1.3) Matriz de adjacências

	t	u	v	w	x	у	z
t	0	0	0	0	0	0	0
u	0	0	1	0	1	0	0
v	0	1	0	1	0	0	0
w	0	0	1	0	1	0	0
x	0	1	0	1	0	1	0
у	0	0	0	0	1	0	1
z	0	0	0	0	0	1	0

Matriz de adjacências de K₄

	1	2	3	4
1	0	1	1	1
2	1	0	1	1
3	1	1	0	1
4	1	1	1	0

A matriz de adjacências do complemento de um grafo terá zeros nas posições em que o grafo possui um e um nas posições que o grafo possui zero, excetuando a diagonal que em ambas possuem zero.

1.4) Matriz de incidências

	vw	uv	xw	xu	ху	yz
t	0	0	0	0	0	0
u	0	1	0	1	0	0
v	1	1	0	0	0	0
w	1	0	1	0	0	0
x	0	0	1	1	1	0
у	0	0	0	0	1	1
z	0	0	0	0	0	1

Matriz de incidências de K₄

	12	13	14	23	24	34
1	1	1	1	0	0	0
2	1	0	0	1	1	0
3	0	1	0	1	0	1
4	0	0	1	0	1	1

A soma de todos elementos da matriz é o dobro do total de arestas do grafo.

A matriz de incidências do complemento de um grafo terá zeros nas posições em que o grafo possui 1 e 1 nas posições que o grafo possui zero, excetuando a diagonal que em ambas possuem zero.

1.6) Uma grade p-por-q vai ter quatro vértices com duas arestas, $(2 \cdot (q-2) + 2 \cdot (p-2))$ vértices com três arestas e $((p-2) \cdot (q-2))$ vértices com quatro arestas. Totalizando $\frac{(4 \cdot ((p-2) \cdot (q-2)) + 3 \cdot (2 \cdot (q-2) + 2 \cdot (p-2)) + 2 \cdot 4}{2} = 2 \cdot p \cdot q - (p+q) \text{ arestas}.$

Matriz de adjacências

	a10	a11	a12	a13	a14	a20	a21	a22	a23	a24	a30	a31	a32	a33	a34	a40	a41	a42	a43 a44
a10	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0
a11	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0 0
a12	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0 0
a13	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0
a14	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0 0
a20	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0 0
a21	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0 0
a22	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0 0
a23	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0 0
a24	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0 0
a30	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0 0
a31	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0 0
a32	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0 0
a33	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1 0

a34	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0 1
a40	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0 0
a41	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0 0
a42	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1 0
a43	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0 1
a44	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1 0

1.13)

Matriz de adjacências

	cavalo	cavado	caiado	vaiado	varado	virado	virada	virava	girava	girafa	reta	rota	rata	rato	ralo	ramo	remo	reto
cavalo	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cavado	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
caiado	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
vaiado	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
varado	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
virado	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
virada	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
virava	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
girava	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
girafa	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
reta	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
rota	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0
rata	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0
rato	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0
ralo	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
ramo	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
remo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
reto	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0

Matriz de incidências

	a1	a2	a3	a4	a5	a6	a7	a8	a9	a10	a11	a12	a13	a14	a15	a16	a17	a18
cavalo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cavado	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
caiado	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
vaiado	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
varado	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
virado	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
virada	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
virava	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
girava	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
girafa	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
reta	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
rota	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
rata	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
rato	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
ralo	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
ramo	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
remo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
reto	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

1.24)

O número de vértices de $L(K_n)$ será igual o número de arestas de Kn e o número de arestas de $L(K_n)$ é igual ao dobro do número de vértices.

1.25)

- **1.26)** Um grafo $\{U, W\}$ -bipartido, tendo em u vértices em U e w vértices em W, pode ter até u^*w arestas.
- **1.27)** Um $K_{p,q}$ possui p*q arestas, enquanto um $\overline{K}_{p,q}$ possui $\frac{k*(p+q)}{2}$ arestas.

- **1.30)** A matriz de adjacência de um grafo bipartido $K_{m,n}$ tem autovalores $\sqrt{(nm)}$, $-\sqrt{(nm)}$ e 0; com multiplicidade 1, 1 e n+m-2 respectivamente.
- **1.33)** Tanto o grau mínimo quanto o grau máximo de um grafo completo K_n serão iguais a n-1. O grau mínimo de um grafo bipartido completo seria igual a p, e o grau máximo do grafo seria igual a q, sendo o grafo $K_{p,q}$ onde $p \le q$.

1.34)

- **1.39)** A soma dos elementos da linha v de A é a quantidade dos elementos vizinhos a linha v. A soma dos elementos da linha v de M é o grau do vértice da linha v.
- **1.40)** Sendo G um grafo bipartido r-regular, significa que cada vértice tem o mesmo número de adjacências e assim a quantidade de vértice em U deverá ser igual a quantidade dos vértices em W. Portanto |U| = |W|.
- **1.46)** Temos que, para um grafo k-regular, o número de arestas é $|E| = \frac{k|v|}{2}$. Com K_n é um grafo é completo e portanto o grafo que possui a maior quantidade possível de aresta, além

de ser um n-1-regular, temos que: $|E| = \frac{(n-1)n}{2}$ e portanto é o maior valor de arestas que um grafo com n vértices pode ter.

- **1.53)** O grau mínimo do grafo complemento será igual $(n-1) \Delta(G)$. O grau máximo será: $(n-1) \delta(G)$.
- **1.65)** Sendo H o grafo em questão e (n-1) a quantidade de arestas visitadas no caminho P, logo sabemos que todos os vértices foram visitados em P e portanto $\delta(P) = \delta(H)$ e $\Delta(P) = \Delta(H)$.

Sendo O um circuito de comprimento n, então todos os n vértices do grafo H foram também visitados e portanto $\delta(O) = \delta(H)$ e $\Delta(O) = \Delta(H)$.

- **1.67)** São 7 caminhos possíveis, e existem 6 circuitos no conjunto {1,2,3}. Já o conjunto {1,2,3,4} terá 25 caminhos possíveis.
- 1.68) Sim, é verdade.
- 1.69) Sim, é verdade.
- **1.73)** Como P e Q são caminhos, não há nenhuma aresta e nenhum vértice que se repete. Além disso, temos que v é o único vértice que pertence a ambos caminhos, sendo assim v é a extremidade de ambos caminhos, ao fazermos $P \cup Q$ necessariamente também teremos um caminho. Por exemplo, pegando um caminho qualquer P, tal que u e v são extremidades: u t s r a v, e pegando outro caminho qualquer Q que inicia em v e acaba em w: v x y z w, formará um novo caminho: u t s r a v x y z w, sendo assim $P \cup Q$ também é um caminho.
- **1.74)** Como P e Q são caminhos, não há nenhuma aresta e nenhum vértice que se repete. E todo caminho tem dois extremos, sendo os extremos de P e Q iguais, então a união desses dois caminhos sempre será um circuito.

1.76)

Uma roda com n vértices possui $\frac{(n-1)n}{2}$ arestas, grau mínimo igual a 3 e grau máximo igual a (n-1).

- **1.87)** Se apenas os vértices do subgrafo e grafo forem iguais, não é possível determinar que H = G, pois pode haver arestas faltando. Agora, se Eh = Eg, podemos sim afirmar que H = G.
- **1.90)** Sendo O um circuito, se tirarmos um vértice dele, tendo O v, ainda assim podemos percorrer por todos os outros vértices e arestas, criando assim um caminho, pois agora teremos como extremidades os vértices que eram adjacentes do vértice retirado e não temos nenhum vértice ou aresta repetidos.

Agora, se retirarmos uma aresta do circuito, tendo O - e, também conseguimos percorrer por todos os vértices, mas agora tendo como extremidades os dois vértices que eram ligados pela aresta retirada, formando assim um caminho.

- **1.95)** Pela definição de grafo bipartido, temos que todas as arestas ligam um vértice de U a um vértice de W, então não existem arestas que ligam vértices do mesmo conjunto. Portanto, os subgrafos G[U] e G[W] serão vazios.
- **1.96)** Sim, pois sendo G um grafo completo, temos que qualquer par de vértice (u, v) de G possui uma aresta que os liga. Logo, em um subgrafo H induzido de G, temos que qualquer vértice escolhido u terá uma aresta para todos os outros vértices, que estavam também no grafo G. Portanto, o subgrafo induzido também será completo.

Sim, pois sendo P um caminho em G e H o grafo induzido do caminho P, temos que qualquer par de vértice de H também será acompanhado da aresta ligante pertencente a P, formando assim um outro caminho.

Não, pois um subgrafo induzido do circuito pode ser o próprio circuito e circuito não é caminho.

- **1.151)** Se dois vértices u <u>e</u> v estão em componentes conexas distintas de G, então existe uma aresta entre eles em \overline{G} . Se u e v estão numa mesma componente conexa de G, então existe um caminho $u \cup v$ em \overline{G} , onde a união é um vértice em outra componente qualquer de G. Em ambos os casos, existe caminho entre u e v em \overline{G} , concluindo que \overline{G} é conexo.
- **1.201)** Grafos de grau par possuem circuito e retirando qualquer aresta desse tipo de grafo não causa um aumento no número de componentes conexas e portanto não possuem pontes.
- **2.2)** Os grafos só serão isomorfos na condição inicial, se trocarmos hk por hn não serão, pois deixam de ter os mesmos relacionamentos.
- 2.9) Os grafos não são isomorfos, pois não possuem os mesmos relacionamentos.