Décima lista de exercícios. Funções inversas.

- 1. Determine se as funções são injetoras.
 - a) f(x) = 4 2x.
 - b) $f(x) = \sqrt{x}$.
 - c) $f(x) = 1 x^2$.
 - d) $f(x) = \frac{1}{x}$.
- 2. Determine as funções inversas, bem como o domínio e a imagem dessas funções.
 - a) f(x) = 3x 2.
 - b) $f(x) = \sqrt{9 x}$.
 - c) $f(x) = \sqrt{x+1}$.
 - d) $f(x) = \sqrt[3]{x+4}$.
 - e) $f(x) = 1/x^2$, para x > 0.
 - f) $f(x) = \frac{x-5}{3}$.
 - g) $f(x) = \frac{5}{x+1}$.
 - h) $f(x) = \frac{x+1}{x-2}$.
 - i) $f(x) = 1 + x^2$, para $x \ge 0$.
- 3. Uma piscina com 10 m de comprimento, 5 m de largura e 2 m de profundidade contém apenas $10 m^3$ de água. Uma bomba com vazão de $2,5 m^3/h$ é usada para encher a piscina.
 - a) Escreva a função v(h) que fornece o volume da piscina (em m^3), em relação à altura do nível d'água (em m). Lembre-se que o volume de um prisma retangular reto com dimensões x, y e z é dado por xyz.
 - b) Escreva a inversa da função do item (a), ou seja, a função h(v) que fornece a altura do nível d'água em relação ao volume de água da piscina, v (em m^3).
 - c) Escreva a função v(t) que fornece o volume da piscina em relação ao tempo, em horas, contado a partir do momento em que a bomba é ligada.
 - d) Escreva a função h(t) que fornece o nível d'água da piscina em relação ao tempo.
 - e) Determine o instante em que a piscina estará suficientemente cheia, o que ocorrerá quando seu nível d'água atingir 1,8 m.

- 4. Uma loja de automóveis criou uma promoção, válida apenas nessa semana. Todos os carros da loja estão com 10% de desconto sobre o preço de tabela do fabricante. Além disso, depois de calculado o desconto, o cliente ainda tem uma redução de R\$ 900,00 sobre o preço do carro.
 - a) Escreva uma função P(x) que forneça o valor que o cliente pagará pelo carro, nessa semana, em relação ao preço de tabela, x.
 - b) Determine a função inversa de P(x) e indique o que essa função representa.
 - c) Esboce o gráfico da função inversa de P(x).
 - d) Se você tem exatamente R\$ 27.000,00, determine o preço de tabela do carro mais caro que você consegue comprar à vista.
- 5. Para converter uma temperatura dada em graus Fahrenheit (F) para graus Celsius (C), usamos a fórmula $C = \frac{5}{9}(F 32)$.
 - a) Escreva uma função F(C) que converta para Fahrenheit, uma temperatura C dada em graus Celsius.
 - b) Trace o gráfico de C(F) para F entre -50 e 250.
 - c) No mesmo plano coordenado usado no item (b), trace o gráfico de F(C) para C entre -50 e 120.
 - d) Determine em que temperatura a medida em Celsius e Fahrenheit é a mesma. (Dica: determine o valor C tal que F(C) = C.)
 - e) Mostre esse ponto no gráfico de F(C).
- 6. Como empregado de uma loja de roupas, você ganha R\$ 50,00 por dia, além de uma comissão de cinco centavos para cada real que consegue vender. Assim, seu rendimento diário é dado pela função f(x) = 50 + 0,05x.
 - a) Determine a inversa de *f* e descreva o que a inversa representa.

- b) Determine quantos reais você deve vender em um único dia para receber R\$ 80,00 de remuneração pelo trabalho desse dia.
- 7. Dada a tabela abaixo, esboce o gráfico da inversa de f(x).

x	-1	0	1	2	3	4
f(x)	-1	1,5	4	6,5	9	11,5

- Para cada função abaixo, restrinja o domínio de modo que a função seja injetora. Determine, então a inversa da função para o domínio escolhido.
 - a) $f(x) = (x-2)^2$.
 - b) f(x) = |x|.
- 9. Use a propriedade das funções inversas para mostrar que *g* é a inversa de *f* e vice-versa.

a)
$$f(x) = \frac{3x-1}{5} e g(y) = \frac{5y+1}{3}$$
.

b)
$$f(x) = \sqrt[3]{x} e g(y) = y^3$$
.

c)
$$f(x) = \frac{1}{x} e g(y) = \frac{1}{y}$$
.

d)
$$f(x) = 2 - x^5$$
 e $g(y) = \sqrt[5]{2 - y}$.

- 10. Pelo aluguel de um determinado modelo de carro, uma locadora de automóveis cobra R\$ 50,00 por dia, além de R\$ 0,50 por quilômetro rodado.
 - a) Escreva a função C(x) que fornece o custo diário do aluguel para quem pretende percorrer x km em um dia.
 - b) Determine a função inversa de C(x). O que essa função representa?
 - Usando a função inversa, determine quantos quilômetros é possível rodar em um mesmo dia com R\$ 175,00 e com R\$ 350,00.
- 11. Dada a função $z(x) = \frac{400-25x}{80-2x}$
 - a) Determine para que valores de x temos $z(x) \le 0$.
 - b) Determine a função inversa de z(x).
 - c) Determine o domínio de z(x) e o de sua inversa.
- 12. Uma loja possui um programa de recompensa para clientes fiéis. A cada real gasto em compras, o cliente ganha 10 pontos do programa de fidelidade. Depois de juntar muitos pontos, é possível trocá-los por

mercadorias da própria loja. Suponha que Marta já tenha 2000 pontos.

- a) Escreva uma função B(x) que forneça o número de pontos de Marta, em relação ao valor x, seu gasto na loja a partir de hoje.
- b) Determine a função inversa de B(x). indique o que essa função representa.
- c) Determine quanto Marta ainda precisa gastar na loja para poder levar uma calça que vale 10000 pontos.

Respostas.

1.a. Sim; b. Sim; c. Não; d. Sim.

2.a.
$$f^{-1}(y) = \frac{2+y}{3}$$
; $D: \mathbb{R}$; $Im: \mathbb{R}$;

2.b.
$$f^{-1}(y) = 9 - y^2$$
; $D: \{y | y \ge 0\}$; $Im: \{x | x \le 9\}$.

2.c.
$$f^{-1}(y) = y^2 - 1$$
; D: $\{y | y \ge 0\}$; Im: $\{x | x \ge -1\}$.

2.d.
$$f^{-1}(y) = y^3 - 4$$
; $D: \mathbb{R}$; $Im: \mathbb{R}$.

2.e.
$$f^{-1}(y) = 1/\sqrt{y}$$
; $D: \{y|y>0\}$; $Im: \{x|x>0\}$.

2.f.
$$f^{-1}(y) = 5 + 3y$$
; $D: \mathbb{R}$; $Im: \mathbb{R}$.

2.g.
$$f^{-1}(y) = \frac{5-y}{y}$$
; $D: \{y|y \neq 0\}$; $Im: \{x|x \neq -1\}$.

2.h.
$$f^{-1}(y) = \frac{1+2y}{y-1}$$
; $D: \{y|y \neq 1\}$; $Im: \{x|x \neq 2\}$.

2.i.
$$f^{-1}(y) = \sqrt{y-1}$$
; $D: \{y|y \ge 1\}$; $Im: \{x|x \ge 0\}$.

3.a.
$$v(h) = 50h$$
; b. $h(v) = v/50$;

3.c.
$$v(t) = 10 + 2.5t$$
; d. $h(t) = h(v(t)) = \frac{10 + 2.5t}{50}$;

3.e. 32 horas.

4.a.
$$P(x) = 0.9x - 900$$
; b. $P^{-1}(y) = \frac{y+900}{0.9}$;

A inversa fornece o custo original do carro que se pode comprar, nessa semana, com y reais.

4.c.

4.d. R\$ 31.000,00

5.a.
$$F(C) = \frac{9}{5}C + 32;$$

5.b,c.

$$5.d. -40$$
°C = -40 °F.

6.a. $f^{-1}(y) = 20y - 1000$. Essa função fornece o quanto você deve vender por dia (em reais) para que seu rendimento diário seja igual a y.

7.

8.a.
$$D(f) = \{x | x \ge 2\}$$
; b. $D(f) = \{x | x \ge 0\}$
9. ...

10.a.
$$C(x) = 50 + 0.5x$$
;

10.b. $C^{-1}(y) = 2y - 100$. Essa função fornece a distância que se pode percorrer, por dia, com y reais.

10.c.
$$C^{-1}(175) = 250$$
; $C^{-1}(300) = 500$.

11.a.
$$16 \le x \le 40$$
.

11.b.
$$z^{-1}(y) = \frac{80y - 400}{2y - 25}$$
.

11.c.
$$D(z) = \{x | x \neq 40\}; D(z^{-1}) = \{y | y \neq \frac{25}{2}\}.$$

$$12.a. B(x) = 2000 + 10x.$$

12.b. $B^{-1}(y) = \frac{y}{10} - 200$. A função fornece o quanto Marta deve gastar na loja para conseguir y pontos do programa de fidelidade.

12.c.
$$B^{-1}(10000) = 800$$
 reais.