Unit 8: Computational Geometry

- Course contents:
 - Line-segment properties
 - Segment intersection
 - Convex hull
 - Closest pair of points

Readings:

Chapter 33

Algorithm Design and Application by S.-Y. Fang

Line-Segment Properties

Cross Products

- \square Given two vectors p_1 and p_2 , the **cross product** $p_1 \times p_2$:
 - The signed area of the parallelogram formed by the points (0,0), $p_1, p_2, \text{ and } p_1 + p_2 = (x_1 + x_2, y_1 + y_2).$
 - The determinant of a matrix

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1$$

- If $p_1 \times p_2$ is positive/negative, p_1 is clockwise/counterclockwise from p_2 with respect to the origin (0,0).
- If $p_1 \times p_2 = 0$, the vectors are **colinear** and point in the same or opposite directions.

Computational Geometry

- Computational geometry studies algorithms for solving geometric problems:
 - Computer graphics, robotics, VLSI design, computer-aided design, molecular modeling, etc.
- The input is typically a description of a set of geometric objects:
 - A set of points, a set of line segments, the vertices of a polygon in counterclockwise order, etc.
- □ The output is often a response to a query about the objects:
 - Whether any of the lines intersect?
 - Maybe a new geometric object, ex: the convex hull of the set of points.

Algorithm Design and Application by S.-Y. Fang

Terminologies

- \square Any point $p_3(x_3, y_3)$ is a **convex combination** of two distinct points $p_1(x_1, y_1)$ and $p_2(x_2, y_2)$ if:
 - $-x_3 = \alpha x_1 + (1-\alpha)x_2$ and $y_3 = \alpha y_1 + (1-\alpha)y_2$, $0 \le \alpha \le 1$.
 - $-p_3 = \alpha p_1 + (1 \alpha)p_2, 0 \le \alpha \le 1.$
 - p_3 is any point on the line passing through p_1 and p_2 and is on or between p_1 and p_2
- \square The *line segment* $\overline{p_1p_2}$ is the set of convex combinations of p_1 and p_2 , where p_1 and p_2 are **endpoints**.
- \square **Direct segment** $\overline{p_1p_2}$: if p_1 is the origin (0,0), $\overline{p_1p_2}$ is treated as the **vector** p_2 .

Algorithm Design and Application by S.-Y. Fang

Orientation of Two Directed Segments

- \square To determine whether $\overline{p_0p_1}$ is closer to $\overline{p_0p_2}$ in a clockwise or counterclockwise direction w.r.t. p_0
 - Translate p_0 as the origin.

 $p_1' = (x_1', y_1') = (x_1 - x_0, y_1 - y_0) = p_1 - p_0$

 $p_2' = (x_2', y_2') = (x_2 - x_0, y_2 - y_0) = p_2 - p_0$

- If $p'_1 \times p'_2 > 0$, $\overline{p_0 p_1}$ is clockwise from $\overline{p_0 p_2}$; otherwise, it is counterclockwise.
- \Box Determining whether two consecutive segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$ turn left or right at point p_1 .

Algorithm Design and Application by S.-Y. Fang

Intersection between Two Segments

- \square A segment $\overline{p_1p_2}$ straddles a line if p_1 lies on one side of the line and p_2 lies on the other side.
- Two line segments intersects ⇔ either the following conditions holds
 - 1. Each segment straddles the line containing the other.
 - 2. An endpoint of one segment lies on the other segment.

 $(\overline{p_3p_1} \times \overline{p_3p_4})(\overline{p_3p_2} \times \overline{p_3p_4}) < 0$

 $\overrightarrow{p_3p_1} \times \overrightarrow{p_3p_4} = 0$

Segments-Intersect

Algorithm Design and Application by S.-Y. Fang

Cases in Segments-Intersect

Algorithm Design and Application by S.-Y. Fang

Determining Whether Any Pair of Segments Intersects

Any Segment Intersection?

- □ To determine whether any two line segments in a set of segments intersect:
 - An intuitive $O(n^2)$ algorithm examining all pair of segments.
 - A more efficient $O(n \lg n)$ algorithm using **sweeping**, which determines only whether or not any intersection exists but not prints all the intersections (which takes $\Omega(n^2)$).
- □ In sweeping, an imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
- Assumption
 - No input segment is vertical.
 - No three input segments intersect at a single point.

Ordering Segments

- Segments intersecting a vertical sweep line can be ordered according to the y-coordinate of the points of intersection.
- \square Two segments s_1 and s_2 are **comparable** at x:
 - The vertical sweep line with x-coordinate x intersects s_1 and s_2 .
 - $s_1 \geqslant_x s_2$: s_1 is **above** s_2 , i.e., the intersection of s_1 with the sweep line at x is higher than the intersection of s_2 with the same sweep line, or if s_1 and s_2 intersect at the sweep line.

The Ordering of Intersected Segments

- \square An ordering is kept and differs for differing values of x.
 - A segment enters the ordering when its left endpoint is encountered by the sweep. It leaves the ordering when its right endpoint is encountered.
 - When the sweep line passes through the intersection of two segments, the segments reverse their positions in the ordering.
 - There must be some vertical sweep line for which two intersected segments are consecutive in the ordering.

Any sweep line that passes through the shaded region has consecutive e and f in the ordering

Algorithm Design and Application by S.-Y. Fang

Any-Segments-Intersect

Algorithm Design and Application by S.-Y. Fang

Example: Any-Segments-Intersect

Algorithm Design and Application by S.-Y. Fang

Finding the Convex Hull

Convex Hull

- \square The **convex hull** of a set Q of points, denoted by CH(Q), the smallest convex polygon P for which each point in O is either on the boundary of *P* or in its interior.
 - All points in the set 0 are unique.
 - Q contains at least three points which are not colinear.
- \square Every vertex of CH(Q) is a point in Q.

 Decide which vertices in Q to keep as vertices of the convex hull and which vertices in Q to reject.

When we traverse the convex hull counterclockwise, a left turn is made at each vertex

Graham's Scan

Graham-Scan(Q)

- 1. Let p_0 be the point in Q with the minimum y-coordinate
- // break ties by choosing the leftmost one
- let $\langle p_1, p_2, ..., p_m \rangle$ be the remaining points in Q, sorted by polar angle in counterclockwise order around p_0 // if more than one point has the same angle, remove all
 - but the one that is farthest from p_0
- 3. Let S be an empty stack
- Push(p_0 , S)
- $Push(p_1, S)$
- $Push(p_2, S)$
- 7. for i = 3 to m
- 8. while the angle formed by points Next-To-Top(S),
 - Top(S), and p_i makes a non-left turn
- Pop(S)
- $Push(p_i, S)$ 10.
- 11. return S

Next-To-Top(S): The point one entry below the top of stack S.

Algorithm Design and Application by S.-Y. Fang

 $O(n \lg n)$

Example: Graham's Scan

(c) Algorithm Design and Application by S.-Y. Fang

Example: Graham's Scan (cont'd)

Example: Graham's Scan (cont'd)

Jarvis's March

- Jarvis's march simulates wrapping a taut piece of paper around the set Q.
 - Start with p_0 , the lowest point in the set.
 - The next vertex p_1 in CH(Q) has the smallest polar angle w.r.t. p_0 .
 - Find the subsequence vertices until the highest vertex, p_k , is reached, and the *right chain* is constructed.
 - To construct the *left chain*, start at p_k and find p_{k+1} with the smallest polar angle w.r.t. p_k , but from the negative x-axis.
 - Form the left chain until the original vertex p_0 is reached.
- Jarvis's march has a running time of O(nh), where h is #vertices of CH(Q).

Example: Jarvis's March

Algorithm Design and Application by S.-Y. Fang