Reg. No.			-	

B.Tech. DEGREE EXAMINATION, MAY 2024 Fifth to Seventh Semester

18CSE353T - DIGITAL IMAGE PROCESSING

age 1 of 4

		$18\mathrm{CSE}353\mathrm{T}-\mathrm{DIG}$ or the candidates admitted dur	ITAL INLAGE	vear 2018-2019 to 2021-2	2022)	
	(Fo	or the candidates admitted dur	ing the academic)	. 4 441 1 -	ndad over
- +	(1.0	should be answered in OMR sl	hoot within first 4	0 minutes and OMR sheet	t should be ha	nded over
ote:	Part - A S	hould be answered in OMR si	1661 William 11155			*
(i)	to hall inv	igilator at the end of 40 th minu	iic. Lin answer bookl	et.		
(;;)	Part - B &	igilator at the end of 40 minutes. Part - C should be answered.	I III aliswer seem		Max. Mar	ks: 100
(ii)		-				BL CO PO
ime:	3 hours	- 4 (20)	1 - 20 Marks)			
		PART - A (20 ×	O-actions			1 1 1
		Answer ALL ways does image production		fer from that of a camer	a? 1	1 1 1
	1 In what v	ways does image production	n in the eye uiii	ng distance between	lens	
	1. III What	ed focal length	(B) varyi	ing distance		
	(A) FIX		and in	naging plane	focal	
	(m) T7	riable focal length	(D) No	difference variable		
			lengtl	h		- 4
		of the following techniques	10.1	1 agon the aliasing impa	act on 1	2 = 1 1
	a 7771 : -1- c	of the following techniques	can be used to	lessell the anabits		
				the high-frequency	nencv	
	an imag	y reducing the high-freque	ency (B) By in	ncreasing the high-frequence of image	by	
	(A) By	y reducing the ingred	by comp	DOMESTICE		
	CO) [UUIICIIco	- 0.441	fying the image		
	cl	arifying the image	ency (D) By I	reducing the high-freq	uency	
	(C) B	y increasing the high-frequency		ponents of image by bl	urring	
		omponents of image by blur		image		
	tŀ	ne image			digital 1	2 1 1
		hange from the picture f	unctions contin	nuous values to then	digital	*
	3. The c	hange from the pressure				
	counte	erpart is referred to as	(B) San	npling		
	(A) (Quantization	(D) Uni	masking		
			(2)	a a :id to be	if 1	2 1 1
	_	Rasterization ath connecting two points i	in a subset of pi	ixels S, is said to be		
	4. If a pa	ath connecting two path are in	S			
	all of	the pixel on the path are	(B) Co:	nnected		
	(A)	Continuous	(D) Dis	sjoint		
	(C)	Ambiguous	. 1	1 the basic f	function 1	1 2 2,3
		cut following transfe	ormation is dea	alt with by the basic s		
	5. Which	er-law using gray-level tran	sformation?	11 100	-	
	powe	er-law using gray	(B) Lo	og and inverse-log		
	(A)	Negative and identity	tra	ansformations		383
		transformations	tions (D) No	egative and positive		
	(C)	n th and n th root transforma	tra	ansformations		
				1:1 of the f	following 1	2 2 2,3
		en applying a smoothing	filter to an ir	mage, which of the r	0110 11 222	
	6. Whe	en applying a since and		, , , , , , , , , , , , , , , , , , ,	rightness	
\	elin	ninated?	v levels (B) S	mooth transitions of b	Hammess	
\	(A)	ninated? Smooth transitions of gra	16	evels	1 .1-	
	\	Sharp transitions of bri	ightness (D) S	sharp transitions of gray	levels	
	(C)	Sharp transitions of bri	ignuices (D)	*	A07.4	F5-7-18CSE353T
		levels			29M	F2-1-T0C9F3331

(C) $S = C \log 10 (1-r)$	rate log transformation among these options? (B) $S = C \log 10 (1+r)$ (D) $S = C \log 10 (1+r)$
8. Which filter given below weake its low frequencies to get through(A) Unsharp mask filter(C) Low pass filter	ns an image. It is a
9. Salt and pepper noise can interch(A) Black noise(C) Impulse noise	angeably be used with (B) Rayleigh noise (D) Gamma noise
10. Band reject filters are used where(A) Known(C) Taken	the noise components are usually (B) Unknown (D) Reject
 11. Gradient computation equation is (A) Gx - Gy (C) Gx * Gy 	(B) $ Gx / Gy $ (D) $ Gx + Gy $
12. The approximation of the second d(A) Step(C) Ramp	lerivative states that it is nonzero at only 1 2 3 2 (B) Onset (D) Edges
 13. If the P(E)=1, it means event (A) Always occur (C) No probability 	(B) Does not occur (D) Normalization
14. Which of the following is the example(A) JPEG(C) BMP	ple of lossless compression? (B) MPEG (D) RLE
15. In Huffman coding, data in a tree alv(A) Roots(C) Left sub trees	ways occur? (B) Leaves (D) Right sub trees
16. Suppose storing an image made up of 65,536 bytes. The image is compression (A) 1:4(C) 4:1	f a square array of 256×256 pixels requires 1 2 4 3
(A) Laplace transform(C) Curvature	(B) Fourier transform (D) Statistical moments
18. The line that travels perpendicular to t(A) Equilateral axis(C) Minor axis	he main axis is defined by boundaries? (B) Equidistant axis (D) Median axis

19	What method is based on the Fourier transform among these?	1				
17.	(A) Structural (B) Spectral					
	(C) Statistical (D) Topological					
20.	The initial difference of the smallest size is known as according to the 4-directional code	1	2	5	2	
	(A) Shape number (B) Chain number				-	
	(C) Difference number (D) Code					
	$PART - B (5 \times 4 = 20 Marks)$	Marks	BL	со	PO	
	Answer ANY FIVE Questions					
21.	Distinguish between quantization and sampling in image processing.	4	2	1	1	
22.	Calculate city block distance and chess board distance for the given sample	4	3	1	1	
	image (between p and q) $10 11 99 44 \rightarrow q$					
	22 08 77 200					
	20 11 49 55					
	$p \rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
23.	. What is meant by power-law transform? How image processing can benefit	4	2	2	2,3	
	from it?					
24.	. Give a brief overview of the Gaussian noise.	4	2	3	2	
25.	. Describe the principles of the compression model.	4	2	4	2	
26	. Briefly discuss about Fourier descriptor and its applications.	4	2	5	2	
27	. Differentiate low pass filter and high pass filter.	4	2	2	2,3	
	$PART - C (5 \times 12 = 60 \text{ Marks})$	Marks	BL	co	PO	
	Answer ALL Questions					
28. a	a. Explain the components of the image processing system.	12	2	1	1	
	(OR)	12	2	1	1	
b	o. Describe the following (i) 4-adjacency	12	-			
	(i) 4-adjacency (ii) 8-adjacency					
	(iii) m-adjacency					
	(iv) Euclidean distance	12	3	. 2	2,3	
29. a	a. Perform histogram equalization for the image given below					
	7 7 7 7 7 7 2 2					
	2 6 6 6 2					
	2 7 6 7 2 7 7 7 7 7					
	(OR)					

Page 3 of 4

29MF5-7-18CSE353T

b.	Let $I = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$ be an image $K = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ be a kernel perform convolution and correlation.	12	3	2	2,
30. a.	Derive a Wiener filter for image restoration and specify its advantages over inverse filter.	12	4	3	2
	(OR)				
Ъ.	Explain canny edge detection in detail and give its applications.	12	2	3	2
31. a.	Construct Huffman code for the word "BABY". Also compare the efficiency of Huffman code.	12	4	4	2
	(OR)				
b.	Encode the word "ABCCD" using arithmetic coding. Give the procedure.	12	3	4	2
32. a.	Write short notes on the following image representation techniques		0	_	_
	(i) Chain code and	6	2	5	2
	(ii) Polygonal approximation	-			
	() — J Somma approximation	6			
	(OR)				
b.	Describe in detail about texture and pattern classes	10	•	_	_
	WOOM CONTINUE CHILD DALLOTTI CIANNEN	12	,	`	7

* * * * *