Census Data Analytics

Paulo C. Rios, Jr.

Sep 21, 2017

Goals

- Using the "Adult" dataset, predict whether income exceeds \$50K/yr based on census data.
- Choose an accuracy statistic to measure model's accuracy.
- "Adult" dataset available at http://archive.ics.uci.edu/ml/datasets/Census+Income

Actions

- Using a Python Jupyter notebook, I have done the following:
- Training Data Set Importing and Reading
- Data Preprocessing
- Feature Visualization and Transformation
- Model Training and Performance Measurements
- With two models: Random Forest and Stochastic Gradient Descent (SGD)

Data Preprocessing

Steps

- Columns were renamed
- Target feature had its value reset as True/False
- Null values were removed
- Original training data set had 32,560 rows
- Without null values, training data set has 30,161 rows

Null Values

```
In [26]:
         data.isnull().any()
Out[26]: Age
                            False
         Work Class
                             True
         Final Weight
                           False
         Education
                           False
         Education Num
                           False
         Marital Status
                           False
         Occupation |
                             True
         Relationship
                           False
                           False
         Race
                            False
         Sex
         Capital Gain
                           False
         Capital Loss
                            False
         Hours per Week
                           False
         Native Country
                             True
         <=50K
                           False
         dtype: bool
```

Feature Visualization

Education

Marital Status

Work Class

Occupation

Relationship

Race

Sex

Native Country

Age

Education - Num

Capital Gain

Capital Loss

Hours Per Week

Model Training and Performance Measurements

Cross-Validation Accuracy Scores

	Random Forest	SGD
1st CV run	0.845236	0.816590
2nd CV run	0.841058	0.838074
3rd CV run	0.849597	0.844425

Confusion Matrix Scores

	Random Forest	SGD
Precision Score	0.736991	0.684533
Recall Score	0.588572	0.610682
F1 Score	0.654473	0.645502

ROC Curves

ROC AUC Scores

Random Forest SGD

ROC AUC Scores 0.87842 0.885639

Precision and Recall - SGD

Precision and Recall - SGD

Precision and Recall Random Forest

Precision and Recall Random Forest

Next Steps

- Remove outliers and check effect on performance measurements
- Choose best precision/recall tradeoff for best classifier
- Fine tune best classifier with Grid Search
- Perform data preprocessing and transformation on the test set
- Evaluate best performing classifier on the test set