Name and Roll No.: _

Answer the questions in the spaces provided on the question paper. You can use the additional sheets for rough work.

Question No.:	1	2	3	4	5	Total
Marks:	3	3	4	5	5	20
Score:						

1. A binary operation * on a finite set S can be represented by a square grid where rows and columns are indexed by elements of S; and the entry in the row corresponding to a and the column corresponding to b is a*b. For example, $(\mathbb{Z}/5\mathbb{Z}, \times)$ can be represented by the following grid:

If (G, *) is a group and G is a finite set, prove that every row and every column of its grid is a permutation of the elements of G.

2. What is wrong with the following proof:

Theorem. All horses are of the same colour.

Proof. We prove the theorem by induction on the number of horses.

Base case: If there is only one horse, the theorem is trivial.

Inductive step: Suppose the theorem is true for n-1 horses i.e. every horse in a group of n-1 horses is of the same colour. Now consider a group of n horses. By induction hypothesis, horses $1, 2, \ldots, n-1$ are of the same colour. Similarly, by induction hypothesis, horses $2, 3, \ldots, n$ are of the same colour. Therefore horses 1 and n are also of the same colour. So horses $1, 2, \ldots, n$ are of the same colour. This completes the proof.

3. Suppose (G, *) is a group and H is a non-empty subset of G. Suppose for all a, b in H, $a * b^{-1}$ is also in H. Prove that (H, *) is a group.

4

- 4. Recall $\mathbb{R}[x]$ is the set of polynomials with Real coefficients and non-negative degree. We can define congruence relation on $\mathbb{R}[x]$. We say two polynomials f and g are congruent modulo a polynomial h if h divides f g. Given $h \in \mathbb{R}[x]$, we can define $\mathbb{R}[x]/h\mathbb{R}[x]$ analogous to $\mathbb{Z}/m\mathbb{Z}$.
 - (a) What are the elements of the set $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

1

(b) How are operations + and × defined on $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$?

1

(c) Is $(\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]) - \{0\}, \times$ a group? Why / Why not?

- 5. Let + denote the usual addition operation on integers. Let $a, b \in \mathbb{Z}$.
 - (a) Is there a proper subset S of \mathbb{Z} containing a and b such that (S, +) is a group. If yes, give the subset; otherwise prove that such a subset doesn't exist.

(b) Given a group (G, +). An element $g \in G$ is called a generator of the group if $G = \{ig \mid i \in \mathbb{Z}\}$. [Note: Here na is a shorthand for $\underbrace{a + a + \cdots + a}_{n \text{ times}}$]. Does (S, +) (defined in the previous part of the question) have a generator? If yes, give the generator; otherwise prove it doesn't exist.

3