DM7: Induction

Exercice 1 : Oscillations dans un champ magnétique

Une tige CD de cuivre de masse m et de longueur L est suspendue par ses deux extrémités à deux ressorts identiques de constante de raideur k et de longueur à vide ℓ_0 . Le courant électrique peut circuler à travers les ressorts et le "plafond". On note R la résistance électrique de tout le circuit et on négligera le phénomène d'induction dans les ressorts et d'auto-induction dans le circuit. On appelle q l'accélération de la pesanteur.

Un champ magnétique uniforme et constant B est appliqué orthogonalement au plan de la figure.

1. Le système étant au repos, indiquer quelle est la longueur des ressorts.

On placera l'origine de l'axe (Oz) au niveau de la barre lorsqu'elle est à l'équilibre

- 2. Exprimer le flux du champ \vec{B} à travers le circuit en fonction de la longueur ℓ des ressorts, de L et de B. La tige est orientée de C vers D.
- 3. On note z(t) l'altitude de la barre à l'instant t. Exprimer la force électromotrice induite e_{ind} dans la barre en fonction des données du problème et de $\dot{z}(t)$.
- 4. On note i(t) l'intensité du courant électrique parcourant le circuit et orienté dans le sens de C vers D. Calculer la force de Laplace qui s'exerce sur la tige en fonction de i(t), B, L et du vecteur unitaire \vec{e}_z .
- 5. En appliquant le principe fondamental de la dynamique à la barre et en posant $\frac{B^2L^2}{mR}=2\alpha$ et $\frac{2k}{m}=\omega_0^2$. Monter que z(t) vérifie l'équation différentielle :

$$\ddot{z} + 2\alpha\dot{z} + \omega_0^2 z = 0$$

- 6. Exprimer le facteur de qualité Q de l'oscillateur en fonction de ω_0 et α .
- 7. On supposera que $\omega_0^2 \alpha^2 = \gamma^2 > 0$. Quel est le régime obtenu? 8. Dans ces conditions, on a $z(t) = A \exp(-\alpha t) \sin(\omega_0 t + \varphi)$. On donne les conditions initiales : z(0) = 0 et $\dot{z}(0) = V_0$. En déduire les expressions de A et φ . Tracer l'allure de z(t).
- 9. Appliquer le théorème de l'énergie cinétique à la barre entre l'instant initial et l'instant $(t \to \infty)$ où la barre s'arrête pour déterminer le travail de la force de Laplace. Sous quelle forme retrouve-t-on ce travail lorsque la barre s'arrête?