CS 211: Discrete structures Fall 2018 Solutions final exam

Question 1 (Marks: 10)

Prove using mathematical induction: $\sum_{k=0}^{n} {n \choose k} = 2^{n}$. Also, write down all identities you use.

Solution

Let the predicate P(t): $\sum_{k=0}^{t} {t \choose k} = 2^t$

Base case

for t=0

LHS: $\sum_{k=0}^{0} {0 \choose k} = 1$

RHS: $2^0 = 1$

Hence P(0) is true

Inductive hypothesis: Let P(t) be true for an arbitrary integer t.

Inductive step

We have to prove that $P(t) \rightarrow P(t+1)$

That is we have to prove $\sum_{k=0}^{t+1} {t+1 \choose k} = 2^{t+1}$ is true if P(t) is true

Taking the LHS

 $\sum_{k=0}^{t+1} {t+1 \choose k}$

(using Pascal's identity)

 $\begin{aligned} & = \begin{pmatrix} t & t \\ 0 \end{pmatrix} + \sum_{k=1}^{t} {t+1 \choose k} + {t+1 \choose t+1} \\ & = {t+1 \choose 0} + \sum_{k=1}^{t} {t \choose k} + {t \choose k-1} + {t+1 \choose t+1} \\ & = {t \choose 0} + \sum_{k=1}^{t} {t \choose k} + \sum_{k=1}^{t} {t \choose k-1} + {t+1 \choose t+1} \\ & = \sum_{k=0}^{t} {t \choose k} + \sum_{k=1}^{t} {t \choose k-1} + {t+1 \choose t+1} \\ & = \sum_{k=0}^{t} {t \choose k} + \sum_{k=1}^{t} {t \choose k-1} + {t+1 \choose t+1} \end{aligned}$

(merge first two terms in the sum)

 $= \sum_{k=0}^{t} {t \choose k} + \sum_{r=0}^{t-1} {t \choose r} + {t \choose t}$

(substitute r=k-1 and use $\binom{t+1}{t+1} = \binom{t}{t}$)

 $= \sum_{k=0}^{t} {t \choose k} + \sum_{r=0}^{t} {t \choose r}$

(merge the last two terms)

 $= 2^t + 2^t$

(from the inductive hypothesis)

= 2*2t

 $= 2^{t+1}$

(which is the RHS)

If the inductive hypothesis is true then P(t+1) is also true. Hence proved that the given identity is true for all n≥0

Question 2 (Marks: 5+5)

Assume that there are 51 different types of animals having integral weights less than 100 kg (starting from one kg) and all weights are unique. Using the concept of Pigeon hole principle, prove that there is a pair whose sum of weights is 100 kg.

Solution

Let $w_1, w_2, w_3, ..., w_{51}$ be the weights of 51 animals. These can be considered as pigeons. The Pigeon holes can be defined as $B_r = \{r, 100 - r\}, r = 1, 2, ..., 50.$

OR

create 50 bins. Bin 1 can hold number 1 or 99, Bin 2 can hold numbers 2 or 98, ..., Bin 49 can hold numbers 49 or 51, and Bin 50 can hold numbers 50 or 100.

Atleast one bin will have 2 weights.

Q2, ii. For section A,C,D,E,F,G

Roll number:	Section:
	re 60 red, 60 blue, 60 orange, and 20 green ones. If socks are taken out on
=	um number of socks one must draw from the bag to ensure that at least 2
of them are of the same color	9
Solution	O'
ceil (x/4) = 20	
	80. The smallest number is 77.
OR	
We have 19 socks of each co	lor = $19*4$ = 76. Hence 77 th will ensure we have 20 of the same color.
Question 3	(Marks: 4+4)
i. It is required that a numl	ber plate has three English capital letters, followed by four digits. In how
	trace a car whose number starts from L and ends with digit 5 if:
(for each part give formula/	reasoning)
(a) a Letters and digit	s both can be repeated. <mark>(a) 1*26*26*10*10*1</mark>
(b) Letters and digits	both are distinct. <mark>(b) 1*25*24*9*8*7*1</mark>
	eated but digits have to be unique. (c) 1*26*26*9*8*7*1
(d) Letters are distinc	t but digits are repeated. <mark>(d) 1*25*24*10*10*1</mark>
•	of the letters A,S,T,I,O,N,M can be made with no repetition if: (for each
part give formula/reasoning	
a. A is to be first letter i	n each arrangement
b. A and T is fixed at fir 5	st and last place respectively
c. MAS appears as a str <mark>5</mark>	
_ *	place and MT, NS appear as strings
	*3*2*1 = 12
	Marks: 10)
	l number by giving a proof by contradiction.
Solution	
	r(7) is not rational, then let $sqrt(7) = p/q$, p and q relatively coprime
integers and q not 0.	
Then	
$7 = p^2/q^2$ ie. $p^2 = 7q$	
so 7 divides p ² so 7 divides p	thus $p = 7k$. this yields:
$(7k)^2 = 7.q^2$	
$7k^2 = q^2$	
thus 7 divides q ² so 7 divides	
	rell as q, which contradicts the choice of p and q (relatively coprime).
Hence sqrt 7 can not be ratio	nal.Proved.

Question 5 (Marks: 3+3+3+3) i. Is the following graph isomorphic to W₄ (wheel of order 4). If yes, transform the given graph to W₄ or show mapping. If not, then explain why?

Yes. Place node 2 in the centre of the wheel.

ii. Are the following graphs G_1 and G_2 isomorphic? If yes, show their mapping. If not, then explain why?

No they are not. Graph 2 has a 3-node cycle.

iii. Is the following graph bi-partite? If yes prove it by redrawing the graph, otherwise explain why it isn't?

No they are not. If node 1 is placed in set 1, then nodes 2 and 3 must be in set 2. But they both can't be in the same set either.

iv. Name the following simple graphs:

v. Write down all the simple paths from 1 to 6.

Solution: 1 2 6, 1 2 3 6, 1 2 5 6, 1 5 6, 1 5 2 6, 1 5 2 3 6

Roll number:	Section:		
Question 6 FOR SECTIONS B, D, E, F & G i. Suppose the roots of the characteristic equation of relation are $\{1,2,2,2\}$ for some constants c_1 , c_2 , c_3 , c_4 . The sum of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3} + c_4 a_{n-4} + n_2 a_{n-4} + n_3 a_{n-4} + n_4 a_{n-4} + n_5 a_{n-5} +$	the associated linear homog The recurrence relation is gi		nce
What is the form of the particular solution for the ab	ove recurrence? You are no	t required to so	lve the
recurrence?			
Solution: $a_n^p = n^3(p_1n + p_0)2^n$			
	ne final solution for initial co ite down the final answer al		a ₁ =6
Solution			
roots of the characteristic polynomial are $\{3,3\}$ The solution is given by: $a_n = (3-n)3^n$			
The solution is given by: $a_n = (s, t_0)$			
Question 7 (Marks: 4+2+2+4+3+2+5- For all questions (where applicable) you can give the number.	,	e to compute th	e exact
i. Tick the correct options. C is the choose function: a. C(5000,100) = C(4999,99)+C(4999,100) b. C(5000,100) = C(5000,4900) c. P(5000,100) = P(5000,4900) d. C(5000,100) = C(100,90)*C(4900,10)	X true □ false x true □ false □ true x false □ true x false		
ii. GCD(100,190) = <mark>10</mark>			
iii. Give the smallest positive integer x that satisfies t $3x \equiv 2 \pmod{8}$ $x = 6$	he following congruence:		
iv. Tick the correct option?			
a. {apples, oranges, bananas}		x countable	
uncountable			
b. $\{x \mid 0 \le x \le 1 \text{ and } x \text{ is a real number with } 10 \ \Box$ uncountable	0 digits after the decimal}	<mark>x coun</mark> t	table
c. 2.2222 \leq x \leq 0.2223 and x is a real number	r	□ countable	x
<mark>uncountable</mark>			
$d. \{2^x \mid x \in Z\}$		<mark>x countable</mark>	
uncountable			
v. Find the transitive closure of the following relation $R = \{(a,b), (a,d), (c,b), (d,b), (d,c), (c,a)\}$	n R defined on {a,b,c,d}:		
$R = \{(a,b),(a,d),(c,b),(d,b),(d,c),(c,a)\}$ Solution: transitive closure = \{(a,a),(a,b),(a,c),(a,d),(c,d),	a).(c,b).(c,c).(c,d).(d,a).(d,b).	(d.c).(d.d)	
vi. Find the inverse of the following function $f: Z \rightarrow Z$		(6.76)/(6.76.7)]	
f(x) = x + 5			
$f^{-1}(x) = x-5$			
vii. Given the following knowledge base			
cat(mano); cat(chotto); puppy(kalu); puppy(ragy	r); puppy(goldy);		
color(mano,black); color(chotto,black);	/· I II J \(\(\text{J } \) / '		
color(kalu,black); color(ragy,brown); color(goldy	,black)		
Tick the correct option given the above facts.			

Roll number: Section: __ a. $\forall x (\neg color(x,black) \rightarrow \neg cat(x))$ x true □ false b. $\forall x \text{ (puppy(x)} \land \text{(color(x,brown)} \lor \text{color(x,black)}))$ □ true x false c. $\forall x (color(x,black) \rightarrow cat(x))$ □ true x false d. $\exists x \text{ (puppy(x)} \land \text{color(x,brown))}$ x true □ false e. $\forall y \exists x (puppy(y) \rightarrow color(y,x))$ □ false x true

viii. Use modular exponentiation algorithm to calculate the value of 4^{281} mod 11. No marks without proper working.

(281)10 = (100011001)2

```
4 mod 11 is 4,
                          1
                                             running_product = 4
                                             running_product = 4
16 mod 11 is 5
                          0
                                             running_product = 4
25 mod 11 is 3,
                          0
                                             running_product = 4*9
9 mod 11 is 9,
                          1
                                             running_product = 4*9*4
81 mod 11 is 4,
                          1
                                             running_product = 4*9*4
16 mod 11 is 5,
                          0
25 mod 11 is 3,
                          0
                                             running_product = 4*9*4
                                             running_product = 4*9*4
9 mod 11 is 9,
                          0
81 mod 11 is 4,
                          1
                                             running_product = 4*9*4*4 mod 11 =4
```

Answer = 4.

SHORTER ANSWER (using Fermat's little theorem):

281 = 28*10+1

 $4^{281} \mod 11 = (4^{10})^{28} * 4 \mod 11 = 1^{28} * 4 \mod 11 = 4$