Lista de Exercícios:

Autômatos Finitos Não Determinísticos

Teoria da Computação Prof^a. Jerusa Marchi

1. Converta os AFND em AFD:

- 2. Considerando $\Sigma = \{a, b\}$, projete AFND/AFD para as linguagens em separados e depois proceda a união, disjunção, concatenação, por fim, determinize os autômatos:
 - (a) $L(M) = \{w \mid w \text{ tem pelo menos } 3a's \text{ ou pelo menos } 2b\text{'s } \}.$
 - (b) $L(M) = \{w \mid w \text{ tem pelo menos } 3a's \text{ e pelo menos } 2b\text{'s } \}.$
 - (c) $L(M) = \{w \mid w \text{ tem exatamente } 2a's \text{ ou pelo menos } 2b\text{'s } \}.$
 - (d) $L(M) = \{w \mid w \text{ tem exatamente } 2a's \text{ e pelo menos } 2b\text{'s } \}.$
 - (e) $L(M) = \{w \mid w \text{ tem um número par de } a's \text{ ou um ou dois } 2b\text{'s } \}.$
 - (f) $L(M) = \{w \mid w \text{ tem um número par de } a's \text{ e um ou dois } 2b\text{'s } \}.$
- 3. Considerando $\Sigma = \{a,b\}$ apresente Autômatos Finitos Determinísticos para as seguintes Linguagens:
 - (a) $L(M) = \{ w \mid w \text{ tem um número par de } a's \text{ e cada } a \text{ \'e seguido por pelo menos um } b\text{'s } \}.$
 - (b) $L(M) = \{w \mid w \text{ tem um número ímpar de } a's \text{ e termina com } b\text{'s } \}.$
 - (c) $L(M) = \{w \mid w \text{ tem comprimento par e um número ímpar de } a$'s $\}$.
 - (d) $L(M) = \{w \mid w \text{ n\~ao cont\'em a subcadeia } ab\}.$
 - (e) $L(M) = \{w \mid w \text{ n\~ao cont\'em a subcadeia } baba\}.$
 - (f) $L(M) = \{w \mid w \text{ não cont\'em as subcadeias } ab \text{ nem } ba\}.$
- 4. Considerando $\Sigma=\{0,1\}$ apresente Autômatos Finitos Não Determinísticos com o número especificado de estados para as seguintes Linguagens:
 - (a) $L(M) = \{w \mid w \text{ termina com } 00\}$. Com 3 estados.
 - (b) $L(M) = \{w \mid w \text{ cont\'em a subcadeia } 0101, \text{ ou seja } w = x0101y \text{ para algum } x \text{ e } y\}.$ Com 5 estados.
 - (c) $L(M) = \{w \mid w \text{ contém um número par de } 0's \text{ ou contém exatamente dois } 1's\}$. Com 6 estados.

1

Determinize os AFND construídos acima.