宽带通信网

信息与通信工程学院

靳 浩

- 宽带通信网技术发展概述
- ATM 技术原理
- ATM的流量控制和拥塞控制技术
- 宽带网交换技术
- IP网络体系结构与关键技术
- IP网络的QoS支持技术
- IP网络安全与管理技术
- MPLS技术及其发展
- 移动IP技术
- 下一代网络技术

ATM技术原理

- B ISDN的ATM协议参考模型
- B-ISDN的接口
- ATM信元的结构
- ATM信元的字段含义
- ATM技术各层的功能
- ATM技术小结

B-ISDN的ATM协议参考模型

B-ISDN的ATM协议参考模型

- B-ISDN 中的信息流分为三类,对应于三个平面, 分别为用户平面、控制平面和管理平面;
- 每个平面均使用ATM 技术实现,分为物理层、ATM 层和 ATM自适应层 (AAL层) 三个层次。
 - 用户平面: 传送用户数据。
 - ■控制平面:主要是信令数据(用于呼叫建立、维护和拆除)。
 - 管理平面:维护、管理网络的数据。

B-ISDN的接口

- UNI/NNI接口
 - 用户网络接口(UNI): 用户设备或用户交换机与网络交换节点之间的接口。
 - 网络节点接口(NNI):交换节点之间的接口。
 - UNI/NNI接口的相对性
- 其它类型的接口(ATM论坛定义)
 - FUNI: ATM的帧格式的UNI接口。 (交换机侧,支持T1/E1)
 - DXI: 数据交换接口,对现有数据设备提供接入ATM的环境。
 - B-ICI: 公共承载网之间,支持多种承载业务。
 - PNNI: 专用网的NNI接口。

ATM信元的结构

UNI处的信头结构

NNI处的信头结构

- GFC: 一般流量控制字段,用于UNI处的流量控制。
- VPI: 虚通道标识字段,识别给定传输方向的一个给定接口,同一物理连接上可以有多个VP。
- VCI: 虚通路标识字段,识别虚连接,一个VP中有多个VC。
- PTI: 净荷类型标识字段, 第一比特为信元类型, 第二比特为EFCI比特, 第三比特为SAR – PDU的 标识。
- CLP: 信元丢失优先级比特。
- HEC: 信头差错控制字段。

ATM信元的字段含义

ATM信元的字段含义

ATM技术各层的功能

- ■物理层的功能
- ATM层的功能
- AAL层的功能

AAL层

ATM层

物理层

ATM技术的各层功能

- ■物理层的功能
 - ■物理媒介相关子层的功能
 - ■传输会聚子层的功能

传输会聚子层

物理媒介相关子层

物理层

ATM技术的各层功能

- ■物理层的功能
 - ■物理媒介相关子层的功能
 - 传送编码和定时同步
 - 物理传送接口

物理层的功能

■物理媒介相关子层的功能

传输系统		接口	数据速率	信元吞吐量	媒介	应用范围
成帧结构	SDH	STM-1、 STM-4等	155.52Mb/s 622.08Mb/s	149.76Mb/s 599.04Mb/s	单模光纤	WAN
结构	PDH	E-1/3/4、 T-1/3等	2Mb/s、34Mb/s、 140Mb/s 1.5Mb/s、45Mb/s	1.92Mb/s、33Mb/s、 136Mb/s、 1.53Mb/s、40Mb/s	同轴电缆	WAN/LAN
无帧结构	FDDI		100Mb/s	100Mb/s	双绞线、 光纤	LAN
	数据交换接口		0-50Mb/s	0-50Mb/s	同轴电缆	LAN
	纯信元接口		25Mb/s、51Mb/s、 155Mb/s、22Mb/s	25.6Mb/s、49Mb/s、 155Mb/s、622/s	双绞线、 光纤	LAN, WAN

ATM技术的各层功能

- ■物理层的功能
 - 传输会聚子层的功能
 - 传输帧的产生和恢复和传输帧适配 (ATM层信元流 适配到物理层媒介帧中的操作)
 - 信元定界(基于搜索、预同步、同步状态的状态转移的识别算法)
 - ■信头差错控制 (HEC) (生成多项式为x8+x2+x+1)
 - 信元净荷扰码/解扰码 (通过扰码对净荷数据随机 化以便使信元定界顺利进行的操作)
 - 信元速率解耦(插入和删除物理层空闲信元以便 适配物理层媒介传输速率与ATM层信元流速率)

ATM层的功能

- ■用户设备中的ATM层功能
 - ■加信头
 - 信元的复接和分接功能

ATM层的功能

- 网络节点(交换机)的ATM层功能
 - VP/ VC交换

VP交换原理

VCI和 VPI 的转换

- ATM 信元在 ATM 网络中传输时,是在某个特定的虚连接上按序传送的。
- ATM 信元的首部中,用来标识这个虚连接的字段是 VPI/VCI, VPI/VCI唯一地标识了该信元属于哪一个虚连接。
- 所有的 VPI/VCI 值只在每一段物理链路上具有唯一的值。
- 每经过一段链路,信元的 VPI/VCI 值都可能发生 改变。

VCI和 VPI 的转换

交换机 X 的 VPI/VCI 转换表

入 端口	入 VPI/VCI	出端口	出 VPI/VCI
1	9/35	4	6/35

交换机 Y 的 VPI/VCI 转换表

入 端口	X VPI/VCI	出端口	出 VPI/VCI
4	6/35	2	42/55

交换机 Z 的 VPI/VCI 转换表

VPC与VCC的关系

连接端点

连接点

ATM技术原理

- ■AAL层的功能
 - B ISDN适配的业务种类
 - ATM技术对业务的分类
 - ITU T
 - ATM Forum
 - AAL层的功能
 - AAL层对各类业务的不同适配方式

AAL层的功能

B-ISDN适配的业务种类

业务种类		信息类型	宽带业务的例子	
交	会话型业务	声音、数据、文件	宽带可视电话、会议电视等	
交互型业务	消息型业务	视频和声音文件	电视、文件邮递业务	
务	检索型业务	文本、数据、 声音、图形	宽带可视图文、数据检索等	
分配型业务	无需用户 独立控制的业务	视频	现有TV分配业务	
	用户独立 控制的业务	文本、图形、 声音、静止图象	全通路广播可视图文	

ATM技术对业务的分类

■ ITU - T的业务分类

业务分类	A	В	С	D	X
连接模式	面向连接	面向连接	面向连接	无连接	面向连接
端对端 定时	要求	要求	不要求	不要求	用户定义
比特率	固定	可变	可变	可变	用户定义
应用例子	固定比特 率的话音、 图象	可变比特 率的话音、 图象	数据通信	数据通信、 LAN互连	

ATM技术对业务的分类

■ ATM Forum的分类

CBR: 固定比特率业务	固定比特率的话音、图象
Rt-VBR: 实时可变比特率业务	可变比特率的话音、图象
Nrt-VBR:非实时可变比特率业务	数据通信业务
UBR:不确定比特率业务	数据通信、LAN互连
ABR: 可能比特率业务	数据通信、LAN互连

ATM适配层(AAL)的功能

- 分段重组子层 (SAR子层)
 - 分割或重组用户信息为48字节。
- ■会聚子层 (CS子层)
 - 处理来自高层的业务信息,具体功能与用户 业务类型相关。

AAL层的数据封装过程

AAL层的功能

- AAL层对各类业务的不同适配方式
 - AAL1: 适配A类业务,例如CBR业务。
 - AAL3/4: 适配C、D类业务,例如数据、LAN业务。
 - AAL5: 适配C、D类业务,主要是面向连接的业务,也用来适配信令业务。
 - AAL2: 适配低速、可变长度数据包、对时延 敏感的业务,例如无线接入话音业务。

ATM技术小结

- 基于信元的交换、传输方式。
- 面向连接的技术。(通过VPC/VCC和信令完成)
- 实现时分为三个层次:物理层、ATM层、AAL层。
- ATM技术属于链路层的技术。
- ATM技术实现时在用户设备中和网络设备中的 协议栈的差别。
- 支持B-ISDN的网络技术。
- 对综合业务的服务质量保证 (QoS)

思考题

- ATM信头的结构中哪些字段与ATM交换 有密切的联系?
- ATM技术实现时分为哪几层?
- 简述VP交换和VC交换原理?
- AAL层对业务如何进行分类?
- AAL层的核心功能是什么?适配的实质意 义是什么?
- AAL层包括哪几种主要的适配方式?