AD-A066 272

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO F/G 12/1 GENERALIZATION OF A. N. KOLMOGOROV'S CRITERION FOR EVALUATING T--ETC(U) SEP 77 G M MANIYA FTD-ID(RS)T-1672-77 NL

UNCLASSIFIED

OF | ADA 066272

END DATE FILMED

5 -79

(AS)m 1672-77

FTD-ID(RS)T-1672-77

FOREIGN TECHNOLOGY DIVISION

GENERALIZATION OF A. N. KOLMOGOROV'S CRITERION FOR EVALUATING THE LAW OF DISTRIBUTION BY EMPIRICAL DATA

by

G. M. Maniya

Approved for public release; distribution unlimited.

11 09 131 78 11 09 13

EDITED TRANSLATION

FTD-ID(RS)T-1672-77 15 September 1977

MICROFICHE NR: 74D-77.C-00 //9/

GENERALIZATION OF A. N. KOLMOGOROV'S CRITERION FOR EVALUATING THE LAW OF DISTRIBUTION BY EMPIRCAL DATA

By: G. M. Maniya

English pages: 6

Source: Doklady Akademii Nauk SSSR, Vol. 69, No. 4,

1949, PP. 495-497

Country of origin: USSR

Translated by: Carol S. Nack

Requester: AFFDL/FBRD

Approved for public release; distribution unlimited

NTIS DDC UNANI	VOUNCED	White Section D		
JUSTIFICA BY	ICATION			
	IBUTION/A	VAILABILI	TY CODES	
	BUTION/A		Y COUES	

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Bl	ock	Italic	Transliteration	Block Italic	Transliteration
Α	a	Aa	A, a	Pp Pp	R, r
Б	6	5 6	B, b	C c . C .	S, s
В	В	B .	V, v	T T T M	T, t
Γ	г	r .	G, g	Уу У у	U, u
Д	д	ДВ	D, d	Ф ф	F, f
E	е	E .	Ye, ye; E, e*	X × X x	Kh, kh
ж	ж	Жж	Zh, zh	Цц 4 4	Ts, ts
3	3	3 ,	Z, z	44 4 4	Ch, ch
И	и	H u	I, 1	Ш ш ш	Sh, sh
Й	й	A a	Y, y	Щщ Щ щ	Shch, shch
Н	н	KK	K, k	ьь в в	n
Л	л	ЛА	L, 1	ы ы	Ү, у
Μ	М	M M	M, m	b b b b	•
Н	н	HH	N, n	Эз э ,	Е, е
0	0	0 0	0, 0	Ю ю В	Yu, yu
П	п	Пп	P, p	Яя Яя	Ya, ya

^{*}ye initially, after vowels, and after ь, ь; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

GREEK ALPHABET

Α	α	•		Nu	N	ν	
В	β			Xi	Ξ	ξ	
Γ	Υ			Omicron	0	0	
Δ	δ			Pi	П	π	
E	ε	•		Rho	P	ρ	•
Z	ζ			Sigma	Σ	σ	ç
Н	η			Tau	T	τ	
Θ	θ			Upsilon	T	υ	
I	ι			Phi	Φ	φ	ф
K	n	K	44016	Chi	X	X	
٨	λ	5000	va ta	Psi	Ψ	ψ	
M	μ			Omega	Ω	ω	
	B Γ Δ Ε Ζ Η Θ Ι Κ	B β Γ γ Δ δ Ε ε Ζ ζ Η η Θ θ Ι ι Κ ** Λ λ	B β Γ γ Δ δ Ε ε ε Ε Ζ ζ Η η Θ θ \$ I ι Κ % Κ Λ λ	B β Γ γ Δ δ Ε ε ε Ζ ζ Η η Θ θ \$ Ι ι Κ % κ *	B β Xi Γ γ Omicron Δ δ Pi E ε ε Rho Z ζ Sigma H η Tau Θ θ \$ Upsilon I ι Phi K κ κ Chi Λ λ Psi	B β Xi Ξ Γ γ Omicron O Δ δ Pi Π E ε ε Rho P Z ζ Sigma Σ H η Tau T Θ θ \bullet Upsilon T I ι Phi ϕ K \varkappa κ ε Chi χ Λ λ Psi Ψ	B β Xi Ξ ξ Γ γ Omicron O o o o o o o o o o o o o o o o o o o

78 11 09 13

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English
sin	sin
cos	cos
tg	tan
ctg	cot
sec	sec
cosec	csc
sh	sinh
ch	cosh
th	tanh
cth	coth
sch	sech
esch	csch
arc sin	sin ⁻¹
arc cos	cos-1
arc tg	tan-1
arc ctg	cot-1
arc sec	sec-1
arc cosec	csc ⁻¹
arc sh	sinh ⁻¹
arc ch	cosh-1
arc th	tanh-1
arc cth	coth-1
arc sch	sech-1
arc csch	csch ⁻¹
29	
rot	curl
lg	log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

1672

GENERALIZATION OF A. W. KOLHOGOROV'S CRITERION FOR EVALUATING THE LAW OF DISTRIBUTION BY EMPIRICAL DATA

G. M. Maniya

(Presented by Academician A. N. Kolmogorov on 7 October 1949)

Let $x_1, x_2, ..., x_n$ be a set of independent values with the general continuous law of distribution F(x). Furthermore, let $x_1^*, x_2^*, ..., x_n^*$ be the same series, but in order of their magnitudes.

The will call the empirical distribution function step function $s_n(x)$:

$$S (x) = \begin{cases} 0 & \text{at } x < x_1^*, \\ \frac{1}{2} & \text{at } x_2^* < x < x_{k+1}^*, \\ 1 & \text{at } x > x_n^*. \end{cases}$$

We will designate

$$D_n = \sup_{-\infty < x < \infty} |S_n(x) - F(x)|,$$

$$D_n^+ = \sup_{-\infty < x < \infty} \{S_n(x) - F(x)\}.$$

According to the known theorem proven by A. N. Kolmogorov [1], for each $\lambda > 0$ and random continuous distribution function P(x)

$$P\left\{D_{n} < \frac{\lambda}{\sqrt{n}}\right\} \underset{n \to \infty}{\longrightarrow} \Phi\left(\lambda\right) = 1 - 2\sum_{n=1}^{\infty} (-1)^{n-1} e^{-2\pi^{n}\lambda^{n}}.$$
 (1)

In one of his results [2], N. V. Smirnov establishes the asymptotic formula for distribution D::

$$P\left\{D_{n}^{+} < \frac{\lambda}{V \overline{n}}\right\} \underset{n \to \infty}{\longrightarrow} 1 - e^{-2\lambda^{*}}. \tag{2}$$

We will generalize A. W. Kolmogorov and W. V. Smirnov's correspondence criteria, considering the maximum deviation for a specific section (0 < θ_1 < θ_2 < 1) of the growth of function F(x).

We will find two random values:

$$D_{R}^{+}(\theta_{1}, \theta_{2}) = \sup_{\substack{\theta_{1} \leqslant F(x) \leqslant \theta_{1}}} \{S_{R}(x) - F(x)\},$$

$$D_{R}(\theta_{1}, \theta_{2}) = \sup_{\substack{\theta_{1} \leqslant F(x) \leqslant \theta_{2}}} |S_{R}(x) - F(x)|.$$

The results we obtained can be stated in the form of the following two theorems:

Theorem 1. Let P(x) be the continuous function of the distribution of each of the independent values x_i $(i=1, 2, \ldots, n)$,

$$\theta_1^{(n)} = \frac{m_1}{n} = \theta_1 + o\left(\frac{1}{\sqrt{n}}\right), \ u \ \theta_2^{(n)} = \frac{m_2}{n} = \theta_2 + o\left(\frac{1}{\sqrt{n}}\right), \ 0 < \theta_1 < \theta_2 < 1.$$

Then

$$P\Big\{D_n^+(\theta_1^{(n)},\,\theta_2^{(n)}) \leqslant \frac{\lambda}{\sqrt{n}}\Big\}_{n\to\infty} \Phi\left(\theta_1,\,\theta_2;\,\lambda\right),$$

There

$$\Phi^{+}(\theta_{1}, \theta_{2}; \lambda) = \frac{1}{2\pi V 1 - R^{2}} \int_{-\infty}^{a} \int_{-\infty}^{b} e^{-\frac{1}{2}h} \, \tilde{\theta}(s_{1}, s_{1}) \, dz_{1} \, dz_{2} - \frac{e^{-2\lambda^{2}}}{2\pi V 1 - R^{2}} \int_{-\infty}^{a'} \int_{-\infty}^{b'} e^{-\frac{1}{2}h} \, \tilde{\theta}(s_{1}, s_{1}) \, dz_{1} \, dz_{2},$$

$$a = \frac{\lambda}{V \, \tilde{\theta}_{1} \, (1 - \tilde{\theta}_{1})}, \quad b = \frac{\lambda}{V \, \tilde{\theta}_{2} \, (1 - \tilde{\theta}_{2})}, \quad a' = \frac{\lambda - 2\lambda \, \theta_{1}}{V \, \tilde{\theta}_{1} \, (1 - \tilde{\theta}_{1})}, \quad b' = \frac{\lambda - 2\lambda \, (1 - \tilde{\theta}_{2})}{V \, \tilde{\theta}_{2} \, (1 - \tilde{\theta}_{2})},$$

$$R = \sqrt{\frac{\tilde{\theta}_{1} \, (1 - \tilde{\theta}_{2})}{\tilde{\theta}_{2} \, (1 - \tilde{\theta}_{2})}},$$

$$\theta(z_{1}, z_{2}) = \frac{1}{1 - R^{2}} [z_{1}^{2} + 2Rz_{1}z_{2} + z_{2}^{2}], \quad \tilde{\theta}(z_{1}, z_{2}) = \frac{1}{1 - R^{2}} [z_{1}^{2} - 2Rz_{1}z_{2} + z_{2}^{2}].$$

Function $\Phi^+(\theta_1, \theta_2; \lambda)$ can also be represented as follows:

$$\Phi^{+}\left(\theta_{1},\,\theta_{2};\,\lambda\right)=\sum_{n=0}^{\infty}\frac{(+\,R)^{n}}{n\,!}\,\Phi^{(n)}\left(a\right)\Phi^{(n)}\left(b\right)-e^{-2\lambda^{s}}\sum_{n=0}^{\infty}\frac{(-\,R)^{n}}{n\,!}\,\Phi^{(n)}\left(a'\right)\Phi^{(n)}\left(b'\right).$$

Here $\Phi^{(n)}(x)$ is the n-th order derivative of the normal integral

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^{\alpha/2}} dz.$$

In the most interesting specific case, when $\theta_1 = 1 - \theta_2 = \theta$, we will have

$$\Phi^{+}(\theta; \lambda) = \frac{1}{2\pi V 1 - R^{2}} \int_{-\infty}^{e} \int_{-\infty}^{e} e^{-i/a \theta} (z_{i}, z_{i}) dz_{1} dz_{2} - \frac{e^{-2i\lambda}}{2\pi V 1 - R^{2}} \int_{-\infty}^{e'} \int_{-\infty}^{e'} e^{-i/a \theta} (z_{i}, z_{i}) dz_{1} dz_{2},$$

where

$$c=\frac{\lambda}{V\theta(1-\theta)}$$
, $c'=\frac{\lambda-2\lambda\theta}{V\theta(1-\theta)}$.

Whence we will obtain (2) at $\theta = 0$.

Theorem 2. Under the conditions in theorem 1

$$P\{D_n\left(0_1^{(n)},0_2^{(n)}\right)\leqslant \lambda n^{-1/\epsilon}\}\underset{n\to\infty}{\longrightarrow}\Phi\left(0_1,0_2;\lambda\right),$$

whereupon

$$\Phi(\theta_{1}, \theta_{2}; \lambda) = \frac{1}{2\pi V 1 - R^{2}} \int_{-a}^{a} \int_{-b}^{b} e^{-i/_{1}\theta} (z_{1}, z_{2}) dz_{1} dz_{2} - \frac{2\sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^{2}\lambda^{2}}}{2\pi V 1 - R^{2}} \int_{-a_{k} - \beta_{k}}^{a_{k}} e^{-i/_{1}\theta} (z_{1}, z_{2}) dz_{1} dz_{2},$$

where

$$\alpha_k = \frac{\lambda - 2 \, k \lambda \theta_1}{\sqrt{\theta_1 \, (1 - \theta_2)}} \,, \quad \beta_k = \frac{\lambda - 2 \, k \lambda \, (1 - \theta_2)}{\sqrt{\theta_2 \, (1 - \theta_2)}} \,.$$

We can represent function $\Phi(\theta_1,\theta_2;\lambda)$ in a different form as follows:

$$\Phi(\theta_1, \theta_2; \lambda) = \sum_{n=0}^{\infty} \frac{(-R)^n}{n!} \Phi^{(n)}(a) \Phi^{(n)}(b) - 2 \sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2 \lambda^2} \sum_{n=0}^{\infty} \frac{(-R)^n}{n!} \Phi^{(n)}(\alpha_k) \Phi^{(n)}(\beta_k).$$

In particular, when $\theta_1 = 0$, $\theta_2 = 1$ we obtain (1), i.e., the case which was first considered by A. N. Kolmogorov.

When $\theta_1 = 1 - \theta_2 = \theta$, we will have a more compact and symmetrical expression for the limiting function.

This method makes it possible to theoretically solve the problem of the applicability of the theoretical law at those boundaries where

the material which is available to us is more reliable for comparison.

The proofs of theorems 1 and 2 are based on the theorems of continuity of random functions and the Laplace transform.

Moscow City Pedagogical Institute imeni V. P. Potemkin

Received 7 October 1949

References

¹ А. Н. Колмогоров, Giorn. d. Att., 4, 83 (1933). ² Н. В. Смирнов, Матем. сборг., 6 (48), 8 (1939). ² W. Feller, Ann. of Math. Statistics, 19, 2, 177 (1948).

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION I	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER				
FTD-ID(RS)T-1672-77					
4. TITLE (and Sublitle) GENERALIZATION OF A. N. KOLMO CRITERION FOR EVALUATING THE DISTRIBUTION BY EMPIRICAL DAT	5. TYPE OF REPORT & PERIOD COVERED Translation 6. PERFORMING ORG. REPORT NUMBER				
Dan Intone Dan					
7. AUTHOR(*)	7. AUTHOR(a)				
G. M. Maniya					
9. PERFORMING ORGANIZATION NAME AND ADDRESS Foreign Technology Division Air Force Systems Command U. S. Air Force	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
		1949			
		6			
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)					
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
4					
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)					
12					

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION		MICROFICHE	ORGAN	MICROFICH	
C509	DMATC DMAAC DIA/RDS-3C USAMIIA BALLISTIC RES LABS AIR MOBILITY R&D	1 2 8 1 1	E053 E017 E404 E408 E410 E413	AF/RDXTR-W AEDC AFWL ADTC ESD	1 1 1 1 1 2
C535 C557 C591 C619 D008 H300 P005 P055	LAB/FIO PICATINNY ARSENAL AVIATION SYS COMD USAIIC FSTC MIA REDSTONE NISC USAICE (USAREUR) ERDA CIA/CRS/ADD/SD DSTA (50L)	1 1 5 1 1 1 1		FTD CCN ETID NIA/PHS NICD	1 1 1 5
NASA/I		1 1			