Study over story management in videogames

Alessio Cecconi

Joint work with Stavros Vassos

Goal of the project

- Study the state-of-the-art methods for designing stories in videogames
- Investigate how AI methods can be used to provide new tools for generating stories with some form of verification

Interactive storytelling

- Authored: every possible unfolding of the story is manually written by writers/designers
 - Linear: unique predetermined storyline path
 - Non-linear: more plot alternatives, still fixed
- Emergent: the story is generated real-time in a goal-based manner, also reactive to user actions
 - Automated story unfolding according to "short-term" plot goals

New approach

- Verified: emergent story with strong guarantees over all possible unfoldings
 - Instead of automatically choosing an unfolding that satisfies some "short-term" plot goal, take into account also "global" or "long-term" requirements, e.g., there is no future deadlock

State of the art tools for story management

- We study the whole process of realizing a story
 - Modelling the story: specify the story conceptually, e.g., in normal English text
 - Implementing the story: formalize the story in a standard language or data structure
 - Executing the story inside a general-purpose game engine: use the formalized story to drive the gameplay
- Also we focus on any verifying capabilities of story unfoldings

State of the art in authored stories

Names of systems, ...

Tool	Modelling	Implementing	Execution	Verifying
Word processor				
Spreadsheet				
Graph builder				
Hypertext pages				
Story designer				
Visual scripting in game engine				
Dialog systems				
Interactive fiction engine				

State of the art in authored stories

- No global standard for story representation
- Tools used to avoid direct coding
- Little or no verification capabilities

Tool	Modelling	Implementing	Execution	Verifying
Word processor	~	×	×	×
Spreadsheet		~	×	×
Graph builder	~		×	×
Hypertext pages	~	~	×	×
Story designer	~	~	×	
Visual scripting in game engine		~	~	×
Dialog systems	~	~		À
Interactive fiction engine	×	~	~	×

Behavior composition & JaCO framework

- Our approach about verified stories is based on Behavior Composition
- Realizing a virtual desired target (i.e. story flow)
 process expressed as a transition system by
 suitably coordinating the execution of a set of
 concrete available behaviors (i.e. narration
 entities), always as transition systems.
- Not a fixed sequence of events, but the result of independent entity's behavior orchestration

Example. MageFighter (behaviors)

Many distinct behaviors...

Example. MageFighter (target)

...compose a bigger (virtual) target.

Behavior composition & JaCO framework

- JaCO (Java-based Composition-Oriented) RESTful web service for behavior composition orchestration
 - Input: FSMs of behaviors and target, represented in XML
 - Output :
 - Target relizable: Controller Generator (CG), a FSM lookup-table of any existing composition
 - Target unrealizable: Automatic identification of the unrealizable transition and configuration
- Certainty over story flow realizability in any possible behaviors configuration
- CG computed offline for an optimal online usage

Only small problems...

 This approach has only been tested in small examples. Now we want to investigate how it works in bigger real scenarios.

Testbed

- Two JaCO representations of the GameBook
 Lone Wolf [Vol.1] "A flight from the dark" (J.Dever):
 - Choose Your Own Adventure (CYOA) original book rules
 - Extended rules to resemble "open-world" games

Example. Lone Wolf (behaviors)

Example. Lone Wolf (CYOA target)

Example. Lone Wolf (Unfinished Extended Target)

Problem of using pure transition systems

- Exponential increase of number of nodes due to uncertain or conditional transitions.
- We are using behavior composition for its automated checking, but we end up needing to do it manually

Motivation for new aproaches

- Verification of stories is a desirable capability
- A more high-level/concise modeling is needed that designers can use to formalize the intended story as a behavior composition problem

Combining planning languages and transition systems for a new model

- Planning Domain Definition Language (PDDL)
 - Standard encoding language for classical planning tasks

PRO: Transitions are concisely expressed by specifying preconditions and effects

Solves some of the difficulty with transition systems!

CON: Sequential behavior needs to be "hacked" with extra propositions

- Natural in transition systems!
- Find a representation that is close to transition systems, also incorporating some PDDL features

New model components (1)

Behavior representation

Normal transition

Conditioned transition

Predicate setting transition

New model components (2)

Inheriting

Conditioned inheriting

Exclusive inheriting

Conditioned exclusive inheriting

Conclusion and future work

- Our approach goes beyond the state-of-the-art to the direction of verified interactive storytelling
- Behavior composition relies on using generic plot points that can be facilitated by different actors
- This perspective is different than what is used in practice and needs effort to make an existing story fit in this framework
- On the other hand, behavior composition could be used as an alternative framework for building stories with different type of interactivity

Conclusion and future work

Future work

- Study related formalisms that feature similar "agentprogram" behavior (Petri Nets, Behavior Trees, Golog) as well as default reasoning for inheritance
- Define precise semantics for the proposed graphs
- Develop a (nice!) visual tool for behavior building
- Develop plug-ins for major engines (Unity, UDK)