- 1 xy 平面において,放物線 $C:y=-\frac{1}{2}x^2$ の 2 つの接線 l_1 , l_2 が点 P において直交するとする。ただし, l_1 の傾きは l_2 の傾きより大きいとする。
- (1) 点 P の x 座標を a とするとき , 接線 l_1 , l_2 の傾きをそれぞれ求めよ。
- (2) 放物線 C と接線 l_1 , l_2 の接点をそれぞれ Q_1 , Q_2 とし,接線 l_1 , l_2 と x 軸の交点をそれぞれ R_1 , R_2 とする。また,原点 (0,0) を O とする。2 つの線分 Q_1R_1 , OR_1 と放物線 C で囲まれる図形の面積を S_1 とし,2 つの線分 Q_2R_2 , OR_2 と放物線 C で囲まれる図形の面積を S_2 とする。面積の和 S_1+S_2 が最小となるときの点 P の座標と S_1+S_2 の最小値を求めよ。