Predavanja 2b

SNOVE ELEKTROTEHNIK

prof.dr.sc. Armin Pavić

OSNOVNE ZNAČAJKE, ELEMENTI, ZAKONI I SPOJEVI ELEKTRIČNIH KRUGOVA

Strujni krug

OSNOVE ELEKTROTEHNIKE

- Strujni krug = zatvoreni krug gibanja naboja tok struje
 (u kojemu mora postojati izvor el. struje)
- Fizički strujni krug je spoj **stvarnih**, fizičkih elemenata (npr. baterija, spojni vodiči, otpornik, kondenzator i sl.)
- Električni krug je model fizičkog strujnog kruga sastavljen od idealnih elemenata (koji predstavljaju pojedina svojstva realnih elemenata) npr. otpor, kapacitet, ili napon (idealni izvor).
- Zamisao el. krugova: bezdimenzionalni prikaz realnih, fizičkih stanja, čiji je opis koncentriran u pojedinim elementima kruga (krugovi s koncentriranim parametrima).
- Jednostavni strujni krug sastoji se iz izvora, spojnih vodiča i trošila

Fizički i električni krug

OSNOVE ELEKTROTEHNIKE

 Spojna shema (fizički krug)

Trošilo

- spojnu shemu prikazujemo električnom shemom: tu su izvor i trošilo prikazani kao koncentrirani elementi, a veze među njima su bezdimenzionalne: otpor spojnih vodiča (linija)=0
- Električna shema (električni krug)

Točke a i b su na istom potencijalu (a tako i točke c i d)

3

Prijelazno i stacionarno stanje

OSNOVE ELEKTROTEHNIK

- Fizički strujni krugovi, uz svojstvo otpora, imaju još i druga svojstva, npr. kapacitet koji pokazuje sposobnost da se s pojavom napona akumulira energija (u obliku električnog polja).
 - Zbog nemogućnosti trenutačne promjene energije, kod zatvaranja (ili prekidanja) takvog strujnog kruga konačni (ustaljeni) oblici struje i napona (stacionarno stanje) ne uspostavljaju se trenutačno, nego je za to potrebno određeno (praktički vrlo kratko) vrijeme, kada je krug u prijelaznom stanju
 - Dok se ne napomene drukčije, podrazumijevamo da je u strujnom krugu završeno prijelazno stanje, tj. razmatramo strujne krugove u stacionarnom stanju.

Varijable i parametri el. krugova

OSNOVE ELEKTROTEHNIK

Varijable:

struja, naboj, napon, potencijal, snaga, energija

Parametri (značajke):

otpor, kapacitet (i dr.)

Zakoni električnih krugova

• definiraju veze između varijabli i parametara el. krugova - npr. Ohmov zakon: $u(t) = R \cdot i(t)$

Rješavanje električnih krugova

 Određivanje nepoznatih varijabli i parametara primjenom zakona el. krugova

5

Opće značajke elemenata el. krugova

OSNOVE ELEKTROTEHNIKE

Idealni elementi koje možemo klasificirati prema slijedećim značajkama:

- Linearni i nelinearni elementi
 - Razmatramo: linearni elementi (vrijedi načelo superpozicije)
- Koncentrirani i distribuirani parametri
 - Razmatramo: koncentrirani
- Aktivni i pasivni elementi:
 - Razmatramo: oba tipa

Osnovni elementi el. krugova

OSNOVE ELEKTROTEHNIKE

- Aktivni elementi (daju više el. energije nego što primaju)

Strujni izvor

- Pasivni elementi (ne mogu dati više el. energije nego prime)
 - Otpor

Kapacitet

Oblici vremenske promjene struja i napona izvora

Istosmjerni napon (struja)

Referentni smjer struje i polaritet napona

- Za struje i napone koje (u času razmatranja) imaju nepoznate smjerove ili polaritete, uvodimo referentne smjerove i polaritete
- Referentni smjer (polaritet) definiramo proizvoljno dogovorom (unaprijed ga pretpostavimo), a stvarni smjer (polaritet), u odnosu na referentni, određen je (pozitivnim ili negativnim) predznakom dobivenog rezultata.
 - ❖ Npr. izračunata jakost struje od -5 A, znači da je stvarni smjer struje suprotan od referentnog (pretpostavljenog).

Primjer referentnog polariteta za naboj

$$q(t) \qquad q(t) = \frac{+ + +}{- -} q(t) \qquad q(t) = \frac{-}{+}$$

$$q(t) = \frac{- + +}{+ -} q(t)$$

Referentni polaritet

q(t)>0

q(t)<0Stvarni polaritet Stvarni polaritet

Referentni smjer struje Referentni smjer struje i(t)Referentni i(t) > 0Stvarni smjer i(t) < 0Stvarni smjer

Referentni predznak snage i smjer toka energije

• Referentni (pozitivni) predznak snage određen je odnosom referentnog polariteta napona i referentnog smjera struje

- slika: desni element ima ref. p(t)>0 (kao otpor) znači: prima energiju

Referentnim predznakom snage određen je referentni smjer toka energije (na donjoj slici je to s lijeva na desno), a stvarni predznak snage p(t) pokazuje stvarni smjer toka energije w(t)

Veza struje i napona na pojedinim elementima 🕏

 Jednadžbama povezani referentni smjerovi struje i polariteti napona na pojedinim elementima

Kapacitet $u(t)=u_{ab}(t)$ $i(t) = \mathbf{C} \cdot \mathbf{d}u(t) / \mathbf{d}t$

Formalni opis elemenata el. kruga - otpor

 Otpor: dvopolni element kod kojeg su struja i napon povezani prema Ohmovom zakonu:

$$u(t) = i(t) \cdot R$$
 $i(t) = u(t) \cdot G$ $R = \frac{u(t)}{i(t)} = \frac{1}{G}$

Snaga na otporu je:

$$p(t) = u(t) \cdot i(t) = i^{2}(t) \cdot R \ge 0$$
 troši (nepovratno pretvara) el. energiju (u toplinu)

• Energija na otporu je:

$$w(t) = \int_{t'=-\infty}^{t} p(t')dt' \ge 0$$
 pasivan

15

Formalni opis elemenata el. kruga - otpor

Naponsko-strujna (voltamperska ili UI) karakteristika

a) linearna omski otpor R

$$\frac{u}{i} = R = \operatorname{tg} \alpha = r_{\rm d} = \operatorname{konst.}$$

b) nelinearna (nelinearni element N) R≠r_d

$$\frac{u}{i} = R \neq \text{konst.}$$

Formalni opis elemenata el. kruga - kapacitet 🏵

 Kapacitet: dvopolni element koji povezuje dvopoun C:
naboj i napon: $C = \frac{q(t)}{u(t)} = \text{konst.}$

$$q(t) = C \cdot u(t)$$
 $C = \frac{q(t)}{u(t)} = \text{konst.}$

- Struja kroz kapacitet je: $i(t) = \frac{dq(t)}{dt} = C\frac{du(t)}{dt}$
- Napon na kapacitetu je:

$$u(t) = \frac{1}{C} \int_{t'=-\infty}^{t} i(t')dt' = u_0 + \frac{1}{C} \int_{t'=0}^{t} i(t')dt'; \quad u_0 = \frac{1}{C} \int_{t'=-\infty}^{0} i(t')dt'$$

 u_0 = početni napon u trenutku (početka razmatranja) t' = 0

Formalni opis elemenata el. kruga - kapacitet 🏵

Karakteristika kapaciteta naboj-napon

$$\operatorname{tg} \alpha = \frac{q(t)}{u(t)} = C = \text{konst.}$$

Snaga na kapacitetu:

$$p(t) > 0$$
 - prima energiju $p(t) < 0$ - daje energiju

$$p(t) = u(t) \cdot i(t) = u(t) \cdot C \frac{du(t)}{dt}$$

$$p(t) < 0$$
 - daje energiju

Formalni opis elemenata el. kruga - kapacitet 🏵

• Energija na kapacitetu

$$w(t) = \int_{t'=-\infty}^{t} p(t')dt' = \int_{t'=-\infty}^{t} C \cdot u(t') \frac{du(t')}{dt'} dt' = \int_{u(-\infty)}^{u(t)} C \cdot u(t') du$$

$$w(t) = C \frac{u^2(t)}{2} - C \frac{u^2(-\infty)}{2} = C \frac{u^2(t)}{2} \ge 0$$
 pasivan

Napon na kapacitetu je kontinuirana funkcija

inače bi bilo:

$$i(t_1) = C \frac{du(t_1)}{dt} = \infty$$

Formalni opis elemenata kruga - idealni izvor

- Naponski izvor: dvopolni element koji daje napon neovisan o opterećenju (struji)
 - Otpor idealnog naponskog izvora jednak je nuli ($R_i=0$)

 Otpor idealnog strujnog izvora je beskonačno velik (R_i =∞)

Pojmovi kratkog spoja i praznog hoda

 Kratki spoj = stanje između dviju točaka el. kruga (na slici: točke a i b) između kojih su otpor i napon jednaki nuli R=0, U=0

kratki spoj

• Prazni hod (prekid kruga) = stanje između dviju točaka električnog kruga između kojih je otpor beskonačno velik a struja jednaka nuli

(otvoreni krug - ne teče struja)

Još neki važni elementi električnog kruga

- Sklopka (idealna): dvopolni element koji otvara i zatvara strujni krug. Ima dva stanja: 1. otvoreno ($R=\infty$, prekid); i 2. zatvoreno (*R*=0, kratki spoj); koja mijenja trenutačno
- Znak za sklopku

- Ampermetar (idealni): dvopolni element koji pokazuje jakost struje što kroz njega prolazi. $R_A=0$ (kratki spoj)

- Voltmetar (idealni): dvopolni element koji pokazuje napon između svojih priključnica. R_v=∞ (prekid kruga)
- Znak za ampermetar
- Znak za voltmetar _(√)—

Spojevi elemenata električnog kruga

OSNOVE ELEKTROTEHNIK

Osnovni načini spajanja elemenata kruga

- Serijski spoj
 Elementi su spojeni serijski ako kroz njih teče ista struja
- Paralelni spoj
 Elementi su spojeni paralelno ako imaju isti napon

Pojam (električne) mreže

- Općenito: skup na različite načine spojenih elemenata (npr. otporničke, ili kondenzatorske mreže)
- Posebno: električni krug u kojemu je spojeno više izvora

23

Značajke strukture električnih mreža

- Topologija: opisuje položaj i način povezanosti elemenata (konfiguraciju) električne mreže
- Osnovni pojmovi iz topologije el. mreža:
 - Grana: dio mreže kroz koji teče ista struja.
 - Čvor: mjesto (točka) gdje se sastaju tri ili više grana
 - Petlja: zatvoreni put po granama mreže
 - Zatvoreni put = put po granama mreže koji kreće iz jednog čvora te (ne prolazeći niti jedan čvor mreže više od jednom) završava u polaznom čvoru
 - Skup nezavisnih petlji: skup petlji koje se međusobno razlikuju za barem jednu granu
 - prikažemo li mrežu u jednoj ravnini, nezavisne petlje se ocrtavaju kao okna (konture) u tako plošno nacrtanoj mreži. Stoga se nezavisne petlje još nazivaju i konture.

Značajke strukture električnih mreža

• Primjeri grana, čvorova, petlji i nezavisnih kontura el. mreže

25

Kirchhoffovi zakoni (osnovni zakoni el. krugova)

OSTO IZ ZEZATRO IZIMA

- Kirchhoffov zakon za struje KZS (1. KZ):
 - Za svaki čvor s n grana vrijedi:

$$\sum_{j=1}^{n} i_j(t) = 0$$

(algebarski zbroj struja svih grana u čvoru = 0)

Algebarski: struje koje ulaze u čvor $(i_{\rm ul})$ dobivaju predznak "+", a struje koje izlaze iz čvora $(i_{\rm iz})$ dobivaju predznak "-"

KZS se može iskazati i ovako:

$$\sum_{j=1}^{n_{ul}} i_{ul}(t) = \sum_{k=1}^{n_{iz}} i_{iz}(t)$$

(zbroj ulaznih struja jednak je zbroju izlaznih)

Kirchhoffov zakon za napone - KZN (2. KZ)

OSNOVE ELEKTROTEHNIK

■ Za svaku petlju (koja sadrži n elemenata) kruga vrijedi:

$$\sum_{j=1}^{n} u_j(t) = 0$$

(algebarski zbroj napona na svim elementima u petlji = 0)

- Algebarski: obilazeći petlju (proizvoljno odabranim smjerom) naponima koji u tom smjeru rastu dajemo predznak "+", a onima koji u tom smjeru padaju predznak "—"
- KZN se može iskazati i ovako: ako je u petlji $n_{\rm iz}$ izvora na kojima su naponi $u_{\rm iz}$ i $n_{\rm pas}$ pasivnih elemenata na kojima su naponi $u_{\rm pas}$ tada vrijedi slijedeće:

$$\sum_{i=1}^{n_{iz}} u_{iz}(t) = \sum_{k=1}^{n_{pas}} u_{pas}(t)$$

(algebarski zbroj napona na svim izvorima jednak je algebarskom zbroju napona na svim pasivnim elementima u petlji)

27

Primjeri: Značajke serijskog i paralelnog spoja otpora

• Serijski spoj otpora $(I_1=I_2=I)$

KZN:
$$U=U_1+U_2$$
 | : I
 $U/I=U_1/I+U_2/I$ $R_{uk}=R_1+R_2$

Ukupni otpor serijskog spoja jednak je zbroju pojedinih otpora

Djelilo napona: $U_1:U_2=R_1:R_2$

■ Paralelni spoj otpora $(U_1=U_2=U)$

KZS:
$$I=I_1+I_2$$
 : U
 $I/U=I_1/U+I_2/U$ $G_{uk}=G_1+G_2$

Ukupna vodljivost paralelnog spoja jednaka je zbroju pojedinih vodljivosti

$$1/R_{uk} = 1/R_1 + 1/R_2$$
 $R_{uk} = R_1 \cdot R_2/(R_1 + R_2)$

Djelilo struje: $I_1:I_2=G_1:G_2=R_2:R_1$

Primjeri: Značajke serijskog i paralelnog spoja kapaciteta

OSNOVE ELEKTROTEHNII

■ Serijski spoj kapaciteta (Q₁=Q₂=Q)

Naboj iz izvora (+Q i -Q) može doći samo na

vanjske ploče spoja, a pod njegovim se utjecajem

na unutarnjim pločama influencira naboj (+Q i -Q)

istog iznosa, pa je stoga Q₁=Q₂=Q

naboj **+Q** i **-Q** (vanjske ploče) razdvojio izvor

naboj +Q i -Q (unutarnje ploče) razdvojen influencijom

KZN:
$$U=U_1+U_2$$
 | : Q

$$U/Q = U_1/Q + U_2/Q$$
 $1/C_{uk} = 1/C_1 + 1/C_2$

Kapacitivno djelilo napona: $U_1:U_2=C_2:C_1$

■ Paralelni spoj kapaciteta $(U_1=U_2=U)$ $Q_{\rm uk}=Q_1+Q_2$:U (zakon o očuvanju naboja)

 $Q_{uk}/U = Q_1/U + Q_2/U$ $C_{uk} = C_1 + C_2$

29

Primjeri: Struje kroz paralelni spoj R i C

OSNOVE ELEKTROTEHNIKE

* Na temelju zadanog oblika vremenske promjene napona u(t) na paralelnom spoju otpora i kapaciteta (na slici), odrediti oblike vremenske promjene: struje kroz otpor $i_R(t)$, struje kroz kapacitet $i_C(t)$ te ukupne struje spoja i(t)

 Rješenje: Prema KZS, ukupna struja kroz paralelni spoj R i C, priključen na napon u(t) je:

$$i(t)=i_R(t)+i_C(t)$$

$$i_R(t) = u(t)/R$$

$$i_c(t) = C(du(t)/dt)$$
 $i(t) = u(t)/R + C(du(t)/dt)$

30

Primjeri: (Struje kroz paralelni spoj R i C)

OSNOVE ELEKTROTEHNIKE

• Oblici vremenske promjene (valni oblici) napona i pojedinih struja:

Primjenom KZS (zbrajanje struja) za svaku pojedinu vremensku točku, dobiva se oblik ukupne struje i(t)

$$i(t) = i_R(t) + i_C(t)$$

31