

Matemática A

12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | Data: JANEIRO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

 Um escritor vai fazer a apresentação do seu último livro em Lisboa, Braga, Porto, Coimbra e Évora.

A ordem pela qual as sessões se vão realizar é estabelecida por sorteio.

A probabilidade de as sessões se realizarem de Norte para Sul é:

- (A) $\frac{1}{2}$
- **(B)** $\frac{1}{120}$
- (C) $\frac{1}{5}$
- **(D)** $\frac{1}{60}$
- **2.** Considere a função f, de domínio $\mathbb{R}\setminus\{1\}$, definida por:

$$f(x) = \begin{cases} \frac{-3x^2 + 75}{x - 5} & \text{se } x > 5\\ \frac{100 + 4x}{1 - x} & \text{se } x \le 5 \end{cases}$$

- **2.1.** Estude a função f quanto à continuidade em x = 5.
- **2.2.** Averigue se existem assíntotas ao gráfico de f paralelas aos eixos coordenados.
- **3.** De uma função g, contínua em \mathbb{R} , sabe-se que:
 - q'(2) = 0
 - $\lim_{x \to 2} \frac{g'(x)}{x-2} = -3$

Então, podemos afirmar que:

- (A) g não tem extremos.
- **(B)** g tem um ponto de inflexão de abcissa 2.
- (C) g tem um mínimo relativo em x = 2.
- **(D)** g tem um máximo relativo em x = 2.

4. Sejam f e g duas funções de domínio \mathbb{R} .

Sabe-se que:

- *f* é par;
- g é definida por $g(x) = 3x^2 5x$;
- y = -4x + 5 é uma equação da reta tangente ao gráfico de f no ponto de abcissa 2.
- **4.1.** O valor de $(f \circ g)'(1)$, onde $f \circ g$ é a função composta de $g \circ g$ com f, é:
 - (A) -68

(B) -4

(C) 4

- **(D)** 68
- **4.2.** Determine $\left(\frac{f}{g}\right)'(2)$.

- 5. De uma função h de domínio $\mathbb{R}\setminus\{2\}$, duplamente derivável, sabe-se que $h'(x) = \frac{x+1}{2-x}$. Relativamente a h, é possível afirmar que:
 - (A) é estritamente crescente em $]-\infty, -1]$.
 - (B) a concavidade do gráfico está voltada para cima em todo o domínio.
 - (C) tem um máximo relativo quando x = -1.
 - (D) existe um ponto de inflexão no seu gráfico.

6. O João e os amigos fizeram um jantar de Natal.

Deste grupo de amigos, sabe-se que:

- há tantos rapazes como raparigas;
- dos rapazes, dois em cada três usam óculos;
- 25% dos elementos desse grupo não usam óculos.
- **6.1.** Selecionando, ao acaso, um elemento deste grupo, qual é a probabilidade de:
 - a) ser uma rapariga e não usar óculos? (apresente o resultado em percentagem com aproximação às unidades)
 - b) não usar óculos sabendo que é um rapaz?
 - c) ser rapariga sabendo que usa óculos? (apresente o resultado na forma de dízima com aproximação às centésimas).
- **6.2.** Nesse jantar, os doze amigos, fizeram troca de presentes. Ao chegaram ao restaurante, todos colocaram o seu presente num cesto para no final os sortearem.

Determine a probabilidade de, o acaso, contemplar o João com o presente que ele levou.

- 7. Considere a função f definida em $\mathbb{R}\setminus\{3\}$ por $f(x)=\frac{x^2-4}{3-x}$.
 - **7.1.** Estude a função f quanto ao sentido das concavidades do seu gráfico, e existência de pontos de inflexão.
 - 7.2. O gráfico de f, possui três pontos cuja ordenada é o simétrico do quadrado da abcissa. Utilize as capacidades gráficas da calculadora para determinar as abcissas desses pontos, com aproximação às décimas.

Na sua resposta deve:

- apresentar a equação que lhe permite resolver o problema;
- reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial.

FIM

Cotações:

Item													
Cotação (em pontos)													
1.	2.1.	2.2.	3.	4.1.	4.2.	5.	6.1.1.	6.1.2.	6.1.3.	6.2.	7.1.	7.2.	
10	20	20	10	10	15	12	20	15	15	15	20	18	200

Proposta de resolução

1.
$$p = \frac{1}{5!} = \frac{1}{120}$$

Resposta: (B)

2.

Para que f seja contínua em x = 5, $\lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x) = f(5)$.

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} \frac{100 + 4x}{1 - x} = \frac{120}{-4} = -30 = f(5)$$

$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} \frac{-3(x^2 - 25)}{x - 5} = \lim_{x \to 5^+} \frac{-3(x - 5)(x + 5)}{x - 5} = \lim_{x \to 5^+} [-3(x + 5)] = -30$$

Então, f é contínua em x = 5.

2.2. Assíntotas paralelas ao eixo das ordenadas:

f é continua em $\mathbb{R}\setminus\{1\}$

$$\lim_{x \to 1^{-}} \frac{100 + 4x}{1 - x} = \frac{104}{0^{+}} = +\infty$$

Então, a reta de equação x = 1 é a única assíntota vertical.

Assíntotas paralelas ao eixo das abcissas:

 $\lim_{x \to +\infty} [-3(x+5)] = -\infty \text{ (não há assíntota horizontal quando } x \to +\infty)$

$$\lim_{x \to -\infty} \frac{100 + 4x}{1 - x} = \lim_{x \to -\infty} \frac{x \left(\frac{100}{x} + 4\right)}{x \left(\frac{1}{x} - 1\right)} = -4$$

A reta de equação y = -4 é assíntota horizontal quando $x \to -\infty$.

3.
$$\lim_{x \to 2} \frac{g'(x)}{x-2} = -3 \Leftrightarrow \lim_{x \to 2} \frac{g'(x)-0}{x-2} = -3 \Leftrightarrow \lim_{x \to 2} \frac{g'(x)-g'(2)}{x-2} = -3 \Leftrightarrow g''(2) = -3$$

Se a primeira derivada de g se anula em x=2 e a segunda derivada é negativa nesse ponto, então g tem um máximo relativo em x = 2.

Resposta: (D)

4. 4.1.
$$(f \circ g)'(1) = g'(1) \times f'(g(1))$$

$$g(x) = 3x^2 - 5x$$

$$a(1) = 3 \times 1 - 5 = -2$$

$$g'(x) = 6x - 5$$

$$a'(1) = 1$$

Reta tangente ao gráfico de f em x = 2: y = -4x + 5

$$f'(2) = -4$$

$$f'(-2) = -f'(2) = 4$$

(a derivada de uma função par é impar)

$$(f \circ g)'(1) = g'(1) \times f'(g(1))$$

$$=1\times f'(-2)=4$$

Resposta: (C)

4.2.
$$\left(\frac{f}{g}\right)'(2) = \frac{f'(2) \times g(2) - f(2) \times g'(2)}{[g(2)]^2}$$

$$= \frac{-4 \times 2 - (-3) \times 7}{4}$$

$$= \frac{13}{4}$$
 $g(2) = 3 \times 2^2 - 5 \times 2 = 2$
 $f(2) = -4 \times 2 + 5 = -3$ (ponto de tangência)

5.
$$h'(x) = \frac{x+1}{2-x}$$

Zeros da derivada: $x + 1 = 0 \iff x = -1$

Sinal da derivada:

	-∞	-1		2	+∞
<i>x</i> + 1	_	0	+	+	+
2-x	+	+	+	0	_
h'	_	0	+	n.d.	_
h	7	h(-1)	7	11.0.	7

$$h''(x) = \frac{1 \times (2 - x) - (-1) \times (x + 1)}{(2 - x)^2} = \frac{2 - x + x + 1}{(2 - x)^2} = \frac{3}{(2 - x)^2}$$

$$h''(x) > 0, \forall x \in \mathbb{R} \setminus \{2\}$$

Logo, a concavidade do gráfico está voltada para cima em todo o domínio.

Resposta: (B)

6. Sejam $A \in B$ os acontecimentos:

A: "o elemento escolhido é rapaz"

B: "o elemento escolhido usa óculos"

$$p(A) = p(\bar{A}) = 0.5$$

$$p(B|A) = \frac{2}{3} \Leftrightarrow \frac{p(B \cap A)}{0.5} = \frac{2}{3} \Leftrightarrow p(B \cap A) = \frac{1}{3}$$

$$p(\bar{B}) = 0.25$$

6.1. a)
$$p(\overline{A} \cap \overline{B}) = p(\overline{A \cup B}) = 1 - p(A \cup B) =$$

$$= 1 - p(A) - p(B) + p(A \cap B) = 1 - 0.5 - 0.75 + \frac{1}{3} = \frac{1}{12} \approx 8\%$$

b)
$$p(\bar{B}|A) = \frac{p(\bar{B} \cap A)}{p(A)} = \frac{p(A) - p(A \cap B)}{p(A)} = \frac{0.5 - \frac{1}{3}}{0.5} = \frac{1}{3}$$

c)
$$p(\bar{A}|B) = \frac{p(\bar{A} \cap B)}{p(B)} = \frac{p(B) - p(A \cap B)}{p(B)} = \frac{0.75 - \frac{1}{3}}{0.75} \approx 0.56$$

6.2.
$$p = \frac{1}{12}$$

7.

7.1.
$$f'(x) = \left(\frac{x^2 - 4}{3 - x}\right)' = \frac{2x(3 - x) - (-1) \times (x^2 - 4)}{(3 - x)^2} = \frac{6x - 2x^2 + x^2 - 4}{(3 - x)^2} = \frac{-x^2 + 6x - 4}{(3 - x)^2}$$

$$f''(x) = \frac{(-2x+6)(3-x)^2 - 2 \times (-1) \times (3-x) \times (-x^2 + 6x - 4)}{(3-x)^4}$$

$$= \frac{(3-x)[(-2x+6)(3-x) + 2(-x^2 + 6x - 4)]}{(3-x)^4}$$

$$= \frac{-6x + 2x^2 + 18 - 6x - 2x^2 + 12x - 8}{(3-x)^3} = \frac{10}{(3-x)^3}$$

	-∞	3	+∞
f''	+	n.d.	_
f	U	11.4.	С

O gráfico de f tem concavidade voltada para cima quando $x \in]-\infty,3[$ e voltada para baixo quando $x \in]3,+\infty[$.

Não há pontos de inflexão.

7.2. Pretende-se determinar as soluções da equação $f(x) = -x^2$.

Recorrendo à calculadora gráfica, com $Y_1 = \frac{x^2 - 4}{3 - x}$ e $Y_2 = -x^2$, determinaram-se as abcissas dos pontos de interseção dos dois gráficos.

Foi obtido o seguinte resultado:

As abcissas dos pontos são: -0.9; 1.2 e 3.7