

Word embeddings (recap)

Limitations

- Word tokens
- Neighboring word prediction
- Static embeddings

New words and different word spellings

Limited to only seen words.

• Sub-word patterns (prefixes and suffixes) are ignored.

Words with different spellings.

Relation between word embeddings

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *arXiv* preprint *arXiv*:1409.0473. https://arxiv.org/pdf/1409.0473.pdf

Words are used in different contexts

- Static word embeddings do not capture the context of the sentence.
- The same word used in different contexts may have different purposes or meaning.

Each word embedding must attend to its neighboring words.

The Transformer

- The Transformer model explores the concept of self-attention mechanism.
- Self-attention over the entire sequence and in both directions.
- The feedforward layer models non-linearities.
- The stack of such elements allows capturing different granularities of data, i.e. similar to deep CNN architectures.

Subword tokenization

- Three common algorithms:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPiece (Schuster and Nakajima, 2012)
- All have 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.

• Until k merges have been done.

Byte Pair Encoding (BPE) Addendum

- Most subword algorithms are run inside space-separated tokens.
- So we commonly first add a special end-of-word symbol '___' before space in training corpus
- Next, separate into letters.

BPE token learner

- Original (very fascinating ①) corpus:
- low low low low lowest lowest newer newe

Add end-of-word tokens, resulting in this vocabulary:

```
corpus
vocabulary

5
1 o w __
_, d, e, i, 1, n, o, r, s, t, w

2
1 o w e s t __

6
n e w e r __

3
w i d e r __

2
n e w __
```

BPE

The next merges are:

```
Merge
Current Vocabulary

(ne, w)
__, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new

(l, o)
__, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo

(lo, w)
__, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__

(low, __)
__, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__, low__
```

BPE token segmenter algorithm

- On the test data, run each merge learned from the training
 - Greedily
 - In the order we learned them
 - (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.

- Result:
 - Test set "n e w e r _" would be tokenized as a full word
 - Test set "I o w e r _" would be two tokens: "low er_"

Context embeddings

- Tokens show up on different positions of the sentence
- Token embeddings need to attend to the context

Contextual embeddings

Positional encodings + Self-attention

Positional encodings

- The input embeddings follow the same idea of word embeddings.
- However, word embeddings do not capture sequence information.
- Positional embeddings, are associated to the position in the sequence.
- Summing the word embedding to the positional will move the word embeddings according to the its position in the sentence.

Attending to context

• Idea: compute token embeddings in way that it "attends" to neighboring tokens

• The output embedding is then a weighted combination of all the previous

embeddings

Self Attention

 Full self-attention is the central novelty of the Transformer

Self Attention

X = Input token embeddings

Transformer Layer Overview

Transformer Layer

(there are N layers)

Multi-Head Attention

Single-Head Attention

Projection matrices

- X is a *sequence* of token embeddings corresponding to a sentence.
- These embeddings can be pre-trained, e.g. w2v or glove.

Self Attention

Scaled Dot-Product Attention

Scaled Dot-Product Attention

- The scaled dot-product attention lets each word attend to all other words
 - (let's ignore the mask for now)

•
$$o_i = softmax\left(\frac{q_i \cdot K}{\sqrt{d_k}}\right) \cdot V$$

Multi-head attention

 $Embedding\ Dimension = d \cdot h$

Transformer Layer Overview

Transformer Layer

(there are N layers)

Multi-Head Attention

Single-Head Attention

epoch_6_enc_self_attn

Residual, add and norm

Add & Norm

Feed forward layer

The FF layer allows modeling non-linear relations

Feed forward RELU layer

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Feed forward

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

FFN(Z₁) ReLU(Z W₁)

Add and normalization layer

Residual connection helps preserving positional information and the original embeddings

Layer normalization is a trick to help models train faster.

cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.

Mutiple layers to transform the embeddings

- The input embeddings have
 - the global token embedding vectors
 - Positional embedding
- Each layer will capture the word interactions within the same sentence
- As we go up in the number of layers, more abstract interactions are captured.

The Transformer

- Position representations:
 - Specify the sequence order, since self-attention is an unordered function of its inputs.
- Self-attention:
 - The basis of the method.
- Nonlinearities:
 - At the output of the self-attention block
 - Frequently implemented as a simple feed-forward network.
- Masking:
 - In order to parallelize operations while not looking at particular parts of the sequence.

Summary

- Self-attention mechanisms
- Transformer (encoder only)
- Contextual embeddings
- Readings:
 - Dan Jurafsky and James H. Martin, Speech and Language Processing, Chapter 11 https://web.stanford.edu/~jurafsky/slp3/11.pdf