THEOREM

THEN IT MUST HAVE A ROOT.

$$p(x) = \bigoplus_{i=1}^{n-1} a_i x^i + x^i + a_0$$

$$i = 1$$

$$= 2e^n \left(1 + \bigoplus_{i=1}^{n} \frac{a_{n-i}}{3e^i}\right)$$

choose & were mor 1x1>1, Enguer (1ail).

THEN

$$\left| \left(\sum_{i=0}^{n-1} a_i \right) \right| \leq \sum_{i=0}^{n-1} \left| \frac{a_i}{\Re^{n-i}} \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \frac{a_i}{\Re^{n-i}} \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \frac{a_i}{\Re^{n-i}} \right|$$

$$= \frac{\sum_{i=0}^{n} |a_{i}|}{|a_{i}|} = \frac{1}{2}$$

$$= \frac{\sum_{i=0}^{n} |a_{$$

=
$$\frac{1}{2}$$
 × $\frac{1}{2}$ × $\frac{$

THEN 3M QUENTROOPS ON [9,6],

or fis nouncer move on M.

LEMMA:	suppose for os clos ar xer.
	= $3670: f(x)$ is bounded
	on (r-8, r=8), i.e., 3 N: 360 K
	4 x ∈ (~ 6 , v ~ 6) -
Resol	VET &21, men 3620: 5(x)-f(p) </td
	So \(\(\(\) \) < \(\) \(\
Α	Let N= (3(M+1.

PROOF .

LET A = { x | 3 13 130 UNDOWN ADDUCT

ON [a, 2e] }

LET a = exp (A).

By LEMMA, \(\frac{1}{2}\) \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}\),

Coperaly

THEN f(x) is ETS, ON [a,b]THEN f(x) is BOUNDED BELOW

ON [a,b], i.e. $\exists N: f(x) > N$, $\forall z \in [a,b]$.

Conscising

THEN f(z) is continuous on [a, b],

THEN f(z) is sounder , i.e., $\exists M: |\exists (x)| < M, \forall z \in [a, b]$

THEOREM

THEN $\frac{1}{3}$ CE [a, 5] S.T $\frac{1}{3}$ (c) $\frac{1}{3}$, $\frac{1}{3}$ (x) $\frac{1}{3}$ x $\frac{1}{3}$ [a, 5], $\frac{1}{3}$ (c) $\frac{1}{3}$ max. $\frac{1}{3}$ $\frac{1}{3}$ [a, 6], $\frac{1}{3}$ (c) $\frac{1}{3}$ max. $\frac{1}{3}$ $\frac{1}{3}$ max on [2, 6].

EVEN DECOSE BOLDEN + 409

 $P(z) = 0 z^{0}ai + 2 with$ h = van, A = 0 00000 i wate $P(z) = z^{0} \left(1 + 2 van \right)$

Com summe $a \in A$, since $a = \sup_{x \in A} A$. $\delta(x) < \mathbb{Q}$ or $\left[a_{e}A\right]$ and f(x) < Nor $\left(x - \delta, da + \delta\right)$, so $\delta(x) < \max\left(a_{e}N\right)$ or $\left[a_{e}Y\right]$. $v \in A$, $\delta(x) < \max\left(a_{e}N\right)$ or $\left[a_{e}Y\right]$. $v \in A$, $\delta(x) < \max\left(a_{e}N\right)$ or $\left[a_{e}Y\right]$. $v \in A$,

Some 8 20. => Version of Sing CEMMA Some 820. => Version of Sing CEMMA Some 820. => Version of Sing CEMMA Some 820. => Version of Sing CEMMA

Es Exp (A)=6.

WTS: 8 12 BOUNDERS ON [a, b].

But one one - sided version or me

Leman one; 3 8>0 s. + f(x) < N

EV (5-8,6) AND

3 P S.T. f(x) < P ON [a, b-2]

30 f(x) < M = max (N, R) on [3, 6]

Can encose M was real [141 > 14]

THEN $(1+ \frac{4}{2} + \frac{4}{2} + \frac{4}{2} + \frac{4}{2} + \frac{1}{2}) > \frac{1}{2}$ Oursuse of [-M, M], f(z) > 0.