

MA 408

Measure Theory

Notes By: Aryaman Maithani

Lecture 1

06 January 2021 22:06

Idea behind measure

Simplified case: Subsets of IR

Given E GIR, want to assign "length" or "content"

to E.

Ideally, want a map

 $\mu: \mathcal{C}(\mathbb{R}) \longrightarrow \mathbb{R}_{>0}$

s. f.

(1)
$$\mu(b) = 0$$

(2) For any $E \subset \mathbb{R}$ and $x \in E$, $\mu(E) = \mu(x + E)$.

 $(x + \varepsilon := \{x + y : y \in \varepsilon^{2}\})$

(3) Given a countable collection [Fi]i=1 of subsets

64 R, we must have

$$\mu\left(\bigcup_{i=1}^{\infty} \varepsilon_{i}\right) = \sum_{i=1}^{\infty} \mu(\varepsilon_{i}).$$

(So far, $\mu \equiv 0$ will satisfy above properties)

(4)
$$\mu$$
 ([0, 1]) = 1. ("Normalisation")

Any such μ would be a "candidate" for our content.

```
However, no such µ esuists!
     Consider the following sets:
(1) Define \sim on \mathbb{R} by n \sim y \in \mathbb{Q}.
Clearly, \sim is an equiv. relation.
         Let E \subseteq [0,1] be a set containing element from each equivalence class in R/n.

(Existence is given by Axiom of Choice. Note that distinct equiv. classes are disjoint. and a small argument that left you conclude E \subseteq [0,1].
     Q. What could \mu(E) be?
          Note that { Etr} rearcon is a collection of pairwise disjoint sets.
      Subth. If \chi \in (E + r_1) \cap (E + r_2), then \chi = r_1 + \ell_1 = r_2 + \ell_2

(r_2 = r_1) for some e_1, e_2 \in E

\Rightarrow e_1 - e_2 = r_2 - r_1 \in \mathbb{Q}

\Rightarrow e_1 - e_2 = r_2 - r_3 \in \mathbb{Q}
                                   =) (1~ (2 =) (1= (2
            Moreover, [0, 1] \subset \bigcup (E+r) \subseteq [0, 2] = [0, 1] \cup [1,2]
                                              re Q n[o,i]
            An easy consequence of (1)-(3) is that E \subseteq F_{0}
           Poof. μ(F) = μ(E υ(R(E)) = μ(E) + μ(F(E) ≥ μ(E). 0/
              \Rightarrow \mu([0,1]) \leq \mu\left(\bigcup_{i=1}^{\infty} (\varepsilon + r_i)\right) \leq \mu([0,1]) + \mu([1,2])
```

enumerate $\mathbb{Q} \cap [0]$ as $\{r_1, ...\}$ $= \sum_{i=1}^{\infty} \mu(E+r_i) \leq 2$ $= \sum_{i=1}^{\infty} \mu(E) \leq 2$ $= \sum_{i=1}^{\infty} \mu(E) = \sum_{i=1}^{\infty} \mu(E) = \sum_{i=1}^{\infty} \mu(E) = \infty \leq 2$ $= \sum_{i=1}^{\infty} \mu(E) = \infty \leq 2$

Possible way to salvage: Replace (3) to have "finite union"

Mostead of "count able?

Turns out that that's still not enough.

(2) BANACH - TARSKI THEOREM (1924): (Using AC)

for any open sets U, $V \subseteq \mathbb{R}^h$ where $n \ge 3$, there exists $k \in \mathbb{N}$ and set $U_1, ..., U_k$, $V_1, ..., V_k$

(1)
$$V_i \cap V_j = \phi, \quad V_i \cap V_j = \phi, \quad 1 \leq i \neq j \leq k.$$

(2)
$$V = \bigcup_{i=1}^{K} V_i$$
, $V = \bigcup_{i=1}^{K} V_i$.

(3) U; ~ Vi, i.e.,

Ui is obtained from Vi by a sequence of rotations,

reflections, and translations.

In other words, by is ometries.

Thus, the analogue of (2) implies $\mu(V_i) = \mu(V_i) \forall i$.

$$\Rightarrow \mu(v) = \mu(v)$$
. Absurd conductions.

As it terms out, the problem is <u>NOT</u> in the infinite union but rather the demand that μ is defined on all of B(R)!

Thus, we restrict our attention to a smaller collection of subsets of R. (Not to small!)

o - ALGEBRAS

Let X be an arbitary set.

Def". (n) An algebra ("field") is a non-empty collection $F \subseteq \mathcal{P}(X)$ satisfying:

OAEF => X/A EF

② A., ..., An ∈ F ⇒ ÛA; ∈ F for any n∈ N.

(2) A σ -algebra (" σ -field") is a non-empty collection $F \subseteq \mathbb{P}(X)$ satisfying:

OAEF => X/A EF

② A., ..., e f ⇒ ÜA; ∈ F

Note that complements and unions give us intersections. Also, ϕ , $x \in \mathcal{F}$. EXAMPLES

 $0 f = P(x) \leftarrow both$

 Clearly closed under complement.

Let A1, ... (f

If all Ai are countable, then UAi is.

Suppose A1 not countable. Then, Ai is.

But

A1 C UAi => (UAi) C C Ai

> (UAi) C Is countable. I)

3 Given any $F \subseteq P(X)$, we can talk about σ -algebra generated by F denoted M(F) defined by

 $M(F) = \bigcap B$ $f \subseteq B$ $B \text{ is a } \sigma\text{-alg}$

Note that the intersection is non-empty because of P(x). Easy to see that in tersection of σ -algebrae is again a σ -alg.

by construction, $\mathcal{M}(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} .

BOREL - ALGEBRA.

Def? Let (X, T) be a topological space.

The σ -algebra generated by J is called the Borel σ -algebra on X, denoted B(x).

(Abuse of notation that we don't mention J.)

In other words, it is generated by the open sets

Borel σ -algebra on R: Smallest σ -alg on R containing all the open sets.

Consequences:

- 1) All open sets are in BCR).
- @ All closed sets are in BCR).
- 3 All Fo, Go sets are in B(R).

Prof. Let B = B(R).

Then, B is also generated by any of the following:

- (i) { (a, b) : a < b } or { [a, b] : a < b }
- (ii) { [a, b) : a < b] or { (a, b]: a < b]
- (iii) $\{(a, \infty) : a \in \mathbb{R}^3 \text{ or } \{(-\infty, a) : a \in \mathbb{R}^3\}$
 - (iv) { $[a, \infty) : a \in \mathbb{R}^3$ or { $(-\infty, a] : a \in \mathbb{R}^3$

Prod Easy. D

Borel -- algebra on R?:

Suppose {Xi} are metric spaces.

Let $X = \prod_{i=1}^{n} X_i$ with the product metric.

If fi is the metric on Xi, then
f on TIX; is defined as

P(x, y) = max f(xi, yi) \[\times = (x, ..., xn) \]

Det". Suppose (Xi, Mi) are σ -algebrae. One an define a σ -algebra on X := TTX: as follows:

Consider he projection maps Ti: X -> Xi

f = { $\pi_i^{-1}(E)$: $E \in Mi$, i=1,...,n]

 $M := M(\mathcal{F}) \subseteq P(x)$ is the product σ -algebra induced by $\{Mi_{i}\}_{i=1}^{\infty}$

We often write the above as $M = \prod_{i=1}^{n} M_i$.

Caution. The above The is NOT the set-theoretic cartesian product.

Now, we get two (possibly different) \(\sigma\)-algebrae on \(\mathbb{R}^n\).

D Borel \(\sigma\)-alg. on \((\mathbb{R}^n\), \(T)\)

2 hoduct of Borel \(\sigma\)-alg. of \(B(\mathbb{R})\).

Prop. $B(R^n) = \prod_{i=1}^n B(R)$. That is, both the σ -alg above are same.

Roof. We will prove this by a sequence of observations. D Suppose $\{(X_i, M_i)\}_{i=1}^n$ are σ -algebraich and $F_i \subseteq M_i$ are such that $M_i = M(F_i)$. (i=1,...,n) Then, if $X = \widehat{T}X_i$ and $M = \widehat{T}M_i$, then M is generated by $\{T_i^{-1}(E): E \in \mathcal{F}_i, i=1,...,n\}$. @ M is generated by {E, x... x En : E; & J; \frac{1}{2}. Assuming (1) and (2) for now, we now note the following. Clearly, one has $\prod_{i=1}^{n} \mathcal{B}(\mathbb{R}) \subseteq \mathcal{B}(\mathbb{R}^n)$. hing @, TT B(R) is gen. by sets of the form U, x... x Un, each U:=R open Each such set is open in the metric space 1Rn.

Thurs, it is in B(1Rn). we show B(Rn) = TIB(R). (x) SITE suffices to show that every set of the form

U, x ... x Un where U: CIR are open are in the product TTB(B). Why? Every open set in IR is a countable union of sets of aforementioned form. In turn, the open sets generate $B(IR^n)$.

Proving (x) is easy because $U_1 \times \dots \times U_n = \pi_1^{-1}(U_1) \cap \pi_2^{-1}(U_2) \cap \dots \cap \pi_n^{-1}(U_n)$.

There are in $\pi B(R)$, by definitions. Iral of 1 Want to show that $\tilde{J} = \frac{1}{2}\pi_i^{-1}(E) : E \in J_i$, Is is $\tilde{J} = \frac{1}{2}\pi_i^{-1}(E) : E \in J_i$, Is is $\tilde{J} = \frac{1}{2}\pi_i^{-1}(E) : E \in J_i$, Is is $\tilde{J} = \frac{1}{2}\pi_i^{-1}(E) : E \in J_i$. Clearly $\mathcal{M}(\tilde{\mathcal{F}}) \subseteq \mathcal{M}$. ($\tilde{\mathcal{F}} \subset \mathcal{M}$ and \mathcal{M} is a sadg) It now suffices to show that every a generator of \mathcal{M} is in $\mathcal{M}(\vec{\mathcal{F}})$. Note $\mathcal{M} = \langle \mathcal{T}_i^{-1}(E) : E \in \mathcal{A}_i, | \underline{c}; \underline{c}, \rangle$ $\widetilde{\mathcal{M}} := \langle \mathcal{T}_i^{-1}(E) : E \in \mathcal{J}_i, | \underline{c}; \underline{c}, \rangle = \mathcal{M}|\widetilde{\mathcal{J}}\rangle$ Let $\tilde{\mathcal{M}}_{i} := \{ E \in \mathcal{M}_{i} : \pi_{i}'(E) \in \tilde{\mathcal{M}} \} \subseteq P(X_{i}).$ We shall show that $\tilde{\mathcal{M}}_{i} := \mathcal{M}_{i}.$ We know, by def that $f_{i} \subseteq \tilde{\mathcal{M}}_{i}.$ $E \in \mathcal{F}_{i} \Rightarrow \pi_{i}'(E) \in \tilde{\mathcal{M}} \cap \mathcal{M}_{i}$ $E \in \mathcal{M}_{i}.$ Moreover, $\mathcal{M}(\mathcal{I}_i) = \mathcal{M}_i$. Thus, it suffices to show that $\widehat{\mathcal{M}}_i$ is Also, $\widehat{\mathcal{M}}_i \subset \mathcal{M}_i$. $\alpha = -alg$. To that end, let $A \in \mathcal{M}_i$. Then, $\mathcal{T}_i^{-1}(A) \in \mathcal{M}_i$. Then, $\mathcal{T}_i^{-1}(A) \in \mathcal{M}_i$. But $\mathcal{T}_i^{-1}(A') = \mathcal{T}_i^{-1}(A) \in \mathcal{M}_i$. $\Rightarrow \mathcal{T}_i^{-1}(A') \in \mathcal{M}_i$ Similarly, noting that $T_i^{-1}(\mathring{U}A_i) = \mathring{U}T_i^{-1}(A_i)$ yields the result.

Proof of @

Now, put $\tilde{\mathcal{F}} := \{ \mathcal{E}_1 \times \cdots \times \mathcal{E}_n : \mathcal{E}_i \in \mathcal{F}_i \} \text{ and } \tilde{\mathcal{M}} := \mathcal{M}(\tilde{\mathcal{F}}).$

Since $E_{1} \times \cdots \times E_{n} = \bigcap_{i \geq 1}^{n} \Pi_{i}^{-1}(E_{i})$, we see that $\widehat{\mathcal{F}} \subseteq \mathcal{M}$. Thu, $\widetilde{\mathcal{M}} \subseteq \mathcal{M}$.

REMARKS.

- 1) The argument above generalises for a separable metric spaces:
- and 1 is Countable

 (Xi, Mi)_{i∈A}, ~ then again, $X = \prod Xi$, $M = \prod Mi$ generated by $\{ \pi_i^{-1}(E) : E \in Mi, i \in A \}$ is also generated by Sets of the form $\left(\prod_{i \in A} E_i \right), \quad E_i \in \mathcal{F}_i.$

MEASURE

Def? Suppose (X, M) is a measure space, i.e., M is a σ -algebra on X. A measure on X is a map $\mu \colon \mathcal{M} \longrightarrow [\mathfrak{G}, \mathfrak{G}]$ satisfying

(i)
$$\mu(\beta) = 0$$

(ii) if
$$\{Ei\}_{i=1}^{\infty}$$
 are pairwise disjoint, then
$$\mu\left(\bigcup_{i=1}^{\infty}E_{i}\right) = \sum_{i=1}^{\infty}\mu(E_{i}).$$

EXAMPLES.

(1)
$$X = \{\pi_1, \pi_2, ...\}$$
 is countable. Suppose $p: > 0$ are reals s.t. $Ep: = 1$. Let $M = P(X)$ and define $\mu: M \rightarrow [0,1]$ as $\mu(E) = \sum_{i=1}^{n} P_i$.

 $i: \pi_i \in E$

(2)
$$(X, M)$$
 be set M is the countable-co-countable scalg.

set X itself is uncountable

Define
$$\mu(\mathcal{E}) := \begin{cases} 0 & \text{if } E \text{ is countable} \end{cases}$$

$$\mu(\mathcal{E}) := \begin{cases} 1 & \text{if } E \text{ is an countable} \end{cases}$$

Propⁿ. Suppose
$$(X, M, \mu)$$
 is a measure space.

Then,

$$0 \in \subseteq F \Rightarrow \mu(E) \leq \mu(F)$$

$$0 \mu(\overset{\circ}{U}E:) \leq \overset{\circ}{\Sigma} \mu(Ei) \qquad (\mu \text{ is "sub-additive"})$$

$$3 J_{1} I_{1} 1 \quad (i.e., E_{1} \subset E_{2} \subset \cdots), \text{ Hen}$$

$$\mu(\overset{\circ}{U}Ei) = \underset{i\rightarrow\infty}{\lim} \mu(E_{i}).$$

Then,
$$\bigcup_{i=1}^{n} F_{i} = \bigcup_{i=1}^{n} F_{i}$$
. Also, $F_{i} \in \mathcal{M}$ for each i .

 $(n = 00 \text{ as well})$

Moreover, $F_{i} \cap F_{j} = \emptyset$ for $i \neq j$.

Thus,
$$\mu(UE_i) = \mu(U\widehat{f}_i) = \sum_{i=1}^{\infty} \mu(\widehat{f}_i)$$

$$= \lim_{\gamma \to 0} \sum_{i=1}^{r} \mu(f_i)$$

$$= \lim_{\gamma \to 0} \sum_{i=1}^{r} \mu(\varepsilon_i) = \sum_{i=1}^{r} \varepsilon_i.$$

- Def? DA null set in a measure space (X, M, μ) is a set E site E SF for some F E M with $\mu(F) = 0$.
 - ② Given a measure space (X, M, μ), the completion of M, denoted M is the collection of all sets of the form f UN where f ∈ M and N is a null set.
- Prof. () If (X, M, μ) is a measure space, then \bar{M} is a σ -alg. 2) Moreover, there exists a unique measure

$$\overline{\mu}: \overline{\mathcal{M}} \longrightarrow [0, \infty]$$
 s.t.

$$\bar{\mu}\Big|_{M} = \mu.$$

(That is, there is a unique extension of μ to a measure $\bar{\mu}$ on M.)