DeepLearning.Al

Linear Regression with Multiple Variables

Multiple Features

Multiple features (variables)

one ->	Size in feet ² (x)	Price (\$) in 1000's (y)		
feature	2104	400		
	1416	232		
	1534	315		
	852	178		
		•••		

$$f_{w,b}(x) = wx + b$$

Multiple features (variables)

	Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=1
	X ₁	X2	Х3	X4		n=4
	2104	5	1	45	460	
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	

$$x_i = j^{th}$$
 feature

n = number of features

 $\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example

 $\mathbf{x}_{j}^{(i)}$ = value of feature j in i^{th} training example

$$\vec{\chi}^{(2)} = [1416 \ 3 \ 2) \ 40]$$

$$X_3^{(2)} = 2$$

Model:

Previously:
$$f_{w,b}(x) = wx + b$$

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
example
$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$

$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$
size #bedrooms #floors years price

$$f_{w,b}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

DeepLearning.Al

Linear Regression with Multiple Variables

Vectorization
Part 1

Parameters and features

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$
 $n = 3$
b is a number

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

linear algebra: count from 1

$$w = np.array([1.0,2.5,-3.3])$$

$$b = 4 \qquad \qquad \chi[0] \ \chi[1] \ \chi[2]$$

$$x = np.array([10,20,30])$$

code: count from 0

Without vectorization $\Lambda = 100,000$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b \quad \sum_{j=1}^{n} \rightarrow j = 1...n$$

range(
$$o, n$$
) $\rightarrow j = 0 \dots n-1$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

DeepLearning.Al

Linear Regression with Multiple Variables

Vectorization
Part 2

Without vectorization

for j in range(0,16): f = f + w[j] * x[j]

$$f + \mathbf{w}[0] * \mathbf{x}[0]$$

$$t_1$$
 f + w[1] * x[1]

...

$$t_{15}$$
 f + w[15] * x[15]

Vectorization

efficient -> scale to large datasets

Gradient descent
$$\overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters derivatives $\overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})$

$$w = \text{np.array}([0.5, \ 1.3, \ \dots \ 3.4])$$

$$d = \text{np.array}([0.3, \ 0.2, \ \dots \ 0.4])$$

$$\text{compute } w_j = w_j - 0.1d_j \text{ for } j = 1 \dots 16$$

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

$$w_2 = w_2 - 0.1d_2$$

$$\vdots$$

$$w_{16} = w_{16} - 0.1d_{16}$$

Gradient descent
$$\overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters derivatives $\overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})$

$$w = \text{np.array}([0.5, 1.3, ... 3.4])$$

$$d = \text{np.array}([0.3, 0.2, ... 0.4])$$

$$\text{compute } w_j = w_j - 0.1d_j \text{ for } j = 1 ... 16$$

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

 $w_2 = w_2 - 0.1d_2$
 \vdots
 $w_{16} = w_{16} - 0.1d_{16}$

DeepLearning.Al

Linear Regression with Multiple Variables

Gradient Descent for Multiple Regression

Previous notation

Vector notation

$$w_1, \cdots, w_n$$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + \dots + w_n x_n + b$$

Gradient descent

Cost function
$$J(w_1, \dots, w_n, b)$$

repeat {
$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\underline{w_1, \cdots, w_n, b})$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_1, \cdots, w_n, b})$$
 }

$$\overrightarrow{w} = [w_1 \cdots w_n]$$
 $b \text{ still a number}$
 $f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$
 $dot \text{ product}$

repeat {

$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}) b$$
}

Gradient descent

One feature

repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$

simultaneously update w, b

```
n features (n \ge 2)
 \vdots \qquad \qquad \frac{\partial}{\partial w_1} J(\vec{\mathbf{w}}, b) 
 w_n = w_n - \alpha \frac{1}{m} \sum_{i=1}^m \left( f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)} \right) \mathbf{x}_n^{(i)} 
 \mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w}, \mathbf{b}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})
              simultaneously update
             w_j (for j = 1, \dots, n) and b
```

An alternative to gradient descent

Normal equation

- Only for linear regression
- Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b

DeepLearning.Al

Practical Tips for Linear Regression

Feature Scaling Part 1

Feature and parameter values

$$\widehat{price} = w_1 x_1 + w_2 x_2 + b$$
size #bedrooms

 x_1 : size (feet²) x_2 : # bedrooms

range: 300 - 2,000 range: 0 - 5

arge

Small

House: $x_1 = 2000$, $x_2 = 5$, price = \$500k

one training example

size of the parameters w_1, w_2 ?

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$

$$price = 50 * 2000 + 0.1 * 5 + 50$$

$$100,000 \text{ K} \quad 0.5 \text{ K} \quad 50 \text{ K}$$

$$price = $100,050.5 \text{ K} = $100,050,500$$

$$w_1 = 0.1$$
, $w_2 = 50$, $b = 50$
small large
 $price = 0.1 * 2000k + 50 * 5 + 50$
 $200K$ $250K$ $50K$
 $price = $500k$ more reasonable

Feature size and parameter size

	size of feature x_j	size of parameter w _j
size in feet ²	←	←→
#bedrooms	←→	←

Feature size and gradient descent

DeepLearning.Al

Practical Tips for Linear Regression

Feature Scaling Part 2

Feature scaling

Mean normalization

$$300 \le x_1 \le 2000$$

$$x_1 = \frac{x_1 - \mu_1}{2000 - 300}$$

$$x_1 = \frac{x_1 - \mu_1}{2000 - 300}$$

$$x_2 = \frac{x_1 - \mu_1}{2000 - 300}$$

$$x_3 = \frac{x_1 - \mu_1}{2000 - 300}$$

$$x_4 = \frac{x_1 - \mu_1}{2000 - 300}$$

$$x_5 = \frac{x_1 - \mu_1}{2000 - 300}$$

Z-score normalization

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j

$$-3 \le x_j \le 3$$

$$-0.3 \le x_j \le 0.3$$
acceptable ranges

$$0 \le x_1 \le 3$$
 Okay, no rescaling $-2 \le x_2 \le 0.5$ Okay, no rescaling $-100 \le x_3 \le 100$ too large \rightarrow rescale $-0.001 \le x_4 \le 0.001$ too small \rightarrow rescale $98.6 \le x_5 \le 105$ too large \rightarrow rescale

Gradient descent

$$\begin{cases} w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b) \\ b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) \end{cases}$$

Make sure gradient descent is working correctly


```
Automatic convergence test Let \varepsilon "epsilon" be 10^{-3}.

0.001

If J(\vec{w}, b) decreases by \leq \varepsilon in one iteration, declare convergence.

(found parameters \vec{w}, b to get close to global minimum)
```

DeepLearning.Al

Practical Tips for Linear Regression

Choosing the Learning Rate

or learning rate is too large

$$w_1 = w_1 + \alpha d_1$$
use a minus sign
 $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\vec{w}, b)$ should decrease on every iteration

If α is too small, gradient descent takes a lot more iterations to converge

Values of α to try:

...
$$0.001_{0.003}$$
 $0.01_{0.03}$ $0.1_{0.03}$ $0.3_{0.3}$ $1...$ $3X_{0.3}$ $\approx 3X_{0.3}$ $3X_{0.3}$ $\approx 3X_{0.3}$

DeepLearning.Al

Practical Tips for Linear Regression

Feature Engineering

Feature engineering

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth

 $area = frontage \times depth$

$$x_3 = x_1 x_2$$

new feature

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design
new features, by
transforming or combining
original features.

DeepLearning.Al

Practical Tips for Linear Regression

Polynomial Regression

Polynomial regression

Choice of features

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters} \quad \text{of the model}$$

$$b \text{ is a number}$$

$$vector \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

$$(not \text{ multivariate regression})$$