

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA; (UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

UNIDAD DE APRENDIZAJE: Aplicaciones de Inteligencia artificial en sistemas embebidos SEMESTRE: VI, VII

nplementa aplicaci				E APRENDIZAJE: a arquitectura de sistemas en	nbebidos.	
CONTENIDOS:	I. Primer ac		a los sis	stemas embebidos bebidos		
	Métodos de enseñan	ıza		Estrategias de aprendiza	ije	
	a) Inductivo		X	a) Estudio de casos		
ORIENTACIÓN DIDÁCTICA:	b) Deductivo		Х	b) Aprendizaje Basado en	Problemas	X
	c) Analógico		X	c) Aprendizaje orientado p	royectos	
	d)			d)		
	Diagnóstica		Х	Saberes Previamente Adquiridos		Х
	Solución de casos			Organizadores gráficos	Organizadores gráficos	
	Problemas resueltos		Х	Problemarios		
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyectos			Exposiciones		
	Reportes de indagación			Otras evidencias a evalu resueltos, programas de co		
	Reportes de prácticas		X	según los requerimientos.		
	Evaluaciones escritas					
	Autor(es)	Año		Título del documento		
	Ashford, E. & Arunkumar, S.	2017	Introd syster	uction to embedded ns.	MIT / 9780262533812	
BIBLIOGRAFÍA	Barkalov, A. et. al.	2019	Found	dations of Embedded ms.	Springer / 9783030119607	
BÁSICA:	Heath S.	2003	Embedded Systems Design.		Newnes / 0750655461	
	*Kaelbling L.	1993	Learn	ing in Embedded Systems.	MIT / 026211	1748
Loving W et al. 2005		2005	Handl	book of Networked and dded Control Systems.	Advisory / 13978081763	32307

a clásica

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

HOJA

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA; (UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL

INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

SEMESTRE: VI, VII

ÁREA DE FORMACIÓN:

MODALIDAD:

Escolarizada

Profesional TIPO DE UNIDAD DE APRENDIZAJE:

Teórica-Práctica/Optativa

VIGENTE A PARTIR DE: Agosto 2022

CRÉDITOS:

TEPIC: 7.5

SATCA: 6.3

INTENCIÓN EDUCATIVA

Esta unidad contribuye al perfil de egreso de la Ingeniería en Inteligencia Artificial desarrollando los conocimientos y habilidades de diseño, desarrollo e implantación de procesos de inteligencia artificial en hardware a la medida para supervisar y gestionar de sistemas inteligentes, aplicando algoritmos. Asimismo, fomenta el liderazgo con ética y responsabilidad social.

La unidad de aprendizaje se relaciona de manera antecedente con Diseño de sistemas digitales y procesamiento de señales, y Visión artificial y de manera lateral con Técnicas de programación para robots móviles, programación de dispositivos móviles, aplicaciones de lenguaje natural y Temas selectos de Inteligencia Artificial.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Implementa aplicaciones en la Inteligencia artificial a partir de la arquitectura de sistemas embebidos.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE:

54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE

AUTÓNOMO: 24.0

S/SEMESTRE:

UNIDAD DE **APRENDIZAJE** DISEÑADA POR: Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General

Consultivo del IPN

21/06/2022

AUTORIZADO Y VALIDADO POR:

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

LIOIA	2	DE	7
HOJA	3	DE	- /

UNIDAD TEMÁTICA I Primer acercamiento a los	CONTENIDO		HORAS CON DOCENTE	
sistemas embebidos			P	1 2 2 3 2
UNIDAD DE COMPETENCIA Identifica las implicaciones de los sistemas embebidos a partir del análisis de problemas y sistemas	1.1 Los sistemas embebidos 1.1.1 Características de los sistemas embebidos 1.1.2 Herramientas para diseño e implementación de sistemas embebidos 1.1.3 Análisis de requerimientos 1.1.4 Clasificación de los sistemas embebidos	2.0		1.0
dinámicos.	1.2 Sistemas dinámicos 1.2.1 Sistemas dinámicos continuos 1.2.2 Sistemas dinámicos discretos 1.2.3 Sistemas híbridos 1.2.4 HDL	4.5		1.0
	1.3 Análisis de problemas 1.3.1 Metodologías de diseño 1.3.2 Requerimientos para implementación de sistemas embebidos 1.3.3 Modos de operación del sistema embebido 1.3.4 Algoritmos de operación del sistema embebido 1.3.5 Principios de interacción entre sistemas	4.5		1.0
	Subtotal	11.0	0.0	3.0

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

HOJA

DF

UNIDAD TEMÁTICA II Arquitectura de sistemas embebidos	CONTENIDO	HOI	HRS AA		
embebidos			P		
UNIDAD DE COMPETENCIA Analiza Sistemas embebidos a partir de sus modelos de programación y técnicas de emulación, depuración y validación.	2.1 Arquitectura de sistemas embebidos 2.1.1 Arquitectura RISC y CISC 2.1.2 Sistemas de memoria 2.1.3 Periféricos de entrada y salida 2.1.4 Desarrollo de Interfaces 2.1.5 Sensores y actuadores 2.1.6 Procesadores y Protocolos de comunicación 2.1.8 Temporizadores, Trampas e interrupciones	3.0	5.0	3.0	
	2.2 Programación en sistemas embebidos 2.2.1 Modelos de programación en microcontroladores 2.2.2 Modelos de programación en hardware reconfigurable 2.2.3 Unidades para manejo de coma flotante 2.2.4 Sistemas operativos y tiempo real 2.2.5 Hilos, Programación multitareas y calendarización de tareas	9.0	5.0	4.0	
•	2.3 Técnicas de emulación, depuración y validación 2.3.1 Simulación en alto nivel 2.3.2 Rendimiento de algoritmos y refinamiento 2.3.3 Análisis de resultados del sistema embebido 2.3.4 Seguridad y privacidad	6.0	5.0	4.0	
	Subtotal	18.0	15.0	11.0	

UNIDAD TEMÁTICA III Aplicaciones de inteligencia artificial	CONTENIDO		HORAS CON DOCENTE	
artificial		T	P	
UNIDAD DE COMPETENCIA	3.1 Aprendizaje de Máquina <i>Machine-Learning</i> 3.1.1 Sistemas reactivos 3.1.2 Sistemas dedicados	12.0	6.0	5.0
Aplica sistemas embebidos	3.1.3 Procesamiento de datos y predicción de eventos			
con base en la robótica	3.1.5 Reconocimiento de imágenes			
autónoma y el aprendizaje	3.1.6 Procesamiento de voz			
de máquina.	3.1.7 Procesamiento de lenguaje natural			
	3.1.8 Identificación de patrones simples y complejos			
	3.2 Robótica Autónoma	13.0		
	3.2.1 Sistemas con interfaz gráfica de usuario dedicado	1.5.5		
	3.2.2 Vehículos autónomos			
	3.2.3 Visión artificial			
	3.2.4 Sistemas embebidos para Robótica industrial			
	Subtotal	25.0		

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

HOJA

5 DE

DE 7

ESTRATEGIAS DE APRENDIZAJE	EVALUACIÓN DE LOS APRENDIZAJES
Estrategia de Aprendizaje Basado en Problemas	E
El alumno desarrollará las siguientes actividades:	Evaluación diagnóstica
Li alumno desarrollara las siguientes actividades.	Portafolio de evidencias:
Desarrollo de conceptos teóricos e indagación	
documental con lo que elaborará organizadores	Organizadores gráficos.
gráficos.	Ejercicios resueltos.
2. Ejercicios de los temas que sean vistos en clase que	Problemas resueltos.
le permita el análisis de los temas.	4. Programas de cómputo funcionando según los
3. Problemas que incorporen los conceptos aprendidos	requerimientos.
para el procesamiento de imágenes digitales.	5. Reporte de prácticas.
4. Elaboración de programas de cómputo según los requerimientos.	1 C - 1 Law 1997 A - 10 - 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1
5. Realización de prácticas.	

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN
1	Sistema con procesador soft-core.	ll ll	
2	Entradas y Salidas (GPIOS) mediante sensores y actuadores.	Ш	
3	Transferencia de datos mediante WPAN o WLAN.	ll ll	
4	Interrupciones y temporizadores dentro de un microcontrolador.	11	300 00 000
5	Sistema embebido con información en tiempo real.	11	Laboratorio de
5 6	Herramientas de simulación.	11	computo.
7	Detección de colores.	- 11	
8	Reconocimiento de frecuencias de voz.	3111	
8	Renderizado de video.	JII	
10	Vehículo terrestre autónomo.	III	
11	Autodiagnóstico y compensación de fallas.	III	
		TOTAL DE HORAS:	27.0

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

HOJA

6 DF

			Bibliografía				
					Documer		nto
Tipo	Autor(es)	Año	Título del documento	Editorial	Libro	Antología	Otros
В	Ashford, E. & Arunkumar, S.	2017	Introduction to embedded systems.	MIT / 9780262533812	Х		
В	Barkalov, A. et al	2019	Foundations of Embedded Systems.	Springer / 9783030119607	х		
С	Elecia W.	2012	Making Embedded Systems: Design Patterns for Great Software.	O'REILLY / S/ISBN	х		
В	Heath S.	2003	Embedded Systems Design.	Newnes / 0750655461	х		
В	*Kaelbling L.	1993	Learning in Embedded Systems.	MIT / 0262111748	Х		
В	Levine, W. et al.	2005	Handbook of Networked and Embedded Control Systems.	Advisory / 139780817632397	x		
С	Marwedel, P.	2021	Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things.	Springer / S/ISBN	х		
			Recursos digitales				
-	Auto	or, año, títu	ulo y Dirección Electrónica	Texto Simulador Imagen	Tutorial Video	Presentació	Diccionario

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Aplicaciones de Inteligencia artificial en sistemas embebidos

HO.JA

DE

PERFIL DOCENTE: Ingeniería en Sistemas, Ingeniería en Informática, posgrado en computación o carrera a fin.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Mínima de dos años en el área. Al menos dos años de docencia a Nivel Superior o posgrado.	En sistemas embebidos y Sistemas Digitales. En Programación de microcontroladores y Programación en HDL. En Electrónica. Del Modelo Educativo Institucional (MEI).	Discursivas Investigativas Metodológicas Conducción del grupo Planificación de la enseñanza Manejo de estrategias didácticas centradas en el aprendizaje Evaluativas Manejo de las TIC	Compromiso social e Institucional Congruencia Empatía Honestidad Respeto Responsabilidad Tolerancia Disponibilidad al cambio Vocación de servicio Liderazgo

