FUNCTIONAL ANALYSIS II SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Functional Analysis II* held at *ETH Zurich* by *Prof. Dr. Alessandro Carlotto* in spring 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

Sobolev Space Theory	
The Spaces $W^{k,p}(\Omega)$	1
Sobolev Spaces on an Interval	
Elliptic Operators in Divergence Form	3
References	4

Sobolev Space Theory

The Spaces $W^{k,p}(\Omega)$. In what follows, let $n \in \omega$, $n \ge 1$, and $1 \le p \le \infty$.

Definition 1.1 (Distributional and Weak Derivative). Let $\Omega \subseteq \mathbb{R}^n$ open and $u \in L^1_{loc}(\Omega)$. For any multiindex α , the **distributional derivative of order \alpha of u**, written $D^{\alpha}u$, is defined to be the mapping $D^{\alpha}u: C_c^{\infty}(\Omega) \to \mathbb{R}$ defined by

$$\varphi \mapsto (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Moreover, a function $D^{\alpha}u \in L^{p}(\Omega)$ is called weak derivative of order α of u with exponent p, iff

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} D^{\alpha} u \varphi dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Theorem 1.1 (Fundamental Lemma of Variational Calculus). Let $\Omega \subseteq \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. If

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} f \varphi dx = 0,$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

then f = 0 a.e.

Remark 1.1. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $L^p(\Omega) \subseteq L^1_{loc}(\Omega)$.

Remark 1.2. From the fundamental lemma of variational calculus 1.1 it follows that weak derivatives, if they exist, are unique.

Examples 1.1.

- (a) Consider $\Omega := (-1, 1)$ and u := |x|. Then $u' = \chi_{[0,1)} \chi_{(-1,0)}$.
- (b) Consider $\Omega := \mathbb{R}$ and $u := \chi_{(0,\infty)}$. Then the weak derivative u' does not exist. Indeed, the Dirac distribution is not representable as one may see by considering the smooth family $\varphi_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ for $\varepsilon > 0$ defined by

$$\varphi_{\varepsilon}(x) := \begin{cases} e^{\varepsilon^2/(x^2 - \varepsilon^2)} & |x| < \varepsilon, \\ 0 & |x| \ge \varepsilon. \end{cases}$$

Definition 1.2 (Sobolev Space). Let $\Omega \subseteq \mathbb{R}^n$ open. For any $k \in \omega$, the Sobolev space of index (k, p), written $W^{k,p}(\Omega)$, is defined to be the space

$$W^{k,p}(\Omega) := \{ f \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \text{ exists for all } |\alpha| \le k \},$$

with norm

$$\|-\|_{W^{k,p}(\Omega)} := \sum_{|\alpha| \le k} \|D^{\alpha} - \|_{L^p(\Omega)}.$$

Moreover, define

$$W_0^{k,p}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|-\|_{W^{k,p}(\Omega)}}$$

and $H^k(\Omega) := W^{k,2}(\Omega)$ as well as $H_0^k(\Omega) := W_0^{k,2}(\Omega)$.

Theorem 1.2. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $W^{k,p}(\Omega)$ is

- (a) a Banach space for all $1 \le p \le \infty$.
- (b) separable for all $1 \le p < \infty$.
- (c) reflexive for all 1 .

Proof.

(a) This follows from the fact that $L^p(\Omega)$ is a Banach space for all $1 \le p \le \infty$. Let $(f_i)_{i\in\omega}$ be a Cauchy sequence in $W^{k,p}$. By definition of the $W^{k,p}$ -norm, $(D^{\alpha}f_i)_{i\in\omega}$ is a Cauchy sequence in L^p . Thus we get $D^{\alpha}f_i \to f_{\alpha}$ in L^p , in particular, $f_i \to f$ in L^p . Using Hölder's inequality we compute

$$\int_{\Omega} f_{\alpha} \varphi dx = \lim_{i \to \infty} \int_{\Omega} D^{\alpha} f_{i} \varphi dx = (-1)^{|\alpha|} \lim_{i \to \infty} \int_{\Omega} f_{i} D^{\alpha} \varphi dx = (-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \varphi dx$$
 for $\varphi \in C_{c}^{\infty}(\Omega)$.

- (b) For simplicity, we consider k=1 only. Consider $\iota:W^{1,p}\hookrightarrow (L^p)^{n+1}$ defined in the obvious way. Then ι is an isometry and the statement follows.
- (c) Same argument as in part (b).

Sobolev Spaces on an Interval.

Elliptic Operators in Divergence Form

Lemma 1.1 (Poincaré Inequality).

Theorem 1.3 (Riesz Representation Theorem). *Let* H *be a real Hilbert space. Then the mapping* $J: H \to H^*$ *defined by* $J(x) := \langle x, - \rangle$ *is an isometric isomorphism.*

Theorem 1.4. Let $\Omega \subseteq \subseteq \mathbb{R}^n$, $k \in \omega$ and consider the elliptic operator

$$L := \sum_{i,j=1}^{n} \frac{\partial}{\partial x^{i}} \left(a_{ij} \frac{\partial}{\partial x^{j}} \right),$$

for $a_{ii} \in C^{k+1}(\overline{\Omega})$ symmetric. Then:

(a) Given $f \in L^2(\Omega)$, the homogenous Dirichlet problem

$$\begin{cases}
-L(u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

admits a unique weak solution $u \in H_0^1(\Omega)$.

(b) If $f \in H^k(\Omega)$ for some $k \in \omega$, then we have $u \in H^{k+2}_{loc}(\Omega)$ for the unique weak solution of part (a) and moreover, for any $\Omega' \subseteq \subseteq \Omega$ we have the estimate

$$||u||_{H^{k+2}(\Omega')} \le C (||f||_{H^k(\Omega)} + ||u||_{H^1(\Omega)}).$$

Proof.

Step 1: Derivation of Weak Formulation. Suppose $u \in C^2(\overline{\Omega})$ is a solution of (1). Let $\varphi \in C_c^{\infty}(\Omega)$. Then integration by parts (see [Lee13, p. 436]) yields

$$-\int_{\Omega} L(u)\varphi = -\sum_{j=1}^{n} \int_{\Omega} \operatorname{div}(X_{j})\varphi = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{j}} \frac{\partial \varphi}{\partial x^{i}} = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}},$$

where $X_j := \left(a_{ij} \frac{\partial}{\partial x^j}\right)_i$. Thus we get the weak formulation:

$$\sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial \varphi}{\partial x^{j}} = \int_{\Omega} f \varphi \qquad \forall \varphi \in C_{c}^{\infty}(\Omega).$$
 (2)

Step 2: Existence and Uniqueness of Weak Solutions. Since L is uniformly elliptic, there exists $\lambda > 0$ such that

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, since $a_{ij} \in C^0(\overline{\Omega})$, we get that L is uniformly bounded, i.e. there exists $\Lambda > 0$ such that

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Now define a bilinear form $\langle \cdot, \cdot \rangle_a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ by

$$\langle u, v \rangle_a := \sum_{i,j=1}^n \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^i} \frac{\partial v}{\partial x^j}$$
 (3)

Then it is easy to see, that $\langle \cdot, \cdot \rangle_a$ is symmetric. Also, $\langle \cdot, \cdot \rangle_a$ is positive definite since

$$\langle u, u \rangle_a = \sum_{i,j=1}^n \int_{\Omega} a_{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \int_{\Omega} |\nabla u|^2 \ge C \lambda \int_{\Omega} |u|^2$$

using ellipticity and Poincaré's inequality. Moreover by Poincaré's inequality we have that

$$C\lambda \|u\|_{H_0^1(\Omega)}^2 \le \|u\|_a \le \Lambda \|u\|_{H_0^1(\Omega)}^2$$

for the induced norm $\lVert \cdot \rVert_a.$ Hence the induced norm is equivalent to the standard norm on $H_0^1(\Omega)$ and thus $(H_0^1(\Omega), \|\cdot\|_a)$ is a Hilbert space. Thus an application of Riesz representation theorem 1.3 yields the existence of a unique $u \in H_0^1(\Omega)$, such that

$$\langle u, \varphi \rangle_a = l(\varphi) := \int_{\Omega} f \varphi$$

holds for all $\varphi \in H^1_0(\Omega)$, since $l \in (H^1_0(\Omega))^*$ This proves part (a). Step 3: H^1 -Estimate. The main idea in proving part (b) is an induction on $k \in \omega$. So let us assume that k = 0. Let $u \in H_0^1(\Omega)$ denote the unique solution of part (a).

Lemma 1.2.

$$\|\nabla u\|_{L^2(\Omega')}$$

References

John M. Lee. Introduction to Smooth Manifolds. Second Edition. Graduate Texts in Mathematics. Springer, 2013.