

Из книги A. D. Polyanin and V. F. Zaitsev, «Handbook of Nonlinear Partial Differential Equations, 2nd Edition», Chapman & Hall/CRC Press, Boca Raton, 2011 [русский перевод].

Некоторые обозначения и замечания

Латинский алфавит

 C_1, C_2, \ldots — произвольные постоянные;

 $r,\, arphi,\, z$ — цилиндрические координаты, $r=\sqrt{x^2+y^2};$ $r,\, \theta,\, arphi$ — сферические координаты, $r=\sqrt{x^2+y^2+z^2};$

w — искомая функция (зависимая переменная);

x,y,z — пространственные переменные (декартовы координаты);

 $x_1, ..., x_n$ — декартовы координаты в n-мерном пространстве.

Греческий алфавит

$$\Delta$$
 — оператор Лапласа:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 — в двумерном случае

Споратор лаппаса.
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \mathbf{B}$$
двумерном случае,
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \mathbf{B}$$
трехмерном случае,

$$\Delta = \sum_{l=1}^{n} \frac{\partial^{2}}{\partial x_{l}^{2}}$$
 — в n -мерном случае;

$$\Delta\Delta$$
 — бигармонический оператор, $\Delta\Delta=\frac{\partial^4}{\partial x^4}+2\frac{\partial^4}{\partial x^2\partial y^2}+\frac{\partial^4}{\partial y^4}$ — в двумерном случае;

$$|\nabla w|^2$$
 — модуль градиента функции w , $|\nabla w|^2 = \sum\limits_{k=1}^n \left(\frac{\partial w}{\partial x_k}\right)^2$ — в n -мерном случае; $\nabla \cdot \vec{v}$ — дивергенция вектора \vec{v} , $\nabla \cdot \vec{v} = \sum\limits_{k=1}^n \frac{\partial v_k}{\partial x_k}$ — в n -мерном случае;

$$abla \cdot \vec{v}$$
 — дивергенция вектора $\vec{v}, \ \nabla \cdot \vec{v} = \sum_{k=1}^n rac{\partial v_k}{\partial x_k}$ — в n -мерном случае

$$(\vec{v}\cdot\nabla)w$$
 — градиент скаляра w по вектору $\vec{v},\ (\vec{v}\cdot\nabla)w=\sum\limits_{k=1}^n v_k\,rac{\partial w}{\partial x_k}$ — в n -мерном случае

Краткие обозначения производных

$$\partial_t w = \frac{\partial w}{\partial t}, \ \partial_x w = \frac{\partial w}{\partial x}, \ \partial_{tt} w = \frac{\partial^2 w}{\partial t^2}, \ \partial_{xx} w = \frac{\partial^2 w}{\partial x^2}, \ \partial_{xxx} w = \frac{\partial^3 w}{\partial x^3}.$$

$$f_x'\equiv rac{df}{dx}, \quad f_{xx}''\equiv rac{d^2f}{dx^2}, \quad f_{xxx}'''\equiv rac{d^3f}{dx^3}, \quad f_{xxxx}''''\equiv rac{d^4f}{dx^4}, \quad f_x^{(n)}\equiv rac{d^nf}{dx^n}$$
 при $n\geqslant 5$.

- 1. В формулах, содержащих выражения типа $\frac{f(x)}{a-2}$, часто не оговаривается, что $a \neq 2$.
- 2. В книге обычно не рассматриваются простые решения, зависящие только от одной переменной, которая входит в исходное уравнение.
- 3. При ссылках в тексте на конкретные уравнения запись вида «3.1.2.5» означает «уравнение 5 из раздела 3.1.2».
- 4. В книге часто используется очень простая и наглядная классификация наиболее распространенных типов точных решений, которая не связана с конкретным видом рассматриваемых уравнений (см. таблицу).

ТАБЛИЦА

Наиболее распространенные типы точных решений (для уравнений с двумя независимыми переменными x и t и искомой функцией w).

N	Название решения	Структура решения $(x \ u \ t \ можно поменять местами)$
1	Решение типа бегущей волны*	$w = F(z), z = \alpha x + \beta t, \ \alpha \beta \neq 0$
2	Решение в виде суммы функций разных аргументов**	$w = \varphi(x) + \psi(t)$
3	Решение в виде произведения функций разных аргументов***	$w = \varphi(x)\psi(t)$
4	Автомодельное решение****	$w=t^{lpha}F(z),\;z=xt^{eta}$
5	Обобщенное автомодельное решение	$w = \varphi(t)F(z), \ z = x\psi(t)$
6	Решение типа обобщенной бегущей волны	$w = F(z), z = \varphi(t)x + \psi(t)$
7	Решение с обобщенным разделением переменных	$w = \varphi_1(x)\psi_1(t) + \dots + \varphi_n(x)\psi_n(t)$
8	Решение с функциональным разделением переменных	$w = F(z), z = \varphi_1(x)\psi_1(t) + \dots + \varphi_n(x)\psi_n(t)$

- * Обе переменные могут играть роль пространственных координат.
- ** Другое название решение с аддитивным разделением переменных.
- *** Другое название решение с мультипликативным разделением переменных.
- **** Иногда решения вида $w=\bar t^\alpha F(z),\;z=\bar x\bar t^\beta,$ где $\bar x=x+C_1$ и $\bar t=t+C_2,$ также будут называться автомодельными решениями.
- Этим знаком помечены ссылки на литературные источники после уравнения, когда:
- а) хотя бы одно из приведенных выше решений или преобразований получено в цитируемой работе (даже если решение там было приведено с «устранимыми» ошибками в знаках и коэффициентах);
- b) в цитируемой работе содержится полезная дополнительная информация, относительно свойств рассматриваемого уравнения, его решений и приложений.