Universidade do Estado de Santa Catarina (UDESC) Curso: Bacharelado em Ciência da Computação Disciplina: Linguagem de Programação (LPG0001) Prof. Rui Jorge Tramontin Jr.

Trabalho 1: Vetores e Funções

O objetivo deste trabalho é implementar uma máquina virtual simples que realiza a execução eficiente de duas instruções especiais de soma. O programa deve gerenciar um vetor de N posições na memória, e que são endereçadas de 1 a N pelo usuário. Cada posição do vetor armazena um inteiro maior ou igual a zero. Inicialmente, todas as posições contêm o valor zero. As instruções especiais de soma são:

- **FRENTE** i V: dados a posição i $(1 \le i \le N)$ e um valor positivo V, a instrução deve somar V na posição i, V-1 em i+1, V-2 em i+2, etc, enquanto o valor a ser somando for maior do que zero e a posição for menor ou igual a N;
- **TRÁS** i v: dados a posição i $(1 \le i \le N)$ e um valor positivo V, a instrução deve somar V na posição i, V-1 em i-1, V-2 em i-2, etc, enquanto o valor a ser somando for maior do que zero e a posição for maior ou igual a 1.

Por exemplo, para N = 16, uma possível sequência de instruções é dada a seguir:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FRENTE 4 8															
0	0	0	8	7	6	5	4	3	2	1	0	0	0	0	0
TRÁS 16 3															
0	0	0	8	7	6	5	4	3	2	1	0	0	1	2	3
TRÁS 2 12															
11	12	0	8	7	6	5	4	3	2	1	0	0	1	2	3
FRENTE 8 7															
11	12	0	8	7	6	5	11	9	7	5	3	2	2	2	3

Além disso, a máquina virtual possui a instrução **IMPRIME** i, que deve imprimir na saída o valor atual armazenado na posição i do vetor.

Dados N e uma sequência de M instruções, seu programa deve imprimir, para cada instrução do tipo **IMPRIME** i, uma linha contendo o valor armazenado na posição i do vetor no instante da execução da instrução.

Entrada

A primeira linha da entrada contém dois inteiros N e M, representando o número de posições de memória e o número de instruções, respectivamente. As M linhas seguintes contêm, cada uma, a descrição de uma instrução em uma de três formas possíveis:

- 1 *I V*, representando **FRENTE** *I V*;
- 2 I V, representando TRÁS I V;
- 3 *I*, representando **IMPRIME** *I*.

Saída

Para cada instrução do tipo **IMPRIME** i, o programa deve imprimir uma linha contendo um inteiro representando o valor armazenado na posição i do vetor no instante da execução da instrução.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
16 7	1
1 4 8	7
2 16 3	2
3 14	
2 2 12	
1 8 7	
3 10	
3 14	

Exemplo de entrada 2	Exemplo de saída 2
200000 2 1 2345 193290 3 112230	83405

Restrições

- a) $1 \le N \le 200.000$;
- b) $1 \le M \le 200.000$;
- c) $1 \le I \le N$;
- d) $1 \le V \le 200.000$;
- e) Ao menos uma instrução será do tipo 3 (IMPRIME).

Requisitos

- 1) Declare um vetor com capacidade 200.000, para respeitar a restrição a);
- 2) Cada instrução deve ser implementada por uma função. Sugestão:

```
void frente(int vet[], int n, int i, int v);
void tras(int vet[], int n, int i, int v);
void imprime(int vet[], int n, int i);
```

3) Não é necessário validar os dados de entrada.

Critérios de avaliação

• Execução correta e alinhamento com o que foi solicitado neste enunciado.

Informações importantes:

- Trabalho individual!
- Entrega: no Moodle, até o dia 18/12.