POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI

INFORMATYKA

Interakcja człowiek-komputer

W3

Projektowanie interfejsu oprogramowania

Dr inż. Marek Miłosz, prof. uczelni

Plan wykładu

- Projektowanie interfejsu
- Profile użytkownika
- Analiza potrzeb: analiza zadań i aktywności użytkownika
- Modelowanie pracy użytkownika i projektowanie UX
- Metody projektowania (szkice, prototypy, storyboards, mockupy, metody formalne)
- Narzędzia wspomagające projektowanie interfejsu oprogramowania

Projektowanie interfejsu

Źródło: http://craztegg.com

Modele projektowania interfejsu

- Model kaskadowy
- Modele cykliczne
- Model z prototypem
- Metody zwinne (ang. Agile)

Model kaskadowy

Model kaskadowy - problemy

- Formalność weryfikacji (walidacji) rezultatów poszczególnych faz
- Ogólnikowe definiowanie wymagań do interfejsu
- Marginalizacja ergonomii na rzecz funkcjonalności
- Brak kontaktu projektanta z użytkownikami -> brak wiedzy o użytkownikach -> zły projekt
- Bardzo późna identyfikacja błędów ergonomii (zwykle w trakcie użytkowania)
- Duże koszty i czas poprawy

Modele cykliczne

- Iteracyjny
- Przyrostowy
- Spiralny
- Zwinne
- Prototypowanie

Prototypowanie interfejsu – schemat

Profile użytkownika Politechniki Lubelskiej -

Użytkownicy systemu (1)

- Użytkownicy są bardzo zróżnicowani
- Projektowanie interfejsu oprogramowania musi rozpocząć się od uwzględnienia docelowej populacji użytkowników
- Charakterystyka użytkownika:
 - Różnice fizyczne
 - Wiek
 - Ograniczenia (fizyczne, mentalne)
 - Wiedza i doświadczenie w:
 - domenie (początkujący, ekspert itp.)
 - wykorzystaniu komputerów i systemów (okazjonalny lub codzienny użytkownik)

Użytkownicy systemu (2)

- Charakterystyka:
 - Preferowany tryb prezentacji wizualny/tekstowy, dźwiękowy
 - Preferowany tryb rozumowania: logiczny/intuicyjny, analityczny/syntetyczny...
 - Cechy społeczno-kulturowe
 - Kierunek pisania (od prawej do lewej, od lewej do prawej, od góry do dołu)
 - Format daty (USA kontra europejski)
 - Znaczenie kolorów lub ikon
- Dylemat Interfejsu: projektowanie dla wszystkich. Czy to możliwe? Oprogramowanie przeznaczone do użytku dla szerokiej gamy użytkowników
- Konieczne jest zaprojektowanie elastycznych interfejsów

Typy/profile użytkowników

- Nowicjusz
- Okazjonalny
- Ekspert

Politechniki

Nowicjusz

- Nieobznajomiony, potrzebuje wsparcia, aby wspomóc proces uczenia się
- Ważne:
 - Należy ograniczyć liczbę działań i koncepcji merytorycznych w systemie
 - Zapewnienie informacji zwrotnej
 - Zapewnienie intuicyjnych instrukcji obsługi
 - Zapewnienie instrukcji krok po kroku
 - Dostarczyć pomoc kontekstową

Użytkownik okazjonalny

- Okazjonalni użytkownicy posiadają ogólną wiedzę o systemie, ale trudność w przypomnieniu sobie różnych funkcji systemu i ich lokalizacji
- Ważne:
 - Spójny interfejs i dobra organizacja menu
 - Zapobieganie błędom, aby zachęcić do odkrywania funkcjonalności
 - Pomoc on-line i dobrze zorganizowane instrukcje obsługi

Ekspert

- Użytkownicy zaawansowani: doskonała znajomość domeny, zadań do wykonania i interfejsu
- Główne jego priorytety to wydajność i szybkość pracy
- Ważne:
 - Skróty klawiszowe
 - Wiersze poleceń
 - Tworzenie makr
 - Dostosowanie środowiska do własnych potrzeb

Analiza potrzeb: analiza zadań i aktywności użytkownika Politechniki Lubelskiej

Analiza – definiowanie użytkowników

- Określenie użytkowników końcowych
- Modelowanie (identyfikacja i uszczegółowienie) użytkowników końcowych
- Pojęcia:
 - Zbiór (grupa) użytkowników
 - Profil zbiór ról użytkownika w systemie informatycznym, tj. zbiór zadań, które użytkownik może wykonać przy pomocy oprogramowania z podziałem na grupy, np. kluczowe/wspomagające, mobilne/webowe itd.
 - Persona

Personifikacja użytkowników – Persona

- Ang. Persona
- Osoba sztuczna
- Model abstrakcyjny w celu personalizacji grupy użytkowników
- Persona posiada imię i nazwisko oraz wygląd zewnętrzny (zdjęcie), także inne detale (np. wiek, płeć, pozycja socjalna, zawód), które pozwalają ją personifikować i mają ułatwiać zapamiętywanie i odróżnianie jej od innej persony
- Opis w różnych przekrojach: człowiek, cele, zachowanie się
- Np. Pani Zosia z księgowości, Pan Marek główny specjalista

Persona – cel (1)

- Łatwiejsze zapamiętywanie właściwości grup użytkowników poprzez identyfikację ich z konkretną (aczkolwiek wyimaginowaną) osobą – uczłowieczenie fikcyjnego użytkownika
- Ułatwienie komunikacji pomiędzy członkami zespołu ("to dla Pani Zosi ta funkcja")
- Pozbycie się paradoksu tzw. typowego, uśrednionego użytkownika – taki użytkownik łączy w sobie różne właściwości, w konsekwencji jest np. słonio-żyrafo-orło-osłem, czyli nie istnieje

Persona – cel (2)

- Połączenie w jedno charakterystyk z trzech profili: użytkownika, zadaniowego i środowiska
- Koncentracja na działaniach użytkownika
- Identyfikacja i dołączanie do danych o projekcie, wydawało by się małoważnych, charakterystyk użytkowników; takie charakterystyki mogą się przydać w późniejszych etapach projektowania
- Ważne na etapie badania jakości gotowego interfejsu – dobór grup badawczych testujących interfejs

Persona – opis

"Mary"

Behaviors

- Has a housecleaner
- Buys take-away 3 nights/wk
- Frequently feels overwhelmed when she "forgets" something

Demographics

- Working mom
- · 34 years old
- Lives in Reading, works in London
- · Married, 2 kids
- Household 125k/yr

Needs & Goals

- Help! Running errands, managing kids, keeping things running
- · Time for her girlfriends
- To feel like she "has it sorted"
- "To clone herself"

Źródło: https://bootcamp.uxdesign.cc/why-are-personas-necessary-in-agile-software-development-99e5184b9fb9

Persona – proces definiowania

Brainstorm Persona Types

Research and Interview

Write Personas

Generate a list of types of people connected to your product or service. Find people of each type and interview them about pain points and product

Write a detailed description of each person. What do they care about? How do they currently solve the problem?

Team Sort I Prioritize

Discuss

Finalize, Print, Dristribute

Gather the team (business and tech) to card sort the profiles. Use a target or triangle approach.

Ask questions like: "Are these the same?" "What if we swap these two?"

Print the final primary profile for every team member to reference daily during the project.

Źródło: https://www.storyboard that.com/pl/articles/b/t worzenie-ludzie

Persona – szablon

Źródło: https://www.storyboard that.com/pl/articles/b/t worzenie-ludzie

Analiza zadań i aktywności użytkownika

- Proces analizowania i dokumentowania, w jaki sposób ludzie wykonują swoją pracę lub czynności
- Układ zadań-podzadań
- Zadania mogą być identyfikowane i definiowane na wielu poziomach abstrakcji, zgodnie z wymaganiami dla wsparcia celu analizy

Zadanie

- Posiada:
 - cel (ang. Goal)
 - listę działań (ang. Action Model)
 - opis środowiska (ang. Domain Model)
 - związki pomiędzy tymi modelami
- Modele zadań są hierarchiczne

Model zadania

Źródło: https://www.nngroup.com/articles/task-analysis/

Klasyfikacja zadań

- Stopień ważności zadania (główne, wspomagające, ..., dodatkowe)
- Zależność od innych zadań (centralne, zależne)
- Stopień ważności (bardzo ważne, ..., uzupełniające)
- Częstotliwość realizacji
- Krytyczność (krytyczne czasowo, obciążające zasoby, obsługujące błędy)
- Współdzielenie (lub nie) pomiędzy różnymi personami

Klasyfikacja zadań – cele

- Optymalizacja działań
- Zadania ważne (często wykonywane) z punktu widzenia interfejsu są optymalizowane w pierwszej kolejności
- Zadania rzadko wykonywane mogą mieć gorszy interfejs

Analiza potrzeb użytkownika – scenariusze

- Model przypadków użycia
- Scenariusze przypadków użycia -> inżynieria oprogramowania
- Scenariusze mają cel i listę kroków
- Opis w prostym języku bez szczegółów technicznych

Modelowanie pracy użytkownika projektowanie UX Lubelskiej -

User eXperience – UX

- UX całość wrażeń użytkownika w trakcie korzystania z systemu
- Projektowanie UX (ang. User eXperience Design)
 to projektowanie oprogramowania ze
 szczególnym zwróceniem uwagi na to, aby
 interakcja z nimi dostarczała użytkownikom
 pozytywnych doświadczeń
- Projektowanie UX wykorzystuje metodykę projektowania zorientowanego na użytkownika: ang. User-Centered Design (UCD)

UCD – fazy

- Fazy:
 - analiza ukierunkowana na użytkownika (ang. *User-Centered Analysis*, UCA)
 - projektowanie ukierunkowane na użytkownika (UCD)
 - implementacja projektu (zwykle: budowa prototypu)
 - testowanie użyteczności (ang. *Usability Testing*, UT) ocena jakości prototypu
- Model: spiralny (cykliczne uszczegóławianie produktów)
- Produkty: wymagania-projekt-prototyp-rezultaty testów

UCD – model

Metody projektowania interfejsu Politechniki Lubelskiej

Prototypowanie jako metoda projektowania interfejsu

Typy prototypów:

• Małej dokładności (ang. Low-Fidelity Prototype)

• Wysokiej dokładności (ang. High-Fidelity

Prototype)

Źródło:

https://www.justinmind.com/blog/low-fidelity-vs-high-fidelity-prototypes/

Prototyp vs. aplikacja

Źródło: https://www.smashingmagazine.com/2010/06/design-better-faster-with-rapid-prototyping/

Prototypowanie – techniki realizacji

- Szkice papierowe (ang. Sketches)
- Makiety (ang. Wireframes)
- Atrapy (ang. Mockups)
- Działające (dynamiczne) prototypy

Prototypowanie – szkice

- Na papierze lub tablicy (potem fotografowanie)
- Zastosowanie:
 - projektowanie (razem z użytkownikiem)
 - ręczna symulacja działania interfejsu
- Zalety:
 - szybko
 - tanio
 - dowolność rozwiązań (brak ograniczeń narzędziowych)
 - możliwość wykorzystania użytkowników

Prototypowanie – szkice – techniki

Źródło: http://josellinares.com

Źródło: http://nngroup.com

Prototypowanie – makiety (1)

- Szkice struktury ekranów i nawigacji
- Ujednolicają interfejs
- Pokazują graficzny standard aplikacji

A – nagłówek
B – pasek stanu
C – menu
D – pole robocze
E - stopka

Prototypowanie – makiety (2)

Makieta papierowa

Źródło: https://www.researchgate.net/publication/229012830_DJ2Go_Two-Handed_Audio_Manipulation_Software/figures?lo=1

Prototypowanie – atrapy

- Komputerowe, interaktywne modele interfejsu
- Cel:
 - projektowanie
 - ocena
 - demonstrowanie rozwiązań
 - szkolenia użytkowników
- Realizacja:
 - MS Visio itp.
 - Power Point itp.
 - Html
 - szybkie programowanie (wizualne, w środowiskach IDE, RAD)

Prototypowanie – atrapy - przykład

Zalety i wady prototypów

Prototyp - typ	Zalety	Wady
Niskiej jakości	 Niskie koszty Możliwość tworzenie wielu wariantów i wybór najlepszego 	Ograniczona możliwość wykrycia błędówOgraniczenie odwzorowania nawigacji
Wysokiej jakości	W pełni interaktywnyWygląda jak produkt finalnyDobrze zdefiniowana nawigacja	Drogie w wykonaniuDłuższy czas realizacjiZmiany i modyfikacje są kosztowne

Prototypowanie – kompromisy

- Prototyp połączenie wielu aspektów -> kompromis
- Koszt vs. jakość
- Niska vs. wysoka dokładność
- Prototyp: szeroki (poziomy, duża liczba funkcji aplikacji) i głęboki (pionowy, dużo szczegółów)

Prototypowanie – przepływ nawigacji

Pokazuje dynamikę interfejsu

Źródło: M.Miłosz, Ergonomia systemów informatycznych. PL, Lublin, 2014.

Prototypowanie – scenorys (ang. *Storyboard*)

- Graficzny szkic nawigacji
- Scenariusz filmowy w postaci obrazkowej

Źródło: https://pl.pinterest.com/pin/139541288429661970/

Scenorys - zawartość

- Ekrany:
 - to nie jest jeszcze szczegółowy projekt interfejsu
 - uwzględnij ogólny układ, elementy nawigacyjne, podstawowe koncepcje
 - tylko istotne informacje, bez zbędnych szczegółów
- Sceny:
 - persony w ich kontekście fizycznym
 - pokazać sekwencję głównych nawigacji
- Choć mogą być atrakcyjne wizualnie, to nie są dziełami sztuki:
 - czarno-biały, ołówek
 - szybki
 - brak renderingów

Scenorys (1)

Szczególny przypadek diagramu nawigacji

Źródło: http://dreamerux.com

Scenorys (2)

Papierowy

Źródło: http://dreamerux.com

Scenorys (3)

Post-it ("żółte karteczki")

Źródło: http://dreamerux.com

Modelowanie formalne interfejsu

- Model struktury i dynamiki
- Metoda projektowania sterowanej modelami (ang. Model-Based UI Design) – tworzenie modeli i ich wzajemna transformacja
- Modele (tworzone kolejno):
 - abstrakcyjny model interfejsu (ang. Abstract UI Model)
 - konkretny model (ang. Concrete UI Model)
 - końcowy interfejs (ang. Final UI)

Modelowanie formalne interfejsu - modele

Zadanie i koncepcja Abstrakcyjny model interfejsu Konkretny model interfejsu Końcowy model interfejsu

Modelowanie formalne interfejsu – języki formalne

- UIML User-Interface Markup Language
- UsiXML User Interface eXtensible Markup Language
- XAML eXtensible Application Markup Language
- XUL eXtensible User-interface Language
- W praktyce rzadko stosowane ze względu na duży stopień komplikacji

Narzędzia wspomagające projektowanie interfejsu oprogramowania Politechniki Lubelskiej -

Narzędzia CAID – Computer Aided Interface Design

- Narzędzia wspomagające planowanie zadań
- Narzędzia wspomagające tworzenie prototypów/mockupów/scenorysów

Politechniki Lubelskiej ześć druga

Narzędzia wspomagające planowanie zadań

- Technika: drzewa zadań (ang. Concur Task Trees, CTT)
- Narzędzie: CCTE (ang. Concur Task Tree Environment)

Narzędzia wspomagające tworzenie prototypów

- Balsamiq Mockups (www.balsamiq.com)
- HotGloo (www.hotgloo.com)
- MockFlow (mockflow.com)
- Mocking Bird (gomockingbird.com/mockingbird)
- Moqups (moqups.com)
- Proto.io (http://proto.io/)
- MS Visio
- AXURE (axure.com)
- Visual Studio
- Justinmind
- itd.

Narzędzia wspomagające tworzenie prototypów - Balsamic

Źródło: https://balsamiq.com/

Narzędzia wspomagające tworzenie prototypów - MS Visio

Narzędzia wspomagające tworzenie prototypów - Justimind

Pytania? Program Dziękuję

POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI

INFORMATYKA

Materiały zostały opracowane w ramach projektu "Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga", umowa nr POWR.03.05.00-00-Z060/18-00 w ramach Programu Operacyjnego Wiedza Edukacja Rozwój 2014-2020 współfinansowanego ze środków Europejskiego Funduszu Społecznego

