Homework 3

1 The Fundamental Theorem of MPS

Let A be an injective tensor generating some translationally-invariant matrix product state $|\Psi_A\rangle$. Write down explicitly the overlap, and show — this time without diagrammatic notation — that

$$\langle \Psi_A | \Psi_A \rangle = \operatorname{tr} \left(\begin{array}{c} \overline{A} \\ \overline{A} \end{array} \right)^N = \operatorname{tr} \mathbb{E}^N,$$

where $\mathbb{E} = \sum_i \bar{A}^i \otimes A^i$ is the transfer matrix. We can associate to it two linear maps, ε , as well as its adjoint ε^* (by looking at the matrix from the other direction)

$$\varepsilon(\sigma) = \sum_{i} A^{i} \sigma A^{i\dagger}, \quad \varepsilon^{*}(\sigma) = \sum_{i} A^{i\dagger} \sigma A^{i},$$

Hint You might find the following property useful: $tr(A \otimes B) = tr A tr B$.

Without loss of generality, we can take the spectral radius of the transfer matrix to be unity (we can always achieve that by rescaling A). Let $|r\rangle$ and $\langle \ell|$ be the dominant right and left eigenvectors, respectively, of $\mathbb E$. It can be shown that r and ℓ correspond to the fixed points of the associated linear maps ε and ε^* , and they are both positive¹. Additionally, for injective tensors, r and ℓ are full rank and strictly positive definite. Show that the gauge transformation $\tilde{A}^i = XA^iX^{-1}$, with $X = \sqrt{1/r}$ brings A in its right-canonical form $(\sum_i \tilde{A}^i \tilde{A}^{i\dagger} = 1)$, while the gauge $X = \sqrt{\ell}$ gives the left-canonical form² $(\sum_i \tilde{A}^{i\dagger} \tilde{A}^i = 1)$. Choosing the left-canonical form, we then have $\rho = \ell$, and the fixed points of the maps are

$$\varepsilon(\rho) = \rho, \quad \varepsilon^*(1) = 1.$$

Write down the diagrammatic expression corresponding to these equations.

Theorem 1.1 (Fundamental theorem of MPS) Given two MPS characterized by the injective tensors A and B, then $|\Psi_A\rangle = |\Psi_B\rangle$, as $N \to \infty$, if and only if there exists a gauge transform X which relates A and B as $XA^i = B^iX$.

You shall now prove this theorem. The backwards direction (" \Leftarrow ") should be immediately clear. Let us now look at the forward direction (" \Rightarrow ") of the theorem. Assume the states are correctly normalized, hence $|\Psi_A\rangle = |\Psi_B\rangle \Leftrightarrow |\langle \Psi_A|\Psi_B\rangle| = 1$.

Now define the operator

$$\langle \Psi_B | \Psi_A \rangle = \operatorname{tr} \mathbb{E}_{\mathrm{rel}}^N$$

Let X be the dominant eigenvector of \mathbb{E}_{rel} with eigenvalue λ . What are the maximum value of $|\lambda|$? How does it determine the overlap $\langle \Psi_B | \Psi_A \rangle$ in the thermodynamic limit? The eigenvalue equation for its associated linear map reads $\varepsilon_{\text{rel}}^*(X) = \sum_i B^{i\dagger} X A^i = \lambda X$. Now, without loss of generality, we can take A and B to be in canonical form. Use the Cauchy–Schwarz inequality $|\langle u|v\rangle|^2 \leq ||u||^2 ||v||^2$ to show that

$$\left|\lambda\operatorname{tr}(X\rho X^\dagger)\right|^2 \leq \left(\sum_i\operatorname{tr}(XA^i\rho A^{i^\dagger}X^\dagger)\right)\left(\sum_i\operatorname{tr}(B^iX\rho X^\dagger B^{i^\dagger})\right) = \left|\operatorname{tr}(X\rho X^\dagger)\right|^2$$

You may use equations, diagrammatic expressions, or a combination of both. When is the Cauchy-Schwarz inequality an equality? In that case, conclude by showing that $XA^i = B^iX$.

Hint The trick is to think of the trace as an overlap: $tr(u^{\dagger}v) = \langle u|v\rangle$.

 $^{^{1}\}mathrm{D}.$ E. Evans and E. Høegh-Krohn, J. London Math. Soc. 17, 345-355 (1978). See Thm. 2.5.

²These forms are possible even without injectivity. It is slightly harder to show, since A needs to be decomposed in blocks. See D. Peréz-García, F. Verstraete, M.M. Wolf and J.I. Cirac, arXiv:0608197 (2006).

2 The AKLT State, Once Again

In the last homework we derived the tensor for the AKLT state $|\Psi\rangle = \sum_{\sigma} \operatorname{tr}(A^{\sigma_1}A^{\sigma_2}\dots A^{\sigma_L}) |\sigma\rangle$, with

$$A^+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A^0 = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A^- = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}.$$

Rescale the matrices such that $\sum_{\sigma} A^{\sigma \dagger} A^{\sigma} = 1$, to obtain the left-canonical form. Compute the transfer matrix and its eigenvalues (numerically, if you want). Check that in the limit $L \to \infty$, $\|\Psi\|^2 = 1$.

3 A Non-Injective MPS

Recall that the GHZ state is generated by the tensor $A^i = \delta_{i,a,b}$, i = 0, 1. Show that for any blocking of length L (see the next exercise for a definition), the subspace \mathcal{S}_L of the GHZ state contains only two linearly independent vectors. Deduce that one cannot obtain an injective tensor after blocking for any finite L. Hence A cannot be a so-called *normal* tensor.

Compute the transfer matrix. Notice that there are two distinct dominant eigenvectors, let us call them $|\rho_{\uparrow}\rangle$ and $|\rho_{\downarrow}\rangle$. What is $\langle \text{GHZ}|\text{GHZ}\rangle$ as a function of N? Let O_n be a local operator acting on site n. Calculate the expectation values

$$\langle \cdot \rangle = \frac{\langle \psi | \cdot | \psi \rangle}{\langle \psi | \psi \rangle}$$

for $\psi = \text{GHZ}$ of the following observables, in terms of the matrix $\mathbb{E}_O = \sum_{i,j} O_{ij}(\bar{A}^i \otimes A^j)$:

- $\langle O_n \rangle$,
- $C_L = \langle O_n O_{L+n} \rangle \langle O_n \rangle \langle O_{L+n} \rangle$,

Does the correlation go to zero as $L \to \infty$?

4 Uniqueness of the Ground State for Parent Hamiltonians

Let $|\Psi\rangle$ be an MPS generated by an *injective* tensor A. The blocking operation over k sites is the map

$$- \underbrace{B} - \equiv - \underbrace{A} - \cdots - \underbrace{A} - \underbrace{A}$$

Verify the stability of the injectivity condition under blocking — that means, show that the superblock obtained by blocking k tensors still has the injectivity property (modulo a constant). There are a couple ways of doing this, you can use a diagrammatic argument, or you can use the mathematical definition of injectivity, namely that the map $X \mapsto \sum_i \operatorname{tr}(A^i X)|i\rangle$ is injective.

In this exercise we will prove the uniqueness of parent Hamiltonians, for *injective* tensors. To keep thing simple, we will restrict out attention to the one dimension, in the case where the parent Hamiltonian is a sum of *nearest-neighbor* terms $h_{i,i+1}$. Therefore we define the subspace

$$S_2 = \left\{ \sum_{i,j} \operatorname{tr}(A^i A^j X) | i,j \rangle \middle| X \in \mathbf{L}(\mathbb{C}^{D \times D}) \right\} = \left\{ \begin{array}{c|c} i & j \\ \hline A & A \end{array} \middle| X \in \mathbf{L}(\mathbb{C}^{D \times D}) \right\}.$$

where $\mathbf{L}(\mathbb{C}^{D\times D})$ is the space of all $D\times D$ matrices over \mathbb{C} . This space is just a special case of a series of subspaces

$$S_k = \left\{ \sum_{i_1, \dots, i_k} \operatorname{tr}(A^{i_1} \dots A^{i_k} X) | i_1, \dots, i_k \rangle \middle| X \in \mathbf{L}(\mathbb{C}^{D \times D}) \right\}.$$

Show that S_k is the range of the k-sites reduced density matrix ρ_k .

Let me remind you of how you obtain the parent Hamiltonian: by defining the projector onto the space orthogonal to S_2 , we can construct the local term $h_{i,i+1}$. The parent Hamiltonian is then simply the sum of these local terms, $H = \sum_i h_{i,i+1}$.

In order to prove the uniqueness, we will start by considering a chain with open boundary conditions, and show that the ground state subspace is S_2 . We will then close the boundaries, and show that the only state remaining is $|\Psi\rangle$. We can formalize this with two theorems.

Theorem 4.1 (Intersection property) Let A and B be injective tensors. Then,

$$\left\{ \begin{array}{c|c} i & j & k \\ \hline A & B & M \end{array} \middle| M \right\} \cap \left\{ \begin{array}{c|c} i & j & k \\ \hline N & B & A \end{array} \middle| N \right\} = \left\{ \begin{array}{c|c} i & j & k \\ \hline A & B & A \end{array} \middle| X \right\},$$

with $M, N, X \in \mathbf{L}(\mathbb{C}^{D \times D})$.

We shall prove this theorem by showing inclusion in both directions. Construct a state in the right hand side that belongs in both of the other two sets on the left hand side. Conversely, for any state $|\psi\rangle$ in the l.h.s., there exists M,N such that

$$|\psi\rangle = A B M = N B A$$
.

Apply the inverse of A and B to find a relationship between M and N. Use this relationship to show that $|\psi\rangle$ is contained in the r.h.s., proving inclusion both ways.

Theorem 4.2 (Closure property) For injective A and B,

$$\left\{ \begin{array}{c|c} B & A \\ \hline M & \end{array} \right| M \right\} \cap \left\{ \begin{array}{c|c} B & A \\ \hline N & \end{array} \right| N \right\} = \operatorname{span} \left\{ \begin{array}{c|c} B & A \\ \hline \end{array} \right\} .$$

with $M, N \in \mathbf{L}(\mathbb{C}^{D \times D})$.

As for Theorem ??, show that the r.h.s. is included in the intersection by choosing M and N appropriately. To prove inclusion the other way around, take a state belonging to the intersection, apply the inverses, and find that $M \propto 1$, concluding the proof.

We define the operator $h_{i,i+1}$ acting on site (i, i+1)

$$h_{i,i+1} = \mathbb{1} \otimes (\mathbb{1} - P_{\mathcal{S}_2}) \otimes \mathbb{1},$$

where P_{S_2} is the projector on S_2 . Notice that S_2 is the *ground space* of $h_{i,i+1}$. Conclude by proving the following theorem.

Theorem 4.3 (Parent Hamiltonian) Let A be an injective tensor generating an MPS $|\Psi\rangle$. There exists a self-adjoint operator H, such that $|\Psi\rangle$ is its unique and frustration-free ground state.

By induction, use Theorem ?? to prove that the intersection between acting with $h_{i,i+1}$ on every two-body pair $(1,2),(2,3),\ldots(L-1,L)$ gives the support of \mathcal{S}_L . Finally, use Theorem ?? to prove that acting with the last term $h_{L,1}$ necessarily implies that the only remaining state is

$$\label{eq:power_law_energy} \underbrace{\stackrel{\dot{\boldsymbol{i}}_{I}}{\boldsymbol{A}} \cdot \stackrel{\dot{\boldsymbol{i}}_{I}}{\boldsymbol{A}} \cdots \stackrel{\dot{\boldsymbol{i}}_{L}}{\boldsymbol{A}}}_{\boldsymbol{A}} = |\Psi\rangle\,.$$

Note This theorem is valid for any injective tensor network.