

Discussion CAEsaaaaaar

Gradient Descent:

$$\Theta_{O(NeW)} = \Theta_{O(O|A)} - \lambda \frac{\partial Cost}{\partial \Theta_{O}}$$

To English: learning rate x slope of the cost function of parameter θ_0

Recap

Motivation: we have validation dataset to measure how well the model is. But what if the validation dataset is poorly-chosen?

[Cross Validation]

Solution: repeat the trials, change validation dataset, average accuracy across all trials

Recap: We can make the model more complex to capture non-linear data

Problem: What is the right degree complexity?

Solution:

Re

gura

rization

Regularization the data from
$$y = \beta_0 + \beta_1 \chi$$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^2$
 $y = \beta_0 + \beta_1 \chi + \beta_2 \chi^$

Reminder:

we can get higher testing accuracy even if training

Key takeaway: We find a way

accuracy is low

to make the model underfits, so

Note: there is another type of regularization, which is called **Lasso**

The difference is that the penalty term, we use **absolute** instead of squaring the parameters

Ridge	Lasso
Squared the parameters	Take absolute of the parameters
Parameters get close to zero	Parameters can reach zero
Better when we believe every parameters are useful	Can exclude useless parameters

s close to zero, but not

Statquest Youtube video: Ridge vs Lasso Regression, Visualized!!!

<u>https://www.youtube.com/watc h?v=Xm2C_gTAl8c</u>

But you know, I learned something today

Ex ridge freg:

$$Y = 5x_1 + 3x_2 + 0.008x_3$$

lasso reg:
 $Y = 5x_1 + 3x_2 + 0(x_3)$

- We use cross validation to average models across all trials, instead of accidentally pick the invalid test data
- We use ridge/lasso regression to lower training accuracy, but get higher test accuracy