Fourier Transforms! PHYS 250 (Autumn 2018) – Lecture 13

David Miller

Department of Physics and the Enrico Fermi Institute University of Chicago

November 15, 2018

Outline

- Reminders
 - Reminders from Lecture 12
- Follow-up with the Square Wave
 - Square Wave
- 3 Extension to the Fourier Transform
 - Euler's Formula
 - Fourier Transforms

Reminders from last time

We discussed both Poisson's equation and Fourier Series in the last lecture.

PDEs and Fourier Series

- PDEs: Poisson's Equation
 - We discussed and then wrote a function for computing the solution to Poisson's equation
 - Specifically, we elaborated on how we could structure the (relatively simple) function in order to take various constraints (i.e. sources) for the solution into account more easily
- Fourier Series:
 - Started discussing the basics of Fourier Series
 - Evaluated, computationally, the coefficients of a simple series for both a square and sawtooth wave

Today we will go much more in depth with Fourier Transforms and Analysis! This will be a mixture of Python Notebooks and Lecture Slides

Outline

- Reminders
 - Reminders from Lecture 12
- 2 Follow-up with the Square Wave
 - Square Wave
- 3 Extension to the Fourier Transform
 - Euler's Formula
 - Fourier Transforms

Square Wave

First, I want to do a little follow-up with the Fourier Series for the **square** wave function that we discussed last time.

Recall that we determined the coefficients of a sine and cosine expansion to be:

$$a_n = \frac{2}{n\pi} \sin\left(n\omega_0 \frac{\pi}{2}\right) \tag{1}$$

which yields a discrete function:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$
 (2)

Now open up the Fourier-Transforms-Analysis.ipynb jupyter notebook so that we can look at this in more detail!

Outline

- Reminders
 - Reminders from Lecture 12
- Follow-up with the Square Wave
 - Square Wave
- 3 Extension to the Fourier Transform
 - Euler's Formula
 - Fourier Transforms

Euler's Formula

We can generalize this by making use of Euler's Formula.

Euler's formula states that for any real number ϕ :

$$e^{i\phi} = \cos(\phi) + i\sin(\phi)$$
 (3)

When $\phi = \pi$, Euler's formula evaluates to

$$e^{i\pi} + 1 = 0, (4)$$

which is known as Euler's identity.

The implication is that it is possible to recover the amplitude of each wave in a Fourier series using an integral, which has many useful properties (in particular, that it's then continuous).

Fourier Transforms (I)

I will use the following definitions for the Fourier transform $\hat{f}(\xi)$ of a function f(x), where x typically represents either a **spatial or time domain**, and ξ typically represents a corresponding inverse notion of **spatial or time frequency**.

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\xi x} dx \tag{5}$$

The **inverse transform** is then obtained via

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{2\pi i\xi x}d\xi \tag{6}$$

In the case of spatial coordinates, x denotes length and ξ denotes inverse wavelength: $\xi = \frac{1}{\lambda}$. In the time domain, x denotes time and ξ denotes frequency. In the case that x = t is in seconds, but ξ is **angular** frequency ω then a factor of 2π appears to get the normalization correct.

Fourier Transforms (II)

In the case of spatial coordinates, x denotes length and ξ denotes inverse wavelength: $\xi = \frac{1}{\lambda}$. In the time domain, x denotes time and ξ denotes frequency. In the case that x = t is in seconds, but ξ is **angular** frequency ω then a factor of 2π appears to get the normalization correct.

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega t}d\omega$$
(8)

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega$$
 (8)

Since
$$\omega = 2\pi \xi = \frac{2\pi}{\lambda}$$
.

The $\frac{1}{\sqrt{2\pi}}$ factor in both these integrals is a common normalization in

quantum mechanics but maybe not in engineering where only a single $\frac{1}{2\pi}$ factor is often used.

If $\hat{f}(\omega)$ or f(t) are known analytically or numerically, the Fourier transform integrals can be evaluated using the integration techniques studied earlier.

If $\hat{f}(\omega)$ or f(t) are known analytically or numerically, the Fourier transform integrals can be evaluated using the integration techniques studied earlier.

In practice, the signal f(t) is measured, or **sampled** at just a finite number N of times t, and these are what we must use to approximate the transform.

If $\hat{f}(\omega)$ or f(t) are known analytically or numerically, the Fourier transform integrals can be evaluated using the integration techniques studied earlier.

In practice, the signal f(t) is measured, or **sampled** at just a finite number N of times t, and these are what we must use to approximate the transform.

The resultant **discrete Fourier transform (DFT)** is an approximation both because the signal is not known for all times and because we integrate numerically.

If $\hat{f}(\omega)$ or f(t) are known analytically or numerically, the Fourier transform integrals can be evaluated using the integration techniques studied earlier.

In practice, the signal f(t) is measured, or **sampled** at just a finite number N of times t, and these are what we must use to approximate the transform.

The resultant **discrete Fourier transform (DFT)** is an approximation both because the signal is not known for all times and because we integrate numerically.

Once we have a discrete set of transforms, they can be used to reconstruct the signal for any value of the time.

If $\hat{f}(\omega)$ or f(t) are known analytically or numerically, the Fourier transform integrals can be evaluated using the integration techniques studied earlier.

In practice, the signal f(t) is measured, or **sampled** at just a finite number N of times t, and these are what we must use to approximate the transform.

The resultant **discrete Fourier transform (DFT)** is an approximation both because the signal is not known for all times and because we integrate numerically.

Once we have a discrete set of transforms, they can be used to reconstruct the signal for any value of the time.

In this way the DFT can be thought of as a technique for interpolating, compressing, and extrapolating data.

Discussion

Do you see any issues with this "sampling"?

Discussion

Do you see any issues with this "sampling"?

The DFT algorithm results from evaluating the integral not from 1 to +1 but rather from time 0 to time T over which the signal is measured, and from approximating the integration of the integral by computing a discrete sum:

$$\hat{f}(\omega_n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega_n t} dt$$
 (9)

$$\simeq \frac{1}{\sqrt{2\pi}} \int_0^T f(t)e^{-i\omega_n t} dt \tag{10}$$

$$\simeq \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{N} h f(t_k) e^{-i\omega_n t_k}$$
 $(h \equiv \text{stepsize})$ (11)

$$\simeq \frac{h}{\sqrt{2\pi}} \sum_{k=1}^{N} f_k e^{-2\pi i k n/N} \tag{12}$$

$$\hat{f}_n \equiv \frac{\hat{f}(\omega_n)}{h} = \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{N} f_k e^{-2\pi i k n/N}$$
(13)

We then need the inverse as well, which we can obtain with $d\omega \to 2\pi/Nh$ we invert the \hat{f}_n

$$f_k = \frac{1}{\sqrt{2\pi}} \sum_{n=1}^{N} \frac{2\pi}{Nh} \hat{f}_n e^{-i\omega_n t}$$
 (14)

Once we know the N values of the transform \hat{f}_n , we can use this expression to evaluate f(t) for any time t. The frequencies ωn are determined by the number of samples taken and by the total sampling time T = Nh as

$$\omega_n = n \frac{2\pi}{Nh} \tag{15}$$

Clearly, the larger we make the time T=Nh over which we sample the function, the smaller will be the frequency steps or resolution. Accordingly, if you want a smooth frequency spectrum, you need to have a small frequency step $2\pi/T$.

Lastly, we can simplify this expression to yield a clear computational approach:

$$f_k = \frac{\sqrt{2\pi}}{N} \sum_{n=1}^{N} Z^{-nk} \hat{f}_n \qquad (Z = e^{-2\pi i/N})$$
 (16)

$$\hat{f}_n = \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{N} Z^{nk} f_k \qquad (n = 0, 1, \dots, N)$$
 (17)

With this formulation, the computer needs to compute only powers of Z.