

THE UNIVERSITY OF TEXAS AT ARLINGTON, TEXAS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 5356 DIGITAL IMAGE PROCESSING

PROJECT #9

by

SOUTRIK MAITI 1001569883

Presented to

Dr. K.R.RAO

April 5, 2019

High Pass Low Pass Filter

MATLAB Code:

```
clc;
clear all;
close all;
%% Reading the image
img = imread('lena512.bmp');
[m1, n1] = size(imq);
figure();
subplot(1,2,1);
imshow(uint8(img));
title('original image');
%% Performing the DFT on the image read
img =im2double(img);
dft img = fft2(img);
subplot(1,2,2);
imshow(log(1 + abs(fftshift(dft img))));
title('DFT of original image');
saveas(gca,'origin_dft.jpg');
%% Making the 2D mesh and plotting for the FFT of the image
uu = 0: (m1-1);
vv = 0: (n1-1);
ii = find(uu > m1/2);
uu(ii) = uu(ii) -m1;
jj = find(vv > n1/2);
vv(jj) = vv(jj) - n1;
[kk,l]=meshgrid(vv,uu);
DD = sqrt((kk.^2+1.^2));
figure();
mesh(real(fftshift(DD)));
title('FFT of the original image given by D(u,v)');
saveas(gca, 'mesh.jpg');
img hpf = HPF img(30,DD);
img g lpf = g LPF img(16,DD);
img g hpf = g HPF img(16,DD);
img b lpf = b LPF img(50,3,DD);
img b hpf= b HPF img(50,3,DD);
```

```
%% Applying LPF to image and plotting results
img lpf = LPF img(40, DD);
img dft LPF = img lpf.*dft img;
ifft img LPF = real(ifft2(img dft LPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft LPF))),[]);
title('LPF frequency response of image');
subplot (1,2,2);
imshow(ifft_img LPF,[]);
title('LPF filtered Image');
saveas(gca,'LPF img.jpg');
%% Applying HPF to image and plotting results
img dft HPF = img hpf.*dft img;
ifft img HPF = real(ifft2(img dft HPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft HPF))),[]);
title('HPF frequency response of image');
subplot(1,2,2);
imshow(ifft img HPF,[]);
title('HPF filtered image');
saveas(gca,'HPF img.jpg');
%% Applying Gaussian LPF to image and plotting the results
img dft g LPF = img g lpf.*dft img;
ifft img g LPF = real(ifft2(img dft g LPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft g LPF))),[]);
title ('GAUSSIAN LOW PASS freq response');
subplot(1,2,2);
imshow(ifft img g LPF,[]);
title ('GAUSSIAN LOW PASS filtered image');
saveas(gca,'g LPF img.jpg');
%% Applying Gaussian LPF to image and plotting the results
img dft g HPF = img g hpf.*dft img;
ifft img g HPF = real(ifft2(img dft g HPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft g HPF))),[]);
title ('GAUSSIAN HIGH PASS freq response');
subplot(1,2,2);
imshow(ifft img g HPF,[]);
```

```
title('GAUSSIAN HIGHPASS filtered image');
saveas(gca,'g HPF img.jpg');
%% Applying Butterworth LPF to image and plotting the results
img dft b LPF = img b lpf.*dft img;
ifft img b LPF = real(ifft2(img dft b LPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft b LPF))),[]);
title('BUTTERWORTH LPF freq response');
subplot(1,2,2);
imshow(ifft img b LPF,[]);
title('BUTTERWORTH LPF filtered image');
saveas(gca,'b LPF img.jpg');
%% Applying Butterworth HPF to image and plotting the results
img dft b HPF = img b hpf.*dft img;
ifft img b HPF = real(ifft2(img dft b HPF));
figure();
subplot(1,2,1);
imshow(log(1+abs(fftshift(img dft b HPF))),[]);
title('BUTTERWORTH HPF freq response');
subplot(1,2,2);
imshow(ifft img b HPF,[]);
title('BUTTERWORTH HPF filtered image');
saveas(gca, 'b_HPF_img.jpg');
%% Algorithm for Low Pass Filter
function LPF = LPF img(d 0, d d)
mm = 512;
nn=mm;
for uu = 1:mm
    for vv = 1:nn
        if(d d(uu, vv) \le d 0)
            LPF(uu, vv) = 1;
        else
            LPF(uu, vv) = 0;
        end
    end
end
%% 3D plot of ideal LPF
figure();
mesh(fftshift(LPF)),
title('Low Pass Filter 3D');
saveas(gca,'LPF 3D.jpg');
end
```

```
%% Algorithm for High Pass Filter
function HPF = HPF img(d 0,d d)
mm=512; nn=mm;
for uu = 1:mm
    for vv = 1:nn
        if(d d(uu, vv) \le d 0)
            HPF(uu, vv) = 0;
        else
            HPF(uu, vv) = 1;
        end
    end
end
%% 3D plot of ideal HPF
figure();
mesh (fftshift (HPF)),
title('High Pass Filter 3D');
saveas(gca,'HPF 3D.jpg');
%% Algorithm for Gaussian Low Pass Filter
function g LPF = g LPF img(sgma,d d)
mm=512; nn=mm;
for uu = 1:mm
    for vv = 1:nn
        g LPF(uu, vv) = \exp(-1*(d d(uu, vv)^2)/(2*sgma^2));
    end
end
%% 3D plot of Gaussian Low Pass Filter
figure();
mesh(fftshift(g LPF)),
title('Gaussian Low Pass Filter 3D');
saveas(gca,'g_LPF_3D.jpg');
end
%% Algorithm for Gaussian High Pass Filter
function g HPF = g HPF img(sgma,d d)
mm=512; nn=mm;
for uu = 1:mm
    for vv = 1:nn
        g HPF(uu, vv) = 1-\exp(-1*(d d(uu, vv)^2)/(2*sgma^2));
    end
end
%% 3D plot of Gaussian High Pass Filter
figure();
```

```
mesh(fftshift(g HPF)),
title('Gaussian HPF');
saveas(gca, 'g_HPF_3D.jpg');
end
%% Algorithm for Butterworth Low Pass Filter
function b LPF = b LPF img(d 0,o,d d)
mm=512; nn=mm;
for uu=1:mm
    for vv=1:nn
        b LPF(uu, vv) = 1/(1+(d d(uu, vv)/d 0)^(2*o));
    end
end
%% 3D plot of Butterworth Low Pass Filter
figure();
mesh(fftshift(b LPF)),
title('Butterworth Low Pass Filter');
saveas(gca,'b LPF_3D.jpg');
end
%% Algorithm for Butterworth High Pass Filter
function b HPF = b HPF img(d 0,0,d d)
mm=512;nn=mm;
for uu = 1:mm
    for vv = 1:nn
        b HPF (uu, vv) = 1/(1+(d 0/d d(uu, vv))^(2*o));
    end
end
%% 3D plot of Butterworth High Pass Filter
figure();
mesh(fftshift(b HPF)),
title('Butterworth High Pass Filter');
saveas(gca,'b HPF 3D.jpg');
end
```

Results:

LPF frequency response of image

GAUSSIAN LOW PASS freq response GAUSSIAN LOW PASS filtered image

GAUSSIAN HIGH PASS freq response GAUSSIAN HIGHPASS filtered image

BUTTERWORTH LPF freq response

BUTTERWORTH LPF filtered image

BUTTERWORTH HPF freq response

BUTTERWORTH HPF filtered image

Conclusion:

- DFT is performed on the image loaded into the workspace
- The algorithms of the various filters have been written in the form of functions
- Inverse DFT is performed after the various filters are applied to the image in the frequency domain
- High Pass filter makes the edges more prominent
- Low Pass filter doesn't make any drastic changes
- Therefore LPF are much more efficient than HPF