DATA STRUCTURES AND ALGORITHM

- To understand application of a graph theory
- To apply the concept of Depth First Search and Breadth First Search

GRAPH is a way of representing relationships that exist between pairs of objects.

Graphs Application

- Computer networks
- Electronic circuits
- Engineering
- Geography
- Solving games and puzzles
- Transportation networks

A graph is a set of objects, called **vertices**, together with a collection of pairwise connections between them.

- Any vertex may be connected to any other, these connections are called edges.
- Graph G is simply a set V of vertices and a collection E of pairs of vertices from V, called edges
 A graph G = (V,E) is composed of:
 - V → set of vertices
 - E -> set of edges connecting the vertices in V
- An edge e = (u, v) is a pair of vertices

DIRECTED GRAPH	UNDIRECTED GRAPH
An edge (u,v) is said to be directed from u to v if the pair (u,v) is ordered, with u preceding v.	 When the edges in a graph have no direction, the graph is called undirected
When the edges in a graph have a direction, the graph is called directed graph / digraph.	 An edge (u,v) is said to be undirected if the pair (u,v) is not ordered.
 This kind of graph contains ordered pair of vertices 	 Such edges are undirected because of a symmetric

relation;

B

V = {A, B, C, D, E} E = {(A,B), (A,C), (A,E), (B,C), (C,B), (C,D)}

DIRECTED GRAPH

V = {A, B, C, D, E} E = {(A,B), (A,C), (A,E), (B,A), (B,C), (C,A),(C,B), (C,D), (D,C), (E,A) } UNDIRECTED GRAPH

BASIC TERMINOLOGIES

If an edge is directed, its first endpoint is its origin and the other is the destination of the edge.

BASIC TERMINOLOGIES

Weighted Graph

Every edge is assigned some value which is greater than or equal to zero.

Examples:

- ✓ distance
- √ time
- ✓ cost
- ✓ capacity

BASIC TERMINOLOGIES

Path in a graph is a series of edges, none repeated, that can be traversed in order to travel from one vertex to another in a graph.

BASIC TERMINOLOGIES

Degree of a vertex v, denoted deg(v), is the number of incident edges of v.

The *in-degree* and *out-degree* of a vertex v are the number of the incoming and outgoing edges of v, and are denoted indeg(v) and outdeg(v), respectively

Vertices	In-	Out-		
vertices	Degree	Degree		
0	3	3		
1	3	3		
2	3	3		
3	3	3		

BINARY SEARCH TREE (BST) acyclic

Vertices	In-	Out-
	Degree	Degree
0	2	2
1	3	3
2	3	3
3	1	1
4	1	1
5	1	1
6	1	1

Vertices	In-Degree	Out-Degree
0	1	1
1	1	2
2	1	0

BASIC TERMINOLOGIES

- Acyclic Graph A graph without cycle
 Example: tree
- Cycle is a path with at least one edge that has the same start and end vertices.

BASIC TERMINOLOGIES

- Complete Graph
 - A graph in which all pairs of vertices are adjacent
 - A graph in which every vertex is directly connected to every other vertex
 - Let n = Number of vertices, and m = Number of edges
 - For a complete graph with n vertices, the number of edges is n(n-1)/2.

GRAPH REPRESENTATION

Adjacency Matrix (Array Implementation)

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, adj_mat If the edge (vi, vj) is in E(G), adj_mat[i][j]=1 Else adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; since adj_mat[i][j]=adj_mat[j]{[i]
- The adjacency matrix for a digraph máy not be symmetric

Adjacency Matrix (Array Implementation)

1 (have connection)

V	0	1	2	3
0				
1				
2				
3				

V	0	1	2	3	4	5	6	7
0								
1								
2 3								
3								
4								
5								
6								
7								

GRAPH REPRESENTATION

Adjacency List

- A single dimension array of structure is used to represent the vertices
- A Linked list is used for each vertex V which contains the vertices which are adjacent from V (adjacency list)

ADJACENCY LIST

BREADTH FIRST SEARCH (BFS)

- This method visits all the vertices, beginning with a specified start vertex. It can be described roughly as "neighbours-first".
- No vertex is visited more than once, and vertices are visited only if they can be reached – that is, if there is a path from the start vertex.
- Use of a queue data structure (first-in first-out structure)
- Neighbours are not added to the queue if they are already in the queue, or have already been visited.

BREADTH FIRST SEARCH (BFS)

BREADTH-FIRST SEARCHING ALGORITHM:

- 1. Push the starting vertex into a queue and then start a loop that will execute while the queue is not empty.
- 2. Once inside the loop, pop a vertex from the queue and make it the current vertex.
- 3. Place all unchecked vertices adjacent to the current vertex onto the queue and mark them as checked.
- 4. If there are no more vertices adjacent to the current vertex, check if the current vertex is the destination,
- 5. If the destination is found, the algorithm is done.
- 6. If the algorithm did not find the destination, repeat steps 2 through 5.

BREADTH FIRST SEARCH (BFS)

Start at Vertex D

BREADTH FIRST SEARCH (BFS) A-Z

DEPTH FIRST SEARCH (DFS)

- This method visits all the vertices, beginning with a specified start vertex.
- This strategy proceeds along a path from vertex V as deeply into the graph as possible.
- This means that after visiting V, the algorithm tries to visit any unvisited vertex adjacent to V. When the traversal reaches a vertex which has no adjacent vertex, it back tracks and visits and unvisited adjacent vertex.
- Use of a Stack data structure.

DEPTH FIRST SEARCH (DFS)

Depth-first traversal of a graph:

- 1. Start the traversal from an arbitrary vertex;
- 2. Apply depth-first search;
- 3. When the search terminates, backtrack to the previous vertex of the finishing point,
- 4. Repeat depth-first search on other adjacent vertices, then backtrack to one level up.
- 5. Continue the process until all the vertices that are reachable from the starting vertex are visited.
- 6. Repeat above processes until all vertiées are visited.

DEPTH FIRST SEARCH (DFS)

Start at Vertex D

DEPTH FIRST SEARCH (DFS) A-Z

EXAMPLE

BFS and DFS

BFS

BFS and DFS

DFS

