AdaPT: Interactive Multiple Testing with Side Information

Lihua Lei & Will Fithian

Department of Statistics, UC Berkeley

March 8, BSTARS 2018

Side Information

Setting: hypotheses H_1, \ldots, H_n with p-values p_1, \ldots, p_n

Observe side information $x_i \in \mathcal{X}$ for each H_i

Examples:

- Identifying differentially expressed genes with "prioritization scores" (priors, auxiliary information, etc.)
- Spatiotemporal testing;
- Clinical meta-analysis;

Side Information

Setting: hypotheses H_1, \ldots, H_n with p-values p_1, \ldots, p_n

Observe side information $x_i \in \mathcal{X}$ for each H_i

Examples:

- Identifying differentially expressed genes with "prioritization scores" (priors, auxiliary information, etc.)
- Spatiotemporal testing;
- Clinical meta-analysis;

Goal: produce hypothesis-specific p-value thresholds s_i 's and control False Discovery Rate (FDR).

Stop when $\widehat{\mathrm{FDP}}_t \leq \alpha$, and reject all red points

Define partially masked p-values:

$$\tilde{p}_{t,i} = \begin{cases} p_i & s_t(x_i) < p_i < 1 - s_t(x_i) \\ \{p_i, \ 1 - p_i\} & \text{otherwise}. \end{cases}$$

AdaPT (Analyst View)

predictor x_i

Define partially masked p-values:

$$\tilde{p}_{t,i} = \begin{cases} p_i & s_t(x_i) < p_i < 1 - s_t(x_i) \\ \{p_i, \ 1 - p_i\} & \text{otherwise}. \end{cases}$$

AdaPT (Analyst View) To select $s_{t+1}(x)$, we can use:

Any such update rule is OK

predictor xi

p-value p_i

Define partially masked p-values:

$$\tilde{p}_{t,i} = \begin{cases} p_i & s_t(x_i) < p_i < 1 - s_t(x_i) \\ \{p_i, \ 1 - p_i\} & \text{otherwise}. \end{cases}$$

predictor xi

AdaPT (Analyst View) To select $s_{t+1}(x)$, we can use:

Any such update rule is OK

Define partially masked p-values:

$$\tilde{p}_{t,i} = \begin{cases} p_i & s_t(x_i) < p_i < 1 - s_t(x_i) \\ \{p_i, \ 1 - p_i\} & \text{otherwise}. \end{cases}$$

p-value p_i predictor xi

AdaPT (Analyst View) To select $s_{t+1}(x)$, we can use:

- x_1,\ldots,x_n

Any such update rule is OK

Define partially masked p-values:

$$\tilde{p}_{t,i} = \begin{cases} p_i & s_t(x_i) < p_i < 1 - s_t(x_i) \\ \{p_i, \ 1 - p_i\} & \text{otherwise}. \end{cases}$$

AdaPT (Analyst View) To select $s_{t+1}(x)$, we can use:

Any such update rule is OK

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

AdaPT is flexible in an unusually strong sense in that the update rule can be **arbitrary**,

no matter how misspecified our model is;

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

- no matter how misspecified our model is;
- no matter how misguided our priors are (if we use a Bayesian method);

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

- no matter how misspecified our model is;
- no matter how misguided our priors are (if we use a Bayesian method);
- no matter how we select a model or tuning parameter;

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

- no matter how misspecified our model is;
- no matter how misguided our priors are (if we use a Bayesian method);
- no matter how we select a model or tuning parameter;
- no matter how crazy we are.

Theorem 1 (Lei and Fithian, 2016).

Under standard assumptions in literature, AdaPT controls FDR at level α , regardless of the update rule.

AdaPT is flexible in an unusually strong sense in that the update rule can be **arbitrary**,

- no matter how misspecified our model is;
- no matter how misguided our priors are (if we use a Bayesian method);
- no matter how we select a model or tuning parameter;
- no matter how crazy we are.

Don't worry. Use your favorite model to guide the update!

THANKS!