T Flip Flop(Toggle flip flop)

• It can be designed from J K flip flop by connecting an (J and K)

In this input together to make a single input as shown in fig

Flip Flop conversions

conversions of one flip flop is possible by adding some extra gate.

S R to J K flip flop conversions

Step 1: The excitation table

Inputs		Present State	Next State	Flip-Flop Inputs	
J	K	Q _n	Q_{n+1}	S	R
0	0	0	0	0	X
0	0	1	1	X	0
0	1	0	0	0	X
0	1	1	0	0	1
1	0 .	0	1	1	0
1	0	1	1	X	0
1	1	0	1	1 .	0
1	1	1	0	0	1

Step 2: K map minimization

Step 3 : <u>S R to J K flip flop implementation</u>

$$\therefore R = KQ_n$$

