Answer ALL questions.

1 The diagram shows the temperature-time graph for a substance which is heated at a constant rate.

(a) (i) Which section of the graph shows when the substance is melting?

(1)

- A PQ
- B QR
- D ST

(ii) Which section of the graph shows when all the substance is a solid?

(1)

- A PQ
- B QR
- D ST

(iii) Draw particles in the box to show the arrangement of particles when the substance is a gas.

(1)

(iv) Wh			
	nich (of these statements best describes the motion of particles in a gas?	(1)
\boxtimes	Α	they vibrate about fixed points	(-/
\boxtimes		they are stationary	
\times		they slide past each other	
\times	D	they move quickly and randomly	
		a piece of apparatus that could be used to measure the temperature o	of
tne	e suc	ostance.	(1)
(ii) Do	torm	nine the boiling point of this substance.	
(II) DE	tem	ine the boiling point of this substance.	(1)
		boiling point =	
c) The su	ıheta	nce has a mass of 1.2 kg.	
10°C to		he energy required to raise the temperature of the substance from °C.	
[assum	ne sp	pecific heat capacity of substance = 840 J/kg °C]	
			(3)
		energy =	

