Звіт

про виконання завдання з самостійної роботи з курсу «Теорія ймовірностей та математична статистика» тема «ДИСКРЕТНІ ВИПАДКОВІ ВЕЛИЧИНИ ТА ЇХ РОЗПОДІЛИ»

студентом Стовбою П.В (група КН-22) в 2023-2024 навчальному році за індивідуальним варіантом даних №21 (6)

Варіант 21-15=6

Завдання 1. Дано закони розподілу незалежних дискретних випадкових величин X та У:

X	1	2	3	4	5
P	a	a	5a	a	2a

Y	-7	-6	-5	-4
P	0,4	0,3	0,1	0,2

Знайти:

a) a;

б) закони розподілу випадкових величин 2X, X+Y, XY, X-Y.

Дані x_1 , x_2 , x_3 , x_4 , x_5 , та y_1 , y_2 , y_3 , y_4 задані в табл. 1.

Таблиця 1

№ варіанта	x_{I}	x_2	x_3	x_4	x_5	y_I	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄
6	1	2	3	4	5	-7	-6	-5	-4

Розв'язання

а) оскільки випадкові величини 1,2,3,4,5 утворюють повну групу, то сума їх ймовірностей дорівнює одиниці. Тому: a+a+5a+a+2a=1. 10a=1; Отже, **a = 0.1** б) Задля знаходження закону розподілу випадкової величини 2X треба помножити всі значення випадкової величини X на 2 (ймовірності цих величин залишаться ті ж самі). Отже, шуканий розподіл:

2X	2	4	6	8	10
P	0.1	0.1	0.5	0.1	0.2

Наступним кроком шукаємо закон розподілу X+Y.

Нагадаємо закони розподілу цих двох випадкових величин:

X	1	2	3	4	5
P	0.1	0.1	0.5	0.1	0.2

Y	-7	-6	-5	-4
P	0,4	0,3	0,1	0,2

Складемо всі можливі значення величини X + Y. До кожного можливого значення X додамо кожне можливе значення Y, а ймовірності просто перемножимо. Ймовірність цієї величини шукається так: якщо x1 = -4 рівна 0,1, а ймовірність величини y1 = 0 рівна 0,4, то ймовірність величини x1 + y1 рівна 0,1 * 0,4 = 0,04. Отримаємо таку таблицю (на перехресті стовпчика і рядка сума отримана в результаті додавання відповідного значення величини X та відповідного значення величини Y):

X	-7	-6	-5	-4
1	-6	-5	-4	-3
2	-5	-4	-3	-2
3	-4	-3	-2	-1
4	-3	-2	-1	0
5	-2	-1	0	1

Щоб знайти ймовірності випадкових величин, утворених при додаванні (X+У), треба просто перемножити їх ймовірності окремо. Отже, шуканий розподіл:

X+Y	-6	-5	-4	-3	-2	-1	0	1
P	0.04	0.07	0.24	0.22	0.18	0.17	0.04	0.04

Контроль: 0.04+0.07+0.24+0.22+0.18+0.17+0.04+0.04=1 Тепер знайдемо закон розподілу XУ.

Розв'язуємо аналогічно до попереднього рішення, але тепер ми не додаємо значення величини X до кожного можливого значення У, а множимо. Робимо табличку таку саму, як ми отримали для суми величин, тільки вже на перехресті стовпчика і рядка — добуток отриманий в результаті множення відповідного значення величини X на відповідне значення величини У.

Тепер шуканий розподіл такий (щоб знайти ймовірності випадкових величин, утворених при множенні , тобто ймовірність величини X*Y , треба просто перемножити їх ймовірності окремо

Отже, остаточно, маємо такий закон розподілу:

X	-7	-6	-5	-4
1	-7	-6	-5	-4
2	-14	-12	-10	-8
3	-21	-18	-15	-12
4	-28	-24	-20	-16
5	-35	-30	-25	-20

X*Y	-7	-6	-5	-4	-14	-12	-10	-8	-21	-18	-15
P	0,04	0,03	0,01	0,02	0,04	0,13	0,01	0,02	0,2	0,15	0,05
X*Y	-28	-24	-20	-16	-35	-30	-25				
P	0,04	0,03	0,05	0,02	0,08	0,06	0,02				

Контроль:

0,04+0,03+0,01+0,02+0,04+0,13+0,01+0,02+0,2+0,15+0,05+0,04+0,03+0,05+0,02+0,08+0,06+0,02=1

X	-7	-6	-5	-4
1	8	7	6	5
2	9	8	7	6
3	10	9	8	7
4	11	10	9	8
5	12	11	10	9

Тепер знайдемо закон розподілу X - Y. Будемо робити аналогічно до знаходження розподілу величини X + Y, але будемо віднімати X - Y.

X-Y	8	7	6	5	9	10	11	12
P	0,14	0,14	0,03	0,02	0,24	0,25	0,1	0,08

Контроль: 0,14+0,14+0,03+0,02+0,24+0,25+0,1+0,08=1

Висновок: Було закріплено складання законів розподілу різних величин.

Завдання 2. Для дискретної випадкової величини відомий ряд розподілу. Побудувати багатокутник розподілу та графік функції розподілу цієї випадкової величини.

X	-1	0	1	2	3
p_i	0,1	0,4	0,2	0,1	0,2

Побудуємо багатокутник розподілу:

Слід зауважити, що точки з'єднані відрізками прямих для наочності.

Тепер побудуємо функцію розподілу.

Функція розподілу: F(x) = p(X < x), тобто ймовірність того, що випадкова величина у результаті випробування прийме значення, менше, ніж x.

Інтегральна функція розподілу має вигляд:

$$(x) = \begin{cases} 0, & x \le -1 \\ 0,2, & -1 < x \le 0 \\ 0,4, & 0 < x \le 1 \\ 0,4, & 1 < x \le 2 \\ 1, & x > 1 \end{cases}$$

Висновок: Виконавши завдання ми навчилися будувати багатокутник та функцію розподілу.