

Integrated passive devices (IPD) for RF applications

Discrete & Filters Division (DFD)

Automotive & Discrete Group (ADG)

Integrated passive devices (IPD) for RF applications

ST integrated passive devices offer a competitive cost structure, a small form factor, and reduced power losses

Covering all RF applications with a frequency range from 168 MHz and above including Sub-1 GHz, WLAN, Bluetooth, ZigBee, WiMax, UWB, UMTS, LTE and more.

Summary of key benefits

- Design **simplification**
- Same **performance** across components, tolerances, and temperature
- System integration
- Reliability improvement
- BOM reduction
- Successful development story

Example of RF connectivity

High quality baluns, RF couplers, combiners, filters, diplexers, triplexers, & impedance matching ICs in various design configurations

All in one
Diplexer Coupler Diplexer + 2G BPF + 5G BPF

Able to integrate high-quality passive elements (resistors, inductors, and capacitors) on glass-sand high-resistivity silicon substrates and in various design configurations.

Tuned for high RF integration

ST RF IPD baluns improve system performance & simplify RFIC to antenna matching network complexity

Designed with integrated harmonic filters, they facilitate compliance with major EMC regulations: CCC, FCC, ETSI, ARIB

ST baluns integrate the following functions:

- Impedance matching
- 50 Ω nominal input impedance
- Harmonic filter

Balun portfolio

Tailored for the main RF standards

Our solutions are tailored for:

- Bluetooth® Low Energy 2.4 GHz radios
- IEEE 802.15.4-based specification including Zigbee
- Sub-1GHz RF transceivers
- Sigfox wireless connectivity
- LoRa wireless connectivity

Significantly helping to reduce RF complexity and provide an optimized link budget, our wide range of integrated baluns includes companion-chips to today's latest RF transceivers of the market.

Sub-1 GHz, Bluetooth Low Energy, UWB portfolio

Balun/STM32WL correspondence matrix

Power frequency	22 dBm 864-928 MHz		15 dBm 864-928 MHz	
#PCB layers	4	2	4	2
STM32WL BGA	BALFHB-WL-01D3		BALFHB-WL-04D3	
STM32WL QFN	BALFHB-WL-02D3	BALFHB-WL-03D3	BALFHB-WL-05D3	BALFHB-WL-06D3

Power frequency	17 dBm 470-530 MHz		
#PCB layers	4	2	
STM32WL BGA	BALFLB-WL-07D3		
STM32WL QFN	BALFLB-WL-08D3	BALFLB-WL-09D3	

STM32WL	STM32WL5xJxlx
BGA	STM32WLExJxlx
STM32WL	STM32WL5xCxUx
QFN	STM32WLExCxUx

Low pass filter/STM32WB correspondence matrix

Power frequency	10 dBm 2.45 GHz		
#PCB layers	2	2	
STM32WB55Cx STM32WB55Rx STM32WB35xxx STM32WB50xxx STM32WB30xxx STM32WB1xx	MLPF-WB-01D3 MLPF-WB-01E3 MLPF-WB55-01E3		
STM32WB55Vxx STM32WB1x		MLPF-WB55-02E3	
STM32WB5x STM32WB1x		MLPF-WB-02D3	

STM32WB QFN	STM32WB55Cx STM32WB55Rx STM32WB35xxx STM32WB50xxx STM32WB30xxx STM32WB1xx
STM32WB	STM32WB55Vxx
BGA	STM32WB1x
STM32WB	STM32WB5x
BGA	STM32WB1x

Low pass filter/BlueNRG correspondence matrix

Power frequency	10 dBm 2.45 GHz
#PCB layers	2
BlueNRG-LP & BlueNRG-LPS QFN & BGA	BALUN
BLUENRG-3x5Vx BLUENRG-3x5Ax BLUENRG-3x5Mx BLUENRG-332xx	BALF-NRG-01D3

Power frequency	10 dBm 2.45 GHz
#PCB layers	2
BlueNRG-1 (QFP32 and CSP34) BlueNRG-2 (QFN32 and CSP34)	BALF-NRG-02D3

Balun/SPIRIT correspondence matrix

Power frequency	868-915 MHz		433 MHz	
#PCB layers	3	4	3	4
SPIRIT1		BALF-SPI-01D3		BALF-SPI-02D3
S2-LP	BALF-SPI2-01D3		BALF-SPI2-02D3	

ST RF IPD packages

IPD benefits versus LTCC

	IPD	LTCC	Discretes
Thickness	Very Good	Good	Medium
Integration	Very Good	Good	Bad
Flexibility	Very Good	Low	Very Good
Complexity simplification	Very Good	Good	Low
Space/area	Good	Medium	Bad
Performances (losses,)	Very Good	Good	Low
Standardity	Medium	Very Good	Very Good
Integrated matching	Very Good	Good	Low
Summary	***	**	\star

Technologies & roadmap

RLC07 copper layer technology

Performance on a budget

L01 and RLC06X copper layer technologies

Improved integration and performance with thicker copper layer and new high-Q material

L01
Copper: 3 + 3 µm
+ resistor

RLC06A
Copper: 6 + 3 μm
Resistor
Low density caps/high density cap

RLC06BCopper: 6 + **6** μm
High density cap

RLC06C
Copper: 6 + 10 µm
High density cap with
High-Q dielectric resistor

RLC06E
Copper: 6 + 10 μm
High density cap with
High-Q dielectric resistor
Low density cap/high precision

RLC06E technology with high-Q capacitor

Improvement of the Q factor at low frequencies with the High-Q dielectric resonators

RLC06E technology with high-Q capacitor

Impact on BPF performance

Design with "standard dielectric"

ST RF-IPD roadmap

Higher integration

- Increase number of metal layers: from 1 to 4
- Reduce inductor spacing: from 10 to 5 µm

Flexibility and integration

Higher performance

- Q factor improvement
- Thicker copper
- New dielectric material

Performance and low losses

Lower thickness

- Down to 80µm substrate
- Wafer warp management
- Micro-bumping capability

Integration of 3D modules

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

