描述统计 (descriptive statistics) HERM angelayuan HILL AND ENTRY IN THE PROPERTY OF THE PROPERTY

什么是描述统计

描述统计是研究

- 如何取得反映客观现象的数据(数据的收集)
- 通过图表形式对数据进行加工处理和可视化
- 通过概括与分析得出反应客观现象的规律性数量特征

数据的可靠性和有效性

数据是否可靠(reliable)和有效(valid)?

· 可靠性(reliability): 多次测量得到的数据是否一致

对统计学的态度

早:喜欢

中: 不喜欢

晚: 喜欢

某治疗的效果

评价者1:有效

评价者2: 无效

数据的可靠性和有效性

数据是否可靠(reliable)和有效(valid)?

• 有效性(validity): 实际测量的对象 = 认为/希望测量的对象

认为/希望测量: 身高

实际测量的是: 身高

认为/希望测量: 身高

实际测量的是: 体重

数据的可靠性和有效性

描述统计

- 通过图表形式对数据进行加工处理和可视化
- 通过概括与分析得出反应客观现象的规律性数量特征

尺度	举例 逻辑与数学运算	类别
名目	性别、颜色 =, ≠	定性/(无序)分类变量
次序	教育程度、评价 =,≠,>,<	定性/(有序)分类变量
等距	温度、年份、时间 =, ≠, >, <, +, -	定量/数值变量
等比	身高、体重、年龄 =,≠,>,<,+,-,×,÷	定量/数值变量

一个分类变量的特征和可视化 是一种 Angelay wan

性别 (名目; =, ≠): 男, 女

观测12个新生儿的性别 (n = 12)

女, 男, 女, 女, 男, 男, 男, 男, 女, 男, 男, 女

女, 男, 女, 女, 男, 男, 男, 男, 女, 男, 男, 女

频率表(frequency table)

性别	频数 (Count)	频率 (Frequency)
女	205	5/12 = 41.7%
男	后有为	7/12 = 58.3%

女, 男, 女, 女, 男, 男, 男, 女, 男, 男, 女

女, 男, 女, 女, 男, 男, 男, 男, 女, 男, 男, 女

集中趋势(central tendency):

一组观测值向其中心集中的倾向和程度

· 众数(mode): 一组观测值中出现次数最多的数

- 众数(mode): 一组观测值中出现次数最多的数
- 可能存在多个众数,也可能不存在众数

颜色: 赤1, 橙1, 黄1, 绿1, 青1, 蓝1, 紫1 → 不存在众数

颜色: 赤2, 橙6, 黄1, 绿10, 青3, 蓝10, 紫4 🗪 存在多个众数

教育程度 (次序; =,≠,>,<): 小学(1), 初中(2), 高中(3), 本科(4), 研究生(5)

观测19个人的教育程度 (n = 19)

3, 3, 4, 1, 5, 4, 2, 1, 5, 4, 4, 4, 5, 3, 2, 1, 4, 5, 5

3, 3, 4, 1, 5, 4, 2, 1, 5, 4, 4, 4, 5, 3, 2, 1, 4, 5, 5

频率表

教育程度	频数	频率
小学 (1)	3.17	3/19 = 15.8%
初中 (2)	2	2/19 = 10.5%
高中 (3)	3	3/19 = 15.8%
本科 (4)	6	6/19 = 31.6%
研究生 (5)	5	5/19 = 26.3%

3, 3, 4, 1, 5, 4, 2, 1, 5, 4, 4, 4, 5, 3, 2, 1, 4, 5, 5 条形图(bar plot)

3, 3, 4, 1, 5, 4, 2, 1, 5, 4, 4, 4, 5, 3, 2, 1, 4, 5, 5

集中趋势: 众数 🗪 本科

集中趋势: 中位数(median)

对于有限的数集,把所有观测值按大小排序后,位于正中间的观测值即为中位数/中值

1, 1, 1, 2, 2, 3, 3, 3, 4, (4) 4, 4, 4, 4, 5, 5, 5, 5, 5 (n = 19)

1, 1, 1, 2, 2, 3, 3, 3, 4,
$$(4)$$
 4, 4, 4, 4, 5, 5, 5, 5, $(n = 19)$

1, 1, 1, 2, 2, 3, 3, 3, 4,
$$(4, 4)$$
 4, 4, 4, 5, 5, 5, 5, 5, 5, $(n = 20)$

1, 1, 1, 2, 2, 3, 3, 3, 4,
$$(4, 5)$$
, 5, 5, 5, 5, 5, 5, 5, 5, 5, $(n = 20)$

偶数个观测值, 中位数 = (4+5)/2 = 4.5

	小结	"大"
	无序分类变量	有序分类变量
表	频率表	频率表
图	条形图	条形图
集中趋势	众数	众数、中位数
讲从		

一个数值变量的特征和可视化

温度 (等距; =, ≠, >, <, +, -)

5月份前两周的温度

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14) 频率表

温度	频数	频率
13	1	0.07
17	13 00	0.21
18	.1 211.0	0.07
19	3 1	0.21
20	1	0.07
21	4	0.30
22	1	0.07

数值变量频率表

VS

分类变量频率表

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

等距 分割小区间 △=1

温度	频数	频率		
(12, 13]	1 均	0.07		
(13, 14]	0/8	0		
(14, 15]	0 20	00		
(15, 16]	60 4	07		
(16, 17]	3	0.21		
(17,18]	大十	0.07		
(18, 19]	3	0.21		

温度	频数	频率	
(19, 20]	1	0.07	
(20, 21]	4	0.30	
(21, 22]	1	0.07	

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14) 频率直方图(histogram)

蓝色覆盖的区域 面积为1

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

$$\Delta = 5$$

温度	频数	频率
(10, 15]	A 1	0.07
(15, 20]	8	0.57
(20, 25]	5	0.36

频率直方图

蓝色覆盖的区域面积为1

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

集中趋势: 众数、中位数

中位数 = (19+19)/2 = 19

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

集中趋势: 均值(mean)

• 在一组数据中,所有数据之和再除以这组数据的个数,所得即为这组数据的均值 $\sum_{i=1}^{n} X_{i}$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

19+22+21+17+13+19+18+17+17+21+21+21+19+20

= 265/14 = 18.93

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

离散趋势(tendency of dispersion): 观测值偏离其中心的趋势

- 极差/全距 (Range): 最大值减去最小值,用于简单描述数据的范围大小
 - 13, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 21, 22

极差 = 22 - 13 = 9

19, 22, 21, 17, 13, 19, 18, 17, 17, 21, 21, 21, 19, 20 (n = 14)

离散趋势(tendency of dispersion): 观测值偏离其中心的趋势

· 分位数/分位点 (quantile): 把数据n等分的分割点

13, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 21, 22

中位数 = (19+19)/2 = 19

中位数把数据分成了数目相等的两部分,是二分位数/点

• 四分位数 (quartile)

$$IQR = Q_3 - Q_1$$
 $IQR = 21 - 17 = 4$

 四分位距 (interquartile range, IQR)

• 四分位数

• 四分位数

13, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 21 (n = 13)

Q₁
Q₂
Q₃
(17+17)/2 = 17

$$|Q_1| = Q_3 - Q_1$$
 $|Q_2| = 21$

• 箱线图(box plot)

13, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 21, 22

小结

	小结
	(等距)数值变量
表	频率表
图坦	频率直方图、箱图
集中趋势	众数、中位数、均值
离散趋势	极差、分位数、四分位数

鸢尾花花瓣的长度 (等比; =, ≠, >, <, +, -,×,÷)

n = 50 (观测了50朵鸢尾花花瓣的长度)

4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.
de)	3	771	4	2	5	4	3
311.6	3.长人'						
5.1	5.2	5.3	5.4	5.5	5.7	5.8	
8	3	1	5	2	2	1	

鸢尾花花瓣的长度 (等比; =,≠,>,<,+,-,×,÷)

鸢尾花花瓣的长度 (等比; =, ≠, >, <, +, -,×,÷)

4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
1	3	1	4	2	5	4	8
5.1	5.2	5.3	5.4	5.5	5.7	5.8	
8	3	SUP!	5	2	2	1	

鸢尾花花瓣的长度 (等比; =,≠,>,<,+,-,×,÷)

最大值 = 5.8

75%分位点 = 5.2 中位数 = 5.0 25%分位点 = 4.8

最小值 = 4.3

鸢尾花花瓣的长度 (等比; =, ≠, >, <, +, -,×,÷)

离散趋势: 方差(variance)和标准差(standard deviation)

• 方差: 每一个观测值与均值之间的差异的平方和的平均数

$$\sigma^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}$$

鸢尾花花瓣的长度 (等比; =,≠,>,<,+,-,×,÷)

4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
1	3	1	4	2	5	4	8
5.1	5.2	5.3	5.4	5.5	5.7	5.8	
8	3	171	500	2	12	1	

$$\sigma^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}$$

方差 =
$$\frac{(4.3 - 5.0)^2 + 3 * (4.4 - 5.0)^2 + \dots + 2 * (5.7 - 5.0)^2 + (5.8 - 5.0)^2}{50}$$
= 0.124

鸢尾花花瓣的长度 (等比; =, ≠, >, <, +, -,×,÷)

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}}$$

标准差 = 方差开根号 = 0.352

标准差与原观测值具有相同的单位

小结

	(等比)数值变量			
表	频率表			
图频率直方图、箱图				
集中趋势	众数、中位数、均值			
离散趋势	极差、分位数、方差、标准差			

偏度 (skewness)

形态 (modality)

峰度 (kurtosis)

峰尖, 尾平, 数据向中心聚拢程度高

扁平,数据向中心聚拢程度低

变量间的关系

泰坦尼克号的325名乘客: 幸存(是/否); 年龄(儿童/成人)

编号	幸存	年龄
岩为林	是	成人
2 elay	否	儿童
人有人		
325	否	儿童

年龄与幸存是否有关系?

• 关联表(contingency table)

相对频率表

0% 38%

100% 62%

互依不等于因果

年龄与幸存是否有关系?

• 分段条形图

年龄与幸存是否有关系?

• 相对频率分段条形图

两个数值变量的关系

工资与入职时间是否有关?什么关系?关系强弱?房价与到学校的距离是否有关?什么关系?关系强弱?抽烟年数与寿命是否有关?什么关系?关系强弱?

两个数值变量的关系

• 散点图 (scatter plot): 方向、形状、强度、极端值

一个数值变量和一个分类变量的关系

工资与性别是否有关?

房价与学区房是否有关?

抽烟年数与肺癌是否有关?

一个数值变量和一个分类变量的关系

• 并排箱图 (side-by-side box plot)

极端值和缺失值

极端值/异常值 (outliers)

• 在一组数据中, 小于Q1 - 1.5IQR 或者 大于Q3 + 1.5IQR的 数据是疑似极端值

• 在一组数据中,小于Q1 - 3IQR 或者 大于Q3 + 3IQR的数据是极端值

修正箱线图

极端值的产生可能源于

- 数据的测量、记录或输入时的错误
- · 数据来自不同的总体(例如: 病人 vs 健康人)
- 数据是正确的, 但它只体现小概率事件

极端值可能产生的影响

• 某公司员工的收入水平

1.2, 1.3, 1.4, 1.5, 1.6, 1.6, 1.8, 2.0, 2.2, 15

均值: 2.96 vs 1.62 极差: 13.8 vs 1

中位数: 1.6 标准差: 4.24 vs 0.33

众数: 1.6 IQR: 2.0 - 1.4 = 0.6 vs 1.9 - 1.35 = 0.55

如何处理极端值

- 如果是由于测量或记录的错误,或其他明显的原因造成的,直接丢弃即可
- 如果极端值出现的原因无法解释,那么,丢弃或保留极端值则需要具体问题具体分析;尽量选用受极端值影响小的指标
- 可以通过对比保留极端值和丢弃极端值对结果的影响,来判断结果是否受到极端值的影响

缺失值

如何处理缺失值

- 如果含有缺失值的观测记录很少,而数据量很大,可以把含有缺失值的观测记录丢弃
- 如果含有缺失值的观测记录很多,需要分析原因,看是否能够把缺失的记录补全
- 如果含有缺失值的观测记录较少,可以使用均值/中位数/众数/最大值等进行替代

一次统计的编入 描述统计的编程实现

小节列表

- 频数
- 频率
- 集中趋势: 众数、中位数、均值
- 离散趋势: 极差、四分位数、方差、标准差
- 折线图和散点图
- 条形图和频率直方图
- 箱线图和并排箱线图