Graph Theory

References:

- Graph Theory by Frank Harary
- Graph theory with Application to computer science by Narasingh Deo

Definition: A graph G = (V, E) consists of a nonempty set V = V(G) whose elements are called vertices (or points, or nodes) of G and a set E(G) of unordered pairs of distinct elements of V(G), whose elements are called edges (or lines, or arc) of G.

Fig.1 Graph G

$$V(G) = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$|V(G)| = 5$$
 and $|E(G)| = 6$

Two vertices in a graph G are said to be adjacent if there is an edge between them.

Example: In fig.1, v_1 is adjacent with v_2 , i. e., $v_1 \sim v_2$

 v_1 is adjacent with v_3 , i. e., $v_1 \sim v_3$ etc.

Two edges are said to be adjacent if they have a vertex in common.

Example: In fig.1, e_1 and e_3 are adjacent, e_1 and e_2 are adjacent, etc.

Fig.1 Graph G

In a definition of a graph G = (V, E), it is possible for the edge set E to be empty.

Such a graph without any edges, is called a null graph.

If a and b are two vertices, and e is the edge between a and b in a graph G, then we say that the edge e is incident with the vertices a and b.

A graph with 'p' vertices and 'q' edges is called a (p, q) graph.

Sub graph: A sub graph H of G is a graph having all of its vertices and edges in G.

If G_1 is a sub graph of G, then G is a **super graph** of G_1 .

A spanning sub graph is a sub graph containing all the vertices of G. For any set S of vertices of G, the *induced sub graph* $\langle S \rangle$ is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in $\langle S \rangle$ if and only if they are adjacent in G.

Example: In Fig.2. G_1 is a induced sub graph of G but G_2 is not; G_2 is a spanning sub graph of G but G_1 is not.

Fig.2. A graph and two sub graphs

The **removal of a vertex** v from a graph G results in that sub graph G - v of G consisting of all vertices of G except v and all edges not incident with v. Thus G - v is the maximal sub graph of G not containing v.

Removal of an edge e from a graph G results in that sub graph G - e of G containing all edges of G except e. Thus G - e is the maximal sub graph of G not containing e.

If two vertices u and v are not adjacent in G, the addition of edge uv results in the minimal super graph of G containing the edge uv.

Fig. 3 Graphs G, G-v, G-e and G+uv

Isomorphic graph: Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their vertex sets which preserves adjacency

Fig.4. Isomorphic graphs

The correspondence between the two graphs in Fig.4 is as follows:

The vertices a, b, c, d, and e correspond to v_1 , v_2 , v_3 , v_4 , and v_5 , respectively. The edges 1, 2, 3, 4. 5 and 6 correspond to e_1 , e_2 , e_3 , e_4 , e_5 , and e_6 , respectively.

Walk: A walk of a graph G is an alternating sequence of vertices and edges $v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n$ beginning and ending with vertices, in which each edge is incident with the two vertices immediately preceding and following it.

A walk is **closed** if $v_0 = v_n$ and is **open** otherwise.

It is a *trail* if all the edges are distinct and a *path* if all the vertices and edges are distinct.

If the walk is closed, then it is a *cycle* provided its n vertices are distinct and $n \ge 3$. A cycle with n vertices denoted by C_n .

Fig. 5 Cycles C_3 , C_4 , C_5 and C_6

The length of a walk $v_0, v_1, v_2, ..., v_n$ is n, the number of occurrence of edges in it.

Distance between two vertices: The distance d(u, v) between two vertices u and v in

G is the length of the shortest path joining them, if any; otherwise $d(u, v) = \infty$.

In a connected graph G,

 $d(u, v) \ge 0$ with d(u, v) = 0 if and only if u = v.

$$d(u,v) = d(v,u)$$

$$d(u,v) + d(v,w) \ge d(u,w)$$

A shortest u-v path is called a **geodesic.**

Eccentricities: The eccentricity e(v) of a vertex v in a connected graph G is maximum of d(u, v) for all u in G.

The radius r(G) is the minimum eccentricity of the vertices of G.

The maximum eccentricity is the diameter. A vertex v is a central vertex if e(v) = r(G), and the center of G is the set of all central vertices.

The *girth* of a graph G, denoted g(G), is the length of a shortest cycle in G; the *circumference* c(G) the length of any longest cycle.

Figure 6. Graph G

$$d(b,d)=2,$$

diameter of G = 3, radius of G = 2

girth g(G) = 3, circumference c(G) = 4