

Chapter 3: Lexical Analysis

Lexical Analysis

- The role of the lexical analyzer
 - To read the input characters
 - To produce a sequence of tokens

- Reasons to separate lexical analysis
 - Simpler design is the most import consideration
 - Compiler efficiency is improved
 - Compiler portability is enhanced

Lexical Analysis

Tokens, Patterns, and Lexemes

- Tokens
 - The terminal symbols in the grammar
- Patterns
 - Rule describing the set of strings that correspond to the same token
- Lexeme
 - A sequence of characters matched by a pattern

Token	Sample Lexemes	Informal Description of Pattern
const	const	const
if	if	if
relop	<, <=, =, <>, >, >=	< or <= or = or <> or > or >=
id	pi, count, D2	letter followed by letters and digits
num	0, 3.14, 6.02E23	any number constant

Lexical Analysis

編譯器設計

1

Operations on Languages

- ♦ Union of L and M, written as $L \cup M$ $L \cup M = \{s \mid s \in L \lor s \in M\}$
- ♦ Concatenation of L and M, written as LM $LM = \{st \mid s \in L \land t \in M\}$
- ◆ Kleene closure of L, written as L*
 - denotes "zero or more concatenations of L

$$L^* = \bigcup_{i=1}^{\infty} L^i$$

 \bullet Positive closure of L, written as L⁺

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i}$$

Lexical Analysis

編譯器設計

Operations on Languages

Example

Let $L = \{A, B, ..., Z, a, b, ..., z\}$ and $D = \{0, 1, 2, ..., 9\}$

- $\blacksquare L \cup D$
 - the set of letters and digits
- LD
 - the set of strings consists of a letter followed by a digit
- **1**4
 - the set of all four-letter strings
- L*
 - the set of all strings of letters, including €
- $L(L \cup D)^*$
 - the set of all strings of letters and digits beginning with a letter

Lexical Analysis

編譯器設計

5

Regular Expressions

- \bullet Each regular expression r denotes a language L(r)
- Rules to define the regular expressions over Σ
 - e is regular expression that denotes {e}
 - If a is a symbol in Σ, then a is a regular expression that denote {a}
 - Suppose *r* and *s* are regular expressions, then
 - (r)|(s) is a regular expression denoting $L(r) \cup L(s)$
 - (r)(s) is a regular expression denoting L(r)L(s)
 - $(r)^*$ is a regular expression denoting $(L(r))^*$
 - $(r)^+$ is a regular expression denoting $(L(r))^+$
 - If two regular expressions r and s denote the same language, we say r and s are equivalent and write

$$r = s$$

Lexical Analysis

編譯器設計

Regular Expressions

- Example: let Σ= {a, b}
 - The regular expression *a* | *b* denotes {a, b}
 - (a|b)(a|b) denotes {aa, ab, ba, bb}
 - i.e. the set of all 2-letter strings of a's and b's
 - Another form is aa | ab | ba | bb
 - a* denotes the set of all strings of a's
 - i.e. {€, a, aa, aaa, ...}
 - $(a \mid b)^*$ denotes the set of all strings of a's and b's
 - Another form is (a*b*)*
 - a | a*b denotes the set containing the string a and all strings consisting of zero or more a's and followed by b's

Lexical Analysis

編譯器設計

7

Precedence

- Unnecessary parentheses can be avoided in regular expressions if
 - The unary operator * has the highest precedence and is left associative
 - Concatenation has the second highest precedence and is left associative
 - | has the lowest precedence and is left associate
 - Example
 - $(a)|((b)*(c)) \equiv a | b*c$

Lexical Analysis

編譯器設計

Algebraic Properties of Regular Expressions

Some algebraic laws that hold for regular expressions r, s, and t

Axiom	Description
r s = s r	is commutative
r (s t) = (r s) t	is associative
(rs)t = r(st)	concatenation is associative
r(s t) = rs rt (s t)r = sr tr	concatenation distributes over
€r = r r∈ = r	€ is the identity element of concatenation
r* = (r ⊖)*	relationship between * and €
r** = r*	* is idempotent

Lexical Analysis

編譯器設計

9

Regular Definitions

- For notational convenience, we may wish to give names to regular expressions
 - To define regular expressions using these names as if they were symbols
 - If Σ is an alphabet, then a regular definition is a sequence of definitions of the form

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

...

$$d_{\rm n} \rightarrow r_{\rm n}$$

where each r_i is a regular expression over the symbols in $\Sigma \cup \{r_1, r_2, ..., r_{i-1}\}$

Lexical Analysis

編譯器設計

Regular Definitions

- Notational Shorthands
 - +: one or more instance
 - ?: zero or one instance
 - [abc]: character classes, i.e. ≡ a|b|c
- Example

```
digit \rightarrow 0 \mid 1 \mid ... \mid 9
letter \rightarrow [A-Za-z]
id \rightarrow letter (letter \mid digit)*
digits \rightarrow digit+
optional\_fraction \rightarrow (. digits)?
optional\_exp \rightarrow (E(+ \mid -)? digits)?
num \rightarrow digits optional\_fraction optional\_exp
```

Lexical Analysis

編譯器設計

11

Recognition of Tokens

- State transition diagrams
 - depicts the actions that take place when a lexical analyzer is called by the parser to get the next token
 - States
 - Positions in a transition diagram
 - drawn as circles
 - States are connected by arrows, call edges
 - Start state
 - the initial state of the transition diagram

Lexical Analysis

編譯器設計

Recognition of Tokens

Implementing a Transition Diagram

- A transition diagram can be converted into a program
 - Each state gets a segment of code
 - If there are edges leaving a state, then its code reads a character and selects an edge to follow
 - If there is an edge labeled by the character read, then control is transferred
 - If there is no such edge, then fail

Lexical Analysis

14

Implementing a Transition Diagram

- Several tools have built for constructing lexical analyzer from regular expressions
 - e.g. lex

Finite Automata

- We compile a regular expression into a lexical analyzer by constructing a generalized transition diagram called a finite automaton
 - $M = \{S, \Sigma, \delta, s_0, F\}$
 - S: a finite, nonempty set of states
 - Σ : an alphabet
 - δ : mapping $S \times \Sigma \rightarrow S$
 - s₀: start state
 - F: the set of accepting (or final) states
 - A finite automaton is called a deterministic finite automaton (DFA) if
 - No state has an ∈-transition, and
 - For each state s and input symbol a, there is at most one edge labeled a leaving s

Lexical Analysis

Simulating a DFA

- Input
 - An input string x terminated by an eof
 - A DFA $D = \{S, \Sigma, \delta, s_0, F\}$
- Output
 - "yes" if D accepts x; "no" otherwise
- Method

$$s = s_0$$

c = nextchar();

while c ≠ eof do

s = moveto(s, c);

c = nextchar();

end

if s is in F then return "yes"

else return "no"

Lexical Analysis

編譯器設計

17

Nondeterministic Finite Automata (NFA)

- \bullet $M = \{S, \Sigma, \delta, s_0, F\}$
 - S: a finite, nonempty set of states
 - \bullet Σ : an *alphabet*
 - δ : mapping $S \times \Sigma \rightarrow 2^S$
 - *s*₀: start state
 - F: the set of accepting (or final) states

$$\delta$$
 (0 , a) = {0, 1}
 δ (0 , b) = {0}
 δ (1, b) = {2}
 δ (2, b) = {3}

Lexical Analysis

編譯器設計

Simulating an NFA

- Input
 - An input string x terminated by an eof
 - A NFA N
- Output
 - "yes" if N accepts x; "no" otherwise
- Method

```
S = \varepsilon-closure(s<sub>0</sub>)

c = \text{nextchar};

while c \neq \text{eof do}

S = \varepsilon-closure(moveto(S, c));

c = \text{nextchar}();

end

if S \cap F \neq \psi then return "yes"

else return "no"
```

Lexical Analysis

編譯器設計

19

Operations on NFA States

- ◆ e-closure(s)
 - ullet Set of NFA states reachable from state s on ε -transitions only
- ◆ e-closure(T)

```
push all states in T onto stack initialize \epsilon-closure(T) to T while stack is not empty do pop t, the top element, off the stack for each state u with an edge from t to u labeled \epsilon do
```

if u is not in ε -closure(T) then

add u to e-closure(T)

push u onto stack

end if

end

end

Lexical Analysis

編譯器設計

Operations on NFA States

- moveto(T, a)
 - Set of NFA states to which there is a transition on input symbol a from some NFA state s in T
- Example: NFA for (a|b)*abb
 - ϵ -closure(0) = {0, 1, 2, 4, 7} \equiv A
 - $moveto(A, a) = \epsilon closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\} \equiv B$

Lexical Analysis

編譯器設計

21

Constructing a DFA from an NFA

- Algorithm (Subset construction)
 - Input. An NFA N
 - Output. A DFA D accepting the same language
 - Method. Constructs a transition table Dtran for D

initially, ε -closure(s_0) is the only state in *Dstates* and unmarked while there is an unmarked state T in *Dstates* do

mark T

for each input symbol a do

 $U = \epsilon$ -closure(moveto(T, a))

if *U* is not in *Dstates* then

add U to as an unmarked state to Dstates

Dtran[T, a] = U

end

end

Lexical Analysis

編譯器設計

Constructing a DFA from an NFA

- Example: NFA for (a|b)*abb
 - ϵ -*closure*(0) = {0, 1, 2, 4, 7} $\equiv A$
 - $moveto(A, a) = \epsilon closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\} \equiv B$
 - $moveto(A, b) = \epsilon closure(\{5\}) = \{1, 2, 4, 5, 6, 7\} \equiv C$
 - $moveto(B, a) = e-closure(\{3, 8\}) = B$
 - $moveto(B, b) = \epsilon closure(\{5, 9\}) = \{1, 2, 4, 5, 6, 7, 9\} \equiv D$
 - $moveto(C, a) = \varepsilon$ - $closure(\{3, 8\}) = B$
 - $moveto(C, b) = \epsilon closure(\{5\}) = C$
 - $moveto(D, a) = \varepsilon$ - $closure(\{3, 8\}) = B$
 - $moveto(D, b) = \epsilon closure(\{5, 10\}) = \{1, 2, 4, 5, 6, 7, 10\} \equiv E$
 - $moveto(E, a) = \varepsilon$ - $closure(\{3, 8\}) = B$
 - $moveto(E, b) = \varepsilon$ - $closure(\{5\}) = C$

Lexical Analysis

編譯器設計

23

Constructing a DFA from an NFA

Example: NFA for (a|b)*abb

State	Input Symbol	
State	а	b
Α	В	С
В	В	D
С	В	С
D	В	Е
E	В	С

Lexical Analysis

編譯器設計

Constructing NFA from Regular Expression

- Algorithm (Thompson's construction)
 - Input. A regular expression r over Σ
 - Output. An NFA N accepting L(r)
 - Method.
 - For e, construct the NFA

- This NFA recognizes {e}
- For a in Σ, construct the NFA

■ This NFA recognizes {a}

Lexical Analysis

編譯器設計

25

Constructing NFA from Regular Expression

- Suppose N(s) and N(t) are NFA's for regular expressions s and t
 - For the regular expression $s \mid t$
 - \blacksquare This NFA recognizes $L(s) \cup L(t)$

- For the regular expression *st*
 - This NFA recognizes L(s)L(t)

- For the regular expression s*
 - This NFA recognizes L(s)*

Lexical Analysis

編譯器設計

Constructing NFA from Regular Expression

- ♦ Example: r = (a|b)*abb
 - Parse r into its constituent subexpressions

Constructing NFA from Regular Expression

- The construction produces an NFA N(r) with the following properties
 - N(r) has at most twice as many as states as the number of symbols and operators in r
 - Each step creates at most two new states
 - N(r) has exactly one start state and one accepting state
 - The accepting state has no outgoing transitions
 - Each state of N(r) has either one outgoing transition on a symbol in Σ or at most two outgoing ε -transitions

Lexical Analysis

編譯器設計

Design of a Lexical Analyzer Generator

Assuming a specification of a lexical analyzer

 p_1 { $action_1$ } p_2 { $action_2$ }

 $p_n = \{ action_n \}$

A finite automaton is a natural model

Design of a Lexical Analyzer Generator

- Pattern matching based on NFA's
 - To construct the transition table of a NFA N for the pattern $p_1 \mid p_2 \mid ... \mid p_n$

Lexical Analysis

編譯器設計

Minimizing the Number of States

- An important theoretical result
 - Every regular set is recognized by a minimum-state DFA that is unique up to state names
- String w distinguishes state s from state t if
 - By starting with the DFA M in state s and feeding it input w, we end up in an accepting state, but
 - By starting in state t and feeding it input w, we end up in a nonaccepting state, or vice versa
 - e.g. © distinguishes any accepting state from any nonaccepting state
- DFA states can be minimized by finding all groups of states that can be distinguished by some input string
 - Each group of states that cannot be distinguished by some input staring is then merged into single state

Lexical Analysis 編譯器設計 31

Minimizing the Number of States

- Algorithm
 - Construct an initial partition $\Pi = \{F, S F\}$
 - Construct a new partition:

for each group $G \in \Pi$ do partition G into subgroups such that two states s and $t \in G$ are in the same subgroup iff for all input symbol a, s and t have transitions on a to states in the same group in Π replace G in Π_{new} by the set of subgroups formed end

- If $\Pi_{\text{new}} \neq \Pi$, then let $\Pi = \Pi_{\text{new}}$ Repeat.
- Choose one state in each group as the representative
 - Update the transitions

Lexical Analysis 編譯器設計 32

Minimizing the Number of States

Example

- Initially, Π = {(ABCD), (E)}
 - (ABCD) \Rightarrow (ABC)(D)
- $\Pi = \{(ABC), (D), (E)\}$ • (ABC) \Rightarrow (AC)(B)
- $\Pi = \{(AC), (B), (D), (E)\}$

State	Input Symbol	
State	а	b
A (0)	В	А
B (1)	В	D
D (2)	В	E
E (3)	В	А

Lexical Analysis

編譯器設計

33

Building Regular Grammar from NFA

- Input. An NFA N
- ◆ Output. A regular grammar r. N accepts L(r)
- Method
 - For each state i of N, create a nonterminal symbol A,
 - If state i goes to state i on symbol a, introduce the production $A_i \rightarrow aA_i$
 - If state *i* goes to state *j* on symbol ∈, introduce the production $A_i \rightarrow A_i$
 - If state i is a final state, introduce the production $A_i \rightarrow \epsilon$
 - If state i is the start state, make A_i be the start symbol

Lexical Analysis

編譯器設計

Building Regular Grammar from NFA

- Example
 - Nonterminal symbol:

$$A_0$$
, A_1 , A_2 , A_3

Productions

$$A_0 \rightarrow aA_0$$

$$A_0 \rightarrow bA_0$$

$$A_0 \rightarrow aA_1$$

$$A_1 \rightarrow bA_2$$

$$A_2 \rightarrow bA_3$$

$$A_3 \rightarrow \epsilon$$

■ Start symbol: *A*₀

Lexical Analysis

編譯器設計

35

Building NFA from Regular Grammar

- ♦ Input. A regular grammar G = (V_N, V_T, P, S)
- Output. An NFA $N = (K, V_T, \delta, s_0, F)$ that accepts L(G)
- Method
 - $K = V_N \cup \{A\}$
 - If $S \to e \in P$, $F = \{S, A\}$

Otherwise, $F = \{A\}$

■ If $B \rightarrow a \in P$ then

$$A \in \delta(B, a)$$

• If $B \rightarrow aC \in P$ then

$$C \in \delta(B, a)$$

■ For every $a \in V_T$

$$\delta(A, a) = \emptyset$$

Lexical Analysis

編譯器設計