

ANSYS Chemkin-Pro Input Manual

Note: PDF user guides no longer in Chemkin-Pro install after release 19.0

ANSYS, Inc.
Southpointe
2600 ANSYS Drive
Canonsburg, PA 15317
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494

Release 19.0 January 2018

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001: 2008 companies.

Note: PDF user guides no longer in Chemkin-Pro install

after release 19.0

Copyright and Trademark Information

© 2017 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners. FLEXIm and FLEXnet are trademarks of Flexera Software LLC.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001: 2008 companies.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

1. Introduction	1
2. Thermodynamic Data	3
2.1. Thermodynamic Data Format	3
2.1.1. Using More than Two Temperature Ranges	7
2.1.2. Creating Very Large Molecules with Unlimited Number of Elements	8
2.1.3. Surface-Coverage Dependent Enthalpy of Surface Species	
2.1.4. Gas Species Radiation Absorption Coefficients	
2.2. Standard State Enthalpies and Entropies at 298 K	10
3. Gas-phase Kinetics Input	
3.1. Element Data	
3.2. Species Data	35
3.3. Thermodynamic Data	
3.4. Real Gas Data	36
3.5. Transport Data	
3.6. Reaction Mechanism Description	
3.6.1. REACTIONS Line Options	
3.6.2. Reaction Data	
3.6.3. Auxiliary Reaction Data	
3.6.3.1. Problems Having No Reactions	
3.6.4. Error Checks	
4. Surface Kinetics Input	
4.1. Material Declaration	
4.2. Site Data	
4.3. Bulk Data	
4.4. Thermodynamic Data	
4.5. Reaction Mechanism Description	
4.5.1. REACTIONS Line Options	
4.5.2. Reaction Data	
4.5.3. Auxiliary Reaction Data	
4.5.3.1. Summary of Auxiliary Reaction Data	
4.5.4. Problems Having No Reactions	
4.5.5. Error Checks	
5. Transport Database	87
5.1. Transport Data Format	
5.2. Including Transport Data in the Gas-phase Kinetics Input File	
5.3. Transport Data Included with CHEMKIN	
6. Description and Properties of Particles	
6.1. Description and Properties of the Particle Material	
6.1.1. Dispersed Material	
6.1.2. Particle Composition	
6.1.3. Particle Class	
6.1.4. Mass and Volume of an Individual Particle	
6.1.5. Diameter and Surface Area of an Individual Particle	
7. Using the FITDAT Utility	99
7.1. Running FITDAT from the User Interface	
7.2. Programming with FITDAT	
7.3. Keyword Syntax and Rules	
7.4. FITDAT Keywords	
7.5. FITDAT Examples	105
7.5.1. DATA CHEM Input Format	105

and foldade fold	
7.5.2. POLY CHEM Input Format	
7.5.3. DATA NIST Input Format	
7.5.4. POLY SHOM Input Format	
7.5.5. DATA NASA Input Format	
7.5.6. POLY NASA Input Format	107
7.5.7. DATA JANAF Input Format	108
7.5.8. VIBE Input Format	109
7.5.9. Example <i>FITDAT</i> Outputs	110
8. CHEMKIN Project Input: Keyword Syntax and Rules	113
9. Reference Guide to Project Input Keywords	115
9.1. Closed 0-D Reactor Models	115
9.1.1. Internal Combustion HCCI Engine	115
9.1.2. Closed Homogeneous Batch Reactor	
9.1.3. Closed Partially Stirred Reactor	
9.1.4. Closed Plasma Reactor	
9.1.5. Multi-Zone HCCI Engine Simulator	
9.1.6. SI Engine Zonal Simulator	
9.2. Open 0-D Reactor Models	
9.2.1. Perfectly Stirred Reactor	
9.2.2. Plasma Perfectly Stirred Reactor	
9.2.3. Partially Stirred Reactor	
9.3. Flow Reactor Models	
9.3.1. Plug Flow Reactor	
9.3.2. Plasma Plug Flow Reactor	
9.3.3. Planar Shear Flow	
9.3.4. Cylindrical Shear Flow	
9.3.5. Honeycomb Monolith Reactor	
9.4. Flame Simulators	
9.4.1. Premixed Laminar Burner-stabilized Flame Simulator	
9.4.2. Flame Speed Simulator	
9.4.3. Opposed-flow Flame Simulator	
9.4.4. Premixed Laminar Burner-stabilized Stagnation Flow Flame Simulator	
9.4.5. Flame-Extinction Simulator	
9.4.6. Diffusion Flamelet Generator	
9.5. CVD Reactors	
9.5.1. Stagnation Flow CVD Reactor	
9.5.2. Rotating Disk CVD Reactor	
9.6. Shock Tube Reactors	
9.6.1. Normal Incident Shock	
9.6.2. Normal Reflected Shock	
9.7. Miscellaneous Reactor Models	121
9.7.1. Gas Mixer	121
9.7.2. Equilibrium	121
9.7.3. Mechanism Analyzer	121
10. Alphabetical Listing of Project Input Keywords	123
10.1. Alphabetical Listing of Keywords [A-E]	123
10.2. Alphabetical Listing of Keywords [F-O]	
10.3. Alphabetical Listing of Keywords [P-S]	
10.4. Alphabetical Listing of Keywords [T-Z]	
Bibliography	224

List of Figures

2.1. Excerpts from the <i>therm.dat</i> Thermodynamic Database File	4
2.2. Examples of Thermodynamic Data	7
2.3. Examples of Very Large Molecules	8
2.4. HFCOV Thermodynamic Auxiliary Keyword Example	9
3.1. Examples of Species Data	34
3.2. Examples of Species Data	35
3.3. Example of Real Gas data input	
3.4. Examples of Reaction Data	42
3.5. Examples of Auxiliary Reaction Data	56
4.1. Examples of Material Declarations	61
4.2. Examples of Site Data	63
4.3. Examples of Bulk Data	65
4.4. Examples of Reaction Data	71
4.5. Examples of Auxiliary Reaction Data	81
6.1. Example of Dispersed Material Declaration	95
6.2. Example of Two Material Blocks	96
6.3. Dispersed Graphite Material Declaration With Chemical Composition	96
6.4. Dispersed Silicon Dioxide Material Declaration With Chemical Composition	96
6.5. Nucleation Reaction Creating Particle Nuclei of Class 32	97
7.1. Utilities—'Fitdat' Polynomial Equation Fitter	100
7.2. DATA CHEM Input File	105
7.3. POLY CHEM Input File	105
7.4. DATA NIST Input File	106
7.5. POLY SHOM Input File	
7.6. DATA NASA Input File	
7.7. POLY NASA Input File	108
7.8. Format details for POLY NASA Input Files	108
7.9. DATA JANAF Input File	
7.10. VIBE Input File	109
7.11. Example fitdat.out file	
7.12. Example fitdat.out file with more than two temperature ranges	110

List of Tables

2.1. Summary of the Rules for Thermodynamic Data	4
2.2. Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data	5
2.3. Alternative Format for Specifying More than Two Temperature Ranges	8
2.4. Standard State Enthalpies and Entropies at 298 K	
3.1. Summary of the Rules for Element Data	
3.2. Summary of the Rules for Species Data	35
3.3. Cubic equation of state models available in Chemkin-Pro	37
3.4. Alphabetical Listing of REACTIONS-line Options for Gas-phase Kinetics Data	
3.5. Reaction Data Criteria	
3.6. Summary of the Rules for Reaction Data	43
3.7. Alphabetical Listing of Gas-phase Reaction Auxiliary Keywords	
3.8. Summary of the Rules for Auxiliary Reaction Data	
3.9. Error Checks	58
4.1. Summary of the Rules for Site Data	63
4.2. Summary of the Rules for Bulk Data	64
4.3. Alphabetical Listing of REACTIONS-line Options for Surface Reaction Data	66
4.4. Surface Reaction Data Criteria	70
4.5. Summary of the Rules for Reaction Data	71
4.6. Alphabetical Listing of Surface Reaction Auxiliary Keywords	72
4.7. Summary of the Rules for Auxiliary Reaction Data	82
4.8. Error Checks	84
5.1. Species in <i>Transport</i> Database	88
7.1. Summary of Rules for Keywords	101
7.2. FITDAT Keywords	101
8.1. Summary of the Rules for Keywords	113
10.1. Alphabetical Listing of Keywords [A-E]	
10.2. Alphabetical Listing of Keywords [F-O]	178
10.3. Alphabetical Listing of Keywords [P-S]	225
10.4. Alphabetical Listing of Keywords [T-Z]	281

Chapter 1: Introduction

The Chemkin-Pro Input Manual (p. 1) is designed to serve as a reference to ANSYS Chemkin-Pro users who require more information about the input parameters needed in defining a chemically reacting flow simulation. In particular, information about syntax and format of chemical reaction mechanism input files, thermodynamic data, and transport-property data are described in detail. In addition, detailed information about all of the input parameters associated with reactor models, including default values and usage guidelines, are included in the Keywords section.

The ANSYS Chemkin-Pro Interface guides users through problem setup and execution, as well as quick analysis with the Chemkin-Pro Visualizer. The operation of the Chemkin-Pro Interface and Post-Processing are described in detail in Chemkin-Pro Getting Started Guide. In some cases, however, users may wish to work from the command line instead of the User Interface and manually assemble Reactor Model input files. For this purpose, the Chemkin-Pro Input Manual (p. 1) describes the necessary syntax and usage of the reactor-input Keywords, as well as a quick reference of what keywords are available for each Reactor Model.

For background information on the equations and theory behind the input parameters, the Chemkin-Pro Theory Manual provides further reading. In many cases, equations in the Chemkin-Pro Theory Manual are references in the discussions of reactor parameter input Keywords.

In Thermodynamic Data (p. 3) through Transport Database (p. 87), we describe the syntax and format required for thermodynamic, gas-phase kinetics, surface kinetics, and transport-property input data. Description and Properties of Particles (p. 95) has the description of fundamental particle properties for Particle Tracking. CHEMKIN Project Input: Keyword Syntax and Rules (p. 113) provides an overview of the syntax and rules for Keyword input, which make up the Reactor Model input files. Reactor Model input files are ordinarily created by the User Interface but can also be manually assembled for command-line usage. Reference Guide to Project Input Keywords (p. 115) provides a Quick Reference of the Keywords, organized by Reactor Model and other concepts, while Alphabetical Listing of Project Input Keywords (p. 123) contains alphabetical listings of keywords.

1

Chapter 2: Thermodynamic Data

Any chemical species that appears in a problem must have thermodynamic data associated with it. The format required for these data is described in this chapter. Also Standard State Enthalpies and Entropies at 298 K (p. 10) includes a discussion and listing of the standard-state enthalpies and entropies for the data contained in the therm.dat database file, which is included with every ANSYS Chemkin-Pro installation.

Thermodynamic data may be extracted from a database file (for example, therm.dat) and/or read from the Gas-phase Kinetics or Surface Kinetics input file. If all of the thermodynamic data are to be extracted from a database file, then no thermodynamic data input in the Gas-phase Kinetics or Surface Kinetics input file is required. However, if the user wishes to override information in the database or to provide data on species not in the database, then thermodynamic data are needed in the Gas-phase Kinetics or Surface Kinetics input file. In any case, the format for the information is the same.

2.1. Thermodynamic Data Format

ANSYS Chemkin-Pro expects the thermodynamic data to be provided in a specific format. In addition to the fourteen polynomial fitting coefficients (described in Standard-state Thermodynamic Properties in the *Chemkin-Pro Theory Manual*), the database also contains the species' name, its elemental composition, its electronic charge, and an indication of its phase (gas, liquid or solid). The data for each species requires four formatted lines of length 80 characters. Figure 2.1: Excerpts from the *therm.dat* Thermodynamic Database File (p. 4) is a sample of the lines required for a species and Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4) provides a detailed specification of the format required for entry of thermodynamics data. The first two lines in Figure 2.1: Excerpts from the *therm.dat* Thermodynamic Database File (p. 4) are required at the top of a thermodynamic database file; the first line specifies that the following is a set of thermodynamic data, while the second line provides the three temperatures used in the fitting process (a low temperature, break temperature, and high temperature). The user must also adhere to these specifications when placing thermodynamic data within the *Gas-phase Kinetics* or *Surface Kinetics* input file.

The default format (see Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4) and Table 2.2: Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data (p. 5)) is a minor modification of that used by Gordon and McBride[1] (p. 331) for the Thermodynamic Database in the NASA Chemical Equilibrium code. However, ANSYS Chemkin-Pro allows a different midpoint temperature for the fits to the properties of each chemical species. We also allow a species to be composed of a maximum of nine elements, not four, on Line 3. Additional extensions allowed by Chemkin-Pro for multiple temperature ranges and for very large molecular clusters are described in Using More than Two Temperature Ranges (p. 7) and Creating Very Large Molecules with Unlimited Number of Elements (p. 8) , respectively. Despite these extensions, however, Chemkin-Pro can use the NASA database directly without any modification. The format conventions are summarized in Table 2.2: Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data (p. 5) .

As indicated in Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4), the pertinent information includes the species name, the elemental composition of the species, and the temperature ranges over which the polynomial fits to thermodynamic data are valid. The fits to C_p^o/R , H^o/RT , and S^o/R

consist of seven coefficients for each of two temperature ranges, see Equation 2.18, Equation 2.22 and Equation 2.28 of the Chemkin-Pro Theory Manual. Further information about the fitting procedure can be found in the Chemkin-Pro Theory Manual as well as Using the FITDAT Utility (p. 99).

Figure 2.1: Excerpts from the therm.dat Thermodynamic Database File

```
THERMO
                                       300.000 1000.000 5000.000
                                                                                                                                                                                                                                                             70590C 3H
  (CH2O)3
                                                                                                                                                                                                                                                                                                                                                                                                                                                         60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G 0300.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4000.00 1500.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
          0.01913678E + 03 \quad 0.08578044E - 01 - 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 05 - 0.03574819E - 08 \quad 0.06605142E - 12 \\ 0.08882060E - 0.0060E - 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2
  -0.06560876 \pm +06 -0.08432507 \pm +03 -0.04662286 \pm +02 \\ \phantom{-}0.06091547 \pm +00 -0.04710536 \pm -03 \\ \phantom{-}0.06560876 \pm +06 -0.08432507 \pm +03 -0.04662286 \pm +02 \\ \phantom{-}0.06560876 \pm +06 -0.08432507 \pm +03 -0.04662286 \pm +02 \\ \phantom{-}0.06560876 \pm +06 -0.08432507 \pm +03 -0.04662286 \pm +02 \\ \phantom{-}0.06091547 \pm +00 -0.04710536 \pm -03 \\ \phantom{-}0.06091547 \pm -00 -0.04710536 \pm -00 \\ \phantom{-}0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3
          0.01968843E-06-0.03563271E-10-0.05665403E+06 0.04525264E+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4
                                                                                                                                                                                                                                                         62987AL 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G 0300.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5000.00 0600.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
          0.02559589E + 02 - 0.10632239E - 03 \quad 0.07202828E - 06 - 0.02121105E - 09 \quad 0.02289429E - 13 \quad 0.02889429E - 10 \quad 0.02889429E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2
            3
             0.02322343 \mathtt{E} - 07 - 0.01705599 \mathtt{E} - 10 \ 0.03886794 \mathtt{E} + 06 \ 0.04363879 \mathtt{E} + 02 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4
```

Table 2.1: Summary of the Rules for Thermodynamic Data

Line #	Contents	Format ^a	Note in following table	Column
1	THERMO (or THERMO ALL) ^C	Free	С	Any
2	Temperature ranges for 2 sets of coefficients: lowest T, common T, and highest T d	3F10.0	d	1 to 30
3	Species name (must start in Column 1)	16A1	е	1 to 16
	Date (not used)	6A1	f	19 to 24
	Atomic symbols and formula	4(2A1, I3)	g	25 to 44
	Phase of species (S, L, or G for solid, liquid, or gas)	A1	h	45
	Low temperature	E10.0	i	46 to 55
	High temperature	E10.0	i	56 to 65
	Common temperature (if needed, else blank)	E8.0	j	66 to 73
	Atomic symbols and formula (if needed, else blank)	2A1, I3	k	74 to 78

Line #	Contents	Format ^a	Note in following table	Column
	The integer 1. This is a mandatory element and must appear in column 80.	l1	I	80
	Atomic symbols and formula (if needed, else blank), or & to indicate continuation to next line (See Creating Very Large Molecules with Unlimited Number of Elements (p. 8) for further information)	4(2A1, I3)	g	81 to 100
4	Coefficients a_1 through a_5 in Equation 2.18, Equation 2.22 and Equation 2.28 of the Chemkin-Pro Theory Manual, for upper temperature interval	5(E15.8)	m	1 to 75
	The integer 2	l1	I	80
5	Coefficients a_{6} , a_{7} for upper temperature interval, and a_{1} , a_{2} , and a_{3} for lower temperature interval	5(E15.8)	m	1 to 75
	The integer 3	I	I	80
6	Coefficients a_4 , a_5 , a_6 , a_7 for lower temperature interval	4(E15.8)	n	1 to 60
	The integer 4	I1	I	80
	Repeat lines 3 - 6 for each species			
last	End (Optional, end of thermodynamic data.)	Free	С	Any

^aThe format string in this column follows the convention of FORTRAN documentation, as detailed in the notes provided in Table 2.2: Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data (p. 5).

Table 2.2: Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)

Note	Format	Format Description	
С	FREE	The particular input described can be in any column of the input line.	
d	3F10.0	3 Floating-point (real) values are allowed; each is allocated 10 columns.	
е	16A1	16 Alpha-numeric characters are allowed in these columns (some may be blank).	
f	6A1	6 Alpha-numeric characters are allowed in these columns (some may be blank).	

^bSee Table 2.2: Fortran Format Descriptions from Table 2.1: Summary of the Rules for Thermodynamic Data (p. 5)

^cUse only when all thermodynamic data are to be taken from Pre-processor input.

d When inserting thermodynamic data directly in the Gas-phase Kinetics and Surface Kinetics input files, Line 2 should only be included with THERMO ALL option (See Gas-phase Kinetics and Surface Kinetics for more information).

Note	Format	Format Description	
g	4(2A1,I3)	There can be 4 sets of data; each set is allowed 2 Alpha-numeric columns (an element symbol) followed by 3 columns containing an Integer value (element count).	
h	A1	1 Alpha-numeric character is allowed.	
i	E10.0	10 columns are allocated for a real value, and scientific notation (E format) is allowed.	
j	E8.0	8 columns are allocated for a real value, and scientific notation (E format) is allowed.	
k	2A1,I3	2 Alpha-numeric columns (an element symbol) followed by 3 columns for an integer value (element count).	
I	l1	One column is allowed for an integer value.	
m	5(E15.8)	5 real values are allowed, with 15 columns allocated for each value, and scientific notation is allowed to have up to 8 values after the decimal point.	
n	4(E15.8)	4 real values are allowed, with 15 columns allocated for each value, and scientific notation is allowed to have up to 8 values after the decimal point.	

The first thermodynamic data line must start with the word THERMO (or THER). If the data appears inside of a *Gas-phase Kinetics* or *Surface Kinetics* input file, then the addition entry ALL (i.e., the first line reads THERMO ALL) tells the pre-processor that all thermodynamic data for the species associated with that chemistry input are included in the chemistry input file. This will cause the pre-processor not to try to open or read a Thermodynamic database file.

If the data are in a thermodynamics database file, or if THERMO ALL precedes within a *Gas-phase Kinetics* or *Surface Kinetics* input file, then the next line must be Line 2 of Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4) . Otherwise Line 2 is skipped. In any case, the subsequent thermodynamic data lines must be in the format of Lines 3 - 6 of Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4) . (For the THERMO option within a kinetics input file, the midpoint temperature is taken from Line 2 information already in the Thermodynamic Database associated with the chemistry set.)

Figure 2.2: Examples of Thermodynamic Data (p. 7) shows some examples of thermodynamic property input, as they might occur within a *Gas-phase Kinetics* input file. In these examples for OH, OH+, and OH-, it is seen from columns 25 - 34 that the elemental composition of each molecule is one O atom and one H atom. In addition, columns 35 - 39 indicate that two of the species, OH+, and OH-, are ionic since they contain -1 and +1 electrons (E), respectively. The G in column 45 indicates that all three species are gaseous. (This phase information is ignored by *Gas-phase Kinetics.*) The 1000.00 in columns 66 - 73 for OH indicates that the common temperature between the high- and low-temperature fits is 1000.00 K. If columns 66 - 73 are left blank, as they are for OH+ and OH-, then the common temperature is that given in columns 11 - 20 in Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4), which in this example is in the Thermodynamic Database. An alternative format is shown for OH if more than two temperature ranges are required. In this case we've given the molecule a different name, "MyOH", but the elemental composition is the same as for OH. The line after the elemental composition contains the TEMP description of minimum, common, and maximum temperatures, and a set of coefficients for each temperature range, ordered from highest to lowest.

Figure 2.2: Examples of Thermodynamic Data

```
THERMO
                                                                                                                                                                                                G 0300.00
OH
                                                                              1212860
                                                                                                                          1 H
                                                                                                                                            1
                                                                                                                                                                                                                                                        5000.00 1000.00
                                                                                                                                                                                                                                                                                                                                                         1
    0.02882730E + 02 \ 0.10139743E - 02 - 0.02276877E - 05 \ 0.02174683E - 09 - 0.05126305E - 14
                                                                                                                                                                                                                                                                                                                                                          2
    0.03886888E+05 \ 0.05595712E+02 \ 0.03637266E+02 \ 0.01850910E-02-0.16761646E-05
                                                                                                                                                                                                                                                                                                                                                          3
    0.02387202E-07-0.08431442E-11 0.03606781E+05 0.13588605E+01
                                                                              1212860 1H 1E -1
                                                                                                                                                                                           G 0300.00
                                                                                                                                                                                                                                                        5000.00
                                                                                                                                                                                                                                                                                                                                                         1
    0.02719058E + 02 \ 0.15085714E - 02 - 0.05029369E - 05 \ 0.08261951E - 09 - 0.04947452E - 13 \ 0.08261951E - 0.08261951E
                                                                                                                                                                                                                                                                                                                                                          2
    0.15763414{\tt E} + 06 \ \ 0.06234536{\tt E} + 02 \ \ 0.03326978{\tt E} + 02 \ \ 0.13457859{\tt E} - 02 - 0.03777167{\tt E} - 04
                                                                                                                                                                                                                                                                                                                                                         3
    0.04687749E-07-0.01780982E-10 0.15740294E+06 0.02744042E+02
                                                                                                                                                                                                                                                                                                                                                          4
                                                                              1212860
                                                                                                                      1H
                                                                                                                                            1E
                                                                                                                                                                   1
                                                                                                                                                                                              G 0300.00
                                                                                                                                                                                                                                                        5000.00
                                                                                                                                                                                                                                                                                                                                                         1
    0.02846204E+02 0.10418347E-02-0.02416850E-05 0.02483215E-09-0.07775605E-14
                                                                                                                                                                                                                                                                                                                                                         2
 -0.01807280{\pm}+06\ 0.04422712{\pm}+02\ 0.03390037{\pm}+02\ 0.07922381{\pm}-02-0.01943429{\pm}-04
    0.02001769E-07-0.05702087E-11-0.01830493E+06 0.12498923E+01
                                                                                                                                                                                                                                                                                                                                                          4
MVOH
                                                                                                    00
                                                                                                                      1 H
                                                                                                                                          1
                                                                                                                                                                     Ω
                                                                                                                                                                                           0G
                                                                                                                                                                                                                 300.000 5000.000
                                                                                                                                                                                                                                                                                                                                                0 1
                              300.000 1000.000 2500.000 5000.000
    0.37260112E+04 0.44780081E+01
    0.37097800E+04 0.26751302E+01
    0.37695923E + 01 - 0.59256858E - 03 - 0.21359336E - 06 \\ 0.13644331E - 08 - 0.63575666E - 12 \\ 0.13644331E - 0.806766E - 12 \\ 0.13646E - 0.806766E - 12 \\ 0.13646E - 0.80676E - 0.80676E
    0.35908836E+04 0.78130486E+00
END
```

The following is a summary of the possibilities for specifying thermodynamic data:

- Case 1: All thermodynamic data from database file
 - 1. A database file is opened during pre-processing (e.g. therm.dat).
 - 2. No THERMO data required in the Gas-phase or Surface Kinetics input file.
- Case 2: Thermodynamic data from database and input files
 - 1. A database file is opened during pre-processing (e.g. therm.dat).
 - 2. Include the following lines in the Gas-phase or Surface Kinetics input file, after the species data:

```
THERMO

Data in Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)

format (lines 3 - 6 repeated) for each species not in the database or to override species in database
```

- Case 3: All thermodynamic data from input file
 - 1. No Thermodynamic database file is required.
 - 2. Include the following lines in the Gas-phase or Surface Kinetics input file, after the species data:

```
THERMO ALL
Data in Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)

format (lines 3 - 6 repeated) for at least all species named in the species data
END
```

2.1.1. Using More than Two Temperature Ranges

An alternative input data format allows specification of more than two temperature ranges. Use of this format provides more flexibility in describing the thermodynamic data for complex functions of temperature. This alternative approach is summarized in Table 2.3: Alternative Format for Specifying More than Two Temperature Ranges (p. 8) . The alternative lines used in place of lines 4 - 6 of Table 2.1: Summary

of the Rules for Thermodynamic Data (p. 4). Line 1 specifies all of the temperature values that define the temperature intervals. Lines 2 and Line 3 are then repeated for each specified temperature interval, in descending order of temperature ranges.

Table 2.3: Alternative Format for Specifying More than Two Temperature Ranges

Alternative lines for more than 2 temperature intervals (in place of Lines 4 - 6 in Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)):			
Line #	Contents	Format	Column
1	TEMP followed by space-delimited minimum fit temperature, common temperatures in increasing order, and maximum fit temperature.	A4, Free	1 to 80
2	Coefficients a_1 - a_5 for a temperature interval	5(E15.8)	1 to 75
3	Coefficients a_{6} , a_{7} for a temperature interval	2(E15.8)	1 to 30

2.1.2. Creating Very Large Molecules with Unlimited Number of Elements

There are some cases where users may want to define very large molecules that contain many elements or that may be composed of a very large number of atoms for a particular element. For this purpose, we have extended the thermodynamic data format to allow users to provide un-limited number of elements and un-constrained composition. Figure 2.3: Examples of Very Large Molecules (p. 8) shows an example (for illustration purposes only) of using this extended format to describe a molecule called CLUSTER1 that consists of 2326 carbon atoms, 895 hydrogen atoms, 18 nitrogen atoms, 53 oxygen atoms, and 32 sulfur atoms. The extended format is enabled by putting a & character at the end of Line 3 (Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)), in column 81. Any number of continuation lines may subsequently be included by adding an ampersand (&) at the end of a preceding line. The composition information used on these continuation lines is in free format, which consists of an element symbol, followed by the number of those atoms in the molecule, followed by another element symbol, and so forth.

Figure 2.3: Examples of Very Large Molecules

```
CLUSTER1 121086 G 300.000 5000.000 1000.00 10 C 2326 H 895 N 18 O 53 S 32

2.60208700e+00-1.78708100e-04 9.08704100e-08-1.14993300e-11 3.31084400e-16 2

8.54215400e+04 4.19517700e+00 2.49858500e+00 8.08577700e-05-2.69769700e-07 3

3.04072900e-10-1.10665200e-13 8.54587800e+04 4.75345900e+00 4
```

2.1.3. Surface-Coverage Dependent Enthalpy of Surface Species

The enthalpy of surface species can be specified to be dependent on surface coverage by entering a block of data starting with HFCOV within a block of thermodynamics data that is being specified for surface species. Coverage-dependent coefficients are a subset of the thermodynamic data, and are specified at the end of the surface thermodynamic data input. The linear coverage-dependent coefficients are explicitly specified under the HFCOV block, as shown below. The required input for each line consists of the species (species_namej) whose enthalpy is dependent on the second mentioned species coverage

(species_namem), and the coverage-dependent coefficient. The coverage-dependent coefficients must be specified in units of Kelvin.

Species_name i Species_name m c i.m

Figure 2.4: HFCOV Thermodynamic Auxiliary Keyword Example

```
THERMO
0(S)
                                                                                          С
                                                                                                        0H
                                                                                                                           00
                                                                                                                                              1AG 1S 0300.00
                                                                                                                                                                                                                     5000.00 1000.00
                                                                                                                                                                                                                                                                                                       1
    0.02542059E + 02 - 0.02755061E - 03 - 0.03102803E - 07 0.04551067E - 10 - 0.04368051E - 14
                                                                                                                                                                                                                                                                                                       2
   0.02923080 \pm +06 \ 0.04920308 \pm +02 \ 0.02946428 \pm +02 -0.16381665 \pm +02 \ 0.02421031 \pm -04
                                                                                                                                                                                                                                                                                                        3
 -0.16028431E-08 0.03890696E-11 0.02914764E+06 0.02963995E+02
                                                                                                                                                                                                                                                                                                        4
                                                                                        C 2H 4O 0AG 1S 0298.00
C2H4(S)
                                                                                                                                                                                                                  5998.00 1298.00
                                                                                                                                                                                                                                                                                                       1
    0.68302018E+01 \ \ 0.10144574E-01-0.34419787E-05 \ \ 0.52897660E-09-0.30353490E-13
-0.98191467 \\ \text{E} + 04 - 0.14816284 \\ \text{E} + 02 - 0.40212793 \\ \text{E} + 00 \\ 0.23298220 \\ \text{E} - 01 - 0.80872187 \\ \text{E} - 05 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 - 0.80872187 \\ \text{E} - 10 \\ 0.23298220 \\ \text{E} - 10 \\ 0.2329820 \\
                                                                                                                                                                                                                                                                                                       3
 -0.25065598E-08 0.15984527E-11-0.71721868E+04 0.24925868E+02
                                                                                                                                                                                                                                                                                                       4
                                                                                                    0H
                                                                                                                        OC1 1AG 1S 0298.00
                                                                                         C
   0.68302018E+01 \ \ 0.10144574E-01-0.34419787E-05 \ \ 0.52897660E-09-0.30353490E-13
                                                                                                                                                                                                                                                                                                        2
 -0.98191467 \pm +04 -0.14816284 \pm +02 -0.40212793 \pm +00 \quad 0.23298220 \pm -01 -0.80872187 \pm -05
-0.25065598E-08 0.15984527E-11-0.71721868E+04 0.24925868E+02
                                                                                                                                                                                                                                                                                                        4
HFCOV ! UNITS ARE KELVIN (ENTHALPY UNITS/GAS CONSTANT)
   O(S) O(S)
                                                           17966.784
   O(S) C2H4(S)
                                                           -1811.777
    O(S) C1(S)
                                                        1409.160
   C2H4(S) C1(S) -4932.058
END
END
```

2.1.4. Gas Species Radiation Absorption Coefficients

For a gas species to absorb or emit infrared energy, its molecular structure must allow rotational and vibrational transitions and change in dipole moment. Accordingly, all monatomic species, such as O and H, and homonuclear diatomic species, such as O₂, H₂, and N₂, are "transparent" with respect to thermal radiation transfer. Most species that are actively absorbing and emitting infrared energy in flames can be neglected in the radiation calculation because they either have very low concentrations (e.g., NO and NO₂) or exist in cooler regions of the flow domain (e.g., hydrocarbon fuel species and CH₃ OH). The most important radiating species in hydrocarbon flames are CO₂ and H₂ O. The next important gas species are CO and CH₄, which emit about 1/10 as much infrared energy as the two dominant species.

The Planck mean absorption coefficients a for CO₂, H₂ O, CO, and CH₄ can be calculated by a narrow-band absorption coefficient model such as RADCAL.[2] (p. 331) Since narrow-band calculations require integrating absorption-line intensities over all wavelengths, direct integration of a narrow-band model into the radiation model would greatly decrease the computational performance.In order to incorporate good absorption coefficient data without sacrificing performance, we instead use polynomials to fit to temperature to represent the absorption coefficient data for individual gas species.[3] (p. 331)

Two types of temperature polynomials are accepted by the radiation model for gas species:

· Polynomial 1:

$$a_i(T) = \sum_j c_j T^j$$
 with $j = 0, \dots, 6$. $(m^{-1}atm^{-1})$ (2.1)

· Polynomial 2:

$$a_i(T) = \sum_j c_j / T^j$$
 with $j = 0, \dots, 6$. (m⁻¹atm⁻¹) (2.2)

The curve-fitting parameters c_j are entered as optional-data lines in the thermodynamic data file or in the thermodynamic data section of the mechanism input file. The absorption coefficient data line is formatted as

```
![_ AbsorptionCoefficient=" polynomial_form Tmin Tmax c0 c1 c2 c3 c4 c5 c6 " _]
```

AbsorptionCoefficient is the tag indicating the data are for species absorption coefficient calculation.polynomial_form indicates the form of polynomial used to fit the absorption coefficient. This must have a value of 1.0 or 2.0, corresponding to Equation 2.1 (p. 9) or Equation 2.2 (p. 10), respectively.Tmin is the lower temperature bound in [K] for the fitted curve to be valid.Tmax is the upper temperature bound in [K] for the fitted curve to be valid.cj are the seven parameters of the polynomial.

This data line must appear before the thermodynamic data of the associated gas species. Different gas species can use a different form of polynomial. Each gas species can have as many as two absorption-coefficient data lines, which allows two sets of parameters of different temperature ranges. If there are two tag lines for a given gas species, they must be of the same type of polynomial and the low-temperature line should appear before the high-temperature line. The gas radiation model will not be activated if no absorption-coefficient data are included in the thermodynamic data file.

For example, the absorption coefficient data of CO are fitted to two type-1 polynomials over temperature ranges of 300—750 K and 750—2500 K, with the coefficients included in the optional-data lines as follows:

2.2. Standard State Enthalpies and Entropies at 298 K

Table 2.4: Standard State Enthalpies and Entropies at 298 K (p. 11) contains the standard state enthalpies and entropies for 778 species that are in the thermodynamic database file, *therm.dat* (see Figure 2.1: Excerpts from the *therm.dat* Thermodynamic Database File (p. 4) and Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4) for the data and formats), which is included with all ANSYS Chemkin-Pro installs. The values in the table were determined by evaluating the polynomial expressions (Equation 2.3 (p. 10) and Equation 2.4 (p. 10) of the Chemkin-Pro Theory Manual) at the standard temperature of 298 K. Note the measured or derived data for $H^o(298)$ and $S^o(298)$ that were used in generating the coefficients in *therm.dat* are also included in Table 2.4: Standard State Enthalpies and Entropies at 298 K (p. 11) for comparison.

$$H^{0}(298) = RT \left[a_{1} + \frac{a_{2}}{2} T + \frac{a_{3}}{3} T^{2} + \frac{a_{4}}{4} T^{3} + \frac{a_{5}}{5} T^{4} + \frac{a_{6}}{T} \right]$$
 (2.3)

$$S^{o}(298) = R \left[a_{1} \ln T + a_{2} T + \frac{a_{3}}{2} T^{2} + \frac{a_{4}}{3} T^{3} + \frac{a_{5}}{4} T^{4} + a_{7} \right]$$
 (2.4)

The units for enthalpies are (kcal)/mole and for entropies cal/(mole \cdot K). The entries in Table 2.4: Standard State Enthalpies and Entropies at 298 K (p. 11) correspond to the *therm.dat* distributed with ANSYS Chemkin-Pro.

Table 2.4: Standard State Enthalpies and Entropies at 298 K

Species	$H^{o}(298)$ ko	cal/mole	$S^{o}(298)$ ca	ıl/(mole·K)
	Data	Fit	Data	Fit
(CH2O)3	-110.70	-110.71	69.42	69.38
(CH3)2SICH2	12.30	12.37	80.37	82.41
AL	78.80	78.80	39.30	39.30
AL2H6	21.35	21.35	62.75	62.75
AL2ME6	-61.20	-61.20	131.05	131.06
ALAS	107.33	107.32	60.65	60.65
ALH	62.00	62.00	44.88	44.87
ALH2	41.95	41.95	54.40	54.40
ALH3	18.83	18.83	52.30	52.30
ALME	19.75	19.75	60.68	60.68
ALME2	12.75	12.75	77.40	77.40
ALME3	-20.30	-20.30	83.68	83.68
AR	0.00	0.00	36.98	36.98
AR+	364.91	364.91	39.75	39.74
AS	75.48	75.48	43.53	43.52
AS2	47.08	47.08	59.83	59.83
AS3	65.35	65.35	77.53	77.53
AS4	37.13	37.13	78.45	78.45
ASALME	70.00	70.00	81.60	81.60
ASALME2	63.25	63.25	91.00	91.00
ASGAET	82.75	82.75	95.20	95.20
ASGAET2	69.55	69.55	109.83	109.83
ASGAME	83.50	83.50	85.75	85.75
ASGAME2	81.25	81.25	91.00	91.00
ASGAMEH	93.75	93.75	84.73	84.73
ASH	61.75	61.75	50.20	50.20
ASH2	42.25	42.25	46.45	46.45
ASH3	16.63	16.63	55.65	55.65
ASME	59.20	59.20	63.80	63.80
ASME2	34.20	34.20	79.50	79.50
ASME3	2.93	2.93	85.78	85.78
В	133.80	133.80	36.65	36.64
B(S)	0.00	0.00	1.41	1.41

Species	$H^{o}(298)$ ko	$H^{o}(298)$ kcal/mole		al/(mole·K)
	Data	Fit	Data	Fit
BCL	33.80	33.80	50.94	50.94
BCL2	-19.00	-19.00	65.14	65.15
BCL3	-96.31	-96.31	69.33	69.33
BE	78.25	78.25	32.54	32.54
BE(S)	0.00	0.00	2.28	2.28
BE2SIO4(S)	-506.03	-506.03	15.34	15.33
BE3B2O6(S)	-741.96	-741.96	24.00	23.97
BE3N2(A)	-140.60	-140.60	8.16	8.15
BE3N2(L)	-116.40	-116.41	9.43	9.41
BEAL2O4(S)	-549.90	-549.90	15.84	15.84
BEB2O4	-323.00	-323.00	78.08	78.08
BEBO2	-115.20	-115.20	63.40	63.41
BEBR	28.71	28.71	54.59	54.59
BEBR2	-54.80	-54.80	65.44	65.44
BEBR2(S)	-85.00	-85.00	24.00	23.99
BECL	14.50	14.50	51.98	51.98
BECL2	-86.10	-86.10	60.26	60.26
BECL2(A)	-117.34	-117.34	19.76	19.75
BECL2(B)	-118.60	-118.60	18.12	18.11
BECLF	-137.00	-137.00	58.89	58.89
BEF	-40.60	-40.60	49.15	49.14
BEF2	-190.25	-190.25	54.36	54.36
BEF2(L)	-244.27	-244.28	14.32	14.32
BEH	76.77	76.77	42.24	42.23
BEH+	276.40	276.40	40.76	40.75
BEH2	30.00	30.00	41.35	41.33
BEH2O2	-161.70	-161.70	55.89	55.91
BEH2O2(A)	-215.80	-215.81	12.80	12.78
BEH2O2(B)	-216.50	-216.51	12.00	11.98
BEI	40.63	40.63	56.69	56.69
BEI2	-15.30	-15.30	69.65	69.65
BEI2(S)	-45.10	-45.11	28.80	28.78
BEN	101.98	101.98	49.87	49.87
BEO(A)	-145.40	-145.39	3.29	3.31
BEO(B)	-143.80	-143.79	3.97	3.99
BEOH	-27.40	-27.40	50.07	50.07
BES(S)	-56.00	-56.00	8.85	8.84

Species	H°(298)ko	$H^{o}(298)$ kcal/mole		al/(mole·K)
	Data	Fit	Data	Fit
BESO4(A)	-287.00	-287.01	18.64	18.60
BESO4(B)	-286.73	-286.75	18.94	18.91
BESO4(GAM)	-282.06	-282.07	24.09	24.06
BN	-59.97	-59.97	3.54	3.53
С	171.29	171.29	37.76	37.76
C(S)	0.00	0.00	1.37	1.37
C+	432.47	432.02	36.94	36.93
C-	140.61	140.61	36.16	36.16
C2	200.22	200.23	47.63	47.63
C2-	106.00	106.00	46.96	46.96
C2CL3	54.37	54.36	79.93	79.89
C2CL5	7.38	7.39	94.52	94.75
C2CL6	-32.43	-32.44	93.15	93.04
C2F6	-321.20	-321.20	79.37	79.38
C2H	135.00	135.00	51.10	49.55
C2H2	54.19	54.19	48.00	48.01
C2H3	0.00	68.41	0.00	55.32
C2H4	12.54	12.54	52.40	52.37
C2H5	0.00	28.01	0.00	60.13
C2H6	0.00	-20.04	0.00	54.72
C2HCL	51.10	51.10	57.81	57.82
C2HCL5	-35.19	-35.19	91.61	91.51
C2N	133.00	133.00	55.16	55.16
C2N2	73.87	73.87	57.71	57.72
C2O	68.50	68.50	55.68	55.67
C3	196.00	196.00	56.68	56.66
C3H2	129.39	129.60	62.01	64.81
C3H2(S)	141.43	141.43	59.74	59.75
C3H4	47.67	47.63	57.99	57.94
C3H4C	67.99	68.00	57.94	57.95
C3H4P	45.77	45.77	58.89	58.89
C3H6	0.00	4.89	0.00	61.51
C3H8	0.00	-24.82	0.00	64.56
C3O2	-22.38	-22.38	65.96	65.96
C4	232.00	232.00	54.54	54.55
C4H	0.00	155.08	0.00	60.89
C4H10	-32.02	-31.84	70.94	71.79

Species	$H^{o}(298)$ ko	al/mole	S°(298)ca	al/(mole·K)
	Data	Fit	Data	Fit
C4H2	0.00	111.70	0.00	59.77
C4H6	0.00	34.96	0.00	68.16
C4H8	0.00	-0.13	0.00	73.55
C5	234.00	234.01	57.81	57.82
C5H	0.00	185.99	0.00	62.20
C5H12	0.00	-34.98	0.00	83.48
C5H2	0.00	165.23	0.00	63.69
C5H5	63.83	63.84	68.10	68.13
C5H6	0.00	31.99	0.00	64.45
C6H	0.00	213.15	0.00	74.10
C6H10	0.00	-1.00	0.00	74.75
C6H14	0.00	-39.91	0.00	92.87
C6H2	0.00	169.66	0.00	70.92
C6H3	0.00	158.45	0.00	76.30
C6H4	99.66	99.67	68.25	68.26
C6H5	79.42	79.43	69.81	69.82
C6H5(L)	140.58	140.58	83.39	84.26
C6H5O	10.34	10.35	74.86	74.87
С6Н5ОН	-25.13	-25.01	76.96	76.93
C6H6	0.00	19.81	0.00	64.35
C6H7	47.94	47.96	73.07	73.07
C8H	0.00	288.86	0.00	78.39
C8H2	0.00	226.15	0.00	75.94
CA	42.85	42.85	36.99	36.98
CA(A)	0.00	0.00	9.93	9.93
CA(B)	0.12	0.12	10.15	10.15
CA(L)	2.61	2.60	12.11	12.10
CA+	185.30	185.30	38.37	38.37
CA2	82.66	82.66	61.29	61.29
CABR	-11.81	-11.81	60.42	60.41
CABR2	-92.00	-92.00	75.20	75.20
CABR2(S)	-163.30	-163.30	31.00	30.99
CACL	-25.00	-25.00	57.71	57.71
CACL2	-112.70	-112.70	69.35	69.35
CACL2(S)	-190.20	-190.20	25.00	24.99
CAF	-65.00	-65.00	54.86	54.86
CAF2	-187.50	-187.50	65.41	65.42

Species	$H^{o}(298)$ ko	cal/mole	S ^o (298)ca	al/(mole·K)
	Data	Fit	Data	Fit
CAH2O2	-145.98	-145.97	68.23	68.25
CAH2O2(S)	-235.68	-235.68	19.93	19.93
CAI	-1.21	-1.21	62.43	62.42
CAI2	-61.70	-61.70	78.26	78.26
CAO	10.50	10.50	52.49	52.52
CAO(S)	-151.79	-151.79	9.13	9.15
CAOH	-46.34	-46.34	56.25	56.26
CAOH+	88.21	88.21	54.92	54.93
CAS	29.54	29.52	55.56	55.55
CCL	106.10	106.10	52.46	52.45
CCL2	53.02	53.02	63.29	63.28
CCL2CCLO	-24.27	-24.27	85.06	84.97
CCL2CCLOH	-44.66	-44.69	83.09	82.88
CCL2CH	62.30	62.29	71.95	71.93
CCL2HOO	-1.37	-1.33	78.30	79.17
CCL2OHCH2	-22.77	-22.60	79.91	80.63
CCL2OHCHCL	-31.69	-31.54	87.57	89.10
CCL3	16.58	16.58	72.20	72.20
CCL3CCLH2	-35.29	-35.28	85.57	85.59
CCL3CCLO	-56.49	-56.47	89.99	90.43
CCL3CH2	18.79	18.89	81.61	82.80
CCL3CHCL	11.06	11.09	88.40	89.03
CCL3CHO	-45.51	-45.47	83.71	85.04
CCL300	-0.74	-0.71	83.14	83.46
CCL4	-20.22	-20.22	78.91	78.91
CCLH2OO	1.22	1.27	71.06	71.68
СН	142.00	142.00	43.72	43.71
CH+	388.80	388.80	41.00	41.00
CH2	92.48	92.48	46.72	46.71
CH2(S)	101.50	101.50	45.10	45.10
CH2CCL	61.43	61.39	64.24	64.15
CH2CCL2	0.75	0.71	68.84	68.76
CH2CCLOH	-37.01	-36.94	69.00	69.35
СН2СНССН	69.14	69.14	66.49	67.33
CH2CHCCH2	74.11	74.14	74.70	75.31
CH2CHCH2	38.70	38.64	64.39	64.73
СН2СНСНСН	86.13	86.09	72.75	73.06

Species	H ^o (298)ko	cal/mole	S°(298)ca	al/(mole·K)
	Data	Fit	Data	Fit
CH2CHCHCH2	28.33	28.29	69.74	70.44
CH2CHCL	4.69	4.67	63.03	62.98
CH2CL	27.08	27.07	59.28	59.28
CH2CL2	-22.83	-22.83	64.57	64.57
CH2CLCCL2	6.02	6.05	82.70	83.32
CH2CLCCLO	-58.33	-58.30	77.51	78.10
CH2CLCH2	23.00	23.10	68.36	69.46
CH2CLCH2CL	-32.35	-32.33	72.20	72.45
CH2CLCHCL	13.10	13.14	75.92	76.80
CH2CLCHCL2	-35.23	-35.22	80.05	80.12
CH2CLCHO	-41.67	-41.66	72.11	74.04
CH2CO	0.00	-12.40	0.00	57.78
CH2F2	-107.71	-107.71	58.94	58.91
СН2НСО	0.00	6.00	0.00	63.99
CH2O	-27.70	-27.70	52.26	52.24
СН2ОН	-4.21	-4.10	58.93	58.87
CH2OHCCL2	-23.26	-23.21	82.18	82.65
CH2OHCHCL	-16.90	-16.79	74.35	74.94
CH2SICL	45.68	45.67	69.39	69.33
CH2SICL3	-87.71	-87.71	90.16	91.94
CH2SIH2CL	-0.90	-0.87	74.23	75.92
CH2SIHCL2	-44.67	-44.67	83.30	85.08
CH3	34.82	34.82	46.38	46.37
CH3C(O)CL	-56.93	-56.86	70.60	71.87
СНЗСС	123.81	123.82	60.28	60.27
CH3CCCH2	74.33	74.34	78.57	80.35
СНЗСССНЗ	40.92	40.94	71.58	73.36
CH3CCH2	61.04	61.09	69.12	69.24
CH3CCL	61.68	61.73	66.18	67.81
CH3CCL2	10.33	10.42	75.42	76.27
CH3CCL3	-33.55	-33.51	76.48	76.61
CH3CCLO	-56.93	-56.86	70.60	71.87
CH3CH2CCH	44.66	44.75	71.46	71.43
CH3CH2CH2CH3	-30.64	-30.50	72.68	73.31
CH3CH2CL	-27.17	-27.10	66.00	66.33
CH3CH2O	-0.51	-0.44	65.48	65.81
СНЗСНСН	64.70	64.75	68.49	68.74

Species	<i>H</i> °(298)k	cal/mole	S ^o (298)ca	al/(mole·K)
	Data	Fit	Data	Fit
CH3CHCL	18.22	18.30	68.46	69.48
CH3CHCL2	-32.08	-32.02	72.79	73.04
СНЗСНОН	-14.34	-14.17	66.73	67.77
CH3CL	-20.00	-20.00	55.99	55.97
СНЗСО	0.00	-5.40	0.00	63.73
CH3F	-56.00	-56.00	53.25	53.22
СНЗНСО	0.00	-39.51	0.00	63.04
CH3NO	18.88	18.95	62.33	63.46
CH3NO2	-16.83	-16.84	70.26	72.03
CH3O	0.00	3.89	0.00	54.60
СНЗОСНЗ	-43.80	-43.72	63.74	64.35
CH3OCL	-14.06	-13.98	64.97	65.42
СНЗОН	0.00	-48.06	0.00	57.27
CH3ONO	-15.30	-15.25	66.63	66.87
CH3ONO2	-26.12	-26.06	71.34	71.63
CH3SICL	-2.47	-2.44	70.99	72.63
CH3SIH2SIH	-10.12	-9.96	88.03	91.66
CH3SIH2SIH2CH3	-10.92	-10.79	88.03	90.60
CH3SIHCL2	-93.81	-93.74	79.61	80.53
CH4	-17.90	-17.90	44.49	44.46
CHCL	80.00	80.00	56.12	56.11
CHCL2	19.51	19.51	65.08	65.08
CHCL2CCL2	8.53	8.53	90.99	92.74
CHCL2CCLO	-57.87	-57.85	84.59	85.22
CHCL2CH2	20.23	20.24	78.03	79.99
CHCL2CHCL	10.32	10.35	82.79	83.54
CHCL2CHCL2	-36.03	-36.02	85.18	85.39
CHCL3	-23.25	-23.25	70.64	70.64
CHCLCCL	55.99	55.98	72.48	72.40
CHCLCCLOH	-43.59	-43.51	76.26	76.42
CHCLCH	64.77	64.81	64.47	64.48
CHCLCHCL	-1.15	-1.15	69.24	69.19
СНСГСНОН	-38.64	-38.56	68.93	69.13
CHCLOH	-16.71	-16.65	65.30	65.41
CHCLOHCH2	-15.20	-15.08	74.53	76.30
CHCLOHCHCL	-24.95	-24.85	82.31	83.81
CHF	30.00	30.00	53.36	53.35

Species	$H^{o}(298)$ ko	al/mole	$S^{o}(298)$ ca	ıl/(mole∙K)
	Data	Fit	Data	Fit
CHF3	-166.60	-166.60	62.03	62.02
CHOHCLCCL2	-31.95	-31.84	88.72	90.27
CHSICL	89.13	89.13	70.30	70.30
CHSICL2	29.60	29.61	81.07	82.86
CHSICL3	-35.28	-35.27	88.41	90.19
CHSIH2CL	50.52	50.55	73.11	74.85
CHSIHCL	67.86	67.93	70.62	72.26
CHSIHCL2	7.19	7.22	80.87	82.62
CL	28.99	28.99	39.45	39.45
CL(CH3)SICH2	-13.11	-13.08	78.44	79.58
CL2	0.00	0.00	53.29	53.29
CL2CCCL2	-5.66	-5.67	81.51	81.41
CL2CCHCL	-3.95	-3.96	77.64	77.54
CL2CCHO	-12.45	-12.46	77.67	77.57
CL2CHOH	-66.56	-66.41	71.53	72.50
CL2CO	-52.70	-52.70	67.64	67.64
CL2COH	-22.80	-22.68	73.07	73.68
CL2HCO	-4.12	-4.12	71.65	71.64
CL2SI(CH3)2	-113.74	-113.59	88.72	90.45
CL2SI(CH3)CH2	-64.26	-64.18	92.21	94.86
CL2SICH2	-34.22	-34.25	75.18	75.10
CL2SICH3	-52.78	-52.71	80.76	81.74
CL2SISI	32.71	32.71	79.88	79.88
CL2SISICL	-24.42	-24.41	92.40	92.46
CL2SISICL2	-95.69	-95.69	102.08	102.02
CL3CCO	1500.00	1500.02	-5.27	87.34
CL3CO	-4.37	-4.37	78.35	78.35
CL3COH	-66.33	-66.23	77.64	79.21
CL3SICH3	-137.81	-137.74	84.47	85.28
CL3SISI	-26.17	-26.17	89.43	89.43
CL3SISICL	-99.56	-99.55	101.49	103.27
CLCCCL	56.20	56.20	64.28	64.28
CLCCO	42.24	42.25	68.92	68.87
CLCH2OH	-55.49	-55.49	69.49	71.45
CLCO	-6.48	-6.48	64.39	64.39
CLCOH	1.17	1.13	62.43	62.37
CLH2CO	-2.35	-2.35	64.42	64.41

Species	$H^{o}(298)$ ko	cal/mole	S°(298)ca	al/(mole·K)
	Data	Fit	Data	Fit
CLHCO	-44.30	-44.30	61.80	61.79
CLO	29.20	29.19	53.00	52.99
CLOCL	19.71	19.71	63.65	63.65
CLOO	33.60	33.60	63.54	63.53
CLSI(CH3)2	-26.19	-26.06	82.72	84.80
CLSI(CH3)2CH2	-37.20	-37.04	92.86	96.44
CLSI(CH3)3	-86.29	-86.08	90.84	93.65
CLSICH3	-2.86	-2.82	70.99	72.64
CLSISI	99.11	99.11	71.44	71.44
CLSISICL	33.48	33.48	81.76	81.88
CN	104.00	104.00	48.41	48.40
CN+	430.87	430.87	50.99	50.98
CN-	14.50	14.50	46.81	46.81
CN2	113.00	113.00	54.04	54.03
CNN	139.70	139.70	55.35	55.35
CNO	97.64	97.64	55.57	55.57
со	-26.42	-26.42	47.21	47.21
CO2	-94.05	-94.05	51.07	51.07
CO2-	-105.50	-105.50	57.49	57.48
COS	-33.08	-33.08	55.32	55.33
CS	67.00	67.00	50.30	50.29
CS2	27.95	27.95	56.85	56.85
CSICL	146.05	146.06	68.07	68.07
CSICL2	89.11	89.11	76.71	76.71
CSICL3	9.05	9.05	86.79	86.79
CSIH2CL	105.85	105.85	69.88	69.88
CSIHCL	119.47	119.47	67.68	67.68
CSIHCL2	63.16	63.16	77.47	77.47
D	52.99	52.99	29.46	29.45
D2	0.00	0.00	34.62	34.62
DH	0.08	0.08	34.34	34.34
DIOXANE	-75.11	-75.12	71.76	71.72
E	0.00	0.00	0.00	4.98
F	18.90	18.90	36.15	36.14
F-	-61.08	-61.08	34.77	34.76
F2	-0.09	-0.09	48.14	48.14
F2N2(C)	16.40	16.40	62.07	62.08

Species	$H^{o}(298)$ ko	cal/mole	S ^o (298)ca	ıl/(mole⋅K)
	Data	Fit	Data	Fit
F2O2	14.00	13.99	64.42	64.33
F2SINH	-146.95	-146.93	70.92	70.92
F3SIN	-200.02	-200.02	73.86	73.87
FNNF	17.88	17.88	63.07	63.47
FNO3	2.50	2.50	69.99	69.99
FO	26.00	26.00	51.77	51.76
FO2	3.00	3.00	61.90	61.90
FONO(C)	10.18	10.16	64.43	64.34
FONO(T)	14.13	14.12	64.88	64.79
FSIN	54.37	54.37	63.67	63.67
GA	68.53	68.52	43.83	43.82
GA2H6	31.50	31.50	69.05	69.05
GAAS	88.40	88.40	63.23	63.23
GAAS(3,C)	245.75	245.75	100.00	100.00
GAAS(3,L)	256.25	256.25	127.75	127.75
GAAS(5,C)	357.75	357.75	130.50	130.50
GAAS(5,L)	420.00	420.00	193.50	193.50
GAET	17.75	17.75	81.60	81.60
GAET2	4.50	4.50	100.43	100.43
GAET3	-17.05	-17.05	112.98	112.98
GAH	54.80	54.80	49.18	49.17
GAH2	41.00	41.00	56.00	56.00
GAH3	27.00	27.00	54.50	54.50
GAME	18.53	18.53	63.80	63.80
GAME2	16.42	16.43	80.55	80.55
GAME3	-10.88	-10.87	87.88	87.88
Н	52.10	52.09	27.39	27.39
H(CH3)SICH2	26.36	26.39	70.27	71.37
H+	367.17	367.15	26.01	26.01
H-	33.23	33.19	26.02	26.01
H2	0.00	0.00	31.21	31.21
H2ALME	6.00	6.00	61.73	61.73
H2ASME	24.05	24.05	64.85	64.85
H2C4O	54.58	54.59	66.42	66.43
H2CCC	160.67	160.67	61.07	61.07
H2CCC(S)	133.42	133.42	58.50	58.49
H2CCCCCH	128.19	128.19	75.36	75.37

Species	<i>H</i> °(298)kd	cal/mole	S ^o (298)ca	ıl/(mole·K)
	Data	Fit	Data	Fit
H2CCCCH	111.34	111.32	72.83	72.94
H2CCCCH2	75.53	75.49	64.77	65.12
H2CCCH	83.03	83.04	61.48	61.48
H2CCCLO	-11.53	-11.54	69.74	69.67
H2CCH(SICL2H)	-66.26	-66.22	84.68	85.71
H2CCH2OH	-4.57	-4.46	69.01	71.17
H2CCHO	3.55	3.51	61.95	61.87
H2CCHSI	97.77	97.77	66.01	65.94
H2CCHSIH	73.54	73.58	66.68	66.79
H2CCHSIH2	58.21	58.21	69.03	68.94
H2CCHSIH3	20.65	20.70	68.95	69.47
H2CLSICH3	-50.13	-50.06	72.04	73.01
H2CLSISICL3	-146.58	-146.56	100.61	101.70
H2CN	59.10	59.11	53.59	53.59
H2CNCH2	56.61	56.53	61.18	61.01
H2CNCH2O	45.02	44.98	68.50	68.38
H2CNCHO	-0.52	-0.56	66.78	66.64
H2CNH	21.89	21.85	54.81	55.45
H2CNNHO	49.78	49.72	67.28	67.10
H2CNNO	58.35	58.36	66.42	66.98
H2CNNO2	33.62	33.64	72.48	73.06
H2CNO	41.46	41.42	61.08	61.01
H2CNO2	36.44	36.47	65.53	65.58
H2CONO	33.07	33.10	68.31	68.54
H2GAET	-2.30	-2.30	83.68	83.68
H2GAME	15.00	15.00	64.85	64.85
H2NF	-6.49	-6.49	54.73	54.72
H2NNO	18.25	18.21	60.27	60.18
H2NO	15.82	15.82	55.69	55.68
H2NOH	-12.23	-12.16	56.04	56.17
H2O	-57.80	-57.80	45.11	45.10
H2O(L)	0.00	-68.31	0.00	16.71
H2O(S)	0.00	-69.96	0.00	10.71
H2O2	0.00	-32.53	0.00	55.65
H2S	-4.90	-4.90	49.15	49.14
H2SI(CH3)2	-23.20	-23.08	72.44	73.83
H2SI(CH3)CH2	25.55	25.61	77.77	79.83

Species	$H^{o}(298)$ ko	cal/mole	$S^{o}(298)$ ca	l/(mole·K)
	Data	Fit	Data	Fit
H2SI(NH2)2	-37.30	-37.15	71.62	72.38
H2SIC	167.19	167.19	60.31	60.21
H2SICCH	90.95	90.95	66.92	66.80
H2SICH	105.35	105.42	62.48	63.58
H2SICH2	40.75	40.72	59.94	59.85
H2SICH3	33.05	33.11	64.52	65.41
H2SIN	149.19	149.19	59.51	59.51
H2SINH	40.99	40.95	59.90	60.09
H2SINH2	28.03	28.09	65.77	65.79
H2SINH3	23.78	23.85	66.78	66.78
H2SISIH2	62.90	62.87	66.69	66.89
H3ASGAET3	-11.00	-11.00	124.48	124.48
H3ASGAME3	-4.70	-4.70	102.50	102.50
H3CONHO	6.46	6.56	71.67	72.65
H3SIC	147.61	147.61	61.79	61.71
H3SICCH	53.02	53.02	64.11	64.02
H3SICH	92.67	92.67	65.63	66.94
H3SICH2	41.54	41.54	67.62	68.97
H3SICH3	-7.32	-7.25	61.75	62.43
H3SIN	234.59	234.60	56.93	56.93
H3SINH	51.32	51.34	65.52	66.21
H3SISIH	74.91	74.96	67.99	69.32
H3SISIH3	19.11	19.16	68.06	68.06
HALME	27.25	27.25	62.78	62.78
HALME2	-6.73	-6.72	75.32	75.33
HASALME	56.50	56.50	83.68	83.68
HASGAET	69.15	69.15	97.28	97.28
HASGAME	70.00	70.00	87.88	87.88
HASME	42.58	42.58	65.90	65.90
HASME2	18.10	18.10	78.45	78.45
НСССНССН	134.95	134.95	73.15	73.17
HCCCL	54.95	54.95	57.29	57.29
нсснссн	129.91	129.88	68.80	69.06
нссо	42.44	42.44	60.74	60.73
нссон	20.42	20.43	58.69	58.70
HCCSICL2H	-31.76	-31.76	82.04	82.04
HCL	-22.06	-22.06	44.65	44.64

Species	$H^{o}(298)$ ko	cal/mole	<i>S</i> °(298)ca	ıl/(mole∙K)
	Data	Fit	Data	Fit
HCL2SICH3	-94.23	-94.16	79.61	80.53
HCL2SISICL2H	-145.25	-145.24	99.80	101.08
HCLCCCLO	-19.42	-19.43	77.51	77.40
HCLCCHO	-6.02	-6.03	70.20	70.09
HCLSI(CH3)2	-68.24	-68.09	81.59	83.53
HCLSI(CH3)CH2	-19.15	-19.06	83.79	86.52
HCLSICH2	2.62	2.59	68.45	68.37
HCLSICH3	-9.10	-9.03	72.91	74.00
HCLSISI	67.05	67.05	71.34	71.34
HCN	31.89	31.89	48.21	48.21
HCNH	66.15	66.10	55.58	55.90
HCNO	38.42	38.43	53.75	53.79
НСО	10.40	10.40	53.67	53.65
HCO+	199.10	199.10	48.59	48.59
НСООН	-92.57	-92.61	59.32	59.26
HE	0.00	0.00	0.00	30.12
HE+	0.00	568.46	0.00	31.50
HF	-65.14	-65.14	41.51	41.50
HG2BR2(S)	-48.80	-48.80	52.28	52.27
HG2CL2(S)	-63.32	-63.32	46.02	46.00
HG2F2(S)	-116.00	-116.00	38.40	38.39
HG2I2(S)	-28.46	-28.47	57.67	57.66
HGAET	22.90	22.90	83.68	83.68
HGAET2	-2.30	-2.30	100.50	100.50
HGAME	29.00	29.00	65.90	65.90
HGAME2	2.50	2.50	79.50	79.50
HGBR	24.90	24.90	64.88	64.87
HGCL2	-34.97	-34.96	70.43	70.43
HGCL2(S)	-55.00	-55.00	34.54	34.53
HGF2	-70.19	-70.18	63.55	63.55
HGF2(S)	-101.00	-101.00	27.80	27.79
HGH	57.00	57.00	52.49	52.48
HGI	31.90	31.90	67.07	67.06
HGO	10.00	10.00	57.13	57.13
HGO(S)	-21.70	-21.70	16.80	16.79
HMEGAET	4.00	4.00	88.90	88.90
HN(OH)2	-24.72	-24.64	61.98	62.09

Species	<i>H</i> ^o (298)ko	cal/mole	$S^{o}(298)$ ca	ıl/(mole∙K)
	Data	Fit	Data	Fit
HN3	71.87	71.87	239.08	57.14
HNC	43.85	43.85	48.93	48.93
HNCN	76.43	76.43	59.36	59.36
HNCNH	35.61	35.71	57.31	57.42
HNCO	-28.22	-28.22	57.05	57.05
HNF	32.00	32.00	54.98	54.97
HNF2	-13.79	-13.79	60.06	60.06
НИИНО	21.91	21.86	58.70	58.63
HNNO	55.25	55.20	60.59	60.53
HNNONO	59.02	58.99	70.98	70.97
HNO	23.80	23.80	52.73	52.72
HNO2	-14.15	-14.15	56.75	56.73
HNO3	-32.10	-32.10	63.66	63.66
HNOH	21.05	21.06	55.78	55.78
HO2	2.50	2.50	54.73	54.72
НОСН2ОН	-96.64	-96.53	61.14	61.31
HOCL	-18.64	-18.64	56.34	56.33
HOCN	-3.55	-3.53	57.66	59.25
НОСО	-46.31	-46.29	60.12	60.11
HONO	-18.34	-18.34	59.59	59.58
HONO2	-30.18	-30.18	63.20	63.16
HSI(CH3)2	18.27	18.38	74.81	76.56
HSI(CH3)2CH2	9.32	9.44	86.18	88.89
HSI(CH3)3	-39.40	-39.24	83.61	85.87
HSI(NH2)2	5.62	5.77	72.56	73.38
HSI(NH2)3	-64.86	-64.68	78.65	79.52
HSIC	184.85	184.85	58.24	58.13
HSICCH	104.97	104.97	64.44	64.32
HSICH2	85.83	85.81	60.64	60.53
HSICH3	48.84	48.90	62.04	63.21
HSICL	17.00	17.00	59.80	59.80
HSIN	92.99	92.99	54.76	54.75
HSINH	84.80	84.79	60.63	60.68
HSINH2	26.33	26.29	59.77	60.05
HSISICL	79.13	79.11	73.04	72.96
I*C3H7	0.00	18.20	0.00	60.09
К	21.31	21.31	38.30	38.30

Species	$H^{o}(298)$ kc	al/mole	$S^{o}(298)$ ca	ıl/(mole∙K)
	Data	Fit	Data	Fit
K(L)	0.55	0.55	17.08	17.07
K+	122.90	122.90	36.92	36.92
K2	30.37	30.37	59.67	59.66
K2B4O7(S)	-796.90	-796.89	49.80	49.82
K2B6O10(S)	-1107.44	-1107.50	60.00	59.87
K2B8O13(S)	-1420.92	-1420.93	70.20	70.18
K2CO3(S)	-274.90	-274.91	37.17	37.15
K2H2O2	-156.50	-156.50	78.37	78.35
K2O(S)	-86.80	-86.79	22.50	22.51
K2O2(S)	-118.50	-118.47	27.00	27.05
K2SO4	-261.50	-261.50	87.49	87.50
K2SO4(A)	-343.62	-343.62	41.96	41.94
K2SO4(B)	-340.40	-340.41	45.96	45.94
K3CL6AL(S)	-500.00	-499.97	90.00	90.08
K3CL9AL2(S)	-683.60	-683.61	112.00	111.96
K3F6AL(S)	-795.00	-794.96	68.00	68.11
KBF4	-371.00	-371.00	75.35	75.36
KBO2	-161.10	-161.10	71.06	71.06
KBO2(S)	-237.80	-237.81	19.12	19.10
KBR	-43.04	-43.04	59.85	59.85
KBR(L)	-89.98	-89.99	25.23	25.22
KBR(S)	-94.12	-94.12	22.93	22.92
KCL	-51.31	-51.31	57.12	57.11
KCL(L)	-100.81	-100.81	20.71	20.71
KCL(S)	-104.37	-104.37	19.73	19.73
KCL4AL(S)	-286.00	-286.01	47.00	46.98
KCLO4(S)	-102.80	-100.21	36.10	40.62
KCN	19.00	19.00	60.48	60.47
KCN(L)	-24.89	-24.89	32.10	32.09
KCN(S)	-27.12	-27.12	30.54	30.53
KF	-78.10	-78.10	54.14	54.13
KF(L)	-132.52	-132.52	16.17	16.16
KF(S)	-135.90	-135.90	15.91	15.91
KH	29.40	29.40	47.30	47.30
KH(S)	-13.82	-13.81	12.00	12.02
KI	-30.00	-30.00	61.70	61.70
KI(L)	-74.77	-74.77	27.27	27.26

Species	$H^{o}(298)$ kcal/mole		$S^{o}(298)$ cal/(mole·K)	
	Data	Fit	Data	Fit
KI(S)	-78.37	-78.37	25.43	25.42
КО	17.00	17.00	56.86	56.86
KO-	-33.00	-33.00	54.06	54.06
KO2(S)	-68.00	-68.00	29.28	29.27
КОН	-98.64	-98.65	23.09	23.07
KOH+	119.00	119.00	59.80	59.81
ME2GAET	-5.25	-5.25	97.28	97.28
MEGAET	14.25	14.25	89.95	89.95
MEGAET2	-7.33	-7.32	106.70	106.71
MG	35.28	35.28	35.50	35.50
MG(L)	2.16	2.16	10.16	10.16
MG(S)	0.00	0.00	7.81	7.81
MG+	213.09	213.09	36.88	36.88
MG2	68.91	68.91	58.28	58.27
MG2BR4	-183.50	-183.50	110.24	110.23
MG2C3(S)	19.00	19.00	24.00	24.01
MG2F4	-410.70	-410.69	80.52	80.55
MGAL2O4(S)	-549.50	-549.49	21.20	21.22
MGB2(S)	-21.98	-21.99	8.60	8.59
MGBR	-8.45	-8.45	58.52	58.52
MGBR2	-72.40	-72.40	71.92	71.92
MGBR2+	174.80	174.80	76.87	76.87
MGC2(S)	21.00	21.00	13.00	13.01
MGCL	-10.40	-10.40	55.76	55.76
MGCL2	-93.80	-93.80	66.18	66.18
MGCL2(S)	-153.35	-153.35	21.42	21.42
MGCO3(S)	-265.70	-265.70	15.74	15.73
MGF	-56.60	-56.60	52.81	52.81
MGF2	-173.70	-173.70	61.28	61.28
MGF2(S)	-268.70	-268.70	13.68	13.67
MGF2+	141.49	141.49	61.67	61.68
MGH	40.40	40.40	46.15	46.14
MGH2(S)	-18.20	-18.20	7.43	7.42
MGH2O2	-136.80	-136.80	63.85	63.87
MGH2O2(S)	-221.00	-221.00	15.12	15.10
MGN	69.00	69.00	53.71	53.71
MGO(S)	-143.70	-143.70	6.44	6.45

Species	$H^{o}(298)$ kcal/mole		$S^{o}(298)$ cal/(mole·K)	
	Data	Fit	Data	Fit
MGOH	-39.38	-39.38	54.10	54.11
MGOH+	139.68	139.68	52.75	52.76
MGS	34.71	34.71	53.87	53.84
MGS(S)	-82.63	-82.63	12.03	12.02
MGSO4(S)	-301.57	-301.58	21.84	21.83
N	112.98	112.95	36.61	36.61
N*C3H7	0.00	22.60	0.00	64.13
N2	0.00	0.00	45.77	45.76
N2F2(C)	17.88	17.88	62.26	62.24
N2F2(T)	20.08	20.07	62.14	62.06
N2F4	-2.00	-2.00	71.96	71.98
N2H2	50.90	50.90	52.22	52.20
N2H3	0.00	36.78	0.00	54.61
N2H4	22.79	22.79	57.03	57.02
N2H4(L)	12.10	12.09	29.05	29.03
N2O	19.61	19.61	52.55	52.55
N2O+	318.69	318.69	55.87	55.86
N2O4	2.17	2.17	72.72	72.72
N3	99.00	99.00	54.10	54.10
NA	25.76	25.75	36.71	36.71
NA(L)	0.58	0.57	13.83	13.82
NA+	145.76	145.75	35.34	35.33
NA2	32.87	32.87	54.99	54.99
NA2B4O7(S)	-783.16	-783.17	45.29	45.27
NA2B6O10(S)	-1094.76	-1094.79	55.50	55.43
NA2C2N2	-2.10	-2.10	82.93	82.93
NA2F2	-202.30	-202.30	68.66	68.67
NA2H2O2	-145.20	-145.20	73.44	73.43
NA2O(L)	-89.11	-89.12	21.90	21.88
NA2O(S)	-99.90	-98.48	17.94	19.10
NA2O2	-122.66	-121.57	22.66	24.05
NA2SO4	-247.04	-247.04	82.87	82.89
NA2SO4(D)	-329.66	-329.66	39.01	38.99
NA2SO4(i)	-330.04	-330.04	38.30	38.28
NA2SO4(iii)	-330.99	-330.99	37.02	37.01
NA2SO4(iv)	-331.63	-331.64	35.89	35.87
NA2SO4(v)	-331.70	-331.70	35.75	35.74

Species	$H^{o}(298)$ ko	$H^{o}(298)$ kcal/mole		$S^{o}(298)$ cal/(mole·K)	
	Data	Fit	Data	Fit	
NA3CL6AL(S)	-473.00	-472.97	83.00	83.08	
NA3F6AL(S)	-792.76	-792.77	57.00	56.97	
NABH4(S)	-45.85	-45.85	24.23	24.23	
NABO2	-155.00	-155.00	68.63	68.63	
NABO2(S)	-233.20	-233.21	17.58	17.56	
NABR	-34.40	-34.40	57.63	57.63	
NABR(L)	-81.11	-81.11	24.94	24.93	
NABR(S)	-86.38	-86.38	20.75	20.74	
NACH	22.53	22.53	58.14	58.14	
NACL	-43.36	-43.36	54.90	54.90	
NACL(S)	-98.26	-98.26	17.24	17.23	
NACL4AL(S)	-273.00	-273.01	45.00	44.97	
NACN	22.53	22.53	58.14	58.14	
NACN(S)	-21.68	-21.68	28.32	28.31	
NAF	-69.42	-69.42	51.98	51.98	
NAF2-	-160.00	-160.00	59.89	59.89	
NAF4AL	-440.00	-440.00	82.41	82.43	
NAH	29.70	29.70	45.00	44.99	
NAI(S)	-68.80	-68.80	23.54	23.54	
NAO	20.00	20.00	54.74	54.74	
NAO-	-29.00	-29.00	51.95	51.95	
NAO2(S)	-62.30	-62.30	27.70	27.69	
NAO2AL(S)	-270.84	-270.59	16.83	17.17	
NAOH	-47.27	-47.26	54.57	54.58	
NAOH(L)	-99.64	-99.64	18.13	18.12	
NAOH+	162.00	162.00	57.96	57.96	
NCN	107.59	107.59	54.77	54.76	
NCO	31.51	31.51	54.14	54.14	
NF	53.93	53.93	50.82	50.82	
NF2	7.87	7.87	59.40	59.39	
NF3	-27.97	-27.97	61.79	61.79	
NFO	-15.70	-15.70	59.27	59.27	
NFO2	-26.00	-26.00	62.18	62.18	
NH	85.20	85.20	43.29	43.29	
NH2	45.50	45.50	46.51	46.50	
NH3	-10.97	-10.97	46.05	46.03	
NNH	58.57	58.57	53.63	53.62	

Species	<i>H</i> ^o (298)ko	cal/mole	S°(298)ca	al/(mole·K)
	Data	Fit	Data	Fit
NO	21.58	21.58	50.35	50.34
NO+	236.66	236.66	47.35	47.34
NO2	7.91	7.91	57.34	57.33
NO2-	-48.45	-48.45	56.52	56.51
NO2F	-23.10	-23.09	61.26	61.26
NO3	17.00	17.00	60.35	60.35
NO3F	3.34	3.34	68.94	68.85
NOF	-16.91	-16.90	58.63	58.63
NOF3	-39.00	-39.00	66.54	66.55
0	59.55	59.55	38.47	38.46
O+	374.95	374.95	37.01	37.01
O-	24.32	24.32	37.69	37.68
O2	0.00	0.00	49.01	49.00
O2-	-11.61	-11.62	50.06	50.06
O2F	22.56	22.56	60.57	60.56
O3	34.10	34.10	57.08	57.08
OC(OH)2	-147.04	-147.04	64.46	64.40
ОСНСНО	-49.55	-49.53	64.82	64.98
OCHNNHO	-2.05	-2.09	69.36	69.15
OF	23.73	23.73	50.43	50.43
OF2	4.60	4.60	58.54	58.54
ОН	9.32	9.32	43.88	43.87
OH+	314.80	314.80	43.66	43.65
OH-	-34.32	-34.32	41.19	41.19
ONHNHO	23.55	23.52	62.66	62.55
ONHNOH	-1.77	-1.77	65.04	64.93
Р	79.80	79.80	38.98	38.98
P2	42.68	42.68	52.11	52.11
P4	30.77	30.78	66.89	66.92
S	66.20	66.20	40.09	40.09
S(L)	0.00	0.44	0.00	8.77
S(S)	0.00	0.00	0.00	7.62
S+	306.48	306.47	39.08	39.08
S-TRIAZINE	56.36	56.37	64.49	64.49
S2	30.71	30.71	54.51	54.50
SH	33.30	33.30	46.73	46.73
SI	107.70	107.70	40.12	40.12

Species	<i>H</i> ^o (298)ko	cal/mole	$S^{o}(298)$ ca	ıl/(mole∙K)
	Data	Fit	Data	Fit
SI(CH3)2	32.16	32.19	74.55	77.23
SI(CH3)3	3.12	3.28	84.75	87.23
SI(CH3)3CH2	-6.88	-6.71	96.57	99.89
SI(CH3)4	-55.74	-55.51	93.08	96.05
SI(L)	11.59	11.58	10.63	10.62
SI(NH2)3	-18.77	-18.63	84.34	84.27
SI(NH2)4	-92.88	-92.67	84.54	85.38
SI(S)	0.00	0.00	4.50	4.50
SI2	145.79	145.79	54.83	54.83
SI2C	128.00	128.00	57.88	57.88
SI2CL5	-151.65	-151.64	109.12	110.10
SI2CL5H	-188.98	-188.97	108.00	108.98
SI2CL6	-232.75	-232.73	111.13	111.85
SI2F6	-569.62	-569.61	97.16	97.16
SI2H2	95.63	95.62	58.84	58.83
SI2H3	105.70	105.70	65.51	65.51
SI2H5	55.70	55.70	68.85	68.85
SI2H6	19.10	19.10	64.54	64.53
SI3	152.00	152.00	64.00	64.01
SI3H8	28.90	28.90	81.57	81.56
SI3N4(A)	-178.00	-178.00	27.00	26.99
SIC	172.00	172.01	50.89	50.93
SIC(B)	-17.50	-17.50	3.97	3.98
SIC2	147.00	147.00	56.55	56.55
SICCH	125.77	125.77	60.40	60.26
SICH	124.39	124.39	54.94	54.83
SICH2	74.15	74.15	55.99	55.92
SICH3	74.53	74.53	60.16	60.13
SICL	37.90	37.90	56.80	56.80
SICL2	-40.30	-40.30	67.20	67.20
SICL2H2	-74.50	-74.50	68.40	68.40
SICL3	-76.50	-76.50	75.50	75.50
SICL3CH2CH	-140.60	-140.59	93.99	95.65
SICL3H	-118.60	-118.60	74.90	74.89
SICL4	-158.40	-158.40	79.10	79.09
SICLH3	-32.20	-32.20	59.80	59.79
SIF	-12.42	-12.42	52.71	52.71

Species	H ^o (298)ko	cal/mole	S ^o (298)ca	al/(mole·K)
	Data	Fit	Data	Fit
SIF(NH2)2	-95.48	-95.33	76.93	77.70
SIF(NH2)3	-170.70	-170.55	87.97	87.91
SIF2	-149.86	-149.86	61.38	61.38
SIF2(NH2)2	-247.30	-247.19	82.82	82.77
SIF2N	-63.11	-63.11	70.51	70.51
SIF2NH2	-167.24	-167.21	77.17	77.48
SIF3	-237.42	-237.42	67.76	67.76
SIF3NH	-249.65	-249.65	82.15	83.70
SIF3NH2	-317.89	-317.89	79.98	81.03
SIF3NHSIH3	-320.19	-320.16	95.97	96.88
SIF3NSIH3	-252.84	-252.83	97.65	99.34
SIF4	-385.98	-385.98	67.55	67.54
SIFH3	-85.50	-85.50	57.00	57.00
SIFNH	-13.57	-13.49	68.88	68.95
SIFNH2	-80.01	-80.04	64.68	64.62
SIH	91.70	91.70	44.20	44.20
SIH2	64.80	64.80	49.50	49.49
SIH2CL	7.80	7.80	62.30	62.30
SIH2F	-42.16	-42.16	59.70	59.70
SIH2F2	-186.38	-186.38	62.81	62.81
SIH3	47.43	47.43	51.81	51.80
SIH3NH2	-11.45	-11.40	65.66	65.66
SIH3NHSIH3	-14.32	-14.32	83.54	85.95
SIH3NSIH3	48.90	48.90	83.75	86.69
SIH3SIH2CH3	4.03	4.14	79.43	81.90
SIH4	8.09	8.10	48.90	48.90
SIHCL2	-34.30	-34.30	70.30	70.30
SIHF	-35.70	-35.70	57.07	57.07
SIHF2	-139.57	-139.57	65.05	65.05
SIHF3	-288.63	-288.63	66.65	66.65
SIN	115.55	115.55	51.95	51.95
SINH	38.39	38.39	51.66	51.66
SINH2	48.67	48.67	58.56	58.56
SN	63.00	63.00	53.06	53.05
SO	1.20	1.20	53.02	53.01
SO2	-70.95	-70.95	59.30	59.29
SO3	-94.59	-94.59	61.34	61.34

Species	$H^{o}(298)$ kcal/mole		$S^{o}(298)$ cal/(mole·K)	
	Data	Fit	Data	Fit
ТІ	113.20	113.20	43.07	43.06
TICL	36.90	36.90	59.54	59.54
TICL2	-56.70	-56.70	66.50	66.50
TICL3	-128.90	-128.90	75.70	75.71
TICL4	-182.40	-182.40	84.79	84.80

Chapter 3: Gas-phase Kinetics Input

The *Gas-phase Kinetics* input file provides a symbolic description of an elementary chemical reaction mechanism. This file is used during Pre-processing to create a *Gas-phase Kinetics* linking file (*chem.asc*) that stores pertinent information about that mechanism for access during the reactor-model simulation. The information in the Linking File is subsequently accessed by an initialization routine that copies the needed information into memory during a reacting-flow simulation. The stored information is used in calculations related to the equation of state, thermodynamic properties, and chemical production rates.

The *Gas-phase Kinetics* input file includes information on elements, species, thermodynamic data, and the reaction mechanism. Element data are read first, species data are second, followed by optional thermodynamic data, with reactions specified last. The thermodynamic data for the species may come be included in the *Gas-phase Kinetics* input file and/or from a Thermodynamic Database (e.g., *therm.dat*). With the exception of the thermodynamic data, all input is free format. The required syntax for the four types of input is described in Element Data (p. 33) through Reaction Mechanism Description (p. 39). The auxiliary keywords for gas-phase reactions are described in Table 3.7: Alphabetical Listing of Gas-phase Reaction Auxiliary Keywords (p. 43) and the options for specifying units on the REACTIONS line are described in Table 3.4: Alphabetical Listing of REACTIONS-line Options for Gas-phase Kinetics Data (p. 39). Alphabetical Listing of Project Input Keywords (p. 123) describes the meaning and usage of each keyword entry that may be included as part of a Reactor Model input file.

Note

Input information in the *Gas-phase Kinetics* input file must be contained within the first **100 columns, or it will be ignored**.

3.1. Element Data

All chemical species in the reaction mechanism must be composed of chemical elements or isotopes of chemical elements. Each element and isotope must be declared as a one- or two-character symbol. The purpose of the element data is to associate atomic weights of the elements with their character symbol representations and to identify the order in which arrays of element information in the *Gas-phase Kinetics* Subroutine Library are referenced. For example, an array of atomic weights for the elements is in exactly the same order in which the elements were declared in the element data. In other words, if the atomic weights are stored in an array AWT, then AWT (3) is the atomic weight of the third element declared in the element data.

Element data must start with the word ELEMENTS (or ELEM), followed by any number of element symbols on any number of lines. Element symbols may appear anywhere on a line, but those on the same line must be separated by blanks. Any line or portion of a line starting with an exclamation mark (!) is considered a comment and will be ignored. Blank lines are ignored.

If an element is on the periodic chart, then only the symbol identifying the element need appear in the element data.

Note

The elements that ANSYS Chemkin-Pro recognizes are as follows: H, HE, LI, BE, B, C, N, O, F, NE, NA, MG, AL, SI, P, S, CL, AR, K, CA, SC, TI, V, CR, MN, FE, CO, NI, CU, ZN, GA, GE, AS, SE, BR, KR, RB, SR, Y, ZR, NB, MO, TC, RU, RH, PD, AG, CD, IN, SN, SB, TE, I, XE, CS, BA, LA, CE, PR, ND, PM, SM, EU, GD, TB, DY, HO, ER, TM, YB, LU, HF, TA, W, RE, OS, IR, PT, AU, HG, TL, PB, BI, PO, AT, RN, FR, RA, AC, TH, PA, U, NP, PU, AM, CM, BK, CF, ES, FM, D, E

For the elements appearing on the periodic chart, the ANSYS Chemkin-Pro pre-processors have the atomic weight (in grams per mole) stored internally. For isotopes, a one- or two- character symbol must be input by the user to identify each isotope, and a symbol and an atomic weight (in grams per mole) for each must be defined. The same symbol must be used in the thermodynamic data to identify the elemental composition of species involving the isotope. Once an isotope has been so defined, it is treated exactly as a new element. If an ionic species is used in the reaction mechanism (i.e., OH+), an electron must be declared as the element E.

For an isotope, the atomic weight must follow the identifying symbol and be delimited by slashes (/). The atomic weight may be in integer, floating-point, or E format (e.g., 2, 2, 0, 0, 2E1), but internally it will be converted to a floating point number. For example, the isotope deuterium may be defined as D/2.014/. If desired, the atomic weight of an element in the periodic chart may be altered by including the atomic weight as input just as though the element were an isotope.

Figure 3.1: Examples of Species Data (p. 34) shows several equivalent ways to describe element information. In this example the elements are hydrogen, oxygen, nitrogen, and the isotope deuterium.

Figure 3.1: Examples of Species Data

Table 3.1: Summary of the Rules for Element Data (p. 34) summarizes the rules for element data.

Table 3.1: Summary of the Rules for Element Data

Rule	Description
1	The first element line must start with the word ELEMENTS (or ELEM).
2	Element or isotope names are either one- or two-character symbols.
3	An isotope name (i.e., a name not on the periodic chart) must be followed by its atomic weight (in grams per mole) delimited by slashes.
4	Each element or isotope should be declared only once; however, duplicated element symbols will be ignored.

Rule	Description
5	An element or isotope name may appear anywhere on the line.
6	Any number of element or isotope names may appear on a line, and more than one line may be used.
7	Element or isotope names that appear on the same line must be separated by at least one blank space.
8	An element or isotope name that begins on one line may not continue to the next line.
9	Any blank spaces between an element or isotope name and the first slash are ignored and any blank spaces between slashes and an atomic weight are also ignored. However, no blank spaces are allowed within an element name or an atomic weight.
10	There may be more than one ELEMENT statement.
11	All characters following an exclamation mark are comments.
12	It is recommended that an END statement follow a group of elements.
13	Elements required by <i>Surface Kinetics</i> surface species must be declared in the <i>Gas-phase Kinetics</i> input file.

3.2. Species Data

Each chemical species in a problem must be identified on one or more species line(s). Any set of up to 16 upper or lower case characters can be used as a species name. In addition each species must be composed of elements that have been identified in the element data. As for the element data, one of the primary purposes of the species data is to identify the order in which arrays of species information are referenced in the *Gas-phase Kinetics* Subroutine Library.

Species data must start with the word SPECIES (or SPEC), followed by any number of species symbols on any number of lines. Species symbols may appear anywhere on a line, but those on the same line must be separated by blank spaces. Any line or portion of a line starting with an exclamation mark (!) is considered to be a comment and will be ignored. Blank lines are ignored. Figure 3.2: Examples of Species Data (p. 35) shows several equivalent ways to describe species information.

Figure 3.2: Examples of Species Data

```
SPECIES H2 02 H 0 OH H02 N2 N NO END

SPEC ! SPEC is equivalent to SPECIES
H2 02
H 0 OH H02 N2 N NO
END

SPEC H2
spec 02
```

The rules for species data are summarized in Table 3.2: Summary of the Rules for Species Data (p. 35)

Table 3.2: Summary of the Rules for Species Data

Rule	Description
1	Species data must start with the word SPECIES (or SPEC).

Rule	Description
2	Species names are composed of up to 16-character upper- or lower- case symbols. The names cannot begin with the characters +, =, or a number; an ionic species name may end with one or more + 's or - 's.
3	Each species should be declared only once; however, duplicated species symbols will be ignored.
4	Each species that subsequently appears in a reaction must be declared.
5	A species name may appear anywhere on the line.
6	Any number of species names may appear on a line, and more than one line may be used.
7	Species named on the same line must be separated by at least one blank space.
8	A species name that begins on one line may not continue to the next line.
9	There may be more than one SPECIES statement.
10	All characters following an exclamation mark are comments.
11	For best results, an END statement should follow a species group.

3.3. Thermodynamic Data

All gas-phase species that appears in the reactions contained in the *Gas-phase Kinetics* input or in the *Surface Kinetics* input, must have associated thermodynamic data. The data may be extracted from a database file (e.g. *therm.dat*) and/or read directly from the *Gas-phase Kinetics* input file. Details on the thermodynamic data format, whether including in the *Gas-phase Kinetics* input file or in a thermodynamic database file, are provided in Thermodynamic Data Format (p. 3).

Note

When thermodynamic data input is included in the *Gas-phase Kinetics* input file, it must immediately follow species data.

Note

The *therm.dat* file distributed with ANSYS Chemkin-Pro represents a historical (not necessarily best) collection of data accumulated by Sandia National Laboratories over the period from 1980 to 1995. The data fits in this collection are based on a variety of sources, including JANAF Tables, NASA, and computational chemistry calculations performed at Sandia and elsewhere. This data set has been fixed and not updated in order to assure backwards compatibility and consistency with published Chemkin-Pro results.

3.4. Real Gas Data

ANSYS Chemkin-Pro employs the cubic equation of state (EOS) to capture the P-T-V relationship of a real gas mixture at high pressures. For each gas species in the real gas mixture, the cubic equation of state models require additional properties that are not part of the regular thermodynamic data. These properties include the critical point, P_c , T_c , and V_c , and the acentric factor ω , and would be provided in the real gas data block of the gas-phase mechanism. The real gas data block starts with the keyword EOS_. Immediately following this keyword (no space), a phrase indicating the choice of the cubic

equation of state model to be used with this gas mechanism is appended. There are five cubic EOS models available in ANSYS Chemkin-Pro. (For more details, see Real Gas Model in the *Chemkin-Pro Theory Manual*) These cubic equation of state models, along with their key phrases, are listed in Table 3.3: Cubic equation of state models available in Chemkin-Pro (p. 37). For example, the keyword EOS_PR will cause the Peng-Robinson equation of state to be applied whenever this gas mechanism is used in a ANSYS Chemkin-Pro simulation.

Table 3.3: Cubic equation of state models available in Chemkin-Pro

Cubic EOS Model	Key Phrase
van der Waals	VAND or VDW
Redlich-Kwong	REDL or RK
Soave-Redlich-Kwong	SOAV or SRK
Aungier-Redlich-Kwong	AUNG or ARK
Peng-Robinson	PENG or PR

The required properties of all gas species in the mechanism are given below the EOS_ keyword. Each gas species will have its properties listed in one single line. The line must start with the species name and be followed by, in the exact same order, the values of P_c , T_c , V_c , and $\omega\omega$ for this gas species. The critical pressure P_c is in bar, the critical temperature T_c in Kelvin, and the critical molar volume V_c in cm³/mole. All four parameters are required. If V_c or ω are not available for a species, set the value to zero.

The parameters are format-free and separated by blank space(s). If the binary interaction coefficients between this gas species and other species are known, the coefficients can be given as auxiliary keywords in the line(s) below the property data line. The interacting species name and the corresponding binary interaction coefficient should be provided in the format illustrated here with the coefficient value delimited by slashes (/):

<interacting species name>/<interaction coefficient>/

For example, the binary interaction coefficient between O2 and N2 can be given in a line below the properties data line of O2 (or N2) as N2/-0.0078/ (or O2/-0.0078/).

If you have multiple binary interaction coefficients to specify, they should be separated by blank space(s) and can be written in a single line or in several lines. The binary interaction coefficient is only required once for each pair of species.

All species in the mechanism must have their real gas data given in the real gas data block, and the species data lines can appear in any order. The real gas data block should be closed by the keyword END.

Figure 3.3: Example of Real Gas data input (p. 38) shows some examples of the real gas data input.

after release 19.0

Figure 3.3: Example of Real Gas data input

```
! Real Gas Information
! R.C. Reid, J.M. Prausnitz, and B.E. Poling, The Properties of Gases & Liquids, 4th ED.
Soave-Redlich-Kwong EOS
                    TC[K].
                                           VC[cm3/mol],
                                                           Best-fitted Acentric Factor
Species symbol,
                     33.2
                                13.64
                                            0.0
H2
                     33.15
                                13.0
                                           65.1
                                                          -0.2324
! Binary Inteaction Coefficients
                                26.9
                     44.5
                                           73.4
                                                           0.0298
                   154.6
! Binary Inteaction Coefficients
OH
                   400.0
                               149.0
                                            0.0
                                                           0.1
                                           0.0
57.1
                                                           0.2
HO<sub>2</sub>
                   400.0
                                82.0
                   647.37
H<sub>2</sub>O
                               221.2
H2O2
                   730.10
                                21.68
                                            0.0
                                                           0.5
                                           99.2
                                                           0.01142
Binary Inteaction Coefficients
CO2/0.093/ N2/0.028/ CO/0.032/
CO 132.9 35.0
                                           93.2
                                                           0.0295
! Binary Inteaction Coefficients
CH4/0.032/
CO<sub>2</sub>
                   304.1
                                           93.9
                                                           0.2373
! Binary Inteaction Coefficients
N2/-0.032/
CH4/0.093/
                                33.9
                                                           0.0358
N2
                   126.2
                                           89.8
 Binary Inteaction Coefficients
CO2/-0.032/ CH4/0.028/
```

3.5. Transport Data

Gas-phase species transport data is required for a collision-frequency reaction formulation, and for reactor models or other programs that require a transport linkfile. The data can be read from a database file (e.g., tran.dat) and/or read directly from the Gas-phase Kinetics input file. To include transport data in the input file, the first line of the data should be the word TRANSPORT (or TRAN), and the last line should be the word END. If TRANSPORT ALL is used, it is expected that all required transport data is given in this section, or else a database file is used to supplement data not provided here.

The TRANSPORT...END data block's format should resemble this:

```
TRANSPORT
C2H4 2 280.800 3.971 0.000 0.000 1.500
```

For the collision frequency reaction, the required collision diameter of species will be obtained from the transport data and stored in the gas-phase linkfile. For reactor models or other programs that require a supplemental transport linkfile, the User Interface provides a check-box option on the Pre-Processing panel, Process Transport Properties; if this is checked, transport-data coefficient fitting is performed, and a transport linkfile written.

Details on the transport data format, whether included in the *Gas-Phase Kinetics* input file or in a transport properties database file, are provided in Transport Data Format (p. 87).

Note

If the *Gas-Phase Kinetics* input file includes transport properties data input, this data must follow species data and precede reaction data.

3.6. Reaction Mechanism Description

The reaction mechanism may consist of any number of chemical reactions involving the species named in the species data. A reaction may be reversible or irreversible; it may be a three-body reaction with an arbitrary third body and/or enhanced third-body efficiencies; it may have a Lindemann [4] (p. 331), Troe [5] (p. 331) or SRI [6] (p. 331) pressure fall-off formulation; it may have an arbitrary pressure-dependence defined by special fits or interpolation; it may involve a photon; and it may depend on a species temperature other than that of the bulk gas. Pressure-dependent Reactions of the Chemkin-Pro Theory Manual provides more detailed discussion of these different formulations. In this section, we describe the rules and syntax needed to enter different types of reactions in the *Gas-phase Kinetics* input file. The keywords for controlling these reaction parameters are described in Alphabetical Listing of Project Input Keywords (p. 123) .

Reaction data must start with a line that contains the word REACTIONS (or REAC). The lines following the REACTIONS line contain reaction descriptions, together with their Arrhenius rate coefficients. The reaction description is composed of a reaction path, reaction rate coefficients, and (optionally) some auxiliary information or keywords.

3.6.1. REACTIONS Line Options

On the same line as the REACTIONS word, you may specify units of the Arrhenius rate coefficients (Equation 3.5 of the Chemkin-Pro Theory Manual) followed by the word CAL/MOLE, KCAL/MOLE, JOULES/MOLE, KJOULES/MOLE, KELVINS, or EVOLTS for E_i , and/or MOLES or MOLECULES for A_i . If MOLECULES is specified, then the units for A_i are cm, molecules, sec, and K.

Note

If units are not specified, A_i and E_i must be in cm, mole, sec, K, and cal/mole, respectively. Note that T is always in Kelvin. ANSYS Chemkin-Pro uses the thermal calorie, 4.184 Joules.

Table 3.4: Alphabetical Listing of REACTIONS-line Options for Gas-phase Kinetics Data

Keyword	Definition
CAL/[MOLE]	Reiterates the default units for all gas-phase reactions that follow the REACTIONS header line for parameters with energy units such as E
	Notes - Default units for E_i are cal/mole.
EVOL[TS]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for parameters with energy units such as $\boldsymbol{E}_{\rm i}$.
	Notes - Default units for E_i are cal/mole.
JOUL[ES/MOLE]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for parameters with energy units such as E_i .
	Notes - Default units for E_i are cal/mole.

Keyword	Definition
KCAL[/MOLE]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for parameters with energy units such as E_i .
	Notes - Default units for E_i are cal/mole.
KELV[INS]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for parameters with energy units such as $E_{\rm i}$.
	Notes - Default units for E_i are cal/mole.
KJOU[LES/MOLE]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for parameters with energy units such as E_i .
	Notes - Default units for E_i are cal/mole.
MOLEC[ULES]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for pre-exponential factors A_i .
	Notes - Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.
MAXSP	Increases the maximum number of reactants or products allowed in a reaction. The number given by this keyword must be greater than the default limit of 6. For example, REACTIONS MAXSP=11.
	Notes -This keyword is available to both the gas-phase and surface reaction mechanism.
MOLE[S]	Supersedes the default units for all gas-phase reactions which follow the REACTIONS header line for pre-exponential factors A_i .
	Notes - Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.
USRPROD	Indicates that the user will provide a user-written rate routine that will supply all of the species net rates of production, overriding any other reaction input in the Gas-phase Kinetics input file.
	The net rate-of-production for all species will be obtained by calling the user-supplied subroutine, CKUPROD. An optional slash(/)-delimited integer parameter allows the user to select from more than one type of rate formulation. Wherever the species production rates are required, they will be obtained by calling the user-written subroutine called CKUPROD. A template of CKUPROD is provided in the ANSYS Chemkin-Pro installation, in the file <i>cklib_user_routines.f</i> located in the directory <i>user_subroutines</i> . Information about how to compile and link user routines into Chemkin-Pro is included in Chemkin-Pro Application Programming Interface Manual.

Keyword	Definition
	Notes - USRPROD cannot be used in conjunction with USRPROG
	(entered after a particular reaction).

Note

This API does not support user-written programming, so you are cautioned to use the CKUPROD user-routine feature at your own risk. Also, there are some features in ANSYS Chemkin-Pro that will be incompatible with the global replacement of species rates of production, such as sensitivity analysis and rate-of-production analysis. Such features will return zero values when user-rate programming is encountered.

3.6.2. Reaction Data

Reaction Data follows the REACTIONS line and precedes an END statement that concludes the Reactions Data section. Each reaction entry line is divided into two fields. The first contains the symbolic description of the reaction path for that reaction while the second contains the Arrhenius rate coefficients. Both fields are format-free and blank spaces are ignored. Any line or portion of a line starting with an exclamation mark (!) is considered a comment and is ignored. Blank lines are also ignored.

The reaction description, given in the first field, must be composed of the species symbols, coefficients, delimiters, and any special symbols defined in Table 3.5: Reaction Data Criteria (p. 41).

Table 3.5: Reaction Data Criteria

Species S	ymbols
	Each species in a reaction is described with the unique sequence of characters as they appear in the species data and the thermodynamic data (e.g., H2).
Coefficie	nts
	A species symbol may be preceded by an integer or real coefficient. The coefficient has the meaning that there are that number of moles of the particular species present as either reactants or products; e.g. 20H, is equivalent to OH + OH. Non-integer coefficients are allowed in <i>Gas-phase Kinetics input</i> , but the element balance in the reaction must still be maintained.
Delimite	rs
+	A plus sign is the delimiter between each reactant species and each product species.
=	An equality sign is the delimiter between the last reactant and the first product in a reversible reaction.
<=>	An equality sign enclosed by angle brackets can also be used as the delimiter between the last reactant and the first product in a reversible reaction.
=>	An equality sign with an angle bracket on the right is the delimiter between the last reactant and the first product in an irreversible reaction.
Special S	ymbols
+M	An M as a reactant and product stands for an arbitrary third body. An M in the reaction description indicates that a third body is participating in the reaction. In a reaction containing an M, species can be specified to have enhanced third body efficiencies, in which case auxiliary information (described below) must

Species S	ymbols
	follow the reaction line. If no enhanced third body efficiencies are specified, then all species act equally as third bodies and the effective concentration of the third body is the total concentration of the mixture.
(+M)	An M as a reactant and product surrounded by parentheses indicates that the reaction is a pressure-dependent reaction, in which case auxiliary information line(s) (described below) must follow the reaction to identify the fall-off formulation and parameters. A species may also be enclosed in parenthesis. Here, for example, (+H2O) indicates that water is acting as the third body in the fall-off region, not the total concentration M.
E	The symbol $\mathbb E$ as a reactant and/or product is used to represent an electron. An electron is treated just like any other species, and is composed of the element $\mathbb E$, which must be declared as element data. If an $\mathbb E$ appears in any reaction, then it must also be declared as a species in the species data.
!	An exclamation mark means that all following characters are comments on the reaction. For example, the comment may be used to give a reference to the source of the reaction and rate data.

The second field of the REACTIONS line is used to define the Arrhenius rate coefficients A_i , β_i , and E_i , in that order, as given by Equation 3.5 of the Chemkin-Pro Theory Manual . At least one blank space must separate the first number and the last symbol in the reaction. The three numbers must be separated by at least one blank space, be stated in either integer, floating point, or "E" format (e.g., 123, 123 . 0 or 123E1), and have units associated with them.

Note

Unless modified by options specified on the REACTIONS line or in Auxiliary Reaction Keywords, the default units for A_i are in cgs (cm, sec, K, mole), the exact units depending on the reaction. The factor β_i is dimensionless. The default units for the activation energies are cal/mole.

Examples of reaction data are shown in Figure 3.4: Examples of Reaction Data (p. 42) .

Figure 3.4: Examples of Reaction Data

```
REACTIONS
                                  CAL/MOLE ! these are the default units for the reaction rates
H2 + O2 = 2OH
                                                     1.7E13 0 47780. ! Ref. 21
                                   1.7E13 0 47780. ! same as previous reaction,
! H2 + O2 = OH + H
                                        ! commented to prevent a duplication error
H + O2 + M = HO2 + M
                                                                2.0E15 0.000 -870.
! H + O2 + M = HO2
                                                                2.0E15 0.000 -870.
! H + O2 = HO2 + M
                                                                2.0E15 0.000 -870.
OH+ + H + E = H2O
                                                                      1.E19 0 0.0
O = O(*)
                                                                       1.3E5 0 0
                                        ! photoactive reaction, represented without HV
0.5H2 + 0.5O2 = OH
                                                   ! example of real coefficients
END
                                  ! END statement is optional; ! <eof> condition is equivalent
```

Table 3.6: Summary of the Rules for Reaction Data (p. 43) is a summary of the reaction data rules.

Table 3.6: Summary of the Rules for Reaction Data

Rule	Description		
1	The first reaction line must start with the word REACTIONS (or REAC), and may include units definition(s).		
2	The reaction description can begin anywhere on the line. All blank spaces, except those between Arrhenius coefficients, are ignored.		
3	Each reaction description must have =, <=> or => between the last reactant and the first product.		
4	Each reaction description must be contained on one line.		
5	Three Arrhenius coefficients must appear in order $(A_i, \beta_i, and E_i)$ on each		
	Reaction line, separated from each other and from the reaction description by at least one blank space; no blanks are allowed within the numbers themselves.		
6	There cannot be more than six reactants or six products in a reaction.		
7	Comments are any and all characters following an exclamation mark.		
8	For best results an END statement should follow the reaction input.		

3.6.3. Auxiliary Reaction Data

Auxiliary Reaction Data is entered in lines immediately following the Reaction Data for a specific reaction path. The format of an auxiliary information line is a character-string keyword followed by a slash-de-limited (/) field, which begins and ends with a slash (/), and which contains an appropriate number of parameters (either integer, floating point, or "E" format).

These data or keywords are used to indicate different reaction-rate expressions, units, pressure-dependency, and other ways in which the reaction behavior may be modified. Table 3.8: Summary of the Rules for Auxiliary Reaction Data (p. 57) provides detailed information about the meaning and usage of each auxiliary keyword entry option for gas-phase reactions. Also, Figure 3.5: Examples of Auxiliary Reaction Data (p. 56) provides some additional examples of reaction data.

Table 3.7: Alphabetical Listing of Gas-phase Reaction Auxiliary Keywords

Keyword	Definition					
<speciesname></speciesname>	Neutral Third Body Efficiency - If a reaction contains <i>M</i> as a reactant and/or product, auxiliary information lines may follow the reaction line to specify enhanced third-body efficiencies of certain species (i.e., <i>a</i> _{ki} , Equation 3.19 of the Chemkin-Pro Theory Manual). To define an enhanced third body efficiency, the keyword is the species name of the third body, and its one parameter is its enhanced efficiency factor. A species that acts as an enhanced third body must be declared as a species. Examples of third body efficiencies are shown in the first three reactions in Figure 3.5: Examples of Auxiliary Reaction Data (p. 56) .					
	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		CO /1.87/		
	Stoichiometric coefficient v_{ki}	Stoichiometric Required CO/1.87/				

Keyword	Definition					
	Reaction Ex- ample	REACTIONS		CAL/MOLE		
	ump.c	HCO+M=H+CO+ 0.000 1680	2.000	0.250E+15		
			natz			
		CO2/3./ H2		CH4/2.81/		
CHEB	rate expression by of the Chemkin-Prodelimited) parameter of basis functions and of basis functions and coefficients and	a Chebyshev polynor o Theory Manual). CE ters; for the first CHEE along the temperatur along the pressure ax	mial evalu IEB must B, the first e axis; the is; and the n the orde	ersedes the default reaction ation (see Equation 3.43 be followed by (slash value is <i>N</i> , the number execond is <i>M</i> , the number eremainder are the <i>N</i> x er of $a_{11}, a_{12},, a_{1}$ <i>M</i> , i.		
	Parameters	Optional/Reqd.	Units	Examples		
	Number of temperature functions N	Required		CHEB / 7 3 -4.1624 .939418563 12.438/		
	Number of pressure functions M	Required		CHEB / 7 3 -4.1624 .939418563 12.438/		
	Chebyshev coefficients a	Required		CHEB / 7 3 -4.1624 .939418563 12.438/		
	Reaction Ex- ample	HO2 (+M) 1	C2H5 + O2 (+M) <=> C2H4E +			
		CHEB/ 7 3 1.0216E+01 - 1.1083E+00 -1.9807E-01 7.8325E-01/				
		CHEB/ 1.16 9.5707E-02	1.0928	1.1762E-01 - BE-01 1.1551E-01/		
				-1.0978E-01 DE-02 -6.0589E-02/		
		9.7259E-03	-1.3556	6.9203E-03 - 5E-02 7.6648E-03/		
	Notes	More than on	e set of CI	-8.8244E-04/ HEB data can appear for a give		
				hebyshev polynomial for this ed by keyword PCHEB .		

Keyword	Definition	
		Temperature limits of the Chebyshev polynomial for this reaction may be provided by keyword TCHEB.
COLLEFF	and the approximate	con Frequency Expression - If a reaction is bimolecular collision diameters are known, then the collision expression can be used to calculate the reaction rate
		eters for the correction factor are specified on the line following, the keyword COLLEFF is required to e type of reaction.
	A+B<=>Products	a b c
	COLLEFF	
	diameters for each re uses the Lennard-Jon diameter of a species	rameters for the correction factor <i>a</i> , <i>b</i> , and <i>c</i> , the facting species must be specified. ANSYS Chemkin-Profes diameter as an approximation for the spherical at the Lennard-Jones diameter is one of the inputs at Pre-Processor that are specified as outlined in fact (p. 87).
	Reaction Ex- ample	C6H6 + C6H6 => C12H10 + H2 0.02 0 0 COLLEFF
DUP	reactants and produc In these cases, it may has two or more reac parameters. However, by the Gas-phase Kin (e.g., the same reactar	- Two or more reactions can involve the same set of its, but proceed through distinctly different processes. be appropriate to state a reaction mechanism that itions that are the same, but have different rate duplicate reactions are normally considered errors setics Pre-Processor. If the user requires duplication ints and products with different Arrhenius parameters),
	including the first occ if the user wishes to identical reactions, th one following each of	st follow the reaction line of each duplicate reaction, currence of the reaction that is duplicated. For example, specify different rate expressions for each of two ere must be two occurrences of the DUP keyword, f the reactions. No auxiliary parameters are required. in Figure 3.5: Examples of Auxiliary Reaction
	including the first occ if the user wishes to s identical reactions, th one following each of Examples are shown in	currence of the reaction that is duplicated. For example, specify different rate expressions for each of two ere must be two occurrences of the DUP keyword, f the reactions. No auxiliary parameters are required.
	including the first occif the user wishes to sidentical reactions, the one following each of Examples are shown in Data (p. 56). Reaction Ex-	currence of the reaction that is duplicated. For example, specify different rate expressions for each of two ere must be two occurrences of the DUP keyword, f the reactions. No auxiliary parameters are required. in Figure 3.5: Examples of Auxiliary Reaction HO2+HO2=H2O2+O2 4.20E14 0.0 11982 DUP
	including the first occif the user wishes to sidentical reactions, the one following each of Examples are shown in Data (p. 56). Reaction Ex-	currence of the reaction that is duplicated. For example, specify different rate expressions for each of two ere must be two occurrences of the DUP keyword, f the reactions. No auxiliary parameters are required. in Figure 3.5: Examples of Auxiliary Reaction HO2+HO2=H2O2+O2 4.20E14 0.0 11982

Keyword	Definition					
EXCI	loss per reaction ever value of the energy overrides the calcular determined by the reactants and prelectron-impact except wish to keep track of energy loss to the use of EXCI is on the use of EXCI is on the energy loss to	ent by specifying the loss per event, in un ation of energy loss reaction description roducts. The option i itation reactions, for of the excited-species lectrons due to the given in Figure 3.5: Example 1.5: Examp	e keyword E lits of electro from the cha and the thei s useful in d example, wh s density, but excitation proposed ents the ΔH_r quation 8.88	ange in enthalpy rmodynamic data of describing here the user does not at wants to include the rocess. An example of Auxiliary Reaction parameter that is of the Chemkin-Pro		
	Parameters	Optional/Reqd.	Units	Examples		
	Energy loss per event	Required	electron- volts	TDEP/E/ EXCI/ 11.60 /		
	Reaction Ex- ample	E + AR => AR + E 2.235E16 0.0 3.47E5				
		TDEP/E/ EXCI/11.60/ DUP				
		DOP				
FIT1	described by Equati	ault reaction rate exp	kin-Pro Theo	ory Manual . FIT1 must		
FIT1	described by Equati	ault reaction rate exp on 3.50 of the Chem	kin-Pro Theo	ory Manual . FIT1 must		
FIT1	described by Equati be followed by the	on 3.50 of the Chem four slash-delimited	kin-Pro Theo	ory Manual . FIT1 must neters, bni.		
FIT1	described by Equation be followed by the second Parameters FIT1 parameters	on 3.50 of the Chem four slash-delimited Optional/Reqd. Required E + O2	kin-Pro Theo	Examples FIT1/33756 -1.695E8 1.08E13 0.0/		
FIT1	described by Equation be followed by the second parameters FIT1 parameters b 1 - b 4 Reaction Ex-	oult reaction rate expon 3.50 of the Chem four slash-delimited Optional/Reqd. Required E + O2 4.60E-11 TDEP/E/	kin-Pro Theo FIT1 param Units => 0 0.0	Examples FIT1/33756 -1.695E8 1.08E13 0.0/ + O- 0.		
	described by Equation be followed by the follo	ault reaction rate expon 3.50 of the Chem four slash-delimited Optional/Reqd. Required E + O2 4.60E-11 TDEP/E/ FIT1/33756	kin-Pro Theo FIT1 param Units => 0 0.0	Examples FIT1/33756 -1.695E8 1.08E13 0.0/ 1.08E13 0.0/		
	described by Equation be followed by the follo	ault reaction rate expon 3.50 of the Chemfour slash-delimited Optional/Reqd. Required E + O2 4.60E-11 TDEP/E/ FIT1/33756 Order Parameter - So in the mechanism rdless of whether the action. FORD is followed the new reaction ation 3.4 of the Chemerice is named on the levels and the levels are action.	kin-Pro Theo FIT1 param Units => 0 0.0 -1.695E8 Supersedes t (with respectes appred, in slash- order. This conkin-Pro Theo	Examples FIT1/33756 -1.695E8 1.08E13 0.0/ + O-		
	described by Equation be followed by the follo	ault reaction rate expon 3.50 of the Chemfour slash-delimited Optional/Reqd. Required E + O2 4.60E-11 TDEP/E/ FIT1/33756 Order Parameter - So in the mechanism rdless of whether the action. FORD is followed the new reaction ation 3.4 of the Chemerice is named on the levels and the levels are action.	kin-Pro Theo FIT1 param Units => 0 0.0 -1.695E8 Supersedes t (with respectes appred, in slash- order. This conkin-Pro Theo	Examples FIT1/33756 -1.695E8 1.08E13 0.0/ + O-		
FIT1 FORD	described by Equation be followed by the foll	ault reaction rate expon 3.50 of the Chem four slash-delimited Optional/Reqd. Required E + 02 4.60E-11 TDEP/E/ FIT1/33756 Order Parameter - So in the mechanism rdless of whether the action. FORD is followed the new reaction ation 3.4 of the Chemerican and the leir default values.	kin-Pro Theo FIT1 param Units => 0 0.0 -1.695E8 Supersedes t (with respectes appred, in slash- order. This conkin-Pro Theo ine. The reac	Examples FIT1/33756 -1.695E8 1.08E13 0.0/ + O-		

Keyword	Definition						
*	Reaction Ex- ample		JP10+1402 => 10CO2 + 8H2O 6.454323E+13 0.0 29188.8				
		FORD / JP10	1.15392	23 /			
		FORD / 02 0	0.738210	/			
	Notes	Multiple occurre		e FORD construct may			
HIGH	Defines the high-pressure limit for pressure-dependent chemically activated bimolecular reactions (see Equation 3.26 of the Chemkin-Pro Theory Manual). HIGH must be followed by the three slash-delimited high-pressure limit Arrhenius parameters A_{∞} , β_{∞} , and E_{∞} , and the Arrhenius coefficients on the reaction line represent the low-pressure limit Arrhenius parameters A_o , β_o , and E_o .						
	Parameters	Optional/Reqd.	Units	Examples			
	Pre-exponential factor A_{∞}	Required	Depends on reaction	HIGH /6.85E-12 6.53 -834./			
	Temperature exponent β_{∞}	Required		HIGH /6.85E-12 6.53 -834./			
	Activation energy E_{∞}	Required	cal/mole	HIGH /6.85E-12 6.53 -834./			
	Reaction Ex- ample	C2H5+O2(+M) = C2H4+HO2(+M) 1.41E7 1.09 -1975. HIGH/6.85E-12 6.53 -834./ TROE/0.45 1.E-10 1.E10/ H2/2/ CO/2/ CO2/3/ H2O/5/					
	Notes	 Required when SRI or TROE is present Additional pressure-dependency parameters may be provided by keywords SRI or TROE. If no additional parameters, the Lindemann formulation is applied. 					
JAN	Optional Rate Fit Expressions - Supersedes the default reaction rate expression by a Janev-Langer reaction rate (see Equation 3.49 of the Chemkin-Pro Theory Manual). JAN must be followed by the nine slash-delimited Janev-Langer rate parameters, b _{ni} .						
	Parameters	Optional/Reqd.	Units	Examples			

after	release	19.	0

Keyword	Definition						
	Janev-Langer parameters b1 - b9	Required	eV	JAN / -19.73476 3.992702 -1.773436 0.5331949 -0.1 0.02 -0.002 8.E-5 -2.E-6/			
	Reaction Ex- ample	0.0 0.0	H* + E = H+ + 2E 1.0 0.0 0.0 JAN / -19.73476 3.992702 -1.773436				
		0.5331949 -0.1 0.02 -0.002 8.E-5 - 2.E-6/					
	Notes	 If fewer than 9 parameters are required for the fit, the user must provide zeros for the remainder of the parameters. 					
		usage with pla (i.e., electron-v system tempe temperatures Therefore the fitting the JAI	asmas, and volt). When erature is fir in kelvin, it temperatu N rate coeff	n was originally designed for the temperature unit is eV the rate is calculated, the st converted to eV. For will be T/11595 in eV. re needs to be in eV when icients, while other reactions e temperature in K.			
LOW	Defines the low-pressure limit for pressure-dependent unimolecular fall-off reactions (see Equation 3.25 of the Chemkin-Pro Theory Manual). LOW must be followed by the slash-delimited low-pressure limit Arrhenius parameters A_o , β_o , and E_o , and the Arrhenius coefficients on the reaction line represent the three high-pressure limit Arrhenius parameters A_∞ , β_∞ , and E_∞ .						
	Parameters	Optional/Reqd.	Units	Examples			
	Pre-exponential factor A_o	Required	depends on reaction	LOW /1.73E69 -15.07 60491./			
	Temperature exponent β_o	Required		LOW /1.73E69 -15.07 60491./			
	Activation energy E_o	Required	cal/mole	LOW /1.73E69 -15.07 60491./			
	Reaction Ex- ample O+CO(+M) <=>CO2(+M) 1.800E+10 .000 2385.00						
	Notes	LOW/ 6.020E+14 .000 3000.00/					
	Notes	 Required when SRI or TROE is present Supplemental pressure-dependency parameters may be provided by keywords SRI or TROE. 					
		If no additional parameters, the Lindemann formulation is applied.					

Keyword	Definition					
LT	Landau-Teller Reactions - Supersedes the default reaction rate expression by the Landau-Teller reaction rate (see Equation 3.47 of the Chemkin-Pro Theory Manual). LT must be followed by the two slash-delimited Landau-Teller reaction rate parameters <i>Bi</i> and <i>Ci</i> .					
	Parameters	Optional/Reqd.	Units	Examples		
	Landau-Teller parameter B _i	Required		LT /-67 62.1/		
	Landau-Teller parameter C _i	Required		LT /-67 62.1/		
	Reaction Ex- ample	2.89E15 0	H2(1)+H2O(000)=H2(0)+H2O(001) 2.89E15 0 0 LT / -67 62.1/			
	Notes	reaction, then e	xplicit rev	are given for the erse Landau-Teller given by keyword RLT.		
	frequency for electrochanges the treatment the reaction to be for assumes that the reactions are subroutines evaluated.	rons. This keyword relent of the reaction-relagged as an electroeaction rate constanteding on the units special cate reaction rates-of-page reaction rates ra	equires no rate coeffic n momen is in units ecified in t ases when trogress, as	ntum-transfer collision supplemental data, but cients. The option causes tum-transfer reaction, and s of cm³/mole-s or cm³ the REACTIONS statement. Gas-phase Kinetics s described in Rates of kin-Pro Theory Manual.		
	Reaction Ex- ample	on Ex- E + AR* => E + AR* 1.0502E-08				
	Notes These options would generally not be used (or would be ignored) with any of the standard ANSYS Chemkin-Pro reactor models; they are there for users who may be incorporating Chemkin-Pro into a multi-dimensional plasma simulation user program.					
PCHEB	expression (see Equ	•	emkin-Pro	yshev polynomial rate Theory Manual). PCHEB es P <i>min</i> and P <i>max</i> .		
	Parameters	Optional/Reqd.	Units	Examples		
	Minimum pressure Pmin	Required	atm	PCHEB / 1.0 100.0/		
	Maximum pressure Pmax	Required	atm	PCHEB / 1.0 100.0/		

Gas-phase Kin	etics Input	Note: PDF user guides no longer in Chemkin-Pro install after release 19.0		
Keyword	Definition			
	Reaction Ex- ample	C2H5+O2(+M)=C2H4E+HO2 (+M) 1.0 0.0 0.0		
		LOW / 1.0 0.0 0.0 /		
		PCHEB / 1.0 100.0/		
		CHEB/ 7 3 10.216 -1.1083 -0.19807 0.78325/		
		CHEB/ 1.1609 0.1.1762 -0.095707 0.10928 0.11551/		
		CHEB/ -0.08029 -0.10978 3.7074E- 04 -0.01483 -0.060589/		
		CHEB/ -0.028056 6.9203E-03 - 9.7259E-03 -0.013556 7.6648E-03/		
		CHEB/ 6.6865E-03 -8.8244E-04/		
	Notes	• The default Chebyshev polynomial pressure limits are P_{min} =0.001, P_{max} =100.		
		 Chebyshev polynomial parameters must be provided by use of keyword CHEB. 		
		 Default Chebyshev polynomial temperature limits may be superseded by keyword TCHEB. 		
PLOG	general-purpose we Using the PLOG kereaction-rate coeff override the Arrhe keyword must be at which the reaction, β_i , and E_i , for the	ence Through Logarithmic Interpolation - Provides a way of describing pressure-dependent reaction rates. eywords, you can enter any number of sets of Arrhenius ficients at different reactor pressures. The PLOG data will enius coefficients provided on the reaction line. The PLOG followed by the slash-delimited values for the pressure ion rates are given and the three Arrhenius parameters, hat pressure. Multiple PLOG entries can be provided, included in ascending order of pressure. See the ANSYS		

Chemkin-Pro Theory Manual, General Pressure Dependence Using Logarithmic Interpolation , General Pressure Dependence Using Logarithmic Interpolation .

Parameters	Optional/Reqd.	Units	Examples
Pressure		atm	PLOG /0.03947 2.9512E+09 1.28 13474./
Pre-exponential factor A_i		Depends on reaction	PLOG /0.03947 2.9512E+09 1.28 13474./

Keyword	Definition				
	Temperature exponent $oldsymbol{eta}_i$			PLOG /0.0394 2.9512E+09 13474./	
	Activation energy E_i		cal/mole	PLOG /0.0394 2.9512E+09 13474./	
	Reaction Ex- ample	H2CCCH+H=C3 1.28	H2(S)+H2 13474.	2.9512	E+09
		PLOG /0.03		9512E+09	1.28
		PLOG /1. 13929./		.0965E+10	1.13
		PLOG /10.		.3113E+13	
		PLOG /100.	3	.3113E+13	0.195
	Notes	There should not for the same procan use the DUI reactions that a PLOG entries; in reaction-rates we for DUPLICATE	essure for a PLICATE o re the same n this case th vill be summ	reaction. Howe ption to have to and that both ne resulting	ever, you two n use
REV	Reverse Rate Param normally be comput the Chemkin-Pro The slash-delimited Arrho	ed through the equeory Manual . REV r	iilibrium cor nust be folk	nstant, Equation by the	n 3.6 of nree
	rate.		I	I	
	Parameters Pre-exponential factor A_i	Optional/Reqd.	Units depends on reaction	Examples REV / 6.61E-1 9561./	4 0.0
	Temperature exponent β_i			REV / 6.61E-1 9561./	4 0.0
	Activation energy E_i		cal/mole	REV / 6.61E-1 9561./	4 0.0
	Reaction Ex- ample	C2F4 + M = 1.126E-		72 + M 27528.0	
		REV / 9.381E-14 0. 31404.1 /			
RLT	Supersedes the defa reaction rate (see Eq				

Keyword	Definition			
	must be followed by the two slash-delimited Landau-Teller reaction rate parameters <i>Bi</i> and <i>Ci</i> .			dau-Teller reaction rate
	Parameters	Optional/Reqd.	Units	Examples
	Landau-Teller parameter B _i	Required		RLT /-67 62.1/
	Landau-Teller parameter C _i	Required		RLT /-67 62.1/
	Reaction Ex- ample	H2(1)+H2O(0 2.89E15 0 RLT / -67	0	
	Notes	keywords is p • If explicit REV	resent. paramete everse La	nbination of LT and REV ers are given for the reaction, ndau-Teller parameters must rd RLT.
RORD	Reverse Reaction	Order Parameter - S	upersedes	s the reverse reaction
RORD	order for any species concentration), regardant a product in the reaspecies name and to v'_{ki} in Equation 3.4 particular species n	es in the mechanism ardless of whether the action. RORD must be the new reaction order of the Chemkin-Product the line; the ult values. Multiple o	(with responders) e followeder, and support Manager (with the properties)	
RORD	order for any species concentration), regardant approduct in the reaspecies name and to v'_{ki} in Equation 3.4 particular species maintain their defar	es in the mechanism ardless of whether the action. RORD must be the new reaction order of the Chemkin-Product the line; the ult values. Multiple o	(with responders) e followeder, and support Manager (with the properties)	appears as a reactant or l by the slash-delimited persedes the values of anual pertaining to the order for all other species
RORD	order for any species concentration), regardant a product in the reaspecies name and to v'_{ki} in Equation 3.4 particular species name and their defarmay appear on the	es in the mechanism ardless of whether the action. RORD must be the new reaction order of the Chemkin-Product values. Multiple of auxiliary line.	(with responders) e species followed er, and supposer, and Theory Magereaction ccurrence	appears as a reactant or lead to species appears as a reactant or lead to shape and the lead to species and the lead to species and the RORD construct
RORD	order for any species concentration), regardant a product in the reaspecies name and the v_{ki} in Equation 3.4 particular species name intain their defarmay appear on the Parameters	es in the mechanism ardless of whether the action. RORD must be the new reaction order of the Chemkin-Programed on the line; the ult values. Multiple of auxiliary line. Optional/Reqd.	(with responders) e species followed er, and supposer, and Theory Magereaction ccurrence	pect to species appears as a reactant or I by the slash-delimited persedes the values of anual pertaining to the order for all other species s of the RORD construct Examples
RORD	order for any species concentration), regard a product in the reaspecies name and to v'_{ki} in Equation 3.4 particular species name maintain their defarmay appear on the Parameters Species name Stoichiometric	es in the mechanism ardless of whether the cition. RORD must be the new reaction order of the Chemkin-Programed on the line; the cult values. Multiple of auxiliary line. Optional/Reqd. Required Required H2+O2=2OH	(with respectives) e species e followed er, and sup Theory Mage reaction ccurrence Units 0.00	pect to species appears as a reactant or I by the slash-delimited persedes the values of anual pertaining to the order for all other species s of the RORD construct Examples RORD /OH 2.0/
RORD	order for any species concentration), regard a product in the reaspecies name and the variation 3.4 particular species in maintain their defarmation appear on the Parameters Species name Stoichiometric coefficient variation in the variation i	es in the mechanism ardless of whether the crion. RORD must be he new reaction order of the Chemkin-Programed on the line; the ult values. Multiple of auxiliary line. Optional/Reqd. Required Required H2+02=20H 0.170E+14	(with respectives) e species e followed er, and sup Theory Mage reaction ccurrence Units 0.00	pect to species appears as a reactant or I by the slash-delimited persedes the values of anual pertaining to the order for all other species s of the RORD construct Examples RORD /OH 2.0/ RORD /OH 2.0/
	order for any species concentration), regard a product in the reaspecies name and to the reaspecies name and the species name are species of maintain their defarmation and their defarmation appear on the parameters Species name Stoichiometric coefficient to the species name Reaction Example Notes Defines the SRI preaction, slash-delimited	es in the mechanism ardless of whether the cition. RORD must be the new reaction order of the Chemkin-Programed on the line; the ult values. Multiple of auxiliary line. Optional/Reqd. Required Required H2+02=20H 0.170E+14 RORD /OH 2. See also FORD. ssure-dependent reacy Manual). SRI must parameters a, b, c, d	(with respective species of followed er, and supplemental for the ory Market species of the ory Market species of the followed er, and e. The ory Market species of the follow, and e. The organization rate of the organization r	ect to species appears as a reactant or by the slash-delimited persedes the values of anual pertaining to the order for all other species of the RORD construct Examples RORD /OH 2.0/ RORD /OH 2.0/ RORD /OH 2.0/ 47780 (see Equation 3.34 of the wed by either three, or
RORD	order for any species concentration), regard a product in the reaspecies name and to the reaspecies name and the species name are species of maintain their defarmation and their defarmation appear on the parameters Species name Stoichiometric coefficient to the species name Reaction Example Notes Defines the SRI preaction, slash-delimited	es in the mechanism ardless of whether the cition. RORD must be the new reaction order of the Chemkin-Programed on the line; the ult values. Multiple of auxiliary line. Optional/Reqd. Required Required H2+02=20H 0.170E+14 RORD /OH 2. See also FORD. ssure-dependent reacy Manual). SRI must parameters a, b, c, d	(with respective species of followed er, and supplemental followed er, and supplemental followed er, and e. The followed er followed er, and e. The followed er followed er, and e. The followed er fo	ect to species appears as a reactant or by the slash-delimited persedes the values of anual pertaining to the order for all other species s of the RORD construct Examples RORD /OH 2.0/ RORD /OH 2.0/ 47780 (see Equation 3.34 of the wed by either three, or ae fourth and fifth

		ailei ielease		
Keyword	Definition			
	Reaction Ex- ample	CH3+H(+M) -1.0 LOW/8.0E26 SRI/0.45 7	0 -3.0 0/	
		H2/2/ CO/2	/ CO2/3/	H2O/5/
	Notes	Additional S keywords LC	•	ers are required, by use of
TCHEB	1 -	ation 3.41 of the Ch	nemkin-Pro T	ebyshev polynomial rate heory Manual). TCHEB in and Tmax.
	Parameters	Optional/Reqd	Units	Examples
	Minimum temperature Tmin	Required	К	TCHEB / 300.0 2500./
	Maximum temperature Tmax	Required	K	TCHEB / 300.0 2500./
	Reaction Ex- ample	C2H5+O2(+M 0.0	0.0	O2 (+M) 1.0
		LOW / 1.0		
		TCHEB / 30 CHEB/ 7 3 -0.19807	10	.216 -1.1083
		CHEB/ 1.16	09 0.1. .11551/	1762 -0.095707
		CHEB/ -0 04 -0.0148		0.10978 3.7074E- 89/
		CHEB/ -0.03 9.7259E-03		9203E-03 - 6 7.6648E-03/
		CHEB/ 6.6	865E-03 -	8.8244E-04/
	Notes	• The default (are T <i>min</i> =30		olynomial temperature limits 0.
		 Required Chaprovided by 		nomial parameters must be ord CHEB.
			•	polynomial pressure limits of keyword PCHEB.

., .	D (1) 1.1	after release	10.0			
Keyword	Definition					
TDEP	Species Temperature Dependence - Causes the reaction rate constant to be evaluated using the specified species temperature and the rate parameters given in the reaction data. In the case when there is more than one temperature defined in the system, the Application must call the <i>Gas-phase Kinetics</i> subroutine CKKTFL to indicate which temperature in the temperature array corresponds to each species. Examples of the TDEP input are shown in Figure 3.5: Examples of Auxiliary Reaction Data (p. 56)					
	Parameters	Optional/Reqd	. Units	Examples		
	Species name	Required		TDEP/ E /		
	Keyword Usage	E + CL2 => 2.5619E-01		5.8901E-09 - 04		
		TDEP/E/				
TROE	the Chemkin-Pro Th	neory Manual). TRO	E must be fo	(see Equation 3.33 of ollowed by the **; the fourth parameter		
	is optional and if or					
	Parameters	Optional/Reqd	. Units	Examples		
	α	Required	Depends on reaction	TROE /0.5336 629.2 2190. 626.5/		
	T***	Required	K	TROE /0.5336 629.2 2190. 626.5/		
	T*	Required	K	TROE /0.5336 629.2 2190. 626.5/		
	T**	Optional	K	TROE /0.5336 629.2 2190. 626.5/		
	Reaction Ex- ample		C2H5+O2(+M)= C2H4+HO2(+M) 1.41E7 1.09 -1975.			
		HIGH/6.85E-12 6.53 -834./				
		TROE/0.45 1.E-10 1.E10/				
	Notes	Other required TROE parameters must be provided by use of keywords LOW or HIGH				
UNITS	fit that may differ for expressions in the costs of slash-delimited chater than the costs of the	by use of keywords LOW or HIGH. upersedes the current units for a particular reaction rate from the default units specified for other reaction chemistry mechanism. UNITS must be followed by the racter-string string , where string is one of the following INS], CAL/[MOLE], KCAL[/MOLE], JOUL[ES/MOLE LE] for parameters with energy units such as E; or ULES] for pre-exponential factors A; where the letters onal. The inclusion of MOLEC[ULES] would indicate		particular reaction rate or other reaction ust be followed by the g is one of the following: OLE], JOUL[ES/MOLE], units such as E_i , or or A_i , where the letters		

Keyword	Definition				
	that the reaction rate expression is in units of molecules/cm ³ rather than mole/cm ³ . The UNITS auxiliary keyword allows only one string parameter, but the user can repeat the UNITS as many times as needed for a given reaction.			nly one string parameter,	
	Parameters	Optional/Reqd.	Units	Examples	
	Reaction units character string Required UNITS /MOLECULES				
	Reaction Ex- ample	CF3+ + E + CF3	#WSIO2(B) => #SIO2 + 0.0 0.0	
		BOHM ! YIELD /0.01 UNITS/EVOLT		5 1.0/	
	N. 4				
	Notes			cgs (cm, sec, K, mole), the exact order of the reaction.	
		• Default units	for <i>E</i> _i are ((cal/mole).	
		header line, it	the units strings are given on the REACTIONS ne, it applies to all reactions, but may be ed for a particular reaction by the auxiliary eyword		
		the UNITS ke the Arrhenius	eyword, the expressio	gy units are changed by giving e temperature appearing in n of Equation 3.5 of the anual is still in Kelvins.	
USRPROG	Optional User Rate Subroutine CKUPROG — The net rate-of-progress for the reaction will be obtained by calling a user-supplied subroutine, CKUPROG. An optional slash(/)-delimited integer parameter allows the user to select from more than one type of rate formulation. Wherever the net reaction rate is required, it will be obtained by calling the user-written subroutine. A template of CKUPROG is provided in the ANSYS Chemkin-Pro installation, in the file cklib_user_routines.f located in the directory user_routines. Information about how to compile and link user routines into Chemkin-Pro is included in Chemkin-Pro Application Programming Interface Manual.			supplied subroutine, parameter allows the user ation. Wherever the net ling the user-written at the ANSYS Chemkin-Proted in the directory and link user routines	
	Parameters	Optional/Reqd.	Units	Examples	
	Rate formulation type	Optional	USRPROG /1/		
	Reaction Ex- ample	H2+O2=>2OH 47780.		1.7E13 0.0	
		USRPROG/1	./		

Note: PDF user guides no longer in Chemkin-Pro install

after release 19.0

Keyword	Definition			
	Notes	 USRPROG applies only to irreversible reactions, and cannot be used in conjunction with USRPROD (entered on the REACTIONS header line). 		
XSMI	determination of io	representing collision cross-section information for the n momentum-transfer collision frequencies in a plasma iary parameters are required. The evaluated rate-constant		
	subroutines evaluat see Rates of Creatio	cm ² , and is left as such when <i>Gas-phase Kinetics</i> e rates of progress for other reactions. For more detail, an and Destruction of Species of the Chemkin-Pro Theory are given in Figure 3.5: Examples of Auxiliary Reaction		
	Reaction Ex- ample	CL+ + CL => CL+ + CL 1.03E-13 -0.5 0.0		
	Notes	TDEP/CL+/ XSMI !momentum-transfer x-sec • These options would generally not be used (or would be ignored) with any of the standard ANSYS Chemkin-Pro reactor models; they are there for users who may be incorporating Chemkin-Pro into a multi-dimensional plasma simulation user program.		

Figure 3.5: Examples of Auxiliary Reaction Data

```
REACTIONS
                              ! these are the default units for the reaction rates
                    CAL/MOLE
HCO+M=H+CO+M
                        0.250E+15 0.000 16802.000
CO/1.87/ H2/1.87 CH4/2.81/ CO2/3./ H2O/5./
H+C2H4(+M)=C2H5(+M)
                       0.221E+14 0.000 2066.000
  LOW / 6.369E27 -2.76 -54.0 /
                                                       !Lindemann fall-off reaction
  H2/2/ CO/2/ CO2/3/ H2O/5/
                                                 ! enhanced third-body efficiencies
CH3+CH3(+M)=C2H6(+M)
                     9.03E16 -1.18 654.
  LOW / 3.18E41 -7.03 2762 / TROE / 0.6041 6927. 132. /
                                        ! TROE fall-off reaction, with 3 parameters
  H2/2/ CO/2/ CO2/3/ H2O/5/
                                                ! enhanced third-body efficiencies
CH3+H(+M)=CH4(+M) 6.0E16 -1.0 0.0
  LOW / 8.0E26 -3.0 0.0/
   SRI / 0.45 797. 979. /
                                                            ! SRI fall-off reaction
  H2/2/ CO/2/ CO2/3/ H2O/5/
                                                 ! enhanced third-body efficiencies
CH3+CH3(+M)=H + C2H5(+M) 4.989E12 0.099
                                          10600.0 ! Stewart
  HIGH/ 3.80E-7 4.838
                        7710. /
                                                   ! Chemically activated reaction
  SRI / 1.641 4334 2725 /
                                                          ! SRI pressure dependence
                           1.25E14 0 1.190E4
CH4+H=CH3+H2
                                                                        ! Westbrook
  REV / 4.80E12 0 1.143E4 /
! The following two reactions are acceptable duplicates:
H2+O2 = 2OH
                              1.7E13
                                           47780
  DUPLICATE
H2+O2 = 2OH
                              1.0E13
                                           47000.
  DUPLICATE
H2(1)+H2O(000)=H2(0)+H2O(001) 2.89E15 0 0
```

```
LT / -67 62.1/
                                                           ! Landau-Teller reaction
! The following is a Chebyshev polynomial rate description
C2H5 + O2 (+M)
                    <=> C2H4E + HO2 (+M) 1.00E+00
                                                       .000
                                                                        ! Bozzelli
  TCHEB/ 300 2500/
                            PCHEB/1 100/
   CHEB/ 7 3
                     1.0216E+01 -1.1083E+00 -1.9807E-01 7.8325E-01/
   CHEB/ 1.1609E+00 1.1762E-01 -9.5707E-02 1.0928E-01 1.1551E-01/
   CHEB/ -8.0290E-02 -1.0978E-01 3.7074E-04 -1.4830E-02 -6.0589E-02/
   CHEB/ -2.8056E-02 6.9203E-03 -9.7259E-03 -1.3556E-02 7.6648E-03/
   CHEB/ 6.6865E-03 -8.8244E-04/
! The following reactions allow plasma kinetics descriptions
E + E + AR + <=> AR + E 1.414E+39 -4.500 0.00
                                                                  ! Mansbach & Keck
           REV/6.807E+31 -3.0 364218./
                                                   !electron temperature dependence
  TDEP/E/
                         4.9E-7
E + AR => AR + E
                                  0.162 8.7634E3
   TDEP/E/ MOME
                                             !Momentum-transfer collision frequency
  UNITS/KELVIN/
AR+ + AR => AR+ + AR
                         1.E-16
                                 0.0
                                       0.0
                                                                    !units of cm^2
  XSMI
                                     !Ion momentum-transfer collision cross-section
E + AR => AR + E
                         2.235E16 0.0 3.47E5
  TDEP/E/ EXCI/11.60/ ! metastable excitation reaction
H2O+H = OH+H2
                         0.117E+10 1.30
                                           3626
  FORD /H20 1.1/
END
                                                              !END line is optional
```

3.6.3.1. Problems Having No Reactions

In some problems only information about the elements and species is needed (e.g., chemical equilibrium computations). For these it is not necessary to include reaction data. The *Gas-phase Kinetics* Pre-processor will create the Linking File (e.g., *chem.asc*), but it will not contain any reaction information. Therefore, no subroutines in the *Gas-phase Kinetics* Subroutine Library that deal with chemical reactions (e.g., chemical production rates) may be used.

Table 3.8: Summary of the Rules for Auxiliary Reaction Data (p. 57) summarizes the rules for auxiliary reaction data.

Table 3.8: Summary of the Rules for Auxiliary Reaction Data

Rule	Description
1	Auxiliary information lines may follow reaction lines that contain an M to specify enhanced third-body efficiencies, a reversible reaction to specify the reverse rate parameters explicitly, or any reaction that specifies Landau-Teller parameters. Auxiliary information must follow any duplicate reactions as well as all reactions that indicate pressure-dependent behavior by (+M) (i.e., provide fall-off parameters).
2	A species may have only one enhanced third body efficiency associated with it in any one reaction.
3	Only one radiation wavelength may be declared in a reaction.
4	The order in which the enhanced third body declarations are given is the order in which arrays of enhanced third body information are referenced in the subroutine package.
5	There cannot be more than ten enhanced third bodies in a reaction.
6	Keyword declarations may appear anywhere on the line, in any order.

Rule	Description
7	Any number of keywords may appear on a line and more than one line may be used; however, a keyword and its parameter(s) must appear on the same line.
8	Keyword declarations that appear on the same line must be separated by at least one blank space.
9	Any blank spaces between a keyword and the first slash are ignored and any blanks between the slashes and parameter(s) are also ignored. However, no blank spaces are allowed within a keyword or a parameter.
10	All characters following an exclamation mark are comments.
11	In ion momentum-transfer collision cross-section reactions there must be exactly two reactant species, one of which must be an ion.
12	In electron momentum-transfer collision frequency reactions, there must be exactly two reactant species, one of which must be the electron.

3.6.4. Error Checks

The Gas-phase Kinetics Pre-processor checks each input line for proper syntax and writes diagnostic messages on logical file LOUT if errors are encountered. If an error condition occurs, the Pre-processor continues to read and diagnose the input, but an error flag is written to the Linking File and the Gas-phase Kinetics subroutine CKINIT will not initialize the work arrays. Therefore, the input must be error free before any of the Gas-phase Kinetics subroutines can be called. The possibilities for an error condition are listed Table 3.9: Error Checks (p. 58).

Table 3.9: Error Checks

Data Type	Possible Errors
Element Data	Atomic weight for an element or isotope is not declared, and the element is not found in the Pre-processor's database.
	Atomic weight has been declared, but not enclosed by two slashes (/).
	If an element is declared twice, a diagnostic message is printed, but the duplicate is simply eliminated from consideration and is not considered a fatal error.
Species Data	If a species is declared twice, a diagnostic message is printed, but the duplicate is eliminated from consideration and is not considered a fatal error.
	No thermodynamic data have been found for a declared species.
Thermodynamic Data	Thermodynamic data are format sensitive and therefore provide possibilities for error if not formatted exactly as described by Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4).
	An element in the thermodynamic data for a declared species has not been included in the element data.
	With the THERMO ALL option, line 2 (Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)) is not found.

Data Type	Possible Errors
Reaction Data	A delimiter =>, <=>, or = between the reactants and the products is not found.
	Three Arrhenius parameters are not found.
	Reactants and/or products have not been properly delineated by a plus sign (+).
	A species as a reactant or product has not been declared in the species data.
	The reaction does not balance in elements.
	The reaction does not balance in electronic charge.
	A reaction is a duplicate not declared by the auxiliary data keyword DUP.
	A third-body species enclosed in parentheses in a fall-off reaction appears as reactant or product, but not both.
	A species is a third-body in a fall-off reaction, and $+M$ also appears in the reaction.
	More than one +M or third body appear as reactants and/or products.
	There are more than six reactants or six products.
Auxiliary Reaction Data	There is an unknown or misspelled keyword or enhanced third-body species name.
	Parameters for a keyword are not enclosed in slashes.
	The wrong number of parameters appear for a keyword.
	There are duplicate keywords for a reaction.
	LOW, HIGH, TROE, SRI, PCHEB, TCHEB, or CHEB are found after a reaction that did not have a species or M in parentheses.
	LOW, HIGH, or CHEB is not found after a pressure-dependent reaction.
	A combination of TROE, SRI, CHEB and/or PLOG is found.
	LT and REV are found for a Landau-Teller reaction, but RLT is not found.
	LT is given for a fall-off reaction.
	There are more than ten enhanced third bodies.
	There are more than or less than two reactants specified with XSMI or MOME keywords.
	An ionic species is not specified as a reactant with the XSMI keyword.
	The electron is not a reactant when using the MOME keyword.
	USRPROG given for a USRPROD mechanism.
	USRPROG given for a reversible reaction.

Chapter 4: Surface Kinetics Input

The Surface Kinetics input file provides symbolic description of a surface reaction mechanism. Pre-processing this file requires obtaining information stored in the Gas-phase Kinetics linking file (e.g., chem.asc) that was created from the gas-phase mechanism associated with the chemistry set. Pre-processing the Surface Kinetics input file results in the creation of an additional linking file (e.g., surf.asc) that contains information about the surface mechanism and the species it involves. The information in the Surface Kinetics Linking File is subsequently accessed by the initialization routine in the Surface Kinetics Subroutine Library to store information in memory during a reacting-flow simulation. This stored information is then used to call other routines in the Surface Kinetics Subroutine Library to provide information on thermodynamic properties and chemical production rates.

The Surface Kinetics input includes information on surface sites (phases), surface species, bulk phases, bulk species, thermodynamic data, and the reaction mechanism. The order of data entry in the Surface Kinetics input file is: material name, site data, bulk data, thermodynamic data, reaction data, and a material-end statement. All input data is optional, but species included in reaction strings must be declared as site or surface species (or as gas species in the Gas Kinetics input file) and must have associated thermodynamic data included either directly in the Surface Kinetics input file or in a thermodynamic database file (e.g., therm.dat). Such sets of information can be repeated for any number of different materials within the same Surface Kinetics input file. With the exception of the thermodynamic data, all input is format free. The syntax and rules for all of the data input is described in this chapter. The auxiliary keywords for surface reactions are described in Table 4.6: Alphabetical Listing of Surface Reaction Auxiliary Keywords (p. 72) and the options for specifying units on the REACTIONS line are described in Table 4.3: Alphabetical Listing of REACTIONS-line Options for Surface Reaction Data (p. 66). Alphabetical Listing of Project Input Keywords (p. 123) describes the meaning and usage of each keyword entry that may be included as part of a Reactor Model input file.

Note

The Surface Kinetics Input File allows 259 columns for the presentation of the input data.

4.1. Material Declaration

Entirely different surface reaction mechanisms (i.e., with different surface and bulk phases and species, and different surface reactions) can be specified in the same *Surface Kinetics* input file through the use of multiple materials. At the beginning of each separate portion of the input file corresponding to a given material, the user gives an input line with the keyword MATERIAL followed by an optional slash-delimited material name. If no name for the material is supplied, a default name MATERIAL **n** is provided, where **n** is the number of the material (e.g., MATERIAL2 for the second material given in an input file). An example of the usage of multiple materials is given in Figure 4.1: Examples of Material Declarations (p. 61).

Figure 4.1: Examples of Material Declarations

!------GAS-PHASE KINETICS PRE-PROCESSOR INPUT------ELEMENTS SI CL E AL
SPECIES E CL2+ CL+ SICL4 SICL2 CL

```
NOTE THAT ABOVE IS A CHEM.INP FILE, WHILE BELOW IS A SURF.INP FILE.
!----SURFACE KINETICS PRE-PROCESSOR INPUT-----
MATERIAL WAFER
SITE/POLY/ SDEN/2.25e-9/
SI(S) SICL(S) SICL2(S) SICL3(S)
BULK SI(B)/2.33/
REACTIONS MWOFF
   CL + SI(S)
                => SICL(S)
                                                    1.0
                                                         0.0 0.0
      STICK
   E + CL2+ + 2SI(S) => 2SICL(S)
                                                         0.0
                                                             0.0
      BOHM
   E + CL + SICL3(S) + SI(B) => SICL4 + SI(S)
                                                    0.50 0.0 0.0
      ENRGDEP/1. 0.5 1.0/ UNITS/EVOLT/
   E + CL + #SICL3(S) + #SI(B) + SICL(S) &
         => SICL2(S) + #SICL2 + #SICL(S)
                                                    0.50 0.0 0.0
      BOHM
      YIELD/0.0712 1.21 0.5 1.0/ UNITS/EVOLT/
!
          /A Eth[eV] a b / for #=A(Ei^a-Eth^a)^b
END
MATERIAL WALL
SITE/METAL/ SDEN/2.25E-9/
AL(S) ALCL(S)
END
REACTIONS MWOFF
   CL+ + E
                => CL
                                        0.6
                                              0.0 0.0
      BOHM
                => ALCL(S)
   CL + AL(S)
                                        1.0
                                              0.0 0.0
      STICK
END
```

4.2. Site Data

Surface-phase species exist on sites, and a site and its species must be identified on one or more lines of site data. The first line in a set of site data must start with the word SITE; an optional name may be associated with a site if it immediately follows SITE and is delimited by slashes(/). If no name for the site is supplied, a default name SITE **n** is provided, where **n** is the number of a site (e.g., SITE2 for the second site type listed). Following SITE and/or the site name, the word SDEN and a slash-delimited density (the standard state site density for this site, in mole/cm²) for the site is required. The species that can reside on the site type are declared by a list of species symbols (names) on the same line or on additional lines.

Note

The name of a site species must not duplicate the name of a gas-phase species or a bulk species, and must be unique among the site species for all materials.

An optional slash-delimited site occupancy number may follow a species name, i.e., the number of individual sites that this species occupies. (For example, a large chemical species might cover two or more sites.) The default site occupancy for a surface species is 1. The sets of SITE data input can continue for as many site types as are needed.

Any set of up to sixteen upper- or lower-case characters can be used as a site name or species symbol. In addition, each species must be composed of elements that have been identified in the *Gas-phase Kinetics* Pre-processor and thus contained in the *Gas-phase Kinetics* Linking File. One of the purposes

of the site data is to define the order in which arrays of site species information are referenced in the *Surface Kinetics* Subroutine Library.

Note

Species symbols may not begin with a number, a plus sign (+), a pound sign (#), or an equality sign (=), have imbedded blanks, or include a slash (/). An ionic species may end with any number of plus or minus signs; an imbedded plus sign must be enclosed in parentheses.

Any line starting with or any portion of a line following an exclamation mark (!) is considered a comment and will be ignored. Blank lines are also ignored. Figure 4.2: Examples of Site Data (p. 63) shows sample site data. The rules for site data are summarized in Table 4.1: Summary of the Rules for Site Data (p. 63)

Figure 4.2: Examples of Site Data

```
SITE / PLANE /
                             SDEN/1.04E-9/
                                              ! PLANAR SITE
                                              ! FIRST SPECIES ON PLANE SITE
ASH2(V) ASH3(V) H(S) CH3(V) AS(V) AS2(V)/2/
                                              ! EMPTY PLANAR SITE
                                              ! AN END STATEMENT IS OPTIONAL
SITE / LEDGE /
                SDEN/1.66E-10/
                                              ! LEDGE SITE
  GACH(L)
                                              ! FIRST SPECIES ON LEDGE
  DMG(L)/2/
                                              ! THIS SPECIES OCCUPIES 2 SITES
                                              ! EMPTY LEDGE SITE
SITE SDEN/1.0E-10/ GA(S)
                                              ! SITE WITH ONLY ONE SPECIES
                                                ! SITE NAME NOT INCLUDED
```

Table 4.1: Summary of the Rules for Site Data

Rule	Description
1	Site data must start with a line containing the word SITE, followed by an optional slash-delimited name (i.e., SITE/ name /).
2	The standard state site density is required as a slash-delimited number (in mole/cm ²) following the word SITE and/or the site name, and preceded by
	the word SDEN.
3	The site density is followed by one or more site species name declarations. Declaring a site with no site species is an error.
4	Site and species names are composed of up to sixteen upper- or lower-case character symbols. The names cannot begin with the characters +, =, #, or a number; an ionic species name may end with one or more + or – signs; an embedded plus sign must be enclosed in parentheses (+). Names cannot include a slash (/).
5	All species names should be unique; duplicate species names will be ignored and a warning issued. A species name may not duplicate a name of a gas-phase species, another surface species, or a bulk species.
6	A site name must not duplicate the name of any other phase (gas, surface site, or bulk phase).
7	Each surface species that subsequently appears in a surface reaction must have been declared in this section.
8	A site species name may appear anywhere on the line.

Rule	Description
9	A site species may have a slash-delimited site occupancy (the number of sites that this species occupies on the surface) following the species name.
10	A species name declaration that begins on one line may not continue to the next line (i.e., do not break a species name into two lines).
11	There may be more than one set of SITE data.
12	All characters on a line following an exclamation mark are considered comments.
13	SITE data are not required.

4.3. Bulk Data

A set of bulk data may consist of one or more condensed-phase species. The first line in a set of bulk data must start with the word BULK and may be followed by an optional slash-delimited name for the bulk phase. If a name is not supplied for bulk phase n, then the name BULKn is supplied. Bulk species are declared by a list of unique species symbols (names) on the same line or on additional lines. An optional slash-delimited density (in g/cm^3) may follow a species name. If no density is supplied, the unphysical value of -1.0 is stored as a flag. The rules for bulk species symbols (names) are essentially the same as those for site species. Figure 4.3: Examples of Bulk Data (p. 65) shows sample bulk data. The rules for bulk data are summarized in Table 4.2: Summary of the Rules for Bulk Data (p. 64) .

Table 4.2: Summary of the Rules for Bulk Data

Rule	Description
1	Bulk data must start with a line containing the word BULK, and may be followed by a slash-delimited name for the bulk phase (i.e., BULK / name /).
2	The BULK declaration and/or bulk name must be followed by one or more bulk species declarations. Declaring a bulk phase with no bulk species is an error.
3	Bulk and bulk species names are composed of up to sixteen upper- or lower-case character symbols. The names cannot begin with the +, =, #, or a number; an ionic species name may end with one or more + or - signs; an embedded plus sign must be enclosed in parentheses (+). Names cannot include a slash (/).
4	All species names should be unique; duplicate species names will be ignored and a warning issued. A species name may not duplicate a name of a gas-phase species, a surface species, or another bulk species.
5	All phase names must be unique. For example, a bulk phase name may not duplicate the name of any other phase (gas, surface site, or bulk phase).
6	Each bulk species that subsequently appears in a surface reaction must have been declared in this section.
7	A bulk species declaration may start anywhere on the line.
8	A bulk species name may be followed by an optional slash-delimited mass density (in g/cm ³).
9	A bulk species declaration that begins on one line may not continue to the next line (i.e., do not break species names into two lines).
10	There may be more than one set of BULK data.

Rule	Description
	All characters on a line following an exclamation mark are considered comments and are ignored.
12	BULK data are not required.

Figure 4.3: Examples of Bulk Data

```
BULK / GA_RICH / GA2AS(1)/3.0/ GA3AS(1)/3.0/ END !an END statement is optional
BULK / GA_RICH /
GA2AS(1)/3.0/
GA3AS(1)/3.0/
GA3AS(1)/2.0/ !THIS NAME IS A DUPLICATE AND WILL BE IGNORED
BULK AS(B) !BULK PHASE WITH NO NAME SUPPLIED
END
```

4.4. Thermodynamic Data

Any chemical species that appears in a problem must have thermodynamic data associated with it. This data is used in evaluation of thermodynamic properties (entropy, enthalpy, heat capacity) and reverse reaction rate constants through the equilibrium constant. Often thermodynamic data for a species, for instance a surface species, is unknown. Such data can sometimes be calculated via theoretical techniques. However, the user can work around the need for actual thermodynamic data for all species by making the reactions irreversible. In this case, the user can supply "dummy" thermodynamic data for the surface species to satisfy the requirement.

Note

If every reaction in the mechanism is either irreversible, or if Arrhenius rate parameters are given explicitly for the reverse reaction, then the thermodynamic data for species are not actually used for anything related to the kinetics. They may, however, be used in surface heat balances if such are enabled for a particular reacting-flow problem.

The data may be extracted from a database file (e.g. *therm.dat*) and/or read directly from the *Surface Kinetics* input file. Details on the thermodynamic data format, whether including in the *Surface Kinetics* input file or in a thermodynamic database file, are provided in Thermodynamic Data Format (p. 3).

Note

When thermodynamic data is included in the *Surface Kinetics* Input file, it must immediately follow phase (SITE and BULK) data.

4.5. Reaction Mechanism Description

The surface reaction mechanism may consist of any number of chemical reactions involving the solid species named in the site and bulk data, as well as the gas-phase species declared in the *Gas-phase Kinetics* input file. A reaction may be reversible or irreversible. Reaction data must start with a line containing the word REACTIONS (or REAC). The lines following the REACTIONS line contain reaction descriptions together with their Arrhenius rate coefficients. The reaction description is composed of reaction data and perhaps optional auxiliary reaction data.

4.5.1. REACTIONS Line Options

On the same line as the REACTIONS word, you may define certain options that will apply globally to all surface reactions. In some cases, Auxiliary Reaction Keywords given for a specific reaction may override these global settings. A summary of the REACTIONS -line options are provided in Table 4.3: Alphabetical Listing of REACTIONS-line Options for Surface Reaction Data (p. 66).

Note

Even if the default energy units are changed by giving one of these keywords, the temperature appearing in the Arrhenius expression of Equation 3.5, i.e., in T raised to the β power and in the denominator of the activation energy term, is still in Kelvins.

Note

If units are not specified, A_i and E_i are assumed to be in (cm, mole, sec, K) and cal/mole, respectively.

Table 4.3: Alphabetical Listing of REACTIONS-line Options for Surface Reaction Data

Keyword	Definition					
ATM	Supersedes the default units for all surface reactions that follow the REACTIONS header line for pre-exponential factors A_i ; the units of gas species are partial pressures in atm.					
	Notes					
	Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.					
BAR	Supersedes the default units for all surface reactions that follow the REACTIONS header line for pre-exponential factors A ; the units of gas species are partial pressures in bar.					
	Notes					
	Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.					
CAL/[MOLE]	Re-iterates the default units for all surface reactions that follow the REACTIONS header line for parameters with energy units such as E i·					
	Notes					
	Default units for E_i are cal/mole.					

Keyword	Definition			
DYN[ES]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for pre-exponential factors A ; the units of			
	gas species are partial pressures in dyne/cm ² .			
	Notes			
	Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.			
EVOL[TS]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for parameters with energy units such as E			
	Notes			
	Default units for E_i are cal/mole.			
JOUL[ES/MOLE]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for parameters with energy units such as <i>E</i> i			
	Notes			
	Default units for E_i are cal/mole.			
KCAL[/MOLE]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for parameters with energy units such as E			
	Notes			
	Default units for E_i are cal/mole.			
KELV[INS]KC AL/MOLE	Supersedes the default units for all surface reactions which follow the REACTIONS header line for parameters with energy units such as E			
	Notes			
	Default units for E_i are cal/mole.			
KJOU[LES/MOLE]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for parameters with energy units such as E			
	Natas			
	Notes			

Keyword	Definition					
	Default units for E_i are cal/mole.					
MAXSP	Increases the maximum number of reactants or products allowed in a reaction. The number given by this keyword must be greater than the default limit of 6. For example, REACTIONS MAXSP=11.					
	Notes					
	This keyword is available to both the gas-phase and surface reaction mechanism.					
MOLEC[ULES]	Supersedes the default units for all surface reactions which follow the REACTIONS header line for pre-exponential factors A_i .					
	Notes					
	Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.					
MOLE[S]	Re-iterates the default units for all surface reactions which follow the REACTIONS header line for pre-exponential factors A_i .					
	Notes					
	Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.					
MWOFF	Turns off the Motz-Wise correction of Equation 4.15 of the Chemkin-Pro Theory Manual for all sticking-coefficient reactions which follow the REACTIONS header line.					
	Notes					
	By default, the Motz-Wise correction is off for all sticking coefficient reactions; the default may be superseded for a particular sticking-coefficient reaction by use of the auxiliary reaction keyword MWOFF or MWON.					
MWON	Turns on the Motz-Wise correction of Equation 4.15 of the Chemkin-Pro Theory Manual for all sticking-coefficient reactions which follow the REACTIONS header line.					
	Notes					
	By default, the Motz-Wise correction is off for all sticking coefficient reactions; the default may be superseded for a particular sticking-coefficient reaction by use of the auxiliary reaction keyword MWOFF or MWON.					

Definition
Allows non-conservation of sites in any surface reaction which follows the REACTIONS header line. Normally, any reaction that does not conserve the number of surface sites in each surface phase is considered to be in error; the inclusion of NONCON on the REACTIONS line supersedes that rule.
Supersedes the default units for all surface reactions that follow the REACTIONS header line for pre-exponential factors A_i ; the units of gas species are partial pressures in pascals.
Notes
Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.
Supersedes the default units for all surface reactions which follow the REACTIONS header line for pre-exponential factors A_i ; the units of surface species are site fraction and the reaction rate unit is 1/sec.
Notes Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.
Supersedes the default units for all surface reactions which follow the REACTIONS header line for pre-exponential factors A_i ; the units of gas species are partial pressures in torr.
Notes
Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction.
The net rate-of-production for all species will be obtained by calling a user-supplied subroutine, SKUPROD. An optional slash(/)-delimited integer parameter allows the user to select from more than one type of rate formulation. Wherever the net rates of production of species are required, they will be obtained by calling the user-written subroutine. A template of SKUPROD is provided in the ANSYS Chemkin-Pro installation, in the file <code>sklib_user_routines.f</code> located in the directory <code>user_subroutines</code> . Information about how to compile and link user routines into Chemkin-Pro is included in Chemkin-Pro Application Programming Interface Manual.

Keyword	Definition
	USRPROD cannot be used in conjunction with USRPROG (entered after
	a particular reaction).

Note

Chemkin-Pro does not support user-written programs, so you are cautioned to use the SKUPROD user routine feature at your own risk. Also, there are some features in the program executables that will be incompatible with the global replacement of species rates of production, such as sensitivity analysis and rate-of-production analysis. Such features will return zero values when user-rate programming is encountered.

4.5.2. Reaction Data

Each reaction entry is divided into two fields, (an entry may use multiple lines if it is more than 80 characters long). A reaction data entry is continued on the next line using the special character "& " at the end of the line; any information following the & symbol on the same line is ignored. The first field in the reaction entry contains the symbolic description of the reaction, while the second contains the Arrhenius rate coefficients. Both fields are format free, and blank spaces are ignored. All characters on a line following an exclamation mark (!) are considered comments and are ignored. Blank lines are also ignored.

The reaction description, given in the first field, must be composed of the species symbols, coefficients, and delimiters as summarized below.

Table 4.4: Surface Reaction Data Criteria

Species Symbols				
	Each species in a reaction is described with the unique sequence of characters as they appear in the species data and the thermodynamic data.			
Coefficients				
	A species symbol may be preceded by an integer or real coefficient. The coefficient has the meaning that there are that many moles of the particular species present as either reactants or products; e.g., 20H is equivalent to 0H +OH. The "# " symbol is used to mark stoichiometric coefficients that are additionally multiplied by a YIELD coefficient. This is explained in Auxiliary Reaction Data (p. 72).			
Delimiters				
+	A plus sign is the delimiter between each reactant species and each product species.			
=	An equality sign is the delimiter between the last reactant and the first product in a reversible reaction.			
<=>	An equality sign enclosed by angle brackets can also be used as the delimiter between the last reactant and the first product in a reversible reaction.			
=>	An equality sign with an angle bracket on the right is the delimiter between the last reactant and the first product in an irreversible reaction.			

The second field of the reaction line is used to define the Arrhenius rate coefficients A_i , β_i , and E_i in that order, as given by Equation 3.5 of the Chemkin-Pro Theory Manual . At least one blank space must

separate the last species name in the reaction and first number. The three numbers must be separated by at least one blank space, be stated in either integer, floating point, or "E" format (e.g., 123 or 123.0 or 12.3E1), and have units associated with them (although the units do not appear on the input line). Unless modified by the REACTIONS line or by the UNITS auxiliary keyword, the default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction. The factor β_i is dimensionless. The default units for the activation energies are cal/mole.

The second field of the reaction line may optionally be used to specify the coefficients a_i , b_i , and c_i of Equation 4.10 of the Chemkin-Pro Theory Manual for a sticking coefficient. In order for the second field to apply to sticking coefficient parameters, the next line of input must contain the auxiliary keyword STICK.

Examples of some reaction data are shown in Figure 4.4: Examples of Reaction Data (p. 71). Table 4.5: Summary of the Rules for Reaction Data (p. 71) summarizes the reaction data rules.

Figure 4.4: Examples of Reaction Data

Table 4.5: Summary of the Rules for Reaction Data

Rule	Description			
1	The first reaction line must start with the word REACTIONS (or REAC), and may be followed by units definition(s), the word MWON, MWOFF, NONCON, or the word USRPROD.			
2	The word MWOFF can be used to turn off the Motz-Wise correction of Equation 4.15 of the Chemkin-Pro Theory Manual, for all sticking-coefficient reactions, or the word MWON can be used to specify that the Motz-Wise correction is to be used for all sticking-coefficient reactions (the default). Including MWOFF or MWON as an auxiliary keyword for an individual reaction (discussed later) will override the setting given on the REACTIONS line.			
3	Valid unit declarations are EVOLTS, KELVINS, CAL/MOLE, KCAL/MOLE, JOULES/MOLE, KJOULES/MOLE, MOLES, MOLECULES, SITEFR, ATM, BAR, DYN, TOR, and PASCAL.			
4	The word NONCON is required on the first reaction line if any of the reactions do not conserve the number of surface sites of a given type.			
5	The reaction description can begin anywhere on this line. All blank spaces, except those separating the Arrhenius coefficients, are ignored.			
6	Each reaction description must have =, <=>, or => between the last reactant and the first product.			
7	Each species in a reaction is described with a unique sequence of characters (name) as they appear in the species data and the thermodynamic data. However, if a species name is not unique (because it is duplicated in another phase), the name must be modified by appending its slash-delimited phase name, i.e. as name / phase /.			

Rule	Description			
8	Stoichiometric coefficients are represented by an integer or real number preceding a species name. The default is to assume a stoichiometric coefficient of 1. The "# " symbol preceding the stoichiometric coefficient denotes a coefficient which is additionally multiplied by a "yield" multiplier.			
9	A reaction description may be contained on more than one line. If a line contains the symbol $\&$, all information following the $\&$ symbol will be ignored and the next line will be considered a continuation of the first.			
10	Three Arrhenius coefficients must appear in order $(A_i, \beta_i, and E_i)$ on each Reaction line, separated from each other and from the reaction description by at least one blank space; no blanks are allowed within a number.			
11	There cannot be more than six reactants or six products in a reaction.			
12	To specify a sticking coefficient rather than a rate constant the three numbers after the reaction description have the meaning a_i , b_i , and c_i (see Equation 4.10 of the Chemkin-Pro Theory Manual) and the auxiliary reaction data word STICK must appear on the next line of input. To use this option the reaction must have only one gas-phase species as a reactant and its stoichiometric coefficient must be 1.			
13	All characters on a line following an exclamation mark are comments.			
14	For best results, an END statement should follow reaction input.			

4.5.3. Auxiliary Reaction Data

Auxiliary information appears on one or more separate lines after the reaction data line is read, and serves to modify or give additional parameters needed to evaluate that reaction's rate expression. The format in an auxiliary information line is a character string keyword followed by a slash-delimited (/) field containing an appropriate number of parameters (either integer, floating point, E format, or character). Examples of many of the auxiliary options described in this section are shown in Figure 4.5: Examples of Auxiliary Reaction Data (p. 81) . Table 4.6: Alphabetical Listing of Surface Reaction Auxiliary Keywords (p. 72) provides detailed information on the meaning and usage of each auxiliary keyword entry that may be included as part of the Surface Reaction Data.

Table 4.6: Alphabetical Listing of Surface Reaction Auxiliary Keywords

Keyword	Definition					
ВОНМ	Bohm Velocity Limit for lons - Applies the Bohm velocity correction for a reaction involving a positive ionic species (see Equation 4.29 of the Chemkin-Pro Theory Manual). No auxiliary parameters are required.					
	Reaction Example	CL+ + E 0.0 BOHM	=> CL	0.4	0.0	
	Notes	 The three coefficients given in the second field of the reaction line are interpreted as the parameters a i, b i, c i, in Equation 4.29 of the Chemkin-Pro Theory Manual). The reaction can have only one gas-phase reactant species, which must be a positive ion, and its stoichiometric coefficient must be 1. 				

Keyword	Definition						
COV	Coverage Dependent Reactions - Modifies the expression for the forward rate constant by coverage parameters (see Equation 4.7 of the Chemkin-Pro Theory Manual). Must be followed by (slash delimited) surface species name and the three parameters $\eta_{ki'}$ μ_{ki} and ε_{ki} .						
	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Required		COV / Pt(S) 0.0 0.0 0.9/			
	Coverage parameter η_{ki}	Required		COV /Pt(S) 0.0 0.0 0.9/			
	Coverage parameter μ_{ki}	Required		COV /Pt(S) 0.0 0.0 0.9/			
	Coverage parameter ε_{ki}	Required	cal/mole	COV /Pt(S) 0.0 0.0 0.9 /			
	Reaction Example	O(S) +O(S 3.700E+23	0.0	213.0			
	Notes	More than on reaction, and	 COV/O(S) 0.0 0.0 -93.3/ More than one set of COV data can appear for a given reaction, and these would be applied multiplicatively as in Equation 4.7 of the Chemkin-Pro Theory Manual . 				
DCOL	and a particle surface (Must be followed by the reactant.	see Equation 18.79 ne (slash delimited)	of the Chem collision-dia	ency between a gas molecule nkin-Pro Theory Manual). meter of the gas-phase			
	Parameters	Optional/Reqd.	Units	Examples			
	Collision diameter	Required	cm	DCOL / 2.45E-8 /			
	Reaction Example	<pre>3open(se) + FORD/H(se)</pre>	A1 + 8H(se) => 5H(se) + 6C(B) + 3open(se) + 4H2 + H 0.1 0.0 0.0 FORD/H(se) 2.0/ DCOL/2.46E-8/				
		STICK					
	Notes	The reaction r	The reaction must be irreversible.				
		The reaction may have only one gas-phase.					
DUP	and products, but procit may be appropriate to reactions that are the streactions are normally the user requires duplicate reaction (including parameters), duplicate reaction (including parameters).	Two or more reactions can involve the same set of reactants ed through distinctly different processes. In these cases, in state a reaction mechanism that has two or more time, but have different rate parameters. However, duplicate considered errors by the <i>Surface Kinetics</i> Pre-Processor. If action (e.g., the same reactants and products with different traceyword DUP must follow the reaction line of each adding the first occurrence of the reaction that is duplicated). wishes to specify different rate expressions for each of					

Keyword	Definition						
	two identical reactions, there must be two occurrences of the DUP keyword, one						
	following each of the reactions. No auxiliary parameters are required.						
	Reaction Example	O2 + 2PT(S)	=> 20(S)			
		1.8	80E+21	-0.5 0.0			
		DIID					
		DUP					
		02 + 2PT(S)	=> 20(S)			
		0.023 0.00 0.00					
		DUP					
	Notes		for each of	any dyndicated varieties in			
	Notes	the mechanism.	DUP is required for each of any duplicated reaction in				
ENRGDEP	Ion anaray Danandan		o rato const	ant to depend on ion energy			
EINNGDEP				Manual . ENRGDEP must			
	be followed by the three						
	Parameters	Optional/Regd.	Units	Examples			
	Threshold energy E	Required	cal/mole	ENRGDEP / 1.0 0.5 1.0/			
	ion, 0						
	Exponential	Required		ENRGDEP /1.0 0.5 1.0/			
	constant f i	inequired		211116521. 7 116 615 1167			
	Exponential	Required		ENRGDEP /1.0 0.5 1.0 /			
	constant g i	'					
	Reaction Example	E + CL+ + S	SICL3(S)	+ SI(B) => SICL4 +			
	•	SI(S)	0.50				
		20111					
		ВОНМ					
		ENRGDEP/1. 0.5 1.0/ UNITS/EVOLT/					
	Notes	There must be exactly one positive ionic reactant species					
		in the reaction.					
		 Only irreversible reactions are allowed with this option. 					
		Only ineversible reactions are allowed with this option.					
FORD	Arbitrary Reaction Orders - Supersedes the forward reaction order for any						
	species in the mechanism (with respect to species concentration), regardless of						
	whether the species appears as a reactant or a product in the reaction. FORD is						
	followed, in slash-delimited format, by the species name and the new reaction						
	order. This option overrides the values of v_{ki} in Equation 3.4 of the Chemkin-Pro						
	Theory Manual pertaining to the particular species named on the line; the reaction order for all other species is maintained at the default values.						
	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Required		FORD / Pt(S) 1.0/			
	Stoichiometric	Required		FORD /Pt(S) 1.0 /			
	coefficient	nequiled		1 OND /1 ((3) 1.0/			

Keyword	Definition					
	Reaction Example	A1 + 8H(se) 3open(se) +) + 6C(B) + 0.1 0.0 0.0		
		FORD/H(se)	2.0/			
		DCOL/2.46E-	8/			
		STICK				
	Notes	Multiple occu on the auxilia		FORD construct may appear		
LANG	each species appearing Theory Manual . The key name, the pre-exponent the equilibrium constant	rate expression. O in the denominate word is followed, ial multiplier, the t t, and the reaction constant is define	ne auxiliary ling or of Equation in slash delime temperature for order for that as $K = AT^{\beta} \epsilon$	ne should be supplied for a 4.21 of the Chemkin-Pro lited format, by the species actor, the enthalpy for		
	Parameters	Optional/Reqd.		Examples		
	Species name	Required		LANG / C6H6 1.26 0.0 0.0 1.0/		
	Pre-exponential factor A	Required	Depends on reaction	LANG /C6H6 1.26 0.0 0.0 1.0/		
	Temperature exponent β	Required		LANG /C6H6 1.26 0.0 0.0 1.0/		
	Equilibrium enthalpy H	Required	cal/mole	LANG /C6H6 1.26 0.0 0.0 1.0/		
	Reaction order	Required		LANG /C6H6 1.26 0.0 0.0 1.0 /		
	Reaction Example	С6Н5СН3 +	H2 => C6	H6 + CH4		
		2.507E-8 0.0 0.0 ! rate at 600C				
		LANG /C6H6	LANG /C6H6 1.26 0.0 0.0 1.0/			
		LANG /C6H5C	н3 1.01	0.0 0.0 1.0/		
		LHDE /1/				
		LHNU /C6H5C	Н3/			
	Neter	LHPR /atm/	hl			
	Notes	• Only irreversi	bie reactions a	are allowed with this option.		

Keyword	Definition	alter relea				
·		statement. • Additional ke	ywords LHDE y in the form	IU statement must have a LANG , LHNU , and LHPR provide of the Langmuir-Hinshelwood ons.		
LHDE	value of 2 for the overa when LANG is used to	II exponent for the specify a Langmuir this keyword woul	denominator -Hinshelwood d be used an	rate expression. To specify d <i>m</i> set to 1. The use of		
	Parameters	Optional/Reqd.	Units	Examples		
	Denominator exponent m	Required		LHDE /1/		
	Reaction Example	C6H5CH3 + 2.507E-8		H6 + CH4		
		600C LANG /C6H6				
		LANG /C6H5C	н3 1.01	0.0 0.0 1.0/		
		LHDE /1/ LHNU /C6H5C	Н3/			
		LHPR /atm/				
LHNU	Eley-Rideal Reactions of to specify a Langmuir-Fa slash delimited list of of K will be applied to the specific of the specific of K will be applied to the specific of the specific of K will be applied to the specific of the	the use of <i>k</i> rather f the Chemkin-Prolinshelwood rate e species names. For the rate constant.	than k', see La Theory Manua xpression. This each species	angmuir-Hinshelwood and al) when LANG is used s keyword is followed by in the list, a multiplier		
	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		LHNU /C6H5CH3/		
	Reaction Example	C6H5CH3 + 2.507E-8 600C	2.507E-8 0.0 0.0 ! rate at			
		LANG /C6H6 1.26 0.0 0.0 1.0/				
		LANG /C6H5CH3 1.01 0.0 0.0 1.0/				
		LHNU /C6H5C	Н3/			

Keyword	Definition						
		LHPR /atm/					
	Notes	• Each species I statement.	isted in a LHN	U statement must have a LANG			
LHPR	is used to specify a Lan will affect the equilibrium rate will still be assume in the default moles, con name of the pressure u DYNE (for dynes per sq	gmuir-Hinshelwood um constants for the d to be in the unit n, and sec. The key nit being used: ATM uare cm), where th	d rate express e specified res s specified on word is follow M, BAR, TORR, I e names are n	action only; the reaction the REACTIONS line, or ed by the slash-delimited PASC (for Pascals), or not case sensitive.			
	Parameters	Optional/Reqd.	Units	Examples			
	Pressure units character string	Required		LHPR /atm/			
	Reaction Example	С6Н5СН3 +	H2 => C6	H6 + CH4			
		2.507E-8 600C					
		LANG /C6H6	LANG /C6H6 1.26 0.0 0.0 1.0/				
		LANG /C6H5CH3 1.01 0.0 0.0 1.0/					
		LHDE /1/					
		LHNU /C6H5CH3/					
MWOFF	Motz-Wise Correction	LHPR /atm/ - Turns off the Mot	z-Wise correc	tion of Equation 4.15 of			
	the Chemkin-Pro Theory Manual for a sticking-coefficient reaction.						
	Reaction Example	AR* => AR STICK	1.0	0.0 0.0			
		MWOFF					
	Notes	By default, the Motz-Wise correction will be off for all sticking coefficient reactions; the default may be changed by including the keyword MWON on the REACTIONS line.					
MWON	the Chemkin-Pro Theor the default. By default t	y Manual for a sticl the Motz-Wise will MWON keyword is g	king-coefficier be off for all r iven on the Ri	tion of Equation 4.15 of nt reaction, superseding eactions using sticking EACTIONS line, in which			
	Reaction Example			2(S) + 0.5C2H6 .0			
		STICK					

17	alter release 19.0			
Keyword	Definition			
		MWON		
	Notes	sticking coeffic	cient reactions	orrection will be off for all s; the default may be changed WON on the REACTIONS line.
NATIVE	Indicates the native speci Chemkin-Pro Theory Man	•	ee Native Surf	ace Sites of the
	Reaction Example	OPEN(S) /NAT	CIVE/	
NUCL	Supersedes the default ra expression; see Nucleatio			
	Reaction Example	2A4 => 32C(1 open(se)	B) + 20 H(1.0E	(se) + 28.72 10 0.5 0.0
REV	Reverse Reaction Parambe computed through the Theory Manual . REV must coefficients $(A_i, \beta_{i'})$ and E	e equilibrium con st be followed by	stant, Equatio the three slas	
	Parameters	Optional/Reqd.	Units	Examples
	Pre-exponential factor A_i		Depends on reaction	REV / 1.0E13 0.0 15000./
	Temperature exponent β_i			REV /1.0E13 0.0 15000./
	Activation energy E_i		cal/mole	REV /1.0E13 0.0 15000 ./
	Reaction Example	4.0E1	2 0.0	<=> D + CH3(S) 1200.0
RORD	in the mechanism (with r the species appears as a followed by the slash-del supersedes the values of pertaining to the particul other species maintain th	espect to species reactant or a proclimited species na v'_{ki} in Equation 3 ar species named their default values	concentration duct in the real me and the neal the Cherlon the line; to Multiple occidents	ection. RORD must be ew reaction order, and mkin-Pro Theory Manual he reaction order for all
	construct may appear on		ſ	- I
	Parameters	Optional/Reqd.	Units	Examples
	Species name	Required		RORD /OH 2.0/
	Stoichiometric coefficient v'_{ki}	Required		RORD /OH 2.0/
	Reaction Example	H2+O2=2OH 47780	0	.170E+14 0.00

Keyword Definition						
		RORD /OH 2.	0 /			
	Notes	See also FORD).			
STICK		nterpreted as the porty Manual for a sounder one gas-phas	oarameters <i>a</i> i ticking coeffic e reactant sp	$_{i}$, $_{b}$, and $_{c}$ in Equation 4.10 cient (rather than as a rate ecies in a		
	Reaction Example A1 + 8H(se) => 5H(se) + 6C(B) + 3open(se) + 4H2 + H 0.1 0.0 0.0					
		FORD/H(se) 2.0/				
		DCOL/2.46E-	8/			
		STICK				
	expressions in the chemslash-delimited character (letters in brackets are of EVOL[TS], KELV[INS], CAI KJOU[LES/MOLE]. Pre-ext the inclusion of MOLEC units of molecules/cm ³ TOR[R] for pre-exponent pressures. SITE[FR], when the rate units are 1/sec.	er-string string , who optional): Paramete _/[MOLE], KCAL[/M ponential factors A would indicate tha rather than mole/o tial factors A i, whe	ere string is over the string	one of the following y units such as E _i : / MOLE], or or MOLEC[ULES], where n rate expression is in l, PAS[CALS], DYN[ES], of gas species are partial		
	Parameters	Optional/Regd.	Units	Examples		
	Reaction units character string	Required		UNITS /MOLECUES/		
	Reaction Example	CF3+ + E + 0.33	#WSIO2(B) 0.0 0			
		вонм !				
				1.0/ UNITS/EVOLTS/		
	Notes	 Default units for A_i are cgs (cm, sec, K, mole), the exact units depending on the order of the reaction. Default units for E_i are cal/mole. 				
		UNITS keywo Arrhenius exp Theory Manua	ord, the tempe eression of Equ al , i.e., in T rais	inits are changed by giving the erature appearing in the uation 3.5 of the Chemkin-Prosed to the β power and in the on energy term, is still in		

		after relea	se 19.0		
Keyword	Definition				
		header line, it superseded fo keyword.	applies to all r r a particular r	e given on the REACTIONS eactions, but may be reaction by the auxiliary UNITS	
			•	g parameter, but the user can s as needed for a given	
USRPROG	Optional User Rate Subroutine SKUPROG — The net rate-of-progress for the reaction will be obtained by calling a user-supplied subroutine, SKUPROG. An optional slash(/)-delimited integer parameter allows the user to select from more than one type of rate formulation. Wherever the net reaction rate is required, it will be obtained by calling the user-written subroutine. A template of SKUPROG is provided in the ANSYS Chemkin-Pro installation, in the file sklib_user_routines.f located in the directory user_subroutines. Information about how to compile and link user routines into Chemkin-Pro is included in Chemkin-Pro Application Programming Interface Manual.				
	Parameters	Optional/Reqd.	Units	Examples	
	Rate formulation type	Optional		USRPROG /1/	
	Reaction Example	CH3OH +H2O => CO2 + 3H2 1.0 0.00 0.0 USRPROG/3/			
	Notes	 USRPROG applies only to irreversible reactions, and canno be used in conjunction with USRPROD (entered on the REACTIONS header line). 			
YIELD	Ion-energy-dependent Yield - Ion-enhanced reaction yield can be applied reaction using the following two steps. First, place a pound sign (#) in front the species symbol (or stoichiometric coefficient if given) for each species the is subject to the ion-energy yield enhancement. The "sub-reaction" of species and coefficients demarcated with the # sign must satisfy mass, elemental, chand site balance. Second, the auxiliary keyword YIELD must appear after the reaction, followed by the four parameters, h_{yield} , $E_{yield,0}$, t_{i} , and u_{i} (as descrint Equation 4.33 of the Chemkin-Pro Theory Manual). These parameters are included as a slash-delimited set following the YIELD auxiliary keyword. An example of a YIELD reaction is shown in Figure 4.5: Examples of Auxiliary F Data (p. 81).		nd sign (#) in front of a) for each species that b-reaction" of species b mass, elemental, charge must appear after the t i, and u i (as described hese parameters are uxiliary keyword. An		
	Parameters	Optional/Reqd.	Units	Examples	
	Multiplicative factor h _{yield}	Required	Depends on reaction	YIELD / 0.053 4.0 0.5 1.0/	
	Energy threshold E yield,0	Required	cal/mole	YIELD /0.053 4.0 0.5 1.0/	

Keyword	Definition			
	Exponential constant t i	Required		YIELD /0.053 4.0 0.5 1.0/
	Exponential constant u i	Required		YIELD /0.053 4.0 0.5 1.0/
	Reaction Example	CF3+ + E + #WSIO2(B) => #SIO2 + 0.33 0.0 0.0		
		BOHM !	20 0 5 1	0/ UNITS/EVOLTS/
	Notes	A reaction dec	lared with ion	n-enhanced yield must contain ionic reactant species.

Note

Even if the default energy units are changed by giving one of the UNITS keyword, the temperature appearing in the Arrhenius expression of Equation 3.5 of the Chemkin-Pro Theory Manual , i.e., in T raised to the β power and in the denominator of the activation energy term, is still in Kelvins.

4.5.3.1. Summary of Auxiliary Reaction Data

Any number of auxiliary information lines may follow a reaction line, in any order, and any number of keywords may appear on an auxiliary information line; however, an auxiliary keyword and its parameter(s) must appear on the same line.

Examples of auxiliary information are shown in Figure 4.5: Examples of Auxiliary Reaction Data (p. 81) . The above rules are summarized in Table 4.7: Summary of the Rules for Auxiliary Reaction Data (p. 82)

Figure 4.5: Examples of Auxiliary Reaction Data

```
REACTIONS KCAL/MOLE
! THE FOLLOWING ARE *CONTRIVED* EXAMPLES OF AUXILIARY KEYWORD USAGE
   SICL(S) \iff CL + SI(S)
                                                       1.0E-3 0.0
                                                       REV/1.0E13 0.0
                                                                       37./
   CL + SICL(S) \iff CL2 + SI(S)
                                                       0.1
                                                               1.1
                                                                    20.
         DUPLICATE STICK
         RORD /SI(S) 0/
   CL + SICL(S) <=> CL2 + SI(S)
                                                       1.4E11 0.0
         DUPLICATE COV/SICL(S) -1.2 0.5 32./ FORD/CL+ 1.0/
            => CL
                                                       1.0
                                                               0.0
         STICK
                    MWOFF
   E + CL + SICL3(S) + SI(B) => SICL4 + SI(S)
                                                       0.50
                                                               0.0
                                                                     Ο.
      ENRGDEP/1. 0.5 1.0/ UNITS/EVOLT/
   AR+ + E + \#SIO2(D) => \#SIO2 + AR
                                                   1.0 0.0 0.0
      YIELD /0.023052 35. 0.5 1.0/ UNITS/EVOLTS/
   E + CL2 + SICL3(S) + SI(B) => SICL4 + SICL(S)
                                                  0.50 0.0 0.0
                                                                       FORD/ CL2+ 2.43/
   C6H5CH3 + H2 => C6H6 + CH4
                                         1.4E-8 0.0 0.0 ! rate at 600C
      LANG /C6H6 1.26 0.0 0.0 1.0/
      LANG /C6H5CH3 1.01 0.0 0.0 1.0/
      LHDE /1/
```

LHNU /C6H5CH3/ LHPR /atm/

Table 4.7: Summary of the Rules for Auxiliary Reaction Data

Rule	Description
1	Auxiliary information lines may follow a reversible reaction to specify the reverse rate parameters explicitly; auxiliary information must follow any reactions that are duplicated.
2	Auxiliary keyword declarations may appear anywhere on the line, in any order.
3	Any number of auxiliary keywords may appear on a line, and more than one line may be used, but a keyword and its parameter(s) must appear on the same line.
4	Multiple keywords appearing on the same line must be separated by at least one blank space.
5	Any blank spaces between a keyword and the first slash are ignored and any blanks between the slashes and parameter(s) are also ignored. However, no blank spaces are allowed within a keyword or parameter.
6	The keyword REV followed by three slash-delimited Arrhenius coefficients may be used to specify the reverse rate parameters.
7	The keyword DUPLICATE (or DUP) must follow every occurrence of a duplicated reaction.
8	The keyword STICK indicates that the three coefficients on the reaction line are to be interpreted as the parameters a_i , b_i , and c_i in Equation 4.10 of the Chemkin-Pro Theory Manual . There must be exactly one gas-phase reactant species; its stoichiometric coefficient must be 1.
9	The keyword COV is used to modify the forward rate constant by the expression in Equation 4.7 of the Chemkin-Pro Theory Manual . The word COV is followed by a surface species name and the three coverage parameters $\eta_{ki'}$
	μ_{ki} and $arepsilon_{ki}$. The four entries after the word COV are slash-delimited.
10	The keyword BOHM indicates that the three coefficients on the reaction line are to be interpreted as the parameters a_i , b_i , and c_i in Equation 4.29 of the Chemkin-Pro Theory Manual; the Bohm velocity correction is applied. There must be exactly one gas-phase reactant species and that species must be a positive ionic species; its stoichiometric coefficients must be 1. Only irreversible reactions are allowed with this option. The electron must be declared in the list of species names in the <i>Gas-phase Kinetics</i> Pre-processor input.
11	The keyword ENRGDEP allows the rate constant to depend on ion energy according to Equation 4.30 of the Chemkin-Pro Theory Manual . The keyword is followed by the three parameters $E_{\text{ion, 0}}$, f_{i} , and g_{i} which are slash-delimited. There must be exactly one positive ionic reactant species in the reaction. Only irreversible reactions are allowed with this option.
12	The keywords FORD and RORD can be used to change the reaction order (with respect to species concentration) of the forward or reverse reaction, respectively, for any species in the mechanism, regardless of whether the species appears as a reactant or a product in the reaction. The species name and the new reaction order (slash-delimited) follow the keyword.

Rule	Description
13	The YIELD keyword allows modification of the stoichiometric coefficients in a sub-reaction using the ion-yield option. The usage requires preceding each species in the sub-reaction (or its stoichiometric coefficient) with the pound sign (#). Following the reaction line, declare the YIELD keyword, then the four parameters h_{yield} , $E_{\text{yield},0}$, t_{i} , and u_{i} of Equation 4.33 of the Chemkin-Pro Theory Manual , between slashes. There must be exactly one positive ionic reactant species in the reaction. Only irreversible reactions are allowed with this option. The sub-reaction demarcated with the # symbols must satisfy mass, elemental, charge and site balance. An example of the YIELD keyword appears in Figure 4.5: Examples of Auxiliary Reaction Data (p. 81) .
14	The UNITS keyword can be used to override the current default units for parameters with energy units or the pre-exponential factor for a given reaction. The usage is UNITS/ string /, where string is one of the following: EVOLTS, KELVINS, CAL/MOLE, KCAL/MOLE, JOULES/MOLE, or KJOULES/MOLE (for parameters with energy units), or MOLES or MOLECULES (for pre-exponential factors).
15	The string MWON can be used to turn on the Motz-Wise correction of Equation 4.15 of the Chemkin-Pro Theory Manual or the string MWOFF can be used to turn off this correction for a sticking coefficient reaction. Using the MWOFF or MWON keyword overrides the default option set up on the REAC TIONS line or the default supplied by <i>Surface Kinetics</i> (which is MWOFF).
16	The LANG keyword can be used to input a Langmuir-Hinshelwood rate expression. The keyword is followed by a species name, three parameters giving the equilibrium constant, and a fourth parameter giving the order of that species in the reaction. Additional keywords LHDE, LHNU, and LHPR provide more flexibility in the form of the Langmuir-Hinshelwood or Eley-Rideal rate expressions.
17	The keyword LHDE allows the default value of 2 for the overall exponent for the denominator (m) to be overridden when LANG is used to specify a Langmuir-Hinshelwood rate expression. To specify an Eley-Rideal reaction, this keyword would be used to set m to 1. The use of any positive number is permitted, including real or fractional numbers.
18	The keyword LHNU allows the explicit inclusion of equilibrium constants in the numerator of the LH rate expression (the use of k rather than k' , see Langmuir-Hinshelwood and Eley-Rideal Reactions of the Chemkin-Pro Theory Manual) when LANG is used to specify a Langmuir-Hinshelwood rate expression. This keyword is followed by a slash delimited list of species names. For each species in the list, a multiplier of K will be applied to the rate constant. Each species listed in a LHNU statement must have a LANG statement.
19	The keyword LHPR indicates that the equilibrium constants are given in pressure units when LANG is used to specify a Langmuir-Hinshelwood rate expression. The LHPR keyword will affect the equilibrium constants for the specified reaction only; the reaction rate will still be assumed to be in the units specified on the REACTIONS line, or in the default moles, cm, and sec. The keyword is followed by the name of the pressure unit being used: atm, bar, torr, Pasc (for Pascals), or dyne (for dynes per square cm), where the names are not case sensitive.

4.5.4. Problems Having No Reactions

In some problems only information about the surface and bulk species is needed (e.g., chemical equilibrium computations). For these cases it is not necessary to include reaction data. The Pre-processor will create the linking file *surf.asc*, but it will not contain any reaction information. Therefore, no subroutines in the *Surface Kinetics* Subroutine Library that deal with chemical reactions (e.g., chemical production rates) will be used (although doing so would not generate an error; the production rates of all species would be returned as zero).

4.5.5. Error Checks

Each input line is checked for proper syntax and diagnostic messages are written to the pre-processor output file if errors are encountered. If an error occurs, the pre-processor continues to read and diagnose the input, but an error flag is written to the Linking file and *Surface Kinetics* subroutine SKINIT will not initialize the work arrays. Therefore, the input must be error free before a Reactor Model can be run or before any of the *Surface Kinetics* subroutines can be called in a Reactor Model.

Possibilities for an error condition are as follows:

Table 4.8: Error Checks

Data Type	Possible Errors
Site and Bulk Species Data	A duplicated species symbol (name) is not considered a fatal error, but is eliminated from consideration and a warning diagnostic message is printed.
	No site density is found for a declared site, or the site density is negative.
	No thermodynamic data are found for a declared species.
	A site or bulk phase name duplicates another phase name (gas surface site, or bulk phase name).
	A phase or species name contains an illegal character.
	Site occupancy number is negative.
	Bulk density for a bulk species is negative.
Thermodynamic Data	Thermodynamic data are format sensitive and therefore provide possibilities for error if not formatted exactly as described by Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4).
	An element in the thermodynamic data for a declared species is not included in the <i>Gas-phase Kinetics</i> Pre-processor input element data.
	With the THERMO ALL option, line 2 (of Table 2.1: Summary of the Rules for Thermodynamic Data (p. 4)) is not found.
Reaction Data	A delimiter =>, <=>, or = between the reactants and the products is not found.
	Three Arrhenius parameters are not found.
	Reactants and/or products species names are not properly delineated by a plus sign (+).

Data Type	Possible Errors
	A species listed as a reactant or product is not declared in the species data.
	A reaction does not satisfy elemental balance.
	The number of sites in a reaction does not balance and the word NONCON was not included on the first REACTIONS line.
	The charge of the reaction does not balance.
	A reaction is a duplicate not declared by the auxiliary data keyword DUP.
	There are more than six reactants or six products in a reaction.
Auxiliary Reaction Data	An unknown or misspelled keyword occurs.
	Parameters for a keyword are not enclosed in slashes.
	There are the wrong number of parameters for a keyword.
	REV is declared for an irreversible reaction.
	Pre-exponential factor for a sticking coefficient is negative.
	For a sticking-coefficient reaction, there is more than one gas-phase species, or the stoichiometric coefficient for the gas-phase species is not 1.
	More than one BOHM declaration appeared for a given reaction.
	BOHM keyword is given for a reversible reaction.
	A positive ionic species did not appear as a reactant or its stoichiometric coefficient was not 1 in a Bohm reaction.
	More than 1 positive ionic species was a reactant in a Bohm reaction.
	The electron species was not declared in the list of species in the Gas-phase Kinetics Pre-processor input.
	Invalid string given with the UNITS auxiliary keyword.
	More than one ENRGDEP declaration appeared for a given reaction.
	A positive ionic species did not appear as a reactant or its stoichiometric coefficient was not 1 in a ENRGDEP reaction.
	Wrong number of ENRGDEP parameters given.
	Invalid species name given for FORD or RORD auxiliary keywords.
	A reaction order value was not found with the FORD or RORD keyword.
	RORD given for an irreversible reaction.
	No species coefficients were demarcated with a # symbol for a YIELD reaction.
	YIELD keyword given for a reversible reaction.
	A positive ionic species did not appear as a reactant or its stoichiometric coefficient was not 1 in a YIELD reaction.
	Wrong number of YIELD parameters given.

Data Type	Possible Errors
	More than 1 positive ionic species was a reactant in a YIELD reaction.
	LANG is declared for a reversible reaction, or for the same reaction as STICK, COV, BOHM, YIELD, or ENRGDEP.
	USRPROG given for a USRPROD mechanism.
	USRPROG given for a reversible reaction.

Chapter 5: Transport Database

In this section we list the database file that is currently included with the *Transport* software. While this database file is more of a historical record, we expect that users will want to add their own collection of data to suit their own needs.

The database file included with ANSYS Chemkin-Pro should not be viewed as the last word in transport properties. Instead, it is a good starting point from which a user will provide the best available data for his particular application. Some of the numbers in the database have been determined by computing "best fits" to experimental measurements of a macroscopic transport property (for example, viscosity). In other cases the Lennard-Jones parameters have been estimated following the methods outlined in Svehla.[7] (p. 331) In still other cases they have been determined by computational chemistry techniques.

5.1. Transport Data Format

The first 16 columns in each line of the database are reserved for the species name. Presently ANSYS Chemkin-Pro is programmed to allow no larger than 16-character names. Columns 17 through 80 are free-format, and they contain the molecular parameters for each species. They are, in order:

- 1. An index indicating whether the molecule has a monatomic, linear or nonlinear geometrical configuration. If the index is 0, the molecule is a single atom. If the index is 1 the molecule is linear, and if it is 2, the molecule is nonlinear.
- 2. The Lennard-Jones potential well depth ε/k_B in Kelvins.
- 3. The Lennard-Jones collision diameter σ in angstroms.
- 4. The dipole moment μ in Debye.
- 5. The polarizability α in cubic angstroms.
- 6. The rotational relaxation collision number $Z_{\rm rot}$ at 298 K.
- 7. A "comment" line is one that has either a period (.), slash (/), or exclamation mark (!) as the first non-blank character. In addition, on any line, any input that follows an exclamation mark is taken as a comment.

Note

A Debye is $10^{-18} \text{ cm}^{3/2} \text{ ergs}^{1/2}$.

5.2. Including Transport Data in the Gas-phase Kinetics Input File

ANSYS Chemkin-Pro allows you to optionally include transport data within the *Gas-phase Kinetics* Input File. This is similar to the options available for thermodynamic data. This option can be used to supplement or replace transport data that may be provided in a separate file (e.g., *tran.dat*). In addition, this option may be particularly useful when reaction-rate constants are given in terms of the collision fre-

quency (see the description of the COLLEFF keyword in Table 3.7: Alphabetical Listing of Gas-phase Reaction Auxiliary Keywords (p. 43)). In such cases, the Lennard-Jones diameter, which is obtained from the transport data, is required for calculation of the collision frequency that is used to derive the reaction rate for those reactions. These are cases when transport data might not otherwise be required but the necessary data for specific species needed in the collision-frequency reactions may be included in the *Gas-phase Kinetics* Input File.

A full description of the syntax of this option is included in Transport Data (p. 38).

5.3. Transport Data Included with CHEMKIN

Table 5.1: Species in *Transport* Database (p. 88) lists the species contained in the ANSYS Chemkin-Pro tran.dat file, which is included in every installation, as the corresponding data for each species.

Table 5.1: Species in Transport Database

Species Name	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
Al2Me6	2	471.	6.71	0.0	0.0	1.0
AlMe3	2	471.	5.30	0.0	0.0	1.0
AR	0	136.500	3.330	0.000	0.000	0.000
AR*	0	136.500	3.330	0.000	0.000	0.000
AS	0	1045.5	4.580	0.000	0.000	0.000
AS2	1	1045.5	5.510	0.000	0.000	1.000
ASH	1	199.3	4.215	0.000	0.000	1.000
ASH2	2	229.6	4.180	0.000	0.000	1.000
ASH3	2	259.8	4.145	0.000	0.000	1.000
AsH3	2	259.8	4.145	0.000	0.000	1.000
BCL3	2	337.7	5.127	0.000	0.000	1.000
С	0	71.400	3.298	0.000	0.000	0.000
C-SI3H6	2	331.2	5.562	0.000	0.000	1.000
C2	1	97.530	3.621	0.000	1.760	4.000
C2F4	2	202.6	5.164	0.000	0.000	1.000
C2F6	2	194.5	5.512	0.000	0.000	1.000
C2H	1	209.000	4.100	0.000	0.000	2.500
C2H2	1	209.000	4.100	0.000	0.000	2.500
C2H2OH	2	224.700	4.162	0.000	0.000	1.000
C2H3	2	209.000	4.100	0.000	0.000	1.000
C2H4	2	280.800	3.971	0.000	0.000	1.500
C2H5	2	252.300	4.302	0.000	0.000	1.500
C2H5OH	2	362.6	4.53	0.000	0.000	1.000
C2H6	2	252.300	4.302	0.000	0.000	1.500
C2N	1	232.400	3.828	0.000	0.000	1.000
C2N2	1	349.000	4.361	0.000	0.000	1.000

Species	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
Name		_				
C20	1	232.400	3.828	0.000	0.000	1.000
C3H2	2	209.000	4.100	0.000	0.000	1.000
СЗНЗ	1	252.000	4.760	0.000	0.000	1.000
C3H4	1	252.000	4.760	0.000	0.000	1.000
C3H4P	1	252.000	4.760	0.000	0.000	1.000
C3H6	2	266.800	4.982	0.000	0.000	1.000
C3H7	2	266.800	4.982	0.000	0.000	1.000
C3H8	2	266.800	4.982	0.000	0.000	1.000
C4H	1	357.000	5.180	0.000	0.000	1.000
C4H2	1	357.000	5.180	0.000	0.000	1.000
C4H2OH	2	224.700	4.162	0.000	0.000	1.000
C4H3	1	357.000	5.180	0.000	0.000	1.000
C4H4	1	357.000	5.180	0.000	0.000	1.000
C4H6	2	357.000	5.180	0.000	0.000	1.000
C4H8	2	357.000	5.176	0.000	0.000	1.000
C4H9	2	357.000	5.176	0.000	0.000	1.000
C4H9	2	357.000	5.176	0.000	0.000	1.000
C5H2	1	357.000	5.180	0.000	0.000	1.000
C5H3	1	357.000	5.180	0.000	0.000	1.000
C5H5OH	2	450.000	5.500	0.000	0.000	1.000
C6H2	1	357.000	5.180	0.000	0.000	1.000
C6H5	2	412.300	5.349	0.000	0.000	1.000
C6H5(L)	2	412.300	5.349	0.000	0.000	1.000
C6H5O	2	450.000	5.500	0.000	0.000	1.000
C6H6	2	412.300	5.349	0.000	0.000	1.000
C6H7	2	412.300	5.349	0.000	0.000	1.000
CF	1	94.2	3.635	0.000	0.000	1.000
CF2	2	108.0	3.977	0.000	0.000	1.000
CF3	2	121.0	4.320	0.000	0.000	1.000
CF4	2	134.0	4.662	0.000	0.000	1.000
СН	1	80.000	2.750	0.000	0.000	0.000
CH2	1	144.000	3.800	0.000	0.000	0.000
CH2(S)	1	144.000	3.800	0.000	0.000	0.000
CH2(SING)	1	144.000	3.800	0.000	0.000	0.000
CH2CHCCH	2	357.000	5.180	0.000	0.000	1.000
CH2CHCCH2	2	357.000	5.180	0.000	0.000	1.000
CH2CHCH2	2	260.000	4.850	0.000	0.000	1.000
CH2CHCHCH	2	357.000	5.180	0.000	0.000	1.000

Species Name	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
CH2CHCHCH2	2	357.000	5.180	0.000	0.000	1.000
CH2CO	2	436.000	3.970	0.000	0.000	2.000
CH2F2	2	318.0	4.080	0.000	0.000	1.000
CH2HCO	2	436.000	3.970	0.000	0.000	2.000
CH2O	2	498.000	3.590	0.000	0.000	2.000
CH2OH	2	417.000	3.690	1.700	0.000	2.000
СНЗ	1	144.000	3.800	0.000	0.000	0.000
СНЗСС	2	252.000	4.760	0.000	0.000	1.000
CH3CCCH2	2	357.000	5.180	0.000	0.000	1.000
СНЗСССНЗ	2	357.000	5.180	0.000	0.000	1.000
CH3CCH2	2	260.000	4.850	0.000	0.000	1.000
CH3CH2CCH	2	357.000	5.180	0.000	0.000	1.000
СНЗСНСН	2	260.000	4.850	0.000	0.000	1.000
СНЗСНО	2	436.000	3.970	0.000	0.000	2.000
СНЗСО	2	436.000	3.970	0.000	0.000	2.000
СН3О	2	417.000	3.690	1.700	0.000	2.000
СНЗОН	2	481.800	3.626	0.000	0.000	1.000
CH4	2	141.400	3.746	0.000	2.600	13.000
CH4O	2	417.000	3.690	1.700	0.000	2.000
CHF3	2	240.0	4.330	0.000	0.000	1.000
CL	0	130.8	3.613	0.000	0.000	1.000
CL-	0	130.8	3.613	0.000	0.000	1.000
CL2BNH2	2	337.7	5.127	0.000	0.000	1.000
CN	1	75.000	3.856	0.000	0.000	1.000
CN2	1	232.400	3.828	0.000	0.000	1.000
CNC	1	232.400	3.828	0.000	0.000	1.000
CNN	1	232.400	3.828	0.000	0.000	1.000
CO	1	98.100	3.650	0.000	1.950	1.800
CO2	1	244.000	3.763	0.000	2.650	2.100
DMG	2	675.8	5.22	0.000	0.000	1.000
E	0	850.	425.	0.000	0.000	1.000
F	0	80.000	2.750	0.000	0.000	0.000
F2	1	125.700	3.301	0.000	1.600	3.800
GA	0	2961.8	4.62	0.000	0.000	0.000
GACH3	2	972.7	4.92	0.000	0.000	1.000
GAH	1	335.5	4.24	0.000	0.000	1.000
GAME	2	972.7	4.92	0.000	0.000	1.000
GAME2	2	675.8	5.22	0.000	0.000	1.000

Species	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
Name		270.0	5.50	0.000	0.000	1.000
GAME3	2	378.2	5.52	0.000	0.000	1.000
GaMe3	2	378.2	5.52	0.000	0.000	1.000
Н	0	145.000	2.050	0.000	0.000	0.000
H2	1	38.000	2.920	0.000	0.790	280.000
H2ASCH3	2	408.0	4.73	0.000	0.000	1.000
H2C4O	2	357.000	5.180	0.000	0.000	1.000
H2CCCCH	2	357.000	5.180	0.000	0.000	1.000
H2CCCCH2	2	357.000	5.180	0.000	0.000	1.000
H2CCCH	2	252.000	4.760	0.000	0.000	1.000
H2CN	1	569.000	3.630	0.000	0.000	1.000
H2NO	2	116.700	3.492	0.000	0.000	1.000
H2O	2	572.400	2.605	1.844	0.000	4.000
H2O2	2	107.400	3.458	0.000	0.000	3.800
H2S	2	301.000	3.600	0.000	0.000	1.000
H2SISIH2	2	312.6	4.601	0.000	0.000	1.000
H3SISIH	2	312.6	4.601	0.000	0.000	1.000
HC2N2	1	349.000	4.361	0.000	0.000	1.000
HCCHCCH	2	357.000	5.180	0.000	0.000	1.000
HCCO	2	150.000	2.500	0.000	0.000	1.000
НССОН	2	436.000	3.970	0.000	0.000	2.000
HCL	1	344.7	3.339	0.000	0.000	1.000
HCN	1	569.000	3.630	0.000	0.000	1.000
HCNO	2	232.400	3.828	0.000	0.000	1.000
HCO	2	498.000	3.590	0.000	0.000	0.000
HCO+	1	498.000	3.590	0.000	0.000	0.000
HE	0	10.200	2.576	0.000	0.000	0.000
HF	1	330.000	3.148	1.920	2.460	1.000
HF0	1	352.000	2.490	1.730	0.000	5.000
HF1	1	352.000	2.490	1.730	0.000	5.000
HF2	1	352.000	2.490	1.730	0.000	5.000
HF3	1	352.000	2.490	1.730	0.000	5.000
HF4	1	352.000	2.490	1.730	0.000	5.000
HF5	1	352.000	2.490	1.730	0.000	5.000
HF6	1	352.000	2.490	1.730	0.000	5.000
HF7	1	352.000	2.490	1.730	0.000	5.000
HF8	1	352.000	2.490	1.730	0.000	5.000
HNCO	2	232.400	3.828	0.000	0.000	1.000
HNNO	2	232.400	3.828	0.000	0.000	1.000

Species Name	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
HNO	2	116.700	3.492	0.000	0.000	1.000
HNOH	2	116.700	3.492	0.000	0.000	1.000
HO2	2	107.400	3.458	0.000	0.000	1.000
HOCN	2	232.400	3.828	0.000	0.000	1.000
HSO2	2	252.000	4.290	0.000	0.000	1.000
I*C3H7	2	266.800	4.982	0.000	0.000	1.000
I*C4H9	2	357.000	5.176	0.000	0.000	1.000
К	0	850.	4.25	0.000	0.000	1.000
K+	0	850.	4.25	0.000	0.000	1.000
KCL	1	1989.	4.186	0.000	0.000	1.000
КН	1	93.3	3.542	0.000	0.000	1.000
ко	1	383.0	3.812	0.000	0.000	1.000
KO2	2	1213.	4.69	0.000	0.000	1.000
кон	2	1213.	4.52	0.000	0.000	1.000
N	0	71.400	3.298	0.000	0.000	0.000
N*C3H7	2	266.800	4.982	0.000	0.000	1.000
N2	1	97.530	3.621	0.000	1.760	4.000
N2H2	2	71.400	3.798	0.000	0.000	1.000
N2H3	2	200.000	3.900	0.000	0.000	1.000
N2H4	2	205.000	4.230	0.000	4.260	1.500
N2O	1	232.400	3.828	0.000	0.000	1.000
NCN	1	232.400	3.828	0.000	0.000	1.000
NCNO	2	232.400	3.828	0.000	0.000	1.000
NCO	1	232.400	3.828	0.000	0.000	1.000
NH	1	80.000	2.650	0.000	0.000	4.000
NH2	2	80.000	2.650	0.000	2.260	4.000
NH3	2	481.000	2.920	1.470	0.000	10.000
NNH	2	71.400	3.798	0.000	0.000	1.000
NO	1	97.530	3.621	0.000	1.760	4.000
NO2	2	200.000	3.500	0.000	0.000	1.000
О	0	80.000	2.750	0.000	0.000	0.000
O(Si(OC2H5)3)2	2	522.7	5.25	0.000	0.000	1.000
O2	1	107.400	3.458	0.000	1.600	3.800
O3	2	180.000	4.100	0.000	0.000	2.000
ОН	1	80.000	2.750	0.000	0.000	0.000
OSI(OC2H5)2	2	522.7	7.03	0.000	0.000	1.000
PH3	2	251.5	3.981	0.000	0.000	1.000
S	0	847.000	3.839	0.000	0.000	0.000

	1616436 13.0					
Species Name	Geometry	ε/k_B	σ	μ	α	$Z_{ m rot}$
S*C4H9	2	357.000	5.176	0.000	0.000	1.000
S2	1	847.000	3.900	0.000	0.000	1.000
SH	1	847.000	3.900	0.000	0.000	1.000
SI	0	3036.	2.910	0.000	0.000	0.000
Si(OC2H5)4	2	522.7	7.03	0.000	0.000	1.000
SI(OC2H5)4	2	522.7	7.03	0.000	0.000	1.000
Si(OH)(OC2H5)3	2	522.7	7.03	0.000	0.000	1.000
SI(OH)(OC2H5)3	2	522.7	7.03	0.000	0.000	1.000
SI(OH)2(OC2H5)2	2	522.7	6.35	0.000	0.000	1.000
Si(OH)2(OC2H5)2	2	522.7	6.35	0.000	0.000	1.000
SI(OH)3(OC2H5)	2	522.7	5.75	0.000	0.000	1.000
SI(OH)4	2	522.7	5.25	0.000	0.000	1.000
SI2	1	3036.	3.280	0.000	0.000	1.000
SI2H2	2	323.8	4.383	0.000	0.000	1.000
SI2H3	2	318.2	4.494	0.000	0.000	1.000
SI2H4	2	312.6	4.601	0.000	0.000	1.000
SI2H5	2	306.9	4.717	0.000	0.000	1.000
SI2H6	2	301.3	4.828	0.000	0.000	1.000
SI3	2	3036.	3.550	0.000	0.000	1.000
SI3H8	2	331.2	5.562	0.000	0.000	1.000
SIF	1	585.0	3.318	0.000	0.000	1.000
SIF3	2	309.6	4.359	0.000	0.000	1.000
SIF3NH2	2	231.0	4.975	0.000	0.000	1.000
SIF4	2	171.9	4.880	0.000	0.000	1.000
SIH	1	95.8	3.662	0.000	0.000	1.000
SIH2	2	133.1	3.803	0.000	0.000	1.000
SIH2(3)	2	133.1	3.803	0.000	0.000	1.000
SIH3	2	170.3	3.943	0.000	0.000	1.000
SIH3SIH2SIH	2	331.2	5.562	0.000	0.000	1.000
SIH4	2	207.6	4.084	0.000	0.000	1.000
SIHF3	2	180.8	4.681	0.000	0.000	1.000
SO	1	301.000	3.993	0.000	0.000	1.000
SO2	2	252.000	4.290	0.000	0.000	1.000
SO3	2	378.400	4.175	0.000	0.000	1.000
TMG	2	378.2	5.52	0.000	0.000	1.000
	1				1	

Chapter 6: Description and Properties of Particles

Use of Particle Tracking to determine particle size distributions in a gas-particle flow requires identification of a condensed-phase material that may exist in a form that is dispersed within the gas-flow. In addition, you must specify certain properties of the particle "cloud" that will be tracked. This section describes the necessary input to the chemistry-set files, which are needed to establish these properties. Further discussions, of how kinetics rates may be specified to control the particle nucleation, growth, and transformation, are available in Chapter Particle Size-Distribution Tracking of the Chemkin-Pro Theory Manual .

Examples are available in the ANSYS Chemkin-Pro Tutorials Manual to illustrate how required information is presented to the Particle Tracking feature.

6.1. Description and Properties of the Particle Material

6.1.1. Dispersed Material

Within a reactor model that enables Particle Tracking, the simulation treats a particle population as a collection of tiny solid or liquid material pieces suspended in bulk gas. This dispersed material concept represents the fact that particles are in a condensed phase and also allows use of existing surface-kinetics capabilities to handle gas-particle interactions.

Since the particles represent a condensed-phase material, all particle-related definitions are included in the surface chemistry input file. To declare a dispersed material, the Surface Kinetics keyword MATER IAL must be provided at the top of the Surface Kinetics Input file. This allows assignment of a name to the surface material. This material can then be designated as a dispersed material (i.e., it will be tracked in particle form), using the keyword DISPERSED that follows the MATERIAL statement. For example,

Figure 6.1: Example of Dispersed Material Declaration

MATERIAL soot DISPERSED END

With this entry, the material "soot" will be recognized by ANSYS Chemkin-Pro as a dispersed material. Note that an END keyword is needed to close the DISPERSED keyword block, although at this time there is no additional information included in the block.

It is possible to have more than one type of particle co-exist in the same system, although currently the Particle Tracking equations do not consider interactions between different types of particles. Different types of particles are defined as different dispersed materials. Definitions of multiple dispersed or non-dispersed materials are separated by the MATERIAL keywords. For example, if a chemical system contains two types of particles, such that one is called soot and the other is called silicon, they should be declared in two separate MATERIAL blocks as illustrated in Figure 6.2: Example of Two Material Blocks (p. 96) .

after release 19.0

Figure 6.2: Example of Two Material Blocks

```
MATERIAL SOOT
DISPERSED
END
REACTIONS
...
END
MATERIAL SILICON
DISPERSED
END
REACTIONS
...
END
```

6.1.2. Particle Composition

One of the properties differentiating one type of particle from another is the chemical composition of the particle. The chemical composition of the particles is determined by the chemical composition of the sole bulk species specified for the dispersed material. There can only be one bulk species specified. This determines the "chemical unit" of the particle and this "chemical unit" for the initially formed condensed "species" in the material. This "chemical unit" can be a single atom, a group of atoms, or a chemical compound. ANSYS Chemkin-Pro identifies the "chemical unit" of the particle by the sole bulk species on the dispersed material. For example, Figure 6.3: Dispersed Graphite Material Declaration With Chemical Composition (p. 96) defines a particle type called "soot".

Figure 6.3: Dispersed Graphite Material Declaration With Chemical Composition

```
MATERIAL soot
DISPERSED
BULK/GRAPHITE/ C(B) /1.8/
 END
THERMO
                                                                                                                                                                                                                                                                                                                    S 0300.00 5000.00 1000.00
                                                                                                                             121286C
                                                                                                                                                                                          1
 C(B)
      0.14901664 \pm +01 \ 0.16621256 \pm -02 - 0.06687204 \pm -05 \ 0.12908796 \pm -09 - 0.09205334 \pm -13
  -0.07074018E + 04 - 0.08717785E + 02 - 0.06705661E + 01 \\ 0.07181499E - 01 - 0.05632921E - 04 \\ -0.07181499E - 0.05632921E - 04 \\ -0.07181499E - 0.05632921E - 0.05632021E - 0.05632021E - 0.05632021E - 0.056320202020202020200000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3
     0.02142298E-07-0.04168562E-11-0.07339498E+03 0.02601595E+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4
END
REACTIONS
 END
```

The BULK declaration line indicates that the core of the "soot" particles consists of units of bulk species C(B) and the bulk density ρ_B of the particle core is 1.8 [gm/cm 3]. The actual chemical composition of C(B), the core of the "soot" particle, is a single carbon atom as it is defined in the Thermodynamic Data section that follows the BULK declaration.

Another example is given in Figure 6.4: Dispersed Silicon Dioxide Material Declaration With Chemical Composition (p. 96), for a compound particle composed of silicon dioxide.

Figure 6.4: Dispersed Silicon Dioxide Material Declaration With Chemical Composition

```
MATERIAL silicon
DISPERSED
END
BULK/OXIDE/ SIO2(B) /2.533/
END
THERMO
SIO2(B) 72391SI 10 2 S 298.00 2000.00 1000.00 1 0.48925619E+01 0.41191629E-02-0.94570083E-07-0.80073115E-09 0.25433412E-12 2
```

after release 19.0

```
-0.11005530E+06-0.23469570E+02 0.22325585E+01 0.12478522E-01-0.28715690E-05 3 -0.96847970E-08 0.62160411E-11-0.10962063E+06-0.10594849E+02 4 END REACTIONS ... END
```

6.1.3. Particle Class

Since the Particle Tracking feature employs the method of moments to solve the size distribution, it is important to understand the concept of particle class and how this class concept is connected to surface reactions that describe particle nucleation and mass growth. We define the class of a particle by the number of bulk species in its core. The "soot" particle declared in Figure 6.4: Dispersed Silicon Dioxide Material Declaration With Chemical Composition (p. 96) provides an example. A "soot" particle of class 100 has a core consisting of 100 C(B) species regardless of whether or not other species and atoms might exist on the surface of the particle.

When a particle nucleus is created from gas-phase precursors, its class, that is, the inception class, is determined by the stoichiometric coefficient of the bulk species in the nucleation reaction. For example, the nucleation reaction in Figure 6.5: Nucleation Reaction Creating Particle Nuclei of Class 32 (p. 97) creates particle nuclei of class 32:

Figure 6.5: Nucleation Reaction Creating Particle Nuclei of Class 32

```
2A4 => 32C(B) + 20 H(se) + 28.72 open(se) 1.0E10 0.5 0.0
```

The syntax of the nucleation reaction will be discussed in a later section. A surface reaction resulting in a net gain in the number of bulk species increases the size of the particle and vice-versa.

6.1.4. Mass and Volume of an Individual Particle

The mass of a particle is computed by summing the masses of all bulk species molecules in the core. According to the particle class definition, the mass of a class *j* particle becomes

$$m_p(j) = j \times m_0 \tag{6.1}$$

The mass of a single bulk species molecule m_0 is assumed to be constant and can be calculated from

$$m_0 = W_B / N_{avo} \tag{6.2}$$

where W_B is the molar weight of the bulk species and N_{avo} =6.022×10²³[mole⁻¹] is the Avogadro number. The volume of a class j particle can be calculated from its mass and bulk density of the particle core as

$$V_p(j) = m_p(j)/\rho_B = j \times m_0/\rho_B \tag{6.3}$$

The bulk density of the particle core ρ_B has implicitly accounted for the effect of molecule packing inside the core and its value is given when the bulk species is declared. It thus can be seen that both particle mass and volume are proportional to its class. Up to this point, there is no assumption regarding the shape of the particles so Equation 6.1 (p. 97) to Equation 6.3 (p. 97) are generally applicable to particles of all shapes.

6.1.5. Diameter and Surface Area of an Individual Particle

However, in order to derive a characteristic length scale of a particle, it is necessary to make assumption about its geometric shape. Currently, we assume that all particles are spherical. Accordingly, the representative diameter of a class *j* particle can be written as

$$d_p(j) = d_j = \left(\frac{6}{\pi} \times V_p(j)\right)^{1/3} = \left(\frac{6m_0}{\pi \rho_B}\right)^{1/3} j^{1/3} = d_0 \times j^{1/3}$$
(6.4)

The sphere-equivalent surface area of a class *j* particle is then given as

$$A_{s,p}(j) = \pi d_p^2(j) = \pi d_0^2 \times j^{2/3} = A_{s,0} \times j^{2/3}$$
(6.5)

In the above equations,

$$d_0 = \left(\frac{6m_0}{\pi \rho_B}\right)^{1/3} \tag{6.6}$$

and

$$A_{s,0} = \pi d_0^2 \tag{6.7}$$

are respectively the "unit" diameter and the "unit" surface area of the bulk species in particle core.

Chapter 7: Using the FITDAT Utility

FITDAT is a utility that produces the polynomial fitting coefficients required as input for each species defined in a Gas-phase Kinetics or Surface Kinetics input file. The program accepts a molecule description in the form of character-string keywords, followed by thermodynamic data in a variety of formats. It then performs a least-squares fitting procedure for thermodynamic data, and writes an output file (e.g. *fitdat.out*) that contains the fit results and information about the quality of the fit. The file may also contain error diagnostics. The default format for the fit results is polynomial fitting coefficients for each of two temperature-ranges, as expected by the Gas-phase Kinetics and Surface Kinetics Pre-processors. An optional output format is also available if more than two temperature-ranges are desired.

Details of the various input formats for the thermodynamic data are described in *FITDAT* Examples (p. 105). The first option is to input a table of specific heat, enthalpy, and entropy values as functions of temperature. Several formats are accepted, corresponding to those used by standard references for thermodynamic data. The second option is to input thermodynamic data in the form of polynomial fitting coefficients, which *FITDAT* will convert to the format used by ANSYS Chemkin-Pro. Again, several formats are accepted, corresponding to those used by standard compilations of thermodynamic data. The third option is to input the molecule's standard enthalpy, standard entropy, and vibrational frequencies, which are then used to estimate the thermodynamic properties.

The fit results can be cut and pasted directly into a thermodynamics data file, or a *Gas-phase Kinetics* or *Surface Kinetics* input file for use with ANSYS Chemkin-Pro. In addition to this output, *FITDAT* creates file(s) named *species_name.csv* (e.g. *H2.csv*) containing a table of comma-delimited data for each input species. These files facilitate visualization of evaluated fit results compared to the user's input data.

7.1. Running FITDAT from the User Interface

In the ANSYS Chemkin-Pro Interface, *FITDAT* is run from the Utility menu. To open the *FITDAT* panel, select the **Utility > Run 'FitDat' Polynomial Equation Fitting Utility...** menu option. The panel shown in Figure 7.1: Utilities—'Fitdat' Polynomial Equation Fitter (p. 100) will be displayed in the Working Area of the User Interface.

Figure 7.1: Utilities—'Fitdat' Polynomial Equation Fitter

The user must first assemble an input file that describes the fitting operation desired for the *FITDAT* session. The syntax of that input file is described in Keyword Syntax and Rules (p. 101). Once the input file is assembled, *FITDAT* can be run by completing the following steps:

- 1. Use the **Working Dir** browse or pull-down menu tools to select a working directory. This is the directory where output files from the *FITDAT* run will be created.
- 2. Use the **Input File** browse or pull-down menu tools to select an input file. The syntax of the input file is described in Keyword Syntax and Rules (p. 101).
- 3. Select an **Output File** name. Type a new name in the text box if you want to modify it from the default.
- 4. Use the **Run FitDat** button to execute the *FITDAT* utility.
- 5. Use the **View Results** button to examine the output file.
- The user can import a FITDAT species_name.csv file into the ANSYS Chemkin-Pro Post-Processor to plot the fitting results. For more information about the Post-Processor, see the new Chemkin-Pro Visualization Manual.

7.2. Programming with FITDAT

The FITDAT Utility is written as a FORTRAN subroutine that is called from a driver routine, and is part of the ANSYS Chemkin-Pro library. We provide both C++ and FORTRAN driver routines. The driver routine performs the function of allocating total memory usage through definition of array sizes, as well as opening input and output files. FITDAT checks internally to ensure that the allocated work arrays are sufficiently large to process the input data. Users modifying the programs should be experienced with compiling and linking program files on their operating system and must have either a C++ or FORTRAN compiler installed.

7.3. Keyword Syntax and Rules

The FITDAT Utility input is in a Keyword format. On each input line, an identifying Keyword must appear first. For some Keywords only the Keyword itself is required, while for others, additional information is required. The order of the Keyword input is generally unimportant. The rules governing the syntax of the Keyword images are listed below:

Table 7.1: Summary of Rules for Keywords

Rule	Description
1	The first character-string in the line must be a keyword; the length of the character-string depends on keyword descriptions.
2	Any further input associated with the keyword can appear anywhere after the keyword, through column 100. The specific starting column is not important, as long as there is at least one space after the keyword.
3	When more than one piece of information is required, the order in which the information appears is unimportant.
4	When numbers are required as input, they may be stated in either integer, floating point, or scientific "E" format. The utility converts the numbers to the proper type. The double precision specifier is not recognized; however, conversion to double precision is done internally as necessary.
5	When more than one piece of information is required, the pieces are delimited by one or more blank spaces.

7.4. FITDAT Keywords

Table 7.2: FITDAT Keywords

Keyword	Definition					
SPEC	A species character-string symbol, to be used in the thermodynamic data and in an ANSYS Chemkin-Pro reaction mechanism, and in the name of the post-processing data file.					
	Parameters	Optional/Reqd.	Units	Examples		
	Species	Required		SPEC OH		
	Keyword Us- age	Optional keyword unless it can be d	•	keyword is not used the data source.		
ELEM	The elemental composition of the species.					
	Parameters	Optional/Reqd.	Units	Examples		
	Element	Required		ELEM O 1		
				ELEM H 1		
	Number of elements	Required		ELEM O 1		
	Keyword Us- Optional keyword. By default, this keyword is not used unless it can be determined from the data source					
DIAG		g procedure diagnosti nt a summary of data	•	-		

Keyword	Definition					
		print tables of input ary of relative error.	table vs. polynor	mial evaluations, as		
	Parameters	Optional/Reqd.	Units	Examples		
	Diagnostic level	Optional		DIAG 2		
	Keyword Us- age	Optional keyword printed.	. By default, no c	liagnostics are		
NOTE	data. For example	r legend to columns 1 , NOTE 101602 notes t es a JANAF data sourc	the date of Octo	-		
	Parameters	Optional/Reqd.	Units	Examples		
	Legend	Required		NOTE 101602		
				NOTE Jan888		
	Keyword Us- age	Optional keyword	. By default, no r	notes are printed.		
PHAS	The phase of the species, G (gas), L (liquid), or S (solid).					
	Parameters	Optional/Reqd.	Units	Examples		
	Phase	Required		PHAS G		
	Keyword Us- age	Optional keyword unless it can be d				
LINR	The linearity of th	e molecule; Y (molecu	ıle is linear) or N	(no).		
	Parameters	Optional/Reqd.	Units	Examples		
	Linearity	Required		LINR Y		
	Keyword Us- age	Optional keyword unless it can be d	•	keyword is not used the data source.		
TMIN		nperature requiremen temperature of input t this point.	• •			
	Parameters	Optional/Reqd.	Units	Examples		
	Temperature	Required	К	TMIN 300		
	Keyword Us- Optional keyword. By default, the minimum temperature is 300 K unless it can be determined from data source.					
TMAX	greater than the e	nperature requirement ending temperature of extrapolated at this p	f input data, ther			
	Parameters	Optional/Reqd.	Units	Examples		
	Temperature	Required	К	TMAX 5000		

Keyword	Definition					
	Keyword Us- age	'	l. By default, the max 100 K unless it can b			
TEMP	the functional value TMIN and TMAX. E	peratures dividing the ues are constrained; a fach TEMP given will i FEMP is given, there v	II TEMP values must result in a set of pol	be between ynomial		
	Parameters	Optional/Reqd.	Units	Examples		
	Temperature or temperature range	Required	К	TEMP 1500 TEMP 1000 2000		
	Keyword Us- age	'	I. By default, this key letermined from the			
H298	Species' formation	enthalpy at 298.15 k	ζ.			
	Parameters	Optional/Reqd.	Units	Examples		
	Enthalpy	Required	kcal/mole	H298 9.32		
	Keyword Us- age	'	I. By default, this key letermined from the			
NO298	Indicates that the					
NO298	formation enthalp will attempt to ex- in some cases (e.g remove this const	y at the 298.15 K valuactly match the temp I., the data point is no	ue. Normally the FITE perature fit at the 29 ot available) it may b	DAT program 8.15 K point, but be desirable to		
NO298	formation enthalp will attempt to ex- in some cases (e.g	y at the 298.15 K valu actly match the temp I., the data point is no	ue. Normally the FITE perature fit at the 29 ot available) it may b	DAT program 8.15 K point, but be desirable to Examples		
NO298	formation enthalp will attempt to ex- in some cases (e.g remove this const	y at the 298.15 K valuactly match the temp I., the data point is no raint. Optional/Reqd. Optional keyword	ue. Normally the FITE perature fit at the 29 ot available) it may b	PAT program 8.15 K point, but be desirable to Examples NO298 s constrained to		
NO298 S298	formation enthalp will attempt to exin some cases (e.g remove this constitution of the	y at the 298.15 K valuactly match the temp I., the data point is no raint. Optional/Reqd. Optional keyword	ue. Normally the FITE perature fit at the 29 of available) it may be Units I. By default, the fit is input value at 298.	PAT program 8.15 K point, but be desirable to Examples NO298 s constrained to		
	formation enthalp will attempt to exin some cases (e.g remove this constitution of the	y at the 298.15 K valuactly match the temp I, the data point is no raint. Optional/Reqd. Optional keyword exactly match the	ue. Normally the FITE perature fit at the 29 of available) it may be Units I. By default, the fit is input value at 298.	PAT program 8.15 K point, but be desirable to Examples NO298 s constrained to		
	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation	y at the 298.15 K valuactly match the temp I, the data point is no raint. Optional/Reqd. Optional keyword exactly match the	ue. Normally the FITE perature fit at the 29 per available) it may be units I. By default, the fit is input value at 298.	PAT program 8.15 K point, but be desirable to Examples NO298 s constrained to 15 K.		
	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation Parameters	y at the 298.15 K valuactly match the temple, the data point is not raint. Optional/Reqd. Optional keyword exactly match the rentropy at 298.15 K. Optional/Reqd. Required Optional keyword	ue. Normally the FITE perature fit at the 29 pt available) it may be Units I. By default, the fit is input value at 298. Units	Examples NO298 s constrained to 15 K. Examples NO298 s constrained to 15 K.		
	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation Parameters Entropy Keyword Us- age A table of data wi	y at the 298.15 K valuactly match the temple, the data point is not raint. Optional/Reqd. Optional keyword exactly match the rentropy at 298.15 K. Optional/Reqd. Required Optional keyword	ue. Normally the FITE perature fit at the 29 per available) it may be used to available of the per available of th	Examples NO298 s constrained to 15 K. Examples NO298 s constrained to 15 K. Examples S298 43.88 rword is not used data source.		
S298	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation Parameters Entropy Keyword Us- age A table of data wi	y at the 298.15 K valuactly match the temple, the data point is not raint. Optional/Reqd. Optional keyword exactly match the rentropy at 298.15 K. Optional/Reqd. Required Optional keyword unless it can be data	ue. Normally the FITE perature fit at the 29 per available) it may be used to available of the per available of th	Examples NO298 s constrained to 15 K. Examples NO298 s constrained to 15 K. Examples S298 43.88 rword is not used data source.		
S298	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation Parameters Entropy Keyword Us- age A table of data wi the data type give	y at the 298.15 K valuactly match the temper, the data point is not raint. Optional/Reqd. Optional keyword exactly match the entropy at 298.15 K. Optional/Reqd. Required Optional keyword unless it can be defined the format are with this keyword.	ue. Normally the FITE perature fit at the 29 per available) it may be used available. Units cal/mole I. By default, this key determined from the used available. Calorie-based	Examples NO298 s constrained to 15 K. Examples S298 43.88 rword is not used data source.		
	formation enthalp will attempt to exi in some cases (e.g remove this consti Parameters Keyword Us- age Species' formation Parameters Entropy Keyword Us- age A table of data wi the data type give Parameters Type of data	y at the 298.15 K valuactly match the temper, the data point is not raint. Optional/Reqd. Optional keyword exactly match the entropy at 298.15 K. Optional/Reqd. Required Optional keyword unless it can be defined by the format are with this keyword. Optional/Reqd. Optional/Reqd.	ue. Normally the FITE perature fit at the 29 per available) it may be used available. Units cal/mole I. By default, this key determined from the used available. Calorie-based	Examples NO298 s constrained to 15 K. Examples NO298 s constrained to 15 K. Examples S298 43.88 rword is not used data source. th depends on Examples DATA		

Keyword	Definition					
				DATA NASA		
	Keyword Us- age	Optional keyword is used.	. By default, the DA	TA CHEM option		
POLY	A set of polynomial data will follow, the format and contents of which depends on the polynomial type given with this keyword. The CHEM option will display ANSYS Chemkin-Pro-formatted polynomial records. The SHOM option will display Shomate polynomial records. The NASA option will display NASA-formatted polynomial records.					
	Parameters	Optional/Reqd.	Calorie-based Units	Examples		
	Set of polynomial data	Required		POLY CHEM POLY SHOM		
				POLY NASA		
	Keyword Us- age	Optional keyword is used.	. By default, the PO	LY CHEM option		
VIBE	One or more species' vibrational frequency.					
	Parameters	Optional/Reqd.	Units	Examples		
	Vibrational frequency	Required	cm ⁻¹	VIBE 999.83		
	Keyword Us- age	Optional keyword				
NPTS	Number of points to generate from TMIN to TMAX, when evaluating properties data from POLY or VIBE.					
	Parameters	Optional/Reqd.	Units	Examples		
	Number of points	Required		NPTS 50		
	Keyword Us- Optional keyword. By default, 100 points are generated.					
DELT	Temperature incre properties data fro	ement used from TMIN om POLY or VIBE.	l to TMAX, when ev	raluating		
	Parameters	Optional/Reqd.	Units	Examples		
	Temperature	Required	К	DELT 50		
	Keyword Us- age	Optional keyword the NPTS value.	. By default, DELT va	alue depends on		
END	End of input, and	start of the fitting pro	cess for the curren	t species.		
	Keyword Us- age Required keyword.					

7.5. FITDAT Examples

This section discusses input files that allow *FITDAT* to provide thermodynamic data fitting coefficients using several different methods. These examples show NIST, Shomate, NASA, and other data formats (DATA CHEM Input Format (p. 105) through VIBE Input Format (p. 109)).

FITDAT is run from the ANSYS Chemkin-Pro Interface by selecting it from the **Utility** menu (see FITDAT Utility for Fitting Polynomials to Thermodynamic Data for more information). After running *FITDAT*, users may then launch the Chemkin-Pro Post-Processor using the **View > Graphical Post-processor** menu option. This action will actually result in a warning message and the display of a "Sample Plot", as *FITDAT* does not produce a typical solution file like other Chemkin-Pro problem and *FITDAT* results will therefore need to be plotted using the Import option in the Chemkin-Pro Post-Processor. The user selects the Import option from the Post-Processor's File menu. This opens a file browser to allow the user to select a *species_name.csv* file for plotting of fit results. After the file has been selected, further select the following items from the Select the Import File Format dialog: **Comma** radio button, Skip 2 lines of text (**Skip** slider control), and **Read column titles** check box.

7.5.1. DATA CHEM Input Format

This is an example of the minimum input required to fit default type of data, which is four columns consisting of temperature (K), and species properties C_p (cal/mole-K), S (cal/mole-K), and H (T) - H (298) (kcal/mole). Defaults are PHAS=G, TMIN=300, and TMAX=5000, the first and last positive data points, but keywords may be used to supersede these values.

Figure 7.2: DATA CHEM Input File

```
SPEC OH
ELEM O 1
ELEM H 1
H298 9.32
TEMP 1500
DATA
0300.00 007.165 043.926 000.013
0400.00 007.087 045.974 000.725
:
4900.00 009.232 065.778 038.571
5000.00 009.249 065.965 039.495
```

7.5.2. POLY CHEM Input Format

This is an example of the minimum input required to fit data evaluated from an existing ANSYS Chemkin-Pro -format polynomial; defaults SPEC=OH, ELEM, PHAS=G , TMIN=300, TMAX=5000, and TEMP=1000 are obtained from the polynomial, and H298 by an evaluation of the polynomial, but keywords may be used to supersede these values. This option might be used to generate fits for a different temperature range where the original data are no longer available.

Figure 7.3: POLY CHEM Input File

```
POLY CHEM

OH 1212860 1H 1 G 0300.00 5000.00 1000.00 1

0.02882730E+02 0.10139743E-02-0.02276877E-05 0.02174683E-09-0.05126305E-14 2

0.03886888E+05 0.05595712E+02 0.03637266E+02 0.01850910E-02-0.16761646E-05 3

0.02387202E-07-0.08431442E-11 0.03606781E+05 0.13588605E+01
```

FITDAT evaluates the ANSYS Chemkin-Pro polynomial as described in Running FITDAT from the User Interface (p. 99), to obtain thermodynamic properties for fitting. A table of NPTS temperatures from TMIN to TMAX will be used to evaluate the properties; keywords NPTS or DELT may be used to modify this phase.

7.5.3. DATA NIST Input Format

This is an example of the minimum input required to fit NIST-format data, which is 5 columns consisting of temperature (K), and species properties $C_p(\text{cal/mole} \cdot \text{K})$, $S(\text{cal/mole} \cdot \text{K})$,

 $-(G^o-H^o(298.15))/T(cal/mole\cdot K)$ and H(T)-H(298)(kcal/mole). Input data can be obtained from the *NIST Chemistry WebBook[8]* (p. 331), p. 124 using the following steps:

- 1. At the start of the NIST menu (http://webbook.nist.gov/chemistry/form-ser.html), choose **calorie-based units** in the toggle under question #3, when selecting the desired units for thermodynamic data.
- 2. Perform a Formula Search (e.g., search for OH).
- 3. Select View Table option under the Heat Capacity heading.
- 4. In the table view, highlight and copy the table text, then paste into a text file.

Defaults are PHAS=G, and TMIN=300, TMAX=6000, the first and last positive data points greater than 298, but keywords may be used to supersede these values.

Figure 7.4: DATA NIST Input File

```
SPEC OH
ELEM O 1
ELEM H 1
H298 9.318131
TEMP 1500.
DATA NIST
300. 7.16 43.95 43.91 0.01
400. 7.09 46.00 44.19 0.73
:
5900. 9.41 67.53 59.42 47.89
6000. 9.43 67.69 59.55 48.83
```

7.5.4. POLY SHOM Input Format

This is an example of the minimum input required to convert a Shomate polynomial to ANSYS Chemkin-Pro format; The Shomate equations are given in Equation 7.1 (p. 107) through Equation 7.3 (p. 107), where t = Temperature(K)/1000. Parameters (A, B, C, D, E, F, G, and H°f, 298) can be obtained from the NIST Chemistry WebBook.[8] (p. 331)

- 1. At the start of the NIST menu(http://webbook.nist.gov/chemistry/form-ser.html), choose **calorie-based units** in the toggle under question #3, when selecting the desired units for thermodynamic data.
- 2. Perform a **Formula Search** (e.g., search for OH).
- 3. Highlight and copy the table of parameters (including the heading row and the rows for the A, B, C, D, E, F, G parameters), then paste these into a text file.

Defaults are PHAS=G, TMIN=298, TMAX=6000, and TEMP=1000 are obtained from the Shomate data, and H298 by an evaluation of the polynomial, but keywords may be used to supersede the defaults.

Figure 7.5: POLY SHOM Input File

```
SPEC OH
ELEM 0 1
ELEM H 1
POLY SHOM
Temperature (K) 298. - 1300. 1300. - 6000.
A 7.714551 6.870701
B -2.715801 1.126790
C 3.251781 -0.194724
D -0.919332 0.013085
E -0.000319 -0.656747
F 7.110691 6.313191
G 53.91451 51.17510
END
```

$$C_p = A + Bt + Ct^2 + Dt^3 + \frac{E}{t^2}$$
 (7.1)

$$H - H(298) = At + \frac{Bt^2}{2} + \frac{Ct^3}{3} + \frac{Et^4}{4} - \frac{E}{t} + F - H(298)$$
(7.2)

$$S = A\ln(t) + Bt + \frac{Ct^2}{2} + \frac{Dt^3}{3} - \frac{E}{2t^2} + G$$
 (7.3)

A table of NPTS temperatures from TMIN to TMAX will be used to evaluate the properties; keywords NPTS or DELT may be used to modify this process.

7.5.5. DATA NASA Input Format

This is an example of the minimum input required to fit NASA-format data, which is at least four columns consisting of temperature (K), and species properties C_p (cal/mole-K), H (T) - H (298) (kcal/mole), and S (cal/mole-K). NASA data can be obtained from the Properties From Coefficients (PFC) [8] (p. 331) program; request **calorie-based units**, and highlight, copy, and paste the resulting table into a text file. Defaults are PHAS=G , TMIN=300, TMAX=6000, the first and last positive data points, and H298 is the column 6 value at T=298.15, but keywords may be used to supersede the defaults.

Figure 7.6: DATA NASA Input File

```
SPEC OH
ELEM O 1
ELEM H 1
DATA NASA
    THERMODYNAMIC FUNCTIONS CALCULATED FROM COEFFICIENTS FOR OH
      т
                          H-H298
                                       S -(G-H298)/T
                                                                           delta Hf
!
                Ср
                                                                  Н
                                                                                         log K
     deg-K
             cal/mol-K
                          kcal/mol
                                     cal/mol-K
                                                  cal/mol-K
                                                               kcal/mol
                                                                           kcal/mol
     0
               0.
                          -2.106
                                       0.
                                                  INFINITE
                                                                6.803
                                                                            8.853
                                                                                      INFINITE
     200
               7.293
                          -0.707
                                                                            8.877
                                       41.035
                                                   44.572
                                                                8.202
                                                                                      -8.9035
     298.15
               7.143
                           0.000
                                       43.915
                                                   43.915
                                                                8.910
    5900
               9.620
                          48.463
                                       67.672
                                                   59.458
                                                               57.373
                                                                            6.636
                                                                                        0.3749
    6000
               9.625
                          49.425
                                       67.834
                                                   59.596
                                                               58.335
                                                                            6.573
                                                                                        0.3790
```

7.5.6. POLY NASA Input Format

This is an example of the minimum input required to convert a NASA polynomial[9] (p. 331) to Chemkin-Pro format. The equations defining polynomials are given in Equation 7.4 (p. 108) through Equation 7.6 (p. 108) . NASA polynomial data can be obtained from the Properties From Coefficients (PFC)[10] (p. 331)^{, p. 124} and then highlighted, copied, and pasted into a text file. Defaults for SPEC, ELEM,

PHAS, TMIN, TMAX, TEMP, and H298 are obtained from the polynomial, but may be superseded by keyword usage.

Figure 7.7: POLY NASA Input File

Figure 7.8: Format details for POLY NASA Input Files

```
line 1:
              OH is species name
line 2:
              3 is the number of temperature ranges
              5 sets of elemental composition, i.e., 'O 1.00' and 'H 1.00'
              0 in the next field indicates a gas
              17.00734 is the molecular weight
              37278.206 is H298 heat of formation, J/mol
line 3:
              200-1000 is the first temperature range,
              7 is the number of Cp/R polynomial coefficients,
              -2, -1, 0, 1, 2, 3, 4, 0 are the T exponents for the coefficients,
              8813.106 is H(298)-H(0), J/mol
line 4:
              al through a5 for temperatures 200-1000K
line 5:
              a6 through a7 for temperatures 200-1000K, a8 (not used),
              integration constants b1, b2
lines 6-end: same as 3-5, for more temperature ranges
```

The resulting non-dimensional thermodynamic properties are

$$\frac{C_p}{R} = a_1 T^{-2} + a_2 T^{-1} + a_3 + a_4 T + a_5 T^2 + a_6 T^3 + a_7 T^4$$
(7.4)

$$\frac{H}{RT} = -a_1 T^{-2} + a_2 T^{-1} \ln(T) + a_3 + \frac{a_4 T}{2} + \frac{a_5 T^2}{3} + \frac{a_6 T^3}{4} + \frac{a_7 T^4}{5} + \frac{b_1}{T}$$
 (7.5)

$$\frac{S}{R} = \frac{-a_1 T^{-2}}{2} - a_2 T^{-1} + a_3 \ln(T) + a_4 T + \frac{a_5 T^2}{2} + \frac{a_6 T^3}{3} + \frac{a_7 T^4}{4} + b_2$$
 (7.6)

A table of NPTS temperatures from TMIN to TMAX will be used to evaluate the properties; keywords NPTS or DELT may be used to modify this process.

7.5.7. DATA JANAF Input Format

This is an example of the minimum input required to fit JANAF-format data, which is at least five columns consisting of temperature (K), and species properties $C_{\rm p}$ (J/mole-K), S (J/mole-K), G (J/mole-K), and H (T) - H (298) (kJ/mole). Defaults SPEC=OH, PHAS=G , and ELEM are obtained from the CODE line, TMIN=300, TMAX=6000 are the first and last positive data points greater than 298, and H (298) (kJ/mole) is the column 6 value at T=298.15, but keywords may be used to supersede the defaults.

Figure 7.9: DATA JANAF Input File

DATA JANAF

Note: PDF user guides no longer in Chemkin-Pro install

after release 19.0

```
!
     Janaf table documentation:
     Col 2-10: Temperature (K)
!
     Col 11-19: Heat Capacity, Cp (J/K-mole)
     Col 20-29: Entropy, S (J/K-mole)
!
      Col 30-39: Gibbs Free Energy, G (J/K-mole)
     Col 40-51: Relative Enthalpy, H-H298 (kJ/mole)
     Col 52-62: Enthalpy of Formation, Hf (kJ/mole)
      Col 63-74: Gibbs Energy of Formation, Gf (kJ/mole)
     Col 75-85: log (Equilibrium constant of formation), log(Keq(T))
     Note: some of the above are in KJ and some in J.CODE = 300 H101(g)
CODE = 300 H101(q)
!Hydroxyl (OH)
                                                                            H O (g)
                                                                             1 1
                    0.
     0
                            INFINITE
                                          -9.172
                                                     38.390
                                                                          INFINITE
          0.
                                                                 38.390
   25
         29.487
                 106.145
                           447.063
                                          -8.523
                                                     38.411
                                                                 38.109
                                                                           -79.625
   50
         31.487
                  127.111
                             282.386
                                          -7.764
                                                     38.391
                                                                 37.805
                                                                           -39.494
   75
         32.719
                 140.171
                             232.937
                                          -6.957
                                                     38.390
                                                                 37.516
    :
  5900
         39.350
                   282.564
                             248.604
                                         200.369
                                                     27.391
                                                                -39.860
                                                                             0.353
 6000
         39.423
                 283, 226
                            249.175
                                         204.308
                                                     27.019
                                                                -40.997
                                                                             0.357
!PREVIOUS: June 1977 (1 atm)
                                                         CURRENT: June 1977 (1 bar)
```

7.5.8. VIBE Input Format

This is an example of the minimum input required to fit vibrational frequency data. Defaults are PHAS=G, TMIN=300, TMAX=6000, and LINR=No (from the fact of more than one VIBE), but keywords may be used to supersede the defaults.

This method is provided for use in cases where little or no information is available in the literature about the molecule of interest. It contains a number of approximations:

- 1. Translational contributions to the heat capacity are treated classically via the equipartition function. This is generally a good assumption.
- 2. Rotational contributions to the heat capacity are treated classically via the equipartition function. This is a good assumption for most molecules at higher temperatures.
- 3. Hindered internal rotors are not explicitly treated, but rather approximated as vibrations. This is a less-good approximation.

In all cases, these approximations are more likely to break down at lower temperatures.

Figure 7.10: VIBE Input File

```
SPEC SIH2
ELEM SI 1
ELEM H 2
H298 58.0
S298 49.4
TEMP 1000
VIBE 999.83
VIBE 2011.69
VIBE 2001.72
END
```

after release 19.0

7.5.9. Example FITDAT Outputs

Figure 7.11: Example *fitdat.out* file (p. 110) shows the fitdat.out file that will be created if the DATA CHEM input file discussed in DATA CHEM input Format (p. 105) is run through the *FITDAT* utility.

Figure 7.11: Example fitdat.out file

```
CHEMKIN Release 4.0
                             FITDAT Application
                  Thermodynamic properties fitting program.
        * Copyright 1997-2002 Reaction Design. All Rights Reserved.
            WORKING SPACE REQUIREMENTS
           PROVIDED
                           REOUIRED
INTEGER
                   112
                                   112
                    9534
                                   9534
REAL
Reading keyword data...
Setting SPEC name:
                                            ОН
Setting ELEM # 1:
                                            0
                                                1
Setting ELEM #
Setting H298:
                                             9.320E+00 Kcal/mole
Setting TEMP # 1:
                                             1.000E+03 K
End of keyword input for species OH
Species OH Fit:
                                               300.000 5000.000 1000.00
                           1H 1
                                            G
0.29446142E+01 \quad 0.91447172E-03-0.17338418E-06 \quad 0.95183610E-11 \quad 0.46042672E-15
0.38598718E+04 \ 0.52419727E+01 \ 0.35069641E+01 \ 0.12114174E-02-0.44383205E-05
                                                                                3
0.53991545E-08-0.19835349E-11 0.36200845E+04 0.18923732E+01
Reading keyword data...
End of input file...
```

Figure 7.12: Example *fitdat.out* file with more than two temperature ranges (p. 110) shows example output that would result if the input discussed in DATA CHEM Input Format (p. 105) is modified to include polynomial coefficients for more than two temperature ranges (e.g., adding keyword line: TEMP 2500).

Figure 7.12: Example fitdat.out file with more than two temperature ranges

```
CHEMKIN Release 4.0
                       FITDAT Application
             Thermodynamic properties fitting program.
     * Copyright 1997-2002 Reaction Design. All Rights Reserved.
        WORKING SPACE REQUIREMENTS
        PROVIDED REQUIRED
INTEGER
               112
                           112
REAL
               9534
                           9534
Reading keyword data...
Setting SPEC name:
                                  ОН
Setting ELEM # 1:
```

Note: PDF user guides no longer in Chemkin-Pro install

after release 19.0

Setting ELEM # 2: 1 9.320E+00 Kcal/mole Setting H298: 1.000E+03 K Setting TEMP # 1: Setting TEMP # 2: 2.500E+03 K End of keyword input for species OH Species OH Fit: 300.000 5000.000 OH 0 1H 1 G 1 TEMP 300.000 1000.000 2500.000 5000.000 $0.31521126E+01 \ 0.77090695E-03-0.15393767E-06 \ 0.13363294E-10-0.27768811E-15$ 0.36675921E+04 0.39045946E+01 $0.34408417E + 01 - 0.28167277E - 03 \quad 0.83197801E - 06 - 0.34404565E - 09 \quad 0.44913015E - 13 \\ 0.34408417E + 01 - 0.28167277E - 03 \quad 0.83197801E - 06 - 0.34404565E - 09 \\ 0.44913015E - 13 \\ 0.8417E + 01 - 0.28167277E - 03 \\ 0.8417E + 0.28167277E - 0.2816727E - 0.281672E - 0.2816727E - 0.281672E -$ 0.37077941E+04 0.26162167E+01 $\tt 0.37729215E+01-0.61576963E-03-0.15821000E-06 \ 0.13103019E-08-0.61722943E-12$ 0.35916670E+04 0.76556823E+00 Reading keyword data... End of input file...

Chapter 8: CHEMKIN Project Input: Keyword Syntax and Rules

In most cases, a Reactor Model input file is written by the ANSYS Chemkin-Pro Interface before a simulation run based on the Chemkin-Pro Project Input. The panel context and "bubble" help within the Interface provide basic guidance for setting up model-specific input parameters. However, in some cases users may want further information about a model parameter usage and in other cases they may want to assemble their own input files outside of the User Interface. For such cases, this chapter together with Reference Guide to Project Input Keywords (p. 115) and Alphabetical Listing of Project Input Keywords (p. 123) contain detailed information about input options for each Reactor Model. This chapter provides an overview of the syntax and rules for such parameter input.

User input information is generally written to a Reactor Model input file in "keyword" format. In this format, each input line starts with an identifying keyword. For some input, only the keyword itself is required, while others require one or more pieces of additional information. Many keywords have default values associated with them. If these default values are appropriate for the user's problem, then these keywords do not need to be included in the input file. In the case of restarts or continuation problems, some of the parameters can be changed from what was used in the previous solution. If these keywords are not included or not changed in the input keyword list for continuations or restarts, then the parameters will retain their former values. In the list of keywords that follow, we indicate whether or not each keyword may be changed on a restart from a previous solution. The order of the keyword input is not important. The general rules governing the syntax of the keyword lines are listed in Table 8.1: Summary of the Rules for Keywords (p. 113).

Note

Note that you can turn on or off the display of the "Keyword" associated with an ANSYS Chemkin-Pro Interface input parameter, using the modal option in the Preferences panel.

Table 8.1: Summary of the Rules for Keywords

Rule	Description
1	The first character-string in the line must be a keyword; the length of the character-string depends on keyword descriptions.
2	Any further input associated with the keyword can appear anywhere after the keyword, through column 80. The specific starting column is not important, as long as there is at least one space after the keyword.
3	When more than one piece of information is required, the order in which the information appears is important.
4	When numbers are required as input, they may be stated in integer, floating-point, or "E" format. ANSYS Chemkin-Pro converts the numbers to the proper type internally. The double precision specification D is not recognized; however, the double precision conversion will be done internally, as necessary.
5	When species names are required as input, they must appear exactly as they are specified in the Gas-phase Kinetics and Surface Kinetics input files.

Rule	Description
6	When more than one piece of information is required, the pieces are delimited by one or more blank spaces.
7	If contradictory or duplicate keywords are input, ANSYS Chemkin-Pro uses the information that is last read. Under some circumstances, this will result in a warning printed to the output file.
8	A "comment" line is one that has either a period (.), slash (/), or exclamation mark (!) as the first non-blank character. In addition, on any Keyword line, any input that follows an exclamation mark is taken as a comment. All input lines, including comments, are printed to the output.
9	The keyword END must be the last input card. END keywords are required between sets of parameters for continuations.
10	If no parameter is given, then the keyword stands alone on the input line; keywords with parameters are demonstrated with examples.

Chapter 9: Reference Guide to Project Input Keywords

In this chapter, we group the available input reactor project input options (keywords) according to the Reactor Model with which they may be used. Note that many keywords can be used with several different Reactor Models and that there are a few cases where keywords that share the same name may have different meanings for different Reactor Models. General information about keyword syntax and rules is given in CHEMKIN Project Input: Keyword Syntax and Rules (p. 113). A detailed, alphabetical listing of all keywords is given in Alphabetical Listing of Project Input Keywords (p. 123). This chapter is meant to serve as a quick cross-reference to the more detailed information in Alphabetical Listing of Project Input Keywords (p. 123).

9.1. Closed 0-D Reactor Models

9.1.1. Internal Combustion HCCI Engine

The following keywords can be used to build an input file for a IC HCCI Engine Reactor Model:

ADAP, ADD, AEXT, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AROP, ASEN, ASTEPS, ATLS, ATOL, AVALUE, AVAR, BETA, CAATQ, CLSC, CLSM, CMPR, CNTN, CNTT, COLR, CYBAR, DEGO, DELT, DIST, DTDEG, DTIGN, DTSV, EGRR, END, EPSR, EPSS, EPST, EQUI, FUEL, GFAC, GMHTC, GVEL, ICEN, ICHT, IPSR, KLIM, LODR, LOLR, MAXIT, MCUT, MMASS, NADAP, NCANG, NEWRUN, NMOM, NNEG, NOCG, NREV, NSOL, OXID, PNDE, PRDL, PRES, PRNT, PROE, PSBAR, PTM_SECTION_SIZEDEP_AO, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PVFE, QEXP, QFUN, QLOS, QPRO, QRGEQ, REAC, RELAXC, RLGAS, RLMIX, ROP, RPM, RSTR, RTLS, RTOL, SCLM, SCLS,, SENT, SIZE, SOLUTION_TECHNIQUE, SSTT, STPT, TEMP, TEXP, TIFP, TIME, TLIM, TRAN, TRES, TRST, TSTR, TTIM, UIGN, UREF, USET, VOLC, VOLD, WENG, WOSP1, WOSP2, WOSP3, XMLI

9.1.2. Closed Homogeneous Batch Reactor

The following keywords can be used to build an input file for a Closed Homogeneous Reactor Model:

ADAP, ADD, AEXT, AFRA, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AINT, AREA, AREAQ, AROP, ASEN, ASTEPS, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BULK, CLSC, CLSM, CNTN, CNTT, COLR, CONP, CONV, COTV, DELT, DIST, DTIGN, DTSV, EGRR, END, ENRG, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, FUEL, GFAC, GMHTC, HTC, HTRN, IPSR, IRET, ISTP, KLIM, MAXIT, MCUT, MMASS, NADAP, NEWRUN, NMOM, NNEG, NOCG, NSOL, OXID, PBDEN, PNDE, PPRO, PRES, PRNT, PROE, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PVFE, QFUN, QLOS, QPRO, QRGEQ, QRSEQ, REAC, RELAXC, RLGAS, RLMIX, ROP, RSTR, RTLS, RTOL, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SIZE, SOLUTION_TECHNIQUE, SSTT, STPT, SURF, TAMB, TEMP, TGIV, TIFP, TIME, TLIM, TPRO, TRAN, TRES, TRST, TSRF, TSTR, TTIM, UIGN, USET, VOL, VPRO, VTIM, WENG, XMLI

9.1.3. Closed Partially Stirred Reactor

The following keywords can be used to build an input file for a Closed PaSR Reactor Model:

ADAM, ATOL, BDF, CFL, CHEM, CLSE, CMIX, CTOL, CURL, DASP, DT, DT0, DTMX (transient), DTSV, END, EQUI, IEM, INIT, KOUT, MAXIT, MAXTIME, MIX, MIXT, NCFIT, NDPR, NNEG, NOJC, NPAR, PDF, PRES, QRGEQ,

QRSEQ, RELAXC, RLGAS, RLMIX, RSTR, RTOL, SCAT, SIZE, SSMAXITER, TEMP, TIME, TRES, TRMAXITER, VOL, VPRO, WELL

9.1.4. Closed Plasma Reactor

The following keywords can be used to build an input file for a Closed Plasma Reactor Model:

ABSL, ADAP, AEXT, AFRA, AGGD, AGGE, AINT, AREA, AREAQ, AROP, ASEN, ASTEPS, ATIM, ATLM, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BOHM, BPWR, BULK, CLSC, CLSM, CNTN, CNTT, CONP, COLR, CONV, DELT, DFAC, DIST, DTIGN, DTSV, ELSH, END, ENGE, ENRG, EPSG, EPSR, EPSS, EPST, ETCH, ETMP, GFAC, GMHTC, HTC, HTRN, IONE, IPSR, KLIM, MAXIT, MCUT, MMASS, NADAP, NEWRUN, NMOM, NNEG, NOCG, NSOL, PNDE, PPRO, PRES, PRNT, PROE, PVFE, PWRW, QFUN, QLOS, QLSE, QPRO, REAC, RELAXC, ROP, RSTR, RTIM, RTLM, RTLS, RTOL, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SIZE, SOLUTION_TECHNIQUE, SSTT, STPT, SURF, TAMB, TEBND, TEMP, TGIV, TIFP, TIME, TION, TLIM, TPRO, TRAN, TRES, TRST, TSRF, TSTR, TTIM, USET, UIGN, VOL, VPRO, VTIM, WENG, WPRO, XMLI, XSDF, XSEK

9.1.5. Multi-Zone HCCI Engine Simulator

The following keywords can be used to build an input file for a Multi-Zone HCCI Engine Simulator:

ADAP, ADD, AEXT, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AROP, ASEN, ASTEPS, ASWH, ATLS, ATOL, AVALUE, AVAR, BETA, CAATQ, CLSC, CLSM, CMPR, CNTN, CNTT, COLR, CYBAR, DEGO, DELT, DIST, DTDEG, DTIGN, DTSV, END, EPSR, EPSS, EPST, EQUI, FUEL, GFAC, GMHTC, GVEL, ICEN, ICHT, IPSR, KLIM, LODR, LOLR, MAXIT, MCUT, MMASS, MQAFR, MZMAS, NADAP, NCANG, NEWRUN, NMOM, NNEG, NOCG, NREV, NSOL, NZONE, OXID, PNDE, PRDL, PRES, PRNT, PROE, PSBAR, PVFE, QEXP, QFUN, QLOS, QPRO, QRGEQ, RELAXC, RLGAS, RLMIX, ROP, RPM, RSTR, RTLS, RTOL, SCLM, SCLS, SCOR, SENT, SIZE, SOLUTION_TECHNIQUE, SSTT, STPT, TEMP, TEXP, TIFP, TIME, TLIM, TRAN, TRES, TRST, TSTR, TSWH, TTIM, UIGN, UREF, USET, VOL, VOLC, VOLD, WENG, WOSP1, WOSP2, WOSP3, XEST, XMLI, ZONEAVG

9.1.6. SI Engine Zonal Simulator

The following keywords can be used to build an input file for an SI Engine Zonal Simulator:

ADAP, ADD, AEXT, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AROP, ASEN, ASTEPS, ASWH, ATLS, ATOL, AVALUE, AVAR, BETA, CAAC, CAATQ, CAEC, CASC, CLSC, CLSM, CMPR, CNTN, CNTT, COLR, CYBAR, DEGO, DEGE, DELT, DIST, DTDEG, DTIGN, DTSV, END, EPSR, EPSS, EPST, SIZE, EQUI, FUEL, GFAC, GMHTC, GVEL, HSWC, HSWM, HSWT, ICEN, ICHT, IPSR, KLIM, LODR, LOLR, MAXIT, MCUT, MMASS, NADAP, NCANG, NEWRUN, NMOM, NNEG, NOCG, NREV, NSOL, OXID, PNDE, PRDL, PRES, PRNT, PROE, PSBAR, PVFE, QEXP, QFUN, QLOS, QPRO, QRGEQ, RELAXC, RLGAS, RLMIX, ROP, RPM, RSTR, RTLS, RTOL, SCLM, SCLS, SCOR, SENT, SIDR, SIKN, SIOA, SIZE, SOLUTION_TECHNIQUE, SSTT, STPT, TEMP, TEXP, TIFP, TIME, TLIM, TRAN, TRES, TRST, TSTR, TTIM, UIGN, UREF, USET, VOL, VOLC, VOLD, WENG, WOSP1, WOSP2, WOSP3, XEST, XMLI, ZONEAVG

9.2. Open 0-D Reactor Models

9.2.1. Perfectly Stirred Reactor

The following keywords can be used to build an input file for a PSR Reactor Model:

ABFR, ABSL, AEXT, AFRA, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AINT, AREA, AREAQ, AROP, ASEN, ASTEPS, ATIM, ATLM, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BULK, CLSC, CLSM, CNTN, CNTT, COLR, CPROD, DELT, DFAC, DIST, DTIGN, DTMN, DTMX (steady-state), DTSV, EGRR, END, ENRG, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, FLRT, FPRO, FUEL, GFAC, GMHTC, HTC, HTRN, INLET, IPSR, IRET, ISTP, KLIM,

MAXIT, MAXTIME, MCUT, MMASS, NEWRUN, NJAC, NMOM, NNEG, NOCG, NOFT, NPSR, NSOL, OXID, PBDEN, PNDE, PNDI, PPRO, PRES, PRNT, PROD, PROE, PROI, PSURF, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_LA0, PTM_SECTION_SIZEDEP_LAMAKER, PVFE, PVFI, QFUN, QLOS, QPRO, QRGEQ, QRSEQ, QXCO (p. 281), QXRA (p. 281), REAC, RECY, RELAXC, RELT, RLGAS, RLMIX, ROP, RSTR, RTIM, RTLM, RTLS, RTOL, SCCM, SCCMPRO, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SFLR, SIZE, SOLUTION_TECHNIQUE, SPOS, SSMAXITER, SSTT, STPT, STST, SURF, TAMB, TAU, TEMP, TGIV, TIFP, TIM1, TIM2, TIME, TINL, TJAC, TLIM, TPRO, TRAN, TRES, TRMAXITER, TRST, TSCCM, TSRF, TSTR, TTIM, UFAC, UIGN, USET, USEV (Restart), USEV (XMLI), USRIN, VOL, VPRO, VTIM, WENG, WPRO, XEST, XMLI, XMLS

9.2.2. Plasma Perfectly Stirred Reactor

The following keywords can be used to build an input file for a Plasma PSR Reactor Model:

ABSL, ADD, AEXT, AFRA, AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AINT, AREA, AREAQ, AROP, ASEN, ASTEPS, ATIM, ATLM, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BOHM, BPWR, BULK, CLSC, CLSM, CNTN, CNTT, COLR, CPROD, DELT, DFAC, DIST, DTIGN, DTMN, DTMX (steady-state), DTSV, EGRR, ELSH, END, ENGE, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, ETMP, FLRT, FPRO, FUEL, GFAC, GMHTC, HTC, HTRN, INLET, IONE, IPSR, IRET, ISTP, KLIM, MAXIT, MAXTIME, MCUT, MMASS, NEWRUN, NJAC, NMOM, NNEG, NOCG, NOFT, NPSR, NSOL, OXID, PNDE, PNDI, PPRO, PRES, PRNT, PROE, PROI, PSURF, PVFE, PVFI, PWRW, QFUN, QLSE, QPRO, QRGEQ, QXCO (p. 281), QXRA (p. 281), REAC, RECY, RELAXC, RELT, ROP, RSTR, RTIM, RTLM, RTLS, RTOL, SCCM, SCCMPRO, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SFLR, SIZE, SOLUTION_TECHNIQUE, SPOS, SSMAXITER, SSTT, STPT, STST, SURF, TAMB, TAU, TEBND, TEIN, TEMP, TGIV, TIFP, TIM1, TIM2, TIME, TINL, TION, TJAC, TLIM, TPRO, TRAN, TRES, TRMAXITER, TRST, TSCCM, TSRF, TSTR, TTIM, UFAC, UIGN, USET, USEV (Restart), USEV (XMLI), USRIN, VOL, VPRO, VTIM, WENG, WPRO, XEST, XMLI, XMLS, XSDF, XSEK

9.2.3. Partially Stirred Reactor

The following keywords can be used to build an input file for a PaSR Reactor Model:

ADAM, ATOL, BDF, CFL, CHEM, CMIX, CPROD, CURL, DASP, DT, DT0, DTMX (transient), DTSV, END, EQUI, FLRT, IEM, INIT, INLET, KOUT, MAXIT, MAXTIME, MIX, MIXT, NCFIT, NDPR, NEWRUN, NNEG, NOJC, NPAR, NPIN, PDF, PRES, REAC, RLGAS, RLMIX, RELAXC, RSTR, RTOL, SCAT, SIZE, SSMAXITER, TAU, TEMP, TIME, TINL, TRES, TRMAXITER, VOL, VPRO, WELL, XMLI, XMLS

9.3. Flow Reactor Models

9.3.1. Plug Flow Reactor

The following keywords can be used to build an input file for a PFR Reactor Model:

ABFR, ACHG, ADAP, ADD, ADIA, AFLO, AFRA, AINT, AREA, AREAF, AREAQ, AROP, ASEN, ASTEPS, ATLM, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BULK, CLSC, CLSM, CNTN, CNTX, COLR, CPROD, DIST, DPRO, DTIGN, DX, DXMX, DXSV, EGRR, END, ENRG, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, FLRT, FPRO, FUEL, GFAC, GMHTC, HTC, HTRN, IPSR, KLIM, MCUT, MMASS, MOMEN, NADAP, NEWRUN, NMOM, NNEG, NOCG, NSOL, OXID, PBDEN, PLUG, PNDE, PNDI, PPRO, PRES, PRNT, PROE, PROI, PSV, PTM_SECTION_NUM, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PTM_SECTION_SNO, PTM_SECTION_SPACING, PTM_SECTION_TCOND, PTM_SECTIONAL, PVFE, PVFI, QFUN, QLOS, QPRO, QRGEQ, QRSEQ, RCHG, REAC, RLGAS, RLMIX, ROP, RSTR, RTIME, RTLM, RTLS, RTOL, SCCMPRO, SCLM, SCLS, SCOR, SENG, SFAC, SIZE, SSKIP, SSTT, SURF, TAMB, TEMP, TGIV, TIFP, TLIM, TPRO, TRST, TSRF, TSTP, TSTR, UIGN, USET, USEV (Restart), USEV (XMLI), VDOT, VDOTPRO, VEL, VIS, WENG, XEND, XMLI, XMLS, XRES, XSTR

9.3.2. Plasma Plug Flow Reactor

The following keywords can be used to build an input file for a Plasma PFR Reactor Model:

ACHG, ADAP, ADIA, AFLO, AFRA, AINT, AREA, AREAF, AREAQ, AROP, ASEN, ASTEPS, ATLS, AVALUE, AVAR, BETA, BLKEQ, BOHM, BPWR, BULK, CLSC, CLSM, CNTN, CNTX, COLR, CPROD, DIAM, DIST, DPRO, DTIGN, DX, DXMX, DXSV, EGRR, ELSH, END, ENGE, ENRG, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, ETMP, FLRT, FPRO, FUEL, GFAC, GMHTC, HTC, HTRN, IONE, IPSR, KLIM, MAXIT, MCUT, MMASS, MOMEN, NADAP, NEWRUN, NMOM, NNEG, NOCG, NSOL, OXID, PLUG, PNDE, PNDI, PPRO, PRES, PRNT, PROD, PROE, PROI, PSURF, PSV, PVFE, PVFI, PWRW, QFUN, QLOS, QLSE, QPRO, QRGEQ, QRSEQ, RCHG, REAC, RELAXC, ROP, RSTR, RTIME, RTLS, SCCMPRO, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SIZE, SOLUTION_TECHNIQUE, SSKIP, SURF, TAMB, TEBND, TEMP, TGIV, TIFP, TION, TLIM, TPRO, TRST, TSRF, TSTP, TSTR, UIGN, USET, USEV (Restart), USEV (XMLI), VDOT, VDOTPRO, VELPRO, VIS, WENG, WPRO, XEND, XMLI, XMLS, XRES, XSDF, XSEK, XSTR

9.3.3. Planar Shear Flow

The following keywords can be used to build an input file for a Planar Shear Flow Reactor Model:

ABFR, AFLW, AFRA, ADIA, ATIM, ATLM, ATOL, BETA, BULK, CLSC, CLSM, CNTN, COLR, CPROD, DTMN, DTMX (steady-state), DX, DXMX, DXSV, END, FIXT, GASW, GFAC, GRAV, H0, HITE, HTRN, ICRD, IPSR, IRET, ISTP, KNMN, MAXIT, MAXTIME, MCUT, MIX, MORD, MULT, NEWRUN, NJAC, NMOM, NOCG, NOTP, NPTS, NSOL, PARP, PNDE, PNDI, PRES, PRNT, PROE, PROI, PVFE, PVFI, QLOS, QPRO, REAC, RLGAS, RLMIX, RELAXC, RSTR, RTIM, RTLM, RTOL, SFAC, SIZE, SLIP, SQRX, SSMAXITER, SSRX, STCH, STP0, SURF, SYMT, TDIF, TINF, TINL, TJAC, TPRO, TRMAXITER, TSPL, TSRF, TSTR, TWAB, TWPR, TWRE, TWST, UPROF, USET, USEV, UTRN, VCOR, VEL, VWALL, XEND, XMLI, XMLS, XRST, XTMP

9.3.4. Cylindrical Shear Flow

The following keywords can be used to build an input file for a Cylindrical Shear Flow Reactor Model:

ABFR, ADIA, AFRA, ATIM, ATLM, ATOL, BETA, BULK, CLSC, CLSM, COLR, CNTN, CPROD, DIST, DTMN, DTMX (steady-state), DX, DXMX, DXSV, END, GASW, GFAC, GRAV, H0, HITE, HTRN, ICRD, IPSR, IRET, ISTP, KNMN, MAXIT, MAXTIME, MCUT, MIX, MORD, MULT, NEWRUN, NJAC, NMOM, NOCG, NOTP, NPTS, NSOL, PARP, PNDE, PNDI, PRES, PRNT, PROE, PROI, PVFE, PVFI, QLOS, QPRO, REAC, RLGAS, RLMIX, RELAXC, RSTR, RTIM, RTLM, RTOL, SFAC, SIZE, SLIP, SQRX, SSMAXITER, SSRX, STCH, STP0, SURF, TDIF, TINF, TINL, TJAC, TPRO, TRMAXITER, TSPL, TSRF, TSTR, TWAB, TWPR, TWRE, TWST, UPROF, USET, USEV, UTRN, VCOR, VEL, VWALL, XEND, XMLI, XMLS, XRST, XTMP

9.3.5. Honeycomb Monolith Reactor

The Honeycomb Monolith Reactor Model is a special case of a general plug-flow reactor, where user input parameters describing the honeycomb geometry are used to automatically calculate the available surface area for gas-surface reactions. For details on the calculations performed for the Honeycomb Monolith Reactor Model, see Honeycomb Monolith Reactor Calculations of the Chemkin-Pro Theory Manual.

The following keywords can be used to build an input file for a Honeycomb Monolith Reactor Model:

ACHG, ADAP, ADIA, AEXT, AFLO, AFRA, AINT, AREA, AREAF, AREAQ, AROP, ASEN, ASTEPS, ATLS, ATOL, AVALUE, AVAR, BETA, BLKEQ, BULK, CLSC, CLSM, CNTN, CNTX, COLR, CPROD, DIAM, DIST, DPRO, DTIGN, DX, DXMX, DXSV, EGRR, END, ENRG, EPSG, EPSR, EPSS, EPST, EQUI, ETCH, FLRT, FPRO, FUEL, GFAC, GMHTC, HTC, HTRN, IPSR, KLIM, MAXIT, MCUT, MMASS, MOMEN, NADAP, NMOM, NNEG, NOCG, NSOL, OXID, PLUG, PNDE, PNDI, PPRO, PRES, PRNT, PROE, PROI, PSURF, PSV, PVFE, PVFI, QFUN, QLOS, QPRO,

QRGEQ, QRSEQ, RCHG, REAC, RLGAS, RLMIX, RELAXC, ROP, RSTR, RTIM, RTIME, RTLS, RTOL, SCCMPRO, SCLM, SCLS, SCOR, SENG, SENT, SFAC, SIZE, SOLUTION_TECHNIQUE, SSKIP, SSTT, SURF, TAMB, TEMP, TGIV, TIFP, TLIM, TPRO, TRST, TSRF, TSTP, TSTR, UIGN, USET, USEV (Restart), USEV (XMLI), VDOT, VDOTPRO, VEL, VIS, WENG, XEND, XMLI, XMLS, XRES, XSTR

9.4. Flame Simulators

9.4.1. Premixed Laminar Burner-stabilized Flame Simulator

The following keywords can be used to build an input file for a Premixed Laminar Burner-stabilized Flame Simulator:

AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, APRO, ASEN, ATIM, ATOL, BURN, CDIF, CNTN, CPROD, CURV, DFAC, DIST, DTMN, DTMX (steady-state), EMPAR, END, ENRG, EPSS, FLRT, FLTB, FLT_PVSPEC, FLXB, GFAC, GRAD, GRID, HSEN, INTM, IRET, ISTP, JJRG, KOUT, MAXTIME, MIX, MSFX, MULT, NADP, NJAC, NOAGG, NOFT, NOTP (Reactor), NPTS, NSOL, NTOT, PENG, PFLR, PPRO, PRES, PRMN, PRNT, PROD, PSURF, PTM_SECTION_NUM, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PTM_SECTION_SNO, PTM_SECTION_SPACING, PTM_SECTION_TCOND, PTM_SECTIONAL, QFUN, RACTV, RADGS, RADPT, REAC, RLGAS, RLMIX, RSTR, RTIM, RTOL, SCLM, SCLS, SENT, SFLR, SFMN, SGMAXIT, SGTOL, SIZE, SOLUTION_TECHNIQUE, SPOS, SS-MAXITER, TBND, TDIF, TEMP, TGIV, TIM1, TIM2, TINF, TJAC, TPRO, TPROF, TRAN, TRCE, TRMAXITER, TSTR, TUNBURNT, USE_TPRO_GRID, USET, USEV (Restart), USEV (XMLI), UTRN, VCOR, WDIF, WMIX, XCEN, XEND, XIMN, XMLI, XMLS, XSTR

9.4.2. Flame Speed Simulator

The following keywords can be used to build an input file for a Flame Speed Simulator:

ASEN, ATIM, ATOL, CDIF, CNTN, CPROD, CURV, DFAC, DIST, DTMN, DTMX (steady-state), EMPAR, END, ENRG, EPSS, FLRT, FLTB, FLT_PVSPEC, FLXB, FREE, GFAC, GRAD, GRID, HSEN, INTM, IPSR, IRET, ISTP, JJRG, KOUT, MAXTIME, MIX, MSFX, MULT, NADP, NJAC, NOAGG, NOFT, NOTP (Reactor), NPTS, NSOL, NTOT, PENG, PFLR, PRES, PRMN, PRNT, PROD, PSURF, PTM_SECTION_NUM, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PTM_SECTION_SNO, PTM_SECTION_SPACING, PTM_SECTION_TCOND, PTM_SECTIONAL, QFUN, RACTV, RADGS, RADPT, REAC, RLGAS, RLMIX, RSTR, RTIM, RTOL, SCLM, SCLS, SENT, SFLR, SFMN, SGMAXIT, SGTOL, SIZE, SOLUTION_TECHNIQUE, SPOS, SSMAXITER, TDIF, TEMP, TFIX, TIM1, TIM2, TINF, TJAC, TPRO, TPROF, TRAN, TRCE, TRMAXITER, TSTR, TUNBURNT, USET, USE_TPRO_GRID, USEV (Restart), USEV (XMLI), UTRN, VCOR, WDIF, WMIX, XCEN, XEND, XIMN, XMLI, XMLS, XSTR

9.4.3. Opposed-flow Flame Simulator

The following keywords can be used to build an input file for an Opposed-flow Flame Simulator:

AGGA, AGGB, AGGD, AGGE, AGGFD, AGGMN, AINL, ASEN, ATIM, ATOL, AXIS, CDIF, CNTN, CPROD, CURV, DFAC, DIST, DTMN, DTMX (steady-state), EMPAR, END, ENRG, EPSS, FLTB, GFAC, GRAD, GRID, HSEN, INLET, IPSR, IRET, ISTP, JJRG, KOUT, MAXTIME, MIX, MULT, NADP, NDPR, NJAC, NOAGG, NOFT, NOTP (Reactor), NPTS, NSOL, NTOT, PENG, PFLR, PLAN, PLAT, PPRO, PRES, PRNT, PROD, PSURF, PTM_SECTION_NUM, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PTM_SECTION_SN0, PTM_SECTION_SPACING, PTM_SECTION_TCOND, PTM_SECTIONAL, QFUN, RACTV, RADGS, RADPT, REAC, RLGAS, RLMIX, RSTR, RTIM, RTOL, SENT, SFLR, SFMN, SGMAXIT, SGTOL, SIZE, SOLUTION_TECHNIQUE, SPOS, SSMAXITER, TDIF, TEMP, TGIV, TIM1, TIM2, TINF, TINL, TJAC, TMAX, TPRO, TRAN, TRMAXITER, TSRF, TSTR, UFAC, UINL, USET, UTRN, WDIF, WMIX, XCEN, XEND, XMLI, XMLS

9.4.4. Premixed Laminar Burner-stabilized Stagnation Flow Flame Simulator

The following keywords can be used in addition to those listed in Opposed-flow Flame Simulator (p. 119), Opposed-flow Flame Simulator (p. 119), to build an input file for a Premixed Laminar Burner-stabilized Stagnation Flow Flame Simulator:

PTM_SECTION_NUM, PTM_SECTION_SIZEDEP_A0, PTM_SECTION_SIZEDEP_COLEFF, PTM_SECTION_SIZEDEP_DSTAR, PTM_SECTION_SIZEDEP_HAMAKER, PTM_SECTION_SN0, PTM_SECTION_SPACING, PTM_SECTION TCOND, PTM_SECTIONAL, RLGAS, RLMIX, SCLM, SCLS, STAGNATION FLAME, TINL

9.4.5. Flame-Extinction Simulator

The following keywords can be used in addition to those listed in Opposed-flow Flame Simulator (p. 119), Opposed-flow Flame Simulator (p. 119), to build an input file for a Flame-Extinction Simulator:

EXTINCTION, EXT_MAXTFRAC, EXT_METHOD, EXT_MINTFLAME, EXT_MINTFRAC, EXT_SAVEINT, EXT_STEPS, EXT_TSTEP, EXT_VFCNTRL, RLGAS, RLMIX, SCLM, SCLS

9.4.6. Diffusion Flamelet Generator

ATOL, ENDTIMEMAX, FLTB, IGRIDMETHOD_n, INLET, MIXFRACBIAS_FUEL, MIXFRACBIAS_OXID, NP_FUEL, NP_OXID, NPTS, NSTEPS_HIGH, NSTEPS_LOW, NTOT, PRES, REAC, RTOL, SSDR, SSDR_MAX, SSDR_MIN, TIME, TINL, TMAX, TPROFILE n

9.5. CVD Reactors

9.5.1. Stagnation Flow CVD Reactor

The following keywords can be used to build an input file for a Stagnation Flow CVD Reactor Model:

AINL, ASEN, ATIM, ATOL, BULK, CDCT, CHEM, CNDT, CNDX, CNTN, COMP, COND, CPROD, CTOL, CURV, DELT, DFAC, DIST, DT0, DTMN, DTMX (steady-state), EMIS, EMSG, END, ENRG, EPSS, ETCH, FLAM, FLRT, FLUX, FPRO, GDOT, GFAC, GRAD, GRID, HSEN, INIT, INJM, INJS, INJT, INJW, INJX, INLET, INTM, IPSR, IRET, ISTP, JJRG, LINE, LPRT, MAXIT, MAXTIME, MIX, MORD, MULT, NADP, NEWRUN, NJAC, NOCH, NOFT, NONR, NOTP, NPTS, NSOL, NTOT, PRES, PRNT, PROD, PWRC, QDOT, QDTC, RADGS, RDSK, REAC, RELAXC, REOR, RLGAS, RLMIX, RRAD, RSTR, RTIM, RTOL, SCCM, SCCMPRO, SENT, SFAC, SFLR, SIZE, SPOS, SSMAXITER, STAG, STST, SURF, TBND, TDIF, TDSK, TEMP, TGIV, TIM1, TIM2, TIME, TINL, TJAC, TOFF, TPRO, TRAD, TRAN, TRCE, TRMAXITER, TSCCM, TSTR, TWAL, UFAC, UINL, USET, USEV (Restart), USEV (XMLI), VCOR, WMIX, WSRC, XCEN, XEND, XMLI, XMLS, XSRC, XSTR

9.5.2. Rotating Disk CVD Reactor

The following keywords can be used to build an input file for a Rotating Disk CVD Reactor Model:

AINL, ASEN, ATIM, ATOL, BULK, CDCT, CHEM, CNDT, CNDX, CNTN, COMP, COND, CPROD, CTOL, CURV, DELT, DFAC, DIST, DT0, DTMN, DTMX (steady-state), EMIS, EMSG, END, ENRG, EPSS, ETCH, FLAM, FLRT, FLUX, FPRO, GDOT, GFAC, GRAD, GRID, HSEN, INIT, INJM, INJS, INJT, INJW, INJX, INLET, INTM, IPSR, IRET, ISTP, JJRG, LINE, LPRT, MAXIT, MAXTIME, MIX, MORD, MULT, NADP, NEWRUN, NJAC, NOCH, NOFT, NONR, NOTP, NPTS, NSOL, NTOT, OINL, OMEG, PRES, PRNT, PROD, PWRC, QDOT, QDTC, RADGS, RDSK, REAC, RELAXC, REOR, RLGAS, RLMIX, RRAD, RSTR, RTIM, RTOL, SCCM, SCCMPRO, SENT, SFAC, SFLR, SIZE, SPOS, SSMAXITER, STST, SURF, TBND, TDIF, TDSK, TEMP, TGIV, TIM1, TIM2, TIME, TINL, TJAC, TOFF, TPRO, TRAD,

TRAN, TRCE, TRMAXITER, TSCCM, TSTR, TWAL, UFAC, UINL, USET, USEV (Restart), USEV (XMLI), VCOR, WMIX, WSRC, XCEN, XEND, XMLI, XMLS, XSRC, XSTR

9.6. Shock Tube Reactors

9.6.1. Normal Incident Shock

The following keywords can be used to build an input file for a Incident Shock Reactor Model:

ATOL, CNTN, CONC, DELT, DIA, DIST, END, INIT, IPSR, ISHK, ISKB, LGDT, NEWRUN, NSOL, P1A, P2A, RHO1, RHO2, RLGAS, RLMIX, RTOL, SIZE, T1, T2, TIME, TSTR, TSTR, USET, VISC, VSHK, XMLI

9.6.2. Normal Reflected Shock

The following keywords can be used to build an input file for a Reflected Shock Reactor Model:

ATOL, CNTN, CONC, DELT, DIST, END, INIT, IPSR, LGDT, NEWRUN, NSOL, P1A, P2A, P3A, RHO1, RHO2, RHO3, RLGAS, RLMIX, RSHK, RTOL, SIZE, T1, T2, T3, TIME, TSTR, USET, VRS, VSHK, XMLI

9.7. Miscellaneous Reactor Models

9.7.1. Gas Mixer

The following keywords can be used to build an input file for a Gas Mixer Reactor Model:

ABSL, ATIM, ATOL, CNTN, CNTT, CPROD, DELT, DFAC, DIST, DTMN, DTMX (steady-state), DTSV, END, ENRG, FLRT, FPRO, GFAC, GMHTC, HTC, HTRN, INLET, IPSR, IRET, ISTP, MAXTIME, MMASS, NEWRUN, NJAC, NNEG, NOFT, NPSR, NSOL, PPRO, PRES, PRNT, QFUN, QLOS, REAC, RELT, RTIM, RTOL, SCCM, SCCMPRO, SCOR, SFAC, SFLR, SIZE, SPOS, SSMAXITER, STPT, STST, TAMB, TEMP, TGIV, TIM1, TIM2, TIME, TINL, TJAC, TPRO, TRAN, TRMAXITER, TSCCM, TSTR, TTIM, UFAC, USET, USEV, USRIN, VOL, VPRO, VTIM, WENG, XMLI, XMLS

9.7.2. Equilibrium

The following keywords can be used to build an input file for a Equilibrium Reactor Model:

CJ, CONX, CPROD, DIST, END, ENGY, ENTH, ENTR, FAZE, FREE, FROZ, IPSR, NEWRUN, NSOL, PEST, PH, PRES, PS, PV, REAC, RLGAS, RLMIX, SIZE, TEMP, TEST, TP, TS, TSTR, TV, USET, VH, VOL, VS, VU, XMLI

9.7.3. Mechanism Analyzer

The following keywords can be used to build an input file for a Mechanism Analyzer:

ALL, CARR, DIST, END, GEN, GRXN, GTHB, IPSR, LSCL, MAJ, NEWRUN, NONE, NSOL, PFAL, PHIA, PLOA, PNUM, PRES, SCOV, SIZE, SRXN, STCK, TBTH, TBTH, TDEL, TFAL, THIG, THRM, TLOW, TRAN, TSTR, TSUM, USET, XBTH, XMLI

Chapter 10: Alphabetical Listing of Project Input Keywords

In this chapter we provide detailed information about the meaning and usage of each keyword entry that may be included as part of a Reactor Model input file. Reference Guide to Project Input Keywords (p. 115) provides a cross-referenced listing that shows which keywords are available for each Reactor Model, while CHEMKIN Project Input: Keyword Syntax and Rules (p. 113) provides general keyword syntax and rules. The following categorized lists of auxiliary keywords are provided:

- Table 3.4: Alphabetical Listing of REACTIONS-line Options for Gas-phase Kinetics Data (p. 39)
- Table 3.7: Alphabetical Listing of Gas-phase Reaction Auxiliary Keywords (p. 43)
- Table 4.3: Alphabetical Listing of REACTIONS-line Options for Surface Reaction Data (p. 66)
- Table 4.6: Alphabetical Listing of Surface Reaction Auxiliary Keywords (p. 72)

The alphabetical listing of keywords is distributed over the following sections:

- 10.1. Alphabetical Listing of Keywords [A-E]
- 10.2. Alphabetical Listing of Keywords [F-O]
- 10.3. Alphabetical Listing of Keywords [P-S]
- 10.4. Alphabetical Listing of Keywords [T-Z]

10.1. Alphabetical Listing of Keywords [A-E]

Table 10.1: Alphabetical Listing of Keywords [A-E]

Keyword	Definition					
AB- FR Solver	This keyword serves as a switch to turn on an empirical active surface area facto when surface reaction rates on the particle surface are calculated. The concept is that not all surface area (or sites) on the particle surface is active. The active surface area during the particle formation phase is found to be a function of tot particle mass and gas temperature. The form and the model parameters of this empirical formulation are obtained by fitting predictions to measured data from premixed flames. By default this factor is turned off.					
	Parameters Optional/Reqd. Units Examples					
				ABFR		
	Keyword Usage	Optional keywor	d. By default t	his factor is turned off.		
	Reactor Models • Cylindrical Shear Flow Reactor • Planar Shear Flow Reactor • Perfectly-stirred Reactor (PSR) • Plug-flow Reactor (PFR)					

Keyword	Definition				
ABSLSolv- er	This keyword is used to the solution variable Jacobian.			ne absolute perturbation e numerically derived	
	Parameters	Optional/Reqd.	Units	Examples	
	Absolute perturbation	Required		ABSL 1.E-15	
	Keyword Usage	given, then the the ATOL value.	absolute perp ATOL is not sp bation is set e	if the ATOL keyword is etuation is set equal to pecified, then the qual to the square root the machine.	
	Reactor Models	Closed PlasmaNon-reactive			
		Perfectly Stirr		SR)	
		• Plasma PSR			
ACHG Solver	which the preliminary converged to steady s ACHG value plus the p	, fictitious transient of tate. The convergend product of RCHG mu et to zero (by defau	equations can ce test is mad Iltiplied by the	(over one time step) for be considered to have e against the sum of the e old site-fraction value.	
	Parameters	Optional/Reqd.	Units	Examples	
	Absolute relative change	Required		ACHG 1.0E-7	
	Keyword Usage	Optional keywo determine conv	•	only RCHG is used to	
	Reactor Models	Honeycomb Reactor			
	neuctor models	rioncycombi			
	neuctor models	Plasma Plug FPlug Flow Rea	low Reactor		
	Flag indicating the im integrate the equation	 Plasma Plug F Plug Flow Rea plicit Adams method	low Reactor	DE solver is used to	
	Flag indicating the im	Plasma Plug F Plug Flow Rea plicit Adams method	low Reactor actor d of the DVOD	DE solver is used to the DASPK solver will be	
	Flag indicating the im integrate the equation	Plasma Plug F Plug Flow Rea plicit Adams methods. Optional keywo	Flow Reactor actor d of the DVOC rd. By default, ly Stirred Reac	the DASPK solver will be etor (PaSR)	
ADAM Solver ADAP	Flag indicating the im integrate the equation Keyword Usage Reactor Models	Plasma Plug F Plug Flow Rea plicit Adams method ss. Optional keywo used. Closed Partial Partially Stirre ving of additional according to the property of additional according to the property of the property of additional according to the property of the propert	Flow Reactor actor d of the DVOC rd. By default, ly Stirred Reac ed Reactor (Pas	the DASPK solver will be tor (PaSR) SR) for improved resolution	

Keyword	Definition						
	How and when the point ASTEPS keywords. The adaptive time-stepping	companion keywor	d, NADAP, car	n be used to turn off			
	Keyword Usage	Optional keywo	rd. ADAP is th	ne default.			
	Reactor Models	Closed Plasma	a Reactor				
		Closed Homo	geneous Read	tor			
		Honeycomb F	Honeycomb Reactor				
		IC HCCI Engin	e Model				
		CCI Engine Sir	mulator				
		Plug Flow ReactorSI Engine Zonal Simulator					
ADD Reactor or Inlet	Mole fractions of species that should be added to the inlet or initial composition but excluded from the equivalence-ratio calculation. This keyword is only valid when the equivalence-ratio option is used to specify the inlet or initial composition. These species do not enter into the equivalence ratio computations. One species is entered per line.						
Property	Parameters	Optional/Reqd.	Units	Examples			
	Inlet stream name	Optional (PSRs only) If there is no stream name than the product species applies to the default or all defined streams.		ADD mixture1 AR 0.2			
	Species name	Required		ADD AR 0.2			
	Additive fractions	Required	mole	ADD AR 0.2			
	Keyword Usage	either REAC or E for each inlet st	Optional keyword. By default, ADD is not used. But either REAC or EQUI / FUEL / OXID / CPROD is required for each inlet stream or to define initial conditions for a closed system.				

Keyword	Definition	ion				
	Reactor Models	Closed Homog	geneous Batc	h Reactor		
		IC HCCI Engine				
		Plasma PSR				
		• Plug Flow Rea	ctor			
		SI Engine Zon.	al Simulator			
	Notes	The ADD keyw individually for		e changed as a set, not n.		
		The ADD keyv individually for		e changed as a set, not ion run.		
ADIA Reactor Property	shear-flow models. For planar, non-symmetric shear flow, an adiabatic w Reactor default, but for symmetric (planar or cylindrical) shear-flow cases, the A					
	Keyword Usage	Optional keyword. By default, the specified (temperature) condition is used for shear-layer flow. The default behavior for plug-flow depends on the problem type; if the energy equation is being solved, the default is for adiabatic conditions.				
	Reactor Models	Cylindrical Shear Flow Reactor				
		Honeycomb R	eactor			
		 Planar Shear F 	low Reactor			
		 Plasma Plug F 	low Reactor			
		• Plug Flow Rea	ctor			
AEXT	External surface area (for	_	•			
Reactor Property Profiles	environment. AEXT is usu (0-D Homogeneous syste AEXT value is only provid to be constant as a func	Flow Models) used to control heat transfer to the external EXT is usually used to specify area profiles as a function of time ous systems) or distance (Plug Flow Models). However, if the ply provided at a single point, then the surface area is assumed as a function of time (for transient 0-D Homogeneous systems) Plug Flow Models). See also AREAQ.				
	Parameters	Optional/Reqd.	Units	Examples		
	Time or Distance, depending on Reactor Model	Required	sec or cm	AEXT 0.0 1.0		
	External surface area or surface area per unit length,	Required	cm ^{2 or}	AEXT 0.0 1.0		

Keyword	Definition						
	depending on Reactor Model						
	Keyword Usage	'	Optional keyword. If not specified, the external area is assumed equal to the internal surface area (see AINT or AREA).				
	Reactor Models	Closed Homog	geneous Batch	n Reactor			
		Closed Plasma	Closed Plasma Reactor				
		Honeycomb R	eactor				
		IC HCCl Engine	е				
		Perfectly Stirre	ed Reactor (PS	R)			
		Plasma PSR					
AFLO Reactor	Cross-sectional area profile as a function of distance. If only a single AFLO entry is provided, the cross-sectional area is assumed to be a constant at that specified value. See also AREAF and DIAM.						
Property Profiles	Parameters	Optional/Reqd.	Units	Examples			
Tornes	Distance from inlet	Required	cm	AFLO 0.0 1.0			
	Cross-sectional area	Required	cm ²	AFLO 0.0 1.0			
	Keyword Usage	keywords are in	cluded, then a	DIAM, AFLO, or AREAF in attempt will be made tine to determine the			
	Reactor Models	Honeycomb R	eactor				
		• Plasma Plug F	Plasma Plug Flow Reactor				
		• Plug Flow Rea	Plug Flow Reactor				
AFLW Reactor Property	For example, "AFLW War up 0.1% of the lower w	AFER 0.001" indicates wall surface area. The	s that the mat e material nan	oonds to a surface material. terial "WAFER" makes ne must correspond to ile or an error will occur.			
	Parameters	Optional/Reqd.	Units	Examples			
	Surface material name	Required		AFLW WAFER 0.001			
	Fraction of total surface area	Required		AFLW WAFER 0.001			
	Keyword Usage	Optional keywor materials in all F	•	1.0 is used for all			
	Reactor Models	NI .	Non-symmetric Planar Shear Flow Reactor				

Keyword	Definition						
AFRA Reactor Property	Fraction of the total surface area that corresponds to a surface material (see the multiple surface material capability under <i>Surface Kinetics</i>). For example, "AFRA WAFER 0.001" indicates that the material "WAFER" makes up 0.1% of the total reactor surface area. The material name must correspond to a material name declared in the <i>Surface Kinetics</i> input file or an error will occur.						
	Parameters	Optional/Reqd.	Units	Examples			
	Surface material name	Optional		AFRA WAFER 0.001			
	Fraction of total surface area	Required		AFRA WAFER 0.001			
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		AFRA WAFER 0.001 2			
	Keyword Usage	1 .	Optional keyword. By default, 1.0 is used for all materials in all PSRs.				
	Reactor Models	 Closed Plasma Cylindrical Sh Honeycomb F Perfectly Stirra Planar Shear F Plasma Plug F Plasma PSR 	 Cylindrical Shear Flow Reactor Honeycomb Reactor Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor Plasma Plug Flow Reactor 				
AGGA	The pre-exponential factor of the Arrhenius-like expression for characteristic fusion time.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
. Toperty	Material name	Required		AGGA SOOT 1.0E10			

Keyword	ord Definition							
	Pre-exponential factor	Required	sec	AGGA C(B) 1.0E7				
	Keyword Usage	1 -	Optional keyword. By default, the pre-exponential factor is 1.0E-30.					
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
		Diffusion or Premixed Opposed-flow Flame						
		IC HCCl Engine	IC HCCI Engine					
		Multi-Zone HC	CCI Engine Sim	nulator				
		Perfectly Stirred Reactor (PSR)Plasma PSR						
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
AG- GB	The temperature exponent of the Arrhenius-like expression for characte fusion time.							
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Material name	Optional		AGGB SOOT 1.0				
	Temperature exponent	Required		AGGB C(B) 0.5				
	Keyword Usage	Optional keywor exponent is 0.	Optional keyword. By default, the temperature exponent is 0.					
	Reactor Models		Closed Homogeneous Batch ReactorClosed Plasma Reactor					
		Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		• IC HCCI Engine	IC HCCI Engine					
		Multi-Zone HC	Multi-Zone HCCI Engine Simulator					
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					
		Plasma PSR	Plasma PSR					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		SI Engine Zona	SI Engine Zonal Simulator					
AG- GD	The exponent of the for characteristic fusion		imary particle diameter in the Arrhenius-like expression time.					

Keyword	Definition							
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Primary particle name	Optional		AGGD C(B) 1.0				
	Keyword Usage	Optional keywordiameter is 1.0.	Optional keyword. By default, the primary particle diameter is 1.0.					
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
		 Closed Plasma 	Closed Plasma Reactor					
		Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		IC HCCl Engine	e					
		Multi-Zone HC	Multi-Zone HCCI Engine Simulator					
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					
		• Plasma PSR	Plasma PSR					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		SI Engine Zon	al Simulato	or				
AGGE	The activation temper fusion time.	ature of the Arrheni	us-like exp	ression for characteristic				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples				
rioperty	Material name	Required		AGGE SOOT 0.0				
	Activation temperature	Required	K	AGGE C(B) 800				
	Keyword Usage	Optional keywork temperature is 0	•	ult, the activation				
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
		Closed Plasma	Closed Plasma Reactor					
		Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		IC HCCl Engine	IC HCCI Engine					
		Multi-Zone HO	Multi-Zone HCCI Engine Simulator					
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					
		• Plasma PSR	Plasma PSR					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		SI Engine Zon	SI Engine Zonal Simulator					
AGGFD	The fractal dimension	of the aggregate.						

Reactor Property Material name Required Property Material name Required Property Required Practal dimension Required Procord Usage Practal dimension Required Procord Usage Procord Usage Property Reactor Models Procord Usage Procord Usag	Keyword	Definition							
Fractal dimension Required — AGGFD C(B) 1.8 Keyword Usage Optional keyword. By default, the fractal dimension is 3.0. Reactor Models • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Diffusion or Premixed Opposed-flow Flame • IC HCCI Engine • Multi-Zone HCCI Engine Simulator • Perfectly Stirred Reactor (PSR) • Plasma PSR • Premixed Laminar Burner-stabilized Flame • SI Engine Zonal Simulator AGGMN Reactor Property Prop	Reactor	Parameters	Optional/Reqd.	Units	Examples				
Reactor Models Optional keyword. By default, the fractal dimension is 3.0. Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator SI Engine Zonal Simulator Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required AGGMN SOOT 1.0E10 AGGMN SOOT 1.0E-4 ((Moments)sec (Sectional) (Moments)sec (Sectional) (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR	Property	Material name	Required		AGGFD SOOT 1.0E3.0				
Reactor Models Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required Threshold Required		Fractal dimension	Required		AGGFD C(B) 1.8				
Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required		Keyword Usage							
Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required Required MaggMN SOOT 1.0E-4 (Moments)sec (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame Multi-Zone HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR		Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
- IC HCCI Engine - Multi-Zone HCCI Engine Simulator - Perfectly Stirred Reactor (PSR) - Plasma PSR - Premixed Laminar Burner-stabilized Flame - SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters - Optional/Reqd. Units - AGGMN SOOT 1.0E10 Threshold - AGGMN SOOT 1.0E-4 (Moments)sec (Sectional) Keyword Usage - Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models - Closed Homogeneous Batch Reactor - Diffusion or Premixed Opposed-flow Flame - IC HCCI Engine - Multi-Zone HCCI Engine Simulator - Perfectly Stirred Reactor (PSR) - Plasma PSR			 Closed Plasma 	Closed Plasma Reactor					
Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator AGGMN Reactor Property The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required AGGMN SOOT 1.0E-10 Threshold Required AGGMN SOOT 1.0E-4 (Moments)sec (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR			Diffusion or Pr						
Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required Required Material name Required Method. Reyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR			IC HCCl Engine						
Plasma PSR Premixed Laminar Burner-stabilized Flame SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required			Multi-Zone H	CCI Engine S	imulator				
Premixed Laminar Burner-stabilized Flame • SI Engine Zonal Simulator The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required Threshold Required Required AGGMN SOOT 1.0E-0 (Moments)sec (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Diffusion or Premixed Opposed-flow Flame • IC HCCI Engine • Multi-Zone HCCI Engine Simulator • Perfectly Stirred Reactor (PSR) • Plasma PSR			Perfectly Stirred Reactor (PSR)						
Reactor Property The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Examples Material name Required Threshold Required			• Plasma PSR						
AGGMN Reactor Property The threshold value to include the sintering effect in particle aggregation. For the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters Optional/Reqd. Units Material name Required Threshold Required AGGMN SOOT 1.0E10 Required (Moments)sec (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR			Premixed Lam	Premixed Laminar Burner-stabilized Flame					
the Moments Method, this indicates the ratio of the collision to the fusion time scale, whereas for the Sectional Method, this indicates the minimum value of the characteristic fusion time. Parameters			SI Engine Zon	SI Engine Zonal Simulator					
Material name Required		characteristic fusion ti	me.	e.					
Threshold Required (Moments)sec (Sectional) Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models (Moments)sec (Sectional) Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. (Closed Homogeneous Batch Reactor (Dised Plasma Reactor (Diffusion or Premixed Opposed-flow Flame (CHCCI Engine (Moments)sec (Sectional) (Noments)sec (Sectional) (Sectional) (Noments)sec (Sectional)									
Keyword Usage Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Diffusion or Premixed Opposed-flow Flame • IC HCCI Engine • Multi-Zone HCCI Engine Simulator • Perfectly Stirred Reactor (PSR) • Plasma PSR									
for the Moments Method and 1.0E-06 for the Sectional Method. Reactor Models Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR		Inresnoia	Required	(Moments)sec					
 Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR 		Keyword Usage	for the Moment	Optional keyword. By default, the threshold is 1.0E-3 for the Moments Method and 1.0E-06 for the Sectional					
 Diffusion or Premixed Opposed-flow Flame IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR 		Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
 IC HCCI Engine Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma PSR 			Closed Plasma	Closed Plasma Reactor					
 • Multi-Zone HCCI Engine Simulator • Perfectly Stirred Reactor (PSR) • Plasma PSR 			Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
Perfectly Stirred Reactor (PSR)Plasma PSR			IC HCCl Engine	IC HCCI Engine					
Plasma PSR			Multi-Zone HO	Multi-Zone HCCI Engine Simulator					
			Perfectly Stirre	ed Reactor (PSR)				
Premixed Laminar Burner-stabilized Flame			Plasma PSR						
			Premixed Lam	inar Burner	-stabilized Flame				

Keyword	Definition						
ncy word	Demindon .	• SI Engine Zon:	SI Engine Zonal Simulator				
		31 Engine Zonai Simulator					
AINL	The radial velocity sprea	ding rate. At the inlet $x = L$, $v/r = AINL$.					
Inlet	Parameters	Optional/Reqd.	Units	Examples			
Property	Radial velocity divided by radius	Required	1/sec	AINL 2.3			
	Keyword Usage	'	Optional keyword. By default, the radial velocity spreading rate is 0.0.				
	Reactor Models	Diffusion or Premixed Opposed-flow Flame					
		Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flo	w CVD Reacto	or			
	Notes	Supersedes pr	evious AFUE a	and AOXI keywords.			
AINT Reactor Property Profiles	Internal surface area (for 0-D Homogeneous systems) or surface area per unit length (for Plug Flow models) that is considered active for surface chemistry. AINT is usually used to specify area profiles as a function of time (0-D Homogeneous systems) or distance (Plug Flow models). However, if the AINT value is only provided at a single point, then the surface area is assumed to be constant as a function of time (for transient 0-D Homogeneous systems) or						
	distance (for Plug Flow models). See also AREA.						
	Parameters	Optional/Reqd.	Units	Examples			
	Time or distance, depending on Reactor Model	Required	sec or cm	AINT 0.0 1.0			
	Internal surface area or area per unit length, depending on Reactor Model	Required	cm2 or cm	AINT 0.0 1.0			
	Keyword Usage	Optional keyword. If not specified, the internal surface area is determined based on the hydraulic diameter for a plug-flow, as specified through AFLO, AREAF, or DIAM keywords. For 0-D Homogenous systems, a value of 0.0 is assumed by default.					
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor					
		Honeycomb R	Honeycomb Reactor				
		·	Perfectly Stirred Reactor (PSR)				
		Plasma PSR					
		 Plasma Plug F 					

Keyword	Definition						
		Plug Flow Rea	Plug Flow Reactor				
A11	Turns default output o	n for all of Curfthorn					
ALL	Turns default output on for all of Surftherm's tables.						
Output	Keyword Usage	printed. See also	•	t, the all output will be			
	Reactor Models	Mechanism A	Mechanism Analyzer				
APRO Reactor Property Profiles	as a function of distance relative to the burner a pair and the x coordinates.	ce for the stream-tu area and is therefore inates must be in as	be area. The dimension cending ord	a piece-wise linear profile stream-tube area is given less. Each input provides der. For example, APRO 0.1 rom the burner surface.			
	Parameters	Optional/Reqd.	Units	Examples			
	x-coordinates	Required	cm	APRO 0.1 1.2			
	Relative area	Required	dimensionl	lessAPRO 0.1 1.2			
	Keyword Usage	Optional keywo	rd. By defaul	t, the area ratio is constant			
	Reactor Models	Premixed Lam	Premixed Laminar Burner-stabilized Flame				
	Notes	This keyword	This keyword can be changed for a restart run.				
AREA Reactor	The total internal surface area (for 0-D homogeneous reactors) or surface area per unit length (for plug-flow) in the reactor. The internal surface area represents the area available for surface chemistry. See also AINT.						
Property	Parameters	Optional/Reqd.	Units	Examples			
	Total surface area or surface area per unit length, depending on Reactor Model	Required	cm ² or cm	AREA 200			
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		AREA 200 1			
	Keyword Usage		•	t, the total surface area is			
		set to 0.0 for 0-D homogeneous reactor models and is					

Keyword	Definition						
	determined based on the hydraulic diameter (set using DIAM, AREAF, AFLO) for plug-flow.						
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma	Closed Plasma Reactor				
		Honeycomb R	Honeycomb Reactor				
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)				
		 Plasma PSR 	Plasma PSR				
		 Plasma Plug F 	Plasma Plug Flow Reactor				
		• Plug Flow Rea	ctor				
AREAF	The total cross-section	al flow area. See also	o AFLO.				
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Cross-sectional flow area	Required	cm ²	AREAF 200			
	Keyword Usage	'	Optional keyword. Either DIAM or AREAF must be set, unless the user has implemented the GEOM user subroutine.				
	Reactor Models	Honeycomb Reactor					
		Plasma Plug Flow Reactor					
		• Plug Flow Rea	Plug Flow Reactor				
AREAQ Reactor	per unit length (for plu	ıg-flow) in the react	or. The extern	eactors) or surface area nal surface area represents conment. See also AEXT.			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Total surface area or surface area per unit length, depending or Reactor Model	Required	cm ² or cm	AREAQ 200			
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all		AREAQ 200 1			

Keyword	Definition						
		reactors in a cluster.					
	Keyword Usage Optional keyword. By default, the total extern are is set equal to the internal surface area (AINT), unless AREAQ or AEXT are included.						
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor					
		 Honeycomb Reactor Perfectly Stirred Reactor (PSR) Plasma PSR Plasma Plug Flow Reactor 					
		Plug Flow Reactor					
AROP		production coefficients for all species and print results to file of the reactor simulation.					
Output	Keyword Usage	Optional keyword. By default, no rate-of-production values are printed.					
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor					
		Honeycomb Reactor					
		IC HCCI Engine					
		Perfectly Stirred Reactor (PSR)					
		Plasma Plug Flow Reactor					
		Plasma PSR					
		Plug Flow Reactor					
		SI Engine Zonal Simulator					
	Notes	This keyword can be added but not removed from a continuation run.					
ASEN		A-factor sensitivity coefficients (i.e., with respect to the					
Output	gas-phase and surface chemistry rate constants) for species fractions and for other dependent variables in the system. Sensitivity results will be included in the XML Solution File. For 0-D and Plug Flow systems, sensitivity results will also be printed to the diagnostic output file.						
	The printed to the diag	Optional/Reqd. Units Examples					

Keyword	Definition				
Keyword	String indicating for which variables sensitivity coefficients will be saved or printed. The string is a space-delimited list containing species names and any one of the following: ALL, AVEL, RVEL, CVEL, FLRT, or TEMP (see Notes)	Optional If no string is given, then ALL is assumed.		ASEN H2O ASEN TEMP	
	Keyword Usage	Optional keywor are computed or		no sensitivity coefficients also SENG.	
	Reactor Models	Closed Homog	jeneous Batch	Reactor	
		Closed Plasma	Reactor		
		Diffusion or Premixed Opposed-flow Flame			
		Honeycomb Reactor			
		IC HCCI Engine			
		Perfectly Stirred Reactor (PSR)			
		Plasma Plug Flow Reactor			
		Plasma PSR			
		Plug Flow Reactor			
		Premixed Lam	inar Burner-sta	abilized Flame	
		Premixed Lam	inar Flame-spe	eed Calculation	
		Rotating Disk (CVD Reactor		
		SI Engine Zona	al Simulator		
		Stagnation Flo	w CVD Reacto	or	
	Notes	This keyword can be added but not removed from a continuation run.			
		See also EPSS, sensitivity opti		ENG, and HSEN for other	
		The optional par	ameter string	s are defined as follows:	
		ALL: all specie solution	s and all othe	r dependent variables in the	

Keyword	Definition			Definition			
			Flames, Rotat	ow, Diffusion or Premixed ing Disk, and Stagnation Flow			
		CVEL: circumf Stagnation Flo		ity (Rotating Disk and ors only)			
		RVEL: radial velocity (Diffusion or Premixed Opposed-flow Flames, Rotating Disk, and Stagnation Flow CVD Reactors only)					
		 FLRT: mass flow rate (Premixed Laminar Flame-speed Calculation only) TEMP: gas temperature 					
ASTEPS Output	to those specified by the integration steps specific argument is provided. The during a transient solution the time of a fast transient solution.	eps to adaptively insert extra solution data points in addition the DTSV option whenever the solver takes the number of cified by this option. The default is 20, the value used if no a. The purpose of the ASTEPS keyword is to ensure that ution, sufficient solution data points are available around sient, for example a rapidly increasing temperature, so that if the problem is possible (to allow a good plotting					
	Parameters	Optional/Reqd.	Units	Examples			
	Integration steps	Option- al.		ASTEPS 20			
	Keyword Usage	Optional keywor	d. By default	ASTEPS is set to 20.			
	Reactor Models	Closed Homog	geneous React	tor			
		Closed Plasma	Reactor				
		Honeycomb R	eactor				
		• IC HCCI Engine	9				
		Multi-Zone HC	CCI Engine Sim	nulator			
		Perfectly Stirre	ed Reactor (PS	R)			
		Plasma Plug Fl	low Reactor				
		 Plasma PSR 					
		 Plug Flow Rea 	ctor				
		SI Engine Zona	al Simulator				
	Notes	For further det	tails, see the d	escription of DTSV.			
	T. Control of the Con						

Keyword	Definition						
AS- WH	Crank angle at which to using energy equati By default the energy	on with Woschni co	rrelation as th				
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Crank angle in degrees.	Required	degree	ASWH 5.0			
	Keyword Usage	Optional keywor	Optional keyword.				
	Reactor Models	Multi-Zone HC	CI Engine Sim	nulator			
		SI Engine Zona	al Simulator				
ATIM Solver	time stepping procedu Since we are not seeki typically does not need	ance for convergence of Newton iteration as it is used in the pseudo procedure for steady-state problems employing the <i>Twopnt</i> solver. ot seeking accuracy in a transient solution, this convergence criteria not need to be as stringent as for the Newton iteration on the					
	actual steady-state solu Parameters	Optional/Regd.	Units	Examples			
	Absolute tolerance	Required		ATIM 1.E-6			
	Keyword Usage	Optional keywor	•	the absolute tolerance			
	Reactor Models	 Cylindrical She Diffusion or Pr Honeycomb R Non-reactive C Perfectly Stirre Planar Shear F Plasma PSR Premixed Lam Premixed Lam 	 Planar Shear Flow Reactor Plasma PSR 				
	Notes	For a precise d	For a precise definition, see the description of ATOL.				
ATLM	ATOL is used for all var	iables.					
Solver	Parameters	Parameters Optional/Reqd. Units Examples Tolerance Required ATLM 1.0E-6					

Keyword	Definition				
	Keyword Usage	ATOL.			
	Reactor Models	Closed Plasma	Reactor		
		Cylindrical She	hear Flow Reactor		
		Perfectly Stirre	ed Reactor (PS	R)	
		• Planar Shear F	low Reactor		
		Plasma PSR			
ATLS	Absolute tolerance used	•			
Solver	the sensitivity coefficient	solution for the sensitivity coefficients only. Generally, ts need not be solved to a great degree of accuracy, so e lower than the tolerances placed on the physical			
	Parameters	Optional/Reqd.	Units	Examples	
	Absolute tolerance	Required		ATLS 1.E-3	
	Keyword Usage	Optional keywords 1.E-5.	d. By default,	the absolute tolerance	
	Reactor Models	Closed Homog	geneous Batch	Reactor	
		Closed Plasma	Reactor		
		Honeycomb R	eactor		
		IC HCCI Engine	е		
		Perfectly Stirre	ed Reactor (PS	R)	
		• Plasma PSR			
		Plasma Plug F	low Reactor		
		• Plug Flow Rea	ctor		
		SI Engine Zona	al Simulator		
ATOL Solver		by the solvers as an indicator of the accuracy desired Typically ATOL should be less than the smallest ecies mass fraction.			
	Parameters	Optional/Reqd.	Units	Examples	
	Absolute tolerance	Required		ATOL 1.E-9	
	Keyword Usage	Optional keywor	d. The default	values are:	
		CVD, Partially Sti Shear Flow Reac		PaSR), Plug Flow Reactor,	
		Open 0-D Reacto Opposed-flow Fl		•	

Keyword	Definition				
		Burner-stabilized Flame, Premixed Laminar Flame-speed Calculation: 1.E-9			
		Normal Incident Shock, Normal Reflected Shock: 1.E-10			
		Closed 0-D Reactors and Open 0-D Reactors run in transient mode: 1.E-20			
		See also RTOL.			
	Reactor Models	Closed Homogeneous Batch Reactor			
		Closed Partially Stirred Reactor (PaSR)			
		Closed Plasma Reactor			
		Cylindrical Shear Flow Reactor			
		Diffusion or Premixed Opposed-flow Flame			
		Honeycomb Reactor			
		IC HCCI Engine			
		Non-reactive Gas Mixer			
		Normal Incident Shock			
		Normal Reflected Shock			
		Opposed-flow Flame			
		Partially Stirred Reactor (PaSR)			
		Perfectly Stirred Reactor (PSR)			
		Planar Shear Flow Reactor			
		Plasma PSR			
		Plug Flow Reactor			
		Premixed Laminar Burner-stabilized Flame			
		Premixed Laminar Flame-speed Calculation			
		Rotating Disk CVD Reactor			
		SI Engine Zonal Simulator			
		Stagnation Flow CVD Reactor			
AVALUE		s to adaptively insert extra solution data points in addition e DTSV option whenever the variable specified by the			
Output	1	$y \pm x$ since the last time an extra data point was generated.			

Keyword	Definition					
	specify the AVAR keyv during a transient soluthe time of a fast tran	oult and you must also E keyword is to ensure that pints are available around reasing temperature, so that ow plotting a resolution).				
	Parameters	Optional/Reqd.	Units	Examples		
	Integration steps	Required		AVALUE 10		
	Keyword Usage	Optional keywor	d. AVAR is	required.		
	Reactor Models	 Closed Homog Honeycomb R IC HCCI Engine Multi-Zone HC Perfectly Stirre Plasma Plug FI Plasma PSR 	 Closed Plasma Reactor Closed Homogeneous Reactor Honeycomb Reactor IC HCCI Engine Model Multi-Zone HCCI Engine Simulator Perfectly Stirred Reactor (PSR) Plasma Plug Flow Reactor Plasma PSR Plug Flow Reactor 			
	Notes	See also ASTEPS and AVAR is required when AVALUE is used.				
AV- AR Output	should be "temperatu	re" or the name of a portion of the remarks of the	able is used for the AVALUE keyword. Parameter <string> e" or the name of a particular species to serve as the species.There is no default species value. AVAR is required word is used.</string>			
	Parameters	Optional/Reqd.	Units	Examples		
	String	Required		AVALUE temperature AVALUE CH4		
	Keyword Usage	Optional keywor	d.			
	Reactor Models	 Closed Plasma Reactor Closed Homogeneous Reactor Honeycomb Reactor IC HCCI Engine Model Multi-Zone HCCI Engine Simulator 				

Keyword	Definition	Definition				
		Perfectly Stirre	ed Reactor ((PSR)		
		 Plasma Plug F 	low Reactor	r		
		Plasma PSR				
		Plug Flow Rea				
		SI Engine Zon	al Simulatoı	r		
AX-	Use a radial, axisymme	tric coordinate syste	c coordinate system.			
IS	Keyword Usage	Optional keywo is radially axisyn	•	llt, the coordinate system		
Reactor Property	Reactor Models			posed-flow Flame		
BDF	Flag indicating the bac to integrate the equation		vard differentiation formulas of the DVODE solver is used is.			
Solver	Keyword Usage	Optional keywo used.	Optional keyword. By default, the DASPK solver will be			
	Reactor Models	Closed Partial	ly Stirred Re	eactor (PaSR)		
		Partially Stirred Reactor (PaSR)				
BDUR			bustion," D	q _c , in the Wiebe function.		
Solver	Dq _c must be greater th	an 0.				
	Parameters	Optional/Reqd.	Units	Examples		
	Duration of combustion in number of crank angles	Required	degree	BDUR 45.6		
	Keyword Usage	Optional keywo	rd.			
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator			
BEFF Solver	1 -	e combustion efficie	ency. The co	e being consumed by the ombustion efficiency must ustion) by default.		
	Parameters	Optional/Reqd.	Units	Examples		
	Combustion efficiency	Optional		BEFF 0.85		
	Keyword Usage	Optional keywo	rd.			
	Reactor Models	SI Engine Zon	al Simulato	r		
BETA Desertor	The van der Waals force	es can enhance the	collision fre	t collision between particles.		
Reactor Property	collision can reduce the effect is off and collision			is 1.0, i.e., van der Waals		

Keyword	Definition						
	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Required		BETA C(B) 0.9			
	Enhance factor	Required		BETA C(B) 0.9			
	Keyword Usage	Optional keywor	rd.				
	Reactor Models	Closed Homog	geneous Ba	atch Reactor			
		 Closed Plasma 	Reactor				
		Cylindrical She	ear Flow Re	eactor			
		 Honeycomb Monolith Reactor IC HCCI Engine Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor 					
		Plasma PSRPlasma Plug Flow ReactorPlug Flow Reactor					
		SI Engine Zona	al Simulato	or			
BINI	Specifies the value of t	he "duration of com	bustion," c	ղ _c , in the Wiebe function.			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Start of combustion crank angle	Required	degree	BINI -15.3			
	Keyword Usage	Optional keyword.					
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator				
BLKEQ	Toggle to turn on or of	ff solution of bulk a	ctivities for	bulk species.			
Doostor	Parameters	Optional/Reqd.	Units	Examples			
Reactor Property	String "on" or "off" to turn on or off solution of the bulk-species equations	Required		BLKEQ ON BLKEQ OFF			
	Keyword Usage	Optional keyword. By default, bulk-activity equations are solved when there is more than one bulk species in one or more bulk phases on a material. Otherwise the bulk activities are presumed constant at their initial value.					
	Reactor Models	Closed Homog	geneous Ba	atch Reactor			
		Closed Plasma	Reactor				

Keyword	Definition					
,		Honeycomb R	eactor			
				D)		
		Perfectly Stirre		n)		
		Plasma Plug Fl	ow Reactor			
		 Plasma PSR 				
		Plug Flow Reactor				
BLTK	1 -	Specifies a boundary-layer thickness. When BLTK is declared, a parabolic velocity profile is specified with a zero velocity at each wall increasing to the velocity				
Reactor Property	specified by VEL at a distance of BLTK from the wall. A flat (constant) velocity					
	Parameters	Optional/Reqd.	Units	Examples		
	Boundary-layer thickness	Required	cm	BLTK 0.05		
	Keyword Usage Optional keyword. By default, the boundary-layer thickness is set to 0 and a full parabolic velocity is assumed.					
	Reactor Models	Cylindrical Shear Flow Reactor				
		• Planar Shear F	low Reactor			
BP- WR Reactor Property	RF bias power at a specific is estimated as this power calculated in the plasmaspecifies an applied bias energy gain calculated from power deposition to the Homogeneous 0-D Reactives	r divided by the t reactor model. Fo of 200 W to the mo om the sheath mo electrons (unless	otal ion curre r example, "BF naterial bounc odel results in ELSH is also sp	nt to that material as PWR material 200" dary, <i>material1</i> . The ion a reduced effective pecified), as described in		
	Parameters	Optional/Regd.	Units	Examples		
	Material name	Optional		BPWR material1 200 1		
		If there is no material name than the multiplier applies to all materials.				
	RF bias power	Required	watts	BPWR 200		
	Reactor number (PSR clusters only)	Optional		BPWR material1 200 1		

Voyaged	Definition			
Keyword	Definition	T -	<u> </u>	1
		If no number is given, the profile described by the first two values is assumed to apply to all reactors		
		in a cluster.		
	Keyword Usage		rd. By default,	the RF bias power is set
	Reactor Models	Closed PlasmaPlasma PSRPlasma Plug F		
BULK Reactor	The estimated or initial I species in bulk phases the the estimated activity of	nat are being etch	ed. For examp	le, BULK Ga(d) 1.0 assigns
Property	Parameters	Optional/Reqd.	Units	Examples
	Bulk species name	Required		BULK Ga(d) 1.0
	Bulk activity	Required		BULK Ga(d) 1.0
	Keyword Usage	for bulk species. bulk species act	By default, th ivities are 0.0.	ctivity should be specified e initial or estimated
	Reactor Models	Closed Homog	geneous Batch	n Reactor
		Closed Plasma	Reactor	
		Cylindrical She	ear Flow React	or
		Honeycomb R	eactor	
		Perfectly Stirre	ed Reactor (PS	R)
		• Planar Shear F	low Reactor	
		 Plasma Plug F 	low Reactor	
		 Plasma PSR 		
		• Plug Flow Rea	ctor	

Definition					
	Rotating Disk	CVD Reacto	r		
	Charmatian Fl	CVD D	-4		
	Stagnation Fi	ow CVD Rea	ctor		
Notes	The sum of al	l estimated l	oulk phase activities	s for each	
	•	•	•		
	,			g message	
	will be printe	d in the diag	nostic output.		
	See also: ETCH keyword.				
	 Formerly ACT keyword for some reactor models in previous ANSYS Chemkin-Pro versions. 				
Indicates a burner-stal	bilized flame problem type, with specified inlet flow rates.				
Keyword Usage					
Reactor Models	Premixed Laminar Burner-stabilized Flame				
Notes	The problem-	type can be	changed for a resta	rt run.	
	See also FREE	•			
	<u> </u>				
function profile that w burned mass fractions	rill pass these three . By default, this and	crank angle gle marks wh	s at their correspor nen half of the orig	iding inal mass	
Parameters	Optional/Reqd.	Units	Examples		
Crankangle at 50% mass burned	Required	degree	CAAC 8.1		
Keyword Usage	Optional keywo	ord.	l		
Reactor Models	SI Engine Zor	nal Simulator			
	•				
crank angle for 1070 at	nd 50% of total nea		,		
Parameters	Optional/Reqd.		Examples		
Parameters Percentage of total	Optional/Reqd.	Units percent	Examples		
Parameters Percentage of total heat release	Optional/Reqd. Required	Units percent ord.	Examples		
Parameters Percentage of total heat release Keyword Usage	Optional/Reqd. Required Optional keywo	Units percent ord.	Examples CAATQ 90		
Parameters Percentage of total heat release Keyword Usage	Optional/Reqd. Required Optional keywo	Units percent ord. ne CCI Engine S	Examples CAATQ 90 imulator		
Parameters Percentage of total heat release Keyword Usage	Optional/Reqd. Required Optional keywo IC HCCI Engin Multi-Zone H SI Engine Zon	percent ord. ne CCI Engine S nal Simulator	Examples CAATQ 90 imulator	default.	
	Indicates a burner-stalk Keyword Usage Reactor Models Notes The crank angle at 50% This is one of the three function profile that we burned mass fractions is burned. All three crank angle at 50% mass burned Keyword Usage Reactor Models Calculates the crank as	• Rotating Disk • Stagnation FI Notes • The sum of all bulk phase n they will be n will be printe • See also: ETCH • Formerly ACT previous ANS Indicates a burner-stabilized flame proble Keyword Usage Required keyword Reactor Models • Premixed Lan Notes • The problem- • See also FREE The crank angle at 50% mass burned and This is one of the three crank angle paran function profile that will pass these three burned mass fractions. By default, this and is burned. All three crank angles, CASC, C Parameters Optional/Reqd. Crankangle at 50% Required Mass burned Keyword Usage Optional keyword Keyword Usage Optional keyword Reactor Models • SI Engine Zor Calculates the crank angle for the specifie	Notes The sum of all estimated bulk phase n should equathey will be normalized to will be printed in the diagnormal should be printed by the diagnormal should be pr	Rotating Disk CVD Reactor Stagnation Flow CVD Reactor The sum of all estimated bulk phase activities bulk phase n should equal one. If they do not they will be normalized to one, and a warning will be printed in the diagnostic output. See also: ETCH keyword. Formerly ACT keyword for some reactor mode previous ANSYS Chemkin-Pro versions. Indicates a burner-stabilized flame problem type, with specified inlet flow Keyword Usage Required keyword. Premixed Laminar Burner-stabilized Flame Notes The problem-type can be changed for a restation of the three crank angle parameters required to construct the function profile that will pass these three crank angles at their correspond burned mass fractions. By default, this angle marks when half of the origing burned. All three crank angles, CASC, CAAC, and CAEC must be provided in the problem of the provided and the provided a	

Keyword	Definition						
	angle marks when 909 CASC , CAAC , and CAB	_		l. All three crank angles,			
	Parameters	Optional/Reqd.	Units	Examples			
	Crankangle at 90% mass burned	Required	degree	CAEC 23.0			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models • SI Engine Zonal Simulator						
CARR Reactor Property	Specify the named spe species in calculating non-dimensionalizatio	binary diffusion coe	fficients for nary diffusio				
rioperty	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Optional		CARR H2			
	Species number	Optional		CARR 3			
	Keyword Usage	Optional keyword. The default is to use the gas species with the largest mole fraction (from the XBTH input) in the bath-gas composition. If the gas-phase bath-gas composition is not specified, the default is to use the first species in the mechanism.					
		· ·	Reactor Models • Mechanism Analyzer				
CASC	The crank angle at 109	• Mechanism A % mass burned. This	is one of th				
	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100	• Mechanism A % mass burned. This construct the Wiek their corresponding % of the original ma	is one of the contraction burned masses is burned	ne three crank angle profile that will pass these as fractions. By default, this l. All three crank angles,			
	The crank angle at 109 parameters required to three crank angles at t	• Mechanism A % mass burned. This construct the Wiek their corresponding % of the original ma EC must be provided	is one of the contraction burned masses is burned	profile that will pass these as fractions. By default, this l. All three crank angles,			
CASC Output	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAR	• Mechanism A % mass burned. This construct the Wiek their corresponding % of the original ma	is one of the second of the se	profile that will pass these ss fractions. By default, this			
	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAE Parameters Crankangle at 10%	• Mechanism A % mass burned. This c construct the Wiek their corresponding % of the original ma EC must be provided Optional/Reqd.	is one of the function burned mass is burned d. Units degree	profile that will pass these ss fractions. By default, this l. All three crank angles, Examples			
	The crank angle at 109 parameters required to three crank angles at 1 angle marks when 109 CASC, CAAC, and CAE Parameters Crankangle at 10% mass burned	• Mechanism A % mass burned. This c construct the Wiek their corresponding % of the original ma EC must be provided Optional/Reqd. Required	is one of the function burned mass is burned d. Units degree	profile that will pass these is fractions. By default, this is in All three crank angles, Examples CASC -15.4			
	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAE Parameters Crankangle at 10% mass burned Keyword Usage Reactor Models Include conduction th keyword requires specionly if the disk temper	Mechanism A mass burned. This construct the Wieksheir corresponding of the original mass be provided. Optional/Reqd. Required Optional keywo SI Engine Zon rough the substrate diffication of a substrate rature is being calculated.	is one of the perfunction burned mass is burned d. Units degree rd. al Simulator in the energate thickness ilated from a	profile that will pass these is fractions. By default, this is in three crank angles, Examples CASC -15.4 gy balance. Inclusion of this is (CNDX). This value is used			
Output CD- CT Reactor	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAE Parameters Crankangle at 10% mass burned Keyword Usage Reactor Models Include conduction th keyword requires specionly if the disk temper	• Mechanism A % mass burned. This construct the Wiek cheir corresponding % of the original ma EC must be provided Optional/Reqd. Required Optional keywo • SI Engine Zon rough the substrate cification of a substrate rature is being calculated. DB . See Equation 14	is one of the perfunction burned mass is burned d. Units degree rd. al Simulator in the energate thickness lated from a 4.18 of the Cord.	profile that will pass these is fractions. By default, this is in three crank angles, Examples CASC -15.4 gy balance. Inclusion of this is (CNDX). This value is used an energy balance by			
Output CD- CT Reactor	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAR Parameters Crankangle at 10% mass burned Keyword Usage Reactor Models Include conduction th keyword requires specially if the disk temper including keyword RA.	Mechanism A mass burned. This construct the Wieksheir corresponding for the original mass be provided Optional/Reqd. Required Optional keywo SI Engine Zon rough the substrate iffication of a substrate rature is being calcuded by the substrate of the s	is one of the perfunction burned mass is burned d. Units degree rd. al Simulator in the energate thickness lated from a 4.18 of the Cord.	profile that will pass these is fractions. By default, this is in All three crank angles, Examples CASC -15.4 gy balance. Inclusion of this is (CNDX). This value is used an energy balance by themkin-Pro Theory Manual is included in the conduction through the			
Output CD- CT Reactor	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAR Parameters Crankangle at 10% mass burned Keyword Usage Reactor Models Include conduction th keyword requires specially if the disk temper including keyword RA. Keyword Usage Keyword Usage	Mechanism A mass burned. This construct the Wiek their corresponding of the original mass be provided. Optional/Reqd. Required Optional keywo SI Engine Zon rough the substrate diffication of a substrate is being calculated. Optional keywo substrate is not	is one of the perfunction burned mass is burned d. Units degree rd. al Simulator in the energate thickness lated from a 4.18 of the Cord. By defaured included. CVD Reactor in the energate thickness lated from a 4.18 of the Cord. By defaured included.	profile that will pass these is fractions. By default, this is in All three crank angles, Examples CASC -15.4 gy balance. Inclusion of this is (CNDX). This value is used an energy balance by themkin-Pro Theory Manual lt, conduction through the in the interpretation is the interpretation of the interpretation in the interpretation is the interpretation in the interpretation in the interpretation is the interpretation in the interpreta			
Output CD- CT Reactor	The crank angle at 100 parameters required to three crank angles at 1 angle marks when 100 CASC, CAAC, and CAR Parameters Crankangle at 10% mass burned Keyword Usage Reactor Models Include conduction th keyword requires specially if the disk temper including keyword RA. Keyword Usage Keyword Usage	Mechanism A mass burned. This construct the Wieksheir corresponding of the original mass be provided. Optional/Reqd. Required Optional keywo • SI Engine Zon rough the substrate diffication of a substrate diffication of a substrature is being calculated by the substrate is not to the substrate is not the substrate is not to the substrate is not the substr	is one of the perfunction burned mass is burned d. Units degree rd. al Simulator in the energate thickness lated from a 4.18 of the Cord. By defau included. CVD Reactor ow CVD Reactor ow CVD Reactor ow CVD Reactor of the cord.	profile that will pass these is fractions. By default, this is in All three crank angles, Examples CASC -15.4 gy balance. Inclusion of this is (CNDX). This value is used an energy balance by themkin-Pro Theory Manual is in the inclusion through the inclusion th			

Keyword	Definition						
	Keyword Usage		d. By defa	ult, windward differencing			
		is used.	Diffusion or Premixed Opposed-flow Flame				
	Reactor Models	Diffusion or Pr	emixed O _l	oposed-flow Flame			
		Premixed Lam	inar Burne	r-stabilized Flame			
		 Premixed Lam 	inar Flame	-speed Calculation			
CFL Reactor	The Courant-Friedrichs parameter limits the fr conditions per time ste	action of particles w		onvective process; this perties can be set to the inlet			
Property	Parameters	Optional/Reqd.	Units	Examples			
	CFL number	Required		CFL 1.0			
	Keyword Usage	Optional keywor	d. By defa	ult, the CFL number is 0.5.			
	Reactor Models	Closed Partiall	y Stirred R	eactor (PaSR)			
	Partially Stirred Reactor (PaSR)			(PaSR)			
СНЕМ	Specifies that gas-phas	se chemistry will be	included i	n the calculations.			
Reactor Property		the previous cale the default is to calculation only.	Optional keyword. This option is used to reactivate the chemical kinetics if the NOCH option was in effect for the previous calculation for CVD Reactors. For PaSRs, the default is to neglect chemistry and do a mixing calculation only.				
	Reactor Models	Partially StirreRotating Disk	 Closed Partially Stirred Reactor (PaSR) Partially Stirred Reactor (PaSR) Rotating Disk CVD Reactor Stagnation Flow CVD Reactor 				
CJ	Chapman-Jouguet dete			d T contain the unburned te.			
Problem Type	Keyword Usage	Optional keywor problem-type ke		r must include exactly one			
	Reactor Models	 Chemical and 	Phase Equ	ilibrium Calculations			
CLSC Reactor Property	(reduce) the particle no burnout model and ha	umber density. This is no effect on partic	oarameter :le formati	ation process starts to affect is only used by the particle on and growth. The default m class change due to surface			
	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Required		CLSC CARBON 40			
	Critical particle class	Required		CLSC CARBON 40			

Keyword	Definition						
	Keyword Usage	'	us the maxim	It value is the minimum um class change due to			
	Reactor Models	Closed Homo	geneous Bato	h Reactor			
		Closed Plasma	a Reactor				
		Cylindrical Shaper	ear Flow Read	ctor			
		Honeycomb N	Monolith Read	ctor			
		IC HCCI Engin	e				
		Perfectly Stirred Reactor (PSR)					
		Planar Shear Flow Reactor					
	Plasma PSR						
		Plasma Plug F	low Reactor				
Plug Flow Reactor							
		SI Engine Zonal Simulator					
CLSE Flag indicating the reactor is a closed system, i.e., n			em, i.e., mass	ass flow rate is zero.			
Reactor	Keyword Usage	Required Keyword.					
Property	Reactor Models	Closed Partially Stirred Reactor (PaSR)					
CLSM Reactor Property	only used by the parti	cle burnout model a	rticle class that can exist in the system. This parameter is e burnout model and has no effect on particle formation value is the smallest inception class defined by the				
	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Required		CLSM CARBON 32			
	Minimum particle class	Required		CLSM CARBON 32			
	Keyword Usage		Optional keyword. The default value is the smallest inception class defined by the nucleation reactions.				
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Honeycomb Monolith Reactor 					
		IC HCCl Engin	e				
		Perfectly Stirre	ed Reactor (P	SR)			

Keyword	Definition	Definition				
		Planar Shear F	low Reacto	or		
		 Plasma PSR 				
		Plasma Plug Flow Reactor				
		Plug Flow Reactor				
		SI Engine Zonal Simulator				
CMIX	The centralling param			d the IEM models for a PaSR.		
CIVIIX			1			
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Time ratio for scalar mixing (Equation 9.1 of the Chemkin-Pro Theory Manual)	Required		CMIX 1.0		
	Keyword Usage	Required keywo	rd, unless \	WELL keyword is included.		
	Reactor Models	 Closed Partial 	Closed Partially Stirred Reactor (PaSR)			
		Partially Stirre	Partially Stirred Reactor (PaSR)			
CM- PR	Engine compression ratio. The compression ratio is defined as the maximum total volume in the cylinder (clearance volume plus swept volume) divided by the clearance volume.					
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
rioperty	Engine compression ratio	Required		CMPR 10		
	Keyword Usage	Optional keywo	Optional keyword. By default, the ratio is 15.			
	Reactor Models	IC HCCI Engin	IC HCCI Engine			
		SI Engine Zon	SI Engine Zonal Simulator			
CNDT Reactor Property	The back-side temperature of the substrate for use in calculation of conduction losses. This value is used only if the disk temperature is being calculated from an energy balance by including keywords RADB and CDCT. See Equation 14.18 of the Chemkin-Pro Theory Manual.					
	Parameters	Optional/Reqd.	Units	Examples		
	Back-side temperature	Required	K	CNDT 350.		
	Keyword Usage	Optional keywo	•	ult, the back-side		
	Reactor Models	Rotating Disk	CVD React	or		
			Rotating Disk CVD ReactorStagnation Flow CVD Reactor			

Keyword	Definition						
CNDX Reactor Property	The thickness of the substrate for calculation of conduction losses. This value is used only if the disk temperature is being calculated from an energy balance by including keywords RADB and CDCT . See Equation 14.18 of the Chemkin-Pro Theory Manual .						
	Parameters	Optional/Reqd. Units Examples					
	Substrate thickness	Required	cm	CNDX 0.03			
	Keyword Usage	Optional keywork is 0.0.	d. By defaul	t, the substrate thickness			
	Reactor Models	Rotating DiskStagnation Flo					
CNTN Reactor Property	another problem to follow solution of the previous to that provided by RST can be solved by one jo	rd causes ANSYS Chemkin-Pro to expect keywords for ow the END keyword. The following problem uses the problem as its initial guess. This capability is very similar R. However, in the case of CNTN, several related problems by submission, without having to manipulate the XML ons resulting from CNTN keywords are written sequentially e.					
	Keyword Usage	Optional keywork expected.	d. By defaul	t, no continuation is			
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor					
		Cylindrical Shear Flow ReactorHoneycomb Reactor					
		IC HCCI Engine					
		Non-reactive Gas Mixer					
		Normal Incident Shock					
		Normal Reflected Shock					
		Opposed-flow Flame Simulator					
		PSR)					
		Planar Shear F	Tanai Sircai Flow Reactor				
		Plasma Plug Flow Reactor					
		• Plasma PSR					
		• Plug Flow Rea	ctor				
		 Premixed Lam 	inar Burner-	stabilized Flame			

Keyword	word Definition					
	Premixed Laminar Flame-speed Calculation					
		Rotating Disk	CVD Reactor	Using Steady-state Solver		
		SI Engine Zon	al Simulator			
		Stagnation Flo	ow CVD React	tor Using Steady-state Solver		
CNTT	This will cause the start the end time of the last	-	ntinuation ca	Iculation to be equal to		
Reactor Property	Keyword Usage	Optional keywork continuation is	•	t, the starting time of a		
	Reactor Models	Closed Homog	geneous Bato	ch Reactor		
		Closed Plasma Reactor				
		IC HCCI Engine				
		Non-reactive Gas Mixer				
		Perfectly Stirred Reactor (PSR)				
	Plasma PSR					
		SI Engine Zon	al Simulator			
CNTX Reactor	This will cause the starting distance of the continuation calculation to be equal to the end distance of the last solution. This keyword is used for Plug Flow Reactors in place of CNTT.					
Property	Keyword Usage	Optional keyword. By default, the starting distance of a continuation is set to zero.				
	Reactor Models	Honeycomb Reactor				
		Plasma Plug Flow Reactor				
		Plug Flow Reactor				
COLR Reactor Property	rate among particles. The molecular regime (=0), collision rate in the trans	ollision formulation to be used to calculate the collision ree types of collision formulations are available: free continuum regime (=1), and transition regime (=3). The sition regime is obtained as the harmonic mean of the olecular regime and continuum regime. By default, lecular collision is used.				
	Parameters	Optional/Reqd.	Units	Examples		
	Material name	Required		COLR C(B) 1		
	Collision regime	Required		BETA C(B) 1		
	Keyword Usage	Optional keywor	•	t, the formulation for the d (0).		
	Reactor Models	Closed Homog				

Keyword	Definition					
		Closed Plasma	a Reactor			
		Cylindrical Sh	ear Flow Rea	actor		
		Honeycomb N	Honeycomb Monolith Reactor			
		IC HCCl Engin	e			
		Perfectly Stirr	ed Reactor (I	PSR)		
		Planar Shear F	low Reactor			
		Plasma PSR				
		Plasma Plug Flow Reactor				
• Plug Flow Re			actor			
SI Engine Zonal Simulator			al Simulator			
СОМР	_		used at the inlet boundary for the gas species equations composition, as specified by the REAC keywords.			
Reactor Property	Keyword Usage	Optional keyword. By default, a flux balance is solved at the inlet (see keyword FLUX).				
	Reactor Models	Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
CONC	If this keyword is used, (mole/cc) rather than r	•	will appear	in molar concentration		
Output	Keyword Usage	Optional keywo printed.	rd. By defau	lt, mole fractions are		
	Reactions	Normal Incide	Normal Incident Shock			
		Normal Reflected Shock				
COND Reactor Property	conduction losses. This calculated from an ene	vity of the substrate in SI units, for use in calculation of s value is used only if the disk temperature is being ergy balance by including keywords RADB and CDCT . See Chemkin-Pro Theory Manual .				
	Parameters	Optional/Reqd.	Units	Examples		
	Thermal conductivity	Required	W/cm K	COND 2.1		
	Keyword Usage	Optional keywo	Optional keyword. By default, the thermal conductivity			
	Reactor Models	Rotating Disk	CVD Reacto	r		
		Stagnation Flo	ow CVD Read	ctor		

Keyword	Definition					
CONP	A transient solution wi		•			
Problem	equations solved are those of a constant pressuresystem and the energy equation will be solved.					
Type	Keyword Usage	Optional keywo	•	ult, a constant pressure		
	Reactor Models	Closed Homo	geneous Ba	itch Reactor		
		Closed Plasm	a Reactor			
CONV Problem	A transient solution will be obtained with the volume held constant. The equations solved are those of a constant volume system and the energy equation will be solved. In this case, the pressure is allowed to float.					
Type	Keyword Usage	Optional keywo		ult, a constant pressure		
	Reactor Models	Closed Homo	geneous Ba	itch Reactor		
		Closed Plasm	a Reactor			
CONX Reactor	This keyword is used to specify a constant (constrained) mole fraction for a species. For example, CONX H2 0.1 will fix the fraction of hydrogen in the mixture to be 0.1.					
Property	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		CONX H2 0.1		
	Mole fraction of the species	Required	mole fraction	CONX H2 0.1		
		Optional keyword. By default, composition equilibrium is determined for all species.				
	Keyword Usage					
	Keyword Usage Reactor Models	is determined f	or all specie			
соту		• Chemical and	or all specie I Phase Equi	es.		
Problem	Reactor Models	• Chemical and	or all specie I Phase Equi	es.		
Problem	Reactor Models • A transient solution v	• Chemical and	or all specie I Phase Equi	es.		
Problem	Reactor Models • A transient solution v • temperature and	is determined for the control of the	or all specied Phase Equi	ilibrium Calculations		
COTV Problem Type	 Reactor Models A transient solution of temperature and volume held 	is determined for the control of the	or all specied Phase Equitors the the pressu	ilibrium Calculations		
Problem	Reactor Models • A transient solution of temperature and • volume held • constant at the initia	is determined for the control of the	or all specied Phase Equitors the the pressure, the pressure. By defau	re is allowed to float.		
Problem Type	Reactor Models • A transient solution of temperature and • volume held • constant at the initial Keyword Usage Reactor Models One of these CPROD in	is determined for the chemical and will be obtained with a values. In this case of the chemical summed. Optional keywood assumed. Closed Homomorputs must appear	or all specied Phase Equitors the Phase Equitors the Phase Equitors the Phase Equitors the Phase Equitors Equitors Each Each Equitors Each Each Equitors Each Equitors Each Equitors Each Equitors Each Each Each Each Each Each Each Each	re is allowed to float. ult, a constant pressure is utch Reactor mplete-combustion product		
Problem	Reactor Models • A transient solution of temperature and • volume held • constant at the initial Keyword Usage Reactor Models One of these CPROD in	o Chemical and will be obtained with a values. In this case Optional keywork assumed. • Closed Homo option	or all specied Phase Equitors the the pressure ord. By defauto order to be a species or a specie	re is allowed to float. ult, a constant pressure is		

Inlet stream name (PSRs only) If there is no stream name than the product species will be used for all defined inlet streams. Species name Required A CPROD H2OCPROD CO2 Keyword Usage Required keyword when EQUI option is used for an inlet stream or for the initial conditions in a reactor. The specified group of complete-combustion product species must include all of the elements contained in the fuel and oxidizer species. The products must also be "saturated" species. See the ANSYS Chemkin-Pro Tutorials Manual for more information. Reactor Models • Chemical and Phase Equilibrium Calculations • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Cylindrical Shear Flow Reactor • Diffusion or Premixed Opposed-flow Flame • Honeycomb Reactor • IC HCCI Engine • Non-reactive Gas Mixer • Partially Stirred Reactor (PSR)	Keyword	Definition				
If there is no stream name than the product species will be used for all defined inlet streams. Species name Required CPROD H2OCPROD CO2 Keyword Usage Required keyword when EQUI option is used for an inlet stream or for the initial conditions in a reactor. The specified group of complete-combustion product species must include all of the elements contained in the fuel and oxidizer species. The products must also be "saturated" species. See the ANSYS Chemkin-Pro Tutorials Manual for more information. Reactor Models - Chemical and Phase Equilibrium Calculations - Closed Homogeneous Batch Reactor - Closed Plasma Reactor - Closed Plasma Reactor - Diffusion or Premixed Opposed-flow Flame - Honeycomb Reactor - IC HCCI Engine - Non-reactive Gas Mixer - Partially Stirred Reactor (PaSR)			Optional		CPROD mixture1 CO2	
Keyword Usage Required keyword when EQUI option is used for an inlet stream or for the initial conditions in a reactor. The specified group of complete-combustion product species must include all of the elements contained in the fuel and oxidizer species. The products must also be "saturated" species. See the ANSYS Chemkin-Pro Tutorials Manual for more information. Reactor Models • Chemical and Phase Equilibrium Calculations • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Cylindrical Shear Flow Reactor • Diffusion or Premixed Opposed-flow Flame • Honeycomb Reactor • IC HCCI Engine • Non-reactive Gas Mixer • Partially Stirred Reactor (PaSR)		(PSRs only)	no stream name than the product species will be used for all defined inlet		CPROD mixture1 H2O	
inlet stream or for the initial conditions in a reactor. The specified group of complete-combustion product species must include all of the elements contained in the fuel and oxidizer species. The products must also be "saturated" species. See the ANSYS Chemkin-Pro Tutorials Manual for more information. Reactor Models • Chemical and Phase Equilibrium Calculations • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Cylindrical Shear Flow Reactor • Diffusion or Premixed Opposed-flow Flame • Honeycomb Reactor • IC HCCI Engine • Non-reactive Gas Mixer • Partially Stirred Reactor (PaSR)		Species name	Required			
 Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Non-reactive Gas Mixer Partially Stirred Reactor (PaSR) 		Keyword Usage	inlet stream or for The specified groups species must ince the fuel and oxion be "saturated" sp	or the initial coup of comple lude all of the dizer species. I ecies. See the	onditions in a reactor. ete-combustion product e elements contained in The products must also ANSYS Chemkin-Pro	
Planar Shear Flow Reactor Plasma Plug Flow Reactor Plasma PSR		neactor models	 Closed Homog Closed Plasma Cylindrical She Diffusion or Pr Honeycomb Re IC HCCI Engine Non-reactive C Partially Stirre Perfectly Stirre Planar Shear F Plasma Plug Fl 	geneous Batch Reactor ear Flow React emixed Oppose eactor das Mixer d Reactor (Pased Reactor (Psicol)	Reactor or sed-flow Flame	

Keyword	word Definition						
•		Premixed Lam	ninar Burne	er-stabilized Flame			
		 Premixed Lam 	ninar Flame	e-speed Calculation			
		 Rotating Disk 	CVD React	or			
		Stagnation Floring	ow CVD Re	actor			
	Notes	The CDDOD Is		ust be showed as a set wet			
	Notes	The CPROD keelindividually for	•	ust be changed as a set, not run.			
		The CPROD keelindividually for		ust be changed as a set, not tion run.			
CTOL	for Partially Stirred Rea	actors. The required	parameter	ed using a transient solver sets the normalized slope			
Reactor Property	of mean density change in time $(d\overline{\rho}/dt)$. The default number of time points used to determine the slope is 100; this value can be changed with the keyword NCFIT.						
	Parameters	Optional/Reqd.	Units	Examples			
	Normalized slope of mean density	Required		CTOL 1.0E-3			
	Keyword Usage	Optional keywo		ult, the program does not			
	Reactor Models	Closed Partial	Closed Partially Stirred Reactor (PaSR)				
		Partially Stirre	Partially Stirred Reactor (PaSR)				
CTOL				ed by a transient solver for			
Solver	CVD Reactors. The steady state is reached when the normalized absolute values of all time derivatives are less than CTOL.						
	Parameters	Optional/Reqd.	Units	Examples			
	Steady-state criterion	Required		CTOL 1.0E-2			
	Keyword Usage	Optional keywo	rd. By defa	ult, the criterion is 1.0E-4.			
	Reactor Models	Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flo	Stagnation Flow CVD Reactor				
CURL	1 -	ne modified Curl's model will be used to simulate the nin the computational particle.					
Reactor Property	Keyword Usage	Optional keywo assumed.	rd. By defa	ult, a well mixed model is			
	Reactor Models	Closed Partial	ly Stirred R	leactor (PaSR)			
		 Partially Stirre 	d Reactor	(Q2cQ)			

Keyword	Definition							
CURV Solver	Parameter that controls the degree of mesh adaptation based on the second derivative, or curvature, in the solution. A reasonable value is usually between about 0.1 and 1.0, where no adaptation based on curvature is specified with 1.0.							
	Parameters	Optional/Reqd.	Units	Examples				
	Normalized curvature parameter	Required CURV 0.7						
	Keyword Usage	Optional keywo is set to 0.5.	rd. By defau	ılt, the curvature parameter				
	Reactor Models	Diffusion or P	remixed Op	posed-flow Flame				
		Premixed Lam	ninar Burner	-stabilized Flame				
		Premixed Lan	ninar Flame-	speed Calculation				
		Rotating Disk	Rotating Disk CVD Reactor					
		Stagnation Flow CVD Reactor						
	Notes	This keyword can be changed for a restart run.						
		 Steady-state 1-D Solution Methods of the Chemkin-Pro Theory Manual for more information. 						
CY-	The cylinder head are	a to bore-area ratio.						
BAR	Parameters	Optional/Reqd. Units Examples						
Reactor Property	Ratio of cylinder head area to bore area.	Required	None	CYBAR 1.2				
	Keyword Usage	Optional keyword. Default = 1.0.						
	Reactor Models	IC HCCl Engin	IC HCCI Engine					
		Multi-zone H	Multi-zone HCCI Engine					
		SI Engine Zon	SI Engine Zonal Simulator					
	Notes	CYBAR should	• CYBAR should be > 1.0.					
DASP	Flag indicating the DA	ASPK solver is used t	o integrate	the transient equations.				
Solver	Keyword Usage	Optional keywo used.	Optional keyword. By default, the DASPK solver will be					
	Reactor Models	Closed Partial	ly Stirred Re	eactor (PaSR)				
		Partially Stirre	d Reactor (F	PaSR)				
DEG0	The starting crank and	gle for the transient	IC HCCI Eng	jine model, in degrees.				
	The state of the s							

		after release 19.0					
Keyword	Definition						
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Crank angle	Required	degrees	DEG0 45			
	Keyword Usage	Optional keywordegrees.					
	Reactor Models	IC HCCI Engine	IC HCCI Engine				
		SI Engine Zona	al Simulator				
DE- GE			for the IC engine simulation. Normally, this is the same naust Valve Open (EVO).				
Output	Parameters	Optional/Reqd.	Units	Examples			
очерис	Crankangle at end of simulation	Required	degree	CAAC 120.5			
	Keyword Usage	Optional keywor	rd.				
	Reactor Models	IC HCCl Engine	IC HCCI Engine				
		Multi-zone HC	Multi-zone HCCI Engine				
		SI Engine Zona	SI Engine Zonal Simulator				
DELT Solver		ic text output file, for the written to the diagnostic I by DELT.					
	Parameters	Optional/Reqd.	Units	Examples			
	Time interval	Required	Required sec DELT 1.0E-4				
	Aurora Usage		Optional keyword. By default, the value of the maximum solver timestep (STPT) is used.				
	Spin Usage		Optional keyword. By default, this is a required keyword for a transient calculation.				
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor				
		Closed Plasma	Closed Plasma Reactor				
		IC HCCl Engine	IC HCCI Engine				
		Non-reactive (Non-reactive Gas Mixer				
		Normal Incide	Normal Incident Shock				
		Normal Reflec	Normal Reflected Shock				
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR					
		 Plasma PSR 					
		Plasma PSRRotating Disk	CVD Reactor				

Keyword	Definition							
		SI Engine Zon	al Simulator					
	Notes	Backwards cor	mpatible with	DT from previous versions.				
DFAC Solver		de the time step in the steady-state solver, <i>Twopnt's</i> , time ten necessary, i.e., when the current time step does not						
	Parameters	Optional/Reqd.	Units	Examples				
	Division factor	Required		DFAC 1.5				
	Keyword Usage	Optional keywor to 2.2.	rd. By default,	the division factor is set				
	Reactor Models	Closed Plasma	Reactor					
		Diffusion or Pr	remixed Oppo	sed-flow Flame				
		Non-reactive 0	Gas Mixer					
		Perfectly Stirre	ed Reactor (PS	R)				
		• Plasma PSR	Plasma PSR					
		Premixed Laminar Burner-stabilized Flame						
		Premixed Laminar Flame-speed Calculation						
		Rotating Disk CVD Reactor						
		Stagnation Flow CVD Reactor						
DIA	Shock-tube diameter, us	sed for boundary la	yer correction	ns.				
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Tube diameter	Required	cm	DIA 2.0				
	Keyword Usage	Optional keyword. By default, the tube diameter is set to 1.0.						
	Reactor Models	Normal Incident Shock						
DIAM	1		ulic diameter, where the diameter is constant along the AREAF, AFLO and user subroutine GEOM.					
Reactor Property	Parameters	Optional/Reqd.	Units	Examples				
	Tube diameter	Required cm DIAM 5.3						
	Keyword Usage	Optional keyword. The user must specify DIAM, DPRO, AREAF, or AFLO, unless the GEOM user routine is to be used.						
	Reactor Models	Honeycomb R	eactor					
		• Plasma Plug F	low Reactor					
		• Plug Flow Rea	ctor					

Keyword	Definition						
DIST XMLI	This keyword is valid with the XMLI option, when the XML Solution File that is used for initialization or restart contains data as a function of axial distance (e.g. from Shear-layer Flow or Plug Flow). In this case, select the values to use in initialization or restart as those corresponding to the distance that is closest to (greater than or equal to) the specified distance.						
	Parameters	Optional/Reqd.	Units	Examples			
	Axial distance	Required	•				
	Keyword Usage		Optional keyword. By default, uses the data from the last axial distance found in the XML Solution File.				
	Reactor Models	 Closed Homog Closed Plasma Cylindrical Sha Diffusion or Properties Honeycomb Resident McHanism Are Mechanism Are Non-reactive Or Normal Incider Normal Reflect Perfectly Stirre Planar Shear From Plasma Plug From Plasma PSR 	 Chemical and Phase Equilibrium Calculations Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor Plasma Plug Flow Reactor 				
				speed Calculation			
		Rotating Disk	CVD Reacto	or			
		SI Engine Zon					
		Stagnation Flo	ow CVD Rea	ctor			
DPRO	Hydraulic diameter or t AREAF, AFLO, and user		function of	distance. See also DIAM,			

Keyword	Definition	Definition					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property Profiles	Distance from inlet	Required	cm	DPRO 0.0 1.0			
Tonics	Hydraulic diameter	Required	cm	DPRO 0.0 1.0			
	Keyword Usage		Optional keyword. The user must enter DIAM, DPRO, AREAF, or AFLO, unless user subroutine GEOM is to be used.				
	Reactor Models	Honeycomb R	leactor				
		• Plasma Plug F	low Reactor				
		 Plug Flow Rea 	Plug Flow Reactor				
DT	The time step size of th	ne Monte Carlo simulation.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Time step	Required	sec	DT 1.0E-4			
	Keyword Usage	Required keywo	Required keyword.				
	Reactor Models		Closed Partially Stirred Reactor (PaSR)Partially Stirred Reactor (PaSR)				
DT0	The initial time step siz	e used by the trans	used by the transient solver.				
Solver	Parameters	Optional/Reqd.	Units	Examples			
301161	Initial time step size	Required	sec	DT0 1.0E-4			
	Keyword Usage	Optional keywo is set to 1.0E-6.	rd. By default,	the initial time step size			
	Reactor Models	Partially Stirre	 Closed Partially Stirred Reactor (PaSR) Partially Stirred Reactor (PaSR) Rotating Disk CVD Reactor 				
		Stagnation Flo	Stagnation Flow CVD Reactor				
	Notes	Backwards co	Backwards compatible with H0 keyword.				
DTDEG Solver		IC HCCI Engine mo	del, in degree	ay be taken by the DASPK s. If DTDEG is specified, FPT.			
	Parameters	Optional/Reqd.	Units	Examples			
	Time step	Required	degrees	DTDEG 30			
	Keyword Usage	Optional keywo	rd. By default,	this time step is value			
	Reactor Models		IC HCCI Engine				

Keyword	Definition	nition				
,	Notes	See also: STPT	kevword.			
DTIGN Output	Temperature threshold us printing of ignition delay temperature plus this valuequation with the transie	times. The ignitio ue. Only applicabl	n temperatur	e will be the initial		
	Parameters	Optional/Reqd.	Units	Examples		
	Ignition temperature delta	Required	К	DTIGN 200		
	Keyword Usage	Optional keywor	d. See also TL	IM .		
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor Honeycomb Monolith Reactor IC HCCI Engine Perfectly Stirred Reactor (PSR) Plasma PSR Plasma Plug Flow Reactor Plug Flow Reactor 				
DTMN	Minimum time step tolera			Twopnt 's time stepping		
Solver	Parameters	Optional/Reqd.	Examples			
	Minimum time step	Required	sec	DTMN 1.E-9		
	Keyword Usage	Optional keywor	d. By default,	the minimum time step		
	Reactor Models	 Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Non-reactive Gas Mixer Perfectly Stirred Reactor (PSR) Plasma PSR Rotating Disk CVD Reactor Stagnation Flow CVD Reactor Planar Shear Flow Reactor 				

17	- C :::					
Keyword	Definition	D		Luc Lei		
		 Premixed Lam 	inar Burner-st	abilized Flame		
		Premixed Lam	inar Flame-sp	eed Calculation		
DTMX	Maximum time step allow value is reached, the time	•		algorithm. When this reased and time stepping		
(steady-sta	will continue with a fixed		J	J. S.		
Solver	Parameters	Optional/Reqd.	Units	Examples		
	Maximum time step	Required	sec	DTMX 1.E-3		
	Keyword Usage	Optional keywor is 1.E-2.	d. By default,	the maximum time step		
	Reactor Models	 Cylindrical She 	ear Flow React	or		
		• Diffusion or Pr	emixed Oppo	sed-flow Flame		
		Non-reactive 0	Gas Mixer			
		Perfectly Stirre	ed Reactor (PS	R)		
		• Planar Shear F	low Reactor			
		Plasma PSR				
		Premixed Laminar Burner-stabilized Flame				
		Premixed Laminar Flame-speed Calculation				
		Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor				
DTMX (transient)	Maximum time step used determines the largest tir thereby controls the reso	ne-step the transi	ent solver car	n take at one time and		
Solver	Parameters	Optional/Reqd.	Units	Examples		
	Maximum time step	Required	sec	DTMX 1.E-3		
	Keyword Usage	Optional keywor is 1.E-4.	d. By default,	the maximum time step		
	Reactor Models	Closed Partiall	y Stirred Reac	tor (PaSR)		
		Partially Stirred Reactor (PaSR)				
DTSV Output	Controls the time interva XMLdata.zip). Note that the File is equal to the value	ne number of time	e points writte	en to the XML Solution		
or Calvar	Parameters	Optional/Reqd.	Units	Examples		
Solver	Time interval for solution saving	Required	sec	DTSV 1.0E-5		

Keyword	Definition						
	Keyword Usage	Optional keywor keyword is used.	•	lt, the value of the STPT			
	Reactor Models	Closed Homog	geneous Bat	ch Reactor			
		 Closed Plasma 	Reactor				
		• IC HCCI Engine	9				
		Non-reactive 0	Gas Mixer				
		Perfectly Stirre	ed Reactor (I	PSR)			
		 Plasma PSR 	Plasma PSR				
		 Closed Partially Stirred Reactor (PaSR) Partially Stirred Reactor (PaSR) 					
		SI Engine Zonal Simulator					
DX	Distance interval for printing the solution to the diagnostic outpu			nostic output file.			
Output or Solver	Parameters	Optional/Reqd.	Units	Examples			
	Distance interval	Required	cm	DX 0.25.			
	Keyword Usage	the value of the	Optional keyword. By default, the distance interval is the value of the DXMX is used, or XEND divided by 100 if DXMX is not available.				
	Reactor Models	Cylindrical She	Cylindrical Shear Flow Reactor				
		Honeycomb R	Honeycomb Reactor				
		Planar Shear Flow Reactor					
		 Plasma Plug Fl 	Plasma Plug Flow Reactor				
		• Plug Flow Read	Plug Flow Reactor				
DXMX Solver	DXMX determines the	largest step that the	solver can				
JOIVEI	also DX and DXSV.	esolution for interpol	iation of spe	ecified spatial-profiles. See			
	Parameters	Optional/Reqd.	Units	Examples			
	Distance interval	Required	cm	DXMX 0.1			
	Keyword Usage	specified, then D values. If neither	XMX is set DX nor DX	lt, If either DX or DXSV are to the smallest of these SV are specified, then DXMX divided by 100.			
		is set to the value of XEND divided by 100. • Cylindrical Shear Flow Reactor					
	Reactor Models	Cylindrical Shear Flow Reactor					

Keyword	Definition					
Reyword	Delinition	Planar Shear F	low Posetor			
		- rialial Shear F	iow reactor			
		Plasma Plug Fl	low Reactor			
		• Plug Flow Rea	ctor			
DXSV Solver	Controls the distance in XMLdata.zip). The numb-	er of points writter	n to the XML	he XML Solution File (e.g., Solution File is equal to		
	Parameters	Optional/Reqd.	Units	Examples		
	Distance interval	Required	cm	DXSV 0.1		
	Keyword Usage	Optional keywor	d. By default,	the value of DXMX is		
	Reactor Models	 Cylindrical Shear Flow Reactor Honeycomb Reactor Planar Shear Flow Reactor Plasma Plug Flow Reactor Plug Flow Reactor 				
EGRR	Specifies the EGR rate for reactor.	or an inlet stream o	or for the initi	al conditions in a closed		
Reactor or	Parameters	Optional/Reqd.	Units	Examples		
Inlet	EGR ratio	Optional	None	EGRR 0.2		
Property	Keyword Usage	Optional keyword. EGR rate can be used in any reactor model as a feature on input or initial composition panels. EGR specification can be activated when Equivalence ratio option is used to specify inlet or initial composition. Leaving the EGR Rate box empty will use no EGR, but use diluants if specified on the Added Species tab. When EGR Rate is specified, the composition on the Added Species tab is used as the EGR composition. The sum of all the fractions on the Added Species tab should be 1.0 when EGR Rate is specified. If the sum is less than 1, Chemkin will automatically normalize the EGR composition.				
	Reactor Models	 Closed Homogeneous Batch Reactor IC HCCI Engine Perfectly Stirred Reactor (PSR) Honeycomb Reactor Plasma Plug Flow Reactor Plasma PSR 				

Keyword	Definition					
		Plug Flow Rea	actor			
ELSH Reactor Property	The energy that the io voltage, which can be the value of the multiplion energy gain of $5kT$ energy gain for the ior	ns gain in the sheat described as a mult blier. For example, "E $^{\prime\prime}_e$ as it crossed the as results in a reduc	th is typical iplier of kT in the second sec	on lost at a specified material. ly assumed to be the sheath T_e . The value given here is all 5.0" would result in an or the material material T_e . This is power deposition to the material T_e .		
	Parameters	Optional/Reqd.	Units	Examples		
	Material name	Optional If there is no material name then the multiplier applies to all materials.		ELSH material1 5.0 1		
	Multiplier value	Required		ELSH 5.0		
	Reactor number (PSR clusters only)	Optional If no number is given, values are assumed to apply to all reactors in a cluster.		ELSH material1 5.0 1		
	Keyword Usage	Optional keywo 0.0, when no EL	•	ult, the multiplier is set to d is included.		
	Reactor Models	Closed Plasma ReactorPlasma Plug Flow ReactorPlasma PSR				
EMIS Reactor	The emissivity of the d calculated from an ene Equation 14.18 of the 0	ergy balance by incl	uding keyw	ne disk temperature is being vord RADB . See		
Property	Parameters	Optional/Reqd.	Units	Examples		
	Emissivity	Required		EMIS 0.9		

Keyword	Definition						
Keyword		Ontional kovavo	ud Du dafault	the emississitus is 0.05			
	Keyword Usage	· · · · · · · · · · · · · · · · · · ·		the emissivity is 0.85.			
	Reactor Models	Rotating Disk	CVD Reactor				
		Stagnation Flo	ow CVD Reacto	or			
EM-	This keyword provides	the value of the mo	odel paramete	er C _{part} for computing			
PAR Reactor	the overall emissivity of the Chemkin-Pro Theory	-	e cloud as giv	en in Equation 12.21 in			
Property	Parameters	Optional/Reqd.	Units	Examples			
. ,	Material name	Required		EMPAR soot 700			
	Model coefficient	Required	m ⁻¹ K ⁻¹	EMPAR soot 700			
	Keyword Usage	Optional keywor	rd. The default	value is 700 (m ⁻¹ K ⁻¹).			
	Reactor Models	Diffusion or Pr	remixed Oppo	sed-flow Flame			
		Burner-stabiliz	Burner-stabilized Pre-mixed Flame				
		Premixed Lam	inar Flame-sp	eed Calculation			
Reactor Property Profiles	to calculate a radiation-loss term in the gas energy equation. The radiation is calculated between the gas and the disk (using the gas temperature) and between the gas and the inlet (using the inlet temperature). The EMSG keyword provides temperature, emissivity pairs for the gas mixture.						
	Parameters	Optional/Reqd.	Units	Examples			
	Temperature	Required	K	EMSG 2000 0.03			
	Emissivity	Required		EMSG 2000 0.03			
	Keyword Usage	Optional keyword included in the	•	no gas radiation loss is on.			
	Reactor Models		Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
END Reactor	, ,	•		ven reactor description. i jobs are indicated using			
Property	Keyword Usage	Required keywo	rd.				
	Reactor Models	Chemical and	Phase Equilib	rium Calculations			
		Closed Homog	geneous Batch	n Reactor			
		Closed Partiall	ly Stirred Reac	tor (PaSR)			
		Closed Plasma	Reactor				
		Cylindrical She					
		Diffusion or Pr	remixed Oppo	sed-flow Flame			

Keyword	Definition	after relea				
		Honeycomb R	eactor			
		IC HCCl Engine	e			
		Mechanism Analyzer				
		Non-reactive 0	Gas Mixer			
		Normal Incide	nt Shock			
		Normal Reflect	ted Shock			
		 Partially Stirred 	d Reactor (Pas	SR)		
		Perfectly Stirre	ed Reactor (PS	SR)		
		Planar Shear Flow Reactor				
		Plasma Plug Flow Reactor				
		Plasma PSR				
		Plug Flow Reactor				
		Premixed Laminar Burner-stabilized Flame				
				eed Calculation		
		Rotating Disk				
		SI Engine Zona				
		Stagnation Flo		or		
EN- D- TIMEMAX	decreasing values of SSD SSDR_nominal/currentSS	ne required to reach steady-state normally increases with SSDR, the integration time is increased by the factor at SSDR for SSDR values smaller than the nominal. The he end-time is limited to the value specified by this control.				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
Поренту	Maximum value of end time	Optional	S	ENDTIMEMAX 1.0E+05		
	Keyword Usage	Optional keywor Flamelet Genera		t value for the Diffusion		
	Reactor Models	Diffusion Flamelet Generator				
ENGE Reactor	Solve the electron energy (see ETMP), which provid temperature.	•				
Property	Parameters	Optional/Reqd.	Units	Examples		
	Reactor number (PSR clusters only)	Optional		ENGE 2		

Keyword	Definition	efinition				
		If no				
		number				
		is given,				
		values				
		are				
		assumed				
		to apply				
		to all				
		reactors				
		in a				
		cluster.				
	Keyword Usage	Optional keyword. By default, the electron energy equation is not solved.				
	Reactor Models	Closed Plasma Reactor				
		Plasma PSRPlasma Plug Flow Reactor				
	Notes	• ENGE must be PSRs.	e specified whe	en electrons are present for all		
ENGY	NGY Specifies the starting internal energy for the initial mixture.					
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Energy	Required	erg/g	ENGY 1.5E9		
	Keyword Usage	Optional keyword. The user must specify two state variables and the composition to define the initial mixture.				
	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations			
EN-	Solve the energy equation to determine the gas temperature.					
RG	Parameters	Optional/Reqd.	Units	Examples		
Problem	Reactor number (PSR clusters only)	Optional		ENRG 2		
Type		1.0				
		If no				
, ·		number				
,,		number is given,				
· ·		number is given, the				
		number is given, the keyword				
		number is given, the keyword is				
		number is given, the keyword is assumed				
		number is given, the keyword is assumed to apply				
		number is given, the keyword is assumed to apply to all				
		number is given, the keyword is assumed to apply to all reactors				
		number is given, the keyword is assumed to apply to all reactors in a				
	Keyword Usage	number is given, the keyword is assumed to apply to all reactors in a cluster.	rd Fither TGIV	or ENRG must be		

Keyword	Definition				
				, or COTV can be specified espeed Calculations, ENRG	
	Reactor Models	Closed Homo	geneous Ba	atch Reactor	
		Closed Plasma	a Reactor		
		• Diffusion or P	remixed Op	pposed-flow Flame	
		Honeycomb F	leactor		
		Non-reactive	Gas Mixer		
		Perfectly Stirre	ed Reactor	(PSR)	
		Plasma Plug F	low Reacto	r	
		Plasma PSR			
		 Plug Flow Reactor Premixed Laminar Flame-speed Calculation Premixed Laminar Burner-stabilized Flame 			
		Rotating Disk	Rotating Disk CVD Reactor		
		Stagnation Flow CVD Reactor			
	Notes	 The user must still specify an initial or initial estimate of the gas temperature or temperature profile. See also: TE or TPRO keyword. For steady-state reactor models, this initial temperature is used in solving the intermediate fixed-temperature problem and is an initial guess for the solution of the fu problem including the energy equation. 			
			he energy	s CONP, CONV, or ICEN, will also equation should be solved.for stems.	
ENTH	Specifies the starting	enthalpy for the initi	al mixture.		
Reactor	Parameters	Optional/Reqd.	Units	Examples	
Property	Enthalpy	Required	erg/g	ENTH 1.5E9	
	Keyword Usage			r must specify two state tion to define the initial	
	Reactor Models	Chemical and Phase Equilibrium Calculations			

Keyword	Definition						
EN-	Specifies the starting	entropy for the initia	al mixture.				
TR	Parameters	Optional/Reqd.	Units	Examples			
Reactor Property	Entropy	Required	erg/(g · K)	ENTR 7.0E7			
• ,	Keyword Usage	1 -	Optional keyword. The user must specify two state variables and the composition to define the initial mixture.				
	Reactor Models	Chemical and	l Phase Equ	ilibrium Calculations			
EPSG Output	all bulk phases with re	espect to the rate co	onstants. Co	ents for the growth rates of pefficients below this value saved in the XML Solution			
	Parameters	Optional/Reqd.	Units	Examples			
	Threshold value	Required		EPSG .01			
	Keyword Usage	Optional keywo	•	ult, the threshold value for			
	Reactor Models	Closed Homo	geneous B	atch Reactor			
		Closed Plasm	Closed Plasma Reactor				
		Honeycomb I	Honeycomb Reactor				
		Perfectly Stirr	Perfectly Stirred Reactor (PSR)				
		Plasma Plug Flow Reactor					
		Plasma PSR					
		Plug Flow Reactor					
	Notes	,	This keyword can be added but not removed from a continuation run.				
EPSR Output	Threshold value for the rate-of-production coefficients. Coefficients below this value are neither printed to the diagnostic output file nor saved in the XML Solution File.						
	Parameters	Optional/Reqd.	Units	Examples			
	Threshold value	Required		EPSR .02			
	Keyword Usage		•	ult, the threshold value for ents is set to 0.01.			
	Reactor Models	Closed Homo	geneous B	atch Reactor			
		Closed Plasm	a Reactor				
		Honeycomb I	Reactor				
		IC HCCI Engir	ne				

Keyword	Definition				
		Perfectly Stirre	ed Reactor (PS	R)	
		Plasma Plug Fl	ow Reactor		
		Plasma PSR			
		• Plug Flow Rea	ctor		
		SI Engine Zonal Simulator			
	Notes	-			
	Notes	 This keyword can be added but not removed from a continuation run. 			
EPSS	Threshold value for the				
Output	respect to the rate constants. Coefficients below this value are neither printed to the diagnostic output file nor saved in the XML Solution File.			•	
	Parameters	Optional/Reqd.	Units	Examples	
	Threshold value	Required		EPSS .01	
	Keyword Usage	Optional keywor		the threshold value for	
	Reactor Models	Closed Homogeneous Batch Reactor			
		Closed Plasma Reactor			
		Diffusion or Premixed Opposed-flow Flame			
		Honeycomb Reactor			
		IC HCCI Engine	2		
		Perfectly Stirre	ed Reactor (PS	R)	
		Plasma Plug Fl	ow Reactor		
		Plasma PSR			
		• Plug Flow Rea	ctor		
		Premixed Lam	inar Burner-st	abilized Flame	
		Premixed Lam	inar Flame-sp	eed Calculation	
		Rotating Disk	CVD Reactor		
		SI Engine Zona	al Simulator		
		Stagnation Flo	w CVD Reacto	or	
	Notes	This keyword of continuation r		but not removed from a	

Keyword	Definition							
EPST Output	Threshold value for the first-order sensitivity coefficients for the gas temperature with respect to the rate constants. Coefficients below this value are neither printed to the diagnostic output file nor saved in the XML Solution File.							
	Parameters	Optional/Reqd.	Units	Examples				
	Threshold value	Required		EPST .01				
	Keyword Usage	Optional keywo	Optional keyword. By default, the threshold value for gas temperature is set to 0.001.					
	Reactor Models	Closed Homo		atch Reactor				
		Closed Plasma						
		 Honeycomb R IC HCCI Engin 						
		Perfectly Stirre		(PSR)				
		Plasma Plug F						
		Plasma PSR						
		• Plug Flow Rea	Plug Flow Reactor					
		SI Engine Zon	SI Engine Zonal Simulator					
	Notes		This keyword can be added but not removed from a continuation run.					
EQRX Solver	1 -	with constant enth efault, equilibrium	alpy and p	will be estimated by pressure in the 2-zone SI is used to obtain gas product				
	Parameters	Optional/Reqd.	Units	Examples				
		Optional		EQRX				
	Keyword Usage	Optional keywo	rd.					
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator					
EQUI Reactor	state of the statistical e	vent particles will b	e determi	calculated. The chemical ned by the corresponding he chemical source terms.				
Property	Keyword Usage	Optional keywo	rd. By defa	ult, chemistry is neglected ion is performed. See also				
	Reactor Models	Closed Partial	y Stirred R	eactor (PaSR)				
		Partially Stirre	d Reactor ((PaSR)				
		SI Engine Zon	al Simulato	or				

Keyword	Definition					
EQUI	Specifies the air/fuel equi		an inlet strear	n or for the initial		
Reactor	Parameters	Optional/Reqd.	Units	Examples		
or Inlet Property	Inlet stream name (for open systems only)	Optional If there is no stream name than the air/fuel equivalence ratio applies to the default or all defined		EQUI mixture1 1.1		
		streams.				
	Air / fuel equivalence ratio	Required EQUI 1.1				
	Keyword Usage	Optional keyword. Either REAC or EQUI keywords are required for each inlet stream or to specify the initial conditions of a closed reactor. When EQUI is included, FUEL / OXID / CPROD keywords must also be supplied.				
	Reactor Models	 Closed Homogeneous Batch Reactor IC HCCI Engine Perfectly Stirred Reactor (PSR) Honeycomb Reactor Plasma Plug Flow Reactor Plasma PSR Plug Flow Reactor 				
Reactor Property	etched instead of grown equations to be solved f	rd indicates that a given bulk phase is expected to be on or deposited. This option changes the form of the for the bulk phase composition, as described in Bulking Etch of the Chemkin-Pro Theory Manual.				
	Parameters	Optional/Reqd.	Units	Examples		
	Bulk phases	Optional Required if there is more than one		ETCH BULK1		

Keyword	Definition					
		bulk				
		phase				
	Reactor number (PSR clusters only)	Optional		ETCH BULK1 2		
		If no				
		number is given,				
		the				
		keyword				
		is .				
		assumed				
		to apply to all				
		reactors				
		in a				
		cluster.				
	Keyword Usage	Optional keyword. By default, the names of the unnamed <i>Surface Kinetics</i> bulk phases is: BULK1, BULK2 etc.				
	Reactor Models	Closed Homogeneous Batch Reactor				
		Closed Plasma Reactor				
		Honeycomb Reactor				
		Perfectly Stirred Reactor (PSR)				
		Plasma Plug Flow Reactor				
		Plasma PSR				
		Plug Flow Reactor				
		Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor				
required that bulk				word ETCH is supplied for a bulk phase, it is bulk activities (see BULK) are also included phase species in that phase that is etched.		
ET- MP	1	ature for steady-sta	te iteration (w	ed as the initial estimate then ENGE is included),		
Reactor	Parameters	Optional/Regd.	Units	Examples		
Property	Electron	Required	K	ETMP 33000 .		
	Reactor number (PSR clusters only)	Optional		ETMP 33000. 1		

Keyword	Definition					
•		If no				
		number				
		is given,				
		values				
		are				
		assumed				
		to apply				
		to all				
		reactors				
		in a				
		cluster.				
	Keyword Usage	Optional keywo	rd. By default	, the electron temperature		
		is the same as t	•			
	Reactor Models	Closed Plasma	Closed Plasma Reactor			
		• Plasma PSR	Plasma PSR			
		Plasma Plug Flow Reactor				
EX-	Indicates extinction pr					
TINC- TION Keyword Usage Required keyword.						
	Reactor Models	Extinction of	Diffusion or P	remixed Opposed-flow Flame		
Reactor Property						
EXT _MAXTFRA Reactor Property	flame toward extinction maximum temperate temperature). Temperatuser-specified temperature fraction * (Current mains then selected using	raction multiplying the current T maximum that is used to constrain the toward extinction. The extinction simulator finds the location at which ximum temperature fraction * (Current maximum temperature — Inlet terature). Temperature at this location is successively decreased by the specified temperature step size until it reaches T = minimum temperature on * (Current maximum temperature — Inlet temperature). A new location selected using the maximum temperature fraction. This process is reported the desired number of steps is reached or until the flame is effectively				
	Parameters	Optional/Reqd.	Units	Examples		
	Maximum Temperature Fraction	Required		EXT_MAXTFRAC 0.8		
	Keyword Usage	Required. The de	⊥ efault value is	5 10.8.		
	Reactor Models	<u> </u>		remixed Opposed-flow Flame		
	Notes	Also see keyw	Also see keyword EXT_MINTFRAC .			
EXT	Specifies the type of c	ontrol technique to	be used in ex	xtinction simulation.		
METHOD	Parameters	Optional/Reqd.	Units	Examples		
Reactor	BOOLEAN	Required		EXT_METHOD 0		
Property Reactor Property				1		

Keyword	Definition						
	Keyword Usage	'	The other	alue is 0 which indicates possible choice is 1 which			
	Reactor Models	Extinction of	Diffusion o	r Premixed Opposed-flow Flame			
EXT _MINTFLA <i>l</i>	is below this value, th			ed in the extinction simulation assuming that there is no			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Поренту	Minimum Flame Temperature	Required	К	EXT_MINTFLAME 1500			
	Keyword Usage	Optional. The de	efault valu	e is 11500.			
	Reactor Models	Extinction of	Diffusion o	r Premixed Opposed-flow Flame			
	Notes	This option is extinction po		avoid computing solutions beyond			
Property	user-specified temper fraction * (Current ma is then selected using	ature step size until ximum temperature the maximum temp	ure at this location is successively decreased by the ure step size until it reaches T = minimum temperature mum temperature — Inlet temperature). A new location he maximum temperature fraction. This process is repeated er of steps is reached or until the flame is effectively				
	Parameters	Optional/Reqd.	Units	Examples			
	Minimum Temperature Fraction	Required		EXT_MINTFRAC 0.2			
	Keyword Usage	Required. The de	efault valu	e is 10.2.			
	Reactor Models	Extinction of	Diffusion o	r Premixed Opposed-flow Flame			
	Notes	Also see keyw	ord EXT_N	MAXTFRAC .			
EXT	Frequency of saving s	olution in extinction	simulatio	n.			
SAVEINT	Parameters	Optional/Reqd.	Units	Examples			
Reactor	Saving frequency	Required		EXT_SAVEINT 10			
Property	Keyword Usage	Optional. The de	efault valu	e is 10.			
	Reactor Models	Extinction of	Diffusion o	r Premixed Opposed-flow Flame			
	Notes	may be prude value of this k are found bef	Since extinction problems are numerically intensive, it may be prudent to save solutions frequently. The input value of this keyword indicates the number of solutions are found before an opposed-flow solution is saved in the process of marching towards the extinction point. (A new				

Keyword	Definition						
		extinction sim facility.).	extinction simulation can be started by using the restart facility.).				
EXT	Number of times oppo	Number of times opposed flow solution is computed in search of the extinction point.					
_STEPS Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Solution steps	Required		EXT_STEPS 100			
	Keyword Usage	Optional. The de	fault value	e is 100.			
	Reactor Models	Extinction of [Diffusion o	r Premixed Opposed-flow Flame			
EXT	Temperature step by w simulator.	vhich temperature a	ich temperature at control point is decreased in extinction				
_TSTEP Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature step	Required	K	EXT_TSTEP 5			
	Keyword Usage	Keyword Usage Optional. Default value is 5.					
	Reactor Models	Extinction of [Extinction of Diffusion or Premixed Opposed-flow Flame				
EXT	Specifies how to const	rain nozzle velocitie	s in extinc	tion simulation.			
VFCNTRL	Parameters	Optional/Reqd.	Units	Examples			
Reactor	BOOLEAN	Required		EXT_VFCNTRL 1			
Property	Keyword Usage	momentum of t creates the stag option is 0 whic	Required. The default value is 1 which indicates that momentum of the two jets should be balanced. This creates the stagnation plane in the middle. The other option is 0 which indicates that the magnitude of velocity from both nozzles is the same.				
	Reactor Models	Extinction of [Diffusion o	r Premixed Opposed-flow Flame			
	Notes	•	•	used for 1-point control. For a pred if specified.			

10.2. Alphabetical Listing of Keywords [F-O]

Table 10.2: Alphabetical Listing of Keywords [F-O]

Keyword	Definition				
FAZE Reactor Property	Specifies a fixed-phase constraint on the equilibrium calculation. Species that are initially in the gas phase will remain in the gas phase and species that are originally in a condensed phase (i.e., bulk species) will remain in that condensed phase. If there is only one phase in the chemistry set, the phase constraint has no effect.				
	Keyword Usage	Optional keyword. By default, phase equilibrium as well as composition equilibrium is determined.			
	Reactor Models	Chemical and Phase Equilibrium Calculations			

Keyword	Definition					
FIXT	Specifies a fixed-tempe for non-symmetric cart	-	ondition on the	e upper wall (only used		
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Temperature	Optional, if a temperature is not specified, the value of the inlet gas temperature will be used (TINL)	K	FIXT 400		
	Keyword Usage	Optional keywo	•	a zero temperature omitted (adiabatic upper		
	Reactor Models	Planar Shear F	low Reactor			
FLAM Reactor Property	Position and fixed-temperature value for calculating strained, lifted flames. In this case, the inlet gas velocity is calculated (rather than fixed) based on a fixed location of the flame front. The flame front location is specified by giving a location and value of a temperature (above the inlet temperature value) to fix at this position.					
	Parameters	Optional/Reqd.	Units	Examples		
	Flame position	Required	cm	FLAM 0.5 700.		
	Temperature Keyword Usage	Required Optional keywo in the calculatio	•	rscham 0.5 700.		
	Reactor Models	Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
			Premixed Laminar Flame calculations, this is mass flux at the inlet (mas			
Inlet	Premixed Laminar Flam	ne calculations, this	is mass flux at			
FLRT Inlet Property	Premixed Laminar Flam	ne calculations, this	is mass flux at			

eyword	Definition					
		applies to				
		the				
		default or				
		to all				
		defined				
		streams.				
	Mass flow rate or Mass flux (for	Required	g/sec	FLRT secondary_air 0.13		
	Premixed Laminar Flames)		g/(cm ² · sec)	FLRT 0.04		
	Keyword Usage			: Flow specification via		
		FPRO is required	d. PSRs and Pa	SRs: Optional keyword. CM/SCCMPRO are		
		specified or are nonzero, then a closed-system is assumed. FLRT/FPRO or SCCM/SCCMPRO is required for each INLET stream defined. Premixed Laminar Flames: Required keyword. Stagnation Flow CVD Reactors: FLRT / FPRO or SCCM / SCCMPRO or UINL is required for each inlet stream defined. Rotating Disk CVD Reactors: Optional keyword.				
	Reactor Models	Honeycomb Monolith Reactor				
		Non-reactive Gas MixerPartially Stirred Reactor (PaSR)				
		Perfectly Stirre				
		• Plasma PFR				
		• Plasma PSR				
		• Plug Flow Rea	ctor			
		Premixed Lam	ninar Burner-st	abilized Flame		
		Premixed Lam	inar Flame-sp	eed Calculation		
		Rotating Disk				
		Stagnation Flow CVD Reactor				
eactor	S pecies name and its m of the rate-of-progress of flames).	_	_	be used in the calculation et tables (for premixed		
operty	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		FLT_PVSPEC CO2 1.2		
	Mass-fraction weighting factor	Required		FLT_PVSPEC CO2 1.2		

Keyword	Definition						
	Keyword Usage	eyword Usage Required keyword when generating flamelet table.					
	Reactor Models	Rotating Disk	CVD Reactor				
		Stagnation Flo	Stagnation Flow CVD Reactor				
FLTB	Export one-dimensional specified file. The file wil						
Output	Parameters	Optional/Reqd.	Units	Examples			
	Flamelet table filename	Required FLTB flamelet.txt					
	Keyword Usage	Optional keyword. By default, no flamelet table is exported. The name of the flamelet table file generated is FileName_1.FileExt (where FileName is the user-provided name; FileName= flamelet and FileExt=txt in the example given here.) When continuations are used, the filename is appended with "_n" where n is the continuation number+1 . For extinction studies, the flamelet files are generated based on <i>input "Step Interval for Saving (EXT_SAVEINT)"</i> . Thus, "_n" in the flamelet filename generated in the extinction study indicates the (total steps/EXT_SAVEINT).					
	Reactor Models	- Opposed-flow Flame Simulator					
FLUX Reactor Property	This keyword indicates the species at the inlet (in REAC keywords are used balanced against diffusive composition. See Equation	rather than a fixed to determine the re fluxes to dynam	composition) convective m ically determi). If FLUX is specified, the ass flux in, which is ne the inlet gas			
	Keyword Usage	Optional keyword. By default, a flux balance is solved at the inlet. See also COMP.					
	Reactor Models	Rotating Disk CVD ReactorStagnation Flow CVD Reactor					
Property Use extrapolation to obtain species mass fractions at the outflow (or boundary. By default, PREMIX assumes all species have zero mass fraction gradients at the outflow boundary. However, for pollutant species surtheir concentrations are still growing in the post flame region so that fraction profiles have positive gradients at the outflow boundary. The boundary condition provides a proper outflow treatment when mass gradients are not zero at the outflow boundary.		ero mass fraction nt species such as NO, egion so that their mass ooundary. The extrapolation					
	Keyword Usage		•	zero mass fraction oundary condition			
	Reactor Models	 gradient is used as outflow boundary condition Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 					

Keyword	Definition						
FPRO Inlet	Used to specify a transient profile or function of mass flow rate vs. time for an inlet stream. The profile specified will be interpolated linearly from the FPRO points provided.						
Property Profiles	Parameters	Optional/Reqd.	Units	Examples			
riones	Inlet stream name	Optional If there is no stream name then the reactant and mole fraction apply to all streams.		FPRO purge 0.19 29.0			
	Time	Required	sec (cm for flow reactors)	FPRO 0.19 29.0			
	Flow rate	Required	g/sec	FPRO 0.19 29.0			
	Keyword Usage	PFRs and Monolith Reactors: Flow specification via one of VEL, VDOT, VDOTPRO SCCM SCCMPRO FLRT, or FPRO is required. PSRs and PaSRs: Optional keyword. If none of TAU, FLRT / FPRO, SCCM / SCCMPRO are specified or are nonzero, then a closed-system is assumed. FLRT / FPRO or SCCM / SCCMPRO is required for each INLET stream defined. Premixed Laminar Flames: Required keyword. Stagnation Flow CVD Reactors: FLRT / FPRO or SCCM / SCCMPRO or UINL is required for each inlet stream defined. Rotating Disk CVD Reactors: Optional keyword.					
	Reactor Models	 Honeycomb Monolith Reactor. Non-reactive Gas Mixer					
		Perfectly Stirre	ed Reactor (PS	R)			
		Plasma PFR Plasma PSP					
		Plasma PSRPlug Flow Rea	ctor (PFR)				
		 Rotating Disk 					
		Stagnation Flo		or			

Keyword	Definition						
FREE	Specifies that the equ FROZ.	ilibrium species com	rium species composition will be calculated. See also				
Reactor Property	Keyword Usage	Optional keywo calculated.	Optional keyword. By default, the composition will be calculated.				
	Reactor Models	Chemical and	Phase Equilib	orium Calculations			
FREE Reactor	Specifies the problem to determine flame sp	* *	to solve for a	freely propagating flame			
Property	Keyword Usage	Required keywo	Required keyword.				
	Reactor Models	Premixed Lam	ninar Flame-sı	oeed Calculation			
	Notes	The problemalso BURN.	type can be c	hanged for a restart run. See			
FROZ	Specifies that species calculation. See also F	•	 mposition will be frozen or fixed during the equilibrium E.				
Reactor Property	Keyword Usage	Optional keywo calculated.	Optional keyword. By default, the composition will be calculated.				
	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations				
Inlet or Reactor Property	or for the initial condi- specified (EQUI). It mu fraction. One of these used to determine the Any given species can The sum of all the fue	tions in a closed sysust be followed by a FUEL inputs must apeniate to the composition by participate simultar I mole fractions should be simultant.	tem, when ar species nam opear for eac pased on an eneously as a full dequal one	•			
	Parameters	Optional/Reqd.	Units	Examples			
	Inlet stream name (PSRs only)	Optional If there is no stream name than the fuel mole fraction compassion applies to the default or all defined streams.		FUEL mixture1 C2H2 0.5			
İ	Species name	Required		FUEL C2H2 0.5			

Keyword	Definition					
	Fuel fraction	Required	mole fractions	FUEL C2H2 0.5		
	Keyword Usage			option is used for an onditions in a reactor.		
	Reactor Models	Closed Homog	geneous Batch	Reactor		
		• Honeycomb R	eactor			
		IC HCCl Engine	9			
		Perfectly Stirre	ed Reactor			
		Plasma Plug Fl	ow Reactor			
		• Plasma PSR				
		• Plug Flow Rea	ctor			
		SI Engine Zona	al Simulator			
	Notes	The mole fractions are of the fuel itself, not for the entire composition.				
		The FUEL keywords must be changed as a set, not individually for a restart run.				
		The FUEL keyv individually fo		changed as a set, not run.		
GASW Reactor Property		ne sum of all the G ary message will b m does equal one on of the boundar	ASW values se printed and The actual gary-layer calcula	ns mole fractions at each nation will be calculated		
	Parameters	Optional/Reqd.	Units	Examples		
	Gas species name	Required		GASW SIH2 1.0E-4		
	Mole fraction of gas species	Required	mole fractions	GASW SIH2 1.0E-4		
	Keyword Usage	Optional keyworkeyword will be	•	values given by the REAC		
	Reactor Models	Cylindrical Shear Flow Reactor				
		Planar Shear Flow Reactor				
GDOT Reactor Property	This keyword may be use of gas-phase species at to use this option, the Sthat the number of surface all be zero in the Surface	he substrate, inste urface Kinetics inpo ce reactions, surfa	ead of using South of the site species of the site species of the	<i>Surface Kinetics</i> . In order e empty, which means		

Keyword	Definition							
	Parameters	Optional/Reqd.	Units	Examples				
	Species name	Required		GDOT H -1.3E-7				
	Net surface production rate	Required	mole/cm ² sec	GDOT H -1.3E-7				
	Keyword Usage	'	Optional keyword. By default, the net surface production rate is 0.0.					
	Reactor Models	Rotating Disk						
			Stagnation Flow CVD Reactor					
GEN Output	controls the printing of summary tables about the reaction thermodyna			ion thermodynamics. The es. NONE will suppress assumed (the default).				
	Parameters	Optional/Regd.	Units	Examples				
	ALL option	Optional		GEN ALL				
	NONE option	Optional		GEN NONE				
	Keyword Usage	Optional keywor	Optional Action of the ALL or NONE keyword.					
	Reactor Models	Mechanism A	nalyzer	•				
GFAC Reactor Property	(scaled) by the factor (difficulties are encount the problem can first be	GFAC. This option is stered due to unusually be first solved with a in subsequent continuous and SFAC to zero	sometimes use ally large react artificially redu inuations or re ofor a perfectl	ion rates. Using GFAC, ced reaction rates, which estarts until GFAC is one. y stirred reactor				
	Parameters	Optional/Reqd.	Units	Examples				
	Multiplier value	Required		GFAC 2.0				
	Reactor number (PSR clusters only)	Optional If no number is given, values are assumed to apply to all reactors in a cluster.		GFAC 2.0 1				
	Keyword Usage		al keyword. By	default, the multiplier				
		value is set to 1.		,				

Keyword	Definition				
		Non-reactive set to 0.0 to ena		uired keyword, must be or Model.	
	Reactor Models	Closed Homog	jeneous Batch	Reactor	
		 Closed Plasma 	Reactor		
		Cylindrical She	ar Flow React	or	
		• Diffusion or Pr	emixed Oppos	sed-flow Flame	
		Honeycomb Re	eactor		
		IC HCCl Engine	2		
		Non-reactive C	Gas Mixer		
		Perfectly Stirred Reactor (PSR)			
		Planar Shear Flow Reactor			
		Plasma Plug Flow Reactor			
		Plasma PSR			
		Plug Flow Reactor			
		Premixed Lam	inar Burner-sta	abilized Flame	
		Premixed Lam	inar Flame-spe	eed Calculation	
		Rotating Disk (CVD Reactor		
		SI Engine Zona	al Simulator		
		Stagnation Flo	w CVD Reacto	or	
GMHTC Reactor Property	The reactor wall temperature will be obtained by solving energy conservation equation for the reactor wall. It uses the heat transfer coefficient between the inner wall surface and the gas mixture inside the reactor specified by GMHTC. The initial wall temperature is the surface temperature. When this option is used, all the external heat fluxes, i.e., heat loss to the environment and heat exchange between the reactors in a network, are applied to the wall energy equation instead of the gas phase energy equation. The heat generated by the surface reactions will also be included in the wall energy equation.				
	Parameters	Optional/Reqd.	Units	Examples	
	Material name	Option- al.		GMHTC material1 0.1	
		If no material is specified,			

Keyword	Definition					
		the same value will be used for all materials.				
	Heat transfer coefficient	Required	cal/(cm ² -K-se	ĢМНТС 0.1		
	Reactor number (PSR clusters only)	Option- al.		GMHTC material1 0.1 1		
		If no number is given, the keyword is				
		assumed to apply to all reactors in a cluster.				
	Keyword Usage	Optional keyword. This keyword must be used with MMASS. By default, the wall energy equation will not be solved and the reactor wall temperature is equal to the gas temperature in the reactor unless the surfatemperature is specified.				
	Reactor Models	Closed Homog		n Reactor		
		Closed PlasmaHoneycomb M		or		
		IC HCCl Engine	е			
		Non-reactive 0	Gas Mixer			
		Perfectly Stirre	ed Reactor (PS	R)		
		Plasma PSR Plasma Plug F	low Doostor			
		Plasma Plug FPlug Flow Rea				
		SI Engine Zona				
GRAD Reactor	Parameter that controls first derivative, or gradie about 0.1 and 1.0, where	nt in the solution.	A reasonable	value is usually between		
Property	Parameters	Optional/Reqd.	Units	Examples		

Keyword	Definition				
	Gradient of mesh adaptation	Required		GRAD 0.5	
	Keyword Usage	Optional keywor	d. By default,	the gradient is set to 0.1.	
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame	
		Premixed Lam	inar Burner-st	abilized Flame	
		 Premixed Lam 	inar Flame-sp	eed Calculation	
		Rotating Disk	CVD Reactor		
		Stagnation Flo	ow CVD Reacto	or	
	Notes	This keyword or run.	can be change	ed for a restart or continuation	
		 Steady-state 1-D Solution Methods of the Chemkin-Pro Theory Manual for more information. 			
GRAV Reactor Property	in the boundary-layer ed direction. Thus, GRAV 98	quations if gravity 0 may be used to	acts parallel to describe flow	vertically upward, or	
rroperty	GRAV -980 for flow downward. Omitting this keyword neglects the buoyancy term.				
	Parameters	Optional/Reqd.	Units	Examples	
	Acceleration of gravity	Required	cm/sec ²	GRAV -980	
	Keyword Usage	Optional keywor gravity.is zero.	d. By default,	the acceleration of	
	Reactor Models	Cylindrical She	ear Flow React	or	
		Planar Shear Flow Reactor			
GRID Reactor Property	Specifies a point on an included. Each GRID entions of GRID keywords are a growth ascending order.	ry contains the spa	atial coordinat	e of a mesh point. The	
Profiles	Parameters	Optional/Reqd.	Units	Examples	
	mesh point coordinate	Required	cm	GRID 0.0	
	Keyword Usage		e equally space	keywords are included, ced grid points based on	
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame	
		Premixed Lam	inar Burner-st	abilized Flame	
	Premixed Laminar Flame-speed Calculation			eed Calculation	

Keyword	Definition						
		Rotating Disk	CVD Reactor				
		Stagnation Flo	ow CVD Reacto	or			
GRXN Output	Prints out a table of reac gas-phase reaction. The A gas-phase reaction. The N	ALL option is the o	default and pr	oduces tables for every			
	If reaction information is specified by their number exact duplicate of the re-	er (given in the Pre	e-processor ou				
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option- al, de- fault is ALL		GRXN ALL			
	NONE option	Option- al, de- fault is ALL		GRXN NONE			
	Gas reaction number list	Option- al, de- fault is ALL		GRXN 2 5			
	Gas reaction expression	Option- al, de- fault is ALL		GRXN CH4+H<=>CH3+H2			
	Keyword Usage	1 .	Optional keyword. By default, the table output is determined by the ALL or NONE keyword.				
	Reactor Models	Mechanism Ai	nalyzer				
GTHB	Create an extra table of the bodies. This option employed						
Output	keyword) to yield effective reaction rates. The ALL option is the default and produces tables for every gas-phase reaction. The NONE option suppresses output for all of the reactions. If reaction information is desired for only certain reactions, they may be optionally specified by their number (given in the Pre-processor output) or by typing an exact duplicate of the reaction expression (see example input).			option suppresses output for only certain reactions, in the Pre-processor			
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option- al, de- fault is ALL		GTHB ALL			
	NONE option	Option- al, de-		GTHB NONE			

Keyword	Definition						
		fault is					
		ALL					
	Gas reaction number list	Option- al, de- fault is ALL		GTHB 2 5			
	Gas reaction expression	Option- al, de- fault is ALL		GTHB 2H+M<=>H2+M			
	Keyword Usage	Optional keywo determined by	•	lt, the table output is IONE keyword.			
	Reactor Models	Mechanism A	nalyzer				
GVEL Reactor	keyword can only be	ni correlation for the average cylinder gas velocity. This be used in conjunction with the ICHT keyword. Internal Model of the Chemkin-Pro Theory Manual .					
Property	Parameters	Optional/Reqd.	Units	Examples			
	C ₁₁ in the average gas velocity correlation	Required		GVEL 2.28 0.308 0.324 0			
	C ₁₂ parameter in the Woschni correlation	Required	cm/(sec · K)	GVEL 2.28 0.308 0.324 0			
	C ₂ parameter in the Woschni correlation	Required		GVEL 2.28 0.308 0.324 0			
	Ratio of swirl velocity to mean piston speed	Required		GVEL 2.28 0.308 0.324 0			
	Keyword Usage	Optional keywo 0 0.	rd. By defau	lt, the setting is GVEL 1 0			
	Reactor Models	IC HCCI Engin	ie				
		SI Engine Zon	SI Engine Zonal Simulator				
HITE Reactor		ce between the cha		reactor radius (cylindrical d the symmetry line for a			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Channel height or radius	Required	cm	HITE 2.0			
	Keyword Usage	Required keywo	ord.				
	Reactor Models	Cylindrical Sh	ear Flow Rea	actor			

Keyword	Definition					
		Planar Shear F	low Reactor			
	T					
H0	The initial distance step					
Solver	Parameters	Optional/Reqd.	Units	Examples		
	Initial time step size	Required	cm	H0 1.0E-4		
	Keyword Usage	Optional keywork is set to 1.0E-6.	rd. By default,	the initial time step size		
	Reactor Models	Cylindrical She	ear Flow React	or		
		• Planar Shear F	low Reactor			
НР	Constant pressure and en	nthalpy constraint	S.			
Problem Type	Keyword Usage	Optional keywor		e problem type keyword		
Type	Reactor Models	Chemical and	Phase Equilibi	rium Calculations		
	Notes	PH keyword is equivalent.				
HSEN Output	to the gas-phase and surface species heats of formation) for species frac) for species fractions		
	Parameters	Optional/Reqd.	Units	Examples		
	String indicating for which variables sensitivity coefficients will be saved or printed. The string is a space-delimited list containing species names and any one of the following: ALL, AVEL, RVEL, CVEL, FLRT, or TEMP (see Notes)	Optional If no string is given, then ALL is assumed.	Du defeult	HSEN OH HSEN TEMP		
	Keyword Usage	Optional keyword. By default, no sensitivity coefficients are computed or printed.				
	Reactor Models	Diffusion or Pr	remixed Oppo	sed-flow Flame		
		Premixed Laminar Burner-stabilized Flame				
		Premixed Lam	inar Flame-spo	eed Calculation		
		 Rotating Disk 	CVD Reactor			
		Stagnation Flo	ow CVD Reacto	or		

Keyword	Definition					
	Notes	This keyword continuation of		ed but not removed from a in		
		 See also EPSS, sensitivity opt 		, SENG, and HSEN for other		
		The optional pa	rameter str	ings are defined as follows:		
		ALL: all specie solution	s and all ot	her dependent variables in the		
		 AVEL: axial velocity (Plug Flow, Diffusion or Premixed Opposed-flow Flames, Rotating Disk, and Stagnation Fl CVD Reactors only) 				
		CVEL: circumfe Stagnation Flo		ocity (Rotating Disk and octors only)		
		RVEL: radial velocity (Diffusion or Premixed Opposed-flow Flames, Rotating Disk, and Stagnation Flow CVD Reactors only)				
		FLRT: mass flow rate (Premixed Laminar Flame-s Calculation only)				
		• TEMP: gas tem	nperature			
HSWC Reactor	-			oss will be switched from T , and HSWC are mutually		
Property	Parameters	Optional/Reqd.	Units	Examples		
	Crank angle	Required	degree	HSWC -0.4		
	Keyword Usage	Optional keywo	rd.			
	Reactor Models	SI Engine Zon	al Simulato	r		
HSWT Reactor	•	unburned zone to tl		e entire wall heat loss will zone. HSWM , HSWT , and		
Property	Parameters	Optional/Reqd.	Units	Examples		
Property	Parameters Temperature	Optional/Reqd. Required	Units K	HSWM 0.05		
Property		· · · · · · · · · · · · · · · · · · ·	K	·		
Property	Temperature	Required	K rd.	HSWM 0.05		
HSWM	Temperature Keyword Usage Reactor Models Specifies the burned ribe switched from the	Required Optional keywo SI Engine Zon nass fraction value a	K rd. al Simulato	HSWM 0.05		
	Temperature Keyword Usage Reactor Models Specifies the burned re	Required Optional keywo SI Engine Zon nass fraction value a	K rd. al Simulato	HSWM 0.05 r e entire wall heat loss will		

Keyword	Definition						
	Burned mass fraction	Required		HSWM 973.15			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator				
HTC Reactor				ctive or conductive heat t when the energy equation			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Option- al.		HTC material1 1.E-4			
		If no material is					
		specified, the same value will be used for all materials.					
	Heat transfer coefficient	Required	cal/(cm ² -K-sec)	HTC material1 1.E-4			
	Reactor number (PSR clusters only)	Option- al.		HTC material1 1.E-4 1			
		If no number is given, the keyword is					
		assumed to apply to all reactors in a cluster.					
	Keyword Usage	TAMB. By defaul	Optional keyword. This keyword must be used with TAMB. By default, the heat loss from the reactor will be zero. See also QLOS and QPRO.				
	Reactor Models	Closed PlasmaHoneycomb N	Closed Homogeneous Batch Reactor				

	after release 19.0						
Keyword	Definition						
		Perfectly Stirr	ed Reactor (P	SR)			
		Plasma PSR					
			Plasma Plug Flow Reactor				
			Plug Flow Reactor				
HTRN Reactor Property	The heat transfer coeffi heat loss from the reac specified surface mater is being solved.	tor along the exter	nal surface a				
	Parameters	Optional/Reqd.	Units	Examples			
	Material name (0-D and Plug Flow systems only)	Optional If no material is specified, the same value will be used for all materials.		HTRN material1 1.E-4 298			
	Heat transfer coefficient	Required	cal/(cm ² · K· sec)	HTRN 1.E-4 298 HTRN 1.E-4			
	Ambient temperature (0-D and Plug Flow systems only)	Required	К	HTRN 1.E-4 298			
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		HTRN material1 1.E-4 298 1			
	Keyword Usage	'	•	t, the heat loss from the QLOS and QPRO.			
	Reactor Models	Closed Homo	geneous Bato	ch Reactor			

Keyword	Definition					
		Closed Plasma	a Reactor			
		Cylindrical Sh	ear Flow React	or		
		Honeycomb F	Reactor			
		Non-reactive	Gas Mixer			
		Perfectly Stirre	ed Reactor (PS	R)		
		Planar Shear F				
		Plasma Plug Flow Reactor				
		Plasma PSR				
		Plug Flow Reactor				
		ngine model will be implemented. The solution will be				
Reactor Property	determined by an engine model that defines the volume as a function of					
	Keyword Usage	Optional keyword. By default, a constant pressure, constant volume, steady-state problem is assumed.				
	Reactor Models	IC HCCI Engine				
	Notes	See also: CMPR, VOLC, RPM, and LOLR keywords.				
		SI Engine Zon	al Simulator			
ICHT	Convective heat transfer	r correlation for th	e transient IC I	HCCI Engine model, using		
Reactor Property	the following generalized convective heat transfer correlation: $\mathrm{Nu}_h = a\mathrm{Re}^b\mathrm{Pr}^c$. Where Nu_h is the Nusselt number for heat transfer, Re is the Reynolds number, and Pr is the Prandtl number. For more information on the usage of these parameters, see Internal Combustion Engine Model of the Chemkin-Pro Theory Manual .					
	Parameters	Optional/Reqd.	Units	Examples		
	The value a in heat transfer correlation	Required	dimensionles	sCHT .035 .5 .33 10. 350.		
	The value b in heat transfer correlation	Required	dimensionles	sCHT .035 .5 .33 100 350.		
	The value c in heat transfer correlation	Required	dimensionles	dCHT .035 .5 .33 10. 350.		
	Bore diameter	Required	cm	ICHT .0350.5 .33 10. 350.		

Keyword	Definition						
Reyword		Do avvivo d	1/	ICUT 025 5 22 10			
	Wall temperature	Required	K	ICHT .035 .5 .33 10. 350.			
	Keyword Usage	loss) condition	Optional keyword. By default, an adiabatic (zero heat loss) condition is assumed. See also GVEL for Woschni correlation extensions.				
	Reactor Models		IC HCCl EngineSI Engine Zonal Simulator				
ICRD	Flag to specify coordinate system, which determines the Reactor Model ar symmetry assumptions for shear-layer flow.			the Reactor Model and			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Model or Reactor Property	Coordinate flag indicating Planar Shear Flow Reactor, with, non-symmetric boundary conditions	Required		ICRD PLAN			
	Coordinate flag indicating Planar Shear Flow Reactor, assuming symmetry with respect to the center axis	Required		ICRD SYMC			
	Coordinate flag indicating Cylindrical Shear Flow Reactor, using radial coordinates	Required		ICRD RAD			
	Keyword Usage	Required keyword.					
	Reactor Models	Cylindrical Sh	Cylindrical Shear Flow Reactor				
		• Planar Shear	Planar Shear Flow Reactor				
	Notes	or symmetric	Only one-half of the physical domain is used for the radial or symmetric channel case, and the lower boundary is the symmetry line				
IEM	1 -	•	_	h-the-mean (IEM) model will computational particle.			
Reactor Property	Keyword Usage	Optional keywo	ord. By defa	ult, a well mixed model is			
	Reactor Models	Closed Partia	lly Stirred R	leactor (PaSR)			
		Partially Stirr	ed Reactor	(PaSR)			

Keyword	Definition	Definition			
IG- RID- METH- OD_n Reactor	grid, biased grid, and read grid is not very useful an	profile. Integer <i>n</i> can be 1, 2, or 3 and mean uniform d from an input file, respectively. In general, the uniform d a biased grid should be used. The bias is created with f the stoichiometric mixture fraction. Required keyword. The default value is IGRIDMETHOD_2, indicating a biased grid.			
Property	Reactor Models	Diffusion Flam			
INIT	The initial gas mole fracti simulation. There may be				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples	
rioperty	Species name	Required		INIT N2 0.79	
	Gas fraction	Required	Mole fraction	INIT N2 0.79	
	Keyword Usage	made, the inlet of	gas properties present, specie	if no INIT entries are will be used. When some es not explicitly entered action of 0.	
Reactor Models Closed Partially Stirred Reactor (P Partially Stirred Reactor (P Normal Incident Shock Normal Reflected Shock Rotating Disk CVD Reactor Stagnation Flow CVD Reac			d Reactor (PaS nt Shock ted Shock CVD Reactor	SR)	
JW IN-	Total mass flow rate of th Theory Manual .	le injected gas. Se	e Equation 14	1.5 of the Chemkin-Pro	
Reactor	Parameters	Optional/Reqd.	Units	Examples	
Property	Mass flow rate	Required	g/(cm ² · sec)	INJM 0.15	
	Keyword Usage	Required keyword when INJS is used; otherwise it is ignored.			
	Reactor Models	Rotating Disk CVD ReactorStagnation Flow CVD Reactor			
INJS Reactor Property	using one or more INJS k distributed Gaussian sour of the mass flow function	eywords. The inject. INJM is the to n. This source term nual . INJS specifie	t a location along the axis of symmetry can be included eywords. The injection is specified as a spatially ree. INJM is the total mass flow, i.e., the spatial integral in This source term will be added to Equation 14.5 of the ual . INJS specifies the species composition of the		

	after release 19.0						
Keyword	Definition						
	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Required		INJS H2 0.5			
	Species composition	Required	mole fractions	INJS H2 0.5			
	Keyword Usage	Optional keyword. By default, there is no mass injection along the flow axis.					
	Reactor Models	Rotating DiskStagnation Flo		or			
IN-	Temperature of the injected gas.						
JT	Parameters	Optional/Reqd.	Units	Examples			
Reactor	Temperature	Required	К	INJT 300.			
Property	Keyword Usage	the energy equa	Optional keyword. By default, no enthalpy is added to the energy equation with the injected gas. If INJS is not included, this keyword will be ignored.				
	Reactor Models		Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
JW	Half-width of the Gauss Chemkin-Pro Theory Ma	ussian gas-injection source. See Equation 14.5 of the Manual .					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
		Da au ilua al	cm	INJW 0.07			
Property	Half-width	Required	CIII	114344 0.07			
Property	Half-width Keyword Usage		rd. By default,	the width is 0.0. Keyword			
Property		Optional keywor	rd. By default, s INJS is prese CVD Reactor	the width is 0.0. Keyword nt.			
Property IN- JX	Keyword Usage Reactor Models	Optional keywork is ignored unles Rotating Disk Stagnation Flowhich is the center	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia	the width is 0.0. Keyword nt.			
IN-	Keyword Usage Reactor Models Height above the disk v	Optional keywork is ignored unles Rotating Disk Stagnation Flowhich is the center	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia	the width is 0.0. Keyword nt.			
IN- JX	Keyword Usage Reactor Models Height above the disk vices See Equation 14.5 of the	Optional keywork is ignored unles • Rotating Disk • Stagnation Flowhich is the center e Chemkin-Pro The	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia ory Manual .	the width is 0.0. Keyword nt.			
IN- JX Reactor	Keyword Usage Reactor Models Height above the disk vices See Equation 14.5 of the Parameters	Optional keywork is ignored unles • Rotating Disk • Stagnation Flowhich is the center e Chemkin-Pro The Optional/Reqd. Required	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia ory Manual . Units cm	the width is 0.0. Keyword nt. or an-shaped injection source. Examples INJX 0.6 the height is 0.0.			
IN- JX Reactor	Keyword Usage Reactor Models Height above the disk of See Equation 14.5 of the Parameters Height	Optional keywork is ignored unles Rotating Disk Stagnation Flowhich is the center e Chemkin-Pro The Optional/Reqd. Required Optional keywork Keyword is igno Rotating Disk	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia ory Manual . Units cm rd. By default, red unless INJ CVD Reactor	the width is 0.0. Keyword nt. or an-shaped injection source. Examples INJX 0.6 the height is 0.0. S is present.			
IN- JX Reactor	Keyword Usage Reactor Models Height above the disk of See Equation 14.5 of the Parameters Height Keyword Usage	Optional keywork is ignored unles Rotating Disk Stagnation Flowhich is the center e Chemkin-Pro The Optional/Reqd. Required Optional keywork Keyword is igno	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia ory Manual . Units cm rd. By default, red unless INJ CVD Reactor	the width is 0.0. Keyword nt. or an-shaped injection source. Examples INJX 0.6 the height is 0.0. S is present.			
IN- JX Reactor	Keyword Usage Reactor Models Height above the disk of See Equation 14.5 of the Parameters Height Keyword Usage Reactor Models Specification of a reactor and a reactor number. If the parameters is a second of th	Optional keywork is ignored unles Rotating Disk Stagnation Flow which is the center e Chemkin-Pro The Optional/Reqd. Required Optional keywork Keyword is ignous Rotating Disk Stagnation Flow or inlet stream. Spector each INLET stream.	rd. By default, is INJS is prese CVD Reactor ow CVD Reactor of the Gaussia ory Manual . Units cm rd. By default, red unless INJ CVD Reactor ow CVD Reactor	the width is 0.0. Keyword nt. or an-shaped injection source. Examples INJX 0.6 the height is 0.0. S is present. or all name for the stream ou must also specify the			
IN- JX Reactor Property	Keyword Usage Reactor Models Height above the disk vices See Equation 14.5 of the Parameters Height Keyword Usage Reactor Models Specification of a reactor	Optional keywork is ignored unles Rotating Disk Stagnation Flowhich is the center e Chemkin-Pro The Optional/Reqd. Required Optional keywork Keyword is ignored Rotating Disk Stagnation Flower inlet stream. Spector each INLET stream perature (TINL), comperature (T	rd. By default, is INJS is present of the Gaussia ory Manual . Units cm rd. By default, ord. By default, red unless INJ CVD Reactor ow CVD R	the width is 0.0. Keyword nt. or an-shaped injection source. Examples INJX 0.6 the height is 0.0. S is present. or all name for the stream ou must also specify the EAC), or set of EQUI /			

Keyword	Definition					
	Inlet stream name	Required		INLET secondary_air2		
	Reactor number (PSR clusters only)	Optional		INLET secondary_air 2		
	(If no number is given,				
		values are assumed to apply to all reactors in a cluster.				
	Keyword Usage	Optional keyword. If no streams are defined, the program will assume there is a single inlet for the first reactor in series or that the system is a single closed reactor (if FLRT, SCCM and TAU are not defined).				
	Reactor Models	Diffusion or Premixed Opposed-flow Flame				
		 Non-reactive Gas Mixer Partially Stirred Reactor (PaSR) 				
		Perfectly Stirred Reactor (PSR)				
		Plasma PSR				
		Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
	Notes	This keyword can not be changed for a restart or continuation run.				
INTM Reactor Property	INTM inputs should app better to estimate value in the flame. For example	ear for each intern s somewhat highe le, INTM HO2 0.001	nediate specion r than those t gives an esti	that are actually present mate fraction of 0.001		
	for the intermediate HO reactant, intermediate, o		es can partici _l	pate simultaneously as a		
	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		INTM HO2 0.001		
	Estimated fraction	Required	mole fraction	INTM HO2 0.001		
	Keyword Usage	Optional keyword. By default, the estimated fraction is set to 0 unless the user has set a minimum threshold to a non-zero value on the Reactor panel (see XIMN to set a non-zero threshold value).				

Keyword	Definition						
	Reactor Models	Reactor Models • Premixed Laminar Burner-stabilized Flame					
		Premixed Lam	Premixed Laminar Flame-speed Calculation				
		Rotating Disk	CVD React	or			
	Stagnation Flow CVD Reactor						
	Notes	See Starting E for more infor		f the Chemkin-Pro Theory Manua			
IONE Reactor Property	Specified energy loss to ions in the sheath for each ion lost at a specified material. The energy that the ions gain in the sheath is specified in electron Volts. For example, "IONE material 30" would result in an ion energy gain of 30 eV as it crossed the sheath near the material <i>material1</i> . This energy gain for the ions results in a reduced effective power deposition to the electrons (unless ELSH is also specified), as described in Electron Energy Equation for Plasma Systems of the Chemkin-Pro Theory Manual .						
	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Optional If there is no material name than the specified energy loss applies to all materials.		IONE material 1 30 1			
	Specified energy loss	Required	eV	IONE 30			
	Reactor number (PSR clusters only)	Optional If no number is given, values are assumed to apply to all reactors in a		IONE material1 30 1			
		cluster.					

Reactor Models - Closed Plasma Reactor - Plasma Plug Flow Reactor - Plasma PSR Use this keyword to specify which PSR to use for the initialization (XMLI), we more than one PSR is stored on the XML Solution File that is used for initial (i.e. on XMLdata.zip). Parameters - Optional/Reqd. Units - PSR number - Required - IPSR 2 Keyword Usage - Optional keyword. By default, the last PSR saved in XML Solution File is used. Reactor Models - Chemical and Phase Equilibrium Calculations - Closed Homogeneous Batch Reactor - Closed Plasma Reactor - Closed Plasma Reactor - Diffusion or Premixed Opposed-flow Flame - Honeycomb Reactor - IC HCCI Engine - Mechanism Analyzer - Non-reactive Gas Mixer - Normal Incident Shock - Normal Reflected Shock - Perfectly Stirred Reactor (PSR)					
Use this keyword to specify which PSR to use for the initialization (XMLI), we more than one PSR is stored on the XML Solution File that is used for initial (i.e. on XMLdata.zip). Parameters PSR number Required Optional/Reqd. Units Examples PSR number Required Optional keyword. By default, the last PSR saved in XML Solution File is used. Reactor Models Chemical and Phase Equilibrium Calculations Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock					
Use this keyword to specify which PSR to use for the initialization (XMLI), we more than one PSR is stored on the XML Solution File that is used for initial (i.e. on XMLdata.zip). Parameters Optional/Reqd. Units Examples PSR number Required Optional keyword. By default, the last PSR saved in XML Solution File is used. Reactor Models Chemical and Phase Equilibrium Calculations Closed Homogeneous Batch Reactor Closed Plasma Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock					
Use this keyword to specify which PSR to use for the initialization (XMLI), we more than one PSR is stored on the XML Solution File that is used for initial (i.e. on XMLdata.zip). Parameters Optional/Reqd. Units Examples PSR number Required Optional keyword. By default, the last PSR saved in XML Solution File is used. Reactor Models Chemical and Phase Equilibrium Calculations Closed Homogeneous Batch Reactor Closed Plasma Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock					
more than one PSR is stored on the XML Solution File that is used for initia (i.e. on XMLdata.zip). Parameters Optional/Reqd. Units Examples PSR number Required IPSR 2 Keyword Usage Optional keyword. By default, the last PSR saved i XML Solution File is used. Reactor Models Chemical and Phase Equilibrium Calculations - Closed Homogeneous Batch Reactor - Closed Plasma Reactor - Cylindrical Shear Flow Reactor - Diffusion or Premixed Opposed-flow Flame - Honeycomb Reactor - IC HCCI Engine - Mechanism Analyzer - Non-reactive Gas Mixer - Normal Incident Shock - Normal Reflected Shock					
Required IPSR 2 Keyword Usage Optional keyword. By default, the last PSR saved i XML Solution File is used. Reactor Models • Chemical and Phase Equilibrium Calculations • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Cylindrical Shear Flow Reactor • Diffusion or Premixed Opposed-flow Flame • Honeycomb Reactor • IC HCCI Engine • Mechanism Analyzer • Non-reactive Gas Mixer • Normal Incident Shock • Normal Reflected Shock	· ·				
Keyword Usage Optional keyword. By default, the last PSR saved it XML Solution File is used. Reactor Models • Chemical and Phase Equilibrium Calculations • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Cylindrical Shear Flow Reactor • Diffusion or Premixed Opposed-flow Flame • Honeycomb Reactor • IC HCCI Engine • Mechanism Analyzer • Non-reactive Gas Mixer • Normal Incident Shock • Normal Reflected Shock					
XML Solution File is used. Chemical and Phase Equilibrium Calculations Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock					
 Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 	n the				
 Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 					
 Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 					
 Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 	Closed Plasma Reactor				
 Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 	Cylindrical Shear Flow Reactor				
 IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 	Diffusion or Premixed Opposed-flow Flame				
 Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 	Honeycomb Reactor				
 Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock 					
 Normal Incident Shock Normal Reflected Shock 	Mechanism Analyzer				
Normal Reflected Shock					
Perfectly Stirred Reactor (PSR)					
Planar Shear Flow Reactor					
Plasma Plug Flow Reactor					
Plasma PSR					
Plug Flow Reactor					
Premixed Laminar Burner-stabilized Flame					
Premixed Laminar Flame-speed Calculation					
Rotating Disk CVD Reactor					
SI Engine Zonal Simulator					

Keyword	Definition						
		Stagnation Flo	ow CVD Re	actor			
IRET	Number of time steps before increasing the	•	nt's pseud	o time stepping algorithm			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Number of time steps	Required		IRET 200			
	Keyword Usage		or 50 de	ult, the number of times pending on the Reactor			
	Reactor Models	Cylindrical ShoDiffusion or PoNon-reactive O	remixed O	eactor oposed-flow Flame			
		Perfectly Stirre	ed Reactor	(PSR)			
		• Planar Shear F	Planar Shear Flow Reactor				
		 Premixed Lam 	Premixed Laminar Burner-stabilized Flame				
		Premixed Lam	Premixed Laminar Flame-speed Calculation				
		• Plasma PSR					
		Rotating Disk CVD Reactor Stannation Flow CVD Reactor					
		Stagnation Flow CVD Reactor					
	Notes	• Default value listed above.	• Default value is 25 for PSRs and 50 for all other reactors listed above.				
ISHK	Inclusion of this keyw layer correction.	vord designates an in	cident sho	ck problem without boundary			
Problem Type	Keyword Usage		Required keyword. Either ISHK or ISKB must be included to indicate a Normal Incident Shock problem type. See also RSHK.				
	Reactor Models	Normal Incident Shock					
ISKB	Inclusion of this keyw layer correction.	ord designates an in	cident sho	ck problem with boundary			
Problem Type	Keyword Usage		Required keyword. Either ISHK or ISKB must be included to indicate a Normal Incident Shock problem type. See also RSHK.				
	Reactor Models	Normal Incide	nt Shock				
ISTP	1 -		-	it are taken by the steady-state on. Normally, the Newton			

Keyword	Definition						
Solver	iteration will be attempted first, with time steps invoked only if the Newton iteration fails. Nevertheless, there may be circumstances where initial time stepping is desirable. The time step size is specified with the TIM1 or TIM2 keyword. The ISTP keyword only applies to the first grid network, not the subsequently refined ones. If need to find a steady state solution via pure time integration, please refer to the TRAN option. Parameters Optional/Reqd. Units Examples						
	Parameters	Optional/Reqd.	Units	Examples			
	Number of initial time steps	Required		ISTP 100			
	Keyword Usage		Optional keyword. By default, the number of initial time steps is set to 0.				
	Reactor Models	Cylindrical She	ear Flow React	or			
		sed-flow Flame					
		Non-reactive (Gas Mixer				
		Perfectly Stirred Reactor (PSR)					
Planar Shear Flow Reactor							
		Plasma PSR					
		Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation					
		Rotating Disk CVD Reactor					
		Stagnation Flow CVD Reactor					
JJRG			•	s can be reduced. <i>Twopnt</i>			
Restart	1	rid points. Therefore, on a sequence of continuation grid points can grow because the region where they					
	are needed may change The old solution is adap JJRG is added, its effect Often this is not desired such as the maximum n	ge. JJRG thus provides a capability to remove grid points. aptively interpolated onto a new grid of JJRG points. When ct is carried over to the subsequent continuations, if any. ed. To prevent its operation, JJRG can be set to a high value, number of grid-points. The reduction of grid points then e JJRG does not add grid-points.					
	Parameters	Optional/Reqd.	Units	Examples			
	Number of mesh points	Required		JJRG 40			
	Keyword Usage	Optional keyword. By default, the number of grid points will be the same as in the previous solution.					
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame			
		Premixed Lam	inar Burner-st	abilized Flame			
		Premixed Lam	inar Flame-sp	eed Calculation			

Keyword	Definition						
•	Rotating Disk CVD Reactor						
		Stagnation Flo	ow CVD Keac	.toi			
KLIM	_	•		tion of the specified species			
Output	reaches its maximum vequation with transien		le when you	are solving the energy			
·	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Required		KLIM OH			
	Keyword Usage	Optional keywo	rd. See also ⁻	 TIFP .			
	Reactor Models	Closed Homo					
		Closed Plasma	a Reactor				
		Honeycomb N	Monolith Rea	ctor			
		IC HCCI Engin	IC HCCI Engine				
		Perfectly Stirr	Perfectly Stirred Reactor (PSR)				
		• Plasma PSR	Plasma PSR				
		• Plasma Plug F	Plasma Plug Flow Reactor				
		Plug Flow Reactor					
		SI Engine Zon	SI Engine Zonal Simulator				
KNMN	The minimum Knudsen number, above which the wall slip-velocity model will be used.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Поренту	Minimum Knudsen number	Required		KNMN 10			
	Keyword Usage		Optional keyword. It is relevant only when the slip velocity model is used. See also SLIP.				
	Reactor Models	Cylindrical Sh	Cylindrical Shear Flow Reactor				
		Planar Shear F	Planar Shear Flow Reactor				
коит	List of species names v		•	nted to the diagnostic the history.plt file for PaSRs.			
Output	A maximum number o						
	Parameters	Optional/Reqd.	Units	Examples			
	List of species names	Required		KOUT H2 O2 H2O H OH			
	Keyword Usage		Optional keyword. By default, none of the species				
		fractions are pri	nted.				

Keyword	Definition					
		Closed Partial	ly Stirred Reac	tor (PaSR)		
		 Partially Stirre 				
		Premixed Lam				
		Premixed Laminar Flame-speed Calculation				
LG- DT	Controls the time interv XMLdata.zip) using a log	al for data to be written to the XML Solution File (e.g., arithmic time scale.				
Solver	Parameters	Optional/Reqd.	Units	Examples		
30.76.	Logarithmic time-step	Required	ALOG10(sec)	LGDT 1.0		
	Keyword Usage		tep used is end	OTSV nor LGDT are set, ding time minus the 00.		
	Reactor Models	Normal Incident Shock				
Normal Reflected Shock						
Reactor Property	initially from one file to the other, with file values forming the			from the inlet values,		
	Keyword Usage	Optional keyword. By default, a plateau profile is used for Opposed-flow Flames (PLAT). For transient CVD Reactors, the default initial gas species profiles are assumed axially uniform with mole fractions specified by INIT; the keyword is ignored for steady-state CVD Reactor simulations.				
	Reactor Models	Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor				
LO-	Piston offset to crank ra-	dius ratio.				
DR	Parameters	Optional/Reqd.	Units	Examples		
Reactor Property	Ratio of piston offset to crank radius.	Required	None	LODR 0.1		
	Keyword Usage	Optional keywo	rd. Default = 0	0.0.		
	Reactor Models	IC HCCl Engin	e			
		Multi-zone HC	CCI Engine			
		SI Engine Zon	al Simulator			

Keyword	Definition						
	Notes	The absolute of LOLR minus		must be less than the value			
		LODR < (LOL	R - 1).				
LOLR	Ratio of the length of the	he engine connecti	ng rod to the	crank radius.			
D	Parameters	Optional/Reqd.	Units	Examples			
Reactor Property	Connection rod to crank radius ratio	Required		LOLR 5.			
	Keyword Usage	Optional keywo	Optional keyword. By default, this ratio is 33.3.				
	Reactor Models	IC HCCl Engine SI Engine Zon					
LPRT Output	rates of progress of individual surface reactions. This can be informa						
	Keyword Usage	'	Optional keyword. By default, there is no extended printing of surface rate information.				
	Reactor Models	Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flo	Stagnation Flow CVD Reactor				
LSCL	Sets the length scale (c numbers.	m) for the calculati	n) for the calculation of gas and surface Damkohler				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Toperty	Length scale	Required	cm	LSCL 3.			
	Keyword Usage	Optional keywo	Optional keyword. By default, the length scale is 1 cm.				
	Reactor Models	Mechanism A	nalyzer				
LUMP- TO		•	ach to species mass conservation closure. In this case, sumed to be a diluent and its fraction is set to one minus				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Toperty	Species name	Required		LUMPTO AR			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models		Cylindrical Shear Flow ReactorPlanar Shear Flow Reactor				
		This is only used t	his is only used to calculate an effective diffusion nensionalizing the reaction rate constants.				
				e constants.			
Reactor			reaction rate	e constants. Examples			
MAJ Reactor Property	coefficient when non-d	imensionalizing the	reaction rate				

Keyword	Definition				
	Keyword Usage Reactor Models	Optional keyword. The default is to use the gas species with the second largest mole fraction (from the XBTH input) in the bath-gas composition. If the gas-phase bath-gas composition is not specified, the default is to use the second species in the mechanism. • Mechanism Analyzer			
			·		
MAXIT Solver	step to solve the transient value to give the integrat hard to solve (stiff or very "nonlinear solver failed to	umber of iterations the integrator solver can take per at problem. The default is 4 and you should increase this cor greater chance to solve your problem if it is very y nonlinear or discontinuous) or if the run fails with a converge repeatedly" message.			
	Parameters	Optional/Reqd.	Units	Examples	
	Iteration number	Required		MAXIT 10	
	Keyword Usage Reactor Models	Optional keyworClosed Homos		December	
		 Closed Partially Stirred Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Honeycomb Reactor IC HCCI Engine Multi-Zone HCCI Engine Simulator Partially Stirred Reactor (PaSR) Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor 			
		Plasma Plug FPlasma PSR	low Reactor		
		• Plug Flow Rea	ctor		
		Rotating Disk	CVD Reactor		
		SI Engine Zona	al Simulator		
		Stagnation Flo	ow CVD Reacto	or	
MAX- TIME Solver	pseudo-time stepping alg stiff problems to allow TV	mes the steady state solver TWOPNT will use its gorithm. You may need to increase this value for very WOPNT to find a solution by letting it switch between and time stepping more than 100 times.			

Keyword	Definition	Definition				
•	Parameters	Optional/Regd.	Units	Examples		
	Maximum steady state iterations	Optional		MAXTIME 200		
	Keyword Usage	'	Optional keyword. By default, the maximum number of time stepping operations is 100.			
	Reactor Models	Cylindrical She	Cylindrical Shear Flow Reactor			
			 Diffusion or Premixed Opposed-flow Flame Non-reactive Gas Mixer 			
		R)				
		abilized Flame				
		eed Calculation				
		CVD Reactor	D Reactor			
		Stagnation Flo	Stagnation Flow CVD Reactor			
	Notes	SSMAXITER mu	• SSMAXITER must be >=1.			
MCUT Reactor Property	Minimum number of particles required to "switch on" the surface rate calculations (coagulation and surface reaction). The default value is 1 [particles/cm ³].					
	Parameters	Optional/Reqd.	Units	Examples		
	Material name	Required		MCUT C(B) 100		
	Cutoff number density	Required	particles/cm ³	MCUT C(B) 100		
	Keyword Usage	Optional keywor	Optional keyword.			
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor			
		Closed Plasma	Closed Plasma Reactor			
			Cylindrical Shear Flow Reactor			
			Honeycomb Monolith Reactor IC HCCL Engine			
		• IC HCCI Engine	 IC HCCI Engine Perfectly Stirred Reactor (PSR) 			
		Perfectly Stirre	d Reactor (PS	B)		
		Perfectly StirrePlanar Shear F		R)		

Keyword								
	Definition							
		 Plasma Plug F 	low Reacto	or				
		Plug Flow Rea	actor					
		SI Engine Zonal Simulator						
MIX	Use a mixture-average diffusion fluxes.	model for calculati	ng the tran	sport coefficients and				
Reactor Property	Keyword Usage	Optional keywo	•	ult, mixture-averaged				
	Reactor Models	Cylindrical Sh	ear Flow Re	eactor				
		• Diffusion or P	remixed Op	pposed-flow Flame				
		Planar Shear	Flow Reacto	or				
		 Premixed Lan 	ninar Burne	r-stabilized Flame				
		 Premixed Lan 	ninar Flame	-speed Calculation				
		Rotating Disk	Rotating Disk CVD Reactor					
	Stagnation Flow CVD Reactor							
MIX	Flag indicating a mixir	mixing-only problem, where chemistry will be ignored.						
Reactor Property	Keyword Usage	Optional keyword. This is the default. See also CHEM and EQUI.						
rioperty	Reactor Models	Closed Partial	Closed Partially Stirred Reactor (PaSR)					
		Partially Stirred Reactor (PaSR)						
		Partially Stirre	ed Reactor (PaSR)				
FRAC- BI-	equal to its stoichiome should be given and it	on the fuel side, the	at is, betwe	PaSR) een the mixture fraction value greater than unity the stoichiometric mixture				
FRAC- BI-	equal to its stoichiome should be given and it fraction.	on the fuel side, the etric mixture fraction means more grid p	at is, between and 1. A vooints near	een the mixture fraction value greater than unity the stoichiometric mixture				
MIX- FRAC- BI- AS_FUEL	equal to its stoichiome should be given and it fraction. Parameters	on the fuel side, the tric mixture fraction means more grid proportional/Reqd.	at is, betwe	een the mixture fraction value greater than unity the stoichiometric mixture				
FRAC- BI- AS_FUEL	equal to its stoichiome should be given and it fraction.	on the fuel side, the etric mixture fraction means more grid p	at is, between and 1. A vocation	een the mixture fraction value greater than unity the stoichiometric mixture				
FRAC- BI- AS_FUEL Reactor	equal to its stoichiome should be given and it fraction. Parameters	on the fuel side, the tric mixture fraction means more grid process of the contract of the con	at is, between and 1. A vocints near	een the mixture fraction value greater than unity the stoichiometric mixture				
FRAC- BI- AS_FUEL Reactor	equal to its stoichiome should be given and it fraction. Parameters Bias factor for grid	on the fuel side, the tric mixture fraction means more grid process of the contract of the con	at is, between and 1. A vocants near Units ord.	een the mixture fraction value greater than unity the stoichiometric mixture Examples MIXFRACBIAS_FUEL 1.2				
FRAC- BI- AS_FUEL Reactor	equal to its stoichiome should be given and it fraction. Parameters Bias factor for grid Keyword Usage Reactor Models Bias factor for the grid equal to its stoichiome	on the fuel side, the tric mixture fraction means more grid process means more grid process means more grid process means more grid process means more grid for corresponding grid choice. Required keyword on the oxidizer side etric mixture fraction mixture fraction.	units Units Ord. e, that is, between and 1. A vicinity near	een the mixture fraction value greater than unity the stoichiometric mixture Examples MIXFRACBIAS_FUEL 1.2				

Keyword	Definition					
Reactor Property	Bias factor for grid	Required for cor- respond- ing grid choice.		MIXFRACBIAS_OXID 1.2		
	Keyword Usage	Required keywo	ord.			
	Reactor Models	Diffusion Flan	nelet Generato	or		
MIXT	The characteristic time	of the mixing proc	ess in the rea	ctor.		
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Characteristic time	Required	sec	MIXT 1.0E-3		
	Reactor Models	Closed PartialPartially Stirre				
MLMT Solver	Specifies the minimum value of gas mass in the zones. By default, the minimum zone mass is set to 10^{-6} g.					
Solver	Parameters	Optional/Reqd.	Units	Examples		
	Value of the b parameter	Optional		MLMT 1.0E-5		
	Keyword Usage	Optional keyword.				
	Reactor Models	SI Engine Zonal Simulator				
MMASS MMASS	The reactor wall temperature will be obtained by solving energy conservation equation for the reactor wall. It uses the thermal mass of the reactor wall and the heat transfer coefficient between the inner wall surface and the gas mixture inside the reactor. MMASS specifies the thermal mass of the reactor wall.					
	Parameters	Optional/Reqd.	Units	Examples		
	Material name	Option- al. If no material is specified, the same value will be used for all materials.		MMASS material1 500		
	Thermal mass	Required	cal/K	MMASS 500		
	Reactor number (PSR clusters only)	Option- al. If no number is given, the keyword		MMASS material1.500		

Keyword	Definition						
	Keyword Usage Reactor Models	GMHTC . For Plumass is cal/(cm- Closed Homogone Closed Plasma Honeycomb M IC HCCI Engine Non-reactive Control Perfectly Stirre Plasma PSR Plasma Plug F Plug Flow Rea	to apply to all reactors in a cluster. Optional keyword. This keyword must be used with GMHTC . For Plug Flow Reactors the unit of thermal mass is cal/(cm-K). • Closed Homogeneous Batch Reactor • Closed Plasma Reactor • Honeycomb Monolith Reactor • IC HCCI Engine • Non-reactive Gas Mixer • Perfectly Stirred Reactor (PSR) • Plasma PSR • Plasma Plug Flow Reactor				
MO-	Turn on or off solution	• SI Engine Zon		a plug-flow simulation			
MEN	Turn on or off solution of the momentum equation for a plug-flow simulation. Parameters Optional/Reqd. Units Examples						
Reactor Property	String "ON" or "OFF" to toggle the momentum equation	Required		MOMEN ON MOMEN OFF			
	Keyword Usage	Optional keyword. By default, the momentum equation is solved (ON).					
	Reactor Models	 Honeycomb Reactor Plasma Plug Flow Reactor Plug Flow Reactor					
MORD	Maximum order of inte	egration used by the	transient so	olver.			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Maximum order of integration	Required		MORD 3			
	Keyword Usage	Optional keyword integration is 5.	d. By default	the maximum order of			

Keyword	Definition							
	Reactor Models • Cylindrical Shear Flow Reactor							
		Planar Shear F	low Reacto	or				
		Rotating Disk	Rotating Disk CVD Reactor					
	Stagnation Flow CVD Reactor							
MQA-	The external heat transfer (heat loss) area fraction of each zone.							
FR	Parameters	Optional/Reqd.	Units	Examples				
Reactor	Area fraction	Required		MQAFR 0.15 4				
Property	Zone number	Required		MQAFR 0.15 4				
	Keyword Usage	Optional keywo	rd.					
	Reactor Models	Multi-Zone H	CCI Engine	Simulator				
FX Reactor Property	original discretization scheme might not conserve species fluxes across the flame zone. With this new scheme, species mass fluxes are always conserved. Since accurate mass fluxes require fine resolution of species profiles, this new scheme in general incurs more grid points and longer run time than the original scheme does. The differences between major species solutions obtained by these two schemes are subtle.							
	Keyword Usage	Optional keyword. By default, the original discretization scheme is used.						
	Reactor Models	 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 						
MULT	Use full multicompon See also MIX.	ent model for the tra	nsport coe	efficients and diffusion fluxes.				
Reactor Property	Keyword Usage	Optional keyword. By default, mixture-averaged transport is used.						
	Reactor Models	Cylindrical Shear Flow Reactor						
		Diffusion or Premixed Opposed-flow Flame						
		Planar Shear F	Planar Shear Flow Reactor					
		 Premixed Lan 	Premixed Laminar Burner-stabilized Flame					
			Premixed Laminar Flame-speed Calculation					
		Rotating Disk						
		Stagnation Flo	ow CVD Rea	actor				
MZMAS	beginning of the simi	ulation. Use either <mark>V</mark> C	actions. MZM will compute the exact zone volumes at the ation. Use either VOL or MZMAS to set up the initial zone be issued if both keywords are used in the same input file.					

Keyword	Definition							
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	zone mass fraction	Required		MZMAS 0.2 7				
	zone number	Required		MZMAS 0.2 7				
	Keyword Usage	Optional keywor	rd.					
	Reactor Models	Multi-Zone HC	Multi-Zone HCCI Engine Simulator					
NADAP Solver		adaptive points dur		hich is the default). NADAP tin uta ti on run if they have				
	Keyword Usage	Optional keywor	nkin-Pro u	ult, ADAP is the default in ser interface and NADAP is and line.				
	Reactor Models	Closed Plasma	Reactor					
		Closed Homog	geneous R	eactor				
		Honeycomb R	eactor					
		IC HCCl Engine	IC HCCI Engine Model					
		Multi-Zone HC	Multi-Zone HCCI Engine Simulator					
		• Plasma Plug F	Plasma Plug Flow Reactor					
		Plug Flow Reactor						
		SI Engine Zonal Simulator						
NADP	Number of mesh poin refinement.	ts that <i>Twopnt</i> can a	add at one	time during each grid				
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Number of mesh points	Required		NADP 2				
	Keyword Usage	the number of p	Optional keyword. By default, no maximum is set for the number of points that can be added at once by the Twopnt solver.					
	Reactor Models	Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		Premixed Lam	Premixed Laminar Flame-speed Calculation					
		Rotating Disk	Rotating Disk CVD Reactor					
		Stagnation Flo	Stagnation Flow CVD Reactor					
	Notes	This keyword restart run.	can not be	changed on a continuation or				

Keyword	Definition						
		0 -1	-ll- (0.5				
NCANG Reactor Property	Run the simulation for 180 degrees of crank angle (0.5 revolution). If the "starting crank angle" (DEGO) is set to 180 degrees, the simulation will stop at crank angle = 360 (=180+180) degrees (i.e., top dead center). Use one of TIME, NREV, or NCANG to set the simulation time. The last keyword (of the three) in the input file takes effect.						
	Parameters	Optional/Reqd.	Units	Examples			
	number_of_crank_angles	Required	degrees	NCANG 180			
	Keyword Usage	Optional keyword.					
	Reactor Models	IC HCCl EngineSI Engine Zon					
NCFIT	Optional number of time points used to determine the slope when used in conjunction with keyword CTOL.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
. Toperty	Number of time points	Required		NCFIT 100			
	Keyword Usage	Optional keyword. NCFIT is only used in conjunction with CTOL.					
		Closed Partially Stirred Reactor (PaSR)Partially Stirred Reactor (PaSR)					
	Notes	Default value is 100.					
ND- PR	Frequency of output printime steps.	ting during time	integration, q	given as the number of			
Output	Parameters	Optional/Reqd.	Units	Examples			
or	Print frequency	Required		NDPR 50			
Solver	Keyword Usage	Optional keyword. By default, the print frequency is at every 1 time step.					
	Reactor Models	 Closed Partial 	y Stirred Rea	ctor (PaSR)			
		Diffusion or Premixed Opposed-flow Flame					
		Partially Stirred Reactor (PaSR)					
NE- WRUN	Inclusion of this keyword another problem to follow use the solution of the pr	w the END keywo	rd. The follow	wing problem does not			
Reactor Property	quite different to that pro- keywords are written seq	ovided by CNTN .	The solution	s resulting from NEWRUN			
	Keyword Usage	Optional keywo	rd. By default	, no new run is expected.			
	Reactor Models	Chemical and	Phase Equilil	orium Calculations			
		Closed Homog	geneous Bato	ch Reactor			

Keyword	Definition					
		Closed Plasma	a Reactor			
		Cylindrical Sh	ear Flow Rea	ctor		
		Honeycomb N	Monolith Rea	ctor		
		IC HCCI Engine				
		 Mechanism A 	nalyzer			
		 Non-reactive 	Gas Mixer			
	Normal Incident Shock Normal Reflected Shock					
		 Partially Stirre 				
		Perfectly Stirre		OSB)		
	 Planar Shear Flow Reactor Plasma PSR 					
		Plasma Plug F				
		Plug Flow Rea				
		Rotating Disk	CVD Reactor	r Using Transient Solver		
		SI Engine Zon	al Simulator			
		Stagnation Flow CVD Reactor Using Transient Solver				
NINT- G- STEPS	is too long and/or the internal time steps. This	system of equation s control acts as a c or may take a correc	s is too stiff, theck to avoi	When the integration time the solver may take many id long, infinite, or hung (such as trying a few more rmation).		
Property	Parameters	Optional/Reqd.	Units	Examples		
	Maximum value of SSDR	Optional		NINTGSTEPS 10000		
	Keyword Usage		Optional keyword. The default value for the Diffusion Flamelet Generator is 5000.			
	Reactor Models	Diffusion Flamelet Generator				
NJAC			ady state pro	mum number of Newton		
Solver	is evaluated. If NJAC=1,	, then a full Newtor	n method wi	ll result.		
Solver	·	, then a full Newtor Optional/Reqd.	Units	Examples		

Keyword	Definition							
	Keyword Usage	Optional keywor at 20.	d. By default,	the retirement age is set				
	Reactor Models	Cylindrical She	ear Flow React	or				
		Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		Non-reactive 0	Non-reactive Gas Mixer					
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					
		• Planar Shear F	low Reactor					
		• Plasma PSR						
		 Premixed Lam 	inar Burner-sta	abilized Flame				
		 Premixed Lam 	inar Flame-spe	eed Calculation				
		Rotating Disk	CVD Reactor					
		Stagnation Flo	w CVD Reacto	pr				
NMOM Reactor	Number of moments used in the simulation for tracking particle size distribution. MINMO(=3) \leq NMOM \leq MAXMO(=6). If NMOM = 6, then 6 moments of the size distribution function are solved, from the 0 th moment to the 5 th moment.							
Property	Parameters	Optional/Reqd.	Units	Examples				
	Number of moments	Required		NMOM 6				
	Keyword Usage	Optional keywor	d. Default is t	he MINMO value.				
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor						
		Cylindrical Shear Flow Reactor						
		Honeycomb N	lonolith React	or				
		IC HCCl Engine	5					
		Perfectly Stirre	ed Reactor (PS	R)				
		• Planar Shear F	low Reactor					
		Plasma PSR						
		Plasma Plug Fl	ow Reactor					
		• Plug Flow Rea	ctor					
		SI Engine Zona	al Simulator					
	31 Engine Zonai Simulator							

Keyword	Definition						
NNEG Solver	vector to be non-neg	ent solver to try to constrain all components of the solution ative. This is usually unnecessary, but it may help to use we solution components appear to be causing problems in					
	Keyword Usage	Optional keyword. By default, the solution is not constrained and is not usually necessary.					
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Partially Stirred Reactor (PaSR)					
		Closed Plasma Reactor					
		Honeycomb Reactor					
		IC HCCI Engine					
		Non-reactive Gas Mixer					
		Partially Stirred Reactor (PaSR)					
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR					
		Plasma Plug Flow Reactor					
		Plug Flow Reactor					
		SI Engine Zonal Simulator					
	Notes	NNEG can be added to but cannot be removed from a continuation run.					
NO- AGG	Turns off particle agg	regation effect. Particle aggregation is included by default g module.					
Reactor	Parameters	Optional/Reqd. Units Examples					
Property	Material name	Required NOAGG SOOT					
	Keyword Usage	Optional keyword.					
	Reactor Models	Closed Homogeneous Batch Reactor					
		Closed Plasma Reactor					
		Diffusion or Premixed Opposed-flow Flame					
		IC HCCI Engine					
		Multi-Zone HCCI Engine Simulator					
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR					
	•	i lasina i sit					

Definition				
Definition	Premixed Laminar Burner-stabilized Flame			
	Fremixed Laminal Burner-Stabilized Flame			
Exclude coagulation of p	articles.			
Keyword Usage	Optional keyword.			
Reactor Models	Closed Homogeneous Batch Reactor			
	Closed Plasma Reactor			
	Cylindrical Shear Flow Reactor			
	Honeycomb Monolith Reactor			
	IC HCCI Engine			
	Perfectly Stirred Reactor (PSR)			
	Planar Shear Flow Reactor			
	Plasma PSR			
	Plasma Plug Flow Reactor			
	Plug Flow Reactor			
	SI Engine Zonal Simulator			
This keyword specifies that the rates of all gas-phase reactions will be set to zero, regardless of the values specified in the Gas-phase Kinetics input.				
Keyword Usage	Optional keyword. By default, gas chemistry is turned on. See also CHEM.			
Reactor Models	Rotating Disk CVD Reactor			
	Stagnation Flow CVD Reactor			
is being solved, the inter In this case, solution to the	hen this keyword is specified and an energy equation mediate solution at a fixed temperature will be skipped. he energy and species equations will be attempted user-specified initial guess.			
Keyword Usage	Optional keyword. By default, the fixed temperature solution is obtained before adding the energy equation.			
Reactor Models	 Diffusion or Premixed Opposed-flow Flame Non-reactive Gas Mixer 			
	Perfectly Stirred Reactor (PSR)			
	Plasma PSR			
	Premixed Laminar Burner-stabilized Flame			
	Premixed Laminar Flame-speed Calculation			
	Keyword Usage Reactor Models This keyword specifies the regardless of the values of t			

Keyword	Definition							
, 5. 4		Rotating Disk	CVD React	tor				
		Stagnation Floring	Stagnation Flow CVD Reactor					
	Notes	See also, ENRO	G and ENG	E keywords.				
NO- JC	Flag indicating the nois used to integrate th		od (no Jaco	obian) of the DVODE solver				
Solver	Keyword Usage	Optional keywo used.	Optional keyword. By default, the DASPK solver will be					
	Reactor Models	Closed Partial	ly Stirred F	Reactor (PaSR)				
		Partially Stirre	d Reactor	(PaSR)				
NONE	Turns default output o	off for all of Surfther	m 's tables	s. One can use this keyword				
Output	in combination with another keyword below, to turn on output from only a few features. This keyword will also turn off all previously specified output from keywords given before it.							
	Keyword Usage		Optional keyword. By default, the ALL output will be					
	Reactor Models	Mechanism A	Mechanism Analyzer					
NONR	This keyword specifies first stage in the soluti		• .	m will not be solved as the				
Reactor Property	Keyword Usage	Optional keywo is solved first.	Optional keyword. By default, the non-reacting problem is solved first.					
	Reactor Models	 Rotating Disk 	Rotating Disk CVD Reactor					
		Stagnation Flow CVD Reactor						
NOTP	Exclude thermophores	is of particles.						
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Material name	Required		NOTP SOOT				
	Keyword Usage	'	Optional keyword. By default, thermophoresis of particles is excluded.					
	Reactor Models	Diffusion or P	Diffusion or Premixed Opposed-flow Flame					
		Opposed-flov	Opposed-flow Flame					
		Premixed Laminar Burner-stabilized Flame						
		Premixed Lan	Premixed Laminar Flame-speed Calculation					
NOTP	Do not solve for the ir using the Twopnt proc		surface co	ncentrations at the walls				
Solver	Keyword Usage		-	ult, the initial <i>Twopnt</i>				

Keyword	after release 19.0 Definition						
keyword		. Culindrical Ch	aar Flaur D				
	Reactor Models		Cylindrical Shear Flow ReactorPlanar Shear Flow Reactor				
NPAR	The number of statistication form the stochastic ens		used by t	he Monte Carlo process to			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Number of particles	Required		NPAR 1000			
	Keyword Usage	Required keywo	rd.				
	Reactor Models	Closed PartialPartially Stirre					
NP_FUEL	Number of points on the fuel side, that is, between the mixture fraction equal to its stoichiometric mixture fraction and 1.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
гюренту	Number of grid points	Required for cor- respond- ing grid choice		NP_FUEL 11			
	Keyword Usage	Required keyword.					
	Reactor Models						
NP_OX- ID	Number of points on the to its stoichiometric mix			en the mixture fraction equal			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Number of grid points	Required for cor- respond- ing grid choice		NP_OXID 11			
	Keyword Usage	Required keywo	Required keyword.				
	Reactor Models	Diffusion Flamelet Generator					
NPIN	The minimum number replaced by those of th	•		tor whose properties will be			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
rioperty	Number of particles	Required		NPIN 5			
	Keyword Usage	Optional keywo of the event par	•	ult, the minimum number			
	Reactor Models	Partially Stirred Reactor (PaSR)					
NPSR	Number of perfectly sti	rred reactors (PSRs	or zones	in a reactor cluster.			

Keyword	Definition							
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Number of reactors or zones	Required		NPSR 5				
	Keyword Usage	Optional keyworkset to 1.	Optional keyword. By default, the number of PSRs is set to 1.					
		Non-reactive 0	Non-reactive Gas Mixer					
		Perfectly Stirre	ed Reactor (PS	R)				
		Plasma PSR						
NPTS Reactor Property	equi-spaced mesh of NPTS points across the domain, in the axial director Flames and CVD Reactors, and in the cross-flow direction for Shear Fl							
	Parameters	Optional/Reqd.	Units	Examples				
	Number of mesh points	Required		NPTS 50				
_	Keyword Usage		Optional keyword. By default, the number of initial mesh points is set to 6.					
	Reactor Models	Cylindrical She	ear Flow React	or				
		• Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame					
		Planar Shear F	Planar Shear Flow Reactor					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		 Premixed Lam 	Premixed Laminar Flame-speed Calculation					
		 Rotating Disk 	Rotating Disk CVD Reactor					
		Stagnation Flo	Stagnation Flow CVD Reactor					
NREV	The number of revolution simulation. Fractional va			ne the end time of the				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples				
. τορείτη	Number of revolutions	Required		NREV 1				
	Keyword Usage	Optional keywork specified.	rd. Either NRE\	or TIME must be				
	Reactor Models	IC HCCl Engine	e					
		SI Engine Zon	al Simulator					
	Notes	On a restart, the determined from the det		crank revolutions will be of TIME.				

Keyword	Definition							
NSOL XMLI		nore than one solut	ion is store	or the initialization (XMLI) or ed on the XML Solution File IMLdata.zip).				
	Parameters	Optional/Reqd.	Units	Examples				
	Solution used	Required		NSOL 3				
	Keyword Usage		Optional keyword. By default, the last solution saved in the XML Solution File.					
	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations					
		Closed Homo	geneous B	atch Reactor				
		Closed Plasma	a Reactor					
		 Cylindrical Sh 	ear Flow R	eactor				
		• Diffusion or P	remixed O	pposed-flow Flame				
		Honeycomb F	Reactor					
		IC HCCI Engin	IC HCCI Engine					
		Mechanism Analyzer						
		Non-reactive Gas Mixer						
		Normal Incident Shock						
		Normal Reflect	ted Shock					
		Perfectly Stirred Reactor (PSR)						
		Planar Shear I	low React	or				
		• Plasma Plug F	low Reacto	or				
		• Plasma PSR						
		Plug Flow Reactor						
		Premixed Lan	ninar Burne	er-stabilized Flame				
		Premixed Lan	ninar Flame	e-speed Calculation				
		Rotating Disk	CVD React	tor				
		SI Engine Zon	al Simulat	or				
		Stagnation Float	ow CVD Re	eactor				
NSTEPS_H			-	maximum value of SSDR to be taken on a subsequent				
Reactor Property	step as SSDR used in p	revious step + fixed	dStepSize v	where the fixedStepSize = ple, if the specified nominal				

Keyword	rd Definition						
	and maximum values are 1 and 21, respectively, then 5 steps will yield the constant size to be 4 and result in the sequence of SSDR values as {1, 5, 9, 13, 17, 21}.						
	Continuations to the r	naximum value can	be turned	off by setting this input to			
	Parameters	Optional/Reqd.	Units	Examples			
	Number of steps to maximum SSDR	Required		NSTEPS_HIGH 5			
	Keyword Usage	Required keywo	ord.				
	Reactor Models	• Diffusion Flan	nelet Gene	erator			
NSTEPS_L Reactor Property	simulator computes the constantFactor * SSDR log(constantFactor) = nominal and minimum	ne new SSDR to be u _Used_in_previous log(SSDR_min/SSDR n values are 1 and 0	used on a step. That _nominal) .001, respe	·			
	0.01, 0.001}. Continuations to the minimum value can be turned off by setting this input to 0.						
	Parameters	Optional/Reqd.	Units	Examples			
	Number of steps to maximum SSDR	Required		NSTEPS_HIGH 5			
	Keyword Usage		Required keyword.				
	Reactor Models	Diffusion Flan	nelet Gene	erator			
NTOT	Maximum number of	grid points allowed	during me	esh adaptation.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Number of grid points	Required		NTOT 200			
	Keyword Usage	grid points is 10 Stagnation Flow Premixed Oppo	Optional keyword. The default maximum number of grid points is 100 for: Rotating Disk CVD Reactor, Stagnation Flow CVD Reactor; 250 for Diffusion or Premixed Opposed-flow Flame, Premixed Laminar Burner-stabilized Flame, Premixed Laminar Flame-speed Calculation				
	Reactor Models	Premixed LanPremixed LanRotating Disk	 Diffusion or Premixed Opposed-flow Flame Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor 				

Keyword	Definition						
	Notes			changed on a restart or			
		continuation	run.				
		• In previous ve	ersions, NM	AX keyword was used.			
NZONE Reactor Property	keyword MUST be use	d with the ICEN key	word or ar	lti-zone simulation. This n error will be issued. The one model will be turned on			
	Parameters	Optional/Reqd.	Units	Examples			
	Number of zones	Required		NZONE 5			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Multi-Zone H	CCI Engine	Simulator			
OINL	The inlet-gas spin rate.	. At the inlet $x=L$, $v/r=$ OINL.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Inlet-gas spin rate	Required	rpm	OINL 100			
	Keyword Usage	Optional keywo 0.0.	Optional keyword. By default, the inlet-gas spin rate is 0.0.				
	Reactor Models	Rotating Disk	Rotating Disk CVD Reactor				
OMEG	The disk rotation rate;	also specifies the Ro	otating Dis	k CVD Reactor model.			
Problem	Parameters	Optional/Reqd.	Units	Examples			
Туре	Disk rotation rate	Required	rpm	OMEG 1000			
and	Keyword Usage	Required keywo	Required keyword. See also STAG.				
Reactor Property	Reactor Models	Rotating Disk	Rotating Disk CVD Reactor				
OX- ID Inlet or Reactor Property	system, or for the initial is specified (EQUI). It refraction. One of these are used to determine calculation (EQUI). Any oxidizer, or product. The	al conditions in a clo must be followed by OXID inputs must a the inlet composition of given species can be sum of all the oxi g message will be p	osed syster of a species opear for e on based of participate dizer mole	n inlet stream in an open m, when an equivalence ratio name and then the mole each oxidizer species, which on an equivalence-ratio e simultaneously as a fuel, e fractions should equal one. It the mole fractions will be			
	Parameters	Optional/Reqd.	Units	Examples			
	Inlet stream name (PSRs only)	Optional If there is no stream name than the oxidizer mole		OXID mixture1 O2 0.5			

Vonneard	Definition				
Keyword	Definition				
		fraction composition applies to the default or all defined streams.			
	Species name	Required		OXID 02 0.5	
	Fuel fraction	Required	mole fractions	OXID O2 0.5	
	Keyword Usage	Required keyword when EQUI option is used for an inlet stream or for the initial conditions in a reactor.			
	Reactor Models	 Closed Homog Honeycomb R IC HCCI Engine Perfectly Stirre Plasma Plug F Plasma PSR Plug Flow Rea SI Engine Zona 	eactor e ed Reactor low Reactor ctor al Simulator		
	Notes	 The OXID keys individually fo The OXID keys 	 The mole fractions are of the oxidizer itself, not for the entire composition. The OXID keywords must be changed as a set, not individually for a restart run. The OXID keywords must be changed as a set, not individually for continuation run. 		

10.3. Alphabetical Listing of Keywords [P-S]

Table 10.3: Alphabetical Listing of Keywords [P-S]

Keyword	Definition			
P1A	Pressure before the incident shock.			
Reactor	Parameters	Optional/Reqd.	Units	Examples
Property	Pressure	Required	atm	P1A 1.0
	Keyword Usage	Optional Keyword. The shock velocity and any two of temperature, pressure, or density must be specified		

Keyword	Definition						
,		for conditions b	efore the inci	dent shock. See also T1			
	Reactor Models	Normal Incide	nt Shock				
		Normal Reflect	Normal Reflected Shock				
P2A	Pressure after the incid	lent shock.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Pressure	Required	atm	P2A 2.3			
	Keyword Usage	1 -	be specified t	f temperature, pressure, for conditions after the nd RHO2 .			
	Reactor Models	Normal IncideNormal Reflect					
РЗА	Pressure after the refle	cted shock, given as $p_{\scriptscriptstyle 5}$ in the equations.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Pressure	Required	atm	P3A 2.3			
	Keyword Usage	or density must	Optional Keyword. Any two of temperature, pressure, or density must be specified for conditions before the reflected shock. See also T3 and RHO3.				
	Reactor Models	Normal Reflect	Normal Reflected Shock				
PARP	Partial-pressures of the file.	gas-phase species	will be used i	n the diagnostic output			
Output	Keyword Usage	'	Optional keyword. By default, mass fractions are printed, not partial pressures.				
	Reactor Models	Cylindrical Sho	ear Flow Reac	tor			
		Planar Shear F	Planar Shear Flow Reactor				
PB- DEN	This keyword resets all to the value given by t	•	ies defined in	the surface mechanism			
Output	Parameters	Optional/Reqd.	Units	Examples			
	material_name	Required	None	PBDEN ligA 2.15			
	bulk_density	Required	g/cm ³	PBDEN ligA 2.15			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Perfectly Stirre					

Keyword	Definition						
PDF	Request the probability number of PDF entries		calar to be	output to a <i>pdf.plt</i> file. Any			
Output	Parameters	Optional/Reqd.	Units	Examples			
	Scalar (temperature or species name)	Required		PDF T			
	Keyword Usage	Optional keywor	Optional keyword. By default, no PDF is printed.				
	Reactor Models	Closed Partiall	y Stirred Re	eactor (PaSR)			
		Partially Stirre	d Reactor (PaSR)			
PENG	Include the energy cor	nservation equation	for particle	25.			
Reactor	Keyword Usage	Optional keyword.					
Property	Reactor Models	Opposed-flow	Flame				
		Premixed Lam	inar Burne	r-stabilized Flame			
		 Premixed Lam 	Premixed Laminar Flame-speed Calculation				
PEST	Specifies an estimate of	of the equilibrium pr	the equilibrium pressure.				
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Pressure	Required	atm	PEST 1.1			
Πορειτή	Keyword Usage	equilibrium pres	Optional keyword. May help convergence to the equilibrium pressure, or assure an appropriate equilibrium pressure is calculated when a second, trivial solution exists.				
	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations				
PFAL	Analyze the pressure fa	all-off of a gas phase	e reaction,	i.e., creates a table of reaction			
Output				ture. The ALL option is the			
σαιραί	only certain reactions,	all of the reactions. they may be option utput) or by typing a	If reaction ally specific	information is desired for ed by their number (given uplicate of the reaction			
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option- al, de- fault is ALL		PFAL ALL			
	NONE option	Option- al, de- fault is ALL		PFAL NONE			
	Gas reaction	Option-		PFAL 2 5			
	number list	al, de-					

Keyword	Definition					
		fault is				
		ALL				
	Gas reaction expression	Option- al, de- fault is ALL		PFAL 2CH3(+M)<=>C2H6(+M)		
	Keyword Usage	Optional keywordetermined by t	•	the table output is NE keyword.		
	Reactor Models	Mechanism Analyzer				
PFLR			s of the particle moments to a slightly negative number room to search for a solution.			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
	Minimum bound	Required		PFLR -1.0d-06		
	Keyword Usage	Optional keywor	rd.			
	Reactor Models		Opposed-flow FlamePremixed Laminar Burner-stabilized Flame			
		Premixed Laminar Flame-speed Calculation				
PH	Constant pressure and	enthalpy constraint	S.			
Problem Type	Keyword Usage	Optional keyword. Exactly one problem type keyword must be included.				
Турс	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations			
	Notes	HP keyword is e	quivalent.			
PHIA	Set the upper limit of the gas pressure is varied.	ne pressure range (in atmospher	es) in tables where the		
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
	Pressure	Required	atm	PHIA 2.		
	Keyword Usage	Optional keywor atm (1000 Torr).	rd. By default,	the pressure is 1.315789		
	Reactor Models	Mechanism Ai	nalyzer			
	Notes	In previous ventors of Torr	 In previous versions, keyword PHIG was used with units of Torr 			
PLAN	Use a planar coordinate configuration.	system, which is a	ppropriate fo	r a Tsuji burner		
Reactor Property	Keyword Usage	Optional keywor	•	the coordinate system		
	Reactor Models	Diffusion or Pr	remixed Oppo	sed-flow Flame		

Keyword	Definition						
PLAT	Use a plateau profile to profile.	profile to set up initial solution estimates, rather than a linear					
Reactor Property	Keyword Usage	Optional keywo used.	Optional keyword. By default, the plateau profile is used.				
	Reactor Models	Diffusion or P	remixed Oppo	sed-flow Flame			
PLOA	Set the lower limit of the gas pressure is varied.	ne pressure range (pressure range (in atmospheres) in tables where the				
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Pressure	Required	atm	PLOA 1.0			
	Keyword Usage	Optional keywo 0.001315789 atr	•	the pressure is			
	Reactor Models	Mechanism A	nalyzer				
	Notes	In previous v units of Torr	In previous versions, keyword PLOW was used with units of Torr				
PLUG	Indicates that plug-flow equations will be solved and that the Reactor Model will be one of the family of Plug Flow Reactors.						
Reactor Property	Keyword Usage	Required keywo	Required keyword.				
	Reactor Models	Honeycomb R	Honeycomb Reactor				
		Plasma Plug Flow Reactor					
		• Plug Flow Rea	ctor				
PNDE Reactor Property	Assigns the initial (or estimate for steady-state calculations) number density of the particle consisting of the designated bulk species. The default value is 0. The reactor number is optional. When no reactor number is given, the same initial number density will apply to all reactors in the network. If neither PVFE nor PROE is given, the initial/estimate values of the moments are computed as $M_0 = \text{PNDE}$ $M_i = \left(\Delta C_{\text{nuc1}}\right) \times M_{i-1} 1 < i \leq \text{NMOM}$						
	Parameters	Optional/Reqd.	Units	Examples			
	Material name	Required		PNDE C(B) 1.0E10 4			
	Number density	Required	particles/cm ³	PNDE C(B) 1.0E10 4			
	Reactor number	Optional		PNDE C(B) 1.0E10 4			
	Keyword Usage	Optional keywo number density		value is value for the			
	Reactor Models	Closed Homo	geneous Batch	n Reactor			
		 Closed Plasma 	Closed Plasma Reactor				

Keyword	Definition					
		Cylindrical She	ear Flow React	or		
		Honeycomb N	Monolith React	or		
		IC HCCl Engine	e			
		Perfectly Stirre	ed Reactor (PSI	R)		
		Planar Shear F	low Reactor			
		 Plasma PSR Plasma Plug Flow Reactor Plug Flow Reactor SI Engine Zonal Simulator 				
PNDI Inlet	name to the named inl	ssigns the number density of the particle consisting of the designated material arme to the named inlet stream. The default value is 0. The stream name is otional if there is only one inlet.				
Property	Parameters	Optional/Reqd.	Units	Examples		
	Stream name	Optional if only one in-let.		PNDI exhaust C(B) 1.0E12		
	Material name	Required		PNDI exhaust C(B) 1.0E12		
	Mass density	Required	particles/cm ³	PNDI exhaust C(B) 1.0E12		
	Keyword Usage	Optional keywordensity is 0.	rd. The default	value for the mass		
	Reactor Models	Cylindrical She	ear Flow React	or		
		Honeycomb N	Monolith React	or		
		Perfectly-stirre	ed Reactor (PSI	R)		
		• Planar Shear F	low Reactor			
		• Plasma PSR				
	l .	Plasma Plug Flow Reactor				
		 Plasma Plug F 	low Reactor			
		Plasma Plug FPlug-flow Rea				
PNUM Reactor	Set the total number o The default is 10. Note logarithmic scale.	• Plug-flow Rea f pressure entries ir	ctor (PFR)	the gas pressure is varied. are determined on a		

Keyword	Definition							
	Number of pressures	Required		PNUM 10				
	Keyword Usage	Optional keywo	Optional keyword. By default, the number of pressures is 10. • Mechanism Analyzer					
	Reactor Models	Mechanism A						
PPRO	Reactor pressure profile specified as a function of time for transient 0-D homogeneous systems or as a function of distance for Plug Flow Reactors.							
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property Profiles	Time or Distance value, depending on Reactor Model	Required	sec or cm	PPRO 1.0E-4 1.0				
	Pressure	Required	atm	PPRO 1.0E-4 1.0				
	Reactor number (PSR clusters only)	Optional If no number is given, the profile described by the first two values is assumed to apply to all reactors in a cluster.		PPRO 1.0E-4 1.0 1				
	Keyword Usage	Optional keyword. By default, no profile is provided.						
	Reactor Models	Closed Homo	geneous Batcl	n Reactor				
		Closed Plasma						
				osed-flow Flame				
		·						
		Perfectly Stirr	ed Reactor (PS	SR)				
		• Plasma Plug F	low Reactor					
		• Plasma PSR						
		• Plug Flow Rea	actor					

Keyword	Definition						
PRDL	The Prandlt number use	d in the generalize	ad heat transfe	er correlation			
PNDL	Parameters		Units				
Reactor	Prandlt number	Optional/Reqd.	Units	PRDL 0.77			
Property		Required	 D (+				
	Keyword Usage	Optional keywor		the value is 0.7.			
	Reactor Models	IC HCCl Engine	e				
		SI Engine Zonal Simulator					
PRES Reactor Property	problem type, the pressu constant-pressure proble problems where pressure	pressure in atmospheres. Depending on the Reactor Model and be, the pressure specified can serve as the pressure constraint (for essure problems), as an initial guess for pressure (for steady-state here pressure is a variable), or as the initial reactor pressure (for sees where pressure is a variable). For the Mechanism Analyzer, this is pressure					
	Parameters	Optional/Reqd.	Units	Examples			
	Reactor pressure	Required	atm	PRES 1.0			
	Reactor number (PSR clusters only)	Optional If no		PRES 1.0 1			
		number is given, the keyword is assumed to apply to all reactors					
	Konnord Heada	in a cluster.	rd in most say	tos Optional konnuerd			
	Keyword Usage	Required keyword in most cases. Optional keyword only for Mechanism Analyzer, where the default is 1 atm.					
	Reactor Models	Chemical and	Phase Equilib	rium Calculations			
		Closed Homog	geneous Batch	n Reactor			
		 Closed Partiall 	y Stirred Reac	tor (PaSR)			
		 Closed Plasma 	Reactor				
		Cylindrical She	ear Flow React	tor			
		Diffusion or Pr	remixed Oppo	sed-flow Flame			
		Honeycomb R	eactor				
		IC HCCI Engine	е				

Keyword	Definition					
		Mechanism A	nalyzer			
		Non-reactive (Gas Mixer			
		Partially Stirre	d Reactor (Pa	aSR)		
		Perfectly Stirre	ed Reactor (P	SR)		
		Planar Shear F	low Reactor			
		• Plasma Plug F	low Reactor			
		Plasma PSR				
		• Plug Flow Rea	ctor			
		 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 				
	Rotating Disk CVD Reactor					
		 SI Engine Zonal Simulator Stagnation Flow CVD Reactor In previous version, PRMT was an alternate keyword that allowed pressure input in millitorr units, for 0-D homogeneous and plug-flow systems only. In previous versions, this was PBTH for the Mechanism Analyzer. 				
	Notes					
PRMN Reactor		efault) equilibrium is	value applied to the estimated values of the flame fault) equilibrium is used to determine product estimates.			
Property	Parameters	Optional/Reqd.	Units	Examples		
	Product fraction	Required	mole fractions	PRMN 1.0E-10		
	Keyword Usage	Optional keywor		t, the flame product		
	Reactor Models		 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 			
PRNT	Printing control. "PRNT	0" provides printed	output for o	only the solution (plus		
Output	sensitivity coefficients "PRNT 1" provides an a "PRNT 2" includes prinand time stepping pro	and rates-of-produced ditional summary ting at every stage occedure. More printir	tion coefficient of the Twoproises is sometime.	· ·		

Keyword	Definition					
	However, since the increa how the solution is prograprinting.			ction evaluations to show eases with increased		
	Parameters	Optional/Reqd.	Units	Examples		
	Print control number	Required PRNT 1				
	Keyword Usage	Optional keyword. By default, the print control is set to 1.				
	Reactor Models	• Closed Homogeneous Batch Reactor				
		Closed Plasma	Reactor			
	Cylindrical Shear Flow Reactor					
		• Diffusion or Pr	emixed Oppo	sed-flow Flame		
		Honeycomb R	eactor			
		IC HCCI Engine				
		Non-reactive Gas MixerPerfectly Stirred Reactor (PSR)Planar Shear Flow Reactor				
		Plasma Plug Fl	ow Reactor			
		• Plasma PSR				
		• Plug Flow Rea	ctor			
		Premixed Lam	inar Burner-st	abilized Flame		
		 Premixed Lam 	inar Flame-spo	eed Calculation		
		Rotating Disk	CVD Reactor			
		SI Engine Zona	al Simulator			
		Stagnation Flo	w CVD Reacto	or		
PROD	Estimated values of the g	ce for CVD reactor	rs or the burn	ed state at XEND for		
Reactor Property	The sum of the product rawarning message will be	ixed Laminar Flames) or in the middle of the flame (for Opposed-flow Flames). um of the product mole fractions should equal to 1.0; if they do not, then ning message will be printed to the diagnostic output file and the mole ons will be normalized so that they do sum to one.				
	Parameters	Optional/Reqd.	Units	Examples		
	Species name	Required		PROD H2O 0.5		
	Mole fraction	Required		PROD H2O 0.5		

Keyword	Definition	Definition				
	Keyword Usage	then an equilibr	ium calculatio	keywords are not provided, on will be used to duct composition (see		
	Reactor Models	Diffusion or Premixed Opposed-flow Flame Premixed Laminar Burner-stabilized Flame				
		Premixed Lam				
		Rotating Disk				
		Stagnation Flo				
	• Any given species may simultaneously be incl reactant (REAC), intermediate (INTM), and prod (PROD2).					
		 The PROD2 keywords must be changed as a set, not individually for a restart run. 				
			 The PROD2 keywords must be changed as a set, not individually for continuation run. 			
PROE Reactor Property	the particle consisting of The reactor number is of particle mass density we must be used in conjur	stimate for steady-state calculations) number density of of the designated material name. The default value is 0. optional. When no reactor number is given, the same initial will apply to all reactors in the network. The PROE keyword nection with the PNDE keyword and is mutually exclusive n both PNDE and PROE are given, the moments are				
		M ₀ =PNDE				
		$M_1 = \frac{\text{PROE}}{m_0}$				
	$M_i = (\Delta C_{\text{nuc1}}) \times M_{i-1} 1 < i \le \text{NMOM}$					
	where m_0 is the mass of the bulk material.	f a material name	molecule and	$ ho_{_{\!B}}$ is the mass density		
	Parameters	Optional/Reqd.	Units	Examples		
	Material name	Required		PROE C(B) 1.0E-10 1		
	Mass density	Required	gm/cm ³	PROE C(B) 1.0E-10 1		
	Reactor number	Optional		PROE C(B) 1.0E-10 1		
	Keyword Usage			t value for the mass equired. Cannot be used		
	Reactor Models					

Keyword	Definition						
,		Cylindrical She	ear Flow Reac	tor			
		 Honeycomb N 	Monolith Reac	tor			
		IC HCCl Engine	e				
		Perfectly Stirre		SR)			
		Planar Shear F		Sity			
		Plasma PSR					
		Plasma Plug Flow Reactor					
		Plug Flow ReactorSI Engine Zonal Simulator					
PROI Inlet Property	name to the named inloptional if there is only with the PNDI keyword	cy of the particle consisting of the designated material et stream. The default value is 0. The stream name is one inlet. The PROI keyword must be used in conjunction and is mutually exclusive to keyword PVFI.					
	Parameters	Optional/Reqd.	Units	Examples			
	Stream name	Optional if there is only one in-		PROI EGR C(B) 1.0E-10			
	Material name	Required		PROI EGR C(B) 1.0E-10			
	Number density	Required	gm/cm ³	PROI EGR C(B) 1.0E-10			
	Keyword Usage			sed with PNDI. Cannot be alue for the number			
	Reactor Models	Cylindrical She	ear Flow Reac	tor			
		Honeycomb N	Monolith Reac	tor			
		Perfectly-stirre	Perfectly-stirred Reactor (PSR)				
		• Planar Shear F	low Reactor				
		• Plasma PSR					
		• Plasma Plug F	Plasma Plug Flow Reactor				
		• Plug-flow Rea	Plug-flow Reactor (PFR)				
PS	Constant pressure and	 entropy constraints					
	Keyword Usage	Ontional kovers	rd Evactly on	e problem-type keyword			

Keyword	Definition						
	Reactor Models	Chemical and	Phase Equili	ibrium Calculations			
	Notes	SP keyword.is	equivalent.				
PS-	The piston head area	to bore area ratio.					
BAR	Parameters	Optional/Reqd.	Units	Examples			
Reactor Property	Ratio of piston head area to bore area.	Required	None	PSBAR 1.1			
	Keyword Usage	Optional keywo	rd. Default =	: 1.0.			
	Reactor Models	Multi-zone HC	IC HCCI Engine				
	Notes	PSBAR should b	PSBAR should be > 1.0.				
PSURF	Initial surface coverage	e on particles by the	surface site	e species in the inlet flow.			
Inlat	Parameters	Optional/Reqd.	Units	Examples			
Inlet Property	Stream name	Optional if there is only one in- let.		PSURF inlet1 C(S) 0.1			
	Surface species name	Required		PSURF inlet1 C(S) 0.1			
	Surface coverage	Required		PSURF inlet1 C(S) 0.1			
	Keyword Usage	Optional keywo	rd	<u> </u>			
	Reactor Models	 Opposed-flow Perfectly Stirre Plasma Plug F Plasma PSR Plug Flow Rea Premixed Lam 	 Honeycomb Reactor Opposed-flow Flame Perfectly Stirred Reactor (PSR) Plasma Plug Flow Reactor 				
PSV	Pseudo-velocity for us	e in modifying the s	urface speci	es equations for improved			
Solver	convergence. This psei fraction equations in o	udo-convection term order to convert alge	n is incorpora braic equati	ated into the surface site ions to differential equations. at it has no effect on the			

1.7		after relea	00 10.0				
Keyword	Definition						
	solution results, but large enough to affect the convergence behavior. If not supplied, then the unmodified equations are used. The modified equations are sometimes helpful in reaching steady-state conditions for problems with stiff surface chemistry (e.g. catalytic combustion), but should not be used if no convergence problems are encountered. A recommended value to try for PSV would be about 1/10th of the inlet velocity, but the simulation should be repeated with smaller or larger values to make sure that it has no effect on the solution.						
	Parameters	Optional/Reqd.	Units	Examples			
	Pseudo-velocity	Required	cm/sec	PSV 10.			
	Keyword Usage Optional keyword. By default, the value is set to 10* ATOL.						
	Reactor Models	Honeycomb Reactor					
		Plasma Plug Flow Reactor					
		• Plug Flow Rea	ctor				
PTM_SEC-	The number of sections	to use for the spec	cified material				
TION_NUM	Parameters	Optional/Reqd.	Units	Examples			
Reactor Property	Material name	Required		PTM_SECTION_NUM SOOT 30			
	Number of sections	Required		PTM_SECTION_NUM SOOT 30			
	Keyword Usage	Required when	the Sectional I	Model is used.			
	Reactor Models	Opposed-flow	Flame				
		Plug Flow Reactor					
		 Plug Flow Reactor Premixed Laminar Burner Stabilized Flame 					
		Premixed Laminar Burner Stabilized Stagnation Flame					
		Premixed Lam	inar Flame Sp	eed Calculator			
PTM SEC-	Tanh function constant t	⊥ hat is used to ble≀	nd lower and	upper bounds of collision			
	DEP ci A0 cy.			11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Material name	Required	None	PTM_SECTION_SIZEDEP_A0 SOOT 5			
	A0	Required	None	PTM_SECTION_SIZEDEP_A0 SOOT 5			
	Keyword Usage	Optional keywor	d. Default size	e is 7.			
	Reactor Models	Closed Homog	geneous Batch	Reactor			
		Internal Comb	ustion Engine				
		 Perfectly Stirred Reactor (PSR) 					

Keyword	Definition					
Keyword	Definition	Diffi.a.aDu	i O	and Class Class		
		Diffusion or Pr		sed Flow Flame		
		Plug Flow Read	ctor			
		Premixed Lam	inar Burner Sta	abilized Flame		
		Premixed Lam	inar Burner Sta	abilized Stagnation Flame		
		Premixed Laminar Flame Speed Calculator				
PTM_SEC-	Use size-dependent collis	ion efficiency for	particles .			
TION_SIZE	Parameters	Optional/Reqd. Units Examples				
Reactor Property	Material name	Required	None	PTM_SECTION_SIZEDEP_COLEF SOOT		
	Keyword Usage	Optional keywor	d. Not used by	y default.		
	Reactor Models	Closed Homog	jeneous Batch	Reactor		
	Internal Combustion Engine					
		Perfectly Stirred Reactor (PSR)				
		Diffusion or Premixed Opposed Flow Flame				
		Plug Flow Reactor				
		Premixed Lam	inar Burner Sta	abilized Flame		
		Premixed Lam	inar Burner Sta	abilized Stagnation Flame		
		Premixed Lam	inar Flame Spe	eed Calculator		
PTM_SEC-	Limit diameter for size-de	pendent collision	efficiency.			
	Parameters	Optional/Reqd.	Units	Examples		
Reactor Property	Material name	Required	None	PTM_SECTION_SIZEDEP_DSTAR SOOT 13-06		
	Diameter	Required	None	PTM_SECTION_SIZEDEP_DSTAR SOOT 13-06		
	Keyword Usage	be specified by u collision efficient	ord. No default value is given and must value is given and must value value value is given and must value is given and must value is from 10 to 20 nm.			
	Reactor Models	Closed Homog	jeneous Batch	Reactor		
		 Internal Comb 	ustion Engine			
		Perfectly Stirre	d Reactor (PS	R)		
		Diffusion or Pr	emixed Oppo	sed Flow Flame		
		Plug Flow Read	ctor			

after release 19.0 **Definition** Keyword · Premixed Laminar Burner Stabilized Flame Premixed Laminar Burner Stabilized Stagnation Flame Premixed Laminar Flame Speed Calculator PTM SEC- Hamaker constant for computing potential well depth when using size-dependent TION_SIZED: BPisHJA- efficiency for particles. MA-Parameters Optional/Reqd. Units **Examples** KER Material name Required PTM SECTION SIZEDEP HAMAKER None **SOOT** 5e-13 Reactor Property PTM SECTION SIZEDEP HAMAKER Diameter Required None SOOT **5e-13 Keyword Usage** Optional keyword. Default value is 7e-13 erg. **Reactor Models** Closed Homogeneous Batch Reactor Internal Combustion Engine Perfectly Stirred Reactor (PSR) Diffusion or Premixed Opposed Flow Flame Plug Flow Reactor Premixed Laminar Burner Stabilized Flame Premixed Laminar Burner Stabilized Stagnation Flame · Premixed Laminar Flame Speed Calculator **PTM SEC-** Number of "atoms" in the smallest section for the specified material. When etching **TION_SN0** reactions are present, the number of sectional atoms parameter needs to be unity. When only growth is present, the user can give some higher value to avoid Reactor calculations for smaller particles that will never be present. However, this value Property must not be greater than the number of atoms in the smallest nucleating particle. **Parameters** Optional/Reqd. Units **Examples** Material name PTM SECTION SNO Required SOOT 1 Number of sectional Required PTM SECTION SNO "atoms" SOOT 1 **Keyword Usage** Required when the Sectional Model is used. **Reactor Models** Opposed-flow Flame Plug Flow Reactor

Premixed Laminar Burner Stabilized Flame

Premixed Laminar Burner Stabilized Stagnation Flame

Keyword	Definition							
		Premixed Lan	ninar Flame Sp	peed Calculator				
PTM_SEC-	Geometric spacing fac	ctor to be used for s	ections.					
TION_SPA- CING	Parameters	Optional/Reqd.	Units	Examples				
Reactor	Material name	Required		PTM_SECTION_SPACING CARBON 2.0				
Property	Geometric spacing factor	Required		PTM_SECTION_SPACING CARBON 2.0				
	Keyword Usage	Required when	the Sectional	Model is used.				
	Reactor Models	Opposed-flov	v Flame					
		• Plug Flow Rea	actor					
		 Premixed Lan 	ninar Burner S	tabilized Flame				
		 Premixed Lan 	ninar Burner S	tabilized Stagnation Flame				
		Premixed Lan	ninar Flame Sp	peed Calculator				
PTM_SEC- Thermal conductivity of particle material. This is a required input when any of TION_TCOND flame models are using the Sectional Model with thermophoresis.								
Reactor	Parameters	Optional/Reqd.	Units	Examples				
Property	Material name	Required		PTM_SECTION_TCOND CARBON 2.0E+05				
	Thermal conductivity of "material"	Required	erg/s-cm-K	PTM_SECTION_TCOND CARBON 2.0E+05				
	Keyword Usage		Required when the Sectional Model with thermophoresis is used.					
	Reactor Models	Opposed-flov	Opposed-flow Flame					
		• Plug Flow Rea	actor					
		 Premixed Lan 	Premixed Laminar Burner Stabilized Flame					
		 Premixed Lan 	Premixed Laminar Burner Stabilized Stagnation Flame					
		 Premixed Lan 	ninar Flame Sp	peed Calculator				
PTM_SEC- TION-	Signals that sectional Sectional Model is use		.This is a requ	uired keyword when the				
AL	Keyword Usage	Required when	the Sectional	Model is used.				
Reactor	Reactor Models	Opposed-flov	v Flame					
Property		Plug Flow Rea	actor					
		 Premixed Lan 	ninar Burner S	tabilized Flame				

Keyword	Definition						
		Premixed Lam	ninar Burne	r Stabilized Stagnation Flame			
		Premixed Lan	ninar Flame	Speed Calculator			
PV	Constant pressure and	d volume constraints					
Problem Type	Keyword Usage		Optional keyword. Exactly one problem-type keyword must be included.				
уре	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations				
	Notes	• VP keyword is	s equivalen	t.			
PVFE Reactor Property	the particle consisting The reactor number is particle volume fraction	of the designated resignated resignated resignation of the control	material na reactor nui eactors in t DE keyword	ations) number density of me. The default value is 0. mber is given, the same initial he network. The PVFE keyword d and is mutually exclusive ven, the moments are			
	$M_0 = \text{PNDE}$ $M_1 = \frac{\rho_B \times \text{PVFE}}{m_0}$ $M_i = \left(\Delta C_{\text{nuc1}}\right) \times M_{i-1} 1 < i \leq \text{NMOM}$ where m_0 is the mass of a material name molecule and ρ_R is the mass density						
	where m_0 is the mass	of a material name	molecule a	and ρ_{-} is the mass density			
	where m_0 is the mass of the bulk material.	of a material name	molecule a	and $ ho_{_B}$ is the mass density			
		of a material name Optional/Reqd.	molecule a	and $ ho_{_B}$ is the mass density			
	of the bulk material.						
	of the bulk material. Parameters	Optional/Reqd.	Units cm ³	Examples			
	of the bulk material. Parameters Material name	Optional/Reqd. Required	Units	Examples PVFE C(B) 1.0E-10 4			
	of the bulk material. Parameters Material name Volume fraction	Optional/Reqd. Required Required Optional Optional keywo	Units cm ³ /cm ³ rd. The def	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4			
	of the bulk material. Parameters Material name Volume fraction Reactor number	Optional/Reqd. Required Required Optional Optional keywo	Units cm³ /cm³ rd. The def	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required.			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction • Closed Homo • Closed Plasma	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction • Closed Homo • Closed Plasma • Cylindrical Sh	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba a Reactor ear Flow Re	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction • Closed Homo • Closed Plasma • Cylindrical Sh • Honeycomb N	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba a Reactor ear Flow Re	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction • Closed Homo • Closed Plasma • Cylindrical Sh • Honeycomb M • IC HCCI Engin	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba a Reactor ear Flow Re Monolith Re	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor eactor			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction Closed Homo Closed Plasma Cylindrical Sh Honeycomb M IC HCCI Engin	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba a Reactor ear Flow Re Monolith Re e	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor eactor (PSR)			
	of the bulk material. Parameters Material name Volume fraction Reactor number Keyword Usage	Optional/Reqd. Required Required Optional Optional keywo volume fraction • Closed Homo • Closed Plasma • Cylindrical Sh • Honeycomb M • IC HCCI Engin	Units cm³ /cm³ rd. The def is 0. PNDE geneous Ba a Reactor ear Flow Re Monolith Re e	Examples PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 PVFE C(B) 1.0E-10 4 ault value is value for the keyword required. atch Reactor eactor (PSR)			

Keyword	Definition							
		Plasma Plug F	low Reactor	•				
		• Plug Flow Rea	ictor					
		SI Engine Zon	al Simulator	•				
PVFI Inlet Property	Assigns the volume fraction of the particle consisting of the designated material name to the named inlet stream. The default value is 0. The stream name is optional if there is only one inlet. The PVFI keyword must be used in conjunction with the PNDI keyword and is mutually exclusive to keyword PROI.							
	Parameters	Optional/Reqd.	Units	Examples				
	Stream name	Optional if there is only one in-		PVFI mixture1 C(B) 1.0E9				
	Material name	Required		PVFI mixture1 C(B) 1.0E-9				
	Number density	Required	cm ³ /cm ³	PVFI mixture1 C(B) 1.0E-9				
	Keyword Usage		Optional keyword. Must be used with PNDI. Cannot be used with PROI. The default value for the number					
	Reactor Models		 Cylindrical Shear Flow Reactor Honeycomb Monolith Reactor 					
		Perfectly-stirre	Perfectly-stirred Reactor (PSR)					
		Planar Shear Flow ReactorPlasma PSR						
			Plasma PSR Plasma Plug Flow Reactor					
		• Plug-flow Rea	Plug-flow Reactor (PFR)					
PWRC Reactor Property	The power being supplied to heat the deposition surface or disk. This value is used only if the disk temperature is being calculated from an energy balance by including keyword RADB. See Equation 14.18 of the Chemkin-Pro Theory Manual							
	Parameters	Optional/Reqd.	Units	Examples				
	Power	Required	cal/(cm	PWRC 15.E7				
	Keyword Usage	Ontional keywo	sec)	It the nower is 0.0				
	INEYWOID USAGE	Topuonai keywo	Optional keyword. By default, the power is 0.0.					

Keyword	Definition				
		Stagnation Floring	ow CVD Read	ctor	
PWRW	Total power depositio	n to the plasma.			
Reactor	Parameters	Optional/Reqd.	Units	Examples	
Property	Total power deposition	Required	Watts	PWRW 1000 .	
	Reactor number (PSR clusters only) Keyword Usage Reactor Models	Optional If no number is given, the value is assumed to apply to all reactors in a cluster. Required keywo • Closed Plasma • Plasma Plug F	a Reactor	PWRW 1000. 1	
QDOT Reactor	The power being supposed source. QDOT is the to function. See Equation	otal power, i.e., the sp	oatial integra		
Property	Parameters	Optional/Regd.	Units	Examples	
	Power	Required	erg/(cm ² . sec)	QDOT 1.0E7	
	Keyword Usage	Ontional keywo		t, the power is 0.0.	
	Reactor Models	Rotating Disk		·	
	neuctor moucis	Stagnation Floring			
QDTC Reactor	The power being supposed source. QDTC is the to function. See Equation	tal power, i.e., the sp	oatial integra		
Property	Parameters	Optional/Reqd.	Units	Examples	
	Power	Required	cal/(cm ² . sec)	QDTC 1.0E7	
	Keyword Usage	Optional keywo		t, the power is 0.0.	
	-,			.,	

Keyword	Definition					
110, 11010	Reactor Models	Rotating Disk (CVD Reactor			
		Stagnation Flo		or		
QEXP Reactor	Specifies the gas chemisting period. This keyword will solved (activated by keyw	take effect only w		s the start of the expansion neat release equation is		
Property	Parameters	Optional/Reqd.	Units	Examples		
	heat_release_rate	Required	cal/sec	QEXP 0.5		
	Keyword Usage	Optional keyword. Default is 0.1 cal/sec.				
	Reactor Models	Multi-Zone HCCI SimulatorIC HCCI EngineSI Engine Zonal Simulator				
QFUN Reactor Property User Subroutine	homogeneous reactors) o through a user-programm IQFUN, RQFUN) must be p	e given as a specified function of time (for 0-D or as a function of distance (for Plug Flow Reactors), med subroutine. FUNCTION PSQFUN (LENIQ, LENRQ, provided to specify the heat loss and linked to the e the Application Programming Interface Manual for with user subroutines.				
	Keyword Usage	Optional keyword. By default, the value there is no heat loss from the reactor. The units returned from the user subroutine must be in erg/sec. See also QPRO.				
	Reactor Models	 Closed Homog 	eneous Batch	Reactor		
		Closed Plasma Reactor				
		Diffusion or Premixed Opposed-flow Flame				
		Honeycomb Re	eactor			
		• IC HCCI Engine	•			
		Non-reactive G	ias Mixer			
		Perfectly Stirre	d Reactor (PS	R)		
		Plasma Plug Fl	ow Reactor			
		• Plasma PSR				
		Plug Flow Read	ctor			
		Premixed Lami	nar Burner-st	abilized Flame		
		Premixed Lami	nar Flame-spe	eed Calculation		
		SI Engine Zona	l Simulator			

Keyword	Definition					
	Notes	 See also QPRO as an alternate way to specify heat-loss as a function of time. Keywords QFUN, QLOS and QPRO are mutually exclusive. 				
QLOS	The heat loss or heat flux	,		,		
Reactor Property	optionally specified surfa homogeneous reactors, o (Plug Flow Reactor, Hone Flow Reactors). This options solved.	ce material. The uper for heat flux pe ycomb Reactor, Plon is only relevant	inits are for a r area for all c lasma Plug Flo : when the en	total heat loss for 0-D hannel-flow reactors ow Reactor, and Shear ergy equation is being		
	Parameters	Optional/Reqd.	Units	Examples		
	Material name (for 0-D homogeneous and plug-flow reactors only)	Optional If no material is specified, the value will be used for all materials.		QLOS material1 50		
	Heat loss or Heat flux (depending on Reactor Model)	Required	cal/sec or cal/cm2-s	QLOS 50		
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		QLOS material1 50 1		
	Keyword Usage	Optional keyword. By default, there is no heat loss from the reactor. See also QPRO, HTRN, and QFUN.				
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Honeycomb Reactor 				

Keyword	Definition						
,		IC HCCl Engine	 e				
		Non-reactive 0	Gas Miyer				
		 Planar Shear F 	low Reactor				
		Plasma Plug Flow Reactor					
		Plug Flow Reactor					
		Perfectly Stirred Reactor (PSR)SI Engine Zonal Simulator					
QLSE Reactor Property Profiles	to account for inelastic collisional losses that are not already included exponents in the <i>Gas-phase Kinetics</i> reaction mechanism. Energy loss values are specified before as a function of electron temperature and are given per ionization e			eady included explicitly ass values are specified ner ionization event to example, "QLSE 34800.			
	Parameters	Optional/Reqd.	Units	Examples			
	Energy loss	Required	eV	QLSE 34800. 100.			
	Electron temperature	Required	К	QLSE 34800. 100.			
	Keyword Usage	Optional keyworloss term is 0.0.	d. By default,	the additional energy			
	Reactor Models	 Closed Plasma 	Reactor				
		Plasma Plug Fl	low Reactor				
		Plasma PSR					
QPRO	The heat loss profile or he	leat flux profile fro	om the reactor	r to the external			
Reactor Property Profiles environment at an optionally specified surface material, of linear function of time or distance. Each QPRO entry repripiecewise-linear profile. The units are for a total heat loss homogeneous reactors, or for heat flux per area vs. distance reactors (Plug Flow Reactor, Honeycomb Reactor, Plasma Shear Flow Reactors). This option is only relevant when the being solved.			resents a point in a s vs. time for 0-D nce for all channel-flow Plug Flow Reactor, and				
	Parameters	Optional/Reqd.	Units	Examples			
	Time or Distance value (depending on Reactor Model)	Required	sec or cm	QPRO 1.0E-4 10.0			
	Heat loss or Heat flux (depending on Reactor Model)	Required	cal/sec or cal/cm2-sec	QPRO 1.0E-4 10.0			

Keyword	Definition				
	Reactor number	Optional		QPRO 1.0E-4 10.0 1	
	(PSR clusters only)				
		If no			
		number is given,			
		the			
		profile			
		described			
		by the			
		first two			
		values is assumed			
		to apply			
		to apply			
		reactors			
		in a			
		cluster.			
	Keyword Usage	Optional keywor	•	there is no heat loss from RN, and QFUN.	
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor 			
		Cylindrical She	ear Flow React	or	
		Honeycomb R	eactor		
		IC HCCI Engine	2		
		Non-reactive 0	Gas Mixer		
		 Perfectly Stirre 	ed Reactor (PS	R)	
		• Planar Shear F	low Reactor		
		• Plasma PSR			
		Plasma Plug Fl	ow Reactor		
		Plug Flow Read	ctor		
		SI Engine Zona	al Simulator		
QRGEQ	Solve a separate equati	on that integrates t	he heat releas	se due to gas-phase	
	reactions to obtain a m	ore accurate heat-r	elease profile.	If this option is not	
Output	checked, only local hear time steps. Only applica transient solver.		•	• • • • • • • • • • • • • • • • • • •	
	Parameters	Optional/Reqd.	Units	Examples	
	Keyword Usage	Optional keywor integration equa	d. By default,	the heat release	

Keyword	Definition					
	Reactor Models	Closed Homog	geneous Batch	n Reactor		
		 Closed Plasma 	Reactor			
		Honeycomb M	lonolith React	or		
		IC HCCl Engine				
		Perfectly Stirre		D)		
			ed Neactor (F3	n)		
		Plasma PSR				
		Plasma Plug Fl	Plasma Plug Flow Reactor			
		Plug Flow Reactor				
		SI Engine Zona	al Simulator			
QRSEQ		n that integrates the heat release due to surface reactions				
Output		curate heat-release profile. If this option is not checked, only tes will be reported at each saved or printed time steps. Only				
-	applicable when you are			•		
	Parameters	Optional/Reqd.	Units	Examples		
Keyword Usage Optional keyword. By default, the heat releintegration equation is not solved.						
	Reactor Models	Closed Homog	geneous Batch	n Reactor		
		• Closed Plasma	Reactor			
		Honeycomb M	lonolith React	or		
		• IC HCCI Engine	2			
		Perfectly Stirre	ed Reactor (PS	R)		
		 Plasma PSR 				
		Plasma Plug Fl	ow Reactor			
		• Plug Flow Rea	ctor			
QXCO	This keyword defines the	heat-transfer coe	fficient and th	ne heat-transfer surface		
	area for thermal conduc	tive/convective he	at flux betwee	en the two specified		
Recycling	reactors in a reactor clus					
	higher-temperature reactionly relevant when the l		-	•		
	reactors in a cluster.					
	Parameters	Optional/Reqd.	Units	Examples		
	Reactor Number	Required		QXCO 3 6 1.0E-3 1000.		
	Reactor Number	Required		QXCO 3 6 1.0E-3 1000.		

Keyword	Definition						
	Heat-transfer coefficient	Required	cal/(cm ² · sec · K)	QXCO 3 6 1.0E-3 1000.			
	Heat-transfer surface area	Required	cm ²	QXCO 3 6 1.0E-3 1000.			
	Keyword Usage	Optional keyword. By default, there is no heat exchange between reactors.					
	Reactor Models	Perfectly StirrePlasma PSR	ed Reactor (I	PSR)			
	Notes	 The order of the two reactor numbers that define the connection is not important. This parameter is used in conjunction with the extensurface area (AREAQ or AEXT). 					
QXRA Recycling	This keyword defines the thermal emissivity/absorptivity and the heat-transfer surface area for thermal radiative flux between the two specified reactors in a reactor cluster. The direction of the heat flux will come from the higher-temperature reactor to the lower-temperature reactor. This keyword is only relevant when the ENRG keyword is used and when there are more than one reactor in a cluster.						
	Parameters	Optional/Reqd.	Units	Examples			
	Reactor Number	Required		QXRA 2 3 0.1 1000.			
	Reactor Number	Required		QXRA 2 3 0.1 1000.			
	Emissivity/absorptivity	Required		QXRA 2 3 0.1 1000.			
	Heat-transfer surface area	Required	cm ²	QXRA 2 3 0.1 1000.			
	Keyword Usage	exchange betwe	Optional keyword. By default, there is no heat exchange between reactors. Note that the order of the two reactor numbers that define the heat connection is un-important.				
	Reactor Models	Perfectly StirrePlasma PSR	. c. com, can consider (c. c. c)				
	Notes	The order of the two reactor numbers that define the heat connection is not important.					
		 This parameter is used in conjunction with the external surface area (AREAQ or AEXT). 					
RACTV	·	-		ulation is on, contributions			
Reactor Property	from all major radiating included. A major radiat	=		ch the absorption coefficient			

Keyword	Definition						
	is available to the appl contribution of a majo						
	Parameters	Optional/Reqd.	Units	Examples			
	Species symbol	Required		RACTV CO			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame				
		Burner-stabiliz	zed Pre-mixec	l Flame			
		Premixed Lam	inar Flame-sp	peed Calculation			
RADB Reactor			o determine the disk or susceptor (deposition surface) specified, TDSK is used as the initial guess for the susceptor				
Property	Keyword Usage	'	Optional keyword. By default, the susceptor temperature is fixed as TDSK.				
	Reactor Models	_	Rotating Disk CVD ReactorStagnation Flow CVD Reactor				
RADGS Reactor	Turns on the radiation model number indicate calculate the radiation	es which thermal ra		equation. The optional I will be employed to			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Reactor number	Required		RADGS 0			
	Keyword Usage	model impleme	Currently, the optically-thin limit model is the only model implemented and hence is the default model. The model number for the optically-thin limit model is 0.				
	Reactor Models		Diffusion or Premixed Opposed-flow Flame				
			 Burner-stabilized Pre-mixed Flame Premixed Laminar Flame-speed Calculation 				
RADPT	Allows radiative heat lo		s contribution from particulates associated with the				
Reactor	Parameters	Optional/Regd.	Units	Examples			
Property	Material Name	Required		RADPT CO			
' '	Materiai Name		Diffusion or Premixed Opposed-flow Flame Burner-stabilized Pre-mixed Flame				

Keyword	Definition						
RCHG	Maximum relative chang which the initial fictitious	transient equation	ns that estab	lish the initial surface site			
Solver	fractions can be consider			1			
	Parameters	Optional/Reqd.	Units	Examples			
	Maximum relative change	Required		RCHG 1.0E-3			
	Keyword Usage		Optional keyword. By default, the maximum relative change is set to 1.0E-6.				
	Reactor Models	 Honeycomb R Plasma Plug Fl Plug Flow Rea	ow Reactor				
RDSK Ratio of the substrate radius to the separar radiating disk. This is used in calculating a used only if the disk temperature is being . See Equation 14.18 of the Chemkin-Pro 1			surface radiat calculated by neory Manual	ion balance. RRAD is including keyword RADB			
	Parameters	Optional/Reqd.	Units	Examples			
	Ratio of substrate	Required		RDSK 3.0			
	Keyword Usage	Optional keyword. This is keyword is required only when RRAD and RADB are included.					
	Reactor Models	Rotating DiskStagnation Flo		or			
REAC Inlet or Reactor Property	indicate that acetylene h The sum of all the reacta	closed system. For as a mole fraction nt mole fractions be normalized so	or example, RE of 0.5 in the should equal that they do s	AC fuel1 C2H2 0.5, would inlet stream named fuel1.			
	Parameters	Optional/Reqd.	Units	Examples			
	Inlet stream name (for PSRs and CVD Reactors only)	Optional If there is no stream name than the reactant and mole fraction apply to all streams.		REAC fuel1 C2H2 0.5			
	Species name	Required		REAC C2H2 0.5			

Keyword	Definition					
	Reactant fraction	Required	mole fractions	REAC C2H2 0.5		
	Keyword Usage	Required keywork equivalence ratio	•			
	Reactor Models	Chemical and	Phase Equilib	rium Calculations		
		Closed Homog	geneous Batch	n Reactor		
		• Closed Plasma	Reactor			
		cor				
		• Diffusion or Pr	emixed Oppo	sed-flow Flame		
	Honeycomb ReactorIC HCCI Engine					
		Non-reactive Gas Mixer				
		Partially Stirred Reactor (PaSR)				
		Perfectly Stirred Reactor (PSR)Planar Shear Flow Reactor				
		• Plasma Plug Fl	ow Reactor			
		• Plasma PSR				
		• Plug Flow Rea	ctor			
		 Premixed Lam 	inar Burner-st	abilized Flame		
		 Premixed Lam 	inar Flame-sp	eed Calculation		
		Rotating Disk	CVD Reactor			
		Stagnation Flo	w CVD Reacto	or		
	Notes	 The REAC keywords must be changed as a set, not individually for a restart run. The REAC keywords must be changed as a set, not individually for continuation run. 				
RECY	For a cluster of reactors from one reactor to ano	-	, -			
Recycling	Parameters	Optional/Reqd.	Units	Examples		
	Reactor Number, from which the flow originates	Required		RECY 2 1 0.3		

_ £1		40	\sim
amer	release	14	()

Keyword	Definition					
	Reactor Number, to which the flow is transferred	Required		RECY 2 1 0.3		
	Percent that will be recycled from Reactor 2 back into Reactor 1	Required		RECY 2 1 0.3		
	Keyword Usage	Optional keyword. By default all flow out of a reactor in will flow into the next reactor in the series (e.g. RECY 1 2 1.0 and RECY 2 3 1.0 for a three-reactor system). If recycle loops are defined, then the effective "recycling" from the upstream into the downstream reactor will be one minus the sum of the recycle streams out of the upstream reactor into other reactors.				
	Reactor Models	Perfectly Stirred Reactor (PSR)Plasma PSR				
RE- LAXC Solver	a relaxed scheme wherebat each time, but occasion or numerical instabilities. run fails with a "nonlinear	ce method used for transient runs. When applied, it uses by the integrator solver tries harder to achieve a solution onally may result in increased time to solve your problem s. Therefore, you should use this only if your transient ar solver failed to converge repeatedly" message or you very stiff, highly nonlinear or discontinuous.				
	Keyword Usage	Optional keyword.				
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Partially Stirred Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Honeycomb Reactor 				
		IC HCCl Engine				
		Multi-Zone HC		ulator		
		Partially Stirred	d Reactor (PaS	R)		
		Perfectly Stirre	rred Reactor (PSR)			
		• Planar Shear F	low Reactor			
		Plasma Plug Fl	ow Reactor			
		Plasma PSR				

Keyword	Definition						
		Rotating Disk	CVD Reacto	or			
		SI Engine Zon	al Simulato	r			
		Stagnation Floring	Stagnation Flow CVD Reactor				
RELT Solver	-			the relative perturbation the numerically derived			
	Parameters	Optional/Reqd.	Units	Examples			
	Relative perturbation	Required		RELT 1.E-15			
	Keyword Usage		he square r	ult, the relative perturbation oot of the unit round-off			
	Reactor Models	Non-reactive	Non-reactive Gas Mixer				
		Perfectly Stirr	Perfectly Stirred Reactor (PSR)				
		Plasma PSR	Plasma PSR				
OR Reactor Property	conservation equation for the last species in the gas-phase and each surface and bulk phase is not solved: the last species concentration (mass fraction or site fraction) is chosen so that the fractions sum to one. The REOR option causes TRCE to choose dynamically and locally (at each mesh point and in each phase) the species of largest concentration and not solve its conservation equation.						
	Keyword Usage	Optional keywo	Optional keyword. By default, the last species in each				
	Reactor Models	Rotating Disk	CVD Reacto	or			
		Stagnation Floring	Stagnation Flow CVD Reactor				
RHO1	Mass density before t	he incident shock.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Mass density	Required	gm/cm	RHO1 1.E-4			
	Keyword Usage	temperature, pr	essure, or d	ck velocity and any two of ensity must be specified ncident shock. See also T1			
	Reactor Models	Normal Incide	ent Shock				
		Normal Reflect	ted Shock				
RHO2			ncident shock.				

	- C 1-1						
Keyword	Definition			-			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Mass density	Required	g/cm	RHO2 1.E-4			
	Keyword Usage	Optional keyword. Any two of temperature, pressure, or density must be specified for conditions after the incident shock. See also T2 and P2A.					
	Reactor Models		Normal Incident Shock				
RHO3	Mass density after the r	eflected shock.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Mass density	Required	g/cm	RHO3 1.E-4			
	Keyword Usage	'	be specified f	temperature, pressure, or conditions after the nd P3A .			
	Reactor Models	Normal Reflec	ted Shock				
GAS Reactor Property	1	ta. A value of 0 = turn OFF the real gas model and 1= Optional/Reqd. Units Examples					
	contains the real gas daturn ON the model. Parameters			-			
	turn ON the model.			eal gas model and 1=			
	turn ON the model. Parameters	Optional/Reqd. Required	Units g/cm	eal gas model and 1= Examples			
	turn ON the model. Parameters Enabled	Optional/Reqd. Required Optional keywor	Units g/cm ³ rd. By default,	Examples RLGAS 1 the real gas model is			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyworturned OFF.	Units g/cm 3 rd. By default, geneous Batch	Examples RLGAS 1 the real gas model is Reactor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyworturned OFF. Closed Homog	Units g/cm 3 rd. By default, geneous Batch y Stirred Reac	Examples RLGAS 1 the real gas model is Reactor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyworturned OFF. • Closed Homogouturned • Closed Partiall	Units g/cm 3 rd. By default, geneous Batch y Stirred Reacter	Examples RLGAS 1 the real gas model is Reactor tor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyworturned OFF. Closed Homogone Closed Partiall Cylindrical She	Units g/cm 3 rd. By default, geneous Batch y Stirred React ear Flow React remixed Oppo	Examples RLGAS 1 the real gas model is Reactor tor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyword turned OFF. • Closed Homogous Closed Partiall • Cylindrical Sheet • Diffusion or Proceedings of the content of th	Units g/cm 3 rd. By default, geneous Batch y Stirred React ear Flow React remixed Oppo on Simulator	Examples RLGAS 1 the real gas model is Reactor tor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyword turned OFF. • Closed Homogous Closed Partiall • Cylindrical Sheet • Diffusion or Property Control of	Units g/cm 3 rd. By default, geneous Batch y Stirred React ear Flow React remixed Oppo fon Simulator eactor	Examples RLGAS 1 the real gas model is Reactor tor			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyword turned OFF. Closed Homogone Closed Partiall Cylindrical Sheen Diffusion or Profile Flame-Extinction Honeycomb Research	Units g/cm 3 rd. By default, geneous Batch y Stirred React ear Flow React remixed Oppo ion Simulator eactor	Examples RLGAS 1 the real gas model is Reactor tor or sed-flow Flame			
	turn ON the model. Parameters Enabled Keyword Usage	Optional/Reqd. Required Optional keyword turned OFF. Closed Homogone Closed Partiall Cylindrical Sheen Diffusion or Profile Flame-Extinction Honeycomb Roman Company	Units g/cm 3 rd. By default, geneous Batch y Stirred React ear Flow React remixed Oppo on Simulator eactor e	Examples RLGAS 1 the real gas model is Reactor tor or sed-flow Flame			

Keyword	Definition						
-		Partially Stirre	d Reactor (Pas	SR)			
		Perfectly Stirre	ed Reactor (PS	R)			
		 Planar Shear F 	low Reactor				
		Plug Flow Reactor					
		Rotating Disk CVD Reactor					
			SI Engine Zonal SimulatorStagnation Flow CVD Reactor				
RL- MIX Reactor	gas model is turned o rule and 1 = use the p	n (by RLGAS). A valu seudocritical metho	vill activate the selected real gas mixing rule if the real (by RLGAS). A value of 0 = use the Van der Waals mixing eudocritical method (see Real Gas Data (p. 36)).				
Property	Parameters	Optional/Reqd.	Units	Examples			
	Method	Required	None	RLMIX 0			
	Keyword Usage	Optional keywor		the van der Waals			
	Reactor Models	Closed Homog	geneous Batch	n Reactor			
		Closed Partial	ly Stirred Reac	tor			
		Cylindrical Sho	ear Flow React	tor			
		Diffusion or Pr	remixed Oppo	sed-flow Flame			
		Flame-Extinct	ion Simulator				
		• Honeycomb R	eactor				
		IC HCCl Engine	e				
		Multi-Zone H	CCI Engine Sim	nulator			
		Normal Incide	nt Shock				
		Normal Reflect	ted Shock				
		Partially Stirre	d Reactor (Pas	SR)			
		Perfectly Stirre	ed Reactor (PS	R)			
		• Planar Shear F	low Reactor				
		• Plug Flow Rea	ctor				
		Rotating Disk	CVD Reactor				
		SI Engine Zon	al Simulator				
	31 Engine Zonai Simulatoi						

_				
	after	release	· 19.	0

Keyword	Definition					
		Stagnation Flo	w CVD R	eactor		
ROP Output	Inclusion of this keyword causes the rate-of-production coefficients to be printed for specified species. The keyword must be followed by one or more names of species. If any ROP keywords are used, all the rate-of-production coefficients will be computed and written to the XML Solution File (e.g., XMLdata.zip). However, only those specified by the ROP keyword will be printed in the diagnostic output file. More than one species may be entered per line. If the line is blank after the ROP keyword, then all rate-of-production contributions are computed and written to the XML Solution File, but none are printed.					
	Keyword Usage	Optional keywor values are comp	•	ault, no rate-of-production		
	Reactor Models	Closed Homog	geneous E	Batch Reactor		
		Closed Plasma ReactorHoneycomb ReactorIC HCCI Engine				
		Perfectly Stirre	ed Reacto	r (PSR)		
		Plasma Plug F	ow React	or		
		• Plasma PSR				
		• Plug Flow Rea	ctor			
		SI Engine Zona	al Simulat	or		
	Notes	This keyword continuation r		ded but not removed from a		
			gh the gra	be calculated for other Reactor phical ANSYS Chemkin-Pro		
RPM	Revolutions per minute	of the engine cran	k arm.			
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Revolutions per minute	Required	rpm	RPM 1200		
	Keyword Usage	Optional keywor	d. By def	ault, the rpm is 1500.		
Reactor ModelsIC HCCI EngineSI Engine Zonal Simulator				or		
RRAD Reactor Property	and the lower substrate	e. This is used in cal e disk temperature	culating a	ration distance between it surface radiation balance. calculated by including keyword bry Manual .		

Keyword Definition									
	Parameters	Optional/Reqd.	Units	Examples					
	Ratio of the upper radiating disk	Required		RRAD 3.0					
	Keyword Usage	Required keywo	Required keyword only if RADB and RDSK are included.						
	Reactor Models	Rotating Disk	CVD Reactor						
		Stagnation Flow CVD Reactor							
RSHK	Inclusion of this keywo	rd designates a refl	designates a reflected shock problem.						
Problem	Keyword Usage	Required keywo	rd. See also I	SHK.					
Туре	Reactor Models	Normal Reflect	ted Shock						
RSTR Cluster	-	XMLdata.zip) and b	d causes ANSYS Chemkin-Pro to read a solution off the MLdata.zip) and begin iteration or integration on the his solution.						
Property	Property Keyword Usage Optional keyword. By default, a solution is started the user-specified conditions and no XML Solution is used.								
		 Closed Homogeneous Batch Reactor Closed Partially Stirred Reactor (PaSR) Closed Plasma Reactor Cylindrical Shear Flow Reactor Diffusion or Premixed Opposed-flow Flame Honeycomb Reactor IC HCCI Engine Partially Stirred Reactor (Pask) Perfectly Stirred Reactor (PSR) 							
 Planar Shear Flow Reactor Plasma Plug Flow Reactor Plasma PSR Plug Flow Reactor Premixed Laminar Burner-stabilized Flow Reactor Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor SI Engine Zonal Simulator 				peed Calculation					

Keyword	Definition	alter release 19.0					
,		Stagnation Flo	w CVD Reacto	or			
RTIM Solver	time stepping procedure	for steady-state p accuracy in a trai to be as stringent	oroblems emp nsient solution	as it is used in the pseudo loying the <i>Twopnt</i> solver. n, this convergence criteria wton iteration on the			
	Parameters	Optional/Reqd.	Units	Examples			
	Absolute tolerance	Required		RTIM 1.E-3			
	Keyword Usage	Optional keywor 1.E-4. See also A		the relative tolerance is			
	Reactor Models	Closed PlasmaCylindrical SheDiffusion or Pr	ear Flow React				
		Honeycomb R					
Non-reactive Gas Mixer							
		Perfectly Stirred Reactor (PSR)					
		 Planar Shear F 	low Reactor				
		Plasma PSR					
		 Premixed Lam 	inar Burner-st	abilized Flame			
		 Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor Stagnation Flow CVD Reactor 					
	Notes	For a more precise definition, see the description of RTOL.					
RTIME	Turn on or off solution o	f the residence-tin	ne equation fo	or a plug-flow simulation.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	String "ON" or "OFF" to toggle the momentum equation	Required		RTIME ON RTIME OFF			
	Keyword Usage	Optional keyword. By default, the residence-time equation is solved (ON).					
	Reactor Models	Honeycomb RPlasma Plug Fl					
		• Plug Flow Rea					

Keyword	Definition						
RTLM Solver	1			ment variables in steady-state given by RTOL is used for all			
	Parameters	Optional/Reqd.	Units	Examples			
	Tolerance	Required		RTLM 1.0E-4			
	Keyword Usage		Optional keyword. By default, the absolute tolerance is determined by RTOL.				
	Reactor Models	Cylindrical ShoPerfectly Stirre	 Closed Plasma Reactor Cylindrical Shear Flow Reactor Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor 				
		• Plasma PSR					
RTLS Solver	accuracy desired in the the sensitivity coefficient	ne solution for the se lents need not be sol	nsitivity co ved to a g	K, as an indicator of the pefficients only. Generally, reat degree of accuracy, so s placed on the physical			
	Parameters	Optional/Reqd.	Units	Examples			
	Relative tolerance	Required		RTLS 1.E-2			
	Keyword Usage	Optional keywo 1.E-5.	rd. By defa	ult, the relative tolerance is			
 Closed Homogeneous Batch Reactor Closed Plasma Reactor Honeycomb Reactor IC HCCI Engine Perfectly Stirred Reactor (PSR) Plasma PSR Plasma Plug Flow Reactor Plug Flow Reactor SI Engine Zonal Simulator 				(PSR) or			
RTOL Solver	indicator of the accur RTOL roughly corresp	acy desired in the phonds to the number tion. A typical value s	nysical solu of significa should be l	onvergence and as an ation. In general the value of ant digits that should be between 10-3 and 10-6, which			

Keyword	Definition	efinition						
	Parameters	Optional/Reqd.	Units	Examples				
	Relative tolerance	Required		RTOL 1.E-3				
	Keyword Usage	Optional keyword. The default values are: Open 0-D Reactors run in steady-state mode, Opposed-flow Flame, Premixed Laminar Burner-stabilized Flame, Premixed Laminar Flame-speed Calculation, Shear Flow Reactor: 1.E-4 Normal Incident Shock, Normal Reflected Shock, Plug Flow Reactor, Partially Stirred Reactor (PaSR), CVD: 1.E-6 Closed 0-D Reactors and Open 0-D Reactors run in						
		transient mode: See also ATOL.	•	TO D Redectors run in				
	Reactor Models	Closed Homog	geneous Batch	Reactor				
		 Closed Partiall 	Closed Partially Stirred Reactor (PaSR)					
		• Closed Plasma	Reactor					
		Cylindrical She	ear Flow React	or				
		• Diffusion or Pr	emixed Oppo	sed-flow Flame				
		Honeycomb R	eactor					
		IC HCCI Engine	9					
		Non-reactive 0	Gas Mixer					
		Normal Incide	nt Shock					
		Normal Reflec	ted Shock					
		• Opposed-flow	Flame					
		Partially Stirre	d Reactor (PaS	SR)				
		Perfectly Stirre	ed Reactor (PS	R)				
		• Planar Shear F	low Reactor					
		 Plasma PSR 						
		• Plug Flow Rea	ctor					
		 Premixed Lam 	inar Burner-st	abilized Flame				
		Premixed Lam	inar Flame-spo	eed Calculation				
		• Rotating Disk	CVD Reactor					

Keyword	Definition						
		SI Engine Zon	al Simulator				
		Stagnation Float	ow CVD Reac	tor			
SCAT	Request the scatter plo	ot of a scalar to be	output to the	e file scatter.plt.			
Output	Parameters	Optional/Reqd.	Units	Examples			
σατρατ	Scalar (temperature or species name)	Required		SCAT CH4			
	Keyword Usage	Optional keywo	rd. By defaul	t, no scatter plot is printed.			
	Reactor Models	 Closed Partial 	ly Stirred Rea	ector (PaSR)			
		Partially Stirre	ed Reactor (Pa	aSR)			
SCCM Inlet Property	in standard cubic centi	te into the reactor for an optionally specified inlet stream, imeters per minute assuming that the inlet temperature et pressure is 1 atm unless a different value for TSCCM is Optional/Regd. Units Examples					
	Inlet stream name	Optional		SCCM secondary_air			
	Fauivalent	If there is no stream name than the volumetric flow rate applies to the default or all defined streams.	standard	SCCM secondary air			
	Equivalent volumetric flow rate at standard conditions	Required	cm ³ /min	SCCM secondary_air 300			
	Keyword Usage	FLRT / FPRO, SC nonzero, then a or SCCM / SCCM defined. Stagnation Flow / SCCMPRO or U	PSRs and PaSRs: Optional keyword. If none of TAU, FLRT / FPRO, SCCM / SCCMPRO are specified or are nonzero, then a closed-system is assumed. FLRT / FPRO or SCCM / SCCMPRO is required for each INLET stream				

Keyword	Definition					
	Reactor Models	Non-reactive 0	Gas Mixer			
		Perfectly Stirre	ed Reactor (PS	R)		
		 Plasma PSR 				
		Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor				
		_				
Inlet Property Profiles	inlet stream, in standard temperature is 298.15 K	cubic centimeters and the inlet pres entered. The profi	s per minute a sure is 1 atm			
	Parameters	Optional/Reqd.	Units	Examples		
	Inlet stream name	If no stream name is given, the profile described by the reactant and mole fraction is assumed to apply to all reactors in a cluster.		SCCMPRO purge 0.19		
	Time	Required	sec (cm for flow reactors)	SCCMPRO 0.19 300		
	Equivalent volumetric flow rate at standard conditions	Required	standard cm ³ /min	SCCMPRO 0.19 300		
	Keyword Usage	PFRs and Monolith Reactors: Flow specification via one of VEL, VDOT, VDOTPRO SCCM SCCMPRO FLRT, or FPRO is required. PSRs and PaSRs: Optional keyword. If none of TAU, FLRT / FPRO, SCCM / SCCMPRO are specified or are				

Keyword	Definition						
			•	is assumed. FLRT / FPRO ed for each INLET stream			
		_		s: FLRT / FPRO or SCCM d for each inlet stream			
		Rotating Disk C\	/D Reactors: O	ptional keyword.			
	Reactor Models	Honeycomb N	onolith React	or			
		Non-reactive 0	Non-reactive Gas Mixer				
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)				
		Plasma PFR					
		Plasma PSR					
		Plug Flow Reactor					
		Rotating Disk CVD Reactor					
		Stagnation Flow CVD Reactor					
SCLM							
J C				nod) or number density			
Reactor Property	(sectional method). A rethe (internal) solution we example, setting it to 1 means that it is nano-rether to	non-unity value for t variable for particle .0E+06 results in mi moles. A value of 1 v d value for typical p	this parameter moments or r icro-moles wh vould mean th roblems is 1.0	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps			
Reactor	(sectional method). A rethe (internal) solution we example, setting it to 1 means that it is nano-remoles. A recommended	non-unity value for t variable for particle .0E+06 results in mi moles. A value of 1 v d value for typical p	this parameter moments or r icro-moles wh vould mean th roblems is 1.0	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps			
Reactor	(sectional method). A rethe (internal) solution we example, setting it to 1 means that it is nanormoles. A recommended preserve the positivity	non-unity value for to variable for particle .0E+06 results in mi moles. A value of 1 value for typical pof of the solution duri	this parameter moments or r icro-moles wh vould mean th roblems is 1.0 ng numerical	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation.			
Reactor	(sectional method). A rethe (internal) solution of example, setting it to 1 means that it is nanormoles. A recommended preserve the positivity Parameters	non-unity value for to variable for particle .0E+06 results in mi moles. A value of 1 value for typical poof of the solution duri	this parameter moments or r icro-moles wh vould mean th roblems is 1.0 ng numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation.			
Reactor	(sectional method). A rethe (internal) solution of example, setting it to 1 means that it is nanormoles. A recommended preserve the positivity Parameters Scaling factor	non-unity value for to variable for particle .0E+06 results in mi moles. A value of 1 v d value for typical p of the solution duri Optional/Reqd. Required	this parameter moments or r icro-moles wh vould mean th roblems is 1.0 ng numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for to variable for particle .0E+06 results in mi moles. A value of 1 void d value for typical pof of the solution duri Optional/Reqd. Required	chis parameter moments or r icro-moles wh vould mean th roblems is 1.0 ng numerical Units rd. geneous Batch	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for to variable for particle .0E+06 results in mi moles. A value of 1 value for typical p of the solution duri Optional/Reqd. Required Optional keyword	chis parameter moments or r icro-moles wh vould mean the roblems is 1.0 ng numerical Units rd. geneous Batch	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for to variable for particle .0E+06 results in minoles. A value of 1 void value for typical pof the solution duri Optional/Reqd. Required Optional keyword Closed Plasma	chis parameter moments or r icro-moles wh vould mean th roblems is 1.0 ng numerical Units rd. geneous Batch a Reactor	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for the variable for particle .0E+06 results in mismoles. A value of 1 vidical value for typical pof the solution during Optional/Reqd. Required Optional keyword Closed Homogon Closed Plasman Flame-Extinction	chis parameter moments or ricro-moles who would mean the roblems is 1.0 ng numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for to variable for particle .0E+06 results in mission of 1 value of 1 value for typical point of the solution during the solution during the solution of the solution of the solution during the solution of the solution during the solution during the solution of the solution during the solution of the solution during the solution of	chis parameter moments or ricro-moles who would mean the roblems is 1.0 and numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for the variable for particle .0E+06 results in minoles. A value of 1 value for typical point of the solution during Optional/Reqd. Required Optional keyword Closed Homogon Flame-Extinction Honeycomb Moneycomb	chis parameter moments or ricro-moles who would mean the roblems is 1.0 ng numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			
Reactor	(sectional method). A recommended preserve the positivity Parameters Scaling factor Keyword Usage	non-unity value for the variable for particle .0E+06 results in mismoles. A value of 1 value for typical point of the solution during Optional/Reqd. Required Optional keyword Closed Homogore Closed Plasman Homeycomb Model in the	chis parameter moments or ricro-moles who would mean the roblems is 1.0 and numerical Units	changes the units of number density. For ereas setting it to 1.0E+09 nat the unit should be E+12. Such scaling helps computation. Examples SCLM 1.0E+12			

Keyword	Definition	alter releas			
nc) nora		Plasma PSR			
		Plug Flow Read	ctor		
				ahili-ad Flama	
		Trefffixed Editi			
		Premixed Lam	inar Flame-spe	eed Calculation	
		SI Engine Zona	al Simulator		
		Stagnation Flow Flame Simulator			
SCLS Reactor Property	for this parameter change surface species. For examples setting it to 1.0E+09 mean the unit should be moles. Such scaling helps preser- computation.	ng factor for the particle surface species concentrations. A non-unity value his parameter changes the units of the (internal) solution variable for particle ace species. For example, setting it to 1.0E+06 results in micro-moles whereas ng it to 1.0E+09 means that it is nano-moles. A value of 1 would mean that unit should be moles. A recommended value for typical problems is 1.0E+12. It is scaling helps preserve the positivity of the solution during numerical putation.			
	Parameters	Optional/Reqd.	Units	Examples	
	Scaling factor	Required		SCLS 1.0E+12	
	Keyword Usage	Optional keywor	d.		
		 Closed Homog Closed Plasma Flame-Extinction Honeycomb M IC HCCI Engine Multi-Zone HC Opposed-flow Perfectly Stirre Plasma Plug Fl Plasma PSR Plug Flow Read Premixed Lamin SI Engine Zona Stagnation Flo 	Reactor on Simulator lonolith React classification Flame rd Reactor (PS) ow Reactor ctor inar Burner-sta inar Flame-spe	or nulator R) abilized Flame eed Calculation	

Keyword	Definition							
SCOR Solver	Flag instructing that the transient solver, DASPK will use staggered corrector method to solve sensitivity equations. The staggered corrector method is the sensitivity method that was used in previous versions of ANSYS Chemkin-Pro and is mainly provided for backwards compatibility. It is generally slower than the							
	default sensitivity met	hod in Chemkin-Pro	(which is t	he staggered direct method) he staggered direct method.				
	Keyword Usage	'	Optional keyword. By default, DASPK uses staggered corrector method to solve sensitivity equations.					
	Reactor Models	Closed Homo	geneous Ba	tch Reactor				
		Closed Plasma						
		Honeycomb F						
		 IC HCCI Engin Non-reactive 						
		Perfectly Stirr		(PSR)				
		• Plasma PSR	ed nedetor (. 511)				
		Plasma Plug Flow Reactor						
		Plug Flow ReactorSI Engine Zonal Simulator						
	Notes		SCOR can be changed for a continuation run, but it cannot be removed from one.					
scov	1	•		on, i.e., create a table of				
Output	effective reaction rates versus temperature. Surface coverage is assumed to be that of the bath-gas composition. The ALL option is the default and produces tables for every surface reaction. The NONE option suppresses output for all of the reactions. If reaction information is desired for only certain reactions, they may be optionally specified by their number (given in the Pre-processor output or by typing an exact duplicate of the reaction expression (see example input).							
	Parameters	Optional/Reqd.	Units	Examples				
	ALL option	Option- al, de- fault is ALL		SCOV ALL				
	NONE option	Option- al, de- fault is ALL		SCOV NONE				
	Surface reaction number list	Option- al, de-		SCOV 2 5				

Keyword	Definition							
		fault is						
		ALL						
	Surface reaction expression	Option- al, de- fault is ALL		SCOV CH(S)+H<=>C(S,R)+H2				
	Keyword Usage	•	efault, the table output is or NONE keyword.					
	Reactor Models	Mechanism A	nalyzer					
SENG Output	coefficients, with responsible for the growth rate of	ord causes the calculation of the first-order sensitivity ect to the gas-phase and surface chemistry rate constants, all bulk phases. Growth-rate sensitivities will be included and the XML Solution File (e.g., XMLdata.zip).						
	Keyword Usage	Optional keywo are computed. S	•	t, no sensitivity coefficients N.				
	Reactor Models	Closed Homo	geneous Bat	ch Reactor				
		Closed Plasma	Closed Plasma Reactor					
		Honeycomb F	Honeycomb Reactor					
		Perfectly Stirred Reactor (PSR)						
		Plasma Plug Flow Reactor						
		Plasma PSR						
		Plug Flow Reactor						
	Notes		This keyword can be added but not removed from a continuation run.					
SENT	Calculate and store se		for gas temp	perature with respect to				
Output	Keyword Usage	Optional keywo	Optional keyword. By default, no sensitivity coefficients are computed or printed. Same as ASEN TEMP.					
	Reactor Models	Closed Homo	geneous Bat	ch Reactor				
		Closed Plasma	a Reactor					
		Honeycomb F	Honeycomb Reactor					
		IC HCCl Engin	e					
		Multi-Zone HCCl Engine Simulator						
		Perfectly Stirred Reactor (PSR)						
		Perfectly Stirre	ed Reactor (F	PSR)				

Keyword	Definition						
110,110101		Plasma PSR					
		Diver Flour Doo	at a v				
		Plug Flow Rea	ctor				
		 Opposed-flow 	Flame				
		 Premixed Lam 	inar Burner-st	abilized Flame			
		Premixed Laminar Flame-speed Calculation					
		Rotating Disk CVD Reactor					
		SI Engine Zonal Simulator					
		Stagnation Flow CVD Reactor					
SFAC Reactor Property	(scaled) by the factor SFA difficulties are encountere would be first solved with	nat the rates of all surface reactions will be multiplied AC. This option is sometimes useful if convergence red due to unusually large reaction rates. The problem h artificially reduced reaction rates, which then can be continuations or restarts until SFAC is one.					
	Parameters	Optional/Reqd.	Units	Examples			
	Multiplier value	Required		SFAC 2.0			
	(PSR clusters only)	If no number is given, value is assumed to apply to all reactors in a cluster.					
	Keyword Usage	Optional keywor set to 1.0.	d. By default,	the multiplier value is			
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor Cylindrical Shear Flow Reactor Honeycomb Reactor Non-reactive Gas Mixer Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor 					

Keyword	Definition						
		Plasma Plug F	low Reactor				
		 Plasma PSR 					
		 Plug Flow Rea 	ctor				
			Rotating Disk CVD Reactor				
		Stagnation Flo	ow CVD Reacto	or			
SFLR Solver	fractions, surface site frac slightly negative number	Sometimes during the solution procedure some of the very small gas-phase mass fractions, surface site fractions, or bulk species fractions may be calculated as a slightly negative number. No solution component will be allowed to drop below the floor value specified by SFLR.					
	Parameters	Optional/Reqd.	Units	Examples			
	Minimum bounds on the solution variables	Required		SFLR - 1.E-5			
	Keyword Usage	Optional keywor	•	the minimum bounds t to -1.E-4			
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame			
		Non-reactive (Non-reactive Gas Mixer				
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR					
		 Rotating Disk 	CVD Reactor				
		Stagnation Flo	ow CVD Reacto	or			
		Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation					
SFMN	Set the minimum bound negative number to allow			5 ,			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Minimum bound	Required		SFMN -1.0d-06			
	Keyword Usage	Optional keywor	d. Usable only	with Particle Tracking.			
	Reactor Models	 Opposed-flow 	Flame				
		Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation					
SGMAXIT	This controls the maximu	⊥ um number of iter	ations the seg	gregated solver can take			
Solver	per step to solve the pro	blem. The default	is 100 and yo	u may increase this value if it is very hard to solve.			

Keyword	rd Definition						
	Parameters	Optional/Reqd.	Units	Examples			
	Scaling factor	Required		SGMAXIT 100			
	Keyword Usage	Optional keywor	Optional keyword.				
	Reactor Models	Diffusion or Pr	remixed Oppo	osed-flow Flame			
		• Opposed-flow	Opposed-flow Flame				
		 Premixed Lam 	inar Burner-st	tabilized Flame			
		 Premixed Lam 	inar Flame-sp	eed Calculation			
SG-	Absolute tolerance criterion on gas-phase mole fractions in segregated scheme.						
TOL	Parameters	Optional/Reqd.	Units	Examples			
Solver	Absolute tolerance	Required		SGTOL 1.0E-10			
	Keyword Usage	Optional keywor	d. The defaul	t value is 1E-10.			
	Reactor Models	Diffusion or Pr	remixed Oppo	osed-flow Flame			
		• Opposed-flow	Opposed-flow Flame				
		Premixed Lam	Premixed Laminar Burner-stabilized Flame				
		Premixed Lam	Premixed Laminar Flame-speed Calculation				
SIDR Solver	Turns on the multi-zon de-activated. The number mutually exclusive.	_					
	Parameters	Optional/Reqd.	Units	Examples			
	Number of zones	Required		SIDR 2			
	Keyword Usage	Optional keywor	rd.				
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator				
SIKN Solver	Turns on the multi-zon activated. The number exclusive.	_		n gas-phase chemistry (N and SIDR are mutually			
	Parameters	Optional/Reqd.	Units	Examples			
	Number of zones	Required		SIKN 2			
	Keyword Usage	Optional keywor	rd.				
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator				
SIOA	Specifies the crank and saved to the XML solut	_	ine Zonal Sim	ulator properties will be			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
rioperty	crank_angle	Required	degree	SIOA 5.1			
	Keyword Usage	Optional keywor	rd.	-L			
	Reactor Models	SI Engine Zon	al Simulator				

Definition		Definition				
(e.g., XMLdata.zip). Chan	iging this value ma	y affect the p	erformance of the XML			
Parameters	Optional/Reqd.	Units	Examples			
Data block size	Required	bytes	SIZE 10000000			
Keyword Usage	Optional keywo MB.	rd. By default,	the data block size is 10			
Reactor Models	Chemical and	Phase Equilib	orium Calculations			
	Closed Homo	geneous Batc	h Reactor			
	 Closed Partial 	ly Stirred Read	ctor (PaSR)			
	Closed Plasma	a Reactor				
	Cylindrical Short	ear Flow Reac	tor			
	• Diffusion or P	remixed Oppo	osed-flow Flame			
	Honeycomb R	Honeycomb Reactor				
	IC HCCI Engine					
	Mechanism Analyzer					
	Non-reactive Gas Mixer					
	Normal Incident Shock					
	Normal Reflected Shock					
	Partially Stirred Reactor (PaSR)					
	Perfectly Stirred Reactor (PSR)					
	Planar Shear Flow Reactor					
	Plasma Plug Flow Reactor					
	• Plasma PSR	Plasma PSR				
	• Plug Flow Rea	Plug Flow Reactor				
	Premixed Laminar Burner-stabilized Flame					
	Premixed Laminar Flame-speed Calculation					
	Rotating Disk CVD Reactor					
	SI Engine Zonal Simulator					
	Stagnation Flow CVD Reactor					
	Use this keyword to set (e.g., XMLdata.zip). Chan parsing routines in the Parameters Data block size Keyword Usage	Use this keyword to set the data block size (e.g., XMLdata.zip). Changing this value maparsing routines in the graphical ANSYS C Parameters	Use this keyword to set the data block size in bytes for (e.g., XMLdata.zip). Changing this value may affect the parsing routines in the graphical ANSYS Chemkin-Pro Parameters Optional/Reqd. Units Data block size Required bytes Keyword Usage Optional keyword. By default, MB. Reactor Models - Chemical and Phase Equility Closed Homogeneous Batcons - Closed Partially Stirred Reactons - Closed Plasma Reactor - Cylindrical Shear Flow Reactons - Diffusion or Premixed Opposity - Honeycomb Reactor - IC HCCI Engine - Mechanism Analyzer - Normal Incident Shock - Normal Incident Shock - Partially Stirred Reactor (Panal Perfectly Stirred Reactor (Panal Perfectly Stirred Reactor (Panal Perfectly Stirred Reactor (Panal Plasma Plug Flow Reactor - Plasma PSR - Plug Flow Reactor - Premixed Laminar Burner-species - Rotating Disk CVD Reactor - SI Engine Zonal Simulator			

Keyword	Definition						
SLIP		Use the slip velocity model to calculate axial velocity at wall when Knudsen number is large. The model calculates the axial velocity at wall as					
Reactor Property	$U_{wall} = C \cdot L \cdot \left(\frac{2 - \Sigma_v}{\Sigma_v}\right) \cdot \frac{dU}{dy}$ whe C is the multiplier, Σ_v is the						
	Parameters	Optional/Reqd.	Units	Examples			
	Multiplier	Required		SLIP 3.0 0.9			
	Tangential momentum accommodation coefficient	Required		SLIP 3.0 0.9			
	Keyword Usage	Optional keywor is not used.	d. By default,	the slip velocity model			
	Reactor Models	 Cylindrical She 	ear Flow React	tor			
		• Planar Shear F	low Reactor				
SOLU- TION _TECHNIQU Solver	Chemkin-Pro use an older solution_technique is set and for larger mechanism solution_technique to 0 uyou are having converger	underlying solution technique. Previous versions of ANSYS use an older and generally less robust solution method. By default, hnique is set to 1, which means the new and generally more robust are mechanisms often faster) technique is used. Setting hnique to 0 uses the older method and you should only use this if ang convergence issues with CHEMKIN-Pro and are confident you do y problems with your mechanism or problem specification.					
	Keyword Usage	Optional keyword. By default, SOLUTION_TECHNIQUE is set to 1.					
	Reactor Models	Closed Homog	geneous Batch	n Reactor			
		Closed Plasma	Reactor				
		Honeycomb Reactor					
		IC HCCI Engine					
		Multi-Zone HCCI Engine Simulator					
		Perfectly Stirre	ed Reactor (PS	R)			
		Plasma Plug Fl	ow Reactor				
		Plasma PSR					
		Plug Flow Reactor					
		Opposed-flow Flame					
		Premixed Lam	inar Burner-st	abilized Flame			
		Premixed Lam	inar Flame-sp	eed Calculation			
		SI Engine Zona	al Simulator				

Keyword	Definition						
SP	Constant pressure and e	ntropy constraints					
Problem Type	Keyword Usage	Optional keywor must be include		e problem-type keyword			
Type	Reactor Models	Chemical and	Phase Equilib	rium Calculations			
	Notes	PS keyword.is	equivalent.				
SPOS		(small positive) number that will replace any negative tions. The replacement is made after every successful					
Solver	sequence of time steps, SPOS is often helpful in from the solution. SPOS	upon adding mesh starting difficult p attempts to force t may otherwise be	n points, and roblems wher the transient	on restart or continuation. n the initial guess is far			
	Parameters	Optional/Reqd.	Units	Examples			
	Species mass fraction	Required		SPOS 1.E-14			
	Keyword Usage	for negative frac Models except for	Optional keyword. By default, no substitution is made for negative fractions during solution for all Reactor Models except for Opposed-flow Flames, where the default value is 1.E-10.				
	Reactor Models	Diffusion or Pr	Diffusion or Premixed Opposed-flow Flame				
		Non-reactive (Non-reactive Gas Mixer				
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)				
		Plasma PSR					
		Premixed Lam	Premixed Laminar Burner-stabilized Flame				
		 Premixed Lam 	Premixed Laminar Flame-speed Calculation				
		Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor					
SQRX Solver	"overflow" in the downs model fails to converge reactor wall temperature	rall thermal conductivity to allow surface enthalpy production to the downstream direction. This keyword is useful when the reactor to converge repeatedly because of stiff surface chemistry and the temperature is not fixed. The overall enthalpy of the reactor is still because this pseudo wall enthalpy flux is included in the energy					
	Parameters	Optional/Reqd.	Units	Examples			
	Pseudo conductivity	Required		SQRX 0.001			
	Keyword Usage	Optional keywor	•	no thermal conduction			
	Reactor Models	Cylindrical She	ear Flow Reac	tor			

Keyword	Definition	on					
		Planar Shear F	low Reacto	or			
SRXN Output	Prints out a table of reaction rates and other pertinent information for a surface reaction. The ALL option is the default and produces tables for every surface reaction. The NONE option suppresses output for all of the reactions. If reaction information is desired for only certain reactions, they may be optionally specified by their number (given in the Pre-processor output) or by typing an exact duplicate of the reaction expression (see example input).						
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option- al, de- fault is ALL		SRXN ALL			
	NONE option	Option- al, de- fault is ALL		SRXN NONE			
	Surface reaction number list	Option- al, de- fault is ALL		SRXN 2 5			
	Surface reaction expression	Option- al, de- fault is ALL		SRXN CH(S)+H<=>C(S,R)+H2			
	Keyword Usage	1 -	Optional keyword. By default, the table output is determined by the ALL or NONE keyword.				
	Reactor Models	Mechanism A	nalyzer				
SS- DR	The nominal value of flamelet will be composite		calar Dissip	oation Rate (SSDR). The first			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Nominal value of SSDR	Required	1/s	SSDR 1.0			
	Keyword Usage	Optional keywo	rd.	·			
	Reactor Models	Diffusion Flan	Diffusion Flamelet Generator				
SS- DR_MAX Reactor	The maximum value of the Stoichiometric Scalar Dissipation Rate (SSDR). After computing a flamelet for the nominal value (specified by keyword SSDR), continuations to SSDR_MAX are done in a number of steps as specified by keyword NSTEP_HIGH.						
Property	Parameters	Optional/Reqd.	Units	Examples			
i - 7	Maximum value of	Optional	1/s	SSDR_MAX 100			
	SSDR						

Keyword	Definition	alter relea					
ney word	Reactor Models	Diffusion Flam	nelet Gener	ator			
	neactor models	Birasion rian	icict dellei	utoi			
SS- DR_MIN Reactor	computing a flamelet for	or the nominal valu	ie (specifie	ipation Rate (SSDR). After d by keyword SSDR), steps as specified by keyword			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Minimum value of SSDR	Optional	1/s	SSDR_MIN 0.001			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Diffusion Flam	nelet Gener	ator			
SSKIP	Skip the initial surface s	 site fraction calcula	tion.				
Solver	Keyword Usage	Optional keyword. By default, an initial solution is performed to determine the surface site fractions holding the reagent gas species constant.					
	Reactor Models	• Plasma Plug F	 Honeycomb Monolith Reactor Plasma Plug Flow Reactor Plug Flow Reactor				
SS- MAX- ITER Solver	solver TWOPNT. This is t time TWOPNT searches need to change this ma	e maximum number of iterations per steady state search, in the steady-state yer TWOPNT. This is the maximum number of iterations that are allowed each e TWOPNT searches to find the steady state solution. Typically you will not ed to change this maximum because TWOPNT will revert to its time steppin or or the steady state.					
	Parameters	Optional/Reqd.	Units	Examples			
	Maximum steady state iterations	Optional		SSMAXITER 120			
	Keyword Usage	Optional keyword of iterations is 1		ult, the maximum number			
	Reactor Models	Cylindrical She	ear Flow Re	actor			
		Diffusion or Pr	remixed Op	pposed-flow Flame			
		Non-reactive (Non-reactive Gas Mixer				
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)				
			Planar Shear Flow Reactor				
		Plasma PSR	Plasma PSR				
				r-stabilized Flame			
				-speed Calculation			
		 Rotating Disk 	CVD Reacto	or			

Keyword	Definition						
		Stagnation Flo	ow CVD Rea	actor			
	Notes	SSMAXITER m	ust be >=1				
SS- RX Solver	A pseudo diffusivity for surface species to allow them to diffuse along the wall surface in the downstream direction. This keyword is useful when the reactor model fails to converge repeatedly because of stiff surface chemistry and the reactor wall temperature is fixed. The overall mass and element conservations of the reactor are still satisfied because pseudo surface species fluxes are included in the surface species equations.			useful when the reactor Irface chemistry and the d element conservations of			
	Parameters	Optional/Reqd.	Units	Examples			
	Pseudo conductivity	Required		SSRX 0.0001			
	Keyword Usage	Optional keywo	•	ult, no surface species flux			
	Reactor Models	Cylindrical Sho					
		Planar Shear F	low Reacto	or .			
	Notes	Typically, the value of SSRX should be kept under 0.					
SSTT	1	keyword indicates that the local sensitivity analysis will be					
Solver	calculations. This may be	helpful in speedi	ng up calcı	sis for transient or plug-flow ulations of sensitivity, but nan the integrated sensitivity.			
	Keyword Usage	analysis will be	Optional keyword. By default, the integrated sensitivity analysis will be performed for transient calculations when sensitivity data is requested.				
	Reactor Models	Closed Homog					
		Closed Plasma Reactor					
		Honeycomb Reactor					
		• IC HCCI Engin	e				
		Perfectly Stirre	ed Reactor	(PSR)			
		• Plasma PSR					
		• Plasma Plug F	low Reacto	r			
		Plug Flow Reactor					
		SI Engine Zon	al Simulato	r			
	Notes	SSTT can be added to a continuation run, but it cannot be removed from one.					
STAG	Specify a Stagnation Flo	w CVD Reactor mo	odel.				

Keyword	Definition						
Problem Type	,,,						
	Reactor Models	Stagnation Flo	Stagnation Flow CVD Reactor				
STAG-	Indicates Burner-stabiliz	 ed Stagnation Flow	/ problem typ	e.			
NA-	Keyword Usage	Required keywo	rd.				
TION	Reactor Models	Premixed Lam	inar Burner-st	abilized Stagnation Flow Flame			
_FLAME Problem Type		Simulator					
Reactor Property	Parameter to produce a non-uniform grid. For cartesian coordinates the initial grid location for a node J is X(J)=A*(J-1)**STCH, where A=HITE/(NPTS-1)**STCH, HITE is the reactor height, and NPTS is the total number of grid nodes. If STCH=1, a uniform grid is produced. For STCH > 1, the grid is more tightly spaced at the lower boundary (cartesian-coordinates) or at the outer boundary (cylindrical coordinates), and consequently the grid is more widely spaced at the other boundary.						
	Parameters	Optional/Reqd.	Units	Examples			
	Cartesian coordinates	Required		STCH 1.2			
	Keyword Usage	Optional keywor	d. By default,	the program is set to 1.			
	Reactor Models	Cylindrical ShePlanar Shear F		or			
STCK Output	Analyzes the forward ar applicable. The ALL opti reaction with a sticking output for all of the reactions, they may be of Pre-processor output) of (see example input).	on is the default and coefficient formula ctions. If reaction in optionally specified	nd produces to stion. The NON nformation is by their num	ables for every surface NE option suppresses desired for only certain			
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option- al, de- fault is ALL		STCK ALL			
	NONE option	Option- al, de- fault is ALL		STCK NONE			
	Surface reaction number list	Option- al, de-		STCK 2 5			

	Definition					
		fault is ALL				
	Surface reaction expression	Option- al, de- fault is ALL		STCK CH(S)+H<=>C(S,R)+H2		
	Keyword Usage	Optional keyword. By default, the table output is determined by the ALL or NONE keyword.				
	Reactor Models	Mechanism Analyzer				
STP0	Initial time step size used by the steady-state solver <i>Twopnt</i> during the in calculation for the surface conditions at the inlet.					
Solver	Parameters	Optional/Reqd.	Units	Examples		
	Initial time step	Required	cm	STP0 1.0E-7		
	Keyword Usage	Optional keyword. By default, the initial time step is 1.0E-6.				
	Reactor Models	Cylindrical Shear Flow ReactorPlanar Shear Flow Reactor				
STPT Solver	The maximum internal time step for the solver in transient calculations. STPT determines the largest time-step the transient solver can take at one time and thereby controls the resolution for interpolation of specified time-profiles.					
Solver	_					
Solver	_		lation of spe			
Solver	thereby controls the	resolution for interpo	lation of spe	cified time-profiles.		
Solver	thereby controls the i	Optional/Reqd. Required Optional keywoor DTSV are spethese values. If response	Units sec rd. If not specified, STPT is	cified time-profiles. Examples		
Solver	thereby controls the in Parameters Time step	Optional/Reqd. Required Optional keywo or DTSV are spe these values. If r then STPT is set by 100. Closed Homographs	Units sec rd. If not specified, STPT is neither DELT to the value	Examples STPT 1.0E-4 cified, then If either DELT set to the smallest of nor DTSV are specified, of the end time divided		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keywoor DTSV are spethese values. If reference the state of the	Units sec rd. If not specified, STPT is neither DELT to the value geneous Batca Reactor	Examples STPT 1.0E-4 cified, then If either DELT set to the smallest of nor DTSV are specified, of the end time divided		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keyword or DTSV are spethese values. If reference then STPT is set by 100. Closed Homogon Closed Plasma	Units sec rd. If not spec cified, STPT is neither DELT to the value geneous Batc a Reactor	Examples STPT 1.0E-4 cified, then If either DELT set to the smallest of nor DTSV are specified, of the end time divided		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keywoor DTSV are spethese values. If reference the STPT is set by 100. Closed Homogone Closed Plasman IC HCCI Enginer Non-reactive Control Perfectly Stirres	Units sec rd. If not spec cified, STPT is neither DELT to the value geneous Batc a Reactor e Gas Mixer	Examples STPT 1.0E-4 cified, then If either DELT is set to the smallest of nor DTSV are specified, of the end time divided in Reactor		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keyword or DTSV are spethese values. If reference the sethese values and the sethese values. If reference the sethese values are sethese values are sethese values. If reference the sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are setteness. It is set values are sethese values are se	Units sec rd. If not spec cified, STPT is neither DELT to the value geneous Batc a Reactor e Gas Mixer ed Reactor (P	Examples STPT 1.0E-4 cified, then If either DELT is set to the smallest of nor DTSV are specified, of the end time divided in Reactor		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keywoor DTSV are spethese values. If reference the STPT is set by 100. Closed Homogone Closed Plasman IC HCCI Enginer Non-reactive Control Perfectly Stirres	Units sec rd. If not spec cified, STPT is neither DELT to the value geneous Batc a Reactor e Gas Mixer ed Reactor (P	Examples STPT 1.0E-4 cified, then If either DELT is set to the smallest of nor DTSV are specified, of the end time divided in Reactor		
Solver	thereby controls the in Parameters Time step Aurora Usage	Optional/Reqd. Required Optional keyword or DTSV are spethese values. If reference the sethese values and the sethese values. If reference the sethese values are sethese values are sethese values. If reference the sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are sethese values are sethese values. If reference values are sethese values are setteness. It is set values are sethese values are se	Units sec rd. If not spec cified, STPT is neither DELT to the value geneous Batc a Reactor e Gas Mixer ed Reactor (P	cified time-profiles. Examples STPT 1.0E-4 cified, then If either DELT is set to the smallest of nor DTSV are specified, of the end time divided The Reactor SR)		

Keyword	Definition						
Reactor Property	Keyword Usage	Optional keywo	Optional keyword. By default, a steady-state calculation is performed.				
	Reactor Models	Non-reactive	Non-reactive Gas Mixer				
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR	Plasma PSR				
		Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor					
	Notes	Exclusive togg	Exclusive toggle with TRAN.				
SURF Reactor Property	Initial values (transient) or estimates (steady-state) for the surface site fraction values for the surface species on each surface site type (surface phase).						
	Parameters	Optional/Reqd.	Units	Examples			
	Surface species name	Required		SURF Ga(s) 0.001			
	Surface fractions	Required	site fractions	SURF Ga(s) 0.001			
	Keyword Usage		Optional keyword. By default, the initial or estimated surface-site fractions are 0.0.				
	Reactor Models	Closed Homo	Closed Homogeneous Batch Reactor				
		Closed Plasma Reactor					
		Cylindrical Sho	 Cylindrical Shear Flow Reactor Honeycomb Reactor Perfectly Stirred Reactor (PSR) Planar Shear Flow Reactor Plasma Plug Flow Reactor Plasma PSR 				
		Honeycomb R					
		Perfectly Stirre					
		• Planar Shear F					
		• Plasma Plug F					
		• Plasma PSR					
		Plug Flow Reactor					
		Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flo	Stagnation Flow CVD Reactor				
	Notes	surface site ty cautionary me for each surfa	The sum of the site fractions should equal one for each surface site type (phase). However, if they do not, a cautionary message will be printed and the site fractions for each surface site type will be normalized so the sum does equal one.				

Keyword	Definition				
SYMT Reactor	Keyword for temperature boundary condition on the upper wall (only used for non-symmetric cartesian coordinates). The upper wall temperature is set equal to the bottom wall temperature if SYMT is specified.				
Property	Keyword Usage	Optional keyword. By default, an adiabatic top wall is used.			
	Reactor Models	Planar Shear Flow Reactor			

10.4. Alphabetical Listing of Keywords [T-Z]

Table 10.4: Alphabetical Listing of Keywords [T-Z]

Keyword	Definition						
T1	Temperature before t	he incident shock.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	K	T1 300.			
, ,	Keyword Usage	temperature, pre	Optional keyword. The shock velocity and any two of temperature, pressure, or density must be specified for conditions before the incident shock. See also P1A and RHO1.				
	Reactor Models		Normal Incident ShockNormal Reflected Shock				
T2	Temperature after the	incident shock.	incident shock.				
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	K	T2 1500.			
roperty	Keyword Usage	or density must	Optional keyword. Any two of temperature, pressure, or density must be specified for conditions after the incident shock. See also RHO2 and P2A.				
	Reactor Models		Normal Incident ShockNormal Reflected Shock				
T3	Temperature after the	e reflected shock, give	en as T_5 in	the equations.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	K	T2 1500.			
	Keyword Usage	or density must	Optional keyword. Any two of temperature, pressure, or density must be specified for conditions after the reflected shock. See also RHO3 and P3A.				
	Reactor Models	Normal Reflec	Normal Reflected Shock				
ТАМВ	Ambient temperature This keyword is only			eat transfer out of the system. tion is being solved.			
Reactor	Parameters	Optional/Regd.	Units	Examples			

Keyword	Definition				
	Material name	Option-		TAMB material1 298	
		al. If no			
		material			
		is			
		specified,			
		the same			
		value will			
		be used			
		for all			
		materials.			
	Ambient	Required	K	TAMB 298	
	temperature				
	Reactor number	Option-		TAMB material1 298 1	
	(PSR clusters only)	al. If no			
	,	number			
		is given,			
		the			
		keyword			
		is			
		assumed			
		to apply			
		to all			
		reactors			
		in a			
		cluster.			
	Keyword Usage	Optional keywo	rd. This key	word must be used with	
	Reactor Models	Closed Homo	geneous B	atch Reactor	
		Closed Plasma			
		Honeycomb N	Monolith Re	eactor	
		Non-reactive			
		Perfectly Stirr	ed Reactor	(PSR)	
		Plasma PSR			
		Plasma Plug F		or	
		Plug Flow Rea	ictor		
AU	The nominal residence	e time of the gas in	the reactor	when flow is present.	
eactor	Parameters	Optional/Reqd.	Units	Examples	
roperty	Nominal residence time	Required	sec	TAU 1.E-3	
	Reactor number (PSR clusters only)	Optional		TAU 1.E-3 1	

Keyword	Definition					
		If no number is given, the keyword is assumed to apply to all reactors in a cluster.				
	Keyword usage	O are specifie is assumed. F uired for each keyword. Unle	ne of TAU, FLRT / FPRO, d or are nonzero, then LRT / FPRO or SCCM / INLET stream defined. ess the CLSE keyword is nd reactor volume (VOL)			
	Reactor Models	Partially StirrePerfectly StirrePlasma PSR				
TBND Solver	The upper boundary for thermodynamic data can getting erratic thermal d	prevent the Gas	-phase Kinetic	s Pre-processor from		
	Parameters	Optional/Reqd.	Units	Examples		
	Upper boundary	Required	K	TBND 10000.		
	Keyword Usage	Optional keyword. By default, the upper boundary is 5000.				
	Reactor Models	Closed Homog	geneous Batch	Reactor		
		Closed Plasma	Reactor			
		• Diffusion of Pr	remixed Oppo	sed-flow Flame		
		Honeycomb R				
		Perfectly Stirre		R)		
		Plasma Plug F	low Reactor			
		• Plasma PSR				
1						
		Plug Flow ReaPremixed Lam				

Keyword	Definition						
		Premixed Lan	ninar Flame	-speed Calculation			
		 Rotating Disk 	CVD React	or			
		Stagnation Floring	ow CVD Re	actor			
ТВТН		the bath gas temperature in Kelvin. This temperature is used wherever a gle temperature is needed. The default is 298.15 K.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Bath gas temperature	Required	К	TBTH 900.			
	Keyword Usage	Optional keywo	rd. By defa	ult, the bath gas temperature			
	Reactor Models	Mechanism A	nalyzer				
TDIF	Include thermal diffusi	on (Soret effect) in	the transpo	ort calculations.			
Reactor Property	Keyword Usage	Optional keywo included.	Optional keyword. By default, thermal diffusion is not included.				
rioperty	Reactor Models	Cylindrical Sh	Cylindrical Shear Flow Reactor				
		Diffusion or Premixed Opposed-flow Flame					
		Planar Shear Flow Reactor					
		Premixed Lan	Premixed Laminar Burner-stabilized Flame				
		Premixed Laminar Flame-speed Calculation					
		 Rotating Disk 	Rotating Disk CVD Reactor				
		Stagnation Float	Stagnation Flow CVD Reactor				
TDEL	Set the temperature in	crement in all table	s where th	e temperature is varied.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	К	TDEL 200.			
·	Keyword Usage	Optional keywo 100 K.	Optional keyword. By default, the temperature step is 100 K.				
	Reactor Models	Mechanism A	Mechanism Analyzer				
TDSK Reactor Property	Temperature of the de boundary condition, ur susceptor or disk temp specified, TDSK is taker	nless the keyword Ferature is calculate	RADB is giv	en, indicating that the energy balance. If RADB is			
	Parameters	Optional/Reqd.	Units	Examples			
	Surface temperature	Required	К	TDSK 1200			
	Keyword Usage	Required keywo	ord.	I			

Keyword	Definition							
	Reactor Models	Rotating Disk	CVD Reacto	or				
	neactor models	notating Disk	CVD neact	01				
		Stagnation Flo	ow CVD Rea	actor				
TEBND	The upper boundary for non-plasma solutions			e useful for preventing				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples				
Поренту	Upper boundary	Required	K	TEBND 8000				
	Keyword Usage		Optional keyword. By default, the upper boundary is 200000 K (roughly 20 eV).					
	Reactor Models	Closed Plasma	a Reactor					
		• Plasma PSR						
		• Plasma Plug F	Plasma Plug Flow Reactor					
TEIN Inlet	Electron temperature in the inlet stream. For most cases, there are no free electrons in the inlet stream, in which case the electron inlet temperature is not used.							
Property	Parameters	Optional/Reqd.	Units	Examples				
	Electron temperature	Required	K	TEIN 300.				
	Keyword Usage	'	Optional keyword. By default, the electrons have the same temperature as the inlet gas.					
	Dooston Modele	Plasma PSR						
	Reactor Models	Plasma PSR						
Reactor	The reactor gas tempe	rature. Depending of user-supplied temp rature (ENRG), or th	erature con	etor Model and problem estraint (TGIV), an initial ector temperature (for				
Reactor	The reactor gas tempe type, this is either the estimate of the tempe	rature. Depending of user-supplied temp rature (ENRG), or th	erature con	straint (TGIV), an initial				
TEMP Reactor Property	The reactor gas tempe type, this is either the estimate of the tempe transient cases). See al Parameters Reactor gas temperature	erature. Depending of user-supplied temp rature (ENRG), or the so TPRO. Optional/Reqd. Required	erature con ne initial rea	Examples TEMP 1000.				
Reactor	The reactor gas tempe type, this is either the estimate of the tempe transient cases). See all Parameters Reactor gas	erature. Depending of user-supplied temp rature (ENRG), or the so TPRO. Optional/Reqd.	erature con le initial rea	estraint (TGIV), an initial actor temperature (for Examples				

Keyword	Definition					
	Reactor Models	Chemical and Phase Equilibrium Calculations				
		Closed Homogeneous Batch Reactor				
		Closed Partially Stirred Reactor (PaSR)				
		Closed Plasma Reactor				
		Diffusion or Premixed Opposed-flow Flame				
		Honeycomb Reactor				
		IC HCCI Engine				
		Non-reactive Gas Mixer				
		Partially Stirred Reactor (PaSR)				
		Perfectly Stirred Reactor (PSR)				
		Plasma Plug Flow Reactor				
		Plasma PSR				
		Plug Flow Reactor				
		Premixed Laminar Burner-stabilized Flame				
		Premixed Laminar Flame-speed Calculation				
		Rotating Disk CVD ReactorSI Engine Zonal Simulator				
		Stagnation Flow CVD Reactor				
	Notes	In previous versions, TINI keyword was used for some Reactor Models.				
TEST	Specifies an estimate	of the equilibrium temperature.				
Reactor	Parameters	Optional/Reqd. Units Examples				
Property	Temperature	Required K TEST 2000				
	Keyword Usage	Optional keyword. May help convergence to the equilibrium temperature, or assure an appropriate equilibrium temperature is calculated when a second, trivial solution exists (e.g., for adiabatic flame-temperature calculations).				
	Reactor Models	Chemical and Phase Equilibrium Calculations				
TEXP	_	/cylinder temperature that defines the start of the expansion has a lower priority than QEXP .				

Keyword	Definition						
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	temperature	Required	K	TEXP 1150.0			
	Keyword Usage	Optional keywo	⊥ rd. Default = 1	000K.			
	Reactor Models	Multi-Zone H					
		16.116615					
		IC HCCl Engin	e				
		SI Engine Zonal Simulator					
TFAL		gas-phase reaction with respect to changes in the a table of reaction rates versus temperature at a constant					
Output	pressure. The pressure ar			•			
-	gas. The ALL option is th						
	reaction. The NONE option		•				
		-	•	y be optionally specified			
	by their number (given i duplicate of the reaction	-	•	, ,			
	Parameters	Optional/Reqd.	Units	Examples			
	ALL option	Option-		TFAL ALL			
	ALL OPTION	al, de-		ITAL ALL			
		fault is					
		ALL					
	NONE option	Option TFAL NONE					
	·	al, de-					
		fault is					
		ALL					
	Gas reaction	Option-		TFAL 2 5			
	number list	al, de-					
		fault is ALL					
	Gas reaction			TFAL			
	expression	Option- al, de-		2CH3(+M)<=>C2H6(+M)			
	ελριεσσιοιί	fault is		20113(+101)<->02110(+101)			
		ALL					
	Keyword Usage	Optional keyword. By default, the table output is					
		determined by t	the ALL or NO	NE keyword.			
	Reactor Models	Mechanism A	nalyzer				
TFIX	When solving a freely pr	oppositing adiabati	tic flame / EDE	E) the problem is peed			
ΙΓΙΛ	in a flame-fixed coordinate			E), the problem is posed e speed becomes an			
Reactor	eigenvalue. Therefore, an	-		=			
Property	-		•	ne point in the flame, and			
	this input allows the spe	cification of that f	ixed temperat	ure. Given the fixed			
	1 .			initial temperature profile			
	as specified by the TPRO						
	the temperatures specific	ea in the input, th	ien a linear int	erpolation of the			

after release 19.0

Keyword	Definition					
	temperature profile to added at that point.	determine the posit	ion of TFIX	is used and a mesh point		
	Parameters	Optional/Reqd.	Units	Examples		
	Temperature	Option- al.	К	TFIX 500.		
	Keyword Usage	ROF, default is the average ure (TUNBURNT) and mixture lith TPRO, the default is the to Temperature profile values.				
	Reactor Models			speed Calculation		
	Notes	• This keyword	can be char	nged for a restart run.		
TGIV	Do not solve the gas entemperature (see TEMP	•, •	will instead	d use a fixed user-supplied		
Problem Type	Parameters	Optional/Reqd.	Units	Examples		
	Reactor number (PSR clusters only) Keyword Usage	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.				
	Reyword Osage	Optional keyword. Either TGIV or ENRG must be specified, unless CONP, CONV, or COTV problem-types are specified for a closed system.				
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Plasma Reactor Diffusion or Premixed Opposed-flow Flame Non-reactive Gas Mixer Honeycomb Reactor Perfectly Stirred Reactor (PSR) Plasma Plug Flow Reactor Plasma PSR Plug Flow Reactor 				

Keyword	Definition						
		Premixed Lam	inar Burne	r-stabilized Flame			
		 Rotating Disk 	CVD React	or			
		Stagnation Flo	ow CVD Re	actor			
	Notes	This keyword can be removed or added for a restart run.					
THIG	Set the upper limit of t temperature is varied. T		_	ll tables where the			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	K	THIG 298.15			
	Keyword Usage	Optional keywo 1500.	rd. By defa	ult, the high temperature is			
	Reactor Models	Mechanism A	nalyzer				
THRM Output	The default is ALL, which The GAS, SUR, and BUL in the specified phase by their number (as list Pre-processor output fi	ch generates the talk K options will cause to be printed. Listin ted in the Gas-phas les) will generate th	bles for all thermody g individua se Kinetics hermodyna	mic tables for the specified			
	species. The keyword NONE will suppress all of the species thermodynamic tables. Parameters Optional/Reqd. Units Examples						
	ALL option	Optional		THRM ALL			
	NONE option	Optional		THRM NONE			
	GAS option	Optional		THRM GAS			
	SUR option	Optional		THRM SUR			
	BULK option	Optional		THRM BULK			
	Species name	Optional		THRM CH4			
	Species number	Optional		THRM 3			
	Keyword Usage	Optional keywo		ult, the table output is NONE keyword.			
	Reactor Models	Mechanism A	nalyzer				
TIFP Output	reaches its maximum vobtain an accurate tem	culate the ignition delay as the time when the slope of the temperature ches its maximum value. You need to use sufficient number of time poitain an accurate temperature profile. Only applicable when you are solved energy equation with the transient solver.					
	Keyword Usage			TLIM and DTIGN .			
	Reactor Models	Closed Homo					
		Closed Plasma	Reactor				
		Honeycomb N	Monolith Re	eactor			

Keyword	Definition						
		• -IC HCCI Engin	ie				
		Perfectly Stirre	ed Reactor (PS	R)			
		• Plasma PSR					
		Plasma Plug F	low Reactor				
		Plug Flow ReactorSI Engine Zonal Simulator					
TIM1 Solver	For the steady-state solver, <i>Twopnt</i> , if the Newton method fails to converge, then the application takes some pseudo time steps in order to bring the current iterate within the domain of convergence of Newton's method. This input specifies how many time steps to take and the initial size of the time step, for the initial						
	fixed-temperature calcula	ation.					
	Parameters	Optional/Reqd.	Units	Examples			
	Number of time steps	Required		TIM1 50 3.E-7			
	Initial size of time step	Required	sec	TIM1 50 3.E-7			
	Keyword Usage	1 .	•	the number of time steps ne time step is 1.E-6. See			
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame			
		Non-reactive 0	Gas Mixer				
		Perfectly Stirre	ed Reactor (PS	R)			
		• Plasma PSR					
		 Premixed Lam 	inar Burner-st	abilized Flame			
		 Premixed Lam 	inar Flame-sp	eed Calculation			
		Rotating Disk	CVD Reactor				
		Stagnation Flo	ow CVD Reacto	or			
	Notes	In previous versions, TIME keyword was used.					
TIM2	For the steady-state solve	•		_			
Solver	l .	n of convergence take and the initia	of Newton's m	rder to bring the current nethod. This input specifies time step, when the energy			
	Parameters	Optional/Reqd.	Units	Examples			
I							

Keyword	Definition							
	Number of time steps	Required		TIM2 50 3.E-7				
	Initial size of time step	Required	sec	TIM2 50 3.E-7				
	Keyword Usage							
	Reactor Models	Diffusion or Pr		sed-flow Flame				
		 Non-reactive Gas Mixer Perfectly Stirred Reactor (PSR) Plasma PSR Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 						
		Rotating Disk CVD Reactor						
		Stagnation Flow CVD Reactor						
	Notes	This input is o	This input is only used when ENRG or ENGE is included.					
TIME Solver	_	CNTT is specified, the		the job is a continuation lue will be the starting				
	Parameters	Optional/Reqd.						
	Total integration time	Required	sec	TIME 1.0E-2				
	Keyword Usage		Required keyword, except in case of IC HCCI Engine, where NREV can be specified instead.					
	Reactor Models	Closed Homo	Closed Homogeneous Batch Reactor					
		• Closed Partial	ly Stirred Reac	tor (PaSR)				
		Closed Plasma	Closed Plasma Reactor					
		IC HCCI Engin	e					
		Non-reactive (
		Normal Incide Normal Poffee						
		Normal ReflectPartially Stirre		SR)				
		Perfectly Stirre						
		Terrectly Stiff	La ricación (1 5	••,				

Keyword	Definition						
		Plasma PSR					
		 Rotating Disk 	CVD Reactor				
		SI Engine Zon	al Simulator				
		Stagnation Flow CVD Reactor					
	Notes	See also CNTT	See also CNTT keyword.				
TINF	Ambient temperature options.	of the external envi	ronment, used	d for certain heat-transfer			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	ambient temperature	Required	К	TINF 500			
	Keyword Usage	Shear Flow Reactors: Optional keyword. Only used if HTRN option is included. By default, the inlet gas temperature is used for the ambient temperature (TINL). Premixed and Diffusion Flames: Optional keyword. Only used if the user subroutine QFUN is enabled.					
	Reactor Models	Cylindrical Sho	Cylindrical Shear Flow Reactor				
		Diffusion or Property	Diffusion or Premixed Opposed-flow Flame				
		Planar Shear Flow Reactor					
		Premixed Laminar Burner-stabilized Flame					
		Premixed Lam	Premixed Laminar Flame-speed Calculation				
TINL	The inlet temperature	for an inlet stream.					
Inlet	Parameters	Optional/Reqd.	Units	Examples			
Property	Inlet stream name (for PSRs and CVD Reactors only)	Optional If there is no stream name than the inlet temperature applies to all		TINL secondary_air 400			
	Internation of	streams.	l v	TINU 400			
	Inlet temperature	Required	K	TINL 400			
	Keyword Usage	Required for each		n when then energy			
	Reactor Models	Cylindrical Sho	ear Flow Reac	tor			

Keyword	Definition					
,		Diffusion or P	remixed Oppo	osed-flow Flame		
		Non-reactive	Gas Mixer			
		Partially Stirre	d Reactor (Pa:	SK)		
		Perfectly Stirre	ed Reactor (PS	SR)		
		Planar Shear Flow Reactor				
		Plasma PSR				
		Rotating Disk CVD Reactor				
		Stagnation Flo	ow CVD React	or		
	Notes	In previous ver keywords wer		TOXI, TINF, and GTMP		
TINL	The temperature of the stagnation plane.					
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Stagnation plane Stagnation plane temperature	Optional If there is no stream name than the inlet temperature applies to all streams. Required	K	TINL StagPlane 600		
	Keyword Usage	Required for each	_	plane when then energy		
	Reactor Models	Burner-stabilize	zed Stagnatio	n Flow Reactor		
TION	-			ware, there is no separate		
Reactor Property	energy balance that acc The ions may, however, accounted here as an ac to heat the ions to the a	be much hotter th dditional energy lo	an the neutra ss from the d			
	Parameters	Optional/Reqd.	Units	Examples		
	Specified temperature of ions	Required	К	TION 11500.		
	Reactor number (PSR clusters only)	Optional		TION 11500. 1		

	- 0 1:1				
Keyword	Definition				
	Keyword Usage		•	the ions have the same	
	Reactor Models	Closed PlasmaPlasma Plug FPlasma PSR	Reactor	S.	
TJAC Solver	steps that can be taken	solver <i>Twopnt</i> , specifies the maximum number of Newton ten in performing the pseudo time-stepping before a new I. If TJAC=1, then a full Newton method will result.			
	Parameters	Optional/Reqd.	Units	Examples	
	Retirement age	Required		TJAC 15	
	Keyword Usage	Optional keyword. By default, the retirement age is set at 20.			
	Reactor Models	Cylindrical She	ear Flow React	or	
		 Non-reactive (Perfectly Stirre Plasma PSR Planar Shear F Premixed Lam 	Gas Mixer Ed Reactor (PSI Flow Reactor Flow Burner-sta Flame-spa CVD Reactor	abilized Flame eed Calculation	
TLIM	For all transient problem	 Non-reactive (Perfectly Stirre Plasma PSR Planar Shear F Premixed Lam Premixed Lam Rotating Disk Stagnation Flo 	Gas Mixer Ed Reactor (PSI Flow Reactor Flow Reactor Flow Flame-special control CVD Reactor Flow CVD Reactor	R) abilized Flame eed Calculation	
TLIM Output	T =	 Non-reactive (Perfectly Stirre Plasma PSR Planar Shear F Premixed Lam Premixed Lam Rotating Disk Stagnation Floors in which the term is defined as the 	Gas Mixer Ed Reactor (PSI Flow Reactor Flom Reactor Flow Flame-special of the company of the	R) abilized Flame eed Calculation	

Keyword	Definition						
	Ignition temperature	Required	K	TLIM 500			
	Keyword Usage	Optional keywo	Optional keyword. See also DTIGN .				
	Reactor Models	Closed Homog	geneous Batch	Reactor			
		 Closed Plasma 	Reactor				
		Honeycomb Monolith Reactor					
		IC HCCl Engine	е				
		Perfectly Stirred Reactor (PSR)					
		• Plasma PSR	asma PSR				
		• Plasma Plug F	low Reactor				
		• Plug Flow Rea	ctor				
	SI Engine Zonal Simulator						
TLOW	temperature is varied. The default is 300 K.						
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Temperature	Required	K	TLOW 100.			
	Keyword Usage	Optional keyword	Optional keyword. By default, the low temperature is 300 K.				
	Reactor Models	Mechanism A	Mechanism Analyzer				
TMAX	Maximum temperature	for use with profile	s defined by t	he LINE or PLAT options.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Maximum temperature	Required	К	TMAX 2500.			
	Keyword Usage	1 .	Optional keyword. By default, the maximum temperature is set at 2200 K.				
	Reactor Models	Diffusion or Pr	emixed Oppo	sed-flow Flame			
TOFF This keyword is used to tell the <i>Twopnt</i> solver to ignore the temper adapting the grid. This can be useful for strained flames, since the gradients can be very steep and, without this option, too many poplaced in the same place without improving the solution. The flam resolved by basing adaptation only on the species and velocity pro-		since the temperature o many points will be n. The flame can be well					
	Keyword Usage	Optional keywork	•	the temperature is			
	Reactor Models	Rotating Disk	<u> </u>				
		Stagnation Flo	ow CVD Reacto	or			

Keyword	Definition						
TP	Constant pressure and te	mperature constr	aint.				
Problem Type	Keyword Usage	Optional keywo	•	ne problem-type keyword			
1,000	Reactor Models	Chemical and Phase Equilibrium Calculations					
	Notes	• PT keyword is	equivalent.				
TPRO Reactor Property Profiles	homogeneous systems o	r as a function of constrained tempy equation is bein	distance for perature. For	n of time for transient 0-D r channel-flow reactors or 1-D steady-state Reactor PRO is used to specify an			
	Parameters	Optional/Reqd.	Units	Examples			
	Time or Distance value, depending on Reactor Model	Required	sec or cm	TPRO 1.0E-4 1000			
	Gas Temperature	Required	K	TPRO 1.0E-4 1000			
	Reactor number (PSR clusters only)	Optional If no number is given, the profile described by the first two values is assumed to apply to all reactors in a cluster.	rd Dy defaul	TPRO 1.0E-4 1000 1			
	Keyword Usage	Optional keywo	rd. By defaul	t, no profile is provided.			
	Reactor Models	 Closed Homog Closed Plasma Cylindrical Sho Diffusion or Po Honeycomb Ro Non-reactive O Perfectly Stirre 	a Reactor ear Flow Rea remixed Opp Reactor Gas Mixer	octor posed-flow Flame			

Keyword	Definition					
		• Planar Shear F	low Reactor			
		Plasma Plug F	low Reactor			
		Plasma PSR				
		• Plug Flow Rea	ctor			
		Premixed Lam	inar Burner-st	abilized Flame		
		Premixed Lam	inar Flame-spo	eed Calculation		
		Rotating Disk	CVD Reactor			
		Stagnation Flo	ow CVD Reacto	or		
TPROF Reactor Property	Reactor gas temperature speed simulator and presolved. It uses unburned as corresponding upper avalues of estimated center optional temperature corrused. When TPROF is use initialized, while TPROF w	mixed burner simgas temperature and lower bounds er position (XCEN) nstraint (TFIX) ared with no NPTS, a	nulator with the and mixture e s. When TPROF), estimated zo ignored and p a default non-l	e energy equation being quilibrium temperature is used, user-specified ne width (WMIX), and pre-defined values are inear12-point grid is		
-	Keyword Usage	Optional keywor	rd.			
	Reactor Models	 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 				
TPRO- FILE_n Reactor	a dumped energy profile	nperature profile. Integer n can be 1 or 2. Option 1 means e (that is, all internal grid-points at specified maximum n 2 means a linear profile from the boundary to grid-point				
Property	Keyword Usage	Required keyword. The default value is TPROFILE_1.				
	Reactor Models • Diffusion Flamelet Generator					
				ſ		
Reactor	Temperature of a radiatir in calculating a surface rain addition to a cool "wal geometry and location o and RRAD. TRAD is used including keyword RADB."	adiation balance. I II" (TWAL), to repr f the radiating dis only if the disk te	oove and paral A hot radiating resent, for exal sk are controlle mperature is b	lel to the substrate, used g disk may be included mple, a burner inlet. The ed by keywords RDSK		
Reactor	in calculating a surface rain addition to a cool "wal geometry and location o and RRAD. TRAD is used	adiation balance. I II" (TWAL), to repr f the radiating dis only if the disk te	oove and paral A hot radiating resent, for exal sk are controlle mperature is b	lel to the substrate, used g disk may be included mple, a burner inlet. The ed by keywords RDSK peing calculated by		
Reactor	in calculating a surface rain addition to a cool "wal geometry and location o and RRAD. TRAD is used including keyword RADB.	adiation balance. I II" (TWAL), to repr f the radiating dis only if the disk te . See Equation 14	pove and paral A hot radiating resent, for exam to are controlled mperature is to 1.18 of the Che	lel to the substrate, used g disk may be included mple, a burner inlet. The ed by keywords RDSK peing calculated by emkin-Pro Theory Manual		
TRAD Reactor Property	in calculating a surface rain addition to a cool "wal geometry and location o and RRAD. TRAD is used including keyword RADB. Parameters Temperature of a	adiation balance. / Il" (TWAL), to repr f the radiating dis only if the disk te . See Equation 14 Optional/Reqd. Required	pove and paral A hot radiating resent, for examples of the controlled mperature is the 1.18 of the Che Units K	lel to the substrate, used g disk may be included mple, a burner inlet. The ed by keywords RDSK peing calculated by emkin-Pro Theory Manual		

Keyword	Definition					
		Stagnation Flo	ow CVD Reacto	or		
TRAN Solver	Perform a transient calcustimulators, this input also size of the time step. Per instead of a steady-state	o specifies how marform a transient c	any time step alculation (wi	s to take and the initial th the solver DASPK)		
	Keyword Usage	Required keywo Reactor, Closed I	rd for Closed Plasma Reacto se, a steady-st	Homogeneous Batch or, and the IC HCCI ate calculation is		
	Reactor Models	Closed Homog	geneous Batch	Reactor		
		Closed Plasma	Reactor			
		IC HCCl Engine	e			
		Non-reactive (Gas Mixer			
		Perfectly Stirre	ed Reactor (PS	R)		
		Plasma PSR	, -			
		Rotating Disk	CVD Reactor			
		Stagnation Flo	ow CVD Reacto	or		
		Diffusion or Premixed Opposed-flow Flame				
		Premixed Laminar Burner-stabilized Flame				
		Premixed Laminar Flame-speed Calculation				
		SI Engine Zonal Simulator				
	Notes	See also STST.				
TRAN Output	Prints out the transport database properties (intermolecular potential parafor each gas-phase species in the mechanism. This feature also expands thermo table to create a table of transport properties as a function of termonous the NONE option turns off printing of this table. The <i>Transport</i> Pre-process must have been run successfully, unless the NONE option is used.			re also expands the safunction of temperature. ansport Pre-processor		
	Parameters	Optional/Reqd.	Units	Examples		
	ALL option	Optional		TRAN ALL		
	NONE option	Optional		TRAN NONE		
	Keyword Usage	Optional keywordetermined by t	•	the table output is NE keyword.		
	Reactor Models	Mechanism Ar	nalyzer			
TRCE	Including this keyword of fraction of the last-name			, -		

Keyword	Definition					
Reactor Property	is used, the species with the mass fractions of the for the last (or largest-co	other species. A	conservation e			
	Keyword Usage	Optional keywor formalism is use	•	correction velocity		
	Reactor Models	Premixed Lam	inar Burner-st	abilized Flame		
		Premixed Lam	inar Flame-spe	eed Calculation		
		Rotating Disk	CVD Reactor			
		Stagnation Flo	w CVD Reacto	or		
	Notes	This keyword can be removed or added for a restart run.				
TRES	Assigns a new initial time from an XML Solution Fil		that starts usi	ing the solution read		
Restart	Parameters	Optional/Reqd.	Units	Examples		
	Initial time	Required	sec	TRES 0.0		
	Keyword Usage	Optional keyword. By default, the value of time found on the XML Solution File will be used.				
-	Reactor Models	Closed Homogeneous Batch Reactor				
		Closed Partially Stirred Reactor (PaSR)				
		Closed Plasma Reactor				
		IC HCCI Engine				
		Partially Stirred Reactor (PaSR)				
		Perfectly Stirred Reactor (PSR)				
		Plasma PSR				
		SI Engine Zonal Simulator				
TRMAX- ITER	The maximum number o algorithm. If TWOPNT exc try again. You may occasi	ceeds this maximu	ım, then it wil	I cut its time step and		
Solver	algorithm is having diffic					
	Parameters	Optional/Reqd.	Units	Examples		
	Maximum iterations per time step	Optional		TRMAXITER 50		
	Keyword Usage	Optional keywor of iterations is 2	•	the maximum number		
	Reactor Models	Cylindrical She	ear Flow React	or		
		• Diffusion or Pr	emixed Oppo	sed-flow Flame		

otes ells the application which on ditions of the current earameters fine value	 Rotating Disk Stagnation Flo TRMAXITER m th time value in an calculation. 	ed Reactor (PS low Reactor inar Burner-st inar Flame-sp CVD Reactor ow CVD Reactor ust be >=1.	abilized Flame eed Calculation or			
ells the application whic onditions of the current arameters	 Planar Shear F Plasma PSR Premixed Lam Premixed Lam Rotating Disk Stagnation Flo TRMAXITER m th time value in all calculation. 	inar Burner-st inar Flame-sp CVD Reactor ow CVD Reacto ust be >=1.	abilized Flame eed Calculation or			
ells the application whic onditions of the current arameters	 Planar Shear F Plasma PSR Premixed Lam Premixed Lam Rotating Disk Stagnation Flo TRMAXITER m th time value in all calculation. 	inar Burner-st inar Flame-sp CVD Reactor ow CVD Reacto ust be >=1.	abilized Flame eed Calculation or			
ells the application whic onditions of the current arameters	 Plasma PSR Premixed Lam Premixed Lam Rotating Disk Stagnation Flo TRMAXITER metal th time value in an calculation. 	inar Burner-st inar Flame-sp CVD Reactor ow CVD Reacto ust be >=1.	eed Calculation or			
ells the application whic onditions of the current arameters	 Premixed Lam Premixed Lam Rotating Disk Stagnation Flo TRMAXITER m th time value in all calculation. 	inar Flame-sp CVD Reactor ow CVD Reacto ust be >=1.	eed Calculation or			
ells the application whic onditions of the current arameters	 Premixed Lam Rotating Disk Stagnation Flo TRMAXITER m th time value in all calculation. 	inar Flame-sp CVD Reactor ow CVD Reacto ust be >=1.	eed Calculation or			
ells the application whic onditions of the current arameters	 Rotating Disk Stagnation Flo TRMAXITER m th time value in an calculation. 	CVD Reactor ow CVD Reactor ust be >=1.	or			
ells the application whic onditions of the current arameters	Stagnation Flo TRMAXITER m time value in all calculation.	ow CVD Reactoust be >=1.				
ells the application whic onditions of the current arameters	TRMAXITER m time value in all calculation.	ust be >=1.				
ells the application whic onditions of the current arameters	th time value in an calculation.		on File to use for the initial			
onditions of the current arameters	calculation.	which time value in an XML Solution File to use for the initial rent calculation.				
	Ontional/Read	t calculation.				
me value	Optional/Reqd. Units Examples					
	Required	sec	TRST 1.0E-5			
Keyword Usage Optional keyword on the XML Solut			the last time value found be used.			
eactor Models	Closed Homog	geneous Batch	Reactor			
	Closed Plasma Reactor					
	Honeycomb Reactor					
	IC HCCI Engine					
	Perfectly Stirred Reactor (PSR)					
	Plasma Plug Flow Reactor					
	• Plasma PSR					
	• Plug Flow Rea	ctor				
	SI Engine Zona	al Simulator				
Constant entropy and temperature constraints						
Constant entropy and temperature constraints. Keyword Usage Optional keyword. Exactly one problem-type			e problem-type keyword			
· * *	must be included.					
· * *	Chemical and Phase Equilibrium Calculations					
_		nstant entropy and temperature constra yword Usage Optional keywor must be include	nstant entropy and temperature constraints. yword Usage Optional keyword. Exactly one must be included.			

Keyword	Definition						
TSCCM Inlet	Sets the standard refere input in standard cubic SCCMPRO keywords are	centimeters per m		the flow rate when it is i.e., when SCCM or			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Standard temperature	Required	К	TSCCM 300			
	Keyword Usage	Optional keywo temperature is s	•				
	Reactor Models	Non-reactivePerfectly Stirre		SR)			
		• Plasma PSR	za ricaciói (i s	,			
		Rotating Disk	CVD Reactor				
		Stagnation Flow CVD Reactor					
TS- PL	profile of the lower wall	optional specification of a spline-fit surface temperature for planar non-symmetric cases or otherwise the surface ne upper wall. The data point describing the surface					
Reactor	temperature profile is fo	e is a TSPL keyword line					
Property Profiles	for each desired (x,T) in ascending order. A sp	TSPL line must be given tween points.					
	Parameters	Optional/Reqd.	Units	Examples			
	x coordinate	Required	cm	TSPL 0.1 973			
	T coordinate	Required	K	TSPL 0.1 973			
	Keyword Usage	default is specifi	Optional keyword. By default, for symmetric cases default is specified constant temperature; for non-symmetric cases the wall is adiabatic.				
	Reactor Models	Cylindrical Shear Flow Reactor					
		Planar Shear F	Planar Shear Flow Reactor				
	Notes	See also: TPRC	• See also: TPRO.				
TS- RF	-		•	if you want the surface , to be different than the			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
	Material (for 0-D homogeneous and plug-flow reactors only)	Optional If not specified, then the temperature is the same for		TSRF WAFER 1200.			

Keyword	Definition					
		all				
		materials.				
	Surface temperature	Required	K	TSRF 1200.		
	Reactor number (PSR clusters only)	Optional If no number is given, the value is		TSRF 1200. 1		
		assumed to apply to all reactors in a cluster.				
	Keyword Usage	Closed Homogeneous, PSRs, and Plug Flow Reactors: Optional keyword. If not specified, the surface temperature is assumed to be the same as the gas temperature. Shear Flow Reactors: Required keyword.				
	Reactor Models	Closed Homogeneous Batch ReactorClosed Plasma Reactor				
		Cylindrical Shear Flow Reactor				
		Diffusion or Premixed Opposed-flow Flame				
		Honeycomb Reactor Device the Stimul Reactor (DSR)				
		Perfectly Stirred Reactor (PSR) Planar Shoar Flow Reactor				
		Planar Shear Flow ReactorPlasma Plug Flow Reactor				
		Plasma PSR				
			Plug Flow Reactor			
	Notes	In previous ve	In previous versions, STMP keyword was used.			
TSTP Solver	determine an initial set	of surface site frac	tions for the			
JUIVEI	the surface site fraction			o significant change in tep (see RCHG).		
	Parameters	Optional/Reqd.	Units	Examples		
	Initial time step	Required	cm	TSTP 0.1		
	Keyword Usage	Optional keywo	rd. By default	t, the initial time step is 1.		

Definition					
Reactor Models	Honeycomb R	leactor			
	Plasma Plug F	low Reactor			
	Plug Flow Rea	Ctor			
Solution File used for ini select the values to use time that is closest to (g	tialization or resta in initialization or reater than or equ	rt contains tr restart as tho lal to) the spe	ansient data. In this case, use corresponding to the ecified time.		
Parameters			Examples		
		sec	TSTR 0.01		
Keyword Usage	'	•			
Reactor Models	Chemical and Phase Equilibrium Calculations				
	Closed Homog	geneous Batc	h Reactor		
	Closed Plasma	Reactor			
	Cylindrical Shear Flow Reactor				
	Diffusion or Premixed Opposed-flow Flame				
	Honeycomb Reactor				
	IC HCCl Engine				
	Mechanism A	nalyzer			
	Non-reactive (Gas Mixer			
	Normal Incide	ent Shock			
	Normal Reflected Shock				
	Perfectly Stirred Reactor (PSR)				
	• Planar Shear F	low Reactor			
	• Plasma Plug F	low Reactor			
	Plasma PSR				
	• Plug Flow Rea	ctor			
	Premixed Lam	inar Burner-s	tabilized Flame		
	Premixed Laminar Flame-speed Calculation				
	Premixed Lam	ıınar Fiame-sp	Deed Calculation		
	 Premixed Lam Rotating Disk 	_	seed Calculation		
	Reactor Models This keyword is valid wh Solution File used for iniselect the values to use time that is closest to (g Parameters Time Keyword Usage	Reactor Models Plasma Plug F Plug Flow Rea This keyword is valid when using the XML Solution File used for initialization or resta select the values to use in initialization or time that is closest to (greater than or equ Parameters Optional/Reqd. Time Required Keyword Usage Optional keywo last time-step for Closed Homory Closed Homory Closed Plasma Cylindrical Shory Honeycomb R IC HCCI Engin Mechanism Al Non-reactive G Normal Incide Normal Reflect Perfectly Stirre Plasma Plug F Plasma PSR Plug Flow Rea Premixed Lam	Plasma Plug Flow Reactor This keyword is valid when using the XMLI, XMLS or RS Solution File used for initialization or restart contains treselect the values to use in initialization or restart as the time that is closest to (greater than or equal to) the speed sec Parameters Optional/Reqd. Units Time Required Required Sec Optional keyword. By default last time-step found in the XI Reactor Models Closed Homogeneous Batc Closed Plasma Reactor Cylindrical Shear Flow React Diffusion or Premixed Oppor Honeycomb Reactor IC HCCI Engine Mechanism Analyzer Non-reactive Gas Mixer Normal Incident Shock Normal Reflected Shock Perfectly Stirred Reactor (PS Plasma Plug Flow Reactor Plasma PSR Plug Flow Reactor Premixed Laminar Burner-s		

Keyword	Definition							
-		Stagnation Floring	ow CVD Rea	ctor				
TSTR	Starting time for the si	mulation.						
Solver	Parameters	Optional/Reqd.	Units	Examples				
	Time	Required	sec	TSTR 0.01				
	Keyword Usage	Optional keywo	Optional keyword. By default, the starting time is 0.0					
	Reactor Models	Normal Incident Shock						
		Normal Reflect	Normal Reflected Shock					
TSUM	Controls the printing o	of summary tables for	or the therm	nodynamic functions at the				
Output	bath gas conditions (see TBTH, PRES, and XBTH). There are three sets of thermodynamic tables: one for the species, one for the gas reactions, and one for the surface reactions. The last three options turn on each table individually. The default is ALL, which will print all three thermodynamic tables. They may all be suppressed with NONE.							
	Parameters	Optional/Reqd.	Units	Examples				
	ALL option	Optional		TSUM ALL				
	NONE option	Optional		TSUM NONE				
	SPECIES option	Optional		TSUM SPECIES				
	GAS option	Optional		TSUM GAS				
	SUR option	Optional		TSUM SUR				
	Keyword Usage	1 -	Optional keyword. By default, the table output is determined by the ALL or NONE keyword.					
	Reactor Models	Mechanism A	Mechanism Analyzer					
TSWH Reactor	Defines when the calcuctric correlation as the heat energy equation).			GIV to ENRG with Woschni ue is 0 sec (always use				
Property	Parameters	Optional/Reqd.	Units	Examples				
	Time in seconds	Required	sec	TSWH 0.001				
	Keyword Usage	Optional keywo	rd.					
	Reactor Models	Multi-Zone H	<u> </u>					
TTIM	The solution will be obtunctions of time throu	•	•	perature given as specified				
Reactor Property	PSTEMPT (TIME, LOUT,	TEMP, PA) must be placed	provided to e the Applic	specify the temperature cation Programming Interface				
	Keyword Usage	1 -	•	llt, temperature and pressure d. See also TPRO and PPRO.				
	Reactor Models	Closed Homo	geneous Ba	tch Reactor				
		Closed Plasma	a Reactor					

Keyword	Definition							
		IC HCCI Engine	e					
		Non-reactive 0	Gas Mixer					
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					
		• Plasma PSR	Plasma PSR					
		SI Engine Zona	 SI Engine Zonal Simulator See also TPRO and PPRO as alternative ways to specify temperature and pressure as functions of time. 					
	Notes							
TUN-	Unburned gas tempera	ature.						
BURNT	Parameters	Optional/Reqd.	Units	Examples				
Reactor Property	Unburned gas temperature	Required	К	TUNBURNT 300.0				
. ,	Keyword Usage	Required keywo	Required keyword.					
	Reactor Models	Premixed Lam	Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation						
TV	Constant volume and	temperature constra	ints.					
Problem Type	Keyword Usage	-	Optional keyword. Exactly one problem-type keyword must be included.					
туре	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations					
	Notes	• VT keyword is	VT keyword is equivalent.					
TWAB	Absolute error tolerand calculation at the inlet	•	ly-state <i>Twop</i>	nt solver in the initial				
Solver	Parameters	Optional/Reqd.	Units	Examples				
	Absolute error tolerance	Required		TWAB 1.0E-5				
			Optional keyword. By default, the absolute error tolerance is 1.0E-13.					
	Keyword Usage		•	the absolute error				
	Keyword Usage Reactor Models		-13.					
		tolerance is 1.0E	-13. ear Flow React					
AL	Reactor Models Temperature of a neig balance. This value is u	 tolerance is 1.0E Cylindrical She Planar Shear F hboring "wall" used is used only if the disk 	-13. ear Flow React low Reactor in calculating temperature i	a surface radiation				
TW- AL Reactor Property	Reactor Models Temperature of a neig balance. This value is u	 tolerance is 1.0E Cylindrical She Planar Shear F hboring "wall" used is used only if the disk 	-13. ear Flow React low Reactor in calculating temperature i	a surface radiation s being calculated by				

Keyword	Definition						
	Keyword Usage	Optional keywo 500 K.	rd. By defa	ult, the wall temperature is			
	Reactor Models	Rotating Disk	CVD React	or			
		Stagnation Flo	ow CVD Rea	actor			
TW- PR	Specifies print level for the <i>Twopnt</i> solver.	r the initial steady-s	he initial steady-state solution of the inlet boundary by				
Output	Parameters	Optional/Reqd.	Units	Examples			
	Print level	Required		TWPR 0			
	Keyword Usage	Optional keywo 22.	rd. By defa	ult, the print level is set at			
	Reactor Models	Cylindrical Shaper	ear Flow Re	eactor			
		Planar Shear F	low Reacto	or			
TWRE	Relative error tolerand calculation at the inle		used by the steady-state <i>Twopnt</i> solver in the initial boundary.				
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Relative error tolerance	Required		TWRE 1.0E-10			
	Keyword Usage		Optional keyword. By default, the relative error tolerance is 1.0E-4.				
	Reactor Models	Cylindrical Sharp	Cylindrical Shear Flow Reactor				
		Planar Shear F	Planar Shear Flow Reactor				
TWST	Number of time steps Twopnt solver in the in			step, used by the steady-state undary.			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Number of time steps	Required		TWST 50			
	Keyword Usage	Optional keywo is set at 100.	rd. By defa	ult, the number of time steps			
	Reactor Models		Cylindrical Shear Flow ReactorPlanar Shear Flow Reactor				
UFAC			iply the time step in the steady-state <i>Twopnt</i> 's pseudo				
Solver	reaches the number s		er or time s	teps at the current step size			
	Parameters	Optional/Reqd.	Units	Examples			
	Multiply factor	Required		UFAC 2.2			
	Keyword Usage	Optional keywo is set to 2.0.	rd. By defa	ult, the multiplication factor			

Keyword	Definition						
	Reactor Models	Diffusion or Pr	remixed Oppo	sed-flow Flame			
		Non-reactive (Gas Mixer				
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)				
			ed ricuctor (i s	any			
		Plasma PSR					
		 Rotating Disk 	CVD Reactor				
		Stagnation Flow CVD Reactor					
UIGN Use the ignition delay time definition given in the user routine Papplicable when you are solving the energy equation with transit the Application Programming Interface Manual for details on how user subroutines.				rith transient solver. See			
Subroutine	Parameters	Optional/Reqd.	Units	Examples			
	Keyword Usage	Optional keywor	Optional keyword.				
	Reactor Models	Closed Homog	Closed Homogeneous Batch Reactor				
		Closed Plasma	Closed Plasma Reactor				
		Honeycomb M	Honeycomb Monolith Reactor				
		IC HCCI Engine					
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR	Plasma PSR				
		• Plasma Plug F	a Plug Flow Reactor				
		Plug Flow Reactor					
		SI Engine Zonal Simulator					
UINL Reactor	The axial velocity at the the STAG option is used specify the problem.	•		rate OMEG is zero, or if II, but must be given to			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Axial inlet velocity	Required	cm/sec	UINL 23.6			
	Keyword Usage	keyword for eac Reactor: Optional domain is calcul using the keywo upon the solution	Diffusion or Premixed Opposed-flow Flames: Required keyword for each inlet stream. Rotating Disk CVD Reactor: Optional keyword. The velocity at the outer domain is calculated as a part of the solution. However, using the keyword UINL, one may impose this velocity upon the solution. By default, the axial inlet velocity is 0. Stagnation Flow CVD Reactor: Required keyword.				
	Reactor Models	Diffusion or Pr	remixed Oppo	sed-flow Flame			
	•	•		Diffusion or Premixed Opposed-flow Flame			

Reactor Property, User Subroutine Reactor Models CRUPROF must be provided to specify the inlet profiles of all variables are to the application program. See the Application Programming Interface Models CRUPROF must be provided to specify the inlet profiles of all variables are to the application program. See the Application Programming Interface Models CRUPROF must be provided to specify the inlet profiles of all variables are to the application program. See the Application Programming Interface Models CPUTON CONTROL OF THE PROPERTY OF THE PROPERT						
Property, User Subroutine Reactor Models Property, User Subroutine Reactor Models Property, User Subroutine Reactor Models Reactor Models Property Pr						
Notes • In previous versions: UINF, VFUE, or VOXI key used. UP- ROF ROF Reactor inlet profiles will be given by a user-programmed subroutine. SU CRUPROF must be provided to specify the inlet profiles of all variables ar to the application program. See the Application Programming Interface of for details on how to work with user subroutines. Keyword Usage Optional keyword. By default, a uniform inlet pused for all variables except axial velocity. The velocity profile is uniform in the Planar Shear Reactor model and is parabolic (or fully develot the Cylindrical Shear Flow Reactor • Planar Shear Flow Reactor Property For the IC HCCI Engine (ICEN), the heat transfer model (ICHT) evaluates and thermal conductivity using the instantaneous temperature and pressinside the cylinder. The UREF keyword is a flag that instructs the heat transdel to use transport properties evaluated at the initial condition insterior.						
UP- ROF Reactor inlet profiles will be given by a user-programmed subroutine. SU CRUPROF must be provided to specify the inlet profiles of all variables ar to the application program. See the Application Programming Interface M for details on how to work with user subroutines. Keyword Usage Optional keyword. By default, a uniform inlet p used for all variables except axial velocity. The velocity profile is uniform in the Planar Shear F Reactor model and is parabolic (or fully develo the Cylindrical Shear Flow Reactor Planar Shear Flow Reactor Property For the IC HCCI Engine (ICEN), the heat transfer model (ICHT) evaluates and thermal conductivity using the instantaneous temperature and press inside the cylinder. The UREF keyword is a flag that instructs the heat tra model to use transport properties evaluated at the initial condition inste						
Reactor Property, User Subroutine Reactor Models CRUPROF must be provided to specify the inlet profiles of all variables are to the application program. See the Application Programming Interface of for details on how to work with user subroutines. Keyword Usage Optional keyword. By default, a uniform inlet pused for all variables except axial velocity. The velocity profile is uniform in the Planar Shear Finder Reactor model and is parabolic (or fully develong the Cylindrical Shear Flow Reactor model. Reactor Models For the IC HCCI Engine (ICEN), the heat transfer model (ICHT) evaluates and thermal conductivity using the instantaneous temperature and pressions inside the cylinder. The UREF keyword is a flag that instructs the heat transfer model to use transport properties evaluated at the initial condition insterior.	/words were					
User Subroutine Reactor Models For the IC HCCI Engine (ICEN), the heat transfer model (ICHT) evaluates and thermal conductivity using the instantaneous temperature and pressing inside the cylinder. The UREF keyword is a flag that instructs the heat transfer model to use transport properties evaluated at the initial condition insterior.	Reactor inlet profiles will be given by a user-programmed subroutine. SUBROUTINE CRUPROF must be provided to specify the inlet profiles of all variables and linked to the application program. See the Application Programming Interface Manual for details on how to work with user subroutines.					
• Planar Shear Flow Reactor UREF For the IC HCCI Engine (ICEN), the heat transfer model (ICHT) evaluates and thermal conductivity using the instantaneous temperature and pressing the cylinder. The UREF keyword is a flag that instructs the heat transport property model to use transport properties evaluated at the initial condition inste	axial Flow					
Reactor Property and thermal conductivity using the instantaneous temperature and pressions a flag that instructs the heat trainment of the cylinder. The UREF keyword is a flag that instructs the heat trainment of the cylinder of the cylinder. The UREF keyword is a flag that instructs the heat trainment of the cylinder of the cylinder of the cylinder.						
keyword ICHT is used to reproduce the old results.	sure nsfer ad. UREF					
Keyword Usage Optional keyword. By default, properties are evusing local conditions.	^r aluated					
Reactor Models • IC HCCI Engine						
SI Engine Zonal Simulator						
USE Uses an initial non-uniform grid based on points specified in the estimate temperature profile (TPRO or TPROF).	ed					
_TPRO_GRID Reactor						
Property Reactor Models • Premixed Laminar Burner-Stabilized Flame						
Premixed Laminar Flame-Speed Calculation						
USEP For use with XMLI, XMLS, or RSTR, to override the values of pressure foun the XML Solution File used for restart or initialization with those specified Cluster						
Property						
Keyword Usage Optional keyword. By default, the program use pressure from the XML Solution File.						
Reactor Models • Chemical and Phase Equilibrium Calculations	s the					
Closed Homogeneous Batch Reactor						

Keyword	Definition	
		Closed Plasma Reactor
		Cylindrical Shear Flow Reactor
		Diffusion or Premixed Opposed-flow Flame
		Honeycomb Reactor
		• IC HCCI Engine
		Mechanism Analyzer
		Non-reactive Gas Mixer
		Normal Incident Shock
		Normal Reflected Shock
		Perfectly Stirred Reactor (PSR)
		Planar Shear Flow Reactor
		Plasma Plug Flow Reactor
		• Plasma PSR
		Plug Flow Reactor
		Premixed Laminar Burner-stabilized Flame
		Premixed Laminar Flame-speed Calculation
		Rotating Disk CVD Reactor
		Stagnation Flow CVD Reactor
USET Cluster		or RSTR, override the values of temperature found on d for restart or initialization with those specified in the
Property	Keyword Usage	Optional keyword. By default, the program uses the temperature from the XML Solution File.
	Reactor Models	Chemical and Phase Equilibrium Calculations
		Closed Homogeneous Batch Reactor
		Closed Plasma Reactor
		Cylindrical Shear Flow Reactor
		Diffusion or Premixed Opposed-flow Flame
		Honeycomb Reactor
		• IC HCCI Engine

Keyword	Definition	
		Mechanism Analyzer
		Non-reactive Gas Mixer
		Normal Incident Shock
		Normal Reflected Shock
		Perfectly Stirred Reactor (PSR)
		Planar Shear Flow Reactor
		Plasma Plug Flow Reactor
		Plasma PSR
		Plug Flow Reactor
		Premixed Laminar Burner-stabilized Flame
		Premixed Laminar Flame-speed Calculation
		Rotating Disk CVD Reactor
		SI Engine Zonal Simulator
		Stagnation Flow CVD Reactor
	Notes	• In previous versions, USTG keyword was used.
USEV Restart	is included, it overrides th	en using XMLI or the RSTR options. When this keyword ne values of velocity or flow-rate found on the XML tart or initialization with those specified in the user input
	Keyword Usage	Optional keyword. By default, the program uses the velocity or flow-rate from the XML Solution File.
	Reactor Models	Honeycomb Reactor
		Perfectly Stirred Reactor (PSR)
		Plasma Plug Flow Reactor
		Plasma PSR
		Plug Flow Reactor
		Premixed Laminar Burner-stabilized Flame
		Premixed Laminar Flame-speed Calculation
		Rotating Disk CVD Reactor
		Stagnation Flow CVD Reactor

Keyword	Definition							
USEV XMLI	When using XMLI, XMLS, found on the XML Soluti in the user input file.			f velocity or flow-rate lization with those specified				
	Keyword Usage			the program uses the XML Solution File.				
	Reactor Models	Cylindrical She	ear Flow React	or				
		Honeycomb R	eactor					
		Non-reactive Gas Mixer						
		Perfectly Stirred Reactor (PSR)						
	Planar Shear Flow Reactor							
		Plasma Plug F	ow Reactor					
		• Plasma PSR						
		• Plug Flow Rea	ctor					
		 Premixed Lam 	Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation						
		Rotating Disk CVD Reactor						
		Stagnation Flow CVD Reactor						
US- RIN Inlet Property	application program: cans to this routine will be used to obtain the correspond							
	Parameters	Optional/Reqd.	Units	Examples				
	Stream	Required		USRIN engineout 2				
	Reactor number (PSR clusters only)	Option- al, if not defined, then re- actor #1 is as- sumed. USRIN engineout 2						
	Keyword Usage	Optional keywor	•	streams are defined using d.				
	Reactor Models	Non-reactive (
		Perfectly Stirre	Perfectly Stirred Reactor (PSR)					

Keyword	Definition						
		Plasma PSR					
	Notes			Programming of the Application Manual for details.			
UTRN Reactor Property, User	Use the mixture average transport properties defined in user-programmed routine CRUTRANS (for Shear Flow reactors), OPUTRANS (for Opposed-flow Flame Simulator) or PRUTRANS (for Premixed Laminar Flame or Flame-speed Calculation). See the Application Programming Interface Manual for details on how to work with user subroutines.						
Subroutine		Optional keywo	ased on the	ult, transport properties will e fundamental transport chemistry set.			
	Reactor Models	<u> </u>	Cylindrical Shear Flow Reactor				
		Opposed-flow	Opposed-flow Flame Simulator				
		Planar Shear Flow Reactor					
		Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation					
VCOR Reactor Property	to ensure mass conse	rvation, i.e., the sum	of the diffu	run using a correction velocity usion fluxes is zero. See f VCOR is not used, then			
	Keyword Usage	Optional keywo	Optional keyword. By default, correction velocity is not used.				
	Reactor Models	Cylindrical Sh	Cylindrical Shear Flow Reactor				
		Planar Shear	Planar Shear Flow Reactor				
		Premixed Lan	Premixed Laminar Burner-stabilized Flame				
		Premixed Lan	Premixed Laminar Flame-speed Calculation				
		Rotating Disk	Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor					
VDOT	Inlet volumetric flow	rate.					
Inlet	Parameters	Optional/Reqd.	Units	Examples			
Property	Inlet volumetric flow rate	Required	cm ³ /sec	VDOT 100.			
	Keyword Usage	Optional keyword. Either VDOT or VEL must be specified, unless this is a restart run. PFRs and Monolith Reactors: Flow specification via one of VEL, VDOT, VDOTPRO SCCM SCCMPRO FLRT, or FPRO is required.					

Keyword	Definition					
	Reactor Models	Honeycomb ReactorPlasma Plug Flow ReactorPlug Flow Reactor				
VDOTPRO Inlet	(time or position) for an	e vs. independent variable ers per minute. The profile O points provided.				
PropertyPr	ofiles Parameters	Optional/Reqd.	Units	Examples		
	Inlet stream name	Optional If no stream name is given, the profile described is assumed to apply to all reactors in a cluster.	-	VDOTPRO purge 0.19 300		
	Time (Distance for flow reactor)	Required	sec (cm for flow reactor)	VDOTPRO purge 0.19 300		
	Equivalent volumetric flow rate	Required	cm ³ /min	VDOTPRO purge 0.19 300		
	Keyword Usage	PFRs and Monolith Reactors: Flow specification via one of VEL, VDOT, VDOTPRO SCCM SCCMPRO FLRT, or FPRO is required. PSRs and PaSRs: Optional keyword. If none of TAU, FLRT/FPRO, SCCM/SCCMPRO, or VDOT/VDOTPRO are specified or are nonzero, then a closed-system is assumed. FLRT/FPRO, SCCM/SCCMPRO, or VDOT/VDOTPRO is required for each INLET stream defined. Stagnation Flow CVD Reactors: FLRT/FPRO, SCCM/SCCMPRO or UINL is required for each inlet stream defined. Rotating Disk CVD Reactors: Optional keyword.				

Konnerd	Definition					
Keyword	Definition		D	Non-mark C. 14		
			Reactor Models	 Non-reactive Gas Mixer Perfectly Stirred Reactor (PSR) Plasma PSR 		
				Plug Flow Reactor (PFR)		
				Plasma PFR		
				Honeycomb Monolith Reactor		
				Rotating Disk CVD Reactor		
				Stagnation Flow CVD Reactor		
VEL	The gas-phase velocity at the inlet (for plug-flow reactors) or the maximum gas velocity at the inlet (for shear-flow reactors).					
Inlet Property	Parameters	Optional/Reqd.	Units	Examples		
	Velocity	Required	cm/sec	VEL 15		
Keyword Usage Plug Flow Reactors: Option VEL must be specified, unle Flow Reactors: If the proble coordinates, then the avera two-thirds of the maximum velocity profile. In cylindric velocity is half of the maxim BLTK is given, a flat velocity everywhere the velocity wi within a distance BLTK of the			ecified, unless the problem the average maximum ve n cylindrical of the maximum flat velocity will be	this is a restart run. Shear is in cartesian velocity equals elocity of the parabolic coordinates, the average m velocity. If the keyword rofile will be used, i.e., we set equal to VEL except		
	Reactor Models	Cylindrical Shear Flow ReactorHoneycomb Reactor				
		Planar Shear Flow Reactor				
		Plasma Plug Flow ReactorPlug Flow Reactor				
VELPRO	flow velocity along the c	listance of a plug	reactor.			
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Distance value	Required	cm	VELPRO 1.0 10.0		
	Velocity	Required	cm/sec	VELPRO 1.0 10.0		
	Keyword Usage	Optional keywo	rd. By default,	no profile is provided.		
	Reactor Models	Plug Flow Rea	ctor			

Keyword	Definition						
VH	Constant volume and	enthalpy constraints	i.				
Problem Type	Keyword Usage	1 .	Optional keyword. Exactly one problem-type keyword must be included.				
1,900	Reactor Models	Chemical and	Phase Equilil	orium Calculations			
VIS	Viscosity of the inlet of	gas mixture.	mixture.				
Inlet	Parameters	Optional/Reqd.	Units	Examples			
Property	Viscosity	Required	g/(cm · sec)	VIS 0.01			
	Keyword Usage	1 .	Optional keyword. By default, the viscosity is 0, i.e., viscous drag is neglected.				
	Reactor Models	• Plasma Plug F	 Honeycomb Reactor Plasma Plug Flow Reactor Plug Flow Reactor				
	Notes	A poise is equ	A poise is equivalent to g/(cm · sec).				
VISC	Viscosity of the mixtu	re at 300 K. Required	l input for bo	oundary layer corrections.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Viscosity at 300 K	Required	g/(cm · sec)	VISC 2.65E-4			
	Keyword Usage		Optional keyword. By default, the viscosity is not set. This keyword is required for boundary layer corrections.				
	Reactor Models	Normal Incide	Normal Incident Shock				
VOL Reactor Property	fractions rather than ecylinder volume, norm	exact zone volumes nalize the volume fra	The software ctions, and c	can enter zone volume will calculate the initial ompute the exact zone Zone volumes and Zone			
	Parameters	Optional/Reqd.	Units	Examples			
	rararrecers	o p ti o i iaii, i i e q aii					

W	after release 19.0				
Keyword	Definition				
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		VOL 1200 1	
	Keyword Usage	Optional keyword. By default, volume is required input for all PSRs unless			
	Reactor Models	 Closed Homogeneous Batch Reactor Closed Partially Stirred Reactor (PaSR) 			
	Closed Plasma Reactor			tor (rusity	
		Non-reactive Gas Mixer			
	Partially Stirred Reactor (PaSR)				
		Perfectly Stirred Reactor (PSR)Plasma PSR			
VOL Reactor Property	The fraction of the total volume inside the cylinder for each zone in a Multi-Zone HCCI Engine model.				
	Parameters	Optional/Reqd.	Units	Examples	
	Zone volume fraction	Required		VOL 0.15 4	
	Zone number	Required		VOL 0.15 4	
	Keyword Usage	Optional keyword.			
	Reactor Models		Multi-Zone HCCI Engine Simulator		
		SI Engine Zonal Simulator			
VOL	The initial specific volume of the gas mixture.				
Reactor Property	Parameters	Optional/Reqd.	Units	Examples	
	Specific volume of the gas mixture	Required	cm ^{3/g}	VOL 1200	
	Keyword Usage		Optional keyword. The user must specify two state variables and the composition to define the initial mixture.		
	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations		

Keyword	Definition					
VOLC	Engine cylinder cleara	nce volume.				
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Engine cylinder clearance volume	Required	cm ³	VOLC 2.0		
	Keyword Usage	Optional keywo must be specifie	•	o of VOLC, VOLD, or CMPR		
	Reactor Models	IC HCCl Engin	е			
		SI Engine Zon	al Simulato	or		
VOLD	Engine displacement volume, or the volume swept by the piston during compression.					
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
Γιορειτή	Displacement volume	Required	cm ³	VOLD 2.0		
	Keyword Usage	Optional keywo must be specifie	•	o of VOLC, VOLD, or CMPR		
	Reactor Models	IC HCCI Engin	e			
		SI Engine Zon	SI Engine Zonal Simulator			
VPRO	Reactor volume profile specified as a function of time.					
Reactor	Parameters	Optional/Reqd.	Units	Examples		
Property	Time value	Required	sec	VPRO 1.0E-4 1.0		
Profiles	Volume	Required	cm ³	VPRO 1.0E-4 1.0		
	Reactor number (PSR clusters only)	Optional		VPRO 1.0E-4 1.0 1		
		If no				
		number is given,				
		the				
		profile				
		described				
		by the				
		first two values is				
		assumed				
		to apply				
		to all				
		reactors				
		in a cluster.				
	Koyword Heago		volumo na	oblems, VOL or VPRO must		
	Keyword Usage			default value of 1.0 is used		
		for the initial rea				

Keyword	Definition						
	Reactor Models	Closed Homo	geneous Bato	ch Reactor			
	Closed Partially Stirred Reactor (PaSR)						
		Closed Plasma	a Reactor				
		Non-reactive	Gas Mixer				
		Partially Stirred Reactor (PaSR)					
		Perfectly Stirred Reactor (PSR)					
		Plasma PSR	ed redetor (r	Jily			
VRS Reactor	Reflected shock velocity after the shock. The refl shock velocity is also gi	ected shock veloci		mine the state of the gas sed unless the incident			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Reflected shock velocity	Required	cm/sec	VRS 100			
	Keyword Usage	Optional keyword. By default, no shock velocities are computed, but U_5 =0.					
	Reactor Models	Normal Reflect	Normal Reflected Shock				
VS	Constant volume and e	ntropy constraints.					
Problem	Keyword Usage Optional keyword. Exactly one problem-type keyword must be included.						
Type	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations				
	Notes	• SV keyword.is	equivalent.				
VSHK	Incident shock velocity.						
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Velocity	Required	cm/sec	VSHK 3000.			
	Keyword Usage			incident shock problems, eflected shock problems.			
	Reactor Models	Normal Incide	ent Shock				
		Normal Reflected Shock					
VTIM		ptained with the volume as a function of time specified mmed subroutine. SUBROUTINE PSVOLT(TIME, LOUT, VOL,					
Reactor Property	DVDT) must be provide program.						
	Keyword Usage	Optional keywo through VOL or	•	t, volume is specified			

Keyword	Definition						
	Reactor Models	Closed Homo	geneous Bat	ch Reactor			
		Closed Plasma	Reactor				
		Non reactive					
		Non-reactive (Jas Mixer				
		 Perfectly Stirre 	ed Reactor (I	PSR)			
		• Plasma PSR					
	Notes	See also VPRC a function of t		native way to specify volume as			
				amming Interface Manual for to work with user subroutines.			
VU	Constant volume and e	stant volume and energy constraints.					
Problem Type	Keyword Usage		Optional keyword. Exactly one problem-type keyword must be included.				
Турс	Reactor Models	Chemical and	Chemical and Phase Equilibrium Calculations				
	Notes	• UV keyword is	• UV keyword is equivalent.				
VWALL	Specify a constant axial	y a constant axial slip velocity at the walls.					
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Axial slip velocity	Required	cm/sec	VWALL 1.1			
, ,	Keyword Usage	Optional keywo	rd. See also	SLIP.			
	Reactor Models	Cylindrical Sho	ear Flow Rea	actor			
		Planar Shear F	Planar Shear Flow Reactor				
WBFB	Specifies the <i>b</i> paramet is set to 5.0 by default.	ter of the Wiebe fui	nction. <i>b</i> mu	st be greater than 0 and			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Value of the b parameter	Required		WBFB 9.0			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	SI Engine Zon	SI Engine Zonal Simulator				
WBFN	Specifies the <i>n</i> paramet is set to 2.0 by default.	ter of the Wiebe fu	nction. <i>n</i> mu	ist be greater than 0 and			
Solver	Parameters	Optional/Reqd.	Units	Examples			
	Value of the n parameter	Required		WBFN 4.0			
	Keyword Usage	Optional keywo	rd.	,			
	Reactor Models	SI Engine Zon	al Simulator				

Keyword	Definition							
WDIF	Use windward differend	cing on convective	terms in the	e equations.	٦			
Solver	Keyword Usage	Optional keywo	Optional keyword. By default, windward differencing is used.					
	Reactor Models	Diffusion or P	Diffusion or Premixed Opposed-flow Flame					
		Premixed Lan	ninar Burner-	-stabilized Flame				
		 Premixed Lan 	ninar Flame-	speed Calculation				
WELL	Flag indicating that a w			o simulate the molecular				
Reactor Property WENG Reactor Property	Keyword Usage	· · ·		lt, a well mixed model is	+			
	Reactor Models	Closed Partial	ly Stirred Re	actor (PaSR)				
		Partially Stirre	ed Reactor (P	aSR)				
	i.e., heat loss to the environment and heat exchange between the reactors in a network, are applied to the wall energy equation instead of the gas phase energy equation. Also, the heat generated by surface reactions will be included in the wall energy equation. If a surface has more than one material, the wall temperature is always assigned to the first material.							
	Parameters	Optional/Reqd.	Units	Examples				
	Thermal mass	Required	cal/K	WENG 0.1 500 1				
	Heat transfer coefficient	Required	cal/(cm ² · sec · K)	WENG 0.1 500 1				
	Reactor number (PSR clusters only)	Optional If no number is given, the keyword is assumed to apply to all reactors in a cluster.		WENG 0.1 500 1				

Keyword	Definition						
	Keyword Usage	is fixed. The two line specify the the heat transfer surface and the initial wall temp keyword TSRF or used. For Plug Fl	Optional keyword. By default the surface temperature is fixed. The two required numbers on the keyword line specify the thermal mass of the reactor wall and the heat transfer coefficient between the inner wall surface and the gas mixture inside the reactor. The initial wall temperature can be specified by the keyword TSRF otherwise the gas temperature will be used. For Plug Flow Reactors the thermal mass parameter is described in units of cal/(cm · K).				
	Reactor Models	 Closed Homog Closed Plasma Honeycomb R IC HCCI Engine Non-reactive C Perfectly Stirre Plasma Plug F Plasma PSR 	Reactor eactor e Gas Mixer ed Reactor	(PSR)			
WMIX	Width of the mixing r	 Plug Flow Rea SI Engine Zon 	al Simulato				
Reactor	Width of the mixing region; used in defining the initial profile for the LINE or PLAT options.						
Property	Parameters	Optional/Reqd.	Units	Examples			
, ,	Width of mixing region	Required	cm	WMIX 2.0			
	Keyword Usage	'	Optional keyword. By default the width of the mixing region is XEND * 0.5.				
	Reactor Models	Premixed LamPremixed LamRotating Disk	 Diffusion or Premixed Opposed-flow Flame Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor Stagnation Flow CVD Reactor 				
WOSP1	Specify parameters of period.	the Woschni heat tra	ansfer corre	elation for the compression			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			

Keyword	Definition						
,	C11 in the average	Required		WOSP1 2.28 0.318 0.0			
	gas velocity correlation.	nequired		1.57			
	C12 in the Woschni correlation.	Required	cm/(sec - K)	WOSP1 2.28 0.318 0.0 1.57			
	C2 in the Woschni correlation.	Required		WOSP1 2.28 0.318 0.0 1.57			
	Ratio of swirl velocity to mean piston speed.	Required		WOSP1 2.28 0.318 0.0 1.57			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Multi-Zone H		r			
		IC HCCl Engin	e				
		SI Engine Zon	al Simulator				
WOSP2	Specify parameters of the Woschni heat transfer correlation for the combustion period.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Поренту	C11 in the average gas velocity correlation.	Required		WOSP2 2.28 0.318 0.0 1.57			
	C12 in the Woschni correlation.	Required	cm/(sec - K)	WOSP2 2.28 0.318 0.0 1.57			
	C2 in the Woschni correlation.	Required		WOSP2 2.28 0.318 0.0 1.57			
	Ratio of swirl velocity to mean piston speed.	Required	-	WOSP2 2.28 0.318 0.0 1.57			
	Keyword Usage	Optional keyword.					
	Reactor Models	Multi-Zone H	CCI Simulato	r			
		IC HCCI Engine					
		SI Engine Zonal Simulator					
WOSP3	Specify parameters of t period.	the Woschni heat tr	ansfer correl	ation for the expansion			
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
Property	C11 in the average gas velocity correlation.	Required	-	WOSP3 2.28 0.318 0.0 1.57			
	C12 in the Woschni correlation.	Required	cm/(sec - K)	WOSP3 2.28 0.318 0.0 1.57			

Keyword	Definition						
	C2 in the Woschni correlation.	Required		WOSP3 2.28 0.318 0.0 1.57			
	Ratio of swirl velocity to mean piston speed.	Required		WOSP3 2.28 0.318 0.0 1.57			
	Keyword Usage	Optional keywo	rd.				
	Reactor Models	Multi-Zone HOIC HCCI EnginSI Engine Zon	e				
WPRO	Plasma power deposition	on profile specified	as a function	of time.			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Time value	Required	sec	WPRO 1.0E-4 500			
Profiles	Plasma power deposition	Required	watts	WPRO 1.0E-4 500			
	Reactor number (PSR clusters only)	Optional If no number is given, the profile described by the first two values is assumed to apply to all reactors in a cluster.		WPRO 1.0E-4 500 1			
	Keyword Usage			no profile is provided.			
	Reactor Models		Closed Plasma ReactorPlasma Plug Flow ReactorPlasma PSR				
WS- RC	Half-width of the Gauss heat source. See Equation			ng heated by an optional eory Manual .			
Reactor	Parameters	Optional/Reqd.	Units	Examples			
Property	Half-width	Required	cm	WSRC 0.07			
	Keyword Usage	Optional keywo	•	the half-width is 0.0. This QDOT is not 0.0.			

Keyword	Definition						
	Reactor Models • Rotating Disk CVD Reactor						
		Stagnation Flo	ow CVD Read	ctor			
XBTH Reactor Property	in the Pre-processor ou If at least one species i	atput) and desired r n a phase has been ractions for that pha e. If no XBTH param	nole fraction set with th ase are sum neters have	· · · · · · · · · · · · · · · · · · ·			
	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Optional		XBTH H2 1.0			
	Species number value	Optional	mole fractions	XBTH CH(S) 0.5			
	Keyword Usage	Optional keywo determined by t	•	t, the table output is ONE keyword.			
	Reactor Models	Mechanism A	nalyzer				
XCEN	Center of the mixing region; used in defining the initial profile for the LINE or PLAT options. Note that the fuel inlet is assumed to be located at $x=0$.						
Reactor Property	Parameters	Optional/Reqd.	Units	Examples			
. ,	Center of mixing region	Required	cm	XCEN 3.0			
	Keyword Usage		Optional keyword. By default the center of the mixing region is XEND * 0.35.				
	Reactor Models	Diffusion or Pr	remixed Opp	oosed-flow Flame			
		Premixed Lam	inar Burner	stabilized Flame			
		Premixed Lam	inar Flame-	speed Calculation			
		Rotating Disk	CVD Reacto	r			
		Stagnation Flo	Stagnation Flow CVD Reactor				
XEND Reactor	Physical length of the domain. Depending on the value of XSTR.	•		of x at the end of the he domain is either 0.0 or			
Property	Parameters	Optional/Reqd.	Units	Examples			
	Channel length	Required	cm	XEND 25			
	<u> </u>	+	Required cm XEND 25 Required keyword.				

Keyword	Definition						
	Reactor Models	Cylindrical She	ear Flow Reac	tor			
		Diffusion or Premixed Opposed-flow Flame					
		Honeycomb R	eactor				
		Planar Shear F	low Reactor				
		Plasma Plug F	low Reactor				
		Plug Flow Reactor Promised Laminar Rurner stabilized Flame					
		Premixed Laminar Burner-stabilized Flame					
		Premixed Laminar Flame-speed Calculation					
		Rotating Disk CVD Reactor					
		Stagnation Flow CVD Reactor					
XEST Reactor Property	to begin the iteration.	For transient proble se mole fractions in	ms, this keyw the reactor. F	es-phase mole fractions ord provides the initial or example, XEST H2O in the reactor.			
	Parameters	Optional/Reqd.	Units	Examples			
	Species name	Required		XEST H2O 0.5			
	Initial fraction	Required	mole fractions	XEST H2O 0.5			
	Keyword Usage	Optional keyword gas-phase mole if no XEST keyword.	Transient cases: Required keyword; Steady-state cases: Optional keyword. By default, the initial or estimated gas-phase mole fractions are 0.0. For steady-state cases, if no XEST keywords are given, then an equilibrium calculation is performed to determine the initial				
	Reactor Models	Perfectly Stirre	ed Reactor (PS	SR)			
		 Plasma PSR 					
		SI Engine Zon.	SI Engine Zonal Simulator				
	Notes	The sum of all the estimated mole fractions should equal one. If they do not sum to one, they will be normalized and a warning message will be printed to the output file.					
		and a warning	, 3				
XIMN		le fraction value app	lied to interm	nediate species estimates,			
XIMN Reactor Property	when the (default) eq in the case that INTM	le fraction value app uilibrium is used to o keywords are preser o be the average of i	lied to interm determine pro nt. In this case				

Keyword	Definition				
	Intermediate fractions	Required	ired mole XIMN 1.0E-10 fractions		
	Keyword Usage	Optional keyword. By default, the intermediate fraction is set to 0.			
	Reactor Models	 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation 			
XMLI Cluster Property	initialization (AME) is used from an AME solution the with spatial profiles (i.e.,			(see also RSTR). When rith spatial profiles (i.e., ly averages of the profiles	
	Keyword Usage	Optional keyword. By default, the program does not look for an XML Solution File used for restart or initialization.			

Keyword	Definition	
	Reactor Models	Chemical and Phase Equilibrium Calculations
		Closed Homogeneous Batch Reactor
		Closed Plasma Reactor
		Cylindrical Shear Flow Reactor
		Diffusion or Premixed Opposed-flow Flame
		Honeycomb Reactor
		IC HCCI Engine
		Mechanism Analyzer
		Non-reactive Gas Mixer
		Normal Incident Shock
		Normal Reflected Shock
		Partially Stirred Reactor (PaSR)
		Perfectly Stirred Reactor (PSR)
		Planar Shear Flow Reactor
		Plasma Plug Flow Reactor
		Plasma PSR
		Plug Flow Reactor
		Premixed Laminar Burner-stabilized Flame
		Premixed Laminar Flame-speed Calculation
		Rotating Disk CVD Reactor
		SI Engine Zonal Simulator
		Stagnation Flow CVD Reactor
	Notes	For shear-layer flow solutions, we use the value integrated over the height (or radius) and divided by the cross-sectional area for the specified axial-distance location.
		 For Opposed-flow Flames and CVD Reactors, we use the value integrated over the spatial domain, divided by the total axial distance.

Keyword	Definition						
XMLS	Use a previously stored upstream reactor to ini						
Cluster Property	Keyword Usage	Optional keyword. By default, the program does not look for an XML Solution File used restart or initialization.					
	Reactor Models	Cylindrical She	ear Flow Rea	actor			
		Diffusion or Pr	remixed Op	posed-flow Flame			
		Honeycomb R	leactor				
		Non-reactive 0	Gas Mixer				
		Partially Stirre	d Reactor (F	aSR)			
		Perfectly Stirre	ed Reactor (PSR)			
	Planar Shear Flow Reactor						
		Plasma Plug Flow Reactor					
		Plasma PSR					
	Plug Flow Reactor						
		Premixed Lam	Premixed Laminar Burner-stabilized Flame				
		 Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor Stagnation Flow CVD Reactor 					
XRES	_			this value and ignore the restart or initialization.			
Restart	Parameters	Optional/Reqd.	Units	Examples			
	Initial distance	Required	cm	XRES 10			
	Keyword Usage		•	lt, the value of the XML a continuation or restart			
	Reactor Models	Honeycomb R	leactor				
		• Plasma Plug F	low Reactor				
		• Plug Flow Rea	Plug Flow Reactor				
XRST Restart	1	corresponding to th		case, select the values to that is closest to (greater			
	•		Linita	Evamples	\perp		
	Parameters	Optional/Reqd.	Units	Examples			

Keyword	Definition					
	Distance	Required	cm	XRST 5.0		
	Keyword Usage	Optional keyword. By default, the point where the previous solution ended is used.				
	Reactor Models	tor				
XSDF Reactor Property	Default value for a momentum-transfer cross-section between electrons and each species. This value is used for all species not specified with the XSEK keyword.					
	Parameters	Optional/Reqd.	Units	Examples		
	Momentum-transfer cross-section	Required	cm ²	XSDF 1.0E-16		
	Keyword Usage	Optional keyword. By default, the cross-section value is 0. In a plasma problem the user must either specify XSDF or include an XSEK keyword for all species except electrons.				
	Reactor Models	 Closed Plasma Reactor Plasma Plug Flow Reactor Plasma PSR 				
		• Plasma PSR				
XSEK Reactor Property	Momentum-transfer coll species. For example, "XS cross-section of 10 ⁻¹⁶ cr not specified by the XSE	ision cross-section SEK AR 1.0E-16" wo n ² between electi	ould indicate a ons and argo	a momentum-transfer on atoms. For any species		
Reactor	species. For example, "XS cross-section of 10 -16 cr	ision cross-section SEK AR 1.0E-16" wo n ² between electi	ould indicate a ons and argo	a momentum-transfer on atoms. For any species		
Reactor	species. For example, "XS cross-section of 10 ⁻¹⁶ cr not specified by the XSE	ision cross-section SEK AR 1.0E-16" wo m ² between electi K keyword, a user- Optional/Reqd.	ould indicate a ons and argo specified def	a momentum-transfer on atoms. For any species ault value will be used.		
Reactor	species. For example, "XS cross-section of 10 -16 cr not specified by the XSE Parameters	ision cross-section SEK AR 1.0E-16" wo n ² between electi K keyword, a user	ould indicate a rons and argo specified def	a momentum-transfer on atoms. For any species ault value will be used. Examples		
Reactor	species. For example, "XS cross-section of 10 -16 cr not specified by the XSE Parameters Species Momentum-transfer	ision cross-section SEK AR 1.0E-16" wo m ² between electr K keyword, a user- Optional/Reqd. Required Required	ould indicate a cons and argo especified def Units cm ² rd. By default, problem the	a momentum-transfer on atoms. For any species ault value will be used. Examples XSEK AR 1.0E-16 XSEK AR 1.0E-16 the cross-section value value for every species		
Reactor	species. For example, "XS cross-section of 10 -16 cronot specified by the XSE Parameters Species Momentum-transfer cross-section	ision cross-section SEK AR 1.0E-16" wo m ² between electrick keyword, a user-Optional/Reqd. Required Required Optional keyword is 0. In a plasma	ould indicate a cons and argo especified def Units cm ² rd. By default, problem the ne XSDF keyw	a momentum-transfer on atoms. For any species ault value will be used. Examples XSEK AR 1.0E-16 XSEK AR 1.0E-16 the cross-section value value for every species		
Reactor	species. For example, "XS cross-section of 10 -16 cross-section by the XSE Parameters Species Momentum-transfer cross-section Keyword Usage Reactor Models Height above the disk w	ision cross-section SEK AR 1.0E-16" wo m ² between electrick keyword, a user- Optional/Reqd. Required Required Optional keywo is 0. In a plasma is specified by the Closed Plasma • Plasma Plug F • Plasma PSR	ould indicate at cons and argo-specified defunits	a momentum-transfer on atoms. For any species fault value will be used. Examples XSEK AR 1.0E-16 XSEK AR 1.0E-16 the cross-section value value for every species word.		
Reactor Property XSRC Reactor	species. For example, "XS cross-section of 10 -16 cross-section by the XSE Parameters Species Momentum-transfer cross-section Keyword Usage Reactor Models	ision cross-section SEK AR 1.0E-16" wo m ² between electrick keyword, a user- Optional/Reqd. Required Required Optional keyword is 0. In a plasmatis specified by the content of the cont	ould indicate at cons and argo-specified defunits	a momentum-transfer on atoms. For any species ault value will be used. Examples XSEK AR 1.0E-16 XSEK AR 1.0E-16 The cross-section value value for every species vord.		
Reactor Property	species. For example, "XS cross-section of 10 -16 cross-section by the XSE Parameters Species Momentum-transfer cross-section Keyword Usage Reactor Models Height above the disk wase Equation 14.12 of the	ision cross-section SEK AR 1.0E-16" wo m ² between electrick keyword, a user- Optional/Reqd. Required Required Optional keywo is 0. In a plasma is specified by the Closed Plasma • Plasma Plug F • Plasma PSR	ould indicate at cons and argo-specified defunits	a momentum-transfer on atoms. For any species fault value will be used. Examples XSEK AR 1.0E-16 XSEK AR 1.0E-16 the cross-section value value for every species word.		

Keyword	Definition					
	Reactor Models	Rotating Disk CVD Reactor				
		Stagnation Flow CVD Reactor				
XSTR	The beginning of the computational domain. For burner-stabilized flames, this is the burner location.					
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
litoperty	Inlet axial position	Required	cm	XSTR 1.5		
	Keyword Usage	Optional keyword. By default, the starting or inlet axial position is 0.				
	Reactor Models	Honeycomb Reactor Plasma Plug Flow Reactor				
		Plug Flow Reactor				
		 Premixed Laminar Burner-stabilized Flame Premixed Laminar Flame-speed Calculation Rotating Disk CVD Reactor Stagnation Flow CVD Reactor 				
XT- MP	If TSRF is used to specify the surface temperature, the application will set the surface temperature to TINL at $x=0$ and smoothly ramp the temperature up to TSRF at a distance of XTMP.					
Reactor Property	Parameters	Optional/Reqd.	Units	Examples		
rioperty	distance between TINL point and TSRF point	Required	cm	XTMP 0.25		
	Keyword Usage	Optional keyword. By default, the distance is set to 0.5.				
	Reactor Models	Cylindrical Shear Flow Reactor				
		Planar Shear Flow Reactor				
ZONEAVG Output	Flag to store only the zone-average solution data in the Multi-Zone HCCI Engine Simulator.					
	Keyword Usage	Optional keyword. By default, all solution data is stored in the Multi-Zone HCCI Engine Simulator output.				
	Reactor Models	Multi-Zone HCCI Engine Simulator				
		SI Engine Zonal Simulator				

Bibliography

- [1] S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations, NASA Report SP-273, 1971..
- [2] Grosshandler, W.L., RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment, NIST Technical Note 1402, 1993..
- [3] Barlow, R.S., Karpetis, A.N., Frank, J.H., and Chen, J.-Y., "Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames", Combust. Flame 127:2102-2118 (2001)...
- [4] F. Lindemann, Trans. Faraday Soc. 17:598 (1922)...
- [5] R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87:169 (1983)...
- [6] P. H. Stewart, C. W. Larson, and D. M. Golden, Combustion and Flame 75:25 (1989)..
- [7] R. A. Svehla, *Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures*, NASA Technical Report R-132, 1962..
- [8] http://webbook.nist.gov/chemistry/..
- [9] S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis (October 1994) II. Users Manual and Program Description (June 1996) NASA Report RP-1311, 1996..
- [10] http://www.grc.nasa.gov/WWW/CEAWeb/ceaWhat.htm..
- [11] C. Lee, D. B. Graves, M. A. Lieberman, and D. W. Hess, *Journal of the Electrochemical Society*, **141** :1546 (1993)..

Note: PDF user guides no longer in Chemkin-Pro install after release 19.0