

PILOT ML FORECASTING

Go/NoGo - January 2022

MEETING OBJECTIVES

- Data
- Architecture
- ML results

Share a first version of the new monthly forecasting process

- Monthly process
- Decision making matrix

Confirm Go / No Go decision for pilot phase

- Planning
- Project objectives
- Machine learning input data
- Forecasting process with machine learning
- Machine learning results
- Next steps

PILOT PHASE MACRO-PLANNING

- Planning
- Project objectives
- Machine learning input data
- Forecasting process with machine learning
- Machine learning results
- Next steps

PILOT PHASE OBJECTIVES

Data pipeline industrialization

- Define and build a core data model architecture
- Automate data ingestion for the ML use case
- ► Perform automated ML runs each month

Sell-in Machine Learning Forecast

- Propose a Machine Learning baseline to demand planning teams
- ► Optimize Machine Learning results, using a maximum of performant data sources

Statistical layer and business alerts definition

- ► Combine a performant ML baseline, with a robust statistical layer
- ➤ Define a "Machine Learning vs Statistical layer decision making matrix"

Forecast Process

- Secure ML forecast adoption by global and local demand planning teams
- Perform training sessions

- Planning
- Project objectives
- Machine learning input data
- Forecasting process with machine learning
- Machine learning results
- Next steps

GLOBAL ARCHITECTURE FOR ML FORECASTING

Data architecture built within BIC's Azure subscription ready to be used for future roll-outs.

- Planning
- Project objectives
- Machine learning input data
- Forecasting process with machine learning
- Machine learning results
- Next steps

PROPOSED FORECASTING PROCESS AS DISCUSSED WITH DEMAND PLANNING TEAM

*BIC Calendar

Data availability <= 3rd working day* (ex. 09/02/22)

Beginning of month <= 8th working day (ex. 16/02/22)

Construction process <= 14th working day (ex. 23/02/22)

Collaborative review with Planning & Marketing <= 19th WD (ex. 28/02/22)

End of month
<= last working day of
month (ex. 03/03/22)</pre>

Actors

Global demand planning or Data teams

Actions

- Automated data ingestion except for Inventory
- Extract month end inventory data from GPPC

Automated ML solution

- Machine Learning run (18month horizon)
- Automated forecasts file creation (to be integrated with GPPC)
- ► KPI calculation in GPPC

Global planning teams

- ► ML Baseline
- BY statistical baseline
- ► Forecasts modifications in BY

Local planning and Sales & Marketing teams

- "Forecast Revision" baseline to be shared with local Planning and Sales & Marketing teams
- Get insights from local planning and Sales & Marketing to adjust forecast

Automated ML solution

- Validation of forecast baseline
- ► KPI calculation in GPPC

Outputs

- Machine Learning Database
- ► Forecasts file for GPPC
- ► Forecasts baseline with first planning adjustments
- ► Forecasts baseline with validated forecast quantity
- ► Final Forecast in BY (18month horizon) and GPPC

+ Market input

= Final Forecast Performance

DIFFERENTIATION BASED ON PRODUCT'S LIFE

	Step in product's life	How forecasts are used High runners (A) Low runners (B & C)			
		High runners (A)	Low runners (B & C)		
	New products (M0 to M+4)	Human expertise Machine Learning	Human expertise Machine Learning		
Scope	Catalogue products – Stationery	Machine Learning Human challenge	Machine Learning		
	Catalogue products – Shavers	Machine Learning Human challenge	Machine Learning		
	Catalogue products – Lighters	Machine Learning Human challenge	Machine Learning		
	Catalogue products – Other Products	Machine Learning Human challenge	Machine Learning		
	Promotions	Human expertise for promotions impact Machine Learning (with volume effect decomposition)			
	One Shot	Human expertise	Human expertise		
	End-of-life (M-3 to EOL)	Statistical rules Human challenge	Statistical rules Human challenge		

During the second phase, a detailed analysis carried out with planners at the product level will allow to adapt the forecasting method to use

- Planning
- Project objectives
- Machine learning input data
- Forecasting process with machine learning
- Machine learning results
- Next steps

RESULTS SUMMARY FOR FRANCE & ITALY

	FA 2019	POC FA 2019 ML Baseline	Pilot FA 2019 ML Baseline	FA 2020	POC FA 2020 ML Baseline	Pilot FA 2020 ML Baseline
France – Stationery ⁽¹⁾	65,7%	66,5% (+ 0,8 pts)	67,1% (+ 1,4 pts)	64,2%	66,5% (+1,3pts)	66,9% (+1,7pts)
France – Shavers ⁽¹⁾	71,6%		71,9% (+ 0,3 pts)	68,2%		71,0% (+ 2,8 pts)
France - Lighter ⁽¹⁾	72,3%		73,3% (+ 1 pts)	60,8%		58,0% (- 2,8 pts)
Italy – Stationery ⁽¹⁾	52,9%	59,3% (+ 6,4 pts)	59,3% (+ 6,4 pts)	21,4%	38,1% (+ 16,7 pts)	40,6% (+ 19,2 pts)
Italy – Shavers ⁽¹⁾	72,0%	72,6% (+ 0,6 pts)	72,6% (+ 0,6 pts)	67,3%	69,7% (+ 2,4 pts)	70,6% (+ 3,3 pts)
Italy - Lighter ⁽¹⁾	66,8%	59,0% (- 7,8 pts)	62,8% (- 4 pts)	21,2%	42,8% (+ 21,6 pts)	42,8% (+ 21,6 pts)
Italy- Other ⁽¹⁾	55,4%	59,6% (+ 4,2 pts)	60,8% (+ 5,4 pts)	56,0%	63,1% (+ 7,1 pts)	64,6% (+ 8,6 pts)
Italy – Mixed ⁽¹⁾	66,2%	68,1% (+ 1,9 pts)	69,2% (+ 3 pts)	54,3%	68,5% (+ 14,2 pts)	72,8% (+ 18,5 pts)

Forecast Accuracy comparison between BIC's final Forecast and Machine Learning output

PILOT PHASE KPI MEASUREMENT

Technology stack / Data Architecture

 Qualitative feedback on how well the architecture's components worked

Measurement of an adherence level to ML forecasts which would be used as-is or

overridden

► KPI to be defined. For example : 100% when ML forecasts are used as-is without overriding values

Global planning teams feedback

▶ Qualitative feedback from global planning team. For example, on the course of forecasts review sessions, on how much ML is adding value to the business ...

► Performance measurement of machine learning models starting from April (2 months horizon) for February's ML run

THANK YOU!