25 September 2020

Identifiability of Hawkes Processes

Andrew Connell

Supervisor: Dr. Ed Cohen

With Thanks to Leigh Shlomovich

Introduction to Hawkes Processes

Introduction to Hawkes Processes

- Hawkes processes are a special type of counting process. They model self-exciting behaviour [Hawkes, 1971].
- A Hawkes process can be one-dimensional or M-dimensional.
- There are three parameters to consider: μ , α and β .

The One-Dimensional Hawkes Processes

Intensity of Hawkes Processes

- Hawkes processes are completely identified by their intensity function.
- Given a 1st order exponential kernel, the intensity of one-dimensional process is given below.

$$\lambda(t) = \mu + \int_0^t \alpha e^{-\beta(t-s)} dN_i(s) = \mu + \sum_{t: \leq t} \alpha e^{-\beta(t-t_i)}.$$

Branching Ratio of a Hawkes Process

It is well known that the stationary condition of a Hawkes process is $\eta=\frac{\alpha}{\beta}<1$ [Cordi et al., 2018].

Expected Intensity

For the one-dimensional stationary Hawkes process the intensity is:

$$\mathbb{E}[\lambda(t)] = \frac{\mu}{1 - \alpha/\beta} = \frac{\mu}{1 - \eta}.$$

Likelihood of a Hawkes Process

- The log-likelihood can be defined recursively [Ogata, 1988].
- For the one-dimensional process with an exponential kernel: given the observations $t_1, ..., t_N$ on the interval [0, t], the log-likelihood can be defined as

$$\ell(t|\theta) = \sum_{k=1}^{N} \log \left(\mu + \alpha R(k) \right) - \mu t - \frac{\alpha}{\beta} \sum_{k=1}^{N} \left(1 - e^{-\beta(t-t_k)} \right),$$

with
$$R(k) = e^{-\beta(t_k - t_{k-1})} (1 + R(k-1))$$
 and $R(1) = 0$.

Introduction to Identifiability

Imperial College London Identifiability

If a unique bijective mapping from the parameter space, Θ , to the space of distributions for the data exists, then the model is identifiable [Patel et al., 2019]. Assume that some arbitrary data, Y, has log-likelihood $\ell(Y;\theta)$. A model is identifiable if for any $\theta,\phi\in\Theta$.

$$\ell(Y;\theta) = \ell(Y;\phi) \Rightarrow \theta = \phi.$$

Global Practical Identifiability

- Global identifiability means that the parameter set is unique on the parameter space being considered.
- Practical identifiability only considers the observations available.

Identifiability of the Likelihood Surface

- Unidentifiability is often due to multiple parameters attaining the maximum likelihood.
- The maximum diagonal ridge occurs for parameters that share a branching ratio with the true parameters $(\gamma = \alpha/\beta = 2/2.2)$.

Identifiability and the Hessian

A process is locally identifiable if and only if the Hessian is non-singular [Rothenberg, 1971].

- The figure shows the use of MC estimation to find the determinant of the empirical Fisher Information.
- As the expected intensity increases the determinant also increases.

The Importance of Identifiability

In much of the current literature identifiability is either assumed or ignored entirely. However,

- Unidentifiable processes do not have a unique solution.
- Unidentifiable processes lead to imprecise inference.

Novel Methodology

The Negative Moments

It is possible to extend Cui's method to find an iterative method for calculating the negative moments [Cui et al., 2020].

• For some p < 0, the negative moments of N(t) are

$$rac{\mathsf{d}}{\mathsf{d}t}\mathbb{E}[\mathsf{N}^p(t)] = \sum_{j=p+1}^0 egin{pmatrix} -p \ -j \end{pmatrix} \mathbb{E}[\mathsf{N}^j(t)\lambda(t)].$$

ullet For some q<0, the negative moments of $\lambda(t)$ are

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[\lambda^{q+1}(t)] = q\beta(\mathbb{E}[\lambda^{q+1}(t)] - \mu\mathbb{E}[\lambda^{q}(t)]) + \sum_{i=q+1}^{0} {-q \choose -i} \alpha^{i-q}\mathbb{E}[\lambda^{i}(t)].$$

The Full Fisher Information

The one-dimensional Fisher information matrix utilises the Hessian [Ozaki, 1977] and can be denoted as

$$I(\theta) = \begin{pmatrix} \frac{(\beta - \alpha)t}{\beta \mu} & \frac{t}{\beta} & -\frac{\alpha t}{\beta^2} \\ \frac{t}{\beta} & \frac{\mu t}{\beta(\beta - \alpha)} + \frac{t}{2(\beta + \alpha)} & -\frac{\alpha \mu t}{\beta^2(\beta - \alpha)} \\ -\frac{\alpha t}{\beta^2} & -\frac{\alpha \mu t}{\beta^2(\beta - \alpha)} & \frac{\alpha^2 \mu t}{\beta^3(\beta - \alpha)} \end{pmatrix}.$$

The closed-form for the *M*-dimensional case has also been derived and can be found in the thesis. The identifiability condition will follow from this result.

The Determinant of the Fisher Information

The identifiability condition relies on the determinant of the Fisher information.

For the one-dimensional Hawkes process,

$$\begin{split} \det(I(\theta)) &= t^3 \mathbb{E}[\lambda(t)] \bigg(\frac{\alpha^2}{2\mu\beta^5} (\beta^2 + 2\mu - 1) \\ &- \frac{\alpha^2}{2\mu\beta^4(\beta + \alpha)} (\beta^2 - \mu(\alpha + \beta) - 1) + \frac{\alpha^3}{\beta^6} \bigg). \end{split}$$

Identifiability and the Fisher Information

The Fisher determinant must be non-negative. By rearranging the general formula, it is possible to find an identifiability condition.

Theorem (Identifiability of Hawkes Processes)

For the one-dimensional Hawkes process,

$$\mathbb{E}[\lambda(t)] \geq \frac{2\alpha + \beta(\beta^2 - \beta + 2)}{2(\alpha + \beta)(\beta^2 - 2\beta)},$$

provided the process is stationary. That is, $\alpha < \beta$.

Analysis

Determinant of the Fisher information

- The Figure compares empirical estimates of the determinant through MC estimation with the theoretical results.
- Note, as the expectation increases so does the determinant.

Parameter Effect on Identifiability

It is possible to form a heatmap of the determinant of the Fisher information by varying μ and the branching ratio, η .

Visualising Identifiability

- The identifiability condition can be visualised for the one-dimensional process.
- Red areas show parameter sets that are always identifiable.
- Blue areas show parameter sets that are always unidentifiable.
- White areas show parameter sets that sit on the boundary.

The *M*-Dimensional Hawkes Processes

The Full Hessian Matrix

The Hessian matrix of a Hawkes process can be generalised for an M-dimensional process with an exponential kernel of order P. In this setting, the parameter set, θ , may be expressed as

$$\left(\begin{pmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{M} \end{pmatrix}, \left\{ \begin{pmatrix} \alpha_{1,j,1} & \alpha_{1,j,2} & \cdots & \alpha_{1,k,M} \\ \alpha_{2,j,1} & \alpha_{2,j,2} & \cdots & \alpha_{2,k,M} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{M,j,1} & \alpha_{M,j,2} & \cdots & \alpha_{M,k,M} \end{pmatrix} \right\}_{j=1}^{p}, \left\{ \begin{pmatrix} \beta_{1,j,1} & \beta_{1,j,2} & \cdots & \beta_{1,k,M} \\ \beta_{2,j,1} & \beta_{2,j,2} & \cdots & \beta_{2,k,M} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{M,j,1} & \beta_{M,j,2} & \cdots & \beta_{M,k,M} \end{pmatrix} \right\}_{j=1}^{p} .$$

The full thirty unique cases are given in the appendix of the thesis.

Identifiability of the Fisher Information

For an M-dimensional Hawkes process,

$$\det(I(\theta)) = t^{M+2M^2} \bigg(\gamma \sum_{i=1}^M \mathbb{E}[\lambda_i(t)] + \delta \bigg).$$

Here, δ and γ are terms to be found.

Theorem (Identifiability of Hawkes Processes)

For the M-dimensional Hawkes process,

$$\sum_{i=1}^M \mathbb{E}[\lambda_i(t)] \geq -rac{\delta}{\gamma}.$$

Concluding Remarks

Conclusion

- All thirty elements of the *M*-dimensional Hessian now exists.
- By extending Cui's method, all moments can be iteratively calculated.
- The Fisher information for one-dimensional and M-dimensional Hawkes processes.
- The identifiability condition for Hawkes processes in the M-dimensional case may be expressed as

$$\sum_{i=1}^M \mathbb{E}[\lambda_i(t)] \geq -\frac{\delta}{\gamma}.$$

References I

Cordi, M., Challet, D., and Toke, I. M. (2018). Testing the causality of hawkes processes with time reversal.

Journal of Statistical Mechanics: Theory and Experiment, 2018(3):033408.

Cui, L., Hawkes, A., and Yi, H. (2020).

An Elementary Derivation of Moments of Hawkes Processes.

Advances in Applied Probability, 52(1):102–137.

Hawkes, A. G. (1971).

Spectra of some self-exciting and mutually exciting point processes. *Biometrika*, 58(1):83–90.

Ogata, Y. (1988).

Statistical models for earthquake occurrences and residual analysis for point processes.

Journal of the American Statistical Association, 83(401):9–27.

References II

Ozaki, T. (1977).

Maximum likelihood estimation of hawkes' self-exciting point processes.

Annals of the Institute of Statistical Mathematics, 31(1):145–155.

Patel, L., Gustafsson, N., Lin, Y., Ober, R., Henriques, R., and Cohen, E. (2019).

A hidden markov model approach to characterizing the photo-switching behavior of fluorophores.

Annals of Applied Statistics, 13(3):1397-1429.

Rothenberg, T. J. (1971).

Identification in Parametric Models.

Econometrica, 39:577-591.