Анализ и классификация текстов с целью выявления авторства искусственного интеллекта

Исследование лексических, синтаксических и стилистических особенностей текстов, сгенерированных нейросетями

Выполнили:

студентка БПМИ236 **Синицина Софья Андреевна** студентка БПМИ236 **Совкова София Денисовна**

Руководитель: Галицкий Борис Васильевич

Образовательная программа "Прикладная математика и информатика"

Актуальность работы

Проблема	Решение
Современные LLM создают тексты, почти неотличимые от человеческих	Создание высокоточной гибридной модели, позволяющей определять авторство
Традиционные методы анализа (n-граммы, статистика) теряют эффективность	Сочетание лексического анализа (шаблоны, статистические аномалии) и семантическую глубину (контекст, логические структуры)
Ограничение на количество запросов в сервисах антиплагиата и необходимость в поиске бесплатного и без регистрации	Интеграция в модели в Telegram для анализа текстов в реальном времени

Образовательная программа "Прикладная математика и информатика"

Цель работы – разработать гибридную модель машинного обучения для детекции Alcrehepupoванных текстов.

Задачи

- 1) Собрать и обработать данные для обучения модели.
- 2) Разработать модель машинного обучения для классификации текстов.
- 3) Оценить качество модели на различных датасетах.
- 4) Интегрировать модель в Telegram-бот, который обеспечит удобный доступ к функционалу.
- 5) Провести тестирование бота на реальных текстах для выявления потенциальных проблем и повышения точности предсказаний.

Образовательная программа "Прикладная математика и информатика"

Анализ датасетов

Распределение длины текстов (ИИ)

Образовательная программа "Прикладная математика и информатика"

Средняя длина предложения (человек)

Образовательная программа "Прикладная математика и информатика"

Знаков пунктуации на текст (человек)

Образовательная программа "Прикладная математика и информатика"

Распределение текстов по категориям

Образовательная программа "Прикладная математика и информатика"

Архитектура модели

Образовательная программа "Прикладная математика и информатика"

Ветвь TF-IDF

$$TF-IDF(t,d)=TF(t,d)\times IDF(t)$$

$$TF(t, d) = \frac{\text{Количество вхождений } t \text{ в } d}{\text{Общее число слов в } d}$$

$$IDF(t) = \frac{\text{Количество вхождений } t \text{ в } d}{\text{Количество документов, содержащих термин } t}$$

$$B_{Nx300} = AV_k$$
, $A_{Nx1000} = U_k \Sigma_k V_k^T$, $k = 300$

 U_k — левые сингулярные векторы (N \times 300), Σ_k — диагональная матрица сингулярных чисел (300 \times 300), V_{ι}^T — правые сингулярные векторы (300 \times 10000)

Образовательная программа "Прикладная математика и информатика"

Ветвь Bert

Образовательная программа "Прикладная математика и информатика"

Проекция

Ветвь	TF-IDF	Bert
Изменение размерности	300D -> 128D	768D -> 128D
Формула	$\operatorname{Proj}_{\operatorname{TF-IDF}} = \operatorname{GELU}(\operatorname{W}_{\operatorname{TF-IDF}} \cdot B + \operatorname{b}_{\operatorname{TF-IDF}})$ В - плотная матрица после SVD (N × 300) $\operatorname{W}_{\operatorname{TF-IDF}}$ - веса проекции (300 × 128)	$\operatorname{Proj}_{\operatorname{Bert}} = \operatorname{GELU}(\operatorname{W}_{\operatorname{Bert}} \cdot D + \operatorname{b}_{\operatorname{Bert}})$ D - тензор [CLS]-токенов (N × 768) $\operatorname{W}_{\operatorname{TF-IDF}}$ - веса проекции (768 × 128)

Образовательная программа "Прикладная математика и информатика"

Механизм внимания

Объединение признаков	$H = [Proj_{TF-IDF} Proj_{Bert}]$ (batch_size $\times 2 \times 128$)
	batch_size = 32
Вычисление весов внимания	$\alpha = \operatorname{softmax}(W_{\alpha} \cdot H + b_{\alpha}), \alpha \in \mathbb{R}^{N \times 2}$
	W_{α} - обучаемые веса (128 \times 1) α - определяет важность каждой ветви (TF-IDF vs Bert)
Взвешенная сумма	$Z = \alpha_1 \cdot \text{Proj}_{\text{TF-IDF}} + \alpha_2 \cdot \text{Proj}_{\text{BERT}} \text{(batch_size X 128)}$

Образовательная программа "Прикладная математика и информатика"

Классификатор

Образовательная программа "Прикладная математика и информатика"

Обучение модели

Подготовка данных: разделение на тренировочные и валидационный фолды с помощью StratifiedKFold.

Цикл обучения одной эпохи:

Валидация после каждой эпохи:

- Метрики AUC-ROC, F1, Accuracy, Recall (AI)
- Ранняя остановка: Если AUC не растёт 2 эпохи происходит остановка обучения и сохраняются веса модели с лучшим AUC.

Обучение модели

Метрики на кросс-валидации (3 фолда)

Фолд	Лучший AUC	Recall (AI)	Loss
1	0.9352	93.1%	0.240
2	0.9438	93.5%	0.180
3	0.9616	94.3%	0.135
Среднее	0.9557 ± 0.008	93.6%	0.185

Динамика обучения (на примере 3-го фолда)

Эпоха	Train Loss	Val AUC	Val Recall (AI)
1	0.452	0.9412	92.1%
2	0.210	0.9616	94.3%
3	0.185	0.9580	93.8%

Время: $O(T \cdot N_{train} \cdot d^2 + N_{val} \cdot d))$ d = 128, T - число эпох

Память: $O(K \cdot (d^2 + N_{batch} \cdot d))$

K - количество фолдов, batch_size = 32

Образовательная программа "Прикладная математика и информатика"

Сравнение с аналогами

Модель/метод	Характеристики	Преимущества	Недостатки
Гибридная модель (TF-IDF + BERT + Attention)	• AUC-ROC: 0.9557 • Recall: 93–94% для AI- текстов	 Комбинация лексических и семантических признаков Механизм внимания для адаптивного анализа Высокая точность и recall 	 Зависимость от GPU для BERT- компонента Высокие вычислительные затраты
Классические методы (TF-IDF + SVD)	• AUC-ROC: 0.872 • Recall: 85%	Высокая скорость работыНизкие требования к ресурсамПростота реализации	Поверхностный анализ текстаНизкая точность для сложных случаевНе учитывает семантику
Трансформерная модель (BERT)	• AUC-ROC: 0.912 (BERT) • Recall: 89–91%	 Высокое качество анализа контекста Хорошая адаптивность к разным стилям текста 	 Ограничение на длину текста (512 токенов) Требует GPU для эффективной работы Высокие вычислительные затраты
Методы на основе N- грамм и статистики	• Точность: 80-85%	Быстрая обработкаЭффективность для простых текстов	 Низкая точность для современных LLM Не учитывает семантические особенности Чувствительность к шумам

Образовательная программа "Прикладная математика и информатика"

Telegram-бот

- Инструмент для преподавателей, редакторов, исследователей
- Анализ текстов в режиме реального времени
- Простой и интуитивный интерфейс
- Доступ с любого устройства через Telegram
- Возможность дальнейшей доработки, добавление новых моделей классификации

Ссылка на бота

Результаты

• Проведен глубокий анализ особенностей текстов, сгенерированных нейросетями

Образовательная программа

"Прикладная математика и

информатика"

- Создана и реализована гибридная модель для определения текстов, сгенерированных искусственным интеллектом.
- Достигнуто среднее значение AUC-ROC на кросс-валидации: **0.9557**, показатели recall для Al-сгенерированных текстов: **93-94**% по всем фолдам.
- Точность модели составила: **97**% на открытых тестах, **92**% на закрытых на соревновании Kaggle
- Разработан Telegram-бот для проверки текстов в реальном времени.

Дальнейшие улучшения проекта

- Обучение на русскоязычных данных
- Более тонкая настройка классификатора
- Оптимизация производительности
- Вывод процентной вероятности АІ-генерации
- Объяснение результатов классификации