## Changepoint Detection or: How I Learned to Love the Normal Distribution

David Veitch

February 5 2021



February 5 2021

David Veitch University of Toronto

## Agenda

Change Point Detection

- Gaussian Approximation
  - The Multiplier Bootstrap
  - The Multiplier Bootstrap

3 Changepoint Detection and Gaussian Approximation

### What is Changepoint Detection

 $x_1, \dots, x_n \in \mathbb{R}^p$  are observations which are ordered sequentially.

Changepoint detection seeks to determine at what point did the distribution change from  $X_i$  to  $X_{i+1}$ .





### Changepoint Detection - Areas of Interest

- Univariate vs. multivariate vs. high dimensional
- Detecting one vs. multiple changepoints
- Changepoints in mean, covariance, distribution
- Changepoints in oscillation [Zhou et al., 2020]
- Changepoints for non-stationary data [Zhou, 2013a]
- Multiscale changepoint detection [Wu and Zhou, 2020]
- Changepoints in 'non-traditional data' such as graphs [Chen and Zhang, 2015] or images [Shi et al., 2018]



Fig. 1. Extracted frames with dimension 288 × 352 located at 1, 5, 40, and 49 from the original video 09-10-2010\_15h\_49\_27.17.mpg (faculty.tru.ca/xshi/09-10-2010\_15h\_49\_27.17.mpg). The landing and departure times of the bee are 5 and 41, respectively.

## Current Research Project

Multiscale changepoint detection for the means of high-dimensional non-stationary time series.





Do these red lines represent real changepoints or are they just noise?

Data violates many assumptions current methods make.

### Gaussian Approximation - Motivation

Why is this related to changepoint detection?

Let  $x_i = (x_{i,1}, \dots, x_{i,10}) \in \mathbb{R}^{10}$  be a vector of the log change of each province's case numbers at date i. We want to detect if one province has a big spike/decrease in this (maybe a policy change radically affected behaviour).

Take a window of size 2m, if a change occurred at some date in one province's numbers, then the following statistic should be big

$$T = \max_{1 \le j \le n} \max_{1 \le r \le 10} \left| \left( \frac{1}{\sqrt{m}} \sum_{i=j-m-1}^{j-1} x_{i,r} \right) - \left( \frac{1}{\sqrt{m}} \sum_{i=j}^{j+m} x_{i,r} \right) \right|$$
 (1)

$$T \approx \max_{1 \le j \le n} \max_{1 \le r \le 10}$$
 Change in mean of province  $r$  at date  $i$  (2)



David Veitch University of Toronto February 5 2021

### Gaussian Approximation - Motivation

$$T = \max_{1 \le j \le n} \max_{1 \le r \le 10} \left| \left( \frac{1}{\sqrt{m}} \sum_{i=j-m-1}^{j-1} x_{i,r} \right) - \left( \frac{1}{\sqrt{m}} \sum_{i=j}^{j+m} x_{i,r} \right) \right|$$
(3)

### Problem!

How do we know what a sufficiently large value of T is to reject the null hypothesis that there is no changepoint?

David Veitch University of Toronto February 5 2021

### Gaussian Approximation - Motivation

$$T = \max_{1 \le j \le n} \max_{1 \le r \le 10} \left| \left( \frac{1}{\sqrt{m}} \sum_{i=j-m-1}^{j-1} x_{i,r} \right) - \left( \frac{1}{\sqrt{m}} \sum_{i=j}^{j+m} x_{i,r} \right) \right|$$
(4)

#### Problem!

How do we know what a sufficiently large value of T is to reject the null hypothesis that there is no changepoint?

### Solution!



David Veitch University of Toronto February 5 2021 8 / 2

### Gaussian Approximation

Many of the ideas used to accomplish this originate in the follow paper Chernozhukov et al. [2013]:

The Annals of Statistics
2013, Vol. 41, No. 6, 2786–2819
DOI: 10.1214/13-AOS1161
© Institute of Mathematical Statistics, 2013

#### GAUSSIAN APPROXIMATIONS AND MULTIPLIER BOOTSTRAP FOR MAXIMA OF SUMS OF HIGH-DIMENSIONAL RANDOM VECTORS

By Victor Chernozhukov<sup>1</sup>, Denis Chetverikov<sup>1</sup> and Kengo Kato<sup>2</sup>

Massachusetts Institute of Technology, University of California, Los Angeles, and University of Tokyo

### Gaussian Approximation - Setup

 $x_1, \ldots, x_n \in \mathbb{R}^p$  be **independent** random variables that are centred  $\mathbb{E}[x_i] = 0$ . Let  $x_{i,j}$  be the j-th coordinate of  $x_i$ .

$$X = (X_1, \dots, X_p)^T = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i.$$
 (5)

 $y_1, \dots, y_n \in \mathbb{R}^p$  are **Gaussian**  $\mathcal{N}(0, \mathbb{E}[x_i x_i^T])$ 

$$Y = (Y_1, \dots, Y_p)^T = \frac{1}{\sqrt{n}} \sum_{i=1}^n y_i.$$
 (6)

By CLT one would think that  $X \stackrel{d}{\approx} Y$ .

David Veitch U

### Gaussian Approximation - Test Statistics

Define the following test statistics

$$T_0 = \max_{1 \le j \le p} X_j \tag{7}$$

$$Z_0 = \max_{1 \le j \le p} Y_j. \tag{8}$$

The **Kolmogorov distance** between the distributions  $T_0$  and  $Z_0$  as follows

$$\rho = \sup_{t \in \mathbb{R}} |P(T_0 \le t) - P(Z_0 \le t)|. \tag{9}$$

# Gaussian Approximation - Quality of Gaussian Approximation as Function of n, p

Lemma 2.3 (A Simple GAR) of the paper states that for sufficiently 'nice' random variables we have

$$\rho = \sup_{t \in \mathbb{R}} |P(T_0 \le t) - P(Z_0 \le t)| \le C \left(\frac{(\log(pn))^7}{n}\right)^{1/8}.$$
 (10)

This means if p >> n a Gaussian approximation should still work.

David Veitch University of Toronto February 5 2021

# Gaussian Approximation - Quality of Gaussian Approximation as Function of n, p

| n     | 30    | 30    | 100   | 100   | 1,000 | 1,000 | 1,000   |
|-------|-------|-------|-------|-------|-------|-------|---------|
| р     | 10    | 30    | 50    | 100   | 250   | 1,000 | 100,000 |
| Bound | 1.92C | 2.08C | 2.41C | 2.33C | 2.34C | 2.49C | 3.59C   |

So if you have quite a good approximation at n = 30, p = 10 then you should still have a decent approximation for n = 1,000, p = 100,000!





## Gaussian Approximation - The Catch

So the above says for all types of independent random variables we can approximate the distribution of

$$T_0 = \max_{1 \le j \le p} X_j. \tag{11}$$

### Gaussian Approximation - The Catch

So the above says for all types of independent random variables we can approximate the distribution of

$$T_0 = \max_{1 \le j \le \rho} X_j. \tag{12}$$

But only if we have a sequence of Gaussian random variables  $y_1, \ldots, y_n \in \mathbb{R}^p$  where each  $y_i$ 's covariance matrix is the same as  $x_i$ .

What do we do?

We can approximate  $Z_0$  with another statistic!

David Veitch

### Recap

Want to know distribution of

$$T_0 = \max_{1 \le j \le p} X_j$$

② Approximate distribution of  $T_0$  using Gaussians by

$$Z_0 = \max_{1 \le j \le p} Y_j$$

- **3** Approximate distribution of  $Z_0$  by  $W_0$
- Then

$$W_0 \stackrel{d}{\approx} T_0$$

### The Multiplier Bootstrap

Treat your data  $x_1, \ldots, x_n$  as fixed

$$W = (W_1, \dots, W_p) \tag{13}$$

$$=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i}e_{i} \tag{14}$$

$$e_i \sim \mathcal{N}(0,1)$$
 (15)

$$W_0 = \max_{1 \le j \le p} W_j. \tag{16}$$

### The Multiplier Bootstrap

W should have a covariance structure that is similar to  $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i$  since conditioned on the data, for two coordinates a, b

$$Cov(W_a, W_b) = \mathbb{E}\left[\left(\frac{1}{\sqrt{n}} \sum_{i=1}^n x_{i,a} e_i\right) \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n x_{i,b} e_i\right)\right]$$
(17)

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i,a} x_{i,b} \tag{18}$$

$$Cov(X_a, X_b) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[x_{i,a} x_{i,b}]$$
 (19)

And by the law of large numbers (Theorem 2.2.4 in Durrett!)

$$\frac{1}{n} \sum_{i=1}^{n} x_{ia} x_{ib} \stackrel{\mathsf{p}}{\to} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[x_{ia} x_{ib}] \tag{20}$$

### The Multiplier Bootstrap - Key Result

Main Result 2 (Validity of Bootstrap for high dimensional means)

$$\sup_{\alpha \in (0,1)} |P(T_0 \le c_{W_0}(\alpha)) - \alpha| \le \rho_{\ominus} + \rho \tag{21}$$

Essentially, the quantiles you get by repeatedly resampling  $W_0$  are approximately the quantiles of the test statistic  $T_0$  of the original data.

David Veitch

### The Multiplier Bootstrap - Extensions

- [Zhou, 2013b] uses a multiplier bootstrap to estimate the covariance of a nonstationary time series.
- [Zhang et al., 2017] extend Gaussian approximations to high dimensional stationary time series where they use a block method to estimate the long run variance matrix. Here they use it to estimate  $|X|_{\infty}$  (which is closer to what we our seeking to use).

### Gaussian Approximation and Changepoint Detection

- Have shown that Gaussian approximation for sums of high dimensional vectors still works for p >> n
- Extensions would suggest it could still work if there is dependence in the data, and even if dependence is changing over time

### Changepoint Detection and Gaussian Approximation

Can do something like the following, for some window m let

$$H_m(j,r) = \left| \left( \frac{1}{\sqrt{m}} \sum_{i=j}^{j+m} x_{i,r} \right) - \left( \frac{1}{\sqrt{m}} \sum_{i=j-m-1}^{j-1} x_{i,r} \right) \right|$$
 (22)

be the evidence a change in the mean of a high dimensional time series occurred in dimension r at time j. Under null hypothesis that no change points occured  $H_m(j,r) \approx 0 \ \forall \ j,r$ .

Then create a very big vector  $\mathbf{H} \in \mathbb{R}^{(n-2m)\times r}$  and do Gaussian approximation on it to estimate the quantiles under the null hypothesis of

$$H_0 = \max_{m \le j \le n-m, \ 1 \le r \le p} H_m(j, r). \tag{23}$$

Can then reject null hypothesis of no changepoint if  $H_0$  is too big.

- 4 ロ ト 4 団 ト 4 差 ト 4 差 ト 2 差 - かり(で)

David Veitch

## Thank you!

### References I

- Hao Chen and Nancy Zhang. Graph-based change-point detection. *Ann. Statist.*, 43(1):139–176, 02 2015. doi: 10.1214/14-AOS1269. URL https://doi.org/10.1214/14-AOS1269.
- Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Ann. Statist.*, 41(6):2786–2819, 12 2013. doi: 10.1214/13-AOS1161. URL https://doi.org/10.1214/13-AOS1161.
- Xiaoping Shi, Yuehua Wu, and Calyampudi Radhakrishna Rao. Consistent and powerful non-euclidean graph-based change-point test with applications to segmenting random interfered video data. *Proceedings of the National Academy of Sciences*, 115(23):5914–5919, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1804649115. URL https://www.pnas.org/content/115/23/5914.
- Weichi Wu and Zhou Zhou. Multiscale jump testing and estimation under complex temporal dynamics, 2020.
- Danna Zhang, Wei Biao Wu, et al. Gaussian approximation for high dimensional time series. *Annals of Statistics*, 45(5):1895–1919, 2017.

David Veitch University of Toronto February 5 2021 24 / 25

### References II

- Zhou Zhou. Heteroscedasticity and autocorrelation robust structural change detection. *Journal of the American Statistical Association*, 108 (502):726–740, 2013a. ISSN 01621459. URL http://www.jstor.org/stable/24246477.
- Zhou Zhou. Heteroscedasticity and autocorrelation robust structural change detection. *Journal of the American Statistical Association*, 108 (502):726–740, 2013b.
- Zhou Zhou, Yang-Guan-Jian Guo, and Hau-Tieng Wu. Frequency detection and change point estimation for time series of complex oscillation, 2020.