

Intro to Reproducibility & Research Data Management

Hermina Ghenu 15 Oct 2024

 There's some unfamiliar words in the schedule and strange requests in the checklist

- There's some unfamiliar words in the schedule and strange requests in the checklist (e.g., "Data Management Plan")
- What is reproducibility?

- There's some unfamiliar words in the schedule and strange requests in the checklist (e.g., "Data Management Plan")
- What is reproducibility?

- Why do I have to annotate my code?
- Why do I have to hand in my code?
- Why shoud I document my file structure?

- There's some unfamiliar words in the schedule and strange requests in the checklist (e.g., "Data Management Plan")
- What is reproducibility?

- Why do I have to annotate my code?
- Why do I have to hand in my code?
- Why should I document my file structure?

Plan for the afternoon: lecture interspersed with activities

Reserach practices:

Reproducibility vs Repeatability vs Generalizability

Reproducibility: Can other scientists (or future you) re-analyze your data & get the exact same result?

Repeatability: Can other scientists replicate your same experiment & achieve a consistent result?

Generalizability: Do other studies exploring the same research question come to the same conclusions?

Reserach practices:

Reproducibility vs Repeatability vs Generalizability

Reproducibility: Can other scientists (or future you) re-analyze your data & get the exact same result?

Repeatability: Can other scientists replicate your same experiment & achieve a consistent result?

Generalizability: Do other studies exploring the same research question come to the same conclusions?

Reserach practices:

Reproducibility vs Repeatability vs Generalizability

Reproducibility: Can other scientists (or future you) re-analyze your data & get the exact same result?

- first line of defense in creating repeatable research
- focused on computational or data analysis 🙇

Repeatability: Can other scientists replicate your same experiment & achieve a consistent result?

from initial set-up to final results

Generalizability: Do other studies exploring the same research question come to the same conclusions?

• the \(\frac{1}{2}\) ideal \(\frac{1}{2}\) we strive for in our science

• Why do you think we need reproducibility?

Why we need reproducibility

A reproducible research article is a trusted scientific contribution.

- >85% of ecology & evolution publications are **not** reproducible (e.g., no code).
- Papers that make data & code available are more highly cited.

(Kambouris et al., 2024; Maitner et al., 2024)

Nature is sometimes more complex than we imagined.

 e.g., mouse behavioural responses depend on how they are housed & handled (Nigri et al., 2022)

Mistakes in research can have social / economic impacts.

• e.g., impoverished environment of mice during preclinical studies may explain why most new drug candidates don't work as expected in clinical trials.

(Shemesh & Chen 2023)

Bad faith actors can diminish our trust in science.

(Kozlov 2022; data forensics details)

Consistent methods for globally coordinated research efforts.

e.g., in combating disease (Park et al., 2021) or climate change (Halbritter et al., 2019)

Data analysis — The Dream:

Data analysis — The Dream:

A Data Management Plan & Reproducibility Principles help us get closer to this dream

Doing reproducible research

 Goal: able to re-create <u>data and analysis</u> so that you and others can (ideally) arrive at the <u>same</u> interpretations of your results

Doing reproducible research

- Goal: able to re-create <u>data and analysis</u> so that you and others can (ideally) arrive at the <u>same</u> interpretations of your results
- Keep everything!

NOBODY WANTS TO DEAL WITH THIS!!!!!

Doing reproducible research

- Goal: able to re-create <u>data and analysis</u> so that you (ideally) arrive at the <u>same interpretation</u>/ conclusion from your results
- Keep everything!

Doing reproducible research

- Goal: able to re-create <u>data and analysis</u> so that you (ideally) arrive at the <u>same interpretation</u>/ conclusion from your results
- Keep everything!
- Keep everything in such a way that you, or people after you, can (happily?) go back to it

How do you achieve reproducibility in research?

Annotate

explain what you're doing and why

Automate

make your decisions explicit by using code

Share

provide access to your work

Hoard

keep (almost) everything

Annotate

Write explanations for your future collaborators
 What? How? Why?!

Annotate

- Write explanations for your future collaborators
 What? How? Why?!
- Habits: use script headers, use meaningful & human-readable names, comment your code
- Tools: notebook documents

Open RStudio and create a new R Notebook document.
 Save then knit the document to pdf. What does this do?

- Open RStudio and create a new R Notebook document.
 Save then knit the document to pdf. What does this do?
- Recall annotate habits: use meaningful & human-readable variable names, comment your code, use script headers.
 - How do you do that?
 - Type "# Annotate!" both inside and outside of the R code block. How are these displayed differently after you knit?

- Open RStudio and create a new R Notebook document.
 Save then knit the document to pdf. What does this do?
- Recall annotate habits: use meaningful & human-readable variable names, comment your code, use script headers.
 - How do you do that?
 - Type "# Annotate!" both inside and outside of the R code block. How are these displayed differently after you knit?
- Switch the markdown editing mode from Source to Visual.
 What does this do? What objects can you add to the text?

- Open RStudio and create a new R Notebook document.
 Save then knit the document to pdf. What does this do?
- Recall annotate habits: use meaningful & human-readable variable names, comment your code, use script headers.
 - How do you do that?
 - Type "# Annotate!" both inside and outside of the R code block. How are these displayed differently after you knit?
- Switch the markdown editing mode from Source to Visual.
 What does this do?
- Modify the header to add new fields for "author:" and "date:".
 What other authorship attribution information may be useful?

How do you achieve reproducibility in research?

- Annotate
 explain what you're doing and why
- Automate
 make your decisions explicit by using code
- Share provide access to your work
- Hoard keep (almost) everything

Hoard

Keep almost everything

Hoard

- Keep almost everything
- Habits: backup regularly (daily!), exact version of software, store raw data & intermediate steps in data processing, store code & progress on code
- Tools: backup software (e.g. Time Machine), version control (e.g. git), online repositories (e.g. GitHub)

Copy the following code into the code block in your Rnotebook file:

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
    numbers <- 1:10
    output <- multiplier*numbers
    return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)</pre>
```

Copy the following code into the code block in your Rnotebook file:

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
   numbers <- 1:10
   output <- multiplier*numbers
   return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)</pre>
```

• Use paste(...) to store the parameter value in the filename:

```
filename <- paste("numbers_1_to_10--multiplier", current_multiplier,".csv")</pre>
```

Copy the following code into the code block in your Rnotebook file:

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
   numbers <- 1:10
   output <- multiplier*numbers
   return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)</pre>
```

• Use paste(...) to store the parameter value in the filename:

```
filename <- paste("numbers_1_to_10--multiplier", current_multiplier,".csv")</pre>
```

Save your result to an output file with appropriate filename:

```
write.csv(results, filename, row.names = FALSE)
```

Copy the following code into the code block in your Rnotebook file:

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
    numbers <- 1:10
    output <- multiplier*numbers
    return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)</pre>
```

Use paste(...) to store the parameter value in the filename:

```
filename <- paste("numbers_1_to_10--multiplier", current_multiplier,".csv")</pre>
```

Save your result to an output file with appropriate filename:

```
write.csv(results, filename, row.names = FALSE)
```

Are there any annotate habits that we are using here?
 (annotate habits: variable names, annotate code, script headers)

How do you achieve reproducibility in research?

- Annotate
 explain what you're doing and why
- Automate
 make your decisions explicit by using code
- Share provide access to your work
- Hoard keep (almost) everything

Automate

Avoid manual manipulation

waste of time, error-prone, decisions are <u>not</u> explicit and can be inconsistent

Automate

- Avoid manual manipulation
 - waste of time, error-prone, decisions are <u>not</u> explicit and can be inconsistent
- Habits: find+replace, use a scripting language for your analyses, automatically save parameters in the filename.
- Tools: notebook documents

Are there any automate habits that we used in this code?
 (automate habits: find+replace, scripting language, filename)

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
    numbers <- 1:10
    output <- multiplier*numbers
    return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)

filename <- paste("numbers_1_to_10--multiplier", current_multiplier,".csv")
write.csv(results, filename, row.names = FALSE)</pre>
```

Are there any automate habits that we used in this code?
 (automate habits: find+replace, scripting language, filename)

```
# a silly function to multiply the values from 1 to 10
get.multiples1to10 <- function(multiplier){
    numbers <- 1:10
    output <- multiplier*numbers
    return(output)
}

# set the parameter value
current_multiplier <- 3

# run the function
results <- get.multiples1to10(current_multiplier)

filename <- paste("numbers_1_to_10--multiplier", current_multiplier,".csv")
write.csv(results, filename, row.names = FALSE)</pre>
```

 Use find+replace to change the name of the function from get_multiples1to10 to a new name that makes sense to you.

How do you achieve reproducibility in research?

- Annotate
 explain what you're doing and why
- Automate
 make your decisions explicit by using code
- Share
 provide access to your work
- Hoard keep (almost) everything

Share

 Fundamentally, research is about sharing with collaborators, with other scientists

Share

- Fundamentally, research is about sharing with collaborators, with other scientists
- Habits: think about your <u>audience</u> when analysing (see annotate), share early and often
- Tools: online repositories for data (e.g. Dryad), code (e.g. GitHub), and papers (e.g. bioRxiv)

How do you achieve reproducibility in research?

Annotate

explain what you're doing and why

Automate

make your decisions explicit by using code

Share

provide access to your work

Hoard

keep (almost) everything

Hopefully, by implementing reproducibility principles, our workspace can be more like this:

What is reproducibility?

- What is reproducibility?
- Why do you have to annotate your code?

- What is reproducibility?
- Why do you have to annotate your code?
- Why do you have to hand in your code?

- What is reproducibility?
- Why do you have to annotate your code?
- Why do you have to hand in your code?
- Why should you document your file structure?