IBQ_R 2022

Masha Gartstein, Erich Seamon

10/25/2022

Exploratory Data Analysis

Model Development and Output: Control Group One VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group One VS. Experimental Group – All Variables

ROC Curve: Control Group One VS. Experimental – All Variables

Model Development and Output: Control Group Two VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group – All Variables

ROC Curve: Control Group Two VS. Experimental – All Variables

${\bf Model\ Development\ and\ Output:\ Control\ Group\ One\ VS.\ Experimental\ -\ TRANSFORMED\ VARIABLES}$

Model Accuracy Estimates: Control Group One VS. Experimental Group - Transformed Variables

ROC Curve: Control Group One VS. Experimental – Transformed Variables

Model Development and Output: Control Group Two VS. Experimental - TRANSFORMED VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group – Transformed Variables

ROC Curve: Control Group Two VS. Experimental – Transformed Variables

Random Forest Control One vs. Experimental Transformed Variables

Random Forest Control Two vs. Experimental Transformed Variables

Random Forest Control One vs. Experimental All Variables

Random Forest Control Two vs. Experimental All Variables

models	Exp. VS.	CG1 cla	ssification: All Variabes	Exp. VS. CG2 classification: All Variables		
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.634	0.204	0.670	0.553	0.250	0.576
glm	0.587	0.242	0.665	0.583	0.148	0.573
svm	0.597	0.369	0.727	0.603	0.171	0.640
knn	0.617	0.248	0.598	0.590	0.234	0.635
nb	0.637	0.199	0.722	0.608	0.212	0.500
cart	0.619	0.146	0.730	0.556	0.007	0.652
c5.0	0.630	0.253	0.684	0.573	0.164	0.634
bagging	0.616	0.191	0.749	0.632	0.087	0.656
rf	0.616	0.221	0.776	0.610	0.221	0.614
gbm	0.644	0.298	0.702	0.578	0.241	0.624
adabag	0.634	0.263	0.670	0.553	0.219	0.576

models	Exp. VS.	CG1 cla	ssification: Transformed Variables	Exp. VS.	CG2 classification:	Transformed Variables
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.552	0.142	0.551	0.494	0.161	0.545
glm	0.533	0.143	0.477	0.542	0.147	0.559
svm	0.516	0.021	0.537	0.513	0.058	0.577
knn	0.481	-0.065	0.541	0.531	0.007	0.580
nb	0.524	0.114	0.537	0.581	0.169	0.567
cart	0.497	-0.058	0.500	0.571	0.041	0.567
c5.0	0.514	0.000	0.427	0.525	0.105	0.509
bagging	0.510	-0.035	0.455	0.533	-0.019	0.516
rf	0.518	-0.014	0.525	0.525	-0.100	0.568
gbm	0.488	-0.008	0.544	0.545	0.070	0.549
adabag	0.552	0.058	0.551	0.494	0.149	0.545