Seminář 6: Adjunkce

Unit/counit adjunkce

Kategorie \mathcal{C}, \mathcal{D} , Funktory $L: \mathcal{D} \to \mathcal{C}, R: \mathcal{C} \to \mathcal{D}$

- $\bullet \ L$ je levý adjunktR
- \bullet R je pravý adjunkt L

Značení: $L\dashv R$

Pokud existují přirozené transformace:

- $\eta: I_{\mathcal{D}} \Rightarrow R \circ L(\text{unit})$
- $\epsilon: L \circ R \Rightarrow I_{\mathcal{C}}(\text{counit}).$

Pro tyto transformace platí následující rovnosti:

- $L = L \circ I_{\mathcal{D}} \to L \circ R \circ L \to I_{\mathcal{C}} \circ L = L$
- $R = I_{\mathcal{D}} \circ R \to R \circ L \circ R \to R \circ I_{\mathcal{C}} = R$

Hom-Set adjunkce

Kategorie C, \mathcal{D} , Funktory $L: \mathcal{D} \to C, R: C \to \mathcal{D}$ $L \dashv R \iff Hom_{\mathcal{C}}(Ld, c) \cong Hom_{\mathcal{D}}(d, Rc)$ Φ je přirozený isomorfismus mezi HomSety

Adjunkce unvierzální šipkou (Universal arrow adjunction)

Kategorie $\mathcal{C}, \mathcal{D},$ Funktory $L: \mathcal{D} \to \mathcal{C}, R: \mathcal{C} \to \mathcal{D}$

 $L\dashv R\iff$ existuje přirozená transformace $\eta:I_{\mathcal{D}}\Rightarrow R\circ L$ taková, že $\forall c\in O_{\mathcal{C}}, \forall d\in O_{\mathcal{D}}$ a $\forall f:d\rightarrow Rc\;\exists!g:Ld\rightarrow c$, že následující diagram komutuje:

$$d \xrightarrow{\eta_d} RLd$$

$$\downarrow_{Rg}$$

$$Rc$$

1

Ekvivalence definic

 $\begin{aligned} &\operatorname{HomSet} \to \operatorname{Unit/Counit:} \\ &\eta_d: I_{\mathcal{D}} \Rightarrow R \circ Ld = \Phi_{d,Ld}(I_{\mathcal{D}}(Ld)) \\ &\epsilon_c: L \circ R \Rightarrow I_{\mathcal{C}} = \Phi_{Rc,c}^{-1}(I_{\mathcal{C}}(Rc)) \end{aligned}$ $&\operatorname{Universal\ arrow} \to \operatorname{HomSet:} \\ &\Phi_{d,c}: Hom_{\mathcal{C}}(Ld,c) \to Hom_{\mathcal{D}}(d,Rc) = (\alpha:Ld \to c) \mapsto R\alpha \circ \eta \end{aligned}$

 $Unit/Counit \rightarrow Universal arrow:$

 $R(\Delta) \circ \eta_c = f$ $\Delta = \epsilon_c \circ Lf = g$

Unikátnost adjunkcí (až na přirozený isomorfismus)

Nechť $L, L': D \to c$ a $R: C \to D$

 $L\dashv R, L'\dashv R$ s přirozenými bijekcemi $\Phi_{d,c}$ a $\Phi'_{d,c}$

Pak pro libovolné $d \in O_{\mathcal{D}}$ platí, že:

 $Hom_{\mathcal{C}}(Ld, -) \cong Hom_{\mathcal{D}}(c, R-) \cong Hom_{\mathcal{C}}(L'd, -)$

Z toho jde pomocí Yonneda embedding ukázat, že F a F^\prime jsou přirozeně isomorfní.

Příklady

Exponenciál CCC popsaný adjunkcí:

 $L = z \rightarrow z \times a$ $R = b \rightarrow a \Rightarrow b$

Unit: $\eta = z \rightarrow a \Rightarrow z \times a$

Counit: $\epsilon = (a \Rightarrow b) \times a) \rightarrow b = eval$

Free/Forgetful adjunkce

Kategorie **Mon** - objekty jsou monoidy, morfismy jsou homomorfismy mezi nimi. Mějme $X \in O_{\mathbf{Set}}$ jako abecedu a F(X) je monoid takový, že $F(X) = (X^*, ++, ())$. X^* je množina slov složených z prvků X - například: w = (x1, x2, x3), u = (x1), z = (). ++ je operace zřetězení a () je prázdné slovo.

Pak $F: \mathbf{Set} \to \mathbf{Mon}$ je takový funktor, který pro každou množinu vybere monoid jí generovaný. Mějme funktor $U: \mathbf{Mon} \to \mathbf{Set}$, který monoid namapuje na jeho množinu. X je tedy generátor monoidu F(X) a U(F(X)) namapuje X na množinu generovanou X a operací ++.

Nyní můžeme definovat přirozenou transformaci $\eta: Id_{\mathbf{Set}} \Rightarrow U \circ F$ takovou, že $\eta_X(x) = (x)$. Nyní chceme ukázat, že pro libovolné f existuje právě jedno g takové, že následující daigram komutuje:

Tedy chceme najít morfismus g takový, že je homomorfismus mezi monoidy a zároveň splňuje rovnost: $f(x) = U(g)(\eta_X x) = U(g)((x))$. Takový morfismus g je:

$$g(()) = id_M$$

$$g((x)) = f(x)$$

$$g((x1, x2, ..., x_n)) = f(x1)f(x2)...f(x_n)$$