Introduction to Systems.

Pablo M. Olmos (olmos@tsc.uc3m.es) Emilio Parrado (emipar@tsc.uc3m.es)

May 21, 2018

uc3m

Systems

- System: Any process that results in the transformations of signals.
- Systems can model the behavior of a chemical process, a hydraulic system, an electric circuit, a communication channel, ...

Microphone (transducer)

Figure: Voice (pressure) signal \Rightarrow Voltage signal

Communication channel

$$\lambda = \frac{c}{f} \qquad x(t)$$
10 m \le \lambda_{HF} \le 100 m

System $T\{x(t)\}$

Seismic analysis and earthquake prevention

- The building can be seen as a system.
- \bullet Input signal: seismic (sinusoidal) wave with amplitude A and angular frequency $\omega.$
- Output signal: Building curvature and displacement.

Electric Circuits

- Voltages and currents as a function of time in an electrical circuit are examples of signals.
- A circuit is itself an example of a system, which responds to applied input voltage/current signals.

Motivation: Image Filtering

original

filter (3 x 3)

vertical edge detector

https://docs.gimp.org/en/plug-in-convmatrix.html

Q_1	, Ž	·· <u>1</u> .	1	0.	.0.	.0.										
Q _o	Q_{1}	$\frac{1}{\infty}$	1	1	0	0.		·	(trees			1	4	3	4	1
$Q_{\mathbf{x}_1}$	$\overset{x_0}{0}$	0_{1}	1	1	1	0		1	0	1		1	2	4	3	3
0	0.	0.	1	1	·0.	.0	*	0	1	0	=/	1	2	3	4	1
0	0	1	1	0	0	.0.		1	0	1		1	3	3	1	1
0	1	1	0	0	0	0						3	3	1	1	0
1	1	0	0	0	0	0										
	n				K						Y					

$$Y[1,1] = X[1,1] * K[1,1] + X[1,2] * K[1,2] + X[1,3] * K[1,3] + X[2,1] * K[2,1] + X[2,2] * K[2,2] + X[2,3] * K[2,3] + X[3,1] * K[3,1] + X[3,2] * K[3,2] + X[3,3] * K[3,3]$$

0	$1 \\ 1 \\ \times 1$	" <u>†</u>	•.1 ×i	0	.0.	.0.											
0	Ö°0	$\frac{1}{x_1}$	$\frac{1}{x_0}$	1	0	.0.		٠	770	ec;;;		1	4	3	4	1	
0	0,1	0^{80}	1 _{×1}	1	1	0		1	0	1		1	$\cdot 2$	4	3	3	
0	0	.0.	.1.	1	.0.	·0.	*	0	1	0	~~ <u>`</u>	1	2	3	4	1	
0	0	1	1	0	0	.0.		1	0	1	, and a second	1	3	3	1	1	
0	1	1	0	0	0	0						3	3	1	1	0	
1	1	0	0	0	0	0											
		X	$n \times$	n			K						Y				

$$Y[1,2] = X[1,2] * K[1,1] + X[1,3] * K[1,2] + X[1,4] * K[1,3] + X[2,2] * K[2,1] + X[2,3] * K[2,2] + X[2,4] * K[2,3] + X[3,2] * K[3,1] + X[3,3] * K[3,2] + X[3,4] * K[3,3]$$

0_1	 	·· <u>1</u>	1	0.	.0.	.0.										
Qo	Q_{1}	1,0	1	1	0	.0.			(Jane			1	4	3	4	1
Q_{1}	Q ₀	Q_{1}	1	1	1	0		1	0	1		1	2	4	3	3
0	.0.	0.	1	1	0.	.0	*	0	1	0	=/	1	2	3	4	1
0	0	1	1	0	0	0.		1	0	1	and the second	1	3	3	1	1
0	1	1	0	0	0	0						3	3	1	1	0
1	1	0	0	0	0	0										
		X	$n \times$	n					K					Y		

$$Y[i,j] = \sum_{k_1=1}^n \sum_{k_2=1}^n X[k_1,k_2] K[i-k_1,j-k_2], \quad K[u,q] = 0 \text{ para } u > 3, q > 3$$

Linear operator, the result does not depend on the position of the image

original

filter (3 x 3)

vertical edge detector

https://docs.gimp.org/en/plug-in-convmatrix.html

original

filter (3 x 3)

all edge detector

original

filter (5 x 5)

sharpen

Index

1 Continuous-time and discrete-time systems

Properties of systems

Symbolically, we represent a system as:

$$x(t) \rightarrow y(t)$$

 $x[n] \rightarrow y[n]$

Interconnection of systems

Complex system composed of the interconnection of simpler systems:

Cascade interconnection

Parallel interconnection

Interconnection of systems

Series/Parallel interconnection

In general, the order is NOT interchangeable.

$$y[n] = (2x[n] - x^2[n])^2$$

Problem 31

Consider the following interconnection of systems:

where
$$T_1: y(t) = 2x(t-2)$$
, $T_2: y(t) = dx(t-2)/dt$ and $T_3: y(t) = x(-t+1)$.

- a) Determine the system input-output relationship.
- b) Compute the system response when x(t) = u(t).

Sol:

$$e(t) = 2x(t-2) \Rightarrow w(t) = \frac{de(t-2)}{dt} = 2\frac{dx(t-4)}{dt}$$

 $r(t) = x(-t+1)$

For
$$x(t) = u(t)$$

$$y(t) = 2\frac{dx(t-4)}{dt} + x(-t+1) = 2\delta(t-4) + u(-t+1)$$

Index

Continuous-time and discrete-time systems

Properties of systems

Systems with and without memory

A system $x(t) \to y(t)$ is said to be memoryless if the output $y(t_0)$ a one time instant t_0 only depends on the input at the same time instant, i.e., $x(t_0)$.

Examples:

- $y[n] = (2x[n] x[n]^2)^2$ is memoryless.
- y(t) = x(t-1) is a system with memory.
- y(t) = x(t-3)x(t+2) is a system with memory.

 $y(t) = \frac{\partial x(t)}{\partial t}$ is a system with memory.

$$y(t) = \frac{\partial x(t)}{\partial t} \doteq \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

- We need $x(t + \Delta)!$
- The system has memory!

Invertibility and inverse systems

- A system is said to be invertible if distinct inputs lead to distinct outputs.
- By observing its output, we can determine its input.

Are invertible the following systems?

- y[n] = x[2n]
- y(t) = x(2t)
- $y(t) = x^2(t)$

Problem 33

Consider the following discrete-time system

$$y[n] = x[n]x[n-2]$$

- a) Is the system memoryless?
- b) Determine the system response when the input is $x[n] = A\delta[n]$, where $A \in \mathbb{C}$.
- c) Is the system invertible?

Causality

- A system is causal if the output at any time depends only on values of the input at the present time and in the past.
- y(t) = f(x(t)) is causal if $y(t_0)$ only depends on x(t) for $t \le t_0$.
- y[n] = f(x[n]) is causal if $y[n_0]$ only depends on x[n] for $n \le n_0$.
- Memoryless systems are always causal.

Are the following systems causal?

- y[n] = x[n] x[n+1]
- y(t) = x(t+1)
- y[n] = Even(x[n-1])?
- $y(t) = x(\sin(t))$

Stability

Bounded signal

Consider an input signal x(t) that verifies

$$|x(t)| \leq B \ \forall t$$

for some real constant B. We say x(t) is a bounded signal.

Bounded Input, Bounded Output (BIBO) stability

A given system $x(t) \to y(t)$ is **BIBO stable** if there exists a real constant C for which

$$|y(t)| \leq C \ \forall t$$

for any input signal x(t) that is bounded.

Same definition holds for discrete-time systems.

Determine whether the following systems are stable:

$$y(t) = x(t/3)$$

$$y[n] = nx[n]$$

$$y(t) = \int_{t-2}^{t-1} x^3(\tau) d\tau$$

$$y[n] = \sum_{k=-\infty}^{n} (1/2)^{n-k} x[k]$$

Time Invariance

A system is time-invariant if a time shift in the input signal causes a time shift in the output signal.

- If y[n] = f(x[n]), the system is invariant if $f(x[n-n_0]) = y[n-n_0]$.
- If y(t) = f(x(t)), the system is invariant if $f(x(t t_0)) = y(t t_0)$.

$$y(t) = \sin(x(t))$$

Let $x_1(t)$ be the input:

$$y_1(t)=\sin(x_1(t)).$$

Define $x_2(t) = x_1(t - t_0)$:

$$y_2(t) = \sin(x_2(t)) = \sin(x_1(t-t_0)) = y_1(t-t_0).$$

The system is time-invariant.

$$y[n] = nx[n]$$

Let $x_1[n]$ be the input:

$$y_1[n]=nx_1[n].$$

Define $x_2[n] = x_1[n - n_0]$:

$$y_2[n] = nx_2[n] = nx_1[n - n_0]$$

 $y_1[n - n_0] = (n - n_0)x_1[n - n_0].$

Therefore

$$y_1[n-n_0] \neq y_2[n]$$

The system is NOT time-invariant.

Linearity

Linear systems posse the important property of **superposition**.

For any system, consider two arbitrary inputs and their respective outputs:

$$x_1(t) \rightarrow y_1(t)$$

 $x_2(t) \rightarrow y_2(t)$,

the system is linear if

$$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$$

for any two complex constants $a, b \in \mathbb{C}$.

Linear discrete-time signals

$$ax_1[n] + bx_2[n] \to ay_1[n] + by_2[n]$$

The systems

$$y[n] = (x[n])^2,$$

$$y[n] = \exp(x[n]),$$

are not linear.

The system

$$y[n] = x[n] - x[n-3] + 4x[n-8]$$

is linear.