**DDRESSING MODES/8086

Mrs. JYOTSNA A. KULKARNI

*ADDRESSING MODES

DATA ADDRESSING MODES

- » Register Addressing
- » Immediate Addressing
- » Direct Addressing
- » Register Indirect Addressing
- » Base-plus-Index Addressing
- » Register relative Addressing
- » Base relative-plus-index Addressing

PROGRAM MEMORY ADDRESSING MODES

- Program relative
- Direct
- Indirect

How to find actual address from Segment: offset

- 34BA:4214
 - denotes offset 4214H from segment 34BAH.
- The actual address it refers to is obtained in the
- following way:
 - 1- Add zero to the right hand side of the segment address.
 - 2- Add to this the offset.

Hence the actual address referred to by **34BA:4214** is ?

Default segments for offset

SEGMENT	OFFSET	SPECIAL PURPOSE
CS	IP	Instruction Address
SS	SP (or) BP	Stack address
DS	BX,DI,SI an 8-bit number 16 – bit number	Data address
ES	DI for string Instructions	String destination address

Register Indirect Addressing

 Allows data to be addressed at any memory location through an offset address held in any of the following registers: BP, BX, DI, and SI.

MOV AX,[BX]
 consider BX = 1000H and DS = 0100H.

Register Indirect Addressing

- In some cases, indirect addressing requires specifying the size of the data by the special assembler directive BYTE PTR or WORD PTR.
 - these directives indicate the size of the memory data addressed by the memory pointer (PTR)
- The directives are with instructions that address a memory location through a pointer or index register with immediate data.
- MOV BYTE PTR [DI],10H
- MOV BL,DS:BYTE PTR [437AH]

Register Indirect Addressing

 Indirect addressing often allows a program to refer to tabular data located in memory.

Ex: Create a table of information that contains 50 samples taken from extra segment memory location 0000:046C

- Store starting location of table into BX
 - Immediate addressing mode with MOV
 - MOV BX,OFFSET TABLE
- Store 50 samples sequentially
 - Register indirect addressing mode
 - MOV AX,ES:[046CH]
 - MOV [BX],AX

An array (TABLE) containing 50 bytes that are indirectly addressed through register BX.

DATA ADDRESSING MODES

- » Register Addressing
- » Immediate Addressing
- » Direct Addressing
- » Register Indirect Addressing
- » Base-plus-Index Addressing
- » Register relative Addressing
- » Base relative-plus-index Addressing

Base- plus Index Addressing

- Similar to indirect addressing because it indirectly addresses memory data.
- The base register often holds the beginning location of a memory array.
 - the index register holds the relative position of an element in the array
 - whenever BP addresses memory data, both the stack segment register and BP generate the effective address

Base- plus Index Addressing

- MOV DX,[BX + DI]
- Let DS=0100H, BX=1000H and DI=0010H.
- Whatis the memory address accessed?
 - Beginning of array BX=1000H
 - Relative movement:DI=0010
 - OFFSET=1010
 - Actual adress: 1000+1010
- memory address 2010H is accessed

Locating Array Data Using Base-Plus-Index Addressing

- Load the BX register (base) with the beginning address of the array
- and the DI register (index) with the element number to be accessed.
 - MOV BX,OFFSET ARRAY
 - MOV DI,10H
 - MOV AL,[BX+DI]
 - MOV DI,20H
 - MOV [BX+DI],AL

DATA ADDRESSING MODES

- » Register Addressing
- » Immediate Addressing
- » Direct Addressing
- » Register Indirect Addressing
- » Base-plus-Index Addressing
- » Register relative Addressing
- » Base relative-plus-index Addressing

Register Relative mode

- Similar to base-plus-index addressing and displacement addressing.
 - data in a segment of memory are addressed by adding the displacement to the contents of a base or an index register (BP, BX, DI, or SI)
- MOV AX,[BX+1000H]
 - when BX=0100H and DS=0200H
 - What is actual ML accessed?
 - -3100

Addressing Array Data with Register Relative

- It is possible to address array data with register relative addressing.
 - Ex.3.9/Brey

DATA ADDRESSING MODES

- » Register Addressing
- » Immediate Addressing
- » Direct Addressing
- » Register Indirect Addressing
- » Base-plus-Index Addressing
- » Register relative Addressing
- » Base relative-plus-index Addressing

Base Relative-Plus-Index Addressing

- Similar to base-plus-index addressing.
 - adds a displacement
 - uses a base register and an index register to form the memory address
- This type of addressing mode often addresses a two-dimensional array of memory data.

Addressing Data with Base Relative-Plus-Index

- Least-used addressing mode.
- MOV AX,[BX + SI + 100H].
 - displacement of 100H adds to BX and SI to form the offset address within the data segment
- This addressing mode is too complex for frequent use in programming.

Addressing Arrays with Base Relative-Plus-Index

- Suppose a file of many records exists in memory, each record with many elements.
 - displacement addresses the file, base register addresses a record, the index register addresses an element of a record

TRY YOURSELF

MOV BX, 2000_H

MOV DI, 10_H

MOV AL, [BX+DI]

MOV DI, 20_H

MOV [BX+DI], AL