Transaction Analysis

Fraud analysis is crucial due to the rising incidence of fraud in transactions, aiming to detect patterns and anomalies. It helps mitigate risks, ensuring financial security and compliance with regulations. Enhancing customer trust is vital by demonstrating a commitment to secure transactions. Operational efficiency improves through streamlined processes and resource optimization. The financial industry faces challenges with the increasing complexity of digital transactions. Data-driven insights enable informed decisions for continuous improvement in fraud prevention. Adaptation to evolving threats is essential to stay ahead in the dynamic landscape of financial transactions.

Dictionary

- **step** maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).
- type CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.
- amount amount of the transaction in local currency.
- nameOrig customer who started the transaction
- oldbalanceOrg initial balance before the transaction
- newbalanceOrig new balance after the transaction
- nameDest customer who is the recipient of the transaction
- **oldbalanceDest** initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).
- **newbalanceDest** new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).
- **isFraud** This is the transactions made by the fraudulent agents inside the simulation. In this specific dataset the fraudulent behavior of the agents aims to profit by taking control or customers accounts and try to empty the funds by transferring to another account and then cashing out of the system.
- **isFlaggedFraud** The business model aims to control massive transfers from one account to another and flags illegal attempts. An illegal attempt in this dataset is an attempt to transfer more than 200.000 in a single transaction.

Procedure

How we proceed the Transaction Fraud analysis.

Data Exploration

Step 1: Uniques & NAs

Objective: To know if there is any duplicate data and if at all there are any missing values.

Unique Values:

1. Pick out how many different values each column has.

Null Values:

1. Check whether the fields have missing data in them or not.

2. Find out if the missing data is important in our analysis.

Step 2: Distribution Among Classes

Objective: Check percentage split between normal and fraud transactions.

• Class Distribution:

1. Number of classes represented by transactions needs to be counted.

2.Make a bar graph that simply shows how different normal transactions are from fraud cases graphically represented by a bar chart.

Step 3: Amount Transfer Per Class

Objective: How much money is involved in various types of transactions?

• Amount Distribution:

1.Adding up the amounts for each group is essential.

2.Show on a bar chart what would be the financial impact of fraud versus normal transactions.

Step 4: Distribution Among Classes for Flagged Fraud

Objective: Transactions identified as frauds through flagging

• Flagged Fraud Distribution:

1. Find out how many among the given number of cases were flagged as fraud by an existing system.

2. Revisit class distribution methodology while considering flagged fraud.

Step 5: Amount Transfer Per Class for Flagged Fraud Objective: Understand the money involved in transactions flagged as fraud.

• Flagged Fraud Amount Distribution: 1.Sum up the amounts for transactions flagged as fraud. 2.Visualize with a bar chart to see the financial impact of flagged fraud transactions.

Step 6: Cash Flows from Various Transactions Objective: Understand how money moves around in different types of transactions.

• Cash Flow Analysis: 1.Look at the flow of money for each type of transaction. 2.Identify patterns and anomalies in the movement of funds.

Step 7: Major Types Involved in Fraud Objective: Identify the main types of transactions associated with fraud.

• Fraud Type Identification: 1.Analyze which types of transactions are frequently associated with fraud. 2.Identify patterns or common characteristics of fraudulent transactions.

Step 8: Concise Data - Remove Unwanted Columns Objective: Streamline the dataset by removing unnecessary columns.

Identify Unwanted Columns:

1.Look for columns that do not contribute significantly to the analysis or contain redundant information.

Step 9: Likelihood of Fraud - Recipient vs. Initiator Objective: Understand if the recipient or initiator of a transaction is more likely to engage in fraud.

• Fraud Likelihood Analysis:

1.Consider creating a new feature indicating whether the recipient or initiator is involved in the fraud. Analyze the distribution of fraud cases based on this new feature.

• Visualize the Results:

1.Use visualizations bar charts to compare the likelihood of fraud between recipients and initiators. This provides insight into which party is more frequently associated with fraudulent activities.

Accuracy by existing Fraud detector

Evaluate the performance of the current fraud detector using custom accuracy functions and a confusion matrix. Identify True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). Utilize custom functions for Accuracy, Precision, Recall, and F1 Score. Create a confusion matrix for visual representation. Apply the fraud detector to a test set and calculate accuracy metrics to gain insights into its effectiveness.

Data Pre-Processing

Perform the nessesary processing on data to make data ready for ML Models.

Generating Sample Data from the fraud data

Generating sample data from fraud data is done to expedite the training of machine learning models and streamline the fine-tuning process. By using a sample, machine learning models can be trained more efficiently and fine-tuned with less computational burden, while still capturing the essential characteristics of the data.

ML Models

Train ML models for better Fraud detections.

Algorithm used:

- **1. KNN**
- 2. SVM
- 3. Logistic Regression
- 4. Random Forest Classification

Train the Best Performing Models on Entire Dataset.

Finally we Trained The best performing model on the entire dataset and obtain a better performing fraud detector than the exsisting one.

DATA EXPLORATION

```
import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
```

C:\Users\Lenovo\anaconda3\lib\site-packages\scipy__init__.py:138: UserWarning: A Num
Py version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected versi
on 1.24.4)</pre>

warnings.warn(f"A NumPy version >= {np_minversion} and < {np_maxversion} is required for this version of "

```
In [2]: fraud_data = pd.read_csv("Fraud.csv")
```

In [3]: fraud_data.head()

ut[3]:		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanc
	0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	
	1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	
	2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	
	3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	2
	4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	
	4								•

Step 1: Uniques & NAs

```
newbalanceOrig 2682586
nameDest 2722362
oldbalanceDest 3614697
newbalanceDest 3555499
isFraud 2
isFlaggedFraud 2
dtype: int64
```

```
In [5]: fraud_data.isnull().values.any()
```

Out[5]: False

```
In [6]: fraud_data.describe()
```

ut[6]:		step	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest
	count	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06	6.362620e+06
	mean	2.433972e+02	1.798619e+05	8.338831e+05	8.551137e+05	1.100702e+06	1.224996e+06
	std	1.423320e+02	6.038582e+05	2.888243e+06	2.924049e+06	3.399180e+06	3.674129e+06
	min	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	25%	1.560000e+02	1.338957e+04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
	50%	2.390000e+02	7.487194e+04	1.420800e+04	0.000000e+00	1.327057e+05	2.146614e+05
	75%	3.350000e+02	2.087215e+05	1.073152e+05	1.442584e+05	9.430367e+05	1.111909e+06
	max	7.430000e+02	9.244552e+07	5.958504e+07	4.958504e+07	3.560159e+08	3.561793e+08
	4					_	•

Step 2: Distribution Among Classes

```
count_classes = pd.value_counts(fraud_data['isFraud'], sort = True)
print(f"Number of normal Transactions : {count_classes[0]} | Number of Fraud Transaction = ['blue', 'red']
count_classes.plot(kind = 'bar', rot=0,color = color)
plt.title("Transaction Class Distribution")
plt.xlabel("Class")
plt.ylabel("Frequency")
```

```
Number of normal Transactions : 6354407 | Number of Fraud Transactions : 8213 Out[7]: Text(0, 0.5, 'Frequency')
```


• Number of normal Transactions : 6354407 | Number of Fraud Transactions : 8213

Step 3: Amount Transfer Per Class

```
In [8]:
          ## Get the Fraud and the normal dataset
          fraud = fraud_data[fraud_data['isFraud']==1]
          normal = fraud_data[fraud_data['isFraud']==0]
 In [9]:
          print(fraud.shape, normal.shape)
          (8213, 11) (6354407, 11)
In [10]:
          fraud.amount.describe()
Out[10]: count
                   8.213000e+03
         mean
                   1.467967e+06
         std
                   2.404253e+06
         min
                   0.000000e+00
         25%
                   1.270913e+05
         50%
                   4.414234e+05
         75%
                   1.517771e+06
         max
                   1.000000e+07
         Name: amount, dtype: float64
In [11]:
          normal.amount.describe()
                   6.354407e+06
Out[11]: count
                   1.781970e+05
         mean
                   5.962370e+05
         std
         min
                   1.000000e-02
         25%
                   1.336840e+04
         50%
                   7.468472e+04
                   2.083648e+05
         75%
                   9.244552e+07
         max
         Name: amount, dtype: float64
In [12]:
          f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
          f.suptitle('Amount per transaction by class')
          bins = 50
          ax1.hist(fraud.amount, bins = bins,color = "red")
```

```
ax1.set_title('Fraud')
ax2.hist(normal.amount, bins = bins , color = "blue")
ax2.set_title('Normal')
plt.xlabel('Amount (rs)')
plt.ylabel('Number of Transactions')
plt.yscale('log')
plt.show();
```


Step 4: Distribution Among Classes for Flagged Fraud

```
In [13]:
    count_classes = pd.value_counts(fraud_data['isFlaggedFraud'], sort = True)
    print(f"Number of Flagged normal Transactions : {count_classes[0]} | Number of Flagg
    color = ['green', 'red']
    count_classes.plot(kind = 'bar', rot=0,color = color)
    plt.title("Transaction Class Distribution")
    plt.xlabel("Class")
    plt.ylabel("Frequency")
```

Number of Flagged normal Transactions : 6362604 | Number of Flagged Fraud Transaction s : 16

Out[13]: Text(0, 0.5, 'Frequency')

 Number of Flagged normal Transactions: 6362604 | Number of Flagged Fraud Transactions: 16

Step 5: Amount Transfer Per Class for Flagged Fraud

```
## Get the Flagged Fraud and the Flagged normal dataset
flagged_fraud = fraud_data[fraud_data['isFlaggedFraud']==1]
flagged_normal = fraud_data[fraud_data['isFlaggedFraud']==0]
```

```
In [15]: print(flagged_fraud.shape,flagged_normal.shape)
```

(16, 11) (6362604, 11)

```
In [16]:
    f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
    f.suptitle('Amount per transaction by class')
    bins = 25
    ax1.hist(flagged_fraud.amount, bins = bins,color = "red")
    ax1.set_title('Fraud')
    ax2.hist(flagged_normal.amount, bins = bins , color = "green")
    ax2.set_title('Normal')
    plt.xlabel('Amount (rs)')
    plt.ylabel('Number of Transactions')
    plt.yscale('log')
    plt.show();
```



```
In [17]: fraud_data[fraud_data["isFraud"] == 1].head(n = 10)
```

Out[17]:		step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldk
	2	1	TRANSFER	181.00	C1305486145	181.00	0.0	C553264065	
	3	1	CASH_OUT	181.00	C840083671	181.00	0.0	C38997010	
	251	1	TRANSFER	2806.00	C1420196421	2806.00	0.0	C972765878	
	252	1	CASH_OUT	2806.00	C2101527076	2806.00	0.0	C1007251739	
	680	1	TRANSFER	20128.00	C137533655	20128.00	0.0	C1848415041	
	681	1	CASH_OUT	20128.00	C1118430673	20128.00	0.0	C339924917	
	724	1	CASH_OUT	416001.33	C749981943	0.00	0.0	C667346055	
	969	1	TRANSFER	1277212.77	C1334405552	1277212.77	0.0	C431687661	
	970	1	CASH_OUT	1277212.77	C467632528	1277212.77	0.0	C716083600	

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldk
1115	1	TRANSFER	35063.63	C1364127192	35063.63	0.0	C1136419747	

Step 6: Concise Data - Remove Unwanted Columns

```
In [18]:
    drop_col = ["nameOrig","nameDest"]
    fraud_data_new = fraud_data.drop(drop_col,axis = 1)
    fraud_data_new.head(n=10)
```

Out[18]:	step		type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFra
	0	1	PAYMENT	9839.64	170136.00	160296.36	0.0	0.00	
	1	1	PAYMENT	1864.28	21249.00	19384.72	0.0	0.00	
	2	1	TRANSFER	181.00	181.00	0.00	0.0	0.00	
	3	1	CASH_OUT	181.00	181.00	0.00	21182.0	0.00	
	4	1	PAYMENT	11668.14	41554.00	29885.86	0.0	0.00	
	5	1	PAYMENT	7817.71	53860.00	46042.29	0.0	0.00	
	6	1	PAYMENT	7107.77	183195.00	176087.23	0.0	0.00	
	7	1	PAYMENT	7861.64	176087.23	168225.59	0.0	0.00	
	8	1	PAYMENT	4024.36	2671.00	0.00	0.0	0.00	
	9	1	DEBIT	5337.77	41720.00	36382.23	41898.0	40348.79	
	4								•

Step 7: Cash Flows from Various Transactions

```
In [19]: sns.boxplot(x = "type", y= "amount",data = fraud_data_new)
```

Out[19]: <AxesSubplot:xlabel='type', ylabel='amount'>


```
In [20]: sns.violinplot(x = "type", y= "amount",data = fraud_data_new , heu = "isFraud")
```

Out[20]: <AxesSubplot:xlabel='type', ylabel='amount'>


```
In [21]: sns.barplot(x = "type", y= "amount",data = fraud_data_new)
```

Out[21]: <AxesSubplot:xlabel='type', ylabel='amount'>


```
In [22]:
    types = list(fraud_data_new["type"].unique())
    cash_flow = {}

    for typ in types :
        df = fraud_data_new[fraud_data_new["type"] == typ]
        cash_flow[typ] = df["amount"].sum()

    transaction_type = list(cash_flow.keys())
    amount = list(cash_flow.values())
```


• It is clearly visible that larger sum of amount flow thre Transfer and Cash-outs Followed by Cash-ins ,Payments and least goes threw debit

Step 8: Major Types Involved in Fraud

```
In [24]: frauds = fraud_data_new[fraud_data["isFraud"] == 1]

In [25]: frauds.shape

Out[25]: (8213, 9)

In [26]: fig = plt.figure(figsize = (10,10))
    ax = fig.subplots()
    frauds["type"].value_counts().plot(ax=ax, kind='pie')
    #ax.set_ylabel("")
    ax.set_title("type of transaction are most used in fraud")
    plt.show()
```

type of transaction are most used in fraud


```
In [27]:
          frauds["type"].value_counts()
Out[27]: type
         CASH_OUT
                     4116
                     4097
         TRANSFER
         Name: count, dtype: int64
In [28]:
          a = list(frauds["type"].unique())
In [29]:
          fig = plt.figure(figsize = (5,5))
          plt.bar(a,list(frauds["type"].value_counts()), color =["red","purple"],
                  width = 0.5)
          plt.xlabel("Transaction Type")
          plt.ylabel("Frequency")
          plt.title("type of transaction are most used in fraud")
          plt.tight_layout()
          plt.show()
```


- There are only To types of transaction which is being used for fraud transaction. Transfer :4116 ,Cash_out : 4097.
- Both the types are almost used in similar frequencies.

Step 9: Likelihood of Fraud - Recipient vs. Initiator

We will use Two Formulas:

- oldbalanceOrg amount = newbalanceOrig
- oldbalanceDest + amount = newbalanceDest

TRANSFER 10000000.00

181728.11

1078013.76

CASH_OUT

TRANSFER

• Both side are at fault use & Operation

Initiator is fraud

4440

14861

25875

12930418.44

0.00

0.00

2930418.44

0.00

0.00

1844

97074

0.0

0.0

11397.0

	step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalance
6362462	730	TRANSFER	7316255.05	17316255.05	17316255.05	0.0	
6362506	734	TRANSFER	10000000.00	11810044.85	1810044.85	0.0	
6362528	736	TRANSFER	10000000.00	11314660.84	1314660.84	0.0	
6362582	741	TRANSFER	10000000.00	15674547.89	5674547.89	0.0	
6362584	741	TRANSFER	5674547.89	5674547.89	5674547.89	0.0	

127 rows × 9 columns

```
In [33]: costumer_who_started_transaction.shape
```

Out[33]: (127, 9)

Out[36]

Recipient is fraud

```
In [34]: fraud_recipient = frauds[(frauds["oldbalanceDest"] + frauds["amount"]) != frauds["ne
In [35]: fraud_recipient.shape
Out[35]: (5324, 9)
```

Either recipient received more mor or less money then expected

In [36]:	fraud_recipient	

:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalance[
	2	1	TRANSFER	181.00	181.00	0.0	0.00	(
	3	1	CASH_OUT	181.00	181.00	0.0	21182.00	(
	251	1	TRANSFER	2806.00	2806.00	0.0	0.00	(
	252	1	CASH_OUT	2806.00	2806.00	0.0	26202.00	(
	680	1	TRANSFER	20128.00	20128.00	0.0	0.00	(
	•••							
	6362614	743	TRANSFER	339682.13	339682.13	0.0	0.00	(
	6362616	743	TRANSFER	6311409.28	6311409.28	0.0	0.00	1
	6362617	743	CASH_OUT	6311409.28	6311409.28	0.0	68488.84	637989
	6362618	743	TRANSFER	850002.52	850002.52	0.0	0.00	(
	6362619	743	CASH_OUT	850002.52	850002.52	0.0	6510099.11	736010
	5324 rows	5 × 9 c	columns					

```
In [37]: both_fault = frauds[((frauds["oldbalanceOrg"] - frauds["amount"]) != frauds["newbala
In [38]: both_fault
```

724 1 CASH_OUT 416001.33 0.00 0.00 102.00 92916 4440 4 TRANSFER 10000000.00 12930418.44 2930418.44 0.00 14861 8 CASH_OUT 181728.11 0.00 0.00 11397.00 1844 25875 8 TRANSFER 1078013.76 0.00 0.00 0.00 9707 60853 9 TRANSFER 994453.20 1437370.87 442917.67 194812.76 6657 6362462 730 TRANSFER 7316255.05 17316255.05 17316255.05 0.00
14861 8 CASH_OUT 181728.11 0.00 0.00 11397.00 1844 25875 8 TRANSFER 1078013.76 0.00 0.00 0.00 0.00 9707 60853 9 TRANSFER 994453.20 1437370.87 442917.67 194812.76 6657 6362462 730 TRANSFER 7316255.05 17316255.05 17316255.05 0.00
25875 8 TRANSFER 1078013.76 0.00 0.00 0.00 9707- 60853 9 TRANSFER 994453.20 1437370.87 442917.67 194812.76 6657- 6362462 730 TRANSFER 7316255.05 17316255.05 17316255.05 0.00
60853 9 TRANSFER 994453.20 1437370.87 442917.67 194812.76 66574
6362462 730 TRANSFER 7316255.05 17316255.05 17316255.05 0.00
6362506 734 TRANSFER 10000000.00 11810044.85 1810044.85 0.00
6362528 736 TRANSFER 10000000.00 11314660.84 1314660.84 0.00
6362582 741 TRANSFER 10000000.00 15674547.89 5674547.89 0.00
6362584 741 TRANSFER 5674547.89 5674547.89 5674547.89 0.00

112 rows × 9 columns

Acurracy

Calculating the accuracy of in build fraud Detector

.0]:	fraud	ds.he	ad(n=10)									
0]:		step	type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDes				
	2	1	TRANSFER	181.00	181.00	0.0	0.0	0.00				
	3	1	CASH_OUT	181.00	181.00	0.0	21182.0	0.00				
	251	1	TRANSFER	2806.00	2806.00	0.0	0.0	0.00				
	252	1	CASH_OUT	2806.00	2806.00	0.0	26202.0	0.00				
	680 1 TRANSFER 20128.00 20128.00 0.0 0.0											
	681 1 CASH_OUT 20128.00 20128.00 0.0 6268.0 12:											
	724	1	CASH_OUT	416001.33	0.00	0.0	102.0	9291619.62				
	969 1 TRANSF			1277212.77	1277212.77	7 0.0	0.0	0.00				
	970 1 CAS		CASH_OUT	1277212.77	1277212.77	0.0	0.0	2444985.19				
	1115	1	TRANSFER	35063.63	35063.63	0.0	0.0	0.0				
	4											
	<pre>def accuracy_fn(y_true,y_pred,total_len): """It is a accuracy function which takes Y Label , Total length and Y Predtion a acc = (sum(y_pred == y_true)/total_len)*100 return acc</pre>											
	<pre>total_len = frauds.shape[0] y_true = np.array(frauds["isFraud"]) y_pred = np.array(frauds["isFlaggedFraud"]) accuracy_fn(y_true,y_pred,total_len)</pre>											

Out[42]: 0.1948131011810544

Acuraccy of Existing System is 0.1948131011810544 %

Confusion Matrix

In [45]: confusion_matrix_fun(y_true,y_pred)

Accuracy confusion matrix over all dataset

Acurracy of existing Fraud Detector among entire dataset: 99.87116942391656

• It is clearly be Shown That our detector is marking almost every transaction as valid transaction.

Creating Machine Learning Model Of Getting More Accurate Fraud Predictor

Data Preprocessing

	step	type	amount	oldbalanceOrg	newbalanceOrig	old balance Dest	newbalanceDest	isFı
0	1	PAYMENT	9839.64	170136.00	160296.36	0.0	0.00	
1	1	PAYMENT	1864.28	21249.00	19384.72	0.0	0.00	
2	1	TRANSFER	181.00	181.00	0.00	0.0	0.00	
3	1	CASH_OUT	181.00	181.00	0.00	21182.0	0.00	
4	1	PAYMENT	11668.14	41554.00	29885.86	0.0	0.00	
5	1	PAYMENT	7817.71	53860.00	46042.29	0.0	0.00	
6	1	PAYMENT	7107.77	183195.00	176087.23	0.0	0.00	
7	1	PAYMENT	7861.64	176087.23	168225.59	0.0	0.00	
8	1	PAYMENT	4024.36	2671.00	0.00	0.0	0.00	
9	1	DEBIT	5337.77	41720.00	36382.23	41898.0	40348.79	

Feature selection

```
In [49]:     new_data = fraud_data_new.iloc[:,1:8]
In [50]:     new_data.head(n=10)
```

Out[50]:		type	amount	oldbalanceOrg	newbalanceOrig	oldbalanceDest	newbalanceDest	isFraud
	0	PAYMENT	9839.64	170136.00	160296.36	0.0	0.00	0
	1	PAYMENT	1864.28	21249.00	19384.72	0.0	0.00	0
	2	TRANSFER	181.00	181.00	0.00	0.0	0.00	1
	3	CASH_OUT	181.00	181.00	0.00	21182.0	0.00	1
	4	PAYMENT	11668.14	41554.00	29885.86	0.0	0.00	0
	5	PAYMENT	7817.71	53860.00	46042.29	0.0	0.00	0
	6	PAYMENT	7107.77	183195.00	176087.23	0.0	0.00	0
	7	PAYMENT	7861.64	176087.23	168225.59	0.0	0.00	0
	8	PAYMENT	4024.36	2671.00	0.00	0.0	0.00	0
	9	DEBIT	5337.77	41720.00	36382.23	41898.0	40348.79	0

```
In [51]:
    new_data.isna().value_counts()
    # So there is no Nan values in Our data
```

Out[51]: type amount oldbalanceOrg newbalanceOrig oldbalanceDest newbalanceDest isFraud False False False False False False False

Name: count, dtype: int64

Encoding Categorical Data

Using OneHot encoding

```
In [52]:
           from sklearn.compose import ColumnTransformer
           from sklearn.preprocessing import OneHotEncoder
In [53]:
           ct = ColumnTransformer(transformers=[("encoder", OneHotEncoder(),[0])],remainder =
In [54]:
           X = ct.fit transform(new data)
In [55]:
           pd.DataFrame(X).head()
Out[55]:
               0
                   1
                       2
                                4
                                         5
                                                  6
                                                             7
                                                                     8
                                                                         9
                                                                            10
                           3
                          1.0
                              0.0
                                    9839.64
                                           170136.0
                                                     160296.36
             0.0
                 0.0
                      0.0
                                                                    0.0
                                                                        0.0
                                                                            0.0
             0.0
                 0.0 0.0
                         1.0
                              0.0
                                    1864.28
                                             21249.0
                                                       19384.72
                                                                    0.0
                                                                        0.0 0.0
            0.0 0.0 0.0 0.0
                                     181.00
                                               181.0
                                                          0.00
                                                                    0.0 0.0 1.0
                              1.0
             0.0
                 1.0 0.0
                         0.0
                              0.0
                                     181.00
                                               181.0
                                                          0.00
                                                               21182.0
                                                                        0.0
                                                                           1.0
             0.0 0.0 0.0 1.0 0.0 11668.14
                                             41554.0
                                                       29885.86
                                                                    0.0 0.0 0.0
In [56]:
```

Out[56]: array([[0.00000000e+00, 0.00000000e+00, 0.000000000e+00, ..., 0.000000000e+00, 0.000000000e+00],

```
[0.00000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 1.00000000e+00], ..., 6.84888400e+04, 6.37989811e+06, 1.00000000e+00], [0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00], 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 1.00000000e+00], [0.00000000e+00, 1.00000000e+00], [0.00000000e+00, 1.00000000e+00]])
```

Creating a Sample Data for Intial Exploration.

We'll Take 25% of data.

```
In [57]:
           # Quite large data sample
           t_data = pd.DataFrame(X)
           t_data.shape
Out[57]:
          (6362620, 11)
In [58]:
           fraction_data= t_data.sample(frac = 0.25,random_state=1)
           fraction_data.shape
Out[58]:
          (1590655, 11)
In [59]:
           fraction_data.head()
                                               5
                                                                 7
                                                                           8
Out[59]:
                         1
                             2
                                 3
                                                                                     9
                                                                                       10
                                   0.0
                                         23557.12
                                                   8059.00 31616.12 169508.66 145951.53 0.0
          6322570 1.0 0.0 0.0 0.0
          3621196 0.0 0.0 0.0 1.0 0.0
                                          6236.13
                                                      0.00
                                                               0.00
                                                                         0.00
                                                                                   0.00 0.0
          1226256 0.0 0.0 0.0 1.0
                                   0.0
                                         33981.87 18745.72
                                                               0.00
                                                                         0.00
                                                                                   0.00 0.0
          2803274 0.0 1.0 0.0 0.0 0.0
                                        263006.42 20072.00
                                                               0.00 390253.56 653259.98 0.0
          3201247 0.0 1.0 0.0 0.0 0.0 152013.74 20765.00
                                                               0.00 252719.19 404732.93 0.0
         Creating x,y
In [60]:
           x = fraction_data.iloc[:,:-1]
           y = fraction_data.iloc[:,-1]
```

Creating Training and Test Datasets

```
In [61]: from sklearn.model_selection import train_test_split
In [62]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size= 0.2,random_state= 1,
In [63]: x_train.head()
```

Out[63]:

9	8	1	6	5	4	3	2	1	U	
435385.74	408904.15	0.0	0.0	26481.59	0.0	0.0	0.0	1.0	0.0	2858944
16777958.62	14679569.28	0.0	0.0	2098389.34	1.0	0.0	0.0	0.0	0.0	5314620
0.00	0.00	0.0	0.0	12530.25	0.0	1.0	0.0	0.0	0.0	3640859
0.00	0.00	0.0	0.0	9696.39	0.0	1.0	0.0	0.0	0.0	353920
788641.88	609635.20	0.0	0.0	179006.68	1.0	0.0	0.0	0.0	0.0	3478354

Feature Scaling

```
In [64]:
           from sklearn.preprocessing import StandardScaler
           sc = StandardScaler()
           x_train.iloc[:,5:] = sc.fit_transform(x_train.iloc[:,5:])
           x_test.iloc[:,5:] = sc.fit_transform(x_test.iloc[:,5:])
          <ipython-input-64-515f9f77b2b4>:3: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
          er_guide/indexing.html#returning-a-view-versus-a-copy
            x_train.iloc[:,5:] = sc.fit_transform(x_train.iloc[:,5:])
          <ipython-input-64-515f9f77b2b4>:4: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
          er_guide/indexing.html#returning-a-view-versus-a-copy
            x_test.iloc[:,5:] = sc.fit_transform(x_test.iloc[:,5:])
In [65]:
           x_train.head()
                                                          6
                                                                    7
                                                                                        9
Out[65]:
                         1
                             2
                                  3
                                                5
                                                                              8
                                     0.0
                                         -0.256753
                                                   -0.288817 -0.292531
          2858944
                    0.0
                        1.0
                            0.0
                                0.0
                                                                       -0.203768
          5314620
                   0.0
                        0.0 0.0
                                0.0
                                     1.0
                                          3.206119
                                                   -0.288817
                                                             -0.292531
                                                                        3.992432
                                                                                  4.234334
                                         -0.280071
          3640859
                   0.0
                        0.0
                           0.0
                                1.0
                                     0.0
                                                   -0.288817
                                                             -0.292531
                                                                       -0.324004
                                                                                 -0.333920
           353920
                   0.0
                        0.0
                            0.0
                                     0.0
                                         -0.284807
                                                   -0.288817
                                                             -0.292531
                                                                       -0.324004
                                                                                 -0.333920
                                1.0
          3478354 0.0 0.0 0.0 0.0
                                    1.0 -0.001831
                                                   -0.288817 -0.292531 -0.144745 -0.119191
In [66]:
           x test.head()
                     0
                         1
                             2
                                  3
                                                5
                                                          6
                                                                    7
                                                                              8
                                                                                        9
Out[66]:
          2577983
                   1.0
                        0.0
                            0.0
                                0.0
                                     0.0
                                         -0.287832
                                                   -0.283036 -0.284045
                                                                       -0.319053
          1702852
                   0.0
                        0.0
                            0.0
                                1.0
                                     0.0
                                         -0.272005
                                                   -0.290019
                                                             -0.294222
                                                                       -0.328544
                                                                                 -0.338571
          1036433
                   0.0
                        1.0
                           0.0
                                0.0
                                     0.0
                                         -0.146459
                                                   -0.283764
                                                             -0.294222
                                                                        1.205553
                                                                                  1.109532
          1222871
                   0.0
                        1.0
                            0.0
                                0.0
                                     0.0
                                          0.418511
                                                   -0.286752
                                                             -0.294222
                                                                       -0.103981
                                                                                 -0.011995
```

0.059818 -0.286533 -0.294222 -0.328544 -0.279142

4755450 0.0 1.0 0.0 0.0 0.0

```
In [69]: # convert them into numpy array
x_train = np.array(x_train)
x_test = np.array(x_test)
y_train = np.array(y_train)
y_test = np.array(y_test)
```

ML MODELS

K-Nearest neighbour (KNN)

KNN - K-Nearest Neighbors (KNN) is a versatile algorithm used for classification and regression tasks. It assigns a new data point a label or value based on the majority class or average of k-nearest neighbors in the feature space. The algorithm relies on distance metrics, such as Euclidean distance, to determine proximity. The choice of the parameter k influences the model's bias-variance trade-off, with smaller values capturing more local patterns and larger values smoothing the predictions.

• For more info :- https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

```
In [74]:
          from sklearn.neighbors import KNeighborsClassifier
In [75]:
          import os
          n_jobs = os.cpu_count()
          n_jobs
Out[75]: 12
In [71]:
          classifier = KNeighborsClassifier(n_neighbors=5,p = 2,metric='minkowski', metric_par
In [72]:
          classifier.fit(x_train,y_train)
         KNeighborsClassifier(n_jobs=12)
Out[72]:
         Predicting on test dataset
In [73]:
          knn y pred = classifier.predict(x test)
In [74]:
          length = len(knn y pred)
          accuracy_fn(y_test,knn_y_pred,length)
Out[74]:
         99.93336078533686
In [75]:
          confusion_matrix_fun(y_test,knn_y_pred)
```


As we can see using Knn fraud detector we are chatching more number of frauds tha our original fraud detector

KNN visualization (Baad mai time mila tho)

Support Vector Machine (SVM)

SVM - Support Vector Machine (SVM) is a powerful supervised machine learning algorithm used for classification and regression tasks. It aims to find a hyperplane that maximally separates data points of different classes in the feature space. SVM can handle linear and non-linear relationships by using different kernel functions. The optimal hyperplane is chosen based on the support vectors, which are data points closest to the decision boundary. SVM is effective in highdimensional spaces, resistant to overfitting, and works well for both binary and multiclass classification problems. The regularization parameter (C) influences the trade-off between achieving a smooth decision boundary and classifying training points correctly. SVM is sensitive to scaling, and preprocessing data is crucial for optimal performance.

 For more info.:- https://www.javatpoint.com/machine-learning-support-vector-machinealgorithm

```
In [99]:
            from sklearn.svm import SVC
In [100...
            svm classifier = SVC(kernel='linear', random state=0)
In [101...
            svm_classifier.fit(x_train,y_train)
           SVC(kernel='linear', random_state=0)
Out[101...
In [102...
            svm y pred = svm classifier.predict(x test)
```

Calculating Accuracy and Confusion Matrix

```
In [105...
            length = len(svm y pred)
```

```
In [106... accuracy_fn(y_test,svm_y_pred,length)

Out[106... 99.89941250616884

In [107... confusion_matrix_fun(y_test,svm_y_pred)
```


Logistic Regression

LogisticRegression - Logistic Regression is a binary classification algorithm that predicts the probability of an instance belonging to a specific class. It uses the logistic function to transform the output into a range between 0 and 1. The model interprets the output as the likelihood of the positive class. The decision boundary is determined by a threshold, typically 0.5. Parameters are learned through maximum likelihood estimation during training. Logistic Regression is simple, interpretable, and effective for linear relationships between features and the log-odds of the output. It has applications in diverse fields due to its versatility.

for more info :- https://www.analyticsvidhya.com/blog/2021/07/an-introduction-to-logistic-regression/

```
In [115... from sklearn.linear_model import LogisticRegression
In [117... lg_classifier = LogisticRegression( n_jobs= n_jobs)
In [120... lg_classifier.fit(x_train,y_train)
Out[120... LogisticRegression(n_jobs=12)
In [121... lg_y_pred = lg_classifier.predict(x_test)
```

Calculating Accuracy and Confusion Matrix

```
In [122... accuracy_fn(y_test,svm_y_pred,length)
```

Out[122... 99.89941250616884

In [123...

confusion_matrix_fun(y_test,svm_y_pred)

Random Forest

Random Forest - Random Forest is an ensemble machine learning algorithm used for both classification and regression tasks. It builds multiple decision trees during training and merges their predictions to improve accuracy and robustness. Each tree is trained on a subset of the data, and random subsets of features are considered at each split. The final prediction is determined by averaging (for regression) or voting (for classification) across the individual trees. Random Forest is known for its high performance, resistance to overfitting, and suitability for complex datasets with many features.

• for more info. :- https://towardsdatascience.com/random-forest-classification-678e551462f5

99.92141602044441

Out[127...

accuracy_fn(y_test,rf_y_pred,length_rf)

In [128...

confusion_matrix_fun(y_test,rf_y_pred)

Training model on Entire Dataset

We'll use *Random Forest algorithm* as they shows most promissing results.

In [83]:	t	_dat	a.he	ead (r	า=10)							
Out[83]:		0	1	2	3	4	5	6	7	8	9	10	
	0	0.0	0.0	0.0	1.0	0.0	9839.64	170136.00	160296.36	0.0	0.00	0.0	
	1	0.0	0.0	0.0	1.0	0.0	1864.28	21249.00	19384.72	0.0	0.00	0.0	
	2	0.0	0.0	0.0	0.0	1.0	181.00	181.00	0.00	0.0	0.00	1.0	
	3	0.0	1.0	0.0	0.0	0.0	181.00	181.00	0.00	21182.0	0.00	1.0	
	4	0.0	0.0	0.0	1.0	0.0	11668.14	41554.00	29885.86	0.0	0.00	0.0	
	5	0.0	0.0	0.0	1.0	0.0	7817.71	53860.00	46042.29	0.0	0.00	0.0	
	6	0.0	0.0	0.0	1.0	0.0	7107.77	183195.00	176087.23	0.0	0.00	0.0	
	7	0.0	0.0	0.0	1.0	0.0	7861.64	176087.23	168225.59	0.0	0.00	0.0	
	8	0.0	0.0	0.0	1.0	0.0	4024.36	2671.00	0.00	0.0	0.00	0.0	
	9	0.0	0.0	1.0	0.0	0.0	5337.77	41720.00	36382.23	41898.0	40348.79	0.0	
[84]:	<pre>x_all = t_data.iloc[:,:-1] y_all = t_data.iloc[:,-1]</pre>												
[85]:	х	_all	.hea	ad()									
t[85]:		0	1	2	3	4	5	6	7	8	9		
	0	0.0	0.0	0.0	1.0	0.0	9839.64	170136.0	160296.36	0.0	0.0		

	0	1	2	3	4	5	6	7	8	9
1	0.0	0.0	0.0	1.0	0.0	1864.28	21249.0	19384.72	0.0	0.0
2	0.0	0.0	0.0	0.0	1.0	181.00	181.0	0.00	0.0	0.0
3	0.0	1.0	0.0	0.0	0.0	181.00	181.0	0.00	21182.0	0.0
4	0.0	0.0	0.0	1.0	0.0	11668.14	41554.0	29885.86	0.0	0.0

```
In [86]: x_all.shape
```

Out[86]: (6362620, 10)

Creating Training and Test Datasets

```
In [87]:
           x_all_train,x_all_test,y_all_train,y_all_test = train_test_split(x_all,y_all,test_si
In [88]:
           x_all_train.head()
Out[88]:
                                                                       7
                                                                                   8
                                                                                              9
                                                          0.00
          2276631 0.0 0.0 0.0
                                1.0
                                     0.0
                                            1607.27
                                                                     0.00
                                                                                 0.00
                                                                                            0.00
           1580855 0.0 0.0 0.0
                                1.0
                                     0.0
                                          16958.15
                                                        416.00
                                                                     0.00
                                                                                 0.00
                                                                                            0.00
                                         249226.07
           1080958 0.0 1.0 0.0 0.0
                                    0.0
                                                      11335.00
                                                                     0.00
                                                                                 0.00
                                                                                       155927.95
          4557677 1.0 0.0 0.0 0.0 0.0 217722.54 4383327.55 4601050.10 3507554.23
                                                                                      3289831.69
          3092419 1.0 0.0 0.0 0.0 0.0
                                          34150.62 5735503.44 5769654.06
                                                                            228360.12
                                                                                       194209.50
```

Feature Scaling

```
In [89]:
    x_all_train.iloc[:,5:] = sc.fit_transform(x_all_train.iloc[:,5:])
    x_all_test.iloc[:,5:] = sc.fit_transform(x_all_test.iloc[:,5:])

<ipython-input-89-4f925177c747>:1: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
    er_guide/indexing.html#returning-a-view-versus-a-copy
        x_all_train.iloc[:,5:] = sc.fit_transform(x_all_train.iloc[:,5:])
    <ipython-input-89-4f925177c747>:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
    er_guide/indexing.html#returning-a-view-versus-a-copy
        x_all_test.iloc[:,5:] = sc.fit_transform(x_all_test.iloc[:,5:])
```

```
In [90]:
               x_all_train.head()
                                                                                         7
Out[90]:
                                 1
                                       2
                                            3
                                                               5
                                                                            6
                                                                                                      8
                                                                                                                   9
                         0.0 \quad 0.0 \quad 0.0 \quad 1.0 \quad 0.0 \quad -0.294472 \quad -0.288640 \quad -0.292359 \quad -0.324045 \quad -0.333521
              2276631
                              0.0 0.0
                                          1.0
                                                0.0
                                                     -0.269117 -0.288496
                                                                               -0.292359
                                                                                            -0.324045 -0.333521
```

0.114513 -0.284716 -0.292359 -0.324045 -0.291079

1080958 0.0 1.0 0.0 0.0 0.0

1.281290

0.708309

0.561936

```
3092419 1.0 0.0 0.0 0.0 0.0 -0.240721 1.697312 1.680975 -0.256834 -0.280659

In [91]: #Converting all to numpy array
    x_all_train = np.array(x_all_train)
    x_all_test = np.array(x_all_test)
    y_all_train = np.array(y_all_train)
    y_all_test = np.array(y_all_test)
```

1.229113

0.062480

Random Forest for entire dataset

4557677 1.0 0.0 0.0 0.0 0.0

Calculating Confusion matrix and Accuracy.

```
In [131...
length_all = len(rf_y_all_pred)
length_all
```

Out[131... 1272524

```
In [132... round(accuracy_fn(y_all_test,rf_y_all_pred,length_all),2)
```

Out[132... 99.76

In [133... confusion_matrix_fun(y_all_test,rf_y_all_pred)

Summary

Distribution of Classes:

- The majority of transactions are normal (non-fraudulent), indicating a class imbalance.
- The percentage of fraud transactions is notably low, emphasizing the rarity of fraudulent activities.

Cashflow Analysis:

- The analysis reveals that the largest sum of money flows through Transfer and Cash-out transactions.
- Cash-ins and Payments follow, with significantly lower amounts involved. Debit transactions have the least monetary flow.

Amount Transfer Range:

- Fraud analysis indicates that fraudulent transactions often occur within a lower total amount transfer range.
- Understanding this pattern can aid in setting thresholds for anomaly detection and enhancing fraud prevention measures.

Transaction Types Involved in Frauds:

- Only two transaction types, Transfer (4116 instances) and Cash-out (4097 instances), are associated with fraud.
- Both types occur with similar frequencies, suggesting a potential pattern in fraudulent activities related to these transaction types.

Recipient Analysis in Frauds:

- Examining fraud occurrences reveals whether fraud tends to occur more frequently on the recipient side.
- It investigates whether recipients receive less or more money than expected, shedding light on potential patterns in fraudulent activities.

Accuracy of Existing Fraud Detector:

- The existing fraud detection model exhibits low accuracy, as it tends to classify nearly every transaction as valid.
- The model's performance raises concerns about its effectiveness in distinguishing between fraudulent and legitimate transactions.

Performance of ML Models:

- Out of four ML models evaluated, Random Forest demonstrates the highest accuracy.
- On the sample dataset, Random Forest achieves an accuracy of 99.93%, while on the entire dataset, it maintains a high accuracy of 99.76%.
- The superior performance of Random Forest suggests its effectiveness in accurately classifying transactions in this context.

Solutions

Fragmented Database for Enhanced Surveillance:

- To implement targeted surveillance, the database must be divided into several fragments.
- It is these lower amount transactions that need to be prioritized with strong surveillance measures.
- This strategy aims to enhance the speed and effectiveness of fraud detection for low-value transactions by focusing resources where the risk is higher.

Specialized Model Training for Fraud Detection:

- In view of this, it may be necessary to train the model on only two types of transactions which are involved in fraud consistently throughout.
- Specializing the model for these specific types can potentially improve accuracy and expedite fraud detection, as the model becomes finely tuned to recognize patterns relevant to fraudulent activity in those transaction categories.

Surveillance Focused on Transfers and Cash-Outs:

- Given that transfers and cash-outs form a significant proportion of most transactions, priority should be laid on specialized surveillance measures targeting such transactions.
- This targeted approach allows for concentrated monitoring where the transaction volume is high, optimizing resources for enhanced fraud detection in these critical transaction types.

Fragmented Database with Specialized Fraud Detection:

- Divide the database into fragments based on transaction characteristics, concentrating on specific subsets with unique patterns.
- Build specialized fraud detectors for each fragment, tailoring models to the distinctive features within those subsets.
- This approach aims to increase accuracy and accelerate fraud detection by customizing models to the nuances of different fragments, optimizing performance for specific transaction profiles.