Tecnologie Digitali - AA 2024/25

Scheda di laboratorio n.05

Circuiti con operazionali

Le applicazioni degli amplificatori operazionali sono sterminate e sono alla base di una grande varietà di circuiti, quali sensori, generatori e analizzatori di segnale, etc. Le possibilità sono così tante che è inutile anche solo tentare un elenco sommario dei circuiti elementari significativi, e vederli tutti nel dettaglio richiederebbe probabilmente un intero corso dedicato all'argomento. Questo sarebbe anche inutilmente pedante: quanto avete imparato nelle prime due settimane è in realtà ampiamente sufficiente a comprendere da soli il funzionamento della maggior parte dei circuiti, quindi piuttosto metteremo alla prova questa conoscenza affidando ai vari tavoli circuiti *diversi*. Durante la prossima settimana *ogni tavolo* illustrerà i suoi risultati all'intera classe in una breve presentazione di circa 20 minuti, seguita da una breve sessione per eventuali domande.

Obiettivo. Qualunque sia il circuito che vi è capitato, il vostro primo compito sarà di analizzare e comprendere il funzionamento dello schema circuitale sulla base delle informazioni che avete appreso, anche aiutandovi, volendo, con strumenti di simulazione quali TINA. Chiariti gli aspetti di base, dovrete pianificare e realizzare il circuito/i e raccogliere delle misure per analizzare:

- (i) il comportamento del circuito;
- (ii) le cause di eventuali deviazioni fra comportamenti attesi ed osservati;
- (iii) opzionalmente, idee per possibili varianti e/o migliorie.

Come sempre, verrà indicata una traccia delle attività da svolgere: tipicamente quattro punti per circuito, di difficoltà relativamente simile...più uno spunto di approfondimento un minimo più avanzato, ma consideratevi liberi di procedere pure con ulteriori ottimizzazioni o altri approfondimenti a vostro piacere. Consigliamo di amministrare bene il tempo e di non lasciarsi troppe cose da fare all'ultimo istante.

Quale OpAmp? Qualunque sia il vostro circuito, siete liberi di usare l'OpAmp che preferite. Nella scelta, considerate le peculiarità dagli integrati che avete a disposizione:

- AD8031 è molto rapido e rail-to-rail, ma a volte ha la tendenza a diventare instabile;
- 0P07 è molto preciso e con poco offset, ma non è molto veloce, può soffrire un po' se deve alimentare carichi di impedenza non elevata;
- MCP601 è un modello abbastanza veloce, con correnti di bias particolarmente basse, e resistenze di ingresso molto elevate (vedremo perché nel prossimo futuro). Ricordiamo sempre però che supporta al massimo una alimentazione duale ±3V;
- un ulteriore modello che sarà possible usare è ADA4661, che contiene due OpAmp che non sono particolarmente veloci o precisi, ma che in generale danno pochi problemi e *possono* essere comodi se volete costruire schemi con molti OpAmp (per esempio per chi farà il moltiplicatore).

intentionally blank

CIRCUITO #1

1 Gyrator: come costruire un elemento induttivo con gli OpAmp

Figura 1.1: Il circuito a destra di Ch2 si comporta come un elemento induttivo.

I feedback possono avere delle conseguenze non sempre molto intuitive. Fra queste c'è la possibilità di realizzare un circuito attivo che, nonostante contenga solo resistenze e condensatori, ha una risposta induttiva e si oppone quindi ai cambiamenti di corrente. Si considerino gli elementi circuitali in Fig.1.1: il circuito consiste di un passa-alto con tempo caratteristico $\tau = R_1 C_1 = 1$ ms, seguito da un *buffer*, che rimanda all'ingresso il segnale tramite un resistore R_2 . Come vedremo, questi componenti si comportano come una impedenza connessa a terra $Z_{sim} \approx R_2(1 + j\omega\tau)$ e quindi corrispondente alla serie fra una induttanza di tutto rispetto $L = R_2\tau = 100\,\text{mH}$ e una resistenza R_2 .

Task 1 Verificare – usando le regole degli OpAmp ideali – che il circuito si comporta come una impedenza

$$Z_{sim} = r + j\omega L = R_2 + j\omega R_2 \tau \tag{1.1}$$

connessa a terra, in parallelo con una seconda impedenza complessa Z_{par} che possiamo tipicamente trascurare. Valutare quali sono le condizioni per cui questa seconda impedenza (quanto vale?) può essere trascurata. Ideare quindi una semplice modifica del circuito che elimini questo effetto^a. Infine, immaginarsi di voler costruire davvero un induttore da 100 mH avvolgendo del filo di rame (resistività $1.8 \times 10^{-8} \,\Omega$ m) del diametro che preferite attorno a un cilindro. Quando dovrebbe essere grande? Che resistenza serie avrebbe?

^aPer trovare una risposta vale tutto eccetto ovviamente chiederlo a noi.

Task 2 Considerare l'energetica del circuito: se si comporta come un'induttanza, la relazione che lega I e V ai suoi capi sarà matematicamente simile a quella di un induttore vero, e quindi avremo dei flussi di potenza in ingresso nel circuito a destra di Ch2 del tutto simili. In un induttore vero queste energia viene accumulata nel campo magnetico, nel circuito in figura che vi aspettate?

Montate il circuito in Fig.1.1. La parte in rosso resterà fissa e nei vari punti monteremo cose diverse al posto dell'impedenza Z_2 indicata in blu. Nell'ultimo punto cambierete proprio la topologia del circuito, in una maniera che deve essere ovvia in base alle esperienze passate. Per ogni circuito il suggerimento è di simularlo prima su TINAe poi misurarlo. Diversamente da quanto fatto in esperienze passate cercate di attenervi ai valori esatti dei componenti da noi indicati (quando indicati) e se vi manca qualcosa chiedete pure. In tutti gli studi partite considerando la descrizione approssimata dell'induttore più resistore della formula di $Z_{\rm sim}$, ma se lo valutate necessario considerate la possibilità di aggiungere anche $Z_{\rm par}$ nei vostri modelli.

Task 3 Realizzare un passa basso RL andando a sostituire Z_2 con un resistore a vostro piacere e collegate il tutto al generatore di funzioni. Verificare il comportamento del circuito:

- nel dominio del tempo, usando una onda quadra e misurando/fittando la caratteristica risposta esponenziale.
- nel dominio delle frequenze ricostruendo la funzione di risposta e generando un grafico di Bode.

Task 4 Ripetere lo studio sostituendo Z_2 con un condensatore da 100 nF. In questo caso stiamo simulando un circuito risonante LRC, quindi nel dominio del tempo ci aspettiamo di trovare delle oscillazioni smorzate, mentre nel dominio delle frequenza ci aspettiamo una risonanza.

Task 5 Approfondimento finale. Ottimizzare il circuito a e cercare di ottenere un buon fattore di qualità per il risuonatore b . Costruire quindi un filtro blocca banda e dimostrarne il funzionamento con un plot di Bode.

 $[\]overline{^{a}}$ Questo implica che avete la libertà di cambiare i valori dei componenti a piacere.

^bRicordiamo che in una equazione del tipo il fattore di qualità vale $Q = \omega_0/\gamma$, dove ω_0 è la frequenza di risonanza e γ il coefficiente del termine dissipativo nel circuito *RLC*.

CIRCUITO #2

2 Integrazione e derivazione di un segnale

Molte applicazioni comuni degli OpAmp possono essere semplicemente ottenute dando alla $\beta(\omega)$ della rete di feedback una dipendenza in frequenza non banale. Un esempio è costituito dall'*integratore di Miller* e dal *differenziatore*, i cui schemi sono riportati in Fig.2.1.

Figura 2.1: Integratore di Miller e differenziatore.

Lo schema di base per questi circuiti non include le resistenze indicate come R_{reg1} e R_{reg2} , che tuttavia sono molto utili per *regolarizzare* il loro comportamento ed evitare effetti indesiderati che dovrete evidenziare. Inizialmente le trascureremo imponendo $R_{\text{reg1}} = 0\Omega$ e $R_{\text{reg2}} = \infty$.

Task 6 Considerare la funzione di risposta $\mathcal{H}(\omega)$ dei due circuiti trascurando le resistenze indicate come $R_{\text{reg}*}$ e qualsiasi deviazione dall'OpAmp ideale; verificare che ha senso chiamarli integratore e derivatore. Scrivere la relazione fra ingresso e uscita nei due circuiti nel dominio del tempo, trascurando i transitori.

Task 7 Usare le regole d'oro per calcolare la risposta dell'integratore in presenza di R_{reg2} e determinare in quale range di frequenze il circuito si comporta effettivamente come un integratore. Qual è l'effetto di un voltaggio di offset V_{off} sull'output del circuito? Ricordiamo che questo corrisponde a modificare la risposta dell'OpAmp secondo l'equazione

$$Vout = A(V + -V - -V_{off}). (2.1)$$

ossia, nel limite di alta amplificazione, a imporre $V + = V - + V_{\rm off}$. Fino a che frequenza il circuito si comporta come un buon integratore? Dati i problemi che può dare una $R_{\rm reg2}$ molto grande o molto piccola, decidere una strategia per scegliere il valore di $R_{\rm reg2}$.

Task 8 Realizzate i due circuiti con le resistenze indicate. Verificare se i due circuiti in Fig.2.1 si comportano effettivamente come degli integratori o derivatori, usando il generatore di funzioni come segnale di ingresso. Verificare il funzionamento nel dominio del tempo, con delle forme d'onda a piacere, ma fra queste includente quantomeno una sinusoide e un'onda triangolare.

Task 9 Misurate la risposta in frequenza di entrambi i circuiti e tracciate i loro diagrammi di Bode. Ci sono delle deviazioni da quello che vi aspettate in base alle predizioni derivate dalle regole d'oro degli OpAmp? Se osservate delle deviazioni dall'ideale, in particolare nel derivatore $\mathcal{H}(\omega) \propto \omega$, è normale. L'obiettivo per il momento è semplicemnete di documentarle.

Per concludere, qualche riflessione sulla riposta in frequenza osservata per il derivatore. Chiaramente il problema in questo caso è l'amplificazione non può crescere indefinitamente, in particolare nel limite di alte frequenze. Per comprendere che succede bisogna quindi necessariamente considerare il comportamento in frequenza usando

quantomeno una approssimazione di polo dominante

$$A(\omega) \approx \frac{A_0}{1 + j\omega\tau_{\rm PD}}$$
 (2.2)

dove la frequenza del polo è $(2\pi\tau_{PD})^{-1}$.

Task 10 Approfondimento finale. Verificare sperimentalmente che cosa succede al derivatore se si rimuove R_{reg1} sostituendola con un corto: misurare la risposta ad una onda triangolae, che dovrebbe essere una onda quadra; verificare anche le conseguenze sul diagramma di Bode. Vi spiegate quel che osservate? Cercare di spiegare il comportamento osservato andando un minimo al di là delle regole d'oro. In particolare usare le seguenti ipotesi di lavoro:

- continuate a considerare valido il fatto che la corrente in ingresso nell'OpAmp sia trascurabile;
- considerate l'amplificazione finita di (2.2), ossia lasciate cadere la regola d'oro $V_+ = V_-$;
- prendete solo in considerazione l'intervallo di frequenze limitato in basso da $\omega \gg 1/\tau_{\rm PD}$ e in alto da $|A(\omega)| \gg 1$.

CIRCUITO #3

3 Filtro risonante

Considerare il circuito a "doppio feedback" di Fig.3.1. Lo schema realizza un passa-banda un po' particolare che assomiglia più a un circuito risonante *LC* che a una classica cascata di un passa-alto con un passa-basso (che peraltro si può facilmente realizzare molto facilmente con degli OpAmp).

Figura 3.1: Filtro risonante con OpAmp.

Usando le regole d'oro degli OpAmp si può dimostrare che il circuito si comporta in maniera molto simile a un classico RLC, con una frequenza di risonanza f_0 data approssimativamente da

$$\omega_0^2 = (2\pi f_0)^2 \approx \frac{1}{C^2 R R_{\text{in}}},$$
(3.1)

con un guadagno assoluto alla risonanza pari a $|\mathcal{H}(\omega_0)| = R/2R_{\rm in} \approx |G_{\rm max}|$. Una caratteristica che distingue un filtro siffatto da una banale concatenazione di un passa-alto con un passa-basso è che può essere *molto* selettivo. La larghezza di banda a -3 dB, che qui chiamiamo γ , è direttamente connessa con il guadagno di picco e vale $\gamma = 2/CR = \omega_0 \sqrt{2/|G_{\rm max}|}$. Tutto questo è in relazione al Q-factor del risuonatore $Q = \omega_0/\gamma = \sqrt{|G_{max}|/2}$: più la risonanza è forte, più è stretta.

Task 11 Ricavare analiticamente la funzione di risposta $\mathcal{H}(\omega)$ del circuito e verificate se effettivamente si comporta come un *RLC*, quantomeno nel limite di OpAmp ideale. Per non perdersi nei calcoli, suggeriamo di procedere "al contrario", partendo dall'output:

- Imporre un Vout "incognito" e assumere esattamente valide le regole d'oro;
- Calcolare il valore di VC (vedere lo schema), che dovrebbe essere completamente determinato da Vout;
- Procedere calcolando Vin e quindi la reazione che lo lega a Vout.

La funzione di risposta finale deve essere del tutto simile a quello di un circuito risonante RLC.

Task 12 Simulare il circuito con TINA e calcolare la risposta in frequenza. Confrontare quindi il risultato numerico ed analitico in un unico plot di Bode. Non tentare di fare un fit, ma fare piuttosto un confronto: ci aspettiamo una buona coincidenza, eccetto nel limite di frequenze molto alte (e fuori dal nostro range di misura).

Task 13 Costruire il filtro attivo in Fig.3.1 e misurarne il diagramma di Bode. Fare attenzione all'ampiezza dell'eccitazione di ingresso: se la risposta del filtro satura l'analisi sarà completamente falsata.

 $^{^{1}}$ trascurando lo shift di frequenza che abbiamo sempre in presenza di una risonanza con *damping*.

Task 14 Il filtro in figura è sufficientemente selettivo da individuare le singole armoniche di una forma d'onda non sinusoidale. Impostate nel generatore un'onda quadra di ampiezza fissata A (a piacere, ma attenzione alle saturazioni) e frequenza v, che ci aspettiamo abbia uno sviluppo di Fourier

$$V(t) = \sum_{k=1,3,5...} \frac{4A}{\pi k} \sin(\omega_k t)$$
(3.2)

dove $\omega_k = 2\pi \cdot kv$. Documentare come l'ampiezza in uscita dal filtro abbia un chiaro picco quando $2\pi v$ corrisponde alla frequenza di risonanza del filtro ω_0 e poi, invece di scendere monotonamente come la funzione di trasferimento del filtro, ha dei picchi secondari a $2\pi \cdot 3v = \omega_0$, $2\pi \cdot 5v = \omega_0$ e così via.

Task 15 Approfondimento finale. Nel circuito proposto, il Q-factor è vincolato a $|G_{\max}|$, mentre può essere interessante aumentare la selettività senza per questo aumentare l'amplificazione. Considerate di R_{in} con un partitore con due resistenze R_{inA} e R_{inB} . Per Thevenin, questo corrisponde a dividere il voltaggio in ingresso secondo rapporto di divisione del partitore, con una resistenza di uscita data dal parallelo $R_{\text{inA}}R_{\text{inB}}/(R_{\text{inA}} + R_{\text{inB}})$, che ovviamente va a sostituirsi a R_{in} nelle formule già note. Usare questo grado di libertà ulteriore per aumentare Q, cercando di manternere gli stessi ω_0 e G_{max} . Per fare questo siete chiaramente liberi di cambiare i valori di tutti i componenti.

CIRCUITO #4

4 Oscillatore di Wien: come fare un oscillatore sinusoidale con OpAmp

Costruire un buon oscillatore senza distorsioni non è fra le cose più facili da ottenere. I comportamenti a volte beffardi associati con questo tipo di circuiti sono testimoniati dal famoso detto secondo cui "gli amplificatori oscillano e gli oscillatori amplificano". In realtà, finché non puntiamo a frequenze particolarmente elevate², costruire un qualche circuito che oscilla non è particolarmente difficile, ma farne uno sinusoidale e con poche distorsioni è meno ovvio. In questo caso, usare gli OpAmp può essere di grande aiuto.

Figura 4.1: Oscillatore di Wien.

Quello che è illustrato in Figura 4.1 è un *oscillatore di Wien*, che potremmo schematizzare nel seguente modo: (i) abbiamo un amplificatore non-invertente con amplificazione impostata da R_1 e R_2 , con qualche stranezza sul ramo di feedback che conduce a V-; (ii) abbiamo un'ulteriore rete di feedback passiva regolata dai parametri R e C che manda l'uscita di questo amplificatore nel suo ingresso V+. La stranezza consiste in una curiosa struttura data dal parallelo di D_1 , D_2 e della resistenza R_3 , che ha il ruolo di limitare l'amplificazione quando l'ampiezza supera una certa soglia.

Task 16 Considerate il funzionamento del circuito:

- (1) calcolate $\beta(\omega)$ della retroazione usando $\tau = RC$ come parametro libero;
- (2) trascurate i diodi e calcolate il guadagno G dell'amplificatore non-invertente;
- (3) calcolate l'evoluzione temporale trovando quale valore ω soddisfa la condizione di autoconsistenza $\beta G = 1...$ nel farlo ammettete che ω possa essere complessa, ossia che il segnale in questione sia un'oscillazione smorzata o divergente;
- (4) trovate a che condizione (su G) l'oscillazione che cresce nel tempo e calcolate la sua frequenza. Ovviamente, se la soluzione è un'oscillazione divergente, ad un certo punto finirete per saturare e ottenere un segnale non sinusoidale. Considerate come la presenza di D_1 e D_2 può limitare dell'ampiezza e fate le vostre considerazioni su come potreste scegliere le resistenze R_1 , R_2 ed R_3 per evitare la saturazione. Usate pure Tina per orientarvi.

Task 17 Montate ora il circuito senza D_1 e D_2 , esagerando il valore di G rispetto alla soglia calcolata, con frequenza a vostro piacere. Verificate che oscilla acquisendo una forma d'onda che lo dimostri.

Una volta dimostrata l'operazione di base, è arrivato il momento di inserire un meccanismo (rudimentale) di controllo dell'amplificazione, che limiti G prima che l'onda saturi sui rail. I diodi hanno delle caratteristiche tensione

²Ossia nel limite in cui le inevitabili impedenze induttive e capacitive parassite del circuito sono ancora piccole e i componenti attivi sono ancora lontani dai loro limiti in frequenza.

corrente non-lineari in cui la corrente che li attraversa aumenta significativamente al variare della tensione: considerando la questione da un punto di vista "medio" avremo una resistenza di feedback media che dipende dall'ampiezza del segnale. Il nostro obiettivo sarà limitare la crescita dell'oscillazione senza indurre troppe distorsioni; come immaginate la questione sta tutta nello scegliere bene R_1 , R_2 ed R_3 , con tanta pazienza e qualche strategia (e anche un poco di spazio sulla breadboard). Premettiamo che nel caso della singola alimentazione, visto che ci troviamo ad operare su un range di voltaggi davvero molto limitato, è particolarmente difficile trovare un buon compromesso.

Task 18 Scollegate il feedback positivo costituito dalla rete di condensatori e capacitori. Misurate ora la risposta dell'amplificatore in presenza dei diodi D_1 e D_2 , facendo le vostre valutazioni sulla forma che dovrebbe avere per far funzionare in maniera corretta l'oscillatore.

Task 19 Inserite il meccanismo di limitazione nell'amplificazione dei due diodi e cercate di rendere il più possibile sinusoidale l'uscita del circuito. Una volta che avete raggiunto un risultato che giudicate soddisfacente, fate un'analisi quantitativa delle anarmonicità, facendo una trasformata di Fourier del segnale generato dal circuito.

Task 20 Approfondimento finale. Per *G* molto grande, la teoria lineare indica che il circuito non dovrebbe oscillare e dare semplicemente una soluzione divergente... eppure oscilla lo stesso! Analizzare (sperimentalmente e/o su TINA) la dinamica non-lineare del circuito in questo limite, studiando le forme d'onda nei vari punti del circuito e cercando di ricostruire che cosa sta succedendo passo passo. In maniera simile al caso del trigger di Schmitt, una buona strategia consiste nell'assumere che l'output sia saturato, trovare la soluzione e verificare in che condizioni l'ipotesi di partenza è vera. Nel circuito proposto l'oscillazione sarà una sequenza di saturazioni inframezzate da intervalli di risposta lineare.

CIRCUITO #5

5 Somme e moltiplicazioni: fare operazioni matematiche con gli OpAmp

Una delle classiche applicazioni degli OpAmp, da cui deriva anche il loro nome, consiste nel fare semplici operazioni fra segnali analogici, quali sottrazioni, addizioni, oltre alle moltiplicazioni per costanti (amplificatore!). In Fig.5.1 riportiamo uno schema che permette di realizzare una somma o differenza di diversi segnali:

Figura 5.1: Schema circuitale per realizzare la somma (a sinistra) e differenza (a destra) tra segnali.

Task 21 Analizzare teoricamente il comportamento dei circuiti in Figura 5.1 usando le regole d'oro, e dimostrare che possono fornire un output proporzionale alla somma o differenza dei due ingressi W1 e W2. Commentare come vanno scelte le varie resistenze nello schema.

Task 22 Dimostrare sperimentalmente il comportamento del circuito usando i diversi canali del DAC come segnale di ingresso. Forme d'onda, frequenze, ampiezze ecc sono liberi.

Visto che tutti questi circuiti sono lineari, pare strano immaginarsi di ottenere delle moltiplicazioni. In effetti è possibile, ma richiede appunto l'inserimento nello schema di elementi non-lineari. Nella Fig.5.2 sono riportati i così detti amplificatori *logaritmico* ed *esponenziale*.

Figura 5.2: Amplificatore logaritmico (a sinistra) ed esponenziale (a destra).

Task 23 Assumete che la caratteristica tensione corrente del diodo sia $I(V) \approx I_S \exp(V/\eta k_B T)$, ossia trascurate il –1 mancante. Nella formula η è il fattore di idealità e k_B ovviamente la costante di Boltzmann. Verificate sul datasheet di 1N4148 quanto vale η^a . Dimostrate matematicamente che il circuito nel pannello di sinistra in Figura 5.2 "calcola" il logaritmo del segnale in ingresso. Realizzate il circuito dell'amplificatore logaritmico usando $R_1 = 1 \, \mathrm{k}\Omega$ e verificate che funzioni come atteso, verificando anche la validità delle approssimazioni fatte. Suggeriamo di usare una onda a dente di sega.

^aNon date per scontato che ci sia scritto $\eta = \dots$, magari c'è solo un grafico della caratteristica tensione-corrente!

Task 24 Aggiungete in cascata un amplificatore esponenziale, che fa idealmente l'operazione opposta. Mettendo i due amplificatori in cascata con $R_1 = R_2$ dovremmo ottenere in uscita circa *lo stesso segnale* che abbiamo in ingresso. Cominciare usando delle resistenze da $1 \text{ k}\Omega$ ma da questo punto in poi consideratele come parametri liberi. Notate come toccare con il dito uno o l'altro diodo abbia un effetto ben visibile sulla risposta del circuito, mentre questo non accade facendo la stessa cosa con un qualsiasi altro componente nello schema. Come mai?

Task 25 Approfondimento finale. Usare gli schemi proposti per realizzare un circuito che moltiplichi due segnali di ingresso V_x e V_y , sfruttando il fatto che $\log(x) + \log(y) = \log(xy)$ e mettendo in cascata due amplificatori logaritmici, un sommatore e un amplificatore esponenziale. Non riportiamo lo schema esplicito, ma ci aspettiamo che sia chiaro. In questo caso siete liberi di scegliere le varie resistenze a piacere, ma considerate che è necessario soddisfare alcune condizioni, in particolare:

- il voltaggio sul diodo dovrebbe essere sufficiente a rendere trascurabile il –1 nell'equazione di Shockley, ossia vogliamo lavorare a $V \gg k_B T/e\eta$;
- non vogliamo saturazioni, in particolare sull'uscita. Va notato che V_xV_y non ha le dimensioni giuste per essere l'output del circuito, che infatti è piuttosto $V_xV_y/V_{\rm scala}$, con un voltaggio scala $V_{\rm scala}$ che dovrebbe emergere dall'analisi del circuito. Scegliere le resistenze dello schema con saggezza, in maniera che $V_{\rm scala}$ abbia un valore dell'ordine di 1 V e permetta di moltiplicare agevolmente segnali della stessa scala.

Verificare il funzionamento del moltiplicatore usando due forme d'onda dal generatore di funzioni per creare gli input V_x e V_y . Ovviamente il circuito può solo funzionare con voltaggi positivi, quindi è necessario aggiungere un offset adeguato sul generatore.

CIRCUITO #6

6 Circuito rettificatore

I diodi permettono di raddrizzare i segnali, per esempio sfruttando una semplice serie diodo-resistenza, come visibile in Fig.6.1. Questo circuito ha una serie di limitazioni che lo rendono non-ideale che derivano dal fatto che il diodo non è un rettificatore ideale e: (i) ha una soglia; (ii) ha una resistenza differenziale finita. Il circuito ad OpAmp

Figura 6.1: Rettificatore.

riportato in Fig.6.2 risolve sostanzialmente tutte queste limitazioni, generando una risposta rettificata molto più vicina al caso ideale. In entrambe gli schemi assumeremo di usare dei diodi 1N4148 mentre gli altri componenti saranno lasciati liberi.

Figura 6.2: Rettificazione dei segnali con OpAmp.

Task 26 Analizzare il circuito in Figura 6.1 e verificare quali sono i suoi limiti: rettifica esattamente il segnale, ossia lascia passare una semionda, cortocircuitando quella di segno opposto? il circuito è in grado di pilotare qualsiasi carico oppure il suo comportamento dipende dall'aggiunta di una resistenza $R_{\rm L}$ in uscita? Nel risolvere il circuito ricordiamo che stiamo semplicemente alimentando il diodo D secondo la retta di carico determinata dalla sorgente W1 e dalla resistenza R. L'aggiunta di una resistenza $R_{\rm L}$ in uscita non fa altro che cambiare la retta di carico secondo il teorema di Thevenin.

Per evitare eccessive complessità e procedere per gradi, nell'analisi del circuito OpAmp approssimerete il diodo come un componente con una soglia $V_0 \approx 0.6 \,\mathrm{V}$ fissata: sotto soglia assumeremo che il componente sia completamente isolante, sopra soglia assumeremo che abbia una resistenza differenziale finita r.

Task 27 Analizzare teoricamente il comportamento del circuito in Figura 6.2 usando le regole d'oro, e dimostrare se raddrizza il voltaggio che arriva dal generatore W1. Nel farlo si suggerisce di procedere "al contrario", ossia partendo dalla risposta del circuito: ipotizzate di conoscere il voltaggio di uscita dell'OpAmp Vout e usate questo valore per calcolare il corrispondente segnale W1 che potrebbe generare una tale risposta W1. Nel limite degli W10 pomp ideali, che dipendenza ha tutto questo dalla presenza o meno di un carico W10.

Task 28 Realizzare sperimentalmente e su TINA entrambi gli schemi di Fig.6.1 e 6.2 ed evidenziare la differenza di comportamento fra i due, eventuali differenze nel segno del segnale e nella qualità della rettificazione. Usare i diodi 1N4148 e $R=10\,\mathrm{k}\Omega$. Verificare il livello di accuratezza con cui il circuito OpAmp approssima il comportamento di un rettificatore ideale.

Quello riportato è solo uno dei possibili schemi di rettificazione. Per esempio, quello verificato finora può essere detto un "rettificatore a semionda". Un ulteriore circuito molto utile è il "rettificatore a doppia semionda", che sostanzialemnte è in grado di generare il valore assoluto del segnale di ingresso.

Task 29 Cercare in rete e poi realizzare uno schema ad OpAmp che realizzi un raddrizzatore a doppia semionda. Nel farlo, suggeriamo di non smontare i circuiti iniziali dato che saranno utili nel punto finale.

Un aspetto da non trascurare ma che studieremo solo sperimentalmente è la velocità del rettificatore. Questa è limitata dagli effetti capacitivi dei diodi contenuti nello schema. Gli effetti capacitivi dei diodi non sono fra i più banali e hanno una spiccata dipendenza dalla tensione di polarizzazione della giunzione. Tuttavia, nel punto a seguire ignoreremo tale complessità e aggiorneremo il nostro modello semplificato (soglia V_0 e resistenza differnziale r) aggiungendo in parallelo un condensatore C.

Task 30 Approfondimento finale. Studiare che tipo di anomalie emergono nel comportamento del circuito al crescere della frequenza. Per farlo, verificare come evolve la forma d'onda del segnale rettificato e cercare di spiegarlo quanto osservato in base a quel che conoscete sul comportamento degli OpAmp e sui loro limiti (compensazione in frequenza? *slew rate* limitato? offset? altro?). Nel farlo, oltre a formulare delle ipotesi, dato che state facendo degli esperimenti, cercare di verificare la loro validità da un punto di vista sperimentale.