# COMP3411/9414: Artificial Intelligence 5a: Games

Russell & Norvig, Chapter 5.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 2

### **Origins**

- 1769 Wolfgang von Kempelen (Mechanical Turk)
- 1846 Charles Babbage & Ada Lovelace (tic-tac-toe)
- 1952 Alan Turing (Chess algorithm)
- 1959 Arthur Samuel (Checkers)
- 1961 Donald Michie (MENACE machine learner)

COMP3411/9414 19t1 Games

#### **Outline**

- origins
- motivation
- minimax search
- resource limits and heuristic evaluation
- **α**-β pruning
- stochastic games
- partially observable games
- continuous, embodied games

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 3

#### **Mechanical Turk**



COMP3411/9414 19t1 COMP3411/9414 19t1 Games Games

#### **Mechanical Turk**



UNSW © Alan Blair, 2013-19

### **Charles Babbage Difference Engine**





© Alan Blair, 2013-19

COMP3411/9414 19t1

Games

COMP3411/9414 19t1

Games

### **Funding Problems**



"What shall we do to get rid of Mr. Babbage and his calculating machine?" (Prime Minister Robert Peel, 1842)

#### **Ada Lovelace**



"For the machine is not a thinking being, but simply an automation which acts according to the laws imposed upon it." (Ada Lovelace, 1843)

UNSW © Alan Blair, 2013-19 UNSW © Alan Blair, 2013-19 COMP3411/9414 19t1 Games 8 COMP3411/9414 19t1 Games 9

#### **Babbage & Lovelace tic-tac-toe machine**



UNSW ©Alan Blair, 2013-19

COMP3411/9414 19t1 Games 10

#### **Key Ideas**

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- Pruning to allow deeper search (McCarthy, 1956)

### **Types of Games**

- Discrete Games
  - ▶ fully observable, deterministic (chess, checkers, go, othello)
  - ▶ fully observable, stochastic (backgammon, monopoly)
  - partially observable (bridge, poker, scrabble)
- Continuous, embodied games
  - ► robocup soccer, pool (snooker)

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1

Games

11

### Why Games?

- "Unpredictable" opponent ⇒ solution is a strategy
  - must respond to every possible opponent reply
- Time limits  $\Rightarrow$  must rely on approximation
  - tradeoff between speed and accuracy
- Games have been a key driver of new techniques in CS and AI

UNSW ©Alan Blair, 2013-19 UNSW ©Alan Blair, 2013-19

COMP3411/9414 19t1 Games 12 COMP3411/9414 19t1 Games 13

### **Samuel's Checkers Program**

"Elaborate table-lookup procedures, fast sorting and searching procedures, and a variety of new programming tricks were developed..."

Samuel's 1959 paper contains groundbreaking ideas in these areas:

- hash tables
- data compression
- parameter tuning via machine learning

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 14

#### **Minimax**

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value = best achievable payoff against best play



### **Game Tree (2-player, deterministic)**



Games

### Minimax algorithm

COMP3411/9414 19t1

UNSW

```
function minimax( node, depth )  \begin{array}{c} \text{if node is a terminal node or depth} = 0 \\ \text{return heuristic value of node} \\ \text{if we are to play at node} \\ \text{let } \alpha = -\infty \\ \text{foreach child of node} \\ \text{let } \alpha = \max(\ \alpha, \min(\ \alpha, \min(\ \alpha, \min(\ \alpha, \beta, \beta))) \\ \text{return } \alpha \\ \text{else } \text{// opponent is to play at node} \\ \text{let } \beta = +\infty \\ \text{foreach child of node} \\ \text{let } \beta = \min(\ \beta, \min(\ \beta, \min(\ \beta, \beta, \beta))) \\ \text{return } \beta \\ \end{array}
```

UNSW © Alan Blair, 2013-19

15

COMP3411/9414 19t1 Games 16 COMP3411/9414 19t1 Games

### **Minimax and Negamax**

The above formulation of Minimax assumes that all nodes are evaluated with respect to a *fixed player* (e.g. White in Chess).

If we instead assume that each node is evaluated with respect to *the player* whose turn it is to move, we get a simpler formulation known as Negamax.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 18 COMP3411/9414 19t1

#### **Properties of Minimax**

- Complete?
- Optimal?
- Time complexity?
- Space complexity?

### **Negamax formulation of Minimax**

```
function negamax( node, depth )  \begin{tabular}{l} if node is terminal or depth = 0 \\ return heuristic value of node \\ // from perspective of player whose turn it is to move \\ let $\alpha = -\infty$ \\ foreach child of node \\ let $\alpha = max($\alpha$, -negamax( child, depth-1 ))$ \\ return $\alpha$ \\ \end{tabular}
```

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 19

#### **Reducing the Search Effort**

For chess,  $b \approx 35$ ,  $m \approx 100$  for "reasonable" games  $\Rightarrow$  exact solution completely infeasible

Two ways to make the search feasible:

- don't search to final position; use heuristic evaluation at the leaves
- $\alpha$ - $\beta$  pruning

UNSW ©Alan Blair, 2013-19 UNSW ©Alan Blair, 2013-19

COMP3411/9414 19t1

#### **Heuristic Evaluation for Chess**

- material
  - $\triangleright$  Queen = 9, Rook = 5, Knight = Bishop = 3, Pawn = 1
- position
  - ▶ some (fractional) score for a particular piece on a particular square

Games

- interaction
  - ▶ some (fractional) score for one piece attacking another piece, etc.
- KnightCap used 2000 different features, but evaluation is rapid because very few features are non-zero for any particular board state (e.g. Queen can only be on one of the 64 squares at a time)
- the value of individual features can be determined by reinforcement learning

UNSW

© Alan Blair, 2013-19

COMP3411/9414 19t1

Games

22

### $\alpha$ - $\beta$ pruning example



### **Pruning – Motivation**



Q1: Why would "Queen to G5" be a bad move for Black?

Q2: How many White "replies" did you need to consider in answering?

Once we have seen one reply scary enough to convince us the move is really bad, we can abandon this move and continue searching elsewhere.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 23

#### $\alpha$ - $\beta$ pruning example



COMP3411/9414 19t1 Games 24 COMP3411/9414 19t1 Games 2.

### $\alpha$ - $\beta$ pruning example



UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 26

### $\alpha$ - $\beta$ search algorithm

## $\alpha$ - $\beta$ pruning example



UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 27

### Negamax formulation of $\alpha$ - $\beta$ search

```
function minimax( node, depth )  \text{return alphabeta( node, depth, } -\infty, \infty \, )   \text{function alphabeta( node, depth, } \alpha, \beta \, ) \\ \text{if node is terminal or depth = 0} \\ \text{return heuristic value of node} \\ \text{// from perspective of player whose turn it is to move} \\ \text{foreach child of node} \\ \text{let } \alpha = \max( \, \alpha, \, \text{-alphabeta( child, depth-1, -\beta, -\alpha \, ))} \\ \text{if } \alpha \geq \beta \\ \text{return } \alpha \\ \text{return } \alpha \\ \text{return } \alpha \\
```

UNSW ©Alan Blair, 2013-19 UNSW ©Alan Blair, 2013-19

#### Why is it called $\alpha$ - $\beta$ ?



 $\alpha$  is the best value  $\underline{\text{for us}}$  found so far, off the current path  $\beta$  is the best value for opponent found so far, off the current path

If we find a move whose value exceeds  $\alpha$ , pass this new value up the tree.

Games

If the current node value exceeds  $\beta$ , it is "too good to be true", so we "prune off" the remaining children.

UNSW © Alan Blair. 2013-19

COMP3411/9414 19t1 Games 30

#### Chess

Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997.

Traditionally, computers played well in the opening (using a database) and in the endgame (by deep search) but humans could beat them in the middle game by "opening up" the board to increase the branching factor. Kasparov tried this, but because of its speed Deep Blue remained strong.

Some experts believe Kasparov should have been able to defeat Deep Blue in 1997 if he hadn't "lost his nerve". However, chess programs stronger than Deep Blue are now running on standard PCs and could definitely defeat the strongest humans.

Modern chess programs rely on quiescent search, transposition tables and pruning heuristics.

© Alan Blair, 2013-19

#### **Properties of** $\alpha$ **-** $\beta$

 $\alpha$ - $\beta$  pruning is guaranteed to give the same result as minimax, but speeds up the computation substantially

Games

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity =  $O(b^{m/2})$ 

To prove that a "bad" move is bad, we only need to consider one (good) reply. But to prove that a "good" move is good, we need to consider all replies.

This means  $\alpha$ - $\beta$  can search twice as deep as plain minimax.

An increase in search depth from 6 to 12 could change a very weak player into a quite strong one.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 31

#### **Checkers**

Chinook failed to defeat human world champion Marion Tinsley prior to his death in 1994, but has beaten all subsequent human champions.

Chinook used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board – a total of 443,748,401,247 positions. This database has since been expanded to include all positions with 10 or fewer pieces (38 trillion positions).

In 2007, Jonathan Shaeffer released a new version of Chinook and published a proof that it will never lose. His proof method fills out the game tree incrementally, ignoring branches which are likely to be pruned. After many months of computation, it eventually converges to a skeleton of the real (pruned) tree which is comprehensive enough to complete the proof.

Go

The branching factor for Go is greater than 300, and static board evaluation is difficult. Traditional Go programs broke the board into regions and used

Since 2006, new "Monte Carlo" players have been developed using UCB search. A tree is built up stochastically. After a small number of moves, the rest of the game is played out randomly, using fast pattern matching to

In March 2016, AlphaGo defeated the human Go champion Lee Sedol in a 4-1 match. AlphaGo uses MCTS, with deep learning neural networks for move selection and board evaluation. The networks are trained initially on a database of thousands of human championship Go games, and then

#### Go



UNSW © Alan Blair, 2013-19

IINSW

© Alan Blair, 2013-19

COMP3411/9414 19t1

Games

Games

34

COMP3411/9414 19t1

Games

35

#### Stochastic games: backgammon



### Stochastic games in general

refined with millions of games of self-play.

pattern knowledge to explore each region.

give preference to "urgent" moves.

In stochastic games, chance introduced by dice, card-shuffling, etc.

Expectimax is an adaptation of Minimax which also handles chance nodes.

if node is a chance node

return average of values of successor nodes

Adaptations of  $\alpha$ - $\beta$  pruning are possible, provided the evaluation is bounded.

UNSW

© Alan Blair, 2013-19

UNSW

© Alan Blair, 2013-19

#### **Expectimax algorithm**



UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 38

### For Expectimax, Exact values DO matter



Move choice only preserved by positive linear transformation of EVAL Hence EVAL should be proportional to the expected payoff.

#### For Minimax, Exact values don't matter



Move choice is preserved under any monotonic transformation of EVAL.

Only the order matters:

payoff in deterministic games acts as an ordinal utility function.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 39

### **Partially Observable games**

Card games are partially observable, because (some of) the opponents' cards are unknown.

This makes the problem very difficult, because some information is known to one player but not to another.

Typically we can calculate a probability for each possible deal.

Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals.

GIB, a strong and well-known bridge program, approximates this idea by

- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average

COMP3411/9414 19t1 Games 40 COMP3411/9414 19t1 Games 41

#### **Infinite Mario**



Currently best solution uses A\*Search, after reverse engineering the world model.

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 42 COMP3411/9414 19t1 Games 43

### **Robocup Soccer**



#### **Pacman**



Combines path planning, low-level control, reasoning under uncertainty and (for ghosts) multi-agent coordination.

UNSW © Alan Blair, 2013-19

# **Deep Green pool playing robot**



COMP3411/9414 19t1 Games 44 COMP3411/9414 19t1 Games 45

### **Deep Green pool playing robot**

Low level technical issues

- undistortion of overhead camera image
- ball appears "egg-shaped", need to find centre accurately

High level strategy

- easy to sink current ball
- more complicated to "set up" for the next ball
- competition using physical simulator

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 46

#### **MENACE**



#### **MENACE**

UNSW



Machine Educable Noughts And Crosses Engine Donald Michie, 1961

UNSW © Alan Blair, 2013-19

COMP3411/9414 19t1 Games 47

### **Game Tree (2-player, deterministic)**



COMP3411/9414 19t1 Games 48 COMP3411/9414 19t1 Games 4

### **Summary**

- games are fun to work on!
- games continue to be a driver of new technology
- tradeoff between speed and accuracy
- probabilistic reasoning
- force us to build "whole systems" chain is as strong as its weakest link

UNSW © Alan Blair, 2013-19

#### References

Tom Standage, 2002. The Mechanical Turk, Penguin Books.

Arthur Samuel, 1959. Some studies in machine learning using the game of checkers, IBM Journal on Research and Development, pages 210-229.

Chinook: www.cs.ualberta.ca/~chinook

Robocup: www.robocup.org

[look for Infinite Mario and Deep Green on youtube]

UNSW © Alan Blair, 2013-19