(12)

EUROPÄISCHE PATENTANMELDUNG

- (1) Anmeldenummer: 91115834.3
- (2) Anmeldetag: 18.09.91

(ii) Int. CI.⁵. C07D 231/14, C07D 231/16, C07D 231/56, C07D 233/90, C07D 263/34, C07D 27/34, C07D 307/68, C07D 333/38, C07D 409/12, A01N 43/50, A01N 43/76

- Priorität: 20.09.90 DE 4029753
- Veröffentlichungstag der Anmeldung: 29.04.92 Patentblatt 92/18
- Benannte Vertragsstaaten:
 AT BE CH DE ES FR GB IT LI NL
- Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38
 W-6700 Ludwigshafen(DE)
- © Erfinder: Heistracher, Elisabeth, Dr. Lefinder: Heistracher, Elisabeth, Dr. Undwigshalen(DE) Erfinder: Elscher, Klaus, Dr. Gabelsbergerstrasse 7 W-972 Deperted (PS) Erfinder: Mayor, Horst, Dr. Fastelwisse 19 W-9700 Ludwigshalen(DE) W-9700 Ludwigshalen(DE) Erfinder: Mayor, Horst, Dr. Fastelwisse 19 W-9700 Ludwigshalen(DE) Erfinder: Mayor, Horst, Dr. Fastelwisse 19 W-9700 Ludwigshalen(DE) Erfinder: Mayor, Horst, Dr. Fastelwisse 19 W-9700 Ludwigshalen(DE) Erfinder: Mayor, Dr. Fastel
- W-8902 Sandhausen(DE)
 Efinder: Hamprecht, Gerhard, Dr.
 Rote-Turm-Strasse 28
 W-8940 Weinheim(DE)
 Efinder: Ditrich, Klaus, Dr.
 Paray-ie-Monial-Strasse 12
 W-6702 Bad Duerkheim(DE)
 Efinder: Kuekenhoehner, Thomas, Dr.
 Forststrasse 104
 W-6737 Boehl-Iggelheim(DE)
 Efinder: Gerber, Matthias, Dr.
 Ritterstrasse 3
 W-6704 Mutterstadt(DE)
 Efinder: Walter, Helmut, Dr.
 Gruenstadter Strasse 82

Erfinder: Westphalen, Karl-Otto, Dr.

Kressenwiesenweg 13

W-6719 Obrighelm(DE)

Mausbergweg 58

W-6720 Speyer(DE)

Sulfonamide.

(57) Sulfonamide der Formel I

1

in der die Substituenten folgende Bedeutung haben:

A ein gegebenenfalls substituierter aromatischer oder heteroaromatischer Rest;

W Sauerstoff oder Schwefel;

B ein gegebenenfalls substituierter Furyl-, Thienyl-, Pyrrolyl-, Oxazolyl-, Isothiazolyl-, Imidazolyl-,

Pyrazolyl-, Thiadiazolyl-, Oxadiazolyl- oder Triazolylrest sowie deren umweltverträglichen Salze; Verfahren zu ihrer Herstellung sowie ihre herbizide Verwendung.

Die vorliegende Erfindung betrifft Sulfonamide der allgemeinen Formel I

in der die Substituenten folgende Bedeutung haben:

10 A

75
$$R^2$$
 R^5 R^6 R^5 R^6 R^5 R^6 R^7 R^7 R^7 R^7 R^8 R

w

35

Sauerstoff, Schwefel;

- 40 2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;
 - 2-, 3-, 4- oder 5-Pyrrolyl, wobei diese Reste drei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;
 - 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R⁸;
- 45 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;
 - 1,3,4-Thiadiazol-2-yl, -5-yl, 1,3.4-Oxadiazol-2-yl, -5-yl,
 - 1,2,4-Thiadiazol-3-yl, -5-yl, 1,2.4-Oxadiazol-3-yl, -5-yl,
 - 1,2,3-Thiadiazol-4-yl, -5-yl, 1,2,3-Oxadiazol-4-yl, -5-yl,
- 50 1,2,5-Thiadiazol-3-yl, -4-yl, 1,2.5-Oxadiazol-3-yl, -4-yl,
 - wobei diese Reste einen Rest R^e tragen; 1,2,4-Triazot-3-yt, substituiert durch einen C-gebundenen Rest R¹⁰ und einen N-1 gebundenen Rest R¹¹; 1,2,4-Triazot-5-yt, 1,2,3-Triazot-4-yt, -5-yt, jeweils substituiert durch einen C-gebundenen Rest R⁸ und einen N-1 gebundenen Rest R⁹;

Sauerstoff, Schwefel, NR1;

Wasserstoff;

C1-C6-Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatome und/oder Phenyl;

C2-C4-Alkenyl;

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen kann: C.-C.-Alkyl, C.-C.-Halogenalkoy, C.-C.-Alkyl, C.-C.-Halogenalkoy, C.-C.-Alkyl, C.-C.-Balogenalkoy, C.-C.-Alkyl, C.-C.-Balogenalkoy, C.-C.-Alkyl, C.-C.-Balogenalkoy, C.-C.-Alkyl, C.-C.-Balogenalkoy, C.-C.-Alkyl, C.-C.-Balogenalkoy, C.-C.-Balogenalkoy,

R² Halogen;

Cyano; Thiocyano;

C, -Cç.-Alkyl, welches durch ein bis f\(\tilde{t}\) halogenatorne und\(\tilde{c}\) der einen der lolgenden Reste subst\(\tilde{t}\) etan: c -Cq.-Alkysylhio, C+Cq.-Halogenalkythio, Phenyl, Phenoxy oder Phenylhio, wobei die Phenylieste jeweils durch ein bis f\(\tilde{t}\) full Halogenatorne und\(\tilde{c}\) der id bis f\(\tilde{c}\) full Halogenatorne und\(\tilde{c}\) der id der folgenden Reste substitulent sein k\(\tilde{c}\) nen C+-Alkyl, C; -Cq.-Halogenalkyl, C; -Cq.-Alkyxy, C; -Cq.-Halogenalkyl, C; -Cq.-Alkyrkhio;

C₂-C₂-Cycloalkyl, C₃-C₆-Cycloalkovy, C₃-C₆-Cycloalkyllhio, C₃-C₄-Cycloalkenylloy, C J5 s-C₂-Cycloalkenyllhio, wobel diese cyclischen Gruppen druch ein bis Inti Halogenalkyl, C₁-C₄-Alkoy, C

Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromatischen Gruppen durch ein bis (fünl Halogenatome undfoder ein bis dreit der folgenden Reste substituiert sein können: (zano, Nitro, G.-Cu-Alkylt, C.-Cu-Alkylthio, G.-Cu-Alkylthio, G.-Cu-Alkylthio, G.-Cu-Alkylthio;

gesättigter, einfach oder zwelfach ungesättigter S-7-gliedriger Heterocyclus, enhaltend ein bis zwei Sickstoff-, sauersoff- undorder Schwelefachen, welcher gegebenenfalls bis zu zwei der folgenden Substituenten tragen kann: Halogen, Cyrano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halo

25 C1-C4-Alkoxy oder C1-C4-Alkylthio,

C2-C6-Alkenyl oder C2-C6-Alkenyloxy oder C2-C6-Alkenylthio,

C₂-C₆-Alkinyl, C₂-C₆-Alkinyloxy oder C₂-C₅-Alkinylthio,

wobei die genannten Alkoxy. Alkylthio, Alkenyl-, Alkinyl-, Alkenyloxy(thio)-, Alkinyloxy(thio)reste durch ein bis fünf Halogenatomo undioder eine der folgenden Gruppen substituiert sein können: Cr-Ca-Alkoxy, Cr-Ca-30 Halogenatikoxy, Cr-Ca-Kilythibi, Cr-C-Halogenatikythibi, Phenyl, Phenoxy, Phenylthibi, Benzylvick, Benzyl-

COR12: COQR13: SO2NR15R16: SO2OR17: OSO2R18: S(O), R19:

einen der Reste Rf; COQR'3; SO₂NR¹⁵R¹⁶; SO₂OR¹⁷; OSO₂R¹⁸; S(O)_aR¹⁹;

R⁴

Wasserstolf; Halogen; Cyano;

 C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkyl substituter durch ein bis fünf Halogenatome; C_1 - C_4 -Alkoxy; C_1 - C_4 -Halogenalkoxy; C_1 - C_4 -Alkylthio; C_1 - C_4 -Halogenalkylthio;

40 Wasserstoff: Nitro oder einen der Reste R2:

Wasserstoff: Halogen: Cvano:

C₁-C₄-Alkyl, C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, OH, SH, Cyano;

45 C.-C.-Alkoxy, C.-C.-Alkyithio, C.-C.-Halogenalkoxy, C.-C.-Halogenalkyithio, wobei die genannten Alkoxy-(thio): bzw. Halogenalkoxy(thio)reste durch folgende Gruppen substituiert sein k\u00e4nnen: Ci-Ct.-Alkoxy, C1-C.-Halogenalkoxy, C1-Ct.-Alkyithio, C1-Ct.-Halogenalkyithio; 127

Nitro; oder einen der Reste R2;

50 R⁸

Wasserstoff: Nitro; einen der Roste R², oder zwei vicinale Reste R² bilden gemeinsam eine C₃-Kette oder eine C₃-Kette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₃-C₄-Alkylminoeinheit ersotzt sein kann;

Sa Wasserstoff; C, -C_a-Alkyt, welches durch ein bis fünf Halogenatorne und/oder einen der folgenden Reste substitutert sein kann: C₁-C_a-Alkoyx, O₁-C_a-Halogenathyo, C, -C_a-Alkytino, C, -C_a-Halogenathytino, Phony, Phenoxy, Phenyttino, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatorne und/oder ein bis drei der folgenden Reste substituter stem können: Cya-Alky, C, -C_a-Allogenathyl, C, -C_a-Allogenathyl,

C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

C3-C6-Cycloalkyl, C5-C6-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein kann: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C:-C4-Alkylthio, C:-C4-Halogenalkylthio;

C2-C6-Alkenyl, C2-C6-Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio;

COR21-

R¹⁰

Phenyl, Benzyl, Phenoxy, Benzyloxy, Phenylthio, Benzylthio, wobei die genannten Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

R"

Wasserstoff; Phenyl, Benzyl, wobei die genannten aromatischen Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substitulert sein können: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio; **P12** 20

C1-C4-Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy;

C3-C6-Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor;

Ca-Ca-Alkenvi:

Sauerstoff oder NR14:

D13

C₁-C₆-Alkyl, C₁-C₆-Alkyl, substituiert durch ein bis drei der folgenden Reste: Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C1-C4-Halogenalkoxy, C--C4-Alkoxy-C1-C2-alkoxy, C3-C5-Cycloalkyl und/oder Phenyl;

30 Ca-Ce-Cycloalkyl, Ca-Ce-Cycloalkyl, substituiert durch ein bis drei C1-C4-Alkylgruppen;

Ca-Ca-Alkenyl; Ca-Ca-Alkinyl;

Phenyl ; Phenyl substituiert durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

OR20; ein Rest R13 oder gemeinsam mit einem welteren Rest R15 eine C4-C5-Alkylenkette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C1-C4-Alkyliminogruppe ersetzt sein kann; R15

C1-C4-Alkyl; C3-C4-Alkenyl; C3-C4-Alkinyl; Cyclopropylmethyl; C3-C4-Cycloalkyl;

Wasserstoff; C1-C4-Alkyl; C3-C4-Alkenyl; oder gemeinsam mit R15 eine C4-C6-Alkylenkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann;

C1-C4-Alkyl; C1-C4-Halogenalkyl; B18 45

C1-C4-Alkyl; N,N-Dimethylamino;

C1-C4-Alkvi; C1-C4-Halogenalkvi; C2-C4-Alkoxvalkvi; C3-C4-Alkenyi;

C3-C4-Alkinyl; C3-C4-Halogenalkenyl; Phenyl; Phenyl, substituiert durch Fluor, Chlor, Brom, Methyl oder 50 Methoxy:

n 1 oder 2:

P20

Wasserstoff oder C₁-C₄-AlkvI;

ein Rest R¹²; Phenyl, Benzyl, wobei diese aromatischen Gruppen durch ein bis fünf Halogenatome und/oder

ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio; sowie deren unweltverträglichen Salze.

Weiterhin betrifft die Erfindung Verfahren zur Herstellung der neuen Sulfonamide sowie herbizide und bioregulatorisch wirksame Mittel, enthaltend die Verbindungen I und deren Verwendung zur Bekämpfung unerwinschten Pflanzemuckses.

Es ist bekannt, daß bestimmte sulfonylierte 1-Cerbamoyl-2-pyrazoline herbizide und/oder wachstumsregulatorische Eigenschaften besitzen (EP-A-269 141). Deswelteren zeigen einige sulfonylierte bioder frürcvlische Carbonsäureamide herbizide und wachstumsregulatorische Advilitäten (EP-A-244 168).

Der Erfindung lag die Aufgabe zugrunde, Sulfonamide mit guten herbiziden und/oder bioregulatorisch wirksamen Eigenschaften zu finden.

Entsprechend dieser Aufgabe wurden die eingangs definierten Sufonamide I und Verlahren zu deren Herstellung gelunden, Weiternin bertrift die Erfindung Herstlöde und Mittel zur Bekämpfung des Pflanzenwuchses, die die neuen Verbindungen I enthalten, sowie ein Verfahren zur Beeinflussung und Bekämpfung von Pflanzenwuchs mit diesen Verbindungen.

Die Verbindungen der Formet I können ein oder mehrere Chiralitätszentren enthalten und liegen dann als Diastereomerengemische vor. Die Erfindung umfaßt sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemischen.

Die Verbindungen der Formet I können Salze bilden, bei denen der Wasserstoff der -SO₂-NH-Gruppe durch ein, für die Landwirtschaft, geeignetes Kation ersetzt wird. Diese Salze sind im allgemeinen Metall-, insbesondere Alkail-, Erdalkail-, gegebenenfalls alkylierte Ammonium- oder organische Aminsalze. Sie werden vorzugsweise in inerten Lösungsmitteln, wie z.B. Wasser, Methanol oder Aceton bei Temperaturen von 0-100°C hergestellt. Geeignete Bassen zur Herstellung der erfindungsgemäßen Salze sind beispielsweise Alkalicarbonats, wie Kallumcarbonat, Alkail- und Erdalkalihydroxide, Alkail- und Erdalkalialkoholate, ammoniak oder Ethanolamin.

In den oben genannten Definitionen bedeutet der Ausdruck "Alkyl" jeweils geradkettiges oder verzweigtes Alkyl.

Ebenso bedeuten "Alkenyl" bzw. "Alkinyl" gerad- oder verzweigtkettiges Alkenyl bzw. Alkinyl.

Der Ausdruck "Halogen" bedeutet Fluor. Chlor. Brom oder Jod.

Bevorzugt von den Verbindungen der allgemeinen Formel I sind solche, worin

ein Rest der Formel (A1), (A2), (A7), (A8), (A9)

W Sauerstoff

×

30

Schwefel

2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, wobei diese genannten Reste zwei Reste R⁸ tragen:

2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R³ und einen N-gebundenen Rest R³ tragen; pt

Wasserstoff bedeutet, sowie deren umweltverträgliche Salze.

Besonders bevorzugt von der Verbindungen der allgemeinen Formel I sind solche, worin

einen Rest der Formel (A1)

B 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R^g und einen Ngebundenen Rest R^g tragen; bedeutet, sowie deren umweltverträglichen Salze.

Die Verbindungen der Formel I sind auf vielfältige Weise analog zu bekannten Umsetzungsmethoden erhältlich. Exemplarisch seien sieben Verfahren (A bis G) im folgenden erläutert.

Verfahren A

Man erhält Verbindungen der Formel I mit W = 0, in an sich bekannter Art und Weise (M.L. Crossley, E.H. Northey, M.E. Hultquist, J. Am. Chem. Soc. 61, 2950-2955, (1939)) durch Umsetzung eines entsprechenden Sulfonamids II in einem inerten organischen Lösungsmittel in Gegenwart einer Base mit einem Säurehalogenid der Formel III gemäß dem nachfolgenden Schema:

$$A-SO_2-NH_2 + Hal Base A-SO_2-N B$$
(II)

Hal in Formel III bedeutet dabei Chlor oder Brom.

Zweckmäßigerweise verwendet man für diese Umsatzungen Lösungsmittel, wie Halogenkohlenwasserstoffe, z.B. Tetrachlormethan, Chloroform, Methylenchiorid, Dichlorethan, Chiorbenzol, 1,2-Dichlortenzol,
10 Ether z.B. Disthylether, Methyl-tent-butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan; Ketone z.B. Aceton, Ethylmethylketon, Cyclohexanon; dipolare aprotische Lösungsmittel z.B.
Acetonitril, N-Methylpyrrolidon; Aromaten z.B. Benzol, Toluol, Xylol, Pyridin, Chinolin oder entsprechende
Gemische.

Die Umsetzung kann bei Temperaturen von 0°C bis zur Rückflußtemperatur des jeweiligen Lösungsmit-15 tels bzw. -gemisches durchgeführt werden.

Üblicherweise setzt man die Ausgangsstoffe II und III im stöchiometrischen Verhältnis ein, jedoch kann 25 ein Überschuß der einen oder anderen Komponente vorteilhaft sein.

Das molare Verhältnis von Sulfonamid II zu Base beträgt im allgemeinen 1:1 bis 1:3. Dis Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Besonders bevorzugt verwendet man inerte aprotische Solventien wie Methylenchlorid, Aceton, Toluol unter Verwendung von Natriumhydrid, Natriumcarbonat, Kaliumcarbonat als Basen.

Verfahren B

Man erhält Verbindungen der Formel I, mit W = Q, in an sich bekannter Weise (J.T. Drummond, G. Johnson, Tetrahedron Lett. 29, 1653-1656 (1988)) durch Umsetzung einer Verbindung der Formel IV in Gegenwart von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumlodid, Dicyclohasylcarbodilmid oder 1,1-Carbonyldiimidazol, und gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel II

Zweckmäßigerweise wird die "aktivierte" Carbonsäure direkt ohne Zwischenisollerung gegebenenfalls in Gegenwart einer Base mit der Komponente II umgesetzt.

Die Reaktionen werden zweckmäßigerweise in Lösungsmitteln, wie Haldgenkohlenwasserstoffe z.B. Chloroform, Methylenchlorid, Dichlorethan, Chlorbenzol, 1,2-Dichlorbenzol; Ether, z.B. Diethylether, Methyltert-butylether, Dimethoxyethan, Diethylengykoldimethylether, Tetrahydrofuran, Dioxan; dipolaren aprotischen Lösungsmitteln z.B. Acetonitril; Aromaten, z.B. Benzol, Toluol, Xylol oder entsprechenden Gemischen durchaelührt.

Die Umsetzungen können bei Temperaturen von -30°C bis zur Rückflußtemperatur des jeweiligen 55 Lösungsmittels bzw. -gemisches durchgeführt werden.

Als Basen werden beispielsweise organische Stickstoffbasen, wie Pyridin, 4-Dimethylaminopyridin, Chydin, Triethylamin, N-Ethyl-N-Milisporpolylamin, Diazabicycloundecen (DBU) etc. sowie Hydroxide, Hydride, Alkovide, Carbonate und Hydrogencarbonate von Alkal-und Erdalkalimetallikationer, insbesondere

40

Natriumhydroxid, Kaliumhydroxid, Natriumhydrid, Kaliumhydrid, Calclumhydrid, Natriummethanolat, Natriumethanolat, Natriumethanolat, Kaliumhydroanearbonat, Natriumethonat, Kaliumhydroanearbonat, Natriumhydroanearbonat, Kaliumhydroanearbonat, Natriumhydroanearbonat, Natri

Üblicherweise werden die Ausgangsstoffe II und IV, sowie das Aktivierungsreagenz im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein Überschuß der einen oder anderen Komponente von Vorteil

Verfahren C

15

20

20

40

Verbindungen der Formel I, mit W=O, können in an sich bekannter Weise M. Seefelder, Chem. Ber. 96, 3243-3253 (1983)) durch Umsetzung einer Verbindung der Formel V mit einer Verbindung der Formel VI erhalten werden.

M in Formel VI bedeutet dabei Wasserstoff oder Lithium.

Zweckmäßigsrweise werden inerte Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Chloroform, Methylenchlorid, Dichlorethan, Chlorohencot, 1.2-Dichlorbenzot, Ether 2,B. Tetrahydrotran, Dioxan, Direnthoxyethan, Diehylenglycoldimethylether; Aromaten z.B. Benzol, Toluol, Xylol, Nitrobenzol oder entspreschende Gemische verwerdet.

Die Umsetzungen können bei Temperaturen von -78°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Üblicherweise werden die Edukte V und VI im stöchiometrischen Verhältnis eingesetzt, jedoch kann in Einzelfällen ein Überschuß der einen oder anderen Komponente vorteilhaft sein.

Verfahren D

Man erhält Verbindungen der Formel I, mit W=O, in an sich bekannter Weise (GB 2092 136) durch Umsetzung einer Verbindung der Formel VII mit einer Verbindung der Formel VIII in Gegenwart einer starken Base.

$$A-SO_2-C1 + H_2N-C-B \longrightarrow A-SO_2-NH-CO-B$$
(VII) (VIII) (I)

Zweckmäßigenveise werden polare, aprotische Lösungsmittel, z.B. Acetonitril, Nitromethan, Nitroethan, Nitrobenzol, Pyridin, Benzonitril, NN-Dirrethylformamid, NN-Diethylformamid, NN-Diethylformamid, NN-Diethylformamid, NN-Diethylformamid, Dirrethylformamid, NN-Diethylformamid, Diethylformamid, Diethylformamid,

Die Umsetzungen werden gewöhnlich in einem Temperaturbereich von -20°C bis Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt.

Als Basen werden üblicherweise anorganische Basen, wie Oxide, Hydroxide, Hydride, Carbonate und Hydride, sowie Alkalimetallalkodide eingesetzt, insbesondere Natriumoxid, Lithiumoxid, Kaliumoxid, Kaliumhydroxid, Natriumhydroxid, Natriumhydroxid, Kaliumhydroxid, Kaliumhydroxid, Kaliumhydroxid, Natriummethanolat, Kaliumhydroxid, Soda, Pottasche, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Aliulumetrian etwi sein, Kombinationen der oben angeführten Basen zu verwenden.

In der Regel werden die Ausgangsstoffe VII und VIII, sowie die Base im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein über- oder Unterschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren E

10

35

Man erhält Verbindungen der Formel I mit W = 0, in an sich bekannter Art und Weise (M.M. Kremley, V.G. Dolyuk, J. Org. Chem. (USSR) 10, 671-672 (1974)) durch Umsetzung einer Verbindung der Formel IX und einer Verbindung der Formel X mit einer Verbindung der Formel XI,

wobei T ein Alkalimetall und Hal Chlor oder Brom bedeutet.

Zweckmäßigerweise werden inerte L\u00f6sungsmittel wie Halogenkohlenwasserstoffe, z.B. Chloroform, Methylenchlorid, Dichlorethan, Tetrachlorkohlenstoff, Chlorbenzol, 1,2-Dichlorbenzol; Aromaten, z.B. Benzol, Toluol, Xyllo, Nitrobenzol oder entsprechende Gemische verwendet. Die Umsetzungen k\u00f6nnen bei Temperaturen von 0°C bis zur R\u00fccklußtemperatur des jeweiligen L\u00f6sungsmittels bzw. -gemisches durchgel\u00fchart werden.

Üblicherweise werden die Edukte im stöchiometrischen Verhältnis eingesetzt, jedoch kann in Einzelfäl-20 len ein Überschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren F

Man erhält Verbindungen der Formel I mit W = S in Analogie zu literaturbekannten Verfahren (S. 25 Scheibye, B.S. Pedersen, S.O. Lawesson, Bull. Soc. Chim. Belg. 87, 229-238 (1978)) durch Umsetzung einer nach Verfahren A bis E erhaltenen Verbindung der Formel I mit der Verbindung der Formel XII in einem inerten aprotischen

Lösungsmittel, wie z.B. Benzol, Toluol, Xylol, HMPA, Dimethoxyethan, Diethylenglykoldimethylether bzw. entsprechenden Gemischen.

Die Umsetzung kann im Tamperaturbereich von etwa 0°C bis Rückflußtemperatur des jeweiligen 40 Lösungsmittels bzw.-gemisches durchgeitlint werden. Üblichrweise setzt man die Ausgangsstoffe I (W = 0) und XII im stöchiometrischen Verhältnis ein.

jedoch kann ein Überschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren G

Man erhält Verbindungen der Formel I nach literaturbekannten bzw. in Analogie zu literaturbekannten Verfahren (T.L. Glichrist, "Heterocyclic Chemistry", Pitman Publisher, London (1985)) durch Umsetzung einer nach Verfahren A bis E erhaltenen Verbindung der Formel XIII, die dadurch gekennzeichnet Ist, daß der Heterocyclus B' einen C-gebundenen Substituenten, der als Abgangsgruppe fungiert, trägt, mit einem Nucleophil.

Hierbei wird die Abgangssgruppe, wie z.B. Phenolat, Chlorid, Bromid, Nitro etc. durch die "Nucleophileinheit" ersetzt.

Als Nucleophile können unter anderem Alkoholate, Thiotate, Hydride, Alkalimetallalkyle verwendet werden.

Zweckmäßigerweise werden in Anpassung an das jeweilige Nucleophil polare aprotische Lösungsmittel wie Dmethylseluloid (DMRs), Dimethyloromanid (DMF), oblare Lösungsmittelt wie Alkohole, Wasser etc., inerte Lösungsmittel wie Diethylether, Methyl-tert-bulylether, Tertahydrofuran (THF), Dioxan, Dimethoxyethan, Diethylendrokofdimethylether oder entsprechende Gemischen vervendet.

Die Umsetzungen werden gewöhnlich in einem Temperaturbereich von -78°C bis Rückflußtemperatur

des ieweiligen Lösungsmittels bzw. -gemisches durchgeführt.

In der Regel werden die Ausgangsstoffe im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein Über- oder Unterschuß der einen oder anderen Komponente von Vorteil sein.

Die bei Verfahren A und B eingesetzten Sulfonamide der Formel II sind in vielen Fällen handelsüblich. Neue Sulfonamide der Formel II lassen sich nach allgemein bekannten Methoden darstellen (S. Pawkot, 15 in "Methoden der organischen Chemie", Houben-Wayl, Bd. E 117ll, S. 1098 fl., 4. Auflage, Thieme Verlag, Stuttgart 1885).

Die im Verfahren A verwendeten Säurehalogenide der Formel III lassen sich in bekannter Weise (M.F. Ansel, in "The Chemistry of acyl haldes" (ed. S. Patal), S. 35ff, 1. Auflage, Interscience Publishers, London (1972)) aus den entsprechenden Carbonskuren (IV)

OH (IV)

oder deren Satzen mit organischen Säurehalogeniden, wie z.B. Oxalylchlorid, Phosgen, Benzoylchlorid oder mit anorganischen Säurehalogeniden, wie z.B. POHals, PHals, PHals, SOCl₂, P(C₆H₅)₂Halz etc. oder binären Systemen wie z.B. P(C₆H₅)₂HoLc, usw. derstellen.

In manchen Fällen kann der Zusatz einer geeigneten Base, insbesondere organische Stickstoffbasen, wie z.B. Pyridin, 2.6-Lutidin oder Triethylamin oder eines geeigneten Katalysators, wie z.B. Dimethylformamid oder 4-Dimethylaminopyridin zweckmäßig sein.

Die Carbonsäuren der Formel IV sind literaturbekannt oder können in Analogie zu literaturbekannten Methoden hergestellt werden (R. Sustmann, H.-G. Korth, in "Methoden der organischen Chemie", Houben-56 Weyl, Bd. ES/I, S. 193 ff, 4. Auflage, Thierne Verlag, Stuttgart 1985).

Die Herstellung der Sulfonylisocyanate der Formel V erfolgt nach für den Fachmann bekannten Stadardverfahren ("Newer Methods of Preparative Organic Chemistry", Bd. VI, S. 223 If, Academic Press, New York).

Die bei Verfahren C benötigten Verbindungen der Formel VI können ebenfalls nach Standardverfahren dargestellt werden.

Die bei Verfahren D eingessetzten Sulfochtoride der Formel VII sind in vielen Fällen handelsüblich. Neue Sulfochtoride der Formel VII lassen sich nach für den Fachmann bekannten Verfahren derstellen (S. Pawlenko, in "Methoden der organischen Chemie", Houben-Weyl, Bd. E 11/II, S. 1087 ff., 4. Auflage, Thieme Verlag, Suttutant 1985, Suttutant 1985,

Verbindungen der Formel VIII sind literaturbekannt oder können nach bekannten Methoden hergestellt werden (D. Döpp, H. Döpp, in "Methoden der organischen Chemie", Houben-Weyl, Bd. ESII, S. 934 II., 4. Auflage, Thieme Verlag, Stuttgart 1985).

Die Darstellung der Salze der Formel IX erfolgt nach bekannten Standardverfahren (F. Muth, in "Methoden der organischen Chemie", Houben-Weyl, Bd. 9, S. 629 ff., 4. Auflage, Thieme Verlag, Stuttgart 50 1955).

Ebenso sind die Sullonsäurehalogenamide der Formel X literaturbekannt oder können auf an sich bekannter Art und Weise dargestellt werden (F. Mulh, in "Methoden der organischen Chemie", Houben-Weyl, Bd. 9, S. 64l ff., 4. Auflage, Thieme Verlag, Stuttgar 1955).

Die Aldehyde der Formei XI können nach bekannten Verfahren synthetisiert werden (O. Bayer, in Welthoden der organischen Chemie" (Houben-Weyr) Bd. 771, 4. Auflage, Thieme Verlag, Stuttgart 1954; Bd. E3.4. Auflage, Thieme Verlag, Stuttgart 1983).

10

20

Im Hinblick auf die bestimmungsgemäße Verwendung sind Verbindungen der Formel I bevorzugt, in denen die Substituenten folgende Bedeutung haben: х

Sauerstoff, Schwefel, NR1,

R1 5

Wasserstoff;

C1-C6-Alkyl, insbesondere C1-C4-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, gegebenenfalls substituiert durch 1 bis 5, insbesondere 1 bis 3 Halogenatome wie Fluor, Chlor oder Brom und/oder durch Phenyl,

10 C2-C4-Alkenyl, wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-2-propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-propenyl, Phenyl, Phenyl substituiert durch 1 bis 5 Halogenatome wie Fluor, Chlor oder Brom und/oder ein bis drei

der eingangs genannten Substituenten. R2

Halogen wie Fluor, Chlor, Brom oder lod, insbesondere Fluor, Chlor, Brom, Cyano, Thiocyano;

C1-C2-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 20 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, welches durch 1 bis 5 Halogenatome, insbesondere Fluor, Chlor oder Brom substituiert ist und/oder einen der folgenden Substituenten tragen kann: C1-C4-Alkoxy, C1-C4-Alkylthio wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy bzw. die entsprechenden Alkylthioreste, wobei diese Reste durch Halogen, insbesondere Fluor, Chlor, Brom substitu-

iert sein können, Phenyl, Phenoxy, Phenylthio, gegebenenfalls substituiert durch ein bis fünf Halogenatome. insbesondere Fluor, Chlor, Brom und/oder ein bis drei C1-C4-Alkyl- oder C1-C4-Alkoxyreste; C3-C6-Cycloalkyl und C3-C6-Cycloalkylthio wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, insbe-

sondere Cyclopropyl, Cyclopentyl und Cyclohexyl, welches ein bis fünf Halogenatome, insbesondere Fluor, Chlor und Brom, und/oder ein bis drei der folgenden Reste tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, 30 C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C2-Halogenalkylthio, insbesondere Methyl, sowie die entsprechenden über Schwefel gebundenen Cycloalkylthioreste;

C3-C8-Cycloalkoxy wie Cyclopropoxy, Cyclobutoxy, Cyclopentoxy, Cyclohexoxy, Cyclohe toxy, insbesondere Cyclopropoxy, Cyclopentoxy und Cycloheptoxy, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor und Brom, und/oder ein bis drei der folgenden Reste substituiert sein kann: 35 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl

Ithio, insbesondere Methyl; C5-C6-Cycloaikenyl wie 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom,

und/oder ein bis drei der folgenden Reste substituiert sein kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-40 Alkyloxy, C1-C4-Halogenalkoxy, C:-C4-Halogenalkylthio, C1-C4-Alkylthio, insbesondere Methyl; C5-C8-Cycloalkenyloxy oder C5-C8-Cycloalkenylthio wie 1-Cyclopentenyloxy, 2-Cyclopentenyloxy, 3-Cyclo-

nentenyloxy, 1-Cyclohexenyloxy, 2-Cyclohexenyloxy, 3-Cyclohexenyloxy, 1-Cycloheptenyloxy, 2-Cycloheptenyloxy, 3-Cycloheptenyloxy, 4-Cycloheptenyloxy, 1-Cyclooctenyloxy, 2-Cyclooctenyloxy, 3-Cyclooctenyloxy, 4-Cyclooctenyloxy, welches ein bis fünf der folgenden Reste tragen kann: Fluor, Chlor, Brom oder lod, insbesondere Fluor, Chlor oder Brom und/oder ein bis drei der folgenden Reste: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, insbesondere

Phenyl, Phenoxy, Benzyloxy, Benzylthio wobei die aromatischen Gruppen substituiert sein können durch 1 bis 5 Halogenatome, insbesondere Fluor, Chlor oder Brom und/oder ein bis drei der folgenden Reste: 50 Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-

gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, z.B. Thiophen, Furan, Isoxazol, Pyrazol, Thiazol, Oxazol, Oxadiazol, Thiadiazol, Tetrahydrofuran, Tetrahydropyran, wobei die heterocyclischen bzw. heteroaromatischen Reste 1 oder 2 der folgenden Substituenten tragen können: Halogen, wie Fluor, Chlor, Brom, lod, inspesondere Fluor, Chlor, Brom, Cyano, Nitro, C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Alkylthio wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor, Brom substituiert sein kann, sowie die entsprechenden

über Sauerstoff oder Schwefel gebundenen Alkoxy- bzw. Alkylthioreste;

C₁-C₄-Alkoxy oder Alkylthio wie Methoxy, Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methylpropyloxy, 2-Methylpropyloxy oder 1,1-Dimethylethoxy, welche durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder durch eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-

C. Halogenalkovy, C. -C., Alkythio, C. -C. + Halogenalkythio bzw. die entsprechenden Alkythioreste; C.-C., Alkanyl, Alkanylovy oder Alkevythio vie Ehberl, I. -Poponyl, 2-Proponyl, 1-Methylethenyl, I-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-butenyl, 2-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 3-Methyl-2-butenyl, 3-Methyl-2-butenyl, 2-Methyl-2-butenyl, 2-Methyl-2-butenyl, 2-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-3-butenyl, 3-Methyl

Methyl-3-button/i, 1.1-Dimethyl-2-propenyi, 1,2-Dimethyl-1-propenyi, 1,2-Dimethyl-2-propenyi, 1-Ethyl-1-propenyi, 1-Ethyl-1-propenyi, 1-Hethyl-1-propenyi, 1-Hethyl-1-protenyi, 2-Methyl-1-pentenyi, 2-Methyl-1-pentenyi, 3-Methyl-2-pentenyi, 2-Methyl-2-pentenyi, 3-Methyl-2-pentenyi, 3-Methyl-3-pentenyi, 3-Methyl-3-pentenyi

Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-1-Butenyl, 1-Ethyl-1-Buteny

Alkenylthioreste;
C2-C2-Alkinyl, Alkinyloxy oder Alkinylthio wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl,
1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-3-butinyl, 2-Methyl-1-butinyl, 1-Methyl-2-pentinyl, 1-Hexinyl, 3-Methyl-1-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Dimethyl-3-butinyl, 1-Dim

Dimethyl-budinyl 1-Ethyl-2-budinyl, 1-Ethyl-3-budinyl, 2-Ethyl-3-budinyl und 1-Ethyl-1-methyl-2-propinyl, welche durch ein bis füri Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder durch eine der folgenden Gruppen substituent sein können: Cr-Ca-Nacy, Cr-Ca

35 COR1², wie Alkylcarbonyl mit C₁-C₄-Alkyl wie unter R¹² genannt, wie Cydoalkylcarbonyl mit C₃-C₅-Cycloakyl wie unter R¹² genannt, wie Alkenylcarbonyl mit C₃-C₄-Alkenyl wie unter R¹² genannt, insbesondere Methylcarbonyl, Ethylcarbonyl, Cyclopropylcarbonyl;
COQR1³, wie Carbonyl, wie Alkoxycarbonyl mit C₁-C₂-Alkyl wie unter R¹³ genannt, Cycloalkoxycarbonyl mit

C3-C4-Cycloalkyl wie unter R1¹² genannt, wie Alkenyloxycarbonyl mit G-C4-Alkenyl wie unter R1² genannt, de Alkinyloxycarbonyl mit C3-C4-Alkinyl wie unter R1² genannt, wie Phenoxycarbonyl mit Phenyl wie unter R1² aufgeführt, wie Carboxamid, wie N-Alkylaminocarbonyl mit C3-C4-Alkyl wie unter R1² genannt, wie N-Cycloalkylaminocarbonyl mit C3-C4-Cycloalkyl we unter R1² genannt, wie N-C4-Alkenyl wie unter R1² genannt, wie N-Phenylaminocarbonyl mit C3-C4-Alkinyl wie unter R1² genannt, wie N-N-Dialkylaminocarbonyl mit C3-C5-Alkinyl wie unter R1² genannt, wie N-N-Dialkylaminocarbonyl mit C3-C5-Alkyl wie unter R1² unter R1

90 nyl:
SQ-NR¹SR¹⁶, wie N-Alkylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkenylaminosulfonyl mit C₂-C₄-Alkenyl wie unter R¹⁵ beschrieben, wie N-Alkenylaminosulfonyl mit C₂-C₄-Alkenyl wie unter R¹⁵ beschrieben, wie N-Dycloaleylaminosulfonyl mit C₃-C₄-Cycloaleylaminosulfonyl mit C₃-C₄-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkyl-N-alkenylaminosulfonyl mit C₃-C₄-Alkyl wie unter R¹⁵ beschrieben und C₃-C₄-Alkenyl wie unter R¹⁵ beschrieben, wie N-Alkyl-N-alkenylaminosulfonyl mit C₃-C₄-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkyl-N-alkylaminosulfonyl mit C₃-C₄-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkyl-N-alkenyl wie unter R¹⁵ beschrieben, wie N-Alkyl-N-alkylaminosulfonyl mit C₃-C₄-Alkyl wie unter R¹⁵ beschrieben

- C. -C.-Alkyl wie unter R¹⁵ aufgeführt und C₃-C₄-Cycloalkyl wie unter R¹⁵ beschrieben, wie 1-Azacycloalkyl-sulfonyl mit 1-Azacycloalkyl wie unter R¹⁶ beschrieben, insbesondere N,N-Dimethylaminosulfonyl, N,N-Diethylaminosulfonyl;
- SO₂OR¹⁷, wie Alkoxysulfonyl mit C₁-C₄-Alkyl wie unter R¹⁷ beschrieben, wie Halogenalkoxysulfonyl mit C₁-5 C₄-Halogenalkyl wie unter R¹⁷ beschrieben, insbesondere Methoxysulfonyl, Ethoxysulfonyl, Isopropoxysulfonyl:
 - OSO₂R¹⁸, wie Alkylsulfonyloxy mit C₁-C₄-Alkyl wie unter R¹⁸ beschrieben, wie N,N-Dimethylsulfonyloxy, insbesondere Methylsulfonyloxy, Ethylsulfonyloxy;
- S(O),R¹⁰, wie Alkylsulfonyr mit G--Ca-Alkyl wie unter R¹¹ beschrieben, wie Halogenalkylsulfon'y mit C-Ca-Ca-Ricy Halogenalkyl wie unter R¹⁰ beschrieben, Akovayalkyl wie unter R¹⁰ beschrieben, wie Alkonylsulfonyr mit G--Ca-Alkinyl wie unter R¹⁰ beschrieben, wie Ca-Ca-Alkinyl wie unter R¹⁰ beschrieben, wie Ca-Ca-Alkinyl wie unter R¹⁰ beschrieben, wie Phenylsulfonyl mit Ca-Ca-Alkinyl wie unter R¹⁰ beschrieben, wie Alkylsulfinyl mit Ca-Ca-Alkinyl wie unter R¹⁰ beschrieben, wie Alkylsulfinyl mit Ca-Ca-Alkinyl wie unter R¹⁰ beschrieben wie Fleinylsulfinyl mit Ca-Ca-Alkinylsulfinyl mit Ca-Ca-Alkinylsulfiny

- einen der Reste R^s, insbesondere Methyl, Ethyl, Trifluormethyl, Chlormethyl, Methoxymethyl, Methylthioo methyl, Methoxy, Ethoxy, Isopropyloxy, Trifluormethoxy, Dilluormethoxy, Chlordifluormethoxy, 2,2,2-Trifluorethoxy, 2-Chlorethoxx, 2-Methylvethoxy, Methylthio, Ethylthio:
- 35 SQ-NR¹·Fi¹⁶, wie N-Alkylaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkenylaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁶ beschrieben, wie N-Nilenjaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁸ beschrieben, wie N-Cyclopropylmethylaminosulfonyl mit 0,-C.-Alkyl wie unter R¹⁸ beschrieben, wie N-Nilenjaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁸ beschrieben, wie N-Nilenjaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁸ beschrieben, wie N-Nilenjaminosulfonyl mit C,-C.-Alkyl wie unter R¹⁸ beschrieben, wie N-Alkyl-N-Cyclopropylmethylaminosulfonyl mit 1-Azacycloalkyl wie unter R¹⁸ beschrieben, wie 1-Azacycloalkyl wie unter R¹⁸ beschrieben, bisbeschrieben, wie 1-Azacycloalkyl wie unter R¹⁸ beschrieben, wie 1-Azacycloalkyl wie unter R¹⁸ beschr
- SO₂OR¹⁷, wie Alkoxysulfonyl mit C₁-C₄-Alkyl wie unter R¹⁷ beschrieben, wie Halogenalkoxysulfonyl mit C₁-C₄-Halogenalkyl wie unter R¹⁷ beschrieben, insbesondere Methoxysulfonyl, Ethoxysulfonyl, Isopropoxysulfonyl:
- OSO₂RI³, wie Alkylsulfonyloxy mit C₁-C₄-Alkyl wie unter R¹³ beschrieben, wie N,N-Dimethylsulfonyloxy, insbesondere Methylsulfonyloxy, Ethylsulfonyloxy;
- S(O,R.13, wie Alicylsulfonyl mit Cr-Cx-Alkryl wie unter R13 beschrieben, wie Halogenalkylsulfonyl mit Cr-Cx-Halogenalkyl wie unter R13 beschrieben. Alloxyalkyl wie unter R13 beschrieben in Roxyalkyl wie unter R13 beschrieben in Roxyalkyl wie unter R13 beschrieben. Wie Alkenylsulfonyl mit Cy-Cx-Alkinyl wie unter R13 beschrieben, wie Alkenylsulfonyl mit Cy-Cx-Alkinyl wie unter R13 beschrieben. Wie Albegnalkenylsulfonyl mit Cy-Cx-Alkinyl wie unter R13 beschrieben. Wie Alkrysulfinyl mit Cy-Cx-Alkinyl wie unter R13 beschrieben, wie Alkrysulfinyl mit R13 beschrieben, wie Alkrysulfinyl mit Cy-Cx-Alkinyl mit R13 beschrieben, wie Alkrysulfinyl mit R13 beschrieben, wie Alkrysulfinyl mit R14 beschrieben, wie Plenylsulfinyl mit R14 beschrieben, wie Plenylsulfinyl mit R14 beschrieben, wie R15 beschrieben, wie

R

Wasserstolf.

Halogen, insbesondere Fluor, Chlor, Brom, Cyano,

C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor

5 2-Methylpropyl, 1,1-Dimethylethyl, welches durch ein bis l\u00e4nf Halogenatome, insbesondere Fluor, Ohlor oder Brom, substitueri sein kann, sowie die entsprechend \u00fcber Sauerstoff und Schwelel gebundenn Alkoxy bzw. Alkythioreste, insbesondere Methyl, Ethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Pentatuorethyl, Methoxy, Ethory, Chlorrethoxy, Dichlormethoxy, Trifluormethoxy, Trifluormethoxy, Dichlormethoxy, Chlordifluormethoxy, Dichlordifluormethoxy, 2-Z-Dichlordifluorethoxy, 2-Z-Dichlordifluo

Wasserstoff, Nitro oder einen der Reste R², insbesondere Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methovy, Ethousy, 2-Chlorosypthovy, 17th/unremthovy, Methovycarbonyl, Ethovycarbonyl, N.N-15 Dimethylaminocarbonyl, Methylsullinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, N-N-sopropylaminosulfonyl, N-N-Dimethylaminosulfonyl;

Wasserstoff:

Halogen, wie Fluor, Chlor, Brom, Iod, insbesondere Fluor, Chlor, Brom;

20 Cyano:

C, -C, -Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1Dimethylethyl, welches durch ein bis fünf Halogenstorne, insbesondere Fluor, Chlor oder Brom, und/oder
einen der folgenden Reste substituiert sein kann: Hydroxy, Mercapto, Cyano, Cr-Ca-Alkoxy, C--Ca-Alkythilo
wie Methoxy, Ethoxy, Propoxy, Butoxy, 1-Methylethoxy, 1-Methylpropoxy, 2-Methylpropoxy, 2-Methylpropoxy, 1-1-Dimethylethoxy, welches durch ein bis fünf Halogenstorne, insbesondere Fluor, Chlor, Brom substituiert sein kann,
sowie die entsprechenden über Schwefel gebundenen Alkytthioreste, insbesondere Methyl, Ethyl, Trilluor-

methyl, Chlormethyl, Methoxymethyl, Methylthiomethyl;
C₁-C₂-Alkoyx, C₁-C₃-Alkoyx, C₁-C₄-Alkoyx, C₁-C₄-Alkoyx, C₁-C₄-Alkoyx, C₁-C₄-Alkoyx, Methylpropoxy, 2-Methylpropoxy, 1-Dimethylethoxy, welches durch ein bis fünf Halogenatome, inabesendere Fluor, Chlor oder Brom undröder durch nachfolgende Reste substituient sein kann: C₁-C₄-Alkoyx, C₁-C₄-Alkoyx, Methylethoxy, Ethoxy, Propoxy, Butoxy, 1-Methylethoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1-1-Dimethylethoxy, welches durch Halogene, inabesendere Fluor, Chlor, Brom substituient sein kann, sowie die entsprechenden über Schweiel gebundenen Alkylthioreste, inabesondere Methoxy, Ethoxy, Isopropyloxy, Trifluormethoxy, 2-2-Z-filliuorethoxy, Dilliuormethoxy, 2-Chlorethoxy, 2-Methoxysthoxy, Methyliko, Ethylthic.

Nitro oder einen der Reste R², insbesondere Fluor, Chlor, Brom, Methyl, Ethyl, Chlormethyl, Fluormethyl, Dilluormethyl, Chlordilluormethyl, Tifluormethyl, Diehlorfluormethyl, Methoxycarbonyl, N.N. Dimethylamicoarbonyl, Ethyoxycarbonyl, N.N.

Wasserstoff, Nitro oder einen der Reste R2, insbesondere Fluor, Chlor, Brom, Iod, Cyano, Nitro, Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Fluormethyl, Chlormethyl, Brommethyl, Difluormethyl, Trifluormethyl, Trichlormethyl, 2-Fluorethyl, 2-Chlorethyl, 2,2-Difluorethyi, 2,2,2-Trifluorethyl, 2,2,2-Trichlorethyl, Pentalluorethyl, Methoxymethyl, 2-Methoxyethyl, 1-Melhoxyethyl, 2-Methoxy-1-methylethyl, Ethoxymethyl, Benzyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 2-Trifluormethylphenyl, 3-Trifluormethylphenyl, 4-Trifluormethylphenyl, nyl. 2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 2-Nitrophenyl, nyl. 3-Nitrophenyl, 4-Nitrophenyl, 2-Methoxyphenyl, 3-Methoxyphenyl, 4-Methoxyphenyl, 2-Tetrahydropyranyl. 3-Tetrahydropyranyl, 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Thienyl, 3-Thienyl, 2-Furanyl, 3-Furanyl, 3-Tetrahydrofuranyl, 3nyl. 1-Methyl-3-pyrazolyl, 1-Methyl-4-pyrazolyl, 1-Methyl-5-pyrazolyl, 1-Ethyl-3-pyrazolyl, 1-Ethyl-4-pyrazolyl, 1-Methyl-5-pyrazolyl, 1-Methyl-4-pyrazolyl, 1-Methyl-4-pyrazoly 50 Iyl, 1-Ethyl-5-pyrazolyl, Methoxy, Ethoxy, Isopropoxy, 2-Chlorethoxy, 2-Methoxyethoxy, Trifluormethoxy, Difluormethoxy, Chlordifluormethoxy, 2,2,2-Trifluorethoxy, Phenoxy, Benzyloxy, Methylthio, Ethylthio, Phenylthio, Benzylthio, 2-Propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Butenyl, 2-Propinyl, 1-Methyl-2-propinyl, 2-Butinyl, Methylcarbonyl, Ethylcarbonyl, Cyclopropylcarbonyl, Chlormethylcarbonyl, Brommethylcarbonyl, Fluormethylcarbonyl, Trifluormethylcarbonyl, Methoxymethylcarbonyl, Carboxyl, Methoxycarbonyl, Ethoxycarbonyl, Isopropoxycarbonyl, 2,2,2-Trifluorethoxycarbonyl, 2-Methoxyethoxycarbonyl, Benzyloxycarbonyl, Aminocarbonyl, N-Melhylaminocarbonyl, N,N-Dimethylaminocarbonyl, N-Ethylaminocarbonyl,

N-Ethoxyaminocarbonyl,

N.N-Diethylaminocarbonyl, N-Isopropylaminocarbonyl, N-Benzylaminocarbonyl, N-Phenylaminocarbonyl, N-

N.N-Dimethylaminosulfonyl.

Methoxyaminocarbonyl,

ethylaminosulfonyl, N.N-Diethylaminosulfonyl, N-Hethylaminosulfonyl, N-Ethylaminosulfonyl, Methoxysulfonyl, Elboxysulfonyl, Elpoxpourfonyl, 2-Chlorethoxysulfonyl, 2,2-Trifluorethoxysulfonyl, Methylsulfonyloxy, Ehylsulfonyloxy, Isopropylsulfonyloxy, N.N-Dimethylaminosulfonyloxy, Methylsulfinyl, Elpylsulfinyl, Elpylsulfin

oder 2 vicinale Raste R³ bilden gemeinsam eine C₁-Kette wie Propylen oder eine C₄-C₄-Kette, in der eine Metthylengruppe durch Sauerstoff oder eine C₁-C₄-Alkyliminoeinheit wie Methyl-, Ethyl-, Propyl- oder Bryllimino ersetat sein kann,

Wasserstoff:

- gegebenenfalls substituiertes C₁-C₄-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylelfiyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, wobei als Substituenten insbesondere folgende Reste in Betracht kommen: Fluor, Chlor, Brom, C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy, Phenyl:
- C₃-C₄-Cycloalkyl oder Cycloalkenyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopent-1enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, wobel die cyclischen Reste welter substituiert sein können, vorzugsweise durch Methyl, Ethyl, Fluor, Chlor. Trifluormethyl:
- gegebenenfalls substituiertes Phenyl;
- C2-C5-Alkenyl oder C2-C5-Alkinyl wie unter R2 aufgeführt, Insbesondere Vinyl, 2-Propenyl, 2-Propinyl;
- 20 COR²¹, insbesondere Methylcarbonyl, Ethylcarbonyl, Phenylcarbonyl;

gegebenenfalls substitutiertes Phenyl, Benzyl, Phenoxy, Phenyithio, Benzyloxy, Benzylthio, wobei als Substituenten vorzugsweise Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxy, Ethoxy in Betracht kommen;

25 R11 Wasserstoff:

- gegebenentalls substituiertes Phenyl oder Benzyl, z.B. 2-substituiertes oder 2,4-disubstituiertes oder 2,6disubstituiertes oder 2,4-6-trisubstituiertes Phenyl oder Benzyl, wobei folgende Substituenten in Betracht kommen: Cyano, Nitro. C.; C.; Alkyl, C.; C.; Halogenalkyl, C.; C.; Alkoye, C.; C.; Halogenalkyn, C.; C.; Alkylthio, C.; C.; Halogenalkythio, insbesondere Phenyl, 2-Chlorphenyl, 2-Fluorphenyl, 2-Methylphenyl, 2-Trifluor-
- 10 thio, C.-C.-1-stalogenskyttinc, inspectioner entrolly, excitotypentry, e-molynemy, e-metryphenyl, 2-8-Diffuorphenyl, 2-8-
- C₁-C₂-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1.1-25 Dimethylethyl, wobei die genannten Reste gegebenenfalls substituiert sind durch Halogen, insbesondere Fluor oder Chior oder durch Methoxy;
 - C3-C5-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, gegebenenfalls substituiert durch Chlor oder Fluor;
- C₃-C₄-Alkenyl wie 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl;
 - Sauerstoff oder NR14
 - R13
 - Wasserstoff;
- 45 C₁-C₄-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, substituiertes Alkyl, z.B. durch Halogen, insbesondere Fluor, Chlor, Brom. C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy, gegebenenfalls substituiertes C₂-C₄-Cycloalkyl wie bei R⁹ genannt, gegebenenfalls durch Methyl, Ethyl
- gegebenerfalls substituiertes C₃-C₄-Cycloalkyl wie bei R³ genannt, gegebenentalls durch Metnyl, Ethyl substituiert, substituiert, C₃-C₅-C₅-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 5-Dutenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Butenyl, 3-
- 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Mothyl-3-butenyl, 1-Mothyl-3-butenyl, 1-Mothyl-3-butenyl, 1-Methyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 3-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 3
- 56 nyl. 1-Netnyl-epintonyl. 2-winnyl-peterlatyl. 2-butenyl, 12-Dimethyl-2-butenyl, 1.3-Dimethyl-2-butenyl, 1.3-Dimethyl-2-butenyl, 1.3-Dimethyl-2-butenyl, 1.3-Dimethyl-2-butenyl, 2.3-Dimethyl-3-butenyl, 2.3-Dimethyl-2-butenyl, 2.3-Dimethyl-3-butenyl, 2.3-Dimethyl-2-butenyl, 2-butenyl, 2-buteny

nvi. 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Ca-Ca-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-

- 5 Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl. 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1.1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;
- gegebenenfalls substituiertes Phenyl, z.B. durch Halogen, insbesondere Fluor, Chlor, Brom, C₁-C₄-Alkyl, insbesondere Methyl, Ethyl, C1-C4-Halogenalkyl, insbesondere Trifluormethyl, Difluormethyl, Chlordifluormethyl, Trichlormethyl, C1-C4-Alkoxy, insbesondere Methoxy, Ethoxy, C1-C4-Halogenalkoxy, insbesondere Trifluormethoxy, Difluormethoxy, Chlordifluormethoxy:

ein Rest OR20, insbesondere Methyl, Ethyl;

ein Rest R13.

oder gemeinsam mit R13 eine C4-C5-Alkylenkette wie Butylen, Pentylen, Hexylen, in der eine Methylengruppe durch Sauerstoff oder eine C1-C4-Alkyliminogruppe, z.B. Methyl- oder Ethyliminogruppe ersetzt sein kann. R15

- 20 C1-C4-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl:
 - C3-C4-Alkenyl oder Alkinyl, z.B. 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Butinyl, 2-Propinyl, 3-Butinyl, Cyclopropylmethyl, Cyclopropyl oder Cyclobutyl; R16
- 25 Wasserstoff:

017

- C1-C4-Alkyl wie bei R15 genannt, C3-C4-Alkenyl, z.B. 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl;
- eino C₄-C₆-Alkylenkette, in der eine Methylengruppe durch Sauerstoff ersetzt sein kann;
- 30 C1-C4-Alkyl wie bei R15 genannt;

C1-C4-Halogenalkyl, besonders C1-C2-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Chlorfluormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

- C₁-C₄-Alkyl wie bei R¹⁵ genannt oder N,N-Dimethylamino;

 - C₁-C₄-Alkyl oder Halogenalkyl wie bei R¹⁷ genannt, C2-C4-Alkoxyalkyl wie Methoxyethyl, Ethoxyethyl;
- 40 C3-C4-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, gegebenenfalls mit Halogen substituiert, insbesondere Fluor oder Chlor;
 - C1-C4-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl;
 - Phenyl oder Phenyl substituiert durch ein bis drei Fluor, Chlor, Brom, Methyl oder Methoxy:
- 45 1 oder 2 **P**20
 - Wasserstoll oder C1-C4-Alkyl wie bei R15 genannt;
 - ein Rest R12, insbesondere Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl;
- 50 Phenyl, Benzyl, gegebenenfalls substituiert z.B. durch Halogen, insbesondere Fluor, Chlor, Brom, Cyano, C1-C4-Alkyl insbesondere Methyl, Ethyl, C1-C4-Alkoxy, welches gegebenenfalls durch Halogen substituiert ist, insbesondere Methoxy, Ethoxy, 2-Chlorethoxy.
- Die erfindungsgemäßen herbiziden und wachstumsregulierenden Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch 55 hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldisper-
- sionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben,

Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe aewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprüfberen Lösungen, Emulsionen, Pasten oder Oldispersionen. Als inerte Zusatzstoffe kommen Mineralbliftraktionen von mittlerem bis
hohem Siedepunkt, wie Kerosin oder Dieselbi, herner Kohlenteeröle sowie Ole pflanzlichen oder tierischen
Ursprungs, allphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkyliente Naphthaliene oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel wie N.N-Dimethyllformamid,
Dimethylsuflodd. N-Methyltoprofision oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Ernutsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitel werden. Zur Herstellung von Ernutsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelüst, mittels Netz., Haltr., Dispergier- oder Ernutglermittel in Wasser hormogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz.- Haft, Dispergier- oder Ernutglermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser neelnent sind.

Als oberlitichenaktive Stoffe kommen die Alkall-, Erdalkall-, Ammoniumsalze von aromalischen Sulfonsauen, z.S. Lignin-, Phenol-, Naphthalin- und Dibutyinaphthalinaufonsäure, sowie von Fertsäuren, Alkyi-nd Akyiarylsulfonaten, Alkyi-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierer Hexar, Hepta- und Octadocanolen, sowie von Fettalkoholsulfaten, sowie Salze sulfatierer Hexar, Hepta- und Octadocanolen, sowie von Fettalkoholsykolether, Kondersationsprodukte von sulfonertem Naphthalin und seiner Denivate mit Formalderlyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsullonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes isooctyk-, Octyl- oder Nonylphenol, Alkylphenol-, Tistulyjhenolydykolether, Alkylaryloydyteralkohole, Isodredoyalkohol, Fettalkoholethylenoxid-Kondensate, athoxyliertes Rizinusól, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkohologydykoletheractalk, Sorbitester, Lignin-Sulfilabaugen oder Methylocelliuses in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergetstellt werden. Feste Trägerstoffe sind Mineralerden Me Sillicage). Kiesetsäuren, Kiesetgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Datomeenerde, Calcium- und Magnesiumsultat, Magnesiumsunoxid, gemahlene Kunststoffe, Diiogenittie, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumsulrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Bauminden-. Holz- und Nußschalemmehl, Callulospeutver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff: Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:

I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 40 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

II. 20 Gewichtsteile der Verbindung Nr. 40 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylot, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 mol Ethylenoxid an 1 mol Disäure-N-moneethanolamid, 5 Gewichtsteilen Calciumsatz der Dodesybenzotsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0.02 Gew.% des Wirkstoffs enthält.

III. 20 Gewichtsteile der Verbindung Nr. 40 Werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 mol Ethylenoxid an 1 mol Richnuső besteht. Durch Eingielden und eines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhäft man eine währige Dispersion, die 0,02 Gew. des Wirksfolfs enthäll.

IV. 20 Gewichtsteile des Wirkstoffs Nr. 40 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineraldifraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Picinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige

Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

55

- V. 20 Gewichtsteile des Wirksloffs Nr. 40 worden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-er-sulfonsäure. 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Suliti-Ablauge und 60 Gewichtsteilen pulverförmigem Kleselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Vertiellen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe. die 0.1 Gew. % des Wirksoffs enhält.
- VI. 3 Gewichtsteile des Wirkstoffs Nr. 40 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.
- VII. 30 Gewichtstelle das Wirkstoffs Nr. 40 werden mit einer Mischung aus 92 Gewichtstellen pulverfürmiger Kiesetälungel und 6 Gewichtstellen Parafiniöl, das auf die Oberfläche dieses Kieselsäurgegle gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Halflählickeit.
 - VIII. 20 Gawichtsteile des Wirkstoffs Nr. 40 werden mit 2 Gewichtsteilen Calciumsaiz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fetalkind-polyglykolether, 2 Gewichtsteilen Natiumsais eines Phonol-Harnstoff-Formalderlyd-Kondensates und 68 Gewichtstellen eines paraffinischen Mineralöls innig vermischt. Man ertillt eines lätalbie öllop Disposreion.
- Die Applikation der herbiziden und wachstumsregulierenden Mittel bzw. der Wirkstoffe kann Im Vorauflauf, oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spitzgeritet so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichze kelt nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfälsbe oelsnoen (bosel-directed, laz-bv).
 - Die Aufwandmengen an Wirkstoff bei Anwendung als Herbizide betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3, vorzugsweise 0,01 bis 2 kg/ha aktive Substanz (a,S.).
- 25 Die Verbindungen der Formel I k\u00f6nen praktisch alle Entwicklungsstadien einer Pflanze verschiedenartig beeinflussen und werden deshalb als Wachstumsregulatoren eingesetzt. Die Wirkungsvielfalt der Pflanzenwachstumsregulatoren h\u00e4not ab vor allem
 - a) von der Pflanzenart und -sorte,
- b) von dem Zeitpunkt der Applikation, bezogen auf das Entwicklungsstadium der Pflanze und von der Jahreszeit,
 - c) von dem Applikationsort und -verfahren z.B. Samenbeize, Bodenbehandlung, Blattapplikation oder Stamminjektion bei Bäumen
 - d) von klimatischen Faktoren, z.B. Temperatur, Niederschlagsmenge, außerdem auch Tageslänge und Lichtintensität
 - e) von der Bodenbeschaffenheit (einschließlich Düngung),
 - f) von der Formulierung bzw. Anwendungsform des Wirkstoffs und schließlich
 - g) von den angewendeten Konzentrationen der aktiven Substanz.
- "Aus der Reihe der verschiedenartigen Anwendungsmöglichkeiten der erfindungsgemäßen Pflanzenwachstumsregulatoren der Formel I im Pflanzenarbau, in der Landwirtschaft und im Gartenbau, werden ien ige nachstehend erwähnt.
 - A. Mit den erfindungsgemäß verwendbaren Verbindungen läßt sich das vegelative Wachstum der Pflanzen stark hemmen, was sich insbesondere in einer Reduzierung des Längenwachstums äußert. Die behandellen Pflanzen weisen demgemäß einen gedrungenen Wuchs auf; außerdem ist eine dunklere Blattfärbung zu beobachten.
- 45 Als vorteilnäft für die Praxis erweist eine verninderte Intensität des Wachstums von Gr\u00e4sern an Straßenr\u00e4ndern, Hendb\u00f6ndern, Kanalb\u00f6schungen und auf Rasenfl\u00e4chen wie Parks, Sport und Obstanlagen, Zierrasen und Flugpl\u00e4tzen, so da\u00ed der Arbeits- und kostenaufwendige Rasenschnitt reduziert werden kann.
 - Von wirtschaftlichem Interesse ist auch die Erhöhung der Standlestigkeit von lageranfälligen Kulturen wie Getreide, Mals, Sonnenblumen und Soja, Die dabei verursachte Halmverkfürzung und Halmverstärkung verringern oder beseitigen die Gefahr des "Lagerns" (des Umknickens) von Pflanzen unter undünstiener Witterunabsbedingungen vor der Ernte.
 - Wichtig ist auch die Anwendung von Wachstumsregulatoren zur Hemmung des Längenwachstums und zur zeitlichen Veränderung des Reifeverlaufs bei Baumwolle. Damit wird ein vollständig mechanisiertes Beernten dieser wichtigen Kulturpflanze ermöglicht,
 - Bei Obst- und anderen Bäumen lassen sich mit den Wachstumsregulatoren Schnittkosten einsparen. Außerdem kann die Alternanz von Obstbäumen durch Wachstumsregulatoren gebrochen werden.

Durch Anwendung von Wachstumsregulatoren kann auch die seitliche Verzweigung der Pflanzen vermehrt oder gehermnt werden. Daran besteht Interesse, wenn z.B. bei Tabakpflanzen die Ausbildung von Seitentrieben (Geiztrieben) zugunsten des Blattwachstums gehermnt werden soll.

Mit Wachstumsregulatoren läßt sich beispletsweise bei Winterraps auch die Frostreistenz erheblich erföhen. Dabei werden einerseist das Litigenswachstum und die Entwicklung einer zu üppigen (und dadurch besonders frostanfälligen) Blatt- bzw. Pflanzenmasse gehernmt. Anderereits werden die jungen Rapspflanzen nach der Aussaat und vor dem Einsetzen der Winterfröste trotz günstiger Wachstumsbedingungen in vegetativen Entwicklungsstadium zurückgehalten. Dadurch wird auch die Frostgefährtung solcher Pflanzen beseitigt, die zum vorzeitigen Abbau der Blüthernmung und zum Übergang in die Benarativen Phase neigen. Auch bei anderen Kulturen, z.B. Wintergefelde ist es vorteilhaft, wenn die Bestände durch Behandlung mit erfindungsgemäßen Verbindungen in Herbst zwar gut bestockt werden, aber nicht zu Uppig in den Winter hienigheben. Dadurch kann der erhöhten Frostempfindlicheit und - wegen der relativ geringen Blatt- bzw. Pflanzenmasse - dem Befall mit verschiedenen Krankheiten (z.B. Pilzkrankheit) vorgebeut; werden. Die Hemmung des vegetativen Wachstums ermöglicht außerdem bei vielen Kulturpflanzen eine dichtere Bepflanzung des Bodens, so daß ein Mehrertrag bezogen auf die Bodentlikhe erzeitet werden kann.

B. Mit den Wachstumsregulatoren lassen sich Mehrentäge sowohl an Pflanzenteillen als auch an Pflanzenteilen erzielen. So ist es beispielsweise möglich, das Wachstum größerer Mengen an Knospen, Biltien, Biltiten, Früchten, Samenkömern, Wurzein und Knollen zu induzieren, den Gehalt an Zucker in Zuckerrüben, Zuckerrohr sowie Zilrusfrüchten zu erhöhen, den Proteingehalt in Getreide oder Sola zu steilgen oder Gumblichme zum vermehren Latexfulle zu stimfulieren.

Dabei können die Verbindungen der Formel I Ertragssteigerungen durch Eingriffe in den pflanzlichen Stoffwechsel bzw. durch Förderung oder Hemmung des vegetativen und/oder des generativen Wachstums verussachen.

C. Mit Pflanzenwachstumsregulatoren lassen sich schl\u00e4ßlich sowohl eine Verk\u00fcrzung bzw. Verl\u00e4ngerung der Entwicklungsstadien als auch eine Beschleunigung bzw. Verz\u00f6gerung der Reife der geernteten Pflanzentelle vor oder nach der Ernte erreichen.

Von wrtschaftlichem Interesse ist beispleisweise die Ernteerleichterung, die durch das zeillich konzentriera kahfalen oder Vermindern der Hattestigkeit am Baum bei Zimzufchten, Olivon oder bei anderen Arten und Sorten von Kern, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Ternegnewbez wischen Frucht- bev. Blatt und Sproßteil der Pflanze ist auch für ein gut kontrollierbares Entbilättem von Nutzpflanzen wie beispielsweise Baumwolle wesentlich.

D. Mit Wachstumersguläteren kann weiterhin der Wasserverbrauch von Pflanzen reduziert werden. Dies ist besonders wichtig für andwirtschaftliche Nutzflächen, die unter einem hohen Kostenautwand künstlich bewässert werden müssen, z.B. in ariden oder semiariden Gebieten. Durch den Einstaz der erfindungsgmäßen Subatzanzen läßt sich die Intensität der Bewässerung reduzieren und Ginstaz der erfindungsgemäßen Subatzanzen läßt sich die Intensität der Bewässerung reduzieren und dämit eine kostengünstligere Bewirtschaftung durchführen. Unter dem Einfluß von Wachstumsregulatoren kommt es zu einer besseren Ausnutzung des vorhandenen Wassers, weil u.a.

- die Öffnungsweite der Stomata reduziert wird
- eine dickere Epidermis und Cuticula ausgebildet werden
- die Durchwurzelung des Bodens verbessert wird und
- das Mikroklima im Pflanzenbestand durch einen kompakteren Wuchs günstig beeinflußt wird.

Die erlindungsgemäß zu verwendenden Wachstumsregulatoren der Formel I können den Kulturpflanzen sowicht vom Samen her (als Saatgutbeizmittel) als auch über den Boden, d.h. durch die Wurzel sowie besonders bevorzudt - durch Soritzung über das Blatz upgeführt werden.

Infolge der hohen Pflanzenverträglichkeit kann die Aufwandmenge stark variiert werden.

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel in einer großen Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen singesetzt werden.

19

10

15

20

Kulturenliste:

	Botanischer Name	Deutscher Name
5	Allium cepa	Küchenzwi ebe l
	Ananas comosus	Ananas
	Arachis hypogaea	Erdnuβ
	Asparagus officinalis	Spargel
10	Beta vulgaris spp. altissima	Zuckerrübe
	Beta vulgaris spp. rapa	Futterrübe
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
	Brassica rapa var. silvestris	Rübsen
15	Camellia sinensis	Teestrauch
	Carthamus tinctorius	Saflor - Färberdistel
	Carya illinoinensis	Pekannuβbaum
	Citrus limon	Zitrone
20	Citrus sinensis	Apfelsine, Orange
	Coffea arabica (Coffea canephora,	Kaffee
	Coffea liberica)	
	Cucumis sativus	Gurke
25	Cynodon dactylon	Bermudagras
	Daucus carota	Möhre
	Elaeis guineensis	Ölpalme
	Fragaria vesca	Erdbeere
30	Glycine max	Sojabohne
	Gossypium hirsutum (Gossypium	Baumwolle
	arboreum, Gossypium herbaceum,	
	Gossypium vitifolium)	
35	Helianthus annuus	Sannenblume
••	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
40	Ipomoea batatas	Süβkartoffel
40	Juglans regia Lens culinaris	Walnuβbaum Linse
	Linum usitatissimum	faserlein
	Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
45	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
	Musa Spp.	Obst- und Mehlbanane
	Nicotiana tabacum (N. rustica)	Takak
50	Olea europaea	Ölbaum
	0.10 ta. opata	- · · · · · · · · · · · · · · · · · · ·

	Botanischer Name	Deutscher Name
	Oryza sativa	Reis
	Phaseolus lunatus	Mondbohne
	Phaseolus vulgaris	Buschbohne
	Picea abies	Rotfichte
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Mohrenhirse
,	Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
	Triticum durum	Hartweizen
	vicia faba	Pferdebohnen
	vitis vinifera	Weinrebe
	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Elfekte können die erfindungsgemäßen Verbindungen I.mit zahlreichen Vertretern anderer herbzider oder wachstumsregiellerender Wirkstofigruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazin, 4H-3, 1-Benzoxazinderivate, Benzothiadizarinene, 28-Dinitiorailline, N-Phenyicarbamet, Thiologenachtonsäuren, Triazine, Amride, Hamstoffe, Diphenylether, Triazinone, Uracile, Benzoturanderivate, Cyclohexan-1,3-dionderivate, Chinoincarbonsäurederivate, Sulfonylharristoffderivate, Aryloxy, Heteroaryloxyphenoxypropionästuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Horbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen. Beispielsweider mit Mitteln zur Betämpfung von Schädlingen oder phytopathogenen Pitzen bzw. Bakterien. Von Interesses ist fermer die Mischbarkeit mit Mineralsatzlösungen, welche zur Behebung von Ernähnungsdand Spurenelementmängen eingestett werden. Es künnen auch nichtphytotoxische Öle und Ölkonzentrate

Die nachstehenden Beispiele beschreiben exemplarisch die Herstellung der erfindungsgemäßen Verbin-45 dungen.

Beispiel 1

30 .

N-(2-Methoxycarbonylphenylsulfonyl)-1,5-dimethylpyrazol-3-carboxamid

In 200 ml absolutem Acoton werden 10.8 g 2-Methoxycarbonylphenylsulfonamid, 8,6 g 1,5-Dimethyfpyrazol-3-carbonsäurechlorid und 13,8 g Kaliumcarbonat 8 h unter Rücktluß erhitzt. Nach Abdestillieren des Lösungsmittels wird der Rückstand in Wasser aufgenommen und ein pH-Wert von 2 eingestellt. Der sich bildende Niederschlag wird abgesaugt und mit H₂O neutral gewaschen. Nach Verrühren mit Ether wird der Rückstand abgesaugt und am Vakuum getrocknet. Man erhält 11,6 g N42-Methoxycarbonylphenylsulfonyl-1,5-dimethylpyrazol-3-carboxamid mit einem Schmetzpunkt von 176-177°C (Wirkstoffbeispiel Nr. 40).

Beispiel 2

N-(2-Thienylsulfonyl)-1-methylpyrazol-4-carboxamid

3 3,8 g 1-Meltylypyrazol-4-carbonsäure und 4,9 g Carbonyldimidazol werden in 100 ml 1,2-Dichlorethan 3,5 h auf 55°C erwärmt. Nach Zugabe von 4,9 g 2-Thienylsulfonarid und 5,4 ml Trieflyshmin erhitzt na weitere 13 h auf 55°C. Nach Abkülhen werden 40 ml 10 %-tige wäßrige NaOH-Lösung zugegeben, anschließend die wäßrige Phase auf pH 1 gestellt. Der sich bildende Niederschlag wird abgetrent und Vakuum getrocknet. Man erhält 5,2 g N-(2-Thienylsulfonyl)-1-methylpyrazol-4-carboxamid mit einem Schmlespunkt von 174-180°C (Wirkstoffbespiel Nr. 103).

Beispiel 3

N-(2-Chlorphenylsulfonyl)-1,4-dimelhylimidazol-2-carboxamid

In 200 ml Toluol werden 2.0 g 1.4-Dimethylimidazol und 4.3 g 2-Chlorphenylsulfonylisocyanat 6 h unter Rückfuß erhitzt. Nach Abkühlen wird der sich bildende Niederschlag abgesaugt und mit Aceton (gewaschen, Der Rückstand wird in Acetonitril/Mehanol suspendiert und 0.5 h unter Rückfuß erhitzt. Nach Abkühlen wird der Feststoff abgesaugt und am Vakuum getrocknet. Man erhält 2.3 g n/42-Chlorphenylsulfonyl)-1,4-dimethylimidazoi-2-carboxamid mit einem Schmelzpunkt von 230-2319*C. (Winkstoffbeispiel Nr. 113).

Beispiel 4

25

45

50

55

N-(2,6-Dichlorphenylsulfonyl)-2-methoxythiazol-4-carboxamid

2.3 g N-(2,6-Dichlorphenyisulfonyi)-2-bromhiazol-4-carboxamid und 1.6 g Natriummethanolat werden in 45 ml Methanol 12 h unter Dickfulde eintik. Nach Abkühlen saugt man den Niederschlag ab, wäscht mit Methanol und trocknet anschließend den Rückstand am Vakuum. Man erhält 1.8 g N-(2,6-Dichlorphenyisullonyi)-2-methoxyhitazol-4-carboxamid mit einem Schmetzpunkt von 162-165°C, (Wirkstoffbeispiel Nr. 34).

Entsprechend können durch Wahl der Ausgangsstoffe und entsprechende Anpassung der Verfahrensbedingungen die nachstehend in Tabelle 1 aufgelisteten Verbindungen erhalten werden, worin die folgenden Substituenten A vorliegen.

```
R^3, R^4 = H
          A1-1:
                    R^2 = CO_2CH_3
                    R^2 = CO_2CH_2CH_3
                                                        R^3, R^4 = H
          A1-2:
                                                        R^3, R^4 = H
                    R^2 = CO_2CH(CH_3)_2
          A1-3 :
                    R^2 = CO_2CH_3
                                                        R^3 = 6 - C1
          A1-4 :
                                                        R^3 = 6 - OCH_3
          A1-5 :
                    R^2 = Co_2CH_3
                                                                         R^4 = H
                                                        R^3 = 6 - CH_3
                                                                         R^4 = H
                    R^2 = CO_2CH_3
          A1-6 :
10
                                                        R^3 = 6 - F
                                                                         84 = H
          A1-7 :
                    R^2 = CO_2CH_3
                    R^2 = CO_2CH_3
                                                        R^3 = 3-C1,
                                                                         R^4 = H
          A1-8 :
                                                        R^3 = 3-F
                                                                         R^4 = H
          A1-9 :
                    R^2 = CO_2CH_3
                                                        R^3 = 4-C1,
                    R2 = CO2CH3
                                                                         R^4 = H
          A1-10:
                                                        R^3 = 5-C1,
                                                                         R^4 = H
                    R^2 = CO_2CH_3
          A1-11:
                                                        R^3 = 5-F,
                                                                         R4 = H
                    R2 = CO2CH3
          A1-12:
                                                        R^3 = 5-0CH_3
                                                                         R^4 = H
                    R2 = CO2CH3
          A1-13:
                                                        R3 = 5-0CHF2,
                                                                         R4 = H
                    R^2 = CO_2CH_3
          A1-14:
                                                        R^3. R^4 = H
          A1-15:
                    R2 = CO N(CH3)2
                                                        R^3 = 3-C1
                                                                         R4 = H
                    R2 = CO N(CH3)2
          A1-16:
                                                        R3 = 3-F
                                                                         R^4 = H
                    R^2 = CO N(CH_3)_2
          A1-17:
                                                        R^3 = H
          41-18:
                    R^2 = CH_3
                                                        R3, R4 = H
          A1-19:
                    R^2 = CH_2C1
                                                        R^3, R^4 = H
          A1-20:
                    R^2 = CH_2OCH_3
30
                                                        R3. R4 = H
          A1-21:
                    R^2 = CH_2SCH_3
                                                        R3. R4 = H
                    R2 = CF3
          A1-22:
                                                        R3 = 5-C1,
                    R^2 = CH_3
          A1-23:
                                                        R^3 = 5-CH_3
                    R2 = CH3
                                                                         R^4 = H
          A1-24:
```

40

```
A1-25:
                      R^2 = CH_3
                                                        R^3 = 5-0CH_3.
                                                                         R^4 = H
            A1-26:
                      R^2 = F
                                                        R3 R4 = H
5
                                                        R^3 = 6 - F
            A1-27:
                     R^2 = F
                                                                         R^4 = H
                     R^2 = C1
            A1-28:
                                                        R^{3}, R^{4} = H
                    R2 = C1
                                                        R3 = 6-C1,
            A1-29:
                                                                         R^4 = H
10
            A1-30: R^2 = C1
                                                        R^3 = 6 - CH_3
                                                                         R^4 = H
                                                        R3 = 6-0CH3,
                    R^2 = C1
                                                                         84 = H
            A1-31:
                                                        R3 = 5-CO2CH3, R4 = H
            A1-32:
                    R2 = C1
                                                        R3 = 5-C1,
            A1-33:
                    R^2 = C1
                                                                         R^4 = H
15
                    R2 = C1
                                                        R3 = 3-C1
                                                                         R^4 = H
            41-34.
            A1-35:
                    R^2 = C1
                                                        R^3 = 6-C1.
                                                                         R^4 = 5-C1
            A1-36:
                      R^2 = C1
                                                        R^3 = 6-C1
                                                                         R4 = 4-C1
20
                      R^2 = Br
                                                        R^{3}. R^{4} = H
            A1-37:
                      R^2 = Br
                                                        R^3 = 6-Br
                                                                         R^4 = H
            A1-38:
                      R2 = CN
                                                        R^3. R^4 = H
            A1-39:
25
                                                        R^3, R^4 = H
            A1-40:
                     R^2 = OCH_3
                                                        R3, R4 = H
            A1-41: R^2 = OCH_2CH_3
                                                        R3. R4 = H
            A1-42: R^2 = OCH(CH_3)_2
30
                                                        R^3, R^4 = H
            A1-43: R^2 = OCH_2CH_2C1
                                                        R^3, R^4 = H
            A1-44: R^2 = CH_2CH_2OCH_3
                                                        R^3, R^4 = H
            A1-45: R2 = OCH2CF3
            A1-46: R2 = OCF3
                                                        R3. R4 = H
26
           A1-47: R2 = OCF2H
                                                        R3, R4 = H
                                                                         R4 = H
            A1-48: R2 = OCH3
                                                        R^3 = 5-Br.
                    R^2 = OCH_3
                                                        R^3 = 5-0CH_3
                                                                         R4 - H
           A1-49:
40
                                                        R^3 = 5 - OCH_2CF_3, R^4 = H
           A1-50:
                     R2 = OCH2CF3
                    R<sup>2</sup> ≈ SCH<sub>3</sub>
                                                        R^3. R^4 = H
           A1-51:
                                                        R^3, R^4 = H
45
           A1-52:
                    R^2 = SCH_2CH_3
                                                        R^3. R^4 = H
           A1-53: R2 = SO2CH3
           A1-54: R2 = SO2CH2CH3
                                                        R^3, R^4 = H
            A1-55: R2 = SO2CH2CH2CH3
                                                        R^3, R^4 = H
50
                                                        R^3, R^4 = H
            A1-56:
                    R^2 = SO_2CH(CH_3)_2
```

24

			3 4
	A1-57:	$R^2 = SO_2N(CH_3)_2$	R^3 , $R^4 = H$
	A1-58:	$R^2 = OSO_2CH_3$	R^3 , $R^4 = H$
5		R ² = 0S0 ₂ CH ₂ CH ₃	R ³ , R ⁴ = H
	A1-39:	R= = USUZCHZCH3	K-, K H
	A1-60:	$R^2 = COCH_3$	R^3 , $R^4 = H$
10	A1-61:	$R^2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	R^3 , $R^4 = H$
_		<u> </u>	
	A2-1 :	R ⁵ = H	R6 = H
	A2-2 :	$R^5 = CO_2CH_3$	R ⁶ = H
15		R5 = CO2CH2CH3	_R 6 _{= H}
	A2-4 :	$R^5 = CON(CH_3)_2$	R6 = H
		3.2	
20	A2-5 :	R ⁵ = Cl	R ⁶ = H
	A2-6 :	$R^5 = CF_3$	R6 = H
	42-7 :	R ⁵ = OCH ₂ CH ₃	R ⁶ = H
		R5 = 502CH3	R ⁶ = H
25		R ⁵ = SO ₂ CH ₂ CH ₃	R6 = H
	A2-3.	K = 30201120113	
	A3 -1:	- 5	R6 = H
30			R6 = H
	A3 -2:	$R^5 = \text{con}(\text{cH}_3)_2$	к п
	46 -1:	R ⁵ = H	$R^4 = H$ $x = S$
		R ⁵ = Cl	R ⁴ = H X = S
35			R4 = 4-C1 X = S
	A6 -4:	R ⁵ = H	$R^4 = 5 - C1$ $X = S$
			R ⁴ = H X = S
	AU -J.	K = 0020113	
40	A7 -1:	R ⁶ = H	$R^7 = CO_2CH_3$ $X = S$
	A7 -2:		$R^7 = CON(CH_3)_2 X = S$
	A. 2.		
	48 -1:	R ⁶ = H	$R^7 = CO_2CH_3 X = S$
45			-
	A9 -1:	R ⁵ = H	R ⁴ = H
		R ⁵ = 2-CO ₂ CH ₃	R ⁴ = H
		$R^5 = 2 - C1$	R ⁴ = H
50	A9 -4:		R4 = H
50		R ⁵ = 8-Cl	R4 = H
	A9 -J:	0-01	

	A9 -6:	$R^5 = 8 - OCH_3$	$R^4 = H$
	A9 -7:	$R^5 = 8 - OCH_2CH_2OCH_3$	$R^4 = H$
5	A9 -8:	$R^5 = 8 - OCH_2CH_2C1$	R ⁴ ≈ H
	A10-1:	R ⁵ = H	R ⁴ = H
	A10-2:	$R^5 = 1-C0_2CH_3$	R ⁴ = H
	A10-3:	$R^5 = 1-C1$	R ⁴ = H
10	A10-4:	$R^5 = 1 - OCH_2CH_2OCH_3$	R ⁴ = H
	A10-5:	R ⁵ = 1-0CH ₂ CH ₂ C1	R ⁴ = H

Tabelle 1

5

0 || |А-SO₂-N-C-В | |

	Nr.	Α	8	Fp (°C)
10	1	A1-1	2-Furyl	
	2	A1-26	2-Furyl	158-160
	3	A1-29	2-Furyl	
	4	A1-1	2,5-Dimethyl-3-furyl	148-150
15	5	A1-11	2,5-Dimethyl-3-furyl	
	6	A1-1	5-Nitro-2-furyl	
	7	A6-1	5-Nitro-2-furyl	
	8	A1-40	5-Chlor-2-thienyl	175-177
20	9	A1-1	5-Chlor-2-thienyl	
	10	A1-1	5-Methyl-2-thienyl	180-181
	11	A1-18	5-Methy1-2-thieny1	
	12	A1-1	2-Pyrrolyl	220
26	13	A1-29	2-Pyrrolyl	210
	14	A1-1	l-Methyl-2-pyrrolyl	162-164
	15	A1-28	1-Methyl-2-pyrrolyl	
	16	A1-1	3-Isoxazolyl	
	17	A1-26	3-Isoxazolyl	170-171
30	18	A1-29	5-Methyl-3-isoxazolyl	138
	19	A1-1	5-Methyl-3-isoxazolyl	
	20	A1-1	5-Chlormethyl-3-isoxazolyl	
	21	A1-40	5-Chlormethyl-3-isoxazolyl	
35	22	A1-30	5-Phenyl-3-isoxazolyl	200-202
	23	Al-l	3-Methyl-4-isoxazolyl	142-143
	24	A1-1	3,5-Dimethyl-4-isoxazolyl	
	25	A1-28	3,5-Dimethyl-4-isoxazolyl	
40	26	A1-1	5-Isoxazolyl .	
	27	A1-27	5-Isoxazolyl	
	28	A1-1	3-methyl-5-isoxazolyl	123-127
	29	A1-30	3-Methy1-5-isoxazoly1	137-139
	30	A1-1	2-Brom-4-thiazolyl	
45	31	A1-29	2-Brom-4-thiazolyl	>230
	32	A1-30	2-Brom-4-thiazolyl	151
	33	A1-1	2-Methoxy-4-thiazolyl	
	34	A1-29	2-Methoxy-4-thiazolyl	162-165
50	35	A1-30	2-methoxy-4-thiazolyl	138
	36	A1-1	2-Methyl-4-thiazolyl	

	Nr.	A	8	Fp (°C)
	37	A1-29	2-Methyl-4-thiazolyl	
	38	A1-1	4-Methyl-2-thiazolyl	
5	39	A1-30	4-Methyl-2-thiazolyl	
	40	A1-1	1,5-Dimethyl-3-pyrazolyl	176-177
	41	A1-29	1,5-Dimethyl-3-pyrazolyl	135-138
	42	A1-30	1,5-Dimethyl-3-pyrazolyl	123
10	43	A1-28	1,5-Dimethyl-3-pyrazolyl	89- 91
	44	A1-40	1,4-Dimethyl-3-pyrazolyl	123
	45	A1-18	1,5-Dimethyl-3-pyrazolyl	144-145
	46	A1-27	1,5-Dimethy1-3-pyrazolyl	145-147
	47	A1-33	1,5-Dimethyl-3-pyrazolyl	172-178
15	48	A1-11	1,5-Dimethyl-3-pyrazolyl	172-174
	49	A1-10	1,5-Dimethyl-3-pyrazolyl	166-169
	50	A1-9	1,5-Dimethyl-3-pyrazolyl	168-169
	51	A1-2	1,5-Dimethyl-3-pyrazolyl	124-125
20	52	A1-3	1,5-Dimethyl-3-pyrazolyl	
	53	A1-15	1,5-Dimethyl-3-pyrazolyl	201-203
	54	A2-9	1,5-Dimethyl-3-pyrazolyl	185-188
	55	A7-1	1,5-Dimethyl-3-pyrazolyl	140-142
25	56	A9-1	1,5-Dimethyl-3-pyrazolyl	125-128
	57	Al-1	4-Brom-l,5-dimethyl-3-pyrazolyl	204-205
	58	A1-28	4-Brom-1,5-dimethyl-3-pyrazolyl	200-201
	59	A1-26	4-Brom-1,5-dimethyl-3-pyrazolyl	194-195
30	60	A1-30	4-Brom-1,5-dimethyl-3-pyrazolyl	205-206
30	61	A1-29	4-Brom-1,5-dimethyl-3-pyrazolyl	210
	62	A1-27	4-Brom-1,5-dimethyl-3-pyrazolyl	192-193
	63	A1-9	4-Brom-1,5-dimethyl-3-pyrazolyl	192-193
	64	Al-2	4-Brom-l,5-dimethyl-3-pyrazolyl	180-182
35	65	A1-3	4-Brom-1,5-dimethyl-3-pyrazolyl	
	66	A2-9	4-Brom-1,5-dimethyl-3-pyrazolyl	
	67	A1-1	4-Chlor-1,5-dimethyl-3-pyrazolyl	192-194
	68	A1-11	4-Chlor-1,5-dimethyl-3-pyrazolyl	196-197
40	69	A1-29	4-Chlor-1,5-dimethyl-3-pyrazolyl	210
	70	A1-30	4-Chlor-1,5-dimethyl-3-pyrazolyl	194-195
	71	A1-40	4-Chlor-1,5-dimethyl-3-pyrazolyl	201-204
	72	A1-1	1,4-Dimethyl-3-pyrazolyl	
45	73	A1-2	1,4-Dimethyl-3-pyrazolyl	
40	74	A1-28	1,4-Dimethyl-3-pyrazolyl	
	75	A1-27	1,4-Dimethyl-3-pyrazolyl	
	76	A1-30	1,4-Dimethyl-3-pyrazolyl	
	77	Al-l	1,4,5-Trimethyl-3-pyrazolyl	184-186
50	78	A1-29	1,4,5-Trimethyl-3-pyrazolyl	145-146
	79	A1-40	1,4,5-Trimethyl-3-pyrazolyl	

	Nr.	A	8	Fp (°C)
	80	A1-1	4-Ethoxycarbonyl-1-methyl-3-pyrazolyl	162-164
	81	A1-30	4~Ethoxycarbonyl-l-methyl-3-pyrazolyl	197-200
5	82	A1-1	1-Ethyl-5-methyl-3-pyrazolyl	35- 37
•	83	A1-11	l-Ethyl-5-methyl-3-pyrazolyl	62- 63
	84	A1-27	l-Ethyl-5-methyl-3-pyrazolyl	
	85	A1-43	l-Ethyl-5-methyl-3-pyrazolyl	
	86	A1-29	1-Ethyl-5-methyl-3-pyrazolyl	171-173
10	87	A1-1	l-Isopropyl-5-methyl-3-pyrazolyl	156-158
	88	A1-29	1-Isopropyl-5-methyl-3-pyrazolyl	206-208
	89	A1-40	1-Isopropyl-5-methyl-3-pyrazolyl	
	90	Al-1	1-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl	187-188
15	91	A1-28	1-Methyl-1,4,5,6-tetrahydrocyclopentapyrazol-3-yl	
	92	A1-30	1-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl	
	93	A1-40	1-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl	
	94	A1-1	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	157-158
20	95	A1-26	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	134-135
	96	A1-43	1-Methyl-4, 5, 6, 7-tetrahydrobenzopyrazol-3-yl	
	97	A1-2	l-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	
	98	A1-1	1,3-Dimethyl-5-pyrazolyl	158-162
	99	A1-30	1,3-Dimethyl-5-pyrazolyl	203
25	100	A1-29	l,3-Dimethyl-5-pyrazolyl	>230
	101	A1-1	l-Methyl-4-pyrazolyl	174-178
	102	A1-30	l-Methyl-4-pyrazolyl	208
	103	A6-1	l-Methyl-4-pyrazolyl	174-180
30	104	A9-1	1-Methyl-4-pyrazolyl	220-227
	105	A1-1	5-Cyclopropyl-1-methyl-3-pyrazolyl	150-152
	106	A1-27	5-Cyclopropyl-1-methyl-3-pyrazolyl	
	107	A1-30	5-Cyclopropyl-1-methyl-3-pyrazolyl	148-150
35	108	A1-40	5-Cyclopropyl-l-methyl-3-pyrazolyl	
	109	A1-1	5-Ethyl-1-methyl-3-pyrazolyl	
	110	A1-15	5-Ethyl-1-methyl-3-pyrazolyl	
	111	A1-30	5-Ethyl-l-methyl-3-pyrazolyl	
40	112	A1-43	5-Ethyl-1-methyl-3-pyrazolyl	
40	113	A1-28	1,4-Dimethyl-2-imidazolyl	230-231
	114	Al-1	1,4-Dimethyl-2-imidazolyl	
	115	A1-28	1-Methyl-2-imidazolyl	162-165
	116	A1-1	1-Methy1-2-imidazoly1	
45	117	Al-29	1-Methyl-2-imidazolyl	
	118	A1-1	1-Methyl-5-imidazolyl	220
	119	Al-26	l-Methyl-5-imidazolyl, Na-Salz	>300
	120	A1-30	1-Methyl-5-imidazolyl	255
50	121	A1-30	l-Methyl-5-imidazolyl, Na-Salz	>300

	Nr.	A	В	Fp (°C)
	122	A1-40	l-Methyl-5-imidazolyl	260-265
_	123	A1-29	1-Methyl-5-imidazolyl	295-300
5	124	A1-1	2-Methyl-4-oxazolyl	
	125	A1-26	2-Methyl-4-oxazolyl	
	126	A1-30	2-Methyl-4-oxazolyl	
	127	A1-44	2-Methyl-4-oxazolyl	
10	128	A1-1	2-Cyclopropyl-4-oxazolyl	110-112
	129	A1-2	2-Cyclopropyl-4-oxazolyl	
	130	A1-27	2-Cyclopropyl-4-oxazolyl	164-166
	131	A9-1	2-Cyclopropyl-4-oxazolyl	
15	132	A1-1	1, 2, 3-Thiadiazolyl-4-yl	110
	133	A1-28	1,2,3-Thiadiazoly1-4-yl	173-176
	134	A1-29	1, 2, 3-Thiadiazoly 1-4-y 1	>230
	135	A1-33	1, 2, 3-Thiadiazoly 1-4-y l	139
20	136	A1-1	4-Methyl-1, 2, 3-thiadiazolyl-5-yl	
	137	A1-28	4-Methy1-1, 2, 3-thiadiazo1-5-y1	
	138	A1-27	4-Chlor-1,5-dimethy1-3-pyrazoly1	198-200
	139	A1-1	5-Phenyl-3-isoxazolyl	205-206
25	140	A1-11	4-Brom-1,5-dimethyl-3-pyrazolyl	>210
	141	A1-26	1,5-Dimethyl-3-pyrazolyl	146-147
	142	A1-22	1,5-Dimethyl-3-pyrazolyl	152-153
	143	A1-28	5-Methyl-3-isoxazolyl	190-191
	144	A2-4	1,5-Dimethyl-3-pyrazolyl	191-192
30	145	A1-49	1,5-Dimethyl-3-pyrazolyl	153-155
	146	A1-1	1,5-Dimethyl-3-pyrazolyl, Na-Salz	>220
	147	A1-1	1,5-Dimethyl-3-pyrazolyl, Ca-Salz	>220
	148	A1-11	1-Methyl-1,4,5,6-tetrahydrocyclopenta-	184-187
35			pyrazol-3-yl	
	149	A1-27	5-Methyl-3-isoxazolyl	160-161
	150	A1-22	5-Methyl-3-isoxazolyl	160-162
	151	A1-10	2-Cyclopropy1-4-oxazoly1	150-152
40	152	A1-30	2-Cyclopropyl-4-oxazolyl	131-132
	153	Al-22	2-Cyclopropyl-4-oxazolyl	129-131
	154	A1-44	l,5-Dimethyl-3-pyrazolyl	83- 85
	155	A6-1	1,5-Dimethyl-3-pyrazolyl	130-132
45	156	A1-9	5-Cyclopropyl-1-methyl-3-pyrazolyl	100-101
	157	A1-10	4-Chlor-1,5-dimethyl-3-pyrazolyl	210-212
	158	A1-9	4-Chlor-1,5-dimethyl-3-pyrazolyl	194-195
	159	A 2-4	4-Brom-1,5-dimethyl-3-pyrazolyl	199
50	160	A1-22	4-Brom-1,5-dimethyl-3-pyrazolyl	175-177
50	161	41-18	4-Brom-1 5-dimethyl-3-pyrazolyl	155-157

	Nr.	A	8	Fp (°C)
	162	A1-1	1,4,5-Trimethyl-3-pyrazolyl, Na-Salz	>220
	163	A1-30	1,4,5-Trimethyl-3-pyrazolyl	148-150
5	164	A1-1	4,5-Diethyl-1-methyl-3-pyrazolyl	154-156
	165	A1-1	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	90- 92
	166	A1-2	4,5-Diethyl-1-methyl-3-pyrazolyl	137-139
	167	A1-2	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	157-159
10	168	A1-9	4,5-Diethyl-1-methyl-3-pyrazolyl	167-169
	169	A1-9	4.5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	130-132
	170	A1-10	4,5-Diethyl-1-methyl-3-pyrazolyl	116-118
	171	A2-4	4,5-Diethyl-1-methyl-3-pyrazolyl	121-123
15	172	A1-29	4,5-Diethyl-1-methyl-3-pyrazolyl	128-130
	173	A1-29	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	141-143
	174	A1-27	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	>220
	175	A1-30	4,5-Diethyl-1-methyl-3-pyrazolyl	96- 98
20	176	A1-30	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	>220
	177	A1-22	4,5-Diethyl-1-methyl-3-pyrazolyl	93- 95
	178	A1-22	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	82- 84
	179	A1-28	4,5-Diethyl-l-methyl-3-pyrazolyl	150-152
25	180	A1-28	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	120-122
	181	A1-9	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	177-178
	182	A1-10	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	180-181
	183	A1-29	l-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	210
30	184	A1-30	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	167-168
	185	A1-27	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	161-162
	186	A1-28	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	125-126
	187	A1-1	1-Ethyl-5-methyl-3-pyrazolyl, Na-Salz	168-170
35	188	A1-2	1-Ethyl-5-methyl-3-pyrazolyl	90- 92
	189	A1-30	l-Ethyl-5-methyl-3-pyrazolyl	120-121
	190	A1-28	1-Ethyl-5-methyl-3-pyrazolyl	133-135
	191	A1-1	1-methyl-3-phenyl-4-pyrazolyl	32- 34
40	192	A1-30	l-Methyl-5-phenyl-4-pyrazolyl	199-201

Analog können darüber hinaus weitere Verbindungen hergestellt werden mit der allgemeinen Struktur

A-SO₂-N-C-B

50 wobei

- für einen Rest aus der Gruppe E1 bis E97
- B für einen Rest aus der Gruppe E1 bis E9/
 B für einen Rest aus der Gruppe G1 bis G12
- X für O, S oder NR9
- W für O oder S
 - R³ für einen Rest aus der Gruppe L1 bis L140
- R³ für einen Rest aus der Gruppe V1 bis V35 beispielsweise stehen können und die Reste E, G, L, V, W und X beliebig kombiniert werden können,

5	A B X W R ⁸	für einen Rest aus der Grupp für einen Rest aus der Grupp für O oder S für O oder S für einen Rest aus der Grup W und X beliebig kombiniert	pe G13 bis G14 pe L1 bis L 140 beisp	ielsweise stehen k	önnen und die Reste E, G,
10	A B X W	für einen Rest aus der Grup für den Rest G15 für N für O oder S			
15	R ¹⁰ R ¹¹ A, B,	für einen Rest aus der Grup für einen Rest aus der Grup Y und Z beliebig kombinieri , R ⁸ , R ⁹ , R ¹⁰ und R ¹¹ können	ope Z1 bis Z13 beispi t werden können.		
20					
25					
30					
35					
40					
45					
50					

55

oder wobei

	Verb		Verb.	
	Nr.	A	Nr.	A
5	Εl	2-co ₂ cH ₃ -c ₆ H ₄	E36	2,4,6-Cl ₃ -C ₆ H ₂
	€2	2-co ₂ cH ₂ cH ₃ -c ₆ H ₄	E37	2-Br-C ₆ H ₄
	E3	2-co2cH(CH3)2-C6H4	E 38	2,6-Br ₂ -C ₆ H ₃
	E4	2-CO2CH3-6-C1-C6H3	E39	2-CN-C6H4
10	€5	2-co ₂ cH ₃ -6-0CH ₃ -C ₆ H ₃	E40	2-0CH3-C6H4
	E6	2-со2сн3-6-сн3-С6н3	E41	2-0CH2CH3-C6H4
	E7	2-C02CH3-3-C1-C6H3	E42	2-0CH(CH3)2-C6H4
	E8	2-CO2CH3-3-F-C6H3	E43	2-0CH2CH2C1-C6H4
15	E9	2-C02CH3-6-F-C6H3	E44	2-0CH2CH2OCH3-C6H4
	E10	2-C02CH3-4-C1-C6H3	E45	2-OCH ₂ CF ₃
	€11	2-C0 ₂ CH ₃ -5-C1-C ₆ H ₃	E46	2-0CF 3
	El2	2-C02CH3-5-F-C6H3	E47	2-0CF2H-C6H4
20	E13	2-C02CH3-5-OCH3-C6H3	E48	2-0CH ₃ -5-Br-C ₆ H ₃
	E14	2-CO2CH3-5-OCHF2-C6H3	E49	2,5-(OCH3)2-C6H3
	E15	2-CON (CH3) 2-C6H4	E50	2,5-(OCH2CF3)2-C6H3
	E16	2-CON(CH3)2-3-C1-C6H3	E51	2-SCH3-C6H4
25	El7	2-CON(CH3)2-3-F-C6H3	E52	2-SCH2CH3-C6H4
	E18	2-CH3-C6H4	E53	2-SO2CH3-C6H4
	E19	2-CH2C1-C6H4	E54	2-S02CH2CH3-C6H4
	E20	2-сн20сн3-С6Н4	E55	2-so2CH2CH2CH3-C6H4
30	E21	2-CH2SCH3-C6H4	£56	2-SO2CH(CH3)2-C6H4
	E22	2-CF3-C6H4	E57	2-SO2N(CH3)2-C6H4
	E 23	2-CH3-5-C1-C6H3	E58	2-0\$0 ₂ CH ₃ -C ₆ H ₄
	£24	2, 5- (CH ₃) ₂ -C ₆ H ₃	E59	2-0s0 ₂ CH ₂ CH ₃ -C ₆ H ₄
35	E 25	2-сн3-5-осн3-С6Н3	E60	2-COCH3-C6H4
	E 26	2-F-C6H4	E61	2-C6H5-C6H4
	E27	2,6-F2-C6H3	E62	Pyrid-2-yl
	E28	2-C1-C6H4	E63	3-co ₂ сн ₃ -ругіd-2-у1
40	E 29	2,6-C12-C6H3	E64	3-co ₂ ch ₂ ch ₃ -pyrid-2-yl
	E30	2-C1-6-CH3-C6H3	E65	3-con(CH ₃) ₂ -pyrid-2-yl
	E31	2-C1-6-0CH3-C6H3	E66	3-Cl-pyrid-2-yl
	E32	2-C1-5-CO2CH3-C6H3	E67	3-CF ₃ -pyrid-2-yl
45	E33	2,5-C12-C6H3	E68	3-OCH ₂ CH ₃ -pyrid-2-yl
-	E34	2,3-c1 ₂ -c ₆ H ₃	E69	3-SO ₂ CH ₃ -pyrid-2-yl
	E35	2, 5, 6-C13-C6H2	E70	3-SO ₂ CH ₂ CH ₃ -pyrid-2-yl
		-,-, J -0·2		

	Verb.	
	Nr.	A
5	E71	3-SOCH ₃ -pyrid-2-yl
	E72	3-SOC ₂ H ₅ -pyrid-2-yl
	E73	3-SO ₂ N(CH ₃) ₂ -pyrid-2-y1
	E74	3-SO2NHCH(CH3)2-pyrid-2-y
10	E75	Pyrid-3-y1
	E76	2-CON(CH3)2-pyrid-3-y1
	E77	Thien-2-vl
	E78	3-Cl-thien-2-vl
15	E79	4-C1-thien-2-y1
	E80	5-C1-thien-2-yl
	E81	3-CO ₂ CH ₃ -thien-2-yl
	E82	2-CO ₂ CH ₃ -thien-3-yl
20	£83	2-CON(CH ₃) ₂ -thien-3-yl
••	E84	4-CO2CH3-thien-3-yl
	E85	Naphth-1-y1
	E86	2-CO ₂ CH ₃ -naphth-1-yl
25	E87	2-C1-naphth-1-y1
45	E88	8-CO ₂ CH ₃ -naphth-1-y1
	E89	8-C1-naphth-1-y1
	E90	8-OCH3-naphth-1-y1
	E91	8-OCH2CH2OCH3-naphth-1-y1
30	E92	8-OCH2CH2Cl-naphth-1-yl
	E93	Naphth-2-v1
	E94	1-CO ₂ CH ₃ -naphth-2-y1
	E95	1-Cl-naphth-2-yl
35	E96	1-OCH2CH2OCH3-naphth-2-y1
	E97	1-OCH2CH2C1-naphth-2-y1

	Verb. Nr.	8	Verb. Nr.	В
5	G1	R8 X R8	G9	R8 X N
10	G2	R8 X R8	G10	RB N
15	G3	N R8	G11	RB XX
	G4	R8 X R8	G1 2	N R8
20	G 5	R8 XX R8	G13	R8 X N
25	G6	R8 I I	G14	N-X-N R8
30	G 7	R8 XN	G15	R10 X N
	G8	R8 R8		RII

	verb.		Verb.	
	Nr.	R8	Nr.	R8
5	Ll	н	L36	cyclo-C5H9
	L2	F	L37	cyclo-C6H11
	L3	Cl	L38	Tetrahydropyran-2-yl
	L4	Br	L39	Tetrahydropyran-3-yl
10	L5	J	L40	Tetrahydrofuran-2-yl
	L6	CN	L41	Tetrahydrofuran-3-yl
	L7	NO ₂	L42	Thien-2-yl
	L8	СН3	L43	Thien-3-yl
15	L9	C2H5	L44	Furan-2-yl
	L10	n-C3H7	L45	Furan-3-yl
	L11	i-C3H7	L46	l-Methylpyrazol-3-yl
	L12	n-C4Hg	L47	l-Methylpyrazol-4-yl
20	L13	i -C4H9	L48	l-Methylpyrazol-5-yl
	L14	s-C4Hg	L49	1-Ethylpyrazol-3-yl
	L15	tertC4Hg	L50	l-Ethylpyrazol-4-yl
	L16	CH ₂ F	L51	1-Ethylpyrazol-5-yl
25	L17	CH ₂ Cl	L52	осн3
	L18	CH ₂ Br	L53	oc ₂ H ₅
	L19	CHF ₂	L54	OCH (CH3) 2
	L20	CF ₃	L55	och ₂ ch ₂ c1
30	L21	ccl3	L56	осн2сн2осн3
	L22	CH2-CH2F	L57	OCF3
	L23	CH2-CH2C1	L58	OCHF 2
	L24	CH2-CHF2	L59	OCH ₂ CF ₃
35	L25	CH2-CF3	L60	OC6H5
	L26	CH2-CC13	L61	OCH ₂ C ₆ H ₅
	L27	CF2-CF3	L62	scH ₃
	L28	сн2-0-сн3	L63	scH ₂ CH ₃
40	L29	сн ₂ -сн ₂ -осн ₃	L64	SC6H5
	L30	сн(сн3)осн3	L65	SCH ₂ C ₆ H ₅
	L31	сн(сн ₃)сн ₂ осн ₃	L66	CH2-CH=CH2
	L32	CH2OC2H5	L67	сн(сн3)-сн=сн2
45	L33	CH2C6H5	L68	CH2-C(CH3)=CH2
	. L34	cyclo-C ₃ H ₅	L69	CH2-CH=CH-CH3
	L35	cyclo-C4H7	L70	CH2-C=CH

	Verb.		Verb.	
	Nr.	R8	Ņr.	R8
5				
	L71	сн(сн ₃)-с=сн	L106	co ₂ cH ₂ c ₆ H ₅
	L72	СH ₂ -С=С-СН ₃	L107	-
	L73	С6Н5	L108	
10	L74	2-CH3-C6H4	L109	
	L75	3-CH3-C6H4	L110	
	L76	4-CH3-C6H4	L111	
	L77	2-CF3-C6H4	L112	
15	L78	3-CF3-C6H4	L113	
15	L79	4-CF3-C6H4	L114	0 0
	L80	2-F-C6H4	L115	3
	L81	3-F-C6H4	L116	
	L82	4-F-C6H4	L117	2 . 3.2
20	L83	2-C1-C6H4	L118	
	L84	3-C1-C6H4	L119	
	L85	4-C1-C6H4	L120	so ₂ nhch ₃
	L86	2-NO2-C6H4	L121	SO2NHC2H5
25	L87	3-N02-C6H4	L122	
	L88	4-NO2-C6H4	L123	
	L89	2-CH30-C6H4	L124	
	L90	3-CH30-C6H4	L125	so ₂ ocH ₂ cH ₂ c1
30	L91	4-CH30-C6H4	L126	SO2OCH2CF3
	L92	соснз	L127	OSO ₂ CH ₃
	L93	COCH2CH3	L128	
	L94	CO(cycloC3H5)	L129	0S02CH(CH3)2
35	L95	COCH ₂ C1	L130	0S02N(CH3)2
	L96	COCH ₂ Br	L131	soch ₃
	L97	COCH ₂ F	L132	SOC 2H5
	L98	COCF3	L133	soch(CH3)2
40	L99	COCH2OCH3	L134	soc ₆ H ₅
	L100	со2н	L135	so ₂ CH ₃
	L101	со2сн3	L136	
	L102	CO2CH2CH3	L137	so ₂ ch(Ch ₃) ₂
45	L103	CO ₂ CH(CH ₃) ₂	L138	SO ₂ CH ₂ CH ₂ CH ₃
	L104	CO2CH2CF3	L139	zwei vicinale Reste R ⁸ bilden
	L105	со2сн2сн2осн3		gemeinsam eine C3-Methylenkette
			L140	zwei vicinale Reste R ⁸ bilden
50				gemeinsam eine C4-Methylenkette

	Verb.	
	Nr.	_R 9
5	v 1	н
	V 2	сн3
	v3	сн2сн3
	٧4	CH2CH2F
10	v5	CH2CF3
	v6	CH2CH2C1
	v 7	сн ₂ сн ₂ осн ₃
	v8	CH2C6H5
15	٧9	CH(CH3)2
	v10	cyclo-C3H5
	v11	cyclo-C4H7
	V12	cyclo-C5H9
20	V13	C6H5
	V14	2-CH3-C6H4
	v15	2-C2H5-C6H4
	v16	2,6-(CH3)2-C6H3
25	V17	2,6-(C2H5)2-C6H3
	v18	2-CH3-6-C2H5-C6H3
	v19	2-C1-C6H4
	v 20	2,4-C12-C6H3
30	v 2 i	2,6-C12-C6H3
	V 2 2	2, 4, 6-C13-C6H2
	v 2 3	2,6-C12-4-CF3-C6H2
	V 24	2-C1-4-CF3-C6H3
35	V 25	CH2-CH=CH2
	v 26	сн=сн2
	V 2 7	CH2-C≡CH
	v 28	CH2C6H5
40	v29	соснз
	v30	COC ₂ H ₅
	v31	сос6н5
	v32	CH ₂ F
45	v33	CHF 2
	v34	CF3
	v35	CF2C1

38

50

```
Verb.
      R10
Nr.
Y 1
      CaHa
٧2
      2-C1-C6H4
٧3
      2-F-C6H4
¥4
      2-CH3-C6H3
٧5
      2-CF3-C6H3
٧6
      2-0CH3-C6H3
¥7
      2,3-C12-C6H3
٧8
      2,4-C12-C6H3
٧9
      2,5-C12-C6H3
Y10
      2,6-C12-C6H3
Y11
      2, 4, 6-Cl 3-C6H2
Y12
      CH2C6H5
٧13
      0C6H5
¥14
      OCH2C6H5
Y15
      SC6H5
¥16
      SCH2C6H5
Verb.
      R11
Nr.
Z1
      н
Z2
      CaHs
z3
      2-C1-C6H4
      2-F-C6H4
Z4
z5
      2-CH3-C6H4
Z6
      2-CF3-C6H4
z7
      2-0CH3-C6H4
z8
      2,4-C12-C6H3
z9
      2,6-Cl2-C6H3
Z10
      2,6-F2-C6H3
z11
      2,6-(CH3)2-C6H3
712
      2-C1-4-CF3-C6H3
Z13
      2,6-C12-4-CF3-C6H2
```

Anwendungsbeispiele

A Herbizide Wirkung

Die herbizide Wirkung der Sulfonylharnstoffe der Formel I ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testoflanzen wurden nach Arten getrennt eingesät.

5

10

15

20

25

30

35

an

Bei Voraullaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies sinicht durch die Wirkstoffe bedirekthigt wurde. Die Aufwandmengen betrugen 0,125 kp/ha a.S.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchstorm erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,28 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckle sich über 2 bis 4 Wochen. Während dieser Zelt wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pilanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name
Abutilon theophr.	Chinesischer Hanf
Chenopodium album	Weißer Gänsefuß
Triticum aestivum	Sommerweizen

Mit 0,25 kg/ha a.S. im Nachauflaufverfahren eingesetzt, lassen sich mit dem Beispiel 40 breitblättrige unerwünschte Pflanzen sehr gut bekämpfen, bei gleichzeitiger Verträglichkeit an der Beispielkultur Weizen.

B Wachstumsregulierende Wirkung

Zur Bestimmung der wachstumsregullerenden Eigenschaft der Prüfsubstanzen wurden Testpflanzen auf ausrerichend mit Nährstoffen versorgtem Kultursubstrat in Kunststoffgefäßen von ca. 12,5 cm Durchmesser angezoden.

Im Nachauflaufverfahren wurden die zu prüfenden Substanzen in w
ßriger Aufbereitung auf die Pflanzen gesprüft. Die boebachtete wachstumsregulierende Wirkung wurde bei Versuchsende durch Wuchshöhenmessung belegt. Die so gewonnenen Meßwerte wurden zur Wuchshöhe der unbehandelten Pflanzen in Relation gesetzt. Als Vergleichssubstanz A diente 2-Oftoerfuhrtimethylammoniumchlorid.

Gleichlaufend zur Reduzierung des Längenwachstums stieg die Farbintensität der Blätter an. Der erhöhte Chlorophyligehalt läßt eine ebenfalls erhöhte Photosyntheserate und damit eine erhöhte Ertragsbildung erwarten.

Die Einzeldaten sind den folgenden Tabellen B-1 und B-2 zu entnehmen.

Tabelle B-1

Sommerweizen, "Ralle"; Nachauflauf-Blattbehandlung		
Nr.d.chem. Beispiele	Konzentration mg a.S./Gefäß	Wuchshöhen rel.
unbehandelt	•	100
A	1,5	82,2
40	1,5	73,1

50

40

45

20

Tabelle B-2

Sommergerste, "Aramir"; Nachauflauf-Blattbehandlung		
Nr.d.chem. Beispiele	Konzentration mg a.S./Gefäß	Wuchshöhen rel.
unbehandelt		100
Α .	1,5	90,7
40	1,5	69,4

Patentansprüche

10

20

25

30

35

40

50

55

1. Sulfonamide der allgemeinen Formel I

in der die Substituenten folgende Bedeutung haben:

Α

R²

R6-IN

R6-(N)

R6-(N

R4—(N5)

(A6)

6 Lx (A7)

7 (A8)

R4 R4 P

R4 R4 R
(A10)

۸,

Sauerstoff, Schwefel;

- B 2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;
- 2-, 3-, 4- oder 5-Pyrrolyl, wobei diese genannten Reste drei C-gebundene Reste R^{\sharp} und einen N-gebundenen Rest R^{\sharp} tragen;
- 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R^g;

2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R^a und einen N-gebundenen Rest R^a tragen;

- 1.3.4-Thiadiazol-2-vl. -5-vl. 1.3.4-Oxadiazol-2-vl. -5-vl.
 - 1,2,4-Thiadiazol-3-yl, -5-yl, 1,2,4-Oxadiazol-3-yl, -5-yl,
 - 1,2,3-Thiadiazol-4-vl. -5-vl. 1,2,3-Oxadiazol-4-vl. -5-vl.
 - 1.2.5-Thiadiazol-3-vl. -4-vl. 1.2.5-Oxadiazol-3-vl. -4-vl.
- wobei diese Reste einen Rest Re tragen:

10

15

- 1,2,4-Triazol-3-yl, substituiert durch einen C-gebundenen Rest R^{19} und einen N-1 gebundenen Rest R^{1} ;
- 1,2,4-Triazol-5-yl, 1,2,3-Triazol-4-yl, -5-yl, jeweils substituiert durch einen C-gebundenen Rest R^e und einen N-1 gebundenen Rest R^e;
 - X Sauerstoff, Schwefel, NR1;

R1

- 20 Wasserstoff:
 - C1-C6-Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatome und/oder Phenyl;
 - C2-C4-Alkenyl;

25

20

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen kann: C;-Ca-Allkyl, C;-Ca-Halogenalkyl, C;-Ca-Halogenalkyl, C;-Ca-Halogenalkyl, C;-Ca-Halogenalkyltio, C;-Ca-Halogenalkyltio, Nitro, Cyano;

R2

Halogen;

Cyano; Thiocyano;

- C₁-C₄-Alkyl, welches durch ein bis f\(\text{Inf Halogenatome}\) und\(\text{odder}\) einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkyytnio, C₁-C₄-Alkyytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, Welchio ein bis drei der folgenden Reste substituiert sein k\(\text{finner: C₁-C₄-Alkytl, C₁-C₄-Halogenatkow₂, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio, C₁-C₄-Alkytnio,
- 40 C₂-C₄-Cycloalkyl, C₃-C₄-Cycloalkoxy, C₃-C₄-Cycloakylthio, C₅-C₅-Cycloalkenyl, C₅-C₂-Cycloalkenylhio, wobei diese cyclischen Gruppen durch ein bis f\(\text{tinf Halogenatome und\('\text{oder ein}\) bis drei der folgenden Reste substitutiert sein k\(\text{onen: C}_1\cdot Alkyl, C_1\cdot C_4\text{-1 Alogenalkyl, C}_1\cdot C_4\text{-1 Alogenalkyl, C}_
- 45 Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutert sein k\u00f6nnen: Cyano, \u00e4\u00fclin, C₁-C₄-Alkyl, C₁-C₄-Alkyl,
- 50 gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Sickstoff-, Sauerstoff- undröder Schwelelatome, weicher gegebennefalls bis zu zwei der folgenden Substituenten tragen kann: Halogen, Oyano, Nitro, Cr-Ca-Alkyl, Cr-Ca-Alkox, Cr-Ca-Alkyl, Hologenskyl, Cr-Ca-Halogenskyl, Cr-Ca-Halogenskyl, Hologenskyl, Cr-Ca-Halogenskyl, Cr-Ca-Halogens
- 55 C1-C4-Alkoxy oder C1-C4-Alkylthio,
 - C2-C6-Alkenyl oder C2-C6-Alkenyloxy oder C2-C6-Alkenylthio,

C2-C6-Alkinyl, C2-C6-Alkinyloxy oder C2-C6-Alkinylthio,

wobei die genannten Alkoay-, Alkylthio-, Alkonyl-, Alkinyl-, Alkonyl-, Alkinyl-, Alkin

COR12; COQR13; SO2NR15R16; SO2OR17; OSO2R18; S(O),R19;

B

10

15

an

30

35

40

45

einen der Reste R6; COQR13; SO2NR15R16; SO2OR17; OSO2R18; S(O),R15;

94

Wasserstoff; Halogen; Cyano;

 C_1-C_4 -Alkyl oder C_1-C_4 -Alkyl substituiert durch ein bls fünf Halogenatome; C_1-C_4 -Alkoxy; C_1-C_4 -Halogenalkoxy; C_1-C_4 -Alkylthio; C_1-C_4 -Halogenalkylthio;

R²

Wasserstoff; Nitro oder einen der Reste R2;

D6

Wasserstoff; Halogen; Cyano;

25 C₁-C₄-Alkyl, C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C₁-C₄-Alkoxy. C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, OH, SH, Cyano;

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylthio, wobei die genannten Alkoxy(thio)- bzw. Halogenalkoxy (thio)reste durch folgende Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Alaogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio:

R²

Nitro; oder einen der Reste R2;

R8

Wasserstoff; Nitro;

einen der Reste R², oder zwei vicinale Reste R² bilden gemeinsam eine C_3 -Kette oder eine C_4 -Cc-Kette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C_1 -Ca-Alkyliminoeinheit ersetzt sein kann:

R⁹

Wasserstoff;

C₁-C₄-AlkyI, welches durch ein bis f\(\text{lint}\) Halogenaltome und'oder einen der folgenden Rests subsittuiert sein kann: C₁-C₄-Alkoxy, C₇-C₄-Alaogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenoxy, Phenoylthio-, wobei diese cyclischen Gruppen durch ein bis T\(\text{Unit Halogenatome und'oder ein bis drei der folgenden Reste substituiert sein k\(\text{Grinnen: Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkylthio, C

C₃-C₅-Cycloalkyl, C₅-C₆-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoy, C₁-C₄-Halogenalkoys, C₁-C₄-Alkylthio, C₁-C₄-I-Alcylthio, C₁-C₄-I-A

Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein kann: Cyano, Nitro, Cr-Cx-Alkyl, Cr-Cx-Halogenalkyl, Cr-Cx-Alkoxy, Cr-Cx-Halogenalkoxy, Cr-Cx-Alkylinb, Cr-Cx-Halogenalkylthio;

C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls (ünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkythio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkythio, C₁-C₄-Alkythio, C₁-C₄-Alkythio, C₁-C₄-Alkythio, C₁-C₄-Alkythio, C₁-C₄-Alkythio, C₁-C₄-Alkythio

5 COR21:

D10

Phenyl, Benzyl, Phenoxy, Benzyloxy, Phenytthio, Benzytthio, wobei die genannten Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylhio, C₁-C₄-Halogenalkylthio, C₁-C₄-Play

R¹

15

R12

C₁-C₄-Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy; C₂-C₅-Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor; C₃-C₄-Alkenyl;

Q

Sauerstoff oder NR14;

25 F

20

Wasserstoff:

C3-C6-Cycloalkyl, C3-C6-Cycloalkyl, substituiert durch ein bis drei C1-C6-Alkylgruppen;

C₂-C₆-Alkenyl; C₃-C₆-Alkinyl;

- 01

40 OR²⁰; ein Rest R¹³ oder gemeinsam mit einem weiteren Rest R¹³ eine C₄-C₄-Alkylenkette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminogruppe ersetzt sein kann;

R1

C1-C4-Alkyl; C3-C4-Alkenyl; C3-C4-Alkinyl; Cyclopropylmethyl; C3-C4-Cycloalkyl;

45

55

Wasserstoff; C₁-C₄-Alkyl; C₂-C₄-Alkenyl; oder gemeinsam mit R¹⁵ eine C₄-C₆-Alkylenkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann;

R17

C1-C4-Alkyl; C1-C4-Halogenalkyl;

- -

C1-C4-Alkyl; N,N-Dimethylamino:

-

C₁-C₄-Alkyl; C₁-C₄-Halogenalkyl; C₂-C₄-Alkoxyalkyl; C₃-C₄-Alkenyl; C₃-C₄-Alkinyl; C₃-C

1 oder 2:

R20

5

10

20

25

ΔD

Wasserstoff oder C1-C4-Alkyl;

ein Rest R12; Phenyl, Benzyl, wobei diese aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

sowie deren umweltverträglichen Salze.

- 15 2. Verbindungen der Formel I gemäß Anspruch 1 oder deren umweltverträglichen Salze, worin
 - einen Rest der Formel (A1), (A2), (A7), (A8), (A9),
 - w Sauerstoff
 - х Schwefel
 - 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-В Isothiazolyl, wobei diese genannten Reste zwei Reste R8 tragen; 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-

gebundene Reste Ra und einen N-gebundenen Rest Ra tragen; Wasserstoff

bedeuten.

- Verbindungen der Formel I gemäß Anspruch 2 oder deren umweltverträglichen Salze, worin einen Rest der Formel (A1) und
 - в 3-, 4- oder 5-Pyrazolyl, substituiert durch zwei C-gebundene Reste R8 und einen N-gebundenon Rest R⁹, bedeuten.
- Verlahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch dadurch gekennzeichnet, daß man eine Verbindung der Formel II.

A-SO, NHo (II)

mit einer Verbindung der Formel III

in der Hal Chlor oder Brom bedeutet, in Gegenwart einer Base in einem inerten Lösungsmittel in an sich bekannter Weise umsetzt.

Verlahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Carbonsäure der Formel IV

in Anwesenheit von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumiodid, Dicyclohexylcarbodiimid oder 1.1-Carbonyldiimidazol und gegebenenfalls in Gegenwart einer Base mit einer Verbindung der Formel II gemäß Anspruch 4 in an sich bekannter Weise umsetzt.

 Verfahren zur Herstellung der Verbindungen der Formel I mit W = 0 oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel V

 $A-SO_2-N=C=O$ (V)

mit einer Verbindung der Formel VI

M-B (VI)

5

20

30

45

50

- wobei M Wasserstoff oder Lithium bedeutet, umsetzt.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W≡O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel VII

15 A-SO₂-CI (VII)

in Gegenwart einer starken Base mit einem Säureamid der Formel VIII

in an sich bekannter Weise umsetzt.

 Verfahren zur Herstellung der Verbindungen der Formel I mit W=0 oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel IX

A-SO₂-NHT (IX),

worin T ein Alkalimetall bedeutet, mit einer Verbindung der Formel X

ASO₂NHal₂ (X),

35 worin Hal für Chlor oder Brom steht, und einem Aldehyd der Formel XI

B-CHO (XI)

in an sich bekannter Weise umsetzt.

 Verfahren zur Herstellung von Verbindungen der Formel I mit W = S oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel I mit W = O mit der Verbindung der Formel XII

 $H_3CO \longrightarrow \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$

in an sich bekannter Weise umsetzt.

Verfahren zur Herstellung von Verbindungen der Formel I mit W = 0 oder deren Salze gemäß Anspruch
 , dadurch gekennzeichnet, daß man eine Verbindung der Formel XIII

in der der Heterocyclus B' einen C-gebundenen Substituenten trägt, der als Abgangsgruppe fungiert, mit einem Nucleophil in an sich bekannter Weise umsetzt.

- Herbizides Mittel, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen Salz sowie übliche inerte Zusatzstoffe.
- Mittel zur Beeinflussung des Pflanzenwuchses, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen Salz sowie Übliche inerte Zusatzstoffe.
- 13. Verlahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man ein Sulfonamid der Formei I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensfaum einwirken Bät.
 - 14. Verlahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man ein Sulfonamid der Formeil, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.

Patentansprüche für folgenden Vertragsstaat : ES

Herbizides Mittel, enthaltend neben üblichen inerten Zusatzstoffen Sulfonamide der allgemeinen Formel

in der die Substituenten folgende Bedeutung haben:

Δ

30

45

w

25

35

50

55

Sauerstoff, Schwefel;

2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;

2-, 3-, 4- oder 5-Pyrrolyl, wobei diese genannten Reste drei C-gebundene Reste R[‡] und einen Ngebundenen Rest R[‡] tragen;

2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R8:

 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R³ und einen N-gebundenen Rest R³ tragen;

- 1,3,4-Thiadiazol-2-yl, -5-yl, 1.3,4-Oxadiazol-2-yl, -5-yl.
- 1,2,4-Thiadiazol-3-yl, -5-yl, 1.2,4-Oxadiazol-3-yl, -5-yl,
 - 1,2,3-Thiadiazol-4-yl, -5-yl, 1.2,3-Oxadiazol-4-yl, -5-yl,
 - 1,2,5-Thiadiazol-3-yl, -4-yl, 1.2,5-Oxadiazol-3-yl, -4-yl,
 - wobei diese Reste einen Rest R⁸ tragen;

45 1,2,4-Triazol-3-yl, substituiert durch einen C-gebundenen Rest R 19 und einen N-1 gebundenen Rest R 17 ;

1,2,4-Triazol-5-yl, 1,2,3-Triazol-4-yl, -5-yl, jeweils substitulert durch einen C-gebundenen Rest R⁸ und einen N-1 gebundenen Rest R⁹:

X Sauerstoff, Schwefel, NR1;

R'

Wasserstoff;

C1-C6-Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatome und/oder Phenyl;

C2-C4-Alkenyl;

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der fotgenden Substituenten tragen kann: C1-C2-Alkylt, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C3-Halogenalkylthio, Kirk, Cyano;

B2

15

20

25

30

35

Halogen;

Cyano; Thiocyano;

Q: -Ç:-Alkyl, welches durch ein bis f\u00e4nd Halogenatome und'oder einen der folgenden Rests substituiert sein kann: C;-C:-Alkoxy, C;-C:-Halogenalkoxy, C;-C:-Alkylthio, C;-C:-Halogenalkylthio, Phenyl, Phenoxy oder Phenylthio, wobei die Phenylteste jeweils durch ein bis f\u00fcnf Halogenatome und'oder ein bis drei der folgenden Rests substituiert sein k\u00f6nnen: C;-C:-Alkyl, C;-C:-Halogenalkyl, C;-C:-Alkoxy, C;-C:-Halogenalkoxy, C;-C:-Alkylthio, C;-C:-Aladogenalkylval, C;-C:-Alkoxy

C₃-C₄-Cycloalkyl, C₃-C₄-Cycloalkoy, C₃-C₆-Cycloalkylthio, C₅-C₆-Cycloalkenyl, C₅-C₆-Cycloalkenylthio, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome undfoder ein bis drei der folgenden Reste substitutiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio; C₁-C₄-Halogenalkylithio;

Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromalischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: Cyano, Nitro, Cı-Ca-Alkyl, Cı-Ca-Halogenalkyl, Cı-Ca-Alkoxy, Cı-Ca-Alkoxy, Cı-Ca-Alkylthio, Cı-Ca-Halogenalkylthio;

gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, welcher gegebenenfalls bis zu zwei der folgenden Substituento tragen kann: Halogen, Cyano, Nitro, C.-C.-Alkyl, C.-C.-Alkoxy, C.-C.-Alkylthio, C.-C.-Halogenalkyl, C.-C.-C.-Kalogenalkyl, C.-C.-C.-Kalogenalkyl, C.-C.-Kalogenalkyl, C.-C.-K

C1-C4-Alkoxy oder C1-C4-Alkylthio,

C2-C5-Alkenyl oder C2-C5-Alkenyloxy oder C2-C5-Alkenylthio.

C2-C6-Alkinyl, C2-C6-Alkinyloxy oder C2-C6-Alkinylthio,

wobej die genannten Alkoxy-, Alkytthio-, Alkenyl-, Alkinyl-, Alkenyloxytthio)-, Alkinyloxytthio)- Rest durch ein bis (lüft Halogenatome und/oder eine der Neigenden Gruppen substitutier sein können: C·-C₄-Alkoxy, C·-C₄-Halogenatkoxy, C₁-C₄-Alkytthio, C₁-C₄-Halogenatkytthio, Phenyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio;

COR12; COQR13; SO2NR15R16; SO2OR17; OSO2R18; S(O),R19;

--

einen der Reste R⁶; COQR¹³; SO₂NR¹⁵R¹⁶; SO₂OR¹⁷; OSO₂R¹⁸; S(O)₆R¹⁹;

R4

Wasserstoff; Halogen; Cyano;

50 C₁-C₄-Alkyl oder C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome; C₁-C₄-Alkoxy; C₁-C₄-Halogenalkoxy; C₁-C₄-Alkylthio; C₁-C₄-Halogenalkylthio;

R5

Wasserstoff: Nitro oder einen der Reste R2:

mi

Wasserstoff; Halogen; Cyano;

C₁-C₄-Alkyl, C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, OH, SH, Cyano;

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₅-Halogenalkylthio, wobei die genannten Alkoxy (thio)- bzw. Halogenalkoxy (thio)reste durch folgende Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkylthio;

~7

Nitro; oder einen der Reste R²;

08

10

15

20

25

30

45

50

55

Wasserstoff: Nitro:

einen der Reste R², oder zwei vicinale Reste R² bilden gemeinsam eine C₃-Kelte oder eine C₄-C₄-Kelte, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminoeinheit ersetzt sein kann;

R⁹

Wasserstoff:

C₁-C₄-Alkyl, welches durch ein bis fünf Halogenatome undfoder einen der folgenden Resis substituert sein kann: C₁-C₄-Alkoyx, C₁-C₄-Alkylytho, C₁-C₄-Alkylytho, C₁-C₄-Halogenalkylthie, Phenyl, Phenoxy, Phenylthio-, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome undfoder ein bis drei der folgenden Rests substituiert sein können: Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylkyl, C₁-C₄-Alkylko, C₁-C₄-Alkylkyl, C₁-C₄-Alkylko, C₁-C₄-Alkylko

C₂-C₆-Cycloalkyl, C₃-C₆-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: C₁-C₂-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoyx, C₁-C₄-Halogenalkoyx, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio.

Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein kann: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyllthio, C₁-C₄-Halogenalkylthio;

C₂-C₄-Alkenyl, C₂-C₅-Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls f\(\text{Unif Halogenatomer und\(\text{oder ein bis perior}\) der folgende Gruppen substituiert sein k\(\text{onnen: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkythio, Phenyl, Phenoxyt, Phenylthio, Benzyloxy, Benzylthio;

COR21;

RI

R

Wasserstoff; Phenyl, Benzyl, wobei die genannten aromatischen Reste durch 1 bis 5 Halogenatome und/oder ein bis drei der folgenden Gruppen substitutiert sein können: Cyano, Nitro, Cı-Cı-Alkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Cı-Halogenalkyl, Cı-Cı-Halogenalkyl, Cı-Cı-Hal

R12

 $C_1\text{-}C_4\text{-}Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy; $C_3\text{-}C_5\text{-}Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor: $C_3\text{-}C_4\text{-}Alkenyl;}$

Q Sauerstoff oder NR¹⁴:

B13

Wasserstoff:

C₁-C₆-Alkyl, C₁-C₆-Alkyl, substituiert durch ein bis drei der folgenden Reste: Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxy-C₁-C₂-alkoxy, C₂-C₅-Cycloalkyl und/oder Phenyl;

C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl, substituiert durch ein bis drei C₁-C₄-Alkylgruppen;

C3-C6-Alkenyl; C3-C6-Alkinyl;

Phenyl, Phenyl substituiert durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen: Cyano, Nitro, C1-C4-Ally, C1-C4-Halogenalikyl, C1-C4-Alkoxy, C1-C4-Halogenalikoxy, C1-C4-Allycenalikoxy, C1-C4-Ally

R14

15

20

25

30

aΩ

45

 OR^∞ ; ein Rest R¹³ oder gemeinsam mit einem weiteren Rest R¹³ elne C_1 - C_6 -Alkylenkeite, in der eine Methyleneinheit durch einen Sauerstoff oder eine C_1 - C_6 -Alkylimlnogruppe ersetzt sein kann;

Ris

C1-C4-Alkyl; C3-C4-Alkenyl; C3-C4-Alkinyl; Cyclopropylmethyl; C3-C4-Cycloalkyl;

B16

Wasserstoff; C₁-C₄-Alkyl; C₃-C₄-Alkenyl; oder gemeinsam mit R¹⁵ eine C₄-C₅-Alkylenkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann;

B17

C1-C4-Alkyl; C1-C4-Halogenalkyl;

C1-C4-Alkvl: N.N-Dimethylamino;

C₁-C₄-Alkyl; C₁-C₄-Halogenalkyl; C₂-C₄-Alkoxyalkyl; C₂-C₄-Alkenyl; C₃-C₄-Alkinyl; C₃-C₄-Halogenalkenyl; Phenyl; Phenyl, substituiert durch Fluor, Chlor, Brom, Methyl oder Methoxy;

1 oder 2:

D20

Wasserstoff oder C1-C4-Alkyl;

Q21

sowie deren umweltverträglichen Salze.

- Herbizides Mittel gemäß Anspruch 1, enthaltend Sulfonamide der Formel I gemäß Anspruch 1 oder deren umweltverträglichen Salze, worin
 - A einen Rest der Formel (A1), (A2), (A7), (A8), (A9),
 - W Sauerstoff
 - X Schwefel
 - B 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isoxhiazolyl, wobei diese genannten Reste zwei Reste R* tragen; 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-

gebundene Reste R8 und einen N-gebundenen Rest R9 tragen;

R⁴ Wasserstoff

bedeuten.

- 3. Herbizides Mittel gemäß Anspruch 1, enthaltend Sulfonamide der Formel I gemäß Anspruch 2 oder deren umweltverträulichen Salze, worin
 - A einen Rest der Formel (A1) und
 - B 3-, 4- oder 5-Pyrazolyl, substituiert durch zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ bedeuten.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

A-SO₂NH₂ (II)

mit einer Verbindung der Formel III

in der Hal Chlor oder Brom bedeutet, in Gegenwart einer Base in einem inerten Lösungsmittel in an sich bekannter Weise umsetzt.

 Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Carbonsäure der Formel IV

- in Anwesenheit von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumlodid, Dicyclohexylcarbodiimid oder 1,1-Carbonyldiimidazol und gegebenenfalls in Gegenwart einer Base mit einer Verbindung der Formel II gemäß Anspruch 4 in an sich bekannter Weise umsetzt.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel V

 $A-SO_2-N=C=O$ (V)

mit einer Verbindung der Formel VI

45 M-B (VI).

wobei M Wasserstoff oder Lithium bedeutet, umsetzt.

Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel VII

A-SO₂-CI (VII)

55

20

in Gegenwart einer starken Base mit einem Säureamid der Formel VIII

in an sich bekannter Weise umsetzt.

Verlahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 , dadurch gekennzeichnet, daß man eine Verbindung der Formel IX

worin T ein Alkalimetall bedeutet, mit einer Verbindung der Formel X

worin Hal für Chlor oder Brom steht, und einem Aldehyd der Formel XI

15

20

a٥

in an sich bekannter Weise umsetzt.

Verlahren zur Herstellung von Verbindungen der Formel I mit W = S oder deren Salze gemäß Anspruch
1, dadurch gekennzeichnet, daß man eine Verbindung der Formel I mit W = O mit der Verbindung der
Formel XII

- 35 in an sich bekannter Weise umsetzt.
 - Verfahren zur Herstellung von Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel XIII

- 45 in der der Heterocyclus B' einen C-gebundenen Substituenten irägt, der als Abgangsgruppe fungiert, mit einem Nucleophil in an sich bekannter Weise umsetzt.
 - Mittel zur Beeinflussung des Pflanzenwuchses, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen Salz sowie übliche inerte Zusatzstoffe.
 - Verlahren zur Bekämpfung unerwünschlen Pflanzenwuchses, dadurch gekennzeichnet, daß man ein Sullonamid der Formel I. gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.
- 13. Verlahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man ein Sulfonamid der Formel I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebenszum einwirken läßt.

(I) Veröffentlichungsnummer: 0 482 349 A3

(12)

FUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 91115834.3
- 2 Anmeldetag: 18.09.91

(i) Int. Cl.5. C07D 231/14, C07D 231/16. C07D 231/56, C07D 233/90, C07D 263/34, C07D 277/34, C07D 307/68, C07D 333/38, C07D 409/12, A01N 43/50, A01N 43/76

- Priorität: 20.09.90 DE 4029753
- Verölfentlichungstag der Anmeldung: 29.04.92 Patentblatt 92/18
- Benannte Vertragsstaaten: AT BE CHIDE ES FRIGBIT LINL
- Veröffentlichungstag des später veröffentlichten Recherchenberichts: 06.05.92 Patentblatt 92/19
- (1) Anmelder: BASF Aktlengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)
- (72) Erfinder: Heistracher, Elisabeth, Dr. Lenbachstrasse 10 W-6700 Ludwigshafen(DE) Erfinder: Fischer, Klaus, Dr. Gabelsbergerstrasse 7 W-6720 Spever(DE) Erfinder: Mayer, Horst, Dr. Faselwiese 19

W-6700 Ludwigshafen(DE) Erfinder: Saupe, Thomas, Dr. Kressenwiesenweg 13 W-6902 Sandhausen(DE) Erfinder: Hamprecht, Gerhard, Dr. Rote-Turm-Strasse 28 W-6940 Weinhelm(DE) Erfinder: Ditrich, Klaus, Dr. Parav-le-Monial-Strasse 12 W-6702 Bad Duerkhelm(DE) Erfinder: Kuekenhoehner, Thomas, Dr. Forststrasse 104 W-6737 Boehl-Iggelheim(DE) Erfinder: Gerber, Matthias, Dr. Ritterstrasse 3 W-6704 Mutterstadt(DE) Erfinder: Walter, Helmut, Dr. Gruenstadter Strasse 82 W-6719 Obrigheim(DE) Erfinder: Westphalen, Karl-Otto, Dr. Mausbergweg 58 W-6720 Spever(DE)

Sulfonamide.

(57) Die Abfassung der Ansprüche ist-nicht klar und knapp zu fassen (Art. 83-84. EPA) und enthalt eine so grosse Zahl Verbindungen dass eine vollständige Recherche auf ökonomischer Gründe nicht möglich ist (siehe Richtlinien für die Prüfung im Europäischen Patentamt, Teil B, Kapittel III, 2.(Umfang der Recherche)

 Die Recherche beschränkt sich deshalb ausschliesslich auf diejenigen Endprodukte die durch physikaliich auf diejenigen Enuprocento
sche oder chemische Daten charakterisiert sind d.h. die Beispielsubstanzen.

EUROPÄISCHER TEILRECHERCHENBERICHT Nummer der Anmeldung

der nach Regel 45 des Europäischen Patent-übereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 91 11 5834

EINSCHLÄGIGE DOKUMENTE Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile Betrifft Anspruch KLASSIFIKATION DER Kategorie DE-A-1 670 945 (BAYER AG) C 07 D 231/14 C 07 D 231/16 ARZNEIMITTEL FORSCHUNG, vol. 24, no. C 07 D 231/56 3a, March 1974, pages 363-374, C 07 D 233/90 Paul-Ehrlich-Gesellschaft für C 07 D 263/34 Chemotherapie, Aulendorf, DE; H. PLUMPE C 07 D 277/34 et al.: C 07 D 307/68 "Isoxazolcarboxamidoalkylbenzolsulfonyl-C 07 D 333/38 harnstoffe, -semicarbazide und C 07 D 409/12 -aminopyrimidine sowie damit verwandte A 01 N 43/50 A 01 N 43/76 Verbindungen und ihre blutzuckersenkende Wirkung" CHEMISCHE BERICHTE, vol. 106, no. 4, April 1973, pages 1290-1302; G. SIEWERT et al.: "Hydroxylierung von 5-Alkyl-2-(benzolsulfonylamino)pyrimidin en und strukturverwandten Antidiabetika" D.A EP-A-0 269 141 (DUPHAR INTERNATIONAL RECHERCHIERTE SACHGEBIETE (Int. Cl.5) RESEARCH B.V.) -/-C 07 D A 01 N UNVOLLSTÄNDIGE RECHERCHE Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung den Vorschriften des Europäischen patentübereinkommens so wenig, daß es nicht möglich ist, auf der Grundlage einiger Patentansprüche sinnvolle Ermittlungen über den Stand der Technik durchzuführen. Technik durenzuführen. Vollständig recherchierte Patentansprüche: Unvollständig recherchierte Patentansprüche: Nicht recherchierte Patentansprüche: Grund für die Beschränkung der Rocherche: siehe Blatt -C-

Abschlußdarum der Recherche

17-12-1991

KATEGORIE DER GENANNTEN DOKUMENTEN

- X: von besonderer Bedeutung allein betrachtet y: von besonderer Bedeutung in Verbindung mit einer anderen Verdiffentlichung derselben Kategorie A: technologischer Hitnergund O: nichtschriftliche Offeebarung P: Zmischenliteratur

DEN HAAG

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: siteres Patentöckument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist
- D : in der Anmeldung angeführtes Dokument L : aus andero Grunden angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes

DE BUYSER I.A.F.

PO PORM

Europäisches Patentamt EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung EP 91 11 5834

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 5)	
Kategorie	and the state of t	Betrifft Anspruch	A WILLIAM CONT.
D,A	EP-A-0 244 166 (E.I. DU PONT DE NEMOURS AND CO.)		
			,
			RECHERCHIERTE SACHGEBIETE (Int.5CL
	*		
	*		