

CẤU TRÚC DỮ LIỆU VÀ THUẬT TOÁN

Khái niệm cơ bản

Nội dung

- Định nghĩa và khái niệm cơ bản
- Mã giả
- Độ phức tạp tính toán
- Ký hiệu tiệm cận
- Ví dụ mở đầu

Định nghĩa và khái niệm

- Cấu trúc dữ liệu
 - Cách thức tổ chức dữ liệu trong bộ nhớ để truy cập và cập nhật thuận tiện

Định nghĩa và khái niệm

- Cấu trúc dữ liệu
 - Cách thức tổ chức dữ liệu trong bộ nhớ để truy cập và cập nhật thuận tiện
- Thuật toán
 - Dãy hữu hạn các bước tính toán để thu được đầu ra ứng với đầu vào

Định nghĩa và khái niệm

- Cấu trúc dữ liệu
 - Cách thức tổ chức dữ liệu trong bộ nhớ để truy cập và cập nhật thuận tiện
- Thuật toán
 - Dãy hữu hạn các bước tính toán để thu được đầu ra ứng với đầu vào
- Mục tiêu môn học
 - Trang bị kiến thức để thiết kế và cài đặt các cấu trúc dữ liệu và thuật toán hiệu quả để giải quyết các bài toán tính toán
- Úng dụng
 - Hệ quản trị cơ sở dữ liệu
 - Tính toán tối ưu hóa
 - Trí tuệ nhân tạo, thị giác máy tính
 - Hệ điều hành
 - ...

Mã giả

 Mô tả thuật toán đơn giản, gần gũi, ngắn gọn và không phụ thuộc vào cú pháp ngôn ngữ lập trình cụ thể

```
Assignment
x = <expression>;
x ← <expression>;
```

```
Procedures, funtions

proc(a,b,x){
    . . .
    return ans;
}
```

```
max(a[1..n]){
   ans = a[1];
   for i = 2 to n do
      if ans < a[i] then
      max = a[i];
   return ans;
}</pre>
```

Mã giả

• Một bài toán (ví dụ sắp xếp) có thể có nhiều thuật toán giải quyết

```
selectionSort(a[1..n]){
  for k = 1 to n do{
    min = k;
    for j = k+1 to n do{
       if a[min] > a[j] then
         min = j;
    }
    swap(a[k],a[min]);
}
```

```
insertionSort(a[1..n]){
    for k = 2 to n do{
        last = a[k];
        j = k;
    while(j > 1 and a[j-1] > last){
        a[j] = a[j-1];
        j--;
    }
    a[j] = last;
}
```

- Phân tích độ phức tạp thuật toán
 - Thời gian
 - Bộ nhớ sử dụng
- Phân tích thời gian thực hiện
 - Thông qua thí nghiệm
 - Phân tích câu lệnh cơ bản

- Thực nghiệm
 - Viết chương trình bằng ngôn ngữ lập trình cụ thể
 - Chạy chương trình trên một máy tính với nhiều bộ dữ liệu đầu vào khác nhau
 - Vẽ biểu đồ thời gian thực hiện

- Thực nghiệm
 - · Viết chương trình bằng ngôn ngữ lập trình cụ thể
 - Chạy chương trình trên một máy tính với nhiều bộ dữ liệu đầu vào khác nhau
 - Vẽ biểu đồ thời gian thực hiện
- Hạn chế của phương pháp thực nghiệm
 - Cần lập trình bằng một ngôn ngữ lập trình cụ thể
 - Thời gian thực hiện phụ thuộc vào cấu hình máy tính

- Phân tính thời gian thực hiện bằng cách đếm số câu lệnh cơ bản (như một hàm của kích thước dữ liệu đầu vào)
- Xác định kích thước dữ liệu đầu vào
 - Số bít cần thiết để biểu diễn dữ liệu
 - Hoặc (ở mức cao hơn) là số phần tử của dãy số, số phần tử của ma trận, số đỉnh của đồ thị, ...
- Xác định câu lệnh cơ bản

```
s = 0;
for i = 1 to n do
    s = s + a[i];
```

Câu lệnh cơ bản là câu lệnh gán → thời gian thực hiện là T(n) = n+1


```
insertionSort(a[1..n]){
2.
     for j = 2 to n do{
3.
  key = a[j];
  i = j-1;
4.
5.
  while i > 0 and a[i] > key do{
  a[i+1] = a[i];
6.
  i = i - 1;
7.
8.
  a[i+1] = key;
9.
10.
11. }
```

Ký hiệu t_j : số lần điều kiện của vòng lặp while (dòng 5) được thực hiện ứng với 1 giá trị j (vòng lặp bên ngoài)

Dòng	Thời gian	Số lần
2	C ₂	n
3	C ₂ C ₃ C ₄ C ₅	<i>n</i> -1
4	C ₄	<i>n</i> -1
5	C ₅	$\sum_{j=2}^{n} t_{j}$
6	C ₆	$\sum_{j=2}^{n} (tj-1)$
7	C ₇	$\sum_{j=2}^{n} (tj-1)$
9	C ₉	<i>n</i> -1

Thời gian thực hiện
$$T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_9 (n-1)$$

Thời gian tính
$$T(n) = c_2 n + c_3 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_9 (n-1)$$

- Tình huống tốt nhất: dãy đã được sắp xếp, $t_i = 1$ (j = 2,...,n)
- \rightarrow T(n) có dạng an + b (tuyến tính)
- Tình huống tồi nhất: dãy được sắp xếp theo thứ tự ngược lại, $t_j = j$ (j = 2,..., n)
- \rightarrow T(n) có dạng $an^2 + bn + c$ (bình phương)

- Độ tăng: số hạng có số mũ cao nhất (ví dụ, n² trong an² + bn + c) sẽ đại diện cho độ tăng của hàm
- Độ tăng là chỉ số xác định tốc độ tăng của thời gian tính khi kích thước dữ liệu đầu vào tăng
- Một số độ tăng điển hình thường gặp

Logarithmic algorithms	Log n
Linear algorithms	n
Quadratic algorithms	n^2
Polynomial algorithms	n^k
Exponential algorithms	C ⁿ

Ký hiệu tiệm cận Big O

- Giả sử g(n) là một hàm từ N đến R
 - $O(g(n)) = \{f(n) \mid \exists c > 0 \text{ và } n_0 \text{ sao cho } 0 \le f(n) \le cg(n) \ \forall n \ge n_0\}$
 - $\Omega(g(n)) = \{f(n) \mid \exists c > 0 \text{ và } n_0 \text{ sao cho } 0 \le cg(n) \le f(n) \forall n \ge n_0\}$
 - $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2 > 0 \text{ và } n_0 \text{ sao cho } c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$

Ký hiệu tiệm cận Big O

- Ví dụ
 - $10^3n^2 + 2n + 10^6 \in O(n^2)$
 - $10^3n^2 + 2n + 10^6 \in O(n^3)$
 - $10^3 n^2 + 2n + 10^6 \in \Theta(n^2)$
 - $10^3n^2 + 2n + 10^6 \in \Omega(n)$
 - $10^3 n^2 + 2n + 10^6 \in \Omega(n \log n)$

Ký hiệu tiệm cận Big O

- Giả sử f và g là các hàm không âm từ N đến R
 - Nếu $f(n) \in \Theta(g(n))$, thì $f(n) \in \Omega(g(n))$ và $f(n) \in O(g(n))$
 - Nếu $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$, thì $f(n) \in \Theta(g(n))$
 - Nếu $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, thì $f(n) \in O(g(n))$

Ví dụ mở đầu

- Cho dãy a = (a₁, a₂, ..., a_n). Một dãy con của a được định nghĩa là dãy gồm một số phần tử liên tiếp a_i, a_{i+1},...,a_j. Trọng số của dãy con là tổng các phần tử của nó. Tìm dãy con có trọng số lớn nhất
- Ví dụ: a = 2, -10, 11, -4, 13, -5, 2 khi đó dãy 11, -4, 13 là dãy con lớn nhất

Ví dụ mở đầu

```
maxSubSeq3(a[1..n]){
  ans = -\infty;
  for i = 1 to n do{
    for j = i to n do{
       s = 0;
       for k = i to j do
          s = s + a[k];
       if s > ans then
         ans = s;
  return ans;
}
```

Thuật toán trực tiếp: thời gian $O(n^3)$

```
maxSubSeq2(a[1..n]){
    ans = -∞;
    for i = 1 to n do{
        s = 0;
        for j = i to n do{
            s = s + a[k];
            if s > ans then
                ans = s;
        }
    }
    return ans;
}
```

Cải tiến: Thời gian $O(n^2)$

Ví dụ mở đầu

- Quy hoạch động
 - Ký hiệu s[i]: trọng số của dãy con lớn nhất của dãy a₁, . . ., a_i trong đó phần tử cuối cùng là a_i.

```
• s[1] = a_1
• s[i] = s[i-1] + a_i, if s[i-1] > 0
a_i, ngược lại
```

```
maxSubSeq1(a[1..n]){
    s[1] = a[1];
    ans = s[1];
    for i = 2 to n do{
        if s[i-1] > 0 then
            s[i] = s[i-1] + a[i];
        else s[i] = a[i];
        if ans < s[i] then
            ans = s[i];
    }
    return ans;
}</pre>
```

Thuật toán tốt nhất: Thời gian O(n)

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

