

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Синяков Анатолий Алексеевич 608 группа 5 вариант

Численное интегрирование многомерных функций методом Монте-Карло

1 Введение

В качестве модельной задачи предлагается задача вычисления многомерного интеграла методом Монте-Карло.

Программная реализация должна быть выполнена на языке C или C++ с использованием библиотеки параллельного программирования MPI.

Требуется исследовать масштабируемость параллельной MPI-программы на следующих параллельных вычислительных системах ВМК МГУ:

1. IBM Polus

2 Математическая постановка задачи

Функция f(x, y, z) — непрерывна в ограниченой замкнутой области $G \subset \mathbb{R}^3$. Требуется вычислить определённый интеграл:

$$I=\iiint_G f(x,\,y,\,z)\,dx\,dy\,dz\ ,$$
где функция $f(x,\,y,\,z)=\sqrt{y^2+z^2}$, область $G=\{(x,\,y,\,z):\,0\leqslant x\leqslant 2\,,\,y^2+z^2\leqslant 1\}$

3 Численный метод решения задачи

Пусть область G ограниченна параллелепипедом

$$\Pi : \begin{cases} a_1 \leqslant x \leqslant b_1, \\ a_2 \leqslant y \leqslant b_2, \\ a_3 \leqslant z \leqslant b_3 \end{cases}$$

Рассмотрим функцию:

$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint_G f(x, y, z) dx dy dz = \iiint_\Pi F(x, y, z) dx dy dz$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \dots$ — случайные точки, равномерно распределённые в Π . Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i),$$

где $|\Pi|$ - объём параллелепипеда $\Pi.$ $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

4 Нахождение точного значения интеграла аналитически

$$\int_{-1}^{0} \int_{-1}^{0} \int_{-1}^{0} x^{3}y^{2}z dx dy dz = \int_{-1}^{0} x^{3} dx \int_{-1}^{0} y^{2} dy \int_{-1}^{0} z dz = \frac{1}{24}$$
 (1)

5 Описание программной реализации

Параллельная MPI-программа принимает на вход требуемую точность и генерирует случайные точки до тех пор, пока требуемая точность не будет достигнута. Программа вычисляет точность как модуль разности между приближённым значением, полученным методом Монте-Карло, и точным значением, вычислинным аналитически.

Программа считывает в качестве аргумента командной строки требуемую точность ϵ и выводит четыре числа:

- Посчитанное приближённое значение интеграла
- Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла
- Количество сгенерированных случайных точек
- Время работы программы в секундах

Время работы программы измеряется следующим образом. Каждый МРІ-процесс измеряет своё время выполнения, затем среди полученных значений берётся максимум.

Была реализована независимая генерация точек MPI-процессом. Каждый процесс генерерирует свой набор точек и считает свою часть суммы на этих точках. Далее идёт опреация редукции (Allreduce) и считается ошибка (разница между истинным значением и приближенным). Если ошибка превышает нужную точность, то рассчёт продолжается по выше описанной схеме.

6 Исследование мастшабируемости программы на системе Polus

Таблица 1: Таблица с результатами расчётов для системы Polus

Γ Точность ϵ	Число МРІ- процессов	Время работы программы (c)	Ускорение	Ошибка
$3.0 \cdot 10^{-5}$	1	1.36812	1	2.36444e-05
	4	0.311809	4.387	2.88567e-05
	16	0.0111756	122.420	1.37263e-05
	32	-	-	-
$\boxed{5.0\cdot10^{-6}}$	1	3.372	1	4.257e-06
	4	0.757	4.454	3.449e-06
	16	0.264	12.772	1.145e-06
	32			
$1.5 \cdot 10^{-6}$	1	6.727	1	1.481e-06
	4	2.016	3.336	6.619e-07
	16	0.284	23.686	1.121e-06
	32			

