← Logistic Regression

1 point

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x) = 0.7$. This means (check all that apply):

- Our estimate for $P(y=1|x;\theta)$ is 0.7.
- Our estimate for $P(y=1|x;\theta)$ is 0.3.
- Our estimate for $P(y=0|x;\theta)$ is 0.7.
- Our estimate for $P(y=0|x;\theta)$ is 0.3.

1 point

2.

Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2)$) could increase how well we can fit the training data.
- At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2)$) would increase $J(\theta)$ because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

1 point

3.

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α check all that apply.

测验, 5 个问题

	Α	•	A	_ ^	1	$\sum_{i=1}^{m}$		(ΔT_{∞})			(i)		$\alpha(i)$	
	v	<i>v</i> .—	<i>u</i> –	- α	m	Z	Ji=1	v	u	9		Two		•

$$heta:= heta-lpharac{1}{m}\sum_{i=1}^{m}\left(rac{1}{1+e^{- heta T}x^{(i)}}-y^{(i)}
ight)x^{(i)}$$

$$\qquad \qquad \theta_j := \theta_j - \alpha \tfrac{1}{m} \sum_{i=1}^m \left(\theta^T x - y^{(i)} \right) x_j^{(i)} \text{ (simultaneously update for all } \underline{j}).$$

$$heta:= heta-lpharac{1}{m}\sum_{i=1}^mig(h_ heta(x^{(i)}ig)-y^{(i)}ig)x^{(i)}.$$

1 point

4.

Which of the following statements are true? Check all that apply.

The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.

The cost function J(heta) for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).

1 point

5.

Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = -6$, $\theta_1 = 0$, $\theta_2 = 1$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

🌄 我(**志超 杨**)了解提交不是我自己完成的作业 将永远不会通过此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息

Submit Quiz

https://www.coursera.org/learn/machine-learning/exam/Fd9cu/logistic-regression