Summary of Generalized Partial Credit Model

July 18, 2018

1 Checking Assumptions

Table 1: Goodness of fit statistics related to the test of unidimensionality in the GPCM-based instrument for measuring gains in skill/knowledge of participants in the third empirical study

data	df	chisq	AGFI	TLI	CFI	DETECT	ASSI	RATIO
Pre-test	9	8.664	0.964	1.036	1	194.158	0.200	0.457
Post-test	14	9.815	0.962	2.826	1	258.820	0.429	0.645

df: degree of freedom; AGFI: Adjusted Goodness of Fit Index; CFI: Comparative Fit Index; TLI: Tucker-Lewis

Table 2: Item residual correlation statistics related to the test of local independence in the GPCM-based instrument for measuring gains in skill/knowledge of participants in the third empirical study

data	max.chisq	maxaQ3	MADaQ3	SRMSR	p.value
Pre-test	285.450	0.361	0.142	0.188	0.112
Post-test	6332.263	0.342	0.141	0.179	0.402

aQ3: adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3;

Table 3: Test of monotonicity in the GPCM-based instrument for measuring gains in skill/knowledge of participants in the third empirical study

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.Un2	0.05	0	0		0.00	0.00		0.00	0	0
Pre-test.Ap1	0.19	0	0		0.00	0.00		0.00	0	0
Pre-test.Ap3	-0.02	22	12	0.55	0.21	2.03	0.09	1.42	0	208
Pre-test.An3a	0.16	14	0	0.00	0.00	0.00	0.00	0.00	0	0
Pre-test.An3b	0.20	14	0	0.00	0.00	0.00	0.00	0.00	0	0
Pre-test.Ev2	-0.02	0	0		0.00	0.00		0.00	0	0
Post-test.ReB	0.14	44	15	0.34	0.07	0.75	0.02	0.24	0	79
Post-test.ApA	0.21	14	0	0.00	0.00	0.00	0.00	0.00	0	0

Table 3: (continued)

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Post-test.ApC	0.23	18	1	0.06	0.04	0.04	0.00	0.21	0	19
Post-test.AnC1	0.06	14	0	0.00	0.00	0.00	0.00	0.00	0	0
Post-test.AnC2	0.00	0	0		0.00	0.00		0.00	0	0
Post-test.EvB	0.30	9	0	0.00	0.00	0.00	0.00	0.00	0	0
Post-test.PGs3	-0.23	3	3	1.00	0.36	0.60	0.20	1.39	0	377

vi: numer of violations; vi/ac: proportion of active pairs; maxvi: maximum violations; sum: sum of all violations; zmax: maximum z-value; zsig: number of significant z-values; crit: Critical value

2 Estimating Item Parameters

Table 4: Estimated parameters in the GPCM-based instrument for measuring the Pre-test $\,$

estimated	An3a	An3b	Ap1	Ap3	Ev2	Un2
xsi.item	0.030	0.065	-0.013	0.019	0.073	0.006
B.Cat0	0.000	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	2.000	2.000	2.000	2.000
B.Cat3	3.000	3.000	3.000	3.000	3.000	3.000
B.Cat4	4.000	4.000	4.000	4.000	4.000	4.000
B.Cat5	5.000	5.000	5.000	5.000	5.000	5.000
B.Cat6	6.000	6.000	6.000	6.000	6.000	6.000
B.Cat7	7.000	7.000	7.000	7.000	7.000	7.000
B.Cat8	8.000	8.000	8.000	8.000	8.000	8.000
B.Cat9	9.000	9.000	9.000	9.000	9.000	9.000
B.Cat10	10.000	10.000	10.000	10.000	10.000	10.000
B.Cat11	11.000	11.000	11.000	11.000	11.000	11.000
B.Cat12	12.000	12.000	12.000	12.000	12.000	12.000
B.Cat13	13.000	13.000	13.000	13.000	13.000	13.000
B.Cat14	14.000	14.000	14.000	14.000	14.000	14.000
B.Cat15	0.000	0.000	15.000	15.000	15.000	15.000
B.Cat16	0.000	0.000	16.000	16.000	16.000	16.000
B.Cat17	0.000	0.000	17.000	17.000	17.000	17.000
B.Cat18	0.000	0.000	18.000	18.000	18.000	18.000
B.Cat19	0.000	0.000	19.000	19.000	0.000	19.000
B.Cat20	0.000	0.000	20.000	20.000	0.000	20.000
B.Cat21	0.000	0.000	21.000	21.000	0.000	21.000
B.Cat22	0.000	0.000	22.000	22.000	0.000	22.000
B.Cat23	0.000	0.000	0.000	0.000	0.000	23.000
B.Cat24	0.000	0.000	0.000	0.000	0.000	24.000
B.Cat25	0.000	0.000	0.000	0.000	0.000	25.000
B.Cat26	0.000	0.000	0.000	0.000	0.000	26.000
B.Cat27	0.000	0.000	0.000	0.000	0.000	27.000
B.Cat28	0.000	0.000	0.000	0.000	0.000	28.000
B.Cat29	0.000	0.000	0.000	0.000	0.000	29.000
B.Cat30	0.000	0.000	0.000	0.000	0.000	30.000
B.Cat31	0.000	0.000	0.000	0.000	0.000	31.000
B.Cat32	0.000	0.000	0.000	0.000	0.000	32.000
B.Cat33	0.000	0.000	0.000	0.000	0.000	33.000
B.Cat34	0.000	0.000	0.000	0.000	0.000	34.000
B.Cat35	0.000	0.000	0.000	0.000	0.000	35.000
B.Cat36	0.000	0.000	0.000	0.000	0.000	36.000
B.Cat37	0.000	0.000	0.000	0.000	0.000	37.000
B.Cat38	0.000	0.000	0.000	0.000	0.000	38.000

Table 4: (continued)

estimated	An3a	An3b	Ap1	Ap3	Ev2	Un2
B.Cat39	0.000	0.000	0.000	0.000	0.000	39.000
B.Cat40	0.000	0.000	0.000	0.000	0.000	40.000
B.Cat41	0.000	0.000	0.000	0.000	0.000	41.000
B.Cat42	0.000	0.000	0.000	0.000	0.000	42.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-6.608	-6.424	-6.249	-5.083	-6.162	-6.234
AXsi.Cat2	-7.773	-8.559	-8.205	-7.157	-7.963	-7.998
AXsi.Cat3	-8.053	-9.409	-8.939	-8.177	-8.692	-8.967
AXsi.Cat4	-6.692	-8.749	-9.472	-8.725	-9.030	-9.913
AXsi.Cat5	-3.028	-6.715	-9.537	-8.919	-8.693	-10.148
AXsi.Cat6	-1.045	-1.541	-9.387	-8.781	-6.938	-9.931
AXsi.Cat7	-0.593	-2.375	-8.827	-8.305	-3.495	-9.579
AXsi.Cat8	-3.026	-3.577	-7.911	-7.450	-0.672	-9.065
AXsi.Cat9	-6.673	-7.170	-6.166	-5.841	-3.510	-7.907
AXsi.Cat10	-7.543	-7.541	-1.781	-0.760	-7.131	-5.895
AXsi.Cat11	-6.507	-6.311	-6.144	-1.604	-8.700	-0.628
AXsi.Cat12	-2.311	-3.585	-7.598	-3.588	-9.521	-0.688
AXsi.Cat13	-1.889	-2.883	-8.300	-5.826	-9.563	-0.369
AXsi.Cat14	-0.423	-0.905	-8.407	-7.696	-8.974	-0.056
AXsi.Cat15			-8.270	-8.421	-8.844	-5.141
AXsi.Cat16			-7.623	-8.996	-8.289	-6.966
AXsi.Cat17			-6.085	-9.055	-6.950	-7.980
AXsi.Cat18			-3.306	-8.914	-1.306	-8.589
AXsi.Cat19			-6.316	-8.382		-8.632
AXsi.Cat20			-7.231	-7.435		-8.486
AXsi.Cat21			-5.925	-5.716		-7.945
AXsi.Cat22			0.284	-0.417		-6.822
AXsi.Cat23						-5.445
AXsi.Cat24						-2.093
AXsi.Cat25						-1.456
AXsi.Cat26						-0.586
AXsi.Cat27						0.964
AXsi.Cat28						-0.138
AXsi.Cat29						-2.046
AXsi.Cat30						-6.085
AXsi.Cat31						-7.783
AXsi.Cat32						-8.824
AXsi.Cat33						-9.423
AXsi.Cat34						-9.713
AXsi.Cat35						-9.829

Table 4: (continued)

estimated	An3a	An3b	Ap1	Ap3	Ev2	Un2
AXsi.Cat36						-9.526
AXsi.Cat37						-8.816
AXsi.Cat38						-7.746
AXsi.Cat39						-5.916
AXsi.Cat40						-1.936
AXsi.Cat41						-0.577
AXsi.Cat42						-0.258
max.Outfit	1.002	1.069	1.028	1.167	0.985	0.580
max.Infit	1.002	1.069	1.028	1.167	0.985	0.580

Table 5: Estimated parameters in the GPCM-based instrument for measuring the Post-test $\,$

estimated	AnC1	AnC2	ApA	ApC	EvB	PGs3	ReB
xsi.item	0.031	0.139	0.037	0.095	0.118	-16.012	-0.052
B.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	2.000	2.000	2.000	2.000	2.000
B.Cat3	3.000	3.000	3.000	3.000	3.000	3.000	3.000
B.Cat4	4.000	4.000	4.000	4.000	4.000	4.000	4.000
B.Cat5	5.000	5.000	5.000	5.000	5.000	0.000	5.000
B.Cat6	6.000	6.000	6.000	6.000	6.000	0.000	6.000
B.Cat7	7.000	7.000	7.000	7.000	7.000	0.000	7.000
B.Cat8	8.000	8.000	8.000	8.000	8.000	0.000	8.000
B.Cat9	9.000	9.000	9.000	9.000	9.000	0.000	9.000
B.Cat10	10.000	10.000	10.000	10.000	10.000	0.000	10.000
B.Cat11	11.000	11.000	11.000	11.000	11.000	0.000	11.000
B.Cat12	12.000	12.000	12.000	12.000	12.000	0.000	12.000
B.Cat13	13.000	13.000	13.000	13.000	13.000	0.000	13.000
B.Cat14	14.000	14.000	14.000	14.000	14.000	0.000	14.000
B.Cat15	0.000	0.000	0.000	15.000	15.000	0.000	15.000
B.Cat16	0.000	0.000	0.000	16.000	16.000	0.000	16.000
B.Cat17	0.000	0.000	0.000	17.000	17.000	0.000	17.000
B.Cat18	0.000	0.000	0.000	18.000	18.000	0.000	18.000
B.Cat19	0.000	0.000	0.000	0.000	0.000	0.000	19.000
B.Cat20	0.000	0.000	0.000	0.000	0.000	0.000	20.000
B.Cat21	0.000	0.000	0.000	0.000	0.000	0.000	21.000
B.Cat22	0.000	0.000	0.000	0.000	0.000	0.000	22.000
B.Cat23	0.000	0.000	0.000	0.000	0.000	0.000	23.000
B.Cat24	0.000	0.000	0.000	0.000	0.000	0.000	24.000
B.Cat25	0.000	0.000	0.000	0.000	0.000	0.000	25.000
B.Cat26	0.000	0.000	0.000	0.000	0.000	0.000	26.000
B.Cat27	0.000	0.000	0.000	0.000	0.000	0.000	27.000
B.Cat28	0.000	0.000	0.000	0.000	0.000	0.000	28.000
B.Cat29	0.000	0.000	0.000	0.000	0.000	0.000	29.000
B.Cat30	0.000	0.000	0.000	0.000	0.000	0.000	30.000
B.Cat31	0.000	0.000	0.000	0.000	0.000	0.000	31.000
B.Cat32	0.000	0.000	0.000	0.000	0.000	0.000	32.000
B.Cat33	0.000	0.000	0.000	0.000	0.000	0.000	33.000
B.Cat34	0.000	0.000	0.000	0.000	0.000	0.000	34.000
B.Cat35	0.000	0.000	0.000	0.000	0.000	0.000	35.000
B.Cat36	0.000	0.000	0.000	0.000	0.000	0.000	36.000
B.Cat37	0.000	0.000	0.000	0.000	0.000	0.000	37.000
B.Cat38	0.000	0.000	0.000	0.000	0.000	0.000	38.000

Table 5: (continued)

estimated	AnC1	AnC2	ApA	ApC	EvB	PGs3	ReB
B.Cat39	0.000	0.000	0.000	0.000	0.000	0.000	39.000
B.Cat40	0.000	0.000	0.000	0.000	0.000	0.000	40.000
B.Cat41	0.000	0.000	0.000	0.000	0.000	0.000	41.000
B.Cat42	0.000	0.000	0.000	0.000	0.000	0.000	42.000
B.Cat43	0.000	0.000	0.000	0.000	0.000	0.000	43.000
B.Cat44	0.000	0.000	0.000	0.000	0.000	0.000	44.000
B.Cat45	0.000	0.000	0.000	0.000	0.000	0.000	45.000
B.Cat46	0.000	0.000	0.000	0.000	0.000	0.000	46.000
B.Cat47	0.000	0.000	0.000	0.000	0.000	0.000	47.000
B.Cat48	0.000	0.000	0.000	0.000	0.000	0.000	48.000
B.Cat49	0.000	0.000	0.000	0.000	0.000	0.000	49.000
B.Cat50	0.000	0.000	0.000	0.000	0.000	0.000	50.000
B.Cat51	0.000	0.000	0.000	0.000	0.000	0.000	51.000
B.Cat52	0.000	0.000	0.000	0.000	0.000	0.000	52.000
B.Cat53	0.000	0.000	0.000	0.000	0.000	0.000	53.000
B.Cat54	0.000	0.000	0.000	0.000	0.000	0.000	54.000
B.Cat55	0.000	0.000	0.000	0.000	0.000	0.000	55.000
B.Cat56	0.000	0.000	0.000	0.000	0.000	0.000	56.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-6.016	-7.630	-6.477	-6.260	-6.520	64.180	-4.373
AXsi.Cat2	-7.797	-8.765	-7.520	-8.031	-8.764	63.710	0.942
AXsi.Cat3	-7.643	-7.791	-6.599	-9.035	-8.893	63.710	-4.505
AXsi.Cat4	-6.231	-3.055	-3.183	-8.561	-8.163	64.046	-6.208
AXsi.Cat5	-2.360	-1.946	-5.662	-6.585	-6.520		-7.275
AXsi.Cat6	-1.411	-0.336	-0.720	-2.792	-3.627		-7.471
AXsi.Cat7	-1.231	-2.351	-5.722	-3.472	-3.532		-7.537
AXsi.Cat8	-3.054	-3.051	-3.191	-1.023	-1.395		-7.057
AXsi.Cat9	-6.343	-8.386	-6.700	-3.552	-2.948		-6.357
AXsi.Cat10	-6.866	-9.280	-7.405	-7.056	-3.666		-4.146
AXsi.Cat11	-6.217	-8.264	-6.479	-8.584	-7.352		0.181
AXsi.Cat12	-3.074	-1.661	-3.165	-9.695	-9.256		-0.127
AXsi.Cat13	-2.980	-8.117	-5.683	-10.164	-10.319		0.008
AXsi.Cat14	-0.435	-1.946	-0.511	-10.467	-10.722		-4.277
AXsi.Cat15				-10.173	-10.519		-6.159
AXsi.Cat16				-9.278	-9.662		-6.911
AXsi.Cat17				-7.619	-7.857		-7.021
AXsi.Cat18				-1.702	-2.132		-6.176
AXsi.Cat19							-4.458
AXsi.Cat20							1.042
AXsi.Cat21							0.490

Table 5: (continued)

estimated	AnC1	AnC2	ApA	ApC	EvB	PGs3	ReB
AXsi.Cat22	AllCI	Ancz	АрА	Apc	EVD	r Gsə	$\frac{-3.616}{-3.616}$
AXsi.Cat22							-5.390
AXsi.Cat24							-6.193
AXsi.Cat25							-6.436
AXsi.Cat26							-6.284
AXsi.Cat27							-5.316
AXsi.Cat28							-3.471
AXsi.Cat29							0.672
AXsi.Cat30							-3.567
AXsi.Cat31							-5.196
AXsi.Cat32							-5.974
AXsi.Cat33							-6.083
AXsi.Cat34							-6.261
AXsi.Cat35							-5.425
AXsi.Cat36							-3.647
AXsi.Cat37							-0.202
AXsi.Cat38							1.827
AXsi.Cat39							0.003
AXsi.Cat40							-3.899
AXsi.Cat41							-5.746
AXsi.Cat42							-6.678
AXsi.Cat43							-6.958
AXsi.Cat44							-6.454
AXsi.Cat45							-5.064
AXsi.Cat46							-3.569
AXsi.Cat47							1.232
AXsi.Cat48							0.582
AXsi.Cat49							-3.531
AXsi.Cat50							-5.357
AXsi.Cat51							-6.125
AXsi.Cat52							-6.413
AXsi.Cat53							-6.322
AXsi.Cat54							-5.461
AXsi.Cat55							-3.401
AXsi.Cat56							2.922
max.Outfit	1.008	1.000	1.004	1.205	1.166	1.000	0.674
max.Infit	1.008	1.000	1.004	1.205	1.166	1.000	0.674

3 Latent Trait Estimates

Table 6: Latent trait estimates and person model fit of the GPCM-based instrument for measuring gains in skill/knowledge of participants in the third empirical study

Post-test.Infit	0.359	0.215	0.573	0.375	0.913	1.114	0.313	0.399	0.642	0.111	1.210	0.970	0.260	0.728	1.198	0.626	0.428	0.247	1.476	0.877	20.830	0.234	0.426	0.286	0.796	0.126	0.787	0.199	0.383	0.601	0.732	1.251	194.704	0.783	0.316	1.083	0.319	0.402
Post-test.Outfit	0.458	0.436	0.695	1.006	0.834	0.790	0.492	0.395	0.850	0.180	0.867	0.772	0.672	0.449	1.386	2.318	0.475	0.732	1.557	1.621	24.053	0.339	0.534	0.890	0.631	0.317	1.124	0.572	0.563	1.055	0.597	1.450	926.235	1.006	0.449	0.911	0.863	1.429
Post-test.error	0.062	0.043	0.057	0.043	0.085	0.053	0.048	0.043	0.049	0.043	0.043	0.043	0.047	0.045	0.073	0.044	0.061	0.043	0.069	0.043	0.081	0.053	0.045	0.043	0.067	0.058	0.050	0.046	0.077	0.051	0.046	0.046	0.138	0.061	0.069	0.043	0.045	0.045
Post-test.theta	0.074	-0.020	-0.080	-0.026	0.210	-0.016	0.011	-0.011	0.015	-0.020	-0.020	-0.010	0.007	-0.003	0.161	-0.041	-0.088	-0.021	0.127	-0.029	-0.269	0.032	-0.012	-0.015	0.113	-0.082	0.020	0.003	0.181	0.023	0.003	0.002	0.536	290.0	0.128	-0.015	-0.012	-0.012
Pre-test.Infit	0.320	0.975	1.593	1.965	0.894	0.627	1.851	0.249	0.647	1.013	0.482	1.580	0.185	1.851	0.961	0.150	0.215	0.949	0.697	0.319	0.582	869.0	0.630	0.796	0.885	224.121	0.374	0.961	0.387	1.178	1.118	0.674	3.233	0.846	0.970	0.939	0.398	0.846
Pre-test.Outfit	0.414	1.122	1.002	1.375	1.066	0.718	1.477	0.224	0.479	1.056	0.618	1.222	0.217	1.477	1.188	0.177	0.310	1.119	0.884	0.375	0.678	0.505	0.453	1.010	0.616	1025.437	0.312	1.215	0.663	0.943	1.373	0.686	2.793	0.722	1.181	0.940	0.624	0.831
Pre-test.error	0.058	0.048	0.049	0.080	0.049	0.054	0.055	0.049	0.053	0.049	0.051	0.048	0.048	0.055	0.048	990.0	0.050	0.056	0.048	0.048	0.048	0.052	0.050	0.049	0.056	0.104	0.065	0.048	0.050	0.048	0.048	990.0	0.262	0.089	0.050	0.048	0.050	0.050
Pre-test.theta	-0.083	0.017	-0.026	0.110	0.034	0.078	-0.023	0.068	-0.059	-0.026	0.055	0.021	0.013	-0.023	0.007	-0.110	-0.052	980.0	0.017	0.011	0.021	-0.057	-0.052	0.034	-0.077	0.549	-0.025	0.015	0.045	0.017	-0.003	-0.110	-0.101	0.110	0.041	0.009	0.023	-0.052
	10169	10170	10172	10174	10175	10176	10178	10179	10181	10183	10184	10185	10186	10187	10188	10189	10190	10191	10192	10193	10197	10198	10200	10201	10202	10203	10204	10206	10209	10210	10213	10214	10215	10216	10217	10218	10219	10220

Table 6: (continued)

Post-test.Infit	11.765	0.812
Post-test.Outfit	5.678	1.210
Post-test.error	0.070	0.043
Post-test.theta	-0.205	-0.011
Pre-test.Infit	0.321	0.961
Pre-test.Outfit	0.516	1.188
Pre-test.error	090.0	0.048
Pre-test.theta	-0.092	0.007
	10221	10223

Table 6: (continued)

	Pre-test.theta	Pre-test.error	Pre-test.Outfit	Pre-test.Infit	Post-test.theta	Post-test.error	Post-test.Outfit	Post-test.Infit
10226	-0.049		0.406	0.324	0.004	0.046	0.493	0.643
10227	0.013	0.048	0.706	0.642	-0.264	0.075	9.201	6.981
10228	-0.149	0.082	0.787	0.551	-0.264	0.075	8.157	12.257
10230	090.0		0.525	0.478	-0.079	0.056	1.086	0.678
10231	0.477		144.754	74.848	0.036	0.054	1.624	1.293
10232	0.050		0.573	0.424	-0.024	0.043	0.171	0.061
10237	10237 0.005	0.048	0.854	0.673	0.021	0.051	0.567	0.507
10238	-0.003		1.172	1.195	-0.015	0.043	0.662	0.259
10940	_0000		0.677	0.614	0 0.41	0.048	0 797	100 C