

Gameboard

Maths

Binomial: All Rational n 3ii

Binomial: All Rational n 3ii

Part A Expansion

Expand $(a+x)^{-2}$ in ascending powers of x up to and including the term x^2 .

The following symbols may be useful: a, x

Part B Value of a

When $(1-x)(a+x)^{-2}$ is expanded, the coefficient of x^2 is 0. Find the value of a.

The following symbols may be useful: a, $\, x \,$

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Binomial: All Rational n 1i

Binomial: All Rational n 1i

Part A Partial Fractions

Given that
$$rac{3x+4}{(1+x)(2+x)^2}\equivrac{A}{1+x}+rac{B}{2+x}+rac{C}{(2+x)^2}$$
, find A , B , and C .

Find A.

The following symbols may be useful: A

Find B.

The following symbols may be useful: B

Find C.

The following symbols may be useful: c

Part B Expand

Hence or otherwise expand $\frac{3x+4}{(1+x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

The following symbols may be useful: x

Part C Values of x

State the set of values of x for which the expansion in the above part is valid.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- x < a
- $x \leq a$
- x > a
- $\bigcirc \quad x \geq a$
- \bigcirc a < x < b
- $\bigcirc \quad a \leq x \leq b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

<u>Gameboard</u>

Maths

Arithmetic Series 3i

Arithmetic Series 3i

A sequence $u_1, u_2, u_3, ...$ is defined by

$$u_1=8 \quad ext{and} \quad u_{n+1}=u_n+3.$$

Part A u_5

Find u_5 .

The following symbols may be useful: u_5

Part B Terms in the Sequence

The $n^{
m th}$ term of the sequence can be written in the form $u_n=pn+q$. State the values of p and q.

Give the value of p.

The following symbols may be useful: p

Give the value of q.

The following symbols may be useful: q

Part C Type of Sequence

What type of sequence is it?

- Arithmetic progression
- Geometric progression
- Periodic sequence

Find the value of
$$N$$
 such that $\sum\limits_{n=1}^{2N}u_n-\sum\limits_{n=1}^{N}u_n=1256.$

The following symbols may be useful: N

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

<u>Gameboard</u>

Maths

Geometric Series 5i

Geometric Series 5i

Part A Value of k

The first term of a geometric progression is 50 and the common ratio is 0.8. Use logarithms to find the smallest value of k such that the $k^{\rm th}$ term is less than 0.15.

The following symbols may be useful: k

Part B First Term and Common Ratio

In a different geometric progression, the second term is -3 and the sum to infinity is 4.

Find the common ratio.

The following symbols may be useful: r

Hence find the first term.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

Gameboard

Maths

Polynomials, Factors and Roots 5i

Polynomials, Factors and Roots 5i

The cubic polynomial $2x^3 - x^2 + kx + 18$ is denoted by f(x). It is given that (x+3) is a factor of f(x).

Part A Value of k

Find the value of k.

The following symbols may be useful: \ensuremath{k}

Part B Factorise

Factorise f(x) completely.

The following symbols may be useful: x

Part C Roots of f(x)=0

Give the highest (most positive) root of the equation f(x) = 0.

The following symbols may be useful: x

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

<u>Gameboard</u>

Maths

Inequalities 1i

Inequalities 1i

The length of a rectangular children's playground is $10\,\mathrm{m}$ more than its width. The width of the playground is x metres.

Part A Linear inequalities

The perimeter of the playground is greater than $64 \, \mathrm{m}$. Write down a linear inequality in x in the form ax + b > c. (You do not have to simplify the inequality or solve for x.)

The following symbols may be useful: \langle , \rangle , \times

Part B Quadratic inequalities

The playground is less than $299 \,\mathrm{m}^2$. Write down an inequality of the form $(x-a)\,(x+b) < 0$, where a and b are positive integers.

The following symbols may be useful: \langle , \rangle , \times

Part C Solving inequalities

By solving the inequalities from previous parts, determine the set of possible values of x.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- $\bigcirc x < a$
- () $x \leq a$
- () x > a
- $x \ge a$
- $\bigcirc \quad a < x < b$
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES, A level, January 2010, Paper 4722, Question 11

Gameboard

STEM SMART Single Maths 44 - Algebra & Series Revision

Gameboard <u>Home</u>

Maths

Modulus 1i

Modulus 1i

Part A **Transformations**

Which two of the	transformations described below are needed to transform the graph of $y=\left x\right $	to
the graph of $y=$	2(x+3) ?	

A stretch	parallel to	the x -axis	with s	scale 1	factor	2.
, , , , , , , , , , , , , , , , , , , ,	paraner te	1110 W W/110	*****			

l						_
A stretch	parallel t	to the	<i>y</i> -axis with	scale	tactor	2

)					
	A translation	h., 9	unita	in tha	no dotivo	a direction
	- A translation	DV 5	umus	ın me	negalive	x an ecuon
	, , , , , , , , , , , , , , , , , , , ,	\sim	G1 11 CO			ω un σσασι

A translation by
$$3$$
 units in the positive x direction.

A translation by
$$6$$
 units in the negative x direction.

A stretch parallel to the
$$y$$
-axis with scale factor 3 .

Inequality Part B

Solve the inequality $\left|x\right|>\left|2(x+3)\right|$, and give the upper bound for the solution in the form x< a or $x \leq a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

Give the lower bound for the solution in the form x>a or $x\geq a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

Gameboard

Maths

Curve Sketching and Combined Transformations 3ii

Curve Sketching and Combined Transformations 3ii

The curve $y = \ln x$ is transformed by:

- 1. A reflection in the x-axis
- 2. A stretch with scale factor 3 parallel to the y-axis
- 3. A translation in the positive y-direction by $\ln 4$

Find the equation of the resulting curve, giving your answer in the form $y = \ln(g(x))$.

The following symbols may be useful: x, y

Part B Graph Transformation

Figure 1 shows the curve with equation y = f(x). It is given that f(-7) = 0 and that there are stationary points at (-2, -6), and (0, 0).

Figure 1: The curve with equation y = f(x).

Sketch the curve with equation y=-4f(x+3).

Which three transformations from the list below together describe the transformation from y=f(x) to y=-4f(x+3)?

- A translation by 3 units in the negative x direction.
- A reflection in the y-axis.
- A reflection in the x-axis.
- A translation by 3 units in the positive x direction.
- A stretch parallel to the x-axis with scale factor 4.
- A stretch parallel to the y-axis with scale factor 4.

Part C Stationary points

The curve y=-4f(x+3) has two stationary points. Find the coordinates of the stationary point with the largest y-value.

Give the x-value of the stationary point with the largest y-value.

The following symbols may be useful: x

Give the y-value of the stationary point with the largest y-value.

The following symbols may be useful: y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

Gameboard

Maths

Functions and Algebra 3ii

Functions and Algebra 3ii

The functions f, g, and h are defined for all real values of x by

$$f(x) = |x|, \;\; g(x) = 3x + 5, \;\; ext{and} \;\; h(x) = gig(g(x)ig).$$

Part A Solve for x

Solve the equation g(x+2) = f(-12).

The following symbols may be useful: x

Part B
$$h^{-1}(x)$$

Find $h^{-1}(x)$ in its simplest form.

The following symbols may be useful: h, x

Part C
$$x + f(x)$$

Determine the values of x for which

$$x + f(x) = 0.$$

You may use symbols |x| written as abs(), =, <, >, <=, >=.

The following symbols may be useful: <, <=, >, >=, abs(), x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 44 - Algebra & Series Revision

Gameboard

Maths

Functions: Graphs and Inverse Functions 3i

Functions: Graphs and Inverse Functions 3i

Figure 1 shows the curve y=f(x), where f is the function defined for all real values of x by

$$f(x) = 3 + 4\mathrm{e}^{-x}.$$

Figure 1: The curve y = f(x).

Part A Range

State the range of f(x) as a single inequality.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =, f, x, y$

Part B $f^{-1}(x)$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x

State the domain of $f^{-1}(x)$.

The following symbols may be useful: f, x

Part C Intersection with y=x

The straight line y=x meets the curve y=f(x) at the point P. By using an iterative process based on the equation x=f(x), with a starting value of 3, find the coordinates of the point P. Give each coordinate correct to 3 decimal places.

What is the x-coordinate?

What is the y-coordinate?

Part D Relation of P to the curves

How is the point P related to the curves y=f(x) and $y=f^{-1}(x)$?

- The point P is where y = f(x) and $y = f^{-1}(x)$ intersect.
- The point P is the maximum of y = f(x) and the minimum of $y = f^{-1}(x)$.
- The point P is a point of inflection for both y = f(x) and $y = f^{-1}(x)$.

Used with permission from UCLES A-level Maths papers, 2003-2017.