Week-2&3 Notes

Here's a **detailed summary** and **key highlights** of the PowerPoint deck titled "**Product Life Cycle Management - POM510**" (customized lecture by Albert W. DeRitis, Drexel University):

Overall Objective

To provide a comprehensive framework for managing pharmaceutical products throughout their lifecycle—from R&D to end-of-life—by applying Value Stream Management (VSM) and Life Cycle Management (LCM) principles within the Janssen Supply Chain (JSC), part of Johnson & Johnson.

Key Components and Highlights

1. J&J/Janssen Supply Chain Overview

- Global scale: 58,000+ personnel, 125 internal sites, 650 external manufacturers.
- Operations: \$20.4B COGS, 250,000 SKUs daily, 1 billion customers daily.
- Systems: 109 ERP systems, 600 distribution/customer centers.

2. Product Life Cycle Structure

- Matrix team setup: Includes New Product (NP), Compound Development (CD), Chemistry Manufacturing Controls (CMC), and Value Stream (VS) teams.
- Stage-gated development: 12 stages from NME (New Molecular Entity) to Transfer of Ownership (TOO).
- Milestones & Stage Gates:
 - *Milestones* guide technical decisions.
 - Stage Gates are critical decision and investment points.

3. SC Product Management Functions

- New Product Introduction (NPI): Drives tech transfer and launch.
- Life Cycle Management (LCM): Strategic roadmaps, end-of-life, and improvement initiatives.
- Global Planning: E2E planning, capacity, inventory, MRP, S&OP.

- Reliability & Network Support: Ensures quality, resilience, and network optimization.
- Strategic Business Support: Handles licensing, acquisition, and divestiture actions.

4. Value Chain Management (VCM) Framework

- Mission: Deliver E2E integrated product strategies through cross-functional collaboration.
- Organization: Includes standard and extended members based on product needs.

VCL (Value Chain Leader) Key Responsibilities:

- E2E strategy development
- Annual inventory and capacity plan
- $\bullet\;$ Business cases, product changes, risk updates

5. Core Roles in the Value Chain Team (VCT)

- Technical Owner: Manages all technical aspects and project executions.
- Quality Owner: Oversees product quality and PPQS (Proactive Product Quality Scan).
- Regulatory Affairs: Manages compliance, filing strategies, and HA guidance.
- Global Planning Lead: Coordinates supply/demand, planning, and inventory.
- Finance Lead: Financial implications, CAPEX, valuation, and modeling.
- Manufacturing Owner ("Make"): Ensures site-specific supply execution.

VCM: 6 Key Processes

#	Process	Purpose
1.1	Product Strategy Roadmap (PSR)	Define and prioritize long-term strategy
1.2	Product Risk Management (SCRM)	Identify risks by revenue/complexity and develop mitigation
1.3	Sourcing & Network Business Cases	Approve strategic manufacturing transfers

#	Process	Purpose
2	Project Portfolio Management (PPM)	Intake and prioritize projects aligned with strategy
3	Operational Product Management	Dashboard and metrics tracking
4	Issue Management (IMT)	Structured escalation and resolution of supply/quality issues
5	Stakeholder Management	Communication across functions
6	Portfolio Optimization	Delisting, simplification, and resource reallocation

6. Product Typing (Risk-Based Focus)

- Type 1: Critical, no alternatives, high revenue >3.6%.
- Type 2: Limited alternatives, mid-revenue 1.8–3.6%.
- Type 3a/3b: Alternatives available, low impact/revenue <1.8%.

Focus and effort of VSM/VCM is dictated by **product type classification**.

7. Portfolio Optimization

- Focus: Remove complexity, improve profitability, redeploy resources.
- Criteria: Revenue thresholds, gross margins, medical alternatives.
- Governance: Aligns decisions with SC, CDT, and Commercial.

Key Takeaways

- VCM/VSM integrates supply chain, regulatory, finance, and technical functions into one lifecycle strategy.
- VCL is the SPOC (Single Point of Contact) for lifecycle management and cross-functional coordination.
- Product Typing and Risk Classification ensure focus where it matters most.
- End-to-End Strategy (E2E) is crucial to optimize product value, quality, and supply continuity.

Week4-Notes		

Here's a summarized version of **Chapter 2: Executing Strategy** – **Project Management** from the *POM610* PowerPoint slides:

Chapter Summary: Executing Strategy – Project Management

1. Strategic Role of Projects

- Projects are a key mechanism for executing organizational strategies.
- A company's **de facto strategy** is defined more by the **projects it chooses** than by statements or plans.
- Projects must align with the **business case** and provide measurable **strategic benefits**.

2. Project Portfolio Management

- Projects are managed as part of a **portfolio**, also known as the **aggregate project plan**.
- Interactions among projects must be considered.
- ROI alone is not enough to select projects—strategic fit matters more.

3. Project Selection & Ownership

- Not all projects can or should be executed—selection is critical.
- The **project owner** (on behalf of the CEO) ensures strategic alignment, stakeholder engagement, and assists the PM with issues.
- Project Managers (PMs) focus on delivering **outputs**, not benefits.

4. Characteristics of Projects

- Unique, time-bound, goal-specific, with **limited budgets** and **high importance**.
- Require flexibility, minimal middle management, and direct communication between PM and team.

5. Types of Projects

- $1. \ \, {\bf Derivative} \colon {\bf Incremental \ improvements}.$
- 2. Platform: Mid-range enhancements.
- 3. Breakthrough: Next-generation innovations.

6.	Risk and the Iron Triangle
	• Two risk phases: Execution and Benefits Realization .
	• Execution risks involve the Iron Triangle :
	 Missing the deadline Going over budget Failing to meet specifications
7.	The Business Case
	 Details goals, benefits, cost, timeline, risks, and alternatives. Aligns the project with the organization's strategic vision.
8.	Project Life Cycle
	 Projects may follow Stretched-S or Exponential trajectories. These influence output timelines and response to budget cuts or delay
9.	Project Planning Tools
	• Project Charter includes: objectives, scope, milestones, budget, ristakeholders, and evaluation methods.
	• Use of:
	 Work Breakdown Structure (WBS) RACI Matrix (Responsible, Accountable, Consult, Inform) Gantt Charts
10	0. Scheduling and Critical Path
	 Planning: What and in what order. Scheduling: When, how long, which tasks are critical and which has slack.

11. Change Management

- Change Managers help teams adapt to new roles/systems.
- Tools include training, IT, behavioral and social science techniques.

12. Project Management Software

- Tools range from simple to complex (e.g., Microsoft Project).
- Powerful tools are suited for large-scale projects.

13. Agile Project Management

- Involves sprints/iterations of 1–4 weeks.
- Emphasizes team collaboration, adaptability, and customer feedback.
- Benefits: improved outcomes, morale, and satisfaction.

14. Cost-Time Trade-Offs (Crashing)

- If timelines are tight, tasks can be **crashed** (faster execution by adding better or more resources).
- PMs manage these trade-offs to balance cost and completion time.

Key Takeaways

- Projects are strategic tools, not just tactical exercises.
- Successful execution demands structured planning, stakeholder involvement, risk management, and adaptability.
- Tools like WBS, RACI, Agile methods, and software help in precise execution.

Week-5 Notes

Here's a summary and key highlights from Chapter 4: Capacity and Scheduling of the POM510 course slides:

Chapter 4 Summary: Capacity and Scheduling

1. Introduction to Capacity

- Capacity is the rate at which a system can produce output.
- Applies to both manufacturing and service organizations.
- Divided into **short-term** (e.g., staffing adjustments) and **long-term** (e.g., facility construction) decisions.

2. Long-Term Capacity Planning

- Strategic and expensive—hard to reverse once implemented.
- Requires careful analysis of demand, cost, and facility location.

3. Key Capacity Concepts

- Bottlenecks limit overall system output.
- Time dimension must be considered in measuring capacity.
- Capacity planning must account for multiple outputs and natural inefficiencies like defects or waste.

4. Capacity Strategies

- Facility size planning: Larger facilities lower costs (economies of scale), but only when run at optimal capacity.
- **Economies of scope**: Spreading fixed costs across a variety of outputs using flexible technologies.
- Anticyclic output: Adding products/services that offset seasonal or market cycles.

5. Scheduling and Capacity Utilization

- Scheduling determines when tasks should start and finish.
- Poor scheduling can lead to perceived capacity problems.
- Tools: Gantt charts, loading methods (finite vs infinite), operation splitting, and preemption.

6. Scheduling Services

- Focus shifts to matching inputs (labor, materials, facilities) with variable demand.
- Approaches include:
 - Floating workers
 - Overtime
 - Off-peak pricing
 - Use of tech (self-service, automation)

7. Yield/Revenue Management

- Allocating fixed service capacity to maximize revenue.
- Used in industries like airlines, hotels, and subscription-based services.
- Overbooking strategies reduce cost of no-shows (based on the "newsboy problem").

8. Short-Term Capacity Adjustments

Techniques to increase capacity: I. Add Resources – Overtime, part-time workers, leasing II. Improve Resource Use – Cross-training, shift staggering III. Modify Output – Standardization, partial self-service IV. Modify Demand – Pricing, promotions, demand partitioning

9. Process-Flow Analysis

- Mapping product or service flow helps identify bottlenecks, inventory build-up, and time delays.
- Utilization = actual output vs expected output
- **Efficiency** = output/input

10. Learning Curve

- Productivity increases as experience grows.
- $\bullet\,$ Every time output doubles, labor time reduces to a predictable percentage.
- Critical in new or complex process environments.

11. Queuing and Waiting Lines

- Waiting lines (queues) are a central challenge in service operations.
- Perceived wait time is affected by psychological factors:
 - Unoccupied time feels longer
 - Uncertainty or anxiety increases perceived wait
 - Group waiting feels shorter than solo waiting

Key Insights

- Capacity must be **proactively planned**, not just reactively managed.
- Both **technical efficiency** and **customer psychology** play major roles in service capacity.
- Effective scheduling and demand management improve resource utilization and customer satisfaction.

Here's a detailed summary of Chapter 7: Monitoring and Controlling the Processes from the uploaded PowerPoint presentation:

1. Introduction to Monitoring and Control

- Monitoring and control are essential for ensuring that business processes and projects achieve their intended outcomes.
- Organizations must establish measurable indicators to track performance and intervene when necessary.

2. Case Studies on Process Improvement

Columbus Air Mail Center

- Problem: 8.7% late deliveries
- Action: Six Sigma project using a p-chart
- Outcome: 14.3% reduction in late deliveries, \$15,000 savings annually

Movistar / Telefónica

- Problem: Network service reliability
- Action: Six Sigma project
- \bullet Outcome: Dramatic reduction in service interruptions, \$300,000 monthly savings, cost recovered in six months

North Shore-Long Island Jewish Health System

- Problem: Chronic errors in patient accessioning registration
- Solution:
 - Replaced addressograph labels with barcode readers
 - Added training
 - Created a lead accessioner role
- Outcome: Accuracy improved to 99%, capacity increased by 43%

3. Process Monitoring

- Monitoring links planning to control.
- Requires:
 - 1. Identifying key control variables
 - 2. Determining relevant information to collect
- Caution: Too much data can obscure insights.

4. Operational Effectiveness: Maturity Stages

- Internally Neutral: Aim to avoid issues
- Externally Neutral: Match industry standards
- Internally Supportive: Operations align with strategy
- Externally Supportive: Operations influence strategy

5. Balanced Scorecard Approach

- Developed to address limitations of relying solely on financial metrics.
- Purpose: Provide a holistic organizational performance view.

Benefits:

- Clarifies and communicates strategy
- Aligns departmental/personal goals with corporate strategy
- Links strategic objectives to budgets
- Provides timely feedback

Four Perspectives:

- 1. Financial performance
- 2. Customer satisfaction

- 3. Internal processes
- 4. Learning and growth

Strategy Maps:

• Visual tools showing cause-effect links among the four perspectives.

• Help monitor strategic business processes (Figure 7.1 shows a sample map).

6. Quality Standards and Tools

ISO 9000

 A checklist of good business practices covering design, manufacture, and service

• Certification assures standardized practices

ISO 14000/14001

• Focuses on environmental management systems (EMS)

• ISO 14001 is certifiable and evaluates EMS performance

7. Failure Mode and Effects Analysis (FMEA)

- A structured method to identify, evaluate, and prioritize risks in a process
- Steps:
 - 1. Identify failure modes
 - 2. Rate Severity (S), Likelihood (L), and Detection (D)
 - 3. Calculate Risk Priority Number: $\mathbf{RPN} = \mathbf{S} \times \mathbf{L} \times \mathbf{D}$
 - 4. Reduce RPN by lowering S, L, or D
- Illustrated with a fast-food concept example (Table 7.2)

8. Process Control

- Goal: Minimize the gap between planned and actual performance.
- Requires both technical and human interventions.

Features of Good Control Systems:

- Flexible
- Cost-effective
- Simple
- Timely

- Precise
- Ethical
- Easy to maintain and extend

9. Statistical Process Control (SPC)

- Variables Inspection: Quantitative (e.g., weight, length)
- Attributes Inspection: Qualitative (e.g., defect/no defect)

Variation Types:

• Chance Variation: Natural, random

• Assignable Variation: Due to specific issues, must be corrected

10. Control Charts

- Tool to distinguish between assignable and chance variation
- Assume normal distribution of repeated measures
- Process is in control if distribution remains stable

Examples:

- Figure 7.2: Chart with +-3sigma control limits
- Figure 7.3: Shows patterns of process distribution change
- Tables 7.3–7.5: Sample data and calculations
- Figure 7.4: Control limits for a bank monitoring mortgage application age

11. Attribute-Based Control Charts

- p-Chart: Proportion of defects in a binary process
- c-Chart: Number of defects per unit (e.g., scratches)

12. Service Quality Control

- Controlling service processes is more difficult due to intangibility
- Techniques include:
 - Standard operating procedures
 - Customer satisfaction surveys
 - Strategy maps and control charts

13. Managing Service Defections

- Understanding why customers leave can reveal systemic issues
- Feedback helps in recovery strategies
- Change in defection rate is an early warning metric

Here is a **detailed summary** of **Chapter 8: Process Improvement – Six Sigma** from your presentation:

Overview

Chapter 8 focuses on the application, methodology, and strategic value of **Six Sigma** in improving business processes. Real-world examples, tools, and the DMAIC framework are used to explain how organizations drive quality improvement and achieve competitive advantage.

1. Real-World Six Sigma Applications

Hewitt Associates

- Problem: Nearly 100% turnover among customer service (CS) reps.
- Action: Six Sigma project using DMAIC tools.
- **Findings**: High turnover cost the company \$14.5M/year. Key factors—growth, pay, recognition, etc.
- Solution: Improved pay—cost \$600K, saved \$1.9M.

Bank of America

- Problem: High error rates and inefficiencies.
- Action: Quality journey started in 2001, CEO-led.
- Impact: 10,000 employees trained by 2004. Estimated savings: \$2B in 3 years.

Southside Hospital

- Problem: Long turnaround time for stress tests.
- Solution: Six Sigma reduced time by 50%, increased capacity, and cut costs by \$34K.

TRW Corporate Law Department

• Problem: High cost in global trademark renewals.

• Solution: Eliminated unnecessary renewals; saved \$1.8M.

2. What is Six Sigma?

• A disciplined, data-driven approach to eliminate defects.

• Developed by Bill Smith at Motorola (1986).

• "Sigma" refers to standard deviation; "Six Sigma" implies near-perfect quality (3.4 DPMO).

• It's a **flexible system** for achieving and sustaining business success through process improvement.

3. Six Sigma Methodology: DMAIC

Define

• Identify customer requirements, project goals, problem/opportunity.

• Tools: Benchmarking, QFD (Quality Function Deployment).

Measure

• Collect performance data, define metrics (e.g., DPMO, process sigma).

- Understand variation:

$$\sigma_T^2 = \sigma_p^2 + \sigma_m^2$$

Total variation = Process + Measurement variation

Analyze

• Identify root causes of variation using:

- Brainstorming

- Cause-and-effect (Fishbone/Ishikawa) diagrams

- Process capability analysis

Improve

• Develop and test solutions (e.g., **Design of Experiments (DOE)**).

• Use **Taguchi methods** to optimize design while minimizing variability.

Control

 Sustain improvements using monitoring systems and procedures to prevent regression.

14

4. Tools and Concepts in Detail

Benchmarking

- Compare with best-in-class practices, products, or services.
- Industry-independent and proactive.

Quality Function Deployment (QFD)

- Translates customer needs into product/service specifications.
- Tools like the "House of Quality" matrix (Figure 8.4, 8.5).

Process Capability Analysis

- Evaluates whether a process meets specifications.
- Uses capability index (Cpk) and natural variation analysis (Figure 8.9, 8.10).

Design of Experiments (DOE)

- Goes beyond "one factor at a time" testing.
- Determines the interaction effects and optimal factor settings.

Measurement System Analysis

• Examines bias, linearity, and stability in data collection.

5. Creativity and Team Dynamics

- Enhancing Team Creativity:
 - Use analogies, brainwriting, NGT (Nominal Group Technique)
 - Employ trained facilitators
 - Encourage diversity and playful environments
- Threats to Creativity:
 - Social loafing, conformity, production blocking, downward norm setting

6. Organizational Roles in Six Sigma

Role	Responsibility
Master Black Belt	Strategic Six Sigma leader with deep expertise
Black Belt	Leads Six Sigma projects
Green Belt	Supports projects part-time
Yellow Belt	Has basic awareness
Champion	Senior exec who sponsors projects
Process Owner	Operational manager responsible for the process

7. Certification & Customization

- Six Sigma certification is available through:
 - Employers
 - Consulting firms
 - Universities and professional societies
- Programs must be **customized** to an organization's goals and operations.

8. Business Process Design (Reengineering)

- Used when incremental changes aren't enough.
- Key Themes:
 - Radical Redesign (not minor tweaks)
 - Customer Focus
 - Team-based execution
 - Technology Integration
- IBM Credit Example:
 - Original process: multi-department, 6–14 days.
 - New process: consolidated into one role ("deal structurer"); turnaround time = $\mathbf{4}$ hours, throughput $\uparrow 100x$.

Conclusion

- Six Sigma is a powerful methodology for driving quantum-level improvements.
- It enhances customer satisfaction, reduces costs, and builds organizational capability.
- Combined with tools like DMAIC, QFD, and DOE, it provides a comprehensive approach to quality and performance.