1. Точность измерений:

1.1 Почему в задачах часто указывают данные в таком виде: m = 2.00 кг (не 2 кг). Что это означает?

Потому что так можно указать, с какой точностью необходимо записывать результаты вычислений. Или в другом случае, если задача подразумевает вычисление погрешности, то количество нулей после значения помогает верно указать погрешность (с округлением).

1.2 Для малых углов численные значения синуса и тангенса практически совпадают. Определите максимальный угол, при котором синус и тангенс совпадают пределах 2 значащих цифр.

Если расписать sin(x) и tg(x) по ряду Макларена:

$$sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 + O(x^{10})$$

$$tg(x) = x + \frac{1}{3!}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \frac{62}{2835}x^9 + O(x^{10})$$

тогда $sin(x)-tg(x)=\frac{2}{3!}x^3+\mathit{O}(x^5)$ и если нужно , чтобы значения расходились только в третьей значащей цифре, то необходимо решить уравнение $sin(x)-tg(x)=0.005=\frac{2}{3!}x^3+\mathit{O}(x^5)$

 $x \approx 0.247$, а дальше будем находить значение разности с шагом 0.1 - 0.01 - 0.001 и так далее, на каждой итерации сдвигая границу. Конечно, точность будет зависеть от усидчивости студента, но решение можно запустить циклом, задав при этом предел точности.

rad	sin() - tg()	rad	sin() - tg()	rad	sin() - tg()		rad	sin() - tg()	
0,1	-0,0005012554386	0,26	-0,00894098983	0,269	-0,00991430573	3	0,26976	-0,00999964622	
0,11	-0,0006675237449	0,261	-0,00904578129	0,2691	-0,00992550636		0,269761	-0,00999975883	
0,12	-0,0008671299224	0,262	-0,00915140310	0,2692	-0,00993671558	3	0,269762	-0,00999987145	
0,13	-0,001103175385	0,263	-0,00925785881	0,2693	-0,00994793340		0,269763	-0,00999998407	
0,14	-0,001378780354	0,264	-0,00936515201	0,2694	-0,00995915983	3	0,269764	-0,0100000967	
0,15	-0,001697085585	0,265	-0,00947328628	0,2695	-0,00997039485		0,269765	-0,01000020932	
0,16	-0,002061254121	0,266	-0,00958226519	0,2696	-0,00998163849		0,269766	-0,01000032194	
0,17	-0,002474473103	0,267	-0,00969209234	0,2697	-0,00999289073	3	0,269767	-0,01000043456	
0,18	-0,002939955614	0,268	-0,00980277132	0,2698	-0,0100041516		0,269768	-0,01000054719	примерное значение
0,19	-0,003460942579	0,269	-0,00991430573	0,2699	-0,01001542108		0,269769	-0,01000065981	0,2697631
0,2	-0,004040704714	0,27	-0,01002669919	0,27	-0,01002669919		0,26977	-0,01000077244	
0,21	-0,004682544537	0,271	-0,01013995528						
0,22	-0,005389798438	0,272	-0,01025407763	rad	sin() - tg()		rad	sin() - tg()	
0,23	-0,006165838816	0,273	-0,01036906986	0,2697	-0,00999289073	3	0,269763	-0,00999998407	
0,24	-0,007014076287	0,274	-0,0104849356	0,26971	-0,00999401643	3	0,2697631	-0,00999999533	
0,25	-0,007937961967	0,275	-0,01060167846	0,26972	-0,00999514222		0,2697632	-0,0100000066	
0,26	-0,008940989834	0,276	-0,0107193021	0,26973	-0,00999626809		0,2697633	-0,01000001786	
0,27	-0,01002669919	0,277	-0,01083781014	0,26974	-0,00999739404	ŀ	0,2697634	-0,01000002912	
0,28	-0,01119867718	0,278	-0,01095720623	0,26975	-0,00999852009		0,2697635	-0,01000004039	
0,29	-0,01246056146	0,279	-0,01107749402	0,26976	-0,00999964622		0,2697636	-0,01000005165	
0,3	-0,01381604295	0,28	-0,01119867718	0,26977	-0,01000077244		0,2697637	-0,01000006291	
0,31	-0,01526886863			0,26978	-0,01000189874		0,2697638	-0,01000007417	
0,32	-0,01682284461			0,26979	-0,01000302513		0,2697639	-0,01000008544	
0,33	-0,01848183914			0,2698	-0,0100041516		0,269764	-0,0100000967	
0,34	-0,0202497859								
0,35	-0,02213068737								

2. Тело, брошенное под углом к горизонту

Backet JONICT SpocalT May a Mayaronou CKOPOCTOR TO = 13,5 M/c C BUCCOTUR h = 2.1 M.

• пусть в самом конце броска мяч WHEN CKOPOCTO U* U "BOWEN" B BEMAND risg YTHOM IZ.

torga chayara zarmyen 3C7: spenerue to=Oc

43 (1) opophynou noustro, 4to

torga roctpour tpeyroxemuk chopocteu:

3 a METUM, 4TO VX = TO COSO = V* COS D (2)

Tak, ME MOXEM HOUTH PROYago

TOTO TREYTONOMIKA: 1/00/1/01/5in(A+0)

c apyrou croponu: 2 tx/ gt Wxt=L

Torga:

 $L = \frac{\sqrt{0}\sqrt{3} \sin(\Theta + \sqrt{3})}{4}$

Bepnémaa k (2): cosse= To cos & ; sin s= Jaght vo2 sin2 0

3 armunem eyé paz (3): L= vovvoztagh (sino. vocaso c magitano Broit (1)

L= TO (NO SINGLOSO + COSO (29h+vo2 sin20)

TIPU ROUCKE PROUBBOOKOU

3 anetum, 400 nepsoe charaense e1= Tot sin 20 opopnyna B Januctuke.

 $= \frac{vo^2 \sin 2\theta}{2q} + \frac{vo \cos \theta}{q}$ Vzgh+vo2sin2 A.

Input interpretation

function
$$13.5 \times 13.5 \times \frac{\sin(2 x)}{2 \times 9.8} + \left(13.5 \times \frac{\cos(x)}{9.8}\right) \sqrt{2 \times 2.1 \times 9.8 + 13.5 \times 13.5 \sin^2(x)}$$
 domain
$$0 \le x \le \pi 2^{-1}$$

Global maximum

 $\cot^{-1}(x)$ is the inverse cotangent function

Customize | A Plain Text

📵 Enlarge 🔥 Data

Plot

3. Принцип работы тележки

Установка выглядит простой по механике: направляющий рельс с регулировкой высоты и мат.маятником для определения наклона и тележка. Логично было бы предположить, что внутри стоят датчики, которые передают информацию по Bluetooth, как в смартфонах. Наверное, это цифровой гироскоп или трехканальный акселерометр. У меня был кейс по поиску дефектов в показаниях акселерометров на I Международном турнире по мат.моделированию (г. Москва, 2018), получались такие кластеры точек (в силу того, что устройство представляет из себя три акселерометра по ортогональным осям чувствительности). Задача сводилась к правильной обработке данных, чистке статистического шума и построению мат.модели. Для поиска неисправности акселерометра его приклеивают к сферическому объекту (к глобусу, например) и снимают множество показаний. После

этого по выборке ищут центр "глобуса" (по методу k-средних) и отсеивают значения точек, которые оказались на большем или меньшем расстоянии, чем радиус этой сферы.

