

Universidade de Brasília

Departamento de Ciência da Computação

Aula 8 Representação Numérica de Inteiros

"42

The Answer to the Ultimate Question of Life, the Universe, and Everything" Douglas Adams

Base decimal (base 10):

Símbolos: 0,1,2,3,4,5,6,7,8,9

 \square Ex.: $124 = 1 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 = 124_{10}$

Base binária (base 2) :

Símbolos: 0,1

 \Box Ex.: $124 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 11111100_2$

Base octal (base 8):

Símbolos: 0,1,2,3,4,5,6,7

 \Box Ex.: 124 = 1×8²+ 7×8¹+ 4×8⁰=174₈

Base hexadecimal (base 16):

Símbolos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 \square Ex.: $124 = 7 \times 16^{1} + 12 \times 16^{0} = 7C_{16}$

Um número X_B de N dígitos na base B pode ser convertido em X_D na base D pela sua definição.

$$X_B = (d_{N-1}d_{N-2}d_{N-3} \dots d_2d_1d_0)$$

$$X_D = \left(\sum_{i=0}^{N-1} d_i \times B^i\right)_D$$

Esta definição e pode ser usada para realizar a conversão de um número em base qualquer para qualquer base, bastando que as operações aritméticas sejam feitas na base de destino.

00	0000	0
01	0001	1
02	0010	2
03	0011	3
04	0100	4
05	0101	5
06	0110	6
07	0111	7
80	1000	8
09	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Ex.:
$$1010 \ 1100 \ 0101_2 = AC5_{16}$$

$$10\ 1111_2 = 2F_{16}$$

Obs.:
$$0xFF = FF_{16}$$

Decimal: Bom para Humanos (pq?)

Binário: Bom para Computadores (pq?)

Hexa: Bom para quem?

Representação Numérica Computacional

- Bits são apenas Bits!! Sem nenhum significado inerente
 - □ Ex.: o que é: 10100101?????

Pode representar um número, caractere, instrução, cor, sinal de voz, música, temperatura, posição, taxa juros, \$,

O que podemos representar com N bits?

Apenas 2^N coisas!

Logo: Bom para coisas limitadas (contáveis)

Ex.: 26 Letras: 5 bits é suficiente

Caracteres ASCII: 7 bits (A,a,!): ASCII estendido (8 bits)

Caracteres UNICODE 13.0 (2020): 143.859 caracteres

UTF-8 UTF-16 UTF-32 (Unicode Transformation Format)

Se os bits representarem números:
 Convenções definem a relação entre bits e números.

Complicadores:

Números são infinitos!

Diferentes tipos: Naturais(\mathbb{N}), Inteiros(\mathbb{Z}), Reais(\mathbb{R}), Complexos(\mathbb{C})

Como representar os símbolos '-' e ',' ? Ex.: -2,5

Sinal e magnitude	Complemento de um	Complemento de dois
0000 = +0 $0001 = +1$ $0010 = +2$ $0011 = +3$ $0100 = +4$ $0101 = +5$ $0110 = +6$	0000 = +0 $0001 = +1$ $0010 = +2$ $0011 = +3$ $0100 = +4$ $0101 = +5$ $0110 = +6$	0000 = +0 $0001 = +1$ $0010 = +2$ $0011 = +3$ $0100 = +4$ $0101 = +5$ $0110 = +6$
0110 = +6 0111 = +7 1000 = -0 1001 = -1 1010 = -2 1011 = -3 1100 = -4 1101 = -5 1110 = -6 1111 = -7	0110 = +6 $0111 = +7$ $1000 = -7$ $1001 = -6$ $1010 = -5$ $1011 = -4$ $1100 = -3$ $1101 = -2$ $1110 = -1$ $1111 = -0$	0110 = +6 0111 = +7 1000 = -8 1001 = -7 1010 = -6 1011 = -5 1100 = -4 1101 = -3 1110 = -2 1111 = -1

Sinal e Magnitude:

- © Fácil de entender. Fácil de negar. Simetria na representação.
- ☼ Circuitos aritméticos complexos. Existe +0 e -0.

Complemento de 1:

- © Fácil de negar. Simetria na representação
- © Circuitos aritméticos ainda complexos. Existe +0 e -0

Complemento de 2:

- © Circuitos aritméticos mais simples. 1 único Zero.
- ⊗ Representação assimétrica (+3,-4) (maior faixa dinâmica! ⊚)
- Negação um pouco mais complexa.

Representação Numérica: Inteiros (Z)

- Como representar números negativos sem usar o símbolo '-'?
- Complemento de X_B da base B com N dígitos

$$X_B + (-X)_B = (B^N)_B$$

Ex.:
$$X_{10}=4$$
 (-X)₁₀=? obs.: $10000 = 9999+1$

- □ Complemento de 10 com 4 dígitos $0004+(-X)=(10^4)_{10}$ -X=10000-4 $(-X)_{10}=9996$
- □ Complemento de 2 com 4 bits: $0100+(-X)=(2^4)_2$ -X = 10000-0100 $(-X)_2=1100$
- □ Complemento de 3 com 4 dígitos $0011+(-X)=(3^4)_3$ -X=10000-0011 $(-X)_3=2212$
- □ Complemento de 8 com 4 dígitos $0004+(-X)=(8^4)_8$ -X=10000-4 $(-X)_8=7774$
- □ Complemento de 16 com 4 dígitos $0004+(-X)=(16^4)_{16}$ -X=10000-4 $(-X)_{16}=FFFC$

- Binário sem sinal (N) em N bits: $X = \sum_{i=0}^{N-1} b_i 2$
- Binário complemento de 2 em N bits
 - □ Interpretação: $X = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-1} b_i 2^i$
 - Negação: truque = inverter e somar 1 Ex.: 5 = 0101 $-5 = 1010 + 1 = 1011 = -2^3 + 2^1 + 2^0$ $X + \overline{X} = 111 \dots 111 = -1$ $-X = \overline{X} + 1$
 - Extensão de Sinal : repetir o MSB

Números de 32 bits com sinal:

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ _{bin} = 0_{dec}
0000 0000 0000 0000 0000 0000 0001<sub>bin</sub> = 1_{dec}
0111 1111 1111 1111 1111 1111 1111 1101<sub>bin</sub> = 2.147.483.645_{dec}
1000 0000 0000 0000 0000 0000 0000 0000_{hin} = -2.147.483.648_{dec}
1000 0000 0000 0000 0000 0000 0000 1_{bin} = -2.147.483.647_{dec}
1000 0000 0000 0000 0000 0000 0010_{hin} = -2.147.483.646_{dec}
1111 1111 1111 1111 1111 1111 1111 1101_{bin} = -3_{dec}
1111 1111 1111 1111 1111 1111 1111 1110_{bin} = -2_{dec}
1111 1111 1111 1111 1111 1111 1111 1111_{\text{bin}} = -1_{\text{dec}}
```


Operações em complemento de dois

Extensão de Sinal:

Converter números de n bits em números com mais de n bits:

Copiar o bit mais significativo para os outros bits

$$0010 \rightarrow 0000 \ 0010 = 2$$
 (infinitos zeros)
 $1010 \rightarrow 1111 \ 1010 = -6$ (infinitos uns)

Ex.: O campo imediato de 12 bits do RV32I é convertido em 32 bits para efetuar as operações aritméticas

addi
$$t0$$
, $t0$, -32 lw $t0$, $32(t0)$

Ex.: Carregar um byte (8 bits) da memória para um registrador (32 bits)

Ex.: Carregar uma half word (16 bits) da memória para um registrador (32 bits)

Operações em complemento de dois

Comparação de números:

Suponha que:

```
s0 armazene o número
1111 1111 1111 1111 1111 1111 1111<sub>2</sub>
s1 armazene o número
```

0000 0000 0000 0000 0000 0000 0001₂

Quais os valores de t0 e t1 dadas as instruções abaixo?

```
slt t0, s0, s1 #comparação com sinal sltu t1, s0, s1 #comparação sem sinal
```

Logo: t0=1 e t1=0

Exemplo: Considere a verificação de um índice *i* que aponte para um elemento válido de um vetor v[dim].

```
if ( i<0 || i >= dim )
goto indice_fora_limite;
```

```
# associando s0=i e s1=dim
blt s0,zero,indice_fora_limite
bge s0,s1,indice fora limite
```

bgeu s0, s1, indice fora do limite

Obs.: Tipos em C (processador de 64 bits)

```
8 bits: unsigned char: 0 ... 255 e char: -128 ...127

16 bits: unsigned short: 0 ... 65535 e short: -32768 ... 32767

32 bits: unsigned int: 0 ... 2<sup>32</sup>-1 e int: -2<sup>31</sup> ... 2<sup>31</sup>-1

64 bits: unsigned long long int: 0 ... 2<sup>64</sup>-1 e long long int: -2<sup>63</sup> ... 2<sup>63</sup>-1
```

Windows: unsigned long int: $0...2^{32}$ -1 e long int: $-2^{31}...2^{31}$ -1 Linux: unsigned long int: $0...2^{64}$ -1 e long int: $-2^{63}...2^{63}$ -1

Exatamente como base decimal (emprestar/vai 1s) descartando o transbordo

- Facilidade de operações do complemento de dois subtração pode ser feita usando adição de números negativos
- Overflow: resultado muito grande para a word finita do computador Somar dois números de n bits pode produzir um número de n+1 bits.

Ex.:
$$0101 = +5$$
 $1001 = -7$ $0110 = 6$ $+0100 = +4$ $+1010 = -6$ $-1000 = -8$ $1001 \neq 9$ $*0011 \neq -13$ $1110 \neq 14$

Note que o termo **overflow** não significa que um carry simplesmente "transbordou" (n de bits do resultado > n bits das parcelas)

Mas sim que o resultado não é representável na faixa dinâmica de n bits!!!

Detectando overflow

- Nenhum overflow quando: somar operandos com sinais diferentes
 - subtrair operandos com sinais iguais
- O overflow ocorre quando uma inconsistência matemática é gerada:

Dado dois números positivos A>0 e B>0

- √ somar dois positivos produz um negativo: A + B < 0
 </p>
- √ somar dois negativos produz um positivo: (-A) + (-B) > 0
- ✓ subtrair um negativo de um positivo e obtenha um negativo: A (-B) < 0
 </p>
- ✓ subtrair um positivo de um negativo e obtenha um positivo: (-A) B > 0
- Forma prática: Carry In do último dígito diferente do Carry Out

Efeitos do overflow

Na ISA RISC-V: Overflow não é detectado na aritmética inteira!
 Motivação: Simplificação do hardware

Porém: C vs FORTRAN

C: Não detecta overflow.

FORTRAN: Detecta overflow.

Logo, se for necessário detectar overflow, testes devem ser implementados no software.

Ex.: Para adição de números sem sinal

add t0, t1, t2 bltu t0, t1, overflow

- No x86 e no ARM, overflow aciona uma *flag* indicativa.
- No MIPS, overflow causa uma exceção.