

Department of Computer Science and Engineering (AI & ML)

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)

Affiliated to JNTUH, Approved by AICTE, Accredited by NAAC with A++ Grade, ISO 9001:2015 Certified

Kacharam, Shamshabad, Hyderabad - 501218, Telangana, India

2022-23

Python code:

```
import numpy as np
```

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report

import pandas as pd

```
def load sensor data():
```

Load sensor data from CSV file

sensor data = pd.read csv('/content/data-set.csv') # Replace with your file path

Extract the relevant columns for your features

features = sensor_data[['Heart Rate', 'Oxygen Saturation','Glucose Level', 'Cholesterol', 'Body Temperature', 'BMI']]

return features.values # Return as a NumPy array

def load labels():

Load labels data from CSV file

labels data = pd.read csv('/content/label.csv') # Replace with your file path

Extract the label column

labels = labels data['Label']

return labels.values # Return as a NumPy array

- # Load your actual sensor data and labels here
- # Replace 'load sensor data' and 'load labels' with your data loading methods

X = load sensor data()

```
y = load labels()
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Model training
model = RandomForestClassifier(n estimators=100, random state=42)
model.fit(X train, y train)
# Model evaluation
y pred = model.predict(X test)
report = classification_report(y_test, y_pred, target_names=["Healthy", "Unhealthy"],
zero division=1)
print("Classification Report:")
print(report)
# Make predictions about health conditions based on model's performance
last line = report.strip().split('\n')[-1]
last line values = last line.split()
precision = float(last line values[-4])
recall = float(last_line_values[-3])
# Analyze the report to make predictions about health conditions
if precision > 0.8 and recall > 0.8:
  predicted condition = "Likely Unhealthy"
else:
  predicted condition = "Likely Healthy"
print(f"Predicted Health Condition: {predicted condition}")
```

Innovative Approaches to Blood Flow Monitoring Using Sensory Data

Data set(sample dataset of 1 person):

			Oxygen	Blood			Body	
		Heart	Saturatio	Pressur	Glucos	Cholester	Temperatur	
Timestamp		Rate	n	е	e Level	ol	e	BMI
	01-08-2023 10:00	70	98.5	120/80	110	180	98.6	24.5
	01-08-2023 10:01	72	98.7	122/82	130	200	99.1	29.2
	01-08-2023 10:02	68	98.2	118/78	95	160	98	21.8
	01-08-2023 10:03	74	98.9	124/84	150	220	98.8	32.7
	01-08-2023 10:04	85	96.8	132/88	105	185	99.5	27.9

Data set(sample dataset of 2 person):

01-08-2023 10:00	199	98.5	120/80	150	420	108.6	26.5
01-08-2023 10:01	68	198.7	122/82	780	250	99.1	79.2
01-08-2023 10:02	68	98.2	118/78	195	890	98	22.8
01-08-2023 10:03	92	98.9	124/84	680	260	98.8	92.7
01-08-2023 10:04	178	196.8	132/88	165	25	19.5	2.9

Output:

	precision	recall	f1-score	support		
Healthy	0.00	1.00	0.00	0.0		
Unhealthy	1.00	0.00	0.00	1.0		
accuracy			0.00	1.0		
macro avg	0.50	0.50	0.00	1.0		
weighted avg	1.00	0.00	0.00	1.0		

Predicted Health Condition: Likely Healthy