DIGITÁLIS MÉRÉSTECHNIKA

Elektromechanikus oszcillátor jegyzőkönyv

Mérés időpontja: 2023.10.19

Mérést végezte: Koroknai Botond (AT5M0G)

Jegyzőkönyv leadásának időpontja: 2023.10.26

1 A blocking oszcillátoros rendszer vizsgálata

1.1 A gerjesztő jel vizsgálata

Ennél a mérésnél a K_1 kapcsolót A állásba állítva kézzel hajtottam a forgót, és oszcilloszkóp segítségével az áramkör tranzisztorának bázisán (Tr_2) rögzítettem a jelalakot.

1. ábra: jelhossz: 119.8 ms, amplitudók: A1 = 1.108 V és A2 = -766.6 mv

Ahogy a leolvasott adatok is mutatják a két amplitudó nagysága eltérő. A jegyzetben leírtak alapján az amplitudó nagysága összefügg az áthaladó forgófej sebességével úgy, hogy a nagyobb sebességhez nagyobb amplitudó tartozik. A sebesség különség akkor alakul ki amikor a fej a mágneshez ér és az közeledve gyorsítani, majd távoldva lassítani a fejet.

1.2 A blocking áramkör teljesítmény felvétele

1.2.1 Az R_4 kollektor ellenálláson keletekező jelalak

2. ábra: jelhossz: 25.8 ms, amplitudók: A1 = 220 mV és A2 = 733.3 mV

Az u_1 alacsonyabb amplitudót az alsó merőleges vonal (Ay), míg a magasabb u_2 amplitudót a felső merőleges vonal (B_y) jelöli. t impulzus szélességén a b_x és a_x közötti tartományt értjük.

Végül megvizsgáltam az áramimpulzusok T periódus idejét.

3. ábra: T = 566 ms

1.2.2 Érdekes jellemzők meghatározása

Átlagáram

$$I = \frac{U_{atlag}}{R} = \frac{1}{R} \int_{t_0}^{t_0+t} \frac{u_1 + u_2}{2}$$

R az áramkör eredő ellenállása. A hibát a hibaterjedés képletével számoltam:

$$\Delta I = I \left(\frac{\Delta U_{atlag}}{U_{atlag}} + \frac{\Delta t}{t} \right)$$

· Teljesítmény

$$P(t) = U(t) \cdot I(t) = \frac{U_{atlag}^2}{R} = \frac{\left(\frac{u_1 + u_2}{2}\right)^2}{R}$$

A hibaterjedés képletével számolva:

$$\Delta P = P \left(2 \cdot \frac{\Delta U_{atlag}}{U_{atlag}} \right)$$

• Szögsebesség egyenletes körforgás esetén:

$$\omega = \frac{2\pi}{T}$$

Mivel mindkét végén érzékel az oszcillátor, ezért igazából T/2 időközönként ad jelet, így a körfrekvencia:

$$\omega = \frac{4\pi}{T}$$

A hiba itt is a hibaterjedés képlete alapján:

$$\Delta\omega = \omega \left(\frac{\Delta T}{T}\right)$$

1.2.3 Teljesítmény feszültségfüggése

Az U tápfeszültséget 13 V-ról indítva egészen 6 V-ig léptettem le és feljegyeztem az u_1, u_2, t és T paramétereket.

Mérés száma	<i>U</i> [V]	$u_1 [mV]$	$u_2 [mV]$	t [ms]	T [ms]	P [W]	ω [rad/s]
1.	13	363.3	1000	26	488	464.65	25.75
2.	12	310	903.3	26	510	368.02	24.64
3.	11	260	830	26	550	297.03	22.85
4.	10	246.6	733.3	25.8	564	240.05	22.28
5.	9	216.6	650	25.8	602	187.75	20.87
6.	8	216.6	553.3	25.8	640	148.19	19.63
7.	7	216.6	553.3	25.8	712	117.27	17.64
8.	6	136.6	383.3	25	834	67.57	15.06

A 6. és 7. mérést sajnos elrontottam. A 6. mérés u_1 érétkét már eleve rosszul határoztam meg és véletlenül másodszor is ugyan azt az értéket jegyezetem fel a 7. méréshez. Ezen két méréshez tartozó értékeket a további számolásokhoz és illesztésekhez nem veszem figyelembe.

Ábárzolás:

Az ábrázolást követően két modell illesztésével próbálkoztam meg:

· Lineáris modell

$$y(x) = a \cdot x + b$$

Ennek az eredménye:

paraméter	a	b
érték:	0.026	14.92
hiba:	0.004	1.23

· négyzetes modell

$$y(x) = a \cdot x^2 + b \cdot x + c$$

Ennek az erdménye:

paraméter	a	b	С
érték:	$-5.84 \cdot 10^{-5}$	$5.7 \cdot 10^{-2}$	$1.17 \cdot 10^{1}$
hiba:	$1.29 \cdot 10^{-5}$	$7.09 \cdot 10^{-3}$	$8.74 \cdot 10^{-1}$

Konklúzió: Már ránézésre is a négyzetes modell bizonyult eredményesebbnek, melyet az elvégzett illesztések hibái is világosan tükröznek.

2 A fénykapus rendszer vizsgálata

2.1 A vezérlés vizsgálata

A tápfeszültséget 10 V-ra állítottam, míg a P_1 trimmer-potenciométert középállásba és oszcilloszkóp segítségével megmértem a fénykapu fotótranzisztorának (Tr_1) kollektori (sárga), valamint a vezető tranzisztor (Tr_2) bázisán létrejövő (kék) jelalakokat.

2.2 A vezérlés hangolása

A mérés során 6 különböző értékre állítottam a potenciométert és minden állapothoz feljegyeztem a Tr_2 bázisán mért impulzus szélességét: t_{vez} , valamint a Tr_1 kollektori jelét jellemző: t_{ovt} -ot.

A leolvasott adatok és becsült szögsebességek:

Mérés Száma	$t_{ m vez}$	$t_{ m opt}$	ω
1.	13.3	14.5	29.9
2.	28.5	30.2	35.9
3.	27.9	29.4	37
4.	40.6	41.3	38
5.	48.6	50.4	37
6.	54.9	56.6	37

(*Megjegyzés:* Az ezen méréshez készült képek maximum illusztrációnak használhatóak, mert az előtt készítettem őket, mielőtt a kurzorokat a megfelelő helyekre állítottam volna.)

A következő alfejezetekben ábrázolom a különböző értékeken felvett hangfelvételek részleteit, valamint megmutatom mely értékek alapján végeztem a szögsebesség becslését.

2.2.1 első módosítás:

2.2.2 második módosítás:

2.2.3 harmadik módosítás:

2.2.4 negyedik módosítás:

2.2.5 ötödik módosítás:

2.2.6 hatodik módosítás:

Első megállapításra tehát a negyedik módosításhoz tartozik a legnagyobb szögsebesség. A következő feladatrészben látjuk, hogy ez valóban így lesz.

2.3 Szögsebesség program írás

A szögsebességek meghatározásához egy egyszerű kis "omega_calc" függvényt írtam. A működése röviden annyi, hogy a scipy.signal.find_peaks függvény segítségével megkerestem a csúcsokat, majd ezeken végig iterálva kigyűjtöttem a i+1 - i -edik csúcs közt eltelt időt, ezzel meghatározva a köztük levő ΔT -ket. Végső lépésként pedig vettem a feljegyzett ΔT -k átalágát és behelyettesítettem őket az $\omega = \frac{4\pi}{T}$ képletbe.

Az így kiszámolt értékek:

Módosítás sorszáma	ω
1.	27.0
2.	36.18
3.	36.34
4.	36.44
5.	36.41
6.	36.34

2.4 A be- és kikapcsolási jelenség

A feszültséget ismét 10 V-ra állítva, óvatosan beindítottam a forgást, majd mikor már állandósulni láttam a forgás sebességét K_1 kapcsolót középállásba billentettem és hagytam, hogy a rendszer magától megálljon.

A kiértékelés során majdnem hasonlóan jártam el mint a 2.3-as fejezetben, de most a szögebesség helyett csak a Δt időket vizsgáltam, és ábrázoltam a csúcsok sorszámának függvényében.

A szemem tévedett, sajnos nem értem el a tökéletesen stabil állapotot mikor lekapcsoltam a vezérlést, ezért az ábra kedvéért egy ehhez nagyon közeli állapotot vettem stabilnak. A gyorsuló/ lassuló szakasz aránya ezen adatokkal: $\frac{80}{49} \approx 1.63$ lett. Bár ez nem valós adat a stabil állapot hiányában, az arányok a képen így is tökéletesen látszódnak.