ECE 113: Communication Electronics

Meeting 10: Filter Design III

February 25, 2019

Filter Implementations

- LC Ladder Filters
- Lossless filters using lumped reactive components

LC Ladder Filters

• Maximum power transfer $\rightarrow Z_{in} = R_1$

$$|H(j\omega)|^2 = \frac{P_2}{P_{1,max}} = 4\frac{R_1}{R_2}|\frac{V_2(j\omega)}{V_s(j\omega)}|^2 = 4\frac{R_1}{R_2}|T(j\omega)|^2 \leq 1$$

$$|H(j\omega)|^2 = \frac{4R_1R_{in}}{|R_1 + Z_{in}|^2} = 1 - \frac{|Z_{in} - R_1|^2}{|Z_{in} + R_1|^2} = 1 - |\Gamma|^2$$

Butterworth Filter Design

• Consider a 2nd order lowpass filter

• For Butterworth response,

$$|H(j\omega)|^2 = \frac{1}{1+\omega^4} = 1 - |\Gamma|^2$$

$$\Gamma = \frac{Z_{in} - 1}{Z_{in} + 1}$$

$$Z_{in} = j\omega L + \frac{R(1 - j\omega RC)}{1 + \omega^2 R^2 C^2}$$

•
$$L = C = \sqrt{2}$$
 $R = 1$

Lowpass Filter Prototype

- Derivation can be extended to any filter order n
- Derived LPF prototype has source impedance of 1Ω and normalized cut-off frequency of 1rad/sec

Butterworth LPF Prototype Table

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	g_1	g_2	g_3	g_4	g_5	g_6	g 7	g_8	g 9	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Chebyshev Type I LPF Prototype (0.5dB Ripple)

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_0=1, \omega_c=1, N=1$ to 10, 0.5 dB and 3.0 dB ripple)

	0.5 dB Ripple										
N	g_1	g_2	<i>g</i> ₃	<i>g</i> ₄	g 5	g 6	g 7	g 8	g 9	g 10	<i>g</i> ₁₁
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

Chebyshev Type I LPF Prototype (3.0dB Ripple)

3.0	dB	Rip	ople

N	g_1	g_2	g_3	g_4	g 5	g_6	g 7	g_8	g 9	g_{10}	<i>g</i> ₁₁
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Modern Filter Design

• Design procedures for any type of response are similar and follow broadly the same steps.

 First step is to determine the element values of the LPF Prototype from which all other filters are derived.

Filter Transformation

• Prototype has lowpass response

• Source Impedance/Admittance of 1Ω

ullet LPF cut-off frequency of 1 rad/sec

 For practical use, we need to transform filter to work with actual source resistance AND desired cut-off frequency.

Filter Transformation

- Impedance of all components must be scaled by the same amount to have the same rescaled response.
 - Multiply series impedance by actual value of source resistance.
 - Divide shunt impedance by actual value of source resistance.

- ω becomes ω/ω_c (denormalize frequencies by dividing component values by ω_c
- Transform from lowpass response to other filter response (if necessary)
 - ie. inductors become capacitors, capacitors become inductors, etc.

Filter Transformation

TABLE 8.6 Summary of Prototype Filter Transformations $\left(\Delta = \frac{\omega_2 - \omega_1}{\omega_0}\right)$

Low-pass	High-pass	Bandpass	Bandstop
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\frac{\bigcup_{c} \frac{1}{\omega_c L}}{\bigcup_{c} \frac{1}{\omega_c L}}$	$\frac{\sum_{k=0}^{\infty} \frac{L}{\omega_0 \Delta}}{\sum_{k=0}^{\infty} \frac{\Delta}{\omega_0 L}}$	$\frac{L\Delta}{\omega_0} \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right] = \frac{1}{\omega_0 L\Delta}$
$\frac{\overset{\circ}{\int}}{\int} c$	$\begin{cases} \frac{1}{\omega_c C} \end{cases}$	$\frac{\Delta}{\omega_0 C} \left\{ \begin{array}{c} \\ \\ \end{array} \right] \frac{C}{\omega_0 \Delta}$	$\begin{cases} \frac{1}{\omega_0 C \Delta} \\ \frac{C \Delta}{\omega_0} \end{cases}$

Example

Design a 4^{th} order Butterworth lowpass filter with cut-off frequency of 50MHz. The source impedance is 50Ω .

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000]					
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

The coefficients are

$$g1 = 0.7654$$
 $g2 = 1.8478$ $g3 = 1.8478$ $g4 = 0.7654$

The LPF prototype

Impedance scaling

• Frequency scaling

Example

Design a Butterworth lowpass filter with cut-off frequency of $30\,MHz$ and has a minimum attenuation of $30\,dB$ at $65\,MHz$. The source impedance is $100\,\Omega$.

Need to determine the filter order

- From the graph, the minimum filter is n = 5
- The LPF coefficients are:

$$g1 = g5 = 0.618$$
 $g2 = g4 = 1.618$ $g3 = 2$

LPF prototype

Impedance scaling

• Frequency scaling

Example

Design a Butterworth bandpass filter with cut-off frequencies at 90MHz and 110MHz. The minimum attenuation at 150MHz must be 30dB. The source impedance is 100Ω .

$$\Delta = \frac{\omega_2 - \omega_1}{\omega_2} = 0.201$$
 $\omega_o = \sqrt{\omega_1 \omega_2} = 625.17 \textit{Mrad/sec}$

• Transform 150MHz to prototype frequency

$$\omega' = \frac{1}{\Delta}(|\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega}|) = 4.2$$

LPF Prototype

• Impedance Scaling

- Transform series elements to series LC and shunt elements to shunt LC
 - For series leg:

$$L'_{k} = \frac{L_{k}}{\Delta \omega_{o}}$$
 $C'_{k} = \frac{\Delta}{\omega_{o} L_{k}}$

• For shunt leg:

$$L'_k = \frac{\Delta}{\omega_o C_k}$$
 $C'_k = \frac{C_k}{\Delta \omega_o}$

Example

Design a 3dB Chebyshev highpass filter with cutoff frequency of 100MHz. The minimum attenuation at 50MHz should be 25dB. The source impedance is 75Ω

END