Calculate to Week 3
 XLessons
 Prev
 Next

## Regularized Linear Regression

**Note:** [8:43 - It is said that X is non-invertible if  $m \le n$ . The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.

We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.

## **Gradient Descent**

We will modify our gradient descent function to separate out  $\theta_0$  from the rest of the parameters because we do not want to penalize  $\theta_0$ .

$$\begin{aligned} & \text{Repeat } \{ \\ & \theta_0 := \theta_0 - \alpha \; \frac{1}{m} \; \sum_{i=1}^m \left( h_\theta \left( x^{(i)} \right) - y^{(i)} \right) x_0^{(i)} \\ & \theta_j := \theta_j - \alpha \; \left[ \left( \frac{1}{m} \; \sum_{i=1}^m \left( h_\theta \left( x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right] \\ & \} \end{aligned} \qquad j \in \{1, 2...n\}$$

The term  $\frac{\lambda}{m}\theta_j$  performs our regularization. With some manipulation our update rule can also be represented as:

$$heta_j := heta_j \, (1 - lpha rac{\lambda}{m}) - lpha rac{1}{m} \sum_{i=1}^m \left( h_ heta \left( x^{(i)} 
ight) - y^{(i)} 
ight) x_j^{(i)}$$

The first term in the above equation,  $1-\alpha\frac{\lambda}{m}$  will always be less than 1. Intuitively you can see it as reducing the value of  $\theta_j$  by some amount on every update. Notice that the second term is now exactly the same as it was before.

## **Normal Equation**

Now let's approach regularization using the alternate method of the non-iterative normal equation.

To add in regularization, the equation is the same as our original, except that we add another term inside the parentheses:

$$heta = egin{pmatrix} X^TX + \lambda \cdot L \end{pmatrix}^{-1} X^T y \ ext{where } L = egin{bmatrix} 0 & & & & \ & 1 & & & \ & & 1 & & \ & & & \ddots & \ & & & & 1 \end{bmatrix}$$

L is a matrix with 0 at the top left and 1's down the diagonal, with 0's everywhere else. It should have dimension  $(n+1)\times(n+1)$ . Intuitively, this is the identity matrix (though we are not including  $\boldsymbol{x_0}$ ), multiplied with a single real number  $\lambda$ 

Recall that if m < n, then  $X^TX$  is non-invertible. However, when we add the term  $\lambda \cdot L$ , then  $X^TX + \lambda \cdot L$  becomes invertible.

✓ Complete