CSC 225

Algorithms and Data Structures I Fall 2014 Rich Little

Asymptotic Notation

- Evaluating running time in detail as for arrayMax and recursiveMax is cumbersome
- Fortunately, there are asymptotic notations which allow us to characterize the main factors affecting an algorithm's running time without going into detail
- A good notation for large inputs
- **Big-Oh O(.)**

• Little-Oh o(.)

• Big-Omega $\Omega(.)$

• Little-Omega ω(.)

• Big-Theta $\Theta(.)$

Big-Oh Notation

- Formal definition
- Most frequently used
- Is a good measure for *large* inputs

Formal Definition of Big-Oh Notation

```
Let f: IN \rightarrow IR and g: IN \rightarrow IR. f(n) is O(g(n)) if and only if there exists a real constant c > 0 and an integer constant n_0 > 0 such that f(n) \le c \cdot g(n) for all n \ge n_0.

IN: non-negative integers

IR: real numbers
```

- We say
 - \rightarrow f(n) is order q(n)
 - \rightarrow f(n) is big-Oh of g(n)
 - \succ f(n) \in O(g(n))
- Visually, this says that the f(n) curve must eventually fit under the cg(n) curve.

Big-Oh: Examples

- $f(n) = 4n + 20n^4 + 117$ O(f(n)) is ?
- f(n) = 1083O(f(n)) is ?
- $f(n) = 3\log n$ O(f(n)) is ?
- $f(n) = 3\log n + \log \log n$ O(f(n)) is ?

- $f(n) = 2^{17}$ O(f(n)) is ?
- f(n) = 33/nO(f(n)) is ?
- $f(n) = 2^{\log_2 n}$ O(f(n)) is ?
- $f(n) = 1^n$ O(f(n)) is ?

Big-Oh: Examples

- $f(n) = 4n + 20n^4 + 117$ O(f(n)) is $O(n^4)$ P: $4n + 20n^4 + 117 \le 90n^4$
- f(n) = 1083O(f(n)) is **O(1)**
- f(n) = 3 log n
 O(f(n)) is O(log n)
 P: 3 log n ≤ 4 log n
- f(n) = 3log n + log log n
 O(f(n)) is O(log n)
 P: 3log n + log log n ≤ 4 log n

- $f(n) = 2^{17}$ O(f(n)) is O(1)P: $2^{17} \le 1$ 2^{17}
- f(n) = 33/n O(f(n)) is O(1/n)P: $33/n \le 33(1/n)$ for $n \ge 1$
- $f(n) = 2^{\log_2 n}$ O(f(n)) is O(n)P: $2^{\log_2 n} = 2$ by log def
- f(n) = 1ⁿ
 O(f(n)) is O(1)
 P: 1ⁿ = 1 by exponential def

Theorem

- R1: If d(n) is O(f(n)), then ad(n) is O(f(n)), a > 0
- R2: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n))
- R3: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n))
- R4: If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n))
- R5: If $f(n) = a_0 + a_1 n + ... + a_d n^d$, d and a_k are constants, then f(n) is O(nd)
- R6: n^x is O(an) for any fixed x > 0 and a > 1
- R7: $\log n^x$ is $O(\log n)$ for any fixed x > 0
- R8: $\log^x n$ is $O(n^y)$ for any fixed constants x > 0 and y > 0

Names of Most Common Big Oh Functions

- Constant O(1)
- Logarithmic $O(\log n)$
- Linear O(n)
- Quadratic $O(n^2)$
- Polynomial $O(n^k)$, k is a constant
- Exponential $O(2^n)$
- Exponential $O(a^n)$, a is a constant and a > 1

Quiz Which statement is True?

1. 2^n is O(n!)?

2. n! is $O(2^n)$?

Quiz: 2^n is O(n!) is true

Proof. Let $n \ge 4$. Then $n! > 2^n$. Therefore, for $n_0 = 4$, c = 1, and $n \ge n_0$

Prove the claim by induction.

Quiz: 2^n is O(n!) is true

Induction on *n***.** We need to show that

$$n! > 2^n$$
 for all $n \ge 4$ (hypothesis)

Base case: n = 4

$$4! > 2^4 \Leftrightarrow \cancel{4} \cdot 3 \cdot \cancel{2} \cdot 1 > \cancel{2} \cdot \cancel{2} \cdot 2$$
 ok $3 > 2$

$$n \to n+1$$
: Show: $(n+1)! > 2^{n+1}$ for all $n \ge 4$

$$(n+1)! = (n+1) n! > (n+1)2^n > 2 \cdot 2^n = 2^{n+1}$$

$$\Leftrightarrow$$

$$(n+1)! > 2^{n+1}$$

Hypothesis:
$$n! > 2^n$$
 $n+1 > 4$

Stirling's Formula

 Another useful formula for ordering functions by growth rate is Stirling's Formula (1730)

$$n! \approx \sqrt{2\pi n} \left[\frac{n}{e} \right]^n$$

Quiz

• Can an algorithm with running time $O(n^2)$ be faster than an algorithm with running time O(n) for *small* inputs?

Quiz: $O(n^2)$ can be "faster" than O(n) for small inputs

- $124n > n^2$ for n = 1..123
- $124n = n^2$ for n = 124
- $124n < n^2$ for n > 124

Most Common Functions in Algorithm Analysis Ordered by Growth

1
$$\log \log n \log n \sqrt{n}$$

 $n \log n n^2 n^{2.31}$
 $n^3 n^k, \text{ for } k > 3$
 $2^n 3^n n!$

Examples of Most Common Big Oh Functions

- Constant time O(1)
- Logarithmic O(log n)
- Linear O(n)
- Quadratic O(n²)
- Polynomial O(n^k)
- Exponential O(aⁿ)

Examples of Most Common Big Oh Functions

Constant	O(1)	Hash search	
Logarithmic	O(log n)	Tree search	
Linear	O(n)	Linear search	
		Linear median	
	O(n log n)	Heapsort	
Quadratic	$O(n^2)$	Insertionsort	
Cubic	$O(n^3)$	Transitive closure	
Polynomial	O(n ^k)		
Exponential	O(2 ⁿ)	Graph colouring	
Exponential	O(a ⁿ)	NP-hard problems	

Functions Ordered by Growth and Rate

n	log n	n	n log n	N^2	n^3	2 ⁿ	n!
10	3.3	10	33	102	10^{3}	10^{3}	10 ⁶
102	6.6	10^{2}	6.6×10^2	10^{4}	10^{6}	10 ³⁰	10 ¹⁵⁸
103	10	10^{3}	10 x10 ³	106	10 ⁹		
104	13	104	13 x10 ⁴	108	1012		
105	17	105	17 x10 ⁵	1010	10 ¹⁵		
106	20	10^{6}	20 x10 ⁶	1012	1018		

Assume a computer executing 10^{12} operations per second.

To executive 2^{100} operations takes 4×10^{10} years.

To executive 100! operations takes much longer still.

Functions Ordered by Growth and Rate

- log *n*
- $\log^2 n$
- \sqrt{n}
- n
- $n \log n$
- n^2
- n^3

P = class of polynomial time algorithms

<u>-</u> 2ⁿ

NP = class of *nondeterministic* polynomial time algorithms

A million (US-) dollar question

http://www.claymath.org/millennium/P_vs_NP/

- P = NP?
- Obviously $P \subseteq NP$.
- There is a bunch of problems (so called NP-complete problems) for which one assumes that none of those can be solved in polynomial time.
- Examples: <u>Graph coloring</u>, <u>Independent Set</u>, Generalized 15-Puzzle
- Widely assumed: $P \neq NP$

Logarithms and Exponential Functions

 Review properties of Logarithms and exponents

$$\log_b a = c \text{ if } a = b^c$$

$$\log ac = \log a + \log c$$

$$\log a/c = \log a - \log c$$

$$\log a^c = c \log a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$b^{\log_c a} = a^{\log_c b}$$

$$(b^a)^c = b^{ac}$$

$$b^a b^c = b^{a+c}$$

$$b^a / b^c = b^{a-c}$$

Useful Summations Formulas

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad \text{(Gauss)}$$

$$\sum_{k=1}^{n} k^{2} = \frac{2n^{3} + 3n^{2} + n}{6} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

$$\int_{a-1}^{b} f(x)dx \le \sum_{k=a}^{b} f(k) \le \int_{a}^{b+1} f(x)dx$$

Big-Omega Notation

```
Let f: IN \rightarrow IR and g: IN \rightarrow IR.

f(n) \text{ is } \Omega(g(n))

if and only if

g(n) \text{ is } O(f(n))
```

IN: non-negative integers IR: real numbers

$f(n) = \Omega(g(n))$

Quiz: What is true, what is false?

 $f(n) is \Omega(g(n))$ iff g(n) is O(f(n))

1. 2^n is $\Omega(n!)$

Previous results 2^n is O(n!) is true n! is not $O(2^n)$

2. n! is $\Omega(2^n)$

2^n is $\Omega(n!)$ is false

$$f(\mathbf{n}) = 2^n$$

$$g(\mathbf{n}) = n!$$

$$f(n) \text{ is } \Omega(g(n))$$

$$\text{iff}$$

$$g(n) \text{ is } O(f(n))$$

We know 2^n is O(n!) but n! is not $O(2^n)$. Since 2^n is $\Omega(n!)$ iff n! is $O(2^n)$, the claim is false.

n! is $\Omega(2^n)$ is true

$$f(n) = n!$$

$$g(n) = 2^n$$

$$f(n) \text{ is } \Omega(g(n))$$

$$\text{iff}$$

$$g(n) \text{ is } O(f(n))$$

We know 2^n is O(n!) but n! is not $O(2^n)$. Since n! is $\Omega(2^n)$ iff 2^n is O(n!), the claim is true.

Big-Theta Notation

Let $f: IN \rightarrow IR$ and $g: IN \rightarrow IR$.

f(n) is $\Theta(g(n))$

if and only if

f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Big-Theta: Examples

- 3n + 1 is $\Theta(n)$
- $2n^2 + 3n + 1$ is $\Theta(n^2)$

Review the examples for Big-Oh motation and solve those for big-Omega, big-Thetal

Intuition of Asymptotic Terminology

- Big-Oh: O(g(n)) upper bound; functions that grow no faster than g(n)
- Big-Omega: $\Omega(g(n))$ lower bound; functions that grow at least as fast than g(n)
- Big-Theta: $\Theta(g(n))$ asymptotic equivalence; functions that grow at the same rate as g(n)

Asymptotic Notation

- Big-Oh O(.)
- Big-Omega $\Omega(.)$
- Big-Theta $\Theta(.)$

- Little-Oh o(.)
- Little-Omega ω(.)

Little-Oh Notation

Let $f: IN \rightarrow IR$ and $g: IN \rightarrow IR$.

f(n) is o(g(n))

if and only if

for any constant c > 0 there is a constant $n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$.

Examples: Little-Oh

- 2n is $o(n^2)$
- $2n^2$ is **not** $o(n^2)!$ [but $2n^2$ is $O(n^2)$]

Intuition of Asymptotic terminology

- Big-Oh: upper bound
- Big-Omega: lower bound
- Big-Theta: asymptotic equivalence
- Little-Oh: less than (in asymptotic sense).

 The bound is not asymptotically tight.

Little-Omega Notation

```
Let f: IN \rightarrow IR and g: IN \rightarrow IR.

f(n) \text{ is } \omega(g(n))

if and only if

g(n) \text{ is } o(f(n)).
```

Little-Omega

- $2n^2$ is $\omega(n)$
- If f(n) is $\omega(g(n))$ then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

Intuition of Asymptotic Terminology

- Big-Oh: upper bound
- Big-Omega: lower bound
- Big-Theta: asymptotic equivalence
- Little-Oh: less than (in asymptotic sense).

 The bound is not asymptotically tight.
- Little-Omega: greater than (in asymptotic sense).

 The bound is not asymptotically tight.

Find an Algorithm to solve Prefix Averages Problem

Note: Efficiency and Design go hand in hand!

Prefix Averages

Input: An *n*-element array *X* of numbers.

Output: An n-element array A of numbers such that A[k] is the average of elements X[0], ..., X[k]

X	12	3	7	24	4	1	1
A	12	7.5	7.3	11.5	10	8.5	7.4

Algorithm PrefixAverages

Input: An *n*-element array *X* of numbers.

Output: An n-element array A of numbers such that A[k] is the average of elements X[0], ..., X[k]

```
Let A be an array of n numbers.

for k \leftarrow 0 to n-1 do

a \leftarrow 0
for j \leftarrow 0 to k do
a \leftarrow a + X[j]
end
A[k] \leftarrow a/(k+1)
end
return A
1 + 2 + 3 + ... + n = ?
```

Worst-Case Running Time of Algorithm PrefixAverages

$$1+2+3+...+n=$$

$$\sum_{i=1}^{n} k = \frac{1}{2} n(n+1) \text{ is } O(n^2)$$

Quiz: Can we solve the problem faster?

Prefix Averages

Input: An *n*-element array *X* of numbers.

Output: An n-element array A of numbers such that A[k] is the average of elements X[0], ..., X[k]

- A[0] = ?
- A[1] = ?
- A[2] = ?
- A[k-1] = ?
- A[k] = ?

- A[0] = X[0]
- A[1] = ?
- A[2] = ?
- A[k-1] = ?
- A[k] = ?

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2
- A[2] = ?

- A[k-1] = ?
- A[k] = ?

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2
- A[2] = (X[0] + X[1] + X[2])/3
- A[k-1] = ?
- A[k] = ?

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2
- A[2] = (X[0] + X[1] + X[2])/3
- A[k-1] = (X[0] + X[1] + ... + X[k-1])/k
- A[k] = (X[0] + X[1] + ... + X[k-1] + X[k])/(k+1)

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2
- A[2] = (X[0] + X[1] + X[2])/3
- A[k-1] = (X[0] + X[1] + ... + X[k-1])/k
- A[k] = (X[0] + X[1] + ... + X[k-1] + X[k])/(k+1)

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2
- A[2] = (X[0] + X[1] + X[2])/3
- A[k-1] = (X[0] + X[1] + ... + X[k-1])/k
- A[k] = (X[0] + X[1] + ... + X[k-1] + X[k])/(k+1)

- A[0] = X[0]
- A[1] = (X[0] + X[1])/2

Idea: Use part of the computation for A[k-1] when computing A[k]!

- A[2] = (X[0] + X[1] + X[2])/3
- A[k-1] = (X[0] + X[1] + ... + X[k-1])/k
- A[k] = (X[0] + X[1] + ... + X[k-1] + X[k])/(k+1)

Algorithm PrefixAverages2

Input: An *n*-element array *X* of numbers.

Output: An n-element array A of numbers such that A[k] is the average of elements X[0], ..., X[k]

```
Let A be an array of n numbers.

s \leftarrow 0

for k \leftarrow 0 to n-1 do

s \leftarrow s + X[k]

A[k] \leftarrow s/(k+1)

end

return A
```

PrefixAverages vs. PrefixAverages2

- PrefixAverages runs in *quadratic* time $O(n^2)$
- PrefixAverages2 runs in *linear* time O(n)

- Thus, PrefixAverages2 is more efficient!
- The analysis drove the design of PrefixAverages2 to a certain extent