$24\left[\frac{3}{2}\sqrt{1^{2}-x^{2}}+\frac{3}{2}\sin^{2}\frac{x}{2}\right]$   $24\left[\frac{3}{2}\sqrt{1-x^{2}}+\frac{3}{2}\sin^{2}\frac{x}{2}\right]$   $24\left[0+\frac{3}{2}\sqrt{\frac{x}{2}}\right]=4\times\frac{x}{4}=x$ Stokes theorem verified.

## Statistics

( 16 Ca) 4 d = 18 Ca) 2 1 18 Ca) 2

Deft: The science of stodistics is essentially a brock of applied modernatics dealing with the collection presentation and analysis of the collection presentation and analysis of the collection presentation and analysis of the collection and analysis of the collection and analysis of the collection and analysis of courses which is designed to multiplicity of courses which is designed to multiplicity of courses which is designed to sufficiently of courses which is designed to sufficiently on describe on describe important summarize on describe on describe important features of numerical Data mainly by state features of numerical Data mainly by state.

Frequency Distributioning I homeson 14

A set of classes together with the frequencies of occurance of values in each class in a given set of data, Presented in a tabular form is referred to as a frequency distribution.

Contract of tables: Health and smoking states of so wonkens.

|                |        |         | 1571  |        |
|----------------|--------|---------|-------|--------|
|                | Health | states  | *     |        |
| snoxing states | 3009   | Avenage | 7007  | tested |
| smokes         | 6      | 10      | 12    | 28     |
| non-smoken     | 3      | 7       | 12    | 22     |
| Total          | 9      | 17      | 1, 24 | 50     |
| - 15 M         | 1 10   | · ·     | - ×   | 1 1    |

CoroPhical Representation

1) bor diagrami

Bar diagram is also known as best chart. Consists of horizontal on resitical bare of equal widths and lengths proportional to the magnitude they segmesents.

En: Health Personnel from 150 to sword health centres asked. How frequently have you your year week/77 X)a Frequently ! borrows Response frequently Occasionally 26/03/10 :20/dal to Rarely 24 NEVEN Total 2 r dote 1/Hange 1250001 / Sonos 807 701 G0 139 X0 -- 2 50 40 30 20 Boir Dioderon A Longitariony

2) Drie chart: It is also known is an effective way of presenting percentage parts when the whole quantity is taken as frequently - 49 x 700% = 32.7%. 3146-3.00 occasionally - 77 x 1007. = 49%. 7.20- 1.10 distort  $-\frac{24}{150} \times 100\%$  = 16%. - 6 150 × 1007,=47. ( fremont) solver without - Harriver & contato 5 may 2 - 4 - 5 - 5 - 1/2 22 20 8 / 1/2 20 20 6 which coile to my solo de solo and and to be since depression of one of the white

| 3) Histogram: The most common form of                  | graphical Prese                                          | ntation of a        |
|--------------------------------------------------------|----------------------------------------------------------|---------------------|
| frequency distribution is  Expenditure class frequency | HISTODE                                                  |                     |
| 4.5-9.5                                                |                                                          | 5                   |
| 9.5_14.5                                               | 28                                                       | 7                   |
| 74.5-19.5 27 11.58                                     | 1. 1. 1. 2. 7 × - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 57/8-24/10/2        |
| 79.5-24.5.                                             | 12                                                       | 5                   |
| 24.5-29.5 4                                            | 1 1 my 4 - 1 1                                           | 720000              |
| Total 80                                               | M-3'                                                     | Fron                |
| 30+<br>25+<br>20+                                      | E. 1, 0001 X 250                                         | ROUGH               |
| 5- 4.5 9.5 14.5 19.5 24.5                              | 29.5                                                     |                     |
| frequency (5)                                          |                                                          |                     |
| as way of grashically ?                                | nesenting a fro                                          | solvench gistanprin |
| of a continuous way. The                               | presentation !                                           | molves Placing      |
| the midvalues on the 1                                 | eixa latrosira                                           | and on the          |
| restical axis.                                         |                                                          |                     |



|               | 10          | Visio     | Cumul         | ative fre | Mone +        | han tu |
|---------------|-------------|-----------|---------------|-----------|---------------|--------|
| Heights(inch) | frequercies | frequency | Less than     | 1 00      |               | 626dre |
|               |             | ,         | HEISHAS       | trees.    | Monethan 59.5 | 108    |
| 59.5-62.5     | 5           | 5         | less Han 59.5 | <b>5</b>  | 62.5          | 95     |
| 62.5-65.5     | 18          | 23        |               | 23        | 65-5          | 77     |
| 65.5 - 68.5   | 42          | 65        | 65.5          | 65        | 68.5          | 35     |
| 68.5-71.5     | 27          | 92        | 68.5          |           | 71.5          | 8      |
| 77.5-74.5     |             | 100       | 71.5          | 300       | 74.5          | 6      |
| 1137          | 6           |           | 74:5          | 100       |               |        |
| Total         | 100         |           |               |           | 7-317         | -      |



The Asithmatic Mean

1 the Hedian

63. The m Mode

& The Harmonic Mean

(5.) The Geometic Mean

The Asithmetic Mean.  $\overline{X} = \frac{\mathcal{E}Xi}{N}$   $\overline{X} = \frac{\mathcal{E}Xi}{N}$   $\overline{X} = \frac{\mathcal{E}Xi}{N} = \frac{1+2+3+9+7+10}{6}$ For Shooked data,  $\overline{X} = \frac{\mathcal{E}Xi}{\mathcal{E}Xi} = \frac{28xi}{6}$ 

| 1227                 | Con mark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Midralue,      | fixi  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| Meekly wages in TK   | Frequency, fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with xin       | 102   |
| 48.5-53.5            | 2 70 .70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 2015 76 10 |       |
| 1 The real land with | 2 2000 Porch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55             | 110   |
| 53.5-58.5            | 1 - 3 1/6 -10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67             | 183   |
| 88.5-63.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65             | 325   |
| 63.5-68.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77             | 355   |
| 68.5-73.5            | 50 Coloda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1h, 3         | 375   |
| 73.5-78.5 wikelan    | 60 50886 mylf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75             | 405   |
| 78.5-83.5            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |       |
| 83.5-88.5            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82             | 202   |
|                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97             | 2010/ |
| 88.5 - 893.5         | Confe Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95             | 570   |
| 93.5-98.5            | the state of the s | , 2            | V=14  |
| tatal                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 346 3V11       | 3930  |
| $H \rightarrow H$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 330/0 |

= 78.6

| Average on Measures of central tendancy.                |
|---------------------------------------------------------|
| OThe Arithmetic Mean                                    |
| Dorke Median.                                           |
| Median, $M_e = L_0 + \frac{\gamma_2 - F}{f_0} \times L$ |
| Lo = lower limit of the onedian class.                  |
| n = total number of class.                              |
| f = culmulative frequency Prior the median class.       |
| fo = frequency of the median class.                     |
| L = class width of the median class.                    |
| Calculating the Median Class!                           |
| 1) Complète less than type cumulative frequency         |
| (5) Defermine No.                                       |
| 3) Locate median class for which the cumulative         |
| frequency is more than no                               |
| (4) Determine the lower limit 1. of the median          |
| class.                                                  |
| (5.) Determine the sum of frequencies ?                 |
| prior the median classes.                               |
| 6) Determine the frequency of                           |
| 7) Determine class width of the Dedican class to.       |
|                                                         |

| Neekly wages | Frequency fi | cumulative<br>frequency |                |
|--------------|--------------|-------------------------|----------------|
| 48.5-53.5    | 2            | 2_                      |                |
| 53.5-58.5    | 2            | 4                       |                |
| 58.5-63.5    | 3            | 7                       |                |
| 63.5-68.5    | 5            | 12                      |                |
| 68.5 - 73.5  | 5            | 77                      | 7.60. A        |
| 73.5-78.5    | 5            | 22                      | T <sub>2</sub> |
| 78.5-83.5    | 5            | 27                      |                |
| 83.5 - 88.5  | 7            | 34                      | ,              |
| 88.5 -93.5   | 10           | 44                      | 1              |
| 93.5-98.5    | 5 6          | 50                      |                |
| Total        | 50           |                         |                |
|              |              |                         |                |

$$7/2 = \frac{50}{2} = 25$$

Median class =  $78.5 - 83.5$ 
 $6 = 78.5$ 
 $6 = 5$ 
 $1.5 = 78.5$ 

The mode:

1, 2,3,1,5,6,57,5,1

For grouped data,

Mode, Mo = 10 + Az + Dz xh

where,

10 = lower limit of the modal class

10 = lower limit of the modal class

A1 = Absolute difference of between modal and

Az = Absolute difference between model and

post , modal class.

L = Class width of the modal class. highest

| 1 | 7.45-7.95<br>7.95-2.45        | Frequency | treamency 20 orall chas 24 stand chas 24 modal class = 2.9-3.95 |
|---|-------------------------------|-----------|-----------------------------------------------------------------|
|   | 2.45-2.95 2.95-3.45 3.45-3.95 | 10        | Δ2 = 20-54<br>Δ2 = 20-84<br>Λ=1.00                              |
|   | 3.95 - 4.45                   | 3         |                                                                 |
|   | Total .                       |           |                                                                 |

10 = 2.95

Mode, Mo = 10 + An An XL

Dr = 15-4=17

12=15-10=5

L=0.50

= 2.95 + 11 × 0.50

Calculate AM, Median and Mode From the following data.

| *             |                  |
|---------------|------------------|
| Age in years  | Number of bisths |
| 14.5-19.5     | 677              |
| 19.5 - 24.5   | 1908             |
| 24.5 - 29.5   | 1737             |
| 29.5-34.5     | 7040             |
| 34.5- \$ 39.5 | 294              |
| 39.5 - 44.5   | 91               |
| 44.5 - 49.5   | 16 2000          |

| (2) Age 1 1 | 10.09 women |
|-------------|-------------|
| 9.5-14.5    | 27.4        |
| 74.5-19.5   | 34          |
| 79.5-24.5   | <b>47</b>   |
| 01.5-29.5   | 45          |
| 29.5-34.5   | 45          |
| 34.5 -39.5  | 43          |
| 39.5-44-5   | .35         |
| 59.7°       | 30          |
| 44.7        | 1 3 36. 8   |

10 Exi Construct Histogram, frequency Polygon, Jess than type and more than type ofine. works | frequency 250-260 8 260-270/10 270-280/16 280-290 15 290-300 110 300 - 310 310-320 320-330 The Standard deviation on other measures of Dispersion 1. The Ronge 2. The apart quantile deviation 3. The mean deviation 4. The variance 5. The standard deviation The mean deviation. for grouped data, 1x-1x/ = (x) cm Where, xi = Mid names of class boundary x = A.M Asithmetic Mean Fi = Total Frequency

| a.M |
|-----|
|     |

| Class Internal | frequency | ь. |
|----------------|-----------|----|
| 48.5-53.5      | 2         |    |
| 53.5-58.5      | 2         |    |
| 58.5-63.5      | 3         |    |
| 63.5 - 68.5    | 5         |    |
| 68.5-73.5      | 5         |    |
| 73.5-78.5      | 5         |    |
| 78.5 - 83.5    | 5         |    |
| 83.5-88.5      | 17        |    |
| 88.5 - 93.5    | 10        |    |
| 93.5-98.5      | , \ 6     |    |
| 7080           | 50 10     | 11 |

| 40607  | 00 |
|--------|----|
| 100 00 | 20 |

|                        |          |      |      | _     |      |           |
|------------------------|----------|------|------|-------|------|-----------|
| class interval Mi      | x;       | & fi | fixi | 7 \\  | マベーズ | fi /xi-x1 |
| 48.5-53.5              | 57       | 2.   | 702  |       | 28.7 | 56.2      |
| 53.5-5.8.5             | 56       | 2    | 112  |       | 23.1 | 46.2      |
| 58.5-63.5              | 61       | 3    | 183  |       | 18.7 | 54.3      |
| 63.5-68.5              | 66<br>71 | 5    | 330  | 25:xi |      | 65.5      |
| (8.5-73.5<br>73.5-78.5 | 76       | 5    | 380  |       | 8,7  | 40.5      |
| 78.9-83.5              | 81       | 5    | 4 0  | 5 5   | 0    | 9.5       |
| 83.5 - 88.5            | 86       | 7    | 662  | 2     | 6.9  | 48.5      |
| 88.5 - 93.5            | 97       | 10   | 0    | 76    | 11.9 | 11.9      |
| 93.5-98.5              | 96       | 6    | 1    | 79    | 16.9 | 107.4     |
| Total                  |          |      | 10 B | 755   |      | 556.4     |

variace 0,

Standard deviation,

Probability

1) One dong 20 file were presented to an income for officer for disposal 5 files contained bogue centries. All the files were throughly mined and there was no indication about bogus files. What is the To Probability that one file with booms entries is selected? 6 ned balls.

2) A bog contains 4 white and A ball is brawn at sandon from the bag. What is the ap probability that it is ned?

White

ones sof tolf