Volume & Surface Area

CUBOID

1. Let length = I, breadth = b and height = h units. Then

1. **Volume** = $(I \times b \times h)$ cubic units.

2. Surface area = 2(lb + bh + lh) sq. units.

3. **Diagonal** = $(l^2 + b^2 + h^2)\frac{1}{2}$ units.

CUBE

2. Let each edge of a cube be of length a. Then,

1. **Volume** = a^3 cubic units.

2. Surface area = $6a^2$ sq. units.

3. Diagonal = $(3)\frac{1}{2}a$ units.

CYLINDER

3. Let radius of base = r and Height (or length) = h. Then,

1. **Volume** = $(^{\Pi}r^2h)$ cubic units.

2. Curved surface area = $(2^{\Pi} rh)$ sq. units.

3. Total surface area = $2 \prod r(h + r)$ sq. units.

CONE

4. Let radius of base = r and Height = h. Then,

1. **Slant height**, $I = (h^2 + r^2)\frac{1}{2}$ units.

2. Volume = $\left(\frac{1}{3} \pi r^2 h\right)$ cubic units.

3. Curved surface area = $(^{\Pi} rl)$ sq. units.

4. Total surface area = $(rl + r^2)$ sq. units.

SPHERE

5. Let the radius of the sphere be r. Then,

1. Volume = $\left(\frac{4}{3} \pi r^3\right)$ cubic units.

2. Surface area = $(4 \, \text{Tr}^2)$ sq. units.

HEMISPHERE

6. Let the radius of a hemisphere be *r*. Then,

1. Volume = $\left(\frac{2}{3} \pi r^3\right)$ cubic units.

2. Curved surface area = $(2^{\prod} r^2)$ sq. units.

3. Total surface area = $(3^{\Pi} r^2)$ sq. units.

Note: 1 litre = 1000 cm^3 .