HCAL 25ns reconstruction on MC progress

Edmund Berry¹

¹Brown University

2014-04-15 Tue

GEN-SIM datasets

■ Consider two GEN-SIM datasets (no PU) at T1_US_FNAL:

Dataset	Production release
/MinBias_TuneZ2star_13TeV-pythia6/Summer13-START53_V7C-v1/GEN-SIM	CMSSW_5_3_10_patch2
/QCD_Pt-1800_TuneZ2star_13TeV_pythia6/Fall13-POSTLS162_V1-v1/GEN-SIM	CMSSW_6_2_0_patch1

- QCD_Pt-1800 dataset:
 - DAS link
 - 93453 (\sim 100k) events, 95 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/QCD1800MC/
- MinBias dataset:
 - DAS link
 - $lue{}$ 9999424 (\sim 10M) events, 946 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/MinBiasMC/

Brown University

Edmund Berry

DIGI, trigger and RECO processing

- Need to process these to get DIGI and RECO information
- Steps needed:
 - DIGI, L1, DIGI2RAW, HLT, RAW2DIGI, L1Reco, RECO
- Then run HcalNoiseAnalyzer (updated for 62X)
 - HcalNoiseAnalyzer git page, Maintained by noise group?
 - Updated .cc file for 62X, E. Berry
- Use CMSSW_5_3_9_patch3 to process MinBias dataset:
 - cmsDriver.py command
 - Final python cfg
- Use CMSSW_6_2_8 to process QCD_Pt-1800 dataset:
 - cmsDriver.py command
 - Final python cfg

Selecton

- Event selection:
 - No trigger requirement
 - No OfficialDecision requirement
 - NumberOfGoodPrimaryVertices > 0
- Channel selection:
 - Only HBHE considered
 - Rings: HB, HE: {17:20, 21:23, 24:25, 26:27, 28:28}
 - No channels in bad channels list
 - RecHit energy > 1 GeV
 - Charge > 5 fC
- Analyzer code:
 - Git page

Number of primary vertices: QCD sample

- 92612 events passing event selection
- Confirms no pileup, as expected

Definitions

- The following plots show TProfile distributions
- One entry per HCAL digi in the ZS-collection
- x-axis corresponds to charge in TS4 [fC]
- *y*-axis corresponds to one of several charge ratios:
 - a1: charge in TS3 [fC] / charge in TS4 [fC]
 - a2: charge in TS2 [fC] / charge in TS4 [fC]
 - a3: charge in TS1 [fC] / charge in TS4 [fC]

a1(TS4): HB in the MinBias sample

a1(TS4), in HB: MinBias sample

- Clearly not enough statistics in tail
- Can't use MinBias dataset to measure pulse shape
- MinBias dataset still useful for DIY pileup

a1(TS4), in HB: QCD sample

- Fewer events, but tail population much better
- Can emulate IT pileup by adding MinBias dataset
- Next slides show more results from QCD dataset

Edmund Berry

a1(TS4): HE, ring 17:20

a1(TS4), in HE ring 17:20: QCD sample

a1(TS4), in HE ring 21:23: QCD sample

a1(TS4), in HE ring 24:25: QCD sample

a1(TS4): HE, ring 26:27

a1(TS4), in HE ring 26:27: QCD sample

a1(TS4): HE, ring 28

a1(TS4), in HE ring 28: QCD sample

a2(TS4): HB

a2(TS4), in HB: QCD sample

a2(TS4): HE, ring 17:20

a2(TS4), in HE ring 17:20: QCD sample

a2(TS4): HE, ring 21:23

a2(TS4), in HE ring 21:23: QCD sample

a2(TS4): HE, ring 24:25

a2(TS4), in HE ring 24:25: QCD sample

a2(TS4): HE, ring 26:27

a2(TS4), in HE ring 26:27: QCD sample

a2(TS4): HE, ring 28

a2(TS4), in HE ring 28: QCD sample

a3(TS4): HB

a3(TS4), in HB: QCD sample

a3(TS4): HE, ring 17:20

a3(TS4), in HE ring 17:20: QCD sample

a3(TS4): HE, ring 21:23

a3(TS4), in HE ring 21:23: QCD sample

a3(TS4): HE, ring 24:25

a3(TS4), in HE ring 24:25: QCD sample

a3(TS4), in HE ring 26:27: QCD sample

a3(TS4): HE, ring 28

a3(TS4), in HE ring 28: QCD sample

Summary

- Completed analysis framework
- Processed zero-pileup samples adequate for studies
- Have preliminary results for those samples
- Working on applying/validating results to put into CMSSW

To-do list

- Fit a1, a2, a3 functions
 - Recommended fit functions, Sasha?
- Apply & validate

Brown University