Inicial del primer apellido	

- 1) Hallar el resto obtenido al dividir $4^1 + 4^2 + 4^3 + ... + 4^{600} + 4^{601}$ por 7.
- 2) Demostrar que para todo $n \in \mathbb{Z}$, n(n+1)(n+5) es múltiplo de 6.
- ${\bf 3)}$ Reducir a una sola congruencia lo más sencilla posible

$$x \equiv 2 \pmod{11}, \qquad x \equiv 1 \pmod{13}.$$

Inicial del primer apellido

Nombre y Apellidos	 	 						 	
	 	 	D.N.	I. (o	pasa	porte	e)	 	

EJERCICIOS

- 1) Yo voy al cine cada 3 semanas y mi hermano cada 7. Yo fui la semana pasada y mi hermano irá la que viene. ¿Cuánto hace que fuimos juntos por última vez?
 - 2) Sea $f: \mathbb{Z} \longrightarrow \mathbb{R}$ la función dada por

$$f(n) = \frac{n^3 + 6n^2 - 7n}{6}.$$

Probar que la imagen de f está contenida en \mathbb{Z} .

3) Sabiendo que

$$\frac{98}{333} = 0'294\,294\,294\,294\,294\,294\,294\,294\dots$$

Hallar la cifra decimal que ocupa el lugar 8^{100} .

Inicial del	primer	apellido	
-------------	--------	----------	--

- 1) Si a y b son coprimos, a > b, estudiar qué valores puede tomar mcd(a + b, a b).
- 2) En \mathbb{R}^2 se considera la relación

$$(x,y) \mathcal{R}(x',y') \Leftrightarrow y = 2x - 2x' + y'.$$

- a) Demostrar que es de equivalencia.
- b) Hallar el conjunto cociente.
- 3) Demostrar que $\mathbb{R} \setminus \{1 + n\sqrt{2} : n \in \mathbb{Z}\}$ no es numerable.

Inicial	del	primer	apellido	
---------	----------------------	--------	----------	--

Nombre y Apellidos		
	D.N.I. (o pasapo	orte)

EJERCICIOS

1) Sea la sucesión de Fibonacci $a_0=0,\ a_1=1,\ a_2=1,\ a_3=2,\ a_4=3,\ a_5=5,\ a_6=8,\ a_7=13,\ a_8=21,\ a_9=34,\ldots$ en la que cada término es la suma de los dos anteriores. Conjeturar una fórmula para $1+a_0+a_1+a_2+\ldots+a_n$ y probarla.

2) En ZZ se considera la relación

$$n \mathcal{R} m \Leftrightarrow 7n - m$$
 es múltiplo de 3.

- a) Demostrar que es de equivalencia.
- b) Hallar el conjunto cociente.
- 3) Hallar todas las soluciones enteras de 5x + 18y = 2.

Coni	inntos	Números	2
$O_{\rm HI}$	antos	11 umeros	5

Inicial del primer apellido	
Nombre y Apellidos	
	D.N.I. (o pasaporte)

- 1) Razonar si las siguientes afirmaciones son verdaderas o falsas.
- i) Para cualquier par de conjuntos A y B, se cumple

$$(A \setminus B) \cup (B \setminus A) = A \cup B.$$

- ii) Para toda función inyectiva $f:C\longrightarrow D$ y cualquier subconjunto $A\subset C$, se cumple $f(A^c)\subset \left(f(A)\right)^c$.
- 2) Estudiar si la función $f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ definida como f(x,y) = 7x 13y es inyectiva, suprayectiva o biyectiva.
- 3) Considérese el orden definido por la inclusión " \subset " en $P(A) \cup P(B)$ con $A = \{1, b, 3\}$ y $B = \{a, 3\}$. Hallar razonadamente los elementos maximales, minimales, máximos y mínimos (si existen).

Inicial del p	primer	apellido	
---------------	--------	----------	--

EJERCICIOS

- 1) Dadas $f:A\longrightarrow B$ y $g:B\longrightarrow C$, demostrar que $i)\ g\circ f \text{ sobreyectiva} \ \Rightarrow \ g \text{ sobreyectiva}.$ $ii)\ f \text{ y } g \text{ inyectivas} \ \Rightarrow \ g\circ f \text{ inyectiva}.$
- 2) Razonar si las siguientes afirmaciones son verdaderas o falsas.
- i) Cualquiera que sean los conjuntos X,Y,U,V, se cumple

$$(X \times Y) \cap ((X \times Y) \cup (U \times V)) = X \times Y.$$

ii) Se tiene la inclusión

$$P(P(\{1\} \cup \emptyset)) \supset P(P(\{1\} \cup \{\emptyset\})).$$

3) Sea la relación en $\mathbb{N} \times \mathbb{N}$ dada por $(n_1, m_1)\mathcal{R}(n_2, m_2) \Leftrightarrow f(n_1, m_1) \leq f(n_2, m_2)$ donde $f(x, y) = 2^x 3^y$. Estudiar si es relación de orden y en caso afirmativo hallar el ínfimo y el supremo, si existen, del subconjunto de pares $(n, m) \in \mathbb{N} \times \mathbb{N}$ con n + m = 100.

Inicial del primer apellido

EJERCICIOS

1) Demostrar que para todo número natural n>0 se cumple

$$1 \cdot 2^{1} + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \ldots + n \cdot 2^{n} = 2 + (n-1)2^{n+1}.$$

- 2) Explicar si la siguiente afirmación es cierta y negarla sin usar el símbolo \neg $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} \ (n > 3 \Rightarrow (n+7)^2 > 49 + m)$
- 3) Demostrar que si un número natural mayor que cero es una cuarta potencia entonces su consecutivo no lo es.

Inicial del primer apellido

- 1) Explicar si la siguiente afirmación es cierta y negarla sin usar el símbolo \neg $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} \ (n^2 > 4n \Rightarrow 2^n > 2^m + 10)$
- 2) Demostrar que $2^{4n} 1$ es un múltiplo de tres para todo número natural n.
- 3) Demostrar que no existen dos números naturales n y m tales que $1 + 3^{n+2} 5m \, 3^{m+1} = 0.$