File Edit View Run Kernel Settings Help

JupyterLab 🖸 🀞 Python 3 (ipykernel) 🔘

Trusted

```
[5]: # Full Champion Evaluation Across All Market Shock Datasets
                  import glob
import pohlib
import pandas as pd
import numny as np
from sklearn.metrics import average_precision_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
                             Load Champion Models =
                  # === (add trampton modets ===
model_paths = sorted(glob("champion_packages/=.pkl"))
champion_models = [joblib.load(p) for p in model_paths if "_meta" not in p]
champion_mames = [os.path.basemame(p).replace(".pkl", "") for p in model_paths if "_meta" not in p]
                  # === Load All Market Shock Datasets ===
data_paths = sorted(glob.glob("market_shock_synthetic_datasets/*.csv"))
                  # === Result Collector ===
all_results = []
                  # Create output folder for champion stacks
os.makedirs("champion_stacks", exist_ok=True)
                 # === Evaluation Loop ===

for test_data_path in data_paths:
    dataset_name = os.path.basename(test_data_path).replace(".csv", "")

df = pd.read_csv(test_data_path)
    X = df.drop("rare_event", axis=1)
    y = df("rare_event")

baseline = y.mean()
                          individual_scores = []
for model in champion_models:
                                try:
                                try:
    y_score = model.predict_proba(X)[:, 1]
except AttributeError:
    y_score = model.decision_function(X)
individual_scores.append(average_precision_score(y, y_score))
                         best_individual_pr_auc = max(individual_scores)
                         # --- Simple Ensemble ---
def ensemble_predict_proba(models, X):
    preds = []
    for model in models:
                                       try:
                                try:
    preds.append(model.predict_proba(X)[:, 1])
except AttributeError:
    preds.append(model.decision_function(X))
return np.mean(preds, axis=0)
                         y_ensemble = ensemble_predict_proba(champion_models, X)
ensemble_pr_auc = average_precision_score(y, y_ensemble)
                                    Stacking -
                         X_meta_train, X_meta_test, y_meta_train, y_meta_test = train_test_split(
    meta_X, y, test_size=0.3, stratify=y, random_state=42
                         meta_model = LogisticRegression(max_iter=1000).fit(X_meta_train, y_meta_train)
meta_preds = meta_model.preds(x_proba(X_meta_test)[:, 1]
meta_pr_auc = average_precision_score(y_meta_test, meta_preds)
                          # Save meta-model
joblib.dump(meta_model, f"champion_stacks/{dataset_name}_stacked.pkl")
                          # --- Record All Results ---
all_results.extend([
                                        "Dataset": dataset_name,
                                         "Approach": "Baseline Only",
"PR AUC": round(baseline, 3),
"Lift Over Baseline": 0.0,
"Notes": "No model, just prevalence"
                                        "Dataset": dataset_name,
"Approach": "Best Individual Champion",
"RR AUC": round(best_individual_pr_auc, 3),
"Lift Over Baseline": round(best_individual_pr_auc - baseline, 3),
"Notes": "Best PR AUC among individual champions"
                                        "Oataset": dataset_name,
"Approach": "Simple Average Ensemble",
"PR AUC": round(ensemble_pr_auc, 3),
"Lift Over Baseline": round(ensemble_pr_auc – baseline, 3),
"Motest': "Average probs across all models"
                                       "Dataset": dataset_name,
"Approach": "Stacked Logistic Regression",
"PR AUC": round(meta_pr_auc, 3),
"Lift Over Baseline": round(meta_pr_auc - baseline, 3),
"Notes": "Meta-model trained on model outputs"
                                },
                  # == Final Leaderboard ==
leaderboard_of = pd.DataFrame(all_results)
leaderboard_of.to_csv("ensemble_lift_leaderboard.csv", index=False)
print(leaderboard_df)
                  [7]: leaderboard_df
                                                                                                                                                    ★ 回 ↑ ↓ ☆ 〒 ■
                                                 Dataset
        [7]:
                                                                                        Approach PR AUC Lift Over Baseline
                                                                                                                                                                                                          Notes
                                     market_shock_sim
                                                                                     Baseline Only 0.165
                                                                                                                                            0.000
                   1 market_shock_sim Best Individual Champion 0.178
                                                                                                                                      0.013 Best PR AUC among individual champions
                                                                                                                                                                     Average probs across all models
                                    market_shock_sim Simple Average Ensemble 0.177
                                                                                                                                            0.012
```

market_shock_sim Stacked Logistic Regression 0.172 0.007 Meta-model trained on model outputs

4	marketshock_easy_s1	Baseline Only	0.141	0.000	No model, just prevalence
5	marketshock_easy_s1	Best Individual Champion	0.306	0.164	Best PR AUC among individual champions
6	marketshock_easy_s1	Simple Average Ensemble	0.207	0.066	Average probs across all models
7	marketshock_easy_s1	Stacked Logistic Regression	0.425	0.283	Meta-model trained on model outputs
8	marketshock_easy_s2	Baseline Only	0.136	0.000	No model, just prevalence
9	marketshock_easy_s2	Best Individual Champion	0.191	0.055	Best PR AUC among individual champions
10	marketshock_easy_s2	Simple Average Ensemble	0.107	-0.029	Average probs across all models
11	marketshock_easy_s2	Stacked Logistic Regression	0.455	0.319	Meta-model trained on model outputs
12	marketshock_easy_s3	Baseline Only	0.133	0.000	No model, just prevalence
13	marketshock_easy_s3	Best Individual Champion	0.149	0.016	Best PR AUC among individual champions
14	marketshock_easy_s3	Simple Average Ensemble	0.098	-0.035	Average probs across all models
15	marketshock_easy_s3	Stacked Logistic Regression	0.638	0.505	Meta-model trained on model outputs
16	marketshock_extreme_s1	Baseline Only	0.261	0.000	No model, just prevalence
17	marketshock_extreme_s1	Best Individual Champion	0.261	0.000	Best PR AUC among individual champions
18	marketshock_extreme_s1	Simple Average Ensemble	0.258	-0.003	Average probs across all models
19	marketshock_extreme_s1	Stacked Logistic Regression	0.257	-0.004	Meta-model trained on model outputs
20	marketshock_extreme_s2	Baseline Only	0.255	0.000	No model, just prevalence
21	marketshock_extreme_s2	Best Individual Champion	0.257	0.002	Best PR AUC among individual champions
22	marketshock_extreme_s2	Simple Average Ensemble	0.247	-0.008	Average probs across all models
23	marketshock_extreme_s2	Stacked Logistic Regression	0.274	0.019	Meta-model trained on model outputs
24	marketshock_extreme_s3	Baseline Only	0.264	0.000	No model, just prevalence
25	marketshock_extreme_s3	Best Individual Champion	0.270	0.006	Best PR AUC among individual champions
26	marketshock_extreme_s3	Simple Average Ensemble	0.271	0.007	Average probs across all models
27	marketshock_extreme_s3	Stacked Logistic Regression	0.260	-0.004	Meta-model trained on model outputs
28	marketshock_hard_s1	Baseline Only	0.177	0.000	No model, just prevalence
29	marketshock_hard_s1	Best Individual Champion	0.191	0.014	Best PR AUC among individual champions
30	marketshock_hard_s1	Simple Average Ensemble	0.185	0.008	Average probs across all models
31	marketshock_hard_s1	Stacked Logistic Regression	0.191	0.014	Meta-model trained on model outputs
32	marketshock_hard_s2	Baseline Only	0.164	0.000	No model, just prevalence
33	marketshock_hard_s2	Best Individual Champion	0.167	0.003	Best PR AUC among individual champions
34	marketshock_hard_s2	Simple Average Ensemble	0.162	-0.001	Average probs across all models
35	marketshock_hard_s2	Stacked Logistic Regression	0.168	0.004	Meta-model trained on model outputs
36	marketshock_hard_s3	Baseline Only	0.155	0.000	No model, just prevalence
37	marketshock_hard_s3	Best Individual Champion	0.164	0.010	Best PR AUC among individual champions
38	marketshock_hard_s3	Simple Average Ensemble	0.157	0.003	Average probs across all models
39	marketshock_hard_s3	Stacked Logistic Regression	0.149	-0.006	Meta-model trained on model outputs
40	marketshock_medium_s1	Baseline Only	0.141	0.000	No model, just prevalence
41	marketshock_medium_s1	Best Individual Champion	0.146	0.005	Best PR AUC among individual champions
42	marketshock_medium_s1	Simple Average Ensemble	0.128	-0.012	Average probs across all models
43	marketshock_medium_s1	Stacked Logistic Regression	0.271	0.130	Meta-model trained on model outputs
44	marketshock_medium_s2	Baseline Only	0.144	0.000	No model, just prevalence
45	marketshock_medium_s2	Best Individual Champion	0.219	0.075	Best PR AUC among individual champions
46	marketshock_medium_s2	Simple Average Ensemble	0.151	0.008	Average probs across all models
47	marketshock_medium_s2	Stacked Logistic Regression	0.251	0.107	Meta-model trained on model outputs
48	marketshock_medium_s3	Baseline Only	0.140	0.000	No model, just prevalence
49	marketshock_medium_s3	Best Individual Champion	0.237	0.097	Best PR AUC among individual champions
50	marketshock_medium_s3	Simple Average Ensemble	0.195	0.055	Average probs across all models
51	marketshock_medium_s3	Stacked Logistic Regression	0.255	0.114	Meta-model trained on model outputs
52	stock_prediction_clean	Baseline Only	0.502	0.000	No model, just prevalence
53	stock_prediction_clean	Best Individual Champion	0.381	-0.122	Best PR AUC among individual champions
54	stock_prediction_clean	Simple Average Ensemble	0.327	-0.176	Average probs across all models
55	stock_prediction_clean	Stacked Logistic Regression	0.919	0.416	Meta-model trained on model outputs