

Distributed Computing

- Course Introduction

Dr. Rajendra Prasath

Indian Institute of Information Technology Sri City, Chittoor

> Heartiest Welcome to ALL

Welcome to the Distributed Computing course

> Distributed Computing?

How will you design a distributed algorithm?

Implement solutions using discrete events / MPI

> About Distributed Computing

- ➤ This course covers
 - Essential aspects that every serious programmer needs to know about
 - Distributed algorithms
 - Design principles and their analysis,

with emphasis on

- Real-time implementations and
- Scalable applications development

> Scalability vs Efficiency

How do you find the correct solution?

- Whether do Your Solutions solve the given problem?
- How will you improve you solution so that you can show a better performance?

What do we learn?

Distributed Computing (DC)

- **→** Core Theoretical Concepts
- → Design Principles of DC
- → Discrete Events Simulations
- **→** Experimental Evaluations
- → Designing Efficient Solution(s) ??
 - → To Solve Some Interesting Problems!!
- An Overview of Distributed Computing
 - → → Simple to advanced?

An Overview

Basic Problem-Solving:

- → What are the constraints in solving a specific problem?
- → How to do problem-solving in a sequential machine?
- → How do we parallelize the solution?
- → How to make the systems to co-ordinate to solve the specific problems given the specific constraints?

Distributed Computing

→ A Study of Distributed Systems

What is a Distributed System?

- → A model in which components communicate among themselves by passing messages and coordinate (regulated by interaction or interdependence) to accomplish a specific task / problem given to them
- → Is it different from parallel processing?

Parallel vs Distributed

- → Parallel System?
 - Having n processors with a common shared memory
- → Distributed System?
 - Having n processors but NO common shared memory

More Formally ...

A Distributed System:

- → A collection of independent systems that appears to its users as a single coherent system
- → A system in which hardware and software components of networked computers communicate and coordinate their activity only by passing messages
- → A computing platform built with many computers that:
 - Operate concurrently
 - Are physically distributed (have their own failure modes)
 - → Are linked by a network
 - → Have independent clocks

Characteristics

- **→** Concurrent execution of processes:
 - → Non-determinism, Race Conditions, Synchronization, Deadlocks, and so on
- → No global clock
 - Coordination is done by message exchange
 - → No Single Global notion of the correct time
- → No global state
 - → No Process has a knowledge of the current global state of the system
- Units may fail independently
 - → Network Faults may isolate computers that are still running
 - System Failures may not be immediately known

Need of Distributed Systems

Why do we need distributed systems?

- → People are distributed but need to work together
- → Hardware needs to be physically close to people (who are distributed)
- → Information is distributed but needs to be shared (trustworthily)
- → Hardware can be shared (increases computing power by doing work in parallel; more efficient resource utilization)

Examples of DS

- → Intranets, Internet, World Wide Web
- Distributed / Supercomputers
- Grid / Cloud computing AWS-EC2
- Electronic banking
- **→** Airline Reservation Systems
- Railway Reservation Systems
- → Peer-to-peer networks
- → Sensor networks IBM systems
- Web Searching / Web Crawling
 - ... and so on

Course Content

- Course is divided into several modules:
- Covers Basics to Advanced Components
 - At least one example problem with detailed analysis in each topic
- Course is supposed to be an interactive course
- Class performance bonus would be given to students who solve a set of problems efficiently
 - → Course Content follows ...

Course Content - Topics

- **→** Introduction
- → A Model of Distributed Computations
- → Logical Time
- Global State/Snapshot Recording Algorithms
- **→** Topology Abstraction and Overlays
- → Message Ordering and Group Communication
- **→** Termination Detection
- → Distributed Mutual Exclusion Algorithms

Course Content - Topics (contd...)

- → Deadlock Detection in Distributed Systems
- → Distributed Shared Memory
- → Check Pointing and Rollback Recovery
- Consensus and Agreement Algorithms
- → Self-Stabilization Algorithms
- → Authentication in Distributed Systems
- → Peer-to-Peer Computing and Overlay Graphs
 - and Practice Problems ...

Case Studies

- Discrete Event Simulations
 - Distributed Sorting on a Line Network
 - Distributed Sorting on Various Interconnection Networks
- Map Reduce and Big Data
 - How to process a huge volume of data
 - Specific focus would be on scalable data processing especially in text format
- Authentication & Security in DS
 - We will focus more on Decentralized Application development

Examinations

Mid 1 Semester : 15 Marks

Mid 2 Semester : 15 Marks

End Semester : 20 Marks

Practice Components: 35 Marks
2 Assignments (20) + One Mini Project (15)

Total Weightage (100) = Exams (50)

+ Practice Components (35) + Quiz (10)

+ Class Performance (5)

Academic Code of Conduct

Explore PENALTIES

Subject to the Approval of The Class Committee

Assignments

- Two Assignments
- Must be solved by individuals & must be finished before the deadline specified
- All Assignments are COMPULSARY
- Total Weightage: 20%
- Solutions would be cross checked !!
- Solutions submitted after the deadline will not be considered for evaluation
- Submission Procedure would be given.

Mini Projects

- Mini Project spans over 4 weeks
- Must be solved by individuals & must be finished before the deadline specified
- Mini Project is COMPULSARY
- Total Weightage: 15%
- Solutions would be cross checked !!
- Solutions submitted after the deadline will not be considered for evaluation
- Submission Procedure would be given.

Scheduled Quizzes

- There would be at least two Scheduled Quizzes:
 - One before Mid Semester
 - One before End Semester
- Must be answered by individuals
- These quizzes will be conducted online until the physical classes resumes in the campus
- These quizzes are COMPULSARY
- Total Weightage: 10%;
- Date would be announced in prior and responses submitted after the deadline will not be considered for evaluation

Innovative Solutions

- There would be multiple chances:
 - A few would be held before MID Semester
 - A Few would be held after MID Semester
- Must be answered by individuals
- These challenges will be given in the classroom
- Total Weightage: 5%
- Dates WILL NOT BE announced in prior
- Responses submitted after the deadline will not be considered for evaluation

Penalties

- Every Student is expected to strictly follow a fair Academic Code of Conduct to avoid penalties
- Penalties is heavy for those who involve in:
 - Copy and Pasting the code
 - ➤ Plagiarism (copied from your neighbor or friend in this case, both will get "0" marks for that specific take home assignments)
 - ▶ If the candidate is unable to explain his own solution, it would be considered as a "copied case"!!
 - Any other unfair means of completing the assignments

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- You may ask for one-to-one meeting

Best Approach

You may leave me an email any time (email is the best way to reach me faster)

Questions It's Your Time

