Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd

Stochastické procesy a stacionarita

Semestrální práce č. 2

Filip Jašek

Předmět: KKY/STP (Stochastické Systémy a Procesy)

Přednášející: Doc. Ing. Straka Ondřej, Ph.D.

Cvičící: Ing. Kost Oliver Datum: 27. června 2022

Stochastické procesy a stacionarita

Zadání semestrální práce č. 2

Příklad č. 1

Uvažujte Gauss-Markovův diskrétní proces generovaný vztahem

$$X_{k+1} = e^{-bT}X_k + W_k, \ k = 0, 1, 2, \dots,$$

kde W_k je bílý šum, $p(W_k) = \mathcal{N}\{W_k; 0, Q(1-e^{-2bT})\}$, počáteční podmínka je $p(X_0) = \mathcal{N}\{X_0; 0, Q\}$, Q = 3, b = 0.5 a T = 1. Vygenerujte $M = 10^4$ realizací Gauss-Markova procesu pro N=100 časových okamžiků. Vypočítejte odhad autokovarinanční funkce $\widehat{\text{COV}[X_k, X_{k+\tau}]}$ pro $\tau \in \{0, 1, 2, 3, 4, 5\}$ a $k \in \{0, 1, 2, \dots, 94\}$. Vykreslete a porovnejte tyto odhady s teoreticky vypočítanou autokovarianční funkcí $\widehat{\text{COV}[X_k, X_{k+\tau}]}$. Určete, zda je proces stacionární v širším smyslu.

Příklad č. 2

Hodnotu Wienerova procesu v diskrétních časových okamžicích lze generovat pomocí vztahu

$$X_{k+1} = X_k + W_k, \ k = 0, 1, 2, \dots,$$

kde počáteční podmínka je $X_0=0$, interval mezi časovými okamžiky je roven jedné a W_k je bílý šum a $p(W_k)=\mathcal{N}\{W_k;0,1\}$. Vygenerujte $M=10^4$ realizací Wienerova procesu pro N=100 časových okamžiků. Vykreslete 8 realizací a všimněte si nestacionarity procesu. Vypočítejte teoretickou hodnotu autokovarianční funkce procesu $\mathrm{COV}[X_{k+\tau},X_k]$ a její odhad $\mathrm{COV}[\widehat{X_{k+\tau}},X_k]$ pro $\tau\in\{0,1,2,3,4,5\}$ a $k\in\{0,1,2,\ldots,94\}$ vypočítaný z realizací. Obojí vykreslete s porovnejte.

Příklad č. 3

Uvažujte následující Gauss-Markovův model systému

$$X_{k+1} = 0.95X_k + 0.5W_k$$
$$Z_k = 5X_k + V_k,$$

kde $p(W_k) = \mathcal{N}\{W_k; 0, 3\}$ a $p(V_k) = \mathcal{N}\{V_k; 0, 2\}$ jsou bílé šumy vzájemně nezávislé a nezávislé na počáteční podmínce $p(X_0) = \mathcal{N}\{X_0; 1, 5\}$. Vygenerujte $M = 10^4$ realizací modelu pro N=100 časových okamžiků. Vypočítejte teoretickou střední hodnotu procesů $\mathsf{E}[X_k]$, $\mathsf{E}[Z_k]$, jejich odhadů $\widehat{\mathsf{E}[X_k]}$, $\widehat{\mathsf{E}[Z_k]}$ pro $k \in \{0, 1, 2, \dots, 99\}$ a ustálené hodnoty $\mathsf{E}[X_k]$, $\mathsf{E}[Z_k]$ pro $k \to \infty$. Výsledky vykreslete s porovnejte. Vypočítejte teoretickou hodnotu variance procesů $\mathsf{VAR}[X_k]$, $\mathsf{VAR}[Z_k]$, jejich odhadů $\widehat{\mathsf{VAR}[X_k]}$, $\widehat{\mathsf{VAR}[Z_k]}$ pro $k \in \{0, 1, 2, \dots, 99\}$ a ustálené hodnoty $\mathsf{VAR}[X_k]$, $\mathsf{VAR}[Z_k]$ pro $k \to \infty$. Výsledky opět vykreslete s porovnejte.

2 Příklad č. 1

2.1 Teoretický výpočet kovarianční funkce

Pro zjištění obecné kovarianční funkce je potřeba určit několik prvních kovariancí. Pro následující výpočty bude užitečný vztah

$$VAR[X_k] = E[X_k^2] + E[X_k]^2,$$

přičemž známe ze zadání hodnotu $E[X_k]^2 = 0$, pak tedy známe

$$E[X_k^2] = VAR[X_k] = Q.$$

První kovariance:

$$COV[X_{k+1}, X_{k+1}] = VAR[X_{k+1}] = VAR[e^{-bT} \cdot X_k + W_k]$$
 (1)

$$COV[X_{k+1}, X_{k+1}] = e^{-2bT} VAR[X_k] + VAR[W_k]$$
 (2)

$$COV[X_{k+1}, X_{k+1}] = Q \cdot e^{-2bT} + Q \cdot (1 - e^{-2bT})$$
 (3)

$$COV[X_{k+1}, X_{k+1}] = Q \cdot (e^{-2bT} + 1 - e^{-2bT})$$
(4)

$$COV[X_{k+1}, X_{k+1}] = Q = 3$$
 (5)

Druhá kovariance:

$$COV[X_k, X_{k+1}] = E[X_k \cdot X_{k+1}] + E[X_k] \cdot E[X_{k+1}] = E[e^{-bT} \cdot X_k^2 + X_k \cdot W_k]$$
(6)

$$COV[X_k, X_{k+1}] = e^{-bT} E[X_k^2] + E[X_k \cdot W_k]$$
(7)

$$COV[X_k, X_{k+1}] = Q \cdot e^{-bT} \tag{8}$$

A analogicky další:

$$COV[X_k, X_{k+2}] = Q \cdot e^{-2bT} \tag{9}$$

$$COV[X_k, X_{k+3}] = Q \cdot e^{-3bT} \tag{10}$$

Výsledná teoreticky dopočtená kovarianční funkce

$$COV[X_k, X_{k+\tau}] = Q \cdot e^{-\tau bT} \tag{11}$$

2.2 Odhad kovarianční funkce

Z vygenerovaných realizací Markovského procesu na obrázku 1 lze odhadnout kovarianci pomocí vztahu

$$\overline{COV}[X_k, X_{k+\tau}] = \frac{1}{n-\tau} \sum_{n=1}^{n-\tau} (X_i(n) - \overline{E}[X_k]) \cdot (X_{i+\tau}(n) - \overline{E}[X_{k+\tau}]).$$
(12)

Obrázek 1: Prvních 10 z celkových $M = 10^4$ realizací zadaného Markovského procesu.

Z rovnice 12 vypočteme odhad kovarianční funkce pro jednotlivé hodnoty τ a veškeré realizace M. Získané výsledky srovnáme s teoreticky vypočtenými hodnotami a z grafu 2 je vidět, že se odhadnuté kovariance liší jen málo od teoretických výsledků. Odchylky jsou dány vygenerovaným počtem realizací a pro jejich další zmenšení by bylo nutné zvýšit počet realizací M.

Obrázek 2: Srovnání vypočtených kovariancí s odhadnutými na základě $M = 10^4$ realizací procesu.

2.3 Ověření stacionarity procesu

Aby byl proces stacionární v širším smyslu, musí splňovat následující kritéria:

Střední hodnota procesu E[X(t)] musí být konstantní pro $\forall t$. Ze zadání známe $E[X_0]=0$ a po dopočtení následujících hodnot

$$E[X_1] = e^{-bT} \cdot E[X_0] = 0$$

$$E[X_2] = e^{-bT} \cdot E[X_1] = 0$$

zjistíme, že střední hodnota pro zadaný proces je konstantní s následující hodnotou.

$$E[X_k] = 0; \forall k$$

Kovarianční funkce musí záviset pouze na rozdílu kroků τ , což bylo odvozeno a potvrzeno v předešlém úkolu.

Zadaný proces tedy splňuje podmínky stacionarity v širším smyslu.

3 Příklad č. 2

Nyní budeme pracovat s Wienerovým procesem, vygenerujeme jeho 8 realizací a zobrazíme do grafu 3

Obrázek 3: 8 vykreslených realizací zadaného Wienerova procesu.

3.1 Teoretický výpočet kovariance

Jelikož ze zadání neznáme variance a střední hodnoty procesu, které jsou pro výpočet kovariance potřeba, nejprve je vypočteme.

$$VAR[X_0] = E[X_0^2] + E[X_0]^2 = E[0^2] + E[0]^2 = 0$$
(13)

$$VAR[X_1] = VAR[X_0 + W_0] = VAR[X_0] + VAR[W_0] = 0 + 1 = 1$$
(14)

$$VAR[X_2] = VAR[X_1 + W_1] = VAR[X_1] + VAR[W_1] = 1 + 1 = 2$$
(15)

$$(16)$$

$$VAR[X_k] = k \tag{17}$$

$$E[X_0] = 0 (18)$$

$$E[X_1] = E[X_0 + W_0] = E[X_0] + E[W_0] = 0 + 0 = 0$$
(19)

$$E[X_2] = E[X_1] + E[W_1] = 0 + 0 = 0 (20)$$

$$E[X_k] = 0 (21)$$

Nyní dopočteme kovariance pro pár prvních hodnot τ a určíme kovarianční funkci.

$$COV[X_k, X_k] = VAR[X_k] = k \tag{23}$$

$$COV[X_k, X_{k+1}] = E[X_k \cdot X_{k+1}] + E[X_k] \cdot E[X_{k+1}] = E[X_k^2 + X_k \cdot W_k] + 0 = E[X_k^2] + 0 = k$$
(24)

(25)

$$COV[X_k, X_{k+\tau}] = E[X_k^2] = k$$
 (26)

Z kovarianční funkce lze poznat, že záleží pouze na kroku a nejedná se tedy o stacionární proces, což potvrzuje chování na obrázku 3 a informace v zadání.

3.2 Odhad kovarianční funkce

Použitím vztahu 12 získáme kovarianční funkci. Vykreslením odhadnuté funkce spolu s teoreticky vypočtenou získáme graf 4

Obrázek 4: 8 vykreslených realizací zadaného Wienerova procesu.

4 Příklad č. 3

Následující výpočty budou uvažovat se zadaným Gauss-Markovým systémem.

Obrázek 5: Prvních 10 z celkových $M = 10^4$ realizací zadaného Gauss-Markova systému.

4.1 Střední hodnoty

Střední hodnoty pro X_k

$$E[X_0] = 1 \tag{27}$$

$$E[X_1] = E[0.95 \cdot X_0 + 0.5 \cdot W_0] = 0.95 \cdot E[X_0] + 0.5 \cdot E[W_0] = 0.95 + 0 = 0.95$$
(28)

$$E[X_2] = E[0.95 \cdot X_1 + 0.5 \cdot W_1] = 0.95 \cdot E[X_1] + 0.5 \cdot E[W_1] = 0.95 \cdot 0.95 + 0 = 0.95^2$$
(29)

$$E[X_3] = E[0.95 \cdot X_2 + 0.5 \cdot W_2] = 0.95 \cdot E[X_2] + 0.5 \cdot E[W_2] = 0.95 \cdot 0.95^2 + 0 = 0.95^3$$
(30)

(31)

$$E[X_k] = 0.95^k \tag{32}$$

Ustálená hodnota $\lim_{k\to\infty} E[X_k] = \lim_{k\to\infty} 0.95^k = 0$

Střední hodnoty pro Z_k

$$E[Z_0] = E[5 \cdot X_0 + V_0] = 5 \cdot E[X_0] + E[V_0] = 5 \cdot 1 + 0 = 5$$
(33)

$$E[Z_1] = E[5 \cdot X_1 + V_1] = 5 \cdot E[X_1] + E[V_1] = 5 \cdot 0.95 + 0 = 5 \cdot 0.95$$
(34)

$$E[Z_2] = E[5 \cdot X_2 + V_2] = 5 \cdot E[X_2] + E[V_2] = 5 \cdot 0.95^2 + 0 = 5 \cdot 0.95^2$$
(35)

(36)

$$E[Z_k] = 5 \cdot 0.95^k \tag{37}$$

Ustálená hodnota $\lim_{k\to\infty} E[Z_k] = \lim_{k\to\infty} 5 \cdot 0.95^k = 0$

4.2 Variance

Variance pro X_k

$$VAR[X_0] = 5 \tag{38}$$

$$VAR[X_1] = VAR[0.95 \cdot X_0 + 0.5 \cdot W_0] = 0.95^2 \cdot VAR[X_0] + 0.5^2 \cdot VAR[W_0] = 0.95^2 \cdot 5 + 0.5^2 \cdot 3 = 6.25$$
(39)

$$VAR[X_2] = VAR[0.95 \cdot X_1 + 0.5 \cdot W_1] = 0.95^2 \cdot VAR[X_1] + 0.5^2 \cdot VAR[W_1] = 0.95^4 \cdot 5 + 0.5^2 \cdot 3 \cdot (0.95^2 + 1)$$

$$(40)$$

$$VAR[X_3] = VAR[0.95 \cdot X_2 + 0.5 \cdot W_2] = 0.95^2 \cdot VAR[X_2] + 0.5^2 \cdot VAR[W_2] = 0.95^6 \cdot 5 + 0.5^2 \cdot 3 \cdot (0.95^4 + 0.95^2 + 1)$$
 (41)

(42)

$$VAR[X_k] = 0.95^{2k} \cdot 5 + 0.5^2 \cdot 3 \cdot \sum_{n=0}^{k-1} 0.95^{2n}$$
(43)

Ustálená hodnota $\lim_{k\to\infty} VAR[X_k] = \lim_{k\to\infty} \left(0.95^{2k}\cdot 5\right) + 0.5^2\cdot 3\cdot \lim_{k\to\infty} \left(\sum_{n=0}^{k-1} 0.95^{2n}\right) = 0 + 0.5^2\cdot 3\cdot \lim_{k\to\infty} \left(\sum_{n=0}^{k-1} 0.95^{2n}\right)$ Pro výpočet druhé limity si však musíme uvědomit, že se jedná o limitu součtu geometrické řady. Zjistíme tedy kvocient

$$q = \frac{a_1}{a_0} = \frac{0.95^{2 \cdot 1}}{0.95^{2 \cdot 0}} = 0.95^2$$

a jelikož kvocient $q = 0.95^2 < 1$ geometrická řada konverguje a ustálenou hodnotu dopočteme jako

$$\lim_{k \to \infty} VAR[X_k] = 0 + 0.5^2 \cdot 3 \cdot \lim_{k \to \infty} \left(\sum_{n=0}^{k-1} 0.95^{2n} \right) = 0 + 0.5^2 \cdot 3 \cdot \frac{a_0}{1-q} = 0.5^2 \cdot 3 \cdot \frac{1}{1-0.95^2} \approx 7.6923$$

Variance pro Z_k

$$VAR[Z_0] = VAR[5 \cdot X_0 + V_0] = 5^2 \cdot VAR[X_0] + VAR[V_0] = 5^2 \cdot 5 + 2 = 127$$
(44)

(45)

$$VAR[Z_k] = 5^2 \cdot VAR[X_k] + VAR[V_k] \tag{46}$$

Ustálená hodnota $\lim_{k\to\infty} VAR[Z_k] = 5^2 \cdot \lim_{k\to\infty} VAR[X_k] + \lim_{k\to\infty} VAR[V_k] = \approx 5^2 \cdot 7.6923 + 2 \approx 194.3075$

4.3 Porovnání s odhadnutými parametry

Na následujících grafech můžeme pozorovat mírné odchylky odhadnutých parametrů od teoreticky vypočtených.

Obrázek 6: Porovnání průběhů středních hodnot.

Obrázek 7: Porovnání průběhů variancí.

U vykreslených grafů 6 a 7 si lze všimnout, že se odhadnuté parametry lehce odlišují od teoreticky vypočítaných hodnot. To je však způsobeno počtem realizací a pro eliminaci nepřesností by muselo být M realizací velmi mnoho (limitně až ∞).

5 Závěr

Vzorce byly čerpány z přednášek a výpočty byly provedeny za pomoci softwaru Matlab. Samotné vypracování práce mi pomohlo lépe pochopit Stochastické procesy, jejich fungování a díky vizualizaci lépe pochopit pojem stacionarita.