Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 10

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z = (3+2i)(3-2i)-(4-i)=3^2-(2i)^2-4+i=9+i$	2p
	Partea reală a numărului complex z este egală cu 9	3 p
2.	g(2)=1	2p
	$(f \circ g)(2) = f(g(2)) = 3 \cdot 1 + 2 = 5$	3p
3.	$2^{\frac{6x}{3}} = 2^4 \Leftrightarrow 2x = 4$	3 p
	x = 2	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Mulțimea numerelor naturale de trei cifre care au produsul cifrelor un număr impar are $5 \cdot 5 \cdot 5 = 125$ de elemente, deci sunt 125 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{125}{900} = \frac{5}{36}$	1p
5.	ABCD este paralelogram, deci $\vec{v} = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$	2p
	$AC^2 = AD^2 + DC^2 - 2 \cdot AD \cdot DC \cdot \cos(4DC) \Rightarrow AC = 2\sqrt{19}$	3 p
6.	$BC^2 = AB^2 + AC^2 \Rightarrow \Delta ABC$ este dreptunghic în A	2p
	$AD = \frac{AB \cdot AC}{BC} = 48$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 1 \\ 2 & -2 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 1 & -2 \\ 0 & -1 & 1 \\ 2 & -2 & 1 \end{vmatrix} =$	2p
	=-3+0+2-4-(-6)-0=1	3 p
b)	$\det(A(a)) = 3a - 2$, pentru orice număr real a	2p
	Matricea $A(a)$ nu este inversabilă $\Leftrightarrow \det(A(a)) = 0$, deci $a = \frac{2}{3}$	3 p
c)	Dacă $a = \frac{2}{3}$, sistemul de ecuații este incompatibil	1p
	Dacă $a \neq \frac{2}{3}$, atunci $\det(A(a)) \neq 0$, deci sistemul de ecuații este compatibil determinat și, cum există y_0 și z_0 astfel încât $(2, y_0, z_0)$ este soluție a sistemului de ecuații, obținem $\frac{2(2a+1)}{3a-2} = 2$	3 p
	a = 3, care convine	1p

2.a)	$2*64 = \sqrt[3]{2^{\log_2 64}} =$	3 p
	$=\sqrt[3]{2^6} = 2^2 = 4$	2 p
b)	$x * y = \sqrt[3]{x^{\log_2 y}} = x^{\frac{1}{3}\log_2 y} = \left(2^{\log_2 x}\right)^{\frac{1}{3}\log_2 y} = 2^{\frac{1}{3}\log_2 x \log_2 y} =$	2p
	$= 2^{\frac{1}{3}\log_2 y \log_2 x} = \left(2^{\log_2 y}\right)^{\frac{1}{3}\log_2 x} = y^{\frac{1}{3}\log_2 x} = y * x \text{, pentru orice } x, y \in G \text{, deci legea de}$	3 p
	compoziție "*" este comutativă	
c)	$x*8=8*x=x$, pentru orice $x \in G \Rightarrow e=8$ este elementul neutru al legii de compoziție "*"	1p
	$x * x = 8 \Leftrightarrow x^{\log_2 x} = 8^3 \Leftrightarrow \log_2 x^{\log_2 x} = \log_2 \left(8^3\right) \Leftrightarrow \left(\log_2 x\right)^2 = 9$	2p
	$\log_2 x = -3$ sau $\log_2 x = 3$, deci $x = \frac{1}{8}$ sau $x = 8$, care convin	2p

SUBIECTUL al III-lea (30 de puncte)

берп	BIECT UL al III-lea (30 de pun	
1.a)	$f'(x) = (x-4)(x-3)(x-2) + (x-5)((x-4)(x-3)(x-2))', x \in \mathbb{R}$	3 p
	f'(5) = (5-4)(5-3)(5-2)+0=6	2p
b)	$\frac{f(n+1)-1}{f(n)-1} = \frac{(n-4)(n-3)(n-2)(n-1)}{(n-5)(n-4)(n-3)(n-2)} = \frac{n-1}{n-5}, \text{ unde } n \in \mathbb{N}, n \ge 6$	2 p
	$\lim_{n \to +\infty} \left(\frac{f(n+1)-1}{f(n)-1} \right)^n = \lim_{n \to +\infty} \left(1 + \frac{4}{n-5} \right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{4}{n-5} \right)^{\frac{4n}{4}} \right)^{\frac{4n}{n-5}} = e^4$	3 p
c)	f(2) = f(3) = f(4) = f(5) = 1	2p
	f este derivabilă, deci, conform teoremei lui Rolle pe $[2,3]$, $[3,4]$ și $[4,5]$, ecuația $f'(x) = 0$ are o soluție reală în fiecare dintre intervalele $(2,3)$, $(3,4)$ și $(4,5)$	3 p
2.a)	$g(x) = (1 + e^x) f(x) = 1 - e^x \Rightarrow \int g(x) dx = x - e^x + C \Rightarrow G(x) = x - e^x + c, \text{ unde } c \in \mathbb{R}$	3p
	$G(0) = 0$, deci $c = 1$, de unde obţinem $G: \mathbb{R} \to \mathbb{R}$, $G(x) = x - e^x + 1$	2 p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1 - e^{x}}{1 + e^{x}} dx = \int_{0}^{1} \left(1 - \frac{2e^{x}}{1 + e^{x}} \right) dx = \left(x - 2\ln\left(1 + e^{x}\right) \right) \Big _{0}^{1} =$	3p
	$= 1 - 2\ln(1+e) + 2\ln 2 = 1 + 2\ln\frac{2}{e+1}$	2 p
c)	$\int_{-1}^{1} f(x)\cos x dx = \int_{1}^{-1} f(-x)\cos(-x) \cdot (-1) dx = \int_{-1}^{1} f(-x)\cos x dx = \int_{-1}^{1} \frac{1 - e^{-x}}{1 + e^{-x}}\cos x dx = $ $= \int_{-1}^{1} \frac{e^{x} - 1}{e^{x} + 1}\cos x dx = -\int_{-1}^{1} \frac{1 - e^{x}}{e^{x} + 1}\cos x dx = -\int_{-1}^{1} f(x)\cos x dx$	3 p
	$2\int_{-1}^{1} f(x)\cos x dx = 0, \det \int_{-1}^{1} f(x)\cos x dx = 0$	2 p