UNIVERSIDAD MAYOR REAL Y PONTIFICIA DE SAN FRANCISCO XAVIER DE CHUQUISACA

LABORATORIO 2 – REGRESIÓN LOGÍSTICA

CARRERA: Ing. Ciencias de la Computación

MATERIA: Inteligencia Artificial I

NOMBRE: Sandra Villca Señoranis

Informe Laboratorio 2: Regresión Logística

1. Se ha trabajado con el dataset "WineQuality" para hacer la predicción de la calidad del vino. El preprocesamiento del dataset fue realizado con Pandas.

El dataset tiene 32485 ejemplos y 12 características.

	fixed acid	dity vola	atile ad	idity	citri	c acid	residual	sugar	\	
0		7.4		0.170		0.29		1.4		
1		5.3		0.310		0.38		10.5		
2		4.7		0.145		0.29		1.0		
3		6.9		0.260		0.29		4.2		
4		6.4		0.450		0.07		1.1		
32480		5.0		0.255		0.22		2.7		
32481		6.6		0.360		0.52		11.3		
32482		6.3		0.200		0.24		1.7		
32483		6.2		0.200		0.33		5.4		
32484		8.1		0.280		0.46		15.4		
	chlorides	free sul	fur die	nvide	total	sulfur	diovide	density	рН	1
0	0.047	11.00.000	rur uit	23.0	cocui	Juliu	107.0	100000000000000000000000000000000000000		
1	0.031			53.0				0.99321		
2	0.042			35.0				0.99080		
3	0.043			33.0				0.99020		
4	0.030			10.0				0.99050		
32480	0.043			46.0			153.0	0.99238		
32481	0.046			8.0			110.0	0.99660	3.07	
32482	0.052			36.0			135.0	0.99374	3.80	
32483	0.028			21.0			75.0	0.99012	3.36	
32484	0.059			32.0			177.0	1.00040	3.27	
		2 (2		400000						
820	sulphates				qualit					
0	0.65		White			6				
1	0.46		White			6				
2	0.49					6				
3	0.31		White			6				
4	0.28	10.8	White	Wine	2	5				
			0.020200							
32480	0.76		White			6				
32481	0.46					5				
32482	0.66	10.8	White	Wine	39	6				

2. Valores de calidad de vino (y)

Originalmente oscilan entre 0 y 8. Se han adecuado esos valores según la condición:

- $0-4 \rightarrow \text{mala calidad}$
- $5 8 \rightarrow \text{buena calidad}$

3. Regresión Logística

- Los datos se ha dividido en dos partes: Entrenamiento (80% de los ejemplos) y Prueba (20% de los ejemplos).
- Se han normalizado los valores de las características y se ha agregado el término de intersección X0 o bias.
- En el algoritmo se ha definido las funciones: sigmoidea, de costo y gradiente.
- Se han realizado 40000 iteraciones para calcular el Costo J cuyo valor ha descendido hasta cerca de 0.1.
- Los ejemplos de prueba también han sido procesados. Se ha hecho la predicción de la calidad para un vino y para todo el conjunto de prueba.