

Velocity of Ecological System Trajectory

A new method for dimension reduction and ecological regime shift detection

Jessica L. Burnett

N.B. Price, A.J. Tyre, C.R. Allen, D.G. Angeler, & C.R. Allen 2019.04.06

Ecosystems are Complex

(and complicated)

- high dimensional
- many (∞ ?) interactions
- non-linear
- non-ergodic (open)
- dynamic

Ecosystems are Complex

(and complicated)

- high dimensional
- many (∞ ?) interactions
- non-linear
- non-ergodic (open)
- dynamic
- difficult to model mathematically

Ecosystems are Complex

Image credit: coolkeywest.com

The Holy Grail of Ecology

forecasting change in time to prevent or mitigate undesirable consequences

The Holy Grail of Ecology

Predicting undesirable change

Image credit: The Ocean Agency

Ecological Regime Shifts

what? a persistent change in the structure or functioning of a system

how? loss of negative feedback(s) maintaining the system

goal? predict in time to prevent

Methods for Detecting Regime Shifts

> 70 (!) methods proposed in literature

10 suitable for multivariable data

few explicitly handle sparsedata

few handle irregular sampling

Regime Shifts Detection Methods

Variance Index (max eigenvalue of covariance matrix)

Principal Coordinates Analysis

Fisher Information

Regime Shifts Detection Methods

Variance Index (max eigenvalue of covariance matrix)

Principal Coordinates Analysis

Fisher Information

Toy System

$$x normal(\mu = 25, \sigma = 5)$$
 for t > 50

$$x normal(\mu = 100, \sigma = 50)$$
 for $t \ge 50$

Velocity, $\frac{\Delta s}{\Delta t}$

the linear speed of a system's trajectory in phase space

Step 1: Calculate \boldsymbol{s} , 'distance travelled'

$$s_t = \sqrt{\sum_{i=1}^{X} (x_{it} - x_{it-1})^2}$$

Step 2: Calculate \boldsymbol{v} , the linear speed of \boldsymbol{s}

$$v = \frac{\Delta s}{\Delta t}$$

changing means, constant variance

variable $- x_1 \cdots x_2$

change in mean & variance (x_1, x_2)

Potential Limitations of ν

 ν increases with increasing effect size

ν increases with increasing effect size

Mean v (\$\pm 2\$ SD) over 100 iterations

Empirical System: Paleodiatoms

Data published in Spanbauer *et al.* 2014. Prolonged Instability Prior to a Regime Shift. PLoS One

Empirical System: Paleodiatoms

Distance travelled *s* & Velocity *v* identify these turnover events

Smoothing Noisy Data Before Calculating $oldsymbol{v}$

v Identifies Potential Periodicities in CertainRegimes

Conclusions: ν is Simple, Intuitive

Reduction of high dimensional data

Capable of handling noisy data

Is not sensitive to data quality issues common in ecology

Best when mean > variance

Identifies regime shifts known a priori

Next Steps

Numerical identification of change point in v

Compare to distance-based metrics (feedback?)

Compare to ordination techniques

Predictive capacity

Related Software

R packages (dev versions):

trashbirdecology/distanceTravelled (calculate s and v)

trashbirdecology/regimeDetectionMeasures (calculate multiple regime detection metrics)

trashbirdecology/bbsRDM (application to spatial data)

natbprice/tvdiff (regularized differentiation)