Book Genre Prediction Model

Final Project

Sarah Demmon, Kimani Phillips, Paola Roman, Chantal Thomas

Contents

Paola Speaking...

- ★ Project Purpose
- ★ Data Sources
- **★** Methods
- **★** Building the Models
- **★** Data Model Optimization
- **★** Documentation
- **★** Discussion

Purpose

Paola Speaking...

To train and test a book genre prediction model based off of thousands of book plot summaries. As an added Bonus, we will create a "Word Cloud" visualisation of the most frequently used words found in the books summary text.

Data Sources & Inspiration

Paola Speaking...

- Over **16K book titles** found in a *Carnegie Mellon University* <u>Kaggle project dataset</u>
 - This included Authors, Book Summaries, Genres, Publication Date, Wikipedia and Freebase IDs
 - We filtered to the most popular genres
 - Children's Literature, Crime Fiction, Fantasy, Mystery, Non-fiction, Science Fiction, Young adult literature
 - Using dropna and filtering, we were left with 10,096 entries
- Copilot Resource
- ChatGPT forums

• <u>Shweta S.</u> Enterprise Solutions Architect @ AWS | Deep Learning SME

Methods

- In order to utilize our machine learning frameworks, **preprocessing** and **data cleaning** were necessary in order for our frameworks to understand text sequences
 - Read the data in the text file and saved it to a dataframe
 - Deleted all the rows where the values for genre and summary were empty using .dropna
 - The values in column "Genre" were in json format, so we converted them to list format
 - The Genre field applied multiple labels to each book title. We decided to simplify the Genre field and, therefore, decreased to 1 genre per book

For example, "A Clockwork Orange" written by Anthony Burgess was assigned *Science Fiction, Fantasy, Mystery, Crime* as genres

Methods

	l df.head()				
		title	author	genres	summary
0	Animal Farm		George Orwell	[Roman à clef, Satire, Children's literature,	Old Major, the old boar on the Manor Farm, ca
1	A Clockwork Orange		Anthony Burgess	[Science Fiction, Novella, Speculative fiction	Alex, a teenager living in near-future Englan
2	The Plague		Albert Camus	[Existentialism, Fiction, Absurdist fiction, N	The text of The Plague is divided into five p
3	An Enquiry Concerning Human Understanding		David Hume	None	The argument of the Enquiry proceeds by a ser
4	A Fire Upon the Deep		Vernor Vinge	[Hard science fiction, Science Fiction, Specul	The novel posits that space around the Milky

- 1. Conversion of Genre list
- 2. Counted the occurrence of each unique genre
- 3. Chose 8 main genres
- 4. Set features
 - a. Removed "stop words"

Revisions to Process

*Logistic Regression model example

- Removed suspense
- Added feature
 - Max words = 1000

Result:

- Train Accuracy: 82.5%
- Test Accuracy: 70.3%

	precision	recall	f1-score	support
Children's literature	0.56	0.74	0.64	349
Crime Fiction	0.72	0.59	0.65	150
Fantasy	0.56	0.51	0.53	244
Mystery	0.54	0.47	0.50	122
Non-fiction	0.92	0.26	0.40	43
Science Fiction	0.75	0.84	0.80	595
Suspense	0.00	0.00	0.00	16
Young adult literature	0.79	0.17	0.29	86
accuracy			0.66	1605
macro avg	0.61	0.45	0.48	1605
weighted avg	0.66	0.66	0.64	1605

Text as Data Visualization

Building the Model(s)

Classification Models

Require **pre-processing** and transformation of text data into numerical features before training the models

- **SVC** (Support Vector Classifier): supervised learning model used for classification tasks
- Logistic Regression: Used for <u>binary</u>
 <u>classification</u> and predicts the probability of each
 class
- Naive Bayes: Probabilistic classification algorithm based on <u>Bayes' theorem</u> with an assumption of independence between features
- XGBoost (Extreme Gradient Boosting): builds a series of <u>decision trees</u> sequentially, where each tree corrects the errors made by the previous ones.

Neural Networks

Built-in mechanisms to process and learn from raw text data

- **LSTM** (Long Short-Term Memory): learn patterns in sequential data
 - Great for sentiment analysis
- **BERT** (Bidirectional Encoder Representations from Transformers): uses a transformer architecture

Libraries

Classification Models

- scikit-learn:
 - LogisticRegression
 - Pre-processing tools like CountVectorizer or TfidfVectorizer » used for text data transformation
- **Tfidf Vectorizer:** It's a feature extraction method that converts text documents into numerical vectors.
- OneVsRestClassifier: It's a wrapper that allows using binary classifiers for multiclass classification tasks
- **Pipeline:** integration of feature extraction and classification steps, making it easier to train and evaluate models.
- **CountVectorizer:** convert a collection of text documents into a matrix of token counts
- **xgboost**: This library provides an efficient and scalable implementation of gradient boosting algorithms

Neural Networks

- **transformers** (formerly known as pytorch-transformers): provides pre-trained BERT models and tokenizers for both PyTorch and TensorFlow.
- **_tensorflow or torch:** Both TensorFlow and PyTorch provide implementations of Bert and LSTM cells and layers for building recurrent neural networks.
- keras: If using TensorFlow, you can also use the Keras API, which provides a high-level interface for building neural networks, including LSTM models

Data Model Optimization

Naïve Bayes - Tuned to Highest Accuracy

```
#### Model Evaluation on Test Data: ####
Train Accuracy: 0.586
Test Accuracy: 0.457
   benchmarks = {'NB' : [0.0, 0.0, 0.0],
                  'NB_tuned': [0.0, 0.0, 0.0],
   t0 = time()
   parameters = {
       'tfidf_use_idf': (True, False),
       'tfidf norm': ('l1', 'l2'),
       'clf_estimator_alpha': (1, 0.1, 0.01, 0.001, 0.0001)
  NB_grid = GridSearchCV(NB_pipeline, param_grid=parameters, n_jobs=-1, verbose=5)
   NB_grid.fit(train_x, train_y)
benchmarks['NB_tuned'][\emptyset] = (time() - t\emptyset)/60
Fitting 5 folds for each of 20 candidates, totalling 100 fits
   print("####After tuning:####")
   print('Train Accuracy : %.3f'%NB_grid.best_estimator_.score(train_x, train_y))
   print('Test Accuracy : %.3f'%NB_grid.best_estimator_.score(test_x, test_y))
####After tuning:####
Train Accuracy: 0.980
Test Accuracy: 0.720
```

Process:

- Used NB_Pipeline
- Set parameters
- GridSearch: performs an exhaustive search over a specified parameter grid

```
####After tuning:####
Train Accuracy : 0.980
Test Accuracy : 0.720
```

Data Model Optimization Naïve Bayes - Tuned to Highest Accuracy

```
pred_nb = NB_grid.best_estimator_.predict(test_x)
    pred nb df = save print results(pred=pred nb, labels=test y, titles=test titles, save file=".
    pred_nb_df.head(30)
Prediction Results
                     titles
                                      genres
                                                      prediction result
   What I Was
                            Young adult literature Children's literature
                                                                  Wrong
   A Great and Terrible Beauty Fantasy
                                              Children's literature
                                                                  Wrong
   Gilded Latten Bones
                            Fantasy
                                              Fantasy
                                                                  Correct
   Five Go Off In A Caravan
                           Mystery
                                              Children's literature
                                                                 Wrong
   100 Cupboards
                            Children's literature
                                              Children's literature
                                                                 Correct
   Anastasia, Ask Your Analyst Young adult literature Children's literature
                                                                  Wrong
   In Spite of Thunder
                            Mystery
                                              Crime Fiction
                                                                  Wrong
   The Infinity Doctors
                            Science Fiction
                                              Science Fiction
                                                                  Correct
   The Child of the Cavern
                            Science Fiction
                                              Science Fiction
                                                                  Correct
   These Our Actors
                            Science Fiction
                                              Children's literature
                                                                  Wrong
10 Christy
                                              Science Fiction
                            Children's literature
                                                                  Wrong
```


Training took: 0.000[seconds] to complete and has been saved as ./XGB_model.sav ####Before tuning:####

Train Accuracy: 0.986 Test Accuracy: 0.634

Bert Model

```
# Train the model
   model.fit(train_dataset.shuffle(1000).batch(4), epochs=3, batch_size=4)
Epoch 1/3
WARNING:tensorflow:AutoGraph could not transform <function infer_framework at 0x1493cd760> and will run it as-is.
Cause: for/else statement not yet supported
To silence this warning, decorate the function with @tf.autograph.experimental.do not convert
WARNING: AutoGraph could not transform <function infer framework at 0x1493cd760> and will run it as-is.
Cause: for/else statement not yet supported
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
2024-04-22 13:52:10.757195: W tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: I
NVALID ARGUMENT: indices[0.13733] = 13733 is not in [0.512)
         [[{{node tf_distil_bert_for_sequence_classification/distilbert/embeddings/Gather_1}}]]
                                        Traceback (most recent call last)
---> 2 model.fit(train_dataset.shuffle(1000).batch(4), epochs=3, batch_size=4)
File ~/anaconda3/lib/python3.11/site-packages/transformers/modeling tf utils.py:1229, in TFPreTrainedModel.fit(self, *args.
**kwargs)
                  .wraps(keras.Model.fit)
```

Additional Model Results

LSTM

Logistic Regression

Training took: 0.000[seconds] to complete and has been saved as ./LogReg_model.sav

####Before tuning:#### Train Accuracy: 0.825 Test Accuracy: 0.703

Data Model Optimization SVC - Tuned to Highest Accuracy

Accuracy: 0.4455445544554555 recall f1-score precision support Children's literature 0.39 0.50 0.44 187 0.40 0.40 219 Fantasy 0.40 Mystery 0.39 0.35 0.37 141 Non-fiction 0.92 0.43 0.59 28 Science Fiction 0.61 0.63 296 0.66 Suspense 0.02 0.02 0.02 65 Young adult literature 0.38 0.19 0.25 74 0.45 1010 accuracy macro avg 0.36 0.38 1010 0.44 weighted avg 0.45 0.45 0.44 1010

Training Accuracy: 0.7473035439137135 Testing Accuracy: 0.44554455445544555

```
# Splitting the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=25)
# Extracting features
vectorizer = TfidfVectorizer(max_features=1000)
# Selecting SVC model
model = Pipeline([
    ('tfidf', TfidfVectorizer(stop_words=stop_words, ngram_range=(1,2))),
    ('clf', OneVsRestClassifier(LinearSVC(), n_jobs=1)),
])
```

Training Accuracy: 0.7473035439137135 Testing Accuracy: 0.4455445544555

Documentation

Discussion

Questions?

Last presentation of the night Congratulations Everyone!