

Implementing 3D Radiation into UCLA LES

Fabian Jakub, Carolin Klinger and Bernhard Mayer

Project M7

HD(CP)² M2 Workshop 21. November 2014

METEOROLOGIE

Solar and Thermal Heating Rates in the Atmosphere

Solar – 3D MYSTIC Simulation

• Warming at illuminated cloud side

Shadow at ground – reduced heat flux

Thermal – 3D MYSTIC Simulation

- Cloud side and cloud top cooling
- Warming at cloud bottom

3D vs 1D

Solar: Tenstream Solver

- additional streams to account for horizontal energy transport
- can be applied for solar and thermal radiation
- parallelization with PETSc

Tenstream Performance

Thermal: NCA - Neighbouring Column Approximation

- 5 pt stencil
- side effects from neighbouring columns
- heating rate estimated with one discrete angle

- can be applied to any existing 1d radiation scheme
- allows for parallelization
- computationally extremely efficient

NCA Performance

90

80

70

60

50

40

30

20

10

atmospheric Heating Rate [Kd

Solar Radiation

horiz. distance [km]

Thermal Radiation

Radiation with 3D Parameterizations

Current and future work

 Present: New 3D solvers are implemented in UCLA LES and are currently tested

• Future: Repeating HPS-simulations (e.g. 26.04) with newly implemented radiation schemes (together with Christopher Moseley)

Implementing 3D radiation schemes into ICON

METEOROLOGIE

<u>Leonhard Scheck & Bernhard Mayer</u> <u>O3 – WP3 – Forward Operator for Satellites</u>

Tenstream Performance

		$_{\rm I3RC}$	
	θ	${\bf TwostrIPA}$	3D Tenstr
Heating Rates in atmosphere	0	44 (-1.2)	16 (-0.8)
	20	60 (-3.0)	20 (-0.6)
	40	100 (-6.6)	23 (-0.6)
	60	171 (-12.2)	31 (-0.5)
	80	376 (-16.2)	64 (1.5)
Surface Heating	0	20 (-2.3)	11 (-1.6)
	20	42 (-1.6)	14 (-1.7)
	40	55 (-0.1)	13 (-1.5)
	60	62 (4.4)	17 (-1.1)
	80	65 (24.2)	44 (-0.1)

