

离散数学(011122)

魏可信 kejiwei@tongji.edu.cn

Chapter 2: Propositional Logic

- 2.1 Basic Concepts of Propositional Logic
- 2.2 Equivalence Calculus of Propositional Logic
- 2.3 Normal Forms

2.2 Equivalence Calculus of Propositional Logic

2.2.1 Equivalence Expressions and Equivalence Calculus

- Equivalence Expressions and Basic Equivalence Expressions
- Truth Table Method and Equivalence Calculus Method

2.2.2 Connective Complete Set

- Truth Functions
- Connective Complete Set
- NAND Connective, NOR Connective

Equivalence Expressions

Definition 2.11:

Let A and B be two propositional formulas. If the equivalence expression $A \leftrightarrow B$ is a tautology (Universally Valid Formula), then A and **B** are said to be equivalent, denoted as $A \Leftrightarrow B$, and called an equivalence expression.

Explanation:

- $(1) \Leftrightarrow is$ the notation for equivalence, which is different from the equivalence connective \leftrightarrow .
- (2) $A \Leftrightarrow B$ means that propositions A and B are either both "true" or both "false" under all possible assignments (i.e., they have the same truth table).
- (3) Every propositional formula has infinitely many equivalent propositional formulas(e.g.,: $\neg \neg P$ is equivalent to P).

Equivalence Expressions (cont.)

Explanation:

- (3) Every propositional formula has infinitely many equivalent propositional formulas (e.g.,: $\neg \neg P$ is equivalent to P).
- (4) In propositional logic, "Equivalence" is a more commonly used and clearer term used to indicate that two propositions have the same truth value under all possible conditions. This is similar to the concept of "Equality".
- (5) There may be dummy variables in A or B.

For example, in $(p \rightarrow q) \leftrightarrow ((\neg p \lor q) \lor (\neg r \land r))$, r is a dummy variable in the left-hand formula.

The value of a dummy variable does not affect the truth value of the propositional formula.

Determine Equivalence Expression Using a Truth Table

Example: Judge $\neg(p \lor q)$ and $\neg p \land \neg q$ is equal or not.

Solve:

p	\boldsymbol{q}	$\neg p$	$\neg q$	$p \lor q$	$\neg (p \lor q)$	$\neg p \land \neg q$	$\neg (p \lor q) \longleftrightarrow (\neg p \land \neg q)$
0	0	1	1	0	1	1	1
0	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1
1	1	0	0	1	0	0	1

Conclusion: $\neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$

Determine Equivalence Expression Using a Truth Table (cont.)

Example: Determine the equivalence relationship among the following three formulas:

$$p \rightarrow (q \rightarrow r), (p \rightarrow q) \rightarrow r, (p \land q) \rightarrow r$$

Solve:

p	q	r	$p\rightarrow (q\rightarrow r)$	$(p\rightarrow q)\rightarrow r$	(<i>p</i> ∧ <i>q</i>)→ <i>r</i>
0	0	0	1	0	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	1	1	1

Conclusion:

$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$

Service Basic Equivalence Expressions

■ Double Negation Law: $\neg \neg A \Leftrightarrow A$

Idempotent Law: $A \lor A \Leftrightarrow A$, $A \land A \Leftrightarrow A$

■ Commutative Law: $A \lor B \Leftrightarrow B \lor A$, $A \land B \Leftrightarrow B \land A$

Associative Law: $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

■ Distributive Law: $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

■ De Morgan's Laws: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$

 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

■ Absorption Law: $A \lor (A \land B) \Leftrightarrow A$

 $A \land (A \lor B) \Leftrightarrow A$

同济经管 TONGJI SEM

Basic Equivalence Expressions (cont.)

Zero Law:
$$A \lor 1 \Leftrightarrow 1, A \land 0 \Leftrightarrow 0$$

Identity Law:
$$A \lor 0 \Leftrightarrow A, A \land 1 \Leftrightarrow A$$

■ Law of the Excluded Middle:
$$A \lor \neg A \Leftrightarrow 1$$

■ Law of Contradiction:
$$A \land \neg A \Leftrightarrow 0$$

■ Implication Equivalence:
$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

■ Biconditional Equivalence:
$$A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$$

■ Contraposition:
$$A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$$

■ Negation of Equivalence:
$$A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$$

$$(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$$

□ Equivalence Calculus □ Substitution Rule □ Substitu

- **Equivalence Calculus:** The process of deriving new equivalences from known equivalences.
- Substitution Rule If $A \Leftrightarrow B$, then $\Phi(B) \Leftrightarrow \Phi(A)$

Example: To prove
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$

Proof:
$$p \rightarrow (q \rightarrow r)$$

$$\Leftrightarrow \neg p \lor (\neg q \lor r)$$
 (Implication Equivalence)

$$\Leftrightarrow (\neg p \lor \neg q) \lor r$$
 (Associative Law)

$$\Leftrightarrow \neg (p \land q) \lor r$$
 (De Morgan's Law)

$$\Leftrightarrow (p \land q) \rightarrow r$$
 (Implication Equivalence)

同济经管 TONGJI SEM

Methods to Prove the Non-Equivalence of Two Formulas

Example: Proof:
$$p \rightarrow (q \rightarrow r) \iff (p \rightarrow q) \rightarrow r$$

- Equivalence calculus cannot directly prove that two formulas are not equivalent.
- The fundamental idea to prove *non-equivalence* is to find an assignment that makes one formula **true** while making the other **false**.
- Key Approaches:
 - Truth Table Method
 - •Observation Method: It is easy to see that the assignment (p, q, r) = (0,0,0) makes the left formula **true** and the right formula **false**.
 - •Simplification and Observation:

▶ To determine the type of the Formulas(e.g.)

**** Example: Use equivalence calculus to determine the type of the following formula:

(1)
$$q \land \neg (p \rightarrow q)$$

Solution: $q \land \neg (p \rightarrow q)$
 $\Leftrightarrow q \land \neg (\neg p \lor q)$ (Implication Equivalence)
 $\Leftrightarrow q \land (p \land \neg q)$ (De Morgan's Law)
 $\Leftrightarrow p \land (q \land \neg q)$ (Commutative and Associative Laws)
 $\Leftrightarrow p \land 0$ (Law of Contradiction)
 $\Leftrightarrow 0$ (Zero Law)

Thus, the formula is a *contradiction*.

▶ To determine the type of the Formulas(e.g.)

Example: Use equivalence calculus to determine the type of the following formula:

(2)
$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

Solution: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
 $\Leftrightarrow (\neg p \lor q) \leftrightarrow (q \lor \neg p)$ (Implication Equivalence)
 $\Leftrightarrow (\neg p \lor q) \leftrightarrow (\neg p \lor q)$ (Commutative Law)
 $\Leftrightarrow 1$

this formula is a tautology (always true).

↓ To determine the type of the Formulas(e.g.)


```
(3) ((p \land q) \lor (p \land \neg q)) \land r)

Solution: ((p \land q) \lor (p \land \neg q)) \land r)

\Leftrightarrow (p \land (q \lor \neg q)) \land r (Distributive Law))

\Leftrightarrow p \land 1 \land r (Law of Excluded Middle)

\Leftrightarrow p \land r (Identity Law)
```

- •This is a satisfiable formula, but not a tautology. For example:
- •101 is a truth assignment that makes it true.
- •000 is a truth assignment that makes it false.

Summary:

- •A formula A is a *contradiction* if and only if $A \equiv 0$.
- •A formula A is a *tautology* if and only if A=1.

- Definition 2.12: $F:\{0,1\}^n \rightarrow \{0,1\}$ n-ary truth-value function.
 - The **n** propositional variables can form 2^{2^n} truth-value functions (n≥1).
 - Each propositional formula corresponds to a truth-value function.
 - Each truth-value function corresponds to infinitely many propositional formulas.

1-ary Truth-Value Function

p	$F_0^{(1)}$	$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$
0	0	0	1	1
1	0	1	0	1

4 2-ary Truth-Value Function

2-ary Truth-Value Function

p q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0 0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1
p q	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
0 0	1	1	1	1	1	1	1	1
0 0 0 1	1 0	1 0	1 0	1 0	1 1	1 1	_	1 1
	_	1 0 0	1 0 1	1 0 1	_	1	1	1

b Definition

- Definition 2.13: Let S be a set of logical connectives. If any n-ary (where n≥1) truth-value function can be represented by a formula containing only the connectives in **S**, then **S** is called a **functionally** complete set (or complete set of connectives).
- **Theorem 2.1:** The following sets of logical connectives are functionally complete. why negation always include in complete set?

(1)
$$S_1 = {\neg, \land, \lor, \rightarrow, \leftrightarrow}$$

$$(2) S_2 = {\neg, \land, \lor, \rightarrow}$$

(3)
$$S_3 = {\neg, \land, \lor}$$

$$(4) S_4 = {\neg, \land}$$

(5)
$$S_5 = \{ \neg, \lor \}$$

(6)
$$S_6 = \{ \neg, \rightarrow \}$$

$$A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$$

$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

$$A \lor B \Leftrightarrow \neg \neg (A \lor B) \Leftrightarrow \neg (\neg A \land \neg B)$$

$$A \wedge B \Leftrightarrow \neg (\neg A \vee \neg B)$$

$$A \lor B \Leftrightarrow \neg (\neg A) \lor B \Leftrightarrow \neg A \rightarrow B$$

2.2.2 Connective Complete Set

NAND (Not AND)&NOR (Not OR)

- NAND Form: $p \uparrow q \Leftrightarrow \neg (p \land q)$, \uparrow is called the NAND connective.
- NOR Form: $p \downarrow q \Leftrightarrow \neg (p \lor q)$, \downarrow is called the NOR connective.
 - $p \uparrow q$ is true if and only if p and q are not both true.
 - $p \downarrow q$ is false if and only if p and q are not both false.
- Theorem 2.2: $\{\uparrow\},\{\downarrow\}$ are functionally complete sets of connectives. (or complete set of connectives).

Proof:
$$\neg p \Leftrightarrow \neg(p \land p) \Leftrightarrow p \uparrow p$$

$$p \land q \Leftrightarrow \neg \neg(p \land q) \Leftrightarrow \neg(p \uparrow q) \Leftrightarrow (p \uparrow q) \uparrow (p \uparrow q)$$

Thus, $\{\uparrow\}$ is a functionally complete set..

A similar proof holds for $\{\downarrow\}$.

2.2 Equivalence Calculus of Propositional Logic • Brief summary

Objective:

Key Concepts:

