Clark Measures on Symmetric Domains

Mattia Calzi

Università degli Studi di Milano

12th March 2025

Riesz-Herglotz representation theorem

Let $\mathbb D$ denote the unit disc in $\mathbb C$. If f is a positive harmonic function on $\mathbb D$, then there is a unique positive Radon measure μ on $\mathbb T$ such that

$$f(z) = (\mathcal{P}\mu)(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|\alpha - z|^2} d\mu(\alpha)$$

for every $z \in \mathbb{D}$. In addition, μ is the vague limit of $f_{\rho} \cdot \beta_{\mathbb{T}}$ for $\rho \to 1^-$, where $f_{\rho}(\alpha) = f(\rho \alpha)$ for every $\alpha \in \mathbb{T}$ and $\beta_{\mathbb{T}}$ is the normalized Haar measure on \mathbb{T} .

Equivalently, if g is a holomorphic function on $\mathbb D$ with a positive real part, then there is a unique positive Radon measure ν on $\mathbb T$ such that

$$g(z) = (\mathcal{H}\nu)(z) + i \operatorname{Im} g(0) = \int_{\mathbb{T}} \frac{\alpha + z}{\alpha - z} d\nu(\alpha) + i \operatorname{Im} g(0).$$

Riesz-Herglotz representation theorem

Let $\mathbb D$ denote the unit disc in $\mathbb C$. If f is a positive harmonic function on $\mathbb D$, then there is a unique positive Radon measure μ on $\mathbb T$ such that

$$f(z) = (\mathcal{P}\mu)(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|\alpha - z|^2} d\mu(\alpha)$$

for every $z \in \mathbb{D}$. In addition, μ is the vague limit of $f_{\rho} \cdot \beta_{\mathbb{T}}$ for $\rho \to 1^-$, where $f_{\rho}(\alpha) = f(\rho \alpha)$ for every $\alpha \in \mathbb{T}$ and $\beta_{\mathbb{T}}$ is the normalized Haar measure on \mathbb{T} .

Equivalently, if g is a holomorphic function on $\mathbb D$ with a positive real part, then there is a unique positive Radon measure ν on $\mathbb T$ such that

$$g(z) = (\mathcal{H}\nu)(z) + i\operatorname{Im} g(0) = \int_{\mathbb{T}} \frac{\alpha + z}{\alpha - z} d\nu(\alpha) + i\operatorname{Im} g(0).$$

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be holomorphic. For every $\alpha \in \mathbb{T}$, there is a unique positive pluriharmonic measure μ_{α} on \mathbb{T} such that

$$\mathcal{P}\mu_{\alpha} = \operatorname{Re} \frac{\alpha + \varphi}{\alpha - \varphi} = \frac{1 - |\varphi|^2}{|\alpha - \varphi|^2}.$$

Denote by μ_{α}^{s} its singular part with respect to $\beta_{\mathbb{T}}$.

- $\bullet \ \|\mu_{\alpha}\|_{\mathcal{M}^{1}(\mathbb{T})} = \frac{1 |\varphi(0)|^{2}}{|\alpha \varphi(0)|^{2}};$
- $\mu_{\alpha} = \frac{1-|\varphi_{1}|^{2}}{|\alpha-\varphi_{1}|^{2}} \cdot \beta_{\mathbb{T}} + \mu_{\alpha}^{s}$, where φ_{1} denotes the a.e. limit of $\varphi_{\rho} = \varphi(\rho \cdot)$, $\rho \to 1^{-}$;
- μ_{α}^{s} is concentrated on $\varphi_{1}^{-1}(\alpha)$;
- μ_{α}^{s} and $\mu_{\alpha'}^{s}$ are singular for $\alpha \neq \alpha'$;

Let $\varphi \colon \mathbb{D} \to \mathbb{D}$ be holomorphic. For every $\alpha \in \mathbb{T}$, there is a unique positive pluriharmonic measure μ_{α} on \mathbb{T} such that

$$\mathcal{P}\mu_{\alpha} = \operatorname{Re} \frac{\alpha + \varphi}{\alpha - \varphi} = \frac{1 - |\varphi|^2}{|\alpha - \varphi|^2}.$$

Denote by μ_{α}^{s} its singular part with respect to $\beta_{\mathbb{T}}$.

- $\bullet \ \|\mu_{\alpha}\|_{\mathcal{M}^{1}(\mathbb{T})} = \frac{1 |\varphi(0)|^{2}}{|\alpha \varphi(0)|^{2}};$
- $\mu_{\alpha}=\frac{1-|\varphi_{1}|^{2}}{|\alpha-\varphi_{1}|^{2}}\cdot\beta_{\mathbb{T}}+\mu_{\alpha}^{s}$, where φ_{1} denotes the a.e. limit of $\varphi_{\rho}=\varphi(\rho\cdot)$, $\rho\to 1^{-}$;
- μ_{α}^{s} is concentrated on $\varphi_{1}^{-1}(\alpha)$;
- μ_{α}^{s} and $\mu_{\alpha'}^{s}$ are singular for $\alpha \neq \alpha'$;

('Aleksandrov's disintegration theorem')

$$\int_{\mathbb{T}} \mu_{\alpha} \, \mathrm{d}\beta_{\mathbb{T}}(\alpha) = \beta_{\mathbb{T}};$$

- if φ is inner (i.e., $|\varphi_1(\alpha)| = 1$ for a.e. $\alpha \in \mathbb{T}$), then (μ_{α}) is a disintegration of $\beta_{\mathbb{T}}$ relative to $\beta_{\mathbb{T}}$;
- if φ is inner and $\varphi(0) = 0$, then $(\varphi_1)_*(\beta_{\mathbb{T}}) = \beta_{\mathbb{T}}$;
- if $\varphi(0) = 0$, then

$$\int_{\mathbb{T}} \overline{\zeta}^k \, \mathrm{d}\mu_{\alpha}(\zeta) = \sum_{h=1}^k \overline{\alpha}^h \int_{\mathbb{T}} \varphi^h(\zeta) \overline{\zeta}^k \, \mathrm{d}\beta_{\mathbb{T}}(\zeta)$$

for every $k \in \mathbb{N}$.

The mapping $\mathcal{C}_{\alpha} \colon L^2(\mu_{\alpha}) \to H^2(\mathbb{D})$,

$$C_{\alpha}(f)(z) = (1 - \overline{\alpha}\varphi(z)) \int_{\mathbb{T}} \frac{f(\zeta)}{1 - \overline{\zeta}z} d\mu_{\alpha}(\zeta),$$

is contractive. If $H^2(\mu_{\alpha})$ denotes the closure of the space of holomorphic polynomials in $L^2(\mu_{\alpha})$, then $\ker \mathcal{C}_{\alpha} = H^2(\mu_{\alpha})^{\perp}$.

When φ is inner and $\varphi(0)=0$, then \mathcal{C}_{α} is an isometry of $L^2(\mu_{\alpha}$ onto the 'model space' $(\varphi H^2(\mathbb{D}))^{\perp}$ with inverse $f\mapsto f_1$ (the pointwise a.e. limit of $f(\rho\cdot)$ for $\rho\to 1^-$). In addition,

$$C_{\alpha}S = U_{\alpha}C_{\alpha}$$

where S denotes multiplication by z (the 'shift') and U_{α} is a rank-one perturbation of the 'compressed shift' on $(\varphi H^2(\mathbb{D}))^{\perp}$. This provides a connection with the theory of contractions.

The mapping $C_{\alpha} : L^{2}(\mu_{\alpha}) \to H^{2}(\mathbb{D})$,

$$C_{\alpha}(f)(z) = (1 - \overline{\alpha}\varphi(z)) \int_{\mathbb{T}} \frac{f(\zeta)}{1 - \overline{\zeta}z} d\mu_{\alpha}(\zeta),$$

is contractive. If $H^2(\mu_{\alpha})$ denotes the closure of the space of holomorphic polynomials in $L^2(\mu_{\alpha})$, then $\ker \mathcal{C}_{\alpha} = H^2(\mu_{\alpha})^{\perp}$.

When φ is inner and $\varphi(0)=0$, then \mathcal{C}_{α} is an isometry of $L^2(\mu_{\alpha})$ onto the 'model space' $(\varphi H^2(\mathbb{D}))^{\perp}$ with inverse $f\mapsto f_1$ (the pointwise a.e. limit of $f(\rho\cdot)$ for $\rho\to 1^-$). In addition,

$$C_{\alpha}S = U_{\alpha}C_{\alpha}$$

where S denotes multiplication by z (the 'shift') and U_{α} is a rank-one perturbation of the 'compressed shift' on $(\varphi H^2(\mathbb{D}))^{\perp}$. This provides a connection with the theory of contractions.

When $\varphi \colon \mathbb{D} \to \mathbb{D}$ is a rational inner function, then it is a finite Blashke product, that is, of the form

$$\varphi(z) = \alpha' z^k \prod_{j=1}^h \frac{z - \lambda_j}{1 - \overline{\lambda_j} z},$$

with $\alpha' \in \mathbb{T}$, $\lambda_1, \ldots, \lambda_h \in \mathbb{D}$. Then,

$$\mu_{\alpha} = \sum_{\varphi(\alpha'') = \alpha} \frac{1}{|\varphi'(\alpha'')|} \delta_{\alpha''}.$$

In general, $H^2(\mu_{\alpha}) = L^2(\mu_{\alpha})$ if and only if φ is extremal in the (closed) unit ball of $H^{\infty}(\mathbb{D})$. This does not depend on $\alpha \in \mathbb{T}$.

Let D be a convex circular bounded symmetric domain, i.e., for every $z \in D$ there is an involutive biholomorphism of D with z as its unique fixed point.

Then, the group K of its *linear* automorphisms acts transitively on the set of extremal points (the 'Šilov boundary') bD of D. Let β_{bD} be the normalized K-invariant measure on bD.

Example

- D = U, the unit ball in \mathbb{C}^n , has K = U(n) and $bD = \partial U$;
- $D = \mathbb{D}^n$, the unit polydisc in \mathbb{C}^n , has $K = \mathfrak{S}_n \times \mathbb{T}^n$, with action $(\sigma, (\alpha_j)) \cdot (z_j) = (\alpha_{\sigma(j)} z_{\sigma(j)})$, and $bD = \mathbb{T}^n (\subsetneq \partial D)$
- $D = \{A \in M_n(\mathbb{C}) : ||A|| < 1\}$ has $K = \mathbb{T} \times SU(n)^2$, with action $(\alpha, B, C) \cdot A = \alpha BAC^{-1}$, and bD = U(n).

Let D be a convex circular bounded symmetric domain, i.e., for every $z \in D$ there is an involutive biholomorphism of D with z as its unique fixed point.

Then, the group K of its *linear* automorphisms acts transitively on the set of extremal points (the 'Šilov boundary') bD of D. Let β_{bD} be the normalized K-invariant measure on bD.

Examples

- D = U, the unit ball in \mathbb{C}^n , has K = U(n) and $bD = \partial U$;
- $D = \mathbb{D}^n$, the unit polydisc in \mathbb{C}^n , has $K = \mathfrak{S}_n \times \mathbb{T}^n$, with action $(\sigma, (\alpha_j)) \cdot (z_j) = (\alpha_{\sigma(j)} z_{\sigma(j)})$, and $bD = \mathbb{T}^n (\subsetneq \partial D)$;
- $D = \{A \in M_n(\mathbb{C}) : ||A|| < 1\}$ has $K = \mathbb{T} \times SU(n)^2$, with action $(\alpha, B, C) \cdot A = \alpha BAC^{-1}$, and bD = U(n).

One may then define the Hardy space $H^2(D)$ as

$$\bigg\{f\in \operatorname{Hol}(D)\colon \sup_{\rho\in(0,1)}\int_{\mathrm{b}D}|f(\rho\zeta)|^2\,\mathrm{d}\beta_{\mathrm{b}D}(\zeta)<\infty\bigg\}.$$

Then, $H^2(D)$ is a Hilbert space and $f\mapsto f_1=\lim_{\rho\to 1^-}f_\rho$ (limit in $L^2(\beta_{\mathrm{b}D}),\ f_\rho(\zeta)=f(\rho\zeta)$) is an isometry of $H^2(D)$ into $L^2(\beta_{\mathrm{b}D}).$ In addition, point evaluations are continuous on $H^2(D)$, so that for every $z\in D$ there is a unique $\mathcal{C}_z\in H^2(D)$ such that

$$f(z) = \langle f | \mathcal{C}_z \rangle_{H^2(D)}$$

for every $f \in H^2(D)$.

- if D = U, the unit ball in \mathbb{C}^n , then $\mathcal{C}_z(z') = (1 \langle z|z'\rangle^n)^{-1}$;
- if $D = \mathbb{D}^n$, then $C_{z'}(z) = \prod_i (1 z_i \overline{z_i'})^{-1}$;
- if D is the unit ball of $M_n(\mathbb{C})$, then $\mathcal{C}_{z'}(z) = (\det(I zz'^*))^{-1}$.

The function $\mathcal{C}(z,z')=\mathcal{C}_{z'}(z)$ is the reproducing kernel of $H^2(D)$ (the 'Cauchy–Szegő' kernel). It turns out that \mathcal{C}^{-2} is a sesquiholomorphic polynomial which vanishes nowhere on $D\times \mathrm{Cl}(D)$. Hence, \mathcal{C} extends to a sesquiholomorphic function on a neighbourhood of $D\times \mathrm{Cl}(D)$.

Korányi: Define the Poisson–Szegő kernel $\mathcal P$ so that

$$\mathcal{P} \colon D \times \mathrm{b}D \ni (z,\zeta) \mapsto \frac{|\mathcal{C}(z,\zeta)|^2}{\mathcal{C}(z,z)}.$$

Then:

- \bullet \mathcal{P} is continuous and bounded;
- $\int_{\mathrm{b}D} \mathcal{P}(z,\zeta) \,\mathrm{d}\beta_{\mathrm{b}D}(\zeta) = 1$ for every $z \in D$;
- $(\mathcal{P}\mu)_{\rho} \cdot \beta_{\mathrm{b}D} \to \mu$ vaguely for $\rho \to 1^-$, where $(\mathcal{P}\mu)_{\rho}(\zeta) = \int_{\mathrm{b}D} \mathcal{P}(\rho\zeta,\zeta')\,\mathrm{d}\beta_{\mathrm{b}D}(\zeta')$, for every Radon measure μ on $\mathrm{b}D$.

A real Radon measure μ on $\mathrm{b}D$ is pluriharmonic if the following equivalent conditions hold:

- $\mathcal{P}\mu$ is pluriharmonic (i.e., the real part of a holomorphic function on D);
- $\mathcal{P}\mu = \operatorname{Re} \mathcal{H}\mu = \operatorname{Re} \int_{\mathrm{b}D} (2\mathcal{C}_{\zeta} 1) \,\mathrm{d}\mu(\zeta);$
- $oldsymbol{\omega}$ μ is in the vague closure of the space of pluriharmonic polynomials;
- $\int_{\mathrm{b}D} P \, \mathrm{d}\mu = 0$ for every polynomial P such that $\int_{\mathrm{b}D} PQ \, \mathrm{d}\beta_{\mathrm{b}D} = 0$ for every pluriharmonic polynomial Q.

(Korányi–Pukánszky) For every positive pluriharmonic function $f: D \to \mathbb{R}$ there is a unique positive pluriharmonic measure μ on bD such that

$$f = \mathcal{P}\mu$$
.

A real Radon measure μ on $\mathrm{b}D$ is pluriharmonic if the following equivalent conditions hold:

- $\mathcal{P}\mu$ is pluriharmonic (i.e., the real part of a holomorphic function on D);
- $\mathcal{P}\mu = \operatorname{Re} \mathcal{H}\mu = \operatorname{Re} \int_{\mathrm{b}D} (2\mathcal{C}_{\zeta} 1) \,\mathrm{d}\mu(\zeta);$
- $m{\bullet}$ μ is in the vague closure of the space of pluriharmonic polynomials;
- $\int_{\mathrm{b}D} P \, \mathrm{d}\mu = 0$ for every polynomial P such that $\int_{\mathrm{b}D} PQ \, \mathrm{d}\beta_{\mathrm{b}D} = 0$ for every pluriharmonic polynomial Q.

(Korányi–Pukánszky) For every positive pluriharmonic function $f: D \to \mathbb{R}$ there is a unique positive pluriharmonic measure μ on $\mathrm{b}D$ such that

$$f = \mathcal{P}\mu$$
.

Aleksandrov, Aleksandrov–Doubtsov, C.: Let μ be a pluriharmonic measure on ${\bf b}D$, and let $\widehat{{\bf b}D}$ be the quotient of ${\bf b}D$ by the action of ${\mathbb T}$; let $\pi\colon {\bf b}D\to \widehat{{\bf b}D}$ be the canonical projection and set $\beta_{\widehat{{\bf b}D}}:=\pi_*(\beta_{{\bf b}D})$.

Then, μ has a 'disintegration' $(\mu_{\xi})_{\xi \in \widehat{bD}}$ relative to $\beta_{\widehat{bD}}$, that is, μ_{ξ} is a Radon measure on bD concentrated on $\pi^{-1}(\xi)$ and

$$\mu = \int_{\widehat{\mathrm{b}D}} \mu_{\xi} \, \mathrm{d}\beta_{\widehat{\mathrm{b}D}}(\xi).$$

In addition,

$$(\mathcal{P}\mu)(z) = \int_{\mathrm{bD}} \frac{1 - |z|^2}{|z - \zeta|^2} \,\mathrm{d}\mu_{\xi}(\zeta)$$

for every $z \in \mathbb{D}_{\xi} = \mathbb{D}\pi^{-1}(\xi)$ and for almost every $\xi \in \widehat{\mathrm{b}D}$. Further, if μ is positive, then (μ_{ξ}) may be chosen to be vaguely continuous (and the above identity holds for every $\xi \in \widehat{\mathrm{b}D}$).

Aleksandrov, Aleksandrov–Doubtsov, C.: Let μ be a pluriharmonic measure on $\mathrm{b}D$, and let $\widehat{\mathrm{b}D}$ be the quotient of $\mathrm{b}D$ by the action of \mathbb{T} ; let $\pi\colon \mathrm{b}D\to \widehat{\mathrm{b}D}$ be the canonical projection and set $\beta_{\widehat{\mathrm{b}D}}:=\pi_*(\beta_{\mathrm{b}D})$.

Then, μ has a 'disintegration' $(\mu_\xi)_{\xi\in\widehat{\mathrm{b}D}}$ relative to $\beta_{\widehat{\mathrm{b}D}}$, that is, μ_ξ is a Radon measure on $\mathrm{b}D$ concentrated on $\pi^{-1}(\xi)$ and

$$\mu = \int_{\widehat{\mathrm{b}D}} \mu_{\xi} \, \mathrm{d}\beta_{\widehat{\mathrm{b}D}}(\xi).$$

In addition,

$$(\mathcal{P}\mu)(z) = \int_{\mathrm{b}D} \frac{1 - |z|^2}{|z - \zeta|^2} \,\mathrm{d}\mu_{\xi}(\zeta)$$

for every $z \in \mathbb{D}_{\xi} = \mathbb{D}\pi^{-1}(\xi)$ and for almost every $\xi \in \widehat{\mathrm{bD}}$. Further, if μ is positive, then (μ_{ξ}) may be chosen to be vaguel continuous (and the above identity holds for every $\xi \in \widehat{\mathrm{bD}}$). Aleksandrov, Aleksandrov–Doubtsov, C.: Let μ be a pluriharmonic measure on $\mathrm{b}D$, and let $\widehat{\mathrm{b}D}$ be the quotient of $\mathrm{b}D$ by the action of \mathbb{T} ; let $\pi\colon \mathrm{b}D\to \widehat{\mathrm{b}D}$ be the canonical projection and set $\beta_{\widehat{\mathrm{b}D}}:=\pi_*(\beta_{\mathrm{b}D}).$

Then, μ has a 'disintegration' $(\mu_\xi)_{\xi\in\widehat{\mathrm{b}D}}$ relative to $\beta_{\widehat{\mathrm{b}D}}$, that is, μ_ξ is a Radon measure on $\mathrm{b}D$ concentrated on $\pi^{-1}(\xi)$ and

$$\mu = \int_{\widehat{\mathrm{b}D}} \mu_{\xi} \, \mathrm{d}\beta_{\widehat{\mathrm{b}D}}(\xi).$$

In addition,

$$(\mathcal{P}\mu)(z) = \int_{\mathrm{b}D} \frac{1 - |z|^2}{|z - \zeta|^2} \,\mathrm{d}\mu_{\xi}(\zeta)$$

for every $z \in \mathbb{D}_{\xi} = \mathbb{D}\pi^{-1}(\xi)$ and for almost every $\xi \in \widehat{\mathrm{b}D}$. Further, if μ is positive, then (μ_{ξ}) may be chosen to be vaguely continuous (and the above identity holds for every $\xi \in \widehat{\mathrm{b}D}$).

Sketch of the proof

Take a pluriharmonic measure μ on $\mathrm{b}D$ and set $f=\mathcal{P}\mu$. Then,

$$\begin{split} \int_{\widehat{\mathrm{b}D}} \sup_{\rho \in (0,1)} \|f\|_{L^{1}(\rho\pi^{-1}(\xi))} \, \mathrm{d}\beta_{\widehat{\mathrm{b}D}}(\xi) &= \sup_{\rho \in (0,1)} \int_{\widehat{\mathrm{b}D}} \|f\|_{L^{1}(\rho\pi^{-1}(\xi))} \, \mathrm{d}\beta_{\widehat{\mathrm{b}D}}(\xi) \\ &= \lim_{\rho \to 1^{-}} \|f\|_{L^{1}(\rho\mathrm{b}D)} \\ &= \|\mu\|_{\mathcal{M}^{1}(\mathrm{b}D)} \end{split}$$

since f is harmonic on the disc $\mathbb{D}\pi^{-1}(\xi)$ for every $\xi \in \widehat{\mathrm{bD}}$. Thus, the restriction of f to the disc $\mathbb{D}\pi^{-1}(\xi)$ belongs to the harmonic Hardy space H^1 for almost every ξ , so that μ_{ξ} exists and

$$(\mathcal{P}\mu)(z) = \int_{\mathrm{b}D} \frac{1 - |z|^2}{|z - \zeta|^2} \,\mathrm{d}\mu_{\xi}(\zeta).$$

Vague convergence then leads to the disintegration formula.

C.: If μ is a pluriharmonic measure on bD and $m = \dim bD$, then μ is absolutely continuous with respect to \mathcal{H}^{m-1} .

Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on $\mathrm{b}D$, then

$$(C\mu)(z) = \int_{\mathrm{b}D} \frac{1}{1 - \langle z|\zeta\rangle} \,\mathrm{d}\mu_{\xi}(\zeta)$$

for every $z\in\mathbb{D}_{\xi}$ and for almost every $\xi\in\mathrm{b}D$, where (μ_{ξ}) is a disintegration of μ relative to $eta_{\widehat{\mathrm{b}D}}$.

Poltoratski, Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on bD, then

$$\lim_{y \to +\infty} \pi y \chi_{\{\zeta \in bD : C\mu(\zeta) > y\}} \cdot \beta_{bD} = |\mu^s|$$

vaguely, where μ^s denotes the singular part of μ (with respect to $\beta_{\rm ND}$).

C.: If μ is a pluriharmonic measure on bD and $m = \dim bD$, then μ is absolutely continuous with respect to \mathcal{H}^{m-1} .

Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on $\mathrm{b}D$, then

$$(\mathcal{C}\mu)(z) = \int_{bD} \frac{1}{1 - \langle z|\zeta\rangle} d\mu_{\xi}(\zeta)$$

for every $z \in \mathbb{D}_{\xi}$ and for almost every $\xi \in \widehat{\mathrm{b}}\widehat{D}$, where (μ_{ξ}) is a disintegration of μ relative to $\beta_{\widehat{\mathrm{b}}\widehat{D}}$.

Poltoratski, Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on bD, then

$$\lim_{y \to +\infty} \pi y \chi_{\{\zeta \in bD : C\mu(\zeta) > y\}} \cdot \beta_{bD} = |\mu^s|$$

vaguely, where μ^s denotes the singular part of μ (with respect to $eta_{\mathrm{b}D}$).

C.: If μ is a pluriharmonic measure on bD and $m = \dim bD$, then μ is absolutely continuous with respect to \mathcal{H}^{m-1} .

Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on $\mathrm{b}D$, then

$$(\mathcal{C}\mu)(z) = \int_{\mathrm{b}D} \frac{1}{1 - \langle z|\zeta\rangle} \,\mathrm{d}\mu_{\xi}(\zeta)$$

for every $z \in \mathbb{D}_{\xi}$ and for almost every $\xi \in \widehat{\mathrm{b}D}$, where (μ_{ξ}) is a disintegration of μ relative to $\beta_{\widehat{\mathrm{b}D}}$.

Poltoratski, Aleksandrov, Aleksandrov–Doubtsov, C.: If μ is a pluriharmonic measure on $\mathrm{b}D$, then

$$\lim_{y \to +\infty} \pi y \chi_{\{\zeta \in \mathrm{b}D \colon \mathcal{C}\mu(\zeta) > y\}} \cdot \beta_{\mathrm{b}D} = |\mu^{s}|$$

vaguely, where μ^s denotes the singular part of μ (with respect to $\beta_{\rm bD}$).

Intermezzo: Unbounded Realizations

Every bounded symmetric domain is biholomorphic to a Siegel domain $\mathscr{D}=\{(\zeta,z)\colon \operatorname{Im} z-Q(\zeta)\in\Omega\}$ of type II, with Šilov boundary $\{(\zeta,z)\colon \operatorname{Im} z=Q(\zeta)\}$. For example:

- the unit ball B of \mathbb{C}^{n+1} is biholomorphic to the Siegel upper half-space $U=\{(\zeta,z)\in\mathbb{C}^n\times\mathbb{C}\colon \mathrm{Im}\,z>|\zeta|^2\}$ through the Cayley transform $(\zeta,z)\mapsto \left(\frac{2\zeta}{1-z},i\frac{1+z}{1-z}\right);$
- the polydisc \mathbb{D}^n is biholomorphic to \mathbb{C}^n_+ , where $\mathbb{C}_+ = \{z \in \mathbb{C} \colon \operatorname{Im} z > 0\}$, through the Cayley transform, $(z_j) \mapsto (i\frac{1+z_j}{1-z_i});$
- the unit ball of $M_n(\mathbb{C})$ is biholomorphic to $\{A+iB\in M_n(\mathbb{C})\colon A,B\in M_n(\mathbb{C}),A=A^*,B=B^*,B>0\}$ through the Cayley transform $A\mapsto i(I-A)^{-1}(I+A)$.

One may define a Hardy space on $\mathscr D$ and an associated Poisson–Szegő kernel $\mathscr P$, and define Poisson-summable measures on $b\mathscr D$ accordingly:

$$H^{2}(\mathcal{D}) = \bigg\{ f \in \operatorname{Hol}(\mathcal{D}) \colon \sup_{h \in \Omega} \int_{\mathrm{b}\mathcal{D}} |f(\zeta, z + ih)|^{2} \, \mathrm{d}(\zeta, z) < +\infty \bigg\},\,$$

with Cauchy–Szegő kernel $\operatorname{\mathscr{C}}$ and

$$\mathscr{P}((\zeta,z),(\zeta',z')) = \frac{|\mathscr{C}((\zeta,z),(\zeta',z'))|^2}{\mathscr{C}((\zeta,z)(\zeta,z))}.$$

For example, $\mathscr{P}(z,z')=\prod_{j} \frac{\operatorname{Im} z_{j}}{|z-z'|^{2}}$ when $\mathscr{D}=\mathbb{D}^{n}.$

Definition

A Poisson-summable measure μ on $b\mathscr{D}$ is pluriharmonic if $\mathscr{P}\mu$ is pluriharmonic.

Let $f: \mathscr{D} \to [0, +\infty)$ be a plurihamonic function. Then, the vague limit μ of the restrictions of $f(\,\cdot\,,\,\cdot\,+ih)$ to $b\mathscr{D}$, for $h\to 0$, exists, and is the largest Poisson-summable positive measure such that $\mathscr{P}\mu\leqslant f$.

- [C] if \mathscr{D} is the Siegel upper half-space, then $f = \mathscr{P}\mu$;
- [Luger-Nedic] if $\mathscr{D} = \mathbb{C}^n_+$, then $f(z) = \mathscr{P}\mu(z) + \sum_j a_j \mathrm{Im}\, z_j$ for some $a_1, \ldots, a_n \geqslant 0$;
- [C] if \mathscr{D} corresponds to the unit ball in $M_n(\mathbb{C})$, then μ need not be pluriharmonic.

Clark Measures

Let $\varphi \colon D \to \mathbb{D}$ be holomorphic. For every $\alpha \in \mathbb{T}$, there is a unique positive pluriharmonic measure μ_{α} on bD such that

$$\mathcal{P}\mu_{\alpha} = \operatorname{Re} \frac{\alpha + \varphi}{\alpha - \varphi} = \frac{1 - |\varphi|^2}{|\alpha - \varphi|^2}.$$

Denote by μ_{α}^{s} its singular part with respect to β_{bD} .

- $\|\mu_{\alpha}\|_{\mathcal{M}^{1}(bD)} = \frac{1-|\varphi(0)|^{2}}{|\alpha-\varphi(0)|^{2}};$
- $\mu_{\alpha} = \frac{1-|\varphi_1|^2}{|\alpha-\varphi_1|^2} \cdot \beta_{bD} + \mu_{\alpha}^s$, where φ_1 denotes the a.e. limit of $\varphi_{\rho} = \varphi(\rho \cdot), \ \rho \to 1^-$;
- μ_{α}^{s} is concentrated on $\varphi_{1}^{-1}(\alpha)$;
- μ_{α}^{s} and $\mu_{\alpha'}^{s}$ are singular for $\alpha \neq \alpha'$;

Clark Measures

Let $\varphi \colon D \to \mathbb{D}$ be holomorphic. For every $\alpha \in \mathbb{T}$, there is a unique positive pluriharmonic measure μ_{α} on bD such that

$$\mathcal{P}\mu_{\alpha} = \operatorname{Re} \frac{\alpha + \varphi}{\alpha - \varphi} = \frac{1 - |\varphi|^2}{|\alpha - \varphi|^2}.$$

Denote by μ_{α}^{s} its singular part with respect to β_{bD} .

- $\bullet \ \|\mu_{\alpha}\|_{\mathcal{M}^{1}(\mathrm{b}D)} = \frac{1 |\varphi(0)|^{2}}{|\alpha \varphi(0)|^{2}};$
- $\mu_{\alpha} = \frac{1-|\varphi_{1}|^{2}}{|\alpha-\varphi_{1}|^{2}} \cdot \beta_{\mathrm{b}D} + \mu_{\alpha}^{\mathrm{s}}$, where φ_{1} denotes the a.e. limit of $\varphi_{\rho} = \varphi(\rho \cdot)$, $\rho \to 1^{-}$;
- μ_{α}^{s} is concentrated on $\varphi_{1}^{-1}(\alpha)$;
- μ_{α}^{s} and $\mu_{\alpha'}^{s}$ are singular for $\alpha \neq \alpha'$;

• ('Aleksandrov's disintegration theorem')

$$\int_{\mathbb{T}} \mu_{\alpha} \, \mathrm{d}\beta_{\mathbb{T}}(\alpha) = \beta_{\mathrm{b}D};$$

- if φ is inner (i.e., $|\varphi_1(\zeta)| = 1$ for a.e. $\zeta \in \mathrm{b}D$), then (μ_α) is a disintegration of $\beta_{\mathrm{b}D}$ relative to $\beta_{\mathbb{T}}$;
- if φ is inner and $\varphi(0) = 0$, then $(\varphi_1)_*(\beta_{\mathrm{b}D}) = \beta_{\mathbb{T}}$;
- if $\varphi(0) = 0$, then

$$\int_{\mathrm{b}D} \overline{P} \, \mathrm{d}\mu_{\alpha} = \sum_{h=1}^{k} \overline{\alpha}^{h} \int_{\mathrm{b}D} \varphi^{h} \overline{P} \, \mathrm{d}\beta_{\mathrm{b}D}$$

for every homogeneous (holomorphic) polynomial P of degree $k \in \mathbb{N}$.

The mapping $C_{\alpha} : L^{2}(\mu_{\alpha}) \to H^{2}(D)$,

$$C_{\alpha}(f)(z) = (1 - \overline{\alpha}\varphi(z)) \int_{bD} f(\zeta)C_{\zeta}(z) d\mu_{\alpha}(\zeta),$$

is contractive. If $H^2(\mu_{\alpha})$ denotes the closure of the space of holomorphic polynomials in $L^2(\mu_{\alpha})$, then $\ker \mathcal{C}_{\alpha} = H^2(\mu_{\alpha})^{\perp}$.

When D = U, the unit ball in \mathbb{C}^n , then

- Doubtsov: if μ is a pluriharmonic measure on bD which is singular with respect to β_{bD} , then μ is 'totally singular', that is, μ is singular with respect to any probability measure ν on bD such that $\int_{bD} P \, \mathrm{d}\nu = P(z)$ for every holomorphic polynomial P (and some fixed $z \in D$);
- Aleksandrov–Doubtsov: if φ is inner, then μ_{α} is totally singular and $H^2(\mu_{\alpha}) = L^2(\mu_{\alpha})$.

The mapping $C_{\alpha} : L^{2}(\mu_{\alpha}) \to H^{2}(D)$,

$$C_{\alpha}(f)(z) = (1 - \overline{\alpha}\varphi(z)) \int_{bD} f(\zeta)C_{\zeta}(z) d\mu_{\alpha}(\zeta),$$

is contractive. If $H^2(\mu_{\alpha})$ denotes the closure of the space of holomorphic polynomials in $L^2(\mu_{\alpha})$, then $\ker \mathcal{C}_{\alpha} = H^2(\mu_{\alpha})^{\perp}$.

When D = U, the unit ball in \mathbb{C}^n , then:

- Doubtsov: if μ is a pluriharmonic measure on bD which is singular with respect to β_{bD} , then μ is 'totally singular', that is, μ is singular with respect to any probability measure ν on bD such that $\int_{bD} P \, \mathrm{d}\nu = P(z)$ for every holomorphic polynomial P (and some fixed $z \in D$);
- Aleksandrov–Doubtsov: if φ is inner, then μ_{α} is totally singular and $H^2(\mu_{\alpha}) = L^2(\mu_{\alpha})$.

[Bickel–Cima–Sola, Anderson–Bergqvist–Bickel–Cima–Sola, C.] Let $\varphi \colon D \to \mathbb{D}$ be a rational inner function. Then,

$$\int_{\mathrm{b}D} f \, \mathrm{d}\mu_{\alpha} = \int_{\mathrm{b}D \cap \varphi^{-1}(\alpha)} \frac{c}{|\nabla \varphi(z)|} f(z) \, \mathrm{d}\mathcal{H}^{m-1}(z),$$

where $m = \dim bD$.

In addition, if $\varphi = p/q$, with p and q coprime, then the closure of $bD \cap \varphi^{-1}(\alpha)$ is the real algebraic set $\{\zeta \in bD \colon (p - \alpha q)(\zeta) = 0\}$.

[Bickel–Cima–Sola, Anderson–Bergqvist–Bickel–Cima–Sola, C.] Let $\varphi\colon \mathbb{D}^n\to \mathbb{D}$ be a rational inner function. Then, $H^2(\mu_\alpha)\neq L^2(\mu_\alpha)$ if and only if the closure of $\mathrm{b} D\cap \varphi^{-1}(\alpha)$ contains a set of the form $\mathbb{T}\times V$, up to a permutation of the coordinates, where V is a real algebraic hypersurface in \mathbb{T}^{n-1} .

Example

If $\varphi \colon \mathbb{D}^2 \to \mathbb{D}$ and

$$\varphi(z,z')=\frac{2zz'-z-z'}{2-z-z'},$$

then φ is a rational inner function and $H^2(\mu_\alpha) = L^2(\mu_\alpha)$ if and only if $\alpha \neq -1$.

Proof (case n=2)

Assume that $\mathbb{T}^2 \cap \varphi^{-1}(\alpha)$ does not contain sets of the form $\mathbb{T} \times \{ \alpha' \}$ or $\{ \alpha' \} \times \mathbb{T}$, $\alpha' \in \mathbb{T}$. Setting $\varphi = p/q$ with p and q coprime, observe that

$$(p - \alpha q)(z, z') = q_1(z') + zp_1(z, z')$$

for some unique p_1,q_1 . Observe that, if $z'\in\mathbb{D}$ and $q_1(z')=0$, then $(p-\alpha q)(0,z')=0$, that is, $\varphi(0,z')=\alpha\notin\mathbb{D}$: absurd. If $\alpha'\in\mathbb{T}$ and $q_1(\alpha')=0$, then $\varphi(\,\cdot\,,\alpha')$ is a well-defined non-constant (by the assumption) rational inner function on \mathbb{D} , and takes the value α at 0: absurd. Thus,

$$\overline{z} = -\frac{p_1(z,z')}{q_1(z')}$$

for every $z \in \mathbb{T}^2 \cap \varphi^{-1}(\alpha)$. Since p_1/q_1 may be uniformly approximated with holomorphic polynomials on \mathbb{T}^2 , this proves that $\overline{z} \in H^2(\mu_\alpha)$. In a similar way on shows that $\overline{z'} \in H^2(\mu_\alpha)$, and then that all polynomials (holomorphic or not) belong to $H^2(\mu_\alpha)$. Hence, $H^2(\mu_\alpha) = L^2(\mu_\alpha)$.

Continuation of the Proof

Conversely, assume that $\{\alpha'\}\times\mathbb{T}$ is contained in the closure of $\mathbb{T}^2 \cap \varphi^{-1}(\alpha)$ for some $\alpha' \in \mathbb{T}$. Then, it is possible to prove that $|\nabla \varphi|$ is constant on $\{\alpha'\} \times \mathbb{T}$, so that $\mu_{\alpha} \geq c\chi_{\{\alpha'\} \times \mathbb{T}} \cdot \mathcal{H}^1$.

Assuming by contradiction that $H^2(\mu_{\alpha}) = L^2(\mu_{\alpha})$ and taking a sequence (p_i) of holomorphic polynomials on \mathbb{D}^2 which converge to $\overline{z'}$ in $L^2(\mu_\alpha)$, this proves that $p_i(\alpha', \cdot)$ is a sequence of holomorphic polynomials on \mathbb{D} which converge to $\overline{z'}$ in $L^2(\chi_{\mathbb{T}} \cdot \mathcal{H}^1)$: absurd.

Thank you for your attention!