数据结构试卷

December 30, 2023

Dilettante258

wang1m@outlook.com

ABSTRACT

该 PDF 用 <u>Tpyst</u> □写作。上面的日期只是我写下这些内容的日期,不清楚这张试卷年份,用来记录我的学习过程同时方便后来人。

一、填空题(每小题 2 分,共 20 分)

1. 数据的四种基本逻辑结构

散列表的基本概念。

1. 数据的四种基本逻辑结构有树形结构、线性结构、 结构和集合结构。

2. 散列表中,H 为散列函数,H(42) = H(12),则 42,12 对于散列函数 H 而言称为 。

Solution: 相关概念:

- 散列函数(h):元素的关键字(key)与其存储位置(loc)之间的关系函数
- Loc(key):表示关键字值为 key 的元素的存储地址。
- 散列表(hash,哈希表):用散列函数建立起来的表。
- 同义词:对同一散列函数,具有相同 h 值的关键字。
- 冲突: key1≠key2, 但 h(key1)=h(key2)的现象。
- 3. 堆栈中 Top 指向顶元素,判断堆栈为空的条件是。

```
Solution:
BOOL IsEmpty(Stack *S)
{
   return S->top==-1;
}
```

4. 利用 AOE 网进行工程安排,完成工程所的最短时间是指从开始结点到完成结点的_____ 路 径的长度,这条路径被称为关键路径。

Solution: "长度指各边的权值之和。补充:关键活动 - 关键路径上的活动,对整个工程的最短完成时间有影响,如果它不能按期完成就会影响整个工程。"

5. 若对某算法求得关键步骤执行次数 $f(n) = 20 + 30n \log_2 n + 40$,则其渐近时间复杂度为 O(_____)。

Solution: "算法的渐近时间复杂度:忽略算法时间复杂度的低次幂和最高次幂的系数,使 用大 O 记号表示。"

6. 设森林下对应的二叉树为 B, 它有 n 个结点, B 的根为 r, r 的右子树结点个数为 m, 则 F 中 第一棵树的结点个数是。

Solution: "一棵二叉树转化成的森林中所具有的树的数目,等于二叉树从根结点开始沿右 链到第一个没有右孩子的结点所经过的结点数目。"

7. 5×8 的二维数组按行优先存,第一个数组元素 a[0][0]的存储地址是 100,每个元素占有 2 个 存储单元,则数组元素 a[3][6]的存储地址是 。

Solution:

行优先顺序的地址计算若对于二维数组 a[m][n],已知每个数组元素占 k 个存储单元,第-个数组元素 a[0][0]的存储地址是 loc(a[0][0]),则数组元素 a[i][j]的存储地址 loc(a[i][j])为

$$loc(a[i][j]) = loc(a[0][0]) + (i * n + j) * k(0 \le i < m; 0 \le j < n)$$

列优先顺序的地址计算

$$loc(a[i][j]) = loc(a[0][0]) + (j*m+i)*k(0 \leq i < m; 0 \leq j < n)$$

8. 线性表采用对半搜索必须满足两个条件:(1)线性表必须是 ;(2)存储结构必须采用顺序存 储结构。

Solution: 对半搜索是二分搜索中的一种。二分搜索基本思想是**有序表**(a0,a1,a2,...,an-1)中 搜索。

9. 在g n 个顶点和 g 条边的有向图的邻接矩阵中,零元素的个数为 。

Solution: n 个顶点的有向图的邻接矩阵是一个 n 阶方阵,有 n^2 个元素。由于每一条边在邻 接矩阵中将出现一次,例如 $a \rightarrow b$.是一条边,因此,有 e 条边的无向图的邻接矩阵,有 e 个非零元,零元素的个数则为 $n^2 - e$ 。

10. 某二叉树的后序遍历序列为:CDAEF,此二叉树的根结点是。

Solution:

根节点是 F。后序遍历中,根节点在最后输出。

后序遍历(LRV)

IF 二叉树为空,则什么也不做;

后序遍历 (左子树);

后序遍历 (右子树);

访问根结点。

二、选择题(每小题 2 分,共 20 分)

1. 微博用户 A 关注了 B;关注了 A, C 也关注 B,则表示这种关注关系最合适的数据结构应该

A.树

B.散列表

C.列

D.二叉树

2.	以下关键序列	-	O 10 50 05 00 01 7	D 10 05 50 01 00 70	
	A.12,72,31,25,99,58				
	Solution: 无将序列	画成完全二叉树形式,	判断最小堆条件是包	å成立。双亲≤子女	
3.	后缀表达式: 8 4 A.10	4 + / 3 3 * + B.12	的值为。 C.7	D.以上答案都不正研	角
		栈;		"的运算;并将结果进栈;	
4.	对稀疏矩阵采用三元 A.使表达变得简单 C.去掉矩阵中的多余	E组方式存储的最主要 ○元素	目的是。 B.使矩阵元素的 D.压缩存储空间		
	Solution: 由于稀疏 非零元素。	矩阵中只有少量非零充	元素,为了节省存储空	间,对稀疏矩阵可以只存储	诸
5.	- 冒泡排序在好的情况	尼下的时间复杂度是	o		

A.O(n)

olution:										
		最佳	时间复杂度 平均	最差	空间复杂度最差	稳定性	就地性	自适应性	基于比较	
	选择排序	O(n ²)	O(n ²)	O(n ²)	O(1)	非稳定	原地	非自适应	比较	
遍历排序 O(n ²)	冒泡排序	O(n)	O(n ²)	O(n ²)	O(1)	稳定	原地	自适应	比较	
0.00±0.0000€	插入排序	O(n)	O(n ²)	O(n ²)	O(1)	稳定	原地	自适应	比较	
	快速排序	O(n log n)	O(n log n)	O(n ²)	O(log n)	非稳定	原地	自适应	比较	
分治排序 O(n log n)	归并排序	O(n log n)	O(n log n)	O(n log n)	O(n)	稳定	非原地	非自适应	比较	
	堆排序	O(n log n)	O(n log n)	O(n log n)	O(1)	非稳定	原地	非自适应	比较	
	桶排序	O(n + k)	O(n + k)	O(n ²)	O(n + k)	稳定	非原地	自适应	非比较	
线性排序 O(n)	计数排序	O(n + m)	O(n + m)	O(n + m)	O(n + m)	稳定	非原地	非自适应	非比较	
	基数排序	O(n k)	O(n k)	O(n k)	O(n + b)	稳定	非原地	非自适应	非比较	
	差	中	优	n 为数据量大小 桶排序中,k 为桶数量 计数排序中,m 为数据范围 基数排序中,k 为最大位数,数据为 b 进制				www.hello-algo.com		

 $\mathrm{B.}O(\log_2 n)$

6. 已知一棵完全二叉树的第 6 层(设根为第 1 层) 有 8 个叶结点,则该完全二叉树的结点格式最多是_____。
A.52 B.111 C.119 D.127

Solution:

高度为 \mathbf{h} 的二叉树恰好有 $2^{h}-1$ 个结点时称为满二叉树。由此, 高度为 \mathbf{h} 的二叉树上至多有 $2^{h}-1$ 个结点。

一棵二叉树中,只有最下面两层结点的度可以小于 2 ,并且最下一层的叶结点集中在靠左的若干位置上。这样的二叉树称为完全二叉树。 (除最后两层外,其他层结点都是满度)二叉树的第 $i(i\geqslant 1)$ 层上,至多有 2^{i-1} 个结点。完全二叉树结点个数 $2^{h-1}\leqslant n\leqslant 2^h-1$,具有 n 个结点的完全二叉树的高度为 $\lceil \log_2(n+1) \rceil$ 。

第六层里有8个节点没有子树(也就是作为了叶结点),sum=63+48=111.

设这棵树最大层次为 7,前六层为满二叉树第 6 层(设根为第 1 层) · · 第六层里有 8 个叶结点(也就是没有子树) · · 第七层不满, $(2^6-1)+(2^{6-1}-8)\times 2=63+48=111$

7. 对半搜索有序表(10,30,36,41,52,54,66,73,84,97),在表中搜索关键字 34,则它依次与表中____ 比较大小,最终搜索失败。

A.52.41.30

B.54.84.66

C.52,30,36

D.54,73,66

Solution:

二分搜索有序表 $(a_0,a_1,a_2,...,a_{n-1})$

- 如果有序表长>0, 取表中某个元素 am 与 x 进行比较
- 如果如果 am.key =x.key,搜索成功,返回
- 如果 a_m.key > x.key, 二分搜索有序表(a₀,a₁,a₂,...,a_{(low+high)/2-1})
- 如果 a_m .key < x.key ,二分搜索有序表 $(a_{(low+high)/2+1},a_{(low+high)/2+2},...,a_{n-1})$
- 8. 二叉搜索树中,关键字最大的结点。

A.左子树一定为空

B.右子树一定为空

C.左右子树均为空

D.左右子树均不为空

Solution:

- 二叉搜索树:一棵二叉树,可以为空;如果不为空,满足以下性质:
- 1. 非空左子树的所有键值小于其根结点的键值。
- 2. 非空右子树的所有键值大于其根结点的键值。
- 3. 左、右子树都是二叉搜索树。
- 9. 如果线性表最常用的操作是读取第 i 个元素的值,则采用 存储方式最节省时间。

A.顺序表

B.带表头结点的单链表

C.不带表头结点的单链表

D.双向链表

Solution: 线性表中最常用的操作是取第 i 个元素,所以,应选择随机存取结构即顺序表,同时在顺序表中查找第 i 个元素的前趋也很方便。

单链表和单循环链表既不能实现随机存取,查找第i个元素的前趋也不方便,双链表虽然能快速查找第i个元素的前趋,但不能实现随机存取。

10. 设有向图 G 的边集为<0,1>,<1,2>,<4,1>,<4,5>,<5,3>,<2,3>,则下面不属于该图的拓扑排序的是。

A.041253

B.402153

C.045123

D.401523

Solution:

一个拓扑序列是 AOV 网中顶点的线性序列,使得对图中任意二个顶点 i 和 j ,若在图中,i 领先于 j ,则在线性序列中 i 是 j 的前驱结点。 检测拓扑排序的方法 对图中每一条边<i,j> ,在序列中 i 排在 j 之前。B 选项不符合<i,2>。

三、简答题(每小题 8 分, 共 48 分)

1. 如图 1 所示顶点表示小区, 边表示连接小区间的光纤, 边上的权表示铺设纤需花费的造价。现在需要让小区间光纤通信畅通且总造价最省, 请画出方案构建过程, 并给出相应的总造价。

图 1

Solution:

构造网的一棵最小生成树,即:在 e 条带权的边中选取 n-1 条边(不构成回路),使"权值之和" 为最小。

普利姆算法 算法思想:

- 1. 取图中任意一个顶点 v 作为生成树的根, 之后往生成树上添加新的顶点 w。
- 2. 在添加的顶点 w 和已经在生成树上的顶点 v 之间必定存在一条边,并且该边的权值在所有连通顶点 v 和 w 之间的边中取值最小。
- 3. 之后继续往生成树上添加顶点,直至生成树上含有 n-1 条边为止。

克鲁斯卡尔算法 算法思想:

考虑问题的出发点: 为使生成树上边的权值之和达到最小,则应使生成树中每一条边的权值尽可能地小。

- 1. 先构造一个只含n个顶点的子图SG,然后<u>从权值最小的边开始</u>,若它的添加不使SG中产生 <u>回路</u>,则在SG上加上这条边
- 2. 如此重复,直至加上 n-1 条边为止。

	普利姆算法	克鲁斯卡尔算法
时间复杂度	$O(n^2)$	$O(e \log e)$
适应范围	稠密图	稀疏图

第1步	第2步	第3步
10 O	10 O	10 13 1
o o	0 0 0	3 6 9
4 3	(4) (3) ^{/12}	4 3/12
第4步	第5步	第6步
10 13 1	19 0 13 1	10 13 1
o o o	0 0 0	S S S
(4) (3) ¹²	4 3/12	(4) -22 (3) ¹²

第1步 10 <mark>,</mark> ⑥ ①	第2步	如3步 10 ⁰ 13 ①
9 0 0 9 0	5 6 2 4 3	5 6 2 4 3
第4步	第5步	第6步
10 14 16 5 6 2	10 14 16 3 6 2	10 14 16 3 6 2
4 3	④ ③ ¹²	4 22 3"2

两种过程。最小代价生成树的代价为87。每步1分,代价计算正确得2分。

2. 对长度为 13 的有序表(假定下标从 0 开始标记)进行对半搜索,请画出对应的二叉判定树。

3. 请将图 2 所示的森林转成二叉树

4、已知散列表如下所示,长度 M=11,依次输入关键字 17,18,37,74,试以双散列法解决冲突,散列函数为 $h_1(\text{key})=\text{key}\%11$, $h_2(\text{key})=\text{key}\%9+1$,请填写散列表。

下标	0	1	2	3	4	5	6	7	8	9	10
元素						5	6		41		

Solution:

下标	0	1	2	3	4	5	6	7	8	9	10
元素	74				17	5	6		41		37

双散列法: 具备两个散列函数 h1 和 h2, 探查序列为:

 $h_1(key), (h_1(key)+h_2(key))\%M, (h_1(key)+2h_2(key))\%M, ...$

例如, $h_1(\text{key})=37\%11=4$, $h_2(\text{key})=37\%9+1=2$, $(h_1(\text{key})+h_2(\text{key}))\%11=(4+2)\%11=6$ (重复!), $(h_1(\text{key})+2\ h_2(\text{key}))\%11=(4+2^*2)\%11=8$ (重复!), $(h_1(\text{key})+3\ h_2(\text{key}))\%11=(4+3^*2)\%11=10$ 。

不打了, 打累了。

四、算法设计题(每小题 6 分, 共 12 分)

二叉搜索树 T 用二叉链存结构表示,编写算法按递减顺序打印下中元素关键字的值。

相关结构体定义如下:

```
typedef struct elemtype {
  int Key
  char Data;
} ElemType;
typedef struct bstnode {
  ElemType Element;
  struct bstnode *lchild;
  struct bstnode *rchild;
} BSTNode;
```

不带表头结点的单链表中元素各不相等,编写算法找出所有元素的最大值与链表第一个结点的 值进行交换,如果成功,返回 1;否则,返回 0。

相关结构体定义如下:

```
typedef struct node{
   ElemType element;
   struct node *link;
} Node;
typedef struct singleList{
   struct node * first;
   int n;
} SingleList;
```

```
1 int Swap()
                                                                         C 语言
2 {
3 if(!first)
4
     return 0;
5
    Node *p, *max;
    ElemType temp;
7
    p = first-> link;
8
    max = first;
    while(p)
10
    {
11
```

```
if(p->element > max->element)
12
        max=p;
      p=p->link;
13
14
    }
    if(max != p)
15
16
17
    temp = first->element;
     first->element = max ->element;
18
19
   max->element = first->element;
20
    }
   return 1;
21
22 }
```

填空题答案

题号	1	2	3	4	5	6	7	8	9	10
答案	图形	同义词	Top=-1	最长	$n \log_2 n$	n-m	160	有序	$n^2 - e$	F

单项选择题答案

题号	1	2	3	4	5	6	7	8	9	10
答案	В	D	A	D	A	В	С	В	A	В