Apostila EE1 Conversor Elevador

Eletrônica Industrial – EE1

5-4 CONVERSOR ELEVADOR

Figura 5-11

A figura 5-11 mostra um conversor elevador. Suas principais aplicações são em fontes reguladas CC e em frenagem regenerativa de motores CC. A tensão de saída é sempre mais alta que a tensão de entrada. Quando a válvula principal está ligada o diodo fica polarizado inversamente, isolando o estágio de saída. A fonte de alimentação (entrada) fornece energia para o indutor. Quando a válvula principal é desligada, o estágio de saída recebe energia tanto do indutor como da entrada. Na análise do regime o capacitor de filtro de saída é considerado suficientemente grande para assegurar tensão de saída constante: $v_0(t)$ = V_0 .

5-4-1 MODO DE CONDUÇÃO CONTÍNUA

FIG.5-12 Modo de condução contínua: (a) válvula ligada, (b) válvula desligada.

A figura 5-12 mostra as formas de onda de regime para este modo de condução onde a corrente no indutor flue continuamente ($i_L(t)>0$).

Desde que em regime, a integral da tensão no indutor num período deve ser zero temos:

$$V_d t_{on} + (V_d - V_0) t_{off} = 0$$

Dividindo ambos os membros por Ts e rearranjando os termos vem:

$$\frac{V_0}{V_d} = \frac{T_s}{t_{off}} = \frac{1}{1 - D} \tag{5-26}$$

Assumindo um circuito sem perdas $P_d = P_0$ e:

$$\frac{I_0}{I_d} = (1 - D) \tag{5-27}$$

5-4-2 LIMITE ENTRE CONDUÇÃO CONTÍNUA E DESCONTÍNUA

FIG.5-13 Limite de condução contínua:(a) formas de onda, (b) Curvas I_{LB} e I_{OB} x D.

A figura 5-13 mostra as formas de onde no limite da condução contínua. Por definição, neste modo I_L vai a zero ao final do período Ts. O valor médio da corrente no indutor nesta condição é:

$$I_{LB} = \frac{1}{2}i_{L,\text{pico}} \text{ (Fig. 5-13a)}$$
$$= \frac{1}{2} \frac{V_d}{L} t_{on}$$

$$\frac{T_s V_0}{2L} D(1-D) \text{ (usando Eq. 5-26)}$$
 (5-28)

Reconhecendo que num conversor elevador a corrente no indutor e a corrente de entrada são as mesmas ($i_D = i_L$) e, usando as Eqs. 5-27 e 5-28, verificamos que a corrente de saída no limite de condução contínua é:

$$I_{OB} = \frac{T_S V_0}{2L} D(1 - D)^2 \tag{5-29}$$

A maioria das aplicações nas quais um conversor elevador é usado requer que V_0 seja mantido constante. Desta forma, com V_0 constante I_{LB} e I_{OB} são plotados na Fig.5-13b como uma função da razão do serviço D. Mantendo V_0 constante e variando a razão de serviço implica em variar a tensão de entrada.

A fig. 5-13b mostra que I_{LB} atinge um valor máximo para D = 0.5:

$$I_{LB, MAX} = \frac{T_S V_0}{8L} \tag{5-30}$$

Esta figura mostra também que I_{OB} é máxima para D = 1/3:

$$I_{OB, MAX} = \frac{2}{27} \frac{T_S V_0}{L} \tag{5-31}$$

Em termos de seus valores máximos I_{LB} e I_{OB} podem ser expressos como:

$$I_{LB} = 4D(1-D)I_{LB, MAX}$$
 (5-32)

e:

$$I_{OB} = \frac{27}{4}D(1-D)^2 I_{OB, MAX}$$
 (5-33)

A figura 5-13 mostra que para um dado D, com V_0 constante, se a corrente média de carga cair abaixo de I_{OB} (e, portanto a corrente média no indutor cair abaixo de I_{LB}), a corrente se tornará descontínua.

5-4-3 MODO DE CONDUÇÃO DESCONTÍNUA

Para entender o modo de condução de corrente descontínua, nós vamos assumir que à medida que a potência da carga diminui, V_d e D permanecem constantes (embora na prática D varie para manter V_o constante). A figura 5-14 compara as formas de onda descontínua e no limite entre condução contínua e descontínua assumindo que V_d e D são constantes. Na figura 5-14b a condução de corrente descontínua ocorre devido à

diminuição de $P_o(P_d)$ e, portanto de $I_L(I_d)$ é constante. Desde que $I_{L,pico}$ é a mesma em ambos os modos na figura 5-14, um menor valor de I_L (e portanto um i_L descontínuo) só é possível se V_o aumentar na figura 5-14b.

FIG.5-14 Formas de onda do Conversor Elevador:(a) no limite da condução contínua, (b) em condução descontínua.

Se igualarmos a integral num período da tensão no indutor a zero vem:

$$V_dDT_S + (V_d - V_0)\Delta_1T_S = 0$$

$$\frac{V_0}{V_d} = \frac{\Delta_1 + D}{\Delta_2} \tag{5-34}$$

e

$$\frac{I_0}{I_d} = \frac{\Delta_1}{\Delta_1 + D} \text{ (desde que P}_d = P_0\text{)}$$
 (5-35)

Corrente média de entrada

Da figura 5-14 b, a corrente média de entrada, que também é igual à corrente do indutor é:

$$I_d = \frac{V_d}{2L}DTs.(D + \Delta_1) \tag{5-36}$$

Usando as equações 5-35 e 5-36.

$$I_0 = \left(\frac{T_S V_d}{2L}\right) D\Delta_1 \tag{5-37}$$

Na prática desde que V_0 é mantido constante e D varia em resposta à variação de V_d é mais útil obter a razão de serviço D como uma função da corrente de carga para diversos valores de V_0/V_d .Usando as equações (5-34 e 5-37) e (5-31) nós achamos:

$$D = \left[\frac{4}{27} \left(\frac{V_0}{V_d} \right) \left(\frac{V_0}{V_d} - 1 \right) \frac{I_0}{I_{OB,MAX}} \right]^{\frac{1}{2}}$$
 (5-38)

Na figura 5-15, D é plotado em função $I_0/I_{0B,MAX}$ para diversos valores V_d/V_0 .

FIG.5-15 Características do Conversor Elevador mantendo Vo constante.

O limite entre as regiões de condução contínua e descontínua é mostrado pela curva tracejada. No modo descontínuo, se V_0 não é controlado durante cada período de chaveamento, pelo menos

$$\frac{L}{2}\mathbf{i}_{L, pico}^{2} = \frac{\left(V_{d}DT_{s}\right)^{2}}{2L}W_{s}$$

são transferidos da entrada para o capacitor de saída e para a carga. Se a carga não é capaz de absorver esta energia, A tensão no capacitor V_0 vai crescer até que um balanço de energia seja estabelecido. Se a carga se tornar muito pequena, o aumento de V_0 pode causar a ruptura do capacitor ou a ocorrência de uma tensão perigosamente alta.

5-4-5 TENSÃO DE ONDULAÇÃO DE SAÍDA

A tensão pico a pico de ondulação de saída pode ser calculada analisando as formas de onda mostradas na Fig.5-17 para o modo contínuo de operação.

FIG.5-16 Ondulação da tensão de saída para o Conversor Elevador.

Assumindo que toda a corrente de ondulação da corrente do diodo i_D média flue através do resistor de carga, a área hachurada na fig.5-17 representa a carga ΔQ . Desta forma a tensão de ondulação pico a pico é dada por:

$$\Delta V_0 = \frac{\Delta Q}{C} = \frac{I_0 D T_s}{C} \text{ (assumindo corrente de saída constante)}$$

$$= \frac{V_0}{R} \frac{D T_s}{C}$$

$$\therefore \frac{\Delta V_0}{V_0} = \frac{D T_s}{RC}$$
(5-39)

=
$$D\frac{Ts}{\tau}$$
 (onde a constante de tempo τ = RC)

Uma análise similar pode ser feita para o modo de condução descontínuo.

PROBLEMAS

- P1) Num conversor elevador consideramos todos os componentes como sendo ideais. A tensão de saída deve ser mantida constante em 24V, variando a razão de serviço D. Calcule a mínima indutância L requerida para manter o conversor operando no modo de condução contínua se $8 \le Vd \le 16$, fs = 20 kHz, C=470 μ F e $Po \ge 5W$.
- P2) Num conversor elevador Vd = 12 V, Vo = 24 V, Io = 0,5A, L = 150 μ H, C = 470 μ F, e fs = 20 kHz. Calcular Δ Vo (pico a pico).
- P3) Com os dados do problema P2, calcular o valor eficaz da corrente de ondulação do diodo.

Dica: A corrente de ondulação do diodo é igual à raiz quadrada da diferença dos quadrados da corrente eficaz do diodo e da corrente média de saída(ver figura 5.16).