

CÉSAR VALLEJO

CÉSAR VALLEJO

FÍSICA

MOVIMIENTO ARMÓNICO SIMPLE

OBJETIVOS

- Describir el movimiento armónico simple haciendo uso de la cinemática y la mecánica.
- Utilizar adecuadamente las ecuaciones que gobiernan a este movimiento.
- Describir el movimiento de un péndulo simple y sus aplicaciones como un caso particular del MAS.

MOVIMIENTO ARMÓNICO SIMPLE (MAS)

P.E.: posición de equilibrio (es aquella posición donde la $\vec{F}_R = \vec{0}$)

A: Amplitud (máximo alejamiento respecto a la P.E.)

Características:

- Movimiento oscilatorio.
- Movimiento periódico.
- Movimiento rectilíneo.

 La fuerza resultante que actúa sobre el cuerpo o partícula debe ser directamente proporcional al opuesto de su posición, es decir:

$$\vec{F}_R$$
 D. P \vec{x} \Rightarrow $\vec{F}_R = -K\vec{x}$

<u>Periodo</u> (T).- Es el tiempo que le toma a una partícula en realizar una oscilación.

Frecuencia (f).- Nos mide el número de oscilaciones por segundo.

$$f = \frac{\text{número de}}{\text{tiempo}}$$

Unidad en el S.I. $(s^{-1} \iff Hz)$

También:

$$f = \frac{1}{T}$$

ANÁLISIS CINEMÁTICO DEL MAS

$$T_{MAS} = T_{MCU} = \frac{2\pi}{\omega}$$

 ω : Frecuencia cíclica o frecuencia angular (rad/s)

ECUACIONES DEL MAS

Ecuación de la posición:

$$\vec{x} = Asen(\omega t + \varphi)$$

Ecuación de la velocidad

$$\vec{v} = \omega A \cos(\omega t + \varphi)$$

- ✓ En la P.E.: $v_{máx} = \omega A$
- ✓ En los extremos: v = 0
- ✓ Para cualquier instante:

$$v = \omega \sqrt{A^2 - x^2}$$

Ecuación de la aceleración

$$\vec{a} = -\omega^2 Asen(\omega t + \varphi)$$

- ✓ En la P.E.: a = 0
- ✓ En los extremos: $a_{m\acute{a}x} = \omega^2 A$
- ✓ Para cualquier instante: $a = \omega^2 x$

Tener presente

La fase inicial (φ) se mide desde la posición de equilibrio en sentido antihorario hasta el lugar donde el tiempo es cero (t=0).

ANÁLISIS DINÁMICO DEL MAS

De la segunda ley de Newton:

$$F_R = ma$$

$$F_E = m\omega^2 x$$

$$KA = m\omega^2 A$$

$$\omega = \sqrt{\frac{K}{m}}$$

De:
$$\omega = \frac{2\pi}{T}$$

$$T = 2\pi \sqrt{\frac{m}{K}}$$

MAS VERTICAL

El tratamiento cinemático es de la misma manera que en el caso horizontal.

$$\vec{y}_{(t)} = \operatorname{Asen}(\omega t + \varphi)$$

APLICACIÓN 1

Un bloque realiza un MAS (oscilador armónico) en un plano horizontal con la siguiente ecuación de movimiento:

$$\vec{x}_{(t)} = 0.5 \operatorname{sen}\left(2t + \frac{2\pi}{3}\right) m$$

Determine la veracidad o falsedad de las siguientes proposiciones:

- I. Su recorrido en una oscilación completa es 2m.
- II. Su periodo de oscilación es πs .
- III. En el instante $t_o = 0$ se estaba moviendo hacia la derecha.

RESOLUCIÓN

SEMESTRAL UNI

APLICACIÓN 2

La ecuación de la aceleración de un oscilador armónico está dado por $\vec{a}=-4.8\pi^2 \sin(4\pi t + \pi/3)\hat{\imath} \text{ m/s}^2$. Calcule su máxima rapidez

RESOLUCIÓN

ACADEMIA

SEMESTRAL UNI

APLICACIÓN 3

Al bloque de 8 kg se le desplaza hasta la posición \vec{x} =+1 m y se le lanza con $5\sqrt{3}$ m/s hacia la derecha. Determine la ecuación de su velocidad. (K=200 N/m).

RESOLUCIÓN

ENERGÍA EN EL MAS

Vemos que solo se realiza trabajo mediante la fuerza elástica.

ila energía mecánica del sistema se conserva!

$$E_{M(sist.)} = E_C + E_{PE} = \frac{KA^2}{2}$$

En los extremos la energía potencial elástica es máxima, ya que allí la deformación del resorte es máxima.

$$E_{PE(m\acute{a}x)} = \frac{1}{2}KA^2$$

En la *P.E.* la energía cinética es máxima, ya que allí su rapidez es máxima:

$$E_{C(m\acute{a}x)} = \frac{1}{2} m v_{m\acute{a}x}^2$$

APLICACIÓN 4

Un bloque de 1 kg se encuentra unido a un resorte y realiza un MAS horizontal. Si la energía potencial elástica varía con la posición, tal como indica la gráfica. Determine la energía cinética que presenta el bloque en la posición $\vec{x} = 0,1$ m.

RESOLUCIÓN

PÉNDULO SIMPLE

Si consideramos una pequeña esfera unida a un cable ideal de longitud L y lo desviamos de su P.E. un pequeño ángulo $(\theta \le 12^{\circ})$.

El movimiento del péndulo es aproximadamente un M.A.S, en consecuencia se emplean las mismas ecuaciones.

$$\omega = \sqrt{\frac{Cte}{m}} = \sqrt{\frac{mg}{mL}} \ \, \Box \rangle \ \, \left[\omega = \sqrt{\frac{g}{L}} \right]$$

Tener en cuenta que: $\omega = \frac{2\pi}{T}$

Entonces:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

Desplazamiento angular (θ)

$$\theta(t) = \theta_o sen(\omega t + \varphi)$$

Nota:

Para un péndulo bate segundos es aquel péndulo cuyo periodo es de 2s.

SEMESTRAL UNI

APLICACIÓN 5

Un péndulo simple de 2 m de longitud oscila con una amplitud de 0,2 m y presenta una masa de 5 kg. Calcule la tensión que soporta la cuerda cuando la esfera pase por su posición más baja. $(g=10 \text{ m/s}^2)$.

RESOLUCIÓN:

ACADEMIA

CÉSAR VALLEJO

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe