Empirical Exercise: Chapter 6

Use the **Birthweight_Smoking** data set introduced in previous empirical exercise to answer the following questions.

- a. Regress *Birthweight* on *Smoker*. What is the estimated effect of smoking on birth weight?
- b. Regress Birthweight on Smoker, Alcohol, and Nprevist.
 - i. Using the two conditions in **Key Concept 6.1**¹, explain why the exclusion of *Alcohol* and *Nprevist* could lead to omitted variable bias in the regression estimated in (a).
 - ii. Is the estimated effect of smoking on birth weight substantially different from the regression that excludes *Alcohol* and *Nprevist*? Does the regression in (a) seem to suffer from omitted variable bias?
 - iii. Jane smoked during her pregnancy, did not drink alcohol, and had 8 prenatal care visits. Use the regression to predict the birth weight of Jane's child.
 - iv. Compute R^2 and . Why are they so similar?
 - v. How should you interpret the coefficient on *Nprevist*? Does the coefficient measure a causal effect of prenatal visits on birth weight? If not, what does it measure?
- c. Estimate the coefficient on *Smoking* for the multiple regression model in (b), using the three-step process in **Appendix 6.3**² (the Frisch–Waugh theorem). Verify that the three-step process yields the same estimated coefficient for *Smoking* as that obtained in (b).
- d. An alternative way to control for prenatal visits is to use the binary variables *Tripre0* through *Tripre3*. Regress *Birthweight* on *Smoker*, *Alcohol*, *Tripre0*, *Tripre2*, and *Tripre3*.
 - i. Why is *Tripre1* excluded from the regression? What would happen if you included it in the regression?
 - ii. The estimated coefficient on *Tripre0* is large and negative. What does this coefficient measure? Interpret its value.
 - iii. Interpret the value of the estimated coefficients on *Tripre2* and *Tripre3*.
 - iv. Does the regression in (d) explain a larger fraction of the variance in birth weight than the regression in (b)?

1. Key Concept 6.1

Omitted variable bias is the bias in the OLS estimator of the causal effect of *X* on *Y* that arises when the regressor, *X*, is correlated with an omitted variable. For omitted variable bias to occur, two conditions must be true:

- I. X is correlated with the omitted variable.
- II. The omitted variable is a determinant of the dependent variable, Y.

2. Appendix 6.3

The Frisch-Waugh Theorem

Empirical Exercise: Chapter 6

The OLS estimator in multiple regression can be computed by a sequence of shorter regressions. Consider the multiple regression model in Equation (6.7).

(6.7)

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + u_i, i = 1, ..., n,$$

The OLS estimator of can be computed in three steps:

- 1. Regress X_1 on $X_2, X_3, ..., X_k$, and let \tilde{X}_1 , denote the residuals from this regression;
- 2. Regress Y on $X_2, X_3, ..., X_k$, and let denote the residuals from this regression; and
- 3. Regress \tilde{Y} on \tilde{X}_1 ,

where the regressions include a constant term (intercept). The Frisch-Waugh theorem states that the OLS coefficient in step 3 equals the OLS coefficient on in the multiple regression model [Equation (6.7)]

(6.7)
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i, i = 1, \dots, n,$$

This result provides a mathematical statement of how the multiple regression coefficient estimates the effect on Y of X_1 , controlling for the other X's: Because the first two regressions (steps 1 and 2) remove from Y and X_1 their variation associated with the other X's, the third regression estimates the effect on Y of using what is left over after removing (controlling for) the effect of the other X's.