Упражнение 2 по Дискретни Структури, КН2, зимен семестър 2016-2017 г.

Въведение в теорията на множествата

Задача 1. Кои от следните множества са равни?

- 1. $\{1, 2, 3, 5\}$
- 2. {1, 2, 1}
- $3. \{2, 2, 1\}$
- *4.* {1,{1,2,2,1},1,{1,2}}
- *5*. {1}
- *6*. {{1}}}
- 7. {{{**1**}}}
- *8.* {{{1,1}}}
- 9. {{{1}},{1}}}

Задача 2. Нека A е множеството $A = \{a, b, \{a\}, \{\{a, b\}\}, \{a, b\}\}, \kappa z \partial$ ето a u b са протоелементи. Кои от следните твърдения са верни?

- 1. $a \in A$
- $2. \ \alpha \subseteq A$
- $3. \{a\} \in A$
- $4. \{a\} \subseteq A$
- 5. $\{a, b\}$ ∈ A
- 6. {a, b} ⊆ A
- 7. $\{a,b\}\subset A$
- 8. $\{\{a,b\}\}\in A$
- 9. $\{\{a,b\}\}\subseteq A$
- 10. $\{\{\{a,b\}\}\}\}\in A$
- 11. $\{\{\{a,b\}\}\}\}\subseteq A$

Задача 3. Кои от следните твърдения са верни?

1. $\emptyset \in \emptyset$

- $2. \emptyset \subset \emptyset$
- β . $\emptyset \subset \emptyset$
- $4. \emptyset \in \{\emptyset\}$
- $5. \emptyset \subseteq \{\emptyset\}$
- $6. \emptyset \subset \{\emptyset\}$

Нотация 1. Множеството от естествените числа $\{0, 1, ...\}$ се означава с \mathbb{N} . Множеството от целите числа $\{..., -1, 0, 1, ...\}$ се означава с \mathbb{Z} .

Задача 4. Определете всички елементи на следните множества.

- 1. $\{x \mid x \in \mathbb{N} \land 4 < x \land x < 9\}$
- 2. $\{x \mid x \in \mathbb{N} \land 4 \leq x \land x \geq 9\}$
- 3. $\{1+(-1)^x \mid x \in \mathbb{N}\}$
- 4. $\{1 + \frac{1}{x} \mid x \in \{2, 3, 5\}\}$
- 5. $\{n^2 + n^3 \mid n \in \{2, 3, 5\}\}$

Задача 5. Нека множествата A, B, C, D, E, F, G и H са определени така:

$$A=\mathbb{N}$$
 $B=\{n\,|\,n\in\mathbb{N}\}$ $C=\{n+1\,|\,n\in\mathbb{N}\}$ $D=\{2n+1\,|\,n\in\mathbb{N}\}$ $E=\{n+11\,|\,n\in\mathbb{Z}\}$ $F=\{n-4\,|\,n\in\mathbb{Z}\}$ $G=\{2n+2\,|\,n\in\mathbb{Z}\}$ $H=\{2n+16\,|\,n\in\mathbb{Z}\}$ Определете кои от тези множества са равни едно на друго.

Определение 1. Нека A и B са произволни множества, а U е подходящ универсум. Дефинираме следните операции:

обединение $A \cup B \stackrel{def}{=} \{x \mid x \in A \lor x \in B\}$

сечение $A \cap B \stackrel{def}{=} \{x \mid x \in A \land x \in B\}$

разлика $A \setminus B \stackrel{def}{=} \{x \mid x \in A \land x \notin B\}$

симетрична разлика $A \triangle B \stackrel{def}{=} \{x \mid (x \in A \land x \not\in B) \lor (x \not\in A \land x \in B)\}$

допълнение $\overline{A^{U}}\stackrel{\mathit{def}}{=}\{x\,|\,x\in U \land x\not\in A\}$

Задача 6. Използвайки познанията от съждителната логика, обосновете следната таблица на петте операции:

A	В	$A \cup B$	$A \cap B$	$A \setminus B$	A∆B	Ā
0	0	0	0 0 0		0	1
0	1	1	0	0	1	1
1	0	1	0	1	1	0
1	1	1	1	0	0	0

Теорема 1. Нека A, B и C са произволни множества. Нека U е подходящ универсум. Следните равенства са в сила:

свойства на празното множество и универсума :
$$A \cap U = A$$
, $A \cup U = U$, $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$.

свойства на допълнението: $A \cap \overline{A} = \emptyset$, $A \cup \overline{A} = U$.

идемпотентност: $A \cap A = A$, $A \cup A = A$.

закон за двойното допълнение: $\overline{\overline{A}} = A$.

комутативност: $A \cap B = B \cap A$, $A \cup B = B \cup A$.

асоциативност: $(A \cap B) \cap C = A \cap (B \cap C)$, $(A \cup B) \cup C = A \cup (B \cup C)$.

дистрибутивност: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

закони на Де Морган: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

поглъщане: $A \cap (A \cup B) = A$, $A \cup (A \cap B) = A$.

Задача 7. Докажете Теорема 1 чрез табличния метод.

Решение: Ще докажем единия от законите на Де Морган:

A	В	$A \cup B$	$\overline{A \cup B}$	Ā	\overline{B}	$\overline{A} \cap \overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Желаният резултат следва от равенството на колона 4 (зелено) и колона 7 (оранжево).

Задача 8. Нека A, B, C u D са произволни множества. Да се докаже или опровергае всяко от следните твърдения:

1.
$$A \cap B = \emptyset$$
 \wedge $B \cap C = \emptyset$ \rightarrow $A \cap C = \emptyset$

$$\textit{2.} \ A \cap B = \emptyset \quad \land \quad C \cap D = \emptyset \qquad \rightarrow \qquad (A \cap C) \cap (B \cap D) = \emptyset$$

3.
$$A \cap B = \emptyset$$
 \wedge $C \cap D = \emptyset$ \rightarrow $(A \cup C) \cap (B \cup D) = \emptyset$

Решение:

(1) не е вярно. За да докажем това, достатъчно е да демонстрираме един единствен *контрапример* – три множества A, B и C, за които твърдението не е вярно. Защо е достатъчен един контрапример? – защото твърдението всъщност е

$$\forall A \forall B \forall C (A \cap B = \emptyset \land B \cap C = \emptyset \rightarrow A \cap C = \emptyset)$$

Нека $A = \{1, 2\}$, $B = \{4\}$ и $C = \{2, 3\}$. Вярно е, че $A \cap B = \emptyset \wedge B \cap C = \emptyset$, но $A \cap C = \{2\}$.

(2) е вярно. Да разгледаме множеството $(A \cap C) \cap (B \cap D)$:

$$(A \cap C) \cap (B \cap D) =$$
 (асоциативност) $A \cap C \cap B \cap D =$ (комутативност)

$$A \cap B \cap C \cap D =$$
 (асоциативност)

$$(A \cap B) \cap (C \cap D) =$$
 (предпоставки $A \cap B = \emptyset$ и $C \cap D = \emptyset$)

 $\emptyset \cap \emptyset =$ (свойства на празното множество)

 \emptyset

(3) не е вярно. Като контрапример да разгледаме множествата $A = \{1,2\}$, $B = \{3,4\}$, $C = \{4,5\}$ и $D = \{2,6\}$. $A \cap B = \emptyset \wedge C \cap D = \emptyset$ е изпълнено, но $(A \cup C) \cap (B \cup D) = \{1,2,4,5\} \cap \{3,4,2,6\} = \{2,4\} \neq \emptyset$.

Задача 9. Докажете чрез табличния метод, че $A \setminus B = A \cap \overline{B}$.

Задача 10. Докажете чрез разсъждения (а не чрез таблица), че $A \setminus B = A \cap \overline{B}$.

Решение:

$$A \setminus B =$$
 (по дефиниция) $\{x \mid x \in A \land x \notin B\} =$ (дефиниция на допълнение) $\{x \mid x \in A \land x \in \overline{B}\} =$ (дефиниция на сечение) $A \cap \overline{B}$

Задача 11. Докажете чрез еквивалентни преобразувания, че $A \setminus (B \cup C) = (A \setminus B) \setminus C$.

Решение:

$$A \setminus (B \cup C) =$$
 (съгласно **Задача 10**) $A \cap \overline{B} \cup \overline{C} =$ (закони на Де Морган) $A \cap (\overline{B} \cap \overline{C}) =$ (асоциативност) $A \cap \overline{B} \cap \overline{C} =$ (асоциативност) $(A \cap \overline{B}) \cap \overline{C} =$ (съгласно **Задача 10**) $(A \setminus \overline{B}) \cap \overline{C} =$ (закон за двойното допълнение) $(A \setminus B) \cap \overline{C} =$ (съгласно **Задача 10**) $(A \setminus B) \setminus \overline{C} =$ (закон за двойното допълнение) $(A \setminus B) \setminus \overline{C} =$ (закон за двойното допълнение) $(A \setminus B) \setminus \overline{C} =$ (закон за двойното допълнение)

Задача 12. Докажете или опровергайте, че

1.
$$(A \cap B) \setminus (A \setminus C) = A \cap B \cap C$$

2.
$$A \setminus ((B \setminus C) = (A \setminus B) \cup (A \cap C)$$

3.
$$\overline{\overline{A} \cup C} \setminus (A \cap B) = A \setminus (B \cup C)$$

$$4. \ \overline{A \setminus C} \cup \overline{B \cap \overline{C}} = \overline{(A \cap B) \setminus C}$$

5.
$$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$$

6.
$$\overline{(A \cup B) \cap C \cup \overline{B}} = B \cup C$$

7.
$$\overline{A \triangle B} = A \triangle \overline{B}$$

8. $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$

Задача 13. Heкa A = $\{1, 2, 3, 4, 5\}$, B = $\{1, 2, 4, 8\}$, C = $\{1, 2, 3, 5, 7\}$ u D = $\{2, 4, 6, 8\}$, a универсумът e U = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Определете

- 1. $(A \cup B) \cap C$
- 2. $A \cup (B \cap C)$
- 3. $\overline{C} \cup \overline{D}$
- *4.* <u>C△D</u>
- 5. $(A \cup B) \setminus C$
- 6. $A \cup (B \setminus C)$
- 7. $(B \setminus C) \setminus D$
- 8. $B \setminus (C \setminus D)$
- 9. $(A \cup B) \setminus (C \cap D)$

Задача 14. Докажете чрез табличния метод, че ако $C \subseteq B \setminus A$, то $\overline{A} \cap (B \cup C) = (A \cup B) \setminus A$.

Решение: Първо да направим пълната таблица на $\overline{A} \cap (B \cup C \text{ и } (A \cup B) \setminus A.$

A	В	С	Ā	$B \cup C$	$\overline{A} \cap (B \cup C)$	$A \cup B$	$(A \cup B) \setminus A$
0	0	0	1	0	0	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	1	0
1	0	1	0	1	0	1	0
1	1	0	0	1	0	1	0
1	1	1	0	1	Ō	1	0

Зелената и оранжевата колона не са равни. Но досега не сме използвали предпоставката, че $C\subseteq B\setminus A$. В общия случай (без тази предпоставка) множеството C се разбива на четири подмножества:

- 1. множеството от елементите на C, непринадлежащи нито на A, нито на B; на това множество съответства векторът 001
- 2. множеството от елементите на C, непринадлежащи на A, но принадлежащи на B; на това множество съответства векторът 011
- 3. множеството от елементите на C, принадлежащи на A, но непринадлежащи на B; на това множество съответства векторът 101
- 4. множеството от елементите на С, принадлежащи и на А, и на В; на това множество съответства векторът 111.

Имайки предвид предпоставката $C \subseteq B \setminus A$, ясно е, че множествата (1), (3) и (4) са празни. Това значи да игнорираме втория, шестия и осмия ред на таблицата:

A	В	С	Ā	$B \cup C$	$\overline{A} \cap (B \cup C)$	$A \cup B$	$(A \cup B) \setminus A$
0	0	0	1	0	0	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	1	0
1	0	1	0	1	0	1	0
1	1	0	0	1	0	1	0
1	1	1	0	1	0	1	0

В таблицата от останалите редове, шестата и осмата колона са равни:

A	В	С	Ā	$B \cup C$	$\overline{A} \cap (B \cup C)$	$A \cup B$	$(A \cup B) \setminus A$
0	0	0	1	0	0	0	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	1	0
1	1	0	0	1	0	1	0

Задача 15. Нарисувайте диаграма на Вен за трите множества А, В и С, ако е дадено, че

- $A \subset B \ u \ B \subset C$
- $A \subset B \ u \ C \subset B$
- $A \subset B$, $C \subset B$ $u A \cap C = \emptyset$

Задача 16. Нека

$$A = \{1, 2, 4, 6, 7, 9, 11\}$$

Напишете всички подмножества на А, които

- съдържат точно две четни и точно едно нечетно число,
- съдържат точно пет елемента,
- не съдържат четни елементи.

Задача 17. Дайте пример за три множества А, В и С, такива че

- $A \in B \ u \ B \in C \ u \ A \notin C$,
- $A \in B \ u \ B \in C \ u \ A \in C$.

Задача 18. Докажете следните резултати за произволни множества A, B, C, D, без да ползвате диаграми на Вен (допуснете, че е даден подходящ универсум U):

- 1. $A \kappa o A \subseteq B \ u C \subseteq D$, $mo A \cap C \subseteq B \cap D \ u A \cup C \subseteq B \cup D$.
- 2. $A \subseteq B$ тогава и само тогава, когато $A \cap \overline{B} = \emptyset$.

Решение: Ще покажем, че ако $A\subseteq B$ и $C\subseteq D$, то $A\cap C\subseteq B\cap D$. От дефиницията на подмножество знаем, че

$$A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$$

където домейнът на х е U. Аналогично,

$$C \subseteq D \leftrightarrow \forall x (x \in C \to x \in D)$$
$$A \cap C \subseteq B \cap D \leftrightarrow \forall x (x \in A \cap C \to x \in B \cap D)$$

Трябва да покажем, че изводът

$$\forall x(x \in A \to x \in B) \land \forall x(x \in C \to x \in D) \to \forall x(x \in A \cap C \to x \in B \cap D)$$

е валиден. За да се освободим от кванторите, ще разгледаме следните прости съждения. Нека

- ullet р е съждението ${\mathfrak a}\in A$ за *произволен* елемент ${\mathfrak a}$ от универсума
- ullet q е съждението $\mathfrak{a}\in B$ за същия \mathfrak{a}
- ullet r е съждението $b\in C$ за *произволен* елемент b от универсума
- ullet s е съждението $b \in D$ за същия b.

Тогава предпоставките са $\mathfrak{p} \to \mathfrak{q}$ и $r \to s$, а изводът можем да запишем като $\mathfrak{p} \wedge r \to \mathfrak{q} \wedge s$. Ще покажем, че

$$(p \rightarrow q \land r \rightarrow s) \rightarrow (p \land r \rightarrow q \land s)$$

е тавтология. Първо ще преобразуваме израза с еквивалентни преобразувания:

$$\begin{array}{ll} (p \to q \land r \to s) \to (p \land r \to q \land s) \equiv & \text{(съгласно } x \to y \equiv \neg x \lor y) \\ \neg \big((\neg p \lor q) \land (\neg r \lor s \big) \lor \neg (p \land r) \lor (q \land s) \equiv & \text{(закони на Де Морган, асоциативност)} \\ (p \land \neg q) \lor (r \land \neg s) \lor \neg p \lor \neg r \lor (q \land s) \end{array}$$

Да наречем тази дизюнкция, Z. Ще покажем, че Z е тавтология.

p	q	r	S	¬р	¬r	p∧¬q	$r \wedge \neg s$	q∧s	Ζ
F	F	F	F	Т	Т	F	F	F	Т
F	F	F	Т	Т	Т	F	F	F	Т
F	F	Т	F	Т	F	F	Т	F	Т
F	F	Т	Т	Т	F	F	F	F	Т
F	Т	F	F	Т	Т	F	F	F	Т
F	Т	F	Т	Т	Т	F	F	Т	Т
F	Т	Т	F	Т	F	F	Т	F	Т
F	Т	Т	Т	Т	F	F	F	Т	Т
Т	F	F	F	F	Т	Т	F	F	Т
Т	F	F	Т	F	Т	Т	F	F	Т
Т	F	Т	F	F	F	Т	Т	F	Т
Т	F	Т	Т	F	F	Т	F	F	Т
Т	Т	F	F	F	Т	F	F	F	Т
Т	Т	F	Т	F	Т	F	F	Т	Т
Т	Т	Т	F	F	F	F	Т	F	Т
Т	Т	Т	Т	F	F	F	F	Т	Т

Задача 19. Докажете, че следните твърдения са еквивалентни за всички множества А и В (допуснете, че U е подходящ универсум):

- a) $A \subseteq B$
- б) $A \cup B = B$
- $A \cap B = A$
- $\mathbf{r})\ \overline{\mathrm{B}}\subseteq\overline{\mathrm{A}}$

Решение: Трябва да се покаже, че две по две твърденията са еквивалентни. Наивният начин е за всяка (ненаредена) двойка твърдения да се докаже желаната еквивалентност, примерно \mathbf{a}) \equiv \mathbf{b}), \mathbf{a}) \equiv \mathbf{b}), \mathbf{a}) \equiv \mathbf{b}), \mathbf{b}) \equiv \mathbf{b}), и т. н. Това би означавало да докажем общо $\frac{4.3}{2}=6$ еквивалентности. По-икономичен начин е да докажем само четири извода:

$$a) \vdash b$$
, $b \vdash b$, $b \vdash b$, $b \vdash c$, $b \vdash c$

Защо това е достатъчно, ще стане ясно от следващ материал † . И така,

- а) \vdash б) Допускаме, че $A\subseteq B$. Трябва да покажем равенство между две множества, а именно $A\cup B$ и B. Ще го покажем на два етапа.
 - В \subseteq А \cup В. Твърдението е очевиден аналог на извода р \vdash р \lor q от съждителната логика.
 - $A \cup B \subseteq B$. Нека p е съждението $x \in A$, а q е съждението $x \in B$. Трябва да докажем валидността на следствието q при предпоставки $p \to q$ (съответното на $A \subseteq B$) и $p \lor q$ (съответното на $A \cup B$). Ще ползваме еквивалентни преобразувания.
 - 1. $\mathfrak{p} \to \mathfrak{q}$ (предпоставка)
 - 2. $\neg p \lor q$ (от факта, че $u \to v \equiv \neg u \lor v$)
 - 3. $\mathfrak{p} \vee \mathfrak{q}$ (предпоставка)

 $^{^{\}dagger}\Pi$ ричината е, че транзитивното затваряне на контур е пълната релация

- 4. $q \lor q$ (резолюция върху (2.) и (3.))
- 5. q (идемпотентност върху (4).)
- **б**) \vdash в) Нека р е съждението $x \in A$, а q е съждението $x \in B$. Трябва да докажем валидността на следствието р \land q \leftrightarrow р (съответното на $A \cap B = A$) при предпоставка р \land q \leftrightarrow q (соътветното на $A \cap B = B$). Чрез таблица ще покажем нещо повече: двете съждения са еквивалентни (с което, без да искаме, показваме и извода в) \vdash б)).

p	q	$p \lor q$	$p \lor q \leftrightarrow q$	$p \wedge q$	$p \land q \leftrightarrow p$	$(p \lor q \leftrightarrow q) \leftrightarrow (p \land q \leftrightarrow p)$
F	F	F	Т	F	Т	Т
F	Т	Т	Т	F	Т	Т
Т	F	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т	Т

- в) \vdash г) Подходът е аналогичен. Нека \mathfrak{p} е съждението $\mathfrak{x} \in A$, а \mathfrak{q} е съждението $\mathfrak{x} \in B$. Ще покажем, че $(\mathfrak{p} \land \mathfrak{q} \leftrightarrow \mathfrak{p}) \equiv (\neg \mathfrak{q} \leftrightarrow \neg \mathfrak{p})$. От предната таблица знаем, че колоната на $(\mathfrak{p} \land \mathfrak{q} \leftrightarrow \mathfrak{p})$ е $\boxed{\mathsf{T} \ \mathsf{T} \ \mathsf{F} \ \mathsf{T}}$. Тривиално е да се покаже, че $(\neg \mathfrak{q} \leftrightarrow \neg \mathfrak{p})$ има същата колона.
- ${\bf r}$) \vdash ${\bf a}$) Използваме аналогичен подход. Доказателството се свежда до това да се покаже, че $\neg {\bf q} \to \neg {\bf p} \equiv {\bf p} \to {\bf q}$, което е добре известен факт (свойство на контрапозитивното). \square

Задача 20. Нека $I_n = \{1, 2, ..., n\}$. Намерете множествата

$$\bigcup_{k=1}^{n} I_{k} \qquad u \qquad \bigcap_{k=1}^{n} I_{k}$$

Задача 21. Нека $J_n=\{0,1,\ldots,n-1\}$. Нека $A_i=\mathbb{N}\setminus J_i$. Намерете множествата

$$\bigcup_{k=1}^{n} A_k \qquad u \qquad \bigcap_{k=1}^{n} A_k$$

Задача 22. Нека $A = \{1, 2, 4\}$ и $B = \{1\}$. Напишете в явен вид множествата 2^A и $2^{(2^B)}$.

Задача 23. Нека $A = \{1, 2, 4\}$ и $B = \{3, 4, 5, 6, 7, 8, 9, 10, 100, 1000\}$. Напишете в явен вид множеството $2^A \cap 2^B$.

Задача 24. Нека $A = \{3,6,9\}$, $B = \{a,b,f,g\}$ и $C = \{3\}$. Напишете в явен вид $A \times B$, $A \times (B \times C)$, $2^A \cap A$, $2^A \cap 2^B$ и $(2^B \times 2^A) \cap 2^{A \times B \times C}$.

Задача 25. Дайте пример за непразно множество, което е

- 1. елемент на своето степенно множество,
- 2. подмножество на своето степенно множество.

Задачи с декартово произведение

Декартовото произведение на две множества А и В е множеството

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Когато разглеждаме декартови произведения от някакви множества, винаги мислим, че съществува универсум, на когото множествата са подмножества. В задачите от типа "Докажете, че $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ " универсумът е множество от протоелементи. В задачите с декартово произведение универсумът има структура – примерно, универсумът за $A \times B$ е декартово произведение $U = U_1 \times U_2$ от два универсума, такива че A е подмножество на U_1 и B, на U_2 .

Задача 26. Напишете в явен вид декартовото произведение $A \times B$, където $A = \{1, 2, \{3\}\}$ и $B = \{a, b, \{1, a, b\}, \{c\}\}$.

Решение:

$$A \times B = \{(1, a), (1, b), (1, \{1, a, b, c\}), (1, \{c\}),$$

$$(2, a), (2, b), (2, \{1, a, b, c\}), (2, \{c\}),$$

$$(\{3\}, a), (\{3\}, b), (\{3\}, \{1, a, b, c\}), (\{3\}, \{c\})\}$$

Задача 27. Докажете, че за всички множества А, В и С в сила са следните равенства:

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- **6)** $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- $\mathbf{B)} \ (A \cap B) \times C = (A \times C) \cap (A \times C).$
- $\Gamma) (A \cup B) \times C = (A \times C) \cup (A \times C).$

Решение: Ще докажем **a)**. От лявата страна на знака за равенство имаме множество, състоящо се от наредени двойки. От дясната страна имаме множество, състоящо се от обединението на две множества, всяко от които е множество от наредени двойки. Универсумът в тази задача е някакво множество, да го наречем U, което е декартово произведение:

$$U = U_1 \times U_2$$

където U_1 е универсум по отношение на A (тоест, всеки елемент на A е елемент на U_1), а U_2 е универсум по отношение на B и C (всеки елемент на B е елемент на U_2 и всеки елемент на U_3). Твърдението, което искаме да докажем, е

$$\forall x \forall y (x \in A \land (y \in B \land y \in C) \leftrightarrow (x \in A \land y \in B) \land (x \in A \land y \in C)) \tag{1}$$

където x взема стойности от U_1 , а y, от U_2 . Нека a е произволен елемент от U_1 и b е произволен елемент от U_2 . Нека p е съждението $a \in A$, q е съждението $b \in B$ и r е съждението $b \in C$. Ще докажем, че

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge (p \wedge r) \tag{2}$$

От верността на (2) следва верността на (1). Защо? – защото елементите $\mathfrak a$ и $\mathfrak b$ са взети **произволно**, следователно в (2) няма ограничение на общността – израз от вида (2) би имал същата форма за всички възможни вземания на елементи от U_1 и U_2 .

Ще кажем същото нещо по друг начин: въпреки че (1) е израз от предикатната логика, а (2), от съждителната логика, ако докажем (2), с това доказваме и (1), тъй като за $\mathfrak a$ и $\mathfrak b$ няма никакви ограничения, следователно аналогично на (2) твърдение може да се направи за всеки елемент от $\mathfrak U_1$ и всеки елемент от $\mathfrak U_2$ — съвкупността от всички тези твърдения всъщност е (1).

Доказателството на (2) е тривиално:

$$\begin{array}{ll} p \wedge (q \wedge r) \equiv & \text{(асоциативност)} \\ p \wedge q \wedge r \equiv & \text{(идемпотентност)} \\ p \wedge p \wedge q \wedge r \equiv & \text{(комутативност)} \\ p \wedge q \wedge p \wedge r \equiv & \text{(асоциативност)} \\ (p \wedge q) \wedge (p \wedge r) & \end{array}$$

Забележете приликата и разликата между доказателството, че

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

което извършихме току-що, и доказателството, че

$$A \cap (B \cap C) = (A \cap B) \cap (A \cap C) \tag{3}$$

В (3) универсумът за A, B и C е едно и също U. Изразено чрез предикатна логика, твърдението е

$$\forall x (x \in A \land (x \in B \land x \in C) \leftrightarrow (x \in A \land x \in B) \land (x \in A \land x \in C)) \tag{4}$$

За произволно $\mathfrak{a} \in U$, нека \mathfrak{u} е съждението $\mathfrak{a} \in A$, \mathfrak{v} е съждението $\mathfrak{a} \in B$ и \mathfrak{w} е съждението $\mathfrak{a} \in C$. Да напишем израз от съждителната логика, от който да следва (4)

$$\mathbf{u} \wedge (\mathbf{v} \wedge \mathbf{w}) \equiv (\mathbf{u} \wedge \mathbf{v}) \wedge (\mathbf{u} \wedge \mathbf{w}) \tag{5}$$

Очевидно, (5) има същата форма като (2).

От тези примери на пръв поглед изглежда, че декартовото произведение и сечението са в някакъв смисъл еквивалентни, понеже и на двете съответства логическия съюз конюнкция – доказването на (1), от една страна, и на (4), от друга страна, се свежда до доказването на едно и също съждение ((2) и (5) са едно и също нещо, написано по два начина). В действителност декартовото произведение и сечението са принципно различни операции върху множества. Ще илюстрираме разликата с два други примера. Да разгледаме равенството върху множества

$$A \cap (A \cup B) = A \tag{6}$$

Това е един от двата закона за поглъщането, написан в термините на теорията на множествата. Написан в термините на предикатната логика, той изглежда така

$$\forall x (x \in A \land (x \in A \lor x \in B) \leftrightarrow x \in A)$$

Съответният израз от съждителната логика е

$$p \wedge (p \vee q) \equiv p \tag{7}$$

Сега да разгледаме твърдението (очевидно невярно)

$$A \times (A \cup B) = A \tag{8}$$

което се получава от (6) чрез замяна на " \cap " с " \times ". Забележете, че изразът от съждителната логика, съответстващ на (8), <u>не е</u> (7), а е

$$p \wedge (s \vee t) \equiv p \tag{9}$$

който със сигурност е лъжа. Защо изразът от съждителната логика, съответстващ на (8), е (9), а не (7)? Защото (8), написан в предикатна логика, е

$$\forall x \forall y (x \in A \land (y \in A \lor y \in B) \leftrightarrow x \in A)$$

където x и y вземат стойности от някакви подходящи домейни. За да напишем съответен израз от съждителната логика, трябва да използваме **различни** съждителни променливи за $x \in A$ и $y \in A$, понеже говорим за съответно първия и втория елемент от наредените двойки (елементите на декартовото произведение).

Задача 28. Докажете, че $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

Задача 29. Докажете, че декартовото произведение $A \times B$ не е комутативно. При какви условия за A и B имаме комутативност?