REPORT

Thiết kế và thực hiện khối tính nhân chập 2-D dùng cho CNN

Ver 1.0

19/4/2022

	Full name	Function	Date
Written by	Ngô Minh Khánh		
William by	Đinh Tiến Dương		
Verified by	Nguyễn Kiêm Hùng		
Approved by	Nguyễn Kiêm Hùng		

Thiết kế mức RTL, lập mô hình VHDL, mô phỏng ModelSIM và triển khai FPGA của tích chập 2D đơn giản cho CNN.

Keywords

SM, FSMD, ModelSim, 2D Convolution, VHDL, RTL

Work context

- 1. Tìm hiểu kiến thức cơ bản về VHDL, ModelSim
- 2. Phân tích yêu cầu bài toán (Tìm hiểu thuật toán nhân chập)
- 3. Bắt đầu viết các tệp thành phần bộ nhân chập
- 4. Kết hợp các tệp thành phần thành tệp phần thành khối nhân chập hoàn chỉnh
- 5. Viết và chạy testbench và kiểm tra kết quả đầu ra
- 6. Hoàn thiện báo cáo dựa trên kết quả đầu ra

Document History

Version	Time	Revised by	Description
V0.1	19/04/2022	Nguyễn Kiêm Hùng	Original Version
V0.2		Ngô Minh Khánh Đinh Tiến Dương	

MŲC LŲC

Do	cumer	ent History	3
Ta	ble of	f Contents Error! Bookmark no	t defined.
1.	Giới	ới thiệu	5
2.	Yêu	ı cầu	6
	2.1.	Yêu cầu đối với thiết kế:	6
	2.2.	Định nghĩa giao diện vào/ra	7
3.	Thu	uật toán	8
4.	Thiế	iết kế mức RTL	8
	4.1.	Mô hình máy FSMD	8
	4.2.	Đơn vị xử lý dữ liệu (Datapath)	10
	4.3.	Đơn vị điều khiển (Control Unit)	10
	4.4.	Sơ đồ khối tổng thể	12
5.	Mô l	hình hóa bằng VHDL	12
6.	Mô j	phỏng và đánh giá	13
7.	Kết	t luận	13
Aŗ	pendi	ix A: Schematic	14
Aŗ	pendi	ix B: VHDL Code	15
Δr	nendi	iv C·	16

List of Figures	17
List of Tables	18
References	19

1. Giới thiệu

(Introduction to the motivation, Objectives, and main Contents of the project)

Mục tiêu: Vận dụng các kiến thức, kỹ năng đã được học để thiết kế, mô phỏng và thực thi một mô-đun phần cứng thực hiện tính tích chập J = 2DConV(I, K) giữa hình ảnh lối vài I với một ma trận kernel K([1]). Trong đó, mỗi pixel trong hình ảnh tích phân J đại diện cho tổng tích lũy của tích điểm-điểm giữa ma trận K với một ma trận cùng thước được trích xuất từ ma trận đầu vào I. Phép chuyển đổi hình ảnh được mô tả bằng ví dụ sau.

Ví dụ: nếu hình ảnh đầu vào I là ma trận có kích thước 5×5 như sau:

$$I = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Và kernel có kích thước 3×3 như sau:

$$K = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

thì kết quả tính toán của khối 2D-Convolution trả về hình ảnh J có kích thước 3×3 như sau:

$$K = \begin{pmatrix} 4 & 3 & 4 \\ 2 & 4 & 3 \\ 2 & 3 & 4 \end{pmatrix}$$

Quá trình tính toán được minh họa trong Hình 1.

Hình 1. Ví dụ minh họa phép tính tích chập 2D.

Lưu ý rằng pixel có tọa độ (r,c) – (hàng, cột) – tronh ảnh lối ra được tính bằng cách nhân chập điểm – điểm giữa ma trận kernel và ma trận 3×3 có tâm nằm ở vị trí có tọa độ (r+1,c+1) trong ảnh lối vào.

2. Yêu cầu

2.1. Yêu cầu đối với thiết kế:.

- CPU có thể viết các phần tử của ma trận đầu vào tới bộ nhớ đệm bên trong bộ nhân chập
- Khối Conv có giao diện ghép nối tới CPU sao cho CPU kích hoạt quá trình tính toán của khối Conv bằng các đặt tín hiệu Start = '1'.
- Sau khi quá trình tính hình ảnh tích phân hoàn thành, khối Conv sẽ báo cho CPU biết bằng cách đặt tín hiệu Done = '1';
- Khối Conv có 1 giao diện ghép nối tới tới bộ nhớ để đọc hình ảnh đầu vào
- Khối Conv có 1 giao diện ghép nối tới tới bộ nhớ để ghi dữ liệu đầu ra

Hình 2. Giao diện ghép nối I/O.

2.2. Định nghĩa giao diện vào/ra

Bảng 1: Mô tả các tín hiệu vào ra.

TT	Port	Direction	Width	Meaning
1	Start	IN	1	Tín hiệu bắt đầu nhân chập
2	Clk	IN	1	Xung clock hệ thống
3	Reset	IN	1	Xung reset hệ thống
4	Pixel_Done	OUT	1	Tín hiệu báo đã tính xong 1 pixel đầu ra
5	Done	OUT	1	Tín hiệu báo tính xong ma trận đầu ra
6	REn	OUT	1	Tín hiệu báo đọc ma trận từ bộ nhớ ngoài vào bộ nhớ đệm MA
7	RAddr	IN	N	Địa chỉ pixel vào
8	DATA_IN	IN	N	Dữ liệu vào

9	WEN	OUT	1	Tín hiệu báo ghi ma trận từ bộ nhớ đệm MB ra bộ nhớ ngoài
10	WAddr	OUT	N	Địa chỉ pixel ra
11	DATA_OUT	OUT	N	Dữ liệu ra

3. Thuật toán

Sinh viên/Học viên chỉ ra thuật toán được sử dụng ở đây.

Cho A là ma trận ảnh đầu vào, B là ma trận ảnh đầu ra, K là ma trận Kernel. Ta có thuật toán sau :

```
Begin: Wait for Start = '1'

Done = '0'

For br = 0 to (rowB -1)

For bc = 0 to (colB -1)

For kr = 0 to (rowK - 1)

For kc = 0 to (colK - 1)

B [br][bc] += A [br + kr][bc + kc] * K [kr][kc]

End for

End for

End for
```

4. Thiết kế mức RTL

End for

Gợi ý : Tham khảo Lecture 3

4.1. Mô hình máy FSMD

Sinh viên/Học viên chỉ ra sơ đồ máy trạng thái FSMD mô tả hoạt động của thiết kế!

4.2. Đơn vị xử lý dữ liệu (Datapath)

Sinh viên/Học viên chỉ ra sơ đồ cấu trúc của datapath của thiết kế ở đây!

Hình 4: Cấu trúc của đơn vị xử lý dữ liệu Datapath.

4.3. Đơn vị điều khiển (Control Unit)

Sinh viên/Học viên chỉ ra sơ đồ máy trạng thái FSM của bộ điều khiển controller của thiết kế ở đây!

Hình 5: Máy FSM của đơn vị điều khiển.

4.4. Sơ đồ khối tổng thể

Hình 6: Sơ đồ khối tổng thể của thiết kế.

5. Mô hình hóa bằng VHDL

Hình 7: Tổ chức của file VHDL.

- 6. Mô phỏng/thực thi và đánh giá
- 7. Kết luận

Appendix B: VHDL Code

(đóng gói thành tệp nén và gửi kèm báo cáo)

Appendix C:

Compress and email to hungnvnu@gmail.com

List of Figures

Hình 1. Ví dụ minh họa quá trình sắp xếp một dãy gồm 4 phần tử theo trật tự tăng d	ần 6
Hình 2. Giao diện ghép nối I/O của đơn vị Sorting Unit.	7
Hình 3: FSMD.	10
Hình 4: Datapath.	10
Hình 5: FSM of controller.	12
Hình 5: Block diagram of whole sorting unit.	12

List of Tables

	Bång 1	: Mô tả các tín	niệu vào ra	7
--	--------	-----------------	-------------	---

References

[1]	https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
	learning-1f6f42faee1