MATH 2135 Linear Algebra

1.A Complex Numbers

Alyssa Motas

February 16, 2021

Contents

1	Cor	Complex Numbers														3						
	1.1	Definition														3						
	1.2														3							
	1.3															4						
	1.4	4 Arithmetic on Complex Numbers															4					
		1.4.1	D	ivis	sior	ı C)pe	era	tio	n, 1	Pa	rt	Ι.									4
		1.4.2			sior																	4
		1.4.3			tipl																	4
		1.4.4			ım∈																	5
2	Fun	damer	nta	1 T	. he	or	en	n o	of .	Alg	gel	ora	a									6
3	Lists														7							
	3.1	Defini	itio	n.																		7
	3.2	Exam																				7
4	\mathbf{F}^n																					8
	4.1	Definition																				
	4.2	Arithr																				8
		4.2.1			itio																	8
		4.2.2																				8
		4.2.3			itiv																	8
		4.2.4			ar 1																	8
5	Dig	ression	n o	n I	Fie	lds	5															9

1 Complex Numbers

1.1 Definition

A complex number is a pair (a, b) where $a, b \in \mathbb{R}$. We write \mathbb{C} for the set of complex numbers. The set of all complex numbers is denoted by \mathbb{C} :

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}.$$

With the following operations:

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,ad+bc)$

We also define:

$$0 = (0,0)$$
 $1 = (1,0).$

Claim. The set \mathbb{C} , together with $0, 1 \in \mathbb{C}$ and the operations + and \cdot defined above, is a field.

1.2 Notation

- We write $i = (0,1) \in \mathbb{C}$.
- If a is a real number, we will also write $a = (a, 0) \in \mathbb{C}$.

Note, if a, b are real numbers, then

$$a + bi = (a, 0) + (b, 0) \cdot (0, 1)$$
$$= (a, 0) + (0, b)$$
$$= (a, b).$$

The notation a + bi is what everybody uses for complex numbers. With this notation, the rules of addition and multiplication become easier to understand and remember.

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
$$(a+bi)(c+di) = ac + adi + bci + bdi2$$
$$= ac + adi + bci - bd$$
$$= (ac - bd) + (ad + bc)i.$$

Note:
$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (-1,0) = -1$$
.

1.3 Terminology

Given a complex number

$$z = a + bi = (a, b)$$

the real number a is called the *real part* of z, and the real number b is called the *imaginary part* of z.

The complex number $\bar{z} = a - bi$ is called the *complex conjugate* of z.

$$z\bar{z} = (a+bi)(a-bi)$$

$$= a^2 - abi + abi - b^2i^2$$

$$= a^2 + b^2 \quad \text{which is } real$$

1.4 Arithmetic on Complex Numbers

1.4.1 Division Operation, Part I

It is easy to divide a complex number by a real number.

$$\frac{a+bi}{c} = \frac{a}{c} + \frac{b}{c}i.$$

1.4.2 Division Operation, Part II

How do we divide a complex number by a complex number? For instance,

$$\frac{a+bi}{z}$$
 where $z=c+di$.

We can simply take the conjugate of z and then we have

$$\frac{a+bi}{z} = \frac{(a+bi)\overline{z}}{z\overline{z}} = \frac{(a+bi)(c-di)}{c^2+d^2} \quad \text{where } c^2+d^2 \text{ is a real.}$$

1.4.3 Multiplicative Inverse

The multiplicative of a complex number z = a + bi is

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i.$$

1.4.4 Argument of a complex number

¹ The argument of z is the angle between the positive real axis and the line joining the point to the origin. For each point on the plane, arg is the function which returns the angle ϕ . The numeric value is given by the angle in radians, and is positive if measured counterclockwise.

Algebraically, as any real quantity ϕ , such that

$$z = r(\cos\phi + i\sin\phi) = re^{i\phi}$$

for some positive real r. The quantity r is the modulus (or absolute value) of z, denoted |z|.

$$r = \sqrt{x^2 + y^2}$$

Some identities are

$$arg(zw) = arg(z) + arg(w) \mod (-\pi, \pi]$$

$$\arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w) \mod(-\pi, \pi]$$

If $z \neq 0$ and n is any integer, then

$$arg(z^n) \equiv n \arg(z) \mod(-\pi, \pi]$$

Example.

$$\arg\left(\frac{-1-i}{i}\right) = \arg(-1-i) - \arg(i) = -\frac{3\pi}{4} - \frac{\pi}{2} = -\frac{5\pi}{4}.$$

Complex logarithm. From $z = |z|e^{i\arg(z)}$ or $z = |z|e^{i\theta}$, it easily follows that

$$\arg(z) = -i \ln \frac{z}{|z|}.$$

¹Taken from the Wikipedia.

2 Fundamental Theorem of Algebra

Over the complex numbers, every non-constant polynomial has a root.

• There are two solutions (namely x=-2,2) over \mathbb{R} :

$$x^{2} - 4 = 0 \Leftrightarrow (x - 2)(x + 2) = 0$$

• Has no roots over \mathbb{R} :

$$x^2 + 4 = 0.$$

• Has two solutions over \mathbb{C} :

$$z^{2} + 4 = 0 \Leftrightarrow z^{2} = -4 \Leftrightarrow z = \pm \sqrt{-4} = \pm 2i$$
$$z^{2} + 4 = (z - 2i)(z + 2i)$$

• Only one root over \mathbb{R} :

$$x^{3} = 1$$

• Three distinct solutions over \mathbb{C} :

$$z^3 = 1$$

3 Lists

3.1 Definition

Suppose n is a nonnegative integer. A *list* of *length* n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\ldots,x_n).$$

Two lists are equal if and only if they have the same length and the same elements in the same order.

3.2 Examples

• The set \mathbb{R}^2 is the set of all ordered pairs of real numbers:

$$\mathbb{R}^2 = \{ (x, y) \mid x, y \in \mathbb{R} \}.$$

• The set \mathbb{R}^3 is the set of all ordered triples of real numbers:

$$\mathbb{R}^3 = \{ (x, y, z) \mid x, y, z \in \mathbb{R} \}.$$

- A list of length 0 looks like this: ().
- Lists differ from sets in two ways: in lists, order matters and repetitions have meaning; in sets, order and repetitions are irrelevant.

4 \mathbf{F}^n

4.1 Definition

 \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \{(x_1, \dots, x_n \mid x_j \in \mathbf{F} \text{ for } j = 1, \dots, n)\}.$$

For $(x_1, \ldots, x_n) \in \mathbf{F}^n$ and $j \in \{1, \ldots, n\}$, we say that x_j is the jth coordinate of (x_1, \ldots, x_n) .

4.2 Arithmetic

4.2.1 Addition

Addition is defined by adding corresponding coordinates:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

It is also commutative.

$4.2.2 \quad 0$

Let 0 denote the list of length n whose coordinates are all 0:

$$0 = (0, \ldots, 0).$$

4.2.3 Additive Inverse

For $x \in \mathbf{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbf{F}^n$ such that

$$x + (-x) = 0.$$

In other words, if $x = (x_1, \ldots, x_n)$ then $-x = (-x_1, \ldots, -x_n)$.

4.2.4 Scalar Multiplication

The *product* of a number λ and a vector in \mathbf{F}^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n);$$

here $\lambda \in \mathbf{F}$ and $(x_1, \ldots, x_n) \in \mathbf{F}^n$.

5 Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along with operations of addition and multiplication. Thus, \mathbb{R} and \mathbb{C} are fields, as is the set of rational numbers along with the usual operations. Another example of a field is the set $\{0,1\}$ with the usual operations of addition and multiplication except that 1+1 is defined to equal 0.