Wildlife Simulation Package

Walter Zucchini¹, David Borchers², Stefan Kirchfeld¹, Martin Erdelmeier¹& Jon Bishop²

Institut für Statistik und Ökonometrie

¹ University of Göttingen

Research Unit for Wildlife Population Assessment

² University of St. Andrews

Contributors: Shirley Pledger, Alexey Botvinnik, Günter Kratz,

Oliver Kellenberger, Jürgen Meinecke

Concepts in animal abundance estimation

State model

Describes the spatial distribution and characteristics of animals in a region

Who lives here and where are they?

Population: group size, composition (gender, type), position, exposure

Survey design

Describes the covered region, survey units, effort (observers/traps)

Where, how, and how hard we look.

Survey design: plot sampling, removal methods, mark-recapture, distance sampling, etc.

Observation model

Describes the probability that animals with given characteristics are detected.

What we assume we are likely to see.

Detection probability: certain, constant, distance dependent, covariate-dependent

1.) Define survey region& population density

Generating a survey region

Survey region = An area of given height and width

Generating a population density (1)

The population density defines the spatial distribution of animals in the survey region.

Simple density with linear trend:

Generating a population density (2)

Increase complexity by adding hotspots and coldspots:

Generating a population density (3)

Add more complexity: Strips of constant density

Abundance estimation process

Generating a population

The population specifies the positions and characteristics of groups and individuals

Population parameters

- region
- density
- probability distributions of group and individual characteristics (group sizes and exposures)
- number of groups

Generating a population

A population with 500 groups

Survey designs for closed populations

plot sampling

Count all animals in a selected sub-region

distance sampling

line transect point transect

Count along a transect – record the distances

Count within a circle – record the distances

removal methods

Repeatedly remove some

mark-recapture

various

Repeatedly capture, mark, return

nearest object
 single nearest object

Measure distance to nearest object detected

Survey designs with Incomplete Coverage

plot sampling (random)

line transect

point transect

A line-transect survey

Assumed model vs reality

Assessing sensitivity to assumptions

Generating observation model defines the true detection/capture probabilities for all animals

Assumed observation model is what we use to carry out the estimation

Mark-recapture method

Function and object names

Prefix* (action)

setpars.survey generate.design plot.design generate.sample summary.sample point.est interval.est point.sim etc.

Example:

setpars.survey.pt

Suffix (method extension)

.cr ¹	capture-recapture
.dp	double-platform
.lt	line-transect
.no	nearest object
.pl	plot sampling
.pt	point-transect
.rm ²	removal

Set survey parameters for a point transect

^{*} incomplete list

¹ Estimation functions for .cr extension are .crM0, .crMt, crMb, crMh

² Estimation functions for .rm extension are .rm, .ce and .cir