Intro

• In this video we will talk about tricks that will make training of new neural networks much faster!

- Deep networks learn complex features extractor, but we need lots of data to train it from scratch!
- What if we can reuse an existing features extractor for a new task?

Trained on ImageNet

- Deep networks learn complex features extractor, but we need lots of data to train it from scratch!
- What if we can reuse an existing features extractor for a new task?

- You need less data to train (for training only final MLP)
- It works if a domain of a new task is similar to ImageNet's
- Won't work for human emotions classification, ImageNet doesn't have people faces in the dataset!

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

Honglak Lee, http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

Honglak Lee, http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

ImageNet features extractor

ImageNet 1000 classes

ImageNet features extractor

Fine-tuning

ImageNet features extractor

- You can initialize deeper layers with values from ImageNet.
- This is called **fine-tuning**, because you don't start with a random initialization.
- Propagate all gradients with smaller learning rate.

Fine-tuning

- Very frequently used thanks to wide spectrum of ImageNet classes
- Keras has the weights of pre-trained VGG, Inception, ResNet architectures
- You can fine-tune a bunch of different architectures and make an ensemble out of them!

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset		

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset	Fine-tuning of deeper layers	

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset	Fine-tuning of deeper layers	Train from scratch

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	Collect more data
Big dataset	Fine-tuning of deeper layers	Train from scratch

Summary

• In the next video we will take a look at other computer vision problems