الجزء الأولُّ:

.
$$(\forall x \in]0,1[\cup]1,+\infty[), \frac{x^2-x}{2\ln(x)} \leq \int_x^{x^2} \frac{dt}{\ln(t)} \leq \frac{x^2-x}{\ln(x)}$$
 :ن: .1

2. نعتبر الدالة φ المعرفة على المجال]0,1[∪]1,+∞[كما يلي:

$$\varphi(1)=1$$
 و $\varphi(0)=0$ و $\varphi(x)=rac{x-1}{\ln(x)}$

ين أن $(\forall x \in]0,1[\cup]1,+\infty[),x-1-x\ln(x)<0$ أن $(\forall x \in]0,1[\cup]1,+\infty[)$ و على المجال]∞+,0].

باستعمال رتابة الدالة φ ،بين أن:

الجزء الثاني: نعتبر الدالة φ المعرفة على المجال]∞+,1[∪]1,1[كما يلي:

•
$$f(0) = f(1) = 0$$
 • $f(x) = -\ln(x+1) + \int_{x}^{x^{2}} \frac{dt}{\ln(t)}$

- بين أن الدالة f متصلة و قابلة للاشتقاق على اليمين في الصفر.
 - f ادرس الفروع اللانهائية لمنحنى الدالة f
- $(\forall x \in]0,1[\cup]1,+\infty[), \int_{-\ln(t)}^{x^2} \frac{\varphi(t)}{\ln(t)} dt = f(x) + \ln\left(\frac{x+1}{2}\right)$:3 $oldsymbol{x}_0 = 1$ متصلة و قابلة للاشتقاق في النقطة ذات الأفصول f، بين أنه يوجد lpha من المجال [0,1[بحيث lpha (lpha) . (lphaكنك استعمال مبرهنة رول) .