v" 8390703 4A8 1983

世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

(11) 国際公開 号 (51) 国際特許分類 3 WO 83/00703 A1 C22C 38/50, 38/52, 38/54 (43) 国際公開日 1983年3月3日 (03.03.83) PCT / JP82 / 00338 (21) 国際出願書号 (22) 国際出願日 1982年8月26日 (26.08.82) 特顧昭56-134501 (31) 優先権主張番号: (32) 優先日 1981年8月27日 (27.08.81) (33) 優先権主張国 🕆 (71)出職人(米国を除くすべての指定国について) 三菱金属株式会社 (MITSUBISHI KINZOKU KABUSHIKI KAISHA) [JP/JP] 〒100 東京都千代田区大手町I丁目5番2号 Tokyo,(JP) (72) 発明者; および (75) 発明者/ 出願人 (米国についてのみ) 矢吹立衛 (YABUKI, RITSUE) [JP/JP] 〒339 埼玉県岩槻市諏訪2丁目3番地30号 Saitama, Saitama, (JP)

大江間也 (OHE, Junya) [JP/JP]

〒336 埼玉県浦和市大字領家740番地 Saitama,(JP)

河村 巧 (KAWAMURA, Takumi) [JP/JP]

〒339 埼玉県岩槻市鈎上638番地52号 Saitama,(JP)

(74) 代理人

弁理士 志賀正武 (SHIGA, Masatake) 〒104 東京都中央区八重洲2丁目1番5号

東京駅前ピル6階 Tokyo,(JP)

(81)指定国 添付公開書類 CH. DE, US.

国際調査報告會

補正魯・説明書

(54) Title: HEAT- AND WEAR-RESISTANT TOUGH ALLOY

(54) 発明の名称

耐熱耐壓耗強靭性合金

(57) Abstract

A high-Ni, high-Cr, iron alloy having excellent heat resistance, wear resistance, and thermal shock resistance, which can be used as an alloy for guide shoe of inclined hot-rolling mill for manufacturing seamless steel pipes and as an alloy for padding. It comprises 0.55 to 1.9 % C, 28 to 39 % Cr, 25 to 49 % Ni, 0.01 to 4.5 % Ti, 0.01 to 4.5 % Al, 0.1 to 8 % W, 0.1 to 9 % Mo, and the balance substantially consisting of iron. If necessary, it can contain 0.1 to 3 % Si, 0.1 to 2 % Mn, 1 to 8 % Co, 0.005 to 0.2 % N, 0.01 to 1.5 % Nb or Ta, 0.001 to 0.2 % B or Zr (all % by weight).

(57)要約

朝祭性、耐摩耗性及び耐熱衝勢性の優れた高Niー高Crー鉄合金。継目無鋼管製造用熱間傾斜圧延機のガイドシュー用合金、肉盤合金として使用できる。

成分組成はC:0.55~1.9%、Cr:28~39%、Ni:25~49%、Ti:0.01~4.5%、Aℓ:0.01~4.5%、W:0.1~8%、Mn:0.1~9%、残部実質的にFeから成る。さらに必要に応じてSi:0.1~3%、Mn:0.1~2%、Co:1~8%、N:0.005~0.2%、NbまたはTa:0.01~1.5%、BまたはZr:0.001~0.2%(以上重量%)を含むことができる。

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT	オーストリア	KP	朝鮮民主主義人民共和国
Αl	オーストラリア	LI	リヒテンシュタイン
BE	ベルギー	LK	スリランカ
BR	プラジル	LU	ルクセンブルグ
C.F	中央アフリカ共和国	MC	モナコ
CG	コンゴー	MG	マダガスカル
СH	スィス	MW	マラウィ
СМ	カメルーン	NL	オランダ
DE	西ドイツ	NO	ノルウエー
DK	テンマー ク	RO	ルーマニア
FI	フィンランド	SE	スウエーテン
FR	フランス	SN	セネガル
GA	カボン	Sτ	ソピエト連邦
GB	イギリス	TD	チャード
HI	ヘンパリー	T0	トーコ
311	11 K	t S	* 1

- 1 -

耐熱耐摩耗強靭性合金

技 栃 分 野

背景技術

> BUREAU OMPI

この場合成形される管は槍形傾斜ロールによる圧縮力ならびに 張 出 力 に よ り 楕 円 形 を 呈 し な が ら 成 形 さ れ る 。 こ の 管 の 外 形 及 び肉厚を一定に調整するために樟形傾斜ロールに対して円周方 向へ90°の位置で互に相対向してガイドシューが設けられる。 したがってガイドシューは高温に加熱されて成形される鍋管と 接触し、ガイドシューの表面は螺旋状に回転前進する鋼管と揺 動する。その結果、ガイドシューは急速加熱と冷却水による急 冷の繰返しを受ける。さらに大きな応力負荷の下で転がり摺動 摩擦を受ける。このように苛酷な条件下で使用されるガイドシ ューの材料として従来、26重量%クロムー3重量%ニッケル を 含 有 す る 鉄 系 合 金 や 、 2 6 重 量 % ク ロ ム - 2 重 量 % ニッ ケル を含有する鉄系合金の耐熱耐摩耗性合金鋼、1重量%炭素-2 0 重量%クロムー7 重量%ニッケルー3 重量%コバルトー5 重 量%銅を含有する鉄系合金及び1重量%炭素-15重量%クロ ムー5重量%モリプテンを含有するニッケル系合金の鋳造合金 が使用されてきた。これらの合金のあるものは、高温耐食性が 不充分であるためにこれらの合金からつくられたガイドシュー の表面には高温に加熱された成形された管の表面に発生するス ケール又は鍋片が焼付けられ、この焼付けられたスケール又は 鋼片が成形される鋼管の表面に釘を形成することになり、鋼管 製造の歩留りを悪くする。また、従来の合金のあるものは、局 所的高温加熱と水冷の繰返しによる熱的衝撃に耐えられない。 その結果、ガイドシューの表面から割れを生じ破損したりする。 さらにこれらの合金のあるものは、高温における配摩耗性が不

BUREAU

- 3 -

充分であり、ガイドシューとしての使用寿命が短い。

この発明は継目無銀管製造用熱間傾斜圧延機のガイドシューに要求される耐熱性・耐摩耗性・強靱性・高硬度の合金を得るために検討を行った結果得られたものである。

発明の闘示

この発明の目的は耐熱衝撃性、高温耐食性及び高温耐摩耗性を兼ね備えた合金を提供するものである。この発明の他の目的は総目無顕管製造用熱 間傾斜圧延機のガイドシューに使用できる合金を提供するものである。

この発明の合金は、炭素: 0 . 5 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: 0 . 0 1 ~ 4 . 5 %、アルミニウム: 0 . 1 ~ 4 . 5 %、タングステン・ 0 . 1 ~ 8 %、モリプデン: 0 . 1 ~ 9 %を含有し、マンガン: 0 . 1 ~ 2 %、コークの・ 1 ~ 2 %、スタンガン: 0 . 1 ~ 3 %、スタンガン 2 %、スタンガン 3 %、スタンガン 3

まず具体的に説明すれば、この発明の第1の耐熱耐摩耗強靭性合金は炭素:0.55~1.9%、クロム:28~39%、

性合金である。

ニッケル:25~49%、チタン:0.01~4.5%、アル ミニウム: 0. 01~4.5%、タングステン: 0.1~8%、 モリプテン: 0. 1~ 9 %、必要に応じてケイ素: 0. 1~ 3 % またはマンガン: 0 . 1~2%を含有し、さらに必要に応じ て窒素:〇. 〇〇5%~〇. 2%と、ニオブ、タンタルそれぞ れ 0 . 0 1 ~ 1 . 5 % の う ち 1 種 ま た は 2 種 と ホ ウ 素 、 ジ ル コ ニウムそれぞれ〇. 〇〇1~〇. 2%のうち1種または2種か らなる群より選ばれた少なくとも1つを含有し、残りが鉄と不 可避不純物からなる組成(以下重量%)を有するものである。 さらにこの発明の第2の耐熱耐摩耗強靱性合金は、炭素: 0. 55~1.9%、クロム:28~39%、ニッケル:25~4 9%、チタン: 0. 01~4.5%、アルミニウム: 0. 01 ~4.5%、タングステン:0.1~8%、モリプデン:0. 1~9%、コバルト:1~8%必要に応じてケイ素:0.1~ 3%、またはマンガン:〇. 1~2%を含有し、さらに必要に 応じて窒素:〇. 〇〇5~〇. 2%とニオブ、タンタルそれぞ れ 0 . 0 1 ~ 1 . 5 % の う ち 1 種 ま た は 2 種 と ホ ウ 素 、 ジ ル コ ニウムそれぞれ〇、〇〇1~〇、2%のうち1種または2種と からなる群より選んだ少くとも1種類を含有し残りが鉄と不可 進不紀物からなる程以(以上重量%)を有する耐熱耐摩耗強靱

さらに本発明の第3の合金は、炭素: O . 55~1.9%、 クロム: 28~39%、ニッケル: 25~49%、チタン: O . O 1~4.5%、アルミニウム: O . O 1~4.5%、タング

BUREAU
OMFI
WIFO

- 5 -

さらにこの発明の第4合金は、炭素:〇.55~1.9%、クロム:28~39%、ニッケル:25~49%、チタン:〇.01~4.5%、タングステン:〇.1~8%、モリブデン:〇.1~9%、ケイ素:〇.1~3%、マンガン:〇.1~2%、コバルト:1~8%を含有し、さらに必要に応じて窒素:〇.005~〇.2%と、ニオブ、タンタルそれぞれ〇.01~1.5%のうち1種または2種と、ホウ素、ジルコニウムそれぞれ〇.001~〇.2%のうち1種または2種と、ホウ素、ジルコニウムそれぞれ〇.001~〇.2%のうち1種または2種と、ホウ素、ジルコニウムそれぞれ〇.001~〇.2%のうち1種または2種とからなる群から選んだ少くとも1種を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有する耐熱耐摩耗強靱性合金である。

発明を実施するための最良の形態 この発明の耐熱型摩託強靭性台金の成分元素の作用及びその成 分範囲を限定した理由は下記の通りである。

炭素:炭素成分は高温にて、素地中に固溶する。一方炭素成

BUREAU OMFI クロム:クロム成分は、その一部が素地に固溶し、残りの部分が炭化物を形成する。得られた合金の硬さを向上させ、高温耐食性を改善するほか、高温耐食性を向上させる作用がある。クロムの含有量は28~3では前記の作用効果が得られない。一方クロムの含有量が39重量%を越えて含有量は28~3の動物を設定したがってクロムの含有量は28~39重量%と定めた。

ニッケル:ニッケル成分はオーステナイト素地を安にして 耐熱衝撃性及び靱性を高める。そのほかにニッケル成分はアル ミニウム及びチタンと結合して金属間化合物 (Ni. 2 (Al. Ti)) を形成し、合金の高温強度及び高温耐摩耗性を改善し、さらに クロムと共に高温耐食性を向上させる作用がある。ニッケルの 含有量が25重量%以下では前記の作用効果が得られない。一 方49重量%を越えて含有させると、ときには一層の改善効果

BUREAU

は見られず、経済性を考慮して、ニッケルの含有量を 2 5 ~ 4 9 重量 % と定めた。

> BUREAU OMFI

ある。

タングステン:タングステン成分は素地中に固溶すると共に炭素と反応して炭化物を形成する。タングステンの合有量は 0 . 1 重量% とでは 1 の 作用 効果 で 1 を 2 の 1 を 2 の 2 を 2 を 3 を 4 の 5 に 4 の 5 に 5 を 4 の 6 に 5 に 5 ~ 8 重量% で 5 ~ 8 で

モリフデン: モリブデン成分はタングステンと同様に特に高温耐摩耗性を向上させる作用がある。モリブデンの含有量が0・1重量%以下では前記の作用効果が得られない。一方モリブデンの含有量が9重量%を越えて含有させると、タングステンと同様に靭性及び耐熱衝撃性が劣化する。したがってモリブデンの含有量は0・1~9重量%と定めた。さらに好ましくは0・5~9重量%である。

ケイ素:ケイ素成分は、クロムと共に耐熱性を向上させる作用がある。ほか脱酸作用並びに容易の流動性を改善して鋳造性を向上させる作用がある。さらにケイ素成分は合金の高温強度も改善する作用がある。ケイ素の含有量が〇・1重量%を超えてでは前記の作用効果が得られない。一方3重量%を超えてする。せると、クロムとの関連において到性及び溶接性が低下する。したがってケイ素の含有量は〇・1~3重量%と定めた。ながくケイ素成分はこれを脱酸剤として使用した場合など不可避不

物として〇. 1重量%以下の範囲で含有する場合があるが、この場合には、不可遊不純物含有量を含め、全体含有量が〇. 1重量%以上になるようにすればよい。

コバルト:コバルト成分はオーステナイト素地に固溶して高温強度を改善する。そのほかコバルト成分は高温で降耗性及び耐熱衝撃性を向上させる作用がある。コバルトの含有量が1を見られない。一方8重量%と定めた。したがってコバルトの含有量は1~8重量%と定めた。

窒素:窒素成分はその一部がオーステナイト素地に固溶して 安定化すると共に、他の残りの部分が金属窒化物を形成して高 温強度を一段と向上させる作用がある。したがって高温強度が 要求される場合には必要に応じて含有される。窒素の含有量は

〇. 〇〇5重量%以下ではより一層の高温強度の改善効果が見られない。一方〇. 2重量%を越えて含有させると、窒化物量が増大するばかりでなく、窒化物粒子の粗大化が起って合金を脆化し、合金の耐熱衝撃性が劣化する。したがって窒素の含有量は〇. 〇〇5~〇. 2重量%と限定された。

これが多いである。これらの成分は特に変地の成分は特に変地の成分は特に変形がある。の成分は特に物を形成して相関をさらに一段と対したが特に必要とされる場合に必要とされるものである。これでは対象の合うれるものである。これでは対象のの合うれるものである。これでは対象の作用のよりの作用を超えて合うに対すると、高温での数化物の生成が著しくなるの高温はの劣化を生じの劣化を生のがが成が多くなり過ぎて対性及び対熱質や性の劣化を生のががの形成が多くなり過ぎて対性及び対熱質や性の劣化を生しる。したがってニオフ及びタンタルの含有量はそれぞれの.(1.5重量%と定めた。

ホウ素及びジルコニウム:これらの成分は高温強度、高温耐摩耗性、耐熱衝撃性及び高温耐食性をより一層の成分は含有されるがその含有量がそれぞれ〇. 〇〇1重量光以下では上述の効果が得られず、〇. 2重量光を超えて含有させるの効果が得られず、〇. 2重量光を超えて含有させる。 助性、耐熱衝撃性さらには鋳造性及び溶接性の劣化を生じる。 ホウ素、ジルコニウムの含有量はそれぞれ〇. 〇〇1~〇. 2重量%と定めた。

鉄:鉄成分は残りとして含有される。ニッケルと同様の作用 効果を有する。費用低減をはかる目的で高価なニッケル成分の 一部代替成分として含有される。

この発明の耐熱耐摩耗強靭性合金の組成が範囲とその特性との関係を明らかにするため、各金属を秤量し、20~30℃、20~300℃の関係を用いて大気中で1400~1700℃、20~360分間加熱を溶解する。ついで砂型に鋳造した。30分に銭除り各種試験のための試験片を作製した。これら試験片を開いて、硬さ試験の急速がよい急速冷却の繰返しに近い条件での熱衝撃試験をそれぞれ行なった。

BUREAU OMPI WIPO C - Cr - Ni - Ti - Ai - W - Mo - Fe 系合金

第 2 表 1 , 2 , 3 は 、 常 温 、 9 0 0 ℃ 、 1 0 0 0 ℃各々のビッカース硬度、 常 温 シャルピー 衝撃 値 、 比摩 耗 量 、 割 れ 発 生 ま

でのサイクル数を各実験番号に対応して示した。第1表1の№ 6 は炭素: 0 . 7 9 % 、クロム: 3 0 . 2 5 % 、ニッケル: 2 5. 2%、チタン: 1. 79%、アルミニウム: 1. 02%、 タングステン:5.36%、モリブデン:3.31%、鉄残り の組成(以上重量%)を有する。№6合金の特性は第2表1に 示されている。例えば硬度(ビッカース硬度)常温で332、 900℃で151、1000℃で145である。常温シャルピ - 衝撃値は1.34kg-m/ピ、比摩耗量は1.98×10つ、 割れ発生までのサイクル数は30回以上であった。比較合金№ 6 2 炭素: 0. 4 9 %, クロム: 3 5. 0 6 %, ニッケル: 3 0.11%, チタン:0.59%, アルミニウム:0.13%, タングステン:5.60%・モリブデン:4.92%鉄残りの 組成(以上重量%)についてみると割れ発生までのサイクル致 は30回以上であった。また比摩耗量は3.71×10~とな り、常温シャルピー衝撃値は O.87㎏-៣/㎡であり、とく にビッカース硬度は常温で239、900℃で95、1000 ℃で80と低下している。従来合金の No 71は炭素:1.32 %、クロム:25.89%、ニッケル:11.04%、モリブ デン: 0.50%、ケイ素: 1.59%、マンガン: 2.00 %、パナジウム: 0. 18%、鉄のこり 起成 (以上重量%)を 有する合金である。その特性は割れ発生までのサイクル数が1 8 であり、比摩耗量は3.28×10⁻⁷、常温シャルピー衝撃 値は0.89㎏-m/♂であった。そしてビッカース硬度は常 温で259、900℃で77、1000℃で64の値を示した。

BUREAU OMPI - 1 4 -

第1表1、2、3、4及び第2表1、2、3は合金の組成成分 及びその特性を示した。

										·		-	,								
	Fe	观	殿	沒	数	双	以	段	8 7	96	K	W	<i>\$</i>	S	<i>8</i> ,0	X	X	XX	<i>Y</i> 0	双	M
	Zr	ı	_	I	1	•	-	ł	1	Į	1	1	1	1	1	1	ı	ı	1	1	ı
	В	_	1	ı	1	1	ł	I	1	1	1	I	ı	1	I	1	I.	1	. 1	-	1
<i>18</i> 0	Ta		ı	I	1	1	I	ı	1	ı	1	1	I	1	I	1	I	ı	1	1	1
	Nb	1	ı	ı	1	1	ı	1	1	ı	1	ı	1	1	I	1	I	1	1	1	1
1	z	-	_	1	1	1	ı	1	1	1	1	1	1	ı	1	1		ı	ı	ı	i
<u></u>	Mn	!	1	I	1	1	i	ı	1	1	ı	1	I	1	1	1	ı	1	1	1	0.12
经	Si	ı	1	ı	1	1	ı	I	1	1	. 1	1	I	1	1	1	ı	0.13	1.51	2.93	I
	Mo	4.90	4.91	14.88	1.79	4.80	3.31	3.30	2.98	2.94	2.92	2.94	2.90	7.95	2.12	0.11	8.93	5.11	5.13	5.10	6.07
羅	3	5.57	5.56	5.59	5.04	5.01	5.36	5.34	4.98	96.4	11.95	4.93	10.1	0.13	7.91.	7.16	1.99	2.04	2.06	20.2	2.99
₩ ₩	AR	0.12	0.11	0.11	0.03	1,0.0	1.02	1.05	1, 104	0.016	0.012	2.46	11.118	0.11	0.11	0.13	0.10	0.05	0.05	0.03	0.07
	Ti	09.0	0.58	0.57	0.32	0.30	1.79	1.78	0.011	4.48	11.107	1.89	0.013	0.70	99.0	0.68	0.65	1.52	1.51	1.49	1.54
俗	N ₁ .	30.10	30.08	30.12	30.22	70.24	25.2	48.6	111.60	14.61	117.05	47.07	1/0°21/	75.10	55.09	75.07	35.09	40.10	10.07	40.09	25.11
	Cr	35.04	35.02	35.01	28.4	38.5	30.25	70.24	90°0%	30.02	10.0%	30.06	30.03	31,.08	55.07	55.09	35.08	31.56	31.55	31.59	31.61.
	D	0.561	1.16	1.88	0.75	1,2.0	0.79	0.80	0.83	0.82	0.85	0.85	0.83	1.02	10.1	1,001	1.03	1.06	1.02	1.04	0.81
1		-	2	2	-	5	9	2	8	-6	. Oľ	11	12	13	17	15	16	17	18	19	02
	合金利数			- 4			₩		\$ €		<u>=</u>		<:		<	<u>;</u>			,		<u> </u>

/ 0 茶 / 路.

	1	· ·						· ;	1	i	I		- 1		 -				ļ		\neg
	Fе	级	銰	段	X	双	3	观	**	1	3	₩.	<i>y</i> .0	% 7€	%	双	災	8K	%	既	XX
	2r	ŀ	ı	1	1	1	ı	i	1	1	1	1 !	ı	1	1	1	ı	1	1	l	I
	В	1		1	1	1	1	1	1	1	: 1	1	1	1		1	i		1	1	0.0013
(%	Та	1	1	ı	ı	ı	ı	1	:	1	1 :	0.013	1.02	1.45	0.52	1	0.85	ı	98.0	0.81	1
5 =	Nb		-	ı	1	ı	1	1	0.012	1.04	1.48	1	1	ı	0.43	0.72	!	1 9°0	: 1	0.70	ı
T.	z	1	1	0.0055	901.0	0.197	0.015	910.0	1	1	1	1	ı	. 1		1		ı	1		1
)	Mn	0.87	1.94	I	1	1	1	0.83	1 .	1	l	1	1	. I	: 1	1	1	0.50	0.51	1	1
俗	Si	1	1	ı	1	1	0.80	1	1	1	ı	ı	<u> </u>	1	1	94,0	0.42	1		0.45	1
l l	W _O	90.9	40.9	₄₀ ,9	9.00	6.01	6.02	00.9	1,0.9	6.02	6.01	6.03	6.02	6.04	6.01	6.01	6.03	6.05	6.02	6.01	6.02
紅	3	2.96	2.94	3.05	3.01	3.00	3.04	3.01	3.02			3.02	3.01	3.00			2.99	2.97	2.97	2.95	2.96
	NE	0.05	90.0	0.12	60.0	0.10	90.0	0.05	0.26	0.24	0.22	92.0	0.21	0.21	0.25	0.07.	0.05	90.0	0.05	90.0	0.32
₩ ₩	Ti	1.55	1.52	1.51	1.47	1.46	1.48	1.50	1.51	1.50	1.51	1.54	1.52	1.50	1.51	1.48	1.50	1.49	1.50	1.48	1.50
送	Ni	35.13	35.10	35.11	35.13	35.10	35.13	35.10	55.12	35.11	35.12	55-13	55.15	75.12	35.14	35.20	25.17	75.27	35.22	35.20	35.21
	Cr	31.62	31.60	 -				31.51	31.57	51.56					41,55			71.54		21 52	31.51
	υ	0.80	1	0.82	.				0.81	0.80								5 6			0.80
		21	22	23	たった	25	97	27	28	- 62 62	, č	12	, <u>, , , , , , , , , , , , , , , , , , </u>	77	2 4	7 5	1	2 5); 02		5 0
	合合机型			_1	<u></u>		*		*		Ē		<	=		<≽				/	BL

~ 6 **

 Ξ

	Fe	观	災	级	XV.	观	M	M.	<i>Y</i> L	A.C.	M	M	178	M	级	3 /6	33	8.8	N.
	Zr	ı	1	0.0011	1 60°0	0.197	0.031	ı	0.0014	0.0017	1	1	0.0028	l l	960°0	1	1	0.0095	0.0029
	В	660.0	0.196	ı	1	ł	0.041	0.0016	ı	0.0013	1	0.005	ı	1	1	0.10/1	ŀ	I	0900.0
(%	Та	1	1	I	1	ł	ı	1	1	ı	ı	I	1.07	1.09	ı	ı	0.61	1	1
=	Nb	ı	1	1	ı	I	ı	1	ı	1	0.83	I	1	1	ı	0.01.5	-	ı	1.10
田	Z	1	1	1	i	ı	ı	1	1	ı	0.102	0.105		0.013	0.007	ı	0.006	600.0	1
	Mn	i	ı	1	1	ı	ı	ı	0.72	0.70	1	I	ı	ı	1	ı	0.81	0.79	0.76
ゼ	Si	1	ı	1	ı	ı	1	0.75	1	. 1	ı	1	ı	0.70	0.72	0.70	ı	1	1
	Мо	00*9	5.99	6.05	40.9	00.9	6.01	6.01	00.9	6.01	6.01	6.02	00.9	6.02	00.9	6.01	00.9	6.01	5.98
網	≯	2.98	2.96	2.98	2.97	2.97	2.99	2.98	2.99	2.98	3.00	3.01	3.02	3.00	3.01	3.04	2.99	3.03	3.04
4}	AR	0.31	0.29	0.52	0.32	0.30	0.31	0.12	0.14	0.11	0.36	1/2.0	0.33	0.10	0.00	0.11	0.10	60.0	0.10
	Ti	1.51	1.48	1.50	1.48	1.46	1.48	1.45	1.47	1.48	1.50	1.48	1.17	1.49	1.46	1.48	1.46	1.44	1.48
ゼ	Ni	35.23	35.21	55.25	35.23	35.24	35.22	35.21	55.23	15.21	35.21	35.22	35.24	35.22	35.26	15.75	35.27	35.28	35.24
	Cr	31.54	31.50	11.54	51.51	21.50	31.52	31.46	51.50	31.51	31.49	51.50	31.51	51.50	51.49	51.51	31.48	31.54	31.50
	υ	0.79	0.81	0.79	0.79	0.78	0.79	0.83	0.81	0.80	0.78	0.79	0.77	0.78	0.79	0.79	0.78	0.77	0.79
7. 3. 7.	10000000000000000000000000000000000000	117	112	5.	==	1,5	91,	47	1,8	61,	. 5	1.2	52	53	ž	53	-26	52	58
	(i) (i)						*		*		<u> </u>		⟨:	<u>:</u>	.	}			

6 ₩

								<u>.</u>							
	Fe	观	级	级	%	级	X	M	7/6	级	%	15 A	%	<i>Y</i> (1)	17.89
	Zr	0.0022	4100.0	0.0012	ı	1	ı	ı	ı	ı	1	i	1	V:0.18	Cu:4.49
	В	-	0.0013	9100.0	l	1	I	ı	ı	1	I	ı	1	1	1
(%	Та	0.18	0.30	0.08	i	_	ı	ł	I	1	I	1	ı	1	I
#	Nb	0.05	1	0.16	i	1	i	ı	1	_	ı	1	1	1	ı
頂	Z	0.007	0.007	0.009	ı	1	1	ı	ı		ı	ı	ı	1	1
)	Mn	ı	0.36	1	ı	ı	I	1	1		1	ı	ı	2.00	0.76
必	Si	ı	1	0.25	ı	- 1	1	1	1.	1	1		1	1.59	0.83
	Mo	6.01	6.02	1 ₀ 0°9	4.92	4.89	4.78	4.82	3.34	2.96	2.93	7.14	9.86	0.50	2.98
網	3	3.00	3.01	3.02	5.60	5.57	90.5	5.00	5.40	86.4	96.11	9.1/1.6	1.97	ĺ	3.06
₩	AR	90.0	0.07	60.0	0.13	0.10	4,000	0.02	1.01	0.013	5.00	0.13	0.11	1	1
	Ti	1.49	2.47	1.48	0.59	0.56	0.33	0.31	1.82	5.01 °	0.01	0.68	0.66	1	1
俗	Ni	35.27	35.26	35.24	50.11	30.10	70.24	30.21	21.13	44.63	47.02	35.06	55.10	10.11	M.
	Ç	31.50	31.52	31.51	25.06	35.04	26.11 0	47.30	70.27	30.04	30.05	60.03	75.07	75.89	33.92
	S	0.83	0.82	0.81	0.40	2.21	0.76	0.75	0.80					7.7	1.28
	通道	59	9	61	G	63	159	65	, 99	62	8	ૄ	. 2	2 5	72
	合金種類	¥	(2)	- - - - - -			<u>ਜ</u>	- 	<u>'</u> -	₹ ⊒		- '		\delta \d	₹ ※

第 0 张 0 件

^ ^ 3	£ 185	ピッ	カース	硬さ	常温シャル ピー衝撃値	比摩耗量	割れ発生すで のサイクル致
合金種	里沒買	常温	900°C	1000°C	(kg-m/cd)	$(\times 10^{-7})$	(回)
	1	317	158	146	1.79	1.99	> 30
	2	329	167	150	1.71	1.82	> 30
	3	377	246	188	1.13	1.26	24
	4	328	166	149	1.89	1.78	> 30
	5	354	180	176	1.58	1.40	> 30
	6	332	151	145	1.34	1.98	> 30
	7	356	218	174	2.17	1.70	> 30
本	8	335	216	161	1.98	1.51	27
	9	368	248	187	1.06	1.00	21
	10	356	243	185	1.69	1.41	27
	11	367	251	192	1.57	1.28	24
発	12	385	265	210	1.00	0.99	21
	13	374	226	177	1.18	1.35	30
	14	391	256	205	1.12	0.92	24
明	15	378	250	186	1.39	1.26	30
	16	399	259	208	1.16	0.97	21
	17	366	227	175	1.47	1.66	>30
_	1,8	371	234	179	1.38	1.55	> 30
合	19	382	249	181	1.26	1.39	30
	20	361	23!	1 <u>+</u> 2	1.89	1.82	>30
	21	356	232	141	1.91	1.79	>30
金	22	354	229	139	1.99	1.68	> 30
	23	357	235	140	1.87	1.64	>30
].	24	364	54.1	150	1.69	1.46	27
	25	369	248	164	1.00	1.31	21
	26	361	244	151	1.59	1.43	30
	27	359	243	1-7	1.61	1.40	>30
	28	357	23-	141	1.88	1.67	>30
	29	361	238	143	1.62	1.60	>30
	30	374	24.9	152	1.47	1.30	30

A A #	£ 465	ピッ	カース	硬さ	常温シャル ピー衝撃値	比摩耗量	割れ発生まで のサイクル数
合金和	里海	常温	გ 0 0 . C	1000°C	(kg = m/cm²)	(×10 ⁻⁷)	(回)
	31	357	235	141	1.98	1.67	>30
	32	361	239	146	1.67	1.50	> 30
	33	376	251	155	1.38	1.27	30
	34	363	57.1	144	1.69	1.59	> 30
	35	362	239	141	1.66	1.51	> 30
	36	361	2÷0	142	1.69	1.48	> 30
	37	359	239	141	1.70	1.57	> 30
本	38	361	2 <u>4:</u>	144	1.72	1.52	> 30
	39	363	242	145	1.70	1.46	> 30
	40	357	233	141	1.86	1.61	>30
	41	361	238	145	1.82	1.59	> 30
発	42	368	57.5	153	1.01	1.21	24
	43	357	232	139	1.90	1.63	> 30
	44	361	239	146	1.68	1.52	27
明明	45	368	250	153	1.00	1.18	21
	46	361	238	142	1.77	1.40	>30
	47	360	236	140	1.92	1.60	>30
	48	358	2 5-	139	1.93	1.61	>30
合	49	361	238	143	1.87	1.56	>30
	50	365	245	150	1.48	1.25	21 .
	51	368	247	152	1.27	1.18	21
金	52	361	236	243	1.79	1.50	> 30
	53	364	241	146	1.68	1.41	30
	54	360	237	141	1.66	1.49	>30
	55	365	2 <u>+ -</u>	2-3	1.72	1.32	30
	56	358	257	139	1.84	1.51	>30
	57	360	233	1-1	1.82	1.50	> 30
	58	361	2-0	143	1.83	1.48	>30
	59	362	2-1	146	1.80	1.44	>30
	60	372	2-6	153	1.88	1.16	>30
	61	375	251	155	1.90	1.10	>30

^ A #	£ #5	ピッ	カース	硬さ	常温シャルピー変撃値	比摩耗量	割れ発生まで のサイクル数
合金和	里发	常温	9 0 0°C	1000°C	(kg-m/cd)	(×10 ⁻⁷)	(回)
	62	239	95	c3	0.87	3.71	>30
	63	422	274	220	0.46	0.70	9
比	64	263	97	86	1.87	2.56	>30
較	65	392	216	191	0.66	1.15	6
+X	66	283	127	121	0.49	2.72	>30
合	67	425	282	220	0.36	0.77	6
金	68	438	293	2+5	0.27	0.61	3
	69	409	268	214	0.31	0.70	6
	70	415	272	217	0.25	0.68	3
従来	71	259	77	64	0.89	3.28	18
合金	72	305	143	130	0.43	1.97	3

第 2 表 の 3

実施例2

C - Cr - Ni - Co - Ti - Al - W - Mo - Fe 系合金

実施例2に示すこの発明の耐熱耐摩耗性合金は実施例1の基 礎合金に対してコパルトを1~8重量%を基礎合金として含有 する点が異なる。実施例1と同じく第3表1,2,3、4にこ の発明の合金 No 7 3 から No 1 3 4 と比較合金 (No 1 3 5 から No 144)及び従来合金(№145から№146)の成分組成を 重量%で示した。さらに実施例1と同じく第4表1,2.3に 各合金の特性を示した。第3表1の№78は炭素:0.77%、 クロム:30.23%、ニッケル:25.9%、コパルト:1. 61%、チタン: 1.80%、アルミニウム: 1.00%、タ ングステン:5.37%、モリブデン:3.26%、鉄残りの 組成(以上重量%)を有している。№78の合金は第4表1よ り例えばビッカース硬度は常温で337、900℃で154、 1000℃で148という値を示し、常温シャルピー衝撃値は 1.37kg-m/㎡、比摩耗量は1.93×10⁻⁷、割れ発生 までのサイクル数は30回以上であった。実施例1の№6との 比較においてコバルトを含有するために高温における硬度耐摩 耗性が若干改良された。比較台金(No 1 3 5 から No 1 4 4)及 び従来合金(N•145からN•146)との比較においてもとく に従来合金 № 1 4 5 に比較すると割れ発生までのサイクル数 1 8回に対して No 7 8 の合金は割れ発生までのサイクル数は3 0 回以上であった。さらにピッカース硬度100℃の値64に 対して N. 78合金は148と値を示した。第3表1,2,3,

- 23 -

4及び第4表1、2、3は合金の成分範囲とその特性を示した。

		· ·	—т	T		· ·	— Т	- ' 				r	1			- 1	-т				
	Fе	双	海	既	X	888	X	1/1	双	**	X	AN AN	双	熨	段	级	談	熨	級	33	级
	Zr	٠,	ı	1	1	1		1	1	ľ	ı	ı	1	1	1	1	1	1	ı	ı	1
	В	l	ı	1	1	1	1	1	1 !	1	1	ı	1 :	ı	ı	1	ı	1	ı	ı	
	Та	-	ı	ı	1	1	ì	1	1	1	1	ı	1	1	ı	1	1	ı	•	i i	1
%	Nb	1	ı	ı	ı	1 ;	1	ı	1	1	1	I	1		1	ı	ı	l	l	I	1
	N	_	ı	I	ı	1	ı	1	1	1	ı	1	1	_	1	1	1	ı	1	ı	ı
重	Mn	1	1	1	1	1	-	1	1	1	ı	1	1	ı	ı	1	1	ı	I	I	ı
)	Si	1	1	1	ı	1 -	1	ı	ı	1	ı	1	ı	ı	I	1	1	1	0.12	1.53	2.96
成	Мо	4.91	4.88	4.77	4.78	11.71	3.26	3.24	3.03	3.01	2.96	2.92	2.90	2.91	96°2	2.10	0.12	8.89	5.09	5.07	5.03
	3	5.60	5.59	5.61	5.02	96-1,	5.37	5.32	5.10	5.11	96° 4	4.94	4.92	6.4	0.14	7.98	7.14	2.01	2.10	2.11	2.09
羅	AR	0.11	0.07	0.10	1,0.0	0.02		1.07	0.11	0.10	4.092	0.0014	0.012	4.489	0.12	0.10	0.11	60.0	40.0	90.0	0.03
₩	Ti	0.54	0.52	0.50	0.31	0.26	1.80	1.76	0.62	0.61	0.013	4.491	4.106	0.011	49.0	0.62	0.65	69.0	1.50	1.51	1.47
	S	5.04	5.01	5.09	2.17	2.19	19.1	1.60	1.1	7.9	1.49	1.47	1.50	1.53	5.09	5.06	5.01	5.03	5.06	5.08	5.10
ゼ	iN	30.09	30.10	30.11	30.20	30.21	25.9	1,8,1	30.30	30.29	44.58	14.59	47.04	117.06	35.07	35.04	35.06	35.01	40.08	40.04	40.07
	Cr	35.07	-i			38.2	30.23	30.25	31.48	31.46	30.08	<u> </u>			35.10	35.08	35.07	35.01	31.53	31.54	31.58
	S	0.557		1.86	0.74	0.72	0.77	0.79	1.04	1.02	0.81	0.80	0.84	0.82	1.04	1.00	1.05	1.02	1.05	1.01	1.02
	重数	73	714	75	92	77	78	29	8	81	82	83	84	85	86	87	88	89	5 8	} চ	1 6
	合金種類					_,1,1	*		. 8	**	_			₫¤		⟨≒					

第 3 装 の /

	ъ	观	戏	观	观	17.6	观	级	级	以	级	<i>1</i> /10	%	级	级	災	从	涰	双	以	观
	2r	_	. 1	I	1	i	-	1	1	ı	1		i	1	ı	-	1	1	1	ı	1
	В	ı	1	1	ı	ı	1	1	ı	J	1	l	1	I	ı	ı	1	ı	1	i	1
	Та	ı	ı	ı	ł	1	ı	Į	1	ı	l	1	0.011	96.0	1.46	0.34	i	0.84	1	0.85	0.83
6%	NP	ı	1	1	ľ	ı	1	ı	ł	0.012	1.05	1.46	1	ı	ı	0.61	02.0	I	29.0	1	12.0
 	z	1	1	ŀ	0.0052	0.103	0.196	0.014	910.0	ı	1	1	i	ı	ı	ı	1	ı	ı	ı	1
H	Mn	0.15	96.0	1.97	ł	1	ı	ı	0.83	1	1	1	i	ı	ı	i	ı	ı	0.51	0.53	1
-	Si	ı	1	I	1	1	1	0.79	1	1	1	1	1	ı	1	ı	0.43	0,40	ı	I	0.42
径	Мо	6.10	60.9	6.07	6.02	6.01	6.02	00.9	6.01	1,0°9	6.01	00.9	6.02	40°9	6.03	00.9	00.9	6.01	40.9	6.02	00.9
	×	2.98	2.96	2.98	3.02	3.00	3.01	3.03	3.02	3.06	3.04	3.03	3.04	3.02	3.01	3.03	2.99	2.98	2.99	2.97	2.96
盎	AR	90°0	0.05	0.07	0.11	0.10	0.11	0.05	90°0	42.0	0.23	0.23	0.25	0.23	42.0	92.0	90°0	0.07	0.08	60.0	0.02
40	Ti	1.52	1.50	1.51	1.50	1.48	1°46	1.50	1.49	1.53	1.54	1.50	1.53	1.52	1.52	1.51	1.49	1.50	1.48	1.51	1,49
7-	တ	2.01	2.04	2.02	2.10	2.09	2.07	2.09	2.07	2.04	2.02	2.01	2.01	2.03	2.01	2.04	2.02	2.04	2.01	2.03	2.00
FE.	Ni	35.10	35.11	75.09	35.09	35.07	35.06	35.10	35.09	35.10	35.08	60.6%	35.10	35.09	35.07	35.09	35.10	35.11	35.10	35.13	35.12
	Çr	31.59	31.56	: -	31.18	31.50		31.52	31.50	31.53	12.18	51.50	51.52	;	31.50	31.53	31.55	31.54	31.52	31.54	31.51
	U	0.80	0.81	0.79	0.81	0.80	0.79	0.81	0.83	0.80	0.79	0.77	0.81	0.82	0.80	0.79	0.80	0.81	0.80	0.79	0.78
50 米.	↑'II 73.V -	93	76	35	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	211
< <	ET AR 441 934						∺	<u></u>	8	9.C	-	<u> </u>	,	ć =		∜					

第 3 表 の 2

なる話巻			巡	5	4	紐		松		重	#	(%				
_	ပ	Cr	iN	00	Ti	AR	×	Мо	Si	Mn	Z	Nb	Та	В	Zr	Fe
113	0.81	31.50	35.08	20.5	1.49	0.31.	2.96	6.03	i	1	ı	1	-	0.0012	1	观
1,11	08.0	51.52	35.10	2.01	1.47	0,.0	2.96	6.01	1	1	1	ı	ı	960°0	ı	170
115	0.80	31.49	35.09	2.00	1.48	0.30	2.95	6.02	i	ı	ı	ı	ı	0.192	I	级
116	0.79	31.51	35.10	2.01	1.49	0.32	2.97	t ₁ 0°9	i	ı	1	l	ı	_	0.0013	双
117	0.77	31.52	35.09	2.03	1.47	0.31	2.98	6.03	1	-	1	ı	1	ı	0.103	然
11.8	0.78	31.50	35.06	2.00	1.48	0.30	2.97	6.01	I	1	1	1	I	ł	961.0	观
911	0.79	51.51	75.07	2.02	1.47	0.32	2.98	00.9	1	1		1	1	0.039	0.028	K)
120	0.82	31.49	35.08	2.00	1.46	0.11	2.96	5.99	0.72	ı	1	1	ı	0.0014	ı	双
121	08.0	51.17	55.07	2.01	1.47	0.13	2.98	ر°0)	1	0.70	I	1	1	1	0.0015	\$\$
122	0.81	31.18	35.09	2.04	1.45	0.10	2.99	6.01	1	69.0	ı	ı	ı	0.0016	0.0013	災
123	0.79	31.50	35.10	2.02	1.47	0.34	3.02	00.9		1	0.106	0.80		1	١	X
124	+	31.49	35.09	2.03	1.49	0.33	3.00	6.02	ı,	1	0.103	1	1	900.0	. 1	数
125	:	51.17	35.07	2.04	1.,16	0.30	3.01	00.9	1	ı	ı	ı	1.00	ı	0.0026	%
126	0.77	31.50	35.06	2.03	1.46	60.0	3.04	5.99	0.70	1	0.010	1	1.03	I	ı	災
127	0.79	31.51	55.07	2.06	1.47	0.08	3.02	5.98	0.68	1	0.009	1	1	. 1 ;	₹60.0	纵
128	0.78	31.49	35.04	2.02	1.48	60.0	3.05	00.9	0.69	1	1	0.018	1	0.102	ı	X
129	0.79	31.48	35.06	2.05	1.45	0.11	3.00	5.99	ı	92.0	0.007	1	0.56	1	1	覢
130	0.80	31.50	35.10	2.03	1.43	0.10	2.99	6.01	1	0.77	0.008	ı	I	ı	1,600.0	<i>Y</i> .C.
151	0.78	51.47	35.09	2.0 ⁴	1.44	0.13	2.98	5.99	1	0.80	ı	1.02	1	0.0051	0.0033	XX
132	0.81	31.51	35.07	2.01	1.46	0.20	2.97	6.03	-	1	900°0	0.03	0.15	ı	0.0021	级

第 3 表 の 3

RUREATI

遥	Ni Co	35.08 2.00	75.09 2.02	50.11 5.01	50.14 5.00	30.17 2.20	30.20 2.21	23.5* 1.	30.32 0.	<u> </u>	17.03 1.	35.50 5.	55.47 5.	17.01	//
分	H.	00 1.47	02 1.45	01 0.52	<u>: </u>	20 0.30	21 0.29	1.63 1.81	0.60* 0.70	1.49 4.96	1.54 0.014	5.03 0.67	5.00 0.65	1	1
利	AR	0.08	60.0	0.13	0.12	0.05	1,0.0	1.02	0.10	0.012	1.97	0.11	0.10	.	1
J.	3	3.00	3.01	5.64	5.60	5.00	4.98	5.39	5.09	96.1	4.93	9.88•	2.00	l	3.06
迢	Mo	6.01	6.02	5.00	11.92	18.1	1.80	3.28	3.04	2.97	2.96	2.09	10.8/1	0.50	2.98
	Si	0.27	ı	ı	ſ	ł		ı	ı	ı	1	1	1	1.59	0.83
ĪĒ	Mn	1	0.35	1	1	ı	1	ı	1	ı	i	1	1	2.00	92.0
Jit .	Z	200.0	0.008	I	ı	i		I	ı	ľ	ı	ı	1	1	ı
(%	Nb	91.0	0.15	1	ı	i	I	1	ı	1	ı	ı	J	1	ı
	Та	-	90.0	I	ı	1	1	1	ţ	1	1	1	1	1	1
	В	1,100.0	0.0015	1	1	1	1	I	1	I	ı	ı	1	ı	1
	2r	0.0012	0.0013	1	1	ı	I	1	ı	ļ	1	1	j	V:0.18	Cu:4.94 17.89
	Fe	观	以	级	%	災	%	级	沒	级	观	M.	%	观	17.89

第 录 版 の #

合金種類		ピッ	カース	硬さ	常温シャルピ 一衝撃値	比廖耗量	割れ発生まで のサイクル数		
		常温	9 0 0 C	1000°C	(kg - m/cd)	(×10 ⁻⁷)	(回)		
	73	320	161	150	1.80	1.96	> 30		
	74	333	170	154	1.73	1.79	>30		
	75	380	252	193	1.17	1.21	27		
	76	331	170	153	1.92	1.72	>30		
	77	357	184	181	1.63	1.34	> 30		
	78	337	154	148	1.37	1.93	>30		
	79	350	221	179	2.26	1.67	>30		
本	80	332	168	147	1.88	1.90	>30		
	81	351	187	179	1.98	1.34	>30		
	82	340	219	165	2.01	1.47	27		
	83	371	251	190	1.10	0.98	21		
発	84	360	247	183	1.79	1.39	27		
	85	389	268	213	1.08	0.96	24		
	86	377	231	180	1.29	1.37	>30 '		
明	87	394	259	208	1.20	0.89	24		
	88	381	254	189	1.48	1.20	>30		
	89	<u>-</u> 02	263	213	1.21	0.83	24		
_	90	370	232	178	1.50	1.62	>30		
合	91	376	237	182	1.43	1.50	>30		
	92	. 385	253	185	1.28	1.32	30		
	93	365	238	146	1.96	1.77	>30		
金	94	360	235	144	1.98	1.63	>30		
	95	358	230	143	2.00	1.52	>30		
	96	361	237	145	1.93	1.61	>30		
	97	367	246	153	1.62	1.40	27		
	98	372	251	167	1.09	1.26	21		
	99	369	248	155	1.65	1.38	30		
	100	368	247	151	1.66	1.39	> 30		
	101	361	237	145	1.99	1.61	>30		
	102	364	241	147	1.70	1.57	>30		

合金種類		ピッ	カース	硬さ	常温シャル ピー賞 罕値	比廖耗量	割れ発生まで のサイクル数		
	位 灰	常温	900°C	1000°C	(kg-m/cd)	(×10 ⁻⁷)	(回)		
	103	377	253	156	1.51	1.24	30		
	104	362	239	146	2.00	1.60	>30		
	105	365	242	149	1.72	1.55	>30		
	106	379	256	159	1.49	1.18	30		
	107	367	245	150	1.74	1.50	>30		
	108	366	243	148	1.72	1.49	>30		
	109	366	244	149	1.73	1.46	>30		
本	110	363	243	147	1.75	1.56	>30		
	111	365	245	148	1.77	1.50	>30		
	112	367	246	149	1.76	1.42	>30		
	113	361	237	145	1.97	1.58	>30		
発	114	365	241	149	1.77	1.52	30		
	115	371	253	156	1.09	1.17	24		
	116	360	236	143	1.96	1.59	>30		
明	117	366 243		150	1.70	1.49	27		
	118	373	254	157	1.04	1.12	21		
•	119	365	241	146	1.87	1.47	>30		
_	120	363	240	146	1.96	1.54	>30		
合	121	362	238	145	1.97	1.55	> 30		
	122	365	241	147	1.98	1.53	>30		
	123	369	248	153	1.53	1.14	21		
金	124	371	251	156	1.34	1.10	21		
	125	365	240	146	1.87	1.41	>30		
	126	368	244	149	1.76	1.33	. 30		
	127	364	241	145	1.73	1.42	>30		
	128	369	246	147	1.80	1.27	30		
	129	362	240	142	1.96	1.49	> 30		
	130	364	242	145	1.91	1.43	>30		
	131	365	244	147	1.93	1.40	>30		
	132	366	245	149	1.90	1.36	>30		

合金租	£ #5	ピッ	カース	硬さ	常温シャル	比摩耗量	割れ発生まで のサイクル数
	里块	常温	900°C	1000°C	ピー衝撃値 (kg-m/cmi)	(×10 ⁻⁷)	(回)
本発明	133	378	254	158	1.90	1.03	>30
合金	134	376	250	156	1.93	1.05	>30
	135	243	98	83	0.90	3.57	>30
比	136	424	276	223	0.50	0.63	9
	137	267	101	90	1.94	2.43	> 30
較	138	396	220	195	. 0.74	1.06	6
 	139	287	130	124	0.42	2.61	>30
	140	251	110	90	0.61	2.63	>30
合	141	428	286	223	0.42	0.64	6
	142	441	297	248	0.31	0.55	3
金	143	412	271	217	0.30	0.61	6
	144	419	276	220	0.28	0.64	3
従来	145	259	77	64	0.89	3.28	18
合金	146	305	143	130	0.43	1.97	3

第 4 表 の 3

- 3 1 -

実施例3

C - Si - M. - Cr - Ni - Ti - Al - W - Mo - Fe 系合金 実施例 3 は実施例 1 に対してケイ素、マンガンを基礎合金と して含有している点が異なっている。

実施例1と同様に第5表1、2、3に発明の合金の成分組成 を重量%で示す。 № 147から № 176まではこの発明の合金 であり、No 1 7 7 からNo 1 8 7までは比較合金であり、No 1 8 8 から N₀ 1 8 9 は従来合金の例を示す。第 5 表 1 の N₀ 1 5 2 は 炭素:0.80%、ケイ素:0.67%、マンガン:0.11 %、クロム:31.7%、ニッケル:35.1%、チタン:1. 03%、アルミニウム:0.03%、タングステン:2.98 %、モリプテン: 6 . 2 1 %、鉄残部(以上重量%)である。 さらに必要に応じて窒素:〇、〇〇5~〇、2%とニオブ、タ ンタルそれぞれ0.01~1.5%のうちの1種または2種と ホウ素、ジルコニウムそれぞれ0.001~0.2%のうちの 1種または2種とからなる群から選んだ少くとも1種を含有し ている合金が№166から№176までに示されている。実施 例 1 と同じく第 6 表 1 . 2 には No 1 4 7 から No 1 8 9 までの各 合金の特性が示されている。例えば、№ 1 5 2 はビッカース 褒 度として常温で366、900℃で238、1000℃で14 6の値を示した。常温シャルピー衝撃値は1.98kg - m / ㎡ であり、比摩耗量は1.79×10っであり、割れ発生までの サイクル数は30回以上であった。第5表1,2,3及び第6 表1、2は合金の成分組成とその特性を示した。

BUREAU

	ъe	災	M.	災	双	£00	災	. M.	W	738	7.0	级	沒	窓	双	双	汲	及	观	观	数
	Zr	l	-	1	ı	ı	ı	i	1		1	1	ı	1	i	ì	1	-	ı	ì	. 1
	В	1	1	I	ŧ	1	1	l	1	1	1	1	ı	1	l	-	ı	-	-	ı	1
% (%	Та	ı	1	1	1	1	ı	ı	1		1	I	1	1	1	-	ı		-	ı	I
	Nb	1	1	1	1	l	I	ı	1	1	ı	I	ı		l	1	1	-	ı	I	1
亷	z	ı	l	ı	1	ı	1	ı	ł	1	1	ı	ı	1	I	1	ı	1	ı	1	0.083
	Mo	5.00	4.97	96.4	5.12	5.10	6.21	6.20	4.82	4.80	3.25	3.22	2.06	2.03	2.01	2.00	7.93	1.98	0.12	8.89	5.10
经	3	5.60	5.59	5.61	2.10	2.09	2.98	2.96	5.10	5.07	5.32	5.30	5.07	5.01	50.5	5.03	0.11	7.94	7.11	1.87	5.48
	VE	0.11	0.10	0.11	40°0	0.05	0.03	0.02	90.0	0.02	1.00	1.09	3.86	0.05	0.011	4.41	0.22	0.24	0.17	0.16	0.10
松	Ti	95.0	0.55	0.53	1.07	1.04	1.03	1.08	0.25	0.28	1.75	1.72	0.012	4.13	3.61	0.07	0.61	09.0	0.63	0.62	0.37
	Ni	30.0	30.1	30.1	0.04	40.2	35.1	35.2	30.2		25.3	45.7	43.3	43.2	45.1	45.2	35.1	35.1	35.2	35.1	30.1
4.	Cr	35.1	35.2	35.0	31.5	31.4	31.7	31.6	28.4	38.1	30.2	30.1	30.2	30.1	30.1	30.0	35.1	35.0	34.1	34.0	35.0
怪	Mn	0.77	0.81	0.83	0.51	64.0	0.11	1.93	69.0	0.70	0.83	0.81	0.73	0.70	0.50	24.0	0.76	0.78	69.0	0.72	08.0
	53	99.0	0.70	69.0	0.12	2.92	29.0	99.0	0.70	0.68	08.0	0.79	- 29.0	99.0	0.42	0.42	0.68	29.0	0.0	69.0	29.0
	O	0.558	1.28	1.86	1.03	1.01	0.80	0.79	0.70	69.0	0.76	0.77	0.81	0.80	0.82	0.80	50.1	8	96.0	96.0	1.06
	 <u> </u>	147 (i	+	┪	+	+	+	+-	÷	+		-	- 		_	+	-	+-		+
	合金利類		•	<u> </u>	_1		1	(₹? 		<u> </u>	<u> </u>	ďΞ		₩					

第 5 表 の /

BUREAU

	Fe	俎	섔	沒	级	级	级	W	沒	. XX	33	汉	%	33	X	双	級	殿	双
	Zr	ı	1	1	1	0.013	₩00.0		0.075	ł	0.104	1	1	1	ı	1	1	ı	I.
	В	-	1	1	0.083	ı	0.002	1	1	0.071	0.015	ı	1	1	I	ı	i.	ı	ı
(%	Ta	ı	92.0	01/0	. 1	ı	1	96.0	ı	ı	1	ı	ı	1	1	ı	1	1	1
¥	Nb	0.84		0.41	:	ı	1	ı	1	69.0	0.48	1	I	1	ļ	1	i	1	4
Ħ	z	ı	ı	1	1	1	. 1	600.0	0.104	0.008	690.0	1	i	i	1		ı	ı	i
	W _O	5.11	5.08	5.10	5.11	5.09	5.12	5.10			5.10	1.98	66.1	5.11	6.18	4.89	4.85	3.27	2.04
径	3	5.47	5.50	5.51	5.50	5.49	5.50	5.47	5.46	5.50	5.48	5.57	5.56	2.10	2.98	5.09	5.08	5.31	5.00
	A.C.	0.11	0.10	60.0	0.10	0.10	0.08	i •	0.07	0.11	0.10	0.10	0.0	170.0	0.03	0.05	0.03	1.04	90.0
绿	Ti	0,40	0.38	0.39	0.38	0.37	0.39	0.40	0.37	0.39	0.38	0.50	0.51	1.03	1.09	0.28	0.30	1.78	5.13
4	Ni	30.2	30.1	30.3		30.3	30.2	30.1	30.2	30.1	50.3	78.1	30.0	40.2	35.1	30.1	30.2	22.4°	43.2
	Cr	34.9	34.9	35.0	5/1.9	35.1	35.0	35.1	34.8	34.9	55.0	35.1	25.0	31.5	31.7	26.1°	41.3°	30.1	30.1
径	Mn	0.76	0.74	0.76	0.77	0.78	0.79	0.84	0.82	08.0	0.78	08.0	0.78	0.51	3.03	0.73	0.71	18.0	0.73
	Si	0.77	0.78	0.79	0.76	0.77	0.75	0.74	0.73	0.74	0.75	69.0	0.70	11.23	29.0	0.71	0.70	0.77	0.68
	υ	1.07	80.	1.06	1.07	1.08	1.06	1.07	1.05	1.06	1.05	0.41	2.36	1.04	0.80	0.69	02.0	0.80	0.79
	FIII ÁIL -	167	168	169	1.70	121	172	173	12/1	175	176	177	178	179	180	181	182	183	184
	合金和類			÷	(\$	(Ē	(=	⟨∋`					光	*	< <	=	俎	

第 5 装 の 2

	Т	<u> </u>				6
	Fe	X	N.	33		17.9
	Zr	1	ı	1	V: 0.18	Cu:4.94
	В	i	I	ł	1	1
% (%	Та	1	1	1	 	1
ij	qN	I	1	I		1
無	Z	_	ł		 	1
	Мо	2.02	1.99	10.03	0.50	2.98
没	A	5.01	\$1,006	1.86	1	3.06
	AR	5.26° 5.01	0.28 9.04 1.99	0.17 1.86 10.03*	1	1
絒	Ti	0.08	29.0	0.61	ı	
分	iN	45.3	35.2	55.0	11.0	<i>y</i> (0
	Cr	30.1	0.76 35.1	24.0	25.9	3/1.0
ゼ	Mn	0.50	0.76	0.70	1.59 2.00	0.16 31.0
	Si	0.79 0.41	0.70		1.59	0.83
	U	0.79	1.01	0.08	1.72	1.28
	一	185		187	188	189
	合金種類		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	(A) 187	* ト 188	· 头 : 今

三次。

-35-

4	種類	ピッ	カース	硬さ	常温シャルピー衡孕値	比摩耗量	割れ発生までのサイクル数
	但如	常温	9 O O.C	1000°C	(kg-m/cm²)	(×10 ⁻⁷)	(回)
	147	318	160	149	1.81	1.96	> 30
	148	331	168	155	1.76	1.73	>30
	149	379	253	192	1.23	0.98	27
	150	374	235	181	1.39	1.52	>30
·	151	383	251	183	1.31	1.37	30
	152	366	238	146	1.98	1.79	>30
	153	357	230	141	2.01	1.53	>30
本	154	332	171	154	1.93	1.72	>30
	155	360	187	183	1.52	1.34	30
	156	338	156	150	1.34	1.91	>30
	157	360	221	179 .	2.26	1.63	>30
発	158	356	235 .	144	1.96	1.50	30
	159	369	251 ;	192	1.20	0.96	27
	160	350	231	140	1.99	1.54	>30
明	161	385	261	200	1.14	0.93	24
į į	162	378	238	183	1.26	1.29	30
	163	394	263	210	1.20	0.89	24
	164	382	255	190	1.48	1.24	30
合	165	4 02	264	213	1.16	0.86	24
	166	356	184	148	1.90	1.70	>30
	167	348	218	185	1.38	1.46	>30
金	168	350	215	180	1.51	1.49	>30
	169	362	234	189	1.36	1.10	>30
	170	351	207	178	1.40	1.02	27
	171	346	192	173	1.31	1.08	27
	172	364	203	186	1.26	1.00	24
	173	379	237	187	1.30	0.99	27
	174	393	270	202	1.08	0.95	21
	175	373	215	192	1.29	1.02	24
	176	403	282	214	1.20	0.86	21

合金和	新	ピッ	カース	硬さ	常温シャルピー衝撃値	比摩耗量	害れ発生まで のサイクル数
	里 553	常温	3 0 0 . C	100°C	(kg - m / cm²)	(×10 ⁻⁷)	(回)
	177	248	97	83	0.99	3.83	>30
比	178	421	276	224	0.53	0.70	12
	179	420	257	200	0.75	1.03	9
	180	324	148	123	2.09	1.14	>30
較	181	267	100	89	1.98	2.53	>30
	182	394	219	192	0.81	1.12	6
合	183	286	128	125	0.47	2.68	> 30
	184	418	279	218	0.56	0.81	6
金	185	427	286	238	0.47	0.90	3
775	186	413	271	218	0 • 44	0.66	6
	187	418	276	221	0.36	0.71	3
従合	188	259	77	64	0.89	3.28	18
来金	189	305	143	13C	0.43	1.97	3

第 6 表 の 2

- 3 7 -

実施例4

C - Si - Ma - Cr - Ni - Co - W - Mo - Ti - Al - Fe 系合金 実施例4は実施例3の基礎台金に対してコバルト:1~8重 量%を含有している点が異なる。実施例1と同じく第7表1. 2に従来合金(№190から№191)とこの発明の合金(№ 192から№223)さらに、比較合金(№224から№23 5)の成分組成が示されている。第8表1,2にはこれらの合 金の特性が示されている。 № 199は炭素:0.70%、ケイ 素: 0. 68%、マンガン: 0. 70%、クロム: 28. 97 %、ニッケル:30.12%、コバルト:2.15%、タング ステン:5.06%、モリブデン:4.80%、チタン:0. 23%、アルミニウム: 0. 05、鉄残部 (以上重量%)であ る。なおこのほかに必要に応じて窒素:〇.〇〇5~〇.2% とニオブ、タンタルそれぞれ〇、〇1~1、5%のうちの1種 または2種と、ホウ素、ジルコニウムそれぞれ〇.〇〇1~〇. 2%のうちの1種または2種とからなる群より選んだ少くとも 1種を含有している合金が№224~235までに示されてい る。実施例1と同じくN_•190~N_•235までの合金の特性が 第8表1、2に示されている。例えば№199はピッカース硬 度として、常温で336、900℃で175、1000℃で1 58の値を示している。常温シャルピー衝撃値は1.87㎏m / ㎡であり比摩託量は1.67×10~であり、割れ発生ま でのサイクル数は30回以上であった。実施例4の№199に 比較的に類似した組成を有する実施照3のNo 154と比較する

- 38 -

と No. 1 9 9 で は コ バ ル ト 2 . 1 5 重 量 % が 含 有 さ れ て い る 。 No. 1 5 4 で は 、 硬 度 は 常 温 で 3 3 2 、 9 0 0 ℃ で 1 7 1 、 1 0 0 0 ℃ で 1 5 4 、 常 温 シャ ル ピ ー 衝 撃 値 1 . 9 3 kg ー m / ㎡ で あ り 、 比 摩 耗 量 は 1 . 7 2 × 1 0 7 で 割 れ 発 生 ま で の サ イ ク ル 数 は 3 0 回 以 上 で あ っ た 。 第 7 表 1 . 2 , 3 及 び 第 8 表 1 . 2 は 合 金 の 成 分 組 成 と そ の 特 性 を 示 し た 。

			<u></u>					\neg								i						
	Fe	殹	17.89	双	级	XX	观	级	X	X	A	以	W	级	级	釵	级	M	观	级	况	
	Λ	0.18	1	1	I	I	1	1	1	1	1	1	l	ı	ı	ı	-	ı		1	١	
	Cu	1	46.4	1	1	-	1	-	ı	-	1	ı	1	,	-	-	-	1	1	_	ı	
	Zr	-	1	ı	ı	ı	ı	ı	ı	1	1	ı	1	ı	-	ı	-	1	ı	-	-	
%	щ	ı	ı	ı	ı	ı	ı	I	ı	1	1	ı	1	1	l	ı	ı	ı	ı	I	ı	
臣	Та	ı	ı	1	.1		ı	ı	ì	1	ı	1	1	1	ı	1	1	i	1	ı	1	
	qN	1	ı	ı	ı	! 	ı	ı	ı		ı	ı	ı		1	ı	ı	1	ı	ı	ı	
)	z	1	1	ı	1	l	ı	ı	1	1	I	1	ı	1	1	ı	1	1	1	ı	i	
	AR	. 1	1	0.10	0.09	0.11	40°0	0.05	1,0.0	90.0	0.05	0.01	1.02	1.10	0.10	60.0	0.10	0.11	60.0	0.08	60.0	
送	Ti	ı	1	0.51	0.50	0.53	1.04	1.03	1.02	1.00	0.23	0.20	1.74	1.70	0.59	09.0	0.57	0.59	0.61	09.0	0.91	
	Wo	0.50	2.98	46°4	14.86	4.80	5.11	5.14	6.15	6.16	4.80	4.81	3.23	3.25	2.99	2.98	7.95	2.00	0.87	8.01	2.99	
翠	3	1	3.06	5.56	5.62	5.59	2.04	2.01	3.00	2.99	5.06	5.00	5.31	5.29	5.07	5.09	0.52	7.96	7.00	2.09	5.00	
	కి	1	1	5.01	5.03	5.12	5.04	5.00	2.00	2.03	2.15	2.16	1.59	1.57	1.60	7.91	5.01	5.01	4.96	46.4	1.60	
₩	Ni	11.04	缀	30.10	30.09	30.08	40.12	40.13	35.07	35.06	30.12	30.15	25.10	17.93	30.24	30.25	35.00	35.02	35.02	35.00	42.11	
4.5	Cr	25.89	33.92	35.03		35.05	31.57	31.50	31.60		28.97	37.98	50.14	30.12	31.50	31.51					30.12	
俗	Mn	2.00	92.0	0.79	0.83	0.82	0.49	941.0	0.11	1.70	0.70	0.71		0.81	0.80	0.79	0.80	0.81			0.79	
	Si	1.59	0.83	0.70	0.71	0.15	1.60	2.70	0.65	99.0	0.68	0.67	0.79	0.78	0.68	0.71	0.70	0.60	0.67	69.0	0.80	
	D	1.32	1.28	0.56	1.22	1.85	1.01	1.00	0.78	0.80	0.70	0.71	0.75	0.74	1.02	1.03	1.02	ال0 ر	0.99	0.98	0.81	,
		190	191	192	193	194	195	196	197	198	199	8	201	202	203	201	205	30%	202	208	200	,,,
		紹	*						<		* E		<u> </u>		ĆΞ		⟨∋;				_	H

第 7 表 の

BUKLAU

- 1	 1	·····			· 1	· T		. ,	ı	+ (<i>-</i>			-		<u> </u>					
	F.	溪	%	级	27.0	£	X	3/1	8	8	83	8	X	談	双	XX	双	双	级	强	级
	>	Ì	ı	ı	1	1	1	1	1	1	ı	1	l	1	1	1	ı	1	I	ł	1
	Cu	1	1	ł	1	1	1	1	1	ı	1		i	ı	1	1	1	1	1	1	1
·	Zr	ı	1	ł	ı	ı	ı	1	ı	0.102	0.055	1	ı	0.087	0.045	1	ı	1	ı	ı	ı
~	В	1	1	1	1	ı	ı	1	0.089	1	0.039	1	0.092	ı	0.054	ı	ı	ı	1	ı	ı
بد	Га	I	ı	1	ı	0.71	ı	111,0	1	1	1	1	!	0.92	0.30	ı	ı	1	1	ı	1
Ħ	Np	1	ı	1	ı	ı	0.80	0.31	ı	1	1	1.09	ı	1	0.57	1	ı	j	ı	ı	1
) 重)	N	1	ı	l	0.110	. !	ı	1	ı	ı	ı	690.0	0.082	ı	0.072	1	ı	1		1	i
	AR	0.07	1.57	3.31	0.08	90.0	0.08	90.0	0.07	0.09	0.07	0.09	60.0	0.08	60.0	0.08	90.0	0.05	0.07	90°0	40.0
迎	Ti	3.34	0.52	0.018	0.31	0.33	0.30	0.32	0.31	92°0	0.31	0.29	0.30	0.32	0.30	0.50	0.52	1,01	66.0	0.25	0.21
	Mo	2.98	3.04	3.01	14.97	14.99	5.00	1.99	96.1	1.99	14.98	5.01	5.00	5.01	5.03	4.96	4.90	5.13	6.18	4.79	4.80
曩	Μ	5.03	5.01	5.02	5.53	5.54	5.50	5.53	5.51	5.50	5.49	5.51	5.53	5.50	5.49	5.57	5.59	2.01	3.00	5.04	5.06
	ಲ	1.51	1.53	1.51	5.00	5.03	5.01	5.00	5.04	5.01	5.00	5.05	5.02	5.01	5.03	5.06	5.11	4.97	2.05	2.11	2.12
#	i.N	42.10	15.01	45.03	30.08	30.06	30.07	1,0.0%	30.08	30.09	30.10	30.11	70.02	30.08	20.10	30.17	30.12	40.10	35.04	30.03	30.10
.,,	Cr	30.11	70.08 115.01	30.07	96.1/2	54.97	96-1/5	36.1/2	35.03	21.99	3/1.96	35.01		35.02	35.00	35.00	34.98	31.58	31.55	25.01	0.70 40.89 30.10
径	Mn	0.78	0.79	92.0	0.81	08.0	0.79	0.77	0.79	0.77	0.78	0.80	0.70	0.74	0.77	0.78	0.80	0.51	3.08	0.71	0.70
	Si	0.77	0.80	0.78	0.69	0.67	0.68	0.78	0.72	0.69	0.70	0.71	0.69	0.68	0.70	69.0	0.71		99.0	0.68	29.0
	O	0.82	0.80	0.81	1.07	1.06	1.09	1.08	1.09	3.07	1.06	1.08	1.09	1.07	1.09	0.28	2.06	1.02	0.71	77.0	0.70
		210	ווכ	212	213	717	215	216	217	218	219	220	721	222	223	224	225	326	227	228	229
	合金棚類			i	€		& \		E E		ć =		⟨>;				丑	\$2	<u> </u>	(I	SH E

第 7 装.の 2

	Fе	及	獲	观	災	然	EX
				!			
	>	i	1	ı	ı	<u> </u>	1
į	Cu	ı	1	1	1	1	1
	Zr	ı	1	ı	1	1	· I
%	В	1	ı	1	ı	ı	ı
=	Ta	ı	I	l	1	1	. 1
	NÞ	ı	ı	l	ı	1	1
)	z	i	1	ı	,	1	1
	AR	1.02	60.0	0.10	0.08	0.07	11.02
成	Ti	1.68	0.57	0.61	0.58	5.01 2.96 4.00 0.07	5.03 3.06 0.51 4.02
	Мо	3.01	2.97	2.01	9.88	2.96	3.06
鞣	3	5.30 3.01 1.68 1.02	5.09 2.97 0.57 0.09	9.97 2.01 0.61 0.10	2.08 9.88 0.58 0.08	5.01	5.03 3.06 0.51 4.02
	కి	1.56	0.31	5.05	14.96	1.50	
4	Ni	20.01	30.05	35.01	35.03	42.03	45.00
457	Cr	30.10	31.54	34.97	34.03	30.09	- 30.10
怪	Mn	0.80	0.81	0.78	0.68	80 0.76 0.79 30.09 42.03	0.78
	Si	0.80	0.71	0.73	00.00	0.76	0.81
	υ	230 0.73 0.80 0.80 30.10 20.01 1.56	231 1.00 0.71 0.81 31.54 30.06 0.31*	232 1.02 0.73 0.78 34.97 35.01 5.02	233 1.00 0.70 0.68 34.03 35.03 4.96	0.80 0.76 0.79 30.09 42.03 1.50	235 0.79 0.81 0.78 30.10 45.00 1.56
		230	231	232			235
	6. 公型数		丑	松	<	=	(≆

'n

6

∺∜

尝

•				•			
				<u> </u>	2 –		
	- 15	ピッ	カース		常温シャル・ピーを撃値	比廖耗量	割れ発生まで のサイクル数
合金科	事類	常温	9 O O C		(kg-m/ci)	(×10 ⁻⁷)	(回)
従合金	190	259	77	. 64	0.89	3.28	18
来金	191	305	143	130	0.43	1.97	3
	192	322	163	152 :	<u>.</u> .78	1.90	>30
	193	336	172	158	1.70	1.71	>30
٠	194	383	256	196	1.14	0.94	27
本	195	379	239	184	1.33	1.47	>30
:	196	387	254	187	1.26	1.30	30
	197	369	241	149	1.95	1.72	>30
	198	360	233	145	1.99	1.48	>30
発	199	336	175	158	1.87	1.67	>30
	200	362	190	187	1.41	1.22	30
	201	341	160	153	1.26	1.80	>30
明	202	364	226	183	2.13	1.50	>30
	203	338	174	150	1.82	1.83	>30
	204	357	192	183	1.95	1.29	>30
_	205	381	240	186	1.21	1.26	30
合	206	398	264	213	1.18	0.87	24
	207	386	259	194	1.42	1.13	30
	208	406	268	218	1.13	0.81	24
金	209	341	218	166	2.08	1.51	>30
	210	370	252	193	1.24	1.00	24
	211	362	248	189	1.81	1.43	30
	212	386	263	201	1.18	0.98	27

第 表 の /

合金租	重類	ピッ	カース	硬さ	常温シャルピー衡学値	比摩 耗 量	客れ発生まで のサイクル数
	≇ ≫•	常温	90 °C	1000°C	(kg-m/cm²)	(×10 ⁻⁷)	(回)
	213	381	253	166	1.24	1.00	27
	214	354	218	183	1.38	1.42	> 30
本	215	351	221	189	1.26	1.40	30
	216	366	237	193	1.38	1.08	>30
発	217	354	210	182	1.31	1.00	30
明	218	356	207	188	1.23	1.02	24
_	219	368	211	189	1.21	0.96	24
合	220	384	242	190	1.28	0.98	27
金	221	394	271	203	1.19	0.94	24
	222	377	219	196	1.24	1.00	24
	223	407	286	218	1.17	0.80	21
	224	250	100	85	0.93	3.51	>30
	225	426	278	226	0.51	0.67	12
比	226	424	260	203	0.73	1.00	9
	227	328	153	127	2.03	1.04	>30
較	228	270	104	92	1.96	2.41	> 30
	229	398	223	197	0.76	1.02	6
合	230	290	133	128	0.40	2.55	>30
	231	254	114	92	0.64	2.67	>30
金	232	415	274	220	0.34	0.63	6
	233	421	279	223	0.30	0.69	3
	234	417	278	216	0.58	0.83	6
	235	426	285	236	0.49	0.92	3

第 8 表 の 2

- 4 4 -

産業上の利用可能性

この発明の合金は耐熱性耐摩耗性及び耐熱衝撃性を具備しているので継目無銀管製造用熱間傾斜圧延機(穿孔機も含む)のガイドシューとして使用した場合、きわめて長期に亘って安定な性能を発揮するなど工業上有用な特性を有する。さらにこの発明の合金は肉盛り用合金としても汎用性を有し工業上有用である。

Ĵ

- 45- 請求の 覧 囲

1 炭素: 0 . 5 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: 0 . 1 ~ 4 . 5 %、アルミニウム: 0 . 0 1 ~ 4 . 5 %、タングステン: 0 . 1 ~ 8 %、イックム: 0 . 1 ~ 4 . 5 %、タングステン: 0 . 1 ~ 8 %、イックステン: 0 . 1 ~ 5 %、タングステン: 1 ~ 8 %、イックステン: 0 . 1 ~ 5 %、コバルト: 1 ~ 8 %、イック。 2 %、コバルト: 1 ~ 8 %、を含有し、タンガン: 0 . 1 ~ 2 %、コバルト: 1 ~ 8 %、たは 2 %のうちに 0 . 1 ~ 2 %のうちの 1 ~ 2 %をまたは 2 種と、ホウ素、には 2 種と、ホウムをおおり。 0 1 ~ 4 には 2 種と、ホウムをおおいらなる群ないのうちの 1 種は 2 %のうちの 1 種は 2 様のうちの 1 種は 2 様のうち合有し、残りが鉄と不可とのもののでは、以上重量%)と有する耐熱耐摩耗強靭性合金。

2 炭素: 0 . 5 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: 0 . 0 1 ~ 4 . 5 %、アルミニウム: 0 . 0 1 ~ 4 . 5 %、タングステン: 0 . 1 ~ 8 %、モリプデン: 0 . 1 ~ 9 %を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靱性合金。

3 さらに窒素: 0 . 0 0 5 ~ 0 . 2 重量%を含有することを特徴とする請求の範囲第 2 項記載の耐熱耐摩耗強靭性合金。

4 さらにニオブ、タンタルそれぞれ〇. 〇1~1. 5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第2項記載の耐熱耐摩託強軽性合金。

- 5 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも 1 つを含有することを特徴 とする請求の範囲第 2 項記載の耐熱耐摩耗強靱性合金。
- 6 さらにニオブ、タンタルそれぞれ O . O 1 ~ 1 . 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする 請求の範囲第 3 項記載の耐熱耐摩耗強靱性合金。
- 7 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2 重量%の群より選ばれた少なくとも1つを含有することを特徴 とする請求の範囲第3項記載の耐熱耐摩耗強靱性合金。
- 8 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1 つを含有することを特徴とする請求の範囲第 4 項記載の耐熱耐摩耗強靱性合金。
- 9 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第6項記載の耐熱耐摩耗強靱性合金。
- 10 炭素: O . 5 5 ~ 1 . 9 % 、 クロム: 2 8 ~ 3 9 % 、 ニッケル: 2 5 ~ 4 9 % 、チタン: O . 0 1 ~ 4 . 5 % 、アルミニウム: O . 0 1 ~ 4 . 5 % 、タングステン: O . 1 ~ 8 % 、モリプデン: O . 1 ~ 9 % 、ケイ素: O . 1 ~ 3 % を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靱性合金。
- 11 さらに窒素: O . O O 5 ~ O . 2 重量%を含有することを 特徴とする請求の範囲第10項記載の耐熱耐摩耗強靱性合金。
- 12 さらにニオブ、タンタルそれぞれ〇. 〇1~1. 5重量%

٦,

- 47-

の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第10項記載の耐熱耐摩耗強靭性合金。

13 さらにホウ素、ジルコニウムそれぞれり、001~0.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第10項記載の耐熱耐摩耗強靱性合金。

14 さらにニオブ、タンタルそれぞれ〇. 〇1~1. 5重量%の群より選ばれた少なくとも1つを含有することを特徴とする 請求の範囲第11項記載の耐熱於摩耗強靱性合金。

15 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第11項記載の耐熱耐摩耗強靱性合金。

16 さらにホウ素、ジルコニウムそれぞれ O. O O 1 ~ O. 2 重量%の群より選ばれた少なくとも 1 つを含有することを特徴とする請求の範囲第 12項記載の耐熱耐摩耗強靱性合金。

17 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第14項記載の耐熱耐摩耗強靱性合金。

18 炭素: O . 5 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: O . 0 1 ~ 4 . 5 %、アルミニウム: O . 0 1~ 4 . 5 %、アルミニリフデン: O . 1~ 9 %、マンガン: O . 1~ 2 %を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靱性合金。

19 さらに窒素:0.005~0.2重量%を含有することを

特徴とする請求の範囲第18項記載の耐熱耐摩耗強靭性合金。

- 20 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする 請求の範囲第18項記載の耐熱耐摩耗強靭性合金。
- 21 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第18項記載の耐熱耐摩耗強靱性合金。
- 22 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第19項記載の耐熱耐摩耗強靱性合金。
- 23 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第19項記載の耐熱耐摩耗強靱性合金。
- 24 さらにホウ素、ジルコニウムそれぞれ〇・〇〇1~〇・2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第20項記載の耐熱配摩耗強靱性合金。
- 25 さらにホウ素、ジルコニウムそれぞれ O. O O 1 ~ O. 2 重量%の群より選ばれた少なくとも1 つを含有することを特徴とする請求の範囲第22項記載の耐熱配摩耗強靱性合金。
- 26 炭素: 0 . 5 5 ~ 1 . 9 % 、 クロム: 2 8 ~ 3 9 % 、 ニッケル: 2 5 ~ 4 9 % 、 チタン: 0 . 0 1 ~ 4 . 5 % 、 アルミニウム: 0 . 0 1 ~ 4 . 5 % 、 タングステン: 0 . 1 ~ 8 % 、 モリブデン: 0 . 1 ~ 9 % 、 コバルト: 1 ~ 8 % を 含有し、 残りが鉄と不可避不純物からなる組成(以上重量%)を有すること

- 4 9 -

を特徴とする耐熱耐摩耗強靭性合金。

- 27 さらに窒素: 0. 005~0. 2重量%を含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靱性合金。
- 28 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靭性合金。
- 29 さらにホウ素、ジルコニウムぞれぞれり、001~0.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靱性合金。
- 30 さらにニオブ、タンタルそれぞれ〇、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第27項記載の耐熱耐摩耗強靭性合金。
- 31 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第27項記載の耐熱耐摩耗強靱性合金。
- 32 さらにホウ素、ジルコニウムそれぞれり、001~0、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第28項記載の耐熱耐摩耗強靱性合金。
- 33 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第30項記載の耐熱耐摩耗強靭性合金。
- 34 炭素: 0.55~1.9%、クロム: 28~39%、ニックル: 25~49%、チタン: 0.01~4.5%、アルミニウム: 0.01~4.5%、タングステン: 0.1~8%、モ

リプデン:〇・1~9%、ケイ素:〇・1~3%、コバルト:1~8%を含有し、残りが鉄と不可避不純物からなる組成合金。
上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。
35 さらに窒素:〇・〇〇5~〇・2重量%を含有することを特徴とする請求の範囲第34項記載の耐熱耐摩耗強靭性合金。
36 さらにニオブ、タンタルそれぞれ〇・〇1~1・5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第34項記載の耐熱耐摩耗強靱性合金。

37 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第34項記載の耐熱耐摩耗強靱性合金。

38 さらにニオブ、タンタルそれぞれり、01~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第35項記載の耐熱耐摩耗強靱性合金。

39 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第35項記載の耐熱耐摩耗強靭性合金。

40 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第36項記載の耐熱耐摩耗強靱性合金。

41 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第38項記載の配熱耐摩耗強靭性合金。

42 炭素:0.55~1.9%、クロム:28~39%、ニッ

ケル:25~49%、チタン:0.01~4.5%、アルミニウム:0.01~4.5%、タングステン:0.1~8%、トリファン:0.1~9%、マンガン:0.1~2%、コパルト:1~8%を含有し、残りが鉄と不可避不純物からなる組成合金。 上重量%)を有することを特徴とする耐摩耗強靭性合金。 43 さらに窒素:0.005~0.2重量%を含有することを特徴とする請求の範囲第42項記載の耐熱耐摩耗強靭性合金。 の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第42項記載の耐熱耐摩耗強靭性合金。

45 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第42項記載の耐熱耐摩耗強靱性合金。

46 さらにニオブ、タンタルそれぞれ〇・〇1~1・5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第43項記載の耐熱耐摩耗強靭性合金。

47 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第43項記載の耐熱耐摩耗強靱性合金。

48 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第44項記載の耐熱耐摩耗強靱性合金。

49 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴

BUREAU

とする請求の範囲第46項記載の耐熱耐摩耗強靱性合金。

50 炭素: O . 55~1 . 9%、クロム: 28~39%、ニッケル: 25~49%、チタン: O . 01~4 . 5%、アルミニウム: O . 01~4 . 5%、タングステン: O . 1~8%、 リプデン: O . 1~9%、ケイ素: O . 1~3%、マンガン: O . 1~2%を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。

- 51 さらに窒素:〇. 〇〇5~〇. 2重量%を含有することを特徴とする請求の範囲第50項記載の耐熱付摩耗強靱性合金。
- 52 さらにニオブ、タンタルそれぞれり、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第50項記載の耐熱耐摩耗強靱性合金。
- 53 さらにホウ素、ジルコニウムそれぞれ〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第50項記載の耐熱耐摩耗強靱性合金。
- 54 さらにニオブ、タンタルそれぞれ O. O 1 ~ 1. 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする 請求の範囲第 51項記載の耐熱耐摩耗強靱性合金。
- 55 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第51項記載の耐熱耐摩耗強靱性合金。
- 56 さらにホウ素、ジルコニウムそれぞれ 0.001~0.2 重量%の群より選ばれた少なくとも1つを含有することを特徴

BUREAU

とする請求の範囲第52項記載の耐熱耐摩耗強靱性合金。

57 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2 重量%の群より選ばれた少なくとも1つを含有することを特徴 とする請求の範囲第54項記載の耐熱耐摩耗強靱性合金。

58 炭素: O . 55~1 . 9%、クロム: 28~39%、ニッケル: 25~49%、チタン: O . 01~4 . 5%、アルミニウム: O . 01~4 . 5%、タングステン: O . 1~8%、 リプデン: O . 1~9%、ケイ素: O . 1~3%、マンガン: O . 1~2%、コパルト: 1~8%を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。

- 59 さらに窒素: O. O O 5 ~ O. 2 重量%を含有することを特徴とする請求の範囲第58項記載の耐熱耐摩耗強靱性合金。
- 60 さらにニオブ、タンタルそれぞれ 〇. 〇 1 ~ 1. 5 重量% の群より選ばれた少なくとも 1 つを含有することを特徴とする請求の範囲第 58項記載の耐熱耐摩耗強靭性合金。
- 61 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第58項記載の耐熱耐摩耗強靱性合金。
- 62 さらにニオブ、タンタルそれぞれ〇、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第59項記載の耐熱耐摩耗強靭性合金。
- 63 さらにホウ素、ジルコニウムそれぞれ O. O O 1 ~ O. 2 重量%の群より選ばれた少なくとも 1 つを含有することを特徴

BUREAU

- 5 4 -

補正された請求の範囲 (国際事務局により1983年1月17日(17.01.83)受理)

2 炭素: 0 . 6 5 ~ 1 . 9 % 、クロム: 2 8 ~ 3 9 % 、ニッケル: 2 5 ~ 4 9 % 、チタン: 0 . 0 1 ~ 4 . 5 % 、アルミニウム: 0 . 0 1~ 4 . 5 % 、タングステン: 0 . 1~ 8 % 、モリプデン: 0 . 1~ 9 %を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靱性合金。

3 さらに窒素: O. O O 5 ~ O. 2 重量%を含有することを特徴とする請求の範囲第 2 項記載の耐熱耐摩耗強靱性合金。
4 さらにニオブ、タンタルそれぞれ O. O 1 ~ 1. 5 重量%
の群より選ばれた少なくとも 1 つを含有することを特徴とする
請求の範囲第 2 項記載の耐熱耐摩耗強靱性合金。

- 5 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第2項記載の耐熱耐摩耗強靱性合金。
- 6 さらにニオブ、タンタルそれぞれ O . O 1 ~ 1 . 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする 請求の範囲第 3 項記載の耐熱耐摩耗強靭性合金。
- 7 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴 とする請求の範囲第3項記載の耐熱耐摩耗強靱性合金。
- 8 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第4項記載の耐熱耐摩耗強靱性合金。
- 9 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第6項記載の耐熱耐摩耗強靱性合金。
- 10 炭素: O . 6 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: O . 0 1 ~ 4 . 5 %、アルミニウム: O . 0 1 ~ 4 . 5 %、タングステン: O . 1 ~ 8 %、モリブデン: O . 1 ~ 9 %、ケイ素: O . 1 ~ 3 %を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱配摩耗強靱性合金。
- 12 さらにニオブ、タンタルそれぞれ〇. 〇1~1. 5重量%

の群より選ばれた少なくとも1つを含有することを特徴とする 請求の範囲第10項記載の耐熱耐摩耗強靱性合金。

13 さらにホウ素、ジルコニウムそれぞれり、001~0.2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第10項記載の耐熱耐摩耗強靱性合金。

14 さらにニオブ、タンタルそれぞれり、01~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第11項記載の耐熱耐摩耗強靱性合金。

15 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2 重量%の群より選ばれた少なくとも1つを含有することを特徴 とする請求の範囲第11項記載の耐熱耐摩耗強靱性合金。

16 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第12項記載の耐熱耐摩耗強靱性合金。

17 さらにホウ素、ジルコニウムそれぞれ 〇. 〇〇1~〇. 2重量%の群より選ばれた少なくとも1つを含有することを特.徴とする請求の範囲第14項記載の耐熱耐摩耗強靱性合金。

18 炭素: O . 6 5 ~ 1 . 9 % 、クロム: 2 8 ~ 3 9 % 、ニッケル: 2 5 ~ 4 9 % 、チタン: O . 0 1 ~ 4 . 5 % 、アルミニウム: O . 0 1 ~ 4 . 5 % 、タングステン: O . 1 ~ 8 % 、モリアデン: O . 1 ~ 9 % 、マンガン: O . 1 ~ 2 % を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強緊性合金。

19 さらに窒素: 0. 005~0. 2重量%を含有することを

特徴とする請求の範囲第18項記載の耐熱耐摩耗強靱性合金。

- 20 さらにニオブ、タンタルそれぞれ 0 . 0 1 ~ 1 . 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする請求の範囲第 18項記載の耐熱耐摩耗強靱性合金。
- 21 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第18項記載の耐熱耐摩耗強靱性合金。
- 22 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第19項記載の耐熱耐摩耗強靱性合金。
- 23 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第19項記載の耐熱耐摩耗強靱性合金。
- 24 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第20項記載の耐熱耐摩耗強靱性合金。
- 25 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2 重量%の群より選ばれた少なくとも1つを含有することを特徴 とする請求の範囲第22項記載の耐熱耐摩耗強靱性合金。
- 26 炭素: 0 . 6 5 ~ 1 . 9 % 、 クロム: 2 8 ~ 3 9 % 、 ニッケル: 2 5 ~ 4 9 % 、 チタン: 0 . 0 1 ~ 4 . 5 % 、 アルミニウム: 0 . 0 1 ~ 4 . 5 % 、 アルミニリプテン: 0 . 1 ~ 9 % 、 コバルト: 1 ~ 8 % を含有し、 残りが鉄と不可避不純物からなる組成(以上重量%)を有すること

を特徴とする耐熱耐摩耗強靭性合金。

- 27 さらに窒素: 0 . 0 0 5 ~ 0 . 2 重量%を含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靭性合金。
- 28 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靱性合金。
- 29 さらにホウ素、ジルコニウムそれぞれ〇、〇〇1~〇、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第26項記載の耐熱耐摩耗強靱性合金。
- 30 さらにニオブ、タンタルそれぞれり、01~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第27項記載の耐熱耐摩耗強靱性合金。
- 31 さらにホウ素、ジルコニウムそれぞれり、001~0、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第27項記載の耐熱耐摩耗強靱性合金。
- 32 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第28項記載の耐熱耐摩耗強靱性合金。
- 33 さらにホウ素、ジルコニウムそれぞれり、001~0、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第30項記載の耐熱耐摩耗強靭性合金。
- 34 炭素: O. 65~1.9%、クロム: 28~39%、ニッケル: 25~49%、チタン: O. 01~4.5%、アルミニウム: O. 01~4.5%、タングステン: O. 1~8%、モ

BUREAU
OMPI
WIFO

リフデン: 0 . 1~9%、ケイ素: 0 . 1~3%、コバルト:
1~8%を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。
35 さらに窒素: 0 . 0 0 5~0 . 2 重量%を含有することを特徴とする請求の範囲第34項記載の耐熱耐摩耗強靱性合金。
特徴とする請求の範囲第34項記載の耐熱耐摩耗強靱性合金。
の群より選ばれた少なくとも1つを含有することを特徴とする

37 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第34項記載の耐熱耐摩耗強靱性合金。

請求の範囲第34項記載の耐熱耐摩耗強靱性合金。

38 さらにニオブ、タンタルそれぞれ〇.〇1~1.5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第35項記載の耐熱耐摩耗強靱性合金。

39 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の詳より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第35項記載の耐熱耐摩耗強靱性合金。

40 さらにホウ素、ジルコニウムそれぞれ 0.001~0.2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第36項記載の耐熱耐摩耗強靱性合金。

41 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第38項記載の耐熱耐摩耗強靱性合金。

42 炭素: 0.65~1.9%、クロム:28~39%、ニッ

45 さらにホウ素、ジルコニウムそれぞれり、001~0、2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第42項記載の耐熱配摩託強靱性合金。

46 さらにニオブ、タンタルそれぞれ〇、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする 請求の範囲第43項記載の耐熱耐摩耗強靱性合金。

47 さらにホウ素、ジルコニウムそれぞれ 0.001~0.2 重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第43項記載の耐熱耐摩託強靱性合金。

48 さらにホウ素、ジルコニウムそれぞれ 0.001~0.2 重量%の詳より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第44項記載の耐熱配摩託強靱性合金。

49 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の群より選ばれた少なくとも 1 つを含有することを特徴

BUREAU OMPI とする請求の範囲第46項記載の耐熱耐摩耗強靭性合金。

50 炭素: 0 . 6 5 ~ 1 . 9 % 、 クロム: 2 8 ~ 3 9 % 、 ニッケル: 2 5 ~ 4 9 % 、 チタン: 0 . 0 1 ~ 4 . 5 % 、 アルミニウム: 0 . 0 1 ~ 4 . 5 % 、 タングステン: 0 . 1 ~ 8 % 、 モリプデン: 0 . 1 ~ 9 % 、 ケイ素: 0 . 1 ~ 3 % 、マンガン: 0 . 1~ 2 % を含有し、 残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。

- 51 さらに窒素: O . O O 5 ~ O . 2 重量%を含有することを特徴とする請求の範囲第50項記載の耐熱耐摩耗強靱性合金。
- 52 さらにニオブ、タンタルそれぞれ〇、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第50項記載の耐熱耐摩耗強靱性合金。
- 53 さらにホウ素、ジルコニウムそれぞれ〇・〇〇1~〇・2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第50項記載の耐熱配摩耗強靱性合金。
- 54 さらにニオブ、タンタルそれぞれ O. O 1 ~ 1. 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする 請求の範囲第 5 1 項記載の耐熱耐摩耗強靱性合金。
- 55 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第51項記載の耐熱配摩耗強靱性合金。
- 56 さらにホウ素、ジルコニウムそれぞれ O . O O 1 ~ O . 2 重量%の詳より選ばれた少なくとも 1 つを含有することを特徴

BUREAU OMPI とする請求の範囲第52項記載の耐熱耐摩耗強靱性合金。

- 57 さらにホウ素、ジルコニウムそれぞれ〇.〇〇1~〇.2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第54項記載の耐熱耐摩耗強靱性合金。
- 58 炭素: O . 6 5 ~ 1 . 9 %、クロム: 2 8 ~ 3 9 %、ニッケル: 2 5 ~ 4 9 %、チタン: O . 0 1 ~ 4 . 5 %、アルミニウム: O . 0 1 ~ 4 . 5 %、タングステン: O . 1 ~ 8 %、 マンガン: O . 1 ~ 9 %、ケイ素: O . 1 ~ 3 %、マンガン: O . 1 ~ 2 %、コパルト: 1 ~ 8 %を含有し、残りが鉄と不可避不純物からなる組成(以上重量%)を有することを特徴とする耐熱耐摩耗強靭性合金。
- 59 さらに窒素: 0 . 0 0 5 ~ 0 . 2 重量%を含有することを特徴とする請求の範囲第 5 8 項記載の耐熱耐摩耗強靱性合金。
- 60 さらにニオブ、タンタルそれぞれ〇、〇1~1、5重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第58項記載の耐熱耐摩耗強靱性合金。
- 61 さらにホウ素、ジルコニウムそれぞれり、001~0・2重量%の群より選ばれた少なくとも1つを含有することを特徴とする請求の範囲第58項記載の耐熱耐摩耗強靱性合金。
- 62 さらにニオブ、タンタルそれぞれ 〇. 〇 1 ~ 1. 5 重量 % の群より選ばれた少なくとも 1 つを含有することを特徴とする 請求の範囲第 59項 記載の耐熱 耐摩耗強 靭性合金。
- 63 さらにホウ素、ジルコニウムそれぞれ 0.01~0.2 重量%の群より選ばれた少なくとも1つを含有することを特徴

BUREAU
OMPI
W.FO

第19条に基づく説明書

国際調査報告について

新しい請求の範囲(第1、2、10、18、26、34、42、50、58) を今迄の請求の範囲の代りに提出する。

新しい請求の範囲は炭素成分の含量をそれぞれり、65-1.

9%に補正したものである。今迄の請求の範囲は0. 55-1.

9%であった。

INTERNATIONAL SEARCH REPORT

PCT/JP82/00338

		International Application No.	PCT/JP82/00338
I. CLASSII	FICATION F SUBJECT MATTER (if several classification	symbols apply, indicate all) 3	
According to	International Patent Classification (IPC) or to both National (Classification and IPC	
Int.	C1. ³ C22C 38/50, 38/52, 3	8/54 	
II. FIELDS	SEARCHED Minimum Documer	ntation Searched *	
Classification		Classification Symbols	
I P			·
	Documentation Searched other to the Extent that such Documents a	than Minimum Documentation re Included in the Fields Searched	15
III. DOCU	MENTS CONSIDERED TO BE RELEVANT 14		
Category*	Citation of Document, 16 with indication, where appropria	ate, of the relevant passages 17	Relevant to Claim No. 18
х	<pre>JP, A, 54-128921 (Hitachi 5. October. 1979 (05.10.7)</pre>		1-65
	lower left column, lines		
x	JP, A, 57-23050 (Sumitomo Ltd.) 6. February. 1982 lower left column, lines	(06.02.82) Pag	l l
"A" do co "E" ea fili "L" do wit cii "O" do ot "P" do la IV. CER	Il categories of cited documents: 13 cument defining the general state of the art which is not native document but published on or after the international rigidate cument which may throw doubts on priority claim.(s) or sich is cited to establish the publication date of another action or other special reason (as specified) comment referring to an oral disclosure, use, exhibition or her means accument published prior to the international filing date but ter than the pnority date claimed TIFICATION THE Actual Completion of the International Search 1 TERMED 18, 1982 (18.11.82)	priority date and not in understand the principal document of particula be considered novel inventive step document of particula be considered to inventive occurrence of invention of particular be considered to invention of its combined with on combination being of document member of the Date of Mailing of this Intermination of	
	nal Searching Authority	Signature of Authorized Office	er ¹⁰
] 3	Japanese Patent Office		

1. 発明の属する分野の分類

国際特許分類 (IPC)

Int. 0 4 3 0 2 2 0 3 8 / 5 0, 3 8 / 5 2, 3 8 / 5 4

Ⅱ. 国際調査を行った分野

資 料 小 た 彔 査 ج 行

分 類 分類体系

IPC

38/40-38/60 C 2 2 C

最小限資料以外の資料で調査を行ったもの

III. 関連する技術に関する文献

引用文献の カテゴリー	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
x	JP. A, 54-128921(日立金属株式会社) 5.10月	1 - 6 5
	1979(05.10.79) 第1頁左下覆, 第4-18行	1 - 6 5
X	JP, A, 57-23050(住友金属工業株式会社) 6. 2月. 1982(06.02.82)第1頁左下欄, 第11-	1 00
	2 0 行	

☀引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「丁」国際出籍日又は優先日の後に公表された文献であって出額 と矛盾するものではなく、発明の原理又は理論の理解のた めに引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文 献との、当実者にとって自明である組合せによって進歩性 がないと考えられるもの
- 「&」同一パテントファミリーの文献

N.	D.C.	証

国際調査を完了した日

18.11.82

国際調査報告の発送日

29.11.82

国際調査機関

日本国特許庁(ISA/JP)

権限のある疑員

特許庁審查官 貞 男