System Identification Methods of the State of State of State of System Identification Methods of the System Identification of the Identificati

Dr. Gene Morelli
Steve Derry
NASA Langley Research Center

CCDEV Aerodynamics Technical Interchange Meeting
November 17, 2011

Outline

- Overview of Aircraft System Identification
- Multi-Axis Optimized Maneuver Design
- Demonstration Using SIDPAC Software
- Applications
- Concluding Remarks

Aircraft System Identification

System Identification is the process of building mathematical models for physical systems based on imperfect observations or measurements

If the physical system is an aircraft, then this activity is called aircraft system identification

Problems In Dynamics

System, S

Simulation: Given S and u, find z

Control: Given S and z, find u

Identification: Given u and z, find S

Aircraft System Identification

$$m\dot{V} + \omega \times mV = F_{Aero} + F_{Thrust} + F_{Gravity}$$
 $(ma = \sum F)$

$$I\dot{\omega} + \omega \times I\omega = M_{Aero} + M_{Thrust}$$
 $(I\dot{\omega} = \sum M)$

Typical aircraft system identification problem:

From measurements of the inputs and outputs, determine mathematical model forms for F_{Aero} and M_{Aero} , then estimate the unknown parameters in those models

Unknown model parameters

Example:
$$M = M_o + M_{\alpha}\alpha + M_q q + M_{\delta}\delta$$

Aircraft System Identification

Note that information embodied in a model is either assumed or derived from measurements

Flight Test Technique

Orthogonal Optimized Multi-Input Design

$$u = \sum_{k \in \{1,2,\ldots,M\}} A_k \sin\left(\frac{2\pi k t}{T} + \phi_k\right)$$

Phases
$$\phi_k$$
 optimized for minimum $RPF(u) = \frac{\lfloor max(u) - min(u) \rfloor}{2\sqrt{2} rms(u)}$

Multi-Sine Phase Optimization

SIDPAC Demonstration

HL-20 Approach

Hyper-X Launch

X-43A (Hyper-X)

Hyper-X Mission Profile

Model Fit to the Data

Pitching Moment Parameters

 $C_{m_{\delta_e}}$ (per rad)

Mach

Rolling Moment Parameters

Mach

Prediction Capability

Applications

Flight Research, Envelope Expansion

Validate and Improve Predictions

Flight Simulation

Accident Investigation

Evaluate New or Modified Aircraft

Flight Control, Flying Qualities

Applications

Twin Otter

X-43A (Hyper-X)

Sub-scale Transport Aircraft

ARES I-X Launch Vehicle

X-29A

1903 Wright Flyer Replica

Tu-144LL Supersonic Transport

Global Hawk

19

Lessons Learned

- System Identification expertise is needed right from the start of a flight test project:
 - Instrumentation specification, sampling rate, filtering, necessary info
 - Experiment design to achieve project goals with given resources
- Injecting optimized orthogonal multi-sine excitation signals at the actuators produces excellent data for modeling, regardless of pilot input or feedback control
- Iteration should be built into the flight test planning
- A diverse tool set is essential
- System Identification takes time and money but not nearly as much as not doing it

Questions?

Backup

Drag Parameters

 C_{D_lpha} (per rad)

 $C_{D_{\delta_e}}$ (per rad)

Lift Parameters

Pitching Moment Parameters

Side Force Parameters

Rolling Moment Parameters

Yawing Moment Parameters

 $C_{n_{eta}}$ (per rad

 $C_{n}_{\delta_{a}}$ (per rad)

Yawing Moment Parameters

Mach

Input Design Features

- Multiple input orthogonality in both time domain and frequency domain simultaneously
- Wide frequency range inputs for robustness to unknown vehicle dynamics
- Small amplitude perturbation inputs
- Time efficient multi-axis, multi-control excitation
- Produces excellent data information content
- Easy to design robust and general
- Does not move the aircraft off nominal condition

How Does It Work?

Pitching moment equation: $M = I_y \dot{q} + (I_x - I_z) pr + I_{xz} (p^2 - r^2)$

Equation-Error

$$M = I_y \dot{q} + (I_x - I_z) pr + I_{xz} (p^2 - r^2)$$

Postulated model:

$$J = \frac{1}{2} \left(M - \hat{M} \right)^T \left(M - \hat{M} \right)$$

Solve with one-shot linear algebra

Output-Error

$$M = I_{y}\dot{q} + (I_{x} - I_{z})pr + I_{xz}(p^{2} - r^{2}) \qquad \dot{q} = \frac{1}{I_{y}} \left[M - (I_{x} - I_{z})pr - I_{xz}(p^{2} - r^{2}) \right]$$

Unknowns
$$\hat{M} = M_o + M_\alpha \alpha + M_q q + M_\delta \delta$$

Integrate
$$\longrightarrow \hat{q}$$

$$J = \frac{1}{2} (q - \hat{q})^T (q - \hat{q})$$

Solve with iterative nonlinear optimization

What Are the Results?

Pitching moment model: $\hat{M} = M_o + M_\alpha \alpha + M_q q + M_\delta \delta$

 $M_o =$ pitching moment bias

 M_{α} = static stability

 M_q = dynamic stability or damping

 M_{δ} = pitch control authority

Results include estimated numerical values for all unknown parameters, as well as statistical uncertainties (error bounds).

Modeling results characterize the stability and control of the aircraft

Equation-Error in the Frequency Domain

$$y = \begin{bmatrix} \xi_1 & \xi_2 & \dots & \xi_n \end{bmatrix} \theta \quad \Rightarrow \quad \tilde{y}(\omega_i) = \begin{bmatrix} \tilde{\xi}_1(\omega_i) & \tilde{\xi}_2(\omega_i) & \dots & \tilde{\xi}_n(\omega_i) \end{bmatrix} \theta$$

$$\xi_i$$
, $i = 1, 2, ..., n$ are regressors, functions of the state variables x and control variables u

Least Squares Formulation with complex numbers

$$\tilde{z} = \tilde{X}\theta + \tilde{v}$$

where

$$ilde{z} = egin{bmatrix} ilde{z}\left(\omega_{1}
ight) \\ drawnowsized \\ ilde{z}\left(\omega_{m}
ight) \end{bmatrix} \qquad ilde{X} = egin{bmatrix} ilde{\xi}_{1}\left(\omega_{1}
ight) & ilde{\xi}_{2}\left(\omega_{1}
ight) & ... & ilde{\xi}_{n}\left(\omega_{1}
ight) \\ drawnowsized \\ ilde{\xi}_{1}\left(\omega_{m}
ight) & ilde{\xi}_{2}\left(\omega_{m}
ight) & ... & ilde{\xi}_{n}\left(\omega_{m}
ight) \end{bmatrix}$$

Equation-Error in the Frequency Domain

Non-iterative solution:

Accurate error measures:

$$\hat{ heta} = \left\lceil Re\left(ilde{X}^{\dagger} ilde{X}
ight)
ight
ceil^{-1} Re\left(ilde{X}^{\dagger} ilde{z}
ight)$$

$$Cov(\hat{\theta}) = \frac{\tilde{v}^{\dagger}\tilde{v}}{(m-n)} \left[Re(\tilde{X}^{\dagger}\tilde{X}) \right]^{-1}$$

$$\tilde{\mathbf{v}} = \tilde{\mathbf{z}} - \tilde{X}\hat{\boldsymbol{\theta}}$$

m = no. of frequencies n = no. of estimated parameters

Notes

- Automatic modal weighting, accurate parameter estimates
- Can be used for dimensional derivatives or non-dimensional derivatives
- Error measures do not need correction for colored residuals

It's Not Easy

- 1) Aircraft are multiple-input, multiple-output, nonlinear dynamical systems with complicated, nonlinear, time-varying aerodynamics
- 2) For an aircraft in flight, applied forces and moments must be inferred from measured responses
- 3) Large amounts of data must be processed
- 4) Aircraft measurements are noisy and sensors have practical limitations
- 5) Physical quantities cannot be varied independently for an aircraft in flight

System IDentification Programs for AirCraft (SIDPAC)

- SIDPAC is a collection of over 350 programs that implement a wide variety of state-of-the-art methods for aircraft system identification
- SIDPAC programs are implemented as MATLAB® M-files, and have been thoroughly tested and successfully applied to real data
- SIDPAC is used at more than 80 organization worldwide to solve aircraft system identification problems
- SIDPAC documentation is the AIAA textbook *Aircraft System Identification Theory and Practice*, by V. Klein and E.A. Morelli

What Does SIDPAC Do?

SIDPAC tools help an analyst to:

- Design experiments
- Define instrumentation requirements
- Filter, smooth, transform, and visualize the data
- Identify math models that mimic the real system
- Check model accuracy and predictive capability
- Organize, report, and use the results

References For Further Study

- P1) Iliff, K.W. (1989) "Parameter Estimation for Flight Vehicles," *Journal of Guidance, Control, and Dynamics*, Vol. 12, No. 5, pp. 609-622.
- P2) Klein, V. (1989) "Estimation of Aircraft Aerodynamic Parameters from Flight Data," *Prog. Aerospace Sci.,* Vol. 26, No. 1, pp. 1-77.
- P3) Hamel, P.G. and Jategaonkar, R. (1996) "Evolution of Flight Vehicle System Identification," *Journal of Aircraft*, Vol. 33, No. 1, pp. 9-28.
- P4) Morelli, E.A. and Klein, V. (2005) "Application of System Identification to Aircraft at NASA Langley Research Center," *Journal of Aircraft*, Vol. 42, No. 1, pp. 12-25.
- R1) Maine, R.E. and Iliff, K.W. (1986) "Application of Parameter Estimation to Aircraft Stability and Control, The Output-Error Approach," NASA RP-1168.
- R2) Maine, R.E. and Iliff, K.W. (1985) "Identification of Dynamic Systems, Theory and Formulation," NASA RP-1138.
- B1) Klein, V. and Morelli, E.A. (2006) *Aircraft System Identification Theory and Practice*, AIAA Education Series, Reston, VA.
- B2) Tischler, M.B. and Remple, R.K. (2006) *Aircraft and Rotorcraft System Identification*, AIAA Education Series, Reston, VA.
- B3) Jategaonkar, R.V. (2006) Flight Vehicle System Identification: A Time Domain Methodology, AIAA, Reston, VA.

Textbook

Feedback and Questions

Dr. Gene Morelli

MS 308 NASA Langley Research Center Hampton, VA 23681

(757) 864-4078

e.a.morelli@nasa.gov