

FIG. 1A

cagggatcag gggtccagga actcaggagtc tgcatgtgagg accagacacc actgattgca 60
 gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa tat gca 108
 Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala
 1 5 10 15
 gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg gga gat 156
 Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp
 20 25 30
 cct gtt gca gac aac tgc tgt gca gag aag atc tgc aca ctt cct aac 204
 Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Thr Leu Pro Asn
 35 40 45
 aga ggc ttg gac cgc acc aag gtc ccc att ttc ctg ggg atc cag gga 252
 Arg Gly Leu Asp Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly
 50 55 60
 ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct tcc cta 300
 Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu
 65 70 75
 cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt gaa gag 348
 Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu
 80 85 90 95
 gcc aca cgc ttc acc ttc ctc cag agc agc tca ggc tcc gcc ttc agg 396
 Ala Thr Arg Phe Thr Phe Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg
 100 105 110
 ctt gag gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg gca gag 444
 Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu
 115 120 125
 ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca gcc cgt 492
 Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg
 130 135 140
 acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga aactgcgttt 542
 Thr Lys Phe Tyr Phe Glu Gln Ser Trp
 145 150
 tagccttgtg cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg 602
 tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac catacatgtc 662
 caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg 722
 ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag 782
 aatgaaagat accatgcttc taatttgaa gatggagtga gggcccttga gccaacaaat 842
 gcaagggttt ttagaaagggtg gaaaagccaa gggAACGGAT tctcctctag agtctccgg 902

FIG. 1B

aggaacacag ctcttgacac atggattca gtcagtgc acccattca gacttctgac 962
ctccacaact ataaaataat aaacctgtgt tattgtaaac ctctaaaaaaaaaaaaaaa 1020

FIG. 2A

Sequence Data

cagggatcag ggttccagga actcaggatc tgcagtgagg accagacacc actgattgca	60
gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa tat gca	108
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala	
1 5 10 15	
gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg gga gat	156
Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp	
20 25 30	
cct gtt gca gac aac tgc tgt gca gag aag atc tgc ata ctt cct aac	204
Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu Pro Asn	
35 40 45	
aga ggc ttg gcc cgc acc aag gtc ccc att ttc ctg ggg atc cag gga	252
Arg Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly	
50 55 60	
ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct tcc cta	300
Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu	
65 70 75	
cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt gaa gag	348
Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu	
80 85 90 95	
gcc aca cgc ttc acc ttc ttc cag agc agc tca ggc tcc gcc ttc agg	396
Ala Thr Arg Phe Thr Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg	
100 105 110	
ctt gag gct gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg gca gag	444
Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu	
115 120 125	
ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca gcc cgt	492
Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg	
130 135 140	
acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga aactgcgttt	542
Thr Lys Phe Tyr Phe Glu Gln Ser Trp	
145 150	
tagccttgtc cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg	602
tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac catacatgtc	662
caaagaggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg	722
ttatccttgtt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag	782
aatggaagat accatgcttc taatttgaa gatggagtga gggcccttga gccaacaat	842
gcaggtgttt ttagaaggtg gaaaagccaa gggAACGGAT tctcctctag agtctccggaa	902

FIG. 2B

```
aggAACACAG ctcttgacac atggattca gtcagtgac acccattca gacttctgac 962  
ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaaaaaaaaaaaaaaa 1020
```

卷之三

FIG. 3

DRAFT
DNA
SEQUENCE
ALIGNMENT

gctcccgcca ggagaaaaggaa acattctgag gggagtctac accctgtgga gctcaag	57
atg gtc ctg agt ggg gcg ctg tgc ttc cgt gag gac cag aca cca ctg	105
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Glu Asp Gln Thr Pro Leu	
1 5 10 15	
att gca gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa	153
Ile Ala Gly Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys	
20 25 30	
tat gca gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg	201
Tyr Ala Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val	
35 40 45	
gga gat cct gtt gca gac aac tgc tgt gca gag aag atc tgc ata ctt	249
Gly Asp Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu	
50 55 60	
cct aac aga ggc ttg gcc cgc acc aag gtc ccc att ttc ctg ggg atc	297
Pro Asn Arg Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile	
65 70 75 80	
cag gga ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct	345
Gln Gly Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro	
85 90 95	
tcc cta cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt	393
Ser Leu Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly	
100 105 110	
gaa gag gcc aca cgc ttc acc ttc cag agc agc tca ggc tcc gcc	441
Glu Glu Ala Thr Arg Phe Thr Phe Phe Gln Ser Ser Gly Ser Ala	
115 120 125	
ttc agg ctt gag gct gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg	489
Phe Arg Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro	
130 135 140	
gca gag ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca	537
Ala Glu Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser	
145 150 155 160	
gcc cgt acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga	583
Ala Arg Thr Lys Phe Tyr Phe Glu Gln Ser Trp	
165 170	
aactgcgttt tagccttggt cccccaaacc aagctcatcc tgctcagggt ctatggtagg	643
cagaataatg tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac	703
catacatgtc caaagaggtt ttgcaaatgt gattatgtta a	744

FIG. 4A

	1	50
IL-1_alpha	MAEVPKLASE MMAYYSGNED DLFFEADGPK QMKCSFQDLD LCPLDGGIQL	
IL-1_beta	-----	
IL-1RA	-----	
IL-1_delta	-----	
CS329	-----	
Tango-77	-----	
Zilla4	-----	
IL-1_zeta	-----	
IL-1RA_beta	-----	
Spoil_II	-----	
IL-1_epsilon	-----	
IL-1_eta	-----	
	51	100
IL-1_alpha	RISDHHYSKG FRQAASVVVA MDKLRKMLVP CPQTFQENDL STFFPFIFEE	
IL-1_beta	-----	
IL-1RA	-----	
IL-1_delta	-----	
CS329	-----	
Tango-77	----- MSFVGENS GVKGMSEDWE KDEPQCCLLED PAGSPLEPGP	
Zilla4	----- MSFVGENS GVKGMSEDWE KDEPQCCLLED PAGSPLEPGP	
IL-1_zeta	-----	
IL-1RA_beta	----- MRGTPGDADG GGRAVYQS..	
Spoil_II	----- MRGTPGDADG GGRAVYQSSE SNAVGGMGLWR LRPSALTTLSP	
IL-1_epsilon	-----	
IL-1_eta	-----	
	101	150
IL-1_alpha	EPIFFDTWDN EAYVHDAPVR SLNCTLRDSQ QKSLVMSGPY ELKALHLQGQ	
IL-1_beta	----- APVR SLNCTLRDSQ QKSLVMSGPY ELKALHLQGQ	
IL-1RA	LLFLFLFHSETI CRPSGRKSSK IQAFRIWDVN QKTFYLRNN. QLVAGYLQGP	
IL-1_delta	----- MVLSG ALCFRMKDSA LKVLYLHNN. QLLAGGLHAG	
CS329	----- MCSLPM ARYYIICKYAD QKALYTRDG. QLLVGDPVAD	
Tango-77	SLPTMNFVH. .T.	
Zilla4	SLPTMNFVH. .TSPKVKNLN PKKFSIHQDQ HKVLVLDSG. NLIA.. VPKD	
IL-1_zeta	TKGKNSFKKR LRGPKVKNLN PKKFSIHQDQ HKVLVLDSG. NLIA.. VPKD	
IL-1RA_beta MCK PITGTINDLN QQVWTLQGQ. NLVA.. VPRS	
Spoil_II	VEAPAFSAPL CTLPFPPVCK PITGTINDLN QQVWTLQGQ. NLVA.. VPRS	
IL-1_epsilon	----- MEKALKIDT PQQGSIQDIN HRVWVLQDQ. TLIA.. VPRK	
IL-1_eta	----- MNPQREAA PKSYAIRDSR QMVWVLSGN. SLIA.. APLS	
	151	200
IL-1_alpha	DMEQQVVFMSM ... SFVQGEE SNDKIPVALG LKEKNLYLSC VLKDDK.. PT	
IL-1_beta	DMEQQVVFMSM ... SFVQGEE SNDKIPVALG LKEKNLYLSC VLKDDK.. PT	
IL-1RA	NVNLEEKIDV VP.....IEPHALFLG IHGGKMCLSC VKSGDE.. TR	
IL-1_delta	KVIKGEEISV VPNRWLDASLSPVILG VQGGSQCLSC .GVGQE.. PT	
CS329	NC.CAEKICT LPNRGLDRTK ... VPIFLG IQGGSRCLAC VETEEG.. PS	
Tango-77KIFFA LASSLSSA.S AEKGSPILLG VSKGEFCLYC DKDKGQSHPS	
Zilla4	NYIRPEIFFA LASSLSSA.S AEKGSPILLG VSKGEFCLYC DKDKGQSHPS	
IL-1_zeta	NYIRPEIFFA LASSLSSA.S AEKGSPILLG VSKGEFCLYC DKDKGQSHPS	
IL-1RA_beta	DSVTPVTVAV ITCKYPEALE QGRGDPYLG IONPEMCLYC EKVGEQ.. PT	
Spoil_II	DSVTPVTVAV ITCKYPEALE QGRGDPYLG IONPEMCLYC EKVGEQ.. PT	
IL-1_epsilon	DRMSPVTIAL ISCRHVETLE KDRGNPIYLG LNGLNLCLMC AKVGDQ.. PT	
IL-1_eta	RSIKPVTLHL IACRDTEFSD KEKGNMVYLG IKGKDLCLFC AEIQGK.. PT	

FIG. 4B

<p style="text-align: right;">201</p> <p>IL-1_alpha LQLESVDPKN Y..PKKKMEK RFVFNKIEIN NKLEFESAQF PNWYISTSQA IL-1_beta LQLESVDPKN Y..PKKKMEK RFVFNKIEIN NKLEFESAQF PNWYISTSQA IL-1RA LQLEAVNITD LSENRKQDKR .FAFIRSDSG PTTSFESAAC PGWFLCTAME IL-1_delta LTLEPVNIME LYLGAKESKS .FTFYRRDMG LTSSFESAAY PGWFLCTVPE CS329 LQLEDVNIEE LYKGGEETR .FTFFQSSSG SAFRLEAAAW PGWFLCGPAE Tango-77 LQLKEKLMK LAAQKESARR PFIFYRAQVG SWNMLESAAH PGWFICTSCN Zilla4 LQLKEKLMK LAAQKESARR PFIFYRAQVG SWNMLESAAH PGWFICTSCN IL-1_zeta LQLKEKLMK LAAQKESARR PFIFYRAQVG SWNMLESAAH PGWFICTSCN IL-1RA_beta LQLKEQKIMD LYQPEPV.K PFLFYRAKTG RTSTLESVAF PDWFIA.SSK Spoil_II LQLKEQKIMD LYQPEPV.K PFLFYRAKTG RTSTLESVAF PDWFIA.SSK IL-1_epsilon LQLKEKDIMD LYNQPEPV.K SFLFYHSQSG RNSTFESVAF PGWFIAVSSE IL-1_eta LQLKEKNIMD LYVEKKAQ.K PFLFFHNKEG STSVFQSVD PGWFIATSTT</p>	<p style="text-align: right;">250</p>
<p style="text-align: right;">251</p> <p>IL-1_alpha ENMPVFL... .GGTKGGQDI TDFTMQFVSS ~~~~~</p> <p>IL-1_beta ENMPVFL... .GGTKGGQDI TDFTMQFVSS ~~~~~</p> <p>IL-1RA ADQPVSLTNM PDEG...VMV TKFYFQEDE~ ~~~~~</p> <p>IL-1_delta ADQPVRILTQL PENGGWNAPI TDFYFQQCD~ ~~~~~</p> <p>CS329 PQQPVQLTKE SEPSAR.... TKFYFEQSW~ ~~~~~</p> <p>Tango-77 CNEPVGVTDK FENRKH.... IEFSFQPVCK AEMSPSEVSD</p> <p>Zilla4 CNEPVGVTDK FENRKH.... IEFSFQPVCK AEMSPSEVSD</p> <p>IL-1_zeta CNEPVGVTDK FENRKH.... IEFSFQPVCK AEMSPSEVSD</p> <p>IL-1RA_beta RDQPIILTSE LGKSYN.... TAFELNIND~ ~~~~~</p> <p>Spoil_II RDQPIILTSE LGKSYN.... TAFELNIND~ ~~~~~</p> <p>IL-1_epsilon GGCPLIILTQE LGKANT.... TDFGLTMLF~ ~~~~~</p> <p>IL-1_eta SGQPIFLTKE RGITNN.... TNFYLDSVE~ ~~~~~</p>	<p style="text-align: right;">290</p>

© 2002 American Society for Microbiology

Phylogenetic Tree of the Emerging IL1-ra Gene Family

FIG. 5

FIG. 7

atg tgc tcc ctt ccc atg gca aga tac tac ata atc aag gat gca cat	48
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Asp Ala His	
1 5 10 15	
 caa aag gct ttg tac aca cgg aat ggc cag ctc ctg ctg gga gac cct	96
Gln Lys Ala Leu Tyr Thr Arg Asn Gly Gln Leu Leu Leu Gly Asp Pro	
20 25 30	
 gat tca gac aat tat agt cca gag aag gtc tgt atc ctt cct aac cga	144
Asp Ser Asp Asn Tyr Ser Pro Glu Lys Val Cys Ile Leu Pro Asn Arg	
35 40 45	
 ggc cta gac cgc tcc aag gtc ccc atc ttc ctg ggg atg cag gga gga	192
Gly Leu Asp Arg Ser Lys Val Pro Ile Phe Leu Gly Met Gln Gly Gly	
50 55 60	
 agt tgc tgc ctg gcg tgt gta aag aca aga gag gga cct ctc ctg cag	240
Ser Cys Cys Leu Ala Cys Val Lys Thr Arg Glu Gly Pro Leu Leu Gln	
65 70 75 80	
 ctg gag gat gtg aac atc gag gac cta tac aag gga ggt gaa caa acc	288
Leu Glu Asp Val Asn Ile Glu Asp Leu Tyr Lys Gly Gly Glu Gln Thr	
85 90 95	
 acc cgt ttc acc ttt ttc cag aga agc ttg gga tct gcc ttc agg ctt	336
Thr Arg Phe Thr Phe Gln Arg Ser Leu Gly Ser Ala Phe Arg Leu	
100 105 110	
 gag gct gct gcc cct ggc tgg ttt ctc tgt ggc cca gct gag ccc	384
Glu Ala Ala Ala Cys Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro	
115 120 125	
 cag cag cca gtg cag ctc acc aaa gag agt gaa ccc tcc acc cat act	432
Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Thr His Thr	
130 135 140	
 gaa ttc tac ttt gag atg agt cggt taa	459
Glu Phe Tyr Phe Glu Met Ser Arg	
145 150	

FIG. 8

FIG. 9A

actagtctcc catagacaac agctgaatgt acgaggtag aagcaaggcc tgccccagaa 60
ccattgcaag ccaggtgctg tcttgattgt agcctcataa aaaactgatg cagaattgcc 120
ccaccaacat gctccagatt cctgctccac agaaaccctg tgaactaacc atgttgcctt 180
tagattctgc agtaagttga taatctgcag taaataacat tcgatgaaag agaaacatgt 240
gtagttactt tattatgatc aaaactttat ttctccactc tttccatttt ctttcaga 300
attgacacca gcctttcact aacccaaata gcctattaa atgctgatca tacttctctt 360
gttaactgtt acctgttccc aaaaggtaca attcccttc gaccatagct gcatctccca 420
cctgcacacc aggatgttcc tcataatttct acctaaaaca ttggggacta caagtgaaag 480
caaaagaggg ggtccatatac agaaccccaag gtattnagct gtaaaactca cttgtcaggc 540
cagcttgcata ggtttacagt ttgtagaagg accagaaaga aggtagccaa gacagaagag 600
gcaacctctg cttgtccttag aaccttcagt ccatatacat ctaagctccc cagcaccatt 660
tctaccacag acctctcaga gttcctgagg atgcagaccc caggacactg acctcagttt 720
ccaggcaggg tttctgcaca ccccttcac actgcctgac tggagtttag tctcatggtg 780
caacactact ttgggacact gtacccatcc cctcgaccta cagaaaccat tcactttca 840
aggtcacctc ctataggaag tatttggaaaa gatgagagtc atggtcattt gctatgataa 900
tattctgtgc ttatctccct gtaaaaagtt ggctgggt ctctggcatg catctgaccc 960
taagggttggaa gctgcaccaa tatgtttta agcaccggc ataatgcttc gcaaaatttc 1020
agaacatggt ttgtacagaa tgtactttcc tccactcata caaacccttggaaaagagta 1080
gttgaatcc caactcattc ttgaaggcca cctttgttag ggtgacagaa tttaaaaata 1140
cagaatttaa aaatacttta tcccaggaa gctcacactt ctaaatccag aatgaaagaa 1200
gaaatagaaa cacacttgtg gtggcggtgg tgggtgtat ggtggcgtg gtgggtgg 1260
tgggtgtgtt ggtgatggtg gtgggtgg tgggtgtgtt ggtcggtgt gtgtaatgat 1320
cacagtaaag tgaggcatca tggcctgaga gagtcaggca tcacagctat tcaagtgaaa 1380
actacactact actgattta gagttctata attttagtag cagccacagg cctggggcct 1440
gggcctatat tttcagagag gaaatgttca cagcaggatca actgcagaca gtgaagatca 1500
gaaatgtttc ataatcaggt catcagagaa aaggcaaaagg agctgatgga ctttatcctg 1560
aaaaagcaaa atccaaccca cctcatgctt aatgcattca aaggtctgct ggcagaagaa 1620

FIG. 9B

tacattttgc tttttattat tataaattac ctggagaata tttttgtctg aattatctcc 1680
caaatatcaa ccataaaaat aaaaaattcc atgtgtgcctt ctcccagggg ctataaagcc 1740
cctggtctta gagttgttgg ggcaaaacct gaccttgaa gtagttactt ttgaagatgc 1800
cataccatac atttggccac ttggagagag tctaattgtca catctaaagg gttactctga 1860
tgctctgttt tctcatatgc ccttggctta cagctaacta tggctccagc taaactataa 1920
attccttgg caacagagat ggtacgctat gtgtcttga cacagcagaa taaatgctta 1980
gtgaacatta ctgattgcct gacaggacac ctcacacttt ggtactttca acagagggat 2040
gtaaacttat gaagaacaat gaagaatgaa tattggcaat aaaagcaaaa attggtaac 2100
ccaattctag ctctgaaatc attttaggt agtgggaagt cttttgttt tgtttattca 2160
cttacatcc caattgttgt cctccctcca agttccccac caccaccaca gtccttttc 2220
cctcccttc tcctctgaga gaatggagaa ccctcctgga tattcccca tcatgaaaca 2280
ttaagtctct gcagggctag acacttcccc cagtgaggcc agtcagggca gcccgtag 2340
aaaaagcata tcccacagac agacaacagc ttttggata gccccgttcc agttgttag 2400
gatccacatg aaggctgagc tgcacatctg ctacatatga atgaggaggc ctaggtccag 2460
cctgtgtatg ttctttgggtt ggtgggttcag actctgagag ccccaagggt ccaggtcagt 2520
tgactctgtt ggtcttcctg tggcacccct gtcctttcc agccacacaat cttcccca 2580
atccttctcc ttctcacttc cataagagtg tgaggagtct ttaaaaacat gaagcatttt 2640
atctccccag ggcaacacat ggaaatgaaa gattgtgaaa agtaattaa agaaaaagaa 2700
aaaaaaaaattt aacaaggaat aagaatcttgc tttctctgaa aatgttaag agtgtggaaa 2760
acataaaactg gattctaata gaatgcaatt ggattgtaat gaaaacctat caaagttatg 2820
aaatagcttt cactaccttgc cacaaaatct cttggcatgt gtgtgttgg caaattttct 2880
tgttagttta aaaccacaac aataacaaca aaatagcaaa aattgggtct cagcctcatt 2940
catttttctt catttcttgc tctgtgtatcg tctgggtctt aagctgacac ctcaccaatt 3000
cctcatcaag acctttgtgg aaatttgcaa atgtcccaa aaggagaatt acaataagtc 3060
agagaacgtt ctgtccaatt ctatccct agtgtatggat gagtaaagga tgtataagag 3120
atggataaat ggactgtatgt acagataaat gaaggaatat gtacatgggtt aggtggatag 3180
atgacttactt caacagatga gtagaaggat gagaaataga tggacagctg gactgaggca 3240

FIG. 9C

tgcaaagtca actggagaac tgagtctt gaccatgac tgtccagggt ctcataattcc 3300
ctagagtcca gggcccatgg ctccctgtgcc atccccatgc aaatctaagg ttaatacgtt 3360
ctacagctga gtttccttac atatgtgtct cagtaagttt gtatcaacta attaaatctg 3420
aaaggagttc cttctgatct tcccaaacag agccacactc gtgatgaagt cagccctgct 3480
tcatttgtgtt tctctggatg catctggctt ccatcagcat aatcttctta ttcttgatcc 3540
ttccaacctc ttccaggctc agacagaacc ccatggagca tcaaagaggt ttgaccccg 3600
cattgtttat gtagctgcaa aaccactaat aacacagtca atgacagtag ctacagagac 3660
agcaggtcag tgtctggctc ctgtcaaggc tttatgagtg actctctccc cttcccgcaa 3720
atactcatta atctccccac ctccttatta tttggactgt gttgaagata ttatgaaatc 3780
tctggctct tcttcccgga tctagagcca attacagatt ctgtagggtt gacccaccct 3840
gaccagacat tataaacaca gtgctgggtgc cctgaagaaa acagttggag actccaggca 3900
ttagaatcca ggcaccagga actacaggc actgggtgaca gtcggctct ctgtgtatct 3960
cttacacaca cacacataca cacacacaac acaacataca cacacataca acacacaaca 4020
catacacata caacacatac acacacacaa cactttctg taatgtctcc aaaattctca 4080
ggctctaggg aagaagaaaat gtctttaga gaatgcgggt tgatgttcta taagtctagg 4140
aatacttgat agaatttaat gagaagtata gattaggta aagcaagggt actacatatt 4200
tggaaaccaca gagtttgaa agtcatctca aaagaaaatta tttaggccag agatgttcaa 4260
aaaatgtttt gtttgtgaca tatggaagct cccatggaga cattctgtga ttctcatcaa 4320
tagacagtag ggatgccacc aagggtctaa cgtcttcattt accccatcat ctatcataca 4380
tccaaatgggt ttctttgaaa acaatctcct tgtgaaactt aaagtagcct tgaaaatata 4440
ataatcttgt ccagcctctc atttcaatgg gaatagattt aaggcctaag gacaaaaaca 4500
aaaaacaaaaaa caaacaaaaat aaaaacacca aaaaaaaaaac ccataaaaatg aatgagtagc 4560
taagttattt ttagaatcca gcctttcagt caaagcttga ttcatgcata tctgtgttct 4620
gatcttaagg tgctgtgtct gtcagttgtta tagttggata gaggtacaga tgagctatat 4680
acatcatgct tcaagatttc aggatcttata aactttata aagcaaataa tttgtctaa 4740
tgcacactaa taaacaatat agcaaagttt gacaggagtt cagagtactg ttagagaagt 4800
gaagggaaaga attttggat gatagtaaag gggaaaatca aattttgagt catggaatca 4860

FIG. 9D

tacatagttt gacatagaaa gaaccctggc aaccacataa tctaattgc 4920
actggcctgt gtttttaaga ttcatttc agctgttatg taactgaaca gacaagatac 4980
taagcccaag tatagtgaag ccatgtccag tgatcttaat aggagtgaca ggaatggttg 5040
gtgatgaaga ggggtggatt ttgagcagga ataccaaag caatgctgac tgtgcccttg 5100
gagagaatta gcatgagtcc ttgagagaaa aatgagatgc tattgcacaa gcaacctagg 5160
gccagatgggt gtcaagatacg gtggccatcg tggacttttag aaccaggcag gaatgtgatc 5220
agagatgtac tttatgttagg ttaggtttga ttcagaaacc aggagggtta gcatgtttac 5280
aatggtgact aaaaacaagc acaaggttat actttaaaga aataatctct gaaaagaagg 5340
gaggtatatt ttcagtgcg gaaagaggaa tattacaaaa gtgagaggag tagatttgag 5400
aaagagaagt ggattgtgga ggagcagatg ctcaccacgc ctttacactc acttgaactg 5460
acacccaaag atgaaggtgt gctgtggact gctgaagctc agcctgtggc tggaaagcag 5520
taaacaaaat tgctcatcac agctgtacaa gatattccat agcatataaa aataaaagtg 5580
cttaggctat tctcttacaa ctctcagcct tatgaatgac ccggaaggaa aagaactcta 5640
caatgtgcct gtgtctgttc ttacttcctc tgccacaagc aaaagagcct tggaaattgg 5700
ctcagagggaa acgtcatcaa acaggctggc cttgaggctg ggctgttatt cgtctacctg 5760
ggatagagga attcgctatt ctttataat ccaagtgtgg cctggggacc agcagcatta 5820
ttaagacctg gttgcatgtt tgaaatgcag tctcagattt catcccagac ctaaagagta 5880
acactgtttt catgaggata caagattaag aaatatgcatac tagagagtaa ttggctaaat 5940
ggtaaatgt catgcaagca ggaggatctg attgactccc caggaccac acagttccca 6000
tgccgttagag cacatctgta atcacagtag gcgtatgatg aaatgggagg tgaatcaaga 6060
gaatctctag cagctacggg ctggccagcc tcccatgcac agcactaaat aaggcaagga 6120
ccaataacctg aagttgtccc attaccttca catatacacc acggcatgtg tgtacttgc 6180
ctcacacata caaacaata cacacgtgca cacataaaaa actcagagat taaggacaat 6240
tggcctgaca tatcagtcc taagcctggc tcattgcttg taacactaca agcagtattt 6300
aataaggata ggcgagagaa cagttaccga atggttcaga agtggggcca tgcctgtgac 6360
tttaaacaataa tgtttcataat ttttaaataa taacacttag attacaaaat aaatttacta 6420
cagaaaaatg ttaagaacta tcaacaacca ttgactatcc tgtcggccac aaatgagtgt 6480

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
331100
331101
331102
331103
331104
331105
331106
331107
331108
331109
331110
331111
331112
331113
331114
331115
331116
331117
331118
331119
3311100
3311101
3311102
3311103
3311104
3311105
3311106
3311107
3311108
3311109
3311110
3311111
3311112
3311113
3311114
3311115
3311116
3311117
3311118
3311119
33111100
33111101
33111102
33111103
33111104
33111105
33111106
33111107
33111108
33111109
33111110
33111111
33111112
33111113
33111114
33111115
33111116
33111117
33111118
33111119
331111100
331111101
331111102
331111103
331111104
331111105
331111106
331111107
331111108
331111109
331111110
331111111
331111112
331111113
331111114
331111115
331111116
331111117
331111118
331111119
3311111100
3311111101
3311111102
3311111103
3311111104
3311111105
3311111106
3311111107
3311111108
3311111109
3311111110
3311111111
3311111112
3311111113
3311111114
3311111115
3311111116
3311111117
3311111118
3311111119
33111111100
33111111101
33111111102
33111111103
33111111104
33111111105
33111111106
33111111107
33111111108
33111111109
33111111110
33111111111
33111111112
33111111113
33111111114
33111111115
33111111116
33111111117
33111111118
33111111119
331111111100
331111111101
331111111102
331111111103
331111111104
331111111105
331111111106
331111111107
331111111108
331111111109
331111111110
331111111111
331111111112
331111111113
331111111114
331111111115
331111111116
331111111117
331111111118
331111111119
3311111111100
3311111111101
3311111111102
3311111111103
3311111111104
3311111111105
3311111111106
3311111111107
3311111111108
3311111111109
3311111111110
3311111111111
3311111111112
3311111111113
3311111111114
3311111111115
3311111111116
3311111111117
3311111111118
3311111111119
33111111111100
33111111111101
33111111111102
33111111111103
33111111111104
33111111111105
33111111111106
33111111111107
33111111111108
33111111111109
33111111111110
33111111111111
33111111111112
33111111111113
33111111111114
33111111111115
33111111111116
33111111111117
33111111111118
33111111111119
331111111111100
331111111111101
331111111111102
331111111111103
331111111111104
331111111111105
331111111111106
331111111111107
331111111111108
331111111111109
331111111111110
331111111111111
331111111111112
331111111111113
331111111111114
331111111111115
331111111111116
331111111111117
331111111111118
331111111111119
3311111111111100
3311111111111101
3311111111111102
3311111111111103
3311111111111104
3311111111111105
3311111111111106
3311111111111107
3311111111111108
3311111111111109
3311111111111110
3311111111111111
3311111111111112
3311111111111113
3311111111111114
3311111111111115
3311111111111116
3311111111111117
3311111111111118
3311111111111119
33111111111111100
33111111111111101
33111111111111102
33111111111111103
33111111111111104
33111111111111105
33111111111111106
33111111111111107
33111111111111108
33111111111111109
33111111111111110
33111111111111111
33111111111111112
33111111111111113
33111111111111114
33111111111111115
33111111111111116
33111111111111117
33111111111111118
33111111111111119
331111111111111100
331111111111111101
331111111111111102
331111111111111103
331111111111111104
331111111111111105
331111111111111106
331111111111111107
331111111111111108
331111111111111109
331111111111111110
331111111111111111
331111111111111112
331111111111111113
331111111111111114
331111111111111115
331111111111111116
331111111111111117
331111111111111118
331111111111111119
3311111111111111100
3311111111111111101
3311111111111111102
3311111111111111103
3311111111111111104
3311111111111111105
3311111111111111106
3311111111111111107
3311111111111111108
3311111111111111109
3311111111111111110
3311111111111111111
3311111111111111112
3311111111111111113
3311111111111111114
3311111111111111115
3311111111111111116
3311111111111111117
3311111111111111118
3311111111111111119
33111111111111111100
33111111111111111101
33111111111111111102
33111111111111111103
33111111111111111104
33111111111111111105
33111111111111111106
33111111111111111107
33111111111111111108
33111111111111111109
33111111111111111110
33111111111111111111
33111111111111111112
33111111111111111113
33111111111111111114
33111111111111111115
33111111111111111116
33111111111111111117
33111111111111111118
33111111111111111119
331111111111111111100
331111111111111111101
331111111111111111102
331111111111111111103
331111111111111111104
331111111111111111105
331111111111111111106
331111111111111111107
331111111111111111108
331111111111111111109
331111111111111111110
331111111111111111111
331111111111111111112
331111111111111111113
331111111111111111114
331111111111111111115
331111111111111111116
331111111111111111117
331111111111111111118
331111111111111111119
3311111111111111111100
3311111111111111111101
3311111111111111111102
3311111111111111111103
3311111111111111111104
3311111111111111111105
3311111111111111111106
3311111111111111111107
3311111111111111111108
3311111111111111111109
3311111111111111111110
3311111111111111111111
3311111111111111111112
3311111111111111111113
3311111111111111111114
3311111111111111111115
3311111111111111111116
3311111111111111111117
3311111111111111111118
3311111111111111111119
33111111111111111111100
33111111111111111111101
33111111111111111111102
33111111111111111111103
33111111111111111111104
33111111111111111111105
33111111111111111111106
33111111111111111111107
33111111111111111111108
33111111111111111111109
33111111111111111111110
33111111111111111111111
33111111111111111111112
33111111111111111111113
33111111111111111111114
33111111111111111111115
33111111111111111111116
33111111111111111111117
33111111111111111111118
33111111111111111111119
331111111111111111111100
331111111111111111111101
331111111111111111111102
331111111111111111111103
331111111111111111111104
331111111111111111111105
331111111111111111111106
331111111111111111111107
331111111111111111111108
331111111111111111111109
331111111111111111111110
331111111111111111111111
331111111111111111111112
331111111111111111111113
331111111111111111111114
331111111111111111111115
331111111111111111111116
331111111111111111111117
331111111111111111111118
331111111111111111111119
3311111111111111111111100
3311111111111111111111101
3311111111111111111111102
3311111111111111111111103
3311111111111111111111104
3311111111111111111111105
3311111111111111111111106
3311111111111111111111107
3311111111111111111111108
3311111111111111111111109
3311111111111111111111110
3311111111111111111111111
3311111111111111111111112
3311111111111111111111113
3311111111111111111111114
3311111111111111111111115
3311111111111111111111116
3311111111111111111111117
3311111111111111111111118
3311111111111111111111119
33111111111111111111111100
33111111111111111111111101
33111111111111111111111102
33111111111111111111111103
33111111111111111111111104
33111111111111111111111105
33111111111111111111111106
33111111111111111111111107
33111111111111111111111108
33111111111111111111111109
33111111111111111111111110
33111111111111111111111111
33111111111111111111111112
33111111111111111111111113
33111111111111111111111114
33111111111111111111111115
33111111111111111111111116
33111111111111111111111117
33111111111111111111111118
33111111111111111111111119
331111111111111111111111100
331111111111111111111111101
331111111111111111111111102
331111111111111111111111103
331111111111111111111111104
331111111111111111111111105
331111111111111111111111106
331111111111111111111111107
331111111111111111111111108
331111111111111111111111109
331111111111111111111111110
331111111111111111111111111
331111111111111111111111112
331111111111111111111111113
331111111111111111111111114
331111111111111111111111115
331111111111111111111111116
331111111111111111111111117
331111111111111111111111118
331111111111111111111111119
3311111111111111111111111100
3311111111111111111111111101
3311111111111111111111111102
3311111111111111111111111103
3311111111111111111111111104
3311111111111111111111111105
3311111111111111111111111106
3311111111111111111111111107
3311111111111111111111111108
3311111111111111111111111109
3311111111111111111111111110
3311111111111111111111111111
3311111111111111111111111112

FIG. 9E

tataacaaggc accagccgtc cttgtccaca tgtgtgtgtg tctacacagc tatgaattta 6540
attgggataa taatgtgcac attcttacg gcctgcagtt tttacttcat gtatttgaaa 6600
tgtttgtgcc acaaatgtca tcttaagga gcataccctt atttcctgga tttatcattc 6660
ccttcagcc gactggacat tgacagcatt tccaactttt caaccctgta aaaataacta 6720
attgaactat ttataacta agcatttggg caatcaatta cctctgcctg gaatggggc 6780
aacaacacat gcaatcatgg gaaagccagg atgctgctgt ctgatcccta gccctggcat 6840
tcgtgcagaa cctcaactctc atctgtgccc tgatatcctt cactctcaag tctttccca 6900
gtgactttta aaggcaacag aatcatatag ccaataatga aagctacttg gtctacagtt 6960
gtgtggcggtt tttatagat atttcttca ttacatttc aaatgctatc ccaaaagtcc 7020
cctataccct cccccaccct gctccctac ccactcactc ccacttcttgc gccctggctt 7080
tcccccttac tggggcatat aaagttgct agaccaaggg gcctctcttc ccaatgatgg 7140
ccaaactaggc catttctgc tacatatgca gctagagaca ccagttctgg ggttactgg 7200
tagttcatat tgggtttcta cctatgggt tgcaaaaaccc ttcaagttttt gaggactttc 7260
tctagctcct ccattggag ccctgtgttc catcctatacg atgactgtga gcatccactt 7320
ctgtatttgc caggcactgg catatgaaat agtatctgca ttgggtggct gattatggg 7380
tggacccccc ggtggggcag tctctggatg gtccatccct tcatacttagc tccaaacttt 7440
gtctctgcaa cttcttccat ggatatttta gtccctaatac tagggagaaa tgaagtatcc 7500
acaagttgat cttccttctt gattttctta tgtttttagaa gtttatctt ggatattctta 7560
ggtttctggg ctaatatcca cttatcagtg agtacatatac aagtgaattc ttttgtgatt 7620
aggttacctc actcaagatg atattctcca ctatgttcat agcagcccta ttatagtag 7680
ccagaagctg gaaagaaccc agtccctcaa cagaggaatg gatacagaaa atgtggcaca 7740
tttatgcaat ggagtaccac tcagatatta aaaacaacga atttatgaaa ttctcgccca 7800
aaaccctatc taaagaccag gaataaggaa aagatggact gcctgcctgc agctgggaga 7860
gctggggaga cctttgtgga ttctgtataa cttagggta cggaacagct tggctgg 7920
taattctgag ctccagcatg tctgcccccc aaaaaacatt ctgttttctt gaaagccttt 7980
ttcttctttg cctcagtgaa gaccagacac tcccaactgc agga atg tgc tcc ctt 8036
ccc atg qca aga tac tac at gtaagtaa tcttaacgat cgctcaatca 8084

FIG. 9F

agggcctgg agatcacatg agaaggaaa aggctgagtc aaagggacaa agtccctct 8144
agccacagaa atctcaaaca ctgaataatt gatcttcatt tttgtcaatc acaacagccc 8204
tcttcctgg tgacagaatg gaacaactgt aagagtggta ttgccttagtc cattttacag 8264
accggaaac tcaacctcca cgaggtata caatttcct catgtcatgc aattacccaa 8324
aagcagagag tgggatcgga ctctctgttc tctaaactga tgttagctgt tcttagaaag 8384
ctcaaacaat cttgagtccc aaggacagca cctttatggt cacctggatt gatacctata 8444
tcaaaaaaaa aaaaaggctt cactagatag ccctggctac cctgaaactc tcactgtgta 8504
catttaggtg accacgaact cacagagatc tgccttccaa gtgctggat taaagtatgt 8564
accaccacac ctgcatttt gacaataact gagtggtatc taaattcttc cagtggtcaa 8624
acagtttaatg cccagttccc aaagtctgag aaaaatgcca ggtggtaaa tctgtacaga 8684
cctttgttct taatgtacaa gtgagcctgc tttaaaaaca atacgcaagc tggtttgt 8744
attgctaagt gttgcagaga cagaaaaggc tcccagaagt ggtaactttg gtccagaggt 8804
tctgttctca aactcattgt gagctctgaa agcaactgat gggcagctct gaaatcagct 8864
ggcaattag gctaataaca ggcataattt taatgttca cacgcatgac agttcctccc 8924
cagctgccct agtacatact taccctccata ggcacgtcat tagaccata ggtataacca 8984
tgactaatc aggccttgtt ctaattctaa gttggcctcc tatataagtg ccactcagag 9044
tgtacctcat catggctgta gtggcccccag agtcttaggaa catagacttt tctattgtcc 9104
aatttctgat ttgtgaattt tctacaaaaaa gaattttttt taattttaca aatcaaatca 9164
cagttactac atcttcagtt ctttcattaa ttgtgttac tattttaaaa aataaaataa 9224
atcaagctca gaaacatcat ggatagggtt cattgtatct ccagggtacc tgagcttcaa 9284
agcaactcct cagacagcca tgaaaacatc ctcaattacc tcatgagaag acactattgt 9344
catttctgga gcctctgata atcctgagcc taggcagctt tggatgaaa caatttctac 9404
ccttatttggaa acagtgtccc tctcctgtct ggaaacaatt caccaaaaggc tccatgtgg 9464
tgtccagtaa ggtggtatgg ggacagaaaat ggacaatgat ccctgagggc agtgcatt 9524
taaccttgcc ctcctatttc ag a atc aag qat qca cat caa aag qct ttq tac 9577
aca cgg aat ggc cag ctc ctg ctq gga gac cct gat tca gac aat tat 9625
agt cca q gtgatcttc cgggtgggg ggtgggggag tggaggggag ggtgtgggg 9681

FIG. 9G

gggctcttt ccagaagttt ctttgttcc atctgccaca aggccttgat tcttccttc 9741
aattgtgtct ctagagacat gagaatattt tcacagtat aaggagaaga ggttagggca 9801
gtttcttcctt gtaaaaaaatg aattccattt accctgcagt ctccatacag aaacaggcca 9861
gagggggca gacccagtaa ctttagctg agccctactt tgcttaaaac ctgccatctg 9921
tggtcccctc actgtctgaa ttgcattctg tcttacctcc cag aq aag gtc tgt atc 9978
ctt cct aac cga ggc cta gac cgc tcc aag gtc ccc atc ttc cta ggg 10026
atq caq qqa qqa aqt tgc tgc ctq qcq tgt gta aag aca aqa qaq qqa 10074
cct ctc ctq cag ctq gag gtgagacacc cctcctcatt gcagtcagta 10122
ctgccactgg aacatagtga catcttgaa cccacatgtc ccctctcttg tttcccatct 10182
atctctcttt gcctccagct gaggactct agcctttggg gatgtacaga aagaacatgg 10242
cttcggaaaa ctcttccta ttgagtcctt cttggccaa gcctctgagg cactaaggc 10302
tgacgtcccc accaaacact cattcatct cacagctgtc tcccttcccc cacag gat 10360
gtq aac atc qag qac cta tac aag qqa qgt gaa caa acc acc cgt ttc 10408
acc ttt ttc cag aga agc ttg gga tct gcc ttc agg ctt gag gct gct 10456
gcc tgc cct ggc tqg ttt ctc tgt qgc cca gct qag ccc cag cag cca 10504
gtq caq ctc acc aaa qag agt gaa ccc tcc acc cat act gaa ttc tac 10552
ttt qag atq agt cqg taa agagacataa ggctggggcc tcgtctagtg 10600
cccccagtct gagatcttct tgctcagcat ctctggaaag cagaataagg aagataccaa 10660
agatgtttgg gtcttaatcc ccagaatctg tgaccgtgtt acattaaatg gcaaaggat 10720
tttttttttc ctcatggtc cattgggcc cattggaatc atctgaggcc tcatgaggag 10780
aaggaagagg tcagagggag actggggcaa actttggtac taaaagtaac aatggagaca 10840
gggaccataa gctgatgggt aacagtggtt tctagaaacc ggaaatgatg agagctctcc 10900
tgacacaggt tctggattt tctggactga agaatggtga aataatacag ctccatttatt 10960
ttaagccact gagtttgaga tcattcaatg aagctgtcat aataaaacct gtgcttcaca 11020
tacaattcaa tattggtagg caccccggtg atttcttggaa aagacatcta gggattctcc 11080
tggatgctga ttccagggtc cagtgagtc cctgggttga agagattca caacccagaa 11140
catcaggctc gactcttcta aaagtccgtc gttgcacccc ttgcctgaga gcattagcaa 11200

FIG. 9H

tttctatttc ataggaaatc tgtgtccctg cccctgctaa agcagggagc ctggaccgtc 11260
ctgatttagt gaggggtgag ctgctggcac tttttgtgt caccagtgtc ttaagcagtg 11320
atggagcaca aaagatctt actgagaaga tggccatgaa gctctggcta gacaccaaga 11380
atatgatata agcagagcta cagcacaaga tgagccaatg aggaaagcca ttcagggagg 11440
ctaagcccag cttcccaaag ggacagctaa ccctggactc aatgaatag gggtttcct 11500
ggcagagaac ataggtcaag cattcttagt agaatcagca attcagaaag gtgtgagaga 11560
ggcatggaga gctccaggca tgtctggct atggtgtgtc attcttggtt caagaatcca 11620
acgtctgtgg ttaaggagtt gctgaaaatt aaaataggaa aatgggtaga gtctaattgt 11680
gaatgacttg caaaggagtt tagcccataa gtggggagct cagaggagtc atctaaggat 11740
tgcaaggcagg ggcctgtga tcattgctgg accagcctag gtgctacaga gcctaccttc 11800
agctctgcat cctcaactcac atccaggtac cttcagaggt caatttctgt gctctggttc 11860
tatggtagc ctgaccctgt ttcatcttct tgtataacctt aggacataa gcttagggac 11920
tggtagagtt tacttgagtg attggtaat caggcagcac caaactacaa gttgttcagg 11980
gctttaccaa gggggcactg attggagaat tggaatgagg gtggtagaa tgcattcaga 12040
aaacaagggg aagaaaaatt tgattgctta aagtggaaag tcccaactta aatgttagtc 12100
agtagtttct aattacttga gtctctaatt agaggttagt tggcagttc tggtagtta 12160
atctaagttt catttctta ggctatgacc attctctgag tcgcattgtt gcaatgcagt 12220
aagaactcaa gacccagaat agcctctgtt aattatTTTtta gcaatgtca ctcatttctg 12280
ttgcctccta ttgagatctg ttcccatgga ccacccaggc acatcaggcc tcctagtagacc 12340
aacataataa tgattgctgc acagacaaaa tattttttt cagtatctgg tatttgcac 12400
atttccatta gtgctggagg gaaggctaca acgaccatga aggcattggcc cctgccttct 12460
aaggacttac aatgtaatag gagccctgac attataaagt gggtcacctt gtttcaaact 12520
gagccaaact gaggctgagg gcttagatta gtggtaggtc actttccaga catgttcagt 12580
gctaagaaaa acacattctg gggtagtta gatgttttag ttcatttgcat aagaagccca 12640
atgattggac tttcaacttc tggaacccat gtggtgaaag agagaaccaa cttctgacca 12700
tttgggtcat ggcacatccc ctaccatcac aagaactcac caaaataaat tagaaaaatc 12760
aagaaaaact catatcctat agacctctgg tagaatttgc agaacgctgc tgtggcactt 12820

FIG. 9I

gggatttgaa actcaaaaat ggaagaagct acttgtgacc gttcaagact ccagggaggc 12880
tcctctgaca catcccacga ctcaggctta aattccttct tctccctaga aggccacgcc 12940
atcttctcaa ccaggccaca gatgtataa ttatgtaaat gtgtgggaga ggcacacttt 13000
agatcttatac cactagt 13017

100
80
60
40
20
0

FIG. 10A

testis
kidney
skeletal muscle
liver
lung
spleen
brain
heart
spleen

FIG. 10B

pancreas
kidney
skeletal muscle
liver
lung
platelets
brain
heart
spleen

FIG. 10C

trachea
bone marrow
peripheral blood leukocytes
thyroid
lymph node
spleen

FIG. 11A

FIG. 11B

FIG. 12

Spleen		CD4+		CD8+		CD4+ CD8+		CD3+		NK1.1+		CD3+ NK1.1+	
		20.18	3.72	1.67		24.07		3.06		1.4			
control mice													
CS329 mice		15.89	3.99	0.37		22.9		2.08		1.1			
Difference:		-4.29	0.27	-1.3		-1.17		-0.98		-0.3			

Bone Marrow		CD4+		CD8+		CD4+ CD8+		CD3+		NK1.1+		CD3+ / NK1.1+	
		2.62	2.54	0.49		3.88		1.26		0.49			
control mice													
CS329 mice		2.46	2.35	0.41		4.42		1.53		0.57			
Difference:		0.16	0.19	0.08		0.54		0.27		0.08			

FIG. 13A

FIG. 13B

FIG. 14

FIG. 15

