ICDM 2022: Risk Commodities Detection on Large-Scale E-Commence Graphs

Team: SYSU-GEAR
Rank: 8th (Session I) 3rd (Session II)

- Jintang Li: Sun Yat-sen University
- Yike Xu: South China University of Technology
- Junyuan Fang: City University of Hong Kong

- ☐ Risk Commodities Detection on Large-Scale E-Commence Graphs
- □ Challenges (1/4):
 - ☐ Large-scale and heterogeneous:13M nodes, 157M edges, 7 node types and 7 edge types

# Node type	# Edge type	# Node	# Edge
7	7	13,806,619	157,814,864

- ☐ Risk Commodities Detection on Large-Scale E-Commence Graphs
- □ Challenges (2/4):
 - ☐ Inductive and transferable capability: inference on another graph that is not visible during training (Session II)

- ☐ Risk Commodities Detection on Large-Scale E-Commence Graphs
- □ Challenges (3/4):
 - **□** Imbalance of node labels: positive (8k) and negative (77k) \approx 1:10

# Positive sample	# Negative sample	
8,364	77,198	

- ☐ Risk Commodities Detection on Large-Scale E-Commence Graphs
- □ Challenges (4/4):
 - ☐ Data noise on graph structure/node features

$$\text{cosine similarity} = S_C(A,B) := \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Method: HeteroGNN (Overall Framework)

node type d node type e

Challenge 1 (scalability) & Challenges 2 (inductive capability): Neighborhood sampling

Challenge 3 (Imbalance): resampling

Challenge 4 (Robustness): DropMetaPath, Masked Autoencoding

Challenge 4 (Robustness): DropMetaPath, Masked Autoencoding, Jumping Knowledge

Method: HeteroGNN (Details)

■ Multi-hop neighborhood sampling

Batch 1

Batch 2

• • •

$$\mathcal{N}(v_i) \to \mathcal{N}_s(v_i)$$

Resampling

- Most data falls into major class (0) while a few data falls into the minority class (1)
- Over-sampling technique is used to produce equally distributed data fall into each class

- Stacking graph convolutional layers
 - ☐ Performing multiple updates increases the "receptive field" of each node.

Layer 2

- Stacking graph convolutional layers
 - ☐ Performing multiple updates increases the "receptive field" of each node.
 - ☐ Use SUM aggregation instead of MEAN aggregation to increase expressiveness

AGG = SUM is better!

- Stacking graph convolutional layers
 - ☐ Performing multiple updates increases the "receptive field" of each node.
 - ☐ Use SUM aggregation instead of MEAN aggregation to increase expressiveness
 - ☐ Heterogenous GraphConv: Each graph view corresponds to an edge type

Jumping Knowledge

- ☐ Different subgraph structures result in very different neighborhood sizes
- ☐ Jumping Knowledge enables adaptive, structure-aware representations
- ☐ Such representations are particularly interesting for representation learning on large complex graphs with diverse subgraph structures

☐ Graph Adversarial Training

- ☐ Adversarial Training (AT) is a dynamic regularization technique, performing perturbations on input features to improve model robustness and generalization
- ☐ AT on graphs can propagate the applied perturbations to its local neighborhoods for each node

$$x' = x + \delta, \delta \sim U(-0.5, 0.5)$$

Batch Normalization

- ☐ BN can benefit the convergence/training speed of neural network models
- ☐ The input distributions would to be much less pronounced between layers

DropMetapath

☐ DropEdge: a regularization trick which can implicitly reduce the inherent noise effect by randomly drop edges and nodes during training

■ DropMetapath

- ☐ DropPath: a structured dropout for graph neural networks
- □ DropMetaPath: an extension of DropPath on heterogeneous graphs

■ Masked Label Propagation

☐ UniMP: Unified Message Passing that combines the feature and label propagation together

Session I

Method: HeteroGNN

■ Masked Label Propagation

☐ UniMP: Unified Message Passing that combines the feature and label propagation together

Label propagation from class 0
 Label propagation from class 1
 Feature propagation

Session II

Method: HeteroGNN

■ Masked Autoencoding

- ☐ DropMetaPath has provided self-supervised signals (metapaths)
- ☐ An additional edge decoder to learn to reconstruct masked metapaths

■ Masked Autoencoding

☐ Masking on the positive edge helps the contrastive scheme, as it significantly reduces the redundancy of two paired subgraph views.

Experimental Results

□ Session I

No.	Model	Val AP	Test AP
0	Baseline: RGCN	95.73	91.15
1	Base model: HeteroGNN (sum)	95.85	92.19
2	1+resampling	95.77	92.92
3	2+Batch Normalization	96.14	93.08
4	3+Graph Adversarial Training	96.56	93.16
5	4+Jumping Knowledge	96.35	93.22
6	5+DropMetapath	96.42	93.31
7	6+Masked Label Propagation	97.09	93.69

□ Session II

No.	Model	Val AP	Test AP
0	Session I (7)	97.09	89.84
1	0 - Masked Label Propagation	96.42	90.52
2	1+Hidden size (256->512)	96.54	91.13
3	2+Node decoder (1->2)	96.68	91.40
4	3+Masked Autoencoding	96.65	91.76
5	4+sampling size (150->100)	96.92	91.83

Future Direction: Robust Aggregation Function

Robust Aggregation Function

What makes a robust GNN?

 \square **Definition:** Breakdown point $\epsilon(f, \mathcal{N})$ is defined as the smallest contamination fraction under which the aggregation function *f* breaks down:

$$\min_{m \in \mathbb{N}} \left\{ rac{m}{|\mathcal{N}_v| + m} : \sup_{ ilde{\mathcal{N}}_v: \left| ilde{N}_v
ight| = m} \left| f \Big(\mathcal{N}_v \cup \widetilde{\mathcal{N}}_v \Big) - f (\mathcal{N}_v)
ight| = \infty
ight\} \qquad egin{align*} \mathcal{N} & \text{input nodes set} \\ ilde{\mathcal{N}} & \text{perturbation set} \end{aligned}$$

- \Box The smallest value of breakdown point is $1/(|\mathcal{N}_v|+1)$
- \Box The value of the breakdown point can not exceed 1/2

Robust Aggregation Function

☐ The non-robust aggregation function leads to structural vulnerability of GNNs

☐ The output of GNNs can be easily changed by injecting a node with extreme value as feature

Robust Aggregation Function

□ Robust aggregation functions

■ Median

$$a_v = egin{cases} ig(h_{n/2} + h_{(n/2)+1}ig)/2 & n ext{ is even} \ h_{(n+1)/2} & n ext{ is odd} \end{cases}$$

breakdown point = 1/2

Maximum

□ Trimmed mean

breakdown point =
$$\frac{an+1}{n}$$

$$a_v = rac{1}{n-2\lfloor nlpha
floor} \sum_{u=s}^t h_u, s = \lfloor nlpha
floor + 1, t = n - \lfloor nlpha
floor$$

Reference

- ESWC 18, Modeling Relational Data with Graph Convolutional Networks
- WWW 19, Heterogeneous Graph Attention Network
- AAAI 19, Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
- NeurIPS 17, Inductive Representation Learning on Large Graphs
- NeurIPS 18, How Does Batch Normalization Help Optimization?
- ICLR 15, Explaining and Harnessing Adversarial Examples
- ICML 18, Representation Learning on Graphs with Jumping Knowledge Networks
- TKDE 19, Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
- ICLR 20, DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
- arXiv 22, MaskGAE: Masked Graph Modeling Meets Graph Autoencoders
- IJCAI 21, Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
- NeurIPS 16, Variational Graph Auto-Encoders
- IJCAI 21, Understanding Structural Vulnerability in Graph Convolutional Networks

Thank you!

https://github.com/EdisonLeeeee/ICDM2022 competition 3rd place solution (github.com)

Contact me:

lijt55@mail2.sysu.edu.cn

Q & A

https://github.com/EdisonLeeeee/ICDM2022 competition 3rd place solution (github.com)

Contact me:

lijt55@mail2.sysu.edu.cn

