

Structura PC (C4)

- Componenta centrala CPU (Central Processing Unit) sau procesorul
- Magistralele (bus) interconecteaza principalele elemente ale unui calculator

26

Procesorul

- Microprocesorul reprezinta inima oricarui computer (desktop, laptop, server...)
- Poate sa fie Intel, AMD, PowerPC, Sparc sau multe alte brand-uri sau tipuri de microprocesoare (toate fac in general aceleasi lucruri si cam in acelasi mod)

28

Procesorul

- este o sistem complet de calcul fabricat intr-un singur chip
- In funcție de structura unității de execuție avem 2 clase mari de procesoare:
 - RISC Reduced Instruction Set Computer (ARM, SPARC, MIPS) o instrucțiune pe ciclu de ceas
 - CISC Complex Instruction Set Computer (Motorola68k, Intel x86)

29

28

Cum lucreaza procesorul?

- procesorul utilizeaza un limbaj nativ denumit- limbaj de asamblare (assembly language)
- executa o colectie de instructiuni
 masina care-i spun ce trebuie sa faca

Cum lucreaza procesorul?

- pe baza instructiunilor masina, procesorul poate sa faca urmatoarele 3 operatii:
 - operatii matematice: adunari, scaderi, inmultiri, impartiri (utilizand ALU- Arithmetic/Logic Unit). Procesoarele moderne contin procesoare pentru numere cu virgula mobila ce permit efectuarea de operatii foarte complicate cu numere cu virgula mobila
 - sa mute date din locatii de memorie in alte locatii de memorie
 - sa ia decizii si sa sara la un nou set de instructiuni pe baza deciziilor luate

31

30

Componentele procesorului

- address bus (poate sa fie de 8, 16, 32 sau 64 bits) se trimite o adresa la memorie
- data bus (poate sa fie de 8, 16, 32 sau 64 bits) poate sa trimita date la memorie sau sa primeasca date de la memorie
- o linie de citire (RD) si una de scriere (WR) prin care spune memoriei daca se doreste primirea sau set-area locatiei de memorie
- clock line se primeste o secventa de pulsuri de la ceasul procesorului
- reset line reseteaza counter-ul programului la 0 si reporneste executia

33

32

Componentele procesorului

- Registrii A, B and C sunt circuite bistabile ("edge-triggered latches")
- Address latch este la fel ca registrii
- Program counter este un circuit bistabil (latch) cu abilitati de a se incrementa cu 1 si sa se reseteze la zero
- ALU (Arithmetic/Logic Unit) poate sa fie un simplu sumator pe 8 bits sau poate sa fie capabil sa faca operatii de adunare, scadere, inmultiri sau impartiri pe 8-bits
- Test register este un bistabil special care retine rezultatul obtinut de la compararea executata de ALU. De asemenea poate sa memoreze bit-ul suplimentar de la sumator (ulterior putandu-se lua decizii de catre decodor pe baza acestei valori)
- 3-State (tri-state buffers) un buffer (memorie tampon) cu3 stari 1, 0 sau deconectat
- Instruction register si instruction decoder sunt responsabile de controlul tuturor celorlalte componente

Memoriile dintr-un PC

- o data cu evolutia procesoarelor,
 puterea de calcul s-a marit foarte mult
 => este nevoie ca la procesor sa
 ajunga sau sa se trimita datele.
- procesoarele actuale au nevoie de milioane de bytes pe secunda
- memoriile care ar putea satisface aceste cerinte a procesoarelor sunt mult prea scumpe pentru a fi utilizate la capacitati mari

36

Memoriile dintr-un PC

- rezolvarea problemei aparute se face prin utilizarea memoriilor rapide in cantitati mici completate cu memorii mai lente dar ieftine
- nemoriile de viteza mare
 - CPU cache
 - RAM
- nemoriile de viteza mica
 - HDD
 - □ FDD,...

38

- Random Access Memory (RAM) – memoria volatila
 - "random access" deoarece poate fi accesata orice celula de memorie direct daca se cunoaste linia si coloana de localizare a celulei

38

Tipuri de module de memorie

- SIMM single in-line memory module.
- utilizeaza un conector cu 30 de pini avand dimensiunea de 3.5 x .75 inches (9 x 2 cm).
- ulterior modulele SIMM au primit dimensiunea de 4.25 x 1 inch (11 x 2.5 cm), utilizand un conector cu 72 de pini (marind astfel latimea benzi de comunicare si

capacitatea de pana la 256 MB)

41

40

Tipuri de module delmemorie

- DIMM dual in-line memory module avand un conector cu 168-pini, 184-pini si dimensiunea de 5.4 x 1 inch (14 x 2.5 cm) pana la 288-pin DIMM, used for DDR4 SDRAM
- capacitatea acestor module poate varia de la 8MB la 96GB
- RIMM Rambus in-line memory module este comparabil ca dimensiune cu DIMM-ul dar foloseste un bus de memorie special pentru marirea vitezei de comunicare

Tipuri de module de memorie

- pentru laptop-uri se utilizeaza module de memorie proprietare fiecarui producator
- actual se folosesc SODIMM small outline dual inline memory module
- dimensiuniele acestui tip de modul sunt 2 x 1inch (5 x 2.5 cm) avand un conector cu 144, 200 pana la 256-pin SO-DIMMs (DDR4) pini.
- capacitatea poate varia intre 16 MBsi 4-8 GBpe modul

2.35" 72-pin SO DIMM 2.6

2.66" 144-Pin SO DIMM

42

Tipuri de RAM

- **SRAM Static random access memory** utilizeaza 4-6 tranzistori pentru fiecare celula de memorie (nu foloseste condensatori)
- DRAM Dynamic random access memory celule dememorie sunt formate din perechi tranzistor-condensator ce trebuie reacualizat contiunuu
- FPM DRAM

Fast page mode dynamic random access memory forma originala a DRAM-ului

- □ asteapta pe toata durata procesului de localizare a unui bit de date, dat de coloana si linia din matrice, si apoi citeste starea bit-ului inainte de a trece la urmatorul bit. Rata maxima de transfer este 176 MBps
- **EDO DRAM**

Extended data-out dynamic random access memory nu se asteapta procesarea primului bit pentru a trece la urmatorul. De indata ce adresa primului bit este localizata EDO DRAM incepe cautarea urmatorului bit. Rata maxima de transfer este de 264 MBps

Tipuri de RAM

RDRAM

Rambus dynamic random access memory este total diferita de arhitectura celorlalte DRAM-uri.

- utilizeaza Rambus in-line memory module (RIMM), care este similar ca dimensiune si configuratia pinilor cu DIMM-ul standard
- Diferenta este data de utilizarea unui bus special de date de viteza mare numit canal Rambus. Chip-urile RDRAM lucreaza in paralel atingand o rata de trensfer de 800 MHz (1600MBps).
- Dezavantaj: genereaza multa caldura deoarece lucreaza la frecvente mari
- Exista SO-RIMM pentru notebook-uri

46

46

- read-only memory (ROM)
- □ se mai numeste si firmware
- este folosita si in alte dispozitive
- este un CI programat cand este fabricat

48

Magistrale

- Magistrala este un sistem folosit pentru a interconecta mai multe echipamente folosind acelasi suport fizic.
- Este definita de un set de reguli mecanice (dimensiuni conectori), electrice (nivele de tensiune) si logice (protocol)
- Toate echimpamentele conectate la o magistrala lucreaza la aceeasi viteza
- Introducerea unor tipuri diferite de magistrale in arhitectura unui calculator pentru a supporta diferite periferice (PCI, AGP, IDE, ATA, SCSI, USB, FireWire, etc).
- Separea CPU si a memoriei de restul perifericelor -> cresterea performantelor fara constrangeri
- Catalogarea magistralelor dupa diferite criterii:
 - Seriale si paralele
 - Locale si externe

49

Porturi disponibile

- Porturi
 - Serial
 - Paralel
 - USB
 - Firewire
 - IRDA
 - Bluetooth
 - GPIB

50

50

Portul serial

- □ Introdus de mai bine de 50 de ani
- Conexiune pentru: modemuri,
 PDA-uri, imprimante, camere digitale, ...
- Comanda pentru aparatura: aparate de masura, surse programabile, etc.
- Doua sau mai multe porturi (cu 9 sau 25 de pini)

51

Portul serial - Caracteristici

- "serializeaza" datele (la un moment de timp transmite un byte, bit cu bit-8 biti)
- se mai numeste si "communication port" (COM) (sau RS-232, RS-422, RS485)
- este bi-directional (permite fiecarui device sa primeasca date si sa transmita date)
- utilizeaza pini diferiti (full-duplex)
- viteza de transfer este de: max. 115 Kbps (pentru porturile seriale standard) si 460 Kbps (pentru porturile seriale de viteza mare)
- portul serial se bazeaza pe un cip de control numit: UART (universalasynchronousreceiver-transmitter)

52

52

Portul Paralel - obsolete

- Utilizat pentru a conecta la PC cele mai populare periferice:
 - Imprimante
 - Scanere
 - HDD-uri externe
 - Placi de retea externe
 - Iomega zip
 - CD-RW externe

USB - Caracteristici

USB are urmatoarele caracteristici:

- PC-ul are rol de host
- □ 127 device-uri conectate
- lungimea cablului individual de 5m, cu hub-uri max. de 30m (6 cab. individuale) fata de host
- pentru USB 2 rata de transfer este de 480 Mbits/s
- portul USB are 2 fire de putere (+5V si masa) si o pereche de 2 fire rasucite pentru transmisia de date
- pe firele de putere, din PC, se poate suporta un curent de pana la 500mA la 5V
- device-urile conectate pe USB sunt hot-swappable, adica acestea se pot conecta sau deconecta la orice moment de timp
- device-urile cu consum mic se pot alimenta din portul USB, iar cele cu consum mai mare au nevoie de alimentare proprie

60

60

USB - Caracteristici

Ratele de transfer pe portul USB

- Low Speed 1.5 Mbit/s (183 KB/s) utilizata de dispozitivele Human Interface Devices (HID) cum sunt: tastatura, mouse-ul sau joystick-ul
- Full Speed 12 Mbit/s (1.4 MB/s) dispozitivele Full Speed utilizeaza largimea de banda pe baza principiului primul venit primul servit
- Hi-Speed 480 Mbit/s (57 MB/s) dispozitiveleUSB 2.0
- SuperSpeed 4.8 Gbit/s pentru USB 3.0
- □ SuperSpeed+ 10 Gbit/s pentru USB 3.1

61

Firewire

- Permite conectarea a 63 de dispozitive la un FireWire bus
- Este recunoscut de catre Windows de la versiunea 98 si de catre MacOS v.8.6
- Permite o rata de transfer de pana la 800 Mbits/s (urmatoarea generatie de Firewire va permite o rata de transfer de pana la 3.2Gbits/s)

65

68

Firewire - evolutie

- Prima versiune de FireWire a fost: FireWire 400 (1394a)
 - Avea o rata de transfer de pana la 400 Mbps
 - Distanta maxima dintre dispozitive de 4.5 metri
- □ In 2002 a apărut FireWire 800 (1394b)
 - Rata de transfer de pana la 800 Mbps
 - Distanta maxima dintre dispozitive de 100 metri
 - Este compatibil cu 1394a

66

