributo teste para o nó corrente

Medida de Ganho de Informação

- Entropia: medida da quantidade de "desordem" de um conjunto de registros (representa a quantidade de informação necessária para classificar um registro)
- Ganho(Atr): redução da entropia escolhendo-se Atr
- Ganho(Atr) = E(S) E(S,Atr),
- Onde:
 - E(S): entropia de uma partição S da base
 - E(S,Atr): entropia, considerando-se o particionamento de S de acordo com os valores do atributo Atr

Entropia

 Dado um conjunto S, contendo s registros que pertencem a m classes, a entropia de S é calculada da seguinte maneira:

$$E(S) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- onde:
- p_i é a proporção de registros de S
 pertencente a i-ésima classe, i = 1, 2, ..., m

Entropia E(S, Atr)

 A entropia de S, considerando-se o seu particionamento de acordo com os valores do atributo Atr, é calculada da seguinte maneira:

$$E(S, Atr) = \sum_{v \in Dom(nio(Atr))} \frac{|S_v|}{|S|} E(S_v)$$

- onde:
- S_v é a partição de S que contém o valor v em
 Atr

Exemplos: atributos nominais

#	História de crédito	Dívida	Garantia	Renda anual	Risco
1	Ruim	Alta	Nenhuma	< 15.000	Alto
2	Desconhecida	Alta	Nenhuma	>= 15.000 e <=35.000	Alto
3	Desconhecida	Baixa	Nenhuma	>= 15.000 e <=35.000	Moderado
4	Desconhecida	Baixa	Nenhuma	> 35.000	Alto
5	Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
6	Desconhecida	Baixa	Adequada	> 35.000	Baixo
7	Ruim	Baixa	Nenhuma	< 15.000	Alto
8	Ruim	Baixa	Adequada	> 35.000	Moderado
9	Boa	Baixa	Nenhuma	> 35.000	Baixo
10	Boa	Alta	Adequada	> 35.000	Baixo
11	Boa	Alta	Nenhuma	< 15.000	Alto
12	Boa	Alta	Nenhuma	>= 15.000 e <=35.000	Moderado
13	Boa	Alta	Nenhuma	> 35.000	Baixo
14	Ruim	Alta	Nenhuma	>= 15.000 e <= 35.000	Alto

Árvore de Decisão

Classificação Bayesiana

- Classificadores Bayesianos são classificadores estatísticos, que se baseiam no Teorema de Bayes
- Trabalham com a ideia de calcular a probabilidade de uma instância de entrada pertencer a cada uma das classes
- Naive Bayes é o mais popular classificador Bayesiano e apresenta resultados competitivos em termos de acurácia e tempo de processamento
- Classificador Naive Bayes considera a "independência condicional" em relação à classe, ou seja, o efeito do valor de um atributo sobre a classe é independente dos valores dos demais atributos

Classificação Bayesiana

- O classificador Naive Bayes calcula a probabilidade posterior P(C_i/X) – probabilidade de X ser da classe C_i considerando os valores dos atributos de X – para cada classe C_i
- O classificador decide que X é da classe C_i, se e somente se P(C_i/X) for maior do que P(C_j/X) para qualquer outra classe C_j, ou seja, X é da classe C_i, sse: P(C_i/X) > P(C_i/X) para todo 1 ≤ j ≤ m, j ≠ i

Teorema de Bayes

 A probabilidade posterior P(C_i/X) será calculada a partir do Teorema de Bayes:

$$P(Ci/X) = \frac{P(X/Ci) \cdot P(Ci)}{P(X)}$$

 Como P(X) é constante para todas as classes, basta maximizar/comparar:

$$P(Ci/X) \approx P(X/Ci) \cdot P(Ci)$$

Classificador Naive Bayes

- Basta então calcular P(X/C_i) e P(C_i)
- P(C_i) é a probabilidade anterior da classe C_i, estimada por:

$$P(Ci/X) = \frac{|Ci, D|}{|D|}$$

onde |C_i,D| é o número de tuplas da classe i em
 D e |D| é o número de tuplas de D

Classificador Naive Bayes

 Considerando a independência condicional, P(X/C_i) é calculado da seguinte forma:

$$P(X/Ci) = \prod_{k=1}^{n} P(xk/Ci)$$

$$P(X/Ci) = P(x 1/Ci) \times P(x 2/Ci) \times ... \times P(xn/Ci)$$

 onde para cada k, P(xk/C_i) pode ser estimado a partir da base de treinamento como apresentado a seguir

Classificador Naive Bayes

Resumindo: para predizer a classe de X, o classificador Bayesiano vai calcular P(X/C_i).P(C_i) para cada classe C_i e vai associar X a C_i, se e somente se:
 P(X/C_i).P(C_i) > P(X/C_i).P(C_i), para todo 1 ≤ j ≤ m, j ≠ i.

Exemplos: atributos nominais

#	História de crédito	Dívida	Garantia	Renda anual	Risco
1	Ruim	Alta	Nenhuma	< 15.000	Alto
2	Desconhecida	Alta	Nenhuma	>= 15.000 e <=35.000	Alto
3	Desconhecida	Baixa	Nenhuma	>= 15.000 e <=35.000	Moderado
4	Desconhecida	Baixa	Nenhuma	> 35.000	Alto
5	Desconhecida	Baixa	Nenhuma	> 35.000	Baixo
6	Desconhecida	Baixa	Adequada	> 35.000	Baixo
7	Ruim	Baixa	Nenhuma	< 15.000	Alto
8	Ruim	Baixa	Adequada	> 35.000	Moderado
9	Boa	Baixa	Nenhuma	> 35.000	Baixo
10	Boa	Alta	Adequada	> 35.000	Baixo
11	Boa	Alta	Nenhuma	< 15.000	Alto
12	Boa	Alta	Nenhuma	>= 15.000 e <=35.000	Moderado
13	Boa	Alta	Nenhuma	> 35.000	Baixo
14	Ruim	Alta	Nenhuma	>= 15.000 e <= 35.000	Alto

Exemplo de Classificação

	História de Crédito		Dívida		Garantia		Renda anual			
Risco de Crédito	Boa	Desconhecida	Ruim	Alta	Baixa	Nenhuma	Adequada	'<15'	'15<=x<=35'	'>35'
	5	5	4	7	7	11	3	3	4	7
Alto 6/14	1/6	2/6	3/6	4/6	2/6	6/6	0	3/6	2/6	1/6
Moderado 3/14	1/3	1/3	1/3	1/3	2/3	2/3	1/3	0	2/3	1/3
Baixo 5/14	3/5	2/5	0	2/5	3/5	3/5	2/5	0	0	5/5

Instância de Teste

História=Boa Dívida=Alta Garantia=Nenhuma Renda='>35' P(Alto) = 6/14 * 1/6 * 4/6 * 6/6 * 1/6 = 0,0079 P(Moderado) = 3/14 * 1/3 * 1/3 * 2/3 * 1/3 = 0,0052 P(Baixo) = 5/14 * 3/5 * 2/5 * 3/5 * 5/5 = **0,0514**

P(Alto) = 0,0079 / 0,0645 * 100 = 12,24% P(Moderado) = 0,0052 / 0,0645 *100 = 8,06% P(Baixo) = 0,0514 / 0,0645 * 100 = **79,68%** Soma 0,0079 +0,0052 +0,0514 **0,0645**

Classificadores k-NN

- Classificadores k-NN (k-Nearest Neighbor) se baseiam na ideia de aprendizagem por analogia, ou seja, a classe de uma tupla de entrada será determinada pelo conhecimento das classes de tuplas similares da base de treinamento
- Cada tupla possui n atributos e, portanto, pode ser caracterizada por um ponto em um espaço n-dimensional
- A técnica procura pelas k tuplas de treinamento mais próximas à tupla a ser classificada no espaço ndimensional. Essas tuplas serão os k vizinhos mais próximos

 Depois de identificados os k vizinhos mais próximos da tupla t de entrada a ser classificada, o k-NN atribui a t a classe predominante entre esses k vizinhos

 Depois de identificados os k vizinhos mais próximos da tupla t de entrada a ser classificada. Quando k = 1, o k-NN atribui à tupla t a classe do seu elemento mais próximo

 Quando k = 2, o k-NN atribui a t a classe predominante entre k vizinhos gera um empate e pode ser decidida pela menor distância

 Quando k = 3, o k-NN atribui a t a classe predominante entre esses k vizinhos

- O classe atribuída pode variar de acordo com o valor do parâmetro k escolhido
- Um valor adequado pode ser escolhido empiricamente

Classificadores k-NN: distância

- Proximidade (ou semelhança, similaridade) é definida a partir de uma métrica de distância, como p.e., a distância Euclidiana
- Sejam duas tuplas $X_1 = (x_{11}, x_{12}, ..., x_{1n})$ e $X_2 = (x_{21}, x_{22}, ..., x_{2n})$. A distância Euclidiana entre X_1 e X_2 é estimada por:

$$dist(X_1, X_2) = \sqrt{\sum_{1}^{n} (x_{1i} - x_{2i})^2}$$

- Essa fórmula exige atributos numéricos
- Quanto menor dist(X₁,X₂), mais próximos, semelhantes, similares são as tuplas X₁ e X₂

Classificadores k-NN: transformações nos atributos numéricos

- Normalização dos valores dos atributos para evitar que atributos diferentes (idade e salário) contribuam de formas diferentes no cálculo da distância
- Normalização min-max transforma o valor v de um atributo Atr em um valor v' no intervalo [0,1]

$$v' = \frac{v - \min_{Atr}}{\max_{Atr} - \min_{Atr}},$$

- onde min_{Atr} e max_{Atr} são os valores mínimo e máximo de Atr
- A padronização também pode ser utilizada

Classificadores k-NN: atributos nominais

- Para atributos nominais (cor, meses, história de crédito)
- A diferença entre os valores do atributo (cor) das duas tuplas será zero se os valores forem iguais (cores iguais), e
- A diferença será igual a 1 caso os valores sejam diferentes (cores diferentes)
- Valores intermediários, entre 0 e 1, podem ser adotados para representar diferenças mais (ou menos) "fortes" entre os valores. Por exemplo, o vermelho poderia ser considerado diferente do preto em uma grau maior do que o cinza é do preto

Classificadores k-NN

- Classificadores k-NN podem ser utilizados também para problemas de regressão, ou seja, para estimar um valor numérico (classe) de uma tupla de entrada
- Nesse caso, o classificador retorna a média dos valores do atributo classe numérico dos k vizinhos mais próximos
- Por exemplo, para estimar o valor de venda de um imóvel, calcula-se a média dos valores de venda dos imóveis mais semelhantes ao imóvel de entrada

Classificadores k-NN: paradigma de aprendizagem

- De uma forma geral, o k-NN apresenta um alto custo computacional para classificar uma nova tupla t, pois tem que calcular a distância de t para todas as tuplas da base
- Por outro lado, a atualização da base é automaticamente refletida no classificador

Classificadores k-NN: paradigmas de aprendizagem

- Não há construção de modelos
- Custo
 computacional mais
 caro para classificar
 a tupla de entrada
- Não necessita retreinar o modelo em caso de atualização da base, por exemplo: k-NN

Exemplos: notas de recomendação

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}$$

Tropa de Elite

Ana x Marcos

$$X = 3.0 3.5$$

 $Y = 1.5 5.0$
 $(3.0 - 1.5)^2 = 2.25$
 $(3.5 - 5.0)^2 = 2.25$

$$2,25 + 2,25 = 4,5$$
 Raiz $(4,5) = 2,12$

Ana x Claudia

$$X = 3.0 3.5$$

 $Y = 3.0 4.0$
 $(3.0 - 3.0)^2 = 0.00$
 $(3.5 - 4.0)^2 = 0.25$

$$0.00 + 0.25 = 0.25$$

Raiz $(0.25) = 0.50$

Exemplos: atributos nominais

Hist. de crédito	Dívida	Garantia	Renda anual	Risco
3	1	1	1	Alto
2	1	1	2	Alto
2	2	1	2	Moderado
2	2	1	3	Alto
2	2	1	3	Baixo
3	2	2	3	Baixo
3	2	1	1	Alto
1	2	2	3	Moderado
1	2	1	3	Baixo
1	1	2	3	Baixo
1	1	1	1	Alto
1	1	1	2	Moderado
1	1	1	3	Baixo
3	1	1	2	Alto

Nova instância História = Boa (1) Dívida = Alta (1) Garantia = Nenhuma (1) Renda = > 35.000 (3)

Nova x 3° 1 1 1 3 2 2 1 2 $1^2 + 1^2 + 0 + 1^2$ 1 + 1 + 0 + 1 = 3Raiz(3) = 1,7

Nova x 9°
1 1 1 3
1 2 1 3
$0 + 1^2 + 0 + 0$
0 + 1 + 0 + 0 = 1
Raiz(1) = 1

Exemplo: problema na escala das variáveis

$$dist(X_1, X_2) = \sqrt{\sum_{1}^{n} (x_{1i} - x_{2i})^2}$$

#	Idade	Renda anual
1	60	30.000
2	65	75.000
3	20	29.500

1° x 2° 60 30.000 65 75.000 $(-5)^2 + (-45.000)^2$ 25 + 2.025.000.000 = 2.025.000.025 Raiz(2.025.000.000) = **45.000**

1° x 3° 60 30.000 20 29.500 40² + 500² 1.600 + 250.000 = 251.600 Raiz(251.600) = **501,59**

Exemplos: normalização

Valores originais

Valores normalizados

v-m	nin _{Atr}
max _{Atr} -	- min _{Atr}

#	Idade	Renda anual
1	60	30.000
2	65	75.000
4	20	29.500

Idade	Renda anual
0,88	0,01
1,00	1,00
0,00	0,00

1º

idade' = 60 - 20 / 65 - 20 =**0,88** renda' = 30000 - 29500 / 75000 - 29500 =**0,01**

2°

idade' = 65 - 20 / 65 - 20 = 1renda' = 75000 - 29500 / 75000 - 29500 = 1,00

3°

idade' = 20 - 20 / 65 - 20 =**0,00** renda' = 29500 - 29500 / 75000 - 29500 =**0,00**

1° x 2° 0,88 0,01 1,00 1,00 $(-0,12)^2 + (-0,99)^2$ 0,014 + 0,980 = 0,994 Raiz(0,994) = **0,996**

1° x 3°

 $0.88 \ 0.01$ $0.00 \ 0.00$ $0.88^2 + 0.01^2$ 0.77 + 0.0001 = 0.7701Raiz(0.7701) = **0.877**

Exemplos: padronização

Valores originais Valores padronizados

v – $m\acute{e}dia(v)$
$\overline{desviopadrão(v)}$

#	Idade	Renda anual	Idade	Renda anual
1	60	30.000	0,48	-0,57
2	65	75.000	0,68	1,15
4	20	29.500	-1,12	-0,59

10

idade' = 60 - 48 / 25 = 0.48renda' = 30000 - 44833 / 26126 = -0,57

2°

idade' = 65 - 48 / 25 = 0.68renda' = 75000 - 44833 / 26126 = 1,15

3°

idade' = 20 - 48 / 25 = -1,12renda' = 29500- - 44833 / 26126 = **-0,59**

1° x 2°

0,48 -0,57 0,68 1,15 $(-0,20)^2 + (-1,72)^2$ 0.04 + 2.95 = 2.99Raiz(2,99) = 1,72

1° x 3°

0,48 0,57 -1,12 -0,59 $1,60^2 + 0,02^2$ 2,56 + 0,0004 = 2,5604Raiz(2,5604) = 1,60

Algumas considerações

- Algoritmo de classificação/regressão simples com alto poder preditivo
- Valores pequenos de k são prejudicados por ruídos e outliers
- Valores grandes de k podem gerar overfitting
- Preferência por valores de k ímpares
- Mais lento para realizar as previsões

Paradigmas de Aprendizagem

CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Classificação

Prof.º: Manoel Limeira juniorlimeiras@gmail.com