MATHEMATICAL METHODS OF QUANTUM MECHANICS SUMMARY

YANNIS BÄHNI

Abstract.

Contents

The Spectral Theorem	-
Projection Valued Measures	
The Spectral Theorem	
The Schrödinger Equation	

The Spectral Theorem

Projection Valued Measures.

Definition 1.1 (Projection Valued Measure). Let \mathcal{H} be a Hilbert space. A function $P: \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ is said to be a **projection valued measure**, iff

(i) For all $\Omega \in \mathcal{B}(\mathbb{R})$, $P(\Omega)$ is an orthogonal projection, i.e.

$$P(\Omega)^2 = P(\Omega) = P(\Omega)^*$$
.

- (ii) $P(\mathbb{R}) = \mathrm{id}_{\mathcal{H}}$.
- (iii) If $(\Omega_n)_{n\in\omega}$ is a sequence of pairwise disjoint elements of $\mathcal{B}(\mathbb{R})$, then

$$P(\Omega)\psi = \sum_{n \in \omega} P(\Omega_n)\psi,$$

for all $\psi \in \mathcal{H}$.

Definition 1.2 (Resolution of the Identity). *Let* \mathcal{H} *be a Hilbert space and* $P : \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ *a projection valued measure. The function* $p : \mathbb{R} \to \mathcal{L}(\mathcal{H})$ *defined by*

$$p(\lambda) := P(-\infty, \lambda],$$

is called the resolution of the identity associated to a projection valued measure.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

The Spectral Theorem.

Theorem 1.1 (Spectral Theorem). Let A be a self-adjoint operator. Then there exists a unique projection valued measure P^A such that $D(A) = \{ \psi \in \mathcal{H} : \int |\lambda|^2 d\mu_{\psi}^A(\lambda) \}$ and

$$A = \int \lambda dp^A(\lambda).$$

The Schrödinger Equation.

Theorem 1.2. Let \mathcal{H} be a Hilbert space and $H:D(H)\to\mathcal{H}$ be self adjoint. Moreover, set $U(t):=\exp(-iHt)$ for $t\in\mathbb{R}$. Then:

- (a) U(t) is a strongly continuous one parameter unitary group.
- (b) The limit

$$\lim_{t\to 0}\frac{U(t)-1}{t}\psi$$

exists if and only if $\psi \in D(H)$. Then

$$\lim_{t \to 0} \frac{U(t) - 1}{t} \psi = -iH\psi.$$

- (c) U(t)D(H) = D(H) and [U(t), H] = 0 on D(H).
- (d) Let $\psi_0 \in D(H)$. Then $U(t)\psi_0$ uniquely solves the initial value problem

$$\begin{cases} i \,\partial_t \psi(t) = H \psi(t) \\ \psi(0) = \psi_0, \end{cases} \tag{1}$$

called the **Schrödinger equation**.