${\rm \acute{I}ndice}$

1.	Identificación y diagnosis	2
	1.1. Instrumentos de identificación	3
	1.2. Instrumentos de diagnosis	
2.	Raíces unitarias	4
	2.1. Notación: operadores retardo y diferencia	4
	2.1.1. Notación: ARIMA	
	2.2. Raíces unitarias en los polinomios AR y MA	4
	2.3. Paseos aleatorios	
3.	Modelos ARIMA estacionales (SARIMA)	5
	3.1. MA(1) estacional con raíz positiva	6
	3.2. AR(1) estacional con raíz positiva	
	3.3. $ARIMA(0,0,1) \times (0,0,1)_{12}$	
	3.4. ARIMA $(1,0,0) \times (0,0,1)_{12}$	
	3.5. ARIMA $(1,0,0) \times (1,0,0)_{12}$	
	3.6. ARIMA $(0,0,1) \times (1,0,0)_{12}$	
4.	Resumen del análisis univariante de series temporales	11
	4.1. Ideas principales	11
	4.2 Metadología	

Econometría Aplicada. Lección 8

Marcos Bujosa

20 de septiembre de 2024

Resumen

En esta lección repasamos los instrumentos de identificación y diagnosis del análisis univariante. Extendemos la notación para incorporar modelos con raíces unitarias. Presentamos modelos estacionales y finalmente resumimos las ideas principales del análisis univariante.

Carga de algunas librerías de R

```
# cargamos algunas librerías de R
library(tfarima) # librería de José Luis Gallego para Time Series
library(readr) # para leer ficheros CSV
library(ggplot2) # para el scatterplot (alternaticamente library(tidyverse))
library(ggfortify) # para pintar series temporales
library(jtools) # para representación resultados estimación
library(zoo) # para generar objetos ts (time series)
# y fijamos el tamaño de las figuras que se generan en el notebook
options(repr.plot.width = 12, repr.plot.height = 4, repr.plot.res = 200)
```

1. Identificación y diagnosis

- Combinando las herramientas gráficas y estadísticas que hemos visto, se puede inferir el modelo subyacente a los datos.
- Este proceso de especificación empírica del modelo es conocido como "identificación"

El proceso de identificación puede estructurarse como una secuencia de preguntas:

- 1. ¿Es estacionaria la serie?
- 2. ¿Tiene una media significativa?
- 3. ¿Es persistente la ACF? ¿sigue alguna pauta reconocible?
- 4. ¿Es persistente la PACF? ¿sigue alguna pauta reconocible?
- La identificación se basa en estadísticos, como la media muestral o las autocorrelaciones, cuya representatividad depende de la estacionariedad de las series
- Tras inducir la estacionariedad, especificamos un modelo tentativo decidiendo cuál de las funciones ACF o PACF es finita y cuál es persistente

	ACF finita	ACF persistente	
PACF finita	Ruido blanco: retardos conjun-	AR: orden indicado por la PACF	
	tamente NO significativos		
PACF persistente	MA: orden indicado por la ACF	ARMA	

La parametrización de mayor orden en modelos ARMA con series económicas suele ser ARMA(2,1)

1.1. Instrumentos de identificación

	Instrumento	Objetivo y observaciones
Transf.	Gráficos rango-media y serie	Conseguir independizar la variabilidad de
logarítmica	temporal	los datos de su nivel. Las series económicas
		suelen necesitar esta transformación
d, orden de	Gráfico de la serie temporal.	Conseguir que los datos fluctúen en torno a
diferenciación	ACF (caída lenta y lineal).	una media estable. En series económicas, \boldsymbol{d}
	Contrastes de raíz unitaria	suele ser 1 ó 2
Constante	Media de la serie diferenciada.	Si la media de la serie transformada es sig-
	Desviación típica de la media	nificativa, el modelo debe incluir un tér-
		mino constante
p, orden AR	PACF de orden p . ACF infinita	PACF tiene p valores no nulos. En series
		económicas p suele ser ≤ 2
q, orden MA	ACF de orden q . PACF infinita	ACF tiene q valores no nulos. En series eco-
		nómicas q suele ser ≤ 1

1.2. Instrumentos de diagnosis

	Instrumento	Posible diagnóstico
d, orden de	Raíces de los polinomios AR y	Raíz AR próxima a uno: quizá conviene
diferenciación	MA	añadir una diferencia. Raíz MA próxima:
		quizá conviene quitar una diferencia.
d, orden de	Gráfico de los residuos	Si muestra rachas largas de residuos posi-
diferenciación		tivos o negativos, puede ser necesaria una
		diferencia adicional.
Constante	Media de los residuos	Si es significativa: añadir término constante
Constante	Constante estimada	Si NO es significativa: el modelo mejorará
		quitando el término constante
p y q,	Contrastes de significación	Pueden sugerir eliminar parámetros irrele-
		vantes
p y q,	ACF y PACF de los residuos.	Indican posibles pautas de autocorrelación
	Test Q de Ljung-Box	no modelizadas
p y q,	Correlaciones elevadas entre pa-	Puede ser un síntoma de sobreparametriza-
	rámetros estimados	ción

Por último, se puede aplicar un análisis exploratorio consistente en añadir parámetros AR y/o MA, para comprobar si resultan significativos y, además, mejoran el modelo

2. Raíces unitarias

2.1. Notación: operadores retardo y diferencia

El operador diferencia ∇ se define a partir del operador retardo como $\nabla = (1 - \mathsf{B})$:

$$\nabla Y_t = (1 - \mathsf{B})Y_t = Y_t - Y_{t-1}$$

El operador diferencia estacional es $\nabla_S = (1 - \mathsf{B}^S)$:

$$\nabla_{S} Y_t = (1 - \mathsf{B}^S) Y_t = Y_t - Y_{t-S}$$

2.1.1. Notación: ARIMA

Con "ARIMA(p, d, q)", donde d indica el número d de diferencias que la serie necesita para ser estacionaria en media, extendemos la notación a procesos con raíces autorregresivas unitarias

$$oldsymbol{\phi}_p *
abla^d * oldsymbol{Y} = oldsymbol{ heta}_q * oldsymbol{U}$$

es decir

$$\phi_p(\mathsf{B})
abla^d Y_t = oldsymbol{ heta}_q(\mathsf{B}) U_t; \quad t \in \mathbb{Z}$$

2.2. Raíces unitarias en los polinomios AR y MA

Cuando el polinomio AR tiene alguna raíz igual a uno, se dice que tiene "raíces unitarias". Si el polinomio corresponde a un modelo estimado, esto es síntoma de subdiferenciación.

Si la raíz unitaria está en el polinomio MA y este ha sido estimado, esto es síntoma de: (a) sobrediferenciación o (b) presencia de componentes deterministas, si además si tiene media significativa.

Ejemplos

Modelo expresado con raíz unitaria en ϕ Modelo equivalente sin raíces unitarias en

ο θ	$\phi\circ heta$
$(1 - 1.5B + .5B^2)Y_t = U_t$	$(1 - 0.5B)\nabla Y_t = U_t$
$(15B + 0.7B^2)\nabla^2 Y_t = (1 - B)U_t$	$(15B + 0.7B^2)\nabla Y_t = U_t$
$\nabla Y_t = \beta + (1 - B)U_t$	$Y_t = \beta t + U_t$

2.3. Paseos aleatorios

Un paseo aleatorio representa una variable cuyos cambios son ruido blanco:

$$Y_t = \mu + Y_{t-1} + U_t$$

Cuando $\mu = 0$ se denomina sencillamente paseo aleatorio: $\nabla Y_t = U_t$

```
options(repr.plot.width = 12, repr.plot.height = 4, repr.plot.res = 200)
rw <- um(i = "(1 - B)")
ide(sim(rw, n = 500), lag.max = 20, graphs = c("plot", "acf", "pacf", "pgram"), main = "Paseo aleatorio")</pre>
```


Cuando $\mu \neq 0$ se denomina paseo aleatorio con deriva: $\nabla Y_t = \mu + U_t$

Paseo aleatorio con deriva (mu=0.25

El proceso tiene mayor inercia cuanto mayor es $|\mu|$. El signo de μ determina el signo de la pendiente global.

3. Modelos ARIMA estacionales (SARIMA)

El período estacional S es el número mínimo de observaciones necesarias para recorrer un ciclo estacional completo. Por ejemplo, S=12 para datos mensuales, S=4 para datos trimestrales, etc. Describiremos comportamientos estacionales con modelos ARIMA $(p,d,q) \times (P,D,Q)_S$

$$\phi_p(\mathsf{B}) \Phi_P(\mathsf{B}^S) \nabla^d \nabla^D_{\scriptscriptstyle S} Y_t = \theta_q(\mathsf{B}) \Theta_q(\mathsf{B}^S) U_t; \quad t \in \mathbb{Z}$$

donde

$$\begin{split} & \boldsymbol{\Phi}_{P}(\mathsf{B}^{S}) = & 1 - \boldsymbol{\Phi}_{1}\mathsf{B}^{1\cdot S} - \boldsymbol{\Phi}_{2}\mathsf{B}^{2\cdot S} - \dots - \boldsymbol{\Phi}_{P}\mathsf{B}^{P\cdot S} \\ & \boldsymbol{\Theta}_{Q}(\mathsf{B}^{S}) = & 1 - \boldsymbol{\Theta}_{1}\mathsf{B}^{1\cdot S} - \boldsymbol{\Theta}_{2}\mathsf{B}^{2\cdot S} - \dots - \boldsymbol{\Theta}_{Q}\mathsf{B}^{Q\cdot S} \\ & \boldsymbol{\nabla}_{S}^{D} = & (1 - \mathsf{B}^{S})^{D} \end{split}$$

Es decir, el modelo consta de polinomios autorregresivos y de media móvil tanto regulares (en minúsculas) como estacionales (en mayúsculas).

Veamos un ejemplo de un modelo MA(1) estacional y otro de un modelo AR(1) estacional...

3.1. MA(1) estacional con raíz positiva

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
SMA1 <- um(ma = "(1 - 0.9B12)")
display(list(SMA1), lag.max = 50, byrow = TRUE)</pre>
```

MA(1) estacional: $\Theta = 1 - 0.9z^{12} \implies X_t = (1 - 0.9B^{12})U_t$

roots(SMA1)

	Real	Imaginary	Modulus	Frequency	Period	Mult.
-	1.008819e+00	1.082287e-14	1.008819	0.00000000	Inf	1
	8.736626e-01	5.044094e-01	1.008819	0.08333333	12.0	1
	8.736626e-01	-5.044094e-01	1.008819	0.08333333	12.0	1
	5.044094e-01	-8.736626e-01	1.008819	0.16666667	6.0	1
	5.044094e-01	8.736626e-01	1.008819	0.16666667	6.0	1
1.	1.288336e-14	-1.008819e+00	1.008819	0.25000000	4.0	1
	-2.057493e-17	1.008819e+00	1.008819	0.25000000	4.0	1
	-5.044094e-01	-8.736626e-01	1.008819	0.33333333	3.0	1
	-5.044094e-01	8.736626e-01	1.008819	0.33333333	3.0	1
	-8.736626e-01	-5.044094e-01	1.008819	0.41666667	2.4	1
	-8.736626e-01	5.044094e-01	1.008819	0.41666667	2.4	1
	-1.008819e+00	-1.257046e-14	1.008819	0.50000000	2.0	1

```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(SMA1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


3.2. AR(1) estacional con raíz positiva

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
SAR1 <- um(ar = "(1 - 0.9B12)")
display(list(SAR1), lag.max = 50, byrow = TRUE)</pre>
```


roots(SAR1)

Evidentemente las raíces son iguales a las del caso anterior (aunque ahora corresponden al polinomio autorregresivo).

```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(SAR1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


Con estos dos ejemplos hemos podido apreciar que:

- las pautas de autocorrelación son análogas a las de los MA(1) y AR(2), pero ahora los retardos significativos corresponden a los retardos estacionales, es decir, a múltiplos del período estacional S.
- las correlaciones correspondientes a los "retardos regulares" (es decir, todos menos menos los estacionales) son no significativas en general.
- En estos ejemplos, en los que S=12, los retardos estacionales son: 12, 24, 36, 48, 60,...

Veamos ahora un par de ejemplos de modelos estacionales multiplicativos (i.e., con parte regular y parte estacional).

3.3. ARIMA $(0,0,1) \times (0,0,1)_{12}$

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
MA1SMA1 <- um(ma = "(1 - 0.9B)(1 - 0.9B12)")
display(list(MA1SMA1), lag.max = 50, byrow = TRUE)</pre>
```

ARIMA
$$(0,0,1) \times (0,0,1)_{12}$$
: $X_t = (1-0.9B)(1-0.9B^{12})U_t$


```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(MA1SMA1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


3.4. ARIMA $(1,0,0) \times (0,0,1)_{12}$

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
AR1SMA1 <- um(ar = "(1 - 0.9B)", ma = "(1 - 0.9B12)")
display(list(AR1SMA1), lag.max = 50, byrow = TRUE)</pre>
```



```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(AR1SMA1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


3.5. ARIMA $(1,0,0) \times (1,0,0)_{12}$

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
AR1SAR1 <- um(ar = "(1 - 0.9B)(1 - 0.9B12)")
display(list(AR1SAR1), lag.max = 50, byrow = TRUE, log.spec = TRUE)</pre>
```

ARIMA
$$(1,0,0) \times (1,0,0)_{12}$$
: $(1-0.9B)(1-0.9B^{12})X_t = U_t$


```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(AR1SAR1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


3.6. ARIMA $(0,0,1) \times (1,0,0)_{12}$

```
options(repr.plot.width = 12, repr.plot.height = 2, repr.plot.res = 200)
MA1SAR1 <- um(ar = "(1 - 0.9B12)", ma = "(1 - 0.9)")
display(list(MA1SAR1), lag.max = 50, byrow = TRUE, log.spec = TRUE)</pre>
```

ARIMA
$$(0,0,1) \times (1,0,0)_{12}$$
: $(1-0.9B^{12})X_t = (1-0.9B)U_t$


```
options(repr.plot.width = 12, repr.plot.height = 5, repr.plot.res = 200)
ide(sim(MAISAR1, n = 500),
    lag.max = 50,
    graphs = c("plot", "acf", "pacf", "pgram"))
```


En estos cuatro ejemplos hemos podido apreciar que

- en el entorno de los retardos estacionales surgen una serie de coeficientes significativos ("satélites") que proceden de la interacción entre las estructuras regular y estacional
- Estos satélites son útiles para identificar en qué retardos estacionales hay autocorrelaciones no nulas, pero no requieren una parametrización especial.

4. Resumen del análisis univariante de series temporales

4.1. Ideas principales

- Se basa en modelos sin variables exógenas que resumen la interdependencia temporal con polinomios de órdenes reducidos.
- Está especialmente indicado para predecir el futuro de la serie temporal.
- Parte de dos supuestos sobre el proceso estocástico subyacente:
 - 1. es débilmente estacionario
 - 2. tiene representación en forma de proceso lineal $Y_t = \sum_{j=0}^{\infty} a_j U_{t-j}$
- (Además se suele asumir normalidad en U_t)
- utiliza variados instrumentos: (a) gráficos (b) función de autocorrelación (c) función de autocorrelación parcial, (d) estadístico Q de Ljung-Box, etc...
- Si la serie original no "parece" débilmente estacionaria, se induce esta propiedad mediante las transformaciones adecuadas

	ACF finita	ACF persistente	
PACF finita	Ruido blanco: retardos conjun-	AR: orden indicado por la PACF	
	tamente NO significativos		
PACF persistente	MA: orden indicado por la ACF	ARMA	

4.2. Metodología

Tres fases:

Identificación Elija una especificación provisional para el proceso estocástico generador de los datos en base a las características medibles de los datos: "dejar que los datos hablen"

Estimación suele requerir métodos iterativos

Diagnosis de la calidad estadística del modelo ajustado. Algunos controles estándar son:

- Significatividad de los parámetros estimados
- Estacionariedad y homocedasticidad de los residuos
- ¿Existe un patrón de autocorrelación residual que podría ser modelado? ¿O hemos logrado que los residuos sean ruido blanco"?

Si la diagnosis no es satisfactoria, se vuelve a la primera fase.

Si la diagnosis es satisfactoria, se usa el modelo.