Decision making in case of uncertainties

Bayesian Analysis

- Based on Bayesian probability theory
 - uncertainty is presented with probabilities
 - probabilities are updated based on new information

Bayesian Analysis

- Based on Bayesian probability theory
 - uncertainty is presented with probabilities
 - probabilities are updated based on new information
- Thomas Bayes (170?–1761)
 - English nonconformist, Presbyterian minister, mathematician
 - considered the problem of inverse probability
 - significant part of the Bayesian theory

Bayesian Analysis

- Based on Bayesian probability theory
 - uncertainty is presented with probabilities
 - probabilities are updated based on new information
- Thomas Bayes (170?–1761)
 - English nonconformist, Presbyterian minister, mathematician
 - considered the problem of inverse probability
 - significant part of the Bayesian theory
- Bayes did not invent all, but was first to solve problem of inverse probability in special case
- Modern Bayesian theory with rigorous proofs developed in 20th century

Term Bayesian used first time in mid 20th century

- Earlier there was just "probability theory"
 - concept of the probability was not strictly defined, although it was close to modern Bayesian interpretation
 - in the end of 19th century there were increasing demand for more strict definition of probability (mathematical and philosophical problem)

Term Bayesian used first time in mid 20th century

- Earlier there was just "probability theory"
 - concept of the probability was not strictly defined, although it was close to modern Bayesian interpretation
 - in the end of 19th century there were increasing demand for more strict definition of probability (mathematical and philosophical problem)
- In the beginning of 20th century frequentist view gained popularity
 - accepts definition of probabilities only through frequencies
 - does not accept inverse probability or use of prior
 - gained popularity due to apparent objectivity and "cook book" like reference books

Term Bayesian used first time in mid 20th century

- Earlier there was just "probability theory"
 - concept of the probability was not strictly defined, although it was close to modern Bayesian interpretation
 - in the end of 19th century there were increasing demand for more strict definition of probability (mathematical and philosophical problem)
- In the beginning of 20th century frequentist view gained popularity
 - accepts definition of probabilities only through frequencies
 - does not accept inverse probability or use of prior
 - gained popularity due to apparent objectivity and "cook book" like reference books
- R. A. Fisher used in 1950 first time term "Bayesian" to emphasize the difference to general term "probability theory"
 - term became quickly popular, because alternative descriptions were longer

Uncertainty and probabilistic modeling

- Two types of uncertainty: aleatoric and epistemic
- Representing uncertainty with probabilities
- Updating uncertainty

Two types of uncertainty

Aleatoric uncertainty due to randomness

Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
 - we are not able to obtain observations which could reduce this uncertainty
- Epistemic uncertainty due to lack of knowledge

Two types of uncertainty

- Aleatoric uncertainty due to randomness
 - we are not able to obtain observations which could reduce this uncertainty
- Epistemic uncertainty due to lack of knowledge
 - we are able to obtain observations which can reduce this uncertainty
 - two observers may have different epistemic uncertainty

▶ Probability of red $\frac{\# \text{red}}{\# \text{red} + \# \text{yellow}} = \theta$

- ▶ Probability of red $\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$
- $p(y = red | \theta) = \theta$ aleatoric uncertainty

- ▶ Probability of red $\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$
- $p(y = red | \theta) = \theta$ aleatoric uncertainty
- $p(\theta)$ epistemic uncertainty

- ▶ Probability of red $\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$
- ▶ $p(y = red|\theta) = \theta$ aleatoric uncertainty
- $p(\theta)$ epistemic uncertainty
- Picking many chips updates our uncertainty about the proportion
- \triangleright $p(\theta|y = red, yellow, red, red, ...) =?$

- ▶ Probability of red $\frac{\#\text{red}}{\#\text{red} + \#\text{yellow}} = \theta$
- $p(y = red | \theta) = \theta$ aleatoric uncertainty
- $p(\theta)$ epistemic uncertainty
- Picking many chips updates our uncertainty about the proportion
- \triangleright $p(\theta|y = red, yellow, red, red, ...) =?$
- ▶ Bayes rule $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

Model vs. likelihood

- ▶ Bayes rule $p(\theta|y) \propto p(y|\theta)p(\theta)$
- ▶ Model: $p(y|\theta)$ as a function of y given fixed θ describes the aleatoric uncertainty
- Likelihood: $p(y|\theta)$ as a function of θ given fixed y provides information about epistemic uncertainty, but is not a probability distribution

Model vs. likelihood

- ▶ Bayes rule $p(\theta|y) \propto p(y|\theta)p(\theta)$
- ▶ Model: $p(y|\theta)$ as a function of y given fixed θ describes the aleatoric uncertainty
- Likelihood: $p(y|\theta)$ as a function of θ given fixed y provides information about epistemic uncertainty, but is not a probability distribution
- ▶ Bayes rule combines the likelihood with prior uncertainty $p(\theta)$ and transforms them to updated posterior uncertainty

Example application

wet age-related macular degeneration (wetAMD)

Example application

wet age-related macular degeneration (wetAMD)

Pharmacometric with ordinal differential equations

$$\frac{dR_j(t)}{dt} = k_j^{\text{in}} - k_j^{\text{out}} \left[R_j(t) - E_{\text{max}j} S_j(C_j(t)) \right].$$

Combining results from different studies

The art of probabilistic modeling

The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
 - computational challenges

The art of probabilistic modeling

- The art of probabilistic modeling is to describe in a mathematical form (model and prior distributions) what we already know and what we don't know
- "Easy" part is to use Bayes rule to update the uncertainties
 - computational challenges
- Other parts of the art of probabilistic modeling are, for example,
 - model checking: is data in conflict with our prior knowledge?
 - presentation: presenting the model and the results to the application experts

- Galaxy clusters for cosmology
- Coagulation of blood
- Gene regulation
- Pharmacokinetics and -dynamics
- Decision support
- Effects of nutrition for diabetes
- Evolutionary anthropology
- Clinical trial designs
- Daily demand for gas
- Brain structure trees
- School enrollment
- Sports
- Product demand

- Cocoa bean fermentation
- Marine propulsion power
- Alcohol consumption trends
- Flood probability
- Instantaneous heart rate distributions
- Drug dosing regimens in pediatrics
- Human T stem cell memory cells
- Fairness in university admission policies
- Destruction of bacteria and bacterial spores under heat

Bayesian data analysis

Example analyses

- Treatment/control
 - randomize patients to treatment or control
 - ▶ is the treatment effective?

Bayesian data analysis

Example analyses

- Treatment/control
 - randomize patients to treatment or control
 - is the treatment effective?
- Continuous valued treatment
 - randomize patients with different dosages
 - which dosage is sufficient without too many side effects?

Bayesian data analysis

Example analyses

- Treatment/control
 - randomize patients to treatment or control
 - is the treatment effective?
- Continuous valued treatment
 - randomize patients with different dosages
 - which dosage is sufficient without too many side effects?
- Different effects for different patients?
 - Is the treatment effect different for male/female, child/adult, light/heavy, ...

Bayesian approach

- Benefits of Bayesian approach
 - integrate over uncertainties to focus to interesting parts
 - use relevant prior information
 - hierarchical models
 - model checking and evaluation

Computation

We need to be able to compute expectations with respect to posterior distribution $p(\theta|y)$

$$\mathrm{E}_{ heta|y}\left[g(heta)
ight] = \int
ho(heta|y)g(heta)d heta$$

- Analytic
 - only for very simple models
- Monte Carlo, Markov chain Monte Carlo
 - generic
- Distributional approximations
 - e.g. Laplace, variational, expectation propagation
 - less generic, but can be much faster with sufficient accuracy

Probabilistic programming

Enables agile workflow for developing probabilistic models

language - automated inference - diagnostics

Binomial model for treatment/control comparison

- Two groups of patients: treatment and control
 - ▶ Binary outcome
 - ▶ Is the treatment useful?

Binomial model for treatment/control comparison

```
data {
  int < lower = 0 > N1;
  int < lower = 0 > y1;
  int < lower = 0 > N2;
  int < lower = 0 > y2;
parameters {
  real<lower=0,upper=1> theta1;
  real<lower=0,upper=1> theta2;
model {
  theta1 \sim beta(1,1);
  theta2 \sim beta(1,1);
  y1 ~ binomial(N1, theta1);
  v2 ~ binomial(N2, theta2);
generated quantities {
  real oddsratio;
  oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));
```

Binomial model for treatment/control comparison RStanARM

Modeling nature

Drop a ball from different heights and measure time

Modeling nature

- Drop a ball from different heights and measure time
 - Newton
 - air resistance, air pressure, shape and surface structure of the ball
 - relativity

Modeling nature

- Drop a ball from different heights and measure time
 - Newton
 - air resistance, air pressure, shape and surface structure of the ball
 - relativity
- ► Taking into account the accuracy of the measurements, how accurate model is needed?

Modeling nature

- Drop a ball from different heights and measure time
 - Newton
 - air resistance, air pressure, shape and surface structure of the ball
 - relativity
- Taking into account the accuracy of the measurements, how accurate model is needed?
 - often simple models are adequate and useful
 - All models are wrong, but some of them are useful, George P. Box

Rest of the course

- Basic models which can be used as building blocks
- Basic computation
- Typical simple scientific data analysis cases
 - e.g. comparison of treatments
- Presentation of the results

Reminder: Uncertainty and probabilistic modeling

- ► Two types of uncertainty: aleatoric and epistemic
- Representing uncertainty with probabilities
- Updating uncertainty

▶ Pick a number between 1–5

- ▶ Pick a number between 1–5
 - raise as many fingers

- ► Pick a number between 1–5
 - raise as many fingers
 - is the number of fingers raised random (by you or by others)?

- Pick a number between 1–5
 - raise as many fingers
 - is the number of fingers raised random (by you or by others)?
- If we build a robot with very fast vision which can observe the rotating coin accurately, is the throw random for the robot?

- Pick a number between 1–5
 - raise as many fingers
 - is the number of fingers raised random (by you or by others)?
- If we build a robot with very fast vision which can observe the rotating coin accurately, is the throw random for the robot?
- Is the quantum uncertainty aleatoric or epistemic?

- Pick a number between 1–5
 - raise as many fingers
 - is the number of fingers raised random (by you or by others)?
- If we build a robot with very fast vision which can observe the rotating coin accurately, is the throw random for the robot?
- Is the quantum uncertainty aleatoric or epistemic?
- What is your own example with both aleatoric and epistemic uncertainty?

Some important terms

- probability
- probability density
- probability mass
- probability density function (pdf)
- probability mass function (pmf)
- probability distribution
- discrete probability distribution
- continuous probability distribution
- cumulative distribution function (cdf)
- likelihood

In $p(y|\theta)$

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- P_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- P_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta = \theta)$ is a probability density function, sampling distribution, observation model

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- P_Y(Y|Θ = θ) is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- P_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta = \theta)$ is a probability density function, sampling distribution, observation model
- $p(Y = y | \Theta = \theta)$ is a density

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- P_Y(Y|Θ = θ) is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- P_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta = \theta)$ is a probability density function, sampling distribution, observation model
- $p(Y = y | \Theta = \theta)$ is a density
- p_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- $P_Y(Y|\Theta=\theta)$ is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- $P_{\Theta}(Y = y | \Theta)$ is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta = \theta)$ is a probability density function, sampling distribution, observation model
- $p(Y = y | \Theta = \theta)$ is a density
- p_Θ(Y = y|Θ) is a likelihood function (can be discrete or continuous)
- y and θ can also be mix of continuous and discrete

- y can be variable or value we could clarify by using $p(Y|\theta)$ or $p(y|\theta)$
- θ can be variable or value we could clarify by using $p(y|\Theta)$ or $p(y|\theta)$
- p can be a discrete or continuous function of y or θ
 we could clarify by using P_Y, P_Θ, p_Y or p_Θ
- P_Y(Y|Θ = θ) is a probability mass function, sampling distribution, observation model
- $P(Y = y | \Theta = \theta)$ is a probability
- $P_{\Theta}(Y = y | \Theta)$ is a likelihood function (can be discrete or continuous)
- $p_Y(Y|\Theta = \theta)$ is a probability density function, sampling distribution, observation model
- $p(Y = y | \Theta = \theta)$ is a density
- $p_{\Theta}(Y = y|\Theta)$ is a likelihood function (can be discrete or continuous)
- y and θ can also be mix of continuous and discrete
- Due to the sloppines sometimes likelihood is used to refer $P_{Y,\theta}(Y|\Theta),\,p_{Y,\theta}(Y|\Theta)$

Chapter 1

Reading instructions

- ▶ 1.1-1.3 important terms
- 1.4 a useful example
- 1.5 foundations
- ▶ 1.6 & 1.7 examples (can be skipped, but may be useful to read)
- 1.8 & 1.9 background material, good to read before doing the exercises
- ▶ 1.10 a point of view for using Bayesian inference