(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 16. Mai 2002 (16.05.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/38932 A1

(51) Internationale Patentklassifikation?: F01N 3/023, 9/00, F02D 41/40

F02D 41/02,

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

(21) Internationales Aktenzeichen:

PCT/DE01/03884

(22) Internationales Anmeldedatum:

10. Oktober 2001 (10.10.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

11. November 2000 (11.11.2000)

(75) Erfinder/Anmelder (nur für US): SCHALLER, Johannes [DE/DE]; Poststr. 34, 71229 Leonberg (DE).

WEBER, Georg [DE/DE]; Kling-Klang-Str. 44, 74336 Brackenheim-Stockheim (DE). HARNDORF, Horst [DE/DE]; Auenweg 25, 71701 Schwieberdingen (DE).

KHATCHIKIAN, Peter [DE/DH]; Goyatzer Strasse 31,

03044 Cottbus (DE).

(72) Erfinder; und

100 56 016.4

DE

(81) Bestimmungsstaaten (national): JP, KR, RU, US.

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD AND DEVICE FOR CONTROLLING AN EXHAUST GAS AFTERTREATMENT SYSTEM

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR STEUBRUNG EINES ABGASNACHBEHANDLUNGSSYS-TEMS

WO 02/38932 AJ

- (57) Abstract: The invention relates to a method and device for controlling an exhaust gas aftertreatment system, in particular, of an internal combustion engine. A state quantity is determined which characterizes the state of the exhaust gas aftertreatment system. The temperature of the exhaust gas aftertreatment system is controlled according to the state of the exhaust gas aftertreatment system and/or of the internal combustion engine.
- (57) Zusammenfassung: Es werden ein Verfahren und eine Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems, insbesondere bei einer Brennkraftmaschine, beschrieben. Eine Zustandsgrösse, die den Zustand des Abgasnachbehandlungssystems charakterisiert wird ermittelt. Die Temperatur des Abgasnachbehandlungssystems wird abhängig vom Zustand des Abgasnachbehandlungssystems und/oder der Brennkraftmaschine gesteuert.

WO 02/38932 A1

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

-- mit internationalem Recherchenbericht

WO 02/38932 PCT/DE01/03884

Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems

Stand der Technik

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems, insbesondere bei einer Brennkraftmaschine.

Ein Verfahren und eine Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems einer Brennkraftmaschine sind beispielsweise aus der DE 199 06 287 bekannt. Dort beinhaltet das Abgasnachbehandlungssystem wenigstens ein Partikelfilter, der insbesondere bei direkteinspritzenden Brennkraftmaschinen eingesetzt wird. Bei diesem Verfahren wird eine Zustandsgröße, die den Zustand des Abgasnachbehandlungssystems charakterisiert, erfasst. Beim Stand der Technik handelt es sich hierbei um die Beladung des Partikelfilters. Überschreitet diese Zustandsgröße, d. h. die Beladung des Partikelfilters, bestimmte Werte, leitet die Vorrichtung einen Sonderbetriebszustand ein, bei dem der Partikelfilter durch geeignete Maßnahmen regeneriert wird. Insbesondere ist vorgesehen, dass zusätzlich Kraftstoff in den Abgastrakt gelangt, der in einem Oxidationskatalysator oxidiert wird, um die Abgastemperatur zu erhöhen.

Zur Einleitung und/oder zur Durchführung der Regeneration des Partikelfilters wird zusätzlicher Kraftstoff benötigt, der entweder mittels einer zusätzlichen Zumesseinrichtung im Abgastrakt oder mittels der üblichen Stellglieder zur Kraftstoffeinspritzung zugemessen wird. Nachteilig ist, dass die Regeneration den Kraftstoffverbrauch erhöht. Desweiteren ist es möglich, dass sich die Abgastemperatur im Partikelfilter aufgrund der Regeneration auf unzulässig hohe Werte erhöht.

Vorteile der Erfindung

5

10

Dadurch, dass die Temperatur im Abgasnachbehandlungssystem,
insbesondere im Partikelfilter, abhängig vom Zustand des
Abgasnachbehandlungssystems und dem Zustand der
Brennkraftmaschine auf einen Wert gesteuert oder geregelt
wird, kann der Kraftstoffmehrverbrauch im
Sonderbetriebszustand deutlich reduziert werden. Desweiteren
können für den Sonderbetriebszustand notwendigen
Temperaturen sicher eingehalten werden.
Temperaturabweichungen zu kleinen oder zu großen Werten
treten nicht auf.

Hierzu erfolgt eine Steuerung der Temperatur des
Abgasnachbehandlungssystems, insbesondere der Temperatur vor
dem Partikelfilter, in Abhängigkeit des Zustandes des
Abgasnachbehandlungssystems und der Brennkraftmaschine.

Dabei erfolgt bei einer Ausgestaltung keine Rückkopplung der
tatsächlichen Temperatur vor dem Partikelfilter, sondern es
wird lediglich auf die Temperatur vor dem Partikelfilter
geschlossen oder anhand anderer Kriterien entschieden, ob
die Regeneration zu beenden ist. Insbesondere wird die
Temperatur vor dem Oxidationskatalysator, die der
Abgastemperatur der Brennkraftmaschine entspricht, als

10

15

20

25

30

35

wesentliche Größe berücksichtigt. Diese Größe kann sowohl gemessen und besonders vorteilhaft aus anderen Betriebskenngrößen, wie Last und Drehzahl bestimmt werden.

Besonders vorteilhaft ist eine Ausführungsform, bei der die Steuerung derart ausgebildet ist, dass die Temperatur vor dem Partikelfilter gemessen und mit dem Sollwert verglichen, und ausgehend von diesem Vergleich die zusätzliche Kraftstoffmenge bestimmt wird.

Besonders vorteilhaft ist es, wenn der Sonderbetriebszustand in wenigstens zwei Phasen aufgeteilt wird. Vorzugsweise nimmt in einer ersten Phase die Menge an unverbranntem Kraftstoff im Abgas im Laufe der Zeit zu. In einer zweiten Phase nimmt die Menge an unverbrannten Kraftstoff im Abgas vor dem Oxidationskatalysator einen konstanten Wert an.

Durch diese Vorgehensweise kann erreicht werden, dass die Temperatur gemäß einer erwünschten Funktion, das heißt nicht zu schnell und nicht zu langsam ansteigt. Vorzugsweise ist vorgesehen, dass die Temperatur einen konstanten Wert annimmt, oder die Steuergrößen werden so nachgeführt, dass die Temperatur vor dem Partikelfilter auch bei variablem Betriebszustand der Brennkraftmaschine konstant bleibt. Bei einem zu langsamen Anstieg, dauert der Sonderbetriebszustand zu lange. Bei einem zu schnellen Anstieg kann der Partikelfilter beschädigt werden, und es kann unverbrannter Kraftstoff in die Umgebung gelangen.

Dadurch, dass die Dauer der ersten und/oder der zweiten
Phase vorgegeben wird, kann die zusätzliche Kraftstoffmenge
sehr gut an den aktuellen Betriebszustand angepasst werden.

Dadurch dass die zweite Phase endet, wenn die Regeneration beginnt, kann einerseits die Regeneration beschleunigt und

WO 02/38932 PCT/DE01/03884

anderseits der Verbrauch an Kraftstoff weiter minimiert werden.

Besonders vorteilhaft ist eine Weiterbildung, bei der in einer dritten Phase die Menge an unverbranntem Kraftstoff zeitweise auf den konstanten Wert, vorzugsweise uaf den Wert der zweiten Phase gesetzt wird.

Zeichnung

10

15

35

5

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigt Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 ein Flussdiagramm des erfindungsgemäßen Verfahrens und Figur 3 den zeitlichen Verlauf der Mehrmenge.

Beschreibung der Ausführungsbeispiele

In Figur 1 sind die wesentlichen Elemente eines 20 Abgasnachbehandlungssystems einer Brennkraftmaschine dargestellt. Die Brennkraftmaschine ist mit 100 bezeichnet. Ihr wird über eine Frischluftleitung 105 Frischluft zugeführt. Die Abgase der Brennkraftmaschine 100 gelangen über eine Abgasleitung 110 in die Umgebung. In der Abgasleitung ist ein Abgasnachbehandlungssystem 115 25 angeordnet, das in der dargestellte Ausführungsform einen Katalysator 115a und einen Partikelfilter 115b beinhaltet. Desweiteren ist es möglich, dass mehrere Katalysatoren für unterschiedliche Schadstoffe oder Kombinationen von 30 wenigstens einem Katalysator und einem Partikelfilter vorgesehen sind.

> Desweiteren ist eine Steuereinheit 170 vorgesehen, die wenigstens eine Motorsteuereinheit 175 und eine Abgasnachbehandlungssteuereinheit 172 umfaßt. Die

30

35

Motorsteuereinheit 175 beaufschlagt ein
Kraftstoffzumesssystem 180 mit Ansteuersignalen. Die
Abgasnachbehandlungssteuereinheit 172 beaufschlagt die
Motorsteuereinheit 175 und bei einer Ausgestaltung ein
Stellelement 182, das in der Abgasleitung vor dem
Abgasnachbehandlungssystem oder im
Abgasnachbehandlungssystem angeordnet ist, mit
Ansteuersignalen.

10 Desweiteren sind verschiedene Sensoren vorgesehen, die die Abgasnachbehandlungssteuereinheit und die Motorsteuereinheit .mit Signalen versorgen. So ist wenigsten ein erster Sensor 194 vorgesehen, der Signale liefert, die den Zustand der Luft charakterisiert, die der Brennkraftmaschine zugeführt 15 wird. Ein zweiter Sensor 177 liefert Signale, die den Zustand des Kraftstoffzumesssystems 180 charakterisieren. Wenigsten ein dritter Sensor 191 liefert Signale, die den Zustand des Abgases vor dem Abgasnachbehandlungssystem charakterisieren. Wenigsten ein vierter Sensor 193 liefert 20 Signale, die den Zustand des Abgasnachbehandlungssystems 115 charakterisieren. Desweiteren liefert wenigstens ein Sensor 192 Signale, die den Zustand der Abgase nach dem Abgasnachbehandlungssystem charakterisieren. Vorzugsweise werden Sensoren, die Temperaturwerte und/oder Druckwerte erfassen verwendet. Desweiteren können auch Sensoren 25 eingesetzt werden, die die chemische Zusammensetzungen des Abgases und/oder der Frischluft charakterisieren. Hierbei handelt es sich bspw. um Lambdasensoren, NOX-Sensoren oder HC-Sensoren.

> Mit den Ausgangssignalen des ersten Sensors 194, des dritten Sensors 191, des vierten Sensors 193 und des fünften Sensors 192 wird vorzugsweise die Abgasnachbehandlungssteuereinheit 172 beaufschlagt. Mit den Ausgangssignalen des zweiten Sensors 177 wird vorzugsweise die Motorsteuereinheit 175

beaufschlagt. Es können auch weitere nicht dargestellte Sensoren vorgesehen sein, die ein Signal bezüglich des Fahrerwunsches oder weitere Umgebungs- oder Motorbetriebszustände charakterisieren.

5

Besonders vorteilhaft ist es, wenn die Motorsteuereinheit und die Abgasnachbehandlungssteuereinheit eine bauliche Einheit bilden. Es kann aber auch vorgesehen sein, dass diese als zwei Steuereinheiten ausgebildet sind, die räumlich voneinander getrennt sind.

10

15

20

Im folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel eines Partikelfilters, der insbesondere bei direkteinspritzenden Brennkraftmaschinen verwendet wird, beschrieben. Die erfindungsgemäße Vorgehensweise ist aber nicht auf diese Anwendung beschränkt, sie kann auch bei anderen Brennkraftmaschinen mit einem Abgasnachbehandlungssystem eingesetzt werden. Insbesondere kann sie eingesetzt werden, bei Abgasnachbehandlungssystemen, bei denen ein Katalysator und ein Partikelfilter kombiniert sind. Desweiteren ist bei Systemen einsetzbar, die lediglich mit einem oder mehreren Katalysatoren und/oder einem oder mehreren Speicherelementen für gasförmige Abgasbestandteile ausgestattet sind.

25

30

35

Ausgehend von den vorliegenden Sensorsignalen berechnet die Motorsteuerung 175 Ansteuersignale zur Beaufschlagung des Kraftstoffzumesssystems 180. Dieses mißt dann die entsprechende Kraftstoffmenge der Brennkraftmaschine 100 zu. Bei der Verbrennung können im Abgas Partikel entstehen. Diese werden von dem Partikelfilter im Abgasnachbehandlungssystem 115 aufgenommen. Im Laufe des Betriebs sammeln sich in dem Partikelfilter 115 entsprechende Mengen von Partikeln an. Dies führt zu einer Beeinträchtigung der Funktionsweise des Partikelfilters

. 5 .

10

15

20

25

30

35

und/oder der Brennkraftmaschine. Deshalb ist vorgesehen, dass in bestimmten Abständen bzw. wenn der Partikelfilter einen bestimmten Beladungszustand erreicht hat, ein Regenerationsvorgang eingeleitet wird. Diese Regeneration kann auch als Sonderbetrieb bezeichnet werden.

Der Beladungszustand wird bspw. anhand verschiedener Sensorsignale erkannt. So kann zum einen der Differenzdruck zwischen dem Eingang und dem Ausgang des Partikelfilters 115 ausgewertet werden. Zum anderen ist es möglich den Beladungszustand ausgehend von verschiedenen Temperaturund/oder verschiedenen Druckwerten zu ermitteln. Desweiteren können noch weiter Größen zur Berechnung oder Simulation des Beladungszustands herangezogen werden. Eine entsprechende Vorgehensweise ist bspw. aus der DE 199 06 287 bekannt.

Erkennt die Abgasnachbehandlungssteuereinheit, dass der Partikelfilter einen bestimmten Beladungszustand erreicht hat, so wird die Regeneration initialisiert. Zur Regeneration des Partikelfilters stehen verschiedene Möglichkeiten zur Verfügung. So kann zum einen vorgesehen sein, dass bestimmte Stoffe über das Stellelement 182 dem Abgas zugeführt werden, die dann eine entsprechende Reaktion im Abgasnachbehandlungssystem 115 hervorrufen. Diese zusätzlich zugemessenen Stoffe bewirken unter anderem eine Temperaturerhöhung und/oder eine Oxidation der Partikel im Partikelfilter. So kann bspw. vorgesehen sein, dass mittels des Stellelements 182 Kraftstoffstoff und/oder Oxidationsmittel zugeführt werden.

Bei einer Ausgestaltung kann vorgesehen sein, dass ein entsprechendes Signal an die Motorsteuereinheit 175 übermittelt wird und diese eine so genannte Nacheinspritzung, insbesondere eine eine späte Nacheinspritzung, durchführt. Mittels der Nacheinspritzung ist es möglich, gezielt Kohlenwasserstoffe in das Abgas einzubringen, die über eine Temperaturerhöhung zur Regeneration des Abgasnachbehandlungssystems 115 beitragen.

Üblicherweise ist vorgesehen, dass der Beladungszustand ausgehend von verschiedenen Größen bestimmt wird. Durch Vergleich mit einem Schwellwert werden die unterschiedlichen Zustände erkannt und abhängig vom erkannten Beladungszustand die Regeneration eingeleitet.

10

15

30

25

5

Bei der dargestellten Ausführungsform beinhaltet das Abgasnachbehandlungssystem 115 eine Oxidationskatalysator 115a sowie einen nachgeschalteten Partikelfilter 115b. Die Temperatur TV vor dem Katalysator wird vorzugsweise mit dem Sensor 191 erfasst. Die Temperatur TN nach dem Katalysator, die der Temperatur vor dem Partikelfilter entspricht, wird mittels des Sensors 193 erfasst. Desweiteren ist ein Sensor 192 vorgesehen, der den Differenzdruck zwischen dem Ein- und Ausgang des Partikelfilters 115b ermittelt. Desweiteren ist eine Einrichtung 182 vorgesehen, die Kraftstoff in den Abgastrakt, insbesondere in die Abgasleitung 110 vor dem Oxidationskatalysator, einbringt. Alternativ hierzu kann auch vorgesehen sein, dass durch geeignete Ansteuerung des Stellglieds 180 Kraftstoff über die Brennräume in den Abgastrakt gelangt. Wesentlich ist, dass unverbrannter Kraftstoff in den Oxidationskatalysator gelangt. Dabei wir auch unvollständig verbrannter Kraftstoff, der im Oxidationskatalysator umgesetzt werden kann, als unverbrannter Kraftstoff bezeichnet.

30

Die verschiedenen Größen bezüglich der Temperatur und der Druckdifferenz können mit den dargestellten Sensoren erfasst oder von der Steuereinheit 170 ausgehend von anderen Messwerten und/oder Ansteuersignalen, die in der

٠0

ι5

30

15

10

.5

Steuereinheit 170 vorliegen, berechnet und/oder simuliert werden.

Die in den Abgastrakt eingebrachte Kraftstoffmenge reagiert in dem Oxidationskatalysator und wird dort vorzugsweise in einer flammenfreien Verbrennung verbrannt. Dies führt zu einer Erhöhung der Temperatur nach dem Oxidationskatalysator 115a. Erfindungsgemäß wird eine solche Kraftstoffmenge zugemessen, dass die Temperatur sich auf einen solchen Wert erhöht, der für die Regeneration des Partikelfilters erforderlich ist. Die Regeneration des Partikelfilters erfolgt bei Temperaturen oberhalb eines bestimmten Werts, der in Abhängigkeit von der Ausgestaltung des Abgasnachbehandlungssystems und der Beschaffenheit der Partikelschicht im Filter zwischen ca. 300°C und ca. 650°C liegt.

Bei zu hohen Abgastemperaturen kann der Fall eintreten, dass der Partikelfilter durch Überhitzung geschädigt wird. Es ist insbesondere problematisch, wenn eine große Partikelmenge im Filter umgesetzt und dies zu einer weiteren Temperaturerhöhung führt. Ist andererseits die Abgastemperatur zu gering und/oder der Gasvolumenstrom im Abgas zu groß, so wird nur ein Teil des Kraftstoffes im Oxidationskatalysator umgesetzt und der Rest gelangt unverbrannt in die Umwelt.

Im Folgenden wird die erfindungsgemäße Vorgehensweise anhand des Flussdiagrammes gemäß der Figur 2 beschrieben. In einem ersten Schritt 200 wird der Beladungszustand des Partikelfilters bestimmt, d. h. es wird eine Zustandsgröße P, die den Zustand des Abgasnachbehandlungssystems charakterisiert, ermittelt. Diese Zustandsgröße charakterisiert die im Partikelfilter 115b angesammelte Rußmasse. Die Bestimmung der Zustandsgröße P kann auf

unterschiedliche Weise erfolgen. So kann beispielsweise vorgesehen sein, dass die Zustandsgröße ausgehend von verschiedenen Betriebsparametern der Brennkraftmaschine und weiteren Größen simuliert wird. So kann beispielsweise die Zustandsgröße ausgehend von der eingespritzten Kraftstoffmenge, der Drehzahl und weiteren Größen, über die Zeit aufintegriert werden. Hierzu wird die erzeugte Rußmasse für jeden Betriebspunkt aus einem Kennfeld ausgelesen und aufsummiert. Bei einer weiteren bevorzugten Ausführungsform wird der Druckverlust über den Partikelfilter gemessen. Hierzu wird vorzugsweise ein Differenzdrucksensor eingesetzt, der eine Druckgröße liefert, die dem Differenzdruck zwischen Ein- und Ausgang des Partikelfilters entsprecht.

15

20

25

30

35

10

5

Die anschließende Abfrage 210 überprüft, ob die Zustandsgröße P größer als ein Schwellenwert PSW ist. In diesem Fall ist eine Regeneration des Partikelfilters erforderlich. Ist dies nicht der Fall, so erfolgt erneut Schritt 200.

Ist eine Regeneration erforderlich, so folgt die Abfrage 210. Die Abfrage 210 überprüft, ob ein Betriebspunkt vorliegt, der günstig für eine Regeneration ist. Günstige Betriebspunkte sind Betriebspunkte, bei denen die Abgastemperatur nicht zu kleine Werte und der Gasstrom nicht zu große Werte annimmt. Solche Betriebspunkte liegen vorzugsweise vor, wenn die eingespritzte Kraftstoffmenge große Werte annimmt, so wird in der einfachsten Ausführungsform überprüft, ob die Kraftstoffmenge QK, die eingespritzt wird, größer als ein Schwellenwert QKSW ist. Ferner kann vorgesehen sein, dass überprüft wird, ob der Quotient aus eingespritzter Kraftstoffmenge QK und dem Gasstrom größer als ein Schwellenwert ist. Ist dies nicht der Fall, folgt erneut Schritt 200.

Ist der Betriebspunkt günstig, so folgt der Schritt 230, in dem die Regeneration eingeleitet wird. Alternativ zu den Abfragen 210 und 220 können auch andere Vorgehensweisen verwendet werden, um zu entscheiden, ob eine Regeneration durchzuführen ist. Insbesondere kann vorgesehen sein, dass die beiden Abfragen 210 und 220 in ihrer zeitlichen Reihenfolge vertauscht sein können. Desweiteren kann vorgesehen sein, dass weitere Abfragen vorgesehen sind, so z.B. dass bei einer Teilbeladung eine Regeneration nur dann erfolgt, wenn der Betriebspunkt günstig ist. Erreicht die Zustandsgröße einen Wert der wesentlich über dem Schwellwert für die Zustandsgröße liegt, so erfolgt die Einleitung der Regeneration unabhängig vom Betriebspunkt.

15

20

25

30

35

.10

5

In dem Schritt 230 wird die Temperatur TV vor dem Oxidationskatalysator ermittelt. Die Temperatur TV ist hierzu in einem Kennfeld abhängig von verschiedenen Betriebsparametern der Brennkraftmaschine abgelegt. Besonders vorteilhaft ist es, wenn hierbei die Drehzahl N und die Motorlast berücksichtigt werden. Als Lastgröße wird insbesondere die einzuspritzende Kraftstoffmenge verwendet. Besonders vorteilhaft ist es, wenn diese aus dem Kennfeld ausgelesene Größe zur Kompensation der Einflüsse von Außentemperatur und Fahrtwindabkühlung mittels Korrekturfaktoren korrigiert wird. Die Korrekturfaktoren werden dabei abhängig von der Außentemperatur und/oder der Fahrgeschwindigkeit des Fahrzeugs vorgegeben. Vorteilhaft ist, dass alle diese Größen in der Steuereinheit 175 zur Verfügung stehen, und daher keine zusätzlichen Sensoren erforderlich sind.

Im anschließenden Schritt 240 wird der Dosierverlauf festgelegt. Der Dosierverlauf ist durch die zeitliche Abhängigkeit der zusätzlich zugemessenen Kraftstoffmenge QZ

definiert. Vorzugsweise ist vorgesehen, dass während der Dosierung wenigstens zwei Phasen vorgesehen sind. In einer ersten Phase steigt die zusätzliche Menge QZ von dem Wert 0 auf einen konstanten Wert QKZ. Vorzugsweise ist vorgesehen, dass der Anstieg gemäß einer Parabel erfolgt. Alternativ kann auch vorgesehen sein, dass ein linearer Anstieg vorgesehen ist. Der konstante Wert QKZ, auf den die zusätzliche Kraftstoffmenge erhöht wird, wird vorzugsweise ausgehend von der Temperatur TV vor dem Katalysator, der Drehzahl N und der Last der Brennkraftmaschine bestimmt. Dies bedeutet ausgehend von diesen Größen, d. h. der Temperatur vor dem Katalysator der gewünschten Temperatur nach dem Katalysator und weiteren Betriebskenngrößen wie der Drehzahl und der Last, wird die zusätzliche Kraftstoffmenge QZ bestimmt. Diese Bestimmung erfolgt vorzugsweise mittels eines Kennfeldes. Besonders vorteilhaft ist es, wenn die Anfangssteigung des Anstiegs und damit die Dauer des Anstiegs abhängig von der Temperatur vor dem Katalysator vorgebbar ist.

30

25

30

15

15

5

10

In einer weiteren Ausgestaltung der Erfindung wird die Dosiermenge nach Ablauf der ersten Phase so eingestellt, das die Abgastemperatur vor dem Partikelfilter auch dann konstant bleibt, wenn sich der Betriebszustand der Brennkraftmaschine ändert.

In Schritt 250 wird dann die zusätzliche Kraftstoffmenge mit dem vorgegebenen Dosierverlauf zugemessen. Die zusätzliche Kraftstoffmenge QZ kann zum einen unmittelbar dem Abgastrakt zugeführt werden, alternativ kann auch vorgesehen sein, dass die Kraftstoffmenge mittels des für die Kraftstoffzumessung verwendeten Stellglieds zugemessen wird.

In Schritt 260 wird die Temperatur TV vor dem Katalysator laufend ermittelt. Vorzugsweise wird hier ebenfalls ein

Kennfeld oder ein Sensor verwendet. Ändert sich die Temperatur vor dem Katalysator, wird die zusätzlich einzuspritzende Kraftstoffmenge QZ entsprechend neu berechnet und korrigiert.

5

10

15

Die anschließende Abfrage 270 überprüft, ob die Haltezeit abgelaufen ist, d.h. die Abfrage überprüft, ob ausreichend lange zusätzlich Kraftstoff zugeführt wird. Zur Realisierung dieser Abfrage stehen mehrere Ausführungsformen zur Verfügung.

In einer ersten einfachen Realisierung ist vorgesehen, dass die Regeneration nach einer vorgegebenen Zeitdauer beendet wird. Dabei kann eine fest vorgegebene Zeitdauer oder eine abhängig vom Betriebszustand der Brennkraftmaschine vorgebbare Zeitdauer gewählt werden. So wird zusätzlich in Schritt 240 ein Zeitzähler auf 0 gesetzt und in Abfrage 270 überprüft, ob der Zeitzähler einen vorgegebenen Wert überschritten hat.

20

25

30

35

Bei einer weiteren Ausgestaltung ist vorgesehen, dass die Zumessung des zusätzlichen Kraftstoffes beendet oder unterbrochen wird, wenn die Regeneration des Partikelfilters begonnen hat. Hierzu ist es erforderlich, dass die einsetzende Regeneration im Partikelfilter erkannt wird. Dies kann beispielsweise dadurch erfolgen, dass die Temperatur TN vor dem Partikelfilter und die Temperatur nach dem Partikelfilter ausgewertet wird. Ist die Temperatur nach dem Partikelfilter größer als die Temperatur vor dem Partikelfilter, so ist von einer beginnenden Regeneration auszugehen, da diese zu einer Temperaturerhöhung führt. Durchläuft die Temperatur nach dem Filter kurz nach Beginn der Haltezeit ein Maximum, so hat der Rußabbrand eingesetzt. Erfindungsgemäß wird deshalb überprüft, ob die Temperatur nach dem Filter größer als vor dem Filter ist und abhängig

von dieser Abfrage entschieden, dass die Haltezeit abgelaufen ist. Zur Auswertung der Temperatur kann eine Korrektur vorgesehen sein, die die Wärmeabgabe des Partikelfilters an die Umgebung, insbesondere die Wärmeabstrahlung, berücksichtigt.

Alternativ zu dem Temperatursensor können auch andere Sensoren, wie beispielsweise ein Differenzdrucksensor, der die Druckdifferenz vor und nach dem Partikelfilter mißt, oder ein Sensor, der die Abgaszusammensetzung vor und nach dem Partikelfilter erfasst. Hierzu ist besonders ein sogenannter Lambdasensor geeignet, der die Sauerstoffkonzentration im Abgas erfasst. Ist die Sauerstoffkonzentration nach dem Partikelfilter kleiner als vor dem Partikelfilter, ist ebenfalls von einer beginnenden Regeneration auszugehen.

Unvorteilhaft bei dieser Vorgehensweise ist, dass während der Zumessung von Kraftstoff die Umsetzung von motorisch erzeugten NO zu NO2 unterdrückt wird. Wird die Zumessung zusätzlichen Kraftstoffs unterbunden oder unterbrochen, wird im Oxidationskatalysator wieder NO2 gebildet, dass im Partikelfilter mit den Partikeln reagiert und zu einem zusätzlichen Partikelabbau führt.

25

5

10

15

20

Besonders vorteilhaft ist es, wenn nach Abschaltung der zusätzlichen Kraftstoffzumessung diese wieder periodisch ein- und ausgeschaltet wird. Dadurch kann ein Abfall der Temperatur während der Regeneration verhindert werden.

30

35

Bei der in Figur 2 dargestellten Ausführungsform erfolgt eine Steuerung der Temperatur des Abgasnachbehandlungssystems, insbesondere der Temperatur vor dem Partikelfilter, in Abhängigkeit des Zustandes des Abgasnachbehandlungssystems, der Brennkraftmaschine und der

5

10

15

Partikelschicht. Dabei erfolgt keine Rückkopplung der tatsächlichen Temperatur vor oder nach dem Partikelfilter, sondern es wird lediglich anhand anderer Kriterien entschieden, ob die Regeneration zu beenden ist. Insbesondere wird die Temperatur vor dem Oxidationskatalysator, die der Abgastemperatur der Brennkraftmaschine entspricht, als wesentliche Größe berücksichtigt. Diese Größe kann sowohl gemessen und besonders vorteilhaft aus anderen Betriebskenngrößen, wie Last und Drehzahl bestimmt werden.

Besonders vorteilhaft ist eine Ausführungsform, bei der die Steuerung derart ausgebildet ist, dass die Temperatur vor dem Partikelfilter gemessen und mit dem Sollwert verglichen, und ausgehend von diesem Vergleich die zusätzliche Kraftstoffmenge bestimmt wird.

In Figur 3 ist der zeitliche Verlauf der zusätzlichen Menge QZ, die zur Regeneration zugemessen wird beispielhaft

20 dargestellt. In einer ersten Phase zwischen den Zeitpunkten til und t2 steigt die Mehrmenge von Null auf einen konstanten Wert QKZ an. Bis zu dem Zeitpunkt t2 wird diese konstante Menge QKZ zugemessen, wenn der Betriebspunkt konstant ist. Ändert sich der Betriebspunkt, wird die Dossiermenge vorzugsweise so angepasst, das die Abgastemperatur vor dem Partikelfilter konstant bleibt. Zum Zeitpunkt t2 ist die Haltezeit abgelaufen und die Mehrmenge wird auf Null reduziert.

Bei einer besonders vorteilhaften Ausgestaltung, die gestrichtelt dargestellt ist, wird ab dem Zeitpunkt t3 kurzzeitig die Mehrmenge auf den konstanten Wert gesetzt.

20

Ansprüche

- 1. Verfahren zur Steuerung eines
 Abgasnachbehandlungssystems, insbesondere bei einer
 Brennkraftmaschine, bei dem wenigstens eine Zustandsgröße,
 die den Zustand des Abgasnachbehandlungssystems
 charakterisiert ermittelt wird, wobei abhängig von der
 Zustandsgröße ein Sonderbetriebszustand eingeleitet wird,
 dadurch gekennzeichnet, dass die Temperatur des
 Abgasnachbehandlungssystems abhängig vom Zustand des
 Abgasnachbehandlungssystems und/oder der Brennkraftmaschine
 gesteuert oder geregelt wird.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sonderbetriebszustand in wenigstens zwei Phasen aufgeteilt wird..
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem Sonderbetriebszustand dem Abgas unverbrannter Kraftstoff zugeführt wird.
- 4. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass in einer ersten Phase die Menge
 an unverbranntem Kraftstoff im Abgas im Laufe der Zeit
 zunimmt und dass in einer zweiten Phase die Menge an
 unverbrannten Kraftstoff im Abgas einen konstanten Wert
 annimmt.

35

- 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer der ersten und/oder der zweiten Phase vorgegeben wird.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Phase endet, wenn die Regeneration beginnt.
- 7. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass in einer dritten Phase die
 Menge an unverbranntem Kraftstoff zeitweise auf den
 konstanten Wert gesetzt wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass der konstante Wert abhängig von
 der Drehzahl der einzuspritzenden Kraftstoffmenge und/oder
 der Temperatur vor dem Abgasnachbehandlungssystem vorgebbar
 ist.
- 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Beginn der Regeneration anhand der Temperatur und/oder der Abgaszusammensetzung vor und nach dem Abgasnachbehandlungssystems erkannt wird.
- 25 10. Vorrichtung zur Steuerung eines
 Abgasnachbehandlungssystems, insbesondere bei einer
 Brennkraftmaschine, bei der wenigstens eine Zustandsgröße,
 die den Zustand des Abgasnachbehandlungssystems
 charakterisiert ermittelt und abhängig von der Zustandsgröße
 30 ein Sonderbetriebszustand eingeleitet wird, dadurch
 gekennzeichnet, dass Mittel vorgesehen sind, die die
 Temperatur des Abgasnachbehandlungssystems abhängig vom
 Zustand des Abgasnachbehandlungssystems und/oder der
 Brennkraftmaschine steuern oder regeln.

Fig. 1

Fig.2

3/3

Fig.3