Modelo probabilistico vs matematico

```
In [38]: import pandas as pd
          import numpy as np
          from scipy.integrate import solve_ivp
          from scipy.optimize import minimize
          from scipy.integrate import odeint
          from datetime import datetime,timedelta
          from sklearn.metrics import mean_squared_error
          from scipy.optimize import curve_fit
          from scipy.optimize import fsolve
          from sklearn import linear_model
          import matplotlib.pyplot as plt
          %matplotlib inline
In [39]: url = 'https://covid.ourworldindata.org/data/ecdc/new_cases.csv'
          df = pd.read_csv(url)
          df
               2020-
            24
                        266
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                  NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN ...
               01-24
               2020-
                        453
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                   NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN ...
               01-25
               2020-
                        673
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                   NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN
               01-26
               2020-
                        797
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                   NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN
               01-27
               2020-
            28
                       1767
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                  NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN
               01-28
               2020-
                       1480
                                    0.0
                                           NaN
                                                    0.0
                                                           NaN
                                                                  NaN
                                                                           NaN
                                                                                    NaN
                                                                                             NaN ...
               01-29
               2020-
                     542158
                                                           98.0
                                                                                           13955.0 ...
           305
                                   157.0
                                           319.0
                                                  319.0
                                                                  195.0
                                                                            0.0
                                                                                     3.0
               10-31
               2020-
```

```
In [40]: df = df.loc[:,['date','Ecuador']] #Selecciono las columnas de analasis
# Expresar las fechas en numero de dias desde el 01 Enero
FMT = '%Y-%m-%d'
date = df['date']
df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-01-0:df")
```

Out[40]:

312 311

313 312

314 313

315 314

316 315

317 316

318 317

725.0

978.0

1421.0

362.0

919.0

883.0

442.0

df[' df	date'] = date	e.map(lambda x	: (datetime.strptime(x,	FMT) - datetime.s
	date	Ecuador			
0	-1	0.0	_		
1	0	0.0			
2	1	0.0			
3	2	0.0			
4	3	0.0			
5	4	0.0			
6	5	0.0			
7	6	0.0			
8	7	0.0			
9	8	0.0			
10	9	0.0			
11	10	0.0			
12	11	0.0			
13	12	0.0			
14	13	0.0			
15	14	0.0			
16	15	0.0			
17	16	0.0			
18	17	0.0			
19	18	0.0			
20	19	0.0			
21	20	0.0			
22	21	0.0			
23	22	0.0			
24	23	0.0			
25	24	0.0			
26	25	0.0			
27	26	0.0			
28	27	0.0			
29	28	0.0			
305	304	845.0			
306	305	1045.0			
307	306	1002.0			
308	307	368.0			
309	308	548.0			
310	309	1323.0			
311	310	350.0			
312	311	725.0			

	date	Ecuador
319	318	1161.0
320	319	953.0
321	320	668.0
322	321	381.0
323	322	428.0
324	323	1146.0
325	324	996.0
326	325	594.0
327	326	1036.0
328	327	767.0
329	328	301.0
330	329	492.0
331	330	794.0
332	331	908.0
333	332	1396.0
334	333	1375.0

335 rows × 2 columns

```
In [41]: df.plot(x ='date', y='Ecuador')
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x17647402688>


```
In [42]: filtro = df["Ecuador"][61:]
  media = filtro.mean()
  mediana = filtro.median()
  print('MEDIANA : -->', mediana)
  print('MEDIA : -->', media)
```

MEDIANA : --> 670.0

MEDIA : --> 709.6988847583643

```
In [43]: url = 'https://covid.ourworldindata.org/data/ecdc/total_cases.csv'
    df_t = pd.read_csv(url)
    df_t = df_t.replace(np.nan, 0)
    FMT = '%Y-%m-%d'
    date = df_t['date']
    df_t['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-01-df_t = df_t.loc[:,['date','Ecuador']]
    y = list(df_t.iloc [:, 1])
    x = list(df_t.iloc [:, 0])
    prediccion_siguiente = int(y[-1] + mediana)
    print(prediccion_siguiente)
```


1. Comparar el modelo de predicion matematico vs probabilidad.

Modelo probabilistico

```
In [45]: fig = plt.figure(figsize=(15,5))
    ax = fig.add_subplot(111, axisbelow=True)
    ax.plot(x[:len(x)-9], y[:len(x)-9],'b', alpha=1, lw = 2, label = 'Datos reales')
    ax.plot(x[len(x)-10:], y[len(x)-10:],'r', alpha=1, lw = 2, label = 'Modelo probabilístico
    ax.set_xlabel('Tiempo en dias')
    ax.set_ylabel('Numero de Personas')
    ax.set_title("Modelo probabilístico")
    ax.legend()
    ax.grid()
    x_matematico = x[:]
    y_matematico = y[:]
    ax.plot(x[len(x)-10:], y[len(x)-10:],'r', alpha=1, lw = 2, label = 'Modelo probabilístico')
```

Out[45]: [<matplotlib.lines.Line2D at 0x17646ded8c8>]

MODELO PROBABILISTICO
TOTAL DE CASOS y MEDIANA: 198279
TOTAL, FECHA ACTUAL: 180295.0
ESTIMACION DE CONTAGIOS: 202306

Modelo polinomial

```
In [47]: from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
         pf = PolynomialFeatures(degree = 4)
         X = pf.fit_transform(np.array(x).reshape(-1, 1))
         regresion_lineal = LinearRegression()
         regresion_lineal.fit(X, y)
         pred_x = list(range(0, max(x)+100))
         puntos = pf.fit_transform(np.array(pred_x).reshape(-1, 1))
         prediccion_entrenamiento = regresion_lineal.predict(puntos)
         print ('CONTAGIOS ACTUALES:', int(prediccion_entrenamiento[222]))
         plt.plot(pred_x, prediccion_entrenamiento, color='green')
         plt.scatter(x,y,label="Datos Reales",color="red")
         plt.ylim((-300, max(y)*7.9))
         plt.xlim((min(x)*0.9,max(x)*1.5))
         plt.ylabel("Total de personas infectadas")
         plt.plot(222,prediccion_entrenamiento[222], 'oy')
         plt.show()
```

CONTAGIOS ACTUALES: 91916

3.Retroceder un semana y comparar el modelo matematico vs probabilidad vs reales. Solo cargan los datos para generar los modelos menos 7 dias.

```
In [66]: TotalSemanaPasada=df['Ecuador'][241:len(df)-7]
         y_semanantes = list(df_t.iloc [:, 1])
         x_semanantes = list(df_t.iloc [:, 0])
         for i in range (7):
             y_semanantes.pop(-1)
             x_semanantes.pop(-1)
         media_semanantes=TotalSemanaPasada.mean()
         print ('Una semana antes')
         print('Media', media_semanantes)
         mediana_semanantes=TotalSemanaPasada.median()
         print('Mediana', mediana_semanantes)
         prediccion_semana_antes = int(y_semanantes[-1] + mediana_semanantes)
         print('Predicion',prediccion_semana_antes)
         for i in range(x_semanantes[-1], x_semanantes[-1]+7):
             x_semanantes.append(i)
             y_semanantes.append(int(y_semanantes[-1]+mediana_semanantes))
         print('')
         print('CASOS POSIBLES')
         for i in range(7):
             print('DIA',i+1,':',round(prediccion_semana_antes))
             prediccion_semana_antes=prediccion_semana_antes+mediana_semanantes
         plt.plot(x_semanantes[241:], y_semanantes[241:])
         plt.show
```

Una semana antes Media 854.333333333334 Mediana 883.0 Predicion 185759

CASOS POSIBLES
DIA 1 : 185759
DIA 2 : 186642
DIA 3 : 187525
DIA 4 : 188408
DIA 5 : 189291
DIA 6 : 190174
DIA 7 : 191057

Out[66]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [68]: from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
         pf = PolynomialFeatures(degree = 4)
         X = pf.fit_transform(np.array(x_semanantes).reshape(-1, 1))
         regresion_lineal = LinearRegression()
         regresion_lineal.fit(X,y_semanantes )
         pred_x = list(range(0, max(x_semanantes)+200))
         puntos = pf.fit_transform(np.array(pred_x).reshape(-1, 1))
         prediccion_entrenamiento = regresion_lineal.predict(puntos)
         print ('Predicción una semana antes:', round(prediccion_entrenamiento[108]), 'contagiados'
         plt.plot(pred_x, prediccion_entrenamiento, color='green')
         plt.scatter(x,y,label="Datos Reales",color="red")
         plt.ylim((-300,max(y_semanantes)*7.9))
         plt.xlim((min(x_semanantes)*0.9,max(x_semanantes)*1.5))
         plt.ylabel("Total de personas infectadas")
         plt.plot(108,prediccion_entrenamiento[108], 'oy')
         plt.legend()
         plt.show()
```

Predicción una semana antes: 13691.0 contagiados

Conclusion

Una modelo probabilistico nos ayudara a preveer el numero de contagios posibles en los siguientes dias de una manera mas acertda