Importing the Dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics

Data Collection & Analysis

loading the data from csv file to a Pandas DataFrame
insurance_dataset = pd.read_csv('/content/insurance.csv')
first 5 rows of the dataframe
insurance_dataset.head()

						1 to 5 of 5	entries Filter 🛚 🔞
index	age	sex	bmi	children	smoker	region	charges
0	19	female	27.9	0	yes	southwest	16884.924
1	18	male	33.77	1	no	southeast	1725.5523
2	28	male	33.0	3	no	southeast	4449.462
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.88	n	no	northwest	3866 8552

Show 25 v per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

Values

Distributions

number of rows and columns
insurance_dataset.shape

```
(1338, 7)
```

getting some informations about the dataset
insurance_dataset.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
# Column
                Non-Null Count Dtype
     -----
                1338 non-null int64
0
     age
 1
     sex
                1338 non-null
                                  object
 2
     bmi
                1338 non-null
                                  float64
 3
     children 1338 non-null
                                  int64
     smoker
                1338 non-null
                                  object
                1338 non-null
     region
                                  object
6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB
                1338 non-null
```

Categorical Features:

- Sex
- Smoker
- Region

checking for missing values
insurance_dataset.isnull().sum()

```
age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

Data Analysis

statistical Measures of the dataset
insurance_dataset.describe()

_ _ |

			1 to 8 of 8 entries Filter			
index	age	bmi	children	charges		
count	1338.0	1338.0	1338.0	1338.0		
mean	39.20702541106129	30.66339686098655	1.0949177877429	13270.422265141257		
std	14.049960379216154	6.098186911679014	1.205492739781914	12110.011236694001		
min	18.0	15.96	0.0	1121.8739		
25%	27.0	26.29625	0.0	4740.28715		
50%	39.0	30.4	1.0	9382.033		
75%	51.0	34.69375	2.0	16639.912515		
max	64.0	53 13	5.0	63770 42801		

Show 25 v per page

ıl.

Like what you see? Visit the <u>data table notebook</u> to learn more about interactive tables.

Values

Distributions

.

Categorical distributions

distribution of age value
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['age'])
plt.title('Age Distribution')
plt.show()

```
<ipython-input-14-28228e9c3528>:4: UserWarning:
```

```
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

# Gender column
plt.figure(figsize=(6,6))
sns.countplot(x='sex', data=insurance_dataset)
plt.title('Sex Distribution')
plt.show()
```


insurance_dataset['sex'].value_counts()

male 676 female 662

Name: sex, dtype: int64

bmi distribution
plt.figure(figsize=(6,6))
sns.distplot(insurance_dataset['bmi'])
plt.title('BMI Distribution')
plt.show()

```
<ipython-input-17-81b69896b0d5>:3: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(insurance_dataset['bmi'])

Normal BMI Range --> 18.5 to 24.9

```
# children column
plt.figure(figsize=(6,6))
sns.countplot(x='children', data=insurance_dataset)
plt.title('Children')
plt.show()
```


insurance_dataset['children'].value_counts()

```
0 574
1 324
2 240
3 157
4 25
```

18

Name: children, dtype: int64

```
# smoker column
plt.figure(figsize=(6,6))
sns.countplot(x='smoker', data=insurance_dataset)
plt.title('smoker')
plt.show()
```



```
<ipython-input-24-a2fe9b394a51>:3: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(insurance_dataset['charges'])

Data Pre-Processing

Encoding the categorical features

```
# encoding sex column
insurance_dataset.replace({'sex':{'male':0,'female':1}}, inplace=True)

3 # encoding 'smoker' column
insurance_dataset.replace({'smoker':{'yes':0,'no':1}}, inplace=True)

# encoding 'region' column
insurance_dataset.replace({'region':{'southeast':0,'southwest':1,'northeast':2,'northwest':3}}, inplace=True)
```

Splitting the Features and Target

```
X = insurance_dataset.drop(columns='charges', axis=1)
Y = insurance_dataset['charges']
```

print(X)

	age	sex	bmi	children	smoker	region
0	19	1	27.900	0	0	1
1	18	0	33.770	1	1	0
2	28	0	33.000	3	1	0
3	33	0	22.705	0	1	3
4	32	0	28.880	0	1	3
1333	50	0	30.970	3	1	3
1334	18	1	31.920	0	1	2
1335	18	1	36.850	0	1	0
1336	21	1	25.800	0	1	1
1337	61	1	29.070	0	0	3

[1338 rows x 6 columns]

print(Y)

```
16884.92400
         1725.55230
1
         4449.46200
2
        21984.47061
3
         3866.85520
4
        10600.54830
1333
1334
         2205.98080
1335
         1629.83350
1336
         2007.94500
1337
        29141.36030
Name: charges, Length: 1338, dtype: float64
```

https://colab.research.google.com/drive/1gkhi6YC8D7q8RGrvvvskaOfV6iaZj-4v#scrollTo= dYIII2O1V r&printMode=true

Splitting the data into Training data & Testing Data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)

(1338, 6) (1070, 6) (268, 6)
```

Model Training

Linear Regression

```
# loading the Linear Regression model
regressor = LinearRegression()
regressor.fit(X_train, Y_train)

v LinearRegression
LinearRegression()
```

Model Evaluation

Building a Predictive System

```
input_data = (31,1,25.74,0,1,0)

# changing input_data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = regressor.predict(input_data_reshaped)
print(prediction)

print('The insurance cost is USD ', prediction[0])

[3760.0805765]
The insurance cost is USD 3760.080576496057
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression warnings.warn(
```

✓ 0s completed at 3:16 PM

• ×