Multi-Layer Perceptrons and Back-Propagation

Xiaolong Wang

Logistics

HW1 is going to be released tonight / tomorrow morning.

This Class

Multi-layer Neural Networks

Training Neural Networks with back-propagation

Multi-Layer Perceptrons

Traditional Computer Vision Pipeline

Neural Networks

Learn the features automatically instead of designing manually

Learn the features and the classifier end-to-end together

Using multiple layers

Multi-Layer Perceptrons

• Linear classifier: f(x) = Wx

- 2-Layer Neural Network: $f(x) = W_2 \operatorname{act}(W_1 x)$
 - 2 layers of weights W_1 and W_2
 - act is an activation function which leads to the nonlinearity
- $x \in \mathbb{R}^d$, $W_1 \in \mathbb{R}^{h_1 \times d}$, $W_2 \in \mathbb{R}^{c \times h_1}$
 - d is the dimension of input data, h_1 is the dimension of the hidden layer, c is the dimension of output class

Multi-Layer Perceptrons

- 2-Layer Neural Network: $f(x) = W_2 \operatorname{act}(W_1 x)$
- Why non-linearity between $W_1 \in \mathbb{R}^{h_1 \times d}$ and $W_2 \in \mathbb{R}^{c \times h_1}$?
 - Without activation function, we can have a simple weight $W=W_2W_1$ instead of two sets of weights
- 3-Layer Neural Network: $f(x) = W_3 \operatorname{act}(W_2 \operatorname{act}(W_1 x))$
 - $x \in \mathbb{R}^d$, $W_1 \in \mathbb{R}^{h_1 \times d}$, $W_2 \in \mathbb{R}^{h_2 \times h_1}$, $W_3 \in \mathbb{R}^{c \times h_2}$

Example: Training network for CIFAR-10

• 2-Layer Neural Network: $f(x) = W_2 \operatorname{act}(W_1 x)$

• $x \in \mathbb{R}^{3072}$, $W_1 \in \mathbb{R}^{128 \times 3072}$, $W_2 \in \mathbb{R}^{10 \times 128}$ (32 × 32 × 3 = 3072)

Example: Training network for CIFAR-10

• 2-Layer Neural Network: $f(x) = W_2 \operatorname{act}(W_1 x)$

Learn 128 shared templates instead of 10 separate ones

• Sigmoid function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh function:

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Most commonly used: ReLU function:

$$\max(0, x)$$

• Sigmoid function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh function:

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

ReLU function:

$$\max(0, x)$$

MLP = Fully Connected Network

Training MLP with Back-Propagation

The computation graph of MLP

Update the weights with SGD:

$$W_k \leftarrow W_k - \alpha \frac{\partial e}{\partial W_k}$$

• How to compute $\frac{\partial e}{\partial W_k}$ for each layer?

• 1-layer case

$$e = L(h_1, y) = L(W_1 x, y)$$

The chain rule:

$$\frac{\partial e}{\partial W_1} = \frac{\partial e}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

• 1-layer case

L2 loss example: $e = (y - h_1)^2$:

$$\frac{\partial e}{\partial h_1} = -2(y - h_1), \qquad \frac{\partial h_1}{\partial W_1} = x$$

Using the chain rule:

$$\frac{\partial e}{\partial W_1} = \frac{\partial e}{\partial h_1} \frac{\partial h_1}{\partial W_1} = -2(y - h_1)x$$

• 2-layer case

• Easy one:

$$\frac{\partial e}{\partial W_2} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial W_2}$$

• How to compute $\frac{\partial e}{\partial W_1}$?

$$\frac{\partial e}{\partial W_1} = \frac{\partial e}{\partial h_1} \frac{\partial h_1}{\partial W_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

• 2-layer case

L2 loss example: $e = (y - h_2)^2$:

$$\frac{\partial e}{\partial h_2} = -2(y - h_2), \qquad \frac{\partial h_2}{\partial h_1} = W_2, \qquad \frac{\partial h_1}{\partial W_1} = x$$

$$\frac{\partial e}{\partial W_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1} = -2(y - h_2)W_2 x$$

• 1-layer case

$$x \longrightarrow W_1 x \qquad h_1 \qquad h_2 \qquad L(h_2, y) \longrightarrow e$$

$$\frac{\partial h_1}{\partial W_1} \qquad \frac{\partial h_2}{\partial h_1} \qquad \frac{\partial h_2}{\partial h_1}$$

$$\frac{\partial e}{\partial W_1} = \frac{\partial e}{\partial h_1} \frac{\partial h_1}{\partial W_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

L2 loss example: $e = (y - h_2)^2$:

$$\frac{\partial e}{\partial h_2} = -2(y - h_2), \qquad \frac{\partial h_2}{\partial h_1} = \sigma'(h_1) = \sigma(h_1)(1 - \sigma(h_1)), \qquad \frac{\partial h_1}{\partial W_1} = x$$

Gradients of ReLU function

$$\frac{\partial e}{\partial h_{k-1}} = \frac{\partial e}{\partial h_k} \quad , \qquad \text{if } h_{k-1} > 0$$

$$\frac{\partial e}{\partial h_{k-1}} = 0, \qquad \text{if } h_{k-1} \le 0$$

Back-Propagation with MLP

For any layer:

Back-Propagation with 1-layer

An example for Back-Propagation

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$\frac{\partial h_k}{\partial h_{k-1}} = (1/x)' = -1/x^2$$

$$\frac{\partial e}{\partial h_{k-1}} = -\frac{1}{1.37^2} * 1 = -0.53$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$\frac{\partial e}{\partial h_{k-1}} = 1 * \frac{\partial e}{\partial h_k}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$\exp(-1) * (-0.53) = -0.20$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x, w) = \frac{1}{1 + \exp[-(w_0 x_0 + w_1 x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w_0x_0 + w_1x_1 + w_2)]}$$

Good practice

Derive the 2-layer network case yourself

Good through the example and compute the gradients yourself

Homework

Next Class

Convolutional Neural Networks