NC STATE UNIVERSITY

Connected Farms

Team Members: Nathan Libner, Artem Minin, Stephanie Sierra & Manish Goud Mentors: Dr. Paula Ramos Giraldo, Dr. Anand Singh & Dr. Natalie Hummel Sponsors: NC State University College of Agriculture and Life Sciences & IBM

Project Objective

- Develop an IoT platform that sends pictures and sensor data from soybean fields, analyzes the data, and predicts the crop's water stress level
- The web platform must feature data visualization and device management features
- This system will be used by crop researchers at NC State to identify drought tolerant genotypes

High Water Stress Level Low Water Stress Level

Product Requirements

- Automatically determine water stress levels in crops by training a deep learning model
- Create a web platform that will feature data visualization and device management
- Results are stored in a Db2 database without corruption and can be accessed by Cognos

Raspberry Pi Device Commands, Water Stress Level, Updates Temperature,

IBM IoT Cloud Platform

User Commands, Device Mgmt., Annotated Images

Water Stress Level, Temperature, Moisture %

Results

- Machine learning algorithm with 74% classification accuracy and a loss of 1-2
- Fully functional web platform that visualizes data sent from devices in the field and is able to control devices
- Data was not corrupted and able to be accessed by Cognos

System Blocks:

1. R-Pi Edge Computing

- Deep learning model deployed on the Raspberry Pi (R-Pi)
- The R-Pi will transmit the water stress level predicted by the deep learning model to the cloud, which will then be shown on the website

Cloud Platform

- Uses IBM's IoT Platform for device management and registration
- Through the cloud platform, the connected historical/analytical databases and dashboards will be visible on the website
- Allows user access management

Web Platform

- Features a simple user interface
- Facilitates data-driven decisions through historical and daily plots
- Plots display water stress level, and canopy and air temperature
- Can connect and send commands to multiple camera nodes

Future Work

- Annotate uploaded images either locally, Drive, or Dropbox
- Wireless image transfer between Raspberry Pi and website

Design Challenges

- Keeping user interface simple and easy to use to allow adoption by farmers
- Connecting multiple camera nodes to the IoT platform in areas with extremely limited internet connection speeds