

2. (a)
$$(x - x_0)^2 + (y - y_0)^2 = r^2 \text{ or } ||\mathbf{p} - \mathbf{c}||^2 = r^2$$

(b) Use the explicit representation of the circle from lecture:

for
$$\mathbf{x} = 0$$
 to \mathbf{r}
 $\mathbf{y} = \operatorname{sqrt}(r^2 - x^2)$
 $\operatorname{SetPixel}(x + c_x, \operatorname{round}(y + c_y))$
 $\operatorname{SetPixel}(x - c_x, \operatorname{round}(y + c_y))$
 $\operatorname{SetPixel}(x + c_x, \operatorname{round}(y - c_y))$

SetPixel
$$(x - c_x, \text{ round}(y - c_y))$$

(c) See images on next 2 pages:

Assume the circle is $x^2 + y^2 = R^2$ For the function $d = F(x, y) = x^2 + y^2 - R^2$ we have s d = 0 : (x, y) is on the circle d > 0 : (x, y) is outside d < 0 : (x, y) is inside

slope = 0 $(y, -x) \quad (y, x)$ $(x, y) \quad \text{slope} =$ $(-x, -y) \quad (x, -y)$ $(-y, -x) \quad (-y, x)$

Since the symmetry of a circle, we only need to compute 1/8 of the whole circle (Figure 2), starting from (O,R) to the point where X = y Similar to Bresenham algorithm, we only need to consider the E and SE directions for next step, depending slope=1 on which pixel is closer to the circle. That is, whether the midpoint of E and SE is inside or outside the circle (figure 3)

Previous Choices for Choices for Pixel Current Pixel (3)

The computation of dold, does and dinitial is:

 $\begin{aligned} \mathcal{C}_{old} &= F(x_p + 1, y_p - \frac{1}{a}) = (x_p + 1)^2 + (y_p - \frac{1}{a})^2 - R^2 \\ \mathcal{C}_{new} &= \begin{cases} next = E : F(x_p + 2, y_p - \frac{1}{a}) \\ &= d_{old} + 2x_p + 3 \end{cases} \\ next &= SE : F(x_p + 2, y_p - \frac{3}{a}) \\ &= d_{old} + 2x_p - 2y_p + 5 \end{cases} \\ d_{initial} &= F(x_p + 1, y_p - \frac{1}{a}) = \frac{5}{4} - R \end{aligned}$

Reference: http://www.cs.sfu.ca/CourseCentral/361/hyounesy/Lectures/09-raster.pdf

```
What we need is integer only algorithm \searrow But clinical is not an it integer! There are two methods to solve this. One is multiply 4 for each expression of all the other is just using 1-R for clinical since the sign of 1-R for clinical since the sign of 1-R for clinical since 1-R for drawing a circle is 1-R for drawing a circle is 1-R for drawing a circle is 1-R for 1-R for drawing a circ
```


5. (a) See image below:

(b) They are done in the View Coordinate System (VCS). We cannot do it before since we need to know the eye location, and cannot do it after perspective since the space gets distorted.

6. (a) See images below:

So the normal of B is $\frac{10}{29} \left(-\frac{\sqrt{2}/2}{-42/2}\right) + \frac{19}{29} \left(\frac{1}{0}\right) = \left(\frac{19 - 5\sqrt{2}}{-5\sqrt{2}}\right)/2$	9)
normalize:	
((19-512)/29))= (19-512)2 + (-512)2/29 =	
J 192-2-19-5-12 + 50 + 50/29	normalized normal
= 1461-19052 /29	
((19-52)/29)/(1461-19022 /29) = ((19-52)/19 1461-19 -522/ 1461-19	0.50991

(b) See images below:

Steeman	$= \begin{cases} K_{0} T_{2} & (H \cdot N)^{n} \\ = \begin{pmatrix} 1.0 \\ 1.0 \\ 0.9 \end{pmatrix} \begin{bmatrix} (0.584) \\ -0.811 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0.260 \\ -0.510 \\ 0 \end{pmatrix} \end{bmatrix}^{20}$ $= \begin{pmatrix} 1.0 \\ 0.9 \\ 1.0 \\ 1$	
Tambient	$= \frac{0.172}{0.9} = \frac{0.172}{0.155}$ $= \frac{0.172}{0.02}$	
I total =	Idiff + I spec + I amb = (0.473) 0.968 0.950)	

Point D: Need to Rnd	normal at D by interpolating between
B and C	. Since the heights are equal (D is the
midpoint of	BC) we take the average of NB & NC
N _P =	NB + NE
	$\begin{pmatrix} 0.860 \\ -0.510 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1.860 \\ -0.510 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.930 \\ -0.255 \\ 0 \end{pmatrix}$
No =	(0.96H) (-0.26H)

(c) See image below:

(d) See image below:

7. (a) See image below:

(b) See image below:

$$\rho(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 6t & 2 & 0 & 0 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A$$

$$\rho(t) =$$