Programare Logică

Cuprins

- Organizare
 - Instructori
 - Suport curs
 - Notare

- 2 Privire de ansamblu
 - Curs
 - Laborator

Organizare

Denisa Diaconescu - curs și laboratoare

□ Studii:		
 Licența Informatică: "Logica matematică și aplicații în verificarea sistemelor" 2007, FMI prof. Gheorghe Ștefănescu 		
■ Master Informatică: "Teoria modelelor pentru logici cu mai multe valori" ■ 2009, Școala Normală Superioară București, IMAR ■ prof. Răzvan Diaconescu		
Doctorat Matematică: "Logici multivalente cu conjuncții necomutative" 2012, FMI prof. George Georgescu		
□ Poziții: □ 2013 - prezent: Lector Universitar, FMI □ 2008 - 2013: Preparator Universitar, FMI		

Denisa Diaconescu - curs și laboratoare

□ Domenii de cercetare:
 □ logici neclasice (logici multivalente, logici modale)
 □ modelarea matematică a fenomenelor vagi și incerte
 □ aplicații ale logicii în verificarea sistemelor
 □ Contact:
 □ ddiaconescu@fmi.unibuc.ro
 □ denisa.diaconescu@gmail.com

Andrei Sipoș - laboratoare

```
Studii:
  ☐ Licență Matematică: "Calcul Schubert"
       2012, FMI
       prof. Mihai Sorin Stupariu
  ☐ Licență Informatică: "Ultraproduse în teoria modelelor"
       ■ 2012, FMI
       prof. George Georgescu
Poziții:
  2012 - prezent: Student Master "Algebră", FMI
Domenii de cercetare:
  geometrie algebrică
  logică categorială
Contact:
  andrei.sipos@my.fmi.unibuc.ro
```

Suport curs

Site-uri curs

- Moodle
- ☐ https://sites.google.com/site/ddiaconescupl/

Bibliografie

- J. Goguen, Theorem Proving and Algebra, manuscris.
- F. Baader, T. Nipkow, Terms Rewriting and All That, Cambridge University Press, 1998.
- □ F.L. Ţiplea, **Fundamentele algebrice ale informaticii**, (II40405, biblioteca FMI).
- □ V.E. Căzănescu, **Note de curs**.

Notare

- ☐ <u>Laborator:</u> 40 puncte
- ☐ Examen: 60 puncte

- □ Condiție minină pentru promovare: cel puțin 50% din fiecare probă
 - laborator: min. 20 puncte și
 - examen: min. 30 puncte

Laborator: 40 puncte

```
    ☐ Lucrare: 30 puncte
    ☐ Are loc în Săptămâna 8 (7 - 11 aprilie)
    ☐ Prezența la lucrare este obligatorie!
    ☐ Nu se poate reface
    ☐ Timp de lucru: o oră și jumătate
    ☐ Proiect: 10 puncte
    ☐ Se distribuie în Săptămâna 9 (14 - 17 aprilie)
    ☐ Se predă în Săptămâna 14 (26 - 30 mai)
```

Din cele două probe de Laborator trebuie să adunați min. 20 puncte.

Examen: 60 puncte

- Subiecte de teorie și exerciții.
- ☐ Timp de lucru: 2 ore
- În Săptămâna 14 veţi primi o foaie cu teorie cu care puteţi veni la examen!
- □ Subiectele de teorie constau în demonstrarea unor rezultate din curs (demonstrate la curs sau lăsate ca temă).
- □ Subiectele de exerciții vor fi în stilul celor rezolvate la seminar (în Laboratoarele 10-13).
- □ La examen, trebuie să adunați min. 30 puncte.

Privire de ansamblu

Curs

Problema corectitudinii programelor

- □ Pentru metodele convenţionale de programare (imperative), nu este uşor să vedem că un program este corect sau să înţelegem ce înseamnă că este corect (în raport cu ce?!).
- □ Devine o problemă din ce în ce mai importantă, nu doar pentru aplicații "safety-critical".
- Avem nevoie de metode ce asigură "calitate", capabile să ofere "garanţii".

Un program imperativ simplu

```
#include <stdio.h>
main() {
  int Number, Square;
  Number = 0:
    while(Number <= 5)</pre>
       { Square = Number * Number;
         printf("%d\n",Square);
         Number = Number + 1; } }
 ☐ Este corect? În raport cu ce?
 □ Un formalism adecvat trebuie:
      să permită descrierea problemelor (specificații), și
      să raționeze despre implementarea lor (corectitudinea programelor).
```

Logica

□ Un mijloc de a clarifica/modela procesul de a "raționa".
 □ De exemplu, în logica clasica putem modela raționamentul: □ Aristotel iubește prăjiturile, și □ Platon este prieten cu oricine iubește prăjiturile, deci □ Platon este prieten cu Aristotel.
Simbolic: $a_1 : iubeste(Aristotel, prajituri)$ $a_2 : (\forall X) \ iubeste(X, prajituri) \rightarrow prieten(Platon, X)$ $a_3 : prieten(Platon, Aristotel)$ $a_1, a_2 \vdash a_3$
□ Cum poate fi folosită logica pentru: □ a descrie probleme (specificații)? □ a rezolva probleme?

Folosind logica

Logica ne permite să reprezentăm/modelăm probleme.

Pentru a scrie specificații și a raționa despre corectitudinea programelor:

- ☐ Limbaje de specificații (modelarea problemelor)
- □ Semantica programelor (operațională, denotațională, ...)
- □ Demonstrații (verificarea programelor, ...)

Pătratele numerelor naturale < 5

Numerele naturale: reprezentarea lui Peano

$$0\mapsto 0$$
 $1\mapsto s(0)$ $2\mapsto s(s(0))$ $3\mapsto s(s(s(0)))$...

- Definirea numerelor naturale: $nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \dots$
- □ O soluție mai bună: $nat(0) \land (\forall X)(nat(X) \rightarrow nat(s(X)))$
- □ Ordinea pe numere naturale: $(\forall X)le(0,X) \land$ $(\forall X,Y)(le(X,Y) \rightarrow le(s(X),s(Y)))$
- Adunarea numerelor naturale: $(\forall X)(nat(X) \rightarrow add(0, X, X)) \land (\forall X, Y, Z)(add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))$

Pătratele numerelor naturale < 5

- □ Înmultirea numerelor naturale: $(\forall X)(nat(X) \rightarrow mult(0, X, 0)) \land (\forall X, Y, Z, W)(mult(X, Y, W) \land add(W, Y, Z) \rightarrow mult(s(X), Y, Z))$
- □ Pătrate de numere naturale: $(\forall X, Y)(nat(X) \land nat(Y) \land mult(X, X, Y)) \rightarrow square(X, Y))$

Acum putem spune clar ce condiții vrem să satisfacă programul:

- □ Preconditie: niciuna
 - _ _ ...

```
Postconditie: (\forall X)( (\exists Y) nat(Y) \land le(Y, s(s(s(s(s(0)))))) \land square(Y, X)) \rightarrow output(X))
```

Semantica

- □ Semantica dă un "înțeles" (obiect matematic) unui program.
- Semantica trebuie:
 - să poată verifica că un program satisface condițiile cerute.
 - să poată demonstra că două programe au aceeași semantica.
 - ...

Tipuri de Semantică

Operațională:
Înțelesul programului este definit în funcție de pașii (transformări dintr-o stare în alta) care apar în timpul execuției.
Axiomatică:
Înțelesul programului este definit indirect în funcție de axiomele și regulile unei logici.
Denotațională:
Înțelesul programului este definit abstract ca element dintr-o structură matematică adecvată.
Bazata pe modele:
☐ Înțelesul programului este definit ca un model minimal al unei logici.

De la reprezentare/specificare la calcul

Presupunând existența unei metode (automate) de demonstrație (metodă de deducție), rezolvarea unor probleme se poate face astfel:

Pătratele numerelor naturale ≤ 5

Query	Answer
nat(s(0)) ?	(yes)
$\exists X \; add(s(0),s(s(0)),X)$?	X = s(s(s(0)))
$\exists X \; add(s(0), X, s(s(s(0))))$?	X = s(s(0))
$\exists X \ nat(X)$?	$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \dots$
$\exists X \exists Y \ add(X,Y,s(0))$?	$(X=0 \wedge Y=s(0)) \vee (X=s(0) \wedge Y=0)$
$\exists X \; nat_square(s(s(0)), X) \; \textbf{?}$	X = s(s(s(s(0))))
$\exists X \ nat_square(X, s(s(s(s(0)))))$?	X = s(s(0))
$\exists X \exists Y \ nat_square(X,Y)$?	$\begin{array}{l} (X=0 \wedge Y=0) \vee (X=s(0) \wedge Y=s(0)) \vee (X=s(s(0)) \wedge Y=s(s(s(s(0))))) \vee \ldots \end{array}$
$\exists Xoutput(X)$?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Care logică?

- propozițională
- ☐ de ordinul I
- ☐ de ordin înalt
- □ logici modale
- \square λ -calcul
- □ ...

Ce metodă de deducție?

- □ deducție naturală
- □ rezoluție
- rescriere
- □ narrowing
- \square ...

Ce veți vedea la curs

"Bucătăria" din spatele limbajului de specificații Maude și nu numai! Algebre multisortate semantica denotatională specificarea algebrică a tipurilor de date abstracte 2 Logica ecuațională deducția ecuațională asigurarea corectitudinii specificatiilor Rescrieri semantica operațională metodă de demonstrare (deducție) automată 4 Ideile programării logice narrowing, rezolutie . . .

În ce logică ne vom situa?

Logica de ordinul I (FOL)

□ Var mulţ. variabilelor,

 $\square \mathcal{P}$ mulţ. simbolurilor de relaţii,

 \square \mathcal{F} mulţ. simb. de funcţii,

- $\square \stackrel{\cdot}{=}, \neg, \rightarrow, \lor, \land, \forall, \exists.$
- \square Termen: $x \in Var$, $f(t_1, \ldots, t_n)$
- \square Formulă atomică: $P(t_1, \ldots, t_n)$, $t_1 \stackrel{.}{=} t_2$
- □ Formulă: formulă atomică, $\neg \varphi$, $\varphi \rightarrow \psi$, $\varphi \lor \psi$, $\varphi \land \psi$, $(\forall x)\varphi$, $(\exists x)\varphi$
 - \square Clauză Horn: $(\forall x_1 \dots x_k)((Q_1 \wedge \dots \wedge Q_n) \rightarrow Q)$,

În ce logică ne vom situa?

Subsisteme ale lui FOL

- ☐ HCL: formulele sunt clauzele Horn
 - fundamentul teoretic al limbajului Prolog
- □ EQL: formulele atomice sunt ecuații cuantificate universal
 - $\square \mathcal{P} = \emptyset$
- □ CEQL: HCL ∩ EQL
 - \square **HCL** pentru $\mathcal{P} = \emptyset$
 - \square $t_1 \stackrel{\cdot}{=} t_2$ if $\{u_1 \stackrel{\cdot}{=} v_1, \ldots, u_n \stackrel{\cdot}{=} v_n\}$
 - cuantificată universal cu toate variabilele care apar

La curs vom folosi **CEQL** (logica ecuațională condiționată) în varianta multisortată!

Ce veți vedea la laborator

Pentru partea practică veți folosi limbajul Maude:

- un limbaj de specificații executabil,
- un fragment este bazat pe logica ecuațională,
- □ semantica operațională este bazată pe rescriere,
- □ http://maude.cs.uiuc.edu/

În plus, veți face exerciții suport pentru curs.

Planificare laboratoare

- ☐ Săptămânile 1 7: Limbajul Maude
- ☐ Săptămâna 8: Lucrare
- ☐ Săptămâna 9: Distribuiere proiecte
- ☐ Săptămânile 9 13: Seminarii exerciții suport pentru curs
- ☐ Săptămâna 14: Predare proiecte

