СПбГУ 2014-11-13 Матметоды — Множественная регрессия Вар.№ 01	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента stack.loss	 (с) центрует значения зависимой переменной Y вокруг нуля вместо средней (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
Д И О	(a) 1.2953	Решение
Ф.И.О.:	(a) 1.2955 (b) NA	
	(c) -39.9197	(a) False
	(d) -0.1521	(b) False
	(d) -0.1321	(c) False
	Решение	(d) True
1. (a) (b) (c) (d) 2. (a) (b) (c) (d) 3. (a) (b) (c) (d) 4. (a) (b) (c) (d) 5. (a) (b) (c) (d) 6 2 3	 (a) False (b) True (c) False (d) False 2. Задача Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа: (a) не позволяет правомерно сравнить силу эффектов разнородных предикторов 	 3. Задача Отметьте условия применимости линейной регрессии (а) Нормальное распределение остатков (b) Гомогенность дисперсий остатков (c) Линейная связь (d) Независимость значений у друг от друга Решение (a) True (b) True
	(b) позволяет обойтись без проверки состоятельности модели	(c) True

(d) True

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) самый слабый предиктор
- (b) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
- (с) один из параметров модели
- (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю

Решение

 \sim

- (a) False
- (b) False
- (c) True
- (d) True
- 5. Задача

Поправка adjusted R^2 :

- (a) позволяет правомерно сравнивать модели с разным количеством предикторов
- (b) всегда растет с увеличением количества предикторов
- (c) всегда равна или имеет значение выше, чем R^2
- (d) всегда уменьшается с увеличением количества предикторов

Решение

- (a) True
- (b) False
- (c) False
- (d) False
- 6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 69, а остальные независимые

переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

stmod <- lm(stack.loss ~ ., data = stackloss)

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} \operatorname{predict} <- c(\operatorname{coefficients}(\operatorname{stmod})[1] + \\ \operatorname{coefficients}(\operatorname{stmod})[2]^*\operatorname{air} + \\ \operatorname{coefficients}(\operatorname{stmod})[3]^*\operatorname{mean}(\operatorname{stackloss}\operatorname{Water}.\operatorname{Temp}) + \\ \operatorname{coefficients}(\operatorname{stmod})[4]^*\operatorname{mean}(\operatorname{stackloss}\operatorname{Acid}.\operatorname{Conc.})) \end{array}$

answer <- round(predict,3)

Матметоды — Множественная регрессия Вар.№ 02	Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента stack.loss	лу эффектов разнородых предикторов (d) центрует значения каждого предиктора X_i вокруг нуля вместо средней
Ф.И.О.:	(a) 0.9136	Решение
Ψ.Π.Ο	(b) 0.7156	() = 1
	(c) NA	(a) False
	(d) 1.2953	(b) False(c) True
	Решение	(d) True
		3. Задача
1. (a) (b) (c) X (d)	(a) False	
2. (a) \square (b) \square (c) X (d) X	(b) False	Отметьте условия применимости линей- ной регрессии
3. (a) $$ (b) \boxed{X} (c) $$ (d) $$	(c) True(d) False	(a) Коэффициент детерминации $R^2 > 0.79$
4. (a) X (b) C (c) C	2. Задача	(b) Независимость значений у друг от друга
5. (a) (b) (c) (d) X 6. 122 940	Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:	(c) Корреляция между независимыми переменными (мультиколлинеарность) велика
	per pecenomica o unavinou.	(d) Независимые переменные стандар-
	(а) не позволяет правомерно сравнить силу эффектов разнородных предикторов	Решение
	(b) позволяет оценить ошибку пред- сказания модели	(a) False

2014-11-13

1. Задача

СПбГУ

(с) позволяет правомерно сравнить си-

2

- (b) True
- (c) False
- (d) False

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) один из параметров модели
- (b) угловой коэффициент регрессионной прямой
- (с) самый слабый предиктор
- (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю

Решение

- (a) True
- (b) False
- (c) False
- (d) True

5. Задача

Поправка adjusted R^2 :

- (a) всегда равна или имеет значение выше, чем R^2
- (b) всегда уменьшается с увеличением количества предикторов
- (с) всегда растет с увеличением количества предикторов
- (d) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора

Решение

- (a) False
- (b) False
- (c) False
- (d) True

6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 68, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

stmod <- lm(stack.loss ~ ., data = stackloss)

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\label{eq:coefficients} $$\operatorname{c(coefficients(stmod)[1]} + \operatorname{coefficients(stmod)[2]*air} + \operatorname{coefficients(stmod)[3]*mean(stackloss$Water.Temp)} + \operatorname{coefficients(stmod)[4]*mean(stackloss$Acid.Conc.))}$

answer <- round(predict,3)

		-11-13	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента Water.Temp	 (с) центрует значения каждого предиктора X_i вокруг нуля вместо средней (d) позволяет правомерно сравнить силу эффектов разнородых предикторов
	Ф.И.О.:		(a) 0.7156	Решение
	¥.H.O		(b) 1.2953 (c) -39.9197 (d) NA	(a) False(b) False(c) True
			Решение	(d) True
4	1. (a)	7	(a) False (b) True (c) False (d) False 2. Задача Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:	 3. Задача Отметьте условия применимости линейной регрессии (а) Дисперсия остатков равна единице (b) Гомогенность дисперсий остатков (c) Коэффициент детерминации R² > 0.79 (d) Корреляция между независимыми переменными (мультиколлинеарность) велика
			(а) позволяет оценить ошибку предсказания модели(b) не позволяет правомерно сравнить силу эффектов разнородных предикторов	Pешение (a) False (b) True

2

- (c) False
- (d) False

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (a) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
- (b) один из параметров модели
- (с) угловой коэффициент регрессионной прямой
- (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю

Решение

- (a) False
- (b) True
- (c) False
- (d) True

5. Задача

Поправка adjusted R^2 :

- (а) всегда растет с увеличением количества предикторов
- (b) позволяет определить наиболее значимый предиктор множественной модели
- (c) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
- (d) всегда равна или имеет значение выше, чем R^2

Решение

- (a) False
- (b) False
- (c) True
- (d) False

6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 68, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

 $stmod <- lm(stack.loss \sim ., data = stackloss)$

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} predict <- c(coefficients(stmod)[1] +\\ coefficients(stmod)[2]*air +\\ coefficients(stmod)[3]*mean(stackloss$Water.Temp) +\\ coefficients(stmod)[4]*mean(stackloss$Acid.Conc.)) \end{array}$

answer <- round(predict,3)

СПбГУ 2014-11-13 Матметоды — Множественная регрессия Вар.№ 04	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите зна- чение коэффициента Water.Temp	 (с) центрует значения каждого предиктора X_i вокруг нуля вместо средней (d) позволяет обойтись без проверки на нормальность Решение
Ф.И.О.:	(a) 1.2953(b) -0.1521(c) -39.9197(d) 0.7156 Решение	(a) False(b) False(c) True(d) False 3. Задача
1. (a) X (b) (c) (d) (2. (a) (b) (c) X (d) (3. (a) X (b) X (c) X (d) X (4. (a) (b) X (c) (d) (d) (5. (a) (b) (c) X (d) (6. 10 (c) X (d) (6. 10 (c) X (d)	(a) True (b) False (c) False (d) False 2. Задача Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:	Отметьте условия применимости линейной регрессии (а) Гомогенность дисперсий остатков (b) Нормальное распределение остатков (c) Независимость значений у друг от друга (d) Линейная связь Решение
	 (а) центрует значения зависимой переменной Y вокруг нуля вместо средней (b) позволяет оценить ошибку предсказания модели 	(a) True(b) True(c) True(d) True

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) один из предикторов модели
- (b) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- (с) угловой коэффициент регрессионной прямой
- (d) самый слабый предиктор

Решение

- (a) False
- (b) True
- (c) False
- (d) False

5. Задача

Поправка adjusted R^2 :

- (а) всегда уменьшается с увеличением количества предикторов
- (b) всегда растет с увеличением количества предикторов
- (c) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
- (d) всегда равна или имеет значение выше, чем R^2

Решение

- (a) False
- (b) False
- (c) True
- (d) False
- 6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 66, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

 $stmod <- lm(stack.loss \sim ., data = stackloss)$

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} {\rm predict} < - \ c({\rm coefficients(stmod)[1]} \ + \\ {\rm coefficients(stmod)[2]*air} \ + \\ {\rm coefficients(stmod)[3]*mean(stackloss\$Water.Temp)} \ + \\ {\rm coefficients(stmod)[4]*mean(stackloss\$Acid.Conc.))} \end{array}$

answer <- round(predict,3)

Вместо "air"подставьте нужное значение Air.Flow

2

 СПбГУ 2014-11-13 Матметоды — Множественная регрессия Вар.№ 05 	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента Air.Flow	 (с) центрует значения каждого предиктора X_i вокруг нуля вместо средней (d) позволяет обойтись без проверки состоятельности модели Решение
Ф.И.О.:	(a) -39.9197(b) 0.9136(c) 0.7156(d) 1.2953Решение	(a) False(b) False(c) True(d) False 3. Задача
1. (a) (b) (c) X (d) (d) 2. (a) (b) (c) X (d) (d) 3. (a) (b) X (c) (d) X 4. (a) (b) (c) X (d) X	(a) False(b) False(c) True(d) False 2. Задача	Отметьте условия применимости линейной регрессии (а) Дисперсия остатков равна единице (b) Линейная связь (c) Независимые переменные стандартизованы
5. (a) X (b) (c) (d) (6. 12 1 5 1 0	Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:	(d) Корреляция между независимыми переменными (мультиколлинеарность) велика Решение
	(а) позволяет обойтись без проверки на нормальность(b) не позволяет правомерно сравнить силу эффектов разнородных предикторов	(a) False(b) True(c) False

 \sim

(d) False

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) угловой коэффициент регрессионной прямой
- (b) один из предикторов модели
- (с) один из параметров модели
- (d) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю

Решение

- (a) False
- (b) False
- (c) True
- (d) True
- 5. Задача

Поправка adjusted R^2 :

- (a) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
- (b) применима только для моделей с предварительно стандартизированными предикторами
- (с) всегда уменьшается с увеличением количества предикторов
- (d) позволяет определить наиболее значимый предиктор множественной модели

Решение

- (a) True
- (b) False
- (c) False
- (d) False
- 6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 66, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

 $stmod <- lm(stack.loss \sim ., data = stackloss)$

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} predict <- c(coefficients(stmod)[1] +\\ coefficients(stmod)[2]*air +\\ coefficients(stmod)[3]*mean(stackloss$Water.Temp) +\\ coefficients(stmod)[4]*mean(stackloss$Acid.Conc.)) \end{array}$

answer <- round(predict,3)

СП6ГУ 2014-11-13 Матметоды — Множественная регрессия Вар.№ 06	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента Acid.Conc.	 (c) не позволяет правомерно сравнить силу эффектов разнородных предикторов (d) позволяет обойтись без проверки состоятельности модели Решение
Ф.И.О.:	(a) -39.9197(b) NA(c) 1.2953(d) 0.7156Решение	(a) True (b) True (c) False (d) False 3. Задача
1. (a) (b) (c) (d) X 2. (a) X (b) X (c) (d) 3. (a) X (b) X (c) X (d) X 4. (a) (b) X (c) (d) X 5. (a) (b) X (c) (d) 6 1 7 9 3 0	(a) False (b) False (c) False (d) True 2. Задача Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:	Отметьте условия применимости линейной регрессии (а) Независимость значений у друг от друга (b) Гомогенность дисперсий остатков (c) Линейная связь (d) Нормальное распределение остатков
	 (а) центрует значения каждого предиктора X_i вокруг нуля вместо средней (b) позволяет правомерно сравнить силу эффектов разнородых предикторов 	(a) True(b) True(c) True(d) True

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) один из предикторов модели
- (b) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1,X_2,X_3) равны нулю
- (c) скорость изменения зависимой переменной при фиксированном значении предиктора X_i
- (d) один из параметров модели

Решение

- (a) False
- (b) True
- (c) False
- (d) True

5. Задача

Поправка adjusted R^2 :

- (а) всегда растет с увеличением количества предикторов
- (b) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора
- (с) всегда уменьшается с увеличением количества предикторов
- (d) применима только для моделей с предварительно стандартизированными предикторами

Решение

- (a) False
- (b) True
- (c) False
- (d) False

6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 61, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

stmod <- lm(stack.loss ~ ., data = stackloss)

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} \operatorname{predict} <-\operatorname{c(coefficients(stmod)[1]} + \\ \operatorname{coefficients(stmod)[2]*air} + \\ \operatorname{coefficients(stmod)[3]*mean(stackloss$Water.Temp)} + \\ \operatorname{coefficients(stmod)[4]*mean(stackloss$Acid.Conc.))} \end{array}$

answer <- round(predict,3)

Вместо "air"подставьте нужное значение Air.Flow

2

СПбГУ 2014-11-13 Матметоды — Множественная регрессия Вар.№ 07	1. Задача Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc - предикторами. Проведите регрессионный анализ и определите значение коэффициента stack.loss	(d) центрует значения зависимой переменной Y вокруг нуля вместо среднейРешение
Ф.И.О.:	(a) 0.7156 (b) 1.2953 (c) NA (d) -0.1521	(a) False(b) False(c) True(d) False
	Решение	3. Задача
1. (a) [(b) [(c) X (d) [2. (a) [(b) [(c) X (d) [2. (a) [(d) X (d) (d) X (d) [(d) X (d)	 (a) False (b) False (c) True (d) False 2. Задача Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа: (a) позволяет обойтись без проверки на нормальность (b) позволяет обойтись без проверки состоятельности модели (c) позволяет правомерно сравнить силу эффектов разнородых предикторов 	Отметьте условия применимости линейной регрессии (а) Независимость значений у друг от друга (b) Независимые переменные стандартизованы (c) Линейная связь (d) Дисперсия остатков равна единице Решение (а) True (b) False (c) True (d) False

4. Задача

Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 - 4.3X_2 + 0.8X_3$, интерсепт это:

- (а) один из предикторов модели
- (b) один из параметров модели
- (c) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
- (d) угловой коэффициент регрессионной прямой

Решение

- (a) False
- (b) True
- (c) True
- (d) False

5. Задача

Поправка adjusted R^2 :

- (а) всегда растет с увеличением количества предикторов
- (b) всегда уменьшается с увеличением количества предикторов
- (c) применима только для моделей с предварительно стандартизированными предикторами
- (d) позволяет скорректировать рост R^2 при добавлении каждого нового предиктора

Решение

- (a) False
- (b) False
- (c) False
- (d) True

6. Задача

ДОПОЛНИТЕЛЬНЫЙ ВОПРОС

Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 65, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.

Решение

Сначала проведем регрессионный анализ, получим значения интерсепта и коэффициентов регрессии

 $stmod <- lm(stack.loss \sim ., data = stackloss)$

Предсказать конкретное значение зависимой переменной можно выполнив код:

 $\begin{array}{l} {\rm predict} < - c({\rm coefficients(stmod)[1]} + \\ {\rm coefficients(stmod)[2]*air} + \\ {\rm coefficients(stmod)[3]*mean(stackloss$Water.Temp)} + \\ {\rm coefficients(stmod)[4]*mean(stackloss$Acid.Conc.))} \end{array}$

answer <- round(predict,3)

Вместо "air"подставьте нужное значение Air.Flow

2