Floating Point Representation

COMP370
Introduction to Computer Architecture

Binary Fractions

• Each position is twice the value of the position to the right.

2 ³	2 ²	21	2 ⁰	2-1	2-2	2-3
8	4	2	1	1/2	1/4	1/8
1	1	1	0	0	1	0

Adding the powers of 2 gives 8+4+2+0.25 = 14.25

What is 111.11 in decimal?

- 1. 7.75
- 2. 31
- 3. 7.375
- 4. 15.25

What is 8.5 in binary?

- 1. 11111111.11111
- 2. 1000.01
- 3. 0.100011
- 4. 1000.10

Range of Values

- Unsigned integers: 0 to 2ⁿ-1
 - For byte, from 0 to 255
 - For int, from 0 to 4.2x109
- 2's complement: $-(2^{n-1})$ to $+(2^{n-1}-1)$
 - For byte, from -128 to 127
 - For short, from -32768 to 32767
 - For int, from -2147483648 to 2147483647
 - For long, from $-9.2x10^{18}$ to $9.2x10^{18}$

Scientific Notation Exponent 241,506,800 = 0.2415068 x 10⁹ Mantissa

Shifting Exponents

• 241,506,800 can be

2.415068 x 108

24.15068 x 10⁷

241.5068 x 10⁶

2415.068 x 10⁵

24150.68 x 10⁴

241506.8 x 10³

etc.

Binary Scientific Notation

• A binary number, such as 10110011, can be expressed as:

 1.0110011×2^{7}

• Note the exponent is a power of two not ten.

Shifting Binary Exponents

 A binary number can be expressed in "scientific" notation is several ways like decimal numbers.

0.110010×2^5	$0.78125 \times 32 = 25$
1.10010 x 2 ⁴	1.5625 x 16 = 25
11.0010 x 2 ³	3.125 x 8 = 25
110.010 x 2 ²	6.25 x 4 = 25
1100.10 x 2 ¹	12.5 x 2 = 25
11001.0 x 2 ⁰	25 x 1 = 25

110.010 is equivalent to

- 1. 11001.0 x 2⁻²
- 2. 0.110010 x 2³
- 3. 6.25
- 4. All of the above
- 5. None of the above

Standard Format

- Most computers (including Intel Pentiums) follow the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985
- Before the standard different computers used different formats for floating point numbers.
- The standard defines the format, accuracy and action taken when errors are detected.

Floating-point Sizes

- ANS/IEEE Standard 754-1985
 - -Single-precision (32 bits)
 - Double-precision (64 bits)
 - Extended-precision (80 bits)

Single-Precision Floating-point Numbers

•float variables in C++ or Java

Signed Magnitude

- For positive numbers, the sign bit is zero
- For negative numbers, the sign bit is one and everything else is the same

Single Precision Float Range

- A little more than 7 decimal digits accuracy
- From -3.4 x 10³⁸ to 3.4 x 10³⁸
- Positive numbers can be as small as 1.18x10⁻³⁸ before going to zero.

Double Precision Floating Point

- double variables in C++ or Java
- approximately 16 decimal digits of accuracy
- From -1.798 x 10³⁰⁸ to 1.798 x 10³⁰⁸

Extended Precision Floating Point

- almost 20 decimal digits of accuracy
- 3.37×10^{-4932} to 1.18×10^{4932}
- Not directly supported in C++ or Java
- Often used internally for calculations which are then rounded to desired precision

Exponent Bias

- The exponent represents the power of 2.
- The single precision exponent is biased by adding 127 to the actual exponent
- This avoids an extra sign bit for the exponent
- The exponent range is -126 to 128

Exponent value	Decimal exponent	Binary exponent
2 ⁰	127	01111111
2 ⁵	132	10000100
2 -5	122	01111010

Normalization

• Floating point numbers are adjusted so the mantissa or fractional part has a single "1" bit before the radix point.

Decimal	Binary	Normalized
5.75	101.11 x 2 ⁰	1.0111 x 2 ²
0.125	0.001×2^{0}	1.0 x 2 ⁻³
32.0	100000.0 x 2 ⁰	1.0 x 2 ⁵

Saving a Bit

- The fractional part or mantissa is always adjusted so the leftmost bit is a one.
- Since this bit is **always** a one, it is not actually stored in the floating point number.
- The mantissa is stored without the leading one bit although the one bit is assumed in calculating the value of the number.

Creating a Floating Point Number

- 1. Write the number in binary with a fractional part as necessary.
- 2. Adjust the exponent so the radix point is to the right of the first one bit.
- 3. The mantissa is the binary number without the leading one bit.
- 4. The exponent field is created by adding 127 to the binary exponent.
- 5. The sign is the same as the number's sign.

Decimal to Floating Point Example

- Convert 4.5 to single precision floating point
- Decimal 4.5 is 100.1 in binary
- Adjust radix to get 1.001 x 2²
- The exponent field is 127+2 =129 = 10000001
- The floating point number in binary is

S	Exponent	Mantissa
0	10000001	001000000000000000000000

Convert 15.375 to Floating Point

Convert 15.375 to Floating Point

- Decimal 15.375 is 1111.011 in binary
- Adjust the exponent to 1.111011 x 2³
- Exponent field is $3 + 127 = 130_{10} = 10000010_2$

S	Exponent	Mantissa
0	10000010	1110110000000000000000000

Floating Point to Decimal Example

S	Exponent	Mantissa
1	10000011	010010000000000000000000

- What is the decimal value of this number?
- Exponent 10000011 = 131 127 = 4
- $-1.01001 \times 2^4 = -10100.1$
- -10100.1 is -20.5 in decimal

What is the decimal value of

S	Exponent	Mantissa
0	10000001	101000000000000000000000

- 1. 4.5
- 2. 3.25
- 3. 6.5
- 4. 13.0

Special Floating Point Values

- **Zero** is represented as all zero bits.
- Not a Number (NaN) is a special value that indicates a floating point error, such as taking the square root of a negative number.
- Infinity (INF) both positive and negative.

Special Value Representation

Value	Sign	Exponent	Mantissa
Zero	0	0	0
+INF +∞	0	11111111	0
-INF -∞	1	11111111	0
NaN	0 or 1	0	Not zero

Overflow and Underflow

- When you calculate a number that is too big to fit into the floating point format, the result is infinity.
- Calculating a number that is too small (a positive number smaller than 1.18x10⁻³⁸ for single precision) produces zero.
- Dividing by zero produces infinity with the proper sign.

Calculating with Infinity

- (+INF) + (+7) = (+INF)
- $(+INF) \times (-2) = (-INF)$
- (+INF) × 0 = NaN—meaningless result