B. E. Seventh Semester (Computer Technology)/SoE – 2014 – 15 Examination

Course Code: CT 1415 / CT 415 Course Name: Network Security

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :-

- (1) All questions are compulsory.
- (2) All questions carry marks as indicated.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- 1. (A) Prove that $G = \{0, 1, 2, 3, 4\}$ is an abelian group with respect to addition modulo 5. 4(CO2)
 - (A2) Using the extended Euclidean algorithm, find the multiplicative inverse of
 - (i) 1234 mod 4321
- (ii) 24140 mod 40902 4(CO2)
- (A3) Illustrate the relationship between services and mechanisms. 2(CO1)

OR

- (B) (B1) Define security mechanisms. What are different security mechanisms? 6(CO1)
 - (B2) Differentiate between passive and active Attack. 2(CO1)
 - (B3) Find multiplicative inverse of 38 in Z180 using extended Euclidean Algorithm. 2(CO2)
- 2. (A) Determine ciphertext and also perform decryption using the Hill cipher technique. Message = "meet me at the usual place at ten

rather than eight oclock"
$$key = \begin{pmatrix} 9 & 4 \\ 5 & 7 \end{pmatrix}$$
 6(CO2)

RDR/ORT/2KNT-10590/10832

Contd.

- (A2) What are the components of modern block cipher ? 2(CO1)
- (A3) Distinguish between feistel and non feistel block cipher. 2(CO1)

OR

- (B) (B1) Encrypt the message "the house is being sold tonight". Using Vigenere Cipher with key: "dollars". 6(CO2)
 - (B2) Differentiate between stream and block cipher. 2(CO1)
 - (B3) Define diffusion and confusion. 2(CO1)
- 3. (A) (A1) Solve the following:
 - (i) Find the order of the group $G = \langle Z20^*, X \rangle$
 - (ii) Number of primitive roots in the group $G = \langle Z17^*, X \rangle$
 - (iii) 45617 mod 17 Using Fermat's little theorem. 6(CO2)
 - (A2) In RSA, ciphertext C = 10 send to a user whose public key is e = 5, n = 35, what is plaintext M? 2(CO3)
 - (A3) Why does the DES function need and expansion permutation? 2(CO1)

OR

- (B) (B1) Determine the solution to the following simultaneous equations using Chinese remainder theorem $x = 7 \mod = 13$, x = 11 and $\mod 12$. 5(CO2)
 - (B2) Convert "AES USES A MATRIX" into AES state matrix. 3(CO3)
 - (B3) Compare symmetric and asymmetric key cryptography. 2(CO1)
- 4. (A) (A1) In the Diffie Hellman key exchange algorithm, public keys g = 5 and q = 11. Senders private key x = 2 and receivers private

		(i) What is the value of R1 and R2 ?	
		(ii) What is the value of symmetric session key ?	4(CO3)
		(A2) Discuss biometric entity authentication techniques.	4(CO1)
		(A3) Define Kerberos and name its servers.	2(CO1)
OR			
	(B)	(B1) Write the steps of HMAC and give its schematic represe	entation. 6(CO2)
		(B2) Define cryptographic hash function.	2(CO1)
		(B3) List the security services provided by a digital signal	ature. 2(CO1)
5.	(A)	(A1) Discuss Authentication Header Protocol with its diagra-	am. 5(CO4)
		(A2) Name all the content defined by CMS and their p	urposes. 3(CO4)
		(A3) Distinguish between session and connection.	2(CO1)
	OR		
	(B)	(B1) What is security association database and give its a parameters ?	ll 6(CO4)
		(B2) Distinguish between two modes of IPSec.	2(CO4)
		(B3) List ISAKMP payload type and the purpose of it.	2(CO4)
5.	(A)	(A1) Write in detail about the types of firewall with advanta disadvantages.	ges and 6(CO1)
		(A2) What is the difference between worms and viruses	? 2(CO1)
		(A3) Define system and the components of system. Reflect statement "Encryption provides system security".	on the 2(CO1)
RDR/ORT/2KNT-10590/10832 3			Contd.

key y = 3 are use. Calculate the following:

- (B) (B1) Write in detail about the different IDS techniques. 6(CO1)
 - (B2) What are parts of computer virus ? 2(CO1)
 - (B3) What is the difference between a firewall and IDS. 2(CO1)