Arhitectura sistemelor de calcul

Numele: Lazanoiu Teodona - Bianca E-mail: teodona lazanaiu@s umibuc no Grupa: ...15.1.... Data: ...16...01...2021.

- 1. Fie x = 125 și y = 78.
- a) Convertiți x și y în baza 8.
- b) Convertiți mai departe x și y din baza 8 în baza 2 și din baza 2 în baza 16, direct (fără a trece prin baza 10).
- c) Calculați x+y lucrând în baza 8 și x-y lucrând în baza 16.
- d) Convertiți rezultatele din bazele 8, respectiv 16, în baza 10.
- e) Calculați z=x-y folosind reprezentarea în complement față de 2 pe 8 biți. Se vor explicita reprezentările lui x și y, complementul față de 1 și cel față de 2 al reprezentării lui y, obținerea reprezentării lui z, interpretarea acesteia ca număr în baza 10.
 - f) Interpretați ca număr în baza 10 reprezentarea internă hexa în format single OxC29A0000.

2. Fie
$$f: B_2^3 \longrightarrow B_2^2$$
, $f(x,y,z) = (f_1(x,y,z), f_2(x,y,z))$, unde: $f_1(x,y,z) = \bar{x}\,\bar{z} + (\bar{y}\oplus z)$, $f_2(x,y,z) = (\bar{x}+y)(\bar{y}\oplus z)$.

- a) Construiți tabelul de valori al lui f și scrieți f_1 , f_2 în FND și FNC.
- b) Implementați f printr-un PROM.
- c) Implementați f printr-un codificator.
- d) Implementați f printr-un circuit cu două multiplexoare (câte unul pentru f_1, f_2) cu aceiași selectori x, y, z.
- e) Implementați f printr-un circuit care conține doar multiplexori elementari; apoi, reduceți la maximum numărul multiplexorilor elementari (nu este permisă adăugarea de porți NOT).
- f) Construiți un circuit 1-DS care citește unul câte unul o secvență de biți și, de fiecare dată, scoate 1 / 0, după cum $f_2(x,y,z) = 1/0$, unde x,y,z sunt antepenultimul, penultimul, respectiv ultimul bit citit.
 - g) Implementați poarta NAND printr-un circuit care conține doar porți NOR.
 - 3. Considerăm implementarea procesorului MIPS cu 1 ciclu / instrucțiune (vezi verso). Fie fragmentul de program:

Presupunem că în memorie instrucțiunea slt din program are adresa α .

- a) Pentru instrucțiunile slt și beq din program scrieți câmpurile din reprezentarea lor internă (ex: op/rs/rt/imm, valorile se scriu hexa); pentru beq din program scrieți și reprezentările ei binară (32 biți) și hexa (8 cifre hexa).
- b) Completați tabelul următor cu valorile obținute la prima executare a instrucțiunilor slt și beq din program; valorile se vor scrie hexa/formulă, iar dacă valoarea este necunoscută/nedefinită se va nota "?"; în coloanele PC și \$t3 se vor trece valorile noi, de la sfârșitul executării instrucțiunilor respective:

50 101	1	4	5	7	8	ALU zero	10	(d)	(e)	Branch	Mem To Reg	ALU Op (2b)	ALU Ctrl (3b)	Reg Write	PC	\$t3
Iniţial	_	-	_	_	_	_		, ,					-		α	FFFFFFF (-1)
slt	α	В	-17	-1	1	O	1	4+4	7+1	0	0	1X	111	, 1	« +\	1
' beq	८ +5	?	1	1	0	1	?	L-8	7-8	1	X	×1	110	0	2-8	1

c) Adăugați procesorului implementarea instrucțiunii: msw rs, rt care scrie în memorie la adresa obținută calculând diferența valorilor din registrii rs și rt valoarea aflată în registrul rt (adică efectuează mem [rs - rt] := rt); se va adapta formatul I, cu op = - (nerelevant). Pentru implementare, este suficientă adăugarea unei linii cu valori 0, 1, X tabelului "Control":

Instruction [31 - 26]	RegDst	ALU Src	Mem To Reg	Reg Write	Mem Read	Mem Write	Branch	Jump	ALU Op1	ALU Op0
_	X	0	0	0	0	1	0	0	X	1

Lazanoiu Teodora, 191

1.
$$x = 125$$
, $y = 78$

a) $125 = (175)_8$
 $18 = (116)_8$

b) $x = (175)_x = (1111101)_2$
 $(1)_8 = (001)_2$
 $(7)_8 = (111)_2$
 $(5)_8 = (101)_2$
 $(1101)_2 = (7)_{16}$
 $(1101)_2 = (7)_{16}$
 $(1101)_2 = (110)_2$
 $(1)_8 = (001)_2$
 $(6)_8 = (110)_2$
 $(6)_8 = (110)_2$
 $(6)_8 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2 = (110)_2$
 $(110)_2$

Lazanoiu Toodona, 191

e)
$$\chi = x - y$$

 $\chi = (0111 \ 1101)_2 = x \sim x = (1000 \ 0010)_2$

$$y = (0100 1110)_2 = 0$$
 $y = (1011 0001)_2$
- $y = y + 1 = (1011 0010)_2$

$$z = x - y = (0.111 \ 1101)_z + (1011 \ 0010)_z =$$

$$= (0010 \ 1111)_z$$

1011 0010 se piende → (1)0010 1111

$$2 = (1011111)_2 = 2^{5} \cdot 1 + 2^{3} \cdot 1 + 2^{5} \cdot 1$$

4)
$$0 \times C29 A0000$$
 format single
 $(C)_{16} = (1100)_2$ $(A)_{16} = (1010)_2$
 $(2)_{16} = (0010)_2$ $(0)_{16} = (0000)_2$

 $(9)_{16} = (1001)_{2}$

$$X = (-1)^{3} \cdot 2 \cdot \overline{1, \beta} = (-1)^{1} \cdot 2^{6} \cdot (1,001101)_{2} = (-1) \cdot (1001101)_{2} = (-1) \cdot (2^{0} \cdot 1 + 2^{2} \cdot 1 + 2^{3} \cdot 1 + 2^{6} \cdot 1) = (-1) \cdot (1 + 5 + 8 + 65) = -77$$

= 133

Lazanoiu Trodona, 151

2. 0	()	×	7	· Z	· ×	ÿ	Ē	₹· £	ÿ⊕z	X +y	- y⊕ Ł	41	42	
	(O)	0	0	0	1	1	1	1	٨	1	1	4	4	
	(1)	0	0	1	4	1	0	0	0 ,	1	0	0	0	
	(2)	0	1	0	4	0	1	1	0	1	0	1	0	
	(3)	0	4	1	4	0	0	0	4	1	1	4	1	
	(5)	4	С	0	0	1	1	0	4	0	1	1	0	
	(5)	4	0	1	0	1	0	0	0	0	0	0	0	
	(6)	1	1	0	С	0	1	٥	0	1	0	0	0	
	(7)	4	1'	1.	0.	0,	0.	0	4	1.	1	1	1	

 $A: B_2^3 \rightarrow B_2^2$, $A(x,y,z) = (A_1(x,y,z), A_2(x,y,z))$ $A_1(x,y,z) = \overline{x}.\overline{z} + (\overline{y} \oplus z)$ $A_2 = (\overline{x} + y)(\overline{y} \oplus z)$

FND: 41: X. y. 2 + X. y. 2 + X. y. 2 + X. y. 2 + X. y. 2

42: X.y.Z+ X.y.Z+ x.y.Z

FNC: 41: (x+y+\overline{2}) - (\overline{x}+y+\overline{2}) \cdot (\overline{x}+\overline{y}+\overline{2})

42: (x+y+\varepsilon) (x+\varg+\varepsilon) (\varxit{x}+\vary+\varepsilon) (\varxit{x}+\vary+\varepsilon) (\varxit{x}+\vary+\varepsilon)

Lătănoiu Teodona, 141

Lăzanoiu Tcodona, 191

poarta NAND

evan

Lăzănoiu Teodona, 151

3. a) slt - instrucţiume R

op (- o (000000)

rs (- A (St2 = 10)

rt (- B (St3 = 11)

rd (- B (St3 = 11)

shamt (- o (00000)

funct (- 2A (101010)

 $(0010\ 1010)_2 = (2A)_{16}$ bcg - instructiume i op(- 5 (000100) ns(- 9 (\$t1 = 9) = 01001 nt(- B (\$t3 = 11) = 01011 imm(- FFFC (11...100)

beg: 0001 0001 0010' 1011 1111 1111 1110 1100 beg: 0x112BFFFC