Week 9 - GLM - ANOVA part 2

Andrew Stewart

Andrew.Stewart@manchester.ac.uk

Week	Topic				
1	Introduction, Open Science, and Power				
2	Introduction to R				
3	Data Wrangling and Visualisation				
4	General Linear Model - Regression				
5	General Linear Model - Regression				
6	No Timetabled Lecture - Reading Week				
7	Consolidation Lab				
8	General Linear Model - ANOVA				
9	General Linear Model - ANOVA				
10	Tidy Thursday Data Wrangling & Visualisation Challenge				
11	Reproducing your Computational Environment using Binder				
12	Dynamic, Reproducible Presentations Using xaringan				

Semester 1 Assignments

Data wrangling and visualisation – Due December 5th

ANOVA/ANCOVA - Due January 17th

More ANOVA...

- Last week we looked at I-way between participants ANOVA, I-way repeated measures ANOVA, and 2-way repeated measures ANOVA.
- We used the afex package for building our models as it uses Type III Sums of Squares with effect coding of contrasts (allowing us to more easily interpret our results when we have interactions).

A slightly more complex study

- Similar to our 2 x 2 ANOVA from last time, but let's say we now have Age as an additional factor. It's a between subjects factor. We might think that priming effects might be different for young vs old people.
- So we need to run a 2 x 2 x 2 ANOVA. The first two factors are still within subjects (i.e., repeated measures), but our new one (age) is between subjects and has two levels.

	Participant	Image $^{\Diamond}$	Word $^{\scriptsize \scriptsize $	Age [‡]	RT [‡]
1	1	Pos	Pos	Young	719
2	2	Pos	Pos	Young	756
3	3	Pos	Pos	Young	777
4	4	Pos	Pos	Young	691
5	5	Pos	Pos	Young	760
6	6	Pos	Pos	Young	762
7	7	Pos	Pos	Young	735
8	8	Pos	Pos	Young	736
9	9	Pos	Pos	Young	735
10	10	Pos	Pos	Young	727
11	11	Pos	Pos	Young	738
12	12	Pos	Pos	Young	725
13	13	Pos	Pos	Young	730
14	14	Pos	Pos	Young	751
15	15	Pos	Pos	Young	773
16	16	Pos	Pos	Young	747
17	1	Pos	Neg	Young	834
18	2	Pos	Neg	Young	822

Showing 1 to 18 of 128 entries

Remember, for the aov 4 function we need each factor to be in its own column and for each row to be one observation this is long or tidy format data.

```
ggplot(my_data, aes(x = Word:Image, y = RT, colour = Word:Image)) +
   geom_violin() +
   geom_jitter(width = .1, alpha = .2) +
   stat_summary(fun.data = "mean_cl_boot") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
   facet_wrap(~ Age) +
   guides(colour = FALSE)
```


We can see it looks like the Young and Old groups are behaving a little differently.

We need to build our model with two repeated and one between participants factor...

```
model <- aov_4(RT ~ Word * Image * Age + (1 + Word * Image |
Participant), data)</pre>
```

We are asking for the model to be built using the three factors - this will give us three possible main effects, 3 possible 2-way interactions, and a possible 3-way interaction...

The aov_4 function knows which factors are repeated and which are between from the model structure - note that between participant factors shouldn't appear in the random effects term - if you have only between factors then the term should be something like (1 | Participant)...

```
> anova(model)
Anova Table (Type 3 tests)
Response: RT
             num Df den Df
                            MSE
                                             ges
                                                   Pr(>F)
                   30 788.86 1017.8790 0.90328 < 2.2e-16
Age
                                 110.7147 0.49157 1.380e-11
                  1 30 750.85
Word
Age:Word
                 1 30 750.85 14.1946 0.11029 0.0007202 ***
                1 30 752.62 0.8022 0.00697 0.3775568
Image
              1 30 752.62 0.2152 0.00188 0.6460346
Age: Image
              1 30 573.74 61.4309 0.29074 9.553e-09 ***
Word: Image
Age:Word:Image 1 30 573.74 73.9247 0.33033 1.363e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

From this we can see we have main effects of Age and Word, no main effect of Image, significant 2-way interactions of Age x Word, and of Word x Image and, crucially, a 3-way interaction between all three factors - Age x Word x Image...

The 3-way interaction suggests that the Word x Image interaction is different for Young vs. Old people (which is supported by what we see in the graph...)

To interpret this 3-way, we should examine the Word x Image interaction separately for Young and Old people...

We can do this by filtering our dataset:

Significant interaction

We need to follow this up with pairwise comparisons.

> emmeans(model_young, pairwise ~ Word * Image, adjust = "Bonferroni")
\$emmeans

```
      Word
      Image
      emmean
      SE
      df
      lower.CL
      upper.CL

      Neg
      Neg
      768
      6.57
      57.7
      754
      781

      Pos
      Neg
      804
      6.57
      57.7
      791
      818

      Neg
      Pos
      844
      6.57
      57.7
      831
      857

      Pos
      Pos
      741
      6.57
      57.7
      728
      755
```

Warning: EMMs are biased unless design is perfectly balanced Confidence level used: 0.95

\$contrasts

	contrast	estimate	SE	df	t.ratio	p.value
	Neg,Neg - Pos,Neg	-36.9	8.81	29.7	-4.184	0.0014
	Neg,Neg - Neg,Pos	-76.2	9.62	28.3	-7.924	<.0001
ſ	Neg, Neg - Pos, Pos	26.1	10.00	29.4	2.612	0.0842
	Pos,Neg - Neg,Pos	-39.3	10.00	29.4	-3.931	0.0028
	Pos, Neg - Pos, Pos	63.0	9.62	28.3	6.552	<.0001
•	Neg, Pos - Pos, Pos	102.3	8.81	29.7	11.610	<.0001

P value adjustment: bonferroni method for 6 tests

Key pairwise comparisons are significant

But what about the Old group?

```
> old filter <- filter(data, Age == "Old")</pre>
> model old <- aov 4(RT \sim Word * Image + (1 + Word * Image | Participant), data =
old filter)
> anova (model old)
Anova Table (Type 3 tests)
Response: RT
          num Df den Df MSE F
                                           ges
                                                 Pr(>F)
                 15 819.83 93.5066 0.63260 7.757e-08 ***
Word
                     15 586.81 0.1195 0.00157
                                                 0.7343
Image
                     15 586.70 0.2825 0.00371
                                                  0.6028
Word: Image
               0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Signif. codes:
```

Interaction not significant

So we have found a 2-way interaction of Word x Image that *differs* between our two groups. The 2-way interaction is significant for our Young group, but not significant for our Old group. For our Old group, we simply have a main effect of Word...

ANCOVA

- One of our examples from last week looked at how double espresso vs. single espresso vs. water drinking (our IV) might influence motor performance (our DV).
- Imagine we sampled from a new group of participants and we think other factors that we are not manipulating might also influence the DV – e.g., practice with computer games.
- What we want is to be able to see the effect on our DV of our IV after we have removed the effects of other things (computer gaming frequency in this case).

- Now, imagine we have a measure of computer games frequency - perhaps hours per week people play computer games...
- So, in addition to manipulating the type of beverage we're giving people (i.e., double espresso vs. single espresso vs. water) we also measure how often they play computer games...
- Let's do a plot first with our DV (Ability) on the y-axis, and our covariate (Gaming Frequency) on the x-axis...

> ggplot(cond, aes(x = Gaming, y = Ability, colour = Condition)) + geom_point()

- So we can see there's a relationship between our DV (Ability) and our covariate (Gaming Frequency)...
- We can also see our Gaming Ability groups appear to be clustering in our data by Condition...

We can look at the data separately by condition using the *facet wrap()* function:

```
> ggplot(cond, aes(x = Gaming, y = Ability, colour =
Condition)) + geom_point() + facet_wrap(~ Condition) +
geom smooth(method = "lm")
```


Running a 1-way between participants ANOVA (and ignoring the covariate)...

The factor Condition is significant with an F = 53.432. We would erroneously conclude that our manipulation has had an effect...

But now let's control for the effect of our co-variate (which we first need to scale and centre)...

```
> cond$Gaming <- scale(cond$Gaming)</pre>
> model ancova <- aov 4 (Ability ~ Gaming + Condition + (1 | Participant),
data = cond, factorize = FALSE)
Contrasts set to contr.sum for the following variables: Condition
> anova(model ancova)
Anova Table (Type 3 tests)
Response: Ability
          num Df den Df MSE
                                                  Pr (>F)
                                            ges
Gaming
              1 41 0.55171 53.5636 0.56643 5.87e-09 ***
               2 41 0.55171 0.8771 0.04103
Condition
                                                  0.4236
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

The factor Condition is now <u>not</u> significant with an F < 1. However, our covariate *Gaming Frequency* is significant. Adding it means a lot of the variance we previously attributed to our experimental factor is actually explained by our covariate. Note, the F values are calculated using Type III Sum of Squares by the aov_4 () function - more on that in a bit...

Rather than calculating over the raw means which are:

```
Water Group = 4.82
Double Espresso Group = 9.02
Single Espresso Group = 6.69
```

```
> cond %>%
  group by (Condition) %>%
  summarise(mean ability = mean(Ability), sd ability = sd(Ability))
# A tibble: 3 \times 3
                 mean ability sd ability
 Condition
                     <dbl> <dbl>
 <chr>
                      9.02
                                 1.19
1 Double Espresso
2 Single Espresso
                      6.69
                                 0.977
                        4.82
3 Water
                                 1.16
```

The calculation is performed over the *adjusted* means (which take into consideration the influence of the covariate):

```
Water Group = 7.33

Double Espresso Group = 6.32

Single Espresso Group = 6.87
```

If our experimental factor in the ANCOVA had been significant, we could have looked at the pairwise comparisons reported by emmeans to determine what condition was different from what other condition...

```
$contrasts

contrast

Double Espresso - Single Espresso - 0.5521505 0.4779448 41 -1.155 0.2547

Double Espresso - Water -1.0084959 0.7614421 41 -1.324 0.1927

Single Espresso - Water -0.4563454 0.4179276 41 -1.092 0.2812
```

But once we take account of the influence of our covariate we found no effect of Condition...

Note, if we had used the aov() function the F-tests would have been conducted using Type I (sequential) Sums of Squares. For Type III, we need to use the $aov_4()$ function.

Type I vs. II vs. III Sums of Squares

- Type I Sum of Squares is calculated sequentially e.g., first for Factor A main effect, then for Factor B main effect, then for the interaction. The order in which they are calculated matters and can be misleading for unbalanced design or cases where predictors are correlated. Total SS is the sum of the individual effect SS.
- Type II Sum of Squares assumes no interaction(s) when testing main effects or higher order interaction(s) when testing lower order interaction(s).
- Type III Sum of Squares tests for effects adjusted for the presence of the other effects (so does not depend on the order of terms).

 Much debate about which one is 'correct' - each has their own purpose - for factorial designs where you're interested in testing an interaction (or when your predictors correlate), Type III is most commonly used.

AN(C)OVA as a special case of regression...

 Let's return to the example we looked at for ANCOVA - and let's forget the covariate for a moment...

 We looked at how double espresso vs. single espresso vs. water drinking (our IV) might influence people's gaming ability (our DV).

Water mean = 4.82 Double Espresso mean = 9.02 Single Espresso mean = 6.69 First we need to use dummy coding of the levels of our experimental factor - which is the default coding in R for factors...

Ability = Intercept + βI (Double Espresso) + $\beta 2$ (Single Espresso) + ϵ

The Intercept is our reference category (Water) with coding (0, 0), while the dummy coding for Double Espresso is (1, 0) and for Single Espresso (0, 1)

Ability = Intercept + β 1(Double Espresso) + β 2(Single Espresso) + ε

We want to calculate $\beta 1$ and $\beta 2$

The intercept is 4.817 (which is the mean of our Water group), $\beta 1$ is 4.2, and $\beta 2$ is 1.87

To work out the mean Ability of our Double Espresso Group:

Ability = Intercept + β 1(Double Espresso) + β 2(Single Espresso) + ε

Ability =
$$4.82 + 4.2(1) + 1.87(0) + \varepsilon$$

Ability =
$$4.82 + 4.2 + \varepsilon$$

Ability =
$$9.02 + \varepsilon$$

To work out the mean Ability of our Single Espresso Group:

Ability = Intercept + β 1(Double Espresso) + β 2(Single Espresso) + ε

Ability =
$$4.82 + 4.2(0) + 1.87(1) + \varepsilon$$

Ability =
$$4.82 + 1.87 + \varepsilon$$

Ability =
$$6.69 + \varepsilon$$

Which are the exact same means generated by the ANOVA...

Water mean = 4.82 Double Espresso mean = 9.02 Single Espresso mean = 6.69

We can do ANCOVA like this too - let's consider our co-variate of Gaming frequency...

The *adjusted* means from the ANCOVA (which take into consideration the influence of the covariate) were:

Water Group = 7.33

Double Espresso Group = 6.32

Single Espresso Group = 6.87

Ability = Intercept + β 1(Gaming) + β 2(Double Espresso) + β 3(Single Espresso) + ϵ

Add the covariate to our model *before* the experimental factor:

Ability = Intercept + β 1(Gaming) + β 2(Double Espresso) + β 3(Single Espresso) + ϵ

The $\beta 2$ and $\beta 3$ coefficients tell us the difference between each group mean (i.e., the adjusted mean) compared to the reference Group (Water) when taking into account the covariate of Gaming frequency:

 $\beta 2$ is the difference between the Double Espresso and Water group adjusted means (= -1.01) while $\beta 3$ is the difference between the Double Espresso and Water group adjusted means (= -0.46)...

Let's check - the following are the adjusted means output by the ANCOVA model:

Water Group = 7.33

Double Espresso Group = 6.32

Single Espresso Group = 6.87

Difference between the Water and Double Espresso Group is 1.01 and the difference between the Water and Single Espress Group is 0.46...

We can work out the mean of our reference group (Water) by plugging in the values to our equation - note that Gaming is not a factor and we need to enter the mean of this variable (which is 12.62296). So,...

```
Ability = Intercept + \beta1(Gaming) + \beta2(Double Espresso) + \beta3(Single Espresso) + \epsilon
Ability = -3.4498 + 0.8538(12.62296) + (- 1.0085)(0) + (-0.4563)(0) + \epsilon
Ability = -3.4498 + 10.777 + \epsilon
Ability = 7.33 + \epsilon
```

7.33 is the adjusted mean for the Water group...which is what we had from calling the emmeans function following the ANCOVA...

You can now build ANOVA models in R for different kinds of designs, add between participant co-variates, factor out the influence of these co-variates, and you also know why AN(C)OVA is a special case of regression (with dummy coding of variables)...

To the computer lab...