Compito di Comunicazioni Numeriche

5 Giugno 2015 - FILA A

- **Es. 1** Dato il processo Gaussiano stazionario X(t) avente densità spettrale di potenza $S_x(f) = N_0 rect \left(\frac{f}{B}\right)$, verificare che il processo $Y(t) = \frac{dX(t-2)}{dt} + 5$ è stazionario e calcolarne la densità spettrale di potenza e potenza.
- Es. 2 Si consideri il sistema in Figura 1. Sia $x(t) = 2ABsinc^2(Bt) + 2ABsinc^2(Bt)cos(2\pi Bt) + 2ABsinc^2(Bt)cos(4\pi Bt)$, h(t) un filtro passabasso ideale di banda 2B e p(t) = Bsinc(Bt). Il campionatore campiona il segnale y(t) con passo di campionamento $T = \frac{1}{B}$. Calcolare:
 - 1) l'espressione analitica del segnale y(t)
 - 2) dire se la sequenza y[n] è ottenuta campionando alla frequenza di Nyquist
 - 3) calcolare l'epressione analitica di z(t)

Figura 1

- Es. 3 -Al ricevitore di Figura 2 è applicato il segnale PAM $r(t) = \sum_n x[n]p(t-nT) + w(t)$ dove i simboli x[n] appartengono all'alfabeto A = [0,2] e sono indipendenti ed equiprobabili. Il rumore w(t) è Gaussiano bianco a media nulla e con DSP $S_w(f) = \frac{N_0}{2}$ e l'impulso trasmesso è definito come p(t) = 2Bsinc(2Bt) + Bsinc(Bt). Il filtro in ricezione è $H_r(f) = rect\left(\frac{f}{2B}\right)$. La soglia di decisione del decisore è $\lambda = 1$. Calcolare:
 - 1) Es: energia media per simbolo trasmesso
 - 2) L'istante di campionamento ottimo per non avere ISI
 - 3) la Probabilità di errore sul simbolo

Figura 2

- Es. 4 Dimostrare che due variabili aleatorie Gaussiane incorrelate sono anche indipendenti
- **Es. 5** ENunciare il criterio di Nyquist per l'assenza di ISI nel dominio del tempo e dimostrare che in tale condizione effettivamente non si abbia ISI per un sistema PAM binario