

PH451 PH551 January 23, 2025

Announcements

Read Chapter 3 in textbook

Quiz date: Thu, Feb. 13

Loss Functions

Loss Functions $\vec{\chi}_{i} = \left\{ \chi_{i}, \chi_{2} \dots \chi_{n} \right\}_{i}$ Input GOAl: EVALUATE hypothesis on Fraining data (Low bad? 1 Loss (Worse) | Lass (better) Loss = 0 -> Perfect Examples Count the Mistakes Usually use normalited 0/1 Loss =) fraction of missclassified SAMPles (Fraining error) Absolute Loss |f(xi)-yi) -> non-regative -> grows whenvy w. missclassification. - typically useful for (noisy)

Squared Loss $L_{s_{\delta}}(f) = \frac{1}{h} \underset{i=1}{\leq} \left(f(\vec{x_i}) - y_i \right)$ > Mon-regative -> grows quadratically w. missed predictions

-> useful for regression [Ordinary Lanst]

-> costmates mean over x: -> Useful for regression -> estimates mean gour x: Huber S(1a1- 58) - guadratic for smallx $\alpha = y - f(x)$ residual" - livery for large X ₁SQ(L2) "best of both worlds"

Loss Functions

Cross Entropy

$$L_{CE} = -\frac{1}{h} \stackrel{\text{Z}}{=} y_i \log(\hat{g_i}) + L_{og} \log(1-\hat{g_i}) \stackrel{\text{Log loss}}{=} class.$$

$$f(x)$$

$$probability A$$

$$convex$$

$$y_i = 0 \quad loss(1-S(x))$$

$$y_i = 1 \quad loss(S(x))$$

01/23/2025 Sergei Gleyzer PH451/551 Lecture

6

Cross Entropy

Types of Learning

Typical Learning Tasks

Classification

Put in categories (classes) based on inputs

Regression

Estimate a function/predict a numeric value

Learning Types

Human supervision?

Supervised Unsupervised

Semi-supervised

Reinforcement learning

Offline? Incrementally?

Building a predictive model?

model-based or instance-based

[Un]Supervised Learning

How much supervision during training?

- Supervised (100% expert labeled)
- Unsupervised (unlabeled learn on your own)
- Semi-supervised (partially labeled)
- Reinforcement Learning
 - Learning system observes environment and gets rewards based on actions (i.e. training your dog)
 - "Agent" identifies policy that maximizes reward

Online vs. Offline Learning

How much data during training?

- Offline (batch) train on all available data
 - Expensive for large datasets
- Online (incremental) small mini-batches
 - Learn on the fly
 - Good for limited resources

Model vs. Instance Learning

How to Generalize?

- Instance (based)
 - similarity measure compared to labeled examples
- Model (based)
 - build a predictive model
 - then apply to unknown instances

Train vs. Test Data

How to Generalize:

- Split the data
 - Learn on training data
 - Evaluate performance on testing data
 - Easy to overfit the training data
 - Care more about test accuracy than train accuracy
 - i.e. generalization is key
- Soon we will add another split to optimize the model
 - Validation set

Hyperparameter Tuning

Fine-tuning the model

- Hold out a "validation" set
- Evaluate model with varying hyperparameters
 - A hyper-parameter is a parameter of the learning algorithm not of the model

Cross Validation

Generalization of train-test split for more accurate evaluation of classifier performance

- Randomly split dataset into K equal partitions
- In each fold use K-1 samples to train, leftover to test

Cross Validation

HPT with Cross Validation

Choose Model Parameter with highest validation performance

Cross Validation

How to tell if a model is

too simple or too complex?

Training Data Test Data Model

Bad Bad Underfitting

Good Bad Overfitting

CONSTRUCTING CLASSIFIERS

Goals

Distinguish f(x), g(x) using training set of observations

{inputs, outputs}

Pass observations to a learning algorithm neural network, decision tree

that produces outputs in response to inputs

Use another set of observations to evaluate

Inputs

Classification

Primary Goal:

Achieve lowest probability of error on unseen cases $\{\langle x^{(i)}, y^{(i)} \rangle\}$

Supervised Approach:

Inductively learn from labeled examples (where classes are known)

MNIST DATASET

70k labeled handwritten digits

28 x 28 pixels with intensity [0 – 255]

Classification Metrics

$$accuracy = \frac{\# correct predictions}{\# test instances}$$

$$error = 1 - accuracy$$

Performance Measures

Accuracy

limited value if dataset is skewed

More metrics:

- MSE or RMSE = sqrt(MSE) for regression
- Binary cross-entropy (BCE) for classification

Confusion Matrix

Confusion Matrix

Visualize correct and incorrect classifications

$$accuracy = \frac{TP + TN}{P + N}$$

P positive, N negative cases

Error Analysis 2 4 6 8

Precision and Recall

Precision =
$$TP / (TP + FP)$$
 (Eqn. 3.1)
Recall = $TP / (TP + FN)$ (Eqn. 3.2)

$$precision = \frac{TP}{TP + FP}$$

$$\text{recall} = \frac{TP}{TP + FN}$$

Precision = True Positive / Predicted Positive Recall = True Positive / Real Positive

Precision and Recall Trade-off

ROC Curve

Receiver Operating Characteristic (ROC)

Commonly used metric

Shows the relationship between correctly classified positive cases TPR (sensitivity) and incorrectly classified negative cases FPR (1-effectivity)

Perfect Classifier

ROC Curve

Machine Learning

Algorithm choice sets hypothesis Class H

- Goal: find the best function within H
 - eg. one that makes the fewest "mistakes"
 - Optimization problem via a learning process
- Evaluate?
 - Loss (Risk) Function on training data
 - Many possible loss functions:
 - Squared
 - Absolute choice depends on the problem!
 - Cross-entropy

Hands-on Activity