Random Variables

A random variable X is a map $X : \Omega \to \mathbb{R}$. For $A \subset \mathbb{R}$ we write

$$\mathbb{P}(X \in A) = \mathbb{P}(\{w \in \Omega : X(w) \in A\})$$

The **cdf** F_X of X is

$$F_X(x) = \mathbb{P}(X \le x) \tag{2}$$

For continuous X, the **pdf** f_X is a function satisfying

$$\int_{A} f_X(x) dx = \mathbb{P}(X \in A) \tag{3}$$

Note that $f_X = F_X'$.

Transformations

Let Y = g(X), $\mathcal{X} = \{x : f_X(x) > 0\}$, and $\mathcal{Y} = \{y : y = g(x), x \in \mathcal{X}\}$ (\mathcal{X} and \mathcal{Y} called the *support* of X and Y). Then $\forall A \subset \mathcal{Y}$

$$\mathbb{P}(Y \in A) = \mathbb{P}(X \in \{x : g(x) \in A\}) \tag{4}$$

For the cdf F_Y

$$F_Y(y) = \mathbb{P}(X \in \{x : g(x) \le y\}) = \int_{\{x : g(x) \le y\}} f_X(x) dx$$
 (5)

For g monotonic

$$F_Y(y) = \begin{cases} F_X(g^{-1}(y)) & \text{if } g \text{ increasing} \\ 1 - F_X(g^{-1}(y)) & \text{if } g \text{ decreasing} \end{cases}$$
 (6)

Additionally, for g monotonic, if $g^{-1}(y)$ has a continuous derivative on $\mathcal Y$

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| \quad \text{for } y \in \mathcal{Y}$$
 (7)

Expected Values

The **mean** or **expected value** of g(X) is

$$\mathbb{E}(g(X)) = \int g(x)dF(x) = \int g(x)dP(x) \tag{8}$$

Related properties and definitions:

(a)
$$\mu = \mathbb{E}(X)$$
 (9)

(b)
$$\mathbb{E}(\sum_{i} c_{i} g_{i}(X_{i})) = \sum_{i} c_{i} \mathbb{E}(g_{i}(X_{i}))$$
 (10)

(c)
$$\mathbb{E}\left(\prod_{i} X_{i}\right) = \prod_{i} \mathbb{E}(X_{i}), \quad X_{1}, \dots, X_{n} \text{ indep't}$$
 (11)

(d)
$$Var(X) = \sigma^2 = \mathbb{E}((X - \mu)^2)$$
 is the variance of X (12)

(e)
$$Var(X) = \mathbb{E}(X^2) - \mu^2$$
 (13)

(f)
$$Var\left(\sum_{i} a_i X_i\right) = \sum_{i} a_i^2 Var(X_i), \quad X_1, \dots, X_n \text{ indep't}$$
 (14)

(g)
$$Cov(X,Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y))$$
 is the **covariance** (15)

(h)
$$Cov(X,Y) = \mathbb{E}(XY) - \mu_x \mu_Y$$
 (16)

(i)
$$\rho(X,Y) = Cov(X,Y)/\sigma_x\sigma_y$$
, $-1 \le \rho(X,Y) \le 1$ (17)

The **conditional expectation** of Y given X is the random variable $g(X) = \mathbb{E}(Y|X)$, where

$$\mathbb{E}(Y|X=x) = \int yf(y|x)dy \tag{18}$$

and
$$f(y|x) = f_{X,Y}(x,y)/f_X(x)$$
 (19)

The Law of Total/Iterated Expectation is

$$\mathbb{E}(Y) = \mathbb{E}[\mathbb{E}(Y|X)] \tag{20}$$

The $Law\ of\ Total\ Variance$ is

$$Var(Y) = Var[\mathbb{E}(Y|X)] + \mathbb{E}[Var(Y|X)]$$
 (21)

The Law of Total Covariance is

$$Cov(X,Y) = \mathbb{E}(Cov(X,Y|Z)) + Cov(\mathbb{E}(X|Z),\mathbb{E}(Y|Z))$$
 (22)

Moment Generating Function

The **mgf** of X is

$$M_X(t) = \mathbb{E}(e^{tX}) \tag{23}$$

Properties:

(a)
$$M_X^{(n)}(t)|_{t=0} = \mathbb{E}(X^n)$$
 is the $\mathbf{n^{th}}$ moment of X (24)

(b)
$$M_x(t) = M_Y(t) \ \forall t \text{ around } 0 \Longrightarrow X \stackrel{d}{=} Y$$
 (25)

$$(c) M_{aX+b}(t) = e^{bt} M_X(at)$$
(26)

(d)
$$M_{\sum_{i} X_{i}}(t) = \prod_{i} M_{X_{i}}, X_{1}, \dots, X_{n} \text{ indep't}$$
 (27)

Independence

Random variables X and Y are **independent**, written $X \perp Y$, iff

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B) \tag{28}$$

If (X,Y) is a random vector with pdf $f_{X,Y}$, then

$$X \perp Y \iff f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 (29)

Distributions

Some discrete distributions:

(a) Bernoulli
$$f(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$

Mean = p , Var = $p(1-p)$ (30)

(b) Binomial
$$f(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x}, x \in \{0,1,\ldots,n\}$$

Mean = np , Var = $np(1-p)$ (31)

(c) Poisson
$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $x \in \{0, 1, 2, ...\}$
Mean = λ , Var = λ (32)

Some continuous distributions:

(a) Uniform
$$f(x|a,b) = \frac{1}{b-a}$$
, $x \in [a,b]$
Mean = $(b+a)/2$, Var = $(b-a)^2/12$

(b) Normal
$$f(x|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}, \quad x \in \mathbb{R}$$

Mean = μ , Var = σ^2 (34)

(c) Gamma
$$f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, x \in \mathbb{R}_+, \alpha \beta > 0$$

Mean = $\alpha\beta$, Var = $\alpha\beta^2$ (35)

(d) Exponential
$$f(x|\beta) = \frac{1}{\beta}e^{-x/\beta}, x \in \mathbb{R}_+, \beta > 0$$

Mean = β , Var = β^2 (36)

(e) Chi-Squared
$$f(x|p) = \frac{x^{(p/2)-1}e^{-x/2}}{\Gamma(p/2)2^{p/2}}, x \in \mathbb{R}_+, p = 1, 2, 3, \dots$$

Mean =
$$p$$
, Var = $2p$

(37)

Probability Inequalities

Thm 1 (Gaussian Tail Inequality): Let $X \sim \mathcal{N}(0,1)$. Then

$$\mathbb{P}(|X| > \epsilon) \le \frac{2}{\epsilon} e^{-\epsilon^2/2} \tag{38}$$

Additionally:

$$\mathbb{P}(|\overline{X}_n| > \epsilon) \le \frac{1}{\sqrt{n\epsilon}} e^{-n\epsilon^2/2} \tag{39}$$

Thm 2 (Markov Inequality): Let X be a non-negative random variable s.t. $\mathbb{E}(X)$ exists. Then $\forall t > 0$

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t} \tag{40}$$

Thm 3 (Chebyshev's Inequality): Let $\mu = \mathbb{E}(X)$ and $\sigma^2 =$ Var(X). Then

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{41}$$

$$\mathbb{P}(|(X - \mu)/\sigma| \ge t) \le \frac{1}{t^2} \tag{42}$$

Lemma 4: Let $\mathbb{E}(X) = 0$ and $a \le X \le b$. Then

$$\mathbb{E}(e^{tX}) \le e^{t^2(b-a)^2/8} \tag{43}$$

Lemma 5: Let X be any random variable. Then

$$\mathbb{P}(X > \epsilon) \le \inf_{t > 0} e^{-t\epsilon} \mathbb{E}(e^{tX}) \tag{44}$$

Thm 6 (Hoeffding's Inequality): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$, $a \le X_i \le b$. Then $\forall \epsilon > 0$

$$\mathbb{P}(|\overline{X} - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2} \tag{45}$$

Thm 9 (McDiarmid): X_1, \ldots, X_n indep't. If $\sup_{x_1,\ldots,x_n,x_i'} |g(x_1,\ldots,x_n) - g_i^*(x_1,\ldots,x_n)| \le c_i \ \forall i, \Longrightarrow$

$$\mathbb{P}\left(g(X_1,\ldots,X_n)-\mathbb{E}(g(X_1,\ldots,X_n))\geq\epsilon\right)\leq e^{-2\epsilon^2/\sum_i c_i^2} \qquad (46)$$

where $g_i^* = g$ with x_i replaced by x_i' .

Shattering

F a finite set, |F| = n, and $G \subset F$. A is a class of sets.

 \mathcal{A} picks out G if $\exists A \in \mathcal{A} \text{ s.t. } A \cap F = G$.

Let $S(A, F) = \#\{G \subset F \text{ picked out by } A\} \le 2^n$.

F is **shattered** by \mathcal{A} if $S(\mathcal{A}, F) = 2^n$ (ie if \mathcal{A} picks out all $G \subset F$).

Let \mathcal{F}_n be all finite sets with n elements.

The shatter coefficient $s_n(A) = \sup_{F \in \mathcal{F}_n} s(A, F) \le 2^n$.

The VC dimension d(A) = the largest n s.t. $s_n(A) = 2^n$.

Thm 5: $\forall \epsilon > 0$, $\mathbb{P}(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \epsilon) \le 8s_n(\mathcal{A})e^{-n\epsilon^2/32}$

Random Samples

For $X_1, \ldots, X_n \sim F$ a **statistic** is any $T = g(X_1, \ldots, X_n)$.

E.g. \overline{X}_n , $S_n^2 = \sum_i (X_i - \overline{X}_n)^2 / (n-1)$, $(X_{(1)}, \dots, X_{(n)})$

Notes: $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_i)$, $Var(\overline{X}_n) = Var(X_i)/n$, $\mathbb{E}(S_n^2) = Var(X_i)$

 $X_{1,\ldots,n} \sim \operatorname{Bern}(p) \implies \sum_{i} X_{i} \sim \operatorname{Bin}(n,p)$

 $X_{1,\dots,n} \sim \operatorname{Exp}(\beta) \Longrightarrow \sum_{i} X_{i} \sim \Gamma(n,\beta)$ $X_{1,\dots,n} \sim \mathcal{N}(0,1) \Longrightarrow \sum_{i} X_{i}^{2} \sim \chi_{n}.$

Thm. 1: $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2) \implies \overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$.

Convergence

 X, X_1, X_2, \dots random variables.

(1) X_n converges almost surely $X_n \xrightarrow{a.s.} X$ if $\forall \epsilon > 0$

$$\mathbb{P}(\lim_{n \to \infty} |X_n - X| < \epsilon) = 1 \tag{47}$$

(2) X_n converges in probability $X_n \xrightarrow{p} X$ if $\forall \epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0 \tag{48}$$

(3) X_n converges in quadratic mean $X_n \xrightarrow{qm} X$ if

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0 \tag{49}$$

(4) X_n converges in distribution $X_n \rightsquigarrow X$ if

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t) \tag{50}$$

 $\forall t$ on which F_X is continuous.

Thm 7: Conv. a.s. and in g.m. imply conv. in prob. All three imply conv. in distribution. Conv. in distribution to a pointmass also implies conv. in prob.

Thm 10a: X, X_n, Y, Y_n random variables. Then

(a)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n + Y_n \xrightarrow{p} X + Y$$
 (51)

(b)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n Y_n \xrightarrow{p} XY$$
 (52)

(c)
$$X_n \xrightarrow{qm} X, Y_n \xrightarrow{qm} Y \Longrightarrow X_n + Y_n \xrightarrow{qm} X + Y$$
 (53)

Thm 10b (Slutzky's): X, X_n, Y_n random variables. Then

(a)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n + Y_n \rightsquigarrow X + c$$
 (54)

(b)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n Y_n \rightsquigarrow cX$$
 (55)

Thm 11 (Cont's Mapping): g a continuous function, then:

(a)
$$X_n \xrightarrow{p} X \Longrightarrow q(X_n) \xrightarrow{p} q(X)$$
 (56)

(b)
$$X_n \rightsquigarrow X \implies g(X_n) \rightsquigarrow g(X)$$
 (57)

Thm 12 (Law of Large Numbers): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$ $\Longrightarrow \overline{X}_n \xrightarrow{\text{a.s.}} \mu.$

Thm 14 (CLT): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu \operatorname{Var}(X_i) = \sigma^2$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1)$$

$$\implies \sqrt{n}(\overline{X}_n - \mu) \rightsquigarrow \mathcal{N}(0, \sigma^2)$$

$$\Longrightarrow \overline{X}_n \approx \mathcal{N}(\mu, \sigma^2/n)$$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/S_n \rightsquigarrow \mathcal{N}(0,1)$$

Thm 18 (delta method): If $\sqrt{n}(Y_n - \mu)/\sigma \rightarrow \mathcal{N}(0,1)$, $q'(\mu) \neq 0$ $\implies \sqrt{n}(g(Y_n) - g(\mu))/|g'(\mu)|\sigma \rightsquigarrow \mathcal{N}(0,1)$ ie $Y_n \approx \mathcal{N}(\mu, \sigma^2/n) \implies g(Y_n) \approx \mathcal{N}(g(\mu), g'(\mu)^2 \sigma^2/n)$

Sufficiency

If $X_1, \ldots, X_n \sim p(x; \theta)$, T sufficient for θ if $p(x^n|t; \theta) = p(x^n|t)$. **Thm 9 (factorization):** for $X^n \sim p(x;\theta)$, $T(X^n)$ sufficient for θ if the joint probability can be factorized as

$$p(x^n;\theta) = h(x^n) \times q(t;\theta) \tag{58}$$

T is a minimal sufficient statistic (MSS) if T is sufficient and T = q(U) for all other sufficient stats U.

Thm 15: T is a MSS if:

$$\frac{p(y^n;\theta)}{p(x^n;\theta)}$$
 is constant in $\theta \iff T(y^n) = T(x^n)$ (59)

Parametric Point Estimation

Method of Moments: Define equations

- $(\sum_i X_i)/n = \mathbb{E}_{\hat{\theta}}(X_i)$
- $(\sum_i X_i^2)/n = \mathbb{E}_{\hat{\theta}}(X_i^2)$ (b)
- (c)

and solve for θ .

Maximum Likelihood (MLE): The MLE is

$$\hat{\theta} = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} l(\theta) \tag{60}$$

Often suffices to solve for θ in $\frac{\partial l(\theta)}{\partial \theta} = 0$.

The MLE is **equivariant** \implies if $\eta = g(\theta)$ then $\hat{\eta} = g(\hat{\theta})$.

Bayes Estimation: For prior $\pi(\theta)$, choose

$$\hat{\theta} = \mathbb{E}(\theta|x^n) = \int \theta \pi(\theta|x^n) d\pi \tag{61}$$

Mean Squared Error (MSE): The MSE is

$$MSE = \mathbb{E}(\hat{\theta} - \theta)^2 = \int (\hat{\theta} - \theta)^2 p(x^n; \theta) dx^n = bias(\hat{\theta})^2 + Var(\hat{\theta})$$
(62)

 $\mathbf{bias}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta.$

The **standard error** of $\hat{\theta}$, se($\hat{\theta}$), is the standard deviation of $\hat{\theta}$:

$$\operatorname{se}(\hat{\theta}) = \sqrt{\operatorname{Var}(\hat{\theta})}$$
 (63)

Risks and Estimators

 $L(\theta, \hat{\theta})$ is the **loss** of an estimator $\hat{\theta} = \hat{\theta}(x^n)$ for $x^n \sim p(x^n; \theta)$. The **risk** of this $\hat{\theta}$ is

$$R(\theta, \hat{\theta}) = \mathbb{E}[L(\theta, \hat{\theta})] = \int L(\theta, \hat{\theta}) p(x^n; \theta) dx^n \tag{64}$$

When $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$, the risk is the MSE.

The **max risk** of $\hat{\theta}$ over a set $\theta \in \Theta$ is

$$\overline{R}(\hat{\theta}) = \sup_{\theta \in \Theta} R(\theta, \hat{\theta}) \tag{65}$$

The minimax estimator is

$$\hat{\theta} = \arg\inf_{\hat{\theta}} \overline{R}(\hat{\theta}) \tag{66}$$

The **Bayes risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$B_{\pi}(\hat{\theta}) = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta \tag{67}$$

The **posterior risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$r(\hat{\theta}|x^n) = \int L(\theta, \hat{\theta})\pi(\theta|x^n)d\theta \tag{68}$$

where $\pi(\theta|x^n) = \frac{\mathbb{P}(x^n;\theta)\pi(\theta)}{m(x^n)}$ is the posterior over θ . The **Bayes estimator** is

$$\hat{\theta} = \arg\inf_{\hat{\theta}} B_{\pi}(\hat{\theta}) = \arg\inf_{\hat{\theta}} r(\hat{\theta}|x^n)$$
 (69)

which equals the posterior mean $\mathbb{E}(\theta|x^n)$ when $L(\theta,\hat{\theta}) = (\theta - \hat{\theta})^2$, the posterior median when $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$, and the posterior mode when $L(\theta, \hat{\theta}) = \mathbb{I}[\theta \neq \hat{\theta}].$

Thm 10: If $\hat{\theta}$ is a Bayes estimator for some prior π and $R(\theta, \hat{\theta})$ is constant, then $\hat{\theta}$ is a minimax estimator.

Note: The MLE is approximately minimax (as n increases, if the dimension of the parameter is fixed).

Aymptotic (Large Sample) Theory

A random sequence A_n is:

(a)
$$o_p(1)$$
 if $A_n \stackrel{p}{\to} 0$ (70)

(b)
$$o_p(B_n)$$
 if $A_n/B_n \stackrel{p}{\to} 0$ (71)

(c)
$$O_p(1)$$
 if $\forall \epsilon > 0, \exists M : \lim_{n \to \infty} \mathbb{P}(|A_n| > M) < \epsilon$ (72)

(d)
$$O_p(B_n)$$
 if $A_n/B_n = O_p(1)$ (73)

If
$$Y_n \rightsquigarrow Y \Longrightarrow Y_n = O_p(1)$$

If $\sqrt{n}(Y_n - c) \rightsquigarrow Y \Longrightarrow Y_n = O_p(1/\sqrt{n})$

Distances Between Distributions

For distributions P and Q with pdfs p and q:

(a)
$$V(P,Q) = \sup_{A} |P(A) - Q(A)|$$
 total variation distance (74)

(b)
$$K(P,Q) = \int p\log(p/q)$$
 Kullback-Leibler divergence (75)

(c)
$$d_2(P,Q) = \int (p-q)^2 \mathbf{L_2}$$
 distance (76)

A model is **identifiable** if: $\theta_1 \neq \theta_2 \implies K(\theta_1, \theta_2) > 0$.

Consistency

 $\hat{\theta}_n = T(X^n)$ is **consistent** for θ if $\hat{\theta}_n \xrightarrow{p} \theta$ (ie if $\hat{\theta}_n - \theta = o_p(1)$). To show consistency, can show: $\operatorname{Bias}^2(\hat{\theta}_n) + \operatorname{Var}(\hat{\theta}_n) \to 0$. The MLE is consistent under regularity conditions.

MLE not consistent when number of params (or support?) grows.

Score and Fisher Information

The score function is $S(\theta) = \frac{\partial}{\partial \theta} l(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p(x_i | \theta)$. The **Fisher information** is defined as

$$I_n(\theta) = -n\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(X_1; \theta) \right] = nI_1(\theta)$$
 (77)

and $I_n(\theta) = \mathbb{E}_{\theta} \left[S(\theta)^2 \right] = \operatorname{Var}_{\theta} \left[S(\theta) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} l(\theta) \right].$

The observed information
$$\hat{I}_n(\theta) = -\sum_i \frac{\partial^2}{\partial \theta^2} \log p(X_i; \theta)$$
.
Vector case: $S(\theta) = \left[\frac{\partial l(\theta)}{\partial \theta_i}\right]_{i=1,...,K} \quad I_{ij} = -\mathbb{E}_{\theta} \left[\frac{\partial^2 l(\theta)}{\partial \theta_i \partial \theta_j}\right]_{i,j=1,...,K}$

Efficiency and Robustness

For an estimator $\hat{\theta}_n(X^n)$ of θ , where $X^n \stackrel{\text{iid}}{\sim} p(x|\theta)$:

If $\sqrt{n}(\hat{\theta}_n - \theta) \sim \mathcal{N}(0, v^2)$, then v^2 is the **asymptotic-Var** $(\hat{\theta}_n)$. Eg. for $\hat{\theta}_n = \overline{X}_n$: $\theta = \mu$, $v^2 = \sigma^2 = \text{Var}(X_i) = \lim_{n \to \infty} n \text{Var}(\overline{X}_n)$. But in general, asymptotic- $\operatorname{Var}(\hat{\theta}_n)$ $v^2 \neq \lim_{n \to \infty} n \operatorname{Var}(\hat{\theta}_n)$. Note that: $Var(\hat{\theta}_n) = (se)^2 \approx v^2/n$.

(68) For param $\tau(\theta)$, $v(\theta) = \frac{|\tau'(\theta)|^2}{I_1(\theta)}$ is the **Cramer-Rao lower bound**. For most estimators $v(\theta) \leq v^2$.

If $\sqrt{n}(\hat{\theta}_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta))$ (ie if $v^2 = v(\theta)$) $\Longrightarrow \hat{\theta}_n$ efficient. Usually, $\sqrt{n}(\tau(\hat{\theta}_{mle}) - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, v(\theta)) \implies \text{MLE efficient.}$

The standard error of efficient $\hat{\theta}_n$ is $se = \sqrt{\operatorname{Var}(\hat{\theta}_n)} \approx \sqrt{\frac{1}{I_n(\theta)}}$. The estimated standard error of efficient $\hat{\theta}_n$ is $\hat{se} \approx \sqrt{\frac{1}{I_n(\hat{\theta}_n)}}$.

For efficient $\hat{\theta}_n$, $\hat{\tau} = \tau(\hat{\theta}_n)$, $se \approx \sqrt{\frac{|\tau'(\theta)|^2}{I_n(\theta)}}$, and $\hat{se} \approx \sqrt{\frac{|\tau'(\hat{\theta}_n)|^2}{I_n(\hat{\theta}_n)}}$.

In general, **asymptotic normality** is when:

$$\frac{\hat{\theta}_n - \mathbb{E}(\hat{\theta}_n)}{\sqrt{\operatorname{Var}(\hat{\theta}_n)}} \rightsquigarrow \mathcal{N}(0, 1) \implies \hat{\theta}_n \rightsquigarrow \mathcal{N}(\mathbb{E}(\hat{\theta}_n), \operatorname{Var}(\hat{\theta}_n)).$$

If $\sqrt{n}(W_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_W^2)$ and $\sqrt{n}(V_n - \tau(\theta)) \rightsquigarrow \mathcal{N}(0, \sigma_V^2)$ \implies asymptotic relative efficiency ARE $(V_n, W_n) = \sigma_W^2/\sigma_V^2$. Often there is a tradeoff between efficiency and robustness. (?)

Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

To construct a test:

1. Choose a test statistic $W = W(X_1, \ldots, X_n)$

2. Choose a rejection region
$$R$$
 (78)

3. If $W \in \mathbb{R}$, reject H_0 otherwise retain H_0

The **power function** $\beta(\theta) = \mathbb{P}_{\theta}(W \in R)$ for a rejection region R. Want **level-** α test $(\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha)$ that maximizes $\beta(\theta \in \Theta_1)$. A level- α test with power fn β is **uniformly most powerful** if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1 \ \forall \beta' \ne \beta$.

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject H_0 if $\frac{L(\theta_1)}{L(\theta_0)} > k$. where k chosen s.t. $\mathbb{P}(\frac{L(\theta_1)}{L(\theta_0)} > k) = \alpha$.

Wald Test

For
$$H_0: \theta = \theta_0$$
 and $H_1: \theta \neq \theta_0$, reject H_0 if $\left|\frac{\hat{\theta}_n - \theta_0}{se(\hat{\theta}_n)}\right| > z_{\alpha/2}$.
where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1 - \frac{\alpha}{2}$.
and $\hat{\theta}_n$ an estimator s.t. $(\hat{\theta} - \theta)/\text{se} \rightsquigarrow \mathcal{N}(0, 1)$ eg: $\theta = \hat{\theta}_{\text{mle}}$ and $se = \sqrt{\text{Var}(\hat{\theta}_n)}$. Can also use (for eg.) $\hat{se} = \sqrt{S_n^2/n}$.
and if $\hat{\theta}_n$ efficient, can approx: $se \approx \sqrt{\frac{1}{I_n(\theta)}}$ or $\hat{se} \approx \sqrt{\frac{1}{I_n(\hat{\theta}_n)}}$.

Likelihood Ratio Test

For
$$H_0: \theta \in \Theta_0$$
 and $H_1: \theta \notin \Theta_0$, reject H_0 if $\lambda(x^n) = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \le c$.
where $L(\hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\theta)$ and $L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$.
and c chosen s.t. $\mathbb{P}(\lambda(x^n) \le c) = \alpha$.

Thm: under
$$H_0: \theta = \theta_0 \Longrightarrow W_n = -2\log\lambda(X^n) \rightsquigarrow \chi_1^2$$

 $\Longrightarrow \text{ reject } H_0 \text{ if } W_n > \chi_{1,\alpha}^2.$

Also: for $\theta = (\theta_1, \dots, \theta_k)$, if H_0 fixes some of the parameters $\implies -2\log\lambda(X^n) \rightsquigarrow \chi^2_{\nu}$, where $\nu = \dim(\Theta) - \dim(\Theta_0)$.

P-Values

The **p-value** $p(x^n)$ is the smallest α -level s.t. we reject H_0 .

Thm: For a test of the form: reject H_0 when $W(x^n) > c$, $\Longrightarrow p(x^n) = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(W(X^n) \ge W(x^n)) = \sup_{\theta \in \Theta_0} [1 - F(W(x^n)|\theta)].$

Thm: Under $H_0: \theta = \theta_0, p(x^n) \sim \text{Unif}(0,1).$

Permutation Test

$$X^n \sim F, \ Y^m \sim G, \ H_0: F = G, \ H_1: F \neq G$$

Let $Z = (X^n, Y^m)$ and $L = (1, \dots, 1, 2, \dots, 2)$.
Let $W = g(L, Z) = |(\text{ave of 1 labeled pts}) - (\text{ave of 2 labeled pts})|$.
Let $p = \frac{1}{N!} \sum_{\pi} \mathbb{I}(g(L_{\pi}, Z) > g(L, Z)) \implies \text{reject } H_0 \text{ when } p < \alpha$.

Confidence Intervals

We want a $1 - \alpha$ confidence interval $C_n = [L(X^n), U(X^n)]$ s.t. $\mathbb{P}_{\theta}(L(X^n) \leq \theta \leq U(X^n)) \geq 1 - \alpha, \quad \forall \theta \in \Theta.$

Generally, a $1 - \alpha$ confidence set C_n is a random set $C_n \subset \Theta$ s.t. $\inf_{\theta \in \Theta} \mathbb{P}_{\theta} (\theta \in C_n(X^n)) \ge 1 - \alpha$.

Using Probability Inequalities

Prob inequalities give (for eg.)
$$\mathbb{P}(|\hat{\theta}_n - \theta| > \epsilon) \le g(\exp^{-f(\epsilon)}) = \alpha$$
.
solving for ϵ gives $\epsilon = \tilde{f}(\alpha) \Longrightarrow \mathbb{P}(|\hat{\theta}_n - \theta| > \tilde{f}(\alpha)) \le \alpha$
 $\Longrightarrow C_n = (\hat{\theta} - \tilde{f}(\alpha), \hat{\theta} + \tilde{f}(\alpha))$.

Inverting a Test

In level- α tests $\mathbb{P}_{\theta_0}(T(x^n) \in R) \leq \alpha \Rightarrow \text{let } C_n = \{\theta : T(x^n) \in A(\theta_0)\}.$ where $A(\theta_0) = \{T(x^n) \notin R \mid \theta = \theta_0\}$ (ie the accept region if $\theta = \theta_0$). For Wald: $C_n = \hat{\theta}_n \pm (z_{\alpha/2} \times se) = \hat{\theta}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$ For LRT: $C_n = \{\theta : \frac{L(\theta)}{L(\hat{\theta})} > c\}$ (for test where reject H_0 if $\frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \leq c$).

Pivots

 $Q(X^n, \theta)$ a **pivot** if the distribution of Q does not depend on θ . Find a, b s.t. $\mathbb{P}_{\theta}(a \leq Q(X^n, \theta) \leq b) \geq 1 - \alpha, \forall \theta$. $\implies C_n = \{\theta : a \leq Q(X^n, \theta) \leq b) \geq 1 - \alpha\}.$

Large Sample Confidence Intervals

For mle $\hat{\theta}_n$ with se $\approx 1/\sqrt{I_n(\hat{\theta}_n)}$, approx $1-\alpha$ confidence sets are: For Wald: $C_n = \hat{\theta}_n \pm (z_{\alpha/2} \times \text{se})$ For Wald with delta method: $C_n = \tau(\hat{\theta}_n) \pm (z_{\alpha/2} \times \text{se}(\hat{\theta}) \times |\tau'(\hat{\theta}_n)|)$ For LRT: $C_n = \left\{\theta : -2\log\left(\frac{L(\theta)}{L(\hat{\theta})}\right) \le \chi_{k,\alpha}^2\right\}$

Nonparametric Inference

The **empirical CDF** is: $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$

Thm (DKW): $\forall \epsilon > 0$, $\mathbb{P}(\sup_x |\hat{F}(x) - F(x)| > \epsilon) \le 2e^{-2n\epsilon^2}$ The **kernel density estimator** is: $\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x-X_i}{h}\right)$ where K a symmetric zero-mean density, and bandwidth h > 0.

Thm: The risk $R = \mathbb{E}(\mathcal{L}(p,\hat{p})) = \int (b^2(x) + \operatorname{Var}(x)) dx = \frac{a}{n^{4/5}}$ for some a, where $\mathcal{L}(p,\hat{p}) = \int (p(x) - \hat{p}(x))^2 dx$, and $b^2(x) = \mathbb{E}(\hat{p}(x)) - p(x)$. And this is minimax.

A statistical functional T(F) is any function of the CDF.

A plug-in estimator of $\theta = T(F)$ is: $\hat{\theta}_n = T(\hat{F}_n)$.

Often, $\hat{\theta}_n \approx \mathcal{N}(T(F), \hat{\text{se}}^2)$, where $\hat{\text{se}}$ is estimate of $\sqrt{\text{Var}(T(\hat{F}_n))}$.

Bootstrap

The **bootstrap** is a nonparametric way to find standard errors and confidence intervals of estimators of statistical functionals:

- 1. Draw $X_1^*,\ldots,X_n^* \sim \hat{F}_n$ (via $X_i^* \sim \{X_1,\ldots,X_n\}$ unif).
- 2. Compute $T_n^* = g(X_1^*, ..., X_n^*)$
- 3. Do 1. and 2. B times to get $T_{n,1}^*, \dots, T_{n,B}^*$ (79)
- 4. Let $v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2$

Then: $v_{\text{boot}} \xrightarrow{a.s.} \text{Var}_{\hat{F}_n}(T_n)$ as $B \to \infty$ and $\hat{\text{se}}(T_N) = \sqrt{v_{\text{boot}}}$

Bayesian Inference

Frequentists: probability is long-run frequencies. Procedures are random but parameters are fixed, unknown quantities.

Bayesians: probability is a measure of subjective degree of belief. Everything is random, including parameters.

Using Bayes Thm \Rightarrow Bayesian inference.

For $X_1, \ldots, X_n \sim p(x|\theta)$, and prior $\pi(\theta)$, **Bayes Thm** gives:

$$\pi(\theta|X^n) = \frac{p(X^n|\theta)\pi(\theta)}{m(X^n)} = \frac{p(X^n|\theta)\pi(\theta)}{\int p(X^n|\theta)\pi(\theta)d\theta}$$
(80)

Prediction

For train-data $(X_i, Y_i)|_{i=1,...,n}$, want to predict Y given a new X, where $Y \in \{0,1\}$ (classification) or $Y \in \mathbb{R}$ (regression). For prediction rule h(X),

classification risk: $R(h) = \mathbb{P}(Y \neq h(X)) = \mathbb{E}(I(Y \neq h(X)))$ regression risk: $R(h) = \mathbb{E}((Y - h(X))^2)$

Thm 1: R(h) minimized by $m(x) = \mathbb{E}(Y|X=x)$. The Bayes classifier $h_B(x) = I(m(x) \ge 1/2)$

Model Selection

Consider models $\mathcal{M}_{1,...,k}$, $\mathcal{M}_j = \{p(y;\theta_j): \theta_j \in \Theta_j\}$, $\hat{\theta}_j = \text{mle}(\mathcal{M}_j)$ **AIC**: choose $j^* = \arg\max|_j \text{AIC}(j) = 2\log L_j(\hat{\theta}_j) - 2\dim(\Theta_j)$ **BIC**: choose $j^* = \arg\max|_j \text{BIC}(j) = \log L_j(\hat{\theta}_j) - \left(\frac{\dim(\Theta_j)}{2}\log n\right)$ **Cross-validation**: For train-data $= Y_{1,...,n}$ and test-data $= Y_{1,...,n}^*$

choose $j^* = \arg\max_j |_j \hat{K}_j = \frac{1}{n} \sum_{i=1}^n \log p(Y_i^*; \hat{\theta}_j)$