<u>Problem statement</u>: Implement the sequential circuit needed for the following sequence (using Tf/f)

Q(t)	Q(t + 1)	Т
0	0	0
0	1	1
1	0	1
1	1	0
	(d) T	

T flip flop Excitation table

	Q(t)			Q(t+1)					
	A	B	\subset	A	В	\subset	Ta	TB	T_{c}
0	0	0	0	0	0		0	0	
1	0	0	1	0	1	0	0	1	ſ
2	0	1	0	(0	0	1	1	0
4	1	0	0		0	1	O	0	1
5	1	O	1		1	0	0)
6	1	l	0	0	0	0)		0

$$\begin{array}{ccc}
T & Q(t+1) \\
\hline
0 & Q(t) \\
\hline
1 & Q'(t)
\end{array}$$

T flip flop characteristic table

Unused State 011

$$\begin{array}{c|cccc}
\hline
A & B & C \\
\hline
O & I & I \\
\hline
I & B & E \\
\hline
I$$

Unused State 111

A B C

$$T_A = B = 1 \implies toggle$$
 $T_B = B + C = 1 + 1$
 $T_C = B$
 $T_C = B$
 $T_C = B$
 $T_C = B$
 $T_C = B$

