Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа №2.2, 2.3

(Общая физика: квантовая физика)

Изучение спектров атома водорода и молекулы иона

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: Исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянную Ридберга. Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

1. Теоретическое введение

1.1 Спектр водорода

Длины волн спектральных линий водородоподобного атома описываются формулой Бальмера:

$$\frac{1}{\lambda_m n} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right) \tag{1}$$

В нашей работе изучается серия Бальмера, т.е. переходы при n=2 и линии m=3,4,5,6, обозначаемые как $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}.$

1.2 Спектр йода

Рис. 1: Электронные и электронно-колебательные энергетические уровни двухатомной молекулы

Оптические переходы (переходы, связанные с излучением фотонов в видимом диапазоне длин волн, т. е. фотонов с энергией порядка двух электрон-вольт) соответствуют переходам между различными электронными состояниями молекулы. При этом обычно происходят также изменения ее вращательного и колебательного состояний.

Энергетическое положение линий поглощения описывается выражением

$$h\nu_{(0,n2)} = E_2 - E_1 + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{h\nu_1}{2}$$
 (2)

2. Выполнение работы

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, а затем ртути, снимая зависимость длины волны света от параметра θ барабана монохроматора. Погрешность измерения параметра определим как $\sigma_{\theta}=5^{\circ}$ Результаты занесем в таблицу и построим график зависимости, профитировав функцию $\lambda(\theta)$ по дисперсионной формуле Гартмана:

$$\lambda = \lambda_0 + \frac{C}{\theta - \theta_0} \tag{3}$$

Таблица 1: Градуировка монохроматора

№ линии	θ , °	$\lambda, \ \mathring{A}$	
Линии сі			
1.	7032.	2601.	
2.	6929.	2577.	
3.	6717.	2509.	
4.	6678.	2498.	
5.	6599.	2470.	
6.	6533.	2447.	
7.	6507.	2442.	
8.	6402.	2400.	
9.	6383.	2395.	
10.	6334.	2395.	
11.	6305.	2360.	
12.	6267.	2349.	
13.	6217.	2328.	
14.	6164.	2306.	
15.	6143.	2297.	
16.	6096.	2277.	
17.	6074.	2266.	
18.	6030.	2248.	
19.	5976.	2219.	
20.	5945.	2207.	
21.	5882.	2177.	
22.	5852.	2160.	
23.	5401.	1898.	
24.	5341.	1862.	
25.	5331.	1852.	
Линии спектра ртути			
<i>K</i> 1	6907.	2564.	
K2	6234.	2330.	
1.	5791.	2125.	
2.	5770.	2115.	
3.	5460.	1934.	
4.	4916.	1516.	
5.	4358.	856.	
6.	4047.	306.	

Рис. 2: Градуировка монохроматора

Таблица 2: Фит рис. 2 функцией (3)

	Estimate	Standard Error
$C \ [\mathring{A} \cdot 10^6]$	-6.19	0.13
$\theta_0[^\circ]$	3925	20
$\lambda_0[\mathring{A}]$	2341	35

Рассмотрим линии спектра водорода и из градуировочной кривой опеределим их длины волн. Результаты сведем в таблицу и построим график связи длины волны и номера перехода, проверяя формулу Бальмера (1):

Таблица 3: Определение линий спектра водорода

Линия спектра	θ , °	$\lambda, \ \mathring{A}$	m	$\frac{1}{n^2} - \frac{1}{m^2}$	$\frac{1}{\lambda}$, $10^{-4}\mathring{A}^{-1}$	$\sigma_{\frac{1}{\lambda}}, 10^{-4} \mathring{A}^{-1}$
H_{α}	2452	6544	3	0.139	1.528	0.046
H_{eta}	1464	4857	4	0.188	2.059	0.062
H_{γ}	838	4347	5	0.21	2.3	0.069
H_{δ}	415	4105	6	0.222	2.436	0.073

Рис. 3: Проверка формулы Бальмера

Таблица 4: Фит рис. 3 функцией y = ax + b

	Estimate	Standard Error
b	0.0170	0.0053
a	10.9567	0.0276

Отсюда можно определить постоянную Ридберга

$$R = (109567 \pm 276) \text{ cm}^{-1}$$

Теперь измерим спектр молекулы йода. Определим на монохроматоре деления, соответствующие длинноволновой линии и линии, отстоящей на 6 от нее, а также границу схождения спектра. Погрешность измерений (из фита) оценим как 1%.

1.
$$\theta_{1,0} \approx 2386, \ \Rightarrow \ \lambda_{1,0} \approx 6365 \mathring{A} \ \Rightarrow \ \nu_{1,0} \approx 4,7 \cdot 10^{14} \ \Gamma$$
ц $\ \Rightarrow \ h\nu_{1,0} \approx 1,95 \ эВ$

2.
$$\theta_{1,5} \approx 2282, \ \Rightarrow \ \lambda_{1,5} \approx 6110 \mathring{A} \ \Rightarrow \ \nu_{1,5} \approx 4,9 \cdot 10^{14} \ \Gamma \mbox{ц} \ \Rightarrow \ h \nu_{1,5} \approx 2,03 \ \mbox{эВ}$$

3.
$$\theta_{\rm rp} \approx 1616, \; \Rightarrow \; \lambda_{\rm rp} \approx 5023 \mathring{A} \; \Rightarrow \; \nu_{\rm rp} \approx 6.0 \cdot 10^{14} \; \Gamma {\rm II} \; \Rightarrow \; h \nu_{\rm rp} \approx 2.47 \; {\rm эB}$$

Отсюда энергия колебательного кванта возбужденного состояния молекулы йода согласно (2)

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = 0.0164 \pm 0.0079 \text{ 9B}$$

Вычислим по формуле (2) разницу $E_2 - E_1 = h\nu_{\rm эл}$, сделав сдвиг серии на 1 (вычтя $h\nu_1$):

$$h\nu_{\text{эл}} = h\nu_{(1,0)} - \frac{1}{2}h\nu_{2} + \frac{3}{2}h\nu_{1} \approx 1,98 \pm 0,02$$
 эВ

Отсюда по рисунку рис. 1 получаем энергии диссоциации частицы в основном (D_1) и возбужденном состоянии, считая $E_a=0.94$ эВ:

$$D_1 = h\nu_{\rm rp} - E_a \approx 1.53 \pm 0.03$$
 gB, $D_2 = h\nu_{\rm rp} - h\nu_{\rm s.t.} \approx 0.49 \pm 0.05$ gB

3. Вывод

Мы изучили спектры в оптических спектрах водорода и йода, экспериментально проверили справедливость формулы Бальмера и нашли постоянную Ридберга, которая в пределах погрешность совпадает с табличной ($R=109677.6~{\rm cm}^{-1}$), и оценили энергии квантов возбужденного состояния молекулы, энергию диссоциации частиц и энергию электронного перехода.