Задача А. Предок

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Напишите программу, которая для двух вершин дерева определяет, является ли одна из них предком другой.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 100000$) — количество вершин в дереве. Во второй строке находятся n чисел, i-е из которых определяет номер непосредственного родителя вершины с номером i. Если это число равно нулю, то вершина является корнем дерева.

В третьей строке находится число m ($1 \le m \le 100000$) — количество запросов. Каждая из следующих m строк содержит два различных числа a и b ($1 \le a, b \le n$).

Формат выходных данных

Для каждого из m запросов выведите на отдельной строке число 1, если вершина a является одним из предков вершины b, и 0 в противном случае.

стандартный ввод	стандартный вывод
6	0
0 1 1 2 3 3	1
5	1
4 1	0
1 4	0
3 6	
2 6	
6 5	

Задача В. Учиться! - EASY

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Каждый год огномное количество выпускников, сдавшие ЕГЭ, выбирают, куда же они пойдут учиться. Не удивительно, что многие из них предпочитают перебраться поближе к столице. Транспортная инфраструктура страны переживает не лучшие времена, и в приемлемом качестве поддреживается минимально возможное число городов, необходимое для того, чтобы от любого города можно было добраться до любого другого.

Каждый выпускник оценивает свои результаты сдачи экзаменов, и решает, насколько далеко от свого родного города в сторону столицы он сможет уехать.

Выпускников настолько много, что вам не требуется выводить для каждого из них, до какого города он сможет доехать. Достаточно вывести сумму ответов для каждого выпускника.

В i-м запросе первое число соответствует городу, в котором окончил школу i-й выпускник, а второе — насколько далеко от родного города он может уехать. Все выпускники стараются перебраться как можно ближе к столице.

Формат входных данных

Первая строка содержит два числа: n ($1 \le n \le 100\,000$) и m ($1 \le m \le 100\,000$). Столица имеет номер 0. Вторая строка содержит n-1 целых чисел, i-е из этих чисел равно номеру следующего за городом i на пути к столице. Следующие m строк содержит два целых числа в диапазоне от 0 до n-1: a_i и b_i .

Формат выходных данных

Выведите в выходной файл сумму номеров городов — ответов на все запросы.

стандартный ввод	стандартный вывод
3 2	1
0 1	
2 1	
1 1	
1 2	0
0 0	
0 0	

T-C 2024-2025. LCA Russia, Magadan, February, 22, 2025

Задача С. LCA Problem

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Задано подвешенное дерево, содержащее $n\ (1\leqslant n\leqslant 10^5)$ вершин, пронумерованных от 0 до n-1. Требуется ответить на $m\ (1\leqslant m\leqslant 10^6)$ запросов о наименьшем общем предке для пары вершин.

Формат входных данных

Первая строка содержит два числа: n и m. Корень дерева имеет номер 0.

Вторая строка содержит n-1 целых чисел, i-е из этих чисел равно номеру родителя вершины i. Следующие m строк содержат два целых числа от 0 до n-1: a_i,b_i — вершины из i-го запроса.

Формат выходных данных

Выведите в выходной файл сумму номеров вершин — ответов на все запросы.

стандартный ввод	стандартный вывод
3 2	2
0 1	
2 1	
1 1	
1 2	0
0 0	
0 0	

Задача D. Дуумвират

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дано дерево. В вершинах записаны числа. Нужно научиться находить сумму чисел на пути из v в u.

Формат входных данных

В первой строке записано число n — количество вершин дерева $(1 \le n \le 10^5)$. Во сторой сроке записаны через пробел n чисел v_i ($|v_i| < 10^9$), задающие значения в вершинах. В следующих n-1 строках описаны ребра дерева. В (i+2)-й строке записаны номера вершин a_i , b_i $(1 \le a_i, b_i \le n)$, означающие, что в дереве есть ребро из вершины a_i в вершину b_i .

Далее на отдельной строке записано число m — количество запросов ($1 \le m \le 10^5$). После этого идут m строк с описанием запросов, в (n+2+i)-й строке записаны через пробел числа x_i и y_i ($1 \le x_i, y_i \le n$).

Формат выходных данных

Для каждого запроса на отдельной строке требуется вывести сумму всех значений v_i по всем вершинам на пути из x_i в y_i .

стандартный вывод
-15
-16
-16
-6
-1
-15

Задача Е. Самое дешевое ребро

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано подвешенное дерево с корнем в первой вершине. Все ребра имеют веса (стоимости). Вам нужно ответить на M запросов вида "найти у двух вершин минимум среди стоимостей ребер пути между ними".

Формат входных данных

В первой строке файла записано одно числ-n (количество вершин).

В следующих n-1 строках записаны два числа — x и y. Число x на строке i означает, что x — предок вершины $i,\,y$ означает стоимость ребра.

 $x < i, |y| \le 10^6.$

Далее m запросов вида (x,y) — найти минимум на пути из x в y $(x \neq y)$.

Ограничения: $2 \le n \le 5 \cdot 10^4$, $0 \le m \le 5 \cdot 10^4$.

Формат выходных данных

Выведите m ответов на запросы.

стандартный ввод	стандартный вывод	
5	2	
1 2	2	
1 3		
2 5		
3 2		
2		
2 3		
4 5		

Задача F. Чип и Дейл в лабиринте

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Чип и Дейл спешат на помощь! Но внимательные зрители знают, что помощь как правило нужна самим Чипу и Дейлу, поэтому сегодня вам надо будет сыграть роль сообразительной Гаечки. Итак, Чип и Дейл снова попали в лапы к Толстопузу. Кот очень не любит грызунов и поэтому приготовил им изощренное испытание. Он собирается поместить их в лабиринт и посмотреть смогут ли они из него выбраться. Лабиринт представляет собой дерево, в котором каждое ребро имеет одно направление. Гаечка подслушала разговор Толстопузу со своими сообщниками и теперь знает несколько возможных вариантов: в какую точку лабиринта поместят её друзей, и где будет выход. Для каждого такого варианта она хочет понять, смогут ли Чип и Дейл найти выход, или нет.

Формат входных данных

В первой строке входного файла записано число n $(1 \leqslant n \leqslant 10^5)$ — число вершин в дереве. В следующих n-1 строках описаны ребра дерева. В i+1 строке файла записаны два числа $a_i, b_i (1 \leqslant a_i, b_i \leqslant n)$, означающие, что существует ребро из a_i в b_i .

Далее записано число m ($1 \le m \le 10^5$) — число запросов. После этого идет описание запросов, каждый запрос в новой строке. Для каждого запроса задается $x_i, y_i (1 \le x_i, y_i \le n)$ — точка, в которую поместят Чипа и Дейла, и выход из лабиринта соответственно.

Формат выходных данных

Для каждого запроса надо в отдельной строке вывести Yes, если бурундуки смогут найти выход, и No иначе.

стандартный ввод	стандартный вывод
4	Yes
1 2	Yes
3 1	No
4 1	Yes
6	No
1 2	No
3 2	
2 3	
4 2	
4 3	
2 1	

Задача G. Dynamic LCA

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Постановка задачи о наименьшем общем предке такова: дано дерево T с выделенным корнем и две вершины u и v, lca(u,v) — вершина с максимальной глубиной, которая является предком и u, и v. Например, на картинке внизу lca(8,7) — вершина 3.

С помощью операции $\operatorname{chroot}(u)$ мы можем менять корень дерева, достаточно отметить u, как новый корень, и направить ребра вдоль пути от корня. Наименьшие общие предки вершин поменяются соответствующе. Например, если мы сделаем $\operatorname{chroot}(6)$ на картинке сверху, $\operatorname{lca}(8,7)$ станет вершина 6. Получившееся дерево изображено внизу.

Вам дано дерево T. Изначально корень этого дерева — вершина 1. Напишите программу, которая поддерживает эти две операции: lca(u, v) и chroot(u).

Формат входных данных

Входной файл состоит из нескольких тестов.

Первая строка каждого теста содержит натуральное число n — количество вершин в дереве $(1\leqslant n\leqslant 100\,000)$. Следующие n-1 строк содержат по 2 натуральных числа и описывают ребра дерева. Далее идет строка с единственным натуральным числом m — число операций. Следующие m строк содержат операции. Строка ? u v означает операцию $\mathrm{lca}(u,v)$, а строка ! u — $\mathrm{chroot}(u)$. Последняя строка содержит число 0.

Сумма n для всех тестов не превосходит 100 000. Сумма m для всех тестов не превосходит 200 000.

Формат выходных данных

Для каждой операции ? u v выведите значение lca(u,v). Числа разделяйте переводами строк.

стандартный ввод	стандартный вывод
9	2
1 2	1
1 3	3
2 4	6
2 5	2
3 6	3
3 7	6
6 8	2
6 9	
10	
? 4 5	
? 5 6	
? 8 7	
! 6	
? 8 7	
? 4 5	
? 4 7	
? 5 9	
! 2	
? 4 3	
0	

Задача H. Piazza Navona

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Часто люди переезжают, меняют свой образ жизни и учатся заниматься тем, к чему они еще не привыкли. Так и наш, неизвестно откуда приехавший герой задачи, решил стать достопочтенным итальянским гондольером.

Для того, чтобы пройти экзамен на умение ориентироваться в венецианских улочках, ему нужно решить следующую задачу. Задана сеть каналов, почему-то являющаяся деревом из n вершин и n-1 ребер соответственно. А так же q различных маршрутов между различными площадями, заданными s_i , t_i — началом и концом пути соответственно.

Когда пересекаются два маршрута гондол в любой вершине, им очень тяжело разъезжаться и такие ситуации не очень желательны.

Требуется найти площадь с максимальным количеством пересечений. Выведите максимальное число пересечений в площади (сам номер площади нас не интересует). Помогите нашему герою.

Формат входных данных

В первой строке заданы числа $1\leqslant n\leqslant 5\cdot 10^4$ и $1\leqslant q\leqslant 10^5$, число вершин в графе и число запросов на перемещение соответственно.

Далее, n-1 строка описывает ребра дерева, $1 \le a, b \le n$.

Следующие, q строк описывают начальную и конечную точки маршрута $1 \leq s, t \leq n$.

Формат выходных данных

Выведите одно число – максимальное количество пересечений в одной площади.

стандартный вывод
9

Задача І. Дуумвират 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 512 мегабайт

Надо бы всё-таки написать нормальную легенду, а то как-то не очень. И без легенды непонятно, почему задача так называется

Но пока легенды нет, вот формальное условие:

Вам дано дерево на n вершинах. В вершинах записаны числа. Требуется отвечать на запросы двух видов:

- ullet ? ${\tt v}$ u узнать сумму значений чисел, записанных в вершинах на пути из v в u.
- ! v x cделать значение, записанное в вершине v равным x.

Формат входных данных

В первой строке записано число n — количество вершин дерева $(1 \le n \le 10^6)$. Во сторой сроке записаны через пробел n чисел v_i ($|v_i| < 10^9$), задающие значения в вершинах. В следующих n-1 строках описаны ребра дерева. В (i+2)-й строке записаны номера вершин a_i , b_i $(1 \le a_i, b_i \le n)$, означающие, что в дереве есть ребро из вершины a_i в вершину b_i .

Далее на отдельной строке записано число m — количество запросов ($1 \le m \le 10^6$). После этого идут m строк с описанием запросов, в очередной строке может быть написано ?vu — узнать сумму на пути из v в u ($1 \le v, u \le n$). Или !vx — изменить значение в вершине v на x ($1 \le v \le n$, $-10^9 \le x \le 10^9$).

Формат выходных данных

Для каждого запроса виде ?vu выведите искомую величину.

стандартный ввод	стандартный вывод
7	0
0 -7 -2 -7 1 4 8	-5
3 6	-2
7 6	-8
1 3	
5 1	
4 6	
2 1	
7	
? 1 1	
? 2 6	
! 2 -8	
! 7 -6	
! 4 -6	
? 1 3	
? 1 2	

Задача Ј. Праздник к нам приходит

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В уездном городе Т все заняты подготовкой к новому году. Аня вот, например, готовится вручать подарки в новогоднюю ночь (в городе Т именно Аня исполняет роль Деда Мороза).

В городе Т n домов, некоторые из которых соединены улицами, причем так, что между любыми двумя домами есть ровно один путь.

Аня уже заготовила m мешков с подарками (в этом году она дарит серые футболки с желтым единорогом), но столкнулась с проблемой. Ей ведь самой тоже нужно найти дом в городе Т для празднования Нового Года. Раздачей подарков же, как обычно, будут заниматься гориллята. Одному горилленку можно дать ровно один мешок и отправить его в путь. При этом гориллята не ходят по одной и той же улице дважды. i-й мешок предназначен для жителей всех домов на пути от a_i до b_i . Поэтому считается, что горилленку можно дать i-й мешок с подарками, если он сможет выйти из места празднования Ани и пройти через все дома на пути от a_i до b_i , при этом не проходя через одну и ту же улицу дважды.

Помогите Ане найти дом для празднования так, чтобы она смогла отправить как можно больше мешков с подарками. В данной задаче можно считать, что количество гориллят не ограничено.

Формат входных данных

В первой строке задано число n — количество домов в городе Т $(2 \le n \le 2 \cdot 10^5)$.

В следующих n-1 строках описаны улицы. Улица задаётся числами x_i и y_i — номерами домов, которые она соединяет $(1 \le x_i, y_i \le n, x_i \ne y_i)$. Гарантируется, что между любыми двумя домами существует единственный путь.

В следующей строке задано число m — количество мешков у Ани ($1 \le m \le 2 \cdot 10^5$).

В следующих m строках описаны мешки с футболками. В i-й из них заданы числа a_i и b_i — начало и конец i-го пути $(1 \le a_i, b_i \le n, a_i \ne b_i)$. Пути могут пересекаться и совпадать.

Дома нумеруются с единицы.

Формат выходных данных

Выведите одно число — максимальное число мешков с подарками, которые Аня сможет раздать, если выберет оптимальный дом для празднования.

стандартный ввод	стандартный вывод
7	2
1 2	
2 3	
3 4	
3 5	
5 6	
5 7	
3	
1 5	
2 4	
6 7	