SUBIECT 1

1. (1.5 p) Fie caracteristica X, având funcția de probabilitate:

$$f(x;\theta) = \frac{1}{\sqrt{2\pi x^3 \theta}} \cdot e^{-\frac{1}{2x\theta}}, \quad x > 0,$$

unde parametrul $\theta > 0$ este necunoscut. Se consideră o selecție repetată de volum n, cu variabilele de selecție X_1, \ldots, X_n . Să se determine estimatorul de verosimilitate maximă θ^* pentru parametrul θ .

2. (3 p) Fie caracteristica X, având distribuția
$$X \begin{pmatrix} -3 & 0 & 3 \\ \frac{1-9a}{3} & \frac{1}{3} & \frac{1+9a}{3} \end{pmatrix}$$
, unde $a \in \left(0, \frac{1}{9}\right)$ este

parametrul necunoscut. Funcția de probabilitate a lui X este:

$$f(x;a) = \frac{1+3x \cdot a}{3}, \quad x \in \{-3,0,3\}.$$

Se consideră o selecție repetată de volum n, cu variabilele de selecție X_1, \ldots, X_n .

- a) Să se determine estimatorul \overline{a} pentru parametrul a, dat de metoda momentelor.
- b) Să se arate că \overline{a} este estimator absolut corect pentru parametrul a.
- c) Să se calculeze cantitatea de informație a selecției, relativă la parametrul a.
- d) Să se calculeze eficiența estimatorului \bar{a} . Este \bar{a} estimator eficient pentru parametrul a? Justificați.
- 3. (3 p) Fie caracteristica X, având densitatea de probabilitate:

$$f(x;\theta) = \begin{cases} \frac{2}{\theta^2} x, & x \in [0,\theta] \\ 0, & x \notin [0,\theta], \end{cases}$$

unde $\theta > 0$ este parametrul necunoscut și fie o selecție repetată de volum n, cu variabilele de selecție X_1, \ldots, X_n . Se consideră statistica

$$W = \frac{Y}{\theta}$$
, unde $Y = \max_{i=\overline{1,n}} X_i$

Să se determine intervalul de încredere simetric bilateral pentru parametrul θ , bazat pe statistica W, știind că probabilitatea de încredere este $1 - \alpha$, unde $\alpha \in (0, 1)$.

4. (1.5 p) Proprietarul unui depozit afirmă că, cel puţin 18% dintre becurile dintr-un anumit lot sunt arse. Pentru a verifica afirmația, se iau 75 de becuri din lotul respectiv şi se găsesc 6 becuri arse. Pe baza datelor de selecție, la nivelul de semnificație $\alpha = 0.04$, avem motive să acceptăm afirmația proprietarului? Cuantila care se utilizează are valoarea -1.75. (Daţi o rezolvare detaliată).

Se acordă 1 punct din oficiu. Justificați toate răspunsurile.