下周课前准备

实验七 译码显示电路

- 1、使用protues仿真软件完成实验七8位学号的显示,设计并仿真;
- 2、使用protues仿真软件完成实验七点阵显示任一图案,设计并仿真。

实验七 译码显示电路

内容1:

1、原理

四位双向移位寄存器74LS194

表(二)74LS194 功能表

Cr	\mathbf{S}_1	S ₀	工作状态
0	X	X	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行送数

(1) $S_1 = S_0 = 0$,保持原来的状态不变

(2) S₁=0, S₀=1, 右移

D_{SR}为右移送数端, 当脉冲到来时, 其状态变化情况。

$$Q_A^{n+1}=D_{SR}$$

$$Q_B^{n+1}=Q_A$$

$$Q_C^{n+1}=Q_B$$

$$Q_D^{n+1}=Q_C$$

$$D_{SR} \rightarrow Q_A \rightarrow Q_B \rightarrow Q_C \rightarrow Q_D$$

(2) S₁=1, S₀=0, 左移

D_{SL}为左移送数端, 当脉冲到来时, 其状态变化情况。

$$Q_A^{n+1}=Q_B$$

$$Q_B^{n+1}=Q_C$$

$$Q_C^{n+1}=Q_D$$

$$Q_D^{n+1}=D_{SL}$$

$$D_{SL} \rightarrow Q_D \rightarrow Q_C \rightarrow Q_B \rightarrow Q_A$$

(3) S₁=1, S₀=1, 并行送数

D₀、D₁、D₂、D₃为并行送数端,当脉冲到来, 其状态变化情况。

$$Q_A^{n+1}=D_0$$

$$Q_B^{n+1}=D_1$$

$$Q_{C}^{n+1} = D_{2}$$

$$Q_{D}^{n+1} = D_{3}$$

2、给定194输出端QAQBQcQD初始状态(例如OIIO),CP接手动正脉冲,使用"o-1"显示器检查输出是否符合真值表。

	时钟	清零	零					G		J		并行	送数			输出		
计数	СР	CR	Sı	So	Dsl	Dsr	Do	Dı	D ₂	D3	QA	QB	Qc	QD				
1		0	\times	\times	О	О	0	О										
2		1	1	1	\times	\times	О	1	1	О	О	1	1	О				
3		1	1	0	1	\times	\times	\times	×	\times	1	1	0	1				
4		1	1	O	1	\times	\times	\times	\times	\times	1	O	1	1				
5		1	1	0	1	\times	\times	\times	\times	\times	O	1	1	1				
6		1	О	1	\times	1	\times	\times	X	X	1	0	1	1				
7		1	О	1	\times	1	\times	\times	\times	\times	1	1	0	1				
8		1	О	1	\times	1	\times	\times	\times	\times	1	1	1	О				
9		1	О	1	\times	1	\times	\times	\times	\times	1	1	1	1				

注意: 需先给CR,S1,So,DSL,DSR置位,再按CP

1、原理

注意:

- (1) 输入端 10 输出端
- (2) 74LS194是上升沿触发
- (3) JK触发器是下降沿触发

- (1)利用194右移功能,实现"o"向右边移动;同时利用JK触发器翻转功能(J=1,K=1),控制194从右移变为并行送数,实现1110→0111的变化。
- (2)如果没有先清零,194的S1输入不确定,可能会出现输出1111的情况(CP触发不变化),也可能是其他异常。

2、按照书上图(五)连接电路,使用"o-1"显示器检查194的输出Qa~Qp是否符合节拍发生器on1→1011→1101→1110的循

环。	时钟		清零			JK触发 器				194工作 状态				
四		СР	Cr	J	K	工作状态	Q	S ₁	So		Qa	QB	Qc	QD
节拍	1		О	\times	\times	\times	\times	\times	\times	清零	О	О	О	О
顺		$ \leftarrow $	0	\times	\times	清零	1	1	1	\times	О	О	О	О
顺序取	2		1	\times	\times	\times	1	1	1	并行送数	О	1	1	1
脉冲发生器工			1	1	О	置位	О	0	1	\times	o	1	1	1 .
	3		1	1	О	\times	О	0	1	右移	1	0	1	1
生哭		$ \rightarrow $	1	1	О	置位	О	0	1	\times	1	О	1	1
ПП	4		1	1	О	\times	О	0	1	右移	1	1	О	1
作原		$ \rightarrow $	1	1	О	置位	О	0	1	×	1	1	0	1
理	5		1	1	О	\times	О	0	1	右移	1	1	1	О
			1	1	1	翻转	1	1	1	\times	1	1	1	0
	6		1	1	1	X	1	1	1	并行送数	О	1	1	1

1、原理

- (1) 实验箱上数码管是共阴极,其位选通端DIG1~DIG8 均为低电平有效,所以可直接将节拍发生器的输出接入 即可,不用再加非门。
- (2)实验箱上74LS48已与数码管连好,无须再连线。74LS48只引出A3、A2、A1、A0四个引脚分别依次对应两个四位数码管的P13、P12、P11、P10和P23、P22、P21、P20作为数码管BCD码输入端。实验箱7段数码管已具备伪码灭灯功能,因此电路设计不涉及伪码灭灯。

接模拟开关

2、使用模拟开关作为BCD码输入译码显示电路,应可以观察到数码管按照节拍顺序依次在对应数位上显示当前所设BCD码对应数字。

具有公共端的7段数码管的扫描式显示:将7段数码管的位选信号和每一位显示数据BCD码一一对应,利用数码管的余辉效应和人眼的视觉暂留效应,选择合适的扫描频率逐位显示数据,以达到多个数码管"同时"显示不同数据效果。

1、设计

方法一,显示位置决定显示内容:

- (1)将74LS194接成四节拍顺序脉冲发生器,接入数码管位选通端DIG1~DIG4同时也接入DIG5~DIG8,注意74LS194的时钟要接高频信号,以使数码管同时显示8位数字。
- (2)列出真值表,输入为DIG1~DIG8,输出为2组4联装7段数码管BCD码输入端P13、P12、P11、P10、P23、P22、P21、P20。八输入八输出真值表格式见下页:

当前显示8位学号为12345678

	输入									输出							
I	OIG	DIG	P13	P ₁₂	P11	P10	P23	P22	P ₂₁	P20							
	1	2	3	4	5	6	7	8									
	o	1	1	1	О	1	1	1	O	О	О	1	О	1	О	1	
	1	0	1	1	1	О	1	1	O	O	1	O	0	1	1	O	
	1	1	0	1	1	1	0	1	0	0	1	1	0	1	1	1	
	1	1	1	0	1	1	1	О	О	1	0	0	1	0	0	О	

(3)后续设计按照组合逻辑电路的设计流程完成。列出真值表->卡诺图->逻辑表达式->选择器件实现。注意不同器件的触发电平可能不同。

方法二,显示内容决定显示位置:

- (1) 用1只74LS197(自动生成8421码),连入两个四位数码管的P13、P12、P11、P10和P23、P22、P21、P20作为数码管BCD码输入端端作为数据源。注意74LS197的时钟要接高频信号,以使数码管同时显示8位数字;
- (2)将生成8421码的低3位连入74LS138(数据分配器)的So、S1、S2端,G1接高电平,G2A、G2B接低电平,输出Yo~Y7选择接入数码管位选通信号接入,以使某一位固定显示某个数字。

显示学号2345

方法二注意事项:

(1)将74LS197接成十进制计数器,因为每一位学号范围是 o-9,当74LS197计数至A-F时,7段数码管灭灯,因此若将 74LS197接成十六进制计数器会导致7段数码管亮度偏暗;

利零每数10万时升19零用端当为时个上使197清

利数每数 1001 下时升 3000 mm 1001 下时升 197 mm 1000 mm

(2) 电路区分o和8,1和9的显示。直接将74LS197生成8421码的低3位(Q2,Q1,Qo)连入74LS138进行得到数码管位选信号,未能考虑74LS197生成8421码最高位Q4,因此o和8都能使74LS138的Y1输出低电平。1和9都能使74LS138的Y1输出低电平。

- 2、数码管上可同时显示自己的8位学号
- 3、利用示波器观测(1)显示位置决定显示内容时:时钟信号、4位数码管位选通信号以及8位BCD码的波形并记录;(2)显示内容决定显示位置时:时钟信号、8位数码管位选通信号以及4位BCD码的波形并记录。

1、使用实验箱上的8*8点阵显示任一固定图形。

ROWA 行选通, COLA 列选通

点阵显示举例:

(1) 点阵显示数字

(2) 点阵显示字母

(3) 点阵显示图案

实验内容5提示:

(1) 实验箱8*8点阵显示原理如下图所示,点阵由64个 发光二极管组成,当二极管所在位置的行电平为高,列 电平为低时,相应的二极管就被点亮。

与7段数码管结构比较可以看出,实验箱点阵每一行可以看成是一组共阳极数码管,每一列可以看成是一组共阴极数码管。可采用扫描式显示,即选择合适的扫描频率逐行(高电平选通)/逐列(低电平选通)设置每个二极管的亮灭,以达到点阵二极管"同时"亮灭,以显示指定图案效果。

- (2) 注意实验箱上ROWA和COWA的1号引脚需接低电平, 2 号引脚需接高电平,以便点阵正常显示,因为ROWA和 COWA的1号和2号引脚与实验箱点阵译码驱动器的输出允许 端口相连。
- (3)可采用列扫描模式显示图案(实验箱点阵列为低电平选通),74LS197+74LS138实现逐列扫描,注意时钟需接高频连续脉冲。
- (4)根据所选图案,列出列-行输出真值表,可采用门电路或74LS151或74LS138(实验箱只有1片74LS138)实现输出逻辑关系(3输入8输出)。

输入	(74LS 19 訓计数)	7八进	输出(点阵行设置)									
Q2	Q1	Qo	Rı	R2	R ₃	R4	R5	R6	R7	R8		

1、完成在Basys3实验板实现LED数码管显示8位学号, 使用开关切换前后4位的显示。

实验内容6提示:

- (1) 可采用显示内容决定显示位置或显示位置决定显示内容的方法实现4位7段数码管的显示;
- (2) 可使用IP核包括xup_74LS48_1.o(BCD码七段译码驱动器), xup_74LS90_1.o(二-五-十进制计数器), xup_74LS164_1.o(八位移位寄存器), xup_74LS151_1.o(八选一数据选择器), xup_74LS138_1.o(3-8线译码器), xup_clk_div_1.o(时钟分频器)等都在..\source_lib\74IP目录下;

- (3) 以显示内容决定显示位置的方法为例,可采用两片74LS138实现,切换开关接入138芯片的G1端(数据输入端)以实现前4位和后4位学号显示的切换;
 - (4) Basys3实验板上的7段数码管从左到右的排列如下:

注意AN₃~ANo的排列, 以便学号正序显示。

(5) 需提供100Hz左右频率给7段数码管的BCD码输入端扫描显示4位数字(频率不能过高,因为点亮数码管需要一定时间)。Basys3 W5引脚提供100MHz时钟信号,因此需要使用分频器xup_clk_div_1.0,设置N=100MHz/100Hz-1=99999。

(6) 使用74LS138以显示内容决定显示位置的方法实现学号显示时,需注意138芯片只有3位数据输入端(S2、S1、So),74LS90计数输出有4位(Q3、Q2、Q1、Q0),需考虑Q3对显示结果的影响。