Quantum Mechanics 2023

SC1.203 :: Quiz-I

Time 40 Mins

 6×5

- 1) Would you get the same outcome if you measured the energies of an infinite ensemble of identical particle-in-a-box systems at time t? Explain your answer.
- 2) Is the operator for p hermitian? Show by explicit integral.
- 3) Evaluate $[\hat{x}, \hat{p}^2]$.
- 4) In the harmonic oscillator problem write the Schrödinger equation in terms of the raising and lowering operators.
- 5) For a free particle, $v_{
 m quantum} = v_{
 m classical}/2$. Explain.
- 6) Prove that eigenvectors/eigenfunctions of a hermitian operator with different eigenvalues are orthogonal.

QUANTUM MECHANICS Monsoon 2023 – CND Core – Credit 4

Instructor: Subhadip Mitra Date: September 21, 2023

Time: 1 H 30 M (08:30 - 10:00)

Mid-Semester Examination

Total Marks: 50

Instructions:

- Class notes or books are not permitted. But you may bring one A4 sheet of handwritten material (not photocopy/printed).
- · Calculators are allowed.
- Do not write anything (except roll number, seat no. etc.) on the first page of the answer book.
- You may skip 'trivial' steps. However, unless the logic is clear, you will not get any credit for a problem.
- Illegible answers will not be graded.
- No 'benefit of doubt' because of bad notation/illegible hand-writing etc.
- **Q 1.** Consider a particle of mass m trapped in a 1D box between x = -L/2 to x = L/2.
 - (a) Obtain the general position-space wave function for this particle.
 - (b) If the particle is in the n^{th} energy state, calculate $\langle x \rangle$, σ_x , $\langle p \rangle$, and σ_p . Verify that the uncertainty principle is not violated.
 - (c) Is it justified to claim that the ground state energy is nonzero because of the uncertainty principle? Explain your answer.
 - (d) Even if we don't know the energy of the particle, we know that the wave function of the particle returns to its original form after every $T = 4mL^2/\pi\hbar$, i.e., $\Psi(x,T) = \Psi(x,0)$. How?

$$[4+5+3+3=15$$
 CO: 1,2,3,5]

- **Q 2.** For a simple harmonic oscillator about the point x = 0,
 - (a) Obtain the wave function for the first excited state upto an overall multiplicative constant. What is its energy? Plot $|\psi_1|^2$ as a function of x.
 - (b) Let $\psi_n(x)$ be for the normalized (steady state) wavefunction of the n^{th} energy state. Find how $\psi_n(x)$ is related to $\psi_0(x)$.
 - (c) Find the allowed energies of the half harmonic oscillator

$$V(x) = \begin{cases} 1/2m\omega^2 x^2, & \text{for } x > 0, \\ \infty, & \text{for } x < 0. \end{cases}$$

$$[(5+1+1)+4+4=15$$
 CO: 2,3,4,5]

- **Q 3.** (a) Obtain the bound state solution for $V(x) = -\alpha \delta(x)$.
 - (b) Prove that $[f(x), p] = i\hbar \frac{df}{dx}$
 - (c) Argue that the eigenvalues of the operator $\hat{L}^2 \hat{L}_x^2$ are always positive.

$$[10+5+5=20$$
 CO: 1,2,3,4,5]

Quantum Mechanics 2023

SC1.203

Quiz-II

Time 40 Mins

 6×5

1) Let an electron be in a spin state

$$\chi = \frac{1}{3} \left(\begin{array}{c} 1 - 2i \\ 2 \end{array} \right)$$

What would be the expectation value if we measure S_x ?

- Assume three noninteracting neutrinos (chargeless fermions) are trapped in a one-dimensional infinite square well of size a in the (one-particle) states ψ_2 , ψ_5 , ψ_7 . Write the three-particle wave function. What is the total energy in the unit of $\pi^2\hbar^2/2m_{\nu}a^2$? Would the three-particle wave function change if any one of the particles were a boson instead? How?
- 3) Electrons are fermions, yet they can form covalent bonds. Explain how.
- 4) Defining u(r) = rR(r), the radial wave function satisfies the following equation:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

Obtain ψ_{100} for an infinite spherical well:

$$V(r) = \begin{cases} 0, & \text{for } r \leq a, \\ \infty, & \text{for } r > a. \end{cases}$$

5) In the Stern-Gerlach experiment, the electron beam (moving \perp to the z axis) undergoes a Hamiltonian of the following type:

$$H(t) = \begin{cases} 0, & \text{for } t \le 0, \\ -\gamma (B_0 + \alpha Z) S_z, & \text{for } 0 \le t \le T, \\ 0, & \text{for } t > T. \end{cases}$$

Obtain the z component of the momentum of the spin down component at a time $t \geq T$.

QUANTUM MECHANICS

Monsoon 2023 - CND Core - Credit 4

Instructor: Subhadip Mitra

Date: DECEMBER 1, 2023

Time: 03 H 00 M

End Examination

Total Marks: 100

Instructions:

- Attempt all the questions.
- Class notes or books are not permitted. But you may bring one A4 sheet of handwritten material (not photocopied/printed) which you have to submit with your answer script.
- Keep your answers to the point. Unless the logic is clear, you will not get any credit for a problem. Illegible answers will not be graded. No 'benefit of doubt' because of bad notation/illegible hand-writing etc.

Q 1. Consider a finite square well,

$$V(x) = \begin{cases} -V_0 & \text{for } -a < x < a \\ 0 & \text{otherwise,} \end{cases}$$
 (V₀ > 0)

with a particle of energy E > 0 (scattering state).

- (a) Show that the probability of the particle reflecting back is nonzero in general.
- (b) What happens if $E \gg V_0$ or $E \to 0$? Show that there are some energies for perfect transmission (transmission resonance, this is why you get a very large transmission when you scatter low-energy electrons through noble-gas atoms).
- (c) We say that the absolute value of potential does not matter, only the difference matters. Hence, if we add a constant to the overall potential, nothing changes. Is this true in Quantum Mechanics? If so, how do we see that? If not, why not?
- (d) Suppose, now, the particle has E < 0 (i.e., it is in a bound state). What will happen if we add a purely imaginary constant (say, $-i\Gamma$) to the potential instead of a real constant? Will it affect the probability of the particle? If so, how?

[3+3+4+5=15 CO: 1,2,4,5]

Q 2. Let $|x\rangle$ denote the state (wave-function) at x. We can define an infinitesimal translation operator $\hat{T}(dx)$ such that

$$\hat{T}(dx')|x\rangle = |x + dx'\rangle.$$

- (a) What properties should such an operator satisfy? In particular, argue for
 - (i) $\hat{T}^{\dagger}(dx')$,
 - (ii) $\hat{T}^{-1}(dx')$,
 - (iii) $\hat{T}(dx') \cdot \hat{T}(dx'')$ and
 - (iv) $\lim_{dx'\to 0} \hat{T}(dx')$.
- (b) Under what condition $\hat{T}(dx') = 1 i \frac{\hat{K}}{\hbar} d\hat{x}'$ satisfies all the above properties if we ignore terms of second order or higher in dx'? Is \hat{T} hermitian?
- (c) Show that

$$\left[\hat{x}, \hat{T}(dx')\right] \left| x' \right\rangle = d\hat{x}' \left| x' + d\hat{x}' \right\rangle \approx d\hat{x}' \left| x' \right\rangle$$

and obtain $[\hat{x}, \hat{K}]$.

(d) If $\langle x|\psi\rangle=\psi(x)$ (where $|\psi\rangle$ is an arbitrary state), what is $\langle x|T(dx)|\psi\rangle$? Expand it to establish the relation between \hat{K} and the momentum operator.

$$[4+(2+1)+(3+1)+(2+2)=15$$
 CO: 2,4]

Q 3. (a) Show with the momentum-space wave function $\Phi(p,t)$ that

$$\langle x \rangle = \int \Phi^* \left(-\frac{h}{i} \frac{\partial}{\partial p} \right) \Phi \, dp.$$

(b) Prove the Virial theorem:

$$\frac{d}{dt}\langle xp\rangle = 2\langle T\rangle - \left\langle x\frac{dV}{dx}\right\rangle,\,$$

where T is the kinetic energy.

(c) Consider a periodic potential, i.e., $V(x+\lambda) = V(x)$. Show that the wave function at $(x_0 + \lambda)$ is proportional to $\psi(x_0)$ up to a constant (i.e., x-independent) phase.

(d) Explain how one gets dynamic solutions out of the stationary states for the time-independent potential.

[2+3+3+2=10 CO: 1,3,4,5]

- **Q 4.** (a) Let, for a system of interest $\{|a_i\rangle\}$ be the set of eigenstates of an Hermitian operator A. Show that
 - (i) the matrix $A_{ij} = \langle a_i | A | a_j \rangle$ is diagonal,
 - (ii) the matrix $B_{ij} = \langle a_i | B | a_j \rangle$ is also diagonal where A and B are compatible observables.
 - (iii) the transformation from the basis $\{|a_i\rangle\}$ to another basis $\{|c_i\rangle\}$ is unitary, where $\{|c_i\rangle\}$ are the eigenstates of another Hermitian operator C incompatible with A or B.
 - (b) In the case of perturbation theory with degenerate states, why does one first look for some operator that commutes with the perturbed Hamiltonian?
 - (c) Consider a two-dimensional squre box

$$V(x,y) = \begin{cases} 0 & \text{if } 0 \le x \le a, \ 0 \le y \le a, \\ \infty & \text{otherwise.} \end{cases}$$

Obtain the first-order corrections to the ground-state energy and the energies of the first and second excited states if we introduce a time-independent perturbation

$$H'(x,y) = \begin{cases} \Delta V_0 & \text{if } 0 \le x \le a/3, \\ 0 & \text{otherwise.} \end{cases}$$

(d) If the lowest-order relativistic correction to the Hamiltonian is given as

$$H' = -\frac{p^4}{8m^3c^2}$$

find the lowest-order relativistic correction to the energy levels of the one-dimensional harmonic oscillator.

[(1+2+2)+3+5+7=20 CO: 1,2,3,4,5]

Q 5. A spinning electron constitutes a magnetic dipole. Its dipole moment is proportional to the spin,

$$\vec{\mu} = \gamma \vec{S}$$

where γ is the gyromagnetic ratio. If you put it in a magnetic field \vec{B} , it feels a torque. The energy associated with the torque is $-\vec{u} \cdot \vec{B}$.

- (a) If the magnetic field is constant $\vec{B} = B_0 \hat{z}$, then show that $\langle \vec{S} \rangle$ gets titled and it precesses about the field with a constant frequency.
- (b) If $\vec{B} = B_0 \cos(\omega t)\hat{z}$ (where ω is a constant) and the electron starts out in the spin-down state in the x direction, i.e.,

$$\chi(0) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

then obtain $\chi(t)$ by solving the time dependent Schrödinger equation

$$i\hbar\frac{\partial\chi}{\partial t}=\mathbf{H}\chi,$$

where H is the Hamiltonian matrix.

- (c) Use a Gaussian trial function, $\psi(x) = \left(\frac{2b}{\pi}\right)^{1/4} e^{-bx^2}$ to obtain the lowest upper bound on the ground state energy of the quartic potential: $V(x) = \alpha x^4$. [7+8+5=20 CO: 2,3,4]
- **Q 6.** Consider a box of volume V containing free electron gas (assume the total number of atoms to be N with each one contributing q electrons). The normalized wave functions are given as

$$\psi_{n_x,n_y,n_z} = \sqrt{\frac{8}{V}} \sin\left(\frac{n_x \pi}{l_x}x\right) \sin\left(\frac{n_y \pi}{l_y}y\right) \sin\left(\frac{n_z \pi}{l_z}z\right)$$

where $V = l_x l_y l_z$. The allowed energies are

$$E_{n_x,n_y,n_z} = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2)$$

where the wave vector $\vec{k} = (k_x, k_y, k_z)$ with $k_i = n_i^2/l_i^2$.

- (a) Show that the Fermi energy is $E_F = \frac{\hbar^2}{2m} (3\rho \pi^2)^{2/3}$ where ρ is the free electron density. How is it related to the chemical potential?
- (b) The total energy $E_{tot} \propto V^{-2/3}$. Find the proportionality constant and the degeneracy pressure.
- (c) Covalent bonding between two electrons requires the two to be in the singlet state. Explain.
- (d) Derive the most probable occupation number for N identical fermions with total energy E (assume N_i particles are in d_i degenerate states of energy E_i , etc.).

[4+6+5+5=20 **CO**: 1,2,3,4,5]