# Malayalam Parser for Dataset Creation

**Design Presentation** 

Guided by: Dr. Mary Priya Sebastian Fathima Jennath Gautham C Sudheer Godwin Gino Mohammed Basil

## **Contents**

- Introduction
- Problem Definition
- Objectives
- Functional Requirements of the Product
- System Architecture
- Datasets (if any)
- UI Design
- Work Division Gantt Chart
- Software/Hardware Requirements
- Conclusion
- References

## Introduction

- Importance of Natural Language Processing (NLP) in regional languages
- Focus on the specific relevance of Malayalam in the context of NLP applications.
- Challenges associated with the scarcity of annotated datasets.
- Analyze both the syntactic and semantic structures of Malayalam sentences
- Applications such as sentiment analysis, named entity recognition, etc.
- Potential impact on advancing research and applications specific to the Malayalam

## **Problem Definition**

To create a Malayalam Parser for dataset creation, involving data collection, preprocessing, manual annotation, and training using various parsing approaches to address the scarcity of annotated datasets in Malayalam for NLP applications.

# **Objectives**

- Data Collection
  - a) Gather text data from diverse sources in Malayalam language
  - b) Aim for a sufficient volume of data to represent the language's usage patterns adequately
- Data Preprocessing
  - a) Perform tokenization, normalization, and cleaning of the collected data
  - b) Handle any inconsistencies or noise in the data to ensure quality

# **Objectives**

- Manual Annotation
  - a. Annotate a representative subset of the preprocessed data with grammatical and syntactic information
  - b. Employ linguistic experts or proficient annotators to ensure accurate annotations.
- Parser Development
  - a. Train the parser using the annotated dataset to understand Malayalam syntax and semantics

# **Functional Requirements**

- Parse and analyze Malayalam language text to identify linguistic components such as words, phrases, and sentences.
- Determine grammatical structure, syntax, and semantics of
  Malayalam sentences to facilitate accurate linguistic analysis.
- Provide functionality for part-of-speech tagging, syntactic parsing, and semantic analysis tailored for the Malayalam language.

# **Functional Requirements**

- Support for handling compound words, inflections, and variations in word forms commonly found in Malayalam text.
- Generation of a part-of-speech tagged dataset, named entity dataset, and sentimental tagged dataset, contributing to the advancement of language processing technologies in Malayalam
- Implement a user-friendly interface that allows users to input
  Malayalam text for analysis

# **System Design**



## **Data Collection and Cleaning Phase**



# **Data Preprocessing**



# **Training and Testing**



# **Output**



# **Algorithm**

#### 1. Data Collection:

Use web scraping techniques to gather Malayalam text data from online sources.

Apply language filtering to ensure only Malayalam text is retained.

Store the collected data in a structured format for further processing.

### 2. Data Cleaning:

Remove irrelevant information or non-textual content.

Eliminate errors and inconsistencies, such as misspellings or formatting issues.

Filter out special characters or symbols that do not contribute to the linguistic content.

## 3. Preprocessing:

Tokenization: Split the cleaned text into individual words or tokens.

Stemming: Reduce inflected words to their base form to simplify the text for analysis.

# **Algorithm**

#### 4. Annotation:

Manually annotate a subset of the preprocessed data with desired linguistic information Use linguistic expertise to ensure the accuracy and consistency of annotations.

#### 5. Feature Extraction:

Extract relevant features from the annotated data

Word embeddings, syntactic features, or semantic features.

Design feature representations that capture linguistic properties essential for the parsing.

#### 6. Model Selection:

Rule-set generation

Rule-based parsing and machine learning-based parsing.

# **Algorithm**

#### 7. Model Training:

Train the selected parsing model using the annotated data and extracted features. Optimize model parameters and hyperparameters to improve performance. Validate the model using cross-validation techniques to ensure generalization

#### 8. Evaluation:

Evaluate the trained model's performance on a separate test set Analyze the model's strengths and weaknesses to identify areas for improvement.

#### 9. Refinement:

Refine the parsing model based on the evaluation results and feedback Iteratively improve the model's accuracy and robustness

# **UI Design**

# **Malayalam Parser**

Step into a world of linguistic exploration! Dive into our webpage to uncover existing datasets and transform your input into a mosaic of named entities, POS tags, and sentiment analysis.

Try now, enter text

Submit

Click here to download and use our data sets

Name Entity 🕹

POS Tagged ₹

Sentimental 🕹



# **UI Design**

## **Malayalam Parser**

Step into a world of linguistic exploration! Dive into our webpage to uncover existing datasets and transform your input into a mosaic of named entities, POS tags, and sentiment analysis.

| Try now, enter text |  |  |
|---------------------|--|--|
|                     |  |  |
|                     |  |  |
|                     |  |  |
|                     |  |  |

| Name Entity | POS Tagged    |
|-------------|---------------|
|             |               |
|             |               |
|             |               |
| Sentime     | ntal Analysis |
|             |               |

Click here to download and use our data sets









## **Work Division**

#### Gantt chart



## **Software / Hardware Requirements**

- Windows 10 or later
- MacOS 10.13 High Sierra or later
- Ubuntu 18.04 LTS or later
- A modern processor (e.g., Intel Core i5 or equivalent)
- Sufficient RAM (at least 4GB)
- Available storage space for software installation
- Python (version 3.6 or later)
- Other programming languages and frameworks suitable for NLP development like NLTK, spaCy, scikit-learn, TensorFlow, etc. may be necessary

## **Conclusion**

A comprehensive Malayalam language processing tool facilitating accurate linguistic analysis and dataset generation for NLP applications.

- Parsing and analysis of Malayalam text, enabling identification of linguistic
  components and determination of grammatical structure, syntax, and semantics
- Generates part-of-speech tagged, named entity, and sentiment-tagged datasets
- Contribute significantly to the advancement of language processing technologies in Malayalam.

- Asopa, S., and Sharma, N. (2021) A Hybrid Parser Model for Hindi Language. Indian Journal of Computer Science and Engineering (IJCSE), Vol. 12(1).
- Chen, D., and Manning, C. D. (2014). A Fast and Accurate Dependency Parser using Neural Networks. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
- Nair, L. R. (2013). Language Parsing and Syntax of Malayalam Language. 2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013).
- Berger, A. L., Della Pietra, V. J., and Della Pietra, S. A. (1996). A Maximum Entropy Approach to Natural Language Processing. Association for Computational Linguistics, Vol 22(1).
- Mestry, A., Shende, S., Mahadik, A., and Virnodkar, S. (2014). A Parser: Simple English Sentence Detector and Correction. International Journal of Engineering Research and Technology (IJERT).

- Sethi, N., Agrawal, P., Madaan, V., and Singh, S. K. (2016). A Novel Approach to Paraphrase Hindi Sentences using Natural Language Processing. Indian Journal of Science and Technology, Vol 9(28).
- Smith, D. A., and Eisner, J. (2008). Dependency Parsing by Belief Propagation. Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, Page 145-156.
- Bharati, A., Kulkarni, A., and Chaudhury, S. (2007). English Parsers: Some Information-based Observations.
- Jayan, J. P., and R, R. (2009). A Morphological Analyzer for Malayalam A Comparison of Different Approaches. International Journal of Computer Science and Information Technology. Vol 2(2), Page 155-160.
- Vaidya, A., Choi, J. D., Palmer, M., and Narasimhan, B. (2011). Analysis of the Hindi Proposition Bank using Dependency Structure. Proceedings of the Fifth Law Workshop (LAW V), Page 21-29.

- Rajan, M., T.S, R., and Bhojane, V. (2014). Information Retrieval in Malayalam Using Natural Language Processing. International Journal of Scientific and Engineering Research, Vol 5(6)
- Rajan, M., Thirumalai, R., and Kumar, V. (2006). Development of a Tamil Parser using Natural Language Processing Techniques. A survey of the state of the art in tamil language technology Vol 6(10).
- Venkatesh, R., Kumar, S., and Arumugam, P. (2014). Building a Lexical Analyzer for Tamil Texts using NLP Approaches. 2014 International Conference on Advances in ICT for Emerging Regions (ICTer).
- Thavareesan, S., and Mahesan, S. (2019). Sentiment Analysis in Tamil Texts: A Study on Machine Learning Techniques and Feature Representation.2019 IEEE 14th Conference on Industrial and Information Systems (ICIIS).

- Pai, T. V., Devi, J. A., and Aithal, P. S. (2020). A Systematic Literature Review of Lexical Analyzer Implementation Techniques in Compiler Design. International Journal of Applied Engineering and Management Letters (IJAEML), Vol 4(2), Page 285-301.
- Simmons, R. F., and Burger, J. F. (1968). A Semantic Analyzer for English Sentences. Mechanical Translation and Computational Linguistics, Vol 11.

# Thank you