

Visualizing Gradient Descent

Computer Vision

Carnegie Mellon University (Kris Kitani)

(partial) derivatives

tell us how much one variable affects another

Two ways to think about them:

Slope of a function

Knobs on a machine

1. Slope of a function:

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\frac{\partial f(\boldsymbol{x})}{\partial x}, \frac{\partial f(\boldsymbol{x})}{\partial y} \right]$$

describes the slope around a point

2. Knobs on a machine:

2. Knobs on a machine:

2. Knobs on a machine:

small change in parameter Δw_1

output will change by

 $\frac{\partial f(x)}{\partial w_1} \Delta w_1$

