Monte Carlo Simulations (MA323) Lab 4

Name - Kartikeya Singh Roll no - 180123021

Beta Distribution:

$$f(x) = (1/B(\alpha_1, \alpha_2))*(x^{(\alpha_1-1)})*((1-x)^{(\alpha_2-1)})$$

- 1) 5 sets of values of (α_1, α_2) chosen are:
 - a) (1, 4)
 - b) (4, 1)
 - c) (3, 3)
 - d) (2, 4)
 - e) (4, 2)
- 2) The values of x* for these pairs are calculated using $x^* = (\alpha_1 1)/(\alpha_1 + \alpha_2 2)$. The calculated values are
 - a) $x^* = 0$ for (1, 4)
 - b) $x^* = 1$ for (4, 1)
 - c) $x^* = 0.5$ for (3, 3)
 - d) $x^* = 0.25$ for (2, 4)
 - e) $x^* = 0.75$ for (4, 2)
- 3) The values of c are calculated using $c = f(x^*)$. The calculated values are
 - a) c = 4 for (1, 4)
 - b) c = 4 for (4, 1)
 - c) c = 1.875 for (3, 3)
 - d) c = 2.109375 for (2, 4)
 - e) c = 2.109375 for (4, 2)
- 4) The Beta Distribution is generated using the acceptance-rejection method for these pairs, keeping f(x) to be the Beta Distribution and g(x) to be the Uniform Distribution. The implementation could be found in 180123021_Kartikeya_Singh.py
- 5) The histograms generated are given below -

Beta Distribution for a1 = 3, a2 = 3

Beta Distribution for a1 = 2, a2 = 4

Beta Distribution for a1 = 4, a2 = 2

