

数字系统常用元件

数字系统

常见组合逻辑电路

- 加法器全加器、半加器;一位、多位预算
- 减法器 全减器、半减器; 一位、多位运算
- 译码器
- 编码器
- 数据选择器
- 数据分配器
- 数码比较器

半加运算不考虑从低位来的进位。

多位全加器

4位二进制全加器

减法器

一位半减器与全减器

译码器

译码是将某个二进制编码翻译成电路的某种状态,是将输入的某个二进制编码与电路输出的某种状态相对应。

MSI译码器的基本结构

分类:

- •二进制译码器
- ·BCD译码器
- ●显示译码器

(1) 二进制译码器 (Binary decoder)

将n个输入的组合码译成2n种电路状态。也叫n---2n译码器

译码器的输入:一组二进制代码

译码器的输出:一组高低电平信号

常用二进制译码器举例:

*(2) 二-十进制译码器 (BCD译码器)

将输入的一位BCD码(四位二进制数)译成10种不同的电路状态。

* (3) 显示译码器

在数字系统中,常常需要将运算结果用人们习惯的十进制显示出来,这就要用到显示译码器。

显示译码器是用来驱动<mark>显示器件,以显示数字或字符的</mark> MSI部件。

显示译码器随显示器件的类型而异,与辉光数码管相配的是BCD十进制译码器,而常用的发光二极管(LED)数码管、 液晶数码管、荧光数码管等是由7个或8个字段构成字形的, 因而与之相配的有BCD七段或BCD八段显示译码器。

译码器应用: 计算机外设地址译码

译码器应用: 寄存器的地址译码

译码器应用: 存储空间地址译码

- 在数字电路中用二进制代码表示有关的信号称为二进制编码,实现编码操作的电路就是编码器。
 - 二进制编码器
 - BCD编码器
 - 优先编码器

(1)二进制编码器

用n位二进制代码对N=2n个一般信号进行编码的电路,叫 做二进制编码器。

*8线—3线编码器

			输	入					输出	
I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	F_2	F_1	F_{θ}
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

*优先编码器

- 与普通编码器不同,优先编码器允许多个输入信号同时有效,但它只按其中优先级别最高的有效输入信号编码,对级别较低的输入信号不予理睬。
- 优先编码器常用于优先中断系统和键盘编码。
- 常用的优先编码器有10线-4线、8线-3线。

*8-3优先编码器

·									1000 0000 F					
No				输		入	a 6				输		出	
140	E_1	7	6	5	4	3	2	1	0	C	В	\overline{A}	CS	E_0
1	1	×	×	×	×	×	×	×	×	1	1	1	1	1
2	0	1	1	1	1	1	1	1	1	1	1	1	1	0
3	0	0	×	×	×	×	×	×	×	0	0	0	0	1
4	0	1	0	X	X	×	×	×	×	0	0	1	0	1
5	0	1	1	0	×	×	×	×	×	0	1	0	0	1
6	0	1	1	1	0	×	\times	×	×	0	1	1	0	1
7	0	1	1	1	1	0	×	×	×	1	0	0	0	1
8	0	1	1	1	1	1	0	×	×	1	0	1	0	1
9	0	1	1	1	1	1	1	0	×	1	1	0	0	1
10	0	1	1	1	1	1	1	1	0	1	1	1	0	1

74LS148

数据选择器 (Multiplexer, 简称MUX)

数据选择器又称多路选择器。它有n位地址输入、2n位数据输入、1位输出。

每次在地址输入的控制下,从多路输入数据中选择一路输出,其功能类似于一个单刀多掷开关。

数据选择器的应用

数据选择器的应用很广,典型应用有:

- ① 作数据选择,以实现多路信号分时传送。
- ②实现组合逻辑函数。
- ③ 在数据传输时实现并—串转换。
- ④ 产生序列信号。

(1) 一位数值比较器

功能表

输	入		输出	
A	В	A>B	A=B	A< B
0	0	0	(1)	0
0	1	0	0	1
1	0	1	0	0
1	1	0	(1)	0

(2) 四位数值比较器

比较原则:

- A. 先从高位比起,高位大的数值一定大。
- B. 若高位相等,则再比较低位数,最终结果由低位的比较结果决定。

常见时序逻辑电路

- 计数器
- 寄存器
- 移位寄存器

• 按数制分类

名 称	模 值	状态编码方式	自启动情况	
二进制计数器	M =2 ⁿ	二进制码	无多余状态,能[自启动
十进制计数器	M=10	BCD码	6个多余状态	
任意进制计数器	M < 2 ⁿ	多种方式	2n-M个多余状态	检查多
环形计数器	M=n	/	2n-n个多余状态	余状态
扭环形计数器	M = 2n 二进制码 无多余状态,能自启动 M=10 BCD码 6个多余状态 器 M < 2n 多种方式 2n-M个多余状态 检查多余状态 M=n / 2n-n个多余状态 会状态			

注意:n表示触发器的个数

寄存器和移位寄存器

1) 寄存器

寄存器用于寄存一组二进制代码。 n个触发器组成的寄存器能存储一组n位二进制代码。

2) 移位寄存器 对于串行数据,则采用移位寄存器输入并加以保存。 分类:

- 左向移位寄存器、右向移位寄存器和双向移位寄存器;
- 串行输入和并行输入;
- 串行输出和并行输出。

多位数据寄存器

1. 二拍接收四位数据寄存器

移位寄存器

所谓"<mark>移位</mark>",就是将寄存器所存各位数据,在每个移位脉冲的作用下,向左或向右移动一位。

(1) 按移位方向: 有左移位寄存器、 右移位寄存器和双向移位寄存器;

(2) 按输入方式:可分串行输入、并行输入;

(3) 按输出方式:可分串行输出、并行输出。

*单向移位寄存器举例

1. 单向右移。 2. 串入并出或串入串出

输入-输出方式

根据移位数据的输入 - 输出方式,又可将它分为如下四种电路:

串行输入 - 串行输出

串行输入 - 并行输出

并行输入 - 串行输出

并行输入 - 并行输出

并入-串出移位寄存器示例

左移过程

$$D_0 = 0$$

$$D_1 = Q_0$$

$$D_2 = Q_1$$

$$D_3 = Q_2$$

并入初态 $Q_3Q_2Q_1Q_0 = 1011$

Q_3	Q_2	Q_{1}	Q_{θ}	D_3	$D_3D_2D_1D_0$				
1	0	1	1	0	1	1	0		
0	1	1	0	1	1	0	0		
1	1	0	0	1	0	0	0		
1	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		

本章完,谢谢大家!