CP 312

Assignment 1 Solutions

E. Zima

October 6, 2018

1. [2 marks] Using the definition of Θ -notation, prove that $(13n+3)(9n+1)(\log(4n^2+100)) \in \Theta(n^2 \log n)$.

(Solution 1)

We have

Multiplying these two inequalities together,

$$0 < 117n^2 \le (13n+3)(9n+1) \le 140n^2$$
 for $n \ge 3$,

(this is valid as all parts of inequalities are non-negative).

Now, $2 \log n = \log n^2 < (\log(4n^2 + 100)) \le \log(5n^2)$ (for $n \ge 10$) = $2 \log n + \log 5 \le 3 \log n$ (for $n \ge 5$).

Thus,

$$2\log n \le \log(4n^2 + 100) \le 3\log n$$
, for $n \ge 10$. (1)

Define $c_1 = 234$, $c_2 = 420$ and $n_0 = 10$; then

$$0 \le c_1 n^2 \log n \le (13n+3)(9n+1)\log(4n^2+100) \le c_2 n^2 \log n$$
 for $n \ge n_0$.

This proves the desired result.

(Solution 2)

Expand (13n+3)(9n+1) as $117n^2+40n+3$. Note, that $117n^2+40n+3 \le 117n^2+40n^2+3n^2=160n^2$ for $n \ge 1$. Note also, that $117n^2+40n+3 \ge 117n^2$ for $n \ge 0$. Thus

$$117n^2 \le (13n+3)(9n+1) \le 160n^2$$
, for $n \ge 1$.

Combining with (1) define $c_1 = 234$, $c_2 = 480$ and $n_0 = 10$; this gives the desired result.

2. (a) We compute $\lim_{n\to\infty} \frac{f(n)}{g(n)}$:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{1052n^3 + 10n^2 + 1001}{n^4 / 5000000 + 2n}$$

$$= \lim_{n \to \infty} \frac{1052/n + 10/n^2 + 1001/n^4}{1 / 5000000 + 2/n^3}$$

$$= \lim_{n \to \infty} \frac{0}{1 / 5000000}$$

$$= 0.$$

A

Hence, $f(n) \in o(g(n))$.

(b) $g(n) = \sqrt{\sqrt{n}} = n^{\frac{1}{4}}$.

Observe that $f(n) = \log^3(n^{10}) \le (10^3) \log^3 n = h(n)$.

Now, $h(n) \in o(g(n))$ (see basic facts in the assignment description), and $f(n) \leq h(n)$ for all $n \geq 2$.

Hence, $f(n) \in o(g(n))$.

- (c) Observe that $g(n) = 2n^4 \log n^{2004} = 4008n^4 \log n = 4008f(n)$. Hence, $f(n) \in \Theta(g(n))$.
- (d) Note that

$$f(n) = 16^{\log \sqrt{n}} = 2^{4\log \sqrt{n}} = 2^{\log n^2} = n^2 = g(n)$$

Hence, $f(n) \in \Theta(g(n))$.

(e) Note that

$$\sin \frac{n\pi}{2} = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \\ -1 & \text{if } n \equiv 3 \pmod{4} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Hence,

$$f(n) = \begin{cases} n^3 & \text{if } n \equiv 1 \pmod{4} \\ n & \text{if } n \equiv 3 \pmod{4} \\ n^2 & \text{if } n \text{ is even.} \end{cases}$$

Since 3 > 5/3, f(n) is not O(g(n)). Since 5/3 > 1, f(n) is not $\Omega(g(n))$.

None of the symbols can be used here as remaining symbols are stronger (for example, f(n) is not o(g(n)) because if it is then $f(n) \in O(g(n))$ which we have show is not possible).

- 3. (a) No, it is not true. Consider $f_1(n)=3n\in\Theta(n)$ and $f_2(n)=2n\in\Theta(n)$. However $f_1(n)-f_2(n)=n\in$ $\Omega(n) \notin O(1)$.
 - (b) No, it is not true. Consider $f_1(n) = n$, $g_1(n) = n^2$, $f_2(n) = n$, $g_2(n) = n^2$. Then $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, however $f_1(n)f_2(n) = n^2 \in O(n^4)$ but $\notin \Theta(n^4)$.
 - (c) It is true $\exists c_1 > 0, c_2 > 0, n_1 \ge 0 \text{ such that } c_1 g(n) \le f_1(n) \le c_2 g(n), \forall n \ge n_1;$ $\exists d_1 > 0, d_2 > 0, n_2 \geq 0 \text{ such that } d_1g(n) \leq f_2(n) \leq d_2g(n), \forall n \geq n_2;$ From the last inequality it follows (as all parts of it are positive), that

$$\frac{1}{d_2} \frac{1}{g(n)} \le \frac{1}{f_2(n)} \le \frac{1}{d_1} \frac{1}{g(n)}, \forall n \ge n_2$$

Multiplying left-hand side, middle and right-hand side parts of the last and first inequal-

 $\frac{c_1}{d_2} \le \frac{f_1(n)}{f_2(n)} \le \frac{c_2}{d_1}, \ \forall n \ge \max\{n_1, n_2\}.$ From here it follows (by definition) that $f_1(n)/f_2(n) \in \Theta(1)$.

- (d) No, it is not true. Consider $f(n) = n^3$ and $g(n) = n^2$. Then $\log(f(n)) \in O(\log(g(n)))$, as $\log(f(n)) =$ $3 \log n$ and $\log(g(n)) = 2 \log n$. However $n^3 \notin O(n^2)$.
- Give a tight Θ-bound on the running time ...

The time required to execute the inner for loop (on j) is $ni - i + 1 \in \Theta(n \cdot i)$. The time to execute the outer for loop (on i) is

$$\sum_{i=1}^{n} \Theta(n \cdot i) = \Theta\left(\sum_{i=1}^{n} n \cdot i\right) = \Theta\left(n \sum_{i=1}^{n} i\right) = \Theta\left(n \cdot 1/2 \cdot n \cdot (n+1)\right) = \Theta(n^{3}).$$

Running time of the algorithm is $\Theta(n^3)$.

5. Give a tight Θ -bound on the running time ...

Complexity of the first line is $\Theta(1)$.

The time required to execute the inner for loop (on j) is $\Theta(\lceil \log i \rceil)$. The time to execute the outer for loop (on i) is

$$\sum_{i=1}^k \Theta(\lceil \log i \rceil) = \Theta\left(\sum_{i=1}^k \lceil \log i \rceil\right).$$

$$\sum_{i=1}^{k} \lceil \log i \rceil \le \sum_{i=1}^{k} (\log i + 1) \le k \log k + k =$$

$$= k \log k + k \in O(k \log k).$$

$$\begin{split} &\sum_{i=1}^k \lceil \log i \rceil \geq \sum_{i=1}^k \log i \geq \sum_{i=k/2+1}^k \log i \geq \\ &\geq \sum_{i=k/2+1}^k \log \frac{k}{2} \geq \frac{k}{2} \log \frac{k}{2} \in \Omega(k \log k). \end{split}$$

Thus, the time to execute the double loop is $\Theta(k \log k)$.

The number of iterations of the second loop on i is 22k. Complexity of this loop is $\Theta(k)$. Since $1 \in o(k \log k)$, $k \in o(k \log k)$, and k = n the running time of the algorithm is $\Theta(n \log n)$. Another possible analysis of the double loop is: using $\lceil \log i \rceil \in \Theta(\log i)$ and $\Theta(\Theta(f(i))) = \Theta(f(i))$, write

$$\sum_{i=1}^k \Theta(\lceil \log i \rceil) = \Theta\left(\sum_{i=1}^k \log i\right) = \Theta(\log k!) = \Theta(k \log k).$$

FY! only! not fon distribution