	wos	Scopus	Dialnet	ProQuest	Elsevier	
Título	In silico Approach on Ribavirin Inhibitors for COVID-19 Main Protease	In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based	Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula	In Silico Models for Anti- COVID-19 Drug Discovery: A Systematic Review	COVID-19 diagnosis using clinical markers and multiple explainable artificial intelligence approaches: A case study from Ecuador	
Año	2021	2020	2022	2023	2023	
Variables	in silico, inhibidores de ribavirina, proteasa de COVID-19	dynamics simulation, main protease		modelo in silico COVID-19 Descubrimiento de medicamento	Inteligencia Artificial, COVID- 19, Ecuador, múltiples enfoques de inteligencia artificial	
LINK/DOI	https://doi.org/10.33263/BRIA C116.1392413933	https://doi.org/10.1016/j.jiph.2 020.06.016	https://dialnet.unirioja.es/servlet/articulo?codigo=8385125	https://doi.org/10.1155/2023/4 562974	https://doi.org/10.1016/j.slast. 2023.09.001	
Título	Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics	De novo design of bloactive phenol and chromone derivatives for inhibitors of Spike alycoprotein of SARS-	https://dialnet.unirioja.es/servlet/articulo?codigo=7699506		Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors	
Año	2021	2023			2023	
Variables	inteligencia artificial, diagnóstico y terapéutica de COVID-19	Derivados de fenol y cromona,glicoproteína Spike, in silico			Inteligencia Artificial, COVID 19,análisis de inteligencia artificial , Predicción del inicio de la gravedad	
LINK/ DOI	https://doi.org/10.3390/jpm110 90886	https://doi.org/10.1007/s13205- 023-03695-9			https://doi.org/10.1016/j.heliyo n.2023.e18764	
Título	Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases	Exploring potential inhibitor of SARS-CoV2 replicase from FDA approved drugs using insilico drug discovery	https://dialnet.unirioja.es/servlet/articulo?codigo=8112580		A machine learning and explainable artificial intelligence triage-prediction system for COVID-19	
Año	2022	2021			2023	
Variables	Inteligencia artificial, agentes antimicrobianos, enfermedades infecciosas	Compuestos antivirales; COVID-19; SARS-CoV-2; acoplamiento molecular; dinámica molecular:			triage-prediction system, COVID-19, machine learning, xplainable artificial intelligence	
LINK/DOI	https://doi- org.unmsm.lookproxy.com/10. 1016/j.drudis.2021.10.022	https://doi.org/10.1080/073911 02.2020.1871416			https://doi.org/10.1016/j.dajour .2023.100246	
Título	Artificial Intelligence-Guided De Novo Molecular Design Targeting COVID-19	Quantification of pulmonary opacities using artificial intelligence in chest CT scans during SARS-CoV-2	https://dialnet.unirioja.es/servlet/articulo?codigo=7892430		Artificial intelligence and discrete- event simulation for capacity management of intensive care units during the Covid-19	

Año	2021	2023		2023	
Variables	Diseño molecular, inteligencia artificial, COVID-19	Artificial intelligence; Chest- CT scan; COVID-19; Pneumonia; SARS-CoV-2	https://dialnet.unirioja.es/servlet/articulo?codigo=7892430	Inteligencia artificial, pandemia de Covid-19, simulación de eventos discretos, gestión de la capacidad de las unidades de	
LINK/DOI	https://doi.org/10.1021/acsom ega.1c00477	https://doi.org/10.1186/s43055- 023-01105-x		https://doi.org/10.1016/j.jbusre s.2023.113806	
Año			https://dialnet.unirioja.es/servlet/articulo?codigo=7892430		
Variables					

https://dialnet.unirioja.es/servlet/articulo?codigo=7675626

https://dialnet.unirioja.es/servlet/articulo?codigo=8999390

