

2^η Εργασία Τεχνητής Νοημοσύνης

2021-22

Ιωάννης Μαστρογιάννης 3190114 Δημήτριος Παρασκευιώτης 3190164

Διδάσκων: κ. Ίων Ανδρουτσόπουλος

Επιλέξαμε να υλοποιήσουμε σε Python τους αλγόριθμους μάθησης **Αφελής ταξινομητής Bayes** και **ID3**.

Η ανάπτυξη των 2 αυτών αλγορίθμων έγινε μέσω των προγραμμάτων PyCharm και Visual Studio Code

Αφελής ταξινομητής Bayes

Για την ανάπτυξη του παραπάνω αλγορίθμου βασιστήκαμε στις διαφάνειες νούμερο 16 του μαθήματος, στα εργαστήρια και σε διάφορες πηγές που βρήκαμε στο διαδίκτυο.

Ο αλγόριθμος αυτός είναι σχεδιασμένος για Boolean και δυαδικές τιμές, οπότε ιδανικός για τα features μας (θετική(0)/αρνητική(1) κριτική).

Οι παρακάτω πίνακες και τα διαγράμματα έχουν δημιουργηθεί με σύνολο 500 λέξεων στο vocabulary.

Εδώ βλέπουμε τον πίνακα που μας δείχνει το ποσοστό **ορθότητας** (accuracy) στα **δεδομένα εκπαίδευσης** ανά 100 αρχεία

			,	
Results	Values		23800	0.72292
100	0.64132		23900	0.72276
200	0.67768		24000	0.72284
300	0.69292		24100	0.72264
400	0.6944		24200	0.72276
500	0.69756		24300	0.72268
600	0.70208		24400	0.72268
700	0.7026		24500	0.72248
800	0.70408		24600	0.72244
900	0.707		24700	0.7224
1000	0.70928		24800	0.7224
1100	0.7118		24900	0.72232
1200	n 71444		25000	0.72236
Control Run Code fragment (33)	≣ TODO ⊕ lines long)	Control	▶ Run	≣ торо 9 р

Προφανώς, έχουμε συμπεριλάβει μόνο την αρχή και το τέλος του πίνακα, λόγω του μεγέθους του

Στη συνέχεια βλέπουμε τον πίνακα που μας δείχνει το ποσοστό **ορθότητας** (accuracy) στα **δεδομένα ελέγχου** ανά 100 αρχεία

			24000	0.72792
Results	Values		24100	0.728
100	0.64732		2/200	0.72012
200	0.68252		24200	0.72812
300	0.69764		24300	0.728
400	0.70064		24400	0.72816
ļi			24500	0.72808
500	0.70108		24600	0.72828
600	0.70648		24700	0.728
700	0.70932			
800	0.71072		24800	0.72808
900	0.71324		24900	0.72788
1000	0.71672		25000	0.72812
11 AA Control ► Run	∩ 7196 ≣ торо 9 г	Pi F	Process finis	shed with ex

Όπως και στον προηγούμενο πίνακα, έτσι και εδώ δεν συμπεριλάβαμε όλα τα δεδομένα του για εύλογους λόγους.

Η καμπύλη μάθησης φαίνεται παρακάτω και έχει ως άξονες το ποσοστό ορθότητας και τον αριθμό των δεδομένων εκπαίδευσης.

Ο πίνακας με τα αποτελέσματα **ακρίβειας** (precision), **ανάκλησης** (recall), **F1** για την αρνητική κατηγορία, συναρτήσει του πλήθους των παραδειγμάτων εκπαίδευσης είναι ο εξής:

Results	Values
precision	0.5
recall	0.53
f1-score	0.51

Οι αντίστοιχες καμπύλες βρίσκονται παρακάτω.

Καμπύλη ακρίβειας (precision)

Καμπύλη ανάκλησης (recall)

<u>Καμπύλη F1</u>

ΙD3 Αλγόριθμος

Στον αλγόριθμο που αναπτύξαμε, δεν χρησιμοποιήσαμε πριόνισμα ή πρόωρο τερματισμό της επέκτασης κάθε δέντρου.

Οι παρακάτω πίνακες και τα διαγράμματα έχουν δημιουργηθεί με σύνολο 100 λέξεων στο vocabulary.

Εδώ βλέπουμε τον πίνακα που μας δείχνει το ποσοστό **ορθότητας** (accuracy) στα **δεδομένα εκπαίδευσης** ανά 1000 αρχεία

17000	0.8708	Results	Values
18000	0.8856	0	0.5
19000	0.90356	1000	0.5936
20000	0.9186	2000	0.61132
21000	0.93732	3000	0.63428
22000	0.95008	4000	0.65372
23000	0.96816	5000	0.66948
24000	0.9836	6000	0.68548
		7000	0.70408
Results	Values		<u> </u>
Control ▶ Run	≡ торо 9	Rontrol ▶ Run	A 72A96 ≣ TODO ●
ore-built shared ind			

Στη συνέχεια βλέπουμε τον πίνακα που μας δείχνει το ποσοστό **ορθότητας** (accuracy) στα **δεδομένα ελέγχου** ανά 1000 αρχεία

ID3 ×				. , ,
Results	Values			
0	0.5		55 A	
1000	0.57712		17000	0.59888
2000	0.58736		18000	0.59188
3000	0.58112		19000	0.59444
4000	0.59008		20000	0.59748
ļ——			21000	0.59668
5000 	0.59012		22000	0.59552
6000	0.58916		23000	0.59208
7000	0.58904			
8000	0.59556		24000	0.59556
Control Run	≣ TODO 9	Pro	Process finis	shed with ex

Η καμπύλη μάθησης φαίνεται παρακάτω και έχει ως άξονες το ποσοστό ορθότητας και τον αριθμό των δεδομένων εκπαίδευσης.

Ο πίνακας με τα αποτελέσματα **ακρίβειας** (precision), **ανάκλησης** (recall), **F1** για την θετική κατηγορία, συναρτήσει του πλήθους των παραδειγμάτων εκπαίδευσης είναι ο εξής:

Results	Values		
precision	0.999864		
recall	0.999864		
f1	0.999864		
Process finished with exi			

Καμπύλη ακρίβειας (precision)

Καμπύλη ανάκλησης (recall)

<u>Καμπύλη F1</u>

