Introduction - 2

SE234 Advance Software Development

Course Overview

- Continuous Delivery
- Unit Test
- UAT Test
- Integration Test

Grading Criteria

 Attendance 	5 %	0%
• Lab	10 %	10%
• Lab Exam	7.5 %	10%
• Project	7.5 %	10%
 Final Examination 	20 %	20%

What are we going to learn?

- Deployment
- Container
- Continuous Integration and Delivery
- Automated Test Tools
 - DevOps

Let's Start

After Finish Implementation

• What is the next step?

Searching for

What are the application deployment model?

•

Deployment Model

- How can we deploy the application to the users
- Set up are required

Deployment Model – Stand alone application

- Fully install in one user computer
- Dependency is required
 - Providing by the setup media
 - Data store
 - Code functions

Deployment Model – Stand alone application

- Pros
 - Everything is on the computer
 - No internet required
 - No network required
- Cont.
 - Update problem
- Example?

Deployment Model – Client Server Architecture

- Server
 - Provide the service
 - Mostly data
- Client
 - A thick client
 - Require installation
 - Can work on many functions
 - But required data from the server

Deployment Model – Client Server Architecture

- Pros
 - Reduce the hardware requirements on the client side
 - Privacy of some data
 - Store in server
- Cons
 - Version consistency between servers and clients
- Examples?

Deployment Model – Web Application

- Thin clients
- The application run on the browser
- The main operations are executed on the web server

Deployment Model – Web Application

- Pros
 - Single point of maintenance
 - Work from everywhere
 - With internet and web browser
- Cons
 - Slow
 - If there are many user at the same time
 - Hard to customize to the regions
- Examples?

Deployment Model – Web Application

- Update version
 - Move some presentation rendering on the web browser
- Previously
 - Only HTML is sent
- Currently
 - With JS
 - Web application run with the Javascript on the client side
 - Request only the required data
 - Similar to the client server architecture.
 - VueJs, Angular, React

Deployment Model – Service Architecture

- Provide only a service
- No User interface
- Wait for other system to call for a service

Deployment Model – Service Architecture

- Pros
 - Separate the workload of the servers
 - Scalability
 - Several application can share the implementation
- Cons
 - Need to know the locations and end points
 - Security managements
- Examples
 - Public services

Deployment Model – Micro Service Architecture

- The application provides the service which is used only their own application
- Handle the call by themselves

Deployment Model – Micro Service Architecture

- Pros
 - Privacy
 - All services can used in it own application
 - Scalability
 - Easy to add/remove the servers for each microservice
- Cons
 - Use a lot of computers
 - Container technology helps
- Example
 - Netflix, SCB Easy

Required Application

- To deploy your application in each model
 - Other applications are required
- Otherwise you have to write every thing from the scratch

Required Application – Installer

- Packed the implemented execution code
- Gather all dependency
 - Grasp it in the installation files
- Extract files in the target computer
- Setting the computer environments

Required Application - Web server

- Provide the http service
- Allows users to browse on the html files provided by the developer
- Example
 - Nginx, apache

Required Application - Data repository

- Store the persistence information
- Can be used as a service
- Example
 - Database servers
 - MySql, MariaDB, SQL server
 - Repository service
 - Amazon S3, Google Firebase/cloudbase

Required Application - Application Containers

- The framework which provides OS specific operations
- Applications run on the containers
 - Application is not OS specific
 - Can run on the containers
 - In every servers
- Compiler/Interpreter hybrid
- Example
 - Tomcat/ .net Framework

Required Application - Message Queue Server

- Control the queue request for the microservice
- Similar to the load balancer
- Link between the service request and execution
- Example
 - RabbitMQ, ActiveMQ

What about hardware?

- If we use the model which is not the stand-alone model?
 - What are the hardware that we need?

On-premise server

- The company buy one computer for the company
- Pro
 - Fully control
 - Can manage the upgrade with out own cost
 - Privacy
- Con
 - Is it suitable for our application?
 - Cost/Performance
 - Maintenance cost

Cloud server

- Subscription
 - Rent from the provider
 - Mostly as the IAAS
 - Infrastructure as a service
 - Subscription fee depending on the size

Cloud Server

- Pro
 - Better Cost/performance
 - We can change the size to suit our work any time
 - Maintenance
 - Do not have to do it ourselves
 - Availability
- Con
 - Data security
 - Ownership

Type of IAAS

- Virtual Machine
 - Different name regarding to the operators
- Vendors
 - AWS Elastic Cloud
 - Google Compute Engine
 - Microsoft Azure virtual machine
 - Digital Ocean Droplet
 - etc

What we need to setup?

- The size of virtual machine
- Size and price is related
- With the OS

	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage
General Purpose -	Current Genera	ation			
a1.medium	1	N/A	2 GiB	EBS Only	\$0.0255 per Hour
a1.large	2	N/A	4 GiB	EBS Only	\$0.051 per Hour
a1.xlarge	4	N/A	8 GiB	EBS Only	\$0.102 per Hour
a1.2xlarge	8	N/A	16 GiB	EBS Only	\$0.204 per Hour
a1.4xlarge	16	N/A	32 GiB	EBS Only	\$0.408 per Hour
a1.metal	16	N/A	32 GiB	EBS Only	\$0.408 per Hour
t3.nano	2	Variable	0.5 GiB	EBS Only	\$0.0052 per Hour
t3.micro	2	Variable	1 GiB	EBS Only	\$0.0104 per Hour

Add the required resources

- Volume
 - Size of the hard disk
- Security group
 - Who can access your virtual machine

Cancel Previous

Review and Launch

Security

- Protocol to be sent
 - TCP/UDP
- Allowed Ip address
 - 0.0.0.0 allow all for IPV4
 - ::0 allow all for IPV6
- Port
 - Port which allow to be accessed

Default Port Number

- Http 80
- Https 443
- Secure Shell 22
- Ftp 21
- And other ports we can use

Securties

- What we know?
- What we have?
- What we are?

In aws,

- The public-private key is used
- The .pem (public key) is given
- In the vm, the private key is store
- Each connection must used with the public key

To connect we need Internet address

Internet address

- IP internet Protocols
- URL Uniform Resource Locator

Now we can connect and setup the VM

VM

Host Computer

This Photo by Unknown Author is licensed under CC BY-SA

Your computer

Ssh is

- Secure shell
 - Encrypt all connection with public-private key
- Connection are
 - Command line and response
 - Content sent
 - File, list of data (via the Winscp, Cyberduck)

The software Installation Guideline

• Regarding to the OS

Q & A

