Constraints on $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

Danny van Dyk in collaboration with Christoph Bobeth and Frederik Beaujean

2013 EPS Conference on High Energy Physics July 19th 2013

Theor. Physik 1

1 / 10

Effective Field Theory for $b \to s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- operators (matrix elem. below $\mu_b \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\overline{s} \Gamma_i b \right] \left[\overline{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (above $\mu_b \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Effective Hamiltonian

$$\mathcal{H} = -\frac{4G_{\mathrm{F}}}{\sqrt{2}}\frac{\alpha_{e}}{4\pi}\Big[V_{tb}V_{ts}^{*}\sum_{i}\textcolor{black}{\mathcal{C}_{i}\mathcal{O}_{i}} + O\left(V_{ub}V_{us}^{*}\right)\Big] + \mathrm{h.c.}$$

Effective Field Theory for $b \to s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- ullet operators (matrix elem. below $\mu_b \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\bar{s} \Gamma_i b \right] \left[\bar{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (above $\mu_b \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Decay Modes

$$B \to K^* \ell^+ \ell^-$$

$$B_s o \mu^+ \mu^-$$

$$B \to K \ell^+ \ell^-$$

$$B \to K^* \gamma$$

$$B \to X_{\rm s} \ell^+ \ell^-$$

$$B \to X_s \gamma$$

Model Independent Framework

Basis of Operators \mathcal{O}_i

- include as many \mathcal{O}_i beyond SM as needed/as few as possible
- balancing act, test statistically if choice of basis describes data well!

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- constrain their values from data
- · confront new physics models with constraints

Model Independent Framework

Operators/Wilson Cofficients

SM:

$$\mathcal{O}_{7} = \frac{m_{b}}{e} [\bar{s} \sigma_{\mu\nu} P_{R} b] F^{\mu\nu} \qquad \qquad \mathcal{O}_{9(10)} = [\bar{s} \gamma_{\mu} P_{L} b] [\bar{\ell} \gamma^{\mu} (\gamma_{5}) \ell]$$

chirality flipped (beyond SM)

$$\mathcal{O}_{7'} = rac{m_b}{e} [ar{s} \sigma_{\mu
u} { extstyle P_L} b] F^{\mu
u} \qquad \qquad \mathcal{O}_{9'(10')} = [ar{s} \gamma_\mu { extstyle P_R} b] [ar{\ell} \gamma^\mu (\gamma_5) \ell]$$

Model Independent Framework

Operators/Wilson Cofficients

SM:

$$\mathcal{O}_7 = rac{m_b}{s} [ar{s} \sigma_{\mu
u} P_R b] F^{\mu
u} \qquad \qquad \mathcal{O}_{9(10)} = [ar{s} \gamma_\mu P_L b] [ar{\ell} \gamma^\mu (\gamma_5) \ell]$$

chirality flipped (beyond SM)

$$\mathcal{O}_{7'} = rac{m_b}{e} [ar{s} \sigma_{\mu
u} extstyle{P_L} b] F^{\mu
u} \qquad \qquad \mathcal{O}_{9'(10')} = [ar{s} \gamma_\mu extstyle{P_R} b] [ar{\ell} \gamma^\mu (\gamma_5) \ell]$$

Scenario only real-valued $C_i \Rightarrow$ no BSM CPV

vary SM C_7 , C_9 , C_{10}

 $\mathcal{C}_1, \dots \mathcal{C}_6, \mathcal{C}_8$ as in the SM

 hadronic parameters CKM Wolfenstein parameters and

quark masses

D. van Dyk (U. Siegen)

Sensitivity to Parameters

	\mathcal{C}_7	\mathcal{C}_9	\mathcal{C}_{10}
$B_s o \mu^+ \mu^-$	_	-	√
$B o X_s \gamma$	√	ı	1
$B o X_s \ell^+ \ell^-$	√	√	√
$B o K^* \gamma$	√	-	-
$B \to K^* \ell^+ \ell^-$	√	√	√
$B o K\ell^+\ell^-$	√	√	√

Measurements Entering Analysis: 81

ATLAS, BaBar, Belle, CDF.

 $B \to K^* \ell^+ \ell^ q^2 \in [1, 6] \text{GeV}^2$, $q^2 \geq M_{gh'}^2$

$$B o K\ell^+\ell^ q^2\in [1,6]$$
GeV 2 , $q^2\geq M_{y_1}^2$

BaBar, Belle, CDF, LHCb

$B_s \rightarrow \mu^+ \mu^-$

• time-int. B LHCb

$$B \to X_{\rm s} \ell^+ \ell^-$$

$$B \to K^* \gamma$$

- \mathcal{B} , $S_{K^*\gamma}$, $C_{K^*\gamma}$ BaBar, Belle, CLEO

$$B \to X_s \gamma$$
• B

BaBar, Belle, CLEO

 $E_{\min}^{\gamma} = 1.8 \, \text{GeV}$

 $q^2 \in [1, 6] \text{GeV}^2$

19.07.2013

Further Theory Constraints

Form Factors from Lattice QCD (LQCD)

- $B \to K$ form factors available from LQCD
 - ▶ data only at high q^2 : 17 23 GeV²
 - no data points given
- reproduce 3 data points from *z*-parametrization

$$ightharpoonup q^2 = 17 \, \text{GeV}^2, \, 20 \, \text{GeV}^2, \, 23 \, \text{GeV}^2$$

▶ use as constraint, incl. covariance matrix

[HPQCD arxiv:1306.2384]

$B \to K^*$ Form Factor (FF) Relation at $q^2 = 0$

- ullet FF $V,A_1 \propto \xi_{\perp} + \dots$ [Charles et al. hep-ph/9901378]
 - **no** α_s corrections [Burdmann/Hiller hep-ph/0011266, Beneke/Feldmann hep-ph/0008255]
 - ► Large Energy Limit:

$$\frac{V(0)}{A_1(0)} \simeq 1.33 \pm 0.4$$

• see also FF fits by [Hambrock/Hiller/Schacht/Zwicky DO-TH 13/13 in preparation]

Preliminary Results (SM Basis)

 $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{10}$ vs. exclusive decay data up to 2012 [Beaujean et al. 1205.1838]

♦: Standard Model

Preliminary Results (SM Basis)

 $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{10}$ vs. exclusive decay data up to 2013

Summary 2013(excl)

- \bullet uncertainty reduced by ~ 2
- ullet SM at the border of 1σ

♦: Standard Model

Preliminary Results (SM Basis)

 $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{10}$ vs. all data up to 2013

Summary 2013(excl)

- \bullet uncertainty reduced by ~ 2
- $\bullet\,$ SM at the border of $1\sigma\,$

Summary 2013(all)

- ullet \mathcal{C}_7 much more precise
- ullet flipped-sign excluded at 1σ
- good agreement with SM

♦: Standard Model

Preliminary Numeric Results

		\mathcal{C}_7	\mathcal{C}_{9}	\mathcal{C}_{10}
2012	68 %	$[-0.34, -0.23] \cup [0.35, 0.45]$	$[-5.2, -4.0] \cup [3.1, 4.4]$	$[-4.4, -3.4] \cup [3.3, 4.3]$
	95 %	$[-0.41, -0.19] \cup [0.31, 0.52]$	$[-5.9, -3.5] \cup [2.6, 5.2]$	$[-4.8, -2.8] \cup [2.7, 4.7]$
	modes	$\{-0.28\} \cup \{0.40\}$	$\{-4.56\} \cup \{3.64\}$	$\{-3.92\} \cup \{3.86\}$
2013 (all)	68 %	[−0.37, −0.32] ∪ ∅	∅ ∪ [3.7, 4.6]	[−4.7, −4.0] ∪ ∅
	95 %	$[-0.40, -0.30] \cup [0.50, 0.53]$	$[-5.5, -4.9] \cup [3.2, 5.3]$	$[-5.1, -3.4] \cup [4.0, 4.5]$
	modes	$\{-0.347\} \cup \{0.513\}$	$\{-5.21\} \cup \{4.11\}$	$\{-4.40\} \cup \{4.31\}$
SM	central	{−0.327} ∪ ∅	∅ ∪ {4.28}	{−4.15} ∪ ∅

Goodness of Fit

- pull-based p-value at SM mode decreased
 - ▶ p-value 2012: 0.75
 - ▶ p-value 2013(all): 0.16
- still a good fit
- SM(all) p-value: 0.16

- largest pulls
- -3.5σ F_L , [1, 6], BaBar 2012
- -2.6σ F_L , [1, 6], ATLAS 2013
- $+2.5\sigma$ B, [16,19.21], Belle 2009 $+2.2\sigma$ A_{FB}, [16,19], ATLAS 2013
- rest below 2σ

- more precise than prior
- $B \to K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - $ightharpoonup B o K^* \gamma$
 - $\blacktriangleright \ B \to K^*\ell^+\ell^-$
 - ▶ theory input
- results @ 68% CL
 - $V(0) = 0.37 \pm 0.03$

- more precise than prior
- $B \rightarrow K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - $ightharpoonup B o K^* \gamma$
 - $ightharpoonup B o K^*\ell^+\ell^-$
 - ▶ theory input
- results @ 68% CL
 - $V(0) = 0.37 \pm 0.03$
 - $A_1(0) = 0.24 \pm 0.03$

- more precise than prior
- $B \to K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - $ightharpoonup B o K^* \gamma$
 - $ightharpoonup B o K^*\ell^+\ell^-$
 - ▶ theory input
- results @ 68% CL
 - $V(0) = 0.37 \pm 0.03$
 - $A_1(0) = 0.24 \pm 0.03$
 - $A_2(0) = 0.24 \pm 0.04$

- more precise than prior
- B → K:
 - \triangleright $B \rightarrow K\ell^+\ell^-$
 - ▶ Lattice
- results @ 68% CL
 - $f_{+}(0) = 0.32 \pm 0.01$
 - $b_1^+(0) = -2.1 \pm 0.2$
- tension (excl only)
 - ▶ LHCb lo q^2 : -1.4σ
 - ▶ LHCb hi q^2 : $+1.4\sigma$
 - ▶ Lattice: $+1.4\sigma$

Conclusion

Summary

- ullet global analyses of available $b o s\{\gamma,\,\ell^+\ell^-\}$ data
- preliminary SM basis with all data
 - ▶ SM-like solution preferred over flipped signs with 9 to 1
 - ▶ p-value 0.16
- data also allows inference of hadronic quantities

Outlook

- SM' basis work in progress
- looking forward to further LHC analyses and the prospects of Belle-II

Backup Slides

Priors and Parametrizations (I)

Form Factors [Khodjamirian et al. 1006.4945]

- values @ $q^2 = 0$ and slope
- z-parametrization
- asymmetric priors, use LogGamma function

CKM [update of hep-ph/0012308]

- Wolfenstein parametrization
- UTfit pre-Moriond2013, tree-level data only

Quark Masses [PDG]

Priors and Parametrizations (I) - Subleading

parametrize unknown subleading contributions

$$B \rightarrow K^* \ell^+ \ell^-$$

- lo q^2 : 6 parameters, one per amplitude
- hi q^2 : 3 parameters

$$B \rightarrow K\ell^+\ell^-$$

- lo q^2 : 1 parameter
- hi q^2 : 1 parameter

for all: Gaussian with mode at $\Lambda_{\rm QCD}/m_b \simeq 0.1$