TABLEAU DES PROPRIETES GENERALES DE LA TRANSFORMATION DE LAPLACE

	f(s)	F(t)
32.3	$a f_1(s) + b f_2(s)$	$aF_{1}(t)+bF_{2}(t)$
32.4	$f(\dot{e}/a)$	aF(at)
32.5	f(s-a)	$e^{at}F(t)$
32.6	$e^{-as}f(s)$	$\mathcal{U}(t-a) = egin{cases} F(t-a) & t>a \ 0 & t< a \end{cases}$
32.7	s f(s) - F(0)	$F^{\prime\prime}(t)$
32.8	$s^2 f(s) - s F(0) - F'(0)$	$F^{\prime\prime}(t)$
32.9	$s^n f(s) - s^{n-1} F(0) - s^{n-2} F'(0) - \cdots - F^{(n-1)}(0)$	$F^{(n)}(t)$
32.10	f'(s)	-tF(t)
32.11	f''(e)	$t^2F(t)$
32.12	f ⁽ⁿ⁾ (8)	$(-1)^n t^n F(t)$
32.13	<u>f(s)</u> s	$\int_0^t F(u) \ du$
32.14	$rac{f(s)}{s^n}$	$\int_0^t \cdots \int_0^t F(u) du^n = \int_0^t \frac{(t-u)^{n-1}}{(n-1)!} F(u) du$
32.15	f(s) g(s)	$\int_0^t F(u) \ G(t-u) \ du$

	f(s)	F(t)
32.16	$\int_{s}^{\infty} f(u) du$	$rac{F(t)}{t}$
32.17	$\frac{1}{1-e^{-sT}}\int_0^T e^{-su} F(u) du$	F(t) = F(t+T)
32.18	$\frac{f(\sqrt{s})}{s}$	$\frac{1}{\sqrt{\pi t}}\int_0^\infty e^{-u^2/4t}F(u)du$
32.19	$\frac{1}{s}f(1/s)$	$\int_0^\infty J_0(2\sqrt{ut})F(u)du$
32.20	$\frac{1}{s^{n+1}}f(1/s)$	$t^{n/2}\int_0^\infty u^{-n/2}J_n(2\sqrt{ut})F(u)du$
32.21	$\frac{f(s+1/s)}{s^2+1}$	$\int_0^t J_0(2\sqrt{u(t-u)})F(u)du$
32.22	$\frac{1}{2\sqrt{\pi}} \int_0^\infty u^{-3/2} e^{-s^2/4u} f(u) du$	$F(t^2)$
32.23	$\frac{f(\ln s)}{s \ln s}$	$\int_0^\infty \frac{t^u F(u)}{\Gamma(u+1)} du$
32.24	$rac{P(s)}{Q(s)}$ $P(s) = ext{Polynôme de degré inférieur à } n,$ $Q(s) = (s - lpha_1)(s - lpha_2) \cdots (s - lpha_n)$ $où lpha_1, lpha_2, \dots, lpha_n ext{sont distinctes}.$	$\sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)} e^{\alpha_k t}$

TABLEAU DE TRANSFORMEES DE LAPLACE PARTICULIERES

	f(s)	F(t)
32.25	$\frac{1}{s}$	1
32.26	$\frac{1}{s^2}$	t
32.27	$\frac{1}{s^n} \qquad n=1,2,$	3, $\frac{t^{n-1}}{(n-1)!}, 0! = 1$
32.28	$\frac{1}{s^n}$ $n>0$	$\frac{t^{n-1}}{\Gamma(n)}$
32.29	$\frac{1}{s-a}$	eat
32.30	$\frac{1}{(s-a)^n} \qquad n=1,2,3$	$\frac{t^{n-1}e^{at}}{(n-1)!}, 0! = 1$
32.31	$\frac{1}{(s-a)^n} \qquad n > 0$	$\frac{t^{n-1} e^{at}}{\Gamma(n)}$
32.32	$\frac{1}{s^2+a^2}$	$\frac{\sin at}{a}$
32.33	$\frac{s}{s^2+a^2}$	$\cos at$
32.34	$\frac{1}{(s-b)^2+a^2}$	$\frac{e^{bt}\sin at}{a}$
2.35	$\frac{s-b}{(s-b)^2+a^2}$	$e^{\mathrm{b}t}\cos at$
2.36	$\frac{1}{s^2-a^2}$	$\left(\frac{\sinh at}{a}\right)$
2.37	$\frac{s}{s^2-a^2}$	ch at
2.38	$\frac{1}{(s-b)^2-a^2}$	$\frac{e^{\mathrm{b}t} \mathrm{sh} at}{a}$

	f(s)	F(t)
32.39	$\frac{s-b}{(s-b)^2-a^2}$	ebt ch at
32.40	$\frac{1}{(s-a)(s-b)} \qquad a \neq b$	$\frac{e^{bt}-e^{at}}{b-a}$
32.41	$\frac{s}{(s-a)(s-b)} \qquad a \neq b$	$\frac{be^{bt}-ae^{at}}{b-a}$
32.42	$\frac{1}{(s^2+a^2)^2}$	$\frac{\sin at - at \cos at}{2a^3}$
32.43	$\frac{s}{(s^2+\alpha^2)^2}$	$\frac{t \sin at}{2a}$
32.44	$\frac{s^2}{(s^2+a^2)^2}$	$\frac{\sin at + at \cos at}{2a}$
32.45	$\frac{s^3}{(s^2+a^2)^2}$	$\cos at - \frac{1}{2}at \sin at$
32.46	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$t\cos at$
32.47	$\frac{1}{(s^2-a^2)^2}$	$\frac{at \operatorname{ch} at - \operatorname{sh} at}{2a^3}$
32.48	$\frac{s}{(s^2-a^2)^2}$	<u>t sh at</u> 2a
32.49	$\frac{s^2}{(s^2-a^2)^2}$	$\frac{\sinh at + at \cosh at}{2a}$
32.50	$\frac{s^3}{(s^2-a^2)^2}$	$ch at + \frac{1}{2} at sh at$
32.51	$\frac{s^2+a^2}{(s^2-a^2)^2}$	t ch at
32.52	$\frac{1}{(s^2+a^2)^3}$	$\frac{(3-a^2t^2)\sinat-3at\cosat}{8a^5}$
32.53	$\frac{s}{(s^2+a^2)^3}$	$\frac{t \sin at - at^2 \cos at}{8a^3}$
32.54	$\frac{s^2}{(s^2+a^2)^3}$	$\frac{(1+a^2t^2)\sin at - at\cos at}{8a^3}$
32.55	$\frac{s^3}{(s^2+a^2)^3}$	$\frac{3t\sin at + at^2\cos at}{8a}$

166 Tables et formules de mathématiques

	f(s)	F(t)
32.56	$\frac{s^4}{(s^2+a^2)^3}$	$\frac{(3-a^2t^2)\sin at + 5at\cos at}{8a}$
32.57	$\frac{s^5}{(s^2+a^2)^3}$	$\frac{(8-a^2t^2)\cos at-7at\sin at}{8}$
32.58	$\frac{3s^2-a^2}{(s^2+a^2)^3}$	$rac{t^2 \sin at}{2a}$
32.59	$\frac{s^3 - 3a^2s}{(s^2 + a^2)^3}$	$rac{1}{2}t^2\cos at$
32.60	$\frac{s^4 - 6a^2s^2 + a^4}{(s^2 + a^2)^4}$	$\frac{1}{6}t^3\cos at$
32.61	$\frac{s^3 - a^2s}{(s^2 + a^2)^4}$	$rac{t^3 \sin at}{24a}$
32.62	$\frac{1}{(s^2-a^2)^3}$	$\frac{(3+a^2t^2\operatorname{sh} at - 3at \operatorname{ch} at}{8a^5}$
32.63	$\frac{s}{(s^2-a^2)^3}$	$\frac{at^2 \operatorname{ch} at - t \operatorname{sh} at}{8a^3}$
32.64	$\frac{s^2}{(s^2-a^2)^3}$	$\frac{at \operatorname{ch} at + (a^2 t^2 - 1) \operatorname{sh} at}{8a^3}$
32.65	$\frac{s^3}{(s^2-a^2)^3}$	$\frac{3t \sin at + at^2 \cot at}{8a}$
32.66	$\frac{s^4}{(s^2-a^2)^3}$	$\frac{(3+a^2t^2) \operatorname{sh} at + 5at \operatorname{ch} at}{8a}$
32.67	$\frac{s^5}{(s^2-\alpha^2)^3}$	$\frac{(8+a^2t^2)\operatorname{ch} at + 7at\operatorname{sh} at}{8}$
32.68	$\frac{3s^2 + a^2}{(s^2 - a^2)^3}$	$\frac{t^2 \operatorname{sh} at}{2a}$
32.69	$rac{s^3 + 3a^2s}{(s^2 - a^2)^3}$	$\frac{1}{2}t^2 \text{ ch } at$
32.70	$\frac{s^4 + 6a^2s^2 + a^4}{(s^2 - a^2)^4}$	$\frac{1}{6}t^3$ ch at
32.71	$\frac{s^3 + a^2s}{(s^2 - a^2)^4}$	$\frac{t^3 \text{ sh } at}{24a}$
32:72	$\frac{1}{s^3+a^3}$	$\frac{e^{at/2}}{3a^2} \left\{ \sqrt{3} \sin \frac{\sqrt{3} at}{2} - \cos \frac{\sqrt{3} at}{2} + e^{-3at/2} \right\}$

	f(s)	F(t)
32.73	$\frac{s}{s^3+a^3}$	$\frac{e^{at/2}}{3a} \left\{ \cos \frac{\sqrt{3} \ at}{2} + \sqrt{3} \sin \frac{\sqrt{3} \ at}{2} - e^{-3at/2} \right\}$
32.74	$\frac{s^2}{s^3+a^3}$	$\frac{1}{3}\left(e^{-at} + 2e^{at/2}\cos\frac{\sqrt{3}at}{2}\right)$
32.75	$\frac{1}{s^3-a^3}$	$\frac{e^{-at/2}}{3a^2} \left\{ e^{3at/2} - \cos \frac{\sqrt{3} at}{2} - \sqrt{3} \sin \frac{\sqrt{3} at}{2} \right\}$
32.76	$\frac{s}{s^3-a^3}$	$\frac{e^{-at/2}}{3a} \left\{ \sqrt{3} \sin \frac{\sqrt{3} at}{2} - \cos \frac{\sqrt{3} at}{2} + e^{3at/2} \right\}$
32.77	$\frac{s^2}{s^3-a^3}$	$\frac{1}{3}\left(e^{at}+2e^{-at/2}\cos\frac{\sqrt{3}at}{2}\right)$
32.78	$\frac{1}{s^4+4a^4}$	$\frac{1}{4a^3}(\sin at \cot at - \cos at \sinh at)$
32.79	$\frac{s}{s^4+4a^4}$	$\frac{\sin at \sinh at}{2a^2}$
32.80	$\frac{s^2}{s^4+4a^4}$	$\frac{1}{2a}(\sin at \cosh at + \cos at \sinh at)$
32.81	$\frac{s^3}{s^4+4a^4}$	cos at ch at
32.82	$\frac{1}{s^4-a^4}$	$\frac{1}{2a^3} (\operatorname{sh} at - \sin at)$
32.83	$\frac{s}{s^4-a^4}$	$\frac{1}{2a^2} \left(\operatorname{ch} at - \cos at \right)$
32.84	$\frac{s^2}{s^4-a^4}$	$\frac{1}{2a}\left(\sinh at + \sin at \right)$
32.85	$\frac{s^3}{s^4-a^4}$	$\frac{1}{2}\left(\operatorname{ch}at+\cosat\right)$
32.86	$\frac{1}{\sqrt{s+a}+\sqrt{s+b}}$	$\frac{e^{-bt}-e^{-at}}{2(b-a)\sqrt{\pi t^3}}$
32.87	$\frac{1}{s\sqrt{s+a}}$	$\frac{\operatorname{erf}\sqrt{at}}{\sqrt{a}}$
32.88	$\frac{1}{\sqrt{s}(s-a)}$	$rac{e^{at} \operatorname{erf} \sqrt{at}}{\sqrt{a}}$
32.89	$\frac{1}{\sqrt{s-a}+b}$	$e^{at}\left\{rac{1}{\sqrt{\pi t}}-b\ e^{b^2t}\operatorname{erfc}\left(b\sqrt{t}\ ight) ight\}$

	f(s)	F(t)
32.90	$\frac{1}{\sqrt{s^2+a^2}}$	${J}_{0}\left(at ight)$
32.91	$\frac{1}{\sqrt{s^2-a^2}}$	$I_0(at)$
32.92	$\frac{(\sqrt{s^2+a^2}-s)^n}{\sqrt{s^2+a^2}} n>-1$	$a^n J_n(at)$
32.93	$\frac{(s-\sqrt{s^2-a^2})^n}{\sqrt{s^2-a^2}} n>-1$	$a^n I_n(at)$
32.94	$\frac{e^{b(s-\sqrt{s^2+a^2})}}{\sqrt{s^2+a^2}}$	$J_0(a\sqrt{t(t+2b)})$
32.95	$\frac{e^{-b\sqrt{s^2+a^2}}}{\sqrt{s^2+a^2}}$	$\left\{egin{aligned} J_0\left(a\sqrt{t^2-b^2} ight) & t>b\ 0 & t< b \end{aligned} ight.$
32.96	$\frac{1}{(s^2+a^2)^{3/2}}$	$rac{tJ_1(at)}{a}$
32.97	$\frac{s}{(s^2+a^2)^{3/2}}$	$tJ_0(at)$
32.98	$\frac{s^2}{(s^2+a^2)^{3/2}}$	$J_0(at) - atJ_1(at)$
32.99	$\frac{1}{(s^2-a^2)^{3/2}}$	$rac{t I_1(at)}{a}$
32.100	$\frac{s}{(s^2-a^2)^{3/2}}$	$tI_0(at)$
32.101	$\frac{s^2}{(s^2-a^2)^{3/2}}$	$I_0(at) + at I_1(at)$
32.102	$\frac{1}{s(e^s-1)} = \frac{e^{-s}}{s(1-e^{-s})}$ Voir aussi numéro 32.165	$F(t) = n, \ n \le t < n+1, \ n = 0, 1, 2, \dots$
32.103	$\frac{1}{s(e^s-r)}=\frac{e^{-s}}{s(1-re^{-s})}$	$F(t) = \sum_{k=1}^{[t]} r^k$ où $[t]$ = plus grand entier $\leq t$.
32.104	$\frac{e^s - 1}{s(e^s - r)} = \frac{1 - e^{-s}}{s(1 - re^{-s})}$ Voir aussi numéro 32.167	$F(t) = r^n, \ n \le t < n+1, \ n = 0, 1, 2, \dots$
32.105	$\frac{e^{-a/s}}{\sqrt{s}}$	$\frac{\cos 2\sqrt{at}}{\sqrt{\pi t}}$

	f(s)	F(t)
32.106	$\frac{e^{-a/s}}{.8^{3/2}}$	$\frac{\sin 2\sqrt{at}}{\sqrt{\pi a}}$
32.107	$\frac{e^{-a/s}}{s^{n+1}} \qquad n > -1$	$\left(rac{t}{a} ight)^{n/2}J_n(2\sqrt{at})$
32.108	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$	$\frac{e^{-a^2/4t}}{\sqrt{\pi t}}$
32.109	e-a√s	$-rac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$
32.110	$\frac{1 - e^{-a\sqrt{s}}}{s}$	$\operatorname{erf}\left(a/2\sqrt{t} ight)$
32.111	$\frac{e^{-a\sqrt{s}}}{s}$	$\operatorname{erfc}\left(a/2\sqrt{t} ight)$
32.112	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}\left(\sqrt{s}+b\right)}$	$e^{b(bt+a)}\operatorname{erfc}\left(b\sqrt{t}+rac{a}{2\sqrt{t}} ight)$
32.113	$\frac{e^{-a/\sqrt{s}}}{s^{n+1}} n > -1$	$\frac{1}{\sqrt{\pi t} a^{2n+1}} \int_0^\infty u^n e^{-u^2/4a^2t} J_{2n}(2\sqrt{u}) du$
32.114	$\ln\left(\frac{s+a}{s+b}\right)$	$\frac{e^{-bt}-e^{-at}}{t}$
32.115	$\frac{\ln\ [(s^2+a^2)/a^2]}{2s}$	Ci(at)
32.116	$\frac{\ln \left[(s+a)/a \right]}{s}$	Ei(at)
32.117	$-\frac{(\gamma + \ln s)}{s}$ $\gamma = \text{Constante d'Euler} = 0,5772156$	ln t
32.118	$\ln\!\left(\!\frac{s^2+a^2}{s^2+b^2}\!\right)$	$\frac{2\left(\cos at-\cos bt\right)}{t}$
32.119	$\frac{\pi^2}{6s} + \frac{(\gamma + \ln s)^2}{s}$ $\gamma = \text{Constante d'Euler} = 0,5772156$	ln² t
32.120	$\frac{\ln s}{s}$	$-(\ln t + \gamma)$ $\gamma = \text{Constante d'Euler} = 0,5772156.$
32.121	$\frac{\ln^2 s}{s}$	$(\ln t + \gamma)^2 - \frac{1}{6}\pi^2$ $\gamma = \text{Constante d'Euler} = 0,5772156$

	f(s)	F(t)
32.122	$\frac{\Gamma'(n+1) - \Gamma(n+1) \ln s}{s^{n+1}} \qquad n > -1$	t ⁿ In t
32.123	Arc tg (a/s)	$\frac{\sin at}{t}$
32.124	Arc tg (a/s)	$Si\left(at ight)$
32.125	$\frac{e^{a/s}}{\sqrt{s}}$ erfc $(\sqrt{a/s})$	$\frac{e^{-2\sqrt{a}t}}{\sqrt{\pi}t}$
32.126	$e^{s^2/4a^2}$ erfc (s/2a)	$\frac{2a}{\sqrt{\pi}}e^{-a^2t^2}$
32.127	$\frac{e^{s^2/4a^2} \text{ erfc } (s/2a)}{s}$	$_{.}$ erf (at)
32.128	$rac{e^{as} \operatorname{erfc} \sqrt{as}}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi(t+a)}}$
32.129	eas Ei(as)	$\frac{1}{t+a}$
32.130	$\frac{1}{a} \left[\cos as \left\{ \frac{\pi}{2} - Si(as) \right\} - \sin as Ci(as) \right]$	$rac{1}{t^2+lpha^2}$
32.131	$\sin as \left\{ \frac{\pi}{2} - Si(as) \right\} + \cos as Ci(as)$	$rac{t}{t^2+a^2}$
32.132	$\frac{\cos as \left\{\frac{\pi}{2} - Si(as)\right\} - \sin as \ Ci(as)}{s}$	Arc tg(t/a)
32.133	$\frac{\sin as\left\{\frac{\pi}{2}-Si(as)\right\} + \cos as \ Ci(as)}{s}$	$rac{1}{2} \ln igg(rac{t^2 + a^2}{a^2}igg)$
32.134	$\left[\frac{\pi}{2} - Si(as)\right]^2 + Ci^2(as)$	$rac{1}{t}\ln\left(rac{t^2+a^2}{a^2} ight)$
32.135	0	$\mathcal{N}(t) = \text{fonction nulle}$
32.136	1	$\delta(t) = fonction delta$
32.137	e-as	$\delta(t-a)$
32.138	e−as 8 Voir aussi le numéro 32.163	. $\mathcal{U}(t-a)$

	f(s)	F(t)
32.139	sh sx s sh sa	$\frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi x}{a} \cos \frac{n\pi t}{a}$
32.140	sh sx s ch sa	$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \sin \frac{(2n-1)\pi x}{2a} \sin \frac{(2n-1)\pi t}{2a}$
32.141	ch sx s sh as	$\frac{t}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos \frac{n\pi x}{a} \sin \frac{n\pi t}{a}$
32.142	ch sx s ch sa	$1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \cos \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.143	$\frac{\sinh sx}{s^2 \sinh sa}$	$\frac{xt}{a} + \frac{2a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin \frac{n\pi x}{a} \sin \frac{n\pi t}{a}$
32.144	$\frac{\sinh sx}{s^2 \cosh sa}$	$x + \frac{8a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \sin \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.145	$\frac{\operatorname{ch} sx}{s^2 \operatorname{sh} sa}$	$\frac{t^2}{2a} + \frac{2a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{n\pi x}{a} \left(1 - \cos \frac{n\pi t}{a} \right)$
32.146	ch sx s ³ ch sa	$t + \frac{8a}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \cos \frac{(2n-1)\pi x}{2a} \sin \frac{(2n-1)\pi t}{2a}$
32.147	ch sx s ³ ch sa	$\frac{1}{2}(t^2+x^2-a^2) - \frac{16a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} \cos \frac{(2n-1)\pi x}{2a} \cos \frac{(2n-1)\pi t}{2a}$
32.148	$\frac{\sinh x \sqrt{s}}{\sinh a \sqrt{s}}$	$\frac{2\pi}{a^2} \sum_{n=1}^{\infty} (-1)^n n e^{-n^2 \pi^2 t/a^2} \sin \frac{n\pi x}{a}$
32.149	$\frac{\operatorname{ch} x \sqrt{s}}{\operatorname{ch} a \sqrt{s}}$	$\frac{\pi}{a^2} \sum_{n=1}^{\infty} (-1)^{n-1} (2n-1) e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$
32.150	$\frac{\sinh x \sqrt{s}}{\sqrt{s} \cosh a \sqrt{s}}$	$\frac{2}{a} \sum_{n=1}^{\infty} (-1)^{n-1} e^{-(2n-1)^3 \pi^2 t/4a^2} \sin \frac{(2n-1)\pi x}{2a}$
32.151	$\frac{\operatorname{ch} x \sqrt{s}}{\sqrt{s} \operatorname{sh} a \sqrt{s}}$	$\frac{1}{a} + \frac{2}{a} \sum_{n=1}^{\infty} (-1)^n e^{-n^2 \pi^2 t/a^2} \cos \frac{n \pi x}{a}$
32.152	$\frac{\sinh x \sqrt{s}}{s \sinh a \sqrt{s}}$	$\frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-n^2 \pi^2 t/a^2} \cdot \sin \frac{n \pi x}{a}$
32.153	$\frac{\operatorname{ch} x \sqrt{s}}{s \operatorname{ch} a \sqrt{s}}$	$1 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$
32.154	$\frac{\sinh x \sqrt{s}}{s^2 \sin a \sqrt{s}}$	$\frac{xt}{a} + \frac{2a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} (1 - e^{-n^2\pi^2t/a^2}) \sin \frac{n\pi x}{a}$
32.155	$\frac{\operatorname{ch} x \sqrt{s}}{s^2 \operatorname{ch} a \sqrt{s}}$	$\frac{1}{2}(x^2 - a^2) + t - \frac{16a^2}{\pi^3} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} e^{-(2n-1)^2 \pi^2 t/4a^2} \cos \frac{(2n-1)\pi x}{2a}$

	f(s)	F(t)
32.156	$\frac{J_0(ix\sqrt{s})}{sJ_0(ia\sqrt{s})}$	$1-2\sum_{n=1}^{\infty}\frac{e^{-\lambda_n^2t/a^2}J_0(\lambda_nx/a)}{\lambda_nJ_1(\lambda_n)}$ où λ_1 , λ_2 , sont les racines positives de $J_0(\lambda)=0$.
32.157	$\frac{J_0(ix\sqrt{s})}{s^2J_0(ia\sqrt{s})}$	$\begin{array}{ll} \frac{1}{4}(x^2-a^2) \ + \ t \ + \ 2a^2 \sum_{n=1}^{\infty} \frac{e^{-\lambda_n^2 t/a^2} \ J_0(\lambda_n x/a)}{\lambda_n^3 J_1(\lambda_n)} \\ \\ \text{où $\lambda_1,\lambda_2,\dots$ sont les racines positives de } J_0(\lambda) = \ 0. \end{array}$
32.158	$\frac{1}{as^2}$ th $\left(\frac{as}{2}\right)$	Fonction en triangles 1 - $F(t)$ 2a $4a$ $6a$ t Fig. 32-1
32.159	$\frac{1}{s}$ th $\left(\frac{as}{2}\right)$	Fonction en créneaux $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
32.160	$\frac{\pi a}{a^2 s^2 + \pi^2} \coth\left(\frac{as}{2}\right)$	Fonction sinusoïdale rectifiée $ \frac{1}{a} = \frac{F(t)}{a} $ Fig. 32-3
32.161	$\frac{\pi a}{(a^2s^2+\pi^2)(1-e^{-as})}$	Fonction sinusoïdale rectifiée demi onde $1 - \begin{bmatrix} F(t) \\ a \\ 2a \\ 3a \end{bmatrix}$ Fig. 32-4
32.162	$\frac{1}{as^2} - \frac{e^{-as}}{s(1-e^{-as})}$	Fonction en dent de scie $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

	#/a\	F(t)
	f(s)	
32.163	$\frac{e^{-as}}{s}$ Voir aussi le numéro 32.138.	Fonction unité de Heaviside $\mathfrak{u}(t-a)$ $1 - \begin{bmatrix} F(t) \\ a \end{bmatrix}$ Fig. 32-6
32.164	$\frac{e^{-as}\left(1-e^{-\epsilon s}\right)}{s}$	Fonction impulsion $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
32.165	$\frac{1}{s(1-e^{-\alpha s})}$ Voir aussi le numéro 32.102.	Fonction en escalier $ \begin{array}{cccccccccccccccccccccccccccccccccc$
32.166	$\frac{e^{-s} + e^{-2s}}{s(1 - e^{-s})^2}$	$F(t) = n^2, n \le t < n+1, n = 0, 1, 2,$
32.167	$\frac{1-e^{-s}}{s(1-re^{-s})}$ Voir aussi le numéro 32.104.	$F(t) = r^n, n \le t < n+1, n = 0, 1, 2,$
32.168	$\frac{\pi a(1+e^{-as})}{a^2s^2+\pi^2}$	$F(t) = \begin{cases} \sin (\pi t/a) & 0 \le t \le a \\ 0 & t > a \end{cases}$ $1 - \begin{cases} F(t) \\ 0 & \text{fig. 32-11} \end{cases}$

Table des Transformées de Laplace usuelles

f(t)	F(p)		f(t)	R(p)
$\delta(t)$	1.		, cos tat	$\frac{p}{p^2 + \omega^2}$
$\Gamma(t)$	T d	0	$\frac{\omega_0}{\sqrt{1-m^2}} e^{-m\omega_0 t} \sin(\omega_0 \sqrt{1-m^2}) t$	$\frac{1}{1+2m\frac{P}{\omega_0} + \left(\frac{P}{\omega_0}\right)^2} m < 1$
	p^2		$1 - \frac{e^{-m\omega_0 t}}{\sqrt{1 - m^2}} \sin\left[\omega_0 \sqrt{1 - m^2} t + \varphi\right]$ avec $\cos \theta = m$	$p\left(1 + 2m\frac{p}{\omega_0} + \frac{p^2}{\omega_0^2}\right)$ $m < 1$
6-41	$\frac{1}{p+a}$	1	$\frac{1}{\tau_1 - \tau_2} \left(e^{-t/\tau_1} - e^{-t/\tau_2} \right)$ $\tau_1 \neq \tau_2$	$\frac{1}{(1+\tau_1 p)(1+\tau_2 p)}$
1 - e-1/2	$\frac{1}{p(1+\tau p)}$		$1 - \frac{1}{\tau_1 - \tau_2} \left(\tau_1 e^{-i/\tau_1} - \tau_2 e^{-i/\tau_2} \right) \tau_1 \neq \tau_2$	$\frac{1}{p(1+\tau_1p)\left(1+\tau_2p\right)}$
		0	$\frac{1}{\tau^n} \times \frac{t^{n-1}}{(n-1)!} e^{-t/\tau} n \ge 1$	$\frac{1}{(1+\tau p)^n}$
sin or	$p^2 + \omega^2$		$\frac{t^{n-1}}{(n-1)!} n \ge 1$	∏ ba