出 1年記別建, 取后修成ナル月 Ub, 2023 ア204 Views by 11 users since 26 Jul 2023, 5:16 PM

版本	说明	拟制 人	日期
V1.01	新增寄存器定义	杜维忠	20230726
V1.02	新增蜂鸣器控制寄存器、新增STO模块 结果输出寄存器	杜维 忠	20230805
V1.03	新增EMIO RSV_1V8_I、RSV_3V3	杜维忠	20230816
V1.04	新增EMIO RF_GPIO	杜维忠	20230905

Tracer PL端寄存器	定义							
	序号	地址	寄存器名称	位宽	读写	定义	默认值	备注
控制寄存器	1	0x0000	ad_start	1bit	R/W	全向侦测AD使能寄存器	0	0: 打击状态; 1: 全向侦测状态
base_addr	2	0x0001	dx_ad_start	1bit	R/W	未定义		
0x00_8000_000 0	3	0x0002	reg_0x0010	16位	R/W	AD配置寄存器	0	对应上一版本0x0010地址寄存器(userreg_0x0010)
	4	0x0003	reg_0x0011	16位	R/W	AD配置寄存器	0	对应上一版本0x0011地址寄存器(userreg_0x0011)
0x00_8000_FFF	5	0x0004	reg_0x0012	16位	R/W	AD配置寄存器	0	对应上一版本0x0012地址寄存器(userreg_0x0012)
r	6	0x0005	reg_0x0020	16位	R/W	AD配置寄存器	0	对应上一版本0x0020地址寄存器(userreg_0x0020) bit[0]: o_ad_txnrx、硬件管脚(AA5); bit[1]: o_ad_enable、硬件管脚(bit[3]: o_ad_rst, 硬件管脚(AA6);
	7	0x0006	data_selA	2位	R/W	未定义		
	8	0x0007	data_selB	2位	R/W	未定义		
	9	0x0008	sl_switch	2位	R/W	门限检测结果输出、参数测量结果输出、外协算 法结果输出功能切换	0	0: 门限检测输出(算法模块一); 1: 参数测量结果输出(算法模块二);
	10	0x0009	dly_en_vtc	13位	R/W	AD9361 IDELAY控制(IDELAYE3原语)	0	EN_VTC, 启用电压温度补偿。
	11	0x000A	dly_load	13位	R/W	AD9361 IDELAY控制(IDELAYE3原语)	0	高电平时,从属性 DELAY_VALUE 或 CNTVALUEIN 总线加载计数器值。 在 VAR_LOAD 模式下且 UPDATE_MODE = ASYNC 时,IDELAYE3 加载端口 LOAD 将 CNTVALUEIN 设置的值加载到已连接到延迟投抽头选择逻辑的寄存器中。CNTVALUEIN[8:0] 上显示的值是新的抽头值。LOAD 信号为高电平有效信号,并与输入 CLK 信号同步。在对 CNTVALUEIN 总线应用新值后,请等特至少 1 个时钟周期,然后再应用 LOAD 信号。LOAD 操作期间。CE 必须保持低电平。 注释:可能最多需要 3 个时钟周期 (CLK) 后才能应用延迟。在此期间,输入数据不应更改,以确保输出 LOAD: 数据不会出现毛剩。

12	0x000B	dly_d	9位	R/W	AD9361 IDELAY控制(IDELAYE3原语)	0	CNTVALUEIN 管脚用于动态切换可加载抽头值。CNTVALUEIN 是所需的抽头数。最友用新值后的 1 个时钟周期后再应用 LOAD 信号,每次更改时,延迟线抽头数量的可3 CNTVALUEIN[8:0]: 为1到8个。
13	0x000C	o_dly_d_frame	9位	R/W	AD9361 IDELAY控制(IDELAYE3原语)	0	CNTVALUEIN 管脚用于动态切换可加载抽头值。CNTVALUEIN 是所需的抽头数。最处 用新值后的 1 个时钟周期后再应用 LOAD 信号。每次更改时,延迟线抽头数量的可3 CNTVALUEIN[8:0]: 为 1 到 8 个。
14	0x000D	fan_pwm_rate	10位	R/W	FAN转速控制	0	风扇转速分0~10档,0档转速为快;10档转速最慢; 周期T=100us
15	0x000E	aeag_vp0	32位	R	版本号0	0004+x xxx	编号+月日: 如: 00042022
16	0x000F	aeag_vp1	32位	R	版本号1		0A/0B+xxxxxx 如: 0A030012 (A: droneid) 、(B: 频谱侦测+WIFI协
17	0x0010	iRdRate	8位	R/W	未定义		
18	0x0011	motor_0x0090	16位	R	AD配置寄存器	0	对应上一版本0x0090地址寄存器(userreg_0x0090)
19	0x0012	motor_0x0091	16位	R	AD配置寄存器	0	对应上一版本0x0091地址寄存器(userreg_0x0091),用于检测AD9361 RX
20	0x0013	motor_0x009f	16位	R	AD配置寄存器	0	对应上一版本0x009f地址寄存器(userreg_0x009f)
21	0x0014	i_fpga_temp0	16位	R	FPGA 片内温度信息	0	SYSMONE4 For SYSMONE4, when using an external reference, the tempers function as shown in Equation 2-9. Temperature(C) = (ADC_code × 507.5921310) - 279.4265 计算公式: 寄存器值; bits: 16;
22	0x0015	fan_speed	16位	R	风扇转速检测(时间500ms)	0	第一个风扇转速检测
23	0x0016	DIV_PARAMS	16位	R/W	AD9361发射周期配置	2000-1	默认: 10us(周期以200M时钟计算)
24	0x0017	dq_mode	1位	R/W	未定义		
25	0x0018	fan2_speed	16位	R	风扇2转速检测(时间500ms)	0	第二个风扇转速检测(注: T5硬件新增)
26	0x0019	i_fpga_curr1	16位	R	未定义		
27	0x001A	i_fpga_curr2	16位	R	未定义		
28	0x001B	i_fpga_bat	16位	R	未定义		
29	0x001C	tap_out_int0	9位	R/W	WIFI机型测试模式和正常模式选择	0	bit0: 0: 正式模式(默认) 1: 测试模式
30	0x001D	tap_out_int1	9位	R/W	WIFI机型测试模式下,测试ADC数据长度控制寄存器	0	测试模式下,ADC数据的有效长度; 注:仅在WIFI测试模式下有效
31	0x001E	tap_out_int2	9位	R/W	WIFI机型测试模式下,启动测试ADC数据模块工作	0	bit0: 0: 关闭测试ADC 1: 打开测试ADC; 注: 仅在WIFI测试模式下
32	0x001F	idelay_d0_load	1位	R/W	未定义		
33	0x0020	idelay_d1_load	1位	R/W	未定义		

34	0x0021	dac_out_vld	1位	R/W	未定义					
35	0x0022	cfg_parrot_5M_ gate	32位	R/W	parrot 5M带宽 相关峰门限阈值 低32位、 cfg_parrot_5M_gate[31:0]		cfg_parrot_5M_gate[47:0]			
36	0x0023	cfg_parrot_5M_ gate	16位	R/W	parrot 5M带宽相关峰门限阈值 高16位 cfg_parrot_5M_gate[47:32]					
37	0x0024	cfg_minise_gate	32位	R/W	minise 相关峰门限阈值 低32位、 cfg_minise_gate[31:0]		cfg_minise_5M_gate[47:0]			
38	0x0025	cfg_minise_gate	16位	R/W	minise 相关峰门限阈值 高16位 cfg_minise_gate[47:32]					
39	0x0026	o_minise_dat	32位	R	minse相关幅度值		o_minise_dat[31:0]			
40	0x0027	o_fl_re_im	32位	R	minse相关峰门限对应的ADC幅度和低32位、 o_fl_re_im[31:0]	0	o_fl_re_im[47:0]: PS软件读取到这个值,需除以656才是平均ADC数据的			
41	0x0028	o_fl_re_im	16位	R	minse相关峰门限对应的ADC幅度和 高16位、o_fl_re_im[47:32]	0				
42	0x0029	cfg_parrot_10M_ gate	32位	R/W	parrot 10M带宽 相关峰门限阈值 低32位、 cfg_parrot_10M_gate[31:0]		cfg_parrot_10M_gate[47:0]			
43	0x002A	cfg_parrot_10M_ gate	16位	R/W	parrot 10M带宽相关峰门限阈值 高16位 cfg_parrot_10M_gate[47:32]					
44	0x002B	cfg_parrot_20M_ gate	32位	R/W	parrot 20M带宽 相关峰门限阈值 低32位、 cfg_parrot_20M_gate[31:0]		cfg_parrot_20M_gate[47:0]			
45	0x002C	cfg_parrot_20M_ gate	16位	R/W	parrot 20M带宽相关峰门限阈值 高16位 cfg_parrot_20M_gate[47:32]					
46	0x002D	dds_mode_sw	8bit	R/W	dds_mode_sw WIFI机型混频通道选择	0	bit0: 1使能混频0 0关掉混频0; bit1: 1使能混频1 0关掉混频1; bi 关掉混频3; bit4: 1使能混频4 0关掉混频4;			
47	0x002E	o_axis_ctrl_tdata	32bit	R/W	3GPP Mixed Mode turbo decoder 数据寄存器	32'h000 4_1C20	3GPP Mixed Mode turbo decoder : FLUSH[31:31]+STANDARD[24:24			
48	0x002F	o_buzzer_start	1bit	R/W	蜂鸣器使能开关	0	0: 关闭蜂鸣器 1: 打开蜂鸣器			
49	0x0030	o_buzzer_pwm_ dat	32bit	R/W	蜂鸣器占空比设置	25000	周期T=250us(以200M时钟为例), 高电平维持时间t1=1/200M* (设置			
50	0x0031	i_peak_ptr	16bit	R	STO模块结果输出寄存器	0	droneid ADC0 STO(ADC0)模块结果寄存器(取值范围1-201);			
51	0x0032	i_peak_ptr2	16bit	R	STO模块结果输出寄存器	0	droneid ADC0 STO(ADC1)模块结果寄存器(取值范围1-201);			
52	0x0033	i_peak_ptr3	16bit	R	STO模块结果输出寄存器	0	droneid ADC1 STO(ADC0)模块结果寄存器(取值范围1-201);			
53	0x0034	i peak ptr4	16bit	R	STO模块结果输出寄存器	0	droneid ADC1 STO(ADC1)模块结果寄存器(取值范围1-201);			

	序 号	中断编号	地址	位宽	定义	Linux占 用	备注
安键开关状态反	1	GPIO0	121	1bit	DMA0 GPIO中断	占用	上传WIFI机型前处理算法结果数据中断
_馈 等寄存器说明	2	GPIO1	122	1bit	DMA1 GPIO中断	占用	上传频谱侦测全向+定向前处理算法结果数据中断
	3	GPIO2	123	1bit	gps UART中断	未占用	
	4	GPIO3	124	1bit	未定义	未占用	
	5	GPIO4	125	1bit	droneid_irq(ADC1)	未占用	droneid_irq 中断
	6	GPIO5	126	1bit	3GPP Mixed Mode turbo decoder IP	占用	3GPP 中断
	7	GPIO6	127	1bit	3GPP Mixed Mode turbo decoder IP	占用	3GPP 中断
	8	GPIO7	128	1bit	droneid_irq(ADC0)	未占用	droneid_irq 中断
	9	GPIO8	136	1bit	PL_UART0	未占用	PL_UART0 中断
	10	GPIO9	137	1bit	PL_UART1	未占用	PL_UART1 中断
	11	GPIO10	138	1bit	PL_I2C0	占用	PL_I2C0中断
	12	GPIO11	139	1bit	AXI_DMA_FFT	占用	AXI_DMA_FFT中断
	13	GPIO12	140	1bit	AXI_DMA_FFT	占用	AXI_DMA_FFT中断
	14	GPIO13	141	1bit	BAT_I2C	占用	BAT_I2C中断
	15	GPIO14	142	1bit	PL_UART4	未占用	PL_UART4 中断
	16	GPIO15	143	1bit	PL_UART5	未占用	PL_UART5 中断
PS端片地址				·		'	
	序号	类型	地址范围		定义		备注

√ # /zynq_ultra_ps_e_0

✓ M /zynq_ultra_ps_e_0/Data (40 address bits: 0x0080000000 [512M])

1\$ /axi_dma_adc/S_AXI_LITE	S_AXI_LITE	Reg	0x00_8004_0000	Ø 64K ▼	0x00_8004_FFFF	
1\$ /axi_dma_fflvS_AXI_LITE	S_AXI_LITE	Reg	0x00_8008_0000	Ø 64K ▼	0x00_8008_FFFF	
1\$ /axi_dma_others/S_AXI_LITE 1\$ /axi_dma_turbo/S_AXI_LITE	S_AXI_LITE S_AXI_LITE	Reg	0x00_8005_0000 0x00_800E_0000	Ø 64K •	0x00_8005_FFFF 0x00_800E_FFFF	
1\$ /axi_gpio_dma/S_AXI	S_AXI	Reg	0x00_8006_0000	Ø 8K •	0x00_8006_1FFF	
1\$ /BAT_I2C/S_AXI	S_AXI	Reg	0x00_8001_0000	Ø 64K ▼	0x00_8001_FFFF	
18_AXI	M08_AXI	Reg	0x00_8100_0000	0 4K •	0x00_8100_0FFF	
7\$ M09_AXI 7\$ M10 AXI	M09_AXI M10_AXI	Reg	0x00_8101_0000 0x00_8102_0000	0 4K •	0x00_8101_0FFF 0x00_8102_0FFF	
7\$ /M11_AXI	M11_AXI	Reg	0x00_8103_0000	Ø 4K •	0x00_8103_0FFF	
T# /M12_AXI	M12_AXI	Reg	0x00_8104_0000	Ø 4K ▼	0x00_8104_0FFF	
1¢ /PL_I2C0/S_AXI	S_AXI	Reg	0x00_8002_0000	Ø 8K ▼	0x00_8002_1FFF	
1\$ /PL_UARTO/S_AXI 1\$ /PL_UART1/S_AXI	S_AXI S_AXI	Reg	0x00_8003_0000 0x00_8007_0000	0 8K -	0x00_8003_1FFF 0x00_8007_1FFF	
1¢ /PL_UART2/S_AXI	S_AXI	Reg	0x00_8009_0000	Ø 8K •		
1\$ /PL_UART3/S_AXI	S_AXI	Reg	0x00_800A_0000	Ø 8K ▼	0x00_800A_1FFF	
1\$ /PL_UART4/S_AXI	S_AXI	Reg	0x00_800B_0000	Ø 8K ▼	0x00_800B_1FFF	
1¢ /PL_UART5/S_AXI 1¢ /PL_UART6/S_AXI	S_AXI S_AXI	Reg	0x00_800C_0000 0x00_800D_0000	/ 8K •	0x00_800C_1FFF 0x00_800D_1FFF	
0x00 8000 00000x0	0 8000 F	FFF: BI	RAM批址	-范围:		
					左、十	
0x00_8004_00000x0			-			
0x00_8005_00000x0	0_8005_F	·FFF: 频	谱侦测前	处理全	句+定向侦	测数据;
0x00_8006_00000x0	0_8006_1	FFF: D	MA GPI	Э;		
0x00_8001_00000x0	0_8001_1	FFF: B	at i2c ∉	池电量		
0x00_8100_00000x0	0_8100_0)FFF: D	roneid	M0	8_AXI	-
0x00_8101_00000x0	0_8101_0)FFF: D	roneid	M0	9_AXI	
0x00_8102_00000x0	0_8102_0)FFF: D	roneid	M1	0_AXI	
0x00 8103 00000x0	0 8103 0)FFF: D	roneid	M1	1 AXI	
0x00 8002 00000x0	 0	FFF: PI	1200 图	伟(2C	_	
0x00 8003 00000x0					族芽虫口(1	RG450)
			_			,
0x00_8007_00000x0			_		□(RN440))
0x00_8009_00000x0	0_8009_1	FFF: PL	_UART2	图传串		
0x00_800A_00000x0	0_800A_	1FFF: P	L_UART3	图传串		
0x00_800B_00000x0	0_800B_1	IFFF: Pl	_UART4	· 无效		
0x00_800C_00000x0	0_800C_ ⁻	1FFF: PI	_UART5	陀螺仪	以串口 波	特率 115200
0x00_800D_00000x0	0_800D_	1FFF: P	L_UART6	õ		

	序 号	地址	寄存器名称	位宽	读写	定义	默认值	备注
M08_AXI: 0x00_8100_000	1	0x00	cfg_pwr_gate[31 :0]	32bit	R/W	判断相关峰的门限阈值低位	0	
0 epos	2	0x04	cfg_pwr_gate[47 :32]	16bit	R/W	判断相关峰的门限阈值高位	0	
	3	0x08	cfg_rf_mod	4bit	R/W	配置当前系统频点,支持4种模式。		

		I				0: RF mod0		
						1: RF mod1		
						2: RF mod2		
						3: RF mod3		
						4: RF mod 4, 使用 cfg_pinc 控制PL的频率偏移 量。		
						others: RSV		
	4	0x0C	cfg_pinc_ch0	14bit	R/W	配置频率0		
	5	0x10	cfg_pinc_ch1	14bit	R/W	配置频率 0x1000		
								T
	6	0x20	latch_idx_freqoff set	1bit	R	频率搬移		
	7	0x24	latch_cfg_freq_ mod	4bit	R	当前频点(ADC0)		
	8	0x28	latch_idx_freqoff set	1bit	R	频率搬移		
	9	0x2c	latch_cfg_freq_ mod	4bit	R	当前频点(ADC1)		
M09_AXI: 0x00_8101_000 0	1	0x00	rd_ddr_start_ad dr[31:0]	32bit	R/W	读ddr开始地址的低32bit		
logger	2	0x04	rd_ddr_start_ad dr[48:32]	16bit	R/W	读ddr开始地址的高17bit		
	3	0x08	rd_ddr_end_add r[31:0]	32bit	R/W	读ddr结束地址的低32bit		
	4	0x0C	rd_ddr_end_add r[48:32]	16bit	R/W	读ddr结束地址的高17bit		
	5	0x10	read_ddr_start	1bit	R/W	读ddr使能信号,使用bit 0 1: 开启读ddr		
						0: 关闭读ddr		
M10_AXI: 0x00_8102_000	1	0x00	dat_mux	2bit	RW	0: 使用adc数据;		
0						1:使用DDR-dummy-RF数据,用于自测试模式;		
u_adc_dat_mux						default: 0		
M11_AXI: 0x00_8103_000	1	0x00	cfg_pwr_gate[31 :0]	32bit	R/W	判断相关峰的门限阈值低位	0	

0 epos	2	0x04	cfg_pwr_gate[47 :32]	16bit	R/W	判断相关峰的门限阈值高位	0	
	3	0x08	cfg_rf_mod	4bit	R/W	配置当前系统频点,支持4种模式。		
						0: RF mod0		
						1: RF mod1 2: RF mod2		
						3: RF mod3		
						4: RF mod 4,使用 cfg_pinc 控制PL的频率偏移量。		
						others: RSV		
	4	0x0C	cfg_pinc_ch0	14bit	R/W	配置频率0		
	5	0x10	cfg_pinc_ch1	14bit	R/W	配置频率 0x1000		
	6	0x20	latch_idx_freqoff set	1bit	R	频率搬移		
	7	0x24	latch_cfg_freq_ mod	4bit	R	当前频点(ADC0)		
	8	0x28	latch_idx_freqoff set	1bit	R	频率搬移		
	9	0x2c	latch_cfg_freq_ mod	4bit	R	当前频点(ADC1)		

PS端EMIO和外部硬件管脚对应关系

EMIO端口号(1- 94)	信号定义(注:全可通过软件配置成inout)	硬件管脚	详细描述
1	RF_CTLA[0]	C12	控制9361通道相关
2	RF_CTLA[1]	D12	控制9361通道相关
3	RF_CTLA[2]	A11	控制9361通道相关
4	RF_CTLA[3]	A12	控制9361通道相关
5	RF_CTLB[0]	A10	控制9361通道相关
6	RF_CTLB[1]	B11	控制9361通道相关
7	RF_CTLB[2]	B10	控制9361通道相关
8	RF_CTLB[3]	C11	控制9361通道相关

9	SWITCH_5V_EN	C1	高电平使能9361 5V输出
10	CTRL_OUT[0]	C8	AD9361控制信号
11	CTRL_OUT[1]	В8	AD9361控制信号
12	CTRL_IN[0]	C6	AD9361控制信号
13	CTRL_IN[1]	В6	AD9361控制信号
14	CTRL_IN[2]	A7	AD9361控制信号
15	SYS_LED3	AF2	LED
16	SYS_LED2	AE2	ELD
17	FAN_EN	AA11	输出高电平风扇供电
18	RF_GPIO_0	D11	测试
19	Vbrator_EN	Y9	高电平马达电源输出
20	TC_DGB_BOOT	AG11	TC图传
21	RG450_BT_EN	AH13	WIFI
22	RG450_WL_EN	AG13	WIFI
23	TC_USB_SEL2	AH10	TC图传
24	TC_USB_SEL1	AG10	TC图传
25	TC_USB_5V_EN	AH11	TC图传-供电开关
26	TC_USBMUX_EN	AF11	TC图传
27	VCC_GYRO_EN	AA8	陀螺仪
28	ANT_CTL2	B13	定向天线
29	TEMP_ALT1	AC11	温度传感器
30	TEMP_ALT0	AB11	温度传感器
31	TC_GPIO	AH12	TC图传
32	PL_KEY1	AE4	
33	PL_KEY0	AB5	
34	TCAL9539_INT2	AE7	
35	TCAL9539_INT1	AD7	
36	TC_USB_RESET	AD9	TC图传
37	TC_USB_CS	AC9	TC图传

38	RN440_H_WK_WL	W12	WIFI
39	RN440_H_WK_BT	Y13	WIFI
40	RN440_BT_WK_HOST	Y14	WIFI
41	RN440_WL_DIS	W13	WIFI
42	RN440_BT_DIS	W14	WIFI
43	PCIE_PME_L	AB14	PCIE
44	PCIE_CLKREQ_L	AB15	PCIE
45	PL_UART1_RTS	AB13	
46	PL_UART1_CTS	AA13	
47	RG450_H_WK_BT	AD15	WIFI
48	RG450_BT_WK_H	AF13	WIFI
49	RG450_WL_WK_H	AE13	WIFI
50	PL_UARTO_CTS	AH14	
51	PL_UARTO_RTS	AG14	
52	MCU_RUN	F15	
53	PON_KEY	D14	
54	ANT_CTL1	D15	定向天线
55	ANT_CTL0	C13	定向天线
56	ANT_CTL_5V_EN	C14	定向天线
57	RSV_1V8_IO0	AF8	GPIO
58	RSV_1V8_IO1	AG8	GPIO
59	RSV_1V8_IO2	AH8	GPIO
60	RSV_1V8_IO3	AH7	GPIO
61	RSV_1V8_IO4	AG6	GPIO
62	RSV_1V8_IO5	AG5	GPIO
63	RSV_1V8_IO6	AF7	GPIO
64	RSV_1V8_IO7	AF6	GPIO
65	RSV_3V3_IO0	G15	GPIO
66	RSV_3V3_IO1	G14	GPIO

67	RSV_3V3_IO2	H14	GPIO
68	RSV_3V3_IO3	H13	GPIO
69	RSV_3V3_IO4	K14	GPIO
70	RSV_3V3_IO5	J14	GPIO
71	RSV_3V3_IO6	L14	GPIO
72	RSV_3V3_IO7	L13	GPIO
73	RF_GPIO[1]	E12	GPIO
74	RF_GPIO[2]	D10	GPIO
75	RF_GPIO[3]	E10	GPIO
76	RF_GPIO[4]	F11	GPIO
77	RF_GPIO[5]	F12	GPIO
78	RF_GPIO[6]	F10	GPIO
79	RF_GPIO[7]	G11	GPIO