```
Due 4/9:
G1 (present): page 150: 1, 7, 8
G2 (present): page 150: 3, 6, 9, 12, 14 (me: 3, 14)
All (turn in): page 150: 17, 19, 29, 36 (me)
Due 4/11:
Present: page 167: 20
All (turn in): page 167: 1, 22
```

# Page 150

## Exercise 3

Let  $H = \{0, \pm 3, \pm 6, \pm 9...\}$ . Rewrite the condition  $a^{-1}b \in H$  given in property 6 of the lemma on page 139 in additive notation. Assume that the group is Abelian. Use this to decide whether or not the following cosets of H are the same.

```
Property 6: aH = bH iff a^{-1}b \in H
Rewritten: a + H = b + H iff a^{-1} + b \in H
a. \mathbf{11} + \mathbf{H} and \mathbf{17} + \mathbf{H}: -11 + 17 = 6 \in H, so yes.
b. -\mathbf{1} + \mathbf{H} and \mathbf{5} + \mathbf{H}: 1 + 5 = 6 mem H, so yes.
c. \mathbf{7} + \mathbf{H} and \mathbf{23} + \mathbf{H}: -7 + 23 = 16 \notin H, so no.
```

## Exercise 14

Let  $C^*$  be the group of nonzero complex numbers under multiplication and let  $H = \{a + bi \in C^* : a^2 + b^2 = 1\}$ . Give a geometric description of the cosets (3 + 4i)H and (c + di)H. Well,

```
 \begin{aligned} &(3+4\mathrm{i})H = \{(3+4\mathrm{i})h: h \in H\} \\ &(3+4\mathrm{i})H = \{(3+4\mathrm{i})(a+b\mathrm{i}): a+b\mathrm{i} \in C^*, a^2+b^2=1\} \\ &(3+4\mathrm{i})H = \{3a+4\mathrm{a}\mathrm{i}+3\mathrm{b}\mathrm{i}-4\mathrm{b}: a+b\mathrm{i} \in C^*, a^2+b^2=1\} \\ &(3+4\mathrm{i})H = \{3a+(4a+3\mathrm{b})\mathrm{i}-4\mathrm{b}: a+b\mathrm{i} \in C^*, a^2+b^2=1\} \\ &\mathrm{thus}, \\ &(c+d\mathrm{i})H = \{ca+(da+cb)\mathrm{i}-db: a+b\mathrm{i} \in C^*, a^2+b^2=1\} \\ &(c+d\mathrm{i})H = \{(ca-db)+(da+cb)\mathrm{i}: a+b\mathrm{i} \in C^*, a^2+b^2=1\} \end{aligned}
```

It looks like the subset H just indicates the elements that create a unit circle.

When we multiply by some real constant > 1, we just get a coset that represents a bigger circle.

When we multiply by some complex constant (e.g. 2i), we just get a coset that represents a flipped circle (where x, y becomes y, x), and if the complex constant has a scaling factor (e.g. 2), then the circle grows by that factor.

I think the cosets scale it by ||c + di||.

## Exercise 17

Let G be a group with |G| = pq: p, q are prime. Prove that every proper subgroup of G is cyclic.

```
Let H be a proper subgroup of G.
```

Since G is finite, |H| divides |G|.

Case:

- i) |H| = 1: Then H is cyclic by default.
- ii)  $|H| \neq 1$ : Then by the fundamental theorem of arithmetic, |H| = t:  $t \in \{p, q\}$

Notice: |H| > 1.

Let  $h \in H$ :  $h \neq e$ .

Then  $1 < | < h > | \le |H|$ .

Since H is finite,  $|\langle h \rangle|$  divides |H|.

Since |H| is prime, its factors are only 1 and |H|.

Since  $|\langle h \rangle| \neq 1$ , this implies that  $|\langle h \rangle| = |H|$ .

Hence, H must be cyclic.

## Exercise 19

# Compute $5^{15} \mod 7$ and $7^{13} \mod 11$ .

Fermat's Little Theorem: For every integer a and prime p,  $a^p \equiv a \mod p$ .

And, if a is not divisible by p, then  $a^{p-1} \equiv 1 \mod p$  (which is 1)

Also, if a and n are relatively prime, then  $a^{\phi(n)} \mod n \equiv 1$  (from problem 18 in the book)

$$5^{15} \mod 7 = (5^7)(5^7)5^1 \mod 7$$
  
 $\equiv (5)(5)5 \mod 7$  (by Fermat's Little Theorem)  
 $\equiv 125 \mod 7$   
 $= 6$ 

$$7^{13} \mod 11 = (7)^3 (7)^{10} \mod 11$$
  
 $\equiv 7^3 (1) \mod 11$  (by Fermat's Little Theorem)  
 $\equiv 147 \mod 11$   
 $= 4$ 

# Exercise 29

# Let |G| = 33. What are the possible orders for the elements of G? Show that G must have an element of order 3.

Each element of G must have an order of: 1, 3, 11, or 33 (since it generates a cyclic subgroup)

Let  $g \in G$ . If |g| = 1, then g is the identity, which exists in every group.

|g| cannot be 33, since that's the size of the group. The maximum order for an element is n-1 where n is the size of the group. So the possible orders are 1, 3, and 11.

Let's suppose this group contains elements only of orders 1 and 11.

If we pick  $g \in G : g \neq e$ , then |g| = 11, and we have 11 elements accounted for so far.

Next, we pick  $h \in G : h \notin \langle g \rangle$ .

Thus,  $\langle h \rangle$  generates another cyclic subgroup of order 11.

So far, we have accounted for 21 elements, since  $\langle g \rangle \cap \langle h \rangle = e$ .

However, we have 12 elements left, which we cannot cover with elements of order 11.

So, we must have an element of order 3.

# Exercise 36

Let G be a group and |G| = 21. If  $g \in G$  and  $g^{14} = e$ , what are the possibilities for |g|?

Well, since g is a generator for H, a cyclic subgroup of G, that means that |H| must be a factor of |G|. Since |G| = 21 and 14 doesn't divide 21, |H| must be some factor of both 21 and 14, but lower than 14. Those possibilities are: 1, 7

# Page 167

# Exercise 1

```
Prove that the external direct product of any finite number of groups is a group.
```

Let  $G_1, G_2, \dots G_n$  be a finite collection of groups.

Then 
$$G_1 \bigoplus G_2 \bigoplus ... \bigoplus G_n = \{(g_1, g_2, ... g_n) : g_i \in G_i\}$$
  
and  $(g_1, g_2, ..., g_n)(g_1', g_n', ..., g_n') = (g_1g_1', g_2g_2', ..., g_ng_n')$   
Denote  $D = \{(g_1, g_2, ... g_n) : g_i \in G_i\}$ 

Want to show that D is a group on the group product operation.

#### Closure:

```
Let a, b \in D.
```

So:

$$a = (g_1, g_2, ..., g_n)$$
  

$$b = (g_1', g_2', ..., g_n')$$

and

$$ab = (g_1g_1', g_2g_2', ..., g_ng_n')$$

Since  $g_i g_i' \in G_i$  for i = 1, 2, ... n by definition of a group,

$$(g_1g_1', g_2g_2', ..., g_ng_n') \in D$$

### **Associativity:**

Let a, b, 
$$c \in D$$
.

So:

$$a = (g_1, g_2, ..., g_n)$$

$$b = (g_1', g_2', ..., g_n')$$

$$c = (g_1'', g_2'', ..., g_n'')$$

$$(ab)c = (g_1g_1', g_2g_2', ..., g_ng_n')(g_1'', g_2'', ..., g_n'')$$

(ab)c = 
$$(g_1g_1' g_1'', g_2g_2' g_2'', ..., g_ng_n' g_n'')$$

(ab)c = 
$$(g_1, g_2, ..., g_n)(g_1' g_1' ', g_2' g_2' ', ..., g_n' g_n' ') = a(bc)$$

#### Identity

Let 
$$e = (e_1, e_2, ..., e_n)$$
 and let  $a \in D$ :  $a = (g_1, g_2, ..., g_n)$ 

Notice:

ae = 
$$(g_1, g_2, ..., g_n)(e_1, e_2, ..., e_n) = (g_1, g_2, ..., g_n)$$

$$ea = (e_1, e_2, ..., e_n) = (g_1, g_2, ..., g_n) = (g_1, g_2, ..., g_n)$$

Hence, D contains an identity element: e

#### Inverse:

Let 
$$a \in D$$
:  $a = (g_1, g_2, ..., g_n)$   
Define  $a^{-1} = (g_1^{-1}, g_2^{-1}, ..., g_n^{-1})$ 

Notice:

$$aa^{-1} = (g_1, g_2, \dots, g_n)(g_1^{-1}, g_2^{-1}, \dots, g_n^{-1}) = (g_1g_1^{-1}, g_2g_2^{-1}, \dots, g_ng_n^{-1}) = (e_1, e_2, \dots, e_n) = e_1^{-1}a = (g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})(g_1, g_2, \dots, g_n) = (g_1^{-1}g_1, g_2^{-1}g_2, \dots, g_n^{-1}g_n) = (e_1, e_2, \dots, e_n) = e_1^{-1}a = (g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})(g_1, g_2, \dots, g_n) = (g_1^{-1}g_1, g_2^{-1}g_2, \dots, g_n^{-1}g_n) = (e_1, e_2, \dots, e_n) = e_1^{-1}a = (g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})(g_1, g_2, \dots, g_n) = (g_1^{-1}g_1, g_2^{-1}g_2, \dots, g_n^{-1}g_n) = (e_1, e_2, \dots, e_n) = e_1^{-1}a = (g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})(g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})(g_1^{-1}, g_2^{-1}, \dots, g_n^{-1}) = (g_1^{-1}g_1, g_2^{-1}g_2, \dots, g_n^{-1}g_n) = (g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-1}g_1^{-$$

Hence, all elements of D have an inverse.

Hence, D is a group on the group product operation.

# Exercise 20

Find a subgroup of  $\mathbb{Z}_{12} \bigoplus \mathbb{Z}_{18}$  that is isomorphic to  $\mathbb{Z}_9 \bigoplus \mathbb{Z}_4$ .

Well, we know that  $Z_9 \bigoplus Z_4$  is isomorphic to  $Z_{36}$  since 9 and 4 don't share any common factors (by Theorem 8.2).

So, let's just pick two elements with orders 4 and 9.

I think 3 from  $Z_{12}$  will work for an order of 4, and 2 from  $Z_{18}$  will work for an order 9.

So our generator becomes  $(3, 2) \in \mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$ , and the group isomorphic to  $\mathbb{Z}_9 \oplus \mathbb{Z}_4$  is simply < (3, 2) >

# Exercise 22

Determine the number of elements of order 15 and the number of cyclic subgroups of order 15 in  $\mathbb{Z}_{30} \oplus \mathbb{Z}_{20}$ .

By Theorem 8.1, the number of elements of order 15 is the number of elements  $(a, b) \in Z_{30} \oplus Z_{20}$  such that 15 = lcm(|a|, |b|)

Since the orders have to have a LCM of 15, we only have to choose numbers such that the orders are less than 15 and factors of 15.

In other words, we can only choose elements from  $Z_{30}$  and  $Z_{20}$  with orders of 1, 3, 5, and 15.

So,

from  $Z_{30}$ : 1:(e), 3:(10, 20), 5:(6, 12, 18, 24), 15:(2, 4, 8, 14, 16, 22, 26, 28)

from  $Z_{20}$ : 1:(e), 3:(), 5:(4, 8, 12, 16), 15:()

Case:

i) 
$$|a| = 15$$
,  $|b| = 1$  - in this case there are 8 \* 1 = 8

ii) 
$$|a| = 15$$
,  $|b| = 3$  - in this case there are  $8 * 0 = 0$ 

iii) 
$$|a| = 15$$
,  $|b| = 5$  - in this case there are 8 \* 4 = 32

iv) 
$$|\mathbf{a}| = 15$$
,  $|\mathbf{b}| = 15$  - in this case there are 8 \* 0 = 0

v) 
$$|a| = 5$$
,  $|b| = 3$  - in this case there are 15 \* 0 = 0

vi) 
$$|a| = 5$$
,  $|b| = 15$  - in this case there are  $4 * 0 = 0$ 

vii) 
$$|a| = 3$$
,  $|b| = 5$  - in this case there are 2 \* 4 = 8

viii) 
$$|a| = 3$$
,  $|b| = 15$  - in this case there are  $0 * 0 = 0$ 

ix) 
$$|a| = 1$$
,  $|b| = 15$  - in this case there are 1 \* 0 = 0

So the sum of all of those is 48.

The number of cyclic subgroups of order 15 in  $Z_{30} \oplus Z_{20}$  is going to be  $\frac{48}{\phi(15)} = 6$