BMA

Vor.: $a_1, b_1 \in \mathbb{R}$ und $0 < a_1 < b_1$ Seien $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{b \in \mathbb{N}}$ Folgen reeler Zahlen, rekursiv definiert durch

$$a_{n+1} \coloneqq \frac{2a_nb_n}{a_n + b_n} \text{ und } b_{n+1} \coloneqq \frac{a_n + b_n}{2} \quad (n \in \mathbb{N}).$$

Beh.:

- (a) (i) $0 < a_n < b_n$,
 - (ii) $a_n \leq a_{n+1}$ und $b_n \geq b_{n+1}$
 - (iii) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$
- (b) $(a_n)_{n\in\mathbb{N}}und(b_n)_{n\in\mathbb{N}}$ konvergieren gegen den gleichen Limes und (a_n-b_n) ist eine Nullfolge
- (c) $\exists ! x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ und für dieses x gilt $x = \sqrt{a_1 b_1}$

Proof

(a) (i) **I.V.** $\exists n : 0 < a_n < b_n$

I.A.
$$n = 1$$

 $0 < a_n < b_n$ gegeben.

I.S.
$$n \curvearrowright n+1$$

zu zeigen $0 < a_{n+1} < b_{n+1}$, also zu zeigen:

$$0 < \frac{2a_nb_n}{a_n + b_n} < \frac{a_n + b_n}{2}$$

$$0 < \frac{2a_nb_n}{a_n + b_n} < \frac{a_n + b_n}{2}$$

$$0 < 4a_nb_n < (a_n + b_n)^2$$

$$0 < 4a_nb_n < a_n^2 + 2a_nb_n + b_n^2$$

$$-4a_nb_n < 0 < a_n^2 - 2a_nb_n + b_n^2$$

$$-4a_nb_n < 0 < (a_n - b_n)^2$$

$$a_n > 0 \text{ und } b_n > 0$$

$$\begin{split} a_n &\leq 1 \cdot a_n \\ a_n &\leq \frac{2b_n}{b_n + b_n} a_n \quad | \quad \text{da } a_n + b_n \leq b_n + b_n \iff \frac{1}{b_n + b_n} \leq \frac{1}{a_n + b_n} \\ a_n &\leq \frac{2b_n}{a_n + b_n} a_n \\ a_n &\leq a_{n+1} \end{split}$$

$$b_n \ge 1 \cdot b_n$$

 $b_n \ge \frac{2b_n}{2} \mid \text{da } a_n + b_n \le b_n + b_n$
 $b_n \ge \frac{a_n + b_n}{2}$
 $b_n \ge b_{n+1}$

- (iii) Also zu zeigen: $\forall x \subset [a_{n+1}, b_{n+1}] : x \in [a_n, b_n]$. Sei $x \in [a_{n+1}, b_{n+1}]$ gegeben, zu zeigen: $x \in [a_n, b_n]$. Also zu zeigen $a_n \le x \le b_n$. Es gilt, da $x \in [a_{n+1}, b_{n+1}]$: $a_n \le a_{n+1} \le x \le b_{n+1} \le b_n$
- (b) zu zeigen $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Da $(a_n), (b_n)$ monoton und durch sich gegenseitig beschränkt, gilt $(a_n), (b_n)$ konvergent, also $\exists a := \lim_{n\to\infty} a_n$ und $\exists b := \lim_{n\to\infty} b_n$, wähle ein solches a und b. Zu zeigen a = b. Es gilt:

$$\lim_{n \to \infty} b_{n+1} = \lim_{n \to \infty} \frac{a_n + b_n}{2}$$

$$\lim_{n \to \infty} b_n = \frac{a+b}{2}$$

$$b = \frac{a+b}{2}$$

$$2b = a+b$$

$$b = a$$

Und zu zeigen $(b_n - a_n)_{n \in \mathbb{N}}$ eine Nullfolge. Also $0 = \lim_{n \to \infty} a_n - \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = \lim_{n \to \infty} (b_n - a_n)$

(c) zu zeigen Existiert $x\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$ und Eindeutigkeit dieses x'es Setze $x\coloneqq\sqrt{a_1b_1}$ zu zeigen $x\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$

$$\mathbf{I.V.} \ (a_nb_n)_{n\in\mathbb{N}} = a_1b_1$$

I.A.
$$n = 1$$
 $a_1b_1 = a_1b_1$ gegeben.

i.S.
$$n \sim n + 1$$

$$a_{n+1}b_{n+1} = \frac{2a_nb_n}{a_n + b_n} \cdot \frac{a_n + b_n}{2}$$

$$a_n + b_n$$
 2
$$a_{n+1}b_{n+1} = a_nb_n \mid \text{nach I.V.}$$

$$a_{n+1}b_{n+1} = a_1b_1$$

Also $\lim_{n\to\infty} a_n b_n = a_1 b_1$

Also $a_1b_1 = \lim_{n\to\infty} a_nb_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} a_n = (\lim_{n\to\infty} a_n)$

Also $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \sqrt{a_1b_1} = x$

Also $x \geq a_n$ und $x \leq b_n$, also $x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$. Noch zu zeigen Eindeutigkeit von x Da $\lim_{n \to \infty} \operatorname{diam}([a_n, b_n]) = \lim_{n \to \infty} (b_n - a_n) = 0$ gilt das Intervallschachtelungsprinzip, also $\exists ! guenter \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$, also folgt für ein soches guenter, x = guenter und da guenter eindeutig ist, ist auch x eindeutig.

(e)

$$[a_1, b_1] = [1, 2]$$

$$[a_2, b_2] = \left[\frac{4}{3}, \frac{3}{2}\right]$$

$$[a_3, b_3] = \left[\frac{24}{17}, \frac{17}{12}\right]$$

$$[a_4, b_4] = \left[\frac{816}{577}, \frac{577}{408}\right]$$

$$x_1 = 1$$

$$x_2 = \frac{3}{2}$$

$$x_3 = \frac{17}{12}$$

$$x_4 = \frac{577}{408}$$