Exercises - Week 8

Genomics and bioinformatics

This series is about Multiple Sequence Alignment (MSA).

1 MSA with ClustalW

ClustalW is a very popular web-based program for performing progressive multiple sequence alignment. His main homepage is located at http://www.clustal.org, but you can run ClustalW online on several servers on the web: in this exercise we shall use ClustalW2 located in the European Bioinformatics Institute (EBI) server at http://www.ebi.ac.uk/Tools/msa/clustalw2.

		Α	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	v	В	\mathbf{z}	Х	
	A	2	-2	0	0	-2	0	0	1	-1	-1	-2	-1	-1	-3	1	1	1	-6	-3	0	0	0	0	
	R	-2	6	0	-1	-4	1	-1	-3	2	-2	-3	3	0	-4	0	0	-1	2	-4	-2	-1	0	-1	
	N	0	0	2	2	-4	1	1	0	2	-2	-3	1	-2	-3	0	1	0	-4	-2	-2	2	1	0	
>sequence1	D	0	-1	2	4	-5	2	3	1	1	-2	-4	0	-3	-6	-1	0	0	-7	-4	-2	3	3	-1 -3	
	0	-2	-4	-4	-5	12	-5	-5	-3	-3	-2	-6	-5	-5	-4	-3	1	-2	-8	0	-2	-4	-5	-3	
PPGVKSDCAS	E	0	-1	1	3	-5	2	4	-1	1	-2	-2	U	-1	-5	_1	-1	-1	-7	-4	-2	3	3	-1	
>sequence2	G	1	-3	ō	1	-3	-1	0	5	-2	-3	-4	-2	-3	-5	0	1	o	-7	-5	-1	0	0	-1	
	Н	-1	2	2	1	-3	3	1	-2	6	-2	-2	0	-2	-2	0	-1	-1	-3	0	-2	1	2	-1	
PADGVKDCAS	I	-1	-2	-2	-2	-2	-2	-2	-3	-2	5	2	-2	2	1	-2	-1	0	-5	-1	4	-2	-2	-1	
	L	-2	-3	-3	-4	-6	-2	-3	-4	-2	2	6	-3	4	2	-3	-3	-2	-2	-1	2	-3	-3	-1	
>sequence3	K	-1	3	1	0	-5	1	0	-2	0	-2	-3	5	0	-5	-1	0	0	-3	-4	-2	1	0	-1	
boquonoco	М	-1	0	-2	-3	-5	-1	-2	-3	-2	2	4	0	6	0	-2	-2	-1	-4	-2	2	-2	_	-1	
PPDGKSDS	F	-3	-4	-3	-6	-4	-5	-5	-5	-2	1	2	-5	0	9	-5	-3	-3	0	7	-1	-4	-5	-2	
	P	1	0	0	-1	-3	0	-1	0	0	-2	-3	-1	-2	-5	6	1	0	-6	-5	-1	-1	0	-1	
>sequence4	ηn	1	_1	1	0	- 2	-1	0	1	-1	-1	-3	0	-2	-3	1	1	1	-2	-3	-1	0	_1	0	
	W	-6	-1	-4	-7	-2 -8	-5	-7	-7	-1	-5	-2	-3	-4	-3	-6	-2	-5	17	-3	-6	-5	-6	_	
GADGKDCCS	Ÿ	-3	-4	-2	-4	-0	-4	-4	-5	-0	-1	-1	-4	-2	7	-5	-3	-3	ó	10	-2	-3		-2	
	v	0	-2	-2	-2	-2	-2	-2	-1	-2	4	2	-2	2	-1	-1	-1	0	-6	-2	4	-2	_	-1	
>sequence5	В	0	-1	2	3	-4	1	3	0	1	-2	-3	1	-2	-4	-1	0	0	-5	-3	-2	3	2	-1	
_	\mathbf{z}	0	0	1	3	-5	3	3	0	2	-2	-3	0	-2	-5	0	0	-1	-6	-4	-2	2	3	-1	
GADGKDCAS	X	0	-1	0	-1	-3	-1	-1	-1	-1	-1	-1	-1	-1	-2	-1	0	0	-4	-2	-1	-1	-1	-1	

Figure 1: The five protein sequences (in FASTA format) and the PAM 250 substitution matrix.

- 1. Enter these five protein sequences in ClustalW2 with default parameters and click on "Submit".
- 2. In "Alignments" you will see the MSA found by ClustalW2.
- 3. In "Result Summary" the raw alignment scores between all pairwise alignments are shown. Press on "View Output File" to see the total score associated to the MSA.
- 4. In "Guide Tree" you can see the tree used to generate the MSA by the progressive alignment method.
- 5. Try to change the parameters to see how this affects the MSA.
- 6. Consider now the PAM 250 scoring matrix (http://www.bioinformatics.nl/tools/pam.html) show in the figure: the value in each cell of a PAM matrix is related to the probability of a column amino acid before the mutation being aligned with a row amino acid afterwards. Adding a -10 gap penalty, compute the Sum-of-Pair (SP) score of the MSA, by hand or using Python or R [The MSA and PAM250 scoring matrix files can be found on Moodle].