

Introduction to Pandas

April 3rd, 2015

Joris Van den Bossche

Source: https://github.com/jorisvandenbossche/2015-PyDataParis

About me: Joris Van den Bossche

- PhD student at Ghent University and VITO, Belgium
- bio-science engineer, air quality research
- pandas core dev

->

- https://github.com/jorisvandenbossche (https://github.com/jorisvandenbossche)
- •
- @jorisvdbossche (https://twitter.com/jorisvdbossche)

Licensed under CC BY 4.0 Creative Commons (http://creativecommons.org/licenses/by/4.0/)

Content of this talk

- Why do you need pandas?
- Basic introduction to the data structures
- Guided tour through some of the pandas features with a case study

If you want to follow along, this is a notebook that you can view or run yourself:

- All materials (notebook, data, link to nbviewer): https://github.com/jorisvandenbossche/2015-PyDataParis (https://github.com/jorisvandenbossche/2015-PyDataParis)
- You need pandas > 0.15 (easy solution is using Anaconda)

Some imports:

In [1]: %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn pd.options.display.max_rows = 8

Let's start with a showcase

Case study: air quality in Europe

AirBase (The European Air quality dataBase): hourly measurements of all air quality monitoring stations from Europe

Starting from these hourly data for different stations:

In [3]:

data

Out[3]:

	BETR801	BETN029	FR04037	FR04012
1990-01-0100:00:00	NaN	16.0	NaN	NaN
1990-01-0101:00:00	NaN	18.0	NaN	NaN
1990-01-01 02:00:00	NaN	21.0	NaN	NaN
1990-01-0103:00:00	NaN	26.0	NaN	NaN
•••	•••	•••	•••	•••
2012-12-31 20:00:00	16.5	2.0	16	47
2012-12-31 21:00:00	14.5	2.5	13	43
2012-12-31 22:00:00	16.5	3.5	14	42
2012-12-31 23:00:00	15.0	3.0	13	49

198895 rows × 4 columns

to answering questions about this data in a few lines of code:

Does the air pollution show a decreasing trend over the years?

In [4]: data['1999':].resample('A').plot(ylim=[0,100])

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0xaac469ec>

How many exceedances of the limit values?

```
In [5]: exceedances = data > 200
    exceedances = exceedances.groupby(exceedances.index.year).sum()
    ax = exceedances.loc[2005:].plot(kind='bar')
    ax.axhline(18, color='k', linestyle='--')
```

Out[5]: <matplotlib.lines.Line2D at 0xaac4636c>

What is the difference in diurnal profile between weekdays and weekend?

```
In [6]: data['weekday'] = data.index.weekday
    data['weekend'] = data['weekday'].isin([5, 6])
    data_weekend = data.groupby(['weekend', data.index.hour])['FR04012'].mean().unstac
    k(level=0)
    data_weekend.plot()
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0xab37362c>

We will come back to these example, and build them up step by step.

Why do you need pandas?

Why do you need pandas?

When working with *tabular or structured data* (like R dataframe, SQL table, Excel spreadsheet, ...):

- Import data
- Clean up messy data
- Explore data, gain insight into data
- Process and prepare your data for analysis
- Analyse your data (together with scikit-learn, statsmodels, ...)

Pandas: data analysis in python

For data-intensive work in Python the Pandas (http://pandas.pydata.org) library has become essential.

What is pandas?

- Pandas can be thought of as NumPy arrays with labels for rows and columns, and better support for heterogeneous data types, but it's also much, much more than that.
- Pandas can also be thought of as R's data. frame in Python.
- Powerful for working with missing data, working with time series data, for reading and writing your data, for reshaping, grouping, merging your data, ...

It's documentation: http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/)

Key features

- Fast, easy and flexible input/output for a lot of different data formats
- Working with missing data (.dropna(), pd.isnull())
- Merging and joining (concat, join)
- Grouping: groupby functionality
- Reshaping(stack,pivot)
- Powerful time series manipulation (resampling, timezones, ..)
- Easy plotting

Basic data structures

Pandas does this through two fundamental object types, both built upon NumPy arrays: the Series object, and the DataFrame object.

Series

A Series is a basic holder for **one-dimensional labeled data**. It can be created much as a NumPy array is created:

Attributes of a Series: index and values

The series has a built-in concept of an **index**, which by default is the numbers 0 through N-1

```
In [8]: s.index
Out[8]: Int64Index([0, 1, 2, 3], dtype='int64')
```

You can access the underlying numpy array representation with the .values attribute:

```
In [9]: s.values
Out[9]: array([ 0.1, 0.2, 0.3, 0.4])
```

We can access series values via the index, just like for NumPy arrays:

In [10]: s[0]

Out[10]: 0.10000000000000001

Unlike the NumPy array, though, this index can be something other than integers:

In this way, a Series object can be thought of as similar to an ordered dictionary mapping one typed value to another typed value:

```
In [13]:
         population = pd.Series({'Germany': 81.3, 'Belgium': 11.3, 'France': 64.3, 'United Ki
         ngdom': 64.9, 'Netherlands': 16.9})
         population
          Belgium
                            11.3
Out[13]:
                            64.3
          France
                            81.3
          Germany
          Netherlands
                            16.9
          United Kingdom
                            64.9
          dtype: float64
In [14]:
         population['France']
          64.2999999999999
Out[14]:
```

but with the power of numpy arrays:

We can index or slice the populations as expected:

Many things you can do with numpy arrays, can also be applied on objects.

Fancy indexing, like indexing with a list or boolean indexing:

In [18]:	<pre>population[['France', 'Netherlands']]</pre>		
Out[18]:		64.3 16.9	
In [19]:	population[population > 20]		
Out[19]:	France Germany United Kingdom dtype: float64	64.3 81.3 64.9	

Element-wise operations:

In [21]: population.mean()

Out[21]: 47.7399999999995

Alignment!

Only, pay attention to alignment: operations between series will align on the index:

```
In [22]: s1 = population[['Belgium', 'France']]
         s2 = population[['France', 'Germany']]
In [23]: s1
          Belgium
                     11.3
Out[23]:
          France
                     64.3
          dtype: float64
In [24]:
         s2
                     64.3
          France
Out[24]:
          Germany
                     81.3
          dtype: float64
In [25]: s1 + s2
          Belgium
                       NaN
Out[25]:
          France
                     128.6
          Germany
                       NaN
          dtype: float64
```

DataFrames: Multi-dimensional Data

A DataFrame is a **tablular data structure** (multi-dimensional object to hold labeled data) comprised of rows and columns, akin to a spreadsheet, database table, or R's data.frame object. You can think of it as multiple Series object which share the same index.

One of the most common ways of creating a dataframe is from a dictionary of arrays or lists.

Note that in the IPython notebook, the dataframe will display in a rich HTML view:

Out[26]:

	area	capital	country	population
0	30510	Brussels	Belgium	11.3
1	671308	Paris	France	64.3
2	357050	Berlin	Germany	81.3
3	41526	Amsterdam	Netherlands	16.9
4	244820	London	United Kingdom	64.9

Attributes of the DataFrame

A DataFrame has besides a index attribute, also a columns attribute:

```
In [27]: countries.index
Out[27]: Int64Index([0, 1, 2, 3, 4], dtype='int64')
In [28]: countries.columns
Out[28]: Index([u'area', u'capital', u'country', u'population'], dtype='object')
```

To check the data types of the different columns:

In [29]: countries.dtypes

int64 area Out[29]: capital

object object float64 country population dtype: object

An overview of that information can be given with the info() method:

Also a DataFrame has a values attribute, but attention: when you have heterogeneous data, all values will be upcasted:

If we don't like what the index looks like, we can reset it and set one of our columns:

In [32]: countries = countries.set_index('country')
 countries

Out[32]:

	area	capital	population
country			
Belgium	30510	Brussels	11.3
France	671308	Paris	64.3
Germany	357050	Berlin	81.3
Netherlands	41526	Amsterdam	16.9
United Kingdom	244820	London	64.9

To access a Series representing a column in the data, use typical indexing syntax:

In [33]: countries['area']

Out[33]: country

Belgium 30510 France 671308 Germany 357050 Netherlands 41526 United Kingdom 244820 Name: area, dtype: int64 As you play around with DataFrames, you'll notice that many operations which work on NumPy arrays will also work on dataframes.

Let's compute density of each country:

In [34]: countries['population']*1000000 / countries['area']
Out[34]: country

Belgium 370.370370 France 95.783158 Germany 227.699202 Netherlands 406.973944 United Kingdom 265.092721

dtype: float64

Adding a new column to the dataframe is very simple:

Out[35]:

	area	capital	population	density
country				
Belgium	30510	Brussels	11.3	370.370370
France	671308	Paris	64.3	95.783158
Germany	357050	Berlin	81.3	227.699202
Netherlands	41526	Amsterdam	16.9	406.973944
United Kingdom	244820	London	64.9	265.092721

We can use masking to select certain data:

In [36]: countries[countries['density'] > 300]

Out[36]:

	area	capital	population	density
country				
Belgium	30510	Brussels	11.3	370.370370
Netherlands	41526	Amsterdam	16.9	406.973944

And we can do things like sorting the items in the array, and indexing to take the first two rows:

In [37]: countries.sort_index(by='density', ascending=False)

Out[37]:

	area	capital	population	density
country				
Netherlands	41526	Amsterdam	16.9	406.973944
Belgium	30510	Brussels	11.3	370.370370
United Kingdom	244820	London	64.9	265.092721
Germany	357050	Berlin	81.3	227.699202
France	671308	Paris	64.3	95.783158

One useful method to use is the describe method, which computes summary statistics for each column:

In [38]: countries.describe()

Out[38]:

area	population	density
5.000000	5.000000	5.000000
269042.800000	47.740000	273.183879
264012.827994	31.519645	123.440607
30510.000000	11.300000	95.783158
41526.000000	16.900000	227.699202
244820.000000	64.300000	265.092721
357050.000000	64.900000	370.370370
671308.000000	81.300000	406.973944
	5.000000 269042.800000 264012.827994 30510.000000 41526.000000 244820.000000 357050.000000	5.0000005.000000269042.80000047.740000264012.82799431.51964530510.00000011.30000041526.00000016.900000244820.00000064.300000357050.00000064.900000

The plot method can be used to quickly visualize the data in different ways:

In [39]: countries.plot()

Out[39]: <matplotlib.axes._subplots.AxesSubplot at 0xab3a0c4c>

However, for this dataset, it does not say that much.

In [120]: countries['population'].plot(kind='bar')

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0xa850918c>

In [42]: countries.plot(kind='scatter', x='population', y='area')

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0xaab1422c>

The available plotting types: 'line' (default), 'bar', 'barh', 'hist', 'box', 'kde', 'area', 'pie', 'scatter', 'hexbin'.

Some notes on selecting data

One of pandas' basic features is the labeling of rows and columns, but this makes indexing also a bit more complex compared to numpy. We now have to distuinguish between:

- selection by label
- selection by position.

For a DataFrame, basic indexing selects the columns.

Selecting a single column:

In [43]: countries['area']

Out[43]: country

Belgium 30510 France 671308 Germany 357050 Netherlands 41526 United Kingdom 244820 Name: area, dtype: int64

or multiple columns:

In [44]: countries[['area', 'density']]

Out[44]:

	area	density
country		
Belgium	30510	370.370370
France	671308	95.783158
Germany	357050	227.699202
Netherlands	41526	406.973944
United Kingdom	244820	265.092721

But, slicing accesses the rows:

In [45]: countries['France':'Netherlands']

Out[45]:

	area	capital	population	density
country				
France	671308	Paris	64.3	95.783158
Germany	357050	Berlin	81.3	227.699202
Netherlands	41526	Amsterdam	16.9	406.973944

For more advanced indexing, you have some extra attributes:

• loc: selection by label

• iloc: selection by position

In [46]: countries.loc['Germany', 'area']

Out[46]: 357050

In [47]: | countries.loc['France':'Germany', :]

Out[47]:

	area	capital	population	density
country				
France	671308	Paris	64.3	95.783158
Germany	357050	Berlin	81.3	227.699202

In [49]: countries.loc[countries['density']>300, ['capital', 'population']]

Out[49]:

	capital	population		
country				
Belgium	Brussels	11.3		
Netherlands	Amsterdam	16.9		

Selecting by position with iloc works similar as indexing numpy arrays:

In [50]:

countries.iloc[0:2,1:3]

Out[50]:

	capital	population
country		
Belgium	Brussels	11.3
France	Paris	64.3

The different indexing methods can also be used to assign data:

```
In [ ]: countries.loc['Belgium':'Germany', 'population'] = 10
In [ ]: countries
```

There are many, many more interesting operations that can be done on Series and DataFrame objects, but rather than continue using this toy data, we'll instead move to a real-world example, and illustrate some of the advanced concepts along the way.

Case study: air quality data of European monitoring stations (AirBase)

AirBase (The European Air quality dataBase)

AirBase: hourly measurements of all air quality monitoring stations from Europe.

In [12]:

from IPython.display import HTML

HTML('<iframe src=http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-a
ir-quality-database-8#tab-data-by-country width=700 height=350></iframe>')

Out[12]:

Importing and cleaning the data

Importing and exporting data with pandas

A wide range of input/output formats are natively supported by pandas:

- CSV, text
- SQL database
- Excel
- HDF5
- json
- html
- pickle
- ...

```
In [ ]: pd.read
In [ ]: countries.to
```

Now for our case study

I downloaded some of the raw data files of AirBase and included it in the repo:

station code: BETR801, pollutant code: 8 (nitrogen dioxide)

In [26]: | !head -1 ./data/BETR8010000800100hour.1-1-1990.31-12-2012

Just reading the tab-delimited data:

In [52]: data = pd.read_csv("data/BETR8010000800100hour.1-1-1990.31-12-2012", sep='\t')

In [53]: data.head()

Out[53]:

	1990- 01-01	-999.000	0	-999.000.1	0.1	-999.000.2	0.2	-999.000.3	0.3	-999.000.4	•••	-99
0	1990- 01-02	-999	0	-999	0	-999	0	-999	0	-999	•••	57
1	1990- 01-03	51	1	50	1	47	1	48	1	51	•••	84
2	1990- 01-04	-999	0	-999	0	-999	0	-999	0	-999	•••	69
3	1990- 01-05	51	1	51	1	48	1	50	1	51	•••	-99
4	1990- 01-06	-999	0	-999	0	-999	0	-999	0	-999	•••	-99

 $5 \text{ rows} \times 49 \text{ columns}$

Not really what we want.

With using some more options of read_csv:

In [55]: data.head()

Out[55]:

	date	00	flag	01	flag	02	flag	03	flag	04	•••	19	flag	20	flag	21	fla
C	1990- 01-01	NaN	0	NaN	0	NaN	0	NaN	0	NaN	•••	NaN	0	NaN	0	NaN	0
1	1990- 01-02	NaN	1	NaN	1	NaN	1	NaN	1	NaN	•••	57	1	58	1	54	1
2	1990- 01-03	51	0	50	0	47	0	48	0	51	•••	84	0	75	0	NaN	0
3	1990- 01-04	NaN	1	NaN	1	NaN	1	NaN	1	NaN	•••	69	1	65	1	64	1
4	1990- 01-05	51	0	51	0	48	0	50	0	51	•••	NaN	0	NaN	0	NaN	0

5 rows × 49 columns

So what did we do:

- specify that the values of -999 and -9999 should be regarded as NaN
- specified are own column names

For now, we disregard the 'flag' columns

In [56]: data = data.drop('flag', axis=1) data

Out[56]:

	date	00	01	02	03	04	05	06	07	80		14	15	16	17
0	1990- 01-01	NaN	•••	NaN	NaN	NaN	NaN								
1	1990- 01-02	NaN	•••	55.0	59.0	58	59.C								
2	1990- 01-03	51.0	50.0	47.0	48.0	51.0	52.0	58.0	57.0	NaN	•••	69.0	74.0	NaN	NaN
3	1990- 01-04	NaN	•••	NaN	71.0	74	70.C								
•••		•••	•••	•••	•••	•••	•••	•••		•••			•••		•••
8388	2012- 12-28	26.5	28.5	35.5	32.0	35.5	50.5	62.5	74.5	76.0	•••	56.5	52.0	55	53.5
8389	2012- 12-29	21.5	16.5	13.0	13.0	16.0	23.5	23.5	27.5	46.0		48.0	41.5	36	33.C
8390	2012- 12-30	11.5	9.5	7.5	7.5	10.0	11.0	13.5	13.5	17.5		NaN	25.0	25	25.5
8391	2012- 12-31	9.5	8.5	8.5	8.5	10.5	15.5	18.0	23.0	25.0	•••	NaN	NaN	28	27.5

8392 rows × 25 columns

Now, we want to reshape it: our goal is to have the different hours as row indices, merged with

Intermezzo: reshaping your data with stack, unstack and pivot

The docs say:

Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.


```
In [121]: df = pd.DataFrame({'A':['one', 'one', 'two', 'two'], 'B':['a', 'b', 'a', 'b'], 'C':r
    ange(4)})
    df
```

Out[121]:		Α	В	C
	0	one	а	0
	1	one	b	1
	2	two	а	2
	3	two	b	3

To use stack/unstack, we need the values we want to shift from rows to columns or the other way around as the index:

```
In [122]: df = df.set_index(['A', 'B'])
    df
```

In [125]: result = dt['C'].unstack()
 result

Out[125]: E

В	а	b
Α		
one	0	1
two	2	3

In [127]: dt = result.stack().reset_index(name='C')
 df

Out[127]:

	Α	В	С
0	one	а	0
1	one	b	1
2	two	а	2
3	two	b	3

pivot is similar to unstack, but let you specify column names:

In [63]: df.pivot(index='A', columns='B', values='C')

Out[63]:

В	а	b
Α		
one	0	1
two	2	3

pivot_table is similar as pivot, but can work with duplicate indices and let you specify an aggregation function:

Out[130]:

	Α	В	C
0	one	а	0
1	one	b	1
2	two	а	2
3	two	b	თ
4	one	а	4
5	two	b	5

In [132]: dt.pivot_table(index='A', columns='B', values='C', aggfunc='count') #'mean'

Out[132]:

В	а	b
Α		
one	4	1
two	2	8

Back to our case study

We can now use stack to create a timeseries:

```
In [138]:
          data = data.set_index('date')
In [139]:
          data_stacked = data.stack()
 In [68]:
          data stacked
           date
 Out[68]:
           1990-01-02
                             48.0
                       09
                             48.0
                       12
                       13
                             50.0
                             55.0
                       14
           2012-12-31
                       20
                             16.5
                       21
                             14.5
                             16.5
                       22
                       23
                             15.0
           dtype: float64
```

Now, lets combine the two levels of the index:

	BETR801
1990-01-02 09:00:00	48.0
1990-01-02 12:00:00	48.0
1990-01-02 13:00:00	50.0
1990-01-02 14:00:00	55.0
•••	•••
2012-12-31 20:00:00	16.5
2012-12-31 21:00:00	14.5
2012-12-31 22:00:00	16.5
2012-12-31 23:00:00	15.0

170794 rows × 1 columns

For this talk, I put the above code in a separate function, and repeated this for some different monitoring stations:

In [73]: import airbase
no2 = airbase.load_data()

- FR04037 (PARIS 13eme): urban background site at Square de Choisy
- FR04012 (Paris, Place Victor Basch): urban traffic site at Rue d'Alesia
- BETR802: urban traffic site in Antwerp, Belgium
- BETN029: rural background site in Houtem, Belgium

See http://www.eea.europa.eu/themes/air/interactive/no2 (http://www.eea.europa.eu/themes/air/interactive/no2)

Exploring the data

Some useful methods:

head and tail

In [140]: no2.head(3)

Out[140]:

	BETR801	BETN029	FR04037	FR04012
1990-01-0100:00:00	NaN	16	NaN	NaN
1990-01-0101:00:00	NaN	18	NaN	NaN
1990-01-01 02:00:00	NaN	21	NaN	NaN

In [75]: no2.tail()

Out[75]:

	BETR801	BETN029	FR04037	FR04012
2012-12-31 19:00:00	21.0	2.5	28	67
2012-12-31 20:00:00	16.5	2.0	16	47
2012-12-31 21:00:00	14.5	2.5	13	43
2012-12-31 22:00:00	16.5	3.5	14	42
2012-12-31 23:00:00	15.0	3.0	13	49

info()

```
In [76]: no2.into()

<class 'pandas.core.trame.DataFrame'>
    DatetimeIndex: 198895 entries, 1990-01-01 00:00:00 to 2012-12-31 23:00:00
    Data columns (total 4 columns):
    BETR801    170794 non-null float64
    BETN029    174807 non-null float64
    FR04037    120384 non-null float64
    FR04012    119448 non-null float64
    dtypes: float64(4)
    memory usage: 7.6 MB
```

Getting some basic summary statistics about the data with describe:

In [77]: no2.describe()

Out[77]:

	BETR801	BETN029	FR04037	FR04012
count	170794.000000	174807.000000	120384.000000	119448.000000
mean	47.914561	16.687756	40.040005	87.993261
std	22.230921	13.106549	23.024347	41.317684
min	0.000000	0.000000	0.000000	0.000000
25%	32.000000	7.000000	23.000000	61.000000
50%	46.000000	12.000000	37.000000	88.000000
75%	61.000000	23.000000	54.000000	115.000000
max	339.000000	115.000000	256.000000	358.000000

Quickly visualizing the data

In [78]: no2.plot(kind='box', ylim=[0,250])

Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0xa831884c>

In [79]: no2['BEIR801'].plot(kind='hist', bins=50)

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0xa821658c>

In [80]: no2.plot(tigsize=(12,6))

Out[80]: <matplotlib.axes._subplots.AxesSubplot at 0xa9f973ac>

This does not say too much ..

We can select part of the data (eg the latest 500 data points):

In [81]: no2[-500:].plot(tigsize=(12,6))

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0xa//1b10c>

Or we can use some more advanced time series features -> next section!

Working with time series data

When we ensure the DataFrame has a DatetimeIndex, time-series related functionality becomes available:

Indexing a time series works with strings:

In [83]: no2["2010-01-01 09:00": "2010-01-01 12:00"]

Out[83]:

	BETR801	BETN029	FR04037	FR04012
2010-01-01 09:00:00	17	7	19	41
2010-01-01 10:00:00	18	5	21	48
2010-01-01 11:00:00	17	4	23	63
2010-01-01 12:00:00	18	4	22	57

A nice feature is "partial string" indexing, where we can do implicit slicing by providing a partial datetime string.

E.g. all data of 2012:

In [84]: no2['2012']

Out[84]:

	BETR801	BETN029	FR04037	FR04012
2012-01-01 00:00:00	21.0	1.0	17	56
2012-01-01 01:00:00	18.0	1.0	16	50
2012-01-01 02:00:00	20.0	1.0	14	46
2012-01-01 03:00:00	16.0	1.0	17	47
•••	•••	•••	•••	•••
2012-12-31 20:00:00	16.5	2.0	16	47
2012-12-31 21:00:00	14.5	2.5	13	43
2012-12-31 22:00:00	16.5	3.5	14	42
2012-12-31 23:00:00	15.0	3.0	13	49

8784 rows × 4 columns

Or all data of January up to March 2012:

Time and date components can be accessed from the index:

```
In [145]: noz.index.nour
Out[145]: array([ 0,  1,  2, ..., 21, 22, 23])
In [87]: noz.index.year
Out[87]: array([1990, 1990, 1990, ..., 2012, 2012])
```

The power of pandas: resample

A very powerfull method is **resample**: **converting the frequency of the time series** (e.g. from hourly to daily data).

The time series has a frequency of 1 hour. I want to change this to daily:

In [88]: no2.resample('D').nead()

Out[88]:

	BETR801	BETN029	FR04037	FR04012
1990-01-01	NaN	21.500000	NaN	NaN
1990-01-02	53.923077	35.000000	NaN	NaN
1990-01-03	63.000000	29.136364	NaN	NaN
1990-01-04	65.250000	42.681818	NaN	NaN
1990-01-05	63.846154	40.136364	NaN	NaN

By default, resample takes the mean as aggregation function, but other methods can also be specified:

In [90]: no∠.resample('υ', now='max').nead()

Out[90]:

	BETR801	BETN029	FR04037	FR04012
1990-01-01	NaN	41	NaN	NaN
1990-01-02	59	59	NaN	NaN
1990-01-03	103	47	NaN	NaN
1990-01-04	74	58	NaN	NaN
1990-01-05	84	67	NaN	NaN

Further exploring the data:

In [152]: no2.resample('M').plot() # 'A'

Out[152]: <matplotlib.axes._subplots.AxesSubplot at 0xa8bc4b8c>

In []: # no2['2012'].resample('U').plot()

In [92]: no2.loc['2009':, 'FR0403/'].resample('M', how=['mean', 'median']).plot()

Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0xa43e952c>

Question: The evolution of the yearly averages with, and the overall mean of all stations

```
In [93]: no2_1999 = no2['1999':]
    no2_1999.resample('A').plot()
    no2_1999.mean(axis=1).resample('A').plot(color='k', linestyle='--', linewidth=4)
```

Out[93]: <matplotlip.axes._subplots.AxesSubplot at Uxa4eabU4c>

Analysing the data

Intermezzo - the groupby operation (split-apply-combine)

By "group by" we are referring to a process involving one or more of the following steps

- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- Combining the results into a data structure

The example of the image in pandas syntax:

Out[94]:

	data	key
0	0	Α
1	5	В
2	10	С
3	5	Α
•••	•••	•••
5	15	С
6	10	Α
7	15	В
8	20	С

9 rows × 2 columns

In [95]: aτ.groupby('κey').aggregate('sum') # np.sum

Out[95]:

	data
key	
Α	15
В	30
С	45

In [96]: ατ.grouppy('κey').sum()

Out[96]:

	data
key	
Α	15
В	30
С	45

Back to the air quality data

Question: how does the typical monthly profile look like for the different stations?

First, we add a column to the dataframe that indicates the month (integer value of 1 to 12):

```
In [97]: no2['montn'] = no2.index.montn
```

Now, we can calculate the mean of each month over the different years:

In [98]: no∠.grouppy('montn').mean()

Out[98]:

	BETR801	BETN029	FR04037	FR04012
month				
1	50.927088	20.304075	47.634409	82.472813
2	54.168021	19.938929	50.564499	83.973207
3	54.598322	19.424205	47.862715	96.272138
4	51.491741	18.183433	40.943117	95.962862
•••	•••	•••	•••	•••
9	49.220250	14.605979	39.706019	93.000316
10	50.894911	17.660149	44.010934	86.297836
11	50.254468	19.372193	45.564683	87.173878
12	48.644117	21.007089	45.262243	81.817977

 $12 \text{ rows} \times 4 \text{ columns}$

In [99]: no∠.grouppy('montn').mean().plot()

Out[99]: <matplotlib.axes._subplots.AxesSubplot at @xa9@1b@cc>

Question: The typical diurnal profile for the different stations

In [156]: no∠.grouppy(no∠.inaex.nour).mean().pιoτ()

Out[156]: <matplotlip.axes._supplots.axesSupplot at @xa32T2Tec>

Question: What is the difference in the typical diurnal profile between week and weekend days.

In [101]: no∠.index.weeκday?
In [102]: no∠[`weeκday`] = no∠.index.weekday

Add a column indicating week/weekend

In [103]: no2[weekend] = no2[weekday].1sin([5, b])

In [104]: data_weekend = no2.groupby(['weekend', no2.index.nour]).mean()
 data_weekend.head()

Out[104]:

		BETR801	BETN029	FR04037	FR04012	month	weekday
weekend							
	0	40.008066	17.487512	34.439398	52.094663	6.520355	1.998157
	1	38.281875	17.162671	31.585121	44.721629	6.518121	1.997315
False	2	38.601189	16.800076	30.865143	43.518539	6.520511	2.000000
	3	42.633946	16.591031	32.963500	51.942135	6.518038	2.002360
	4	49.853566	16.791971	40.780162	72.547472	6.514098	2.003883

In [105]:

data_weekend_FR04012.head() unstack(level=υ) data_weekend_FR04012.head()

Out[105]:

weekend	False	True
0	52.094663	69.817219
1	44.721629	60.697248
2	43.518539	54.407904
3	51.942135	53.534933
4	72.547472	57.472830

In [106]: data_weekend_Fκυ4υ12.plot()

Out[106]: <matplotlib.axes._subplots.AxesSubplot at @xa8f@cfec>

Question: What are the number of exceedances of hourly values above the European limit 200 μ g/m3 ?

```
In [107]: exceedances = noz > zww

In [108]: # group by year and count exceedances (sum or boolean)
exceedances = exceedances.groupby(exceedances.index.year).sum()

In [109]: ax = exceedances.loc[zwwb:].plot(kind='bar')
ax.axhline(18, color='k', linestyle='--')
```

Out[109]: <matpιotlip.lines.Linezν at ωχακεσίτος>

Question: Visualize the typical week profile for the different stations as boxplots.

Tip: the boxplot method of a DataFrame expects the data for the different boxes in different columns)

In [110]: # add a weekday and week социт no2['weekday'] = no2.index.weekday no2['week'] = no2.index.week no2.head()

Out[110]:

	BETR801	BETN029	FR04037	FR04012	month	weekday	weekend	week
1990-01- 01 00:00:00	NaN	16	NaN	NaN	1	0	False	1
1990-01- 01 01:00:00	NaN	18	NaN	NaN	1	0	False	1
1990-01- 01 02:00:00	NaN	21	NaN	NaN	1	0	False	1
1990-01- 01 03:00:00	NaN	26	NaN	NaN	1	0	False	1
1990-01- 01 04:00:00	NaN	21	NaN	NaN	1	0	False	1

In [111]: # pivot table so that the weekdays are the different columns
 data_pivoted = no2['2012'].pivot_table(columns='weekday', index='week', values='FR04
 037')
 data_pivoted.head()

Out[111]:

weekday	0	1	2	3	4	5	6
week							
1	24.625000	23.875000	26.208333	17.500000	40.208333	24.625000	22.375
2	39.125000	44.125000	57.583333	50.750000	40.791667	34.750000	32.250
3	45.208333	66.333333	51.958333	28.250000	28.291667	18.416667	18.333
4	35.333333	49.500000	49.375000	48.916667	63.458333	34.250000	25.250
5	47.791667	38.791667	54.333333	50.041667	51.458333	46.541667	35.458

In [113]: pox = data_pivoted.poxplot()

Exercise: Calculate the correlation between the different stations

In [114]: noz[['BEIK8U1', 'BEINU29', 'FKU4U3/', 'FKU4U12']].corr()

Out[114]:

	BETR801	BETN029	FR04037	FR04012
BETR801	1.000000	0.464085	0.561676	0.394446
BETN029	0.464085	1.000000	0.401864	0.186997
FR04037	0.561676	0.401864	1.000000	0.433466
FR04012	0.394446	0.186997	0.433466	1.000000

In [115]: noz[[ˈβΕἰΚδυΙ΄, ˈβΕἰΝυΖ9΄, ˈϝκυ4υ3/΄, ˈϝκυ4υ12΄]].resample(ˈν').corr()

Out[115]:

	BETR801	BETN029	FR04037	FR04012
BETR801	1.000000	0.581701	0.663855	0.459885
BETN029	0.581701	1.000000	0.527390	0.312484
FR04037	0.663855	0.527390	1.000000	0.453584
FR04012	0.459885	0.312484	0.453584	1.000000

Further reading

- the documentation: http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/)
- Wes McKinney's book "Python for Data Analysis"
- lots of tutorials on the internet, eg http://github.com/jvns/pandas-cookbook (http://github.com/jvns/pandas-cookbook)

What's new in pandas

Some recent enhancements of the last year (versions 0.14 to 0.16):

- Better integration for categorical data (Categorical and CategoricalIndex)
- The same for Timedelta and Timedelta Index
- More flexible SQL interface based on sqlalchemy
- MultiIndexing using slicers
- .dt accessor for accesing datetime-properties from columns
- Groupby enhancements
- And a lot of enhancements and bug fixes

How can you help?

We need you!

Contributions are very welcome and can be in different domains:

- reporting issues
- improving the documentation
- testing release candidates and provide feedback
- triaging and fixing bugs
- implementing new features
- spreading the word

-> https://github.com/pydata/pandas (https://github.com/pydata/pandas)

Thanks for listening! Questions?

- https://github.com/jorisvandenbossche (https://github.com/jorisvandenbossche)
- @jorisvdbossche (https://twitter.com/jorisvdbossche)

Slides and data: Source: https://github.com/jorisvandenbossche/2015-PyDataParis (https://github.com/jorisvandenbossche/2015-PyDataParis)

Slides presented with 'live reveal' https://github.com/damianavila/RISE (https://github.com/damianavila/RISE)