Chapter 2: Location and Scale

Jana Osea

2.1 Location model

• Simplest location model: We assume that the outcome x_i of each observation depends on the "true value" μ of the unknown parameter and some random error process. A simple location model is

$$x_i = \mu + u_i \ (i = 1, \dots, n)$$
 (2.1)

• Shift and Scale equivariance: Let $\hat{\mu}$ be the sample mean and c be any constant, then $\hat{\mu}$ hold the following properties.

$$\hat{\mu}(x_1+c,\cdots,x_n+c) = \hat{\mu}(x_1,\cdots,x_n) + c$$
 (shift equivariance)

$$\hat{\mu}(cx_1, \dots, cx_n) = c\hat{\mu}(x_1, \dots, x_n)$$
 (scale equivariance)

2.2 Formalizing departures from normality

• Contaminated normal distributions (Tukey-Huber model): Let A be the event "the appratus fails" which has $P(A) = \epsilon$. Then F is is a mixture of G and H

$$F(t) = P(X \le t) = P(X \le t|A')P(A') + P(X \le t)|(A)$$

= $G(t)(1 - \epsilon) + H(t)\epsilon$

• Example 1: Assume that 95% of our observations are well-behaved, represented by $G = N(\mu, 1)$, but that 5% of the times the measuring system gives an erratic result, represented by a normal distribution with the same mean but a 10-fold increase in the standard deviation. We thus have the model with $\epsilon = 0.05$ and $H = N(\mu, 100)$. The model is

$$F = (1 - \epsilon)N(\mu, 1) + \epsilon N(\mu, 100)$$

2.3 M-estimators of location

• Generalizing maximum likelihood estimators We know that MLE's maximize the likelihood function

$$\hat{\mu} = \underset{\mu}{\operatorname{arg \, max}} L(\mu) = \underset{\mu}{\operatorname{arg \, max}} \prod_{i=1}^{n} f(x_i, \mu)$$

We generalize the MLE by maximizing other functions instead of the likelihood function. Given a function ρ , an *M-estimator of location* is a solution of

$$\hat{\mu} = \underset{\mu}{\operatorname{arg\,min}} \sum_{i=1}^{n} \rho(x_i, \mu)$$

where ρ is a function with certain properties.

- Huber functions: These functions are other loss functions that we can minimize.
 - 1. ρ -type

$$\rho_k(x) = \begin{cases} x^2 & |x| \le k\\ 2k|x| - k^2 & |x| > k \end{cases}$$

2. ψ -type

$$\psi_k(x) = \begin{cases} x & |x| \le k \\ sgn(x)k & |x| > k \end{cases}$$

- 2.4 Trimmed and Winsorized means
- 2.5 M-estimators of scale
- 2.6 Dispersion estimators
- 2.7 M-estimators of location with unknown dispersion
- 2.8 Numerical computing of M-estimators
- 2.9 Robust confidence intervals and tests