1. Symmetric and alternating groups.

(a) In class we showed that S_n is generated by $T = \{(i \ j) \mid 1 \le i < j \le n\}$, the set of transpositions in S_n . Show by induction on |j-i|, that for i < j,

$$(i \ j) = (i \ i + 1)(i + 1 \ i + 2) \cdots (j - 2 \ j - 1)(j - 1 \ j)(j - 2 \ j - 1) \cdots (i + 1 \ i + 2)(i \ i + 1),$$

and conclude S_n is generated by $T' = \{(i \ i + 1) \mid 1 \le i < n\}$, the set of adjacent transpositions.

Proof. Let us begin with the base case |j - i| = 1. Since i < j, we have that j - i > 0, so we can rewrite our initial equation as,

$$|j - i| = j - i$$
$$= 1$$

This gives us that j = i + 1. Hence, by definition of j, we have $(i \ j) = (i \ i + 1)$. Now fix $m \in \mathbb{N}$ such that m > 1. Suppose |j - (i + 1)| = m and that our desired condition holds for m. Then we have,

$$(i+1 \ j) = (i+1 \ i+2)(i+2 \ i+3) \cdots \cdots (j-2 \ j-1)(j-1 \ j)(j-2 \ j-1) \cdots \cdots (i+2 \ i+3)(i+1 \ i+2)$$

Let us multiply by $(i \ i + 1)$ on the left and right on both sides the equation. This yields,

$$(i \ i+1)(i+1 \ j)(i \ i+1) = (i \ i+1)(i+1 \ i+2)(i+2 \ i+3) \cdots$$
$$(j-2 \ j-1)(j-1 \ j)(j-2 \ j-1) \cdots$$
$$\cdots (i+2 \ i+3)(i+1 \ i+2)(i \ i+1)$$

Now observe that $(i \ i+1)(i+1 \ j)(i \ i+1)=(i \ j)$. So we get,

$$(i \ j) = (i \ i+1)(i+1 \ i+2)(i+2 \ i+3) \cdots$$
$$(j-2 \ j-1)(j-1 \ j)(j-2 \ j-1) \cdots$$
$$\cdots (i+2 \ i+3)(i+1 \ i+2)(i \ i+1)$$

as required. In addition, note that |j-i|=m+1 since |j-(i+1)|=m. Hence, the statement being true for |j-(i+1)|=m implies the statement is true for |j-i|=m+1. Thus, by induction this holds for any values i, j with $|j-i|=m \ge 1$.

- (b) Let x, y be distinct 3-cycles in S_n .
 - [Hint: Give their entries names so you can reference them. Like, if $x = (a \ b \ c)$ is a three-cycle, you know a, b, and c are distinct, and you know $x = (b \ c \ a) = (c \ a \ b) \neq (a \ c \ b)$. So you can assume without loss of generality things like a is the smallest of the three, but not things like a < b < c.]
 - (i) Set n = 4 and assume $x \neq y^{-1}$. Show $\langle x, y \rangle = A_4$. [Hint: $x = (a \ b \ c)$ and $y = (\alpha \ \beta \ \gamma)$, then what does $x \neq y$ and $x \neq y^{-1}$ tell you about $\{a, b, c\} \cap \{\alpha, \beta, \gamma\}$?.]

Proof. Note from the Lecture 12 notes, we have that:

$$A_4 = \{1, (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}$$

Let $x=(a\ b\ c)$ and $y=(\alpha\ \beta\ \gamma)$. Assume $x\neq y$ and $x\neq y^{-1}$. Then we can assert that at least one object in x and y is different. In addition, since n=4, there are only 4 possible object to permute. Since x contains three distinct objects, we also know at most 1 objects in y can be distinct from x, since if more than 2 objects were distinct we would have that n>4. Hence, these statements together give us that $|\{a,b,c\}\cap\{\alpha,\beta,\gamma\}|=2$. Assume without loss of generality that $\{a,b,c\}\cap\{\alpha,\beta,\gamma\}=\{a,b\}=\{\alpha,\beta\}$. We thus need to show that x and y generate 1, all possible 3 cycles, and all disjoint 2 cycles from the elements $\{\alpha,\beta,\gamma,c\}$

(ii) Set n=5 and assume $x \neq y^{-1}$. Show that either

$$x$$
 and y both fix some common elements of [5] (there is some $i \in [5]$ such that $x(i) = i$ and $y(i) = i$) and $\langle x, y \rangle \cong A_4$,

or

$$x$$
 and y do not fix any common elements of [5] (for all $i \in [5]$, if $x(i) = i$ then $y(i) \neq i$) and $\langle x, y \rangle = A_5$.

[Hint: Try some examples.]

(iii) Show, for all n, that $\langle x, y \rangle$ is isomorphic to one of Z_3 , A_4 , A_5 , or $Z_3 \times Z_3$. [Hint: If a group is generated by two commuting elements x and y that otherwise satisfy no relations between them, then $\langle x, y \rangle \cong \langle x \rangle \times \langle y \rangle$.]

2. Group actions.

(a) Let $G \subseteq A$. Prove that if $a, b \in A$ and $b = g \cdot a$ for some $g \in G$, then $G_b = gG_ag^{-1}$. Deduce that if G acts transitively on A, then the kernel of the action is $\bigcap_{g \in G} gG_ag^{-1}$.

```
Proof. Recall that G_a = \{g \in G \mid g \cdot a = a\} and G_b = \{g \in G \mid g \cdot b = b\}. Now fix g_1 \in G such that b = g_1 \cdot a and fix g_2 \in G_b. Then we have, g_2 \cdot b = g_1 \cdot a.
```

- (b) Let S_3 act on the set of ordered triples $A = \{(i, j, k) \mid i, j, k \in [3]\}.$
 - (i) Find the orbits of $S_3 \subseteq A$. [Hint: Break into cases like i = j = k, $i = j \neq k$, etc. Avoid writing out all the orbits explicitly.]

- (ii) For each orbit \mathcal{O} , choose one representative $a \in \mathcal{O}$ and calculate G_a . Verify that $|G:G_a|=|\mathcal{O}|$.
- (c) Suppose G acts transitively on a finite set A (i.e. [a] = A for all $a \in A$), and let $H \subseteq G$. Note that the action of G on A restricts to an action of H on A, which is not necessarily transitive anymore. $[Example: G = D_8 \text{ acts transitively on } A = \{1, 2, 3, 4\}, \text{ but } H = \langle r^2 \rangle$ does not. The orbits under the action of H are $\{1, 3\}$ and $\{2, 4\}$.

Let $\mathcal{O}_1 = [a_1]_H$, $\mathcal{O}_2 = [a_2]_H$, ..., $\mathcal{O}_r = [a_r]_H$ be the distinct orbits of the action of H on A. [Hint: It may be helpful to use set action notation. Namely, if $a \in A$, then the orbit of a under the action of H can be written as $H \cdot a = \{h \cdot a \mid h \in H\}$, whereas $G \cdot a$ is the orbit under the action of G.]

- (i) Show that for each $a \in A$, $H_a = G_a \cap H$.
- (ii) Prove that G permutes $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$, i.e.
 - for each $g \in G$, $i \in [r]$, we have $g \cdot \mathcal{O}_i = \mathcal{O}_j$ for some $j \in [r]$ (where $g \cdot \mathcal{O}_i := \{g \cdot a \mid a \in \mathcal{O}_i\}$); and
 - $\sigma_g: \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\} \to \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$ defined by $\mathcal{O}_i \mapsto g \cdot \mathcal{O}_i$ is a bijection for each $g \in G$.
- (iii) Deduce that G acts on the set $\mathcal{A} = \{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_r\}$. Show that this action is transitive, and deduce that $|\mathcal{O}_i| = |\mathcal{O}_i|$ for all $i, j \in [r]$.
- (iv) Fix $\mathcal{O} \in \mathcal{A}$, and let $a \in \mathcal{O}$ (so that $\mathcal{O} = H \cdot a$). Show that $|\mathcal{O}| = |H : H \cap G_a|$ and that $r = |G : HG_a|$ (where $r = |\mathcal{A}|$ as above).