# **ESC201T : Introduction to Electronics**

**Lecture 23: Power Supply (part-1)** 

B. Mazhari Dept. of EE, IIT Kanpur

# **Power Supply**



# **Strategy**



# Power Supply: Block diagram



#### Half wave Rectifier circuit





# Filtered output voltage is too large!





Must reduce the input voltage

#### **Half Wave Rectifier**



$$V_S = 220V \times \sqrt{2}$$
$$= 311.127V \ peak \ value$$

$$\frac{N_1}{N_2} = 24.5$$





## **Zoomed view**

















# Output has a ripple



Ripple Voltage:  $V_r = V_M - V_L$ 

Average Output Voltage:  $V_O(avg) \cong V_M - \frac{V_R}{2}$ 

## What does ripple voltage depend on?



$$C\frac{dV_O}{dt} + \frac{V_O}{R_L} = 0 \Rightarrow \frac{dV_O}{dt} = -\frac{V_O}{R_L C}$$

$$V_O(t) = V_M \times e^{-\frac{t}{R_L C}}$$



$$V_L = V_M \times e^{-\frac{t_1}{R_L C}}$$

Assuming that  $t_1 \ll R_L C$ 

$$V_r = V_M - V_L = V_M \times (1 - e^{-\frac{t_1}{R_L C}})$$

$$V_r \cong V_M \times \{1 - (1 - \frac{t_1}{R_L C})\} = \frac{V_M t_1}{R_L C}$$



$$t_1 \cong T$$

$$V_r = \frac{V_M t_1}{R_L C} \cong \frac{V_M T}{R_L C}$$

$$V_r \cong \frac{V_M}{f \times R_L C}$$

$$V_r \cong \frac{V_M}{f \times R_L C}$$

#### **Example** $N_1$ $N_2$ D 100μF 20.00 16.00 25.199m,12.070 12.00 43.179m,10.098 8.00 $V_r = 1.97V$ 4.00 0.00 60.00m 0.00m 12.00m 24.00m 36.00m 48.00m Left Delta Right Slope BV(VOUT) (V) 12.070 10.098 -1.972-109.660

$$V_r \cong \frac{V_M}{f \times R_L C} = \frac{12.070}{50 \times 10^3 \times 100 \times 10^{-6}} = 2.4V$$

25.199m

43.179m

T (Secs)

$$\frac{R_L C}{T} = 5$$

1.000

17.981m

# **Example**





$$V_r \cong \frac{V_M}{f \times R_L C} = \frac{12}{50 \times 10^3 \times 500 \times 10^{-6}} = 0.48V$$

$$\frac{R_L C}{T} = 25$$

#### **Design Example**

Design a power supply that will supply 6V to a load of  $100\Omega$  with ripple voltage less than 0.1V.



For  $V_O$  to be 6V, the input  $V_{IN}$  should be ~6.7V

$$\frac{N_1}{N_2} = \frac{311.127}{6.7} = 46.4$$

$$V_r \cong \frac{V_M}{fR_LC} = 0.1 \Rightarrow C = 12mF$$

How do we choose a diode for this application?

#### **Diode Specifications**



# 1N4001/L - 1N4007/L

1.0A RECTIFIER

#### Features

- Diffused Junction
- High Current Capability and Low Forward Voltage Drop
- Surge Overload Rating to 30A Peak
- Low Reverse Leakage Current
- Plastic Material: UL Flammability Classification Rating 94V-0

#### **Mechanical Data**

Case: Molded Plastic

 Terminals: Plated Leads Solderable per MIL-STD-202, Method 208

Polarity: Cathode Band

 Weight: DO-41 0.30 grams (approx) A-405 0.20 grams (approx)

Mounting Position: Any
 Marking: Type Number



| Dim | DO-41 | Plastic | A-405 |      |  |  |
|-----|-------|---------|-------|------|--|--|
|     | Min   | Max     | Min   | Max  |  |  |
| Α   | 25.40 | _       | 25.40 | =    |  |  |
| В   | 4.06  | 5.21    | 4.10  | 5.20 |  |  |
| С   | 0.71  | 0.864   | 0.53  | 0.64 |  |  |
| D   | 2.00  | 2.72    | 2.00  | 2.70 |  |  |

"L" Suffix Designates A-405 Package No Suffix Designates DO-41 Package

#### Maximum Ratings and Electrical Characteristics @ TA = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

| Characteristic                                                                                                        | Symbol              | 1N<br>4001/L | 1N<br>4002/L | 1N<br>4003/L | 1N<br>4004/L | 1N<br>4005/L | 1N<br>4006/L | 1N<br>4007/L | Unit |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                | VRRM<br>VRWM<br>VR  | 50           | 100          | 200          | 400          | 600          | 800          | 1000         | ٧    |
| RMS Reverse Voltage                                                                                                   | V <sub>R(RMS)</sub> | 35           | 70           | 140          | 280          | 420          | 560          | 700          | ٧    |
| Average Rectified Output Current (Note 1) @ T <sub>A</sub> = 75°C                                                     | lo                  |              |              |              | 1.0          |              |              |              | Α    |
| Non-Repetitive Peak Forward Surge Current 8.3ms<br>single half sine-wave superimposed on rated load<br>(JEDEC Method) |                     | 30           |              |              |              |              |              | А            |      |
| Forward Voltage @ I <sub>F</sub> = 1.0A                                                                               |                     | 1.0          |              |              |              |              |              |              | ٧    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                 |                     | 5.0<br>50    |              |              |              |              |              | μА           |      |
| Typical Junction Capacitance (Note 2)                                                                                 |                     | 15 8         |              |              |              |              | pF           |              |      |
| Typical Thermal Resistance Junction to Ambient                                                                        |                     | 100          |              |              |              |              |              |              | K/W  |
| Maximum DC Blocking Voltage Temperature                                                                               |                     | +150         |              |              |              |              |              |              | °C   |
| Operating and Storage Temperature Range (Note 3)                                                                      |                     | -65 to +175  |              |              |              |              |              | °C           |      |

- Notes: 1. Leads maintained at ambient temperature at a distance of 9.5mm from the case.
  - 2. Measured at 1. MHz and applied reverse voltage of 4.0V DC.
  - 3. JEDEC Value.

How do we choose a diode for this application?



Determine peak and average diode currents; peak inverse voltage



# **Diode forward bias current**



$$i_D = C \times \frac{dv_O}{dt} + \frac{v_O}{R_L}$$



$$v_O \cong V_M \times (1 - \frac{(\omega t)^2}{2})$$

$$i_D \cong -C \times V_M \times \omega^2 \times t + \frac{V_M}{R_L}$$



$$i_{D\max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$

$$V_L \cong V_M \times (1 - \frac{(\omega \Delta t)^2}{2}) \Longrightarrow \Delta t = \frac{1}{\omega} \sqrt{\frac{2V_r}{V_M}}$$

# **Peak and Average Diode Currents**

$$i_{D \max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$



$$i_D^{av} = \frac{i_{D\max}}{4\pi} \times \sqrt{\frac{2V_r}{V_M}}$$

$$i_D^{av} = \frac{V_M}{R_L} + \frac{\sqrt{2V_r V_M}}{4\pi R_L} \cong \frac{V_M}{R_L}$$

$$i_{D\max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$
  $V_r \cong \frac{V_M}{fR_L C}$ 

$$V_r \cong \frac{V_M}{fR_LC}$$

$$i_{\text{Davg.}} \cong \frac{V_{\text{M}}}{R_{\text{L}}}$$

$$i_{D\max} \cong 2\pi \times \sqrt{2f \times C \times V_{M} \times i_{Davg.}} + i_{Davg.}$$

$$i_{D\max} \cong 2\pi \times \sqrt{2f \times C \times V_M \times i_{Davg.}}$$

$$\left(\frac{i_{Dmax}}{i_{Davg}}\right) \times \sqrt{\frac{V_r}{V_M}} = 2\sqrt{2}\pi$$



One can see a tradeoff between ripple voltage and peak diode current

## Peak and Average Diode Currents



$$V_r = 1.95V$$
 
$$i_D^{av} \cong \frac{V_M}{R_L} = 12mA$$







Peak diode current increases as ripple reduces

# **Peak Inverse Voltage**



$$PIV \cong 2v_O + 0.7$$

### **Design Example**

Design a power supply that will supply 6V to a load of  $100\Omega$  with ripple voltage less than 0.1V.



$$i_{D \max} \cong \omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$$

For  $V_O$  to be 6V, the input  $V_{IN}$  should be ~6.7V

$$\frac{N_1}{N_2} = \frac{311.127}{6.7} = 46.4$$

$$V_r \cong \frac{V_M}{fR_LC} = 0.1 \Longrightarrow C = 12mF$$

How do we choose a diode for this application?

$$i_{Dmax} \approx \omega C \times \sqrt{2V_r \times V_M} + \frac{V_M}{R_L} = 344A$$

$$i_D^{av} \cong \frac{V_M}{R_L} = 60mA$$

$$PIV \cong 2v_O + 0.7 = 12.7V$$