

CEUNES

K-Nearest Neighboor

Elyabe Alves, Luis H. G. Valim

Universidade Federal do Espírito Santo CComp - TEBD120181

26 de Junho de 2018

K Vizinhos mais próximos

"Reflitão":

"Diga-me quem são seus amigos e eu lhe direi quem você é!"[2]

Definição:

KNN é um algoritmo simples que classifica novos casos baseando-se na similaridade entre casos já armazenados. [4]

Funcionamento Básico

Figura: Ideia básica do KNN

Características relevantes

- Simplicidade: Fácil de entender e programar;
- Lazzy: Baseado na memória, sem treinamento ou modelo explícito;
- Opção de rejeição explícita;
- Fácil pré-processamento no tratamento de valores ausentes;
- Taxa de erro de classificação assintótica. [3]

Características relevantes

- Afetado pela estrutura local
 - **Sensível** a ruídos e características irrelevantes [3];
 - Computacionalmente caro;
 - Requisição de memória;
 - Classes mais frequentes, normalmente, predominam o resultado;
- O vizinho mais próximo pode não estar tão próximo;
- Se dim \geq 4 perde-se o **sentido geométrico**.

Vamos brincar, lekes?

Simulador online

https://lettier.com/projects/knearestneighbors/

Enade 2012: Um caso de aplicação

Exame Nacional de Desempenho de Estudantes [1]

- Avaliação obrigatória;
- Métrica de rendimento:
 - Conteúdos programáticos;
 - Competências e habilidades necessárias para aprofundamento na formação;
 - Nível de atualização
- Indicadores de qualidade de educação superior:
 - Conceito Enade:
 - Conceito Preliminar de Curso; (CPC); e
 - Índice Geral de Cursos Avaliados da Instituição (IGC);

Configurações gerais

- *n* > 180 atributos:
 - Informações de cidadania;
 - Situação socieconômica;
 - Gabarito, respostas e notas;

Dados selecionados

Atributos selecionados		
Categoria	Atributo(s)	
Inst. Ensino	cd₋catad	
	cd_orgac	
Curso	co_regiao_curso	
	co_uf_curso	
	tp_sexo	
	sg_uf	
	ano_fim_2g	
	ano_in_gra	
Inscrito	tp_semest	
	in_matut	
	in_vesper	
	in_noturno	

Tabela: Seleção dos atributos.

Dados selecionados - Continuação

Atributos selecionados	
Categoria	Atributo(s)
Inscrito	in_grad
	tp_def_fis
	tp_def_vis
	tp_def_aud
Desempenho	nt_obj_fg
	nt_fg_d1
	nt_fg_d2
	nt_dis_fg
	nt_fg
	nt_obj_ce
	nt_ce_d1

Tabela: Seleção dos atributos. pt. 2

Dados selecionados - Continuação

Atributos selecionados		
Categoria	Atributo(s)	
Desempenho	nt_ce_d2	
	nt_ce_d3	
	nt_dis_ce	
	nt_ce	
	nt_ger	

Tabela: Seleção dos atributos. pt. 3

CLASSE REGIÃO (co_regiao_curso)

Pré-processamento

Transformação:

• **tp_sexo** $f: Caracter \mapsto i \in [0, 1]$

$$i = \begin{cases} 0, & \text{se tp_sexo} = \text{'F'} \\ 1, & \text{se tp_sexo} = \text{'M'} \end{cases}$$

9 sg_uf $\{ \text{"AC", "AL", "AM", ..., "SP", "TO"} \} \mapsto [0, 1, ... 25, 26]$

Normalização

$$x_s = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{1}$$

Determinação de parâmetros

Escolha do k

- pequeno ⇒ maior variância (menos estabilidade); 5
- grande \imp maior desvio (menos preciso);

E agora? Como escolher?

R: (Resposta preferia da prof. Maria)

Outras formas: Métodos adaptativos, heurísticas e validação cruzada

Determinação de parâmetros

Escolha da métrica de similaridade:

Distância euclidiana

$$d(R_0, R_1) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \iff d^2(R_0, R_1) = \sum_{i=1}^{m} (x_i - y_i)^2$$

A Implementação

Linguagens

- Matrix Laboratory (MATLAB);
 - Abstração;
 - Proprietário;
 - 3 "Levemente pesado";
- 2 Python;
 - Bibliotecas pandas e numpy;

Referências Bibliográficas

- [1] INEP. Instituto nacional de estudos e pesquisas educacionais anísio teixeira.
- [2] D. H. Izabela Moise, Evangelos Pournaras. K-nearest neighbour classifier. Technical report, ETHzürich.
- [3] L. Kozma. k nearest neighbors algorithm. Technical report, Helsink University of Technology, 2008.
- [4] S. Sayad. K nearest neighbors. Technical report, University of Toronto, 2010.