

Exercício 5 Redes Locais

Autoria Pedro Henrique Dornelas Almeida **Matrícula** 18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

29 de Março de 2022

Exercício 5.1

Suponha $G_t = G_r = 0dB$:

a) Formule uma expressão para as perdas no espaço livre L_dB em função da frequência f medida em GHz e da distância d medida em km;

Temos a fórmula para a perda no espaço livre que é dada por:

$$L = \left(\frac{4\pi d}{\lambda}\right)^2 = \left(\frac{4\pi df}{c}\right)^2$$

Utilizando f em GHz e l em km e c=299.792.458 m/s:

$$L = \left(\frac{4\pi d_{km} f_{GHz}}{c} \cdot 10^9 \cdot 10^3\right)^2$$
$$L = \left(\frac{4\pi \cdot 10^{12}}{299792458} \cdot d_{km} \cdot f_{GHz}\right)^2$$

Passando para dB:

$$L_{dB} = 10log \left(\frac{4\pi \cdot 10^{12}}{299792458} \cdot d_{km} \cdot f_{GHz} \right)^{2}$$

$$L_{dB} = 20log \left(\frac{4\pi \cdot 10^{12}}{299792458} \right) + 20log(d_{km}) + 20log(f_{GHz})$$

$$L_{dB} = 92,44778 + 20log(d_{km}) + 20log(f_{GHz})$$

b) Elabore uma tabela de perdas com as seguintes distâncias (km): 0,5; 1; 1,5; 2; 3; 4; 5 e 10

Para resolver esta questão, eu fiz um código em python para encontrar os valores:

```
from cmath import log

f = [2.4,5]

d = [0.5,1,1.5,2,3,4,5,10]

for j in d:

for i in f:

l = 92.44778322 + 20*log(i,10) + 20*log(j,10)

print(str(i) + "GHz "+ str(j) + "km " + "L_dB = " + str(l))
```

Figura 1: Código Python

E foi possível obter os valores:

Distância(km)	Perdas (dB) em 2,4 GHz	Perdas (dB) em 5GHz
0,5	94,0314	100,4065
1,0	100,0520	106,4271
1,5	103,5738	109,9490
2,0	106,0726	112,4477
3,0	109,5944	115,9696
4,0	112,0932	118,4683
5,0	114,0314	120,4065
10,0	120,0520	126,4271

Exercício 5.2

Deseja-se realizar um enlace bidirecional de rádio-comunicação de 5 km operando na frequência de 2,4 GHz, entre um ponto de acesso (AP) e uma estação móvel cliente, sabendo-se que:

- a) O AP é conectado a uma antena com ganho de 10dBi, com uma potência de transmissão de 20dBm e uma sensibilidade de recepção de -89 dBm;
- b) A estação cliente está conectada a uma antena com ganho de 14dBi, com uma potência de transmissão de 15dBm e uma sensibilidade de recepção de -82 dBm;
- c) Os cabos de conexão às antenas em ambos os sistemas são relativamente curtos, com uma perda de 2dB (incluindo conectores) em cada lado dos dispositivos.

Pergunta-se:

- Esse enlace é realizável, para rádio-comunicação entre AP-Estação Móvel e entre Estação Móvel-AP ?
- Caso contrário, pode ser melhorado? Como?

Considere a necessidade de uma margem de segurança mínima de 5dB para o sistema.

Resolução:

O balanço de potência(B) é dado por:

$$B = P_{out} - CT + GT - L_{dB} + GR - CR - R_{in}$$

Em que temos:

- P_{out} : Potência de Saída do Transmissor (dBm)
- \bullet CT: Perdas no Cabo e Antena Transmissora (dB)
- GT: Ganho da Antena Transmissora (dBi)
- L_{dB} : Perda em espaço livre(valor negativo em dB)
- GR: Ganho da Antena Receptora (dBi)
- \bullet CR: Perdas no Cabo e na Antena Receptora (dB)
- R_{in} : Sensibilidade do Receptor (dBm)

Temos de fazer o balanço de potência(B) para saber se o enlace é realizável, e como pedido, deve ser maior que 5dB para que o sistema seja realizável. Para a rádio-comunicação entre AP-Estação Móvel:

$$B_{ap-movel} = 20dBm - 2dB + 10dBi - 114,0314 + 14dBi - 2dB + 82dBm$$

$$B_{ap-movel} = 7,9686$$

Para a rádio-comunicação entre Estação Móvel-AP:

$$B_{movel-ap} = 15dBm - 2dB + 14dBi - 114,0314 + 10dBi - 2dB + 89dBm$$

$$B_{ap-movel} = 9,9686$$

Logo, podemos dizer que o enlace é realizável, pois em ambos os sentidos, o mínimo de 5dB são atendidos.

Caso não seja realizável, o que pode ser melhorado é em relação às antenas, melhorando a potência de transmissão por exemplo, isso já melhoraria, outro fator, seria utilizar circuitos cabeados melhores que possam gerar uma perda menor. Outro fator que pode ser melhorado é a sensibilidade de recepção.