# BIOSYNTHESIS OF MEMBRANE PHOSPHOLIPIDS

-Ms. Rupal Mishra

#### Phospholipids

- They are complex or conjugate lipids containing phosphoric acid, in addition to Fatty acid, Nitrogenous base & Alcohol.
- Many different phospholipid species can be constructed by combining various fatty acids and polar head groups with the glycerol or sphingosine backbone.
- In eukaryotic cells, phospholipid synthesis occurs primarily on the surfaces of the smooth endoplasmic reticulum and the mitochondrial inner membrane.

#### Phospholipids

- Some newly formed phospholipids remain at the site of synthesis, but most are destined for other cellular locations.
- They are transported in vesicles to their final destination.
- Two major classes of membrane phospholipids:
  - 1) Glycerophospholipids
  - 2) Sphingolipids



#### Assembly Of Phospholipids

- All the biosynthetic pathways follow a few basic patterns. In general, the assembly of phospholipids from simple precursors requires-
- 1) Synthesis of the backbone molecule (glycerol or sphingosine)
- 2) Attachment of fatty acid(s) to the backbone through an ester or amide linkage
- 3) Addition of a hydrophilic head group to the backbone through a phosphodiester linkage
- 4) Alteration or exchange of the head group to yield the final phospholipid product.

#### Gycerophospholipids

- Glycerophospholipids are the main class of phospholipids.
- They are the main lipid component of cell membranes, and are important in the cell's semipermeability.
- They also interact with triacylglycerols and cholesterol to increase their solubility in the blood.
- These abilities of glycerophospholipids are due to their amphipathic nature, with a polar head group and nonpolar tails.
- Each glycerophospholipid includes
  - 1) polar region: glycerol, carbonyl O of fatty acids, Pi, & the polar head group (X)
  - 2) non-polar hydrocarbon tails of fatty acids (R1, R2).

#### Gycerophospholipids









# Glycerophospholipids

| Name of X                         | Formula of X                                                                                |
|-----------------------------------|---------------------------------------------------------------------------------------------|
| 3 <b>—</b> 3                      | — н                                                                                         |
| Ethanolamine                      | — $CH_2$ — $CH_2$ — $NH_3$                                                                  |
| Choline                           | — $CH_2$ — $CH_2$ — $\mathring{N}(CH_3)_3$                                                  |
| Serine                            | $-CH_2$ $-CH$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$ $-N$                                       |
| Glycerol                          | — CH <sub>2</sub> —CH—CH <sub>2</sub> —OH                                                   |
| myo-Inositol 4,5-<br>bisphosphate | H O—P  OH H  OH HO  O—P  H H  H H                                                           |
| Phosphatidyl-<br>glycerol         | — CH <sub>2</sub> CHOH О  CH <sub>2</sub> —О—Р—О—СН <sub>2</sub> О О  CH—О—С—R <sup>1</sup> |
|                                   | Ethanolamine  Choline  Serine  Glycerol  myo-Inositol 4,5- bisphosphate                     |

- Cells Have Two Strategies for Attaching Phospholipid Head Groups
- The **first step** where two fatty acyl groups are esterified to C-1 and C-2 of L-glycerol 3-phosphate to form phosphatidic acid.
- Commonly but not invariably, the fatty acid at C-1 is saturated and that at C-2 is unsaturated.





- A second route to phosphatidic acid is the phosphorylation of a diacylglycerol by a specific kinase.
- The polar head group of glycerophospholipids is attached through a phosphodiester bond, in which each of two alcohol hydroxyls (one on the polar head group and one on C-3 of glycerol) forms an ester bond with phosphoric acid.



- In the biosynthetic process, one of the hydroxyls is first activated by attachment of a nucleotide, cytidine diphosphate (CDP).
- Cytidine monophosphate (CMP) is then displaced in a nucleophilic attack by the other hydroxyl.
- The CDP is attached either to the diacylglycerol, forming the activated phosphatidic acid CDP-diacylglycerol (strategy 1), or to the hydroxyl of the head group (strategy 2).
- Eukaryotic cells employ both strategies, whereas prokaryotes use only the first.



#### Sphingolipids

- Sphingolipids are the fourth large class of membrane lipids
- They have a polar head group and two non-polar tails.
- Sphingolipids are **composed of**:
  - one molecule of the long-chain amino alcohol (sphingosine)
  - one molecule of a long-chain fatty acid
  - a polar head group that is joined by a glycosidic linkage in some cases and by a phosphodiester in others.
- Ceramide is the structural parent of all sphingolipids.

## Sphingolipids







# Sphingolipids

| Name of sphingolipid                       | Name of X                        | Formula of X                                                                                    |
|--------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|
| Ceramide                                   | 0 <del></del> 3                  | — н                                                                                             |
| Sphingomyelin                              | Phosphocholine                   | $-\Pr_{\mathbf{O}^-}^{\mathbf{O}}\mathbf{CH_2}\mathbf{-CH_2}\mathbf{-\hat{N}}(\mathbf{CH_3})_3$ |
| Neutral glycolipids<br>Glucosylcerebroside | Glucose                          | H OH H H                                                                                        |
| Lactosylceramide<br>(a globoside)          | Di-, tri-, or<br>tetrasaccharide | Gle                                                                                             |
| Ganglioside GM2                            | Complex<br>oligosaccharide       | Neu5Ac Sal SalNAc GalNAc                                                                        |

# Biosynthesis of sphingolipids

- Condensation of palmitoyl-CoA and serine
- Condensation is followed by reduction with NADPH yields sphinganine.
- Sphinganine is then acylated to N-acylsphinganine.
- N-acylsphinganine is also known as ceramide.

#### Biosynthesis of sphingolipids

CoA-S

CoA-S

CoA-S

Serine

CoA-SH, CO<sub>2</sub>

O (CH<sub>2</sub>)<sub>14</sub>—CH<sub>3</sub>

$$H_3$$
N—C—H

 $CH_2$ —OH

NADPH

HO

NADPH

HO

CH<sub>2</sub>—OH

Fatty acyl—CoA

O HO—CH—(CH<sub>2</sub>)<sub>14</sub>—CH<sub>3</sub>
 $CH_2$ —OH

 $CH_2$ —OH

 $CH_2$ —OH

 $CH_2$ —OH

 $CH_2$ —OH

 $CH_2$ —OH

 $CH_2$ —OH

#