Titulación Matemáticas

Primer Parcial Jueves, 19 de febrero de 2015

APELLIDOS:	Nombre:
DNI:	Grupo:
(a) Los anillos \mathbb{Z}_{50} y $\mathbb{Z}_{25} \times \mathbb{Z}_2$ Tma. Chino del Re	cide de manera razonada si las siguientes afirmaciones son verdaderas o falsas. son isomorfos. VERDADERO sto Gi Is, Iz CR, sou ideales tales que: además I, +Iz=R, entreves PNR/I, XR/Iz
18 mairing 4 5 have	. 9)
en entecasa	$R = 250$) $I_1 = \langle \overline{25} \rangle$ e $I_2 = \langle \overline{2} \rangle$.
A 15	06 < 0 < 0 < 0 < 00 < 00
y ordeman	I1+I2 = <25>+ <2>= <1>- 460'
=0 Zb(~ 280/25 × 2 80/27 ~ 25×22.
(b) El ideal $\langle \overline{3} angle \subset \mathbb{Z}_{15}$ es un \mathbb{Z}	5-módulo.
VERDADERO	
& Forma : Usau	do la ejercicia 1 y 2 de le hojà 3.
Ann215<3>=<	5> =0 <3> en m 2/2 - modulo, ie.
en lu 2/5/8/1674	Es-modulo Annosa La Lemprobar que el producto $\overline{n} \in \mathbb{Z}_5$
2= Forma Bas	ite tourprobar que el producto $\pi \in \mathbb{Z}_5$
or in elemento	m E 23> C King eita bien definido:
io hodepondo	de la remesculanta ercogida); En electo:
$\overline{n} \cdot \overline{m} = ($	n+ 5 K) - (3s + 15l) = 3n5 + 15ln + 15ks + 5.15ml
K, lezt m=3s+	15e $= \frac{n.3s}{nm} \in \langle 3 \rangle$ eu 2 ± 15 .

$$\frac{2^{\circ} \text{ exemplo}}{x \in \mathbb{K}} \times \frac{1}{x^{2}} \rightarrow k$$

(d) Existe una parte multiplicativa $S\subset \mathbb{Z}_{10}$ tal que $S^{-1}\mathbb{Z}_{10}$ es isomorfo a \mathbb{Z}_5 .

VERDADERO

Basta tomar S=11,2,4,86. Entono si:

P: \mathbb{Z}_{10} \longrightarrow S-1 \mathbb{Z}_{10} Se hiene que $\ker \varphi = \langle 5 \rangle$, luego $\mathbb{Z}_{10}/\langle 5 \rangle$ Ademán, ou S-1 \mathbb{Z}_{10} Le hiene que:

Ademán, eu S-
$$\frac{1}{2}$$
 se hieroque!
 $2^{-1} = 3$ $\frac{4^{-1} - 4}{8} = \frac{4}{3}$ $\frac{5}{9} = 0$ $6 = 1$; $7 = 2$ er facil resque $\# S - 2 = 5$, y que ademán en un unerpo. Luego recesariamento $8 - 2 = 0$ $2 = 0$

Problema 2. (10 puntos) Sea R un anillo y sea $S\subset R$ una parte multiplicativa. Enuncia y demuestra la propiedad universal del localizado $S^{-1}R$.

Problema 3. (10 puntos) Para cada entero n>1 consideramos el homomorfismo natural de paso al cociente $\mathbb{Z} \to \mathbb{Z}_n$. Decide, de manera razonada, si existe algún $n\neq 20$ y un homomorfismo f que haga conmutar el circulado disconercia.

siguiente diagrama:

 $\emptyset \downarrow^{\mathbb{Z}}$ \downarrow^{n} \downarrow^{n}

J= Forma

f existed=0 Ker & C Ker TIV=0 <0> C<20>

D=0 20/0.

Remomorfismo de grupos. Como además necesariamento $T(1) = I \mod 20$, y $S(1) = I \mod n$, $\Rightarrow D = I \mod n = I \mod n$. Teamor que este condicion de suficiente pare del el homo de

anilla. Definima:

 $f(\overline{m}) := T(m) = m \mod 20$ tomando $m \in \{\emptyset^{-1}(\overline{m})\}$

Hace falka rei que of entar bien defunida (ie. que la imagen de m us depende del representante eicogido).

Se m'e Z, y m'e 8 (m) = p m-m'e <n>
Enteus of (m') = TT (m+ Kn) = m+kn mod 20=

= m di $n \in \langle 20 \rangle$. \forall ahora es fácil verque di $m_1, m_2 \in \mathbb{Z}_n$, $f(\overline{m}_1 + \overline{m}_2) =$ $= TT(m_1 + m_2) = m_1 + m_2 \mod 20 = m_1 + m_2 \mod 20$, y lo mismo paus $f(\overline{m}_1, \overline{m}_2)$.