5. Multiple Decision Treatment Regimes: Framework and Fundamentals

- 5.1 Multiple Decision Treatment Regimes
- 5.2 Statistical Framework
- 5.3 The g-Computation Algorithm
- 5.4 Estimation of the Value of a Fixed Regime
- 5.5 Key References

Recall: Acute Leukemia

- At baseline: Information x_1 , history $h_1 = x_1 \in \mathcal{H}_1$
- Decision 1: Set of options $A_1 = \{C_1, C_2\}$; rule 1: $d_1(h_1)$: $\mathcal{H}_1 \to A_1$
- Between Decisions 1 and 2: Collect additional information x₂, including responder status
- Accrued information/history $h_2 = (x_1, \text{ therapy at decision } 1, x_2) \in \mathcal{H}_2$
- Decision 2: Set of options $A_2 = \{M_1, M_2, S_1, S_2\}$; rule 2:

 $\textit{d}_2(\textit{h}_2) \colon \mathcal{H}_2 \to \{M_1, M_2\} \text{ (responder)}, \, \textit{d}_2(\textit{h}_2) \colon \mathcal{H}_2 \to \{S_1, S_2\} \text{ (nonresponder)}$

• Treatment regime: $d = \{d_1(h_1), d_2(h_2)\} = (d_1, d_2)$

K decision treatment regime

In general: *K* decision points/stages

- Baseline information $x_1 \in \mathcal{X}_1$, intermediate information $x_k \in \mathcal{X}_k$ between Decisions k-1 and k, k=2,...,K
- Treatment options A_k at Decision k, elements $a_k \in A_k$, k = 1, ..., K
- Accrued information or history

$$h_1 = x_1 \in \mathcal{H}_1$$

 $h_k = (x_1, a_1, \dots, x_{k-1}, a_{k-1}, x_k) \in \mathcal{H}_k, \quad k = 2, \dots, K,$

- Decision rules $d_1(h_1), d_2(h_2), \ldots, d_K(h_K), d_k : \mathcal{H}_k \to \mathcal{A}_k$
- Treatment regime

$$d = \{d_1(h_1), \ldots, d_K(h_K)\} = (d_1, d_2, \ldots, d_K)$$

Notation

Overbar notation: With

$$x_k \in \mathcal{X}_k, \quad a_k \in \mathcal{A}_k, \quad k = 1, \dots, K$$

it is convenient to define for k = 1, ..., K

$$\overline{x}_k = (x_1, \dots, x_k), \quad \overline{a}_k = (a_1, \dots, a_k)$$

$$\overline{\mathcal{X}}_k = \mathcal{X}_1 \times \cdots \times \mathcal{X}_k, \quad \overline{\mathcal{A}}_k = \mathcal{A}_1 \times \cdots \times \mathcal{A}_k$$

- Conventions: $\overline{a} = \overline{a}_K$, $\overline{x} = \overline{x}_K$, a_0 is null
- $h_1 = x_1$, $h_k = (\overline{x}_k, \overline{a}_{k-1})$, k = 2, ..., K
- $\mathcal{H}_1 = \mathcal{X}_1$, $\mathcal{H}_k = \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1}$, $k = 2, \dots, K$
- $\overline{d}_k = (d_1, \ldots, d_k), \quad k = 1, \ldots, K, \quad d = \overline{d}_K = (d_1, \ldots, d_K)$

Decision points

Decision points depend on the context: For example

- Acute leukemia: Decisions are at milestones in the disease progression (diagnosis, evaluation of response)
- HIV infection: Decisions are according to a schedule (at monthly clinic visits)
- Cardiovascular disease (CVD): Decisions are made upon occurrence of an event (myocardial infarction)

Perspective:

- Timing of decisions can be fixed (HIV) or random (leukemia)
- If any individual would reach all K decision points, the distinction is not important; we assume this going forward
- If different individuals can experience different numbers of decisions (CVD), the number of decisions reached is random, and a more specialized framework is required
- The latter also is the case if the outcome is a time to an event

Example: K = 2, acute leukemia

Decision 1: $A_1 = \{C_1, C_2\}, x_1 = h_1$ includes age (years), baseline white blood cell count WBC₁ (×10³/ μ I)

Example rule:

$$d_1(h_1) = C_2 I(C) + C_1 I(C^c), \quad C = \{age < 50, WBC_1 < 10\}$$

Decision 2: $A_2 = \{M_1, M_2, S_1, S_2\}$

- x₂ and thus h₂ includes Decision 2 WBC₂; ECOG, EVENT (≥ grade 3 adverse event from induction therapy), RESP
- Example rule:

$$\begin{aligned} d_2(h_2) &= I(\mathsf{RESP} = 1)\{\mathsf{M_1}\,\mathsf{I}(\mathcal{M}) + \mathsf{M_2}\,\mathsf{I}(\mathcal{M}^c)\} \\ &+ I(\mathsf{RESP} = 0)\{\mathsf{S_1}\,\mathsf{I}(\mathcal{S}) + \mathsf{S_2}\,\mathsf{I}(\mathcal{S}^c)\} \end{aligned} \tag{5.1} \\ \mathcal{M} &= \{\mathsf{WBC_1} < \mathsf{11.2}, \mathsf{WBC_2} < \mathsf{10.5}, \mathsf{EVENT} = 0, \mathsf{ECOG} \leq 2\} \\ \mathcal{S} &= \{\mathsf{age} > \mathsf{60}, \mathsf{WBC_2} < \mathsf{11.0}, \mathsf{ECOG} \geq 2\} \end{aligned}$$

Recursive representation of rules

Fact: If the K rules in $d \in \mathcal{D}$ are *followed* by an individual, the options selected at each decision depend only on the evolving x_1, \ldots, x_K

- Decision 1: Option selected is $d_1(h_1) = d_1(x_1)$
- Between Decisions 1 and 2: x₂
- Decision 2: Rule $d_2(h_2) = d_2(\overline{x}_2, a_1)$, option selected depends on the option selected at Decision 1

$$d_2\{\overline{x}_2,d_1(x_1)\}$$

- Between Decisions 2 and 3: x₃
- Decision 3: Rule $d_3(h_3) = d_3(\overline{x}_3, \overline{a}_2) = d_3(\overline{x}_3, a_1, a_2)$, option selected depends on those at Decisions 1 and 2

$$d_3[\overline{x}_3, d_1(x_1), d_2\{\overline{x}_2, d_1(x_1)\}]$$

And so on...

Recursive representation of rules

Concise representation: For k = 2, ..., K

$$\overline{d}_{2}(\overline{x}_{2}) = [d_{1}(x_{1}), d_{2}\{\overline{x}_{2}, d_{1}(x_{1})\}]
\overline{d}_{3}(\overline{x}_{3}) = [d_{1}(x_{1}), d_{2}\{\overline{x}_{2}, d_{1}(x_{1})\}, d_{3}\{\overline{x}_{3}, \overline{d}_{2}(\overline{x}_{2})\}]
\vdots
\overline{d}_{K}(\overline{x}_{K}) = [d_{1}(x_{1}), d_{2}\{\overline{x}_{2}, d_{1}(x_{1})\}, \dots, d_{K}\{\overline{x}_{K}, \overline{d}_{K-1}(\overline{x}_{K-1})\}]$$
(5.2)

- $\overline{d}_k(\overline{x}_k)$ comprises the options selected through Decision k
- $\overline{d}(\overline{x}) = \overline{d}_K(\overline{x}_K)$
- This representation will be useful later

Redundancy

From the perspective of an individual following the K rules in d:

- The definition of rules $d_k(h_k) = d_k(\overline{x}_k, \overline{a}_{k-1})$ is redundant
- a_1 is determined by x_1 , a_2 is determined by $\overline{x}_2 = (x_1, x_2), \dots$
- But definition of d_k as a function of $h_k = (\overline{x}_k, \overline{a}_{k-1})$ is useful for characterizing and estimating an optimal regime later

Illustration of redundancy:
$$K = 2$$
, $A_1 = \{0, 1\}$, $A_2 = \{0, 1\}$, $\mathcal{X}_1 = \{0, 1\}$, $\mathcal{X}_2 = \{0, 1\}$ (x_1 and x_2 are binary)

- $d = (d_1, d_2) \in \mathcal{D}, d_1 : \mathcal{H}_1 = \mathcal{X}_1 \rightarrow \mathcal{A}_1, d_2 : \mathcal{H}_2 = \overline{\mathcal{X}}_2 \times \mathcal{A}_1 \rightarrow \mathcal{A}_2$
- For each value of $h_1 = x_1$, d_1 must return a value in A_1 , e.g.,

$$d_1(x_1=0)=0, \quad d_1(x_1=1)=1$$

Redundancy

Illustration of redundancy, continued:

• For each of the $2^3 = 8$ possible values of $h_2 = (x_1, x_2, a_1)$, d_2 must return a value in A_2 , e.g.,

$$d_2(x_1 = 0, x_2 = 0, a_1 = 0) = 0$$

$$d_2(x_1 = 0, x_2 = 0, a_1 = 1) = 1*$$

$$d_2(x_1 = 0, x_2 = 1, a_1 = 0) = 1$$

$$d_2(x_1 = 0, x_2 = 1, a_1 = 1) = 1*$$

$$d_2(x_1 = 1, x_2 = 0, a_1 = 0) = 0*$$

$$d_2(x_1 = 1, x_2 = 0, a_1 = 1) = 1$$

$$d_2(x_1 = 1, x_2 = 1, a_1 = 0) = 0*$$

$$d_2(x_1 = 1, x_2 = 1, a_1 = 0) = 0*$$

$$d_2(x_1 = 1, x_2 = 1, a_1 = 1) = 0$$

 Configurations with * could never occur if an individual followed regime d

5. Multiple Decision Treatment Regimes: Framework and Fundamentals

- 5.1 Multiple Decision Treatment Regimes
- 5.2 Statistical Framework
- 5.3 The g-Computation Algorithm
- 5.4 Estimation of the Value of a Fixed Regime
- 5.5 Key References

Outcome of interest

Determination of outcome:

- Can be ascertained after Decision K, e.g., for HIV infected patients, outcome = viral load (viral RNA copies/mL) measured at a final clinic visit after Decision K
- Can be defined using intervening information, e.g., for HIV infected patients with CD4 count (cells/mm³) measured at each clinic visit (Decisions $k=2,\ldots,K$) and at a final clinic visit after Decision K

outcome = total # CD4 counts > 200 cells/mm³

Convention: As for single decision case, assume larger outcomes are preferred

E.g., because smaller viral load is better, take

outcome = -viral load

Potential outcomes for *K* decisions

Intuitively: For a randomly chosen individual with history X_1

- If he/she were to receive a₁ ∈ A₁ at Decision 1, the evolution of his/her disease/disorder process after Decision 1 would be be influenced by a₁
- Suggests: $X_2^*(a_1)$ = intervening information that would arise between Decisions 1 and 2 after receiving $a_1 \in A_1$ at Decision 1
- If he/she then were to receive $a_2 \in \mathcal{A}_2$ at Decision 2, the evolution of his/her disease/disorder process after Decision 2 would be influenced by a_1 followed by a_2
- Suggests: X₃^{*}(\$\overline{a}_2\$) = intervening information that would arise between Decisions 2 and 3 after receiving a₁ ∈ A₁ at Decision 1 and a₂ at Decision 2
- And so on...

Potential outcomes for *K* decisions

Ultimately: If he/she were to receive options $\overline{a} = \overline{a}_K = (a_1, \dots, a_K)$ at Decisions $1, \dots, K$

$$Y^*(\overline{a}_K) = Y^*(\overline{a}) =$$
 outcome that would be achieved

Summarizing: Potential information at each decision and potential outcome if an individual *were to receive* $\overline{a} = (a_1, \dots, a_K)$

$$\{X_1,X_2^*(a_1),X_3^*(\overline{a}_2),\ldots,X_K^*(\overline{a}_{K-1}),Y^*(\overline{a})\}$$

- X₁ may or may not be included
- Set of all possible potential outcomes for all $\overline{a} \in \overline{\mathcal{A}}$

$$W^* = \left\{ X_2^*(a_1), X_3^*(\overline{a}_2), \dots, X_K^*(\overline{a}_{K-1}), Y^*(\overline{a}), \right.$$

$$\text{for } a_1 \in \mathcal{A}_1, \overline{a}_2 \in \overline{\mathcal{A}}_2, \dots, \overline{a}_{K-1} \in \overline{\mathcal{A}}_{K-1}, \overline{a} \in \overline{\mathcal{A}} \right\}$$
 (5.3)

Example: Acute leukemia, K = 2

$$A_1 = \{C_1, C_2\}, A_2 = \{M_1, M_2, S_1, S_2\}$$

- At Decision 1, both options are feasible for all patients
- At Decision 2, only maintenance options are feasible for patients who respond, and only salvage options are feasible for patients who do not respond
- Is the case <u>almost always</u> in multiple decision problems at decision points other than Decision 1
- Of course is also possible at Decision 1

Formal specification: For any history $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \mathcal{H}_k$ at Decision k, k = 1, ..., K

• The set of feasible treatment options at Decision k is

$$\Psi_k(h_k) = \Psi_k(\overline{x}_k, \overline{a}_{k-1}) \subseteq \mathcal{A}_k, \quad k = 1, \dots, K$$

$$\Psi_1(h_1) = \Psi_1(x_1) \subseteq \mathcal{A}_1 \quad (a_0 \text{ null})$$
(5.4)

- Ψ_k is a function mapping \mathcal{H}_k to the set of all possible subsets of \mathcal{A}_k
- $\Psi_k(h_k)$ can be a strict subset of A_k or all of A_k , depending on h_k
- Collectively: $\Psi = (\Psi_1, \dots, \Psi_K)$

Example, revisited: Acute leukemia, K = 2

$$\mathcal{A}_1 = \{C_1, C_2\}, \ \mathcal{A}_2 = \ \{M_1, \, M_2, \, S_1, \, S_2\}$$

 Suppose C₁ and C₂ are feasible for all individuals regardless of h₁

$$\Psi_1(h_1) = \mathcal{A}_1$$
 for all h_1

If h₂ indicates response

$$\Psi_2(h_2) = \{M_1, M_2\} \subset \mathcal{A}_2$$
 for all such h_2

If h₂ indicates nonresponse

$$\Psi_2(h_2) = \{S_1, S_2\} \subset A_2$$
 for all such h_2

 More complex specifications of feasible sets that take account of additional information are of course possible

Fancier example: Acute leukemia, K = 2

$$\mathcal{A}_1 = \{C_1, C_2\}, \ \mathcal{A}_2 = \ \{M_1, \, M_2, \, S_1, \, S_2\}$$

• If C₁ is contraindicated for patients with renal impairment

$$\Psi_1(h_1) = \{C_2\}$$
 if h_1 indicates renal impairment $= \{C_1, C_2\} = A_1$ if h_1 does not

 If S₁ increases risk of adverse events in nonresponders with low WBC₂

$$\Psi_2(h_2) = \{S_2\}$$
 if h_2 indicates nonresponse, WBC₂ $\leq w$
= $\{S_1, S_2\}$ if h_2 indicates nonresponse, WBC₂ $> w$

for some threshold $w \times (10^3/\mu I)$

Ideally:

- Specification of the feasible sets is dictated by scientific considerations
- Disease/disorder context, available treatment options, patient population, etc
- Specification of $\Psi_k(h_k)$, k = 1, ..., K, should incorporate only information in h_k that is critical to treatment selection

Regimes and feasible sets: Given specified feasible sets Ψ

- A regime $d = (d_1, \dots, d_K)$ whose rules select treatment options for history h_K from those in $\Psi_K(h_K)$ is defined in terms of Ψ
- Thus, regimes are Ψ-specific, and the relevant class of all possible regimes D depends on Ψ (suppressed in the notation)

In practice: At Decision k, there is a small number ℓ_k of subsets $A_{k,l} \subseteq A_k$, $l = 1, \dots, \ell_k$ that are feasible sets for all h_k

• E.g, for acute leukemia, $\ell_2 = 2$

$$A_{2,1} = \{M_1, M_2\}, \quad A_{2,2} = \{S_1, S_2\}$$

• If r_2 is the component of h_2 indicating response

$$\Psi_1(h_2) = A_{2,1}$$
 for h_2 with $r_2 = 1$
= $A_{2,2}$ for h_2 with $r_2 = 0$

Decision rules: Different rule for each subset

E.g., for acute leukemia, as in (5.1)

$$d_2(h_2) = I(r_2 = 1) d_{2,1}(h_2) + I(r_2 = 0) d_{2,2}(h_2)$$

 $d_{2,1}(h_2)$ is a rule selecting maintenance therapy for responders $d_{2,2}(h_2)$ is a rule selecting salvage therapy for nonresponders

In general: With ℓ_k distinct subsets $A_{k,l} \subseteq A_k$, $l = 1, \dots, \ell_k$, as feasible sets

- Define $s_k(h_k) = 1, \dots, \ell_k$ according to which of these subsets $\Psi_k(h_k)$ corresponds for given h_k
- $d_{k,l}(h_k)$ is the rule corresponding to the *l*th subset $A_{k,l}$
- Decision rule at Decision k has form

$$d_k(h_k) = \sum_{l=1}^{\ell_k} I\{s_k(h_k) = l\} d_{k,l}(h_k)$$
 (5.5)

• Henceforth, it is understood that $d_k(h_k)$ may be expressed as in (5.5) where appropriate

Note: For any Ψ -specific regime $d = (d_1, \ldots, d_K)$

• At Decision k, $d_k(h_k) = d_k(\overline{x}_k, \overline{a}_{k-1})$ returns only options in $\Psi_k(h_k) = \Psi_k(\overline{x}_k, \overline{a}_{k-1})$, i.e.,

$$d_k(h_k) = d_k(\overline{x}_k, \overline{a}_{k-1}) \in \Psi_k(h_k) \subseteq A_k$$

- Thus, d_k need map only a subset of $\mathcal{H}_k = \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1}$ to \mathcal{A}_k
- We discuss this more shortly

Potential outcomes for a fixed regime $d \in \mathcal{D}$

Intuitively: If a randomly chosen individual with history X_1 were to receive treatment options by following the rules in d

- Decision 1: Treatment determined by d₁
- X₂^{*}(d₁) = intervening information that would arise between Decisions 1 and 2
- Decision 2: Treatment determined by d₂
- $X_3^*(\overline{d}_2)$ = intervening information *that would arise* between Decisions 2 and 3 :
- $X_k^*(\overline{d}_{k-1})$ = intervening information *that would arise* between Decisions k-1 and $k, k=2, \ldots, K$
- Y*(d) = Y*(\overline{d}_K) = outcome that would be achieved if all rules in d were followed

Potential outcomes under regime d:

$$\{X_1, X_2^*(d_1), X_3^*(\overline{d}_2), \dots, X_K^*(\overline{d}_{K-1}), Y^*(d)\}$$
 (5.6)

Potential outcomes for a fixed regime $d \in \mathcal{D}$

Formally: These potential outcomes are functions of W^* in (5.3)

Define

$$\overline{X}_{k}^{*}(\overline{a}_{k-1}) = \{X_{1}, X_{2}^{*}(a_{1}), X_{3}^{*}(\overline{a}_{2}), \dots, X_{k}^{*}(\overline{a}_{k-1})\}, \quad k = 2, \dots, K$$

Then

$$X_2^*(d_1) = \sum_{1 \leq 1} X_2^*(a_1) I\{d_1(X_1) = a_1\}$$

$$X_{k}^{*}(\overline{d}_{k-1}) = \sum_{\overline{a}_{k-1} \in \overline{\mathcal{A}}_{k-1}} X_{k}^{*}(\overline{a}_{k-1}) \prod_{j=1}^{k-1} I\left[d_{j}\{\overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_{j}\right]$$
(5.7)

$$k=3,\ldots,K$$

$$Y^{\star}(d) = \sum_{\overline{a} \in \overline{A}} Y^{\star}(\overline{a}) \prod_{j=1}^{K} \mathsf{I}\left[d_{j}\{\overline{X}_{j}^{\star}(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_{j}\right]$$

Also define

$$\overline{X}_{k}^{*}(\overline{d}_{k-1}) = \{X_{1}, X_{2}^{*}(d_{1}), X_{3}^{*}(\overline{d}_{2}), \dots, X_{k}^{*}(\overline{d}_{k-1})\}, \quad k = 2, \dots, K$$

Value of a *K*-decision regime

With these definitions: The *value* of $d \in \mathcal{D}$ is

$$\mathcal{V}(d) = E\{Y^*(d)\}$$

• And an optimal regime $d^{opt} \in \mathcal{D}$ satisfies

$$E\{Y^{*}(d^{opt})\} \ge E\{Y^{*}(d)\} \text{ for all } d \in \mathcal{D}$$
 (5.8)

equivalently

$$d^{opt} = \arg\max_{d \in \mathcal{D}} E\{Y^*(d)\} = \arg\max_{d \in \mathcal{D}} \mathcal{V}(d)$$

Optimal treatment options vs. optimal decisions

For a randomly chosen individual with history H_1 :

The optimal sequence of treatment options for this individual is

$$\underset{\overline{a}\in\overline{\mathcal{A}}}{\arg\max}\ Y^*(\overline{a})$$

which of course is not knowable in practice

- All that is known at baseline is H_1 , and $d_1^{opt}, \ldots, d_K^{opt}$ select the (feasible) options corresponding to the largest expected outcome
- From the definition of $Y^*(d)$ in (5.7),

$$Y^{^{\star}}(\textit{d}) \leq \max_{\overline{a} \in \overline{\mathcal{A}}} Y^{^{\star}}(\overline{a}) \text{ for all } \textit{d} \in \mathcal{D} \implies Y^{^{\star}}(\textit{d}^{\textit{opt}}) \leq \max_{\overline{a} \in \overline{\mathcal{A}}} Y^{^{\star}}(\overline{a})$$

so an optimal regime might not select optimal options for this individual at each decision

 Rather, d^{opt} leads to the optimal sequence of decisions that can be made based on the available information on this individual

Ideally: For $i = 1, \ldots, n$, i.i.d.

$$(X_{1i},A_{1i},X_{2i},A_{2i},\ldots,X_{Ki},A_{Ki},Y_i)=(\overline{X}_{Ki},\overline{A}_{Ki},Y_i)=(\overline{X}_i,\overline{A}_i,Y_i) \quad (5.9)$$

- X_1 = baseline information at Decision 1, taking values in \mathcal{X}_1
- A_k = treatment option actually received at Decision k,
 k = 1,..., K, taking values in A_k
- X_k = intervening information between Decisions k − 1 and k, k = 2,..., K, taking values in X_k
- $\overline{X}_k = (X_1, \dots, X_k), \overline{X} = \overline{X}_K = (X_1, \dots, X_K),$ and $\overline{A}_k = (A_1, \dots, A_k), \overline{A} = \overline{A}_K = (A_1, \dots, A_K)$
- History $H_1 = X_1$, $H_k = (X_1, A_1, \dots, X_{k-1}, A_{k-1}, X_k) = (\overline{X}_k, \overline{A}_{k-1})$, $k = 2, \dots, K$
- Y = observed outcome (after Decision K or function of H_K)

Data sources:

- Longitudinal observational study: Retrospective from an existing database, completed conventional clinical trial with followup, prospective cohort study
- Randomized study: Prospective clinical trial conducted specifically for this purpose (SMART)

Longitudinal observational study: Challenges

- Time-dependent confounding: A subject's history at each decision point is both determined by past treatments and used to select future treatments
- Characteristics associated with both treatment selection and future characteristics/ultimate outcome may not be captured in the data

SMART: Randomization at •s

Do we really need data like these? Can't we just "piece together" an optimal regime using single decision methods on data from separate studies (with different subjects in each)?

- E.g., acute leukemia: Estimate d_1^{opt} from a study comparing $\{C_1,C_2\}$ and d_2^{opt} from separate studies comparing $\{M_1,M_2\}$ and $\{S_1,S_2\}$
- Delayed effects: The induction therapy with the highest proportion of responders might have other effects that render subsequent treatments less effective in regard to survival
- Require data from a study involving the same subjects over the entire sequence of decisions

Statistical problem

Ultimate goal: Based on the data (5.9), estimate $d^{opt} \in \mathcal{D}$ satisfying (5.8), i.e.,

$$E\{Y^*(d^{opt})\} \ge E\{Y^*(d)\}$$
 for all $d \in \mathcal{D}$

Challenge: d^{opt} is defined in terms of the potential outcomes (5.6)

- Must be able to express this definition in terms of the observed data (5.9)
- In particular, for any $d \in \mathcal{D}$, must be able to *identify* the distribution of

$$\{X_1,X_2^{\star}(d_1),X_3^{\star}(\overline{d}_2),\ldots,X_K^{\star}(\overline{d}_{K-1}),Y^{\star}(d)\}$$

which depends on that of (X_1, W^*) , from the distribution of

$$(X_1, A_1, X_2, A_2, \ldots, X_K, A_K, Y)$$

• Possible under the following assumptions generalizing those in (3.4), (3.5), and (3.6)

SUTVA (consistency):

$$X_{k} = X_{k}^{*}(\overline{A}_{k-1}) = \sum_{\overline{a}_{k-1} \in \overline{A}_{k-1}} X_{k}^{*}(\overline{a}_{k-1}) I(\overline{A}_{k-1} = \overline{a}_{k-1}), \quad k = 2, \dots, K$$

$$Y = Y^{*}(\overline{A}) = \sum_{\overline{a}_{k-1}} Y^{*}(\overline{a}) I(\overline{A} = \overline{a})$$
(5.10)

- Observed intervening information and the final observed outcome are those that would potentially be seen under the treatments actually received at each decision point
- Are the same (consistent) regardless of how the treatments are administered at each decision point

Sequential randomization assumption (SRA): Robins (1986)

$$W^* \perp A_k | \overline{X}_k, \overline{A}_{k-1}, \quad k = 1, \dots, K, \text{ where } A_0 \text{ is null}$$
 (5.11)

equivalently

$$W^* \perp A_k | H_k, \quad k = 1, \ldots, K$$

- Unverifiable from the observed data
- Unlikely to hold for data from a longitudinal observational study not carried out with estimation of treatment regimes in mind
- But (5.11) holds by design in a SMART

Positivity assumption: With feasible sets of treatment options at each decision point, more complicated

- *Intuitively:* To identify the distribution of the potential outcomes (5.6) from that of the observed data (5.9), all treatment options in the feasible sets $\Psi_k(h_k) = \Psi_k(\overline{x}_k, \overline{a}_{k-1})$ must be *represented* in the observed data, $k = 1, \dots, K$
- That is, there must be individuals in the data who received each of the options in $\Psi_k(h_k)$, k = 1, ..., K
- E.g, acute leukemia: Decision 2: there must be responders who received each of M₁ and M₂ and nonresponders who received each of S₁ and S₂

Built up recursively...

Decision 1: Set of all possible baseline info $h_1 = x_1$

$$\Gamma_1 = \{x_1 \in \mathcal{X}_1 \text{ satisfying } P(X_1 = x_1) > 0\} \subseteq \mathcal{X}_1 = \mathcal{H}_1$$

Set of all possible histories and associated options in $\Psi_1(h_1)$

$$\Lambda_1 = \{(x_1, a_1) \text{ such that } x_1 = h_1 \in \Gamma_1, \ a_1 \in \Psi_1(h_1)\}$$

All options in Λ_1 must be represented in the data

$$P(A_1 = a_1 | H_1 = h_1) > 0 \text{ for all } (h_1, a_1) \in \Lambda_1$$
 (5.12)

First component of the positivity assumption

Decision 2: All possible histories h_2 consistent with following a Ψ -specific regime at Decision 1

$$\begin{split} \Gamma_2 &= \left[\left(\overline{x}_2, a_1 \right) \in \overline{\mathcal{X}}_2 \times \mathcal{A}_1 \text{ satisfying } (x_1, a_1) \in \Lambda_1 \text{ and } \right. \\ &\left. P\{X_2^{^{\star}}(a_1) = x_2 \mid X_1 = x_1\} > 0 \right] \subseteq \mathcal{H}_2 \end{split}$$

Under SUTVA (5.10) and SRA (5.11), equivalently

$$\Gamma_2 = \left[(\overline{x}_2, a_1) \in \overline{\mathcal{X}}_2 \times \mathcal{A}_1 \text{ satisfying } (x_1, a_1) \in \Lambda_1 \text{ and}
ight.$$

$$P(X_2 = x_2 \mid X_1 = x_1, A_1 = a_1) > 0 \right]$$

Set of all possible histories h_2 and associated options in $\Psi_2(h_2)$

$$\Lambda_2 = \{ (\overline{x}_2, \overline{a}_2) \text{ such that } (\overline{x}_2, a_1) = h_2 \in \Gamma_2, \ a_2 \in \Psi_2(h_2) \}$$

Decision 2, continued: All options in Λ_2 must be represented in the data

$$P(A_2 = a_2 \mid H_2 = h_2) > 0$$
 for all $(h_2, a_2) \in \Lambda_2$

Second component of the positivity assumption

:

Decision k: All histories h_k consistent with a Ψ-specific regime through Decision k-1

$$\begin{split} \Gamma_k &= \left[(\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1} \text{ and } \right. \\ &\left. P\{X_k^{\star}(\overline{a}_{k-1}) = x_k \mid \overline{X}_{k-1}^{\star}(\overline{a}_{k-2}) = \overline{x}_{k-1}\} > 0 \right] \subseteq \mathcal{H}_k \ \, \text{(5.13)} \\ &= \left[(\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1} \text{ and } \right. \\ &\left. P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{\mathcal{A}}_{k-1} = \overline{a}_{k-1}) > 0 \right] \end{aligned} \tag{5.14}$$

Decision k, **continued**: Set of all possible histories h_k and associated options in $\Psi_k(h_k)$

$$\Lambda_k = \{(\overline{x}_k, \overline{a}_k) \text{ such that } (\overline{x}_k, \overline{a}_{k-1}) = h_k \in \Gamma_k, \ a_k \in \Psi_k(h_k)\}$$

All options in $\Psi_k(h_k)$ must be represented in the data

$$P(A_k = a_k \mid H_k = h_k) > 0$$
 for all $(h_k, a_k) \in \Lambda_k$

kth component of the positivity assumption

:

Positivity assumption: Summarizing

$$P(A_k = a_k | H_k = h_k) = P(A_k = a_k | \overline{X}_k = \overline{x}_k, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$$
for $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$ and $a_k \in \Psi_k(h_k) = \Psi_k(\overline{x}_k, \overline{a}_{k-1}),$

$$k = 1, \dots, K$$
(5.15)

- The positivity assumption (5.15) holds in a SMART by design if there are subjects with history h_k randomized to all options in Ψ_k(h_k) at each Decision k = 1,..., K
- No guarantee that for a given Ψ (5.15) holds for data from a longitudinal observational study (more shortly)

Equivalence of (5.13) and (5.14): Assuming SUTVA, SRA, need to show for any $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$ in (5.13)

$$P(X_{k} = x_{k} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1})$$

$$= P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} \mid \overline{X}_{k-1}^{*}(\overline{a}_{k-2}) = \overline{x}_{k-1}\}$$
 (5.16)

- Proof is by induction (k = 1, 2 are immediate)
- Repeated use of the following lemma

Lemma. Let A and H be random variables, assume $W^* \perp A | H$, and consider two functions $\mathfrak{f}_1(W^*)$ and $\mathfrak{f}_2(W^*)$ of W^* . If the event $\{\mathfrak{f}_2(W^*) = f_2, H = h, A = a\}$ has positive probability, then

$$P\{f_1(W^*) = f_1 | f_2(W^*) = f_2, H = h, A = a\}$$
$$= P\{f_1(W^*) = f_1 | f_2(W^*) = f_2, H = h\}$$

Sketch of induction proof:

• We need to show for any $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$ in (5.13), $k = 1, \dots, K$

$$P(X_{k} = x_{k} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1})$$

$$= P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} \mid \overline{X}_{k-1}^{*}(\overline{a}_{k-2}) = \overline{x}_{k-1}\}$$
 (5.16)

- (5.16) is trivial for k = 1
- k = 2: (5.12) implies $P(X_1 = x_1, A_1 = a_1) > 0$ for $(x_1, a_1) \in \Lambda_1$, so $P(X_2 = x_2 \mid X_1 = x_1, A_1 = a_1)$ is well defined. Then by SUTVA and SRA, (5.16) holds

$$P(X_2 = x_2 \mid X_1 = x_1, A_1 = a_1) = P\{X_2^*(a_1) = x_2 \mid X_1 = x_1, A_1 = a_1\}$$

= $P\{X_2^*(a_1) = x_2 \mid X_1 = x_1\}$

• For general k: Need to show $P(\overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$, so that $P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1})$ is well defined, and then show (5.16)

• Assume this holds for k-1 and then show it holds for k. Thus, for $h_{k-1}=(\overline{x}_{k-1},\overline{a}_{k-2})\in \Gamma_{k-1}, P(\overline{X}_{k-2}=\overline{x}_{k-2},\overline{A}_{k-2}=\overline{a}_{k-2})>0$ and

$$P(X_{k-1} = x_{k-1} \mid \overline{X}_{k-2} = \overline{x}_{k-2}, \overline{A}_{k-2} = \overline{a}_{k-2})$$

$$= P\{X_{k-1}^*(\overline{a}_{k-2}) = x_{k-1} \mid \overline{X}_{k-2}^*(\overline{a}_{k-3}) = \overline{x}_{k-2}\} > 0$$

- It follows that $P(\overline{X}_{k-1} = \overline{X}_{k-1}, \overline{A}_{k-2} = \overline{a}_{k-2}) > 0$
- Because $h_{k-1}=(\overline{x}_{k-1},\overline{a}_{k-2})\in\Gamma_{k-1}$ and $a_{k-1}\in\Psi_{k-1}(\overline{x}_{k-1},\overline{a}_{k-2}),$

$$P(A_{k-1} = a_{k-1} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-2} = \overline{a}_{k-2}) > 0$$

- It then follows that $P(\overline{X}_{k-1} = \overline{X}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$ as required
- Now show (5.16) using SUTVA, SRA, and the Lemma

By repeated use of SUTVA and SRA

$$P(X_{k} = x_{k} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1})$$

$$= P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} \mid \overline{X}_{k-2} = \overline{x}_{k-2}, X_{k-1}^{*}(\overline{a}_{k-2}) = x_{k-1}$$

$$\overline{A}_{k-3} = \overline{a}_{k-3}, A_{k-2} = a_{k-2}\},$$
 (5.17)

• By the Lemma with $f_1(W^*) = X_k^*(\overline{a}_{k-1}), A = A_{k-2}, H = (\overline{X}_{k-2}, \overline{A}_{k-3}),$ and $f_2(W^*) = X_{k-1}^*(\overline{a}_{k-2}), (5.17) =$

$$P\{X_{k}^{*}(\overline{a}_{k-1}) = X_{k-1}(a_{k-2}), (5.17) = P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} | \overline{X}_{k-2} = \overline{x}_{k-2}, X_{k-1}^{*}(\overline{a}_{k-2}) = x_{k-1}, \overline{A}_{k-3} = \overline{a}_{k-3}\}$$

$$= P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} | \overline{X}_{k-3} = \overline{x}_{k-3}, X_{k-2}^{*}(\overline{a}_{k-3}) = x_{k-2}$$

$$X_{k-1}^{*}(\overline{a}_{k-2}) = x_{k-1}, \overline{A}_{k-4} = \overline{a}_{k-4}, A_{k-3} = a_{k-3}\}$$
 (5.18)

• By the Lemma with $f_1(W^*) = X_k^*(\overline{a}_{k-1}), A = A_{k-3}, H = (\overline{X}_{k-3}, \overline{A}_{k-4}),$ (5.18) =

$$P\{X_{k}^{*}(\overline{a}_{k-1}) = x_{k} | \overline{X}_{k-3} = \overline{x}_{k-3}, X_{k-2}^{*}(\overline{a}_{k-3}) = x_{k-2}, X_{k-1}^{*}(\overline{a}_{k-2}) = x_{k-1}, \overline{A}_{k-4} = \overline{a}_{k-4}\}$$

Continuing to apply the Lemma and SUTVA leads to (5.16),

$$P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1})$$

$$= P\{X_k^*(\overline{a}_{k-1}) = x_k \mid \overline{X}_{k-1}^*(\overline{a}_{k-2}) = \overline{x}_{k-1}\}$$

- Because $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$, the RHS is > 0
- Thus, we have shown that (5.16) holds for k and

$$P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$$

for
$$h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$$

• Because this holds for k = 1, 2, the result follows by induction

More precise definition of a regime: A Ψ -specific regime $d = (d_1, \dots, d_K)$ satisfies

- Each rule d_k, k = 1,..., K, is a mapping from Γ_k ⊆ H_k into A_k for which d_k(h_k) ∈ Ψ_k(h_k) for every h_k ∈ Γ_k
- The class \mathcal{D} of Ψ -specific regimes is the set of all such d

Observational data: For given Ψ, no guarantee that all options in $\Psi_k(h_k), k=1,\ldots,K$, are represented in the data

Define for k = 1....K

• Define for
$$k=1,\ldots,K$$

$$\Gamma_k^{max} = \left[(\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1}^{max} \right.$$

$$\text{and } P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{\mathcal{A}}_{k-1} = \overline{a}_{k-1}) > 0 \right]$$

$$\Psi_k^{max}(h_k) = \left\{ a_k \in \mathcal{A}_k \text{ satisfying } P(A_k = a_k | H_k = h_k) > 0 \right.$$

$$\text{for all } h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k^{max} \right\}$$

$$\Lambda_k^{max} = \left\{ (\overline{x}_k, \overline{a}_k) \text{ such that } (\overline{x}_k, \overline{a}_{k-1}) = h_k \in \Gamma_k^{max}, \ a_k \in \Psi_k^{max}(h_k) \right\}$$

- The class of regimes based on $\Psi^{max} = (\Psi_1^{max}, \dots, \Psi_{\nu}^{max})$ is the largest that can be considered
- So must have $\Psi_k(h_k) \subseteq \Psi_k^{max}(h_k), k = 1, ..., K$ for all $h_k \in \Gamma_k \subseteq \Gamma_k^{max}$

5. Multiple Decision Treatment Regimes: Framework and Fundamentals

- 5.1 Multiple Decision Treatment Regimes
- 5.2 Statistical Framework
- 5.3 The g-Computation Algorithm
- 5.4 Estimation of the Value of a Fixed Regime
- 5.5 Key References

Identifiability result

Goal, again: For any Ψ -specific regime $d \in \mathcal{D}$, demonstrate that we can identify the distribution of

$$\{X_1,X_2^{^\star}(\textit{d}_1),X_3^{^\star}(\overline{\textit{d}}_2),\ldots,X_K^{^\star}(\overline{\textit{d}}_{K-1}),\textit{Y}^{^\star}(\textit{d})\}$$

which depends on that of (X_1, W^*) , from the distribution of

$$(X_1, A_1, X_2, A_2, \ldots, X_K, A_K, Y)$$

Recall: Recursive representation $\overline{d}_k(\overline{x}_k)$ of the treatment options selected by d through Decision k in (5.2) if an individual follows d, $k = 2, \ldots, K$

$$\overline{d}_k(\overline{x}_k) = [d_1(x_1), d_2(\overline{x}_2, d_1(x_1)), \dots, d_k(\overline{x}_k, \overline{d}_{k-1}(\overline{x}_{k-1}))]$$

Main result: Under SUTVA (5.10), SRA (5.11), and positivity assumption (5.15), the joint density of the potential outcomes $\{X_1, X_2^*(d_1), X_3^*(\overline{d}_2), \dots, X_K^*(\overline{d}_{K-1}), Y^*(d)\}$ can be obtained as

$$\begin{aligned}
\rho_{X_{1},X_{2}^{*}(d_{1}),X_{3}^{*}(\overline{d}_{2}),...,X_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)}(x_{1},...,x_{K},y) & (5.19) \\
&= \rho_{Y|\overline{X},\overline{A}}\{y|\overline{X},\overline{d}(\overline{X})\} \\
&\times \rho_{X_{K}|\overline{X}_{K-1},\overline{A}_{K-1}}\{x_{K}|\overline{x}_{K-1},\overline{d}_{K-1}(\overline{x}_{K-1})\} \\
&\vdots & (5.20) \\
&\times \rho_{X_{2}|X_{1},A_{1}}\{x_{2}|x_{1},d_{1}(x_{1})\} \\
&\times \rho_{X_{1}}(x_{1})
\end{aligned}$$

for any realization $(x_1, x_2, \dots, x_K, y)$ for which (5.19) is positive

• Due to Robins (1986, 1987, 2004)

Additional definition: Relevant realizations $(x_1, x_2, ..., x_K, y)$ are determined by feasible sets

- Assume $Y^*(\overline{a})$ and Y take values $y \in \mathcal{Y}$
- Define

$$\begin{split} \Gamma_{\mathcal{K}+1} &= \left[(\overline{x}, \overline{a}, y) \in \overline{\mathcal{X}} \times \overline{\mathcal{A}} \times \mathcal{Y} \text{ satisfying } (\overline{x}, \overline{a}) \in \Lambda_{\mathcal{K}} \text{ and } \right. \\ &\left. P\{Y^{\star}(\overline{a}) = y \mid \overline{X}^{\star}_{\mathcal{K}}(\overline{a}_{\mathcal{K}-1}) = \overline{x}_{\mathcal{K}}\} > 0 \right] \\ &= \left[(\overline{x}, \overline{a}, y) \in \overline{\mathcal{X}} \times \overline{\mathcal{A}} \times \mathcal{Y} \text{ satisfying } (\overline{x}, \overline{a}) \in \Lambda_{\mathcal{K}} \text{ and } \right. \\ &\left. P(Y = y \mid \overline{X} = \overline{x}, \overline{A}_{\mathcal{K}-1} = \overline{a}_{\mathcal{K}-1}) > 0 \right] \end{split}$$

This equality can be shown similarly to that of (5.13) and (5.14)

Simplification: Take all random variables discrete, so that (5.19) and (5.20) become

$$P\{X_{1} = x_{1}, X_{2}^{*}(d_{1}) = x_{2}, \dots, X_{K}^{*}(\overline{d}_{K-1}) = x_{K}, Y^{*}(d) = y\}$$

$$= P\{Y = y \mid \overline{X}_{K} = \overline{x}_{K}, \overline{A}_{K} = \overline{d}_{K}(\overline{x}_{K-1})\}$$

$$\times P(X_{K} = x_{K} \mid \overline{X}_{K-1} = \overline{x}_{K-1}, \overline{A}_{K-1} = \overline{d}_{K-1}(\overline{x}_{K-2})\}$$

$$\vdots$$

$$\times P\{X_{2} = x_{2} \mid X_{1} = x_{1}, A_{1} = d_{1}(x_{1})\}$$

$$\times P(X_{1} = x_{1})$$

$$(5.21)$$

for any realization $(x_1, x_2, \dots, x_K, y)$ such that

$$P\{X_1 = x_1, X_2^*(d_1) = x_2, \dots, X_K^*(\overline{d}_{K-1}) = x_K, Y^*(d) = y\} > 0$$

Need to show (5.21) = (5.22)

Demonstration: Factorize (5.21) as

$$P\{X_{1} = x_{1}, X_{2}^{*}(d_{1}) = x_{2}, \dots, X_{K}^{*}(\overline{d}_{K-1}) = x_{K}, Y^{*}(d) = y\}$$

$$= P\{Y^{*}(d) = y \mid \overline{X}_{K}^{*}(\overline{d}_{K-1}) = \overline{x}_{K}\}$$

$$\times P\{X_{K}^{*}(\overline{d}_{K-1}) = x_{K} \mid \overline{X}_{K-1}^{*}(\overline{d}_{K-2}) = \overline{x}_{K-1}\}$$

$$\vdots$$

$$\times P\{X_{2}^{*}(d_{1}) = x_{2} \mid X_{1} = x_{1}\}$$

$$\times P(X_{1} = x_{1})$$

All components on RHS are positive because (5.21) > 0

From (5.22), it suffices to show

$$P\{Y^{*}(d) = y \mid \overline{X}_{K}^{*}(\overline{d}_{K-1}) = \overline{x}_{K}\}$$

$$= P\{Y = y \mid \overline{X}_{K} = \overline{x}_{K}, \overline{A}_{K} = \overline{d}_{K}(\overline{x}_{K-1})\}$$
where $P\{Y = y \mid \overline{X}_{K} = \overline{x}_{K}, \overline{A}_{K} = \overline{d}_{K}(\overline{x}_{K-1})\} > 0$

and for $k = 2, \dots, K$

$$\begin{split} P\{X_{k}^{*}(\overline{d}_{k-1}) &= x_{k} \mid \overline{X}_{k-1}^{*}(\overline{d}_{k-2}) = \overline{x}_{K-1}\} \\ &= P(X_{k} = x_{k} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{d}_{k-1}(\overline{x}_{k-2})\} \\ \text{where } P(X_{k} = x_{k} \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{d}_{k-1}(\overline{x}_{k-2})\} > 0 \end{split}$$

• These follow immediately if, for $\overline{X}_{K+1}^*(d) = Y^*(d)$

$$\{\overline{x}_k, \overline{d}_{k-1}(\overline{x}_{k-1})\} \in \Gamma_k, \quad k = 2, \dots, K+1$$
 (5.23)

which can be shown by induction (first show for k = 2)

Sketch of induction proof: First take k = 2

- Because $P(X_1 = x_1) > 0$, $x_1 \in \Gamma_1$ and d is a Ψ -specific regime, $d_1(x_1) \in \Psi_1(h_1)$, so that $\{x_1, d_1(x_1)\} \in \Lambda_1$
- Because (5.21) > 0,

$$P\{X_2^*(d_1) = x_2 \mid X_1 = x_1\} > 0 \implies \{\overline{x}_2, d_1(x_1)\} \in \Gamma_2$$

which is (5.23) for k = 2

- Now assume $\{\overline{x}_{k-1}, \overline{d}_{k-2}(\overline{x}_{k-2})\} \in \Gamma_{k-1}$ is true
- Because d is a Ψ -specific regime, $d_{k-1}(\overline{x}_{k-1}) \in \Psi_{k-1}(h_k)$ and thus $\{\overline{x}_{k-1}, \overline{d}_{k-1}(\overline{x}_{k-1})\} \in \Lambda_{k-1}$
- Because (5.21) > 0,

$$P\{X_k^*(\overline{d}_{k-1}) = x_k \mid \overline{X}_{k-1}^*(\overline{d}_{k-2}) = \overline{x}_{k-1}\} > 0 \implies \{\overline{x}_k, \overline{d}_{k-1}(\overline{x}_{k-1})\} \in \Gamma_k$$

completing the induction proof

General result: Compactly stated

$$\rho_{X_{1},X_{2}^{*}(d_{1}),X_{3}^{*}(\overline{d}_{2}),\dots,X_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)}(x_{1},\dots,x_{K},y) \qquad (5.24)$$

$$=\rho_{Y|\overline{X},\overline{A}}\{y|\overline{x},\overline{d}_{K}(\overline{x})\}\left[\prod_{k=2}^{K}\rho_{X_{k}|\overline{X}_{k-1},\overline{A}_{k-1}}\{x_{k}|\overline{x}_{k-1},\overline{d}_{k-1}(\overline{x}_{k-1})\}\right]\rho_{X_{1}}(x_{1})$$

which implies, for example,

$$p_{Y'(d)}(y) = \int_{\overline{\mathcal{X}}} \left(p_{Y|\overline{X},\overline{A}}\{y|\overline{x},\overline{d}(\overline{x})\} \right)$$

$$\times \left[\prod_{k=2}^{K} p_{X_{k}|\overline{X}_{k-1},\overline{A}_{k-1}}\{x_{k}|\overline{x}_{k-1},\overline{d}_{k-1}(\overline{x}_{k-1})\} \right] p_{X_{1}}(x_{1}) d\nu_{K}(x_{K}) \cdots d\nu_{1}(x_{1})$$
(5.25)

• $d\nu_K(x_K)\cdots d\nu_1(x_1)$ is the dominating measure

Or the value

$$E\{Y^{*}(d)\} = \int_{\overline{X}} \left(E\{Y|\overline{X} = \overline{x}, \overline{A} = \overline{d}(\overline{x})\} \right)$$

$$\times \left[\prod_{k=2}^{K} \rho_{X_{k}|\overline{X}_{k-1}, \overline{A}_{k-1}} \{x_{k}|\overline{x}_{k-1}, \overline{d}_{k-1}(\overline{x}_{k-1})\} \right] \rho_{X_{1}}(x_{1}) d\nu_{K}(x_{K}) \cdots d\nu_{1}(x_{1})$$

$$(5.26)$$

- Thus, the value V(d) = E{Y*(d)} of a regime d ∈ D can be expressed in terms of the observed data
- So it should be possible to estimate V(d) from these data
- As well as to estimate V(d^{opt}) (later)...

5. Multiple Decision Treatment Regimes: Framework and Fundamentals

- 5.1 Multiple Decision Treatment Regimes
- 5.2 Statistical Framework
- 5.3 The g-Computation Algorithm
- 5.4 Estimation of the Value of a Fixed Regime
- 5.5 Key References

Fixed regime $d \in \mathcal{D}$

Of interest: Estimation of the value $V(d) = E\{Y^*(d)\}$ of a *given*, or *fixed*, Ψ -specific regime $d \in \mathcal{D}$

- In its own right
- As a stepping stone to estimation of an optimal regime d^{opt}
- We consider several methods
- Throughout, take SUTVA (5.10), SRA (5.11), and positivity assumption (5.15) to hold

In principle: From (5.25) and (5.26), can estimate $p_{Y^*(d)}(y)$ or $E\{Y^*(d)\}$ for fixed $d \in \mathcal{D}$

Posit parametric models, e.g., for (5.25)

$$\rho_{Y|\overline{X},\overline{A}}(y|\overline{x},\overline{a};\zeta_{K+1})
\rho_{X_k|\overline{X}_{k-1},\overline{A}_{k-1}}(x_k|\overline{x}_{k-1},\overline{a}_{k-1};\zeta_k), \quad k=2,\ldots,K
\rho_{X_1}(x_1;\zeta_1)$$

depending on $\zeta = (\zeta_1^T, \dots, \zeta_{K+1}^T)^T$ (or for (5.26) a model for $E(Y|\overline{X} = \overline{x}, \overline{A} = \overline{a})$ instead)

• Estimate ζ by maximizing the partial likelihood

$$\prod_{i=1}^{n} \left\{ \rho_{Y|\overline{X},\overline{A}}(Y_{i}|\overline{X}_{i},\overline{A}_{i};\zeta_{K+1}) \prod_{k=2}^{K} \rho_{X_{k}|\overline{X}_{K-1},\overline{A}_{k-1}}(X_{ki}|\overline{X}_{K-1,i},\overline{A}_{K-1,i};\zeta_{k}) \rho_{X_{1}}(X_{1i};\zeta_{1}) \right\}$$
in ζ to obtain $\widehat{\zeta} = (\widehat{\zeta}_{1}^{T}, \dots, \widehat{\zeta}_{K+1}^{T})^{T}$

In principle:

Substitute the fitted models in (5.25) or (5.26)

Major obstacle: (5.25) and (5.26) involve integration over the sample space $\overline{\mathcal{X}} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_K$

• Except in the simplest situations, e.g., all x_1, \ldots, x_K discrete and low-dimensional, the required integration is almost certainly analytically *intractable* and *computationally insurmountable*

Monte Carlo integration: Robins (1986) proposed approximating the distribution of $Y^*(d)$ for $d \in \mathcal{D}$; for r = 1, ..., M, simulate a realization from the distribution of $Y^*(d)$ as follows

- 1. Generate random x_{1r} from $p_{X_1}(x_1; \hat{\zeta}_1)$
- 2. Generate random x_{2r} from $p_{X_2|X_1,A_1}\{x_2|x_{1r},d_1(x_{1r});\widehat{\zeta}_2\}$
- 3. Continue in this fashion, generating random x_{kr} from

$$p_{X_k|\overline{X}_{k-1},\overline{A}_{k-1}}\{x_k|\overline{x}_{k-1,r},\overline{d}_{k-1}(\overline{x}_{k-1,r});\widehat{\zeta}_k\}, \quad k=3,\ldots,K$$

4. Generate random y_r from $p_{Y|\overline{X},\overline{A}}\{y|\overline{x}_r,\overline{d}_K(\overline{x}_r);\widehat{\zeta}_{K+1}\}$

 y_1, \ldots, y_M are a sample from the fitted distribution of $Y^*(d)$

Estimator for
$$V(d) = E\{Y^*(d)\}$$
: $\widehat{V}_{GC}(d) = M^{-1} \sum_{r=1}^{M} y_r$

Practical challenges:

- Development of models can be daunting due to high dimension/complexity of x₁,...,x_K
- Although specifying p_{Y|X,A}(y|X, ā; ζ_{K+1}) may be feasible for univariate Y, models

$$p_{X_k|\overline{X}_{k-1},\overline{A}_{k-1}}(x_k|\overline{x}_{k-1},\overline{a}_{k-1};\zeta_k),\ k=2,\ldots,K,\ p_{X_1}(x_1;\zeta_1)$$

for multivariate X_k are more challenging to specify

• E.g., $X_k = (X_{k1}^T, X_{k2}^T)^T$ continuous/discrete, can factor as

$$\begin{aligned} & \rho_{X_{k1}|X_{k2},\overline{X}_{k-1},\overline{A}_{k-1}}(x_{k1}|X_{k2},\overline{X}_{k-1},\overline{a}_{k-1};\zeta_{k1}) \\ & \times \rho_{X_{k2}|\overline{X}_{k-1},\overline{A}_{k-1}}(x_{k2}|\overline{X}_{k-1},\overline{a}_{k-1};\zeta_{k2}) \\ & \text{or} \quad \rho_{X_{k2}|X_{k1},\overline{X}_{k-1},\overline{A}_{k-1}}(x_{k2}|X_{k1},\overline{X}_{k-1},\overline{a}_{k-1};\zeta_{k2}) \\ & \times \rho_{X_{k1}|\overline{X}_{k-1},\overline{A}_{k-1}}(x_{k2}|\overline{X}_{k-1},\overline{a}_{k-1};\zeta_{k1}) \end{aligned}$$

Practical challenges, continued:

- Moreover, simulation from such models can be demanding
- Analytical derivation of approximate standard errors is not straightforward (frankly daunting!); use of a nonparametric bootstrap has been advocated, which is clearly highly computationally intensive

Bottom line: Estimation of V(d) via the g-computation is not commonplace in practice

- The main usefulness of g-computation is as a demonstration that it is possible to identify and estimate $\mathcal{V}(d)$ from observed data under SUTVA, SRA, and positivity
- In principle, a possible approach to estimating $d^{opt} \in \mathcal{D}$ is to maximize $\widehat{\mathcal{V}}_{GC}(d)$ over all $d \in \mathcal{D}$; clearly, this would be a formidable computational challenge (and is never done in practice)

Motivation: Alternative representation of $E\{Y^*(d)\}$ in terms of the observed data

$$(X_1, A_1, X_2, A_2, \ldots, X_K, A_K, Y)$$

depending on

$$p_{A_1|H_1}(a_1|h_1) = P(A_1 = a_1|H_1 = h_1) = p_{A_1|X_1}(a_1|X_1)$$

$$p_{A_k|H_k}(a_k|h_k) = P(A_k = a_k|H_k = h_k) = p_{A_k|\overline{X}_k,\overline{A}_{k-1}}(a_k|\overline{X}_k,\overline{a}_{k-1})$$

$$k = 2, ..., K$$

Define: Evaluate at
$$d_1(X_1)$$
, $d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}$

$$\pi_{d,1}(X_1) = p_{A_1|X_1}\{d_1(X_1)|X_1\}$$

$$\pi_{d,k}(\overline{X}_k) = p_{A_k|\overline{X}_k,\overline{A}_{k-1}}[d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}|\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})]$$

$$k = 2, \dots, K$$

Define: Indicator of consistency of options actually received with those selected by d at all K decisions

$$\mathcal{C}_d = \mathcal{C}_{\overline{d}_K} = I\{A_1 = d_1(X_1), \dots, A_K = \overline{d}_K(\overline{X}_K)\} = I\{\overline{A} = \overline{d}(\overline{X})\}$$

Inverse probability weighted estimator for $V(d) = E\{Y^*(d)\}$:

$$\widehat{\mathcal{V}}_{IPW}(d) = n^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i} Y_i}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}) \right\} \pi_{d,1}(X_{1i})}$$
(5.27)

• (5.27) is an unbiased estimator for V(d) because

$$E\left[\frac{\mathcal{C}_{d}Y}{\left\{\prod_{k=2}^{K}\pi_{d,k}(\overline{X}_{k})\right\}\pi_{d,1}(X_{1})}\right] = E\{Y^{*}(d)\}$$
 (5.28)

under SUTVA (5.10), SRA (5.11) and positivity assumption (5.15)

Sketch of proof of (5.28): We show a more general result

$$E\left[\frac{\mathcal{C}_{d}f(\overline{X},Y)}{\left\{\prod_{k=2}^{K}\pi_{d,k}(\overline{X}_{k})\right\}\pi_{d,1}(X_{1})}\right] = E[f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)\}] \quad (5.29)$$

so that (5.28) follows by taking $f(\overline{x}, y) = y$

• Using SUTVA and (5.7)

$$E\left[\frac{C_{d}f(\overline{X},Y)}{\left\{\prod_{k=2}^{K}\pi_{d,k}(\overline{X}_{k})\right\}\pi_{d,1}(X_{1})}\right] = E\left(\frac{C_{d}f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)\}}{\left\{\prod_{k=2}^{K}\pi_{d,k}\{\overline{X}_{k}^{*}(\overline{d}_{k-1})\}\right]\pi_{d,1}(X_{1})}\right)$$

$$= E\left\{E\left(\frac{1\{\overline{A} = \overline{d}(\overline{X})\}f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)\}}{\left[\prod_{k=2}^{K}\pi_{d,k}\{\overline{X}_{k}^{*}(\overline{d}_{k-1})\}\right]\pi_{d,1}(X_{1})}\right|X_{1},W^{*}\right)\right\}$$

$$= E\left(\frac{P\{\overline{A} = \overline{d}(\overline{X})|X_{1},W^{*}\}f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}),Y^{*}(d)\}}{\left[\prod_{k=2}^{K}\pi_{d,k}\{\overline{X}_{k}^{*}(\overline{d}_{k-1})\}\right]\pi_{d,1}(X_{1})}\right)$$
(5.30)

20-

From (5.30): Must show

$$\left[\prod_{k=2}^{K} \pi_{d,k} \{ \overline{X}_{k}^{\star}(\overline{d}_{k-1}) \} \right] \pi_{d,1}(X_{1}) = P\{\overline{A} = \overline{d}(\overline{X}) | X_{1}, W^{*}\} > 0$$
 (5.31)

• For (x_1, w) such that $P(X_1 = x_1, W^* = w) > 0$, show

$$P\{\overline{A}=\overline{d}(\overline{X})|X_1=x_1,W^*=w\}>0$$

- There exist x_2, \ldots, x_K such that $P\{\overline{X}_k^*(\overline{d}_{k-1}) = \overline{x}_k\} > 0, k = 2, \ldots, K$, because $\overline{X}_K^*(\overline{d}_{K-1})$ is a function of W^*
- Using SUTVA

$$P\{\overline{A} = \overline{d}(\overline{X}) | X_1 = x_1, W^* = w\}$$

$$= P\{A_1 = d_1(x_1) | X_1 = x_1, W^* = w\}$$

$$\times \prod_{k=2}^{K} P[A_k = d_k\{\overline{x}_k, \overline{d}_{k-1}(\overline{x}_{k-1})\} | \overline{A}_{k-1} = \overline{d}_{k-1}(\overline{x}_{k-1}), X_1 = x_1, W^* = w]$$

Must show each term in this factorization is well defined; true if

$$P\{\overline{A}_k = \overline{d}_k(\overline{x}_k), X_1 = x_1, W^* = w\} > 0, \quad k = 1, \dots, K$$

By induction; when k = 1

$$P\{A_1 = d_1(x_1), X_1 = x_1, W^* = w\}$$

= $P\{A_1 = d_1(x_1) \mid X_1 = x_1, W^* = w\} P(X_1 = x_1, W^* = w)$

is positive if $P\{A_1 = d_1(x_1) \mid X_1 = x_1, W^* = w\} > 0$

• This holds because $P(X_1 = x_1) > 0$ so $x_1 \in \Gamma_1$ and $d_1(x_1) \in \Psi_1(x_1)$ so by positivity assumption

$$P\{A_1 = d_1(x_1) \mid X_1 = x_1, W^* = w\} = P\{A_1 = d_1(x_1) \mid X_1 = x_1\} > 0$$

• Now assume $P\{\overline{A}_k = \overline{d}_k(\overline{x}_k), X_1 = x_1, W^* = w\} > 0$ and show

$$P\{\overline{A}_{k+1} = \overline{d}_{k+1}(\overline{x}_{k+1}), X_1 = x_1, W^* = w\} > 0$$

• $\overline{X}_{k}^{*}(\overline{d}_{k-1})$ includes X_{1} , so $(X_{1}=x_{1},W^{*}=w)$ and $\{\overline{X}_{k+1}^{*}(d)=\overline{x}_{k+1},W^{*}=w\}$ are equivalent, and thus

$$P\{\overline{A}_{k+1} = \overline{d}_{k+1}(\overline{X}_{k+1}), X_1 = X_1, W^* = W\}$$

$$= P[A_{k+1} = d_{k+1}\{\overline{X}_{k+1}, \overline{d}_k(\overline{X}_k)\} | \overline{A}_k = \overline{d}_k(\overline{X}_k), \overline{X}_{k+1}^*(\overline{d}_k) = \overline{X}_{k+1}, W^* = W]$$

$$\times P\{\overline{A}_k = \overline{d}_k(\overline{X}_k), X_1 = X_1, W^* = W\}$$

Must show first RHS term is > 0; by SUTVA and SRA, this term =

$$= P[A_{k+1} = d_{k+1}\{\overline{x}_{k+1}, \overline{d}_k(\overline{x}_k)\} | \overline{X}_{k+1} = \overline{x}_{k+1}, \overline{A}_k = \overline{d}_k(\overline{x}_k), W^* = w]$$

$$= P[A_{k+1} = d_{k+1}\{\overline{x}_{k+1}, \overline{d}_k(\overline{x}_k)\} | \overline{X}_{k+1} = \overline{x}_{k+1}, \overline{A}_k = \overline{d}_k(\overline{x}_k)]$$

• Because $\{x_1,d_1(x_1)\} \in \Lambda_1$ and $P\{\overline{X}_k^*(\overline{d}_{k-1}) = \overline{x}_k\} > 0$, the argument leading to (5.23) yields $\{\overline{x}_{k+1},\overline{d}_k(\overline{x}_k)\} \in \Gamma_{k+1}$, $d_{k+1}\{\overline{x}_{k+1},\overline{d}_k(\overline{x}_k)\} \in \Psi_{k+1}(h_{k+1})$, so this term is > 0

· Applying these results yields

$$P\{\overline{A} = \overline{d}(\overline{X})|X_1, W^*\} = p_{A_1|X_1}\{d_1(X_1)|X_1\}$$

$$\times \left(\prod_{k=2}^K p_{A_k|\overline{X}_k, \overline{A}_{k-1}}[d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}|\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})]\right)$$

$$= \pi_{d,1}(X_1) \left[\prod_{k=2}^K \pi_{d,k}\{\overline{X}_k(\overline{d}_{k-1})\}\right]$$

which is the desired equality

Result: (5.28) holds

$$E\left[\frac{\mathcal{C}_{d}Y}{\left\{\prod_{k=2}^{K}\pi_{d,k}(\overline{X}_{k})\right\}\pi_{d,1}(X_{1})}\right]=E\{Y^{*}(d)\}$$

- $\widehat{\mathcal{V}}_{IPW}(d)$ is an unbiased estimator for $\mathcal{V}(d)$
- Alternative representation of $E\{Y^*(d)\}$ in terms of observed data
- Taking instead for fixed y

$$f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}), Y^{*}(d)\} = I\{Y^{*}(d) = y\}$$

yields an alternative representation of the marginal density of $Y^{*}(d)$

More generally: For fixed $(x_1, \overline{x}_2, \dots, \overline{x}_K, y)$, treating all variables as discrete, taking

$$f\{\overline{X}_{K}^{*}(\overline{d}_{K-1}), Y^{*}(d)\}$$

$$= I\{X_{1} = X_{1}, X_{2}^{*}(d_{1}) = X_{2}, \dots, X_{K}^{*}(\overline{d}_{K-1}) = X_{K}, Y^{*}(d) = y\}$$

yields an alternative representation of the joint density

$$P\{X_{1} = x_{1}, X_{2}^{*}(d_{1}) = x_{2}, \dots, X_{K}^{*}(\overline{d}_{K-1}) = x_{K}, Y^{*}(d) = y\}$$

$$= p_{X_{1}, X_{2}^{*}(d_{1}), X_{3}^{*}(\overline{d}_{2}), \dots, X_{K}^{*}(\overline{d}_{K-1}), Y^{*}(d)}(x_{1}, \dots, x_{K}, y)$$

$$= E\left[\frac{C_{d} I(X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{K} = x_{K}, Y = y)}{\left\{\prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{k})\right\} \pi_{d,1}(X_{1})}\right]$$

Denominator:

$$\left\{\prod_{k=2}^K \pi_{d,k}(\overline{X}_k)\right\} \pi_{d,1}(X_1)$$

- Can be interpreted as the propensity for receiving treatment consistent with regime d through all K decisions given observed history
- Depends on the propensities of treatment given observed history

$$p_{A_k|H_k}(a_k|h_k) = P(A_k = a_k \mid H_k = h_k), \quad k = 1, ..., K$$

- In practice: Posit and fit models for the propensities depending on parameters γ_k and estimators $\widehat{\gamma}_k$, k = 1, ..., K; considerations for this momentarily
- These models induce models $\pi_{d,1}(X_1; \gamma_1)$ and $\pi_{d,k}(\overline{X}_k; \gamma_k)$

In practice: IPW estimator

$$\widehat{V}_{IPW}(d) = n^{-1} \sum_{i=1}^{n} \frac{C_{d,i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_{1})}$$
(5.32)

 Consistent estimator for V(d) as long as the propensity models are correctly specified

Alternative estimator:

$$\widehat{\mathcal{V}}_{IPW^*}(d) = \left[\sum_{i=1}^{n} \frac{\mathcal{C}_{d,i}}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_{1})} \right]^{-1} \times \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i}Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_{1})}$$
(5.33)

- Weighted average, also a consistent estimator
- Can be considerably more precise than $\widehat{\mathcal{V}}_{IPW}(d)$

Simplest case: Two options at each decision point, feasible for all individuals, $A_k = \{0, 1\}, k = 1, ..., K$

Can work with propensity scores

$$\pi_{k}(h_{k}) = P(A_{k} = 1 | H_{k} = h_{k}) = \pi_{k}(\overline{x}_{k}, \overline{a}_{k-1}), \quad k = 1, ..., K$$

$$p_{A_{1}|X_{1}}(a_{1}|X_{1}) = p_{A_{1}|H_{1}}(a_{1}|h_{1}) = \pi_{1}(h_{1})^{a_{1}}\{1 - \pi_{1}(h_{1})\}^{1-a_{1}}$$

$$p_{A_{k}|\overline{X}_{k}, \overline{A}_{k-1}}(a_{k}|\overline{x}_{k}, \overline{a}_{k-1}) = p_{A_{k}|H_{k}}(a_{k}|h_{k}) = \pi_{k}(h_{k})^{a_{k}}\{1 - \pi_{k}(h_{k})\}^{1-a_{k}}$$

$$k = 2, ..., K$$

• Using (5.2)

$$\begin{split} \pi_{d,1}(X_1) &= \pi_1(X_1)^{d_1(X_1)} \{1 - \pi_1(X_1)\}^{1 - d_1(X_1)} \\ \pi_{d,k}(\overline{X}_k) &= \pi_k \{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}^{d_k \{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}} \\ &\times [1 - \pi_k \{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}]^{1 - d_k \{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}}, \\ k &= 2, \dots, K \end{split}$$

• Can posit a parametric model $\pi_k(h_k; \gamma_k)$ for each k; e.g., logistic regression models as in (3.12)

$$\pi_k(h_k; \gamma_k) = \frac{\exp(\gamma_{k1} + \gamma_{k2}^T \widetilde{h}_k)}{1 + \exp(\gamma_{k1} + \gamma_{k2}^T \widetilde{h}_k)}, \quad \gamma_k = (\gamma_{k1}, \gamma_{k2}^T)^T, \quad k = 1, \dots, K$$

 $\widetilde{h}_k = (1, h_k^T)^T$, $k = 1, \dots, K$, and fit via maximum likelihood to obtain $\widehat{\gamma}_k$, $k = 1, \dots, K$

More than 2 options: Feasible for all individuals, $A_k = \{1, ..., m_k\}$

As on Slide 170, with

$$\omega_k(h_k,a_k)=P(A_k=a_k|H_k=h_k),\ k=1,\ldots,K$$
 or
$$\omega_k(\overline{x}_k,\overline{a}_{k-1},a_k)=P(A_k=a_k|\overline{X}_k=\overline{x}_k,\overline{A}_{k-1}=\overline{a}_{k-1})$$

where

$$\omega_k(h_k, m_k) = 1 - \sum_{a_k=1}^{m_k-1} \omega_k(h_k, a_k)$$

• Then
$$\pi_{d,1}(X_1) = \prod_{a_1=1}^{m_1} \omega_1(X_1, a_1)^{\mathbb{I}\{d_1(X_1)=a_1\}} = \sum_{a_1=1}^{m_1} \mathbb{I}\{d_1(X_1)=a_1\}\omega_1(X_1, a_1)$$

$$\pi_{d,k}(\overline{X}_k) = \prod_{a_k=1}^{m_k} \omega_k\{\overline{X}_k \overline{d}_{k-1}(\overline{X}_{k-1}), a_k\}^{\mathbb{I}[d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}=a_k]},$$

$$= \sum_{a_k=1}^{m_k} \mathbb{I}[d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\} = a_k]\omega_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1}), a_k\}$$

• Can posit parametric models $\omega_k(h_k, a_k; \gamma_k)$ for each k e.g., multinomial (polytomous) logistic regression models

$$\omega_k(h_k, a_k; \gamma_k) = \frac{\exp(\widetilde{h}_k^T \gamma_{k, a_k})}{1 + \sum_{j=1}^{m_k - 1} \exp(\widetilde{h}_k^T \gamma_{kj})}, \quad a_k = 1, \dots, m_k - 1$$

$$\widetilde{h}_k = (1, h_k^T)^T$$
, $\gamma_k = (\gamma_{k1}^T, \dots, \gamma_{k, m_k - 1}^T)^T$ and fit via maximum likelihood to obtain $\widehat{\gamma}_k$, $k = 1, \dots, K$

Feasible sets: ℓ_k distinct subsets, each with ≥ 2 options in A_k

$$A_{k,l} = \{1, \ldots, m_{kl}\}, \quad l = 1, \ldots, \ell_k, \quad k = 1, \ldots, K$$

• For $k=1,\ldots,K$, $a_k\in\{1,\ldots,m_{kl}\}=\mathcal{A}_{k,l}$ $\omega_{k,l}(h_k,a_k)=P(A_k=a_k|H_k=h_k)$

$$\omega_{k,l}(h_k, m_{kl}) = 1 - \sum_{a_k=1}^{m_{kl}-1} \omega_{k,l}(h_k, a_k)$$

• For k = 1, ..., K, can posit ℓ_k separate logistic or multinomial (polytomous) logistic regression models

$$\omega_{k,l}(h_k, a_k; \gamma_{kl}), \quad l = 1, \ldots, \ell_k$$

• For each k = 1, ..., K, implies an overall model

$$\omega_k(h_k, a_k; \gamma_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} \, \omega_{k,l}(h_k, a_k; \gamma_{kl}), \quad \gamma_k = (\gamma_{k1}^T, \dots, \gamma_{k\ell_k}^T)^T$$

understood that a_k takes values in the relevant distinct subset

- For subsets with a single option, $P(A_k = a_k \mid H_k = h_k) = 1$, and no model is needed
- Induced models

$$\begin{split} \pi_{d,1}(X_1; \gamma_1) &= \sum_{l=1}^{\ell_1} \mathsf{I}\{s_1(h_1) = I\} \prod_{a_1=1}^{m_{1l}} \omega_{1,l}(X_1, a_1; \gamma_{1l})^{\mathsf{I}\{d_1(X_1) = a_1\}} \\ \pi_{d,k}(\overline{X}_k; \gamma_k) &= \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = I\} \\ &\times \prod_{a_k=1}^{m_{kl}} \omega_{k,l}\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1}), a_k; \gamma_{kl}\}^{\mathsf{I}[d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\} = a_k)]} \end{split}$$

In a SMART: Propensities are known

- As on Slide 90, preferable to estimate the propensities
- Estimate $P(A_k = a_k \mid H_k = h_k)$ by sample proportions corresponding to each distinct subset $A_{k,l}$
- Example: Acute leukemia, $\ell_2=2$, r_2 component of h_2 indicating response $\Psi_2(h_2)=\{\mathsf{M}_1,\,\mathsf{M}_2\}=\mathcal{A}_{2,1},\quad r_2=1$ $=\{\mathsf{S}_1,\,\mathsf{S}_2\}=\mathcal{A}_{2,2},\quad r_2=0$
- Estimate $P(A_2 = a_2 \mid H_2 = h_2)$ for $a_2 \in A_{2,1}$ by

$$\left(\sum_{i=1}^n \mathsf{I}(R_{2i}=1)\right)^{-1} \sum_{i=1}^n \mathsf{I}(R_{2i}=1) \mathsf{I}(A_{2i}=a_2)$$

• Estimate $P(A_2 = a_2 \mid H_2 = h_2)$ for $a_2 \in A_{2,2}$ by

$$\left(\sum_{i=1}^{n} \mathsf{I}(R_{2i}=0)\right)^{-1} \sum_{i=1}^{n} \mathsf{I}(R_{2i}=0) \mathsf{I}(A_{2i}=a_{2})$$

Equivalent representation: For both $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$

• When $C_d = 1$, $A_1 = d_1(X_1)$, and $A_k = d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}$, k = 2, ..., K, and it is straightforward that the denominator

$$\left\{\prod_{k=2}^K \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_k)\right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_1)$$

can be replaced by the fitted model for

$$\prod_{k=1}^K p_{A_k|H_k}(A_{ki}|H_{ki})$$

without altering the value of either estimator

 E.g., with 2 feasible options at each decision point, replace the denominator by

$$\prod_{k=1}^K \pi_k(H_{ki}; \widehat{\gamma}_k)^{A_{ki}} \{1 - \pi_k(H_{ki}; \widehat{\gamma}_k)\}^{1 - A_{ki}}$$

With more than 2 options, by

$$\prod_{k=1}^K \omega_k(H_{ki}, A_{ki}; \widehat{\gamma}_k)$$

- In some literature accounts, the estimators are defined with these quantities in the denominators
- This will be important later

Remarks:

- $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$ are consistent estimators as long as the propensity models are correctly specified; can be inconsistent otherwise
- Except for estimation of propensities, these estimators use data only from subjects for whom $\overline{A} = \overline{d}(\overline{X})$
- For larger K, there are likely very few such subjects
- These estimators can be unstable in finite samples due to division by propensity of treatment consistent with d small and can exhibit large sampling variation
- As in the single decision case, even if the propensities are known, it is preferable to estimate them via maximum likelihood
- Large sample approximations to the sampling distributions of $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$ follow from M-estimation theory

Drop out analogy: For individuals for whom $\overline{A} \neq \overline{d}(\overline{X})$

- Analogy to a monotone coarsening problem; i.e., "drop out"
- Under SUTVA, an individual with

$$A_1 = d_1(X_1), \dots, A_{k-1} = d_{k-1}\{\overline{X}_{k-1}, \overline{d}_{k-2}(\overline{X}_{k-2})\}$$

but for whom

$$A_k \neq d_k\{\overline{X}_k, \overline{d}_{k-1}(\overline{X}_{k-1})\}$$
 has $X_2 = X_2^*(d_1), \dots, X_k = X_k^*(\overline{d}_{k-1})$, i.e., $\overline{X}_k = \overline{X}_k^*(\overline{d}_{k-1})$

- But his X_{k+1}, \ldots, X_K and Y do not reflect the potential outcomes he would have if he had continued to follow rules d_k, \ldots, d_K
- Effectively, in terms of receiving treatment options consistent with d, the individual has "dropped out" at Decision k

Improvement: From the perspective of information on $\{X_1, \overline{X}_K^*(\overline{d}_{K-1}), Y^*(d)\}$ and especially $Y^*(d)$

- $\overline{X}_k^*(\overline{d}_{k-1})$ is observed, but $X_{k+1}^*(\overline{d}_k),\ldots,X_K^*(\overline{d}_{K-1}),Y^*(d)$ are "missing"
- Can we exploit the partial information from such individuals to gain efficiency?

Dropout analogy: Under SUTVA, SRA, and positivity, this "drop out" is according to a *missing (coarsening) at random* mechanism (shown by Zhang et al., 2013), allowing semiparametric theory for monotone coarsening at random to be used (Robins et al., 1994; Tsiatis, 2006)

Define:

Indicator of treatment options consistent with d through Decision

$$C_{\overline{d}_k} = I\{\overline{A}_k = \overline{d}_k(\overline{X}_k)\}, \quad k = 1, \dots, K$$

with $\mathcal{C}_{d_0} \equiv 1$

• For brevity, write $\overline{\pi}_{d,1}(X_1) = \pi_{d,1}(X_1)$ and

$$\overline{\pi}_{d,k}(\overline{X}_k) = \left\{ \prod_{j=2}^k \pi_{d,j}(\overline{X}_j) \right\} \pi_{d,1}(X_1), \quad k = 2, \ldots, K$$

with $\overline{\pi}_{d,0} \equiv 1$

· Substitution of propensity models leads to models

$$\overline{\pi}_{d,k}(\overline{X}_k; \overline{\gamma}_k), \quad k = 1, \dots, K$$

$$\overline{\gamma}_k = (\gamma_1^T, \dots, \gamma_k^T)^T, k = 1, \dots, K$$

Analogous to AIPW estimator for single decision: Under these conditions, if the models for the propensities

$$p_{A_k|H_k}(a_k|h_k), \quad k=1,\ldots,K$$

are *correctly specified*, from semiparametric theory, all consistent and asymptotically normal estimators for $\mathcal{V}(d)$ for fixed $d \in \mathcal{D}$ are asymptotically equivalent to an estimator of the form

$$\widehat{\mathcal{V}}_{AIPW}(d) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d,i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_{1})} + \sum_{k=1}^{K} \left\{ \frac{\mathcal{C}_{\overline{d}_{k-1},i}}{\overline{\pi}_{d,k-1}(\overline{X}_{k-1,i}; \widehat{\overline{\gamma}}_{k-1})} - \frac{\mathcal{C}_{\overline{d}_{k},i}}{\overline{\pi}_{d,k}(\overline{X}_{ki}; \widehat{\overline{\gamma}}_{k})} \right\} L_{k}(\overline{X}_{ki}) \right]$$

• $L_k(\overline{x}_k)$ are arbitrary functions of \overline{x}_k , k = 1, ..., K

•
$$\widehat{\overline{\gamma}}_{k} = (\widehat{\gamma}_{1}^{T}, \dots, \widehat{\gamma}_{k}^{T})^{T}, k = 1, \dots, K$$

Features of $\widehat{\mathcal{V}}_{AIPW}(d)$:

- Taking $L_k(\overline{x}_k) \equiv 0, k = 1, ..., K$, yields $\widehat{\mathcal{V}}_{IPW}(d)$ in (5.32)
- When K=1, because $\mathcal{C}_{d_0}\equiv 1$, $\overline{\pi}_{d,0}\equiv 1$, and $X_1=H_1$, (5.34) reduces to the AIPW estimator (3.16) for the single decision case
- If all K propensity models are correctly specified, so there are true values $\gamma_{k,0}$ of γ_k , $k=1,\ldots,K$, the "augmentation term" in (5.34) evaluated at $\gamma_{k,0}$, $k=1,\ldots,K$, converges in probability to zero for arbitrary $L_k(\overline{x}_k)$, $k=1,\ldots,K$
- Thus, (5.34) is a consistent estimator for V(d) with asymptotic variance depending on the choice of $L_k(\overline{x}_k)$

Efficient estimator: From semiparametric theory, the estimator with smallest asymptotic variance among those in the class (5.34) takes

$$L_k(\overline{x}_k) = E\{Y^*(d) \mid \overline{X}_k^*(\overline{d}_{k-1}) = \overline{x}_k\}, \quad k = 1, \dots, K$$
 (5.35)

distribution of the potential outcomes $\{X_1, X_2^*(d_1), \dots, X_k^*(\overline{d}_{k-1}), Y^*(d)\}$ and are *unknown* in practice

The conditional expectations in (5.35) are functionals of the

As in the single decision case, posit and fit models

$$Q_{d,k}(\overline{x}_k;\beta_k), \quad k=1,\ldots,K, \tag{5.36}$$

for
$$E\{Y^*(d) \mid \overline{X}_k^*(\overline{d}_{k-1}) = \overline{x}_k\}$$
, $k = 1, ..., K$, and substitute in (5.34)

We present approaches to developing and fitting models (5.36)
 when we discuss optimal regimes later

Result: Given estimators $\widehat{\beta}_k$, k = 1, ..., K, obtained as we discuss later, the AIPW estimator is

$$\widehat{\mathcal{V}}_{AIPW}(d) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d,i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d,k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d,1}(X_{1i}; \widehat{\gamma}_{1})} + \sum_{k=1}^{K} \left\{ \frac{\mathcal{C}_{\overline{d}_{k-1},i}}{\overline{\pi}_{d,k-1}(\overline{X}_{k-1,i}; \widehat{\overline{\gamma}}_{k-1})} - \frac{\mathcal{C}_{\overline{d}_{k},i}}{\overline{\pi}_{d,k}(\overline{X}_{k,i}, \widehat{\overline{\gamma}}_{k})} \right\} \mathcal{Q}_{d,k}(\overline{X}_{ki}; \widehat{\beta}_{k}) \right]$$

- $\widehat{\mathcal{V}}_{AIPW}(d)$ in (5.37) is doubly robust; i.e., is consistent if either (1) the models for the propensities and thus for $\pi_{d,1}(x_1)$ and $\pi_{d,k}(\overline{x}_k)$, $k=2,\ldots,K$, or (2) the models for for $E\{Y^*(d) \mid \overline{X}_k^*(\overline{d}_k) = \overline{x}_k\}$ in (5.36) are correctly specified
- If the observed data are from a SMART, the propensities are known, and $\widehat{\mathcal{V}}_{AIPW}(d)$ is guaranteed to be consistent regardless of the models (5.36)

Efficient estimator: If all models are correct, $\widehat{\mathcal{V}}_{AIPW}(d)$ is efficient among estimators in class (5.37), achieving the smallest asymptotic variance

Remarks:

- $\widehat{V}_{AIPW}(d)$ can exhibit considerably less sampling variation than the simple IPW estimators (5.32) and (5.33)
- As for $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$, large sample approximate sampling distribution can be obtained via M-estimation theory (although pretty involved)
- Zhang et al. (2013) propose (5.37) in a different but equivalent form following directly from that in Tsiatis (2006)

Alternative approach: When scientific interest focuses on regimes with simple rules that can be represented in terms of a low-dimensional parameter η

• Formally, restrict to a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$ with elements

$$d_{\eta} = \{d_1(h_1; \eta_1), \dots, d_K(h_K; \eta_K)\}, \quad \eta = (\eta_1^T, \dots, \eta_K^T)^T$$

- Goal: Estimate the value of a fixed regime d_{η*} ∈ D_η corresponding to a particular η*, V(d_{η*}) = E{Y*(d_{η*})}
- As in the example coming next, \mathcal{D}_{η} may be even simpler, with

$$\eta = \eta_1 = \cdots = \eta_K$$

Example: Treatment of HIV-infected patients

- K monthly clinic visits, decision on whether or not to administer antiretrovial (ARV) therapy for the next month based on CD4 T-cell count (cells/mm³) (larger is better)
- Two feasible options: 1 = ARV therapy for the next month or 0 = no ARV therapy for the next month
- Focus on rules involving a common CD4 threshold η below which ARV therapy is administered and above which it is not

$$d_k(h_k; \eta) = I(CD4_k \le \eta), \quad k = 1, \dots, K$$

 $CD4_k = CD4 T$ cell count (cells/mm³) immediately prior to Decision k

- \mathcal{D}_{η} comprises regimes d_{η} with rules of this form
- Final outcome: $Y^*(d_\eta)$ = negative viral load (viral RNA copies/mL) measured 1 month after Decision K if administered ARV therapy using rules in d_η

Focus: Estimation of $V(d_{\eta^*})$ for particular threshold η^*

- Ideal: Data from a study where HIV patients were given ARV therapy according to d_{η^*} and viral load was ascertained after Decision K
- More likely: Available data are observational, with information X_k, k = 1,..., K, including CD4_k, options A_k actually received, and –final viral load Y recorded
- In these data, there are likely very few if any individuals who received ARV therapy according to the rules in d_{η^*}
- An approach to using these data to estimate $V(d_{\eta^*})$ is suggested by work of Orellana et al. (2010ab)

Marginal structural model: A model for $V(d_{\eta})$ as a function of η

• I.e., $V(d_{\eta}) = \mu(\eta)$ for some function $\mu(\cdot)$, posit a parametric model $V(d_{\eta}) = E\{Y^{*}(d_{\eta})\} = \mu(\eta; \alpha)$ (5.38)

referred to as a marginal structural model (MSM)

For example, a quadratic model

$$\mu(\eta;\alpha) = \alpha_1 + \alpha_2 \eta + \alpha_3 \eta^2, \quad \alpha = (\alpha_1, \alpha_2, \alpha_3)^T$$

• Estimate α based on the data by an appropriate method to obtain $\widehat{\alpha}$, and estimate $\mathcal{V}(\mathbf{d}_{\eta^*})$ by

$$\widehat{\mathcal{V}}_{MSM}(\mathbf{d}_{\eta^*}) = \mu(\eta^*; \widehat{\alpha})$$

• η plays the role of "covariate" and $\mu(\eta^*; \widehat{\alpha})$ is the "predicted value" at the particular value η^* of interest

Hope: The MSM is a correct specification of the true relationship $\mu(\eta)$ across a plausible range of thresholds of interest

Estimation of α : Ideally, data from a prospective randomized study

- Each subject $i=1,\ldots,n$ is randomized to one of m predetermined thresholds $\eta_{(j)}, j=1,\ldots,m$, in the range of interest and receives ARV according to $d_{\eta_{(j)}}$
- Natural estimator $\widehat{\alpha}$ solves in α the estimating equation

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \mathcal{C}_{d_{\eta(j)},i} \frac{\partial \mu(\eta_{(j)};\alpha)}{\partial \alpha} w(\eta_{(j)}) \{ Y_i - \mu(\eta_{(j)};\alpha) \} = 0$$
 (5.39)

where $w(\eta)$ is a weight function, $C_{d_{\eta}} = I\{\overline{A} = \overline{d}_{\eta}(\overline{X})\}$

- $w(\eta) \equiv 1$ yields OLS estimation
- Each subject i has treatment experience consistent exactly one of the $\eta_{(j)}$, j = 1, ..., m
- (5.39) is an unbiased estimating equation if $\mu(\eta; \alpha)$ is correct

Observtional data: Approach is motivated by (5.39)

Experience

• Some individuals have treatment experience consistent with \geq 1 values of η , e.g., with K=2

Consistent with

•	
$CD4_1=300, A_1=1, CD4_2=400, A_2=0$	$\eta \in (300, 400)$
$CD4_1=300, A_1=1, CD4_2=400, A_2=1$	$\eta > 400$
$CD4_1=300, A_1=0, CD4_2=400, A_2=0$	$\eta <$ 300

ullet Others have treatment experience consistent with no value of η

Experience Consistent with CD4₁=300,
$$A_1=0$$
, CD4₂=400, $A_2=1$ no η

Observational data: Estimator $\widehat{\alpha}$ is solution to

$$\sum_{i=1}^{n} \int_{\mathcal{D}_{\eta}} \left[\frac{\mathcal{C}_{d_{\eta},i}}{\left\{ \prod_{k=2}^{K} \pi_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d_{\eta},1}(X_{1i}; \widehat{\gamma}_{1})} \times \frac{\partial \mu(\eta; \alpha)}{\partial \alpha} w(\eta) \{ Y_{i} - \mu(\eta; \alpha) \} \right] d\nu(d_{\eta}) = 0$$

- $d
 u(d_\eta)$ is an appropriate dominating measure on $d_\eta \in \mathcal{D}_\eta$
- $w(\eta)$ is a weight function
- A given individual i can contribute information on multiple thresholds or none at all
- As in the IPW estimators, each of her contributions is weighted by the reciprocal of an estimator for the propensity of receiving treatment consistent with dη given observed history

For example: Interest in $\eta \in [100, 500]$, for j = 1, ..., m, partition $\eta_{(j)} = 100 + 400(j-1)/(m-1)$, $d\nu(d_{\eta})$ places point mass on $\eta_{(j)}$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{C_{d_{\eta(j)},i}}{\left\{ \prod_{k=2}^{K} \pi_{\eta(j),k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{\eta(j),1}(X_{1i}; \widehat{\gamma}_{1})} \times \frac{\partial \mu(\eta_{(j)}; \alpha)}{\partial \alpha} w(\eta_{(j)}) \{ Y_{i} - \mu(\eta_{(j)}; \alpha) \} \right] = 0$$

- Under SUTVA, SRA, and positivity, if $\mu(\eta; \alpha)$ and the propensity models are correctly specified, these estimating equations can be shown to be unbiased, and $\widehat{\alpha}$ is an M-estimator
- Here, if there is a sufficient # of individuals who received treatment consistent with at least one $\eta_{(j)}$, $j = 1, \ldots, m$, $\widehat{\alpha}$ should be a reasonable estimator in practice
- An augmented version of the estimating equation is possible

5. Multiple Decision Treatment Regimes: Framework and Fundamentals

- 5.1 Multiple Decision Treatment Regimes
- 5.2 Statistical Framework
- 5.3 The g-Computation Algorithm
- 5.4 Estimation of the Value of a Fixed Regime

5.5 Key References

References

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010a). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: Main content. *The International Journal of Biostatistics*, 6.

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010b). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: Proofs and additional results. *The International Journal of Biostatistics*, 6.

Robins, J. (1986). A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. *Mathematical Modelling*, 7, 1393–1512.

Robins, J. (1987). Addendum to: A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. *Computers and*

References

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P., editors, *Proceedings of the Second Seattle Symposium on Biostatistics*, pages 189–326, New York. Springer.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. *Biometrika*, 100, 681–694.

Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individual treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, 107, 1106–1118.