A Model of Productivity Growth through Creative Destruction by Employee Spinouts

Nicolas Fernandez-Arias

Student Macro Workshop, March 29, 2018

Introduction

- A spinout of a firm is a competing firm founded by a previous employee of the original firm
 - ► E.g. Fairchild semiconductor spinouts form basis of SV detail
 - ▶ NOT a *spinoff*, which refers to a subsidiary of a company which is broken off from the balance sheet
- ► This presentation: Discuss a candidate model of long-run productivity growth which brings to the fore creative destruction by employee spinouts.
 - ► Adapt the Grossman-Helpman 1991 quality ladders framework to endogenize mass of potential entrants

Empirical motivation

- Technological innovation is major source of long-run growth in labor productivity
- Entry contributes substantially to tech innovation, e.g.:
 - Empirical decomposition: net job creation higher for young firms
 - Productivity growth due to entry: over 10-year horizon, 25% of labor productivity growth accounted by entry in manufacturing (Baily-Bartelsman-Haltiwanger 1996)
 - Decomposition based on model-based extrapolation from patent citation counts: 25% of aggregate productivity growth due to entrants (Akcigit & Kerr 2017)
- ► Employee spinouts comprise an important, influential subset of entrants
 - e.g. Fairchild semiconductor spawned Silicon Valley; earlier, Detroit automakers
 - ▶ In Brazil, employee spinouts account for between 15-30% of entrants; substantially larger, grow faster, fail less frequently (Muendler et al. 2012)

Theory: big picture

- Schumpeter 1942, Arrow 1962, etc.: if knowledge is only partially excludable, it will be underproduced in equilibrium because no private benefit to agent incurring costs of production
- Intellectual property laws (e.g. patents, copyright, etc.) render knowledge excludable
- ▶ Patent literature: optimal level of excludability? Dynamic efficiency vs. static monopoly distortion tradeoff (Nordhaus 1967, etc.)
- ► Employee learning and creative destruction by spinout formation implies similar tradeoff

Theoretical motivation

- Models of endogenous technological innovation and productivity growth assume knowledge immediately spills over to potential competing entrants
 - Grossman & Helpman 1991
 - Akcigit & Kerr 2017
 - Acemoglu & Cao 2015
- Models of spinouts are typicaly partial equilibrium and not focused on long-run growth or creative destruction
 - ► Klepper & Sleeper 2005 very partial equilibrium
 - Franco & Filson 2006 no creative destruction (Pareto efficient)
 - ► Franco & Mitchell 2008 -
 - Rauch 2015 partial equilibrium, no growth or innovation
 - ▶ Rossi-Hansberg & Chatterjee 2012 no creative destruction

Model overview

- ▶ Time *t* is continuous
- Agents:
 - Households
 - ► Intermediate goods firms
 - ► Final goods firm

Model overview

- Builds on standard quality ladders model (Grossman & Helpman 1991)
- Endogenous productivity growth through improved quality of intermediate goods
- Quality improvements result from labor allocated to R&D
- Creative destruction
- ▶ New ingredient: R&D workers learn on the job how to form competing spinouts

Model: Intermediate goods production

- Standard quality ladders model, step size $\lambda > 1$
- ▶ Continuum of intermediate goods, indexed by $j \in J = [0, 1]$
- Frontier quality of good j by q_j
- x_j is amount produced
- Each good produced with technology

$$x_j = \overline{q}I_j$$

where $\overline{q} = \int_0^1 q_j dj$ is the average quality level of the economy

- ► Each good *j* has monopolist, standard assumptions to guarantee no limit pricing
- ► Demand (final goods production) CES across goods *j* implies constant markup

Model: R&D race

At time t with average quality \overline{q}_t , incumbent in the R&D race for good j of quality q_j begins with monopoly on good j R&D

 \downarrow

Hires R&D labor; at rate $\nu(q_j/\overline{q}_t)^{-1}$ per unit of R&D labor hired, employees learn, adding to mass of potential entrants (scaling factor $(q_j/\overline{q}_t)^{-1}$ for BGP))

At some point, either an incumbent or an entrant firm wins the race, and obtains a monopoly on production and R&D on good j of quality λq_i

Model: R&D technology

- ▶ Consider an intermediate j with relative quality $\tilde{q} = q/\overline{q}$
- Scaling assumption for BGP: flow cost of q̃z units of labor yields z units of effective labor
- z, 2 units of R&D effort by incumbent and entrant respectively yields victory in the R&D race at Poisson rate

$$R(z) = \chi z \phi(z)$$
$$\hat{R}(\hat{z}; \overline{z}) = \hat{\chi} \hat{z} \eta(\overline{z})$$

where $\overline{z} = \int_0^m \hat{z}(m')dm'$ is total good-j R&D effort by entrants.

- ▶ Entrant m' can perform $\hat{z} \leq \xi$ units of R&D effort (equilibrium does not pin down; look for equilibria where $\hat{z}(m') \in \{0, \xi\}$)
- Aggregate rate of innovations:

$$\tau = \chi z \phi(z) + \hat{\chi} \overline{z} \eta(\overline{z})$$

Model: R&D technology - congestion

- ▶ The reduced-form functions $\phi(z)$, $\eta(z)$ capture diminishing returns and congestion in the R&D race, repsectively
- ▶ As such, assume $\phi(z)$, $\eta(z)$ decreasing, $z\phi(z)$, $z\eta(z)$ increasing
- ▶ For the incumbent, $\phi(z)$ captures individual decreasing returns in the R&D technology
- ▶ For the entrants, $\eta(z)$ captures aggregate decreasing returns due to the possibility that different entrants use the same approach
- Cross-congestion:
 - Incumbent and entrants do not congest each other (as in other models of innovation by entrants and incumbents, c.f. Acemoglu & Cao 2015, Akcigit & Kerr 2017)
 - Adds tractability and reflects empirical fact that spinouts often attempt different approaches
 - Can be relaxed

Intermediate goods firms optimization: incumbent static optimization

- Static optimization in product market: CES final goods production implies constant markup
- ▶ In equilibrium, flow profits $\pi(q) = \pi q$, with

$$\pi = L(1 - \beta)\tilde{\beta}$$
$$\tilde{\beta} = \beta^{\beta}(1 - \beta)^{1 - 2\beta}$$

Intermediate goods firms optimization: incumbent R&D decision

▶ HJB equation for incumbent:

Entrant innovation rate Flow profits
$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\widehat{\eta}(\overline{z}(q,m,t)))V(q,m,t) = \overbrace{\pi q}^{\text{Flow profits}} + \overbrace{V_t(q,m,t)}^{\text{Changing aggregate state}} \\ + \overbrace{\nu\overline{z}(q,m,t)V_m(q,m,t)}^{\text{Knowledge spillovers from entrant R&D}} + \underbrace{NPV \text{ of successful innovation}}^{\text{NPV of successful innovation}} \\ + \max_{z} \left\{ \underbrace{\chi z \phi(z)}_{\text{Arrival rate of R&D victory}} \underbrace{(V(\lambda q,0,t) - V(q,m,t))}^{\text{Changing aggregate state}} \right\}$$

Knowledge spillovers from own R&D

$$-\underbrace{\mathbf{z}(q/\overline{q}_t)}_{\text{R\&D labor}}\underbrace{\left(\mathbf{w}(q,m,t) - \overbrace{\nu(q/\overline{q}_t)^{-1}V_m(q,m,t)}\right)}_{\text{R\&D ware}}\Big\}$$

Intermediate goods firms optimization: entrant R&D decision

► HJB equation for entrant:

Entrant innovation rate Changing aggregate state
$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\eta(\overline{z}(q,m,t)))W(q,m,t) = W_t(q,m,t)$$

$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\eta(\overline{z}(q,m,t)))W(q,m,t)$$

$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\eta(\overline{z}(q,m,t)))W(q,m,t)$$

$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\eta(\overline{z}(q,m,t)))W(q,m,t)$$

$$(\rho + \widehat{\chi}\overline{z}(q,m,t))W_t(q,m,t)$$

Model: Households

▶ Unit mass continuum of risk-neutral households indexed by $i \in I = [0, 1]$, each with objective

$$U = \int_0^\infty \exp(-\rho t)c(t)dt$$

where c(t) is final goods consumption at t.

- ▶ Instantaneous borrowing and lending at interest rate r; $r = \rho$ in equilibrium
- ▶ Individual i supplies labor to final goods production $\ell_i^F(t)$, intermediate good production $\ell_i^I(t)$ and R&D $\ell_i^{RD}(t)$ such that

$$\ell_i^F(t) + \ell_i^I(t) + \ell_i^{RD}(t) = 1$$

▶ Aggregate labor market satisfies (where $L^k(t) = \int_I \ell_i^k(t) i di$ for $k \in \{F, I, RD\}$)

$$L^{F}(t) + L^{I}(t) + L^{RD}(t) = 1$$

Household optimization timeline

Worker *i* allocates labor to R&D, intermediate and final goods production

 \downarrow

While performing R&D for some good j of relative quality \tilde{q}_j , receives learning shock with Poisson intensity $\nu \tilde{q}_j^{-1}$ per flow unit of R&D labor supplied to $i\downarrow$

Provided it is still profitable, he opens entrant R&D lab performing R&D effort ξ and competing in developing the next step of good j

Household optimization

- Workers indifferent between occupations (Final goods production, intermediate goods production, R&D)
- ▶ In equilibrium, closed form for final goods wage $\overline{w}_t = \tilde{\beta} \overline{q}_t$ where \overline{w} is a function of parameters
- ▶ Indifference condition intermediate goods wage $w_t^I = \overline{w}_t$
- R&D wage at product j depends on state of the product, which is (q, m)
- For now, no employment / entrepreneurship choice; hope to include eventually
- Household block of the model boils down to equilibrium condition

$$w(q, m, t) + \nu W^{NC}(q, m, t) = \overline{w}_t$$

where $W_t^{NC}(q, m)$ is the value of the knowledge to open an entrant in a good j in state (q, m) at time t

Model: Final good production

Final good is produced using labor and a continuum of intermediate goods $j \in [0, 1]$ with production technology

$$X(t) = L(t)^{\beta} \left(\left(\int_0^1 q_j(t)^{\beta} x_j(t)^{1-\beta} dj \right)^{1/(1-\beta)} \right)^{1-\beta}$$
$$= L(t)^{\beta} \int_0^1 q_j(t)^{\beta} x_j(t)^{1-\beta} dj$$

where q_j is quality, x_j is quantity

- lacktriangle Restricts labor share to be related to markup $\mu=1/(1-eta)$
- Can relax this using Grossman et. al 2016
- CRS implies zero profits so no need to consider ownership

Aggregation: Kolmogorov Forward Equation

- ▶ Define $d\mu(q, m, t)$ as the distribution of intermediate goods j across states (q, m) at time t
- ► Kolmogorov Forward Equation (somewhat heuristic)

$$\mu_t(q,m,t) = \underbrace{\frac{d}{dq}(a^q(q,m,t)\mu(q,m,t))}_{\text{Innovation arrival: jump }(q,m)} \underbrace{\frac{d}{dm}(a^m(q,m,t)\mu(q,m,t))}_{\text{Drift in }m}$$

$$- \underbrace{\tau(q,m,t)\mu(q,m,t)}_{\text{Innovation arrival: jump }(q,m)\rightarrow(\lambda q,0)}$$

$$+ \underbrace{\mathbb{1}_{\{m=0\}}\lambda^{-1}\int \tau(\lambda^{-1}q,m',t)d\mu(\lambda^{-1}q,m',t)}_{\text{Innovation arrival: jump }(\lambda^{-1}q,m')\rightarrow(q,0)}$$

- ▶ $a^q(q, m, t), a^m(q, m, t)$ are drift in q, m direction, respectively, computed from z(q, m, t) and $\overline{z}(q, m, t)$
- Last term for m=0 arises because receiving inflows from $(\lambda^{-1}q,m')$ for all m'
- ▶ Factor λ^{-1} due to $d(\lambda q) = \lambda dq$

Recursive BGP Equilibrium

- For notation, below I sometimes omit dependence of functions on (q, m, t)
- ▶ Growth rate g of average quality \overline{q}_t , value functions V,W, individual R&D policies z and \hat{z} , aggregate R&D intensity τ , entrant R&D intensity \overline{z} , prices of intermediate goods, final and intermediate goods wage \overline{w} , and a distribution $d\mu$ such that:
 - Intermediate goods firms and final goods firms statically optimize production decisions
 - Value functions V, W solve HJB eqs, individual policy functions optimal given value functions
 - ▶ Distribution $\mu(q, m, t)$ satisfies KF equation (time dependent, haven't shown)
 - Final and intermediate goods wage satisfy $\overline{w} = \Gamma(\beta)$
 - ► R&D wages satisfy indifference condition $w(q, m, t) + \nu(q/\overline{q}_t)^{-1}W(q, m, t) = \overline{w}$
 - ▶ Labor resource constraint: $L^F + L^I + L^{RD} = 1$
 - ▶ Growth is constant at g, and consistent with R&D policy functions and distribution $\mu(q, m, t)$:

$$g = (\lambda - 1) \int \tau(q, m, t) (q/\overline{q}_t) d\mu(q, m, t)$$

Finding a BGP

- ▶ Recall that in equilibrium, $w(q, m, t) = \tilde{\beta} \cdot \overline{q}_t \nu W(q, m, t)$
- ▶ Taking this into account, in equilibrium the following holds:

Entrant innovation rate Flow profits
$$(\rho + \widehat{\chi}\overline{z}(q,m,t)\eta(\overline{z}(q,m,t)))V(q,m,t) = \overbrace{\pi q} + \overbrace{V_t(q,m,t)} + \overbrace{V_t(q,m,t)} + \overbrace{V_{\overline{z}}(q,m,t)V_m(q,m,t)} + \underbrace{V_{\overline{z}}(q,m,t)V_m(q,m,t)}_{\text{NPV of successful innovation}} + \max_{z} \left\{ \underbrace{\chi z \phi(z)}_{\text{Arrival rate of R&D victory}} \underbrace{(V(\lambda q,0,t) - V(q,m,t))}_{\text{NPV of successful innovation}} \right\}$$

Knowledge spillovers from own R&D

$$-\underbrace{\mathbf{z}(q/\overline{q}_t)}_{\mathsf{R\&D\ labor}}\underbrace{\left(\tilde{\beta}\cdot\overline{q}_t-\nu(q/\overline{q}_t)^{-1}W(q,m,t)}_{\mathsf{Equilibrium\ R\&D\ wage}}-\underbrace{\nu(q/\overline{q}_t)^{-1}V_m(q,m,t)}_{\mathsf{L}_{\mathsf{SM}}}\right)^{-1}$$

◆ロト ◆個ト ◆意ト ◆意ト 美国 める○

Finding a BGP: Guess and verify

- Guess and verify: abusing notation, value of **incumbent** is V(q, m, t) = qV(m), value of **entrant** is W(q, m, t) = qW(m)
- ▶ Given these guesses, makes sense to guess $\overline{z}(m,q,t) = \overline{z}(m) = \xi \min(m,M)$ for some M > 0
- ▶ Plugging guess into incumbent HJB yields: for m < M,

$$(\rho + \hat{\chi}\xi m\eta(\xi m))V(m) = \pi + \nu\xi mV'(m)$$

$$+ \max_{z} \left\{ \chi z\phi(z)(\lambda V(0) - V(m)) - \chi z(\overline{w} - \nu(W(m) + V'(m)) \right\}$$

where $\overline{w} = \tilde{\beta}$.

▶ Boundary condition: V'(m) = 0 for $m \ge M$

Finding a BGP: Guess and verify (cont.)

▶ Similarly, HJB equation for entrant becomes: for m < M,

$$(\rho + \hat{\chi}\xi m\eta(\xi m))W(m) = \nu\xi mW'(m)$$

$$+ \max_{z} \left\{ \chi z\eta(\xi m)(\lambda V(0) - W(m)) - \chi z(\overline{w} - \nu W(m)) \right\}$$

- ▶ Boundary condition: W(M) = 0
- Entrant optimality implies that M is determined by free-entry condition

$$\eta(M)\lambda V(0) = \overline{w}$$

Finding a BGP: Solving the HJBs numerically

- 1. Guess $W(\cdot)$
- 2. Solve for $V(\cdot)$, M given $W(\cdot)$:
 - 2.1 Guess V(0)
 - 2.2 Free entry condition and V(0) determine M
 - 2.3 HJB and boundary condition V'(M) = 0 determine V(M)
 - 2.4 Integrate backward starting from V(M), using $w(m) = \overline{w} \nu W(m)$, to compute V(0)
 - 2.5 If $\hat{V}(0) \neq V(0)$, update guess and return to Step 2.1
- 3. Using M computed from the previous step, solve for implied $W(\cdot)$
 - 3.1 Integrate entrant HJB backward starting from boundary condition W(M) = 0
 - 3.2 Denote resulting function by $\hat{W}(m)$
 - 3.3 Check $d(W, \hat{W})$ using some metric; if not converged, update guess and return to Step 1.

Finding a BGP: Stationary distribution $\mu(m)$

- No need to keep track of aggregate distribution across q
- Conjecture that a BGP exhibits a stationary distribution $d\mu(m,t) = d\mu(m)$
- For m>0, the distribution $d\mu(m)$ will have no mass points, therefore its density $\mu(m)$ is well defined and satisfies the Kolmogorov Forward Equation:

$$0 = -\frac{d}{dm}(a(m)\mu(m)) - \tau(m)\mu(m)$$

▶ For m > M, have a(m) and $\tau(m)$ constant, so the above becomes

$$\mu'(m) = -\frac{\tau(M)}{a(M)}\mu(m)$$

- ▶ Solution given by $\mu(m) = \mu(M)e^{-(\tau(M)/a(M))(m-M)}$ for $m \ge M$
- ▶ Probably solve the rest numerically

Finding a BGP: Algorithm

- The numerical algorithm I propose for computing a BGP is as follows:
 - 1. Guess L^F , the labor supply to final goods production
 - 2. This guess pins down equilibrium profit flow π and final goods / intermediate goods wage \overline{w}
 - Given these, solve HJBs numerically using iterative procedure described above
 - 4. Next, solve KF equation to compute stationary distribution $\mu(m)$
 - 5. Using $\mu(m)$ and policy functions from previous step, integrate to compute aggregate labor demand
 - Check that aggregate labor demand is equal to the unit labor supply. If not, adjust guess for L^F and return to Step 1.
 - 7. Finally, integrate innovation arrival rates to compute $g = (\lambda 1) \int \tau(m) d\mu(m)$

Efficiency

- Worker indifference condition implies firm compensated (in expectation) for profits of future spinouts
- ► Franco-Filson 2006 logic suggests this may imply Pareto efficiency
- ► However, this ignores creative destruction
- Spinouts may reduce value of incumbent-worker pair by destroying monopoly power
- Equilibrium wage discount does not fully compensate R&D firm for knowledge produced
- ► So model exhibits standard Schumpeterian inefficiency from R&D firms not fully appropriating the returns to their investments
- ► Also standard: potential for inefficiently high creative destruction due to entrants not internalizing their "business stealing" effect

Next steps

- Existence and uniqueness of BGP; maybe closed forms for certain functional forms?
- ▶ Implement proposed algorithm for solving model numerically
- Calibrate, test the model
 - Microeconometric facts about employee spinouts from e.g., Starr et. al "Screening spinouts"
 - ► Klepper-Sleeper 2005
- Potential extensions
 - Learning and entrepreneurship decisions
 - Different step sizes for incumbents and entrants
 - Cross-congestion
 - ► Labor contracts: non-competes

Spinouts of Fairchild Semiconductor

THE CREATION OF SILICON VALLEY: GROWTH OF THE LOCAL COMPUTER CHIP INDUSTRY

Source: Endeavor Insights