

TEACHING PLAN

Computer Graphics (CS240)

Faculty	Patel Tejaskumar R	Division A	
Contact	Tejaskumar.patel@nuv.ac.in Office Hours 10:00 am	- 6:00 pm	
School	School of engineering and Technology		
Program	Computer Science and engineering		
Semester	Spring	Credits 03	
Academic Year	2022-2023		
Lecture time &	Thursday 11.00 to 12.00 pm Location Room No	: 502	
Weekdays	Friday 02.00 to 03.00 pm Room No:501		
	Tutorial:Monday 11.00 to 12.00 pm Room No	:504	
	Friday 03.00 to 04.00 pm Room No	:-501	
Pre-requisites	Knowledge of C/C++ Programming, Free Hand Drawing		
Course Description	The purpose of this course is to study the process of creating g	raphics using	
	computer programs.		
Course Abstract *	Computer graphics can be a powerful tool for supporting visu	al problem solving,	
	and interactivity plays a central role in harnessing the users' cre		
	will introduce various interactive tools developed in compute	<u> </u>	
	field with their design rationales and algorithms. Examples inc		
	to graphical user interfaces, authoring tools for 2D drawings and		
	interactive computer-aided design systems. Rich live demons		
	assignments will give you insights and skills to design and imple	ement such tools for	
	your own problems.		
Course Objectives	To acquaint the Learner with the basic concepts of Computer Graphics		
	To Learn the Various algorithms for generating and rendering graphical		
	figures.		
	• To get Familiar with mathematics behind the graphical transformations.		
	To Understand and apply various methods & techniques regarding		
Lagration Outsons	projections, animation, shading, illumination and lighting.		
Learning Outcomes	• Identify the Basic terminologies of Computer Graphics a mathematical foundation of the concepts of Computer graphics.		
	 Apply Mathematics to Develop Computer Programs for 		
	graphics operations	oronicital y	
	Illustrate the concepts of windowing and clipping and A	pply various	
	algorithms to fill and clip polygons		
	• Understand and Apply the core concepts of computer gr		
	transformation in two and three dimensions, viewing and • Understand the concepts of color models, lighting, shadi		
	 Understand the concepts of color models, lighting, shadi hidden surface elimination. 	ing infoders and	
	 Create effective programs using concepts of curves, frac 	tals, animation and	
	Gaming	,	
Typology of Course	Theory		
Course Outline	Unit 1	8hrs	
(Units, Hours,	Introduction to computer graphics, lines, line segments, vectors, pixels and frame		
Textbooks, Reference	buffers, vector generation, DDA and Bresenham's line and circle drawing		
Books)	algorithms, anti-aliasing, thick lines, character generation: Stroke Principle,		

Starburst Principle, Bit map method, display of frame buffer.

Graphics Primitives: Display devices, Interactive devices: Tablets, touch panels, mouse, joysticks, track balls, light pen etc., Data generating devices: Scanners and digitizers, primitive operations, display file structure, algorithms and display file interpreter, Text and line styles. Introduction, representation, entering Polygons, Polygon filling: Seed fill, Edge fill, scan conversion algorithm, filling with patterns

Unit 2 12 hrs

2D Transformations: Introduction, matrices, Scaling, Rotation, homogeneous coordinates, Translation, Co-ordinate transformation, rotation about an arbitrary point, inverse transforms and shear transforms Introduction, segment table, segment creation, deletion, renaming. Image transformations, raster techniques Windowing and Clipping: Introduction, viewing transforms, 2D clipping, Cohen-Sutherland outcode algorithm, Polygon Clipping, Sutherland-Hodgeman algorithm, Generalized clipping. 3-D Transformations: Introduction, 3-D geometry, primitives, transformations, Rotation about an arbitrary axis, Concept of parallel and perspective projections, Viewing parameters, 3D clipping, 3D viewing transformations

Unit 3 8hrs

Introduction, Back-face removal algorithm, Z buffers, scan-line, Painters algorithm, Warnock algorithm, hidden line methods, binary space partition. Light, Color and Shading: Introduction, Diffused illumination, point source illumination, shading algorithm, reflections, shadows, ray tracing, Colour models and tables, shading algorithm, transparency

Unit 4 12hrs

Curves and Fractals: Introduction, Curve generation, Interpolation, interpolating algorithms, interpolating polygons, B-Splins and corners, Bezier curves, Fractals, fractal lines and surfaces (With complete mathematical treatment of this unit)

Unit 5 5hrs

Development of 3D structures and their projection in various angles. Generation of isometric views from given information of front view, top view and side view and vice versa

Text Books:

- 1. S. Harrington, "Computer Graphics", 2nd Edition, McGraw-Hill publications, 1987, ISBN 0-07-100472-6.
- 2. D. Rogers, J. Adams, "Mathematical Elements for Computer Graphics", 2nd Edition, Tata McGraw-Hill Publication, 2002, ISBN 0 07 048677 8.

Reference Books

- 1. D. Rogers, "Procedural Elements for Computer Graphics", 2nd Edition. Tata McGraw- Hill Publication, 2001, ISBN 0 07 047371 4.
- 2. J. Foley, V. Dam, S. Feiner, J. Hughes, "Computer Graphics Principles and Practice", 2 nd Edition, Pearson Education, 2003, ISBN 81 7808 038 -9.
- 3. F. Hill, "Computer Graphics: Using OpenGL", 2nd Edition, Pearson Education, 2003 ISBN 81 297 -0181 2.
- 4. D. Hearn, M. Baker, "Computer Graphics C Version", 2nd Edition, Pearson Education, 2002, ISBN 81 7808 794 4

Pedagogy	 It includes various methods like mathematical illustration can be made interesting through board work. Power point presentation and multimedia tools for explaining rendering Programming for creating graphic objects needs an online graphics tools or online C compilers. The subject expects lots of interaction with the students which allows keeping track of their understanding.
Expectations from Students * Assessment / Evaluation	 Students must pre-read the materials covered in previous sessions. Students must practice programs given in assignments/laboratory session. Students must solve the problems/numerical given in tutorial session. 30 Mid Semester Examination 15 Tutorial 15 Quiz 40 End Semester Examination
Attendance Policy	As per the university attendance policy
Project / Assignment Details *	
Course Material	As Mentioned above in course outline
Additional Information *	

^{*} These are optional fields.

Session Plan

Topic Title	Session No.	Topic & Subtopic Details	Readings, Cases, etc.	Activities *	Impor tant Dates
Unit-1 Introduction to computer Graphics	1	Basic of Computer Graphics, Applications of computer graphics	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 1	Theory class	
	2	Random and Raster scan systems, character generation methods	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 2	Theory class	
Graphics Primitives :	3,4	Graphics input devices, Graphics output devices Data generating devices Graphics software and Standards	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 2	Theory class	
	5	Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives, antialiasing methods	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 3	Theory class	
	6	Illustration of DDA and Bresenham's line and circle drawing algorithm	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 3	Theory class	

	7,8	Fill area primitives: seed fill,Edge fil,scan-line polygon filling and filling by pattern	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 3	Theory class
Unit-2 2D transformation	9,10	translation, rotation, scaling, matrix representation, homogeneous coordinates,	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 5	Theory class
	11	Inverse transform and shear transforms	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 5	Theory class
	12	Segment table, segment creation, deletion renaming	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 5	Theory class
	13	Image transformation Raster techniques	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 5	Theory class
Windowing and clipping	14	Introduction, viewing transforms, 2D clipping	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 6	Theory class
	15	Cohen Sutherland outcode algorithm, polygon clipping	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 6	Theory class
	16	Sutherland-hodgeman algorithm Generalized clipping	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 2	Theory class
3D transformation	17,18	Introduction , 3-D geometry,primitives,3D transformations	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 11	Theory class
	19,20	Parallel and perspective projections,3D view and 3D clipping	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 12	Theory class
Unit-3	21	Back face removal and Z buffer algorithm	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 13	Theory class

	22	Scan line and painters algorithm	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 13	Theory class
	23	Warnock algorithm, hidden line methods	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 13	Theory class
	24	Binary space partition, light, color and shading	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 14,ch-15	Theory class
	25	Diffused illumination	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 14	Theory class
	26	Point source illumination and ray tracing	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 14	Theory class
	27	Shading algorithm	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 14	Theory class
	28	Transparency	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch-14	Theory class
Unit 4 Curves and fractals	29	Introduction of basic curves and fractals.	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	30	Curve generation	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	31	Interpolation	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	32	Interpolating algorithms	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class

	33	Interpolating polygons	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	34	B-splines and corners	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	35	Bezier curves	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	36	Fractals	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	37,38	Fractal lines and surfaces	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 10	Theory class
	39	Quiz		Exam
Unit 5	40,41	Development of 3D structure and their projections in various angles.	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 13	Theory class
	42,43	Generation of isometric views from inputs: front view, top view and side view	D. Hearn, M. Baker, "Computer Graphics - C Version", 2nd Edition Ch- 13	Theory class
	44	Revision of initial units	-	Theory Class
	45	Revision of initial units	-	Theory Class