

05/07/2023

CASO DE NEGOCIO

PREDICCIÓN DE DROPOUT DE ESTUDIANTES

AGENDA

O1 Introducción

Desafíos y objetivos del trabajo,
hipótesis planteada y composición de la base.

Selección de Modelos

Modelos utilizados, comparaciones y proceso de selección.

Análisis Exploratorio
EDA, tratamiento de columnas, im

EDA, tratamiento de columnas, imputaciones y codificación de variables. Gráficos exploratorios.

Conclusiones que se o

Conclusiones que se obtienen del desarrollo del modelo y la implementación del caso de negocios.

OBJETIVO

El objetivo de este caso de estudio será entrenar un modelo para poder predecir si un alumno del Tecnológico de Monterrey continuará o no con sus estudios.

Este modelo servirá luego para asesorar la institución a realizar un *correcto seguimiento de potenciales* alumnos a perder, con el fin de **disminuir** al máximo posible el dropout.

Asimismo, de tener una implementación exitosa, se podría expandir su uso hacía otras instituciones.

HIPÓTESIS

- → ¿Hay relación significativa entre las características (académicas y personales) de los estudiantes y su tendencia al abandono universitario?
- → ¿Existe una relación significativa entre el pasado de los estudiantes y el dropout?

La base contiene información sobre estudiantes del Tecnológico de Monterrey. Contiene, en total, 143.326 registros con 50 variables.

student.id	Integer	Encoded enrollment number of the student	1-121584
generation	String	Unique indicator that denotes the Generation	AD14, AD15, AD16, AD17, AD18, AD19,
educational.model	Binary	Educational model to which the student	1: TEC21 Model, 0: No TEC21 Model
level	String	Level of studies to which the student belongs	High School, Undergraduate
gender	String	Student's gender	Male, Female
age	Integer	Student's age	Range from 13 to 55 years
max.degree.parents	String	Highest level of studies obtained by the	No information, No degree, Undergraduate
father.education.complete	String	Description of the last level of studies	Attended university, but did not graduate;
father.education.summary	String	Last level of studies completed by the father	No information, No degree, Undergraduate
mother.education.complete	String	Description of the last level of studies	Attended university, but did not graduate;
mother.education.summary	String	Last level of studies completed by the	No information, No degree, Undergraduate
parents.exatec	String	Indicator that denotes if either one of the two	Yes, No, No information
father.exatec	String	Indicator that denotes if the student's father	Yes, No, No information
mother.exatec	String	Indicator that denotes if the student's mother	Yes, No, No information
tec.no.tec	String	Indicator that denotes if the student comes	TEC, NO TEC
foreign	String	Indicator to identify if the student is a	Local, Yes: National, Yes: Foreigner
zone.type	String	Description of the type of zone to which the	Rural, Semiurban, Urban, No information
first.generation	String	It indicates that the student is the first person	Yes, No, No information, Does not apply
school	String	Acronyms of the school to which the	High school, EN = Business school, EMCS
program	String	Acronyms of the academic program to which	The meaning of the acronyms can be foun
region	String	Code of the region to which the campus	RM = Monterrey Region, RO = West Region
PNA	Float	Previous level score (average)	Range from 0 to 100
admission.test	Integer and String	Admission test score	Range from 0 to 1600, Does not apply
online.test	Binary	If the student took the admission test online	1: YES, 0: NO
english.evaluation	Integer		Level 0: No information, Level 1: Beginner,

1: TEC21 Model, 0: No TEC21 Model High School, Undergraduate Male, Female Range from 13 to 55 years No information, No degree, Undergraduate Attended university, but did not graduate; No information, No degree, Undergraduate Attended university, but did not graduate; No information, No degree, Undergraduate Yes, No. No information Yes. No. No information Yes, No. No information TEC. NO TEC Local, Yes: National, Yes: Foreigner Rural, Semiurban, Urban, No information Yes, No, No information, Does not apply High school, EN = Business school, EMCS = The meaning of the acronyms can be found RM = Monterrey Region, RO = West Region, Range from 0 to 100 Range from 0 to 1600, Does not apply 1: YES. 0: NO Level 0: No information, Level 1: Beginner,

admission.rubric	Integer
general.math.eval	Float and String
retention	Binary
FTE	Float
scholarship.perc	Float
scholarship.type	String
loan.perc	Float
total.scholarship.loan	Float
school.cost	String
id.school.origin	String
socioeconomic.level	String
social.lag	String
average.first.period	Float
failed.subject.first.period	Integer
dropped.subject.first.period	Integer
dropout.semester	Integer
physical.education	Binary and String
cultural.diffusion	Binary and String
student.society	Binary and String
total.life.activities	Integer and String
athletic.sports	Binary and String
art.culture	Binary and String
student.society.leadership	Binary and String
life.work.mentoring	Binary and String
wellness.activities	Binary and String

Score generated from the student profile	Range from 0 to 50
Mathematics grade from the admission test	Range from 0 to 100, Does not apply
Value that indicates if the student continues	1: Retention, 0: Dropout
Indicates if the student is a full-time student	Range from 0.04 to 1.44
Scholarship percentage	Range from 0 to 1
Scholarship type	Academic talent, Army/Navy scholars
Percentage of scholarship loan	Range from 0 to .50
Total percentage of scholarship	Range from 0 to 1
Cost level of the student's tuition from the	Public, Low cost, Medium cost, Medi
Encoded identifier of the school where the	
Socioeconomic level	Level 1, Level 2, Level 3, Level 4, Le
Social Gap Index	Low, Medium, High, No information
Average obtained in the first period	Range from 0 to 100
Number of subjects failed in the first period	Range from 0 to 8
Number of subjects dropped out in the first	Range from 0 to 9
Value that indicates the semester when the	0,1,2,3,4
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Number of LIFE (student leadership and	0, 1, 2, 3, 4, 5, Does not apply, No
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Value that indicates if the student enrolled in	0, 1, Does not apply, No information
Value that indicates if the student received	0, 1, Does not apply, No information
Value that indicates if the student enrolled in	0, 1, Does not apply, No information

	Range from 0 to 50	
	Range from 0 to 100, Does not apply, No	
	1: Retention, 0: Dropout	
	Range from 0.04 to 1.44	
	Range from 0 to 1	
	Academic talent, Army/Navy scholarship,	7
	Range from 0 to .50	J
	Range from 0 to 1	
	Public, Low cost, Medium cost, Medium high	1
	Level 1, Level 2, Level 3, Level 4, Level 5,	
	Low, Medium, High, No information	
	Range from 0 to 100	
	Range from 0 to 8	
	Range from 0 to 9	
	0,1,2,3,4	
ľ	0, 1, Does not apply, No information	
1	0, 1, Does not apply, No information	
ľ	0, 1, Does not apply, No information	/
	0, 1, 2, 3, 4, 5, Does not apply, No	
	0, 1, Does not apply, No information	

No information

Yes

PREPARACIÓN DE LA BASE

→ Se ha verificado que las variables <u>no contienen nulos</u>. Están categorizados por defecto.

df['first.genera	ation'].value_counts()	Undergrad
Does not apply No information No Yes	65809 37372 34752 5393	No inform Master de No degree PhD Name: fat
df['mother.exa	tec'].value_counts()	Undergrad
No	94020	No degree

24904 24402

Undergraduate degree	49888		
No information	49351		
Master degree	22860		
No degree	17667		
PhD	3560		
Name: father.education	.summary,	dtype:	int64
Undergraduate degree	53453		
No information	50458		
No degree	24741		
Master degree	12892		
PhD	1782		
Name: mother.education	.summary,	dtype:	int64

→ Se ha verificado que la base <u>no contiene duplicados</u>. Si hay alumnos.

```
df['student.id'].duplicated().sum()
21742

df['student.id'].value_counts().value_counts()

1     99877
2     21672
3     35
```


→ Tratamiento de Outliers → No se excluyen.

→ Se han eliminado columnas que afectan el estudio (*dropout.semester*).

→ Pipeline para **transformar** variables categóricas a númericas.

ANÁLISIS EXPLORATORIO: VARIABLES NUMÉRICAS

ANÁLISIS EXPLORATORIO: VARIABLES CATEGÓRICAS

Cramer's V correlation between generation and retention: 0.02593860739846131 Cramer's V correlation between level and retention: 0.02639986988238043 Cramer's V correlation between gender and retention: 0.012296088153849912 Cramer's V correlation between max.degree.parents and retention: 0.0794213829509962 Cramer's V correlation between father.education.complete and retention: 0.07649117325604864 Cramer's V correlation between father.education.summary and retention: 0.07601948372223484 Cramer's V correlation between mother.education.complete and retention: 0.07581956584941359 Cramer's V correlation between mother.education.summary and retention: 0.07426729142879385 Cramer's V correlation between parents.exatec and retention: 0.07864540379499366 Cramer's V correlation between father.exatec and retention: 0.07379621037124894 Cramer's V correlation between mother.exatec and retention: 0.07353034527637337 Cramer's V correlation between tec.no.tec and retention: 0.014494978884522518 Cramer's V correlation between foreign and retention: 0.03853038380984946 Cramer's V correlation between zone.type and retention: 0.017348171015218437 Cramer's V correlation between first generation and retention: 0.0371958009012185 Cramer's V correlation between school and retention: 0.04004027357662622 Cramer's V correlation between program and retention: 0.06783794329688755 Cramer's V correlation between region and retention: 0.05279574167331518 Cramer's V correlation between admission.test and retention: 0.08100340957366693 Cramer's V correlation between general.math.eval and retention: 0.09301594838688339 Cramer's V correlation between scholarship.type and retention: 0.10351324982762634 Cramer's V correlation between school.cost and retention: 0.07105467118644741 Cramer's V correlation between id.school.origin and retention: 0.25060008451322846 Cramer's V correlation between socioeconomic.level and retention: 0.01256027877361249 Cramer's V correlation between social.lag and retention: 0.015346450397523814 Cramer's V correlation between physical education and retention: 0.2254809273253195 Cramer's V correlation between cultural.diffusion and retention: 0.22426607131596074 Cramer's V correlation between student.society and retention: 0.22512449832137893 Cramer's V correlation between total.life.activities and retention: 0.11409358526993703 Cramer's V correlation between athletic.sports and retention: 0.10695832739378586 Cramer's V correlation between art.culture and retention: 0.10346600459862106 Cramer's V correlation between student.society.leadership and retention: 0.10327171934621902 Cramer's V correlation between life.work.mentoring and retention: 0.10109344314961677 Cramer's V correlation between wellness.activities and retention: 0.10372456880100855

RETENTION & AGE

RETENTION & PREVIOUS PERFORMANCE

FIRST PERIOD & PREVIOUS PERFORMANCE

Scatter Plot: Previous Level Score (Average) vs. Average First Period

RETENTION & FIRST PERIOD PERFORMANCE

RETENTION & FIRST PERIOD PERFORMANCE

RETENTION & STUDENT LIFE

SPLIT DE LA BASE

- 1. Se divide la base en 80-20 de manera **estratificada**, generando una base *train* y una base *val*.
- 2. Se divide en 80-20 la base *train*, obteniendo una de *train* y otra de *test* para evaluar a los modelos que se van entrenando.
- 3. Se utiliza *val* para <u>verificar</u> los resultados de los modelos entrenados en una *base desconocida*.

```
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify = y, random_state=1411)
val = pd.concat([X_val, y_val], axis=1)

train = pd.concat([X_train, y_train], axis=1)

X = train.drop('retention', axis=1)
y = train['retention']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=141102)
```


MODELOS

Se realizaron pruebas con los siguientes modelos, siempre teniendo en cuenta que es un problema de clasificación:

- 1. Regresión Logística
- 2. Random Forest
- 3. XGBoost
- 4. ExtraTrees
- 5. RUSBoost

Para todos ellos, se realizó una búsqueda de hiperparametros Bayesiana con CV (para evitar overfitting).

MODELO 1: REGRESIÓN LOGÍSTICA

Modelo de aprendizaje supervisado que se utiliza para predecir una variable categórica binaria en función de un conjunto de variables predictoras. Se basa en el concepto de la regresión lineal, pero utiliza una función logística para modelar la relación entre las variables predictoras y la probabilidad de pertenecer a una clase en particular.

Ventajas del modelo para esta problemática

Simplicidad y velocidad.

Accuracy: 0.9176260247688819

F1-Score: 0.9570437748720864

Precision: 0.9176260247688819

Recall: 1.0

AUC-ROC: 0.606857440084556

MODELO 1: REGRESIÓN LOGÍSTICA

Accuracy: 0.9185097327844833

Precision: 1.0

Recall: 0.9185097327844833

F1-Score: 0.9575241835769874

→ Este modelo **NO** es bueno para la problemática, ya que no captura bien a quienes efectivamente realizan un abandono de la universidad.

MODELO 2: RANDOM FOREST

Algoritmo que toma múltiples muestras bootstrap del conjunto de datos original y entrena árboles de decisión en cada una de estas muestras. Una vez que se han construido todos los árboles, las predicciones finales se obtienen promediando las predicciones de cada árbol (en el caso de la clasificación).

Ventajas del modelo para esta problemática

- Robustez ante outliers
- Buena capacidad de generalización
- Reducción del sobreajuste (múltiples árboles de decisión)

Accuracy: 0.9229897087039944

F1-Score: 0.9596324403401298

Precision: 0.924510019819423

Recall: 0.997528869457777

AUC-ROC: 0.736789779842012

MODELO 2: RANDOM FOREST

Accuracy: 0.9250680248377869

Precision: 0.9983289023927079

Recall: 0.9258893976752378

F1-Score: 0.9607456140350876

AUC-ROC: 0.8832345539100827

Este modelo mejora al anterior, ya que comienza a capturar mejor los valores. A su vez, lleva menor tiempo de cómputo.

MODELO 3: XGBoost

XGBoost (Extreme Gradient Boosting) es una biblioteca optimizada y escalable para realizar tareas de aprendizaje automático basadas en árboles de decisión y algoritmos de boosting.

Ventajas del modelo para esta problemática

- Rendimiento y eficiencia
- Regularización avanzada

Accuracy: 0.9236438165009594

F1-Score: 0.9599212616448076

Precision: 0.925947187141217

Recall: 0.9964833911514518

AUC-ROC: 0.7660735622968895

MODELO 3: XGBoost

Accuracy: 0.9252075629665806

Precision: 0.9967337637675655

Recall: 0.9272842908628366

F1-Score: 0.9607556011129008

AUC-ROC: 0.8455102772995501

→ Este modelo **no mejora** al anterior, ya que todas las métricas dan similares pero lleva **mayor tiempo** de cómputo. Además, el AUC-ROC es menor.

MODELO 4: ExtraTrees

Crea muchos árboles de decisión, pero el muestreo de cada árbol es aleatorio, sin reemplazo. Esto crea un conjunto de datos para cada árbol con muestras únicas.

Ventajas del modelo para esta problemática

- Más veloz que el Random Forest. Se debe a que, en lugar de buscar la división óptima en cada nodo, lo hace aleatoriamente.
- Usa toda la muestra

Accuracy: 0.9248212105354963

F1-Score: 0.9606662103582021

Precision: 0.9250406432620062

Recall: 0.9991457453371932

AUC-ROC: 0.7362173655554308

MODELO 4: ExtraTrees

Accuracy: 0.924161027000628

Precision: 0.9987086973034561

Recall: 0.9247432831621888

F1-Score: 0.960303838147756

AUC-ROC: 0.8884585981028335

→ Este modelo **mejora** al anterior, ya que todas las métricas dan similares al de RandomForest.

MODELO 5: RUSBoost

RUSBoost es un algoritmo diseñado para manejar el desequilibrio de clases en conjuntos de datos. La sigla RUS significa Random Under-Sampling, que se refiere a la técnica de submuestreo aleatorio utilizado en este algoritmo. Este combina la técnica de submuestreo aleatorio con el algoritmo de boosting. El submuestreo aleatorio se utiliza para reducir la proporción de la clase mayoritaria (clase dominante) en el conjunto de datos, mientras que el boosting se utiliza para construir un modelo fuerte a partir de clasificadores débiles.

Ventajas del modelo para esta problemática

Mitiga el sesgo de clases, pero conserva la información de las clases.

Accuracy: 0.7091400662829235

Precision: 0.9547205557309757

Recall: 0.7174789995728726

F1-Score: 0.8192705793095975

AUC-ROC: 0.6661011333167963

MODELO 5: RUSBoost

Accuracy: 0.7070048140654434

Precision: 0.7141663501709077

Recall: 0.9556334807135234

F1-Score: 0.8174408242224009

AUC-ROC: 0.559193979204242

→ Este modelo es el peor en cuanto a las métricas. Esto se debe a que le da más peso a la clase minoritaria, pero termina empeorando la performance.

MODELOS: COMPARACIÓN DE MÉTRICAS

Accuracy: 0.9250680248377869
Precision: 0.9983289023927079
Recall: 0.9258893976752378
F1-Score: 0.9607456140350876

AUC-ROC: 0.8832345539100827

Accuracy: 0.7070048140654434 Precision: 0.7141663501709077 Recall: 0.9556334807135234 F1-Score: 0.8174408242224009 AUC-ROC: 0.559193979204242

RUSBOOST

RANDOM FOREST

CONCLUSIONES

- → El modelo ganador es Random Forest, el cual tiene el mayor nivel de acierto.
- → Los modelos basados en árboles resultaron muy eficientes para esta problemática.

HIPÓTESIS

- Se puede predecir la variable dropout, a través de:
 - ✓ <u>Características de los estudiantes.</u> Las features más importantes en todos los modelos tenían relación al estudiante, su presente, sus capacidades, etc.
 - X <u>El pasado</u>. El impacto de los estudios de los padres, rendimiento previo y proveniencia no tuvieron la importancia esperada en el desarrollo de los modelos.

RECOMENDACIONES

En cuanto a los **modelos**:

- Seleccionar el modelo que tenga mayor precisión para la clase positiva pero no perder de vista la clase minoritaria.
- 2. Es importante darle importancia a quienes no se retienen, ya que en ellos debe estar el foco. Propuesta modelos mixtos / inclusión del RUSBoost para el análisis.

En cuanto al **negocio**:

- 1. Crear un programa de seguimiento con tutorías, enfocado en alumnos con peores rendimientos promedio (*first.period.average*) en el primer semestre.
- Fomentar los grupos de estudio y el trabajo en equipo, principalmente juntando alumnos con mayor tendencia al dropout.
- 3. Brindar apoyo emocional y psicológico a la generalidad de los alumnos, ya que muchas veces el estrés en la facultad puede llevar a dejarla.

MUCHAS GRACIAS