Dado diferentes valores de entrada obtemos os seguintes tempos de execução:

Regiões	Cidades	Alunos	Tempo_Par	Tempo_Seq
10	10	10	0,008219	0,000039
100	100	100	0,015468	0,004614
250	250	250	0,052093	0,070718
500	500	500	0,145004	0,607918
750	750	750	0,462834	2,892833
900	900	900	0,596447	4,095219

O **Speedup** Absoluto se dá pela fórmula:

Sp = Tempo sequencial / Tempo paralelo

Tempo_Par	Tempo_Seq	Speedup
0,008219	0,000039	0.004745
0,015468	0,004614	0.298293
0,052093	0,070718	1.357534
0,145004	0,607918	4.192422
0,462834	2,892833	6.250260
0,596447	4,095219	6.866023

Dado que Sp é menor que p, onde 'p' é o número de processadores (Sp < 8)

Podemos concluir que cai no caso comum, Sp é sublinear em todo o conjunto de testes.

A **Eficiência** se dá pela fórmula:

E = Sp/p

Speedup	Sp / 8	
0.004745	0.000593	
0.298293	0.037287	
1.357534	0.169692	
4.192422	0.524053	
6.250260	0.781283	
6.866023	0.858253	