

VT 01 – REVISÃO CÁLCULO APLICADO

ENTREGAR: NO DIA DA N1 - VALOR: 5,0 PONTOS

ORIENTAÇÕES:

1) O TRABALHO TERÁ QUE SER MANUSCRITO

2) CAPA PADRÃO UNIUBE

OUESTÃO 01

Obter a equação paramétrica da circunferência de centro em (2, -4) e raio 4 para $0 \le t \le 2\pi$.

OUESTÃO 02

Descreva a curva vetorial $\vec{r}(t) = 2\cos t\vec{i} + 2\sec \vec{j} + 4\vec{k}$; $0 \le t \le 2\pi$

QUESTÃO 03

Obtenha a parametrização da circunferência $x^2 + y^2 - 6x - 4y + 4 = 0$ no plano z = 5.

Observação:

transformar a equação $x^2 + y^2 - 2ax - 2by + (b^2 + a^2 - r^2) = 0$ em uma equação reduzida do tipo

 $(x - a)^2 + (y - b)^2 = r^2$. Para isso obtenha o centro C (a/-2; b/-2) e o raio r, fazendo: $b^2 + a^2 - r^2 = I$, onde I é o termo independente.

QUESTÃO 04

Determine a parametrização da reta que passa por A (2, 0, 1) e B (-1, ½, 0).

OUESTÃO 05

Obtenha a parametrização da curva y = 6x + 3 sobre o plano z = 2.

QUESTÃO 06

Parametrize a função f: $[-1,1] \rightarrow [0,4]$, $f(x) = x^2 - 3x + 1$.

QUESTÃO 07

Identifique a curva x^2 -8y + 4 = 0 e escreva a sua parametrização.

QUESTÃO 08

Calcule a integral de linha $\oint x * y ds$, onde a curva parametrizada sobre o segmento de reta é:

$$r(t) = (t, 2+2t); 0 \le t \le 1$$

OUESTÃO 08

Calcular a integral de linha $\oint (2x - y + z)ds$, onde a curva parametrizada que liga A(1,2,3) a B(2,0,1) é:

$$r(t) = (1+t, 2-2t, 3-2t); 0 \le t \le 1$$

OUESTÃO 09

Calcular a integral de linha $\oint y * sen(z) ds$, onde a curva C é a hélice circular dada pelas equações paramétricas: $\mathbf{r}(t) = (\cos t, \, \mathbf{sent}, \, t); \ 0 \le t \le 2\pi$. OBS.: $sen^2 t = \frac{(1 - \cos 2t)}{2}$

Faça a leitura do material disponibilizado no link a seguir: https://www.youtube.com/watch?v=9vr-RVUWFS8&list=PLxg4Vb Q8E5eEHy-20ikwmjZtwYBydhXg

Faça a leitura a seguir e responda as questões propostas:

Se $\overrightarrow{u} = (x_1, y_1, z_1)$ e $\overrightarrow{v} = (x_2, y_2, z_2)$ são vetores no R^3 , define-se produto escalar (ou interno) entre $\overrightarrow{u}e$ \overrightarrow{v} , como o escalar real:

$$\vec{u}.\vec{v} = x_1.x_2 + y_1.y_2 + z_1.z_2$$
ou
$$\vec{u}.\vec{v} = |\vec{u}||\vec{v}|\cos \theta$$

O módulo de um vetor é dado por:

$$|\vec{v}| = \sqrt{(x^2 + y^2 + z^2)}$$

QUESTÃO 10

Desta forma, dados vetores $\vec{u} = \langle 4,3,1 \rangle$ e $\vec{v} = \langle -2,6,4 \rangle$, pode-se dizer que o produto escalar entre $\vec{u}e \ \vec{v}$ e o ângulo θ formado por eles são respectivamente:

QUESTÃO 11

Dados os vetores $\vec{u} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$, e $\vec{v} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$, definimos o produto vetorial entre $\vec{u}e \ \vec{v}$, denotado por $\vec{u}x\vec{v}$, como o vetor obtido por:

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \mathbf{x}_1 & \mathbf{y}_1 & \mathbf{z}_1 \\ \mathbf{x}_2 & \mathbf{y}_2 & \mathbf{z}_2 \end{vmatrix}$$

onde \vec{i} , \vec{j} , \vec{k} , são os vetores unitários da base canônica do R^3 . Aplicando a regra de Sarrus para o cálculo de determinantes, obtém-se $\vec{u} \times \vec{v}$.

Considere os vetores $\vec{u} = (2,-4,0)$ e $\vec{v} = (-6, 2, -4)$. O produto vetorial, $\vec{u}x\vec{v}$, é: