Esempio

Laser stato solido, λ = 532 nm, CW, 800 mW, diametro all' apertura di 1,5 mm, divergenza di 1,5 mrad, $M^2 \cong 1$. Si determinino i protettori totali a 5 m e i parziali a 0,5 m.

Determinazione di LB

$$d_1 = d_0 + r\theta = 1.5 \cdot 10^{-3} + 5 \cdot 1.5 \cdot 10^{-3} = 9 \cdot 10^{-3} m$$

$$A_{oc} = \pi \cdot \frac{d^2}{4} = \pi \cdot \frac{81 \cdot 10^{-6}}{4} = 6,362 \cdot 10^{-5} m^2$$

$$E_{oc} = \frac{P}{A_{oc}} = \frac{0.8W \cdot 0.632}{6.362 \cdot 10^{-5} m^2} = 7.95 \cdot 10^3 \frac{W}{m^2}$$

Protettori oculari ad assorbimento:

Vetro:
$$7.95 \cdot 10^3 \frac{W}{m^2} \cdot 9^{1.1693} = 1.04 \cdot 10^5 \frac{W}{m^2} < 10^6 \frac{W}{m^2}$$

Policarbonato:
$$7,95 \cdot 10^3 \frac{W}{m^2} \cdot 9^{1,2233} = 1,17 \cdot 10^5 \frac{W}{m^2} < 10^6 \frac{W}{m^2}$$

Marcatura: 532 D LB5

Determinazione dello scale number RB

Dalla prima tabella della diapositiva 27, con base dei tempi di 0,25 s \rightarrow RB3; controllo di stabilità:

$$\begin{aligned} d_1 &= d_0 + r\theta = 1.5 \cdot 10^{-3} + 0.5 \cdot 1.5 \cdot 10^{-3} = 2.25 \cdot 10^{-3} \, m \\ A_1 &= \pi \cdot \frac{d_1^2}{4} = \pi \cdot \frac{2.25^2 \cdot 10^{-6}}{4} = 3.97 \cdot 10^{-6} \, m^2 \\ E_{filtro} &= \frac{P}{A_1} = \frac{0.8 \, W \cdot 0.632}{3.97 \cdot 10^{-6} \, m^2} = 1.27 \cdot 10^5 \, \frac{W}{m^2} < 10^6 \, \frac{W}{m^2} \end{aligned}$$

RB3 Marcatura 1W 2·10-4J 532 RB3

Troppo rischioso?

Determinazione dello scale number RB

Dalla prima tabella della diapositiva 27, con base dei tempi di $2 s \rightarrow RB4$.

Controllo di stabilità: v. slide precedente.

Marcatura 10W 2·10-3J 532 RB4

Esempio

Laser a stato solido usato in laboratorio,

 λ = 1064 nm, impulsato.

Impulso: 4J in 20 ns

Frequenza di ripetizione: 20 Hz

Diametro fascio in uscita: 15 mm

Divergenza: 0,5 mrad

Profilo Top Hat

Dimensionare gli occhiali di protezione

Pesa molto la distanza?

Criterio dell'impulso

$$A(\phi = 15 mm) = (7.5 \cdot 10^{-3})^2 \cdot \pi = 1.767 \cdot 10^{-4} m^2$$

$$N(in \ 5 \ s) = 100$$

$$H = \frac{Q}{A} \cdot N^{0.25} = \frac{4J}{1,767 \cdot 10^{-4} m^2} \cdot 100^{0.25} = 7,16 \cdot 10^4 \frac{J}{m^2}$$

Protettori oculari ad assorbimento:

Vetro:
$$7,16 \cdot 10^4 \frac{J}{m^2} \cdot 15^{1,1693} = 1,69 \cdot 10^6 \frac{J}{m^2} < 5 \cdot 10^6 \frac{J}{m^2}$$

Policarbonato:
$$7,16 \cdot 10^4 \frac{J}{m^2} \cdot 15^{1,2233} = 1,96 \cdot 10^6 \frac{J}{m^2} < 5 \cdot 10^6 \frac{J}{m^2}$$

R LB9

Criterio della potenza media

Si utilizzano i valori delle diapositive precedenti

$$E_{m} = \frac{Q \cdot (N/5s)}{A} = \frac{4 \cdot 20}{1,767 \cdot 10^{-4}} = 4,53 \cdot 10^{5} \frac{W}{m^{2}} < 10^{6}$$

Vetro:
$$4,53 \cdot 10^5 \frac{W}{m^2} \cdot 15^{1,1693} = 1,07 \cdot 10^7 \frac{W}{m^2} < 1 \cdot 10^8 \frac{W}{m^2}$$

Policarbonato:
$$4,53 \cdot 10^5 \frac{W}{m^2} \cdot 15^{1,2233} = 1,24 \cdot 10^7 \frac{W}{m^2} < 1 \cdot 10^8 \frac{W}{m^2}$$

Sigla finale: 1064 D LB7 + R LB9

La densità ottica

$$DO = \log_{10} \left[\frac{P_{IN}(\lambda)}{P_{OUT}(\lambda)} \right] = -\log_{10} \tau_s(\lambda)$$

- $P_{IN}(\lambda)$ = Densità potenza-energia entrante nel filtro
- $P_{OUT}(\lambda)$ = Densità potenza-energia trasmessa dopo il filtro

DO	1	2	3	4	5	•
τ _s (λ) DEC	0,1	0,01	0,001	0,0001	0,00001	***

Calcolo VLE

```
Laser ad impulsi ripetuti: Argon, \lambda = 488 nm, t_{imp} = 5 \cdot 10^{-7} s, f = 10 kHz, collimato.
```

Visione accidentale → T = 0,25 s

$$\begin{aligned} & \textbf{H}_{\text{sing}} = 5 \bullet 10^{-3} \ \textbf{C}_{\text{E}} = 5 \bullet 10^{-3} \ \textbf{J/m}^2 & (\text{Tab. 2.2}) \\ & \textbf{H}_{\text{T025}} = 18 \ \textbf{t}^{0,75} \ \textbf{C}_{\text{E}} = 18 \bullet 0,25^{0,75} = 6,36 \ \textbf{J/m}^2 & (\text{Tab. 2.2}) \\ & \textbf{N} = 10^4 \bullet 0,25 = 2,5 \bullet 10^3 \\ & \textbf{H}_{\text{med}} = 6,36 \ / \ 2,5 \bullet 10^3 = 2,55 \bullet 10^{-3} \ \textbf{J/m}^2 \\ & \textbf{H}_{\text{train}} = 5 \bullet 10^{-3} \ (2,5 \bullet 10^3)^{-0,25} = \underline{7,1 \bullet 10^{-4} \ \textbf{J/m}^2} \end{aligned}$$

Continua

Calcolo VLE

(stesso laser slide 2, cambia solo la frequenza)

Argon, $\lambda = 488$ nm, $t_{imp} = 5 \cdot 10^{-7}$ s, f = 1 MHz, collimato.

Rispetto alla slide precedente è aumentato il rateo di ripetizione degli impulsi

```
\begin{aligned} &\textbf{H}_{\text{sing}} = 5 \bullet 10^{\text{-}3} \text{ J/m}^2 \\ &\textbf{H}_{\text{T025}} = 6,36 \text{ J/m}^2 \\ &\textbf{N} = 10^6 \bullet 0,25 = 2,5 \bullet 10^5 \\ &\textbf{H}_{\text{med}} = 6,36 \text{ / } 2,5 \bullet 10^5 = \underline{2,55} \bullet 10^{\text{-}5} \text{ J/m}^2 \\ &\textbf{Effettiva frequenza degli impulsi:} \end{aligned} \tag{Tab. 2.2} \\ &\textbf{Effettiva frequenza degli impulsi:} \end{aligned} (Tab. 2.6) \\ &\textbf{f}_E = 1 \text{ / } 18 \bullet 10^{\text{-}6} = 55,56 \text{ kHz} \\ &\textbf{N}_E = 0,25 \bullet 55,56 \bullet 10^3 = 1,39 \bullet 10^4 \\ &\textbf{H}_{\text{train}(18us)} = 5 \bullet 10^{\text{-}3} (1,39 \bullet 10^4)^{\text{-}0,25} = 4,6 \bullet 10^{\text{-}4} \text{ J/m}^2 \\ &\textbf{H}_{\text{train}} = \textbf{H}_{\text{train}(18us)} \text{ / } (18 \bullet 10^{\text{-}6} \bullet \text{ f}) = \underline{2,55} \bullet 10^{\text{-}5} \text{ J/m}^2 \end{aligned}
```

Puntatore laser

Si vuole analizzare se sussiste pericolo nel caso di un errato puntamento di un puntatore laser di caratteristiche note, ad esempio durante una presentazione. In particolare si chiede di:

- verificare se sono superati i valori limite di esposizione per gli occhi e per la cute per i convenuti a distanza di 10 m
- classificare il puntatore;
- calcolare la DNRO;
- identificare gli eventuali DPI per i convenuti che occupano i posti centrali della prima fila (3 m);
 Rispondere inoltre alle domande finali.

Puntatore laser

Puntatore laser XXX				
Poten <mark>za di uscita</mark>	Modulabile da 150 a 200 mW			
Lunghezza d' onda	532 ± 1 nm			
Modo di funzionamento	Continuo			
Divergenza	1,5 mrad			
Diametro del fascio all'apertura	1,5 mm			
Profilo spaziale	Gaussiano			
Alimentazione	Batterie			

Si vuole valutare la pericolosità della radiazione diffusa. Si prenda, ad esempio, il laser Nd-Yag del secondo caso operante sulla seconda armonica, diametro del fascio di 5 mm. Si chiede di valutare se un operatore può fissare per 2 s ad occhio nudo senza pericolo lo spot del fascio su un diffusore lambertiano posto a una distanza di 2 m. Il fascio laser incide normalmente sul piano del diffusore e la direzione della radiazione riflessa forma con la congiungente occhi-spot un angolo di 45°. Si valuti altresì la DNRO per la luce diffusa lungo la medesima direzione.

Valutazione Limite di Esposizione

Si applica la procedura "Correzioni per esposizioni ripetute", Tab. 2.6, All. XXXVII, parte II, d.lgs. 81/08:

- 1) $VLE_{imp} = 5 \cdot 10^{-3} \cdot C_E J/m^2$
- 2) Tempo di esposizione, t = 2 s

$$\Rightarrow$$
 VLE_T = 18 · t^{0,75} · C_E J/m² \Rightarrow VLE_{impmd} = VLE_T / N

3)
$$VLE_{treno} = 5 \cdot 10^{-3} \cdot C_E \cdot C_P J/m^2$$

Dove:

N (impulsi in t) =
$$10 \cdot 2 = 20$$

$$C_p = N^{-0.25} = 20^{-0.25} = 0.473$$

Dunque:

- 1) $VLE_{imp} = 5 \cdot 10^{-3} \cdot C_E J/m^2$
- 2) $VLE_{impmd} = 18 \cdot 2^{0.75} \cdot C_E / N J/m^2 = 1.51 \cdot C_E J/m^2$
- 3) $VLE_{treno} = 5 \cdot 10^{-3} \cdot C_E \cdot C_P J/m^2 = 2,36 \cdot 10^{-3} \cdot C_E J/m^2$

La condizione più restrittiva è la terza, pertanto:

$$VLE = 2,36 \cdot 10^{-3} \cdot C_{F} J/m^{2}$$

Valutazione C_E

 α_{2m} (diametro apparente a 2 m dallo spot) = $d_{63}/r = 5 * 10^{-3} / 2 = 2.5 * 10^{-3} rad$

$$\Rightarrow$$
 C_E = α/α_{min} = 2,5 * 10⁻³ / 1,5 * 10⁻³ = 1,67

$$\Rightarrow$$
 VLE = 3,94 * 10⁻³ J/m²

Valutazione dell'esposizione energetica della radiazione diffusa

$$H = (Q' * cos \theta) / (\pi * r^2)$$

(ipotesi: coefficiente di riflessione del diffusore unitario)

Dove Q' è l'energia radiante, θ è l'angolo compreso tra la direzione del fascio laser e la direzione occhispot e r è la distanza dell'operatore dal centro spot (v. figura slide 17).

L'ultimo test report del laser riporta 1,63 W a 532 nm, frequenza di ripetizione impulsi di 10 Hz.

Q (energia per impulso) = 1,63 / 10 = 0,163 J

Q' (energia radiante) = 0,163 * 10 * 2 = 3,26 J

$$\Rightarrow$$
 H = (3,26 * cos 45) / (π * 2²) = 0,18 J/m²

Conclusione: H > (VLE * 20) = 7,88 * 10⁻² J/m² posizione dell'operatore non *eye-safe*

Valutazione DNRO radiazione diffusa

Si applica la relazione:

DNRO =
$$((Q' * cos \theta) / (\pi * VLE_{piccsorg}))^{0.5}$$

Dove
$$VLE_{piccsorg} = 2,36 * 10^{-3} * C_E J/m^2 = 2,36 * 10^{-3} J/m^2 (essendo C_E = 1)$$

Quindi:

DNRO =
$$((3.26 * \cos 45) / (\pi * 2.36 * 10^{-3}))^{0.5} = 17.6 \text{ m}$$