Each node of a BST can be filled with a height value, which is the height of the subtree rooted at that node. The height of a node is the maximum of the height of its children, plus one. The height of an empty tree is -1. Here's an example, with the value in parentheses indicating the height of the corresponding node:

 P(3)

```
2.  / \
3.  M(1) V(2)
4.  / \
5.  A(0) R(1) X(0)
6.  \
7.  S(0)
8.
```

Complete the following recursive method to fill each node of a BST with its height value. public class BSTNode<T extends

```
9. com Assignment Project Exam Help
```

```
10. BSTNode<T> left, right;

11. ihttp://powcoder.com

13. }
```

14. Add WeChat powcoder
15. // Recursively fills height values at all nodes

15. // Recursively fills height values at all node
 of a binary tree
16. public static <T extends Comparable>
17. void fillHeights(BSTNode<T> root) {
18. // COMPLETE THIS METHOD

19. ...

20. }
21.

SOLUTION

```
// Recursively fills height values at all nodes
of a binary tree

22. public static <T extends Comparable>
23. void fillHeights(BSTNode root) {
   if (root == null) { return; }
   fillHeights(root.left);
```

```
26.
         fillHeights(root.right);
         root.height = -1;
27.
28.
         if (root.left != null) {
            root.height = root.left.height;
29.
30.
31.
         if (root.right != null) {
32.
            root.height = Math.max(root.height,
   root.right.height);
33.
34.
         root.height++;
35.
      }
36.
```

37. In the AVL tree shown below, the leaf "nodes" are actually subtrees whose lipitals are marked in partitlesses:

- 1. Mark the heights of the subtrees at every node in the tree. What is the height of the tree?
- 2. Mark the balance factor of each node.

46. SOLUTION

Heights/Balance factors A:h+1/right, C:h/equal, E:h+2/left, G:h+1/equal, B:h+2/left, F:h+3/left, D:h+4/right Height of the tree is h+4

48. Given the following AVL tree:

- 1. Determine the height of the subtree rooted at each node in the tree.
- Assignment Project Exam Help.

 2. Determine the balance factor of each hode in the lee.
- 3. Show the resulting AVL tree after each insertion in the following requence: (In all AVL trees you show, mark the balance factors next to the nodes.)
 - WeChat powcoder
 - Insert A

59. SOLUTION

1 and 2:

	Node	Height	Balance factor
60.			
61.	В	0	_
62.	E	0	_
63.	С	1	_
64.	F	2	/
65.	H	0	_
66.	0	0	_
67.	S	0	_
68.	Q	1	_
69.	L	0	_
70.	N	2	\

```
71.
72.
                                 1
73.
74.
75.
   3:
     1. After Inserting Z:
          ---J---
     2.
      3.
      4.
     5.
     6.
     7.
     <sup>8</sup>Assignment Project Exam Help \s
     10.
         https://powcoder.com
Only the balance factors of Z and X are changed; others
     11.
         remain the same
     Add WeChat powcoder

12. After inserting P (in the tree above):
         ---J---
      13.
      14.
      15.
                                                             N \
      16.
      17.
      18.
      19.
     20.
     21.
                                                               - P
     22.
     23.
               Insert P as the right child of O
               Set bf of P to '-'
```

Back up to Q and set bf to '/' Back up to N and stop. N is unbalanced, so rebalance at N. 24. Rebalancing at N is Case 2. First, rotate O-Q ---J---Assignment Project Exam. Help. **Z** https://powcoder.com • Add WeChat powcoder P S Then, rotate O-N ---J---

C

/ \

Back up to O and set bf '\'

X -

76.

- 77. Starting with an empty AVL tree, the following sequence of keys are inserted one at a time: 1, 2, 5, 3, 4
- Assume the the allows the insertion of auplicate keps. What is the total units of work performed to get to the final AVL tree, counting only key-to-key comparisons and pointer assignments? Assume each top parison is a William Read Bach pointer assignment is a unit of work. (Do not count pointer assignments used in traversing the tree Count only assignments used in changing the tree structure) We Chat powcoder

SOLUTION

Since the tree allows duplicate keys, only one comparison is needed at every node to turn right (>) or left (not >, i.e. <=) when descending to insert.

- 1. To insert 1: 0 units 1
- 2.
- 3. To insert 2: 1 comparison + 1 pointer assignment = 2 units
- 1 4. \
- 5. 2
- 6.
- 7. To insert 5: 2 comparisons + 1 pointer assignment: 1
- 8.
- 9. 2

```
10.
11.
12.
   Then rotation at 2-1, with 3 pointer assignments:
   root=2, 2.left=1, 1.right=null
13.
   Total: 2+1+3 = 6 units, resulting in this tree:
                                                    2
14.
       1
15.
16.
17. To insert 3: 2 comparisons + 1 pointer assignment = 3 units:
   2
18.
19.
<sup>2</sup>Assignment Project Exam Help
21.
22.
https://powcoder.com
23. To insert 4: 3 comparisons + 1 pointer assignment:
                                                          2
24.
       <sup>1</sup>Add WeChat powcoder
25.
26.
27.
          3
28.
29.
30.
   Then a rotation at 4-3, with 3 pointer assignments:
31.
                 Pointer assignments: 5.left=4,
32.
   3.right=null, 4.left=3
33.
34.
35.
36.
       3
37.
   And a rotation at 4-5, with 3 pointer assignments:
                                                         2
38.
```

79. Grand total: 21 units of work

80. * After an AVL tree insertion, when climbing back up toward the root, a node x is found to be unbalanced. Further, it is determined that x's balance factor is the same as that of the root, r of its taller subtree (Case 1). Complete the following rotateCase1 method to perform the required rotation to repeal ance the tree its red x. You may assume that x is not the root of the tree. public class AVLTreeNode<T extends Comparable<T>> { phttps://powcoder.com public AVLTreeNode<T> left, right; 81. 82. public char balanceFactor; 83. Add WeChat powcoder public AVLTreeNode<T> parent; 84. 85. public int height; 86. } 87. public static <T extends Comparable<T>> 88. 89. void rotateCase1(AVLTreeNode<T> x) { 90. // COMPLETE THIS METHOD 91. } 92. SOLUTION public static <T extends Comparable<T>> void rotateCase1(AVLTreeNode<T> x) { 93. // r is root of taller subtree of x 94. r = x.balanceFactor == '\' ? x.right : x.left; if (x.parent.left == x) { x.parent.left = r; } else { x.parent.right = r; }

```
97.
        r.parent = x.parent;
        if (x.balanceFactor == '\') { // rotate
98.
  counter-clockwise
99.
           AVLTreeNode temp = r.left;
100.
            r.left = x;
101.
            x.parent = r;
102.
            x.right = temp;
103.
            x.right.parent = x;
         } else { // rotate clockwise
104.
            AVLTreeNode temp = r.right;
105.
106.
            r.right = x;
107.
            x.parent = r;
            x.left = temp;
108.
109.
            x.left.parent = x;
110.
                       roject Exam Help
111.
112.
         x.balanceFactor =
113.
         r.balanceFactor = '-';
            ttps://poweoder.comr's is
114.
  unchanged
         Add WeChat powcoder
115.
116.
117.
118.
```