

第一章 动力电池系统

第一节 系统概述

动力电池系统为电动车上电机和其他用电器提供电能。

STHA80/100 的动力电池系统由 5 个动力电池模组、5 个动力电池信息采集器、动力电池串联线、动力电池托盘、动力电池包密封罩、动力电池采样线等组成。STHA80 动力电池共 156 节单体(3 个 36 串模组+2 个 24 串模组),额定总电压为 561.6V,总电量为 18.5 Kw.h; STHA100 动力电池共 168 节单体(4 个 36 串模组+1 个 24 串模组),额定总电压为 604.8V,总电量为 22.4Kw.h。

STHB的动力电池系统由4个动力电池模组、4个动力电池信息采集器、动力电池串联线、动力电池托盘、动力电池包密封罩、动力电池采样线等组成。STHB动力电池共144节单体(4个36串模组),额定总电压为518.4V,总电量为17.1 Kwh。

第二节 动力电池位置

第三节 模组连接方式

THA100					整包负极
=	+			+	
5#	4#	3#	z – #	2#	1#
+			+	-	
隆包正极					
THA80					数与2 40
-	+			+	整包负极
5#	4#	34	- +	2#	1#
5#	-	34		2#	1#
+			+		
2包正极					
ТНВ					
-	+			+	
4#	3#	24	7	1#	
+	1		+		
Y 包正极			-	整包负极	

第四节 系统框图

STHA100:

STHB:

第五节 电池热管理结构框图

第六节 引脚定义

(1) 动力电池总成低压接插件

(注:标注端为接插件前端,为接插件公端,接线引脚定义4~7、8~11、12~15、16~19,从右往左数)

(2) 动力电池总成线束端接插件

(注: 标注端为线束端前端,为接插件母端,接线引脚定义4~7、8~11、12~15、16~19,从左往右数)

(社:	 你往 师	米 师 削 师 , /	为接插件母端	,按线引脚	企 又 4∼/、8	5~11、12~13	0. 16~19,	从左仕右致)
引脚号	引脚信号 定义	端口定义	线束接法	信号类型	稳态工 作电流 /A	冲击电 流和堵 转电流 A	输入/输出	备注
D-1	NC		NC					
D-2	NC		NC					
D-3	NC		NC					
D-4	电池子网 CAN L	BCC02-04	BMC01-10	CAN 信号	<1A	<1A		
D-5	电池子网 CAN 屏蔽 地	BCC02-05	BMC01-02	NC	/	/		
D-6	分压接触 器控制信 号	分压接触 器控制信 号输入, 拉低导通	BMC01-09	电平信号	<1A	<1A	输入	
D-7	漏电传感 器 CAN L	漏电传感 器 CAN L	整车动力 网	CAN 信号	<1A	<1A		
D-8	电池子网 CAN H	BCC02-03	BMC01-01	CAN 信号	<1A	<1A		
D-9	负极接触 器控制信 号	负极接触 器控制信 号输入, 拉低导通	BMC01-29	电平信号	<1A	<4A	输入	
D-10								
D-11	漏电传感 器 CAN H	漏电传感 器 CAN H	整车动力网	CAN 信号	<1A	<1A		
D-12	通讯转换 模块电源 GND	BCC01-03	BMC01-11	电压信号	<1A	<1A		
D-13	漏电传感 器电源 GND	漏电传感 器电源 GND	整车低压 线束	电压信号	<1A	<10A		
D-14	分压接触 器电源	分压接触 器电源	BMC01-15	电压信号	<1A	<1A	输入	

比亚迪 ST 维修手册

D-15	负极接触 器电源	负极接触 器电源	BMC01-07	电压信号	<1A	<1A	输入	
D-16	通讯转换 模块电源	BCC01-02	BMC01-03	电压信号	<1A	<1A	输入	
D-17	漏电传感器电源	漏电传感器电源	整车低压 线束	电压信号	<1A	<25A	输入	IG3 电
D-18								
D-19								

(3) 电池包进水口温度传感器接插件

零部件端

Z Hb 1 1 - lid					-Allering				
引脚号	端口名称	端口定义	线束接法	信号类型	稳态工作 电流/A	冲击电流 和堵转电 流/A	电源性质 (比如: 常电)	备注(可 否共用保 险等)	
1	进水口温 度	进水口温 度	空调控 制器	电压	<1A	<1A			
2	进水口温 度地	进水口温 度地	车身地		<1A	<1A			

第七节 诊断流程

把车开进维修间

NEXT

检查蓄电池电压

标准电压值:

11~14V

NEXT

如果电压值低于 11V, 在进行 NEXT 之前请充电或更换蓄电

3 对接好接插件,整车上 ON 档电,进入电池管理器故障代码诊断

NEXT

针对故障进行调整, 维修或更换

NEXT

6 确认测试

NEXT

7 结束

第八节 准备工具

手套	一副
扳手 (150件)	一套
扭矩扳手	一把
1000V 绝缘手套	一副
升降台(含电池包放置架)	一个
水管钳	一把
冷却液容器	- ↑

第九节 动力电池更换流程

若确定动力电池有问题需要维修,请在厂家的指导下更换电池相关配件,如整包更换,按以下步骤拆卸更换电池包。

将车辆退电至 OFF 档,断开低压蓄电池负极,打开前舱盖,断开车辆前电控母线接插件,等待 5min,直至检修完毕。使用万用表检测高压电路(例如高压电容及其回路),需确保无电。具体方法参照高压安全章节。

NEXT

1

2 | 打开副仪表台盖板, 拔掉电池信息采集线接插件

NEXT

用万用表检测电池是否漏电。检测方法为:将万用表正极分别搭在电池正负极引出,负极搭车身地。正常值为10V以下。若过大请不要拆卸,检测漏电原因和地方,排除问题后再进行以下操作.

NEXT

5 佩戴绝缘手套,拔掉直流母线接插件,具体插拔方法参考高压线束章节。

NEXT

用举升机将整车升起到合适的高度,拆下电池包托盘底部安装的空调管路护板以及侧面的隔热板,在电池包正下方准备升降台,升降台需要升至电池包的高度托举电池包。

NEXT

按掉电池包端的所有搭铁线紧固件,拔下电池包进出水管、 6 温度传感器接插件,准备容器盛接冷却液,具体冷却液处理 及加注方法参考电池热管理章节。

NEXT

7 佩戴绝缘手套,用套筒卸掉动力电池与车身固定螺栓,将电池包拆放至升降台。

NEXT

8 佩戴绝缘手套,将需要更换的新电池放置在升降台上准备装车。

NEXT

佩戴绝缘手套,用诊断工装线连接电池管理器、动力电池, 硬线吸合电池包内继电器,用万用表检测电池包正负极是否 有电压输出(测试高压输出是否正常);给管理器供电,用 诊断工具查看电池采样信息是否正常,如果没有其他情况, 请进行以下操作

NEXT

11 佩戴绝缘手套,用万用表检测电池包是否漏电,检测方法同拆卸方法第四步。

NEXT

12 佩戴绝缘手套,用套筒安装托盘与车身的紧固件 , 安装电池包搭铁线, 插上电池包进出水管

NEXT

13 佩戴绝缘手套,接上直流母线接插件、电池信息采样通信线接插件

NEXT

请确认整车用电器都在 OFF 状态,并提醒周围同事,暂时远离车载高压电设备,然后连接车辆前电控母线接插件,再连接低压蓄电池负极。上电,检测动力电池系统问题是否解决,若无问题,结束。具体方法参照高压安全章节。

第十节 运输、存储和贮存

1. Climatic condition: transportation and storage 气候条件: 运输和存储 Table 7-05: Climatic Conditions Table 3

表 7-05: 气候条件表 3

Transport	Max. 24 hours uninterrupted at - 40°C 最多连续 24 小时保持-40°C							
运输	Max. 24 hours uninterrupted at + 65°C 最多连续 24 小时保持+65°C							
	Storage temperature 存储温度	Storage time 存储时间	Storage SOC 存储 SOC	Minimum capacity retention rate 最小容量保持率				
	-40℃~25℃	12 Months	40%~60%	96%				
Storage	25℃~30℃	12 Months	40%~60%	94%				
存储	30℃~45℃	3 Months	40%~60%	91%				
	45℃~50℃	1 Month	40%~60%	90%				
	50℃~60℃	1 Month	40%~60%	70%				
	Humidity 湿度: max. 85% relative humidity 最大 85%的相对湿度							
Long-term storage for the post-production supply 生产后供应长期存储	Minimum temperature 最低温度: -20℃							

2、贮存技术信息说明

MMM.

废旧锂离子电池从电池包中拆卸完毕后,首先对电池进行条码信息识别,外观检查及容量检查。 将外观损伤及容量不合格的电池,将条码信息识别后上传公司系统,对电池进行小电流放电,进行 正负极极柱保护,并集中装箱处理,避免暴晒环境贮存,最终用于再生利用,对于再生利用后的废 物按照国家法规进行无害化处理。

对于外观及容量合格单体电池,对正负极柱连接片残留物进行清铣,将条码信息识别后上传公司系统,根据容量进行分档,将容量分档后的电池进行 SOC 调节,然后进行正负极柱保护,并集中装箱处理,置于阴凉处保存(-10° \sim 40° \sim),按照公司项目需求进行梯次利用。