Documentação do Trabalho Prático 2

Algoritmos I - 2025/1

Victor Guedes Batista Matrícula: 2020070817

9 de maio de 2025

Introdução

Este documento apresenta a solução para o **Trabalho Prático 2** da disciplina de Algoritmos I, cujo objetivo é determinar o número mínimo de soldados necessários para proteger a capital de um reino fictício contra invasores.

O problema é modelado como um grafo, onde cada célula do mapa representa um custo de defesa. A solução utiliza algoritmos de fluxo máximo para calcular o corte mínimo que isola a capital do restante do mapa.

Os capítulos seguintes detalham a modelagem, a solução implementada, a análise de complexidade e as considerações finais.

Modelagem

O problema foi modelado como um grafo direcionado, onde cada célula do mapa é representada por dois nós: vin (entrada) e vout (saída). Essa separação permite definir capacidades específicas para cada célula e suas conexões.

Representação do Grafo

- Cada célula é conectada de vin para vout com capacidade igual ao custo de defesa.
- Células vizinhas são conectadas de *vout* para *vin* com capacidade infinita.
- Um nó source conecta as bordas do mapa (exceto montanhas) com capacidade infinita.
- O nó vout da capital é conectado ao sink com capacidade infinita.

Estrutura de Dados

O grafo foi representado por uma matriz de adjacência com $2 \times (n \times m) + 2$ nós, onde n e m são as dimensões do mapa. Os índices dos nós foram calculados como:

- $vin: 2 \times (i \times m + j)$
- vout: $2 \times (i \times m + j) + 1$

Algoritmos Utilizados

Para resolver o problema, foi utilizado o algoritmo de **Edmonds-Karp**, uma implementação do algoritmo de fluxo máximo de Ford-Fulkerson baseada em busca em largura (BFS). A seguir, descrevemos os principais passos do algoritmo:

- 1. Inicializar o grafo residual com as capacidades fornecidas.
- 2. Enquanto houver um caminho aumentador da source para o sink no grafo residual:
 - (a) Encontrar o caminho aumentador utilizando BFS.
 - (b) Determinar a capacidade de gargalo do caminho.
 - (c) Atualizar as capacidades residuais ao longo do caminho.
- 3. O fluxo máximo é a soma das capacidades de todos os caminhos aumentadores encontrados.

Tradução do Problema

A tradução do problema para o grafo pode ser resumida nos seguintes passos:

- 1. Cada célula do mapa é transformada em dois nós (vin e vout).
- 2. As conexões entre células vizinhas são representadas por arestas com capacidade infinita.
- 3. As células nas bordas do mapa são conectadas à source.
- 4. A célula da capital é conectada ao sink.

Essa modelagem permite que o problema seja resolvido como um problema de fluxo máximo, onde o corte mínimo no grafo corresponde ao número mínimo de soldados necessários para proteger a capital.

Solução

A solução utiliza o algoritmo de **Edmonds-Karp** para calcular o fluxo máximo no grafo modelado. O fluxo máximo corresponde ao custo do corte mínimo, que é o número mínimo de soldados necessários para proteger a capital.

Passos da Solução

- 1. Construção do Grafo: Cada célula é representada por dois nós (vin e vout), conectados com base nas regras do problema.
- 2. Cálculo do Fluxo Máximo: O algoritmo de Edmonds-Karp encontra caminhos aumentadores no grafo residual e atualiza as capacidades.
- 3. Interpretação do Resultado: O valor do fluxo máximo é o custo do corte mínimo.

A implementação foi realizada em Python, utilizando uma matriz de adjacência para representar o grafo e BFS para encontrar caminhos aumentadores.

Pseudocódigo do Algoritmo

A seguir, apresentamos o pseudocódigo do algoritmo de Edmonds-Karp utilizado na solução:

```
EdmondsKarp(G, source, sink):
Inicializar fluxo máximo como 0
Enquanto houver um caminho aumentador no grafo residual:
    Encontrar o caminho aumentador usando BFS
    Determinar a capacidade de gargalo do caminho
    Atualizar as capacidades residuais ao longo do caminho
    Adicionar a capacidade de gargalo ao fluxo máximo
Retornar o fluxo máximo
```

Detalhes da Implementação

A implementação foi realizada em Python e segue os seguintes passos:

- A função parse_input_corrected lê os dados de entrada e converte as coordenadas da capital para índices baseados em zero.
- A matriz de adjacência capacity_adj_matrix é construída para representar o grafo, com base na modelagem descrita no capítulo anterior.
- A função edmonds_karp_max_flow calcula o fluxo máximo entre o source e o sink, utilizando BFS para encontrar caminhos aumentadores.
- A função solve integra todas as etapas, retornando o número mínimo de soldados necessários para proteger a capital.

Essa abordagem garante que o problema seja resolvido de forma eficiente e correta, utilizando conceitos sólidos de teoria dos grafos.

Análise de Complexidade

Neste capítulo, analisamos a complexidade assintótica de tempo e memória da solução implementada para o problema proposto. A análise considera as três etapas principais da solução: construção do grafo, execução do algoritmo de Edmonds-Karp e interpretação do resultado.

Construção do Grafo

A construção do grafo envolve a criação de uma matriz de adjacência para representar as capacidades entre os nós. Cada célula do mapa é representada por dois nós $(vin \ e \ vout)$, e as conexões entre células vizinhas são adicionadas com base nas regras do problema.

- **Tempo**: Para cada célula do mapa, verificamos seus vizinhos (até 4 vizinhos por célula). Assim, o tempo necessário para construir o grafo é proporcional ao número de células no mapa, ou seja, $O(n \times m)$, onde n é o número de linhas e m é o número de colunas.
- Memória: A matriz de adjacência possui $2 \times (n \times m) + 2$ nós, resultando em um espaço de $O((n \times m)^2)$ para armazenar as capacidades.

Execução do Algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp é uma implementação do algoritmo de Ford-Fulkerson que utiliza busca em largura (BFS) para encontrar caminhos aumentadores no grafo residual.

- **Tempo**: O algoritmo realiza até O(E) iterações de BFS, onde E é o número de arestas no grafo. Cada BFS percorre no máximo O(V) nós, onde V é o número de nós no grafo. Assim, a complexidade total do algoritmo é $O(V \times E^2)$. No caso do grafo construído, temos $V = 2 \times (n \times m) + 2$ e $E = O(n \times m)$, resultando em uma complexidade de $O((n \times m)^3)$.
- Memória: O grafo residual é armazenado como uma matriz de adjacência, ocupando $O((n \times m)^2)$ de espaço.

Interpretação do Resultado

A interpretação do resultado consiste em retornar o valor do fluxo máximo calculado pelo algoritmo de Edmonds-Karp. Essa etapa é constante em termos de tempo e memória.

• **Tempo**: O(1).

• **Memória**: *O*(1).

Complexidade Total

A complexidade total da solução é dominada pela execução do algoritmo de Edmonds-Karp, que possui complexidade de tempo $O((n \times m)^3)$ e complexidade de memória $O((n \times m)^2)$. Assim, temos:

• Tempo Total: $O((n \times m)^3)$.

• Memória Total: $O((n \times m)^2)$.

Discussão

Embora a solução seja eficiente para mapas de tamanho moderado, a complexidade cúbica em relação ao número de células do mapa pode se tornar um gargalo para mapas muito grandes. No entanto, a escolha do algoritmo de Edmonds-Karp foi adequada para o problema, pois garante a correção e permite uma implementação relativamente simples, atendendo aos requisitos do trabalho prático.

Considerações Finais

Este trabalho foi uma experiência desafiadora e enriquecedora, permitindo aplicar conceitos de grafos e algoritmos de fluxo máximo.

Partes Mais Fáceis

A leitura do problema e a implementação da estrutura de dados foram diretas, graças à clareza dos requisitos e à modelagem bem definida.

Partes Mais Difíceis

A modelagem do grafo e a depuração de erros foram desafiadoras, especialmente para casos de teste complexos. A análise de complexidade também exigiu atenção aos detalhes.

Apesar dos desafios, o trabalho proporcionou um aprendizado significativo e reforçou a importância de uma abordagem sistemática para resolver problemas computacionais.

Referências

As seguintes referências foram utilizadas para o desenvolvimento deste trabalho:

- Slides da disciplina Algoritmos I, disponível no Moodle.
- Documentação oficial do Python (https://docs.python.org/3/).

Essas fontes foram fundamentais para compreender os conceitos teóricos e implementar a solução de forma eficiente e correta.