Modelowanie matematyczne

Niestandardowe modele

zmienne całkowite

Szeroka stosowalność programowania całkowitoliczbowego jest nieoczywista i mało znana.

Do czego tak naprawdę potrzebne są zmienne całkowite.

- żeby nie uniknąć zaokrąglenia
- do problemu przepływu
- do zmiennych binarnych i programowania logicznego TAK

Zmienne binarne

Przykład:

Niech $x\in\mathbb{R}$ oznacz ilość produkcji pewnego produktu. Wprowadzamy zmienną binarną δ , która ma oznaczać, czy ten produkt jest wytwarzany (czyli $x>0\Leftrightarrow\delta=1$).

$$x \leq M \cdot \delta$$
 oznacza $x>0 \to \delta=1$ $\epsilon \cdot \delta \leq x$ oznacza $\delta=1 \Rightarrow x>\epsilon>0$

Dzięki zmiennej δ możemy zamodelować sytuacje gdy pojawiają się dodatkowe koszty związane z produkcja danego produktu nie zależne od wytwarzanej ilości. Wtedy kosz produktu wynosi $C_1 \cdot \delta + C_2 \cdot x$

Uwaga nieliniowość a nawet nie ciągłość !!! Warto zwrócić uwagę ze ograniczenie $\epsilon \cdot \delta \leq x$ jest zbędne.

Przykłady zastosowań zmiennych binarnych

- Wybudowanie fabryki w danym miejscu (jeśli nie jest zbudowana to nie można wysyłać z tego miejsca produktów)
- Jeśli biblioteka rezygnuje z prenumeraty czasopisma musi podtrzymać zamówienia jakieś czasopisma z określonej grupy czasopism.
- Jeśli wytwarzamy produkt A musimy też produkować B i przynajmniej jeden z C lub D.
- Jeśli lotnisko jest zamknięte żaden samolot nie może mieć na nim międzylądowania.
- Najwyżej pięć surowców może być użytych.
- Zadanie A musi być skończone zanim rozpoczniemy zadanie B lub odwrotnie.

Zastosowania zmiennych binarnych

```
A,B - zdania logiczne, \delta_A,\delta_B - zmienne im odpowiadające A\vee B jest równoważne \delta_A+\delta_B\geq 1 A\wedge B jest równoważne \delta_A=\delta_B=1 \sim A jest równoważne \delta_A=0 A\Rightarrow B jest równoważne \delta_A\leq \delta_B A\Leftrightarrow B jest równoważne \delta_A=\delta_B Jak zamodelować A\vee B\Rightarrow C\vee D\vee E ? \delta_A\leq \delta_X, \delta_B\leq \delta_X, \delta_K\leq \delta_A+\delta_B \delta_X<\delta_C+\delta_D+\delta_F.
```

- Pewna firma ma dwie fabryki jedną w Łodzi i jedną w Radomiu.
- Ponadto posiada cztery filie w Warszawie, Poznaniu, Krakowie i Wrocławiu.
- Filie służą jako pośrednicy pomiędzy fabrykami a klientami.
- Firma dostarcza towar sześciu klientom *C*1, *C*2,..., *C*6.
- Klient może być zaopatrywany przez filię lub bezpośrednio przez fabrykę.

Koszty dystrybucji jednostki (1 tony) towaru przedstawione są w poniższej tabeli.

Łódź	Radom	Warszawa	Poznań	Kraków	Wrocław
0.5	_				
0.5	0.3				
1.0	0.5				
0.2	0.2				
1.0	2.0	=	1.0	_	=
_	_	1.5	0.5	1.5	=
1.5	_	0.5	0.5	2.0	0.2
2.0	_	1.5	1.0	_	1.5
_	_	_	0.5	0.5	0.5
1.0	_	1.0	_	1.5	1.5
	0.5 0.5 1.0 0.2 1.0 - 1.5 2.0	0.5	0.5 - 0.5 0.3 1.0 0.5 0.2 0.2 1.0 2.0 - 1.5 1.5 - 2.0 - 1.5	0.5 - 0.5 0.3 1.0 0.5 0.2 0.2 1.0 2.0 - 1.0 - - 1.5 0.5 1.5 - 0.5 0.5 2.0 - 1.5 1.0 - - 0.5	0.5 - 0.5 0.3 1.0 0.5 0.2 0.2 1.0 2.0 - - - 1.5 0.5 1.5 1.5 - 0.5 0.5 2.0 2.0 - 1.5 1.0 - - - 0.5 0.5 0.5

[&]quot;-" oznacza, że dany dostawca nie może obsługiwać wskazanego klienta.

Niektórzy z klientów wolą zaopatrywać się u dostawców (fabryk lub filii), których już znają:

- C1: Łódź
- C2: Warszawa
- C3: brak preferencji
- C4: brak preferencji
- C5: Poznań
- C6: Kraków lub Wrocław

- Każda fabryka ma miesięczny limit produkcji, który nie może zostać przekroczony
 - Łódź: 150 000 ton
 Radom: 200 000 ton
- Każda filia również ma miesięczny limit na ilość towaru, która przez nią przepływa (przepustowość)
 - Warszawa: 70 000 tonPoznań: 50 000 ton
 - Kraków: 100 000 ton
 Wrocław: 40 000 ton
- Każdy z klientów ma określone miesięczne zapotrzebowanie
 - C1: 50 000 ton
 - C2: 10 000 ton
 - C3: 40 000 ton
 - C4: 35 000 ton
 - C5: 60 000 ton
 - C6: 20 000 ton

Pytania

- Jak należy zaplanować dystrybucję, by zminimalizować całkowity koszt?
- Jaki wpływ na na koszty dystrybucji będzie miało zwiększenie przepustowości fabryk i filii?
- Jaki wpływ na na optymalne zaplanowanie dystrybucji mają małe zmiany kosztów, przepustowości i zapotrzebowania?
- Czy da się zaplanować produkcję tak, by każdy klient był zaopatrywany przez preferowanego dostawcę? Jak wpłynie to na koszt?

Rozwiązanie

- Problem ten może być sprowadzony do problemu znalezienia najtańszego przepływu w sieci.
- Znane są algorytmy rozwiązujące problem przepływu, np. Edmondsa-Karpa czy Dinica.
- Można też zapisać problem jako zagadnienie programowania liniowego i rozwiązać za pomocą solvera liniowego.
- Wprowadźmy następującą numerację fabryk ...
 - 1 Łódź
 - 2 Radom
- ... i filii
 - 1 Warszawa
 - 2 Poznań
 - 3 Kraków
 - 4 Wrocław

Zmienne

- Wprowadźmy następujące zmienne.
 - $x_{i,j} = ilość$ towaru wysyłana z fabryki i do filii j (i = 1, 2 i j = 1, 2, 3, 4)
 - $y_{i,j} = ilość$ towaru wysyłana z fabryki i do klienta j (i = 1, 2 i j = 1, 2, 3, 4, 5, 6)
 - $z_{i,j} = i\log c$ towaru wysyłana z filii i do klienta j (i = 1, 2, 3, 4 i j = 1, 2, 3, 4, 5, 6)
- Razem mamy 44 zmienne.

Ograniczenia

- Limity produkcji fabryk.
 - $\sum\limits_{j=1}^2 x_{i,j} + \sum\limits_{j=1}^6 y_{i,j} \leq ext{limit produkcji} \ (i=1,2)$
- Przepustowości filii
 - $\sum_{i=1}^{2} x_{i,j} \leq \operatorname{przepustowość} (j=1,2,3,4)$
- Filie wydają tyle towaru, ile do nich wpływa.

•
$$\sum_{k=1}^{6} z_{j,k} = \sum_{i=1}^{2} x_{i,j} \ (j=1,2,3,4)$$

- Zapotrzebowanie klientów.
 - $\sum_{i=1}^{2} y_{i,k} + \sum_{i=1}^{2} z_{j,k} = \text{zapotrzebowanie} (k = 1, 2, 3, 4, 5, 6)$
- Razem mamy 16 ograniczeń.

Problem dystrybucji – c.d.

- Firma z poprzedniego zadania rozważa zmiany w strukturze filii.
- Istnieje możliwość otwarcia nowych filii w Gdańsku i Szczecinie, a także rozbudowy filii w Poznaniu.
- Firma nie chce mieć więcej niż cztery filie. Jeśli to konieczne filie w Krakowie i Wrocławiu mogą zostać zamknięte.
- Koszt budowy nowych filii (lub rozbudowy filii w Poznaniu) oraz ich przepustowość przedstawia poniższa tabela.

	Koszt	Przepustowość
Gdańsk	12 000	30 000
Szczecin	4 000	25 000
Poznań (rozbudowa)	3 000	70 000

 Oszczędności wynikające z zamknięcia filii w Krakowie i Wrocławiu przedstawia poniższa tabela.

	Oszczędności
Kraków	10 000
Wrocław	5 000

Problem dystrybucji – c.d.

• Koszty dystrybucji dotyczące nowych filii są następujące:

	Łódź	Radom	Gdańsk	Szczecin
Nowe filie				
Gdańsk	0.6	0.4		
Szczecin	0.4	0.3		
Klienci				
C1			1.2	_
C2			0.6	0.4
C3			0.5	_
C4			_	0.5
C5			0.3	0.6
C6			8.0	0.9

• Pozostałe koszty nie zmieniają się.

Problem dystrybucji – c.d.

- Które filie powinny zostać wybudowane?
- Czy filia w Poznaniu powinna zostać rozbudowana?
- Czy filie w Krakowie i Wrocławiu powinny zostać zamknięte?
- Jak teraz wygląda optymalny system dystrybucji?

Rozwiązanie

- Zagadnienie liniowe dla problemu dystrybucji może zostać rozszerzone do problemu typu mixed integer programming.
- Do poprzedniego modelu dodamy nowe zmienne binarne, które reprezentują decyzje, czy dana filia powinna być wybudowana lub zamknięta.

```
• \delta_2 = \begin{cases} 1 & \text{filia w Poznaniu zostaje rozbudowana} \\ 0 & \text{w przeciwnym przypadku} \end{cases}
• \delta_3 = \begin{cases} 1 & \text{filia w Krakowie zostaje zachowana} \\ 0 & \text{w przeciwnym przypadku} \end{cases}
• \delta_4 = \begin{cases} 1 & \text{filia we Wrocławiu zostaje zachowana} \\ 0 & \text{w przeciwnym przypadku} \end{cases}
• \delta_5 = \begin{cases} 1 & \text{filia w Gdańsku zostaje zbudowana} \\ 0 & \text{w przeciwnym przypadku} \end{cases}
• \delta_6 = \begin{cases} 1 & \text{filia w Szczecinie zostaje zbudowana} \\ 0 & \text{w przeciwnym przypadku} \end{cases}
```

- Ponadto dodajemy ciągłe zmienne $x_{i,5}, x_{i,6}, z_{5,k}$ oraz $z_{6,k}$, reprezentujące przepływ towaru przez nowe filie.
- W modelu mamy teraz 65 zmiennych (w tym pięć decyzyjnych).

Ograniczenia

- Do modelu musimy też dodać nowe ograniczenia.
- Jeśli filia jest zamknięta lub nie jest zbudowana, żadne towary nie przepływają przez nią.
 - $\sum\limits_{i=1}^2 x_{i,j} \leq \delta_j \cdot T_j$, gdzie T_j jest przepustowością filii j
- Przepływ towaru przez filię w Poznaniu może być większy, jeśli zostanie ona rozbudowana.
 - $\sum_{i=1}^{2} x_{i,2} \le 50 + 20\delta_2.$
- Mogą istnieć co najwyżej cztery filie (wliczając w to Warszawę i Poznań)
 - $\delta_3 + \delta_4 + \delta_5 + \delta_6 \leq 2$
- Razem mamy 21 ograniczeń.

Funkcja celu

- W funkcji celu należy uwzględnić odpowiednie koszty zmiennych $x_{i,5}$, $x_{i,6}$, $z_{5,k}$ i $z_{6,k}$.
- Ponadto należy też dodać składnik reprezentujący koszty i oszczędności wynikające z budowy i zamykania filii.
 - $3\delta_2 + 10\delta_3 + 5\delta_4 + 12\delta_5 + 4\delta_6 15$