NAME: ID#: Score: /100

Guidelines for the exam:

- (1) Make answers short and points clear. Otherwise, it will be considered incorrect.
- (2) There are 10 problems for 10 points each. Each sub-problem has the same weight.
- (3) You are allowed to use books and notes. Any direct help from people is not allowed.
- (4) Zoom should be on all the time.
- (5) Exam ends at 15:20. Scan your exam and upload it by 15:40 (if you have trouble with KLMS, submit your exam in e-mail, hykim0615@kaist.ac.kr).

Part A: Prove the problem using definitions but not theorems. You may use the completeness axiom for \mathbb{R} in the book.

- (1) The summation and subtraction of two nonempty sets $A, B \subset \mathbb{R}$ are defined as $A \pm B = \{a \pm b : a \in A, b \in B\}$. Let A and B be bounded.
 - (a) Show that $\sup(A+B) = \sup A + \sup B$.
 - (b) Show that $\inf B \leq \inf A$ and $\sup A \leq \sup B$ if $A \subset B$.
 - (c) Let $C = \emptyset$, the empty set. What should be $\sup C$ and $\inf C$ to keep the above relation (b)? Explain your answer with one or two sentences. (This problem is related to the definition of the limsup and liminf).
- (2) Prove or disprove. (Depending on the type of the statement, proving may mean finding an example and disproving may not.)
 - (a) If $A \subset \mathbb{R}$ consists of infinitely many real numbers, there exists at least one limit point of A.
 - (b) If $\{x_k\}$ is a bounded and monotone increasing sequence, the sequence converges.
 - (c) Let $S = \{x \in \mathbb{R} : x = x_k \text{ for some } k \in \mathbb{N}\}$ for a given sequence $x_i \in \mathbb{R}$. Then, $y \in \mathbb{R}$ is a limit point of S if and only if y is a cluster point of the sequence x_i .

Part B: You may use any theorem or lemma in the book for the following problems if needed.

- (3) The open set of the Euclidean space \mathbb{R}^n is always with the L^2 -norm. However, we may provide other norms. In the case we do not call it the Euclidean space anymore. Let $\mathbf{x} = (x, y) \in \mathbb{R}^2$ and define $\|\mathbf{x}\|_1 = |x| + |y|$, $\|\mathbf{x}\|_2 = \sqrt{x^2 + y^2}$, and $\|\mathbf{x}\|_{\infty} = \max(|x|, |y|)$.
 - (a) Show that $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_{\infty}$ are norms.
 - (b) Sketch the unit balls with respect to these three norms, i.e., sketch $B_i = \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_i < 1 \}$ for i = 1, 2 and ∞ .
- (4) Let $C_1, C_2 \subset \mathbb{R}$ be compact and $S \subset \mathbb{R}$ be open.
 - (a) Suppose that $S \neq \emptyset$ and $S \neq \mathbb{R}$. Show that S is not closed. (This means there is no other clopen set in \mathbb{R} except \mathbb{R} and \emptyset .)
 - (b) Prove that $C_1 \cup C_2$ is compact. (Refer theorems you use clearly.)
 - (c) If $C_1 \cap C_2 = \emptyset$, there exists two open sets U_1, U_2 such that $C_1 \subset U_1, C_2 \subset U_2$, and $U_1 \cap U_2 = \emptyset$.
- (5) Every bounded subset $S \subset \mathbb{R}$ has a supremum in \mathbb{R} if and only if \mathbb{R} is Cauchy complete. (In other words, the Cauchy completeness is equivalent to Axiom 1.1.1.)
 - (a) Prove the part for (\Rightarrow) .
 - (b) Pove the other part for (\Leftarrow) .
- (6) Prove or disprove.
 - (a) The product $(0,1) \times (0,1) \subset \mathbb{R}^2$ is an open set.
 - (b) If $\{C_k\}$ is nested closed nonempty subsets of \mathbb{R} , then $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$.
 - (c) For any set $S \subset \mathbb{R}^n$, its closure is same as the closure of its interior S^0 , i.e., $\overline{S^0} = \overline{S}$.
- (7) Prove or disprove.

- (a) Let $S \subset \mathbb{R}^n$ be a nonempty domain, $C_{\infty}(S)$ be the continuous function space with the uniform norm, $F \subset C_{\infty}(S)$ is a dense subset, and $f_0 \in C_{\infty}(S)$. Show that there exists a Cauchy sequence $\{f_k\} \subset F$ that converges to f_0 uniformly.
- (b) For a continuous function $f:[a,b]\to\mathbb{R}$, there exists a sequence of step functions $s_k:[a,b]\to\mathbb{R}$ that converges to f uniformly.
- (c) For a step function $s:[a,b] \to \mathbb{R}$, there exists a sequence of continuous functions $f_k:[a,b] \to \mathbb{R}$ that converges to s uniformly.
- (8) Prove the followings.
 - (a) Let $f:[a,b]\to\mathbb{R}$ be differentiable function and |f'(x)|<1. Then, f is uniformly continuous.
 - (b) Use the mean value theorem to prove Bernoulli's inequality:

For every
$$x > -1$$
 and every $k \in \mathbb{N}$, $(1+x)^k \ge 1 + kx$.

(9) Define a function $f:[0,1]\to\mathbb{R}$ as

$$f(x) = \begin{cases} \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in the lowest terms,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

- (a) Determine where f is continuous. Explain why.
- (b) Determine where f is differentiable. Explain why.

Part C: Justification is not needed for true-false problems.

- (10) (a) State if the followings are true or false.
 - (i) A boundary point of a set S is a limit point of S or an isolated point. There is no else.
 - (ii) If an isolated boundary point is deleted from S, it is not a boundary point anymore.
 - (iii) If a limit point is deleted from S, it is not a boundary point anymore.
 - (iv) A set S is closed if it contains all of its limit points, but miss some isolated points.
 - (v) A set S contains all of its boundary points if and only if it contains all of its limit points.
 - (b) The above questions tell us that the definition of the closed set in the textbook is bad. Give a better definition and explain why.