"La peur de l'effort est plus épuisante que l'effort même. " (Albert Brie)

Exercice 1 Soit u un endomorphisme d'un espace vectoriel E. Montrer que si 0 est valeur propre de u alors u n'est pas inversible. La réciproque est-elle toujours vraie?

Exercice 2 La somme de deux vecteurs propres est-elle encore un vecteur propre?

Exercice 3 Soit $D = diag(x_1, x_2, ..., x_n)$ avec les x_i deux à deux distincts.

- 1. Montrer que $(I_n, D, D^2, ..., D^{n-1})$ est une base du sev $\mathcal{D}_n(\mathbb{K})$ des matrices diagonales de $M_n(\mathbb{K})$.
- 2. Quel est le degré minimal d'un polynôme annulateur non nul de D?

Exercice 4 Trouver un polynôme annulateur non nul de degré minimal pour $A = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ -1 & 2 & -2 \end{pmatrix}$

Exercice 5 Soit $E = \mathbb{C}^{\mathbb{N}}$ l'espace des suites à coefficients complexes, et ϕ l'endomorphisme de E qui à une suite (u_n) associe la suite (v_n) définie par $v_0 = u_0$ et pour tout $n \ge 1$, $v_n = \frac{u_n + u_{n-1}}{2}$. Déterminer les valeurs propres et les vecteurs propres de ϕ .

Exercice 6 Soit $(P, u, x, \lambda) \in \mathbb{K}[X] \times L(E) \times E^* \times \mathbb{K}$. On suppose que $u(x) = \lambda x$, montrer que $P(\lambda)$ est valeur propre de P(u).

Exercice 7 Montrer qu'un vecteur propre de u associé à une valeur propre non nulle est dans Im(u)

Exercice 8 Déterminer les valeurs propres et les sevs propres de l'endomorphisme de dérivation D sur $\mathbb{K}_n[X]$ avec $n \geq 0$. Idem sur $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ ev des fonctions indéfiniment dérivables sur \mathbb{R} .

Exercice 9 Quels sont les sevs de $\mathbb{K}[X]$ stables par la dérivation?

Exercice 10 (En dimension finie) Monter que si u admet un hyperplan stable alors il admet une valeur propre (raisonner matriciellement). Montrer aussi qu'un hyperplan est stable par u ssi il existe une valeur propre λ de u telle que $\text{Im}(u - \lambda id_E) \subset H$.

Exercice 11 Déterminer les sevs de \mathbb{R}^3 stables par $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et par $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On pourra raisonner sur la dimension d'un tel sev stable.

Exercice 12 Diagonaliser: $A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$

Exercice 13 Les matrices $A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$ sont-elles semblables?

Exercice 14 Montrer que les applications suivantes sont des endomorphismes de $\mathbb{R}_n[X]$, préciser leurs éléments propres et dire s'ils sont diagonalisables :

1.
$$\phi(P) = P(X - 1)$$
.

3.
$$\phi(P) = (nX + 1) P + (1 - X^2) P'$$

2.
$$\phi(P) = (X^2 - 1) P'(X) - 2nXP$$

4.
$$\phi(P) = X(X+1)P' - 2nXP$$
.

Exercice 15 Soit $A \in M_n(\mathbb{R})$ diagonalisable telle que $A^{2022} = I_n$, montrer que $A^2 = I_n$.

Exercice 16 Montrer que $A \in M_n(\mathbb{K})$ est diagonalisable ssi $A + I_n$ l'est.

Exercice 17 pour quelles valeurs des paramétres réels les matrices suivantes sont elles diagonalisables?

$$a) \left(\begin{array}{ccc} 1-a & a & 0 \\ -a & 1 & a \\ -a & 1-b & a+b \end{array}\right), b) \left(\begin{array}{ccc} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{array}\right), c) \left(\begin{array}{ccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & -1 & f \\ 0 & 0 & 0 & -1 \end{array}\right), d) \left(\begin{array}{ccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{array}\right)$$

Exercice 18 Expliquer sans calcul pourquoi $A = \begin{pmatrix} 2 & 1 & 7 \\ 0 & 2 & 13 \\ 0 & 0 & 2 \end{pmatrix}$ n'est pas diagonalisable.

Exercice 19 Montrer de deux manières différentes que si A est diagonalisable alors sa transposée aussi.

Exercice 20 Soit $A \in M_3(\mathbb{R})$ telle que $A^4 = A^2$. Trouver un polynôme annulateur pour A. On suppose de plus que $\{-1,1\} \subset sp(A)$. Montrer alors que A est diagonalisable.

Exercice 21 (Mines-Ponts) À quelle condition sur $z, M(z) = \begin{pmatrix} 0 & 0 & z \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est-elle diagonalisable dans \mathbb{C} ?

Exercice 22 Soit $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$. On veut résoudre dans $M_2(\mathbb{R})$ l'équation $M^2 + M = A$

- 1. Diagonaliser A avec matrice de passage.
- 2. Trouver un polynôme annulateur de M, en déduire les valeurs propres possibles pour M.
- 3. Montrer que M est diagonalisable et préciser les formes diagonales possibles. Conclure.

Exercice 23 Niaiserie : une matrice égale à son inverse est-elle diagonalisable?

Exercice 24 Donner une condition nécessaire et suffisante pour qu'une matrice de rang 1 soit diagonalisable.

Exercice 25 Soit $A \in M_n(\mathbb{R})$ telle que $A^3 = A + I$, montrer que det A > 0.

Exercice 26 Soit $A \in M_n(\mathbb{C})$ telle que $A^3 - 5A^2 + 4A = 0$. Montre que $tr(A) \in \mathbb{N}$.

Exercice 27 Soit $A \in M_{2n+1}(\mathbb{R})$ non nulle telle que $A^3 + 4A = 0$. Montrer que A n'est pas diagonalisable sur \mathbb{R} . L'est-elle sur \mathbb{C} ? Montrer aussi que A n'est pas inversible.

Exercice 28 Déterminer la limite de la suite $(A^n)_{n\in\mathbb{N}}$ avec $A=\frac{1}{2}\begin{pmatrix} -1 & -3 & 0 \\ 0 & 2 & 0 \\ -3 & -3 & 2 \end{pmatrix}$.

Exercice 29 Soit $A \in M_n(\mathbb{K})$ telle que $Tr(A) \neq 0$. On définit $\phi : \begin{cases} M_n(\mathbb{K}) \to M_n(\mathbb{K}) \\ M \mapsto Tr(A)M - Tr(M)A \end{cases}$. Vérifier (rapidement) que ϕ est linéaire, déterminez ker ϕ et Im ϕ , montrer que ϕ est diagonalisable.

Exercice 30 Soit $A \in M_n(\mathbb{R})$ diagonalisable telle que $\forall (\lambda, \mu) \in sp(A), \lambda + \mu \neq 0$. Soit $M \in M_n(\mathbb{R})$ telle que AM + MA = 0, montrer que M = 0.

Exercice 31 Soit $u \in L(E)$ vérifiant $u^3 = u$.

- 1. Calculer $u^2(x)$ pour $x \in \text{Im}(u)$.
- 2. Montrer que l'endomorphisme induit par u sur F est inversible.
- 3. En déduire que u est de rang pair.

Exercice 32 Soit A la matrice $A=\begin{pmatrix}1&0&-1\\1&2&1\\2&2&3\end{pmatrix}$. Diagonaliser A. En déduire toutes les matrices M qui commutent avec A.

Exercice 33 Soit A une matrice nilpotente, montrer qu'elle admet une seule valeur propre à préciser. Que dire d'une matrice nilpotente ET diagonalisable?

Exercice 34 Montrer qu'en dimension n > 0 un endomorphisme admet une droite ou un plan stable. On pourra raisonner matriciellement et ce n'est pas facile!!!

Exercice 35 Donner un plan d'étude pour trigonaliser les matrices de taille 2 et 3. Trigonaliser :

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 5 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & -1 \\ 3 & 4 & 2 \\ 1 & 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}, D = \begin{pmatrix} 4 & -2 & 5 \\ 1 & 4 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Exercice 36 Soit $A \in M_n(\mathbb{C})$ telle que $Tr(A^k) = 0$ pour $1 \leq k \leq n$. Montrer que A est nilpotente.

Exercice 37 Soit $A \in M_n(\mathbb{R})$ et $P \in \mathbb{R}[X]$ tels que P(A) triangulaire supérieure à termes diagonaux tous distincts. Montrer que A est diagonalisable puis triangulaire supérieure.

Exercice 38 (Un exemple de chaîne de Markov, paresseusement copié sur un TD de Mr Zwolska!) Soit $a \in]0;1$ [. Une puce se déplace entre trois points A,B et C selon la règle suivante :

- 1. Si elle est en A, la probabilité qu'elle se déplace en B est égale à a, et celle qu'elle se déplace en C est 1-a;
- 2. Si elle est en B, la probabilité qu'elle se déplace en A est égale à a, et celle qu'elle se déplace en C est 1-a;
- 3. Si elle est en C, la probabilité qu'elle se déplace en A est égale à a, et celle qu'elle se déplace en B est 1-a; On suppose qu'au départ la puce est en A.

Pour tout n de N, on note A_n (resp. B_n et C_n) l'événement : "la puce est en A (resp. B et C) après le n^e déplacement" et X_n la matrice colonne $X_n = \begin{pmatrix} P(A_n) \\ P(B_n) \\ P(C_n) \end{pmatrix}$

- 1. Montrer que $\forall n \in \mathbb{N}$, $X_{n+1} = MX_n$, où $M = \begin{pmatrix} 0 & a & a \\ a & 0 & 1-a \\ 1-a & 1-a & 0 \end{pmatrix}$
 - (a) Montrer que 1 est valeur propre de ^tM et préciser le vecteur propre associée.
 - (b) Donner les autres valeurs propres de ${}^{t}M$ et sous-espaces propres associés.
 - (c) ${}^{t}M$ est elle diagonalisable?

Dans toute la suite de l'exercice, on fixe $a = \frac{1}{4}$.

- 1. Diagonaliser alors la matrice ${}^{t}M$ et en déduire, pour tout n de N, $({}^{t}M)^{n}$ puis M^{n} .
- 2. Préciser la matrice X_0 et déterminer, pour tout n de N, X_n en fonction de n.
- 3. En déduire, pour tout n de \mathbb{N} , les probabilités $P(A_n)$, $P(B_n)$ et $P(C_n)$.
- 4. Déterminer les limites de ces suites lorsque n tend vers $+\infty$.

Exercice 39 Soient X, Y, Z trois variables aléatoires indépendantes, suivant la même loi binomiale $B\mathcal{B}(n, p)$.

Pour tout
$$\omega \in \Omega$$
 on pose $A(\omega) = \begin{pmatrix} X(\omega) & Y(\omega) & Z(\omega) \\ X(\omega) & Y(\omega) & Z(\omega) \\ X(\omega) & Y(\omega) & Z(\omega) \end{pmatrix}$

- 1. Quelle est la probabilité qu'elle soit diagonalisable?
- 2. Quelle est la probabilité qu'elle soit une matrice de projecteur?

Exercice 40 Soient X, Y indépendantes suivant la même loi $\mathcal{G}(p)$ avec $0 . quelle est la probabilité que <math>A = \begin{pmatrix} X_1 & 1 \\ 0 & X_2 \end{pmatrix}$ soit inversible? Diagonalisable?

Banque CCP

Exercice 41 On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Exercice 42 Soit $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$.

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $B = aI_3 + bA + cA^2$, où I_3 désigne la matrice identité d'ordre 3. Déduire de la question **1.** les éléments propres de B.

Exercice 43 Soit u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E.

- 1. Soit λ un réel non nul. Prouver que si λ est valeur propre de $u \circ v$, alors λ est valeur propre de $v \circ u$.
- 2. On considère, sur $E = \mathbb{R}[X]$ les endomorphismes u et v définis par $u: P \longmapsto \int_1^X P$ et $v: P \longmapsto P'$. Déterminer $\operatorname{Ker}(u \circ v)$ et $\operatorname{Ker}(v \circ u)$. Le résultat de la question 1. reste-t-il vrai pour $\lambda = 0$?
- 3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda=0$. **Indication**: penser à utiliser le déterminant.

Exercice 44 Soit la matrice $M=\begin{pmatrix}0&a&c\\b&0&c\\b&-a&0\end{pmatrix}$ où a,b,c sont des réels.

M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?

Exercice 45 On considère la matrice $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$.

- 1. Démontrer que A n'est pas diagonalisable.
- 2. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

 Trouver une base (v_1, v_2) de \mathbb{R}^2 dans laquelle la matrice de f est de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$.

 On donnera explicitement les valeurs de a, b et c.
- 3. En déduire la résolution du système différentiel $\left\{ \begin{array}{l} x'=-x-4y\\ y'=x+3y \end{array} \right. .$

Exercice 46 Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. Démontrer que A est diagonalisable de trois manières :

- 1. En calculant directement le déterminant $\det(\lambda I_3 A)$, où I_3 est la matrice identité d'ordre 3, et en déterminant les sous-espaces propres,
- 2. En utilisant le rang de la matrice,
- 3. En calculant A^2 .

Bonus

Exercice 47 Soit

$$A = \left(\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 2 \end{array}\right)$$

- 1. Quelle est la dimension de Ker A?
- 2. Trouver les valeurs propres non nulles de A. (Indication : résoudre directement l'équation $AX = \lambda X$. On peut aussi calculer le polynôme caractéristique mais les calculs sont plus fastidieux.)
- 3. La matrice A est-elle diagonalisable?

Exercice 48

- 1. Donner un exemple de matrice de $M_2(\mathbb{R})$ dont le spectre est vide.
- 2. Donner un exemple de matrice diagonalisable de $M_2(\mathbb{R})$ dont le spectre est réduit à $\{1\}$. Que peut-on dire d'une telle matrice?
- 3. Donner un exemple de matrice non diagonalisable de $M_2(\mathbb{R})$ dont le spectre est réduit à $\{1\}$.
- 4. Donner un exemple de matrice non diagonale de $M_2(\mathbb{R})$ dont le spectre est $\{-1,1\}$. Une telle matrice est-elle toujours diagonalisable?
- 5. Donner un exemple de matrice non nulle de $M_2(\mathbb{R})$ dont le spectre est réduit à $\{0\}$. Une telle matrice peut-elle être diagonalisable?
- 6. Donner un exemple de couple $(A, B) \in M_2(\mathbb{R})^2$ telle que $\operatorname{Spec}_{\mathbb{R}}(A) = \operatorname{Spec}_{\mathbb{R}}(B) = \{1\}$ et telle que A et B ne soient pas semblables.
- 7. Peut-on trouver une paire $(A, B) \in M_2(\mathbb{R})^2$ telle que $\operatorname{Spec}_{\mathbb{R}}(A) = \operatorname{Spec}_{\mathbb{R}}(B) = \{-1, 1\}$ et telle que A et B ne soient pas semblables?

Exercice 49 Soit $n \in \mathbb{N}$. On définit l'endomorphisme $\varphi : \mathbb{C}_n[X] \to \mathbb{C}_n[X]$ par

$$\forall P \in \mathbb{C}_n[X], \quad \varphi(P) = (X^2 - 1) P'' + (2X + 1)P'.$$

- 1. Déterminer les valeurs propres de l'endomorphisme φ .
- 2. L'endomorphisme φ est-il diagonalisable?

Exercice 50 Soit $n \in \mathbb{N}$. On définit l'endomorphisme $\varphi : \mathbb{C}_n[X] \to \mathbb{C}_n[X]$ par

$$\forall P \in \mathbb{C}_n[X], \quad \varphi(P) = (X^2 - 1) P' - nXP.$$

- 1. Déterminer les valeurs propres et les vecteurs propres de l'endomorphisme φ .
- 2. L'endomorphisme φ est-il diagonalisable?