Konzept Word Clock "Vackar"

8x16 Matrix (2x 8x8)

konstante Anzeige

Aufbau Programm

- Ansteuerung
 - separat ("pixels" / "pixels1")
 - synchron (gleichzeitig ansteuerbar)
 - 1x Aktualisierung pro Loop
- Loop
 - lokale Variablen
 - vermeidet das separate Clearen der Variablen am Ende des Loops
 - o nach jedem Loop 1s Delay
- Uhr
 - o einmaliges Bespielen von RTC-Modul
 - pro Loop: 1x Auslesen der aktuellen Stunde/Minute
 - Speichern in separaten Integers
 - o 2 Switch-Funktionen
 - übertragen Stunde/Minute auf LED
 - Matrizen
 - Kontrollstrukturen für spezifische Anwendungsfälle
 - volle Stunden
 - "Es ist ... Uhr vor-/nachmittags"
 - Sonderfall "01:00 und 13:00 Uhr"
 - "Es ist ein Uhr vor-/nachmittags" statt "Es ist eins Uhr..."
 - Unterscheidung vormittags/nachmittags
 - Stunden über 12 werden per Modulo umgerechnet
 - 14:00 -> 02:00 (nachmittags)
 - Minuten werden per Modulo auf das nächstkleinere Vielfache von 5 runtergerechnet
 - 14:24 -> 14:20; 14:26 -> 14:25
 - 'Viertel', 'Halb', 'Dreiviertel' geben nächste volle Stunde aus
 - 14:15 -> "Es ist Viertel drei nachmittags"

VOR MITTAGS Anzeige

I S T

Anzeigen AM / PM

Beispielanzeige 13:15

Word Clock Deckel Layout

Benutzte Hard-/Software

- Funduino
- 2x 8x8 LED Matrix
- Breadboard
- USB-A-Kabel
- Überbrückungskabel
- (RTC DS1307)
 - (Knopfbatterie)
- Arduino IDE
 - Libraries
 - Adafruit NeoPixel
 - Adafruit Bus I/O
 - (RTClib)
- TinkerCAD
 - o zur Modellierung des Uhrdeckels

GitHub Repository