데이터엔지니어를 위한 데이터 분석 기초

- 1) 확률분포
- 2) 회귀분석
- 3) Machine Learning 방법론

확률분포

◆ 확률변수(random variable)

- ✓ 표본공간에서 정의된 실수 함수
- ✓ 불확실성을 가지는 사회적·자연적 현상을 일종의 확률실험으로 이해
- ✓ 여기서 얻어진 표본공간을 숫자로 표시하여 불확실한 현상을 수학적으로 모형화 함
- ✓ 이를 통해 구체적으로 계량화된 분석을 할 수 있음

- ✓ 확률변수는 변수가 취하는 값에 따라 이산확률변수와 연속확률변수로 나눔
- ✓ 이산확률변수(Discrete random variable): 확률변수가 가질 수 있는 값들이 가산(countable) 또는 셀 수 있는 경우
 - '가산' 또는 '셀 수 있다'는 말은 확률변수의 값들이 자연수 1, 2, 3, ... 과 대응 관계를 가진다는 뜻
 - 예) 불량품의 개수, 사고건수, ...
- ✓ 연속확률변수(Continuous random variable): 가질 수 있는 값이 셀 수 없을 정도로 많은 경우
 - 예) 수명, 신장, 체중
- ✓ 이산형과 연속형의 구분이 명확하지 않은 경우, 가정의 적절성이나 분석의 난이도 등을 고려하여 적절하게 선택

◆ 확률분포(Probability Distribution)

- ✓ 확률변수는 표본공간의 값을 숫자로 바꾼 함수이기 때문에 확률변수가 어떤 값을 가진다는 것은 표본공간 내에 대응하는 원소들이 존재
 - X=x 이면 표본공간에 $\{\omega|X(\omega)=x,\omega\in\Omega\}$ 를 만족하는 사건이 존재
 - 임의의 상수 a,b 에 대해 $a \le X \le b$ 이면 이에 해당하는 사건 $\{\omega | a \le X(\omega) \le b, \omega \in \Omega\}$ 이 존재
 - 이는 확률변수에 대해 X = x 또는 $a \le X \le b$ 에 대응하는 확률을 계산할 수 있음

■ 동전을 세 번 던지기

$$P(X = 0) = P(\{TTT\}) = \frac{1}{8}$$

$$P(X = 1) = P(\{HTT, THT, TTH\}) = \frac{3}{8}$$

$$P(X = 2) = P(\{HHT, HTH, THH\}) = \frac{3}{8}$$

$$P(X = 3) = P(\{HHH\}) = \frac{1}{8}$$

- ✓ 확률변수는 숫자로 표시되어 특정 지점이나 영역에서의 확률을 표시 할 수 있어 확률이 어떤 형태로 분포되었다는 말을 할 수 있음
- ✓ 확률변수가 가질 수 있는 값에 대해 확률을 표시한 것을 확률분포 (probability distribution)라고 함
- ✓ 확률분포표(probability distribution table): 확률변수의 확률을 표로 표시한 것
 - 예) 동전 세 번 던지기: 앞면의 수 *X*

X	0	1	2	3
P(X=x)	$\frac{1}{8}$	3 8	$\frac{3}{8}$	$\frac{1}{8}$

- ✓ 확류은 모집단이 어떤 형태로 이루어져 있는지를 보여줌
 - 학률분포 또한 모집단을 숫자로 표시했을 때의 형태를 표시한 것 = 모집단의 확률 구조
- ✓ 모집단의 확률 구조를 표시하는 방법
 - 이산확률변수: 확률질량함수(probability mass function), 누적분포함수
 - 연속확률변수: 확률밀도함수(probability density function), 누적분포함수

◆ 확률질량함수(Probability Mass Function, pmf)

✓ 이산확률변수 X 가 임의의 값 x 일 확률 P(X = x) 를 x 에 대한 함수로 생각

$$f(x) = P(X = x)$$

✓ 경우에 따라 확률변수 X를 강조하기 위해 $f_X(x)$ 로 표시

■ 동전을 세 번 던지기

✓ X: 앞면의 수 $\rightarrow X$ 가 가질 수 있는 값은 x = 0, 1, 2, 3

$$f(0) = \frac{1}{8}$$
 $f(1) = \frac{3}{8}$ $f(2) = \frac{3}{8}$ $f(3) = \frac{1}{8}$

✓ Y: 앞면과 뒷면의 수의 차이 \rightarrow y = 1, 3

$$f_Y(1) = \frac{6}{8} = \frac{3}{4}$$
 $f_Y(3) = \frac{2}{8} = \frac{1}{4}$

■ 앞면이 나올 때 까지 동전을 던지기

✓ X: 던진 횟수

$$f(1) = P(X = 1) = P({H}) = \frac{1}{2}$$

$$f(2) = P(X = 2) = P({TH}) = \frac{1}{4} = \left(\frac{1}{2}\right)^{2}$$

$$f(3) = P(X = 3) = P({TTH}) = \frac{1}{8} = \left(\frac{1}{2}\right)^{3}$$

$$\vdots$$

$$f(x) = \left(\frac{1}{2}\right)^{x} \qquad x = 1, 2, 3, ...$$

- 기하분포(Geometric Distribution)

✓ Y: 뒷면의 수

-Y = X - 1의 관계를 가지며 해당 확률은 동일

$$f(0) = \frac{1}{2}$$
 $f(1) = \frac{1}{4} = \left(\frac{1}{2}\right)^2$ $f(2) = \frac{1}{8} = \left(\frac{1}{2}\right)^3$...

$$f_Y(y) = \left(\frac{1}{2}\right)^{y+1}$$
 $y = 0, 1, 2, 3, ...$

◆ 확률밀도함수(Probability Density Function, pdf)

✓ 세 번째 그림은 연속확률변수 X의 분포형태 모집단의 형태를 나타낸 것으로 임의의 지점 x 에서의 밀도를 f(x) 라고 표시하면 f(x)를 확률 밀도함수라고 함

■ 0~12까지의 숫자가 표시된 돌림판

- ✓ 표본공간: $\Omega = \{x: 0 < x \le 12\}$
- ✓ X: 바늘이 지적하는 위치
- ✓ 0에서 12사이에서 발생가능성이 동일
 - \rightarrow 밀도는 이 구간에서 동일: f(x) = c

✓ 전체 면적은 1이 되어야 하므로 c = 1/12

$$f(x) = \frac{1}{12} \qquad 0 < x \le 12$$

■ 확률밀도함수에서의 확률

- ✓ 히스토그램에서 면적이 해당 구간에서의 비율(상대도수)
- ✓ 확률밀도함수에서의 면적이 해당 구간에서의 확률
- ✓ X가 구간 [a,b]에 속할 확률

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

- 예) X가 3에서 6사이에 있을 확률

$$P(3 \le X \le 6) = \frac{3}{12} = \frac{1}{4}$$

✓ X = 3일 확률은?

- ✓ 어떤 점에서는 면적은 f(x)의 크기와 관계없이 항상 0
- ✓ X가 연속확률변수일 때에는 모든 x에 대해 P(X = x) = 0
- ✓ 확률밀도함수 f(x)는 x에서의 확률이 아니라 상대적인 밀도를 나타내는 것
- ✓ X가 연속확률변수이면

$$P(a < X < b) = P(a < X \le b) = P(a \le X < b) = P(a \le X \le b)$$

◆ 이산확률분포(Discrete probability distribution)

■ 베르누이(Bernoulli) 시행

- ✓ 각 실험에서 발생 가능한 결과는 단 2가지
 - 예) (성공/실패), (앞면/뒷면)
- ✓ 각 실험이 독립적으로 수행
- ✓ 모든 실험에서 결과의 확률은 항상 동일
 - P(S) = p, P(F) = 1 p = q

■ 베르누이 확률변수

✓ 성공할 확률 = p 인 경우 $X \sim B(p)$ 로 표시함

$$- X = \begin{cases} 1, & 성공 \\ 0, & 실패 \end{cases}$$

-
$$P(X = 1) = P(성공) = p$$
, $P(X = 0) = P(실패) = 1 - p$

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}, x = 0,1$$

✓ 기댓값

-
$$E(X) = p = P(성공)$$
 $E(X^2) = p = P(성공)$ $Var(X) = p(1-p) = P(성공)P(실패)$

■ 이항분포(Binomial distribution)

- ✓ 성공할 확률이 p 인 베르누이 실험을 n번 반복했을 때, 성공 횟수의 분포
- ✓ 성공 횟수 X는 n개의 베르누이 확률변수를 합한 것

$$X_1 + X_2 + ... + X_n = X$$

 $S \quad 1 \quad 1 \quad 1$
 $F \quad 0 \quad 0 \quad 0 \quad \frac{d}{d}$

- $X_i \sim B(p)$
- ✓ 베르누이 시행은 독립을 의미함

$$- E(X) = np \qquad - Var(X) = np(1-p)$$

■ 주사위 세 번 던지기

✓ X:1이 나온 횟수(1이면 S, 아니면 F)

$$\binom{3}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^3 \qquad \qquad \binom{3}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^2 \qquad \qquad \binom{3}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^1 \qquad \qquad \binom{3}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^0$$

✓ 일반식: $f(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 1, 2, ..., n$

✓ \mathbb{H} λ |: $X \sim B(n, p)$

-n은 시행횟수, p는 성공확률

- \checkmark n과 p의 값은 분포의 모양을 결정함
 - 문포의 특성을 완전히 결정하는 값을 모수(parameter)라고 함
- ✓ 분포의 모수를 알면 해당 분포의 모든 것을 알 수 있음

■ 항암제 완치율

- ✓ 어떤 암에 대한 기존 항암제의 완치율은 50%
- ✓ 어느 제약회사에서 새로운 항암제를 개발하여 항암제의 효과를 확인 하기 위해 15명의 환자를 대상으로 실험함
- ✓ 만약 새로운 항암제의 완치율이 기존과 같다면
 - 8명이 완치될 확률은?
 - 적어도 10명까지 치유될 확률은?
- ✓ 환자 중 12명의 환자가 완치되었다면, 기존보다 새로운 항암제의 효과가 있다고 할 수 있는가?

■ 포아송 분포(Poisson Distribution)

- ✓ 발생 가능성이 희박한 사건이 임의의 구간 안에서 평균적으로 λ번 발생 할 때, 이 사건이 일어날 횟수의 분포
- ✓ 확률질량함수

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \qquad x = 0,1,2,3,...$$

■ 컴퓨터 프로그램 버그

- ✓ 500개 모듈당 평균 한 개의 버그 발생
- ✓ 독립적으로 제작된 1500개 다른 모듈로 이루어진 프로그램 패키지에 서 버그가 2개 이하일 확률은?

◆ 연속확률분포(Continuous probability distribution)

■ 정규분포(Normal Distribution)

- ✓ Gauss가 각종 물리실험을 수행할 때 발생하는 측정오차를 설명하기 위해 적용한 분포
- ✓ 모든 학문 분야에서 확률모형 또는 근사모형으로 사용
- ✓ 평균은 중심위치를 종모양(bell-shaped)의 대칭형태를 가짐
- ✓ 평균이 μ 이고 분산이 σ^2 인 정규분포의 확률밀도 함수

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < x < \infty$$

- 표시: $X \sim N(\mu, \sigma^2)$

■ 표준정규분포(standard normal distribution)

- ✓ $\mu = 0$ 이고 $\sigma^2 = 1$ 인 경우의 정규분포
 - 0을 중심으로 대칭
- ✓ 일반적으로 Z로 표시: Z~N(0,1)
- ✓ 정규분포를 표준화하여 표준정규분포를 만듬

$$Z = \frac{X - \mu}{\sigma}$$

✓ 선형변환된 정규확률변수도 정규분포를 따름

$$Z \sim N(0,1) \rightarrow X = \sigma Z + \mu, X \sim N(\mu, \sigma)$$

■ 정규분포의 정리

- $\checkmark X \sim N(\mu, \sigma)$ 이고 $a \neq 0$ 이면, $aX + b \sim N(a\mu + b, a^2\sigma^2)$
- ✓ 두 정규확률변수의 선형 결합도 정규분포를 따름

-
$$X_1 \sim N(\mu_1, \sigma_1^2)$$
 $X_2 \sim N(\mu_2, \sigma_2^2)$ $\sigma_{12} = COV(X_1, X_2)$
$$X_1 \pm X_2 \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2 \pm 2\sigma_{12})$$

- $\sigma_{12} = 0$ 이면, X_1 과 X_2 는 독립

■ 아침식사 예제: 빵과 우유를 먹는다고 가정

- ✓ 빵의 열량은 평균 200kcal, 표준편차 15kcal인 정규분포
- ✔ 우유의 열량은 평균 80kcal, 표준편차 5kcal인 정규분포
- ✓ 아침식사에서 300 칼로리 이상 섭취할 확률은?

회귀분석

◆ 회귀분석(Regression Analysis)

- ✓ 상관계수와 상관분석
 - 상관계수: 두 변수간 직선관계의 정도를 나타내는 측도

$$-1 \le \rho \le 1$$

음수: 음의 상관관계(반비례) -1: 반비례직선 양수: 양의 상관관계(정비례) +1: 정비례직선

- Pearson 표본상관계수

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

✓ 1896년 아테네 올림픽부터 2012년 런던 올림픽까지 100미터 육상경기의 우승 기록

연도	우승기록		연도	우승기록		연도	우승기록		연도	우승기록	
	남자	여자	건도	남자	여자	인포	남자	여자	언노	남자	여자
1896	12	1	1928	10.8	12.2	1964	10	11.4	1992	9.96	10.82
1900	11	1	1932	10.3	11.9	1968	9.95	11.08	1996	9.84	10.94
1904	11	I	1936	10.3	11.5	1972	10.14	11.07	2000	9.87	10.75
1908	10.8	I	1948	10.3	11.9	1976	10.06	11.08	2004	9.85	10.93
1912	10.8	I	1952	10.4	11.5	1980	10.25	11.06	2008	9.69	10.78
1920	10.8	1	1956	10.5	11.5	1984	9.99	10.97	2012	9.63	10.75
1924	10.6	-	1960	10.2	11.0	1988	9.92	10.54	2016	?	?

육상 100미터 올림픽 우승기록

통계량	남	자	여자		
- 5세명 	기록	연도	기록	연도	
표본수	24		18		
평균	10.318	1954.333	11.23	1968.667	
제곱합	2558.401	91690624	2273.387	69771024	
교차제곱합	483681.1		397789		

$$r_{\mbox{HT}} = \frac{-270.43}{\sqrt{24573.33}\sqrt{3.376}} = -0.939$$

$$r_{\text{QT}} = \frac{-157.32}{\sqrt{9352}\sqrt{3.355}} = -0.888$$

■ 회귀모형(Regression Model)

✓ 두 변수의 인관과계를 유도함

$$X \rightarrow f \rightarrow Y$$
 input system output

- 입력변수 X: 설명변수(explanatory variable), 독립변수(independent variable)
- 출력변수 Y: 반응변수(response variable), 종속변수(dependent variable)

✓ 단순선형 회귀모형(simple linear regression model)

$$Y = \beta_0 + \beta_1 X + e$$

✓ 다중회귀모형(multiple linear regression)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + e$$

✓ 다변량 회귀모형(multivariate regression)

$$(Y_1 \quad \dots \quad Y_p) = XB + e$$

✓ 오차: 실제 관측값과 회귀직선간의 차

$$e = Y - \beta_0 - \beta_1 X$$

✓ 잔차: 실제 관측값과 추정된 회귀직선간의 차

$$\hat{e} = Y - \hat{\beta}_0 - \hat{\beta}_1 X$$

✓ 최소제곱법(least square method)

$$\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2 = \text{최소화}$$

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

■ 올림픽 육상 100m 우승기록(1900~2004)

	남자	여자
\overline{y}	10.318	11.23
\bar{x}	1954.333	1968.667
S_{xy}	-270.443	-157.32
S_{xx}	24573.33	9352
\hat{eta}_1	-270.443/24573.33 = -0.011	-157.32/9352 = -0.0168
\hat{eta}_0	10.318+0.011×1954.3 = 31.816	11.23+0.0168×1968.7 = 44.3
회귀식	$\hat{y}_i = 31.816 - 0.011x_i$	$\hat{y}_i = 44.3 - 0.0168x_i$

육상 100미터 올림픽 우승기록

■ 회귀모수의 추론

✓ 회귀계수 검정

-
$$H_0$$
: $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$

$$-\frac{\hat{\beta}_1 - \beta_1}{\sqrt{MSE/S_{xx}}} \sim t_{n-2}$$

- → p-값이 0.05보다 작으면, 귀무가설을 기각
- → 기울기가 통계적으로 유의미함

■ 회귀모수의 추론

✓ 오차항 가정

-
$$E(\varepsilon_i) = 0$$

-
$$Var(\varepsilon_i) = \sigma^2$$
 (등분산성)

- ε_i 는 서로 독립임(독립성)
- $arepsilon_i$ 는 정규분포를 따름(정규성)

$$\longrightarrow$$
 Y_i

$$Y_i \sim iid N(\beta_0 + \beta_1 x_i, \sigma^2)$$

✓ 잔차 검정

- ① 특정 패턴이 없으며 등분산성을 만족함
- ② Î가 커지면서 잔차의 표준편차가 커지는 경향이 있음
 - → 등분산성 가정을 만족하지 않음 → 종속변수를 변환
- ③ 잔차가 ŷ와 2차 곡선의 관계를 가짐
 - → 모형의 관계식이 잘못됨
- ※ 정규성검정: 히스토그램, QQ-plot, shapiro-wilk's 검정, K-S 검정
- ※ 독립성검정: durbin-watson 검정

■ 회귀모수의 추론

- ✓ 결정계수(coefficient of determination)
 - 모형이 어느 정도 적합한지를 나타내는 측도
 - 변동 분해

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2$$
SST SSR SSE

- SST: y의 총변동
- SSR: 모형으로 설명되는 변동
- SSE: 모형으로 설명되지 않는 변동

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 \leftarrow 상관계수의 제곱

■ 회귀모수의 추론

- ✓ 결정계수(coefficient of determination)
 - $-0 \le R^2 \le 1$
 - 1에 가까운 경우 회귀모형이 관측 결과를 잘 설명한다고 할수 있음
 - 0에 가까운 경우 두 변수간의 관계가 선형관계가 아니거나 독립변수
 가 종속변수에 영향을 미치지 못한다고 할 수 있음

■ 올림픽 육상 100m 우승기록(1900~2004)

	남자	여자
회귀식	$\left \hat{y}_i = 31.816 - 0.011x_i \right \hat{y}_i = 44.3 - 0.0168x_i$	
기울기 검정통계량	-12.85	-7.72
P-value	5.28e-12	4.38e-07
R^2	0.882	0.789

■ 다중공선성

다중공선성이란 입력변수들 간의 상관관계가 존재하여 회귀 계수의 분산을 크게 하기 때문에, 회귀 분석 시 추정 회귀 계수를 믿을 수 없게 되는 문제가 발생되는 것을 말한다. 다중 회귀 모형에서 회귀 계수란 독립 변수의 변화에 따른 종속 변수의 변화량을 나타내기 때문에, 설명 변수들 사이에 유의한 상관관계가 존재하는 경우 한 설명변수를 다른 설명변수와의 함수 관계로 표시할 수 있다. 이러한 경우 회귀 계수의 분산이 증가하며, 회귀 계수 추정치가 불안하고 해석하기 어려워진다.

이러한 다중공선성을 측정하기 위해서는 변수의 상관구조를 조사할 수 있는데, 분산 팽창 인수(Variance Inflation Factor), 공차 한계(Tolerance), 상태지수를 조사하는 방법 등이 있다. 또한 다중공선성 문제를 해결하기 위해서는문제를 일으키는 설명변수를 제거하거나 주성분 분석(PCA) 혹은 능형회귀분석(Ridge Regression)과 같은 다른 추정 방법을 이용할 수 있다.

Machine Learning 방법론

- 지도학습(Supervised Learning)
- 비지도학습(Unsupervised Learning)
- 기타방법론

• 통계학(통계분석)

- 데이터의 요약, 변수간의 관계 등을 규명
- 현재 수집되지 않은 데이터 값을 추정/예측
- Frequntist Statistics, Bayesian Statistics

• 머신러닝

- 변수간 관계, 수집되지 않은 값의 추정/예측을 함수화(일반화) 하여 자동화에 적합한 형태로 만드는 분석방법론
- 지도학습, 비지도학습, 강화학습

통계학	머신러닝	
Estimation	Learning	
Data Point	Example/ Instance	
Regression	Supervised Learning	
Classification	Supervised Learning	
Covariate	Feature	
Response	Label	

The the two fields are blending together more and more. 'Larry Wasserman.'

- 함수 f() 의 형태에 따라 학습모형의 이름이 달라짐
- 종속변수 Y와 독립변수 X가 연속형 변수인 경우와 범주형 변수인 경우로 나누어 사용 가능한 f()를 고려해야 함

Y변수 형태	X변수 형태 사용 가능한 모형	
여소현	명목형	분산분석모형(ANOVA)
연속형 	연속+명목형	선형회귀모형(Linear Regression)
범주형	연속+명목형 로지스틱 회귀모형, 포아송 회귀모형 (GLM), <mark>SVM</mark>	
연속 / 범주형	연속+명목형	<mark>의사결정나무(Decision Tree), RandomForest</mark> 인공신경망 모형(Neural Network, Deep Learning)

비지도학습 (Unsupervised Learning)

군집화(Clustering): 유사한 값을 갖는 관측치끼리 동일한 그룹으로 묶는 방법

ID	X1	X2	X3	X4	X5	군집
1	1.03	0.15	8.12	4.14	0.55	А
2	1.05	0.54	9.14	4.11	0.41	Α
3	1.33	1.43	7.56	4.09	0.56	В
4	1.54	1.12	9.41	4.08	0.88	В
5	2.65	0.54	7.13	3.11	3.12	С
6	2.88	0.98	8.41	3.00	3.01	С
7	2.56	0.34	8.00	3.09	2.98	С
8	3.41	1.44	9.14	3.03	2.79	D
9	3.50	0.99	7.32	1.00	3.21	D
10	3.31	1.21	8.03	1.01	2.97	D

※ 일반적으로 clustering은 군집의 개수를 지정해야 하며, 세분화 할수록 점점 군집 내 동질성이 강해짐

변수 유형에 따라 선택할 수 있는 (machine learning) 모델의 종류가 달라지므로 변수가 어떤 분포를 따르고 있는지 확인하는 과정이 중요함

[변수 유형에 따른 분석 모형의 종류]

X	연속형	이산형(범주형)
연속형	상관분석, 회귀분석, Tree, RandomForest, XGBoost, Light GBM, Deep Learning	GLM(로지스틱 회귀), TreeRandomForest, XGBoost, Light GBM, Deep Learning
이산형(범주형)	회귀분석(t-test, ANOVA), Tree, RandomForest, XGBoost, Light GBM, Deep Learning	GLM(로지스틱 회귀, 카이제곱 검정), Tree, RandomForest, XGBoost, Light GBM, Deep Learning
연속형 + 이산형	다중 회귀분석, Tree, RandomForest, XGBoost, Light GBM, Deep Learning	Tree, RandomForest, XGBoost, Light GBM, Deep Learning

- 선형회귀모형(Linear Regression Model)
- $Y = \alpha + \beta X + \varepsilon$ X: 독립변수, 영향인자, Y: 종속변수, 목표변수
- 독립변수의 개수에 따라 단순선형회귀(simple linear regression, SLR), 다중선형회귀(Multiple linear regression) 으로 나뉨
- β =0에 대해 통계적 유의성 검정을 실시하여 X가 Y에 유의한 영향을 미치는지 아닌지 판단함
- 목표변수는 추정된 관계식으로 얻어진 예측값(Yhat)과 오차(e)의 합으로 정의하고, 오차를 최소화 하는 함수식을 찾음.

• 일반화 선형 모형(GLM; Generalized Linear Model)

- 선형회귀모형, 로지스틱회귀모형, 포아송회귀모형의 일반화된 형태(통칭)
- 종속변수의 평균을 정해진 함수로 변환한 값이 독립변수들의 선형결합 형태임을 가정한 모형 $g(\mu)=eta_0+eta_1 X_1+eta_2 X_2$...
- g()를 link function이라고 부르며 종속변수의 분포에 따라 최적 link function이 정해져 있음 (이항분포 = logit, 포아송분포 = log)
- 로지스틱 회귀모형(Logistic Regression)

-
$$P(y = 1) = \frac{exp(\alpha + \beta X)}{1 + exp(\alpha + \beta X)}$$
, $y = \begin{cases} 1 \\ 0 \end{cases}$

- 종속변수가 남/여, 성공/실패, 불량/정상등과 같이 두 가지 값을 갖는 경우 이항로지스틱모형(Binomial Logistic Regression Model)이라고 함
- 종속변수가 불교/천주교/기독교, 삼성/LG/롯데 등과 같이 세 종류 이상의 값을 갖는 경우 다항로지스틱모형(Multinomial Logistic Regression Model)이라고 함
- 독립변수가 종속변수의 특정 항목이 나타날 확률에 영향을 미치는 모델

SVM(Support Vector Machine)

- 군집을 분류하는 Support Vector들 중에서 Margin을 최대화 하는 분류기준을 찾음
- Kernel function으로 차원을 왜곡하여 최적 분류를 찾음
- LDA(Linear Discriminant Analysis)나 QDA(Quadratic Discriminant Analysis)에 비해 해석이 어려움
- 분류/수치예측 문제에 모두 적용 가능
- 과대적합(overfitting)경향이 적음
- Text 분류 문제에 가장 성능이 좋은 것으로 알려짐
- 연산시간이 오래걸림

• 의사결정나무(Decision Tree)

- 종속변수의 형태는 연속형, 이산형 모두 사용가능
- 그룹별 종속변수 평균의 차이가 가장 커지는 분리지점을 찾고 이를 반복적으로 시행하면서 데이터를 여러 조각으로 분류함
- 분리되기 전 최초의 데이터상태를 root, 분리된 각 덩어리를 leaf 혹은 node, 분리가 종료된 후 제일 마지막 덩어리를 terminal node라고 부름
- 각 덩어리간 종속변수 평균의 차이가 커지도록 분리하므로 terminal node내의 데이터들은 서로 동질적인 값을 갖게 됨
- 분리기준은 독립변수로 정의되고, 가장 먼저 분리시킨 독립변수가 가장 영향력이 큰 변수라고 할 수 있음
- 여러 독립변수들간의 상호연관성이 있는 경우 활용도가 높음(각 분리기준이 AND 조건으로 연결됨)

랜덤 포레스트(Random Forest)

- 여러 개의 트리를 생성하여 얻어진 결과들을 종합하여 최종결과를 도출하는 앙상블 기법
- 랜덤하게 독립변수를 선택하고 랜덤 표본으로 트리를 생성하는 과정을 반복하여 일반화 과정을 거치므로 다른 방법론에 비해 과적합(overfitting)가능성이 적고, 예측정확도가 높음
- 신경망 모형과 비슷한 정확도를 보이나 구현이 더 쉬움(독립변수를 표준화할 필요 없음)

Bagging(Bootstrap Aggregating)

- 주어진 데이터를 모집단으로 가정하고 부표본(subsample)을 반복추출하여(복원추출) 표본이 얻어진 상황을 재현함
- 부 표본으로부터 분석을 진행하고 얻어진 분석결과를 부표본의 반복추출시 반복 재현, 기대값으로 최종결과 결정
- 한번에 처리할 수 없는 대용량 데이터에 대해 처리 가능한 크기의 부표본(subsample)을 이용하여 분석 수행 가능
- 반복수행이 많아 질수록, 원 데이터의 크기가 클수록, 표본의 크기가 커질수록 추정된 Bootstrap 추정치의 결과는 참값에 가까워짐
- 반복수를 많이 늘리거나 표본의 크기를 키워도 결국 원데이터의 모수로 수렴하게 되고 따라서 원 데이터의 크기가 작으면 Bootrap추정치의 신뢰도가 떨어짐

Boosting

- Weak learner를 결합하여 strong leaner를 만드는 머신러닝 알고리즘.
- 분류 문제에서 Weak learner는 데이터의 작은 변화가 분류 모델의 큰 차이를 야기하는 분류 알고리즘을 지칭함.
- Weak learner를 얻은 후, 오분류된 관측치에 더 높은 가중치를 주는 방식으로 분류 알고리즘이 학습됨.
- Ex) Ada-Boost, XGBoost, Gradient boosting

K-means clustering

- 데이터를 K개의 그룹으로 나누는 방법론
- 그룹의 평균으로부터 각 관측치까지의 거리를 산출하여 거리가 가까운 관측치끼리 묶음
- 현재 데이터의 분할 이므로 함수를 추정하는 것이 아니며 따라서 새로운 데이터에 대해 군집 배정이 불가능함
- 연산 속도가 빠름
- 군집 내 관측 값들은 서로 동질적이며 군집간 이질적인 상태임
- 군집의 개수를 알아야 분할할 수 있음
- 적절한 군집의 개수는 elbow 방법을 통해 결정 가능

· Hierarchical clustering

- 데이터를 2개 이상 그룹으로 나누는 방법론
- Tree와 반대로 데이터의 성격이 유사한 값들을 묶고 거리가 가까운 군집들을 서로 묶으면서 전체 데이터가 하나가 될 때까지 반복함
- 군집의 개수를 미리 정의할 필요 없고 연산이 빠름

Cross-Validation

- 데이터를 훈련(train)용 데이터와 검증(test)용 데이터로 반복하여 분리, 훈련용 데이터로 모델을 생성하고, 검증용 데이터로 모델의 성능을 평가하는 과정을 반복함
- 훈련/검증 데이터의 분리를 반복하여 얻어진 여러 개의 평가결과를 종합(일반적으로 평균)하여 평가를 일반화함
- Ex) Leave-p-out CV, K-fold CV, Repeated random subsample CV
- CV의 목적은 검증결과의 일반화에 있음. 즉, 현재 적용하려는 방법론의 과대적합가능성을 점검함
- CV과정 중에 생성된 여러 개의 모형 중 검증결과가 좋은 모형은 모형의 성능이 아닌 "데이터의 성질"에 의한 결과일 가능성이 높음

Confusion Matrix

- 종속변수가 명목형(Categorical) 변수인 경우 예측정확도를 판별하기 위해 예측값과 실측값을 표형태로 표현한 것
- 재현율(recall): 양성 중 실제 양성으로 맞춘 비율
- 특이도(specificity): 음성 중 실제 음성으로 맞춘 비율
- 정밀도(precision): 양성으로 예측된 관측치 중 실제 양성인 비율.
- 정확도(accuracy): 전체 데이터 수 대비 실측값의 개별 항목들을 맞게 예측한 비율
- 특정 항목에 몰아서 예측되는 경우 잘못된 예측모형을 설계하였음에도 불구하고 실측값의 개별 항목 비율에 따라 정확도가 높게 산출될 수 있으므로 정밀도와 재현율을 모두 확인하여 모형을 평가해야 함
- 로지스틱회귀와 같이 확률로 예측한 경우 항목을 분리하기 위한 cut-off결정이 필요하고, 이 경우 재현율과 정밀도, 정확도를 고려하여 cut-off를 찾는 것이 바람직함

실측값 예측값	0	1	합계	
0	105	5	120	
1	15	108	123	정밀도 0.88
합계	120	113	243	
	특이도 0.88	재현율 0.96	0.88	정확도 (Accuracy)

Measurement

Pitfall

정확도의 종류

- Recall
 - : 6 / **10** = 60%
- Precision
 - : 6 / <mark>8</mark> = 75%

과적합 (Overfitting)

- Recall
 - : 9 / **10** = 90%
- Precision
 - : 9 / **11** = 81%

Cut-off 를 낮춘다면?

- Recall
 - : 7 / **10** = 70%
- Precision
 - :7/11 = 63%

Cut-off 를 너무 낮추면?

- Recall
 - : 10 / **10** = 100%
- Precision
 - : 10 / **25** = 40%

ROC(Receiver Operating Characteristic) Curve

- 0부터 1사이의 모든 값을 cutoff로 재현율과 특이도를 계산 후, x축과 y축에 1-특이도와 재현율을 각각 표시하여 그린 커브.
- AUC(Area Under Curve): ROC 커브의 면적
- AUC는 0과 1사이의 값이며, 1과 가까울수록 모델의 예측력이 좋다고 판단할 수 있음.

AIC(Akaike Information Criterion)

- 하나의 데이터 셋에 대하여 다양한 설명변수를 이용하여 모델을 만드는 경우, 모델을 비교하는 방법.
- 예를들어, 동일한 데이터셋에 대해 서로 다른 설명변수를 이용하여 두 로지스틱 회귀모형을 만드는 경우 두 모델을 비교하기 위하여 AIC를 사용할 수 있음.
- AIC의 값이 작을 수록 좋은 통계모형이라고 할 수 있음.
- AIC는 서로 다른 모형을 비교할 때는 사용할 수 없음.

- 주성분 분석(Principal Component Analysis)
- 데이터의 정보량을 최대한 유지하면서 컬럼의 수를 줄여주는 방법.
- 첫 번째 주성분은 가장 많은 정보량을 포함하는 주성분(변수의 선형 결합)이며, 두 번째 주성분은 두 번째로 많은 정보량을 포함하는 주성분임. 누적 정보량을 통하여 몇 개의 주성분이 필요한지를 결정함.
- 데이터를 축약한 후에는 다중공선성, 자유도 등의 문제로 인하여 불가능한 회귀분석 등을 시행할 수 있다는 장점이 있음.
- PCA는 차원을 축소하는 목적으로 개발된 방법이지만 2개 차원으로 축소한 후 xy-좌표에 표시하여 군집화에 활용할 수 있음

	변수 1	변수2	 변수 1000
관측치 1			
관측치 2			
관측치 500			

누적 정보량	40%	70%	80%	100%
	주성분 1	주성분 2	주성분 3	 주성분1000
관측치 1				
관측치 2				
•••				
관측치 500				

- PLS regression (Partial Least Square)
 - PCA regression과 유사하나 PCAR은 독립변수만으로 차원을 축소한 후 회귀모형을 적합하는 반면, PLS regression은 종속변수와의 상관관계를 고려하여 차원을 축소함
 - Matrix decomposition 방법을 이용하여 독립변수와 종속변수를 각각 분할 하는데 분할된 projection term들이 서로 공분산을 최대화 하도록 분할을 결정하는 방법

$$X = TP^T + E$$
 $Y = UQ^T + F$

- T, U는 각각 X, Y에 대한 projection, P, Q는 회귀계수, E, F는 white noise이고, T와 U의 공분산이 최대가 되도록 분할을 결정함
- Chemometrics(계량분석화학) 분야에서 가장 많이 활용됨

- 연관분석(Association Rule)
- 장바구니 분석(Market Basket Analysis)로도 널리 알려져 있음.
- 상품 혹은 설비간의 관계를 살펴보고 이로부터 유용한 연관관계를 찾아내고자 할 때 이용될 수 있는 기법
- 따라서 연관규칙 평가 척도를 통하여 높은 불량이 발생(사건B)하는 특정 설비(사건A)를 찾고자 함

IF A(특정설비) Then B(불량발생)

1. LIFT (향상도)

: 사건A가 일어난 조건 하에서 사건B가 일어날 조건부확률을 사건B가 일어날 확률 즉, <u>평균적인 불량률 대비 특정 설비에서 불량이 얼마나 더 많이 발생하는지를 보이는 지표. 값이 높을수</u> 록 혐의 설비

$$\frac{P(A \cap B)}{P(A)P(B)} = \frac{P(B \mid A)}{P(B)}$$

- 2. SUPPORT (지지도) → 보조지표로 활용
 - : 전체 사건에서 특정 사건 A, B가 동시에 발생하는 확률 즉, 전체 LOT수 대비 특정 설비에서 불량이 발생하는 비중을 보이는 지표 $P(A \cap B)$
- 3. CONFIDENCE (신뢰도) → 보조지표로 활용
 - : A라는 사건이 발생했을 때 B가 발생할 확률이 얼마나 높은지를 보이는 지표

$$\frac{P(A \cap B)}{P(A)} = P(B \mid A)$$

• 연관분석 예시 1

ID	ltems
1	빵, 우유
2	빵, 기저귀, 맥주, 계란
3	우유, 기저귀 <mark>, 맥주</mark> , 콜라
4	빵, 우유 기저귀, 맥주
5	빵, 우유, 기저귀,콜라

• {빵, 기저귀} -> {맥주}

Support: 2/5Confidence: 2/3

- Lift: (2/5)/(3/5*3/5)=10/9

연관분석 예시 2

Association Rule 분석 결과 시각화

