SISTEMAS OPERACIONAIS

AULA 3 - CONCEITOS BÁSICOS DE SOS

Prof.^a Sandra Cossul, Ma.

OBJETIVOS DE UM SISTEMA OPERACIONAL

Conveniência

Possibilidade de atualização

Eficiência

OBJETIVOS DE UM SISTEMA OPERACIONAL

Abstração de recursos

- Prover interfaces de acesso aos dipositivos, mais simples de usar do que as interfaces de baixo nível
- Tornar os aplicativos independentes do hardware
- Definir interfaces de acesso homogêneas para dispositivos com tecnologias distintas

OBJETIVOS DE UM SISTEMA OPERACIONAL

Gerência de recursos

- Gerência do processador distribuir a capacidade de processamento de forma justa entre as aplicações
- Gerência de memória fornecer a cada aplicação uma área específica de memória
- <u>Gerência de dispositivos –</u> implementar a interação com cada dispositivo por meio de drivers
- <u>Gerência de arquivos –</u> criar arquivos e diretórios definindo interface de acesso e regras de uso
- Gerência de proteção

COMPONENTES DE UM SISTEMA COMPUTACIONAL

O Sistema Operacional controla o hardware e seu uso entre os vários programas aplicativos para os diversos usuários.

VISÃO DOS COMPONENTES DE UM SISTEMA COMPUTACIONAL

SO DO PONTO DE VISTA DO USUÁRIO

- O usuário vê em termos de um conjunto de aplicações!
- Varia de acordo com o tipo de interface
 - Computador, notebook, smartphone, tablet
- Facilitar o uso
 - Performance e segurança
 - Não se preocupa com o uso dos recursos (como os recursos de hardware e software são compartilhados)
- Alguns sistemas são implementados para rodar sem intervenção do usuário (sistemas embarcados) – Ex.: eletrodomésticos, automóveis, etc.

SO DO PONTO DE VISTA DO SISTEMA

Gerenciador de recursos

 Tempo CPU, espaço de memória, dispositivos de entrada e saída...

Programa de controle

• Administra a execução dos programas do usuário

SERVIÇOS DO SO

- Interface de usuário (UI)
 - Graphical user interface (GUI), touchscreen interface, command-line interface (CLI)
- Execução de software
- Acesso aos dispositivos de E/S
- Manipulação de arquivos
- Comunicação entre processos
- Desenvolvimento de software
- Detecção de erro e correção

SERVIÇOS DO SO (OPERAÇÃO EFICIENTE)

Alocação de recursos

Sistemas com múltiplos processos ganham em eficiência ao compartilhar os recursos do computador entre os processos em execução.

Coleta de dados e estatísticas de uso

- Proteção e segurança
 - Controle de acesso ao sistema e aos recursos
 - Proteção contra invasores

VISÃO DOS SERVIÇOS DO SISTEMA OPERACIONAL

- SHELL programa do computador que mostra os serviços de um sistema operacional a um usuário ou outros programas (camada mais externa do SO)
 - Intepretadores de comandos
 - Interfaces gráficas de usuários
 - Interface touchscreen

• A escolha da interface vai ser a que for mais eficiente para realizar determinada tarefa.

Windows GUI

Command prompt (Windows)

```
C:\Temp> dir
 Volume in drive C is C
 Volume Serial Number is 74F5-B93C
 Directory of C:\Temp
2009-08-25 11:59
                       <DIR>
2009-08-25 11:59
                       <DIR>
                            2,321,600 AdobeUpdater12345.exe
2007-03-01 11:37
                                27,988 dd_depcheckdotnetfx30.txt
764 dd_dotnetfx3error.txt
2009-04-03 10:01
2009-04-03
            10:01
                                32,572 dd_dotnetfx3install.txt
2009-04-03
            10:01
2009-06-09 13:46
                                35,145 GenProfile.log
2009-08-05
                                   155 KB969856.log
2009-04-20
                                   402 MSI29e0b.LOĞ
                                38,895 offcln11.log
2009-04-09
             16:34
2009-04-03
            16:02
                                       OfficePatches
                       <DIR>
2009-07-14
            14:30
                       <DIR>
                                       OHotfix
2009-08-25 10:52
                                16,384 Perflib_Perfdata_c30.dat
                                1,744 uxeventlog.txt
2009-04-03 10:01
2009-08-25 11:42
                           50,245,632 WFV2F.tmp
                                 1,397 {AC76BA86-7AD7-1033-7B44-A81200000003}.ini 617 {AC76BA86-7AD7-1033-7B44-A81300000003}.ini
2009-04-20
            10:07
2009-04-20
            10:13
                                52,723,295 bytes
               13 File(s)
                4 Dir(s) 83,570,208,768 bytes free
```

Terminal (Linux)

```
daniel@daniel-PC: ~
File Edit View Search Terminal Help
daniel@daniel-PC:~$ locate -i arquivo1.txt
/home/daniel/Documents/arquivo1.txt
/home/daniel/Documents/PET-Redacao/arquivo1.txt
/home/daniel/Documents/PET-Redacao/novoArquivo1.txt
daniel@daniel-PC:~$
```

Touchscreen

MODOS DE OPERAÇÃO DO SO

Modo kernel

Acesso irrestrito ao hardware

Modo usuário

Acesso limitado ao processador e memória

- Dois modos para garantir segurança e garantir o correto compartilhamento dos recursos de hardware e software
- Na inicialização do sistema, o hardware inicia no modo kernel. Então, o
 SO é carregado e inicia os aplicativos do usário no modo de usuário.

Troca frequente de contexto – impedir que os programas de usuário interajam diretamente com componentes de hardware de baixo nível ou acessem espaços de memória reservados.

MODOS DE OPERAÇÃO DO SO

MODO DE OPERAÇÃO DO SO

Níveis/camadas de proteção

- Núcleo e drivers precisam ter pleno acesso ao hardware para configurar e gerenciar
- Aplicativos e utilitários devem ter acesso mais restrito para não interferir nas configurações e na gerência
- Aplicações com acesso pleno ao hardware seriam um risco à segurança

- Sistemas mainframes
- 2. Sistemas de lotes (batch)
- 3. Sistemas operacional em rede
- 4. Sistemas distribuídos
- 5. Sistemas operacionais de tempo real
- 6. Sistemas operacionais móveis
- 7. Sistemas operacionais de servidor
- 8. Sistemas operacionais desktop
- 9. Sistemas operacionais embarcados

1. Sistemas Mainframe

- Primeiros sistemas computacionais usados na resolução de problemas comerciais e aplicações científicas
- Nos dias atuais, projetados para processamento de grande volume de dados de forma bem eficiente
- Arquitetura de hardware complexa
- Computadores de grande porte
- Oferecem serviços de processamento a milhares de usuários por meio de milhares de terminais conectados diretamente ou através de uma rede
- z/OS IBM

2. Sistemas batch (de lote)

- Não interage com o hardware diretamente
- Job programa a ser compilado e executado, acompanhado dos dados
- Operador "junta" trabalhos semelhantes e os agrupa em um lote

Atualmente, esse conceito se aplica a sistemas que processam tarefas sem interação

direta com os usuários.

• Ex.:

- Cartões perfurados (antigo)
- Banco de dados
- Sistemas financeiros
- Imagens, conversões

2. Sistemas batch (de lote)

Vantagens

- Acelera o processamento de informações em massa
- Busca evitar a ociosidade do computador
- Vários usuários podem compartilhar sistemas batch
- Executa apenas uma vez o programa para processar grandes quantias de dados, reduzindo a sobrecarga de sistema

Desvantagens

- Difícil de "debugar"
- Se um trabalho falhar, os outros trabalhos terão que aguardar

3. Sistemas operacionais em rede

 Diferentes computadores conectados por uma rede que compartilham recursos locais

 Compartilhamento de arquivos, aplicativos, impressosas em uma pequena rede de computadores ou uma rede privada

3. Sistemas operacionais em rede

- Vantagens:
 - Facilidade de atualização do sistema (adicionar mais clientes)
 - Segurança
- Desvantagens:
 - Atualizações e manutenções regulares (custo)
- Obs.: a maioria dos SOs atuais fornece esse tipo de funcionalidade.

4. Sistemas distribuídos

- Em um sistema operacional distribuído, os recursos de cada computador estão disponíveis a todos na rede, de forma transparente aos usuários.
- Ambientes de computação em nuvem
 - Usuário interage com a interface da aplicação, mas não tem uma visão clara das máquinas onde seus dados estão sendo processados e armazenados.

4. Sistemas distribuídos

Dois tipos: client-server e peer-to-peer

Vantagens:

- Compartilhamento de recursos
- Diminui tempo de processamento

Desvantagens

- Falha da rede faz toda a comunicação parar
- Manter a sincronização

5. Sistemas operacionais de tempo real (RTOS)

- SOs utilizados em aplicações de tempo real em que o processamento de dados deve ser feito em um intervalo de tempo pré-determiando.
- Utilizado quando existem limitações de memória e a tomada de decisão deve ser rápida
- Não tem interface gráfica
- Utilizado em **sistemas embarcados** (sistemas robóticos, sistemas de realidade virtual, automação doméstica, etc.)

5. Sistemas operacionais de tempo real (RTOS)

Hard RTOS

- Requisitos de tempo muito restritos e qualquer atraso não é aceitável
- Ex.: sistema de airbag, sistema de para-quedas

Soft RTOS

Requisitos de tempo são menos restritos

5. Sistemas operacionais de tempo real (RTOS)

- Vantagens:
 - Máxima utilização dos recursos de hardware
 - Error-free
 - Foco na aplicação sendo executada

Desvantagens:

- Complexidade
- Custo (de hardware)

6. Sistemas operacionais móveis

- Utilizado em smartphones, tablets, smartwatches
- Provê uma plataforma em que várias aplicações podem rodar ao mesmo tempo
- Prioridades: gestão eficiente da energia (bateria), conectividade com diversos tipos de rede (Wifi, Bluetooth, NFC, etc.) e interação com uma grande variedade de sensores (GPS, luminosidade, touchscreen, leitor de digitais, etc.)

Android e iOS

7. Sistemas operacionais de servidor

 Deve permitir a gestão eficiente de grandes quantidades de recursos, impondo prioridade e limites sobre o uso dos recursos pelos usuários e seus aplicativos

Suporte a rede e multiusuários

8. Sistemas operacionais desktop

- Sistema operacional "de mesa"
- Voltado ao atendimento do usuário doméstico e corporativo para realização de atividades corriqueiras (editor texto, navegar na internet, etc.)
- Interface gráfica, suporte à interatividade e operação em rede

Windows, MacOS, Linux

9. Sistemas operacionais embarcados

 opera sobre um hardware com poucos recursos de processamento, armazenamento e energia

- Sistemas de automação e controladores automotivos
- Equipamentos eletrônicos de uso doméstico

• Ex.: LynxOS, TinyOS, entre outros

- Quanto ao número de usuários:
 - Monousuário
 - Multiusuário
- Grande parte dos sistemas atuais são multiusuários. Tais sistemas devem suportar a identificação de cada usário e impor regras de controle de acesso para impedir o uso por usuários não autorizados.
 - Garantir a segurança em sistemas operacionais de rede e distribuídos.

- Quanto ao número de tarefas:
 - Monotarefa
 - Multitarefa
 - Multiprocessadores

Monotarefa

- A execução ocorre em um único programa (job)
- Qualquer outro programa, para ser executado, deve aguardar o término do programa corrente
- Tipicamente relacionado ao surgimento dos mainframes
- Exemplo: MS-DOS

Monotarefa

Multitarefa

- São mais complexos e mais eficientes
- Vários programas compartilham os mesmos recursos
- Enquanto um programa espera por uma operação de E/S, os outros programas podem ser processados neste intervalo de tempo
- Trouxe aumento de produtividade para os usuários e a redução de custos
- **Exemplo**: Sistemas de tempo compartilhado (time-sharing), Sistemas em tempo real.

Multitarefa

Multiprocessadores

 Caracterizam-se por possuir duas ou mais CPUs interligadas e trabalhando em conjunto

Vantagens:

- Executar vários programas ao mesmo tempo
- Paralelismo: Dividir a execução de um programa entre várias CPUs

São classificados quanto:

- A forma de comunicação entre as CPUs
- O grau de compartilhamento da memória e Dispositivos E/S

Multiprocessadores

Multiprocessadores

 Para os Sistemas Fortemente Acoplados existem dois ou mais processadores compartilhando uma única memória e controlados por um único SO

Sistemas Simétricos

Possuem um tempo uniforme de acesso à memória principal

Sistemas Assimétricos

 O tempo de acesso à memória pelos processadores varia em função da sua localização física

Multiprocessadores

• Para os **Sistemas Fracamente Acoplados** existem dois ou mais sistemas de computação interligados, sendo que cada um possui o próprio SO e gerencia seus próprios recursos

Sistemas Operacionais de Rede

 Existe distinção clara de que um serviço é executado em outra máquina (servidor)

Sistemas Operacionais Distribuídos

• Para o usuário e suas aplicações, é como se não existisse uma rede de computadores, mas sim um único sistema centralizado (cloud computing)

PRÓXIMA AULA

- Estrutura SO
- Chamadas de sistema

BIBLIOGRAFIA

- Tanenbaum, A. S. **Sistemas Operacionais Modernos.** Pearson Prentice Hall. 3rd Ed., 2009.
- Silberschatz, A; Galvin, P. B.; Gagne G.; Fundamentos de Sistemas Operacionais. LTC. 9th Ed., 2015.
- Stallings, W.; Operating Systems: Internals and Design Principles. Prentice Hall. 5th Ed., 2005.
- Maziero, C. A.; Sistemas Operacionais: Conceitos e
 Mecanismos. DINF UFPR, 2019.