

Disseny i implementació d'un amplificador d'àudio de tipus D modulat per una FPGA

DEFENSA DEL TFG

Autor: Guillem Ropero Serrano

Director: Jordi Cosp Vilella

Convocatòria: Gener 2025

Fig. 1.- Diagrama de blocs d'un amplificador digital de classe D.

Eff. Energ. $\approx 90-80 \%$

TAS2320	93,2-80 %
MAX98365	92,7-84,8~%

Taula 1.- Taula de rendiment energètics d'amplificadors d'àudio de tipus D comercials.

Fig. 2.- Estratègies de modulació: PWM (dreta) [1], PDM (esquerra) [2].

Fig. 1.- Diagrama de blocs d'un amplificador digital de classe D.

Objectiu 1

Implementar Receptor I2S Objectiu 2

D & I Filtre Anti-Aliasing Objectiu 3

 $\begin{array}{c} \text{D \& I} \\ \text{modulador } \Sigma \Delta \end{array}$

Objectiu 4

D & I Filtre Delmat

Proposta de Resolució

Diagrama de blocs del sistema

Fig. 2.- Diagrama de blocs del sistema implementat.

Objectius:

- Lectura d'arxius .wav
- Transmetre mostres d'àudio en protocol I2S
- Freqüència de mostreig = 44,1 kHz
- Format Philips estàndard

Fig. 3.- Frame del bus I2S en mode d'operació de l'estàndard Philips. [3]

Fig. 3.- Fotografía de la implementació de la font d'àudio.

Què s'ha utilitzat?

■ Targeta ESP32

Fig. 4.- Fotografía d'una targeta ESP32 WROOM.
[4]

Què s'ha utilitzat?

 Mòdul adaptador targeta microSD

Fig. 5.- Fotografía del mòdul adaptador d'una targeta microSD. [4]

Què s'ha utilitzat?

■ Targeta microSD

Fig. 6.- Fotografía de la targeta microSD utilitzada per emmagatzemar l'arxiu .wav . [5]

Què s'ha utilitzat?

Mòdulalimentació 5V i3,3V

Fig. 7.- Fotografía d'un mòdul d'alimentació 5V i de 3,3V. [4]

Funcionalitats del codi

- Lectura de l'arxiu emmagatzemat a la targeta microSD
- Transmetre les mostres d'àudio pel bus I2S

Fig. 8.- Diagrama de flux del codi implementat pel funcionament de la font d'àudio.

Diagrama de blocs del sistema

Fig. 2.- Diagrama de blocs del sistema implementat.

Objectius:

- Lectura bus I2S en format Philips estàndard
- Capturar mostres d'àudio enviades pel bus I2S
- Amplada mostres d'àudio de 16 bits
 - Sortida àudio mono

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Fig. 10.- Diagrama de blocs de l'entitat Anti-Metastability process.

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Fig. 11.- Diagrama de blocs de l'entitat Rising edge Detection.

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Fig. 12.- Diagrama de blocs de l'entitat WS Level Detection.

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Fig. 9.- Diagrama de blocs de l'entitat dissenyada en VHDL.

Diagrama de blocs del sistema

Fig. 2.- Diagrama de blocs del sistema implementat.

Objectius:

- Sobremostrejar el senyal d'entrada a x32 de la freqüència de mostreig i interpolar.
- Atenuar components
 harmònics fora de l'espectre
 d'interés (20 a 20000 Hz).

Fig. 13.- Procés d'interpolació d'un senyal en temps discret. [6]

L'etapa de filtrat es divideix en dues etapes:

- Filtre de compensació
- Filtre CIC

Filtre de compensació

Factor d'interpolació	2
Freqüència de pas	20 kHz
Freqüència de tall	$22,05~\mathrm{kHz}$
Atenuació a la banda de tall	80 dB
Freqüència de mostreig	44,1 kHz

Taula 2.- Especificacions del filtre de compensació de l'etapa d'Interpolació.

Filtre de compensació

Fig. 14.- Diagrama de Bode de l'etapa de filtrat i compensació de la resposta en freqüència de l'interpolador CIC.

Filtre de compensació Implementació a la FPGA:

■ Mòdul IP FIR Compiler

Taula 3.- Configuracions dels paràmetres del mòdul IP FIR Compiler.

Nom del Paràmetre	Valor
Tipus de Filtre	Interpolació
Taxa d'Interpolació	2
Freqüència de mostreig d'entrada	44,1 kHz
Freqüència del rellotge	100 MHz
Tipus de coeficients	Amb signe
Amplada de coeficients	153
Tipus de dades d'entrada	Amb signe
Amplada de les dades d'entrada	16
Mode d'arrodoniment a la sortida	Truncar els LSBs
Amplada de dades a la sortida	16

Filtre de Mitjana Mòbil:
$$y[n] = \frac{\sum_{k=0}^{M-1} x[n-k]}{M}$$
 Filtre CIC:
$$y[n] = \frac{y[n-1] + x[n] - x[n-M]}{M}$$

Fig. 15.- Estructura d'un filtre CIC Interpolador. [7]

Factor d'interpolació (R)	16
Delay diferencial (M)	1
Ordre del filtre (N)	5

Taula 4.- Especificacions del filtre CIC.

Fig. 16.- Diagrama de Bode de l'etapa de l'interpolador CIC.

Filtre CIC Implementació a la FPGA:

■ Mòdul IP CIC Compiler

Nom del Paràmetre	Valor
Tipus de Filtre	Interpolació
Taxa d'Interpolació	16
Freqüència de mostreig d'entrada	88,2 kHz
Freqüència del rellotge	100 MHz
Amplada de les dades d'entrada	16
Quantificació	Truncament
Amplada de dades a la sortida	16

Taula 5.- Configuracions dels paràmetres del mòdul IP CIC Compiler.

Resultats Etapa de filtrat

Oscil·lació máxima en la banda de pas	1,49 dB
Freqüència de tall	20460 Hz
Atenuació en la banda de tall	-53 dB

Taula 6.- Especificacions de l'etapa de filtrat anti-aliasing.

Resultats Etapa de filtrat

Fig. 17.- Diagrama de Bode de l'etapa de filtrat anti-aliasing.

Diagrama de blocs del sistema

Fig. 2.- Diagrama de blocs del sistema implementat.

Objectius:

- Desplaçar soroll produit pel procés de quantificació a freqüències > freqüència de mostreig.
- Atenuar components harmònics del senyal fora de la banda de mostreig.

Fig. 18.- Diagrama de blocs del modulador $\Sigma\Delta$ de segon ordre.

$$a_1 = a_2 = 0.5$$
 $H(z) = \frac{z^{-1}}{1 - z^{-1}}$

$$STF(z) = \frac{z^{-2}}{3z^{-2} - 6z^{-1} + 4}$$

$$NTF(z) = \frac{(1 - z^{-1})^2}{3z^{-2} - 6z^{-1} + 4}$$

Fig. 19.- Cercle unitari en el pla polar de STF i NTF.

Fig. 20.- Diagrama de Bode de la funció de transferència del senyal (STF).

Fig. 21.- Diagrama de Bode de la funció de transferència del soroll (NTF).

Disseny del modulador

Taula 7.- Taula de les mètriques de rendiment calculades pel modulador $\Sigma \Delta$.

SQNR	70,1 dB
DR	112,28 dB
OSR	32
Freqüència de mostreig	1,41 MHz
Freqüència de tall de la STF	183,6 kHz
Freqüència de tall de la NTF	77,95 kHz
Freqüència de pic de la STF i NTF	117,46 kHz

Implementació a la FPGA

Fig. 22.- Cronograma del banc de proves del modulador $\Sigma\Delta$.

Implementació a la FPGA

Fig. 23.- Cronograma del banc de proves del modulador $\Sigma\Delta$.

Projecte sintetitzat a la FPGA

Taula 8.- Utilització de recursos de la FPGA en la implementació final del projecte.

Recurs	Nombre
LUTs	1170
Registres	891
Slices	247
Muxes	46
DSPs	4

Resultat final

Conclusions

Objectiu 1

Implementar Receptor I2S Objectiu 2

D & I Filtre Anti-Aliasing Objectiu 3

 $\begin{array}{c} \text{D \& I} \\ \text{modulador } \Sigma \Delta \end{array}$

Objectiu 4

D & I Filtre
Delmat

Futures línies de treball

- Disseny & Implementació d'una etapa de delmat.
- Disseny d'un modulador $\Sigma\Delta$ de major ordre.
- Disseny & Implementació d'una etapa d'amplificació amb transistors GaN FET.

Bibliografía

- [1] E. Gaalaas, "Class D Audio amplifiers: What, why, and how", Analog Devices. https://www.analog.com/en/resources/analog-dialogue/articles/class-d-audio-amplifiers.html
- [2] Wikipedia contributors, "Pulse-density modulation", Wikipedia, Feb. 14, 2024. https://en.wikipedia.org/wiki/Pulse-density_modulation
- [3] E. Systems, "Inter-ic sound (i2s)- esp32- esp-idf programming guide v5.4 documentation." https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals-/i2s.html, accedit el Gener 2025.
- [4] Diotronic, "Diotronic S.A. Componentes electrònicos" https://diotronic.com/, accedit el Gener 2025.

Bibliografía

- [5] eBay, "8G SanDisk Micro SD TF Memory Card 8GB Flash Memory Card Mini SDHC SDXC Adapter" https://www.ebay.ca/itm/8G-SanDisk-Micro-SD-TF-Memory-Card-8GB-Flash-Memory-Card-Mini-SDHC-SDXC-Adapter/224081107877, accedit el Gener 2025.
- [6] F. Rubén, I. A. Badillo, G. F. Torres, and J. S. García, "Simplification to the fast FIR-FFT filtering technique in the DSP interpolation process for band-limited signals" Revista Facultad de Ingeniería Universidad de Antioquia, no. 68, pp. 9–19, Oct. 2013, doi: https://doi.org/10.17533/udea.redin.17036.
- [7] R. Lyons, "A beginner's guide to cascaded integrator-comb (cic) filters." https://www.dsprelated.com/showarticle/1337.php, accedit el Gener 2025.

Gràcies per la vostra atenció