Handbook

Mark Gao 2023

Contents

Ι	Math	3
1	Linear Algebra1.1 Matrix Operations1.2 Inverse1.3 Determinant1.4 Square Matrices1.5 Eigenvalues and Eigenvectors	3 3 3 4
2	Calculus2.1 Derivative and integral foundations2.2 Multivariable Topics	4 4
3	Probability 3.1 Probability foundations 3.2 Markov Chains 3.3 Renewal Processes	4 4 4
II	Computer Science	5
4	•	5 5
5	Data Structures & Algorithms	5
6	Machine Learning	5
II	I Finance	6
7	Fixed Income	6

Part I

Math

1 Linear Algebra

1.1 Matrix Operations

Use the matrices A and B for the examples to follow.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

The addition and subtraction of matrices happens element-wise.

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$
 (1)

The multiplication operation is known as the **dot product**.

$$A \cdot B = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

$$\tag{2}$$

The division operation does not exist for matrices. There is no inverse operation to the dot product.

Note that **left-multiplication** and **right-multiplication** results in different outcomes. To isolate B in the equation ABC = D, right-multiply C then left-multiply A:

$$AB = DC$$

$$B = ADC$$

The **cross product** is a new operation to matrices. For a 2×2 matrix, the cross product is the same as its determinant.

$$A \times B = \det A - \det B = a_{11}a_{22} - a_{12}a_{21} - (bb - bb) \tag{3}$$

The cross product is more meaningful for matrices 3×3 or bigger.

$$A \times B = \mathbf{j} + \mathbf{j} + \mathbf{k} \tag{4}$$

The **transpose** of a matrix is flipped along its diagonal. Where the matrix is not square, this diagonal is imagined. For example given the 2×3 matrix C:

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}^T = \begin{pmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \\ c_{13} & c_{23} \end{pmatrix}$$
 (5)

1.2 Inverse

The **inverse** of a matrix should satisfy $AA^{-1} = I$. To compute A^{-1} ,

$$AI = B$$
 (6)

1.3 Determinant

1.4 Square Matrices

A diagonal matrix is a square matrix which is comprised of non-zero values along the diagonal and zeros everywhere else. The identity matrix is a square matrix with 1's on the diagonal.

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{7}$$

- 1.5 Eigenvalues and Eigenvectors
- 2 Calculus
- 2.1 Derivative and integral foundations
- 2.2 Multivariable Topics
- 3 Probability
- 3.1 Probability foundations
- 3.2 Markov Chains
- 3.3 Renewal Processes

Part II

Computer Science

4 Object Oriented Programming

This section will mostly be covered in Java, with analogies drawn to Python. This section will cover:

- Scope and encapsulation
- \bullet Polymorphism

4.1 Java foundations

```
class MyClass{
   private int x = 123;

   public MyClass(int a) {
        ...
   }
}
```

wtf? hello

- 4.2 Scope & Encapsulation
- 5 Data Structures & Algorithms
- 6 Machine Learning

Part III Finance

7 Fixed Income