«Санкт-Петербургский политехнический университет Петра Великого» Институт компьютерных наук и технологий Высшая школа программной инженерии

ОТЧЕТ ПО КУРСОВОЙ РАБОТЕ

по дисциплине «Математические модели систем с распределёнными параметрами» Вариант Q12

Выполнила студентка гр. 3530904/90102

Ли Ицзя

Руководитель доцент

Воскобойников С.П.

Оглавление

Постановка задания	3
Дискретная модель	4
Анализ порядка аппроксимации уравнения и граничных условий, выражение для главного члена погрешности аппроксимации	6
Невязка и порядок погрешность аппроксимации уравнения	6
Невязка и порядок погрешности аппроксимации граничного условия	10
Преобразования разностной схемы для применения метода сопряженных градиентов	13
Решение системы методом сопряженных градиентов	17
Форма Хранения Матриц	20
Тесты	21
Константный тест	21
Линейный тест	21
Нелинейный тест	22
Вывод	23
Ппиложение	24

Постановка задания

Вариант Q. Постановка задачи. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в полом цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(k_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = f(r,z),$$

$$0 < c_{11} \le k_{1}(r,z) \le c_{12}, \qquad 0 < c_{21} \le k_{2}(r,z) \le c_{22},$$

$$0 < R_{0} \le r \le R_{1}, \quad 0 \le z \le L$$

с граничными условиями, определяемыми вариантом задания. Для решения системы алгебраических уравнений использовать метод сопряжённых градиентов с предобусловливанием. Матрица алгебраической системы должна храниться в упакованной форме

Форма (4)

Форма (4) отличается от формы (3) тем, что индексы главных диагональных элементов не хранятся и элементы главной диагонали располагаются в отдельном массиве Diag. В массиве А хранятся ненулевые элементы строго верхней треугольной части матрицы. Так как матрица хранится построчно, то в массиве IC хранятся номера столбцов ненулевых элементов верхнего треугольника матрицы. В массиве IR хранятся указатели на начало каждой строки в массивах А и IC. IR(N+1) содержит количество ненулевых элементов в строго верхнем треугольнике матрицы А плюс один.

		2			_	_			
DIAG	13	14	15	16	17	18	19	20	21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	7	1	8	2	3	9	4	10	5	6	11	12
IC	2	4	3	5	6	5	7	6	8	9	8	9

$$\begin{aligned}
u|_{r=R_0} &= g_1(z), & -k_1 \frac{\partial u}{\partial r}|_{r=R_1} &= \chi_2 u|_{r=R_1} - g_2(z), \, \chi_2 \ge 0, \\
12. & k_2 \frac{\partial u}{\partial z}|_{z=0} &= \chi_3 u|_{z=0} - g_3(r), \, \chi_3 \ge 0, & -k_2 \frac{\partial u}{\partial z}|_{z=L} &= \chi_4 u|_{z=L} - g_4(r), \, \chi_4 \ge 0
\end{aligned}$$

Дискретная модель

Введем обозначения:

$$h_r = \frac{r_{R1} + r_{R0}}{N_r}$$

$$h_z = \frac{z_L + z_0}{N_Z}$$

Основная сетка:

$$r_i = R_0 + ih_r, \quad i = 0,1,...,N_r$$

 $z_i = jh_z, \quad j = 0,1,...,N_z$

Введем вспомогательную сетку:

$$r_{i-\frac{1}{2}} = \frac{r_i + r_{i-1}}{2}$$

$$z_{j-1/2} = \frac{z + z_{j-1}}{2}$$

$$\hbar_i = \begin{cases} \frac{h_r}{2} & i = 0\\ h_r & i = 1, \dots, N-1\\ \frac{h_r}{2} & i = N \end{cases}$$

Аналогично произведем разбиения для переменной z

$$\hbar_{j} = \begin{cases} \frac{h_{z}}{2} & j = 0\\ h_{z} & j = 1, \dots, N - 1\\ \frac{h_{z}}{2} & j = N \end{cases}$$

Умножим исходное уравнение на г, проинтегрируем по вспомогательной сетке:

$$\begin{split} -\left[\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\frac{\partial}{\partial r}\Big(rk(r)\frac{\partial u}{\partial r}\Big)drdz + \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}r\frac{\partial^2 u}{\partial z^2}drdz\right] &= \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf\,drdz \\ -\left[\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\Big(r_{i+\frac{1}{2}}k\left(r_{i+\frac{1}{2}}\right)\frac{\partial u}{\partial r}|_{r_{i+\frac{1}{2}}}\Big)dz - \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\Big(r_{i-\frac{1}{2}}k\left(r_{i-\frac{1}{2}}\right)\frac{\partial u}{\partial r}|_{r_{i-\frac{1}{2}}}\Big)dz \\ + \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\Big(r\frac{\partial u}{\partial z}|_{z_{j+\frac{1}{2}}}\Big)dr - \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\Big(r\frac{\partial u}{\partial z}|_{z_{j-\frac{1}{2}}}\Big)dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf\,drdz \end{split}$$

Воспользуемся формулой средних прямоугольников для вычисления значений интегралов:

$$\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \phi(r,z) dr \approx h_r \phi(r_i,z) = h_r \phi_i$$

$$\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \phi(r,z) dz \approx h_z \phi(r,z_j) = h_r \phi_j$$

$$\int_{z_{j-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r_i \phi \, dr dz \approx r_i h_r h_z \phi_{i,j}$$

Также аппроксимируем производные по формуле центральных разностей:

$$\begin{split} k\left(r_{i+\frac{1}{2}}\right) & \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2},Z=Z_j}} = k\left(r_{i+\frac{1}{2}}\right) \frac{u_{i+1,j}-u_{i,j}}{h_r} \\ k\left(r_{i-\frac{1}{2}}\right) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2},Z=Z_j}} = k\left(r_{i-\frac{1}{2}}\right) \frac{u_{i,j}-u_{i-1,j}}{h_r} \\ & \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2},r=r_j}} = \frac{u_{i,j+1}-u_{i,j}}{h_z} \\ & \frac{\partial u}{\partial z} \Big|_{z=z_{j-\frac{1}{2},r=r_j}} = \frac{u_{i,j}-u_{i,j-1}}{h_z} \end{split}$$

Получим:

$$\begin{split} -\left[h_{z}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},z_{j}\right)\frac{u_{i+1,j}-u_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}\left(r_{i-\frac{1}{2}},z_{j}\right)\frac{u_{i,j}-u_{i-1,j}}{h_{r}}\\ +h_{r}r_{i}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}\right]\\ &=r_{i}h_{r}h_{z}f_{i,j}\\ &\vdots\\ 1,2,..,N_{r}-1\;;\;j=1,2,..,N_{z}-1 \end{split}$$

Аппроксимация граничных условий:

1. При
$$i = 0, j = 1, ..., N_z - 1$$

$$u_{i,j}=g_1(z_j)$$

2. При $i = N_r, j = 1, ..., N_z - 1$

$$\begin{split} -\left[-h_{z}R_{1}\left(\chi_{2}u_{N,j}-g_{2}(z_{j})\right)-h_{z}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}},z_{j}\right)\frac{u_{N,j}-u_{N-1,j}}{h_{r}}\right.\\ &+R_{1}\frac{h_{r}}{2}k_{2}\left(R_{1},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-R_{1}\frac{h_{r}}{2}k_{2}\left(R_{1},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}\right]\\ &=R_{1}\frac{h_{r}}{2}h_{z}f_{i,j} \end{split}$$

3. При $i = 1, ..., N_r - 1, j = 0$

$$\begin{split} -[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1\Big(r_{i+\frac{1}{2}},0\Big)\frac{u_{i+1,j}-u_{i,j}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1\Big(r_{i-\frac{1}{2}},0\Big)\frac{u_{i,j}-u_{i-1,j}}{h_r} \\ + r_ih_rk_2(r_i,z_{\frac{1}{2}})\frac{u_{i,j+1}-u_{i,j}}{h_z} - h_rr_i(\chi_3u_{i,j}-g_3(r_i)] &= \frac{r_ih_rh_zf_{ij}}{2} \end{split}$$

4. При $i = 1, ..., N_r - 1, j = N_z$

$$-\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1\left(r_{i+\frac{1}{2}},L\right)\frac{u_{i+1,j}-u_{i,j}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1\left(r_{i-\frac{1}{2}},L\right)\frac{u_{i,j}-u_{i-1,j}}{h_r} - h_rr_i(\chi_4u_{i,N}-g_4(r_i)) - h_rr_ik_2\left(r_i,z_{N-\frac{1}{2}}\right)\frac{u_{i,N}-u_{i,N-1}}{h_z}\right] = \frac{r_ih_rh_zf_{i,j}}{2}$$

5. При
$$i = 0, j = 0$$

$$u_{i,j} = g_1(z_j)$$

6. При $i = N_r, j = 0$

$$\begin{split} -\left[-\frac{h_{z}}{2}R_{1}\left(\chi_{2}u_{N,0}-g_{2}(0)\right)-\frac{h_{z}}{2}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}},0\right)\frac{u_{N,0}-u_{N-1,0}}{h_{r}}\right.\\ \left.+\frac{h_{r}}{2}R_{1}k_{2}\left(R_{1},z_{\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-\frac{h_{r}}{2}R_{1}\left(\chi_{3}u_{N,0}-g_{3}(R_{1})\right)\right]=\frac{R_{1}h_{r}h_{z}f_{N,0}}{4} \end{split}$$

7. При $i = 0, j = N_z$

$$u_{i,j} = g_1(L)$$

8. При $i = N_r, j = N_z$

$$\begin{split} - \left[-\frac{h_z}{2} R_1 \left(\chi_2 u_{N,N} - g_2(L) \right) - \frac{h_z}{2} r_{N - \frac{1}{2}} k_1 \left(r_{N - \frac{1}{2}}, L \right) \frac{u_{N,N} - u_{N-1,N}}{h_r} \\ - \frac{h_r}{2} R_1 \left(\chi_4 u_{N,N} - g_4(R_1) \right) - \frac{h_r}{2} R_1 k_2 \left(R_1, z_{N - \frac{1}{2}} \right) \frac{u_{N,N} - u_{N,N-1}}{h_z} \right] \\ = \frac{R_1 h_r h_z f_{N,N}}{4} \end{split}$$

Анализ порядка аппроксимации уравнения и граничных условий, выражение для главного члена погрешности аппроксимации

Невязка и порядок погрешность аппроксимации уравнения

Преобразование:

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(k_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = f(r,z)$$

$$-\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right] = rf(r,z)$$

$$\tilde{k}_{1}(r,z) = rk_{1}(r,z), \quad \tilde{k}_{2}(r,z) = rk_{2}(r,z), \quad \tilde{q}(r,z) = rq(r,z)$$

$$\tilde{f}(r,z) = rf(r,z)$$

$$-\left[\frac{\partial}{\partial r}\left(\tilde{k}_1(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(\tilde{k}_2(r,z)\frac{\partial u}{\partial z}\right)\right] = \tilde{f}(r,z)$$

При анализе порядка аппроксимации, для простого, будем писать просто k_1, k_2, f вместо $\tilde{k}_1, \tilde{k}_2, \tilde{f}$

Невязка определяется как разность между правой и левой частью уравнения при условии, что вместо приближенного решения мы подставляем туда точное:

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \big(x_{i+1/2}, y_j \big) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \big(x_{i-1/2}, y_j \big) \frac{u_{i,j} - u_{i-1,j}}{h_r} \\ &+ h_r k_2 \big(x_i, y_{j+1/2} \big) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \big(x_i, y_{j-1/2} \big) \frac{u_{i,j} - u_{i,j-1}}{h_z} \end{split}$$

Раскладываем по степениям h точное решение в узлах и коэффициент k

$$\begin{split} u_{i+1,j} &= u \Big(x_i + h_r, y_j \Big) \\ &= u_{i,j} + h_r \frac{\partial u_{i,j}}{\partial r} + \frac{h_r^2}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} + \frac{h_r^3}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^5) \\ &\frac{u_{i+1,j} - u_{i,j}}{h_r} = \frac{\partial u_{i,j}}{\partial r} + \frac{h_r}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^3}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^4) \\ k_{1,i+\frac{1}{2},j} &= k_1 \left(r_i + \frac{h_r}{2}, z_j \right) = k_{1,i,j} + \frac{h_r}{2} \frac{\partial k_{1,i,j}}{\partial r} + \frac{h_r^2}{8} \frac{\partial^2 k_{1,i,j}}{\partial r^2} + \frac{h_r^3}{48} \frac{\partial^3 k_{1,i,j}}{\partial r^3} + O(h_r^4) \\ k_{1,i+\frac{1}{2},j} &= \frac{u_{i+1,j} - u_{i,j}}{h_r} = \left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} + h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^4) \end{split}$$

$$\begin{split} u_{i-1,j} &= u \Big(r_i - h_r, z_j \Big) = u_{i,j} - h_r \frac{\partial u_{i,j}}{\partial r} + \frac{h_r^2}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} - \frac{h_r^3}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^5) \\ \frac{u_{i,j} - u_{i-1,j}}{h_r} &= \frac{\partial u_{i,j}}{\partial r} - \frac{h_r}{2} \frac{\partial^2 u_{i,j}}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u_{i,j}}{\partial r^3} - \frac{h_r^3}{24} \frac{\partial^4 u_{i,j}}{\partial r^4} + O(h_r^4) \\ k_{1,i-\frac{1}{2},j} &= k_1 \left(r_i - \frac{h_r}{2}, z_j \right) = k_{1,i,j} - \frac{h_r}{2} \frac{\partial k_{1,i,j}}{\partial r} + \frac{h_r^2}{8} \frac{\partial^2 k_{1,i,j}}{\partial r^2} - \frac{h_r^3}{48} \frac{\partial^3 k_{1,i,j}}{\partial r^3} + O(h_r^4) \end{split}$$

$$\begin{split} k_{1,i-\frac{1}{2},j} \frac{u_{i,j} - u_{i-1,j}}{h_r} &= \left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} - h_r \left[\frac{1}{2} k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} - h_r^3 \left[\frac{1}{24} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^4) \end{split}$$

$$\begin{split} h_{z}k_{1}\left(r_{i+\frac{1}{2}},z_{j}\right) \frac{u_{i+1,j}-u_{i,j}}{h_{r}} - h_{z}k_{1}\left(r_{i-\frac{1}{2}},z_{j}\right) \frac{u_{i,j}-u_{i-1,j}}{h_{r}} \\ &= h_{z} \begin{bmatrix} \left[k_{1}\frac{\partial u}{\partial r}\right]_{i,j} + h_{r}\left[\frac{1}{2}k_{1}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{2}\frac{\partial k_{1}}{\partial r}\frac{\partial u}{\partial r}\right]_{i,j} + h_{r}^{2}\left[\frac{1}{6}k_{1}\frac{\partial^{3}u}{\partial r^{3}} + \frac{1}{4}\frac{\partial k_{1}}{\partial r}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{8}\frac{\partial^{2}k_{1}}{\partial r^{2}}\frac{\partial u}{\partial r}\right]_{i,j} + \\ &+ h_{r}^{3}\left[\frac{1}{24}k_{1}\frac{\partial^{4}u}{\partial r^{4}} + \frac{1}{12}\frac{\partial k_{1}}{\partial r}\frac{\partial^{3}u}{\partial r^{3}} + \frac{1}{16}\frac{\partial^{2}k_{1}}{\partial r^{2}}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{48}\frac{\partial^{3}k_{1}}{\partial r^{3}}\frac{\partial u}{\partial r}\right]_{i,j} - \\ &- \left[k_{1}\frac{\partial u}{\partial r}\right]_{i,j} + h_{r}\left[\frac{1}{2}k_{1}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{2}\frac{\partial k_{1}}{\partial r}\frac{\partial u}{\partial r}\right]_{i,j} - h_{r}^{2}\left[\frac{1}{6}k_{1}\frac{\partial^{3}u}{\partial r^{3}} + \frac{1}{4}\frac{\partial k_{1}}{\partial r}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{8}\frac{\partial^{2}k_{1}}{\partial r^{2}}\frac{\partial u}{\partial r}\right]_{i,j} + \\ &+ h_{r}^{3}\left[\frac{1}{24}k_{1}\frac{\partial^{4}u}{\partial r^{4}} + \frac{1}{12}\frac{\partial k_{1}}{\partial r}\frac{\partial^{3}u}{\partial r^{3}} + \frac{1}{16}\frac{\partial^{2}k_{1}}{\partial r^{2}}\frac{\partial^{2}u}{\partial r^{2}} + \frac{1}{48}\frac{\partial^{3}k_{1}}{\partial r^{3}}\frac{\partial u}{\partial r}\right]_{i,j} + O(h_{r}^{4}) \end{split}$$

Сокращаются четные степени

$$\begin{split} & h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} = h_z \left[h_r \left(k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} \right)_{i,j} + h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^4) \right] \\ \text{T.K. } k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial k_1}{\partial r} \frac{\partial u}{\partial r} = \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right), \text{ получаем, что} \\ h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} = h_z \left[h_r \left(\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right)_{i,j} + h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^4) \right] \\ u_{i,j+1} = u \left(r_i, z_j + h_z \right) = u_{i,j} + h_z \frac{\partial u_{i,j}}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 u_{i,j}}{\partial z} + \frac{h_z^3}{2} \frac{\partial^3 u_{i,j}}{\partial z^3} + \frac{h_z^4}{24} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^5) \\ u_{i,j+1} - u_{i,j} = \frac{\partial u_{i,j}}{\partial z} + \frac{h_z}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} + \frac{h_z^2}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} + \frac{h_z^2}{8} \frac{\partial^2 k_{2,i,j}}{\partial z^4} + O(h_z^4) \\ k_{2,i,j+\frac{1}{2}} = k_2 \left(r_i, z_j + \frac{h_z}{2} \right) = k_{2,i,j} + \frac{h_z}{2} \frac{\partial^3 k_{2,i,j}}{\partial z} + \frac{h_z^2}{8} \frac{\partial^2 k_{2,i,j}}{\partial z^2} + \frac{h_z^3}{48} \frac{\partial^3 k_{2,i,j}}{\partial z^3} + O(h_z^4) \\ k_{2,i,j+\frac{1}{2}} - \frac{u_{i+1,j} - u_{i,j}}{h_z} = \left[k_2 \frac{\partial u}{\partial z} \right]_{i,j} + h_z \left[\frac{1}{2} k_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} + \frac{1}{48} \frac{\partial^2 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + O(h_z^4) \\ + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} + \frac{1}{48} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + O(h_z^4) \\ + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} + \frac{1}{16} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z} + \frac{1}{48} \frac{\partial^3 k_2}$$

$$u_{i,j-1} = u(r_i, z_j - h_z) = u_{i,j} - h_z \frac{\partial u_{i,j}}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} - \frac{h_z^3}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} + \frac{h_z^4}{24} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^5)$$

$$\frac{u_{i,j} - u_{i,j-1}}{h_z} = \frac{\partial u_{i,j}}{\partial z} - \frac{h_z}{2} \frac{\partial^2 u_{i,j}}{\partial z^2} + \frac{h_z^2}{6} \frac{\partial^3 u_{i,j}}{\partial z^3} - \frac{h_z^3}{24} \frac{\partial^4 u_{i,j}}{\partial z^4} + O(h_z^4)$$

$$k_{2,i,j-\frac{1}{2}} = k_2 \left(r_i, z_j - \frac{h_z}{2} \right) = k_{2,i,j} - \frac{h_z}{2} \frac{\partial k_{2,i,j}}{\partial z} + \frac{h_z^2}{8} \frac{\partial^2 k_{2,i,j}}{\partial z^2} - \frac{h_z^3}{48} \frac{\partial^3 k_{2,i,j}}{\partial z^3} + O(h_z^4)$$

$$k_{2,i,j-\frac{1}{2}} \frac{u_{i,j} - u_{i,j-1}}{h_z} = \left[k_2 \frac{\partial u}{\partial z} \right]_{i,j} - h_z \left[\frac{1}{2} k_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{48} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \frac{1}{48} \frac{\partial^2 k_2}{\partial z^3} \frac{\partial u}{\partial z} + \frac{1}{48} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + O(h_z^4)$$

$$O(h_z^4)$$

$$\begin{split} h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right) &\frac{u_{i,j+1}-u_{i,j}}{h_{z}} - h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right) \frac{u_{i,j}-u_{i,j-1}}{h_{z}} = \\ & \left[\left[k_{2}\frac{\partial u}{\partial r}\right]_{i,j} + h_{z}\left[\frac{1}{2}k_{2}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{2}\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}\right]_{i,j} + h_{z}^{2}\left[\frac{1}{6}k_{2}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{4}\frac{\partial k_{2}}{\partial z}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial u}{\partial z}\right]_{i,j} + \\ & + h_{z}^{3}\left[\frac{1}{24}k_{2}\frac{\partial^{4}u}{\partial z^{4}} + \frac{1}{12}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{16}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{48}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right]_{i,j} - \\ & - \left[k_{2}\frac{\partial u}{\partial z}\right]_{i,j} + h_{z}\left[\frac{1}{2}k_{2}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{2}\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}\right]_{i,j} - h_{z}^{2}\left[\frac{1}{6}k_{2}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{4}\frac{\partial k_{2}}{\partial z}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial u}{\partial z}\right]_{i,j} + \\ & + h_{z}^{3}\left[\frac{1}{24}k_{2}\frac{\partial^{4}u}{\partial z^{4}} + \frac{1}{12}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}} + \frac{1}{16}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}} + \frac{1}{48}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right]_{i,j} + O(h_{z}^{4}) \end{split}$$

Четные степени сокрааются

$$\begin{split} &h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}&=h_{r}\left[h_{z}\left(k_{2}\frac{\partial^{2}u}{\partial z^{2}}+\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}\right)_{i,j}+h_{z}^{3}\left(\frac{1}{12}k_{2}\frac{\partial^{4}u}{\partial z^{4}}+\frac{1}{6}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}}+\frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{24}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right)_{i,j}+O(h_{z}^{4})\right]\\ &\text{Так как}k_{2}\frac{\partial^{2}u}{\partial z^{2}}+\frac{\partial k_{2}}{\partial z}\frac{\partial u}{\partial z}&=\frac{\partial}{\partial z}\left(k_{2}\frac{\partial u}{\partial z}\right),\text{ получаем, что}\\ &h_{r}k_{2}\left(r_{i},z_{j+\frac{1}{2}}\right)\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}k_{2}\left(r_{i},z_{j-\frac{1}{2}}\right)\frac{u_{i,j}-u_{i,j-1}}{h_{z}}&=h_{r}\left[h_{z}\left(\frac{\partial}{\partial z}\left(k_{2}\frac{\partial u}{\partial z}\right)\right)_{i,j}+h_{z}^{3}\left(\frac{1}{12}k_{2}\frac{\partial^{4}u}{\partial z^{4}}+\frac{1}{6}\frac{\partial k_{2}}{\partial z}\frac{\partial^{3}u}{\partial z^{3}}+\frac{1}{8}\frac{\partial^{2}k_{2}}{\partial z^{2}}\frac{\partial^{2}u}{\partial z^{2}}+\frac{1}{24}\frac{\partial^{3}k_{2}}{\partial z^{3}}\frac{\partial u}{\partial z}\right)_{i,j}+O(h_{z}^{4})\right] \end{split}$$

Подсталяем в невязку получившиеся разложения

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \left(r_{i + \frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i - \frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} + \\ h_r k_2 \left(r_i, z_{j + \frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \left(r_i, z_{j - \frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z f_{i,j} + \\ h_z \left[h_r \left(\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right)_{i,j} + h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + \\ O(h_r^4) \right] + h_r \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} + h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 u}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 u}{\partial z^2} \frac{\partial^2$$

Группируем по степени hr и hz

$$\begin{split} \xi_{i,j} &= h_r h_z f_{i,j} + h_z k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} + \\ h_r k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + h_z \left[h_r^3 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + \\ O(h_r^4) \right] + h_r \left[h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^4) \right] \end{split}$$

Чтобы вычислить порядок аппроксимации, нормируем невязку $\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{h}$

$$\begin{split} \tilde{\xi}_{i,j} &= f_{i,j} + k_1 \left(r_{i+\frac{1}{2}}, z_j \right) \frac{u_{i+1,j} - u_{i,j}}{h_r^2} - k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r^2} + \\ k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z^2} - k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z^2} = \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + \\ h_r^2 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^3) + h_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^3) \end{split}$$

Выполним обратную замену:

$$\begin{split} \tilde{\xi}_{i,j} &= \left[rf + \frac{\partial}{\partial r} \left(rk_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} \\ &+ h_r^2 \left(\frac{1}{12} rk_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial rk_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 rk_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 rk_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^3) \\ &+ rh_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^3) \\ &\left[rf + \frac{\partial}{\partial r} \left(rk_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} = 0 \end{split}$$

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2$$

 $p_z = 2 - 0 = 2$

Главный член погрешности по r

$$\Phi_r = \frac{1}{12} r k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r}$$

Главный член погрешности по z

$$\Phi_z = r(\frac{1}{12}k_2\frac{\partial^4 u}{\partial z^4} + \frac{1}{6}\frac{\partial k_2}{\partial z}\frac{\partial^3 u}{\partial z^3} + \frac{1}{8}\frac{\partial^2 k_2}{\partial z^2}\frac{\partial^2 u}{\partial z^2} + \frac{1}{24}\frac{\partial^3 k_2}{\partial z^3}\frac{\partial u}{\partial z})$$

Невязка и порядок погрешности аппроксимации граничного условия

1)
$$-k_1(r) \frac{\partial u}{\partial r}\Big|_{r=R_1} = \chi_2 u\Big|_{r=R_1} - g_2(z)$$

$$\begin{split} \xi_{i,j} &= \frac{h_r}{2} h_z f_{i,j} - h_z \left(\chi_2 u_{i,j} - g_2 (z_j) \right) - h_z k_1 \left(r_{i-\frac{1}{2}}, z_j \right) \frac{u_{i,j} - u_{i-1,j}}{h_r} \\ &\quad + \frac{h_r}{2} k_2 \left(r_i, z_{j+\frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - \frac{h_r}{2} k_2 \left(r_i, z_{j-\frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} \end{split}$$

Подставляем полученные ранее произведения:

$$\begin{split} & \xi_{i,j} \\ & = \frac{h_r}{2} h_z f_{i,j} - h_z \left(\chi_2 u_{i,j} - g_2(z_j) \right) \\ & - h_z \left[\left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} - \frac{h_r}{2} \left[\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right]_{i,j} + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} - \right] \\ & - h_z \left[- h_z^3 \left[\frac{1}{24} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^4) \right] \\ & + \frac{h_r}{2} \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} + h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} \right] \\ & + O(h_z^4) \end{split}$$

Группируем по степениям hr и hz

$$\xi_{i,j} = \frac{h_r}{2} h_z \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right) \right]_{i,j} - h_z \left[k_1 \frac{\partial u}{\partial r} + \left(\chi_2 u - g_2(z) \right) \right]_{i,j}$$

$$- h_z \left[h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + O(h_r^3) \right]$$

$$+ \frac{h_r}{2} \left[h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} + O(h_z^4) \right]$$

Для вычисления порядка аппроксимации нормируем невязку

$$\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{2h_z}$$

$$\begin{split} \tilde{\xi}_{i,j} &= \frac{h_r}{2} \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right) \right]_{i,j} - \left[k_1 \frac{\partial u}{\partial r} + \left(\chi_2 u - g_2(z) \right) \right]_{i,j} \\ &- h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} \\ &+ O(h_r^3) \frac{h_r}{2} \left[h_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{i,j} \\ &+ O(h_z^3) \right] \end{split}$$

$$\left[k_1 \frac{\partial u}{\partial r} + \chi_2 u - g_2(z)\right]_{r=b} = 0$$

$$f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right) = 0$$

Аналогично выполним обратную замену, получим:

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2,$$

 $p_z = 2 - 0 = 2$

Главные члены погрешности

$$\Omega_r = -\left[\frac{1}{6}rk_1\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial rk_1}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2 rk_1}{\partial r^2}\frac{\partial u}{\partial r}\right]$$

$$\Omega_z = r\left(\frac{1}{24}k_2\frac{\partial^4 u}{\partial z^4} + \frac{1}{12}\frac{\partial k_2}{\partial z}\frac{\partial^3 u}{\partial z^3} + \frac{1}{16}\frac{\partial^2 k_2}{\partial z^2}\frac{\partial^2 u}{\partial z^2} + \frac{1}{48}\frac{\partial^3 k_2}{\partial z^3}\frac{\partial u}{\partial z}\right)$$

2)
$$k_2 \frac{\partial u}{\partial z}\Big|_{z=0} = \chi_3 u\Big|_{z=0} - g_3(r), i = 1, 2, ..., N_r - 1, j = N_z$$

$$\begin{split} \tilde{\xi}_{i,j} &= \left[k_2 \frac{\partial u}{\partial z} - \chi_3 u - g_3(r)\right]_{i,j} + \frac{h_z}{2} \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right)\right]_{i,j} \\ &+ h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z}\right]_{i,j} + O(h_z^3) \\ &+ \frac{h_z}{2} \left[h_r^2 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r}\right)_{i,j} + O(h_r^3)\right] \\ & \left[k_2 \frac{\partial u}{\partial z} - \chi_3 u - g_3(r)\right]_{z=0} = 0 \\ &f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right) = 0 \end{split}$$

Аналогично выполним обратную замену, получим:

Порядок аппроксимации уравнения по r и z:

$$p_r = 2 - 0 = 2$$
, $p_z = 2 - 0 = 2$,

Главные члены погрешности:

$$\Omega_r = \frac{1}{24} r k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r}$$

$$\Omega_z = r \left(\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right)$$

3)
$$-k_2 \frac{\partial u}{\partial z}\Big|_{z=L} = \chi_4 u\Big|_{z=L} - g_4(r), \chi_4 \ge 0 \ i = 1, 2, ..., N_r - 1, j = N_z$$

$$\begin{split} \tilde{\xi}_{i,j} &= \left[k_2 \frac{\partial u}{\partial z} + \chi_4 u - g_4(r) \right]_{i,j} + \frac{h_z}{2} \left[f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} \\ &- h_z^2 \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} + O(h_z^3) \\ &+ \frac{h_z}{2} \left[h_r^2 \left(\frac{1}{12} k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{6} \frac{\partial k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 k_1}{\partial r^3} \frac{\partial u}{\partial r} \right)_{i,j} + O(h_r^3) \right] \end{split}$$

$$\left[k_2 \frac{\partial u}{\partial z} + \chi_4 u - g_4(r)\right]_{z=d} = 0$$

$$f + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z}\right) = 0$$

Аналогично выполним обратную замену, получим:

Порядок аппроксимации уравнения по г и z:

$$p_r = 2 - 0 = 2$$
,
 $p_z = 2 - 0 = 2$

Главные члены погрешности

$$\begin{split} \Omega_r &= \frac{1}{24} r k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \\ \Omega_z &= -r \left[\frac{1}{6} k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial u}{\partial z} \right] \end{split}$$

Преобразования разностной схемы для применения метода сопряженных градиентов

Разностная схема с приведенными подобными членами:

Основная сетка для
$$i=1,\dots,N_r-1, \ j=1,\dots,N_z-1$$

$$-\frac{h_zr_{i+\frac{1}{2}}k_1\left(r_{i+\frac{1}{2}},z_j\right)}{h_r}v_{i+1,j} + \left[\frac{h_zr_{i+\frac{1}{2}}k_1\left(r_{i+\frac{1}{2}},z_j\right)}{h_r} + \frac{h_zr_{i-\frac{1}{2}}k_1\left(r_{i-\frac{1}{2}},z_j\right)}{h_r} + \frac{h_rr_ik_2\left(r_i,z_{j+\frac{1}{2}}\right)}{h_z} + \frac{h_rr_ik_2\left(r_i,z_{j+\frac{1}{2}}\right)}{h_z}\right]v_{i,j} \\ - \frac{h_zr_{i-\frac{1}{2}}k_1\left(r_{i-\frac{1}{2}},z_j\right)}{h_r}v_{i-1,j} - \frac{h_rr_ik_2\left(r_i,z_{j+\frac{1}{2}}\right)}{h_z}v_{i,j+1} - \frac{h_rr_ik_2\left(r_i,z_{j+\frac{1}{2}}\right)}{h_z}v_{i,j-1} = r_ih_rh_zf_{i,j}$$

Понижение размерности матрицы методом исключения неизвестных Пронумеруем узлы матрицы следующим образом Будим принимать, что $N_x = N_r = 4$, $N_y = N_z = 4$

Перейдем к одному индексу
$$i=0,\ldots,N_r,\;j=0,\ldots,N_Z$$

$$m=jL+i+1,\qquad L=N_r+1$$

$$v_{i,j-1}\to w_{m-L},$$

$$v_{i-1,j} \rightarrow w_{m-1},$$
 $v_{i,j} \rightarrow w_m,$
 $v_{i+1,j} \rightarrow w_{m+1},$
 $v_{i,j+1} \rightarrow w_{m+L}$

Основная сетка

$$\begin{split} i &= 1, \dots, N_r - 1, \quad j = 1, \dots, N_z - 1, \quad m = jL + i + 1 \\ a_m &= -\frac{\frac{h_r r_i k_2 \left(r_{i}, z_{j-\frac{1}{2}}\right)}{h_z}}{h_z}, \\ b_m &= -\frac{\frac{h_z r_{i-\frac{1}{2}} k_1 \left(r_{i-\frac{1}{2}}, z_j\right)}{h_r}}{h_r}, \\ c_m &= \frac{\frac{h_z r_{i+\frac{1}{2}} k_1 \left(r_{i+\frac{1}{2}}, z_j\right)}{h_r} + \frac{\frac{h_z r_{i-\frac{1}{2}} k_1 \left(r_{i-\frac{1}{2}}, z_j\right)}{h_r} + \frac{h_r r_i k_2 \left(r_{i}, z_{j+\frac{1}{2}}\right)}{h_z}}{h_z} + \frac{\frac{h_r r_i k_2 \left(r_{i}, z_{j-\frac{1}{2}}\right)}{h_z}}{h_z} \\ d_m &= -\frac{\frac{h_z r_{i+\frac{1}{2}} k_1 \left(r_{i+\frac{1}{2}}, z_j\right)}{h_r}}{h_r} \\ e_m &= -\frac{\frac{h_r r_i k_2 \left(r_{i}, z_{j+\frac{1}{2}}\right)}{h_z}}{h_z} \\ g_m &= r_i h_r h_z f_{i,j} \\ a_m w_{m-L} + b_m w_{m-1} + c_m w_m + d_m w_{m+1} e_m w_{m-L} = g_m \end{split}$$

Остальные:

1. При
$$i = 0, j = 1, ..., N_z - 1$$

$$u_{i,j} = g_1(z_j)$$

$$a_m = 0$$

$$b_m = 0$$

$$c_m = 1$$

$$d_m = 0$$

$$e_m = 0$$

$$g_m = g_1(z_i)$$

2. При
$$i = N_r, j = 1, ..., N_z - 1$$

$$\begin{split} - \left[-h_z R_1 \left(\chi_2 u_{N,j} - g_2(z_j) \right) - h_z r_{N - \frac{1}{2}} k_1 \left(r_{N - \frac{1}{2}}, z_j \right) \frac{u_{N,j} - u_{N-1,j}}{h_r} \\ + R_1 \frac{h_r}{2} k_2 \left(R_1, z_{j + \frac{1}{2}} \right) \frac{u_{i,j+1} - u_{i,j}}{h_z} - R_1 \frac{h_r}{2} k_2 \left(R_1, z_{j - \frac{1}{2}} \right) \frac{u_{i,j} - u_{i,j-1}}{h_z} \right] \\ = R_1 \frac{h_r}{2} h_z f_{i,j} \end{split}$$

$$a_{m} = \frac{R_{1} \frac{h_{r}}{2} k_{2} \left(R_{1}, z_{j-\frac{1}{2}}\right)}{h_{z}}$$

$$b_{m} = \frac{h_{z} r_{N-\frac{1}{2}} k_{1} \left(r_{N-\frac{1}{2}}, z_{j}\right)}{h_{r}}$$

$$c_{m} = h_{z} R_{1} \chi_{2} + \frac{h_{z} r_{N-\frac{1}{2}} k_{1} \left(r_{N-\frac{1}{2}}, z_{j}\right)}{h_{r}} + \frac{R_{1} \frac{h_{r}}{2} k_{2} \left(R_{1}, z_{j+\frac{1}{2}}\right)}{h_{z}} + \frac{R_{1} \frac{h_{r}}{2} k_{2} \left(R_{1}, z_{j-\frac{1}{2}}\right)}{h_{z}}$$

$$d_{m} = 0$$

$$g_{m} = R_{1} \frac{h_{r}}{2} h_{z} f_{i,j} - h_{z} R_{1} g_{2} \left(z_{j}\right)$$

3. При $i=1,...,N_r-1,j=0$

$$\begin{split} -[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1\left(r_{i+\frac{1}{2}},0\right) & \frac{u_{i+1,j}-u_{i,j}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1\left(r_{i-\frac{1}{2}},0\right) \frac{u_{i,j}-u_{i-1,j}}{h_r} \\ & + r_ih_rk_2(r_i,z_{\frac{1}{2}}) \frac{u_{i,j+1}-u_{i,j}}{h_z} - h_rr_i(\chi_3u_{i,j}-g_3(r_i)] = \frac{r_ih_rh_zf_{ij}}{2} \end{split}$$

$$\begin{split} c_m &= \frac{\frac{h_z}{2} r_{i-\frac{1}{2}} k_1 \left(r_{i-\frac{1}{2}}, 0 \right)}{h_r} \\ c_m &= \frac{\frac{h_z}{2} r_{i+\frac{1}{2}} k_1 \left(r_{i+\frac{1}{2}}, 0 \right)}{h_r} + \frac{\frac{h_z}{2} r_{i-\frac{1}{2}} k_1 \left(r_{i-\frac{1}{2}}, 0 \right)}{h_r} + \frac{r_i h_r k_2 \left(r_i, z_{\frac{1}{2}} \right)}{h_z} + h_r r_i \chi_3 \\ d_m &= \frac{\frac{h_z}{2} r_{i+\frac{1}{2}} k_1 \left(r_{i+\frac{1}{2}}, 0 \right)}{h_r} \\ e_m &= \frac{r_i h_r k_2 \left(r_i, z_{\frac{1}{2}} \right)}{h_z} \\ g_m &= \frac{r_i h_r h_z f_{ij}}{2} + h_r r_i g_3(r_i) \end{split}$$

4. При $i = 1, ..., N_r - 1, j = N_z$

$$-\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1\left(r_{i+\frac{1}{2}},L\right)\frac{u_{i+1,j}-u_{i,j}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1\left(r_{i-\frac{1}{2}},L\right)\frac{u_{i,j}-u_{i-1,j}}{h_r} - h_rr_i(\chi_4u_{i,N}-g_4(r_i))\right] - h_rr_ik_2\left(r_i,z_{N-\frac{1}{2}}\right)\frac{u_{i,N}-u_{i,N-1}}{h_z} = \frac{r_ih_rh_zf_{i,j}}{2}$$

$$a_{m} = \frac{h_{r}r_{i}k_{2}\left(r_{i}, z_{N-\frac{1}{2}}\right)}{h_{z}}$$

$$b_{m} = \frac{\frac{h_{z}}{2}r_{i-\frac{1}{2}}k_{1}\left(r_{i-\frac{1}{2}}, L\right)}{h_{r}}$$

$$\begin{split} c_{m} &= \frac{\frac{h_{Z}}{2}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},L\right)}{h_{r}} + \frac{\frac{h_{Z}}{2}r_{i-\frac{1}{2}}k_{1}\left(r_{i-\frac{1}{2}},L\right)}{h_{r}} + h_{r}r_{i}\chi_{4} + \frac{h_{r}r_{i}k_{2}\left(r_{i},z_{N-\frac{1}{2}}\right)}{h_{z}} \\ d_{m} &= \frac{\frac{h_{Z}}{2}r_{i+\frac{1}{2}}k_{1}\left(r_{i+\frac{1}{2}},L\right)}{h_{r}} \\ e_{m} &= 0 \\ g_{m} &= \frac{r_{i}h_{r}h_{z}f_{i,j}}{2} + h_{r}r_{i}g_{4}(r_{i}) \end{split}$$

5. При i = 0, j = 0

$$u_{i,j} = g_1(z_j)$$

$$a_m = 0$$

$$b_m = 0$$

$$c_m = 1$$

$$d_m = 0$$

$$e_m = 0$$

$$g_m = g_1(z_i)$$

6. При $i = N_r, j = 0$

$$-\left[-\frac{h_z}{2}R_1\left(\chi_2 u_{N,0} - g_2(0)\right) - \frac{h_z}{2}r_{N-\frac{1}{2}}k_1\left(r_{N-\frac{1}{2}},0\right)\frac{u_{N,0} - u_{N-1,0}}{h_r} + \frac{h_r}{2}R_1k_2\left(R_1, z_{\frac{1}{2}}\right)\frac{u_{i,j+1} - u_{i,j}}{h_z} - \frac{h_r}{2}R_1\left(\chi_3 u_{N,0} - g_3(R_1)\right)\right] = \frac{R_1h_rh_zf_{N,0}}{4}$$

$$a_m = 0$$

$$b_m = \frac{\frac{h_z}{2}r_{N-\frac{1}{2}}k_1\left(r_{N-\frac{1}{2}},0\right)}{h_r}$$

$$c_m = \frac{h_r}{2}R_1\chi_3 + \frac{\frac{h_r}{2}R_1k_2\left(R_1, z_{\frac{1}{2}}\right)}{h_z} + \frac{\frac{h_z}{2}r_{N-\frac{1}{2}}k_1\left(r_{N-\frac{1}{2}},0\right)}{h_r} + \frac{h_z}{2}R_1\chi_2$$

$$d_m = 0$$

$$e_m = \frac{\frac{h_r}{2}R_1k_2\left(R_1, z_{\frac{1}{2}}\right)}{h_z}$$

$$g_m = \frac{R_1h_rh_zf_{N,0}}{4} - \frac{h_z}{2}R_1g_2(0) + \frac{h_r}{2}R_1g_3(R_1)$$

7. При
$$i = 0, j = N_z$$

$$u_{i,j}=g_1(L)$$

$$a_m = 0$$

$$b_m = 0$$

$$c_m = 1$$

$$d_m = 0$$

$$e_m = 0$$

$$g_m = g_1(L)$$

8. При
$$i = N_r, j = N_z$$

$$\begin{split} -\left[-\frac{h_{z}}{2}R_{1}\left(\chi_{2}u_{N,N}-g_{2}(L)\right)-\frac{h_{z}}{2}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}},L\right)\frac{u_{N,N}-u_{N-1,N}}{h_{r}}\right.\\ \left.-\frac{h_{r}}{2}R_{1}\left(\chi_{4}u_{N,N}-g_{4}(R_{1})\right)-\frac{h_{r}}{2}R_{1}k_{2}\left(R_{1},z_{N-\frac{1}{2}}\right)\frac{u_{N,N}-u_{N,N-1}}{h_{z}}\right]\\ =\frac{R_{1}h_{r}h_{z}f_{N,N}}{A} \end{split}$$

$$a_{m} = \frac{\frac{h_{r}}{2}R_{1}k_{2}\left(R_{1}, Z_{N-\frac{1}{2}}\right)}{h_{z}}$$

$$b_{m} = \frac{\frac{h_{z}}{2}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}}, L\right)}{h_{r}}$$

$$c_{m} = \frac{h_{z}}{2}R_{1}\chi_{2} + \frac{\frac{h_{z}}{2}r_{N-\frac{1}{2}}k_{1}\left(r_{N-\frac{1}{2}}, L\right)}{h_{r}} + \frac{h_{r}}{2}R_{1}\chi_{4} + \frac{\frac{h_{r}}{2}R_{1}k_{2}\left(R_{1}, Z_{N-\frac{1}{2}}\right)}{h_{z}}$$

$$d_{m} = 0$$

$$e_{m} = 0$$

$$g_{m} = \frac{h_{z}}{2}R_{1}g_{2}(L) - \frac{h_{r}}{2}R_{1}g_{4}(R_{1}) + \frac{R_{1}h_{r}h_{z}f_{N,N}}{4}$$

Также мы можем сделать матрицу симметричной. В итоге мы получили СЛАУ:

$$Aw = g$$
, $A = A^T$, $(Ay, y) > 0$, $y \neq 0$

где А-матрица, w-вектор неизвестных, g-вектор правой части. Решение алгебраической системы проводится метод сопряженных градиентов, для которого необходимо, чтобы матрица А была симметрична и положительно определена.

Решение системы методом сопряженных градиентов

Пусть $w^{(0)}$ - произвольное начальное приближение, тогда $Aw-Aw^{(0)}=g-Aw^{(0)}$, что даст нам невязку $r^{(0)}=A(w-w^{(0)})$, предполагается, что у нас есть система из $s^{(i)}$, где i=1,2,...,n, линейно-независимых векторов, тогда можем разложит по базису этих векторов с соответствующими коэффициентами $w-w^{(0)}=\sum_{i=1}^n a_i s^{(i)}$, найти коэффициенты можем с помощью СЛАУ $\sum_{i=1}^n a_i A s^{(i)}=r^{(0)}$, решение системы сильно упростится, если $\left(As^{(i)},s^{(i)}\right)=0$ при $i\neq j$, а при i=j, скалярное произведение равнялось не 0 значению, в таком случае мы говорим об артогональности. Из этого мы можем выразить коэффициенты $a_i=\frac{(r^{(0)},s^{(i)})}{(As^{(i)},s^{(i)})}$, и выразить решение $w=w^{(0)}+\sum_{i=1}^n a_i s^{(i)}$.

Рассмотрим частичную сумму $w^{(n)}=w$, $w^{(n)}=w^{(0)}+\sum_{i=1}^n a_i s^{(i)}$, $w^{(k)}=w^{(0)}+\sum_{i=1}^k a_i s^{(i)}$, $w^{(k)}=w^{(k-1)}+a_k A s^{(k)}$, для невязки получим рекуррентное соотношение $r^{(k)}=r^{(k-1)}-a_k A s^{(k)}$.

$$w^{(0)}, \quad r^{(0)} = g - Aw^{(0)}, \quad s^{(1)} = ?$$

$$k = 1, 2, ..., n, \quad a_k = \frac{\left(r^{(0)}, s^{(k)}\right)}{\left(As^{(k)}, s^{(k)}\right)}$$

$$w^{(k)} = w^{(k-1)} + a_k s^{(k)}, \quad r^{(k)} = r^{(k-1)} - a_k As^{(k)}$$

$$s^{(k+1)} = ?$$

При явном методе сопряженных градиентов $s^{(1)}$ берут равным $r^{(0)}$, $s^{(k+1)} = r^{(k)} + \beta_k s^{(k)}$, с вводом дополнительного коэффициента $\beta_k = \frac{(r^{(k)}, r^{(k)})}{(r^{(k-1)}, r^{(k-1)})}$ при $\sqrt{(r^{(k)}, r^{(k)})} < \gamma \varepsilon$, явный метод обладает тем свойством что при отсутствии ошибок округления мы можем получить точное решение не позднее чем на n-ом шаге, но возникает двойственность, из-за ошибок округления происходит разрушение аортогональности последовательности s и в результате к неточности, и метод становится итерационным.

$$Aw = b, \qquad A = A^{T}, \qquad (Ay, y) > 0, \qquad y \neq 0$$

 $x^{(0)}$ — произвольное начальное приблидение

$$r^{(0)} = b - Ax^{(0)}, \qquad Bw^{(0)} = r^{(0)}, \qquad s^{(1)} = w^{(0)}, \qquad Bg = b, \qquad \gamma = \sqrt{(g,b)}$$

$$k = 1,2, \dots, K_{max}$$

$$a_k = \frac{\left(w^{(k-1)}, r^{(k-1)}\right)}{\left(As^{(k-1)}, s^{(k-1)}\right)}$$

$$\begin{split} x^{(k)} &= x^{(k-1)} + a_k s^{(k)}, \qquad r^{(k)} = r^{(k-1)} + a_k A s^{(k-1)} \\ &B w^{(k)} = r^{(k)}, \sqrt{(w^{(k)}, r^{(k)})} < \gamma \varepsilon \end{split}$$

$$\beta_k = \frac{\left(w^{(k)}, r^{(k)}\right)}{\left(w^{(k-1)}, r^{(k-1)}\right)}, \qquad s^{(k+1)} = w^{(k)} + \beta_k s^{(k)}$$

О выборе матрицы предобусловливания

$$Aw = b, \qquad A = A^{T}, \qquad (Ay, y) > 0, \qquad y \neq 0$$

$$B = B^{T}, \qquad (By, y) > 0, \qquad y \neq 0$$

$$B = D, \qquad D = \begin{bmatrix} a_{11} & - & - \\ - & \cdots & - \\ - & - & a_{nn} \end{bmatrix}, \qquad B = \tilde{L} \tilde{L}^{T}$$

$$\widetilde{l}_{ij} = 0, \quad i < j$$

$$Bw^{(0)} = r^{(0)},$$
 $\tilde{L}y_0 = r_0,$ $\tilde{L}^Tw_0 = y_0,$ $Bw^{(k)} = r^{(k)},$ $\tilde{L}y_k = r_k,$ $\tilde{L}^Tw_k = y_k$

Неполное разложение Холевского

$$a_{i} = \widetilde{a}_{i}^{2} + \widetilde{b}_{i-1}^{2} + \widetilde{c}_{i-m}^{2}, \quad b_{i} = \widetilde{a}_{i}\widetilde{b}_{i}, \quad c_{i} = \widetilde{a}_{i}\widetilde{c}_{i},$$

$$\widetilde{a}_{i} = \sqrt{a_{i} - \widetilde{b}_{i-1}^{2} - \widetilde{c}_{i-m}^{2}}, \quad i = 1, 2, ..., n, \quad \widetilde{b}_{0} = 0, \quad \widetilde{c}_{i-m} = 0, \quad i = 1, 2, ..., m$$

$$\widetilde{b}_{i} = \frac{b_{i}}{\widetilde{a}_{i}}, \qquad \qquad \widetilde{c}_{i} = \frac{c_{i}}{\overline{a}_{i}},$$

Форма Хранения Матриц

Индексы главных диагональных элементов не хранятся, элементы главной диагонали располагаются в отдельном массиве Diag. В массиве А хранятся ненулевые элементы строго верхней треугольной части матрицы. Так как матрица хранится построчно, то в массиве IC хранятся номера столбцов ненулевых элементов верхнего треугольника матрицы. В массиве IR хранятся указатели на начало каждой строки в массивах A и IC. IR(N+1) содержит количество ненулевых элементов в строго верхнем треугольнике матрицы A плюс один.

Тесты

Для всех тектов:

$$R_0 = 1, R_1 = 2, L = 1$$

 $\chi_2 = 1, \quad \chi_3 = 1, \quad \chi_4 = 1$

Константный тест

$$k_1 = k_2 = 1 \\ u = 1 \\ f = 0 \\ g_1 = 1, \qquad g_2 = 2, \qquad g_3 = 1, \qquad g_4 = 1$$

Число разбиений Nr, Nz	Максимальная погрешность	Отношение погрешностей	Число итераций метода	
4	8.881784197E-16	0	11	
8	3.648100533E-08	2.4E-08	29	
16	6.796758723E-08	0.5367412	57	
32	1.328761980E-07	0.5115106	115	
64	4.501897028E-07	0.295156	231	
128	6.328432882E-07	0.7113763	461	

Линейный тест

$$k_1 = r+1, \quad k_2 = z+1$$

$$u = 3r+2z$$

$$f = -8 - \frac{3}{r}$$

$$g_1(z) = 3+2z, \quad g_2(z) = 2z+15, \quad g_3(r) = 3r-2, \quad g_4(r) = 3r+6$$

Число разбиений Nr, Nz	Максимальная погрешность	Отношение погрешностей	Число итераций метода	
4	1.953992523E-14	0	16	
8	1.664610227E-07	1.2E-07	35	
16	3.506694122E-07	0.474695	70	
32	7.220940421E-07	0.4856285	141	
64	1.049764290E-06	0.687863	279	
128	1.941950505E-06	0.5405721	553	

Нелинейный тест

$$k_1 = r + z, \quad k_2 = r + z$$

$$u = r^2 + z^2$$

$$f = -8z - 8r$$

$$g_1(z) = z^2 + 1, \quad g_2(z) = z^2 + 4z + 12, \quad g_3(r) = r^2, \quad g_4(r) = r^2 + 2r + 3$$

Число разбиений Nr, Nz	Максимальная погрешность	Отношение погрешностей	Число итераций метода	
4	3.381672021E-02	0	16	
8	8.920468110E-03	3.7909132	48	
16	2.253769401E-03	3.9580217	97	
32	5.648927730E-04	3.9897296	195	
64	1.402223429E-04	4.0285504	401	
128	3.811650674E-05	3.6787826	796	

Вывод

В линейном и константном случаях погрешность аппроксимации отсутствует, ее небольшой рост с увеличением количества разбиений связано с накоплением ошибки округления.

А в нелинейном случае наблюдается уменьшение ошибки в 4 раза при увеличении в 2 раза разбиений по оси r и z. Погрешность решения алгебраической системы мала по сравнению с погрешностью аппроксимации, она возрастает незаметно. Погрешность аппроксимации, в свою очередь, уменьшается, т.к. мы увеличиваем количество разбиений. Причем, согласно теории, при одновременном удвоении числа разбиений погрешность аппроксимации должна уменьшаться в 4 раза, т.к. порядок аппроксимации метода равен 2. Как видим, наблюдаемые результаты очень близок к теоретическому.

Приложение

```
import java.util.Arrays;
import java.util.HashMap;
import java.util.function.Function;
public class Q12 {
    private final static double EPS = 1e-6;
    private static int N = 5;
    private static final double R0 = 1;
    private static final double R1 = 2;
    private static final double L = 1;
    private static final double Chi2 = 1;
    private static final double Chi3 = 1;
    private static final double Chi4 = 1;
    private enum SystemParameters {
         DIAGONAL_A, DIAGONAL_B, DIAGONAL_C, VECTOR_G
    @FunctionalInterface
    public interface FunctionTwoArgs<A, B, R> {
         R apply(A a, B b);
    public static void main(String[] args) {
         System.out.println(" >>>>> Константый случай");
                  (r, z) \rightarrow 1.0,
                   (r, z) \rightarrow 1.0,
                   (r, z) \rightarrow 0.0,
                   (z) \rightarrow 1.0,
                   (z) \rightarrow 2.0,
                   (r) \rightarrow 1.0,
                   (r) \rightarrow 1.0,
                   (r, z) \rightarrow 1.0);
         System.out.println(">>>>> Линейный случай");
                  (r, z) \rightarrow r + 1.0,
                   (r, z) \rightarrow z + 1.0,
                   (r, z) \rightarrow -8 - 3/r,
                   (z) \rightarrow 3 + 2 * z,
                   (z) \rightarrow 2 * z + 15,
                   (r) \rightarrow 3 * r - 2,
                   (r) -> 3 * r + 6,
                   (r, z) \rightarrow 3 * r + 2 * z);
         System.out.println(">>>>> Нелинейный случай");
                  (r, z) \rightarrow r + z,
         test(
                   (r, z) \rightarrow r + z,
                   (r, z) \rightarrow -8 * z - 8 * r,
                   (z) -> z * z + 1,
(z) -> z * z + 4 * z + 12,
                   (r) -> r * r,
                   (r) \rightarrow r * r + 2 * r + 3,
                   (r, z) \rightarrow r * r + z * z);
    }
    private static void test(Q12.FunctionTwoArgs<Double, Double, Double> k1,
                                  Q12.FunctionTwoArgs<Double, Double, Double> k2, Q12.FunctionTwoArgs<Double, Double, Double> f,
                                  Function<Double, Double> g1,
                                  Function<Double, Double> g2,
Function<Double, Double> g3,
                                  Function<Double, Double> g4,
                                  Q12.FunctionTwoArgs<Double, Double, Double> u) {
         HashMap<Q12.SystemParameters, double[]> system;
         double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
         double r; double z = 0;
         double[] result = new double[N * N];
         system = \textit{getSystem}(k1, k2, f, g1, g2, g3, g4); for (int i = 0; i < \textit{N}; ++i) \{
              r = R0;
              for (int j = 0; j < N; ++j) {
                  result[i * N + j] = u.apply(r, z); r += hR;
              }
```

```
z += hZ;
        System.out.println("Отклонения от точного решения\n" + Arrays.toString(sub(multiply(system,
result),
                system.get(Q12.SystemParameters.VECTOR_G)))); System.out.println("Ошибка");
        double prevError = 0; double nowError;
        N = 5:
        System.out.println("\tN\tError\tRatio\t");
        for (int i = 2; i <= 8; ++i) {
            N = (int) Math.round(Math.pow(2, i)) + 1; system = getSystem(k1, k2, f, g1, g2, g3, g4);
result = leastGradientMethod(system,
                    system.get(Q12.SystemParameters.VECTOR_G), getEMatrix()); nowError =
getMaxError(result, u);
            System.out.println("\t " + (N - 1) + "\t " + nowError + " \t " + prevError / nowError);
            prevError = nowError;
        }
    }
    private static double[] leastGradientMethod(HashMap<Q12.SystemParameters, double[]> system, double[]
first,
                                                 HashMap<Q12.SystemParameters,</pre>
                                                         double[]> bMatrix) {
        double[] result = Arrays.copyOf(first, first.length); double[] r =
sub(system.get(Q12.SystemParameters.VECTOR_G),
                multiply(system, first));
        double[] p = solveB(bMatrix, r);
        double[] b = solveB(bMatrix, system.get(Q12.SystemParameters.VECTOR G)); double[] s =
Arrays.copyOf(p, p.length);
        double alpha; double beta; double[] newR; double[] newP; int k;
        for (k = 1; k \le 10000; k++) {
            alpha = multiply(p, r) / multiply(multiply(system, s), s); result = addition(result,
multiply(alpha, s));
            {\tt newR = \it sub(r, multiply(alpha, multiply(system, s))); newP = \it solveB(bMatrix, newR);}
            double check = Math.sqrt(multiply(newP, newR) / multiply(b,
system.get(Q12.SystemParameters.VECTOR_G)));
            if (check < EPS) {
                ++k;
                break;
            beta = multiply(newP, newR) / multiply(p, r); s = addition(newP, multiply(beta, s));
            r = newR; p = newP;
        System.out.println("K\t" + k);
        return result;
    }
    private static double[] getADiag(Q12.FunctionTwoArgs<Double, Double, Double> k2) {
        double hR = (R1 - R0) / (N - 1);
        double hZ = L / (N - 1);
        double scale = hR / hZ;
        double[] result = new double[N * N];
        double z = hZ;
        double r:
        for (int j = 1; j < N - 1; j++)
            r = R\theta;
            result[j * N] = -(scale / 2) * r * k2.apply(r, z - hZ / 2);
            for (int i = 1; i < N - 1; i++) {
                result[j * N + i] = -(scale) * r * k2.apply(r, z - hZ / 2);
                r += hR;
            result[j * N + N - 1] = -(scale / 2) * r * k2.apply(r, z - hZ / 2);
            z += hZ;
        return result:
    private static double[] getCDiag(Q12.FunctionTwoArgs<Double, Double, Double> k1,
                                      Q12.FunctionTwoArgs<Double, Double, Double> k2) {
        double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
        double scale = hZ / hR; double z = hZ;
```

```
double r;
        double[] result = new double[N * N]; for (int i = 0; i < N; i++) {
             result[i] = 1;
        for (int j = 1; j < N - 1; j++) { r = R0;
result[j * N] = scale * (r + hR / 2) * k1.apply(r + hR / 2, z)
                     ,
+ hZ * r * Chi2
                      + (1 / scale / 2) * r * k2.apply(r, z + hZ / 2)
                      + (1 / scale / 2) * r * k2.apply(r, z - hZ / 2);
             r += hR:
             for (int i = 1; i < N - 1; i++) {
                 result[j * N + i] = scale * (r + hR / 2) * k1.apply(r + hR /2, z)
                          + scale * (r - hR / 2) * k1.apply(r - hR / 2, z)
                          + (1 / scale) * r * k2.apply(r, z + hZ / 2)
                          + (1 / scale) * r * k2.apply(r, z - hZ / 2);
                 r += hR:
             result[j * N + N - 1] = hZ * r * Chi2
                     + scale * (r - hR / 2) * k1.apply(r - hR / 2, z)
+ (1 / scale / 2) * r * k2.apply(r, z + hZ / 2)
                     + (1 / scale / 2) * r * k2.apply(r, z - hZ / 2);
             z += h7:
         for (int i = 0; i < N; i++) { result[N * (N - 1) + i] = 1;
        return result;
    }
    private static double[] getDDiag(Q12.FunctionTwoArgs<Double, Double, Double> k1) {
        double hR = (R1 - R0) / (N - 1);
        double hZ = L / (N - 1);
        double scale = hZ / hR;
        double z = hZ;
        double r;
        double[] result = new double[N * N]; for (int j = 1; j < N - 1; j++) {
             r = R0:
             for (int i = 0; i < N - 1; i++) {
                 result[j * N + i] = -scale * (r + hR / 2) * k1.apply(r + hR /2, z);
                 r += hR;
             z += hZ;
        }
        return result;
    private static double[] getEDiag(Q12.FunctionTwoArgs<Double, Double, Double> k2) {
        double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
        double scale = hR / hZ;
        double[] result = new double[N * N]; double z = hZ;
        double r;
        for (int j = 1; j < N - 1; j++) { r = R0;
             result[j * N] = -scale * r * k2.apply(r, z + hZ / 2) / 2; r += hR;
             for (int i = 1; i < N - 1; i++) {
                 result[j * N + i] = -scale * r * k2.apply(r, z + hZ / 2); r += hR;
             result[j * N + N - 1] = -scale * r * k2.apply(r, z + hZ / 2) / 2; z += hZ;
        return result;
    }
    private static double[] getVectorG(Q12.FunctionTwoArgs<Double, Double, Double> f,
                                          Function < Double > g1, Function < Double > g2,
Function<Double, Double> g3, Function<Double, Double> g4) {
        double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1); double[] result = new double[N * N]; double z = hZ;
        double r = R0;
        for (int i = 0; i < N; i++) { result[i] = g3.apply(r); r += hR;
        for (int j = 1; j < N - 1; j++) { r = R0;
result[j * N] = hR * hZ * r * f.apply(r, z) / 2
                     + hZ * r * g1.apply(z);
```

```
r += hR;
             for (int i = 1; i < N - 1; i++) {
                 result[j * N + i] = hR * hZ * r * f.apply(r, z); r += hR;
             result[j * N + N - 1] = hR * hZ * r * f.apply(r, z) / 2
                      .
+ hZ * r * g2.apply(z);
             z += hZ;
        }
        r = R0;
         for (int i = 0; i < N; i++) {
             result[N * (N - 1) + i] = g4.apply(r); r += hR;
        return result;
    private static HashMap<Q12.SystemParameters, double[]> getSystem(Q12.FunctionTwoArgs<Double, Double,</pre>
Double> k1.
                                                                           Q12.FunctionTwoArgs<Double, Double,
Double> k2,
                                                                           Q12.FunctionTwoArgs<Double, Double,
Double> f,
                                                                           Function<Double, Double> g1,
                                                                           Function<Double, Double> g2,
                                                                           Function<Double, Double> g3,
                                                                           Function<Double, Double> g4)
        double[] a = getADiag(k2); double[] c = getCDiag(k1, k2); double[] d = getDDiag(k1); double[] e =
getEDiag(k2);
        double[] g = getVectorG(f, g1, g2, g3, g4);
        for (int i = 0; i < N; i++) { g[N + i] -= g[i] * a[N + i]; a[N + i] = 0; g[N * (N - 2) + i] -= g[N * (N - 1) + i] * e[N * (N - 2) + i]; e[N * (N - 2) + i] = 0;
        HashMap<Q12.SystemParameters, double[]> system = new HashMap<>();
        system.put(Q12.SystemParameters.DIAGONAL_B, d);system.put(Q12.SystemParameters.DIAGONAL_B, d);
system.put(Q12.SystemParameters. \textit{VECTOR\_G}, \text{ e}); \text{ system.put}(Q12.SystemParameters. \textit{VECTOR\_G}, \text{ g}); \text{ return} \\
system;
    }
    private static double getMaxError(double[] solve, Q12.FunctionTwoArgs<Double, Double, Double> u) {
         double hR = (R1 - R0) / (N - 1); double hZ = L / (N - 1);
         double z = 0; double r;
         double maxError = 0; double nowError;
        for (int j = 0; j < N; j++) { r = R0;
    for (int i = 0; i < N; i++) {</pre>
                 nowError = Math.abs(u.apply(r, z) - solve[j * N + i]); if (nowError > maxError) {
                      maxError = nowError;
                 r += hR;
             }
             z += hZ;
        return maxError:
    private static HashMap<Q12.SystemParameters, double[]> getBMatrix(HashMap<Q12.SystemParameters,</pre>
double[]> system) {
        HashMap < Q12.SystemParameters, double[] > result = new <math>HashMap < >(); int squareN = N * N;
         double[] a = new double[squareN]; double[] b = new double[squareN]; double[] c = new
double[squareN];
        result.put(Q12.SystemParameters.DIAGONAL_A, a); result.put(Q12.SystemParameters.DIAGONAL_B, b);
result.put(Q12.SystemParameters.DIAGONAL_C, c);
        a[0] = Math.sqrt(system.get(Q12.SystemParameters.DIAGONAL\_A)[0]); \ for \ (int \ i = 1; \ i < N; \ i++) \ \{int(A) = int(A) = 1; \ i < N; \ i++) \}
             b[i - 1] = system.get(Q12.SystemParameters.DIAGONAL_B)[i - 1] / a[i -
                      11:
             a[i] = Math.sqrt(system.get(Q12.SystemParameters.DIAGONAL_A)[i] -
                      Math.pow(b[i - 1], 2));
         for (int i = N; i < squareN; i++) {
             c[i - N] = system.get(Q12.SystemParameters.DIAGONAL_C)[i - N];
             b[i - 1] = system.get(Q12.SystemParameters.DIAGONAL_B)[i - 1] / a[i -
             a[i] = Math.sqrt(system.get(Q12.SystemParameters.DIAGONAL_A)[i] -
                      Math.pow(b[i-1], 2) - Math.pow(c[i-N], 2));
        }
```

```
return result;
       }
       private static double[] solveB(HashMap<Q12.SystemParameters, double[]> bMatrix, double[] g) {
               int squareN = N * N;
                double[] y = new double[squareN];
               double[] a = bMatrix.get(Q12.SystemParameters.DIAGONAL_A); double[] b =
bMatrix.get(Q12.SystemParameters.DIAGONAL_B);
                double[] c = bMatrix.get(Q12.SystemParameters.DIAGONAL_C); y[0] = g[0] / a[0];
                for (int i = 1; i < N; i++) {
 y[i] = (g[i] - b[i - 1] * y[i - 1]) / a[i];
                for (int i = N; i < squareN; i++) {
    y[i] = (g[i] - b[i - 1] * y[i - 1] - c[i - N] * y[i - N]) / a[i];
               double[] result = new double[squareN]; result[squareN - 1] = y[squareN - 1] / a[squareN - 1]; for (int i = squareN - 2; i >= N * (N - 1);
i--) {
                        result[i] = (y[i] - b[i] * result[i + 1]) / a[i];
                for (int i = N * (N - 1) - 1; i >= 0; i--) {
                       result[i] = (y[i] - b[i] * result[i + 1] - c[i] * result[i + N])/ a[i];
               return result;
        }
        private static HashMap<Q12.SystemParameters, double[]> getEMatrix() { HashMap<Q12.SystemParameters,</pre>
double[]> e = new HashMap<>();
                int squareN = N * N;
                double[] a = new double[squareN]; for (int j = 0; j < squareN; j++) {</pre>
                       a[j] = 1;
                e.put(Q12.SystemParameters.DIAGONAL_A, a); e.put(Q12.SystemParameters.DIAGONAL_B, new
\verb|double[squareN]|; e.put(Q12.SystemParameters. \textit{DIAGONAL\_C}, new double[squareN]); return e; \\
        private static double multiply(double[] leftVector, double[] rightVector)
                double result = 0;
               for (int i = 0; i < leftVector.length; i++) { result += leftVector[i] * rightVector[i];</pre>
               return result;
        private static double[] multiply(HashMap<Q12.SystemParameters, double[]> system, double[] vector) {
                double[] result = new double[vector.length];
                double[] diagA = system.get(Q12.SystemParameters.DIAGONAL_A); double[] diagB =
system.get(Q12.SystemParameters. \textit{DIAGONAL\_B}); \ double[] \ diagC = system.get(Q12.SystemParameters. \textit{DIAGONAL\_C}); \\ left (Q12.SystemParameters. \textit{DIAGONA
for (int i = 0; i < vector.length; i++) {
                       result[i] = diagA[i] * vector[i];
                for (int i = 0; i < vector.length - 1; i++) { result[i] += diagB[i] * vector[i + 1];</pre>
                for (int i = 0; i < vector.length - N; i++) { result[i] += diagC[i] * vector[i + N];</pre>
                for (int i = 1; i < vector.length; i++) { result[i] += diagB[i - 1] * vector[i - 1];
                for (int i = N; i < vector.length; i++) { result[i] += diagC[i - N] * vector[i - N];</pre>
               return result;
        private static double[] multiply(double number, double[] vector) { double[] result = new
double[vector.length];
                for (int i = 0; i < vector.length; i++) { result[i] = vector[i] * number;
                return result;
        private static double[] addition(double[] leftVector, double[] rightVector) {
                double[] result = new double[leftVector.length]; for (int i = 0; i < leftVector.length; i++) {</pre>
                       result[i] = leftVector[i] + rightVector[i];
```

```
}
    return result;
}

private static double[] sub(double[] leftVector, double[] rightVector) { double[] result = new
double[leftVector.length];
    for (int i = 0; i < leftVector.length; i++) { result[i] = leftVector[i] - rightVector[i];
    }
    return result;
}
</pre>
```