TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Probeklausur

Mathematik für Physiker 1 (Lineare Algebra)

Modul MA 9201

16. Dezember 2013, 14:15 - 15:30 Uhr

Prof. Dr. Dr. Eric Sonnendrücker Dr. Katharina Kormann, Dr. Holger Heumann

Musterlösung

Aufgabe 1. Kern (9 Punkte)

Die folgende Matrix beschreibt eine lineare Abbildung:

$$A = \begin{pmatrix} 1 & 0 & 0 & -4 & 1 \\ -1 & -4 & -4 & 0 & 11 \\ -3 & -3 & -3 & 9 & 6 \\ -2 & -4 & -4 & 4 & 10 \end{pmatrix}$$

Bestimmen Sie eine Basis des Kerns der durch A dargestellten Abbildung.

LÖSUNG:

Durch Gauß-Elemination bringt man die Matrix auf Zeilenstufenform:

Das Bild hat also Dimension 2, der Kern folglich Dimension 3. Jetzt kann man die einzelnen Basisvektoren ausrechnen. Dabei wählt man x_5, x_4, x_3 frei und linear unabhängig, am geschicktesten einen 1 und die anderen beiden 0. x_2 und x_1 ergeben sich dann daraus.

$$x_5 = 1$$
 $x_5 = 0$ $x_4 = 0$ $x_4 = 0$ $x_4 = 1$ $x_5 = 0$ $x_4 = 0$ $x_4 = 0$ $x_3 = 0$ $x_3 = 0$ $x_3 = 1$ $x_2 - 3x_5 = 0$ $x_2 = 3$ $x_2 + x_4 = 0$ $x_2 = -1$ $x_2 + x_3 = 0$ $x_2 = -1$ $x_1 + x_5 = 0$ $x_1 = -1$ $x_1 - 4x_4 = 0$ $x_1 = 4$ $x_1 = 0$ $x_1 = 0$

Eine mögliche Basis dieses Kerns lautet also:

$$B = \left\{ \begin{pmatrix} -1\\3\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 4\\-1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0\\0 \end{pmatrix} \right\}$$

Alternativ zum separaten Suchen nach den einzelnen Basis-Vektoren kann man auch nach allen gleichzeitig suchen, indem man beim Lösen des homogenen Gleichungssystems drei Parameter frei wählt:

$$x_{5} \in \mathbb{R} \qquad x_{5} = \lambda$$

$$x_{4} \in \mathbb{R} \qquad x_{4} = \mu$$

$$x_{3} \in \mathbb{R} \qquad x_{3} = \tau$$

$$x_{2} + x_{3} + x_{4} - 3x_{5} = x_{2} + \tau + \mu - 3\lambda = 0 \qquad x_{2} = 3\lambda - \mu - \tau$$

$$x_{1} - 4x_{4} + x_{5} = x_{1} - 4\mu + \lambda = 0 \qquad x_{1} = -\lambda + 4\mu$$

$$Kern(A) = \left\{ \lambda \cdot \begin{pmatrix} -1\\3\\0\\0\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 4\\-1\\0\\1\\0 \end{pmatrix} + \tau \cdot \begin{pmatrix} 0\\-1\\1\\0\\0 \end{pmatrix} \middle| \lambda, \mu, \tau \in \mathbb{R} \right\}$$

Aus dieser Lösungsmenge kann man die oben bereits angegebene Basis ebenfalls ablesen. In dieser Schreibweise wurde angenommen, dass der zugrundeliegende Vektorraum ein Vektorraum über $\mathbb R$ ist, aber für andere Körper, die die verwendeten Zahlen enthalten, also insbesondere auch über $\mathbb C$, wäre das Ergebnis das gleiche.

Aufgabe 2. Nicht ganz linear (1+1+2+4=8 Punkte)

Gegeben seien die folgenden Gleichungen in drei reellwertigen Variablen:

$$\begin{array}{ll} \text{I:} & a=2c\\ \text{II:} & a-1=b+c\\ \text{III:} & 2(1-b)=a(2-c) \end{array}$$

- a) Geben Sie an, welche dieser Gleichungen nicht linear sind.
- b) Notieren Sie das Gleichungssystem, das aus den übrigen (linearen) Gleichungen gebildet wird, in Matrix-Notation, also als

$$M \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \vec{v}$$

Geben Sie die Matrix M und den Vektor \vec{v} konkret an.

- c) Bestimmen Sie die Lösungsmenge des in Teilaufgabe b) bestimmten linearen Gleichungssystems.
- d) Geben Sie die Menge aller Vektoren $(a, b, c)^T \in \mathbb{R}^3$ an, die alle vorgegebenen Gleichungen erfüllen, also auch die nicht linearen.

Lösung:

- a) Die Gleichung III ist nicht linear.
- b) Einfach Gleichungssystem wie gewohnt notieren:

$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

c) Zeilenstufenform erhält man im Kopf, indem man die 0 in der ersten Zeile ausnutzt. Man kann also direkt auflösen.

$$c \in \mathbb{R}$$

$$c = \lambda$$

$$a - 2c = 0$$

$$a = 2\lambda$$

$$b = \lambda - 1$$

$$\mathbb{L}_c = \left\{ \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$$

d) Man kann jetzt die nicht-lineare Gleichung als Gleichung in λ auffassen.

$$2(1 - (\lambda - 1)) = 2\lambda(2 - \lambda)$$
$$2(2 - \lambda) = 2\lambda(2 - \lambda)$$
$$4 - 2\lambda = 4\lambda - 2\lambda^{2}$$
$$(4 - 2\lambda)(1 - \lambda) = 0$$

$$\lambda_1 = 2$$

$$\lambda_2 = 1$$

$$\mathbb{L}_d = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \right\}$$

Aufgabe 3. Eigenschaften linearer Abbildungen (5+5=10 Punkte)

Sei $\vec{F}:V\to W$ eine lineare Abbildung zwischen zwei K-Vektorräumen V und W. Beweisen Sie die folgenden Aussagen.

- a) Ist \vec{F} injektiv und $(\vec{v}_1, \dots, \vec{v}_n)$ linear unabhängig in V, so ist $(\vec{F}(\vec{v}_1), \dots, \vec{F}(\vec{v}_n))$ linear unabhängig in W
- b) Sei $(\vec{v}_1, \dots, \vec{v}_n)$ eine Basis von V und seien die Vektoren $\vec{w}_i \in W$ definiert durch $\vec{w}_i = \vec{F}(\vec{v}_i)$. Wenn \vec{F} surjektiv, so ist $(\vec{w}_1, \dots, \vec{w}_n)$ ein Erzeugendensystem von W.

<u>Lösung:</u>

a) Wir zeigen, dass der Nullvektor nur die trivial Darstellung hat:

$$\vec{0} = \sum_{i} \lambda_{i} \vec{F}(\vec{v}_{i}) \overset{linear}{\Rightarrow} \vec{0} = \vec{F}(\sum_{i} \lambda_{i} \vec{v}_{i}) \overset{injektiv}{\Rightarrow} \vec{0} = \sum_{i} \lambda_{i} \vec{v}_{i} \Rightarrow \lambda_{1} = \lambda_{2} = \dots \lambda_{n} = 0$$

Der letzte Schritt folgt, weil $(\vec{v}_1, \dots \vec{v}_n)$ linear unabhängig.

b) Da $(\vec{v}_1, \dots, \vec{v}_n)$ eine Basis von V ist, lässt sich jedes $\vec{x} \in V$ als Linearkombination schreiben. Nutzt man die Linearität der Abbildung aus, so erhält man

$$\vec{F}(\vec{x}) = \vec{F}(\sum_{i=1}^{n} \lambda_i \vec{v}_i) = \sum_{i=1}^{n} \lambda_i \vec{F}(\vec{v}_i) = \sum_{i=1}^{n} \lambda_i \vec{w}_i.$$

Folglich gilt also $\vec{F}(V) = \vec{F}(\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n)) = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$. Da aber \vec{F} nach Annahme surjektiv ist, gilt auch $\vec{F}(V) = W$ und damit $W = \operatorname{Span}(\vec{w}_1, \dots, \vec{w}_n)$.

Aufgabe 4. Lineare Abbildungen (1+1+1=3 Punkte)

Sei \vec{f} eine lineare Abbildung eines K-Vektorraums V in einen K-Vektorraum W, d.h. es gilt:

L1:
$$\vec{f}(\vec{v}_1 + \vec{v}_2) = \vec{f}(\vec{v}_1) + \vec{f}(\vec{v}_2)$$
 für alle $\vec{v}_1, \vec{v}_2 \in V$,

$$L2: \vec{f}(\lambda \vec{v}) = \lambda \vec{f}(\vec{v})$$
 für alle $\vec{v} \in V, \lambda \in K$

Welche der folgenden Aussagen sind richtig, welche Aussagen sind falsch? Begründen Sie jeweils ihre Antwort, indem Sie die Aussage aus den Axiomen L1 und L2 herleiten oder ein Gegenbeispiel angeben.

- a) $\vec{f}(\vec{0}) = \vec{0}$.
- b) $\vec{f}(-\vec{v}) = -\vec{f}(\vec{v})$.
- c) $\vec{f}(V) = W$.

Lösung:

a) Richtig. Für beliebiges $\vec{v} \in V$ gilt:

$$\vec{f}(\vec{v}) = \vec{f}(\vec{v} + \vec{0}) = \vec{f}(\vec{v}) + \vec{f}(\vec{0}).$$

- b) Richtig. $-\vec{v}$ ist das Negative von \vec{v} , d.h. $-\vec{v}+\vec{v}=\vec{0}$. Damit gilt aber nach (a) $\vec{0}=\vec{f}(\vec{0})=\vec{f}(-\vec{v}+\vec{v})=\vec{f}(-\vec{v})+\vec{f}(\vec{v})$.
- c) Falsch, z.B. $V=W=\mathbb{R}$ und $\vec{f}(\vec{v})=\vec{0}$ für alle \vec{v} , d.h $\vec{f}(V)=\{\vec{0}\}\neq W$.

Aufgabe 5. Ein Körper von Matrizen (4+8+3=15 Punkte)

Sei

$$M := \left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\} \subset \mathcal{M}(2 \times 2, \mathbb{R}).$$

a) Finden Sie zu gegebenem $A \in M \setminus \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}$ diejenige Matrix $B \in M$, so dass

$$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- b) Zeigen Sie, dass M mit der gewöhnlichen Matrizenaddition und Multiplikation ein Körper ist. Hinweis: Sie können voraussetzen, dass die Menge $\mathcal{M}(2 \times 2, \mathbb{R})$ mit der gewöhnlichen Matrizenaddition und Multiplikation ein Ring ist.
- c) Zeigen Sie, dass die Abbildung $F: M \to \mathbb{C}, A = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \mapsto x + \mathrm{i} y$ ein bijektiver Gruppenhomomorphismus von der Gruppe (M,\cdot) nach der Gruppe (\mathbb{C},\cdot) ist.

LÖSUNG:

a) Wir bestimmen $A \cdot B$

$$A \cdot B = F \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \cdot \begin{pmatrix} \widetilde{x} & \widetilde{y} \\ -\widetilde{y} & \widetilde{x} \end{pmatrix} = \begin{pmatrix} x\widetilde{x} - y\widetilde{y} & x\widetilde{y} + y\widetilde{x} \\ -x\widetilde{y} - y\widetilde{x} & x\widetilde{x} - y\widetilde{y} \end{pmatrix}$$

Wir habe $A \cdot B = E_2$, genau dann wenn die Einträge $\widetilde{x}, \widetilde{y}$ von B, das folgende lineare Gleichungssytem erfüllen.

$$x\widetilde{x} - y\widetilde{y} = 1$$
$$x\widetilde{y} + y\widetilde{x} = 0$$

Wir machen die Fallunterscheidung x = 0 und $x \neq 0$:

- x = 0: Dann gilt $y \neq 0$ und wir finden: $\widetilde{y} = -\frac{1}{y}$ und $\widetilde{x} = 0$.
- $x \neq 0$:

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} x & y \\ 0 & \frac{y^2}{x} + x \end{pmatrix} \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = \begin{pmatrix} 1 \\ -\frac{y}{x} \end{pmatrix}$$

Wir finden $\widetilde{y} = -\frac{y}{y^2 + x^2}$ und $\widetilde{x} = \frac{x}{y^2 + x^2}$

Also gilt in jedem Fall

$$B = \frac{1}{x^2 + y^2} \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

b) Es gilt $M \subsetneq \mathcal{M}(2 \times 2; \mathbb{R})$. Zunächst müssen wir zeigen, dass M abgeschlossen ist bezüglich Addition und Multiplikation. Seien $A, B \in M$, d.h. $A = \begin{pmatrix} x_1 & y_1 \\ -y_1 & x_1 \end{pmatrix}, B = \begin{pmatrix} x_2 & y_2 \\ -y_2 & x_2 \end{pmatrix}$ mit $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Dann gilt

$$A+B = \begin{pmatrix} x_1 + x_2 & y_1 + y_2 \\ -y_1 - y_2 & x_1 + x_2 \end{pmatrix} = \begin{pmatrix} x_3 & y_3 \\ -y_3 & x_3 \end{pmatrix} \in M,$$

wobei $x_3 = x_1 + x_2 \in \mathbb{R}$ und $y_3 = y_1 + y_2 \in \mathbb{R}$. Ferner gilt

$$A \cdot B = \begin{pmatrix} x_1x_2 - y_1y_2 & x_1y_2 + y_1x_2 \\ -y_1x_2 - x_1y_2 & -y_1y_2 + x_1x_2 \end{pmatrix} = \begin{pmatrix} x_1x_2 - y_1y_2 & x_1y_2 + y_1x_2 \\ -(x_1y_2 + y_1x_2) & x_1x_2 - y_1y_2 \end{pmatrix} = \begin{pmatrix} x_3 & y_3 \\ -y_3 & x_3 \end{pmatrix} \in M,$$

wobei $x_3 = x_1x_2 - y_1y_2 \in \mathbb{R}$ und $y_3 = x_1y_2 + y_1x_2 \in \mathbb{R}$. Da $\mathcal{M}(2 \times 2; \mathbb{R})$ ein Ring ist und M abgeschlossen ist, gilt

- (M, +) abelsche Gruppe
- (M, \cdot) Halbgruppe
- Distributivgesetze

Es bleibt also zu zeigen,

- (M, \cdot) kommutativ
- (M,\cdot) ein Einselement besitzt und alle $A\in M^*$ ein Inverses besitzen.

Wir gehen der Reihe nach vor:

• Seien
$$A = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}, B = \begin{pmatrix} \widetilde{x} & \widetilde{y} \\ -\widetilde{y} & \widetilde{x} \end{pmatrix} \in M$$
. Dann gilt

$$A \cdot B = \begin{pmatrix} x\widetilde{x} - y\widetilde{y} & x\widetilde{y} + y\widetilde{x} \\ -x\widetilde{y} - y\widetilde{x} & x\widetilde{x} - y\widetilde{y} \end{pmatrix} = B \cdot A$$

• $E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M$ ist das Einselement, da

$$E_n \cdot A = A \cdot E_n = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = A$$

- Sei nun $A = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$. Wenn A nicht die Nullmatrix ist, ist die Matrix $A^{-1} = \frac{1}{x^2 + y^2} \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ definiert und es gilt $A^{-1}A = E_2$.
- c) Definiere $G: \mathcal{C} \to M, x + \mathrm{i} y \mapsto A = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$.

Es gilt $F \circ G = G \circ F = id$, weshalb F bijektiv ist.

Die Verträglichkeit folgt aus:

$$F(A \cdot B) = F(\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \cdot \begin{pmatrix} \widetilde{x} & \widetilde{y} \\ -\widetilde{y} & \widetilde{x} \end{pmatrix}) = F(\begin{pmatrix} x\widetilde{x} - y\widetilde{y} & x\widetilde{y} + y\widetilde{x} \\ -x\widetilde{y} - y\widetilde{x} & x\widetilde{x} - y\widetilde{y} \end{pmatrix}) = x\widetilde{x} - y\widetilde{y} + i(x\widetilde{y} + y\widetilde{x})$$

und

$$F(A) \cdot F(B) = F(\begin{pmatrix} x & y \\ -y & x \end{pmatrix}) \cdot F(\begin{pmatrix} \widetilde{x} & \widetilde{y} \\ -\widetilde{y} & \widetilde{x} \end{pmatrix}) = (x+iy) \cdot (\widetilde{x}+i\widetilde{y}) = x\widetilde{x} - y\widetilde{y} + i(x\widetilde{y}+y\widetilde{x})$$

Aufgabe 6. Teilmengen von Vektorräumen (10 Punkte)

Sind die folgenden Teilmengen U von \mathbb{R}^n Vektorräume oder nicht? Begründen Sie jeweils Ihre Antwort.

a)
$$U = \{(x_1, x_2, \dots x_n) \in \mathbb{R}^n, x_1 = x_2 = \dots x_n\}$$

b)
$$U = \{(x_1, x_2, \dots x_n) \in \mathbb{R}^n, x_1 = 1\}$$

c)
$$U = \{(x_1, x_2, \dots x_n) \in \mathbb{R}^n, x_1^2 = 0\}$$

d)
$$U = \{(x_1, x_2, \dots x_n) \in \mathbb{R}^n, x_1^2 - x_2^2 = 0\}$$

Lösung:

- a) Ist ein VR. Wir zeigen die Unterraumkriterien:
 - U ist nicht leer, da z.B. $(0,0,0...) \in U$.
 - Abgeschlossenheit bezüglich Addition: $(a,a,\dots),(b,b,\dots)\in U\Rightarrow (a,a,\dots)+(b,b,\dots)=(a+b,a+b,\dots)\in U.$
 - Abgeschlossenheit bezüglich Multiplikation bzg. Skalaren: $(a, a, ...) \in U \Rightarrow \lambda(a, a, ...) = (\lambda a, \lambda a, ...) \in U$.

Alternativ zeigt man alle Vektorraumaxiome.

- b) Ist kein VR, da $\vec{0}$ nicht enthalten.
- c) Ist ein VR. Wir zeigen die Unterraumkriterien:
 - U ist nicht leer, da z.B. $(0,0,0...) \in U$
 - Abgeschlossenheit bezüglich Addition: $(0, x_2, \dots), (0, y_2, \dots) \in U \Rightarrow (0, x_2, \dots) + (0, y_2, \dots) = (0, x_2 + y_2, \dots) \in U$.
 - Abgeschlossenheit bezüglich Multiplikation bzg. Skalaren: $(0, x_2, \dots) \in U \Rightarrow \lambda(0, x_2, \dots) = (0, \lambda x_2, \dots) \in U$.

Alternativ zeigt man alle Vektorraumaxiome.

d) Ist kein VR, da $(2,-2,\dots) \in U$ und $(1,1,\dots) \in U$ aber deren Summe $(2+1,-2+1,\dots) = (3,-1,\dots) \notin U$.