Esercitazione 1 / 13 Ottobre 2005

Esercizi risolti

- 1. Per una relazione $R \subseteq A \times A$ si indichino rispettivamente con R^r , R^s e R^t le chiusure riflessiva, simmetrica e transitiva di R. Analogamente, R^{ts} indica la chiusura prima transitiva, poi simmetrica di R e così via.
 - Sia $A = \{0,1\}$ e $R = \{(0,1)\}$. Si provi che $R^{ts} \subset R^{st}$, ma che $R^{rts} = R^{rst}$.
 - Siano ora $A = \{0, 1, 1'\}$ e $R = \{(0, 1), (0, 1')\}$. Si provi che $R^{ts} \subset R^{st}$ e che $R^{rts} \subset R^{rst}$.

Dunque, la chiusura R^{ts} non è in generale transitiva, anche se la relazione di partenza è riflessiva.

2. Su $X = \{a, b, c, d, e\}$ si consideri la relazione R definita dalla matrice di incidenza

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Dire di quali properietà gode R. Calcolare l'equivalenza E generate da R e le classi di E. Stabilire se R e R^{-1} sono funzioni e se $R \cdot R^{-1} = 1_X$.

3. Su $X = \{a, b, c, d, e\}$ si consideri la relazione R definita dalla matrice di incidenza

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Dire di quali properietà gode R. Si costruisca la chiusura riflessiva e transitiva S di R.

4. Si consideri la relazione R su \mathbf{Z} definita da

$$aRb \Leftrightarrow (a > 10 \land b > 10) \lor (a < 10 \land b = a + 3)$$

Dimostrare che l'equivalenza generata da R è la relazione universale su \mathbf{Z} . Determinare la chiusura transitiva di R.

Esercitazione 2 / 20 Ottobre 2005

Esercizi risolti

- 1. a) Sia X un insieme non vuoto di relazioni d'ordine su un insieme A. Si provi che $\bigcap X$ è una relazione d'ordine su A. Si provi che A è una relazione A e sia A la relazione d'ordine su A generata da A. Si provi che A è una relazione d'ordine, ma che A0 be sia A1 la relazione d'ordine su A2 generata da A3. Si provi che A4 è una relazione d'ordine, ma che A5 be sia A6 la relazione d'ordine di relazioni d'ordine non è in generale una relazione d'ordine. c) Con la stessa notazione di b), si dimostri che A6 si A7 e dunque che le relazioni d'ordine su A7 non sono chiuse rispetto al prodotto.
- 2. Su $X = \{a, b, c, d, e\}$ si consideri la relazione R definita dalla matrice d'incidenza

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

1

- a) Si provi che R è un ordine su X e si elenchino gli elementi massimali e minimali. b) Si trovi una relazione $T \supset R$ che ammetta massimo e una relazione $S \supset R$ tale che (X, S) sia un reticolo.
- 3. Su $X = \{a, b, c, d, e\}$ si consideri la relazione R definita dalla matrice di incidenza

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Si provi che la chiusura riflessiva e transitiva S di R è una relazione d'ordine e si stabilisca se (X,S) è un reticolo.

4. Su $X = \{a, b, c, d\}$ si consideri la relazione R con grafo

$$a \longrightarrow b$$
 $c \longleftarrow d$

Si trovino tutte le funzioni $f \colon X \to X$ che contengono R ed ammettono inversa destra. Si provi che tutte queste funzioni sono biiettive.

- 5. Sia X un insieme finito e $f: X \to X$ una funzione. Si dimostri che per f le condizioni di essere iniettiva, suriettiva e biiettiva sono tutte equivalenti.
- 6. Sia $f: X \to Y$ una funzione. Si dimostri che f è iniettiva se e solo se $\ker(f)$ è la diagonale di X, cioè se $\ker(f) = \{(x,x) \mid x \in X\}$.

Esercizi supplementari

7. Si provi che la relazione $f \subseteq \mathbf{R} \times \mathbf{R}$ definita da

$$(x,y) \in f \Leftrightarrow y = 3x^2 + 1$$

è una funzione. Si stabilisca se f è iniettiva o suriettiva. Stessa domanda sostituendo ${f R}$ con ${f N}$.

8. Si consideri la funzione $f: \mathbb{N} \to \mathbb{N}$ definita da

$$f(n) = \begin{cases} n^2 + 3 & \text{se } n \text{ è pari} \\ 2n + 4 & \text{se } n \text{ è dispari} \end{cases}$$

Si dica se f ammette inverse destre o sinistre e in questo caso se ne determini almeno una.

9. Su $X = \{a, b, c, d, e\}$ si consideri la relazione R definita dalla matrice di incidenza

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Si provi che la chiusura riflessiva e transitiva S di R è una relazione d'ordine e se ne calcolino gli elementi massimali e minimali, dicendo se sono massimi o minimi. Si stabilisca se (X,S) è un reticolo. Si provi che R è una funzione, ma che S non lo è.

10. Siano $X = \{a, b, c, d, e\}, Y = \{x, y, z\}$ e $R \subseteq X \times Y$ la relazione definita dalla matrice di incidenza

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

2

Si trovi una funzione $f: X \to Y$ contenuta in R. Si dica se esiste una funzione $g: X \to Y$ contenuta in R e suriettiva, e in questo caso si determini una sua inversa sinistra.

11. a) Si consideri la funzione $f \colon \mathbf{N} \times \mathbf{N} \to \mathbf{Z}$ definita dalla formula f(m,n) = m-n. Si determini $\ker(f)$ e si mostri come il teorema sulla fattorizzazione canonica di f fonisca una rappresentazione degli interi come classi di equivalenza di coppie di numeri naturali. b) Si consideri la funzione $g \colon \mathbf{Z} \times \mathbf{Z} \setminus \{0\} \to \mathbf{Q}$ definita dalla formula f(m,n) = m/n. Si determini $\ker(g)$ e si mostri come il teorema sulla fattorizzazione canonica di g fonisca una rappresentazione dei razionali come classi di equivalenza di coppie di numeri interi.

Esercitazione 3 / 10 Novembre 2005

- 1. a) Siano A e B due Ω -algebre (cioè due strutture algebriche con operazioni in Ω). Si osservi che il prodotto cartesiano $A \times B$ è una Ω -algebra, se per ogni operazione n-aria $\omega \in \Omega$ si pone $\omega_{A \times B}((a_1,b_1),\ldots,(a_n,b_n)) = (\omega_A(a_1,\ldots,a_n),\omega_B(b_1,\ldots,b_n))$. Si dimostri che la proiezione $p_A\colon A\times B\to A$ definita dalla formula $p_A(a,b)=a$ è un omomorfismo di Ω -algebre. Si provi lo stesso risultato per $p_B\colon A\times B\to B$. b) Sia A una Ω -algebra e sia X un insieme. Si osservi che l'insieme $A^X=\{f\colon X\to A\}$ è una Ω -algebra se per ogni operazione n-aria $\omega\in\Omega$ si pone $\omega_{A^X}(f_1,\ldots,f_n)(x)=\omega_A(f_1(x),\ldots,f_n(x))$. Si provi che ogni funzione $h\colon Y\to X$ induce un omomorfismo di Ω -algebra $h^X\colon A^X\to A^Y$ definito dalla formula $h^X(f)(y)=f(h(y))$.
- 2. a) Siano G e H due gruppi. Si provi che il prodotto cartesiano $G \times H$ è un gruppo per il prodotto $(g,h) \cdot (g',h') = (gg',hh')$. Si provi che le proiezioni $p_G \colon G \times H \to G$ e $p_H \colon G \times H \to H$ definite dalle formule $p_G(g,h) = g$ e $p_H(g,h) = h$ sono omomorfismi di gruppi. b) Siano R ed S anelli unitari. Si provi che il prodotto cartesiano $R \times S$ è un anello unitario per le operazioni (r,s) + (r',s') = (r+r',s+s') e (r,s)(r',s') = (rr',ss'). Si provi che le proiezioni $R \leftarrow R \times S \to S$ sono morfismi di anelli unitari.
- 3. a) Siano G e H due gruppi. Si dimostri che il sottoinsieme $G' = \{(g,1) \mid g \in G\} \subseteq G \times H$ è un sottogruppo normale di $G \times H$ isomorfo a G. Si dimostri che la proiezione $G \times H \to H$ induce un isomorfismo di gruppi $(G \times H)/G' \simeq H$. Si formuli un risultato analogo per H. b) Siano R e S due anelli unitari. Si provi che il sottoinsieme $\mathfrak{r} = \{(r,0) \mid r \in R\} \subseteq R \times S$ è un ideale e che la proiezione $R \times S \to R$ è un morfismo di anelli unitari che induce un isomorfismo $(R \times S)/\mathfrak{r} \simeq S$. Si osservi tuttavia che \mathfrak{r} non è un sottoanello unitario di $R \times S$ se S contiene almeno due elementi.
- 4. Sia G un gruppo. Il centro di G è il sottoinsieme $Z(G)=\{g\in G\mid (\forall x\in G)(gx=xg)\}$. a) Si provi direttamente che $Z(G)\unlhd G$. b) Si dimostri che per ogni $g\in G$, l'applicazione $\bar{g}\colon G\to G$ definita dalla formula $\bar{g}(x)=gxg^{-1}$ è un automorfismo di G. Si dimostri che la funzione $G\to \operatorname{Aut}(G)$ definita da $g\mapsto \bar{g}$ è un omomorfismo di gruppi con nucleo Z(G). Se ne deduca che $Z(G)\unlhd G$. c) Si dimostri che ogni sottogruppo di Z(G) è normale in G. d) Si provi che G è abeliano se e solo se Z(G)=1. e) si provi che $Z(S_n)=1$ per n>2.

SOLUZIONE. e) Se $\sigma \in S_n$ e $\sigma \neq 1$, esiste $i \leq n$ tale che $\sigma(i) \neq i$. Poichè n > 2, possiamo trovare $j \neq i, \sigma(i)$. Si osservi ora che $\sigma^{-1} \cdot (i,j) \cdot \sigma = (\sigma(i),\sigma(j)) \neq (i,j)$ perchè $\sigma \neq i,j$. Dunque $(i,j) \cdot \sigma \neq \sigma \cdot (i,j)$ e $\sigma \notin Z(S_n)$.

- 5. Si provi che $H_1 = \{ \sigma \in S_n \mid \sigma(1) = 1 \}$ è un sottogruppo di S_n , ma che non è normale per n > 2. Soluzione. Basta osservare che $(2,3) \in H_1$, e che $(1,2)(2,3)(1,2)^{-1} = (1,2)(2,3)(1,2) = (1,3) \notin H_1$.
- 6. Sia G un gruppo. Si provi che il sottoinsieme $D = \{(g,g) \mid g \in G\} \subseteq G \times G$ è un sottogruppo isomorfo a G. Si mostri con un esempio che non è necessariamente normale.
- 7. Sia *G* un gruppo. Si provi che le seguenti condizioni sono equivalenti.
 - 1. G è abeliano.
 - 2. La funzione $G \to G$ definita da $x \mapsto x^2$ è un omomorfismo di gruppi.
 - 3. La funzione $G \to G$ definita da $x \mapsto x^{-1}$ è un omomorfismo di gruppi.
- 8. Si consideri il gruppo $\mathrm{GL}_n(R)$ delle matrici quadrate invertibili di ordine n a coefficienti in un anello commutativo R.

- 1. Si provi che $SL_n(R) \subseteq GL_n(R)$.
- 2. Sia U_n l'insieme delle matrici triangolari superiori con 1 sulla diagonale principale. Si provi che $U_n \leq \operatorname{GL}_n$ è un sottogruppo ma che non è normale per n > 1.
- 3. Sia D_n l'insieme delle matrici diagonali a elementi invertibili. Si provi che $D_n \leq \operatorname{GL}_n(R)$ è un sottogruppo ma che non è normale per n > 1.

SOLUZIONE. 1. Si ricordi che $\mathrm{SL}_n(R) = \{A \in \mathrm{GL}_n(R) : |A| = 1\}$, dove |A| è il determinante di A. Si ricordi anche che se $A, B \in \mathrm{Mat}_n(R)$, risulta |AB| = |A||B| e dunque che il determinante è un omomorfismo $\mathrm{GL}_n(R) \to R^*$ verso il gruppo degli elementi invertibili di R. Dunque $\mathrm{SL}_n(R)$ è il nucleo del determinante e come tale è un sottogruppo normale di $\mathrm{GL}_n(R)$.

9. Sia k un campo. Si provi che

$$A_1(k) = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in k^*, b \in k \right\}$$

è un sottogruppo di $\mathrm{GL}_2(k)$ (il gruppo affine 1-dimensionale). Si provi che

$$H = \{ A \in A_1(k) \mid b = 0 \},$$
 $N = \{ A \in A_1(k) \mid a = 1 \}$

sono sottogruppi di $A_1(k)$ con $N \subseteq A_1(k)$. Si provi inoltre che $H \cap N = 1$ e A = NH.

- 10. Si dimostri che $\mathbf{Z}[i] = \{m + n\sqrt{-1} \mid m, n \in \mathbf{Z}\}$ è un sottoanello di \mathbf{C} . Si dimostri che il gruppo degli elementi di $\mathbf{Z}[i]$ invertibili rispetto al prodotto è $\mathbf{Z}[i]^* = \{\pm 1, \pm i\}$ e che questo gruppo è isomorfo a $\mathbf{Z}/4$.
- 11. a) Si provi che l'insieme delle matrici a coefficienti complessi

$$Q = \left\{ \begin{pmatrix} x & y \\ -\bar{y} & \bar{x} \end{pmatrix} : x, y \in \mathbf{C} \right\}$$

costituisce un sottcorpo di $\mathrm{Mat}_2(\mathbf{C})$ isomorfo al corpo dei quaternioni \mathbf{H} . b) Si provi che $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ costituisce un sottogruppo moltiplicativo di \mathbf{H} . Si determinino tutti i sottogruppi di Q_8 e si provi che sono tutti normali.

- 12. Si supponga che $d \in \mathbf{Z}$ non sia un quadrato in \mathbf{Z} . Si provi che $\mathbf{Z}[\sqrt{d}] = \{m + n\sqrt{d} \mid m, n \in \mathbf{Z}\}$ è un sottoanello unitario di \mathbf{C} .
- 13. Sia $p \in \mathbf{Z}$ un primo. Sia $\mathbf{Z}_{(p)} = \{m/n \mid m, n \in \mathbf{Z}, p \nmid n\}$. Si provi che $\mathbf{Z}_{(p)}$ è un sottoanello unitario di \mathbf{Q} , ma non un sottocampo.
- 14. Siano $p, q \in \mathbb{Z}$ primi distinti. Si provi che non esiste alcun morfismo di anelli (unitari) $\mathbb{Z}/p \to \mathbb{Z}/q$.
- 15. Sia R un anello commutativo e $X \subseteq R$ un sottoinsieme. Si dimostri che $A = \{a \in R \mid (\forall x \in X)(ax = 0)\}$ è un ideale di R.