Listing of Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

1-22. Canceled.

23. (Currently Amended) A method of treating obesity in a human subject comprising administering to said subject an amount of a composition [[comprising]] consisting essentially of an amylin agonist analogue effective to treat obesity in said human subject, wherein the amount of the [[amylin or]] amylin agonist analogue administered in said composition is about 0.01 mg to about 5 mg per day, wherein said composition is not administered in conjunction with another obesity relief agent, [[and]] wherein said human subject is in need of treatment for obesity and whereby body weight is reduced by said treatment, wherein the amylin agonist analogue comprises an amino acid sequence of:

```
^{1}A<sub>1</sub>-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B<sub>1</sub>-Asn-^{15}Phe-Leu-C<sub>1</sub>-D<sub>1</sub>-E<sub>1</sub>-^{20}F<sub>1</sub>-G<sub>1</sub>-Asn-H<sub>1</sub>-Gly-^{25}Pro-I<sub>1</sub>-Leu-Pro-J<sub>1</sub>-^{30}Thr-K<sub>1</sub>-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z (SEQ ID NO:14) wherein
```

A₁ is Lys, Ala, Ser or hydrogen;

 B_1 is Ala, Ser or Thr;

C1 is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

 G_1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

 J_1 is Ser, Pro or Thr;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Pro, and K_1 is Asn; then one or more A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and wherein the amylin agonist analogue is not 25,28,29 Pro-h-amylin (SEQ ID NO:12).

24. Canceled.

25. (Withdrawn and previously presented) A method according to claim 24 wherein said amylin agonist analogue is selected from the group consisting of ¹⁸Arg^{25,28,29}Pro-human-amylin (SEQ ID NO:10), and ¹⁸Arg^{25,28}Pro-h-amylin (SEQ ID NO:8).

26. Canceled.

- 27. (Previously presented) The method according to claim 23 wherein said composition is administered subcutaneously.
- 28. (Withdrawn) A method according to claim 26 wherein said amylin agonist analogue is administered subcutaneously.
- 29. (Previously presented) The method according to claim 23 wherein said composition is administered from 1 to 4 times per day.

30. Canceled.

- 31. (Previously presented) The method according to claim 23 wherein said composition is administered before a meal.
- 32. (Previously presented) The method according to claim 23 wherein said composition is administered within about 15 minutes of a meal.

33. (Currently Amended) A method of treating obesity in a human subject, said method consisting of administering to said subject an amount of a composition effective to treat obesity in said human subject, said composition [[comprising]] consisting essentially of an obesity relief agent consisting of an amylin agonist analogue and a pharmaceutically acceptable carrier, wherein the amount of said [[amylin or]] amylin agonist analogue administered in said composition is about 0.01 mg to about 5 mg per day, and wherein said human subject is in need of treatment for obesity and whereby body weight is reduced by said treatment, wherein the amylin agonist analogue comprises an amino acid sequence of:

 1 A $_{1}$ -X-Asn-Thr- 5 Ala-Thr-Y-Ala-Thr- 10 Gln-Arg-Leu-B $_{1}$ -Asn- 15 Phe-Leu-C $_{1}$ -D $_{1}$ -E $_{1}$ - 20 F $_{1}$ -G $_{1}$ -Asn-H $_{1}$ -Gly- 25 Pro-I $_{1}$ -Leu-Pro-J $_{1}$ - 30 Thr-K $_{1}$ -Val-Gly-Ser- 35 Asn-Thr-Tyr-Z (SEQ ID NO:14) wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

J₁ is Ser, Pro or Thr;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁is Pro, and K₁ is Asn; then one or more A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and wherein the amylin agonist analogue is not ^{25,28,29}Pro-h-amylin (SEQ ID NO:12).

34. (Canceled)

35. (Withdrawn and previously presented) A method according to claim 34 wherein said amylin agonist analogue is selected from the group consisting of ¹⁸Arg^{25,28,29}Pro-h-amylin (SEQ ID NO:8).

36. Canceled

- 37. (Previously presented) The method according to claim 33 wherein said composition is administered subcutaneously.
- 38. (Previously presented) The method according to claim 33 wherein said composition is administered from 1 to 4 times per day.
- 39. (Previously presented) The method according to claim 33 wherein said composition is administered before a meal.
 - 40-67. Canceled.
 - 68. Canceled
- 69. (Withdrawn) The method according to claim 24, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ ID NO: 15):

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;
G₁is Asn, Gln or His;
H₁ is Phe, Leu or Tyr;
I₁ is Ile, Val, Ala or Leu
J₁ is Ser, Pro or Thr;
K₁ is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkylamino, arylamino, aralkylamino, alkylamino, arylamino, arylamino, arylamino, aralkylamino, arylamino, arylamino, aralkylamino, arylamino, arylami

 A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Pro, and K_1 is Asn; or

 A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Ser and K_1 is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

70. (Withdrawn) The method according to claim 24, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ ID NO: 16):

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Pro, J₁ is Val, and K₁ is Asn; then one or more A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

71. (Withdrawn) The method according to claim 24, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ ID NO: 17):

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-Pro-^{30}Thr-J_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

 E_1 is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

 J_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Asn; then one or more of A_1 to J_1 is a D-amino acid and Z is selected from

the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

72. Canceled

73. (Withdrawn) The method according to claim 34, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ ID NO:15):

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-J_{1}-Pro-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

J₁ is Ser, Pro, Leu, Ile or Thr;

K₁ is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when

- (a) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Pro, and K_1 is Asn; or
- (b) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Ser and K_1 is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

74. (Withdrawn) The method according to claim 34, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ ID NO: 16):

 1 A₁-X-Asn-Thr- 5 Ala-Thr-Y-Ala-Thr 10 Gln-Arg-Leu-B₁-Asn- 15 Phe-Leu-C₁-D₁-E₁- 20 F₁-G₁-Asn-H₁-Gly- 25 -I₁-J₁-Leu-Pro-Pro- 30 Thr-K₁-Val-Gly-Ser- 35 Asn-Thr-Tyr-Z wherein

A₁ is Lys, Ala, Ser or hydrogen;

 B_1 is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Pro, J₁ is Val, and K₁ is Asn; then one or more A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

75. (Withdrawn) The method according to claim 34, wherein the amylin agonist analogue comprises an amino acid sequence of (SEQ NO: 17):

 $^1A_1\text{-X-Asn-Thr-}^5Ala\text{-Thr-Y-Ala-Thr}^{10}Gln\text{-Arg-Leu-}B_l\text{-Asn-}^{15}Phe\text{-Leu-}C_l\text{-}D_l\text{-}E_l\text{-}^{20}F_l\text{-}G_l\text{-}Asn-}H_l\text{-}Gly\text{-}^{25}Pro\text{-}I_l\text{-}Leu\text{-}Pro\text{-}Pro\text{-}^{30}Thr\text{-}J_l\text{-}Val\text{-}Gly\text{-}Ser\text{-}}^{35}Asn\text{-}Thr\text{-}Tyr\text{-}Z$ wherein

 A_1 is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;
C₁ is Val, Leu or Ile;
D₁ is His or Arg;
E₁ is Ser or Thr;
F₁ is Ser, Thr, Gln or Asn;
G₁ is Asn, Gln or His;
H₁ is Phe, Leu or Tyr;
I₁ is Ile, Val, Ala or Leu;
J₁ is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkylamino, arylamino, aralkylamino, alkylamino, aralkylamino, aralkyla

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Asn; then one or more of A_1 to J_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

76. (Currently Canceled) A method of treating obesity in a human subject comprising administering to said subject an amount of a composition effective to treat obesity in said human subject, wherein said human subject is in need of treatment for obesity, said composition comprising a peptide having an amino acid sequence of:

$$^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z (SEQ ID NO:14)$$

.

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His; H₁ is Phe, Leu or Tyr; I₁ is Ile, Val, Ala or Leu J₁ is Ser, Pro or Thr; K₁ is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁is Pro, and K₁ is Asn; then one or more A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, wherein said amount is effective to treat obesity.

77. (Withdrawn) A method of treating obesity in a human subject comprising administering to said subject an amount of a composition comprising a peptide having an amino acid sequence of (SEQ ID NO:15):

 $^1A_1-X-Asn-Thr-^5Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_l-Asn-^{15}Phe-Leu-C_1-D_l-E_1-^{20}F_1-G_1-Asn-H_1-Gly-^{25}Pro-I_1-Leu-J_l-Pro-^{30}Thr-K_1-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z\\$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

 F_1 is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

 J_1 is Ser, Pro, Leu, Ile or Thr;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when

- (a) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Pro, and K_1 is Asn; or
- (b) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Ser and K_1 is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy and with the proviso that the composition does not contain a cholecystokinin or a cholecystokinin agonist.

78. (Withdrawn) A method of treating obesity in a human subject comprising administering to said subject an amount of a composition comprising a peptide having an amino acid sequence of (SEQ ID NO:16):

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{l}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}I_{1}-J_{1}-Leu-Pro-Pro-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

 K_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a

disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Pro, J_1 is Val, and K_1 is Asn; then one or more A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy and with the proviso that the composition does not contain a cholecystokinin or a cholecystokinin agonist.

79. (Withdrawn) A method of treating obesity in a human subject comprising administering to said subject an amount of a composition comprising a peptide having an amino acid sequence of (SEQ ID NO:17):

 1 A₁-X-Asn-Thr- 5 Ala-Thr-Y-Ala-Thr- 10 Gln-Arg-Leu-B₁-Asn- 15 Phe-Leu-C₁-D₁-E₁- 20 F₁-G₁-Asn-H₁-Gly- 25 Pro-I₁-Leu-Pro-Pro- 30 Thr-J₁-Val-Gly-Ser- 35 Asn-Thr-Tyr-Z wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

 E_1 is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

 G_1 is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

 J_1 is Asn, Asp or Gln;

X and Yare independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkylamino, arylamino, aralkylamino, arylamino, aralkylamino, arylamino, aralkylamino, aralkylamino

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val and J_1 is Asn; then one or more of A_1 to J_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino,

alkyloxy, aryloxy or aralkyloxy and with the proviso that the composition does not contain a cholecystokinin or a cholecystokinin agonist.

- 80. (Currently Amended) The method according to claim 23 wherein the amount of the [[amylin or]] amylin agonist analogue administered is from 30 μ g/dose to 300 μ g/dose.
 - 81. Canceled.
- 82. (Currently Amended) The method according to claim 33 wherein said [[amylin or]] amylin agonist <u>analogue</u> is administered at a dose from 30 μg/dose to 300 μg/dose.
 - 83. Canceled.
- 84. (Currently Canceled) The method according to claim 76 wherein said peptide is administered at a dose from 30 μ g/dose to 300 μ g/dose.
- 85. (Withdrawn and previously presented) The method according to claim 77 wherein said peptide is administered from about 1 to 4 times a day at an amount of 0.0025 mg/dose to 5 mg/dose.
- 86. (Withdrawn and previously presented) The method according to claim 77 wherein said peptide is administered at a dose from 30 μ g/dose to 300 μ g/dose.
- 87. (Withdrawn and previously presented) The method according to claim 78 wherein said peptide is administered from about 1 to 4 times a day at an amount of 0.0025 mg/dose to 5 mg/dose.
- 88. (Withdrawn and previously presented) The method according to claim 78 wherein said peptide is administered at a dose from 30 μ g/dose to 300 μ g/dose.
- 89. (Withdrawn and previously presented) The method according to claim 79 wherein said peptide is administered from about 1 to 4 times a day at an amount of 0.0025 mg/dose to 5 mg/dose.
- 90. (Withdrawn and previously presented) The method according to claim 79 wherein said peptide is administered at a dose from 30 μ g/dose to 300 μ g/dose.

	91. Canceled.
	92. Canceled.
	93. Canceled.
	94. Canceled.
mass ii	95. (Previously presented) The method according to claim 23 wherein said subject has a body ndex of at least 27.0 kg/m ₂ .
	96. (Previously presented) The method according to claim 33 wherein said subject has a body

97. (Currently Canceled) The method according to claim 76 wherein said subject has a body

mass index of at least 27.0 kg/m^2 .