CAP 6617 ADVANCED MACHINE LEARNING

NAME: SANKET KUMAR UF ID: 4513-3352

SOME ASPECTS OF POLYA TREE DISTRIBUTIONS FOR STATISTICAL MODELLING

AIM: Polya tree distributions and mixtures of Polya trees are defined. Predictive and posterior distributions are explained. A canonical construction of Polya tree and choices of Polya tree parameters are discussed.

- Polya trees form a class of distributions for a random probability measure intermediate between Dirichlet process and tailfree processes. Their biggest advantage is that they can be constructed to give probability 1 to the set of absolutely continuous probability measures, whereas Dirichlet process selects a discrete probability distribution with probability 1.
- Let $E^*=\cup\{0,1\}$ x $\{0,1\}$ x ... x $\{0,1\}$. A random probability measure P on a sample space is said to have a Polya tree prior $P \sim PT$ (\prod , $A = \{a_e: e \in E^*\}$) if there exist non-negative numbers A and random variables Y, where \prod is a set of partitions and A is a set of measures on the entire space, such that 1) all random variables in Y are independent. 2) For every $e \in E^*$, Y_e has a beta distribution with parameters a_{e0} and a_{e1} . 3) For every $e \in Set$ of infinite sequences of elements of $\{0,1\}$, $P(B_{e1..em})$ is a product of Y_\varnothing and $1-Y_\varnothing$ where B is a separating binary tree of partitions of the sample space. Y_\varnothing and $1-Y_\varnothing$ are the probabilities that $\Theta_i \in B_0$ and $\Theta_i \in B_1$. Furthermore, Y_e and Y_e are conditional probabilities that $Y_e \in Se_0$ and $Y_e \in Se_0$ are the probabilities that $Y_e \in Se_0$ and $Y_e \in Se_0$
- In a Polya tree, Y_{\varnothing} has a Beta distribution. When Θ_1 is observed, so is the truth of $\Theta_1 \in B_0$. Therefore, the conditional distribution of Y_{\varnothing} given Θ_1 is a Beta distribution in which one of the parameters have been incremented by 1. So, as we traverse down the tree, we add 1 to every ae for the appropriate Θ_i . A Polya tree prior on (0,1] can be constructed using partitions made up of dyadic intervals. The set $(0,1/2^n]$ decrease to \varnothing . The probability of nth such set is Y x Y₀ x ... x Y_{00...0}. If this product does not converge to 0 then P will not be continuous and hence not countably additive. If we want P to be countably additive with probability one, then we must choose the a_e 's so that the products converge to 0 with probability one.
- For updating predictive densities, we begin with predictive density of Θ_1 and proceed stepwise, always finding predictive density of the next observation given all the previous ones. Because Polya trees are conjugate, it suffices to find the predictive density of Θ_2 given Θ_1 .
- The predictive density after one observation is a piecewise rescaled version of the original predictive density. There is a separate rescaling factor for each B_e containing θ_1 where $\theta_1 \in \Theta_1$; this is how \prod plays the role. Although the predictive density exists, it can be discontinuous, with infinitely many discontinuities in every neighborhood of θ_1 .
- For canonical construction of Polya tree, we set $\Theta_1^{\sim}Q$, where Q is specified in advance and continuous. We choose B_0 and B_1 to satisfy $Q(B_0) = Q(B_1) = 1/2$. Then for every $e \in E^*$, choose B_{e0} and B_{e1} to satisfy $Q(B_{e0}|B_e) = Q(B_{e1}|B_e) = 1/2$. Any choice of A satisfying $a_{e0} = a_{e1}$ will satisfy $\Theta_1^{\sim}Q$. When P initially has a Dirichlet process distribution, although the posterior distribution is a single Polya tree, it is a mixture of Dirichlet processes.
- a_e controls how quickly the updated predictive distribution moves from the prior to sample distribution. If a_e 's are large, then the distribution is close to prior, otherwise it is close to the sample. ae also expresses a belief about smoothness of P. Heuristically, if $a_{e0} = a_{e1}$ is large, then $P[B_{e0}|B_e]$ has a distribution tightly concentrated around 1/2. Now the variance of Y_e is $1/(4(2a_{e0}+1))$. Therefore, as long as a_e 's increase rapidly with m, P will be absolutely continuous. a_e also controls how closely P is concentrated about its mean.
- P is said to be a mixture of Polya trees if there is a random index variable U, with mixing distribution H, and Polya tree parameters $\{\prod_u, A_u\}$ such that $[P|U=u] \sim PT(\prod_u, A_u)$. A single Polya tree is a mixture of Polya trees where H is degenerate. When Θ_1 is observed, each A_u must be updated along with H. If the partition elements are different in each \prod_u and if H(u)=0 for all u, then the partition effects get smoothed out and updated predictive densities can be continuous. Mixture of Polya trees can be useful when a standard Bayesian analysis is suspect because the family of sampling densities is not known exactly. The data are modelled as though u is chosen according to h(u); then P is chosen according to $PT(\prod_u, A_u)$; then $\theta_1, \theta_2, ...$ are chosen according to P.
- Example cases of Polya trees are: 1) Estimation of distribution function. 2) Estimation of mean. 3) Lifetimes of spherical pressure vessels.