Análisis Matemático II

- (1) ¿Qué es una serie de potencias?
- (2) (a) ¿Cuál es el radio de convergencia de una serie de potencias? ¿Cómo se determina? (b) ¿Cuál es el intervalo de convergencia de una serie de potencias? ¿Cómo se calcula?
- (3) Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
 (d) $\sum_{n=1}^{\infty} \sqrt{n}x^n$ (g) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+1}$ (e) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ (h) $\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$ (f) $\sum_{n=1}^{\infty} n^n x^n$ (i) $\sum_{n=0}^{\infty} \frac{1+5^n}{n!} x^n$

(4) Suponga que $\sum_{n=0}^{\infty} c_n x^n$ es convergente cuando x=-4 y diverge cuando x=6. ¿Qué puede decir con respecto a la convergencia o divergencia de las series siguientes?

(a)
$$\sum_{n=0}^{\infty} c_n$$

(b) $\sum_{n=0}^{\infty} c_n 8^n$
(c) $\sum_{n=0}^{\infty} c_n (-3)^n$
(d) $\sum_{n=0}^{\infty} (-1)^n c_n 9^n$

(5) Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.

(a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{n^{1/4}}$$
 (d) $\sum_{n=1}^{\infty} \frac{(4x-1)^n}{n^n}$ (g) $\sum_{n=1}^{\infty} n! (2x-1)^n$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 2^{2n}} x^n$ (e) $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x+2}{2}\right)^n$ (h) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$ (c) $\sum_{n=1}^{\infty} \frac{e^n}{n^3} (4-x)^n$ (f) $\sum_{n=0}^{\infty} n^3 (2x-3)^n$

(6) Usar la expansión $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$, válida en el rango -1 < x < 1, para representar las siguientes funciones:

(a)
$$f(x) = \frac{1}{1+x}$$
, en potencias de x . (b) $f(x) = \frac{3}{1-x^4}$, en potencias de x .

1

(c)
$$f(x) = \frac{2}{3-x}$$
, en potencias de x . (e) $f(x) = \frac{1}{x^2}$, en potencias de $(x+2)$.

(d)
$$f(x) = \ln x$$
, en potencias de $(x-4)$. (f) $f(x) = x \ln(1-x)$, en potencias de x .

(7) Expresar las siguientes integrales como una serie de potencias en x.

(a)
$$\int \frac{1}{1+x^4} dx$$

(b)
$$\int \frac{x}{1+x^5} dx$$

(c)
$$\int \frac{x}{1-x^8} dx$$

(d)
$$\int \frac{\ln(1-x)}{x} dx$$

- (8) Si $f^{(n)}(0) = (n+1)!$ para $n=0,1,2,\ldots$, encuentre la serie de Maclaurin para f y su radio de convergencia.
- (9) Encuentre la serie de Taylor para f con centro en 4 si

$$f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$$

¿Cuál es el radio de convergencia de la serie de Taylor?

(10) Encontrar la representación en serie de Taylor, centrada en a=0, de las siguientes funciones. ¿Para qué valores de x vale la representación?

(a)
$$f(x) = (1-x)^2$$

(b) $f(x) = \ln(1+x)$
(c) $f(x) = \cos(x)$
(d) $f(x) = \sin(5x^2)$
(e) $f(x) = e^{5x}$
(f) $f(x) = xe^x$

(11) Determinar el orden de los polinomios de Taylor que deberían usarse para aproximar los siguientes valores con un error menor que $5 \cdot 10^{-5}$.

(a)
$$e^{0.1}$$
 (b) $\ln 1.4$

- (12) Estimar el error cometido al aproximar la función $f(x) = \sqrt[3]{x}$ por su polinomio de Taylor de orden 2, centrado en a = 8, para $7 \le x \le 9$.
- (13) Sea $f(x) = (1+x)^{1/2}$. Usando el polinomio de Taylor de orden 3 de f, centrado en a = 0, calcular el valor aproximado de $\sqrt{2}$ que da dicho polinomio, y estimar el error en esta aproximación.
- (14) ¿Para qué valores de x se puede aproximar sen x por $x \frac{x^3}{3!}$ con un error menor que 10^{-4} ?