Cognome: Nome: Matricola:
UNIVERSITÀ DEGLI STUDI DELLA CALABRIA Corso di Laurea in Ingegneria Informatica
Prova scritta di <i>Algoritmi e Strutture Dati</i> TRACCIA A (durata della prova: 60 minuti)
Esercizio 1
Si consideri una classe <i>AlberoBinario</i> che rappresenta <i>alberi binari</i> in cui la parte informativa di ogni nodo è un numero intero. Si assuma che in tale classe siano implementati i seguenti metodi:
public interface AlberoBinario{ /* restituisce il sottoalbero destro dell'albero corrente, la complessità temporale è $\theta(1)$ */ public AlberoBinario destro();
/* restituisce il sottoalbero sinistro dell'albero corrente, la complessità temporale è $\theta(1)^*/$ public AlberoBinario sinistro();
/* restituisce il valore memorizzato nella radice dell'albero, la complessità temporale è $\theta(1)$ */ public int val(); }
Si deve realizzare un metodo ricorsivo public static boolean verifica(AlberoBinario a,int l) {} che restituisce true se e solo se esiste la>l sul quale almeno due nodi non foglia che abbiano come valore 0.
Si caratterizzi la complessità temporale e spaziale del metodo nel caso migliore e peggiore, specificando anche quali siano il caso migliore ed il caso peggiore per la complessità temporale e spaziale.
Caso Migliore: Caso Peggiore: 1. Complessità temporale: θ() 1. Complessità temporale: θ() 2. Complessità spaziale: θ() 2. Complessità spaziale: θ()

Commenti:

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

	V	F	Affermazione
1			La complessità intrinseca del problema della somma di interi in un array ordinato di
			n elementi è $\Omega(n)$
2			In un grafo connesso è possibile ottenere un unico albero ricoprente
3			$f(n)=2n \ e \ O(n\log n)$
1			In un grafo orientato debolmente connesso, prendendo due vertici u e v esistono i
7			cammini u,v e v,u
5			In un grafo orientato debolmente connesso, prendendo due vertici u e v esistono i
			cammini u,v o v,u
6			La visita a livelli in un albero ha come complessità intrinseca $\Omega(n^2)$
7			L'algoritmo di Dijkstra ha complessità $O(n^3)$
8			La complessità dell'inserimento di un elemento in una tabella Hash in cui sono
			presenti n elementi è nel caso peggiore $\theta(n)$
9			Nel caso peggiore, ricercare un elemento in un albero AVL con <i>n</i> nodi ha
			complessità $O(\log n)$
10			La complessità per l'inserimento di elementi in un heap è di O(logn)

Esercizio 3

Dare la definizione di complessità nel caso peggiore				