The Mayer-Vietoris Pyramid

Alissa (Lune) Pajer

https://alissapajer.github.io/

October 24, 2022

References

- One Diamond to Rule Them All: Old and new topics about zigzag,
 levelsets and extended persistence. Nicolas Berkouk, Luca Nyckees. 2022.
- Zigzag persistent homology and real-valued functions. Gunnar Carlsson,
 Vin de Silva, Dmitriy Morozov. 2009.
- Zigzag Persistence. Gunnar Carlsson, Vin de Silva. 2008.
- Extending Persistence Using Poincare and Lefschetz Duality. David Cohen-Steiner, Herbert Edelsbrunner, John Harer. 2009.
- Algebraic Topology. Allen Hatcher. 2000.

Mayer-Vietoris Pyramid

Figure 4: Pyramid for the case n=3, with $_{i}^{j}\mathbb{X}:=\mathbb{X}_{0}^{i}\cup\mathbb{X}_{i}^{n}$.

- It is a topological space

- f: X - R is continuous

- (X, f) is of Morse type with critical values $a, \angle a, \angle \cdots \angle a_n$

- select s; such that $-\infty < s_0 < a_1 < s_1 < a_2 < \dots < s_{n-1} < a_n < s_n < \infty$

$$R$$

$$Q_{2}$$

$$Q_{3}$$

$$Q_{4}$$

$$Q_{5}$$

$$Q_{6}$$

$$Q_{7}$$

$$Q_{8}$$

- X; = f-1([si, sj]) called interlevelsets

$$(X_{0}^{3}, X_{0}^{\circ})$$

$$(X_{0}^{2}, X_{0}^{\circ})$$

$$(X_{0}^{3}, X_{0}^{\circ})$$

$$(X_{0}^{3}, X_{0}^{\circ})$$

$$P_{1}$$

$$P_{2}$$

$$P_{1} \cap P_{2}$$

$$P_{1} \cap P_{2}$$

 $P_{1} = (X_{0}^{2}, X_{0}^{0})$ $P_{2} = (X_{0}^{3}, \emptyset)$

- applying homology gives an exact square

$$H_{P}(A_{1} \cup A_{2})$$
 $H_{P}(A_{2})$
 $H_{P}(A_{1})$
 $H_{P}(A_{1} \cap A_{2})$

Definition 3.1 (Exact Square). An exact square is a diagram of vector spaces

$$egin{array}{ccc} V_3 & \stackrel{g_2}{\longrightarrow} & V_4 \ f_2 & & g_1 \\ V_1 & \stackrel{f_1}{\longrightarrow} & V_2 \end{array}$$

that satisfies the condition $\operatorname{Ker}(V_2 \oplus V_3 \to V_4) = \operatorname{Im}(V_1 \to V_2 \oplus V_3)$ in the sequence

$$V_1 \longrightarrow V_2 \oplus V_3 \longrightarrow V_4$$

where $(V_1 \to V_2 \oplus V_3) = f_1 \oplus f_2$ and $(V_2 \oplus V_3 \to V_4) = g_1 - g_2$.

$$A_{0}: \cdots A_{k-1} \longrightarrow A_{k-1} \cup A_{k+1} \longleftarrow A_{k+1} \cdots$$

 $A_{n}: \cdots A_{k-1} \longleftarrow A_{k-1} \cap A_{k+1} \longrightarrow A_{k+1} \cdots$

$$A_{0}: \cdots A_{k-1} \longrightarrow A_{k-1} \cup A_{k+1} \longrightarrow A_{k+1} \cdots$$

$$A_{n}: \cdots A_{k-1} \longrightarrow A_{k-1} \cap A_{k+1} \longrightarrow A_{k+1} \cdots$$

 $V^+ = H_*(A_0)$

 $V^- = H_*(A_0)$

 $\Rightarrow \mathbb{B}(\mathbb{V}^+) \simeq \mathbb{B}(\mathbb{V}^-)$

- the Strong Diamond Principle applies to all diamonds in a Mayer-Vietoris Pyramid
- Pyramid contains zigzag modules for
 - levelsets zigzag pers. - extended pers.
- we can incrementally step one module into
- we can incrementally step one module into the other

Theorem 3.7. ([11, Pyramid Theorem]) There is an explicit bijection between the

extended persistence barcode and the levelsets zigzag persistence barcode of (X, f),

that respects homological dimension except for possible shifts of degree $d \in \{-1, 1\}$.

Theorem 3.9 (Barcode Bijection). One has the following correspondence between the intervals of the extended persistence barcode (left) and intervals of the levelsets zigzag persistence barcode (right).

Type	Extended	Levelsets zigzag
I(i < j)	$[\mathbb{X}_0^i,\mathbb{X}_0^{j-1}]$	$[\mathbb{X}_{i-1}^i,\mathbb{X}_{j-1}^{j-1}]$
II (i < j)	$[(\mathbb{X}^{n}_{0}, \mathbb{X}^{n}_{j-1}), (\mathbb{X}^{n}_{0}, \mathbb{X}^{n}_{i})]^{+}$	$[\mathbb{X}_i^i,\mathbb{X}_{j-1}^j]$
$III \ (i \leq j)$	$[\mathbb{X}^i_0,(\mathbb{X}^n_0,\mathbb{X}^n_j)]$	$[\mathbb{X}_{i-1}^i,\mathbb{X}_{j-1}^j]$
IV(i < j)	$[\mathbb{X}_0^j,(\mathbb{X}_0^n,\mathbb{X}_i^n)]^+$	$[\mathbb{X}_i^i,\mathbb{X}_{j-1}^{j-1}]$

Birth Transformations:

Death Transformations:

- a quiver is an oriented graph
 a quiver is of type A when there is one edge
 between any two vertices
- a representation of a quiver replaces the vertices with vector spaces
- an interval representation (barcode) $I(1,3) = 0 k \stackrel{id}{\leftarrow} k \stackrel{id}{\rightarrow} k \stackrel{id}{\leftarrow} 0$

- representations of type A quivers

- zigzag levelsets persistence module

- extended persistence module

- by Gabriel's Theorem each such representation

V admits a barcode

V~I(b,,d,) & ... & I(bn,dn)

 $- \chi_i^c \longleftrightarrow (a_i, a_{i+1}) \longleftrightarrow (b, d)$

 $- \chi_{i-1}^{i} \longrightarrow [a_i, a_i] \longleftrightarrow [b, d]$

 $-\left[\times_{3}^{3}, \times_{5}^{5} \right] \longleftrightarrow \left[\alpha_{3}, \alpha_{6} \right)$

 $- \left[\times_{5}^{5} \times_{2}^{3} \right] \longleftrightarrow (\alpha_{5}, \alpha_{8})$

- examples

 $\chi_{i}^{i} \hookrightarrow (\alpha_{i}, \alpha_{i+1})$ $\chi_{i-1}^{i} \hookrightarrow [\alpha_{i}, \alpha_{i}]$

