Géométrie repérée

Vecteur normal à une droite

<u>Définition</u>: On appelle **vecteur normal** à une droite d tout vecteur non-nul orthogonal à un vecteur directeur de la droite d.

Propriété : La droite d d'équation cartésienne ax + by + c = 0 admet le vecteur $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ comme vecteur normal.

Preuve: Le vecteur $\vec{u} {-b \choose a}$ est un vecteur directeur de d et $\vec{u} \cdot \vec{n} = -b \times a + a \times b = 0$.

Remarques:

- Tout vecteur non-nul colinéaire à \vec{n} est aussi un vecteur normal à d.
- Un vecteur normal à la droite d est un vecteur directeur de toute droite perpendiculaire à d et vice-versa.

Projeté orthogonal d'un point sur une droite

Pour trouver les coordonnées du projeté orthogonal d'un point M sur une droite d:

- 1. Je trouve une équation de la perpendiculaire à d passant par M.
- 2. Je trouve le point d'intersection de cette droite avec d.

Équation cartésienne d'un cercle

<u>Propriété</u>: Le cercle de centre $\Omega(x_{\Omega}; y_{\Omega})$ et de rayon r est l'ensemble des points du plan M(x; y) tels que $\Omega M = r$. Il a pour équation $(x - x_{\Omega})^2 + (y - y_{\Omega})^2 = r^2$.

Preuve: On veut $\Omega M^2 = r^2$ et $\Omega M^2 = (x - x_{\Omega})^2 + (y - y_{\Omega})^2$.

Équations de la forme $x^2 + y^2 + ax + by + c = 0$

Il est possible que l'équation d'un cercle soit donnée sous forme développée. Il faut alors retrouver la forme précédente afin de connaître le centre et le rayon du cercle.

1.
$$x^2 + ax = \left(x + \frac{a}{2}\right)^2 - \frac{a^2}{4}$$
 et $y^2 + by = \left(y + \frac{b}{2}\right)^2 - \frac{b^2}{4}$.

2.
$$x^2 + y^2 + ax + by + c = 0 \Leftrightarrow \left(x + \frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 = \frac{a^2 + b^2}{4} - c$$
.

Cette équation correspond à un cercle dès lors que le second terme est positif, i.e., $\frac{a^2+b^2}{4}-c \ge 0$.

Dans ce cas, son centre a pour coordonnées $\left(-\frac{a}{2}; -\frac{b}{2}\right)$ et son rayon est $r = \frac{\sqrt{a^2 + b^2 - 4c}}{2}$.