Bài 1 : Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:

a)
$$y = 2 + 3x - x^3$$
; b) $y = x^3 + 4x^2 + 4x$

c)
$$y = x^3 + x^2 + 9x$$
; d) $y = -2x^3 + 5$

Lời giải:

a)

- Tập xác định: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = 3 3x^2$

$$y' = 0 => x = \pm 1$$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty$$
; $\lim_{x \to +\infty} y = -\infty$.

+ Bảng biến thiên:

Hàm số đồng biến trên khoảng (1; 1).

Hàm số nghịch biến trên các khoảng (-∞; -1) và (1; +∞).

+ Cực trị:

Đồ thị hàm số có điểm cực tiểu là: (1;0).

Đồ thị hàm số có điểm cực đại là: (1; 4).

Ta có
$$x^3 + 4x^2 + 4x = 0 \Rightarrow x(x^2 + 4x + 4) = 0$$

$$\Rightarrow$$
 x(x + 2)² = 0 => x = 0; x = -2

+ Giao với Ox: (0; 0) và (-2; 0)

+ Giao với Oy: (0; 0) (vì y(0) = 0)

(Đồ thị hàm số nhận điểm (0; 2) làm tâm đối xứng.)

b)

- Tập xác định: D = R

- Sự biến thiên:

+ Chiều biến thiên: $y' = 3x^2 + 8x + 4$

$$y' = 0 => x = -2 \text{ hoặc } x = -2/3$$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = -\infty.$$

+ Bảng biến thiên:

x	-∞		-2		$-\frac{2}{3}$		+∞
y'		+	0	s== 1	0	+	
у	-∞		y ⁰ \		×_ \frac{32}{27}		+∞

Hàm số nghịch biến trên khoảng $(-2; -\frac{2}{3})$.

Hàm số đồng biến trên các khoảng $\left(-\infty;-2\right)$ và $\left(-\frac{2}{3};+\infty\right)$.

+ Cực trị:

Đồ thị hàm số có điểm cực tiểu là: $\left(-\frac{2}{3}; -\frac{32}{27}\right)$.

Đồ thị hàm số có điểm cực đại là: (-2; 0).

- Đồ thị:

Ta có 2 + 3x - $x^3 = 0 \Rightarrow x = -1$; x = 2

- + Giao với Ox: (-1; 0) và (2; 0)
- + Giao với Oy: (0; 2) (vì y(0) = 2)

- Tập xác định: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = 3x^2 + 2x + 9 > 0 \ \forall \ x \in R$
- => Hàm số luôn đồng biến trên R và không có điểm cực trị.
 - + Giới hạn:

$$\lim_{x \to -\infty} y = -\infty; \lim_{x \to +\infty} y = +\infty$$

+ Bảng biến thiên:

X	-∞	+ ∞
y'	+	
у		+∞

X	0	1	-1	
У	0	11	-9	
	11	*		X
	-1	- 9	1	

- Tập xác định: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = -6x^2 \le 0 \ \forall \ x \in R$
- => Hàm số luôn nghịch biến trên R và không có điểm cực trị.
 - + Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = -\infty.$$

+ Bảng biến thiên:

X	-∞		0		$+\infty$
y'		-	0	-	
у	+∞				

х У	0	1 -1	
У	0 5	3 7	
		\ Y _	
		6+	
		4-	\
		_	\
			\
		2-	\
		+	\
		'	x
		†	1

Bài 2 : Khảo sát tự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:

a)
$$y = -x^4 + 8x^2 - 1$$
; b) $y = x^4 - 2x^2 + 2$

c)
$$y = \frac{1}{2}x^4 + x^2 - \frac{3}{2}$$
; d) $-2x^2 - x^4 + 3$

Lời giải:

a)

- Tập xác định: D = R
- Sự biến thiên:

+ Chiều biến thiên:
$$y' = -4x^3 + 16x = -4x(x^2 - 4)$$

$$y' = 0 \Leftrightarrow -4x(x^2 - 4) = 0 => x = 0$$
; $x = \pm 2$

+ Giới hạn:

$$\lim_{x \to \pm \infty} y = \lim_{x \to \pm \infty} \left[x^4 \left(-1 + \frac{8}{x^2} - \frac{1}{x^4} \right) \right] = -\infty.$$

+ Bảng biến thiên:

X	-∞		-2		0		2		+∞
y,		+	0	-	0	+	0	_	
у		/	, 15 \		/		× 15		

Hàm số đồng biến trên khoảng (-∞; -2) và (0; 2).

Hàm số nghịch biến trên các khoảng (-2; 0) và (2; +∞).

+ Cực trị:

Đồ thị hàm số có điểm cực tiểu là: (0; -1).

Đồ thị hàm số có hai điểm cực đại là: (-2; 15) và (2; 15).

Hàm số đã cho là hàm số chẵn, vì:

$$y(-x) = -(-x)^4 + 8(-x)^2 - 1 = -x^4 + 8x^2 - 1 = y(x)$$

Do đó đồ thị nhận Oy làm trục đối xứng.

Ta có:
$$-x^4 + 8x^2 - 1 = 0 \Rightarrow x = \pm \sqrt{4 + \sqrt{15}}$$
; $x = \pm \sqrt{4 - \sqrt{15}}$

- + Giao với Ox: tại 4 điểm
- + Giao với Oy: (0; -1) (vì y(0) = -1)

b)

- Tập xác định: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = 4x^3 4x = 4x(x^2 1)$

$$y' = 0 \Leftrightarrow 4x(x^2 - 1) = 0 => x = 0$$
; $x = \pm 1$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = +\infty.$$

+ Bảng biến thiên:

Hàm số đồng biến trên khoảng (-1; 0) và (1; +∞).

Hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1).

+ Cực trị:

Đồ thị hàm số có hai điểm cực tiểu là: (-1; 1) và (1; 1).

Đồ thị hàm số có điểm cực đại là: (0; 2).

- Đồ thị:

Xác định tương tự như a) ta có đồ thị:

c)

- Tập xác định: D = R

- Sự biến thiên:

+ Chiều biến thiên: $y' = 2x^3 + 2x = 2x(x^2 + 1)$

$$y' = 0 \Leftrightarrow 2x(x^2 + 1) = 0 => x = 0$$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = +\infty.$$

+ Bảng biến thiên:

Hàm số đồng biến trên khoảng (0; +∞).

Hàm số nghịch biến trên các khoảng (-∞; 0).

+ Cực trị:

Đồ thị hàm số có điểm cực đại là: (0; -3/2).

- Đồ thị:

Xác định tương tự như a) ta có đồ thị:

d)

- Tập xác định: D = R

- Sự biến thiên:

+ Chiều biến thiên: $y' = -4x - 4x^3 = -4x(1 + x^2)$

$$y' = 0 \Leftrightarrow -4x(1 + x^2) = 0 => x = 0$$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = +\infty.$$

+ Bảng biến thiên:

Hàm số đồng biến trên khoảng (-∞; 0).

Hàm số nghịch biến trên các khoảng (0; +∞).

+ Cực trị:

Đồ thị hàm số có điểm cực đại là: (0; 3).

- Đồ thị:

Xác định tương tự như a) ta có đồ thị:

Bài 3 : Khảo sát sự biến thiên và vẽ đồ thị các hàm số phân thức:

a)
$$y = \frac{x+3}{x-1}$$
; b) $y = \frac{1-2x}{2x-4}$; c) $y = \frac{-x+2}{2x+1}$

Lời giải:

a)

- Tập xác định: D = R \ {1}
- Sự biến thiên:
 - + Chiều biến thiên:

$$y' = \frac{(x-1)-(x+3)}{(x-1)^2} = -\frac{4}{(x-1)^2} < 0 \ \forall x \in D$$

- => Hàm số nghịch biến trên (-∞; 1) và (1; +∞).
 - + Cực trị: Hàm số không có cực trị.
 - + Tiệm cận:

$$\lim_{x \to 1^{-}} y = -\infty$$
; $\lim_{x \to 1^{+}} y = +\infty$

Vậy x = 1 là tiệm cận đứng.

$$\lim_{x \to \pm \infty} y = \lim_{x \to +\infty} \frac{1 + \frac{3}{x}}{1 - \frac{1}{x}} = 1$$

Vậy y = 1 là tiệm cận ngang.

+ Bảng biến thiên:

- Đồ thị:
 - + Giao với Oy: (0; -3)
 - + Giao với Ox: (-3; 0)

b)

- Tập xác định: D = R \ {2}
- Sự biến thiên:
 - + Chiều biến thiên:

$$y' = \frac{6}{(2x - 4)^2} > 0 \ \forall x \in D$$

=> Hàm số đồng biến trên (-∞; 2) và (2; +∞).

- + Cực trị: Hàm số không có cực trị.
- + Tiệm cận:

$$\lim_{x \to 2^{-}} y = +\infty$$
; $\lim_{x \to 2^{+}} y = -\infty$

Vậy x = 2 là tiệm cạn đứng.

$$\lim_{x \to \pm \infty} y = -1$$

Vậy y = -1 là tiệm cận ngang.

+ Bảng biến thiên:

- Đồ thị:

+ Giao với Oy: (0; -1/4)

+ Giao với Ox: (1/2; 0)

Xác định một số điểm khác:

$$\left(1;\frac{1}{2}\right);\left(3;-\frac{5}{2}\right);\left(4;-\frac{4}{7}\right)$$

c)

- Tập xác định: D = R \ {-1/2}
- Sự biến thiên:
 - + Chiều biến thiên:

$$y' = -\frac{5}{(2x+1)^2} < 0 \ \forall x \in D$$

- => Hàm số nghịch biến trên (-∞; -1/2) và (-1/2; +∞).
 - + Cực trị: Hàm số không có cực trị.
 - + Tiệm cận:

$$\lim_{x \to -\frac{1}{2}^{-1}} y = -\infty; \lim_{x \to -\frac{1}{2}^{+}} y = +\infty$$

Vậy x = -1/2 là tiệm cận đứng.

$$\lim_{x \to +\infty} y = -\frac{1}{2}$$

Vậy y = -1/2 là tiệm cận ngang.

+ Bảng biến thiên:

x	-∞ - -	<u>1</u> +∞
y,	_	_
У	$-\frac{1}{2}$	$+\infty$ $-\frac{1}{2}$

- Đồ thị:

+ Giao với Oy: (0; 2)

+ Giao với Ox: (2; 0)

Bài 4 : Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:

a)
$$x^3 - 3x^2 + 5 = 0$$
;

b)
$$-2x^3 + 3x^2 - 2 = 0$$
;

c)
$$2x^2 - x^4 = -1$$

Lời giải:

a)
$$x^3 - 3x^2 + 5 = 0$$
 (1)

Số nghiệm của phương trình (1) là số giao điểm của đồ thị hàm số $y = x^3 - 3x^2 + 5$ và trục hoành (y = 0).

Xét hàm số $y = x^3 - 3x^2 + 5$ ta có:

- TXD: D = R
- Sự biến thiên:

+ Chiều biến thiên:
$$y' = 3x^2 - 6x = 3x(x - 2)$$

$$y' = 0 => x = 0$$
; $x = 2$

+ Giới hạn:

$$\lim_{x \to -\infty} y = -\infty; \lim_{x \to +\infty} y = +\infty$$

+ Bảng biến thiên:

X	-∞		0		2		+∞
y'		+	0	-	0	+	
у	-∞ /		≯ ⁵ ∖		1		+∞

Đồ thị hàm số $y = x^3 - 3x^2 + 5$ **chỉ cắt trục hoành tại 1 điểm duy nhất**. Từ đó suy ra phương trình $x^3 - 3x^2 + 5 = 0$ chỉ có 1 nghiệm.

b)
$$-2x^3 + 3x^2 - 2 = 0$$

$$\Leftrightarrow 2x^3 - 3x^2 = -2 \qquad (2)$$

Số nghiệm của phương trình (2) là số giao điểm của đồ thị hàm số $y = 2x^3 - 3x^2$ và đường thẳng y = -2.

Xét hàm số $y = 2x^3 - 3x^2$

- TXD: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = 6x^2 6x = 6x(x 1)$

$$y' = 0 => x = 0$$
; $x = 1$

+ Giới hạn:

$$\lim_{x \to -\infty} y = -\infty; \lim_{x \to +\infty} y = +\infty$$

+ Bảng biến thiên:

- Đồ thị:

Đồ thị hàm số y = $2x^3$ - $3x^2$ chỉ cắt đường thẳng y = -2 tại 1 điểm duy nhất. Từ đó suy ra phương trình $2x^3$ - $3x^2$ = -2 chỉ có 1 nghiệm.

Vậy phương trình $-2x^3 + 3x^2 - 2 = 0$ chỉ có một nghiệm.

c)
$$2x^2 - x^4 = -1$$
 (3)

Số nghiệm của phương trình (3) là số giao điểm của đồ thị hàm số $y = 2x^2 - x^4$ và đường thẳng y = -1.

Xét hàm số $y = 2x^2 - x^4$ ta có:

- TXD: D = R
- Sự biến thiên:

+ Chiều biến thiên:
$$y' = 4x - 4x^3 = 4x(1 - x^2)$$

$$y' = 0 \Rightarrow x = 0$$
; $x = \pm 1$

+ Giới hạn:

$$\lim_{x \to \pm \infty} y = -\infty$$

+ Bảng biến thiên:

X	-∞		-1		0		1		+∞
y'		+	0	•	0	+	0	•	
y			1				, 1,		
56		/	1			/			
	/							/	
	/				* ~ /				· .

Đồ thị hàm số y = $2x^2 - x^4$ **cắt đường thẳng y = -1 tại hai điểm**. Từ đó suy ra phương trình $2x^2 - x^4 = -1$ có hai nghiệm phân biệt.

Bài 5 : a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

$$y = -x^3 + 3x + 1$$

b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số m:

$$x^3 - 3x + m = 0$$

Lời giải:

- a) Khảo sát hàm số $y = -x^3 + 3x + 1$
- Tập xác định: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = -3x^2 + 3 = -3(x^2 1)$

$$y' = 0 \Leftrightarrow -3(x^2 - 1) = 0 \Leftrightarrow x = \pm 1$$

+ Giới hạn:

$$\lim_{x \to -\infty} y = +\infty; \lim_{x \to +\infty} y = -\infty$$

+ Bảng biến thiên:

х	-∞		-1		1	+∞
y'		_	0	+	0	
у	+∞\		x ₋₁ /		3	▲ -∞

Hàm số đồng biến trên khoảng (-1; 1).

Hàm số nghịch biến trên các khoảng (-∞; -1) và (1; +∞).

+ Cực trị:

Đồ thị hàm số có điểm cực tiểu là: (-1; -1).

Đồ thị hàm số có điểm cực đại là: (1; 3).

- Đồ thị:
 - + Giao với Oy: (0; 1).
 - + Đồ thị (C) đi qua điểm (-2; 3), (2;-1).

b) Ta có:
$$x^3 - 3x + m = 0$$
 (*) $\Leftrightarrow -x^3 + 3x = m$

$$\Leftrightarrow$$
 -x³ + 3x + 1 = m + 1

Số nghiệm của phương trình (*) chính bằng số giao điểm của đồ thị hàm số (C) với đường thẳng (d): y = m + 1.

Biện luận: Từ đồ thị ta có:

- + Nếu m + 1 < −1 ⇔ m < −2 thì (C) cắt (d) tại 1 điểm.
- + Nếu m + 1 = $-1 \Leftrightarrow$ m = -2 thì (C) cắt (d) tại 2 điểm.
- + Nếu -1 < m + 1 < 3 ⇔ -2 < m < 2 thì (C) cắt (d) tại 3 điểm.
- + Nếu m + 1 = 3 ⇔ m = 2 thì (C) cắt (d) tại 2 điểm.
- + Nếu m + 1 > 3 ⇔ m > 2 thì (C) cắt (d) tại 1 điểm.

Từ đó suy ra số nghiệm của phương trình x^3 - 3x + m = 0 phụ thuộc tham số m như sau:

- + Phương trình có 1 nghiệm nếu m < -2 hoặc m > 2.
- + Phương trình có 2 nghiệm nếu m = -2 hoặc m = 2.
- + Phương trình có 3 nghiệm nếu: -2 < m < 2.

Bài 6: Cho hàm số

$$y = \frac{mx - 1}{2x + m}$$

- a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên khoảng xác định của nó.
- b) Xác định m để tiệm cận đứng của đồ thị đi qua A(-1, √2).
- c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

Lời giải:

a) Ta có:

TXĐ:
$$D = \left(-\infty; -\frac{m}{2}\right) \cup \left(-\frac{m}{2}; +\infty\right)$$

$$y' = \frac{m^2 + 1}{(2x + m)^2} > 0 \ \forall m \ v \grave{a} \ \forall x \in D.$$

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Ta có:

$$\lim_{x\to -\frac{m}{2}} y = +\infty$$

=> đồ thị có tiệm cận đứng là $x = -\frac{m}{2}$.

Điểm $A(-1; \sqrt{2})$ thuộc đường $x = -\frac{m}{2}$ khi và chỉ khi:

$$-\frac{m}{2} = -1 \Leftrightarrow m=2.$$

Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A(-1, √2)

c) Với m = 2 ta được hàm số:

$$y = \frac{2x-1}{2x+2}$$

Xét hàm số trên ta có:

- TXĐ: D = R \ {-1}
- Sự biến thiên:
 - + Chiều biến thiên:

$$y' = \frac{6}{(2x+2)^2} > 0 \ \forall x \in D$$

- => Hàm số đồng biến trên D.
 - + Tiệm cận:

$$\lim_{x \to -1^{-}} y = +\infty$$
; $\lim_{x \to -1^{+}} y = -\infty$

=> đồ thị có tiệm cận đứng là x = -1.

$$\lim_{x \to +\infty} y = 1$$

- => đồ thị có tiệm cận ngang là y = 1.
 - + Bảng biến thiên:

Hàm số không có cực trị.

- Đồ thị:

Một số điểm thuộc đồ thị:

$$(0; \frac{1}{2}); (\frac{1}{2}; 0). (1; \frac{1}{4}); (\frac{1}{2}; 0); (-3; \frac{7}{4})$$

$$\begin{vmatrix} & & & & \\$$

Bài 7: Cho hàm số

$$y = \frac{1}{4}x^4 + \frac{1}{2}x^2 + m$$

- a) Với giá trị nào của tham số m, đồ thị của hàm đi qua điểm (-1; 1)?
- b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
- c) Viết phương trình tiếp tuyến (C) tại điểm có tung độ bằng 7/4.

Lời giải:

a) Đồ thị hàm số qua điểm (-1; 1) khi và chỉ khi:

$$1 = \frac{1}{4}(-1)^4 + \frac{1}{2}(-1)^2 + m \Leftrightarrow m = \frac{1}{4}$$

b) Với m = 1, ta có:

$$y = \frac{1}{4}x^4 + \frac{1}{2}x^2 + 1$$

- TXD: D = R
- Sự biến thiên:
 - + Chiều biến thiên: $y' = x^3 + x = x(x^2 + 1)$

$$y' = 0 \Leftrightarrow x(x^2 + 1) \Leftrightarrow x = 0$$

+ Giới hạn:

$$\lim_{x \to +\infty} y = +\infty$$

+ Bảng biến thiên:

Hàm số đồng biến trên (0; +∞) và nghịch biến trên (-∞; 0)

+ Cực trị:

Hàm số có điểm cực tiểu là (0; 1).

c) Điểm thuộc (C) có tung độ bằng 7/4 nên hoành độ của điểm đó là nghiệm của phương trình:

$$\frac{1}{4}x^4 + \frac{1}{2}x^2 + 1 = \frac{7}{4} \Leftrightarrow \begin{cases} \frac{1}{4}t^2 + \frac{1}{2}t - \frac{3}{4} = 0 \\ \text{Dặt } t = x^2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} t = 1 \\ t = x^2 \end{cases} \Leftrightarrow x = \pm 1$$

=> tọa độ hai điểm có tung độ bằng $\frac{7}{4}$ là $(-1; \frac{7}{4})$ và $(1; \frac{7}{4})$.

Phương trình tiếp tuyến của (C) tại điểm $(-1; \frac{7}{4})$ là:

$$y = y'_{(-1)}.(x+1) + \frac{7}{4} \Leftrightarrow y = -2x - \frac{1}{4}.$$

Phương trình tiếp tuyến của (C) tại điểm $(1; \frac{7}{4})$ là:

$$y = y'_{(1)}.(x-1) + \frac{7}{4} \Leftrightarrow y = 2x - \frac{1}{4}.$$

Bài 8 : Cho hàm số:

$$y = x^3 + (m + 3)x^2 + 1 - m (m là tham số)$$

có đồ thị (C_m).

- a) Xác định m để hàm số có điểm cực đại là x = -1.
- b) Xác định m để đồ thị (C_m) cắt trục hoành tại x = -2.

Lời giải:

a) Ta có:
$$y' = 3x^2 + 2(m + 3)x = x[3x + 2(m + 3)]$$

$$y' = 0 \Leftrightarrow x[3x + 2(m + 3)] = 0 \Leftrightarrow x_1 = 0; x_2 = [-2(m + 3)]/3 = -2/3 m - 2$$

- Nếu
$$x_1 = x_2 => -2/3 \text{ m} - 2 = 0 => \text{m} = -3$$

Khi đó y' = $3x^2 \ge 0$ hay hàm số luôn đồng biến trên R nên không có cực trị (loại).

Do đó để hàm số có cực trị thì m \neq -3.

- Nếu x₁ < x₂ ⇔ m = -3 ta có bảng biến thiên:

Loại vì dựa vào bảng biến thiên ta thấy điểm cực đại là x = 0.

- Nếu $x_1 > x_2 \Leftrightarrow m < -3$ ta có bảng biến thiên:

Từ bảng biến thiên ta thấy điểm cực đại là x = -2/3 m - 2.

Để điểm cực đại là x = -1 thì:

$$-\frac{2}{3}m - 2 = -1 \Leftrightarrow m = \frac{-3}{2}$$

b) Đồ thị (C_m) cắt trục hoành tại x = -2 suy ra:

$$(-2)^3 + (m + 3)(-2)^2 + 1 - m = 0$$
 (*)

$$=> -8 + 4(m + 3) + 1 - m = 0$$

$$=> 3m + 5 = 0 => m = -5/3$$

(**Giải thích** *: Cắt trục hoành tại x = -2 nên tọa độ giao điểm là (-2; 0). Thay tọa độ giao điểm vào phương trình hàm số ta được (*).)

Bài 9: Cho hàm số

$$y = \frac{(m+1)x - 2m + 1}{x - 1}$$
 (m là tham số)
có đồ thi (G).

- a) Xác định m để đồ thị (G) đi qua điểm (0; -1).
- b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m tìm được.
- c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.

Lời giải:

a) Đồ thị (G) đi qua điểm (0; -1) khi và chỉ khi:

$$\frac{(m+1).0 - 2m+1}{0-1} = -1 \iff m = 0$$

b) Với m = 0 ta được hàm số:

$$y = \frac{x+1}{x-1}$$

- TXĐ: D = R \ {1}
- Sự biến thiên:
 - + Chiều biến thiên:

$$y' = \frac{-2}{(x-1)^2} < 0, \forall x \in D.$$

Hàm số nghịch biến trên D.

+ Tiệm cận:

$$\lim_{x \to 1^{-}} y = -\infty; \lim_{x \to -1^{+}} y = +\infty$$

Đồ thị có tiệm cận đứng là x = 1.

$$\lim_{x \to \pm \infty} y = 1$$

Đồ thị có tiệm cận ngang là y = 1.

+ Bảng biến thiên:

- Đồ thị:
 - + Giao điểm với Ox: (-1; 0)
 - + Giao điểm với Oy: (0; -1)

c) Đồ thị cắt trục tung tại điểm P(0;-1), khi đó phương trình tiếp tuyến tại điểm P(0;-1) là:

$$y = y'(0).(x - 0) - 1 => y = -2x - 1$$

Vậy phương trình tiếp tuyến cần tìm là: y = -2x - 1