МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на **GPU**

Выполнил: И.А. Мариничев

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников

А.Ю. Морозов

Условие

<u>Цель работы:</u> научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти и одномерной сетки потоков.

Вариант 1: метод максимального правдоподобия.

Программное и аппаратное обеспечение

Compute capability : 2.1

Name : GeForce GT 545 Total Global Memory : 3150381056

Shared memory per block : 49152 Registers per block : 32768 Warp size : 32

Max threads per block : (1024, 1024, 64)

Max block : (65535, 65535, 65535)

Total constant memory : 65536 Multiprocessors count : 3

Processor : Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

RAM : 16 GB Drive : 349G

.....

OS : Ubuntu 16.04.6 LTS IDE : Visual Studio Code

Compiler : NVIDIA (R) Cuda compiler driver V7.5.17

Метод решения

Считываем входные данные, в том числе из файла. По обучающим данным рассчитываем на CPU вектор средних, матрицы ковариаций, определитель матрицы ковариаций и обратные матрицы ковариаций, затем нужные массивы копируем в константную память. После этого вызываем ядро, в котором для каждого пикселя по формуле ММП определяем предсказанный класс. В конце записываем результат в выходной файл и освобождаем память.

Описание программы

```
// выборочное мат ожидание
__constant__ double3 avg[32];

// log(|det(cov)|)
constant double logAbsDet[32];
```

```
// обратная выборочная матрица ковариаций __constant__ double covInv[3 * 32][3];

// дискриминантная функция __device__ double D(uchar4 p, int I)

// метод максимального правдоподобия (ММП) __global__ void MLE(uchar4 *data, int w, int h, int nc)
```

Результаты

Конфигурация	Размер теста (время указано в ms)					
	O(10 ³)	O(10^4)	O(10 ⁵)	O(10^6)	O(10^7)	O(10^8)
<<< 1, 32 >>>	0.274368	21.48972	138.6794	488.76156	20936.947	105839.875
		9	28	6	266	000
<<< 32, 32 >>>	0.047008	2.123680	13.48377	43.437599	2060.4106	10215.8251
			6		45	95
<<< 256, 256 >>>	0.047648	1.760736	11.07120	34.177055	1709.2512	8422.47070
			0		21	3
<<< 512, 512 >>>	0.100224	1.849216	11.31286	34.537567	1716.7131	8455.76464
			4		35	8
<<< 1024, 512 >>>	0.159488	1.904416	11.46316	34.793633	1716.8800	8455.96191
			8		05	4
CPU	253.0	22876.0	85212.0	232836.0	1.12594e+	5.54774e+0
					07	7

Сравнение изображений

Результат разделения на 7 классов при случайном распределении классов в обучающей выборке.

Выводы

Как видно из результатов сравнения, GPU дает значительный прирост по времени, особенно на больших изображениях. Данный алгоритм относится к группе алгоритмов обучения с учителем, так для его работы нам нужно изначально знать для каждого пикселя исходный класс. Отсюда следует, что практическая применимость этого алгоритма довольно спорная, так как у нас вряд ли будет стоять задача, в которой нам заранее известен ответ и мы должны его же предсказать. Понятно, что формула пришла из теории вероятностей и мат. статистики и применяется, когда мы имеем данные о довольно крупной выборке, которая является подспорьем для предсказания на новых данных.