

تمرین سوم درس یادگیری ماشین دکتر باباعلی

سيدعليرضا مولوى

فهرست مطالب

1														سه	لاد	کا	ند	چ	ای	ها	اده	٥	ای	I بر	D	A	1	
١		 				 				 									. ,	تی	سبا	حا	ے م	مدا		١.١		
١																								ماتر		۲.۱		
١																								ماتر		۳.۱		
١																								, تابع		4.1		
۲																								ر. محا		۵.۱		
٣																								دوم	ل د	سوا	۲	
٣		 				 																١		داد		١.٢		
٣																								مدا		۲.۲		
٣																				_				ر محا		٣.٢		
۴																								محا		4.4		
۴																								محا		۵.۲		
۵																								سود	ل ،	سوا	٣	
۵		 				 				 												١		داد		۱.۳		
۵																							5,	نظي		۲.۳		
۶																								 مس		۳.۳		
۶																								بررد		۴.۳		

برای داده های چند کلاسه ${ m LDA}$

1.1 مدل محاسباتی

فرض کنیم که داده های ما شامل $K\geq 2$ کلاس باشند. معادله $f(x;\omega)$ را به صورت معادله $f(x;\omega)$

$$f(x;\omega) = \omega^T x \tag{1}$$

در واقع تابع $f(\cdot;\omega)$ داده را بر روی ابرصفحه ω نظیر می کند. توجه اگر هدف کاهش به بعد d' باشد، کافی است که $\Omega\in R^{(d,d')}$ در نظر بگیرم.

۲.۱ ماتریس پراکندگی درون کلاسی

برای محاسبه ماتریس پراکندگی درون کلاسی ابتدا طبق معادله $^{
m Y}$ میانگین تمام داده ها را محاسبه می کنیم، سپس بر اساس معادله $^{
m Y}$ ، که N_k تعداد اعضای کلاس $^{
m X}$ اند ، ماتریس پراکندگی درون کلاسی را محاسبه می کنیم.

$$\mu = \frac{1}{N} \sum_{i} x^{(i)} \tag{Y}$$

$$\mu_k = \frac{1}{N_k} \sum_{i: y_i = k} x^{(i)} \tag{7}$$

$$S_B = \sum_k N_k (\mu - \mu_k) (\mu - \mu_k)^T \tag{F}$$

٣.١ ماتريس پراكندگى بين كلاسى

برای محاسبه ماتریس پراکندگی بین کلاسی ابندا ماتریس پراکندگی هر کلاس را طبق معادله $^{\Delta}$ محاسبه میکنیم و سپس طبق معادله 2 با هم جمع می کنیم.

$$s_k^2 = \sum_{i:u_i=k} (\mu_k - x^{(i)})(\mu_k - x^{(i)})^T$$
 (2)

$$S_w = \sum_{i=1}^K s_i^2 \tag{?}$$

۴.۱ تابع معیار

. تابع معیار $J(\omega)$ به صورت معادله ۱۰ تعریف می کنیم

$$\mu_{\prime} = \omega^{T} \mu \tag{Y}$$

$$\mu_k' = \omega^T \mu_k \tag{A}$$

$$s_k'^2 = \sum_{i: n_i = k} (\omega^T \mu_k - \omega^T x^{(i)}) (\omega^T \mu_k - \omega^T x^{(i)})^T$$
(4)

$$J(\omega) = \frac{\sum_{k} N_{k} (\mu'_{k} - \mu') (\mu'_{k} - \mu')^{T}}{\sum_{k} s'_{k}^{2}}$$
 (\cdot\cdot)

HyperPlane¹

اکنون سعی می کنیم که معادلات را ساده تر کنیم. با فاکتورگیری به معادله ۱۲ می رسیم.

$$J(\omega) = \frac{\omega^T (\sum_k N_k (\mu_k - \mu)(\mu_k - \mu)^T)\omega}{\omega^T (\sum_k s_k^2)\omega}$$
 (11)

$$J(\omega) = \frac{\omega^T S_B \omega}{\omega^T S_{w} \omega} \tag{17}$$

محاسبه ω بهینه $\Delta.1$

. است. $J(\omega)$ معیار کردن تابع معیار

$$\omega^* = \operatorname{argmax}_{\omega} J(\omega) \tag{17}$$

اکنون برای بدست آوردن ω بهینه کافی است، مشتق تابع $J(\omega)$ را محاسبه کرده و مقدار مشتق را برابر 0 قرار داده و ω بهینه را استخراج کنیم. معادلات کاملا مشابه معادلات درس داده شده در بخش LDA است.

$$\frac{\partial J(\omega)}{\partial \omega} = 0 \implies S_B \omega = \lambda S_w \omega \tag{15}$$

$$\implies S_w^{\dagger} S_B \omega = \lambda \omega \tag{10}$$

$$\lambda = J(\omega) = \frac{\omega^T S_B \omega}{\omega^T S_w \omega} \tag{19}$$

با مشتق گیری به معادله ۱۵ می رسیم که در آن S_w^\dagger شبه معکوس است؛ معادله ۱۵ در واقع معادله بردار ویژه است و با حل آن می توانیم مقدار بهینه ω را بدست بیاوریم. هدف بیشینه کردن $J(\omega)=\lambda$ است، بنابراین ω بردار و با حل آن می قدار ویژه معادله ۱۵ است (اگر $R^{d'}$ باشد، آنگاه ω برابر d' بزرگترین مقدار ویژه معادله ۱۵ است (اگر $R^{d'}$ باشد، آنگاه ω باشد، آنگاه ω بازرگترین مقدار ویژه معادله ویژه است.) .

۲ سوال دوم

برای حل از روش چن کلاسه استفاده شده است.

توجه ماتریس پراکندگی بین کلاسی در روش چن کلاسه با روش دو کلاسه متفاوت است ولی در نهایت جواب های بدست آمده یکسان است.

۱.۲ داده ها

$$X_0 = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\} \tag{1V}$$

$$X_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\} \tag{1A}$$

(19)

شکل ۱: داده های آموزشی در فضای ۲ بعدی

۲.۲ مدل محاسباتی

x با توجه به روش ذکر شده مدل محاسباتی را به صورت معادله $\mathbf{f} \cdot \mathbf{f}$ تعریف می کنیم. در واقع تابع $f(\cdot;\omega)$ نقطه $\mathbf{f} \cdot \mathbf{f}$ نقط $\mathbf{f} \cdot \mathbf{f}$ نقطه $\mathbf{f} \cdot \mathbf{f}$ نقطه $\mathbf{f} \cdot \mathbf{f}$

$$f(x;\omega) = \omega^T x \tag{Y.}$$

۳.۲ محاسبه ماتریس پراکندگی بین کلاسی

توجه ماتریس پراکندگی بین کلاسی در روش چن کلاسه با روش دو کلاسه متفاوت است ولی در نهایت جواب های بدست آمده یکسان است.

$$\mu = \begin{pmatrix} 0.14285714 \\ 0 \end{pmatrix} \tag{Y1}$$

$$\mu_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{YY}$$

$$\mu_1 = \begin{pmatrix} 1 \\ -0.5 \end{pmatrix} \tag{YT}$$

اکنون مقادیر بالا را در معادله ۴ جایگذاری می کنیم.

$$S_B = 3(\mu - \mu_0)(\mu - \mu_0)^T + 4(\mu - \mu_1)(\mu - \mu_1)^T$$
 (YF)

$$= \begin{pmatrix} 3.85714286 & 0 \\ 0 & 0 \end{pmatrix} \tag{70}$$

۴.۲ محاسبه ماتریس پراکندگی بین کلاسی

با استفاده از معادلات ۵ و ۶ مقادیر زیر را حساب می کنیم.

$$s_0^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \tag{Y9}$$

$$s_1^2 = \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix} \tag{YV}$$

$$S_w = \begin{pmatrix} 5 & 4 \\ 4 & 6 \end{pmatrix} \tag{YA}$$

محاسبه ω بهینه $\Delta.۲$

با جایگزاری مقادیر محاسبه شده S_B و S_W در معادلات Υ ۱، Υ ۸ در معادله Υ 0 و حل معادله مقدار ویژه، مقدار بهینه زیر بدست می آید. در شکل Υ داده ها و خط LDA رسم شده است.

$$\omega = \begin{pmatrix} 0.83205029 \\ -0.5547002 \end{pmatrix} \tag{Y9}$$

$$J(\omega) = 1.6530612244897962 \tag{7.}$$

شکل Y: شکل چپ: داده ها در فضای دو بعدی و خط قرمز رنگ خط LDA است. شکل راست: داده ها نگاشت شده بر روی خط LDA

۳ سوال سوم

۱.۳ داده ها

داده ها دارای دو ویژگی اند و هر داده به کلاس 0 و یا 1 تخصیص داده شده است. بنابراین مسئله دسته بندی دوتایی * است. داده ها به دو دسته، داده های آموزشی و داده های تست تقسیم شده است. تعداد داده های آموزشی * داده ها را مشاهده می کنید.

شکل ۳: **شکل راست:** داده های تست. **شکل چپ:** داده های آموزشی

۲.۳ نظیر کردن داده ها یه فضای ۱ بعدی

با استفاده از الگوریتم LDA ما داده ها به فضای یک بعدی کاهش داده ایم (شکل $^{oldsymbol{lpha}}$). مقدار بهینه

$$\omega = \begin{pmatrix} 0.9708 \\ 0.2310 \end{pmatrix}$$

است. مقدار تابع معیار $J(\omega)$ برای داده ها به صورت زیر است:

$$J_{train}(\omega) = 1.9894 \quad J_{test}(\omega) = 2.1813$$

Binary Classifivation

شکل ۴: شکل راست: داده های تست. شکل چپ: داده های آموزشی

۳.۳ مسئله دسته بندی

فرض می کنیم که داده ها از یک توزیع احتمالاتی تولید می شوند $(x,y)\sim P$. مقدار بهینه y را به صورت زیر تعریف می کنیم:

$$y^* = argmax_y P(y|x;\theta) \tag{T1}$$

$$\propto argmax_{y}P(x|y;\theta)P(y;\theta)$$
 (TY)

$$\propto argmax_ylogP(x|y;\theta) + logP(y;\theta)$$
 (TT)

ورا اوریP(y; heta) می گیریم که هر داده از یک توزیع گاووسی چند متغیره $^{ extsf{F}}$ تولید می شود و مقدار پیشین میانگین y در نظر می گیرم.

$$P(x|y;\theta) \sim N(x;\mu_y, \Sigma_y)$$
 (TF)

$$P(y;\theta) = \frac{N_y}{N} \tag{Υ}$$

$$P(y;\theta) = \frac{N_y}{N} \tag{$\Upsilon 0}$$

$$\mu_y = \frac{1}{N_y} \sum_{i,y_i = y} x^{(i)} \tag{$\Upsilon 9}$$

$$\Sigma_y(i,j) = Cov(x_i, x_j) \tag{TV}$$

در شکل ۴ نمودار های گاووسی بر روی داده رسم شده اند.

۴.۳ بررسی نتایج

مقدار دقت پس از آموزش:

 $Train\ Accuracy = 0.922 \quad Test\ Accuracy = 0.932$

با توجه به شکل ۴ بخشی از داده ها توسط هر دو توزیع گاووسی پوشانده شده اند و مدل معمولا به اشتباه این داده ها را دسته بندی می کند.در شکل ۵ داده هایی که اشتباه دسته بندی شده اند رو مشاهده می کنید.

Classification Problem r

Multivariate normal distribution^{*}

شکل ۵: **شکل راست:** داده های تست. **شکل چپ:** داده های آموزشی داده های که اشتباه دسته بندی شده اند به رنگ مشکی اند.

