Elementare Zahlentheorie

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

11. März 2017

Inhaltsverzeichnis

In	haltsverzeichnis	2
1	Primzerlegung1.1Einführung und Motivation1.2Elementare Teilbarkeitslehre in integren Ringen1.3Primzerlegung in Euklidischen Ringen, Faktorielle Ringe	10
2	Arithmetische Funktionen 2.1 Einführung 2.2 Dirichlet-Reihen 2.3 Arithmetische Funktionen allgemein 2.4 Multiplikative arithmetische Funktionen	20
3	Kongruenzen und Restklassenringe 3.1 Zyklische Gruppen 3.2 Primitivwurzeln 3.3 Zifferndarstellung nach Cantor 3.4 Simultane Kongruenzen 3.4.1 Prinzip des Parallelen Rechnens 3.4.2 Der Chinesische Restsatz 3.5 Ausgewählte Anwendungen von Kongruenzen 3.5.1 Diophantische Gleichungen 3.5.2 Interpolation 3.5.3 Rechnen im Computer mit großen ganzen Zahlen 3.6 Struktur der Primrestklassengruppe mod m	36 36 40 40 41 44 45 46
4	Endliche Körper und der Satz von Chevalley 4.1 Untersuchung eines endl. Körpers L mit $\#L=q$	
5	Quadratische Kongruenzen5.1 Einführende Diskussion5.2 Grundaussagen über Potenzreste5.3 Quadratische Reste und das quadratische Reziprozitätsgesetz5.3.1 Jacobi-Symbol	58 59
6		67 71
7	Ganzzahlige lineare Gleichungen und Moduln über euklidischen Ringen 7.1 Der Elementarteileralgorithmus	73

In halts verzeichn is

8	Gan	anzzahlige quadratische Formen					
	8.1	Grundbegriffe und Bezeichnungen	81				
	8.2	Die Diskriminante	82				
	8.3	Darstellung von Zahlen durch QFen	83				
	8.4	Reduktion der definiten Formen	85				
	8.5	Reduktion indefiniter Formen	88				
	8.6	Automorphismengruppen	90				

Bezeichnungen und Vorraussetzungen

- Logische Zeichen: \Longrightarrow , \iff , $\forall,$ $\exists,$ \exists^1 (es gibt genau ein), \land (und), \lor (oder)
- Zeichen der Mengenlehre: z.B. $\cup,\,\cap,\,\mathbb{N}:=\{x\in\mathbb{Z}|x\geq0\}$
- Induktion als Beweistechnik
- #M Kardinalität der Menge M, z.B. # $\mathbb{N} = \infty$
- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}, \mathbb{N}_+ = \{1, 2, 3, 4, \ldots\}$ (natürliche Zahlen)
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$ (Ring der ganzen Zahlen)
- $\mathbb{Q} = \{\frac{z}{n} | z \in \mathbb{Z}, n \in \mathbb{N}_+\}$ (Körper der rationalen Zahlen)
- $\bullet~\mathbb{R}$ Körper der reelen Zahlen
- \mathbb{F}_q Körper mit $q<\infty$ Elementen (= GF(q) in der Informatik)
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$ Menge aller Primzahlen