PCA

Dimensional Reduction

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data (e.g., topic vectors instead of bag-of-words vectors, etc.)
- $\ensuremath{\mathbb{I}}$ Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization.

Linear Dimensionality Reduction

- $\ \square$ Projection matrix $U=[u_1,u_2,\cdots,u_K]$ of size $D\times K$ defines K linear projection direction.
- $\mathbb{I} \ \ U \text{ is to project } x^{(i)} \in \mathbb{R}^D \text{ to } z^{(i)} \in \mathbb{R}^K$

$$Z = U^T \cdot X, X = [x^{(1)} \cdots x^{(N)}] \in \mathbb{R}^{D \times N} \\ Z = [z^{(1)} \cdots z^{(N)}] \in \mathbb{R}^{K \times N}$$

PCA

- Usage: s dimensionality reduction, lossy data compression, feature extraction, and data visualization
 - Def. (2 commonly used definitions)
 - Learning projection directions that capture maximum variance in data
 - Learning projection directions that result in smallest reconstruction error
- $\ \ \square$ Projection of $x^{(i)}$ along a one-dim subspace defined by $u_1\in \mathbb{R}^D$, where $||u_1||=1.$
- $\ \square$ Mean of projections is $u_1^T\mu$, where $\mu=\frac{1}{N}\sum_{i=1}^N x^{(i)}$ is the mean of all data.
- $\ \ \, \mathbb{I} \ \, \text{ Variance of projections is } u_1^T S u_1$

$$\begin{split} \frac{1}{N} \sum_{i=1}^{N} \left(u_1^T x^{(i)} - u_1^T \mu\right)^2 &= \frac{1}{N} \sum_{i=1}^{N} \left[u_1^T \left(x^{(i)} - \mu\right)\right]^2 \\ &= \frac{1}{N} \sum_{i=1}^{N} \left[u_1^T \left(x^{(i)} - \mu\right)\right] \left[u_1^T \left(x^{(i)} - \mu\right)\right]^T \\ &= E \left[u_1^T \left(X - \mu\right) \left(X - \mu\right)^T u_1\right] \\ &= u_1^T S u_1 \end{split}$$

- S is the $D \times D$ data covariance matrix

$$S = E\left[(X - \mu)(X - \mu)^T \right] = \frac{1}{N} \sum_{i=1}^{N} \left(x^{(i)} - \mu \right) \left(x^{(i)} - \mu \right)^T$$

Optimization

$$\begin{aligned} \max \limits_{u_1} \quad & u_1^T S u_1 \\ \text{s.t.} \quad & u_1^T u_1 = 1 \end{aligned}$$

- The method of Lagrange multipliers

$$\mathcal{L}(u_1, \lambda_1) = u_1^T S u_1 - \lambda_1 (u_1^T u_1 - 1)$$

- where λ_1 is a Lagrange multiplier - Take the derivative w.r.t. u_1 and setting to zero

$$\frac{\partial}{\partial u_1}\mathcal{L}\left(u_1,\lambda_1\right) = (S+S^T)u_1 - 2\lambda_1u_1 = 0 \Leftrightarrow Su_1 = \lambda_1u_1, \; (S=S^T)$$

- $\ \ \square$ Thus, u_1 is an eigenvector of S
- $\label{eq:local_state} \mathbb{I} \ \ \text{The variance of projection is} \ u_1^T S u_1 = \lambda_1.$

Steps

- 1. Center the data (subtract $\boldsymbol{\mu}$ for each data)
- 2. Compute the covariance matrix $S=\frac{1}{N}XX^T$
- 3. Perform eigen decomposition of S and take first K leading eigenvectors $\{u_i\}_{i=1,\cdots,K}$.
- 4. The projection is therefore given by $\boldsymbol{Z} = \boldsymbol{U}^T \boldsymbol{X}$