6.6 1) (a) Posons $\varepsilon = r - c > 0$.

Par définition de la limite d'une suite, il existe $p \in \mathbb{N}$ (n_0 si l'on préfère) tel que pour tout $k \geqslant p$ on ait $\left|\frac{u_{k+1}}{u_k} - c\right| < \varepsilon$.

En d'autres termes, $\frac{u_{k+1}}{u_k} < c + \varepsilon = c + (r - c) = r$.

(b) L'inégalité $\frac{u_{k+1}}{u_k} < r$ pour tout $k \geqslant p$ implique

$$\frac{u_{p+1}}{u_p} < r \text{ c'est-\`a-dire } u_{p+1} < u_p r$$

$$\frac{u_{p+2}}{u_{p+1}} < r \ \text{c'est-\`a-dire} \ u_{p+2} < u_{p+1} \, r < u_p \, r^2$$

$$\frac{u_{p+3}}{u_{p+2}} < r \text{ c'est-\`a-dire } u_{p+3} < u_{p+2} \, r < u_p \, r^3$$

$$\frac{u_{p+n}}{u_{p+n-1}} < r \text{ c'est-\`a-dire } u_{p+n} < u_{p+n-1} r < u_p r^n$$

En d'autres termes, à partir du rang p, la série de terme u_k est majorée par la série géométrique de premier terme u_p et de raison r.

(c) Puisque 0 < r < 1, la série géométrique de premier terme u_p et de raison r converge.

Les critères de comparaison permettent de conclure que la série de terme u_k converge.

2) (a) Posons $\varepsilon = c - r > 0$.

Par définition de la limite d'une suite, il existe $p \in \mathbb{N}$ (n_0 si l'on préfère) tel que pour tout $k \ge p$ on ait $\left| \frac{u_{k+1}}{u_k} - c \right| < \varepsilon$.

En d'autres termes, $\frac{u_{k+1}}{u_k} > c - \varepsilon = c - (c - r) = r$.

(b) L'inégalité $\frac{u_{k+1}}{u_k} > r$ pour tout $k \ge p$ implique

$$\frac{u_{p+1}}{u_p} > r \text{ c'est-\`a-dire } u_{p+1} > u_p r$$

$$\frac{u_{p+2}}{u_{p+1}} > r \text{ c'est-\`a-dire } u_{p+2} > u_{p+1} \, r > u_p \, r^2$$

$$\frac{u_{p+3}}{u_{p+2}} > r \text{ c'est-\`a-dire } u_{p+3} > u_{p+2} \, r > u_p \, r^3$$

 $\frac{u_{p+n}}{u_{p+n-1}} > r \text{ c'est-\`a-dire } u_{p+n} > u_{p+n-1} r > u_p r^n$

En d'autres termes, à partir du rang p, la série de terme u_k est minorée par la série géométrique de premier terme u_p et de raison r.

(c) Puisque r > 1, la série géométrique de premier terme u_p et de raison r diverge.

Les critères de comparaison permettent de conclure que la série de terme u_k diverge.

3) (a) Soit
$$u_k = \frac{k}{k+1}$$
.

$$\lim_{k \to +\infty} \frac{u_{k+1}}{u_k} = \lim_{k \to +\infty} \frac{\frac{k+1}{k+2}}{\frac{k}{k+1}} = \lim_{k \to +\infty} \frac{(k+1)^2}{k(k+2)} = \lim_{k \to +\infty} \frac{k^2 + 2k + 1}{k^2 + 2k}$$

$$= \lim_{k \to +\infty} \frac{k^2}{k^2} = 1$$

La série de terme u_k diverge, car $\lim_{k\to+\infty}u_k=\lim_{k\to+\infty}\frac{k}{k+1}=\lim_{k\to+\infty}\frac{k}{k}=1\neq 0$.

(b) Soit
$$u_k = \frac{1}{k(k+1)}$$
.

$$\lim_{k \to +\infty} \frac{u_{k+1}}{u_k} = \lim_{k \to +\infty} \frac{\frac{1}{(k+1)(k+2)}}{\frac{1}{k(k+1)}} = \lim_{k \to +\infty} \frac{k}{k+2} = \lim_{k \to +\infty} \frac{k}{k} = 1$$

L'inégalité $\frac{1}{k(k+1)} < \frac{1}{k^2}$ et les critères de comparaison entraı̂nent la convergence de la série de terme u_k .