Kahoot!

0 favorites

MATB24 TUT5 Summer 2021, Kahoot#1

3 plays

7 players

A public kahoot		
Ques	stions (19)	
1 - Quiz Let V be a vector space, v, w be vectors in V and $\mathbf{k_1}$, $\mathbf{k_2}$ be scalar in the field. The definition of V.S did not said		
	V+W=W+V	×
•	$k_1(w+v)=k_1w+k_1v$	×
	∨w=w∨	✓
	$k_1k_2w = k_2k_1w$	×
2 - C	Quiz S = {v1,, vn} be a linear independent set, which of the following statement is incorrect?	60 sec
	The equation alvl++anvn=0 has only the trivial solution with all ai = 0	×
•	Then we know that alvl++anvn = 0 and al = = an = 0	✓
	None of the vi can be written as linear combination of the other vectors.	X
	If one of the ai is not equal to 0, then alvl++anvn=0 can not be true	×
	rue or false ,w} is a basis of a given a vector space V, then {kv, w} is also a basis for any scalar k.	20 sec
	True	×
•	False	✓
A se	rue or false et of vectors is linearly dependent if and only if one of the vector is a scalar multiple of ther one vector	20 sec
	True	×
lack	False	✓

If T is	rue or false s a linear transformation from V to W, then there exists a matrix A, such that T(v)=Av for v in V.	20 sec
	True	×
•	False	✓
If T is	rue or false s a linear transformation from R ⁿ to R ^m , then there always exists a matrix A, such that = Av for all v in R ⁿ	20 sec
	True	✓
•	False	×
	rue or false B is invertible, then A is invertible and B is invertible	20 sec
	True	×
•	False	✓
	rue or false B is invertible, then A is invertible or B is invertible	20 sec
	True	×
•	False	✓
	uiz S = {v1,, vn} be a spanning set of the vector space V. Let v be a vector in V. It is not essarily true that	60 sec
	{v1,, vn, v} must be a linearly dependent set	×
\blacklozenge	v = alvl + + anvn for some al,, an in the field.	×
	Only one way to represent v as a linear combination of the vectors in S	✓
	span(S) is a subset of V	×

10 - Qui	$ar{z}$ e a linear transformation from V to W, which of the following is not correct	60 sec
Т	$(O_{v}) = O_{vv}$	×
• T	(v+w) = T(v) + T(w) for all v and w in V	×
Т	(kv) = T(k)T(v) for all scalar k in the field and vector v in V	✓
F	or every v in V, there is only one unique T(v)	×
	e or false e a vector space and let v,w be vectors in V, let k be a scalar. Then if kv=kw, then v=w	20 sec
Т	rue	×
♦ F	alse	✓
	e or false or space may have more than one zero vector	20 sec
Т	rue	×
F	alse	✓
	e or false contains the zero vector, then it must be linearly dependent.	20 sec
Т	rue	✓
F	alse	×
	e or false n are linearly independent directly said alvl++anvn=0 for some scalars al,, an.	20 sec
Т	rue	×
F	alse	_

15 - True or false Assume alv1+a2v2+a3v3=0 and v1,v2 are linearly independent, then alv1+a2v2=0		
A33(anie alvi-azvz-asvs-6 ana vi,vz are inically macpendent, them alvi-azvz-6	
	True	×
•	False	✓
16 - True or false Known $M_4(R)$ is a vector space. The zero vector is the 4x4 matrix with all zero entries.		20 sec
	True	✓
•	False	×
17 - True or false Known $M_4(R)$ is a vector space. In the definition, one of the axiom said $1v=v$. The 1 here is the 4x4 identity matrix.		
	True	×
•	False	✓
18 - Quiz Known V = P ₄ (R) is a vector space, which of the following statement is correct?		
	1+x is not a vector in V because it has only degree 1	×
\blacklozenge	$\{1, x\}$ are linearly dependent vectors in V because we can pick x=-1	×
	V has dimension 4, i.e. if S is a basis of V, then S has 4 elements.	×
	{1, 1+x, 1+x+x ² , 1+x+x ² +x ³ , 1+x+x ² +x ³ +x ⁴ } is a spanning set of V	✓
19 - Quiz Consider the set of all complex number as a real vector space, call it V, which of the following statement is correct?		
	The scalars are complex numbers	×
\blacklozenge	{1, i} are linearly independent vectors in V	✓
	The zero vector in the definition of vector space is 0+i in V	×
	{1} is a spanning set of V	×

Resource credits

Description: Imgorthand/E+/Getty Images