USN		21CST602				
B.E. Degree(Autonon	nous) Sixth Seme	ester End Examination (SEE), July/August 2024				
Computer Graphics & Fundamentals of Image Processing						
	(Moc	del Question Paper- I)				
Time:3 Hours		MaximumMarks:100				

Instructions to students 1. Answer FIVE FULL Questions.

Q. No.	Questions	Marks	СО	RBT Levels
1 (a)	Define the following: a) Pixel b) Resolution c) Bit Plane d) Raster e) Depth of the frame Buffer f) Refresh Rate g) Frame Buffer h) Rasterization i) Aspect Ratio. Consider three different raster systems with resolutions of 640 x 480, 1280 x 1024, and 2560 x 2048. What size is frame buffer (in bytes) for each of these systems to store 12 bits per pixel?	10	CO1	L2
1(b)	Explain DDA Line Algorithm. Consider a line from (0,0) to (5,5). Using simple DDA to calculate the points of this line.	10	CO1	L3
	OR			
2 (a)	Describe the working of CRT with a neat diagram.	10	CO1	L2
2(b)	Give Bresenham's Line Drawing Algorithm. Use Bresenham's line drawing algorithm to draw pixels of the line XY(1,1) and Y (8,5)	10	CO1	L3
3 (a)	Define and represent the following 2-D transformations in homogenous coordinate system. a. Translation b. Rotation c. Scaling d. Shear	12	CO2	L2
3(b)	Explain window, view port and window - to - view port transformation. Obtain the net transformation matrix for the same.	08	CO2	L3
	OR			
4 (a)	Design transformation matrix to rotate an 3D object about an axis that is parallel to one of the co-ordinate axis		CO2	L3
4(b)	With the help of a suitable diagram explain basic 3D Geometric transformation techniques and give the transformation matrix.	12	CO2	L2
5 (a)	Explain how mouse events are recognized by GLUT. Give suitable example.	10	CO3	L2
5(b)	How pop-up menus are created using GLUT? Illustrate with an example.	10	CO3	L2
	OR			
6 (a)	Explain the key factors to be considered when designing a user interface to ensure optimal user experience and accessibility?	10	CO3	L2
6(b)	Explain the following: (i) Request Mode (ii) Sample Mode (iii) Event Mode	10	CO3	L2

Dr. Ambedkar Institute of Technology, Bangalore–560056 (An Autonomous Institution Affiliated to Visvesvaraya Technological University, Belgaum)

7 (a)	Explain in detail the classification of images	10	CO4	L2
7 (b)	Consider the following two images. Perform the logical operations AND, OR and NOT. $f_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} f_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	10	CO4	L3
	OR			
8 (a)	Briefly explain the following terms: (i) Euclidean distance. (ii) City block distance. (iii) Chessboard distance Compute the Euclidean Distance (D1), City-block Distance (D2) and Chessboard distance (D3) for points p and q, where p and q be (5, 2) and (1, 5) respectively. Give answer in the form (D1, D2, D3).	10	CO4	L2
8 (b)	Consider the following two images. The addition and subtraction of images are given by $f1+f2$ and $f1-f2$. Assume both the images are of the 8-bit integer type. $f1=100\ 100\ 100\ and\ f2=50\ 50\ 25$ $50\ 50\ 50\ 40\ 40\ 50$ $200\ 150\ 150\ 50\ 50\ 75$	10	CO4	L3
9 (a)	Explain the various stages involved in edge detection process	10	CO5	L2
9 (b)	Explain the classification of various image segmentation algorithms and delineate their distinct types.		CO5	L3
	OR		1	
10 (a)	Define image segmentation formally and describe the characteristics of the segmentation process.		CO5	L2
10 (b)	Explain the three fundamental types of gray-level discontinuities in digital images.	12	CO5	L2