Measure Theory

Bill Last Updated: 27 January, 2020

Contents

1	Measure Spaces	5
	1.1 σ -Fields	5

4 CONTENTS

Chapter 1

Measure Spaces

1.1 σ -Fields

Let \mathcal{F} be a collection of subsets of a set Ω . Then, F is called a sigma field (or, sigma algebra; written as σ -field or σ -algebra) if and only if it satisfies the following properties:

- (i) The empty set $\emptyset \in \mathcal{F}$.
- (ii) If $A \in \mathcal{F}$, then the complement $A^c \in \mathcal{F}$.
- (iii) If $A_1, A_2, ...$ is a sof elements of \mathcal{F} , then their union $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

A pair (Ω, \mathcal{F}) consisting of a set Ω and a σ – field of subsets \mathcal{F} is called a measurable space. The elements of \mathcal{F} are called measurable sets or events.

Remarks

- (1) The set Ω is called sample space in probability, but in general measure theory it is called the underlying set or underlying space.
- (2) Since $\emptyset^c = \Omega$, it follows (i) and (ii) $\Omega \in \mathcal{F}$.
- (3) Given any set Ω , the trivial σ -field is $\mathcal{F} = \{\emptyset, \Omega\}$. One can easily verify that this is a σ -field, and is in fact the smallest σ -field on Ω .
- (4) Given any set Ω , the power set:

$$\mathcal{P}(\Omega) = \{A : A \in \Omega\}$$

Consisting of all subsets of Ω is also a σ -field on Ω