§1 Lecture 11-20

Corollary 1.1 (If α is a zero of a polynomial, then $(x - \alpha)$ is a factor) $\alpha \in \mathbb{F}$ is a zero of $p(x) \in \mathbb{F}[x] \Leftrightarrow (x - \alpha)$ is a factor of p(x).

Proof. Apply division algorithm.

$$p(x) = (x - \alpha)q(g) + r(x)$$
 where $\deg(r) < \deg(x - \alpha) = 1$

Hence,
$$p(\alpha) = 0 \Leftrightarrow r = 0 \Leftrightarrow (x - \alpha) \mid p(x)$$

Theorem 1.2 (An n degree polynomial has at most n distinct zeros)

Let $p(x) \in \mathbb{F}[x]$ be a nonzero degree n polynomial.

Then p(x) has at most n distinct zeros (roots).

Proof. By induction on deg(p).

Base case: has deg(p) = 0 so $p(x) = c \neq 0$. (Not equal to 0 because then the degree would be minus infinity)

Hence $p(a) \neq 0$ for all $a \in \mathbb{F}$. Hence at most $\deg(p)$ roots in this case.

Suppose that the statement holds for n = k. Now we prove it for n = k + 1.

Suppose p(x) has a root r, so p(r) = 0.

So p(x) = (x - r)q(x) for some $q \in \mathbb{F}[x]$ with $\deg(q) = \deg(p) - 1 = k$

Any root r' is either r or is a root of q(x) because 0 = p(r') = (r' - r)q(r').

By induction, q(x) has at most k distinct roots. Thus p(x) has at most k+1 distinct roots. i.e. the roots of q and r.

Definition 1.3 (Greatest Common Divisor Definition). Let $p, q \in \mathbb{F}[x]$ where \mathbb{F} is a field. A monic polynomial $d \in \mathbb{F}[x]$ is a gcd of p, q if d|p and d|q and d'|d wherever d'|p and d'|q.

Notation: $d = \gcd(p, q)$. p, q are relatively prime if $1 = \gcd(p, q)$.

Example 1.4

If $\mathbb{Z}_5[x]$, consider how $(x+1) = \gcd(x^2+4, x^3+4x^2+2)$.

Proposition 1.5

Let \mathbb{F} be a field and $p, q \in \mathbb{F}[x]$. Also let $d = \gcd(p, q)$.

Then there exists $r, s \in \mathbb{F}[x]$ such that d = rp + sq.

Proof. Let d be the smallest degree monic polynomial in the ideal

$$J = \{ fp + gq : f, g \in \mathbb{F}[x] \}$$

Then J contains non zero polynomial because $p = 1p + 0q \in J$.

Claim: $d \mid s$ for each $s \in J$ because otherwise s = hd + r with $\deg(r) < \deg(d)$ and

$$r = s - hd = fp + gq - h(f'p + g'q) \in J$$

hence $d \mid p$ and $d \mid q$ so $J = \langle d \rangle$.

Finally, if $d' \mid p$ and $d' \mid q$ then $d' \mid d$ because p = p'd' and q = q'd' so d =r(p'd') + s(q'd') = d = (rp' + sq')d'

Theorem 1.6

 $\mathbb{F}[x]$ is a P.I.D. (principle ideal domain) i.e. every ideal in $\mathbb{F}[x]$ is principal i.e. is $\langle d \rangle$.

Example 1.7

 $\mathbb{Z}[x]$ is not a principle ideal domain because $\langle x,y \rangle$ is not principal.

 $\mathbb{F}[x,y]$ is not a principle ideal domain because $\langle x,y \rangle$ is not principal.

§1.1 Irreducible Polynomials

Definition 1.8. A $_{polynomial}$ $f \in \mathbb{F}[x]$ is <u>irreducible</u> over \mathbb{F} if $f \neq gh$ with $\deg(g) \geq 1$ and $\deg(h) \ge 1$.

Example 1.9

 x^2-3 is irreducible over \mathbb{Q} but not over \mathbb{R} .

 $x^2 + 1$ is irreducible over \mathbb{R} , but it is not over \mathbb{C} . $x^2 + 2$ is not irreducible over \mathbb{Z}_3 . $(x^2 + 2) = (x - 1)(x - 2)$.

 $x^2 + 2$ is irreducible over \mathbb{Z}_5 because it has no roots. Hence no degree factors.