

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 B41M 5/00, G03G 7/00	A1	(11) 国際公開番号 WO00/03878
		(43) 国際公開日 2000年1月27日(27.01.00)
(21) 国際出願番号 PCT/JP99/03812		(81) 指定国 AU, CN, ID, KR, SG, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)
(22) 国際出願日 1999年7月15日(15.07.99)		添付公開書類 国際調査報告書
(30) 優先権データ 特願平10/201710 1998年7月16日(16.07.98) JP 特願平10/216851 1998年7月31日(31.07.98) JP		
(71) 出願人 (米国を除くすべての指定国について) 三菱製紙株式会社 (MITSUBISHI PAPER MILLS LIMITED)[JP/JP] 〒100-0005 東京都千代田区丸の内3丁目4番2号 Tokyo, (JP)		
(72) 発明者; および (75) 発明者/出願人 (米国についてのみ) 出井晃治(IDEI, Koji)[JP/JP] 日比野良彦(HIBINO, Yoshihiko)[JP/JP] 〒100-0005 東京都千代田区丸の内3丁目4番2号 三菱製紙株式会社内 Tokyo, (JP)		
(74) 代理人 浅村 哲, 外(ASAMURA, Kiyoshi et al.) 〒100-0004 東京都千代田区大手町2丁目2番1号 新大手町ビル331 Tokyo, (JP)		

(54)Title: **PAPER FOR USE IN BOTH INK-JET RECORDING AND ELECTROPHOTOGRAPHIC RECORDING**

(54)発明の名称 インクジェット記録・電子写真記録共用紙

(57) Abstract

An ordinary type paper for use in both ink-jet recording and electrophotographic recording which comprises a supporting material and a cationic resin coated thereon in an amount of 0.5 to 2.0 g/m² in terms of the amount of a dried resin, and has a surface resistivity of 1.0 x 10⁹ to 9.9 x 10¹³ Ω. It is preferred that the cationic resin has a cationic equivalent of 3 to 8 meq/g as measured by the colloidal titration method and that the internal sizing agent used in the supporting material is a neutral rosin sizing agent or an alkenyl succinic anhydride. The supporting material may contain a pulp from waste paper. This paper for use in both ink-jet recording and electrophotographic recording is excellent with respect to the water resistance of an image in ink-jet recording and also excellent in toner transfer characteristics and carrying characteristics in electrophotographic recording.

本発明の目的は、インクジェット記録方式での画像耐水性に優れ、電子写真記録方式でのトナー転写性、搬送性に優れた普通紙タイプのインクジェット記録・電子写真記録共用紙を提供することにある。本発明に従えば、支持体に、カチオン性樹脂を乾燥付着量として0.5~2.0 g/m²付着させてなり、且つ表面抵抗率が 1.0×10^9 ~ 9.9×10^{13} Ωである普通紙タイプのインクジェット記録・電子写真記録共用紙が提供される好ましくは、カチオン性樹脂のコロイド滴定法によるカチオン当量が3~8 meq/g、支持体に使用される内添ササイズ剤が中性ロジンササイズ剤、またはアルケニル無水コハク酸である。支持体は古紙パルプを含有してもよい。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE	アラブ首長国連邦	DM	ドミニカ	KZ	カザフスタン	RU	ロシア
AL	アルバニア	EE	エストニア	LC	セントルシア	SD	スードーン
AM	アルメニア	ES	スペイン	LI	リヒテンシュタイン	SE	スウェーデン
AT	オーストリア	FI	フィンランド	LK	スリランカ	SG	シンガポール
AU	オーストラリア	FR	フランス	LR	リベリア	SIK	スロヴェニア
AZ	アゼルバイジャン	GA	ガボン	LS	レソト	SL	シエラ・レオネ
BH	ボズニア・ヘルツェゴビナ	GB	英国	LT	リトアニア	SN	セネガル
BB	バルバドス	GD	グレナダ	LU	ルクセンブルグ	SZ	スワジランド
BE	ベルギー	GE	グルジア	LV	ラトヴィア	TG	トーゴー
BF	ブルガリア	GH	ガーナ	MA	モロッコ	TJ	タジキスタン
BG	ブルガリア	GM	ガンビア	MC	モナコ	TZ	タンザニア
BJ	ベナン	GN	ギニア	MD	モルドヴァ	TM	トルクメニスタン
BR	ブラジル	GW	ギニア・ビサオ	MG	マダガスカル	TR	トルコ
BY	ベラルーシ	GR	ギリシャ	MK	マケドニア旧ユーゴスラヴィア	TT	トリニダッド・トバゴ
CA	カナダ	HR	クロアチア	HU	共和国	UA	ウクライナ
CF	中央アフリカ	IU	ハンガリー	ML	マリ	UG	ウガンダ
CG	コンゴー	ID	インドネシア	MN	モンゴル	US	米国
CH	スイス	IE	アイルランド	MR	モーリタニア	UZ	ウズベキスタン
CI	コートジボアール	IL	イスラエル	MW	マラウイ	VN	ヴィエトナム
CM	カメルーン	IN	インド	MX	メキシコ	YU	ユーゴースラビア
CN	中国	IS	アイスランド	NE	ニジエール	ZA	南アフリカ共和国
CR	コスタ・リカ	IT	イタリア	NL	オランダ	ZW	ジンバブエ
CU	キューバ	JP	日本	NO	ノールウェー		
CY	キプロス	KE	ケニア	NZ	ニュージーランド		
CZ	チェコ	KG	キルギスタン	PL	ポーランド		
DE	ドイツ	KP	北朝鮮	PT	ポルトガル		
DK	デンマーク	KR	韓国	RO	ルーマニア		

明細書

インクジェット記録・電子写真記録共用紙

5 技術分野

本発明は、インクジェット記録方式と電子写真記録方式の双方に使用できるインクジェット記録・電子写真記録共用紙に関するものである。更に詳しくは、記録面に特殊なコーティングを施していない、いわゆる普通紙タイプの記録用紙であり、特にインクジェット記録方式で水溶性インクを用いて記録した画像の耐水性に優れ、且つ電子写真記録方式のカラー記録において、優れたトナー転写性、搬送性を有するインクジェット記録・電子写真記録共用紙に関するものである。

10 背景技術

インクジェット記録装置は、記録用紙に直接インクを噴射する方式であって、従来の記録装置に比べてランニングコストが安く静かで、且つカラー記録が容易な記録方法として注目されている。この様な記録方式において用いられるインクは安全性、印刷特性の面から水溶性インクが用いられ、又、記録用紙にはインクの吸収性が早く、且つ異色インクの重複があってもインクの溢れ等を生じないこと、インクドットの広がりが適正であること、又、ドット形状が真円に近いこと、更にドットエッジが鮮明であること、当然のこととしてドット濃度が高く、且つドットコントラストを際立たせる為に十分白色度が高いことが要求されている。

インクジェット記録装置に用いる記録用紙としては、上記要求に応じる為に、例えば、特開昭59-35977号公報及び特開平1-135682号公報に開示されている様な専用のコート紙の使用が提案されている。これに対し、モノクロ記録やビジネスカラー記録の分野では、低価格で汎用性のある記録用紙、即ち電子写真記録装置で一般に用いられている様な普通紙の使用が望まれている。

従来、電子写真記録装置に用いられている記録用紙をインクジェット記録方式に使用すると、インクの吸収性に乏しい為、多量のインクが付与されるとインクの溢れが生じる問題、或いはインクの吸収性が十分な場合でも、紙の繊維に沿ってインクが吸収されてしまう為に、インクドットの形状が不鮮明になる現象（フ

エザリングと称する)が発生する等の問題があった。

近年、インクジェット記録と電子写真記録の共用化を目指し、上記問題を改良したインクジェット記録・電子写真記録共用紙が上市されているが、インクジェット記録方式の最大の問題点である画像の耐水性に関しては、何ら解決されていない

5 いのが現状である。

上記インクジェット記録の画像耐水性を得るためにには、記録用紙にカチオン性樹脂を含有させ、インク染料のアニオン性部分との反応により、染料を耐水化することは有効である。しかしながら、電解質であるカチオン性樹脂を含有することにより、記録用紙の表面抵抗率が下がり、その結果として電子写真記録におけるトナーの転写性が悪化することがあった。表面抵抗率の低下は、搬送性の点では有効であるが、特にフルカラータイプの電子写真記録ではトナー転写性に大きく影響を及ぼす。

上述したとおり、普通紙タイプのインクジェット記録・電子写真記録共用紙の場合、インク耐水性が得られていないのが現状である。本発明の目的は、普通紙タイプのインクジェット記録・電子写真記録共用紙において、インクジェット記録方式での画像の耐水性に優れ、且つ電子写真記録方式のカラー記録において、優れたトナー転写性、搬送性を有するインクジェット記録・電子写真記録共用紙を提供することである。

発明の開示

20 本発明者らは、上記に鑑み鋭意研究した結果、インクジェット記録方式での画像の耐水性に優れ、電子写真記録方式のカラー記録において、優れたトナー転写性、搬送性を有するインクジェット記録・電子写真記録共用紙を発明するに至った。

即ち、本発明は、支持体にカチオン性樹脂を乾燥付着量として0.5～2.0
25 g/m²付着させてなり、且つ表面抵抗率が $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ であるインクジェット記録・電子写真記録共用紙に係わる。

該カチオン性樹脂のコロイド滴定法によるカチオン当量は、3～8 meq/gであることが好ましい。

また、該支持体は内添サイズ剤として中性ロジンサイズ剤またはアルケニル無

水コハク酸を含むことが好ましい。

更には、該支持体は古紙パルプを含有してもよい。

発明を実施するための最良の形態

以下、本発明のインクジェット記録シートについて、詳細に説明する。

5 インクジェット記録方式に用いられる直接染料や酸性染料を含有する水溶性インクの画像耐水性を向上させるためには、染料のアニオン性部分とカチオン性物質の反応による染料の定着と耐水化処理が有効であることは自明のことである。

従って、インクジェット記録・電子写真記録共用紙においても、カチオン性樹脂を含有させ、インクジェット記録の画像耐水性を得る試みがなされている。し

10 かしながら、多量のカチオン性樹脂を記録用紙に含有させると、電子写真記録方式のカラー記録の場合に、記録用紙へのトナーの転移性が悪くなり、その結果、色抜けや画像濃度の低下の問題が発生することが判明した。

上記現象について原因を調査した結果、電解質であるカチオン性樹脂を多量に含有させることにより、記録用紙の表面抵抗率が下がり、その結果として記録用紙表面へのトナーの転移性が悪化することがわかった。この現象は特にフルカラータイプの電子写真記録で顕著であり、1色目のトナーではその影響が少ないものの、2色目以降のトナーの転移性の悪化が著しい。その現象の発生原因は、記録用紙の表面抵抗率が低すぎると、最初に転写したトナーが記録用紙上で電荷を漏洩するため、帯電性が著しく損なわれ、その後の記録用紙へのトナーの転写性
20 が低下するものと考えられる。

本発明者らは、上記問題に関して鋭意研究した結果、カチオン性樹脂の乾燥付着量を $0.5 \sim 2.0 \text{ g/m}^2$ とすることにより、インクジェット記録における良好なインクの耐水性が得られ、且つ表面抵抗率を $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ とすることにより、電子写真記録時のトナーの転写性および搬送性が良好な記録用紙が得られることを見いだした。

カチオン性樹脂の乾燥付着量が 0.5 g/m^2 より低いと、十分なインクの耐水性が得られないし、 2.0 g/m^2 より多い場合はインクの耐水性は十分なもの、表面抵抗率が 1.0×10^9 より小さくなり、トナーの転写性が悪くなる。

本発明の表面抵抗率（単位： Ω ）は、JIS K 6911に準拠する計算式で

算出されるものであり、具体的には横河ヒューレットパッカード社製の 4329A 型絶縁抵抗計 (HIGH RESISTANCE METER) と 16008A 型電極 (RESISTIVITY CELL) を用いて、20°C 65% RH の環境条件でチャージ時間 30 秒で取り扱い説明書に準じて測定、算出して求めることができる。

- 5 本発明において使用されるカチオン性樹脂は、水溶性インク中の直接染料や酸性染料中のスルホン酸基、カルボキシル基、アミノ基等と反応して不溶な塩を形成する 1 級～3 級アミン、または 4 級アンモニウム塩のモノマー、オリゴマー、またはポリマーであり、好ましくは、オリゴマーまたはポリマーである。具体的には、ジメチルアミン・エピクロルヒドリン重縮合物、アクリルアミド・ジアリ
- 10 ルアミン共重合物、ポリビニルアミン共重合物、ジシアンジアミド、ジメチル・ジアリル・アンモニウムクロライド等を例示することが出来るが、これらの例に限定されるものでは無い。

また、本発明にて、カチオン性樹脂のコロイド滴定法 (ポリビニル硫酸カリウム、トルイジンブルー使用) によるカチオン当量は 3～8 meq/g の範囲であることが好ましい。この範囲であれば上記乾燥付着量の範囲で良好な結果が得られる。ここで、コロイド滴定法によるカチオン当量の測定に当たっては、カチオン性樹脂を固型分 0.1 % となるように蒸留水で希釈し、pH 調整は行わないものとする。

- 15 本発明における記録用紙の表面抵抗率は $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ であるが、好ましくは $1.0 \times 10^{10} \sim 9.9 \times 10^{13} \Omega$ である。表面抵抗率が 1.0×10^9 より低いと帶電性が下がり、上記理由によりトナーの転写性が劣り、また 9.9×10^{13} より高いと帶電性が高くなり、静電気の影響によりトナーの飛散や搬送性不良が発生する。

本発明の記録用紙の支持体としては、木材纖維主体の紙、または木材纖維や合成纖維を主体とした不織布の如きシート状物質が挙げられ、紙の場合に使用される木材パルプは、針葉樹晒しクラフトパルプ (N B K P) 、広葉樹晒しクラフトパルプ (L B K P) 、針葉樹晒しサルファイトパルプ (N B S P) 、広葉樹晒しサルファイトパルプ (L B S P) 、グランドパルプ (G P) 、サーモメカニカルパルプ (T M P) などの他に、古紙パルプが挙げられ、必要に応じて単独或いは

併用して用いられる。

古紙パルプを混合する場合の全パルプ中の古紙パルプの混合比率は、電子写真記録後のカール対策から40%以下が好ましい。

なお、本発明で言う古紙パルプの原料としては、(財)古紙再生促進センター

5 の古紙標準品質規格表に示されている、上白、野白、クリーム白、カード、特白、中白、模造、色白、ケント、白アート、特上切、別上切、新聞、雑誌などが挙げられる。更に具体例としては、情報関連用紙である非塗工コンピュータ用紙、感熱紙、感圧紙などのプリンター用紙、およびPPC用紙などのOA古紙、アート紙、コート紙、微塗工紙、マット紙などの塗工紙、或いは上質紙、色上質、ノート、便箋、包装紙、ファンシーペーパー、中質紙、新聞用紙、更紙、スーパー掛け紙、模造紙、純白ロール紙、ミルクカートンなどの非塗工紙などの紙や板紙の古紙で、化学パルプ紙、高歩留りパルプ含有紙などが使用されるが、印字、複写、印刷、非印刷を問わず特に限定されるものではない。

また、古紙パルプは一般的に、

15 (1) 離解：古紙をパルバーにて機械力と薬品で処理して纖維状にほぐし、印刷インキを纖維より剥離する；
(2) 除塵：古紙に含まれる異物（プラスチックなど）及びゴミをスクリーン、クリーナー等により除去する；
(3) 脱墨：纖維より界面活性剤を用いて剥離された印刷インキをフローテーション法、または洗浄法で系外に除去する；および
20 (4) 漂白：酸化作用や還元作用を用いて、纖維の白色度を高める。

の4工程の組み合わせから作られる。

また、支持体に使用される内添填料としては、白色顔料等の従来公知の顔料が用いられ、単独或いは併用できる。例えば、軽質炭酸カルシウム、重質炭酸カル

25 シウム、カオリン、クレー、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成シリカ、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、炭酸マグネシウム、水酸化マグネシウムのような白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラス

チックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂のような有機顔料などが挙げられる。

更に、本発明の支持体を抄造する際に使用される内添サイズ剤としては、中性抄紙に用いられる中性ロジン系サイズ剤、アルケニル無水コハク酸（A S A）、

- 5 アルキルケテンダイマー（A K D）、石油樹脂系サイズ剤などが使用できるが、好ましくは、中性ロジンサイズ剤またはアルケニル無水コハク酸を用いる。アルキルケテンダイマーは、そのサイズ効果が高いことから添加量は少なくて済むが、記録用紙表面の摩擦係数が下がり滑りやすくなるため、電子写真記録時の搬送性の点からは好ましくない。
- 10 支持体にカチオン性樹脂を付着させる方法としては、コンベンショナルサイズプレス、ゲートロールサイズプレス、フィルムトランスファーサイズプレスの他、ブレードコーティング、ロッドコーティング、エアーナイフコーティング、カーテンコーティングなど各種塗工機で塗工することも可能であるが、コストの点からは抄紙機に設置されているコンベンショナルサイズプレス、ゲートロールサイズプレス、フィルムトランスファーサイズプレスなどでカチオン性樹脂を付着させ、オノマシンで仕上げるのが望ましい。
- 15

更に、カチオン性樹脂の使用に際しては、同時にバインダーが用いられるのが一般的である。バインダーとしては酸化澱粉、磷酸エステル化澱粉、自家変性澱粉、カチオン化澱粉または各種変性澱粉、ポリエチレンオキサイド、ポリアクリルアミド、ポリアクリル酸ソーダ、アルギン酸ソーダ、ハイドロキシメチルセルロース、メチルセルロース、ポリビニルアルコールまたはそれらの誘導体などを単独或いは併用して使用することができる。

また、表面サイズ剤は、インクジェット記録用インクの浸透性をコントロールするため、適宜用いられるが、その主成分はスチレン／アクリル酸系共重合体、

- 25 スチレン／メタアクリル酸系共重合体、アクリロニトリル／ビニルホルマール／アクリル酸エステル共重合体、スチレン／マレイン酸系共重合体、オレフィン／マレイン酸系共重合体、A K D系、ロジン系などの表面サイズ剤などが挙げられるが、カチオン樹脂との併用のためには、カチオン性の表面サイズ剤が好ましい。

本発明において、紙料中には、その他の添加剤として、顔料分散剤、増粘剤、

流動性改良剤、消泡剤、抑泡剤、離型剤、発泡剤、浸透剤、着色染料、着色顔料、蛍光増白剤、紫外線吸収剤、酸化防止剤、防腐剤、防バイアス剤、耐水化剤、湿潤紙力増強剤、乾燥紙力増強剤、などを本発明の所望の効果を損なわない範囲で、適宜配合することもできる。

5 本発明の記録用紙の抄紙方法において、抄紙機は、長網抄紙機、ツインワイヤー抄紙機、コンビネーション抄紙機、丸網抄紙機、ヤンキー抄紙機など製紙業界で公知の抄紙機を適宜使用できる。

以下に、本発明の実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例において示す「部」および「%」は、特に明

10 示しない限り、重量部および重量%を示す。

まず、以下の配合に従って、支持体1～4を作成した。

<支持体1の作製>

L B K P (濾水度450mlcsf)	100部
-----------------------	------

軽質炭酸カルシウム(商品名: TP-121、奥多摩工業社製)	10部
--------------------------------	-----

15 硫酸アルミニウム 1.0部

両性澱粉(商品名: Cat o 3210、日本NSC社製)	1.0部
-------------------------------	------

中性ロジンサイズ剤(商品名: NeuSize M-10、ハリマ化成社製)	0.3部
--------------------------------------	------

歩留まり向上剤(商品名: NR-11LS、ハイモ社製)	0.02部
-----------------------------	-------

上記配合の0.3%スラリーを長網抄紙機で抄造し、坪量79g/m²の支持

20 体を作製した。

<支持体2の作製>

L B K P (濾水度450mlcsf)	100部
-----------------------	------

軽質炭酸カルシウム(商品名: TP-121、奥多摩工業社製)	10部
--------------------------------	-----

硫酸アルミニウム	0.8部
----------	------

25 両性澱粉(商品名: Cat o 3210、日本NSC社製) 1.0部

ASAサイズ剤(商品名: コロパールZ-100、星光化学工業社製)	0.1部
-----------------------------------	------

歩留まり向上剤(商品名: NR-11LS、ハイモ社製)	0.02部
-----------------------------	-------

上記配合の0.3%スラリーを長網抄紙機で抄造し、坪量79g/m²の支持体を作製した。

<支持体3の作製>

L B K P (濾水度 4 5 0 m l c s f)	1 0 0 部
軽質炭酸カルシウム (商品名 : T P - 1 2 1 、 奥多摩工業社製)	1 0 部
硫酸アルミニウム	0. 8 部
5 両性澱粉 (商品名 : C a t o 3 2 1 0 、 日本N S C社製)	1. 0 部
A K D サイズ剤 (商品名 : サイズパインK-903、荒川化学工業社製)	0. 0 8 部
歩留まり向上剤 (商品名 : N R - 1 1 L S 、 ハイモ社製)	0. 0 2 部

上記配合の 0. 3 %スラリーを長網抄紙機で抄造し、坪量 7 9 g /m² の支持体を作製した。

10 <支持体4の作製>

L B K P (濾水度 4 5 0 m l c s f)	6 0 部
模造古紙パルプ (濾水度 4 0 0 m l c s f)	4 0 部
軽質炭酸カルシウム (商品名 : T P - 1 2 1 、 奥多摩工業社製)	1 0 部
硫酸アルミニウム	1. 0 部
15 両性澱粉 (商品名 : C a t o 3 2 1 0 、 日本N S C社製)	1. 0 部
中性ロジンサイズ剤 (商品名 : NeuSize M-10、 ハリマ化成社製)	0. 3 部
歩留まり向上剤 (商品名 : N R - 1 1 L S 、 ハイモ社製)	0. 0 2 部

上記配合の 0. 3 %スラリーを長網抄紙機で抄造し、坪量 7 9 g /m² の支持体を作製した。

20 次に、以下の方法に従って実施例および比較例の記録用紙を作成した。

実施例 1

上記により作製した支持体 1 に、酸化澱粉 (商品名 : MS-3800、 日本食品加工社製) を乾燥付着量で 1. 2 g /m² 、カチオン性樹脂 (商品名 : ハイマックス S C - 7 0 0 、 ハイモ社製、 カチオン当量 5. 0 m e q / g) を乾燥付着量で 0. 25 5 g /m² となるようサイズプレス装置を用いて付着させ、マシンカレンダー処理を行って、実施例 1 の記録用紙を作製した。

実施例 2

カチオン性樹脂の乾燥付着量を 1. 2 g /m² とした以外は、実施例 1 と同様の手続きをくりかえして、実施例 2 の記録用紙を作製した。

実施例 3

カチオン性樹脂の乾燥付着量を 2.0 g/m^2 とした以外は、実施例 1 と同様の手続きをくりかえして、実施例 3 の記録用紙を作製した。

実施例 4

5 カチオン性樹脂の種類を変更（商品名：ポリフィックス 601、昭和高分子社製、カチオン当量 7.1 meq/g ）した以外は、実施例 1 と同様の手続きをくりかえして、実施例 4 の記録用紙を作製した。

実施例 5

10 カチオン性樹脂の乾燥付着量を 1.2 g/m^2 とした以外は、実施例 4 と同様の手続きをくりかえして、実施例 5 の記録用紙を作製した。

実施例 6

カチオン性樹脂の乾燥付着量を 2.0 g/m^2 とした以外は、実施例 4 と同様の手続きをくりかえして、実施例 6 の記録用紙を作製した。

実施例 7

15 カチオン性樹脂の種類を変更（商品名：スミレーズレジン 1001、住友化学社製、カチオン当量 3.7 meq/g ）した以外は、実施例 1 と同様の手続きをくりかえして、実施例 7 の記録用紙を作製した。

実施例 8

20 カチオン性樹脂の乾燥付着量を 1.2 g/m^2 とした以外は、実施例 7 と同様の手続きをくりかえして、実施例 8 の記録用紙を作製した。

実施例 9

カチオン性樹脂の乾燥付着量を 2.0 g/m^2 とした以外は、実施例 7 と同様の手続きをくりかえして、実施例 9 の記録用紙を作製した。

実施例 10

25 支持体 1 を支持体 2 に変更した以外は、実施例 4 と同様の手続きをくりかえして、実施例 10 の記録用紙を作製した。

実施例 11

支持体 1 を支持体 2 に変更した以外は、実施例 5 と同様の手続きをくりかえして、実施例 11 の記録用紙を作製した。

実施例 1 2

支持体 1 を支持体 2 に変更した以外は、実施例 6 と同様の手続きをくりかえして、実施例 1 2 の記録用紙を作製した。

実施例 1 3

5 支持体 1 を支持体 3 にした以外は、実施例 4 と同様の手続きをくりかえして、実施例 1 3 の記録用紙を作製した。

実施例 1 4

支持体 1 を支持体 3 にした以外は、実施例 5 と同様の手続きをくりかえして、実施例 1 4 の記録用紙を作製した。

10 実施例 1 5

支持体 1 を支持体 3 にした以外は、実施例 6 と同様の手続きをくりかえして、実施例 1 5 の記録用紙を作製した。

実施例 1 6

支持体 1 を支持体 4 にした以外は、実施例 4 と同様の手続きをくりかえして、
15 実施例 1 6 の記録用紙を作製した。

実施例 1 7

支持体 1 を支持体 4 にした以外は、実施例 5 と同様の手続きをくりかえして、
実施例 1 7 の記録用紙を作製した。

実施例 1 8

20 支持体 1 を支持体 4 にした以外は、実施例 6 と同様の手続きをくりかえして、
実施例 1 8 の記録用紙を作製した。

実施例 1 9

支持体として合成紙（商品名：クリスパー、東洋紡社製）を用い、酸化澱粉
（商品名：MS-3800、日本食品加工社製）を乾燥付着量で片面 $0.6\text{ g}/\text{m}^2$ 、カ
25 チオニ性樹脂（商品名：スマレーズレジン 1001、住友化学社製、カチオン当
量 3.7 meq/g ）を乾燥付着量で片面 $0.6\text{ g}/\text{m}^2$ となるようロッドコー
タを用いて両面に付着させ、カレンダー処理を行って、実施例 1 9 の記録用紙を
作製した。

比較例 1

カチオン性樹脂の乾燥付着量を 0.2 g/m^2 とした以外は、実施例1と同様の手続きをくりかえして、比較例1の記録用紙を作製した。

比較例2

カチオン性樹脂の乾燥付着量を 3.0 g/m^2 とした以外は、実施例1と同様の手続きをくりかえして、比較例2の記録用紙を作製した。

比較例3

支持体として合成紙（商品名：クリスパー、東洋紡社製）を用い、酸化澱粉（商品名：MS-3800、日本食品加工社製）を乾燥付着量で片面 0.6 g/m^2 、カチオン性樹脂（商品名：スミレーズレジン1001、住友化学社製、カチオン当量 3.7 meq/g ）を乾燥付着量で片面 0.1 g/m^2 となるようロッドコーティングを用いて両面に付着させ、カレンダー処理を行って、比較例3の記録用紙を作製した。

比較例4

市販のインクジェット記録・電子写真記録共用紙（商品名：PB、キャノン販売社製）を比較例4の記録用紙として用いた。

比較例5

市販のインクジェット記録・電子写真記録共用紙（商品名：マルチエース、富士ゼロックスオフィスサプライ社製）を比較例5の記録用紙として用いた。

上記により作製した実施例1～19および比較例1～5の記録用紙について、下記方法により特性を評価した。

20 <表面抵抗率>

表面抵抗率（単位： Ω ）は、横河ヒューレットパッカード社製の4329A型絶縁抵抗計（HIGH RESISTANCE METER）と16008A型電極（RESITIVITY CELL）を用いて、 20°C 65%RHの環境条件でチャージ時間30秒で測定した。

<画像耐水性>

25 キヤノン社製インクジェットカラープリンターBJC-420Jを用いて、画像評価パターンを印字して、24時間後に文字画像上に水を1滴たらし、放置乾燥後、滲みの程度を目視で判定した。なお、評価基準として、Aは特性が良好、Bは実用上問題ない範囲で良好、Cは実用上問題あり、Dは特性が不良を示す。

<トナー転写性>

ゼロックス社製カラーコピー機Color 935を用いて、画像評価パターンの複写を行い、トナーの転写性を目視で判定した。なお、評価基準として、Aは特性が良好、Bは実用上問題ない範囲で良好、Cは実用上問題あり、Dは特性が不良を示す。

5 <搬送性>

ゼロックス社製カラーコピー機Color 935を用いて、A4サイズの大きさで連続複写を行い、1000枚複写したときの重走や紙詰まりの発生回数で判定した。なお、評価基準として、Aは0回で特性が良好、Bは1～5回で実用上問題ない範囲で良好、Cは6～10回で実用上問題あり、Dは11回以上で特性が不良を示す。

なお、トナー転写性および搬送性の判定は、表面抵抗率の測定同様、20°C 65%RHの環境条件下で行った。

表 1

実施例	ガラス樹脂付着量 (g/m ²)	表面抵抗率 (Ω)	画像耐水性	トナー転写性	搬送性
実施例1	0.5	1.3×10^{10}	A	A	A
実施例2	1.2	6.1×10^9	A	B	A
実施例3	2.0	3.4×10^9	A	B	A
実施例4	0.5	2.2×10^{10}	A	A	A
実施例5	1.2	1.0×10^{10}	A	A	A
実施例6	2.0	8.0×10^9	A	B	A
実施例7	0.5	1.2×10^{11}	B	A	A
実施例8	1.2	8.2×10^{10}	B	A	A
実施例9	2.0	2.7×10^{10}	A	A	A
実施例10	0.5	4.1×10^{10}	A	A	A
実施例11	1.2	2.3×10^{10}	A	A	A
実施例12	2.0	9.5×10^9	A	B	A
実施例13	0.5	1.3×10^{10}	A	A	B
実施例14	1.2	9.0×10^9	A	B	B
実施例15	2.0	6.5×10^9	A	B	B
実施例16	0.5	3.6×10^{10}	A	A	A
実施例17	1.2	1.8×10^{10}	A	A	A
実施例18	2.0	9.1×10^9	A	B	A
実施例19	1.2	1.5×10^{10}	B	A	B

表2

比較例	カチオン樹脂付着量 (g/m ²)	表面抵抗率 (Ω)	画像耐水性	トナー転写性	搬送性
比較例 1	0.2	8.9×10^{10}	C	A	A
比較例 2	3.0	7.7×10^9	A	D	A
比較例 3	0.2	4.6×10^{14}	C	A	D
比較例 4	—	1.2×10^9	D	B	A
比較例 5	—	1.7×10^9	D	A	A

上記結果から明らかなように、コロイド滴定法によるカチオン当量が 3~8 m eq/g の範囲にあるカチオン性樹脂を乾燥付着量で 0.5~2.0 g/m² 付着させることにより、インクジェット記録における画像の耐水性が良好となり、その時の記録用紙の表面抵抗率を $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ 、好ましくは $1.0 \times 10^{10} \sim 9.9 \times 10^{13} \Omega$ とすることにより、電子写真記録におけるフルカラー画像のトナー転写性に優れ、且つ搬送性の良好な記録用紙が得られた。

支持体の内添サイズ剤を A KD サイズ剤にした場合、中性ロジンサイズ剤や A SA サイズ剤に比べ、電子写真記録での搬送性がやや低下している。これは、記録紙の表面摩擦係数が低下したため滑りやすくなつたのが原因であると推測できる。また、支持体に古紙パルプを使用した場合は、何ら影響することなくすべての特性が良好であることが確認できる。

カチオン性樹脂の乾燥付着量が 0.5 g/m² より少ないとインクジェット記録における画像の耐水性が不十分であり、2.0 g/m² より多いとインクジェット記録における画像の耐水性は十分なもの、表面抵抗率が 1.0×10^9 より小さくなるため、電子写真記録におけるフルカラー画像のトナー転写性が悪くなる。また、表面抵抗率が $9.9 \times 10^{13} \Omega$ より大きくなると、搬送性が悪くなるのがわかる。

本発明のインクジェット記録・電子写真記録共用紙は、カチオン性樹脂の乾燥付着量を 0.5~2.0 g/m² とし、表面抵抗率が $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ を達成することにより、インクジェット記録での画像耐水性に優れ、

電子写真記録での良好なトナー転写性および搬送性を有するものである。

請 求 の 範 囲

1. 支持体にカチオン性樹脂を乾燥付着量として $0.5 \sim 2.0 \text{ g/m}^2$ 付着させてなり、且つ表面抵抗率が $1.0 \times 10^9 \sim 9.9 \times 10^{13} \Omega$ であるインクジェット記録・電子写真記録共用紙。
2. カチオン性樹脂のコロイド滴定法によるカチオン当量が $3 \sim 8 \text{ meq/g}$ である請求項1記載のインクジェット記録・電子写真記録共用紙。
3. 支持体が内添サイズ剤として中性ロジンサイズ剤またはアルケニル無水コハク酸を含む請求項1記載のインクジェット記録・電子写真記録共用紙。
4. 支持体が古紙パルプを含有する請求項1記載のインクジェット記録・電子写真記録共用紙。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/03812

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ B41M5/00, G03G7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ B41M5/00, G03G7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-1999
Kokai Jitsuyo Shinan Koho 1971-1999 Jitsuyo Shinan Toroku Koho 1996-1999

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 9-202042, A (Mitsubishi Paper Mills Ltd.), 5 August, 1997 (05. 08. 97), Full text ; all drawings & EP, 745488, A1	1-4
Y	JP, 7-125405, A (Canon Inc.), 16 May, 1995 (16. 05. 95), Full text ; all drawings & EP, 652113, A1 & CN, 1109413, A	1-4
Y	JP, 7-214893, A (Mitsubishi Paper Mills Ltd.), 15 August, 1995 (15. 08. 95), Full text ; all drawings (Family: none)	1, 4
P, Y	JP, 11-11009, A (Mitsubishi Paper Mills Ltd.), 19 January, 1999 (19. 01. 99), Full text ; all drawings (Family: none)	1-4
P, Y	JP, 11-34483, A (Mitsubishi Paper Mills Ltd.), 9 February, 1999 (09. 02. 99), Full text ; all drawings (Family: none)	1-4

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 5 October, 1999 (05. 10. 99)	Date of mailing of the international search report 19 October, 1999 (19. 10. 99)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

国際調査報告

国際出願番号 PCT/JP99/03812

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl. B41M5/00, G03G7/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int. Cl. B41M5/00, G03G7/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-1999年
日本国登録実用新案公報 1994-1999年
日本国実用新案登録公報 1996-1999年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 9-202042, A (三菱製紙株式会社) 5. 8月. 1997 (05. 08. 97) 全文、全図	1-4
Y	&EP, 745488, A1 JP, 7-125405, A (キャノン株式会社) 16. 5月. 1995 (16. 05. 95) 全文、全図	1-4
Y	&EP, 652113, A1 &CN, 1109413, A JP, 7-214893, A (三菱製紙株式会社) 15. 8月. 1995 (15. 08. 95) 全文、全図 (ファミリーなし)	1, 4

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 05. 10. 99	国際調査報告の発送日 19.10.99
国際調査機関の名称及びあて先 日本国特許庁（ISA/JP） 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 阿久津 弘 印 2H 7124

電話番号 03-3581-1101 内線 3231

国際調査報告

国際出願番号 PCT/JP99/03812

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, Y	JP, 11-11009, A (三菱製紙株式会社) 19. 1月. 1999 (19. 01. 99) 全文、全図 (ファミリーなし)	1-4
P, Y	JP, 11-34483, A (三菱製紙株式会社) 9. 2月. 1999 (09. 02. 99) 全文、全図 (ファミリーなし)	1-4