

Functional Analysis I

Homework Assignment 9

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 6 Points

Let \mathcal{H} be a Hilbert space and let $B: \mathcal{H} \times \mathcal{H} \to \mathbb{K}$ be a sesquilinear form. Prove that the following conditions are equivalent:

- (a) B is continuous.
- (b) For each $x \in \mathcal{H}$ the mapping $y \mapsto B(x,y)$ is continuous, and for each $y \in \mathcal{H}$ the mapping $x \mapsto B(x,y)$ is continuous.
- (c) B is bounded, i.e. there exists c > 0 such that $|B(x,y)| \le c||x|| ||y||$ for all $x, y \in \mathcal{H}$.

Now assume, that B is continuous with c as in (c). Then it was shown in the lecture that there exists exactly one linear mapping $T:\mathcal{H}\to\mathcal{H}$ with the property that $B(x,y)=\langle x,Ty\rangle$ for all $x,y\in\mathcal{H}$ and $\|T\|\leq c$. Assume in addition, that there exists some $0< c_0\leq c$ such that for all $x\in X$ there holds

$$Re(B(x,x)) \ge c_0 ||x||^2.$$

Prove that T is boundedly invertible with $||T^{-1}|| \leq 1/c_0$.

Exercise 2: 4 Points

Let \mathcal{H} be a vector space over \mathbb{K} and $\langle \cdot, \cdot \rangle$ a scalar product on \mathcal{H} . Further, let $\| \cdot \|$ denote the norm induced by the scalar product. Prove for $f, g \in \mathcal{H}$ the equivalence of the following two statements.

- (a) ||f + g|| = ||f|| + ||g||.
- (b) There exists $\lambda \geq 0$ such that $f = \lambda g$ or $g = \lambda f$.

Exercise 3: 5 Points

Let \mathcal{H} be a Hilbert space, $\dim \mathcal{H} \geq 2$. We know that $L(\mathcal{H})$ equipped with the operator norm $\|\cdot\|$ is a Banach space. Prove that the operator norm on $L(\mathcal{H})$ is not induced by a scalar product.

Exercise 4: 5 Points

Let \mathcal{H} be a Hilbert space over \mathbb{K} whose elements are functions $f: S \to \mathbb{K}$ defined on a

fixed set S. The addition and scalar multiplication in \mathcal{H} shall thereby coincide with the respective point-wise operations on the functions. A function $K: S \times S \to \mathbb{K}$ is called a *reproducing kernel* for \mathcal{H} if the following holds:

- (i) For all $t \in S$ we have $k_t \in \mathcal{H}$, where $k_t(s) := k(s,t)$, $s,t \in S$.
- (ii) If $f \in \mathcal{H}$, then $f(t) = \langle f, k_t \rangle$ for all $t \in S$.

Prove the following statements:

- (a) A reproducing kernel is unique.
- (b) A reproducing kernel exists if and only if for every $t \in S$ the functional ϕ_t given by $\phi_t(f) := f(t), f \in \mathcal{H}$, is continuous.
- (c) If k is a reproducing kernel, then $span\{k_t : t \in S\}$ is dense in \mathcal{H} .
- (d) Let \mathcal{H} be the two-dimensional subspace of $L_2(0,1)$ consisting of the functions f(t) = a + bt, $a, b \in \mathbb{K}$. Find the reproducing kernel for \mathcal{H} .

Please hand the homework exercises in the BEGINNING of the big exercise on June, 17.