$\begin{array}{c} Nuclear\ Engineering\ 150-Discussion\ Section \\ \hline Team\ Exercises\ \#2 \end{array}$

Problem 1

Compute the atomic densities of $^{235}\rm{U},~^{238}\rm{U},$ and O in UO₂ when its density is 10.41 g/cm³ and the uranium is enriched to 5 wt% in $^{235}\rm{U}.$

Problem 2

Free neutrons undergo β^- decay with a half-life of 10.4 minutes. Determine the probability that a neutron will decay before being absorbed in an infinite absorbing material (assume no scattering). Estimate this probability for a thermal neutron (v = 2200 m/s) in water.

Problem 3

A reactor is operating for a long time at some known power density P_0 . Then, it instantaneously changes power to some power density P_1 . One fission product of interest is 135 Xe, though it has a neglible yield from the initial fission reaction. 135 Xe precursors 135 Te and 135 I are produced with a combined yield of approximately 6%, before decaying via β^- decay to 135 I and 135 Xe respectively. Find the number density of 135 Xe as a function of time after the power change. (Your solution may be left as variables)

Nucleus	Half-life	Thermal $\sigma_{\rm a}$
$^{135}\mathrm{Te}$	19.0 s	~ 0
^{135}I	6.6 hr	~ 0
$^{135}\mathrm{Xe}$	9.2 hr	$2.6 \times 10^6 \text{ barns}$

Problem 4

Given UO_2 with 2.5×10^{21} atoms/cm³ of ^{235}U and 2.0×10^{22} atoms/cm³ of ^{238}U , find the partial densities of ^{235}U , and O, and determine the enrichment.