		Created with OSdag®	
Company Name	GAIL		Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

1 Input Parameters

Main Module	Shear Connection
Module	Fin Plate Connection
Connectivity	Column Flange-Beam Web
Shear Force (kN)	40.0
Axial Force (kN)	87.0

Supporting Section - Mechanical Properties

Supporting Section	i - Wicchaine	ar i roperties	
Supporting S	ection	Н	B 150*
Materia	1	E 250 (Fe 410 W)A
Ultimate Strength	F_u (MPa)		410
Yield Strength, I	F_y (MPa)		250
Mass, m (kg/m)	30.15	$I_z \text{ (cm}^4)$	1510.0
Area, $A \text{ (cm}^2)$	38.4	$I_y(\mathrm{cm}^4)$	435.0
D (mm)	150.0	r_z (cm)	6.27
B (mm)	150.0	r_y (cm)	3.36
t (mm)	8.4	$Z_z \text{ (cm}^3)$	201.0
T (mm)	9	$Z_y \text{ (cm}^3)$	58.0
Flange Slope	94	$Z_{pz} (\mathrm{cm}^3)$	228.0
$R_1 \text{ (mm)}$	8.0	$Z_{py} (\mathrm{cm}^3)$	94.7
$R_2 \text{ (mm)}$	4.0		

Supported Section - Mechanical Properties

Supported Section (Mediament Properties				
Supported Section		JB 175		
Materia	.1	E	250 (Fe 410 W)A	
Ultimate Strength, F_u (MPa)			410	
Yield Strength,	F_y (MPa)		250	
Mass, m (kg/m)	8.07	$I_z \text{ (cm}^4)$	480.0	
Area, $A \text{ (cm}^2)$	10.2	$I_y(\mathrm{cm}^4)$	9.65	
D (mm)	175.0	r_z (cm)	6.83	
B (mm)	50.0	r_y (cm)	0.97	
t (mm)	3.2	$Z_z \text{ (cm}^3)$	54.9	
T (mm)	4.8	$Z_y \text{ (cm}^3)$	3.86	
Flange Slope	91.5	Z_{pz} (cm ³)	64.2	
$R_1 \text{ (mm)}$	5.0	$Z_{py} (\mathrm{cm}^3)$	6.32	
$R_2 \text{ (mm)}$	1.5			

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Bolt Details - Input and Design Preference			
Diameter (mm)	[np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(24), np.int64(27), np.int64(30), np.int64(33) , np.int64(36), np.int64(39), np.int64(42), np.int64(45), np.int64(48), np.int64(52), np.int64(56), np.int64(6 0), np.int64(64)]		
Property Class	[np.float64(3.6), np.float64(4.6), np.float64(4.8), np.float64(5.6), np.float64(5.8), np.float64(6.8), np.float64(9.8), np.float64(10.9), np.float64(12.9)]		
Туре	Bearing Bolt		
Hole Type	Standard		
Bolt Tension	Non pre-tensioned		
Slip Factor, (μ_f)	0.3		
Detailing - Design Prefe	Detailing - Design Preference		
Edge Preparation Method	Sheared or hand flame cut		
C D ()			
Gap Between Members (mm)	10.0		
Are the Members Exposed to Corrosive Influences?	10.0 False		
	False		
Are the Members Exposed to Corrosive Influences?	False		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Designation	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Designment of the Plate Details - Input and Designment - Input and Design	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1 00), np.int64(110), np.int64(120)]		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Designment of the Plate of the Pl	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1 00), np.int64(110), np.int64(120)] E 250 (Fe 410 W)A		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Designation Thickness (mm) Material Ultimate Strength, Fu (MPa)	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1 00), np.int64(110), np.int64(120)] E 250 (Fe 410 W)A 410 250		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Design Thickness (mm) Material Ultimate Strength, Fu (MPa) Yield Strength, Fy (MPa)	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1 00), np.int64(110), np.int64(120)] E 250 (Fe 410 W)A 410 250		
Are the Members Exposed to Corrosive Influences? Plate Details - Input and Designation Thickness (mm) Material Ultimate Strength, Fu (MPa) Yield Strength, Fy (MPa) Weld Details - Input and Designation	False gn Preference [np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(28), np.int64(32), np.int64(36), np.int64(40) , np.int64(45), np.int64(50), np.int64(56), np.int64(63), np.int64(75), np.int64(80), np.int64(90), np.int64(1 00), np.int64(110), np.int64(120)] E 250 (Fe 410 W)A 410 250 gn Preference		

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

2 Design Checks

Design Status	Pass
---------------	------

2.1 Initial Section Check

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)	40.0	$V_{dy} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{175.0 \times 3.2 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 73.48$ [Ref. IS 800:2007, Cl.10.4.3]	Pass
Allowable Shear Capacity (kN)	40.0	$V_d = 0.6 \ V_{dy}$ = 0.6 × 73.48 = 44.09 [Limited to low shear]	Pass
Tension Yielding Capacity (kN)	87.0	$T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 175.0 \times 3.2$ $= \frac{560.0 \times 250}{1.1 \times 10^3}$ $= 127.27$ [Ref. IS 800:2007, Cl.6.2]	Pass

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Force (kN)	87.0	87.0	

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
Applied Shear Force (kN)	40.0	$V_{y \min} = \min(0.15V_{d_y}, 40.0)$ $= \min(0.15 \times 73.48, 40.0)$ $= 40$ $V_u = \max(V_y, V_{y \min})$ $= \max(40.0, 40)$ $= 40.0$ [Ref. IS 800:2007, Cl.10.7]	

2.3 Bolt Design

Check	Required	Provided	Remarks
Diameter (mm)		8.0	
Property Class		9.8	
Plate Thickness (mm)	$t_w = 3.2$	8.0	Pass
No. of Bolt Columns		2	Pass
No. of Bolt Rows		6	
Min. Pitch Distance (mm)	$p_{\min} = 2.5d$ $= 2.5 \times 8.0$ $= 20.0$ [Ref. IS 800:2007, Cl.10.2.2]	25	Pass
Max. Pitch Distance (mm)	$p/g_{\text{max}} = \min(32t, 300)$ $= \min(32 \times 3.2, 300)$ $= \min(102.4, 300)$ = 102.4 Where, $t = \min(8.0, 3.2)$ [Ref. IS 800:2007, Cl.10.2.3]	25	Pass

		Created with Osdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
	$p_{\min} = 2.5d$		
	$=2.5\times8.0$		
Min. Gauge Distance	= 20.0	20	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p/g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.2, 300)$		
	$= \min(102.4, 300)$		
Max. Gauge Distance	= 102.4	20	Pass
(mm)			
	Where, $t = \min(8.0, 3.2)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$=1.7 \times 8$		
Min. End Distance (mm)	= 13.6	15	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		
	$e_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 8.0 \times \sqrt{\frac{250}{250}} = 96.0$		
Max. End Distance (mm)		15	Pass
, ,	$e_2 = 12 \times 3.2 \times \sqrt{\frac{250}{250}} = 38.4$		
	$e_{\text{max}} = \min(e_1, e_2) = 38.4$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
	$e'_{\min} = 1.7d_0$		
	$=1.7\times8$		
Min. Edge Distance (mm)	= 13.6	15	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Created with Osdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 8.0 \times \sqrt{\frac{250}{250}} = 96.0$ $e_2 = 12 \times 3.2 \times \sqrt{\frac{250}{250}} = 38.4$ $e'_{\text{max}} = min(e_1, e_2) = 38.4$ [Ref. IS 800:2007, Cl.10.2.4.3]	15	Pass
Moment Demand (kNm)	[2001 10 00012011, 0110121, 110]	$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(40.0 \times 10^3 \times 35.0 + 0.0 \times 10^6)}{10^6}$ $= 1.4$	
Bolt Force Parameter(s) (mm)	l_n = length available l_n = $p (n_r - 1)$ = $25 \times (6 - 1)$ = 125 $y_{\text{max}} = l_n/2$ = $125/2$ = 62.5 $x_{\text{max}} = g(n_c - 1)/2$ = $20 \times (2 - 1)/2$ = 10.0		

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
Bolt Force (kN)	$vbv = V_u/(n_r \times n_c)$ $= \frac{40.0}{(6 \times 2)}$ $= 3.33$ $tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{1.4 \times 62.5}{23.08}$ $= 3.79$ $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{1.4 \times 10.0}{23.08}$ $= 0.61$ $abh = \frac{A_u}{(n_r \times n_c)}$ $= \frac{87.0}{(6 \times 2)}$ $= 7.25$ $v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(3.33 + 0.61)^2 + (3.79 + 7.25)^2}$ $= 11.72$		
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{900.0 \times 1 \times 36.6}{1000 \times \sqrt{3} \times 1.25}$ $= 15.21$ [Ref. IS 800:2007, Cl.10.3.3]	

		Created with Osdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$	
		$= \min\left(\frac{15}{3\times8}, \ \frac{25}{3\times8} - 0.25, \ \frac{900.0}{410}, \ 1.0\right)$	
Kb		$= \min(0.62, 0.79, 2.2, 1.0)$	
		= 0.62	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$	
		$= \frac{2.5 \times 0.62 \times 8.0 \times 3.2 \times 410}{1000 \times 1.25}$	
Bearing Capacity (kN)			
		= 13.02	
		(D. 4.70.111.111.1111.1111.1111.1111.11111.11111	
		[Ref. IS 800:2007, Cl.10.3.4] $V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$	
		$v_{db} = \min (v_{dsb}, v_{dpb})$ = min (15.21, 13.02)	
Capacity (kN)		= 13.02	
oup()		1002	
		[Ref. IS 800:2007, Cl.10.3.2]	
	if $l_j \geq 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$	$l_i = (n_r - 1) \times p$	
		$ \begin{aligned} t_j &= (n_r - 1) \times p \\ &= (6 - 1) \times 25 = 125 \end{aligned} $	
	if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$	= (0 - 1) × 20 = 120	
		l = 125	
	where,	$15 \times d = 15 \times 8.0 = 120.0$	
Long Joint Reduction Fac-	$l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$	20.00	
tor		since, $l_j \geq 15 \ d$ then $V_{\rm rd} = \beta_{lj} \ V_{\rm db}$	
	$\beta_{lj} = 1.075 - l/(200d)$	$\beta_{lj} = 1.075 - 125/(200 \times 8.0) = 1.0$	
	but $0.75 \le \beta_{lj} \le 1.0$		
	[To 4 YG 200 200 [To 6] 41	[Ref. IS 800:2007, Cl.10.3.3.1]	
Consity (I-N)	[Ref. IS 800:2007, Cl.10.3.3.1]	12.02	Dogg
Capacity (kN)	11.72	13.02	Pass

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

2.4 Plate Design

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$ $= 0.6 \times (175.0 - 2 \times 4.8 - 2 \times 5.0)$ $= 93.24$	155	Pass
Max. Plate Height (mm)	[Ref. INSDAG, Ch.5, sec.5.2.3] $d_b - 2(t_{bf} + r_{b1} + \text{gap})$ $= 175.0 - 2 \times (4.8 + 5.0 + 10)$ $= 155.4$	155	Pass
Min. Plate Width (mm)	$2e_{\min} + (n_c - 1)p_{\min}$ $= 2 \times 13.6 + (2 - 1) \times 20.0$ $= 57.2$	60.0	Pass
Min. Plate Thickness (mm)	$t_w = 3.2$	8.0	Pass
Shear Yielding Capacity (kN)		$V_{dy} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{155 \times 8.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 162.71$ [Ref. IS 800:2007, Cl.10.4.3]	
Allowable Shear Capacity (kN)	V = 40.0	$V_d = 0.6 \ V_{dy}$ = 0.6 × 162.71 = 97.62 [Limited to low shear]	Pass
Shear Rupture Capacity (kN)		[Limited to low shear] $V_{d_n} = \frac{0.75A_{v_n}f_u}{\sqrt{3}\gamma_{m1}}$ $= 1 \times \frac{(155 - (6 \times 8)) \times 8.0 \times 410}{\sqrt{3} \times 1.25}$ $= 263.22$ [Ref. AISC, sect. J4]	

		Created with Osdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity in		$V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Shear (kN)		$V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 194.53$	
		[Ref. IS 800:2007, Cl.6.4]	
		$V_d = \min(S_c, \ V_{d_n}, \ V_{d_b})$	
		$= \min(97.62, 263.22, 194.53)$	
Shear Capacity (kN)	40.0	= 97.62	Pass
		[Ref. IS 800:2007, Cl.6.1]	
		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{\rm mag}}$	
		m_0	
		$A_g = lt = 155 \times 8.0$	
Tension Yielding Capacity			
(kN)		$=\frac{1240.0\times250}{1.1\times10^3}$	
		=281.82	
		[Ref. IS 800:2007, Cl.6.2]	
		$T_{\rm dn} = \frac{0.9 A_n f_u}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{1 \times 0.9 \times (155 - 6 \times 8) \times 8.0 \times 410}{1.25}$	
(kN)		= 328.26	
		[Ref. IS 800:2007, Cl.6.3.1]	

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity in		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Tension (kN)		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 274.22$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm dn}, \ T_{\rm db})$	
		$= \min(281.82, 328.26, 274.22)$	
Tension Capacity (kN)	87.0	= 274.22	Pass
		S 420 - 12 - 12	
		[Ref.IS 800:2007, Cl.6.1]	
Moment Capacity (kNm)	1.4	$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$ $= \frac{1.0 \times 48050.0 \times 250}{1.1 \times 10^6}$ $= 10.92$	Pass
		[Ref. IS 800:2007, Cl.8.2.1.2]	
Interaction Ratio	≤ 1	$\frac{1.4}{10.92} + \frac{87.0}{274.22} = 0.45$	Pass
		[Ref. IS 800:2007, Cl.10.7]	

2.5 Section Design

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)		$V_{dy} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$ $= \frac{175.0 \times 3.2 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ $= 73.48$ [Ref. IS 800:2007, Cl.10.4.3]	

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 73.48$	
Allowable Shear Capacity	V = 40.0	=44.09	Pass
(kN)			
		[Limited to low shear]	
		$V_{d_n} = \frac{0.75A_{v_n}f_u}{\sqrt{3}\gamma_{m1}}$	
Shear Rupture Capacity		$= 1 \times \frac{(175.0 - (6 \times 8)) \times 3.2 \times 410}{\sqrt{3} \times 1.25}$	
(kN)		= 124.97	
		[Ref. AISC, sect. J4]	
		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$\sqrt{3\gamma_{m0}}$ γ_{m1}	
		0.94 f 4, f	
		$V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
Block Shear Capacity in Shear (kN)		, , , , , , , , , , , , , , , , , , ,	
Shour (Krt)		$V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 77.81$	
		[Ref. IS 800:2007, Cl.6.4]	
		$V_d = \min(S_c, \ V_{d_n}, \ V_{d_b})$	
		$= \min(44.09, 124.97, 77.81)$	
Shear Capacity (kN)	40.0	=44.09	Pass
		[Ref. IS 800:2007, Cl.6.1]	
		$T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$	
		$\gamma m0$	
		$A_g = lt = 175.0 \times 3.2$	
Tension Yielding Capacity			
(kN)		$=\frac{560.0\times250}{1.1\times10^3}$	
		= 127.27	
		[Ref. IS 800:2007, Cl.6.2]	

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

Check	Required	Provided	Remarks
Tension Rupture Capacity (kN)		$T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (175.0 - 6 \times 8) \times 3.2 \times 410}{1.25}$ $= 119.97$	
		[Ref. IS 800:2007, Cl.6.3.1] $T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity in Tension (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{\text{db}} = \min(T_{db1}, T_{db2}) = 109.69$	
		[Ref. IS 800:2007, Cl.6.4] $T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$ $= \min(127.27, 119.97, 109.69)$	
Tension Capacity (kN)	87.0	= 109.69	Pass
Moment Capacity (kNm)	1.4	[Ref. IS 800:2007, Cl.6.1] $M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$ $= \frac{1.0 \times 64200.0 \times 250}{1.1 \times 10^6}$ $= 14.59$ [Ref. IS 800:2007, Cl.8.2.1.2]	Pass
Interaction Ratio	≤ 1	$\frac{1.4}{14.59} + \frac{87.0}{109.69} = 0.89$ [Ref. IS 800:2007, Cl.10.7]	Pass

		Created with OSdag®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

2.6 Weld Design

Check	Required	Provided	Remarks
Min. Weld Size (mm)	$t_{w_{\min}}$ based on thinner part $= \max(8, 8)$ $s_{\min} \text{ based on thicker part} = 3$ [Ref. IS 800:2007, Table 21, Cl.10.5.2.3]	3	Pass
Max. Weld Size (mm)	Thickness of thinner part $= \min(9, 8.0) = 8.0$ $s_{\text{max}} = 8$ [Ref. IS 800:2007, Cl.10.5.3.1]	3	Pass
Weld Strength (N/mm)	$R_{\rm w} = \sqrt{(T_{\rm wh} + A_{\rm wh})^2 + (T_{\rm wv} + V_{\rm wv})^2}$ $T_{\rm wh} = \frac{M \times y_{\rm max}}{I_{pw}} = \frac{1400000.0 \times 74.5}{551324.83}$ $T_{\rm wv} = \frac{M \times x_{\rm max}}{I_{pw}} = \frac{1400000.0 \times 0.0}{551324.83}$ $V_{\rm wv} = \frac{V}{l_w} = \frac{40000.0}{298}$ $A_{\rm wh} = \frac{A}{l_w} = \frac{87000.0}{298}$ $R_{\rm w} = \sqrt{(189.18 + 291.95)^2 + (0.0 + 134.23)^2}$ $= 499.5$	$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$ $= \frac{3 \times 410}{\sqrt{3} \times 1.25}$ $= 568.11$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass

		Created with OSCIAG®	
Company Name	GAIL	Project Title	Fin Plate Connection
Group/Team Name	Steve & Co.	Subtitle	
Designer	Steve Sojan	Job Number	1
Date	26 /12 /2024	Client	FOSSEE

3 3D Views

4 Design Log

2024-12-26 08:42:02 - Osdag - INFO - === End Of Design === 2024-12-26 08:42:02 - Osdag - INFO - : The minimum recommended weld throat thickness suggested by IS 800:2007 is 3 mm, as per cl. 10.5.3.1. Weld throat thickness is not considered as per cl. 10.5.3.2. Please take necessary detailing precautions at site accordingly.