

WEST Search History

DATE: Wednesday, May 17, 2006

Hide? Set Name Query Hit Count
DB=USPT; PLUR=YES; OP=OR
 L1 pro211 47

END OF SEARCH HISTORY

**SCORE Search Results Details for Application
09903749 and Search Result us-09-903-749a-
2.rapbn.**

[Score Home Page](#) [Retrieve Application List](#) [SCORE System Overview](#) [SCORE FAQ](#) [Comments / Suggestions](#)

This page gives you Search Results detail for the Application 09903749 and Search Result us-09-903-749a-2.rapbn.

start

[Go Back to previous page](#)

GenCore version 5.1.8
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: May 15, 2006, 21:19:57 ; Search time 28 Seconds
(without alignments)
591.891 Million cell updates/sec

Title: US-09-903-749A-2
Perfect score: 2005
Sequence: 1 MRLPRRAALGLLPLLLLPP.....AEAEATEGESPTOLPSREDL 353

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 250354 seqs, 46948837 residues

Total number of hits satisfying chosen parameters: 250354

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 1500 summaries

Database : Published_Applications_AA_New:
1: /SIDS5/ptodata/1/pubpaa/US08_NEW_PUB.pep:/*
2: /SIDS5/ptodata/1/pubpaa/US06_NEW_PUB.pep:/*
3: /SIDS5/ptodata/1/pubpaa/US07_NEW_PUB.pep:/*
4: /SIDS5/ptodata/1/pubpaa/US08_NEW_PUB.pep:/*
5: /SIDS5/ptodata/1/pubpaa/PCT_NEW_PUB.pep:/*
6: /SIDS5/ptodata/1/pubpaa/US09_NEW_PUB.pep:/*
7: /SIDS5/ptodata/1/pubpaa/US09_NEW_PUB.pep:/*
8: /SIDS5/ptodata/1/pubpaa/US10_NEW_PUB.pep:/*
9: /SIDS5/ptodata/1/pubpaa/US10_NEW_PUB.pep:/*
10: /SIDS5/ptodata/1/pubpaa/US11_NEW_PUB.pep:/*
11: /SIDS5/ptodata/1/pubpaa/US11_NEW_PUB.pep:/*
12: /SIDS5/ptodata/1/pubpaa/US60_NEW_PUB.pep:/*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

8

Result No.	Score	Query					Description
		Match	Length	DB	ID		
<hr/>							
1	2005	100.0	353	9	US-10-131-826A-296	Sequence 296,	App
2	2005	100.0	353	9	US-10-973-115B-296	Sequence 296,	App
3	2005	100.0	353	9	US-10-137-873A-296	Sequence 296,	App
4	2005	100.0	353	9	US-10-152-370-296	Sequence 296,	App
5	2005	100.0	353	11	US-11-290-153-296	Sequence 296,	App

6	1787	89.1	391	9	US-10-784-004-1228	Sequence 1228, App
7	971.5	48.5	420	9	US-10-131-826A-290	Sequence 290, App
8	971.5	48.5	420	9	US-10-973-115B-290	Sequence 290, App
9	971.5	48.5	420	9	US-10-218-784-122	Sequence 122, App
10	971.5	48.5	420	9	US-10-219-061-122	Sequence 122, App
11	971.5	48.5	420	9	US-10-219-062-122	Sequence 122, App
12	971.5	48.5	420	9	US-10-219-064-122	Sequence 122, App
13	971.5	48.5	420	9	US-10-233-134-122	Sequence 122, App
14	971.5	48.5	420	9	US-10-137-873A-290	Sequence 290, App
15	971.5	48.5	420	9	US-10-152-370-290	Sequence 290, App
16	971.5	48.5	420	11	US-11-290-153-290	Sequence 290, App
17	277.5	13.8	1416	11	US-11-128-059-60	Sequence 60, Appl
18	277.5	13.8	1494	11	US-11-128-059-78	Sequence 78, Appl
19	277.5	13.8	2086	11	US-11-128-059-82	Sequence 82, Appl
20	277.5	13.8	2313	11	US-11-128-059-80	Sequence 80, Appl
21	277.5	13.8	2358	11	US-11-128-059-74	Sequence 74, Appl
22	277.5	13.8	2439	11	US-11-128-059-76	Sequence 76, Appl
23	277.5	13.8	2458	11	US-11-128-059-94	Sequence 94, Appl
24	277.5	13.8	2551	9	US-10-453-372-256	Sequence 256, App
25	277.5	13.8	2551	11	US-11-128-059-96	Sequence 96, Appl
26	268.5	13.4	2871	11	US-11-169-041-131	Sequence 131, App
27	268.5	13.4	3002	9	US-10-821-234-916	Sequence 916, App
28	268	13.4	1821	8	US-10-505-928-451	Sequence 451, App
29	254.5	12.7	566	11	US-11-065-695-2	Sequence 2, Appli
30	254.5	12.7	601	11	US-11-065-695-8	Sequence 8, Appli
31	254.5	12.7	652	9	US-10-821-234-1016	Sequence 1016, Ap
32	254.5	12.7	683	11	US-11-065-695-6	Sequence 6, Appli
33	254.5	12.7	703	9	US-10-821-234-1412	Sequence 1412, Ap
34	254.5	12.7	703	11	US-11-065-695-4	Sequence 4, Appli
35	254	12.7	533	11	US-11-128-059-58	Sequence 58, Appl
36	253	12.6	1323	11	US-11-128-059-92	Sequence 92, Appl
37	253	12.6	1327	11	US-11-128-059-84	Sequence 84, Appl
38	253	12.6	1416	11	US-11-128-059-4	Sequence 4, Appli
39	253	12.6	1502	9	US-10-453-372-252	Sequence 252, App
40	253	12.6	1510	9	US-10-453-372-254	Sequence 254, App
41	253	12.6	2417	9	US-10-453-372-228	Sequence 228, App
42	250	12.5	3623	9	US-10-995-561-593	Sequence 593, App
43	249.5	12.4	2911	11	US-11-090-617-706	Sequence 706, App
44	247	12.3	997	11	US-11-113-424-37	Sequence 37, Appl
45	244	12.2	999	11	US-11-113-424-36	Sequence 36, Appl
46	242.5	12.1	1184	11	US-11-065-695-10	Sequence 10, Appl
47	240.5	12.0	1400	9	US-10-821-234-1045	Sequence 1045, Ap
48	238	11.9	509	8	US-10-196-749-52	Sequence 52, Appl
49	238	11.9	509	9	US-10-194-487-52	Sequence 52, Appl
50	238	11.9	509	9	US-10-195-883-52	Sequence 52, Appl
51	238	11.9	509	9	US-10-195-888-52	Sequence 52, Appl
52	238	11.9	509	9	US-10-195-889-52	Sequence 52, Appl
53	238	11.9	509	11	US-11-124-327-2	Sequence 2, Appli
54	238	11.9	536	9	US-10-453-372-30	Sequence 30, Appl
55	238	11.9	542	9	US-10-453-372-10	Sequence 10, Appl
56	238	11.9	964	11	US-11-137-465-58	Sequence 58, Appl
57	238	11.9	965	11	US-11-113-424-2	Sequence 2, Appli
58	238	11.9	965	11	US-11-147-047-51	Sequence 51, Appl
59	238	11.9	997	11	US-11-080-991-50	Sequence 50, Appl
60	237	11.8	536	9	US-10-453-372-6	Sequence 6, Appli
61	237	11.8	536	9	US-10-453-372-22	Sequence 22, Appl
62	237	11.8	536	9	US-10-453-372-24	Sequence 24, Appl
63	237	11.8	536	9	US-10-453-372-26	Sequence 26, Appl
64	236	11.8	536	9	US-10-453-372-28	Sequence 28, Appl
65	236	11.8	961	11	US-11-113-424-35	Sequence 35, Appl
66	234.5	11.7	572	9	US-10-453-372-16	Sequence 16, Appl
67	232	11.6	552	9	US-10-453-372-14	Sequence 14, Appl
68	232	11.6	1375	9	US-10-995-561-809	Sequence 809, App
69	232	11.6	1376	11	US-11-100-640-32	Sequence 32, Appl
70	231.5	11.5	204	9	US-10-453-372-18	Sequence 18, Appl
71	231.5	11.5	204	9	US-10-453-372-20	Sequence 20, Appl
72	231.5	11.5	421	9	US-10-453-372-220	Sequence 220, App
73	231.5	11.5	533	9	US-10-453-372-230	Sequence 230, App
74	231.5	11.5	533	9	US-10-453-372-232	Sequence 232, App
75	231.5	11.5	552	9	US-10-453-372-234	Sequence 234, App
76	231.5	11.5	552	9	US-10-453-372-238	Sequence 238, App
77	231.5	11.5	552	9	US-10-453-372-242	Sequence 242, App
78	231.5	11.5	552	9	US-10-453-372-244	Sequence 244, App
79	231.5	11.5	552	9	US-10-453-372-246	Sequence 246, App
80	231.5	11.5	552	9	US-10-453-372-248	Sequence 248, App
81	231.5	11.5	552	9	US-10-453-372-250	Sequence 250, App

SCORE Search Results Details for Application 09903749 and Search Result us-09-903-749a- 2.rai.

[Score Home Page](#)
 [Retrieve Application List](#)
 [SCORE System Overview](#)
 [SCORE FAQ](#)
 [Comments / Suggestions](#)

This page gives you Search Results detail for the Application 09903749 and Search Result us-09-903-749a-2.rai.

[start](#)

[Go Back to previous page](#)

GenCore version 5.1.8
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: May 15, 2006, 21:00:31 ; Search time 25 Seconds
(without alignments)
1167.381 Million cell updates/sec

Title: US-09-903-749A-2
Perfect score: 2005
Sequence: 1 MRLPRRAALGLLPLLLLPP.....AEAEATEGESPTQLPSREDL 353

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 572060 seqs, 82675679 residues

Total number of hits satisfying chosen parameters: 572060

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 1500 summaries

Database : Issued_Patents_AA:
1: /cgn2_6/ptodata/1/iaa/5_COMB.pep:
2: /cgn2_6/ptodata/1/iaa/6_COMB.pep:
3: /cgn2_6/ptodata/1/iaa/H_COMB.pep:
4: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:
5: /cgn2_6/ptodata/1/iaa/RE_COMB.pep:
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
%					
1	2005	100.0	353	2 US-09-907-794A-2	Sequence 2, Appli
2	2005	100.0	353	2 US-09-905-125A-2	Sequence 2, Appli
3	2005	100.0	353	2 US-09-902-775A-2	Sequence 2, Appli
4	2005	100.0	353	2 US-09-906-700-2	Sequence 2, Appli
5	2005	100.0	353	2 US-09-903-603A-2	Sequence 2, Appli
6	2005	100.0	353	2 US-09-904-920A-2	Sequence 2, Appli
7	2005	100.0	353	2 US-09-909-064-2	Sequence 2, Appli
8	2005	100.0	353	2 US-09-905-381A-2	Sequence 2, Appli
9	2005	100.0	353	2 US-09-906-618-2	Sequence 2, Appli
10	2005	100.0	353	2 US-09-906-646-2	Sequence 2, Appli
11	2005	100.0	353	2 US-09-904-462-2	Sequence 2, Appli

12	2005	100.0	353	2	US-09-902-736A-2	Sequence 2, Appli
13	2005	100.0	353	2	US-09-906-722A-2	Sequence 2, Appli
14	2005	100.0	353	2	US-10-188-495-56	Sequence 56, Appl
15	1887	94.1	329	2	US-10-188-495-58	Sequence 58, Appl
16	1481.5	73.9	348	2	US-10-188-495-69	Sequence 69, Appl
17	971.5	48.5	420	2	US-09-907-794A-109	Sequence 109, App
18	971.5	48.5	420	2	US-09-905-125A-109	Sequence 109, App
19	971.5	48.5	420	2	US-09-902-775A-109	Sequence 109, App
20	971.5	48.5	420	2	US-09-906-700-109	Sequence 109, App
21	971.5	48.5	420	2	US-09-903-603A-109	Sequence 109, App
22	971.5	48.5	420	2	US-09-904-920A-109	Sequence 109, App
23	971.5	48.5	420	2	US-09-909-064-109	Sequence 109, App
24	971.5	48.5	420	2	US-09-905-381A-109	Sequence 109, App
25	971.5	48.5	420	2	US-09-906-618-109	Sequence 109, App
26	971.5	48.5	420	2	US-09-906-646-109	Sequence 109, App
27	971.5	48.5	420	2	US-09-904-462-109	Sequence 109, App
28	971.5	48.5	420	2	US-09-902-736A-109	Sequence 109, App
29	971.5	48.5	420	2	US-09-906-722A-109	Sequence 109, App
30	860.5	42.9	392	2	US-10-144-929-156	Sequence 156, App
31	670	33.4	777	2	US-09-270-767-44409	Sequence 44409, A
32	463.5	23.1	242	2	US-09-312-283C-393	Sequence 393, App
33	277.5	13.8	1581	2	US-09-949-002-414	Sequence 414, App
34	272	13.6	1587	2	US-09-949-002-354	Sequence 354, App
35	268.5	13.4	1935	2	US-09-949-016-10403	Sequence 10403, A
36	268.5	13.4	2871	2	US-09-538-092-1076	Sequence 1076, Ap
37	268	13.4	1656	2	US-09-949-016-7247	Sequence 7247, Ap
38	268	13.4	1821	2	US-09-949-016-5938	Sequence 5938, Ap
39	256	12.8	77	2	US-09-621-976-4010	Sequence 4010, Ap
40	255.5	12.7	1253	2	US-08-479-722B-4	Sequence 4, Appli
41	255.5	12.7	1253	2	US-09-592-685-4	Sequence 4, Appli
42	254.5	12.7	575	2	US-09-949-016-11264	Sequence 11264, A
43	254.5	12.7	575	2	US-09-949-016-11265	Sequence 11265, A
44	254.5	12.7	575	2	US-09-949-016-11266	Sequence 11266, A
45	254.5	12.7	575	2	US-09-949-016-11267	Sequence 11267, A
46	254.5	12.7	652	1	US-08-751-305-2	Sequence 2, Appli
47	254.5	12.7	657	2	US-09-949-016-11365	Sequence 11365, A
48	254.5	12.7	657	2	US-09-949-016-11366	Sequence 11366, A
49	254.5	12.7	657	2	US-09-949-016-11367	Sequence 11367, A
50	254.5	12.7	657	2	US-09-949-016-11368	Sequence 11368, A
51	254.5	12.7	677	2	US-09-949-016-11369	Sequence 11369, A
52	254.5	12.7	677	2	US-09-949-016-11370	Sequence 11370, A
53	254.5	12.7	677	2	US-09-949-016-11371	Sequence 11371, A
54	254.5	12.7	677	2	US-09-949-016-11372	Sequence 11372, A
55	250	12.5	1833	2	US-08-479-722B-2	Sequence 2, Appli
56	250	12.5	1833	2	US-09-592-685-2	Sequence 2, Appli
57	250	12.5	1833	4	PCT-US95-02251-18	Sequence 18, Appl
58	248	12.4	1106	2	US-09-949-016-9626	Sequence 9626, Ap
59	247	12.3	997	2	US-09-747-371-3	Sequence 3, Appli
60	246.5	12.3	1251	4	PCT-US95-02251-3	Sequence 3, Appli
61	246.5	12.3	1252	1	US-08-199-780-3	Sequence 3, Appli
62	246.5	12.3	1252	1	US-08-316-650-3	Sequence 3, Appli
63	246	12.3	140	2	US-09-270-767-59840	Sequence 59840, A
64	244	12.2	999	2	US-09-747-371-2	Sequence 2, Appli
65	240.5	12.0	996	2	US-09-949-016-8254	Sequence 8254, Ap
66	240.5	12.0	1394	2	US-09-949-016-5971	Sequence 5971, Ap
67	240.5	12.0	1394	6	5177197-30	Patent No. 5177197
68	239	11.9	676	1	US-08-282-141-4	Sequence 4, Appli
69	239	11.9	676	1	US-08-435-434-3	Sequence 3, Appli
70	239	11.9	676	1	US-08-435-436-3	Sequence 3, Appli
71	239	11.9	676	1	US-08-438-863-3	Sequence 3, Appli
72	239	11.9	676	1	US-08-438-864-3	Sequence 3, Appli
73	239	11.9	676	2	US-08-438-862-3	Sequence 3, Appli
74	239	11.9	676	2	US-08-628-747-3	Sequence 3, Appli
75	239	11.9	676	2	US-08-402-253-3	Sequence 3, Appli
76	239	11.9	676	2	US-08-443-866B-3	Sequence 3, Appli
77	238	11.9	509	2	US-09-907-794A-315	Sequence 315, App
78	238	11.9	509	2	US-09-905-125A-315	Sequence 315, App
79	238	11.9	509	2	US-09-902-775A-315	Sequence 315, App
80	238	11.9	509	2	US-09-906-700-315	Sequence 315, App
81	238	11.9	509	2	US-09-903-603A-315	Sequence 315, App
82	238	11.9	509	2	US-09-904-920A-315	Sequence 315, App
83	238	11.9	509	2	US-09-909-064-315	Sequence 315, App
84	238	11.9	509	2	US-09-905-381A-315	Sequence 315, App
85	238	11.9	509	2	US-09-906-618-315	Sequence 315, App
86	238	11.9	509	2	US-09-906-646-315	Sequence 315, App
87	238	11.9	509	2	US-09-904-462-315	Sequence 315, App

SCORE Search Results Details for Application 09903749 and Search Result us-09-903-749a- 2.rup.

[Score Home Page](#)
 [Retrieve Application List](#)
 [SCORE System Overview](#)
 [SCORE FAQ](#)
 [Comments / Suggestions](#)

This page gives you Search Results detail for the Application 09903749 and Search Result us-09-903-749a-2.rup.

[start](#)

[Go Back to previous page](#)

GenCore version 5.1.8
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: May 15, 2006, 21:01:41 ; Search time 231 Seconds
(without alignments)
1078.145 Million cell updates/sec

Title: US-09-903-749A-2
Perfect score: 2005
Sequence: 1 MRLPRRAALGLLPLLLLPP.....AEAEATEGESPTQLPSREDL 353

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 2166443 seqs, 705528306 residues

Total number of hits satisfying chosen parameters: 2166443

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 1500 summaries

Database : UniProt_05.80:*

1: uniprot_sprot:*

2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query				Description
		Match	Length	DB	ID	
1	2005	100.0	353	2	Q6UXH1_HUMAN	Q6uxh1 homo sapien
2	1995	99.5	353	2	Q86UC0_HUMAN	Q86uc0 homo sapien
3	1787	89.1	321	2	Q9BU47_HUMAN	Q9bu47 homo sapien
4	1553	77.5	349	2	Q4G063_RAT	Q4g063 rattus norv
5	1533.5	76.5	350	2	Q9CYAO_MOUSE	Q9cyao mus musculu
6	1481.5	73.9	348	2	Q60438_CRIGR	Q60438 cricetus
7	1465	73.1	284	2	Q4WVO0_HUMAN	Q4wvo0 homo sapien
8	1209	60.3	361	2	Q5XH36_XENLA	Q5xh36 xenopus lae
9	1184	59.1	361	2	Q4V7M2_XENLA	Q4v7m2 xenopus lae
10	1058	52.8	296	2	Q4STE9_TETNG	Q4ste9 tettigidea a
11	1020.5	50.9	341	2	Q7SXF6_BRARE	Q7sxf6 brachydanio
12	1019.5	50.8	341	2	Q5RFU8_BRARE	Q5rfu8 brachydanio
13	992.5	49.5	408	2	Q5BCS1_BOVIN	Q5bcs1 bos taurus
14	992.5	49.5	420	2	Q5EA46_BOVIN	Q5ea46 bos taurus
15	981	48.9	420	2	Q4V7F2_RAT	Q4v7f2 rattus norv

16	971.5	48.5	420	2	Q8NFT4_HUMAN	Q8nft4 homo sapien
17	969	48.3	422	2	Q96HD1_HUMAN	Q96hd1 homo sapien
18	968.5	48.3	420	2	Q91XD7_MOUSE	Q91xd7 mus musculu
19	959.5	47.9	417	2	Q9Y409_HUMAN	Q9y409 homo sapien
20	950	47.4	422	2	Q619X5_HUMAN	Q6i9x5 homo sapien
21	844	42.1	367	2	Q4RJU5_TETNG	Q4rju5 tetraodon n
22	699	34.9	124	2	Q659B4_HUMAN	Q659b4 homo sapien
23	670	33.4	374	2	Q9VPJ0_DROME	Q9vpj0 drosophila
24	661	33.0	391	2	Q5TQL0_ANOGA	Q5tql0 anopheles g
25	643.5	32.1	319	2	Q7Q3P0_ANOGA	Q7q3p0 anopheles g
26	599.5	29.9	165	2	Q9DFE9_ONCMY	Q9dfe9 oncorhynchus
27	540	26.9	356	2	Q19267_CAEEL	Q19267 caenorhabdi
28	519	25.9	358	2	Q623K4_CAEBR	Q623k4 caenorhabdi
29	423	21.1	172	2	Q8BY28_MOUSE	Q8by28 mus musculu
30	296.5	14.8	536	2	Q5RG03_BRARE	Q5rg03 brachydano
31	286.5	14.3	704	1	FBLN1_CHICK	Q73775 gallus gallus
32	279.5	13.9	937	2	Q9BLJ1_CIOIN	Q9blj1 ciona intestinalis
33	279	13.9	2360	2	Q7YZP0_EIMMA	Q7yzp0 eimeria maxima
34	277.5	13.8	2551	1	STAB2_HUMAN	Q8wwq8 stab2
35	276.5	13.8	1431	1	STAB2_RAT	Q8cfm6 ratus norvegicus
36	274.5	13.7	2559	1	STAB2_MOUSE	Q8r4u0 mus musculu
37	274.5	13.7	2871	1	FBN1_PIG	Q9tv36 sus scrofa
38	272	13.6	1587	2	O00508_HUMAN	Q00508 homo sapien
39	271.5	13.5	1511	2	O75412_HUMAN	Q75412 homo sapien
40	271	13.5	2189	2	Q9BI05_EIMTE	Q9bi05 eimeria tenella
41	270.5	13.5	3857	2	O88840_MOUSE	Q88840 mus musculu
42	270	13.5	2871	1	FBN1_BOVIN	P98133 bos taurus
43	269.5	13.4	3864	2	Q61MD6_CAEBR	Q61md6 caenorhabdi
44	268.5	13.4	2871	1	FBN1_HUMAN	P35555 homo sapien
45	268.5	13.4	2871	2	Q75N87_HUMAN	Q75n87 homo sapien
46	268	13.4	1700	2	Q59EE6_HUMAN	Q59ee6 homo sapien
47	268	13.4	1821	1	LTBP2_HUMAN	Q14767 homo sapien
48	268	13.4	1821	2	Q6A294_HUMAN	Q6az94 homo sapien
49	266.5	13.3	644	1	C1QR1_MOUSE	Q89103 mus musculu
50	266.5	13.3	1666	1	LTBP4_MOUSE	Q8k4g1 mus musculu
51	264.5	13.2	1560	2	Q5JSG7_HUMAN	Q5jsg7 homo sapien
52	264.5	13.2	2809	1	FBN3_HUMAN	Q75n90 homo sapien
53	264	13.2	1842	1	LTBP2_BOVIN	Q28019 bos taurus
54	263	13.1	567	2	Q4RZ38_TETNG	Q4rz38 tetraodon niger
55	263	13.1	708	2	P87363_CHICK	P87363 gallus gallus
56	263	13.1	1877	1	PCSK5_MOUSE	Q04592 mus musculu
57	262.5	13.1	1167	2	Q6KAT1_MOUSE	Q6kat1 mus musculu
58	262.5	13.1	1764	1	LTBP2_RAT	Q35806 ratus norvegicus
59	262.5	13.1	2872	2	Q9WUH8_RAT	Q9wuh8 ratus norvegicus
60	260.5	13.0	669	2	O75441_HUMAN	Q75441 homo sapien
61	260.5	13.0	2884	2	O4SHN1_TETNG	Q4shn1 tetraodon niger
62	260.5	13.0	23015	2	Q8IQ18_DROME	Q8iq18 drosophila
63	260	13.0	754	2	Q5TNY8_ANOGA	Q5tny8 anopheles gambiae
64	259.5	12.9	893	2	Q8MJK0_CERAE	Q8mjk0 cercopithecoides aethiops
65	257.5	12.8	652	2	Q8IXK1_HUMAN	Q8ixk1 homo sapien
66	256.5	12.8	652	1	C1QR1_HUMAN	Q9npy3 homo sapien
67	256.5	12.8	671	2	Q59EB6_HUMAN	Q59eb6 homo sapien
68	256.5	12.8	705	1	FBLN1_MOUSE	Q08879 mus musculu
69	256.5	12.8	1302	1	LTBP3_HUMAN	Q9ns15 homo sapien
70	256	12.8	1268	1	LTBP3_MOUSE	Q61810 mus musculu
71	255	12.7	2532	2	Q629H6_CAEBR	Q629h6 caenorhabdi
72	254.5	12.7	703	1	FBLN1_HUMAN	P23142 homo sapien
73	254	12.7	643	1	C1QR1_RAT	Q9et61 ratus norvegicus
74	253.5	12.6	917	2	Q9V4B8_DROME	Q9v4b8 drosophila
75	253	12.6	2585	2	Q23587_CAEEL	Q23587 caenorhabdi
76	252.5	12.6	2871	1	FBN1_MOUSE	Q61554 mus musculu
77	252.5	12.6	2907	1	FBN2_MOUSE	Q61555 mus musculu
78	252	12.6	1976	2	Q4RT51_TETNG	Q4rt51 tetraodon niger
79	252	12.6	3623	2	Q5VTA6_HUMAN	Q5vta6 homo sapien
80	251.5	12.5	941	2	Q54YP0_DICDI	Q54yp0 dictyostelia
81	251.5	12.5	1174	2	Q99K58_MOUSE	Q99k58 mus musculu
82	250.5	12.5	403	2	Q4R3X4_MACFA	Q4r3x4 macaca fasciata
83	250.5	12.5	2225	2	Q571J3_MOUSE	Q571j3 mus musculu
84	250	12.5	569	2	Q7PMF9_ANOGA	Q7pmf9 anopheles gambiae
85	250	12.5	1813	1	LTBP2_MOUSE	Q089999 mus musculu
86	250	12.5	2571	1	STAB1_MOUSE	Q8r4y4 mus musculu
87	250	12.5	3494	2	Q7LC53_HUMAN	Q7lc53 homo sapien
88	250	12.5	3623	2	O60494_HUMAN	Q60494 homo sapien
89	249.5	12.4	2911	1	FBN2_HUMAN	P35556 homo sapien
90	249	12.4	2906	2	Q9WUH9_RAT	Q9wuh9 ratus norvegicus
91	248.5	12.4	1696	1	PCSK5_BRACL	Q9nj15 branchiostoma

SCORE Search Results Details for Application 09903749 and Search Result us-09-903-749a- 2.rup.

[Score Home Page](#)

[Retrieve Application List](#)

[SCORE System Overview](#)

[SCORE FAQ](#)

[Comments / Suggestions](#)

This page gives you Search Results detail for the Application 09903749 and Search Result us-09-903-749a-2.rup.

[start](#)

[Go Back to previous page](#)

GenCore version 5.1.8
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: May 15, 2006, 21:01:41 ; Search time 231 Seconds
(without alignments)
1078.145 Million cell updates/sec

Title: US-09-903-749A-2
Perfect score: 2005
Sequence: 1 MRLPRRAALGLLPLLLLPP.....AEAEATEGESPTQLPSREDL 353

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 2166443 seqs, 705528306 residues

Total number of hits satisfying chosen parameters: 2166443

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 1500 summaries

Database : UniProt_05.80:
1: uniprot_sprot:
2: uniprot_trembl:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	2005	100.0	353	2	Q6UXH1_HUMAN	Q6uxh1 homo sapien
2	1995	99.5	353	2	Q86UC0_HUMAN	Q86uc0 homo sapien
3	1787	89.1	321	2	Q9BU47_HUMAN	Q9bu47 homo sapien
4	1553	77.5	349	2	Q4G063_RAT	Q4g063 rattus norv
5	1533.5	76.5	350	2	Q9CYA0_MOUSE	Q9cya0 mus musculu
6	1481.5	73.9	348	2	Q60438_CRIGR	Q60438 cricetus
7	1465	73.1	284	2	Q4WVO0_HUMAN	Q4wvo0 homo sapien
8	1209	60.3	361	2	Q5XH36_XENLA	Q5xh36 xenopus lae
9	1184	59.1	361	2	Q4V7M2_XENLA	Q4v7m2 xenopus lae
10	1058	52.8	296	2	Q4STE9_TETNG	Q4ste9 tetraodon n
11	1020.5	50.9	341	2	Q7SXF6_BRARE	Q7sxf6 brachydanio
12	1019.5	50.8	341	2	Q5RFU8_BRARE	Q5rfu8 brachydanio
13	992.5	49.5	408	2	Q58CS1_BOVIN	Q58cs1 bos taurus
14	992.5	49.5	420	2	Q5EA46_BOVIN	Q5ea46 bos taurus
15	981	48.9	420	2	Q4V7F2_RAT	Q4v7f2 rattus norv

16	971.5	48.5	420	2	Q8NFT4_HUMAN	Q8nft4 homo sapien
17	969	48.3	422	2	Q96HD1_HUMAN	Q96hd1 homo sapien
18	968.5	48.3	420	2	Q91XD7_MOUSE	Q91xd7 mus musculu
19	959.5	47.9	417	2	Q9Y409_HUMAN	Q9y409 homo sapien
20	950	47.4	422	2	Q619X5_HUMAN	Q6i9x5 homo sapien
21	844	42.1	367	2	Q4RJU5_TETNG	Q4rju5 tetraodon n
22	699	34.9	124	2	Q659B4_HUMAN	Q659b4 homo sapien
23	670	33.4	374	2	Q9VPJ0_DROME	Q9vpj0 drosophila
24	661	33.0	391	2	Q5TQL0_ANOGA	Q5tql0 anopheles g
25	643.5	32.1	319	2	Q7Q3P0_ANOGA	Q7q3p0 anopheles g
26	599.5	29.9	165	2	Q9DFE9_ONCMY	Q9dfe9 oncorhynchus
27	540	26.9	356	2	Q19267_CAEEL	Q19267 caenorhabdi
28	519	25.9	358	2	Q623K4_CAEBR	Q623k4 caenorhabdi
29	423	21.1	172	2	Q8BY28_MOUSE	Q8by28 mus musculu
30	296.5	14.8	536	2	Q5RG03_BRARE	Q5rg03 brachydanio
31	286.5	14.3	704	1	FBLN1_CHICK	Q73775 gallus gallus
32	279.5	13.9	937	2	Q9BLJ1_CIOIN	Q9blj1 ciona intestinalis
33	279	13.9	2360	2	Q7YZP0_EIMMA	Q7yzp0 eimeria maxima
34	277.5	13.8	2551	1	STAB2_HUMAN	Q8wwq8 stabilin
35	276.5	13.8	1431	1	STAB2_RAT	Q8cfm6 rattus norvegicus
36	274.5	13.7	2559	1	STAB2_MOUSE	Q8r4u0 mus musculu
37	274.5	13.7	2871	1	FBN1_PIG	Q9tv36 sus scrofa
38	272	13.6	1587	2	Q00508_HUMAN	Q00508 homo sapien
39	271.5	13.5	1511	2	Q75412_HUMAN	Q75412 homo sapien
40	271	13.5	2189	2	Q9BI05_EIMTE	Q9bi05 eimeria tenella
41	270.5	13.5	3857	2	Q88840_MOUSE	Q88840 mus musculu
42	270	13.5	2871	1	FBN1_BOVIN	P98133 bos taurus
43	269.5	13.4	3864	2	Q61MD6_CAEBR	Q61md6 caenorhabdi
44	268.5	13.4	2871	1	FBN1_HUMAN	P35555 homo sapien
45	268.5	13.4	2871	2	Q75N87_HUMAN	Q75n87 homo sapien
46	268	13.4	1700	2	Q59EE6_HUMAN	Q59ee6 homo sapien
47	268	13.4	1821	1	LTBP2_HUMAN	Q14767 homo sapien
48	268	13.4	1821	2	Q6AZ94_HUMAN	Q6az94 homo sapien
49	266.5	13.3	644	1	C1QR1_MOUSE	Q89103 mus musculu
50	266.5	13.3	1666	1	LTBP4_MOUSE	Q8k4g1 mus musculu
51	264.5	13.2	1560	2	Q5JSG7_HUMAN	Q5jsq7 homo sapien
52	264.5	13.2	2809	1	FBN3_HUMAN	Q75n90 homo sapien
53	264	13.2	1842	1	LTBP2_BOVIN	Q28019 bos taurus
54	263	13.1	567	2	Q4RZ38_TETNG	Q4rz38 tetraodon niger
55	263	13.1	708	2	P87363_CHICK	Q87363 gallus gallus
56	263	13.1	1877	1	PCSK5_MOUSE	Q04592 mus musculu
57	262.5	13.1	1167	2	Q6KAT1_MOUSE	Q6kat1 mus musculu
58	262.5	13.1	1764	1	LTBP2_RAT	Q35806 rattus norvegicus
59	262.5	13.1	2872	2	Q9WUH8_RAT	Q9wuuh8 rattus norvegicus
60	260.5	13.0	669	2	Q75441_HUMAN	Q75441 homo sapien
61	260.5	13.0	2884	2	Q4SHN1_TETNG	Q4shn1 tetraodon niger
62	260.5	13.0	23015	2	Q8IQ18_DROME	Q8iq18 drosophila
63	260	13.0	754	2	Q5TNY8_ANOGA	Q5tny8 anopheles gambiae
64	259.5	12.9	893	2	Q8MJK0_CERAE	Q8mjk0 cercopithecoides aethiops
65	257.5	12.8	652	2	Q8IXK1_HUMAN	Q8ixk1 homo sapien
66	256.5	12.8	652	1	C1QR1_HUMAN	Q9npy3 homo sapien
67	256.5	12.8	671	2	Q59EB6_HUMAN	Q59eb6 homo sapien
68	256.5	12.8	705	1	FBLN1_MOUSE	Q08879 mus musculu
69	256.5	12.8	1302	1	LTBP3_HUMAN	Q9ns15 homo sapien
70	256	12.8	1268	1	LTBP3_MOUSE	Q61810 mus musculu
71	255	12.7	2532	2	Q629H6_CAEBR	Q629h6 caenorhabdi
72	254.5	12.7	703	1	FBLN1_HUMAN	P23142 homo sapien
73	254	12.7	643	1	C1QR1_RAT	Q9et61 rattus norvegicus
74	253.5	12.6	917	2	Q9V4B8_DROME	Q9v4b8 drosophila
75	253	12.6	2585	2	Q23587_CAEEL	Q23587 caenorhabdi
76	252.5	12.6	2871	1	FBN1_MOUSE	Q61554 mus musculu
77	252.5	12.6	2907	1	FBIN2_MOUSE	Q61555 mus musculu
78	252	12.6	1976	2	Q4RT51_TETNG	Q4rt51 tetraodon niger
79	252	12.6	3623	2	Q5VTA6_HUMAN	Q5vta6 homo sapien
80	251.5	12.5	941	2	Q54YP0_DICDI	Q54yp0 dictyostelia
81	251.5	12.5	1174	2	Q99K58_MOUSE	Q99k58 mus musculu
82	250.5	12.5	403	2	Q4R3X4_MACFA	Q4r3x4 macaca fasciata
83	250.5	12.5	2225	2	Q571J3_MOUSE	Q571j3 mus musculu
84	250	12.5	569	2	Q7PMF9_ANOGA	Q7pmf9 anopheles gambiae
85	250	12.5	1813	1	LTBP2_MOUSE	Q08999 mus musculu
86	250	12.5	2571	1	STAB1_MOUSE	Q8r4y4 mus musculu
87	250	12.5	3494	2	Q7LC53_HUMAN	Q7lc53 homo sapien
88	250	12.5	3623	2	Q60494_HUMAN	Q60494 homo sapien
89	249.5	12.4	2911	1	FBIN2_HUMAN	P35556 homo sapien
90	249	12.4	2906	2	Q9WUH9_RAT	Q9wuuh9 rattus norvegicus
91	248.5	12.4	1696	1	PCSK5_BRACL	Q9nj15 branchiostoma

```
=> s pro211  
L1      21 PRO211  
  
=> s l1 and py=<1997  
1 FILES SEARCHED...  
L2      8 L1 AND PY=<1997  
  
=> d his  
  
(FILE 'HOME' ENTERED AT 09:34:20 ON 17 MAY 2006)  
  
FILE 'MEDLINE, BIOSIS, EMBASE, CAPLUS' ENTERED AT 09:34:47 ON 17 MAY 2006  
L1      21 S PRO211  
L2      8 S L1 AND PY=<1997
```