Deep Learning 182, HW #1

Roy Uziel Irit Chelly 111111111111 021565510

April 23, 2018

1 Network architecture

In our graph we used convolutional layers. The input image is of size 28*28.

```
new\_input = tf.reshape(input\_images, [-1, 28, 28, 1])
```

We defined the following hidden layers:

1. Convolutional Layer 1:

We used 32 filters, each filter is a kernel of size 5*5. Each neuron in this layer is a result (scalar) of a convolution of each kernel centered on one neuron in the input layer. Thus, this layer consists of 28*28*32 neurons. We then compute the activation function relu on the result of each neuron:

```
conv1 = tf.layers.conv2d(
inputs=new_input,
filters = 32,
kernel_size = [5, 5],
padding="same",
activation=tf.nn.relu)
```

2. Pooling Layer 1:

Here we reduce the spatial size of the last layer by using a Max Pooling filter of size 2*2 and apply the maximum value of each 2*2 sized part of the image (Convolutional Layer 1):

```
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2,
2], strides=2)
```

- 5.2 attach a short document describing the network architecture and any other architectures that you tested
 - 5.3 Make sure to have your full name and ID on the top of the document
- $5.4~\mathrm{It}$ is recommended to add tensorboard screenshots that describe the results (Optional)