

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Lista de Exercícios - Assunto: R. da Cadeia e D. Direcional - Cálculo 2 (ERE)- EM e EC Professor Júlio César de Jesus Onofre

1 - Use derivação implícita, considerando z = f(x,y) para determinar $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$:

a)
$$x^2 + 2y^2 + 3z^2 = 1$$
 R: $\frac{\partial z}{\partial x} = -\frac{x}{3z}$; $\frac{\partial z}{\partial y} = -\frac{2y}{3z}$

a)
$$x^2 + 2y^2 + 3z^2 = 1$$
 R: $\frac{\partial z}{\partial x} = -\frac{x}{3z}$; $\frac{\partial z}{\partial y} = -\frac{2y}{3z}$
b) $e^z = xyz$ R: $\frac{\partial z}{\partial x} = \frac{yz}{e^z - xy}$; $\frac{\partial z}{\partial y} = \frac{xz}{e^z - xy}$

2 - Determine a equação do plano tangente à superfície z = f(x, y) no ponto P dado:

a)
$$z = x^2 + y^2$$
 $P(3, 4, 25)$ R: $6x + 8y - z = 25$

b)
$$z = x^3 - y^3$$
 $P(3, 2, 19)$ R: $27x - 12y - z = 38$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

c)
$$z = xy$$
 $P(1, -1, -1)$ R: $x - y + z = 1$
d) $z = e^{-x^2 - y^2}$ $P(0, 0, 1)$ R: $z = 1$

3 - Encontre a aproximação linear L(x,y) das funções abaixo no ponto dado:

a)
$$f(x,y) = 1 + x \ln(xy - 5)$$
 (2,3) R: $L(x,y) = 6x + 4y - 23$

b)
$$f(x,y) = x^2 e^y$$
 (1,0) R: $L(x,y) = 2x + y - 1$

b)
$$f(x,y) = x^2 e^y$$
 (1,0) R: $L(x,y) = 2x + y - 1$
c) $f(x,y) = 4 \operatorname{tg}^{-1}(xy)$ (1,1) R: $L(x,y) = 2x + 2y + \pi - 4$

4 - Use a regra da cadeia para encontrar $\frac{dz}{dt}$ ou $\frac{dw}{dt}$:

a)
$$z = xy^3 - x^2y$$
 $x = t^2 + 1$ $y = t^2 - 1$ R: $2t(y^3 - 2xy + 3xy^2 - x^2)$

c)
$$w = x e^{\frac{y}{z}}$$
 $x = t^2$ $y = t - 1$ $z = 1 + 2t$ R: $e^{\frac{y}{z}} \left(2t + \frac{x}{z} - \frac{2xy}{z^2} \right)$

5 - Use a regra da cadeia para encontrar $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$:

a)
$$z = (x - y)^5$$
 $x = s^2 t$ $y = st^2$

R:
$$\frac{\partial z}{\partial s} = 5(x-y)^4(2st-t^2)$$
; $\frac{\partial z}{\partial t} = 5(x-y)^4(s^2-2st)$

b)
$$z = \ln(3x + 2y)$$
 $x = s \operatorname{sen} t$ $y = t \cos s$

b)
$$z = \ln(3x + 2y)$$

R:: $\frac{\partial z}{\partial s} = \frac{3 \sin t - 2t \sin s}{3x + 2y}$; $\frac{\partial z}{\partial t} = \frac{3s \cos t + 2 \cos s}{3x + 2y}$

R:
$$\frac{\partial z}{\partial s} = e^r \left(t \cos \theta - \frac{s \sin \theta}{\sqrt{s^2 + t^2}} \right); \frac{\partial z}{\partial t} = e^r \left(s \cos \theta - \frac{t \sin \theta}{\sqrt{s^2 + t^2}} \right)$$

6 - Seja f uma função diferenciável em $x, y \in g(u, v) = f(e^u + \sin v, e^u + \cos v)$. Considere a tabela:

	$\mid f \mid$	$\mid g \mid$	$\int f_x$	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5

Calcule: $g_u(0,0) \in g_v(0,0)$. R: $g_u(0,0) = 7 \in g_v(0,0) = 2$

7 - Determine a derivada direcional da função no ponto dado e na direção do vetor v:

a) $f(x,y) = e^x \operatorname{sen} y$ $\left(0, \frac{\pi}{3}\right)$ $\vec{v} = (-6,8)$ R: $\frac{4 - 3\sqrt{3}}{10}$ b) $g(r,s) = \operatorname{tg}^{-1}(rs)$ (1,2) $\vec{v} = 5\vec{i} + 10\vec{j}$ R: $\frac{4}{5\sqrt{5}}$ c) $f(x,y,z) = x^2y + y^2z$ (1,2,3) $\vec{v} = (2,-1,2)$ R: 1

8 - Determine a derivada direcional de $f(x,y) = \sqrt{xy}$ em P(2,8) na direção do ponto Q(5,4).

9 - Determine a taxa de variação máxima de f no ponto dado e a direção que isso ocorre:

- a) $f(x,y) = 4y\sqrt{x}$ (4,1) R: $\sqrt{65}$; $\vec{i} + 8\vec{j}$ b) f(x,y) = sen(xy) (1,0) R: 1; \vec{j} c) $f(x,y,z) = \frac{x}{y+z}$ (8,1,3) R: $\frac{3}{4}$; $\vec{i} 2\vec{j} 2\vec{k}$

Bons Estudos!!!