CAD Design to Chips ..

CAD Design to Chips ..

Standard Cells

- General Purpose Logic
- Used to synthesize RTL
- Same height, varying width
- Most common

Datapath Cells

- For structured designs (adders, multiplexers, etc)
- Same width and varying height

Standard Cell Approach

Standard Cell Layout Methodology – 1980s

Standard Cell Layout Methodology – 1990s

Nand Gate – Standard cell approach

Design Rule Checking (DRC)

Stick Diagram

Stick diagram of inverter

The Stick Diagrams

Contains no dimensions
Represents relative positions of transistors
Only topology is important
Final layout generated by "compaction" program

Two versions of \overline{C} .(A+B)

Two versions of C.(A+B)

- Suggestions for efficient layout planning
 - Gate signals vertical, Supply rails and diffusion areas horizontal
 - M1 and M2 are perpendicular to each other, and so on (violated above)
 - Plan the ordering of inputs using logic graphs and identify Euler path

The Logic Graphs

The Logic Graphs

Two versions of C.(A+B)

Two versions of C.(A+B)

OAI22 Logic Graph

Multifingered Transistors

One finger

Two fingers (folded)

Less diffusion capacitance