Trabajo de Estadística 3º ESO

Pasos para realizar el trabajo

- 1º Organizarse en grupos de 2-3 personas
- 2º Elegir el problema a estudiar: Variable estadística cuantitativa discreta
- 3º Determinar la Población para la que valdrán los resultados
- 4º Determinar la forma en que se va a tomar la muestra. Tamaño mínimo de la muestra 75 individuos.
- 5º Escribir los datos en una tabla
- 6º Ordenar los datos en una tabla de frecuencias (variable, frecuencia absoluta, frecuencia relativa, porcentajes, porcentajes acumulados)
- 7º Indicar en la tabla anterior la moda y la mediana (explicar su significado)
- 8º Representar la información mediante un diagrama de columnas y un diagrama de sectores apropiado (se pueden agrupar valores de la variable)
- 9º Realizar una tabla para el cálculo de la media, la varianza y la desviación típica. Comentar los resultados
- 10º Calcular la media y la desviación típica con la calculadora en modo estadístico.
- 11º Analizar los resultados obtenidos, valorar la representatividad de los estadísticos calculados y sacar conclusiones.
- 12° Presentar adecuadamente los resultados:
 - a) Portada : Título del trabajo, autores (sencillo/ilustrativo) / presentación general
 1 punto
 - b) Introducción: Puntos 2°, 3°, 4° anteriores

1 punto

c) Datos (en bruto /organizados): Puntos 5°, 6°, 7°

3 puntos

d) Gráficos (8°)

1 punto

- e) Parámetros estadísticos (9°,10°)
 - **3 puntos** (comprobar el cálculo con la calculadora en modo estadístico)
- f) Análisis de resultados y Conclusiones

1 punto

g) Ampliación: abstract, cálculos con Excel, presentación Power-Point)

3 puntos (máx)

Observación: En el examen global puede haber preguntas relativas a los apartaos c), d), e), en particular es mínimo el cálculo con la calculadora en modo estadístico. Del mismo modo se pueden hacer preguntas orales a cualquiera de los miembros de un equipo sobre cualquier parte del trabajo; la valoración de las respuestas individuales influirá tanto en la nota individual como en la colectiva

Criterio de Evaluación (BOA)

- C7. Elaborar e interpretar informaciones estadísticas teniendo en cuenta la adecuación de las tablas y gráficas empleadas, y analizar si los parámetros son más o menos significativos.
 - 7.1 Realizar e interpretar tablas, y gráficas estadísticas de variable continua
 - 7.2 Calcular la media y la desviación típica con la calculadora en modo estadístico

Estudio del Nivel Matemático en el Bajo Cinca

José Luis Ramón 12-05-2012

Abstract

The aim of this paper is to analyze the results of a comprehensive test of mathematics on students of 3rd ESO IES "Bajo Cinca" (Fraga) and consider some possible causes to explain the results.

We will also discuss the possible generalization of the results to larger populations.

Introducción

El objeto del presente trabajo es analizar los resultados de una prueba global de matemáticas realizada a los alumnos de 3º de ESO del IES "Bajo Cinca" de Fraga y considerar algunas posibles causas que expliquen los resultados obtenidos.

También se discutirá la posible generalización de los resultados a poblaciones mayores.

Datos técnicos:

Variable estadística: "Resultados en una prueba de matemáticas"

Toma valores de 0 a 10 con un decimal

Variable cuantitativa discreta

Se agrupan los valores redondeando el decimal, para facilitar los cálculos y mejorar la visualización de los datos. Se comparan los cálculos simplificados con los cálculos reales

Muestra: 77 Alumnos de 3º del Instituto

Población: Alumnos de ESO de la Comarca del Bajo Cinca

Gráficos: Diagrama de Columnas de las calificaciones sin decimales

Diagrama de Sectores de aprobados y suspensos

Tablas: Datos sin agrupar

Datos agrupados y frecuencias

Tabla para el cálculo de las medidas de dispersión

Parámetros Calculados: Medidas de Centralización

Mediana Mediana Moda

Medidas de Dispersión

Desviación Media

Varianza

Desviación Típica Coeficiente de Variación

Calificaciones en Matemáticas en 3º ESO (Global-2)

10	7,7	3,5	6,8	10	1	1,5
8,6	3,4	1	7,8	8,4	1,6	1
4	9	2,7	9,1	3,2	1,6	7,3
6	1	0,4	4,3	2,1	4,4	7,6
4,9	3,3	4,7	5,1	7,5	9,5	7,5
3,3	4,5	7,3	5,5	9,4	3,5	5,7
2	2	4,7	5,3	0,4	3	9
8,4	7,1	3,8	2,3	7,8	8	7,1
1,2	3,3	6	2,2	7	8,1	8,7
6,1	4	1,3	2	8,5	0	4,3
3,5	5,4	5	7	7,7	5,6	0

Tabla de Frecuencias (Datos Agrupados)

Intervalo	Variable	Frecuencia	Frecuencia	Porcentaje	Porcentaje	
morvaro	Variable	Absoluta	Relativa	. Groomajo	Acumulado	
[,)	Xi	fi	h _i =f _i /n	%= hi*100	%ac	
[0, 0,5)	0	4	0,05	5,19	5,19	
[0,5, 1,5)	1	6	0,08	7,79	12,99	
[1,5, 2,5)	2	9	0,12	11,69	24,68	
[2,5, 3,5)	3	7	0,09	9,09	33,77	
[3,5, 4,5)	4	9	0,12	11,69	45,45	
[4,5, 5,5)	5	8	0,10	10,39	55,84	Mediana = 5 (%ac ≥ 50%)
[5,5, 6,5)	6	6	0,08	7,79	63,64	
[6,5, 7,5)	7	7	0,09	9,09	72,73	
[7,5, 8,5)	8	11	0,14	14,29	87,01	Moda = 8
[8,5, 9,5)	9	7	0,09	9,09	96,10	
[9,5, 10]	10	3	0,04	3,90	100	
		77	1,00	100		
		n=Sfi				

Interval	Porcentaje	
[,)		%
Insuficiente	[0, 5)	51
Suficiente	[5, 7)	14
Notable	[7,9)	26
Sobresaliente	[9,10]	9

Matemáticas 3º ESO Global-2

Tabla para el cálculo de la desviación típica con datos agrupados

Xi	fi	Xi∙fi	(Xi)²∙fi	Xi - μ	$(Xi - \mu)^2$	Xi - μ ∙fi	(Xi - μ) ² ·fi
0	4	0	0	5,03	25,26	20,10	101,04
1	6	6	6	4,03	16,21	24,16	97,25
2	9	18	36	3,03	9,16	27,23	82,41
3	7	21	63	2,03	4,10	14,18	28,73
4	9	36	144	1,03	1,05	9,23	9,47
5	8	40	200	0,03	0,00	0,21	0,01
6	6	36	216	0,97	0,95	5,84	5,69
7	7	49	343	1,97	3,90	13,82	27,28
8	11	88	704	2,97	8,84	32,71	97,29
9	7	63	567	3,97	15,79	27,82	110,55
10	3	30	300	4,97	24,74	14,92	74,22
	77	387	2579			190,23	633,95
	$n=Sf_i$	$\sum (X_i) \cdot f_i$	$\sum (X_i)^2 \cdot f_i$			$\sum X_i - \mu \cdot f_i$	$\sum (X_i - \mu)^2 \cdot f_i$

Parámetros estadísticos calculados con los datos redondeados (agrupados en intervalos)

Media Aritmética Mediana	$\mu=\Sigma(X_i)\cdot f_i/n$	μ= 5,03 Me= 5,00
Desviación Media	$DM=\Sigma X_i - \mu \cdot f / n$	DM= 2,47
	$\sigma^2 = \sum (X_i - \mu)^2 \cdot f_i / n$	$\sigma^2 = 8,23$
Varianza	$\sigma^2 = \sum (X_i)^2 \cdot f_i / n - \mu^2$	$\sigma^2 = 8,23$
Desviación Típica	σ	σ= 2,87
Coeficiente de Variación	σ/μ	CV= 0,57

Parámetros estadísticos calculados con los datos originales (fórmulas EXCEL)

Media Aritmética	Promedio	μ= 4,99
Mediana	Mediana	Me= 4,90
Desviación Media	Desvprom	DM= 2,44
Varianza	Varp	$\sigma^2 = 7,92$
Desviación Típica	Desvestp	σ= 2,81
Coeficiente de Variación	σ/μ	CV= 0,56

Análisis de los resultados

Si nos conformamos con considerar la **media** de los resultados obtenidos (μ = 5), podemos pensar que el nivel matemático de los alumnos es aceptable.

Sin embargo si recordamos la conocida anécdota de los dos hermanos que se comieron dos pollos (tocaban de media a uno para cada uno, pero el mayor se comió los dos y el pequeño pasó hambre), comprobaremos que la realidad no es tan simple.

El valor **5** para la **mediana** nos hace pensar que la mitad de los alumnos está por encima del cinco, pero la otra mitad se va a encontrar por debajo; de hecho casi un 25% de los alumnos (1^{er} cuartil) no llega al 2.5.

El hecho que el valor de **moda** se un **8**, unido a los datos anteriores indica que hay unos cuantos alumnos a los que no les va la moda de estudiar.

Estas reflexiones vienen confirmadas por los valores de la **desviación típica** ($\sigma = 2.87$) que nos sugiere que aproximadamente el 68% de los alumnos obtiene una calificación comprendida entre 2 y 8 (en una **distribución normal** en el intervalo $\mu \pm \sigma$ está contenido el 68% de la población).

Que los resultados son muy dispersos se ve claramente también en el **diagrama de columnas**, que recuerda una **distribución uniforme** (todos los valores de la variable tienen la misma altura), aunque si observamos que hay tres máximos relativos (en 2,4,8) podemos pensar que estamos ante una distribución **bimodal** o incluso **trimodal**, es decir que los datos pueden ser explicados por dos o tres **campanas de Gauss** (distribución normal) superpuestas.

Es decir los resultados sugieren que la población está formada por dos o tres subgrupos de personas con características diferenciadas. Decidir si la hipótesis es correcta, y en ese caso determinar las características de los dos o tres subgrupos, queda fuera del ámbito de la estadística y su estudio debe ser abordado por otros medios.

El **diagrama de sectores** de aprobados y suspensos muestra claramente el aspecto más preocupante de los resultados: de no mejorar en lo que resta de curso, la mitad de los alumnos deberán repetir, o promocionar con la asignatura de matemáticas pendiente de superar.

En cuanto al ámbito de **validez** de los resultados, la muestra tomada es representativa de los alumnos de la ESO de la comarca del Bajo Cinca y aunque es posible que se pueda generalizar a otras zonas rurales, para ello se necesitan datos complementarios.

Conclusiones

El nivel matemático de un sector importante de los adolescentes de la comarca del Bajo Cinca es inferior al deseable.

Sería conveniente determinar las causas que lo producen e incidir en ellas para mejorarlo.