Nội dung Chương 6

1. Tích phân mặt loại 1

2. Tích phân mặt loại 2

Định nghĩa

Cho hàm f(x, y, z) xác định trên mặt cong S.

Chia S thành n mặt con: S_1, S_2, \dots, S_n rời nhau (không chồng lên nhau).

Diện tích tương ứng: ΔS_1 , ΔS_2 , ..., ΔS_n .

Trên mỗi mặt S_i lấy điểm $M_i(x_i, y_i, z_i)$ tùy ý.

Lập tổng Riemann:

$$I_n = \sum_{i=1}^n f(M_i). \Delta S_i$$

 $I = \lim_{n \to \infty} I_n$, không phụ thuộc cách chia mặt cong S, và cách lấy điểm M_i .

$$I = \iint\limits_{S} f(x, y, z) dS$$

được gọi là tích phân mặt loại 1 của hàm f(x, y, z) trên mặt S.

Tính chất

- 1. f(x, y, z) liên tục trên mặt cong tron S thì khả tích trên S.
- 2. Diện tích của mặt S:

$$\iint_{S} dS$$
.

- 3. $\iint_{S} (kf + mg)dS = k \iint_{S} fdS + m \iint_{S} gdS$
- 4. Nếu $S = S_1 \cup S_2$ thì:

$$\iint_{S} f dS = \iint_{S_1} f dS + \iint_{S_2} f dS.$$

Cách tính

Cho hàm f(x, y, z) xác định trên mặt cong S: z = z(x, y).

Chia S thành n mặt con: S_1, S_2, \dots, S_n rời nhau (không chồng lên nhau).

Diện tích tương ứng: ΔS_1 , ΔS_2 , ..., ΔS_n .

Trên mỗi mặt S_i lấy điểm $M_i(x_i, y_i, z_i)$ tùy ý.

Lập tổng Riemann:

$$I_n = \sum_{i=1}^n f(M_i). \Delta S_i$$

Trong phần ứng dụng tích phân kép (tính diện tích mặt cong), ta có:

$$\Delta S_i \approx \sqrt{\left[z_x'(x_i, y_i)\right]^2 + \left[z_y'(x_i, y_i)\right]^2 + 1 \cdot S(D_i)}$$

$$= \sqrt{\left[z_x'(x_i, y_i)\right]^2 + \left[z_y'(x_i, y_i)\right]^2 + 1 \cdot \Delta x \Delta y}$$

Cách tính

Do đó:
$$I_{n} = \sum_{i=1}^{n} f(M_{i}) \cdot \Delta S_{i}$$

$$\approx \sum_{i=1}^{n} f(x_{i}, y_{i}, z_{i}) \cdot \sqrt{\left[z'_{x}(x_{i}, y_{i})\right]^{2} + \left[z'_{y}(x_{i}, y_{i})\right]^{2} + 1} \cdot \Delta x \Delta y$$

$$= \sum_{i=1}^{n} f(x_{i}, y_{i}, z_{i}(x_{i}, y_{i})) \cdot \sqrt{\left[z'_{x}(x_{i}, y_{i})\right]^{2} + \left[z'_{y}(x_{i}, y_{i})\right]^{2} + 1} \cdot \Delta x \Delta y$$

$$\Rightarrow I = \lim_{n \to \infty} I_{n} \text{ hay } \iint_{S} f(x, y, z) dS = \iint_{D_{xy}} f(x, y, z) \cdot \sqrt{\left[z'_{x}\right]^{2} + \left[z'_{y}\right]^{2} + 1} \cdot dx dy$$

$$= \iint_{D_{xy}} f(x, y, z(x, y)) \cdot \sqrt{\left[z'_{x}\right]^{2} + \left[z'_{y}\right]^{2} + 1} \cdot dx dy$$

Cách tính

1. Chiếu mặt cong S lên mp Oxy

Nếu S có phương trình z = z(x, y)

và S có hình chiếu trên mp Oxy là D_{xy} :

$$\iint\limits_{S} f(x,y,\overline{z})dS = \iint\limits_{D_{xy}} f(x,y,\overline{z}(x,y)) \sqrt{1 + (z'_x)^2 + (z'_y)^2} dxdy$$

Cách tính

2. Chiếu mặt cong S lên mp Oxz

Nếu S có phương trình y = y(x, z)và S có hình chiếu trên mp Oxz là D_{xz} :

$$\iint_{S} f(x, y, z) dS = \iint_{D_{xz}} f(x, y(x, z), z) \sqrt{1 + (y'_{x})^{2} + (y'_{z})^{2}} dx dz$$

3. Chiếu mặt cong S lên mp Oyz

Nếu S có phương trình x = x(y, z)và S có hình chiếu trên mp Oyz là D_{vz} :

$$\iint_{S} f(x,y,z)dS = \iint_{D_{yz}} f(x(y,z),y,z) \sqrt{1 + (x'_{y})^{2} + (x'_{z})^{2}} dydz$$

Chú ý

Nếu hình chiếu của S xuống mặt phẳng Oxy chỉ là một đường cong (trường hợp này xảy ra khi S là một mặt trụ có đường sinh song song với trục Oz) thì phải chiếu S xuống các mặt phẳng tọa độ khác, không được chiếu xuống mặt phẳng Oxy.

Ví dụ

Tính $I = \iint_S x^2 dS$, trong đó S là hình cầu đơn vị: $x^2 + y^2 + z^2 = R^2$.

Do các hàm dưới dấu tích phân là hàm chẵn, và mặt cầu đối xứng qua các mặt phẳng tọa độ.

$$I = \iint_{S} x^2 dS = \iint_{S} y^2 dS = \iint_{S} z^2 dS$$

Do đó:
$$I = \frac{1}{3} \iint_{S} (x^2 + y^2 + z^2) dS = \frac{R^2}{3} \iint_{S} dS = \frac{4\pi R^4}{3}$$

Ví dụ

Tính $I = \iint (x^2 + y^2 + z^2) dS$, trong đó S là phần của mặt nón $z = \sqrt{x^2 + y^2}$ nằm giữa hai mặt phẳng z = 0 và z = 3.

$$D_{xy} = \{(x, y) : x^2 + y^2 \le 9\}$$

Phương trình mặt nón: $z = \sqrt{x^2 + y^2}$

$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} \qquad \frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$$

Ví dụ

$$I = \iint_{S} (x^{2} + y^{2} + z^{2}) dS = 2 \iint_{D_{xy}} (x^{2} + y^{2}) \sqrt{2} dx dy$$

Chuyển sang hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$

$$D_{r\varphi} = \{(r, \varphi) : 0 \le r \le 3, 0 \le \varphi \le 2\pi\}$$

$$I = 2\sqrt{2} \iint_{D_{r\varphi}} r^2 \cdot r \cdot dr d\varphi = 2\sqrt{2} \int_{0}^{2\pi} d\varphi \int_{0}^{3} r^3 dr = 81\sqrt{2}\pi$$

Ví dụ

Tính $I = \iint_S z dS$, trong đó S là phần của mặt paraboloid $z = 2 - x^2 - y^2$ trong miền $z \ge 0$.

$$D_{xy} = \{(x, y): x^2 + y^2 \le 2\}$$

Phương trình mặt S: $z = 2 - x^2 - y^2$

$$\frac{\partial z}{\partial x} = -2x \qquad \qquad \frac{\partial z}{\partial y} = -2y$$

$$dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2} dxdy = \sqrt{1 + 4(x^2 + y^2)} dxdy$$

Ví dụ

$$I = \iint_{S} z dS = \iint_{D_{xy}} (2 - x^{2} - y^{2}) \sqrt{1 + 4(x^{2} + y^{2})} dx dy$$

Chuyển sang hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$

$$D_{r\varphi} = \{(r, \varphi): 0 \le r \le \sqrt{2}, 0 \le \varphi \le 2\pi\}$$

$$I = \iint_{D_{r\varphi}} (2 - r^2) \sqrt{1 + 4r^2} \cdot r \cdot dr d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} (2 - r^2) \sqrt{1 + 4r^2} \cdot r dr$$

$$=\frac{37}{10}\pi$$

Ví dụ

Tính $I = \iint_S (x^2 + y^2) dS$, trong đó S là phần nửa trên của mặt cầu:

$$x^2 + y^2 + z^2 = R^2, z \ge 0.$$

$$z = \sqrt{R^2 - x^2 - y^2}$$

$$D_{xy} = \{(x, y): x^2 + y^2 \le R^2\}$$

Phương trình mặt S: $z = \sqrt{R^2 - x^2 - y^2}$

18-Apr-20

TS. Nguyễn Văn Quang Đai học Công nghệ - ĐHQGHN

Ví dụ

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}} \; ; \; \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \to dS = \frac{R}{\sqrt{R^2 - x^2 - y^2}} dxdy$$

Chuyển sang hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$

$$D_{r\varphi} = \{(r, \varphi): 0 \le r \le R, 0 \le \varphi \le 2\pi\}$$

$$I = \iint_{D_{r\varphi}} r^2 \cdot \frac{R}{\sqrt{R^2 - r^2}} \cdot r \cdot dr d\varphi = R \int_{0}^{2\pi} d\varphi \int_{0}^{R} \frac{r^3}{\sqrt{R^2 - r^2}} dr$$

$$=\frac{4\pi R^4}{3}$$

Ví dụ

Tính
$$I = \iint_S (x+y+z) dS$$
, trong đó S cho bởi: $x+y+z=1$ và $x \geq 0, y \geq 0, z \geq 0$.

TS. Nguyễn Văn Quang Đại học Công nghệ - ĐHQGHN

Ví dụ

Tính
$$I = \iint_S (x+y+z) dS$$
, trong đó S cho bởi: $x+y+z=1$ và $x \geq 0, y \geq 0, z \geq 0$.

$$I = \iint_{D_{xy}} [x + y + (1 - x - y)] \sqrt{1 + 1 + 1} dx dy$$

$$= \sqrt{3} \int_{0}^{1} dx \int_{0}^{1-x} dy = \frac{\sqrt{3}}{2}$$

Ví dụ

Tính $I = \iint_S (x + y + z) dS$, trong đó S là mặt xung quanh hình chóp cho bởi:

 $x + y + z \le 1, x \ge 0, y \ge 0, z \ge 0.$

Mặt S gồm 4 mặt của tứ diện OABC.

Tích phân I_1 trên mặt ABC đã tính trong ví dụ trước.

Ta tính tích phân trên các mặt còn lại \underbrace{OAB}_{I_2} , \underbrace{OBC}_{I_3} , \underbrace{OCA}_{I_4} .

18-Apr-20 TS. Nguyễn Văn Quang Đại học Công nghệ - ĐHQGHN

Trên mặt OAB, phương trình của mặt là: z = 0.

Hình chiếu của mặt xuống Oxy là tam giác OAB.

$$I_2 = \iint_{OAB} [x + y + 0]\sqrt{1 + 0 + 0} dx dy = \int_0^1 dx \int_0^{1 - x} (x + y) dy = \frac{1}{3}$$

Tích phân trên các mặt còn lại tính tương tự.

$$\rightarrow I = 1 + \frac{\sqrt{3}}{2}$$

Ví dụ

Tính diện tích nửa trên mặt cầu bán kính R và diện tích toàn bộ mặt cầu.

$$S = \iint_{S} dS = \iint_{D_{xy}} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy = R \int_{0}^{2\pi} d\varphi \int_{0}^{R} \frac{r}{\sqrt{R^{2} - r^{2}}} dr$$

$$=2\pi R^2$$

Diện tích toàn bộ mặt cầu bằng 2 lần diện tích nửa mặt cầu và bằng $4\pi R^2$.

Ví dụ

Tính diện tích của mặt cong S, trong đó S là phần của mặt paraboloid

$$z = 2 - x^2 - y^2$$
 lấy trong phần $0 \le z \le 1$.

Ví dụ

Phương trình mặt S: $z = 2 - x^2 - y^2$

Do đó: $z'_x = -2x$, $z'_y = -2y$

$$D(x,y) = \{(x,y): 1 \le x^2 + y^2 \le \sqrt{2}\}$$

Diện tích mặt S: $I = \iint_S dS = \iint_{D(x,y)} \sqrt{1 + 4(x^2 + y^2)} dxdy$

Đổi biến qua hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$

$$D(r,\varphi) = \{(r,\varphi): 0 \le \varphi \le 2\pi, 1 \le r \le \sqrt{2}\}$$

Ví dụ

Do đó, diện tích mặt S:
$$I = \iint_{D(r,\varphi)} \sqrt{1 + 4r^2} \cdot r \cdot dr d\varphi$$

$$= \int_0^{2\pi} d\varphi \int_1^{\sqrt{2}} r\sqrt{1 + 4r^2} dr$$

$$=\pi\left(\frac{9}{2}-\frac{5\sqrt{5}}{6}\right)$$

Định nghĩa mặt 2 phía

Cho mặt cong S. Di chuyển vector pháp tuyến của S từ một điểm A nào đó theo một đường cong (kín) tùy ý.

Nếu khi quay lại vị trí xuất phát, vector pháp tuyến không đổi chiều thì mặt cong S được gọi là mặt hai phía.

Trong trường hợp ngược lại, vector pháp tuyến đổi chiều thì mặt cong S được gọi là mặt một phía.

Ví dụ

Mặt Mobius tạo bằng cách lấy 1 hình chữ nhật ABCD, sau đó vặn cong hình chữ nhật này để điểm A chạm vào điểm C, điểm D chạm vào điểm B. Khi đó mặt Mobius là mặt 1 phía.

18-Apr-20

TS. Nguyễn Văn Quang Đại học Công nghệ - ĐHQGHN

Ví dụ

Mặt cầu, mặt nón, mặt bàn... là mặt 2 phía.

Mặt cầu

Định nghĩa mặt định hướng

S là mặt cong hai phía.

Nếu trên mặt S ta qui ước một phía là dương, phía còn lại là âm thì mặt S được gọi là mặt định hướng.

Vector pháp tuyến của mặt định hướng là vector pháp tuyến hướng về phía dương của mặt định hướng.

Ví dụ

Tìm vector pháp tuyến của mặt cầu $x^2 + y^2 + z^2 = 4$ tại $A(1,0,\sqrt{3})$ biết phía ngoài của mặt cầu là phía dương.

Phương trình nửa trên mặt cầu: $z = \sqrt{4 - x^2 - y^2}$

Vector pháp tuyến:
$$\mathbf{l} = (-z'_x, -z'_y, 1) = \left(\frac{x}{\sqrt{4 - x^2 - y^2}}, \frac{y}{\sqrt{4 - x^2 - y^2}}, 1\right)$$

Vector pháp tuyến tại điểm A: $\mathbf{l} = \left(\frac{1}{\sqrt{3}}, 0, 1\right)$

Ví dụ

Tìm vector pháp tuyến của mặt nón $z = \sqrt{x^2 + y^2}$ tại $A(1,1,\sqrt{2})$

biết phía dương của mặt nón là phía dưới nhìn từ hướng của trục Oz.

Phương trình mặt nón: $z = \sqrt{x^2 + y^2}$

Vecto pháp tuyến:
$$\mathbf{l} = (z'_x, z'_y, -1) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, -1\right)$$

Vecto pháp tuyến tại điểm A: $\mathbf{l} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -1\right)$

Định nghĩa

P(x,y,z), Q(x,y,z), R(x,y,z) xác định trên mặt định hướng S.

Vector pháp tuyến đơn vị của mặt S là: $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$.

 α , β , γ lần lượt là góc hợp bởi \mathbf{n} với các trục Ox, Oy, Oz.

Tích phân mặt loại một
$$I = \iint_S (P \cdot \cos \alpha + Q \cdot \cos \beta + R \cdot \cos \gamma) dS$$

được gọi là tích phân mặt loại hai của P, Q, R trên mặt định hướng S lấy theo hướng dương của mặt S, khi đó:

$$I = \iint_{S^+} Pdydz + Qdzdx + Rdxdy$$

Định nghĩa

Định lý

Cho S là mặt định hướng các hàm P(x, y, z), Q(x, y, z), R(x, y, z) liên tục trên mặt S. Khi đó tích phân mặt loại 2 luôn tồn tại.

Tính chất

• Tích phân mặt loại 2 có các tính chất tương tự như đối với tích phân đường loại 2.

$$\iint\limits_{S^+} P dy dz + Q dz dx + R dx dy = -\iint\limits_{S^-} P dy dz + Q dz dx + R dx dy$$

Cách tính

Nếu $\mathbf{F} = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ là trường vector liên tục xác định trên mặt định hướng S, hướng dương của S trùng với vector pháp đơn vị \mathbf{n} , thì tích phân mặt của \mathbf{F} trên S là:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS$$

Nếu S được cho bởi hàm vector $\mathbf{r}(u, v)$, thì:

$$\iint_{S} \mathbf{F} \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|} dS = \iint_{D(u,v)} \left[\mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|} \right] \cdot |\mathbf{r}_{u} \times \mathbf{r}_{v}| dudv$$

$$= \iint_{D(u,v)} \mathbf{F}(\mathbf{r}(u,v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dudv$$

Cách tính

Các hàm P(x,y,z), Q(x,y,z), R(x,y,z) xác định trên mặt định hướng S: z = z(x,y).

Vector pháp tuyến đơn vị hướng về phía dương của mặt S: $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$.

$$\cos \alpha = \frac{\mp z_x'}{\sqrt{1 + (z_x')^2 + (z_y')^2}}, \cos \beta = \frac{\mp z_y'}{\sqrt{1 + (z_x')^2 + (z_y')^2}}, \cos \gamma = \frac{\pm 1}{\sqrt{1 + (z_x')^2 + (z_y')^2}}$$

Mặt khác:
$$dS = \frac{dxdy}{|\cos y|} = \sqrt{1 + (z'_x)^2 + (z'_y)^2} dxdy.$$

Do đó,
$$I = \iint_{S} (P \cdot \cos \alpha + Q \cdot \cos \beta + R \cdot \cos \gamma) dS$$

= $\iint_{D_{xy}} \left[P \cdot (\mp z'_x) + Q \cdot (\mp z'_y) + R \cdot (\pm 1) \right] dx dy.$

Cách tính

Cho S là mặt định hướng có phương trình: z = z(x, y).

Hình chiếu của S trên mp Oxy là miền D_{xy} .

Vector pháp tuyến: $\mathbf{l} = (A, B, C) = \pm (-z_x', -z_y', 1)$.

Dấu (+), (-) được chọn sao cho I hướng về phía dương của mặt S.

$$\iint\limits_{S^+} P dy dz + Q dz dx + R dx dy = \iint\limits_{D_{xy}} (PA + QB + RC) dx dy$$

Cách tính

Cho S là mặt định hướng có phương trình: x = x(y, z).

Hình chiếu của S trên mp Oyz là miền D_{yz} .

Vector pháp tuyến: $\mathbf{l} = (A, B, C) = \pm (1, -x_y', -x_z')$.

Dấu (+), (-) được chọn sao cho I hướng về phía dương của mặt S.

$$\iint\limits_{S^+} P dy dz + Q dz dx + R dx dy = \iint\limits_{D_{yz}} (PA + QB + RC) dy dz$$

Cách tính

Cho S là mặt định hướng có phương trình: y = y(x, z).

Hình chiếu của S trên mp Oxz là miền $D_{\chi z}$.

Vector pháp tuyến: $\mathbf{l} = (A, B, C) = \pm (-y_x', 1, -y_z')$.

Dấu (+), (-) được chọn sao cho l hướng về phía dương của mặt S.

$$\iint\limits_{S^+} P dy dz + Q dz dx + R dx dy = \iint\limits_{D_{xz}} (PA + QB + RC) dx dz$$

Ví dụ

Tính
$$I = \iint_{S^+} y dy dz + x dz dx + z dx dy$$
.

Trong đó S^+ là phía ngoài của vật thể được giới hạn bởi các mặt:

$$z = 1 - x^2 - y^2$$
, $z = 0$.

$$I = \iint_{S^+} y dy dz + x dz dx + z dx dy =$$

$$= \iint_{S_1^+} y dy dz + x dz dx + z dx dy +$$

$$+\iint_{S_2^+} y dy dz + x dz dx + z dx dy$$

$$S_1: z = 1 - x^2 - y^2$$
. Do đó:

$$z_x' = -2x, z_y' = -2y$$

Hình chiếu của S_1 xuống mặt phẳng Oxy là miền:

$$D_{xy} = \{(x, y) : x^2 + y^2 \le 1\}$$

$$\mathbf{l} = (-z_x', -z_y', 1)$$

$$\iint\limits_{S_1^+} y dy dz + x dz dx + z dx dy = \iint\limits_{S_1^+} y dy dz + x dz dx + (1 - x^2 - y^2) dx dy =$$

$$= \iint_{D_{xy}} \left(-z_x' \cdot y - z_y' \cdot x + (1 - x^2 - y^2)\right) dx dy = \iint_{D_{xy}} (1 + 4xy - x^2 - y^2) dx dy$$

Chuyển sang hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$.

$$D_{r\varphi} = \{(r, \varphi): 0 \le r \le 1, 0 \le \varphi \le 2\pi\}$$

Do đó:

$$\iint\limits_{D_{xy}} (1+4xy-x^2-y^2)dxdy = \iint\limits_{D_{r\varphi}} (1+4r^2cos\varphi sin\varphi-r^2). r. drd\varphi =$$

$$=\int_{0}^{2\pi}\int_{0}^{1}(r-r^{3}+4r^{3}cos\varphi sin\varphi)drd\varphi=\int_{0}^{2\pi}\left(\frac{1}{4}+cos\varphi sin\varphi\right)d\varphi=\frac{\pi}{2}$$

$$S_2$$
: $z = 0$. Do đó:

$$z_x' = z_y' = 0$$

Hình chiếu của S_2 xuống mặt phẳng Oxy là miền:

$$D_{xy} = \{(x, y) : x^2 + y^2 \le 1\}$$

$$\iint\limits_{S_2^+} y dy dz + x dz dx + z dx dy = \iint\limits_{S_2^+} y dy dz + x dz dx + 0. dx dy$$

$$= \iint\limits_{D_{xy}} (y.0 + x.0 + 0.-1) dx dy = \iint\limits_{D_{xy}} 0. dx dy = 0$$

$$I = \iint_{S^+} y dy dz + x dz dx + z dx dy = \frac{\pi}{2}$$

Ví dụ

Tính $\iint_{S^+} (2x+y) dy dz + (2y+z) dz dx + (2z+x) dx dy.$

Trong đó S^+ là phía phần của mặt phẳng x + y + z = 3 nằm trong hình trụ $x^2 + y^2 = 2x$, phía dương là phía dưới nhìn từ hướng dương của Oz.

$$S: z = 3 - x - y$$
. Do đó:
 $z'_x = z'_y = -1$.

 S^+ là phía dưới nhìn từ hướng dương của trục Oz.

Vector pháp tuyến của mặt S có dạng: $\mathbf{l} = (z_x', z_y', -1)$.

$$D_{xy} = \{(x, y) : x^2 + y^2 \le 2x\}$$

$$\iint_{S^+} (2x+y)dydz + (2y+z)dzdx + (2z+x)dxdy =$$

$$= \iint_{S^+} (2x+y)dydz + (2y+3-x-y)dzdx + (6-2x-2y+x)dxdy$$

$$= \iint_{D_{xy}} \left[(2x+y)z_x' + (y-x+3)z_y' - 1.(6-x-2y) \right] dxdy$$

$$= -9 \iint\limits_{D_{xy}} dx dy$$

$$=-9.S_{D_{xy}}=-9\pi$$

Ví dụ

Tính
$$I = \iint_{S^+} (x+z) dx dy$$

Trong đó S^+ là phần của mặt phẳng z = 2 - x giới hạn bởi mặt $z = x^2 + y^2$, phía dương là phía dưới nhìn từ hướng dương của trục Oz.

$$S: z = 2 - x$$
. Do đó:

$$z_x' = -1, z_y' = 0.$$

 S^+ là phía dưới nhìn từ hướng dương của trục Oz.

Vector pháp tuyến của mặt S có dạng: $\mathbf{l} = (z'_x, z'_y, -1)$.

$$D_{xy} = \{(x,y): x^2 + y^2 \le 2 - x\} = \{(x,y): (x + \frac{1}{2})^2 + y^2 \le \frac{9}{4}\}$$

$$I = \iint_{S^+} (x+z)dxdy = \iint_{S^+} (x+(2-x))dxdy = \iint_{S^+} 2dxdy =$$

$$= \iint_{D} 2. -1. \, dx dy = -2. \, S_{D_{xy}} = -2\pi \left(\frac{3}{2}\right)^2 = -\frac{9\pi}{2}$$

Ví dụ

Tính I =
$$\iint_{S^+} yz dx dy$$
, trong đó S^+ là phía ngoài của vật thể: Ω : $x^2 + y^2 \le R^2$; $x \ge 0, y \ge 0, 0 \le z \le h$

Mặt S được chia thành 5 mặt gồm:

- Hai mặt đáy S_1 , S_2 .
- Hai mặt bên S_3 , S_4 nằm trong mp: y = 0, x = 0.
- Mặt trụ cong S_5 .

$$I = \iint_{S^{+}} yzdxdy = \iint_{S^{+}_{1}} yzdxdy +$$

$$+ \iint_{S^{+}_{2}} yzdxdy + \iint_{S^{+}_{3}} yzdxdy +$$

$$+ \iint_{S^{+}_{4}} yzdxdy + \iint_{S^{+}_{5}} yzdxdy.$$

$$S_3$$
: $y = 0$ nên $\iint_{S_3^+} yz dx dy = \iint_{D_{xz}} (0.0 + 0. -1 + yz.0) dx dz = 0.$

$$S_4$$
: $x = 0$ nên $\iint_{S_4^+} yz dx dy = \iint_{D_{yz}} (0.-1 + 0.0 + yz.0) dy dz = 0.$

$$S_5$$
: $x = \sqrt{R^2 - y^2}$ nên $\iint_{S_5^+} yz dx dy = \iint_{D_{yz}} (0.1 + 0. -x_y' + yz.0) dy dz = 0.$

$$S_1$$
: $z = 0$ nên $\iint_{S_1^+} yz dx dy = \iint_{D_{xy}} (0.0 + 0.0 + y. 0. -1) dx dy = 0.$

$$S_2$$
: $z = h \rightarrow z_x' = z_y' = 0$. Vector pháp tuyến của mặt S_2 : $\mathbf{l} = (0,0,1)$

$$D = \{(x, y): x^2 + y^2 \le R^2, x \ge 0, y \ge 0\}$$

$$I = \iint_{S_2^+} yz dx dy = h \iint_{D_{xy}} y dx dy$$

Chuyển sang hệ tọa độ cực: $x = r \cos \varphi$, $y = r \sin \varphi$.

$$D_{r\varphi} = \{(r, \varphi): 0 \le r \le R, 0 \le \varphi \le \pi/2\}$$

$$I = \iint_{S_2^+} yz dx dy = h \iint_{D_{r\varphi}} rsin\varphi \cdot r \cdot dr d\varphi =$$

$$= h \int_{0}^{\pi/2} sin\varphi d\varphi \int_{0}^{R} r^{2} dr =$$

$$=h\frac{R^3}{3}$$