

SQuAT Plan Smooth QUadrotor Agile Trajectory PLANning

Aaron John Sabu, Ryan Nemiroff

Class: Control and Trajectory Planning for Autonomous Aerial Systems

Instructor: Dr. Brett Lopez

2022 December 1

Motivation Problem Statement Approach Results

Motivation

- Cluttered environments
 - Drone delivery in a city
- Warehouse Inventory

https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries

https://www.corvus-robotics.com/corvus-one

Problem Statement

- Reach a goal position
 - · without a priori information about the environment,
 - · with a limited sensing horizon,
 - · while avoiding obstacles,
 - and remaining in safe input and state ranges.
- Assumptions:
 - · Perfect state estimates are available
 - Obstacles can be represented as ellipsoids and cylinders
 - · Obstacle perception is given
- · Deliverables:
 - Trajectory planner (MPC)
 - Tracking controller

Trajectory Optimizer

- Use Python library called **GEKKO** [1]
 - GEKKO is a front-end for APMonitor
 - Nonlinear optimization
 - Built-in methods for solving optimal control problems with dynamics
 - Breaks problem into discrete time steps
 - Discretized dynamics ≠ continuous dynamics :(

Problem Formulation 1: Chain of Integrators

$$\min\left(K_p||\mathbf{p}-\mathbf{p}_f||^2+\left(K_s||\mathbf{s}||^2\right)\right)$$

- Dynamics $\dot{\mathbf{p}} = \mathbf{v}$ $\dot{\mathbf{v}} = \mathbf{a}$ $\dot{\mathbf{a}} = \mathbf{j}$ $\dot{\mathbf{j}} = \mathbf{s}$
- $\mathbf{p}(t=0) = \mathbf{p}_0 \quad \mathbf{a}(t=0) = \mathbf{a}_0$ Initial States ${\bf v}(t=0)={\bf v}_0 \quad {\bf j}(t=0)={\bf j}_0$
- $\mathbf{a}(t = t_f) = \mathbf{a}_f$ $\mathbf{j}(t = t_f) = \mathbf{j}_f$ $\mathbf{v}(t=t_f) = \mathbf{v}_f$ Terminal States
- $\mathbf{s} \in \mathbb{S}$ **Input Constraints**

Problem Formulation 2: Quadrotor Dynamics

$$\min \left(K_p ||\mathbf{p} - \mathbf{p}_f||^2 + \left(K_f ||\mathbf{f}_B||^2 + K_M ||\mathbf{M}_B||^2 \right) \right)$$

• Dynamics
$$\dot{\mathbf{p}} = \mathbf{v}$$
 $M\dot{\mathbf{v}} = \mathbf{f}_I + q \otimes \mathbf{f}_B \otimes q$ $\dot{q} = \frac{1}{2}q \otimes \begin{pmatrix} 0 \\ \omega \end{pmatrix}$

• Initial States
$$\mathbf{p}(t=0) = \mathbf{p}_0 \qquad q(t=0) = q_0$$

$$\mathbf{v}(t=0) = \mathbf{v}_0 \qquad \omega(t=0) = \omega_0$$

• Terminal States
$$\mathbf{v}(t=t_f) = \mathbf{v}_f \quad \begin{array}{l} q(t=t_f) = q_f \\ \omega(t=t_f) = \omega_f \end{array}$$

• Input Constraints $\mathbf{f}_B \in \mathbb{F}$ $\mathbf{M}_B \in \mathbb{M}$

System Architecture

 Our approach to recursive feasibility: Vehicle must be stopped at the end of each planned trajectory.

Tracking Controller – Using Differential Flatness

If using chain of integrators optimization, convert jerk & snap to angular velocity & angular acceleration [2]:

$$\begin{bmatrix} \omega_{\text{ref}} \\ \dot{\tau}_{ref} \end{bmatrix} = \begin{bmatrix} \tau \mathbf{R} [\mathbf{i}_z]_{\times}^T & \mathbf{b}_z \\ \mathbf{S} & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{j}_{ref} \\ \dot{\psi}_{ref} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\omega}_{\text{ref}} \\ \ddot{\tau}_{ref} \end{bmatrix} = \begin{bmatrix} \tau \mathbf{R} [\mathbf{i}_z]_{\times}^T & \mathbf{b}_z \\ \mathbf{S} & 0 \end{bmatrix}^{-1} \\ \left(\begin{bmatrix} \mathbf{s}_{ref} \\ \ddot{\psi}_{ref} \end{bmatrix} - \begin{bmatrix} \mathbf{R} (2\dot{\tau} + \tau [\mathbf{\Omega}]_{\times}) [\mathbf{i}_z]_{\times}^T \mathbf{\Omega} \\ \dot{\mathbf{S}} \mathbf{\Omega} \end{bmatrix} \right)$$

[2] Tal, E., & Karaman, S. (2021). Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental Nonlinear Dynamic Inversion and Differential Flatness. *IEEE Transactions on Control Systems Technology*, 29(3), 1203-1218.

Tracking Controller – PD control

1) Position control *(Lec 16)*
$$\mathbf{u}=\mathbf{a}_{\mathrm{ref}}-\mathbf{g}_{\mathcal{I}}-K_{p}^{\mathrm{pos}}\mathbf{p}_{e}-K_{d}^{\mathrm{pos}}\dot{\mathbf{p}}_{e}$$
 $T=m\|\mathbf{u}\|$

2) Compute q_d (Lec 16)

$$q_d = \frac{1}{\sqrt{2(1+\hat{\mathbf{T}}^T\hat{\mathbf{u}})}} \begin{pmatrix} 1+\hat{\mathbf{T}}^T\hat{\mathbf{u}} \\ \hat{\mathbf{T}} \times \hat{\mathbf{u}} \end{pmatrix}$$

3) Attitude Control (*Lec 15*)

$$\mathbf{M}_B = J\left(\dot{\omega}_{\text{ref}} - K_p^{\text{att}} \operatorname{sgn}(q_e^{\circ}) \vec{q}_e - K_d^{\text{att}} \omega_e\right)$$

Motivation Problem Statement Approach Results

Results – Animations

Ex: Chain of integrators

Ex: Quadrotor dynamics

Results – State and Input Plots

Chain of integrators

Results – State and Input Plots

Quadrotor dynamics

Results – Position Error

Possible Improvements

- More thorough collision checking/constraints
- Theoretically guaranteed "tube" for tracking
- Properly integrated dynamics in trajectory optimization
- Plan of action in dead ends / mapping