- a) The person-name (Trity = 'Miami' (employee))
- b) Theoreon_name (Tsalary > 100000 (works))
- C) Therson-name ($\sigma_{city} = miami' (employee)$) Π Therson-name ($\sigma_{city} = miami' (employee)$) Π
- (d) temp = employee extemployee.person_nume = works.person_nume)(Works)

 Tt
 ID, person_nume (Company_name = BigBank' (temp))
- (e) TID, person_name (temp) Themp.ID, temp.person_nume (
 temp M (temp.salary & temp2.salary) (Ptemp2 (temp)))
- (f) R2 = Tcompany_name = 'BigBank' (temp))
 TID, person_name, city (R2)
- (2) $R3 = \sigma_{\text{salary} > 10000}(R2)$ $\pi_{\text{ID, pelson_name, street, city}}(R3)$
- (h) TID, person-nume (employee Memployee.city=company.city (company))

- a. TV_ID, name (Odept_name = `physics' (instructor)) D. TI ID, nume (instructor W instructor.dept_nume = deputment.dept_nume (deputment))

 A deput ment. building = watson C. RI = TCourse_id, dept_name (Section M section.course_id (course))
 = course.course_id R2 = TI_ID, name, course_id (Student M student.ID=takes.ID (takes)) TT_ID, nume (RIM RI. course_id = R2. course_id (R2))

 A RI. dept_nume = comp_sci' d. Tl ID, name (Student student. ID = takes. ID (takes))

 1 takes. year = 2018
- C. TI_ID, name (Student student. ID = takes. ID (takes))

 1 takes. year \$ 2018