Übungen zu Analysis 3, 11. Übung 13. 1. 2020 (letzte Übung)

89. Bis zu welcher Ordnung sind die Funktionen $\mathbb{R} \to \mathbb{R}$

$$f(x) = |x|, \quad f(x) = \begin{cases} 0 & x \le 0 \\ x^2 & 0 < x < 1 \\ ax - 1 & x \ge 1 \end{cases}$$

 $a \in \mathbb{R}$ schwach differenzierbar? Berechnen Sie die schwachen Abelitungen.

Zeigen Sie: Für $u(\mathbf{x}) = \log |\mathbf{x}|$ und $v_i(\mathbf{x}) = \frac{x_i}{|\mathbf{x}|^2}$ ist v_i die schwache Ableitung $D^i u$ in \mathbb{R}^n .

- 90. Sind $u, v \in W^{1,2}(\Omega)$, so ist $uv \in W^{1,1}(\Omega)$ mit $D_i(uv) = D_iuv + uD_iv$.
- 91. Verschwindet für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ die schwache Ableitung der Ordnung n, so ist f ein Polynom der Ordnung n-1 f.ü.

Hinw.: Zeigen Sie, dass jede Testfunktion als Summe der n-ten Ableitung einer Testfunktion und einer Linearkombination der Funktionen $\psi_0^{(l)}$, l < n, ψ_0 wie im Beweis von 6.1.4 dargestellt werden kann und berechnen Sie $\int x^k \xi^{(l)}(x) dx$ für Testfunktionen ξ und $k \le l$.

92. Zeigen Sie, dass aus der Existenz der schwachen Ableitung der Ordnung 2 i.A. für $n \ge 2$ nicht die Existenz der schwachen Ableitungen der Ordnung 1 folgt.

Hinw.: Betrachten Sie eine Funktion $f(x,y) = f_1(x) + f_2(y)$.

Zeigen Sie, dass für n = 1 aus der Existenz einer schwachen k-ten Ableitung die Existenz der schwachen Ableitungen l-ter Ordnung für l < k folgt.

93. Zeigen Sie, dass $f \in L^p(\Omega)$, $1 genau dann in <math>W^{m,p}(\Omega)$ liegt, wenn die Abbildungen $\varphi \mapsto \int_{\Omega} f D^{\alpha} \varphi d\lambda^n$ für $|\alpha| \le m$ stetig vom Raum der Testfunktionen versehen mit der L^q -Norm nach $\mathbb R$ ist.

Hinw.: Verwenden Sie dass der Dualraum von L^p der L^q ist, d..h jede beschränkte lineare Abbildung von einem dichten Teilraum von L^p nach \mathbb{C} ist von der Form $\varphi \mapsto \int \varphi g$ mit $g \in L^q$.

94. Ein Punkt $x \in \mathbb{R}^n$ heißt *Dichtepunkt* einer messbaren Teilmenge E von \mathbb{R}^n , wenn x Lebesguepunkt der Funktion $\mathbb{1}_{E \cup \{x\}}$ ist.

Zeigen Sie: Ist jeder Punkt $x \in [0,1]^n$ ein Dichtepunkt einer messbaren Teilmenge E von \mathbb{R}^n , so gilt $\lambda^n(E) \ge 1$.

Gibt es eine messbare Teilmenge E von \mathbb{R} für die $\mathbb{R} \setminus \{0\}$ die Menge der Dichtepunkte von E ist?

- 95. Ist *X* ein Fixpunktraum und *Y* ein Retrakt von *X*, so ist *Y* ein Fixpunktraum.
- 96. Zeigen Sie (Satz v. Perron-Frobenius): Jede $n \times n$ Matrix $A = (a_{i,j})$ mit $a_{i,j} \ge 0$ für $1 \le i, j \le n$ hat einen Eigenwert $\lambda \ge 0$ mit zugehörigem Eigenvektor $x = (x_1, \dots, x_n)$ mit $x_i \ge 0$, $1 \le i \le n$.

Hinw.: Betrachten Sie die Abbildung $\zeta: x \to \frac{1}{\|Ax\|_1} Ax$ auf dem Simplex $\Delta := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i = 1\}.$

97. Zeigen Sie, dass das Gleichungssystem

$$\frac{1}{2}x_1^3 - \frac{1}{8}x_2^3 = x_1$$
$$\frac{1}{2}x_1^5 + \frac{1}{4}x_1^2x_2^4 + \frac{1}{4} = x_2$$

eine Lösung besitzt.

98. Zeigen Sie dass es eine eindeutige Lösung u der Gleichung

$$u(x) = x + \frac{1}{2}\sin(u(x) + x)$$

in C[-1,1] gibt.