S6 - MECANIQUE INDUSTRIELLE

CHAPITRE 3:

Résistance et déformation des pièces et composants

563

S6.3.1 Résistance des matériaux

- Hypothèses de la résistance des matériaux :
- modèle poutre,
- hypothèses sur les matériaux,
- hypothèses de Bernoulli et de Barré de Saint Venant.
- Contraintes et lois de comportement :
- torseur des efforts de cohésion dans une section droite d'une poutre ;
- vecteur contrainte, contrainte normale et tangentielle ;
- lois de Hooke.

• Les sollicitations simples :

- traction, compression;
- torsion :
- flexion simple.
- Pour chaque sollicitation, à l'aide de données sur les poutres et les

utilisation des résultats des logiciels de calcul pour interpréter les contraintes dans une section droite, les conditions de résistance et de déformation, incluant les éventuelles concentrations de contraintes.

- Notions (principe de superposition) sur les sollicitations composées limitées à la flexion - traction ou compression et à la flexion - torsion d'arbres à section circulaire.
- Cas particulier du cisaillement et du matage.
 Applications au comportement des outillages.

S6.3.2 Élasticité des matériaux

- Détermination du déplacement du centre de gravité d'une section droite
- poutre dans le cas de la sollicitation composée traction simple et flexion simple.
- Interprétation des résultats fournis par un logiciel d'élasticité.
- Applications à la déformation des outils, des pièces et des porte-pièces lors
- Notions sur le comportement vibratoire des moyens d'usinage.

Résistance et déformation des pièces et composants

Chapitre 3

Modèle d'étude.

Les études de résistance des matériaux (Rdm) se font sur des modèles de poutre. Une poutre est un solide long par rapport aux dimensions de ses sections droites.

Les sections droites sont des sections planes et perpendiculaires à la ligne moyenne (Lm) de la poutre. Cette ligne est définie par les centres de gravité de chacune des sections droites. Les sections droites doivent rester constantes ou varier de façon progressive entre les deux extrémités de la poutre.

Les poutres étudiées doivent toujours être symétriques par rapport au plan d'étude.

Hypothèses fondamentales.

Le cours de RdM que nous développeront ne sera valable et ne pourra être appliqué que si les conditions suivantes sont respectées :

Les matériaux sont homogènes et isotropes.

Toutes les forces extérieures exercées sur la poutre sont contenues dans le plan de symétrie.

Les sections droites, planes et perpendiculaires à la ligne moyenne, restent planes et perpendiculaires à la ligne moyenne après déformations. Il n'y a pas de gauchissement des sections droites. (Hypothèse de Navier Bernoulli).

On se place toujours dans le cas de petites déformations (les déformations restent faibles devant les dimensions de la poutre).

Efforts intérieurs.

Ce sont les efforts qui agissent à l'intérieur des poutres et qui assurent l'équilibre de la structure sous l'action des charges extérieures. On les appelle aussi *efforts de cohésion*.

Chapitre 3

Résistance et déformation des pièces et composants

Principe.

On coupe de façon fictive la poutre et on étudie ce qui se passe sur chaque partie en appliquant le P.F.S.

L'étude des efforts dans la section S peut se faire alors soit en isolant le tronçon de gauche, soit en isolant le tronçon de droite. Il faut alors poser une orientation pour avoir une cohérence des signes (n'oublions pas le principe des actions mutuelles : $\vec{F}_{1/2} = -\vec{F}_{2/1}$ et $\vec{M}_{1/2} = -\vec{M}_{2/1}$).

Faisons l'étude sur la partie gauche de la poutre.

$$\vec{R}_G = \vec{R}_{1/2} = -\vec{R}_{2/1} \\ \vec{M}_G = \vec{M}_{G1/2} = -\vec{M}_{G2/1}$$
 en appliquant le P.F.S. :
$$\vec{R}_G = \vec{F}_1 + \vec{F}_2 \\ \vec{M}_G = \vec{M}_G (\vec{F}_1) + \vec{M}_G (\vec{F}_2)$$

Résistance et déformation des pièces et composants

Composantes des efforts intérieurs.

 \vec{N} est l'effort normal. Il est porté par la ligne moyenne Lm de la poutre. ($\vec{N} = \vec{R}_G \cdot \vec{x}$)

 $\vec{T} = \vec{T}_{\rm v} + \vec{T}_z$ est l'effort tranchant. Il est perpendiculaire à Lm.

 $\vec{M}_{\scriptscriptstyle T}$ est le moment de torsion. Il est porté par Lm.

 $\vec{M}_f = \vec{M}_{fy} + \vec{M}_{fz}$ est le moment de flexion. Il est perpendiculaire à Lm.

Torseur des efforts intérieurs.

Comme toute action mécanique, les efforts intérieurs peuvent être modélisés par un torseur que l'on nommera *torseur de cohésion* et que l'on écrira sous la forme suivante :

En gardant les mêmes conventions pour le signe que précédemment, on a la relation :

$$f_{G} + f_{G1/2} - f_{G2/1}$$

Résistance et déformation des pièces et composants

Chapitre 3

Sollicitations simples et composées.

On fait correspondre l'axe \vec{x} avec Lm. Si il n'existe qu'une seule composante $N,T,M_T\,ou\,M_f$, on est dans un cas de sollicitation simple. Si il existe au moins deux de ces composantes, on est alors dans le cas d'une sollicitation composée.

	Cas	Exemple	Composantes			
			N	Т	M_{T}	M_{f}
Sollicitations composées Sollicitations simples	Traction	-F F	N	0	0	0
ıs simples	Cisaillement	F -F	0	Т	0	0
Sollicitation	Torsion	-M	0	0	M _T	0
	Flexion pure	-MC Y X M	0	0	0	M_{fz}
Sollicitations composées	Flexion simple	1 1	0	Ту	0	M_{fz}
	Flexion + Traction	-F	N	Ту	0	M_{fz}
	Flexion + Torsion	-M M	0	T _y	M_{T}	M_{fz}
	Flambage	F	N	0	0	M_{fz}

Résistance et déformation des pièces et composants

Chapitre 3

Notion de contrainte.

Détermination des contraintes.

Remarque : Ce ne sont pas les actions intérieures qui donnent des indications en un point de la section, ce sont les contraintes.

Définitions

RdM généralités I.P. 2007

Résistance et déformation des pièces et composants

Chapitre 3

M est un point quelconque de la coupure (S). Δ S est l'élément de surface qui entoure M et $\Delta \vec{f}_{i2/1}$ est l'action exercée par (2) sur Δ S appartenant à (1). $\sum \Delta \vec{f}_{i2/1} = \vec{R}_G$.

On appelle contrainte $\overline{\sigma(M,n)}$ en M dans la direction \vec{n} : $\overline{\sigma(M,n)} = \lim_{\Delta S \to 0} \frac{\overline{\Delta f_{i2/1}}}{\Delta S}$.

Les projections de $\overline{\sigma(\mathbf{M}, n)}$ sur \vec{n} et \vec{t} donnent les contraintes normale σ et tangentielle τ .

Hypothèse de Saint-Venant.

Les contraintes σ ou les déformations ϵ engendrées en un point suffisamment éloigné de la zone d'application des efforts sont identiques avec n'importe quelles charges donnant une résultante équivalente.

Coefficients de sécurité.

Définition.

Il existe deux méthodes pour déterminer le coefficient de sécurité (ces méthodes sont liées). A l'aide des charges :

$$s = \frac{ch \arg es \ admissible \ par \ la \ structure}{ch \arg es \ habituellen ent \ exercées} = \frac{résistan \ ce \ réelle \ de \ la \ structure}{résistan \ ce \ strictement \ nécessaire}$$

A l'aide des contraintes :

$$s = \frac{Limite \ élastique \ du \ matériau}{contra \ int \ e \ tolérée \ dans \ la \ structure} = \frac{R_e}{R_p} \qquad (s = \frac{R_r}{R_p} \ pour \ les \ matériaux \ fragiles.)$$

Le coefficient de sécurité varie de 1 à 10 en fonction des chocs, du type de charge, de la précision des calculs, des phénomènes de fatigue, des connaissances du matériau ... La marge de sécurité m vaut : m = s - 1.

Résistance et déformation des pièces et composants

Chapitre 3

Propriétés mécaniques des certains matériaux

Aciers et fontes:

Niconoco	Module d'élasticité E	Coeficient de Poisson	Masse volumique	Résistance à la rupture à la traction Rr	Limite élastique à la traction Re			
	(Mpa)	(sans Dim)	(Kg/m3)	(MPa)	(MPa)			
Aciers d'usage général - structures minces (tôles et profilés)								
S 235	205000	0.3	7800	340	235			
S335	205000	0.3	7800	490	355			
Aciers de constru	Aciers de construction mécanique							
E295	205000	0.3	7800	470	295			
S355	205000	0.3	7800	490	355			
Aciers faiblement alliés (aucun élément d'addition ne dépasse 5% en masse)								
34 Cr Mo 4	205000	0.3	7800	700 à 1100	450 à 750			
36 Ni Cr Mo 16	205000	0.3	7800	1000 à 1750	800 à 1250			
Aciers fortement alliés (acier inoxidable)								
X 2 Cr Ni 19-11	205000	0.3	7800	440 à 640	185			
Fonte à graphite sphéroidal								
FGS 400-15	165000	0.3	7200	400	250			

Métaux non ferreux:

Nuances normalisées	Module d'élasticité E	Coeficient de Poisson	Masse volumique	Résistance à la rupture à la traction Rr	Limite élastique à la traction Re			
	(Mpa)	(sans Dim)	(Kg/m3)	(MPa)	(MPa)			
Alliages d'alumin	Alliages d'aluminium							
EN AW - 2017	70000	0.3	2800	470	295			
A - S13	70000	0.3	2800	250	100			
A - G 6	70000	0.3	2800	180	100			
Alliages de cuivre	Alliages de cuivre							
	125000	0.3	8800	470	295			
Alliages de titane								
T - A 6 V	105000	0.3	4400	1250	1110			
Alliages de magnésium								
G - A 9 Z	44000	0.3	1800	170	90			

563

S6-Mécanique industrielle:

Résistance et déformation des pièces et composants

Chapitre 3

Nuances normalisées	Module d'élasticité E	Coeficient de Poisson	Masse volumique	Coeficient de Dilatation (*10E6)	Conductivité Thermique	Capacité Calorique volumique	Limite élastique à la traction Re
	(Mpa)	(sansDim)	(Kg/m3)	(1/°K)	(W/m°K)	(J/m3°K)	(MPa)
Fer	210000	0.285	7850	12.5	71.1	3.65	200
Acier 45SCD6	220000	0.285	7850	13	50	3.58	1450
Acier Inox	220000	0.29	7850	15	35	3.74	200
Fonte	100000	0.29	7100	11	58	3.83	200
Titane	110000	0.33	4500	8.5	16.7	2.35	260
TA 6 V	105000	0.34	4400	8	7.2	2.3	870
Alumium	67500	0.34	2700	24	209	2.39	30
AU 4 G	74000	0.33	2800	22.6	159	2.69	240
AU 2 GN	73000	0.34	2750	22	159	2.64	400
Zicral AZ8GU	72000	0.35	2800	23.5	135	2.7	210
Cuivre	100000	0.34	8930	16.5	393	3.43	40
Laiton UZ40	92000	0.33	8400	20.8	121	3.16	180
Bronze	106000	0.35	8800	17.5	47	3.1	126
Bronze Bérylium	130000	0.34	8250	17	47	3.45	175
Bérylium	294000	0.05	1850	12.3	160	1.88	60
Magnésium	45000	0.34	1740	27	160	1.88	60
Plomb	16700	0.44	11350	29.1	33	1.42	1.4
Plexiglas	2900	0.4	1800	81	0.18	1.62	80
Verre	6000	0.25	2600	6	0.98	2.18	50

CETIM, base de données: EQUIST Silver Base de données d'aciers, inox inclus,: