Course Title: Digital Logic and System Design

Course Code: CSE 210

Final project on ALU

Experiment Name: Design a 4-bit ALU with 4-bit parallel adder (using logics gate)

ALU - Arithmetic and Logical Unit:

$$Xi = Ai + S2. S1'. S0'. Bi + S2. S1. S0'. Bi'$$

$$Yi = S0. Bi + S1.Bi$$

$$Zi = S2$$
'.Ci

<u>Arithmetic -</u>

Input - A, B

Iliput - A , B							
S2	S1	S0	Cin	Xi	Yi	Fi = (Xi xor Yi xor cin)	
0	0	0	0	Ai	0	A + 0 = A	Transfer
			1	Ai	0	A + 0 + 1 = A + 1	Increment
0	0	1	0	Ai	Bi	A+B (Add)	addition
			1	Ai	Bi	A+B+1 (Add)	Add with carry
0	1	0	0	Ai	Bi'	A+ B' =A-B -1	Add A with B`
			1	Ai	Bi'	A + B' + 1 = A - B	Subtraction
0	1	1	0	Ai	1	A + 2^n -1	Decrement

1	Ai	1	$A + (2^n - 1) + 1$ = A + 2^n	Transfer
---	----	---	----------------------------------	----------

Logical:

S2	S1	S0	Xi	Yi	F = (Xi xor Yi)
1	0	0	Ai + Bi	0	A + B (or)
1	0	1	Ai	Bi	A xor B
1	1	0	Ai + Bi'	Bi'	A . B
1	1	1	Ai	1	A'

Report:

- 1) Problem Statement
- 2) Instruments (used in this experiment)
- 3) Truth table
- 4) Logic expression
- 5) Logic Diagram
- 6) Discussion