Lecture 4 MOSFET Circuits at DC

Taha Ahmed

1. A

1 The p-Channel MOSFET

To induce a channel for current flow between source and drain, a negative voltage is applied to the gate.

By increasing the magnitude of the negative v_{GS} beyond the magnitude of the threshold voltage V_{tp} , which by convention is negative, a p channel is established, the condition can be described as

$$v_{GS} \le V_{tp} \tag{1}$$

therefore, v_{OV} can be calculated by

$$v_{OV} \equiv v_{GS} - V_{tp} \tag{2}$$

Saturation mode occurs when

$$v_{DS} \le v_{OV} \tag{3}$$

1. Q Compare between n-channel MOSFET and p-channel MOSFET

	n-channel MOSFET	p-channel MOSFET
Symbol		
polarity of V_t	$V_{tn} o ext{positive}$	$V_{tp} ightarrow ext{negative}$
v_{OV}	$v_{OV} \equiv v_{GS} - V_{tp} \ + { m ve} \ + { m ve}$	$v_{OV} \equiv v_{GS} - V_{tp} - v_{e}$
In Saturation	$v_{DS} \geq v_{OV}$	$v_{DS} \leq v_{OV}$

2 MOSFET Circuits at DC

2. Q for the following circuit , find the labeled node voltages. The NMOS transistors have $V_t = 0.9 \text{ V}$ and $k_n'(W/L) = 1.5 \text{ mA/V}^2$.

2. A

For Q_2 transistor

$$i_{D2} = \frac{V_2 - (-2.5)}{1000}$$

= $V_2 + 2.5 \text{ mA}$ (1)

The gate source voltage V_{GS} is $V_G - V_S$ and hence V_{GS} is equal to $(2.5 - V_1)$

The drain current for NMOS Q_1 transistor is.

$$egin{align} i_{D1} &= rac{1}{2} k_n{'} \left(rac{W}{L}
ight) \left(v_{GS} - V_t
ight)^2 \ &= rac{1}{2} \left(1.5 imes 10^{-3} rac{ ext{A}}{ ext{V}^2}
ight) \left[(2.5 - V_1) - 0.9
ight]^2 \ &= 0.75 \left(1.6 - V_1
ight)^2 \end{array}$$

Similarly, The drain current for NMOS Q_2 transistor is.

$$i_{D2} = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{\sigma s} - V_t)^2$$

$$= \frac{1}{2} \left(1.5 \times 10^{-3} \frac{A}{V^2}\right) [(0 - V_2) - 0.9]^2$$

$$= 0.75 (-0.9 - V_2)^2$$
(2)

 $\therefore Q_1$ and Q_2 are in series

$$i_{D1} = i_{D2}$$
 $0.75 (-0.9 - V_2)^2 = 0.75 (1.6 - V_1)^2$
 $-0.9 - V_2 = 1.6 - V_1$
 $V_1 - V_2 = 2.5 \text{ V}$

Equate (1) with (2):

$$egin{aligned} 0.75 \left(-0.9-V_2
ight)^2 &= V_2 + 2.5 \ \ 0.75 \left(0.81+V_2^2+1.8V_2
ight) &= V_2 + 2.5 \ \ 0.6075 + 0.75V_2^2 + 1.35V_2 - V_2 - 2.5 &= 0 \ \ 0.75V_2^2 + 0.35V_2 - 1.8925 &= 0 \end{aligned}$$

Solve the quadratic equation

$$\therefore V_2 = -1.877$$
 or $V_2 = 1.37$ V (rejected)

We rejected the positive value because v_{GS} should be greater than V_t for the MOSFET to operate

Thus, the voltage V_2 is -1.877 V

From the equation $V_1 - V_2 = 2.5 \text{ V}$

$$V_1 - V_2 = 2.5 \text{ V}$$

$$V_1 = 2.5 - 1.877$$

$$V_1 = 0.623 \text{ V}$$

Thus, the drain voltage V_1 of Q_2 NMOS transistor is 0.623 V

3. A

$$egin{align} i_{D1} &= rac{1}{2} k_n' \left(rac{W}{L}
ight) (v_{GS} - V_t)^2 \ &= rac{1}{2} \left(1.5 imes 10^{-3} rac{ ext{A}}{ ext{V}^2}
ight) [(V_3 - V_4) - 0.9]^2 \ &= 0.75 \left(V_3 - V_4 - 0.9
ight)^2 \end{array}$$

$$egin{align} i_{D2} &= rac{1}{2} k_n' \left(rac{W}{L}
ight) \left(v_{GS} - V_t
ight)^2 \ &= rac{1}{2} \left(1.5 imes 10^{-3} rac{ ext{A}}{ ext{V}^2}
ight) \left[\left(V_4 - V_5\right) - 0.9
ight]^2 \ &= 0.75 \left(V_4 - V_3 - 0.9
ight)^2 \end{array}$$

- $\therefore Q_1$ and Q_2 are in series
- \therefore drain current of Q_1 is equal to the drain current of Q_2

$$0.75 (V_3 - V_4 - 0.9)^2 = 0.75 (V_4 - V_5 - 0.9)^2$$

$$\frac{V_3 + V_5}{2} = V_4$$
(1)

For Q_2 transistor :

$$i_{D2} = rac{V_3 - (0)}{1000} \ = V_5 \; \mathrm{mA}$$

$$i_{D1} = rac{5 - (V_3)}{1000}$$

$$= 5 - V_3 \text{ mA}$$

$$\because i_{D1} = i_{D2}$$

$$\therefore 5 - V_3 = V_5$$

$$V_3 + V_5 = 5$$

Substitute $V_3 + V_5 = 5$ in equation (1)

$$V_4 = rac{V_3 + V_5}{2} \ = rac{5}{2} = 2.5 \; \mathrm{V}$$

Thus, the drain voltage V_4 of Q_2 NMOS transistor is 2.5 V

$$0.75 (V_3 - V_4 - 0.9)^2 \text{ mA} = V_3 \text{ mA}$$

$$0.75 (V_3 - 2.5 - 0.9)^2 = V_3$$

Substitute $V_5 = 0.75 (V_3 - 3.4)^2$ in $V_3 + V_5 = 5$ V

$$V_3 + V_5 = 5 \text{ V}$$

$$V_3 + 0.75 (V_3 - 3.4)^2 = 5$$

$$V_3 + 0.75 \left(V_3^2 + 11.56 - 6.8V_5\right) = 5$$

$$0.75V_3^2 - 5.1V_3 + V_3 + 8.67 - 5 = 0$$

$$0.75V_3^2 - 4.1V_3 + 3.67 = 0$$

Solve the equation $0.75V_3^2 - 4.1V_3 + 3.67 = 0$ The drain voltage V_3 of Q_1 NMOS transistor is

1.13 V is rejected because $V_G > V_S$ for the MOSFET to be $> V_t$.

$$V_3 + V_5 = 5$$

$$V_5 = 5 - V_3$$

$$V_5 = 0.67 \mathrm{\ V}$$

Thus, the voltage V_5 is 0.67 V

[4. Q] In the circuit of the following figure, transistors and Q_2 have $V_t = 0.5V$, and the process transconductance parameter $k_n' = 400 \mu A/V^2$ Find V_1 , V_2 , and V_3 for each of the following cases:

a)
$$(W/L)_1 = (W/L)_2 = 10$$

b)
$$(W/L)_1 = 1.5(W/L)_2 = 10$$

4. A

a)

Due to the similarity of the circuit:

$$i_{D1} + i_{D2} = 200 \mu \text{A}$$

Therefore Drain current $i_{D1}=i_{D2}$ is $100\mu\mathrm{A}$

$$i_{D1} = \frac{1 - V_1}{5 \times 10^3} \text{ A}$$

$$i_{D1} = \frac{1}{2} k'_n (W/L)_1 (v_G - V_t)^2$$

$$= \frac{1}{2} (400 \times 10^{-6} \text{ A/V}^2) (10) (0 - V_3 - 0.5)^2$$

$$= 2 (V_3 + 0.5)^2 \text{ mA}$$
(1)

substitute with $i_{D1} = 100 \mu A$ in (1)

$$100 imes 10^{-6} \; \mathrm{A} = rac{1 - V_1}{5 imes 10^3} \; \mathrm{A}$$

$$0.5 = 1 - V_1$$

$$V_1 = 0.5 \text{ V}$$

Drain voltage of Q_1 NMOS transistor V_1 is 0.5V Similarly:

Drain voltage of Q_2 NMOS transistor V_2 is 0.5V

$$i_{D1} = 2 (V_3 + 0.5)^2 \text{ mA}$$

$$100 \times 10^{-6} \text{ A} = 2 (V_3 + 0.5)^2 (10^{-3}) \text{ A}$$

$$(V_3 + 0.5)^2 = 0.05$$

$$V_3 = -0.276 \text{ V}$$

Source voltage V_3 is -0.276 V

b)
$$(W/L)_1 = 10$$

 $(W/L)_2 = 6.66$

$$egin{aligned} i_{D1} &= rac{1}{2} k_n' (W/L)_1 \left(v_{GS} - V_t
ight)^2 \ &= rac{1}{2} \left(400 imes 10^{-6} \ \mathrm{A/V^2}
ight) \left(10
ight) \left(0 - V_3 - 0.7
ight)^2 \ &= 2 \left(V_3 + 0.5
ight)^2 \ \mathrm{mA} \ i_{D2} &= rac{1}{2} k_n' (W/L)_2 \left(v_{GS} - V_t
ight)^2 \ &= rac{1}{2} \left(400 imes 10^{-6} \ \mathrm{A/V^2}
ight) \left(6.66
ight) \left(0 - V_3 - 0.5
ight)^2 \ &= 1.33 \left(V_3 + 0.5
ight)^2 \ \mathrm{mA} \end{aligned}$$

Divide the two equations:

$$egin{aligned} rac{i_{D1}}{i_{D2}} &= rac{2\left(V_3 + 05
ight)^2 ext{ mA}}{1.33\left(V_3 + 0.5
ight)^2 ext{ mA}} \ rac{i_{D1}}{i_{D2}} &= 1.5 \end{aligned}$$

Relation between i_{D1} and i_{D2} is $i_{D1} = 1.5i_{D2}$

$$i_{D1} + i_{D2} = 200 \mu A$$

$$1.5i_{D2} + i_{D2} = 200 \times 10^{-6} \text{ A}$$

$$2.5i_{D2} = 200 \times 10^{-6} \text{ A}$$

$$i_{D2} = 80 \mu A$$

Drain current i_{D2} is 80μ A

Therefore Drain current i_{D1} is $120\mu\mathrm{A}$

We observed that
$$i_{D1} = rac{1-V_1}{5 imes 10^3} \; {
m A}$$

$$i_{D1} = rac{1 - V_1}{5 imes 10^3} \; {
m A}$$

$$120 imes 10^{-6} \; \mathrm{A} = rac{1 - V_1}{5 imes 10^3} \; \mathrm{A}$$

$$0.6 = 1 - V_1$$

$$V_1 = 0.4 \text{ V}$$

Drain voltage of Q_2 NMOS transistor V_1 is 0.4V and $i_{D2}=rac{1-V_2}{5 imes 10^3}$ A

$$i_{D2} = rac{1 - V_2}{5 imes 10^3} \; {
m A}$$

$$80 \times 10^{-6} \text{ A} = \frac{1 - V_2}{5 \times 10^3} \text{ A}$$

$$0.4 = 1 - V_1$$

$$V_2 = 0.6 \text{ V}$$

Drain voltage of Q_1 NMOS transistor V_1 is 0.6V

$$i_{D1}=2\left(V_{3}+0.5
ight)^{2}\,\,\mathrm{mA}$$
 $120 imes10^{-6}\,\,\mathrm{A}=2\left(V_{3}+0.5
ight)^{2}\left(10^{-3}
ight)\mathrm{A}$ $(V_{3}+0.5)^{2}=0.06$ $V_{3}=-0.255\,\,\mathrm{V}$

Source voltage V_3 is $-0.255~\mathrm{V}$