Desenvolvimento de uma controladora de baixo custo para um robô manipulador didático baseada em sistema microcontrolado

Erick Nathan Martins Alves
Orientador: Prof. Dr. Renato de Sousa Dâmaso
Coorientador: Prof. Dr. Alan Mendes Marotta.
O presente trabalho tem como objetivo projetar e desenvolver uma controladora para o manipulador robótico de 5 GDL e uma garra presente no laboratório de robótica: o ED-7255. O modelo educacional a ser utilizado possui uma controladora nativa, porém com recursos limitados e que vinha acumulando erros de posicionamento. Propõe-se então a implementação de um sistema de controle independente por junta, com a utilização de processamento paralelo baseado em sistema microcontrolado. Assim, pretende-se aproveitar a estrutura e construção mecânica do robô, buscando melhorias e uma maior variedade de recursos, como a possibilidade de uma IHM moderna, conexão wireless e até mesmo uma programação aberta, em linguagens de alto nível e de propósito geral como o <i>Python</i> , por exemplo. Visando um <i>hardware</i> compacto, de baixo custo e eficiente, serão utilizados microcontroladores como o PIC, ESP32 ou até mesmo o <i>Raspberry Pi</i> , possibilitando a implementação dos modos de programação pretendidos: manual ou automático. O desenvolvimento abordará a obtenção dos modelos cinemáticos direto e inverso do manipulador, além do controle de posição dos motores CC presentes no modelo utilizado, a fim de implementar uma biblioteca que encapsulará as funções de movimentação do robô, de modo similar ao utilizado em controladoras industriais
Palavras-chave: Robótica industrial; Controle independente por junta; Sistemas microcontrolados Modelos didáticos; Processamento paralelo.
Indicação da(s) grande(s) área(s):
⊠ Eletrônica;
□ Controle;
☐ Mecânica.

Divinópolis, 6 de novembro de 2023.

1 Apresentação do Problema

A robótica é um campo relativamente novo de tecnologia moderna que atravessa os limites da engenharia. Compreender a complexidade dos robôs e suas aplicações requerem conhecimentos de engenharia elétrica, engenharia mecânica, sistemas e engenharia industrial, ciência da computação, economia e matemática. Novas disciplinas de engenharia, como engenharia de produção, engenharia de aplicações e engenharia do conhecimento surgiram para lidar com a complexidade do campo da robótica e da automação industrial [1].

Nesse âmbito, os modelos robóticos educacionais têm sido amplamente difundidos e utilizados com o objetivo de viabilizar o estudo da robótica nas universidades e centros de ensino. A vantagem de plantas e protótipos é a possibilidade de aplicar na prática os conhecimentos vistos, através de dispositivos mecatrônicos que possuem funcionamento similar aos manipuladores industriais comerciais.

Dessa forma, é possível o estudo de princípios cinemáticos e dinâmicos do robô, bem como a programação dos mesmos, sem a exigência de se possuir modelos renomados, como os da *Comau*, *Kuka* ou *ABB*, por exemplo. Outrossim, os fabricantes citados possuem lógica de controle fechada e protegida sob direitos autorais, não sendo possível modificá-los ou visualizá-los. Nesse aspecto, os modelos didáticos podem ser mais flexíveis e, além de possibilitar uma implementação de mais baixo nível (livre e de total controle), pode servir ainda como um intermédio para o avanço no campo da robótica, ou seja, um estudo mais detalhado a cerca do controle do robô para, posteriormente, iniciar os trabalhos em um robô fechado e utilizado em meio industrial.

O modelo educacional *ED-7255* presente no laboratório de robótica do CEFET-MG de Divinópolis, mostrado na Figura 1, encontra-se subaproveitado, em virtude de defeitos elétricos. Em um primeiro momento, há a necessidade de realizar a manutenção do atuador. Foi sugerido ainda, o desenvolvimento de uma controladora com o objetivo de corrigir alguns problemas observados no modelo, como a instabilidade do controle de posição, bem como a baixa precisão e repetibilidade. Ademais, será vantajoso a inserção de novas características ao projeto, como a ampliação e modernização da IHM (Interface Homem Máquina) e conectividade, visando um ganho de possibilidades e recursos didáticos oferecidos pelo sistema.

Figura 1: Modelo educacional ED-7255 e seus componentes.

Em 1934, Hazen, que introduziu o termo servomecanismos para sistemas de controle de posição, discutiu o projeto de servomecanismos a relé, capazes de acompanhar uma variação de entrada com acurácia. Durante a década de 1940, métodos de resposta em frequência (especialmente os métodos com base nos diagramas de Bode) possibilitaram aos engenheiros projetar sistemas de controle linear de malha fechada que satisfizessem o desempenho requerido. Muitos sistemas de controle industrial das décadas de 1940 e 1950 usavam controladores PID no controle de posição, pressão, temperatura etc [2].

Propõe-se portanto, a partir das ferramentas supracitadas, a implementação de um servomecanismo com controle PID independente por junta, visando uma resposta mais estável e com maior acurácia, com a sintonia dos controladores individualmente, a partir da comparação de modelos caixa cinza e caixa preta e a seleção do melhor desempenho para aplicar ao sistema proposto.

1.1 Objetivos da Pesquisa

O objetivo principal é o desenvolvimento de um sistema de controle para o manipulador robótico em questão, retomando conceitos de eletrônica, robótica, sistemas digitais e controle, com a finalidade de aprimorar a controladora original em aspectos como: acurácia, repetibilidade, recursos disponíveis para o aprendizado, interface homem-máquina e até mesmo propor um sistema/técnica de controle distinto do empregado nativamente no modelo.

São objetivos específicos:

- Garantir o pleno funcionamento do manipulador (mecânica e elétrica);
- Obter os modelos cinemáticos do ED-7255;
- Obter os modelos caixa cinza dos motores CC;
- Projetar, sintonizar e simular os controladores PID;
- Projetar e desenvolver as unidades de controle microcontroladas independentes;
- Projetar e desenvolver a unidade central e controladora como um todo;
- Finalizar a implementação com a parte de software, programação e IHM.

2 Metodologia de Trabalho

Assim como todo sistema robótico, a estruturação do modelo educacional deve possuir esquema de componentes e sentido de comunicação conforme Figura 2 [1].

Figura 2: Componentes de um sistema robótico.

Após a realização da manutenção do manipulador, o braço mecânico, sensores e atuadores estarão prontos para uso e passa-se então para a implementação proposta no trabalho: a controladora, que envolve o dispositivo de entrada (IHM), a fonte de alimentação, a parte eletrônica e o controlador, a ser implementado em um microcontrolador.

Faz-se necessária a obtenção dos modelos cinemáticos direto e inverso do robô, a partir das formulações de Denavit Hartenberg, composição dos diagramas e tabelas e consequente extração das matrizes de transformação homogêneas. Ainda no campo de cinemática e modelagem diferencial, utiliza-se o jacobiano de velocidades para que, associado a um processo de planejamento e geração de trajetória, o servomecanismo do robô possa ser implementado na unidade central de processamento.

A malha de controle a ser implementada segue o padrão mostrado na Figura 3, em que a entrada é a referência de trajetória desejada, o compensador é o controlador PID a ser desenvolvido que passa por um módulo de potência para acionamento dos motores, o distúrbio é inerente ao sistema e pode ser proveniente de folgas e falhas na construção mecânica, bem como de ruídos dos sensores. O sinal de cada motor entra na planta (braço robótico) e a posição é realimentada na malha através dos sensores de posição absolutos presentes no modelo utilizado.

Figura 3: Diagrama da malha fechada de controle do atuador.

A obtenção dos modelos matemáticos para os motores serão dados a partir de ensaios a vazio (plena tensão e corrente nominais) e de rotor bloqueado (ensaio de *stall*) dos motores, a fim de obter os parâmetros dos motores conforme modelagem proposta no circuito equivalente da Figura 4 [2].

Figura 4: Circuito equivalente de um motor de corrente contínua e redução mecânica do atuador.

A partir do diagrama, circuito equivalente e ensaios citados, obtem-se os modelos matemáticos e sintonia dos controladores PID para seguimento de referência e rejeição de distúrbio, mediante os requisitos de projeto a serem estabelecidos. Para simulação do sistema, será utilizada a biblioteca *Python Control.* Graças à técnica do controle independente por junta, é possível fracionar um sistema MIMO em alguns subsistemas SISO, de forma que a referência seja gerada por uma unidade de processamento central e repassada a cada sub-circuito que será responsável pelo controle cada junta individualmente.

De posse dos controladores e modelos desejados, segue o projeto e desenvolvimento da parte eletrônica, incluindo a fonte de alimentação adequada para o *hardware* a ser utilizado; os módulos de controle e potência individuais para cada motor, baseados em um microcontrolador de menor porte, a citar um modelo como o PIC10F200, por exemplo; e a unidade central, que possivelmente será baseada em um microcontrolador com mais recursos embutidos, como a presença de *Wi-Fi* e um poder de processamento consideravelmente superior, uma vez que, os cálculos de cinemática e trajetória serão realizados nele e a comunicação com os sub-circuitos será realizada via protocolo *i2C*.

Posteriormente, inicia-se a fase de programação e implementação do *software*, que envolve a programação de cada um dos controladores discretizados nos sub-sistemas e a codificação do microcontrolador central. Os modelos de comunicação aberta baseados em arranjos Cliente-Servidor, assim como o *C5G-Open* [3] [4] [5] serão utilizadas como referência para a programação das funcionalidades do robô, como funções de movimentação automáticas, registro de posições, movimentação em coordenadas cartesianas e em modo angular (*joint*), possibilidade de controle via código externo, TP (*Teach Pendant*) e ainda a possibilidade de monitoramento de posição em tempo real e trajetórias, a fim de gerar curvas que possam ser utilizadas para estudo da robótica em meio acadêmico.

3 Resultados e Impactos Esperados

Ao final do trabalho espera-se obter uma controladora com todos os dispositivos e sistemas necessários para realizar o controle dos motores CC presentes no manipulador ED-7255, de forma a viabilizar a retomada da utilização desse modelo didático nas aulas de robótica, com uma possível contribuição na melhoria de desempenho dos controladores ou, minimamente contribuir com a inserção de novos recursos e possibilidades para a aproximação entre o aluno e a robótica, tanto em nível técnico quanto graduação.

4 Recursos e Infraestrutura Necessários

O presente trabalho deverá ser desenvolvido, em sua maioria, no laboratório de robótica. Alguma parte específica pode envolver a necessidade de recursos presentes nos laboratórios de eletrônica, protótipos e de automação industrial. Parte dos materiais a serem utilizados já se encontram no laboratório de robótica, enquanto que outros serão custeados pelo próprio proponente do trabalho. A mão de obra empregada no trabalho será oriunda exclusivamente do aluno e possíveis auxílios dos orientadores, uma vez que, todos os ensaios, confecção de placas e parte estrutural serão realizados no próprio campus do CEFET-MG.

5 Referências

- [1] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. Wiley, 2005.
- [2] K. Ogata, Engenharia de Controle Moderno. Pearson Education, 5 ed., 2010.
- [3] T. O. Campagnani and R. S. Dâmaso, "Arranjo cliente servidor para um robô industrial com controladora aberta," *SBAI*, 2021.
- [4] Comau, "Comau open controller c5g," 2019.
- [5] G. Antonelli, S. Chiaverini, V. Perna, and F. Romanelli, "A modular and task-oriented architecture for open control system: the evolution of c5g open towards high level programming," *ICRA*, pp. 30–37, 2010.

Plano de Trabalho

1. Objetivos das Atividades: Projeto e desenvolvimento de ferramentas e mecanismos mecatrônicos de baixo custo para controle de um manipulador robótico educacional, com controle independente por junta, baseado em sistema microcontrolado e interface *IOT*.

2. Descrição das Atividades:

- 1.1 Revisão e manutenção eletromecânica do ED-7255.
- 2.1 Obtenção dos modelos cinemáticos do manipulador.
- 2.2 Planejamento e geração de trajetória: Formulação matemática e simulação da movimentação do robô.
- 3.1 Modelagem dos atuadores: ensaios, obtenção de parâmetros e simulação.
- 3.2 Projeto e sintonia dos controladores PID e simulação via *Python Control*.
- 4.1 Unidade de controle individual: projeto, desenvolvimento eletrônico e testes.
- 4.2 Unidade central e de potência: projeto, desenvolvimento eletrônico e testes.
- 5.1 Implementação do software: programação, protocolos de comunicação e IHM.
- 6.1 Comparação e divulgação dos resultados: publicação de artigo e apresentação em congressos e eventos da área.

3. Cronograma de Atividades:

Atividade (\downarrow) Mês.(\rightarrow)	1°	2°	3°	4 ⁰	5°	6°	7 ⁰	8°	9 o	10°	11 ⁰	12 ⁰
1.1												
2.1												
2.2												
3.1												
3.2												
4.1												
4.2												
5.1												
6.1												

Tabela 1: Cronograma de atividades.

4. Local de Desenvolvimento das Atividades: Laboratório de robótica, laboratório de eletrônica, laboratório de automação industrial e laboratório de protótipos (*maker*).

5. Metodologia de Acompanhamento:

O trabalho será realizado sob tutela do orientador e supervisão do coorientador. Os encontros para discussão e tutoria terão frequência semanal e apresentação dos resultados mensalmente, assim como a avaliação do andamento do trabalho em conformidade com o cronograma de atividades.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CAMPUS DIVINÓPOLIS Coordenação de Curso de Graduação em Engenharia Mecatrônica

Termo de Compromisso de Orientação

Eu, professor <u>Dr. Renato de Sousa Dâmaso</u> professor lotado no <u>Departamento de Engenharia Mecatrônica - DEMDV</u> concordo em orientar o discente <u>Erick Nathan Martins Alves</u> em seu trabalho de conclusão de curso cujo título é <u>Desenvolvimento de uma controladora de baixo custo para um robô manipulador didático baseada em sistema microcontrolado.</u>

Renato Damaso

Assinatura do Professor Orientador