3/7/2009

Name____

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx} \left[\arctan x \right] =$$

 $f(x) = \tan x$

 $y = \arctan x$

Sketch of guess for $\frac{d}{dx}[\arctan x]$

Sketch of $\frac{d}{dx}$ [arctan x]

$$\frac{d}{dx} \left[arc \cot x \right] =$$

 $y = \operatorname{arc} \cot x$

$$\frac{d}{dx}[\arcsin x] =$$

 $y = \arcsin x$

$$\frac{d}{dx}[\arccos x] =$$

 $f(x) = \cos x$

 $y = \arccos x$

 $y = \operatorname{arc} \sec x$

 $y = \operatorname{arc} \operatorname{csc} x$

