MODELAGEM E INFERÊNCIA ESTATÍSTICA

Critérios de escolha em modelos de regressão múltipla - Exercício

O QUE VOU ESTUDAR HOJE?

Seleção de variáveis

Análise e avaliação dos resultados de testes de hipótese

Gráficos de diagnóstico

Multicolinearidade

EXEMPLO

A loja "GT Auto" decidiu aprimorar o treinamento de seus vendedores inexperientes, e para tanto, criou uma base de dados dos veículos disponíveis, em documento de texto, com as seguintes informações:

- Marca/Modelo/Ano do carro: brand_model_year
- Capacidade volumétrica (cc) ou volume de deslocamento do motor: cap_vol
- Consumo de combustível (km/l): consumo
- Potência (cv): power
- Peso (kg): weight
- 0-100 (s) = tempo que o carro demora para atingir a velocidade de 100km/h: cemm
- Número de cilindros: nu_cy
- Tipo de motor, aspirado (0) ou turbo (1): **Etype**
- Número de cilindros: nu_cy

Após ter realizado a análise dos dados apresentados, obter o modelo de regressão múltipla e escolher as variáveis adequadas.

DEFINIR DADOS

BIBLIOTECA

- 1 #@title Bibliotecas
- 2 import numpy as np
- 3 import pandas as pd
- 4 import matplotlib.pyplot as plt
- 5 import statsmodels.api as sm
- 6 from statsmodels.formula.api import ols
- 7 import statsmodels.formula.api as smf #adiciona
- 8 import seaborn as sns
- 9 import scipy.stats as stats #adicionada na sema
- 10 from scipy.stats import f #adicionada na semana
- 11 from statsmodels.graphics.gofplots import Probl

ESCOLHA DE DADOS

- 1 # Reduzir a base de dados para usar apenas
- 2 # o motor naturalmente aspirado
- 3 dfcars = cars.iloc[1:14,:]
- 4 dfcars.head(15)

UPLOAD BASE DE DADOS

- 1 #@title Upload da base de dados
- 2 from google.colab import files
- 3 uploaded = files.upload()

Escolher Ficheiros carst7.txt

carst7.txt(text/plain) - 1808 bytes, last modified: 05/04/2022
 Saving carst7.txt to carst7.txt

DEFINIR DADOS

RESULTADO

	cap_vol	consumo	power	weight	cemm	nu_cy	Etype
brand_model_year							
FIAT UNO Mille EP 1996	994	10.4	58	870	18.6	4	0
Hyundai HB20 Sense 2020	1000	12.8	80	989	14.5	3	0
FIAT Strada 1.4 2016	1368	10.3	86	1084	12.5	4	0
VolksWagen GOL 1.6 2015	1598	10.5	104	961	9.8	4	0
Chevrolet Cruze LTZ 1.8 2016	1796	8.5	144	1427	10.2	4	0
Honda Civic EXR 2016	1997	9.5	155	1294	10.9	4	0
Ford Focus 2.0 GLX 2012	1999	9.2	148	1347	10.4	4	0
BMW 325i 3.0 2012	2996	6.5	218	1460	7.1	6	0
AUDI A4 3.2 V6 Fsi 2011	3197	7.1	269	1610	6.4	6	0
Mercedes-Benz CLS 350 3.5 V6 2012	3498	6.6	306	1735	6.1	6	0
Mercedes-Benz CLS 500 5.5 V8 2007	5461	4.2	388	1760	5.4	8	0
Chevrolet Camaro SS 6.2 V8 2018	6162	6.4	461	1709	4.2	8	0
Pagani Zonda F 7.3 V12 2006	7291	3.0	602	1230	3.6	12	0

REALIZAR A REGRESSÃO

```
1 #@title Regressão Primeira opção
2 #Regressão com a fórmula import statsmodels.formula.api as smf
3 regmul = smf.ols('consumo ~ cap_vol + power + weight', data = dfcars)
4 #Realizar o processo de modelagem
5 res = regmul.fit()
```

- Definição das variáveis
 - Variável resposta y = consumo
 - Variáveis preditoras x_i= cap_vol, potência, peso

Resultados

```
1 #Resultado detalhado
2 print(res.summary())
```

ANALISAR OS RESULTADOS

	OLS Regr	ession Resu	ılts		
Dep. Variable: Model: Method:	consum OL Least Square	5 Adj. R-	squared:		0.858 0.811 18 17
Date: Time: No. Observations:	Wed, 06 Apr 202 05:53:3 1	Prob (F Log-Lik AIC:	-statistic elihood:):	0.000369 -18.408 44.82
Df Residuals: Df Model: Covariance Type:		9 BIC: 3 t			47.08
cc	oef std err	t	P> t	[0.025	0.975]
Intercept 13.89 cap_vol -0.00 power -0.00 weight -0.00	0.001 0.016	8.475 -0.417 -0.378 -1.464	0.000 0.686 0.714 0.177	10.188 -0.003 -0.043 -0.005	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	4.64 0.09 1.02 3.31	3 Jarque- 4 Prob(JB	Bera (JB):		2.711 2.326 0.312 1.89e+04

$$R_{3(adj)}^2 = 0.811$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

$$y = 13,8973 - 0,0005x_1 - 0,0061x_2 - 0,0021x_3$$

UTILIDADE DO MODELO

OLS Regression Results							
Dep. Variable	::	cons		R-squ			0.858
Model:			_		R-squared:		0.811
Method:		Least Squa			tistic:		18.17
Date:	W	led, 06 Apr 2	022 F	Prob	(F-statistic):		0.000369
Time:		05:53	:31	Log-L	ıkeıınooa:		-18.408
No. Observati	.ons:		13 /	AIC:			44.82
Df Residuals:			9 E	BIC:			47.08
Df Model:			3				
Covariance Ty	pe:	nonrob	ust				
				====			
	coef	std err		t	P> t	[0.025	0.975]
Intercept	13.8973	1.640	8.4	 475	0.000	10.188	17.607
cap_vol	-0.0005	0.001	-0.4	417	0.686	-0.003	0.002
power	-0.0061	0.016	-0.3	378	0.714	-0.043	0.030
weight	-0.0021	0.001	-1.4	464	0.177	-0.005	0.001
Omnibus:	.======	4.	====== 645 [===== Durbi	 n-Watson:	======	2.711
Prob(Omnibus)	:	0.	098 3	Jarqu	e-Bera (JB):		2.326
Skew:		1.		Prob(• •		0.312
Kurtosis:				Cond.	•		1.89e+04
				====			

 $F_{k,n-(k+1)} \rightarrow F_{crit}$ f \geq F_{crit} rejeitar H₀ 18,17 \geq 2,813?? SIM Portanto rejeitar H₀

Se α =0,1 (90% de significância)

```
1 #@title Cálculo do Fcrit (tabela)
2 import scipy.stats
3 F=res.fvalue
4 k=res.df_model # grau do modelo
5 n=res.nobs # num. amostras
6 dfn=k
7 dfd=n-(k+1)
8 alpha = 0.1 #nível de confiança.
9 F_critico=scipy.stats.f.ppf(1-alpha, dfn, dfd)
10 print("F_crit=",F_critico) #tabela F-dist
F_crit= 2.8128629971823895
```

TESTE DE HIPÓTESE DOS PARÂMETROS

OLS Regression Results							
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model:	W .ons:	consumo OLS Least Squares ed, 06 Apr 2022 05:53:31 13	Adj. F F-stat Prob (Log-Li AIC: BIC:	?-s :is (F-	quared:	:):	0.858 0.811 18.17 0.000369 -18.408 44.82 47.08
Covariance Ty	/pe:	nonrobust					
	coef	std err	t		P> t	[0.025	0.975]
Intercept cap_vol power weight	13.8973 -0.0005 -0.0061 -0.0021	1.640 0.001 0.016 0.001	8.475 -0.417 -0.378 -1.464		0.000 0.686 0.714 0.177	10.188 -0.003 -0.043 -0.005	17.607 0.002 0.030 0.001
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	4.645 0.099 1.074 3.715	Jarque Prob(J	e-B IB)		.========	2.711 2.326 0.312 1.89e+04

Se $|t| \ge t_{crit}$ rejeitar H_0 $|t| \ge 1,7959$ **?? Se cumpre apenas para \beta_0** Portanto aceitar a Hipótese nula H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$

Se α =0,1 (90% de significância)

```
1 #@title Cálculo do Fcrit (tabela)
2 import scipy.stats
3 F=res.fvalue
4 k=res.df_model # grau do modelo
5 n=res.nobs # num. amostras
6 dfn=k
7 dfd=n-(k+1)
8 alpha = 0.1 #nível de confiança.
9 F_critico=scipy.stats.f.ppf(1-alpha, dfn, dfd)
10 print("F_crit=",F_critico) #tabela F-dist
F_crit= 2.8128629971823895
```

Valor-p < α =0,1 ? Se cumpreapenas para β_0 Hipótese nula H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$

REFAZER A REGRESSÃO

```
1 #@title Regressão Segunda opção
2 regmul2 = smf.ols('consumo ~ cap_vol + power + weight + nu_cy', data = dfcars)
3 #Realizar o processo de modelagem
4 res2 = regmul2.fit()
5 #Resultado detalhado
6 print(res2.summary())
```

Definição das variáveis

- Variável resposta y = consumo
- Variáveis preditoras x_i= cap_vol, potência, peso, número de cilindros.

REFAZER A REGRESSÃO: INCREMENTO DE VARIÁVEL

	OLS Regres	sion Result	S		
Dep. Variable:	consumo	R-squared	:		0.977
Model:	0LS	Adj. R-sq	uared:		0.966
Method:	Least Squares	F-Statist	10:		85.91
Date:	Wed, 06 Apr 2022	Prob (F-s	tatistic):		1.32e-06
Time:	06:06:10	Log-Likel	ihood:		-6.5200
No. Observations:	13	AIC:			23.04
Df Residuals:	8	BIC:			25.86
Df Model:	4				
Covariance Type:	nonrobust				
coef	std err	t	P> t	[0.025	0.975]
Tut-u-ut 22 024	4 427 4		0.000	40.700	25.224
Intercept 22.0213			0.000	18.708	25.334
cap_vol 0.0003			0.632	-0.001	0.002
power 0.0174			0.055	-0.000	0.035
weight -0.0054	0.001 -	6.850	0.000	-0.007	-0.004
nu_cy -2.0584	0.318 -	6.467	0.000	-2.792	-1.324
Omnibus:	1.730	Durbin-Wa	tson:		1.192
Prob(Omnibus):	0.421	Jarque-Be			0.890
Skew:	0.169	Prob(JB):			0.641
Kurtosis:	1.764	Cond. No.			3.97e+04

```
R_{3(adj)}^{2} = 0.811

R_{4(adj)}^{2} = 0.966

R_{4(adj)}^{2} > R_{3(adj)}^{2}
```

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$ $y = 22,02 - 0,0003x_1 - 0,0174x_2 - 0,0054x_3 - 2.0584x_4$

TESTE DE HIPÓTESE DOS PARÂMETROS

OLS Regression Results								
Dep. Variable Model: Method: Date: Time:		cons Cons Least Squa Wed, 06 Apr 20	OLS res 022	F-sta Prob	R- ati	red: -squared: istic: statistic	:):	0.977 0.966 85.91 1.32e-06
No. Observati Df Residuals: Df Model: Covariance Ty		nonrob	13 8 4	AIC: BIC:				23.04 25.86
	coef	std err		t		P> t	[0.025	0.975]
Intercept cap_vol power weight nu_cy	22.0213 0.0003 0.0174 -0.0054 -2.0584	0.001 0.008 0.001	6 2 - 6	5.329 9.498 2.247 5.850 5.467		0.000 0.632 0.055 0.000 0.000	18.708 -0.001 -0.000 -0.007 -2.792	25.334 0.002 0.035 -0.004 -1.324
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	0.	77.0 21 169 764		ue- (JE	*		1.192 0.890 0.641 3.97e+04

Se α =0,1 (90% de significância)

```
1 #@title Cálculo t_crit (tabela t-student)
2 from scipy.stats import t
3 alpha = 0.1 # significia = 5%
4 df = 11 # graus de liberdade
5 v = t.ppf(1 - alpha/2, df)
6 tt=v
7 print(f't_crit=: {v}')
t_crit=: 1.7958848187036691
```

Valor-p < α =0,1 ? Se cumpre para todos os β_i menos para β_2 Portanto retirar β_2

Se $|t| \ge t_{crit}$ rejeitar H_0

 $|\mathbf{t}| \geq 1,7959$?? Se cumpre para todos os $\boldsymbol{\beta_i}$ menos para $\boldsymbol{\beta_2}$ Portanto aceitar a Hipótese nula H_0 : $\boldsymbol{\beta_2} = 0$ mas manter os outros $\boldsymbol{\beta_i}$

REFAZER A REGRESSÃO: RETIRAR VARIÁVEL NÃO SIGNIFICATIVA

```
1 #@title Regressão Terceira opção
2 regmul3 = smf.ols('consumo ~ power + weight + nu_cy', data = dfcars)
3 #Realizar o processo de modelagem
4 res3 = regmul3.fit()
5 #Resultado detalhado
6 print(res3.summary())
```

- Definição das variáveis
 - Variável resposta y = consumo
 - Variáveis preditoras x_i= cap_vol, potência, peso, número de cilindros.

REFAZER A REGRESSÃO: RETIRAR VARIÁVEL NÃO SIGNIFICATIVA

		OLS Regr	ess:	ion Re	sults		
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	Wed	consum Ol Least Square d, 06 Apr 202 06:09:2 1	.5 22 22 13 9	Adj. F-sta Prob	uared: R-squared: tistic: (F-statistic): ikelihood:	:	0.977 0.969 124.9 1.19e-07 -6.7184 21.44 23.70
	coef	std err		t	P> t	[0.025	0.975]
weight	21.9086 0.0203 -0.0053 -2.0227	0.005 0.001	4 -7	.092	0.000 0.003 0.000 0.000	0.009	0.031
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	2.11 0.34 0.08 1.69	17 39		*		1.228 0.936 0.626 1.43e+04

$$R_{3(adj)}^2 = 0.811$$
 $R_{4(adj)}^2 = 0.966$
 $R_{3a(adj)}^2 = 0.969$
 $R_{3a(adj)}^2 > R_{4(adj)}^2 > R_{3(adj)}^2$
 $F_{crit-3} = 18.17$
 $F_{crit-4} = 85.91$
 $F_{crit-3a} = 124.9$
valores-p < α = 0.05

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

$$y = 21,9086 - 0,0203x_1 - 0,053x_2 - 2,0227x_3$$

RESÍDUOS E RESÍDUOS PADRONIZADOS

Obter:

- Valores previstos (y pred)
- Resíduos (resi)
- Resíduos padronizados (stdresid)
- Proporção entre resíduos e resíduos padronizados (prop)

```
1 #@title Gráficos dispersão e resíduos
2 #Valores previstos e residuos
3 y_pred=list(res3.predict())
4 resi=list(res3.resid)
5 #crear instancia influence
6 influence = res3.get_influence()
7 #obter residuos standardizados
8 stdresid = list(influence.resid_studentized_internal)
9 prop=np.divide(resi,stdresid) #e/e*
```

RESÍDUOS E RESÍDUOS PADRONIZADOS

Obter:

- Valores previstos (y_pred)
- Resíduos (resi)
- Resíduos padronizados (stdresid)
- Proporção entre resíduos e resíduos padronizados (prop)

RESÍDUOS E RESÍDUOS PADRONIZADOS

Obter:

- Valores previstos (y_pred)
- Resíduos (resi)
- Resíduos padronizados (stdresid)
- Proporção entre resíduos e resíduos padronizados (prop)

	у	y_p	e	e*	e/e*
0	10.4	10.345134	0.054866	0.140443	0.390663
1	12.8	12.178190	0.621810	1.617789	0.384358
2	10.3	9.769516	0.530484	1.217066	0.435871
3	10.5	10.791847	-0.291847	-0.675226	0.432221
4	8.5	9.113044	-0.613044	-1.359483	0.450939
5	9.5	10.046835	-0.546835	-1.228797	0.445017
6	9.2	9.621654	-0.421654	-0.927807	0.454463
7	6.5	6.392115	0.107885	0.272351	0.396125
8	7.1	6.624970	0.475030	1.067406	0.445033
9	6.6	6.707464	-0.107464	-0.252444	0.425695

1 y=list(dfcars['consumo'])
<pre>2 dftab = pd.DataFrame(list(zip(y,y_pred,resi,stdresid,prop)),</pre>
3 columns =["y","y_p","e","e*","e/e*"])
4 dftab.head(10)

GRÁFICOS DE DIAGNÓSTICO

y vs. \hat{y}

```
1 #@title Gráficos de diagnóstico 2 (y vs. yc)
2 sns.lmplot(x='y', y='y_p', data=dftab);plt.grid(True)
3 plt.xlabel('Valores observados: y= Consumo')
4 plt.ylabel('Valores esperados: y_pred= Consumo')
5 plt.axhline(y=0, color='black', linestyle='--', linewidth=1)
6 plt.show()
```

GRÁFICOS DE DIAGNÓSTICO

```
1 #@title Gráficos de diagnóstico 3 (resíduos padronizados vs. x)
2 sns.scatterplot(x='y', y='e*', data=dftab);plt.grid(True)
3 plt.xlabel('Valores observados: y= Consumo')
4 plt.ylabel('e*= Resíduos padronizados')
5 plt.axhline(y=0, color='black', linestyle='--', linewidth=1)
6 plt.show()
```


y vs. e*

GRÁFICOS DE DIAGNÓSTICO

```
1 #@title Gráficos de diagnóstico 4
2 #Verificar a normalidade dos resíduos
3 #qqpolot vs. normal distribution
4 QQ = ProbPlot(influence.resid_studentized_internal)
5 plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1)
6 plot_lm_2.axes[0].set_xlabel('Percentil')
7 plot_lm_2.axes[0].set_ylabel('Resíduos padronizados')
8 plt.grid(True)
```


Normalidade dos resíduos padronizados

```
1 #Analisar amostras influentes
                                               h_{jj} > \frac{2(k+1)}{2}
 2 infl = res3.get influence()
 3 #leverage
 4 print(infl.hat_matrix_diag)
[0.35806038 0.37861409 0.20088976 0.21422029 0.14468658 0.16700463
0.13126423 0.33998544 0.16694511 0.23776741 0.32914283 0.46714838
0.86427087]
 1 #Valores dos resíduos (influencias internas)
 2 #residus = res3.resid.as matrix() #residuals
 3 leviers = infl.hat_matrix_diag #leverage
 4 sigma_err = np.sqrt(res3.scale) #regression standard error
 5 res_stds = stdresid/(sigma_err*np.sqrt(1.0-leviers))
 6 print(res_stds)
 0.35949995 4.20906954 2.79225934 -1.5622264 -3.01478277 -2.7612392
-2.04154318 0.68753833 2.39848859 -0.59301501 0.05304166
                                                             3.59442848
-8.46147643]
```



```
1 #Limiar
                                                                                                                                                                                                                    s_h = 2 \times \frac{p+1}{n} h_i > s_h
      2 #threshold leverage
       3 seuil levier = 2*(pa+1)/na
      4 print(seuil levier)
      5 #identification
                                                                                                                                                                                                                                                              h_{jj} > \frac{2(k+1)}{n}
      6 atyp levier = leviers > seuil levier
     7 print(atyp levier)
0.6153846153846154
[False False False
     True]
     1 #Quais carros ultrapassam esse limiar
      2 print(dfcars.index[atyp levier],leviers[atyp levier])
Index(['Pagani Zonda F 7.3 V12 2006'], dtype='object', name='brand model year') [0.86427087]
```



```
1 #limiares dos resíduos (influencias externas)
 2 import scipy
 3 seuil stud = scipy.stats.t.ppf(0.975,df=na-pa-2)
 4 print(seuil stud)
 5 #detection - absolute value > threshold
 6 atyp stud = np.abs(res studs) > seuil stud
 7 #which ones?
 8 print(dfcars.index[atyp stud],res studs[atyp stud])
2.3060041350333704
Index(['FIAT Strada 1.4 2016', 'Honda Civic EXR 2016',
       'Ford Focus 2.0 GLX 2012', 'AUDI A4 3.2 V6 Fsi 2011'
      dtype='object', name='brand model year') [ 7.1997264
 1 #Observações suspeitas considerando ambos critérios
 2 pbm infl = np.logical or(atyp levier,atyp stud)
 3 print(dfcars.index[pbm infl])
Index(['FIAT Strada 1.4 2016', 'Honda Civic EXR 2016',
       'Ford Focus 2.0 GLX 2012', 'AUDI A4 3.2 V6 Fsi 2011'
       'Pagani Zonda F 7.3 V12 2006'],
      dtype='object', name='brand model year')
```

$$\left| s_{t} = t_{1-0.05/2}(n-p-2) \right|$$

$$\left| t_{i}^{*} \right| > s_{t}$$

```
1 #Outros critérios para determinar amostras influentes
 2 print(infl.summary frame().filter(["hat diag","student resid","dffits","cooks d"]))
                                hat diag student resid dffits
                                                                  cooks d
brand model year
FIAT UNO Mille EP 1996
                                0.358060
                                             0.132557 0.098999 0.002750
Hyundai HB20 Sense 2020
                                0.378614
                                              1.811184 1.413775 0.398675
FIAT Strada 1.4 2016
                                0.200890
                                              1.255412 0.629451 0.093093
VolksWagen GOL 1.6 2015
                             0.214220
                                             -0.653374 -0.341147 0.031074
Chevrolet Cruze LTZ 1.8 2016
                           0.144687
                                             -1.437841 -0.591374 0.078161
Honda Civic EXR 2016
                                             -1.269939 -0.568625 0.075681
                             0.167005
                             0.131264
                                             -0.919840 -0.357554 0.032517
Ford Focus 2.0 GLX 2012
BMW 325i 3.0 2012
                                0.339985
                                             0.257840 0.185056 0.009552
                              0.166945
AUDI A4 3.2 V6 Fsi 2011
                                             1.076826 0.482054 0.057082
Mercedes-Benz CLS 350 3.5 V6 2012 0.237767
                                              -0.238853 -0.133402
                                                                 0.004970
Mercedes-Benz CLS 500 5.5 V8 2007 0.329143
                                              0.019972 0.013989 0.000055
Chevrolet Camaro SS 6.2 V8 2018
                                0.467148
                                              1.333514 1.248596 0.358727
Pagani Zonda F 7.3 V12 2006
                                0.864271
                                              -1.662190 -4.194391 3.677834
```

$$|DFFITS_i| > 2\sqrt{\frac{p+1}{n}}$$
 DFFITS

$$D_i > \frac{4}{n-p-1}$$

MULTICOLINEARIDADE

```
1 # Calcula a correlação entre os atributos numéricos
2 corr = dfex.corr()
3 # Resultado
4 plt.figure(figsize=(8, 4))
5 sns.heatmap(corr, cmap='coolwarm', annot=True, fmt=".2f", vmin=-1, vmax=1)
6 plt.show()
                                                                  - 1.00
consumo
        1.00
                      -0.91
                                    -0.69
                                                   -0.91
                                                                  - 0.75
                                                                  - 0.50
power
        -0.91
                      1.00
                                     0.59
                                                   0.97
                                                                 -0.25
                                                                 - 0.00
weight
        -0.69
                      0.59
                                    1.00
                                                   0.45
                                                                 - -0.25
                                                                  - -0.50
nu_cy
        -0.91
                      0.97
                                     0.45
                                                   1.00
                                                                 - -0.75
                                    weight
                      power
                                                   nu_cy
      consumo
```

MULTICOLINEARIDADE

Existe multicolinearidade se > 0.8

```
1 print(corr)

consumo power weight nu_cy
consumo 1.000000 -0.905766 -0.687542 -0.913702
power -0.905766 1.000000 0.592254 0.968908
```

0.592254

0.968908

Existe multicolinearidade se VIF > 4

weight

nu cy

-0.687542

-0.913702

```
1 #VIF criterion
2 vif = np.linalg.inv(mc2)
3 print(vif)
  4.94510596
                                          -4.59582941]
                0.86342415
                            -1.727545
                                        -10.79045883]
  0.86342415
               11.18956754
                            -2.18959009
 -1.727545
               -2.18959009
                             1.96748437
                                           3.10696401]
 -4.59582941 -10.79045883
                             3.10696401
                                          14.34955472]]
```

1.000000

0.445695

0.445695

1.000000

Existe multicolinearidade se a relação $>R^2$ $R_{3a(adj)}^2 = 0,969$

```
1 #Klein's rule of thumb
 2 \text{ mc2} = \text{corr**2}
 3 print(mc2)
                                  weight
                                              nu cy
           consumo
          1.000000
                     0.820412
                                0.472714
                                           0.834851
consumo
          0.820412
                     1.000000
                                0.350764
                                           0.938783
power
weight
          0.472714
                                           0.198644
                     0.350764
                                1.000000
nu cy
          0.834851
                     0.938783 0.198644
                                           1.000000
```

MULTICOLINEARIDADE

Existe multicolinearidade se > 0.8

Existe multicolinearidade se VIF > 4

Existe multicolinearidade se a relação > R^2 $R^2_{3a(adj)} = 0,969$

sns.heatmap(vif, cmap='coolwarm', annot=True, fmt=".2f", vmin=-4, vmax=4)

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Critérios de escolha em modelos de regressão múltipla - Exercício