

ZAIRO LINS RIBEIRO CUNHA

REDES DE COMPUTADORES E A INTERNET

Atividade – Capitulo 5 – 5.1 e 5.2

PALMAS-TO 2025

EXERCÍCIOS DE FIXAÇÃO E PERGUNTAS

Questões de revisão do Capítulo 5 SEÇÕES 5.1-5.2

Rl. Considere a analogia de transporte na Seção 5.1.1. Se o passageiro é comparado com o datagrama, o que é comparado com o quadro da camada de enlace?

Na analogia de transporte mencionada, se o passageiro é comparado com o datagrama (a unidade de dados na camada de rede), o quadro da camada de enlace seria comparado com o veículo ou ônibus que transporta o passageiro (datagrama). O quadro é a unidade de dados que a camada de enlace usa para encapsular o datagrama da camada de rede e transmiti-lo através do meio físico (semelhante ao transporte de um passageiro por um veículo).

R2. Se todos os enlaces da Internet fornecessem serviço de entrega confiável, o serviço de entrega confiável do TCP seria redundante? Justifique sua resposta.

Não, o serviço de entrega confiável do TCP não seria redundante, mesmo que todos os enlaces da Internet fornecessem um serviço de entrega confiável. Isso porque a camada de enlace pode fornecer confiabilidade no nível do enlace entre dois dispositivos adjacentes, mas não pode garantir a entrega confiável de ponta a ponta (de origem a destino) ao longo de toda a rede. O TCP fornece confiabilidade end-to-end, ou seja, garante a entrega dos dados de um ponto a outro, mesmo através de múltiplos enlaces intermediários, e lida com retransmissões, controle de fluxo e ordenação de pacotes. Portanto, o TCP é necessário para lidar com possíveis perdas de pacotes, erros ou atrasos durante o trajeto através de múltiplos enlaces.

R3. Quais alguns possíveis serviços um protocolo da camada de enlace pode oferecer à camada de rede? Quais dos serviços da camada de enlace têm correspondentes no IP? E no TCP?

Alguns dos serviços que um protocolo da camada de enlace pode oferecer à camada de rede incluem:

- Controle de Erros: Garantir que os dados sejam entregues corretamente, detectando e corrigindo erros.
- Controle de Fluxo: Gerenciar a quantidade de dados transmitidos, evitando que o receptor fique sobrecarregado.
- Endereçamento Físico: Identificar dispositivos específicos em uma rede local usando endereços MAC.
- Controle de Acesso ao Meio (MAC): Determinar quando e como os dispositivos podem acessar o meio de comunicação, especialmente em redes compartilhadas.

Em relação ao IP (camada de rede):

- O controle de erros e o controle de fluxo fornecidos pela camada de enlace podem ser considerados como complementares ao que o IP faz, mas o IP não garante a entrega confiável (o que é responsabilidade do TCP).
- O endereço físico (MAC) da camada de enlace é diferente do endereço IP da camada de rede. O IP lida com endereçamento lógico, enquanto o MAC é responsável por identificar dispositivos fisicamente na rede local.

No TCP (camada de transporte):

- O controle de erros na camada de enlace complementa o controle de erros do TCP, que é responsável por garantir a confiabilidade end-to-end.
- O controle de fluxo na camada de enlace é semelhante ao controle de fluxo do TCP, mas com uma diferença: o controle de fluxo no TCP lida com a transmissão de dados ao longo de toda a comunicação entre origem e destino, enquanto o controle de fluxo da camada de enlace se concentra em transmitir dados de um dispositivo para outro em um enlace direto.

SEÇÃO 5.3

Aqui estão as respostas para as questões de revisão da Seção 5.3:

R4. Suponha que dois nós comecem a transmitir ao mesmo tempo um pacote de comprimento LL por um canal broadcast de velocidade RR. Denote o atraso de propagação entre os dois nós como dpropd_{prop}. Haverá uma colisão se dprop<LRd_{prop} < \frac{L}{R}? Por quê?

Sim, haverá uma colisão se dprop<LRd_{prop} < \frac{L}{R}. A razão é que, durante a transmissão de um pacote de comprimento LL, ambos os nós começam a transmitir ao mesmo tempo, mas o canal é compartilhado. Se o atraso de propagação dpropd_{prop} for menor que o tempo necessário para transmitir o pacote, ou seja, o tempo de transmissão LR\frac{L}{R}, então os nós não terão a capacidade de detectar que o outro nó também está transmitindo antes que a colisão ocorra. Ou seja, os pacotes colidem no canal, pois ambos os nós não têm tempo de perceber a transmissão do outro antes de completar o envio do seu próprio pacote.

R5. Na Seção 5.3, relacionamos quatro características desejáveis de um canal de difusão. O slotted ALOHA tem quais dessas características? E o protocolo de passagem de permissão, tem quais dessas características?

As quatro características desejáveis de um canal de difusão são:

- 1. **Eficiência de Canal:** Capacidade de usar a maior parte possível do canal sem causar colisões.
- 2. **Detecção de Colisão:** Mecanismo para detectar colisões quando ocorrem.
- 3. **Recuperação de Colisão:** Um protocolo que permita que os nós recuperem de colisões e retransmitam os dados.

4. **Simplicidade de Implementação:** O protocolo deve ser fácil de implementar em termos de hardware ou software.

Slotted ALOHA:

- Eficiência de Canal: Não é altamente eficiente, pois a transmissão ocorre em intervalos de tempo fixos, o que pode levar a colisões se os nós não estiverem sincronizados.
- Detecção de Colisão: Não possui mecanismo para detectar colisões diretamente.
- Recuperação de Colisão: Recupera colisões através de uma estratégia de retransmissão aleatória após uma colisão.
- o *Simplicidade de Implementação*: É relativamente simples de implementar.

• Protocolo de Passagem de Permissão (Token Passing):

- Eficiência de Canal: Alta eficiência, pois os nós só transmitem quando recebem a permissão, o que evita colisões.
- Detecção de Colisão: Não é necessário, já que as colisões são evitadas pelo uso de permissão.
- o Recuperação de Colisão: Não é necessário, já que não há colisões.
- Simplicidade de Implementação: Requer mais complexidade devido à necessidade de um token e sua circulação pela rede.

R6. No CSMA/CD, depois da quinta colisão, qual é a probabilidade de um nó escolher K=4K = 4? O resultado K=4K = 4 corresponde a um atraso de quantos segundos em uma Ethernet de 10 Mbits/s?

No CSMA/CD (Carrier Sense Multiple Access with Collision Detection), após cada colisão, o nó escolhe um número aleatório KK entre 0 e $2n-12^n - 1$, onde nn é o número de colisões anteriores. Após a quinta colisão, n=5n=5, então o número KK será escolhido aleatoriamente entre 0 e $25-1=312^5 - 1=31$.

A probabilidade de escolher K=4K=4 é $132\frac\{1\}\{32\}$ (porque há 32 opções possíveis para KK).

Agora, para calcular o atraso correspondente a K=4K = 4 em uma Ethernet de 10 Mbits/s, o atraso é dado por:

Atraso=K×tempo de transmissa~o de um quadro\text{Atraso} = K \times \text{tempo de transmissão de um quadro}

A **transmissão de um quadro** em Ethernet é tipicamente de 512 bits (o tamanho do quadro mínimo). O tempo de transmissão de um quadro é:

Tempo de transmissa˜o=Tamanho do quadroTaxa de transmissa˜o=512 bits10 Mbits/s=0, 0000512 segundos\text{Tempo de transmissão} = $\frac{\text{Tamanho do quadro}}{\text{Taxa de transmissão}} = \frac{512 \ \text{bits}}{10 \ \text{bits}} = 0,0000512 \ \text{segundos}$

Então, o atraso para K=4K = 4 seria:

 $Atraso=4\times0,0000512\ segundos=0,0002048\ segundos=204,8\ microsegundos \ text{Atraso} = 4 \times0,0000512 \ , \ text{segundos} = 0,0002048 \ , \ text{segundos} = 204,8 \ , \ text{microsegundos}$

R7. Descreva os protocolos de polling e de passagem de permissão usando a analogia com as interações ocorridas em um coquetel.

- Polling: Imagine que em um coquetel, todos os convidados estão esperando para fazer um pedido ao garçom. Em vez de cada um levantar a mão para chamar o garçom, o garçom vai de convidado em convidado, perguntando se alguém quer fazer um pedido. O garçom "faz o polling", ou seja, ele pergunta a cada convidado, um por vez, se deseja algo. Isso é análogo ao protocol de polling, onde um dispositivo central (como o garçom) interage com cada dispositivo na rede em uma sequência ordenada.
- Passagem de Permissão (Token Passing): No mesmo coquetel, imagine que há um único garçom, e ele possui um distintivo especial (o "token") que dá permissão para um convidado fazer um pedido. O garçom passa o distintivo para um convidado, e esse convidado pode fazer o pedido. Depois, ele passa o distintivo para outro convidado. O convidado só pode fazer o pedido quando tem o distintivo, e ele não pode fazer um pedido até que receba o distintivo. Isso é análogo ao protocolo de passagem de permissão, onde um "token" é passado entre os dispositivos, e somente o dispositivo que possui o token pode transmitir dados.

R8. Por que o protocolo de passagem de permissão seria ineficiente se uma LAN tivesse um perímetro muito grande?

O protocolo de passagem de permissão pode ser ineficiente em uma LAN com um perímetro muito grande porque o token precisaria ser passado por todos os dispositivos da rede antes de retornar ao ponto de origem. Em redes grandes, o tempo necessário para o token completar um ciclo (passar por todos os dispositivos) pode ser muito longo, resultando em **latência** significativa. Isso torna a comunicação mais lenta e ineficiente, pois cada dispositivo tem que esperar até que o token chegue até ele para começar a transmitir. Em grandes redes, o tempo de espera para a transmissão pode ser inaceitavelmente longo, diminuindo a eficiência do protocolo.