Problem set #9

Brian Ward

Due WEDNESDAY April 18, 2018

Exercise 1. Directly from the definition $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$ of the 2×2 determinant, prove the following.

- (a) $\det(A) = \det(A^T)$
- (b) det(AB) = det(A) det(B)
- (c) A is invertible if and only if $\det(A) \neq 0$, in which case $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Solution.

- (a) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Clearly, $A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Now, computing from the definition, it is clear that $\det(A) = ad bc = ad cb = \det(A^T)$.
- (b) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

From the definition, $\det(A) = ad - cb$, $\det(B) = eh - fg$. Computing their product yields $AB = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$.

But now, from the definition,

$$det(AB) = (ae + bg)(cf + dh) - (ce + dg)(af + bh)$$

$$= (aecf + bgcf + aedh + bgdh) - (ceaf + dgaf + cebh + dgbh)$$

$$= (bgcf + aedh) - (dgaf + cebh)$$

$$= adeh - cbeh - adfg + cbfg$$

$$= (ab - cd)(eh - fg)$$

$$= det(A) det(B)$$

(c) The statement is obviously equivalent to the statement that A is not invertible if and only if det(A) = 0.

A is not invertible \iff The columns of A are linearly dependent \iff The columns of A, $\binom{a}{c}$, $\binom{b}{d}$ are multiples of each other \iff There is some scalar s for which a = sc and $b = sd \iff ad - bc = \frac{ab}{s} - \frac{ab}{s} = 0 \iff \det(A) = 0.$

Now, to show that whenever the determinant of A is not 0, $B = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ is the inverse of A, consider the calculation BA

$$BA = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$= \frac{1}{\det(A)} \begin{pmatrix} ad-bc & -bd+bd \\ -ac+ca & -cb+ad \end{pmatrix}$$
$$= \frac{1}{\det(A)} \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Exercise 2.

(a) If $A \in M_n(F)$ and c is a scalar, how are $\det(cA)$ and $\det(A)$ related?

(b) Suppose $A \in M_{m \times n}(F)$. Prove that A is surjective if and only if A^T is injective.

(c) Assuming $A \in M_n(F)$ is invertible, prove that $(A^{-1})^T = (A^T)^{-1}$, and that $\det(A^{-1}) = \det(A)^{-1}$.

Solution.

(a) Because the determinant is linear in every column, one can pull the scalar c out of each of the n columns, to yield $\det(cA) = c^n \det(A)$.

(b) Important: A can only be surjective if $n \ge m$. It follows that

A is surjective \iff The columns of A span $F^m \iff$ The rows of A^T span $F^m \iff$ The dimension of the row span of A^T is $m \iff$ The dimension of the row span of the reduced row echelon form of A^T is $m \iff$ The reduced row echelon form of A^T has m pivots \iff The reduced row echelon form of A^T has a pivot in every column \iff The columns of A^T are linearly independent \iff A^T is injective.

(c) By definition, $A^{-1}A = I$. As $I^T = I$, it follows that $(A^{-1}A)^T = I$. But, $(BA)^T = B^TA^T$. So, $I = (A^{-1}A)^T = A^T(A^{-1})^T$. However, a result from class says that if AB = I for any square matrices A, B, then A is invertible with inverse $A^{-1} = B$. So, the above expression clearly implies that A^T has inverse $(A^T)^{-1} = (A^{-1})^T$.

Again, it follows from the definition that $A^{-1}A = I$. From this, and the facts that det(I) = 1 and det(AB) = det(A) det(B), it follows that

$$\det(A^{-1}A) = \det(I) = 1$$
$$\det(A^{-1})\det(A) = 1$$
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
$$\det(A^{-1}) = \det(A)^{-1}$$

Exercise 3. Compute the determinants

$$\det \begin{bmatrix} 0 & 1 & 2 \\ 2 & 6 & -1 \\ 3 & 0 & 4 \end{bmatrix} \qquad \text{and} \qquad \det \begin{bmatrix} 2 & 0 & 2 & -4 \\ 12 & 6 & 6 & 1 \\ 0 & -1 & 4 & 5 \\ 3 & 2 & 3 & 2 \end{bmatrix}.$$

Solution. A combination of elementary operations and expansion by minors yields

$$\det\begin{bmatrix} 0 & 1 & 2 \\ 2 & 6 & -1 \\ 3 & 0 & 4 \end{bmatrix} = -47 \quad \text{and} \quad \det\begin{bmatrix} 2 & 0 & 2 & -4 \\ 12 & 6 & 6 & 1 \\ 0 & -1 & 4 & 5 \\ 3 & 2 & 3 & 2 \end{bmatrix} = -232$$

Full computation shown in Appendix A.

Exercise 4. Prove or find counterexamples:

$$rank(BA) \le rank(B), \quad rank(CB) \le rank(B)$$

for any matrices and A, B, and C for which the products are defined.

Solution. Pick $A \in M_{n \times l}(F)$, $B \in M_{m \times n}(F)$, $C \in M_{p \times m}(F)$. Clearly, $A : F^l \to F^n$, $B : F^n \to F^m$, and $C : F^m \to F^p$.

Consider BA as the composition B(Av) for $v \in F^l$. Clearly $Av \in F^n$, and $Im(A) \subset F^n$, so $Im(BA) \subset Im(B)$. From this it follows obviously that $rank(BA) \leq rank(B)$.

Now, consider CB as a composition C(Bv) for $v \in F^n$. Clearly, the only part of the domain of C we are concerned with is the subspace $\operatorname{Im}(B) \subset F^m$. So, consider $C' : \operatorname{Im}(B) \to F^p$, which is the linear map C restricted on its domain to be the subspace $\operatorname{Im}(B)$. The fundamental theorem of linear algebra now clearly states $\operatorname{rank}(B) = \dim \ker(C') + \operatorname{rank}(C')$, and from this we can conclude $\operatorname{rank}(C') \leq \operatorname{rank}(B)$. However, clearly the image of C' and the image of CB are the same, so this now implies $\operatorname{rank}(CB) \leq \operatorname{rank}(B)$.

Exercise 5. Show that

$$\det \begin{bmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{bmatrix} = (z - x)(z - y)(y - x).$$

Solution. This follows directly from calculation by elementary row operations and expansion by minors

$$\det \begin{bmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{bmatrix} = \det \begin{bmatrix} 1 & x & x^2 \\ 0 & y - x & y^2 - x^2 \\ 0 & z - x & z^2 - x^2 \end{bmatrix}$$

$$= 1 \cdot \det \begin{bmatrix} y - x & y^2 - x^2 \\ z - x & z^2 - x^2 \end{bmatrix}$$

$$= (y - x)(z^2 - x^2) - (y^2 - x^2)(z - x)$$

$$= (y - x)(z - x)(z + x) - (y - x)(z - x)(y + x)$$

$$= (y - x)(z - x)((z + x) - (y + x))$$

$$= (z - x)(z - y)(y - x)$$

Exercise 6. Suppose V is finite dimensional and $T: V \to V$ is a linear map. If A is the matrix of T with respect to some basis $e_1, \ldots, e_n \in V$, and B is the matrix of T with respect to another basis $f_1, \ldots, f_n \in V$, show that there is an invertible matrix C with $B = CAC^{-1}$, and deduce from this that $\det(A) = \det(B)$.

Solution. The basis e_1, \ldots, e_n determines an isomorphism $\alpha : F^n \to V$. Similarly, the basis f_1, \ldots, f_n determines an isomorphism $\beta : F^n \to V$.

By the definition of the matrix of a linear map, $A = \alpha^{-1} \circ T \circ \alpha : F^n \to F^n$ and $B = \beta^{-1} \circ T \circ \beta : F^n \to F^n$.

Construct a new matrix as follows: Take e_1 and decompose it in terms of f_1, \ldots, f_n . Make the coefficients of this decomposition the first column of a matrix. Repeat this for e_2, \ldots, e_n until an $n \times n$ matrix is constructed. This matrix, C, maps from elements written in terms of e_1, \ldots, e_n to elements written in terms of f_1, \ldots, f_n .

Clearly, this map is equivalent to mapping $F^n \to V$ with respect to the first basis e_1, \ldots, e_n , performing no operation, then mapping $V \to F^n$ with respect to the second basis f_1, \ldots, f_n . Using the notation established above, this is the same as $C = \beta^{-1} \circ \alpha$.

Now, C is clearly invertible, as α and β are invertible, and so their composition is as well. It follows that $C^{-1} = \alpha^{-1} \circ \beta$, as is clear from the calculations $CC^{-1} = \beta^{-1} \circ \alpha \circ \alpha^{-1} \circ \beta = I$ and $C^{-1}C = \alpha^{-1} \circ \beta \circ \beta^{-1} \circ \alpha = I$.

П

Now, calculate

$$\begin{split} CAC^{-1} &= (\beta^{-1} \circ \alpha) \circ (\alpha^{-1} \circ T \circ \alpha) \circ (\alpha^{-1} \circ \beta) \\ &= \beta^{-1} \circ (\alpha \circ \alpha^{-1}) \circ T \circ (\alpha \circ \alpha^{-1}) \circ \beta \\ &= \beta^{-1} \circ T \circ \beta \\ &= B \end{split}$$

As desired.

Now, considering $B = CAC^{-1}$, it follows that $\det(B) = \det(CAC^{-1})$. But, as $\det(M_1M_2) = \det(M_1)\det(M_2)$ for any M_1, M_2 for which the determinant is defined, the above is clearly equivalent to $\det(B) = \det(C)\det(A)\det(C^{-1})$. As shown earlier in this homework, $\det(C^{-1}) = \det(C)^{-1}$, so this equation simplifies to $\det(B) = \frac{\det(C)}{\det(C)}\det(A) = \det(A)$, as desired. \square