Аникин Филипп ИУ5-63Б

Импорт библиотек

import numpy as np import pandas as pd import seaborn as sns

```
import matplotlib.pyplot as plt
 from pandas.plotting import scatter matrix
 import warnings
 warnings.filterwarnings('ignore')
 sns.set(style="ticks")
 %matplotlib inline
 from sklearn.model_selection import train_test_split
 \textbf{from} \text{ sklearn.preprocessing } \textbf{import} \text{ LabelEncoder}
 from sklearn.datasets import load_iris
 from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute
from sklearn.datasets import load iris
boston = load iris()
 data = pd.DataFrame(boston.data, columns=boston.feature_names)
 data['TARGET'] = boston.target
data.head()
  sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) TARGET
0
              5.1
                             3.5
                                             1.4
                                                            0.2
                                                                      0
1
                                                            0.2
                                                                      0
                                             1.4
```

	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
n [4]:	data.dtypes					
ut[4]:	sepal length sepal width petal length petal width TARGET dtype: object	(cm) floa (cm) floa (cm) floa	t64 t64			

	TARGET dtype: object	int64
In [5]:	data.isnull().sum() # проверим есть ли про	пущенные значения
Out[5]:	sepal length (cm) 0 sepal width (cm) 0 petal length (cm) 0 petal width (cm) 0 TARGET 0 dtype: int64	
In [6]:	data.info()	
	<pre><class #="" 'pandas.core.fra="" (total="" 150="" 5="" c="" column<="" columns="" data="" entries="" pre="" rangeindex:=""></class></pre>	, 0 to 149

150 non-null

150 non-null

float64 float64

int64

sepal length (cm)150 non-nullfloat64sepal width (cm)150 non-nullfloat64

petal length (cm) 150 non-null

petal width (cm)

dtypes: float64(4), int64(1)

TARGET

data.head()

Out[8]: <AxesSubplot:>

memory usage: 6.0 KB

0 1

Out[7]:	sepal le	ength (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET	
	0	5.1	3.5	1.4	0.2	0	
	1	4.9	3.0	1.4	0.2	0	
	2	4.7	3.2	1.3	0.2	0	
	3	4.6	3.1	1.5	0.2	0	
	4	5.0	3.6	1.4	0.2	0	
	"-						
In [8]:	#Построим корреляционную матрицу fig, ax = plt.subplots(figsize=(15,7)) sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.						

	sepal length (cm) -	1.00	-0.12	0.87	0.82	0.78	- 0.8
	sepal width (cm) -	-0.12	1.00	-0.43	-0.37	-0.43	- 0.6
	petal length (cm) -	0.87	-0.43	1.00	0.96	0.95	- 0.4 - 0.2
	petal width (cm) -	0.82	-0.37	0.96	1.00	0.96	- 0.0
	TARGET -	0.78	-0.43	0.95	0.96	1.00	0.2 0.4
		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET	_
In [9]:	<pre>X = data[["petal length (cm)", "petal width (cm)"]] Y = data.TARGET print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())</pre>						
	Входные данные:						
	petal length (cm) petal width (cm)						

```
0
                                             0.2
                           1.4
                           1.4
                                              0.2
         2
                           1.3
                                              0.2
                                             0.2
         3
                           1.5
         4
                           1.4
                                              0.2
         Выходные данные:
          0
               0
              0
         2
              0
         3
              0
         4
              0
         Name: TARGET, dtype: int64
In [10]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 0, test_s
          print('Входные параметры обучающей выборки:\n\n',X_train.head(), \
                 '\n\nВыходные параметры обучающей выборки:\n\n', Y_train.head(), \ '\n\nВыходные параметры тестовой выборки:\n\n', Y_test.head())
         Входные параметры обучающей выборки:
              petal length (cm) petal width (cm)
         37
                            1.4
                                               0.1
         78
                                               1.5
                            4.5
         90
                                               1.2
                            4.4
                                               0.3
         45
                            1.4
                                               0.4
```

62 33 107 7		4.0 1.4 6.3 1.5	1.0 0.2 1.8 0.2
Выходн	ные параметры	обучающей выборки	:
37	0		
78	1		
90	1		
45	0		
16	0		
Name:	TARGET, dtype	e: int64	
D			
выходн	ные параметры	тестовой выборки:	
114	2		
62	1		
33	0		
107	2		

Входные параметры тестовой выборки:

114

0

plt.show()

2.00

1.75 1.50 1.25 1.00 0.75 0.50 0.25

0.00

Name: TARGET, dtype: int64

petal length (cm) petal width (cm)

5.1

	forest_1.fit(X, Y)
Out[12]:	<pre>RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)</pre>
In [13]:	Y_predict = forest_1.predict(X_test) print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_predict)) print('Средняя квадратичная ошибка:', mean_squared_error(Y_test, Y_predict)) print('Median absolute error:', median_absolute_error(Y_test, Y_predict)) print('Коэффициент детерминации:', r2_score(Y_test, Y_predict))
	Средняя абсолютная ошибка: 0.0 Средняя квадратичная ошибка: 0.0 Median absolute error: 0.0 Коэффициент детерминации: 1.0
In [14]:	<pre>plt.scatter(X_test['petal length (cm)'], Y_test, marker = 'o', label = 'Tecto plt.scatter(X_test['petal length (cm)'], Y_predict, marker = '.', label = 'Предс plt.legend(loc = 'lower right') plt.xlabel('petal length (cm)') plt.ylabel('TARGET') plt.show()</pre>
	2.00 - 1.75 - 1.50 - 1.25 - 9 1.00 - 4 0.75
	0.75 -

from sklearn.ensemble import RandomForestRegressor

forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)

marker = 'o', label = 'Тестовая вы

, marker = '.', label = 'Предсказаны

0.50 0.25 Тестовая выборка Предсказанные данные 0.00 petal length (cm) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export graphy from sklearn.tree import export_graphviz from sklearn import tree import re clf = tree.DecisionTreeClassifier() clf = clf.fit(X, Y)lr_y_pred = clf.predict(X_test) In [17]: plt.scatter(X_test['petal length (cm)'], Y_test, marker = 's', label = 'Тестовая вы plt.scatter(X_test['petal length (cm)'], lr_y_pred, marker = 'o', label = 'Предсказани plt.legend (loc = 'lower right') plt.xlabel ('petal length (cm)') plt.ylabel ('TARGET')

6

Тестовая выборка Предсказанные данные

5

3

4 petal length (cm)