Линейная алгебра

Урок 1. Линейное пространство. Основные понятия. Часть 1

Урок 1

1. Исследовать на линейную зависимость:

$$f_1(x) = e^x$$
, $f_2(x) = 1$, $f_3(x) = x + 1$, $f_4(x) = x - e^x$.

2. Исследовать на линейную зависимость:

$$f_1(x) = 2, f_2(x) = x, f_3(x) = x^2, f_4(x) = (x+1)^2$$

3. Найти координаты вектора $x=(2,3,5)\in\mathbb{R}^3$ в базисе $b_1=(0,0,10),\,b_2=(2,0,0),\,b_3=(0,1,0).$

##**4**. Найти координаты вектора $3x^2 - 2x + 2 \in \mathbb{R}^3[x]$:

- а) в базисе 1, x, x^2 ;
- б) в базисе x^2 , x 1, 1.
- B [1]: import numpy as np

Задача 1

Исследовать на линейную зависимость:

$$f_1(x) = e^x$$
, $f_2(x) = 1$, $f_3(x) = x + 1$, $f_4(x) = x - e^x$.

Решение

Заметим, что

$$f_4(x) = x - e^x = (x+1) - 1 - e^x = f_3(x) - f_2(x) - f_1(x)$$

Следовательно вектор $f_4(x)=f_3(x)-f_2(x)-f_1(x)$, есть линейная комбинация векторов $f_1(x)$, $f_2(x)$ и $f_3(x)$, из чего можно сделать вывод, что $f_1(x)=e^x$, $f_2(x)=1$, $f_3(x)=x+1$ и $f_4(x)=x-e^x$ линейно зависимы

Задача 2

Исследовать на линейную зависимость:

$$f_1(x) = 2, f_2(x) = x, f_3(x) = x^2, f_4(x) = (x+1)^2$$

Решение

Заметим, что

$$f_4(x) = (x+1)^2 = x^2 + 2x + 1 = \frac{1}{2}f_1(x) + 2f_2(x) + f_3(x)$$

Следовательно вектор $f_4(x)=\frac{1}{2}f_1(x)+2f_2(x)+f_3(x)$, есть линейная комбинация векторов $f_1(x)$, $f_2(x)$ и $f_3(x)$, из чего можно сделать вывод, что $f_1(x)=2$, $f_2(x)=x$, $f_3(x)=x^2$ и $f_4(x)=(x+1)^2$ линейно зависимы.

Задача 3

Найти координаты вектора $x=(2,3,5)\in\mathbb{R}^3$ в базисе $b_1=(0,0,10),\,b_2=(2,0,0),\,b_3=(0,1,0).$

```
B [2]: b_1 = np.array([0, 0 , 10])
b_2 = np.array([2, 0, 0])
b_3 = np.array([0, 1, 0])
print(f'Вектор b_1: {b_1}')
print(f'Вектор b_2: {b_2}')
print(f'Вектор b_3: {b_3}')
```

Вектор b_1: [0 0 10] Вектор b_2: [2 0 0] Вектор b 3: [0 1 0]

B [3]: $x = (1/2)*b_1 + 1*b_2 + 3*b_3$ print(f'Bektop x: {x}')

Вектор х: [2. 3. 5.]

Решение

Новый базис

$$b_1 = (0, 0, 10)$$

 $b_2 = (2, 0, 0)$
 $b_3 = (0, 1, 0)$

Вектор

$$x = (2, 3, 5) = (2, 0, 0) + (0, 3, 0) + (0, 0, 5) = \frac{1}{2}b_1 + b_2 + 3b_3$$

Ответ: координаты вектора $x=(2,3,5)\in\mathbb{R}^3$ в базисе $b_1=(0,0,10),\,b_2=(2,0,0),\,b_3=(0,1,0)$ равны (1/2,1,3).

Задача 4

##**4**. Найти координаты вектора $S = 3x^2 - 2x + 2 \in \mathbb{R}^3[x]$:

- а) в базисе 1, x, x^2 ;
- б) в базисе x^2 , x 1, 1.
- а) зададим базис из 3-х векторов:

$$e_1 = (1, 0, 0)$$

 $e_2 = (0, x, 0)$
 $e_3 = (0, 0, x^2)$

Тогда вектор в этом базисе $S = 2 - 2x + 3x^2$ будет иметь вил:

$$S = 2e_1 - 2e_2 + 3e_3 = (2, -2, 3)$$

Ответ: координаты вектора S = (2, -2, 3)

b) зададим базис из 3-х векторов:

$$e_1 = (x^2, 0, 0)$$

 $e_2 = (0, x - 1, 0)$
 $e_3 = (0, 0, 1)$

Тогда в этом базисе вектор $S = 3x^2 - 2x + 2$ будет иметь вил:

$$S = 3e_1 - 2e_2 + 0 \cdot e_3 = (3, -2, 0)$$

 $S = 3e_1 - 2e_2 + 0 \cdot e_3 = (3, -2, 0)$ Ответ: координаты вектора S = (3, -2, 0)

в []: