Анализ выживаемости

Е. В. Батарин

Московский физико-технический институт

27 марта 2025 г.

Слайд об исследованиях

Исследуется проблема анализа выживаемости абонентов

Цель исследования предложить метод

Требуется предложить

- 1) метод ...,
- 2) метод ...,
- 3) метод

Решение

Для

Постановка задачи анализа выживаемости

 $\mathcal{T}=\{0,\dots,\mathcal{T}_{\sf max}\}$ - дискретное время $\mathcal{K}=\{\emptyset,1,\cdots,\mathcal{K}\}$ - множество событий

 $au^i = \min(T^i, C^i) \in \mathcal{T}$ - право-цензурированные отсчеты времени

 $\mathcal{X}^i(t)=\{\mathbf{x}^i(t_i^i): 0\leq t_i^i\leq t ext{ for } j=1,\cdots,J^i\}$ - вектора признаков

 $\mathcal{D} = \{(\mathcal{X}^i, au^i, k^i)\}_{i=1}^N$ - обучающая выборка

$$F_{k^*}(\tau^*|\mathcal{X}^*) = P(T \le \tau^*, k = k^*|\mathcal{X}^*, T > t_{J^*}^*)$$

$$= \sum_{\tau < \tau^*} P(T = \tau, k = k^*|\mathcal{X}^*, T > t_{J^*}^*).$$

Функция распределения для события k^*

$$S(\tau^*|\mathcal{X}^*) = P(T > \tau^*|\mathcal{X}^*, T > t_{J^*}^*)$$

= $1 - \sum_{k \neq 0} F_k(\tau^*|\mathcal{X}^*).$

Функция выживания

Рис.: Пример цензурирования

Рис.: Архитектура модели

Предложенный метод . . .

Заданы

1) ...,

2)

Параметрические семейства:

$$\mathfrak{F} = \left\{ \mathbf{f} | \mathbf{f} = \operatorname{softmax}(\mathbf{v}(\mathbf{x})/T), \quad \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^K \right\},$$

$$\mathfrak{G} = \left\{ \mathbf{g} | \mathbf{g} = \operatorname{softmax}(\mathbf{z}(\mathbf{x})/T), \quad \mathbf{z} : \mathbb{R}^n \to \mathbb{R}^K \right\},$$

где

$$\mathcal{L}(\mathbf{g}) = -\sum_{i=1}^{m} \underbrace{\sum_{k=1}^{K} y_i^k \log \mathbf{g}(\mathbf{x}_i)}_{\mathsf{исходная}} \Big|_{T=1} - \underbrace{\sum_{i=1}^{m} \underbrace{\sum_{k=1}^{K} \mathbf{f}(\mathbf{x}_i)}_{\mathsf{слагаемое}} \Big|_{T=T_0} \log \mathbf{g}(\mathbf{x}_i) \Big|_{T=T_0}}_{\mathsf{слагаемое}},$$

где

Оптимальная модель выбирается из класса, $\hat{\mathbf{g}} = \arg\min_{\mathbf{g} \in \mathfrak{G}_{\mathbf{d}}} \mathcal{L}(\mathbf{g}).$

¹Lopez-Paz D., Bottou L., Scholkopf B., Vapnik V. Unifying distillation and privileged information // ICLR, 2016.

² Hinton G., Vinyals O., Dean J. Distilling the knowledge in a neural network // NIPS, 2015.

Анализ предложенного метода . . .

На графике показана зависимость значения параметров w_i в зависимости от параметра l_1 -регуляризации C.

С увеличением параметра регуляризации C число ненулевых параметров w_i уменьшается.

Выводы

1. Предложен 2. Доказаны теоремы ..., — . . . , **—** 3. Предложен метод . . . — . . . , 4. Предложены методы . . . — . . . , **—** 5. Предложена вероятностная интерпретации