

Modbus プロトコル概説書

目 次

1、ほじ	· めに	4
2、Mod	lbus プロトコル	4
2、1	Modbus プロトコル概要	4
2、2	Modbus メッセージ・フレーム	
	ASCII モード時のフレーム	
	RTU モード時のフレーム	
	アドレス (Address)・フィールド	
(4)	ファンクション・フィールド	5
(5)	データ・フィールド	5
(6)	エラーチェック・フィールド	6
(7)	LRC チェック	6
(8)	CRC チェック	7
2、3	Modbus ファンクション・フォーマット	7
(1)	データ・アドレス	7
(2)	コイル (Coil)	7
(3)	入力ステータス(Input Status)	7
(4)	入力レジスタ(Input Register)	7
(5)	保持レジスタ(Holding Register)	7
2、4	Modbus メッセージ構成	8
3、ファ	· ンクション・コード(Modbus ファンクション)	9
3、1	Read Coil Status (01)	9
3、2	Read Input Status (02)	10
3、3	Read Holding Register (03)	11
3、4	Read Input Register (04)	12
3、5	Force Single Coil (05)	13
3、6	Preset Single Register (06)	14
3、7	Diagnostics (08)	15
3、8	Fetch Communication Event Counter (11, 0x0B)	16
3、9	Fetch Communication Event Log (12, 0x0C)	. 17
3、10	Force Multiple Coils (15, 0x0F)	18
3、11	Preset Multiple Registers (16, 0x10)	19
3、12	Report Slave ID (17, 0x11)	20

Modbus

4、診断	f (0x08)	21
4、1	Return Query Data (00)	21
4、2	Restart Communications Option (01)	21
4、3	Return Diagnostics Register (02)	21
4、4	Force Listen Only Mode (04)	22
4、5	Clear Counters and Diagnostic Register (10, 0x0A)	22
4、6	Return Bus Message Count (11, 0x0B)	22
4、7	Return Bus Communication Error Count (12, 0x0C)	22
4、8	Return Bus Exception Error Count (13, 0x0D)	22
4、9	Return Slave Message Count (14, 0x0E)	22
4、10	Return Slave No Response Count (15, 0x0F)	23
4、11	Return Slave Busy Count (17, 0x11)	23
4、12	Return Bus Character Overrun Count (18, 0x12)	23
E /511/51	L. 7 +° . 7 (Eveentian December)	0.4
ולנולו	トレスポンス(Exception Response)	24
補足	1 Modbus 通信機能	26
	M シリーズの Modbus 通信機能	
	ファンクション・コード	
	データアドレス	
	入力データ	
	コイル(DO)データ詳細	
(1)	DO (1 ~ 32)	28
(2)	冷接点温度補償 SW(33 ~ 48)	28
1、5	入力ステータス(DI)データ詳細	28
(1)	DI (10001 ~ 10032)	28
(2)	ADC レンジオーバー(10033~10048)	28
1、6	入力レジスタデータ詳細	28
(1)	アナログ入力%値(30001~30016)	28
(2)	アナログ入力工業単位値(30017~30048)	28
(3)	冷接点温度(30049 から 30050)	28
(4)	チャンネル・ステータス(30081 ~ 30096)	29
(5)	システム・ステータス (30513)	29
(6)	形式(30514~30521)	29
(7)	機番(30522~30529)	29
(8)	ハードウェア・バージョン番号(30530 ~ 30537)	29
(9)	ファームウェア・バージョン番号(30538 ~ 30545)	29
	保持レジスタ・データ詳細	
(1)	アナログ出力%値(40001~40016)	30
	アナログ出力工業単位値(40017 ~ 40048)	
(3)	入出力タイプ番号(40145 ~ 40160)	30
	バーンアウトタイプ (40161~40176)	

Modbus

2、R2M シリーズの Modbus 通信機能	31
2、1 通信パラメータ	31
2、2 ファンクション・コード	31
2、3 データアドレス	32
2、4 入力データ	32
2、5 コイル(DO)データ詳細	32
(1) DO (1 ~ 32)	32
(2) 冷接点温度補償 SW(33 ~ 40)	32
2、6 入力ステータス(DI)データ詳細	32
(1) DI (10001 ~ 10032)	32
(2) ADC レンジオーバー(10033~10040)	32
2、7 入力レジスタデータ詳細	33
(1)アナログ入力工業単位値(30017 ~ 30032)	33
(2) 冷接点温度值(30049~30050)	33
(3) チャンネル・ステータス(30081 ~ 30088)	33
(4) システム・ステータス (30513)	33
(5) 形式(30514~30521)	34
(6)機番(30522~30529)	34
(7)ハードウェア・バージョン番号(30530 ~ 30537)	34
(8) ソフトウェア・バージョン番号(30538 ~ 30545)	34
2、8 保持レジスタ・データ詳細	34
(1)入力フィルタリング時定数(40049 ~ 40050)	34
(2)入出力タイプ番号(40145 ~ 40152)	34
(3) バーンアウトタイプ(40514)	34
補 足2 Modbus / TCP プロトコル	35
1、はじめに	35
2、プロトコルのレイアウト	35
3、動作の例	36
/ 注音車佰	36

1、はじめに

Modbus プロトコルは、Modicon Inc. (AEG Schneider Automation International S.A.S.) が PLC 用に開発した通信プロトコルで、プロトコル仕様書 (PI-MBUS-300 Rev.J) に記載されています。Modbus プロトコルの詳細な仕様に関しては当仕様書をご参照下さい。Modbusプロトコルで定義されているのは 通信プロトコルのみで、通信媒体などの物理レイヤは規定されていません。

2、Modbus プロトコル

2、1 Modbus プロトコル概要

Modbusの通信方式は、シングルマスター/マルチスレーブ方式です。マスターだけがクェーリ(通信の開始)を発行することができます。スレーブは、このクェーリを見て、指定された機能を実行し、応答メッセージを返します。マスターは、指定のスレーブに対するクェーリ、または全てのスレーブに対するブロードキャストクェーリのいずれかを発行することができます。ブロードキャストクェーリの場合には、スレーブは指定の機能を実行するのみで、応答メッセージは返しません。スレーブは、自分に対するクェーリのときにだけ応答メッセージを返します。

クェーリの伝送フォーマットは、スレーブのアドレス(またはブロードキャスト)、要求内容を定義するファンクションコード、データおよびエラーチェックフィールドから構成されています。また、応答メッセージの伝送フォーマットは、要求内容の確認フィールド、応答データおよびエラーチェックフィールドから構成されています。

クェーリと応答メッセージの伝送フォーマットを下図に示します。

シリアル伝送モードには ASCII(American Standard Code for Information Interchange)モードと RTU (Remote Terminal Unit) モードの 2 種類があり、選択することができます。ただし、1 つのネットワーク上では、全てのデバイスが同一モードでなくてはなりません。ASCIIモードでは、1バイト(8 ビット)データを 2 文字の ASCII コードに変換して伝送します。RTU モードでは、1 バイト(8 ビット)データを そのまま伝送します。従って ASCII モードより伝送効率が良いと言えます。

エラーチェックフィールドのチェックアルゴリズムは伝送モードによって異なります。ASCII モードの場合には、LRC (Longitudinal Redundancy Check) 法が、またRTUモードの場合には、CRC (Cyclical Redundancy Check) 法が採用されています。

2、2 Modbus メッセージ・フレーム

Modbusメッセージ・フレームは、2つの伝送モードによって異なります。

(1) ASCII モード時のフレーム

ASCIIモードの場合には、メッセージは":" (0x3A) のASCII文字列で始まり、"CR/LF" (Carriage return line feed) (0x0D, 0x0A) で終ります。その間に許されるデータは、"0" — "9"、"A" — "F" からなる文字列のみです。

Ethernet 通信の場合、当メッセージ・フレームをそのままデータフレームとし、TCP/IPプロトコルの1データフレームとします。メッセージ・フレームを分割してはなりません。

● ASCII モード時のメッセージ・フレーム構成 (表 1)

Start	Address	Function	Data	LRC Check	End
	2- 文字	2- 文字	n - 文字	2- 文字	2- 文字 CR / LF

(2) RTUモード時のフレーム

RTU モードの場合、少なくとも 3.5 文字分のサイレントインターバル(無通信時間)で始まり、3.5 文字分のサイレントインターバルで終ります。これを(表 2)では T1-T2-T3-T4 で表します。 その他のフィールドは、8 ビットのデータそのものです。

● RTU モード時のメッセージ・フレーム構成(表 2)

Start	Address	Function	Data	CRC Check	End
T1-T2-T3-T4*	8- ビット	8- ビット	n*8- ビット	16- ビット	T1-T2-T3-T4*

*、T1-T2-T3-T4は、3.5文字分の無通信時間

(3) アドレス (Address)・フィールド

アドレス・フィールドは、0から247 (10進数)が許されます。スレーブ・アドレスは1から247です。マスターがスレーブにクェーリを発する場合には、このアドレスフィールドにスレーブのアドレスをセットします。スレーブがマスターに応答メッセージを返す場合には、スレーブのアドレスをセットします。これによって、マスターはどのスレーブからの応答であるかを知ることができます。アドレス0はブロードキャストクェーリに用います。

(4) ファンクション・フィールド

設定可能なファンクション・コードは1から255 (10進数)です。ファンクション・コードに従って、スレーブは指定された機能を実行します。実行後、応答メッセージを返す場合、正常応答メッセージには同じファンクション・コードを設定し、例外応答メッセージにはファンクション・コードのMSBを1にセットします。これで、マスターはどのファンクション・コードに関する応答メッセージであるかを知ることができます。設定したファンクション・コードが有効か否かは、スレーブデバイスに依存します。従って、各スレーブの仕様書をご参照下さい。

(5) データ・フィールド

ファンクション・コードに関連した、データを送信する場合に用います。フィールド長は可変で、 データ・フィールドなしも許されます。データ・フィールドの構成と意味は各スレーブの仕様書をご 参照下さい。

(6) エラーチェック・フィールド

伝送モードによって、エラーチェック・フィールドの内容は異なります。

● ASCII モード

ASCII モードの場合には、エラーチェック・フィールドは2文字から構成されます。Start ":"文字と End "CR / LF"を除く文字の和(LRC:Longitudinal Redundancy Check)の結果を2文字で表します。

● RTU モード

RTUモードの場合には、エラーチェック・フィールドは16 ビットのデータを2つの8 ビットバイトデータで表します。エラーチェックの結果はCRC(Cyclical Redundancy Check calculation)と言われる計算方法で計算されます。

(7) LRC チェック

ASCII モードにおいて、メッセージにはLRC方式に基づいたエラーチェックフィールドが含まれています。LRCフィールドは、最初のコロンと最後のCRLFを除いたメッセージの中身をチェックします。これは、メッセージ中の個別の文字(キャラクタ)のパリティチェック方式とは関連せずに行われます。

LRC フィールドは1バイト構成で、8ビットのバイナリ値で構成されています。LRC 値は、LRC をメッセージに付加する送信側が計算します。受信側は、メッセージ受信中にLRC を計算して、その計算結果とLRC フィールドに受信した実際の値と比較します。もし、この2つの値が一致しなければ、結果はエラーとなります。

LRCを計算するときは、メッセージの中の連続した8ビットのバイトからキャリーを除いて足し算し、結果を2の補数にします。これはASCIIメッセージフィールドの中身について行われますが、メッセージの最初のコロン記号と最後のCRLFは除きます。

例: スレーブデバイス1、入力レジスタ30001のレジスタの内容を読出すクェーリメッセージは下記となります。(クェーリメッセージについては3.4を参照)

(8) CRC チェック

RTUモードにおいて、メッセージにはCRC方式に基づいたエラーチェックフィールドが含まれています。CRCフィールドの場合は、メッセージ全体の内容をチェックします。また、メッセージ中の個別の文字(キャラクタ)のパリティチェック方式と関連せず行われます。

CRCフィールドは2バイト構成で、16ビットのバイナリ値で構成されています。CRC値は、CRCをメッセージに付加する送信側が計算します。受信側は、メッセージ受信中にCRCを再計算して、その計算結果とCRCフィールドに受信した実際の値と比較します。もし、この2つの値が一致しなければ、結果はエラーとなります。

CRC計算ではまず、すべて1の16ビットのレジスタをプレロード(初期値として0xFFをセット)します。そして次に、メッセージの中の連続した8ビットのバイトを、現在のレジスタの中身に適用していきます。CRCを生成するときには、各キャラクタのうち8ビットだけを使います。スタートおよびストップ、パリティビットはCRCには適用されません。

CRCを生成する途中、各8ビットキャラクタはレジスタの中身とエクスクルーシブORされます。さらにその結果を最下位桁の方向にシフトし、最上位桁にはゼロを入れます。最下位桁を取出して検査します。もし、最下位が1の場合はさらに、レジスタは既設の固定値(0xA001)でエクスクルーシブORされます。もし、最下位が0の場合、エクスクルーシブORは起こりません。

この過程を8回シフトするまで繰返します。最後(8回目)のシフトの後、次の8ビットのバイトについて、レジスタの現在値でエクスクルーシブORします。そして前述のように、この過程をさらに8回繰返します。メッセージの全てのバイトについて適用した後、レジスタの最後の中身がCRC値となります。

メッセージにCRCを付加するときには、下位バイトが先に付加され、その後に上位バイトが続きます。

例: スレーブデバイス1、入力レジスタ30001のレジスタの内容を読出すクェーリメッセージは下記となります。(クェーリメッセージについては3.4を参照)

0x01, 0x04, 0x00, 0x00, 0x00, 0x01, 0x31, 0xCA

上記のクェーリメッセージの場合、CRCの計算値は 0xCA31です。

CRC は下位バイトを先に送信しますので、メッセージでは 0x31, 0xCA の順となります。

2、3 Modbus ファンクション・フォーマット

(1) データ・アドレス

Modbus通信で、データの参照や変更を行う場合、データ・アドレスを用いて行います。データの種類には、コイル、入力ステータス、入力レジスタ、保持レジスタの4種類があります。

(2) コイル (Coil)

コイルは、フィールドへの ON / OFF 出力である DO (Discrete Output) やスレーブデバイスの状態やモードを変更する為にスイッチとして用いられます。参照・変更が可能な2値のデータで、可能アドレス範囲は1から 9999 です。

(3) 入力ステータス(Input Status)

入力ステータスは、フィールドからの ON / OFF 入力である DI (Discrete Input) やスレーブデバイスの状態入力として用いられます。参照のみで変更はできない 2値のデータで、可能アドレス範囲は 10001 から 19999 です。

(4) 入力レジスタ(Input Register)

入力レジスタは、フィールドからのAI (Analog Input) やスレーブデバイス内の情報として用いられます。16ビット長のデータで、参照するのみで変更はできません。可能アドレス範囲は30001から39999です。複数の連続したアドレスを割当てることにより、単精度実数、倍精度実数などのデータを扱うこともできます。

(5) 保持レジスタ(Holding Register)

保持レジスタは、フィールドからの AO(Analog Output)やスレーブデバイス内の設定情報として用いられます。16ビット長のデータで、参照・変更ができます。可能アドレス範囲は40001から49999です。複数の連続したアドレスを割当てることによって、単精度実数、倍精度実数などのデータを扱うこともできます。

2、4 Modbusメッセージ構成

Modbus 伝送メッセージ上での、データアドレスの指定方法は、各データの先頭アドレスを0番地とします。例えば、入力レジスタアドレス 30156(10 進数)を指定するには、メッセージ上でのアドレス指定は 155(10 進数)となります。データの種類は、ファンクション・コードで決まります。

(表 3) に Modbus クェーリメッセージの例を示します。(表 3) の例は、スレーブアドレス 6 に対して保持レジスタの読出し(ファンクション・コード 3) のクェーリです。メッセージでは、<math>40108 から 40110 までの 3 個の保持レジスタの内容を読出すリクエストメッセージです。開始アドレスの値が 107 (0x6B) になっていることに注意して下さい。

●マスターからのクェーリメッセージ構成例(表3)

コ	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" • "	なし
スレーブアドレス	0x06	"0", "6"	0x06
ファンクションコード	0x03	"0", "3"	0x03
開始アドレス (上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0x6B	"6", "B"	0x6B
レジスタの数(上位)	0x00	"0", "0"	0x00
レジスタの数(下位)	0x03	"0", "3"	0x03
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

(表 4) に (表 3) に対するスレーブからの応答メッセージ例を示します。スレーブアドレスとファンクションコードはそのままエコーバックします。データ数がバイト単位でいくつあるかを示します。(伝送上のバイトデータカウントではないことにご注意下さい。例では、16 ビットデータが3 個ありますのでデータバイト数は、ASCII モードの場合でも RTU モードの場合でも同じ6 となります。)

●スレーブからの応答メッセージ構成例(表4)

コ , 川 じ々	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" • "	なし
スレーブアドレス	0x06	"0", "6"	0x06
ファンクションコード	0x03	"0", "3"	0x03
データバイト数	0x06	"0", "6"	0x06
データ1 (上位)	0x03	"0", "3"	0x03
データ1 (下位)	0xE8	"E", "8"	0xE8
データ2 (上位)	0x01	"0","1"	0x01
データ2 (下位)	0xF4	"F", "4"	0xF4
データ3 (上位)	0x00	"0", "0"	0x00
データ3 (下位)	0x0A	"0", "A"	0x0A
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	23	11

3、ファンクション・コード(Modbus ファンクション)

3、1 Read Coil Status (01)

●機能

スレーブのDO(Discrete Output)のON/OFF状態を読出します。ブロードキャストはありません。アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、コイルの開始アドレスとコイルの数を指定します。(表 5) に、スレーブデバイス 3 に対してコイル 20 番地から 56 番地までの、37 個のコイルのステータスを読む例を示します。開始アドレスの値が、1 少ない 19(0x13)になっていることに注意して下さい。

・Read Coil Status のクェーリメッセージ例(表 5)

	例	ASCII ₹-ド	RTU モード
フィールド名	(Hex)	文字列	8- ビット (Hex)
ヘッダー		" · ''	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x01	"0","1"	0x01
開始アドレス(上位)	0x00	"0","0"	0x00
開始アドレス(下位)	0x13	"1", "3"	0x13
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x25	"2", "5"	0x25
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

レスポンスメッセージにおけるコイルのステータスはデータフィールドのデータに、1コイル当り1 ビットのパックされます。ビットの意味は1=ON、0=OFFで、最初のデータのLSBが先頭アドレスのコイルのステータスになります。コイル20から27のステータスがON-ON-OFF-OFF-ON-OFF -ON-OFFとすると2進数で01010011(0x53)となります。1バイトで8コイル分のステータスを表します。最後のデータでコイル数が8個に満たない場合には、残りには0を詰めます。(表5)の0クェーリに対するレスポンス例を(表6)に示します。

・スレーブからの応答メッセージ例(表6)

フィールド名	例	ASCII モード	RTU モード
フィールド石	(Hex)	文字列	8- ビット (Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x01	"0","1"	0x01
データバイト数	0x05	"0", "5"	0x05
データ1	0x53	"5","3"	0x53
データ 2	0x6B	"6", "B"	0x6B
データ3	0x01	"0","1"	0x01
データ 4	0xF4	"F","4"	0xF4
データ5	0x1B	"1", "B"	0x1B
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	21	10

3、2 Read Input Status (02)

●機能

スレーブの DI (Discrete Input) の ON / OFF 状態を読出します。ブロードキャストはありません。アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、入力ステータスの開始アドレスと入力ステータスの数を指定します。スレーブデバイス3に対して入力ステータス10101番地から10120番地までの20個の入力ステータスのステータスを読む例を示します。開始アドレスの値が、10001少ない100(0x64)になっていることに注意して下さい。

・Read Coil Status のクェーリメッセージ例(表 7)

7 . 11 15 4	例	ASCII モード	RTUモード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · "	なし
スレーブアドレス	0x03	"0","3"	0x03
ファンクションコード	0x02	"0", "2"	0x02
開始アドレス(上位)	0x00	"0","0"	0x00
開始アドレス(下位)	0x64	"6", "4"	0x64
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x14	"1", "4"	0x14
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

レスポンスメッセージにおけるデータの構成、意味はRead Coil Status (01) と同じです。(表7) のクェーリに対するレスポンス例を(表 8)に示します。

・スレーブからの応答メッセージ例(表8)

7 . II ! A	例	ASCII モード	RTU モード		
フィールド名	(Hex)	文字列	8- ビット(Hex)		
ヘッダー		,	なし		
スレーブアドレス	0x03	"0", "3"	0x03		
ファンクションコード	0x02	"0", "2"	0x02		
データバイト数	0x03	"0", "3"	0x03		
データ1	0x53	"5","3"	0x53		
データ2	0x6B	"6", "B"	0x6B		
データ3	0x01	"0", "1"	0x01		
エラーチェック		LRC(2文字)	CRC (16 ビット)		
トレーラー		CR / LF	なし		
	合計バイト数	17	8		

3、3 Read Holding Register (03)

●機能

スレーブの保持レジスタの内容を読出します。ブロードキャストはありません。 アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、保持レジスタの開始アドレスと保持レジスタの数を指定します。(表9)に、スレーブデバイス7に対して保持レジスタ40201番地から40203番地までの3個の保持レジスタの内容を読む例を示します。開始アドレスの値が、40001少ない200(0xC8)になっていることに注意して下さい。

・Read Holding Register のクェーリメッセージ例(表 9)

フィールド名	例	ASCII モード	RTU モード
フィールト石	(Hex)	文字列	8- ビット(Hex)
ヘッダー		,	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x03	"0", "3"	0x03
開始アドレス(上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0xC8	"C","8"	0xC8
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x03	"0","3"	0x03
エラーチェック		LRC (2 文字)	CRC (16ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

レスポンスメッセージにおけるデータは、1保持アドレス当り16ビットのデータです。(表9) のクェーリに対するレスポンス例を(表10)に示します。

・スレーブからの応答メッセージ例 (表 10)

7 . u l'A	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x03	"0", "3"	0x03
データバイト数	0x06	"0", "6"	0x06
データ1 (上位)	0x03	"0", "3"	0x03
データ1 (下位)	0xE8	"E", "8"	0xE8
データ 2(上位)	0x01	"0", "1"	0x01
データ2 (下位)	0xF4	"F", "4"	0xF4
データ3 (上位)	0x00	"0", "0"	0x00
データ3 (下位)	0x0A	"0", "A"	0x0A
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	23	11

3、4 Read Input Register (04)

●機能

スレーブの入力レジスタの内容を読出します。ブロードキャストはありません。 アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、入力レジスタの開始アドレスと入力レジスタの数を指定します。(表11) にスレーブデバイス7に対して入力レジスタ30301番地から30303番地までの3個の入力レジスタの内容を読む例を示します。開始アドレスの値が、30001少ない300(0x12C)になっていることに注意して下さい。

・Read Input Register のクェーリメッセージ例(表 11)

→ . u.l\A	例	ASCII ₹-ド	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" • "	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x04	"0","4"	0x04
開始アドレス(上位)	0x01	"0","1"	0x01
開始アドレス(下位)	0x2C	"2" , "C"	0x2C
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x03	"0","3"	0x03
エラーチェック		LRC (2 文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

レスポンスメッセージにおけるデータは、1入力アドレス当り16ビットのデータです。(表11)のクェーリに対するレスポンス例を(表12)に示します。

・スレーブからの応答メッセージ例(表 12)

	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" • "	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x04	"0", "4"	0x04
データバイト数	0x06	"0", "6"	0x06
データ1 (上位)	0x03	"0", "3"	0x03
データ1 (下位)	0xE8	"E", "8"	0xE8
データ2 (上位)	0x01	"0","1"	0x01
データ2 (下位)	0xF4	"F", "4"	0xF4
データ3 (上位)	0x00	"0", "0"	0x00
データ3 (下位)	0x0A	"0", "A"	0x0A
エラーチェック		LRC (2 文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	23	11

3、5 Force Single Coil (05)

●機能

スレーブの DO (Discrete Output) の状態を ON / OFF のいずれかに変更 (書込み) します。ブロードキャストの場合には、全スレーブの同じアドレスのコイルを書換えます。

アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、コイルのアドレスと変更したいステータスを指定します。変更したいステータス (ON/OFF) は、クェーリのデータエリアで指定します。0xFF、0x00は ONのリクエストで、0x00、0x00 は OFFのリクエストです。それ以外のデータは不正データで、変更動作は行われません。(表 13) に、スレーブデバイス 3 のコイル 150 番地を ONにする例を示します。開始アドレスの値が、1 少ない 149 (0x95) になっていることに注意して下さい。

・Force Single Coil のクェーリメッセージ例(表 13)

7 . u l'A	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		,	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x05	"0", "5"	0x05
開始アドレス(上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0x95	"9", "5"	0x95
変更データ (上位)	0xFF	"F", "F"	0xFF
変更データ(下位)	0x00	"0", "0"	0x00
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

正常に変更された場合の正常メッセージは、クェーリと同じになります。(表 14) に、(表 13) に対する正常応答メッセージを示します。

・スレーブからの正常応答メッセージ例(表 14)

コ	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x05	"0", "5"	0x05
アドレス (上位)	0x00	"0", "0"	0x00
アドレス (下位)	0x95	"9", "5"	0x95
変更データ (上位)	0xFF	"F", "F"	0xFF
変更データ(下位)	0x00	"0", "0"	0x00
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3、6 Preset Single Register (06)

●機能

スレーブの保持レジスタの内容を変更(書込み)します。ブロードキャストの場合には、全スレーブ の同じアドレスの保持レジスタの内容が変更されます。

保持レジスタのアドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、保持レジスタのアドレスと変更したいデータを指定します。変更したいデータは、クェーリのデータエリアで16ビットのデータとして指定します。(表 15)に、スレーブデバイス3の保持レジスタ40150番地を1000にする例を示します。アドレスの値が、1少ない149(0x95)になっていることに注意して下さい。

・Preset Single Register のクェーリメッセージ例(表 15)

コ , エド 々	例	ASCII モード	RTUモード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x06	"0", "6"	0x06
アドレス(上位)	0x00	"0", "0"	0x00
アドレス (下位)	0x95	"9", "5"	0x95
変更データ (上位)	0x03	"0", "3"	0x03
変更データ(下位)	0xE8	"E", "8"	0xE8
エラーチェック		LRC(2文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

正常に変更された場合の正常メッセージは、クェーリと同じになります。(表 16) に、(表 15) に対する正常応答メッセージを示します。

・スレーブからの正常応答メッセージ例(表 16)

	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · "·	なし
スレーブアドレス	0x03	"0", "3"	0x03
ファンクションコード	0x06	"0","6"	0x06
アドレス(上位)	0x00	"0", "0"	0x00
アドレス(下位)	0x95	"9", "5"	0x95
変更データ (上位)	0x03	"0", "3"	0x03
変更データ(下位)	0xE8	"E", "8"	0xE8
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3, 7 Diagnostics (08)

●機能

マスターとスレーブ間の通信の診断やスレーブの機器の診断ファンクションです。ブロードキャストは、ありません。診断のタイプを定義する為に、クェーリの中に2バイトの診断サブコードフィールドがあります。スレーブからの正常なレスポンスには、ファンクションコードと共にこのサブコードもエコーバックします。また、クェーリにはスレーブのコントロールや診断の為のデータを渡す為に、2バイトのデータがあります。

診断サブファンクションとその内容については、「4、診断 (0x08)」の項をご参照下さい。

●クェーリ

(表 17) は、スレーブデバイス 5 とのクェーリのリードバック診断の例です。リードバック診断のサブコードは、0 (0x0000) です。

・Diagnostics のクェーリメッセージ例(表 17)

¬ , , , , , , , , , , , , , , , , , , ,	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"·"·	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x08	"0", "8"	0x08
診断サブコード (上位)	0x00	"0", "0"	0x00
診断サブコード (下位)	0x00	"0", "0"	0x00
データ (上位)	0x03	"0", "3"	0x03
データ (下位)	0xE8	"E", "8"	0xE8
エラーチェック		LRC (2 文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

●レスポンス

(表17)のリードバック診断の正常レスポンスは、クェーリと同じになります。

・スレーブからの正常応答メッセージ例(表 18)

コ . エド 右	例	ASCII モード	RTUモード
フィールド名	(Hex)	文字列	8- ビット (Hex)
ヘッダー		" • "	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x08	"0", "8"	0x08
診断サブコード (上位)	0x00	"0","0"	0x00
診断サブコード (下位)	0x00	"0","0"	0x00
データ (上位)	0x03	"0","3"	0x03
データ (下位)	0xE8	"E", "8"	0xE8
エラーチェック		LRC (2 文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3、8 Fetch Communication Event Counter (11, 0x0B)

●機能

スレーブの通信イベントカウンタからステータスワードとイベントカウンタを読出します。メッセージ通信の前後でこのカウンタを読むことで、マスタはスレーブが正しくメッセージを処理しているかが分かります。ブロードキャストはありません。

コントローラはメッセージを正しく処理した場合、イベントをカウントアップします。例外レスポンス、ポールコマンドおよび本コマンドの場合にはカウントアップしません。イベントカウンタは診断ファンクションのサブコード Restart Communication Option(コード 0x0001)と、Clear Counters and Diagnostic Register(0x000A)でリセットされます。

●クェーリ

(表 19) は、スレーブデバイス 5への Fetch Communication Event Counter の例です。

・Fetch Communication Event Counter のクェーリ(表 19)

→	例	ASCII ₹-ド	RTUモード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0","5"	0x05
ファンクションコード	0x0B	"0"," B"	0x0B
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	9	4

●レスポンス

Fetch Communication Event Counter の正常レスポンスは、2バイトのステータスワードと2バイトのイベントカウンタが含まれます。(表 20) に、(表 19) に対する応答メッセージの例を示します。

・スレーブからの正常応答メッセージ例(表20)

			T
フィールド名	例	ASCII モード	RTU モード
フィールト石	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · "·	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x0B	"0", "B"	0x0B
ステータス (上位)	0x00	"0", "0"	0x00
ステータス (下位)	0x00	"0", "0"	0x00
イベントカウンタ(上位)	0x03	"0","3"	0x03
イベントカウンタ(下位)	0xE8	"E", "8"	0xE8
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3、9 Fetch Communication Event Log (12, 0x0C)

●機能

スレーブの通信イベントログ(ステータスワード、イベントカウンタ、メッセージカウントおよびイベント)を読出します。ブロードキャストはありません。

メッセージカウンタはパワーアップ、リスタート、カウンターリセット以降、スレーブが発行したメッセージをカウントアップします。

メッセージカウンタは診断ファンクションのサブコードRestart Communication Option (コード0x0001) と、Clear Counters and Diagnostic Register (0x000A) でリセットされます。

●クェーリ

(表 21) は、スレーブデバイス 5への Fetch Communication Event Log の例です。

・Fetch Communication Event Log のクェーリ(表 21)

→	例	ASCII ₹-ド	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x0C	"0", "C"	0x0C
エラーチェック		LRC (2 文字)	CRC (16ビット)
トレーラー		CR / LF	なし
	合計バイト数	9	4

●レスポンス

Fetch Communication Event Log の正常レスポンスは、2バイトのステータスワード、2バイトのイベントカウンタ、2バイトのメッセージカウンタおよび0から64バイトのイベントからなります。可変長のデータなのでデータ数を示すバイトカウントが含まれます。(表22) に、(表21) に対する応答メッセージの例を示します。

・スレーブからの正常応答メッセージ例(表 22)

フィールドク	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x0C	"0", "C"	0x0C
バイトカウント	0x08	"0", "8"	0x08
ステータス (上位)	0x00	"0", "0"	0x00
ステータス (下位)	0x00	"0","0"	0x00
イベントカウンタ(上位)	0x01	"0","1"	0x01
イベントカウンタ(下位)	0xE8	"E", "8"	0xE8
メッセージカウンタ(上位)	0x01	"0","1"	0x01
メッセージカウンタ(下位)	0xF6	"F", "6"	0xF6
イベント0	0x20	"2", "0"	0x20
イベント1	0x00	"0","0"	0x00
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	25	12

3、10 Force Multiple Coils (15, 0x0F)

●機能

スレーブの連続した複数の DO (Discrete Output) の状態を、ON / OFF のいずれかに変更(書込み) します。ブロードキャストの場合には、全スレーブの同じアドレスのコイルを書換えます。 アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、コイルの先頭アドレスと変更したいステータスを指定します。変更したいステータス (ON / OFF) は、クェーリのデータエリアで指定します。コイルの ON / OFF とデータエリアのデータ構成は Read Coil Status をご参照下さい。(表 23)ではスレーブデバイス 5 のコイル 20 番地から 30 番地を、以下のようにセットする場合の例を示します。

ビット 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 コイル 27 26 25 24 23 22 21 20 ・・・・・・・・・ 30 29 28 開始アドレスの値が、1少ない19 (0x13) になっていることに注意して下さい。

・Force Multiple Coils のクェーリメッセージ例(表 23)

7. 11.15	例	ASCII モード	RTUモード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x0F	"0", "F"	0x0F
開始アドレス(上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0x13	"1", "3"	0x13
レジスターの数(上位)	0x00	"0", "0"	0x00
レジスターの数(下位)	0x0B	"0", "B"	0x0B
バイト数	0x02	"0","2"	0x02
変更データ(上位)	0xD1	"D","1"	0xD1
変更データ (下位)	0x05	"0", "5"	0x05
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	23	11

●レスポンス

正常に変更された場合の正常メッセージは、クェーリの中のバイト数とデータエリアを除いた部分のコピーをレスポンスします。(表 24)に、(表 23)に対する正常応答メッセージを示します。

・スレーブからの正常応答メッセージ例(表24)

フィールド名	例	ASCII モード	RTU モード
フィールト石	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x0F	"0", "F"	0x0F
開始アドレス(上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0x13	"1", "3"	0x13
レジスターの数(上位)	0x00	"0", "0"	0x00
レジスターの数(下位)	0x0B	"0", "B"	0x0B
エラーチェック		LRC(2文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3、11 Preset Multiple Registers (16, 0x10)

●機能

スレーブの連続した複数の保持レジスタの内容を変更(書込み)します。ブロードキャストの場合には、全スレーブの同じアドレスの保持レジスタの内容を書換えます。

アドレスとその内容については、各スレーブデバイスの仕様書をご参照下さい。

●クェーリ

クェーリメッセージでは、保持レジスタの内容の先頭アドレスと変更したいデータを指定します。変更したいデータは、クェーリのデータエリアで指定します。(表 25)ではスレーブデバイス5の保持レジスタ 40020 番地から 40022 番地を以下のようにセットする場合の例を示します。

40020 番地データ0x016440021 番地データ0x016540022 番地データ0x0166

開始アドレスの値が、40001少ない19 (0x13) になっていることに注意して下さい。

・Preset Multiple Registers のクェーリメッセージ例(表 25)

コノルビタ	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x10	"1", "0"	0x10
開始アドレス(上位)	0x00	"0", "0"	0x00
開始アドレス(下位)	0x13	"1", "3"	0x13
レジスターの数(上位)	0x00	"0", "0"	0x00
レジスターの数(下位)	0x03	"0", "3"	0x03
バイト数	0x06	"0", "6"	0x06
変更データ1 (上位)	0x01	"0","1"	0x01
変更データ1 (下位)	0x64	"6", "4"	0x64
変更データ2(上位)	0x01	"0","1"	0x01
変更データ2(下位)	0x65	"6", "5"	0x65
変更データ3 (上位)	0x01	"0","1"	0x01
変更データ3(下位)	0x66	"6", "6"	0x66
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	31	15

●レスポンス

正常に変更された場合の正常メッセージは、クェーリの中のバイト数とデータエリアを除いた部分のコピーをレスポンスします。(表 26)に、(表 25)に対する正常応答メッセージを示します。

・スレーブからの正常応答メッセージ例(表 26)

7 . II ! A	例	ASCII ₹-ド	RTU モード
フィールド名	(Hex)	文字列	8- ビット (Hex)
ヘッダー		"•"	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x10	"1", "0"	0x10
開始アドレス(上位)	0x00	"0","0"	0x00
開始アドレス(下位)	0x13	"1", "3"	0x13
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x03	"0", "3"	0x03
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

3、12 Report Slave ID (17, 0x11)

●機能

スレーブのコントローラタイプや動作モードなどスレーブの情報を読出します。ブロードキャストはありません。

レスポンスメッセージの構成はデバイスによって異なります。

●クェーリ

(表 27) は、スレーブデバイス 5への Report Slave ID の例です。

・Report Slave ID のクェーリメッセージ例(表 27)

7 , 11 154	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー			なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x11	"1", "1"	0x11
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	9	4

●レスポンス

Report Slave IDの一般的なレスポンスは、スレーブID、RUNインディケータおよびデバイス依存の付加情報から構成されます。(表 28) に、応答メッセージの一般的な構成例を示します。

・スレーブからの正常応答メッセージ構成例 (表 28)

	例	ASCII モード	RTUモード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · ''	なし
スレーブアドレス	0x05	"0", "5"	0x05
ファンクションコード	0x11	"1" , "1"	0x11
バイトカウント	デバイス依存	デバイス依存	デバイス依存
スレーブID	デバイス依存	デバイス依存	デバイス依存
RUN インディケータ	0xFF	"F", "F"	0xFF
付加情報1	デバイス依存	デバイス依存	デバイス依存
	デバイス依存	デバイス依存	デバイス依存
エラーチェック		LRC(2 文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	デバイス依存	デバイス依存

4、診断 (0x08)

診断サブコードと診断内容は以下の通りです。

4、1 Return Query Data (00)

診断内容	クェーリのデータフィールドで渡されたデータをレスポンスする
サブコード	0x00, 0x00
クェーリのデータフィールド	任意の 16 ビットデータ
レスポンスのデータフィールド	クェーリデータのエコー

4、2 Restart Communications Option (01)

診断内容	通信ポートを初期化し、コミュニケーションイベントカウンタをク	
	リアする。レスポンスは初期化	の前に行う。Listen Only Modeの
	ときも動作するが、レスポンス	は返さない。
サブコード	0x00, 0x01	
クェーリのデータフィールド	0x00, 0x00	イベントログは残す
	0xFF, 0x00	イベントログもクリアする
レスポンスのデータフィールド	クェーリデータのエコー	

4、3 Return Diagnostics Register (02)

診断内容	16 ビットの診断レジスタの内容を返す。
サブコード	0x00, 0x02
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	診断レジスタの内容

4、4 Force Listen Only Mode (04)

診断内容	スレーブを受信オンリーモードにする。
	全てのメッセージを無視し、アクションやレスポンスを行わない。
	ただし、診断サブコード1のみは、受付け、通信を初期化し再スタ
	ートし、受信オンリーモードを解除する。
サブコード	0x00, 0x04
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	レスポンスを返さない。

4、5 Clear Counters and Diagnostic Register (10, 0x0A)

診断内容	全てのカウンタと診断レジスタをクリアします。
サブコード	0x00, 0x0A
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	クェーリのエコーを返す。

4、6 Return Bus Message Count (11, 0x0B)

診断内容	スレーブが検知したメッセージの合計を読出す。
サブコード	0x00, 0x0B
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	メッセージの合計

4、7 Return Bus Communication Error Count (12, 0x0C)

診断内容	スレーブが検知した CRC エラーの合計を読出す。
サブコード	0x00, 0x0C
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	CRC エラーの合計

4、8 Return Bus Exception Error Count (13, 0x0D)

診断内容	スレーブが発行した例外レスポンスの合計を読出す。
サブコード	0x00, 0x0D
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	例外レスポンスの合計

4、9 Return Slave Message Count (14, 0x0E)

診断内容	当該スレーブ向けの受信メッセージの合計を読出す。
サブコード	0x00, 0x0E
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	スレーブ・受信メッセージの合計

Modbus

4、10 Return Slave No Response Count (15, 0x0F)

診断内容	当該スレーブ向けのメッセージで、レスポンスメッセージを返さな
	かったメッセージの合計を読出す。
サブコード	0x00, 0x0F
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	無応答メッセージの合計

4、11 Return Slave Busy Count (17, 0x11)

診断内容	スレーブが発行したスレーブ・ビジー・例外レスポンスの合計を読
	出す。
サブコード	0x00, 0x11
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	スレーブ・ビジー・例外レスポンスの合計

4、12 Return Bus Character Overrun Count (18, 0x12)

診断内容	当該スレーブ向けのメッセージで、キャラクタ・オーバーランのエ
	ラーを検出した、キャラクタ・オーバーラン・カウンタ値を読出す。
サブコード	0x00, 0x12
クェーリのデータフィールド	0x00, 0x00
レスポンスのデータフィールド	キャラクタ・オーバーラン・カウンタ値

5、例外レスポンス(Exception Response)

ブロードキャスト・メッセージ以外のクェーリの場合、マスターは正常なレスポンスを期待してクェーリを発行します。それに対して、スレーブはレスポンスを返さなければなりません。正常な場合には、正常レスポンスを返しますが、以下のような異常が発生した場合、例外レスポンス(Exception Response)を返します。

クェーリに対するスレーブの応答の方法には、以下の4種類があります。

- ・正常にクェーリを受信し、正常に処理を行い、正常レスポンスを返します。
- ・通信エラー等により、スレーブはクェーリを受信することができなく、無応答になります。マスター はタイムアウトエラーになります。
- ・スレーブはクェーリを受信することができたが、パリティ、CRCおよびLRCエラーを検出し、正しい クェーリではない。この場合にはスレーブは、無応答になります。従って、マスタ側はタイムアウト になります。
- ・スレーブは、エラーもなく正しいクェーリを受信できたが、何らかの理由(例えば、当該レジスタは 存在しないなど)で、処理できない。この場合には、例外の内容を示す例外コード(Exception Code) をつけて例外レスポンスを返します。

例外レスポンスは、スレーブアドレス、ファンクションコードおよびデータ・フィールドより構成されています。スレーブアドレス・フィールドには、正常レスポンスと同じように、スレーブのアドレスをセットします。ファンクションコード・フィールドには、クェーリのファンクションコードをセットし更に、そのMSBを1にします。これによりマスターは、正常レスポンスではなく例外レスポンスであることを検知できます。データフィールドには、例外の内容を示す例外コードがセットされます。(表29) にクェーリと対応する例外レスポンスの例を示します。

● Read Input Register のクェーリメッセージ例(表 29)

→	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · "	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x04	"0", "4"	0x04
開始アドレス(上位)	0x01	"0","1"	0x01
開始アドレス(下位)	0x2C	"2", "C"	0x2C
レジスターの数(上位)	0x00	"0","0"	0x00
レジスターの数(下位)	0x03	"0","3"	0x03
エラーチェック		LRC (2 文字)	CRC(16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	17	8

入力レジスタ30301が存在しない場合、(表30)の例外レスポンスが返されます。

●スレーブからの例外レスポンス例(表30)

コノ エドタ	例	ASCII モード	RTU モード
フィールド名	(Hex)	文字列	8- ビット(Hex)
ヘッダー		" · "·	なし
スレーブアドレス	0x07	"0", "7"	0x07
ファンクションコード	0x84	"8","4"	0x84
例外コード	0x02	"0","2"	0x02
エラーチェック		LRC(2文字)	CRC (16 ビット)
トレーラー		CR / LF	なし
	合計バイト数	11	5

Modbus

例外コードとその発生要因を以下の表に示します。

例外コード	名 称	意味
01	不正ファンクション	スレーブは当該ファンクションをサポートしていない。
02	不正データアドレス	指定されたデータアドレスは、スレーブには存在しない。
03	不正データ	指定されたデータは、許されない。

補 足1 Modbus 通信機能

以下に、機器のModbus通信機能を抜粋して掲載します。掲載していないその他の機器については、各機器の仕様書をご参照下さい。

1、R1M シリーズの Modbus 通信機能

R1Mシリーズでは、伝送モードとしてRTUのみをサポートしており、ASCIIモードはサポートしていません。

1、1 ファンクション・コード

(表 31) に R1M シリーズでサポートするファンクション・コードを示します。

●ファンクションコード一覧表(表31)

ファンクション名	機 能		
(仕様書 PI-MBUS-300 より)	(成) 用E		
Read Coil Status	コイル、DO の読出し		
Read Input Status	入力ステータス、DIの読出し		
Read Holding Register	保持レジスタの読出し		
Read Input Register	入力レジスタの読出し		
Force Single Coil	コイル、DOへの1点書込み		
Preset Single Register	保持レジスタへの書込み		
Force Multiple Coils	複数コイル、DO への一括書込み		
Force Multiple Registers	複数保持レジスタへの一括書込み		
	(仕様書 PI-MBUS-300 より) Read Coil Status Read Input Status Read Holding Register Read Input Register Force Single Coil Preset Single Register Force Multiple Coils		

1、2 データアドレス

	マドレフ	タイプ		データ	データ名称		
	アドレス	GH2	J3	A1	D1	形式	ナーダ名称
コイル	1 - 32				0		DO
(0X)	33 - 48	0					冷接点温度補償 SW
入力 ステータス	1 - 32	0	0	0			DI
(1X)	33 - 48	\bigcirc	0				ADC レンジオーバー
	1-16	0				I	アナログ入力%値
	17 - 48	\circ	0			F	チャンネル毎アナログ入力値 (工業単位値)
	49 - 50	0				F	冷接点温度值
入力	81 - 96	\bigcirc	0			I	チャンネル・ステータス
レジスタ	513	0	0	0	0	I	システム・ステータス
(3X)	514 - 521	\bigcirc	0		0	B16	形式
	522 - 529	\bigcirc	0	\circ	0	B16	機番
	530 - 537	\bigcirc	\circ	\circ	0	B16	ハードウェア・バージョン番号
	538 - 545	\bigcirc	0	\circ	0	B16	ファームウェア・バージョン番号
保持	1 - 16					I	(予備:アナログ出力%値)
	17 - 48					F	(予備:アナログ出力工業単位値)
レジスタ	145 - 160	\bigcirc	0			I	入出力タイプ番号
(4X)	161 - 176	0				I	バーンアウトタイプ

(注) I:16ビット長整数、F:32ビット長実数、B16:16バイト長文字列

1、3 入力データ

・32ビット長実数

・32ビット長整数 符号なし (R1M-A1のみ)

1、4 コイル (DO) データ詳細

(1) DO $(1 \sim 32)$

32点のDO (Discrete Output) です。D1タイプのみ有効です。

(2) 冷接点温度補償 SW (33~48)

冷接点温度補償を行うか否かの指示ビットです。1の場合温度補償動作を行います。また、入力タイプが熱電対の場合のみ有効です。

1、5 入力ステータス(DI) データ詳細

(1) DI $(10001 \sim 10032)$

32点のDI (Discrete Input) です。A1、GH2 およびJ3 のとき有効です。GH2、J3 の場合アドレス 10001 のみが有効で、内容はトリガー SW 入力です。

(2) ADC レンジオーバー (10033 ~ 10048)

アナログ入力が ADC のレンジオーバー(0x0000 または 0xFFFF)になっていることを示します。 GH2、J3 のとき有効です。

1、6 入力レジスタデータ詳細

(1) アナログ入力%値(30001~30016)

各入力チャンネル (1~16) のアナログ入力値です。

入力の種類	対応するA/D値(10進)
± 20 V	± 20000
± 5 V	± 5000
± 1 V	± 10000
± 0.8 V	±8000
± 0.2 V	± 20000
± 50 mV	± 5000
± 10 mV	±10000
熱電対入力	検出温度の 10 倍の値

(2) アナログ入力工業単位値(30017~30048)

各入力チャンネル (1~16) のアナログ入力値です。値は工業単位量でその単位は入力のタイプで決定されます。温度の場合には \mathbb{C} 、電圧の場合には \mathbb{V} 、およびポテンショメータの場合には%値になります。データ形式は32 ビット長の実数で表現されます。従って、入力レジスタは各モジュールに対して連続した2個を使用します。

(3) 冷接点温度 (30049 から 30050)

冷接点の現在の温度(\mathbb{C})を示します。GH2のみ有効です。データ形式は32 ビット長実数です。

(4) チャンネル・ステータス (30081~30096)

アナログ入力チャンネル(GH2の場合 $1 \sim 16$ 、J3の場合 $1 \sim 8$)の状態を示します。各ビットの構成と意味は以下の通りです。

ビット番号	内 容	詳細
6	入力レンジオーバー	入力がレンジオーバーしているか否かを示します。 以下の状態を検知するとレンジオーバーとなります。 ・ADC 入力値が 0x0000 または 0xFFFF ・熱電対の場合バーンアウトを検出 ・熱電対および測温抵抗値の場合 温度変換テーブルの範囲外になっている。 ・ADC 異常 0:正常 1:レンジオーバー
7	ADC エラー	ADC の状態を示します。 0:正常 1:異常
12	冷接点温度補償 SW	熱電対の場合の冷接点温度補償状態を示します。 0:補償なし 1:補償あり
上記以外	予備	システム使用

(5) システム・ステータス (30513)

R1Mシリーズのステータスを、16ビット長整数で示します。各ビットの構成と意味は以下の通りです。

ビット番号	内 容	詳細
0~3	予備	システム使用
4	予備	システム使用
5	予備	システム使用
6	E ² PROM 診断	モジュールの E²PROM サムチェック診断結果を示します。0:正常1:サムチェックエラーです。
7	ADC エラー	ADC の状態を示します。 0:正常 1:異常
8 ~ 15	予備	システム使用

(6) 形式 (30514~30521)

R1Mシリーズの形式を、16バイト長の文字列で示します。

(7) 機番(30522~30529)

R1Mシリーズの機番(シリアル番号)を、16バイト長の文字列で示します。

(8) ハードウェア・バージョン番号(30530~30537)

R1Mシリーズのハードウェア・バージョン番号を、16バイト長の文字列で示します。

(9) ファームウェア・バージョン番号 (30538~30545)

R1Mシリーズのファームウェア・バージョン番号を、16バイト長の文字列で示します。

1、7 保持レジスタ・データ詳細

(1) アナログ出力%値(40001~40016) 各出力チャンネル(1~16)のアナログ出力%値です。将来の予備です。

(2) アナログ出力工業単位値(40017~40048)

各出力チャンネル($1 \sim 16$)のアナログ出力値です。値は工業単位量でその単位は出力のタイプで決定されます。データ形式は32ビット長の実数で表現されます。従って、保持レジスタは各チャンネルに対して連続した2個を使用します。将来の予備です。

(3) 入出力タイプ番号(40145~40160)

各入力チャンネル(1~16)の入出力タイプ番号です。入出力タイプ番号を 16 ビット整数で示します。

<u> </u>		入出力	1 +1		
形 式 .	入出力タイプ	タイプ	入力レンジ	測定可能レンジ	備考
		番号	名		
R1M – GH2	DC入力	0x00	-20 to 20 V	-22.7 to 22.7 V	ATT SW ON
		0x01	-5 to 5 V	-5.6 to 5.6 V	ATT SW ON
		0x02	-1 to 1 V	-1.4 to 1.4 V	ATT SW ON
		0x03	-800 to 800 mV	-860 to 860 mV	
		0x04	-200 to 200 mV	-215 to 215 mV	
		0x05	-50 to 50 mV	-53 to 53 mV	
		0x06	-10 to 10 mV	-13.4 to 13.4 mV	
	熱電対入力	0x10	(PR)	0 to 1760 ℃	
		0x11	K (CA)	-270 to 1370 °C	
		0x12	E (CRC)	-270 to 1000 °C	
		0x13	J (IC)	-210 to 1200 ℃	
		0x14	T (CC)	-270 to 400 ℃	
		0x15	B (RH)	100 to 1820 ℃	
		0x16	R	-50 to 1760 ℃	
		0x17	S	-50 to 1760 ℃	
		0x18	C (WRe 5-26)	0 to 2320 ℃	
		0x19	N	-270 to 1300 ℃	
		0x1A	U	-200 to 600 ℃	
		0x1B	L	-200 to 900 ℃	
		0x1C	P (Platinel2)	0 to 1395 ℃	
R1M – J3	測温抵抗体入力	0x30	JPt 100 (JIS '89)	-200 to 500 ℃	
		0x31	Pt 100 (JIS '89)	-200 to 660 ℃	
		0x32	Pt 100 (JIS '97)	-200 to 850 ℃	
		0x33	Pt 50 (JIS '81)	-200 to 649 ℃	
		0x34	Ni 508.4	-50 to 280 ℃	
		0x35	Pt 1000	-200 to 850 ℃	
	ポテンショメータ	0x40	0 to 100 ohm	0 to 100 %	
		0x41	0 to 500 ohm	0 to 100 %	
		0x42	0 to 1 Kohm	0 to 100 %	
		0x43	0 to 10 Kohm	0 to 100 %	
R1M – D1	DO	0x60			
R1M – A1	DI	0x70			

(4) バーンアウトタイプ (40161 ~ 40176)

バーンアウト検出時のバーンアウト動作タイプを指定します。熱電対入力のみ有効です。

0:無指定

1: Up Scale

2: Down Scale

2、R2M シリーズの Modbus 通信機能

2、1 通信パラメータ

(表 32) に R2M シリーズがサポートする通信パラメータを示します。

●通信パラメータ(表32)

通信パラメータ	仕様	工場出荷時設定	設定方法	
伝送モード	RTU	RTU	変更不可	
伝送速度	9600 / 19200 / 38400 bps	38400 bps	R2CONによるソフト設定	
パリティ	None / ODD / EVEN	ODD	R2CONによるソフト設定	
ビット長	8	8	変更不可	
ストップビット	1	1	変更不可	
ノードアドレス	1 - 247	1	1-15まではハードウェアのロータリ SW。 $16-247$ までは $R2CON$ によるソフト設定(このときロータリ SW は 0 にする)	
浮動小数点データの順序	Normal / Swapped	Normal	R2CON によるソフト設定	
接続	RS-232-C	RS-232-C	変更不可	

2、2 ファンクション・コード

(表 33) に R2M シリーズがサポートするファンクション・コードを示します。

●ファンクションコード一覧表(表33)

コード	ファンクション名	機能
7-7	(仕様書 PI-MBUS-300 より)	機 能
01 (0x01)	Read Coil Status	コイル、DOの読出し
02 (0x02)	Read Input Status	入力ステータス、DIの読出し
03 (0x03)	Read Holding Register	保持レジスタの読出し
04 (0x04)	Read Input Register	入力レジスタの読出し
05 (0x05)	Force Single Coil	コイル、DOへの1点書込み
06 (0x06)	Preset Single Register	保持レジスタへの書込み
15 (0x0F)	Force Multiple Coils	複数コイル、DO への一括書込み
16 (0x10)	Force Multiple Registers	複数保持レジスタへの一括書込み

2、3 データアドレス

	アドレス	データ形式	データ名称	
コイル (0X)	1 - 32		DO	
3110 (0A)	33 - 40		冷接点温度補償 SW	
入力	1 - 32		DI	
ステータス(1X)	33 - 40		ADC レンジオーバー	
	17 - 32	F	アナログ入力値(工業単位値)	
	49 - 50	F	冷接点温度值	
入力	81 - 96	I	アナログ入力チャンネル・ステータス	
- 人刀 レジスタ	513	I	システム・ステータス	
(3X)	514 - 521	B16	形式	
(3Λ)	522 - 529	I	機番	
	530 - 537	I	ハードウェア・バージョン番号	
	538 - 545	B16	ソフトウェア・バージョン番号	
保持	49 - 50	F	入力フィルタリング時定数	
レジスタ	145 - 152	I	入力タイプ番号	
(4X)	514	I	バーンアウトタイプ	

(注) I:16ビット長整数、F:32ビット長浮動小数点データ、Bn:nバイト長文字列

2、4 入力データ

・32ビット長実数

2、5 コイル (DO) データ詳細

(1) DO $(1 \sim 32)$

32点のDO (Discrete Output) です。アドレス1はアラーム出力で、その他は予備です。

(2) 冷接点温度補償 SW (33~40)

各入力チャンネル $(1 \sim 8)$ の冷接点温度補償を行うか否かのスイッチで、熱電対入力時の場合のみ有効です。ON (1) の場合、冷接点温度補償動作を行います。

2、6 入力ステータス(DI)データ詳細

(1) DI $(10001 \sim 10032)$

32点のDI (Discrete Input) 入力用です。アドレス 10001 はトリガー入力で、その他は予備です。

(2) ADC レンジオーバー (10033 ~ 10040)

この値が ON の場合には、各入力チャンネル($1 \sim 8$)の ADC 入力値がレンジオーバー(0x0000 または 0xFFFF)になっていることを示します。

2、7 入力レジスタデータ詳細

(1) アナログ入力工業単位値(30017~30032)

各入力チャンネル $(1 \sim 8)$ のアナログ入力工業単位値です。データ形式は 32 ビット長の浮動小数点です。従って、連続した 2 個の入力レジスタが使用されます。値の単位は、入力のタイプで決定されます。入力タイプが熱電対の場合には温度 \mathbb{C} です。DC入力の場合は電圧 V です。

(2) 冷接点温度值(30049~30050)

冷接点の温度です。データ形式は32ビット長の浮動小数点です。値の単位は温度℃です。入力タイプが熱電対のときのみ有効です。

(3) チャンネル・ステータス (30081~30088)

各アナログ入力チャンネル (1~8) の状態を示します。各ビットの構成と内容は以下の通りです。

ビット番号	内 容	詳細
6	入力レンジオーバー	入力がレンジオーバーしているか否かを示します。 以下の状態を検知するとレンジオーバーとなります。 ・ADC 入力値が 0x0000 または 0xFFFF ・熱電対の場合バーンアウトを検出 ・熱電対および測温抵抗値の場合 温度変換テーブルの範囲外になっている。 ・ADC 異常 0:正常 1:レンジオーバー
7	ADC エラー 冷接点温度補償 SW	ADCの状態を示します。 0:正常 1:異常 熱電対の場合の冷接点温度補償状態を示します。 0:補償なし
		1:補償あり
上記以外	予備	システム使用

(4) システム・ステータス (30513)

R2M シリーズのステータスを、16 ビット長整数で示します。各ビットの構成と意味は以下の通りです。

ビット番号	内 容	詳細
0~3	予備	システム使用
4	予備	システム使用
5	予備	システム使用
6	E ² PROM 診断	モジュールの E²PROM サムチェック診断結果を示します。0:正常1:サムチェックエラーです。
7	ADC エラー	ADC の状態を示します。 0:正常 1:異常
8~15	予備	システム使用

- (5) 形式 (30514~30521) R2M シリーズの形式を、16 バイト長の文字列で示します。
- (6) 機番(30522~30529) R2Mシリーズの機番(シリアル番号)を、16バイト長の文字列で示します。
- (7) ハードウェア・バージョン番号(30530~30537)R2M シリーズのハードウェア・バージョン番号を、16 バイト長の文字列で示します。
- (8) ソフトウェア・バージョン番号(30538 \sim 30545) R2M シリーズのソフトウェア・バージョン番号を、16 バイト長の文字列で示します。

2、8 保持レジスタ・データ詳細

(1) 入力フィルタリング時定数(40049~40050)

入力信号のフィルタリング1です。データ形式は32ビット長の浮動小数点です。値の単位は秒です。入力信号にノイズが大きい場合に有効です。0秒の場合には、フィルタリング動作を行いません。全て入力チャンネル $(1 \sim 8)$ に対して共通です。

(2) 入出力タイプ番号(40145~40152)

各入力チャンネル (1~8) の入力タイプ番号です。入力タイプ番号を16ビット整数で示します。入力タイプ番号と入力タイプを (表34) に示します。表中、測定可能レンジは参考のため記載したもので、仕様を示したものではありません。仕様については各仕様書を参照して下さい。

●入力タイプと入力タイプ番号(表34)

形 式	入出力タイプ	入出力 タイプ 番 号	入力レンジ 名 称	測定可能レンジ	備考
R2M - 2G3	DC 入力	0	-10 to 10 V	-10 to 10 V	
R2M – 2H3	熱電対入力	16	(PR)	0 to 1760 ℃	
		17	K (CA)	-270 to 1370 ℃	
		18	E (CRC)	-270 to 1000 ℃	
		19	J (IC)	-210 to 1200 ℃	
		20	T (CC)	-270 to 400 ℃	
		21	B (RH)	100 to 1820 ℃	
		22	R	-50 to 1760 ℃	
		23	S	-50 to 1760 ℃	
		24	C (WRe 5-26)	0 to 2320 ℃	
		25	N	-270 to 1300 ℃	
		26	U	-200 to 600 ℃	
		27	L	-200 to 900 ℃	
		28	P (Platinel 2)	0 to 1395 ℃	

(3) バーンアウトタイプ (40514)

信号入力のバーンアウト検出時のバーンアウト動作タイプを指定します。

0:バーンアウト検出なし

1: Up Scale

2: Down Scale

補 足2 Modbus / TCP プロトコル

以下に、Modbus / TCP プロトコル仕様の概要を掲載します。Modbus / TCP の仕様は、Web 上で「OPEN Modbus / TCP SPECIFICATION」として公表されています。詳細は原文を参照下さい。

1、はじめに

Modbus / TCP は、業界標準となっている Modbus プロトコルを TCP / IP に拡張したプロトコルです。TCP / IP を使用していますのでインターネット環境でもメッセージのやり取りが可能になります。 Modbus / TCPでは、クライアント・サーバモデルで通信を行なうことになります。クライアントは従来の Modbus プロトコルでのマスターに相当し、サーバはスレーブに対応します。TCP / IP プロトコルを基本にしていますので、複数クライアント、複数サーバのサポートが可能になります。即ちマルチマスター、マルチスレーブのシステム構成が可能になります。

TCP 経由で Modbus / TCP 通信を行なう場合には、登録されたポート番号 502 を用います。

2、プロトコルのレイアウト

以下にModbus リクエストまたはレスポンスがModbus / TCPネットワーク上で通信されるときのカプセル化の一般的な形式を記載します。Modbus / TCP通信データ上のファンクションコードからデータ部分の終わりまでのリクエストとレスポンス本体の構造が、以下のModbus体系で、完全に同一レイアウトと同一の意味を持ちます。

Modbus serial port — ASCII encoding

Modbus serial port — RTU (binary) encoding

アドレスの解釈については相違がありますので注意が必要です。

Modbusのスレーブアドレス・フィールドは、1バイト長のユニット識別子に置換えられます。ユニット識別子はブリッジやゲートウェイ (例えば、72EM) のようなデバイスと通信する場合に用いられ、同一IPアドレス上の複数の独立した終端ユニットを指定するのに使います。単一ユニットの場合には、IPアドレスがユニットを指定しますのでスレーブアドレス・フィールドは意味を持ちません。

Modbus / TCP プロトコルのリクエストとレスポンスには、次のような6バイト情報を前に付けます。

byte 0:トランザクション識別子ーサーバはコピーするのみー通常 0

byte 1:トランザクション識別子ーサーバはコピーするのみ一通常 0

byte 2 : プロトコル識別子= 0

byte 3 : プロトコル識別子= 0

byte 4 : フィールド長 (上位バイト) = 0 (なぜなら全てのメッセージは 256以下だから)

byte 5:フィールド長(下位バイト)=以下に続くバイト列の数

byte 6:ユニット識別子 (スレーブ・アドレスと言っていたもの)

byte 7 : Modbus ファンクションコード

byte 8 以降:必要なデータ列 (Modbus プロトコル参照)

トランザクション識別子は、サーバ側はコピーを返すのみで、クライアント側でのメッセージのトランザクション管理に使います。0固定でも構いません。

Modbus/TCPとModbusとのメッセージのデータ構造の関係を図式化すると以下のようになります。

図 Modbus と Modbus / TCP メッセージのデータ構成の関係

Modbus

3、動作の例

ユニット識別子9のデバイスからオフセット4のレジスタを読むと、値5が返ってくるトランザクションの例は以下のようになります。

リクエスト: 00 00 00 00 00 06 09 03 00 04 00 01 応答: 00 00 00 00 00 05 09 03 02 00 05

4、注意事項

Modbus / TCPでは LRC または CRC-16 チェック・フィールドが不要な点に注意しなければなりません。パケットの正確な伝送のチェックには、TCP / IPやリンク層(例えば Ethernet)のチェックメカニズムが使われます。