Translation of amended sheets annexed to the IPER

43

We claim:

10

15

20

25

Phenethylacrylamides of the formula I

 R^1 O $O-R^3$ $O-R^4$

in which the substituents $\ensuremath{R^1},\ \ensuremath{R^2},\ \ensuremath{R^3}$ and $\ensuremath{R^4}$ have the following meanings:

- R¹ is halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_3 - C_{10} -cycloalkyl, C_1 - C_4 -haloalkoxy or C_1 - C_4 -haloalkyl;
- R² is hydrogen;
- R^3 is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, propargyl, C_3-C_4 -alkenyl or $-H_2C-C\equiv C-C(R^a,R^b)-R^c$, where R^a,R^b independently of one another are hydrogen or methyl and R^c is hydrogen or C_1-C_4 -alkyl;
 - R⁴ is methyl or C₁-haloalkyl; and
- is a 5- or 6-membered heteroaromatic ring which may Het contain a fused 5- or 6-membered carbocycle and which 30 is selected from among heteroaromatic rings containing 1, 2, 3 or 4 nitrogen atoms as ring members, heteroaromatic rings which contain 1 or 2 nitrogen atoms and 1 or 2 further heteroatoms selected from among oxygen or sulfur as ring members, and heteroaromatic rings which have 1 or 2 heteroatoms 35 selected from among oxygen and sulfur as ring members, Het being unsubstituted or it being possible for Het to contain 1, 2 or 3 substituents S selected from among halogen, C₁-C₄-alkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkyl 40 and C_1-C_4 -alkoxy.
 - 2. A phenethylacrylamide of the formula I as claimed in claim 1, wherein R^1 is C_1-C_4 -alkyl or C_3-C_6 -cycloalkyl, in particular ethyl, isopropyl, tert-butyl or cyclopropyl.

45

5

25

30

35

45

Translation of amended sheets annexed to the IPER

44

- 3. A phenethylacrylamide of the formula I as claimed in any of the preceding claims, wherein Het is selected from among pyridyl, pyrimidinyl, pyrazinyl, pyrrolyl, thienyl, furanyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl and isothiazolyl.
- 4. A phenethylacrylamide of the formula I as claimed in any of the preceding claims, wherein Het contains one or two substituents S which are bonded to those ring atoms which are not adjacent to the linkage site forming the double bond.
 - 5. A phenethylacrylamide of the formulae I.1, I.2 and I.3

$$\begin{array}{c|c}
R^1 & O \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\
\hline
 &$$

in which the substituents S, R^1 , R^2 , R^3 and R^4 have the abovementioned meanings and n is 1 or 2, and S is not bonded in the ortho position relative to the linkage site.

- 40 6. A process for the preparation of a phenethylacrylamide of the formula I as claimed in any of the preceding claims, wherein R^2 is hydrogen and R^1 is hydrogen, C_1-C_4 -alkyl, C_3-C_8 -cycloalkyl or C_1-C_4 -haloalkyl, and Het, R^3 and R^4 have the abovementioned meanings, comprising the following steps:
 - a) reaction of a phenethylamide of the formula II,

5

10

15

25

30

40

Translation of amended sheets annexed to the IPER

45

in which the substituents R^1 , R^3 and R^4 have the abovementioned meanings, with a trialkylstannane $(R^a)_3SnH$, wherein R^a is alkyl resulting in a compound of the formula III

wherein the substituents Ra, R1, R3 and R4 have the abovementioned meanings, and

b) reaction of the compound III obtained in step a) with a compound Het-Hal, wherein Hal is bromine or iodine and Het has the meaning given in claim 1, in the presence of catalytically active amounts of a transition metal compound of a group VIII metal;

or

a') reaction of a compound of the formula II with at least stoichiometric amounts of iodine, resulting in a compound of the formula IV

wherein the substituents R^1 , R^3 and R^4 have the abovementioned meanings, and

45 b') reaction of the compound IV obtained in step a') with a stannane of the formula $(R^a)_3Sn-Het$, wherein Het has the meaning stated in claim 1, in the presence of

Translation of amended sheets annexed to the IPER

46

catalytically active amounts of a transition metal compound of a group VIII metal.

7. A process as claimed in claim 6, additionally comprising the preparation of the phenethylamide of the formula II, wherein a propiolic acid compound of the formula V

wherein R^1 has the abovementioned meaning and Z is halogen or OH, is reacted in a manner known per se with a phenethylamine of the general formula VI

$$\begin{array}{c} \text{O-R}^3 \\ \text{H}_2\text{N} & \text{O-R}^4 \end{array} \tag{VI}$$

wherein R^3 and R^4 have the abovementioned meanings.

25 8. A process for the preparation of a phenethylacrylamide as claimed in claim 1 of the formula I, wherein a phenethylacrylamide of the formula I where R³ = H:

$$R^{2} \xrightarrow{\mathbb{N}} \mathbb{N}$$
Het
$$(I \{R^{3} = H\})$$

wherein Het, R^1 , R^2 and R^4 have the abovementioned meanings, is reacted with a compound of the formula R^3-Y , wherein R^3 has the abovementioned meaning and Y is a nucleophilically displaceable leaving group.

9. A phenethylamide of the formula II'

40

5

Translation of amended sheets annexed to the IPER

47

$$\begin{array}{c|c}
0 & O-R^3' \\
O-R^4 & O-R^4
\end{array}$$

wherein the substituents R¹ and R⁴ have the abovementioned meanings, R³ has the meanings stated for R³ or R³ is hydrogen or an OH protecting group.

10. A phenethylacrylamide of the formula I':

15 $R^{1} O O-R^{3}$ $O-R^{4}$

wherein Het, R^1 , R^2 and R^4 have the abovementioned meanings and $R^{3'}$ is hydrogen or an OH protecting group.

- 11. A composition for controlling phytopathogenic harmful fungi comprising a solid or liquid carrier and a compound of the formula I as claimed in any of claims 1 to 5.
- 12. A method of controlling phytopathogenic harmful fungi, which comprises treating the fungi or the materials, plants, the soil or seed to be protected from fungal infection with an effective amount of a compound of the formula I as claimed in any of claims 1 to 5.

35

40

45