TJ Keras Neural Net

November 21, 2020

1 Tommy John Neural Network

```
[200]: import pandas as pd
       import numpy as np
       from matplotlib import pyplot as plt
[201]: df_train = pd.read_csv('/Users/timmorales/Desktop/STAT 6341/Tommy John Project/
        ⇔Data/SMOTETRAIN.csv')
       df_test = pd.read_csv('/Users/timmorales/Desktop/STAT 6341/Tommy John Project/
        →Data/testset.csv')
       df test = df test.drop(df test.columns[0], axis=1)
       df_train = df_train.drop(df_train.columns[0], axis=1)
[202]: from copy import deepcopy
       df_train = deepcopy(df_train)
       df_test = deepcopy(df_test)
[203]: df_train.head()
[203]:
          player_age
                                     xba
                                              xslg
                                                       xwoba
                                                                   xobp
                                                                             xiso
                        p_game
            0.449343 0.271899 -0.236873 -0.433236 -0.346471 -0.221791 -0.481580
       1
           -0.366322 -1.198887
                                2.683901 2.403073 2.954865
                                                               3.126211
                                                                        1.774630
       2
          -0.366322 -1.151442
                              1.147790 0.499249
                                                    1.177223
                                                               1.071755 -0.010346
            2.624452 -1.056553 1.364144 2.558488 2.555803
                                                               2.498461 2.859896
       3
       4
            1.536897 -0.961663 0.282376 -0.180688 -0.001826 0.025505 -0.453021
          exit_velocity_avg launch_angle_avg barrel_batted_rate ...
                                                                       bats_L \setminus
       0
                  -0.455052
                                    -0.622586
                                                        -0.331504 ...
                                                                            0
                   0.644949
                                     0.078895
                                                          1.192009
                                                                            0
       1
       2
                                    -2.676924
                                                        -0.625515 ...
                                                                            0
                   1.103283
       3
                  -0.363385
                                     1.565368
                                                        -0.090950 ...
                                                                            0
       4
                   0.599116
                                     0.245915
                                                         -0.625515 ...
          bats_R throws_L throws_R throws_S
                                                TJ_Yes made_postseason_X0 \
       0
               1
                         0
                                   1
                                             0
       1
               1
                         0
                                   1
                                             0
                                                     0
                                                                          1
```

```
2
         1
                     0
                                            0
                                                      0
                                                                              1
                                 1
3
                     0
                                            0
                                                      0
                                                                              1
         1
                                 1
         0
                     1
                                 0
                                             0
                                                      0
                                                                              1
```

```
made_postseason_X1 warm_birth_place_X0
                                                 warm_birth_place_X1
0
                      1
                      0
                                                                     0
1
                                             1
2
                      0
                                             1
                                                                     0
3
                      0
                                             0
                                                                     1
                      0
                                             0
                                                                     1
```

[5 rows x 337 columns]

```
[204]: #setting up my targets
y_train = df_train['TJ_Yes'].values.astype(np.int)
y_test = df_test['TJ_Yes'].values.astype(np.int)
```

1.1 Model Work

With the data successfully and properly loaded, I bring in keras and tensorflow.

```
[205]: from sklearn import metrics as mt
from tensorflow import keras
from tensorflow.keras.layers import Dense, Activation, Input
from tensorflow.keras.layers import Embedding, Flatten, Concatenate
from tensorflow.keras.models import Model
```

```
[206]: # combine the features into a single large matrix
X_train = df_train.drop(["TJ_Yes"],axis=1).to_numpy()
X_test = df_test.drop(["TJ_Yes"],axis=1).to_numpy()
```

Input size will always be the same. I start off with the most basic model possible.

```
[207]: #id number of features
num_features = X_train.shape[1]
#set up input
input_tensor = Input(shape=(num_features,))
```

```
[208]: from keras.models import Sequential from keras.layers import Dropout from keras.layers import Dense import tensorflow as tf from sklearn import metrics as mt
```

Start out extremely simple with no relu, dropout or penalization to see how it fits.

```
[209]: model = Sequential()
model.add(Dense(10, input_dim=num_features, activation='sigmoid'))
model.add(Dense(5, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
```

Im using adam to hopefully find the minima quickly without bouncing around too much and using recall as our metric of choice. Binary Cross is a pretty standard use for this case. 50 epochs and small validation set to start.

```
Epoch 1/50
accuracy: 0.8401 - val_loss: 1.1647 - val_accuracy: 0.0000e+00
Epoch 2/50
accuracy: 0.9512 - val_loss: 1.5097 - val_accuracy: 0.0000e+00
Epoch 3/50
accuracy: 0.9512 - val_loss: 1.8093 - val_accuracy: 0.0000e+00
Epoch 4/50
accuracy: 0.9512 - val_loss: 2.0613 - val_accuracy: 0.0000e+00
Epoch 5/50
accuracy: 0.9512 - val_loss: 2.2817 - val_accuracy: 0.0000e+00
Epoch 6/50
accuracy: 0.9512 - val_loss: 2.4593 - val_accuracy: 0.0000e+00
Epoch 7/50
accuracy: 0.9512 - val_loss: 2.5880 - val_accuracy: 0.0000e+00
Epoch 8/50
157/157 [============= ] - Os 998us/step - loss: 0.1925 -
```

```
accuracy: 0.9512 - val_loss: 2.4821 - val_accuracy: 0.0000e+00
Epoch 9/50
accuracy: 0.9512 - val_loss: 2.3900 - val_accuracy: 0.0000e+00
Epoch 10/50
accuracy: 0.9512 - val_loss: 2.3797 - val_accuracy: 0.0000e+00
Epoch 11/50
accuracy: 0.9512 - val_loss: 2.2849 - val_accuracy: 0.0000e+00
Epoch 12/50
157/157 [============= ] - Os 1ms/step - loss: 0.1474 -
accuracy: 0.9512 - val_loss: 2.1753 - val_accuracy: 0.0000e+00
Epoch 13/50
accuracy: 0.9512 - val_loss: 2.1722 - val_accuracy: 0.0000e+00
Epoch 14/50
accuracy: 0.9512 - val_loss: 2.1077 - val_accuracy: 0.0000e+00
Epoch 15/50
accuracy: 0.9512 - val_loss: 2.2367 - val_accuracy: 0.0000e+00
Epoch 16/50
157/157 [============ ] - Os 1ms/step - loss: 0.1299 -
accuracy: 0.9516 - val_loss: 1.8244 - val_accuracy: 0.0016
Epoch 17/50
accuracy: 0.9636 - val_loss: 2.0664 - val_accuracy: 0.0447
accuracy: 0.9716 - val_loss: 2.0699 - val_accuracy: 0.0942
Epoch 19/50
accuracy: 0.9732 - val_loss: 2.0512 - val_accuracy: 0.1581
Epoch 20/50
accuracy: 0.9736 - val loss: 1.9033 - val accuracy: 0.2396
Epoch 21/50
accuracy: 0.9736 - val_loss: 1.7463 - val_accuracy: 0.3227
Epoch 22/50
157/157 [============= ] - Os 1ms/step - loss: 0.1103 -
accuracy: 0.9740 - val_loss: 1.6785 - val_accuracy: 0.3578
Epoch 23/50
157/157 [============= ] - Os 2ms/step - loss: 0.1081 -
accuracy: 0.9756 - val_loss: 1.7344 - val_accuracy: 0.3482
Epoch 24/50
```

```
accuracy: 0.9752 - val_loss: 1.7404 - val_accuracy: 0.3466
Epoch 25/50
accuracy: 0.9760 - val_loss: 1.7064 - val_accuracy: 0.3690
Epoch 26/50
157/157 [============ ] - Os 2ms/step - loss: 0.1001 -
accuracy: 0.9768 - val_loss: 1.6879 - val_accuracy: 0.3882
Epoch 27/50
157/157 [============= ] - Os 1ms/step - loss: 0.0977 -
accuracy: 0.9764 - val_loss: 1.5690 - val_accuracy: 0.4345
Epoch 28/50
accuracy: 0.9772 - val_loss: 1.5714 - val_accuracy: 0.4361
Epoch 29/50
accuracy: 0.9776 - val_loss: 1.6742 - val_accuracy: 0.4121
Epoch 30/50
accuracy: 0.9780 - val_loss: 1.6720 - val_accuracy: 0.4121
Epoch 31/50
accuracy: 0.9792 - val_loss: 1.7514 - val_accuracy: 0.3898
Epoch 32/50
157/157 [============ ] - Os 1ms/step - loss: 0.0869 -
accuracy: 0.9796 - val_loss: 1.6834 - val_accuracy: 0.4185
Epoch 33/50
157/157 [============= ] - Os 1ms/step - loss: 0.0846 -
accuracy: 0.9816 - val_loss: 1.5704 - val_accuracy: 0.4489
accuracy: 0.9824 - val_loss: 1.6768 - val_accuracy: 0.4201
Epoch 35/50
accuracy: 0.9824 - val_loss: 1.6613 - val_accuracy: 0.4265
Epoch 36/50
accuracy: 0.9832 - val loss: 1.6674 - val accuracy: 0.4409
Epoch 37/50
accuracy: 0.9832 - val_loss: 1.7335 - val_accuracy: 0.4105
Epoch 38/50
157/157 [============= ] - Os 1ms/step - loss: 0.0746 -
accuracy: 0.9844 - val_loss: 1.6795 - val_accuracy: 0.4377
Epoch 39/50
accuracy: 0.9836 - val_loss: 1.7563 - val_accuracy: 0.4105
Epoch 40/50
```

```
accuracy: 0.9852 - val_loss: 1.8054 - val_accuracy: 0.4026
Epoch 41/50
accuracy: 0.9852 - val_loss: 1.7502 - val_accuracy: 0.4201
Epoch 42/50
accuracy: 0.9856 - val_loss: 1.7394 - val_accuracy: 0.4345
Epoch 43/50
157/157 [============= ] - Os 2ms/step - loss: 0.0655 -
accuracy: 0.9864 - val_loss: 1.7809 - val_accuracy: 0.4217
Epoch 44/50
accuracy: 0.9868 - val_loss: 1.7009 - val_accuracy: 0.4505
Epoch 45/50
accuracy: 0.9880 - val_loss: 1.6950 - val_accuracy: 0.4569
Epoch 46/50
accuracy: 0.9868 - val_loss: 1.7160 - val_accuracy: 0.4585
Epoch 47/50
accuracy: 0.9876 - val_loss: 1.7516 - val_accuracy: 0.4441
Epoch 48/50
accuracy: 0.9880 - val_loss: 1.6174 - val_accuracy: 0.4856
Epoch 49/50
accuracy: 0.9888 - val_loss: 1.7046 - val_accuracy: 0.4585
accuracy: 0.9884 - val_loss: 1.8209 - val_accuracy: 0.4249
Model: "sequential_36"
Layer (type) Output Shape
                           Param #
______
dense 105 (Dense)
              (None, 10)
_____
              (None, 5)
dense_106 (Dense)
                            55
-----
dense 107 (Dense)
          (None, 1)
______
Total params: 3,431
Trainable params: 3,431
Non-trainable params: 0
-----
```

```
[211]: # now lets see how well the model performed
  yhat_proba = model.predict(X_test)
  yhat = np.where(yhat_proba > 0.5, 1, 0)
  print(mt.confusion_matrix(y_test,yhat))
  print(mt.classification_report(y_test,yhat))
```

```
[[1042
         22]
 [ 28
          1]]
               precision
                             recall f1-score
                                                 support
           0
                    0.97
                               0.98
                                          0.98
                                                     1064
           1
                    0.04
                               0.03
                                          0.04
                                                       29
                                          0.95
                                                     1093
    accuracy
                               0.51
                                          0.51
                                                     1093
   macro avg
                    0.51
weighted avg
                    0.95
                               0.95
                                          0.95
                                                     1093
```

```
[212]: plt.subplot(2,2,3)
   plt.plot(history.history['loss'])
   plt.ylabel('Training Loss')
   plt.xlabel('epochs')

plt.subplot(2,2,4)
   plt.plot(history.history['val_loss'])
   plt.ylabel('Validation Loss')
   plt.xlabel('epochs')
```

[212]: Text(0.5, 0, 'epochs')

Model doesn't seem to converge fully, will add more epochs, but looks like we may be starting to overfit.

```
[213]: model.compile(optimizer='adam',
                loss='binary_crossentropy',
                metrics=['accuracy'])
     history = model.fit([X_train],
                     y_train,
                     epochs=25,
                     batch_size=16,
                     verbose=0,
                     validation split = .2)
     model.summary()
     Model: "sequential_36"
     Layer (type) Output Shape
     dense_105 (Dense)
                           (None, 10)
                                                 3370
     dense_106 (Dense) (None, 5)
                                                55
     dense_107 (Dense) (None, 1)
     _____
     Total params: 3,431
     Trainable params: 3,431
     Non-trainable params: 0
[214]: plt.subplot(2,2,3)
     plt.plot(history.history['loss'])
     plt.ylabel('Training Loss')
     plt.xlabel('epochs')
     plt.subplot(2,2,4)
     plt.plot(history.history['val_loss'])
     plt.ylabel('Validation Loss')
     plt.xlabel('epochs')
```


Looks like adding the 25 actually resulted in some overfitting when comparing validation and training loss. We therefore will fit for 70 total epochs, but include some drop out. I also include some regularization on the hidden layer to aid in the overfitting.

Since I see no issue with the model training I dont change activiation function.

```
Epoch 3/70
accuracy: 0.9512 - val_loss: 2.6669 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 2.6470 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 2.5104 - val_accuracy: 0.0000e+00
Epoch 6/70
accuracy: 0.9512 - val_loss: 2.5101 - val_accuracy: 0.0000e+00
Epoch 7/70
accuracy: 0.9512 - val_loss: 2.3670 - val_accuracy: 0.0000e+00
Epoch 8/70
accuracy: 0.9512 - val_loss: 2.3374 - val_accuracy: 0.0000e+00
Epoch 9/70
accuracy: 0.9512 - val_loss: 2.2518 - val_accuracy: 0.0000e+00
Epoch 10/70
accuracy: 0.9516 - val_loss: 2.0788 - val_accuracy: 0.0000e+00
Epoch 11/70
157/157 [============= ] - Os 1ms/step - loss: 0.1419 -
accuracy: 0.9564 - val_loss: 2.2219 - val_accuracy: 0.0000e+00
Epoch 12/70
accuracy: 0.9584 - val_loss: 2.1352 - val_accuracy: 0.0000e+00
Epoch 13/70
accuracy: 0.9604 - val_loss: 2.0941 - val_accuracy: 0.0000e+00
Epoch 14/70
accuracy: 0.9592 - val_loss: 1.9955 - val_accuracy: 0.0048
Epoch 15/70
157/157 [============ ] - Os 1ms/step - loss: 0.1307 -
accuracy: 0.9612 - val_loss: 1.9488 - val_accuracy: 0.0224
Epoch 16/70
accuracy: 0.9632 - val_loss: 1.8590 - val_accuracy: 0.0719
Epoch 17/70
accuracy: 0.9668 - val_loss: 1.9578 - val_accuracy: 0.1006
Epoch 18/70
accuracy: 0.9656 - val_loss: 1.8788 - val_accuracy: 0.1454
```

```
Epoch 19/70
accuracy: 0.9668 - val_loss: 1.8386 - val_accuracy: 0.1725
Epoch 20/70
accuracy: 0.9688 - val_loss: 1.7317 - val_accuracy: 0.2524
accuracy: 0.9696 - val_loss: 1.8374 - val_accuracy: 0.2300
Epoch 22/70
accuracy: 0.9688 - val_loss: 1.8807 - val_accuracy: 0.2300
Epoch 23/70
accuracy: 0.9708 - val_loss: 1.8948 - val_accuracy: 0.2428
Epoch 24/70
157/157 [=========== ] - Os 1ms/step - loss: 0.1176 -
accuracy: 0.9680 - val_loss: 1.9699 - val_accuracy: 0.2380
Epoch 25/70
accuracy: 0.9712 - val_loss: 1.8254 - val_accuracy: 0.3003
Epoch 26/70
accuracy: 0.9680 - val_loss: 1.7853 - val_accuracy: 0.3163
Epoch 27/70
accuracy: 0.9716 - val_loss: 1.7864 - val_accuracy: 0.3307
Epoch 28/70
accuracy: 0.9744 - val_loss: 1.8322 - val_accuracy: 0.3259
Epoch 29/70
accuracy: 0.9684 - val_loss: 1.7290 - val_accuracy: 0.3674
Epoch 30/70
accuracy: 0.9744 - val_loss: 1.7534 - val_accuracy: 0.3610
Epoch 31/70
157/157 [============ ] - Os 1ms/step - loss: 0.1113 -
accuracy: 0.9724 - val_loss: 1.8818 - val_accuracy: 0.3243
Epoch 32/70
accuracy: 0.9732 - val_loss: 1.7270 - val_accuracy: 0.3770
accuracy: 0.9732 - val_loss: 1.7665 - val_accuracy: 0.3674
Epoch 34/70
accuracy: 0.9744 - val_loss: 1.8006 - val_accuracy: 0.3626
```

```
Epoch 35/70
accuracy: 0.9724 - val_loss: 1.7185 - val_accuracy: 0.3962
Epoch 36/70
accuracy: 0.9752 - val_loss: 1.7690 - val_accuracy: 0.3914
accuracy: 0.9744 - val_loss: 1.7832 - val_accuracy: 0.3866
Epoch 38/70
accuracy: 0.9772 - val_loss: 1.7297 - val_accuracy: 0.4089
Epoch 39/70
accuracy: 0.9760 - val_loss: 1.6698 - val_accuracy: 0.4361
Epoch 40/70
accuracy: 0.9760 - val_loss: 1.6268 - val_accuracy: 0.4473
Epoch 41/70
accuracy: 0.9744 - val_loss: 1.7136 - val_accuracy: 0.4217
Epoch 42/70
accuracy: 0.9788 - val_loss: 1.5470 - val_accuracy: 0.4808
Epoch 43/70
accuracy: 0.9752 - val_loss: 1.8153 - val_accuracy: 0.3978
Epoch 44/70
accuracy: 0.9756 - val_loss: 1.7643 - val_accuracy: 0.4121
Epoch 45/70
accuracy: 0.9780 - val_loss: 1.8138 - val_accuracy: 0.4058
Epoch 46/70
accuracy: 0.9760 - val_loss: 1.5965 - val_accuracy: 0.4744
Epoch 47/70
accuracy: 0.9760 - val_loss: 1.6546 - val_accuracy: 0.4633
Epoch 48/70
accuracy: 0.9764 - val_loss: 1.7214 - val_accuracy: 0.4329
Epoch 49/70
accuracy: 0.9768 - val_loss: 1.6842 - val_accuracy: 0.4489
Epoch 50/70
accuracy: 0.9736 - val_loss: 1.7338 - val_accuracy: 0.4329
```

```
Epoch 51/70
accuracy: 0.9756 - val_loss: 1.7959 - val_accuracy: 0.4073
Epoch 52/70
accuracy: 0.9792 - val_loss: 1.7483 - val_accuracy: 0.4217
accuracy: 0.9788 - val_loss: 1.6698 - val_accuracy: 0.4505
Epoch 54/70
accuracy: 0.9776 - val_loss: 1.7485 - val_accuracy: 0.4297
Epoch 55/70
accuracy: 0.9764 - val_loss: 1.7138 - val_accuracy: 0.4409
Epoch 56/70
accuracy: 0.9744 - val_loss: 1.7578 - val_accuracy: 0.4217
Epoch 57/70
accuracy: 0.9776 - val_loss: 1.6458 - val_accuracy: 0.4728
Epoch 58/70
accuracy: 0.9792 - val_loss: 1.7283 - val_accuracy: 0.4441
Epoch 59/70
accuracy: 0.9768 - val_loss: 1.7801 - val_accuracy: 0.4249
Epoch 60/70
accuracy: 0.9748 - val_loss: 1.5805 - val_accuracy: 0.5032
Epoch 61/70
accuracy: 0.9780 - val_loss: 1.6761 - val_accuracy: 0.4649
Epoch 62/70
accuracy: 0.9788 - val_loss: 1.7070 - val_accuracy: 0.4617
Epoch 63/70
accuracy: 0.9792 - val_loss: 1.6066 - val_accuracy: 0.5032
Epoch 64/70
157/157 [============= ] - Os 1ms/step - loss: 0.0833 -
accuracy: 0.9788 - val_loss: 1.7748 - val_accuracy: 0.4457
Epoch 65/70
accuracy: 0.9776 - val_loss: 1.5944 - val_accuracy: 0.4968
Epoch 66/70
accuracy: 0.9760 - val_loss: 1.5903 - val_accuracy: 0.5080
```

```
Epoch 67/70
   accuracy: 0.9812 - val_loss: 1.7004 - val_accuracy: 0.4792
   accuracy: 0.9804 - val_loss: 1.6196 - val_accuracy: 0.5064
   accuracy: 0.9820 - val_loss: 1.6595 - val_accuracy: 0.4936
   Epoch 70/70
   157/157 [============= ] - Os 1ms/step - loss: 0.0819 -
   accuracy: 0.9792 - val_loss: 1.6255 - val_accuracy: 0.5112
   Model: "sequential_37"
   Layer (type)
              Output Shape
   ______
   dense_108 (Dense)
                   (None, 10)
                                    3370
   _____
   dropout_63 (Dropout) (None, 10)
                             0
   dense_109 (Dense) (None, 5)
   _____
   dropout_64 (Dropout) (None, 5)
   dense_110 (Dense) (None, 1) 6
   _____
   Total params: 3,431
   Trainable params: 3,431
   Non-trainable params: 0
   _____
[217]: plt.subplot(2,2,3)
    plt.plot(history.history['loss'])
    plt.ylabel('Training Loss')
    plt.xlabel('epochs')
    plt.subplot(2,2,4)
    plt.plot(history.history['val_loss'])
    plt.ylabel('Validation Loss')
    plt.xlabel('epochs')
[217]: Text(0.5, 0, 'epochs')
```



```
[218]: # now lets see how well the model performed
       yhat_proba = model.predict(X_test)
       yhat = np.where(yhat_proba > 0.5, 1, 0)
       print(mt.confusion_matrix(y_test,yhat))
       print(mt.classification_report(y_test,yhat))
      ΓΓ1041
                231
       Γ 28
                 1]]
                     precision
                                   recall f1-score
                                                       support
                  0
                          0.97
                                     0.98
                                               0.98
                                                          1064
                  1
                          0.04
                                     0.03
                                               0.04
                                                            29
                                               0.95
                                                          1093
          accuracy
                                               0.51
                                                          1093
         macro avg
                          0.51
                                     0.51
                                     0.95
                                               0.95
      weighted avg
                          0.95
                                                          1093
```

No improvement in the results. Since it did not seem to be training very well after a few epochs, I will use relu instead of sigmoid to address gradient issue potentially.

```
history = model.fit([X_train],
             y_train,
             epochs=70,
             batch_size=16,
             verbose=1,
             validation_split = .2)
model.summary()
Epoch 1/70
accuracy: 0.9504 - val_loss: 15.4255 - val_accuracy: 0.0000e+00
Epoch 2/70
157/157 [============= ] - Os 1ms/step - loss: 0.7527 -
accuracy: 0.9512 - val_loss: 15.4254 - val_accuracy: 0.0000e+00
Epoch 3/70
accuracy: 0.9508 - val_loss: 15.4253 - val_accuracy: 0.0000e+00
Epoch 4/70
accuracy: 0.9512 - val_loss: 15.4253 - val_accuracy: 0.0000e+00
Epoch 5/70
accuracy: 0.9512 - val_loss: 15.4252 - val_accuracy: 0.0000e+00
Epoch 6/70
accuracy: 0.9512 - val_loss: 15.4252 - val_accuracy: 0.0000e+00
```

```
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 14/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 15/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 16/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 17/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 18/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 19/70
accuracy: 0.9512 - val_loss: 15.4251 - val_accuracy: 0.0000e+00
Epoch 20/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 21/70
157/157 [============= ] - Os 1ms/step - loss: 0.7522 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 22/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 24/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 25/70
accuracy: 0.9512 - val loss: 15.4250 - val accuracy: 0.0000e+00
Epoch 26/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 27/70
157/157 [============== ] - Os 1ms/step - loss: 0.7522 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 28/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 29/70
```

```
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 30/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 31/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 32/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 33/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 34/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 35/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 36/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 37/70
157/157 [============= ] - Os 1ms/step - loss: 0.7522 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 38/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 41/70
accuracy: 0.9512 - val loss: 15.4250 - val accuracy: 0.0000e+00
Epoch 42/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 43/70
157/157 [============== ] - Os 1ms/step - loss: 0.7522 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 44/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 45/70
```

```
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 46/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 47/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 48/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 49/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 50/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 51/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 52/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 53/70
157/157 [============= ] - Os 1ms/step - loss: 0.7521 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 54/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 56/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 57/70
accuracy: 0.9512 - val loss: 15.4250 - val accuracy: 0.0000e+00
Epoch 58/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 59/70
157/157 [============== ] - Os 1ms/step - loss: 0.7521 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 60/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 61/70
```

```
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 62/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 63/70
accuracy: 0.9512 - val loss: 15.4250 - val accuracy: 0.0000e+00
Epoch 64/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 65/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 66/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 67/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 68/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 69/70
157/157 [============= ] - Os 1ms/step - loss: 0.7521 -
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Epoch 70/70
accuracy: 0.9512 - val_loss: 15.4250 - val_accuracy: 0.0000e+00
Model: "sequential_38"
-----
Layer (type) Output Shape
                            Param #
______
dense_111 (Dense)
               (None, 10)
                             3370
_____
dropout 65 (Dropout) (None, 10)
_____
dense_112 (Dense) (None, 5)
______
dropout_66 (Dropout) (None, 5)
dense_113 (Dense) (None, 1)
______
Total params: 3,431
Trainable params: 3,431
Non-trainable params: 0
```

```
[221]: %matplotlib inline
       # plt.figure(figsize=(10,4))
       # plt.subplot(2,2,1)
       # plt.plot(history.history['recall'])
       # plt.ylabel('Accuracy %')
       # plt.title('Training')
       # plt.subplot(2,2,2)
       # plt.plot(history.history['val_accuracy'])
       # plt.title('Validation')
       plt.subplot(2,2,3)
       plt.plot(history.history['loss'])
       plt.ylabel('Training Loss')
       plt.xlabel('epochs')
       plt.subplot(2,2,4)
       plt.plot(history.history['val_loss'])
       plt.ylabel('Validation Loss')
       plt.xlabel('epochs')
```

[221]: Text(0.5, 0, 'epochs')

Looks to be overfitting again, but now at around 40 epochs. The relu has helped to train much faster.

```
Epoch 1/40
accuracy: 0.9452 - val_loss: 14.1004 - val_accuracy: 0.0000e+00
Epoch 2/40
accuracy: 0.9552 - val_loss: 13.1706 - val_accuracy: 0.0016
Epoch 3/40
accuracy: 0.9588 - val_loss: 11.8667 - val_accuracy: 0.0304
Epoch 4/40
accuracy: 0.9616 - val_loss: 13.0796 - val_accuracy: 0.0048
accuracy: 0.9636 - val_loss: 13.2361 - val_accuracy: 0.0064
Epoch 6/40
accuracy: 0.9628 - val_loss: 13.2077 - val_accuracy: 0.0096
accuracy: 0.9656 - val_loss: 12.2625 - val_accuracy: 0.0256
accuracy: 0.9620 - val_loss: 13.6683 - val_accuracy: 0.0080
Epoch 9/40
157/157 [============ ] - Os 1ms/step - loss: 0.5318 -
accuracy: 0.9656 - val loss: 12.6389 - val accuracy: 0.0240
Epoch 10/40
accuracy: 0.9660 - val_loss: 13.2466 - val_accuracy: 0.0112
Epoch 11/40
```

```
accuracy: 0.9632 - val_loss: 13.5850 - val_accuracy: 0.0128
Epoch 12/40
accuracy: 0.9648 - val_loss: 12.7645 - val_accuracy: 0.0272
Epoch 13/40
accuracy: 0.9660 - val_loss: 13.0016 - val_accuracy: 0.0256
Epoch 14/40
157/157 [============= ] - Os 1ms/step - loss: 0.5126 -
accuracy: 0.9668 - val_loss: 13.0074 - val_accuracy: 0.0256
Epoch 15/40
accuracy: 0.9656 - val_loss: 13.2750 - val_accuracy: 0.0160
Epoch 16/40
accuracy: 0.9632 - val_loss: 13.2336 - val_accuracy: 0.0128
Epoch 17/40
157/157 [============ ] - Os 1ms/step - loss: 0.5372 -
accuracy: 0.9648 - val_loss: 13.4930 - val_accuracy: 0.0128
Epoch 18/40
accuracy: 0.9644 - val_loss: 13.3100 - val_accuracy: 0.0192
Epoch 19/40
accuracy: 0.9656 - val_loss: 13.3550 - val_accuracy: 0.0256
Epoch 20/40
accuracy: 0.9652 - val_loss: 13.7001 - val_accuracy: 0.0160
Epoch 21/40
157/157 [============= ] - Os 1ms/step - loss: 0.5497 -
accuracy: 0.9632 - val_loss: 12.3731 - val_accuracy: 0.0511
Epoch 22/40
accuracy: 0.9660 - val_loss: 4.7972 - val_accuracy: 0.1438
Epoch 23/40
accuracy: 0.9648 - val_loss: 8.7303 - val_accuracy: 0.1166
Epoch 24/40
accuracy: 0.9636 - val_loss: 8.7951 - val_accuracy: 0.0687
Epoch 25/40
accuracy: 0.9664 - val_loss: 7.9730 - val_accuracy: 0.1118
Epoch 26/40
accuracy: 0.9640 - val_loss: 6.0295 - val_accuracy: 0.1725
Epoch 27/40
```

```
accuracy: 0.9656 - val_loss: 6.4255 - val_accuracy: 0.1422
Epoch 28/40
accuracy: 0.9656 - val_loss: 7.5874 - val_accuracy: 0.1278
Epoch 29/40
accuracy: 0.9636 - val_loss: 7.1197 - val_accuracy: 0.1342
Epoch 30/40
157/157 [============ ] - Os 1ms/step - loss: 0.3464 -
accuracy: 0.9680 - val_loss: 7.5189 - val_accuracy: 0.1486
Epoch 31/40
accuracy: 0.9676 - val_loss: 7.6842 - val_accuracy: 0.1278
accuracy: 0.9680 - val_loss: 8.8887 - val_accuracy: 0.1246
Epoch 33/40
accuracy: 0.9688 - val_loss: 9.2948 - val_accuracy: 0.1150
Epoch 34/40
accuracy: 0.9668 - val_loss: 8.4674 - val_accuracy: 0.1502
Epoch 35/40
accuracy: 0.9664 - val_loss: 8.8380 - val_accuracy: 0.1374
Epoch 36/40
157/157 [============= ] - Os 1ms/step - loss: 0.3366 -
accuracy: 0.9708 - val_loss: 8.0470 - val_accuracy: 0.1310
Epoch 37/40
157/157 [============= ] - Os 1ms/step - loss: 0.3511 -
accuracy: 0.9672 - val_loss: 9.0637 - val_accuracy: 0.1150
Epoch 38/40
accuracy: 0.9692 - val_loss: 9.1729 - val_accuracy: 0.1246
Epoch 39/40
accuracy: 0.9680 - val_loss: 6.6909 - val_accuracy: 0.1326
Epoch 40/40
accuracy: 0.9656 - val_loss: 7.8233 - val_accuracy: 0.1182
Model: "sequential_39"
_____
Layer (type) Output Shape Param #
______
dense_114 (Dense) (None, 10)
_____
dropout_67 (Dropout) (None, 10)
```

```
dense_115 (Dense) (None, 5) 55

dropout_68 (Dropout) (None, 5) 0

dense_116 (Dense) (None, 1) 6
```

Total params: 3,431 Trainable params: 3,431 Non-trainable params: 0

```
[223]: plt.subplot(2,2,3)
   plt.plot(history.history['loss'])
   plt.ylabel('Training Loss')
   plt.xlabel('epochs')

   plt.subplot(2,2,4)
   plt.plot(history.history['val_loss'])
   plt.ylabel('Validation Loss')
   plt.xlabel('epochs')
```

[223]: Text(0.5, 0, 'epochs')


```
[224]: # now lets see how well the model performed
  yhat_proba = model.predict(X_test)
  yhat = np.where(yhat_proba > 0.5, 1, 0)
  print(mt.confusion_matrix(y_test,yhat))
  print(mt.classification_report(y_test,yhat))
[[1061 3]
```

[[1061 3] [28 1]] precision recall f1-score support

0	0.97	1.00	0.99	1064
1	0.25	0.03	0.06	29
accuracy			0.97	1093
macro avg	0.61	0.52	0.52	1093
weighted avg	0.96	0.97	0.96	1093

It does look like the model really struggles to find the global minima and that is to be expected with small data. Last thing I will try is to increase the batch size. I keep in scale of 2.

```
[225]: model = Sequential()
       model.add(Dense(10, input_dim=num_features, activation='relu'))
       model.add(Dropout(0.25))
       model.add(Dense(5, activation='relu', kernel_regularizer=tf.keras.regularizers.
       \rightarrow 12(1e-4)))
       model.add(Dropout(0.1))
       model.add(Dense(1, activation='relu'))
       model.compile(optimizer='adam',
                     loss='binary_crossentropy',
                     metrics=['accuracy'])
       history = model.fit([X_train],
                            y_train,
                            epochs=40,
                            batch_size=24,
                            verbose=1,
                            validation_split = .2)
       model.summary()
```

```
Epoch 6/40
accuracy: 0.9508 - val_loss: 15.4258 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
accuracy: 0.9508 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 9/40
accuracy: 0.9508 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 10/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 11/40
105/105 [============ ] - Os 1ms/step - loss: 0.7246 -
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 12/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 13/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 14/40
105/105 [============= ] - Os 1ms/step - loss: 0.7079 -
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 15/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 16/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 17/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 18/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 19/40
105/105 [============ ] - Os 1ms/step - loss: 0.7078 -
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 20/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 21/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
```

```
Epoch 22/40
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
accuracy: 0.9512 - val_loss: 15.4257 - val_accuracy: 0.0000e+00
Epoch 25/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 26/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 27/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 28/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 29/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 30/40
105/105 [============= ] - Os 1ms/step - loss: 0.6847 -
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 31/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 32/40
accuracy: 0.9512 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 33/40
accuracy: 0.9520 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 34/40
accuracy: 0.9516 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 35/40
105/105 [============= ] - Os 2ms/step - loss: 0.6679 -
accuracy: 0.9508 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 36/40
accuracy: 0.9532 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
Epoch 37/40
accuracy: 0.9528 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
```

```
Epoch 38/40
   accuracy: 0.9532 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
   accuracy: 0.9528 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
   accuracy: 0.9520 - val_loss: 15.4256 - val_accuracy: 0.0000e+00
   Model: "sequential_40"
   Layer (type)
                    Output Shape
   ______
   dense_117 (Dense)
                   (None, 10)
   _____
   dropout_69 (Dropout) (None, 10)
   dense_118 (Dense)
                 (None, 5)
   dropout_70 (Dropout) (None, 5)
   _____
   dense_119 (Dense) (None, 1) 6
   _____
   Total params: 3,431
   Trainable params: 3,431
   Non-trainable params: 0
[226]: plt.subplot(2,2,3)
    plt.plot(history.history['loss'])
    plt.ylabel('Training Loss')
    plt.xlabel('epochs')
    plt.subplot(2,2,4)
    plt.plot(history.history['val_loss'])
    plt.ylabel('Validation Loss')
    plt.xlabel('epochs')
[226]: Text(0.5, 0, 'epochs')
```



```
[227]: # now lets see how well the model performed
  yhat_proba = model.predict(X_test)
  yhat = np.where(yhat_proba > 0.5, 1, 0)
  print(mt.confusion_matrix(y_test,yhat))
  print(mt.classification_report(y_test,yhat))
```

				[29 0]]
support	f1-score	recall	precision	
1064	0.99	1.00	0.97	0
29	0.00	0.00	0.00	1
1093	0.97			accuracy
1093	0.49	0.50	0.49	macro avg
1093	0.96	0.97	0.95	weighted avg

The model just predicts 0 for the entire dataset with larger batch size.

2 Conclusion

There does not seem to be anything really here in the data. It is tough to avoid phacking by continuing on and modifying and I do not really see any noticable improvement on a random guess. More data would most likely be helpful.