METODI MONTE-CARLO PER LO STUDIO DELL'OSCILLATORE ARMONICO QUANTISTICO CON IL FORMALISMO DEL PATH-INTEGRAL

Dario Rossi, Margherita Sagina

Indice

1	Introduzione	2
2	Funzione d'onda dello stato fondamentale	3
3	Energia	4
	3.1 Termine divergente	4
	3.2 Contributi all'energia interna	6
	3.2.1 Energia cinetica	6
	3.2.2 Energia potenziale	
	3.3 Limite al continuo dell'energia totale	8
4	Splitting dei livelli energetici	10
	4.1 Primo livello eccitato	10
	4.2 Secondo livello eccitato	12
A	A Appendice	Ι
	A.I Energia totale nel limite al continuo	I
	A.II Splitting dei livelli energetici	

1 Introduzione

Obiettivo L'obiettivo di questo studio è analizzare numericamente l'oscillatore armonico quantistico tramite il formalismo del path integral, confrontando i risultati ottenuti con quelli analitici.

Cenni teorici Dal formalismo del path integral si trova che il valor medio termodinamico di un'osservabile \hat{O} si può riscrivere come

$$\langle \hat{O} \rangle_T = \frac{Tr(e^{-\beta H} \hat{O})}{Tr(e^{-\beta H})} = \frac{\mathcal{N} \int \mathcal{D}x e^{-S_E/\hbar} \hat{O}[x]}{\mathcal{N} \int \mathcal{D}x e^{-S_E/\hbar}} = \int_{x(\beta \hbar) = x(0)} \mathcal{D}x P[x] \hat{O}[x]$$
(1)

dove S_E è l'azione euclidea, ottenuta dall'azione nello spazio di Minkowski tramite una rotazione di Wick del tempo $(t \to -i\tau)$. Nel caso dell'oscillatore armonico è

$$S_E = \int_0^{\beta\hbar} d\tau \left(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} m \omega^2 x^2 \right) \tag{2}$$

Implementazione numerica Per affrontare numericamente il problema, è necessaria una discretizzazione e l'utilizzo di variabili adimensionali.

Si divide quindi l'intervallo di tempo euclideo $[0,\beta\hbar]$ in un reticolo di N punti separati da un passo reticolare $a\equiv\frac{\beta\hbar}{N}$. La posizione $x(\tau)$ diventa $x(j\cdot a)$, con $j\in[0,N], j\in\mathbb{N}$ e $\frac{dx}{d\tau}$ si può discretizzare usando la definizione di derivata in avanti $\frac{x_{j+1}-x_{j}}{a}$. Per rendere tali quantità adimensionali, si utilizzano le variabili $\eta\equiv a\omega$ e $y(j)\equiv\sqrt{\frac{m\omega}{\hbar}}\cdot x(j\cdot a)$, così si ottiene l'azione discretizzata

$$S_E^L = \sum_{j=1}^N \frac{1}{2\eta} (y_{j+1} - y_j)^2 + \frac{\eta}{2} y_j^2$$
 (3)

dove il primo termine è quello cinetico e il secondo quello potenziale. A partire dall'azione discretizzata si trova la funzione di partizione

$$\mathcal{Z} = Tr(e^{-\beta H}) \propto \int \left(\prod_{j=1}^{N} dy_j \right) exp\left(-\sum_{j=1}^{N} \left[\frac{1}{2\eta} (y_{j+1} - y_j)^2 + \frac{\eta}{2} y_j^2 \right] \right)$$
(4)

dove il segno di proporzionalità sottintende una costante di rinormalizzazione \mathcal{N} divergente con $\eta \to 0$. Tale funzione è utile per il calcolo dei valori medi di quantità termodinamiche come l'energia interna.

Algoritmo L'algoritmo Monte-Carlo utilizzato per la generazione dei cammini da analizzare è un Metropolis locale, data l'interazione tra primi vicini. Viene estratto casualmente un cammino iniziale di N variabili posizione y (partenza a caldo). Ad ogni passo di update si modifica il cammino, scegliendo la nuova posizione $y_p \in [y_0 - \delta, y_0 + \delta]$ (dove δ è un parametro dell'algoritmo) e valutando se accettare il cambiamento tramite un passo di accept-reject con probabilità $r = e^{-S_{E_L}^{prova}} / e^{-S_{E_L}^{Iniziale}}$. Vengono salvate poi le misure di osservabili quali il valor medio sul singolo path del campo (y), del campo al quadrato (y^2) , e della differenza dei campi tra due siti successivi al quadrato (Δy^2) dopo un numero $i_{decorrel} \cdot N$ di update.

Per ogni simulazione vengono stabilite a priori N ed η , scegliendo se mantenere $N\eta$ costante oppure η costante ed N variabile. Nel primo caso viene stabilita una temperatura fissa, dato che $N\eta = \hbar\omega\beta = \frac{\hbar\omega}{k_BT}$, così che al variare di η si possa studiare il limite al continuo ($\eta = a\omega \to 0$), limite nel quale si riottiene la soluzione analitica. Mantenendo invece η fisso e N variabile è possibile studiare l'andamento delle quantità di interesse al variare della temperatura a passo reticolare fisso.

2 Funzione d'onda dello stato fondamentale

Introduzione teorica La funzione d'onda dello stato fondamentale di un oscillatore armonico è nota analiticamente ed è $\psi_0(x) = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}}$, che in unità adimensionali diventa

$$\psi_0(x) = \left(\frac{1}{\pi}\right)^{1/4} e^{-\frac{x^2}{2}} \tag{5}$$

Numericamente è possibile ricavare $|\psi_0|^2$ utilizzando un operatore della coordinata tale che

$$F(q, x_A, x_B)|x\rangle = \begin{cases} |x\rangle & \text{se } x \in [x_a, x_b] \\ 0 & \text{se } x \notin [x_a, x_b] \end{cases}$$
 (6)

e calcolando il valor medio su uno stato $|\psi\rangle$ si ha

$$\langle \psi | F | \psi \rangle = \int_{-\infty}^{\infty} dx \langle \psi | F | x \rangle \langle x | \psi \rangle = \int_{x_A}^{x_B} dx | \psi(x) |^2$$
 (7)

dove l'ultimo termine è la probabilità di trovare la particella localizzata nell'intervallo $[x_A, x_B]$. Definendo questo oggetto in termini del path integral

$$\langle F \rangle_T = \frac{Tr(e^{-\beta H}F)}{Tr(e^{-\beta H})} = \sum_n e^{-\beta E_n} \frac{\langle n|F|n\rangle}{\langle n|e^{-\beta E_n}|n\rangle} = \frac{\int dx \langle x|e^{-\beta H}F|x\rangle}{\langle x|e^{-\beta H}|x\rangle} = \int \mathcal{D}x(\tau) P[x]\tilde{F}[x]$$
(8)

Facendone il limite per $T \to 0$ si trova il valore di aspettazione della funzione d'onda dello stato fondamentale

$$\lim_{T \to 0} \langle F \rangle_T = \langle 0|F|0\rangle = \int_{x_A}^{x_B} dx |\psi_0(x)|^2 \tag{9}$$

Implementazione numerica Si fa un istogramma delle N posizioni y della particella per ciascun cammino campionato a $N\eta=30$ fisso e si confronta la forma d'onda ottenuta con la Funzione 5, modulo quadro. In Figura 1 si osserva come al diminuire del passo reticolare ($\propto \eta$) l'istogramma tenda a combaciare con la funzione analitica, come ci si attende dal limite al continuo.

Figura 1: Confronto tra forma d'onda generata dall'istogramma dei cammini per $N\eta = 30$ per diversi valori di η e la funzione d'onda del fondamentale 5 calcolata analiticamente. In alto a destra zoom per altezza del bin > 0.5.

Prendendo un $N\eta$ più piccolo $(N\eta=3)$, ovvero una temperatura più alta, si esce dal limite $T\ll 1$ per cui vale la 9, pertanto tendendo al continuo non si riesce a riprodurre l'andamento della funzione d'onda del fondamentale, come si vede in Figura 2.

Figura 2: Confronto tra forma d'onda generata dall'istogramma dei cammini per $N\eta = 3$ per diversi valori di η e la funzione d'onda del fondamentale 5 calcolata analiticamente. In alto a destra zoom per altezza del bin > 0.5.

3 Energia

Introduzione teorica Nel caso dell'oscillatore armonico quantistico, l'energia interna si può scrivere analiticamente come

$$U = \hbar\omega \left(\frac{1}{2} + \frac{1}{e^{\beta\hbar\omega} - 1}\right) \tag{10}$$

Nella formulazione su reticolo, partendo dalla funzione di partizione nella (4), ricaviamo l'energia interna con $U = -\frac{\partial}{\partial \beta} log \mathcal{Z}$ e, osservando che $N\eta = \beta \hbar \omega$, riscrivendo la derivata rispetto a β in termini di quella rispetto a η , alla fine si trova

$$\frac{U}{\hbar\omega} = \frac{1}{2}\langle y^2 \rangle - \frac{1}{2\eta^2} \langle \Delta y^2 \rangle \tag{11}$$

dove il primo termine è il contributo potenziale e il secondo quello cinetico, con $\Delta y^2 = (y_{j+1} - y_j)^2$. Notiamo che il termine cinetico ha segno negativo e diverge come $\frac{1}{\eta}$, nel limite $\eta \to 0$. Ciò è dovuto alla presenza di una costante di rinormalizzazione divergente nella scrittura di \mathcal{Z} in termini di path integral, $\mathcal{N} \propto \eta^{N/2}$, che tenuta di conto dà l'energia interna correttamente rinormalizzata

$$\frac{U}{\hbar\omega} = \frac{1}{2}\langle y^2 \rangle - \frac{1}{2\eta^2}\langle \Delta y^2 \rangle + \frac{1}{2\eta}$$
 (12)

Implementazione numerica È stata realizzata una simulazione che restituisce y^2 e Δy^2 mediati su un singolo cammino, per 10^5 cammini, dopo una termalizzazione iniziale di 10^5 updates. Quindi è stato fatto un binned bootstrap (con 100 resamplings e binning 2000) delle distribuzioni ottenute, per ricavare l'incertezza associata ai termini $\langle y^2 \rangle$ e $\langle \Delta y^2 \rangle$, presenti nella (12).

3.1 Termine divergente

L'obiettivo di questa sezione è verificare che il termine cinetico dell'energia diverga, per $\eta \to 0$, come $\sim \frac{1}{2\eta}$. Si esegue quindi la simulazione a η fisso e N variabile, per valori di $\eta \ll 1$, così che si possa eseguire un fit della quantità nella (11) usando come funzione modello $a + \frac{1}{2} + \frac{b}{e^{\eta N} - 1}$, essendo quest'ultima valida nel limite al continuo, con a = 0 e b = 1 come nella 10.

I valori di η utilizzati sono 0.01, 0.008, 0.005, 0.002. Di seguito è riportato il grafico con i dati e la funzione di best fit per il caso $\eta = 0.01$; i parametri di best fit per gli altri valori di η sono riportati nella Tabella 1.

Figura 3: Dati e funzione di best fit dell'energia interna non rinormalizzata in funzione di $\beta\hbar\omega=N\eta$, con $\eta=0.01$ fisso.

η	$a \pm \sigma_a$	$b \pm \sigma_b$	$\chi^2/ndof$
0.01	-49.998 ± 0.003	0.99 ± 0.02	16/20
0.008	-62.499 ± 0.006	0.91 ± 0.03	21/16
0.005	-100.01 ± 0.01	0.88 ± 0.05	32/17
0.002	-249.98 ± 0.02	0.88 ± 0.07	78/18

Tabella 1: Risultati best fit dell'energia interna non rinormalizzata in funzione di $\beta\hbar\omega=N\eta,$ con η fisso.

Per vedere l'andamento in funzione di $\frac{1}{\eta}$ del termine noto a nella tabella precedente, è stato realizzato un fit lineare (con funzione di modello y=mx+q), i cui risultati sono riportati di seguito.

Figura 4: Fit dei termini noti a della tabella 1 in funzione di $\frac{1}{n}$.

I parametri di best fit ottenuti per i dati in Figura 4 sono:

$$m = -0.49999 \pm 0.00004$$
 $q = -0.0002 \pm 0.0047$ $\chi^2/ndof = 1/2$

Si osserva che il coefficiente angolare è compatibile con -0.5 e il termine noto con 0, come atteso.

3.2 Contributi all'energia interna

Per studiare l'andamento dei contributi all'energia interna in funzione del passo reticolare η , è stata eseguita una simulazione mantenendo $N\eta=20$ (cioè con temperatura fissata).

3.2.1 Energia cinetica

In prima battuta è stata considerata l'energia cinetica non normalizzata, come nella 11, che in funzione di η ha l'andamento riportato in Figura 5 a sinistra. Si nota che il termine considerato è negativo e divergente per $\eta \to 0$, come atteso.

Noto l'andamento della divergenza, come studiato in Sezione 3.1, si rinormalizza il termine cinetico aggiungendo un contributo di $\frac{1}{2\eta}$, ottenendo così la Figura 5 a destra. Nella stessa figura è presente anche un fit eseguito con funzione modello $ax^2 + b$.

Termine cinetico per $N\eta = 20$

Figura 5: A sinistra il termine cinetico dell'energia interna senza rinormalizzazione; a destra il termine cinetico dell'energia interna rinormalizzato: dati (in blu) e funzione di best-fit (in rosso). Entrambi i grafici sono in funzione di η .

Di seguito i risultati del fit:

$$a = -0.0267 \pm 0.0005$$
 $b = 0.2497 \pm 0.0003$ $\chi^2/ndof = 17/18$

3.2.2 Energia potenziale

Analogamente al caso dell'energia cinetica, è stato eseguito un fit di $\frac{\langle y^2 \rangle}{2}$ con funzione modello $ax^2 + b$. Di seguito sono riportati grafico e parametri di best fit.

Figura 6: Termine potenziale dell'energia interna: dati (in blu) e funzione di best fit (in rosso) .

$$a = -0.0261 \pm 0.0003$$
 $b = 0.2497 \pm 0.0002$ $\chi^2/ndof = 22/18$

Teorema del Viriale II teorema del viriale afferma che $2\langle T \rangle = n \langle V \rangle$, con T energia cinetica, V energia potenziale ed essendo n tale che $V \propto x^n$, con x posizione. In questo caso n=2, pertanto termine cinetico e potenziale risultano uguali. Come verifica, si riporta la Figura 7, da cui si evince che la differenza tra i due contributi, al variare di η , è compatibile con 0.

Figura 7: In alto il plot dell'energia cinetica e potenziale in funzione di η ; in basso la differenza tra le due.

In particolare, dai risultati dei fit in Sezione 3.2.1 e 3.2.2, si osserva che i termini noti b, che rappresentano il valore dei due contributi nel limite al continuo, sono compatibili entro l'errore. Inoltre, la loro somma è 0.4994 ± 0.0004 , quindi compatibile entro due σ con il valore atteso per $N\eta = 20$ pari a $\frac{1}{2} + \frac{1}{e^{20}-1} \sim 0.5$.

3.3 Limite al continuo dell'energia totale

L'obiettivo è studiare l'andamento dell'energia interna al variare della temperatura dell'oscillatore armonico quantistico, in modo esatto. Per far questo sarebbe necessario studiare il caso $\eta=0$ a $N\eta$ fisso, che però non è numericamente implementabile, visto che il numero di punti del cammino divergerebbe. Per ovviare a questo problema, si fa un fit dell'energia a temperatura fissa al variare di η , usando come funzione modello ax^2+b . Si considerano, quindi, i termini noti b ottenuti dal fit, che rappresentano il valore dell'energia nel limite al continuo. Si esegue questa procedura per i valori di $N\eta$ riportati in Tabella A1 in Appendice A.I, dove si trovano anche i risultati del best fit. In Figura 8 è riportato a titolo di esempio il caso $N\eta=20$.

Figura 8: Energia interna in funzione di η a $\beta\hbar\omega=N\eta=20$ fisso: dati e funzione di best fit.

Valori dei parametri di best fit:

$$a = 0.5001 \pm 0.0005$$
 $b = -0.0526 \pm 0.0007$ $\chi^2/ndof = 39/18$

Poiché l'andamento dell'energia interna in funzione della temperatura è noto dal punto di vista analitico, secondo la 10, è stato eseguito un fit dell'energia interna nel limite al continuo (cioè dei parametri di best fit b di cui sopra) al variare di $\frac{1}{N\eta}$ usando come funzione modello $a+\frac{b}{e^{\frac{1}{x}}-1}$. Di seguito sono riportati il grafico, i residui normalizzati e i parametri del best fit.

Figura 9: Sopra l'energia interna nel limite al continuo $(\eta \to 0)$, al variare di $N\eta$: dati e funzione di best fit. Sotto il grafico dei residui normalizzati

$$a = 0.4999 \pm 0.0001$$
 $b = 1.03 \pm 0.02$ $\chi^2/ndof = 17/12$

Dai risultati precedenti si conclude che a è compatibile entro l'incertezza con il valore atteso di $\frac{1}{2}$; b è compatibile con il valore atteso 1 entro 2σ .

4 Splitting dei livelli energetici

Introduzione teorica Per poter studiare la differenza energetica tra il primo o il secondo livello eccitato e il fondamentale, è necessario analizzare la funzione di correlazione a due punti connessa degli operatori posizione o posizione al quadrato, rispettivamente. La funzione di correlazione a due punti connessa, per un generico operatore della posizione O(q), è per definizione $C_O^{(c)}(\tau) \equiv C_O(\tau) - \langle O \rangle^2 = \langle O(\tau)O(0) \rangle - \langle O \rangle^2$ che espansa su una base di autovettori dell'energia e, facendo il limite del tempo euclideo $\tau \to \infty$, diventa

$$C_O^{(c)}(\tau) = \sum_{n \neq 0} e^{-(E_n - E_0)\tau} |\langle n|O(q)|0\rangle|^2 \xrightarrow[\tau \to \infty]{} e^{-(E_{n_{min}} - E_0)\tau} |\langle n_{min}|O(q)|0\rangle|^2$$
(13)

dove $|n_{min}\rangle$ è lo stato di minima energia che accoppia col fondamentale tramite l'operatore O(q). Nel formalismo del path integral $C_O^{(c)}(\tau)$ può essere calcolata tramite la funzione di correlazione a due punti connessa di $O(x(\tau))$ mediata sui cammini, nel limite $\beta \to \infty$.

Implementazione numerica A differenza delle simulazioni usate per la Sezione 3, è stato necessario campionare la posizione y e la posizione al quadrato y^2 ad ogni passo del cammino nel tempo euclideo, invece che le rispettive medie. Si campionano 10^5 cammini, mantenendo $N\eta = 30$ fisso. A questo punto si calcola la correlazione per ogni cammino, a tempo euclideo τ fissato, con

$$\frac{1}{N-k} \sum_{i=1}^{N-k} x(i)x(i+k) \tag{14}$$

dove x è y o y^2 e con $k = \frac{\tau}{a}$ variato tra 0 e 20.

Per calcolare la $C_O^{(c)}(\tau)$ si sottrae poi $\langle O \rangle^2$, come da definizione, con O dato dalle quantità y o y^2 , campionate precedentemente.

Si esegue quindi un fit con funzione modello Ae^{-bx} dei $C_O^{(c)}(\tau)$ in funzione di $\omega \tau = \eta k$, mantenendo η fisso. Per riscalare i dati, k è stata moltiplicata per il valore di η corrispondente e ciò ha permesso di ottenere degli andamenti parametrizzati dalla stessa curva esponenziale: in pratica sono stati usati gli stessi valori iniziali per tutti i processi di fit, indipendentemente da η . Il risultato ottenuto per il parametro di best fit b è il gap di energia adimensionale tra il livello considerato e il fondamentale $\frac{\Delta E_n}{k}$.

A questo punto si realizza un fit lineare di $\frac{\Delta E_n}{\hbar \omega}$ in funzione di η^2 (che parametrizza le correzioni dovute agli effetti di discretizzazione). Poiché nel limite al continuo $(\eta \to 0)$ $\Delta E_n = n\hbar \omega$, per ognuno dei livelli considerati si confronta il valore atteso n con quello dell'intercetta q ottenuta dal fit.

4.1 Primo livello eccitato

In questo caso non è stato sottratto il termine $\langle y \rangle^2$ al $C_y(\tau)$ poiché si è osservato essere compatibile con 0, come si evince dalla Tabella A3 in Appendice A.II, quindi $C_y(\tau) = C_y^{(c)}(\tau)$.

In Figura 10 a sinistra sono riportati dati e fit di $C_y^{(c)}(\tau)$ in funzione di $\omega \tau$ ed i risultati di ognuno di essi al variare di η si trovano nella Tabella A2 in Appendice A.II.

Figura 10: A sinistra misure e fit della funzione di correlazione a due punti per l'osservabile posizione y in funzione di $\omega \tau$, per valore di $N\eta=30$ costante. A destra misure e fit del gap di energia tra primo eccitato e fondamentale in funzione di η^2 .

I risultati del fit per il gap di energia tra fondamentale e primo eccitato sono

$$m = -0.040 \pm 0.001 \quad q = 1.0003 \pm 0.0003 \quad \chi^2/ndof = 6/6$$

Il valore del termine noto q risulta compatibile con quello atteso che è 1.

4.2 Secondo livello eccitato

In Figura 10 a sinistra sono riportati dati e fit di $C_y^{(c)}(\tau)$ in funzione di $\omega \tau$ ed i risultati di ognuno di essi al variare di η si trovano nella Tabella A2 in Appendice A.II.

Figura 11: A sinistra misure e fit della funzione di correlazione a due punti per l'osservabile posizione al quadrato y^2 in funzione di $\omega \tau$, per valori di $N\eta = 30$, costante. A destra misure e fit del gap di energia tra secondo eccitato e fondamentale in funzione di η^2 .

I risultati del fit per il gap di energia tra fondamentale e secondo eccitato sono

$$m = -0.082 \pm 0.009 \quad q = 1.998 \pm 0.003 \quad \chi^2/ndof = 16/5$$

Il valore del termine noto q risulta compatibile con quello atteso, che è 2.

A Appendice

A.I Energia totale nel limite al continuo

Nella tabella si riportano i risultati del best fit eseguito per l'analisi in Sezione 3.3.

$N \cdot \eta$	$b(\sigma_b)$	$a(\sigma_a)$	$\chi^2/ndof$
3	0.5543(9)	-0.053(1)	19/18
4	0.5182(8)	-0.051(1)	21/18
5	0.5058(6)	-0.0519(9)	21/18
6	0.5017(8)	-0.052(1)	37/18
7	0.5011(6)	-0.0519(9)	29/18
8	0.4998(4)	-0.0517(6)	14/18
9	0.5001(5)	-0.0517(6)	20/18
10	0.5002(5)	-0.0523(8)	30/18
15	0.4992(4)	-0.0518(6)	30/18
20	0.5001(5)	-0.0526(7)	39/18
30	0.4999(3)	-0.0523(4)	27/18
40	0.4996(3)	-0.0521(4)	40/18
50	0.4997(3)	-0.0524(5)	48/17
60	0.5004(2)	-0.057(1)	17/17
	•		

Tabella A1: Risultati best fit dell'energia interna in funzione di η , con $N\eta$ fisso.

A.II Splitting dei livelli energetici

Nella tabella si riportano i risultati del best fit eseguito per le analisi delle funzioni di correlazione a due punti, in Sezione 4.

	Primo eccitato		Secondo eccitato			
$\overline{\eta}$	$a(\sigma_a)$	$b(\sigma_b)$	$\chi^2/ndof$	$a(\sigma_a)$	$b(\sigma_b)$	$\chi^2/ndof$
1.000	0.4471(4)	0.961(2)	15/18	0.4002(7)	1.909(7)	7/18
0.882	0.4572(3)	0.970(1)	10/18	0.4184(9)	1.942(7)	8/18
0.769	0.4674(2)	0.9753(9)	8/18	0.4383(5)	1.952(4)	3/18
0.638	0.4762(4)	0.982(1)	17/18	0.4531(6)	1.970(4)	5/18
0.500	0.4857(4)	0.988(1)	28/18	0.4727(5)	1.970(2)	2/18
0.333	0.4933(1)	0.9960(3)	2/18			
0.250	0.4952(4)	0.997(1)	37/18	0.4911(5)	1.997(3)	4/18
0.100	0.5012(2)	1.0001(6)	12/18	0.5043(7)	1.996(3)	11/18

Tabella A2: Risultati dei fit delle funzioni di correlazione del campo e del campo al quadrato in funzione di $\omega \tau$.

Nella tabella si riportano i valori medi della posizione al variare di $\eta,$ necessari per l'analisi in Sezione 4.1.

$\langle y \rangle (\sigma_y)$	$\mid \eta \mid$
0.0005(6)	1.000
0.0004(5)	0.882
-0.0002(6)	0.769
0.001(6)	0.638
0.002(6)	0.500
0.001(5)	0.333
-0.003(3)	0.250
-0.00002(58)	0.1

Tabella A3: Valori della posizione mediati sui cammini al variare di $\eta.$