## Holds and Implication

• a "holds" in the cycle where its value is non-zero and not unknown

```
assert property (@(posedge clk) a |-> b );

clk
a
b
holds
not hold
```

This property implies b must hold whenever a holds

• This property implies that b must hold in the cycle after a holds

assert property (@(posedge clk) a |=> b);

clk
a
b
does holds
not hold

#### Simulation of Assertions

- A temporal property can be in one of 4 states during simulation:
  - Inactive (no match), active (so-far-so-good), pass or fail

```
assert property ( @ (posedge clk)
      a \mid => ((a \&\& b) \#\#[*0:\$] !b) );
clk
a
b
               active active
                              pass
                                           active active
                                                           fail
```

# Simulation and Cover Property

- Simulators count the number of time the property holds
- Display information in waveforms and in a report



#### State Machines

- In designing sequential systems, we (hardware designers) think in terms of *states* and *state machines*.
- We talk about the present state (s) of a system and the next state (s') of a system
- Temporal logic, model checking and so on are based on the idea that a system can be described in terms of discrete states with defined transitions between states.
- Thus, we can only verify state machines. This seems like a restriction because we often design systems in terms of datapaths and controllers (state machines). We could choose to think of the entire system as a state machine, or we could think of the datapath as (multiple) state machines.

### Finite State Machine



- $S = \{s_1, s_2, s_3, s_4\}$ 
  - If  $v_1$  is the state variable indicating that the FSM is in state  $s_1$ , then
    - $v_1' = v_3 \vee (v_1 \land \neg Message)$
    - and so on

### Finite State Machine



- Four atomic propositions:
  - send, message, blocked, timed

## **Properties**

- Recall that a property is some fact about a system
- For example, in the communications interface, a property might be:

"If we have a message, it will always be sent"

- We want to prove that this property is true. To do that we need some way of expressing that property in a mathematical way.
- There are two important classes of properties:
  - Safety "bad things never happen"
  - Liveness "good things happen eventually"

## **Computation Tree**

- Computation Tree Logic (CTL\*)
  - CTL\* formulas describe properties of computation trees
  - A computation tree is formed by choosing an initial state and unwinding the structure as an infinite tree:



# Temporal Logic

- CTL\* formulas are expressed in terms of path quantifiers:
  - A "for all computation paths"
  - E "there exists a computation path"
- and temporal operators:
  - X "next time (state)"
  - F "eventually" or "in the future"
  - G "always" or "globally"
  - U "until"
  - R "release"
- CTL is a subset of CTL\*, in which each each temporal operator is immediately preceded by a path quantifier, (for example, AX, "for all paths, at the next time")
  - Example CTL formula:
  - EF (send ^¬message) "there exists a path, where, eventually, send holds (is true) but message does not hold"

Model Checking



- Let us assume we wish to check some property of this system, for example:
  - "If we have a message, it will always be sent"
- In CTL, this is expressed as:
  - AG(message → AF send)
  - "for all paths, globally, the proposition message implies that for all paths, eventually, the proposition send holds"

## **Model Checking**

- It is helpful to rewrite this formula as:
  - ¬EF(message ∧ EG ¬send)

"there does not exist a path such that eventually message holds and there exists a path globally where send does not hold"

- The states where message is true are:
  - $S(message) = \{s_2, s_4\}$
- We now need to find S(EG ¬send), in other words, does there exist a path over which, globally, send does not hold? We can see that:
  - $S(EG \neg send) = \{s_1, s_2, s_4\}$
- Thus:
  - S(message  $\wedge$  **EG** ¬send) = {s<sub>2</sub>, s<sub>4</sub>}
- Now, from which states does there exist a path that eventually (EF) leads to these states. Again, we can see that all states can lead to these states:
  - **EF**(message  $\land$  **EG** ¬send) = {s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>}
  - or, ¬**EF**(message  $\wedge$  **EG** ¬send) = ∅

### Fairness

- What does this mean?
  - The proposition fails. We attempted to check whether the arrival of a message would always result in the message being sent, and using temporal logic proved that this is not true.
  - Intuitively, the system can stay forever in states s<sub>2</sub> and s<sub>4</sub>. Each time we try to send the message, it is blocked by some other activity in the system.
- Is this likely?
  - Intuitively, no. "Forever" is a long time we would expect that eventually the message would not be blocked.
- In temporal logic, we have the concept of fairness.
  - We add fairness constraints, F, to the FSM model:

$$M = (S, R, L, F)$$

# Model Checking with Fairness

- In the message sending example, a fairness constraint might be:
  - message ∧ send ∧¬blocked
- Any infinite paths in which that fairness constraint does not hold are therefore excluded.
  - The infinite sequence  $s_2$ ,  $s_4$ ,  $s_2$ ,  $s_4$ , ... is excluded because the constraint does not hold in any state in that path
- Thus:
  - S(**EG** ¬send) = ∅
  - S(message ∧ **EG** ¬send) =  $\emptyset$
- So:
  - **EF**(message  $\wedge$  **EG** ¬send) = ∅
  - $\neg$ **EF**(message  $\land$  **EG**  $\neg$ send) = {s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>, s<sub>4</sub>}
  - $AG(message \rightarrow AF send) = \{s_1, s_2, s_3, s_4\}$
- By excluding unfair paths, the system is proved to work correctly.

#### Liveness and Fairness

- The property
  - "If we have a message, it will always be sent" is a *Liveness* property ("good things happen eventually")
- This is expressed in CTL, as we have seen, as
  - AG(message → AF send)
- In CTL, all operators must have a path quantifier (E or A)
- In CTL\*, any combinations are allowed; the property can be written as:
  - AG(message → F send)
- CTL\* is the more general, but it is harder to write model checkers.
- CTL <u>cannot</u> express *Fairness*; the Liveness property in CTL\* is:
  - A((GF message) → send)

# Linear Time Logic (LTL)

- CTL can't express fairness
- CTL\* is too complicated
- Linear Time Logic no path quantifiers (A or E)
- In LTL, the liveness property, including fairness, is:
  - (**GF** message) → send)
- LTL runs in linear time (CTL runs in branching time)
- LTL assumes that the trace (the sequence of states) is a subset of the traces defined by the LTL property
- If the trace is not in the set
  - It violates the property
  - It is a counter-example
- BUT, LTL cannot express branching!
- So, use both CTL and LTL model checkers.

Safety Properties and Invariants



- A safety property of the communications interface is that
  - "send and blocked" do not occur at the same time
- In CTL: P= AG(¬send ∨ ¬blocked)
- We can see that this property holds in all states, provided that the initial state is one of the four shown
- This is known as an Invariant