Packet 5: Linear Regression

Chap 6.5 Linear Regression Model

Least Square method does not use any distri assumption

From mathematics to statistics: Up to this point our construction of the least square estimators is completely out of mathematical intuition. Without a probabilistic model (i.e. a set of distributional assumptions), however, we cannot evaluate the statistical properties of these estimators. Under the sampling view, what happens if we repeat the experiment many many times? In particular, we cannot address pertinent questions such as the reliability of the slope and intercept estimates in the presence of "noise". Next, let us introduce some assumptions, and evaluate the properties of the estimators accordingly.

The simplest statistical model for the data pairs (x_i, y_i) is the linear regression model. $Y_i = \underbrace{\alpha + \beta(x_i - \bar{x})}_{\text{produmply}} + \epsilon_i, \quad i = 1, 2, \dots, n.$

$$Y_i = \underbrace{\alpha + \beta(x_i - \bar{x})}_{\text{Yenfollowines}} + \epsilon_i, \quad i = 1, 2, \dots, n$$

where the ϵ_i are i.i.d. random errors with zero mean and common variance

$$\epsilon_i \sim N(0, \sigma^2), \quad \text{for } i = 1, 2, \dots, n.$$

Let us assume that the x's are fixed (not random).

It is important to note the set of assumptions we are making here, i.e., LINE.

Linear the relationship between X and T is linear, S(x) = d+ B(ki-x)

Independence: Ei's are independent, Ti's are independent

Normality: Ei ~ Norm

Equal Variance: Var (%) = 62

Under LINE Assumption

With the above assumptions, let us check properties of the least square estimators. The error terms ϵ_i 's are i.i.d. Normal $(0, \sigma^2)$ r.v.s, i.e.,

The likelihood function is

$$L(\alpha,\beta,\sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{n/2}}e^{-\frac{\sum_{i=1}^{n}(y_{i}-\alpha-\beta(x_{i}-\bar{x}))^{2}}{2\sigma^{2}}}.$$

$$|\rho_{i}| \perp (d,\beta,\delta^{2}) = -\frac{1}{2}|\rho_{i}|^{2} - \frac{1}{2}|\rho_{i}|^{2} - \frac{1}{2}|\rho_{i}|$$

Maximizing this log-likelihood with respect to α and β is the same as minimizing $\beta(\alpha, \beta)$

$$\sum_{i=1}^{n} (y_i - \alpha - \beta(x_i - \bar{x}))^2.$$

So, the least square solutions must be the MLEs. 1/i $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \quad \hat{\alpha} = \bar{y}.$

The MLE of σ^2 can be derived by taking a partial derivative on the log-likelihood with respect

$$\frac{\partial \log L(\alpha, \ell, z^{2})}{\partial z^{2}} = 0 - \frac{\eta}{2} \frac{1}{z^{2}} - \frac{1}{z} S(\alpha, \ell) \times \left(-\frac{1}{z^{4}}\right)$$
for any (α, β)
this z^{2} maximizes
$$\frac{1}{z^{2}} = \frac{1}{z^{2}} S(\alpha, \ell) - \frac{\eta}{z^{2}} = 0$$
multiply $\frac{zz^{4}}{\eta}$
on both sides
like kinord
$$\hat{z}^{2} = \frac{S(\hat{\alpha}, \hat{\beta})}{\eta} = \frac{1}{\eta} \sum_{i=1}^{\infty} (\lambda_{i} - \hat{\alpha} - \hat{\beta}(\lambda_{i} - \bar{x}))^{2} \left(MLE\right) = \frac{1}{\eta} \sum_{i=1}^{\infty} \hat{z}_{i}^{2}$$
Fitted value $\hat{y}_{i} = \hat{\alpha} + \hat{\beta}(\lambda_{i} - \bar{x})$ Residuals $\hat{z}_{i} = \lambda_{i} - \hat{y}_{i}$

We note that the distribution of the residual sum of squares divided by σ^2 is χ^2_{n-2} , i.e

We note that the distribution of the residual sum of squares divided by
$$\sigma^2$$
 is χ^2_{n-2} , i.e.,

$$\frac{\chi^2}{\delta^2} = \frac{\sum_{i=1}^n (\chi_i - \hat{\chi}_i - \hat{\chi}_i)^2}{\delta^2} \sim \int_{-\infty}^{\infty} (\chi_i - \chi_i)^2 dx$$

$$\frac{\chi^2}{\delta^2} = \frac{\sum_{i=1}^n (\chi_i - \hat{\chi}_i)^2}{\delta^2} \sim \int_{-\infty}^{\infty} (\chi_i - \chi_i)^2 dx$$

Ex In Chap 5.5 Sample Variance

$$\frac{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}}{2^{2}} \sim \sqrt{2} \left(N - 1 \right)^{2}$$

 $\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{Z^2} \sim \int_{1}^{2} (n-1)^2 parameter by M_r = \overline{Y} in order$

to estimate 22 $\frac{1}{2}\left(\frac{n^{2}}{2^{2}}\right) = n-2$ MLE $Z^2 = \frac{1}{N} \sum_{i=1}^{N} \hat{\mathcal{E}}_i^2$ is a

 $E(\hat{S}^2) = \frac{n-2}{n} \vec{S}^2 < \vec{S}^2$ biased estimator for \vec{S}^2

Chap 5.3 $E\left(\frac{2}{i} \text{ Ci Yi}\right) = \frac{n}{i} \text{ Ci } E(\text{Yi})$ * in dependence

* in dependence

Estimator properties:
$$\hat{\alpha}$$
 and $\hat{\beta}$ are both linear functions of random variables, Y_i 's.

$$E(Y_i) = d + \ell(X_i - \overline{x}) \qquad \forall 0 x \in Y_i = \frac{1}{2} \qquad \forall 0 y \text{ math } y$$

$$\hat{\alpha} = Y = \frac{1}{n} \sum_{i=1}^{n} Y_i \qquad E(\hat{A}_i) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{1}{n} \sum_{i=1}^{n} (d + \ell(\hat{A}_i - \overline{x}))$$

$$= \frac{1}{n} \frac{1}{n} \sum_{i=1}^{n} d + \ell(\hat{A}_i - \overline{x}) = \frac{1}{n} \sum_{i=1}^{n} (A_i - \overline{x}) = \frac{1}{n} \sum_{i=1}^{n$$

$$\frac{5}{8} \sim N\left(\frac{7}{2} \left(\frac{5}{1-x}\right)^{2}\right)$$