Machine Learning

Introducción

Christian Oliva Moya Luis Fernando Lago Fernández

Grado en Ingeniería Informática UAM

Máster en Inteligencia Computacional y Sistemas Interactivos UAM

Doctorando en Ingeniería Informática y Telecomunicaciones UAM

Profesor Ayudante Dpto. Ingeniería Informática

Grupo de Neurocomputación Biológica

christian.oliva@uam.es

Licenciatura en Ciencias **Físicas y Matemáticas** UAM

Doctor en **Ingeniería Informática** UAM

Profesor Titular Dpto. Ingeniería Informática

Grupo de Neurocomputación Biológica

luis.lago@uam.es

Investigación

Neurocomputación Biológica (Neuroscience)

Aprendizaje Automático (Machine Learning)

Redes Neuronales (Neural Networks)

Aprendizaje Profundo (Deep Learning)

Interpretabilidad-Explicabilidad (XAI)

Formación

Objetivos del curso

Parte 1: Machine Learning

- Entender los conceptos básicos del Machine Learning (ML)
- Comprender los fundamentos de los algoritmos de ML
- Implementar modelos de ML utilizando la librería Scikit-Learn

Parte 2: Redes Neuronales

- Conocer los fundamentos de las redes neuronales artificiales y el Deep Learning
- Diseñar redes neuronales optimizando los hiperparámetros
- Implementar redes neuronales utilizando las librerías Tensorflow, Keras y Pytorch

Contenido del curso

Parte 1: Machine Learning

- Introducción al Machine Learning
- Introducción a los modelos de ML: KNN y árboles de decisión
- Clustering: jerárquico, basado en centroides, mezcla de Gaussianas, densidades
- Evaluación de modelos: métricas y validación
- Preprocesamiento, etiquetado y extracción de características
- Selección de atributos, filtros, wrappers. Reducción de dimensionalidad
- SVM, conjuntos de clasificadores, series temporales y otras formas de aprendizaje

Contenido del curso

Parte 2: Redes neuronales

- Introducción al Deep Learning
- Definición de una neurona: Regresión lineal y logística
- Arquitectura de una red neuronal básica: Multi-Layer Perceptron
- Aprendizaje: descenso por gradiente y Backpropagation
- Aspectos prácticos del Deep Learning: funciones de activación, funciones de coste, inicialización de pesos, regularización, dropout, técnicas de optimización, etc.
- Tuning de hiperparámetros

Conocimientos previos

Antes de iniciar el curso, se da por hecho que todos tenéis conocimiento en:

- Cálculo
- Álgebra lineal
- Probabilidad y estadística
- Programación en python
- Manejo de las librerías Pandas, Numpy y Matplotlib

¿Qué es la inteligencia artificial?

- La inteligencia artificial (IA) es un campo de la informática que se centra en la creación de sistemas que pueden realizar tareas que normalmente requieren inteligencia humana.
- La IA se basa en la capacidad de tomar decisiones automatizadas y lógicas para abordar problemas y tareas específicas.

• Queremos desarrollar un sistema con Inteligencia Artificial para diferenciar salmonetes de sardinas.

¿Cómo lo haríais?

- Desarrollamos un conjunto de reglas para construir un algoritmo.
 - 1. Definir el objetivo: *Diferenciar sardinas de salmonetes*
 - 2. Identificar patrones:

- Desarrollamos un conjunto de reglas para construir un algoritmo.
 - 1. Definir el objetivo: *Diferenciar sardinas de salmonetes*
 - 2. Identificar patrones: Los salmonetes son rojos y las sardinas no
 - 3. Diseñar un conjunto de reglas:

- Desarrollamos un conjunto de reglas para construir un algoritmo.
 - 1. Definir el objetivo: *Diferenciar sardinas de salmonetes*
 - 2. Identificar patrones: Los salmonetes son rojos y las sardinas no
 - 3. Diseñar un conjunto de reglas:

SI colorPescado ES rojo ENTONCES

DIGO salmonete

SI NO

DIGO sardina

- Desarrollamos un conjunto de reglas para construir un algoritmo.
 - 1. Definir el objetivo: Diferenciar sardinas de salmonetes
 - 2. Identificar patrones: Los salmonetes son rojos y las sardinas no
 - 3. Diseñar un conjunto de reglas:

Inteligencia Artificial (IA) vs Aprendizaje Automático (ML)

Inteligencia Artificial (IA)

- Conocimiento experto
- Desarrollo de reglas

- No es necesario conocimiento experto
- Aprendizaje de las reglas

• En lugar de programar reglas específicas, el algoritmo aprende por sí mismo los patrones.

Aprendizaje

Proceso mediante el cual se adquiere nuevo conocimiento o se modifica el comportamiento a través del ejercicio o la experiencia

El programa aprende a partir de los datos

- De cada imagen de un pescado, extraemos los dos siguientes atributos:
 - Número de píxeles con un tono azulado
 - Número de píxeles con un tono rojizo

ID	#Azul	#Rojo
1	175	0
2	192	5
3	157	2
4	25	345
5	22	329
6	27	332

¿Qué sabemos inicialmente de los datos?

Solamente conocemos el número de píxeles con tono azul y rojo.

¿Qué podemos hacer?

- ¿Podemos intentar visualizar estos datos?
- ¿Podemos decir si son sardinas o salmonetes?
- ¿Podemos intentar agruparlos?

ID	#Azul	#Rojo
1	175	0
2	192	5
3	157	2
4	25	345
5	22	329
6	27	332

¿Podemos intentar visualizar estos datos?

ID	#Azul	#Rojo
1	175	0
2	192	5
3	157	2
4	25	345
5	22	329
6	27	332

¿Podemos decir si son sardinas o salmonetes? No, no sabemos lo que son.

ID	#Azul	#Rojo
1	175	0
2	192	5
3	157	2
4	25	345
5	22	329
6	27	332

¿Podemos intentar agruparlos? Sí.

ID	#Azul	#Rojo
1	175	0
2	192	5
3	157	2
4	25	345
5	22	329
6	27	332

Si viene un nuevo dato, ¿a qué grupo pertenece?

ID	#Azul	#Rojo
7	162	22

	ID	#Azul	#Rojo	\
	1	175	0	
	2	192	5	
	3	157	2	
	4	25	345	
	5	22	329	
	6	27	332	
$\overline{}$				_

Aprendizaje No Supervisado: Agrupación (Clustering)

Si no tenemos más información que su aspecto podemos agrupar los datos según los patrones similares.

¿Qué sabemos inicialmente de los datos?

Ahora también conocemos qué es cada pescado.

• ¿Qué podemos hacer?

- ¿Podemos intentar visualizar estos datos?
- ¿Podemos decir si son sardinas o salmonetes?
- ¿Podemos intentar agruparlos?

ID	#Azul	#Rojo	Clase
1	175	0	Sardina
2	192	5	Sardina
3	157	2	Sardina
4	25	345	Salmonete
5	22	329	Salmonete
6	27	332	Salmonete

¿Podemos intentar visualizar estos datos?

ID	#Azul	#Rojo	Clase
1	175	0	Sardina
2	192	5	Sardina
3	157	2	Sardina
4	25	345	Salmonete
5	22	329	Salmonete
6	27	332	Salmonete

¿Podemos decir si son sardinas o salmonetes? Sí.

ID	#Azul	#Rojo	Clase
1	175	0	Sardina
2	192	5	Sardina
3	157	2	Sardina
4	25	345	Salmonete
5	22	329	Salmonete
6	27	332	Salmonete

¿Podemos intentar agruparlos? Sí, pero, ¿para qué, si ya sabemos lo que son?

ID	#Azul	#Rojo	Clase
1	175	0	Sardina
2	192	5	Sardina
3	157	2	Sardina
4	25	345	Salmonete
5	22	329	Salmonete
6	27	332	Salmonete

Si viene un nuevo dato, ¿qué es?

	г	
	350 -	
;	300 -	
1	250 -	
#Rojo	200 -	
#R	150 -	
	100 -	
	50 -	
	0 -	
		0 25 50 75 100 125 150 175 200
		#Azul

ID	#Azul	#Rojo
7	162	22

ID	#Azul	#Rojo	Clase
1	175	0	Sardina
2	192	5	Sardina
3	157	2	Sardina
4	25	345	Salmonete
5	22	329	Salmonete
6	27	332	Salmonete

Aprendizaje Supervisado

Si sabemos qué son los datos, es decir, conocemos su clase, podemos identificarlos.

ML Supervisado - Regresión vs Clasificación

Clasificación

- Predecir la clase de un dato
- Responde a la pregunta:

¿Qué eres?

• Devuelve una probabilidad [0, 1]

Regresión

- Predecir el valor de un dato
- Responde a la pregunta:

¿Cuánto vales?

Devuelve un valor Real [-∞, ∞]

Diferenciar sardinas de salmonetes

¿Regresión o Clasificación?

Diferenciar sardinas de salmonetes

Clasificación

Respondo a la pregunta:

¿Qué eres?

Estimación del valor de un inmueble
 ¿Regresión o Clasificación?

fuente: BBVA Valora

Estimación del valor de un inmueble

Regresión

Responde a la pregunta:

¿Cuánto vales?

fuente: BBVA Valora

Predecir si una empresa quebrará el próximo año

¿Regresión o Clasificación?

Predecir si una empresa quebrará el próximo año

Clasificación

Responde a la pregunta:

¿Qué eres?

Das una probabilidad de quebrar

Tomar una decisión de compra-venta a partir de OHCL

¿Regresión o Clasificación?

Tomar una decisión de compra-venta a partir de OHCL

Clasificación

Responde a la pregunta:

¿Qué eres?

Eres compra o eres venta

Aprendizaje Automático (ML)

Volviendo al ejemplo con los peces, definimos una frontera de decisión con una línea recta:

¿Qué forma tiene una línea recta?

$$f(x) = a \cdot x + b$$

Si $a = 10.0 y b = 0.0$

 Todo lo que hay por encima de la recta serán salmonetes y todo lo que hay por debajo de la recta serán sardinas.

Volviendo al ejemplo con los peces, definimos una frontera de decisión con una línea recta:

• ¿Qué forma tiene una línea recta?

$$f(x) = \mathbf{a} \cdot x + \mathbf{b}$$

Si $\mathbf{a} = 10.0 \text{ y b} = 0.0$

- Todo lo que hay por encima de la recta serán salmonetes y todo lo que hay por debajo de la recta serán sardinas.
- ¿Qué pasa con los puntos verdes?

Si cambiamos los parámetros a y b

$$f(x) = a \cdot x + b$$

Si $a = 1.0 y b = 0.0$

• ¿Qué pasa ahora con los puntos verdes?

¿Qué forma tiene una línea recta?

$$f(x) = \mathbf{a} \cdot x + \mathbf{b}$$

Si
$$a = 1.0 \text{ y } b = 0.0$$

La frontera de decisión de este modelo depende de los valores de a y b para ser capaz de separar los

puntos rojos de los azules con una línea recta. Por tanto:

• Es un clasificador lineal (separa con una línea recta)

Es paramétrico (depende de a y b)

- Asumamos lo siguiente: Un punto nuevo será lo mismo que a lo que más se parezca (similitud)
- Fijémonos en el punto más cercano en el plano para clasificar:
- ¿Cómo es la frontera de decisión?

- Asumamos lo siguiente: Un punto nuevo será lo mismo que a lo que más se parezca (similitud)
- Fijémonos en el punto más cercano en el plano para clasificar:

Este modelo no tiene ningún parámetro ajustable. Es capaz de partir el espacio de muestra para separar los puntos rojos de los azules considerando el punto más cercano. Por tanto:

- Es un clasificador no lineal
- Es no paramétrico (se basa en la similitud)

Paramétricos

- Número fijo de parámetros
 Se ajustan durante el entrenamiento
- Requiere una fase de entrenamiento Suele ser lenta
- Predicción rápida
 Depende del modelo

No Paramétricos

- No tienen parámetros
- Utilizan diversas técnicas
 Búsqueda, similitud, partición, etc.
- No hay entrenamiento
- Predicción lenta
 Depende de los datos

Paramétricos

- Regresión lineal o logística
- Redes neuronales
- SVM

No Paramétricos

- Árboles de decisión
- K-vecinos cercanos (KNN)

ML Supervisado - Clasificador Lineal vs No Lineal

Lineal

 Separa el espacio con una función lineal (línea recta)

No Lineal

 Separa el espacio con algo que no es una línea recta

ChatGPT

ChatGPT

ChatGPT

Alcance Inter-disciplinar

