Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 1

Problem Set 1

 $0pt_{-}$

Name: Your Name

Collaborators: Name1, Name2

Problem 1-1.

(a)
$$f_1 = log(n^n) = n \cdot log(n)$$
 so $f_1 = \Theta(n \cdot log(n))$
 $f_2 = (log(n))^n$ so $f_2 = \Theta((log(n))^n)$
 $f_3 = log(n^{6006}) = 6006 \cdot log(n)$ so $f_3 = \Theta(log(n))$
 $f_4 = (log(n))^{6006}$ so $f_4 = \Theta((log(n))^{6006})$
 $f_5 = log(log(6006n))$ so $f_5 = \Theta(log(log(n)))$
Obviously, $f_2 > f_4 > f_3 > f_5$. For $f_1, \frac{f_1}{f_2} = \frac{n \cdot log(n)}{(log(n))^n} = \frac{n}{(log(n))^{n-1}}$ when n is large enough, $\frac{n}{(log(n))^{n-1}} = \frac{n}{(n-1) \cdot (log(n))^{n-2}} = \dots = 0$ so $f_1 < f_2 \cdot \frac{f_1}{f_4} = \frac{n \cdot log(n)}{(log(n))^{6006}} = \frac{n}{(log(n))^{6005}} = \infty$ so $f_1 > f_4$.
so $f_2 > f_1 > f_4 > f_3 > f_5$. The answer is $(f_5, f_3, f_4, f_1, f_2)$

- (b) $(\{f_1, f_2\}, f_5, \{f_3, f_4\})$
- (c) $(\{f_2, f_5\}, f_4, f_1, f_3)$
- (d) $(f_5, f_4, f_2, f_3, f_1)$

Problem Set 1

Problem 1-2.

(a) To reverse k items in D starting from index i, we can repeatedly delete each item at position i and re-insert it at position i + k - 1. Since each delete and insert costs $O(\log n)$ and we perform k such operations, the total running time is $O(k \log n)$.

(b) To move the k items in D starting from index i to be in front of the item at index j, we first delete the k items one by one from index i (each time the next item to be moved remains at position i). Then we re-insert them in order at position j (adjusting j to j - k if j > i after deletion). Both the deletion and insertion phases cost $O(k \log n)$, so the total running time is $O(k \log n)$.

Problem Set 1 3

Problem 1-3.

Data structure. Represent the binder as the concatenation $L \mid M \mid R$:

• L: pages strictly to the left of bookmark A (a deque implemented by a circular dynamic array).

- M: pages strictly between bookmarks A and B (deque).
- R: pages strictly to the right of bookmark B (deque).

Bookmarks are the boundaries: A sits between L and M; B sits between M and R. Let $\ell = |L|$, m = |M|, r = |R|, and $n = \ell + m + r$. Index i maps in O(1) to

$$page(i) = \{ L \ [i]0 \le i < \ell, M[i-\ell]\ell \le i < \ell+m, R[i-\ell-m]\ell + m \le i < n. \}$$

Each deque supports amortized O(1) push/pop at both ends and O(1) random access; total space is O(n).

Operations and running times.

- build(X): set $L \leftarrow [], R \leftarrow [], M \leftarrow X$ in order. Time: O(|X|) worst-case.
- place_mark(i, m) $(m \in \{A, B\})$ between page i and i + 1): If m = A, adjust the boundary so that |L| = i + 1 by moving items between L and M using pop/push at the appropriate ends; if m = B, make |L| + |M| = i + 1 by moving between M and R. Time: O(n) worst-case.
- read_page(i): use the mapping above to read from L, M, or R. Time: O(1) worst-case.
- shift_mark(m, d) with $d \in \{-1,1\}$: If m = A: d = +1 moves pop_front(M) \rightarrow push_back(L); d = -1 moves pop_back(L) \rightarrow push_front(M). If m = B: d = +1 moves pop_front(R) \rightarrow push_back(R); d = -1 moves pop_back(R) \rightarrow push_front(R). Time: O(1) amortized.
- move_page(m): If m = A, move the page just after A to just before B: pop_front(M) \rightarrow push_back(M). If m = B, move the page just after B to just before A: pop_front(R) \rightarrow push_back(L). Time: O(1) amortized.

Why amortized O(1)? All edits touch only deque ends. Circular dynamic arrays resize by constant factors, so each element is moved only O(1) times over its lifetime; rare O(n) resizes are spread over $\Theta(n)$ cheap operations, yielding O(1) amortized per end-operation.

4 Problem Set 1

operation	time
build(X)	O(X) (worst)
$place_mark(i,m)$	O(n) (worst)
$read_page(i)$	O(1) (worst)
$shift_mark(m,d)$	O(1) (amortized)
$move_page(m)$	O(1) (amortized)

Problem Set 1 5

- (a)
- (b)
- (c)
- (d) Submit your implementation to alg.mit.edu.