Závěrečná fyzikální paralympiáda mladších - LMFS 2016

1. Kvalitní guma (12 bodů)

Ondra si kolem pasu uvázal úvazek s připevněnou gumou, jejíž druhý konec je připevněn k houpačce. Běží od houpačky směrem k Velociraptorem zapíchnutému klacíku v zemi ve vzdálenosti d=12 m. U houpačky má rychlost $v_0=5~{\rm m\cdot s^{-1}}$ a při běhu vyvíjí ve směru běhu ještě sílu $F_O=300~{\rm N}$. Jeho hmotnost (při posledním vážení, tzn. před dvěma týdny jídla a piva u Kačáka) je $m=65~{\rm kg}$. Jak daleko doběhne, pokud je síla, kterou ho guma táhne zpátky, na vzdálenosti od houpačky závislá jako $F_G=-Ax^3$, kde konstanta $A=1~{\rm N\cdot m^{-3}}$. Překoná Velociraptora?

2. "Kostka" (8 bodů)

Navrhněte spravedlivou pětistěnnou "kostku", tedy těleso, které na vodorovné ploše v tíhovém poli má pět stabilních rovnovážných poloh a takový stupeň symetrie, že při náhodném roztočení má všech pět rovnovážných poloh stejnou pravděpodobnost.

3. Vrh (10 bodů)

V jakém intervalu se musí pohybovat úhel, pod kterým šikmo vrhnete hmotný bod v tíhovém poli, aby se od vás v každém čase vzdaloval?

4. Jasný bod (10 bodů)

Ichtyosaurus, Tarbosaurus, Tyrannosaurus, Stegosaurus, Archeopteryx, Velociraptor, Compsognatus a Seismosaurus sledují dalekohledem půjčeným od docenta Boka jasný bod na obloze. Uvažujte, že tento jasný bod se blíží z nekonečné vzdálenosti. Rozhodněte, jaká bude jeho minimální rychlost při dopadu na zemský povrch, pokud zanedbáte brzdění o atmosféru.

5. Lunostacionární družice (12 bodů)

Určete, v jaké vzdálenosti od Země musí být družice, která bude obíhat se stejnou periodou jako Měsíc a bude vždy ležet na spojnici Měsíce a Země. Uvažujte, že jak družice, tak Měsíc obíhají po trajektorii tvaru kružnice.

6. Časovaný mravenec (8 bodů)

Mějme mravence lezoucího po sekundové ručičce Ondrových hodinek (které rozhodně nejsou digitální) od středu směrem k obvodu rychlostí $v = 1 \text{ mm} \cdot \text{s}^{-1}$. Od středu vyrazil přesně při začátku snídaně, tedy v čase 8:00:00. Zapište závislost jeho kartézských souřadnic na čase a určete jeho rychlost. Co způsobuje, že s postupujícím časem se jeho rychlost zvyšuje?

7. Velký pán Kepler (12 bodů)

Planeta 123 Nyan
Cat obíhá kolem svého slunce po trajektorii tvaru elipsy s číselnou excentricito
u $\epsilon=e/a=3/5$. Z perihelia se do vedlejšího vrcholu dostane za 1/2 pozemského roku. Jaká je její oběžná doba?
 Nápověda: Plocha elipsy o poloosách a a b je πab .

8. Pád Země na závaží (10 bodů)

Uvažujte závaží o hmotnosti m=10 kg, nad kterým je v čase t=0 Země ve výšce 10 m. Určete, za jak dlouho Země dopadne na závaží. Vysvětlete své řešení ve vztažné soustavě pevně spojené se závažím.

9. Polarizovat, či nepolarizovat... (10 bodů)

Světlo ze vzduchu (n=1) dopadá na skleněnou desku (n=1.52). Při jakém úhlu dopadu jsou odražený a lomený paprsek kolmé?

10. Kudy kam? (8 bodů)

Na skleněný hranol (n=1.5) s úhly 30°, 60° a 90° dopadá paprsek kolmo na delší odvěsnu. V jakém směru vychází paprsek z kratší odvěsny?

Užitečné informace:

Hmotnost Země:
$$M_Z = 5.97 \cdot 10^{24} \text{ kg}$$
 (1a)

Hmotnost Měsíce:
$$M_M = 7.37 \cdot 10^{22} \text{ kg}$$
 (1b)

Vzdálenost Měsíce:
$$r_M = 384400 \text{ km}$$
 (1c)

Gravitační konstanta:
$$G = 6.67 \cdot 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$
 (1d)