

Polynômes

Définitions et théorèmes fondamentaux

Définitions et théorèmes à apprendre par cœur :

0.1 Formule de Leibniz

Soient $P,Q\in K[X]$ et $n\in\mathbb{N},$ alors la formule de Leibniz pour la dérivation du produit s'écrit :

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$

0.2 Formule de Taylor

Soit $P \in K[X]$ et $a \in K$. Alors, la formule de Taylor s'écrit :

$$P(X) = \sum_{n>0} \frac{P^{(n)}(a)}{n!} (X - a)^n.$$

0.3 Théorème : Division euclidienne des polynômes

Soient $A, B \in K[X]$ avec B non nul. Il existe un unique couple $(Q, R) \in K[X]$ tel que :

$$A = BQ + R$$

0.4 Proposition essentielle

Si a_1, \ldots, a_p sont des racines distinctes du polynôme P, alors le produit :

$$(X-a_1)\cdots(X-a_p)$$

divise P.

De plus, un polynôme de degré $n \ge 0$ admet au plus n racines dans un corps.

0.5 Théorème

Soit $P \in K[X]$, soit $a \in K$ et soit $m \in \mathbb{N}$. Les assertions suivantes sont équivalentes : 1. a est racine de P de multiplicité m. 2. Les facteurs $(X - a), \dots, (X - a)^m$ divisent P, et $(X - a)^{m+1}$ ne divise pas P.

0.6 Polynôme scindé

Un polynôme $P \in K[X]$ de degré N est dit scindé s'il se factorise sous la forme :

$$P(X) = a_N \prod_{j=1}^{N} (X - z_j),$$

où a_N est le coefficient dominant et z_1, z_2, \ldots, z_N sont les racines (éventuellement répétées) de P dans K.

0.7 Relations coefficients-racines

Si un polynôme est scindé, on peut exprimer ses coefficients en fonction de ses racines en développant son expression factorisée. Plus précisément, si :

$$P(X) = \sum_{n=0}^{N} a_n X^n = a_N \prod_{j=1}^{N} (X - z_j),$$

alors, pour tout p tel que $1 \le p \le N$:

$$a_{N-p} = (-1)^p a_N \sum_{1 \le k_1 < k_2 < \dots < k_p \le N} z_{k_1} \cdots z_{k_p}.$$

En particulier:

$$\sum_{k=1}^{N} z_k = -\frac{a_{N-1}}{a_N},$$

$$\prod_{k=1}^{N} z_k = (-1)^N \frac{a_0}{a_N}.$$

0.8 Théorème de Bezout

Soient $A, B \in K[X]$ deux polynômes non nuls. Alors, $A \wedge B = 1$ (c'est-à-dire que A et B sont premiers entre eux) si et seulement s'il existe $U, V \in K[X]$ tels que :

$$AU + BV = 1$$
.

0.9 Lemme de Gauss

Soient $A, B, C \in K[X]$ trois polynômes non nuls. On suppose que $A \wedge B = 1$. Alors, si $A \mid BC$, on a $A \mid C$.

0.10 Théorème d'Alembert-Gauss

Tout polynôme $P \in \mathbb{C}[X]$ non constant admet une racine dans \mathbb{C} .

0.11 Décomposition en produit d'irréductibles sur $\mathbb{C}[X]$

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1. Tout polynôme non nul est produit de son coefficient dominant et de polynômes irréductibles unitaires. Cette décomposition est unique à l'ordre des termes près.

En particulier, tout polynôme $P \in \mathbb{C}[X]$ non constant se factorise sous la forme :

$$P(X) = a_N \prod_{k=1}^{r} (X - z_k)^{\mu_k},$$

où a_N est le coefficient dominant, z_1, z_2, \ldots, z_r sont les racines de P(X) et μ_k est la multiplicité de la racine z_k .

0.12 Décomposition en produit d'irréductibles sur $\mathbb{R}[X]$

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 ayant un discriminant strictement négatif. Tout polynôme non nul est produit de son coefficient dominant et de polynômes irréductibles unitaires. Cette décomposition est unique à l'ordre des termes près.

En particulier, tout polynôme $P \in \mathbb{R}[X]$ non constant se factorise sous la forme :

$$P(X) = a_N \prod_{k=1}^r (X - z_k)^{\mu_k} \prod_{k=1}^s (X^2 + \beta_k X + \gamma_k)^{\nu_k},$$

où a_N est le coefficient dominant, z_1, z_2, \ldots, z_r sont les racines réelles de P(X) et μ_k est la multiplicité de la racine z_k . Les $X^2 + \beta_k X + \gamma_k$ sont des facteurs irréductibles de degré 2, et ν_k est la multiplicité de chaque facteur quadratique.

0.13 Théorème fondamental (décomposition de Lagrange)

Soit $n \in \mathbb{N}^*$ et soit $a_1, \ldots, a_n \in K$ tous distincts. Pour $i \in \{1, \ldots, n\}$, on appelle *i-ème* polynôme de Lagrange associé à la suite (a_1, \ldots, a_n) le polynôme :

$$L_i(X) = \prod_{j \neq i} \frac{X - a_j}{a_i - a_j}.$$

Théorème d'interpolation de Lagrange:

Soit $n \in \mathbb{N}^*$, soit $a_1, \ldots, a_n \in K$ tous distincts et soit L_1, \ldots, L_n la famille des polynômes de Lagrange associés. Alors, pour tout $P \in K[X]$ de degré n-1, on a l'identité :

$$P(X) = \sum_{i=1}^{n} P(a_i) L_i(X).$$