Now:

Prénom:

Date de Naissance:

Département de Mathématiques

Faculté des Sciences

Université Aboubekr BELKAID-Tlemcen

16/01/2018

Epreuve Finale Algèbres

Durée: 1h-30'

EXERCICE 1: Soient A, B et C trois parties d'un ensemble E.

- 1- Montrer que sí $(A \cup B) \subset (A \cup C)$ et $(A \cap B) \subset (A \cap C)$ alors $B \subset C$.
- 2- Montrer que (AUB) \cap C \neq AU (B \cap C). Dans quels cas a-t-on égalité?

6 points

1-SoitXEB, 0,5

 $X \in A \cup B \Rightarrow X \in A \cup C \quad 0.5$

Sí $x \in C$ alors $B \subseteq C$ 0.5

Sí $X \in A$ alors $X \in A \cap B \Rightarrow X \in A \cap C \Rightarrow X \in C$, 0.5 alors $B \subset C$

2-Montrons qu'il existe A, B et C telle que l'égalité

 $(AUB) \cap C = AU(B \cap C)$ est fausse.

Choisissons $A=\{0\}$, $B=\{0,1\}$ et $C=\{1\}$ 0.5

On a donc: $(A \cup B) \cap C = \{1\}$ 0.5

et $A \cup (B \cap C) = \{0, 1\} \ 0.5$

d'où $\{1\} \neq \{0, 1\}$ 0.5

cas d'égalité:

On sait que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 0.5

Sí $C = A \cup C$ alors $(A \cup B) \cap C = A \cup (B \cap C) 0.5$ Sí $C = A \cup C$ alors $A \subset C$ 0.5 on A = C 0.5 (il y a aussí les cas : $A = \emptyset$ et C = E). On ne les note pas tous. On se contente de deux d'entre eux. EXERCICE 2: Soit l'application E de $\mathbb R$ dans $\mathbb Z$ qui à tout réel x associe sa partie entière E(x). E est-elle injective? surjective? bijective? Justifier.

3 points

Injection: celui (celle) qui donne la définition de E injective 0.5

E est non injective:

$$E(0,1) = E(0.2) = 0$$
 0.5

mais $0.1 \neq 0.2 \ 0.5$

Surjection : celui (celle) qui donne la définition de E surjective 0.5 E est surjective :

Soit $n \in \mathbb{Z}$ alors il existe au moins x=n tel que E(x)=n 0.5 Bijection: E est donc non bijective 0.5

EXERCICE 3: On veut partager l'ensemble $\mathbb N$ en trois parties A, B et C uniques tels que $A \cap B = A \cap C = B \cap C = \emptyset$ et $A \cup B \cup C = \mathbb N$, et ceci en définissant une relation \Re sur $\mathbb N$ par : pour tout X, Y dans $\mathbb N$, X Y y si et seulement si (2x+y)/3 est dans $\mathbb N$.

- 1- Vérifier que \Re est une relation d'équivalence.
- 2- Trouver A, B et C sí on suppose qu'on $a: 0 \in A$, $1 \in B$ et $2 \in C$.

5.5 Points

1) a) $\frac{\Re}{\Re}$ réflexive: Soit $x \in \mathbb{N}$, $(2x + x)/3 = x \in \mathbb{N}$ donc $x \Re x 0.5$ b) $\frac{\Re}{\Re}$ symétrique: Soient $x, y \in \mathbb{N}$ tel que $x \Re y$ c.à.d. $\exists k \in \mathbb{N}$ tel que 2x + y = 3k 0.5(2y + x) + (2x + y) = 3(x + y) = 3k1 avec $k1 = x + y \in \mathbb{N}$ 0.5 (2y + x) = 3k1 - 3k = 3(k1 - k) = 3k2, avec $k2 \in \mathbb{N}$. 0.5 D'où $y \Re x$.

c) \Re transitive: Soient x, y et z dans $\mathbb N$ tel que: $x \Re y$ c.à.d. $\exists k \in \mathbb{N} \text{ tel que } 2x+y=3k$ 0.5 y $\Re z$ c.à.d. $\exists k1 \in \mathbb{N} \text{ tel que } 2y+z=3k1 \text{ 0.5}$ (2x + y) + (2y + z) = 2x + 3y + z = 3(k + k1) 0.5 2x + z = 3k2 avec $k2 \in \mathbb{N}$, D'où soit x R z. 2) $A = cl(0) = \{y \text{ dans } \mathbb{N} / 0 \Re y\} = \{y = 3k, k \text{ dans } \mathbb{N} \} 0.5$ En effet: $2(0) + y = 3k \Leftrightarrow y = 3k$ ou $A=cl(0)=\{y \text{ dans } \mathbb{N} / y \Re 0\}=\{y=sp, p \text{ dans } \mathbb{N}\}$ En effet dans ce cas: y=(3/2)k avec k=2p $B = cl(1) = \{y \text{ dans } \mathbb{N} / 1 \Re y\} = \{y = 3k+1, k \text{ dans } \mathbb{N} \} 0.5$ En effet: $2(1)+y=3k \Leftrightarrow y=3k-2 \Leftrightarrow y=3(k-1)+1$ ou $B=cl(1)=)=\{y \text{ dans } \mathbb{N} / y \Re 1\}=\{y=3p+1, p \text{ dans } \mathbb{N}\}$ En effet: y = (3k-1)/2 = (3(k-1)+2)/2 avec k = 2p+1 $C = cl(2) = \{y \text{ dans } \mathbb{N} / 2 \Re y\} = \{y = 3k+2, k \text{ dans } \mathbb{N} \} 0.5$ En effet: $2(2)+y=3k \Leftrightarrow y=3k-4 \Leftrightarrow y=3(k-2)+2$ on $C = cl(2) =) = \{y \text{ dans } \mathbb{N} / y \Re 2\} = \{y = 3p + 2, p \text{ dans } \mathbb{N} \}$ En effet: y = (3k-2)/2 = (3(k-2)+4)/2 avec k = 2p+2

EXERCICE 4: On définit sur $\mathbb N$ une relation $\mathbf R$ par:

pour tout x, y dans \mathbb{N} , x \mathbf{R} y si et seulement si, il existe p, q de \mathbb{N}^* tel que $y=px^q$.

- 1- Vérifier que R est une relation d'ordre.
- 2- Peut-on classer par ordre croissant (ou décroissant) tous les éléments de $\mathbb N$? Justifier.
- 3- Soit A une partie de $\mathbb N$ majorée par 10. Trouvez deux autres majorants de A.

5.5 Points

1) a) \mathbf{R} réflexíve: sí p = q = 1 alors x = x d'où: x \mathbf{R} x 0.5 b) \mathbf{R} antisymétrique: Supposons que pour certains p, q, p', q' dans \mathbb{N}^* on a: $y = px^q$ et $x = p'y^{q'}$. 0.5 1ère Méthode (classique): On a $x = p'y^{q'} = p'p^{q'}x^{qq'}$. Cecí nous conduit à résoudre le système: $p'p^{q'} = 1$ et qq' = 1. Comme p, p', q et q' sont des entiers naturels alors p = p' = q = q' = 1. D'où x = y. 0.5

 $2^{\text{ème}}$ Méthode (évidente): Chacune des deux équations $y = px^q$ et $x=p'y^{q'}$ ne peut être que y=x, d'où : p=p'=q=q'=1. En effet (observation géométrique): En fixant p et q dans la première équation $y=px^q$, on remarque qu'il y a une infinité de points (x, y) qui vérifient cette équation. Ces points appartiennent à la courbe représentative du polynôme $y=px^q$ (je garde les mêmes notations x et y dans l'équation du polynôme et qui sont dans \mathbb{R}^+ puisqu'il n'y a aucune ambiguïté à le faire). Je faís la même chose pour l'équation x=p'y'' en fixant p' et q'. Dans ce cas le système $y=px^q$ et $x=p'y^{q'}$ représente l'intersection de deux courbes dans le plan réel positif (xoy) et (yox) (o étant l'origine du plan). Cette intersection des deux courbes ne peut me donner la droîte y=x que si ces deux courbes sont confondues avec la droîte y=x. Donc pour quelles valeurs de p, p', q et q' a-t-on $(y=px^q)$ et $x=p'y^{q'} \Rightarrow (x=y)$? La réponse, toute simple, sans aucun calcul est: pour p=p'=q=q'=1 on a $(y=px^q)$ et $x=p'y^{q'}$ \Rightarrow (x=y). (A généraliser).

- c) $\underline{\mathbf{R}}$ transitive: Supposons que pour certains p, q, p', q' dans \mathbb{N}^* on a: $y=px^q$ et $z=p'y^{q'}$. 0.5 Cecí nous donne: $z=p'p^{q'}x^{qq'}=p''x^{q''}$, 0.5 avec $p''=p'p^{q'}$ et q''=qq'. D'où x \mathbf{R} z.
- 2) Il n'existe pas p, q dans \mathbb{N}^* tel que $2 = p 3^q$ 0.5

 Il n'existe pas p, q dans \mathbb{N}^* tel que $3 = p 2^q$ 0.5

 Donc 2 non \Re 3 et 3 non \Re 2. 0.5

 L'ordre n'est pas total. Il est partiel. 0.5
- 3) A majorée par 10.

Síp = 2 et q = 1 alors $2(10)^1 = 20 \Leftrightarrow 10 \Re 20$. 0.5 Síp = 1 et q = 2 alors $1(10)^2 = 100 \Leftrightarrow 10 \Re 100$. 0.5

D'où 20 et 100 sont deux autres majorants de A.