# Learning Spatiotemporal Features with 3D Convolutional Networks (IEEE 2015)

2기 박소영

Generic video descriptor의 필요성

# Video를 이해하기 위해 지금까지 다양한 접근 방법을 가져옴 => Generic video descriptor가 필요하다

# 좋은 video descriptor란?

- 1) Generic: 다양한 종류를 모두 이해할 수 있도록 일반적이어야 한다
- 2) Compact: 처리, 저장 등을 더 큰 범위에서 수행 가능해야 한다
- 3) Efficient: 수천 개의 video가 real system에서 동작 가능해야 한다
- 4) Simple: 더 간단한 모델에서도 잘 동작해야 한다

그동안의 다양한 image task 모델들



지난 수 년 동안 image 영역에서 feature 추출 위한 다양한 model을 사용할 수 있게 되었다.

그동안의 다양한 image task 모델들



지난 수 년 동안 image 영역에서 feature 추출 위한 다양한 model을 사용할 수 있게 되었다

그동안의 다양한 image task 모델들



지난 수 년 동안 image 영역에서 feature 추출 위한 다양한 model을 사용할 수 있게 되었다

C3D

그러나이 모델들은 image base deep feature -> video 영역에 적합하지 않다 Motion modeling에 적합하지 않기 때문

이 <del>논문</del>에서, 저자들은 3D ConvNet을 이용해 spatiotemporal feature를 학습

- 간단한 선형 분류로 학습한 feature만으로도 다양한 video 분석 task에 좋은 결과
- 최초로 3D ConvNet을 제시한 것은 아님. 그러나 다양한 task에서 좋은 결과

시공간적인 특징을 학습하기에 2D conv에 비해 3D conv가 더 적합 3D conv에서 3x3x3 conv kernel이 가장 좋은 성능을 보였다 C3D가 4개의 다른 벤치마크 중에서 가장 뛰어난 성능을 보였다

2D conv vs 3D conv



- (a) Image에 2D conv 적용, Output: image
- (b) 복수개의 image에 2D conv 적용, Output: image
  - (c) 3D conv 적용, Output: volume

2D conv는 매번 conv 작동될 때마다 '시각적인 정보' 를 잃는다

시각적인 정보를 잃어?

#### Two-stream convolutional networks for action recognition in videos, NIPS, 2014



Figure 1: Two-stream architecture for video classification.

Temporal stream ConvNet은 복수의 frame을 input으로 가져도 처음 Conv layer 후에 시간적 정보가 완벽하게 소실된다

시각적인 정보를 잃어?

#### Large-scale video classification with convolutional neural networks, CVPR, 2014



대부분의 network에서 input의 시간적 신호를 첫 Conv layer 이후 잃어버림 그러나 3D Conv를 사용한 Slow Fusion에서는 좋은 결과를 보임 => 3D Conv가 그 이유일 것

UCF101(중간사이즈)을 학습하는 C3D



모든 Conv kernel은 size d: kernel temporal depth

Conv stride: 1

Pooling: max pooling / 2x2x2 kernel(첫번째 pooling제외) / stride 1

output 1/8

UCF101(중간사이즈)을 학습하는 C3D

논문의 주요 관심사: Temporal information!

(1) Homogeneous temporal depth

d: 1,3,5,7 (depth-n으로 명명)

(2) Varying temporal depth

Increase: 3-3-5-5-7

Decrease: 7-5-5-3-3

UCF101(중간사이즈)을 학습하는 C3D

#### 논문의 주요 관심사: Temporal information!

### (1) Homogeneous temporal depth

d: 1,3,5,7 (depth-n으로 명명)

## (2) Varying temporal depth

Increase: 3-3-5-5-7
Decrease: 7-5-5-3-3



Large size data를 학습하는 C3D



모든 Conv kernel은 size d: 3x3x3

Conv stride: 1x1x1

Pooling: max pooling / 2x2x2 kernel(첫번째 pooling제외) / stride 2x2x2 output 1/8

Large size data를 학습하는 C3D

#### Sports-1M

| Method                                        | Number of Nets | Clip hit@1 | Video hit@1 | Video hit@5 |
|-----------------------------------------------|----------------|------------|-------------|-------------|
| DeepVideo's Single-Frame + Multires [18]      | 3 nets         | 42.4       | 60.0        | 78.5        |
| DeepVideo's Slow Fusion [18]                  | 1 net          | 41.9       | 60.9        | 80.2        |
| Convolution pooling on 120-frame clips [29]   | 3 net          | 70.8*      | 72.4        | 90.8        |
| C3D (trained from scratch)                    | 1 net          | 44.9       | 60.0        | 84.4        |
| C3D (fine-tuned from I380K pre-trained model) | 1 net          | 46.1       | 61.1        | 85.2        |

DeepVideo: 이전에 3D 적용했던 모델

What does C3D learn?



C3D는 처음 몇 개의 frame에서 외관에 초점을 맞추다가 두드러지는 움직임을 추적한다

## 02. EXPERIMENT

(1) Action Recognition

| Method                           | A courses (07) |
|----------------------------------|----------------|
|                                  | Accuracy (%)   |
| Imagenet + linear SVM            | 68.8           |
| iDT w/ BoW + linear SVM          | 76.2           |
| Deep networks [18]               | 65.4           |
| Spatial stream network [36]      | 72.6           |
| LRCN [6]                         | 71.1           |
| LSTM composite model [39]        | 75.8           |
| C3D (1 net) + linear SVM         | 82.3           |
| C3D (3 nets) + linear SVM        | 85.2           |
| iDT w/ Fisher vector [31]        | 87.9           |
| Temporal stream network [36]     | 83.7           |
| Two-stream networks [36]         | 88.0           |
| LRCN [6]                         | 82.9           |
| LSTM composite model [39]        | 84.3           |
| Conv. pooling on long clips [29] | 88.2           |
| LSTM on long clips [29]          | 88.6           |
| Multi-skip feature stacking [25] | 89.1           |
| C3D (3 nets) + iDT + linear SVM  | 90.4           |

Table 3. Action recognition results on UCF101. C3D compared with baselines and current state-of-the-art methods. Top: simple features with linear SVM; Middle: methods taking only RGB frames as inputs; Bottom: methods using multiple feature combinations.

## 02. EXPERIMENT

(2) Action Similarity Labeling



| Method   | Features     | Model       | Acc. | AUC  |
|----------|--------------|-------------|------|------|
| [21]     | STIP         | linear      | 60.9 | 65.3 |
| [22]     | STIP         | metric      | 64.3 | 69.1 |
| [20]     | MIP          | metric      | 65.5 | 71.9 |
| [11]     | MIP+STIP+MBH | metric 66.1 |      | 73.2 |
| [45]     | iDT+FV       | metric      | 68.7 | 75.4 |
| Baseline | Imagenet     | linear      | 67.5 | 73.8 |
| Ours     | C3D          | linear      | 78.3 | 86.5 |

## 02. EXPERIMENT

(3) Scene and object recognition

| Dataset  | [4]  | [41] | [8]  | [9]  | Imagenet | C3D  |
|----------|------|------|------|------|----------|------|
| Maryland | 43.1 | 74.6 | 67.7 | 77.7 | 87.7     | 87.7 |
| YUPENN   | 80.7 | 85.0 | 86.0 | 96.2 | 96.7     | 98.1 |

## 03. CONCLUSION

- \* 비디오 분석에서 3D conv가 시공간적 feature를 학습하는 것이 가능하다
- \* 3D conv에 가장 최적인 temporal kernel length를 찾으려 했다
- \* C3D가 외관과 motion info를 동시에 modeling할 수 있으며 2D conv를 능가
- \* 선형 classifier를 도입함으로써 최신 방법에 아주 가까운 성능을 낼 수 있다

04. FIN QNA

Q & a