

### Autonomous University of San Luis Potosí Engineering Faculty Machine learning



### SynthTalkOne



An AI system to synthesize and cloning human voices for use in chatbots, virtual assistants, and other applications.

- ► Name of participant: Fernando Antonio Ramírez Martínez
- ► Adviser: Juan Carlos Cuevas Tello

### Types of generated sounds

- Speech (Text-to-Speech)
- Music
- Music notes (samples)
- Sound design
- ...

## Sound representations

- Raw-audio
- Spectrograms

## Generation from raw audio: Challenges

Difficult to capture long-range dependencies

Pitch Melody

Rhythm Timbre

Harmony

Melody

Structure

# Sound generation task



## Generation from raw audio



# Use a more compact representation of sound



# Generation from spectrograms



### Autoencoders: The sneaky idea

Create an architecture with a bottleneck, which ensures a lower-dimensional representation of the original data.

Autoencoder = Encoder + Decoder



Encoder = compress data into lower-dimensional representation (latent space)



**Decoder** = Decompress representation back to original domain



### Generation with AEs



### Generation with VAEs



#### This content of this slides was obtained by the following repository:

https://github.com/musikalkemist/generating-sound-with-neural-networks