1.	Γ20	marks1	Digital	Logic.
			- D - C - C - C - C - C - C - C - C - C	

a) [10 marks] 'M' is the ternary minority connective.	'Mpqr' is true iff at
most one of 'p', 'q', and 'r', is true. The connectiv	e/logical symbol/wff
'F' is always false. Consider the set {M, F}. Using	only sentence symbols,
and connectives from this set, find a tautological equ	valent to '~p'.

ans:	~p	=	=	М			
------	----	---	---	---	--	--	--

b) [10 marks] An 'M' gate settles in 325 ps. A 2-input 'AND' gate settles in 125 ps. 'C' is a 12-input circuit built from four 'M' gates and three 2-input 'AND' gates ('C' is true iff all 'M' gates report true). After all 'M-gate' inputs have stable values, how quickly does this circuit settle?

ans: ____ ps

2. [20 marks] Amdahl's Law.

a) [10 marks] On a uniprocessor, perfectly serial portion A of program P consumes 10 s, while perfectly parallel portion B consumes 90 s. We want a program run time not to exceed 14 s. Many cores are required. What is the run time of program P with this many cores? (Answer to two decimal places).

ans: ____ s

b) [10 marks] On a uniprocessor, perfectly serial portion A of program P consumes 10 s, while perfectly parallel portion B consumes 990 s. We want a program run time not to exceed 140 s. Many cores are required. What is the run time of program P with this many cores? (Answer to two decimal places).

ans	•	c
ans	•	3

Consider our instruction-execution pipeline:							
<f-box></f-box>		+-+ <x-box> +-+ d/x</x-box>					
	rks] In execut her than, say,		r2)', which bo	x needs to know	that it is		
<pre>b) [5 ma device?</pre>	rks] The 'd-bo	x' localizes a	ll operands fr	om which on-chi	ans:		
uevice:					ans:		
	rks] In execut mmediate?	ing 'l.d f4,8(r2)', which bo	x computes the :	32-bit form		
d) [5 ma 'PC'?	rks] Register	'PC' lives in	the 'f/d latch	'. Which box w	ans:		
					ans:		

Hex table:

3. [20 marks] Pipelines (Single-instruction Information Flow).

```
0
   0000
          4
              0100
                     8
                         1000
                                   1100
                               C
1
   0001
          5
              0101
                     9
                         1001
                                   1101
                               d
   0010
              0110
2
                         1010
                                   1110
3
   0011
              0111
                         1011
                                f
                                   1111
4. [20 marks] Instruction formats.
A small computer has 16-bit words and 16-bit instructions. A byte is 8 bits.
The instruction format for a data-transfer instruction is:
D: opcode rs
                rt
                          immediate
                                     -- data transfer
   2 bits 3 bits 3 bits 8 bits
a) [10 marks] Consider 'l.d f6,119(r2)'. Show the hexadecimal representation
of the 16-bit integer that will be added to base register 'r2'.
                                                      ans: ___ __ __
b) [10 marks] Consider 'l.d f6,-119(r2)'. Show the hexadecimal representation
of the 16-bit integer that will be added to base register 'r2'.
                                                      ans: ___ __
5. [20 marks] Floating-point formats.
A small computer has 16-bit registers. Floating-point numbers are positive.
The floating-point format is: First four bits for the exponent, and the next 12
bits for the fractional part of the significand.
a) [10 marks] What is the hexadecimal representation of the floating-point
format for 17.625? Do not round. Show your work.
                                                      ans: ___ _
```

b) [10	mar	ks] Wh	at i	s th	e hexad	ecimal	l repr	resentat	ion of	the	floating-point
format	for	2.7?	Do	not	round.	Show	your	work.			
										ans:	