## **Deep Learning**

Convolutional Neural Networks

Syed Irtaza Muzaffar

ons as Detectors CNN Convolutional layer Subsampling FC Lay

#### Convolution

Source: http://www.texample.net/tikz/examples/convolution-of-two-functions/

# **2D Convolution** *Example*



Modified from https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

M is usually called a mask or kernel or filter.

rrons as Detectors CNN Convolutional layer Subsampling FC Lay

## Dealing with boundaries

- What about edge and corner pixels where the mask goes outside the image boundaries?
  - Expand image *I* with virtual pixels. Options are:
    - 1. Fill with a particular value, e.g. zeros.
    - 2. Replicating boundaries: fill with nearest pixel value.
    - 3. Reflecting boundaries: mirror the boundary
  - Fatalism: just ignore them. Not recommended since size of I \* M will shrink.

# Dealing with boundaries Expand by zeros

For a  $5 \times 5$  image and  $5 \times 5$  mask

#### A Neuron as a Detector

- A neuron can be viewed as a detector.
- When it fires, the input must have been similar to its weights.
  - Firing  $\implies \mathbf{w}^T \mathbf{x}$  was high  $\implies \mathbf{w}$  was similar to  $\mathbf{x}$
- ► So neuron firing indicates detection of something similar to its weights.



$$\mathbf{u}^T\mathbf{v} = \|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$

- ► Since  $-1 \le \cos \theta \le 1$ ,  $\mathbf{u}^T \mathbf{v}$  is highest when  $\cos \theta = 1$
- ▶ That happens when  $\theta = 0$
- ightharpoonup That happens when vectors  $\mathbf{u}$  and  $\mathbf{v}$  point in the same direction.

### A Neuron as a Detector

- Wx>0 Wx
- A neuron can be viewed as a detector.
- When it fires, the input must have been similar to its weights.
  ▶ Firing ⇒ w<sup>T</sup>x was high ⇒ w was similar to x
- ▶ So neuron firing indicates detection of something similar to its weights.



- ► Since  $-1 \le \cos \theta \le 1$ ,  $\mathbf{u}^T \mathbf{v}$  is highest when  $\cos \theta = 1$
- ▶ That happens when  $\theta = 0$
- ▶ That happens when vectors **u** and **v** point in the same direction.

ns as Detectors CNN Convolutional layer Subsampling FC Layer.

### **Convolutional Neural Networks**

Now we will look at networks that produce neuronal output via convolution.

- Known as Convolutional Neural Networks (CNNs).
- Most frequently used network architecture.
- Exploits local correlation of inputs.

as Detectors CNN Convolutional layer Subsampling FC Lay

# Building Blocks of CNNs Viewing convolution as neurons

#### Single channel input



#### Multichannel input



## Building blocks of CNNs



## Building blocks of CNNs



### CNN

- Convolution by M filters produces M channels.
- ightharpoonup They represent an M-channel transformation of the input image I.
- ► This *M*-channel image can now be transformed further via additional convolution filters.
- Convolution-subsampling block can be repeated multiple times.
- ▶  $I o M_1$  channels  $o M_2$  channels  $o \cdots o M_b$  channels o flattening o MLP.



#### Convolutional Neural Networks

- For recognition of hand-written digits, inputs are images and outputs are posterior probabilities  $p(C_k|\mathbf{x})$  for k = 1, ..., 10.
- The digits true identity is invariant under
  - translation, scaling, (small) rotation, and
  - small elastic deformations (multiple writings of the same digit by the same person will have subtle differences).
- The output of the neural network should also be invariant to such changes.
- A traditional fully connected neural network can, in principle, learn these invariances using lots of examples.
- ► However, it totally ignores the *local correlation* property of images.
  - Nearby pixels are more strongly correlated than pixels that are far apart.

#### Convolutional Neural Networks

- Modern computer vision exploits local correlation by extracting features from local patches and combining this information to detect higher-order features.
- ightharpoonup Example: Gradients  $\longrightarrow$  Edges  $\longrightarrow$  Lines  $\longrightarrow$  . . . .
- Local features useful in one sub-region can be useful in other sub-regions.
  - Example: same object appearing at different locations.
- ► This weakness of standard neural nets is overcome by CNNs.

#### NN vs. CNN



- Global receptive fields due to being fully connected.
- Separate weights for each neuron.



- Local receptive fields due to being sparsely connected.
- Shared weights among different neurons.
- Subsampling of each layer's outputs.
- ► Receptive field of a neuron consists of previous layer neurons that it is connected to (or looking at).

rons as Detectors CNN Convolutional layer Subsampling FC Layers

## Convolutional layer

Consists of multiple arrays of neurons. Each such array is called a *slice* or more accurately *feature map*.

- Each neuron in a feature map
  - is connected to only few neurons in the previous layer, but
    - uses the same weight values as all other neurons in that feature map.
- So within a feature map, we have both
  - local receptive fields, and
  - shared weights.

- Example: A feature map may have
  - ▶ 100 neurons placed in a  $10 \times 10$  array, with
  - $\blacktriangleright$  each neuron getting input from a  $5\times 5$  patch of neurons in the previous layer (receptive field), and
  - ▶ the same  $26(=5 \times 5 + 1)$  weights shared between these 100 neurons.
- ▶ Viewed as detectors, all 100 neurons detect the same  $5 \times 5$  pattern but at different locations of the previous layer.
- ▶ Different feature maps will learn¹ to detect different kinds of patterns.
  - ► For example, one feature map might learn to detect horizontal edges while others might learn to detect vertical or diagonal edges and so on.

<sup>&</sup>lt;sup>1</sup>based on their learned weights

eurons as Detectors (

nvolutional layer

## Convolutional layer

- ▶ To compute activations of the 100 neurons, a dot-product is computed between the same shared weights and different  $5 \times 5$  patches of previous layer neurons.
- This is equivalent to sliding a window of weights over the previous layer and computing the dot-product at each location of the window.
- ► Therefore, activations of the feature map neurons are computed via convolution of the previous layer with a kernel comprising the shared weights. Hence the name of this layer.

irons as Detectors CNN Convolutional layer **Subsampling** FC Layers

## Subsampling layer

Reduces the spatial dimensions of the previous layer by downsampling. Also called *pooling* layer.

- Example: downsampling previous layer of  $n \times n$  neurons by factor 2 yields a pooled layer of  $\frac{n}{2} \times \frac{n}{2}$  neurons.
- ▶ No adjustable weights. Just a fixed downsampling procedure.
- Reduces computations in subsequent layers.
- ▶ Reduces number of weights in subsequent layers. This reduces overfitting.

ns as Detectors CNN Convolutional layer **Subsampling** FC Laye

### Subsampling

- ▶ Options: From non-overlapping  $2 \times 2$  patches
  - pick top-left (standard downsampling by factor 2)
  - pick average (mean-pooling)
  - pick maximum (max-pooling)
  - pick randomly (stochastic-pooling)
- Fractional max-pooling: pick pooling region randomly.



**Figure:** Max-pooling with  $2 \times 2$  receptive fields, and stride of 2 neurons. Source: http://cs231n.github.io/convolutional-networks/

rons as Detectors CNN Convolutional layer **Subsampling** FC Layers

#### Subsampling

▶ The options in the last slide discard 75% of the data.

- They correspond to
  - ightharpoonup neurons with 2 imes 2 receptive fields, and
  - **stride** of 2 neurons.
- This is the most commonly used configuration. Other options exist but note that pooling with larger receptive fields discards too much data.
- ➤ Subsampling layer can be skipped if convolution layers uses stride>1 since that also produces a subsampled output.

## Subsampling

### A pooling layer

- with  $F \times F$  receptive field and stride S,
- ▶ "looking at" a  $W_1 \times H_1 \times D_1$  input volume,
- ▶ produces a  $W_2 \times H_2 \times D_2$  output volume, where
  - $V_2 = \frac{W_1 F}{S} + 1$
  - $H_2 = \frac{H_1 F}{S} + 1$
  - $D_2 = D_1$ .

#### Fully Connected Layers

- ► After flattening, a fully connected MLP can be used.
- ► The last layer has
  - neurons equal to the desired output size, and
  - activation functions based on the problem to be solved.
- The flattened layer can therefore be viewed as a transformation  $\phi(x)$  that is fed into an MLP.
- Similarly, outputs of earlier layers are intermediate representations of the input.

FC Layers

Mid-Level

Low-Level

High-Level

Trainable

#### **Intermediate Representations**



Intermediate feature representations. Early layers form simple, low-level representations of the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516\_lecture7.pdf

irons as Detectors CNN Convolutional layer Subsampling FC Layers

#### **CNN Variations**

- ► There are *lots* of variations.
  - ► Fully convolutional networks. No pooling and no fully connected layer.
  - ▶  $1 \times 1$  convolutions to reduce computations.
  - ► Inception modules to combine multiple filter sizes.
  - Residual blocks to avoid vanishing gradients.
  - Depthwise separable convolutions to reduce parameters and computations.
  - Lightweight and fast models (SqueezeNet, MobileNet, ...) for edge computing.
  - ► Fast search over hyperparameters (EfficientNet).

ns as Detectors CNN Convolutional layer Subsampling FC Layers

#### Summary

Many signals such as sounds, images, and videos obey the local correlation property.

- MLPs ignore local correlation.
- CNNs are a special kind of neural architecture that
  - exploits local correlation
  - extracts multi-scale features, and
  - extracts translation covariant features
- These properties are built into the design of the architecture.