Automaty a gramatiky TIN071

Marta Vomlelová

marta@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~marta

February 19, 2019

Organizační záležitosti

Přednáška:

- moodle https://dl1.cuni.cz/course/index.php?categoryid=337
- dozvíte se více než při pouhém čtení slajdů
- můžete se zeptat, ovlivnit rychlost, podrobnost výkladu.

Cvičení:

- vyzkoušíte si prakticky sestrojit automaty a gramatiky
- zažijete příklady, což je něco jiného, než je přečíst,
- potřebujete zápočet, který udělují výhradně cvičící.

Zkouška:

- Písemná i ústní část
- Porozumění látce + schopnost formalizace
 - Příklady ze cvičení a obdobné,
 - Napište definici, formulujte větu, popište ideu důkazu, algoritmus.

Požadavky ke zkoušce

- Zápočet je nutnou podmínkou účasti na zkoušce.
- Zkouška sestává z písemné a ústní části. Písemná část předchází části ústní, její nesplnění znamená, že celá zkouška je hodnocena známkou nevyhověl(a) a ústní částí se již nepokračuje.
- Nesložení ústní části znamená, že při příštím termínu je nutno opakovat obě části zkoušky, písemnou i ústní. Známka ze zkoušky se stanoví na základě bodového hodnocení písemné i ústní části.
- Písemná část bude sestávat z dvanácti otázek, které korespondují sylabu přednášky, ověřují schopnosti získané na cvičení a znalost definic, vět a algoritmů z přednášky.
- Požadavky ústní části odpovídají sylabu předmětu v rozsahu, který byl
 prezentován na přednášce. Zpravidla se jedná o detailnější rozbor zadaného
 problému, např. zdůvodnění zařazení daného jazyka do Chomského hierarchie
 či důkaz klíčových vět.

Zdroje a literatura

- J.E. Hopcroft, R. Motwani, J.D. Ullman: *Introduction to Automata Theory, Languages, and Computations*, Addison–Wesley
- M. Chytil: Automaty a gramatiky, SNTL Praha, 1984
- moodle https://dl1.cuni.cz/course/index.php?categoryid=337
- cvičení.

Pohled do historie

- Počátky
 - první formalizace pojmu algoritmus Ada, Countess of Lovelace 1852
 - intenzivněji až s rozvojem počítačů ve druhé čtvrtině 20. století
 - co stroje umí a co ne?
 - Church, Turing, Kleene, Post, Markov
- Polovina 20. století
 - neuronové sítě (1943)
 - konečné automaty (Finite Automata) (Kleene 1956 neuronové sítě ≈ FA)
- 60. léta 20. století
 - gramatiky (Chomsky)
 - zásobníkové automaty
 - formální teorie konečných automatů.

Cíl přednášky

- Osvojit si abstraktní model výpočetních zařízení,
- umět model popsat formálně,
- vnímat, jak drobné změny v definici vedou k velmi odlišným třídám,
- zvyknout si na práci s nekonečnými objekty.

Automaty a gramatiky – dva způsoby popisu

Praktické využití

- Zamyšlení nad korektností programu, algoritmu, překladače
- zpracování přirozeného jazyka
- překladače
- návrh, popis, verifikace hardware
 - integrované obvody
 - stroje
 - automaty
- realizace pomocí software
 - hledání výskytu slova v textu
 - verifikace systémů s konečně stavy.

Jednoduché příklady konečných automatů

• Návrh a verifikace integrovaných obvodů.

Konečný automat modelující spínač on/off .

Lexikální analýza

Konečný automat rozpoznávající slovo then.

Definition 1.1 (Deterministický konečný automat)

Deterministický konečný automat (DFA) $A = (Q, \Sigma, \delta, q_0, F)$ sestává z:

konečné množiny stavů, zpravidla značíme Q konečné množiny vstupních symbolů, značíme Σ

přechodové funkce, zobrazení $Q \times \Sigma \to Q$, značíme δ , která bude reprezentovaná hranami grafu

počátečního stavu $q_0 \in Q$, vede do něj šipka 'odnikud', a neprázdné **množiny koncových (přijímajících) stavů** (final states)

 $F \subseteq Q$, označených dvojitým kruhem či šipkou 'ven'.

Úmluva: Pokud pro některou dvojicí stavu a písmene není definovaný přechod, přidáme nový stav fail a přechodovou funkci doplníme na totální přidáním šipek do fail.

Pokud je množina F prázdná, přidáme do ní i Q nový stav final do kterého vedou jen přechody z něj samého $\forall s \in \Sigma \colon \delta(final,s) = final$.

Popis konečného automatu

Example 1.1

Automat A přijímající $L = \{x01y : x, y \in \{0, 1\}^*\}.$

• Stavový diagram (graf) Automat $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\}).$

tabulka

- řádky: stavy + přechody
 - sloupce: písmena vstupní abecedy

•	Stave	οvý	strom
---	-------	-----	-------

- vrcholy=stavy
- hrany=přechody
- pouze dosažitelné stavy
- použijeme až u nedeterministických FA.

Abeceda, slova, jazyky

Definition 1.2 (Slovo, $\lambda, \epsilon, \Sigma^*, \Sigma^+, \text{jazyk}$)

Mějme neprázdnou množinu symbolů Σ.

- Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ϵ .
- Množinu všech slov v abecedě Σ značíme Σ*,
- ullet množinu všech neprázdných slov v značíme Σ^+ .
- jazyk $L \subseteq \Sigma^*$ je množina slov v abecedě Σ .

Definition 1.3 (operace zřetězení, mocnina, délka slova)

Nad slovy Σ^* definujeme operace:

- zřetězení slov u.v nebo uv
- mocnina (počet opakování) u^n ($u^0 = \lambda$, $u^1 = u$, $u^{n+1} = u^n.u$)
- délka slova |u| ($|\lambda| = 0$, |auto| = 4).
- počet výskytů $s \in \Sigma$ ve slově u značíme $|u|_s$ ($|zmrzlina|_z = 2$).

Rozšířená přechodová funkce

Definition 1.4 (rozšířená přechodová funkce)

Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$.

Rozšířenou přechodovou funkci δ^* : $Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně:

- $\delta^*(q,\lambda) = q$
- $\delta^*(q, wx) = \delta(\delta^*(q, w), x)$ pro $x \in \Sigma, w \in \Sigma^*$.

Pozn. Pokud se v textu objeví δ aplikované na slova, míní se tím δ^* .

$$\delta^*(q_0, 1100) = q_2, \ \delta^*(q_0, 110011111111111001) = q_1$$

1
0
0,1

 q_0
 q_0
 q_2
 q_1

Jazyky rozpoznatelné konečnými automaty

Definition 1.5 (jazyky rozpoznatelné konečnými automaty, regulární jazyky)

- Jazykem rozpoznávaným (akceptovaným, přijímaným) konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w \mid w \in \Sigma^* \ \& \ \delta^*(q_0, w) \in F\}.$
- Slovo w je **přijímáno** automatem A, právě když $w \in L(A)$.
- Jazyk L je **rozpoznatelný** konečným automatem, jestliže existuje konečný automat A takový, že L = L(A).
- Třídu jazyků rozpoznatelných konečnými automaty označíme F, nazveme regulární jazyky.

Example 1.2 (regulární jazyky)

• $L = \{ w \mid w = xux, w \in \{0, 1\}^*, x \in \{0, 1\}, u \in \{0, 1\}^* \}.$

Příklady regulárních jazyků

Example 1.3 (regulární jazyk)

• $L = \{ w \mid w = ubaba, \\ w \in \{a, b\}^*, u \in \{a, b\}^* \}.$

Example 1.4 (regulární jazyk)

• $L = \{w | w \in \{0, 1\}^* \& w \text{ je binární zápis čísla dělitelného 5}\}.$

Example 1.5 (INEregulární jazyk)

• $L = \{0^n 1^n | w \in \{0, 1\}^*, n \in \mathbb{N}\}$ NENÍ regulání jazyk.

Iterační (pumping) lemma pro regulární jazyky

Theorem 1.1 (Ilterační (pumping) lemma pro regulární jazyky)

Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak že každé w; $|w| \ge n$ můžeme rozdělit na tři části, w = xyz, že:

- $y \neq \lambda$
- $|xy| \leq n$
- $\forall k \geq 0$, slovo $xy^k z$ je také v L.

Example 1.6

- abbbba = a(b)bbba; $\forall i \geq 0; a(b)^i bbba \in L(A).$
- aaaaba = (aaa)aba; $\forall i > 0; (aaa)^i aba \in L(A).$

Důkaz iteračního lematu pro regulární jazyky

Proof: iteračního lematu pro regulární jazyky

- Mějme regulární jazyk L , pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolný řetězec $w = a_1 a_2 \dots a_m$ délky $m \geq n$, $a_i \in \Sigma$.
- Definujme: $\forall i \ p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme n+1 p_i a n stavů, některý se opakuje, vezměme první takový, tj. $\exists i, j; 0 \le i < j \le n : p_i = p_j$.
- Definujme: $x = a_1 a_2 \dots a_i$, $y = a_{i+1} a_{i+2} \dots a_j$, $z = a_{j+1} a_{j+2} \dots a_m$, tj. w = xyz, $y \neq \lambda$, $|xy| \leq n$.

$$y=a_{i+1}a_{i+2}\dots a_j$$

 Smyčka nad p_i se může opakovat libovolně krát a vstup je také akceptovaný.

Použití pumping lemmatu

Example 1.7 (Pumping lemma jako hra s oponentem)

Jazyk $L_{eq} = \{w; |w|_0 = |w|_1\}$ slov se stejným počtem 0 a 1 není regulární.

Proof: Jazyk L_{eq} není regulární.

- ullet Předpokládejme že L_{eq} je regulární. Vezměme n z pumping lemmatu.
- Zvolme $w = 0^n 1^n \in L_{eq}$.
- Rozdělme w = xyz dle pumping lemmatu, $y \neq \lambda$, $|xy| \leq n$.
- Protože $|xy| \le n$ je na začátku w, obsahuje jen 0.
- Z pumping lemmatu: $xz \in L_{eq}$ (pro k=0). To má ale méně 0 než 1, takže nemůže být v L_{eq} .

Example 1.8

Jazyk $L = \{0^i 1^i; i \ge 0\}$ není regulární.

Aplikace pumping lemmatu 2

Example 1.9

Jazyk L_{pr} slov 1^p kde p je prvočíslo není regulární.

Proof: L_{pr} slov 1^p kde p je prvočíslo není regulární.

- Předpokládejme že L_{pr} je regulární. Vezměme n z pumping lemmatu. Zvolme prvočíslo $p \ge n+2$, označme $w=1^p$.
- Rozložme w = xyz dle pumping lemmatu, nechť |y| = m. Pak |xz| = p m.
- $xy^{p-m}z \in L_{pr}$ z pumping lemmatu, ale $|xy^{p-m}z| = |xz| + (p-m)|y| = p-m + (p-m)m = (m+1)(p-m)$ není prvočíslo (žádný z činitelů není 1).

Dnes jsme probrali

- definice
 - deterministického konečného automatu $A = (Q, \Sigma, \delta, q_0, F)$
 - jazyka $L \subseteq \Sigma^*$
 - jazyka rozpoznávaného konečným automatem $L(A) = \{ w \mid w \in \Sigma^* \& \delta^*(q_0, w) \in F \}$
- iterační (pumping) lemma pro regulární jazyky
- příklad důkazu ne–regulárnosti jazyka 0ⁱ1ⁱ
- příklady regulárních jazyků.

Příklad - 'součin' automatů

Example 1.10

 $L=\{w\mid w\in\{0,1\}^*, |w|_0=2k\&|w|_1=2\ell, k,\ell\in\mathbb{N}\}$, tj. sudý počet 0 a zároveň sudý počet 1.

δ	0	1
$* \rightarrow [0,0]$	[1, 0]	[0, 1]
[0, 1]	[1,1]	[0, 0]
[1, 0]	[0, 0]	[1,1]
[1,1]	[0,1]	[1,1]

Příklad (špatného) protokolu pro elektronický převod peněz

- Tři zúčastnění: zákazník, obchod, banka.
- Pro jednoduchost jen jedna platba (soubor 'money').

Example 1.11

Zákazník poskytne obchodu číslo kreditní karty, obhcod si vyžádá peníze od banky a pošle zboží zákazníkovi. Zákazník má možnost zablokovat kartu a žádat zrušení transakce.

Pět událostí:

- Zákazník může zadat číslo karty pay.
- Zákazník může kartu zablokovat cancel.
- Obchod může poslat ship zboží zákazníkovi.
- Obchod může vyžádat redeem peníze od banky.
- Banka může převést transfer peníze obchodu.

(Neúplný) konečný automat pro bankovní příklad

Hrana pro každý vstup

- Můžeme vyžadovat, aby automat provedl akci pro každý vstup. Obchod přidá hranu pro každý stav do sebe samého označenou cancel.
- Zákazník by neměl shodit bankovní automat opětovným zaplacením pay, proto přidáme smyčku pay. Podobně s ostatními akcemi.

Úplnější automat pro banku.

Součin automatů

- Součin automatů pro banku a obchod má stavy dvojice $B \times S$.
- Hrana v součinu automatů provádí paralelně akce v bance a obchodě. Pokud jednomu chybí akce, bude chybět i součinu automatů.

Konečné automaty, Regulární jazyky

- **Deterministický konečný automat (DFA)** $A = (Q, \Sigma, \delta, q_0, F)$.
- Jazykem rozpoznávaným (akceptovaným, přijímaným) konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w | w \in \Sigma^* \& \delta^*(q_0, w) \in F\}.$
- Jazyk L je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L = L(A).
- Třídu jazyků rozpoznatelných deterministickými konečnými automaty označíme F, nazveme regulární jazyky.

Je daný jazyk regulární?

 Typická otázka na cvičeních i zaškrtávací části zkoušky: Je daný jazyk regulární (CFL, ...)?

ANO Setrojíte automat (deterministický či nedeterministický).

NE Najdete spor s Myhill-Nerodovou větou nebo s Pumping lemmatem.

Theorem (2.1 Myhill-Nerodova věta)

Nechť L je jazyk nad konečnou abecedou Σ . Potom následující tvrzení jsou ekvivalentní:

- a) L je rozpoznatelný konečným automatem,
- b) existuje pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .
 - Konečný automat kóduje pouze konečnou informaci.
 - Přesto můžeme rozpoznávat nekonečné jazyky.

Kongruence, Myhill-Nerodova věta

Definition 2.1 (kongruence)

Mějme konečnou abecedu Σ a relaci ekvivalence \sim na Σ^* (reflexivní, symetrická, tranzitivní). Potom:

- \sim je **pravá kongruence**, jestliže $(\forall u, v, w \in \Sigma^*)u \sim v \Rightarrow uw \sim vw$.
- je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.
- Třídu kongruence \sim obsahující slovo u značíme $[u]_{\sim}$, resp. [u].

Theorem 2.1 (Myhill-Nerodova věta)

Nechť L je jazyk nad konečnou abecedou Σ . Potom následující tvrzení jsou ekvivalentní:

- a) L je rozpoznatelný konečným automatem,
- b) existuje pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Proof: Důkaz Myhill-Nerodovy věty

- a) \Rightarrow b); tj. automat \Rightarrow pravá kongruence konečného indexu
 - definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$.
 - je to ekvivalence (reflexivní, symetrická, transitivní)
 - je to pravá kongruence (z definice δ^*)
 - má konečný index (konečně mnoho stavů)
 - $L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta^*(q_0, w) = q\} = \bigcup_{q \in F^{[w|\delta^*(q_0, w) = q]} \sim 0} \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta$

b) \Rightarrow a); tj. pravá kongruence konečného indexu \Rightarrow automat

- ullet abeceda automatu vezmeme Σ
- ullet za stavy Q volíme třídy rozkladu Σ^*/\sim

- ullet počáteční stav $q_0 \equiv [\lambda]$
- koncové stavy $F = \{c_1, \ldots, c_n\}$, kde $L = \bigcup_{i=1,\ldots,n} c_i$
- přechodová funkce $\delta([u],x)=[ux]$ (je korektní z def. pravé kongruence).
- L(A) = L $w \in L \Leftrightarrow w \in \bigcup_{i=1,\ldots,n} c_i \Leftrightarrow w \in c_1 \vee \ldots w \in c_n \Leftrightarrow [w] = c_1 \vee \ldots [w] = c_n \Leftrightarrow [w] \in F \Leftrightarrow w \in L(A)$ $\delta^*([\lambda], w) = w$

Použití Myhill-Nerodovy věty: Konstrukce automatů

Example 2.1

Sestrojte automat přijímající jazyk

$$L=\{w|w\in\{a,b\}^*\&\ |w|_a=3k+2\}$$
, tj. obsahuje $3k+2$ symbolů a .

- $|u|_x$ značí počet symbolů x ve slově u
- definujme $u \sim v \equiv (|u|_a \mod 3 = |v|_a \mod 3)$
- třídy ekvivalence 0,1,2
- L odpovídá třídě 2
- a přechody do následující třídy
- b přechody zachovávají třídu.

Důkaz neregulárnosti jazyka použitím Myhill-Nerodovy věty

Example 2.2 (Důkaz neregulárnosti jazyka)

Rozhodněte, zda následující jazyk je regulární $L = \{0^n 1^n | n \in \mathbb{N}\}.$

- Předpokládejme, že jazyk je regulární.
- ⇒ existuje pravá kongruence konečného indexu m, L je sjednocením tříd
 - Vezmeme slova $S = \{0, 00, 000, \dots, 0^{m+1}\}$ pro $m \in \mathbb{N}$.
 - dvě slova padnou do stejné třídy, označme $i, j, i \neq j$: $i \neq j$ $0^i \sim 0^j$ we add 1^i $0^i 1^i \sim 0^j 1^i$ (kongruence) spor $0^i 1^i \in L \ \& \ 0^j 1^i \notin L$.

Důkaz neregulárnosti jazyka použitím Myhill-Nerodovy věty

Example 2.3 (Alternativní důkaz neregulárnosti jazyka)

Rozhodněte, zda následující jazyk je regulární $L = \{0^n 1^n | n \in \mathbb{N}\}.$

- Vezmeme slova $S = \{0, 00, 000, \dots, 0^{m+1}, \dots\}$ pro $m \in \mathbb{N}$.
- Definujme ekvivalenci na slovech *S*: $x \sim y \stackrel{def}{\Leftrightarrow} (\forall z)(xz \in L \Leftrightarrow yz \in L)$.
- žádná dvě slova z S nepadnou do stejné třídy ekvivalence \sim , neboť pro $i \neq j$ $i \neq j$ $0^i \sim 0^j$ přidejme 1^i $0^i 1^i \sim 0^j 1^i$ spor $0^i 1^i \in L \ \& \ 0^j 1^i \notin L \ s$ definicí \sim .
- slov v S je nekonečně,
- proto neexistuje pravá kongruence konečného indexu, aby L bylo sjednocením některých tříd.
- Z Mihill-Nerodovy věty jazyk není regulární.

'Pumpovatelný' ne-regulární jazyk

Example 2.4 (Ne–regulární jazyk, který lze pumpovat)

Jazyk $L = \{u | u = a^+b^ic^i \lor u = b^ic^j\}$ není regulární (Myhill–Nerodova věta), ale vždy lze pumpovat první písmeno.

- Předpokládejme, že L je regulární
- \Rightarrow pak existuje pravá kongruence \sim_L konečného indexu m, L je sjednocení některých tříd Σ^*/\sim_L
 - vezmeme množinu slov $S = \{ab, abb, abbb, \dots, ab^n, \dots\}, n \in \mathbb{N}$
 - pro každá $i \neq j$ existuje řetězec (např. c^i), že $ab^ic^i \in L \ \& \ ab^jc^i \notin L$
 - ullet žádné dva prvky S nemohou být ve stejné třídě $\sim_L (L$ by jí 'dělilo')
 - ullet S nekonečná, kongruence \sim_L má mít konečný index
 - spor s konečným indexem Myhill-Nerodově větě.

lterační lemma a nekonečnost jazyků

Theorem 2.2

Regulární jazyk L je nekonečný právě když existuje $u \in L$; $n \le |u| < 2n$, kde n je číslo z iteračního lemmatu.

Proof:

- ← Pokud $\exists u \in L$; $n \le |u| < 2n$, potom lze slovo u pumovat, čímž dostaneme nekonečně mnoho slov z jazyka L.
- \Rightarrow Jazyk L je nekonečný, obsahuje slovo w takové, že $n \leq |w|$.
 - Pokud |w| < 2n, máme hledané slovo.
 - Jinak, z iteračního lemmatu w = xyz a $xz \in L$, tj. zkrácení.
 - Pokud $2n \le |xz|$, zkracujeme dál xz.
 - Zkracujeme maximálně o n písmen, tedy interval [n,2n) nelze přeskočit

Pro určení nekonečnosti regulárního jazyka stačí prozkoumat všechna slova u taková, že $n \leq |u| < 2 * n$, tj. konečně mnoho slov.

Definition 2.2 (Dosažitelné stavy)

Mějme DFA $A = (Q, \Sigma, \delta, q_0, F)$ a $q \in Q$. Řekneme, že stav q je **dosažitelný**, jestliže existuje $w \in \Sigma^*$ takové, že $\delta^*(q_0, w) = q$.

Algorthm: Hledání dosažitelných stavů

Dosažitelné stavy hledáme iterativně.

- Začátek: $M_0 = \{q_0\}$.
- Opakuj: $M_{i+1} = M_i \cup \{q | q \in Q, (\exists p \in M_i, \exists x \in \Sigma) \ \delta(p, x) = q\}$
- opakuj dokud $M_{i+1} \neq M_i$.

Proof: Korektnost a úplnost

- Korektnost: M₀ ⊆ M₁ ⊆ . . . ⊆ Q a každé M_i obsahuje pouze dosažitelné stavy.
- Úplnost:
 - nechť q je dosažitelný, tj. $(\exists w \in \Sigma^*)\delta^*(q_0, w) = q$
 - vezměme nejkratší takové $w=x_1\ldots x_n$ tž. $\delta^*(q_0,x_1\ldots x_n)=q$
 - zřejmě $\delta^*(q_0, x_1 \dots x_i) \in M_i$ (dokonce $M_i \setminus M_{i-1}$)
 - tedy $\delta^*(q_0, x_1 \dots x_n) \in M_n$, tedy $q \in M_n$.

Jazyk a přijímající automaty

Nejednoznačnost

Automat přijímající daný jazyk není určen jednoznačně.

• Jazyk $L = \{w | w \in \{1\}^* \& |w| = 3k\}.$

Ekvivalence automatů a homomorfismus

Definition 2.3 (Ekvivalence automatů)

Dva konečné automaty A,B nad stejnou abecedou Σ jsou **ekvivalentní**, jestli že rozpoznávají stejný jazyk, tj. L(A) = L(B).

Definition 2.4 (automatový homomorfismus)

Nechť A_1, A_2 jsou DFA. Řekneme, že zobrazení $h: Q_1 \rightarrow Q_2$ Q_1 na Q_2 je (automatovým) homomorfismem, jestliže:

$$h(q_{0_1})=q_{0_2}$$
 'stejné' počáteční stavy $h(\delta_1(q,x))=\delta_2(h(q),x)$ 'stejné' přechodové funkce $q\in F_1\Leftrightarrow h(q)\in F_2$ 'stejné' koncové stavy.

Homomorfismus prostý a na nazýváme isomorfismus.

Theorem 2.3 (Věta o ekvivalenci automatů)

Existuje-li homomorfismus konečných automatů A_1 do A_2 , pak jsou A_1 a A_2 ekvivalentní.

Důkaz věty o ekvivalenci automatů

Theorem ((2.3)Věta o ekvivalenci automatů)

Existuje-li homomorfismus h konečných automatů A_1 do A_2 , pak jsou A_1 a A_2 ekvivalentní.

Proof:

- ullet Pro libovolné slovo $w\in \Sigma^*$ konečnou iterací
 - $h(\delta_1^*(q, w)) = \delta_2^*(h(q), w)$
- dále:

$$w \in L(A_1) \Leftrightarrow \delta_1^*(q_{0_1}, w) \in F_1$$

$$\Leftrightarrow h(\delta_1^*(q_{0_1}, w)) \in F_2$$

$$\Leftrightarrow \delta_2^*(h(q_{0_1}), w) \in F_2$$

$$\Leftrightarrow \delta_2^*(q_{0_2}, w) \in F_2$$

$$\Leftrightarrow w \in L(A_2)$$

Redukce a ekvivalence automatů, Tranzitivita

Definition 2.5 (Ekvivalence stavů)

Říkáme, že stavy $p, q \in Q$ konečného automatu A jsou **ekvivalentní** pokud:

• Pro všechna vstupní slova w; $\delta^*(p, w) \in F$ iff $\delta^*(q, w) \in F$.

Pokud dva stavy nejsou ekvivalentní, říkáme, že jsou rozlišitelné.

Example 2.5

Automat na obrázku:

- C a G nejsou ekvivalentní, $\delta^*(C, \lambda) \in F$ a $\delta^*(G, \lambda) \notin F$.
- A,G: $\delta^*(A,01) = C$ je přijímající, $\delta^*(G,01) = E$ není.
- A,E jsou ekvivalentní λ, 1* zřejmé, 0 vede do ne–přijímajících stavů, 01 a 00 se sejdou ve stejném stavu.

Lemma

Ekvivalence na stavech je tranzitivní.

Algoritmus hledání rozlišitelných stavů

Algorthm: !Algoritmus hledání rozlišitelných stavů v DFA

Následující algoritmus nalezne rozlišitelné stavy:

- Základ: Pokud p ∈ F (přijímající) a q ∉ F, pak je dvojice {p, q} rozlišitelná.
- Indukce: Nechť $p,q\in Q$, $a\in \Sigma$ a o dvojici $r,s;r=\delta(p,a)$ a $s=\delta(q,a)$ víme, že jsou rozlišitelné. Pak i $\{p,q\}$ jsou rozlišitelné.

В	X						
C	X	X					
D	х	X	X				
Е		X	X	X			
F	X	х	X		х		
G	X	X	X	X	X	X	
Н	X		X	X	X	x	x
	Α	В	С	D	Е	F	G

Křížek značí rozlišitelné dvojice. C je rozlišitelné hned, ostatní kromě $\{A,G\},\{E,G\}$ také. Vidíme tři ekvivalentní dvojice stavů.

Algoritmus hledání rozlišitelných stavů

Theorem 2.4

Pokud dva stavy nejsou odlišeny předchozím algoritmem, pak jsou tyto stavy ekvivalentní.

Proof: Koreknost algoritmu

- Uvažujme špatné páry stavů, které jsou rozlišitelné a algoritmus je nerozlišil.
- Vezměme z nich pár p,q rozlišitelný nejkratším slovem $w=a_1\dots a_n$.
- Stavy $r = \delta(p, a_1)$ a $s = \delta(q, a_1)$ jsou rozlišitelné kratším slovem $a_2 \dots a_n$ takže pár není mezi špatnými. Tedy jsou 'vykřížkované' algoritmem.
- Tedy v příštím kroku algoritmus rozliší i p, q.

Čas výpočtu je polynomiální vzhledem k počtu stavů.

- V jednom kole uvažujeme všechny páry, tj. $O(n^2)$.
- Kol je maximálně $O(n^2)$, protože pokud nepřidáme křížek, končíme.
- Dohromady $O(n^4)$.

Algoritmus lze zrychlit na $O(n^2)$ pamatováním stavů, které závisí na páru $\{r, s\}$ a následováním těchto seznamů 'zpátky'.

Testování ekvivalence regulárních jazyků

Algorthm: Testování ekvivalence regulárních jazyků

Ekvivalenci regulárních jazyků L, M testujeme následovně:

- Najdeme DFA A_L , A_M rozpoznávající $L(A_L) = L$, $L(A_M) = M$, $Q_I \cap Q_M = \emptyset.$
- Vytvoříme DFA sjednocením stavů a přechodů $(Q_L \cup Q_M, \Sigma, \delta_L \cup \delta_M, q_L, F_L \cup F_M)$; zvolíme jeden z počátečních stavů.
- Jazyky jsou ekvivalentní právě když počáteční stavy původních DFA isou ekvivalentní.

Example 2.6

Uvažujme jazyk $\{\lambda\} \cup \{0,1\}*0$ přijímající prázdné slovo a slova končící Vpravo obrázek dvou DFA a tabulku rozlišitelných stavů.

Minimalizace DFA

Definition 2.6 (redukovaný DFA, redukt)

Deterministický konečný automat je redukovaný, pokud

- nemá nedosažitelné stavy a
- žádné dva stavy nejsou ekvivalentní.

Konečný automat B je **reduktem** automatu A, jestliže:

- B je redukovaný a
- A a B jsou ekvivalentní.

Algoritmus nalezení reduktu DFA A

Algorithm: !Algorithmus nalezení reduktu DFA A

- Ze vstupního DFA A eliminujeme stavy nedosažitelné z počátečního stavu.
- Najdeme rozklad zbylých stavů na třídy ekvivalence.
- Konstruujeme DFA B na třídách ekvivalence jakožto stavech. Přechodovou funkci B označíme γ , mějme $S \in Q_B$. Pro libovolné $q \in S$, označíme T třídu ekvivalence $\delta(q,a)$ a definujeme $\gamma(S,a) = T$. Tato třída musí být stejná pro všechna $a \in S$.
- Počáteční stav B je třída obsahující počáteční stav A.
- Množina přijímajících stavů B jsou bloky odpovídající přijímajícím stavům A.

Příklad redukovaného DFA

В	х						
C	х	x					
C E F G		X	X				
F	х	х	х	X			
G	X	X	X	X	X		
Н	X		X	X	x	X	
	Α	В	С	Е	F	G	

Třídy ekvivalence:

$$\{A, E\}, \{B, H\}, \{C\}, \{F\}, \{G\}$$

Pro nedeterministické FA to tak snadné není

Example 2.7

Nedeterministický FA na obrázku můžeme redukovat vypuštěním stavu C. Stavy $\{A,C\}$ jsou rozlišitelné vstupem 0, takže algoritmus pro DFA redukci nenajde.

Mohli bychom hledat exhauzivním výpočtem nebo převést na DFA.

Nedeterministické konečné automaty (NFA)

- Obecnější modely, které přijímají stále jen regulární jazyky:
 - nedeterministické konečné automaty NFA
 - NFA s λ přechody
 - ullet dvousměrné konečné automaty (nepíší na pásku + prostor omezený vstupem)
- usnadní nám návrh automatu, zjednoduší zápis
- umíme převést na DFA.

Nedeterministické konečné automaty (NFA)

Nedeterministický automat může být ve více stavech paralelně. Má schopnost 'uhodnout' něco o vstupu.

NFA přijímající všechna slova končící 01.

NFA zpracovává vstup 00101.

Nedeterministický konečný automat

Definition 2.7 (Nedeterministický konečný automat)

Nedeterministický konečný automat (NFA) $A=(Q,\Sigma,\delta,S_0,F)$ sestává z: konečné množiny stavů, zpravidla značíme Q konečné množiny vstupních symbolů, značíme Σ přechodové funkce, zobrazení $\delta:Q\times\Sigma\to\mathcal{P}(Q)$ vracející podmnožinu Q. množiny počátečních stavů $^aS_0\subseteq Q$, a množiny koncových (přijímajících) stavů $F\subseteq Q$.

 a alternativa: počátečního stavu $q_0 \in Q$

Example 2.8

Tabulka pro NFA z předchozího slajdu $A=\left(\{q_0,q_1,q_2\},\{0,1\},\delta,\{q_0\},\{q_2\}\right)$ je:

δ	0	1	
$ o q_0$	$\{q_0,q_1\}$	$\{q_0\}$	
q_1	Ø	$\{q_2\}$	
* q 2	Ø	Ø	

Rozšířená přechodová funkce

Definition 2.8 (Rozšířená přechodová funkce)

Pro přechodovou funkci δ NFA je rozšířená přechodová funkce δ^* ,

$$\delta^*: Q \times \Sigma^* o \mathcal{P}(Q)$$
 definovaná indukcí:

start
$$\delta^*(q,\lambda) = \{q\}.$$

ind. Indukční krok:

- Pro w = xa, $a \in \Sigma, x \in \Sigma^*$ mějme $\delta^*(q, x) = \{p_1, \dots, p_k\}$.
- Mějme $\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}.$
- Pak $\delta^*(q, xa) = \{r_1, r_2, \dots, r_m\}.$

Tj. množina stavů, do kterých se mohu dostat posloupností 'správně označených' hran.

- -) -	$\delta^*(q_0,\lambda)$	=		$=\{q_0\}$	
	$\delta^*(q_0,0)$	=	$\delta(q_0,0)$	$= \{q_0, q_1\}$	
	$\delta^*(q_0,00)$	$=\delta(q_0)$	$(0,0)\cup\delta(q_1,$	$0)=\{q_0,q_1\}$	
	$\delta^*(q_0,001)$	$=\delta(q_0)$	$(1,1)\cup\delta(q_1,$	$1)=\{q_0,q_2\}$	
	$\delta^*(q_0,0010)$	$=\delta(q_0)$	$(0,0)\cup\delta(q_2,$	$0)=\{q_0,q_1\}$	
	$\delta^*(q_0, 00101)$	$=\delta(q_0)$	$(1,1)\cup\delta(q_1,$	$1)=\{q_0,q_2\}$	

Jazyk přijímaný NFA

Definition 2.9 (Jazyk přijímaný nedeterministickým konečným automatem)

Mějme NFA $A = (Q, \Sigma, \delta, S_0, F)$, pak

$$L(A) = \{w | (\exists q_0 \in S_0) \ \delta^*(q_0, w) \cap F \neq \emptyset\}$$

je jazyk přijímaný automatem A.

Tedy L(A) je množina slov $w \in \Sigma^*$ takových, že $\delta^*(q_0,w)$ obsahuje alespoň jeden přijímající stav.

Example 2.9

Automat z předchozího slajdu přijímá jazyk $L=\{w|w\$ končí na $01,w\in\{0,1\}^*\}.$ Důkaz indukcí konjunkce tvrzení:

- $\delta^*(q_0, w)$ obsahuje q_0 pro každé slovo w.
- $\delta^*(q_0, w)$ obsahuje q_1 iff w končí 0.
- $\delta^*(q_0, w)$ obsahuje q_2 iff w končí 01.

Shrnutí

- Iterační (pumping) lemma pro DFA
 - jeho užití pro důkaz ne–regulárnosti jazyka
 - příklad ne–regulárního jazyka, který lze pumpovat
 - ⇒ důkaz ne–regulárnosti z Mihyll–Nerodovy věty
 - nekonečnost regulárního jazyka lze rozpoznat analýzou konečného množství slov
- dosažitelné stavy, algoritmus nalezení
- ekvivalentní automaty, stavy
- rozlišitelné stavy, algoritmus nalezení
- automatový homomorfismus
- Věta: Existuje homomorfismus DFA A₁, A₂, pak jsou ekvivalentní.
- redukovaný DFA, redukt, algoritmus nalezení reduktu.
- Nedeterministický FA.

Ekvivalence nedeterministických a deterministických konečných automatů

Algorthm: !Podmnožinová konstrukce

Podmnožinová konstrukce začíná s NFA $N = (Q_N, \Sigma, \delta_N, S_0, F_N)$. Cílem je popis deterministického DFA $D = (Q_D, \Sigma, \delta_D, S_0, F_D)$, pro který L(N) = L(D).

- Q_D je množina podmnožin Q_N , $Q_D = \mathcal{P}(Q_N)$ (potenční množina). Nedosažitelné stavy můžeme vynechat.
- Počáteční stav DFA je stav označený S_0 , tj. prvek Q_D .
- $F_D = \{S : S \in \mathcal{P}(Q_N) \& S \cap F_N \neq \emptyset\}$, tedy S obsahuje alespoň jeden přijímající stav N.
- Pro každé $S \subseteq Q_N$ a každý vstupní symbol $a \in \Sigma$,

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a).$$

Příklad podmnožinové konstrukce pro jazyk $(0+1)^*01$

Theorem 3.1 (Převod NFA na DFA)

Pro DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ vytvořený podmnožinovou konstrukcí z NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ platí L(N) = L(D).

Proof.

Indukcí dokážeme: $\delta_D^*(\{q_0\}, w) = \delta_N^*(q_0, w)$.

Example 3.1 ('Těžký' případ pro podmnožinovou konstrukci)

Jazyk L(N) slov 0's a 1's takových, že n-tý symbol od konce je 1. Intuitivně si DFA musí pamatovat n posledních přečtených symbolů.

Aplikace hledání v textu

Proč nedeterministické konečné automaty

Nedeterministické konečné automaty

- zjednoduší návrh automatu
- (většinou) není třeba explicitně převádět
- u konečných automatů víme, že lze převést na deterministický
- pro zásobníkové automaty nemusí existovat pro NPDA ekvivalentní DPDA.

Jazyk NFA si ještě zobecníme.

Konečné automaty s λ přechody

• Nově dovolíme přechody na λ , prázdné slovo, tj. bez přečtení vstupního symbolu.

Example 3.2 (NFA s λ přechody)

- (1) Volitelně znaménko + nebo ,
- (2) řetězec číslic,
- (3) desetinná tečka a
- (4) další řetězec číslic. Nejméně jeden z řetězců (2) a (4) musí být neprázdný.

Definition 3.1 (λ -NFA)

 λ -NFA je $E=(Q,\Sigma,\delta,q_0,F)$, kde jsou všechny komponenty stejné jako pro NFA, jen δ je definovaná pro $Q\times(\Sigma\cup\{\lambda\})$.

Požadujeme $\lambda \notin \Sigma$ (resp. volíme nový znak pro prázdné slovo).

Example 3.3

Předešlý λ -NFA je: $E = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, 1, \dots, 9\}, \delta, q_0, \{q_5\})$ s δ : 0.1....9 $\{q_1\}$ $\{q_1\}$ 0 q_0 $\{q_2\}$ $\{q_1, q_4\}$ q_1 $\{q_3\}$ q_2 $\{q_5\}$ $\{q_3\}$ q_3 $\{q_3\}$ q_4 0,1,...,9

λ -uzávěr

Definition 3.2 (λ –uzávěr)

Pro $q \in Q$ definujeme λ -uzávěr $\lambda CLOSE(q)$ rekurzivně:

- Stav q je v $\lambda CLOSE(q)$.
- Je-li $p \in \lambda CLOSE(q)$ a $r \in \delta(p, \lambda)$ pak i $r \in \lambda CLOSE(q)$.

Pro $S \subseteq Q$ definujeme $\lambda CLOSE(S) = \bigcup_{q \in S} \lambda CLOSE(q)$.

Example 3.4 (λ uzávěr)

- $\lambda CLOSE(q_0) = \{q_0, q_1\}$
- $\lambda CLOSE(q_1) = \{q_1\}$
- $\lambda CLOSE(q_3) = \{q_3, q_5\}$
- $\lambda CLOSE(\{q_3, q_4\}) = \{q_3, q_4, q_5\}$

Rozšířená přechodová funkce a jazyk přijímaný λ -NFA

Definition 3.3

Nechť $E=(Q,\Sigma,\delta,q_0,F)$ je λ –NFA. Rozšířenou přechodovou funkci δ^* definujeme následovně:

- $\delta^*(q,\lambda) = \lambda CLOSE(q)$.
- Předpokládejme w = xa, kde $a \in \Sigma, x \in \Sigma^*$.
 - Označíme $\delta^*(q,x) = \{p_1,\ldots,p_k\}$
 - a $\bigcup_{i=1}^k \delta(p_i, a) = \{r_1, \ldots, r_m\}.$
 - Definujeme $\delta^*(q, w) = \lambda CLOSE(\{r_1, \dots, r_m\}).$

Example 3.5

$$\begin{array}{lll} \delta^*(q_0,\lambda) = & \lambda CLOSE(q_0) & = \{q_0,q_1\} \\ \delta^*(q_0,5) = & \lambda CLOSE(\bigcup_{q \in \delta^*(q_0,\lambda)} \delta(q,5)) = & \lambda CLOSE(\delta(q_0,5) \cup \delta(q_1,5)) = \{q_1,q_4\} \\ \delta^*(q_0,5.) = & \lambda CLOSE(\delta(q_1,.) \cup \delta(q_4,.)) & = \{q_2,q_3,q_5\} \\ \delta^*(q_0,5.6) = & \lambda CLOSE(\delta(q_2,6) \cup \delta(q_3,6) \cup \delta(q_5,6)) & = \{q_3,q_5\} \end{array}$$

Eliminace λ -přechodů

Theorem 3.2 (Eliminace λ -přechodů)

Jazyk L je rozpoznatelný λ-NFA právě když je L regulární.

Algorithm: Eliminace λ -přechodů

Pro libovolný λ -NFA $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$ zkonstruujeme DFA $D=(Q_D,\Sigma,\delta_D,q_D,F_D)$ přijímající stejný jazyk jako E.

 $Q_D \subseteq \mathcal{P}(Q_E), \ \forall S \subseteq Q_E : \lambda CLOSE(S) \in Q_D. \ V \ Q_D \ \text{může být i } \emptyset.$

 $q_D = \lambda CLOSE(q_0).$

 $F_D = \{S | S \text{ is in } Q_D \text{ and } S \cap F_E \neq \emptyset\}.$

For $S \in Q_D$, $a \in \Sigma$ define $\delta_D(S, a) = \lambda CLOSE(\bigcup_{p \in S} \delta(p, a))$.

Eliminace λ-přechodů

Proof.

- (IF) Stačí přidat $\delta(q,\lambda)=\emptyset$ pro každé $q\in Q$. (Only-if) Vezmeme D z předchozí definice a indukcí dle délky w dokážeme L(D)=L(E).
 - |w| = 0, pak $w = \lambda$, víme $\delta_E^*(q_0, \lambda) = \lambda CLOSE(q_0)$, $q_D = \lambda CLOSE(q_0)$. Pro DFA, $\forall p \in Q_D : \delta_D^*(p, \lambda) = p$, proto $\delta_D^*(q_D, \lambda) = \lambda CLOSE(q_0)$ a $\delta_E^*(q_0, \lambda) = \delta_D^*(q_D, \lambda)$.
 - Předpokládejme $w=xa,\ a\in\Sigma, x\in\Sigma^*,\ \delta_E^*(q_0,x)=\delta_D^*(q_D,x).$ Rekurzivní krok je stejný jako v definici δ^* a při eliminaci λ -přechodů
 - Označíme $\delta_E^*(q_0,x)=\delta_D^*(q_D,x)=\{p_1,\ldots,p_k\}$
 - a $\bigcup_{i=1}^k \delta_N(p_i, a) = \{r_1, \dots, r_m\},\$
 - pak $\delta_E^*(q_0, w) = \delta_D^*(q_D, w) = \lambda CLOSE(\{r_1, \dots, r_m\}).$

Množinové operace nad jazyky

Definition 3.4 (Množinové operace nad jazyky)

Mějme dva jazyky L, M. Definujme následující operace:

- (1) sjednocení $L \cup M = \{w | w \in L \lor w \in M\}$
 - Příklad: jazyk obsahuje slova začínající aⁱ nebo tvaru b^j c^j.
- (2) **průnik** $L \cap M = \{w | w \in L \& w \in M\}$
 - Příklad: jazyk obsahuje slova sudé délky končící na 'baa'.
- (3) **rozdíl** $L M = \{w | w \in L\&w \notin M\}$
 - Příklad: jazyk obsahuje slova sudé délky nekončící na 'baa'.
- (4) doplněk (komplement) $\bar{L} = -L = \{w | w \notin L\} = \Sigma^* L$
 - Příklad: jazyk obsahuje slova nekončící na 'a'

Theorem 3.3 (de Morganova pravidla)

$$L\cap M=\overline{\overline{L}\cup\overline{M}}$$

Platí:
$$L \cup M = \overline{L} \cap \overline{M}$$

Plati:
$$L \cup M = L \cap M$$

 $I - M = I \cap \overline{M}$

Uzávěrové vlastnosti regulárních jazyků

Theorem 3.4 (Uzavřenost na množinové operace)

Mějme regulární jazyky L, M. Pak jsou následující jazyky také regulární:

- (1) sjednocení L∪M
- (2) průnik L∩ M
- (3) rozdíl L M
- (4) doplněk $\bar{L} = \Sigma^* L$.

Proof: Uzavřenost RJ na doplněk

- Pokud δ není pro některé dvojice q, a definovaná, přidáme nový nepřijímající stav q_n a do něj přechod pro vše dříve nedefinované plus $\forall a \in \Sigma \cup \{\lambda\}: \ \delta(q_n, x) = q_n.$
- Pak stačí prohodit koncové a nekoncové stavy přijímajícího deterministického FA $F = Q_A F_A$.

Example 3.6

Jazyk $\{w; w \in \{0,1\}^*01\}$

Konstrukce součinu automatů

Proof: Průnik, sjednocení, rozdíl

- ullet Pro rozdíl doplníme funkci δ na totální.
- Zkonstruujeme součinový automat, $Q = (Q_1 \times Q_2, \Sigma, \delta((p_1, p_2), x) = (\delta_1(p_1, x), \delta_2(p_2, x)), (q_{0_1}, q_{0_2}), F)$
- průnik: $F = F_1 \times F_2$
- sjednocení: $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- rozdíl: $F = F_1 \times (Q_2 F_2)$.

Příklad součinu automatů (průnik jazyků). Slova obsahující 0,1, oboje.

Příklady na uzávěrové vlastnosti

Example 3.7

Konstruujeme konečný automat přijímající slova, která obsahují 3k+2 symbolů 1 a neobsahují posloupnost 11.

- Přímá konstrukce je komplikovaná.
- $L_1 = \{w | w \in \{0, 1\}^* \& |w|_1 = 3k + 2\}$
- $L_2 = \{w | u, v \in \{0, 1\}^* \& w = u11v\}$
- $L = L_1 L_2$.

Example 3.8

Jazyk M slov s různým počtem 0 a 1 není regulární.

- ullet Je-li M regulární, \overline{M} je také regulární.
- O \overline{M} víme, že regulární není (pumping lemma).

Řetězcové operace nad jazyky

Definition 3.5 (Řetězcové operace nad jazyky)

```
Nad jazyky L, M definujeme následující operace:
                                      L.M = \{uv | u \in L\&v \in M\}
 zřetězení jazyků
                                      L.x = L.\{x\} a x.L = \{x\}.L pro x \in \Sigma
                                      L^{0} = \{\lambda\}
 mocniny jazyka
                                      I^{i+1} = I^i I
                                     L^+ = L^1 \cup L^2 \dots = \bigcup_{i>1} L^i
 pozitivní iterace
                                      L^* = L^0 \cup L^1 \cup L^2 \dots = \bigcup_{i>0} L^i
 obecná iterace
                                     tedy L^* = L^+ \cup \{\lambda\}
                                      L^R = \{u^R | u \in L\}
 otočení jazyka
                                     (x_1x_2...x_n)^R = x_nx...x_2x_1
  (=zrcadlový obraz,reverze)
                                      M \setminus L = \{v | uv \in L\&u \in M\}
 levý kvocient L podle M
 levá derivace L podle w
                                      \partial_w L = \{w\} \setminus L (pozn. derivace bude i v jiném významu
 pravý kvocient L podle M
                                    L/M = \{u|uv \in L\&v \in M\}
 pravá derivace L podle w
                                     \partial_w^R L = L/\{w\}.
```

67 / 53 - 86

Theorem 3.5 (Uzavřenost reg. jazyků na řetězcové operace)

Jsou-li L, M regulární jazyky, je regulární i L.M, L^* , L^+ , L^R , $M \setminus L$ a L/M.

Lemma (L.M)

Jsou-li L, M regulární jazyky, je regulární i L.M.

Proof:

Vezmeme DFA $A_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, pak $A_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ tak že $L = L(A_1)$ a $M = L(A_2)$.

Definujeme nedeterministický automat $B = (Q \cup \{q_0\}, \Sigma, \delta, q_0, F_2)$ kde:

 $Q=Q_1\cup Q_2$ předpokládáme různá jména stavů, jinak přejmenujeme končíme až po přečtení slova z L_2

$$\delta(q_0,\lambda) = \{q_1,q_2\}$$
 pro $q_1 \in F_1$ tj. $\lambda \in L(A_1)$ $\delta(q_0,\lambda) = \{q_1\}$ pro $q_1 \notin F_1$ tj. $\lambda \notin L(A_1)$

$$\delta(q_0,x) = \emptyset$$
 pro $x \in \Sigma$

$$\delta(q,x) = \{\delta_1(q,x)\}$$
 pro $q \in Q_1 \& \delta_1(q,x) \notin F_1$ počítáme v A_1 $= \{\delta_1(q,x), q_2\}$ pro $q \in Q_1 \& \delta_1(q,x) \in F_1$ nedet. přechod z A_1 $= \{\delta_2(q,x)\}$ pro $q \in Q_2$ počítáme v A_2 .

Pak $L(B) = L(A_1).L(A_2).$

Uzavřenost iterace

Lemma (L^*, L^+)

Je-li L regulární jazyk, je regulární i L*, L+.

- Idea: opakovaný výpočet automatu $A = (Q, \Sigma, \delta, q_0, F)$
- realizace: nedeterministické rozhodnutí, zda pokračovat nebo restart
- speciální stav pro příjem $\lambda \in L^0$ (pro L^+ vynecháme či $\notin F$).

Proof: Důkaz pro L*

```
Vezmeme DFA A=(Q,\Sigma,\delta,q_0,F), tak že L=L(A). Definujeme nedeterministický automat B=(Q\cup\{q_B\},\Sigma,\delta_B,q_B,F\cup\{q_B\}) kde: \delta_B(q_B,\lambda)=\{q_0\} nový stav q_B pro příjem \lambda, přejdeme do q_0 \delta_B(q_B,x)=\emptyset pro x\in\Sigma \delta_B(q,x)=\{\delta(q,x)\} pokud q\in Q\ \&\ \delta(q,x)\notin F uvnitř A=\{\delta(q,x),q_0\} pokud q\in Q\ \&\ \delta(q,x)\in F možný restart Pak L(B)=L(A)^* (q_B\notin F_B), L(B)=L(A)^+ (q_B\notin F_B).
```

Uzavřenost reverse

Lemma (L^R)

Je-li L regulární jazyk, je regulární i L^R.

- Zřejmě $(L^R)^R = L$ a tedy stačí ukázat jeden směr.
- idea: obrátíme šipky ve stavovém diagramu; nederministický FA

Proof:

Vezmeme DFA $A = (Q, \Sigma, \delta, q_0, F)$, tak že L = L(A). Definujeme nedeterministický automat $B = (Q \cup \{q_B\}, \Sigma, \delta_B, q_B, \{q_0\})$ kde:

- $\delta_B(q,x) = \{p | \delta(p,x) = q\}$ pro $q \in Q$
- $\delta_B(a_B, \lambda) = F$, $\delta_B(a_B, x) = \emptyset$.
- Pro libovolné slovo $w = x_1 x_2 \dots x_n$
 - q₀, q₁, q₂,..., q_n je přijímající výpočet pro w v A
 - - $q_B, q_n, q_{n-1}, \ldots, q_2, q_1, q_0$ je přijímající výpočet pro w^R v B.

Pozn. Někdy L nebo L^R má výrazně jednodušší přijímající automat.

Uzavřenost kvocientu

Lemma $(M \setminus L \text{ a } L/M)$

Jsou-li L, M regulární jazyky, je regulární i $M \setminus L$ a L/M.

• Idea: A_I, budeme startovat ve stavech, do kterých se lze dostat slovem z M

Proof:

Vezmeme DFA $A = (Q, \Sigma, \delta, q_0, F)$, tak že L = L(A).

Definujeme nedeterministický NFA $B = (Q \cup \{q_B\}, \Sigma, \delta \cup \delta_B, q_B, F)$ kde:

- definujeme $S = \{q | q \in Q\&(\exists u \in M)q = \delta(q_0, u)\}$
 - lze nalézt algoritmicky

$$(\{q;\ L(A_q)\cap M\neq\emptyset\ \text{where}\ A_q=(\textit{Q},\Sigma,\delta,\textit{q}_0,\{q\})\})$$

- $\delta_B(q_B, \lambda) = S$, $\delta_B(q_B, x) = \emptyset$ pro $x \in \Sigma$
- $v \in M \setminus L$
 - \Leftrightarrow $(\exists u \in M) \ uv \in L$
 - \Leftrightarrow $(\exists u \in M, \exists q \in Q) \ \delta(q_0, u) = q \& \delta(q, v) \in F$
 - $\Leftrightarrow \exists a \in S \& \delta(a, v) \in F$
 - $\Leftrightarrow v \in L(B)$

71 / 53 - 86

Kleeneova věta, Alternativní definice regulárních jazyků

Definition 3.6 (RJ – algebraický popis jazyků)

Pro konečnou neprázdnou abecedu Σ označme $RJ(\Sigma)$ nejmenší třídu jazyků, která:

- obsahuje prázdný jazyk Ø
- ullet pro každé písmeno $x\in \Sigma$ obsahuje jazyk $\{x\}$
- je uzavřená na sjednocení $A, B \in RJ(\Sigma) \Rightarrow A \cup B \in RJ(\Sigma)$
- je uzavřená na zřetězení $A,B\in RJ(\Sigma)\Rightarrow A.B\in RJ(\Sigma)$
- je uzavřená na iteraci $A \in RJ(\Sigma) \Rightarrow A^* \in RJ(\Sigma)$.

Speciálně:

$$\{\lambda\} \in RJ(\Sigma)$$
 protože $\{\lambda\} = \emptyset^*$
 $\Sigma \in RJ(\Sigma)$ protože $\Sigma = \bigcup_{x \in \Sigma} \{x\}$ (konečné sjednocení)
 $\Sigma^* \in RJ(\Sigma)$ $\{x_{i_1}, \dots, x_{i_k}\} \in RJ(\Sigma)$

Theorem 3.6 (Kleene)

Libovolný jazyk je rozpoznatelný konečným automatem právě když je ve třídě RJ.

Regulární výrazy

Regulární výrazy (RV) jsou

- algebraickým popisem jazyků
- deklarativním způsobem, jak vyjádřit slova, která chceme přijímat.
- Schopné definovat všechny a pouze regulární jazyky.
- Můžeme je brát jako programovací jazyk, uživatelsky přívětivý popis konečného automatu.

Example 3.9

- UNIX grep příkaz.
- Lexikální analyzátory jako Lex a Flex (popis pomocí 'token'ů je vzásadě regulární výraz).
- Python knihovna re .
- Syntaktická analýza potřebuje silnější nástroj, bezkontextové gramatiky, budou následovat.

Regulární výrazy (RV)

Definition 3.7 (Regulární výrazy (Regular Expression) (RV), hodnota RV $L(\alpha)$)

Regulární výrazy $\alpha, \beta \in RV(\Sigma)$ nad konečnou neprázdnou abecedou $\Sigma = \{x_1, x_2, \dots, x_n\}$ a jejich hodnota $L(\alpha)$ jsou definovány induktivně:

	výraz $lpha$	pro	hodnota $L(\alpha) \equiv [\alpha]$
Základ:	λ	prázdný řetězec	$L(\lambda) = \{\lambda\}$
Lakiau.	Ø	prázdný výraz	$L(\emptyset) = \{\} \equiv \emptyset$
	a	$a \in \Sigma$	$L(\mathbf{a}) = \{a\}.$

Indukce:

Z

výraz	hodnota	poznámka	ı
$\alpha + \beta$	$L(\alpha + \beta) = L(\alpha) \cup L(\beta)$		ı
$\alpha\beta$	$L(\alpha\beta) = L(\alpha)L(\beta)$	můžeme značit ., ale plete se s UNIX gre	p.
α^*	$L(\alpha^*) = L(\alpha)^*$		ı
(α)	$L((\alpha)) = L(\alpha)$	závorky nemění hodnotu.	ı
Každú ra	gulární výraz dostanomo in	dukcí výče ti třída $RV(\Sigma)$ je nejmenčí	ı

Každý regulární výraz dostaneme indukcí výše, tj. třída $RV(\Sigma)$ je nejmenší třída uzavřená na uvedené operace.

Příklady reguláních výrazů, priorita

Example 3.10 (Regulární výrazy)

Jazyk střídajících se nul a jedniček lze zapsat:

- \bullet (01)* + (10)* + 1(01)* + 0(10)*
- $(\lambda + 1)(01)^*(\lambda + 0)$.

Jazyk $L((\mathbf{0}^*\mathbf{10}^*\mathbf{10}^*\mathbf{1})^*\mathbf{0}^*) = \{w|w \in \{0,1\}^*, |w|_1 = 3k, k \ge 0\}.$

Definition 3.8 (priorita)

Nejvyšší prioritu má iterace *, nižší konkatenace (zřetězení), nejnižší sjednocení +.

Theorem (3.6alvarianta Kleeneho věty)

Každý jazyk reprezentovaný konečným automatem lze zapsat jako regulární výraz.

Každý jazyk popsaný regulárním výrazem můžeme zapsat jako λ -NFA (a tedy i DFA).

Od DFA k regulárním výrazům

Regulární výraz z DFA

Mějme DFA A, $Q_A = \{1, \ldots, n\}$ o n stavech.

Nechť $R_{ij}^{(k)}$ je regulární výraz, $L(R_{ij}^{(k)}) = \{w | \delta_{\leq k}^*(i, w) = j\}$ množina slov převádějících stav i do stavu j v A cestou, která neobsahuje stav s vyšším indexem než k.

Budeme rekruzivně konstruovat $R_{ij}^{(k)}$ pro $k=0,\ldots,n$.

$$k=0$$
, $i \neq j$: $R_{ij}^{(0)} = \mathbf{a_1} + \mathbf{a_2} + \ldots + \mathbf{a_m}$ kde a_1, a_2, \ldots, a_m jsou symboly označující hrany i do j (nebo $R_{ii}^{(0)} = \emptyset$ nebo $R_{ii}^{(0)} = \mathbf{a}$ pro $m=0,1$).

k=0, i=j: smyčky, $R_{ii}^{(0)}=\lambda+\mathbf{a_1}+\mathbf{a_2}+\ldots+\mathbf{a_m}$ kde a_1,a_2,\ldots,a_m jsou symboly na smyčkách v i.

INDUKCE. Mějme $\forall i, j \in Q \ R_{ij}^{(k)}$. Konstruujeme $R_{ij}^{(k+1)}$.

$$\begin{array}{c}
R_{i,(k+1),(k+1)}^{(k)} \\
R_{i,(k+1)}^{(k)} \\
R_{i,j}^{(k)}
\end{array}$$

$$R_{ij}^{(k+1)} = R_{ij}^{(k)} + R_{i(k+1)}^{(k)} (R_{(k+1)(k+1)}^{(k)})^* R_{(k+1)j}^{(k)}$$

- Cesty z *i* do *j* neprocházející uzlem (k+1) jsou již v $R_{ij}^{(k)}$.
- Cesty z i do j přes (k+1) s případnými smyčkami můžeme zapsat $R_{i(k+1)}^{(k)}(R_{(k+1)(k+1)}^{(k)})^*R_{(k+1)j}^{(k)}$.
- regulární výrazy jsou uzavřené na sčítání (sjednocení), zřetězení i iteraci, tj. $R_{ij}^{k+1} \in RV(\Sigma)$

Nakonec, $RV = \bigoplus_{i \in F_A} R_{1i}^{(n)}$ sjedncení přes přijímající stavy j.

Příklad

$$R_{11}^{(0)} | \lambda + 1 = 0$$

$$R_{12}^{(0)} | \lambda + 1 = 0$$

$$R_{12}^{(0)} | \lambda + 1 = 0$$

$$R_{12}^{(0)} | \lambda + 0 + 1 = 0$$

$$R_{11}^{(0)} | \lambda + 1 + (\lambda + 1)(\lambda + 1)^*(\lambda + 1) = 0$$

$$R_{11}^{(1)} | \lambda + 1 + (\lambda + 1)(\lambda + 1)^*(\lambda + 1) = 1^*$$

$$R_{11}^{(1)} | \lambda + 1 + (\lambda + 1)(\lambda + 1)^*(\lambda + 1) = 1^*$$

$$R_{12}^{(1)} | \lambda + 1 + (\lambda + 1)(\lambda + 1)^*0 = 1^*0$$

$$R_{12}^{(1)} | \lambda + 0 + 1 + \emptyset(\lambda + 1)^*0 = \lambda + 0 + 1$$

$$R_{12}^{(1)} | \lambda + 0 + 1 + \emptyset(\lambda + 0 + 1)^*\emptyset = 1^*$$

$$R_{12}^{(2)} | \lambda + 0 + 1^*0(\lambda + 0 + 1)^*(\lambda + 0 + 1) = 1^*0(0 + 1)^*$$

$$R_{21}^{(2)} | \lambda + 0 + 1 + (\lambda + 0 + 1)(\lambda + 0 + 1)^*(\lambda + 0 + 1) = (0 + 1)^*$$

$$R_{22}^{(2)} | \lambda + 0 + 1 + (\lambda + 0 + 1)(\lambda + 0 + 1)^*(\lambda + 0 + 1) = (0 + 1)^*$$

Konverze DFA na RV eliminací stavů

- Předchozí metoda může obsahovat až 4ⁿ symbolů.
- Následující algoritmus se občas vyhne duplicitě.
- Dovolíme regulární výrazy jako popisky na hranách grafu (transformovaného automatu).

Výsledek eliminace s z předchozího grafu.

Stav s vybrán k eliminaci

79 / 53 - 86

Konstrukce regulárního výrazu RV z NFA

Pro každý cílový stav $q \in F$ aplikujeme předchozí redukci na všechny $p \in Q \setminus \{q, q_0\}$.

Pro $q \neq q_0$ vezmeme

$$RV(q) = (R + SU^*T)^*SU^*.$$

Pro $q=q_0$ vezmeme

$$RV(q) = R^*$$
.

Sečteme výrazy (jazyky sjednotíme) přes všechny přijímající stavy; $RV(NFA) = \bigoplus_{q \in F} RV(q)$.

Příklad

Example 3.11

NFA přijímající slova s 1 na 2. nebo 3. pozici od konce.

A máme RV výraz: (0+1)*1(0+1)+(0+1)*1(0+1)(0+1).

[Pořadí eliminace]

Nejdřív eliminujeme uzly ne–cílové a ne–startovní $q \notin F, q \neq q_0$.

Převod RV výrazu na λ -NFA automat

Převod RV výrazu na λ -NFA automat

Důkaz indukcí dle struktury R. Základ:

V každém kroku zkonstruujeme λ -

NFA E rozpoznávající stejný jazyk \longrightarrow Prázdný řetězec λ

L(R) = L(E) se třemi dalšími vlastnos-

tmi:

Prázdná množina Ø

Právě jeden přijímající stav.

Žádné hrany do počátečního stavu.

Žádné hrany z koncového stavu. _

Součet $R + S : \rightarrow Q \xrightarrow{\lambda}$

Jediný řetězec **a**

INDUKCE:

Zřetězení *RS*:

Uzávěr *R**:

Shrnutí převodů mezi reprezentacemi regulárních jazyků

Převod NFA na DFA

- λ uzávěr v O(n³) prohledává n stavů násobeno n² hran pro λ přechody.
- Podmnožinová konstrukce, DFA s až 2ⁿ stavy. Pro každý stav, O(n³) času na výpočet přechodové funkce.

Převod DFA na NFA

• Přidat množinové závorky k přechodové funkci a přechody pro λ u $\lambda-{\sf NFA}$.

Převod automatu DFA an RV regulární výraz

• $O(n^34^n)$

RV výraz na automat

• V čase O(n) vytvoříme λ -NFA.

Alternativní důkaz Kleeneovy věty

Proof: Rozpoznatelný FA ⇒ RJ

Máme nedet. NFA $A=(Q,\Sigma,\delta,q_0,F)$ který přijímá jazyk L(A). Indukcí podle počtu hran A dokážeme $L(A)\in RJ(\Sigma)$.

- žádná hrana pouze jazyky \emptyset a $\{\lambda\}$, z definice a \emptyset^* .
- (n+1) hran
 - vybereme jednu hranu $p \rightarrow^a q$, tj. $q \in \delta(p, a)$
 - sestrojíme čtyři automaty bez tého hrany ($\delta^{\parallel} = \delta$, jen $\delta^{\parallel}(p,a) = \delta(p,a) \{q\}$)
 - $A_1 = (Q, \Sigma, \delta^{\dagger}, q_0, F)$
 - $A_2 = (Q, \Sigma, \delta^{|}, q_0, \{p\})$
 - $\bullet \ A_3 = (Q, \Sigma, \delta^{\mid}, q, \{p\})$
 - $A_4 = (Q, \Sigma, \delta^{\dagger}, q, F)$

- Potom $L(A) = L(A_1) \cup (L(A_2).a).(L(A_3).a)^*L(A_4)$,
- jazyky $L(A_1), L(A_2), L(A_3), L(A_4) \in RJ(\Sigma)$ z indukčního předpokladu (n hran).

Poznámky k uzávěrovým vlastnostem

Lemma (Další vlastnosti bez důkazu)

• Zjednodušení návrhu automatů

$$L.\emptyset = \emptyset.L = \emptyset$$

$$\{\lambda\}.L = L.\{\lambda\} = L$$

$$(L^*)^* = L^*$$

$$(L_1 \cup L_2)^* = L_1^*(L_2.L_1^*)^* = L_2^*(L_1.L_2^*)^*$$

$$(L_1.L_2)^R = L_2^R.L_1^R$$

$$\partial_w(L_1 \cup L_2) = \partial_w(L_1) \cup \partial_w(L_2)$$

$$\partial_w(\Sigma^* - L) = \Sigma^* - \partial_w L$$

$$h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$$

Example 3.12 (Důkaz neregulárnosti)

• $L = \{w|w \in \{0,1\}^*, |w|_1 = |w|_2\}$ není regulární, protože $L \cap \{0^i 1^j | i, j \ge 0\} = \{0^i 1^j | i \ge 0\}$ není regulární (pumping lemma).

Shrnutí 3

Definition (3.6 RJ – algebraický popis jazyků)

Pro konečnou neprázdnou abecedu Σ označme $RJ(\Sigma)$ nejmenší třídu jazyků, která:

- obsahuje prázdný jazyk Ø
- ullet pro každé písmeno $x\in \Sigma$ obsahuje jazyk $\{x\}$
- je uzavřená na sjednocení $A, B \in RJ(\Sigma) \Rightarrow A \cup B \in RJ(\Sigma)$
- je uzavřená na zřetězení $A,B\in RJ(\Sigma)\Rightarrow A.B\in RJ(\Sigma)$
- je uzavřená na iteraci $A \in RJ(\Sigma) \Rightarrow A^* \in RJ(\Sigma)$.

Theorem (3.6 Kleene)

Libovolný jazyk je rozpoznatelný konečným automatem právě když je ve třídě RJ.

Třída regulárních jazyků je uzavřená na

- sjednocení, průnik, doplněk
- zřetězení, iteraci, substituci, homomorfizmus, inverzní homomorfizmus
- reverzi, levý i pravý kvocient.

Substituce jazyků

Definition 4.1 (Substituce jazyků)

Mějme konečnou abecedu Σ . Pro každé $x \in \Sigma$ budiž $\sigma(x)$ jazyk v nějaké abecedě Y_x . Dále položme

$$\sigma(\lambda) = \{\lambda\}$$

$$\sigma(u.v) = \sigma(u).\sigma(v)$$

- Zobrazení $\sigma: \Sigma^* \to P(Y^*)$, kde $Y = \bigcup_{x \in \Sigma} Y_x$ se nazývá substituce.
- $\sigma(L) = \bigcup_{w \in L} \sigma(w)$
- nevypouštějící substituce je substituce, kde žádné $\sigma(x)$ neobstahuje λ .

Example 4.1 (substituce)

- Pokud $\sigma(0) = \{a^i b^j, i, j \ge 0\}, \sigma(1) = \{cd\}$
- tak $\sigma(010) = \{a^i b^j c d a^k b^l, i, j, k, l > 0\}.$

Homomorfizmus a inverzní homomorfizmus jazyků

Definition 4.2 (homomorfizmus (jazyků), inverzní homomorfizmus)

homomorfizmus h je speciální případ substituce, kde obraz je vždy jen jednoslovný jazyk (vynecháváme u něj závorky), tj. $(\forall x \in \Sigma) \ h(x) = w_x$. Pokud $\forall x : w_x \neq \lambda$, jde o **nevypouštějící homomorfizmus**.

Inverzní homomorfizmus $h^{-1}(L) = \{w | h(w) \in L\}.$

Example 4.2 (homomorfizmus)

homomorfizmus h definujeme: h(0) = ab, a $h(1) = \lambda$. Pak h(0011) = abab. Pro $L = 10^*1$ je $h(L) = (ab)^*$.

Theorem 4.1 (uzavřenost na homomorfizmus)

Je-li jazyk L i $\forall x \in \Sigma$ jazyk $\sigma(x)$, h(x) regulární, pak je regulární i $\sigma(L)$, h(L).

Proof.

Strukturální indukcí 'probubláváním' algebraickým popisem jazyka základních, sjednocení, zřetězení a iterace. Tvrzení: L(h(E)) = h(L(E)). $h(\{\lambda\}) = \lambda$, $h(\emptyset) = \emptyset$, $h(x) = \sigma(x)$, $L(h(F \cup G)) = L(h(F) \cup h(G)) = L(h(F)) \cup L(h(G))$

Inverzní homomorfizmus

Definition ((4.2) Inverzní homomorfizmus)

Nechť h je homomorfizmus abecedy Σ do slov nad abecedou T. Pak $h^{-1}(L)$ 'h inverze L' je množina řetězců $h^{-1}(L) = \{w | w \in \Sigma^*; \ h(w) \in L\}.$

Example 4.3

Nechť
$$L = (\{00\} \cup \{1\})^*, \ h(a) = 01$$
 a $h(b) = 10$.
Pak $h^{-1}(L) = (\{ba\})^*$.

Důkaz: $h((\{ba\})^*) \in L$ snadno. Ostatní w generují izolované 0 (rozbor případů).

Homomorfizmus aplikovaný dopředně a zpětně.

Inverzní homomorfizmus DFA

Theorem 4.2

Je–li h homomorfizmus abecedy Σ do abecedy T a L je regulární jazyk abecedy T, pak $h^{-1}(L)$ je také regulární jazyk.

Proof.

Mějme DFA $A = (Q, T, \delta, q_0, F)$ pro L. Konstruujeme DFA pro $h^{-1}(L)$.

- Definujeme $B(Q, \Sigma, \gamma, q_0, F)$ kde $\gamma(q, a) = \delta^*(q, h(a)) (\delta^*)$ operace na řetězcích).
- Indukcí dle |w|, $\gamma^*(q_0, w) = \delta^*(q_0, h(w)).$
- Proto B přijímá právě řetězce $w \in h^{-1}(L)$.

DFA pro $h^{-1}(L)$ aplikuje h na svůj vstup a simuluje DFA pro L.

Příklad: Navštiv všechny stavy

Example 4.4

Nechť $A = (Q, \Sigma, \delta, q_0, F)$ je DFA. Definujme jazyk $L = \{w \in \Sigma^*; \delta^*(q_0, w) \in F\}$ a pro každý stav $q \in Q$ existuje prefix x_q slova w tak, že $\delta^*(a_0, x_q) = q$. Tento jazyk L je regulání.

- Označme M = L(A).
- Definujeme novou abecedu T trojic $\{[paq]; p, q \in Q, a \in \Sigma, \delta(p, a) = q\}$.
- Definujeme homomorfizmus $(\forall p, q, a) h([paq]) = a$.
- Jazyk $L_1 = h^{-1}(M)$ je regulární, protože M je regulární (DFA inverzní homomorfizmus).
- $h^{-1}(101)$ obsahuje $2^3 = 8$ řetězců, např. $[p1p][q0q][p1p] \in \{[p1p], [q1q]\}\{[p0q], [q0q]\}\{[p1p], [q1q]\}.$
- Dále zkonstruujeme L z L₁ (další slide).

- Vynutíme začátek q_0 . Definujeme $E_1 = \bigcup_{a \in \Sigma, q \in Q} \{ [q_0 aq] \} = E_1 = \{ [q_0 a_1 q_0], [q_0 a_2 q_1], \dots, [q_0 a_m q_n] \}.$ Pak $L_2 = L_1 \cap L(E_1.T^*)$.
- Vynutíme stejné sousedící stavy. Definujeme ne–odpovídající dvojice $E_2 = \bigcup_{q \neq r, p, q, r, s \in Q, a, b \in \Sigma} \{[paq][rbs]\}.$ Definujeme $L_3 = L_2 L(T^*.E_2.T^*)$,
- Končí v přijímajícím stavu, protože jsme začali z jazyku M přijímaném DFA A.
- Všechny stavy. $\forall \ q \in Q$ definujeme E_q jako regulární výraz sjednocení všech symbolů T takových, že q není ani na první, ani na poslední pozici. Odečteme $L(E_q^*)$ od L_3 . $L_4 = L_3 \bigcup_{q \in Q} \{E_q^*\}$.
- Odstraníme stavy, necháme symboly. $L = h(L_4)$. Tedy L je regulární.

Konstrukce *L* z jazyka *M* aplikací operací zachovávající regularitu jazyka.

Rozhodovací problémy pro regulární jazyky

Lemma (Test ne-prázdnosti regulárního jazyka)

Lze algoritmicky rozhodnout, zda jazyk přijímaný DFA, NFA, λ je prázdný.

Jazyk je prázdný právě když žádný z koncových stavů není dosažitelný. Dosažitelnost lze testovat $O(n^2)$.

Lemma (Test náležení do regulárního jazyka)

Pro daný řetězec w; |w| = n a regulární jazyk L. Lze algoritmicky rozhodnout, zda je $w \in L$.

- DFA: Spusť automat; pokud |w|=n, při dobré reprezentaci a konstatním čase přechodu O(n).
- NFA o s stavech: čas $O(ns^2)$. Každý vstupní symbol aplikujeme na všechny stavy předchozího kroku, kterých je nejvýš s.
- $\lambda-{\sf NFA}$ nejdříve určíme $\lambda-{\sf uzávěr}$. Pak aplikujeme přechodovou funkci a $\lambda-{\sf uzávěr}$ na výsledek.

Další opatrné zobecnění

- Konečný automat provádí následující činnosti:
 - přečte písmeno
 - změní stav vnitřní jednotky
 - posune čtecí hlavu doprava
- Čtecí hlava se nesmí vracet.

- Co když povolíme ovládání hlavy doprava, žádný, doleva?
- Automat na pásku nic nepíše!

Dvousměrné (dvoucestné) konečné automaty

Definition 4.3 (Dvousměrné (dvoucestné) konečné automaty)

Dvousměrným (dvoucestným) konečným automatem nazýváme pětici

 $A = (Q, \Sigma, \delta, q_0, F)$, kde

Q je konečná množina stavů,

 Σ je konečná množina vstupních symbolů

přechodové funkce δ je zobrazení $Q \times \Sigma \to Q \times \{-1,1\}$ rozšířené o pohyb hlavy

 $q_0 \in Q$ počáteční stav množina přijímajících stavů $F \subseteq Q$.

Pozn.: Je deterministický, nedeterministický zavádět nebudeme.

Pozn.2: Nulový pohyb hlavy lze, jen trochu zkomplikuje důkaz dále.

Reprezentujeme opět stavovým diagramem, tabulkou.

Výpočet dvousměrného automatu

Definition 4.4 (Výpočet dvousměrného automatu)

Slovo w je **přijato dvousměrným konečným automatem**, pokud:

- výpočet začal na prvním písmenu slova w vlevo v počátečním stavu
- čtecí hlava poprvé opustila slovo w vpravo v některém přijímajícím stavu
- mimo čtené slovo není výpočet definován (výpočet zde končí a slovo není přijato).

- ullet Ke slovům si můžeme přidat speciální koncové znaky $\#
 otin \Sigma$
- funkce $\partial_{\#}$ odstraní # zleva, $\partial_{\#}^{R}$ zprava.
- Je–li $L(A) = \{\#w\# | w \in L \subseteq \Sigma^*\}$ regulární, potom i L je regulární
- $L = \partial_{\#}\partial_{\#}^{R}(L(A) \cap \#\Sigma^{*}\#).$

Příklad dvousměrného automatu

Example 4.5 (Příklad dvousměrného automatu)

Nechť $A = (Q, \Sigma, \delta, q_1, F)$. Dvousměrný konečný automat

 $B = (Q \cup Q^{\parallel} \cup Q^{\parallel} \cup \{q_0, q_N, q_F\}, \Sigma, \delta^{\parallel}, q_0, \{q_F\}) \text{ přijín}$

 $L(B) = \{\#u\#|uu \in L(A)\}$ (toto NENÍ levý ani pravý k

následovně:

$ \delta $	$x \in \Sigma$	#	poznámka
q_0	$q_N, -1$	$q_1, +1$	q_1 je počátek A
q	p, +1	$q^{ },-1$	$p = \delta(q, x)$
q	$q^{\dagger},-1$	$q^{ },+1$	
$ q^{ }$	$p^{ }, +1$	$q_F,+1$	$q \in F, p = \delta(q, x)$
$ q^{ }$	$p^{ }, +1$	$q_N,+1$	$q \notin F, p = \delta(q, x)$
q_N	$q_N, +1$	$q_N,+1$	
q _F	$q_N, +1$	$q_N, +1$	

Dvousměrné a jednosměrné konečné automaty

Theorem 4.3

Jazyky přijímané dvousměrnými konečnými automaty jsou právě regulární jazyky.

Proof: konečný automat o dvousměrný automat

- Konečný automat předeveme na dvousměrný přidáním posunu hlavy vpravo
- $A=(Q,\Sigma,\delta,q_0,F) \rightarrow 2A=(Q,\Sigma,\delta^{\dagger},q_0,F)$, kde $\delta^{\dagger}(q,x)=(\delta(q,x),+1)$.
- Možnost pohybovat čtecí hlavou po pásce nezvětšila sílu konečného automatu (dokud na pásku nic nepíšeme!).
- Pro důkaz potřebujeme přípravu

Funkce f_u popisující výpočet 2FA nad slovem u

Algorthm: Funkce f_u popisující výpočet 2FA nad slovem u

Definujeme funkci $f_u:Q\cup\{q_0^{|}\} o Q\cup\{0\}$

- $f_u(q_0^{\rm l})$ popisuje v jakém stavu poprvé odejdeme vpravo, pokud začneme výpočet vlevo v počátečním stavu q_0 ,
- $f_u(p)$; $p \in Q$ v jakém stavu opět odejdeme vpravo, pokud začneme výpočet vpravo v p
- symbol 0 značí, že daná situace nenastane (odejdeme vlevo nebo cyklus)

- Definujeme ekvivalenci slov následovně: $u \equiv w \Leftrightarrow_{def} f_u = f_w$,
 - tj. slova jsou ekvivalentní pokud mají stejné 'výpočtové' funkce

Regulárnost 2FA

Ekvivalence \equiv je ekvivalence, má konečný index, je to pravá kongruence. Podle Myhill–Nerodovy věty je L(A) regulární jazyk.

Konstruktivní důkaz věty o 2FA

- Potřebujeme převést návraty na lineární výpočet.
- Zajímají nás jen přijímající výpočty
- Díváme se na řezy mezi symboly (v jakém stavu přechází na další políčko)

Pozorování:

- stavy se v přechodu řezu střídají (doprava, doleva)
- první stav jde doprava, poslední také doprava
- v deterministických přijímajících výpočtech nejsou cykly
- první a poslední řez obsahují jediný stav

Algorthm: $2DFA \rightarrow NFA$

- Najdeme všechny možné řezy – posloupnosti stavů (je jich konečně mnoho).
- Mezi řezy definujeme nedeterministické přechody podle čteného symbolu.
- Rekonstruujeme výpočet skládáním řezů jako puzzle.

Algorthm: Formální převod 2FA na NFA

Nechť $A=(Q,\Sigma,\delta,q_0,F)$ je dvousměrný (deterministický) konečný automat. Definujeme ekvivalentní nedeterministický automat $B=(Q^{|},\Sigma,\delta^{|},(q_0),F^{|})$ kde:

- ullet $Q^{||}$ jsou všechny korektní přechodové posloupnosti
 - posloupnosti stavů $(q^1,\ldots,q^k); q^i \in Q$
 - délka posloupnosti je lichá (k=2m+1)
 - žádný stav se neopakuje na liché ani na sudé pozici $(\forall i \neq j) \ (q^{2i} \neq q^{2j}) \ \& \ (\forall i \neq j) \ (q^{2i+1} \neq q^{2j+1})$

- ullet $F^{|}=\{(q)|q\in F\}$ posloupnosti délky 1
- $\delta^{|}(c,a) = \{d|d \in Q^{|}\&c \stackrel{\text{a}}{\to} d \text{ je lokálně konzistentní přechod pro } a\}$
 - ullet existuje bijekce: $h:c_{odd}\cup d_{even}
 ightarrow c_{even}\cup d_{odd}$, tak, že:
 - pro $h(q) \in c_{odd}$ je $(h(q), -1) = \delta(q, a)$
 - ullet pro $h(q)\in d_{\mathit{even}}$ je $(h(q),+1)=\delta(q,a)$

L(A) = L(B)

Trajektorie 2DFA A odpovídá řezům v FA B, odtud L(A) = L(B).

Příklad převodu 2FA na NKA

 Mějme následující dvousměrný konečný automat:

 $_{\mathsf{p},+1}$

q,+1

p,+1

*q

Možné řezy a jejich přechody

- Doleva jedině r všechny sudé pozice r, tj. jediná sudá
- možné řezy: (p), (q), (p, r, q), (q, r, p).

Ukázka (zacykleného, nepřijímajícího) výpočtu:

Shrnutí 4

- Obecnější modely, které přijímají stále jen regulární jazyky:
 - nedeterministické konečné automaty NFA
 - NFA s λ přechody
 - dvousměrné konečné automaty (nepíší na pásku + prostor omezený vstupem)
- usnadní nám návrh automatu, zjednoduší zápis
- umíme převést na DFA.

Automaty s výstupem (motivace)

- Dosud jediná zpráva z automatu: 'Jsme v přijímajícím stavu'.
- Můžeme z FA získat více informací? Můžeme zaznamenat trasu výpočtu?

Moore: indikace stavů (všech, nejen koncových)

- v každé chvíli víme, kde se automat nachází
- Příklad: různé (regulární) čítače

Mealy: indikace přechodů

- po přečtení každého symbolu víme, co automat dělal
- Příklad: regulární překlad slov

Automat už není tak docela černá skříňka.

Mooreův stroj

Definition 4.5 (Mooreův stroj)

```
Mooreovým (sekvenčním) strojem nazýváme šestici A = (Q, \Sigma, Y, \delta, \mu, q_0) resp. pětici A = (Q, \Sigma, Y, \delta, \mu), kde
```

Q je konečná neprázdná množina stavů

 Σ je konečná neprázdná množina symbolů (vstupní abeceda)

Y je konečná neprázdná množina symbolů (výstupní abeceda)

 δ je zobrazení $Q imes \Sigma o Q$ (přechodová funkce)

 μ je zobrazení $Q \rightarrow Y$ (značkovací funkce)

 $q_0 \in Q$ (počáteční stav)

- Někdy nás nezajímá počáteční stav, ale jen práce automatu
- značkovací funkce umožňuje suplovat roli koncových stavů
 - $F\subseteq Q$ nahradíme značkovací funkcí $\mu:Q \to \{0,1\}$ takto:

$$\mu(q) = 0$$
 pokud $q \notin F$,

$$\mu(q) = 1$$
 pokud $q \in F$.

Příklad Mooreova stroje

Example 4.6 (Mooreův stroj pro tenis)

Mooreův stroj pro počítání tenisového skóre.

- Vstupní abeceda: ID hráče, který uhrál bod
- Výstupní abeceda & stavy: skóre (tj. Q = Y a $\mu(q) = q$)

Stav/výstup	Α	В
00:00	15:00	00:15
15:00	30:00	15:15
15:15	30:15	15:30
00:15	15:15	00:30
30:00	40:00	30:15
30:15	40:15	30:30
30:30	40:30	30:40
15:30	30:30	15:40
00:30	15:30	00:40
40:00	Α	40:15
40:15	Α	40:30
40:30	Α	shoda
30:40	shoda	В
15:40	30:40	В
00:40	15:00	В
shoda	A:40	40:B
A:40	Α	shoda
40:B	shoda	В
Α	15:00	00:15
В	15:00	00:15

Mealyho stroj

Definition 4.6 (Mealyho stroj)

Mealyho (sekvenčním) strojem nazýváme šestici $A = (Q, \Sigma, Y, \delta, \lambda_M, q_0)$ resp. pětici $A = (Q, \Sigma, Y, \delta, \lambda_M)$, kde

Q je konečná neprázdná množina stavů

 Σ je konečná neprázdná množina symbolů (vstupní abeceda)

Y je konečná neprázdná množina symbolů (výstupní abeceda)

 δ je zobrazení $Q \times \Sigma \to Q$ (přechodová funkce)

 λ_M je zobrazení $Q \times \Sigma \to Y$ (**výstupní funkce**)

 $q_0 \in Q$ (počáteční stav)

- Výstup je určen stavem a vstupním symbolem
 - Mealyho stroj je obecnějším prostředkem než stroj Mooreův
 - Značkovací funkci $\mu:Q\to Y$ lze nahradit výstupní funkcí $\lambda_M:Q\times \Sigma\to Y$ například takto:

$$\forall x \in \Sigma \ \lambda_M(q, x) = \mu(q)$$
nebo
$$\forall x \in \Sigma \ \lambda_M(q, x) = \mu(\delta(q, x))$$

Příklad Mealyho stroje

Example 4.7 (Mealyho stroj)

Automat, který dělí vstupní slovo v bináním tvaru číslem 8 (celočíselně).

- Posun o tři bity doprava
- potřebujeme si pamatovat poslední trojici bitů
- vlastně tříbitová dynamická paměť

Stav\symbol	0	1
000	000/0	001/0
001	010/0	011/0
010	100/0	101/0
011	110/0	111/0
100	000/1	001/1
101	010/1	011/1
110	100/1	101/1
111	110/1	111/1

 I když nevíme, kde automat startuje, po třech symbolech začne počítat správně.

Výstup sekvenčních strojů

slovo ve vstupní abecedě ightarrow slovo ve výstupní abecedě

Mooreův stroj

značkovací funkce $\mu: \textit{Q}
ightarrow \textit{Y}$

$$\mu^*: Q \times \Sigma^* \to Y^*$$

$$\mu^*(q,\lambda) = \lambda$$
 (někdy $\mu^*(q,\lambda) = q$)

$$\mu^*(q, wx) = \mu^*(q, w).\mu(\delta^*(q, wx))$$

Příklad: $\mu^*(00:00,AABA)=(00:00.)$ 15:00. 30:00. 30:15. 40:15

Mealyho stroj

výstupní funkce
$$\lambda_M: Q \times \Sigma \to Y$$
 $\lambda_M^*: Q \times \Sigma^* \to Y^*$
 $\lambda_M^*(q, \lambda) = \lambda$
 $\lambda_M^*(q, wx) = \lambda_M^*(q, w).\lambda_M(\delta^*(q, w), x)$

Příklad: $\lambda_M^*(000,1101010) = 0001101$

Lemma (Převod Mooreova stroje na Mealyho)

Pro každý Moorův stroj existuje Mealyho stroj převádějící každé vstupní slovo na stejné výstupní slovo.

Proof.

- Nechť $A = (Q, \Sigma, Y, \delta, \mu, q_0)$ je Mooreův stroj.
- Definujeme Mealyho stroj $B = (Q, \Sigma, Y, \delta, \lambda_M, q_0)$, kde $\lambda_M(q, x) = \mu(\delta(q, x))$
 - tj. λ_M vrací značku stavu, do kterého přejdeme.

Example 4.8

Mooreův stroj				Mealyho stroj		
stav 0 1		výstup	se stejr	ým výstupen		
Stav	0	<u>+</u>	vystup	stav	0	1
a	a	b	0	2	2/0	h/1
b	b	С	1	"	a/0	/2
_	_	2	2	b	p/I	c/2
		а		С	c/2	a/0

Převod Mealyho stroje na Mooreův

Lemma (Převod Mealyho stroje na Mooreův)

Pro každý Mealyho stroj existuje Mooreův stroj převádějící každé vstupní slovo na stejné výstupní slovo.

Nechť $A = (Q, \Sigma, Y, \delta, \lambda_M, q_0)$ je Mealyho stroj.

Sestrojme Mooreův stroj B tak, aby $\forall q, w \ \lambda_M^*(q, w) = \mu^*(q, w)$.

! Rozdělíme stav na více stavů, podle počtu výstupních symbolů.

$$B = (Q \times \Sigma, \Sigma, Y, \delta^{\dagger}, \mu, (q_0, \underline{})), \text{ kde }$$

 $\delta^{\dagger}((q, y), x) = (\delta(q, x), \lambda_M(q, x)) \text{ a}$
 $\mu((q, y)) = y$

$$\frac{\mu((q,y)) - y}{\text{stay}}$$

stav	0	1	výstup
(a,0)	(a,0)	(b,0)	0
(a,1)	(a,0)	(b,0)	1
(b,0)	(a,1)	(b,1)	0
(b,1)	(a,1)	(b,1)	1

Konečné automaty – shrnutí

Konečný automat

- redukovaný deterministický automat (lze definovat i jednoznačný)
- nedeterminismus 2ⁿ, λ–NFA, dvousměrný FA nⁿ

Regulární výrazy

Automaty a jazyky

- regulární jazyky
- uzavřenost na množinové operace
- uzavřenost na řetězcové operace
- uzavřenost na substituci, homomorfizmus a inverzní homomorfizmus,
- automaty výše i regulární výrazy popisují stejnou třídu jazyků.

Charakteristika regulárních jazyků

- Mihyll–Nerodova věta (kongruence)
- Kleeneova věta (elementární jazyky a operace)
- Iterační (pumping) lemma (iterace podslov, jen nutná podmínka).

Automaty s výstupem

- Mooreův stroi
- Mealyho stroj

Regulární výrazy a lexikální analýza.

Formální (generativní) gramatiky, Bezkontextové gramatiky

Definition 6.1 (Formální (generativní) gramatika)

Formální (generativní) gramatika je G = (V, T, P, S) složena z

- konečné množiny neterminálů (variables) V
- neprázdné konečné množiny terminálních symbolů (terminálů) T
- počáteční symbol $S \in V$.
- konečné množiny pravidel (produkcí) P reprezentující rekurzivní definici jazyka. Každé pravidlo má tvar:
 - $\beta A \gamma \rightarrow \omega$, $A \in V, \beta, \gamma, \omega \in (V \cup T)^*$
 - tj. levá strana obsahuje aspoň jeden neterminální symbol.

Definition (Bezkontextová gramatika CFG)

Bezkontextová gramatika (CFG) je G = (V, T, P, S) gramatika, obsahující pouze pravidla tvaru

$$A \rightarrow \omega$$
, $A \in V, \omega \in (V \cup T)^*$.

Chomského hierarchie

Definition 6.2 (Klasifikace gramatik podle tvaru přepisovacích pravidel)

- gramatiky typu ${f 0}$ (rekurzivně spočetné jazyky ${\cal L}_0$) pravidla v obecné formě $lpha o \omega, \ \alpha, \omega \in (V \cup T)^*, lpha$ obsahuje neterminál
- ullet gramatiky typu $oldsymbol{1}$ (kontextové jazyky \mathcal{L}_1)
 - ullet pouze pravidla ve tvaru $\gamma Aeta o \gamma \omega eta$

$$A \in V, \gamma, \beta \in (V \cup T)^*, \omega \in (V \cup T)^+$$
!

- o jedinou výjimkou je pravidlo $S \to \lambda$, potom se ale S nevyskytuje na pravé straně žádného pravidla
- gramatiky typu 2 (bezkontextové jazyky \mathcal{L}_2) pouze pravidla ve tvaru $A \to \omega, A \in V, \omega \in (V \cup T)^*$
- gramatiky typu 3 (regulární/pravé lineární jazyky \mathcal{L}_3) pouze pravidla ve tvaru $A \to \omega B, A \to \omega, A, B \in V, \omega \in T^*$

Uspořádanost Chomského hierarchie

Chomského hierarchie definuje uspořádání tříd jazyků

$$\mathcal{L}_0 \supseteq \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3$$

dokonce vlastní podmnožiny (později)

$$\mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$$

- $\mathcal{L}_0\supseteq\mathcal{L}_1$ rekurzivně spočetné jazyky zahrnují kontextové jazyky pravidla $\gamma Aeta o \gamma \omega eta$ obsahují vlevo neterminál A
- $\mathcal{L}_2\supseteq\mathcal{L}_3$ bezkontextové jazyky zahrnují regulární jazyky pravidla $A o\omega B, A o\omega$ obsahují vpravo řetězec $(V\cup T)^*$
- $\mathcal{L}_1\supseteq\mathcal{L}_2$ kontextové jazyky zahrnují bezkontextové jazyky problém je s pravidly typu $A o\lambda$, ale ta umíme eliminovat.

Derivace, Jazyk generovaný gramatikou G, neterminálem A

Definition 6.3 (Derivace \Rightarrow *)

Mějme gramatiku G = (V, T, P, S).

- Říkáme, že α se **přímo přepíše** na ω (píšeme $\alpha \Rightarrow_G \omega$ nebo $\alpha \Rightarrow \omega$) jestliže $\exists \beta, \gamma, \eta, \nu \in (V \cup T)^* : \alpha = \eta \beta \nu, \ \omega = \eta \gamma \nu \text{ a } (\beta \to \gamma) \in P.$
- Říkáme, že α se **přepíše** na ω (píšeme $\alpha \Rightarrow^* \omega$) jestliže $\exists \beta_1, \ldots, \beta_n \in (V \cup T)^* : \alpha = \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_n = \omega$ ti. také $\alpha \Rightarrow^* \alpha$.
- Posloupnost β_1, \ldots, β_n nazýváme **derivací** (odvozením).
- Pokud $\forall i \neq j : \beta_i \neq \beta_i$, hovoříme o minimálním odvození.

Definition 6.4 (Jazyk generovaný gramatikou G)

Jazyk L(G) generovaný gramatikou G = (V, T, P, S) je množina terminálních řetězců, pro které existuje derivace ze startovního symbolu

$$L(G) = \{ w \in T^* | S \Rightarrow_G^* w \}.$$

Jazyk neterminálu $A \in V$ definujeme $L(A) = \{ w \in T^* | A \Rightarrow_G^* w \}.$

Gramatiky typu 3 a regulární jazyky

- pouze pravidla ve tvaru $A \rightarrow wB, A \rightarrow w, A, B \in V, w \in T^*$
- příklad derivace gramatiky typu 3:

$$P: S \to 0S|1A|\lambda, \ A \to 0A|1B, \ B \to 0B|1S$$

 $S \Rightarrow 0S \Rightarrow 01A \Rightarrow 011B \Rightarrow 0110B \Rightarrow 01101S \Rightarrow 01101$

- Pozorování:
 - každé slovo derivace obsahuje právě jeden neterminál
 - tento neterminál je vždy umístěn zcela vpravo
 - aplikací pravidla $A \rightarrow w$ se derivace uzavírá
 - krok derivace generuje symboly a změní neterminál
- Idea vztahu gramatiky a konečného automatu
- neterminál = stav konečného automatu
- pravidla = přechodová funkce

Příklad převodu FA na gramatiku

Example 6.1 (G, FA binární zápis čísla dělitelného 5)

$$L = \{w | w \in \{a, b\}^* \& w \text{ je binární zápis čísla dělitelného 5}\}$$

$$\begin{array}{ccc} A & \rightarrow & 1B|0A|\lambda \\ B & \rightarrow & 0C|1D \\ C & \rightarrow & 0E|1A \\ D & \rightarrow & 0B|1C \\ E & \rightarrow & 0D|1E \end{array}$$

$$A \Rightarrow 0A \Rightarrow 0 \tag{0}$$

Příklady derivací

$$A \Rightarrow 1B \Rightarrow 10C \Rightarrow 101A \Rightarrow 101$$

$$A \Rightarrow 1B \Rightarrow 10C \Rightarrow 101A \Rightarrow 101$$
 (5)
 $A \Rightarrow 1B \Rightarrow 10C \Rightarrow 101A \Rightarrow 1010A \Rightarrow 1010$ (10)

$$A \Rightarrow 1B \Rightarrow 11D \Rightarrow 111C \Rightarrow 1111A \Rightarrow 1111$$
 (15)

Převod konečného automatu na gramatiku typu 3

Theorem 6.1 ($L \in RE \Rightarrow L \in \mathcal{L}_3$)

Pro každý jazyk rozpoznávaný konečným automatem existuje gramatika typu 3, která ho generuje.

Proof: Převod konečného automatu na gramatiku typu 3

- L = L(A) pro nějaký konečný automat $A = (Q, \Sigma, \delta, q_0, F)$.
- definujme gramatiku $G=(Q,\Sigma,P,q_0)$, kde pravidla P mají tvar $p \to aq$, když $\delta(p,a)=q$ $p \to \lambda$, když $p \in F$
- je L(A) = L(G)?
 - $\lambda \in L(A) \Leftrightarrow q_0 \in F \Leftrightarrow (q_0 \to \lambda) \in P \Leftrightarrow \lambda \in L(G)$
 - $a_1 \dots a_n \in L(A) \Leftrightarrow \exists q_0, \dots, q_n \in Q \text{ tž. } \delta(q_i, a_{i+1}) = q_{i+1}, q_n \in F \Leftrightarrow (q_0 \Rightarrow a_1 q_1 \Rightarrow \dots a_1 \dots a_n q_n \Rightarrow a_1 \dots a_n) \text{ je derivace pro } a_1 \dots a_n \Leftrightarrow a_1 \dots a_n \in L(G)$

Příprava převodu gramatiky typu 3 na FA

- Opačný směr
 - ullet pravidla A
 ightarrow aB kódujeme do přechodové funkce
 - pravidla $A \rightarrow \lambda$ určují koncové stavy
 - pravidla $A \rightarrow a_1 \dots a_n B, A \rightarrow a_1 \dots a_n$ s více neterminály rozepíšeme
 - zavedeme nové neterminály $Y_2, \ldots, Y_n, Z_1, \ldots, Z_n$
 - vytvoříme pravidla $A \rightarrow a_1 Y_2, Y_2 \rightarrow a_2 Y_3, \dots, Y_n \rightarrow a_n B$
 - resp. $Z \rightarrow a_1 Z_1, Z_1 \rightarrow a_2 Z_2, \dots, Z_{n-1} \rightarrow a_n Z_n, Z_n \rightarrow \lambda$
 - pravidla $A \rightarrow B$ odpovídají λ přechodům

Lemma

Ke každé gramatice typu 3 existuje gramatika typu 3, která generuje stejný jazyk a obsahuje pouze pravidla ve tvaru: $A \to aB, A \to B, A \to \lambda, A, B \in V, a \in T$.

Standardizace gramatiky typu 3

Lemma

Ke každé gramatice typu 3 existuje gramatika typu 3, která generuje stejný jazyk a obsahuje pouze pravidla ve tvaru: $A \to aB, A \to B, A \to \lambda, A, B \in V, a \in T$.

Proof.

Pro gramatiku G=(V,T,S,P) definujeme $G^{|}=(V^{|},T,S,P^{|})$, kde pro každé pravidlo zavedeme dostatečný počet nových neterminálů $Y_2,\ldots,Y_n,Z_1,\ldots,Z_n$ a definujeme

P	P
A o aB	A o aB
$A \rightarrow \lambda$	$A o\lambda$
$A \rightarrow a_1 \dots a_n B$	$A \rightarrow a_1 Y_2, Y_2 \rightarrow a_2 Y_3, \dots Y_n \rightarrow a_n B$
$Z \rightarrow a_1 \dots a_n$	$Z \rightarrow a_1 Z_1, Z_1 \rightarrow a_2 Z_2, \dots, Z_{n-1} \rightarrow a_n Z_n, Z_n \rightarrow \lambda$
lze odstranit i pravidla:	
$A \rightarrow B$	tranzitivní uzávěr $U(A) = \{B B \in V \& A \Rightarrow^* B\}$
	$A o w$ pro všechna $Z \in U(A)$ a $(Z o w) \in P^{ }$

Převod gramatiky typu 3 na konečný automat

Theorem 6.2 (λ –NFA pro gramatiku typu 3 rozpoznávající stejný jazyk)

Pro každý jazyk L generovaný gramatikou typu 3 existuje λ–NFA rozpoznávající L.

Proof: Převod gramatiky typu 3 na konečný automat

- Vezmeme G = (V, T, P, S) obsahující jen pravidla tvaru $A \rightarrow aB$, $A \rightarrow B, A \rightarrow \lambda, A, B \in V, a \in T$ generující L (předchozí lemma)
- definujeme nedeterministický λ -NFA $A = (V, T, \delta, S, F)$, kde:

$$F = \{A | (A \to \lambda) \in P\}$$

$$\delta(A, a) = \{B | (A \to aB) \in P\}$$

$$\delta(A, \lambda) = \{B | (A \to B) \in P\}$$

- \bullet L(G) = L(A)
 - $\lambda \in L(G) \Leftrightarrow (S \to \lambda) \in P \Leftrightarrow S \in F \Leftrightarrow \lambda \in L(A)$
 - $a_1 \dots a_n \in L(G) \Leftrightarrow$ existuje derivace $(S \Rightarrow^* a_1 H_1 \Rightarrow \ldots \Rightarrow a_1 \ldots a_n H_n \Rightarrow^* a_1 \ldots a_n)$
 - $\Leftrightarrow \exists H_0, \dots, H_n \in V \text{ tak že } H_0 = S, H_n \in F$ $H_{i+1} \in \delta(H_i, a_k)$ pro krok $a_1 \dots a_{k-1} H_i \Rightarrow a_1 \dots a_{k-1} a_k H_{i+1}$ $H_{i+1} \in \delta(H_i, \lambda)$ pro krok $a_1 \dots a_k H_i \Rightarrow a_1 \dots a_k H_{i+1}$
 - $\Leftrightarrow a_1 \dots a_n \in L(A)$

Levé (a pravé) lineání gramatiky

Definition 6.5 (Levé (a pravé) lineání gramatiky)

Gramatiky typu 3 nazýváme také **pravé lineární** (neterminál je vždy vpravo). Gramatika G je **levá lineání**, jestliže má pouze pravidla tvaru $A \to Bw, A \to w, A, B \in V, w \in T^*$.

Lemma

Jazyky generované levou lineání gramatikou jsou právě regulární jazyky.

Proof:

- 'otočením' pravidel dostaneme pravou lineární gramatiku $A \to Bw, A \to w$ převedeme na $A \to w^R B, A \to w^R$
- ullet získaná gramatika generuje jazyk L^R
- víme, že regulární jazyky jsou uzavřené na reverzi, L^R je regulární, tudíž i $L=(L^R)^R$ je regulární
- takto lze získat všechny regulární jazyky
 - (FA⇒reverse⇒ pravá lineární gramatika⇒ levá lineární gramatika)

Lineární gramatiky (a jazyky)

Levá a pravá lineární pravidla dohromady jsou už silnější.

Definition 6.6 (lineární gramatika, jazyk)

Gramatika je lineární, jestliže má pouze pravidla tvaru

 $A \to uBw, A \to w, A, B \in V, u, w \in T^*$ (na pravé straně vždy maximálně jeden neterminál).

Lineární jazyky jsou právě jazyky generované lineáními gramatikami.

- Zřejmě platí: regulární jazyky ⊆ lineární jazyky.
- Jde o vlastní podmnožinu ⊂.

Example 6.2 (lineární, neregulární jazyk)

Jazyk $L = \{0^n 1^n | n \ge 1\}$ není regulární jazyk, ale je lineární, generovaný gramatikou s pravidly $S \rightarrow 0S1|01$.

Pozorování:

• lineární pravidla lze rozložit na levě a pravě lineání pravidla: $S \to 0A, A \to S1$.

Bezkontextová gramatika pro jednoduché výrazy

Example 6.3 (CFG pro jednoduché výrazy)

Gramatika pro jednoduché výrazy $G = (\{E, I\}, \{+, *, (,), a, b, 0, 1\}, P, E), P$ jsou pravidla vypsaná vpravo.

- Pravidla 1-4 definují výraz.
- Pravidla 5–10 definují identifikátor I, odpovídající regulárnímu výrazu (a + b)(a + b + 0 + 1)*.

CFG pro jednoduché výrazy

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

Derivační strom

Definition 6.7 (Derivační strom)

Mějme gramatiku G = (V, T, P, S). **Derivační strom** pro G je strom, kde:

- ullet každý vnitřní uzel je ohodnocen neterminálem V.
- Každý uzel je ohodnocen prvkem $\in V \cup T \cup \{\lambda\}$.
- Je-li uzel ohodnocen λ , je jediným dítětem svého rodiče.
- Je–li A ohodnocení vrcholu a jeho děti zleva pořadě jsou ohodnoceny X_1,\ldots,X_k , pak $(A\to X_1,\ldots,X_k)\in P$ je pravidlo gramatiky.

Notation 1 (Terminologie stromů)

Uzly, rodiče, děti, kořen, vnitřní uzly, listy, následníci, předci.

• Stromová struktura reprezentuje zdrojový program v překladači. Struktura usnadňuje překlad do strojového kódu.

Příklady stromů, Strom dává slovo (yield)

Derivační strom $E \Rightarrow^* I + E$. Derivační strom $P \Rightarrow^* 0110$.

Definition 6.8 (Strom dává slovo (yield))

Říkáme, že **derivanční strom dává slovo** *w* **(yield)**, jestliže *w* je slovo složené z ohodnocení listů bráno zleva doprava.

Levá a pravá derivace

Definition 6.9 (Levá a pravá derivace)

Levá derivace (leftmost) \Rightarrow_{lm} , \Rightarrow_{lm}^* v každém kroku přepisuje nejlevnější neterminál.

Pravá derivace (rightmost) \Rightarrow_{rm} , \Rightarrow_{rm}^* v každém kroku přepisuje nejpravější neterminál.

Example 6.4 (levá derivace)

$$E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm} a * (E) \Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} a * (I + E) \Rightarrow_{lm} a * (a + E) \Rightarrow_{lm} a * ($$

Pravá derivace používá stejné přepisy, jen je provádí v jiném pořadí.

Example 6.5 (rightmost derivation)

$$E \Rightarrow_{rm} E * E \Rightarrow_{rm} E * (E) \Rightarrow_{rm} E * (E + E) \Rightarrow_{rm} E * (E + I) \Rightarrow_{rm}$$

$$\Rightarrow_{rm} E * (E + I0) \Rightarrow_{rm} E * (E + I00) \Rightarrow_{rm} E * (E + b00) \Rightarrow_{rm}$$

$$\Rightarrow_{rm} E * (I + b00) \Rightarrow_{rm} E * (a + b00) \Rightarrow_{rm} I * (a + b00) \Rightarrow_{rm} a * (a + b00)$$

Derivace a derivační stromy

Theorem 6.3

Pro danou gramatiku G = (V, T, P, S) a $w \in T^*$ jsou následující tvrzení ekvivalentní:

- $A \Rightarrow^* w$.
- $A \Rightarrow_{lm}^* w$.
- $A \Rightarrow_{rm}^* w$.
- Existuje derivační strom s kořenem A dávající slovo w.

Od stromů k derivaci

Lemma

Mějme CFG G = (V, T, P, S) a derivační strom s kořenem A dávající slovo $w \in T^*$.

Pak existuje levá derivace $A \Rightarrow_{lm}^* w \ v \ G$.

Příprava důkazu: 'obalení derivace'

Mějme následující derivaci:

$$E \Rightarrow I \Rightarrow Ib \rightarrow ab$$
.

Pro libovolná slova $\alpha, \beta \in (V \cup T)^*$ je také derivace:

$$\alpha E\beta \Rightarrow \alpha I\beta \Rightarrow \alpha Ib\beta \Rightarrow \alpha ab\beta$$
.

Proof: \exists derivační strom pak existuje levá derivace \Rightarrow_{lm}

Indukcí podle výšky stomu.

- Základ: výška 1: Kořen A s dětmi dávajícími w. Je to derivační strom, proto, A → w je pravidlo ∈ P, tedy A ⇒_{lm} w v jednom kroku.
- Indukce: výška n > 1. Kořen A s dětmi X_1, X_2, \dots, X_k .
 - Je-li $X_i \in T$, definujeme $w_i \equiv X_i$.
 - Je–li $X_i \in V$, z indukčního předpokladu $X_i \Rightarrow_{lm}^* w_i$.

Levou derivaci konstruujeme induktivně pro $i=1,\ldots,k$ složíme $A\Rightarrow_{lm}^* w_1w_2\ldots w_iX_{i+1}X_{i+2}\ldots X_k$.

- Pro $X_i \in T$ jen zvedneme čítač i + +.
- Pro $X_i \in V$ přepíšeme derivaci: $X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2 \ldots \Rightarrow_{lm} w_i$ na

$$w_1 w_2 \dots w_{i-1} X_i X_{i+1} X_{i+2} \dots X_k \Rightarrow_{lm}$$

$$w_1 w_2 \dots w_{i-1} \alpha_1 X_{i+1} X_{i+2} \dots X_k \Rightarrow_{lm}$$

$$\dots$$

$$\Rightarrow_{lm} w_1 w_2 \dots w_{i-1} w_i X_{i+1} X_{i+2} \dots X_k.$$

Pro i = k dostaneme levou derivaci w z A.

Příklad levé derivace z derivačního stromu

Je příjemnější zachytit derivaci stromem.

- Levé dítě kořene: $E \Rightarrow_{lm} I \Rightarrow_{lm} a$
- Pravé dítě kořene:

$$E \Rightarrow_{lm} (E) \Rightarrow_{lm} (E+E) \Rightarrow_{lm} (I+E) \Rightarrow_{lm} (a+E)$$

$$\Rightarrow_{lm} (a+I) \Rightarrow_{lm} (a+I0) \Rightarrow_{lm} (a+I00) \Rightarrow_{lm} (a+b00)$$

- Kořen: $E \Rightarrow_{lm} E * E$
- Kořen a levé dítě: $E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E$
- Plná derivace:

$$E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm}$$

$$\Rightarrow_{lm} a * (E) \Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} a * (I + E) \Rightarrow_{lm}$$

$$\Rightarrow_{lm} a * (a + E) \Rightarrow_{lm} a * (a + I) \Rightarrow_{lm} a * (a + I0) \Rightarrow_{lm}$$

$$\Rightarrow_{lm} a * (a + I00) \Rightarrow_{lm} a * (a + b00).$$

Ekvivalence gramatik

Definition 6.10 (ekvivalence gramatik)

Gramatiky G_1 , G_2 jsou **ekvivalentní**, jestliže $L(G_1) = L(G_2)$, tj. generují stejný jazyk.

Víceznačnost gramatik

Dvě derivace téhož výrazu:

$$E \Rightarrow E + E \Rightarrow E + E * E \qquad E \Rightarrow E * E \Rightarrow E + E * E$$

$$E \qquad \qquad E$$

$$E \qquad \qquad E \qquad \qquad E$$

$$E \qquad \qquad E \qquad \qquad E$$

$$E \qquad \qquad E \qquad \qquad E$$

- Rozdíl je důležitý, vlevo 1 + (2 * 3) = 7, vpravo (1 + 2) * 3 = 9.
- Tato gramatika může být modifikovaná na jednoznačnou.

Example 6.6

Různé derivace mohou reprezentovat stejný derivační strom, pak není problém.

- 1. $E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$
- 2. $E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow I + b \Rightarrow a + b$.

Definition 6.11 (Jednoznačnost a víceznačnost CFG)

- Bezkontextová gramatika G = (V, T, P, S) je víceznačná pokud existuje aspoň jeden řetězec $w \in T^*$ pro který můžeme najít dva různé derivační stromy, oba s kořenem S dávající slovo w.
- V opačném případě nazáváme gramatiku jednoznačnou.
- Bezkontextový jazyk L je **jednoznačný**, jestliže existuje jednoznačná CFG G tak, že L = L(G).
- Bezkontextový jazyk L je (podstatně)
 nejednoznačný, jestliže každá CFG G taková,
 že L = L(G), je nejednoznačná. Takovému
 jazyku říkáme i víceznačný.

Example 6.7 (nejednoznačnost CFG)

Dva derivační stromy dávající a + a * a ukazující víceznačnost gramatiky.

Example 6.8 (nejednoznačný jazyk)

Jazyk $L = \{a^i b^j c^k | i = j \lor j = k\}$ je podstatně nejednoznačný, slovo $a^i b^i c^i$ má z principielních důvodů dva způsoby odvození.

Odstanění víceznačnosti gramatiky

- Neexistuje algoritmus, který nám řekne, zda je daná gramatika víceznačná.
- Existují bezkontextové jazyky, pro které neexistuje jednoznačná bezkontextová gramatika, pouze víceznačné CFG.
- Existují určitá doporučení pro odstranění víceznačnosti.

Víceznačnost má různé příčiny:

- Není respektovaná priorita operátorů.
- Posloupnost identických operátorů lze shlukovat zleva i zprava.
- $S \rightarrow$ if then S else S| if then $S|\lambda$ slovo 'if then if then else' má dva významy 'if then (if then else)' nebo 'if then (if then) else'

Řešení:

- syntaktická chyba (Algol 60)
- else patří k bližšímu if (preference pořadí pavidel)
- závorky begin-end (asi nejčistší řešení)

Vynucení priority

Řešením je zavést více různých proměnných, kaž- Jediný derivační strom pro a+a* dou pro jednu úroveň 'priority'.

Konkrétně:

- Faktor je výraz který nesmí rozdělit žádný operátor.
 - identifikátory
 - výraz v závorkách
- Term je výraz, který nemůže rozdělit operátor +.
- Výraz může být rozdělen * i +.

Jednoznačná gramatika pro výrazy:

- 1. $I \rightarrow a|b|Ia|Ib|I0|I1$
- 2. $F \rightarrow I|(E)$
- 3. $T \rightarrow F \mid T * F$
- 4. $E \rightarrow T|E + T$.

а

Jednoznačnost a kompilátory

Kompilace výrazu (zásobník na mezivýsledky + dva registry):

- (1) $E \rightarrow E + T$... pop r1; pop r2; add r1,r2; push r2
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$... pop r1; pop r2; mul r1,r2; push r2
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow a$... push a
 - 'a+a*a' získáme postupnou aplikací pravidel 1,2,4,6,3,4,6,6
 - posloupnost obrátíme a vybereme pouze pravidla generující kód 6,6,3,6,1
 - nyní nahradíme pravidla příslušným kódem
 push a; push a; pop r1; pop r2; mul r1,r2; push r2; push a; pop r1; pop r2;
 add r1,r2; push r2

Příklad víceznačného jazyka

Example 6.9 (Víceznačný jazyk)

Příklad víceznačného jazyka:

$$L = \{a^n b^n c^m d^m | n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n | n \ge 1, m \ge 1\}.$$

- 1. $S \rightarrow AB|C$
- 2. $A \rightarrow aAb|ab$
- 3. $B \rightarrow cBd|cd$
- 4. $C \rightarrow aCd|aDd$
- 5. $D \rightarrow bDc|bc$.

Gramatika je víceznačná. Například slovo *aabbccdd* má více levých derivací:

- 1. $S \Rightarrow_{lm} AB \Rightarrow_{lm} aAbB \Rightarrow_{lm} aabbB \Rightarrow_{lm} aabbcBd \Rightarrow_{lm} aabbccdd$
- 2. $S \Rightarrow_{lm} C \Rightarrow_{lm} aCd \Rightarrow_{lm} aaDdd \Rightarrow_{lm} aabDcdd \Rightarrow_{lm} aabbccdd$

Dva derivační stromy pro aabbccdd.

Jakákoli gramatika pro daný jazyk bude generovat pro některá slova typu $a^nb^nc^nd^n$ dva různé derivační stromy.

Shrnutí

- Gramatiky
 - obecné
 - kontextové
 - bezkontextové
 - regulární, pravé lineární
- jazyk gramatiky, derivace, derivace dává slovo, derivační strom (pro bezkontextové gramatiky), ekvivalentní gramatiky
- ne každá lineární gramatika má ekvivalentní pravou lineární
- bezkontextové gramatiky
- jednoznačné a (podstatně) víceznačné gramatiky

Zásobníkové automaty

- Zásobníkové automaty jsou rozšířením $\lambda-{\sf NFA}$ nedeterministických konečných automatů s λ přechody.
- Přidanou věcí je zásobník. Ze zásobníku můžeme číst (read), přidávat na vrch (push), a odebírat z vrchu zásobníku (pop) znak ∈ Γ.
- Může si pamatovat neomezené množství informace.
- Zásobníkové automaty definují bezkontextové jazyky.
- Deterministické zásobníkové automaty přijímají jen vlastní podmnožinu bezkontextových jazyků.

Zásobníkový automat.

V jednom časovém kroku zásobníkový automat:

- Přečte na vstupu žádný nebo jeden symbol. (λ přechody pro prázdný vstup.)
- Přejde do nového stavu.
- Nahradí symbol na vrchu zásobníku libovolným řetězcem (λ odpovídá samotnému pop, jinak následuje push jednoho nebo více symbolů).

Example 7.1

Zásobníkový automat pro jazyk: $L_{wwr} = \{ww^R | w \in (\mathbf{0} + \mathbf{1})^*\}.$

PDA přijímající L_{wwr} :

- Start q_0 reprezentuje odhad, že ještě nejsme uprostřed.
- V každém kroku nedeterministicky hádáme;
 - Zůstat q₀ (ještě nejsme uprostřed).
 - Přejít λ přechodem do q_1 (už jsme viděli střed).
- \bullet V q_0 , přečte vstupní symbol a dá (push) ho na zásobník
- ullet V q_1 , srovná vstupní symbol s vrcholem zásobníku pokud se shodují, přečte vstupní symbol a umaže (pop) vrchol zásobníku
- Když vyprázdníme zásobník, přijmeme vstup, který jsme doteď přečetli.

Zásobníkový automat (PDA)

Definition 7.1 (Zásobníkový automat (PDA))

Zásobníkový automat (PDA) je $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde

- Q konečná množina stavů
- Σ neprázdná konečná množina vstupních symbolů
- r neprázdná konečná zásobníková abeceda
- δ přechodová funkce $δ : Q × (Σ ∪ {λ}) × Γ → P(FIN(Q × Γ*)), <math>δ(p, a, X) ∋ (q, γ)$

kde q je nový stav a γ je řetězec zásobníkových symbolů, který nahradí X na vrcholu zásobníku

- $q_0 \in Q$ počáteční stav
- $Z_0 \in \Gamma$ Počáteční zásobníkový symbol. Víc na začátku na zásobníku není.
 - F Množina přijímajících (koncových) stavů

Automaty a gramatiky Zásobníkové automaty 7 February 19, 2019 144 / 142 - 163

PDA pro Lwwr

Example 7.2 (PDA pro L_{wwr})

```
PDA pro L_{wwr} můžeme popsat
P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}\}) kde \delta je definovaná:
 \delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}\
                                        Ulož vstup na zásobník, startovní symbol tam nech
 \delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}
 \delta(q_0, 0, 0) = \{(q_0, 00)\}
 \delta(q_0, 0, 1) = \{(q_0, 01)\}
                                        Zůstaň v q_0, přečti vstup a dej ho na zásobník
 \delta(q_0, 1, 0) = \{(q_0, 10)\}\
 \delta(q_0, 1, 1) = \{(q_0, 11)\}
 \delta(q_0, \lambda, Z_0) = \{(q_1, Z_0)\}\
 \delta(q_0, \lambda, 0) = \{(q_1, 0)\}
                                        \lambda přechod q_1 bez změny zásobníku (a vstupu)
 \delta(q_0, \lambda, 1) = \{(q_1, 1)\}
 \delta(q_1, 0, 0) = \{(q_1, \lambda)\}\
                                        stav q<sub>1</sub> srovná vstupní symbol a vrchol zásobníku
 \delta(q_1, 1, 1) = \{(q_1, \lambda)\}\
 \delta(q_1, \lambda, Z_0) = \{(q_2, Z_0)\}
                                        našli jsme ww<sup>R</sup> a jdeme do přijímajícího stavu
```

Automaty a gramatiky Zásobníkové automaty 7 February 19, 2019 145 / 142 - 163

Grafická notace PDA's

Definition 7.2 (Přechodový diagram pro zásobníkový automat)

Přechodový diagram pro zásobníkový automat obsahuje:

- Uzly, které odpovídají stavům PDA.
- Šipka 'odnikud' ukazuje počáteční stav, dvojité kruhy označují přijímající stavy.
- hrana odpovídá přechodu PDA. Hrana označená $a, X \to \alpha$ ze stavu p do q znamená $\delta(p, a, X) \ni (q, \alpha)$
- Konvence je, že počáteční symbol zásobníku značíme Z₀.

Labels:

 ${\sf input_symbol, stack_symbol} \to {\sf string_to_push}$

Definition 7.3 (Situace zásobníkového automatu)

Situaci zásobníkového automatu reprezentujeme trojicí (q, w, γ) , kde

- q je stav
- w je zbývající vstup a
- γ je obsah zásobníku (vrch zásobníku je vlevo).

Situaci značíme zkratkou (ID) z anglického instantaneous description (ID).

Definition 7.4 (\vdash , \vdash * posloupnosti situací)

Mějme PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Definujeme \vdash_P nebo \vdash následovně.

- Nechť $\delta(p, a, X) \ni (q, \alpha), \ p, q \in Q, a \in (\Sigma \cup \{\lambda\}), X \in \Gamma, \alpha \in \Gamma^*.$ $\forall w \in \Sigma^*, \ \beta \in \Gamma^* : \ (p, aw, X\beta) \vdash (q, w, \alpha\beta).$
- Symboly ⊢^{*}_P a ⊢^{*} používáme na označení nuly a více kroků zásobníkového automatu, t.j.
 - I ⊢* I pro každou situaci I
 - I ⊢* J pokud existuje situace K tak že I ⊢ K a K ⊢* J.
- Čteme I ⊢* J situace I vede na situaci J, I ⊢ J situace I bezprostředně vede na situaci J.

Situace zásobníkového automatu na vstup 1111

Nečetený vstup a dno zásobníku P neovlivní výpočet

Lemma 7.1

Mějme PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ a $(p, x, \alpha) \vdash_P^* (q, y, \beta)$. Potom pro libovolné slovo $w \in \Sigma^*$ and $\gamma \in \Gamma^*$ platí: $(p, xw, \alpha\gamma) \vdash_P^* (q, yw, \beta\gamma)$. Specielně pro $\gamma = \lambda$ a/nebo $w = \lambda$.

Proof.

Indukcí podle počtu situací mezi $(p, xw, \alpha\gamma)$ a $(q, yw, \beta\gamma)$. Každý krok $(p, x, \alpha) \vdash_P^* (q, y, \beta)$ je určen bez w a/nebo γ . Proto je možný i se symboly na konci vstupu / dně zásobníku.

Lemma 7.2

Pro PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ a $(p, xw, \alpha) \vdash_P^* (q, yw, \beta)$ platí $(p, x, \alpha) \vdash_P^* (q, y, \beta)$.

Remark Pro zásobník ale obdoba neplatí. PDA může zásobníkové symboly γ použít a zase je tam naskládat (push).

Notace zásobníkových automatů

```
a, b, c symboly vstupní abecedy
```

p, q stavy

w, z řetězce vstupní abecedy

X,Y zásobníkové symboly

 $lpha,eta,\gamma$ řetězce zásobníkových symbolů

Automaty a gramatiky Zásobníkové automaty 7 February 19, 2019 150 / 142 - 163

Jazyky zásobníkových automatů

Definition 7.5 (Jazyk přijímaný koncovým stavem, prázdným zásobníkem)

Mějme zásobníkový automat $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$. Pak L(P), jazyk akceptovaný koncovým stavem je

$$L(P) = \{w | (q_0, w, Z_0) \vdash_P^* (q, \lambda, \alpha) \text{ pro nějaké } q \in F \text{ a libovolný řetězec } \alpha \in \Gamma^*; w \in \Sigma^*\}.$$

jazyk akceptovaný prázdným zásobníkem N(P) definujeme

$$N(P) = \{w | (q_0, w, Z_0) \vdash_P^* (q, \lambda, \lambda) \text{ pro libovoln\'e } q \in Q; w \in \Sigma^*\}.$$

• Protože je množina přijímajících stavů F nerelevantní, může se vynechat a PDA je šestice $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$.

Example 7.3

Zásobníkový automat z předchozího příkladu akceptuje L_{wwr} koncovným stavem.

Example 7.4

 $P'\equiv P$ z předchozího příkladu, jen změníme instrukci, aby umazala poslední symbol $\delta(q_1,\lambda,Z_0)=\{(q_2,Z_0)\}$ nahradíme $\delta(q_1,\lambda,Z_0)=\{(q_2,\lambda)\}$ Nyní $L(P')=N(P')=L_{wwr}$.

Od přijímajícího stavu k prázdnému zásobníku

Lemma 7.3 (Od přijímajícího stavu k prázdnému zásobníku)

Mějme $L = L(P_F)$ pro nějaký PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Pak existuje PDA P_N takový, že $L = L(P_N)$.

Proof:

Nechť $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$, kde

- $\delta_N(p_0, \lambda, X_0) = \{(q, Z_0 X_0)\}$ start
- $\forall (q \in Q, a \in \Sigma \cup \{\lambda\}, Y \in \Gamma)$ $\delta_N(q, a, Y) = \delta_F(q, a, Y)$ simulujeme
- $\forall (q \in F, Y \in \Gamma \cup \{X_0\}),$ $\delta_N(q, \lambda, Y) \ni (p, \lambda)$ přijmout pokud P_F přijímá,
- $\forall (Y \in \Gamma \cup \{X_0\}),$ $\delta_N(p,\lambda,Y) = \{(p,\lambda)\}$ vyprázdnit zásobník.

Pak $w \in N(P_n)$ iff $w \in L(P_F)$.

Automaty a gramatiky Zásobníkové automaty 7 February 19, 2019 152 / 142 - 163

Od prázdného zásobníku ke koncovému stavu

Lemma 7.4 (Od prázdného zásobníku ke koncovému stavu)

Pokud $L = N(P_N)$ pro nějaký PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, pak existuje PDA P_F takový, že $L = L(P_F)$.

Proof:

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

kde δ_F je

- $\delta_F(p_0, \lambda, X_0) = \{(q_0, Z_0 X_0)\}$ (start).
- $\forall (q \in Q, a \in \Sigma \cup \{\lambda\}, Y \in \Gamma), \\ \delta_F(q, a, Y) = \delta_N(q, a, Y).$
- Navíc, $\delta_F(q, \lambda, X_0) \ni (p_f, \lambda)$ pro každý $q \in Q$.

Chceme ukázat $w \in L(P_N)$ iff $w \in L(P_F)$.

- (If) P_F přijímá následovně: $(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F = N_F}^* (q, \lambda, X_0) \vdash_{P_F} (p_f, \lambda, \lambda).$
- (Only if) Do p_f nelze dojít jinak než předchozím bodem.

Příklad If-Else

Example 7.5 (If-else příjímané prázdným zásobníkem)

Následující zásobníkový automat zastaví při první chybě na if (i) a else (e), máme–li více else než if.

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z)$$
 kde

- $\delta_N(q, i, Z) = \{(q, ZZ)\}$ push
- $\delta_N(q, e, Z) = \{(q, \lambda)\}$ pop

Example 7.6 (Přijímání koncovým stavem)

 $P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\})$ kde

- $\delta_F(p, \lambda, X_0) = \{(q, ZX_0)\}$ start
- $\delta_F(q, i, Z) = \{(q, ZZ)\}$ push
- $\delta_F(q, e, Z) = \{(q, \lambda)\}$ pop
- $\delta_F(q,\lambda,X_0)=\{(r,\lambda)\}$ přijmi

Ekvivalence jazyků rozpoznávaných zásobníkovými automaty a bezkontextových jazyků

Theorem 7.1 (L(CFG), L(PDA), N(PDA))

Následující tvrzení jsou ekvivalentní

- Jazyk L je bezkontextový, tj. generovaný CFG
- Jazyk L je přijímaný nějakým zásobníkovým automatem koncovým stavem.
- Jazyk L je přijímaný nějakým zásobníkovým automatem prázdným zásobníkem

Důkaz bude veden směry dle následujícího obrázku.

Od bezkontextové gramatiky k zásobníkovému automatu

Algorthm: Konstrukce PDA z CFG G

Mějme CFG gramatiku G = (V, T, P, S). Konstruujeme PDA $P = (\{q\}, T, V \cup T, \delta, q, S)$.

- (1) Pro neterminally $A \in V$, $\delta(q, \lambda, A) = \{(q, \beta) | A \to \beta \text{ je pravidlo } G\}$.
- (2) pro každý terminál $a \in T$, $\delta(q, a, a) = \{(q, \lambda)\}.$

Example 7.7

Konvertujme gramatiku:

$$I \rightarrow a|b|Ia|Ib|I0|I1$$

$$E \rightarrow I|E * E|E + E|(E)$$
.

Množina vstupních symbolů PDA je $\Sigma = \{a, b, 0, 1, (,), +, *\}$, $\Gamma = \Sigma \cup \{I, E\}$, přechodová funkce δ :

- $\delta(q, \lambda, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}.$
- $\delta(q, \lambda, E) = \{(q, I), (q, E * E), (q, E + E), (q, (E))\}.$
- $\forall s \in \Sigma$ je $\delta(q,s,s) = \{(q,\lambda)\}$, např. $\delta(q,+,+) = \{(q,\lambda)\}$.

Jinak je δ prázdná.

CFG a PDA

Lemma 7.5 (Přijímání prázdným zásobníkem ze CFG)

Pro PDA P konstruovaný z CFG G algoritmem výše je N(P) = L(G).

- Levá derivace: $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * I \Rightarrow a * b$
- Posloupnost situací:

$$(q, a*b, E) \vdash (q, a*b, E*E) \vdash (q, a*b, I*E) \vdash (q, a*b, a*E) \vdash (q, b, E) \vdash (q, b, E) \vdash (q, b, I) \vdash (q, b, b) \vdash (q, \lambda, \lambda)$$

Pozorování:

- ullet Kroky derivace simuluje PDA λ přepisy zásobníku
- odmazávaný vstup u PDA v derivaci zůstává až do konce
- až PDA vymaže terminály, pokračuje v přepisech.

Automaty a gramatiky Zásobníkové automaty 7

CFG a PDA

$w \in N(P) \Leftarrow w \in L(G)$.

Nechť $w \in L(G)$, w má levou derivaci $S = \gamma_1 \underset{lm}{\Rightarrow} \gamma_2 \underset{lm}{\Rightarrow} \dots \underset{lm}{\Rightarrow} \gamma_n = w$. Indukcí podle i dokážeme $(q, w, S) \underset{P}{\vdash^*} (q, y_i, \alpha_i)$, kde $\gamma_i = x_i \alpha_i$ je levá sentenciální forma a $x_i y_i = w$.

- Pokud γ_i obsahuje pouze terminály, $\gamma_i = w$, hotovo.
- Každá nekoncová sentenciální forma γ_i může být zapsaná $x_i A \alpha_i$, A nejlevější neterminál, x_i řetězec terminálů
- indukční předpoklad nás dovedl do situace $(q, y_i, A\alpha_i)$, $w = x_i y_i$
- Pro $\gamma_i \Rightarrow \gamma_{i+1}$ bylo použilo pravilo $(A \to \beta) \in P$
- PDA nahradí A na zásobníku β , přejde na situaci $(q, y_i, \beta \alpha_i)$.
- odstraňme všechny terminály $\mathbf{v} \in \mathbf{\Sigma}^*$ zleva $\beta \alpha$ porovnáváním se vstupem
 - $y_i = vy_{i+1}$ a zároveň $\beta \alpha = v\alpha_{i+1}$
- přešli jsme do nové situace $(q, y_{i+1}, \alpha_{i+1})$ a iterujeme.

$w \in N(P) \Rightarrow w \in L(G)$.

Dokazujeme: Pokud $(q, x, A) \vdash_{P}^{*} (q, \lambda, \lambda)$, tak

$$A \stackrel{*}{\underset{G}{\Rightarrow}} x$$
.

Indukcí podle počtu kroků P.

- *n* = 1 kroků:
 - $a \in \Sigma$, přechod $\delta(q, a, a) \ni (q, \lambda)$, v derivaci žádný krok.
 - $A \in \Gamma$, přechod $\delta(q, \lambda, A) \ni (q, \lambda)$ pro pravidlo gramatiky $(A \to \lambda) \in G$.
- n > 1 kroků;
 - První krok typu (2) terminály, nerozšiřujeme derivaci.
 - První krok typu (1), A nahrazeno Y₁ Y₂... Y_k z pravidla A → Y₁ Y₂... Y_k.
 Rozdělíme x = x₁x₂...x_k dle obrázku a použijeme indukční hypotézu na každé i = 1,..., k:
 (q, xᵢxᵢ₊₁...x_k, Yᵢ) ⊢* (q, xᵢ₊₁...x_k, λ) a

February 19, 2019

dostaneme $Y_i \Rightarrow^* x_i$.

Od zásobníkového automatu ke gramatice CFG

- Zásobní automat bere jeden symbol ze zásobníku. Stav před a po kroku může být různý.
- Neterminály gramatiky budou složené symboly [pXq],
 PDA vyšel z p, vzal X a přešel do q;
 a zavedeme nový počáteční symbol S.
- Na obrázku $[p_0Y_1p_1], [p_1Y_2p_2], \dots, [p_{k-1}Y_kp_k].$

Lemma 7.6 (Gramatika pro PDA)

Mějme PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$. Pak existuje bezkontextová gramatika G taková, že L(G) = N(P).

Pravidla definujeme:

- $\forall p \in Q: S \rightarrow [q_0 Z_0 p]$, tj. uhodni koncový stav a spusť PDA na $(q_0, w, Z_0) \vdash^* (p, \lambda, \lambda)$.
- Pro všechny dvojice $(r, Y_1 Y_2 \dots Y_k) \in \delta(q, s, X), s \in \Sigma \cup \{\lambda\}, \forall r_1, \dots, r_{k-1} \in Q \text{ vytvoř pravidlo}$ $[qXr_n] \to s[rY_1r_1][r_1Y_2r_2] \dots [r_{k-1}Y_kr_n]$
- spec. pro $(r, \lambda) \in \delta(a, a, A)$ vvtvoř $[aAr] \rightarrow a$

Proof.

Pro $w \in \Sigma^*$ dokazujeme $[qXp] \Rightarrow^* w$ if and only if $(q, w, X) \vdash^* (p, \lambda, \lambda)$ indukcí v obou směrech (počet kroků PDA, počet kroků derivace.)

Example 7.8

Převeďme PDA $P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z)$ na obrázku na gramatiku.

- Neterminály gramatiky budou $V = \{S, [qZq]\}$ nový start a jediná trojice P_N .
- Pravidla:
 - $S \rightarrow [qZq]$.
 - $[qZq] \rightarrow i[qZq][qZq]$.
 - $[qZq] \rightarrow e$

Můžeme nahradit trojici [qZq] symbolem A a dostaneme:

$$S \rightarrow A$$

 $A \rightarrow iAA|e$.

Protože A a S odvozují přesně stejné řetězce, můžeme je ztotožnit: $G = (\{S\}, \{i, e\}, \{S \rightarrow iSS | e\}, S)$.

Proof.

Pro $w \in \Sigma^*$ dokazujeme

$$[\mathit{qXp}] \Rightarrow^* \mathit{w} \ \mathsf{právě} \ \mathsf{když} \ (\mathit{q}, \mathit{w}, \mathit{X}) \vdash^* (\mathit{p}, \lambda, \lambda)$$

indukcí v obou směrech (počet kroků PDA, počet kroků derivace.)

Example 7.9 $(\{0^n1^n; n > 0\})$

δ	Pravidla	
	$S \rightarrow [pZp] [pZq]$	(1)
$\delta(p,0,Z)\ni(p,A)$	[pZp] o 0[pAp]	(2)
	[pZq] o 0[pAq]	(3)
$\delta(p,0,A)\ni(p,AA)$	$[pAp] \rightarrow 0[pAp][pAp]$	(4)
	$[pAp] \rightarrow 0[pAq][qAp]$	(5)
	$[pAq] \rightarrow 0[pAp][pAq]$	(6)
	$[pAq] \rightarrow 0[pAq][qAq]$	(7)
$\delta(p,1,A)\ni(q,\lambda)$	[pAq] o 1	(8)
$\delta(q,1,A) i(q,\lambda)$	[qAq] o 1	(9)

Derivace 0011

$$S \Rightarrow^{(1)} [pZq] \Rightarrow^{(3)} 0[pAq] \Rightarrow^{(7)} 00[pAq][qAq] \Rightarrow^{(8)} 001[qAq] \Rightarrow^{(9)} 0011$$

Shrnutí

- Zásobníkový automat PDA je λ–NFA automat rozšířený o zásobník, potenciálně nekonečnou paměť
 - a zásobníkovou abecedu, počáteční zásobníkový symbol, přechodová funkce čte a píše na zásobník, píše i řetězec
- Přijímání koncovým stavem a prázdným zásobníkem, pro nedeterministiké PDA přijímají stejnou třídu jazyků
- a to bezkontextové jazyky, generované bezkontextovými gramatikami.

Automaty a gramatiky Zásobníkové automaty 7 February 19, 2019 163 / 142 - 163

Chomského normální forma

- Chomského normální forma: všechna pravidla tvaru $A \to BC$ nebo $A \to a$, A, B, C jsou neterminály, a terminál
- Každý bezkontextový jazyk (kromě slova λ) je generovaný gramatikou v Chomského normálním tvaru

Postupně provedeme zjednodušení gramatiky, nejdřív:

- Eliminace zbytečných symbolů
- eliminace λ -pravidel $A \rightarrow \lambda$; $A \in V$
- eliminace jednotkových pravidel $A \rightarrow B$ pro $A, B \in V$.

Eliminace zbytečných symbolů

Definition 8.1 (zbytečný, užitečný, generující, dosažitelný symbol)

- Symbol X je **užitečný** v gramatice G = (V, T, P, S) pokud existuje derivace tvaru $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ kde $w \in T^*, X \in (V \cup T), \alpha, \beta \in (V \cup T)^*$.
- Pokud X není užitečný, říkáme, že je zbytečný.
- X je **generující** pokud $X \Rightarrow^* w$ pro nějaké slovo $w \in T^*$. Vždy $w \Rightarrow^* w$ v nula krocích.
- X je dosažitelný pokud $S \Rightarrow^* \alpha X \beta$ pro nějaká $\alpha, \beta \in (V \cup T)^*$.

Chceme eliminovat ne-generující a ne-dosažitelné symboly.

Example 8.1

11 - * * *	Eliminujeme <i>B</i>	Г!: . · · · · ·
Uvažujme gramatiku:	(ne–generující):	Eliminujeme A
S o AB a	<u>`</u>	(nedosažitelný)
$A \rightarrow b$	S o a	$S \rightarrow a$.
,, , <u>,</u>	$A \rightarrow b$.	<i>5</i> / u .

Lemma 8.1 (Eliminace zbytečných symbolů)

Nechť G = (V, T, P, S) je CFG, předpokládejme $L(G) \neq \emptyset$. Zkonstruujeme $G_1 = (V_1, T_1, P_1, S)$ následovně:

- Eliminujeme ne–generující symboly a pravidla je obsahující
- poté eliminujeme všechny nedosažitelné symboly

Pak G_1 nemá zbytečné symboly a $L(G_1) = L(G)$.

Algorthm: Generující symboly

Základ Každý $a \in T$ je generující. Indukce Pro každé pravidlo $A \to \alpha$, kde každý symbol v α je generující. Pak i A je generující. (Včetně $A \to \lambda$).

Algorthm: Dosažitelné symboly

Základ *S* je dosažitelný. Indukce Je–li *A* dosažitelný, pro

Indukce Je-li A dosažitelný, pro všechna pravidla $A \to \alpha$ jsou všechny symboly v α dosažitelné.

Lemma 8.2 (generující/dosažitelné symboly)

Výše uvedené algoritmy najdou právě všechny generující / dosažitelné symboly.

Eliminace λ pravidel

Definition 8.2 (nulovatelný neterminál)

Neterminál A je **nulovatelný** pokud $A \Rightarrow^* \lambda$.

Pro nulovatelné neterminály na pravé straně pravidla $B \to CAD$, vytvoříme dvě verze pravidla – s a bez nulovatelného neterminálu.

Algorthm: Nalezení nulovatelných symbolů v G

Základ Pokud $A \rightarrow \lambda$ je pravidlo G, pak A je nulovatelné.

Indukce Pokud $B \to C_1 \dots C_k$, kde jsou všechna C_i nulovatelná, je i B nulovatelné (terminály nejsou nulovatelné nikdy).

Algorthm: Konstrukce gramatiky bez λ -pravidel z G

- Najdi nulovatelné symboly
- Pro každé pravidlo $A \to X_1 \dots X_k \in P, k \ge 1$, nechť m z X_i je nulovatelných. Nová gramatika G_1 bude mít 2^m verzí tohoto pravidla s/bez každého nulovatelného symbolu kromě λ v případě m = k.

Příklad eliminace λ -pravidel

Example 8.2

Mějme gramatiku:

 $S \rightarrow AB$

 $J \rightarrow AD$

 $A \rightarrow aAA|\lambda$

 $B \rightarrow bBB|\lambda$

 $S \rightarrow AB|A|B$

 $A \rightarrow aAA|aA|aA|a$

 $B \rightarrow bBB|bB|bB|b$

Výsledná gramatika:

 $S \rightarrow AB|A|B$

 $A \rightarrow aAA|aA|a$

Eliminace jednotkových pravidel

Definition 8.3 (jednotkové pravidlo)

Jednotkové pravidlo je $A \rightarrow B \in P$ kde A, B jsou oba neterminály.

Example 8.3

$$I o a|b|Ia|Ib|I0|I1$$
 Expanze $T v E o T$ Expanze $E o I$
 $F o I|(E)$ Expanze $E o F$
 $E o F|T *F$ Expanze $E o F$
 $E o T|E + T$ Expanze $E o F$

Dohromady: $E \rightarrow a|b|Ia|Ib|I0|I1|(E)|T * F|E + T$.

Musíme se vyhnout možným cyklům.

Definition 8.4 (jednotkový pár)

Dvojici $A, B \in V$ takovou, že $A \Rightarrow^* B$ pouze jednotkovými pravidly nazýváme **jednotkový pár** (jednotková dvojice).

Algorthm: Nalezení jednotkových párů

Základ (A, A) pro každý $A \in V$ je jednotkový pár.

Indukce Je-li (A, B) jednotkový pár a $(B \to C) \in P$, pak (A, C) je jednotkový pár.

Example 8.4 (Jednotkové páry z předcho<u>zí gramatiky)</u>

(E,E),(T,T),(F,F),(I,I),(E,T),(E,F),(E,I),(T,F),(T,I),(F,I).

Algorthm: Eliminace jednotkových pravidel z G

- najdi všechny jednotkové páry v G
- pro každý jednotkový pár (A, B) dáme do nové gramatiky všechna pravidla $A \to \alpha$ kde $B \to \alpha \in P$ a $B \to \alpha$ není jednotkové pravidlo.

Example 8.5

$$I \rightarrow a|b|Ia|Ib|I0|I1$$

 $F \rightarrow I|(E)$
 $T \rightarrow F|T * F$

$$F \rightarrow I|(E)$$

 $T \rightarrow F|T * F$
 $E \rightarrow T|E + T$

$$F \rightarrow (E)|a|b|Ia|Ib|I0|I1$$

 $T \rightarrow T * F|(E)|a|b|Ia|Ib|I0|I1$

$$E \rightarrow E + T|T * F|(E)|a|b|Ia|Ib|I0|I1$$

Gramatiky v normálním tvaru

Lemma 8.3 (Gramatika v normálním tvaru)

Mějme bezkontextovou gramatiku G, $L(G)-\{\lambda\}\neq\emptyset$. pak existuje CFG G_1 taková že $L(G_1)=L(G)-\{\lambda\}$ a G_1 neobsahuje λ -pravidla, jednotková pravidla ani zbytečné symboly.

Proof.

Proof outline:

- Začneme eliminací λ -pravidel.
- Eliminujeme jednotková pravidla. Tím nepřidáme λ -pravidla.
- Eliminujeme zbytečné symboly. Tím nepřidáme žádná pravidla.

Definition 8.5 (Chomského normální tvar)

O bezkontextové gramatice G = (V, T, P, S) bez zbytečných symbolů kde jsou všechna pravidla v jednom ze dvou tvarů

- $A \rightarrow BC$, $A, B, C \in V$,
- ullet A o a, $A \in V$, $a \in T$,

říkáme, že je v Chomského normálním tvaru (ChNF).

Potřebujeme dva další kroky:

- pravé strany délky 2 a více předělat na samé neterminály
- rozdělit pravé strany délky 3 a více neterminálů

Algorthm: neterminaly

- Pro každý terminál a vytvoříme nový neterminál, řekněme A.
- přidáme pravidlo $A \rightarrow a$,
- použijeme A místo a na pravé straně pravidel délky 2 a více

Algorthm: rozdělení pravidel

- Pro pravidlo $A \rightarrow B_1 \dots B_k$ zavedeme k-2 neterminálů C_i
- Přidáme pravidla $A \rightarrow B_1 C_1, C_1 \rightarrow B_2 C_2, \ldots, C_{k-2} \rightarrow B_{k-1} B_k.$

Theorem 8.1 (IChNF)

Mějme bezkontextovou gramatiku G, $L(G) - \{\lambda\} \neq \emptyset$. Pak existuje CFG G_1 v Chomského normálním tvaru taková, že $L(G_1) = L(G) - \{\lambda\}$.

Example 8.6

```
I \rightarrow a|b|IA|IB|IZ|IU
F \rightarrow LER|a|b|IA|IB|IZ|IU
T \rightarrow TMF|LER|a|b|IA|IB|IZ|IU
                                                               F \rightarrow LC_3|a|b|Ia|IB|IZ|IU
E \rightarrow EPT|TMF|LER|a|b|IA|IB|IZ|IU
                                                               T \rightarrow TC_2|LC_3|a|b|IA|IB|IZ|IU
A \rightarrow a
                                                               E \rightarrow EC_1|TC_2|LC_3|a|b|IA|IB|IZ|IU
B \rightarrow b
                                                               C_1 \rightarrow PT
Z \rightarrow 0
                                                               C_2 \rightarrow MF
U \rightarrow 1
                                                               C_3 \rightarrow ER
P \rightarrow +
                                                               I, A, B, Z, U, P, M, L, R jako vlevo
M \rightarrow *
L \rightarrow (
R \rightarrow)
```

Příprava na (pumping) lemma o vkládání

Lemma (Velikost derivačního stromu gramatiky v CNF)

Mějme derivační strom podle gramatiky G=(V,T,P,S) v Chomského normálním tvaru, který dává slovo w. Je–li délka nejdelší cesty n, pak $|w| \leq 2^{n-1}$

Proof.

Indukcí podle n,

Základ
$$|a|=1=2^0$$

idukce
$$2^{n-2} + 2^{n-2} = 2^{n-1}$$
.

Lemma (Důsledek)

Mějme derivační strom podle gramatiky G = (V, T, P, S) v Chomského normální formě, který dává slovo w, $|w| > p = 2^{n-1}$. Pak ve stromě existuje cesta delší než n.

Lemma o vkládání (pumping) pro bezkontextové jazyky

Theorem 8.2 (HLemma o vkládání (pumping) probezkontextové jazyky)

Mějme bezkontextový jazyk L. Pak existují dvě přirozená čísla p, q taková že každé $z \in L, |z| > p$ lze rozložit na z = uvwxy kde:

- $|vwx| \leq q$
- $vx \neq \lambda$
- $\forall i > 0$, $uv^i wx^i y \in L$.

ldea důkazu:

- vezmeme derivační strom pro z
- najdeme nejdelší cestu
- na ní dva stejné neterminály
- tyto neterminály určí dva podstromy

- podstromy definují rozklad slova
- nyní můžeme větší podstrom posunout (i > 1)
- nebo nahradit menším podstromem (i = 0)

Proof: |z| > p: z = uvwxy, $|vwx| \le q$, $vx \ne \lambda$, $\forall i \ge 0uv^i wx^i y \in L$

- vezmeme gramatiku v Chomského NF (pro $L = \{\lambda\}$ a \emptyset dk jinak).
- Nechť |V| = n. Položíme $p = 2^{n-1}, q = 2^n$.
- Pro $z \in L, |z| > p$, má v derivačním stromu z cestu délky > n
- vezmeme nejdelší cestu; terminál kam vede označíme t
- ullet Aspoň dva z posledních (n+1) neterminálů na cestě do t jsou stejné
- vezmeme dvojici A^1, A^2 nejblíže k t (určuje podstromy T^1, T^2)
- ullet cesta z A^1 do t je nejdelší v podstromu \mathcal{T}^1 a má délku maximálně (n+1)

tedy slovo dané stromem T^1 není delší než 2^n (tedy $|\mathit{vwx}| \leq q$)

- z A^1 vedou dvě cesty (ChNF), jedna do T^2 druhá do zbytku vxChNF je nevypouštějící, tedy $vx \neq \lambda$
- derivace slova $(A^1 \Rightarrow^* vA^2x, A^2 \Rightarrow^* w)$ $S \Rightarrow^* uA^1y \Rightarrow^* uvA^2xy \Rightarrow^* uvwxy$
- posuneme–li A^2 do A^1 • posuneme–li A^1 do A^2 (i=2,3,...) • $S\Rightarrow^*uA^1y\Rightarrow^*uvA^1xy\Rightarrow^*$ • $uvVA^2xxy\Rightarrow^*uvvwxxy$.

Použití lemma o vkládání

Example 8.7 (ne–bezkontextový jazyk)

Následující jazyk není bezkontextový

- $\{0^n 1^n 2^n | n \ge 1\}$
- důkaz sporem: předpokládejme bezkontextovost
- z lemmatu o vkládání máme p, q
- zvolme k = max(p, q), potom $|0^k 1^k 2^k| > p$
- pumpovací slovo není delší než q
- tj. vždy lze pumpovat maximálně dva různé symboly
- poruší se rovnost počtu symbolů SPOR

Example 8.8 (ne-bezkontextový jazyk)

Následující jazyk není bezkontextový

- $\{0^i 1^j 2^k | 0 \le i \le j \le k\}$
- důkaz sporem: předpokládejme bezkontextovost
- z lemmatu o vkládání máme p, q
- zvolme n = max(p, q), potom $|0^n 1^n 2^n| > p$
- pumpovací slovo není delší než q
- tj. vždy lze pumpovat maximálně dva různé symboly
- pokud a (nebo b), pumpujeme nahoru – SPOR $i \le j$ (nebo $j \le k$)
- pokud c (nebo b), pumpujeme dolů SPOR $j \le k$ (nebo $i \le j$)

Použití lemma o vkládání

Example 8.9 (ne-bezkontextový jazyk)

Následující jazyk není bezkontextový

- $\{0^i 1^j 2^i 3^j | i, j \ge 1\}$
- důkaz sporem: předpokládejme bezkontextovost
- z lemmatu o vkládání máme p, q
- zvolme k = max(p, q), potom $|0^k 1^k 2^k 3^k| > p$
- pumpovací slovo není delší než q
- tj. vždy lze pumpovat maximálně dva různé sousední symboly
- poruší se rovnost počtu symbolů 0
 a 2 nebo 1 a 3 SPOR

Example 8.10 (ne-bezkontextový jazyk)

Následující jazyk není bezkontextový

- $\{ww|w \in \{0,1\}^*\}$
- důkaz sporem: předpokládejme bezkontextovost
- z lemmatu o vkládání máme p, q
- zvolme n = max(p, q), potom $|0^n 1^n 0^n 1^n| > p$
- pumpovací slovo není delší než q
- tj. vždy lze pumpovat maximálně dva různé sousední symboly
- poruší se buď rovnost nul či jedniček.

Nekončnost bezkontextových jazyků

Lemma

Pro každý CFL L existují přirozená čísla m, n taková, že L je nekonečný právě když $\exists z \in L : m < |z| < n$.

Proof:

z lemmatu o vkládání máme p, q, položme m = p, n = p + q

- $\Leftarrow p < |z|$, tedy z lze pumpovat \Rightarrow jazyk je nekonečný
- \Rightarrow jazyk je nekonečný $\Rightarrow \exists z \in L : p = m < |z|$. vezmeme nejkratší takové z a potom $|z| \le n = p + q$
- sporem nechť p + q < |z|, lze pumpovat i dolů, tj. |z| < |z|odstraňujeme část o max. velikosti q, tedy p < |z| spor.

Rychlejší algoritmus:

vezmeme <u>redukovanou</u> gramatiku G v ChNF tž. L = L(G)uděláme orientovaný graf

- vrcholy = neterminally, hrany = $\{(A, B), (A, C) pro(A \rightarrow BC) \in P_G\}$
- hledáme orientovaný cyklus (existuje ⇒ jazyk je nekonečný)

Kdy lemma o vkládání nezabere

• Lemma o vkládání je pouze implikace!

Example 8.11 (pumpovatelný, ne-bezkontextový jazyk)

$$L = \{a^i b^j c^k d^l | i = 0 \lor j = k = l\}$$
 není bezkontextový jazyk, přesto lze pumpovat.

- i = 0: $b^j c^k d^l$ | ze pumpovat v libovolném písmenu i > 0: $a^i b^n c^n d^n$ | ze pumpovat v části obsahující a | Co s tím?
 - zobecnění pumping lemmatu (Ogdenovo lemma)
 - pumpování vyznačených symbolů
 - uzávěrové vlastnosti

Greibachové normální forma

- při analýze zhora (tvorbě levé derivace daného slova w) potřebujeme vědět, které pravidlo vybrat
- speciálně vadí pravidla tvaru $A \rightarrow A\alpha$ (levá rekurze)

Definition 8.6 (Greibachové normální forma CFG)

Říkáme, že gramatika je v **Greibachové normální formě**, jestliže všechna pravidla mají tvar $A \to a\beta$, kde $a \in T$, $\beta \in V^*$ (řetězec neterminálů).

- srovnání terminálu na pravé straně pravidel a čteného symbolu určí, které pravidlo použít
- pokud je ovšem takové pravidlo jediné.

Theorem 8.3 (Greibachové normální forma)

Ke každému bezkontextovému jazyku L existuje bezkontextová gramatika G v Greibachové normální formě taková, že $L(G) = L - \{\lambda\}$.

Spojení pravidel a odstranění levé rekurze

Lemma (spojení pravidel)

Nechť $A \to \alpha B\beta$ je pravidlo gramatiky G a $B \to \omega_1, \ldots, B \to \omega_k$ jsou všechna pravidla pro B. Potom nahrazením pravidla $A \to \alpha B\beta$ pravidly $A \to \alpha \omega_1 \beta, \ldots, A \to \alpha \omega_k \beta$ dostaneme ekvivalentní gramatiku.

Proof:

$$A\Rightarrow \alpha B\beta \Rightarrow^* \alpha^{|}B\beta \Rightarrow \alpha^{|}\omega_i\beta$$
 v původní gramatice $A\Rightarrow \alpha \omega_i\beta \Rightarrow^* \alpha^{|}\omega_i\beta$ v nové gramatice

- Spojením pravidel se zbavíme některých neterminálů na začátku těla pravidla (tj. při $\alpha=\lambda$).
- Na začátku ω_i ale může být také neterminál.

Odstranění levé rekurze

Lemma (odstranění levé rekurze)

Nechť $A \to A\omega_1, \ldots, A \to A\omega_k$ jsou všechna levě rekurzivní pravidla gramatiky G pro A a $A \to \alpha_1, \ldots, A \to \alpha_m$ všechna ostatní pravidla pro A, Z je nový neterminál. Potom nahrazení těchto pravidel pravidly:

- 1. $A \rightarrow \alpha_i, A \rightarrow \alpha_i Z, Z \rightarrow \omega_j, Z \rightarrow \omega_j Z$, nebo
- 2. $A \rightarrow \alpha_i Z, Z \rightarrow \omega_j Z, Z \rightarrow \lambda$

dostaneme ekvivalentní gramatiku.

Proof:

$$A \Rightarrow A\omega_{i_n} \Rightarrow \ldots \Rightarrow A\omega_{i_1} \ldots \omega_{i_n} \Rightarrow \alpha_j \omega_{i_1} \ldots \omega_{i_n}$$
 (G)

$$A \Rightarrow \alpha_j Z \Rightarrow \alpha_j \omega_{i_1} Z \dots \Rightarrow \alpha_j \omega_{i_1} \dots \omega_{i_{n-1}} Z \Rightarrow \alpha_j \omega_{i_1} \dots \omega_{i_n}$$
 (1)

$$A \Rightarrow \alpha_j Z \Rightarrow \alpha_j \omega_{i_1} Z \dots \Rightarrow \alpha_j \omega_{i_1} \dots \omega_{i_n} Z \Rightarrow \alpha_j \omega_{i_1} \dots \omega_{i_n}$$
 (2)

Theorem (8.3 Greibachové normální forma)

Ke každému bezkontextovému jazyku L existuje bezkontextová gramatika G v Greibachové normální formě taková, že $L(G) = L - \{\lambda\}$.

Proof: Greibachové normální forma

vezmeme gramatiku pro L v normálním tvaru (bez λ -pravidel)

- neterminály libovolně očíslujeme $\{A_1, \ldots, A_n\}$
- povolíme rekurzivní pravidla pouze tvaru $A_i \rightarrow A_i \omega$, kde i < jpostupnou iterací od 1 do n

$$A_i \rightarrow A_j \omega$$
 pro $j < i$ odstraníme spojováním pravidel pro $j = i$ odstraníme levou rekurzi

získáme pravidla tvaru $A_i \to A_i \omega$ (i < j), $A_i \to a \omega$ $(a \in T)$, $Z_i \to \omega$

- pravidla s A_i (původní neterminály) pouze tvaru $A_i \rightarrow a\omega$ postupným spojováním pravidel od n do 1 (pro n již platí)
- pravidla s Z_i (nové neterminály) pouze tvaru $Z_i \rightarrow a\omega$
 - žádné pravidlo pro Z_i nezačíná vpravo Z_i
 - buď je v požadovaném tvaru nebo se spojí s pravidlem $A_i \to a\omega$
- odstranění terminálů uvnitř pravidel

Příklad převodu na Greibachové NF

Původní gramatika

$$E \rightarrow E + T|T$$

 $T \rightarrow T * F|F$
 $F \rightarrow (E)|a$

Odstranění levé rekurze

$$E \rightarrow T|TE^{\dagger}$$

 $E^{\dagger} \rightarrow +T|+TE^{\dagger}$
 $T \rightarrow F|FT^{\dagger}$
 $T^{\dagger} \rightarrow *F|*FT^{\dagger}$
 $F \rightarrow (E)|a$

(téměř) Greibachové normální forma

$$E \to (E)|a|(E)T^{||}|aT^{||}|(E)E^{||}|aE^{||}|(E)T^{||}E^{||}|aT^{||}E^{||}$$

$$E^{||} \to +T|+TE^{||}$$

$$T \to (E)|a|(E)T^{||}|aT^{||}$$

$$T^{||} \to *F|*FT^{||}$$

$$F \to (E)|a$$
Greibachové nori
$$E \to (EP|a|(EP)^{||}E^{||})$$

Greibachové normální forma

Greibachove normalin forma
$$E \to (EP|a|(EPT^{\dagger}|aT^{\dagger}|(EPE^{\dagger}|aE^{\dagger}|(EPT^{\dagger}E^{\dagger}|aT^{\dagger}E^{\dagger})) + T| + TE^{\dagger}$$

$$T \to (EP|a|(EPT^{\dagger}|aT^{\dagger})$$

$$T^{\dagger} \to *F| * FT^{\dagger}$$

$$F \to (EP|a)$$

$$P \to)$$

Shrnutí

- Chomského normální forma: pravidla $A \rightarrow BC$ a $A \rightarrow a$.
- Iterační (pumping) lemma pro bezkontextové jazyky: $(\exists p, q \in \mathbb{N}) |z| > p : z = uvwxy, |vwx| \le q, vx \ne \lambda, \forall i \ge 0uv^i wx^i y \in L$
- Greibachové normální forma: $A \rightarrow a\beta$, $a \in T$, $\beta \in V^*$.

Cocke-Younger-Kasami algorithm náležení slova do CFL

Exponenciálně k |w|: vyzkoušet všechny derivační stromy dostatečné délky pro L.

Algorithm: ICYK algoritmus, v čase $O(n^3)$

- Mějme gramatiku v ChNF G = (V, T, P, S) pro jazyk L a slovo $w = a_1 a_2 \dots a_n \in T^*$.
- Vytvořme trohúhelníkovou tabulku (vpravo),
 - horizontální osa je w
 - X_{ij} jsou množiny neterminálů A takových, že A ⇒* a_i a_{i+1} . . . a_j.

Základ:
$$X_{ii} = \{A; A \rightarrow a_i \in P\}$$

Indukce: $X_{ij} = \{A \rightarrow BC; B \in X_{ik}, C \in X_{k+1,i}\}$

- Vyplňujeme tabulku zdola nahoru.
- Pokud $S \in X_{1,n}$, potom $w \in L(G)$.

Example 9.1 (CYK algoritmus)

Gramatika

$$S \rightarrow AB|BC$$

$$A \rightarrow BA|a$$

$$B \rightarrow CC|b$$

$$C \rightarrow AB|a$$

Tabulku vyplňujeme odspodu:

$$\begin{cases}
 S, A, C \\
 - & \{S, A, C \} \\
 - & \{B\} & \{B\} \\
 \{S, A\} & \{B\} & \{S, C\} & \{S, A\} \\
 \{B\} & \{A, C\} & \{A, C\} & \{B\} & \{A, C \} \\
 b & a & a & b & a
 \end{cases}$$

Substituce a homomorfismus

Opakování definice:

Definition ((5.1,5.2) substituce, homomorfismus, inverzní homomorfismus)

Mějme jazyk L nad abecedou Σ .

Substituce σ ; $\forall a \in \Sigma : \sigma(a) = L_a$ jazyk abecedy Σ_a , tj. $\sigma(a) \subseteq \Sigma_a^*$ převádí slova na jazyky:

- $\sigma(\lambda) = \{\lambda\},$
- $\sigma(a_1 \dots a_n) = \sigma(a_1) \dots \sigma(a_n)$ (konkatenace), tj. $\sigma : \Sigma^* \to P((\bigcup_{a \in \Sigma} \Sigma_a)^*)$
- $\sigma(L) = \bigcup_{w \in L} \sigma(w)$.

homomorfismus h, $\forall a \in \Sigma : h(a) \in \Sigma_a^*$ převádí slova na slova

- $h(\lambda) = \{\lambda\},$
- $h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$ (konkatenace) tj. $h : \Sigma^* \to (\bigcup_{a \in \Sigma} \Sigma_a)^*$
- $h(L) = \{h(w) | w \in L\}.$

Inverzní homomorfismus převádí slova zpět

• $h^{-1}(L) = \{ w | h(w) \in L \}.$

Uzávěrové vlastnosti bezkontextových jazyků

Theorem 9.1 (CFL jsou uzavřené na substituci)

Mějme CFL jazyk L nad Σ a substituci σ na Σ takovou, že $\sigma(a)$ je CFL pro každé $a \in \Sigma$. Pak je $i \sigma(L) CFL (bezkontextový).$

Proof:

- Idea: listy v derivačním stromu generují další stromy.
- Přejmenujeme neterminály na jednoznačné všude v $G = (V, \Sigma, P, S)$, $G_a = (V_a, T_a, P_a, S_a), a \in \Sigma.$
- Vytvoříme novou gramatiku G = (V', T', P', S) pro $\sigma(L)$:
 - $V' = V \cup \bigcup_{a \in \Sigma} V_a$
 - $T' = \bigcup_{a \in \Sigma} T_a$
 - $P' = \bigcup_{a \in \Sigma} P_a \cup \{p \in P \text{ kde všechna } a \in \Sigma \text{ nahradíme } S_a\}.$

G' generuje jazyk $\sigma(L)$.

February 19, 2019

Substituce bezkontextových jazyků

Example 9.2 (substituce)

$$\begin{array}{ll} L = \{a^ib^j|0 \leq i \leq j\} & S \rightarrow aSb|Sb|\lambda \\ \sigma(a) = L_1 = \{c^id^i|i \geq 0\} & S_1 \rightarrow cS_1d|\lambda \\ \sigma(b) = L_2 = \{c^i|i \geq 0\} & S_2 \rightarrow cS_2|\lambda \\ \sigma(L): & S \rightarrow S_1SS_2|SS_2|\lambda, \ S_1 \rightarrow cS_1d|\lambda, \ S_2 \rightarrow cS_2|\lambda \end{array}$$

Theorem 9.2 (homomorfismus)

Bezkontextové jazyky jsou uzavřeny na homomorfismus.

Proof:

- Přímý důsledek předchozí věty.
- Terminál a v derivačním stromě nahradím slovem h(a).

CFL jsou uzavřené na inverzní homomorfismus

Theorem 9.3 (CFL jsou uzavřené na inverzní homomorfismus)

Mějme CFL jazyk L a homomorfismus h. Pak $h^{-1}(L)$ je bezkontextový jazyk. Je–li L deterministický CFL, je i $h^{-1}(L)$ deterministický CFL.

Idea

- přečteme písmeno a a do vnitřního bufferu dáme h(a)
- simulujeme výpočet M, kdy vstup bereme z bufferu
- po vyprázdnění bufferu načteme další písmeno ze vstupu
- slovo je přijato, když je buffer prázdný a M je v koncovém stavu
- ! buffer je konečný, můžeme ho tedy modelovat ve stavu

Proof:

- pro L máme PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ (koncovým stavem)
- $h: \Xi \to \Sigma^*$
- definujeme PDA $M' = (Q', \Xi, \Gamma, \delta', [q_0, \lambda], Z_0, F \times \{\lambda\})$ kde

$$\begin{array}{ll} Q' = \{[q,u] \,|\, q \in Q, u \in \Sigma^*, \exists (a \in \Xi) \exists (v \in \Sigma^*) h(a) = vu\} & u \text{ je buffer} \\ \delta'([q,u],\lambda,Z) &= \{([p,u],\gamma) | (p,\gamma) \in \delta(q,\lambda,Z)\} \\ & \cup \{([p,v],\gamma) | (p,\gamma) \in \delta(q,b,Z), u = bv\} & \text{ čte buffer} \\ \end{array}$$

$$\delta'([q,\lambda],a,Z) = \{([q,h(a)],Z)\}$$
 cte buffer naplňuje buffer

Pro deterministický PDA *M* je i *M'* deterministický.

Další uzávěrové vlastnosti

Theorem 9.4 (CFL uzavřené na sjednocení, konkatenaci, uzávěr, reverzi)

CFL jsou uzavřené na sjednocení, konkatenaci, uzávěr (*), positivní uzávěr (+), homomorfismus, zrcadlový obraz w^R .

Proof:

- Sjednocení:
 - pokud $V_1 \cap V_2 \neq \emptyset$ přejmenujeme neterminály,
 - ullet přidáme nový symbol $S_{\it new}$ a pravidlo $S_{\it new} o S_1 | S_2$
- zřetězení L₁.L₂

$$S_{new} o S_1 S_2$$
 (pro $V_1 \cup V_2 = \emptyset$, jinak přejmenujeme)

• iterace $L^* = \bigcup_{i \geq 0} L^i$

$$S_{new} o SS_{new} | \lambda$$

• pozitivní iterace $L^+ = \bigcup_{i>1} L^i$

$$S_{new} o SS_{new} | S$$

• zrcadlový obraz $L^R = \{ w^R | w \in L \}$

 $X \to \omega^R$ obrátíme pravou stranu pravidel.

Kvocienty s regulárním jazykem

Lemma

Bezkontextové jazyky jsou uzavřené na levý (pravý) kvocient s regulárním jazykem.

$$R \setminus L = \{ w | \exists u \in R \ uw \in L \},$$

 $L/R = \{ u | \exists w \in R \ uw \in L \}$

- ldea:
 - PDA běží paralelně s FA, nečtou vstup
 - je-li FA v koncovém stavu, můžeme začít číst vstup

Proof:

- FA $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
- PDA $M_2 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$
- definujeme PDA $M = (Q', \Sigma, \Gamma, \delta, (q_1, q_2), Z_0, F_2)$ kde $Q' = (Q_1 \times Q_2) \cup Q_2$ dvojice stavů pro paralelní běh $\delta((p,q),\lambda,Z) = \{((p',q'),\gamma)|\exists (a \in \Sigma)p' \in \delta_1(p,a)\&(q',\gamma) \in \delta_2(q,a,Z)\}$

$$\cup \{((p,q'),\gamma)|(q',\gamma) \in \delta_2(q,\lambda,Z)\}$$

$$\cup \{(q,Z)|p \in F_1\}$$

$$= \delta_2(q,a,Z), a \in \Sigma \cup \{\lambda\}, q \in Q_2, Z \in \Gamma$$

- zřejmě $L(M) = L(A_1) \setminus L(M_2)$.
- Pravý kvocient z levého a uzavřenosti na reverzi $L/M = (M^R \setminus L^R)^R$

Průnik bezkontextových jazyků

Example 9.3 (CFL nejsou uzavřené na průnik)

```
• Jazyk L = \{0^n 1^n 2^n | n \ge 1\} = \{0^n 1^n 2^i | n, i \ge 1\} \cap \{0^i 1^n 2^n | n, i \ge 1\}
```

není CFL, i když oba členy průniku jsou bezkontextové, dokonce deterministické bezkontextové. $\begin{cases} 0^n 1^n 2^i | n, i \geq 1 \} & \{S \rightarrow AC, A \rightarrow 0A1 | 01, C \rightarrow 2C | 2 \} \\ \{0^i 1^n 2^n | n, i \geq 1 \} & \{S \rightarrow AB, A \rightarrow 0A | 0, B \rightarrow 1B2 | 12 \} \end{cases}$

průnik není CFL z pumping lemmatu

paralelní běh dvou zásobníkových automatů

- řídící jednotky umíme spojit (viz konečné automaty)
- čtení umíme spojit (jeden automat může čekat)
- bohužel dva zásobníky nelze obecně spojit do jednoho

```
dva neomezené zásobníky = Turingův stroj = rekurzivně spočetné jazyky \mathcal{L}_0
```

Průnik bezkontextového a regulárního jazyka

Theorem 9.5 (CFL i DCFL jsou uzavřené na průnik s regulárním jazykem)

- Mějme L bezkontextový jazyk a F regulární jazyk. Pak $L \cap R$ je bezkontextový jazyk.
- Mějme L deterministický CFL a F regulární jazyk. Pak $L \cap R$ je deterministický CFL.

Proof:

- zásobníkový a konečný automat můžeme spojit
 - FA $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
 - PDA přijímání stavem $M_1 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$
- nový automat $M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), Z_0, F_1 \times F_2)$
 - $((r,s),\alpha) \in \delta((p,q),a,Z)$ právě když $a \neq \lambda$: $r = \delta_1(p, a) \& (s, \alpha) \in \delta_2(q, a, Z)$ $a = \lambda$: $(s, \alpha) \in \delta_2(q, \lambda, Z)$ r = p

... automaty čtou vstup PDA mění zásobník FA stojí

- zřejmě $L(M) = L(A_1) \cap L(M_2)$
 - paralelní běh automatů.

Použití uzavřenosti průniku CFL a RL

Example 9.4

Jazyk $L = \{0^i 1^j 2^k 3^l | i = 0 \lor j = k = l\}$ není bezkontextový.

Proof: Důkaz sporem:

- Nechť *L* je bezkontextový jazyk
- $L_1 = \{01^j 2^k 3^l | i, j, k \geq 0\}$ je regulární jazyk
 - $\{S \rightarrow 0B, B \rightarrow 1B | C, C \rightarrow 2C | D, D \rightarrow 3D | \lambda\}$
- $L \cap L_1 = \{01^i 2^i 3^i | i \geq 0\}$ není bezkontextový \Rightarrow SPOR

L je kontextový jazyk

$$S
ightarrow B_1 | 0A$$

 $B_1
ightarrow 1B_1 | C_1$, $C_1
ightarrow 2C_1 | D_1$, $D_1
ightarrow 3D_1 | \lambda$
 $A
ightarrow 0A | P$
 $P
ightarrow 1PCD | \lambda$
 $DC
ightarrow CD$ přepíšeme $\{DC
ightarrow XC, XC
ightarrow XY, XY
ightarrow CY, CY
ightarrow CD\}$
 $1C
ightarrow 12$, $2C
ightarrow 22$, $2D
ightarrow 23$, $3D
ightarrow 33$

Rozdíl a doplněk

Theorem 9.6 (Rozdíl s regulárním jazykem)

Mějme bezkontextový jazyk L a regulární jazyk R. Pak:

• *L* − *R* je *CFL*.

Proof.

 $L - R = L \cap \overline{R}$, \overline{R} je regulární.

Theorem 9.7 (CFL nejsou uzavřené na doplněk ani rozdíl)

Třída bezkontextových jazyků není uzavřená na doplněk ani na rozdíl.

CFL nejsou uzavřené na doplněk ani rozdíl.

Mějme bezkontextové jazyky L, L_1, L_2 , regulární jazyk R. Pak:

- \overline{L} nemusí být CFL. $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.
- $L_1 L_2$ nemusí být CFL. $\Sigma^* L$ není vždy CFL.

Uzávěrové vlastnosti deterministických CFL

- Rozumné programovací jazyky jsou deterministické CFL.
- Deterministické bezkontextové jazyky
 - nejsou uzavřené na průnik
 - jsou uzavřené na průnik s regulárním jazykem
 - jsou uzavřené na inverzní homomorfismus.

Lemma

Doplněk deterministického CFL je opět deterministický CFL.

Proof:

- idea: prohodíme koncové a nekoncové stavy
- nedefinované kroky ošetříme 'podložkou' na zásobníku
- cyklus odhalíme pomocí čítače
- až po přečtení slova prochází koncové a nekoncové stavy stačí si pamatovat, zda prošel koncovým stavem.

Ne-uzavřenost deterministických CFL

Example 9.5 (DCFL nejsou uzavřené na sjednocení)

Jazyk $L = \{a^i b^j c^k | i \neq i \lor j \neq k \lor i \neq k\}$ je CFL, ale není DCFL.

Proof.

Vzhledem k uzavřenosti DCFL na doplněk by byl DCFL i $\overline{L} \cap a^*b^*c^* = \{a^ib^jc^k|i=j=k\}, \text{ o kterém víme, že není CFL (pumping)}$ lemma)

Example 9.6 (DCFL nejsou uzavřené na homomorfismus)

Jazyky $L_1 = \{a^i b^j c^k | i = j\}, L_2 = \{a^i b^j c^k | j = k\}$ jsou deterministické bezkontextové.

- Jazyk $0L_1 \cup 1L_2$ je deterministický bezkontextový
- Jazyk $1L_1 \cup 1L_2$ není deterministický bezkontextový položme h(0) = 1h(x) = x pro ostatní symboly
- $h(0L_1 \cup 1L_2) = 1L_1 \cup 1L_2$.

201 / 187 - 205

Uzávěrové vlastnosti v kostce

jazyk	regulární (RL)	bezkontextové	deterministické CFL
sjednocení	ANO	ANO	NE
průnik	ANO	NE	NE
∩ s RL	ANO	ANO	ANO
doplněk	ANO	NE	ANO
homomorfismus	ANO	ANO	NE
inverzní hom.	ANO	ANO	ANO

Dyckovy jazyky

Definition 9.1 (Dyckův jazyk)

Dyckův jazyk D_n je definován nad abecedou $Z_n = \{a_1, a_1^{\mid}, \dots, a_n, a_n^{\mid}\}$ následující gramatikou: $S \to \lambda |SS|a_1Sa_1^{\mid}|\dots|a_nSa_n^{\mid}$.

Úvodní pozorování:

- jedná se zřejmě o jazyk bezkontextový
- ullet Dyckův jazyk D_n popisuje správně uzávorkované výrazy s n druhy závorek
- tímto jazykem lze popisovat výpočty libovolného zásobníkového automatu
- pomocí Dyckova jazyka lze popsat libovolný bezkontextový jazyk.

Jak charakterizovat bezkontextové jazyky?

- Pokud do zásobníku pouze přidáváme
 - potom si stačí pamatovat poslední symbol
- stačí konečná paměť → konečný automat.
- potřebujeme ze zásobníku také odebírat (čtení symbolu) takový proces nelze zaznamenat v konečné struktuře
- přidávání a odebírání není zcela libovolné jedná se o zásobník, tj. LIFO (last in, first out) strukturu
- roztáhněme si výpočet se zásobníkem do lineární struktury
 X symbol přidán do zásobníku
 X⁻¹ symbol odebrán do zásobníku
- přidávaný a odebíraný symbol tvoří pár ZZ^{-1} $BAA^{-1}CC^{-1}B^{-1}$

který se v celé posloupnosti chová jako závorka

Theorem 9.8 (Dyckovy jazyky)

Pro každý bezkontextový jazyk L existuje regulární jazyk R tak, že $L=h(D\cap R)$ pro vhodný Dyckův jazyk D a homomorfismus h.

Proof:

- máme PDA přijímající L prázdným zásobníkem
- ullet převedeme na instrukce tvaru $\delta(q,a,Z)\in(p,w), |w|\leq 2$
 - delší psaní na zásobník rozdělíme zavedením nových stavů
- nechť R obsahuje všechny výrazy
 - $q^{-1}aa^{-1}Z^{-1}BAp$ pro instrukci $\delta(q,a,Z)\ni(p,AB)$
 - podobně pro instrukce $\delta(q, a, Z) \in (p, A), \delta(q, a, Z) \in (p, \lambda)$
 - je-li $a=\lambda$, potom dvojici aa^{-1} nezařazujeme
- definujeme R takto: $Z_0q_0(R^{|})^*Q^{-1}$
- ullet Dyckův jazyk je definován nad abecedou $\Sigma \cup \Sigma^{-1} \cup Q \cup Q^{-1} \cup Y \cup Y^{-1}$
- ullet $D\cap Z_0q_0(R^{|})^*Q^{-1}$ popisuje korektní výpočty

$$Z_0 \overline{q_0 q_0^{-1}} a a^{-1} Z_0^{-1} B \underbrace{A p p^{-1} b b^{-1} A^{-1}} q q^{-1} c c^{-1} B^{-1} r r^{-1}$$

- homomorfismus *h* vydělí přečtené slovo, tj.
 - h(a) = a pro vstupní (čtené) symboly
 - $h(y) = \lambda$ pro ostatní

Deterministický zásobníkový automat (DPDA)

Definition 10.1 (Deterministický zásobníkový automat (DPDA))

Zásobníkový automat $P=(Q,\Sigma,\gamma,\delta,q_0,z_0,F)$ je **deterministický** PDA právě když platí zároveň:

- $\delta(q, a, X)$ je nejvýše jednoprvková $\forall q \in Q, \ a \in \Sigma \cup \{\lambda\}$ and $X \in \Gamma$.
- Je–li $\delta(q,a,X)$ neprázdná pro nějaké $a\in \Sigma$, pak $\delta(q,\lambda,X)$ musí být prázdná.

Example 10.1 (Det. PDA přijímající L_{wcwr})

- Jazyk L_{wwr} palindromů je bezkontextový, ale nemá přijímající deterministický zásobníkový automat.
- Druhá podmínka zaručuje, že nebude volba mezi λ přechodem a čtením vstupního symbolu.
- Vložením středové značky c do $L_{wcwr} = \{wcw^R | w \in (\mathbf{0} + \mathbf{1})^*\}$ dostaneme jazyk rozpoznatelný DPDA.

Regulární jazyky, DPDA's

$$RL \subsetneq L(P_{DPDA}) \subsetneq CFL \supsetneq N(P_{DPDA}).$$

Theorem 10.1

Nechť L je regulární jazyk, pak L = L(P) pro nějaký DPDA P.

Proof.

DPDA může simulovat deterministický konečný automat a ignorovat zásobník. (nechat tam Z_0).

Lemma

Jazyk L_{wcwr} je přijímaný DPDA ale není regulární.

Důkaz neregularity z pumping lemmatu na slovo $0^n c 0^n$.

Tvrzení bez důkazu

Jazyk L_{wwr} je CFL ale není přijímaný žádným DPDA.

ldea důkazu je, že slova $0^n110^n0^n110^n$, $0^n110^n0^m110^m$ musí být zároveň akceptovaná nebo zároveň zamítnutá, protože uprostřed je zásobník prázdný a není jiná možnost si pamatovat číslo n jinak než na zásobníku. První slovo je v L_{wwr} , druhé není.

Bezprefixové jazyky

Definition 10.2 (bezprefixové jazyky)

Říkáme, že jazyk L je **bezprefixový** pokud neexistují slova $x,y\in L$ taková, že x je prefix y.

Example 10.2

- Jazyk L_{wcwr} je bezprefixový.
- Jazyk $L = \{0\}^*$ není bezprefixový.

Theorem 10.2 $(L \in \mathcal{N}(P_{DPDA})$ právě když L bezprefixový a $L \in \mathcal{L}(P'_{DPDA})$)

Jazyk L je N(P) pro nějaký DPDA P právě když L je bezprefixový a L je L(P') pro nějaký DPDA P'.

Proof.

- \Rightarrow Prefix přijmeme prázdným zásobníkem, pro prázdný zásobník neexistuje instrukce, tj. žádné prodloužení není v N(P).
- \leftarrow Převod $P^{||}$ na P nepřidá nedeterminismus (první koncový -> smaž, přijmi).

Definition ((6.11) Jednoznačnost a víceznačnost CFG)

- Bezkontextová gramatika G = (V, T, P, S) je víceznačná pokud existuje aspoň jeden řetězec $w \in T^*$ pro který můžeme najít dva různé derivační stromy, oba s kořenem S dávající slovo w.
- V opačném případě nazáváme gramatiku jednoznačnou.
- Bezkontextový jazyk L je **jednoznačný**, jestliže existuje jednoznačná CFG G tak, že L = L(G).
- Bezkontextový jazyk L je (podstatně)
 nejednoznačný, jestliže každá CFG G taková,
 že L = L(G), je nejednoznačná. Takovému
 jazyku říkáme i víceznačný.

Example 10.3 (nejednoznačnost CFG)

Dva derivační stromy dávající a + a * a ukazující víceznačnost gramatiky.

Example 10.4 (nejednoznačný jazyk)

Jazyk $L = \{a^i b^j c^k | i = j \lor j = k\}$ je podstatně nejednoznačný, slovo $a^i b^i c^i$ má z principielních důvodů dva způsoby odvození.

DPDA's a víceznačné gramatiky

Theorem $10.3 (L = N(P_{DPDA}) \Rightarrow L \text{ má jednoznačnou CFG.})$

- Nechť L = N(P) pro nějaký DPDA P. Pak L má jednoznačnou CFG.
- Nechť L = L(P) pro nějaký DPDA P. Pak L má jednoznačnou CFG.

Jazyk L_{wwr} má jednoznačnou gramatiku $S o 0S0|1S1|\lambda$ ale není přijímaný DPDA.

Proof.

- N(P): konstrukce CFG z PDA přijímajícího prázdným zásobníkem aplikovaná na DPDA vydá jednoznačnou CFG G.
- L(P):

 - Zkonstruujeme DPDA P' kde L' = N(P').
 - Vytvoříme gramatiku G' generující jazyk N(P').
 - Vytvoříme G tak že L(G)=L. Nového znaku \$ se zbavíme tím, že ho vezmeme jako neterminál a přidáme pravidlo $\$ \to \lambda$. Ostatní pravidla zůstanou stejná jako v G'.
 - ullet G je jednoznačná protože G' je jednoznačná a nepřidali jsme nejednoznačnost.

Shrnutí

- Zásobníkové automaty jsou nedeterministické konečné automaty rozšířené o zásobník.
- Kroky PDA: $\delta(p, a, X) = \{(q, \beta)\}, p, q \in Q, a \in \Sigma \cup \{\lambda\}, X \in \Gamma, \beta \in \Gamma^*.$
- **Přijímání PDA**: prázdným zásobníkem N(P) nebo koncovým stavem L(P).
- Situace PDA: ID = stav, zbývající vstup, zásobník (vrch vlevo, dno vpravo).
 Krok ⊢ mezi situacemi.
- PDA a gramatiky Jazyk je bezkontextový právě když je přijímaný nedeterministickým PDA prázdným zásobníkem a právě když je přijímaný nedeterministickým PDA přijímajícím stavem.
- **Deterministické PDA**: Nikdy nemá volbu přechodu, stav, vstupní symbol (včetně λ) a vrch zásobníku jednoznačně určují přechod (ani volba mezi λ a čtením vstupu).
- **Přijímání DPDA**: $L \in N(P_{DPDA})$ právě když L je bezprefixový a $L \in L(P'_{DPDA})$.
- Jazyky přijímané DPDA: RL ⊊ L(P_{DPDA}) ⊊ CFL s jednoznačnou gramatikou.

Normální formy bezkontextových gramatik

- Jazyk $L = \{a^i b^j c^k | 1 \le i \le j \le k\}$ není bezkontextový.
- Jenže jak to dokázat?
- Směřujeme k Pumping lemmatu pro bezkontextové jazyky.
- Pro jeho důkaz potřebujeme gramatiku v normální formě (Chomského) bude příště.

Turingovy stroje – historie a motivace

- 1931–1936 pokusy o formalizaci pojmu algoritmu Gödel, Kleene, Church, Turing
- Turingův stroj
 - zachycení práce matematika
 - nekonečná tabule lze z ní číst a lze na ni psát
 - mozek (řídící jednotka)
 - Formalizace TM:

- místo tabule oboustranně nekonečná páska
- místo křídy čtecí a zapisovací hlava, kterou lze posunovat
- místo mozku konečná řídící jednotka (jako u PDA)
- další formalizace:
 - λ-kalkul, částečně rekurzivní funkce, RAM
- Snažíme se definovat problémy nerozhodnutelné jakýmkoli počítačem.

Turingův stroj

Definition 11.1

Turingův stroj (TM) je sedmice $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ se složkami:

- Q konečná množina stavů
- Σ konečná neprázdná množina vstupních symbolů
- Γ konečná množina všech **symbolů pro pásku**. Vždy $\Gamma \supseteq \Sigma$, $Q \cap \Gamma = \emptyset$.
- δ (částečná) **přechodová funkce**. $(Q F) \times Γ \rightarrow Q \times Γ \times \{L, R\}$, v δ(q, x) = (p, Y, D):
 - $a \in (Q F)$ aktuální stav
 - $X \in \Gamma$ aktuální symbol na pásce
 - p nový stav, $p \in Q$.
 - $Y \in \Gamma$ symbol pro zapsání do aktuální buňky, přepíše aktuální obsah.
 - $D \in \{L, R\}$ je směr pohybu hlavy (doleva, doprava).
- $q_0 \in Q$ počáteční stav.
 - $B \in \Gamma \Sigma$. Blank. Symbol pro prázdné buňky, na začátku všude kromě konečného počtu buněk se vstupem.
 - $F \subseteq Q$ množina koncových neboli přijímajících stavů.

Pozn: někdy se nerozlišuje Γ a Σ a neuvádí se prázdný symbol B, ti. pětice.

Automaty a gramatiky

Turingův stroj, rozšíření, Lineárně omezené automaty 11

February 19, 2019

Konfigurace Turingova stroje (Instantaneous Description ID), krok

Definition 11.2 (Konfigurace Turingova stroje (Instantaneous Description ID))

Konfigurace Turingova stroje (Instantaneous Description ID) je řetězec $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n$ kde

- q je stav Turingova stroje
- čtecí hlava je vlevo od *i*–tého symbolu
- $X_1 ... X_n$ je část pásky mezi nejlevějším a nejpravějším symbolem různým od prázdného (B). S výjimkou v případě, že je hlava na kraji pak na tom kraji vkládáme jeden B navíc.

Definition 11.3 (Krok Turingova stroje)

Kroky Turingova stroje M značíme $\vdash_{M}, \vdash_{M}^{*}, \vdash^{*}$ jako u zásobníkových automatů.

Pro
$$\delta(q, X_i) = (p, Y, L)$$

•
$$X_1X_2 \dots X_{i-1}qX_iX_{i+1} \dots X_n \underset{M}{\vdash} X_1X_2 \dots X_{i-2}pX_{i-1}\mathbf{Y}X_{i+1} \dots X_n$$

Pro
$$\delta(q, X_i) = (p, Y, R)$$

$$\bullet X_1X_2\ldots X_{i-1}qX_iX_{i+1}\ldots X_n \vdash_M X_1X_2\ldots X_{i-1}\mathbf{Y}pX_{i+1}\ldots X_n.$$

A TM for $\{0^n1^n; n \ge 1\}$

Definition 11.4 (TM přijímá jazyk, rekurzivně spočetný jazyk)

Turingův stroj $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ přijímá jazyk $L(M)=\{w\in\Sigma^*:q_0w\vdash^*_M\alpha p\beta,p\in F,\alpha,\beta\in\Gamma^*\}$, tj. množinu slov, po jejichž přečtení se dostane do koncového stavu. Pásku (u nás) nemusí uklízet.

Jazyk nazveme rekurzivně spočetným, pokud je přijímán nějakým Turingovým strojem T (tj. L = L(T)).

Example 11.1 (TM pro jazyk $\{0^n1^n; n \geq 1\}$)

Turingův stroj $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$ s δ v tabulce přijímá jazvk $\{0^n1^n : n > 1\}$.

Stav	0	1	_ ` X	Υ	В
$\overline{q_0}$	(q_1, X, R)	-	-	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, B, R)
q_4	_	_	_	_	_

218 / 215 - 235

Přechodový diagram pro Turingův stroj

Definition 11.5 (Přechodový diagram pro TM)

Přechodový diagram pro TM sestává z uzlů odpovídajícím stavům TM. Hrany $q \to p$ jsou označeny seznamem všech dvojic X/YD, kde $\delta(q,X)=(p,Y,D),\ D\in\{\leftarrow,\to\}$. Pokud neuvedeme jinak, B značí blank – prázdný symbol.

State	0	1	X	Y	В
q_0	(q_1, X, R)	-	_	(q_3, Y, R)	
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, B, R)
q_4	_	_	_	_	_

A TM for $\{0^n 1^n; n \ge 1\}$

- Na pásce vždy výraz typu X*0*Y*1*
 - postupně přepisujeme 0 na X a odpovídající 1 na Y
 - ullet q_0 přepíše 0 na X a předá řízení q_1
 - q₁ najde první 1, přepíše na Y a předá řízení q₂
 - q₂ se vrátí k X, nechá ho být a předá řízení q₀
 - . .
 - pokud q₀ vidí Y, předá řízení q₃
 - q₃ dojde zkontrolovat, jestli na konci nezbyly 1
 - pokud q₃ našlo B, předá řízení q₄
 - q₄ skončí úspěchem (je přijímající)
 - . . .
 - pokud q₃ narazilo na 1, tak skončí neúspěchem
 - nemá instrukci
 - není přijímající.

TM pro $\{0^n 1^n; n \ge 1\}$

Slovo 0011

$$q_00011 \vdash Xq_1011 \vdash X0q_111 \vdash Xq_20Y1 \vdash q_2X0Y1 \vdash Xq_00Y1 \vdash XXq_1Y1 \vdash \\ \vdash XXYq_11 \vdash XXq_2YY \vdash Xq_2XYY \vdash XXq_0YY \vdash XXYq_3Y \vdash XXYYq_3B \vdash XXYYBq_4B$$
 Slovo 0010

 $q_00010 \vdash Xq_1010 \vdash X0q_110 \vdash Xq_20Y0 \vdash q_2X0Y0 \vdash Xq_00Y0 \vdash XXq_1Y0 \vdash$

 $\vdash XXYq_10 \vdash XXY0q_1B$ a skončí neúspěchem, protože nemá instrukci.

Ještě příklad, rekursivně spočetné jazyky

Example 11.2

$$L = \{a^{2n} | n \ge 0\}$$

 $q_0, B \rightarrow q_F, B, R$

 $q_0, a \rightarrow q_1, a, R$

 $\textit{q}_1, \textit{a} \rightarrow \textit{q}_0, \textit{a}, \textit{R}$

prázdné slovo, konec výpočtu

zvětší čítač (2k+1 symbolů)

nuluje čítač (2k symbolů)

TM s výstupem

Turingův stoj počítající monus m - n = max(m - n, 0).

- $M = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_6\})$
- Počáteční páska 0^m10ⁿ.
- M zastaví s páskou 0^{m-n} obklopenou prázdnem B.
- Najdi nejlevější 0, přepiš na B.
- Jdi doprava a najdi 1; pokračuj, najdi 0 a přepiš na 1.
- Vrať se doleva.
- Pokud nenajdeš 0 (ukliď):
 - vpravo: přepiš všechny 1 na B.
 - vlevo: m < n: přepiš všechny 1 a 0 na B, nech pásku prázdnou.

Paměť v řídící jednotce

- Příklad paměti ve stavu TM
- Stav je dvojice (obecně *n*–tice)
- $M = (\{q_0, q_1\} \times \{0, 1, B\}, \{0, 1\}, \{0, 1, B\}, \delta, [q_0, B], B, \{[q_1, B]\})$
- $L(M) = (01^* + 10^*),$

δ	0	1	В
$ o$ $[q_0,B]$	$([q_1,0],0,R)$	$([q_1,1],1,R)$	$ \begin{array}{c} B \\ ([q_1, B], B, R) \\ ([q_1, B], B, R) \end{array} $
$[q_1, 0]$		$([q_1,0],1,R)$	$([q_1,B],B,R)$
$[q_1,1]$	$([q_1,1],0,R)$		$([q_1,B],B,R)$
$*[q_1,B]$			

Více stop na pásce

- $L_{wcw} = \{wcw | w \in (\mathbf{0} + \mathbf{1})^+\},$
- $M = (\{q_1, \dots, q_9\} \times \{0, 1, B\}, \{[B, 0], [B, 1], [B, c]\}, \{B, *\} \times \{0, 1, B, c\}, \delta, [q_1, B], [B, B], \{[q_9, B]\})$

		2
Track 1	X	
Track 2	Y	
Track 3	Z	

Storage A B C

State

- δ je definováno $(a, b \in \{0, 1\})$:
 - $\delta([q_1, B], [B, a]) = ([q_2, a], [*, a], R)$ načti symbol a
 - $\delta([q_2, a], [B, b]) = ([q_2, a], [B, b], R)$ jdi vpravo, hledej střed c,
 - $\delta([q_2, a], [B, c]) = ([q_3, a], [B, c], R)$ pokračuj vpravo ve stavu q_3 ,
 - $\delta([q_3, a], [*, b]) = ([q_3, a], [*, b], R)$ pokračuj vpravo,
 - $\delta([q_3,a],[B,a])=([q_4,B],[*,a],L)$ zkontroluj shodu, vymaž paměť a jdi vlevo,
 - $\delta([q_4, B], [*, a]) = ([q_4, B], [*, a], L)$ jdi vlevo,
 - $\delta([q_4,B],[B,c])=([q_5,B],[B,c],L)$ c pokračuj za střed ve stavu q_5 ,
- rozeskok podle toho, jestli je ještě co kontrolovat
 - $\delta([q_5, B], [B, a]) = ([q_6, B], [B, a], L)$ ještě budeme kontolovat,
 - $\delta([q_6, B], [B, a]) = ([q_6, B], [B, a], L)$ jdi vlevo,
 - $\delta([q_6, B], [*, a]) = ([q_1, B], [*, a], R)$ znovu začni,
 - $\delta([q_5, B], [*, a]) = ([q_7, B], [*, a], R)$ už vše vlevo od c porovnáno, jdi vpravo,
 - $\delta([q_7, B], [B, c]) = ([q_8, B], [B, c], R)$ pokračuj vpravo,
 - $\delta([q_8, B], [*, a]) = ([q_8, B], [*, a], R)$ pokračuj vpravo,
 - $\delta([q_8, B], [B, B]) = ([q_9, B], [B, B], R)$ přijmi.

Theorem 11.1 (Rekurzivně spočetné jsou \mathcal{L}_0)

Každý rekurzivně spočetný jazyk je typu 0.

Proof: Od Turingova stroje ke gramatice

pro Turingův stroj T najdeme gramatiku G, L(T) = L(G)

- $G = (\{S, C, D, E\} \cup \{\underline{X}\}_{x \in \Sigma} \cup \{Q_i\}_{q_i \in Q}, \Sigma, P, S), P \text{ is:}$
- gramatika nejdříve vygeneruje pásku stroje a kopii slova $wB^n\underline{W}^RQ_0B^m$, kde B^i představují volný prostor pro výpočet
- potom simuluje výpočet (stavy jsou součástí slova)
- v koncovém stavu smažeme pásku, necháme pouze kopii slova
- 1) $S \to DQ_0E$ $D \to xDX|E$ generuje slovo a jeho revizní kopii pro výpočet $E \to BE|B$ generuje volný prostor pro výpočet
- 2) $XPY \rightarrow QX'Y$ pro $\delta(p,x) = (q,x',R)$ $XPY \rightarrow X'YQ$ pro $\delta(p,x) = (q,x',L)$ 3) $P \rightarrow C$ pro $p \in F$
 - $C\underline{A} \rightarrow C, \underline{A}C \rightarrow C$ mazání pásky konec výpočtu

Od Turingova stroje ke gramatice

Ještě
$$L(T) = L(G)$$
?

- $w \in L(T)$
 - existuje konečný výpočet stroje T (konečný prostor)
 - gramatika vygeneruje dostatečně velký prostor pro výpočet
 - simuluje výpočet a smaže dvojníky
- $w \in L(G)$
 - pravidla v derivaci nemusí být v pořadí, jakém chceme
 - derivaci můžeme přeuspořádat tak, že pořadí je 1),2),3).
 - podtržené symboly smazány, tj. vygenerován koncový stav.

Example 11.3

$$q_0, B \rightarrow q_F, B, R$$

$$q_0, a \rightarrow q_1, a, R$$

$$q_1, a \rightarrow q_0, a, R$$

Gramatika po zjednodušení

$$S \rightarrow DQ_0$$

 $D \rightarrow aDa|B$

$$BQ_0 \rightarrow C$$

$$aQ_0 \rightarrow Q_1 a$$

$$\underline{a}Q_0 \rightarrow Q_1\underline{a}$$

 $aQ_1 \rightarrow Q_0a$

$$Ca \rightarrow C$$

$$C \rightarrow \lambda$$

Od gramatik k Turingově stroji

Theorem 11.2

Každý jazyk typu 0 je rekurzivně spočetný.

Proof:

idea: TM postupně generuje všechny derivace

- derivaci $S \Rightarrow \omega_1 \Rightarrow \ldots \Rightarrow \omega_n = w$ kódujeme jako slovo $\#S\#\omega_1\#\ldots \#w\#$
- umíme udělat TM, který přijímá slova $\#\alpha\#\beta\#$, kde $\alpha \Rightarrow \beta$
- umíme udělat TM, který přijímá slova $\#\omega_1\#\ldots\#\omega_k\#$, kde $\omega_1\Rightarrow^*\omega_k$
- umíme udělat TM postupně generující všechna slova.

February 19, 2019

TM rozšíření: Vícepáskový TM

Definition 11.6 (Vícepáskový Turingův stroj)

Počáteční pozice

- vstup na první pásce, ostatní zcela prázdné
- první hlava vlevo od vstupu, ostatní libovolně
- hlava v počátečním stavu

Jeden krok vícepáskového TM

- hlava přejde do nového stavu
- na každé pásce napíšeme nový symbol
- každá hlava se nezávisle posune vlevo, zůstane, vpravo.

Vícepáskový TM

Theorem 11.3 (Vícepáskový TM)

Každý jazyk přijímaný vícepáskovým TM je přijímaný i nějakým (jednopáskovým) Turingovým strojem TM.

Proof: vícepáskový TM

- konstruujeme Turingův stroj M
- pásku si představíme, že má 2k stop
 - liché stopy: pozice k-té hlavy
 - sudé stopy: znak na k-té pásce
- pro simulaci jednoho kroku navštívíme všechny hlavy
- ve stavu si pamatujeme
 - počet hlav vlevo
 - $\forall k$ symbol pod k-tou hlavou
- pak už umíme provést jeden krok (znovu běhat)

• Simulaci výpočtu k-páskového stroje o n krocích lze provést v čase $O(n^2)$ (simulace jednoho kroku z prvních n trvá 4n + 2k, hlavy nejvýš 2n daleko, přečíst, zapsat, posunout značky).

Simulace 2-páskového TM na jedné pásce

Rozšíření: Nedeterministické Turingovy stroje

Definition 11.7 (Nedeterministický TM)

Nedeterministickým Turingovým strojem nazýváme sedmici

$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$
, kde $Q, \Sigma, \Gamma, q_0, B, F$ jsou jako u TM a $\delta : (Q - F) \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\})$.

Slovo $w \in \Sigma^*$ je přijímáno nedeterministickým TM M, pokud existuje nějaký výpočet $q_0w \vdash^* \alpha p\beta$, $p \in F$.

Theorem 11.4 (Nedeterministický TM)

Pro každý M_N nedeterministický TM existuje deterministický TM M_D takový, že $L(M_N) = L(M_D)$.

Velmi stručně (příprava)

prohledáváme do šířky možné výpočty M_N

- odvozeno v k krocích
- maximálně m^k konfigurací
 - kde $m = \max |\delta(q, x)|$ je max. počet voleb M_N

Proof: idea důkazu

- páska nekonečná nelze použít podmnožinovou konstrukci
- prohledáváme do šířky všechny výpočty M_N
- modelujeme TM se dvěma páskami
 - první páska: posloupnost konfigurací
 - aktuální označena (křížkem na obrázku)
 - vlevo už prozkoumané, můžeme zapomenout
 - vpravo aktuální a pak další čekající
 - druhá páska: pomocný výpočet
- zpracování jedné konfigurace obnáší
 - přečti stav a symbol aktuální konfigurace ID
 - je–li stav přijímající ∈ F, přijmi a skonči
 - napiš ID na pomocnou pásku
 - pro každý možný krok δ (uložený v hlavě M_D)
 - proveď krok a napiš novou ID na konec první pásky
 - vrať se k označené ID, značku vymaž a posuň o 1 doprava
 - opakuj

Shrnutí

- Turingův stroj: nekonečná oboustranná páska, může číst, psát, pohybovat hlavou
- Přijímání TM: Na začátku hlava a konečný řetězec na pásce, zbytek B. TM přijímá pokud vstoupí do koncového stavu.
- Rekurzivně spočetné jazyky (RE): jazyky přijímané nějakým Turingovým strojem.
- Konfigurace TM: Všechny symboly pásky mezi nejlevějším a nejpravějším ne-B. Stav a pozice hlavy hned vlevo od právě čteného symbolu.
- modelovací triky
 - Paměť v řídící jednotce
 - Více stop
- Rozšíření TM bez rozšíření třídy přijímaných jazyků:
 - Vícepáskové TM Samostatný pohyb hlav na páskách (lze simulovat na přidaných stopách).
 - Nedeterministický TM: Má instrukce na výběr, na přijetí stačí jeden přijímající výpočet.
- Lineárně omezené automaty LBA
 - Vstupní slovo mezi levou a pravou značkou, hlava nesmí za tyto značky ani je přepsat.
 - LBA rozpoznávají právě kontextové jazyky.

Subroutines

Multiplication: Input: 0^m10^n1 , Output: 0^{mn} .

- Strategy: On the tape generally $0^i 10^n 10^{kn}$
- In one basic step, change a 0 in the first group to B and add n 0's to the last group, giving us the string of the form $0^{i-1}10^n10^{(k+1)n}$.
- When finished, change the leading $10^{n}1$ to blanks.

Restricted Turing Machines

X_0	X_1	X_2	
*	X_{-1}	X_{-2}	

Theorem 11.5 (Semi-infinite Tape, Never Writes a Blank)

Every language accepted by a TM M_2 is also accepted by a TM M_1 with the following restrictions:

- M_1 's head never moves left of its initial position.
- M₁ never writes a blank.

Automaty a gramatiky – Chomského hierarchie

- gramatiky typu 1 (kontextové jazyky \mathcal{L}_1)
 - pouze pravidla ve tvaru $\alpha A \beta \to \alpha \omega \beta$

$$A \in V, \alpha, \beta \in (V \cup T)^*, \omega \in (V \cup T)^+$$

• jedinou výjimkou je pravidlo $S \to \lambda$, potom se ale S nevyskytuje na pravé straně žádného pravidla

Lineárně omezené automaty

- Ještě potřebujeme ekvivalent pro kontextové gramatiky
- kontextovou gramatiku dostaneme z libovolné monotónní gramatiky

Definition 12.1 (lineárně omezený automat (LBA))

Lineárně omezený automat LBA je nedeterministický TM, kde na pásce je označen levý a pravý konec $\underline{l},\underline{r}$. Tyto symboly nelze při výpočtu přepsat a nesmí se jít nalevo od \underline{l} a napravo od \underline{r} .

Slovo w je přijímáno lineárně omezeným automatem, pokud $q_0 \underline{I} w \underline{r} \vdash^* \alpha p \beta$, $p \in F$.

- Prostor výpočtu je definován vstupním slovem a automat při jeho přijímání nesmí překročit jeho délku
- u monotónních (kontextových) derivací to není problém žádné slovo v derivaci není delší než vstupní slovo

Od kontextových jazyků k LBA

Theorem 12.1

Každý kontextový jazyk lze přijímat pomocí LBA.

Proof: z kontextové gramatiky k LBA

- derivaci gramatiky budeme simulovat pomocí LBA
- použijeme pásku se dvěma stopami
- slovo w dáme nahoru, na začátek dolní stopy S

Aplikace pravidla

- přepisujeme slovo ve druhé stopě podle pravidel G
 - nedeterministicky vybereme část k přepsání
 - provedeme přepsání dle pravidla (pravá část se odsune)
- pokud jsou ve druhé stopě samé terminály, porovnáme ji s první stopou
 - slovo přijmeme nebo zamítneme

Od LBA ke kontextovým jazykům

Theorem 12.2

LBA přijímají pouze kontextové jazyky.

Proof: z LBA ke kontextovým gramatikám

- potřebujeme převést LBA na monotónní gramatiku
 - tj. gramatika nesmí generovat nic navíc
- výpočet ukryjeme do 'dvoustopých' neterminálů
- generuj slovo ve tvaru $(a_0, [q_0, \underline{l}, a_0]), (a_1, a_1), \dots, (a_n, [a_n, \underline{r}])$

W			
q_0, \underline{I}, a_0		<i>a</i> _n , <u>r</u>	

- simuluj práci LBA ve 'druhé' stopě (stejně jako u TM)
 - pro $\delta(p, x) = (q, x', R)$: $PX \to X'Q$
 - pro $\delta(p,x) = (q,x',L)$: $\underline{Y}P\underline{X} \to Q\underline{Y}\underline{X}'$
- pokud je stav koncový, smaž 'druhou' stop
- speciálně je třeba ošetřit přijímání prázdného slova
 - ullet pokud LBA přijímá λ , přidáme speciální startovací pravidlo

Rekurzivní jazyky

Definition 12.2 (TM zastaví)

TM **zastaví** pokud vstoupí do stavu q, s čteným symbolem X, a není instrukce pro tuto situaci, t.j., $\delta(q, X)$ není definováno.

- Předpokládáme, že v přijímajícím stavu q ∈ F TM zastaví,
- dokud nezastaví, nevíme, jestli přijme nebo nepřijme slovo.

Definition 12.3 (Rekurzivní jazyky)

Říkáme, že TM M rozhoduje jazyk L, pokud L = L(M) a pro každé $w \in \Sigma^*$ stroj nad w zastaví.

Jazyky rozhodnutelné TM nazýváme rekurzivní jazyky.

$L\&\overline{L} \in RE \Rightarrow L,\overline{L}$ je rekurzivní

Theorem 12.3 (Postova věta)

Jazyk L je rekurzivní, právě když L i L (doplněk) jsou rekurzivně spočetné.

Proof:

- Máme TM $L = L(M_1)$ a $\overline{L} = L(M_2)$.
- ullet pro dané slovo w naráz simulujeme M_1 i M_2 (dvě pásky, stav se dvěma komponentami).
- Pokud jeden z M_i přijme, M zastaví a odpoví.
- ullet Jazyky jsou komplementární, jeden z M_i vždy zastaví, L je rekurzivní \Box

Theorem 12.4

Je-li L rekurzivní jazyk, je rekurzivní i L.

Jazyk který není rekurzivně spočetný

Směřujeme k důkazu nerozhodnutelnosti jazyka dvojic (M, w) takových, že:

- ullet M je binárně kódovaný Turingův stroj s abecedou $\{0,1\}$,
- $w \in \{0,1\}^*$ a
- M nepřijímá vstup w.

Postup:

- Kódování TM binárním kódem pro libovolný počet stavů TM.
- Kód TM vezmeme TM jako binární řetězec.
- Pokud kód nedává smysl, reprezentuje TM bez transakcí. Tedy každý kód reprezentuje nějaký TM.
- Diagonální jazyk L_d ; $L_d = \{w; TM \text{ reprezentovaný jako } w \text{ takový, že } \mathbf{nepřijímá} w\}$.
- Neexistuje TM přijímající jazyk L_d . Spuštění takového stroje na vlastním kódu by vedlo k paradoxu.

Jazyk L_d není rekurzivně spočetný. Proto $\overline{L_d}$ není rekurzivní. Lze dokázat, že $\overline{L_d}$ je rekurzivně spočetný.

Kódující řetězce

- Řetězce bereme uspořádané podle délky, stejně dlouhé uspořádáme lexikograficky.
- První je λ , druhý 0, třetí 1, čtvrtý 00 atd.
- *i*-tý řetězec označujeme *w_i*.
- Pro kódování TM $M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, F)$ očíslujeme stavy, symboly a směry L, R.
- Předpokládejme:
 - Počáteční stav je vždy q₁.
 - Stav q₂ je vždy jediný koncový stav (nepotřebujeme víc, TM zastaví).
 - První symbol je vždy 0, druhý 1, třetí B, prázdný symbol. Ostatní symboly pásky očíslujeme libovolně.
 - Směr L je 1, směr R je 2.
- Jeden krok $\delta(q_i, X_j) = (q_k, X_l, D_m)$ kódujeme: $0^i 10^j 10^k 10^l 10^m$. Všechna $i, j, k, l, m \ge 1$ takže se dvě jedničky za sebou nevyskytují.
- Celý TM se skládá z kódů všech přechodů v nějakém pořadí oddělených dvojicemi jedniček 11: $C_1 11 C_2 11 \dots C_{n-1} 11 C_n$.

Příklad kódování TM

Turingův stroj

• Kód pro transakce:

Definition 12.4 (Diagonální jazyk)

Diagonální jazyk L_d je definovaný

 $L_d = \{w; TM \text{ reprezentovaný jako } w \text{ který nepřijímá slovo } w\}.$

Theorem 12.5

L_d není rekurzivně spočetný jazyk, tj. neexistuje TM přijímající L_d.

Proof.

- Předpokládejme L_d je RE, $L_d = L(M)$ pro nějaký TM M.
- Jeho jazyk je {0,1}, tedy je v seznamu na obrázku: 'Přijímá TM M_i vstupní slovo w_i ?'
- Alespoň jeden řetězec ho kóduje, řekněme i, $M = w_i$.
- Je $w_i \in L_d$
 - Pokud 'ano', M_i přijímá w_i. Spor s definicí L_d .
 - Pokud 'ne', pak $w_i \in L_d$ z definice L_d .

Proto takový M neexistuje. Tedy L_d není rekurzivně spočetný.

Základní hierarchie jazyků

Základní typy jazyků:

- Rekurzivní, rozhodnutelný: Přijímaný TM který vždy zastaví, ať už vstup přijme nebo nepřijme.
- RE Rekurzivně spočetný: přijímaný nějakým TM. Výpočet může trvat, nikdy nevíme, jestli je slovo zamítnuto nebo máme ještě čekat.
- Některé jazyky nejsou ani rekurzivně spočetné, non-RE jazyky, jako L_d is non-RE jazyk.

Univerzální Turingův stroj

Definition 12.5 (Univerzální jazyk)

Definujeme univerzální jazyk L_u jakožto množinu binárních řetězců které kódují pár (M, w), kde M je TM a $w \in L(M)$.

TM rozpoznávající L_u se nazývá **Univerzální Turingův stroj**.

Theorem 12.6 (Existence Univerzálního Turingova stroje)

Existuje Turingův stroj U, pro který $L_u = L(U)$.

Popíšeme U jako vícepáskový Turingův stroj.

- Přechody M jsou napsány na první pásce spolu s řetězcem w.
- Na druhé pásce simulujeme výpočet M, používající formát jako kód M, tj. symboly 0ⁱ oddělené jedničkou 1.
- Třetí páska obsahuje stav M reprezentovaný i nulami.

Operace univerzálního Turingova stroje

Operace U jsou následující:

 Otestuj, zda je kód M legitimní; pokud ne, U zastav bez přijetí.

- | Fusing | Country | W | W | Tape of M | CO0100001010001 | W | State of M | CO01000001010001 | W | Scritch | W | Scritch | W | Control | W | C
- Inicializuj druhou pásku kódovaným slovem w: 10 pro 0 ve w, 100 pro 1; blank jsou nechané prázdné a nahrazeny 1000 pouze 'v případě potřeby'.
- Napiš 0, počáteční stav M, na třetí pásku. Posuň hlavu druhé pásky na první simulované políčko.
- Simuluj jednotlivé přechody M
 - Najdi na první pásce správnou transakci 0ⁱ10^j10^k10^l10^m, 0ⁱ na pásce 3, 0^j na pásce 2.
 - Změň obsah pásky 3 na 0^k.
 - Nahraď 0^j na 2. pásce řetězcem 0^j. Použij čtvrtou 'scratch tape' pro správné mezery.
 - Posuň hlavu 2. pásky na pozici vedle 1 vlevo nebo vpravo, podle pohybu m.
- Pokud jsme nenašli instrukci pro *M*, zastavíme.
- ullet Pokud M přejde do přijímajícího stavu, pak U také přijme.

Nerozhodnutelnost univerzálního jazyka

Theorem 12.7 (Nerozhodnutelnost univerzálního jazyka)

Lu je rekurzivně spočetný, ale není rekurzivní.

Proof.

- Máme TM přijímající L_u , tj. je RE.
- Předpokládejme, že je L_u rekurzivní.
- Pak $\overline{L_u}$ by byl také rekurzivní.
- Pro TM přijímající $\overline{L_u}$ můžeme zkonstruovat TM přijímající L_d (vpravo).
- Protože víme, že L_d není RE, $\overline{L_u}$ není RE a L_u není rekurzivní.

Modifikace TM pro $\overline{L_u}$ na TM pro L_d :

- Řetězec w přepiš na w111w (2-páskový, převeď na 1-páskový).
- Simuluj M na novém vstupu.
 Přijmi iff M přijme.
- Zvol i tak že $w_i = w$. Předchozí krok přijímá $\overline{L_u}$, tj. případy kdy M_i nepřijímá w_i , tj. jazyk L_d .

Nerozhodnutelné problémy o Turingových strojích

Definition 12.6 (Rozhodnutelný problém)

Problémem P myslíme matematicky/informaticky definovanou množinu otázek kódovatelnou řetězci nad abecedou Σ^* s odpověďmi $\in \{ano, ne\}$.

Problém je (algoritmicky) rozhodnutelný, pokud existuje Turingův stroj TM takový, že pro každý vstup $w \in P$ zastaví a navíc přijme právě když P(w) = ano (tj. pro P(w) = ne zastaví v ne–přijímacím stavu).

Problém, který není algoritmicky rozhodnutelný nazýváme **nerozhodnutelný problém**.

Example 12.1 ('Problémy')

- Obsahuje vstupní slovo pět nul?
- Je vstupní slovo korektně definovaným kódem Turingova stroje v kódování výše?
- Zastaví TM kódu M nad slovem w?
- Zastaví TM kódu w nad slovem w?

Redukce

Definition 12.7 (Redukce)

Redukcí problému P_1 na P_2 , nazýváme algoritmus R, který pro každou instanci $w \in P_1$ zastaví a vydá $R(w) \in P_2$ tak, že

- $P_1(w) = ano$ právě když $P_2(R(w)) = ano$
- tj. i $P_1(w) = ne$ právě když $P_2(R(w)) = ne$.

Example 12.2

Redukce TM pro L_d na TM pro $\overline{L_u}$:

- P₁ = Nepřijímá TM reprezentovaný w vstupní slovo w?
- P₂ = Nepřijímá TM reprezentovaný M vstupní slovo w?

Redukce

Theorem 12.8 (Redukce)

Pokud existuje redukce problému P_1 na P_2 , pak:

- Pokud P₁ je nerozhodnutelný, pak je nerozhodnutelný i P₂.
- Pokud P₁ není rekurzivně spočetný, pak není RE ani P₂.

Proof.

- Předpokládejme P_1 je nerozhodnutelný. Je–li možné rozhodnout P_2 , pak můžeme zkombinovat redukci P_1 na P_2 s algoritmem rozhodujícím P_2 pro konstrukci algoritmu rozhodujícího P_1 . Proto je P_2 nerozhodnutelný.
- Předpokládejme P_1 ne–RE, ale P_2 je RE. Podobně jako výše zkombinujeme redukci a výsledek P_2 k důkazu P_1 je RE; SPOR.

Postův korespondenční problém

Definition 13.1 (Postův korespondenční problém)

Instance Postova korespondenčního problému (PCP) jsou dva seznamy slov nad abecedou Σ značené $A=w_1,w_2,\ldots,w_k$ a $B=x_1,x_2,\ldots,x_k$ stejné délky k. Pro každé i, dvojice (w_i,x_i) se nazývá **odpovídající** dvojice.

Instance PCP **má řešení**, pokud existuje posloupnost jednoho či více přirozených čísel i_1, i_2, \ldots, i_m tak že $w_{i_1} w_{i_2} \ldots w_{i_m} = x_{i_1} x_{i_2} \ldots x_{i_m}$ tj. dostaneme stejné slovo. V tom případě říkáme, že posloupnost i_1, i_2, \ldots, i_m **je řešení**.

Postův korespondenční problém je: Pro danou instanci PCP, rozhodněte, zda má řešení.

Example 13.1

	Seznam A	Seznam B
i	Wi	x _i
1	1	111
2	10111	10
3	10	0

- $\Sigma = \{0, 1\}$, seznamy A,B v tabulce.
- Řešení 2, 1, 1, 3 vytvoří slovo 101111110.
- Jiné řešení: 2,1,1,3,2,1,1,3.

Částečná řešení

Example 13.2

 $\Sigma = \{0,1\}$. Neexistuje řešení pro seznamy:

	List A	List B
i	Wi	Xi
1	10	101
2	011	11
3	101	011.

Zdůvodnění:

- i₁ = 1, jinak by první symbol neodpovídal.
- Máme částečné řešení:

A: 10 · · ·

B: 101 · · ·

• Je možné jen $i_2 = 3$.

Definition 13.2 (Částečné řešení)

Částečným řešením nazýváme posloupnost indexů i_1, i_2, \ldots, i_r taková že jeden z řetězců $w_{i_1}, w_{i_2}, \ldots, w_{i_r}$ a $x_{i_1}, x_{i_2}, \ldots, x_{i_r}$ je prefix druhého (i v případě, že řetězce nejsou totožné).

Lemma

Je-li posloupnost čísel řešením, pak je každý prefix částečným řešením.

- $m{i}_2=1$, řetězce $egin{array}{c} 1010 \\ 101101 \\ ext{nesouhlasí na 4.pozici.} \end{array}$
- $i_2 = 2$, $\frac{10011}{10111}$ nesouhlasí na 3.pozici.

- A: 10101 · · ·
- B: 101011 · · ·
 - Jsme ve stejné pozici jako po volbě i₁ = 1.
 - Nelze dostat oba řetězce na stejnou délku.

February 19, 2019

Modifikovaný Postův korespondenční probém MPCP

Definition 13.3 (Modifikovaný Postův korespondenční probém MPCP)

Mějme PCP, tj. seznamy $A = w_1, w_2, \dots, w_k$ a $B = x_1, x_2, \dots, x_k$. Hledáme seznam 0 nebo více přirozených čísel i_1, i_2, \dots, i_m tak že

 $\mathbf{w}_1, w_{i_1}, w_{i_2}, \dots, w_{i_m} = \mathbf{x}_1, x_{i_1}, x_{i_2}, \dots, x_{i_m}$. V tom případě říkáme, že PCP **má** iniciální řešení.

Modifikovaný Postův korespondenční problém: má PCP iniciální řešení?

Example 13.3

Tento PCP nemá iniciální řešení.

	seznam A	seznam B
i	Wi	Xi
1	1	111
2	10111	10
3	10	0
	<u>'</u>	·

Proof:

- Částečné instance $\begin{array}{c} 1\\111 \end{array}$
 - 11 111111 se nikdy nesrovnají na stejnou délku.
- Jiné volby vedou k různým písmenům abecedy.

MPCP redukce na PCP

Lemma 13.1 (Redukce MPCP na PCP)

PCP má řešení, právě když má iniciální řešení.

List A	List B
Wi	Xi
1	111
10111	10
10	0
	w _i 1 10111

Example 13.4 (MPCP reduces to PCP.)

	·	
	List C	List D
i	Уi	Zį
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

Proof:

- Vezměme nové symboly $*, \$ \notin \Sigma$.
- $\forall i = 1, \ldots, k$ definujeme y_i rozšířením w_i s * za každým písmenem w_i .
- $\forall i = 1, ..., k$ def. z_i rozšířením x_i s * **před** každým písmenem x_i .
- $y_0 = *y_1$, $z_0 = z_1$.
- $y_{k+1} = \$$, $z_{k+1} = *\$$.
- Pokud i_1, i_2, \ldots, i_m je iniciální řešení, pak $0, i_1, i_2, \ldots, i_m, (k+1)$ je

Nerozhodnutelnost PCP

- Chceme dokázat, že PCP je algoritmicky nerozhodnutelný.
- Redukovali jsme MPCP na PCP (minulý slajd)
- a redukujeme L_u na MPCP.

Algorithm: Redukce L_u na MPCP

Konstruujeme MPCP pro TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$, který nikdy nepíše B a nejde hlavou doleva od počáteční pozice. Nechť $w\in\Sigma^*$ je vstupní slovo. seznam A seznam B

#	$\#q_0w\#$	
X	Χ	$\forall X \in \Gamma$
#	#	
qΧ	Υp	$\operatorname{pro}\delta(q,X)=(p,Y,R)$
ZqX	pZY	pro $\delta(q,X)=(p,Y,L),Z\in\Gamma$ symbol pásky
q#	Yp#	pro $\delta(q,B)=(p,Y,R)$
Zq#	pZY#	pro $\delta(q,B)=(p,Y,L),Z\in \Gamma$ symbol pásky
XqY	q	$q \in F$, přijímající stav
Χq	q	$q \in \mathcal{F}$
qΥ	q	$q \in \mathcal{F}$
q##	q#	$q \in \mathcal{F}$.

Example 13.5

Konvertujme TM

a vstupní slovo w = 01 na instanci MPCP.

seznam A	seznam B	zdroj
$q_{1}0$	$1q_2$	$z \delta(q_1,0) = (q_2,1,R)$
$0q_{1}1$	q_2 00	$z \delta(q_1, 1) = (q_2, 0, L)$
$1q_11$	$q_2 10$	$z \delta(q_1, 1) = (q_2, 0, L)$
$0q_1\#$	$q_201\#$	$ z \delta(q_1,B) = (q_2,1,L) $
$1q_1\#$	$q_211\#$	$ z \delta(q_1,B) = (q_2,1,L) $
$0q_{2}0$	$q_{3}00$	$z \delta(q_2,0) = (q_3,0,L)$
$1q_{2}0$	$q_{3}10$	$z \delta(q_2,0) = (q_3,0,L)$
q_21	$0q_{1}$	$z \delta(q_2, 1) = (q_1, 0, R)$
$q_2 \#$	0 <i>q</i> ₂ #	$z \delta(q_2, B) = (q_2, 0, R)$

Seznam dvojic bez B symbolu (ve dvou tabulkách) seznam A seznam F

Seziia	1111 A	Sezilalli L
#	#	$\#q_101\#$
()	0
1	1	1
#	#	#
09		q ₃
09		q_3
19	₃ 0	q ₃

 q_3

 q_3

 q_3

 q_3

 q_3

#

258 / 253 - 268

 $1q_{3}1$

 $0q_3$

 $1q_3$

 q_30

 q_31

 $q_3##$

MPCP simulace TM

seznam A	seznam <i>B</i>	zdroj
		$z \delta(q_1,0) = (q_2,1,R)$
$0q_{1}1$	$q_{2}00$	$z \delta(q_1, 1) = (q_2, 0, L)$
$1q_11$	$q_{2}10$	$z \delta(q_1,1) = (q_2,0,L)$
$0q_1\#$	$q_{2}01\#$	$z \delta(q_1, B) = (q_2, 1, L)$
$1q_1\#$	$q_211\#$	$z \delta(q_1, B) = (q_2, 1, L)$
$0q_{2}0$	$q_{3}00$	$z \delta(q_2,0) = (q_3,0,L)$
$1q_20$	$q_{3}10$	$z \delta(q_2,0) = (q_3,0,L)$
$q_{2}1$	$0q_{1}$	$z \ \delta(q_2,1) = (q_1,0,R)$
$q_2 \#$	0 <i>q</i> ₂ #	$z \delta(q_2, B) = (q_2, 0, R)$

•	M nikdy	nepoužije	В	proto	instrukce	S	В
	vynechár	ne.					

• M přijímá posloupností $q_101 \vdash 1q_21 \vdash 10q_1 \vdash 1q_201 \vdash q_3101$.

A :	$\#q_101\#1q_2$	$_{2}1\#\overset{.}{1}0q$	$_{1}\#\overset{.}{1}q_{2}$	$01\#q_31$	$.01#q_30$	1# <i>q</i> ₃ 1#	4 q₃#
B·	$\#a_101\#1a_2$	1410a	$_{1}$ # $1a_{2}$	$01 \# a_2 1$	$01 \# a_2 0$	$1 \# a_2 1 \#$	Ła ₂ #

	seznam A	seznam <i>E</i>
	#	$\#q_101\#$
	0	0
	1	1
	#	#
	0 <i>q</i> ₃ 0	q ₃
	$0q_{3}1$	q 3
	$1q_{3}0$	q 3
	$1q_{3}1$	q 3
	0 <i>q</i> ₃	q 3
	$1q_3$	q 3
	$q_{3}0$	q 3
	q_31	q 3
	q 3##	#
#	#	
π	77-	

PCP je algoritmicky nerozhodnutelný

Theorem 13.1 (PCP je algoritmicky nerozhodnutelný)

Postův korespondenční problém PCP je algoritmicky nerozhodnutelný.

Proof.

Předchozí algoritmus redukuje L_u na MPCP. Chceme dokázat:

- M přijímá w právě když zkonstruovaný PCP má iniciální řešení.
- \leftarrow Pokud $w \in L(M)$, začneme iniciálním párem a simulujeme výpočet M na w.
- \Rightarrow Máme–li iniciální řešení PCP, odpovídá přijímajícímu výpočtu M nad w.
 - MPCP musí začít první dvojicí.
 - Dokud $q \neq F$, mazací pravidla se nepoužijí.
 - Pokud $q \in F$, částečné řešení je tvaru: $\cfrac{\mathsf{A}:x}{\mathsf{B}:xy}$, t.j. B je delší než A .

Algoritmická rozhodnutelnost u CFL

Pro bezkontextové jazyky je algoritmicky rozhodnutelné

- zda dané slovo patří či nepatří do jazyka
 - prázdné slovo zvláť
 - pak algoritmus CYK
 - nebo otestovat všechny derivace s 2|w|-1 pravidly,
- zda je jazyk prázdný
 - algoritmus redukce (ne-nenerujících a nedosažitelných), zjistíme, zda lze z S generovat terminální slovo

Nerozhodnutelnost víceznačnosti CFG

Theorem 13.2

Je algoritmicky nerozhodnutelné, zda je bezkontextová gramatika víceznačná.

Mějme instanci PCP
$$(A = w_{i_1}, w_{i_2}, \ldots, w_{i_m}, B = x_{i_1}, x_{i_2}, \ldots, x_{i_m})$$
, a množinu indexů $a_1, a_2, \ldots, a_m \in N$ a tři gramatiky G_A, G_B, G_{AB} :
$$G_A \quad A \rightarrow \qquad w_1 A a_1 | w_2 A a_2 | \ldots | w_k A a_k | \qquad w_1 a_1 | w_2 a_2 | \ldots | w_k a_k$$

$$G_B \quad B \rightarrow \qquad x_1 B a_1 | x_2 B a_2 | \ldots | x_k B a_k | \qquad x_1 a_1 | x_2 a_2 | \ldots | x_k a_k$$

$$G_{AB} \quad \{S \rightarrow \qquad A | B\} \cup G_A \cup G_B.$$
 Gramatika G_{AB} je víceznačná právě když instance (A, B) PCP má řešení.

 Každé slovo v G_A má jednoznačnou derivaci (danou a_i vpravo). Podobně pro B.

Nerozhodnutelné problémy pro bezkontextové jazyky CFG

Theorem 13.3

Mějme G_1 , G_2 bezkontextové gramatiky, R regulární výraz. Následující problémy jsou algoritmicky nerozhodnutelné:

- 1 Je $L(G_1) \cap L(G_2) = \emptyset$?
- 2 Je $L(G_1) = T^*$ pro nějakou abecedu T?
- 3 Je $L(G_1) = L(G_2)$?
- 4 Je $L(G_1) = L(R)$?
- 5 *Je* $L(G_1) \subseteq L(G_2)$?
- 6 Je $L(R) \subseteq L(G_1)$?

Proof: $1 L(G_1) \cap L(G_2) = \emptyset$

Převedeme PKP na (1)

• zvolíme nové terminály $\{a_1, a_2, \dots, a_m\}$ pro kódy indexů

- PKP má řešení právě když $L(G_1) \cap L(G_2) \neq \emptyset$
- první část se musí rovnat, druhá (ai) zajišťuje stejné pořadí.

Proof: $2 L(G) = T^*$

Převedeme PKP na (2):

ullet zvolíme nové terminály $\{a_1,a_2,\ldots,a_m\}$ pro kódy indexů

$$G_{1} \quad A \to \quad w_{1}Aa_{1}|w_{2}Aa_{2}|\dots|w_{k}Aa_{k}| \\ w_{1}a_{1}|w_{2}a_{2}|\dots|w_{k}a_{k}| \\ G_{2} \quad B \to \quad x_{1}Ba_{1}|x_{2}Ba_{2}|\dots|x_{k}Ba_{k}| \\ x_{1}a_{1}|x_{2}a_{2}|\dots|x_{k}a_{k}|$$

- jazyky $L(G_1)$, $L(G_2)$ jsou deterministické,
- ullet tedy $\overline{L(G_1)},\overline{L(G_2)}$ jsou deterministické CFL a $\overline{L(G_1)}\cup\overline{L(G_2)}$ je CFL
- máme CFG gramatiku pro $\overline{L(G_1)} \cup \overline{L(G_2)}$
- PKP má řešení $\Leftrightarrow L(G_1) \cap L(G_2) \neq \emptyset \Leftrightarrow L(G) = \overline{L(G_1)} \cup \overline{L(G_2)} \neq \Sigma_{\square}^*$
- Poznámka: $L(G) = \emptyset$ je algoritmicky rozhodnutelné.
- CFL nejsou uzavřené na doplněk, pouze deterministické CFL ano.

Proof: 3-6

- Je $L(G_1) = L(G_2)$? Důkaz: ať G_1 generuje Σ^* Je $L(G_1) = L(R)$? Důkaz: za R zvolíme Σ^* Je $L(G_1) \subseteq L(G_2)$? Důkaz: ať G_1 generuje Σ^* Je $L(R) \subseteq L(G_1)$? Důkaz: za R zvolíme Σ^*
- Poznámka: $L(G) \subseteq R$ je algoritmicky rozhodnutelné $L(G) \subseteq R \Leftrightarrow L(G) \cap \overline{R} = \emptyset$ a zároveň $(L(G) \cap \overline{R})$ je CFL (uzavřenost operací)

Shrnutí

Popis nekonečných objektů konečnými prostředky

- regulární jazyky
 - konečné automaty (NRA, 2FA)
 - Nerode (rozklad), Kleene (elementární operace), pumpování
- bezkontextové jazyky
 - zásobníkové automaty (DPDA≠ PDA)
 - pumpování
- kontextové jazyky
 - lineárně omezené automaty
 - monotonie
- rekurzivně spočetné jazyky
 - Turingovy stroje
 - algoritmická nerozhodnutelnost

použití nejen pro práci s jazyky.

Přehled kapitol

- 1 Úvod, Iterační lemma pro reg. jazyky
- igotimes Redukovaný DFA a ekvivalence automatů, stavů, λ –NFA
- 3 Operace zachovávající regularitu, Kleeneova věta, Regulární výrazy
- 4 Substituce, Homomorfismus, dvousměrné FA, Mealyho a Moorovy stroje
- 5 Rezerva neručím za gramatiky a 5. přednášce
- Gramatiky, Chomského hierarchie, víceznačnost
- Zásobníkové automaty
- 8 Chomského NF, Pumping Lemma pro CFL a Greibachové NF
- OYK náležení do CFL, uzávěrové vlastnosti, Dykovy jazyky
- Deterministické PDA, Gramatiky
- 11 Turingův stroj, rozšíření, Lineárně omezené automaty
- Univerzální TM, Diagonální jazyk, Nerozhodnutelné problémy
- 13 Postův korespondenční problém