

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Название: Мультивибратор на операционном усилителе

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника;

ОТЧЕТ

по домашнему заданию № 3.

Дисциплина: Электроника		

 Студент
 ИУ6-43Б (Группа)
 17.05.2024
 В.К. Залыгин (И.О. Фамилия)

 Преподаватель
 В.А. Карпухин (Подпись, дата)
 В.А. Карпухин (И.О. Фамилия)

ЦЕЛЬ РАБОТЫ

Определении номиналов элементов схемы мультивибратора операционном усилителе, работающего на заданных длительностях полуволн выходного сигнала T_1 и T_2 , исследовании влияния параметров положительной и отрицательной обратных связей на параметры выходного сигнала: период колебаний T, длительность положительного импульсного напряжения T_1 , длительность отрицательного импульсного напряжения T_2 , амплитуду сигнала положительного импульса выходного $U_{max}_{\rm Bhix}$, амплитуду $U_{min \text{ BMX}}$, импульса отрицательного выходного сигнала амплитуду положительного импульса на неинвертирующем входе операционного усилителя $U_{max \, BX}^+$, амплитуду отрицательного импульса на неинвертирующем входе операционного усилителя $U_{min \; \mathrm{BX}}^+$, длительность фронта нарастания $t_{\mathrm{\varphi H}}$, длительность фронта спада $t_{\rm dc}$.

ЧАСТЬ 1. РАСЧЕТ НОМИНАЛОВ СХЕМЫ

1.1 Задание

Выполнить расчет номиналов элементов (длительности T_1 , T_2 заданы индивидуальным вариантом, коэффициент ПОС $K_{\Pi O C} = 0,7$), привести полученные значения к ряду номиналов радиодеталей E24. Параметры в соответствии с вариантом задания представлены на рисунке 1.

№	Фамилия	Имя	Т1, мс	Т2, мс	Модель диодов
15	Залыгин	Вячеслав	7,1	1,3	KD105B

Рисунок 1 – параметры по варианту

1.2 Выбор операционного усилителя

По данному варианту заданы 2 параметра выходного сигнала:

- длительность положительного импульсного напряжения $T_1 = 9.1$ мс;
- длительность отрицательного импульсного напряжения $T_2 = 1.3$ мс.

Чтобы выбрать необходимый операционный усилитель (ОУ) необходимо учитывать некоторые параметры ОУ из spice-модели:

- SRN максимальная скорость нарастания отрицательного импульса;
- SRP максимальная скорость нарастания положительного импульса;
- VPS максимальное напряжение на выходе ОУ;
- VNS минимальное напряжение на выходе ОУ.

Необходимо выбрать ОУ, удовлетворяющий выражениям:

$$T_{min} = min\{T_1, T_2\} = 1.3 \text{мс}$$

$$0.9 \cdot \frac{VPS - VNS}{SRP} \leq 0.01 \cdot T_{min} \Rightarrow \frac{VPS - VNS}{SRP} \leq \frac{0.01 \cdot 1.3}{0.9} = 14 \text{ мкс}$$

$$0.9 \cdot \frac{VPS - VNS}{SRN} \leq 0.01 \cdot T_{min} \Rightarrow \frac{VPS - VNS}{SRN} \leq \frac{0.01 \cdot 1.3}{0.9} = 14 \text{ мкс}$$

Под данные требования подходит ОУ LF351. Его spice-модель представлена на рисунке 2.

Рисунок 2 – Модель ОУ LF351

Тогда при подстановке характеристик неравенства оказываются верными:

$$\frac{VPS - VNS}{SRP} = \frac{12.9 - (-12.9)}{13 \cdot 10^6} = 2 \text{ мкс} \le 14 \text{ мкс}$$

$$\frac{VPS - VNS}{SRN} = \frac{12.9 - (-12.9)}{13 \cdot 10^6} = 2 \text{ мкс} \le 14 \text{ мкс}$$

Схема с ОУ представлена на рисунке 3.

Рисунок 3 – схема с ОУ (точки in+ и in- перепутаны местами)

1.2 Расчет положительной обратной связи

Для расчета ПОС выбран ток $I_{max_{\Pi oc}}=0.6*10^{-3}$ А. $K_{\Pi oc}$ по условию задан $K_{\Pi oc}=0.7$. По характеристикам ОУ $U_{max_{\rm Bыx}}=VPS=13$ В.

Тогда значения R_3 , R_4 можно будет найти по формулам:

$$R_3 = K_{\text{пос}} * \frac{U_{max_{\text{Bbix}}}}{I_{max_{\text{пос}}}} = 0.7 * \frac{12.9}{0.6 * 10^{-3}} = 15.1 \text{кOm},$$

$$R_4 = R_3 * \frac{1 - K_{\text{пос}}}{K_{\text{пос}}} = 15.1 * 10^3 * \frac{1 - 0.7}{0.7} = 6.5$$
кОм.

Для дальнейшей работы необходимо выбрать близкие к вычисленным значения из ряда резисторов E24. Ряд представлен на рисунке 4.

E24		Номинальное сопротивление										
1,0	0,01 Om	0,1 Om	1 Om	10 Om	100 Om	1 кОм	10 кОм	100 кОм				
1,1	0,011 Om	0,11 Ом	1,1 Om	11 Om	110 Om	1,1 кОм	11 кОм					
1,2	0,012 Om	0,12 Ом	1,2 Ом	12 Om	120 Ом	1,2 кОм	12 кОм					
1,3	0,013 Ом	0,13 Ом	1,3 Ом	13 Om	130 Ом	1,3 кОм	13 кОм					
1,5	0,015 Om	0,15 Ом	1,5 Ом	15 Om	150 Om	1,5 кОм	15 кОм					
1,6	0,016 Ом	0,16 Ом	1,6 Ом	16 Om	160 Ом	1,6 кОм	16 кОм					
1,8	0,018 Om	0,18 Ом	1,8 Ом	18 Om	180 Ом	1,8 кОм	18 кОм					
2,0	0,02 Om	0,2 Om	2,0 Ом	20 Ом	200 Ом	2,0 кОм	20 кОм					
2,2	0,022 Om	0,22 Ом	2,2 Ом	22 Om	220 Ом	2,2 кОм	22 кОм					
2,4	0,024 Om	0,24 Ом	2,4 Ом	24 Om	240 Ом	2,4 кОм	24 кОм					
2,7	0,027 Om	0,27 Ом	2,7 Ом	27 Ом	270 Ом	2,7 кОм	27 кОм					
3,0	0,03 Om	0,3 Om	3,0 Ом	30 Om	300 Om	3,0 кОм	30 кОм					
3,3	0,033 Om	0,33 Ом	3,3 Ом	33 Om	330 Om	3,3 кОм	33 кОм					
3,6	0,036 Om	0,36 Ом	3,6 Ом	36 Om	360 Om	3,6 кОм	36 кОм					
3,9	0,039 Ом	0,39 Ом	3,9 Ом	39 Ом	390 Ом	3,9 кОм	39 кОм					
4,3	0,043 Ом	0,43 Ом	4,3 Ом	43 Om	430 Ом	4,3 кОм	43 кОм					
4,7	0,047 Om	0,47 Ом	4,7 Ом	47 Om	470 Om	4,7 кОм	47 кОм					
5,1	0,051 Om	0,51 Ом	5,1 Om	51 Om	510 Om	5,1 кОм	51 кОм					
5,6	0,056 Ом	0,56 Ом	5,6 Ом	56 Ом	560 Ом	5,6 кОм	56 кОм					
6,2	0,062 Om	0,62 Ом	6,2 Ом	62 Om	620 Ом	6,2 кОм	62 кОм					
6,8	0,068 Ом	0,68 Ом	6,8 Ом	68 Om	680 Ом	6,8 кОм	68 кОм					
7,5	0,075 Om	0,75 Ом	7,5 Ом	75 Om	750 Om	7,5 кОм	75 кОм					
8,2	0,082 Ом	0,82 Ом	8,2 Ом	82 Om	820 Ом	8,2 кОм	82 кОм					
9,1	0,091 Om	0,91 Ом	9,1 Ом	91 Om	910 Om	9,1 кОм	91 кОм					

Рисунок 4 – Ряд Е24

Из ряда выбраны ближайшие вычисленным значения $R_3=15$ кОм, $R_4=6.2$ кОм.

Тогда $K_{\text{пос}}$ будет принимать значение $K_{\text{пос}} = \frac{R_3}{R_3 + R_4} = \frac{15}{15 + 6.2} = 0.707$, что достаточно близко к заданному значению.

Для расчета $U_{max_{\rm BX}}^+, U_{min_{\rm BX}}^-$ необходимо из spice-модели ОУ взять значения:

$$U_{max \text{ вых}} = VPS = 13 \text{ B},$$
 $U_{min \text{ вых}} = VNS = -13 \text{ B}.$

Тогда $U_{max_{\rm BX}}^+$, $U_{min_{\rm BX}}^-$ будут иметь значения:

$$U_{max \text{ BX}}^+ = K_{\Pi \text{OC}} \cdot U_{max \text{ BMX}} = 0.7 \cdot 13 = 9.1 \text{B},$$

 $U_{min \text{ BX}}^- = K_{\Pi \text{OC}} \cdot U_{min \text{ BMX}} = 0.7 \cdot -13 = -9.1 \text{B}.$

Значения на схеме показаны на рисунке 5.

Рисунок 5 – Схема с выставленными значениями для резистивного делителя

1.3 Расчет отрицательной обратной связи

Для расчета ООС выбран ток $I_{maxooc} = 0.6 * 10^{-3} \text{ A}.$

Поскольку длительность положительного импульса T_1 больше, чем длительность отрицательного импульса T_2 , то формулы имеют вид:

$$R_1 = rac{2*U_{max_{
m BЫX}}}{I_{max_{
m OOC}}} = rac{2*12.9}{0.6*10^{-3}} = 43$$
кОм, $R_2 = rac{T_2}{T_1}*R_1 = rac{1.3}{7.1}*43 = 7.9$ кОм,

Ближайшие значения ряда Е24: $R_1 = 43 \kappa O M$, $R_2 = 8.2 \kappa O M$.

Тогда емкость конденсатора C_1 будет рассчитываться так:

$$C_1 = \frac{1}{R_1} * \frac{T_1}{ln\left(\frac{1+K_{\text{\tiny HOC}}}{1-K_{\text{\tiny HOC}}}\right)} = \frac{1}{43*10^3} * \frac{7.1*10^{-3}}{ln\frac{1+0.7}{1-0.7}} = 95\text{H}\Phi.$$

По ряду E24 (представлен на рисунке 6) значение $C_1 = 91$ н Φ .

5.6 ⊓Ф	56 пФ	560 пФ	5.6 нФ	56 нФ	0.56 мкФ	5.6 мкФ	56 мкФ	560 мкФ	5600 мкФ
6.2пФ	62 пФ	620 пФ	6.2 нФ	62 нФ	0.62 мкФ	6.2 мкФ	62 мкФ	620 мкФ	6200 мкФ
6.8 пФ	68 пФ	680 пФ	6.8 нФ	68 нФ	0.68 мкФ	6.8 мкФ	68 мкФ	680 мкФ	6800 мкФ
7.5 пФ	75 пФ	750 пФ	7.5 нФ	75 нФ	0.75 мкФ	7.5 мкФ	75 мкФ	750 мкФ	7500 мкФ
8.2пФ	82 пФ	820 пФ	8.2нФ	82 нФ	0.82 мкФ	8.2 мкФ	82 мкФ	820 мкФ	8200 мкФ
9.1πΦ	91пФ	910 пФ	9.1нФ	91нФ	0.91 мкФ	9.1мкФ	91 мкФ	910 мкФ	9100 мкФ

Рисунок 6 – Ряд Е24 конденсаторов

Для проверки удовлетворению диодами требований по быстродействию необходимо рассчитать длительность фронтов t_{Φ} :

$$t_{\Phi} = 0.9 * \frac{U_{max_{
m Bыx}} - U_{min_{
m Bыx}}}{v_{
m Hap}} = 0.9 * \frac{12.9 - (-12.9)}{7 * 10^6} = 3.3$$
мкс.

Spice-модель выданного диода представлена на рисунке 7.

Рисунок 7 – Модель диода

Тогда время переноса зарядов по модели будет TT=10.8нс. $TT\leq t_{\varphi},$ тогда требование выполнено, данный диод KD105B подходит.

Собранная схема представлена на рисунке 8.

Рисунок 8 – Собранная схема

ЧАСТЬ 2. АНАЛИЗ РАБОТЫ СХЕМЫ

2.1 Анализ параметров сигнала

Для анализа параметров сигнала необходимо провести анализ переходных процессов. Необходимо выставить время работы как 3 периода сигнала:

$$3T = 3(T_1 + T_2) = 3(7.1 + 1.3) = 25.2$$
mc.

Тогда время между точками необходимо сделать в 10000 раз меньше:

$$\frac{3T}{10000} = 2.5$$
мкс.

Параметры для анализа переходных процессов представлены на рисунке 9.

Рисунок 9 – Параметры transient analysis

График представлен на рисунке 10.

Рисунок 10 – график transient analysis

Полученные и теоретические значения представлены в таблице 1.

Таблица 1 – Полученные и теоретические значения

	T	T_1	T_2	$U_{max \; {\scriptscriptstyle \mathrm{B}} \mathrm{b} \mathrm{i} \mathrm{x}}$	$U_{min\;{\scriptscriptstyle \mathrm{B}}\mathrm{b}\mathrm{i}\mathrm{X}}$	$U_{max \text{ BX}}^+$	$U_{min \text{ BX}}^+$	$t_{ m \phi \scriptscriptstyle H}$	$t_{ m pchic}$
Модель	$8.35 \cdot 10^{-3}$	$7.05 \cdot 10^{-3}$	$1.305 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.9 * 10^{-6}$	$1.9 * 10^{-6}$
Теория	$8.4 \cdot 10^{-3}$	$7.1 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	12.9	-12.9	9.1	-9.1	$3.3 \cdot 10^{-6}$	$3.3 \cdot 10^{-6}$

Так как у выбранного ОУ SRN=SRP, то $t_{\phi c}$ будет равно $t_{\phi h}$:

$$t_{\Phi} = t_{\Phi c} = t_{\Phi H} = 3.3 * 10^{-6} \text{c}.$$

Проверка, что значения T_1 и T_2 , полученные практически находятся в пределах заданной погрешности:

Для
$$T_1$$
: $\frac{8.4-8.35}{8.4} = 0.5\% < 5\%$

Для
$$T_2$$
: $\frac{7.1-7.05}{7.1} = 0.7\% < 5\%$

Требования по погрешностям выполнено.

2.2 Параметры быстродействия

При приближении графика в момент переключения можно найти фронт спада и фронт нарастания. Для этого необходимо установить курсоры, когда напряжение составляет 90% от амплитудного. На рисунке 11 показан фронт спада, на рисунке 12 показан фронт нарастания.

Рисунок 11 – Фронт спада

Рисунок 12 – Фронт нарастания

Полученные значения $t_{\rm \phi H}=1.9$ мкс, $t_{\rm \phi c}=1.9$ мкс.

Для нахождения $t_{\text{нас}}$ необходимо приблизить момент переключения с максимального уровня, установить курсор в точку пересечения графиков и в точку максимального напряжения. Тогда $t_{\text{нас}}=1.33$ мкс. Момент переключения представлен на рисунке 13.

Рисунок 13 – Переключение с максимального уровня

2.3 Оценка влияния изменения номинала конденсатора на параметры сигналов

Для оценки необходимо, изменяя номинал конденсатора C_1 , измерить параметры сигналов на осциллограммах. Результаты приведены в таблице 2.

Таблица 2 – Параметры сигналов при различных C_1

C_1	T	T_1	T_2	$U_{max\;{\scriptscriptstyle \mathrm{B}}\mathrm{\scriptscriptstyle BIX}}$	$U_{min \; {\scriptscriptstyle \mathrm{B}} \mathrm{b} \mathrm{i} \mathrm{x}}$	$U_{max \text{ BX}}^+$	$U_{min \text{ BX}}^+$	$t_{ m \phi \scriptscriptstyle H}$	$t_{ m \phi c}$
C ₁	$8.35 \cdot 10^{-3}$	$7.05 \cdot 10^{-3}$	$1.305 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.9 * 10^{-6}$	$1.9 * 10^{-6}$
0.75 · C ₁	$6.42 \cdot 10^{-3}$	$5.266 \cdot 10^{-3}$	$0.97 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.85 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
0.50 · C ₁	$4.181 \cdot 10^{-3}$	$3.526 \cdot 10^{-3}$	$0.654 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.8 \cdot 10^{-6}$	$2.0 \cdot 10^{-6}$
0.25 · C ₁	$2.119 \cdot 10^{-3}$	$1.786 \cdot 10^{-3}$	$0.333 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.8 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
0.10 · C ₁	$0.833 \cdot 10^{-3}$	$0.7 \cdot 10^{-3}$	$0.133 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.8 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$

На рисунках 14-17 представлены снятые осциллограммы.

Рисунок 14 – Осциллограмма при 0.75С

Рисунок 15 – Осциллограмма при 0.5С

Рисунок 16 – Осциллограмма при 0.25С

Рисунок 17 – Осциллограмма при 0.1С

Далее необходимо построить графики изменяющихся величин. Их можно построить с помощью библиотеки PyPlot. Графики представлены на рисунках 18-19.

Рисунок 18 – Графики изменения T, T_1 , T_2 в зависимости от C_1

Рисунок 19 – Графики изменения $t_{\rm \phi c}$, $t_{\rm \phi H}$ в зависимости от С1

2.4 Оценка влияния изменения $K_{\Pi OC}$

Необходимо при изменении K_{noc} измерить параметры сигналов на осциллограммах. Результаты представлены в таблице 3.

Таблица 3 – значения параметров при различных $K_{\rm noc}$

$K_{\Pi ext{OC}}$	T	T_1	T_2	$U_{max \; {\scriptscriptstyle \mathrm{B}} \mathrm{b} \mathrm{i} \mathrm{x}}$	$U_{min\;{\scriptscriptstyle \mathrm{B}}\mathrm{b}\mathrm{i}\mathrm{X}}$	$U_{max \text{ BX}}^+$	$U_{min \; {\scriptscriptstyle \mathrm{BX}}}^+$	$t_{ m \phi \scriptscriptstyle H}$	$t_{ m eta c}$
C ₁	$8.35 \cdot 10^{-3}$	$7.05 \cdot 10^{-3}$	$1.305 \cdot 10^{-3}$	13.5	-13.5	9.4	-9.4	$1.9 * 10^{-6}$	$1.9 * 10^{-6}$
0.6	$6.65 \cdot 10^{-3}$	$5.61 \cdot 10^{-3}$	$1.04 \cdot 10^{-3}$	13.5	-13.5	8.1	-8.1	$1.8 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
0.5	$5.25 \cdot 10^{-3}$	$4.43 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$	13.5	-13.5	6.7	-6.7	$1.8 \cdot 10^{-6}$	$2.0 \cdot 10^{-6}$
0.4	$4.05 \cdot 10^{-3}$	$3.41 \cdot 10^{-3}$	$0.6 \cdot 10^{-3}$	13.5	-13.5	5.4	-5.4	$1.85 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$

На рисунках 20-22 представлены снятые осциллограммы.

Рисунок 20 – Осциллограмма при C_1 =0.6 (R_3 =12.9кОм, R_4 =8.6кОм)

Рисунок 21 – Осциллограмма при C_1 =0.5 (R_3 =10.8кОм, R_4 =10.8кОм)

Рисунок 22 — Осциллограмма при C_1 =0.4 (R_3 =8.6кOм, R_4 =12.9кOм) Графики изменяющихся величин представлены на рисунках 23-25.

Рисунок 23 – Графики изменения $t_{\rm \phi c}$, $t_{\rm \phi H}$ в зависимости от $K_{\rm \Pi OC}$

Рисунок 24 – Графики изменения T, T_1 , T_2 в зависимости от $K_{\Pi \Omega C}$

Рисунок 25 – Графики изменения $U^+_{max\; {\rm BX}},\; U^+_{min\; {\rm BX}}\;$ в зависимости от $K_{\Pi {\rm OC}}$

ВЫВОД

В работе было выполнено построение схемы мультивибратора на операционном усилителе, а также проведена оценка схемы.

Для построения схемы был выбран операционный усилитель (LF351), удовлетворяющий требованиям, а также рассчитаны значения остальных элементов схемы (R_1 =43кОм, R_2 =7.9кОм, R_3 =16кОм, R_4 =5.2кОм, C_1 =91нФ). Построена осциллограмма сигналов и вычислены отклонения. Отклонения времени интервалов составляют 0.5-0.7% от теоретических значений, что удовлетворяет требованию задания.

Для выполненной схемы оценки значения сигнала, параметров быстродействия, влияния изменения емкости конденсатора и влияния изменения параметра $K_{\text{пос}}$ представлены ниже:

- 1) Полный период T=8.35мс. Интервал положительного сигнала $T_1=7.05$ мс, интервал отрицательного сигнала $T_2=1.3$ мс. Максимальное выходное напряжение по модулю $U_{\text{тахмодвых}}=13.5$ В при максимальном по модулю входном $U_{\text{тахмодвх}}=9.4$ В;
- 2) Время фронта нарастания 1.9мкс, фронта спада 1.9мкс. Время переключения с максимального уровня 1.33мкс;
- 3) При уменьшении емкости конденсатора значительно изменяется период схемы. Так, при емкости в 10% от номинальной период сокращается в 10 раз (с 8.3мс до 0.83мс). Графики показывают линейную зависимость периода от емкости. Остальные параметры не изменяются или изменения на уровне погрешности;
- 4) При уменьшении параметра $K_{\text{пос}}$ происходит сокращение периода положительного сигнала (отрицательный изменяется слабо).

СПИСОК ИСПОЛЬЗОВАННЫХ МАТЕРИАЛОВ

- 1) Методические указания к 3-му домашнему заданию «Мультивибратор на операционном усилителе». Ст. преподаватель Трубачёв Е.А;
- 2) Шаблон к домашнему заданию «Мультивибратор на операционном усилителе»;
- 3) Справочные материалы (Ряд номиналов радиодеталей Е24);
- 4) Таблица вариантов домашнего задания №3;
- 5) Библиотека компонентов Місго-сар.