UNIVERSIDADE FEDERAL DA BAHIA

FERNANDO MEDEIROS JOALDINO NETO JONATAS DA SILVA RAMON DIAS

RELATÓRIO QUEDA LIVRE E OSCILAÇÃO

SALVADOR 2017

UNIVERSIDADE FEDERAL DA BAHIA

FERNANDO MEDEIROS
JOALDINO NETO
JONATAS DA SILVA
RAMON DIAS

RELATÓRIO QUEDA LIVRE E OSCILAÇÃO

Relatório para obtenção de nota na disciplina FISA75 - Elementos do Eletromagnetismo e de Circuitos Elétricos, ministrada pelo professor Luiz Antonio Vieira Mendes, na Universidade Federal da Bahia

SALVADOR 2017

1. Introdução

Na Física, existe o conceito de energia conservativa. São aquelas em que, num sistema ideal, não ocorreria perda. Desnecessário dizer, não vivemos num mundo onde sistemas ideais são possíveis. Mas em muitos casos, o cálculo das energias conservativas conseguem aproximações muito boas, uma vez que se pode fazer um cálculo onde as interações com o ambiente são mínimos ou desprezíveis.

Três grandezas fundamentais são conservativas: a energia, o momento linear, e o momento angular. Seguindo essa linha, existem também as forças conservativas, como a gravidade e a força elástica, que possuem uma energia potencial associadas a elas, ou seja, uma energia que pode ser recuperada, se considerarmos um sistema ideal.

Neste relatório, abordaremos as energias conservativas, nos valendo de 3 experimentos: dois deles, com uma esfera em queda livre, e o terceiro utilizando um pêndulo preso a uma ponte.

Os dados obtidos a partir dos experimentos serão apresentados neste relatório, sendo também utilizado a linguagem R e respeitando o Sistema Internacional de Unidades (SI).

2. Experimento 1: Queda Livre

2.1 Introdução

Este primeiro experimento é composto por uma haste vertical, onde estão dois sensores ópticos. Acima deles, se encontra um eletroímã, e abaixo, uma cesta. Sensores, eletroímã e cesta estão alinhados verticalmente. O eletroímã está conectado a uma chave e a um cronômetro.

Colocamos uma bola de metal presa pelo eletroímã ligado. Quando a chave é desligada, o cronômetro se inicia, e a esfera, sem a força magnética para lhe atrair, cai.r Quando a esfera passa pelo segundo sensor, o cronômetro para.

No primeiro experimento, o sensor superior fica parado, e modificamos a altura do inferior 6 vezes. Verificamos a altura h, relativa a distância entre o meio do sensor superior, e a base da esfera em repouso (no eletroímã), e o x(t), a distância entre os sensores, além de coletar o tempo de deslocamento da esfera para cada $x_i(t)$ (i = [1, 6]) duas vezes. Depois, fazemos o cálculo da velocidade inicial, do deslocamento que a esfera teoricamente realizaria, e comparamos com a nossa coleta.

No segundo, o procedimento é semelhante, porém, deixamos o sensor inferior parado, próximo à rede, e movimentamos o sensor superior. Com isso, coletamos os tempos de deslocamento

2.2 Dados do Experimento

Os dados obtidos no experimento realizado em laboratório segue na planilha abaixo:

Tabela 1 - Dados do experimento de Queda Livre						
	Config. 1	Config. 2	Config. 3	Config. 4	Config. 5	Config. 6
h (m)	0,098	0,098	0,098	0,098	0,098	0,098
t1 (s)	0,087	0,106	0,132	0,173	0,204	0,236
t2 (s)	0,086	0,107	0,133	0,173	0,205	0,237
t(s)	0,0865	0,1065	0,1325	0,173	0,2045	0,2365
Xexp (t) (m)	0,156	0,2	0,205	0,381	0,480	0,595
v ₀ (m/s)	1,384747919					
$Sv_0 (m/s)$						
Xteor (t) (m)	0,156381243	0,20295797	0,269358129	0,387503435	0,487750975	0,601093873
S _{xteor}						

Tabela 2 - Dados do experimento de Queda Livre							
	Config. 1	Config. 2	Config.3	Config.4	Config. 5	Config. 6	
h (cm)	9,8	16,7	23,9	29,5	45,7	60,4	
t1 (s)	0,154	0,199	0,231	0,257	0,318	0,361	
t2 (s)	0,152	0,196	0,230	0,257	0,317	0,364	
t(s)	0,153	0,1975	0,2305	0,257	0,3175	0,3625	

2.3 Cálculos a cerca do experimento

Para cálculos das ocorrências físicas interessantes para o relatório foram separadas umas delas para análise, sendo:

- Cálculo da energia potencial no ponto de análise é dado pela expressão: U=mgh;
- Cálculo do trabalho realizado pelo objeto em queda livre: Fg=mg;
- Cálculo da energía cinética: K=1/2m v²;
- Cálculo da energia mecânica: Emec = K+U;

Para análise física do experimento em questão existem algumas forças que são inerentes ao qualquer corpo, como elas à força peso. É com ela também que verificamos o trabalho realizado pelo corpo em queda livre, e a energia cinética obtida da transferência da energia potencial do corpo.

A energia é conservativa, desprezando-se a forças de resistência, e a energia cinética retorna a potencial quando o esfera atinge a sacola existente no final do percurso.

Cálculo para a primeira etapa do experimento com suas respectivas configurações:

Config.	h (m)	t1 (s)	t2 (s)	t(s)	U (J)	Fg (J)	K (J)	Emec (J)
1	0,098	0,087	0,086	0,0865	0,0026	0,2739	0,0455	0,0481
2	0,098	0,106	0,107	0,1065	0,0026	0,2739	0,0493	0,0519
3	0,098	0,132	0,133	0,1325	0,0026	0,2739	0,0335	0,0381
4	0,098	0,173	0,173	0,173	0,0026	0,2739	0,0679	0,0785
5	0,098	0,204	0,205	0,2045	0,0026	0,2739	0,0771	0,0797
6	0,098	0,236	0,237	0,2365	0,0026	0,2739	0,0886	0,0912

$$S=S_0 + v_0.t + \frac{a.t^2}{2}$$

3. Experimento 2: Pêndulo

3.1 Introdução

Para este experimento existe uma massa presa a um fio e este fio está fixado em uma base. No nosso caso, a base é uma ponte / passagem existente no Instituto de Física da Universidade Federal da Bahia.

O experimento foi realizado em campo e não foi considerada as resistências externas, com isto os valores de período coletados, bem como os resultados para o comprimento do fio são diferentes. O experimento consiste em coletar o período do pêndulo, e através dele determinar o comprimento do fio para cada coleta.

3.2 Dados do Experimento

Os dados obtidos no experimento realizado em campo seguem na tabela a baixo:

Tabela 3 - Dados do experimento de Pêndulo							
	Гетро 1	Гетро 2	Гетро 3	Гетро 4	Гетро 5	Гетро 6	
t1 (s)	6.06	6.17	5.96	6.41	5.9		
t2 (s)	6.1	5.89	6.3	6.21	6.08		

3.3 Função R para cálculo do Comprimento do Pêndulo

```
PendulumLengthEq <- function(t, g = 9.78033) {
    ((t/(2*pi))^2)*g
}

t1Mean = mean(data$verificacao.1[c(1:5)])
t2Mean = mean(data$verificacao.2[c(1:5)])

t = mean(c(t1Mean,t2Mean))

length = PendulumLengthEq(t)
print(length)</pre>
```

3.4 Cálculo do Comprimento do Fio L

Para cálculo do comprimento do fio será usada a fórmula:

T =
$$2\pi\sqrt{L/g}$$
 \Rightarrow $(T)^2 = (2\pi)^2 (\sqrt{L/g})^2 \Rightarrow (T)^2 = (2\pi)^2 (L/g) \Rightarrow (T)^2 g/(2\pi)^2 = L$, então L = $(T)^2 g/(2\pi)^2$.

Cálculo do comprimento do fio:

$$L=(6, 108)^2$$
. 9, 783 / $(2\pi)^2 \Rightarrow L=9.24255$ m (comprimento do fio)

Altura da ponte \Rightarrow 9.34255 m

4 Funções do R

```
# Velocity Equation based on time and accelaration
velocityEqAT <- function(t, a = 9.78033 ,v0 = 0) {
   return (v0 + a*t);
}
# Time Equation based on Velocity and acceleration
timeEqVA <- function(v, a = 9.78033 ,v0 = 0) {
   return (v/a);
}
# Velocity Equation based on acceleration and movement
velocityEqAX <- function( deltaX, v0 = 0, a = 9.78033) {
   return (sqrt(v0^2 + 2*a*deltaX));
}

MecanicEnergy = function(L,K) {
   return(L+K)
}

work = function(f,d) {
   return (f*d)
}</pre>
```

4.1 Função para detecção de espaço amostral do experimento 1

É possível verificar o ponto, no espaço, o qual em um dado momento o corpo passa. Para isto usaremos uma expressão do movimento retilíneo uniforme, como demostrada abaixo:

```
# Deslocamento em movimento retilineo uniforme
movementRUV <- function(t,a = 9.78033,s0 = 0,v0 = 0) {
  return (s0 + v0*t + (a*(t^2))/2)
}</pre>
```

4.2 Função para determinar o comprimento do fio do pêndulo Para determinar o comprimento do fio existente no experimento usa-se a equação abaixo:

```
# Equation for the pendulum length
PendulumLengthEq <- function(t, g = 9.78033) {
   ((t/(2*pi))^2)*g
}</pre>
```

Nela é usado o período, o qual é o tempo que o pêndulo realiza um ciclo completo, sendo este o valor obtido no experimento e único dado existe para os cálculos.

4.3 Função para obtenção da Energia do corpo

```
kinectEnergy = function(m,v){
  return ((1/2)*m*(v^2))
}
potentialEnergy = function(m,h,g = 9.78033){
  return(m*g*h)
}
MecanicEnergy = function(L,K){
  return(L+K)
}
```