BỘ <u>GIÁO DỤC VÀ ĐÀ</u>O TẠO ĐỀ THI CHÍNH THỨC

KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2020 – LẦN 2 Bài thi: TOÁN

(Đề thi có 05 trang)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

Câu 1: Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong

hình vẽ bên. Số nghiệm thực của phương trình $f(x) = -\frac{1}{2}$ là

B. 4

D. 1

Câu 2: Tập xác định của hàm số $y = 4^x$ là

A.
$$\mathbb{R} \setminus \{0\}$$

B. $[0;+\infty)$

C.
$$(0;+\infty)$$

 \mathbf{D} . \mathbb{R}

Câu 3: Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

B. (-1;0)

D. $(-\infty;0)$

Câu 4: Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức z = -3 + 4i?

A.
$$N(3;4)$$

B. M(4;3)

C.
$$P(-3;4)$$

D. Q(4;-3)

Câu 5: Cho mặt cầu có bán kính r = 4. Diện tích của mặt cầu đã cho bằng

A.
$$\frac{256\pi}{3}$$

B.
$$\frac{64\pi}{3}$$

C.
$$16\pi$$

D. 64π

Câu 6: $\int 5x^4 dx$ bằng

A.
$$\frac{1}{5}x^5 + C$$

B.
$$x^5 + C$$

C.
$$5x^5 + C$$

D.
$$20x^3 + C$$

Câu 7: Trong không gian Oxyz, điểm nào dưới đây là hình chiếu vuông góc của điểm A(1;4;2) trên mặt phẳng (Oxy)?

A.
$$N(0;4;2)$$

B.
$$P(1;4;0)$$

C.
$$Q(1;0;2)$$

D.
$$M(0;0;2)$$

Câu 8: Cho cấp số cộng (u_n) với $u_1 = 11$ và công sai d = 3. Giá trị của u_2 bằng

B. 33

C.
$$\frac{11}{3}$$

D. 14

Câu 9: Cho khối lăng trụ có diện tích đáy B = 3 và chiều cao h = 6. Thể tích của khối lăng trụ đã cho bằng

A. 9

B. 18

C. 3

D. 6

Câu 10: Nghiệm của phương trình $\log_2(x+8) = 5$ là

A.
$$x = 17$$

B.
$$x = 24$$

C.
$$x = 2$$

D.
$$x = 40$$

Câu 11: Biết $\int_{2}^{3} f(x) dx = 4$ và $\int_{2}^{3} g(x) dx = 1$. Khi đó $\int_{2}^{3} \left[f(x) - g(x) \right] dx$ bằng

A.
$$-3$$

$$C \Delta$$

Câu 12: Trong không gian *Oxyz*, cho đường thẳng $d: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z+3}{1}$. Điểm nào dưới đây thuộc d?

- **A.** Q(4;-2;1)
- **B.** N(4;2;1)
- **C.** P(2;1;-3)
- **D.** M(2;1;3)

Câu 13: Phần thực của số phức z = -3 - 4i bằng

C.3

Câu 14: Trong không gian Oxyz, cho mặt cầu $(S):(x+1)^2+(y-2)^2+(z+3)^2=4$. Tâm của (S) có tọa độ là

- **A.** (-1;2;-3)
- **B.** (2;-4;6)
- **C.** (1;-2;3) **D.** (-2;4;-6)

Câu 15: Cho hàm số f(x) có bảng biến thiên như sau.

Điểm cực đại của hàm số đã cho là

- **A.** x = 3
- **B.** x = -1
- **C.** x = 2
- **D.** x = -3

Câu 16: Cho khối chóp có diện tích đáy $B = 2a^2$ và chiều cao h = 6a. Thể tích của khối chóp đã cho bằng

- **A.** $12a^3$

Câu 17: Cho khối trụ có bán kính đáy r = 4 và chiều cao h = 3. Thể tích của khối trụ đã cho bằng

- A. 48π
- B. 4π
- **C.** 16π
- **D.** 24π

Câu 18: Nghiệm của phương trình $2^{2x-3} = 2^x$ là

- **B.** x = -8
- **C.** x = 3
- **D.** x = -3

Câu 19: Trong không gian Oxyz, cho mặt phẳng $(\alpha): 2x + 4y - z + 3 = 0$. Vecto nào dưới đây là vecto pháp tuyến của (α) ?

- **A.** $\overrightarrow{n_1} = (2;4;-1)$ **B.** $\overrightarrow{n_2} = (2;-4;1)$ **C.** $\overrightarrow{n_4} = (-2;4;1)$ **D.** $\overrightarrow{n_3} = (2;4;1)$

Câu 20: Tiệm cận đứng của đồ thị hàm số $y = \frac{2x+2}{x-1}$ là

- **A.** x = 2
- **B.** x = -2
- **C.** x = 1
- **D.** x = -1

Câu 21: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

- **A.** $v = x^4 2x^2 2$ **B.** $v = -x^3 + 3x^2 2$
- **C.** $v = x^3 3x^2 2$ **D.** $v = -x^4 + 2x^2 2$

Câu 22:Có bao nhiều cách chọn một học sinh từ một nhóm gồm 5 học sinh nam và 6 học sinh nữ?

A.11

B.30

C.6

D.5

Câu 23: Với a là số thực dương tùy ý, $\log_4(4a)$ bằng

- **A.** $1 + \log_4 a$
- **B.** $4 \log_4 a$
- C. $4 + \log_4 a$
- **D.** $1 \log_4 a$

Câu 24: Cho hai số phức $z_1 = 3 + 2i$ và $z_2 = 1 - i$. Số phức $z_1 - z_2$ bằng

- **A.** 2 3i
- **B.** -2 + 3i
- **C.** -2-3i
- **D.** 2 + 3i

Câu 25: Cho hình nón có bán kính đáy r = 2 và độ dài đường sinh l = 5. Diện tích xung quanh hình nón đã cho bằng

- $\mathbf{A.20}\pi$
- **B.** $\frac{20\pi}{2}$
- **C.** 10π

Câu 26: Số giao điểm của đồ thị hàm số $y = -x^3 + 6x$ với trục hoành là

A.2

D.0

Câu 27: Biết $\int_0^1 \left[f(x) + 2x \right] dx = 2$. Khi đó $\int_0^1 f(x) dx$ bằng

D.0

Câu 28: Cho số phức z = 1 - 2i số phức $(2+3i)^{-2}$ bằng

- A.4 7i
- **B.** -4 + 7i
- **C.**8 + i
- **D.** -8 + i

Câu 29: Gọi D là hình phẳng giới hạn bởi các đường $y = e^{3x}$, y = 0, x = 0, x = 1. Thể tích của khối tròn xoay tao thành khi quay D quanh truc Ox bằng:

- $\mathbf{A.}\pi \int_{0}^{1} e^{3x} dx$
- **B.** $\int_{0}^{1} e^{6x} dx$ **C.** $\pi \int_{0}^{1} e^{6x} dx$
- **D.** $\int_{0}^{x} e^{3x} dx$

Câu 30: Cho hình hộp chữ nhất ABCD.A'B'C'D' có AB = BC = a, $AA' = a\sqrt{6}$ (tham khảo hình bên). Góc giữa đường thẳng A'C và mặt phẳng (ABCD) bằng

- **A.** 60°
- **B.** 90°
- **C.** 30°
- **D.** 45°

Câu 31: Giá trị nhỏ nhất của hàm số $f(x) = x^4 - 10x^2 - 4$ trên đoạn [0;9] bằng

- **B.** -4
- **C.** -13

Câu 32: Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)(x+4)^3, \forall x \in \mathbb{R}$. Số điểm cực đại của hàm số đã cho là

- **B.** 4
- **C.** 2
- **D.** 1

Câu 33: Với a,b là các số thực dương tùy ý thoả mãn $\log_2 a - 2\log_4 b = 3$. Mệnh đề nào dưới đây đúng?

- **A.** $a = 8b^2$
- **B.** a = 8b
- **C.** a = 6b

Câu 34: Cắt hình trụ (T) bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông cạnh bằng 7. Diện tích xung quanh của (T) bằng

- **B.** $\frac{49\pi}{2}$
- **C.** 49π
- **D.** 98π

Câu 35: Trong không gian Oxyz, cho điểm M(1,-2,3) và mặt phẳng (P): 2x-y+3z+1=0. Phương trình của đường thẳng đi qua M và vuông góc với (P) là

$$\mathbf{A.} \begin{cases} x = 1 + 2t \\ y = -2 - t \\ z = 3 + 3t \end{cases}$$

B.
$$\begin{cases} x = -1 + 2 \\ y = 2 - t \end{cases}$$

A.
$$\begin{cases} x = 1 + 2t \\ y = -2 - t \\ z = 3 + 3t \end{cases}$$
B.
$$\begin{cases} x = -1 + 2t \\ y = 2 - t \\ z = -3 + 3t \end{cases}$$
C.
$$\begin{cases} x = 2 + t \\ y = -1 - 2t \\ z = 3 + 3t \end{cases}$$
D.
$$\begin{cases} x = 1 - 2t \\ y = -2 - t \\ z = 3 - 3t \end{cases}$$

D.
$$\begin{cases} x = 1 - 2t \\ y = -2 - t \\ z = 3 - 3t \end{cases}$$

Câu 36: Gọi z_1 và z_2 là hai nghiệm phức của phương trình $z^2 + z + 2 = 0$. Khi đó $|z_1| + |z_2|$ bằng

- **B.** $2\sqrt{2}$
- **C.** 2
- $\mathbf{D}, \sqrt{2}$

Câu 37: Trong không gian Oxyz, cho điểm M(2;-1;4) và mặt phẳng (P):3x-2y+z+1=0. Phương trình của mặt phẳng đi qua điểm M và song song với (P) là

A. 2x - y + 4z - 21 = 0

B. 2x - v + 4z + 21 = 0

C. 3x - 2y + z - 12 = 0

D. 3x - 2y + z + 12 = 0

Câu 38: Tập nghiệm của bất phương trình $\log_3(18-x^2) \ge 2$ là

- $A.(-\infty;3]$
- **B.** (0;3]
- **C.** [-3;3]
- **D.** $(-\infty; -3] \cup [3; +\infty)$

Câu 39: Cho hình nón (N) có đỉnh S, bán kính đáy bằng $a\sqrt{2}$ và độ dài đường sinh bằng 4a. Gọi (T)là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng

- A. $\frac{4\sqrt{2}a}{2}$
- **B.** $\sqrt{14}a$
- C. $\frac{4\sqrt{14}a}{7}$ D. $\frac{8\sqrt{14}a}{7}$

Câu 40: Tập hợp tất cả các giá trị thực của tham số m để hàm số $y = x^3 - 3x^2 + (4 - m)x$ đồng biến trên khoảng $(2;+\infty)$ là

- $\mathbf{A.}(-\infty;1]$
- **B.** $(-\infty;4]$
- C. $(-\infty;1)$
- **D.** $(-\infty;4)$

Câu 41: Năm 2020, một hãng xe oto niêm yết giá bán loại xe X là 900.000.000 đồng và dự định trong 10 năm tiếp theo, mỗi năm giảm 2% giá bán so với giá bán của năm liền trước. Theo dư định đó, năm 2025 hãng oto niêm yết giá bán loại xe X là bao nhiều (kết quả làm tròn đến hàng nghìn)?

A.810.000.000 đồng **B.**813.529.000 đồng **C.**797.258.000 đồng **D.**830.131.000 đồng

Câu 42: Biết $F(x) = e^x + x^2$ là một nguyên hàm của hàm số f(x) trên R. Khi đó $\int f(2x) dx$ bằng:

- **A.** $2e^x + 2x^2 + C$ **B.** $\frac{1}{2}e^{2x} + x^2 + C$ **C.** $\frac{1}{2}e^{2x} + 2x^2 + C$ **D.** $e^{2x} + 4x^2 + C$

Câu 43: Xét các số thực x, y thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x$. Giá trị nhỏ nhất của biểu thức

 $P = \frac{4y}{2x + y + 1}$ gần nhất với số nào dưới đây?

 $\mathbf{A}.-2$

B.-3

C.-5

D.-4

Câu 44: Cho hình chóp đều S.ABCD có cạnh đáy bằng 3a, cạnh bên bằng $\frac{3a\sqrt{3}}{2}$ và O là tâm của đáy.

Gọi M, N, P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng (SAB), (SBC), (SCD) và (SDA). Thể tích của khối chóp O.MNPQ bằng:

- **B.** $\frac{2a^3}{3}$ **C.** $\frac{9a^3}{32}$

Câu 45: Cho hàm số $f(x) = ax^3 + bx^2 + cx + d(a,b,c,d \in R)$ có bảng biến thiên như sau:

\boldsymbol{x}	- ∞	0		4		$+\infty$
y'	+	0	_	0	+	
y	. /	3				+ ∞
	- 00			7-2 >		

Có bao nhiều số dương trong các số a,b,c,d?

A.2

B.3

C.1

D.4

Câu 46: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a và SA vuông góc với mặt phẳng đáy và $SA = a\sqrt{3}$. Goi M là trung điểm của BC (tham khảo hình bên). Khoảng cách giữa hai đường thẳng AC và SM bằng:

- A. $\frac{a\sqrt{2}}{2}$
- **B.** $\frac{a\sqrt{39}}{13}$
- C. $\frac{a}{2}$
- **D.** $\frac{a\sqrt{21}}{7}$

Câu 47: Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó có hai chữ số tận cùng khác tính chẵn lẻ bằng:

A.
$$\frac{50}{81}$$

B.
$$\frac{5}{9}$$

C.
$$\frac{5}{18}$$

D.
$$\frac{1}{2}$$

Câu 48: Cho hàm số f(x) có f(0) = 0. Biết y = f'(x) là hàm số bậc bốn và có đồ thị là đường cong trong hình bên. Số điểm cực trị của hàm số $g(x) = |f(x^3) - x|$ là:

B.4

C.6

D.3

Câu 49: Cho hàm số f(x) có bảng biến thiên như sau:

Có bao nhiều giá trị nguyên của tham số m để phương trình $5f(x^2-4x)=m$ có ít nhất 3 nghiệm thực phân biệt thuộc khoảng $(0;+\infty)$?

B.21

C.25

D.20

Câu 50: Có bao nhiều cặp số nguyên dương (m,n) sao cho $m+n \le 14$ và ứng với mỗi cặp (m,n) tồn tại đúng 3 số thực $a \in (-1;1)$ thỏa mãn $2a^m = n \ln \left(a + \sqrt{a^2 + 1} \right)$?

B.12

C.11

D.13

----- HÉT -----

BẢNG ĐÁP ÁN

1.C	2.D	3.C	4.C	5.D	6.B	7.B	8.D	9.B	10.B
11.B	12.C	13.B	14.A	15.A	16.B	17.A	18.C	19.A	20.C
21.B	22.A	23.A	24.D	25.C	26.B	27.A	28.B	29.C	30.A
31.D	32.D	33.B	34.C	35.A	36.B	37.C	38.C	39.C	40.B
41.B	42.C	43.B	44.C	45.A	46.B	47.B	48.A	49.C	50.C