华东理工大学 2008 - 2009 学年第一学期

《 概率论与数理统计》课程期末考试试卷答案 A 2008.12

开课学	完: <u>理</u>	<u>学院_</u> 考	试形式:	_闭卷_	所需	討间:	120	_分钟		
考生姓名	宫:	学	号:		E级:		E课老师	节:		
题序		<u> </u>	11]	四	五	六	岌	总分		
得分										
阅卷										
以下数据	居本试卷	可能会局	用到:							
$\Phi(1) = 0$.8413, Ф	P(1.06) =	0.8554,	Ф(1.96)	= 0.9750), $\Phi(2) =$	= 0.9772	2,		
一、选挂	泽题(每小	卜题 4 分	,共 28 :	分):						
1、设 <i>f</i>	(x) 为随	机变量》	<i>X</i> 的概率	密度函数	数, 且 f	(x) 连续	,贝 lin	$\underset{\to^{\infty}}{\text{m}} \frac{f(x)}{x}$	().
(A)	1	(B)	不存在		(C) 0	([)) 不可	判断		
2、盒子	里有 10	个小球,	其中红	颜色的有	有4个 ,	白颜色的	内有 6~	个,把球	不放	如地
一个	个取出,	问第5	欠取到红	球的概率	率				().
(A)	$0.6^4 \times 0.$	4 (B)	$C_5^4 \times 0.$	$6^4 \times 0.4$	(C) ().4	(D) 0.0	6		
3、设随	机变量	K 和 Y 独	立同分れ	市, 记 <i>U</i>	=X-Y	V = X	$+Y$, \square	削随机变	量 <i>U</i>	'和 <i>V</i>
必然								(().
(A) 不独立			(1	(B) 独立						
(C)	相关系数	数不为零	:	(1)) 相关	系数为零	₽			
4、二级	 住随机变	至量(X,Y)的概率	密度函数	数为 f(x,	$y) = \begin{cases} 15 \\ \end{cases}$	$ \begin{array}{ccc} 5x^2y & , \\ 0 & , \end{array} $	0≤ <i>x</i> ≤ 其化	y≤ 也	1,
则之	X , Y 的关	完系为							().
(A)	X,Y 独 :)		(1	3) <i>X</i> , <i>Y</i>	不独立				
(C)	在0≤ <i>x</i>	≤ y ≤1±	上独立	(]	D) 无法	判定				
5、某零	件的重量	量 X 服从	N(400,	400), 4	0 个零件	的平均	重量记	为 Y ,则	().
(A) A	E(Y) = 40	00, D(Y)	= 100	(B	E(Y)	=400, D	(Y) = 1	0		
(C) I	E(Y) = 40	0, D(Y) =	400	([E(Y)	=400, D	O(Y) = 4	100		

- 6、设 (X_1, X_2, \dots, X_n) 为总体 $X \sim N(0, 1)$ 的一个样本, \overline{X} 为样本均值, S_{n-1}^2 为样本方差, 则有().

 - (A) $\overline{X} \sim N(0,1)$ (B) $n\overline{X} \sim N(0,1)$

(C)
$$\overline{X}/S_{n-1} \sim t(n-1)$$

(C)
$$\overline{X}/S_{n-1} \sim t(n-1)$$
 (D) $(n-1)X_1^2/\sum_{i=2}^n X_i^2 \sim F(1, n-1)$

- 7、 某产品按规定每袋质量为 0.5kg,设每袋质量服从正态分布, $\sigma = 0.014$ kg, 为检验包装机的工作是否正常,随机抽取 10 袋,并通过 Excel 计算得到如 下表格,从表中可知统计量观测值为 ().
 - (A) 1.739252 (B) 0.040995 (C) 1.644853 (D) 0.08199

z-检验: 双样本均值分析

	变量 1	变量 2
平均	0. 5077	0. 5
已知协方差	0.000196	1E-11
观测值	10	1
假设平均差	0	
Z	1.739252	
P(Z<=z) 单尾	0. 0409952	
z 单尾临界	1.6448535	
P(Z<=z) 双尾	0.08199	
z 双尾临界	1. 9599628	

- 二、填空题(每小题 4 分, 共 28 分):
- 1、 若事件 A, B 满足 $P(A | \overline{B}) = P(A | B)$,且 $P(A \cup B) = 0.7$, P(A) = 0.3 ,则 P(B) = .
- 2、设 X 表示 10 次独立重复射击命中目标的次数,每次射中目标的概率为 0.4, 则 X^2 的数学期望 $E(X^2) = ___$ _____.
- 3、甲、乙两车间同时生产某种产品,其中甲车间的产量是乙车间的3倍,若甲、

乙两车间生产的产品的次品率分别为 1% 和 2%。现从这批产品中任取一件, 发现是次品,问它是甲车间生产的概率为 .

- 4、设随机变量 $X \sim U(0,1)$, 则 Y = 5X + 2 的密度函数为
- 5、设随机变量 X 和 Y 相互独立,分别服从正态分布 $N(-1, 2^2)$ 和 $N(4, 4^2)$,则随机变量 Z = X 2Y + 3 服从 _____.
- 6、 设随机变量 X 的数学期望和方差都存在,且 EX = 40,DX = 5,用切比雪夫不等式可估计出 $P\{28 < X < 52\} \ge$
- 7、 设 $X \sim N(\mu,1)$,容量 n = 16,均值 $\overline{X} = 5.2$,则未知参数 μ 的置信度 0.95 的置信区间为______.
- 三、(10分)设随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax+1, & 0 \le x \le 2, \\ 0, & \text{ \(\) $\neq 1 \)}. \end{cases}$$

求(1)常数a; (2) X的分布函数F(x); (3) P(1 < X < 3).

四、(16分)设两维随机变量(X,Y)在 $D = \{(x,y) \mid |x| + |y| \le 1\}$ 上服从均匀分布.

- (1) 求(X,Y)的联合概率密度函数;
- (2) 求 X 与 Y 的边缘概率密度函数;
- (3) 问 *X* 与 *Y* 是否相关,是否相互独立?
- (4) 若Z = X + Y, 求Z的概率密度函数 $p_z(z)$ 。

五、(本题 8 分)设有 1 万人参加某保险公司的人寿险,每人付 60 元保险费,在一年内一个人死亡的概率为 0.009,死亡时其家属可向保险公司领得 6000 元,试用中心极限定理计算保险公司不亏本的概率为多少?

六、(本题 10 分)设总体 X 的密度函数为 $p(x,\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 其中 $\theta > 0$

为未知参数, X_1, X_2, \dots, X_n 为 X 的样本, 求 θ 的矩估计和极大似然估计.