重庆理工大学考试试卷

2013~ 2014 学年第 1 学期

班级	学号	姓名	考试科目_	复变函数与积分变换	<u>A 卷</u>	<u>开卷</u>	共_	2 _页	
		·密·····			线				

学生答题不得超过此线

题号	_	=	Ξ	总分	总分人
分数					

得分	评卷人

- 一、解析函数的计算与构造 (共 40 分)
- 1、计算 $\sqrt[3]{1+\sqrt{3}i}$,并将所得三次方根分别写出。(8分)
- 2、将复数(1+i)计算化简为 " $r(\cos(\theta)+i\sin(\theta))$ "的形式。(8分)
- 3、试分析函数 $f(z) = xy + i(x^2 + y^3)$ 在何处可导,何处解析。(8分)
- 4、已知调和函数u(x,y)=x(y-2),求函数v(x,y)使得f(z)=u(x,y)+iv(x,y)为解析函数。(8分)
- 5、指出 $f(z) = \frac{z \sin z}{z^5}$ 在有限复平面上的孤立奇点及类型,并求奇点处的留数。(8分)

得分	评卷人

- 二、计算复积分与级数展开 (共 40 分)
- 1、计算曲线积分 $\int_C e^{\overline{z}} dz$,其中复曲线 $C\colon z(t)=t+it,\ t\in[0,1]$,方向从 z(0) 到 z(1) 。(10 分)

重庆理工大学考试试卷

2012~ 2013 学年第 1 学期

班级	学号	姓名	考试科目_	复变函数与积分变换	<u>A 卷</u>	<u>开卷</u>	共_	2	页
		密	••••• 封 •••	线	•••••	•••••	••••	••••	

学生答题不得超过此线

2、计算复积分
$$\oint_C \frac{dz}{z^2-3z+2}$$
, 其中闭曲线 $C: |z-1|=2$, 方向为正向。(10 分)

3、计算复积分
$$\oint_C \frac{e^z}{(z^2-1)(z-1)^2} dz$$
, 其中闭曲线 $C: |z|=2$, 方向为正向。(10 分)

4、求函数
$$f(z) = \frac{1}{(z+2)(z+1)^2}$$
 在圆环: $1 < |z+1| < +\infty$ 上的洛朗展式。(10 分)

得分	评卷人	2.9		
		三、	求解下列积分变换问题	(共20分)

$$1、求函数 f(t) = \begin{cases} 0 & t < -1 \\ 1 & -1 \le t < 0 \text{ 的傅里叶变换 } F(\omega). \end{cases} (10 分)$$
$$e^{-t} \quad t \ge 0$$

2、试用 Laplace 变换求解微分方程: y''-4y=-2, y(0)=y'(0)=1。(10分)