

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

May/June 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

ethanol

calcium oxide

nitrogen

1 The names of eight substances are given.

aluminium oxide

	iron(III) oxide	methane	oxygen	silicon(IV) oxide
	wer the following questions h substance may be used o			
Stat	e which substance is:			
(a)	the main constituent of nat	ural gas		
				[1]
(b)	a reactant in respiration			
				[1]
(c)	the main constituent of bau	uxite		
				[1]
(d)	a product of photosynthesi	s		
				[1]
(e)	a greenhouse gas			
				[1]
(f)	a macromolecular solid.			
				[1]
				[Total: 6]

2	(a) 22 ₁₁ N	Ia, ²³ Na and ²⁴ Na are isotopes of sodium.	
	(i)	Describe how these sodium isotopes are the same and how they are different the total number of protons, neutrons and electrons in each.	in terms of
		same	
		different	
			[3]
	(ii)	Why do all three isotopes have an overall charge of zero?	
			[1]
	(iii)	Why do all three isotopes have the same chemical properties?	
			[2]
	(iv)	Why do sodium ions have a charge of +1?	
			[1]
	(b) Ca	rbon is an element which exists in different forms.	
	(i)	Name two forms of the element carbon that have giant covalent structures.	
		and	[1]
	(ii)	Name the oxide of carbon that is a toxic gas.	
			[1]
			[Total: 9]

3 This question is about phosphorus and compounds of phosphorus.

(a) Phosphorus has the formula P_{\perp} . Some properties of P_{\perp} are sho	(a)	Phosphorus ha	is the formula Pa	. Some properties of Pa	are shown
---	-----	---------------	-------------------	-------------------------	-----------

melting point/°C	45
boiling point/°C	280
electrical conductivity	non-conductor
solubility in water	insoluble

	(i)	Name the type of bonding that exists between the atoms in a P ₄ molecule.	
(ii)	Explain, in terms of attractive forces between particles, why P ₄ has a low melting point.	
(i	ii)	Explain why phosphorus is a non-conductor of electricity.	
(b)	Pho	sphorus, P_4 , reacts with air to produce phosphorus(V) oxide, P_4O_{10} .	
	(i)	Write a chemical equation for this reaction.	
			[2]
(ii)	What type of chemical reaction is this?	
			[1]
(c)	Pho	psphorus(V) oxide, P_4O_{10} , is an acidic oxide.	
		psphorus(V) oxide, P_4O_{10} , reacts with aqueous sodium hydroxide to form a salt containing phosphate ion, PO_4^{3-} . Water is the only other product.	ng
		te a chemical equation for the reaction between phosphorus(V) oxide and aqueo ium hydroxide.	us
			[2]

(d) Phosphine has the formula PH₃.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of phosphine. Show outer shell electrons only.

[2]

(e) Phosphine, PH_3 , has a similar chemical structure to ammonia, NH_3 .

Ammonia acts as a base when it reacts with sulfuric acid.

(i) What is meant by the term base?

[1]
----	---

(ii) Write a chemical equation for the reaction between ammonia and sulfuric acid.

 [2]

[Total: 13]

4	Methanol is made industrially by reacting carbon monoxide with hydrogen. The gases react at a
	temperature of 250 °C and a pressure of 75 atmospheres.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

	-	4.			
IhΔ	torward	reaction	10	AVATHE	rmic
1110	ioiwaid	Teachori	ıo	CVOLLIC	71 I I I I I I C.

(0)	Suggest a course	of bydrogon	for this	industrial process.
(a)	Suddest a source	oi iivaroaeri	101 11115	illuusillai piocess.

(b) Complete the table using only the words *increases*, *decreases* or *no change*.

	effect on the rate of the reverse reaction	effect on the equilibrium yield of CH ₃ OH(g)
adding a catalyst		no change
increasing the temperature	increases	
decreasing the pressure		

[4]

- (c) Methanol is a member of the homologous series of alcohols.
 - (i) State **two** general characteristics of a homologous series.

1	
2	
	[2]

(ii) Draw the structures of **two** different alcohols, each containing **three** carbon atoms. Show all of the atoms and all of the bonds.

Name these **two** alcohols.

name

[4]

(iii)	What term is used to describe compounds with the same molecular formula but different structural formulae?	ent
		[1]
(d) Ald	cohols react with carboxylic acids to produce esters.	
(i)	The structure of ester X is shown.	
	H—C H H O—C—H H H	
	Name ester X.	
		[1]
(ii)	Give the name of the carboxylic acid and the alcohol that react together to produce ester	X
	carboxylic acid	
	alcohol	 [2]
(iii)	Ester Y is different from ester X but also has the formula $C_3H_6O_2$.	<u>[</u> 4.
	Draw the structure of ester Y . Show all of the atoms and all of the bonds.	
		[2]

5	Copper(II)) sulfate cr	vstals.	CuSO	.5H ₂ O.	are h	vdrated.
---	------------	--------------	---------	------	---------------------	-------	----------

Copper(II) sulfate crystals are made by reacting copper(II) carbonate with dilute sulfuric acid.

The equation for the overall process is shown.

$$CuCO_3 + H_2SO_4 + 4H_2O \rightarrow CuSO_4.5H_2O + CO_2$$

- **step 1** Powdered solid copper(II) carbonate is added to 50.0 cm³ of 0.05 mol/dm³ sulfuric acid until the copper(II) carbonate is in excess.
- **step 2** The excess of copper(II) carbonate is separated from the aqueous copper(II) sulfate.
- **step 3** The aqueous copper(II) sulfate is heated until the solution is saturated.
- **step 4** The solution is allowed to cool and crystallise.
- **step 5** The crystals are removed and dried.
- (a) Calculate the maximum mass of the copper(II) sulfate crystals, $CuSO_4.5H_2O$, that can form using the following steps.
 - Calculate the number of moles of H₂SO₄ in 50.0 cm³ of 0.05 mol/dm³ H₂SO₄.

1110
1110

Determine the number of moles of CuSO₄.5H₂O that can form.

..... mol

• The M_r of CuSO₄.5H₂O is 250.

Calculate the maximum mass of CuSO₄.5H₂O that can form.

.....g [3]

(b)	Ste mas	ps 1–5 were done correctly but the mass of crystals obtained was less than the maximum ss.
	Ехр	lain why.
		[1]
(c)	Stat	te two observations that would indicate that the $copper(II)$ carbonate is in excess in $step 1$.
	1	
	2	
		[2]
(d)		en the reaction in step 1 is done using lumps of copper(II) carbonate instead of powder, rate of reaction decreases. All other conditions are kept the same.
	Give	e a reason for this. Explain your answer in terms of particles.
		[2]
(e)		ne a different substance, other than $copper(II)$ carbonate, that could be added to dilute uric acid to produce $copper(II)$ sulfate in step 1 .
		[1]
(f)		ne the process used to separate the aqueous copper(II) sulfate from the excess of $per(II)$ carbonate in $\mbox{step 2}.$
		[1]
(g)	The	solution of aqueous copper(II) sulfate was heated until it was saturated in step 3.
	(i)	Suggest what is meant by the term saturated solution.
		[2]
	(ii)	What evidence would show that the solution was saturated in step 3 ?
		[1]
	(iii)	Why should the aqueous copper(II) sulfate not be heated to dryness in step 3 ?
		[1]
		[Total: 14]

6

The	e halogens are the elements in Group VII of the Periodic Table.	
(a)	Predict the physical state and colour of astatine at room temperatu	re and pressure.
	physical state	
	colour	[2]
(b)	When chlorine reacts with aqueous potassium bromide a displacer	ment reaction occurs.
	(i) Describe the colour change of the solution.	
	from to	[2]
	(ii) Write a chemical equation for this reaction.	
		[2]
(c)	Reactions occur when some aqueous solutions of halogens are add halides.	ded to aqueous solutions of
	Use the key to complete the table to show the results of adding half	logens to halides.
	key ✓ = reaction	

			halides	
		KCl(aq)	KBr(aq)	KI(aq)
SI	Cl ₂ (aq)		✓	
halogens	Br ₂ (aq)			
Ä	I ₂ (aq)			

[2]

[Total: 8]

© UCLES 2019 0620/42/M/J/19

x =no reaction

7 (a) Displacement reactions occur between metals and metal ions.

Displacement reactions can be used to determine the order of reactivity of metals such as lead (Pb), nickel (Ni), and silver (Ag).

The ionic equation for a displacement reaction is shown.

$$Ni(s) + Pb^{2+}(aq) \rightarrow Pb(s) + Ni^{2+}(aq)$$

The ionic half-equations for this reaction are shown.

$$Ni(s) \rightarrow Ni^{2+}(aq) + 2e^{-}$$

$$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$$

The ionic half-equations show that electrons are donated by nickel atoms and accepted by lead ions.

(i)	Identify the reducing agent in the displacement reaction. Give a reason for your answer.

reducing agent.....

reason.....[2]

.....[1]

(b) The ionic equation for another displacement reaction is shown.

$$Pb(s) + 2Ag^{+}(aq) \rightarrow 2Ag(s) + Pb^{2+}(aq)$$

Write the **two** ionic half-equations for this reaction.

1

2[2]

(c) Use the information in (a) and (b) to put the three metals lead, nickel and silver in order of reactivity.

[1]

(d) Nickel is a transition element. Nickel is stronger than sodiur	(d)	Nickel is	a transition	element.	Nickel is	stronger	than	sodiun
--	-----	-----------	--------------	----------	-----------	----------	------	--------

Describe two other differences in the physical properties of nickel and sodium.
1

- (e) Predict **one** difference in the appearance of aqueous solutions of nickel compounds compared to aqueous solutions of sodium compounds.
- (f) Copper is refined (purified) by electrolysis. Nickel can be refined using a similar method.
 - (i) The diagram shows the refining of nickel by electrolysis.

Complete the labels in the boxes.

(ii) Indicate, by writing **N** on the diagram, where nickel is produced. [1]

[Total: 13]

[3]

[2]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	格	radon			
					6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	¥	astatine -			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Тe	tellurium 128	84	Ъ	moloum –	116	_	livermorium -
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡				2	В	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	<u>ප</u>	cadmium 112	80	Ρ̈́	mercury 201	112	S	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
	dnoib										28	Ż	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
ئ ا	<u>5</u>				,						27	ပိ	cobalt 59	45	格	rhodium 103	77	ı	iridium 192	109	Μţ	meitnerium -
		-	I	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Ŧ	hassium
								1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium –
						atc	rel				22	F	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	¥	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	88	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium
	_				က	=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	22	S	caesium 133	87	Ļ	francium -

71	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	8	nobelium	ı
69	T	thulium	101	Md	mendelevium	ı
89	щ	erbium 167	100	Fm	fermium	1
29	웃	holmium 165	66	Es	einsteinium	ı
99	۵	dysprosium	86	ŭ	californium	ı
99	Д	terbium 159	97	Bk	berkelium	ı
64	Gd	gadolinium 157	96	Cm	curium	1
63	En	europium 152	95	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium	93	N	neptunium	ı
09	βN	neodymium 144	92	\supset	uranium	238
59	Ā	praseodymium 141	91	Ра	protactinium	231
28	Ce	cerium 140	06	무	thorium	232
22	Гa	lanthanum 139	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).