

Clustering

mit Scikit-Learn

Agenda

- 1. Definition Cluster-Analyse
- 2. Kontext Datensatz
- 3. Daten visualisieren & aufbereiten
- 4. Cluster-Analyse: Hierarchisch
- 5. Cluster-Analyse: k-Means
- 6. Fazit
- 7. Kritische Reflexion

Definition Cluster-Analyse

- Primäres Ziel clusteranalytischer Auswertungsverfahren ist, eine Menge von Klassifikationsobjekten in homogene Gruppen (Klassen, Cluster, Typen) zusammenzufassen. (Bacher, J. (2010))
- Unterscheidung in hierarchische und partitionierende Verfahren
- Exploratives Datenanalyseverfahren
- Anwendung im Bereich des maschinellen Lernens (unüberwacht)
- Cluster-Analyse ≠ Klassifizierung

Eigene Darstellung nach Backhaus, K (2021)

Kontext Datensatz

#	Package No	Shipment No	Gross Weight (kg)	Width (cm)	Height (cm)	Length (cm)	
0	1007530- 2011-03239	1000088	23	35	30	35	
1	1007530- 2011-03241	1000310	150	60	55	80	
2	1007530- 2011-03242	1000346	0,5	14	15	19	
3	1007530- 2011-03243	1000456	1,5	20	20	29	
4	1007530- 2011-03244	1000796	1	10	10	10	
5	1007530- 2011-03245	1000957	75	82	81	120	
6	1007530- 2011-03246	1000957	41	80	34	120	
7	1007530- 2011-03247	1001184	1.340	220	112	406	
8	1007530- 2011-03249	1001408	0,5	20	20	29	
9	1007530- 2011-03250	1001563	5	45	35	45	

- Logistik-Datensatz
- Identifier "Package No"
- Information zu <u>Abmaßen</u> und <u>Gewichten</u>
 Kombinationen ergeben verschieden große und schwere Packstücke
- Zusatzinformation "Shipment No"
- ➤ Welche Gruppen gleichartiger Packstücke können gebildet werden, um diese mit spezialisierten Teams zu bearbeiten?

Original-Datensatz (erste zehn Zeilen)

Daten aufbereiten

Entnommen aus: García, Salvador u. a. (2016)

Knowledge Discovery in Databases - Prozess

Daten aufbereiten

Entnommen aus: García, Salvador u. a. (2016)

Data preprocessing tasks

Data reduction approaches

Daten visualisieren

Visualisiert mit Matplotlib

Daten aufbereiten

- In diesem Datensatz
 - Data Cleaning, bspw. 1.001,57 zu 1001.57
 - Data Integration, z.B. Volumen ausrechnen
 - Data Normalization
 - Feature Selection

Daten visualisieren

Visualisiert mit Matplotlib

Daten aufbereiten

#	Package No	Shipment No	Gross Weight (kg)	Width (cm)	Height (cm)	Length (cm)	
0	1007530- 2011-03239	1000088	23	35	30	35	
1	1007530- 2011-03241	1000310	150	60	55	80	
2	1007530- 2011-03242	1000346	0,5	14	15	19	
3	1007530- 2011-03243	1000456	1,5	20	20	29	
4	1007530- 2011-03244	1000796	1	10	10	10	
5	1007530- 2011-03245	1000957	75	82	81	120	
6	1007530- 2011-03246	1000957	41	80	34	120	
7	1007530- 2011-03247	1001184	1.340	220	112	406	
8	1007530- 2011-03249	1001408	0,5	20	20	29	
9	1007530- 2011-03250	1001563	5	45	35	45	

#	Gross Weight (kg)	Width (cm)	Height (cm)	Length (cm)	Volume (cm³)
0	23.0	35.0	30	35	36750.0
1	150.0	60.0	55	80	264000.0
2	0.5	14.0	15	19	3990.0
3	1.5	20.0	20	29	11600.0
4	1.0	10.0	10	10	1000.0
5	75.0	82.0	81	120	797040.0
6	41.0	80.0	34	120	326400.0
7	1340.0	220.0	112	406	10003840.0
8	0.5	20.0	20	29	11600.0
9	5.0	45.0	35	45	70875.0

Original-Datensatz (erste zehn Zeilen)

Datensatz nach Aufbereitung (erste zehn Zeilen)

• Nach Schonlau, Matthias (2002) dient das Dendrogramm zur übersichtlichen Darstellung der

hierarchischen Cluster-Bildung.

• Wie Baumstruktur aufgebaut, vergleichbar mit Familienstammbaum

Visualisiert mit Matplotlib (Linkage ist 'ward')

• <u>Sasirekha, K./Baby, P. (2013)</u> beschreiben zwei unterschiedliche **Vorgehensweisen** zur Cluster-Bildung:

- Divisive, d.h. von oben nach unten, d.h. von einem Cluster rekursiv nach unten aufteilen
- Agglomerative, d.h. von unten nach oben, d.h. jede Observierung bekommt zu Beginn ein eigenes

Cluster und werden immer weiter verschmolzen

• Sasirekha, K./Baby, P. (2013) zählen folgende Verfahren auf, um die Distanz zwischen zwei

Observationen zu messen:

- Euklidische Distanz
- Quadratische euklidische Distanz (nicht in scikit-learn)
- Manhattan Distanz
- Maximum Distanz (nicht in scikit-learn)
- Mahalanobis Distanz (nicht in scikit-learn)
- Kosinus Ähnlichkeit

- Carvalho, Alexandre X. Y. u. a. (2009) beschreiben zwei weitere Distanz-Metriken:
 - L2 (euklidische Norm)
 - L1 (Summennorm)

- Murtagh, F. (1983) beschreibt mehrere Methoden, anhand welchen die Cluster-Bildung abhängig gemacht werden kann (engl. Linkage):
 - Single linkage (minimaler Abstand)
 - Complete linkage (maximaler Abstand)
 - Average linkage (Mittelwert)
 - Median linkage
 - Centroid linkage (Cluster-Schwerpunkte)
 - Ward's linkage (min. Zuwachs totaler Varianz)

• Shahapure, Ketan R./Nicholas, Charles (2020) zeigen eine Metrik für die Bewertung eines

Clustering auf: der Silhouette-Score

- Er ist der Mittelwert aller Silhouetten-Koeffizienten der Observationen
- Silhouette-Score nahe 1 => Daten sind in korrekten Clustern
- Silhouette-Score nahe 0 => mögliche Überlappung von Clustern
- Silhouette-Score nahe -1 => Daten sind in falschen Clustern

Distance- & Linkage-Method

0.90

0.85

0.80

0.75

Cluster-Analyse: Hierarchisch

Comparison of distance	Linkaga mathada	and increasing	number of aluators
Comparison of distance	e. iinkade memods	and increasing	number of clusters

						-			_		_							
Cosine, Average	0.91	0.89	0.88	0.86	0.88	0.89	0.9	0.87	0.85	0.85	0.87	0.89	0.9	0.89	0.82	0.78	0.77	0.76
Cosine, Complete	0.91	0.84	0.79	0.82	0.84	0.86	0.87	0.86	0.88	0.89	0.89	0.88	0.9	0.8	0.8	0.79	0.78	0.77
Cosine, Single	0.91	0.85	0.81	0.79	0.77	0.79	0.74	0.75	0.8	0.76	0.82	0.84	0.81	0.85	0.87	0.86	0.84	0.83
Euclidean, Ward	0.89	0.88	0.79	0.77	0.69	0.68	0.68	0.68	0.68	0.67	0.67	0.66	0.59	0.61	0.61	0.6	0.6	0.6
L1, Average	0.91	0.88	0.83	0.82	0.83	0.76	0.75	0.71	0.7	0.67	0.67	0.67	0.66	0.66	0.66	0.65	0.65	0.65
L1, Complete	0.91	0.88	0.83	0.76	0.75	0.76	0.72	0.71	0.67	0.67	0.67	0.63	0.66	0.66	0.65	0.63	0.63	0.64
L1, Single	0.91	0.88	0.83	0.82	0.83	0.82	0.72	0.71	0.67	0.68	0.68	0.67	0.56	0.58	0.56	0.62	0.61	0.58
L2, Average	0.91	0.88	0.84	0.83	0.84	0.76	0.72	0.71	0.7	0.68	0.67	0.67	0.66	0.66	0.66	0.66	0.65	0.64
L2, Complete	0.91	0.88	0.84	0.84	0.77	0.77	0.71	0.69	0.69	0.68	0.67	0.65	0.64	0.65	0.64	0.64	0.63	0.64
L2, Single	0.91	0.88	0.84	0.83	0.84	0.82	0.72	0.73	0.67	0.68	0.67	0.67	0.58	0.6	0.59	0.6	0.6	0.61
Manhattan, Average	0.91	0.88	0.83	0.82	0.83	0.76	0.75	0.71	0.7	0.67	0.67	0.67	0.66	0.66	0.66	0.65	0.65	0.65
Manhattan, Complete	0.91	0.88	0.83	0.76	0.75	0.76	0.72	0.71	0.67	0.67	0.67	0.63	0.66	0.66	0.65	0.63	0.63	0.64
Manhattan, Single	0.91	0.88	0.83	0.82	0.83	0.82	0.72	0.71	0.67	0.68	0.68	0.67	0.56	0.58	0.56	0.62	0.61	0.58
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
									Number of	of clusters								

Visualisiert mit Matplotlib

Visualisiert mit Matplotlib

- Partitionierung eines Datensatzes in k Cluster
- Zufällige Definition von k Clusterzentren
- Zuordnung der Datenpunkte basierend auf der euklidischen Distanz $\sqrt{\sum_{i=1}^n (q_i-p_i)^2}$
- Neuberechnung der Clusterzentren als Mittelwert aller Datenpunkte innerhalb eines Clusters

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Backhaus, K (2021), S.567

- K-means Verfahren mit k = 3
 Clustern
- Eines der Cluster zeigt sehr unterschiedliche Varianzen
- ➤ Ist die Anzahl der Cluster richtig gewählt?

- Ermittlung der Varianz als Durchschnitt der quadrierten euklidischen Distanz zum
 Zentrum des Clusters für k Cluster
- Der Übergang von einem zu zwei Clustern wird nicht berücksichtigt (Backhaus, K (2021), S.529)
- ➤ 4 Cluster sind eine geeignetere Anzahl

Visualisiert mit Matplotlib

- k-means Verfahren mit k = 4
 Clustern
- gleichförmig zufällige Auswahl initialer Cluster Zentren kann das Ergebnis negativ beeinflussen (Arthur, D. (2007))
- ➤ Verwendung von k-means++

- k-means++ Verfahren mit k = 4
 Clustern
- Zufällige Auswahl der ersten Zentrums, Auswahl weiterer Zentren basierend auf einer Wahrscheinlichkeitsverteilung (Shindler, M.(kein Datum))
- ➤ In diesem Fall kein Unterschied zu k-means

Fazit

- <u>Lessons-Learned #1:</u> Zu verwendete Cluster-Methode hängt von Verteilung der Daten ab. Die Daten-Aufbereitung ist daher von zentraler Bedeutung
- <u>Lessons-Learned #2:</u> Der <u>Silhouette-Score</u> ist eine wichtige Metrik zur Bewertung des Clusterings
- Ausblick: Weitere mögliche Cluster-Methoden: GMM, DBSCAN, ...
- Relevant: Interpretation des Ergebnisses

Interpretation des Ergebnisses

- ➤ Welche Gruppen gleichartiger Packstücke können gebildet werden, um diese mit spezialisierten Teams zu bearbeiten?
- Unterschiedliche Ergebnisse der hierarchischen und k-means Methode
- Umsetzbarkeit in der Praxis zu berücksichtigen
- Mehrwert von 2 Teams entsprechend hierarchischer Analyse fraglich
- Mehrwert der 4. Gruppe laut k-means Verfahren fraglich
- ➤ Bilden von 3 Gruppen anhand definierter Gewichtsgrenzen

Quellen

Arthur, D.; Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035

Backhaus, K. et al., 2021, Multivariate Analysemethoden: Eine anwendungsorientierte Einführung. Wiesbaden: Springer Verlag, pp.491

Bacher, J., Pöge, A., Wenzig, K., 2010, Clusteranalyse: Anwendungsorientierte Einführung in Klassifikationsverfahren. München: Oldenbourg Wissenschaftsverlag GmbH

Carvalho, A.X.Y., Albuquerque, P.H.M., de Almeida Junior, G.R. and Guimaraes, R.D., 2009. Spatial hierarchical clustering. Revista Brasileira de Biometria, 27(3), pp.411-442.

García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M. and Herrera, F., 2016. Big data preprocessing: methods and prospects. Big Data Analytics, 1(1), pp.1-22.

Murtagh, F., 1983. A survey of recent advances in hierarchical clustering algorithms. The computer journal, 26(4), pp.354-359.

Sasirekha, K. and Baby, P., 2013. Agglomerative hierarchical clustering algorithm-a. International Journal of Scientific and Research Publications, 83(3), p.83.

Schonlau, M., 2002. The clustergram: A graph for visualizing hierarchical and nonhierarchical cluster analyses. The Stata Journal, 2(4), pp.391-402.

Shahapure, K.R. and Nicholas, C., 2020, October. Cluster quality analysis using silhouette score. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 747-748). IEEE.

Shindler, M., no date, Approximation Algorithms for the Metric k-Median Problem, Zugriff via http://www.cs.ucla.edu/~shindler-kMedian-survey.pdf, 2022-11-27