MECH433 Energy and the Environment Assessment Part 2 - Population 5m

Name : Swaraj Patra Student Number :201596665

Location Info:

Offshore windmills – Louth, Bray, Kish Banks, Wicklow, Meath Connemara, Arklow Bank, Codling, Oriel, Dublin array, Skred Rocks, Ilen, Wexford are some of the locations suitable for the project.

On shore windmills- Suitable spots for wind farms. *Galway Wind Park, Tournafulla, Dunneill, Athea, Bindoo, Coomacheo, Curragh, Coomatallin, Corneen, Culliagh, Dromada, Richfield, Rathcahill, Mullananalt, Meentycat, Leanamore, Knockastanna, Kingsmountain, Gartnaneane.*Natural gas with CCS (NGCC)- *Use of existing natural gas plants Aghada, Dublin Bay, Great Island CCGT, Huntstown, Huntstown, Marina CC, North Wall, Poolbeg, Sealrock, Sealrock, Tynagh, Whitegate power station*

empty Kinsale Head gas field which is a suitable spot to store Carbon.[3]

Hydroelectricity – locations Ardnacrusha, Erne – Cathleen's Falls, Liffey – Pollaphuca, Erne – Cliff, Lee – Inniscara, Lee – Carrigadrohid. Anarget, Ashgrove, Ballisodare, Belmont, Bennetsbridge, Boyle, Castlegrace, Celbridge, Clady, Collooney, Cottoners, Edergole, Glenlough, Golden Falls, Holy Cross, Inch Mills, Leixlip, Milford, Owenbeg. [1]

Tidal Barrage- Sites where Tidal energy can be implemented are Galway Bay, Mayo Cost, Dublin Bay, Cork Harbor [5] and some spots in St. George's Channel, North Channel. This includes most cost line stretched from Seven fatom banks to KIlkurt bank and the area between Church Bay to Donegal Bay

Nuclear- Nuclear plant should be near the cost or a large water body like a reservoir. The spot suitable are selected to be close to city of Dublin near the cost or large bodies of water some suggested places are banks of Lough derg, County clare, Dublin cost etc.

Geothermal DH – Project spot suitable is in the *South of Dublin* as there is very low heat under the main city so networks could be built for heat transfer.

Battery small – The charging stations are built in the city of *Dublin*.

Battery large – Situated closer to generation units like wind farms tidal generators or nuclear plants.

Pumped storage- The upgrading existing locations such as Nendrum Monastery, Ardnacrusha, Turlough Hill, Silvermines and building deep sea or offshore pumped storages.

Assumptions Made

Total energy requirement-

 $Total\ number\ of\ households=3125000:\ 2000000(singles),\ 750000(couples),\ 375000(family)$

Singles are not grouped to get max possible requirement.

Used given conditions except for cooking

Cooking equipment changes

Oven-Bosch Serie 8 HBS573BS0B=2hrs:3000w used by 3125000 house holds

Toaster-BOSCH TAT7203GB =15min: 11000w used by 5000000 people

Induction cooktop-BOSCH Serie 8 PKE611D17E = 2hrs:7600w.

Wind energy- Energy calculated is for an average wind speeds of 7m/s on land and 8.5m/s ^[4] this wind speed is subjected to reduce and increase over the day and data used to represent that is the general wind speed data but as the value is not same at different altitudes so only the rate of change over the day is considered.

NGCC – losses other than CCS capture are 2.9MWh, Energy needed for CCS to capture 1tonn of CO2=4MW.

Hydro – It is assumed that it is possible to increase Head, no. of turbines and flow in existing hydro electricity plants to meet the demand

Tidal- Average speeds are taken into consideration which is 2m/s, and max range 4.

Geothermal- Comparing values from a similar project made in Ile-de-France region and scaling up by increasing the piping length, selecting multiple drill locations, and increasing the depth of holes. It is also considered that the geothermal energy produce can satisfy 65% of total energy needs for domestic, public, and industrial heating. [9]

Not more than 10% of energy is lost in the generation process and the grid.

Storage capacity is determining the excess amount of energy that needs to be stored from sources like Wind, Tidal and Hydro as they cannot always be generated on demand like Nuclear and NGCC.

Possible excess amount that can be generated = 5

Max time without enough wind or tides = 7hrs

Storage capacity used = 200GWh

Excess energy produced by nuclear reactor is directed to recharge storage and used when there is a peak or drop in renewable energy generation.

Excess energy from wind farms when the wind is higher than normal speed is stored in storage.

There is no refueling of nuclear reactors in this span

Energy Mix (add columns where needed)

Generation	Energy1	Energy2	Energy 3	Energy4	Energy 4	Energy5	Energy6	Energy7
Туре	Wind	Wind offshore	Tidal Barrage	Nuclear large	Nuclear small	Geotherm al	Hydro	NGCC
Total Output Capacity	5.4*10 ³ MW	4.9*10 ³ MW	4.2*10 ³ MW	3.9*10 ³ MW	3*10 ³ MW	1.65*10 ³ MW	1.9*10 ³ MW	4.39*10 ³ MW
% of Total Output Capacity	20%	18%	15%	12%	10%	5%	6%	14%
Normal Output Rate	5*10 ³ MW	4.5*10 ³ MW	3.75*10 ³ MW	3.27*10 ³ MW	2.74 *10 ³ MW	1.25*10 ³ MW	1.5*10 ³ MW	3.5*10 ³ MW
Standard cost (MWh ⁻¹)	63	75	90	92.5	92.5	140	80	125
Weighted cost (MWh ⁻¹)	12.6	13.5	13.5	11.1	9.25	7	4.8	17.5

Average Cost per MWh: £89.25

The mix currently consists of 20% On shore wind, 18% Off shore wind, 15% Tidal barrage, 12% Large Nuclear, 10% Small Nuclear, 5% District and industrial geothermal heating, 6% Hydroelectricity and 14%NGCC . In the mix wind and tidal are Intermittent sources hence during summer they might have a drop in production. Hence NGCC and Nuclear could be used to compensate for drastic drop in energy in the grid. The total possible output from all the production methods is higher than required to also compensate for energy loses in grid and storage.

Specific Information Required for Different Technologies

Offshore Wind Energy- For offshore windmills **Haliade-X** is considered.

Height of 240m and diameter of 220m [8].

Speed=8-10.4m/s.[4]

No. windmills = 876

Power Efficiency = 7.8 MW

Location is Suitable due to naturally formed shallow sandbanks that can hold up to 60 windmills.

On Shore Wind Energy- For on shore windmills EnVentus by Vestas is considered

Height of 166m and Diameter of 165m [7].

No. of windmills = 3100

Speed ranges from 7- 9.5m/s. $^{[4]}$

Power Efficiency = 3.1 MW

All w0indmills are to be distributed among the locations mentioned above since they are currently functional and receive good winds.

NGCC-

In this existing Gas plants are equipped to capture co2 using CCS technology.

The number of Gas plants used = 17

With the total energy generated = 4.52 GW

Energy produces after CCS= 4.39 GW

Total amount of carbon captured per year = 1894 ton

Examples below suggest CCS with potential to capture 1894-ton CO2 is possible.

Based on an old data on possible locations for Storage the carbon captured can be distributed among gas fields in Kinsale, east Irish sea, Sherwood sandstone structures in central Irish sea and the Enler Group selected structures. All of these fall within effective and practical range of storage so. it is possible to store pumping it down to the gap that is able to hold the pressure of CO2.

ASSESSMENT OF THE ALL-ISLAND POTENTIAL FOR GEOLOGICAL STORAGE OF CO₂ IN IRELAND QUANTIFIED GEOLOGICAL STORAGE CAPACITY (July 2008)						
Basin	Structure Type	Capacity Classification	Storage Capacity Mt	Quantified Storage Capacity Mt		
Kinsale	Gas Field		330			
South West Kinsale	Gas Field	Effective/	5	1505		
Spanish Point	Gas Field	Practical	120	1505		
East Irish Sea	Oil & Gas Field		1050			
Portpatrick Basin	Sherwood Sandstone selected structures	Effective	37			
Central Irish Sea	Sherwood Sandstone structures	(subset of theoretical capacity)	630	(667)		
Lough Neagh Basin	Enler Group selected structures		667 1940			
Kish Bank Basin	Sherwood sandstone structures	Effective	270			
East Irish Sea Basin	Ormskirk structures	(additional to theoretical	630	2840		
Edst Irisii Sed Dasiii	Offiskirk structures	capacity)	2840			
			2840			
Celtic Sea -	1 structure in the Cretaceous A sand		40			
Portpatrick Basin/ Larne	whole basin		2700			
Peel Basin	Sherwood Sandstone whole basin	Theoretical	68000	88770		
NWICB Dowra Basin	whole basin]	730			
Central Irish Sea	whole basin		17300			
Kish Bank Basin	Carboniferous sandstone and coal					
Rathlin Basin	Sherwood Sandstone, Permian and Carboniferous					
Celtic Sea	Cretaceous A sand]				
Porcupine Basin		Theoretical /				
Slyne/Erris Basins		un-quantified				
Clare Basin		1				
Rockall Trough		1				
Gas prospects		1				
Other onshore basins						
TOTAL (PRACTICAL/ EF		Mt	93,115			

The process of carbon capture is done by either Post combustion capture or oxyfuel Combustion.

The captured CO2 is transported via trucks, ships or by large pipeline to site of capture or for small scale application.

Example for similar technology:

ExxonMobil's <u>Shute Creek</u> gas processing plant started CCS activities in 1986. It takes natural gas that contains a high proportion of carbon dioxide, which is separated for use in enhanced oil recovery. Capture capacity is a chunky 7 million tonnes a year^[37].

The <u>Sleipner facility</u> in the North sea is frequently mentioned as an example of an active CCS project, as it has been operating since 1996. It has a capture capacity of 0.9 million tonnes per year and uses a saline aquifer for storage. The scheme removes carbon dioxide from natural gas and is driven by Norway's tax on CO2. It has injected about 15 million tonnes in total since it started operation [37].

This is an <u>offshore oil and gas field</u> off the southern coast of Brazil. Since 2013, around 0.7 million tonnes per year of carbon dioxide stripped from the gas is being pumped back into the production reservoir to enhance oil recovery [37].

the New \$96 million CCS project for Natural Gas and industries announced on 10th Feb 2022

 $\underline{https://www.energy.gov/fecm/articles/us-department-energy-announces-96-million-advance-carbon-capture-technologies-natural.}$

Hydroelectric-

Locations are existing power generating hydro plants in Ireland. They are modified by increasing height, flow rate and no. of turbines to increase the annual output. (Calculation in excel)

No. of locations used = are 5 large and 20 small hydro plants.

The head is increased by increasing the height of the fall by increasing the reservoir height.

The flow rate is increased by increasing the capacity of the Dam. Which is done by excavating the area.

The calculation to increased flow rate and generator capacity following formulas are used.

$$P = \eta * \rho * g * h * Q$$

P is the power output Watts

 η is the efficiency of the turbine 0.4

 ρ is the density of water, taken as 998 kg/m³

g is the acceleration of gravity, equal to 9.81 m/s²

h is the head, or the usable fall height.

Q is the discharge

Q = A * v

A is the cross-sectional area of the channel

v is the flow velocity

Annual operation time is = old annual capacity GWhr/old production capacity MV

The improved capacity is determined only for time the older generators were used. Hence there is possibility to produce more than projected amount.

Tidal

For the provided location:
Min wave heigh=2m
Max wave heigh =4m
Area of the cost used for building tidal barrages= 7000Km²
No. of turbine= 370

Total energy generated per day = 4.2GWh

Nuclear Large

Reactor type= Advanced PWR
Manufacturer= Westinghouse
Power output =1.3GW
No. of reactors = 3
Total energy output by nuclear = 3.9 GW

Nuclear Small

Reactor type= Gas Cooled Reactor (GCR)
Manufacturer= EDF Energy
Power output =0.605GW
No. of reactors = 5

In case where the reactor stops to meet the demand for a short duration stored energy is used along with NGCC at full potential.

Geothermal District Heating-

It is used to generate heat that could help reduce the dependency on electricity for heating. The heating capacity is determined from similar projects.

The project it is compared to is geothermal system installed in Orly Airport in the Ile-de-France. This was able to generate around 135MW heat though a 35 km spread pipeline.

Scaling up this project would mean increase the are of pipe distributed along with increase in no. drills.

Liquid used for heat transfer= water
Depth of geo hole = 1km-5km
Location = South of Dublin
Similar expected projects in Tallaght Town Centre.

Expected energy = 1.65GW

The Power Storage for the Grid is designed with a mixture of battery and Pumped storage. This is done in a ratio of 40% and 60%.

Vertical closed loop suitability

Open loop Domestic Suitability

Battery Storage large-

Container type Lithium-Ion battery storage.

Charging capacity 1MW in 2 hours

Storage density: 5 MWh per container. $^{[23]}$

No. of containers needed = 8000 units.

The 8000 units can be dividing among the 5 residential areas and commercial areas.

This would help immediately supply any sudden demand in a localized area, hence reducing the sudden load.

Battery Storage large-

Container type Lithium-Ion battery storage.

Charging capacity 1MW in 2 hours

Storage density: 50 MWh per container.[23]

No. of containers needed = 1600 units.

Can be made into multiple large storage grids that can be placed closer to energy generators such as windmills and tidal barrage.

Battery storage also has the added advantage of increasing the unit size if needed.

Pumped Hydro -

Location is an existing structure Turlough hill

Storage density: 24.2GWh

Production capacity:120MWh

Mean Flow of pumping – 22.1m³/sec.

Time for operation 70 sec.

Expected production rate – 120GWh

The storage could be spread into multiple plants with having an min 6GWh capacity.

Added advantage of excess of storage capacity in case overall demand increase without many modifications.^[33]

Storage

Storage	Storage 1	Storage 2	Storage 3
Туре	Battery storage large	Pumped Hydro	Battery storage small
Energy Capacity	60GWh	120GWh	20GWh
Output / Discharge Rate	12GWh	15GWh	5GWh
Lifetime	5hrs	8hrs	4hrs
% of Total	30%	60%	10%
Standard cost (MWh ⁻¹)	100	148	100
Weighted cost (MWh ⁻¹)	30	88.8	10

Average Cost per MWh: £128

The Power Storage for the Grid is designed with a mixture of battery and Pumped storage. This is done in a ratio of 30 % ,10 % and 60%. This is done to reduce the overall cost for energy storage and provide localized storage solutions for grids.

Reasons for Choosing Energy Generation Types ·

Onshore Wind -

- Existing infrastructure and commercial successful.
- Largest net zero contribution in Irelands current infrastructure.
- Largest contributor in current energy mix for Ireland.

Offshore Wind-

- Better performance than on shore windmills
- Higher wind speeds off the shore.
- Large amount of Shore area for the windmills to be constructed.

NGCC-

- Ireland can meet 60% of its demand using domestic Natural gas supply.
- Able to satisfy high demand when needed making it a good backup.
- Natural gas is more eco-friendly than other fossil fuels.
- Natural gas with CCS can reduce the carbon emission up to 90%.

Hydro-electricity-

- One of the most consistent sources of energy.
- Can be stopped when needed and be used according to the demand.

Nuclear-

- Most advanced forms of energy.
- Can instantly provide with large surge of energy when required.
- Could easily adapt to growing population.
- Ample amount of water bodies for nuclear plant.

Tidal-

- Is cyclic in nature.
- Dependent on lunar cycle.
- More area to implement.
- Well researched technology and potential in Ireland.

Geothermal -

• Capable to satisfy more than 40% of heating requirements.

- Can be incorporated into existing industries and infrastructures.
- Help in reducing the demand of electricity for heating application

Response to Failure Scenario 1

As shown in the image the amount of energy generated in every day of December has an excess amount of energy of about 77GWh at the end of the day. Which is distributed among the storge

rio 1 De	ecember					
	energy in stor	age when pro	duction is not	able to meet	demand	
			0			
6	15.7492488	6.25075122	6.2		102.122768	highest energy store
7	31.4609155	-9.4609155			92.6618527	
8	17.6642488	4.33575122	4.3			
9	17.7542488	4.24575122	4.2			
10	25.9454988	-3.9454988				97.216354
11	27.3942488	-5.3942488				91.8221052
12	36.5609155	-14.560915				77.2611897
1am	36.5609155	-14.560915				62.7002743
2am	13.0192488	8.98075122	8.9			
3am	13.0192488	8.98075122	8.9			
4am	13.0192488	8.98075122	8.9			
5am	13.5142488	8.48575122	8.4			
6am	20.4567488	1.54325122	1.5			
7am	24.2954988	-2.2954988	36.6	34.3045012		
8am	13.0192488	8.98075122	8.9			
9am	9.83502212	12.1649779	12.2			
10am	8.96668878	13.0333112	13			
11am	8.87668878	13.1233112	13			
12am	8.38168878	13.6183112	13			
1	28.5033555	-6.5033555	60.1	53.5966445		
2	34.9183555	-12.918355		87.9011458	74.9827903	
3	8.38168878	13.6183112	13			
4	10.1166888	11.8833112	11.8			
5	25.8600221	-3.8600221	24.8	20.9399779		
	463.273931					

systems with Pumped hydrogen having the most percentage as it is capable of quick recharge and discharge. The source of charging the storage will be from the excess energy that nuclear produces which is not accounted for in the energy mix and also from the energy generated by wind and tidal when they work at their max potential.

_					
cenario 1 ener	gy requiremer	nt up by 40 and	d no wind or ti	dal availiable	
6	22.0489483	-7.1989483	94.8010517		
7	44.0452816	-29.195282	65.6057701		
8	24.7299483	-9.8799483	55.7258218		
9	24.8559483	-10.005948	45.7198735		
10	36.3236983	-21.473698	24.2461752		
11	27.3942488	-12.544249	11.7019264		
12	36.5609155	-21.710915	-10.008989	10.1	
1am	36.5609155	-21.710915	-31.719905	31.8	
		-133.7199		41.9	
need for extra k	oackup = 41.9	GW			

In this table energy after increasing 40% output is taken along with the peak hour requirement.

Energy stored in system before the event starting at 6 pm is 102GW.

As the event starts in the absence of wind and tidal the energy demand gradually increases.

To meet the demand the nuclear and NGCC plants must run at full potential generating about 14.85 GW. Which by it self is not enough to meet the demand so for these scenarios energy from storage is to be used.

As shown in image above the first 6 hours are easily managed by the energy stored in the storage from last 24 hrs. To meet the demand in the peak time additional energy is needed which can be met by using energy from unused storage.

The excess amount of energy stored for this scenario is 42GW.

Total storage capacity =200GW

Storage used for Daily use to meet peak demand = 105GW

And since an additional energy of 77GW is produced at end of every days in December it is very easy to meet the demand.

Response to Failure Scenario 2

Scenar	io 2 JULY		
	24.71002		
5	21		
	9.961688		
6	78		
	25.67335		
7	55		
	11.87668		
8	88		
	11.96668		
9	88		
	21.30793	105.4963	
10	88	83	
		-	
	23.90668	8.906688	
11	88	8	
		-	
	33.07335	18.07335	
12	55	5	
		- 1	
	31.92335	16.92335	26.09002
1am	55	5	21
	8.381688	6.618311	
2am	78	22	6.6
	8.381688	6.618311	3.0
3am	78	22	6.6
	13.01924	1.980751	3.0
4am	88	22	1.9
		6.123311	1.5
5am	78	22	6.1
Jann	70	22	0.1

	15.81918	0.819188		20.38081
6am	88	8	21.2	12
	19.65793	- 4.657938		15.72287
7am	88	8		24
	8.381688			
8am	78 9 835022	22 5.164977	6.6	
9am	12	88	5.1	
10a		6.033311		
m 110	78	22 6 122211	6	
11a m	8.876688 78	0.123311	6.1	
	8.381688			
m	78	22	6.6	
	28.50335	13.50335		32.61951
1	55	5	30.4	7
2	11.37668		2.6	
2	88	22 -	3.6	
	31.92335	16.92335		19.29616
3	55	5		15
4	8.966688 78	6.033311 22	6	
7	70	-		
_		9.710022		15.58613
5	21 9.961688	1 5.038311		94
6	78	22	5	
	25 67627	-		0.040=04
7	25.67335 55	10.67335 5		9.912783 96
,	11.87668	3.123311		
8	88	22	3.1	
9	11.96668 88	3.033311 22	3	
9	00	-	3	
	21.30793	6.307938		9.704845
10	88	8		18
	23.90668	1.906688		7.798156
11	88	8		39
	33.07335	- 11.07335		- 3.275199
12	55.07355	5		1

		-		-	
		9.923355		13.19855	13.19855
1am	55			5	45
	8.381688				
2am	78		13.6		
	8.381688				
3am	78		13.6		
	13.01924				
4am	88	22	8.9		
	8.876688				
5am	78	12	13.23		
	15.81918	6.180811			
6am	88	22	6.18		
	19.65793				
7am	88	22	2.34		
	8.381688	13.61831			
8am	78	12	13.6		
	9.835022	12.16497			
9am	12	79	12		
10a	8.966688	13.03331			
m	78	12	13		
11a	8.876688	13.12331			
m	78	12	13		
12a	8.381688	13.61831			
m	78	12	13.6		
		-			
	28.50335	6.503355		116.5466	
1	55	5	123.05	45	
	11.37668	10.62331			
2	88	12	10		
		-			
	31.92335	9.923355		116.6232	
3	55	5		89	
	8.966688	13.03331		129.6232	
4	78	12	13	89	

As shown in the table area marked in blue is energy directly being used to meet the demand While the yellow indicates the energy in the storage while being recharged.

So in this scenario it is considered that due to the hacking nuclear plants have stopped working for 24 hrs. including the time of hacking.

In the first 6 hours the energy demand is met by using the energy in the storage system which is $105.5 \; \mathrm{GW}$

After the power systems turn on they wont be able to meet the demand because there is no nuclear and as it is when peak hours start. So more 26.1 GW is drawn from the storage.

Then the system is able to run smoothly for 16 hours before facing 2 more peak that to cannot be met so energy of about 16GW is drawn again from storage.

After this the nuclear is again part of the mix and the system is able to generate around 126GW excess energy in next16 hrs.

After this the system is stable again

The total energy used from storage = 149GW

Available capacity= 200 GW

Residual Energy produced till the event occurs = 126GW

Additional Energy needed apart from residual energy stored= 23GW

So to counter tis scenario without much issue it is necessary to have an minimum reserve of 23GW of unused energy for emergency.

Response to Failure Scenario 3

Scenario	Scenario 3 Feb							
Table1								
6	13.889611	8.11038902	8.1					
7	33.5291943	-11.529194			38.8637905			
8	17.48915	4.51085002	4.5					
9	22.424806	-0.424806			42.9389845			
10	32.6638685	-10.663868			32.275116			
11	34.474806	-12.474806			19.80031			
12	45.9331393	-23.933139			-4.1328293			
1am	45.9331393	-23.933139			-28.065969			
2am	16.506056	5.49394402	5.49					
3am	16.506056	5.49394402	5.49					
4am	16.506056	5.49394402	5.49					
5am	17.124806	4.87519402	4.8					
6am	25.802931	-3.802931	21.27	17.467069				
7am	30.6013685	-8.6013685		8.86570054				
8am	16.506056	5.49394402	5.4					
9am	12.2937776	9.70622235	9.7					

10am						
12am 10.477111 11.522889 11.52 1 35.6291943 -13.629194 48.22 52.3222068 2 14.220861 7.77913902 7.7 3 39.9041943 -17.904194 42.1180125 4 11.495761 10.504239 10.5 5 32.3250276 -10.325028 42.2929848 564.541193 Table 2 When nuclear and NGCC runs on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 5.9 9 22.424806 3.57519402 4.5 10 32.6638685 -6.6638685 72.275116 11 34.474806 8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 64.013685 8am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 8am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 8am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 14.90139 10.9 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 48.22 72.3222068 2 14.220861 11.779139 7.7	10am	11.208361	10.791639	10.7		
1 35.6291943 -13.629194	11am	11.095861	10.904139	10.9		
2 14.220861 7.77913902 7.7 3 39.9041943 -17.904194 411.495761 10.504239 10.5 5 32.3250276 -10.325028 42.2929848 564.541193 Table 2 When nuclear and NGCC runs on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 4.5 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.49 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125	12am	10.477111	11.522889	11.52		
3 39.9041943 -17.904194 42.1180125 4 11.495761 10.504239 10.5 5 32.3250276 -10.325028 42.2929848 564.541193 Table 2 When nuclear and NGCC runs on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 43.8671707 1am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056<	1	35.6291943	-13.629194	48.22	52.3222068	
4 11.495761 10.504239 10.5 5 32.3250276 -10.325028 42.2929848 564.541193 Table 2 When nuclear and NGCC russ on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 8.5 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 <td>2</td> <td>14.220861</td> <td>7.77913902</td> <td>7.7</td> <td></td> <td></td>	2	14.220861	7.77913902	7.7		
42.2929848 564.541193 Table 2 When nuclear and NGCC russ on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.	3	39.9041943	-17.904194		42.1180125	
Table 2 When nuclear and NGCC runs on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943	4	11.495761	10.504239	10.5		
Table When nuclear and NGCC russ on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 3.8671707 1am 45.9331393 -19.933139 3.39340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224	5	32.3250276	-10.325028		42.2929848	
When nuclear and NGCC russ on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am <td></td> <td>564.541193</td> <td></td> <td></td> <td></td> <td></td>		564.541193				
When nuclear and NGCC runs on full power 6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 10.	Table					
6 13.889611 12.110389 8.1 7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 1	2					
7 33.5291943 -7.5291943 70.8637905 8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 10.95861 14.904139 10.9 12am 10.477111 15.522889 11.52 <	When nuc	lear and NGCC r	uns on full pov	wer		
8 17.48915 8.51085002 4.5 9 22.424806 3.57519402 78.9389845 10 32.6638685 -6.6638685 72.275116 11 34.474806 -8.474806 63.80031 12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068	6	13.889611	12.110389	8.1		
9 22.424806 3.57519402 10 32.6638685 -6.6638685 11 34.474806 -8.474806 12 45.9331393 -19.933139 13 45.9331393 -19.933139 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 666.1180125 4 11.495761 14.504239 10.5	7	33.5291943	-7.5291943			70.8637905
10 32.6638685 -6.6638685	8	17.48915	8.51085002	4.5		
11	9	22.424806	3.57519402			
12 45.9331393 -19.933139 43.8671707 1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	10	32.6638685	-6.6638685			72.275116
1am 45.9331393 -19.933139 23.9340314 2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	11	34.474806	-8.474806			63.80031
2am 16.506056 9.49394402 5.49 3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	12	45.9331393	-19.933139			43.8671707
3am 16.506056 9.49394402 5.49 4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	1am	45.9331393	-19.933139			23.9340314
4am 16.506056 9.49394402 5.49 5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	2am	16.506056	9.49394402	5.49		
5am 17.124806 8.87519402 4.8 6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	3am	16.506056	9.49394402	5.49		
6am 25.802931 0.19706902 21.27 21.467069 7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	4am	16.506056	9.49394402	5.49		
7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	5am	17.124806	8.87519402	4.8		
7am 30.6013685 -4.6013685 16.8657005 8am 16.506056 9.49394402 5.4 9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	6am	25.802931	0.19706902	21.27	21.467069	
9am 12.2937776 13.7062224 9.7 10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	7am	30.6013685	-4.6013685		16.8657005	
10am 11.208361 14.791639 10.7 11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	8am	16.506056	9.49394402	5.4		
11am 11.095861 14.904139 10.9 12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	9am	12.2937776	13.7062224	9.7		
12am 10.477111 15.522889 11.52 1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	10am	11.208361	14.791639	10.7		
1 35.6291943 -9.6291943 48.22 72.3222068 2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	11am	11.095861	14.904139	10.9		
2 14.220861 11.779139 7.7 3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	12am	10.477111	15.522889	11.52		
3 39.9041943 -13.904194 66.1180125 4 11.495761 14.504239 10.5	1	35.6291943	-9.6291943	48.22	72.3222068	
4 11.495761 14.504239 10.5	2	14.220861	11.779139	7.7		
	3	39.9041943	-13.904194		66.1180125	
5 32.3250276 -6.3250276 70.2929848	4	11.495761	14.504239	10.5		
	5	32.3250276	-6.3250276		70.2929848	

In scenario 3 there is an increase of use by 25% in electrical requirements and 30% in heating requirements.

even though there is a lockdown it is considered that charging for vehicles and services are being used at 25% increase as well as they won't be completely stopped.

Above are 2 tables in table1 where all energy sources are running at minimum usual output while in table2 the Nuclear and NGCC are working at full potential.

In table one when everything is running at regular output the system is able to run smoothly as the excess energy generated in each hour is being used where there is need for excess energy with help of storage.

But as the peak hours arrive the balance is broken and an excess of 32.1 GW of energy is required.

It is easy to meet the demand using storage if it was just for one day

But as there is an possibility for it to happen in 7 consecutive days a better approach is to increase the output of nuclear, thermal, Hydro and NGCC.

This leads to solving of the problem as well as generation of an excess of 28GW.

References

- 1.<u>https://data.gov.ie/dataset/hydro-energy-connections/resource/ceec20d1-0b35-4593-b40d-b534cfbf3c9c</u>
- 2.https://dublinarray.com/#:~:text=Dublin%20Array%20is%20a%20proposed,the%20shallowne ss%20of%20the%20water.
- 3. https://www.ervia.ie/who-we-are/carbon-capture-storage/carbon-storage/
- 4. https://gis.seai.ie/wind/
- 5. https://www.oceanenergyireland.com/data/observations/
- $6. \ \underline{https://www.marine.ie/Home/site-area/infrastructure-facilities/ocean-energy/marine-renewable-energy-resource}$
- 7. <a href="https://www.vestas.com/en/products/enventus-platform/e
- 8. <u>https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine</u>
- 9.https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geoenergy/Reports/GSI_Assessment_of_GeoD_H_for_Ireland_Nov2020_v2.pdf
- 10. https://www.energystorageireland.com/wp-content/uploads/2021/08/ESI-Information-Paper-on-the-Safety-of-Grid-Scale-Battery-Energy-Storage-Systems-July-2021.pdf
- 11. https://www.visitmyharbour.com/tides/
- 12. https://dusac.org/divinginireland/tides/
- 13. https://www.seai.ie/technologies/seai-maps/hydro-power-map/
- 14. https://www.omnicalculator.com/ecology/hydroelectric-power
- 15. https://www.power-technology.com/?s=Erne+-+Cliff+power-plant

- 16. https://www.cru.ie/wp-content/uploads/2006/07/cer06242.pdf
- 17. https://gis.seai.ie/hydro/
- 18. https://esbarchives.ie/wp-content/uploads/2016/02/river-liffey-hydro-electric-stations-pr-pamphlet.pdf
- 19. http://wikimapia.org/31733212/ESB-Erne-Cliff-Hydroelectric-Station
- 20. https://www.esb.ie/docs/default-source/education-hub/erne-stations74dc5b2d46d164eb900aff0000c22e36
- $21.\ \underline{https://esbarchives.ie/wp-content/uploads/2016/02/river-lee-hydro-electric-scheme-2-pr-pamphlet.pdf}$
- 22. https://www.netl.doe.gov/node/11550
- 23. https://www.energystorageireland.com/wp-content/uploads/2021/08/ESI-Information-paper-on-the-Safety-of-Grid-Scale-Battery-Energy-Storage-Systems-July-2021.pdf
- 24. https://pureadmin.qub.ac.uk/ws/portalfiles/portal/164938451/Island.pdf
- 25. https://www.gsi.ie/en-ie/publications/Pages/Geothermal-Energy-for-District-Heating-in-Ireland.aspx
- 26. https://guidetodistrictheating.eu/wp-content/uploads/2020/09/HeatNet-NWE Case-Study-Report-Cards District-Heating.pdf
- 27. https://www.omnicalculator.com/ecology/hydroelectric-power
- 28.<u>https://www.arcgis.com/apps/mapviewer/index.html?webmap=59162ed12bc244f08b66fdcc1e7bb38a</u>
- $29. \ \underline{https://data.gov.ie/dataset/hydro-energy-connections/resource/ceec 20d1-0b35-4593-b40d-b534cfbf3c9c}$
- 30. https://www.rechargenews.com/energy-transition/the-amount-of-energy-required-by-direct-air-carbon-capture-proves-it-is-an-exercise-in-futility/2-1-1067588
- 31. https://www.eeagrants.gov.pt/media/2776/conversion-guidelines.pdf
- $32. \ \underline{https://silvermineshydro.ie/about-silvermines/\#: ``:text=Ireland's \% 20 only \% 20 pumped \% 20 hydroelectric \% 20 storage, demand \% 20 and $\frac{d\% 20 is \% 20 instantly \% 20 dispatchable}{d\% 20 is \% 20 instantly \% 20 dispatchable}.$
- 33. https://www.esb.ie/docs/default-source/education-hub/turlough-hill-power-station
- 34. https://www.4coffshore.com/windfarms/ireland/
- 35. http://atlas.marine.ie/OceanEnergy.html#?c=54.6039:-8.6902:9
- 36. https://silvermineshydro.ie/about-silvermines/
- 37. https://www.carbonbrief.org/around-the-world-in-22-carbon-capture-projects/