1 Forme Bilineari

1.1 Vettori ortogonali

Definizione Data $\xi \in B(V, \mathbb{K}), v, w$ sono ortogonali a ξ se $\xi(v, w) = 0$

Osservazione (1.1) Il vettore nullo $\underline{0}$ è ortogonale ad ogni $v \in V$, infatti

$$\xi(v,\underline{0}) = \xi(v,0 \cdot \underline{0}) = 0 \, \xi(v,\underline{0}) = 0$$

Sia $A \subseteq V$ un sottoinsieme,

$$A^{\perp} = \{ v \in V \text{ t. c. } \xi(a, v) = 0 \, \forall \, a \in A \}$$

 A^{\perp} si dice spazio ortogonale ad A

Proposizione p.i A^{\perp} è sempre un sottospazio vettoriale

dim. (p.i) Siano $v, w \in A^{\perp}$, $\lambda, \mu \in \mathbb{K}$ e verifichiamo che $\lambda v + \mu w \in A^{\perp}$. Se $a \in A$, risulta

$$\xi(a, \lambda v + \mu w) = \lambda \xi(a, v) + \mu \xi(a, w) = \lambda 0 + \mu 0 = 0$$

$$\implies \lambda v + \mu w \in A^{\perp}$$

In particolare, se $H \subseteq V$ è un sottospazio

 $\implies H^{\perp}$ è un sottospazio.

Proposizione p.ii Siano $v_1, \dots, v_l \in V, \xi \in B(V, \mathbb{K})$. Sono fatti equivalenti

- 1. $v \in V$ ortogonale a tutti i $v_i, \forall i = 1, \dots, l$
- 2. v è ortogonale a $\mathcal{L}(v_1, \dots, v_l)$

dim. (p.ii)

"2. ⇒ 1." È ovvio.

"1. \implies 2." Sia $w \in \mathcal{L}(v_1, \dots, v_l)$

$$\implies w = \lambda_1 v_1 + \dots + \lambda_l v_l$$
, quindi

$$\xi(w,v) = \xi(\lambda_1 v_1 + \dots + \lambda_l v_l, v) = \lambda_1 \xi(v_1, w) + \dots + \lambda_l \xi(v_l, w) = 0$$

 $[\]frac{1}{\xi}$ è bilineare

Sia $\xi \in B(V, \mathbb{K})$, siano W_1, W_2 sottospazi vettoriali di V, W_1 e W_2 sono ortogonali se

$$\xi(w_1, w_2) = 0 \quad \forall w_1 \in W_1, w_2 \in W_2$$

Osservazione (1.2) Se V è uno spazio vettoriale su R, e $\xi = \cdot$ è un prodotto scalare, allora $\forall W \subseteq V$ sottospazio vettoriale, vale:

$$V = W \oplus W^{\perp}$$

Questo non è vero in generale per le forme bilineari: in molti casi

$$W \cap W^{\perp} \neq \{0\}$$

Esempio (1.1) In \mathbb{R}^3 si considera la forma bilineare simmetrica avente forma quadratica

$$Q(x) = x_1^2 - 2x_3^2 - 4x_1x_2 - 2x_1x_3 - 4x_2x_3$$

Sia $W\subseteq\mathbb{R}^3$ il sottospazio vettoriale generato da

$$u_1 = (4, 1, 0)$$
 $u_2 = (3, 0, 1).$

Calcoliamo W^{\perp} .

Sappiamo che $\xi(X,Y) = {}^{t}XAY$, dove

$$A = \begin{pmatrix} -1 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -2 \end{pmatrix}$$

Sappiamo che $x \in W^{\perp} \iff \xi(x, u_1) = \xi(x, u_2) = 0$

$$\xi(x, u_1) = = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} -1 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} = = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 \\ -8 \\ -5 \end{pmatrix} = = 2x_1 - 8x_2 - 5x_3$$

$$\xi(x, u_2) =$$

$$= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} -1 & -2 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 \\ -7 \\ -5 \end{pmatrix} =$$

$$= 2x_1 - 7x_2 - 5x_3$$

$$\implies x \in W^{\perp} \iff \begin{cases} 2x_1 - 8x_2 - 5x_3 = 0\\ 2x_1 - 7x_2 - 5x_3 = 0 \end{cases}$$

Si risolve il sistema
$$\implies \begin{cases} x_1 = 5x_3/2 \\ x_2 = 0 \\ x_3 = x_3 \end{cases}$$

$$\implies W^{\perp} = \mathcal{L}(5/2, 0, 1)$$

Osservazione (1.3) Se $v \in W \cap W^{\perp}$, e $v \neq \underline{0}$

 $\implies \xi(v,v) = \underline{0}$. Se \mathscr{B} è una base di V, risulta che

$${}^{t}(v)_{\mathscr{B}} M^{\mathscr{B}}(\xi) (v)_{\mathscr{B}} = 0$$

con $(v)_{\mathscr{B}} \neq \underline{0}$ in \mathbb{K}^n

 $\implies \exists\, X \in \mathbb{K}^n \text{ con } X \neq \underline{0} \text{ tale che}$

$${}^t X M^{\mathscr{B}}(\xi) X = 0.$$

1.2 Nucleo di una forma bilineare simmetrica

Sia $\xi \in B_S(V, \mathbb{K})$,

$$\ker \xi = \left\{ v \in V \text{ t. c. } \xi(v, w) = 0 \, \forall \, w \in V \right\}$$

Esempio (1.2) Se (V, \cdot) è uno spazio vettoriale Euclideo e $\xi = \cdot$, ker $\xi = \{\underline{0}\}$

Esercizio Verificare che ker ξ è sempre un sottospazio vettoraile di V

Soluzione Risolvere per esercizio

Osservazione (1.4) $\ker(\xi)^{\perp} = V$, infatti

$$\ker(\xi)^{\perp} = \left\{ v \in V \text{ t. c. } \xi(v, w) = 0 \, \forall \, w \in \ker(\xi) \right\} = V$$

Osservazione (1.5) In generale se $W\subseteq V$ è un sottospazio vettoriale, può accadere che

$$(W^{\perp})^{\perp} \neq W$$

Esercizio Su \mathbb{R}^3 si consideri la forma bilineare simmetrica

$$\xi(x,y) = 2x_1y_1 - (x_1y_1 + x_2y_2) + x_1y_3 + x_3y_1 + x_2y_3 + x_3y_2 - 4x_3y_3$$
e il sottospazio vettoriale

$$W = \{X \in \mathbb{R}^3 \text{ t. c. } x_1 + x_2 - x_3 = 0\}$$

Si calcoli $(W^{\perp})^{\perp}$

Soluzione Risolvere per esercizio

Teorema I Sia V uno spazio vettoriale su un campo \mathbb{K} , V finitamente generato, $\xi \in B_S(V, \mathbb{K})$. Sia \mathscr{B} una base di V.

Allora

$$\ker \xi = \left\{ v \in V \text{ t. c. } (v)_{\mathscr{B}} \in \text{nullspace} \left(M^{\mathscr{B}}(\xi) \right) \right\}$$
(1.1)

dim. (I) Sia $\mathscr{B} = \{v_1, \dots, v_n\}$

$$\ker \xi = \{v \in V \text{ t. c. } \xi(v, w) = 0 \,\forall \, w \in V\} = \{v \in V \text{ t. c. } \xi(v, v_i) = 0 \,\forall \, i = 1, \cdots, n\}$$

$$v \in \ker(\xi) \iff \\ \iff \xi(v, v_i) = 0 \,\forall \, i = 1, \cdots, n \iff \\ \iff \xi(x_1 v_1 + \cdots + x_n v_n, v_i) = 0 \,\forall \, i = 1, \cdots, n \iff \\ \iff \sum_{j=1}^n x_j \xi(v_i, v_j) = 0 \,\forall \, i = 1, \cdots, n \iff M^{\mathscr{B}}(\xi)(v)_{\mathscr{B}} = \underline{0} \iff \\ \iff (v)_{\mathscr{B}} \in \text{nullspace} \left(M^{\mathscr{B}}(\xi)\right)$$

Definizione Una forma bilineare simmetrica ξ si dice

- degenere se $\ker \xi \neq \{\underline{0}\};$
- non degenere se $\ker \xi = \{\underline{0}\}$

Dal teorema precedente risulta che in dimensione finita:

$$\xi$$
 non degenere \iff $\det\left(M^{\mathscr{B}}(\xi)\right) \neq 0$

(questa condizione non dipende dalla base che si utilizza).

1.3 Vettori isotropi e cono isotropo

Sia V spazio vettoriale su campo \mathbb{K} (con la caratteristica di \mathbb{K} , $\neq 2$), $\xi \in B_S(V, \mathbb{K})$. Un vettore $v \in V$ si dice isotropo rispetto a ξ se

$$Q_{\mathcal{E}}(v) = 0 \tag{1.2}$$

(cioè $\xi(v,v)=0$).

Si definisce

$$I = \{ v \in V \text{ t. c. } Q_{\xi}(v) = 0 \}$$
 (1.3)

ed è il cono isotropo di ξ .

Osservazione (1.6) Prende il nome di *cono* poiché I, in generale, non è un sottospazio vettoriale (se $v, w \in I$, $Q_{\xi}(v+w) \neq Q_{\xi}(v) + Q_{\xi}(w)$) perché non è in generale chiuso rispetto a "+".

Però se $v \in I$ e $\lambda \in \mathbb{K}$

$$\implies Q_{\mathcal{E}}(\lambda v) = \lambda^2 Q_{\mathcal{E}}(v) = 0$$

$$\forall v \in I, \lambda \in \mathbb{K}, \lambda v \in I.$$

Quindi I non è chiuso rispetto a "+" ma solo rispetto ai prodotti per scalari. Sottoinsiemi di questo tipo si dicono coni.

Osservazione (1.7) $\ker \xi \subseteq I$, infatti se $v \in \ker \xi$

$$\implies \mathcal{E}(v, w) = 0 \ \forall w \in V$$

$$\implies \xi(v,v) = 0$$

$$\implies v \in I$$
.

Se V ha dimensione finita, fisso $\mathscr{B} = \{v_1, \dots, v_n\}$ base di V.

$$I = \{v \in V \text{ t. c. } Q_{\xi}(v) = 0\} = \{v \in V \text{ t. c. } {}^{t}(v)_{\mathscr{B}} M^{\mathscr{B}}(\xi)(v)_{\mathscr{B}} = 0\}$$

Noto che ${}^t\!(v)_{\mathscr B}\,M^{\mathscr B}(\xi)(v)_{\mathscr B}=0$ è un'equazione di secondo grado nelle componenti di $(v)_{\mathscr B}$

Esempio (1.3) Sia su \mathbb{R}^2 la forma quadratica $Q_{\xi}(x) = x_1^2 - x_2^2$

$$I = \{x \in \mathbb{R}^2 \text{ t. c. } Q_{\xi}(v) = 0\} = \{x \in \mathbb{R}^2 \text{ t. c. } x_1^2 = x_2^2\} =$$

$$= \{x \in \mathbb{R}^2 \text{ t. c. } x_1 = \pm x_2\} =$$

$$= \{x \in \mathbb{R}^2 \text{ t. c. } x_1 = +x_2\} \cup \{x \in \mathbb{R}^2 \text{ t. c. } x_1 = -x_2\} =$$

$$= \mathcal{L}((1,1)) \cup \mathcal{L}((1,-1))$$

I è unione di due rette, I non è sun sottospazio vettoriale di \mathbb{R}^2 .

Teorema II Sia V spazio vettoriale su campo \mathbb{K} , e $\xi \in B_S(V, \mathbb{K})$ non degenere, sia $W \subseteq V$ un sottospazio vettoriale.

$$\implies \dim(W^{\perp}) = \dim V - \dim W$$

dim. (II) Sia $\mathscr{B} = \{v_1, \dots, v_n\}$ una base di V e supponiamo dim W = h.

- $h = 0 \implies \dim W = 0$
 - $\implies W = \{0\}$
 - $\implies W^{\perp} = V$
 - $\implies \dim W^{\perp} = \dim V 0$
- $h \neq 0$. Sia $\{w_1, \dots, w_h\}$ una base di W, sia $A = M^{\mathscr{B}}(\xi)$. Sia $C \in \mathbb{K}^n$

$$C = \begin{pmatrix} (w_1)_{\mathscr{B}} \\ \vdots \\ (w_h)_{\mathscr{B}} \end{pmatrix}$$

Le righe di C sono le componenti dei votteri della base di W rispetto alla base B, ${}^tC = ((w_1)_{\mathscr{B}}, \cdots, (w_h)_{\mathscr{B}})$

$$W^{\perp} = \{ v \in V \text{ t. c. } \xi(w_i, v) = 0 \,\forall i = 1, \dots, h \}$$

 $\xi(w_i, v) = 0 \iff {}^t\!(w_i)_{\mathscr{B}} A(v)_{\mathscr{B}} = 0$ quindi

$$W^{\perp} = \left\{ v \in V \text{ t. c. } CA(v)_{\mathscr{B}} = \underline{0} \right\}$$

Quindi W^{\perp} sono i vettori $v \in V$ tali che $(v)_{\mathscr{B}} \in \text{nullspace}(CA)$, rank(C) = h e rank $(A) = n^2$, ovvero la dimensione di V

 \implies rank(CA) = A. Per il teorema di nullità più rango si ottiene che

$$\dim \text{nullspace}(CA) = n - h = \dim V - \dim W$$

1.4 Basi ortogonali, Teorema di Lagrange

Sia V uno spazio vettoriale su \mathbb{K} (caratteristica di $\mathbb{K} \neq 2$), supponiamo V finitamente generato e $\xi \in B_S(V, \mathbb{K})$. Sia $\mathscr{B} = \{v_1, \dots, v_n\}$ una base di V.

Definizione \mathscr{B} è ortogonale se $\xi(v_i, v_j) = 0 \ \forall i, j = 1, \dots, n, e \ i \neq j$.

 $[\]frac{1}{2}$ qui si usa ξ non degenere

Osservazione (1.8) Se B è una base ortogonale

 $\implies M^{\mathscr{B}}(\xi)$ è diagonale

$$\implies Q_{\xi}(V) = \sum_{i=1}^{n} a_{ii} x_i^2$$
, dove $(v)_{\mathscr{B}} = (x_1, \dots, x_n)$

Teorema III (di Lagrange) Nelle nostre ipotesi esiste sempre una base ortogonale

dim. (III) Per induzione su $n = \dim V$.

- Se n = 1, ogni base è ortogonale.
- \bullet Supponiamo l'enunciato vero per spazi vettoriali $n\text{-}\mathrm{dimensionali},$ e supponiamo $\dim V = n+1$
 - $\operatorname{Se} \xi(v, w) = 0 \ \forall v, w \in V$
 - ⇒ ogni base è ortogonale.
 - Supponiamo che esista $v_1 \in V$ tale che $\xi(v_1, v_1) \neq 0$

Sia
$$W = \mathscr{L}(v_1)^{\perp}$$
.

$$W = \{v \in V \text{ t. c. } \xi(v, v_1) = 0\}$$

Sia

$$F_1: V \to \mathbb{K}$$

 $v \mapsto \xi(v, v_1)$

 F_1 è lineare poiché ξ è bilineare, e $W = \ker F_1$, dim $\mathbb{K} = 1$

$$\implies$$
 dim $W \ge n$, ma poiché $F_1(v_1) \ne 0$

$$\implies$$
 dim $W = n$, ma W non contiene v_1

$$\implies V = W \oplus L(v_1)$$

Si usa l'ipotesi induttiva

$$\implies \exists \{w_2, \cdots, w_{n+1}\}$$
 base ortogonale di W

$$\implies \{v_1, w_2, \cdots, w_{n+1}\}$$
 base ortogonale di V .

Corollario Ogni matrice $A \in \mathbb{K}^{n,n}$ simmetrico è congruente ad una matrice diagonale, cioè esiste $P \in GL(n, \mathbb{K})$ tale che $P^{-1}AP$ è diagonale.

Osservazione (1.9) Se \mathbb{K} è algebricamente chiuso (es. $\mathbb{K} = \mathbb{C}$)

 \implies ogni base ortogonale può essere modificata in modo che sia ortogonale e $\xi(v_i, v_i) \in 0, 1$, infatti se $\xi(v_i, v_i) = a_i$ con $a_i \neq 0$, poiché \mathbb{K} algebricamente chiuso $\exists b_i \in \mathbb{K}$ tale che $b_i^2 = a_i$, e quindi sostituendo a $v_i, v_i/b_i$ si ottiene

$$\xi(v_i/b_i, v_i/b_i) = 1$$

Proposizione p.iii Siano $A, B \in \mathbb{K}^{n,n}$ due matrici simmetriche, con \mathbb{K} campo algebricamente chiuso.

A, B sono simili \iff rank $A = \operatorname{rank} B$

dim. (p.iii)

" \Longrightarrow " Ovvia e sempre vera.

" \Leftarrow " Per il teorema di Lagrange entrambe sono simili ad una matrice diagonale. Poiché $\mathbb K$ è algebricamente chiuso, per le matrici diagonali si può assumere che abbiano solo 0 e 1 sulla diagonale.

 $\implies \exists P,Q \in \mathrm{GL}(n,\mathbb{K})$ tale che ${}^t\!PAP = D_1$ e ${}^t\!QBQ = D_2, \, D_1$ e D_2 matrici diagonali aventi solo 0 e 1 sulla diagonale.

Posso supporre

$$D_1 = \left(\frac{\mathrm{Id}_r \mid 0}{0 \mid 0}\right)$$

dove Id_r è l'identità $r \times r$ e

$$D_2 = \left(\frac{\mathrm{Id}_s \mid 0}{0 \mid 0}\right)$$

dove Id_s è l'identità $s \times s$

Poiché rank $A = \operatorname{rank} B$ risulta r = s

$$\implies D_1 = D_2$$

$$\implies {}^{t}PAP = {}^{t}QBQ$$

 $\implies A, B$ simili, poiché stanno nella stessa classe di equivalenza.