Using R for Introduction to Econometrics

Christoph Hanck, Martin Arnold, Alexander Gerber and Martin Schmelzer 2018-06-14

Contents

1	Introduction								
	1.1	A Very Short Introduction to R and RStudio	8						
2	Introduction to Time Series Regression and Forecasting								
	2.1	Using Regression Models for Forecasting	12						
	2.2	Time Series Data and Serial Correlation	12						
	2.3	Autoregressions	19						
	2.4	Can You Beat the Market? (Part I)	24						
	2.5	Additional Predictors and The ADL Model	25						
	2.6	Lag Length Selection Using Information Criteria	34						
	2.7	Nonstationarity I: Trends	36						
	2.8	Nonstationarity II: Breaks	47						
	2.9	Can You Beat the Market? Part II	53						

4 CONTENTS

Chapter 1

Introduction

The interest in the freely available statistical programming language and software environment R is soaring. By the time we wrote first drafts for this project, more than 11000 addons (many of them providing cutting-edge methods) were made available on the Comprehensive R Archive Network (CRAN), an extensive network of FTP servers around the world that store identical and up-to-date versions of R code and its documentation. R dominates other (commercial) software for statistical computing in most fields of research in applied statistics but the benefits of it being freely available, open source and having a large and constantly growing community of users that contribute to CRAN render R more and more appealing for empirical economists and econometricians.

A striking advantage of using R in econometrics courses is that it enables students to explicitly document their analysis step-by-step such that it is easy to update and to expand. This allows to re-use code for similar applications with different data. Furthermore, R programs are fully reproducible which makes it straightforward for others to comprehend and validate the results.

Over the recent years, R has thus become an integral part of the curricula of econometrics classes we teach at University of Duisburg-Essen. In some sense, learning to code is comparable to learning a foreign language and continuous practice is essential for the learning success. Of course, presenting bare R code chunks on

slides has mostly a deterring effect for the students to engage with programming on their own. This is why we offer tutorials where both econometric theory and its applications using R are introduced, for some time now. As for accompanying literature, there are some excellent books that deal with R and its applications to econometrics like Kleiber & Zeilis (2008) and Hetekar (2010). However, we have found that these works are somewhat difficult to access, especially for undergraduate students in economics having little understanding of econometric methods and predominantly no experience in programming at all. Consequently, we have started to compile a collection of reproducible reports for use in class. These reports provide guidance on how to implement selected applications from the textbook Introduction to Econometrics by Stock & Watson (2014) which serves as a basis for the lecture and the accompanying tutorials. The process has been facilitated considerably with the release of knitr (2018) in 2012. knitr is an R package for dynamic report generation which allows to seamlessly combine pure text, LaTeX, R code and its output in a variety of formats, including PDF and HTML. Being inspired by Using R for Introductory Econometrics (Heiss, 2016)¹ and with this powerful toolkit at hand we decided to write up our own empirical companion to Stock & Watson (2014) which resulted in Using R for Introduction to Econometrics (URFITE).

Similarly to the book by Heiss (2016) this project is neither a comprehensive econometrics textbook nor is it intended to be a general introduction R. URFITE is best described as an interactive script in the style of a reproducible research report which aims to provide students of economic sciences with a platform-independent e-learning arrangement by seamlessly intertwining theoretical core knowledge and empirical skills in undergraduate econometrics. Of course the focus is set on empirical applications with R; we leave out tedious derivations and formal proofs wherever we can. URFITE is closely aligned on Stock & Watson (2014) which does very well in motivating theory by real-world applications. However, we take it a step further and enable students not only to learn how results of case studies can be replicated with R but we also intend to strengthen their ability in using the newly acquired skills in other empirical applications. To support this, each chapter contains interactive R programming exercises. These exercises are used as supplements to code chunks that display how previously discussed techniques can be implemented within R. They are generated using the DataCamp light widget and are backed by an R-session which is maintained on DataCamp's servers. You may play around with the example exercise presented below.

This interactive application is only available in the HTML version.

As you can see above, the widget consists of two tabs. script.R mimics an .R-file, a file format that is commonly used for storing R code. Lines starting with a # are commented out, that is they are not recognized as code. Furthermore, script.R works like an exercise sheet where you may write down the solution you come up with. If you hit the button Run, the code will be executed, submission correctness tests are run and you will be notified whether your approach is correct. If it is not correct, you will receive feedback suggesting improvements or hints. The other tab, R Console, is a fully functional R console that can be used for trying out solutions to exercises before submitting them. Of course you may submit (almost any) arbitrary R code and use the console to play around and explore. Simply type a command and hit the enter key on your keyboard.

As an example, consider the following line of code presented in chunk below. It tells R to compute the number of packages available on CRAN. The code chunk is followed by the output produced.

```
# compute the number of packages available on CRAN
nrow(available.packages(repos = "http://cran.us.r-project.org"))
```

[1] 12598

Each code chunk is equipped with a button on the outer right hand side which copies the code to your clipboard. This makes it convenient to work with larger code segments. In the widget above, you may click on R Console and type nrow(available.packages()) (the command from the code chunk above) and execute it by hitting *Enter* on your keyboard².

¹Heiss (2016) builds on the popular *Introductory Econometrics* by Wooldridge (2015) and demonstrates how to replicate the applications discussed therein using R.

 $^{^{2}}$ The R session is initialized by clicking anywhere into the widget. This might take a few seconds. Just wait for the indicator next to the button Run to turn green

Figure 1.1: *RStudio*: the four panes

As you might have noticed, there are some out-commented lines in the widget that ask you to assign a numeric value to a variable and then to print the variable's content to the console. You may enter your solution approach to script.R and hit the button Run in order to get the feedback described further above. In case you do not know how to solve this sample exercise (don't panic, that is probably why you are reading this), a click on Hint will prompt you with some advice. If you still can't find a solution, a click on Solution will provide you with another tab, Solution.R which contains sample solution code. It will often be the case that exercises can be solved in many different ways and Solution.R presents what we consider as comprehensible and idiomatic.

Conventions Used in this Book

- Italic text indicates new terms, names, buttons and alike.
- Constant width text, is generally used in paragraphs to refer to R code. This includes commands, variables, functions, data types, databases and file names.
- Constant width text on gray background is used to indicate R code that can be typed literally by you. It may appear in paragraphs for better distinguishability among executable and non-executable code statements but it will mostly be encountered in shape of large blocks of R code. These blocks are referred to as code chunks (see above).

Acknowledgements

We thank Alexander Blasberg and Kim Hermann for proofreading and their constructive criticism.

1.1 A Very Short Introduction to R and RStudio

R Basics

This section is meant for those who have never worked with R or *RStudio*. If you at least know how to create objects and call functions, you can skip it. If you would like to refresh your memories or get a feeling for how to work with *RStudio*, keep reading.

First of all start *RStudio* and create a new R Script by selecting *File*, *New File*, *R Script*. In the editor pane type

```
1 + 1
```

and click on the button labeled Run in the top right corner of the editor. By doing so, your line of code is send to the console and the result of this operation should be displayed right underneath it. As you can see, R works just like a calculator. You can do all the arithmetic calculations by using the corresponding operator $(+, -, *, / \text{ or } ^{\circ})$. If you are not sure what the last operator does, try it out and check the results.

Vectors

R is of course more sophisticated than that. We can work with variables or more generally objects. Objects are defined by using the assignment operator <. To create a variable named x which contains the value 10 type x < 10 and click the button Run yet again. The new variable should have appeared in the environment pane on the top right. The console however did not show any results, because our line of code did not contain any call that creates output. When you now type x in the console and hit return, you ask R to show you the value of x and the corresponding value should be printed in the console.

x is a scalar, a vector of length 1. You can easily create longer vectors by using the function c() (c for "concatenate" or "combine"). To create a vector y containing the numbers 1 to 5 and print it, do the following.

```
y <- c(1, 2, 3, 4, 5)
y
```

```
## [1] 1 2 3 4 5
```

You can also create a vector of letters or words. For now just remember that characters have to be surrounded by quotes, else wise they will be parsed as object names.

```
hello <- c("Hello", "World")
```

Here we have created a vector of length 2 containing the words Hello and World.

Do not forget to save your script! To do so, select File, Save.

Functions

You have seen the function c() that can be used to combine objects. In general, function calls look all the same, a function name is always followed by round parentheses. Sometimes, the parentheses include arguments

Here are two simple examples.

```
z \leftarrow seq(from = 1, to = 5, by = 1)
mean(x = z)
```

```
## [1] 3
```

In the first line we use a function called seq to create the exact same vector as we did in the previous section but naming it z. The function takes on the arguments from, to and by which should be self-explaining. The function mean() computes the arithmetic mean of its argument x. Since we pass the vector z as the argument x to mean(), the result is 3!

If you are not sure what argument a function expects you may consult the function's documentation. Let's say we are not sure how the arguments required for seq() work. Then we can type ?seq in the console and by hitting return the documentation page for that function pops up in the lower right pane of *RStudio*. In there, the section *Arguments* holds the information we seek.

On the bottom of almost every help page you find examples on how to use the corresponding functions. This is very helpful for beginners and we recommend to look out for those.

Chapter 2

Introduction to Time Series Regression and Forecasting

Time series data is data that is collected for a single entitity over time. This is fundamentally different from cross-section data which is data on multiple entities at the same point in time. Time series data allows estimation of the effect on Y of a change in X over time. This is what econometricians call a dynamic causal effect. Let us go back to the application to cigarette consumption of Chapter 12 where we were interested in estimating the effect on cigarette demand of a price increase caused by a raise of the general sales tax. One might use time series data to assess the causal effect of a tax increase on smoking both initially and in subsequent periods.

Another application of time series data is forecasting. For example, weather services use time series models to predict tomorrow's average temperatur using todays average temperature and average temperatures of the past. To motivate an economic example, central banks are interested in forecasting next month's unemployment rates.

The remainder of the book deals with the econometric techniques for the analysis of time series data and application of the latter to problems of forecasting and estimation of dynamic causal effects. This section covers the basic concepts presented in Chapter 14 of the book, explains how to visualize time series data and demonstrates how to estimate simple autoregressive models, where the regressors are past values of the dependent variable or other variables. In this context we will also discuss the concept of stationarity, an important property which has far-reaching consequences since it determines whether the past of a series has any power in explaining the series' future.

Most empirical applications in this chapter are concerned with forecasting and use data on U.S. macroe-conomic indicators or financial time series like Gross Domestic Product (GDP), the unemployment rate or excess stock returns.

The following packages and their dependencies are needed for reproduction of the code chunks presented throughout this chapter:

- AER
- dynlm
- forecast
- readxl
- stargazer
- scales
- quantmod

2.1 Using Regression Models for Forecasting

What is the difference between estimating models for assessment of causal effects and forecasting? Consider again the simple example of estimating the casual effect of the student-teacher ratio on test scores introduced in Chapter 4.

```
library(AER)
data(CASchools)
CASchools$STR <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math)/2

mod <- lm(score ~ STR, data = CASchools)
mod

##
## Call:
## lm(formula = score ~ STR, data = CASchools)
##
## Coefficients:
## (Intercept) STR
## 698.93 -2.28</pre>
```

As has been stressed in Chapter 6, the estimate of the coefficient on the student-teacher ratio does not have causal interpretation due to omitted variable bias. However, in terms deciding which school to send her child to, it might nevertheless be appealig for a parent to use mod for forecasting test scores in schooling districts where no public data about on scores are available.

As an example, assume that the average class in a district has 25 students. There is no such thing as a perfect forecast but the following one-liner might be helpful for the parent to decide.

```
predict(mod, newdata = data.frame("STR" = 25))
##     1
## 641.9377
```

In a time series context, the parent could use data on present and past years test scores to forecast next years test scores — a typical application for an autoregressive model.

2.2 Time Series Data and Serial Correlation

GDP measures the productivity of an economy. It is commonly defined as the value of goods and services produced over a given time period. The data set us_macro_quarterly.xlsx is provided by the authors and can be downloaded here. It provides quarterly data on U.S. real (i.e. inflation adjusted) GDP from years 1947 to 2004.

As before, a good point to start with in pre-estimation is plotting the data. The package quantmod provides some very convenient functions for plotting and computing with time series data. We also load the package readx1 to read the data into R.

```
# attach the package `quantmod`
library(quantmod)
```

We begin by importing the data set.

When dealing with time series data in R it is preferable to work with time-series objects that keep track of the frequency of the data and are extensible. In what follows we will use objects of the class xts, see ?xts. Since the data in USMacroSWQ are in quarterly frequence we convert the first column to yearqtr format before generating the xts object GDP.

The function Delt() from the package quantmod computes growth rates. We anualize the quarterly changes to obtain anual growth rates as

$$Rate_{annual} = (1 + Rate_{quarterly})^4 - 1.$$

```
# GDP series as xts object

GDP <- xts(USMacroSWQ$GDPC96, USMacroSWQ$Date)["1960::2013"]

# GDP growth series as xts object

GDPGrowth <- xts(400 * log(GDP/lag(GDP)))
```

The following code chunks reproduce Figure 14.1 of the book.

U.S. Quarterly Real GDP

Growth Rates in U.S. Real GDP

Notation, Lags, Differences, Logarithms and Growth Rates

If observations of a variable Y are recorded over time, we denote Y_t the value observed at time t. The period between two sequential observations Y_t and Y_{t-1} is a unit of time: hours, days, weeks, months, quarters, years and so on. Key Concept 14.1 introduces the essential terminology and notation for time series data we will use in the subsequent sections.

Key Concept 14.1

Lags, First Differences, Logarithms and Growth Rates

- Previous values of a time series are called *lags*. The first lag of Y_t is Y_{t-1} . The j^{th} lag of Y_t is Y_{t-j} . In R, lags of univariate or multivariate time series are conveniently computed by lag(), see ?lag
- Sometimes we need to work with a differenced series. The first difference of a series is $\Delta Y_t = Y_t Y_{t-1}$, the difference between periods t and t-1. If Y is a time series, the series of first differences is computed as Y-lag(Y).
- It may be convenient to work with the first difference in logarithms of a series. We denote this by $\Delta \log(Y_t) = \log(Y_t) \log(Y_{t-1})$. For a time series Y, this is obtained using $\log(Y/\log(Y))$.
- $100\Delta \log(Y_t)$ is an approximation for the percentage change between Y_t and Y_{t-1} .

The definitions made in Key Concept 14.1 are useful because of two properties that are common to many economic time series:

- Exponential growth: some economic series grow approximately exponentially such that taking the logarithm of these series makes them approximately linear.
- The standard deviation of many economic time series is approximately proportional to their level. Therefore, the standard deviation of the logarithm of such a series is approximately constant.

Furthermore, it is common to report rates of growth in macroeconomic series which is why log-differences are often used.

Table 14.1 of the book presents the quaterly U.S. GDP time series, its logarithm, the anualized growth rate and the first lag of the anualized growth rate series for the period 2012:Q1 - 2013:Q1. The following simple function can be used to compute these quantities for a quaterly time series series.

Notice that the annual growth rate is computed using the approximation

```
AnnualGrowthY_t = 400 \cdot [\log(Y_t) - \log(Y_{t-1})]
```

discussed in Key Concept 14.1.

We call quants() on observations for the period 2011 Q3 - 2013 Q1.

```
quants(GDP["2011-07::2013-01"])
```

##			Lead	Logarithm	${\tt AnnualGrowthRate}$	${\tt X1stLagAnnualGrowthRate}$
##	2011	QЗ	15062.14	9.619940	NA	NA
##	2011	Q4	15242.14	9.631819	4.7518062	NA
##	2012	Q1	15381.56	9.640925	3.6422231	4.7518062
##	2012	Q2	15427.67	9.643918	1.1972004	3.6422231
##	2012	QЗ	15533.99	9.650785	2.7470216	1.1972004
##	2012	Q4	15539.63	9.651149	0.1452808	2.7470216
##	2013	Q1	15583.95	9.653997	1.1392015	0.1452808

Autocorrelation

Observations of a time series are typically correlated. This type of correlation is called *autocorrelation* or *serial correlation*. Key Concept 14.2 summarizes the concepts of population autocovariance and population autocorrelation and shows how to compute their sample equivalents.

Key Concept 14.2

Autocorrelation and Autocovariance

The covariance between Y_t and its j^{th} lag, Y_{t-j} , is called the j^{th} autocovariance of the series Y_t . The j^{th} autocorrelation coefficient, also called the serial correlation coefficient, measures the correlation between Y_t and Y_{t-j} .

We thus have

$$\begin{split} j^{th} \text{autocovariance} &= Cov(Y_t, Y_{t-j}), \\ j^{th} \text{autocorrelation} &= \rho_j = \rho_{Y_t, Y_{t-j}} = \frac{Cov(Y_t, Y_{t-j})}{\sqrt{Var(Y_t)VarY_{t-j}}}. \end{split}$$

Population Autocovariance and population autocorrelation can be estimated by $Cov(Y_t, Y_{t-j})$, the sample autocovariance, and $\widehat{\rho}_j$, the sample autocorrelation.

$$\begin{split} \widehat{Cov(Y_t, Y_{t-j})} &= \frac{1}{T} \sum_{t=j+1}^{T} (Y_t - \overline{Y}_{j+1:T}) (Y_{t-j} - \overline{Y}_{1:T-j}) \\ \widehat{\rho}_j &= \frac{\widehat{Cov(Y_t, Y_{t-j})}}{\widehat{Var(Y_t)}}. \end{split}$$

In R the function acf() from the package stats computes the sample autocovariance or the sample autocorrelation function.

Using acf() it is straightforward to compute the first four sample autocorrelations of the series GDPGrowth.

```
acf(na.omit(GDPGrowth), lag.max = 4, plot = F)

##
## Autocorrelations of series 'na.omit(GDPGrowth)', by lag
##
## 0.00 0.25 0.50 0.75 1.00
## 1.000 0.352 0.273 0.114 0.106
```

This is evidence that there is mild positive autocorrelation in the growth of GDP: if GDP grows faster than average in one period, there is a tendency that it grows faster than average in the following periods.

Other Examples of Economic Time Series

Figure 14.2 of the book presents four plots. The U.S. unemployment rate, the U.S. Dollar / British Pound exchange rate, The logarithm of the Janapese industrial production index as well as daily changes in the Whilshire 5000 stock price index, a financial time series. The next code chunk reproduces the plots of the three macroenomic series and adds percentage changes in the daily values of the New York Stock Exchange Composite index as a fourth one (the data set NYSESW comes with the AER package).

```
# define series as xts objects
USUnemp <- xts(USMacroSWQ$UNRATE, USMacroSWQ$Date)["1960::2013"]
DollarPoundFX <- xts(USMacroSWQ$EXUSUK, USMacroSWQ$Date)["1960::2013"]
JPIndProd <- xts(log(USMacroSWQ$JAPAN_IP), USMacroSWQ$Date)["1960::2013"]</pre>
data("NYSESW")
NYSESW <- xts(Delt(NYSESW))</pre>
par(mfrow = c(2, 2))
plot(as.zoo(USUnemp),
     col = "steelblue",
     lwd = 2,
     ylab = "Percent",
     xlab = "Date",
     main = "US Unemployment Rate",
     cex.main = 1
)
plot(as.zoo(DollarPoundFX),
     col = "steelblue",
     lwd = 2,
     ylab = "Dollar per pound",
    xlab = "Date",
     main = "U.S. Dollar / B. Pound Exchange Rate",
     cex.main = 1
)
plot(as.zoo(JPIndProd),
     col = "steelblue",
     lwd = 2,
     ylab = "Logarithm",
     xlab = "Date",
     main = "Japanese Industrial Production",
     cex.main = 1
)
plot(as.zoo(NYSESW),
     col = "steelblue",
     lwd = 2,
     ylab = "Percent per Day",
     xlab = "Date",
    main = "New York Stock Exchange Composite Index",
     cex.main = 1
)
```


Note that the series show quite different characteristics. The unemployment rate increases during recessions and declines in times of economic recoveries and growth. The Dollar/Pund exchange rates shows a deterministic patern until the end of the Bretton Woods system. Japans industrial production exhibits an upward trend and decreasing growth. Daily changes in the New York Stock Exchange composite index seem to be random around the zero line. The sample autocorrelations confirm this conjecture.

```
# compute sample autocorrelation for the NYSESW series
acf(na.omit(NYSESW), plot = F, lag.max = 10)
```

```
##
 Autocorrelations of series 'na.omit(NYSESW)', by lag
##
##
     0
          1
               2
                    3
                             5
                                  6
##
       ##
    10
##
  0.004
```

The first 10 sample autocorrelation coefficients are very close to zero. Further evidence can be found by looking at the plot generated by acf() by default.

```
acf(na.omit(NYSESW), main = "Sample Autocorrelation for NYSESW Data")
```

Sample Autocorrelation for NYSESW Data

The blue dashed lines represent an approximate 95% confidence interval if there was no serial correlation. If a sample autocorrelation lies beyond these bands, it is statistically different from zero. For most lags we see that the sample autocorrelation does not exceed the confidence bands and there are only a few cases that lie marginally beyond the limits.

Furthermore, note that NYSWSW series shows a pattern which econometricians call *volatility clustering*: there are periods of high and periods of low variance. This is common for many financial time series.

2.3 Autoregressions

Growth forecasts are important for many economic entitites. For example, the production setor relies on forecasts of GDP growth published by the central bank when deciding on future budgets and production plans. Autoregressive models are heavily used in economic forecasting. An autoregressive model relates a time series variable to its past values. This chapter discusses the basic ideas of autoregressions models, shows how they are estimated and discusses an application to forecasting of GDP growth using R.

The First-Order Autoregressive Model

It is intuitive that the immediate past of a time series should have power to predict its near future. The simplest autoregressive model uses only the most recent outcome of the time series observed to predict future values. Such a model is called a first-order autoregressive model which is often abbriviated AR(1), where the 1 indicates that the order of autoregression is one.

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t$$

is the AR(1) population model of a time series Y_t .

For the GDP growth series, an autoregressive model of order one uses only the information on GDP growth observed in the last quarter to predict a future growth rate. The first-order autoregression model of the GDP growth rate can be estimated by computing OLS estimates in the regression of $GDPGR_t$ on $GDPGR_{t-1}$,

$$\widehat{GDPGR_t} = \beta_0 + \beta_1 GDPGR_{t-1} + u_t. \tag{2.1}$$

Following the book we use data from 1962 to 2012 to estimate (2.1). This is easily done with the function ar.ols() from package stats.

```
# subset data
GDPGRSub <- GDPGrowth["1962::2012"]
# estimate the model
ar.ols(GDPGRSub,
       order.max = 1,
       demean = F,
       intercept = T)
##
## Call:
## ar.ols(x = GDPGRSub, order.max = 1, demean = F, intercept = T)
##
## Coefficients:
##
        1
## 0.3384
##
## Intercept: 1.995 (0.2993)
##
## Order selected 1 sigma^2 estimated as 9.886
We can check that the computations done by ar.ols() are the same as done by lm().
# length of data set
N <-length(GDPGRSub)
GDPGR_leads <- as.numeric(GDPGRSub[-1])</pre>
GDPGR_lags <- as.numeric(GDPGRSub[-N])</pre>
# estimate the model
armod <- lm(GDPGR_leads ~ GDPGR_lags)</pre>
armod
##
## Call:
## lm(formula = GDPGR_leads ~ GDPGR_lags)
##
## Coefficients:
## (Intercept)
                  GDPGR_lags
##
        1.9950
                      0.3384
As usual, we may use coeftest() to obtain a robust summary on the estimated regression coefficients.
# robust summary
coeftest(armod, vcov. = vcovHC(armod, type = "HC1"))
```

2.3. AUTOREGRESSIONS

```
## t test of coefficients:
##

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.994986   0.351274   5.6793   4.691e-08 ***
## GDPGR_lags   0.338436   0.076188   4.4421   1.470e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Thus the estimated model is

$$\widehat{GDPGR_t} = 1.995 + 0.338 GDPGR_{t-1}.$$
 (2.2)

Notice that we omit the first observation for $GDPGR_{1962\ Q1}$ from the vector of the dependent variable since $GDPGR_{1962\ Q1-1} = GDPGR_{1961\ Q4}$, is not included in the sample. Similarly, the last observation, $GDPGR_{2012\ Q4}$, is excluded from the predictor vector since the data set does not include $GDPGR_{2012\ Q4+1} = GDPGR_{2013\ Q1}$. Put differently, when estimating the model, one observation is lost because of the time series structure of the data.

Forecasts and Forecast Errors

Suppose a random variable Y_t follows an AR(1) model with an intercept and that you have an OLS estimate of the model on the basis of observations for T periods. Then you may use the AR(1) model to obtain $Y_{T+1|T}$, a forecast for Y_{T+1} using data up to perdiod T where

$$\widehat{Y}_{T+1|T} = \widehat{\beta}_0 + \widehat{\beta}_1 Y_T.$$

The forecast error is

Forecast error =
$$Y_{T+1} - \widehat{Y}_{T+1|T}$$
.

Forecasts and Predicted Values

Note that forecasted values of Y_t are not what we refer to as OLS predicted values of Y_t . Also, the forecast error is not an OLS residual. Forecasts and forecast errors are obtained using out-of-sample values while predicted values and residuals are computed for in-sample values that were actually observed and used in estimation of the model.

The root mean squared forecast error (RMSFE) measures the typical size of the forecast error and is defined as

$$RMSFE = \sqrt{E\left[\left(Y_{T+1} - \widehat{Y}_{T+1|T}\right)^{2}\right]}.$$

Application to GDP Growth

Using (2.2), the estimated AR(1) model of GDP growth, we may perform the forecast for GDP growth in 2013:Q1 (remember that the model was estimated using data for periods 1962:Q1 - 2012:Q4 so 2013:Q1 is an out of sample period). This is done by plugging $GDPGR_{2012:Q4} \approx 0.15$ in (2.2),

$$\widehat{GDPGR}_{2013:Q1} = 1.995 + 0.348 \cdot 0.15 = 2.047.$$

The function forecast() from the forecast package has some useful features for forecasting of time series data.

```
library(forecast)

# assign GDP growth rate in 2012:Q4
new <- data.frame("GDPGR_lags" = GDPGR_leads[N-1])

# forecast GDP growth rate in 2013:Q1
forecast(armod, newdata = new)

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95</pre>
```

```
## 1 2.044155 -2.036225 6.124534 -4.213414 8.301723
```

Using forecast() we obtain the same point forecast of about 2.0, along with 80% and 95% forecast intervals. We conclude that our AR(1) model forecasts GDP growth to be 2% in 2013:Q1.

How accurate is this forecast? First, notice that the forecast error is pretty big: $GDPGR_{2013:Q1} \approx 1.1\%$ while our forecast is 2%. Second, by calling summary() on armod we find that the model explains only little of the variation in the growth rate of GDP and the SER is about 3.16. Leaving aside forecast uncertainty due to estimation of the model coefficients β_0 and β_1 , the RMSFE must be at least 3.16% which is pretty inaccurate.

The p^{th} -Order Autoregressive Model

For forecasting GPD growth in period t, the AR(1) model (2.2) disregards any information in the past of the series that is more distant than one period. An AR(p) model incorporates the information of p lags of the series. The idea is explained in Key Concept 14.3.

```
Key Concept 14.3
```

Autoregressions

An AR(p) model assumes that a time series Y_t can be represented by a linear function of the first p of its lagged values. We say that

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \dots + \beta_p Y_{t-p} + u_t$$

is an autoregressive model of order p where $E(u_t|Y_{t-1},Y_{t-2},\ldots,Y_{t-p})=0$.

Following the book, we estimate an AR(2) model of the GDP growth series from 1962:Q1 to 2012:Q4.

```
# estimate the AR(2) model
GDPGR_AR2 <- dynlm(ts(GDPGR_leads) ~ L(ts(GDPGR_leads)) + L(ts(GDPGR_leads), 2))
coeftest(GDPGR_AR2, vcov. = sandwich)
##</pre>
```

The estimation yields

$$\widehat{GDPGR_t} = \underset{(0.40)}{1.63} + \underset{(0.08)}{0.28} GDPGR_{t-1} + \underset{(0.08)}{0.18} GDPGR_{t-1}.$$
(2.3)

We see that the coefficient on the second lag is significantly different from zero. Note that the fit improves slightly: $\overline{R^2}$ grows from 0.11 for the AR(1) model to about 0.14 and the SER reduces to 3.13.

```
# R~2
summary(GDPGR_AR2)$r.squared
```

```
## [1] 0.1425484

# SER
summary(GDPGR_AR2)$sigma
```

```
## [1] 3.132122
```

We may use the AR(2) model to obtain a forecast for GDP growth in 2013:Q1 in the same manner as for the AR(1) model.

```
# AR(2) forecast of GDP growth in 2013:Q1
"Forecast" <- c("2013:Q1" = coef(GDPGR_AR2) %*% c(1, GDPGR_leads[N-1], GDPGR_leads[N-2]))</pre>
```

This leads to a forecast error of roughly -1%.

```
# compute AR(2) forecast error
GDPGrowth["2013"][1] - Forecast
```

```
## x
## 2013 Q1 -1.025358
```

2.4 Can You Beat the Market? (Part I)

The thoery of efficient capital markets states that stock prices embody all currently available information. If this hypothesis holds, it should not be possible to estimate a useful model for forecasting future stock returns using publicly available information on past returns (this is also referred to as the weak-form efficiency hypothesis): if it was possible to forecast the market, traders would be able to make arbitrage, e.g. by relying on an AR(2) model, they would use information that is not already priced-in which would be not consistent with the theory.

This idea is presented in the Box Can You Beat the Market? (Part I) on p. 582 of the book. This section reproduces the estimation results.

We start by importing monthly data from 1931:1 to 2002:12 on excess returns of a broad-based index of stock prices, the CRSP value-weighted index. The data are provided by the authors of the book as an excel sheet which can be downloaded here.

We continue by converting the data to an object of class ts.

Next, we estimate AR(1), AR(2) and AR(4) models of excess returns for the time period 1960:1 to 2002:12.

After computing robust standard errors, we gather the results in a table generated by stargazer().

```
rob_se <- list(
   sqrt(diag(sandwich(SR_AR1))),
   sqrt(diag(sandwich(SR_AR2))),
   sqrt(diag(sandwich(SR_AR4)))
)</pre>
```

```
library(stargazer)

stargazer(SR_AR1, SR_AR2, SR_AR4,
  title = "Autoregressive Models of Monthly Excess Stock Returns",
  header = FALSE,
  model.numbers = F,
```

Table 2.1: Autoregressive Models of Monthly Excess Stock Returns

	Excess returns	Excess returns on the CSRP value-weighted index		
	AR(1)	AR(2)	AR(4)	
$excessreturn_{t-1}$	0.05	0.05	0.05	
	(0.05)	(0.05)	(0.05)	
$excessreturn_{t-2}$		-0.05	-0.05	
		(0.05)	(0.05)	
$excessreturn_{t-3}$			0.01	
			(0.05)	
$excessreturn_{t-4}$			-0.02	
			(0.05)	
Intercept	0.31	0.33*	0.33	
-	(0.20)	(0.20)	(0.20)	
Observations	516	516	516	
Adjusted \mathbb{R}^2	0.001	0.001	-0.002	
Residual Std. Error	4.33 (df = 514)	4.33 (df = 513)	4.34 (df = 511)	
F Statistic	1.31 (df = 1; 514)	1.37 (df = 2; 513)	0.72 (df = 4; 511)	

The results presented above are consistent with the hypothesis of efficient financial markets: there are no statistically significant coefficients in any of estimated models and the hypotheses that the respective set of lags has no power in explaining today's returns cannot be rejected. Notice also that $\overline{R^2}$ is almost zero in all models and even negative for the AR(4) model. This suggests that none of the models are useful for forecasting stock returns.

2.5 Additional Predictors and The ADL Model

Instead of only using the dependent variable's lags as predictors, an autoregressive distributed lag (ADL) model also uses lags of other variables for forecasting. The general ADL model is summarized in Key Concept 14.4

Key Concept 14.4

The Autoregressive Distributed Lag Model

An ADL(p,q) model assumes that a time series Y_t can be represented by a linear function of p of its lagged values and q lags of X_t , another time series. We say that

$$Y_{t} = \beta_{0} + \beta_{1} Y_{t-1} + \beta_{2} Y_{t-2} + \dots + \beta_{p} Y_{t-p} + \delta_{1} X_{t-1} + \delta_{2} X_{t-2} + \dots + \delta_{q} X_{t-q} X_{t-q} + u_{t}.$$

is an autoregressive distributed lag model with p lags of Y_t and q lags of X_t where

$$E(u_t|Y_{t-1},Y_{t-2},\ldots,X_{t-1},X_{t-2},\ldots)=0$$

.

Forecasting GDP Growth Using the Term Spread

Interests on long-term and short term treasury bonds are closely linked to the macroeconomic development. While interest rates on both types of bonds have the same long-run tendencies, they behave quite differently in the short run. The difference in interest rates of two bonds with distinct matuarity is called the *term spread*.

The following code chunks reproduce Figure 14.3 of the book which displays interest rates of 10-year U.S. Treasury bonds and 3-months U.S. Treasury bills from 1960 to 2012.

```
# 3 months Treasury bills interest rate
TB3MS <- xts(USMacroSWQ$TB3MS, USMacroSWQ$Date)["1960::2012"]
# 10 years Treasury bonds interest rate
TB10YS <- xts(USMacroSWQ$GS10, USMacroSWQ$Date)["1960::2012"]
# term spread
TSpread <- TB10YS - TB3MS
# reproduce Figure 14.2 (a) of the book
plot(merge(as.zoo(TB3MS),as.zoo(TB10YS)),
     plot.type = "single",
     col = c("darkred", "steelblue"),
     lwd = 2,
     xlab = "Date",
     ylab = "Percent per annum",
     main = "Interest Rates"
)
legend("topright",
       legend = c("TB3MS", "TB10YS"),
       col = c("darkred", "steelblue"),
       1wd = c(2,2)
```

Interest Rates

Term Spread

Notice that before recessions, the gap between interests on long-term bonds and short term bills narrows and consequently the term spread declines drastically towards zero or even falls below zero in times of economic stress. This information might be used to improve forecasts of future GDP growth.

We check this by estimating an ADL(2,1) model and an ADL(2,2) model of the GDP growth rate using lags of GDP growth and lags of the term spread as regressors and use both models for forecasting the GDP growth in 2013:Q1.

```
# convert growth and spread series to ts objects
GDPGrowth_ts <- ts(GDPGrowth,</pre>
                  start = c(1960, 1),
                  end = c(2013, 4),
                  frequency = 4)
TSpread_ts <- ts(TSpread,
                start = c(1960, 1),
                end = c(2012, 4),
                frequency = 4)
# join both ts objects
ADLdata <- ts.union(GDPGrowth_ts, TSpread_ts)
# estimate the ADL(2,1) model of GDP growth
GDPGR_ADL21 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts),
      start = c(1962, 1), end = c(2012, 4))
coeftest(GDPGR_ADL21, vcov. = sandwich)
##
## t test of coefficients:
##
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.954990   0.486976   1.9611   0.051260 .
## L(GDPGrowth_ts) 0.267729
                                 0.082562 3.2428 0.001387 **
## L(GDPGrowth_ts, 2) 0.192370
                                 0.077683 2.4763 0.014104 *
                                 0.182637 2.4313 0.015925 *
## L(TSpread_ts)
                      0.444047
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The estimated equation of the ADL(2, 1) model is
```

$$\widehat{GDPGR}_{t} = \underset{(0.49)}{0.96} + \underset{(0.08)}{0.26} GDPGR_{t-1} + \underset{(0.08)}{0.19} GDPGR_{t-2} + \underset{(0.18)}{0.44} TSpread_{t-1}$$
(2.4)

Notice that all coefficients are significant at the level of 5%.

```
# 2012:Q3 / 2012:Q4 data on GDP growth and term spread
t <- window(ADLdata, c(2012, 3), c(2012, 4))

# ADL(2,1) GDP growth forecast for 2013:Q1
ADL21_forecast <- coef(GDPGR_ADL21) %*% c(1, t[2, 1], t[1, 1], t[2, 2])
ADL21_forecast</pre>
```

```
## [,1]
## [1,] 2.241689
```

```
# compute the forecast error
window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL21_forecast
## Qtr1
## 2013 -1.102487
```

Model (2.4) predicts the GDP growth in 2013:Q1 to be 2.24% which leads to a forecast error of -1.10%.

We estimate the ADL(2,2) specification to see whether adding additional information on past term spread improves the forecast.

```
# estimate the ADL(2,2) model of GDP growth
GDPGR_ADL22 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2)</pre>
                    + L(TSpread_ts) + L(TSpread_ts, 2),
                    start = c(1962, 1), end = c(2012, 4))
coeftest(GDPGR_ADL22, vcov. = sandwich)
## t test of coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                      ## L(GDPGrowth_ts)
                      0.243175
                                0.077836 3.1242 0.002049 **
## L(GDPGrowth_ts, 2) 0.177070
                                0.077027 2.2988 0.022555 *
## L(TSpread ts)
                     -0.139554
                                0.422162 -0.3306 0.741317
## L(TSpread_ts, 2)
                     0.656347
                                0.429802 1.5271 0.128326
## ---
```

For the ADL(2,2) model we obtain

2013 -1.135206

$$\widehat{GDPGR}_{t} = \underset{(0.47)}{0.98} + \underset{(0.08)}{0.24} GDPGR_{t-1}$$

$$+ \underset{(0.08)}{0.18} GDPGR_{t-2} + \underset{(0.42)}{0.14} TSpread_{t-1} + \underset{(0.43)}{0.66} TSpread_{t-2}.$$

$$(2.5)$$

The coefficients on both lags of the term spread are not significant at the 10% level.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
# ADL(2,2) GDP growth forecast for 2013:Q1

ADL22_forecast <- coef(GDPGR_ADL22) %*% c(1, t[2, 1], t[1, 1], t[2, 2], t[1, 2])

ADL22_forecast

## [,1]

## [1,] 2.274407

# compute the forecast error

window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL22_forecast

## Qtr1
```

The ADL(2,2) forecast of GDP growth in 2013:Q1 is 2.27% which implies a forecast error of 1.14%.

Do the ADL models (2.4) and (2.6) improve upon the simple AR(2) model (2.3) in terms of forecasting GPD growth in 2013:Q1? The answer is yes: while SER and \overline{R}^2 improve only slightly, an F-test on the term spread coefficients in (2.6) provides evidence that the model does better in explaining GPD growth than the AR(2) model as the hypothesis that both coefficients are zero cannot be rejected at the level of 5%.

```
# compare adj. R2
c(
  "Adj.R2 AR(2)" = summary(GDPGR_AR2)$r.squared,
 "Adj.R2 ADL(2,1)" = summary(GDPGR_ADL21)$r.squared,
  "Adj.R2 ADL(2,2)" = summary(GDPGR_ADL22)$r.squared
##
      Adj.R2 AR(2) Adj.R2 ADL(2,1) Adj.R2 ADL(2,2)
                        0.1743996
                                         0.1855245
# compare SER
c(
  "SER AR(2)" = summary(GDPGR_AR2)$sigma,
  "SER ADL(2,1)" = summary(GDPGR_ADL21)$sigma,
  "SER ADL(2,2)" = summary(GDPGR_ADL22)$sigma
)
##
      SER AR(2) SER ADL(2,1) SER ADL(2,2)
##
       3.132122
                    3.070760
                                 3.057655
# F-test on coefficients of term spread
linearHypothesis(GDPGR_ADL22,
                 c("L(TSpread_ts)=0", "L(TSpread_ts, 2)=0"),
                 vcov. = sandwich
## Linear hypothesis test
##
## Hypothesis:
## L(TSpread_ts) = 0
## L(TSpread_ts, 2) = 0
##
## Model 1: restricted model
## Model 2: GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts) +
##
       L(TSpread_ts, 2)
##
## Note: Coefficient covariance matrix supplied.
##
##
    Res.Df Df
                    F Pr(>F)
## 1
        201
## 2
        199 2 4.4344 0.01306 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Stationarity

In general, forecasts an be improved by using multiple predictors — just as in cross-sectional regression. For time series regressions to yield reliable models, the assumption of *stationarity* must be fulfilled. Key Concept 14.5 explains what stationarity is.

Key Concept 14.5

Stationarity

We say that a time series Y_t is stationary if its probability distribution is time independent, that is the joint distribution of $Y_{s+1}, Y_{s+2}, \dots, Y_{s+T}$ does not change as s is varied, regardless of T.

Similarly, we say that two time series X_t and Y_t are *jointly stationary* if the joint distribution of $(X_{s+1}, Y_{s+1}, X_{s+2}, Y_{s+2}, \dots, X_{s+T}, Y_{s+T})$ does not depend on s, regardless of T.

In a probabilistic sense, stationarity means that information about how a time series evolves in the future is inherent to its past. If this is not the case, we cannot use the past of a series as a reliable guideline for its future.

Time Series Regression with Multiple Predictors

The concept of stationarity is a key assumption in the general time series regression model with multiple predictors. Key Concept 14.6 elaborates this model and its assumptions.

Key Concept 14.6

Time Series Regression with Multiple Predictors

The general time series regression model extends the ADL such that multiple regressors and their lags are included. It uses p lags of the dependent variable and q_l lags of l additional predictors where $l = 1, \ldots, k$:

$$Y_{t} = \beta_{0} + \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \dots + \beta_{p}Y_{t-p} + \delta_{11}X_{1,t-1} + \delta_{12}X_{1,t-2} + \dots + \delta_{1q}X_{1,t-q} + \dots + \delta_{k1}X_{k,t-1} + \delta_{k2}X_{k,t-2} + \dots + \delta_{kq}X_{k,t-q} + u_{t}$$

$$(2.7)$$

For estimation we make the following assumptions:

1. The error term u_t has conditional mean zero given all regressors and their lags:

$$E(u_t|Y_{t-1},Y_{t-2},\ldots,X_{1:t-1},X_{1:t-2},\ldots,X_{k:t-1},X_{k:t-2},\ldots)$$

This assumption is an extension of the conditional mean zero assumption used for AR and ADL models and guarantees that the general time series regression model stated above gives the best forecast of Y_t given its lags, the additional regressors $X_{1,t}, \ldots, X_{k,t}$ and their lags.

- 2. The *i.i.d* assumption for cross-sectional data is not (entirely) meaningful for time series data. We replace it by the following assumption witch consists of two parts:
 - (a) The $(Y_t, X_{1,t}, \ldots, X_{k,t})$ have a stationary distribution (the "identically distributed" part of the i.i.d. assumption for cross-setional data). If this does not hold, forecasts may be biased and inference can be strongly misleading.
 - (b) $(Y_t, X_{1,t}, \ldots, X_{k,t})$ and $(Y_{t-j}, X_{1,t-j}, \ldots, X_{k,t-j})$ become independent as j gets large (the "idependly" distributed part of the i.i.d. assumption for cross-sectional data). This assumption is also called *weak dependence*. It ensures that the WLLN and the CLT hold in large samples.
- 3. Large outliers are unlikely: $E(X_{1,t}^4), E(X_{2,t}^4), \dots, E(X_{k,t}^4)$ and $E(Y_t^4)$ have nonzero, finite fourth moments.
- 4. No perfect multicollinearity.

Since many economic time series appear to be nonstationary, assumption two of Key Concept 14.6 is a crucial one in applied macroeconomics and finance which is why statistical test for stationarity / nonstationarity have been developed. Chapters 14.6 and 14.7 are devoted to this topic.

Statistical inference and the Granger causality test

If a X is a useful predictor for Y, in a regression of Y_t on lags of its own and lags of X_t , not all of the coefficients on the lags on X_t are zero. This concept is called "Granger causality" and is an interesting hypothesis to test. Key Concept 14.7 summarizes the idea.

Key Concept 14.7

Granger Causality Tests

The Granger causality test (Granger, 1969) is an F-test of the null hypothesis that all lags of a variable X included in a time series regression model do not have predictive power for Y_t . The Granger causality test does not test whether X actually causes Y but whether the included lags are informative in terms of predicting Y.

Notice that we have already performed a Granger causality test on the coefficients of term spread in (2.6), the ADL(2,2) model of GDP growth and concluded that at least one of the first two lags of term spread has predictive power for GDP growth.

Forecast Uncertainty and Forecast Intervals

In general, it is a good practice to report a measure of the uncertainty inherent to the estimation. Uncertainty is particularly of interest when forecasting a time series. For example, consider a simple ADL(1,1) model

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \delta_1 X_{t-1} + u_t$$

where u_t is a homoskedastic error term. The forecast error is

$$Y_{T+1} - \widehat{Y}_{T+1|T} = u_{T+1} - \left[(\widehat{\beta}_0 - \beta_0) + (\widehat{\beta}_1 - \beta_1) Y_T + (\widehat{\delta}_1 - \delta_1) X_t \right].$$

The mean squared forecast error (MSFE) and the RMFSE are

$$\begin{split} MFSE &= E\left[(Y_{T+1} - \widehat{Y}_{T+1|T})^2 \right] \\ &= \sigma_u^2 + Var\left[(\widehat{\beta}_0 - \beta_0) + (\widehat{\beta}_1 - \beta_1)Y_T + (\widehat{\delta}_1 - \delta_1)X_t \right], \\ RMFSE &= \sqrt{\sigma_u^2 + Var\left[(\widehat{\beta}_0 - \beta_0) + (\widehat{\beta}_1 - \beta_1)Y_T + (\widehat{\delta}_1 - \delta_1)X_t \right]}. \end{split}$$

A 95% forecast interval is an interval that covers the true value of Y_{T+1} in 95% of repeated applications. Note that there is a major difference in computing a confidence interval and a forecast interval: when computing a confidence interval of a point estimate we use large sample approximations that are justified by the CLT and thus are valid for a large range of error term distributions. For computation of a forecast interval of Y_{T+1} , however, we must make an additional assumption about the distribution of u_{T+1} , the error term in period T+1. Assuming that u_{T+1} is normally distributed one can construct a 95% forecast interval for Y_{T+1} using $SE(Y_{T+1} - \hat{Y}_{T+1|T})$, an estimate of the RMSFE:

$$\hat{Y}_{T+1|T} \pm 1.96 \cdot SE(Y_{T+1} - \hat{Y}_{T+1|T})$$

Of course the computation gets more complicated when the error term is heteroskedastic or if we are interested in computing a forecast interval for T + s, s > 1.

In some applications it is useful to report multiple forecast intervals for each step in range of subsequents periods, see the Box *The River of Blood* on p. 592 of the book. Such forecast ranges can be visualized in a so-called fan chart. We will not replicate the fan chart presented in Figure 14.2 of book because the underlying model is by far more complex than the simple AR and ADL models treated here. Instead, in the example below we use simulated time series data and estimate an ADL(1,1) model which is then used for forecasting the subsequent 25 future outcomes of the series. We choose level = seq(5,99,10) in the call of forecast() such that forecast intervals with levels 5%, 15%,..., 95% are computed for each point forecast of the series.

```
# simulate the time series
set.seed(1234)

Z <- arima.sim(list(order = c(1, 0, 0), ar = 0.5), n = 200)
X <- arima.sim(list(order = c(1, 0, 0), ar = 0.2), n = 200)

Y <- 0.7 * Z + 0.7 * X + rnorm(100)

# estimate an ADL(1,1) model using arima, see ?arima
model <- arima(Y, order = c(2, 0, 0))

# compute points forecasts and prediction intervals for the next 25 periods
fc <- forecast(model, h = 25, level = seq(5, 99, 10))

# plot a fan chart
plot(fc,
    main = "Forecast Fan Chart for ADL(2,2) Model of Simulated Data",
    showgap = F,
    fcol = "red",
    flty = 2)</pre>
```

Forecast Fan Chart for ADL(2,2) Model of Simulated Data

The dashed red line shows point forecasts of the series for the next 25 periods based on an ADL(1,1) model and the shaded areas represent the prediction intervals. The degree of shading indicates the level of the prediction interval. The darkest of the blue bands displays the 5% forecast intervals and the color fades towards grey as the level of the intervals increases.

2.6 Lag Length Selection Using Information Criteria

The selection of lag lengths in AR and ADL models can be partially governed by economic theory. However, there are statistical methods that are helpful to determine how many lags should be included as regressors. In general, to many lags inflate the standard errors of coefficient estimates and thus imply an increase in the forecast error while omitting lags that should be included in the model may result in an estimation bias.

The order of an AR model can be determined using two approaches

1. ** The F-test approach**:

Estimate an AR(p) model and test the significance of the largest lag(s). If the test rejects, drop the respective lag(s) from the model. This approach has the tendency to produce models where the order is too large: in a significance test we always face the risk of rejecting a true null hypothesis!

2. Relying on an information criterion:

To circumvent the issue of producing too large models, one may choose the lag order that minimizes one of the following two information criteria:

• The Bayes information criterion (BIC):

$$BIC(p) = \log\left(\frac{SSR(p)}{T}\right) + (p+1)\frac{\log(T)}{T}$$

• The Akaike information criterion (AIC):

$$AIC(p) = \log\left(\frac{SSR(p)}{T}\right) + (p+1)\frac{2}{T}$$

Both criteria are estimators of the optimal lag length p. The lag order \widehat{p} that minimizes the respective criterion is called the BIC estimate or the AIC estimate of the optimal model order. The basic idea of both criteria is that the SSR decreases as additional lags are added to the model such that the first addend decreases wheras the second addend increases as the lag order grows. One can show that the the BIC is a consistent estimator of the true lag order while the AIC is not which is due to the differing factors in the second addend. Nevertheless, both estimators are used in practice where the AIC is sometimes used as an alternative when the BIC yields a model with too few lags.

The functiondynlm() does not compute information criteria by default. We will therefore write a short function that reports the BIC (along with the chosen lag order p and R^2) for objects of class dynlm.

```
# compute BIC for AR model objects of class `dynlm`
BIC <- function(model) {

    ssr <- sum(model$residuals^2)
    t <- length(model$residuals)
    npar <- length(model$coef)

return(
    round(
        c(</pre>
```

```
"p" = npar - 1,
    "BIC" = log(ssr/t) + npar * log(t)/t,
    "R2" = summary(model)$r.squared
    ), 4
)
)
```

Table 14.3 of the book presents a breakdown of how the BIC is computed for AR(p) models of GDP growth with order p = 1, ..., 6. The final result can easily be reproduced using sapply() and the function BIC() defined above.

```
defined above.
# apply the BIC() to an intercept only model of GDP growth
  dynlm(ts(GDPGR_leads) ~ 1)
)
             BIC
                     R2
        р
## 0.0000 2.4394 0.0000
# loop BIC over models of different orders
order <- 1:6
BICs <- sapply(order,
       function(x)
        "AR" = BIC(
          dynlm(ts(GDPGR_leads) ~ L(ts(GDPGR_leads), 1:x))
       )
BICs
##
         [,1]
                [,2]
                        [,3]
                               [,4]
                                      [,5]
       1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
## BIC 2.3486 2.3475 2.3774 2.4034 2.4188 2.4429
## R2 0.1143 0.1425 0.1434 0.1478 0.1604 0.1591
```

Note that increasing the lag order increases R^2 because the SSR decreases as additional lags are added to the model but according to the BIC, we should decide for the AR(2) model instead of the AR(6) model. It helps to decide whether the decrease in SSR is enough to justify adding an additional regressor.

If we would have to compare a bigger set of models, a convenient way to select the model with the lowest BIC is using the function which.min()

```
# select the AR model with the smallest BIC

BICs[, which.min(BICs[2, ])]

## p BIC R2

## 2.0000 2.3475 0.1425
```

The BIC may also be used to select lag lengths in time series regression models with multiple predictors. In a model with K coefficients, including the intercept, we have

$$BIC(K) = \log\left(\frac{SSR(K)}{T}\right) + K\frac{\log(T)}{T}.$$

Notice that choosing the optimal model according to the BIC can be computationally demaning because there may be many different combinations of lag lengths when there are multiple predictors.

To motivate an example, we estimate ADL(p,q) models of GDP growth where, as above, the additional variable is the term spread between short-term and long-term bonds. We impose the restriction that $p = q_1 = \cdots = q_k$ so that only p_{max} models $(p = 1, \ldots, p_{max})$ need to be estimated. In the example below we choose $p_{max} = 12$.

```
##
                                                                 [,8]
         [,1]
                 [,2]
                        [,3]
                               [,4]
                                        [,5]
                                                [,6]
                                                                         [,9]
                                                         [,7]
       2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000
## BIC 2.3411 2.3408 2.3813 2.4181
                                     2.4568
                                              2.5048
                                                      2.5539
                                                               2.6029
                                                                       2.6182
## R2 0.1417 0.1855 0.1950 0.2072
                                     0.2178
                                             0.2211
                                                      0.2234
##
         [,10]
                  [,11]
                          [,12]
## p
       20.0000 22.0000 24.0000
## BIC
        2.6646 2.7205
                        2.7664
        0.2678 0.2702 0.2803
```

Notice that from the definition of BIC(), for ADL models with p = q it follows that p reports the number of estimated coefficients excluding the intercept. Thus the lag order is obtained by deviding p by 2.

```
# select the ADL model with the smallest BIC
BICs[, which.min(BICs[2, ])]

## p BIC R2
## 4.0000 2.3408 0.1855
```

The BIC is in favour of the ADL(2,2) model (2.6) we have estimated before.

2.7 Nonstationarity I: Trends

If a series is nonstationary, conventional hypothesis tests, confidence intervals and forecasts can be strongly misleading. The assumption of stationarity is violated if a series exhibits trends or breaks and the resulting complications in an econometric analysis depend on the specific type of the nonstationarity. This section focuses on time series that exhibit trends.

A series is said to exhibit a trend if it fluctuates around a persistent long-term movement. One distinguishes between *deterministic* and *stochastic* trends.

- We say that a trend is *deterministic* if it is a nonrandom function of time.
- A trend is said to be *stochastic* if it is a random function of time.

A careful look at the figures we have produced in Chapter 14.2 reveals that many economic time series show a trending behaviour that is probably best modeled by stochastic trends. This is why the book focuses on the treatment of stochastic trends.

The Random Walk Model of a Trend

The simplest way to model a time series Y_t that has stochastic trend is the random walk

$$Y_t = Y_{t-1} + u_t, (2.8)$$

where the u_t are i.i.d. errors with $E(u_t|Y_{t-1},Y_{t-2},\dots)=0$. Note that

$$E(Y_t|Y_{t-1},Y_{t-2}\dots) = E(Y_{t-1}|Y_{t-1},Y_{t-2}\dots) + E(u_t|Y_{t-1},Y_{t-2}\dots)$$

= Y_{t-1}

so the best forecast for Y_t , todays value of Y, is Y_{t-1} , the observation made yesterday so the difference between Y_t and Y_{t-1} is unpredictable. One can shows that the path followed by Y_t consists of random steps u_t , hence it is called a random walk.

Assume that Y_0 , the starting value of the random walk is 0. Another way to write out (2.8) is

$$Y_{0} = 0$$

$$Y_{1} = 0 + u_{1}$$

$$Y_{2} = 0 + u_{1} + u_{2}$$

$$\vdots$$

$$Y_{t} = \sum_{i=1}^{t} u_{i}.$$

Therefore we have

$$var(Y_t) = Var(u_1 + u_2 + \dots + u_t)$$
$$= t\sigma_u^2.$$

Thus the variance of a random walk depends on t which violates the assumption presented in Key Concept 14.5: a random walk is nonstationary.

Obviously, (2.8) is a special case of an AR(1) model where $\beta_1 = 1$. One can show that a time series that follows an AR(1) model is stationary if $|\beta_1| < 1$. In a general AR(p) model, stationarity is linked to the roots of the polynomial

$$1 - \beta_1 z - \beta_2 z^2 - \beta_3 z^3 - \dots - \beta_p z^p.$$

If all roots are greater than 1 in absolute value, the AR(p) series is stationary. If at least one root equals 1, the AR(p) is said to have a *unit root* and thus has a stochastic trend.

It is straightforward to simulate random walks in R using arima.sim(). The function matplot() is covenient for simple plots of the columns of a matrix.

```
# simulate and plot random walks starting at 0
set.seed(1)
RWs <- ts(</pre>
```

Four Random Walks

Adding a constant to (2.8) yields

$$Y_t = \beta_0 + Y_{t-1} + u_t, \tag{2.9}$$

a random walk model with a drift which allows to model the tendency of a series to move in one direction or the other. If β_0 is positive, the series drifts upwards and it follows a downward trend if β_0 is negative.

Four Random Walks with Drift

<7 div>

Problems Caused by Stochastic Trends

OLS estimation of the coefficients on regressors that have a stochastic trend is problematic because the distribution of the estimator and its t-statistic is nonnormal, even asymptotically. This has various consequences:

• Downward bias of autoregressive coefficients:

If Y_t is a random walk, the coefficient β_1 can be consistently estimated by OLS but the estimator is biased toward zero. This bias is roughly $E(\widehat{\beta}_1) = 1 - 5.3/T$ which is substantial for sample sizes typically encountered in macroeconomics. This estimation bias causes forecasts of Y_t to perform worse than a pure random walk model.

• Nonnormally distributed *t*-statistics:

The nonnormal distribution of the estimated coefficient of a stochastic regressor translates to a nonnormal distribution of its t-statistic so that normal critical values are invalid and therefore usual confidence intervals and hypothesis tests are invalid, too, and the true distribution of the t-statistic cannot be readily determined.

• Spurious Regression:

When a time series that exhibits a stochastic trend is regressed on another time series that does have a stochastic trend too, the estimated relationship may appear highly significant although the series are unrelated. This is what econometricians call a *spurious* relationship.

As an example for spurious regression, consider again the green and the red random walks that we have simulated above. We know that there is no relationship between both series: they are purely random and independent of each other.

A Spurious Relationship

Imagine we did not have this information and instead conject that the green series is useful for predicting the red series and thus end up estimating the ADL(0,1) model

$$Red_t = \beta_0 + \beta_1 Green_{t-1} + u_t.$$

```
# estimate spurious AR model
summary(
    dynlm(RWs[, 2] ~ L(RWs[, 3]))
)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.459488    0.3635104 -9.516889    1.354156e-15
## L(RWs[, 3])    1.047195    0.1450874    7.217687    1.135828e-10
```

The result is obviously spurious: the coefficient on $Green_{t-1}$ is estimated to be about 1 and the p-value of $1.14 \cdot 10^{-10}$ of the corresponding t-test indicates that the coefficient is highly significant while its true value is in fact zero.

As an empirical example, consider the U.S. unemployment rate and the Japanese industrial production. Both series show an upward trending behaviour from the mid-1960s through the early 1980s.

Spurious Regression: Macroeconomic Time series


```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

A simple regression of the U.S. unemployment rate on Japanese industrial production using data from 1962 to 1985 yields

$$\widehat{U.S.UR_t} = -2.37 + 2.22 \log(JapaneseIP_t). \tag{2.10}$$

This appears to be a significant relationship: the t-statistic of the coefficient on $log(JapaneseIP_t)$ is bigger than 7.

```
# Estimate regression using data from 1986 to 2012
SR_Unemp2 <- dynlm(ts(USUnemp["1986::2012"]) ~ ts(JPIndProd["1986::2012"]))
coeftest(SR_Unemp2, vcov = sandwich)
##
## t test of coefficients:
##</pre>
```

t test of coefficients:
##

Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.7763 5.4066 7.7270 6.596e-12 ***
ts(JPIndProd["1986::2012"]) -7.7771 1.1714 -6.6391 1.386e-09 ***
--## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

When estimating the same model, this time with data from 1986 to 2012, we obtain

$$\widehat{U.S.UR_t} = 41.78 + -7.78 \log(JapaneseIP)_t$$
(2.11)

which is suprisingly quite different from (2.10) which indicates a moderate postive relationship, in contrast to the large negative coefficient in (2.11). This phenomenon can be attributed to stochastic trends in the series: since there is no economic reasoning that relates both trends, both regressions are spurious.

Testing for a Unit AR Root

A formal test for a stochastic trend has been proposed by Dickey and Fuller (1979) and is therefore termend the *Dickey-Fuller test*. As discussed above, a time series that follows an AR(1) model with $\beta_1 = 1$ has a stochastic trend. Thus, the testing problem is

$$H_0: \beta_1 = 1$$
 vs. $H_1: \beta_1 < 1$.

The null hypothesis is that the AR(1) has a unit root and the alternative hypothesis is that it is stationary. One often rewrites the AR(1) by substracting Y_{t-1} on both sides:

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t \Leftrightarrow \Delta Y_t = \beta_0 + \delta_1 Y_{t-1} + u_i$$

where $\delta_1 = \beta_1 - 1$. The testing problem then becomes

$$H_0: \delta_1 = 0$$
 vs. $H_1: \beta_1 < 0$

which is convenient since the corresponding test statistic is reported by many relevant R functions.¹

The Dickey-Fuller test can also be applied in an AR(p) model. The Augmented Dickey-Fuller (ADF) test is summarized in Key Concept 14.8.

Key Concept 14.8

The ADF Test for a Unit Root

Consider the regression

$$\Delta Y_t = \beta_0 + \delta Y_{t-1} + \gamma_1 \Delta_1 Y_{t-1} + \gamma_2 \Delta Y_{t-2} + \dots + \gamma_p \Delta Y_{t-p} + u_t. \tag{2.12}$$

The ADF test for a unit autoregressive root tests the hypothesis $H_0: \delta = 0$ (stochastic trend) against the one-sided alternative $H_1: \delta < 0$ (stationarity) using the usual OLS t-statistic.

If it is assumed that Y_t is stationary around a deterministic linear time trend, the model is augmented by the regressor t, that is Y_t becomes

$$\Delta Y_t = \beta_0 + at + \delta Y_{t-1} + \gamma_1 \Delta_1 Y_{t-1} + \gamma_2 \Delta Y_{t-2} + \dots + \gamma_p \Delta Y_{t-p} + u_t, \tag{2.13}$$

where again $H_0: \delta = 0$ is tested against $H_1: \delta < 0$.

The optimal lag length p can be estimated using information criteria. Notice that in the regression (2.12), p = 0 (that is no lags of ΔY_t are used as regressors) corresponds to a simple AR(1).

Under the null hypothesis, the t-statistic corresponding to H_0 : $\delta = 0$ does not have a normal distribution. The cricital values can only be obtained from simulation and differ for regressions (2.12) and (2.13) since the distribution of the ADF test statistic is sensitive to the deterministic components included in the regression.

Critical Values for the ADF Statistic

Key Concept 14.8 states that the critical values for the ADF test in the regressions (2.12) and (2.13) can only be determined using simulation. The idea of the simulation study is to simulate a large number of ADF test test statistics and use them to estimate quantiles of their *asymptotic* distribution. This section shows how this is feasible whithin R.

First, consider an AR(1) model with drift. The procedure is as follows:

• Simulate N random walks with n observations using the data generating process

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t,$$

 $t = 1, \ldots, n$ where N and n are large numbers.

• For each random walk, estimate the regression

$$\Delta Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t$$

and compute ADF test statistic. Save all N test statistics in a vector.

¹The t-statistic of the Dickey-Fuller test is computed using homoskedasticity-only standard errors since under the null hypothesis, the usual t-statistic is robust to heteroskedasticity.

• Estimate quantiles of the distribution of the ADF test statistic using the N test statistics obtained from the simulation.

For the case with drift and linear time trend we replace the data generating process by

$$Y_t = \beta_0 + \alpha t + \beta_1 Y_{t-1} + u_t$$

and estimate

$$\Delta Y_t = \beta_0 + \alpha t + \beta_1 Y_{t-1} + u_t.$$

Loosely speaking, the precision of the estimated quantiles depends on two factors: n, the length of the underlying series and N, the number of test statistics used. Since we are interested in estimating quantiles of the *asymptotic* distribution (the Dickey-Fuller distribution) of the ADF test statistic so both using many observations and large number of simulated test statistics will increase the precision of the estimated quantiles. We choose n = N = 1000 as the computational burden grows quickly with n and N.

```
# repititions
N <- 1000
# observations
n <- 1000
# define drift a trend
drift <- 0.5
trend <- 1:n
# simulate N random walks with drift
RWD <- ts(replicate(n = N,
            drift + arima.sim(model = list(order = c(0, 1, 0)),
                              n = n - 1)
            )
          )
# compute ADF test statistics and store them in 'ADFD'
ADFD <- numeric(N)
for(i in 1:ncol(RWD)) {
  ADFD[i] <- summary(
    dynlm(diff(RWD[, i], 1) ~ L(RWD[, i], 1))
    )$coef[2, 3]
}
# simulate N random walks with drift + trend
RWDT <- ts(replicate(n = N,
                    trend + drift + arima.sim(model = list(order = c(0, 1, 0)),
                                               n = n - 1)
           )
# compute ADF test statistics and store them in 'ADFDT'
ADFDT <- numeric(N)
```

```
for(i in 1:ncol(RWDT)) {
  ADFDT[i] <- summary(
   dynlm(diff(RWDT[, i], 1) ~ L(RWDT[, i], 1) + trend(RWDT[, i], scale = F))
  )$coef[2, 3]
}
# estimate quantiles for ADF regression with a drift
round(quantile(ADFD, c(0.1, 0.05, 0.01)), 2)
     10%
            5%
                  1%
## -2.62 -2.83 -3.39
# estimate quantiles for ADF regression with drift and trend
round(quantile(ADFDT, c(0.1,0.05,0.01)),2)
     10%
            5%
                  1%
## -3.11 -3.43 -3.97
```

The estimated quantiles are close to the large sample critical values of the ADF test statistic reported in Table 14.4 of the book.

Table 2.2: Large Sample Critical Values of ADF Test

Deterministic Regressors	10%	5%	1%
Intercept only		-2.86	00
Intercept and time trend	-3.12	-3.41	-3.96

The results show that using standard normal critical values might be fatal: the 5% critical value of the standard normal distribution is -1.64 but for the Dickey-Fuller distributions the estimated critical values are -2.87 (drift) and -3.43 (drift and linear time trend). This implies that a true null hypothesis (the series has a stochastic trend) would be rejected far to often if the inappropriate normal critical values were used.

We may use the simulated test statistics for a graphical comparison of the standard normal density and (estimates of) both Dickey-Fuller densities.

```
# plot standard normal density
curve(dnorm(x),
      from = -6, to = 3,
      ylim = c(0, 0.6),
      lty = 2,
      ylab = "Density",
      xlab = "t-Statistic",
      main = "Distributions of ADF Test Statistics",
      col = "darkred",
      lwd = 2)
# plot density estimates of both Dickey-Fuller distributions
lines(density(ADFD), lwd = 2, col = "darkgreen")
lines(density(ADFDT), lwd = 2, col = "blue")
# add a legend
legend("topleft",
       c("N(0,1)", "Drift", "Drift+Trend"),
       col = c("darkred", "darkgreen", "blue"),
       lty = c(2, 1, 1),
```

```
lwd = 2
```

Distributions of ADF Test Statistics

The deviations from the standard normal distribution are significant: both Dickey-Fuller distributions are skewed to the left and have a havier left tail than the standard normal distribution.

Does U.S. GDP Have a Unit Root?

As an empirical example, we use the ADF test to assess whether there is a stochastic trend in U.S. GDP using the regression

$$\Delta \log(GDP_t) = \beta_0 + \alpha t + \beta_1 \log(GDP_{t-1}) + \beta_2 \Delta \log(GDP_{t-1}) + \beta_3 \Delta \log(GDP_{t-2}) + u_t.$$

```
# generate log GDP series
LogGDP \leftarrow ts(log(GDP["1962::2012"]))
# estimate the model
coeftest(
 dynlm(diff(LogGDP) ~ trend(LogGDP, scale = F) + L(LogGDP) + diff(L(LogGDP)) + diff(L(LogGDP), 2))
##
## t test of coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                           0.27877045 0.11793233 2.3638 0.019066 *
## trend(LogGDP, scale = F) 0.00023818 0.00011090 2.1476 0.032970 *
## L(LogGDP)
                          ## diff(L(LogGDP))
                           0.08317976  0.11295542  0.7364  0.462371
```

The estimation yields

$$\begin{split} \Delta \log(GDP_t) &= \underset{(0.118)}{0.28} + \underset{(0.0001)}{0.0002} t + -\underset{(0.014)}{0.033} \log(GDP_{t-1}) \\ &+ \underset{(0.113)}{0.083} \Delta \log(GDP_{t-1}) + \underset{(0.071)}{0.188} \Delta \log(GDP_{t-2}) + u_t, \end{split}$$

so the ADF test statistic is t = -0.033/0.014 = -2.35. The corresponding 5% critical value from table 2.2 is -3.41 so we cannot reject the null hypothesis that $\log(GDP)$ has a stochastic trend in favour of the alternative that it is stationary around a deterministic linear time trend.

2.8 Nonstationarity II: Breaks

When there are discrete (at a distinct date) or gradual (over time) changes in the population regression ceofficients, the series is nonstationary. These changes are called *breaks*. There is a variety of reasons why breaks can occur in macroeconomic time series but most often them are related to changes in economic policy or major changes in the structure of the economy. See Chapter 14.7 for a discussion of examples.

If breaks are not accounted for in the regression model, OLS estimates will reflect the average relationship. Since these estimates might be strongly misleading and result in poor forecast quality, we are interested in testing for breaks. One distinguishes between testing for a break when the date is known and testing for a break with an unknown break date.

Let τ denote a known break date and let $D_t(\tau)$ be a binary variable indicating time periods before and after the break. Incorporating the break in an ADL(1,1) regression model yields

$$Y_{t} = \beta_{0} + \beta_{1} Y_{t-1} + \delta_{1} X_{t-1} + \gamma_{0} D_{t}(\tau) + [D_{t}(\tau) Y_{t-1}] + \gamma_{2} [D_{t}(\tau) X_{t-1}] + u_{t},$$

where we allow for discrete changes in β_0 , β_1 and β_2 at the break date τ . The null hypothesis of no break,

$$H_0: \gamma_0 = \gamma_1 = \gamma_2 = 0,$$

can be tested against the alternative that at least one of the γ 's is not zero using an F-Test. This idea is called a Chow test after Gregory Chow (1960).

When the break date is unknown the Quandt likelihood ratio (QLR) test (Quandt, 1960) may be used. It is a modified version of the Chow test which uses the largest of all F-statistics obtained when applying the Chow test for all possible break dates in a predetermined range $[\tau_0, \tau_1]$. The QLR test is summarized in Key Concept 14.9.

Key Concept 14.9

The QLR Test for Coefficient Stability

The QLR test can be used to test for a break in the population regression function if the date of the break is unknown. The QLR test statistic is the largest (Chow) $F(\tau)$ -statistic computed over a range of eligible break dates $\tau_0 \le \tau \le \tau_1$:

$$QLR = \max [F(\tau_0), F(\tau_0 + 1), \dots, F(\tau_1)]. \tag{2.14}$$

The most important properties are:

- The QLR test can be applied to test whether a subset of the coefficients in the population regression function breaks but the test also rejects if there is a slow evolution of the regression function.
- When there is a single discrete break in the population regression function, the QLR test statistic is $F(\hat{\tau})$ and $\hat{\tau}/T$ is a consistent estimator of the true break date.
- The large-sample distribution of QLR depends on q, the number of restrictions beeing tested and both ratios of end points to the sample size, τ_0/T , τ_1/T .
- Similar to the ADF test, the large-sample distribution of *QLR* is nonstandard. Cricital values are presented in Table 14.5 of the book.

Has the Predictive Power of the term spread been stable?

Using the QLR statistic we may test whether there is a break in the coefficients on the lags of the term spread in (2.6), the ADL(2,2) regression model of GDP growth. Following Key Concept 14.9 we modify the specification of (2.6) by adding a break dummy $D(\tau)$ and its interactions with both lags of term spread and choose the range of break points to be tested as 1970:Q1 - 2005:Q2 (these periods are the center 70% of the sample data from 1962:Q2 - 2012:Q4). Thus, the model becomes

```
\begin{split} GDPGR_t &= \beta_0 + \beta_1 GDPGR_{t-1} + \beta_2 GDPGR_{t-2} \\ &+ \beta_3 TSpread_{t-1} + \beta_4 TSpread_{t-2} \\ &+ \gamma_1 D(\tau) + \gamma_2 (D(\tau) TSpread_{t-1}) \\ &+ \gamma_3 (D(\tau) TSpread_{t-2}) \\ &+ u_t. \end{split}
```

Next, we estimate the model for each break point and compute the F-statistic corresponding to the null hypothesis $H_0: \gamma_1 = \gamma_2 = \gamma_3 = 0$. The QLR-statistic is the largest of the F-statistics obtained in this manner.

We determine the QLR statistic using max().

```
# identify QLR statistic
QLR <- max(Fstats)
QLR</pre>
```

[1] 6.651156

It is straightforward to check that the QLR-statistic is the F-statistic obtained for the regression where 1980:Q4 is chosen as the break date.

```
# identify the time period where the QLR-statistic is observed
as.yearqtr(
  tau[which.max(Fstats)]
)
```

[1] "1980 Q4"

Since q=3 hypotheses are tested and the central 70% of the sample are considered to contain breaks, the corresponding 1% critical value of the QLR test is 6.02. We reject the null hypothesis that all coefficients (the coefficients on both lags of term spread and the intercept) are stable since the computed QLR-statistic exceeds this threshold. Thus evidence from the QLR test suggests that there is a break in the ADL(2,2) model of GDP growth in the early 1980s.

To reproduce Figure 14.5 of the book, we convert the vector of sequential break-point F-statistics into a time series object and then generate a simple plot with some annotations.

```
# series of F-statistics
Fstatsseries <- ts(Fstats,
                   start = tau[1],
                   end = tau[length(tau)],
                   frequency = 4)
# plot the F-statistics
plot(Fstatsseries,
     xlim = c(1960, 2015),
     ylim = c(1, 7.5),
     lwd = 2,
     col = "steelblue",
     ylab = "F-Statistic",
    xlab = "Break Date",
     main = "Testing for a Break in GDP ADL(2,2) Regression at Different Dates"
# dashed horizontal lines for critical values and QLR statistic
abline(h = 4.71, lty = 2)
abline(h = 6.02, lty = 2)
segments(0, QLR, 1980.75, QLR, col = "darkred")
text(2010, 6.2, "1% Critical Value")
text(2010, 4.9, "5% Critical Value")
```

text(1980.75, QLR+0.2, "QLR Statistic")

Testing for a Break in GDP ADL(2,2) Regression at Different E

Pseudo Out-of-Sample Forecasting

Pseudo out-of-sample forecasts are used to simulate the out-of-sample performance (the real time forecast performance) of a time series regression model. In particular, pseudo out-of-sample forecast allow estimation of the RMSFE of the model and enable researchers to compare different model specifications with respect to their reliability. Key Concept 14.10 summarizes this idea.

Key Concept 14.10

Pseudo Out-of-Sample Forecasting

- 1. Divide the sample data into s = T P and P subsequent overservations. The P observations are used as pseudo-out-of-sample observations.
- 2. Estimate the model using the first s observations.
- 3. Compute the pseudo-forecast $\tilde{Y}_{s+1|s}$.
- 4. Compute the pseudo-forecast-error $\tilde{u}_{s+1} = Y_{s+1} \tilde{Y}_{s+1|s}$.
- 5. Repeat stepts 2 trough 4 for all reamaining pseudo-out-of-sample dates.

Did the Predictive Power of the Term Spread Change During the 2000s?

The insight gained in the previous section gives reason to presume that the pseudo-out-of-sample performance of ADL(2,2) models estimated using data after the break in the early 1980s should not deteriorate: provided that the coefficients of the population regression function are stable after the potential break in 1980:Q4, these models should have good predictive power. We check this by computing pseudo-out-of-sample forecasts for the period 2003:Q1 - 2012:Q4, a range covering 40 periods, where the forecast for 2003:Q1 is done using data from 1981:Q1 - 2002:Q4, the forecast for 2003:Q2 is based on data from 1981:Q1 - 2003:Q1 and so on.

Similarly as for the QLR-test we use a for() loop for estimation of all 40 models and gather their SERs and the obtained forecasts in a vector which is then used to compute pseudo-out-of-sample forecast errors.

```
# end of sample dates
EndOfSample <- seq(2002.75, 2012.5, 0.25)
forecasts <- numeric(length(EndOfSample))</pre>
SER <- forecasts
# estimation loop over end of sample dates
for(i in 1:length(EndOfSample)) {
  # estimate ADL(2,2) model
  m <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts) + L(TSpread_ts, 2),
                start = c(1981, 1),
                end = EndOfSample[i])
  SER[i] <- summary(m)$sigma</pre>
  # sample data for one-period ahead forecast
 t <- window(ADLdata, EndOfSample[i]-0.25, EndOfSample[i])
  # compute forecast
  forecasts[i] <- coef(m) %*% c(1, t[1, 1], t[2, 1], t[1, 2], t[2, 2])
}
# compute psuedo-out-of-sample forecast errors
POOSFCE <- window(GDPGrowth_ts, c(2003, 1), c(2012, 4)) - forecasts
```

We next translate the pseudo-out-of-sample forecasts into an object of class ts and plot the real GDP growth rate against the forecasted series.

```
# series of pseudo-out-of-sample forecasts
PSOSSFc <- ts(forecasts,
              start = 2003,
              end = 2012.75,
              frequency = 4)
# plot GDP growth time series
plot(window(GDPGrowth_ts, c(2003, 1), c(2012, 4)),
     col = "steelblue",
     lwd = 2,
    ylab = "Percent".
     main = "Pseudo-Out-Of-Sample Forecasts of GDP Growth"
# add series of pseudo-out-of-sample forecasts
lines(PSOSSFc,
      lwd = 2.
      lty = 2
      )
# shade area between curves (the pseudo forecast error)
polygon(c(time(PSOSSFc), rev(time(PSOSSFc))),
        c(window(GDPGrowth_ts, c(2003, 1), c(2012, 4)), rev(PSOSSFc)),
        col = alpha("blue", alpha = 0.3),
```

Pseudo-Out-Of-Sample Forecasts of GDP Growth

Apparently, the pseudo forecasts track the actual GDP growth rate quite well, except for the kink in 2009 which can be attributed to the recent financial crisis.

The SER of the first model (estimated using data from 1981:Q1 to 2002:Q4) is 2.39 so based on the in-sample fit we would expect the out of sample forecast errors to have mean zero and a mean squared forecast error of about 2.39.

```
# SER of ADL(2,2) mode using data from 1981:Q1 - 2002:Q4
SER[1]
```

[1] 2.389773

The root mean squared forecast error of the pseudo-out-of-sample forecasts is somewhat larger.

```
# compute root mean squared forecast error
sd(POOSFCE)
```

[1] 2.667612

An interesting hypothesis is whether the mean forecast error is zero, that is the ADL(2,2) forecasts are right, on average. This hypothesis is easily tested using the function t.test().

```
# test if mean forecast error is zero
t.test(POOSFCE)
```

```
##
## One Sample t-test
##
## data: POOSFCE
## t = -1.5523, df = 39, p-value = 0.1287
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -1.5078876  0.1984001
## sample estimates:
## mean of x
## -0.6547438
```

The hypothesis cannot be rejected at the 10% significance level. Alltogether the analysis suggests that the ADL(2,2) model coefficients have been stable since the presumed break in the early 1980s.

2.9 Can You Beat the Market? Part II

The dividend yield (the ratio of current dividens to the stock price) can be considered as an indicator of future dividends: if a stock has a high current dividend yield, it can be considered undervalued and it can be presumed that the price of the stock goes up in the future, meaning that future excess returns go up.

This presumption can be examined using ADL models of exess returns, where lags of the logarithm of the stock's dividend yield serve as additional regressors.

Unfortunatly, a graphical inspection of the time series of the logarithm of the dividend yield casts doubt on the assumption that the series is stationary which, as has been discussed in Chapter 14.7, is necessary to obtain meaningful results in a regression analysis.

The Dickey-Fuller test statistic for an autoregressive unit root in an AR(1) model with drift provides further evidence that the series might be nonstationary.

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.728786496 2.083152348 -1.309931 0.1908042
## L(ln_DivYield) -0.007656929 0.005998017 -1.276577 0.2023282
```

Since the t-value for the coefficient on the lagged logarithm of the dividend yield is -1.27, the hypothesis that the true coefficient is zero cannot be rejected, even at the 10% significance level.

However, it is possible to examine whether the dividend yield has predictive power for excess returns by using its differences in an ADL(1,1) and an ADL(2,2) model (remember that differencing a series with a unit root yields a stationary series) although these model specifications do not correspond to the economic reasoning mentioned above. Thus we also estimate a ADL(1,1) regression using the level of the logarithm of the dividend yield.

Altogether we estimate three different model specifications:

```
excess\ returns_{t} = \beta_{0} + \beta_{1}excess\ returns_{t-1} + \beta_{3}\Delta\log(dividendyield_{t-1}) + u_{t}
excess\ returns_{t} = \beta_{0} + \beta_{1}excess\ returns_{t-1} + \beta_{2}excess\ returns_{t-2}
+ \beta_{3}\Delta\log(dividendyield_{t-1}) + \beta_{4}\Delta\log(dividendyield_{t-2}) + u_{t}
excess\ returns_{t} = \beta_{0} + \beta_{1}excess\ returns_{t-1} + \beta_{5}\log(dividendyield_{t-1}) + u_{t}
```

```
# ADL(1,1) (1st difference of log dividend yield)
CRSP_ADL_1 <- dynlm(ExReturn ~ L(ExReturn) + d(L(ln_DivYield)),</pre>
                     data = StockReturns,
                     start = c(1960, 1), end = c(2002, 12)
              )
# ADL(2,2) (1st & 2nd differences of log dividend yield)
CRSP_ADL_2 <- dynlm(ExReturn ~ L(ExReturn) + L(ExReturn, 2) + d(L(ln_DivYield)) + d(L(ln_DivYield, 2)),
                   data = StockReturns,
                   start = c(1960, 1), end = c(2002, 12)
              )
# ADL(1,1) (level of log dividend yield)
CRSP_ADL_3 <- dynlm(ExReturn ~ L(ExReturn) + L(ln_DivYield),</pre>
                     data = StockReturns,
                     start = c(1960, 1), end = c(1992, 12)
              )
rob_se_CRSP_ADL <- list(</pre>
  sqrt(diag(sandwich(CRSP_ADL_1))),
  sqrt(diag(sandwich(CRSP_ADL_2))),
  sqrt(diag(sandwich(CRSP ADL 3)))
```

A tabular representation of the results can then be generated using stargazer().

Notice that for models (1) and (2) none of the individual t-statistics suggest that the coefficients are different from zero. Also we cannot reject the hypothesis that none of the lags have predictive power for excess returns at any common level of significance (an F-test that the lags have predictive power rejects for both models).

Things are different for model (3). The coefficient on the level of the logarithm of the devidend yield is different from zero at the 5% level and the F-test does not reject at this level either. But we should be suspicious: the high degree of persistence in the devidend yield series probably renders this inference useless because t- and F-statistics may follow distributions that deviate considerably from their theoretical large-sample distributions such that the usual critical values cannot be applied.

If model (3) would be of any use for predicting excess returns, pseudo-out-of-sample forecasts based on (3) should outperform forecasts of an intercept-only model in terms of the sample RMSFE. We can perform this type of comparison using R code in the fashion of the applications of Chapter 14.8.

```
# end of sample dates
EndOfSample <- as.numeric(window(time(StockReturns), c(1992, 12), c(2002, 11)))
# initialize matrix forecasts
forecasts <- matrix(nrow = 2,</pre>
```

Table 2.3: ADL Models of Monthly Excess Stock Returns

	Excess return	Excess returns on the CSRP value-weighted index	-weighted index
	ADL(1,1)	ADL(2,2)	ADL(1,1)
	(1)	(2)	(3)
$excessreturn_{t-1}$	0.059	0.042	0.078
	(0.158)	(0.162)	(0.057)
$excessreturn_{t-2}$		-0.213	
		(0.193)	
$1^{st} difflog(dividendyield_{t-1})$	0.009	-0.012	
	(0.157)	(0.163)	
$1^{st} difflog(dividendyield_{t-2})$		-0.161	
		(0.185)	
$log(dividendyield_{t-1})$			0.026^{**}
			(0.012)
Constant	0.309	0.372*	8.987**
	(0.199)	(0.208)	(3.912)
Observations	516	516	396
\mathbb{R}^2	0.003	0.007	0.018
Adjusted R ²	-0.001	-0.001	0.013
Residual Std. Error	4.338 (df = 513)	4.337 (df = 511)	4.407 (df = 393)
F Statistic	0.653 (df = 2; 513)	<u></u>	$3.683^{**} (df = 2; 393)$

```
ncol = length(EndOfSample))
# estimation loop over end of sample dates
for(i in 1:length(EndOfSample)) {
  # estimate model (3)
  mod3 <- dynlm(ExReturn ~ L(ExReturn) + L(ln_DivYield), data = StockReturns,</pre>
                start = c(1960, 1),
                end = EndOfSample[i])
  # estimate intercept only model
  modconst <- dynlm(ExReturn ~ 1, data = StockReturns,
                start = c(1960, 1),
                end = EndOfSample[i])
  # sample data for one-period ahead forecast
  t <- window(StockReturns, EndOfSample[i], EndOfSample[i])
  # compute forecast
  forecasts[,i] <- c(</pre>
    coef(mod3) %*% c(1, t[1], t[2]),
    coef(modconst)
  )
}
# gather data
d <- cbind(</pre>
  "Excess Returns" = c(window(StockReturns[,1], c(1993, 1), c(2002, 12))),
  "Model (3)" = forecasts[1,],
  "Intercept Only" = forecasts[2,],
  "Always Zero" = 0)
# Compute RMSFEs
c(
  "ADL model (3)" = sd(d[, 1] - d[, 2]),
 "Intercept-only model" = sd(d[, 1] - d[, 3]),
  "Always zero" = sd(d[,1] - d[, 4])
)
##
          ADL model (3) Intercept-only model
                                                        Always zero
##
               4.043757
                                     4.000221
                                                           3.995428
```

The comparison indicates that model (3) is not useful since it is outperformed in terms of sample RMSFE by the intercept-only model. A model forecasting excess returns always to be zero has an even lower sample RMSFE. This finding is consistent with the strong-form efficiency hypothesis which states that all publicly available information is accounted for in stock prices such that there is no way to predict future stock prices or excess returns using past observations, implying that the perceived significant relationship indicated by model (3) is wrong.

Summary

This chapter dealt with introductory topics in time series regression analysis, where variables are generally correlated from one observation to the next, a concept termed serial correlation. At the beginning, several

ways of storing and plotting time series data using R have been presented and used for informal analysis of economic example data.

We have introduced AR and ADL models and applied them in the context of forecasting of macroeconomic and financial time series using R. The discussion also included the topic of lag length selection. It was shown how to set up a simple function that computes the BIC for a model object supplied.

We have also seen how to write simple R code for performing and evaluating forecasts and demonstrated some more sophisticated approaches to conduct pseudo-out-of-sample forecasts for assessment of a model's predictive power for unobserved future outcomes of a series, to check model stability and to compare different models.

Furthermore, some more technical aspects like the concept of stationarity were adressed. This included applications to testing for an autoregressive unit root with the Dickey-Fuller test and the detection of a break in the population regression function using the QLR statistic. For both methods, the distribution of the relevant test statistic is nonnormal, even in large samples. Concerning the Dickey-Fuller test we have used R's random number generation facilities to produce evidence for this by means of a Monte-Carlo simulation and motivated usage of the quantiles tabulated in the book.

Also, empirical studies regarding the validity of the weak and the strong form efficiency hypothesis which are presented in the applications $Can\ You\ Beat\ the\ Market?\ Part\ I\ \mathcal{E}\ II$ in the book have been reproduced using R.

In all applications presented in this chapter, the focus was layed on forecasting future outcomes rather than estimation of causal relationships between time series variables. However, the framework of methods needed for the latter is very similar. Chapter 15 is devoted to estimation of so called *dynamic causal effects*.