Bayesian Analysis I, Fall 2023

Lab Exercise 1: on Thursday Oct. 26, 14-16

- 1. Let $Y|\pi$ be binomial $(n=4,\pi)$. Suppose that we consider there are only three possible (equally likely) values for π , .4,.5, and .6. The prior distribution of π : $P(\pi=.4) = P(\pi=.5) = P(\pi=.6) = 1/3$. Suppose Y=3 was observed.
 - a) Find the likelihood of Y = 3 (i.e. binomial probabilities).
 - b) Obtain the posterior probability of π given Y = 3.
 - c) Using the Bernoulli trials instead of the binomial distribution, determine the likelihood of Y=3 and obtain the posterior probability of π given Y=3.
- 2. For each of the following distributions, write down the probability density function and find a corresponding kernel. Your kernel can be as simple as possible.
 - a) $X|\theta \sim \text{Poisson }(\theta)$.
 - b) $Y|\theta,\beta \sim \text{Beta}(\beta\theta,\beta)$.
 - c) $\theta | \alpha, \beta, x \sim \text{Gamma}(\alpha + x + 1, 1/(\beta 3x)).$
 - d) $\phi | \mu, \overline{x}, \tau \sim \text{Normal}(\tau \mu + (1 \tau)\overline{x}, \overline{x}^2 \tau^{-2}).$
- 3. In each of the following, state the distribution of the corresponding random quantity.
 - a) $f(x) \propto e^{-2x}, \quad x > 0.$
 - b) $f(x) \propto 1, \quad 0 \le x \le 1.$
 - c) $f(y|\mu) \propto \mu^y/y!$ $y = 0, 1, 2, ..., \mu > 0$.
 - d) $f(y|\alpha, \beta) \propto y^{-\alpha} e^{-1/(2\beta y)}, \quad y > 0, \alpha > 1, \beta > 0.$
 - e) $f(x|m) \propto (1-x)^{(m-1)/2}$, $0 \le x \le 1, m > -1/2$.
 - f) $f(z|\theta,\phi) \propto \exp\left(-\frac{\theta}{\phi}z^2 + (\phi+1)z\right), \quad \theta > 0, \phi > 0.$

- 4. Form the likelihood function of the model in each case.
- a) Let $X_1, ..., X_n$ be conditionally independent given θ . Each $X_i | \theta \sim \text{Normal}(\mu, \theta)$ where μ is known, and $\theta > 0$.
- b) It is believed that the number of accidents in a new factory will follow a Poisson distribution with mean θ per month. There are 18 accidents in the first six months.
 - c) The number of offspring X in a certain population has probability function

$$p(x|\alpha,\beta) = \begin{cases} \alpha & x = 0\\ (1-\alpha)\beta(1-\beta)^{x-1} & x = 1,2,\dots \end{cases}$$

where α and β are unknown parameters lying in the unit interval. Obtain the likelihood function when r zeroes and n-r non-zero values $X_1, ..., X_{n-r}$ are obtained from n independent observations on X.

- 5. Find the following sums and integrals by identifying a kernel of a probability density function and using properties of probability density functions.
 - a) $\sum_{y=0}^{\infty} \mu^y / y!$, $\mu > 0$.
 - b) $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$, $\alpha > 0, \beta > 0$.
 - c) $\int_0^1 \frac{1}{2} (\beta + 3)(\beta + 2)(\beta + 1)x(1 x)^{\beta} dx$, $\beta > -1$.
 - d) $\int_{-\infty}^{\infty} 4\mu^{(a-1)} \left(\frac{\sigma^2 + \tau^2}{\sigma \tau}\right)^{1/2} \exp\left(-\left(\frac{\sigma^2 + \tau^2}{\sigma \tau}\right) (\theta \mu)^2\right) d\theta$, $\sigma > 0, \tau > 0$.