Erweiterte Debug Möglichkeiten beim Cortex-M3/M4

1 Trace -Data

Die TPIU (Trace Port Interface Unit) ist die Verbindung zwischen Host und ITM (Instrumentation Trace Model) bzw. Host und ETM (Embedded Trace Model).

Das ITM kann Trace Informationen als Pakete erzeugen:

- Software Trace, Software schreibt direkt in die ITM Register
- Hardware Trace, von DWT (data watchpoint trigger) erzeugte Pakete
- Time stamping, 21-bit Register innerhalb des ITM

Die DBGMCU (MCU debug component) stellt ein Register bereit mit dem die Zuordnung der Pins für Trace eingestellt und die TPIU aktiviert werden kann.

DBGMCU_CR register

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	DBG_ TIM11 STOP	DBG_ TIM10 STOP	DBG_ TIM9_ STOP	DBG_ TIM14 STOP	DBG_ TIM13 STOP	DBG_ TIM12_ STOP	Reserved		DGB_C AN2_S TOP	DBG_ TIM7_ STOP	DBG_ TIM6_ STOP	DBG_ TIM5_ STOP	DBG_ TIM8_ STOP	DBG_I2C2 _SMBUS_ TIMEOUT	
	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBG_I2C1 _SMBUS_ TIMEOUT	DBG_ CAN1 STOP	DBG_ TIM4_ STOP	DBG_ TIM3_ STOP	DBG_ TIM2_ STOP	DBG_ TIM1_ STOP	DBG_ WWDG STOP	DBG_ IWDG STOP	TRA MO [1:	DE_	TRACE IOEN	Reserved		DBG_ STAND BY	DBG_ STOP	DBG_ SLEEP
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			rw	rw	rw

Für die Aktivierung der TPIU muss TRACE_IOEN = 1 sein. Das kann mittels eines Init-Files automatisiert erfolgen, oder muss in der Debug-Session händisch im Systemviewer/Debug erfolgen.

1.1 Hardware

Bei der einfachsten Verdrahtung der JTAG-Schnittstelle wird nur TDO⇔JTDO für Trace-Zwecke bereitgestellt.

Trace kann deshalb nur im asynchronen Modus erfolgen, entsprechend können einige Optionen des Traceoutputs nicht genutzt werden. Hierzu gehören u.a.:

- Execution Profiling, Show Time
- Execution Profiling, Show Calls
- Logic Analyzer
- Performance Analyzer
- Code Coverage

TRACE pin assignment

Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only available if using Serial Wire mode (not in JTAG mode).

Table 230. Asynchronous TRACE pin assignment

TPUI pin name		Trace synchronous mode	STM32F10xxx pin		
Troi pin name	Туре	Description	assignment		
TRACESWO	0	TRACE Async Data Output	PB3		

1.2 Konfiguration der Entwicklungsumgebung

Debug Tool auswählen und *Settings* betätigen.

In der Registerkarte Debug muss

• Port SW (Single Wire) selektiert werden

In der Registerkarte *Trace* muss

- Core-Clock eingegeben werden
- Serial Wire Output Manchester ausgewählt werden
- Trace enable gesetzt sein

Bei Verwendung der Packs kann auf dieser Registerkarte das Konfigurationsfile aktiviert werden. Im Konfigurationsfile ist es **nicht** möglich, die TPIU zu *enablen*. Dieses **muss** zusätzlich, wie oben beschriebenen erfolgen.

Die Logdateien werden entsprechend groß und sollten nicht unnötig aktiviert werden.

Linker Debug Utilities

Use: ULINK Pro Cortex Debugger

Settings

S

Debug Trace | Flash Download | Pack

ULINK USB - JTAG/SW Adapter Serial No: P1125215 ▼

ULINK Version: ULINKpro

Device Family: Cortex-M

Max Clock: 33MHz

Firmware Version: V1.58

SWJ Port: SW

1.3 Debug Session

In der Debug Session kann das Window *Trace Data* angezeigt werden in dem die gewünschten Ausgaben dann erfolgen.

In *Display* kann ausgewählt werden, welche Pakete zur Anzeige kommen sollen.

In der Toolbar ist auch eine Suchfunktion, um in der Aufzeichnung einen bestimmten Datensatz zu finden.

(Beispiel: SPI2 Sendbyte)

