Implementing Density Functional Theory

Fadjar Fathurrahman Hermawan Kresno Dipojono

May 16, 2020

Preface

Importance of density functional theory

Implementation of density functional theory in various program packages (free and commercial)

Several books about density functional theories

The problem: not yet giving necessary details

This book is our humble attempt to demystifying several aspects of practical density functional theory to beginners in the field.

Objective of this book: show the reader how to implement a density functional theory for simple system containing only model potential (such as harmonic potential) and to non-local pseudopotentials which are usually used in typical DFT calculations for molecular and crystalline systems.

Outline of the book: 1d, 2d, 3d, Schrodinger equation, Poisson equation, Kohn-Sham equation for local (pseudo)potentials, Kohn-Sham equation for nonlocal pseudopotentials.

This is for acknowledgments.

Bandung, month year Fadjar Fathurrahman Hermawan Kresno Dipojono

Contents

1	An i	introduction to density functional theory	1
2	Schroedinger equation in 1d		5
	2.1	Grid points	5
	2.2	Approximating second derivative operator	8
	2.3	Harmonic potential	11
	2.4	Higher order finite difference	13
	2.5	Exercises	13
3	Schroedinger equation in 2d		15
	3.1	Finite difference grid in 2d	15
	3.2	Laplacian operator	16
	3.3	Iterative methods for eigenvalue problem	16
4	Schroedinger equation in 3d		19
		4.0.1 Three-dimensional grid	19
		4.0.2 Laplacian operator	19
5	Nun	nerical solution of Poisson equation	21
6	Koh	nn-Sham equation part I	23
7	Nun	nerical solution of Kohn-Sham equation (part II)	25
Α	Introduction to Julia programming language		27
	A.1	Installation	27
	A.2	Using Julia	27
		A.2.1 Using Julia REPL	27
		A.2.2 Julia script file	28
	A.3	Basic programming construct	28
	A.4	Mathematical operators	28
В	Intr	oduction to Octopus DFT code	31

iv *CONTENTS*

An introduction to density functional theory

Density functional theory: [1, 2],

Using the Kohn-Sham density functional theory, total energy of system of interacting electrons under external potential $V_{\rm ext}(\mathbf{r})$ can be written as a functional of a set of single-particle wave functions or Kohn-Sham orbitals $\{\psi_i(\mathbf{r})\}$

$$E\left[\left\{\psi_{i}(\mathbf{r})\right\}\right] = -\frac{1}{2} \int \psi_{i}(\mathbf{r}) \nabla^{2} \psi_{i}(\mathbf{r}) \, d\mathbf{r} + \int \rho(\mathbf{r}) V_{\text{ext}}(\mathbf{r}) \, d\mathbf{r} + \frac{1}{2} \int \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' + E_{\text{xc}}\left[\rho(\mathbf{r})\right]$$
(1.1)

where single-particle electron density $\rho(\mathbf{r})$ is calculated as

$$\rho(\mathbf{r}) = \sum_{i} f_{i} \psi^{*}(\mathbf{r}) \psi(\mathbf{r})$$
 (1.2)

In Equation 1.2 the summation is done over all occupied single electronic states i and f_i is the occupation number of the i-th orbital. For doubly-occupied orbitals we have $f_i = 2$. In the usual setting in material science and chemistry, the external potential is usually the potential due to the atomic nuclei (ions):

$$V_{\text{ext}}(\mathbf{r}) = \sum_{I} \frac{Z_{I}}{|\mathbf{r} - \mathbf{R}_{I}|}$$
 (1.3)

and an additional term of energy, the nucleus-nucleus energy E_{nn} , is added to the total energy functional (1.1):

$$E_{\rm nn} = \frac{1}{2} \sum_{I} \sum_{J} \frac{Z_I Z_J}{|R_I - R_J|} \tag{1.4}$$

The energy terms in total energy functionals are the kinetic, external, Hartree, and exchange-correlation (XC) energy, respectively. The functional form of the last term (i.e. the XC energy) in terms of electron density is not known and one must resort to an approximation. In this article we will use the local density approximation for the XC energy. Under this approximation, the XC energy can be written as:

$$E_{xc} \left[\rho(\mathbf{r}) \right] = \int \rho(\mathbf{r}) \epsilon_{xc} \left[\rho(\mathbf{r}) \right] d\mathbf{r}$$
 (1.5)

where ϵ_{xc} is the exchange-correlation energy per particle. There are many functional forms that have been devised for ϵ_{xc} and they are usually named by the persons who proposed them. An explicit form of ϵ_{xc} will be given later.

Many material properties can be derived from the minimum of the functional (1.1). This minimum energy is also called the *ground state energy*. This energy can be obtained by using direct minimization of the Kohn-Sham

energy functional or by solving the Kohn-Sham equations:

$$\hat{H}_{KS} \, \psi_i(\mathbf{r}) = \epsilon_i \, \psi_i(\mathbf{r}) \tag{1.6}$$

where ϵ_i are the Kohn-Sham orbital energies and the Kohn-Sham Hamiltonian \hat{H}_{KS} is defined as

$$\hat{H}_{KS} = -\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_{\text{Ha}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})$$
(1.7)

From the solutions of the Kohn-Sham equations: ϵ_i and $\psi_i(\mathbf{r})$ we can calculate the corresponding minimum total energy from the functional (1.1).

In the definition of Kohn-Sham Hamiltonian, other than the external potential which is usually specified from the problem, we have two additional potential terms, namely the Hartree and exchange-correlation potential. The Hartree potential can be calculated from its integral form

$$V_{\mathsf{Ha}}(\mathbf{r}) = \int \frac{\rho(\mathbf{r})}{\mathbf{r} - \mathbf{r}'} \, \mathrm{d}\mathbf{r}' \tag{1.8}$$

An alternative way to calculate the Hartree potential is to solve the Poisson equation:

$$\nabla^2 V_{\mathsf{Ha}}(\mathbf{r}) = -4\pi \rho(\mathbf{r}) \tag{1.9}$$

The exchange-correlation potential is defined as functional derivative of the exchange-correlation energy:

$$V_{xc}(\mathbf{r}) = \frac{\delta E[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})}$$
 (1.10)

The Kohn-Sham equations are nonlinear eigenvalue equations in the sense that to calculate the solutions $\{\epsilon_i\}$ and $\{\psi_i(\mathbf{r})\}$ we need to know the electron density $\rho(\mathbf{r})$ to build the Hamiltonian. The electron density itself must be calculated from $\{\psi_i(\mathbf{r})\}$ which are not known (the quantities we want to solve for). The usual algorithm to solve the Kohn-Sham equations is the following:

- (STEP 1): start from a guess input density $\rho^{in}(\mathbf{r})$
- (STEP 2): calculate the Hamiltonian defined in (1.7)
- (STEP 3): solve the eigenvalue equations in (1.6) to obtain the eigenpairs $\{\epsilon_i\}$, $\{\psi_i(\mathbf{r})\}$
- (STEP 4): calculate the output electron density $\rho^{\text{out}}(\mathbf{r})$ from $\{\psi_i(\mathbf{r})\}$ that are obtained from the previous step.
- (STEP 5) Check whether the difference between $\rho^{in}(\mathbf{r})$ and $\rho^{out}(\mathbf{r})$ is small. If the difference is still above a chosen threshold then back to STEP 1. If the difference is already small the stop the algorithm.

The algorithm we have just described is known as the self-consistent field (SCF) algorithm.

Nowadays, there are many available software packages that can be used to solve the Kohn-Sham equations such as Quantum ESPRESSO, ABINIT, VASP, Gaussian, and NWChem are among the popular ones. A more complete list is given in a Wikipedia page [3]. These packages differs in several aspects, particularly the basis set used to discretize the Kohn-Sham equations and characteristic of the systems they can handle (periodic or non-periodic systems). These packages provide an easy way for researchers to carry out calculations based on density functional theory for particular systems they are interested in without knowing the details of how these calculations are performed.

In this book we will describe a simple way to solve the Kohn-Sham equations based on finite difference approximation. Our focus will be on the practical numerical implementation of a solver for the Kohn-Sham equations. The solver will be implemented using Julia programming language [4]. Our target is to calculate the ground state energy of several simple model systems. We will begin to build our solver starting from the ground up. The roadmap of the article is as follows.

- We begin from discussing numerical solution of Schroedinger equation in 1d. We will introduce finite difference approximation and its use in approximating second derivative operator that is present in the Schroedinger equation. We show how one can build the Hamiltonian matrix and solve the resulting eigenvalue equations using standard function that is available in Julia.
- In the next section, we discuss numerical solution of Schroedinger in 2d. We will introduce how one can handle 2d grid and applying finite difference approximation to the Laplacian operator present in the 2d Schroedinger equation. We also present several iterative methods to solve the eigenvalue equations.
- The next section discusses the numerical solution of Schroedinger equation in 3d. The methods presented in this section is a straightforward extension from the 2d case. In this section we start considering V_{ext} that is originated from the Coulomb interaction between atomic nuclei and electrons. We also introduce the concept of pseudopotential which is useful in practical calculations.
- The next section discusses about Poisson equation. Conjugate gradient method for solving system of linear equations. Hartree energy calculation.
- Hartree approximation, implementation of SCF algorithm
- Kohn-Sham equations, XC energy and potential, hydrogen molecule

Schroedinger equation in 1d

In this chapter we will be concentrating on the problem of finding bound states solution to time-independent Schroedinger equation in one dimension:

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + V(x) \right] \psi(x) = E \psi(x)$$
 (2.1)

with the boundary conditions:

$$\lim_{x \to \pm \infty} \psi(x) = 0 \tag{2.2}$$

This boundary condition is relevant for non-periodic systems such as isolated or free atoms and molecules.

2.1 Grid points

We need to define a spatial domain $[x_{\min}, x_{\max}]$ where x_{\min}, x_{\max} chosen such that the boundary condition 2.2 is approximately satisfied. The next step is to divide the spatial domain x using equally-spaced grid points which we will denote as $\{x_1, x_2, \ldots, x_N\}$ where N is total number of grid points. Various spatial quantities such as wave function $\psi(x)$ and potential $\psi(x)$ will be discretized on these grid points.

The grid points x_i , i = 1, 2, ... are chosen to be:

$$x_i = x_{\min} + (i-1)h$$
 (2.3)

where h is the spacing between the grid points:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{N - 1} \tag{2.4}$$

The following Julia function can be used to initialize the grid points.

```
function init_FDld_grid( x_min::Float64, x_max::Float64, N::Int64 )
L = x_max - x_min
h = L/(N-1) # spacing
x = zeros(Float64,N) # the grid points
for i = 1:N
    x[i] = x_min + (i-1)*h
end
return x, h
end
```

The function init_FD1d_grid takes three arguments:

- x_min::Int64: the left boundary point
- x_max::Int64: the right boundary point
- N::Float64: number of grid points

The function will return x which is an array of grid points and h which is the uniform spacing between grid points. The boundary points x_{min} and x_{max} will be included in the grid points.

As an example of the usage of the function init_FD1d_grid, let's sample and plot a Gaussian function

$$\psi(x) = e^{-\alpha x^2} \tag{2.5}$$

where α is a positive number. We will sample the function within the domain $[x_{\min}, x_{\max}]$ where $x_{\min} = -5$ and $x_{\max} = 5$. The Gaussian function defined in (2.5) can be implemented as the following function.

```
function my_gaussian(x::Float64; \alpha=1.0) return exp( -\alpha*x^2 ) end
```

Note that we have set the default value of parameter α to 1.

The full Julia program is as follows.

```
using Printf
using LaTeXStrings
import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)
include("init_FD1d_grid.jl")
function my_gaussian(x::Float64; \alpha=1.0)
  return exp(-\alpha*x^2)
end
function main()
  A = -5.0
  B = 5.0
  Npoints = 8
  x, h = init_FD1d_grid( A, B, Npoints )
  @printf("Grid spacing = %f\n", h)
  @printf("\nGrid points:\n")
  for i in 1:Npoints
    @printf("%3d %18.10f\n", i, x[i])
  end
  NptsPlot = 200
  x_dense = range(A, stop=5, length=NptsPlot)
  plt.clf()
  plt.plot(x_dense, my_gaussian.(x_dense), label=L"f(x)")
  plt.plot(x, my_gaussian.(x), label=L"Sampled $f(x)$", marker="o")
  plt.legend()
  plt.tight_layout()
  plt.savefig("IMG_gaussian_1d_8pt.pdf")
end
main()
```

2.1. GRID POINTS 7

After execution, the program will print grid spacing and grid points to the standard output and also plot the function to a file named IMG_gaussian_1d_8pt.pdf You may try to experiment by changing the value of N and compare the result. The resulting plots for N=8 and N=21 are shown in Figure XXX.

Figure 2.1: Sampling a Gaussian function defined in (2.5), $\alpha=1$, two different number of grid points: N=8 (upper) and N=21 (lower). The sampled coordinates are marked by dots. The true or "continuous" function is emulated by using a dense sampling points of 200.

Note that we have used a densely-sampled points of NptsPlot=200 in the program to emulate the true or "continuous" function. The plot of densely-sampled array is not done by not showing the point marker, as opposed to the array with lower sampling points.

Exercise Try to vary the value of α and N. Make the program more sophisticated by using loop over for various values of N instead of manually changing its value in the program. You also may want to make set the saved filename of the resulting plot programmatically.

2.2 Approximating second derivative operator

Our next task is to find an approximation to the second derivative operator present in the Equation (2.1). Suppose that we have a function sampled at appropriate positions x_i as $\psi(x_i)$. How can we approximate $\psi''(x_i)$? One simple approximation that we can use is the 3-point (central) finite difference:

$$\frac{d^2}{dx^2}\psi_i = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{h^2}$$
 (2.6)

where we have the following notation have been used: $\psi_i = \psi(x_i)$. Let's see we can apply this by writing out the Equation (2.6).

$$\psi_{1}'' \approx (\psi_{2} - 2\psi_{1} + \psi_{0})/h^{2}$$

$$\psi_{2}'' \approx (\psi_{3} - 2\psi_{2} + \psi_{1})/h^{2}$$

$$\psi_{3}'' \approx (\psi_{4} - 2\psi_{3} + \psi_{2})/h^{2}$$

$$\vdots$$

$$\psi_{N}'' \approx (\psi_{N+1} - 2\psi_{N} + \psi_{N-1})/h^{2}$$

In the first and the last equations, there are terms involving ψ_0 and ψ_{N+1} which are not known. Recall that we have numbered our grid from 1 to N, so ψ_0 and ψ_{N+1} are outside of our grid. However, by using the boundary equation (2.2), these quantities can be taken as zeros. So we have:

$$\psi_{1}'' \approx (\psi_{2} - 2\psi_{1})/h^{2}$$

$$\psi_{2}'' \approx (\psi_{3} - 2\psi_{2} + \psi_{1})/h^{2}$$

$$\psi_{3}'' \approx (\psi_{4} - 2\psi_{3} + \psi_{2})/h^{2}$$

$$\vdots$$

$$\psi_{N}'' \approx (-2\psi_{N} + \psi_{N-1})/h^{2}$$

This operation can be compactly expressed by using matrix-vector notation. By taking $\{\psi_i\}$ as a column vector, the second derivative operation can be expressed as matrix multiplication:

$$\{\psi''\} \approx \mathbb{D}^{(2)}\{\psi\} \tag{2.7}$$

where $\mathbb{D}^{(2)}$ is the second derivative matrix operator:

$$\mathbb{D}^{(2)} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & -2 \end{bmatrix}$$
 (2.8)

The following Julia function can be used to initialize the matrix $\mathbb{D}^{(2)}$.

```
function build_D2_matrix_3pt( N::Int64, h::Float64 )
  mat = zeros(Float64,N,N)1
  for i = 1:N-1
    mat[i,i] = -2.0
    mat[i,i+1] = 1.0
    mat[i+1,i] = mat[i,i+1]
  end
  mat[N,N] = -2.0
  return mat/h^2
end
```

The function build_D2_matrix_3pt takes two arguments:

- N:: Int64: number of grid points
- h::Float64: the uniform grid spacing

and it returns the matrix $\mathbb{D}^{(2)}$ as two dimensional array.

Before use these functions to solve Schroedinger equation, we will test the operation in Equation (2.8) for a simple function for which the second derivative can be calculated analytically. This function also should satisfy the boundary condition 2.2. We will take the Gaussian function (2.5) that we have used before. The second derivative of this Gaussian function can be calculated as

$$\psi''(x) = (-2\alpha + 4\alpha^2 x^2) e^{-\alpha x^2}$$
(2.9)

We also need to define the computational domain $[x_{\min}, x_{\max}]$ for our test. Let's choose $x_{\min} = -5$ and $x_{\max} = 5$ again as in the previous example. We can evaluate the value of function $\psi(x)$ at those points to be at the order of 10^{-11} , which is sufficiently small for our purpose.

The full Julia program that we will use is as follows.

```
using Printf
using LaTeXStrings
import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)
include("init FD1d grid.jl")
include("build_D2_matrix_3pt.jl")
function my_gaussian(x, \alpha=1.0)
  return exp(-\alpha * x^2)
end
function d2_my_gaussian(x, \alpha=1.0)
  return (-2*\alpha + 4*\alpha^2 * x^2) * \exp(-\alpha*x^2)
end
function main(N::Int64)
  x_min = -5.0
  x_max = 5.0
  x, h = init_FD1d_grid( x_min, x_max, N )
  fx = my gaussian.(x)
```

```
Ndense = 200
  x_dense = range(A, stop=B, length=Ndense)
  fx_dense = my_gaussian.(x_dense)
  d2_fx_dense = d2_my_gaussian.(x_dense)
  D2 = build_D2_matrix_3pt(N, h)
  d2_fx_3pt = D2*fx
  plt.clf()
  plt.plot(x, fx, marker="o", label=L"Sampled $f(x)$")
  plt.plot(x_dense, fx_dense, label=L"f(x)")
  plt.plot(x, d2_fx_3pt, marker="o", label=L"Approx $f''(x)$")
  plt.plot(x_dense, d2_fx_dense, label=L"f''(x)")
  plt.legend()
  plt.grid()
  plt.savefig("IMG_gaussian_"*string(N)*".pdf")
main(15)
main(51)
```

We have followed similar approach as we have done in the previous section for plotting. The important parts of the program are the lines:

```
D2 = build_D2_matrix_3pt(N, h)
d2_fx_3pt = D2*fx
```

where we build $\mathbb{D}^{(2)}$ matrix, represented by the variable D2 in the program, and multiply it with the vector fx to obtain an approximation to $\psi''(x)$. The results are plotted with two different values of number of grid points, N=15 and N=51, which are shown in Figure XXX.

Figure 2.2: Finite difference approximation to a Gaussian function and its second derivative with number of grid points N=15

Figure 2.3: Finite difference approximation to a Gaussian function and its second derivative with number of grid points ${\it N}=51$

2.3 Harmonic potential

We will start with a simple potential with known exact solution, namely the harmonic potential:

$$V(x) = \frac{1}{2}\omega^2 x^2 \tag{2.10}$$

The Hamiltonian in finite difference representation:

$$\mathbb{H} = -\frac{1}{2}\mathbb{D}^{(2)} + \mathbb{V} \tag{2.11}$$

where V is a diagonal matrix whose elements are:

$$V_{ij} = V(x_i)\delta_{ij} \tag{2.12}$$

Code to solve harmonic oscillator:

```
using Printf
using LinearAlgebra
using LaTeXStrings

import PyPlot
const plt = PyPlot
plt.rc("text", usetex=true)

include("INC_sch_ld.jl")

function pot_harmonic( x; w=1.0 )
    return 0.5 * w^2 * x^2
end
```

```
function main()
    # Initialize the grid points
    xmin = -5.0
    xmax = 5.0
    N = 51
    x, h = init_FD1d_grid(xmin, xmax, N)
    # Build 2nd derivative matrix
    D2 = build D2 matrix 9pt(N, h)
    # Potential
    Vpot = pot harmonic.(x)
    # Hamiltonian
    Ham = -0.5*D2 + diagm( 0 => Vpot )
    # Solve the eigenproblem
    evals, evecs = eigen( Ham )
    # We will show the 5 lowest eigenvalues
    Nstates = 5
    @printf("Eigenvalues\n")
    \omega = 1.0
    hbar = 1.0
    @printf(" State
                            Approx
                                                 Exact
                                                                Difference\n")
    for i in 1:Nstates
        E_ana = (2*i - 1)*\omega*hbar/2
        @printf("%5d %18.10f %18.10f %18.10e\n", i, evals[i], E_ana, abs(evals[i]-E_ana))
    end
    # normalize the first three eigenstates
    #for i in 1:3
    \# ss = dot(evecs[:,i], evecs[:,i])*h
        evecs[:,i] = evecs[:,i]/sqrt(ss)
    #end
    # Plot up to 3rd eigenstate
    #plot title = "N="*string(N)
    #plt.plot(x, evecs[:,1], label="1st eigenstate", marker="o")
    #plt.plot(x, evecs[:,2], label="2nd eigenstate", marker="o")
    #plt.plot(x, evecs[:,3], label="3rd eigenstate", marker="o")
    #plt.legend()
    #plt.tight layout()
    #plt.savefig("IMG main harmonic 01 "*string(N)*".pdf")
end
main()
```

Compare with analytical solution.

Plot of eigenfunctions:

Figure 2.4: Eigenstates of harmonic oscillator

2.4 Higher order finite difference

To obtain higher accuracy

Implementing higher order finite difference.

2.5 Exercises

Gaussian potential

Schroedinger equation in 2d

Schrodinger equation in 2d:

$$\left[-\frac{1}{2}\nabla^2 + V(x, y) \right] \psi(x, y) = E \psi(x, y)$$
(3.1)

where ∇^2 is the Laplacian operator:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \tag{3.2}$$

3.1 Finite difference grid in 2d

```
struct FD2dGrid
    Npoints:: Int64
    Nx:: Int64
    Ny:: Int64
    hx::Float64
    hy::Float64
    dA::Float64
    x::Array{Float64,1}
    y::Array{Float64,1}
    r::Array{Float64,2}
    idx_ip2xy::Array{Int64,2}
    idx_xy2ip::Array{Int64,2}
end
function FD2dGrid( x_domain, Nx, y_domain, Ny )
    x, hx = init_FD1d_grid(x_domain, Nx)
    y, hy = init_FD1d_grid(y_domain, Ny)
    dA = hx*hy
    Npoints = Nx*Ny
    r = zeros(2, Npoints)
    ip = 0
    idx_ip2xy = zeros(Int64,2,Npoints)
    idx_xy2ip = zeros(Int64,Nx,Ny)
    for j in 1:Ny
        for i in 1:Nx
            ip = ip + 1
            r[1,ip] = x[i]
            r[2,ip] = y[j]
            idx_ip2xy[1,ip] = i
            idx_ip2xy[2,ip] = j
            idx_xy2ip[i,j] = ip
```

```
end
end
return FD2dGrid(Npoints, Nx, Ny, hx, hy, dA, x, y, r, idx_ip2xy, idx_xy2ip)
end
```

3.2 Laplacian operator

Given second derivative matrix in x, $\mathbb{D}_{x}^{(2)}$, y direction, $\mathbb{D}_{x}^{(2)}$, we can construct finite difference representation of the Laplacian operator \mathbb{L} by using

$$\mathbb{L} = \mathbb{D}_{\mathsf{x}}^{(2)} \otimes \mathbb{I}_{\mathsf{y}} + \mathbb{I}_{\mathsf{x}} \otimes \mathbb{D}_{\mathsf{y}}^{(2)} \tag{3.3}$$

where \otimes is Kronecker product. In Julia, we can use the function kron to form the Kronecker product between two matrices A and B as kron(A,B).

```
function build_nabla2_matrix( fdgrid::FD2dGrid; func_1d=build_D2_matrix_3pt )
    Nx = fdgrid.Nx
    hx = fdgrid.hx
    Ny = fdgrid.Ny
    hy = fdgrid.hy

D2x = func_1d(Nx, hx)
    D2y = func_1d(Ny, hy)

∇2 = kron(D2x, speye(Ny)) + kron(speye(Nx), D2y)
    return ∇2
end
```

Example to the approximation of 2nd derivative of 2d Gaussian function

Figure 3.1: Two-dimensional Gaussian function and its finite difference approximation of second derivative

3.3 Iterative methods for eigenvalue problem

The Hamiltonian matrix:

```
\nabla 2 = build_nabla2_matrix( fdgrid, func_1d=build_D2_matrix_9pt ) Ham = -0.5*\nabla 2 + spdiagm( 0 => Vpot )
```

The Hamiltonian matrix size is large. The use eigen method to solve this eigenvalue problem is not practical. We also do not need to solve for all eigenvalues. We must resort to the so called iterative methods.

Schroedinger equation in 3d

After we have considered two-dimensional Schroedinger equations, we are now ready for the extension to three-dimensional systems. In 3d, Schroedinger equation can be written as:

$$\left[-\frac{1}{2} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E \psi(\mathbf{r})$$
 (4.1)

where **r** is the abbreviation to (x, y, z) and ∇^2 is the Laplacian operator in 3d:

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{4.2}$$

4.0.1 Three-dimensional grid

As in the preceeding chapter, our first task is to create a representation of 3d grid points and various quantities defined on it. This task is realized using straightforward extension of FD2dGrid to FD3dGrid.

Visualization of 3d functions as isosurface map or slice of 3d array.

Introducing 3d xsf

4.0.2 Laplacian operator

$$\mathbb{L} = \mathbb{D}_{x}^{(2)} \otimes \mathbb{I}_{y} \otimes \mathbb{I}_{z} + \mathbb{I}_{x} \otimes \mathbb{D}_{y}^{(2)} \otimes \mathbb{I}_{z} + \mathbb{I}_{x} \otimes \mathbb{I}_{y} \otimes \mathbb{D}_{z}^{(2)}$$

$$\tag{4.3}$$

Code

```
const ⊗ = kron
function build_nabla2_matrix( fdgrid::FD3dGrid; func_1d=build_D2_matrix_3pt )
    D2x = func_1d(fdgrid.Nx, fdgrid.hx)
    D2y = func_1d(fdgrid.Ny, fdgrid.hy)
    D2z = func_1d(fdgrid.Nz, fdgrid.hz)
    IIx = speye(fdgrid.Nx)
    IIy = speye(fdgrid.Ny)
    IIz = speye(fdgrid.Nz)
    ∇2 = D2x⊗IIy⊗IIz + IIx⊗D2y⊗IIz + IIx⊗IIy⊗D2z
    return ∇2
end
```

Numerical solution of Poisson equation

We will turn our attention to the Poisson equation:

$$\nabla^2 V_H(\mathbf{r}) = 4\pi \rho(\mathbf{r}) \tag{5.1}$$

Introduction to conjugate gradient problem 3d dimensional problem

Kohn-Sham equation part I

Using local potential only

Numerical solution of Kohn-Sham equation (part II)

Using nonlocal potential (pseudopotential)

Appendix A

Introduction to Julia programming language

This chapter is intended to as an introduction to the Julia programming language.

This chapter assumes familiarity with command line interface.

A.1 Installation

Go to https://julialang.org/downloads/ and download the suitable file for your platform. For example, on 64 bit Linux OS, we can download the file julia-1.x.x-linux-x86_64.tar.gz where 1.x.x referring to the version of Julia. After you have downloaded the tarball you can unpack it.

```
tar xvf julia-1.x.x-linux-x86_64.tar.gz
```

After unpacking the tarball, there should be a new folder called julia-1.x.x. You might want to put this directory under your home directory (or another directory of your preference).

A.2 Using Julia

A.2.1 Using Julia REPL

Let's assume that you have put the Julia distribution under your home directory. You can start the Julia interpreter by typing:

/home/username/julia-1.x.x/bin/julia

You should see something like this in your terminal:

\$ julia

julia>

This is called the Julia REPL (read-eval-print loop) or the Julia command prompt. You can type the Julia program and see the output. This is useful for interactive exploration or debugging the program.

The Julia code can be typed after the julia> prompt. In this way, we can write Julia code interactively.

Example Julia session

```
julia> 1.2 + 3.4
4.6

julia> sin(2*pi)
-2.4492935982947064e-16

julia> sin(2*pi)^2 + cos(2*pi)^2
1.0

Using Unicode:
julia> α = 1234;
julia> β = 3456;
julia> α * β
4264704

To exit type
julia> exit()
```

A.2.2 Julia script file

In a text file with .jl extension.

You can experiment with Julia REPL by typing julia at terminal:

We also can put the code in a text file with .jl extension and execute it with the command:

```
julia filename.jl
The following code
function say_hello(name)
    println("Hello: ", name)
end
say_hello("efefer")
```

A.3 Basic programming construct

Julia has similarities with several popular programming languages such as Julia, MATLAB, and R, to name a few.

A.4 Mathematical operators

```
if a >= 1
  println("a is larger or equal to 1")
end
```

Example code 3

```
using PGFPlotsX
using LaTeXStrings
include("init_FD1d_grid.jl")
function my_gaussian(x::Float64; \alpha=1.0)
  return exp( -\alpha * x^2 )
end
function main()
  A = -5.0
  B = 5.0
  Npoints = 8
  x, h = init_FDld_grid( A, B, Npoints )
  NptsPlot = 200
  x_dense = range(A, stop=5, length=NptsPlot)
  f = @pgf(
    Axis( \{\text{height} = "6cm", \text{width} = "10cm" \},
      PlotInc( {mark="none"}, Coordinates(x_dense, my_gaussian.(x_dense)) ),
      LegendEntry(L"f(x)"),
      PlotInc( Coordinates(x, my_gaussian.(x)) ),
      LegendEntry(L"Sampled $f(x)$"),
    )
  pgfsave("TEMP_gaussian_ld.pdf", f)
end
main()
```

Appendix B

Introduction to Octopus DFT code

Prerequisites:

- Autotools and GNU Make
- C, C++ and Fortran compilers
- Libxc

```
autoreconf --install
./configure --prefix=path_to_install
make
make install
```

Bibliography

- [1] P. Hohenberg and W. Kohn. Inhomogenous electron gas. Phys. Rev., 136:B864-871, 1964.
- [2] W Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. *Phys. Rev.*, 140(4A):A1333–1138, 1965.
- [3] List of quantum chemistry and solid-state physics software. https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software.
- [4] Julia programming language. https://julialang.org/.