Условия, возможные решения и критерии оценивания задач 11 класса

Теоретический тур

Задача 1. Слинки Пружину «слинки» удерживают за верхний виток так, что ее нижний виток находится на высоте h=1 м над уровнем пола, а длина самой пружины, растянутой силой собственного веса, равна l=1,5 м. Пружину отпускают. Через какое время τ она упадет на пол? В нерастянутом состоянии витки пружины плотно прилегают друг к другу, не оказывая при этом давления друг на друга, а длина пружины составляет $l_0=6$ см. Витки тонкие. При схлопывании пружины витки между собой соударяются неупруго, и к моменту падения она успевает схлопнуться. Ответ дать с точностью 0.02 с.

Задача 2. Я тучка, тучка, тучка... В приближении адиабатической атмосферы оцените:

- 1. высоту H атмосферы Земли;
- 2. высоту h_0 нижней кромки облаков;

Температура на поверхности Земли $t_0=27^{\circ}\mathrm{C}$, а относительная влажность воздуха $\varphi=80\%$. Считайте, что $h_0\ll H$.

Указание: Адиабатической называется атмосфера, в которой порции газа, перемещаясь по вертикали без теплообмена, все время остаются в механическом равновесии.

Таблица 11.1

Зависимость	давления		насыщенного			водяного		пара	otomorphism To	температуры			
$t_{i}^{0}C$	6	8	10	12	14	16	18	20	22	24	26	28	30
P_H , MM.PT.CT.	7,01	8,05	9,21	10,5	12,0	13,6	15,5	17,5	19,8	22,4	25,2	28,4	31,8

Примечание: Воздух считать идеальным двухатомным газом с молярной массой $\mu = 29 \text{ г/моль}$

Задача 3. Бусинка Заряд Q равномерно распределен по поверхности диэлектрической тонкостенной закрепленной трубы радиуса R и длиной H. Бусинка с тем же по знаку зарядом может свободно скользить по тонкой непроводящей спице, совпадающей с диаметром серединного (равноудаленного от торцов) сечения.

Найдите период T малых колебаний бусинки относительно положения равновесия. Удельный заряд бусинки $\gamma = q/m$ считайте известным. Задача 4. И снова МГД Модель морского магнитогидродинамического двигателя, установленного под днищем катера (рис. 11.2) представляет собой прямоугольный канал (a=1,0 м, l=2 м, h=10 см). К хорошо проводящим плоскостям hl подключен идеальный источник постоянного тока с ЭДС $\mathscr E=100$ В. Магнитное поле B=1 Тл пронизывает канал перпендикулярно непроводящим плоскостям al. При движении катера с таким двигателем с постоянной скоростью u скорость вытекающей относительно катера воды v=10 м/с.

Рис. 11.2

Удельное сопротивление морской воды $\rho=1,0\cdot 10^{-2}\,{\rm Om}\cdot{\rm m},$ ее плотность $\rho_{\rm B}=1000\,{\rm kr/m^3}.$

Найдите скорость движения катера, силу тяги, полезную мощность и $K\Pi Д$ двигателя.

Задача 5. Лунное затмение Как известно, Солнце не является точечным источником света, а имеет малый угловой диаметр (при наблюдении с Земли) $2\delta = 0.52^{\circ}$. Этот факт приводит к тому, что область полной тени за Землей оказывается конечной.

Рис. 11.3

- 1. Пусть рефракция (явление преломления солнечных лучей в земной атмосфере) отсутствует. На каком расстоянии L_1 от Земли еще будет наблюдаться полная тень? Найдите продолжительность полного лунного затмения в этом случае.
- 2. В действительности рефракция оказывает существенное влияние на размер области полной тени. Пусть атмосфера Земли имеет приведенную высоту h=8 км и средний показатель преломления n=1,00028.

Полагая, что границу тени образуют лучи, идущие по касательной к поверхности Земли, определите на каком максимальном расстоянии L_2 теперь будет наблюдаться полная тень? Какая часть площади лунного диска окажется затенена?

Радиус Земли R=6400 км, ускорение свободного падения g=9.8 м/с², угловой диаметр Луны равен угловому диаметру Солнца 2δ , период обращения Луны вокруг Земли $T_0=27.3$ сут.