

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (4 year) Degree in Applied Sciences/ B.Sc. (Joint Major) Degree in Physics and Chemistry

Fourth Year - Semester I Examination - January/February 2021

PHY 4312 - STATISTICAL THERMODYNAMICS

Time: Three (3) hours

Answer All Questions

Instructions:

- This is a closed book examination. The examination paper contains 03 pages.
- You are given 3 hours to complete the examination. There are 04 questions to be answered. You may allocate your time wisely. Read the questions carefully before answering them.
- A non-programmable calculator is permitted.
- Plagiarism (copying) is considered as a punishable offence.
- 1. A system of two energy levels E_0 and E_1 is populated with N particles at temperature T. The particles populate the energy levels according to Maxwell-Boltzmann (classical) statistics.

a) Derive an expression for the average energy per particle. (5 marks)

b) Calculate the average energy per particle when $T \to 0$ and $T \to \infty$. (5 marks)

c) Derive an expression for the specific heat of the system of N particles. (5 marks)

d) Calculate the specific heat when $T \to 0$ and $T \to \infty$. (5 marks)

Continued...

- 2. A system of N distinguishable non-interacting particles, each fixed in position and carrying a magnetic moment μ is immersed in a magnetic field H. Hence, each particle exists in either E=0 or $E=2\mu H$ energy states.
 - a) The entropy, S of the system is defined as $S = k \ln \Omega(E)$, where k is the Boltzmann constant and $\Omega(E)$ is a function of the total energy E of the system. Provide the definition of $\Omega(E)$. (3 marks)
 - b) Write a formula for S(n), where n is the number of distinguishable particles in the upper state. Sketch S(n). (4 marks)
 - c) Derive Stirling's approximation for large n: $\ln n! = n \ln n n$ by approximating $\ln n!$ (5 marks)
 - d) Using the results in parts (b) and (c), find the value of n for which S(n) is maximum. (5 marks)
 - e) Treating E as continuous, show that this system can have negative absolute temperature. (5 marks)
 - f) Although negative temperature is possible for this system why is it not possible for a gas in a box? (3 marks)
- 3. Suppose the energy of a particle is defined by the expression $E(z) = az^2$ where position or momentum, z can assume all values from $-\infty$ to $+\infty$. A system of such particles follows classical (Boltzmann) statistics.
 - a) Show that the average energy per particle is $\bar{E} = kT/2$. (6 marks)
 - b) State the principle of equipartition of energy, and explain its relation to the above calculation. (4 marks)
- 4. A gas of N spinless Bose particles of mass m is enclosed in a volume V at a temperature T.
 - a) Find an expression for the density of single-particle states $D(\varepsilon)$ as a function of the single-particle energy ε and sketch the result. (5 marks)

b) What is the mean occupation number of a single particle state \bar{n}_{ε} as a function of ε , T, and the chemical potential $\mu(T)$.

Draw this function in the sketch drawn in part (a) for a moderately high temperature (above the Bose-Einstein transition). Show $\mu = \varepsilon$ on the energy axis.

(4 marks)

c) Derive an expression for N/V that implicitly determines $\mu(T)$. Using the sketch drawn in part (a), determine the movement of direction of $\mu(T)$ when T decreases.

(6 marks)

d) Derive an expression for the Bose-Einstein critical temperature, T_c , below which one must have a macroscopic occupation of certain single particle states.

(Hint: $A = \int_0^\infty \frac{x^{1/2} dx}{e^{x-1}} = 1.306\sqrt{\pi}$) (6 marks)

- e) What is $\mu(T)$ for $T < T_c$?

 Describe $\bar{n}(\varepsilon, T)$ for $T < T_c$.

 (5 marks)
- f) What is the total energy, U(T, V) of the gas for $T < T_c$. (4 marks)