Introduction To Deep Learning

Quick Survey

Topics

- Key Concepts
- The Deep Learning Landscape
- Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning

What About The Sexy Stuff?

Key Concepts

The Problem With Linear (GLM) Models

What's it buying us?

Why We Need Machine Learning

What the Linear Model Captures

Reality

Reality is a lot more messy, shit interacts

No Interactions

Years of Education

Accounting for Interactions

Years of Education

Toy Example

Activation Functions

Non-Linear Function Converting Node Input to Output

What

Non-linear function converting node input to output

Activation Functions

Non-Linear Function Converting Node Input to Output

What

Non-linear function converting node input to output

<u>Why</u>

- Account for non-linearities
- Improve ability to capture interactions

Not super critical....
just need the right weights

The ReLU Activation Function

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Actually pretty powerful if there's a fuck ton of layers

Х

Return to Interactions

Checking For Interactions

- Make prediction for two education values for tech worker
- Make prediction for same two education values for non-tech worker
- See if increase in wage differs

	Tech Job = 0	Tech Job = 1
Education = 12		
Education = 13		

Return to Interactions

Checking For Interactions

- Make prediction for two education values for tech worker
- Make prediction for same two education values for non-tech worker
- See if increase in wage differs

Four people

	Tech Job = 0	Tech Job = 1
Education = 12		26
Education = 13		

(If no interactions...

linear models would restrict on education)

Return to Interactions

Checking For Interactions

- Make prediction for two education values for tech worker
- Make prediction for same two education values for non-tech worker
- See if increase in wage differs

	Tech Job = 0	Tech Job = 1
Education = 12		26
Education = 13		38

Return to Interactions

Checking For Interactions

- Make prediction for two education values for tech worker
- Make prediction for same two education values for non-tech worker
- See if increase in wage differs

	Tech Job = 0	Tech Job = 1
Education = 12	0	26
Education = 13		38

Return to Interactions

Checking For Interactions

Multiplication and addition is kinda all you need... can go more complex.

- Make prediction for two education values for tech worker
- Make prediction for same two education values for non-tech worker
- See if increase in wage differs

(Hopefully everyone is in tech...)

	Tech Job = 0	Tech Job = 1
Education = 12	0	26
Education = 13	0	38

The Takeaway

Checking For Interactions

Neural network models capture interactions and non-linearities

Depending on the weights, they can still make bad predictions

Finding the right weights is the super hard part

Gradient Descent

Gradient Descent

Gradient Descent

Repeatedly:

Find derivative / slope of loss function with respect to each weight

 Take small step downhill (subtracting product of derivative and learning rate)

Back Propagation

the process to get...

Used to get derivatives needed to update weights

Application of chain rule from calculus

Used after forward propagation to find errors

Not focusing on this math today

Backward Propagation

Deeper Networks

Topics

- Key Concepts
- The Deep Learning Landscape
- Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning

Where Deep Learning Shines

Good for unstructured (sound, videb, text).... but it's funny because "unstructured is socooo structured".

The ordering is super important, if you shuffled words, sentence loses meaning

Deep Learning Landscape

Topics

- Key Concepts
- ✓ The Deep Learning Landscape
- Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning

The Keras Workflow

Similar to XGBoost or sklearn

- Define Topology (nodes, layers)
- Compile Optimization steps for Gradient Descent
- Fit
- Predict

Topics

- Key Concepts
- ✓ The Deep Learning Landscape
- ✓ Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning

Applications

Facial recognition

Medical imaging and automated radiology

Image tagging

How Are Images Represented

hov	v much	green	?		••	
how mu	ch blue	?			•••	 <u> </u>
how much re	d 32	16	24	55	•••	
	18	12	99	123		_
	44	88	31	99		 _
	55	94	31	88		 _

MNIST and Grayscale

32	16	24	55	
18	12	99	123	•••
44	88	31	99	•••
55	94	31	88	•••
•••	•••	•••	•••	•••

Data

This specific convolution is Kind of like a horizontal line detector

Convolution

1.5	1.5	
-1.5	-1.5	

$$= 200(1.5) + 200(1.5)$$
$$- 200(1.5) - 200(1.5)$$
$$= 0$$

Data

0	0	•••		
0	0	•••	•••	•••
	•••	•••	•••	•••
	•••	•••	•••	•••
	•••	•••	•••	•••

Convolution

1.5	1.5
-1.5	-1.5

$$= 4(0)(1.5)$$

= 0

Data

200	200	•••	•••	•••
0	0	•••	•••	•••
	•••	•••	•••	•••
	•••	•••	•••	•••
	•••	•••	•••	•••

Convolution

1.5	1.5
-1.5	-1.5

Convolutions for Everything

Many patterns can be represented

Filters in later layers capture more complex patterns

Optimized to help prediction

HOW A DEEP NEURAL NETWORK SEES

Circles inside circles?

Topics

- Key Concepts
- ✓ The Deep Learning Landscape
- ✓ Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning

What About Small Data Sets

HOW A DEEP NEURAL NETWORK SEES

Topics

- Key Concepts
- ✓ The Deep Learning Landscape
- ✓ Your First Model in Keras
- Computer Vision and Convolutional Networks
- Transfer Learning