Presence

Auto-Attendance System with report generation

Presented by Team SARS

Rupesh Budhathoki, 191721 Apsara Bishwokarma, 191704 Sampada Kharel, 191723 Sudarshan Khsettri, 191729

Table Of Contents

- Introduction
- Literature review
- Methodology
- Project Status

SARS Presence Introduction

Overview

"Presence" is an automated attendance system designed for college classrooms. It uses facial recognition technology to track student attendance, eliminating the need for manual attendance taking. It provides valuable data insights to help educators analyse attendance patterns and make informed decisions for better student engagement and success.

SARS Presence Introduction

Motivation

Time-consuming and inefficient manual attendance tracking methods in college classrooms.

Errors and inaccuracies in manual attendance processes can lead to unreliable records.

Non-effective monitoring and decision-making.

Presence Introduction

Objectives

SARS

- To automate attendance system for college classrooms
- To provide insights into attendance patterns and behavior
- To support data-driven decision-making for improved student success

Fareclock

Presence

Fareclock[1] is a web-based time clock software designed to streamline employee time tracking, attendance management, and payroll processing.

Features

- track work hours
- face recognition attendance
- generate accurate payroll reports.

LMS (moodle)

Presence

Moodle offers attendance activity[2] to track attendance of students digitally.

Features

- Manual attendance marking by instructors
- Customizable attendance statuses (Present, Absent, Late, Excused)
- Download attendance reports in Excel or text format
- Option for students to record their own attendance

Presence

How do we differ?

SARS

01 | Automated attendance tracking using facial recognition technology

Literature Review

- **02** | Ease of access to data
- 03 | Provides insights for optimizing class scheduling
- **04** | Real-time attendance updates
- 05 | View reports

Waterfall model

Our proposed SDLC is WATERFALL MODEL[3] because of limited time and clear goals.

Use-Case Diagram

Presence

Client-Server Architecture

We will divide the functionality and responsibilities of a software application into two main components

Technology

Presence

Frontend

NextJs	Meta framework of React
Typescript	Superset of Javascript with type annotations
TailwindCSS	Utility classes for each line of CSS
REST Api and Websocket	Connecting backend

Backend

Django	Python backend framework
OpenCV	Recognize faces of students
SQLite	Lightweight database
REST Api and Websocket	Sending data to frontend

OpenCV and Deep Learning

Presence

OpenCV face recognition pipeline. The key step is a CNN feature extractor that generates 128-d facial embeddings.

- **01** | Input an image or video frame
- **02** | Apply face detection to detect the location of a face
- **03** | Extract unique facial data (Crop)
- **04** | Recognize using trained model
- **05** | The model is pre-trained with ~3million images

S Presence

Datasets and Working

- Submit data by students through the website
- Load and pre process the dataset using pre-trained model
- Train the facial recognition model
- Generate ecodings.pickle file

Face Recognition Process

Presence

Simplified representation of face recognition process

HOG for facial feature extractions

Focuses on the structure or the shape of an object

Time Schedule

Schedule

Tasks Completed

- **01** | Research and Requirement Gathering
- **02** | Design and User Interface Development
- **03** | Face detection and recognition Technology
- **04** | Data set and Model Training
- **05** | Database Design and Implementation
- **06** | Rest API and Websocket

Remaining Tasks

- **01** | Record Attendance For each subject
- **02** | Data Analysis and Report generation
- **03** | Testing and Validation
- 04 | User testing
- 05 | Deployment

Team

Our team consists of four dedicated individuals with diverse skill sets and roles

SARS

References

- [1] Fareclock, https://www.fareclock.com/.
- [2] Moodle, Attendance, https://moodle.org/plugins/mod_attendance.
- [3] B. Lutkevich, "Definition: Waterfall model," TechTarget, 2022. [Online]. Available:

https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model#:~:text=The%20waterfall%20model%20is%20a,the%20edge%20of%20a%20cliff.

[4] Rosebrock, A. (2018, June 18). Face recognition with OpenCV, Python, and deep learning. PyImageSearch.

https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opency-python-and-deep-learning/

Thank you for your time!!!

