Recommendation system for scientific tools and workflows

Master thesis

Anup Kumar

Adviser: Dr. Björn Grüning

Recommendation system

1. Find similar scientific tools

2. Predict tools for workflows

1. Find similar scientific tools

- Compute similarity among tools
- Recommend similar tools
- Replace a tool by its similar tool
- Provide more options for data processing

Approach

- 1. Collect tools metadata ($\sim 1,050$ tools)
- 2. Clean metadata stemming and stopwords
- 3. Learn vectors for tools
- 4. Compute similarity among vectors
- 5. Combine similarity matrices

Tool, documents and tokens

Paragraph (document) vector

- Neural network approach*
- A dense vector for each paragraph
- Similar tools have similar vectors
- Encode variable length paragraphs
- Each tool has three paragraphs (documents)

Similarity scores

- Jaccard index (input and output file types)
- Cosine angle (name and description and help text)
- Compute similarity matrix
- Three similarity matrices
- Simple average the matrices
- Better learn weights

$$j=rac{A\cap B}{A\cup B}$$

$$x \cdot y = |x| imes |y| imes \cos heta$$

Optimisation

- Gradient descent
- Learn weights on similarity scores

$$Error(w^k) = rac{1}{N} imes \sum_{j=1}^N [w^k imes SM^k - SM_{ideal})^2]_j$$

$$Gradient(w^k) = rac{\partial Error}{\partial w^k} = rac{2}{N} imes ((w^k imes SM^k - SM_{ideal}) \cdot SM^k)$$

$$w^k = w^k - \eta imes Gradient(w^k)$$

• Obtain a weighted average similarity matrix

Similarity matrices

Distribution of weights

Summary and conclusion

- Collect and clean tools metadata
- Learn vector for each tool
- Compute and combine similarity matrices
- Less data for name and description attribute
- No true similarity
- Exclude low similarity values
- Run analysis on larger set of tools
- Compute similar tools using workflows

2. Predict tools in workflows

- Tough to assemble workflows
- Tools compatibility issues
- Loss of computation time
- Thousands of tools

Workflows

- Workflow a directed acyclic graph
- Paths in a workflow

- 900,000 paths
- Maximum 25 tools in a path

Higher order dependency

- Not dependent only on immediate parent
- Dependent on all previous tools

Workflow preprocessing

No decomposition

Workflow preprocessing

Keep first tool fixed

- Classifier to learn on sequential data
- Multilabel, multiclass classification
- Recurrent neural network Gated recurrent units
- Learn long-range dependencies
- Two hidden layers, one embedding layer and one output layer
- Cross-entropy loss
- Root mean square propagation (rmsprop) optimiser
- Sigmoid output activation
- 80% training paths, 20% test paths

Embedding and label vectors

Precision and prediction

- Absolute precision
- Compatible precision

Precision and loss for no decomposition of paths

Precision and loss for decomposition of train and test paths

Summary and conclusion

- Workflows are directed acyclic graphs (193, 000 workflows)
- Extract paths from workflows
- Learn long-range dependencies
- Recurrent neural network (gated recurrent units)
- Multilabel, multiclass classification
- Absolute precision ~90%, compatible precision ~99%
- More workflows, better results

Future work

- Restore original distribution
- Decay prediction over time
- Integrate into Galaxy

Thank you for your attention Questions?

Supplementary material

Stemming and stopwords

- Stemming converge all forms of a word into one basic form
- "Operate, operating, operates, operation, operative, operatives, operational" into "oper" [1]
- Stopwords "a, about, above, would, could ..." [2]

^{1. &}lt;a href="https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html">https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

https://www.ranks.nl/stopwords

Bestmatch25 (bm25)

- Token frequency (tf)
- Document and inverted document frequency (idf)

$$idf = \log rac{N}{df}$$
 $lpha = (1-b) + rac{b \cdot |D|}{|D|_{avg}}$

$$tf^* = tf \cdot rac{k+1}{k \cdot lpha + tf}$$

$$bm25 = tf^* \cdot idf$$

Bestmatch25 (bm25) scores

Tools/Tokens	Regress	Linear	Gap	Mapper	Perform
LinearRegression	5.22	4.1	0.0	0.0	3.84
LogisticRegression	3.54	0.0	0.0	0.0	2.61
Tophat2	0.0	0.0	1.47	1.47	0.0
Hisat	0.0	0.0	0.0	0.0	0.0

Latent Semantic Analysis

- Document-token matrix (*X*)
- Singular value decomposition

$$egin{aligned} X_{n imes m} &= U_{n imes n} \cdot S_{n imes m} \cdot V_{m imes m}^T \ U^T \cdot U &= I_{n imes n} \ V^T \cdot V &= I_{m imes m} \ X_{n imes m} &= U_k \cdot S_k \cdot V_k^T \end{aligned}$$

Paragraph vectors

- Softmax classifier
- Backpropagation
- Stochastic gradient descent
- Gensim*

$$rac{1}{T} \cdot \sum_{t=k}^{T-k} \log p(w_t|w_{t-k},\dots,w_{t+k})$$

Document-token and paragraph matrices

Optimisation

- Gradient descent
- Mean squared error
- Initial learning rate 0.05
- Decay learning rate
- Nesterov's accelerated gradient

$$update_{t+1} = \gamma \cdot update_t - \eta \cdot Gradient(w_t + \gamma \cdot update_t)$$

$$w_{t+1} = w_t + update_{t+1}$$

Optimisation

1	0.34	0.65	0.44
0.34	1		
0.65		1	
0.44			1

1	0.76	0.63	0.85
0.76	1		***
0.63		1	
0.85		•••	1

1	0.06	0.1	0.17
0.06	1		•••
0.1		1	
0.17		•••	1

Visualisers

- Paragraph vectors
- Latent Semantic Analysis (5% of full-rank)

$$h_t = (1-z_t) imes h_{t-1} + z_t imes h_t^{'}$$

$$z_t = \sigma(W_z imes x_t + U_z imes h_{t-1})$$

$$r_t = \sigma(W_r imes x_t + U_r imes h_{t-1})$$

$$h_t^{'} = anh(W imes x_t + U imes (r_t \odot h_{t-1}))$$

$$p(x_T|x_1,x_2,\ldots,x_{T-1})$$

- One embedding layer, two hidden layer and one output layer
- Recurrent layer activation exponential linear unit

$$f(x) = egin{cases} x, & ext{if } x > 0 \ lpha imes (e^x - 1), & ext{if } x \leq 0, lpha > 0 \end{cases}$$

• Output activation is sigmoid $f(x) = \frac{1}{1 + e^{-x}}$

• Optimiser - Root mean square propagation (rmsprop)

$$MeanSquare(w,t) = 0.9 imes MeanSquare(w,t-1) + 0.1 imes (rac{\partial E}{\partial w}(t))^2$$

$$w_{t+1} = w_t - rac{\eta}{\sqrt{MeanSquare(w,t)+\epsilon}} imes rac{\partial E}{\partial w}(t)$$

Binary cross-entropy loss

$$loss_{mean} = -rac{1}{N}(\sum_{i=1}^{N}y_i imes log(p_i) + (1-y_i) imes log(1-p_i))$$

Precision and loss for various optimisers

Precision and loss using neural network with dense layers

Precision and loss using less data

