

Teaching Staff • Lecturer: Akshay Narayan Email: anarayan@comp.nus.edu.sg Website: http://www.comp.nus.edu.sg/~anarayan Office: COM2-02-03 Consultation hours: By appointment

Teaching Staff

- TAs:
 - Wesley Joon-Wie Tann (dcsawjt@nus.edu.sg)
 - Devmanyu Hazarika (hazarika@comp.nus.edu.sg)
 - Xing Jifang (eo383347@u.nus.edu)
 - Lee Yiyuan (leeyiyuan@u.nus.edu)
 - Wang Yaofeng (yaofeng@u.nus.edu)
 - Jiang Yue (jiangyue12392@gmail.com)
 - Pakorn Ueareeworakul (eo196816@u.nus.edu)
 - Rong Hua Lui (ronghualui@u.nus.edu)

Teaching Resources: LumiNUS

- Lectures, Tutorials, Supplementary Materials, Homework
- Discussion forum
 - Any questions related to the course should be raised on this forum
 - Emails to me will be considered public unless otherwise specified
- Announcements
- Homework submissions
- Webcasts

Assessment Overview Percentage Midterm Exam 30 September 2019 20% (during lecture, NO Venue: UTown make-up) auditorium 2 Final Exam 26 November 2019 40% (morning) 3 Assignments As announced! 30% Participation 10% (lecture + tutorial)

Assignments

- You can work in pairs or groups of three; lone wolfs are discouraged!
- All of you should be from the same tutorial group
- Write the names and matric numbers of your team members in the submission
- Only one submission from the team is necessary

Collaboration in Solving Tutorial Ouestions

- Collaboration is acceptable and encouraged
- You must always write the name of your collaborator on your solution sheet. Each of you must submit the write up individually.
- You will never be marked down for working with others, unless you fail to mention it!
- You can work in pairs.

On Collaboration

- You are free to meet with fellow student(s) and discuss assignments.
- Writing on a board or shared piece of paper is acceptable during the meeting; however, you may not take any written (electronic or otherwise) record away from the meeting.
- Do not solve assignment immediately after discussion; wait a while, ensure you can reconstruct solution by yourself!

Winograd Schema Challenge

- You are given *m* Winograd schema, with the context word chosen uniformly at random.
- Design an AI that can correctly resolve a significant number of them.
- What is a trivial lower bound on the number of schema one can solve?

Best performance achieved: 58%

Acting Rationally: Rational Agent

- Rational behavior: doing the "right thing"
- What is the "right thing" to do? Expected to achieve best outcome
 - Best for whom?
 - What are we optimizing?
 - What information is available?
 - Unintended effects
- Break through wall to get a cup of coffee
- Prescribe high doses of opiates to depressed patient
- Kill the human who tries to deactivate robot

A Single Test for Intelligence?

- Difficult to resolve
- Tests tend to be
 - over-specified
 - very subjective
- Result will be debatable

Rational Agents

- An agent is an entity that perceives and acts
- This course: designing rational agents
- An agent is a function from **percept** histories to actions, i.e., $f: P^* \to A$
- We seek the best-performing agent for a certain task; must consider computation limits!

design best program given resources

Agents

- Anything that can be viewed as perceiving its environment through sensors; acting upon that environment through actuators
- Human agent: eyes, ears, skin etc. are sensors; hands, legs, mouth, and other body parts are actuators
- **Robotic agent:** cameras and laser range finders for sensors; various motors for actuators

Vacuum-Cleaner Agent Function

Percept Sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck

Rational Agents

Rational Agent:

- For each possible percept sequence, select an action that is expected to maximize its performance measure...
- given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Rational Agents

- An agent should strive to "do the right thing", based on what it can perceive and the actions it can perform. The right action: maximize agent success.
- Performance measure: objective criterion for measuring success of an agent's behavior
- Vacuum-cleaner agent:
 - amount of dirt cleaned
 - time taken
 - electricity consumed
 - noise generated

Rational Agents

- Rationality ≠ omniscience (all-knowing with infinite knowledge)
- Agents can perform actions that help them gather useful information (exploration)
- An agent is autonomous if its behavior is determined by its own experience (with ability to learn and adapt)

Properties of Task Environments

Fully observable (vs. partially observable):

• Sensors provide access to the complete state of the environment at each point in time.

Deterministic (vs. stochastic)

• The next state of the environment is completely determined by the current state and the action executed by the agent.

Episodic (vs. sequential)

• The choice of **current** action does not depend on actions in past episodes.

Properties of Task Environments

Task Environment	Crossword puzzle	Part-picking robot	Taxi driving
Fully observable	Yes	No	No
Deterministic	Yes	No	No
Episodic	No	Yes	No
Static	Yes	No	No
Discrete	Yes	No	No
Single agent	Yes	Yes	No

Properties of task environment largely determine agent design. World is partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

Agent Functions and Programs

- An agent is completely specified by the agent function mapping percept sequences to actions
- One agent function (or a small equivalence class) is rational
- Aim: Find a way to implement the rational agent function concisely

Table-Lookup Agent

function Table-Driven-Agent' percept) returns action static: $percept_s$, a sequence, initially empty $table, \text{ a table of actions, indexed by percept sequences, fully specified append <math>percept$ to the end of percepts action \leftarrow LOOKUP(percepts, table)

- Drawbacks:
 - Huge table to store
 - Take a long time to build the table
 - No autonomy: impossible to learn all correct table entries from experience
 - No guidance on filling in the correct table entries

Agent Functions and Programs

Solution: write all possible percepts and optimal actions in a table.

All done!

Agent Types

- Four basic types in order of increasing generality:
 - Simple reflex agent
 - Model-based reflex agent
 - Goal-based agent
 - Utility-based agent

Exploitation vs. Exploration

- An agent operating in the real world must often choose between:
 - maximizing its expected utility according to its current knowledge about the world; and
 - trying to learn more about the world since this may improve its future gains.

Exploitation vs. **Exploration**