ABSTRACT

BORJA, MARIA CRISANTA P., DELA CRUZ, JOVELYN A., ZOLETA, KEICE V. Cloud-Based Inventory Management System with QR Code for Supplies Office in Cavite State University = Imus: Enhancing Efficiency and Accessibility. Bachelor of Science in Computer Science. Cavite State University- Imus Campus, Imus, Cavite. May 2024. Adviser: Prof. Mildred T. Apostol.

This study aims to develop a Cloud-Based Inventory Management System with QR Code integration for the Supplies Office at Cavite State University-Imus, focusing on enhancing efficiency and accessibility. The current manual inventory management system faces significant challenges, including inefficiencies in tracking supplies, lack of accessibility to real-time inventory data, absence of standardised tracking methods, and security concerns. By implementing a cloud-based system with QR code technology, the study seeks to streamline inventory management processes, provide real-time access to inventory data, standardise tracking methods, and enhance data security.

The proposed system includes modules for account management, inventory tracking, borrowing, and returning processes, facilities reservation, reporting, and notifications. These modules aim to automate processes, provide real-time information, and simplify administrative tasks for both staff and borrowers. The development process follows an iterative approach, ensuring that the system meetr functional requirements and effectively addresses operational challenges.

To support the system's implementation, comprehensive user training is provided, encompassing workshops, hands-on sessions, and various training materials to ensure users are proficient in utilising the system. This study highlights the potential of cloud-based technology and QR code integration to significantly improve inventory management in educational institutions, thereby enhancing operational efficiency and data accessibility.

TABLE OF CONTENTS

	Pages
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	
ABSTRACT:	
TABLE OF CONTENTS	
INTRODUCTION	
Statement of the Problem	3
Objective of the Study	4
Significance of the Study	5
Time and Place of the Study	5
Scope and Limitation	6
Definition of Terms	8
Conceptual Framework	10
REVIEW RELATED LITERATURE	12
METHODOLOGY	
Research Design	28
Participants of the Study	30
Sampling Technique	31
Data to be Gathered	31
Statistical Treatment of Data	33
RESULTS AND DISCUSSION	34
Discussion of the Methodology Phases	34
System Software Design	35
SUMMARY, CONCLUSION AND RECOMMENDATIONS	
REFERENCES	
APPENDICES	

LIST OF TABLES

Table		Page
1	Table of Comparison	25
2	Classification of Survey	34
3	Likert's Scale	36
4	Software Evaluation: Functionality	50
5	Software Evaluation: Performance Efficiency	51
6	Software Evaluation: Compatibility	52
7	Software Evaluation: Usability	53
8	Software Evaluation: Reliability	54
9	Software Evaluation: Security	55
10	Software Evaluation: Maintainability	56
11	Software Evaluation: Portability	57
12	Summary of the study	58

LIST OF FIGURES

Figure		Page
1	Conceptual Framework	10
2	Iterative Model Process	28
3	Landing Page	35
4	About Page	36
5	Dashboard	37
6	Transaction List Report	37
7	Add Report	38
8	User's List	38
9	Add Account	39
10	Delivery File	39
11	Add Equipment	40
12	Add Facilities	40
13	Equipment Stocks	41
14	Property Acknowledgement Receipt	42
15	Return Item	43
16	Transaction List	43
17	Request Equipment	44
18	Add a Faculty Member	45
10	Assigning	45

LIST OF APPENDICES

Appendix		Page
1	Approval Letter	62
2	Interview Report	63
3	Borrowers Log Sheet	66
4	Use Case Diagram	67
5	Entity Relationship Diagram	68
6	Data Relationship Diagram	69
7	Oral Defense Evaluation	70
8	Curriculum Vitae	72
9	Routing Slip Form	76
10	Gantt Chart	77
11	Sample Source Code	78

CLOUD-BASED INVENTORY MANAGEMENT SYSTEM WITH QR CODE FOR SUPPLIES OFFICE IN CAVITE STATE UNIVERSITY- IMUS: ENHANCING EFFICIENCY AND ACCESSIBILITY

Maria Crisanta P. Borja Jovelyn A. Dela Cruz Keice V. Zoleta

An undergraduate thesis outline submitted to the faculty of the Department of Computer Studies, Cavite State University, Imus, Cavite in partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science with Contribution No. BSCS-THE-02-2024-0000-0009. Prepared under the supervision of Prof. Mildred T. Apostol.

INTRODUCTION

Cloud-based inventory management systems integrated with QR code technology have revolutionised the way businesses handle their inventory. These systems allow real-time tracking of stock levels and streamline operations by providing instant access to inventory data from anywhere. According to a study by Veeqo, implementing QR codes in inventory management not only enhances accuracy but also boosts efficiency significantly (Veeqo, n.d.). By scanning QR codes, personnel can update inventory statuses, track items through the supply chain, and manage stock levels seamlessly. This integration not only reduces human error but also improves overall inventory visibility, empowering businesses to make informed decisions swiftly and optimise their supply chain management processes.

In today's digital age, efficient management of resources and assets is crucial for educational institutions to streamline operations and enhance productivity. Cavite State, particularly its Department of Computer Studies, faces challenges in managing its inventory of supplies effectively. The current manual inventory management system relies on traditional methods, such as log sheets for borrowing equipment,

which are prone to inefficiencies and inaccuracies. These challenges include delays in tracking and managing supplies, difficulty in accessing real-time inventory data, and inconsistencies in inventory records due to the absence of standardized tracking methods

By implementing a Cloud-Based Inventory Management System with QR Code for Supplies Office in Cavite State University-Imus aims to enhance efficiency and accessibility in managing its inventory of supplies. This system will automate inventory processes, simplify assigning and requesting procedures, improve transparency in supply chain operations, and enhance security measures to safeguard inventory data. Moreover, it will empower stakeholders within the Department of Computer Studies with tools to make informed decisions, allocate resources effectively, and ensure a conducive learning environment.

Overall, this study seeks to contribute to the advancement of inventory management practices within educational institutions by leveraging cloud computing and QR code technology. The insights gained from this implementation will not only benefit Cavite State University-Imus but also serve as a benchmark for other academic institutions looking to enhance their operational efficiency and resource management capabilities.

