Le Dévelopement d'un programme joueur

T.I.P.E 2015-2016

Plan

Introduction

Aproche simple

Présentation

Complexité

winner

 ${\rm getWinningPlay}$

Recherche aléatoire

Présentation de l'implémentation

Avantages et inconvenients de la recherche aléatoire

Etude de l'efficacité de l'algorithme de recherche aléatoire

Hex

Présentation

Présentation de l'algorithme Minimax

Présentation

Présentation de l'algorithme Minimax

Décomposition du minimax

- ► getWinningPlay
- winner

winner

Calcul de la compléxité

Compléxité d'un parcours

$$P(n) = \sum_{k=1}^{\left\lceil \frac{n^2}{2} \right\rceil} k$$

$$\implies P(n) = O\left(\left\lceil \frac{n^2}{2} \right\rceil^2\right)$$

$$\implies P(n) = O\left(n^4\right)$$

Compléxité de winner

$$W(n) = nP(n) = O\left(n^5\right)$$

getWinninglay

Calcul de la compléxité

Calcul de la compléxité d'un étage

Pour le p-ème étage.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases.

Calcul de la compléxité d'un étage

Pour le p-ème étage. p coups à jouer parmis n^2 cases. $\mathcal{A}_p^{n^2}$ noeuds

Calcul de la compléxité d'un étage

Pour le *p*-ème étage. *p* coups à jouer parmis n^2 cases. $A_n^{n^2}$ noeuds

$$E_p(n) = \mathcal{A}_p^{n^2} n^2$$

$$\implies E_p(n) = \frac{(n^2)!}{(n^2 - p)!} n^2$$

Calcul de la compléxité total

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! \ W(n)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

Calcul de la compléxité total

$$M(n) = \sum_{k=1}^{n^2} E_p(n) + n^2! \ W(n)$$

$$M(n) = \sum_{k=1}^{n^2} \left(\frac{(n^2)!}{(n^2 - p)!} n^2 \right) + n^2! \ O(n^5)$$

$$M(n) = O(n^2! n^4) + n^2! O(n^5)$$

$$\implies M(n) = O(n^2! n^5)$$

Présentation

Présentation

Avantage

Avantage

▶ Donne un résultat en un temp fini

Avantage

- ▶ Donne un résultat en un temp fini
- ▶ Peux facilement utilisé pendant le long d'une partie

Désavantage

Désavantage

▶ Perte la sureté de la victoire

Désavantage

- Perte la sureté de la victoire
- Utilisation de la mémoire plus importante

Efficacité

Statistique

Mettre ici Nombre de teste en fonction du temp

Mettre ici Espace utilisé en fonction du temp

