Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3216	К работе допущен
Студент <u>Квачук С.А. Орлов В.Д.</u>	Работа выполнена
Преподаватель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.11

Вынужденные электромагнитные колебания в последовательном колебательном контуре

1. Цель работы.

Изучение вынужденных колебаний явления резонанса напряжений в последовательном колебательном контуре.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Построение резонансной кривой
 - 2. Определение резонансной частоты
 - 3. Определение активного сопротивления и добротности колебательного контура.
- 3. Объект исследования.

Цепь, состоящую из последовательно соединенных индуктивности, емкости и активного сопротивления, в которую включен источник внешней электродвижущей силы (ЭДС), изменяющейся со временем по гармоническому закону

4. Метод экспериментального исследования.

Прямые многократные измерения значений амплитуды выходного напряжения и измерение значений резонансных частот для разных емкостей.

- 5. Рабочие формулы и исходные данные.
 - 1. Резонансная частота без учета активного сопротивления катушки:

$$f_{\text{pac4}} = \frac{1}{2\pi\sqrt{LC}}$$

2. Связь добротности колебательного контура с шириной кривой:

$$Q = \frac{\Omega_0}{\Lambda \Omega}$$

3. Соотношение связи формы резонансных кривых с добротностью контура:

$$\frac{U_{C_{res}}}{E_0} = \frac{\sqrt{LC}}{RC} = \frac{1}{R} \sqrt{\frac{L}{C}} = Q$$

4. Зависимость квадрата резонансной частоты от обратной емкости:

$$\Omega_{res}^2 = \frac{1}{LC} - \frac{R^2}{4L^2}$$

- 5. Алгоритм расчёта коэффициентов a и b в методе МНК:
 - 1. Найти средние значения всех экспериментальных точек:

$$\bar{x} = \frac{1}{n} \Sigma x_i;$$
 $\bar{y} = \frac{1}{n} \Sigma y_i$

2. Найти коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$a = \bar{y} - b\bar{x}$$

3. Рассчитать параметры D и d_i :

$$d_i = y_i - (a + bx_i)$$

$$D = \sum (x_i - \bar{x})^2$$

4. Определить СКО коэффициентов a и b:

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}$$

$$S_a^2 = \frac{1}{\sum x_i^2} \frac{\sum d_i^2}{n-1}$$

5. Рассчитать погрешность косвенных измерений:

$$\Delta_a = 2S_a$$
$$\Delta_b = 2S_b$$

- 6. Исходные данные:
 - $L = 10 \text{ M}\text{FH} \pm 10\%$
 - $C = 0.1 \text{ MK}\Phi$
 - $R = 68 \text{ Om } \pm 10\%$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф	электронный	0-62 κΓц; 0-80Β	0.0001

7. Схема установки (перечень схем, которые составляют Приложение 1).

Схема экспериментальной установки:

Рис. 6. Общий вид лабораторной установки

- 1. Синусоидальный сигнал с генератора (1) подается на блок ФПЭ-11 (2), содержащий катушку индуктивности.
- 2. Осциллограф (3) показывает выходное (измеряемое на конденсаторе) напряжение.
- 3. Блок "Магазин емкостей"(4) используется для выбора емкости конденсатора, включенного в колебательный контур.

Общая схема лабораторной установки:

- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).
 - 1) Измерения амплитуды выходного напряжения:

<i>f</i> , кГц	U, B
3,50	6,6

3,6	7,4
3,70	7,4
3,8	7,8
3,90	7,8
4	8,2
4,10	8,2
4,2	9
4,30	9
4,4	9,4
4,50	9,4
4,6	9,4
4,70	94
4,8	9
4,90	9
5	8,2
5,10	8,2
5,2	7,8
5,30	7,4
5,4	7
5,50	6,6
5,30 5,4	7,4 7

• Расчет резонансной частоты:

2) Измерение резонансных частот при разных емкостях:

С, нФ	$f_{ m pes}$, к Γ ц
1	62
3	29,5
10	15,3
30	9
100	4,5
300	2,5

• Расчет индуктивности по угловому коэффициенту:

$$\Omega_{res}^2 = \frac{1}{LC} - \frac{R^2}{4L^2}$$

Коэффициент $\frac{1}{L} \approx 3.736262$, следовательно L $\approx 0.267647~\Gamma \mathrm{H}$

- 9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).
 - 1) Первая часть.
 - . a. Расчет добротности контура:

$$Q_{\text{эксп}} = \frac{\Omega_0}{\Delta\Omega} = \frac{4.55}{2} = 2.275$$

b. Расчет добротности контура по соотношению 3:

$$Q_{\rm pac4} = \frac{1}{R} \sqrt{\frac{L}{C}} = 4.65$$

- 2) Вторая часть.
 - а. Расчет активного сопротивления:

$$\frac{R^2}{4L^2} \approx 78971513.71$$

$$R = 177.73 \text{ Om}$$

- 10. Расчет погрешностей измерений (для прямых и косвенных измерений).
- 11. Графики (*перечень графиков, которые составляют Приложение 2*). График 1.

График 2.

12. Окончательные результаты.

 $f_{
m эксп} = 4550 \; \Gamma$ ц; $f_{
m pacq} = \; 5032.92121 \; \Gamma$ ц

 $Q_{\text{эксп}} = 2.275; \quad Q_{\text{расч}} = 4.65$

 $L = 0.268 \, \Gamma$ н

 $R = 177.73 \, \text{Om}$

13. Выводы и анализ результатов работы.

В ходе данной работы мы нашли экспериментальное значение резонанса. Зависимость амплитуды выходного напряжение от частоты входного подтверждает теоретическую, достигая своего максимума при частоте резонанса.

Расхождение между экспериментальными и расчетными значениями из 1 части лабораторной можно объяснить погрешностями указанных значений характеристик установок.

Расхождение между экспериментальными и исходными значениями из 2 части лабораторной можно объяснить неправильной настройкой аппаратуры, вследствие чего, были неправильно измерены показатели.

14. Дополнительны	ые задания.
15. Выполнение до	ополнительных заданий.
16. Замечания пре	подавателя (исправления, вызванные замечаниями преподавателя,
также помещают	
Примечание:	1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. 2. Необходимые исправления выполняют непосредственно в
	протоколе-отчете. 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
	маллиметровую бумагу. 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.