TECHNIQUES DE DECOUPAGE D'UN PROJET

INTRODUCTION:

OBJECTIF DU DECOUPAGE:

- répartir dans le temps
- la production
- les ressources
- définir des sous-ensembles cohérents et autonomes
 - → avec des résultats bien identifiés
 - → avec des charges bien évaluées
- avoir des enchaînements repérables
 - → sous-ensembles en parallèle
 - **→**sous-ensembles successifs

→ LES CRITERES DE DECOUPAGE:

- → Critère temporel :
- cas: la plupart des projets
- modalité:
 - *succession d'étapes avec début et fin
 - *décomposition d'un projet :

1 projet \rightarrow Σ étapes \rightarrow Σ phases \rightarrow Σ tâches

chaque élément correspond à un Livrable + 1 Date livraison

caractéristiques du découpage temporel :

- → passage du général au détaillé
- **→** il est de type descendant
- → il permet une visibilité sur la progression des travaux

cas d'utilisation:

- $_$ il est adopté par la plupart des méthodes de conception de SI
- _ ex: Merise

intérêt:

- pour le client : il permet de valider et orienter le projet
- → pour le chef de projet : suivi pas-à-pas du projet et un cadre de

limite :

travail

pas d'appréciation du poids des différentes tâches ex : en Banque , le Calcul d'intérêt >> gestion des comptes

→ Critère structurel :

<u>but :</u>

organiser le travail en se basant sur la structure du produit final

<u>modalité :</u>

décomposer le SI en module exemple : en Banque module « gestion des clients » module « gestion des contrats »

<u>contexte :</u>

adapté si la visibilité est suffisante sur le résultat à produire

cas:

grands projets SI (ex : Assurance, Banque) progiciel métier

<u>intérêt :</u>

- → maîtrise de sous-ensembles cohérents (cohérence fonctionnelle)
- → répartir les responsabilités (ex : experts sur domaines)
- → réduire les délais planifiés : possibilité d'avancement en parallèle
- → développement selon des versions fonctionnelles ex : progiciels métier

limites:

- **→** difficulté d'évaluation chiffrée
- → la couverture fonctionnelle = plus ou moins large
 ex : grand projet Banque → point de départ = la demande « ouverte » des utilisateurs

<u>moyen de sécuriser :</u>

définir des priorités

ex : projet Banque → recentrage sur fonctionnalités principales quand les délais sont dépassés

NORMALISATION DES DECOUPAGES:

→ NORMES :

(organisation breakdown structure)

- → norme PBS:
 - _ elle correspond à un découpage structurel
 → découpage fonctionnel en modules
 - _ exemple : Gestion Banque

_ exemple : Gestion des valeurs mobiliéres

_ bilan:

- _ lien étroit avec la conception
- _ ex : étude préalable de Merise

→ norme WBS:

- _ elle correspond à une combinaison des critéres de découpage
 - $_$ temporel
 - _ structurel
- _ elle s'appuie sur des éléments de la norme PBS
- _ exemple : cas de gestion

<u>détail :</u>

après la conception , le projet est découpé en sous-projets pour chaque sous-projet : déroulement d'un cycle

de conception - développement

en final: intégration complète

→ norme OBS:

- _ exemple : cas de gestion ressources : a,b,c,d,e,f par exemple , pour l'étude sur le progiciel comptabilité, on affectera la ressource d ou un chef de projet comptabilité

→ Enjeu:

_ l'enjeu = le fonctionnement de base du système

→ « briques » minimales pour le démarrage en production

exemple:

grand projet banque→ éditions surévaluées → moins

fondemental

que les saisies et mises à jour

→ donc report en cas de retard

progiciels métiers → risque d'excès des demandes

utilisateurs

causes:

manque de filtrage des besoins utilisateurs manque de connaissance du métier du client défaut de travail en partenariat défaut de concertation

ex : DG alloue budget +
Direction opérationnelle définit les besoins
= nécessaire concertation

_solution:

prévoir dans la décomposition , les fonctions fondamentales pour le démarrage du SI

LE DECOUPAGE STRUCTUREL:

→ BUT :

- _ il s'agit de découper un domaine en sous-ensembles autonomes
- _ pour chaque sous-ensemble :
 - **→** cohérence fonctionnelle
 - (ex : gestion des contrats bancaires, gestion des clients)
 - **→** cohérence technique
 - (ex : données de base propres à chaque sous-ensemble)
 - → cohérence d'organisation :
 - (ex: un service de gestion)

→ 1^{ER} NIVEAU DE DECOUPAGE:

- découpage d'un SI en domaines
- _ déf. domaine : sous-ensemble du SI global ayant des informations propres et des processus propres
 - (ex: base de données « clients » en banque, assurances)
- _ dans la pratique :
 - _ un domaine est transversal dans l'organisation
 - → plusieurs entités (site, service, département)
 - _conséquences :
 - _ sur l'architecture technique
 - ex : en banque : siége et agences
 - _ sur la sécurité du système
 - ex : droits d'accès à la base

→ 2éme NIVEAU DE DECOUPAGE :

- _ identification des modules
- _ l'identification des modules → suivi d'un découpage plus fin
 - 1 module \rightarrow \sum sous-modules

→ approche statique :

- _ repérer les principales entités (cas du modèle conceptuel Entité / Relation)
- _ une Entité principale = un module

_ exemple :

gestion des valeurs mobiliéres

3 entités principales

Valeur mobiliére

Ordre de bourse

Ecriture comptable

→ 3 modules

→ Base valeur

→ Ordre de bourse

→ Comptabilité

→ approche dynamique :

_ repérer les principaux processus du domaine

_ un Processus = un module

_ exemple :

gestion des valeurs mobiliéres le module Ordre de bourse

- **→** 2 sous-modules par découpage dynamique
 - → carnets d'ordres
 - **→** dénouement

- (a) = découpage structurel par la statique
- (b) = découpage structurel par la dynamique

LE DECOUPAGE TEMPOREL STANDARD:

→ CAS DE FIGURE :

→ applications usuelles :

 $_$ projets industriels $\,$ avec $\,$ ciblage des différentes étapes dans le temps

→ <u>le découpage type :</u>

→ détail :

_ Etude de faisabilité :

analyse, étude

ex : organisation du travail et contraintes

Définition de solutions :

moyens à utiliser par rapport aux objectifs

ex: prototypes, maquettes, ..

_ Conception détaillée :

cahier des charges, contrats de réalisation, ..

Réalisation: exécution du cahier des charges ex : développement par sous-traitant → conséquence : _ avoir un ordonnancement rigoureux des interventions au cours du temps _ efforts variables selon les étapes : en projets industriels → 90% effort + dépenses en réalisation → PROBLEMES POSES : **→** cahier des charges : _ notion variable _ cas : cc d'analyse , cc de conception , cc de réalisation → postulat de travail : _ le client a une description complète de ses besoins or zones d'incertitudes → particularités des projets SI : **_ construction progressive (allers-retours)** nouveaux besoins en cours _ la spécification = enjeu majeur les étapes d'analyse et conception de projet SI # 40% du budget l'élaboration du cahier des charges de réalisation = coûteux _ peu de réutilisation des modules _ ex : mise à jour de Personnes en gestion Client _ ex : AGL donnent des métamodéles et non des modéles concrets <> de l'industrie avec l'usage de la CAO → CONSEQUENCE EN PROJET SI : → vision partielle de l'objectif à atteindre :

_ exemples :

ex : conception des procédures, coordination des sous-traitants

```
_ ex : 1991 _ projet Relit ( règlement – livraison de titres )

→ problèmes de temps de réponse liés au réseau

_ ex : BNF _ résultats différents par rapport aux attentes des utilisateurs

_ écarts par rapport à l'évolution de l'état de l'art technique

( démarrage des études vers 1990 )

_ ex : Passage à l'euro et cartes bancaires

→ problèmes de saturation des serveurs ( 2002 )

→ la gestion de projet SI doit s'intéresser à l'ensemble du cycle :

_ nota : inclure les rôles et la concertation des acteurs
```

→ COMPARAISON DES METHODES ET NORMES:

MERISE	SDMS
Schéma Directeur	
Etude préalable :	
Observation	DBS (définition
	besoins du
	systéme)
Conception/organisation	CAS (conception
	architecture
Appréciation	systéme)
Etude détaillée	SES (spécifications externes du système)
Etude technique	SIS (spécifications internes
Réalisation	du système)
	Programmation
	Tests
Mise en œuvre	Conversion
	Installation
Qualification	Bilan
	Schéma Directeur Etude préalable : Observation Conception/organisation Appréciation Etude détaillée Etude technique Réalisation Mise en œuvre

→ ETAPES DANS LE CAS DE MERISE :

→ Enchaînement des Etapes :

→ le Schéma Directeur :

→ objectif:

```
_ scénario d'évolution ( à long terme ) du système d'information
_ établi selon 3 axes :
_ l'architecture technique
_ l'architecture applicative
_ la fonction informatique ( métiers , outils , ..)
```

→ champ d'action :

_ la structure entière ou un secteur (= SD sectoriel)

→ <u>résultat :</u>

- _ situation de l'existant
- _ diagnostic
- _ 2 ou plusieurs scénarii d'évolution
- **→** indications plus fines :
 - = objectifs et priorités par Domaine et Application

→ l'Etude préalable :

- _ elle correspond au point de départ du cycle de vie d'un SI pour un domaine .
 - _ incluse ou non dans le Schéma Directeur

ex : refontes informatiques suite à fusions d'entreprises

ex : passage des applications du mode caractère au mode graphique

_ 2 objectifs :

→ faire des choix structurants pour le futur SI

ex : connexions à distance entre sites

ex : applications de saisies via Internet

- → le rapport d'étude préalable
 - = Cahier des charges de l'étude détaillée

3 phases de l'étude préalable : → la phase = observation : _ permet la représentation du domaine _ le résultat = structurer le domaine en processus ex : modélisation des données : en WBS, choix de sous-ensemble représentatif **→** la phase = conception-organisation : _ pour proposer 1 ou plusieurs solutions en conception et organisation le résultat = modèle de données consolidé + 1 variante pour chaque processus → la phase = appréciation : pour faire un bilan des avantages attendus et des coûts (étude de rentabilité) et pour avoir un plan pour la suite du projet le résultat : découpage en sous-projets ex : découpage structurel = 1 sous-projet par processus → l'Etude détaillée : _ objectif = concevoir de façon complète la solution du champ d'étude _ moyen : concertation des utilisateurs et informaticiens _ résultat : → cahier des charges pour la réalisation : ex: interfaces homme-machine (maquettes); description détaillée des traitements ; éditions (maquettes d'état) → organisation et planning détaillé → l'Etude technique: objectif =

_ optimiser les structures physiques des données

construire et optimiser les traitements ex : réutilisation de sous-fonctions sous-programmes résultat : _ normes techniques _ dossiers de programmes _ structures physiques des données _ complément au cahier des charges de réalisation **Important:** le choix de l'architecture technique (langage, base, ..) = discussion sur l'étape de décision → à l'étude préalable → ou à l'étude technique → la réalisation : _ objectif = développer un logiciel (avec tests) les tâches : → jeux d'essais **→** programmation **→** tests unitaires **→** tests fonctionnels → tests d'intégration (= mêmes situations qu'en réel) _ résultat = mise à la Recette par le client → la mise en œuvre : _ objectif = préparer le démarrage effectif de la nouvelle application les tâches : → paramétrage de l'application → reprise des données → interfaces spécifiques (avec d'autres applications « externes ») **→** formation des utilisateurs → installation de l'environnement d'exploitation _ les points sensibles : **→** la migration des données

→ la recette

ex: sites pilotes

→ le basculement de l'ancien au nouveau système

_ les améliorations :

- → avoir des sites pilotes au préalable
- → gérer la coexistence de l'ancien et nouveau système

→ la qualification :

```
_ objectif =
    _ tester dans l'environnement réel
    _ et faire un bilan-qualité du nouveau SI
_ résultat :
    améliorations à apporter
    réévaluations
    ex : réseau → amélioration des temps de réponse
```

LES MODELES DE DEVELOPPEMENT:

→ BUT:

_ construire le découpage temporel en tenant compte des caractéristiques propres à l'entreprise et au projet

exemple:

projet de numérisation de documents = fort consommateur en ressources

→ prise en compte des contraintes d'organisation

→ DEMARCHE :

_ découpage à l'aide de modèles de développement

→ LE MODELE DU CODE-AND-FIX :

→ principe :

repose sur la détermination facile des besoins

→ suivi de plusieurs cycles de mise au point

→ schéma :

- → exemple:
 projet internet de saisie (1998/2000)
 → plusieurs modules distincts
 → évaluation de l'ergonomie pour chaque module

→ LE MODELE DE LA TRANSFORMATION AUTOMATIQUE :

→ principe :

basé sur la possibilité de transformer automatiquement des spécifications en programmes

effort sur la qualité des spécifications

→ schéma :

→ exemple :

- _en informatique industrielle
- _ projet internet : site statique (outils de type frontpage)
 - _ approche orientée objet

→ LE MODELE DE LA CASCADE:

→ <u>but :</u>

- _ cadrer l'ensemble du cycle de développement
- _ préciser les rôles des différents acteurs (client , fournisseur , ..)

→ <u>limite</u>:

_ le client ou le fournisseur se retrouve à travailler seul

→ schéma :

→ exemple :

- _ grands projets Banque
- _ cas de sous-traitance

→ LE MODELE EN V:

→ <u>but :</u>

- _ réduire l'effet « tunnel » (pas de visibilité sur l'ensemble)
- _ empêcher que le fournisseur travaille seul

→ <u>démarche</u>:

- _ on suppose que la validation des documents est insuffisante
- _ dans les différentes phases (1ére branche) , on explicite les critères d'appréciation pour les bilans ou les tests (2éme branche)
 - _ ex : en Etude détaillée
 - ==> on établit un jeu d'essais pour la Recette fonctionnelle
 - _ ex : en Définition des besoins
 - ==> on fait une validation par un site pilote (Bilan site pilote)

→ schéma :

- **→** <u>exemple :</u>
- _ projets à plusieurs intervenants (Banque , industrie)
- → extension pour les grands projets :
- _ décomposition du système en sous-ensembles
 - _ revient à établir un modèle en V avec ses composants

→ LE MODELE EN W:

→ <u>but :</u>

- _ extension du modèle en V
- _ la définition des besoins et la conception = donner les orientations et les solutions avec le client
- _ le développement des maquettes et prototypes = valider ou expérimenter

→ schéma :

→ exemple :

 $_projets \ avec \ innovations \ technologiques \ (\ cas:industrie\)$

→ LE MODELE DE DEVELOPPEMENT EVOLUTIF:

→ <u>but :</u>

- _ construire le système de façon progressive
- _ chaque cycle de développement aboutit à une version améliorée du système
 - _ arrêt quand le client est satisfait

→ contexte :

- _ cas : l'objectif reste imprécis
- _ cas : les besoins ne peuvent s'exprimer qu'après expérimentation

→ schéma :

→ exemple :

_ projet gestion de patrimoine (1998) plusieurs approches possibles : aspect finance aspect gestion aspect SIG (plans, photos)

→ LE MODELE EN SPIRALE:

(spiral model)

→ <u>but :</u>

_ modèle proche du modèle évolutif

_l'enjeu = formaliser les relations contractuelles entre le client et le fournisseur

en conséquence : formaliser les engagements et les validations

→ démarche :

_ chaque cycle donne lieu à un accord contractuel préalable ceci s'appuie sur les besoins exprimés lors du cycle précédent

_ un cycle correspond à une étape ayant les 6 phases suivantes : analyse du risque développement d'un prototype simulation et essais du prototype détermination des besoins à partir des résultats des essais validation des besoins par un comité de pilotage planification du cycle suivant

_ le dernier cycle = version finale et implémentation (mise en production)

→ schéma:

→ exemple :

__conception de produit nouveau en informatique industrielle

→ RECAPITULATIF : association : niveau de difficulté - Effort

LES DECOUPAGES TEMPORELS SPECIFIQUES:

→ RAPPEL: _ une méthode ou un type de projet particuliers. _ cas de figure : le découpage accompagnant la méthode RAD le découpage adéquat pour mettre en place un progiciel intégré (ERP) → LE CYCLE RAD: → contexte : _ lié à la méthode RAD de développement rapide des applications → but : _ obtenir une application de qualité en un délai réduit → modalité : _ mise en place d'une participation organisée et contrôlée des utilisateurs _ à chaque phase: une session participative entre le groupe de travail et le groupe utilisateur

→ structure d'une phase dans le cycle RAD:

→ combinaison de modèles dans le cycle RAD:

→ le cycle RAD:

→ intérêt:

- _ accent mis sur le partenariat client-fournisseur
- _ enjeu pour les projets à délai réduit (prime à la nouveauté)

→ <u>exemples</u> :

- _ ex : lors d'appels d'offre
- _ ex : marché des progiciels documentaires

introduction de la GED

introduction des accés internet

→ LE CYCLE PROGICIEL INTEGRE:

→ <u>dénomination</u> :

- **_ ERP = enterprise resource planning**
- _ correspond au progiciel de gestion intégré
- _ exemple :

SI des banques et assurances dans les années 1990

→ but:

- _ avoir un système global , qui améliore les performances de
- l'entreprise
 - _ couverture large des métiers de l'entreprise

→ <u>les étapes :</u>

- _ 2 étapes paralléles
 - **→** la description des processus
 - → la formation au progiciel

→ le cycle ERP :

BILAN:

le choix d'un modèle de développement dépend :

- _ des caractéristiques du projet
- _ de l'analyse des risques

_ exemple :

ex: grand projet ou petit projet

ex : besoins définis précisement ou non

- → conjuguer le découpage temporel avec le découpage structurel
- → vue prioritaire : construire une version concrète et adaptée ex : modules fondamentaux pour un SI de base

→ en conséquence : construire un plan de développement

COMPLEMENT au DECOUPAGE DE PROJET: LE CYCLE RAD

→ RAPPEL :

pour chaque phase, décomposition en 3 sessions : session ou travaux de participation session participative session ou travaux de conclusion → l'étape : INITIALISATION _ nomination et prise en charge par 2 chefs de projet : utilisateur (CPU) et informatique (CPI) assistés de l'expert RAD comprend 2 phases : → phase Diagnostic : _ formaliser les caractéristiques du projet **→** phase Mobilisation : _ constituer l'équipe de projet et établir l'organisation du projet (planning,méthode,..) → l'étape : EXPRESSION DES BESOINS _ par le chef de projet utilisateur (CPU) et l'équipe d'utilisateurs (équipe JRP _ parfois assistés du CPI et de l'expert RAD _ comprend 1 phase : → phase JRP (Joint Requirement Planning) ou « planification conjointe des besoins »: décomposée en 3 parties : _ description de l'existant formaliser les besoins et les fonctions du future système _ contraintes du projet → l'étape : CONCEPTION _ pilotée par le CPU (phase JAD1) puis par le CPI (phase JAD2) assistés par l'expert RAD

_ intervention du groupe d'utilisateurs _ but : obtenir un dossier de conception

_ JAD (Joint Application Design) = technique de conception participative d'application _ comprend 2 phases :
→ phase JAD1 : _ établir, en concertation avec les utilisateurs,
 → phase JAD2 : _ consolider les modèles de la phase JAD1 _ conception détaillée des fonctions ; _ échantillon de maquettes _ planifier le prototypage (estimation du nombre de cycles)
→ l'étape : CONSTRUCTION
 pilotée par le CPI intervention des développeurs , appelés « prototypeurs » participation du groupe d'utilisateurs et le CPU durée limitée par le time-box : N cycles de développement comprend autant de phases que de cycles initialement définis
_ le prototype du cycle (i) comprend le développement des fonctions définies par le planning de prototypage de l'étape Conception prise en compte des demandes précédentes d'évolution et de
correction _ mise à jour des référentiels :
→ la phase du cycle N

_ mise à jour des référentiels : modèles, dictionnaires de données, dictionnaire des régles

→ l'étape : MISE EN ŒUVRE

- _ pilotée par les 2 chefs de projet (CPU et CPI)
- _ participation des groupes d'utilisateurs et des développeurs
- _but : préparer l'installation de l'application et de son environnement d'exploitation
- cas d'une mise en œuvre évolutive :

but d'installer une 1ére version de production puis amélioration successive par d'autres versions

_l'étape comprend 1 seule phase :

→ la phase de mise en œuvre :

- _ optimiser les structures de données
- _ préparer la documentation :

documentation de formation utilisateurs documentation d'exploitation

- _ préparer la migration
- _ formation des utilisateurs
- _ préparer la recette
- _ planifier l'installation

→ VARIANTES DU CYCLE RAD:

- _ faible variation par rapport au cycle RAD de base
 - → variante sur les techniques utilisées :

ex: méthode d'estimation des charges

ex : réduire les durées des sessions JRP ou JAD

- **→** variante sur les acteurs :
- $_$ toujours participation active des utilisateurs par la « session participative »
- _ pilotage des étapes par les chefs de projet CPU ou CPI ou en binôme

→ LES ACTEURS DE LA METHODE RAD:

→ les acteurs du pilotage :

- → le binôme des 2 chefs de projet utilisateur (CPU) informatique (CPI)
- → l'expert RAD extérieur au projet ex : consultant

→ les acteurs du contrôle :

→ le propriétaire

ex : entreprise ou entité de l'entreprise

→ le comité de pilotage : rôle réduit à la validation dans le cas du RAD

→ les acteurs du contenu :

- → l'équipe JRP : groupe d'utilisateurs pour la phase JRP (expression des besoins)
- → l'équipe JAD1 :
 groupe d'utilisateurs pour la phase JAD1 (conception générale)
 nota : comprend une partie ou totalité de l'équipe JRP
- → l'équipe JAD2 :

groupe d'utilisateurs pour la phase JAD2 (conception détaillée) nota : composition proche de l'équipe JAD2 + utilisateurs opérationnels du futur SI

→ l'équipe de construction : elle comprend :

_l'équipe de prototypage :

« prototypeurs » (informaticiens, utilisateurs à compétence

sachant manipuler les outils de développement rapide (comme un AGL)

quelques éléments de l'équipe JAD2 (pour assurer la continuité avec la Conception)

→ l'équipe de mise en œuvre :

_ groupe d'utilisateurs opérationnels

_ nota : issus ou non des équipes JRP, JAD

→ les acteurs du système informatisé :

→ l'équipe de prototypage :

« prototypeurs » (informaticiens, utilisateurs à compétence technique,..)

sachant manipuler les outils de développement rapide (comme

un AGL)

→ les acteurs spécifiques :

- _ un modèlisateur (ou concepteur) lors des phases JRP, JAD
- _ un Administrateur du référentiel :

réutilisation des composants, (modéles données,

traitement, ..)

respect des normes

_ parfois un ergonome

LA RELATION RÔLE/ETAPE:

INITIALISATION D	EXPRESSION DES BESOINS	CONCEPTION	CONSTRUCTION	MISE EN ŒUVRE	
		,			
BINOME CHEFS PROJET					

EXPERT RAD

EQUIPE DE PROTOTYPAGE

EQUIPE JRP	EQUIPE JAD	EQUIPE CONSTRUCTION CEUVRE
		ŒUVRE