SKLF	DICT			Datum měření:			26.2			2021		Příjmení a jméno:		
SIXLI	BICT		Den (vyznačte X):			Po	Üt	St	Čt Pá		CADA JAN			
Hodina (vyznačte X):	7	8	9	10	11	12	13	14	15	(16)	17	18	19	00,000

Teoretická část (vyplnit ručně)

A) Navrhněte pravdivostní tabulku pro dvoubitovou sčítačku s výstupním bitem pro přenos do vyššího řádu. Pomocí Karnaughovy mapy minimalizujte výsledné kombinačně logické funkce (SOP) a upravte je do struktury NAND-NAND pro zapojení z obvodů NAND, případně invertorů. Nakreslete schéma zapojení pro logické funkce y_0 , y_1 a přenosový bit c_1 do vyššího řádu (carry bit).

Tabulka 1

			,	,			
S	a_1	a_0	<i>b</i> ₁	b_0	c_1	<i>y</i> ₁	y ₀
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	1
4	0	1	0	0	0	0	1
5	0	1	0	1	0	1	0
6	0	1	1	0	0	1	1
7	0	1	1	1	9	0	0
8	1	0	0	0	0	1	0
9	1	0	0	1	0	all.	7
10	1	0	1	0	1	0	0
11	1	0	1	1	1	0	1
12	1	1	0	0	0	1	1
13	1	1	0	1	1	0	0
14	1	1	1	0	9	0	1
15	1	1	1	1	1	1	0

$$y_0 = (a_0 \cdot \overline{b_0}) + (\overline{a_0} \cdot b_0) = \overline{a_0 b_0} \cdot \overline{\overline{a_0} b_0}$$

$$y_{1} = (a_{1} \overline{b_{1}} \overline{b_{0}}) + (a_{1} \overline{a_{0}} \overline{b_{1}}) + (\overline{a_{1}} a_{0} \overline{b_{1}} \overline{b_{0}}) + (\overline{a_{1}} a_{0} \overline{b_{1}} \overline{b_{1}}) + (\overline{a_{1}} a_{0} \overline{b_{1}} \overline{b_{1}}) + (\overline{a_{1}} a_{0} \overline{b$$

B) Pomocí dvojného čtyřbitového multiplexoru 74LS153 realizujte funkci nižšího bitu sčítačky y_0 . Proveďte eliminaci pro bity b_0 , b_1 , a_0 . Zapojení navrhněte tak, aby multiplexor pracoval jako osmibitový. Nápověda: Vstup G_1 (resp. G_2) aktivuje čtyřbitový vstup S_1 (resp. S_2).

$$y_{0} = (a_{0} \cdot \overline{b_{0}}) + (\overline{a_{0}} \cdot b_{0}) = (a_{0} \cdot \overline{b_{0}}) \cdot (b_{1} + \overline{b_{1}}) + (\overline{a_{0}} \cdot b_{0}) \cdot (b_{1} + \overline{b_{1}}) =$$

$$= (a_{0} \cdot b_{1}, \overline{b_{0}}) + (a_{0} \cdot \overline{b_{0}}, \overline{b_{0}}) + (\overline{a_{0}} \cdot b_{1}, \overline{b_{0}}) + (\overline{a_{0}} \cdot \overline{b_{1}}, \overline{b_{0}})$$

Tabulka 2

	Tabulka zbytkových funkcí						
S	a_0	b_1	b_0	S_{xx}			
0	\bar{a}_0	\overline{b}_1	$ar{b}_0$	$S_{10}=0$			
1	\bar{a}_0	\bar{b}_1	b_0	$S_{11} = \mathcal{I}$			
2	\bar{a}_0	b_1	$ar{b}_0$	$S_{12} = \emptyset$			
3	\bar{a}_0	b_1	b_0	$S_{13} = 9$			
4	a_0	$ar{b}_1$	\bar{b}_0	$S_{20} = 1$			
5	a_0	\bar{b}_1	b_0	$S_{21}=\emptyset$			
6	a_0	b_1	\bar{b}_0	$S_{22} = 1$			
7	a_0	b_1	b_0	$S_{23}=\mathbb{Q}$			

Schéma

Okno s nastavením analýzy Transient

Výsledný graf

D(b1) D(a0)

D(y0C)

D(c1C)

D(c1A)

