$$\rho_3(2250)$$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

OMITTED FROM SUMMARY TABLE

Contains results mostly from formation experiments. For further production experiments see the Further States entry. See also $\rho(2150)$, $f_2(2150)$, $f_4(2300)$, $\rho_5(2350)$.

$\rho_{3}(2250)$ MASS

$\overline{D}D \rightarrow \pi\pi \text{ or } K\overline{K}$

VALUE (MeV)	DOCUMENT ID		TECN CHG	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • •						
~ 2232	HASAN	94	RVUE	$\overline{p} p \rightarrow \pi \pi$		
~ 2090	¹ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$		
~ 2250	² MARTIN	80 B	RVUE			
~ 2300	² MARTIN	80C	RVUE			
~ 2140	³ CARTER	78 B	CNTR 0	$0.7-2.4 \; \overline{p} p \rightarrow K^- K^+$		
~ 2150	⁴ CARTER	77	CNTR 0	$0.72.4 \ \overline{p} p \rightarrow \pi \pi$		

¹See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

S-CHANNEL $\overline{N}N$

١	VALUE (MeV)	DOCUMENT ID		TECN CHG	COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •					
	$2260\!\pm\!20$	⁵ ANISOVICH	02	SPEC	$0.6-1.9 p \overline{p} \rightarrow \omega \pi^0$
_	~ 2190			CNTR	$\omega \eta \pi^{0}$, $\pi^{+}\pi^{-}$ 0.97–3 $\overline{p}p \rightarrow \overline{N}N$
	2155 ± 15	6,7 COUPLAND			$0.7-2.4 \overline{p}p \rightarrow \overline{p}p$
	$2193\pm~2$	^{6,8} ALSPECTOR			$\overline{p}p$ S channel
	2190 ± 10	⁹ ABRAMS	70	CNTR	S channel $\overline{p}N$

 $^{^{5}}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02. 6 Isospins 0 and 1 not separated.

$\pi^- p \rightarrow \eta \pi \pi$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	s, fits,	limits,	etc. • • •
$2290 \pm 20 \pm 30$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

 $^{{}^2}I(J^P)=1(3^-)$ from simultaneous analysis of $p\overline{p}\to\pi^-\pi^+$ and $\pi^0\pi^0$. ${}^3I=0,\ 1.\ J^P=3^-$ from Barrelet-zero analysis.

 $^{^{4}}I(J^{P})=1(3^{-})$ from amplitude analysis.

⁷ From a fit to the total elastic cross section.

⁸ Referred to as T or T region by ALSPECTOR 73.

⁹ Seen as bump in I=1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.

$\rho_{3}(2250)$ WIDTH

$\overline{p}p \rightarrow \pi\pi \text{ or } K\overline{K}$

VALUE (MeV)	DOCUMENT ID		TECN CHG	COMMENT	
 • • We do not use the following data for averages, fits, limits, etc. 					
\sim 220	HASAN	94	RVUE	$\overline{p} p o \pi \pi$	
	¹⁰ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$	
\sim 250	¹¹ MARTIN	80 B	RVUE		
	¹¹ MARTIN	80C	RVUE		
	¹² CARTER	78 B	CNTR 0	$0.7-2.4 \; \overline{p} p \rightarrow K^- K^+$	
~ 200	¹³ CARTER	77	CNTR 0	0.7–2.4 $\overline{p}p \rightarrow \pi\pi$	
10 See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to $J=3$ to be					
important but not significantly resonant.					
$11I(J^P) = 1(3^-)$ from simultaneous analysis of $p\overline{p} \to \pi^-\pi^+$ and $\pi^0\pi^0$.					
$12 \stackrel{?}{=} 0$, 1. $\stackrel{?}{J}^{P} = 3^{-}$ from Barrelet-zero analysis.					
$^{13}I(J^P)=1(3^-)$ from amplitude analysis.					

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID		TECN CI	HG COMMENT
• • • We do not ι	ise the following data for a	verag	es, fits, limi	its, etc. • • •
$160\!\pm\!25$	¹⁴ ANISOVICH	02	SPEC	$0.6-1.9 \ p \overline{p} \rightarrow \omega \pi^0$,
135±75 98± 8	^{15,16} COUPLAND ¹⁶ ALSPECTOR			$\omega\eta\pi^0$, $\pi^+\pi^-$ 0.7–2.4 $\overline{p}p o \overline{p}p$ $\overline{p}p$ S channel
~ 85	17 ABRAMS		_	S channel $\overline{p}N$

 $^{^{14}}$ From the combined analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E, and ANISOVICH 02.

15 From a fit to the total elastic cross section.

16 Isospins 0 and 1 not separated.

$\pi^- p \rightarrow \eta \pi \pi$

VALUE (MeV)	DOCUMENT ID		IECN	COMMENT
ullet $ullet$ We do not use the follow	ing data for averages	, fits,	limits,	etc. • • •
$230 \pm 50 \pm 80$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

$\rho_3(2250)$ REFERENCES

Created: 5/30/2017 17:21

¹⁷ Seen as bump in I=1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results of ABRAMS 70, no narrow structure.