Advanced Linear Algebra Week 8

Jamie Gabe

Let U be a finite-dimensional vector space with ordered basis $\mathcal{B} = (x_1, \dots, x_m)$.

Any $u \in U$ can be written uniquely as

$$u = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m.$$

This induces a vector
$$_{\mathcal{B}}[u]=\left(egin{array}{c} eta_1 \\ drain \\ eta_m \end{array}
ight)\in\mathcal{F}^m.$$

Note that x_i is written

$$x_i = 0 \cdot x_1 + \dots + 0 \cdot x_{i-1} + 1 \cdot x_i + 0 \cdot x_{i+1} + \dots + 0 \cdot x_m$$

so $_{\mathcal{B}}[x_j]$ is the vector (often denoted e_j) in \mathcal{F}^m with a 1 at the j'th coordinate, and 0's everywhere else.

Let U and V be finite-dimensional vector spaces with ordered bases $\mathcal{B}=(x_1,\ldots,x_m)$ and $\mathcal{C}=(y_1,\ldots,y_n)$ respectively. We also fix an ordering on the bases as indicated. Let $A\in \mathrm{Hom}(U,V)$. We define coefficients α_{ij} as follows: Write

$$Ax_j = \alpha_{1j}y_1 + \alpha_{2j}y_2 + \cdots + \alpha_{ij}y_i + \cdots + \alpha_{nj}y_n.$$

Definition

If $A \in \operatorname{Hom}(U, V)$, then the matrix of A is $_{\mathcal{C}}[A]_{\mathcal{B}} = [A] \in M_{n,m}(\mathcal{F})$ with the coefficients α_{ij} as defined above (with respect to the fixed ordered bases).

Note: the j'th column in $_{\mathcal{C}}[A]_{\mathcal{B}}$ is exactly the vector

$$\begin{pmatrix} \alpha_{1j} \\ \vdots \\ \alpha_{nj} \end{pmatrix} = c[Ax_j].$$

Let U, V have ordered bases $\mathcal{B} = (x_1, \ldots, x_m)$.

$$\mathcal{C} = (y_1, \ldots, y_n)$$
 and $A \in \mathrm{Hom}(U, V)$ with induced matrix $\mathcal{C}[A]_{\mathcal{B}} \in M_{n,m}(\mathcal{F})$ with elements α_{ij} .

Let $u \in U$ and write $u = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m$ and

$$_{\mathcal{B}}[u]=\left(egin{array}{c} eta_1\ dots\ eta_m \end{array}
ight)$$
 in \mathcal{F}^m be the induced vector wrt the basis

$$\mathcal{B}=(x_1,\ldots,x_m).$$

Similarly $_{\mathcal{C}}[Au] \in \mathcal{F}^n$ is the induced vector wrt the basis $\mathcal{C} = (y_1, \dots, y_n)$, then

$$_{\mathcal{C}}[Au] = _{\mathcal{C}}[A]_{\mathcal{B}} \cdot _{\mathcal{B}}[u].$$

Remember: the j'th column in $_{\mathcal{C}}[A]_{\mathcal{B}}$ is exactly the vector $_{\mathcal{C}}[Ax_j]$.

One can think of this as $_{\mathcal{C}}[A]_{\mathcal{B}} = (_{\mathcal{C}}[Ax_1] _{\mathcal{C}}[Ax_2] _{\mathcal{C}}[Ax_m])$ (interpreted in the right way).

Consider $\mathbb C$ as an $\mathbb R$ -vector space with ordered basis $\mathcal B=(1,i)$.

Complex conjugation $A\in \mathrm{Hom}(\mathbb{C},\mathbb{C})$ by

$$A(\alpha + \beta i) = \alpha - \beta i$$
 for $\alpha, \beta \in \mathbb{R}$.

Question: What is the matrix $_{\mathcal{B}}[A]_{\mathcal{B}}$?

- $(1) \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right);$
- $(2) \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right);$
- $(3) \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right);$
- $(4) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$

Remember: the j'th column in $_{\mathcal{C}}[A]_{\mathcal{B}}$ is exactly the vector $_{\mathcal{C}}[Ax_i]$.

One can think of this as $_{\mathcal{C}}[A]_{\mathcal{B}}=(_{\mathcal{C}}[Ax_1]_{\mathcal{C}}[Ax_2]_{\ldots}_{\mathcal{C}}[Ax_m])$ Consider \mathbb{C} as an \mathbb{R} -vector space with ordered basis $\mathcal{B}=(1,i)$. Complex conjugation $A\in \mathrm{Hom}(\mathbb{C},\mathbb{C})$ by

$$A(\alpha + \beta i) = \alpha - \beta i$$
 for $\alpha, \beta \in \mathbb{R}$.

Question: What is the matrix $_{\mathcal{B}}[A]_{\mathcal{B}}$?

Here $x_1 = 1$ and $x_2 = i$.

First column: $Ax_1 = A(1) = 1 = 1 \cdot 1 + 0 \cdot i$.

So
$$_{\mathcal{B}}[Ax_1] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
.

Second column: $Ax_2 = A(i) = -i = 0 \cdot 1 + (-1) \cdot i$.

So
$$_{\mathcal{B}}[Ax_2] = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
.

Hence
$$_{\mathcal{B}}[A]_{\mathcal{B}}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Let U, V, W be finite dimensional \mathcal{F} -vector spaces, and let $A \in \mathrm{Hom}(U, V)$ and $B \in \mathrm{Hom}(V, W)$. Let $\mathcal{B}, \mathcal{C}, \mathcal{D}$ be ordered bases for U, V, W respectively. Then

$$_{\mathcal{D}}[B]_{\mathcal{C}} \cdot _{\mathcal{C}}[A]_{\mathcal{B}} = _{\mathcal{D}}[BA]_{\mathcal{B}}.$$

This is checked just like $_{\mathcal{C}}[A]_{\mathcal{B}}\cdot _{\mathcal{B}}[u]=_{\mathcal{C}}[Au]$ (which we proved last lecture).

Lemma (2.2)

 $\operatorname{Hom}(U,V)$ is a vector space over $\mathcal F$ defined by operations

$$(A+B)(x)=A(x)+B(x), \qquad (\alpha A)(x)=\alpha A(x)$$

for $A, B \in \text{Hom}(U, V)$, $\alpha \in \mathcal{F}$ and $x \in U$. Moreover, the zero vector in Hom(U, V) is the zero map.

Proof.

Omitted (straight forward).

The special case $M_{n,m}(\mathcal{F})$ is a vector space where each matrix entry is "represents a dimension".

More formally, there is a canonical basis for $M_{n,m}(\mathcal{F})$: the matrices e_{ij} with a 1 in the (i,j)'th entry, and 0's everywhere else form such a basis.

 2×2 -case: in $M_{2,2}(\mathcal{F})$ the canonical (non-ordered) basis is

$$\Big\{\underbrace{\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)}_{e_{11}}, \underbrace{\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)}_{e_{12}}, \underbrace{\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)}_{e_{21}}, \underbrace{\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)}_{e_{22}}\Big\}.$$

In fact, any $\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \in M_{2,2}(\mathcal{F})$ is uniquely of the form

$$\alpha_{11} \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) + \alpha_{12} \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) + \alpha_{21} \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) + \alpha_{22} \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

Suppose $\mathcal{B} = (x_1, \dots, x_m)$ and $\mathcal{C} = (y_1, \dots, y_n)$ are ordered bases of U, V respectively. Define $E_{ij} \in \operatorname{Hom}(U, V)$ to be the unique linear map (Lemma 2.3) satisfying

$$E_{ij}(x_k) = \begin{cases} y_i, & \text{if } k = j \\ 0, & \text{otherwise.} \end{cases}$$

The matrix $_{\mathcal{C}}[E_{ij}]_{\mathcal{B}} \in M_{n,m}(\mathcal{F})$ is precisely the $n \times m$ -matrix e_{ij} with 1 in the (i,j)'th entry and 0 everywhere else.

Theorem (2.20)

The maps E_{ij} form a basis for Hom(U, V). In particular,

$$\dim \operatorname{Hom}(U, V) = \dim(U) \cdot \dim(V).$$

$$E_{ij}(x_k) = \begin{cases} y_i, & \text{if } k = j \\ 0, & \text{otherwise.} \end{cases}$$

Proof.

For $A \in \operatorname{Hom}(U, V)$ and $k = 1, \dots, m$ there are unique $\alpha_{ik} \in \mathcal{F}$ such that

$$Ax_k = \sum_{i=1}^n \alpha_{ik} y_i \in V.$$

Also

$$\sum_{i:i} \alpha_{ij} E_{ij}(x_k) = \sum_{i=1}^n \alpha_{ik} y_k = Ax_k$$

so $A = \sum_{i,j} \alpha_{ij} E_{ij}$ (since linear maps are uniquely determined by their values on $\{x_1, \dots, x_m\}$).

So $\operatorname{Span}\{E_{ij}: i=1,\ldots,n, j=1,\ldots,m\}=\operatorname{Hom}(U,V)$.

Proof continued.

It is easy to see that different scalars α_{ij} yield different maps $\sum_{i,j} \alpha_{ij} E_{ij}$, so the set of E_{ij} is linearly independent. Hence also a basis for Hom(U,V).

Since there are $n \cdot m$ different maps E_{ij} for i = 1, ..., n and j = 1, ..., m, the dimension is

$$\dim \operatorname{Hom}(U,V) = nm = \dim U \cdot \dim V.$$

Consider \mathbb{C} as an \mathbb{R} -vector space.

Question: What is the dimension of $Hom(\mathbb{C}, \mathbb{C})$?

- (1) 1
- (2) 2
- (3) 3
- (4) 4

Answer: $\dim \mathbb{C} = 2$ so

$$\dim \operatorname{Hom}(\mathbb{C},\mathbb{C}) = \dim \mathbb{C} \cdot \dim \mathbb{C} = 4.$$

Note if we instead consider $\mathbb C$ as a $\mathbb C$ -vector space, we have

$$\dim \operatorname{Hom}(\mathbb{C},\mathbb{C}) = \dim \mathbb{C} \cdot \dim \mathbb{C} = 1 \cdot 1 = 1.$$

Let V be an n-dimensional vector space, and let

 $\mathcal{B}=(x_1,\ldots,x_n)$ and $\mathcal{C}=(y_1,\ldots,y_n)$ be two ordered bases for V.

Consider the identity map I from V with basis C to V with basis B.

Let $_{\mathcal{B}}[I]_{\mathcal{C}}=\mathsf{P}\in M_n(\mathcal{F})$ be the induced matrix, i.e. we write

$$y_j = \sum_{i=1}^n p_{ij} x_j$$

and P is the matrix with entries p_{ii} .

P is called the transition matrix or change of basis matrix (from $\mathcal C$ to $\mathcal B$).

Note that

$$_{\mathcal{C}}[I]_{\mathcal{B}}P = _{\mathcal{C}}[I]_{\mathcal{B}\mathcal{B}}[I]_{\mathcal{C}} = _{\mathcal{C}}[I \cdot I]_{\mathcal{C}} = _{\mathcal{C}}[I]_{\mathcal{C}} = 1$$

Lemma (2.25 (reformulated))

Let $u \in V$. Then $P_{\mathcal{C}}[u] = {}_{\mathcal{B}}[u]$.

What does this say?

Suppose that we know the matrix P, and that we know the "old" \mathcal{C} -coordinates for $u \in V$ (so we know $\mathcal{C}[u]$), i.e. we know $\gamma_1, \ldots, \gamma_n \in \mathcal{F}$ such that $u = \sum_{i=1}^n \gamma_i y_i$.

Then we can find the "new" \mathcal{B} -coordinates of u (in the form of $\mathcal{B}[u]$) by computing $P_{\mathcal{C}}[u]$.

Proof.

$$\mathsf{P}_{\mathcal{C}}[u] = {}_{\mathcal{B}}[\mathsf{I}]_{\mathcal{C}} \cdot {}_{\mathcal{C}}[u] = {}_{\mathcal{B}}[\mathsf{I}(u)] = {}_{\mathcal{B}}[u]$$

Theorem (2.26 (reformulated))

Let V be an n-dimensional vector space, and let $\mathcal{B}=(x_1,\ldots,x_n)$ and $\mathcal{C}=(y_1,\ldots,y_n)$ be two ordered bases for V. Construct the transition matrix $\mathsf{P}={}_{\mathcal{B}}[\mathsf{I}]_{\mathcal{C}}$. Let $A\in\mathrm{End}(V)$. Then

$$_{\mathcal{B}}[A]_{\mathcal{B}} = \mathsf{P}_{\mathcal{C}}[A]_{\mathcal{C}}\mathsf{P}^{-1}.$$

What does this say?

If we know P, P^{-1} and the matrix for A wrt C, then we can compute the matrix for A wrt B.

Proof.

We saw earlier that $P^{-1} = {}_{\mathcal{C}}[I]_{\mathcal{B}}$. Hence

$$P_{\mathcal{C}}[A]_{\mathcal{C}}P^{-1} = {}_{\mathcal{B}}[I]_{\mathcal{C}\mathcal{C}}[A]_{\mathcal{C}\mathcal{C}}[I]_{\mathcal{B}} = {}_{\mathcal{B}}[I \cdot A \cdot I]_{\mathcal{B}} = {}_{\mathcal{B}}[A]_{\mathcal{B}}$$

Theorem (2.26 (reformulated))

Let V be an n-dimensional vector space, and let $\mathcal{B}=(x_1,\ldots,x_n)$ and $\mathcal{C}=(y_1,\ldots,y_n)$ be two ordered bases for V. Construct the transition matrix $\mathsf{P}={}_{\mathcal{B}}[\mathsf{I}]_{\mathcal{C}}$. Let $A\in\mathrm{End}(V)$. Then

$$_{\mathcal{B}}[A]_{\mathcal{B}} = \mathsf{P}_{\mathcal{C}}[A]_{\mathcal{C}}\mathsf{P}^{-1}.$$

Note: that one also obtains

$$_{\mathcal{C}}[A]_{\mathcal{C}} = \mathsf{P}^{-1}{}_{\mathcal{B}}[A]_{\mathcal{B}}\mathsf{P}.$$

(This is how Theorem 2.26 is stated in the notes). Two $n \times n$ -matrices A, B are called similar if there exists an invertible $n \times n$ -matrix P such that $A = PBP^{-1}$.

Theorem 2.26 implies that if A and B are induced by the same endomorphism wrt different bases, then they are similar.

Consider \mathbb{R}^2 with the standard ordered basis

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$$
 and the ordered basis

$$C = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right).$$

Question: what is the transition matrix $P = {}_{\mathcal{B}}[I]_{\mathcal{C}}$?

$$(1) P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$

(2)
$$P = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
;

(3)
$$P = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

Answer:
$$P = \begin{pmatrix} \mathcal{B}[I(\begin{pmatrix} 1 \\ 1 \end{pmatrix})] \mathcal{B}[I(\begin{pmatrix} 2 \\ 3 \end{pmatrix})] = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
.

Let V be an \mathcal{F} -vector space.

Definition (3.1)

The vector space

$$V' := \operatorname{Hom}(V, \mathcal{F}) = \{ y \colon V \to \mathcal{F} \mid y \text{ is linear} \}$$

is called the $\frac{dual}{dual}$ space of V.

The elements $y \in V'$ are called linear functionals (or linear forms).

Let $\mathcal{B} = \{x_i \mid i \in I\}$ be a basis for V parametrised by some index set I.

Recall that any $x \in V$ can uniquely be written as $x = \sum_{i \in I} \alpha_i x_i$ for scalars α_i (only finitely many α_i non-zero).

Definition

Let $i \in I$. The linear functional $y_i \in V'$ given by

$$y_i(\sum \alpha_j x_j) = \alpha_i$$

is called the i'th coordinate functional.

Note: Depends on \mathcal{B} and the index I.

Note that $y_i \colon V \to \mathcal{F}$ is the unique linear map given on the basis by

$$y_i(x_j) = \begin{cases} 1_{\mathcal{F}} & \text{if } i = j \\ 0_{\mathcal{F}} & \text{if } i \neq j. \end{cases}$$

Note also, that $x = \sum_{i \in I} \alpha_i x_i = \sum_{i \in I} y_i(x) x_i$.

Definition

Let $i \in I$. The linear functional $y_i \in V'$ given by

$$y_i(\sum_{i\in I}\alpha_jx_j)=\alpha_i$$

is called the i'th coordinate functional.

Consider \mathbb{C} as an \mathbb{R} -vector space with ordered basis (1, i).

Let $y_1, y_2 \in \mathbb{C}'$ be the 1st and 2nd coordinate functionals.

Question: What is $y_2(2+i)$?

- (1) 1
- (2) 2
- (3) 3
- (4) -1

Answer: we have $y_2(\alpha + \beta i) = \beta$, so $y_2(2 + 1 \cdot i) = 1$. Similarly, $y_1(\alpha + \beta i) = \alpha$, so $y_1(2 + i) = 2$.

 $\mathcal{B} = \{x_i \mid i \in I\}$ is a basis parametrised by I. Let $\mathcal{B}' = \{y_i \mid i \in I\} \subset V'$ be the coordinate functionals.

Theorem (3.4)

The set \mathcal{B}' is linearly independent. If dim $V<\infty$ then

$$y = \sum_{i \in I} y(x_i)y_i$$
 for all $y \in V'$

and \mathcal{B}' is a basis for the dual space V'.

Proof.

Linear independence: Suppose $i_1, \ldots, i_n \in I$ and $\alpha_1, \ldots, \alpha_n \in \mathcal{F}$ such that $\sum_{j=1}^n \alpha_j y_{i_j} = 0$. Then for $k = 1, \ldots, n$ we have

$$0 = \sum_{i=1}^{n} \alpha_{j} y_{i_{j}}(x_{i_{k}}) = \alpha_{k}$$

so all the coefficients $\alpha_1, \dots, \alpha_n$ are 0. Hence \mathcal{B}' is linearly independent.

Theorem (3.4)

The set \mathcal{B}' is linearly independent. If dim $V < \infty$ then

$$y = \sum y(x_i)y_i \qquad \text{for all } y \in V'$$

and \mathcal{B}' is a basis for the dual space V'.

Proof.

Suppose dim $V < \infty$. Recall that any $x \in V$ can be written as $x = \sum_{i \in I} y_i(x) x_i$. Let $y \in V'$. Then

$$y(x) = y(\sum_{i \in I} y_i(x)x_i) = \sum_{i \in I} y(x_i)y_i(x) = \left(\sum_{i \in I} y(x_i)y_i\right)(x)$$

for all $x \in V$. Hence $y = \sum_{i \in I} y(x_i)y_i$. Since $y(x_i)$ are scalars, it follows that $\operatorname{Span}\mathcal{B}' = V'$, so \mathcal{B}' is a basis.

Definition

When V is finite-dimensional with basis \mathcal{B} , then \mathcal{B}' (of coordinate functionals) is called the dual basis og \mathcal{B} .

Note that the dual basis \mathcal{B}' is a basis for V' (Theorem 3.4). If V is infinite-dimensional then \mathcal{B}' can still be defined, but it is no longer a basis!

Corollary (3.5)

If V is a finite-dimensional vector space, then $\dim V' = \dim V$. If V is an infinite dimensional vector space, then so is V'.

Consider the \mathbb{R} -vector space \mathbb{C}^2 .

Question: What is the dimension of the dual space $(\mathbb{C}^2)'$?

- (1) 1
- (2) 2
- (3) 3
- (4) 4.

Answer: dim $\mathbb{C}^2 = 4$, so $(\mathbb{C}^2)'$ has the same dimension.

