Note for electron-positron plasma

Cheng Tao Yang^a, Christopher Grayson^a, Johann Rafelski^a
^a Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA
(Dated: March 21, 2023)

I. ENERGY DENSITY RATIO BETWEEN ELECTRON/POSITRON AND BARYONS

Considering the energy density between nonrealtiviste e^{\pm} and baryon, it can be written as

$$\frac{\rho_e + \rho_{\bar{e}}}{\rho_p + \rho_\alpha} = \frac{m_e(n_e + n_{\bar{e}})}{m_p n_p + m_\alpha n_\alpha} = \frac{m_e(n_e + n_{\bar{e}})}{n_B(m_p X_p + m_\alpha X_\alpha)} = \left(\frac{n_e + n_{\bar{e}}}{n_B}\right) \left(\frac{m_e}{m_p X_p + m_\alpha X_\alpha}\right) \tag{1}$$

where from particle data group $X_p = n_p/n_B$ and $X_\alpha = n_\alpha/n_B$ are given by

$$X_p = 0.878, \qquad X_\alpha = 0.245$$
 (2)

and masses are given by

$$m_e = 0.511 \,\text{MeV}, \qquad m_p = 938.272 \,\text{MeV}, \qquad m_\alpha = 2m_p + 2m_n = 3755.67 \,\text{MeV}$$
 (3)

In Fig.(1) we plot the energy density ratio Eq.(1) as a function of temperature $10 \,\text{keV} \leqslant T \leqslant 200 \,\text{keV}$. It shows that the energy density of electron and positron is dominated until $T=30.2 \,\text{keV}$, i.e., we have $\rho_e \gg \rho_B$. After $T=30.2 \,\text{keV}$, we have $\rho_e \ll \rho_B$ and ratio becomes constant when is around $T=20 \,\text{keV}$ because of the positron annihilation and charge neutrality.

To estimate the energy density ratio for the low temperature limit $T \ll 20$ keV, we can consider that all positrons disappear because of the annihilation. Then the energy density ratio becomes:

$$\frac{\rho_e + \rho_{\bar{e}}}{\rho_p + \rho_{\alpha}} = \left(\frac{n_e}{n_B}\right) \left(\frac{m_e}{m_p X_p + m_{\alpha} X_{\alpha}}\right) = \left(\frac{n_p}{n_B}\right) \left(\frac{m_e}{m_p X_p + m_{\alpha} X_{\alpha}}\right) \tag{4}$$

$$=X_p \left(\frac{m_e}{m_p X_p + m_\alpha X_\alpha}\right) \approx 2.5 \times 10^{-4} \tag{5}$$

where we use the charge neutrality $n_e = n_p$ to replace the electron density by proton density and we can calculate the ratio by giving the X_p and X_α from observation.

FIG. 1: The energy density ratio Eq.(1) as a function of temperature $10\,\mathrm{keV} \leqslant T \leqslant 200\,\mathrm{keV}$. It shows that the energy density of electron and positron is dominated until $T=30.2\,\mathrm{keV}$, i.e., we have $\rho_e\gg\rho_B$.