Supplementary Materials

Compressed Sensing for Characterization of Tinnitus

Alec Hoyland, Nelson Barnett, Benjamin W. Roop, Adam C. Lammert

This document contains a description of additional experiments to find a performant stimulus generation method and a discussion of sparsity in tinnitus signals. The code for all experiments is freely available at https://github.com/alec-hoyland/tinnitus-project and the data are available upon request.

I. STIMULUS GENERATION

In the context of this paper, a stimulus generation method is a process that generates a random waveform that is:

- 1) auditorally-distinguishable
- 2) statistically uncorrelated, and
- 3) similar to tinnitus percepts.

Additionally, compressed sensing requires that the matrix of stimuli should satisfy the restricted isometry property, which many random matrices do with high probability (*e.g.* Gaussian random matrices) [?], [?].

A. Auditorally-Distinguishable Stimuli

We used mel-frequency binning to ensure that our stimuli were auditorally-distinguishable. The mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from one to another (Fig. ??) [?].

The formula

$$m = 2595\log_1 0 \left(1 + \frac{f}{700} \right) \tag{1}$$

converts f Hz to m mels.

Furthermore, to reduce the system complexity by more than 80x, we implement tonotopic binning, where the frequency scale is binned along 100 equally mel-spaced bins (Fig. ??).

II. HYPERPARAMETER SWEEP

To determine a suitable stimulus generation method, we performed a hyperparameter sweep over hyperparameters of nine different stimulus generation methods. We used an *insilico* model of the experiment, matching against an American Tinnitus Association tinnitus example, as in the human experiment.

The methods are as follows:

- 1) *Bernoulli*: A binned method in which each tonotopic bin has a probability p of being set to 0 dB otherwise it is set to -20 dB.
- 2) Brimijoin: A binned method inspired by [?]. Each bin is assigned an amplitude value chosen from a uniform distribution of discrete values on the interval [-20,0]. We used 6 steps, which is consistent with the original paper.

Fig. 1. The relationship between Hz and mels is logarithmic.

- 3) Gaussian Noise No Bins: The amplitude of each frequency was determined by Gaussian noise with known mean and variance, which are hyperparameters μ and σ .
- 4) Gaussian Noise: A binned method where the bin amplitudes were determined by a Gaussian random variable with known mean and variance, e.g. $\mathcal{N}(\mu, \sigma)$.
- 5) Gaussian Prior: A binned method where the number of filled bins was set by round($\mathcal{N}(\mu, \sigma)$), and that many bins were filled randomly at 0 dB (unfilled bins were set to -20 dB).
- 6) Power Distribution: A binned method where the amplitude of each bin is drawn from a distribution matching the histogram of amplitudes of the American Tinnitus Association tinnitus examples from their website.
- 7) *Uniform Noise No Bins*: The amplitude associated with each frequency is determined by a uniform random variable on the interval [-20,0] dB.
- 8) *Uniform Noise*: The amplitude associated with each tonotopic bin is determined by a uniform random variable on the interval [-20,0] dB.
- 9) *Uniform Prior*: The number of filled bins is determined by drawing an integer from the discrete interval $[x_1, x_2] \in \mathbb{Z}^+$. Then, that many bins are set to 0 dB, and all other bins are set to -20 dB. x_1 and x_2 are hyperparameters.
- 9 methods and 8 hyperparameters were varied in the hyper-

Fig. 2. Example stimulus. (a) shows the waveform of the stimulus, (b) the frequency spectrum from which the waveform was generated, and (c) the 100-dimensional bin representation.

parameter sweep grid search. Methods were evaluated *in-silico* using the model:

$$y = \operatorname{sgn}(\Psi * \bar{x}) \tag{2}$$

where $y \in \mathbb{R}^n$ is the binary response vector, $\Psi \in \mathbb{R}^{n \times d}$ is the stimulus matrix, and $\bar{x} \in \mathbb{R}^d$ is the true target signal (the spectrum of the ATA tinnitus example).

Each stimulus generation method, with different hyperparameters, was evaluated for target signals: buzzing, electric, roaring, screeching, static, and tea kettle.

	Units for Magnetic Properties
Symbol	Quantity