Фармакогенетика, фармакогенетични дефекти.

Имуногенетика, наследствени имунодефицитни състояния.

Фармакогенетика, фармакогенетични дефекти

Гарод и Холдейн - необичайните реакции към лекарства и храни могат да се обяснят с биохимичната <u>индивидуалност</u> на хората.

Мотулски- аномалните реакции към лекарства могат да са свързани с наследствени ензимопатии.

фогел - термина "фармакогенетика" (1959г.) за изучаване на генетично детерминирани вариации, които се разкриват чрез ефекта на лекарствата - нов клон на медицинската генетика.

Определение – Фармакогенетиката изучава генетично обусловената абнормна индивидуална чувствителност към лекарства и храни.

В основата на нежеланите реакции са заложени генетични механизми за:

- **■** *Резорбция* на лекарствата
- Кинетика на лекарствата
- Свързване с клетъчни рецептори
- Биотрансформация на лекарствата
- **■** *Елиминиране* на лекарствата

Кинетика на лекарствения метаболизъм

А. *Преходна* вариация, мултифакторен контрол на лекарствения метаболизъм (унимодално разпределение).

В и С. *Непреходна* вариация моногенен контрол на лекарствения метаболизъм:

- Бимодалност при доминантен ген R с 2 фенотипа
- Триимодално разпределние при фенотипно различие между RR и Rr.

Метаболизъм на Izoniazid

Плазмените концентрации на isoniazid няколко часа след прилагането му най-ранната демонстрация на физиологичен полиморфизъм при човека

Други фактори, влияещи върху лекарствения метаболизъм

Не-генетични фактори също могат да модифицират лекарствения отговор (в допълнение на генетичните фактори):

- > Възраст
- > Тегло и начин на хранене
- > Фактори на средата (пушене, алкохол)
- > Употреба на други лекарства
- > Заболявания на черния дроб и бъбреците

Примери за ефекта на генния полиморфизъм върху лекарствения отговор

Gene	Enzyme/Target	Drug	Clinical response
CYP2D6	Cytochrome P450 2D6	Codeine	Individuals homozygous for an inactivating mutation do not metabolize codeine to morphine and thus experience no analgesic effect
CYP2C9	Cytochrome P450 2C9	Warfarin	Individuals heterozygous for a polymorphism need a lower dose of warfarin to maintain anticoagulation
NAT2	N-Acetyl transferase 2	Isoniazid	Individuals homozygous for "slow-acetylation" polymorphisms are more susceptible to isoniazid toxicity
TPMT	Thiopurine S-methyltransferase	Azathioprine	Individuals homozygous for an inactivating mutation develop severe toxicity if treated with standard doses of azathioprine
ADRB2	β-Adrenergic receptor	Albuterol	Individuals homozygous for a polymorphism get worse with regular use of albuterol
KCNE2	Potassium channel, voltage-gated	Clarithromycin	Individuals heterozygous for a polymorphism are more susceptible to life-threatening arrhythmias
SURI	Sulfonylurea receptor 1	Sulfonylureas	Individuals heterozygous for polymorphisms exhibit diminished sensitivity to sulfonylurea-stimulated insulin secretion
FS	Coagulation factor V (Leiden)	Oral contraceptives	Individuals heterozygous for a polymorphism are at increased risk for venous thrombosis

Цитохром Р450 - метаболизъм

Повечето цитохром Р450 ензими са отговорни за реакциите от <u>Фаза I от системите за метаболизъм</u> – най-често реакции на моноокисление (редукция, хидролиза). Ензимните реакции се означават като функционални.

Cytochrome P₄₅₀ СҮР зависима ензимна система

Цитохром P_{450} суперфамилия за гени, кодиращи мембрано-свързани хемопротеин монооксигенази от 20 фамилии с 56 различни ензима.

Три от тези фамилии: CYP-1, CYP-2, CYP-3 (всяка с по 11 субфамилии) участват в метаболизма на ендогенни съединения (стероиди, жлъчни и мастни киселини и др.), ксенобиотици (лекарства, канцерогени и др.).

Гените за (суб) фамилиите са пръснати в генома. Те са високо полиморфни (наблюдават се разлики в кодиращите ДНК последователности).

Унаследяване на дефицита: AP аа – бавни метаболизатори Аа,АА - бързи метаболизатори

~ 8% от американците са с бавна (аа) метаболитна активност по *Цитохром Р450* системата:

- Бета адрен. рецепторни антагонисти (Propranolol, Propafenon)
- Невролептици (Thyoridazine)
- Трициклични антидепресанти (Amitryptiline, Imitryptiline)
- **Хипотензивни** (Debrisoquine)
- **Антиаритмични** (Spartein)

Принос на отделните Цитохром Р450 ензими към фаза фаза I лекарствен метаболизъм

Figure 18-1 Typical hydroxylation reactions carried out by cytochrome P450 enzymes in phase I metabolism.

СҮР-2 D6 субфамилия

Локус на СҮР-2D6 в хромозома 22.

засилен терапевтичен ефект (свръхобразуване на активен метаболит)

токсично действие (натрупване на лекарство + активен меболит)

Цитохром Р450 полиморфизми

Съществуват фенотипни различия, дължащи се на метаболитната активност или количеството на експресирания СҮР ензим – кодиран от ген.

Според метаболитната активност - 3 основни групи инидивиди метаболизатори:

- нормални
- бавни
- бързи

Серумни лекарствени нива след повторни дози на лекарство (стрелки) в трима индивиди с различен профил на лекарствен метаболизъм.лошият метаболизатор акумулира лекаството до токсични нива. Нормалният – достига стабилни нива в терапевтичните граници. Свръхбързият – не може да поддържа серумни нива в рамките на терапевтичните граници.

СИСТЕМИ ЗА ДЕТОКСИКАЦИЯ

фаза II е също ензимна система и е свързана с биотрансформация на междинни метаболити до крайни продукти чрез присъединяване на АК, сулфатни, ацетатни, глутатионови остатъци.

Таза III ксенобиотиците се екскретират извън клетъчното пространство, от енергийно зависима помпа – тук участват не ензимни сестеми, а транспортни протеини, открити във връзка с изследването на лекарствената резистентност MDRP (mrltidrug resistance protein). MDRP1 до MDRP6 формират фамилията на ABC транспортните протеини. Най-добре характеризираният транспортен протеин е P-gp (P-гликопротеин) кодиран от MDRP1

EXAMPLES OF PHASE II DRUG METABOLISM: CONJUGATION

Типични реакции на фаза 2 конюгация до неактивни лекарства и създаване на разтворими лекарствени метаболити за екскреция.

Полиморфни ензими фаза II

FDA Boxed Warning

 През 2010г. FDA публикува предупреждение, че част от пациентите, приемащи клопидогрел (от 2% до 14%) не метаболизират ефективно лекарството до активната му форма поради генетични вариации.

Според FDA е необходимо пациентите и лекарите да бъдат уведомени за наличието на генетични тестове и възможностите за използване на алтернативни медикаменти или увеличено дозиране при пациентите с генетично доказан бавен метаболизъм на клопидогрел.

Клопидогрел формиране на активна форма

Frequency of Poor CYP2D6 and CYP2C19 Metabolizers in Various Population Groups

Population Frequency of Poor Metabolizers (%)

Ethnic Origin of P	opulation	CYP2D6	CYP2C19
Sub-Saharan Africa	ı	3.4	4.0
Amerindian		0	2
Asian		0.5	15.7
White		7.2	2.9
Middle Eastern/No	orth Africa	1.5	2.0
Pacific Islander		0	13.6

Генетични вариации, влияещи върху метаболизма на Плавикс, Клопидогрел

		-
Генетични варианти в СҮР2С19 гена	Ензимна активност	Клиничен ефект
Нормален *1/*1	Нормална	Стандартно дозиране
Междинни метаболизатори *1/*2 и *1/*3	Намалена	Намалени терапеветични нива на активна форма на клопидогрел- да се покачи дозата по 2 табл.на ден. Финансово по-изгодно Празугрел.
Бавни метаболизатори *2/*2 *2/*3 и *3/*3	Липсваща	Няма смисъл от Плавекс, клопидогрел. Да се назначи Празугрел. Стентираните бавни метаболизатори са с 2 пъти по-висок риск от СС събития 1 г. след интервенцията.
Бързи метаболизатори – *1/ *17	Увеличена	4% увеличен риск от кървене при хетерозиготи на алел *17. Назначава се по 0,5 хапче или само се следи протрмбина и кр. Картина като цяло.
Ултрабързи метаболизатори *17/*17	Силно увеличена	8% увеличен риск от кървене при хомозиготните носители на алел *17

Метаболизъм на Синтром

Генетични вариации, влияещи върху метаболизма на Варфарин, Синтром

Генетични варианти в СҮР2С9 гена	Промяна на ензимната активност	
Нормален - *1/*1	Няма	Стандартно дозиране
Междинни метаболизатори- *1/*2, *1/*3	Намалена	Носителите на генетични варианти са изложени на увеличен риск от кървене.
Бавни метаболизатори - *2/*2, *2/*3,*3/*3	Намалена	Необходима 30-50% по-ниска доза Необходима е 75% по-ниска доза, (по- малко от ¼ таблетка на ден)

Генетични вариации, влияещи върху метаболизма на Варфарин, Синтром

Генетични варианти в VKORC1 гена	Промяна на ензимната активност	Клиничен ефект Лекарствена динамика
VKORC1(-1639 G>A)	Намалена	Носителите на генетичния вариант са изложени на увеличен риск от кървене Необходимо е намаляване на дозата

Етнически различия при някои фармакогенетични нарушения

Disorder	Ethnic group	Frequency (%)
Slow acetylation	Europeans Orientals	50 10
Pseudocholinesterase variants	Europeans Eskimos	<1 1–2
G6PD deficiency	N. Europeans S. Europeans Afro-Carribeans	0 up to 25 10%
Hypolactasia	Europeans Asians	<20 100
Atypical ADH	Europeans Orientals	5 85

N - ацетилтрансферазна активност (ОМІМ # 243400)

Бавните ацетилатори "aa" (на лекарства като антитуберкулостатика Izoniazio) са по-склонни да развият странични ефекти при конвенционални дози: психични смущения, епилептични пристъпи, полиневрит

Бързите ацетилатори "AA" могат да са неадекватно лекувани поради ↓ izoniazid нива в кръвта, повишена склонност към рецидив.

N - ацетилтрансферазна активност (ОМІМ # 243400)

Бавно разграждане в черния дроб на:

Izoniazid

Hydralazine - антихипертензив

Sulphasalazine - сулфонамид

Caffeine

Phenobarbital

Tecт: 10 mg/кг Rimifon

бързи \rightarrow след 6 часа \rightarrow 1 mg

бавни \rightarrow след 6 часа \rightarrow 5 mg

Сукцинил - холинова чувствителност (ОМІМ # <u>1</u>77400?)

Ензимът бутирил - холинестераза ("псевдохолинестераза") хидролизира холинови естери (напр. сукцинилхолин - миорелексант).

Норма (AA) - типичен ензим, (Aa) - типичен и атипичен, засегнати (aa) - само атипичен ензим.

Лицата (аа) имат удължена мускулна релаксация и апнеа ≥ 1 час след анестезия със сукцинилхолин / кураре – респир.парализа, смърт.

Сукцинил - холинова чувствителност (ОМІМ # 177400)

Фамилните членове могат да бъдат скринирани чрез кръвен ензим-инхибиторен тест (дибукаиново число DN). Той определя % на блокирания нормален ензим псевдо-холинестераза от локален анестетичен дибукаин.

Дибукаино число - DN	во Честота при Европейци	Ензимна активност		твителност суксаметоний
80	95%	Нормална		Няма
49	1 :2 500	Леко намал	пена	+++
22	1: 11 000	Намалена		+++
0	1:170 000	Отсъствац	ца	++++

Глюкозо-6-фосфат дехидрогеназен дефицит (ОМІМ # 305900)

Лица със Средиземноморски и Африкански произход. Установен при лечението на малария в негри в Централна Африка

Бърза хемолиза - неблагоприятна реакция към лечение с някои често използвани медикаменти: антималарийни сулфонамиди

Лица с Г6ФД дефицит не проявяват хемолиза ако еритроцитите им не се подложат на фармакологичен или химичен стрес.

Патогенеза

Пентозофосфатен цикъл на Ери (Г6ФД → НАДФН). Ензимният дефект:

- ↓ каталитичната активност
- **↓** стабилност
- ↓ (-) биосинтеза
- ↓ стабилност

Унаследяване

X-рецесивно - мъже хемизиготи и жени хомозиготи > 200 варианта на Г6ФД (> 200 мутации в гена) - множествен алелизъм; алелна хетерогенност с голяма клинична вариабилност).

Клиника

Хематологични кризи – тъмна урина, жълтеница (иктер), анемия (↓ Er, ↓ Hb) при прием на:

- Лекарства
 - vit C, vit K
 - противомаларийни
 - сулфонамиди, антибиотици (Levomicytin)
 - аналгетици,антипиретици (Phenacetin,Analgin, Aspirin, Phenobarbital, Chinin и др.)
- Храни бакла (фавизъм)
- Инфекции бактериални или вирусни

Клиника - 5 основни типа

Безсимптомен: енз. активност С 25%

Негърско-африкански: активност ↓ с 80%; самоограничаващи се хемолитични кризи,без летален ефект, без фавизъм Кантонски тип: средно - тежък, източни популации Средиземноморски тип: активност ↓ с 95 -100%; летален изход; няма самоограничаващи се хемолитични кризи; има фавизъм

Нестабилен тип: хемолитична анемия още при раждането, изявява се без действие на екзогенни фактори, но се изостря от тях

Двойното хетерозиготно носителство на Г6ФД дефицит с βталасемия води до по-лека клинична картина поради провокиран излив на много млади еритроцити с ↑ ниво Г6ФД

Алхолна непоносимост (OMIM # 100650)

Лица с Азиатски произход метаболизират етанола с по-висока скорост от Европейците и с високо производство на странични продукти.

алкохол дехидрогеназа (АДХ) полиморфизъм Етанол

Ацеталдехид

ацеталдехид дехидрогеназа

липса на АЛДХ1 в цитозола и на АЛДХ2 в митохондриите

Ацетат

Лица с *АЛДХ2<u>*2</u> алел* натрупват ацеталдехид с: лицева червенина, гадене, палпитации и т.н. Този предпазен за алкохолизъм ген е разпространен в Азия.

Остра интермитентна порфирия (ОМІМ #176000)

Лекарства провокиращи пристъп

Алкохол

Барбитурати

Дифенилхидантоин

Естрогени, Орални контрацептиви

Сулфонамиди

Гризеофулвин

Употребата на какъвто и да е агент при лица с ОИП трябва да се съобрази фармацевтично.

Остра интермитентна порфирия (ОМІМ #176000)

Уропорфиноген-1-синтетазата посредничи в единствения път за синтеза на хема при човека: пълен блок в хомозиготи би бил летален, но ограниченото количество ензим (хетерозиготи) може да стане недостатъчно за лекарствено индуцираната ALA synthase (на δ-аминолевулинова киселина). Някои от увеличените метаболити са потенциално невротоксични: коремна болка, повръщане, психични нарушения, парализа. Порфобилиногенът може да се разкрива в урината с колориметричен тест.

Остра интермитентна порфирия (ОМІМ #176000)

А. Родословие на жена диагностицирана с ОИП, която твърди, че няма засегнати родственици.

В.Същото родословие след изследване на uroporphyrinogen-1- synthase - поява на значителен брой рискови за пристъп асимптоматични лица

Ензимният дефект при ОИП може да се измери чрез изследвания проведени върху еритроцити.

Малигнена хипертермия (ОМІМ # 145600)

Състояние (1 на 10 000) провокирано от анестетични агенти (халотан, сукцинилхолин) с изява на:

- хипертермия (42,3°C=107,6°F)
- мускулен спазъм,
- ацидоза.

По време на операция; третира се симптоматично с бързо охлаждане и i.v. приложение на Dantrolene. При рискови лица - предварителен in vitro тест за мускулна контрактура с халотан/ кофеин.

Фармакогенетични дефекти при лица с наследствени заболявания

Заболяване

Абнормна реакция от прилагане на:

Глаукома

Синдром на Даун

Порфирия интермитентна

Хорея на Хънтингтон

Гуша

Синдром на Crigler-Najjar

MODY

Хемоглобинопатии

HLA антиген DRW3

Гликокортикоиди

Atropin

Барбитурати

Опиати

Диуретици (chlorthiazide)

Салицилати

Chlorpropamide

Сулфонамиди

Златна терапия

Клинични съображения във фармакогенетиката

Лекарственият метаболизъм (резорбция, кинетика, свързване с рецептори, елиминиране), се определя до голяма степен от генетични фактори. Гените значимо могат да променят терапевтичния отговор.

Ключът за разкриване на предразположение към неблагоприятни лекарствени реакции е подробната фамилна анамнеза.

Лекарят трябва или да предприеме подходящи изследвания преди приложението на медикамент на пациента или да избягва употребата на лекарства като цяло.

Някои лекарства могат да имат и тератогенен ефект поради различни вариации в гените на майка или плод.

Комбинации на SNP (единични нуклеотидни полиморфизми) в различни индивиди. Приложимост - създаване на профили с различия в отговора към лекарства: ефикасен и неефикасен.

Екогенетика (разширение на фармакогенетиката) изучава генетично обусловените различия между хората в по предразположеност към действието на физични, химични и инфекциозни агенти на околната среда.

- ◆ Такива различия в податливостта могат да бъдат или моногенни или мултифакторни.
- ↓ Цел: идентифициране на лица с повишен риск за въздействие на мутагени и канцерогени от околната среда.

Екогенетика

генетична вариабилност в податливостта към средови агенти

Environmental agent	Genetic susceptibility	Disease	
UV light	Fair complexion	Skin cancer	
Drugs (see text)		and the same bank	
Foods		and a superant solls	
Fats	Hypercholesterolaemia	Atherosclerosis	
Fava beans	G6PD deficiency	Favism	
Gluten	Gluten sensitivity	Coeliac disease	
Salt	Na-K pump defective	Hypertension	
Milk	Lactase deficiency	Lactose intolerance	
Alcohol	Atypical ADH	Alcoholism	
Oxalates	Hyperoxaluria	Renal stones	
Fortified flour	Haemochromatosis	Iron overload	
Inhalants			
Dust	α ₁ -antitrypsin deficiency	Emphysema	
Smoking	AHH inducibility	Lung cancer	
Allergens	Atopy	Asthma	
Infections	Defective immunity	Diabetes mellitus? Spondylitis?	

Генетика на нормалната имунна система Наследствени имунодефицитни състояния

Имунната система трябва да може да различава "свое" от "чуждо" с висока степен на точност. **Генетичната основа** на имунната с-ма е комплексна. **Имуногенетиката** изучава генетиката на имунната с-ма

Имунна система

По време на развитието, лимфоидната стволова клетка поема по един от двата пътя на диференциране: клетъчен или хуморален имунитет

Клетъчен имунитет

Включва:

диференциация на лимфоидните стволови клетки в **Т-лимфоцити**.

Извършва се в:

тимус;

слезка;

лимфни възли.

Хуморален имунитет

Включва:

диференциация на лимфоидните стволови клетки

в В-лимфоцити

Извършва се в:

екв. бурсата на Фабриций слезка,

фетален черен дроб, костен мозък

Диференцир ане на своловата клетка в Т- и Влимфоцити.

Места на хипотетични блокове при някои имунодефиц болести

В клетъчен имунен отговор Имуноглобулини

Имуноглобулините (Ig) са серумни протеини. Функцията им за разпознаване на антигени и активен отговор е разкрита чрез белтъчен и ДНК-анализ на структура им т.е чрез кой подход на картиране?

Леките вериги могат да бъдат *два типа*: к и λ. Всяка верига има три региона:

```
вариабилен (V);
свързващ (J);
константен (C);
```

Тежките вериги могат да бъдат от *пет класа* γ, μ, α, δ,ε (за IgG, IgM, IgA,IgD,IgE). Всяка верига има четири региона: вариабилен (V);

```
изменчив (D);
свързващ (J);
константен (C).
```

Петте класа имуноглобулини варират по двата тпа леки вериги (напр. молекулната формула на IgG е: $\lambda_2 \gamma_2$ или $\kappa_2 \gamma_2$

Модел на имуноглобулинова молекула

Гените

за к и λ леките вериги са локализ. в хромозоми 2 и 22 а за тежките γ, μ, α, δ, ε вериги в хромозома 14

Създаване на разнообразие от антитела

Няколко механизма са отговорни за потенциалното производство на 10¹⁰ до 10¹⁴ антитела :

- Множество гени: над 80 (V), 30 (D) и 6 (J) сегменти. 5 гени само за тежки вериги за клас γ, μ, α, δ, ε
- Множество комбинации между H- и L- веригите
- Соматична рекомбинация (VDJ- рекомбинация) при формиране на тежка верига

Т клетъчен имунен отговор

Т- клетъчният рецептор

- много подобен по структура на имуноглобулините, но за разлика от тях, никога не се секретира от клетката.

Около 90% от Т клетъчните рецептори са от една α и една β верига (гени в 14 хромозома около 10% са съставени от γ и δ верига (гени в 7 хромозома)

Разнообразието се създава по механизмите на имуно-глобулиновото разнообразие с изключение на соматичната хипермутация.

Наследствени имунодефицитни болести

Общи белези:

- Редки
- Тежко протичане, висока смъртност в датска възраст
- Засягат една или двете компоненти н имунния отговор
- Ранно начало
- Повишена чувствителност към:
 - вирусни инфекции(нарушен клетъчен имунитет)
 - бактериални инфекции(недостатъчна Ig синтеза)

- Първични (изолирани) нарушения и вторични (свързани) състояния
 - Генетична хетерогенност

Класификация на човешките имунодефицити

Категория	Локализация	OMIM
Комбиниран имунодефицит		
1.Тежък комбиниран имунен дефицит- Швейцарски тип	Xq13.1	300400
- Аденозин дезаминазен дефицит	20q12	102700
2.Синдром на Wiskott-Aldrich	Xp11.2	301000
→ 3. Атаксия-телангиектазия		
В-клетъчна дисфункция		
→ 1.X-свързана агамаглобулинемия на Bruton	Xq21.3	300300
2. Имуноглобулин А дефицит		
3. Транзиторна хипогамаглобулинемия на детството		
Т-клетъчна дисфункция		
—→ 1.Синдром на DiGeorgi	22q11	188400
2.Хронична муко-кутанна кандидоза		212050
Фагоцитна дисфункция		
1.Хронична грануломатозна болест		
- цитохром б алфа субединица	16q24	233690
- цитохром б бета субединица	Xp21	306400
→ 2. Синдром на Chediak – Higashi	1q42	214500
3.Миелопероксидазен дефицит	17q23.1	254600
Дефекти на комплементарната каскада		
С1,2,3,4,5,6,7,8,9, фактор В дефицит		
Дефект на комплементарни регулаторни протеини Хередитарна ангиоедема		

Тежък комбиниран имунен дефицит (SCID)

В и Т клетъчен дефицит - рекурентни инфекции (вирусни, гъбични, бактериални, протозойни) при напълно нарушен клетъчен и хуморален имунитет с намален брой лимфоцити и имуноглобулини.

Прогноза

Смърт в детска възраст (без костно - мозъчна трансплантация или генна терапия)

Генетика

Генетична хетерогенност: аденозин дезаминазен дефицит (AP) или дефект в цитокин γ рецептора (X-рецесивно)

Синдром на Wiskott- Aldrich

Т и В клетъчен дефицит Дефект на възможността на IgM да свърже бактериите:

- ↓ IgM , ↑ IgA , нормални IgE
- тромбоцитопения
- ненормални Т клетки
- рекурентни пиогенни инфекции с екзема
- висок риск от развитие на лимфом

Прогноза

Смърт до 15-16 годишна възраст от хеморагия (без костно

- мозъчна трансплантация).

Генетика

Х- свързано нарушение

Eczematous lesions in Wiskott-Aldrich syndrome

Eczema and petechiae in WAS

History: subdural hematoma for which trauma was denied; platelet count reduced; missense mutation (Phe 128 Ser) detected in WASP gene.

Атаксия телангиектазия (синдром на Louis-Bar)

Т и В клетъчен дефицит:

- хипопластичен тимус, ниски / липсващи IgA и IgG.
- атаксия
- телеангиектазии (дилатирани кръвоносни съдове по конюнктивата, ушите и лицето)
- ↑ риск от левкемии или лимфоми

Генетика

Автозо-рецесивно унаследяване: ДНК репаративен дефект с хромозомна нестабилност (чупливост на хромозомите).

Агамаглобулинемия тип Bruton

В - клетъчен дефицит

Липса на В лимфоцити

Бактериални инфекции на дихателната с-ма и кожата (след 6м възраст, когато майчините IgG намалеят)

Прогноза

Възможна смърт от дихателна недостатъчност; Антибиотичното лечение Интравенозни имуноглобулини

Генетика

Х- свързано. Дефект в тирозин - киназния ген с ниско производство на всички класове имуноглобулини.

Тимусна аплазия (Синдром на DiGeorgi)

Т клетъчен дефицит

- Тимус и паращитовидни жлези не се развиват
- силно намалени или липсващи Т лимфоцити
- Вирусни, гъбични и протозойни инфекции
- Тетания ниски нива на Са и паратхормон
- Вродени аномалии (сърдечно-съдови, арактерен рациес, цепка на небцето)

Генетика

Спорадично, може АД.

Възможна микроделеция на 22q11 (микроделеционен синдром).

Хронична грануломатозна болест

Дефект във фагоцитозата (неутрофилите) поради липса на NADPH оксидазна активност / сходни ензими. Фагоцитите поглъщат микробите, но не могат да ги убият

- образуват се грануломи
- рекурентни опортюнистични инфекции от бактерии особено *St. aureus*, *Escherihia coli* , *Aspergillus*

Генетика

Цитохром b алфа субединица - Автозомно рецесивно Цитохром b бета верига - X рецесивно

Синдром на Chediak - Higashi

Дефект във фагоцитозата - резултат от лизозомно натрупване на гигантски цитоплазматични гранули. Ненормални клетки "natural killers" и неутрофили.

- частичен албинизъм
- повтарящи се пиогенни инфекции от стафилококи и стрептококи

Генетика

Автозомно рецесивно нарушение