CISCE VIRTUAL LEARNING SERIES

LESSON: MATHEMATICS

TRIGONOMETRIC IDENTITIES (SESSION 1)

October 14th, 2020

Response to Questions posed by students during the live Lesson:

S.No.	Questions	Answers
1.	Can we prove the standard identity $sec^2\theta-tan^2\theta=1$ by using $sin^2\theta+cos^2\theta=1$?	YES $LHS = sec^{2}\theta - tan^{2}\theta$ $= \frac{1}{cos^{2}\theta} - \frac{sin^{2}\theta}{cos^{2}\theta}$ $= \frac{1-sin^{2}\theta}{cos^{2}\theta}$ $= \frac{cos^{2}\theta}{cos^{2}\theta}$ $= 1$
2.	Prove that : $sin^4\theta + cos^4\theta$ $= 1 - 2sin^2\theta cos^2\theta$ Can we solve the sum by starting directly from a standard identity instead of starting from LHS or RHS?	Yes $We \ know \ sin^2\theta + cos^2\theta = 1$ Squaring both sides $(sin^2\theta + cos^2\theta)^2 = (1)^2$ $\Rightarrow sin^4\theta + 2 \ sin^2\theta . \ cos^2\theta + cos^4\theta = 1$ $\Rightarrow sin^4\theta + cos^4\theta = 1 - 2 \ sin^2\theta . \ cos^2\theta$
3.	Given to prove $\cos^2\theta~(1+\tan^2\theta)=1$ If we prove it by taking any standard angle will that be correct?	No. It will be a verification only, not proof. $LHS = cos^2\theta \ (1 + tan^2\theta)$ $= cos^2\theta \ (sec^2\theta)$ $= cos^2\theta \frac{1}{cos^2\theta} \ = 1 \ \text{RHS}$

S.No.	Questions	Answers
4.	How do we prove	LHS = $(1 - tanA)^2 + (1 + tanA)^2$
	$(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A$?	$= (1 - 2tanA + tan^{2}A) + (1 + 2tanA + tan^{2}A)$
		$= 1 - 2tanA + tan^2A + 1 + 2tanA + tan^2A$
		$= 2 + 2tan^2A$
		$= 2(1 + tan^2A)$
		$=2sec^2A$
		= RHS.
5.	How do we prove	$LHS = tan^2x(1 + cot^2x)$
	$tan^2x (1 + cot^2x) = \frac{1}{1 - sin^2x}$?	$= tan^2x + tan^2xcot^2x$
		$= tan^2x + tan^2x \frac{1}{tan^2x}$
		$= tan^2x + 1$
		$= sec^2x$
		$=\frac{1}{\cos^2 x}$
		$=\frac{1}{1-\sin^2 x} = RHS$
6.	Are we allowed to prove all identities by using	It is not advisable to do so, except for standard
	a right angled triangle and applying	identities.
	Pythagoras Theorem?	
7.	Do we get sums to prove the standard	Yes, you may be asked.
	identities?	
8.	Is it necessary to prove from LHS to RHS or the	You may work out from any side. More detail will be
	reverse may also be done?	given in the second session.
9.	Find the minimum value of 5cosA + 12sinA +	These sums are not a part of the scope of your
	12.	syllabus. You will learn to solve these sums in higher classes.
		Ciasses.

S.No.	Questions	Answers
10.	In a problem of trigonometric identity can the	As per your syllabus the angle, say $ heta ,$ to be
	value of angle θ be greater than 90°?	considered is such that, $0^{\circ} \leq \theta \leq 90^{\circ}$. But the
		trigonometric identities are true, irrespective of the
		value of the angle if the functions involved are
		defined.