

# **Area and Volume Formula**

# <u>Area</u>

# **Triangle**

**Area of any Triangle** =  $\frac{1}{2}$  x base x height sq. unit

Area of triangle with sides a , b and c is  $\sqrt{s\,(s-a)(s-b)(s-c)}$ 

Where 
$$s = a + b + c/2$$

Perimeter of any Triangle = sum of the length of three sides



**Area** =  $\frac{1}{2}$  x Base x Height sq. unit





# **Equilateral Triangle**

Height=  $\sqrt{3}/2$  a unit Area =  $\sqrt{3}/4$  a<sup>2</sup> unit

# Isosceles Triangle

Height = 
$$\frac{\sqrt{4a^2-b^2}}{2}$$
 unit  
Area =  $\frac{1}{2}$  b  $\frac{\sqrt{4a^2-b^2}}{2}$  sq. unit





# **Quadrilateral**

**Area of any quadrilateral** =  $\frac{1}{2}$  x One Diagonal x Sum of lengths of perpendiculars drawn on it from the remaining two vertices.

Area of a quadrilateral when diagonals of a quadrilateral intersect at right angles  $= 1/2 \times Product$  of diagonals



### **Square**

If, Sides are s **Area** =  $s^2$  square unit **Perimeter** = 4s unit **Length of the diagonal** =  $\sqrt{2}$ s unit



# **Rectangle**

**Length** = a and Bredth =b **Area** = ab square unit **Perimeter** = 2(a+b) unit **Length of the diagonal** =  $\sqrt{a^2 + b^2}$ 



### **Rhombus**

**Area** = ½ X product of diagonals **Perimeter**= 4x side



# **Parallelogram**

Area = Base x Height



# **Trapezium**

**Area**=  $\frac{1}{2}$  of (Sum of parallel sides) x (distance between them)



#### **Circle**

If,
r denotes the radius of the circle.
d indicates the diameter of the circle.
c indicates circumference of the circle.



Diameter of Circle =  $D = 2 \times r$ Circumference of a Circle =  $C = 2 \times \pi \times r$ Area =  $A = \pi \times r^2$ 



**Area** =  $\pi x (r_2^2 - r_1^2)$ 





# **Semicircle**

**Perimeter=**  $(\pi + 2)r$ **Area** =  $\frac{1}{2} \pi \dot{r^2}$ 



### **Quarter Circle**

**Perimeter=**  $(\pi/2 + 2)r$ **Area** =  $\frac{1}{4} \pi r^2$ 



# Volume

# **Cuboid**

If, l= Length b= breath h= height

Surface area: 2(ib+bh+lh) sq unit Lateral Surface Area: 2(l+b) x h sq unit

Volume: l x b x h cu unit

Length of Diagonal:  $\sqrt{l^2 + b^2 + h^2}$  unit



### Cube:

If the sides of a cube is 'a' then

Total Surface Area: 6a<sup>2</sup> sq unit Lateral Surface Area: 4a<sup>2</sup> sq unit

Volume: a3 cubic unit

**Length of Diagonal:**  $\sqrt{3}$ a unit



# Solid Cylinder

If,

r= radius

h= height of solid cylinder

**Curved Surface Area**: 2πrh **Total Surface Area**:  $2\pi r(r+h)$ 

**Volume**:  $\pi r^2 h$ 



# **Hollow Cylinder**

If,

R= Outer Radius r= Internal Radius h= height if cylinder

Thickness of Cylinder: R-r Area of Cross Section:  $\pi$  (R<sup>2</sup> - r<sup>2</sup>) External Curved Surface Area:  $2 \pi$  Rh Internal Curved Surface Area:  $2 \pi$  rh Total Surface Area:  $2\pi$  (Rh+rh+ R<sup>2</sup> - r<sup>2</sup>)

Volume:  $\pi (R^2 - r^2)h$ 



If,

r= Radius of the base of a cone

h= height of the cone l= slant height of a cone

Slant height:  $\sqrt{r^2 + h^2}$ Total Surface Area:  $\pi rl$ Volume:  $1/3 \pi r^2 h$ 



If

r= Radius of sphere

**Volume**:  $4/3 \pi r^3$ 

# Spherical Shell

If,

R= Outer Radius r= Internal Radius

Thickness of the shell: (R - r)Volume of the shell:  $4/3 \pi (R^3 - r^3)$ 

# **Hemisphere**

If

r= Radius of hemisphere

Curved Surface Area:  $2 \pi r^2$  Total Surface Area:  $3 \pi r^2$ 

**Volume:**  $2/3 \pi r^3$ 













# **Hemispherical Shell**

If R= Outer Radius r= Internal Radius

Thickness of the shell: (R - r)Area of Base:  $\pi (R^2 - r^2)$ 

External Curved Surface Area:  $2 \pi R^2 h$ Internal Curved Surface Area:  $2 \pi r^2 h$ Total Surface Area:  $\pi (3R^2 + r^2)$ 

**Volume:**  $2/3 \pi (R^3 - r^3)$ 

