Adjustment Theory I Winter Term 2023/24

Chair of Geodesy and Adjustment Theory

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 1: Introduction to Octave/Matlab			
Group:	Surname, First name:	Matriculation number:	Signature*:
* With my signature I declare that I was involved in the elaboration of this homework.			
Submission until: No submission!			

Objective

Octave or Matlab is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numerical computation. This exercise intends to procure the basic functions of Octave/Matlab as well as the necessary procedure to solve the next exercises.

Homework: Practise on the tasks of this exercise! No submission of homework.

Hint: If you are not familiar with Octave or Matlab, search on the internet for a free online tutorial.

Use Octave or Matlab to determine the following solutions.

Task 1:

- $x = 4^2$
- $y = \sqrt{4}$
- $z = 4^{-2}$
- t = 4!

Task 2 (Right angle triangle):

- Given: $a = 4 \text{ m}, \ \alpha = 53.1301^{\circ}$
 - Calculate the hypotenuse
- Given: a = 4 m, b = 3 m
 - Calculate the hypotenuse

Figure 1: Right-angled triangle

Task 3 (General triangle):

- Given: $a = 3 \text{ m}, b = 2 \text{ m}, \gamma = 55^{\circ}$
 - Calculate the length of c (use the Law of Cosines)
- Given: $a = 4 \text{ m}, b = 3 \text{ m}, \alpha = 30^{\circ}$
 - \circ Calculate the angle β (use the Law of Sines)

Figure 2: General triangle

Task 4 (Using matrices):

• Calculate the product $C = AB^T$ of the following matrices

$$\circ \quad \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 4 & 6 & 5 \\ 8 & 2 & 3 \end{bmatrix}$$

- Load the file "Matrix.txt" and assign the matrix into a variable N
- ullet Perform the following calculations using matrix ${f N}$
 - Determinant
 - o Rank
 - o Inverse
 - o Pseudo-inverse
 - Eigenvectors and Eigenvalues