Especificación de sistemas concurrentes con TLA⁺

Temporal Logic of Actions

- Lenguaje no tipado
- Fuertemente orientado a concurrencia
- Teoría de conjuntos
- Lógica de temporal
- Máquinas de estados
 - El estado se define por medio de variables
 - Se definen operaciones (acciones) que modifican ese estado y por lo tanto definen la relación de transición.

Concurrencia, TL y TLA

- La lógica temporal, en principio, permite describir un sistema concurrente con una única fórmula (A. Pneuli, 1977).
- Según Lamport, en la práctica, no resulta muy conveniente; por este motivo él introduce TLA.
- La mayor parte de TLA no son fórmulas temporales, las cuales sólo aparecen en el momento necesario.

TLA y TLA⁺

- TLA por sí sola es matemática y lógica temporal, es el fundamento teórico del lenguaje.
- TLA es algo así como Z sin los esquemas: lógica.
- TLA⁺ provee el *azúcar sintáctico* necesario para escribir especificaciones largas.
 - Modularización
 - Parametrización
 - Instanciación

¿Qué es un estado?

- Sea
 - Val, la colección de todos los valores posibles (de cualquier tipo), excepto TRUE y FALSE.
 - *Var*, el conjunto de nombres de variables.
- Un estado es una función de Var en Val.
- Entonces si s es un estado y x es una variable (cualquiera, es decir se haya usado o no para definir s), s(x) es el valor de x en s.
- En TLA, un estado puede considerarse un estado del Universo.

Designaciones para un timer

- El timer debe detenerse o emitir una señal *limit* unidades de tiempo luego de haber sido iniciado ≈ Set(limit)
- Se enciende el timer ≈ Start
- El timer alcanza el límite de tiempo prefijado ≈ *Timeout*
- El tiempo real avanza una unidad de tiempo $\approx Tick$
- El timer se detiene $\approx Stop$

Modelando el tiempo real

El timer

```
MODULE Timer
EXTENDS Naturals, DK_RealTime
VARIABLES running, realtime, limit
sv \triangleq \langle realtime, running, limit \rangle
TypeInv \triangleq realtime, limit \in Nat \land running \in \{\overline{yes}, \overline{no}\}
 InitTimer \triangleq \land realtime = 0
                    \land running = \overline{no}
Set(l) \triangleq \land running = \overline{no}
               \wedge l > 0
               \wedge limit' = l
               \land UNCHANGED \langle now, realtime, running \rangle
```

El timer (2)

```
palabras las operaciones no
\land running = \overline{no}
                                                               consumen tiempo.
             \wedge limit > 0
             \land realtime '=now
             \land running '= \overline{\text{yes}}
             \land UNCHANGED\langle now, limit\rangle
Stop \triangleq \land running = \overline{yes}
            \land running' = \overline{no}
            \land UNCHANGED \langle realtime, limit, now \rangle
Timeout \triangleq \land running = \overline{yes}
                  \land now-real time \ge limit
                  \wedge running '=\overline{no}
                  \land UNCHANGED \langle realtime, limit, now\rangle
```

now no va a cambiar mientras se

"ejecute" una operación; en otras

El timer (3)

```
TimerNext \triangleq Start \lor Stop \lor Timeout \lor (\exists l \in \mathbb{N} \bullet Set(l))
TimerSpec \triangleq InitTimer \land \Box [TimerNext]_{sv} \land WF_{sv,now}(Timeout)
THEOREM Spec \Rightarrow \Box TypeInv
```

Módulos

- La unidad de especificación de TLA⁺ son los módulos; llevan un nombre para futuras referencias.
- Un módulo puede incluir:
 - variables: VARIABLE, VARIABLES
 - constantes: CONSTANT, CONSTANTS Un timer a

límite constante

- hipótesis sobre las constantes: ASSUME
- definiciones: ≘
- teoremas: THEOREM
- otros módulos: EXTENDS, INSTANCE

EXTENDS e INSTANCE

- EXTENDS permite utilizar todas las definiciones efectuadas en los módulos que se extienden.
 - Excepto BOOLEAN, todos los demás "tipos" deben ser incluidos usando esta cláusula.
- $T1 \triangleq \text{INSTANCE Timer WITH realtime} \leftarrow t1$, $limit \leftarrow Tp$, $running \leftarrow r1$
 - Define una instancia de *Timer* donde *time*, *Limit* y *running* son renombradas; *t1*, *Tp* y *r1* deben estar definidas.
 - De esta forma, *T1!Timeout* es

```
rl = y\overline{e}s \wedge now - tl \geq Tp \wedge rl' = n\overline{o} \wedge UNCHANGED \langle tl, Tp, now \rangle
```

VARIABLE

- Esta cláusula se utiliza para definir las variables de estado que interesan al módulo.
- Las variables no tienen tipo. Esto significa que si definimos la variable n, luego podemos escribir cosas como n = Tail(s) o n = 5.
- Sin embargo, es común que se incluya un predicado sobre los valores posibles que pueden tomar las variables y luego se "obligue" al especificador a probar que ese predicado es un invariante.

Definiciones

- Las definiciones permiten estructurar la lógica que se utiliza dentro de un módulo.
- El nombre de una definición se puede utilizar en otras definiciones; y como vimos, las definiciones de un módulo pueden accederse desde otros.
- Las definiciones pueden ser paramétricas:

```
Set(l) \triangleq \land running = \overline{no}
\land l > 0
\land limit' = l
\land UNCHANGED \langle now, realtime, running \rangle
```

Acciones

- Las acciones son las operaciones del sistema.
- Formalmente, una acción es un predicado que depende de dos estados; por tanto, contiene variables primadas y no-primadas.
- Si A es una acción y s y t son dos estados tales que s [A] t entonces el par (s,t) es un paso-A.

$$-s [A] t \triangleq A(\forall v: s(v) / v, t(v) / v')$$

• Si $\langle s_0, s_1, ... \rangle$ es una ejecución, se define el valor de verdad de la acción A como:

$$-\langle s_o, s_1, \ldots \rangle \llbracket A \rrbracket \triangleq s_o \llbracket A \rrbracket s_1$$

Acciones (2)

- Las acciones son atómicas. Es decir, no existen estados intermedios entre el estado de partida y el de llegada de una acción.
- Sean A y B acciones que se inician en s y finalizan en t y v, respectivamente. Entonces, el sistema pasa de s a t o de s a v, pero no ambos ni a ningún otro.
- Esto significa que si se espera que las ejecuciones del sistema verifiquen cierta propiedad, habrá que considerar ambas.

Ejemplo

MODULE S

EXTENDS Naturals

VARIABLE x

$$Init = x = 1$$

$$A \triangleq \wedge x > 0$$

$$\wedge x' = x + 2$$

$$B \triangleq \wedge x > 0$$

$$\wedge x' = x - 1$$

$$Spec \triangleq Init \wedge \square [A \vee B]_{r}$$

S admite las dos ejecuciones

$$[x = 1] \cdot \cdot \cdot \stackrel{A}{\cdot} \cdot \triangleright 1 > 0 \cdot \cdot \stackrel{B}{\cdot} \triangleright 1 > 0 \cdot \cdot \stackrel{B}{\cdot} \triangleright 0 = 1 - 1 \cdot \cdot \stackrel{A}{\cdot} \triangleright 2 = 0 + 2$$
No es un paso A ni B

No es una ejecución

[x = 2]No es una ejecución admitida por S

Interleaving model of concurrency

- La semántica de TLA está orientada a abordar el problema de la concurrencia por medio del IMC.
- Dado un estado *s* y *n* acciones que pueden iniciarse en *s*, se deben considerar las *n* ejecuciones que se originan partiendo de *s*.
- Si se espera que una especificación verifique cierta propiedad, deben tenerse en cuenta todas las ejecuciones producto de intercalar de todas las formas posibles la ejecución de sus acciones.

La forma de una especificación

- En TLA las especificaciones tiene una forma sintáctica restringida: $Init \land \Box [Next]_{vars} \land Fairness_{vars}$ donde
 - Next es por lo general la disyunción de las acciones permitidas en el sistema;
 - vars son todas las variables del sistema;
 - Fairness es una conjunción numerable de fórmulas de WF y/o SF.

La forma de... (2)

- Esta sintaxis obedece a seis criterios:
 - Sirve para la mayoría de los sistemas
 - Dice que el primer estado de cualquier ejecución debe verificar *Init*, y cualquier par de estados de una ejecución deben estar relacionados por una de las acciones definidas
 - Las acciones controladas por la máquina se ejecutarán equitativamente
 - Siempre se obtienen máquinas cerradas
 - La fórmula resultante es invariante con respecto a los pasos intrascendentes
 - Respeta el teorema de Alpern-Schneider

$$\langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Init} \wedge \Box [\operatorname{Next}]_{\operatorname{vars}} \wedge \operatorname{Fairness}_{\operatorname{v}} \rrbracket$$

$$\equiv \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Init} \wedge \Box (\operatorname{Next} \vee \operatorname{vars}' = \operatorname{vars}) \wedge \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$\equiv \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Init} \wedge \Box (A_{1} \vee A_{2} \vee \operatorname{vars}' = \operatorname{vars}) \wedge \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$\equiv \wedge \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Init} \rrbracket$$

$$\wedge \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$\equiv \wedge s_{0} \llbracket \operatorname{Init} \rrbracket$$

$$\wedge \forall n : \langle s_{n}, \ldots \rangle \llbracket \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$\equiv \wedge \operatorname{Init} (\forall v : s_{0}(v) / v)$$

$$\wedge \forall n : \forall s_{n} \llbracket A_{1} \rrbracket s_{n+1}$$

$$\vee s_{n} \llbracket \operatorname{vars}' = \operatorname{vars} \rrbracket s_{n+1}$$

$$\wedge \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$= \wedge \operatorname{Init} (\forall v : s_{0}(v) / v)$$

$$\wedge \forall n : \forall s_{n} \llbracket \operatorname{A_{1}} \rrbracket s_{n+1}$$

$$\vee s_{n} \llbracket \operatorname{vars}' = \operatorname{vars} \rrbracket s_{n+1}$$

$$\wedge \langle s_{0}, s_{1}, \ldots \rangle \llbracket \operatorname{Fairness}_{\operatorname{vars}} \rrbracket$$

$$\begin{split} & = \\ & \wedge \operatorname{Init} \left(\forall \, v : s_0(v) / v \right) \\ & \wedge \forall \, n : \quad \forall \, A_1(\forall \, v : s_n(v) / v \,, s_{n+1}(v) / v \,') \\ & \quad \forall \, A_2(\forall \, v : s_n(v) / v \,, s_{n+1}(v) / v \,') \\ & \quad \forall \, s_n \llbracket \, vars \,' = vars \, \rrbracket \, s_{n+1} \\ & \wedge \langle \, s_0, \, s_1, \, \ldots \rangle \llbracket \, Fairness_{vars} \, \rrbracket \end{split}$$

Fairness vars

• Debe ser una conjunción numerable de fórmulas de la forma:

$$- \text{ WF}_{vars}(A) \triangleq \square(\square \text{ENABLED } \langle A \rangle_{vars} \Rightarrow \diamond \langle A \rangle_{vars})$$

$$- SF_{vars}(A) \triangleq \square \diamond ENABLED \langle A \rangle_{vars} \Rightarrow \square \diamond \langle A \rangle_{vars}$$

donde

- A es una subacción de Next, es decir \Rightarrow Next
- $\Diamond \langle A \rangle_{vars}$ es igual a $\neg \Box [\neg A]_{vars}$

$$[\neg A]_{vars} \equiv \neg A \lor vars' = vars \equiv \neg (A \land \neg (vars' = vars)) \equiv \neg (A \land vars' \neq vars)$$

$$\Rightarrow \diamond \langle A \rangle_{vars} \equiv \diamond (A \land vars' \neq vars)$$

$$\langle s_{0},...\rangle \llbracket \mathit{TimerSpec} \rrbracket \\ \equiv \langle s_{0},...\rangle \llbracket \mathit{InitTimer} \land \Box \lceil \mathit{TimerNext} \rceil_{sv} \land \mathit{WF}_{sv,now}(\mathit{Timeout}) \rrbracket \\ \equiv \wedge s_{0}(\mathit{realtime}) \in \mathit{Nat} \land s_{0}(\mathit{running}) = \overline{no} \\ \land \forall n: \lor \mathit{Start} (\forall v: s_{n}(v) / v, s_{n+1}(v) / v') \\ \lor \exists l \in \mathbb{N} \bullet \mathit{Set} (l) (\forall v: s_{n}(v) / v, s_{n+1}(v) / v') \\ \lor \mathit{Stop} (\forall v: s_{n}(v) / v, s_{n+1}(v) / v') \\ \lor \mathit{Timeout} (\forall v: s_{n}(v) / v, s_{n+1}(v) / v') \\ \lor s_{n+1}(sv) = s_{n}(sv) \\ \land \forall n: (\forall m: \land m \geqslant n \\ \land s_{m}(\mathit{running}) = \overline{yes} \\ \land s_{m}(\mathit{now} - \mathit{realtime}) \geq s_{m}(\mathit{limit})) \\ \Rightarrow (\exists k: \land k \geqslant n \\ \land s_{k}(\mathit{running}) = \overline{yes} \\ \land s_{k}(\mathit{now} - \mathit{realtime}) \geq s_{m}(\mathit{limit}) \\ \land s_{k+1}(\mathit{running}) = \overline{no} \\ \land s_{k}(\langle \mathit{realtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{realtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{realtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{realtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{realtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k+1}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) = s_{k}(\langle \mathit{vealtime}, \mathit{limit}, \mathit{now} \rangle) \\ \land s_{k}(\langle \mathit{vealtime}, \mathit{limi$$

Regla de conjunción para WF

- Si A_1 , ..., A_n son acciones tales que, para $i \neq j$, siempre que la acción A_i está habilitada, A_j no puede habilitarse hasta que se da un paso- A_i , entonces $\mathrm{WF}_{\mathrm{v}}(A_1) \wedge ... \wedge \mathrm{WF}_{\mathrm{v}}(A_n)$ es equivalente a $\mathrm{WF}_{\mathrm{v}}(A_1 \vee ... \vee A_n)$.
 - Como la conjunción es una forma particular de la cuantificación universal, existe una regla similar para una cantidad numerable de acciones.
- Hay una regla igual para SF.

La visión externa del *timer*

```
MODULE \ ETimer timer(t,r,l) \triangleq INSTANCE \ Timer \ WITH \ real time \leftarrow t, running \leftarrow r, limit \leftarrow l Spec \triangleq \exists t,r,l: timer(t,r,l) ! \ Timer Spec
```

- La cuantificación existencial utilizada se denomina *cuantificación existencial temporal*.
- es cierta para una ejecución sí y sólo sí $\exists v: F$ existe alguna secuencia de valores -uno en cada estado- que puede ser asignada a la variable v de manera de hacer F cierta.

Definición de la c.e.t

$$s \stackrel{x}{=} t \triangleq \forall \ v \neq x : s(v) = t(v) \qquad \text{Asignan lo mismo excepto en } x$$

$$\nmid \langle s_0, s_1, \ldots \rangle \triangleq \quad \text{if} \ \forall \ n : s_n = s_0$$

$$\text{then } \langle s_0, s_0, \ldots \rangle \qquad \qquad \nmid \text{ remueve los pasos intrascendentes excepto los finales}$$

$$\text{then } \nmid \langle s_1, s_2, \ldots \rangle$$

$$\text{else } \langle s_0 \rangle \circ \nmid \langle s_1, s_2, \ldots \rangle$$

Invariancia con respecto a los pasos intrascendentes

 $\sigma \llbracket \exists x : F \rrbracket \triangleq \exists \rho, \tau : \not \sigma = \not \rho \land \rho \stackrel{x}{=} \tau \land \tau \llbracket F \rrbracket$

 $\sigma, \rho, \tau \in S^{\infty}$