

Problem statement

The satellite market is **growing** and **profitable**.

Having an accurate **prediction model** that estimates satellite lifetimes and establishes maintenance periods is necessary **to avoid the loss of a satellite**.

Despite the costs and risks associated with building, launching and operating satellites, some companies have managed to grow their space technology business. Boeing is one of those companies. Its Defense, Space and Security division managed to deliver 10 satellites in 2012 and acquire orders for seven more, contributing to the business unit's nearly \$32 billion in revenue [source: The Boeing Company].

https://science.howstuffworks.com/satellite10.htm

According to Eclipse Aviation, the overall price of a satellite is about \$1 million each. Meanwhile, satellites launched in distant orbits cost around \$150-\$400 million each.

This price tag is followed by the occasional expenses of maintaining and repairing the satellites. Keep reading for the detailed answer on how much a satellite costs and what other additional costs to anticipate.

https://opticsmag.com/how-much-does-a-satellite-cost/

Stakeholders

Our main stakeholders are space agencies, but they are not the only ones:

Goals of the project

Our aim was **providing space agencies** with an effective tool **to enhance predictive maintenance** for satellites.

 Is it feasible to formulate a more accurate model for predicting satellite lifetimes?

• When is it appropriate to initiate maintenance processes for the space agencies?

Dataset description

The data come from UCS Satellite Database and SATCAT dataset, which contain more than **6000 satellites** currently orbiting Earth, and **28 covariates** for each satellite, including:

- Launch Mass, in kilograms
- **Power**: The amount of useable electric power produced by the satellite, given in watts
- Date of Launch
- Expected Lifetime, in years
- Apogee, in kilometers
- Perigee, in kilometers
- Period, in minutes
- **Inclination**, in degrees
- Class of Orbit, with 4 levels: Elliptical, Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geosynchronous Orbit (GEO)
- **Purpose**, with 31 levels: Communications, Earth Observation, Space Observation, Technology Development, etc.
- Users, with 20 levels: Commercial, Civil, Military, Government, etc.
- Country/Organization of UN Registry

The current models are not accurate

DDplot to assess the significant difference between the effective lifetimes Y_1 and the declared expected lifetimes Y_2

Result verified through nonparametric paired test:

$$H_0: Y_1 \stackrel{d}{=} Y_2 \ vs \ H_1: Y_1 \not\stackrel{d}{\neq} Y_2$$

p-value: **0.037**

A step forward to the model

Survival curve estimates (**KM**) and **Log-Rank tests** highlight a significant difference in satellite lifetimes across the different groups.

20

Time

Number at risk

Purpose=Communications
Purpose=Earth Observation
Purpose=Space Science
Purpose=Technology Development

0 5 10 15 20 25

Time

Survival probability

The model

Stratified Cox model with respect to:

- Orbit
- Purpose

$$h_k(t|\mathbf{X}) = h_{0k}(t) \exp(\mathbf{X}^T \boldsymbol{\beta})$$

Variables considered in the model

Variable	coef
Apogee	-8.186e-03
log.Eccentricity	-1.727e-01
Mass	-1.385e-04
UsersCommercial	1.056e+00
UsersGovernment	-1.109e+00
UsersMilitary	8.191e-01
ContinentAsia	4.536e-01
ContinentEurope	6.647e-01

And the others? They are not significant.

	lwr	pointwise	upr
Perigee	-0.0018236728	0.0001098872	0.0016278746
Inclination	-0.004559258	0.001302818	0.009182801
Period	-0.015217030	0.001295519	0.030945062

Reverse percentile intervals

Assumptions and goodness of fit

H0: Hazards are proportional vs H1: Hazards not proportional

Variabile	p
Apogee	0.075
log.Eccentricity	0.675
Mass	0.887
Users	0.330
Continent	0.386
GLOBAL	0.230

Deviance Residuals

Model selection

Our data are characterized by high collinearity. We tried to solve this problem by using:

- PCA and MCA
- Penalized Survival Analysis

Neither of the two methods has led to better results than those already achieved:

Model	AIC
Stratifed Cox model	2391.17
PCA + Cox model	3397.345
Penalized Cox model	2464.633

Following the Keep It Simple philosophy, we have opted for the final model previously presented.

The prediction

We found the predicted lifespan of the satellites using an R package called **coxed**.

The method chosen employs a **generalized additive model (GAM)** to map the model's estimated linear predictor values to duration times:

- 1
- It computes expected values of risk for each observation through the estimated coefficients from the Cox model, creating the **exponentiated linear predictor (ELP)**.
 - The observations are ranked from smallest to largest according to their values of the ELP
- It uses a **cubic regression spline** to model the observed durations as a function of the linear predictor ranks generated.

Satellite	Predicted lifetime	Effective Lifetime	Expected lifetime
Name			
Starlink-	3.338002	2.48	4
2216			
SpaceBEE-	3.061470	2.57	2
NZ1			
Iridium	7.837608	6.40	15
Next 123			

Is our model better than the existing one? (1)

We wanted to ensure that **our model markedly deviates from the existing ones** utilized by space agencies,
by a **Paired Permutation Test**

$$(Y_{i1}, Y_{i2}) \stackrel{iid}{\sim} (Y_1, Y_2), i = 1, \dots, n_{ret}$$

$$H_0: Y_1 \stackrel{d}{=} Y_2 \text{ vs. } H_1: Y_1 \stackrel{d}{\neq} Y_2.$$

 Y_1 is the random variable that denotes the predicted lifetime's observation

 \mathbf{Y}_2 is the random variable that denotes the expected lifetime's observation

The **p-value** of the test is **zero**

The two models are significantly different, but is our model better?

Mean Square Error with respect to the effective lifetime of retired satellites

MSE of our predictions

MSE of the declared predictions

Is our model better than the existing one? (2)

How many outliers does our model produce? And their?

Considering these two different datasets with retired satellites:

Dataset 1

Lifetime predicted Actual by our lifetime model

3 outliers

Dataset 2

8 outliers

Americas: where our business starts

MOTIVATION

It's crucial for us to promote ourselves effectively and focus our resources to the most promising markets for our business.

QUESTION

Is the continent a suitable criterion for choosing the market where to start our business?

PERMUTATIONAL ONE-WAY ANOVA

 $Predicted_{ij} - Expected_{ij} = \mu + continent.effect_i + \epsilon_{ij}; i = 1, ..., g; j = 1, ..., n_i$

 $H_0: continent.effect_i = 0 \ \forall i \ vs \ \exists i \ s.t. \ continent.effect_i \neq 0$

p-value = 0. 039

When to perform maintenance

We computed the **0.1 quantile** of each survival curve and the **expected date for maintenance**, obtained by adding the quantile to the launch date.

Conclusions

- Our model provides a more accurate estimation of satellite lifespan, ensuring fewer losses
- Our strategic focus on the American market, which holds the most promise for our business, has allowed us to maximize the impact of our solution
- We set a conservative critical survival threshold for satellites, providing a robust strategy for maintenance scheduling

Further developments

- Analyzing in detail the reason of decommissioned to propose a more precise schedule based on the type of failure
- Deeper investigation of the most profitable sector for our buisness
- Incorporating a 'Maintenance' variable, allowing for a second maintenance date and further refinement of the model

References

- [1] G. Fox, R. Salazar, H. Habib-Agahi, G. Dubos, A Satellite Mortality Study to Support Space Systems Lifetime Prediction, Conference: 2013 IEEE Aerospace Conference, California Institute of Technology, 2013, pp. 1–11.
- [2] S. Grant, Y.Q. Chen, S. May, Performance of goodness-of-fit tests for the Cox proportional hazards model with time-varying covariates., British Journal of Cancer, UK, 2003, pp. 1–7.
- [3] Kropko, J. and Harden, J. J. (2020). Beyond the Hazard Ratio: Generating Expected Durations from the Cox Proportional Hazards Model. British Journal of Political Science, 50(1), 303–320. DOI: 10.1017/S000712341700045X.
- [4] UCS Satellite Database Version 1.1. (2023). UCS Satellite Database. Union of Concerned Scientists. www.ucsusa.org/satellite_database
- [5] Satellite Catalog (2023). https://celestrak.org/satcat/search.php.
- [6] Brown, G., & Harris, W. How Satellites Work. HowStuffWorks. https://science.howstuffworks.com/satellite10.htm
- [7] Weishaupt, J. How Much Does a Satellite Cost? The Surprising Answer! Optics Mag. https://opticsmag.com/how-much-does-a-satellite-cost/