

Machine Learning Efetivo com AWS: Da extração dos dados ao deploy em produção

BRUNO BITENCOURT

Software Architect

Agenda

- Machine Learning e AWS
- SageMaker
- Dicas
- Links úteis

@brunowdev

- Arquiteto de Software P&D da Betha Sistemas
- +5 anos experiencia
- Aluno de Engenharia da Computação na FASATC e Machine Learning Engineer na Udacity
- brunowdev@gmail.com

Machine Learning e AWS

Workflow

Quanta coisa, não é mesmo?

SageMaker

Treinamento

Factorization Machines

Linear Regression

PCA

K-Means

XGBoost

E vários outros!

Algoritmos Built-in

Interagindo com o SageMaker

Python SDK

- Notebooks
- Algoritmos
- Treinamento
- Deploy
- Tuning

- AWS CLI: 'aws sagemaker'
- AWS SDK: boto3, entre outros.
- Interface WEB

Mas antes disso...

Etapa 0: Dados

- SQL
- NoSQL
- Aquele dataset do Governo com 500GB
- Outros sistemas
- Data Lake?

Pipeline de Machine Learning Serverless

Amazon SageMaker

S3

- Buckets para armazenamento
- Big Data
- Velocidade na escrita/acesso
- Também armazenamos nossos modelos de ML

Glue

- Catalogo de dados (S3, SQL, NoSQL)
- Serverless ETL
- Jobs de extração
 - Python (Spark ou Shell)
 - Scala
 - Segurança e parametrização
 - Storage no S3

Job ETL

Scheduling

#TheDevConf 2019

```
21 env = args['env']
22 url = args['db url']
23 user = args['db_user']
24 password = args['db password']
    output_bucket = args['bucket']
26
27
    # template JDBC
    data frame reader = sparkSession.read.format("jdbc").option("url", url) \
29
           .option("user", user) \
30
          .option("password", password) \
           .option("driver", "oracle.jdbc.driver.OracleDriver")
31
32
33 - def table(t name):
         return data frame reader .option("dbtable", t_name)
34
35
    funcionarios = table("funcionarios").load()
36
37
                                                                                                       SQL
     pessoas fisicas = table("pessoas fisicas").load()
39
     sql funcionarios = """
    SELECT f.nome, f.sexo, f.dt admissao, f.vale transporte, f.plano saude, f.estado civil, pf.dt nascimento
42
     FROM funcionarios f
    join pessoas fisicas pf on f.id pessoa fisica = pf.id"""
    functionarios df = sparkSession.sql(sql_functionarios)
```

Data Cleaning

```
46
    funcionarios_df.withColumn('VALE_TRANSPORTE', \
            when(funcionarios df['VALE TRANSPORTE'].isin('S', 'N'), col('VALE TRANSPORTE')).otherwise('N'))
47
48
    funcionarios df.withColumn('POSSUI PLANO SAUDE', \
49
            when(funcionarios df['POSSUI PLANO SAUDE'].isin('S', 'N'), col('POSSUI PLANO SAUDE')).otherwise('N'))
50
51
    funcionarios_df = funcionarios_df.withColumn('SEXO', \
52
            when(funcionarios df['SEXO'].isin('M') == True, 1).otherwise(0)) \
53
         .withColumnRenamed('SEXO', 'MASCULINO')
54
55
    funcionarios df.withColumn('ESTADO CIVIL', \
56
            when( isnan(funcionarios df['ESTADO CIVIL']), col('ESTADO CIVIL')).otherwise(1))
57
58
59
    #### Armazena no S3
    dailly folder = 's3://{}/{extraction {}'.format(output bucket, 'extraction', int(time()))
61
    print('escrevendo arquivos: {}'.formatdailly folder))
62
63
     funcionarios df.write.format('com.databricks.spark.csv') \
64
                                                                                        Particionamento no S3
         .save('{}/{}'.format(dailly folder, env), header = 'true', delimiter = ';')
65
66
    print('orlc-etl: sucesso')
67
```

Eventos: Sucesso, Falha, etc.

#TheDevConf 2019

Name ▼
part-00000-365eba2c-289c-49c2-aada-ffdf75b6c10a-c000.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c000.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c001csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c0098.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c022.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c0481.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c078.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c098.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c123.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c4851.csv
part-00000-7d8bdbdc-3da4-4d47-8e7f-c3c4aae02834-c954.csv

Etapa 1: Usando o Dataset

Infos

- Standard Sem GPU
- Compute Optimized Sem GPU
- GPU Instances Com GPU inicia \$ 1.26 hora
- O disco varia de 5GB SSD ate 16TB
- Não é obrigatório
- Scripts de Setup e Integração com o Git (não é git friendly)

#TheDevConf 2019

Notebook instance name

ml-poc

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your account in an AWS Region.

Volume size in GB - optional

No configuration

Enter the volume size of the notebook instance in GB. The volume size must be from 5 GB to 16384 GB (16 TB).

5

Etapa 2: SageMaker

Infos

- Imagens Docker Train mode e Invocations (HTTP)
- Serverless ou Endpoint
- Qualquer linguagem ou framework
- Lê os dados do S3
- Escreve os modelos no S3

Devo fazer o meu container?

- Os modelos da AWS são mais otimizados
- Podem ser uma caixa "preta"
- Vendor lock-in

- Common Elements of Built-in Algorithms
- BlazingText Algorithm
- DeepAR Forecasting Algorithm
- Factorization Machines Algorithm
- Image Classification Algorithm
- IP Insights Algorithm
- K-Means Algorithm
- K-Nearest Neighbors (k-NN) Algorithm
- Latent Dirichlet Allocation (LDA) Algorithm
- Linear Learner Algorithm
- Neural Topic Model (NTM) Algorithm
- Object2Vec Algorithm
- Object Detection Algorithm
- Principal Component Analysis (PCA) Algorithm
- · Random Cut Forest (RCF) Algorithm
- Semantic Segmentation Algorithm
- Sequence-to-Sequence Algorithm
- XGBoost Algorithm

Levando o SciKit Learn para o SageMaker

```
FROM ubuntu: 16.04
    RUN apt-get -y update && apt-get install -y --no-install-recommends \
             wget \
             python \
             nginx \
             ca-certificates \
 8
        && rm -rf /var/lib/apt/lists/*
 9
    RUN wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py && \
        pip install numpy==1.16.2 scipy==1.2.1 scikit-learn==0.20.2 pandas flask gevent gunicorn && \
            (cd /usr/local/lib/python2.7/dist-packages/scipy/.libs; rm *; ln ../../numpy/.libs/* .) && \
            rm -rf /root/.cache
13
14
    ENV PYTHONUNBUFFERED=TRUE
    ENV PYTHONDONTWRITEBYTECODE=TRUE
    ENV PATH="/opt/program:${PATH}"
18
   COPY decision trees /opt/program
   WORKDIR /opt/program
```

Exemplo - Treinamento

```
#!/usr/bin/env python
    from future import print function
    import os
    import json
    import pickle
    import sys
    import traceback
    import pandas as pd
11
    from sklearn import tree
12
13
14
    prefix = '/opt/ml/'
15
    input path = prefix + 'input/data'
    output path = os.path.join(prefix, 'output')
    model path = os.path.join(prefix, 'model')
    param path = os.path.join(prefix, 'input/config/hyperparameters.json')
    channel name='training'
    training path = os.path.join(input path, channel name)
```

Exemplo - Treinamento

```
def train():
         print('Iniciando o treinamento.')
         try:
             with open(param path, 'r') as tc:
                 trainingParams = json.load(tc)
29
             input files = [ os.path.join(training path, file) for file in os.listdir(training path) ]
             if len(input files) == 0:
                 raise ValueError(('Nao foram encontrados arquivos no diretorio {}.\n' +
                                   'Verifique se o channel ({}) foi especificado corretamente.').format(training path, channel name))
34
             raw data = [ pd.read csv(file, header=None) for file in input files ]
36
             train data = pd.concat(raw data)
             train y = train data.ix[:,0]
             train X = train data.ix[:,1:]
             # utiliza um hiperparametro, caso tenha sido fornecido
42
             max leaf nodes = trainingParams.get('max leaf nodes', None)
             if max leaf nodes is not None:
44
                 max leaf nodes = int(max leaf nodes)
```

Exemplo - Treinamento

```
# treina o modelo
   clf = tree.DecisionTreeClassifier(max leaf nodes=max leaf nodes)
   clf = clf.fit(train X, train y)
   # salva o modelo no S3
   with open(os.path.join(model path, 'decision-tree-model.pkl'), 'w') as out:
       pickle.dump(clf, out)
   print('Treino completo.')
except Exception as e:
   trc = traceback.format exc()
   with open(os.path.join(output path, 'failure'), 'w') as s:
       s.write('Erro durante o treinamento: ' + str(e) + '\n' + trc)
   # todos os prints sao adicionados automaticamente nos logs
   print('Erro durante o treinamento: ' + str(e) + '\n' + trc, file=sys.stderr)
   # marca a job como falha
   sys.exit(255)
```

Exemplo - Predictor

```
@app.route('/ping', methods=['GET'])
def ping():
    """Determina se a instancia esta saudavel."""
    health = ScoringService.get_model() is not None

status = 200 if health else 404
    return flask.Response(response='\n', status=status, mimetype='application/json')
```

Exemplo - Predictor

```
Scottingset vice. Scottingset vice
class ScoringService(object):
   model = None
   @classmethod
   def get model(cls):
        """Carrega o modelo uma unica vez."""
        if cls.model == None:
            with open(os.path.join(model path, 'decision-tree-model.pkl'), 'r') as inp:
                cls.model = pickle.load(inp)
        return cls.model
   @classmethod
   def predict(cls, input):
        """Realiza as predicoes e retorna.
        Args:
            input (pandas dataframe): Os dados para fazer a predicao"""
        clf = cls.get model()
        return clf.predict(input)
```

Exemplo - Predictor

```
@app.route('/invocations', methods=['POST'])
def transformation():
    data = None
    if flask.request.content type == 'text/csv':
        data = flask.request.data.decode('utf-8')
        s = StringIO.StringIO(data)
        data = pd.read csv(s, header=None)
    else:
        return flask.Response(response='Apenas arquivos no formato CSV sao suportados.', status=415, mimetype='text/plain')
    print('Predicao para {} registros'.format(data.shape[0]))
    data.drop(data.columns[[0]],axis=1,inplace=True)
    predictions = ScoringService.predict(data)
    out = StringIO.StringIO()
    pd.DataFrame({'results':predictions}).to csv(out, header=False, index=False)
    result = out.getvalue()
    return flask.Response(response=result, status=200, mimetype='text/csv')
```

Treinando o modelo

- Manual
- Baseado em eventos

Treinando o modelo

AWS Lambda

- Funções Serverless
- Várias linguagens disponíveis
- Integração com eventos
- Baixo custo
- Comunicação direta com os demais serviços

#TheDevConf 2019

```
response = sagemaker.create training job(
   TrainingJobName = 'training-job-{}-{}-{}'.format(database, ENV, int(time.time())),
   AlgorithmSpecification={
        'TrainingImage': SAGE MAKER IMAGE,
        'TrainingInputMode': 'File'
   RoleArn = SAGE MAKER EXECUTION ROLE,
   InputDataConfig=[
            'ChannelName': 'training',
            'DataSource': {
                'S3DataSource': {
                    'S3DataType': 'S3Prefix',
                    'S3Uri': 's3://supervised-sm-/extractions{}'.format(ENV, extraction key)
   OutputDataConfig={
        'S30utputPath': 's3://supervised-sm-models-{}/train/output{}'.format(ENV, extraction key)
   },
   ResourceConfig={
        'InstanceType': 'ml.m5.large',
        'InstanceCount': 1,
        'VolumeSizeInGB': 5,
   StoppingCondition={
        'MaxRuntimeInSeconds': 300
    },
   Tags=[
            'Key': 'ENV',
            'Value': ENV
```

Rastreabilidade

URI

s3://supervised-sm/extractions-15482365/

Model data location

s3://supervised-sm-poc/output/model.tar.gz

•	02:32:31	Tempo de treinamento: 0.1063
•	02:32:31	Accuracy treinamento: 0.9886
•	02:32:31	F-score treinamento: 0.9818
•	02:32:31	
•	02:32:31	Accuracy teste: 0.9553
•	02:32:31	F-score teste: 0.9305
•	02:32:31	Matriz de confusão:
•	02:32:31	[[4917 413] [28 4502]]
•	02:32:32	Treinamento completo.

Image

145599724414.dkr.ecr.us-east-1.amazonaws.com/supervised-pocex:latest

Hyperparameter Tuning

- Semelhante a job de treinamento
- Qualquer modelo
- Warmup (incremental iterativo ou outra versão)

Hyperparameter Tuning

```
hyperparameter ranges = {'degree': IntegerParameter(1, 3),
                        'thresh': ContinuousParameter(0.001, 0.01),
                        'prune': CategoricalParameter(['TRUE', 'FALSE'])}
objective metric name = 'mse'
metric definitions = [{'Name': 'mse',
               'Regex': 'mse: ([0-9\\.]+)'}]
tuner = HyperparameterTuner(estimator,
                           objective metric name,
                           hyperparameter ranges,
                           metric definitions,
                           objective type='Minimize',
                           max jobs=9,
                           max parallel jobs=3)
```

Deploy

- Endpoint Configuration Middleman
 - o Roteia com base em headers (id de usuário, região, etc.)
- Sem Downtime
- Auto Scaling
- Canary Deployment
- Teste A/B
 - Monitoramento/Scoring é manual

Inferência

- Endpoint SageMaker Requer uma instância rodando
- Batch Transform Jobs

#TheDevConf 2019

```
response = sagemaker.create transform job(
   TransformJobName = 'batch-tranform-{}-{}'.format(database, int(time.time())),
   ModelName = latest model['ModelName'],
   MaxConcurrentTransforms = 40,
   MaxPayloadInMB = 6,
   BatchStrategy = 'MultiRecord',
   Environment = {
        'ENV': ENV
   },
   TransformInput = {
        'DataSource': {
            'S3DataSource': {
               'S3DataType': 'S3Prefix',
                'S3Uri': 's3://supervised-sm/extractions/to-predict/'.format(key),
        'ContentType': 'application/json',
        'CompressionType': 'None',
        'SplitType': 'None'
   },
   TransformOutput = {
        'S30utputPath': 's3://supervised-sm/extractions/output{}'.format(extraction key),
        'Accept': 'application/json'
   },
   TransformResources={
        'InstanceType': 'ml.m5.large',
       'InstanceCount': 3
   },
   Tags=[
           'Key': 'ENV',
           'Value': ENV
       },
```

Consumindo as Predições

```
response = s3.get object(Bucket = 'supervised-sm', Key = key)
result = json.loads(response['Body'].read().decode('utf-8'))
predictions = result['predictions']
responses = []
for prediction in predictions:
    response = sqs.send message(
        QueueUrl = queue url,
       MessageBody = json.dumps(prediction),
        DelaySeconds = 0,
        MessageAttributes = {
            'string': {
                'StringValue': 'recomendado-para-voce',
                'DataType': 'String'
        MessageGroupId = 'recommendation-result'
```

Considerações

- Para gerenciar os componentes: Terraform, Cloudformation:
 - o Todas se integram com facilidade com CI (Jenkins, Gitlab, etc.)

Dicas

- Use só as peças que você precisa
- Desligue os seus notebooks (pode ser automatizado)
- Ajuste as instâncias de treino/predição de acordo com a sua necessidade
- Use as imagens/algoritmos disponíveis, sempre que possível
- Use RecordIO / TFRecord

Outros recursos

GroundTruth

Automatizar o processo de labelling

Marketplace

Publique e venda seus modelos

Outras informações

SageMaker

- Possue free-tier
- Ainda não está disponível na sa-east-1
 - Latência pode ser um problema

Amazon SageMaker

250 hours per month of t2.medium notebook usage for the first two months

50 hours per month of m4.xlarge for training for the first two months

125 hours per month of m4.xlarge for hosting for the first two months

Por onde começar?

AWS

- Getting Started
- Playlist This is my Architecture

SageMaker

- Julien Simon
- Exemplos GitHub

Nosso Case

EDUCAÇÃO

Com Machine Learning, Betha Sistemas prevê reprovação e evasão escolar logo no início do ano

Utilizando Inteligência Artificial, nove em cada 10 evasões poderiam ser evitadas

https://glo.bo/2GyetPb

Perguntas?

