Radio Frequency Identification: Tracking ISS Consumables

Presentation Overview

Contents

- Room for Improvement
- Radio Frequency Identification
- ISS Constraints
- DO5 Proposal
- RFID Technology
- Recommendation
- The Future of RFID
- Backup Slides

Room for Improvement

- The Inventory Management System (IMS) is used by the crew to locate items on the ISS
 - IMS software application on a laptop is used for complex updates
 - Handheld barcode reader (BCR) is used for quick on-site updates

Room for Improvement, cont.

- IMS is only as good as the data entered into it
- Crew time is required to account for every single item using both the BCR and IMS application
 - The timeline provides the crew 40 minutes per day to update IMS
 - The BCR works great...IF everything has a barcode and all items are scanned when moved
 - 2.88% of all U.S. items are currently lost and more are probably not in their reported location (202 out of 7007 items)
 - Includes items of high and low criticality; some of which have a possible search location
- ISO assists Consumables Team with dry goods audits and maintains website with separate files for each audit
 - Consumables are only tracked to bag level in IMS

Radio Frequency Identification

- Radio Frequency Identification (RFID) technology allows for non-contact recognition of objects with RFID tags
 - Non line-of-sight system enables the contents of a CTB to be scanned without having to be opened

Applications of RFID

- Secure Access Control
- Inventory Tracking
- Exxon/Mobil Speedpass
- Electronic Toll Collecting
- Animal Tracking
- Smart Shelves
- Electronic ArticleSurveillance (EAS)
 - clothing stores, libraries
 - 2 10 MHz, up to 80 inches between gates

How RFID Systems Work

- 1. The antenna of the interrogator (reader) emits radio signals
 - EM field transmitted can be continuous
 - Antennas come in a variety of shapes/sizes
 - Can be built-in or external
 - Circular polarization of reader antenna allows any tag antenna orientation
 - Range: 1 inch to 100+ feet
- 2. Transponders (tags) respond with their unique code
 - Microchip / Integrated Circuit
 - Antenna: copper or aluminum coil
 - Encapsulating material: glass or polymer
- 3. Reader receives and decodes tag information and sends it to a computer via standard interfaces
 - Fixed or portable
 - Software available to filter data and monitor the network

Reader

Antenna

System Considerations

- Active vs. Passive
- RF Considerations
- ISS Constraints

Active vs. Passive Tags

Active Tags

- Battery powered would require periodic replacement/recharging
- Typically read/write, up to 1MB of memory
- Greater range (30 meters possible with UHF)
- Limited operational life: depends on operating temp. and battery
- Ultra Wide Band (UWB) systems use time difference of arrival of transmitted pulses to triangulate position

Passive Tags

- Powered by energy transmitted by reader
- Typically read only, 32 several Kbytes of memory
- Virtually unlimited lifetime, lighter, smaller, and cheaper
- 13.56 MHz tags powered by inductive coupling
 - EM field emitted by the reader creates a voltage drop in the coil
 - Tag modulates the signal (amplitude/frequency/phase) and sends its unique code back to the reader
- UHF tags (915 MHz and 2.45 GHz) powered by propagation coupling
 - Similar to 13.56 MHz tags, but since signal travels greater distances, field strength decreases with distance (depends on tag orientation and other factors)

RF Considerations

The Frequency Spectrum

Regulation

- National and Int'l. controls in development
 - FCC regulates the use of all radio frequencies in the U.S.
 - ISM unlicensed frequencies set aside for industrial, scientific and medical use, available around the world
- JSC / Avionic Systems Division regulates RF use on the ISS
 - ISM band frequencies don't present any obvious hazards, but each system must be tested to ensure it won't interfere with other ISS systems (POC EV / Cathy Sham)

RF Considerations, cont.

- Lower Frequencies
 - Lower cost tags
 - Higher performance around metals and liquids
- Higher Frequencies
 - More prone to reflection, refraction, and diffraction
 - High data transfer rate
 - Longer read ranges
 - Interference less of a problem with high frequencies
 - Frequency Hopping Spread Spectrum (FHSS) can be used to avoid interference
- Common RFID Frequencies (ISM Band)
 - 13.56 MHz
 - Range up to ~1.5 m with credit card sized tag
 - 915 MHz
 - Typical range up to ~3 m
 - 2.45 GHz
 - Typical Range up to ~5 m
 - BCR operates at this frequency

RF Considerations, cont.

Range

- Longer range with larger antenna, higher power, frequency, and cost
- Limited by environmental conditions and metal obstacles

Standards

- ISO some standards for some frequencies, e.g. ISO 15693 and ISO 18000
- EPC Auto-ID Center's Electronic Product Code could replace the UPC as the standard for UHF; 64 or 96 bits of information is stored in a specified format, allowing for billions of unique serial numbers
- Performance of ISO and EPC-compliant tags should be similar, but sticking to standards increases flexibility of technology in the future

ISS Constraints

- Minimal use of ISS resources
 - Power (Fixed readers need supply of 5 24 VDC, 1.2A)
 - Volume, Mass
- Minimal crew interaction
 - Setup, maintenance and use
 - Tags must be easy to attach and unobtrusive
 - System certified for 15 years minimum
- No RF interference with US/RS systems
- Environmental Conditions
 - Shock and Vibration during launch
 - Inside ISS (per Flight Rules B17-8 and 9)
 - Temp: 64 to 93°F (17.7 to 33.9°C)
 - Humidity: ranges from 25% to 75%
 - Outside ISS (RFID tags on EVA tools, reader not used)
 - Larger ambient temperature range
 - Vacuum

ISS Stowage

- Current stowage (SSP 50621 rev D): 627 CTBEs
 - 612 CTBEs in standard and non-standard US stowage
 - 15 CTBEs in SM; 43 CTBEs in Docking Compartment 1
- Projected stowage: 354 CTBEs
 - Node 2: 4 ZSRs holding 72 CTBEs (assume 1 ZSR holds 18 CTBEs)
 - NASDA
 - JEM: 3 stowage racks + potential niche space
 - ELM: 8 system and utilization stowage racks
 - Total: 198 CTBEs
 - ESA
 - Columbus: 3 ZSRs plus 1.01 m³ between system racks
 - Total: 84 CTBEs
- Grand total of current and projected stowage: 981 CTBEs
 - Break down into halves, doubles, triples to get number of RFID tags required to track just CTBs

Node 1 Stowage

DO5 Proposal

- Stowage Applications
- Initial Application Recommendation
 - How Would it Work?
 - Who Would Benefit?
 - Crew Time Spent on Audits
 - Tagging Consumables
 - Challenges Identified

Stowage Application #1: Hatch Transfer

- The idea:
 - One or two readers at hatches detect tags on all items on the transfer list
- Technology in use today
 - Warehouses
 - Libraries
 - Clothing Stores
- Simple proof of concept test
 - CB / Marsha Ivins suggested
 comparing transfer list with RFID results as a DTO
- Location tracking down to module level only
 - ISO team concluded this was not the most helpful use of the technology

Stowage Application #2:

Stowage Location Tags

The idea:

- Crewmembers use a portable reader (handheld, wearable, free floating, etc.) to scan regions
- Software determines position of items in relation to tags on racks/shelves

Challenges:

- Crew time-intensive to tag all items and locations
- Higher fidelity location resolution requires more tags on locations
- Metallic environment would be a complex engineering task (multi-path issue)
- Handheld systems are available today,
 but we would need to program a position determining algorithm

Stowage Application #3:

Smart Drawers

- The idea:
 - Antenna integrated into rack shelf (or sewn into CTB)
 - Items with tags trigger the antenna as they are moved between bags/racks
 - Advantage of high location resolution
- CB / Paolo Napoli recalled how ESA tested this type of system 10 years ago
 - Database was updated with the movement of tools between drawers with a timestamp
 - Suggested astronauts could wear bracelets to identify who moved the item
- Technology should be improved, but still presents challenges:
 - RFID tags on all items tracked
 - Attaching the antenna to racks or integrating into the CTB
 - Multiple readers may get expensive or consume too much power 19

Stowage Application #4:

Internal GPS

The idea:

- Fixed readers placed strategically around query periodically or constantly for surrounding tags
- Multiple antennas receive the tag signals
- Software translates tag responses into a 3-D coordinate, matched with a location in the ISS, using triangulation
- Technology does not appear to be here quite yet
 - Intelligent Automation, Inc. currently developing system to track astronauts during EVA using time-modulated UWB
- Even if technology is developed in near future, there are obstacles to overcome
 - Resolution may not be better than rack level due to metallic environment
 - Very expensive system
 - Initially crew time intensive: setting up readers and attaching tags to all items we wish to track

20

Initial Application Recommendation: Auditing Consumables

- Crew scans tagged consumables with a handheld reader that automatically updates a database
 - Advantage of minimal crew interaction
 - Tagging to be done on the ground
 - Eliminates hand counts
- Requires:
 - Tags on all consumables to audit
 - Handheld reader
 - Ground testing and hardware certification
 - Crew training
 - Ground support to tag items and monitor data
- Could supplement IMS with location tracking in the future
 - Experiment with the technology while benefiting the program
- Recommend this application be implemented

How Would it Work?

- Tags placed on manifested consumables on the ground
 - Eliminates need for crew to spend time tagging items
 - Modify process of barcode label application so all RFID tagging is done at the same point on the ground
- Transition period when tagged items are mixed with untagged items in orbit
 - Some items will be consumed over many increments
 - Crew must tag all consumables currently on orbit or perform an initial count and keep track of these items when using the handheld scanner
- Onboard database automatically updated each time crewmember scans an area
 - Ground downlinks data regularly or when necessary
 - Not integrated with IMS until location tracking technology proven to work in ISS environment

Who Would Benefit?

Expedition Crews

Save time and effort on logistics work, leaving more time for science

Crew Provisions Office

- More efficient and accurate planning of resupply missions
 - More space to launch payloads and critical hardware
 - Better predictions of what crew uses and at what rate

ISO Team

- Validation of existing IMS entries
- Allows consumables to be tracked with more detail than CTB level

Crew Time Spent on Audits

 "Beginning with Expedition 6, increased importance has been placed on accurate auditing of crew consumables. This is only expected to increase over the life of the station. Expedition 6 spent approximately 12 hours* auditing consumable data; this could be lessened with judicious use of an automated system."

Expedition 6 Audits

Consumables:

4:00 - Crew provisions audit (pantry items)	Other:
0:45 - Photo/TV film audit	6:00 - Node 1 audit
7:00 - Crew clothing audit	6:00 - Lab audit
0:50 - Trash bag liner and urine pre-filters	2:30 - Lost items audit

Less audit time means more time can be allocated for science ops!

^{*} Not including Russian or personal hygiene items

Tagging Consumables

- Items to be tagged
 - Office Supplies
 - Towels/Napkins
 - Printer Supplies
 - Batteries
 - Hygiene Items
 - Crew Clothing
 - Photo/TV
 - Food

- Information that can be stored on the tags
 - Unique identifier that matches up with database entry (similar to IMS format)
 - Room for other information such as launch/expiration date
 - Yet to be determined

Challenges Identified

- Tag reliability and ensuring tags do not fall off
 - Determined by tests or long-term use
- Extreme environment (EVAs, launch vehicles)
 - May need to encapsulate tags
- Encouraging Russians to adopt our new system
- Tagging small items may be difficult or impossible
- Metallic items reflect RF signals
 - 915 MHz should work with a 1/8" 1/4" gap; this can be achieved by using Scotch double sided thick tape or attaching like a clothing price tag
 - Metallic enclosures (food containers and RSRs) will block all transmission unless partially opened
 - Multi-path protocols can prevent many problems
- Objects with high water content can reflect or absorb RF signals
 - Lower frequencies penetrate better in good conductors
- Good system design and engineering can overcome these challenges, but <u>experimentation</u> is essential

RFID Technology

- Many RFID companies emerging
 - Lots of R&D, e.g. Sandia, Invocon, Univ. Pittsburgh, MIT, IAI
 - Many proven commercial technologies for common applications
 - Many companies think ISS inventory tracking would be possible, but none had a clear solution for our unique challenge of location tracking
 - Off the shelf technology should be able to conduct audits with minimal modifications
 - Many adopted and developing standards
- Difficult to predict performance in the ISS environment without tests

RFID System Costs

- Wide range of hardware costs
 - Passive tags \$ 0.40 \$8 depending on complexity, size and quantity, but prices may drop 5 cents next year and under 1 cent a few years later
 - Readers \$200 and up
- Add cost of hardware certification and crew training
- Barcode reader estimates for comparison
 - Hardware costs
 - Units \$2000 at the time, multiple units purchased, 4 onboard ISS
 - Barcode labels 20 30 cents each
 - Metal photo labels (can withstand temp. extremes) about \$1 each
 - Crew training (time per crew member)
 - 1.25 hours for the BCR Ops lesson
 - ~3-4 hours for crew consultations
 - ~3 hours in other lessons
 - ~5-7 hours in simulations
 - Total: approx. 14 hours per crew member

Recommendation

- **Experiment with a development / evaluation kit**
 - Ideally, a handheld with an integrated barcode and RFID function
 - All frequencies have pros and cons; 915 MHz may be a good compromise
 - A range of 2 3 m should be sufficient for rack depth queries
 - Sticking to standards increases flexibility of technology in the future, e.g. ISO or EPC compliant tags
- For example, RFID Wizards has products available from a
 - variety of manufacturers
 - Tags \$1 1.25

MPR-1510 915 MHz Handheld Reader with barcode scanner option and 100 assorted EPC tags

Read range: 18 in

\$2.729

FEIG 13.56 MHz Handheld Reader Dev Kit with 25 tags

Read range: 7 in

\$625

Proposed Testing

- Scan various consumables in various stowage locations
 - Fill CTBs with metallic / non-metallic / moist / dry items
 - CTBs in ZSRs
 - CTBs in RSRs with doors open and closed
 - Stacked metal food containers
- Determine
 - Range required
 - Accuracy of results
 - Time to conduct audit
 - Ease of process
- Use results to design prototype for other applications
 - Hatch transfer may be simplest design, but less useful
 - Other concepts feasible if limited amount of items tagged

Resources

- The use of RFID on the ISS will be driven by interest and funding
- Possible funding options
 - Center Director Discretionary Funds
 - ISS Program Office: Station Development Test Objective (SDTO) (SSCN3886.doc provides guidelines)
 - SBIR (Small Business Innovation Research) Program provides up to \$850,000 in early-stage R&D funding directly to small technology companies
 - STTR (Small Business Technology TRansfer) Program –
 provides up to \$600,000 in early-stage R&D funding directly to small
 companies working cooperatively with researchers at universities
 and other research institutions

Resources

- Testing facilities
 - B9 ISS Mockup Facility
 - SSC Computer Lab
 - B29 Long Duration Evaluation Facility (Integrity Facility, Bio-Plex)
 - High-fidelity test facility for research of technologies, techniques, and procedures pertinent to future planetary missions
 - NEEMO The "Aquarius" Undersea Research Habitat
 - Unique research facility owned and operated by the NOAA
 - Approx. size and layout of an ISS module (e.g. Lab or SM) with a highly developed infastructure including communications, telemetry, life support and electrical systems
 - A MOR (Mission Objective Request) must be submitted (http://mod.jsc.nasa.gov/dt/Schd/NEEMO/NEEMO.htm)

The Future of RFID...on the ISS and Beyond

- Tagging consumables is just the first step
 - Operationally simple and immediate use
- Future capabilities to add
 - Track all items by location as supplement to IMS
 - Find lost items
- RFID technology is an ever-changing field
 - Standards and regulations are being developed
 - More companies researching and producing RFID for a wide range of applications
 - Tags getting cheaper and smaller

Backup Slides

- Current RFID R&D
- Hardware Available from Various RFID Companies
- Acknowledgments

Current RFID R&D

Auto-ID Center

- Industry-funded research program creating standards such as the EPC and developing software needed to track items using small, low cost RFID tags
- Designing 915 MHz chips that will cost around 5 cents when produced and bulk, can be read from at least 4 feet, and use EEPROM (electrically erasable programmable read-only memory) so that tag data can be overwritten with a special electronic process

Sandia

 Developing Programmable SAW (Surface Acoustic Wave) correlator tags; promising research but still in early stages and not focused on determining location

Invocon

- Internal Wireless Instrumentation System (IWIS) sensors used on station
- Shuttle Wireless Instrumentation System (SWIS) sensors used on shuttle
- Working on handheld system for Sandia's technology
- Has written white paper on hatch transfers: commercial tags (i.e. Atmel) and custom readers needed
- Has considered an SBIR for an integrated crew positioning system, leak detection system, and inventory management system

University of Pittsburgh

- Developing PENI tag, 3 cubic mm
- 12 cents each
- PC compatible PEMI receivers currently sell for less than \$50.00

Available from InTrak

- Same core systems as WhereNet and Ekahau, but could add location tracking capability in the future using TDOA (time difference of arrival) technology
 - Auditing system
 - Passive tags
 - 0.5 inch square,
 - \$3 each
 - 900 MHz, 2.4 GHz, and 5.7 GHz available
 - Handheld reader
 - range of 50 100 feet
 - several hundred dollars
 - Hardware off-the-shelf; customizable software
 - Location tracking system
 - Active Tags
 - 1 inch square, 1 cm high
 - \$5 each
 - Fixed reader
 - Fixed receiver every ~150 ft. throughout station
 - \$50 each

Available from Texas Instruments

- TI does not sell handhelds, but 3rd party Team Tag-it members do
- Low frequency transponders
 - 134.2 kHz
 - Easily converted into labels (flat); variety of shapes/sizes
 - \$2 \$4 each
 - Mount-on-metal transponders
 - 102 x 36 x 16.5 mm
 - \$8 \$5 each
- Tag-it Inlays
 - High frequency: 13.56 MHz
 - Reels of 5000: \$2000 \$2500; 40 50 cents each
- Fixed readers \$200 each, plus cost of antennas

Available from Northern Apex

- RFID function integrates into Palm or Pocket PC platform
 - Recommended VECTOR dev kit
 - 13.56 MHz reader has built in barcode reader
 - Range of a few inches
 - Tags \$1.83 \$4.50 depending on quantity and encapsulation
 - Reader sled: \$390 \$735
 - Software: \$1995
 - Pocket PC / Palm: \$425
 - 900 MHz Matrix handheld reader with larger range in development

Available from Intermed

- Intellitag Pallet/Carton RFID Evaluation Kit ("Ready-to-Go")
- \$14,000
- Includes
 - Fixed and handheld system that support all relevant adopted and emerging national and international standards
 - Mobile wireless computer and software
 - A variety of sample tags
 - 1 day onsite training

Available from Tek Industries

- TEK Protégé RFID Adapter is an attachable RFID scanner that snaps together with a Palm hand held unit
 - Reads/writes to RFID tags of multifrequencies and protocols
 - Industry standard 125Khz, 134.2Khz or 13.56Mhz RFID tags
 - Read range; 4 to 6 inches
 - Battery: 6 NiMH rechargeable cells
 - Carrier Frequencies: 125KhZ, 134.2Khz or 13.56Mhz
 - RF power: 200 mW
 - RS232 Downloading/Charging cable for PC and Laptops
 - Sample tags, scanner, and Palm handheld loaded with a demo program: \$620
- Recommended 134.2 kHz and 13.56 MHz tags due to high surrounding metal content

Available from EmbedTech

- Laundry Tags
 - 13.56 MHz
 - 4.5 cm x 3.4 cm x 0.2 cm, 2.8 g
 - Multiple versions of this garment tag available
 - Different RFID inlays recommended passive UHF for our read range
 - Encapsulated in different resins (stiff and soft resins)
 - Depending on quantity ordered, cost is < \$1 each
- Handheld Readers
 - Palm with RFID "sled" or dedicated handheld
 - Cost \$900 and dropping with more volume production
 - One supplier is offering an RFID "insert" card to a barcode reader for \$300
- Experience in working around metal objects in several applications
- Quoted handheld and test tags for < \$1000

