

A New Class of Parameter Shapes for Generalized iLUCK Models

Gero Walter

Department of Statistics Ludwig-Maximilians-Universität München (LMU)

September 9th, 2011

Generalized iLUCK models

- ▶ a way to efficiently describe imprecise Bayesian inference by using sets of natural conjugate priors
- sets of priors defined via sets of canonical (hyper)parameters $n^{(0)}$, $y^{(0)}_{n^{(0)}}$: pseudocounts, prior strength

 - \triangleright $v^{(0)}$: prior guess on parameter of interest from sampling distr.

Generalized iLUCK models

- ▶ a way to efficiently describe imprecise Bayesian inference by using sets of natural conjugate priors
- sets of priors defined via sets of canonical (hyper)parameters $n^{(0)}$, $y^{(0)}_{n^{(0)}}$: pseudocounts, prior strength

 - \triangleright $v^{(0)}$: prior guess on parameter of interest from sampling distr.

Imprecise Beta-Bernoulli/Binomial Model (IBBM)

Data : $s \sim \text{Binom}(p, n)$ conjugate prior: $p \sim \text{Beta}(n^{(0)}, y^{(0)})$ posterior: $p \mid s \sim \text{Beta}(n^{(n)}, v^{(n)})$

$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}, \qquad n^{(n)} = n^{(0)} + n$$

Prior-Data Conflict and Set Shapes

- ▶ systematic reaction to prior-data conflict only with prior sets where $n^{(0)}$ varies.
- set shape has influence on prior-data conflict:

Prior-Data Conflict and Set Shapes

- ▶ systematic reaction to prior-data conflict only with prior sets where $n^{(0)}$ varies.
- set shape has influence on prior-data conflict:

Prior-Data Conflict and Set Shapes

- ▶ systematic reaction to prior-data conflict only with prior sets where $n^{(0)}$ varies.
- set shape has influence on prior-data conflict:

- ▶ when $\ddot{s}/n \notin [y^{(0)}, \overline{y}^{(0)}]$, then additional imprecision.
- rectangle prior set is just first step, any shape is possible.
- ▶ take lower and upper borders as functions of $n^{(0)}$: $\underline{y}^{(0)}(n^{(0)}) / \overline{y}^{(0)}(n^{(0)})$, where $n^{(0)} \in [\underline{n}^{(0)}, \overline{n}^{(0)}]$
- define these functions by positions at left and right endpoints and a parameter to characterize the function in between

- ▶ for low $n^{(0)}$, can be precise with $y^{(0)}$ → short $y^{(0)}$ interval
- ▶ for high $n^{(0)}$, must be cautious with $y^{(0)}$ → long $y^{(0)}$ interval

- ▶ for low $n^{(0)}$, can be precise with $y^{(0)}$ → short $y^{(0)}$ interval
- ▶ for high $n^{(0)}$, must be cautious with $y^{(0)}$ → long $y^{(0)}$ interval

- ▶ for low $n^{(0)}$, can be precise with $y^{(0)}$ → short $y^{(0)}$ interval
- ▶ for high $n^{(0)}$, must be cautious with $y^{(0)}$ → long $y^{(0)}$ interval

Posteriors when s/n = 5/10

Posteriors when s/n = 6/10

Posteriors when s/n = 7/10

Posteriors when s/n = 7/10 — Zoom on $\beta = 0.5, 0.1$

- ▶ Sets with $\beta > 1$ show nice 'tolerance' behaviour: additional imprecision only when 'spike' at $\underline{n}^{(n)}$ overtakes $\overline{y}^{(n)}(\overline{n}^{(n)})$
- relatively easy updating rules, as expression for overtaking condition is fairly easy:

- ▶ Sets with $\beta > 1$ show nice 'tolerance' behaviour: additional imprecision only when 'spike' at $\underline{n}^{(n)}$ overtakes $\overline{y}^{(n)}(\overline{n}^{(n)})$
- relatively easy updating rules, as expression for overtaking condition is fairly easy:

$$\overline{y}^{(n)}(n^{(n)}) > \overline{y}_R^{(n)} \quad \Longleftrightarrow$$

- ▶ Sets with $\beta > 1$ show nice 'tolerance' behaviour: additional imprecision only when 'spike' at $\underline{n}^{(n)}$ overtakes $\overline{y}^{(n)}(\overline{n}^{(n)})$
- relatively easy updating rules, as expression for overtaking condition is fairly easy:

$$\overline{y}^{(n)}(n^{(n)}) > \overline{y}_R^{(n)} \iff \frac{s}{n} - \overline{y}_R^{(0)} > \underbrace{\frac{n^{(0)}(\overline{n}^{(0)} + n)}{n(\overline{n}^{(0)} - n^{(0)})}}_{\underline{(\overline{y}_R^{(0)} - \overline{y}^{(0)}(n^{(0)}))}}_{\underline{(\overline{y}_R^{(0)} - \overline{y}^{(0)}(n^{(0)}))}}$$

- Sets with $\beta > 1$ show nice 'tolerance' behaviour: additional imprecision only when 'spike' at $\underline{n}^{(n)}$ overtakes $\overline{y}^{(n)}(\overline{n}^{(n)})$
- relatively easy updating rules, as expression for overtaking condition is fairly easy:

$$\overline{y}^{(n)}(n^{(n)}) > \overline{y}_R^{(n)} \iff \frac{s}{n} - \overline{y}_R^{(0)} > \underbrace{\frac{n^{(0)}(\overline{n}^{(0)} + n)}{n(\overline{n}^{(0)} - n^{(0)})}}_{\text{decrasing in } n} \underbrace{(\overline{y}_R^{(0)} - \overline{y}^{(0)}(n^{(0)}))}_{\text{decreasing in } n^{(0)}}$$

- $y^{(0)}$ values at low $n^{(0)}$ move faster, so $y^{(0)}$ interval shrinks faster and thus can be larger at the beginning.
- ▶ $y^{(0)}$ values at high $n^{(0)}$ move slower, so $y^{(0)}$ interval shrinks slower and thus should be smaller at the beginning so it doesn't dominate the inferences.

- ▶ $y^{(0)}$ values at low $n^{(0)}$ move faster, so $y^{(0)}$ interval shrinks faster and thus can be larger at the beginning.
- ▶ $y^{(0)}$ values at high $n^{(0)}$ move slower, so $y^{(0)}$ interval shrinks slower and thus should be smaller at the beginning so it doesn't dominate the inferences.

- ▶ $y^{(0)}$ values at low $n^{(0)}$ move faster, so $y^{(0)}$ interval shrinks faster and thus can be larger at the beginning.
- ▶ $y^{(0)}$ values at high $n^{(0)}$ move slower, so $y^{(0)}$ interval shrinks slower and thus should be smaller at the beginning so it doesn't dominate the inferences.

Posteriors when s/n = 5/10

Posteriors when s/n = 7/10

- for 'non-conflicting' observations, $\underline{y}^{(n)}$ and $\overline{y}^{(n)}$ are attained neither at $\underline{n}^{(0)}$ or $\overline{n}^{(0)}$.
- for 'conflicting' observations, nearest $y^{(n)}$ attained at $\underline{n}^{(0)}$ as for rectangle set. ($\beta > 1$: Farest $y^{(n)}$ may stay away from $\underline{y}^{(n)}$ and $\overline{y}^{(n)}$.)
- Therfore no easily interpretable updating rules!
- 'picky' for $\beta < 1$, 'tolerance' reaction for $\beta > 1$.
- ▶ Does $[\underline{y}_L^{(0)}, \overline{y}_L^{(0)}] = [0, 1]$ makes sense? (Would make elicitaton easier.)

Posteriors when s/n = 3/10

Posteriors when s/n = 5/10

Posteriors when s/n = 6/10

Posteriors when s/n = 7/10

Further Questions

- ▶ Is there a shape description that is invariant to updating? (other than general subset, or with fixed $n^{(0)}$.)
- Is there a transformation of this parameter space that makes it easier to see what's going on?
- Look at Predictive Probability Plots (PPPs)
- . . .