Machine-Checked Semantic Session Typing

Jonas Kastberg Hinrichsen, IT University of Copenhagen

Joint work with
Daniël Louwrink, University of Amsterdam
Robbert Krebbers, Radboud University
Jesper Bengtson, IT University of Copenhagen

20. October 2020 IT University of Copenhagen

Mechanising type systems is hard

Mechanising type systems is hard

▶ Binders impose non-trivial proof effort

Mechanising type systems is hard

- ▶ Binders impose non-trivial proof effort
- ▶ Substructural Properties requires explicit handling

Mechanising type systems is hard

- ▶ Binders impose non-trivial proof effort
- ▶ Substructural Properties requires explicit handling
- **Extensions** impose immodular proof effort

Mechanising type systems is hard, especially syntactic type systems

- ▶ Binders impose non-trivial proof effort
- Substructural Properties requires explicit handling
- **Extensions** impose immodular proof effort

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute." - Benjamin Pierce, Types and Programming Languages

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute." - Benjamin Pierce, Types and Programming Languages

► **Terms:** Program phrases

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute." - Benjamin Pierce, Types and Programming Languages

► **Terms:** Program phrases

Types: Kinds of values

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute." - Benjamin Pierce, Types and Programming Languages

► **Terms:** Program phrases

Types: Kinds of values

Rules: Relations between Terms and Types

"A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute." - Benjamin Pierce, Types and Programming Languages

- ► **Terms:** Program phrases
- **Types:** Kinds of values
- ▶ Rules: Relations between Terms and Types
- Soundness: The absence of certain behaviours
 - ► *Safety:* Absence of crashes
 - Deadlock-Freedom: Absence of waiting indefinitely

In a syntactic type system

▶ **Types** are defined as a closed inductive definition

In a syntactic type system

Types are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- ▶ Rules are defined as a closed inductive relation

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- ▶ **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ► Soundness is proven as progress/ preservation

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ **Soundness** is proven as **progress**/ **preservation** using induction on the relation

In a syntactic type system

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ Soundness is proven as progress/ preservation using induction on the relation

Binders impose non-trivial proof effort

Manual capture-avoiding substitution/renaming

In a syntactic type system

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ Soundness is proven as progress/ preservation using induction on the relation

Binders impose non-trivial proof effort

► Manual capture-avoiding substitution/renaming

Substructural Properties requires explicit handling

Explicit context splitting in rules (for linearity)

In a syntactic type system

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ Soundness is proven as progress/ preservation using induction on the relation

Binders impose non-trivial proof effort

Manual capture-avoiding substitution/renaming

Substructural Properties requires explicit handling

Explicit context splitting in rules (for linearity)

Extensions impose immodular proof effort

▶ Must reprove **progress** and **preservation** when adding types/rules

In a syntactic type system

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ Soundness is proven as progress/ preservation using induction on the relation

Binders impose non-trivial proof effort

► Manual capture-avoiding substitution/renaming

Substructural Properties requires explicit handling

Explicit context splitting in rules (for linearity)

Extensions impose immodular proof effort

- ▶ Must reprove **progress** and **preservation** when adding types/rules
- Adding unsound rules makes entire type system unsound

In a syntactic type system

- **Types** are defined as a closed inductive definition: $\tau := \mathbb{Z} \mid \mathbb{B} \mid \dots$
- **Rules** are defined as a closed inductive relation: $\vdash i : \mathbb{Z}$
- ▶ Soundness is proven as progress/ preservation using induction on the relation

Binders impose non-trivial proof effort

Manual capture-avoiding substitution/renaming

Substructural Properties requires explicit handling

Explicit context splitting in rules (for linearity)

Extensions impose immodular proof effort

- ▶ Must reprove **progress** and **preservation** when adding types/rules
- ightharpoonup Adding unsound rules makes entire type system unsound: $\vdash b : \mathbb{Z} \nearrow$

Goal:

A "mechanisable" type system

Solution:

A semantic type system!

A $\operatorname{\mathbf{semantic}}$ $\operatorname{\mathbf{type}}$ $\operatorname{\mathbf{system}}$ is defined in terms of the language $\operatorname{\mathbf{semantics}}$:

A **semantic type system** is defined in terms of the language semantics:

► **Types** defined as predicates over values

A **semantic type system** is defined in terms of the language semantics:

▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \models e : A$

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- **Judgement** defined as safety-capturing evaluation: Γ ⊨ e : A e does not get stuck

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get stuck and if e reduces to a value v, Av holds.

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get stuck and if e reduces to a value v, Av holds.
- Rules are proven as lemmas

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get stuck and if e reduces to a value v, Av holds.
- **Rules** are proven as lemmas: $\models i : Z$

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get stuck and if e reduces to a value v, Av holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \rightsquigarrow i \in \mathbb{Z}$

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- ▶ **Judgement** defined as safety-capturing evaluation: $\Gamma \vDash e : A$ e does not get stuck and if e reduces to a value v, Av holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \rightsquigarrow i \in \mathbb{Z}$
- ▶ **Soundness** is a consequence of the judgement definition

A semantic type system is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \rightsquigarrow i \in \mathbb{Z}$
- Soundness is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- Soundness is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- ▶ **Soundness** is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

► Adding types and rules does not inherently impose new proof effort on existing types, rules and soundness

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- ▶ **Soundness** is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

Adding types and rules does not inherently impose new proof effort on existing types, rules and soundness: $B \triangleq \lambda w. w \in \mathbb{B}$

7

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- ▶ **Soundness** is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

Adding types and rules does not inherently impose new proof effort on existing types, rules and soundness: $B \triangleq \lambda w. w \in \mathbb{B} \models b : B$

7

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- Soundness is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

- Adding types and rules does not inherently impose new proof effort on existing types, rules and soundness: $B \triangleq \lambda w. w \in \mathbb{B} \models b : B$
- Unsound rules cannot be added (proven)

A **semantic type system** is defined in terms of the language semantics:

- ▶ **Types** defined as predicates over values, e.g.: $Z \triangleq \lambda w. w \in \mathbb{Z}$
- Judgement defined as safety-capturing evaluation: Γ ⊨ e : A
 e does not get stuck and if e reduces to a value v, A v holds.
- ▶ **Rules** are proven as lemmas: $\models i : Z \iff i \in \mathbb{Z}$
- Soundness is a consequence of the judgement definition

Handling of substructural properties and binders can be inherited from the logic

Extensions can be added modularly

- Adding types and rules does not inherently impose new proof effort on existing types, rules and soundness: $B \triangleq \lambda w. w \in \mathbb{B} \models b : B$
- Unsound rules cannot be added (proven): ⊨ b : Z X

Case study: Semantic Session Type System

Key Idea

Semantic Typing

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

- ▶ Substructural properties and binders can be inherited from underlying logic
- **Extensions** can be added modularly

Key Idea

Semantic Typing using **Iris**

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

- ▶ Substructural properties and binders can be inherited from underlying logic
- Extensions can be added modularly

Iris [Iris project]

- ► Higher-Order: Recursion, Polymorphism
- ▶ **Concurrent:** Ghost state mechanisms to reason about concurrency
- Separation Logic: Implicit separation of linear ownership
- Mechanised in Coq (which has binder support)

Key Idea

Semantic Typing using Iris and Actris

Semantic Typing [Milner, Princeton Proof-Carrying Code project, RustBelt Project]

- ▶ Substructural properties and binders can be inherited from underlying logic
- Extensions can be added modularly

Iris [Iris project]

- ▶ **Higher-Order:** Recursion, Polymorphism
- ► **Concurrent:** Ghost state mechanisms to reason about concurrency
- Separation Logic: Implicit separation of linear ownership
- ► Mechanised in **Coq** (which has **binder** support)

Actris [Hinrichsen et al., POPL'20]

- ▶ Dependent separation protocols (DSP): Session type-style logical protocols
- Mechanised in Coq

Contributions

Semantic Session Type System

- Rich extensible type system for session types
 - ► Term and session type equi-recursion
 - ► Term and session type polymorphism
 - ► Term and (asynchronous) session type subtyping
 - Unique and shared reference types, Copyable types, Lock types
- ► Full mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21)
- Supports integrating safe yet untypeable programs

Semantic Session Type System

Language: ML-like language extended with concurrency, state and message passing

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \; f \; x = e \mid e_1(e_2) \mid e_1 \mid \mid e_2 \mid \mathtt{ref} \; (e) \mid ! \, e \mid e_1 \leftarrow e_2 \mid \\ \mathsf{new_chan} \; () \mid \mathtt{send} \; e_1 \; e_2 \mid \mathtt{recv} \; e \mid \dots$$

Language: ML-like language extended with concurrency, state and message passing

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x = e \mid e_1(e_2) \mid e_1 \mid \mid e_2 \mid \mathtt{ref} \ (e) \mid !e \mid e_1 \leftarrow e_2 \mid \mathtt{new_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots$$

Only allows substitution with closed terms

► To avoid substitution overhead

Language: ML-like language extended with concurrency, state and message passing

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x = e \mid e_1(e_2) \mid e_1 \mid \mid e_2 \mid \mathtt{ref} \ (e) \mid !e \mid e_1 \leftarrow e_2 \mid \mathtt{new_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots$$

Only allows substitution with closed terms

To avoid substitution overhead

Evaluation is performed right-to-left

▶ To allow side-effects in function applications (e.g. send c (recv c))

Language: ML-like language extended with concurrency, state and message passing

$$e \in \mathsf{Expr} ::= v \mid x \mid \mathtt{rec} \ f \ x = e \mid e_1(e_2) \mid e_1 \mid \mid e_2 \mid \mathtt{ref} \ (e) \mid !e \mid e_1 \leftarrow e_2 \mid \mathtt{new_chan} \ () \mid \mathtt{send} \ e_1 \ e_2 \mid \mathtt{recv} \ e \mid \dots$$

Only allows substitution with closed terms

► To avoid substitution overhead

Evaluation is performed right-to-left

▶ To allow side-effects in function applications (e.g. send c (recv c))

Message-passing is:

- ▶ Binary: Each channel have one pair of endpoints
- ► Asynchronous: send does not block, two buffers per endpoint pair
- ▶ Affine: No close expression, channels can be thrown away

Types as Iris predicates:

 $\mathsf{Type}_\bigstar \triangleq \mathsf{Val} \to \mathsf{iProp}$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} o \mathsf{iProp}$$
 $\mathsf{Z} \triangleq \lambda \, w. \, w \in \mathbb{Z}$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$\mathsf{A}_1 \times \mathsf{A}_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (\mathsf{A}_1 \ w_1) * \triangleright (\mathsf{A}_2 \ w_2)$$

$$\mathsf{Type}_\bigstar \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$\mathsf{A}_1 \times \mathsf{A}_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (\mathsf{A}_1 \ w_1) * \triangleright (\mathsf{A}_2 \ w_2)$$

$$\mathsf{ref}_{\mathtt{uniq}} \ \mathsf{A} \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (\mathsf{A} \ v)$$

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Types as Iris predicates:

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Judgement

$$\Gamma \vDash e : A \dashv \Gamma'$$

Types as Iris predicates:

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Judgement as Iris weakest precondition:

$$\Gamma \vDash e : A \dashv \Gamma' \triangleq \forall \sigma. (\Gamma \vDash \sigma) \twoheadrightarrow \mathsf{wp} \ e[\sigma] \{v.A \ v \ast (\Gamma' \vDash \sigma)\}$$

Types as Iris predicates:

$$\mathsf{Type}_{\bigstar} \triangleq \mathsf{Val} \to \mathsf{iProp}$$

$$\mathsf{Z} \triangleq \lambda \ w. \ w \in \mathbb{Z}$$

$$A_1 \times A_2 \triangleq \lambda \ w. \ \exists w_1, w_2. \ w = (w_1, w_2) * \triangleright (A_1 \ w_1) * \triangleright (A_2 \ w_2)$$

$$\mathsf{ref}_{\mathsf{uniq}} \ A \triangleq \lambda \ w. \ \exists v. \ w \in \mathsf{Loc} * (w \mapsto v) * \triangleright (A \ v)$$

$$A \multimap B \triangleq \lambda \ w. \ \forall v. \ \triangleright (A \ v) \twoheadrightarrow \mathsf{wp} (w \ v) \{B\}$$

Judgement as Iris weakest precondition:

$$\Gamma \vDash e : A \dashv \Gamma' \triangleq \forall \sigma. (\Gamma \vDash \sigma) \twoheadrightarrow \mathsf{wp} \ e[\sigma] \{v.A \ v \ast (\Gamma' \vDash \sigma)\}$$

Soundness: If $[] \models e : A \dashv \Gamma$ then *e* does not get stuck

Consequence of Iris's adequacy of weakest precondition

Semantic Term Types - Rules

Rules:

$$\Gamma \vDash i : \mathsf{Z}$$

$$\frac{\Gamma_2 \vDash e_1 : A_1 \dashv \Gamma_3 \qquad \Gamma_1 \vDash e_2 : A_2 \dashv \Gamma_2}{\Gamma_1 \vDash (e_1, e_2) : A_1 \times A_2 \dashv \Gamma_3}$$

If $[] \vDash e : A \dashv \Gamma$ then e does not get stuck

Semantic Term Types - Rules

Rules:

$$\Gamma \vDash i : \mathsf{Z}$$

$$\frac{\Gamma_2 \vDash e_1 : A_1 \dashv \Gamma_3 \qquad \Gamma_1 \vDash e_2 : A_2 \dashv \Gamma_2}{\Gamma_1 \vDash (e_1, e_2) : A_1 \times A_2 \dashv \Gamma_3}$$

If $[] \vDash e : A \dashv \Gamma$ then e does not get stuck

Proofs:

```
 \begin{array}{l} \text{Lemma ltyped\_int } \Gamma \text{ (i : Z) : } \vdash \Gamma \vDash \#i \text{ : lty\_int.} \\ \text{Proof. iIntros "!>" (vs) "Henv /=". iApply wp\_value. } \underline{eauto}. \text{ Qed.} \\ \end{array}
```

```
Lemma ltyped_safety `{heapPreG \Sigma} e \sigma es \sigma' e' : (\forall `\{heapC \Sigma\}, \exists A \Gamma', + \sigma \models e : A \dashv \Gamma') \rightarrow \Gamma rt erased_step ([e], \sigma) (es, \sigma') \rightarrow e' \in es \rightarrow is_Some (to_val e') \vee reducible e' \sigma'.

Proof.

intros Hty. \underline{apply} (heap_adequacy \Sigma NotStuck e \sigma (\Lambda_, True))=> // ?.

\underline{destruct} (Hty \_) as (\Lambda & \Gamma' & He). iIntros "_".

iDestruct (He \Sigma1e with "\square") as "He"; first by \underline{rewrite} /env_ltyped.

iEval (\underline{rewrite} -(subst_map_empty e)). iApply (wp_wand with "He"); \underline{auto}.

Qed.
```

But what about session types?

Semantic Session Types - Definitions

Session types as a new type kind:

```
Type_{\blacklozenge} \triangleq ? Type_{\bigstar} \triangleq Val \rightarrow iProp
!A. S \triangleq ? chan S \triangleq \lambda w.?
?A. S \triangleq ? end \triangleq ?
```

Requires capturing:

- ► Linearity of channel endpoint ownership
- ▶ **Delegation** of linear types / channels
- ► Session fidelity of communicated messages

Actris Dependent Separation Protocols

Session type-inspired protocols for functional correctness

	Dependent separation protocols	Syntactic session types
Example	$(x:\mathbb{Z})\langle x\rangle\{x>10\}$. $(x+10)\{\text{True}\}$. end	? Z. ? Z. end
Usage	$c \mapsto prot$	c : chan S

Semantic Session Types - Definitions

Session types as dependent separation protocols:

Dependent separation protocols:

Example: $?(x:\mathbb{Z})\langle x\rangle\{x>10\}.?\langle x+10\rangle\{\mathsf{True}\}.$ end

Usage: $c \rightarrow prot$

Semantic Session Types - Rules

Rules are proven as lemmas using the rules for dependent separation protocols

```
\Gamma \vDash \underset{\mathsf{new\_chan}}{\mathsf{new\_chan}} () : \mathsf{chan} \ S \times \mathsf{chan} \ \overline{S} \dashv \Gamma
\Gamma, (c : \mathsf{chan} \ (!A.S)), (x : A) \vDash \underset{\mathsf{send}}{\mathsf{send}} \ c \ x \qquad : 1 \qquad \qquad \dashv \Gamma, (c : \mathsf{chan} \ S)
\Gamma, (c : \mathsf{chan} \ (?A.S)) \vDash \underset{\mathsf{recv}}{\mathsf{recv}} \ c \qquad : A \qquad \qquad \dashv \Gamma, (c : \mathsf{chan} \ S)
```

Semantic Session Types - Proofs

Rule:

```
\Gamma, (c: chan (?A. S)) \models recv c : A = \Gamma, (c: chan S)
```

Proof:

```
Lemma ltyped_recv Γ (x : string) A S :
  \Gamma !! x = Some (chan (<??> TY A; S))%lty <math>\rightarrow
  \vdash \Gamma \vDash \text{recv } x : A = \langle x := (\text{chan S}) | \text{ty} \rangle \Gamma.
Proof
  iIntros (Hx) "!>". iIntros (vs) "HΓ"=> /=.
  iDestruct (env_ltyped_lookup _ _ _ _ (Hx) with "HF") as (v' Heq) "[Hc HF]".
  rewrite Hea.
  wp_recv (v) as "HA". iFrame "HA".
  iDestruct (env_ltyped_insert _ x (chan _) _ with "[Hc //] HF") as "HF"=> /=.
  by rewrite insert_delete (insert_id vs).
Qed.
```

Extensions

Overview of features

 $\textbf{Iris} \ \text{and} \ \textbf{Actris} \ \text{gives immediate rise to many type features}$

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products	Separation Conjunction (*)
-----------------	----------------------------

Overview of features

Iris and Actris gives immediate rise to many type features

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto \nu)$

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Shared references	Invariants (P)

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto \nu)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)

 $\textbf{Iris} \ \text{and} \ \textbf{Actris} \ \text{gives immediate rise to many type features}$

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \twoheadrightarrow A_2 \ v)$

Linear products	Separation Conjunction (*)
Function types	Wand $(-*)$ and weakest precondition (wp $e\{\Phi\}$)
Session types	Actris dependent separation protocols (iProto)
Unique references	Points-to connective $(\ell \mapsto v)$
Shared references	Invariants (P)
Copyable types	Persistent modality $(\Box P)$
Lock types	Iris's lock library
Session choice types	Actris dependent separation protocols (iProto)
Recursion	Guarded step-indexed recursion (▷)
Term polymorphism	Higher-order impredicative quantifiers
Session polymorphism	Higher-order impredicative protocols binders
Term subtyping	Predicates closed under wand $(\forall v. A_1 \ v \twoheadrightarrow A_2 \ v)$
Session subtyping	Actris 2.0 subprotocols (□)

Overview of features - Definitions

```
Shared references: \operatorname{ref}_{\operatorname{shr}} A \triangleq \lambda w. (w \in \operatorname{Loc}) * \exists v. (w \mapsto v) * \Box (A v)
```

Copyable types: $\operatorname{copy} A \triangleq \lambda w. \square (A w)$

$$\overline{\mathtt{mutex}}\, A \triangleq \lambda\, w.\, \exists \mathit{lk}, \ell.\, (w = (\mathit{lk}, \ell)) * \mathtt{isLock}\, \mathit{lk}\, (\exists v.\, (\ell \mapsto u) * \triangleright (A\, v)) * (\ell \mapsto -)$$

Session choice:
$$\oplus \{\vec{S}\} \triangleq ! (I : \mathbb{Z}) \langle I \rangle \{I \in \text{dom}(\vec{S})\}. \vec{S}(I)$$

&
$$\{\vec{S}\} \triangleq ?(I:\mathbb{Z}) \langle I \rangle \{I \in \text{dom}(\vec{S})\}. \vec{S}(I)$$

Recursion:
$$\mu(X:k)$$
. $K \triangleq \mu(X:\mathsf{Type}_k)$. K (K must be contractive in X)

Polymorphism:
$$\forall (X : k). A \triangleq \lambda w. \forall (X : \mathsf{Type}_k). \mathsf{wp} \ w() \{A\}$$

$$\exists (X : k). A \triangleq \lambda w. \exists (X : \mathsf{Type}_k). \triangleright (A w)$$

$$!_{\vec{X}:\vec{k}}A.S \triangleq !(\vec{X}: Type_k)(v: Val) \langle v \rangle \{Av\}.S$$

 $?_{\vec{X}:\vec{X}}A.S \triangleq ?(\vec{X}: Type_k)(v: Val) \langle v \rangle \{Av\}.S$

$$A < : B \triangleq \forall v \ A \ v \rightarrow * B \ v$$

Session subtyping:
$$S_1 <: S_2 \triangleq S_1 \sqsubseteq S_2$$

Term subtyping:

Typing the Untypeable

Consider the following judgement:

$$\vDash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?\mathsf{Z}. ?\mathsf{Z}. \, \texttt{end}) \multimap (\mathsf{Z} \times \mathsf{Z})$$

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable?

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline

Consider the following judgement:

```
\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe?

Consider the following judgement:

```
\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe? Yes

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter

Consider the following judgement:

```
\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)
```

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really?

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It Is it safe? Yes Contact Well...

It violates the ownership discipline Order of receives does not matter

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule

Consider the following judgement:

$$\vdash \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (\texttt{?Z}. \, \texttt{?Z}. \, \texttt{end}) \multimap (\texttt{Z} \times \texttt{Z})$$

```
Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule
```

The rule is just another lemma

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail \textbf{?} (v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}. \textbf{?} (v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. \text{ end}) \twoheadrightarrow \\ \mathsf{wp} \left(\mathbf{recv} \ c \mid\mid \mathbf{recv} \ c \right) \{v. \ \exists v_1, v_2. \ (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$$

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail \textbf{?}(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}. \textbf{?}(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. \text{ end}) \twoheadrightarrow \\ \mathsf{wp} \left(\mathbf{recv} \ c \mid\mid \mathbf{recv} \ c \right) \{v. \ \exists v_1, v_2. \ (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z}) \}$$

And then using Iris's ghost state machinery!

Consider the following judgement:

$$\models \lambda c. (\texttt{recv} \ c \mid \mid \texttt{recv} \ c) : \texttt{chan} \ (?Z. ?Z. \texttt{end}) \multimap (Z \times Z)$$

Is it typeable? No It violates the ownership discipline Is it safe? Yes Order of receives does not matter Really? Well... It could be added as an ad-hoc rule

The rule is just another lemma proven by unfolding all type-level definitions

$$(c \rightarrowtail ?(v_1 : \mathsf{Val}) \langle v_1 \rangle \{v_1 \in \mathbb{Z}\}.?(v_2 : \mathsf{Val}) \langle v_2 \rangle \{v_2 \in \mathbb{Z}\}. \text{ end}) \twoheadrightarrow$$

wp (recv $c \mid \mid \text{recv } c \rangle \{v. \exists v_1, v_2. (v = (v_1, v_2)) * \triangleright (v_1 \in \mathbb{Z}) * \triangleright (v_2 \in \mathbb{Z})\}$

And then using Iris's ghost state machinery! Beyond the scope of this talk

Concluding Remarks

Concluding Remarks

Semantic typing and separation logic is a good fit for mechanising session types

- ▶ Linearity is implicit from separation logic
- Binders can be inherited from underlying logic

Using a strong logic gives immediate rise to advanced features

- ▶ Iris: Polymorphism, recursion, locks and more
- Actris: Session types, session polymorphism, session subtyping

Material:

- ► Paper on semantic session type system (TBD)
- Mechanisation in Coq (https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21)

Questions?

Asynchronous Session Subtyping

Semantic Asynchronous Session Subtyping

Conventional session subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

Semantic Asynchronous Session Subtyping

Conventional session subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

$$\frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2}$$

$$\frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

Asynchronous session subtyping:

$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Semantic Asynchronous Session Subtyping

Conventional session subtyping:

$$\frac{S_1 <: S_2}{\text{chan } S_1 <: \text{chan } S_2} \qquad \frac{A_2 <: A_1 \qquad S_1 <: S_2}{!A_1. S_1 <: !A_2. S_2} \qquad \frac{A_1 <: A_2 \qquad S_1 <: S_2}{?A_1. S_1 <: ?A_2. S_2}$$

Asynchronous session subtyping:

$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Polymorphic session subtyping:

Goal:

$$\mu\left(\mathit{rec}: \blacklozenge\right). !_{(X,Y:\bigstar)}\left(X \multimap Y\right). !X. ?Y. \mathit{rec} <: \mu\left(\mathit{rec}: \blacklozenge\right). !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). !X_1. !(X_2 \multimap \mathsf{Z}). !X_2. ?\mathsf{B}. ?\mathsf{Z}. \mathit{rec}$$

Goal:

$$\mu \left(\mathit{rec} : \blacklozenge \right). \ !_{\left(X,Y:\bigstar\right)} \left(X \multimap Y\right). \ !X. \ ?Y. \ \mathit{rec} <: \mu \left(\mathit{rec} : \blacklozenge \right). \ !_{\left(X_{1},X_{2}:\bigstar\right)} \left(X_{1} \multimap \mathsf{B}\right). \ !X_{1}. \ !\left(X_{2} \multimap \mathsf{Z}\right). \ !X_{2}. \ ?\mathsf{B}. \ ?\mathsf{Z}. \ \mathit{rec} = \mathsf{A}. \ \mathsf$$

Derivation:

$$\mu$$
 (rec : \blacklozenge). $!_{(X,Y:\bigstar)}$ ($X \multimap Y$). $!X$. ? Y . rec

Goal:

$$\mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \ !X. \ ?Y. \ \mathit{rec} <: \mu\left(\mathit{rec}: \blacklozenge\right). \ !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \ !X_1. \ !(X_2 \multimap \mathsf{Z}). \ !X_2. \ ?\mathsf{B}. \ ?\mathsf{Z}. \ \mathit{rec}$$

Derivation:

$$\begin{split} &\mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \, !X.\, ?Y.\, \mathit{rec} \\ &<: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,Y_1:\bigstar)}\left(X_1 \multimap Y_1\right). \, !X_1.\, ?Y_1. \, !_{(X_2,Y_2:\bigstar)}\left(X_2 \multimap Y_2\right). \, !X_2.\, ?Y_2.\, \mathit{rec} \end{split} \tag{L\"OB}$$

Goal:

$$\mu$$
 (rec : ϕ). $!_{(X,Y:\bigstar)}$ ($X \multimap Y$). $!X$. ? Y . rec $<$: μ (rec : ϕ). $!_{(X_1,X_2:\bigstar)}$ ($X_1 \multimap B$). $!X_1$. $!(X_2 \multimap Z)$. $!X_2$. ? B . ? Z . rec

Derivation:

$$\begin{split} &\mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \, !X.\, ?Y.\, \mathit{rec} \\ &<: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,Y_1:\bigstar)}\left(X_1 \multimap Y_1\right). \, !X_1.\, ?Y_1.\, !_{(X_2,Y_2:\bigstar)}\left(X_2 \multimap Y_2\right). \, !X_2.\, ?Y_2.\, \mathit{rec} \\ &<: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \, !X_1.\, ?\mathsf{B}. \, !(X_2 \multimap \mathsf{Z}). \, !X_2.\, ?\mathsf{Z}.\, \mathit{rec} \end{split} \tag{S-ELIM, S-INTRO)$$

Rules:

S-ELIM

$$\frac{S_1 <: !A. S_2}{S_1 <: !_{(\vec{X}:\vec{k})}A. S_2} \qquad \qquad \begin{array}{c} \text{S-INTRO} \\ !_{(\vec{X}:\vec{k})} \ A. \ S <: !A[\vec{K}/\vec{X}]. \ S[\vec{K}/\vec{X}] \end{array}$$

Goal:

$$\mu$$
 (rec : ϕ). $!_{(X,Y:\bigstar)}$ ($X \multimap Y$). $!X.?Y.$ rec $<: \mu$ (rec : ϕ). $!_{(X_1,X_2:\bigstar)}$ ($X_1 \multimap B$). $!X_1$. $!(X_2 \multimap Z)$. $!X_2$. ?B. ?Z. rec

Derivation:

$$\mu (rec : \blacklozenge). \, !_{(X,Y:\bigstar)} (X \multimap Y). \, !X. ?Y. \, rec \\ <: \mu (rec : \blacklozenge). \, !_{(X_1,Y_1:\bigstar)} (X_1 \multimap Y_1). \, !X_1. \, ?Y_1. \, !_{(X_2,Y_2:\bigstar)} (X_2 \multimap Y_2). \, !X_2. \, ?Y_2. \, rec \\ <: \mu (rec : \blacklozenge). \, !_{(X_1,X_2:\bigstar)} (X_1 \multimap B). \, !X_1. \, ?B. \, !(X_2 \multimap Z). \, !X_2. \, ?Z. \, rec \\ <: \mu (rec : \blacklozenge). \, !_{(X_1,X_2:\bigstar)} (X_1 \multimap B). \, !X_1. \, !(X_2 \multimap Z). \, ?B. \, !X_2. \, ?Z. \, rec \\ <: \mu (rec : \blacklozenge). \, !_{(X_1,X_2:\bigstar)} (X_1 \multimap B). \, !X_1. \, !(X_2 \multimap Z). \, ?B. \, !X_2. \, ?Z. \, rec \\ (SWAP)$$

Rules:

$$\frac{S-\text{ELIM}}{S_1 <: !A. S_2}$$
$$\frac{S_1 <: !(\vec{X}:\vec{k}) A. S_2}{S_1 <: !(\vec{X}:\vec{k}) A. S_2}$$

S-INTRO
$$\mathbb{I}_{(\vec{X}:\vec{k})}$$
 A. $S <: \mathbb{I}A[\vec{K}/\vec{X}]. S[\vec{K}/\vec{X}]$

SWAP
$$?A_1. !A_2. S <: !A_2. ?A_1. S$$

Goal:

```
\mu(\textit{rec}: \blacklozenge). \ l_{(X_1,Y_2;\bigstar)}(X \multimap Y). \ lX.?Y. \ \textit{rec} <: \mu(\textit{rec}: \blacklozenge). \ l_{(X_1,X_2;\bigstar)}(X_1 \multimap B). \ lX_1. \ l(X_2 \multimap Z). \ lX_2. \ ?B. \ ?Z. \ \textit{rec}
```

Derivation:

$$\begin{array}{l} \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X,Y:\bigstar)}\left(X \multimap Y\right). \, !X.\, ?Y.\, \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,Y_1:\bigstar)}\left(X_1 \multimap Y_1\right). \, !X_1.\, ?Y_1. \, !_{(X_2,Y_2:\bigstar)}\left(X_2 \multimap Y_2\right). \, !X_2.\, ?Y_2.\, \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \, !X_1.\, ?\mathsf{B}. \, !(X_2 \multimap \mathsf{Z}). \, !X_2.\, ?\mathsf{Z}.\, \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \, !X_1. \, !(X_2 \multimap \mathsf{Z}). \, ?\mathsf{B}. \, !X_2.\, ?\mathsf{Z}.\, \mathit{rec} \\ <: \mu\left(\mathit{rec}: \blacklozenge\right). \, !_{(X_1,X_2:\bigstar)}\left(X_1 \multimap \mathsf{B}\right). \, !X_1. \, !(X_2 \multimap \mathsf{Z}). \, !X_2.\, ?\mathsf{B}.\, ?\mathsf{Z}.\, \mathit{rec} \end{array} \tag{SWAP}$$

Rules:

$$\frac{S-\text{ELIM}}{S_1 <: !A. S_2} \frac{S_1 <: !A. S_2}{S_1 <: !_{(\vec{X}:\vec{k})} A. S_2}$$

S-INTRO
$$!_{(\vec{X}:\vec{k})}A.S <: !A[\vec{K}/\vec{X}].S[\vec{K}/\vec{X}]$$

SWAP
$$?A_1. IA_2. S <: IA_2. ?A_1. S$$