Содержание

1	Непрерывность функций одной переменной, свойства непрерывных функций.	3
2	Функции многих переменных, полный дифференциал и его геометрической смысл. Достаточные условия дифференцируемости. Градиент.	6
3	Определённый интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции.	8
4	Неявные функции. Существование, непрерывность и дифференцируе- мость неявных функций	11
5	Числовые ряды. Сходимость рядов. Критерий сходимости Коши. Достаточные признаки сходимости.	14
6	Абсолютная и условная сходимость ряда. Свойство абсолютно сходящихся рядов. Умножение рядов.	17
7	Ряды функций. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов (непрерывность суммы, почленное интегрирование и дифференцирование).	19
8	Степенные ряды в действительной и комплексной области. Радиус сходимости, свойства степенных рядов (почленное интегрирование, дифференцирование). Разложение элементарных функций.	22
9	Несобственные интегралы и их сходимость. Равномерная сходимость интегралов, зависящих от параметра. Свойства равномерно сходящихся интегралов.	25
10	Ряды Фурье. Достаточные условия представимости функции рядом Фу- рье.	28
11	Теоремы Остроградского и Стокса. Дивергенция. Вихрь.	31
12	Линейные пространства, их подпространства. Базис. Размерность. Теорема о ранге матрицы. Система линейных уравнений. Геометрическая интерпретация системы линейных уравнений. Фундаментальная система решений системы однородных линейных уравнений. Теорема Кронекера—Капелли.	
13	Билинейные и квадратичные функции и формы в линейных пространствах и их матрицы. Приведение к нормальному виду. Закон инерции.	36
14	Линейные преобразования линейного пространства, их задание матрицами. Характеристический многочлен линейного преобразования. Собственные векторы и собственные значения, связь последних с характеристическими корнями.	38
15	Евклидово пространство. Ортонормированные базисы. Ортогональные матрицы. Симметрические преобразования. Приведение квадратичной	

	формы к главным осям.	40
16	Группы, подгруппы, теорема Лагранжа. Порядок элемента. Циклические группы, факторгруппа. Теорема о гомоморфизмах.	43
17	Аффинная и метрическая классификация кривых и поверхностей второго порядка. Проективная классификация кривых.	46
18	Дифференциальное уравнение первого порядка. Теорема о существовании и единственности решения.	50
19	Линейное дифференциальное уравнение второго порядка. Линейное однородное уравнение. Линейная зависимость функций. Фундаментальная система решений. Определитель Вронского. Линейное неоднородное уравнение.	52
20	Линейное уравнение с постоянными коэффициентами: однородное и неоднородное	54
21	Функции комплексного переменного. Условия Коши-Римана. Геометрический смысл аргумента и модуля производной.	57
22	Элементарные функции комплексного переменного и даваемые ими конформные отображения. Простейшие многозначные функции. Дробнолинейные преобразования.	59
23	Теорема Коши об интеграле по замкнутому контуру. Интеграл Коши. Ряд Тейлора.	62
24	Ряд Лорана. Полюс и существенно особая точка. Вычеты.	65
25	Криволинейные координаты на поверхности. Первая квадратичная форма поверхности.	68
26	Вторая квадратичная форма поверхности. Нормальная кривизна линии на поверхности. Теорема Менье.	70
27	Главные направления и главные кривизны. Формула Эйлера.	72

БИЛЕТ 1.

Непрерывность функций одной переменной, свойства непрерывных функций.

Рассмотрим подмножество $X \subset \mathbb{R}$ и функцию одной переменной $f \colon X \to \mathbb{R}$.

Определение. Функция f называется непрерывной в точке $x_0 \in X$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x \in X \cap (x_0 - \delta, x_0 + \delta) \ |f(x) - f(x_0)| < \varepsilon.$$

В терминах пределов это формулируется следующим образом:

Определение. Функция f непрерывна в точке $x_0 \in X$ тогда и только тогда, когда

$$\lim_{X\ni x\to x_0} f(x) = f(x_0).$$

Определение. Функция f называется непрерывной на множестве $X_1 \subset X$, если она непрерывна в каждой точке $x_0 \in X_1$.

Определение. Функция f называется равномерно непрерывной на множестве $X_1 \subset X$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x_1, x_2 \in X, \ |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Перечислим локальные свойства непрерывных функций:

- (1) Пусть функции f(x), g(x) непрерывны в точке x_0 . Тогда $f(x) + g(x), f(x) g(x), f(x) \cdot g(x)$ непрерывны в точке x_0 .
- (2) Пусть функция f(x) непрерывна в точке x_0 . Тогда существует такая окрестность $U(x_0)$, что f(x) ограничена на $U(x_0) \cap X$.
- (3) Пусть f(x) непрерывна в точке x_0 , и $f(x_0) > 0$ ($f(x_0) < 0$). Тогда существует такая окрестность $U(x_0)$, что f(x) > 0 (f(x) < 0) на $U(x) \cap X$.
- (4) Пусть функции f(x), g(x) непрерывны в точке x_0 , и $g(x_0) \neq 0$. Тогда f(x)/g(x) определена в некоторой окрестности $U(x_0) \cap X$ и непрерывна в точке x_0 .

Теорема. Пусть множества $X, Y, Z \subset \mathbb{R}$, функция $f: X \to Y$ непрерывна в точке x_0 и $g: Y \to Z$ непрерывна в $y_0 = f(x_0)$. Тогда композиция $g \circ f$ непрерывна в x_0 .

Доказательство. По определению $\forall \varepsilon > 0, \ \exists \tau > 0$ такое, что из $|y-y_0| < \tau$ следует $|g(y)-g(y_0)| < \varepsilon$. Далее $\exists \delta > 0$ такое, что из $|x-x_0| < \delta$ следует $|f(x)-f(x_0)| < \tau$. Значит, при $||x-x_0| < \delta, \ |(g\circ f)(x)-(g\circ f)(x_0)| < \varepsilon$.

Теорема (Коши о промежуточном значении). Пусть функция $f:[a,b] \to R$ непрерывна на отрезке [a,b]. Пусть, для определенности, f(a) < f(b). Тогда

$$\forall x \in [f(a), f(b)], \ \exists c \in [a, b] \colon f(c) = x.$$

Доказательство. По индукции построим систему отрезков $[a_k,b_k]$ таких, что $b_k-a_k=\frac{b-a}{2^k}, [a_k,b_k]\subset [a_{k-1},b_{k-1}],$ и $f(a_k)\leq x\leq f(b_k).$

Положим $[a_0,b_0]=[a,b]$. Далее, разобьём отрезок $[a_{k-1},b_{k-1}]$ пополам, появится $c_{k-1}=\frac{a_{k-1}+b_{k-1}}{2}$, и выберем тот из отрезков $[a_{k-1},c_{k-1}]$ и $[c_{k-1},b_{k-1}]$, образ которого содержит x.

Полученная система отрезков удовлетворяет теореме о вложенных отрезках, согласно которой существует единственное c такое, что $\{c\} = \bigcap_{k=0}^{\infty} [a_k, b_k]$. Кроме того, $f(a_k) \leq x$, $\lim_{k \to \infty} a_k = c$, поэтому $\lim_{k \to \infty} f(a_k) = f(c)$. Следовательно, $f(c) \leq x$. Рассмотрение $f(b_k)$ даёт обратное неравенство $f(c) \geq x$, поэтому f(c) = x

Определение. Подмножество $X \subset R$ называется *компактным*, если из любого его открытого покрытия можно выбрать конечное подпокрытие.

Лемма (Бореля–Лебега). Любой отрезок [a,b] является компактом.

Доказательство. Предположим, что существует такое открытое покрытие $\{U_{\alpha}\}, \alpha \in A$, из которого нельзя выбрать конечное подпокрытие. Построим по индукции систему отрезков $[a_k,b_k]$ таких, что $b_k-a_k=\frac{b-a}{2^k}, [a_k,b_k]\subset [a_{k-1},b_{k-1}],$ и $\{U_{\alpha}\}$ образуют открытое покрытие $[a_k,b_k]$, из которого нельзя выбрать конечное. Положим $[a_0,b_0]=[a,b]$. Далее, разобьем отрезок $[a_{k-1},b_{k-1}]$ пополам, $c_{k-1}=\frac{a_{k-1}+b_{k-1}}{2}$, и выберем тот из отрезков $[a_{k-1},c_{k-1}]$ и $[c_{k-1},b_{k-1}]$, для которого нельзя выбрать конечное подпокрытие. Отметим, что если для обеих половин можно, то можно и для всего отрезка, что противоречит предположению индукции.

В силу теоремы о вложенных отрезках, существует единственное c такое, что $\{c\} = \bigcap_{k=0}^{\infty} [a_k, b_k]$. Поскольку система $\{U_{\alpha}\}$ образует покрытие [a, b], существует α такое, что $c \in U_{\alpha}$. В силу открытости U_{α} , существует такое ε , что $(c-\varepsilon, c+\varepsilon) \subset U_{\alpha}$. Далее, существует k такое, что $b_k-a_k < \varepsilon$. Поскольку $c \in [a_k, b_k]$, $[b_k, a_k] \subset (c-\varepsilon, c+\varepsilon) \subset U_{\alpha}$. Значит, указанный отрезок может быть покрыт одним множеством из системы $\{U_{\alpha}\}$, что противоречит выбору отрезка $[a_k, b_k]$. Полученное противоречие доказывает лемму.

Следующие Теоремы формулируются для компактов. В частности, они справедливы для отрезков по доказанной выше Лемме. Считаем, что везде далее множество $K \subset \mathbb{R}$ — компакт, $f \colon K \to \mathbb{R}$ и f непрерывна на K.

Теорема (Первая теорема Вейерштрасса). Функция f ограничена на множестве K. То есть,

$$\exists M > 0 \colon \forall x \in K \mid f(x) \mid < M.$$

Доказательство. По свойству (2) непрерывных функций, для любого $x \in K$ существуют такие открытая окрестность U(x) и число M(x)>0, что $|f(y)|< M(x) \ \forall y\in K\cap U(x)$. Система множеств $U(x), x\in K$, образует открытое покрытие K, и из него можно выбрать конечное подпокрытие $U(x_1),\ldots,U(x_n)$.

Положим $M=\max_i M(x_i)$, тогда $\forall x\in K,\ \exists i$ такое, что $x\in U(x_i)$, откуда $|f(x)|< M(x_i)\leq M.$

Теорема (Вторая теорема Вейерштрасса). Пусть $m = \inf_{x \in K} f(x), \ M = \sup_{x \in K} f(x)$. Они будут конечны по первой теореме Вейерштрасса. Тогда

$$\exists x_m, x_M : f(x_m) = m, f(x_M) = M.$$

Доказательство. Продемонстрируем существование x_M . Предположим, что x_M не существует, тогда $f(x) < M \ \forall x \in K$. Отсюда, функция $g(x) = \frac{1}{M - f(x)}$ определена и непрерывна на K по свойству (4). Тогда g(x) > 0.

По первой теореме Вейерштрасса, существует $A>0,\ g(x)< A,\ \forall x\in K.$ Тогда $M-f(x)>\frac{1}{A},\ f(x)< M-\frac{1}{A},\$ и $M\neq \sup_{x\in K}f(x).$ Получили противоречие с первоначальным предположением.

Существование x_m доказывается аналогичным рассуждением.

Теорема (Кантора). Функция f равномерно непрерывна на множестве K.

Доказательство. Зафиксируем $\varepsilon > 0$. По определению непрерывной функции:

$$\forall x \in K \ \exists \delta(x) \colon |y - x| < \delta(x), y \in K \ \Rightarrow |f(y) - f(x)| < \frac{\varepsilon}{2}.$$

Положим $U(x) = \left(x - \frac{\delta(x)}{2}, x + \frac{\delta(x)}{2}\right)$. Эти интервалы образуют открытое покрытие K. Следовательно, из них можно выбрать конечное подпокрытие $U(x_1), \dots, U(x_n)$.

Пусть $\delta = \min_i \frac{\delta\left(x_i\right)}{2}$ и $|y-z| < \delta,\ y,z \in K.$ Тогда $\exists i$ такое, что $y \in U\left(x_i\right)$, откуда $|y-x_i| < \delta < \delta\left(x_i\right)$.

По неравенству треугольника имеем $|z-x_i|<2\delta\leq\delta\,(x_i)$. Отсюда получаем

$$|f(y) - f(x_i)| < \frac{\varepsilon}{2}, \quad |f(z) - f(x_i)| < \frac{\varepsilon}{2},$$

а следовательно, $|f(y) - f(z)| < \varepsilon$.

БИЛЕТ 2.

Функции многих переменных, полный дифференциал и его геометрической смысл. Достаточные условия дифференцируемости. Градиент.

Определение. Пусть $X \subset \mathbb{R}^n$. Отображение $f \colon X \to \mathbb{R}$ называется функцией многих переменных.

Всюду далее множество X считаем открытым. Вудем говорить, что $f(x) = \overline{\overline{o}}(x)$, если функция f(x) определена в окрестности нуля, и $\frac{f(x)}{||x||} \to 0$ при $x \to 0$.

Определение. Функция $f: X \to \mathbb{R}$ называется дифференцируемой в точке $\bar{x} \in X$, если для некоторой линейной функции $L(\bar{x})$ для любого $\bar{y} \in X$ справедливо представление

$$f(\bar{y}) - f(\bar{x}) = L(\bar{y} - \bar{x}) + \overline{\bar{o}}(\bar{y} - \bar{x}).$$

 $L(\bar{x})$ из вышеуказанной формулы называется дифференциалом функции $f(\bar{x})$ в точке \bar{x} .

Замечание (Геометрический смысл полного дифференциала). Уравнение

$$f(\bar{x}) = f(\bar{x}) + L(\bar{y} - \bar{x})$$

является уравнением гиперплоскости в \mathbb{R}^{n+1} . Дифференцируемость функции в точке \bar{x} тогда означает, что эта плоскость касается графика функции в точке \bar{x} .

Фиксируем в \mathbb{R}^n базис e_1,\dots,e_n . Пусть ξ_1,\dots,ξ_n — дуальный базис. В частности, любой линейный функционал L(x) раскладывается по нему как $L=\sum_{i=1}^n L(e_i)\cdot \xi_i$.

Определение. *Частной производной* $\left. \frac{\partial f}{\partial x^i} \right|_{\bar{x}}$ называется следующий предел (при условии, что он существует):

$$\lim_{\Delta x \to 0} \frac{f(\bar{x} + \Delta x \cdot e_i) - f(\bar{x})}{\Delta x}.$$

Лемма. Если функция f дифференцируема в точке \bar{x} , то существуют все частные про-изводные $\left.\frac{\partial f}{\partial x^i}\right|_{-}$, u

$$L = \sum_{i=1}^{n} \left. \frac{\partial f}{\partial x^{i}} \right|_{\bar{x}} \cdot \xi_{i}.$$

Доказательство. Достаточно показать, что для для каждого i, частная производная $\frac{\partial f}{\partial x^i}\Big|_{\bar{x}}$ существует и равна $L(e_i)$.

$$\lim_{\Delta x \to 0} \frac{f(\bar{x} + \Delta x \cdot e_i) - f(\bar{x})}{\Delta x} = \lim_{\Delta x \to 0} \frac{L(\Delta x \cdot e_i) + \overline{o}(\Delta x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x L(e_i)}{\Delta x} + \lim_{\Delta x \to 0} \frac{\overline{o}(\Delta x)}{Dx} = L(e_i).$$

Тем самым Лемма доказана.

Определение. Вектор

$$\operatorname{grad} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \Big|_{\bar{x}} \cdot e_{i}$$

называется градиентом функции f.

Замечание. Если f дифференцируема в точке \bar{x} , то $L(\bar{y}) = \langle \operatorname{grad} f, \bar{y} \rangle$.

Теорема. Если все частные производные функции $f(\bar{x})$ существуют в окрестности точки \bar{x} и непрерывны в точке \bar{x} , то функция f дифференцируема в точке \bar{x} .

Доказательство. Фиксируем точки \bar{x} и \bar{y} , $\bar{y} - \bar{x} = \overline{\Delta x} = \sum_{i=1}^n \Delta x^i \cdot e_i$. Положим $\bar{x}_k = \bar{x} + 1$

$$\sum_{i=1}^k \Delta x^i \cdot e_i.$$
 В частности, $\bar{x}_0 = \bar{x}, \bar{x}_n = \bar{y}.$ Кроме того, $\bar{x}_k - \bar{x}_{k-1} = \Delta x^k \cdot e_k.$

Из последнего равенства имеем:

$$f(\bar{x}_k) - f(\bar{x}_{k-1}) = \left. \frac{\partial f}{\partial x^k} \right|_{\bar{x}_{k-1}} \Delta x^k + \overline{\overline{o}}(\Delta x^k \cdot e_k).$$

Суммируя по k, находим

$$f(\bar{y}) - f(\bar{x}) = \sum_{k=1}^{n} \frac{\partial f}{\partial x^{k}} \Big|_{\bar{x}_{k-1}} \Delta x^{k} + \sum_{k=1}^{n} \overline{\partial} (\Delta x^{k} \cdot e_{k}) = \sum_{k=1}^{n} \frac{\partial f}{\partial x^{k}} \Big|_{\bar{x}_{k-1}} \Delta x^{k} + \overline{\partial} (\overline{\Delta x}).$$

Наконец, из непрерывности $\left.\frac{\partial f}{\partial x^k}\right|_{\bar{y}}$, видим, что $\left.\frac{\partial f}{\partial x^k}\right|_{\bar{y}}-\left.\frac{\partial f}{\partial x^k}\right|_{\bar{x}}\to 0$ при $y\to x$, и

$$\left(\left.\frac{\partial f}{\partial x^k}\right|_{\bar{y}} - \left.\frac{\partial f}{\partial x^k}\right|_{\bar{x}}\right) \cdot \Delta x^k = \overline{\bar{o}}(\overline{\Delta x}).$$
 Пользуясь этим, находим искомую разность:

$$f(\bar{y}) - f(\bar{x}) = \sum_{k=1}^{n} \left. \frac{\partial f}{\partial x^{k}} \right|_{\bar{x}} \Delta x^{k} + \overline{\overline{o}}(\overline{\Delta x}) = <\operatorname{grad} f, \bar{y} - vx > + \overline{\overline{o}}(\overline{\Delta x}).$$

7

БИЛЕТ 3.

Определённый интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции.

Определение. Разбиением T отрезка [a,b] называется любой набор чисел t_0, \ldots, t_n такой, что $a = t_0 < \cdots < t_n = b$.

Определение. Число $d(T) = \max_{k=1...n} (t_k - t_{k-1})$ называется диаметром разбиения T.

Определение. Разбиение T с дополнительно выбранными точками $\xi_k \in [t_{k-1}, t_k], k = 1, \ldots, n$, называется размеченным разбиением (обозн. T_{ξ}).

Рассмотрим для каждого $\delta>0$ множество таких T_{ξ} , что $d(T_{\xi})<\delta$. Эти множества образуют базу $d(T)\to 0$ на множестве всех размеченных разбиений.

Рассмотрим функцию $f: [a, b] \to R$.

Определение. Сумма

$$\sigma\left(f, T_{\xi}\right) = \sum_{k=1}^{n} f\left(\xi_{k}\right) \left(t_{k} - t_{k-1}\right)$$

называется интегральной суммой функции f относительно разбиения T_{ε} .

Определение. Если существует предел

$$I = \lim_{d(T) \to 0} \sigma(f, T_{\xi}),$$

то он называется $onpeden\ddot{e}$ нным интегралом функции f на ompeske [a,b], и обозначается

$$I = \int_{a}^{b} f(x)dx.$$

Замечание. Функция f(x) в этом случае называется интегрируемой по Риману на отрезке [a,b].

Следующие свойства определенного интеграла следуют из соответствующих свойств интегральных сумм и предельных переходов:

(1)
$$\int_{a}^{b} \lambda_{1} f(x) + \lambda_{2} g(x) dx = \lambda_{1} \int_{a}^{b} f(x) dx + \lambda_{2} \int_{a}^{b} g(x) dx$$
, если интегралы из правой части существуют.

(2) Если
$$\forall x \in [a,b], f(x) \leq g(x), \text{ то } \int\limits_a^b f(x) dx \leq \int\limits_a^b g(x) dx.$$

(3)
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

(4) Если
$$c$$
 — константа, то $\int\limits_{a}^{b}cdx=c(b-a).$

Теорема. Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на нём.

8

Доказательство. Проверим критерий Коши существования предела по базе. Для этого выберем $\varepsilon > 0$. Так как функция f(x) непрерывна на [a,b], то она равномерно непрерывна на [a,b]. Значит

$$\delta = \delta(\varepsilon) > 0$$
: $\forall x, y \in [a, b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2(b - a)}$.

Рассмотрим множество $B = \{T_{\xi} | d(T) < \delta\}$, которое является одним из множеств, образующих базу. По критерию Коши, достаточно показать, что

$$\sup_{T^1_\zeta, T^2_\eta \in B} \left| \sigma(f, T^1_\zeta) - \sigma(f, T^2_\eta) \right| \leq \varepsilon.$$

Проверим неравенство $|\sigma(f,T_{\zeta}^1)-\sigma(f,T_{\eta}^2)|\leq \varepsilon$ для произвольных $T_{\zeta}^1,T_{\eta}^2\in B$. Объединим "разбивающие" точки как упорядоченные наборы: $T=T^1\cup T^2$. Выберем $\xi_k=t_k$ для всех точек T, получим размеченное разбиение T_{ξ} . Далее, оцениваем:

$$\left| \sigma(f, T_{\zeta}^{1}) - \sigma(f, T_{\xi}) \right| = \left| \sum_{k=1}^{m} f(\zeta_{k})(t_{k}^{1} - t_{k-1}^{1}) - \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \right|,$$

где m — число точек в разбиении T^1 , а n — число точек в разбиении T. Далее, отрезки разбиения T получаются разбиением отрезков T^1 точками разбиения T^2 . Поэтому можно определить k(i) условием $[t_{i-1},t_i]\subset [t^1_{k(i)-1},t^1_{k(i)}]$. Далее, $\sum_{i:k(i)=k}(t_i-t_{i-1})=t_k-t_{k-1}$ (длина

отрезка равна сумме длин его частей). Тогда, возвращаясь к вышеуказанной оценке:

$$\left| \sum_{k=1}^{m} f(\zeta_{k})(t_{k}^{1} - t_{k-1}^{1}) - \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \right| =$$

$$= \left| \sum_{k=1}^{m} \sum_{i:k(i)=k} f(\zeta_{k(i)})(t_{i} - t_{i-1}) - \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \right| =$$

$$= \left| \sum_{i=1}^{n} (f(\zeta_{k(i)}) - f(\xi_{i}))(t_{i} - t_{i-1}) \right| \leq$$

$$\leq \sum_{i=1}^{n} \left| f(\zeta_{k(i)}) - f(\xi_{i}) \right| (t_{i} - t_{i-1}) \leq$$

$$\leq \sum_{i=1}^{n} \frac{\varepsilon}{2(b-a)}(t_{i} - t_{i-1}) = \frac{\varepsilon}{2}$$

Аналогичным образом заключаем, что

$$\left|\sigma(f, T_{\zeta}^{1}) - \sigma(f, T_{\xi})\right| \leq \frac{\varepsilon}{2}.$$

Следовательно, из неравенства треугольника получаем

$$\left| \left| \sigma(f, T_{\zeta}^{1}) - \sigma(f, T_{\eta}^{2}) \right| \le \varepsilon.$$

Определение. Функция $F(x) \colon [a,b] \to \mathbb{R}$ называется *первообразной функции* $f(x) \colon [a,b] \to \mathbb{R}$, если F(x) дифференцируема на (a,b) и $\forall x \in (a,b) \colon F'(x) = f(x)$

Теорема. Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда $F(x) = \int_{a}^{x} f(x)dx$ является первообразной функции f(x).

Доказательство. Зафиксируем произвольное $x_0 \in (a, b)$. Тогда

$$F(x_0 + \Delta x) - F(x_0) =$$

$$= \int_{x_0}^{x_0 + \Delta x} f(x) dx =$$

$$= \int_{x_0}^{x_0 + \Delta x} f(x) + f(x_0) - f(x_0) dx =$$

$$= f(x_0) \Delta x + \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx.$$

Так как функция f непрерывна в точке x_0 , то

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \colon |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Если $\Delta x < \delta$, то $|x - x_0| < \delta$ для любого x из отрезка интегрирования в рассматриваемом интеграле. Следовательно,

$$\left| \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0) \right| =$$

$$= \frac{1}{\Delta x} \left| \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx \right| \le$$

$$\le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} |f(x) - f(x_0)| dx \le$$

$$\le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} \varepsilon dx = \varepsilon$$

Таким образом, если $\Delta x < \delta$, то для любого ε будет существовать такое $\delta(\varepsilon)$, что $\left| \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0) \right| \le \varepsilon$. Следовательно,

$$\lim_{\Delta x \to 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} = f(x_0) \implies F'(x_0) = f(x_0).$$

10

БИЛЕТ 4.

НЕЯВНЫЕ ФУНКЦИИ. СУЩЕСТВОВАНИЕ, НЕПРЕРЫВНОСТЬ И ДИФФЕРЕНЦИРУЕМОСТЬ НЕЯВНЫХ ФУНКЦИЙ

Определение. Если переменная u, которая является по смыслу функцией аргументов x^1, x^2, \ldots, x^n , задаётся функциональным уравнением вида

$$F(u, x^1, x^2, \dots, x^n) = 0,$$

то говорят, что u как функция аргументов x_1, x_2, \ldots, x_n задана неявно.

Интересен вопрос о том, при каких условия уравнение $F\left(u,x^{1},x^{2},\ldots,x^{n}\right)=0$ однозначно определяет явную функцию $u=\varphi\left(x^{1},x^{2},\ldots,x^{n}\right)$, а также при каких условиях эта явная функция является непрерывной и дифференцируемой.

Теорема (О существовании и непрерывности неявной функции). Пусть функция $F(x^1, \ldots, x^n, u)$ определена и непрерывна в некоторой окрестности U точки $(x_0^1, \ldots, x_0^n, u_0)$, строго возрастает по и при каждом фиксированном наборе x^1, \ldots, x^n , и $F(x_0^1, \ldots, x_0^n, u_0) = 0$. Тогда существует окрестность V точки (x_0^1, \ldots, x_0^n) , и в ней единственная функция $\varphi(x^1, \ldots, x^n)$, такая, что выполняются следующие условия:

- (i) $F(x^1, ..., x^n, \varphi(x^1, ..., x^n)) = 0, \forall (x^1, ..., x^n) \in V;$
- (ii) $\varphi(x_0^1,\ldots,x_0^n)=u_0;$
- (iii) φ непрерывна в V.

Доказательство. Зафиксируем такое $\varepsilon > 0$, что $I = [u_0 - \varepsilon, u_0 + \varepsilon], \{(x_0^1, \dots, x_0^n)\} \times I \subset U$. Тогда $F(x_0^1, \dots, x_0^n, u)$ как функция u возрастает на I, откуда $F(x_0^1, \dots, x_0^n, u_0 - \varepsilon) < 0$, $F(x_0^1, \dots, x_0^n, u_0 + \varepsilon) > 0$.

В силу непрерывности функции F в этих точках, существует окрестность V точки (x_0^1,\ldots,x_0^n) такая, что $F(x^1,\ldots,x^n,u_0-\varepsilon)<0$, $F(x^1,\ldots,x^n,u_0+\varepsilon)>0$ при $(x^1,\ldots,x^n)\in V$. Окрестность V можно выбрать так, что $V\times I\subset U$. Тогда для каждого $(x^1,\ldots,x^n)\in V$, в силу непрерывности функции $F(x^1,\ldots,x^n,u)$ на I по u и теоремы Коши о промежуточном значении, существует такое $u=\varphi(x^1,\ldots,x^n)\in I$, что $F(x^1,\ldots,x^n,u)=0$. Итак, построена функция φ , удовлетворяющая условию (i).

Для каждого $(x^1, \ldots, x^n) \in V$, в силу строго возрастания $F(x^1, \ldots, x^n, u)$ по u на I, найдется лишь одно $u \in I$ такое, что $F(x^1, \ldots, x^n, u) = 0$. Отсюда вытекает единственность функции φ . Кроме того, взяв $(x^1, \ldots, x^n) = (x_0^1, \ldots, x_0^n)$, получим $u = u_0$, что доказывает условие (ii).

Наконец, заметим, что построенная функция φ обладает свойством $\varphi(x^1,\ldots,x^n)\in I$ при $x^1,\ldots,x^n\in V$. Возьмём произвольное $\varepsilon'<\varepsilon$, и построим аналогичным методом функцию φ' на окрестности V'. Пусть $D=V\cap V'$, тогда в силу единственности $\varphi=\varphi'$. Следовательно, $|\varphi(x^1,\ldots,x^n)-\varphi(x^1_0,\ldots,x^n_0)|\leq \varepsilon'$ на D. Поскольку ε' произвольно, получаем непрерывность функции φ в точке (x^1_0,\ldots,x^n_0) .

Возьмём любую другую точку $x^1,\ldots,x^n\in V$, положим $u=\varphi(x^1,\ldots,x^n)$. Существует окрестность точки (x^1,\ldots,x^n,u) , лежащая в U, и в ней применима уже доказанная часть этой теоремы. Согласно ей, существует окрестность V' точки x^1,\ldots,x^n и функция φ' на V', которая, в частности, непрерывна в x^1,\ldots,x^n . Можно выбрать $V'\subset V$, тогда, в силу единственности, $\varphi'=\varphi$ на V'. Это означает, что функция φ непрерывна в x^1,\ldots,x^n , а в силу произвольности x^1,\ldots,x^n , φ непрерывна и на V.

Теорема (О дифференцировании неявной функции). Пусть функция $F(x^1, ..., x^n, u)$ удовлетворяет условиям предыдущей Теоремы и дифференцируема в точке $(x_0^1, ..., x_0^n, u_0)$. Тогда функция φ будет дифференцируема в точке $x_0^1, ..., x_0^n$, и

$$\varphi_{x^i}(x_0^1,\ldots,x_0^n) = -\frac{F_{x^i}(x_0^1,\ldots,x_0^n,u_0)}{F_u(x_0^1,\ldots,x_0^n,u_0)}.$$

Доказательство. Рассмотрим произвольное $(\Delta x^1,\ldots,\Delta x^n)$. Пусть $\Delta u=\varphi(x_0^1+\Delta x^1,\ldots,x_0^n+\Delta x^n)-\varphi(x^1,\ldots,x^n)$. Тогда

$$0 = F(x_0^1 + \Delta x^1, \dots, x_0^n + \Delta x^n, u_0 + \Delta u) - F(x_0^1, \dots, x_0^n, u_0) =$$

$$= (F_{x^1}(x_0^1, \dots, x_0^n, u_0) + \alpha^1) \Delta x^1 + \dots + (F_{x^n}(x_0^1, \dots, x_0^n, u_0) + \alpha^n) \Delta x^n + (F_u(x_0^1, \dots, x_0^n, u_0) + \beta) \Delta u,$$

где $\alpha^1, \ldots, \alpha^n, \beta$ – функции от $(\Delta x^1, \ldots, \Delta x^n, \Delta u)$, стремящиеся к нулю при стремлении к нулю аргументов. Первое равенство следует из определения неявной функции, второе — из дифференцируемости функции F в точке $(x_0^1, \ldots, x_0^n, u_0)$.

Можно считать α^i и β функциями от $(\Delta x^1, \dots, \Delta x^n)$, поскольку Δu есть функция от $(\Delta x^1, \dots, \Delta x^n)$, и она стремится к нулю при стремлении к нулю аргументов. Тогда

$$\Delta u = -\frac{(F_{x^1}(x_0^1, \dots, x_0^n, u_0) + \alpha^1)\Delta x^1 + \dots + (F_{x^n}(x_0^1, \dots, x_0^n, u_0) + \alpha^n)\Delta x^n}{F_u(x_0^1, \dots, x_0^n, u_0) + \beta} = \\ = -\frac{F_{x^1}(x_0^1, \dots, x_0^n, u_0)}{F_u(x_0^1, \dots, x_0^n, u_0)}\Delta x^1 - \dots - \frac{F_{x^n}(x_0^1, \dots, x_0^n, u_0)}{F_u(x_0^1, \dots, x_0^n, u_0)}\Delta x^n + \overline{o}(\Delta x^1, \dots, \Delta x^n).$$

Рассмотрим отображение $F: \mathbb{R}^m \to \mathbb{R}^n$. Его естественным образом можно представить как семейство n функций m переменных F_1, \ldots, F_n :

$$F(x^1, \dots, x^m) = (F_1(x^1, \dots, x^m), \dots, F_n(x^1, \dots, x^m)).$$

Для краткости обозначим $F = (F_1, \ldots, F_n)$.

Определение. Отображение F называется $\partial u \phi \phi$ еренцируемым в точке $x \in \mathbb{R}^m$, если оно определено в некоторой окрестности U(x) точки x, и существует линейное отображение $A \colon \mathbb{R}^m \to \mathbb{R}^n$ такое, что

$$\forall h \in \mathbb{R}^m x + h \in U(x) \colon F(x+h) = F(x) + Ah + \alpha(h),$$

причём $\alpha(h) = \overline{\overline{o}}(h)$.

Замечание. Обозначим $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$. Тогда $\alpha(h) = \overline{\overline{o}}(h) \Leftrightarrow \alpha_i(h) = \overline{\overline{o}}(h)$ для $i = 1, \dots, n$. Пусть $A = ||a_{ij}|| -$ матрица нашего отображения. Тогда предыдущее определение в координатах имеет следующий вид:

$$F_i(x+h) = F_i(x) + \sum_{i=1}^m a_{ij}h^j + \alpha_i(h), \ \alpha_i = \overline{\overline{o}}(h), \ i = 1, 2, \dots, n.$$

Это условие эквивалентно дифференцируемости всех компонент F_i в точке x, причём $a_{ij}=\frac{\partial F_i}{\partial x_i}$. Следовательно, отображение A единственно.

Определение. Отображение A называется $\partial u \phi \phi$ еренциалом отображения F, а его матрица — матрицей Якоби отображения F. Определитель матрицы Якоби

$$\begin{vmatrix} \frac{\partial F_1}{\partial u^1} & \cdots & \frac{\partial F_1}{\partial u^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial u^1} & \cdots & \frac{\partial F_n}{\partial u^n} \end{vmatrix}$$

называется якобианом и обозначается как $\frac{D(F_1,\ldots,F_n)}{D(u^1,\ldots,u^n)}$.

Теорема (О неявном отображения). Пусть отображение $F(x^1, ..., x^m, u^1, ..., u^n)$: $\mathbb{R}^{m+n} \to$ \mathbb{R}^n определено и непрерывно дифференцируемо в некоторой окрестности U(M) точки $M=(x_0^1,\ldots,x_0^m,u_0^1,\ldots,u_0^n)$ и F(M)=0. Пусть $\frac{D(F_1,\ldots,F_n)}{D(u^1,\ldots,u^n)}\Big|_M \neq 0$. Тогда существует окрестность V точки (x_0^1,\ldots,x_0^m) , и в ней единственное отображение $\varphi(x^1,\ldots,x^m)$: $\mathbb{R}^m \to \mathbb{R}^m$ \mathbb{R}^n , такое, что

- , также, то (i) $F(x^1,\ldots,x^m,\varphi_1(x^1,\ldots,x^m),\ldots,\varphi_n(x^1,\ldots,x^m))=0$ для любой точки $(x^1,\ldots,x^m)\in$
- (ii) $\varphi(x_0^1,\ldots,x_0^m)=(u_0^1,\ldots,u_0^n);$ (iii) φ непрерывно и дифференцируемо в V.

БИЛЕТ 5.

Числовые ряды. Сходимость рядов. Критерий сходимости Коши. Достаточные признаки сходимости.

Пусть $\{a_k\}$ — последовательность действительных чисел. Мы хотим придать точный смысл выражению вида

$$a_1 + a_2 + a_3 + \ldots + a_k + \ldots$$

которое подразумевает суммирование всех элементов последовательности $\{a_k\}$.

Определение. Выражение вида

$$a_1 + a_2 + a_3 + \ldots + a_k + \ldots = \sum_{k=1}^{\infty} x_k$$

называется числовым (бесконечным) рядом.

Определение. Сумма вида

$$S_n = \sum_{k=1}^n x_k$$

называется (n-ой) частичной суммой числового ряда.

Определение. Числовой ряд называется сходящимся, если существует предел

$$S = \lim_{n \to \infty} S_n$$
.

Сам предел S называется cymmoй uucnoвoro pяда и обозначается как $S=\sum_{k=1}^{\infty}x_k$. Если такого предела не существует, то ряд называется pacxodящимся.

Определение. Если $\forall k \in \mathbb{N}$ выполнено $a_k \geq 0$ ($a_k \leq 0$), то числовой ряд $S = \sum_{k=1}^{\infty} a_k$ называется знакоопределённым.

Теорема (Критерий сходимости Коши). *Числовой ряд* $S = \sum_{k=1}^{\infty} a_k$ сходится т.и.т., когда

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > m > N_{\varepsilon} \ \left| \sum_{k=m}^{n} a_{k} \right| < \varepsilon.$$

Доказательство. Если ряд $S=\sum_{k=1}^{\infty}a_k$ сходится, то существует предел частичных сумм.

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n, m > N_{\varepsilon} \ |S_m - S_n| < \varepsilon.$$

Тогда из определения фундаментальной последовательности:

Таким образом это утверждение превращается в критерий Коши сходимости последовательности S_n .

Теорема (Необходимое условие сходимости ряда). *Если числовой ряд* $S = \sum_{k=1}^{\infty} a_k \ cxoдится,$ $mo\lim_{k\to\infty} a_k = 0.$

 \mathcal{A} оказательство. Согласно свойствам предела, $\lim_{n\to\infty}S_n=\lim_{n\to\infty}S_{n-1}$. Отсюда, $\lim_{n\to\infty}a_n=1$ $\lim_{n \to \infty} \left(S_n - S_{n-1} \right) = 0.$

Теорема. Знакоопределённый $(a_k \ge 0)$ числовой ряд $S = \sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда последовательность $\{S_k\}_{k=1}^{\infty}$ ограничена.

на, то существует $\lim_{k\to\infty} S_k$.

Теорема (Признак сравнения). *Пусть даны два числовых ряда* $S_1 = \sum_{k=1}^{\infty} a_k \ u \ S_2 = \sum_{k=1}^{\infty} b_k$, причём $\forall k \colon b_k \geq a_k \geq 0$. Тогда, если ряд S_2 сходится, то сходится и ряд S_1 , а если ряд S_1 расходится, то расходится и ряд S_2 .

Доказательство. Из условия $0 \le a_k \le b_k$ следует, что $S_1 \le S_2$. С другой стороны, из сходимости S_2 , последовательность частичных сумм b_k ограничена, потому и последовательность частичных сумм a_k ограничена, и ряд S_1 сходится.

Аналогичным образом доказывается признак расходимости.

Следствие (Признак сравнения в предельной форме). Пусть даны два знакоопределённых числовых ряда $S_1=\sum_{k=1}^{\infty}a_k$ и $S_2=\sum_{k=1}^{\infty}b_k,\ \forall k\colon a_k\geq 0,\, b_k>0.$ Если существует предел $\lim_{k\to\infty} \frac{a_k}{b_k} = \alpha > 0$, то S_1 и S_2 сходятся или расходятся одновременно.

Теорема (Признак Д'Аламбера). *Пусть* $S = \sum_{k=1}^{\infty} a_k, \ a_k > 0 -$ знакоопределённый ряд. Если существует такое $n_0 \in N$, что $\forall n > n_0$ выполняется $\frac{a_n}{a_{n+1}} > 1$, то S сходится. $Ecnu \frac{a_n}{a_{n+1}} \leq 1$, то S расходится.

Доказательство. Если $\frac{a_n}{a_{n+1}} \geq \alpha > 1$, то $a_{n+1} \leq \frac{1}{\alpha} a_n$. Значит справедливо $a_{n_0+k} \leq$ $\left(\frac{1}{\alpha}\right)^{\kappa}a_{n_0}$, и ряд сходится.

Если же $\frac{a_n}{a_{n+1}} < 1$, то $a_n \leq a_{n+1}$ и $\forall n > n_0 \colon a_n \geq n_0$. Следовательно $a_n \not\to 0$, и ряд

Следствие (Признак Д'Аламбера в предельной форме). *Пусть* $S = \sum_{k=1}^{\infty} a_k, \ a_k > 0$ —

- знакоопределённый ряд. $\bullet \ \, Ecлu \underbrace{\lim_{n \to \infty} \frac{a_n}{a_{n+1}}}_{n \to \infty} > 1, \ mo \ pяд \ S \ cxoдится. \\ \bullet \ \, Ecлu \underbrace{\lim_{n \to \infty} \frac{a_n}{a_{n+1}}}_{n \to \infty} < 1, \ mo \ pяд \ S \ pacxoдится.$

Теорема (Признак Коши). *Пусть* $S = \sum_{k=1}^{\infty} a_k, \ a_k \geq 0 -$ знакоопределённый ряд. Если существует такое $n_0 \in N$, что $\forall n > n_0$ выполняется $\sqrt[n]{a_n} < 1$, то S сходится. Иначе, Sрасходится.

 ${\it Доказательство}.$ Если $\sqrt[n]{a_n} \le \alpha < 1$, то $a_n \le \alpha^n$, следовательно, S сходится. Если же $\sqrt[n]{a_n} > 1$, то $a_n \not\to 0$, и S расходится.

Следствие (Признак Коши в предельной форме). *Пусть* $S = \sum_{k=1}^{\infty} a_k, \ a_k > 0 \ -$ знакоопределённый ряд.

- Ecnu $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$, mo psd S cxodumcs. Ecnu $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, mo psd S pacxodumcs.

Теорема (Интегральный признак сходимости). Пусть функция $f(x) \ge 0$ и убывает на $[1,+\infty)$. Тогда несобственный интеграл $\int_1^\infty f(x)dx$ и ряд $\sum_{k=1}^\infty f(k)$ сходятся или расходятся одновременно.

Доказательство. Пусть $n \in \mathbb{N}$. Тогда для любого $x \in [n, n+1]$ из определения f(x) выполняется следующее:

$$f(n) \ge f(x) \ge f(n+1)$$

$$\int_{n}^{n+1} f(n)dx \ge \int_{n}^{n+1} f(x)dx \ge \int_{n}^{n+1} f(n+1)dx$$

$$\sum_{n=1}^{N} f(n) \ge \int_{1}^{N_{1}} f(x)dx \ge \sum_{n=2}^{N+1} f(n).$$

16

БИЛЕТ 6.

АБСОЛЮТНАЯ И УСЛОВНАЯ СХОДИМОСТЬ РЯДА. СВОЙСТВО АБСОЛЮТНО СХОДЯЩИХСЯ РЯДОВ. УМНОЖЕНИЕ РЯДОВ.

Рассмотрим числовой ряд $\sum_{k=1}^{\infty} a_k$.

Определение. Числовой ряд $\sum_{k=1}^{\infty} a_k$ называется *абсолютно сходящимся*, если сходится ряд

$$\sum_{k=1}^{\infty}|a_k|$$
. Числовой ряд $\sum_{k=1}^{\infty}a_k$ называется условно сходящимся, если ряд $\sum_{k=1}^{\infty}a_k$ сходится, а

ряд
$$\sum_{k=1}^{\infty} |a_k|$$
 — расходится.

Теорема. Если ряд $\sum_{k=1}^{\infty} a_k$ абсолютно сходится, то он сходится.

Доказательство. Действительно,

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall m > n > N_{\varepsilon} \colon \left| \sum_{k=n}^{m} a_k \right| \le \left| \sum_{k=n}^{m} |a_k| \right| < \varepsilon.$$

Определение. Биекция $\sigma \colon \mathbb{N} \to \mathbb{N}$ называется перестановкой \mathbb{N} .

Теорема. Любая перестановка членов абсолютно сходящегося ряда $S = \sum_{k=1}^{\infty} a_k$ приводит κ абсолютно сходящемуся ряду $S^{\sigma} = \sum_{k=1}^{\infty} a_{\sigma(k)}$, $u S = S^{\sigma}$.

Доказательство. Обозначим $S_N^{\sigma} = \sum_{k=1}^N a_{\sigma(k)}$ и пусть $N_1 = \{\sigma(1), \dots, \sigma(n)\}$. Тогда выполнено $S_N^{\sigma} \leq S_{N_1}$, значит S_N^{σ} , следовательно ряд S^{σ} сходится и $S^{\sigma} \leq S$. Аналогичным образом приходим к $S^{\sigma} \geq S$, а значит $S^{\sigma} = S$. Наконец,

$$\sum_{k=1}^{\infty} \left(a_k + |a_k| \right) = \sum_{k=1}^{\infty} \left(a_{\sigma(k)} + \left| a_{\sigma(k)} \right| \right) \Rightarrow \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_{\sigma(k)}.$$

Замечание. Заметим, что перестановкой членов условно сходящегося ряда мы можем в итоге получить любую сумму (теорема Римана).

Определение. Пусть $\{(n,m)\}_{n,m\in\mathbb{N}}$ — множество всевозможных пар натуральных чисел. Биекция $r\colon \{(n,m)\}\to \mathbb{N}$ называется nopядком (нумерацией) на множестве пар.

Определение. Рассмотрим два ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{m=1}^{\infty} b_m$. Ряд $\sum_{r(n,m)=1}^{\infty} a_n b_m$ называется *произведением* рядов при данном порядке пар.

Замечание. Иными словами, произведением двух рядов называется ряд из всевозможных попарных произведений в некотором порядке $\sum_{k=1}^{\infty} a_{p_k} b_{q_k}$. Если этот ряд сходится абсолютно, то его сумма не зависит от порядка слагаемых. В этом случае она называется суммой произведения рядов.

Теорема. Если ряды $\sum_{k=1}^{\infty} a_k = A$ и $\sum_{k=1}^{\infty} b_k = B$ абсолютно сходятся, то ряд $\sum_{r(n,m)=1}^{\infty} a_n b_m$ абсолютно сходится, причём его сумма не зависит от r(n,m), и $\sum_{r(n,m)=1}^{\infty} a_n b_m = AB$,

Доказательство. Рассмотрим следующий ряд;

$$S_{N^2} = \sum_{r(n,m)=1}^{N^2} a_n b_m = \sum_{n=1}^{N} a_n \cdot \sum_{m=1}^{N} b_m.$$

Значит, существует $\lim_{N \to \infty} S_{N^2} = AB$. Далее, рассмотрим

$$S_N = S_{[\sqrt{N}]^2} + \sum_{r(n,m)=[\sqrt{N}]^2+1}^N a_n b_m.$$

Остаётся заметить, что

$$\left| \sum_{r(n,m)=[\sqrt{N}]^2+1}^{N} a_n b_m \right| \le \sum_{r(n,m)=[\sqrt{N}]^2+1}^{([\sqrt{N}]+1)^2} |a_n b_m| \xrightarrow{N \to \infty} 0.$$

Следовательно, ряд абсолютно сходится и $S_N \to AB$.

Теорема (Мертенса). Пусть $\sum_{k=1}^{\infty} a_k = A$ — абсолютно сходящийся ряд, а $\sum_{k=1}^{\infty} b_k = B$ — условно сходящийся. Тогда ряд $\sum_{l=2}^{\infty} \sum_{k=1}^{l-1} a_k b_{l-k} = AB$.

БИЛЕТ 7.

Ряды функций. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов (непрерывность суммы, почленное интегрирование и дифференцирование).

Определим всю необходимую теорию сперва для функциональных последовательностей.

Определение. Пусть $X \subset \mathbb{R}$, F(X) — множество всех $f: X \to \mathbb{R}$. Тогда отображение из \mathbb{N} в F(X) называется функциональной последовательностью и обозначается $\{f_n(x)\}_{n=1}^{\infty}$.

Определение. Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ на $X \subset \mathbb{R}$ называется поточечно сходящейся, если $\forall x \in X \exists \lim_{n \to \infty} f_n(x) = f(x)$.

Определение. Поточечно сходящиеся функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ на $X \subset \mathbb{R}$ называется равномерно сходящейся к f(x) на X, если

$$\forall \varepsilon > 0, \ \forall x \in X \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > N_{\varepsilon} \ |f_n(x) - f(x)| < \varepsilon.$$

Обозначается как $f_n(x) \stackrel{X}{\Rightarrow} f(x)$.

Замечание. Обратим внимание, что равномерная сходимость не зависит от х в отличие от поточечной сходимости. Также видим, что из равномерной сходимости следует и поточечная.

Теорема (Критерий Коши равномерной сходимости функциональной последовательности). $f_n(x) \stackrel{X}{\Longrightarrow} f(x) \ m.u.m.m., \ \kappa o r \partial a$

$$\forall \varepsilon > 0, \ \forall x \in X \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n, m > N_{\varepsilon} \ |f_n(x) - f_m(x)| < \varepsilon.$$

Доказательство. Если последовательность $\{f_n(x)\}_{n=1}^{\infty}$ равномерно сходится к f(x) на X, то справедливо

$$\forall n, m > N_{\varepsilon} |f_n(x) - f(x)| < \varepsilon, |f_m(x) - f(x)| < \varepsilon.$$

Тогда $|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)| < 2\varepsilon$.

Теперь в обратную сторону: если существует предел $\lim_{n\to\infty} f_n(x) = f(x)$, то

$$\lim_{m \to \infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)| \le \varepsilon.$$

Теорема (Признак Вейерштрасса равномерной сходимости функциональной последовательности). Пусть $\{f_n(x)\}_{n=1}^{\infty}$ сходится на $X \in \mathbb{R}$. Если существует такая последовательность $\{c_n\}_{n=1}^{\infty}$, $c_n > 0$, $\lim_{n \to \infty} = 0$, что $|f_n(x) - f(x)| < c_n$, то $f_n(x) \stackrel{X}{\rightrightarrows} f(x)$.

Теорема (О непрерывности для функциональной последовательности). Пусть $f_n(x)$ непрерывны на X и $f_n(x) \stackrel{X}{\rightrightarrows} f(x)$. Тогда f(x) непрерывна на X.

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in N \ \forall n > N_{\varepsilon} \ |f_n(x) - f(x)| < \frac{\varepsilon}{3}.$$

Пусть $n > N_{\varepsilon}$, тогда $\forall x_0 \in X \; \exists \delta_{\varepsilon}(x_0) > 0 \; \text{т.ч.} \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \; \text{выполняется} \; |f_n(x_0) - f_n(x)| < \frac{\varepsilon}{3}.$ Тогда получается, что $|f(x_0) - f(x)| < \varepsilon$.

Теорема (Об интегрируемости для функциональной последовательности). *Пусть* $f_n(x)$ непрерывны на отрезке [a,b] и $f_n(x) \stackrel{[a,b]}{\Longrightarrow} f(x)$. Тогда $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Доказательство.

$$\left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| = \left| \int_a^b \left(f_n(x) - f(x) \right) dx \right| \le \int_a^b \left| f_n(x) - f(x) \right| dx < \varepsilon (b - a).$$

Теорема (О дифференцируемости для функциональной последовательности). Пусть $\{f_n(x)\}_{n=1}^{\infty}, x \in [a,b], f_n(x) \in C^1[a,b] \ u \ f_n'(x) \stackrel{[a,b]}{\Longrightarrow} g(x)$. Если существует такая $c \in [a,b]$, что $f_n(c) \to C$, то тогда $f_n(x) \stackrel{[a,b]}{\Longrightarrow} G(x)$, $G(x) \in C^1[a,b] \ u \ G'(x) = g(x)$.

Доказательство. Т.к. $f'_n(x)$ непрерывны, то они интегрируемы. Рассмотрим последовательность $\int_{c}^{x} f'_n(x) dx$:

$$\left| \int_{c}^{x} f'_{n}(x) dx - \int_{c}^{x} f'_{m}(x) dx \right| = \left| \int_{c}^{x} \left(f'_{n}(x) - f'_{m}(x) \right) dx \right| < \varepsilon |b - a|.$$

Последнее неравенство следует из критерия Коши для $f_n'(x) \stackrel{[a,b]}{\Longrightarrow} g(x)$. Следовательно,

$$\int_{c}^{x} f'_{n}(x)dx \stackrel{[a,b]}{\Longrightarrow} \tilde{G}(x)$$

и $f_n(x) \stackrel{[a,b]}{\Longrightarrow} \tilde{G}(x) + C = G$. Наконец,

$$\left| \int_{c}^{x} f'_{n}(x)dx - \int_{c}^{x} g'(x)dx \right| \leq |b - a| \cdot \max\left(\left| f'_{n}(x) - g(x) \right| \right) < |b - a| \varepsilon.$$

Значит,
$$\tilde{G}(x) = \int_{c}^{x} g(x)dx$$
 и $G'(x) = g(x)$.

Перейдём теперь непосредственно к функциональным рядам.

Определение. Пусть функциональная последовательность $\{a_n(x)\}_{n=1}^{\infty}$ определена на множестве $X \in \mathbb{R}$. Функция $S_m(x) = \sum_{n=1}^m a_n(x)$ называется m-й частичной суммой.

Определение. Пусть функциональная последовательность $\{a_n(x)\}_{n=1}^{\infty}$ определена на множестве $X \in \mathbb{R}$. Суммой ряда $S(x) = \sum_{n=1}^{\infty} a_n(x)$ называется предел последовательности его частичных сумм. Т.е. запись $S(x) = \sum_{n=1}^{\infty} a_n(x)$ на X означает, что $S_m(x) \to s(x)$ на X при $m \to \infty$.

Определение. Если $\forall x \in X \; \exists \lim_{n \to \infty} S_n(x) = S(x)$, то функциональный ряд *сходится*. Если же существует такой $x_0 \in X$, что $\not \exists \lim_{n \to \infty} S_n(x_0)$, то функциональный ряд *расходится*.

Определение. Если $S_n(x) \stackrel{X}{\Rightarrow} S(x)$, то $\sum_{n=1}^{\infty} a_n(x) \stackrel{X}{\Rightarrow} S(x)$ и говорят, что ряд функций равномерно сходится на X.

Теорема (Признак Вейерштрасса равномерной сходимости ряда функций). *Рассмотрим* ряд функций $\sum_{n=1}^{\infty} a_n(x)$ на $X \subset \mathbb{R}$. *Если* $\exists \{c_n\}_{n=1}^{\infty}$ такая, что $\forall x \in X$ и $\forall n$, $|a_n(x)| \leq c_n$ и $\sum_{n=1}^{\infty} c_n$ сходится, то $\sum_{n=1}^{\infty} a_n(x) \stackrel{X}{\Rightarrow}$.

 \mathcal{L} оказательство. Так как $\sum_{n=1}^{\infty} c_n$ сходится, то

$$\forall \varepsilon > 0 \; \exists N_{\varepsilon} \in \mathbb{N} \; \forall n > m > N_{\varepsilon} \; \left| \sum_{k=m}^{n} c_{k} \right| < \varepsilon.$$

Следовательно,

$$\left| \sum_{k=m}^{n} a_k(x) \right| \le \sum_{k=m}^{n} |c_k| \le \left| \sum_{k=m}^{n} c_k \right| < \varepsilon.$$

Теорема (О непрерывности для функционального ряда). Пусть $a_n(x)$ непрерывны на X, $\sum_{n=1}^{\infty} a_n(x) \stackrel{X}{\rightrightarrows} S(x)$. Тогда S(x) непрерывна на X.

Теорема (Об интегрируемости для функционального ряда). *Пусть* $a_n(x)$ непрерывны на $[a,b], \sum_{n=1}^{\infty} a_n(x) \stackrel{[a,b]}{\Longrightarrow} S(x)$. Тогда $\sum_{n=1}^{\infty} \int_a^b a_n(x) dx = \int_a^b S(x) dx$.

Теорема (О дифференцируемости для функционального ряда). Пусть $a_n(x) \in C^1[a,b],$ $\sum_{n=1}^{\infty} a_n(x) \stackrel{[a,b]}{\Longrightarrow} s(x).$ Если существует такая $c \in [a,b],$ что $\sum_{n=1}^{\infty} a_n(c) = C,$ то тогда $\sum_{n=1}^{\infty} a_n(x) \stackrel{[a,b]}{\Longrightarrow} S(x),$ $S(x) \in C^1[a,b]$ и S'(x) = s(x).

Доказательства всех трёх Теорем получаются из доказательств соответствующих Теорем для функциональных последовательностей.

БИЛЕТ 8.

Степенные ряды в действительной и комплексной области. Радиус сходимости, свойства степенных рядов (почленное интегрирование, дифференцирование). Разложение элементарных функций.

Определение. Функциональный ряд вида $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ называется *степенным рядом*, $\{a_n\}$ — коэффициенты, точка x_0 — центр разложения.

Можно рассматривать случаи $x \in \mathbb{R}$ или $x \in \mathbb{C}$.

Замечание. Степенной ряд всегда сходится в точке разложения.

Замечание. Без ограничения общности будем считать, что $x_0 = 0$.

Теорема. Для степенного ряда $\sum_{n=0}^{\infty} a_n x^n$ существует $0 \le R \le \infty$ такое, что

- (i) ряд абсолютно сходится в открытом круге |x| < R и расходится при |x| > R;
- (ii) число R определяется по следующей формуле (эту формулу называют формулой Kouu-Aдамара):

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Доказательство. Заметим, что в точке x=0 степенной ряд сходится, поэтому теорема справедлива при x=0, |x|=0 < R.

Считаем, что |x|>0. Введём ряд $\sum_{n=0}^{\infty}|a_nx^n|$, и пусть $u_n=|a_nx^n|$ — общий член этого ряда. По признаку Коши сходимости ряда в предельной форме знаем, что

Но по определению u_n имеем:

$$\overline{\lim}_{n \to \infty} \sqrt[n]{u_n} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n x^n|} = |x| \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{|x|}{R}.$$

Из этого следует, что если |x| < R, то ряд из модулей сходится, а значит ряд $\sum_{n=0}^{\infty} a_n x^n$ абсолютно сходится. Если же |x| > R, то общий член $|a_n x^n|$ не ограничен, а следовательно ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится.

Замечание. B формуле Коши-Адамара мы считаем, что $\frac{1}{0} = \infty$, $\frac{1}{\infty} = 0$. Таким образом, $npu \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = 0$ считаем $R = \infty$, $a npu \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = \infty - R = 0$.

Определение. Число R из прошлой Теоремы называют $paduycom\ cxodumocmu$ степенного ряда.

Далее подразумевается, что нам известны свойства функциональных рядов.

Теорема (Об интегрировании). Пусть $f(x) = \sum_{n=0}^{\infty} a_n x^n$, R > 0 (включая $+\infty$). Тогда

$$\int_0^x f(t)dt = \sum_{n=0}^\infty a_n \frac{x^{n+1}}{n+1} = \sum_{n=0}^\infty a_n \cdot \int_0^x t^n dt.$$

Здесь нижний предел интегрирования есть центр разложения степенного ряда.

Теорема (О дифференцировании). Пусть $f(x) = \sum_{n=0}^{\infty} a_n x^n$, R > 0 (включая $+\infty$). Тогда

$$f(x) \in C^{\infty}(-R, R), \ \forall k \in \mathbb{N} \colon f^{(k)}(x) = \sum_{n=0}^{\infty} a_n(x^n)^{(k)}.$$

Доказательство. Так как $\lim_{n\to\infty} \sqrt[n]{n} = 1$, то для любого $\alpha \in \mathbb{R}$ радиусы сходимости рядов $\sum_{n=0}^{\infty} a_n x^n$ и $\sum_{n=0}^{\infty} a_n n^{\alpha} x^n$ совпадают. Следовательно, $\forall \varepsilon > 0$ ряд $\sum_{n=0}^{\infty} a_n (x^n)^{(k)}$ равномерно сходится на отрезке $[-R+\varepsilon,R-\varepsilon]$.

Перейдём теперь к рядам Тейлора и разложению в них элементарных функций.

Определение. Пусть f(x) определена в некоторой окрестности $B_{\delta}(x_0)$, и пусть $\forall n \in \mathbb{N}$ $\exists f^{(n)}(x_0)$. Тогда ряд $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется *рядом Тейлора* функции f(x).

Теорема. Пусть ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ сходится в $B_{\delta}(x_0)$. Тогда он является рядом Тейлора.

Доказательство. Так как $\sum_{n=0}^{\infty} a_n (x-x_0)^n = f(x)$ в $B_{\delta}(x_0)$, то

$$\forall k \in \mathbb{N} \ f^{(k)}(x) \Big|_{x=x_0} = \sum_{k=0}^{\infty} a_n \left((x - x_0)^n \right)^{(k)} \Big|_{x=x_0} = a_k k!$$

Следовательно, $a_k = \frac{f^{(k)}(x_0)}{k!}$.

Следствие. Функция f(x) раскладывается в ряд Тейлора единственным способом.

Теорема (Достаточное условие представления функции её рядом Тейлора). *Пусть* $f(x) \in C^{\infty}(a,b), \ x_0 \in [a,b], \ u \ \exists B_{\delta}(x_0) \subset (a,b) \ makas, \ umo \ \forall x \in B_{\delta}(x_0), \forall n, \exists A > 0 \colon \left| f^{(n)}(x) \right| \leq A^n.$

Доказательство. Действительно,

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_0)^{N+1},$$

где
$$\left| \frac{f^{(N+1)}(\xi)}{(N+1)!} (x-x_0)^{N+1} \right|$$
 ограничен сверху и стремится к нулю.

Теорема. Разложение элементарных функций (в точке $x_0 = 0$):

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \forall x \in \mathbb{R};$$

$$\bullet \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!};$$

$$\bullet \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

•
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

Доказательство. Распишем вывод только для первого пункта, т.к. остальные выводятся аналогично.

$$(e^x)^{(n)} = e^x, \, \forall (-R, R) \, \left| (e^x)^{(n)} \right| \le e^R.$$

Следовательно,
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \forall x \in \mathbb{R}.$$

БИЛЕТ 9.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ И ИХ СХОДИМОСТЬ. РАВНОМЕРНАЯ СХОДИМОСТЬ ИНТЕГРАЛОВ, ЗАВИСЯЩИХ ОТ ПАРАМЕТРА. СВОЙСТВА РАВНОМЕРНО СХОДЯЩИХСЯ ИНТЕГРАЛОВ.

Дадим определение несобственного интеграла первого рода.

Определение. Пусть функция f(x) определена на луче $[a,\infty)$ и интегрируема на любом отрезке [a,A], т.е. существует определенный интеграл $\int_a^A f(x)dx$. Введём следующий предел:

$$\lim_{A \to \infty} \int_{a}^{A} f(x) dx := \int_{a}^{\infty} f(x) dx.$$

Этот предел может существовать, а может и не существовать. В любом случае он называется несобственным интегралом первого рода от функции f(x) на $[a, \infty)$.

Замечание (Геометрический смысл). *Несобственный интеграл первого рода выражает* площадь бесконечно длинной криволинейной трапеции.

Определение. Если предел из предыдущего Определения существует, то несобственный интеграл первого рода называется *сходящимся*. Если предела не существует, то этот интеграл называют *расходящимся*.

Точно также определяются несобственные интегралы первого рода по $(-\infty, a]$ и по $(-\infty, +\infty)$.

Дадим теперь определение несобственного интеграла второго рода.

Определение. Пусть функция f(x) определена на конечном полуинтервале [a,b). Пусть эта функция ограничена на интервале [a,b'], b' < b и неограничена в окрестности точки b. Введём предел:

$$\lim_{b' \to b} \int_{a}^{b'} f(x)dx = \int_{a}^{b} f(x)dx.$$

Этот предел называется несобственным интегралом второго рода от f(x) на [a,b).

Замечание (Геометрический смысл). *Несобственный интеграл второго рода выражает* площадь бесконечно высокой криволинейной трапеции.

Определение. Если предел из предыдущего Определения существует, то несобственный интеграл второго рода называется *сходящимся*. Если предела не существует, то этот интеграл называют *расходящимся*.

Точно также определяются несобственные интегралы второго по (a,b] и по $(a,+\infty)$.

Пусть на отрезке [a,b] есть особая точка t. Тогда несобственный интеграл определяется как

$$\int_{a}^{b} f(x)dx = \lim_{t_1 \to t} \int_{a}^{t_1} f(x)dx + \lim_{t_2 \to t} \int_{t_2}^{b} f(x)dx.$$

Если существуют оба предела, то несобственный интеграл сходится. Если же хотя бы один предел не существует, то расходится.

Пусть множество $X=[a,b),\,b\in\mathbb{R}$ или $b=\infty,$ а множество Y — произвольное.

Определение. Предположим, что функция f(x,y) интегрируема по x на любом отрезке $[a,t]\subset [a,b)$ при каждом $y\in Y$, и определим $F(t,y)=\int\limits_a^t f(x,y)dxdx$. Несобственный

интеграл

$$I(y) = \int_{a}^{b} f(x, y) dx dx$$

называется несобственным интегралом, зависящим от параметра.

Определение. Пусть $t \in \mathbb{R}$ (или $t = \pm \infty$), $Y \subset \mathbb{R}$, функция f(x, y) определена на $[a, t) \times Y$.

И пусть $\forall y_0 \in Y \; \exists \int_a^t f(x,y_0) \, dx = F(y_0)$ (т.е. поточечн. сх.). Тогда, если

$$\forall \varepsilon > 0 \ \forall y \in Y \ \exists a_{\varepsilon} \in [a, t) : \forall a' \in [a_{\varepsilon}, t) \left| \int_{a}^{a'} f(x, y) dx - F(y) \right| < \varepsilon,$$

то несобственным интеграл, зависящий от параметра называется cxodsumcs равномерно по Y г F(y). Обозначение: $\int_{-t}^{t} f(x,y) dx dx \stackrel{Y}{\Rightarrow} F(y).$

Далее все теоремы мы формулируем и доказываем для несобственных интегралов, зависящих от параметра. Аналогичные утверждения для "обычных" несобственных интегралов можно получить как частный случай (формально рассматривая Y состоящим из одной точки, и тем самым опуская зависимость от y).

Теорема (Критерий Коши).

$$\int_{a}^{t} f(x,y)dxdx \stackrel{Y}{\Rightarrow} F(y) \Leftrightarrow \forall \varepsilon > 0 \ \forall y \in Y \ \exists a_{\varepsilon} \in [a,t) : \forall a_{1}, a_{2} \in [a_{\varepsilon},t) \ \left| \int_{a_{1}}^{a_{2}} f(x,y)dx \right| < \varepsilon.$$

Доказательство. Докажем сперва слева-направо: т.к. интеграл равномерно схлдится к F(y) по множеству Y, то из определения равномерной сходимости имеем

$$\forall \varepsilon > 0 \ \exists a_{\varepsilon} \in [a.t) \colon \forall a' \ge a_{\varepsilon} \ \forall y \in Y \ \left| \int_{a}^{a'} f(x,y) dx - F(y) \right| < \varepsilon.$$

Следовательно, $\forall a_1, a_2 \in [a_{\varepsilon}, t)$:

$$\left| \int_{a_1}^{a_2} f(x,y) dx \right| = \left| \int_{a}^{a_2} f(x,y) dx - \int_{a}^{a_1} f(x,y) dx \right| = \left| \int_{a}^{a_2} f(x,y) dx - F(y) + F(y) - \int_{a}^{a_1} f(x,y) dx \right| < 2\varepsilon.$$

Докажем теперь в обратную сторону: из того, что

$$\forall \varepsilon > 0 \ \forall y \in Y \ \exists a_{\varepsilon} \in [a,t) \colon \forall a_1, a_2 \in [a_{\varepsilon},t) \ \left| \int_{a_1}^{a_2} f(x,y) dx \right| < \varepsilon$$

следует поточечная сходимость ($\int_a^t f(x,y) dx dx = F(y)$). Устремив $a_2 \to t$, получаем для любого $y \in Y$:

$$\left| \int_{a_1}^t f(x, y) dx \right| \le \varepsilon \implies \left| \int_a^{a_1} f(x, y) dx - F(y) \right| \le \varepsilon.$$

26

Теорема (Признак Вейерштрасса). Пусть f(x,y) определена на $[a,t) \times Y$, u она интегрируема по Риману на $[a,A] \times Y \ \forall A$. Если существует функция g(x), интегрируемая по Риману на отрезке $[a,A], \ \forall A \in [a,t) \ u \ |f(x,y)| \le g(x) \ \forall y \in Y$, то если сходится $\int_a^t g(x) dx dx$, то $\int_a^t f(x,y) dx dx$ равномерно сходится.

Доказательство. Действительно,

$$\forall \varepsilon > 0 \ \exists A_{\varepsilon} \in [a, t) \colon \forall a_1, a_2 \in [A_{\varepsilon}, t) \ \left| \int_{a_1}^{a_2} g(x) dx \right| < \varepsilon.$$

A из условия
$$|f(x,y)| \leq g(x) \; \forall y \in Y$$
 следует, что $\left| \int_{a_1}^{a_2} f(x,y) dx \right| \leq \left| \int_{a_1}^{a_2} g(x) dx \right| < \varepsilon$.

Для экономии времени объединим признаки Абеля (А) и Дирихле (Д) в одну Теорему:

Теорема (Признаки Абеля и Дирихле). Пусть f(x,y), g(x,y) определены на $[a,t) \times Y$, u

- $\bullet \ \exists C>0 \colon \forall (x,y) \in [a,t) \times Y \ |g(x,y)| \leq C;$
- ullet $\forall y \in Y$ функция g(x,y) монотонна, а f(x,y) непрерывна по x.

(A):
$$Ecnu \int_{a}^{t} f(x,y) dx dx \stackrel{Y}{\Longrightarrow}, mo \int_{a}^{t} f(x,y) g(x,y) dx dx \stackrel{Y}{\Longrightarrow};$$

(Д): Если
$$\exists C > 0 \colon \forall A \in [a,t) \ \forall y \in Y \ \left| \int_a^A f(x,y) dx \right| < C \ u \ g(x,y) \stackrel{Y}{\Rightarrow} 0, \ mo \int\limits_a^t f(x,y) g(x,y) dx dx \stackrel{Y}{\Rightarrow} .$$

Доказательство. (А):

$$\left| \int_{a_1}^{a_2} f(x,y) g(x,y) dx \right| = \left| g(a_1,y) \int_{a_1}^{C(y)} f(x,y) dx + g(a_2,y) \int_{C(y)}^{a_2} f(x,y) dx \right| \le C\varepsilon + C\varepsilon = 2C\varepsilon.$$

(Д):

$$\left| \int_{a_1}^{a_2} f(x,y) g(x,y) dx \right| = \left| g(a_1,y) \int_{a_1}^{C(y)} f(x,y) dx + g(a_2,y) \int_{C(y)}^{a_2} f(x,y) dx \right| \le 2C\varepsilon + 2C\varepsilon = 4C\varepsilon.$$

В следующих Теоремах подразумеваем, что функция f(x,y) непрерывна на $[a,\infty) \times [\alpha,\beta]$.

Теорема. Если $\int_a^\infty f(x,y)dx \stackrel{[\alpha,\beta]}{\Longrightarrow} F(y)$, то F(y) непрерывна на отрезке $[\alpha,\beta]$.

Теорема. Пусть $\exists f_y'(x,y)$ непрерывная на $[a,\infty)\times[\alpha,\beta]$, $\exists \int_a^\infty f(x,y)dx = F(y)$ и $\int_a^\infty f_y'(x,y)dx \stackrel{[\alpha,\beta]}{\Longrightarrow} G(y)$. Тогда F'(y) = G(y).

Теорема. Если
$$\int_a^\infty fy(x,y)dx \stackrel{[\alpha,\beta]}{\Longrightarrow} F(y), \ mo \ \int_\alpha^\beta F(y)dx = \int_a^\infty \left(\int_\alpha^\beta f(x,y)dy\right)dx.$$

БИЛЕТ 10.

Ряды Фурье. Достаточные условия представимости функции рядом Фурье.

Пусть H — линейное множество элементом, с введённым на нём скалярным произведением (φ, ψ) , где $\varphi, \psi \in H$.

Определение. Элемент $\varphi \in H$ называется *нормальным*, если $\|(\varphi, \varphi)\| = 1$.

Определение. Два элемента $\varphi, \psi \in H$ называются *ортогональными друг* к *другу*, если $(\varphi, \psi) = 0$.

Определение. Система элементов $\varphi_1, \varphi_2, \varphi_3, \dots$ называется *ортонормированной*, если

$$(\varphi_m, \varphi_n) = \delta_{mn} = \begin{cases} 1, & m = n, \\ 0, & m \neq n. \end{cases}$$

Определение. Пусть $f \in H$, тогда число вида

$$\frac{1}{\left\|\varphi_{k}\right\|^{2}}\left(f,\varphi_{k}\right) \quad (k=1,2,\dots)$$

называется коэффициентом Фурье элемента f относительно φ_k .

Определение. Пусть $f \in H$, тогда ряд, порождаемый элементом f

$$f \sim \sum_{k=1}^{\infty} \frac{1}{\|\varphi_k\|^2} (f, \varphi_k) \varphi_k$$

называется pядом $\Phi ypьe$ по ортогональной системе.

Замечание. Если система ещё и ортонормирована, то $\|\varphi_k\| = 1$ (по определению нормальной системы), а следовательно ряд Фурье для такой системы упрощается:

$$f \sim \sum_{k=1}^{\infty} (f, \varphi_k) \varphi_k.$$

Введём теперь ряд Фурье для тригонометрической системы.

Определение. Система функций

$$\{1, \{\cos(nx)\}_{n=1}^{\infty}, \{\sin(kx)\}_{k=1}^{\infty}\}$$

называется тригонометрической системой.

Определение. Сумма вида

$$T_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$

называется тригонометрическим полиномом степени п.

Определение. Сумма вида

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

называется тригонометрическим рядом.

¹То есть, в той системе ненулевых элементов, которые попарно ортогональны.

Лемма (Ортогональность тригонометрической системы).

$$\forall n \in \mathbb{N} : \int_{-\pi}^{\pi} 1^2 dx = 2\pi, \int_{-\pi}^{\pi} \cos^2(nx) dx = \int_{-\pi}^{\pi} \sin^2(nx) dx = \pi,$$

$$\forall m, n \ge 0, \ m \ne m : \int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx = 0,$$

$$\forall n, m \ge 0 : \int_{-\pi}^{\pi} \cos(nx) \sin(mx) dx = 0.$$

Теорема (О связи коэффициентов тригонометрического ряда с суммой ряда). *Пусть на отрезке* $[-\pi,\pi]$ определена функция f(x), u $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx)\right) \stackrel{[-\pi,\pi]}{\Longrightarrow} f(x)$. *Тогда*

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \ k = 0, 1, 2, \dots$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \ k = 1, 2, \dots$$

Определение. Пусть в несобственном смысле существуют $\int_{-\pi}^{\pi} f(x) dx$ и $\int_{-\pi}^{\pi} |f(x)| dx$. Тогда числа

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \ k = 0, 1, 2, \dots$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, \ k = 1, 2, \dots$$

называются коэффициентов Фурье функции f(x).

Определение. Функция f(x)

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$$

раскладывается в ряд Фурье.

Определение. $F_n(x) - n$ —ая частичная сумма ряда Фурье называется *многочленом Фурье*.

Введём дополнительное обозначение:
$$T_n(x) := \frac{A_0}{2} + \sum_{k=1}^n (A_k \cos(kx) + B_k \sin(kx)).$$

Теорема (Минимизирующее свойство многочленов Фурье). Пусть существуют в несобственном смысле интегралы $\int_{-\pi}^{\pi} f(x)dx$ и $\int_{-\pi}^{\pi} f^2(x)dx$. Тогда

$$\int_{-\pi}^{\pi} (f(x) - F_n(x))^2 dx \le \int_{-\pi}^{\pi} (f(x) - T_n(x))^2 dx.$$

Доказательство.

Следствие (Неравенство Бесселя для рядов Фурье). Т.к. $\int_{-\pi}^{\pi} (f(x) - T_n(x))^2 dx \ge 0$, то для любого $n \in \mathbb{N}$ справедливо

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \ge \frac{a_0^2}{2} + \sum_{k=1}^{n} \left(a_k^2 + b_k^2 \right).$$

Замечание. Следовательно, ряд $\sum_{k=1}^{\infty} \left(a_k^2 + b_k^2\right)$ сходится.

Определение. Функция

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^{n} \cos(kx)$$

называется n-м ядром Дирихле.

Замечание. Для $\forall x \neq 2\pi m$ справедливо $D_n(x) = \frac{1}{2\sin\left(\frac{x}{2}\right)}\sin\left(n + \frac{1}{2}\right)x$.

Теорема (Принцип локализации Римана). Пусть существуют в несобственном смысле интегралы $\int_{-\pi}^{\pi} f(x)dx \ u \int_{-\pi}^{\pi} f^2(x)dx$. Если $\forall x_0 \in [-\pi, \pi]$ справедливо

$$\forall \delta > 0 \exists \lim_{n \to \infty} \int_0^{\delta} \left(f(x_0 + t) + f(x_0 - t) \right) D_n(t) dt,$$

 $mo \exists \lim_{n\to\infty} F_n(x_0).$

Теорема (Признак Дини). Пусть существуют в несобственном смысле интегралы $\int_{-\pi}^{\pi} f(x) dx \ u \int_{-\pi}^{\pi} f^2(x) dx. \ Пусть в точке <math>x_0 \in [-\pi, \pi]$ существуют $\lim_{x \to x_0 +} f(x) := f_+(x_0) \ u \lim_{x \to x_0 -} f(x) := f_-(x_0). \ Ecлu \ \exists \delta > 0 \ m.ч.$

$$\int_0^{\delta} \frac{1}{t} |f(x_0 + t) + f(x_0 - t) - f_+(x_0) - f_-(x_0)| dt$$

сходится, то $\exists \lim_{n \to \infty} F_n(x_0) = \frac{f_+ + f_-}{2}$.

БИЛЕТ 11.

Теоремы Остроградского и Стокса. Дивергенция. Вихрь.

Определение. Пусть существуют функции $\varphi_1(x), \varphi_2(x)$, непрерывные на отрезке [a,b] такие, что определяют область

$$\Omega = \{(x, y) \in \mathbb{R}^2 \colon a \le x \le b, \, \varphi_1(x) \le y \le \varphi_2(x)\}.$$

Тогда Ω называется криволинейной трапецией по Ox.

Определение. Пусть существуют функции $\psi_1(x), \psi_2(x)$, непрерывные на отрезке [c,d] такие, что определяют область

$$\Omega = \{ (x, y) \in \mathbb{R}^2 : c \le y \le d, \, \psi_1(y) \le x \le \psi_2(y) \}.$$

Тогда Ω называется криволинейной трапецией по Oy.

Определение. Область $\Omega \in \mathbb{R}^2$ называется *простой*, если она представима в виде конечного числа объединений криволинейных трапеций как по оси Ox, так и по Oy.

Определение. Поверхность на односвязном простом множестве H называется *гладкой*, если она задаётся функциями класса $x, y, z \in C^1(H)$ и на ней нет особых точек.

Определение. Множество $D \in \mathbb{R}^3$ называется криволинейным цилиндром по Oz, если

$$D = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in \Omega, z_1(x, y) \le z \le z_2(x, y)\},\$$

где функции $z_1(x,y), z_2(x,y)$ ограничивают гладкие поверхности S_1, S_2 , а область $\Omega \in \mathbb{R}^2$ — простая.

Аналогичным образом определяются криволинейные цилиндры по осям Ox и Oy.

Определение. Множество $D \in \mathbb{R}^3$ называется *простым*, если оно представимо в виде конечного числа объединений криволинейных цилиндров (по осям Ox,Oy,Oz).

Теорема (Формула Гаусса-Остроградского). Пусть

- (1) $D \in \mathbb{R}^3$ простое ориентированное множество, ограниченное поверхностью S;
- (2) $P, Q, R, P'_x, Q'_y, R'_z \in C(D);$
- (3) \vec{n} вектор внешней нормали.

Tог ∂a

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = \iiint_{D} (P'_{x} + Q'_{y} + R'_{z})dxdydz.$$

Доказательство. Положим $P \equiv Q \equiv 0$.

$$\iiint_{D_{k}^{z}} R'_{z} dx dy dz = \iint_{\Omega_{k}} dx dy \int_{z_{1}}^{z_{2}} R'_{z} dz = \iint_{\Omega_{k}} \left(R\left(x, y, z_{2}\right) - R\left(x, y, z_{1}\right) dx dy \right).$$

$$\iint_{S_1^k \cup S_2^k \cup S_{\text{for.}}^k} R dx dy = \iint_{S_1^k \cup S_2^k \cup S_{\text{for.}}^k} R \cos(\alpha) dS =
= \iint_{S_1^k} R \cos(\alpha) dS + \iint_{S_2^k} R \cos(\alpha) dS + \iint_{S_{\text{for.}}^k} R \cos(\alpha) dS$$

Заметим, что на боковой поверхности $\vec{n} \perp Oxy$, поэтому интеграл по ней равен нулю. Достаточно теперь высчитать интегралы по S_1 и S_2 :

$$\iint_{S_1^k} R\cos(\alpha)dS = -\int_{\Omega_k} R(x, y, z_1(x, y)) dxdy,$$
$$\iint_{S_2^k} R\cos(\alpha)dS = \int_{\Omega_k} R(x, y, z_2(x, y)) dxdy.$$

Так как D — конечное объединение криволинейных цилиндров $D = D_z^1 \cup D_z^2 \cup \cdots \cup D_z^n$, то нам достаточно сложить все полученные интегралы.

Доказательство проводится аналогично для P и Q.

Определение. Если точка (u,v) — граничная к D, то точка поверхности называется $\kappa pa-esoù$ к поверхности S. Множество краевых точек называется $\kappa paem$ nosepxnocmu S (обозн. ∂S).

Теорема (Формула Стокса). Пусть $D_{uv} \in \mathbb{R}^2$ — простое множество.

- (1) $S \in C^2(D_{uv})$ гладкая поверхность, ∂S край S;
- (2) $P, Q, R, P'_y, P'_z, Q'_x, Q'_z, R'_x R'_y \in C(S);$
- (3) обход, согласно правилу буравчика.

Тогда

$$\oint_{\partial S} (Pdx + Qdy + Rdz) = \iint_{S} \begin{vmatrix} \cos(\alpha) & \cos(\beta) & \cos(\gamma) \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} ds =$$

$$= \iint_{S} \left((R'_{y} - Q'_{z}) dy dz + (P'_{z} - R'_{x}) dz dx + (Q'_{x} - P'_{y}) dx dy \right).$$

Доказательство. Для доказательства этой формулы нам достаточно продемонстрировать следующее равенство:

$$\oint_{\partial S} P dx = \iint_{S} P'_{z} dz dx - P'_{y} dx dy.$$

Действительно.

$$\oint_{\partial S} P dx = \oint_{\partial S} P x'_u du + P x'_v dv = \iint_{D_{uv}} (P x'_v)'_u - (P x'_u)'_v du dv =$$

$$= \iint_{D_{uv}} P'_y (y'_u x'_v - y'_v x'_u) + P'_z (z'_u x'_v - z'_v x'_u) du dv = \iint_{S} P'_z dz dx - P'_y dx dy.$$

Доказательство проводится аналогично для Q и R.

Теперь перейдём к базовым терминам векторного анализа. Пусть $\vec{a} = (P, Q, R)$ — векторное поле в \mathbb{R}^3 , скалярное в $\mathbb{R}^1(u)$, u = u(x, y, z).

Определение (Оператор набла).
$$\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$
.

Определение (Градиент). $grad(u) := \nabla u (u'_x, u'_y, u'_z).$

Определение (Оператор Лапласа).
$$\Delta(u):=(\nabla,\nabla)u=\left(\frac{d^2}{dx^2},\frac{d^2}{dy^2},\frac{d^2}{dz^2}\right)u.$$

Определение (Дивергенция). ${
m div} \vec{a} := (\nabla, \vec{a}) = P_x' + Q_y' + R_z'.$

Определение (Вихрь (ротор)). $\operatorname{rot} \vec{a} := [\nabla, \vec{a}] = (R_y' - Q_z', P_z' - R_x'Q_x' - P_y').$

Теорема (Гаусса-Остроградского). Пусть

- (1) $D \in \mathbb{R}^3$ простое ориентированное множество, ограниченное поверхностью S;
- (2) $P, Q, R, P'_{x}, Q'_{y}, R'_{z} \in C(D);$ (3) $\vec{n} \text{вектор внешней нормали.}$ Tог ∂a

$$\iint_{S} \vec{a}d\vec{S} = \iiint_{D} \operatorname{div} \vec{a} dx dy dz.$$

Определение. Работа векторного поля \vec{a} вдоль контура L определяется как $A := \int_{L} \vec{a} d\vec{r}$.

Определение. Если L из прошлого Определения — замкнутый контур, то $\oint_L \vec{a} d\vec{r}$ называется uupкyляuueй \vec{a} вдоль L.

Теорема (Стокса).

$$\oint_L \vec{a} d\vec{r} = \iint_S \operatorname{rot} \vec{a} d\vec{S}.$$

БИЛЕТ 12.

Линейные пространства, их подпространства. Базис. Размерность. Теорема о ранге матрицы. Система линейных уравнений. Геометрическая интерпретация системы линейных уравнений. Фундаментальная система решений системы однородных линейных уравнений. Теорема Кронекера–Капелли.

Определение. Множество M называется линейным (векторным) пространством над полем \mathbb{F} , если на M определены две операции $+\colon M\times M\to M$ (сложение) и $\cdot\colon \mathbb{F}\times M\to M$, которые удовлетворяют следующему набору аксиом:

- (1) $a + (b + c) = (a + b) + c, \forall a, b, c \in M$;
- (2) $\exists e \in M, a + e = e + a = a \ \forall a \in M.$ Элемент е называется нулем и обозначается 0;
- (3) $\forall a \in M, \exists b \in M, a + b = b + a = 0.$ Элемент b обозначается -a;
- (4) $a + b = b + a, \forall a, b \in M$;
- (5) $\forall \lambda, \mu \in \mathbb{F}, \forall a \in M, \lambda(\mu a) = \mu(\lambda a) = (\mu \lambda)a;$
- (6) $1 \cdot a = a \ \forall a \in M;$
- (7) $\forall \lambda, \mu \in \mathbb{F}, \forall a \in M, (\lambda + \mu)a = (\lambda a) + (\mu a);$
- (8) $\forall \lambda \in \mathbb{F}, \forall a, b \in M, \lambda(a+b) = (\lambda a) + (\lambda b).$

Замечание. Заметим, что первые четыре аксиомы соответствуют тому, что M — абелева группа по сложению.

Определение. Подмножество $N \subset M$, замкнутое относительно операций + и \cdot называется линейным подпространством пространства M.

Определение. Линейной комбинацией векторов $a_1, a_2, \ldots, a_n \in M$ с коэффициентами $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ называется

$$\sum_{i=1}^{n} \lambda_i a_i.$$

Определение. Система векторов a_1, \ldots, a_n называется *линейно независимой*, если их линейная комбинация равна нулю только при равенстве нулю всех коэффициентов $\lambda_1 = 0, \ldots, \lambda_n = 0$.

Лемма. Пусть система векторов a_1, a_2, \ldots, a_n линейно независима, и b — ещё один вектор. Вектор b представляется в виде линейной комбинации a_1, a_2, \ldots, a_n тогда и только тогда, когда система векторов a_1, a_2, \ldots, a_n, b является линейно зависимой.

Определение. Линейно независимая система векторов a_1, a_2, \ldots, a_n называется *базисом*, если любой элемент $\alpha \in \mathbb{F}$ представляется в виде их линейной комбинации.

Замечание. Иными словами, базис — это максимальный линейно независимый набор векторов.

Лемма. Если M — конечномерно, а $\{a_1, a_2, \ldots, a_n\}$, $\{b_1, b_2, \ldots, b_m\}$ — базисы, то n = m.

Определение. Количество векторов базисе линейного пространства M (по предыдущей Лемме, если хотя бы один базис существует) называется размерностью.

Определение. Pahs системы векторов — количество векторов в максимальной линейно независимой подсистеме.

Определение. Pангом матрицы A называется ранг системы её строк. Обозначается $\mathrm{rk}A$.

Теорема (О ранге матрицы). *Ранг матрицы равен наибольшему порядку её миноров, отличных от нуля.*

Доказательство. Пусть ранг матрицы A равен r, и пусть s > r. Тогда всякие s строк матрицы будут линейно зависимы. Значит, любой минор порядка s будет равен нулю. Рассмотрим теперь минор из каких-либо r линейно независимых строк матрицы. Её ранг будет равен r, этот минор ненулевой.

Определение. Линейным уравнением с неизвестными $x_1, x_2, \dots x_n$ над полем \mathbb{F} называется уравнение следующего вида:

$$\sum_{i=1}^{n} a_i x_i = b,$$

где $a_1, a_2, \ldots, a_n \in \mathbb{F}$ — коэффициенты, $b \in \mathbb{F}$ — свободный член.

Определение. Системой т линейных уравнений с п неизвестными называется система вида

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Замечание. СЛУ можно записать в виде

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \forall i = 1, 2, \dots, m.$$

Матрица $A = \|a_j^i\|$ называется матрицей системы; матрица A_{ext} , состоящая из A с добавлением столбца b — расширенная матрица системы.

Если свободный член всех уравнений в системе равен нулю, то система называется однородной.

Определение. Система называется *совместной*, если она имеет хотя бы одно решение. Иначе, говорят, что система *несовместна*.

Замечание. Подстановка любого набора значений вместо переменных x_1, x_2, \ldots, x_n даёт линейную комбинацию столбцов матрицы. Поэтому, существование ненулевого решения у однородной системы эквивалентно условию rkA < n. В частности, это справедливо при m < n, Кроме того, существование решения у неоднородной системы эквивалентно тому, что столбец в выражается линейной комбинацией столбцов матрицы A.

Теорема (Кронекера–Капелли). Система линейных уравнений совместна тогда и только тогда, когда $\mathrm{rk}A = \mathrm{rk}A_{ext}$. Система имеет единственное решение², если ранг равен числу неизвестных, и бесконечное число решений, если ранг меньше числа неизвестных.

Доказательство. Обозначим $r_1 = \operatorname{rk} A, r_2 = \operatorname{rk} A_{ext}$. Пусть система имеет решение. Предположим, $r_1 < r_2$. Выберем в A_{ext} линейно независимую систему E из r_2 столбцов. Если она не включает b, то она есть подсистема столбцов A, где нет линейно независимых подсистем из более чем r_1 векторов. Поэтому, $E = E' \cup \{b\}, E'$ — некоторая система столбцов A, она линейно независима, поэтому число векторов в ней $|E'| \le r_1$.

С другой стороны, $|E'| = r_2 - 1 \ge r_1$, поэтому $|E'| = r_1$, и E' есть максимальная линейно независимая подисистема. Следовательно, b выражается через E' линейной комбинацией. Но тогда E — линейно зависимая. Противоречие.

Пусть теперь система не имеет решения. Пусть E' — максимальная линейно независимая система столбцов A. Поскольку b не выражается линейной комбинацией E', то можно добавить его к E', сохраняя её линейную независимость. Получаем $E = E' \cup \{b\}$ — линейно независимая подсистема столбцов A_{ext} из $r_1 + 1$ столбца. Следовательно, $r_2 > r_1$.

²То есть является определённой.

БИЛЕТ 13.

Билинейные и квадратичные функции и формы в линейных пространствах и их матрицы. Приведение к нормальному виду. Закон инерции.

Пусть \mathbb{F} — фиксированное поле. Рассмотрим функции двух векторных документов, которые являются обобщением скалярного умножения.

Определение. *Билинейной функцией (формой)* на линейном (векторном) пространстве V называется функция

$$\alpha \colon V \times V \to K$$
.

которая линейна по каждому аргументу.

Замечание. Пусть $\{e_1,e_2,\ldots,e_n\}$ — базис пространства V. Тогда для векторов $x=\sum_{i=1}^n x_i e_i \ u \ y=\sum_{i=1}^n y_j e_j \$ имеем:

$$\alpha(x,y) = \sum_{i,j=1}^{n} a_{ij} x_i y_j,$$

 $e \partial e \ a_{ij} = \alpha(e_i, e_j).$

Определение. Матрицей билинейной функции α в базисе $\{e_1,e_2,\ldots,e_n\}$ называется матрица $A=(a_{ij})$

Определение. Ранг матрицы A из предыдущего Определения называется рангом билинейной функции α .

Определение. Подпространство

$$\operatorname{Ker}(\alpha) = \{ y \in V : \alpha(x, y = 0) \ \forall x \in V \}$$

называется ядром билинейной функции α .

Определение. Функция называется невырожденной, если её ядро тривиально.

Определение. Функция α называется симметрической, если $\forall x,y \in V \colon \alpha(x,y) = \alpha(y,x)$. Если же $\forall x,y \in V \colon \alpha(x,y) = -\alpha(y,x)$, то функция кососимметрическая.

Определение. Kвадратичной функцией (формой), ассоциированная с симметрической билинейной функцией α (над полем K, char $(K) \neq 2$) называется функция

$$q: V \to K \quad q(x) = \alpha(x, x).$$

Замечание. По квадратичной функции д можно восстановить функцию α :

$$\alpha(x,y) = \frac{1}{2} (q(x+y) - q(x) - q(y)).$$

Говорят, что $\alpha(x,y)$ — полярная билинейная форма для q.

Доказательство. Действительно,

$$\alpha(x+x,y+y) = \alpha(x,x) + \alpha(y,y) + 2\alpha(x,y).$$

Следовательно,

$$\alpha(x,y) = \frac{1}{2} \left(\alpha(x+y,x+y) - \alpha(x,x) - \alpha(y,y) \right) = \frac{1}{2} \left(q(x+y) - q(x) - q(y) \right).$$

Следовательно, для квадратичных функций понятия матрицы и ранга определяются по аналогии с билинейными (симметрическими) функциями.

Определение. Квадратичная форма q(x) приведена к каноническому виду, если

$$q(x) = \sum_{i=1}^{r} \lambda_i x_i^2,$$

где r = rkq.

Определение. Пусть $\mathbb{F} = \mathbb{R}$. Квадратичная форма приведена к *нормальному виду*, если все ненулевые коэффициенты в её каноническом виде $\lambda_i = \pm 1$.

Таким образом, квадратичную форму можно привести к виду

$$q(x) = x_1^2 + x_2^2 + \ldots + x_k^2 - x_{k+1}^2 - x_{k+2}^2 - \ldots - x_{k+l}^2$$

где k + l = rkq — инвариант.

Определение. Число k называется положительным индексом инерции квадратичной функции q (и соответствующей ей билинейной функции α), а число l — отрицательным индексом инерции. Пара (k,l) — сигнатура функции q (и функции α).

Замечание. В случае $\mathbb{F} = \mathbb{C}$, нормальный вид квадратичной формы будет выглядеть так:

$$q(x) = x_1^2 + x_2^2 + \dots + x_r^2$$
.

Теорема (Алгоритм Лагранжа). Пусть $q(x) - \kappa вадратичная форма. Её можно свести <math>\kappa$ каноническому виду путём выделения полных квадратов: сначала формируется полный квадрат из слагаемых, содержащих λ_1 , потом из слагаемых, содержащих λ_2 , и т.д.

Теорема. Над полем $\mathbb{F} = \mathbb{C}$ всякая квадратичная форма представима в нормальном виде.

Следствие. $Ha\partial$ полем $\mathbb{F} = \mathbb{R}$ ∂ ля

$$q(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \ldots + \lambda_k x_k^2 - \lambda_{k+1} x_{k+1}^2 - \lambda_{k+2} x_{k+2}^2 - \ldots - \lambda_{k+l} x_{k+l}^2$$

нормальный вид достигается при замене $y_i = \sqrt{\lambda_i} x_1$:

$$q(x) = y_1^2 + y_2^2 + \dots + y_k^2 - y_{k+1}^2 - y_{k+2}^2 - \dots - y_{k+l}^2$$

Определение. Если вещественная квадратичная функция q(x) > 0 (q(x) < 0) при $x \neq 0$, то она называется положительно (отрицательно) определённой.

Определение. Вещественная симметрическая билинейная функция называется *положительно (отрицательно) определённой*, если соответствующая её квадратичная функция является положительно (отрицательно) определённой.

Теорема. Положительный индекс инерции произвольной вещественной квадратичной функции q — максимальная размерность подпространства, на котором q является положительно определённой.

Доказательство. Функция q положительно определена на k-мерном подпространстве, которое порождается векторами (e_1, e_2, \ldots, e_k) . Пусть U такое подпространство, на котором q положительно определена, а подпространство W порождается векторами $(e_{k+1}, e_{k+2}, \ldots, e_n)$. Тогда т.к. $q(x) \leq 0$ при $x \in W$, то $U \cap W = \emptyset$. Значит, dim $U \leq k$.

Следствие (Закон инерции). Пусть даны два разложения вещественной квадратичной формы q в нормальный вид. Тогда в обоих разложениях индексы инерций совпадают. То есть, индексы не зависят от выбора базиса, в котором q имеет нормальный вид.

БИЛЕТ 14.

Линейные преобразования линейного пространства, их задание матрицами. Характеристический многочлен линейного преобразования. Собственные векторы и собственные значения, связь последних с характеристическими корнями.

Пусть V — линейное (векторное) пространство над полем \mathbb{F} .

Определение. Отображение $A: V \to V$, которое удовлетворяет следующим условиям:

- (i) $A(x+y) = A(x) + A(y), \forall x, y \in V;$
- (ii) $\mathcal{A}(\lambda x) = \lambda \mathcal{A}x, \, \forall x \in V, \, \forall \lambda \in \mathbb{F};$

называется линейным преобразованием (оператором).

Определение. Пусть в V выбран базис $\{e_1, e_2, \dots, e_n\}$. Матрицой линейного преобразования \mathcal{A} в этом базисе называется матрица $A = (a_{ij})$, определяемая из

$$\mathcal{A}e_j = \sum_{i=1}^n a_{ij}e_i.$$

Лемма. Пусть в V выбраны базисы $\{e_1, e_2, \dots, e_n\}$ и $\{e'_1, e'_2, \dots, e'_n\} = \{e_1, e_2, \dots, e_n\}C$, где C — матрица перехода между базисами. Если обозначить за A' матрицу A в базисе $\{e'_1, e'_2, \dots, e'_n\}$, то справедливо

$$A' = C^{-1}AC$$

Доказательство. Действительно, по определению линейного преобразования A:

$$(\mathcal{A}e'_1, \mathcal{A}e'_2, \dots, \mathcal{A}e'_n) = (\mathcal{A}e_1, \mathcal{A}e_2, \dots, \mathcal{A}e_n)C = (e_1, e_2, \dots, e_n)AC = (e'_1, e'_2, \dots, e'_n)C^{-1}AC.$$

Определение. Ненулевой вектор $e \in V$ такой, что $Ae = \lambda e$ называется собственным вектором линейного преобразования A. При этом $\lambda \in \mathbb{F}$ называется собственным значением вектора e.

Замечание. Пусть в V выбран базис $\{e_1,e_2,\ldots,e_n\}$, $u\ v\in V$. В координатах уравнение $\mathcal{A}v=\lambda v$ принимает вид $Av=\lambda v$, или $(A-\lambda E)v=0$. Это однородная система линейных уравнений, которая имеет ненулевое решение тогда и только тогда, когда $\mathrm{rk}(A-\lambda E)< n$. Это означает, что у матрицы $A-\lambda E$ нет ненулевых миноров порядка n, то есть $\det(A-\lambda E)=0$. Следовательно, λ является собственным значением матрицы A тогда и только тогда, когда справедливо

$$\det\left(A - \lambda E\right) = 0.$$

 $Ho \det (A - \lambda E)$ есть сумма произведений по п различных элементов матрицы $A - \lambda E$, каждый из которых имеет вид $a_{ii} - \lambda$. Поэтому, $\det (A - \lambda E)$ является многочленом степени n от λ .

Определение. Многочлен вида

$$\chi_{\mathcal{A}}(t) = (-1)^n \det (\mathcal{A} - tE) = \det (tE - \mathcal{A})$$

называется xарактеристическим многочленом линейного преобразования A.

Замечание. Характеристический многочлен $\chi_{\mathcal{A}}(t)$ не зависит от выбора базиса: если B — матрица A в другом базисе, то $B = C^{-1}AC$ и

$$\det(tE - B) = \det(tE - C^{-1}AC) = \det(C^{-1}(tE - A)C) = \det(tE - A).$$

Определение. Xарактеристическим корнем линейного преобразования $\mathcal A$ называется такое λ , что

$$\chi_{\mathcal{A}}(\lambda) = 0.$$

Следствие. Характеристические корни линейного отображения — это его собственные значения. В частности, если поле \mathbb{F} алгебраически замкнуто (например, $\mathbb{F} = \mathbb{C}$), то существует хотя бы один характеристический корень, и, соответственно, хотя бы один собственный вектор.

Теорема. Собственные векторы, соответствующие различным собственным значениям $\lambda_1, \lambda_2, \dots, \lambda_k$ линейного отображения \mathcal{A} , являются линейно независимыми.

Доказательство. Будем доказывать индукцией по k. При k=1 утверждение Теоремы, очевидно, выполняется. Пусть k>1 и

$$e_1, e_2, \dots, e_{k-1} + e_k = 0.$$

Следовательно,

$$\lambda_1 e_1, \lambda_2 e_2, \dots, \lambda_{k-1} e_{k-1} + \lambda_k e_k = 0.$$

Тогда

$$(\lambda_1 - \lambda_k)e_1, (\lambda_2 - \lambda_k)e_2, \dots, (\lambda_{k-1} - \lambda_k)e_{k-1} = 0,$$

откуда в силу предположения индукции $e_1=e_2=\ldots=e_{k-1}=0.$ Это значит что и $e_k=0.$

БИЛЕТ 15.

Евклидово пространство. Ортонормированные базисы. Ортогональные матрицы. Симметрические преобразования. Приведение квадратичной формы к главным осям.

Определение. Вещественное линейное (векторное) пространство с фиксированной на нём положительно определённой симметрической билинейной формой называется eвклидовым pространством E.

Замечание. Эта билинейная форма обычно является скалярным произведением (\cdot,\cdot) .

В евклидовом пространстве так определяются длина вектора и угол между векторами, что в случае геометрических вектором они совпадают с обычными длиной и углом. Так, длина вектора $x \in E$ вычисляется как

$$|x| = \sqrt{(x,x)}.$$

Теорема (Неравенство Коши–Буняковского). Для любый векторов $x,y \in E$ справедливо неравенство

$$|(x,y)| \le |x| |y|.$$

Pавенство достигается, когда $x \, u \, y - n$ ропорциональны.

Таким образом, угол между векторами $x, y \in E$ можно вычислить как

$$\cos(\widehat{xy}) = \frac{(x,y)}{|x||y|}.$$

В частности, \widehat{xy} равен 0 или π , когда x и y пропорциональны, а равенство $\widehat{xy} = \frac{\pi}{2}$ достигается, когда x и y ортогональны.

Определение. Базис $\{e_1, e_2, \dots, e_n\}$ евклидова пространства называется *ортогональным*, если все образующие его вектора являются попарно ортогональными.

Определение. Базис $\{e_1, e_2, \dots, e_n\}$ евклидова пространства называется ортонормированным, если его векторы попарно ортогональны и длина каждого из них равна единице.

Замечание. То есть, ортонормированный базис — это базис, в котором скалярное произведение представима в нормальном виде. Таким образом, ортонормированность базиса $\{e_1, e_2, \ldots, e_n\}$ евклидова пространства выражается любым из следующих эквивалентных утверждений:

- (і) базисные векторы попарно ортогональны и имеют единичную длину;
- (іі) скалярное произведение в этом базисе имеет вид

$$(x,y) = \sum_{i=1}^{n} x_i y_i;$$

(ііі) скалярный квадрат в этом базисе имеет вид

$$(x,x) = \sum_{i=1}^{n} x_i;$$

(iv) матрица скалярного произведения в этом базисе — единичная матрица E_n .

 $^{^3}$ Которая называется матрицей Γ рама.

Определение. Матрицы перехода между ортонормированными базисами называются *ортогональными матрицами*.

Предложение. Матрица C ортогональна тогда и только тогда, когда $C^T = C^{-1}$.

Доказательство. Пусть $B_1 = \{e_1, e_2, \dots, e_n\}$, $B_2 = \{e'_1, e'_2, \dots, e'_n\}$ — два базиса, C — матрица перехода между ними. Пусть B_1 ортонормирован, тогда матрица скалярного произведения в B_1 — единичная матрица E_n . C будет ортогональной матрицей тогда и только тогда, когда B_2 ортонормирован, что равносильно тому, что матрица скалярного произведения в B_2 является единичной. Но матрица скалярного произведения в B_2 имеет вид $C^T E_n C = C^T C$. Поэтому, матрица C ортогональна тогда и только тогда, когда $C^T C = E_n$, а следовательно, $C^T = C^{-1}$.

Определение. Линейное отображение \mathcal{A} называется *симметрическим преобразованием*, если

$$\forall x, y \in V : (\mathcal{A}x, y) = (x, \mathcal{A}y).$$

Лемма. В ортонормированных базисах симметрические преобразования выражаются симметричными матрицами, то есть $A = A^T$.

Доказательство. Фиксируем ортонормированный базис e_1, \ldots, e_n . Пусть матрица $A = (a_{ij})$ — матрица линейного отображения $\mathcal A$ в этом базисе. Тогда

$$(\mathcal{A}x, y) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_i y_j,$$

$$(x, Ay) = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_j y_i.$$

Если $a_{ji} = a_{ij}$, то равенство имеет место.

В обратную сторону, пусть $x = e_k, y = e_l$. Тогда

$$(\mathcal{A}x, y) = a_{kl},$$

 $(x, \mathcal{A}y) = a_{lk}.$

Замечание. Рассмотрим симметрическую билинейную функцию $\alpha(x,y)=(x,\mathcal{A}y)$. В ортонормированных базисах её матрица G равна матрице A по определению. Тогда, взяв любую симметрическую билинейную функцию, можно представить её в виде $\alpha(x,y)=(x,\mathcal{A}y)$, задав \mathcal{A} как отображение, матрица которого совпадает с матрицей g в некотором ортонормированном базисе.

Таким образом мы построили взаимно-однозначное соответствие между симметрическими билинейными формами и симметрическими преобразованиями.

Определение. Подпространство $U \in V$ называется uнвариантным относительно линейного преобразования \mathcal{A} , если

$$\forall u \in U : Au \in U$$
.

Пемма. Над полем \mathbb{R} существует одномерное или двумерное инвариантное подпространство относительно любого линейного преобразования.

Теорема. Для любого симметрического линейного преобразования \mathcal{A} существует ортонормированный базис из собственных векторов.

Доказательство. Нам достаточно продемонстрировать существование хотя бы одного такого вектора, а учитывая предыдущую Лемму, нам достаточно это сделать для двумерного пространства.

Итак, матрица преобразования ${\cal A}$ для двумерного пространства примет следующий вид:

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Следовательно, $\chi_{\mathcal{A}}(t) = t^2 - (a+c)t + (ac-b^2)$. Хотим найти корни этого характеристического многочлена: $\chi_{\mathcal{A}}(t) = 0$. Посчитаем дискриминант:

$$D = (a - c)^2 + 4b \ge 0,$$

следовательно, у $\chi_{\mathcal{A}}(t)$ есть вещественные корни, и у \mathcal{A} есть собственные векторы.

Следствие. Для любой квадратичной (т.е. симметрической билинейной) функции q в евклидовом пространстве существует ортонормированный базис, в котором её матрица диагональна.

Другими словами, квадратичную функцию q в евклидовом пространстве можно привести к каноническому виду:

$$q(x) = \sum_{i=1}^{n} \lambda_i x_i^2,$$

 $ide \lambda_i - coбственные$ значения соответствующего симметрического линейного преобразования.

Определение. Процесс нахождения ортонормированного базиса, в котором квадратичная функция q имеет канонический вид, называется $npusedenuem \kappa$ главным осям.

Теорема (О приведении квадратичной формы к главным осям). Вещественная квадратичная форма $q(x) = x^T A x$ при помощи ортогонального преобразования переменных x = S y, где S — ортогональная, может быть приведена к каноническому виду

$$q(y) = \sum_{i=1}^{n} \lambda_i y_i^2,$$

где λ_i — собственные значения матрицы A

Замечание. Другими словами, для любой квадратичной формы существует такой ортонормированный базис, в котором её матрица будет диагональной.

БИЛЕТ 16.

Группы, подгруппы, теорема Лагранжа. Порядок элемента. Циклические группы, факторгруппа. Теорема о гомоморфизмах.

Определение. Множество G с бинарной операцией $G \times G \to G$ называется $\mathit{группой}$, если оно удовлетворяет следующим аксиомам:

- (1) замкнутость: $\forall a, b \in G : ab = c \in G$;
- (2) ассоциативность: $\forall a, b, c \in G$: (ab)c = a(bc);
- (3) наличие нейтрального элемента: $\forall a \in G \ \exists e \in G \colon ea = ae = a;$
- (4) наличие обратного элемента: $\forall a \in G \; \exists a^{-1} \in G \colon aa^{-1} = a^{-1}a = e$.

Определение. Если бинарная операция из перечисленных аксиом обладает только ассоциативностью, то G называется nonyepynnoй.

Определение. Полугруппа с нейтральным элементом называется моноидом.

Определение. Группа G называется абелевой (коммутативной), если $\forall a,b \in G \colon ab = ba$.

Определение. Количество элементов в группе G называется *порядком группы* G. Порядок группы может быть как конечным, так и бесконечным. Обозначается через |G|.

Замечание. Группа называется конечной, если $|G| < \infty$, и бесконечной в противном случае.

Определение. Подгруппой группы G называется всякое подмножество $H \subseteq G$, которое удовлетворяет следующим условиям:

- (1) если $a \in H$, то $a^{-1} \in H$;
- (2) если $a, b \in H$, то $ab \in H$;
- (3) $e \in H$ (подмножество H непусто).

Пусть G — группа, $H \subseteq G$ — её подгруппа.

Определение. Элементы $a, b \in H$ сравнимы по модулю H, если $a^{-1}b \in H$. То есть, если $b = ah, h \in H$.

Определение. Множество

$$gH := \{gh \mid h \in H\}$$

называется левым смежным классом элемента $g \in G$ по подгруппе H.

Определение. Множество

$$Hg := \{hg \mid h \in H\}$$

называется правым смежным классом элемента $g \in G$ по подгруппе H.

Замечание. Элементы g и g' содержатся e одном смежном классе тогда и только тогда, когда $g^{-1}g' \in H$. Из Определения видно, что смежные классы являются классами эквивалентности относительно сравнимости по модулю H.

Определение. Если число (левых или правых) смежных классов группы G по подгруппе H конечно, то оно называется $undercom\ noderpynnu\ H$. Обозначается как |G:H|.

Замечание. Разбиение группы на левые и правые смежные классы может быть устроено по-разному, но количество левых смежных классов совпадает с количеством правых.

Теорема (Лагранжа). Пусть G- конечная группа, $H\subseteq G-$ её произвольная подгруппа. Тогда

$$|G| = |G:H||H|.$$

Доказательство. Все смежные классы содержат по |H| элементов. А так как смежные классы образуют разбиение группы G, то порядок группы G равен произведению их количества на |H|.

Пусть G — группа, $g \in G$ — её элемент.

Определение. Подгруппа

$$\langle q \rangle = \{ q^n \mid n \in \mathbb{N} \} = \{ \dots, q^{-1}, q^0 = e, q^1 = q, \dots \}$$

называется циклической подгруппой в группе G, порождённой элементом g.

Определение. Порядок элемента $g \in G$ — это наименьшее $n \in N$, такое что $g^n = e$, если такое существует; в противном случае — ∞ . Обозначается как ord (g).

Лемма. Порядок элемента $g \in G$ равен порядку циклической подгруппы, порождённой g:

ord
$$(g) = |\langle g \rangle|$$
.

Доказательство. Пусть $n=\operatorname{ord}(g)$ — конечное число. Тогда элементы $g^0=e, g^1=g, g^2, \dots g^{n-1}$ являются попарно различными (т.к. если $\exists k, l \in \mathbb{N} \ k > l \colon g^k=g^l$, то $g^{k-l}=e,$ а k-l < n) Значит, $g^0=e, g^1=g, g^2, \dots g^{n-1} \in \langle g \rangle$.

Пусть $m \in \mathbb{Z}$. Оно раскладывается m = nq + r, где $0 \ge r < n$. Следовательно, $g^m = (g^n)^q g^r = e^q g^r = g^r$. Значит, $|\langle g \rangle| = n$.

В случае, если ord
$$(g)=\infty$$
, то $\forall k,l\in\mathbb{N},:k\neq l\Rightarrow g^k\neq g^l$, т.е., $|\langle g\rangle|=\infty$.

Определение. Если существует элемент $g \in G$ такой, что $\langle g \rangle = G$, то группа G называется *циклической*. Сам элемент g называется *порождающим* (образующим) элементом циклической группы.

Определение. Пусть определены группы G_1 и G_2 . Отображение $\varphi \colon G_1 \to G_2$, такое что

$$\forall a, b \in G_1 : \varphi(ab) = \varphi(a)\varphi(b)$$

называется гомоморфизмом групп G_1 и G_2 .

Определение. Изоморфизмом групп называется их биективный гомоморфизм. Если между группами G_1 и G_2 существует изоморфизм, то говорят, что эти группы изоморфны. Обозначается через $G_1 \cong G_2$.

Замечание. Так как изоморфизм $\varphi \colon G_1 \to G_2$ биективен, то существует отображение $\varphi^{-1} \colon G_2 \to G_1$ обратное к нему.

Определение. Пусть задан гомоморфизм $\varphi: G_1 \to G_2$. Множество

$$Ker(\varphi) := \{g_1 \in G_1 \mid \varphi(g_1) = e_2\}$$

называется ядром гомоморфизма. Множество

$$\operatorname{Im}(\varphi) := \{ g_2 \in G_2 \mid \exists g_1 \in G_1 \colon \varphi(g_1) = g_2 \}$$

называется образом гомоморфизма.

Определение. Подгруппа $H \subseteq G$ называется нормальной подгруппой в G, если $\forall g \in G$: qH = Hq. Обозначается как $H \triangleleft G$.

Замечание. Иными словами, подгруппа нормальна тогда и только тогда, когда она устойчива относительно всех сопряжений. Из этого следует, что для проверки нормальности подгруппы достаточно проверить выполнение условия $gHg^{-1} \subseteq H$.

Определение. Пусть G — группа, $H \triangleleft G$ — нормальная подгруппа. Пусть

$$G/H := \{gH \mid g \in G\}$$

множество левых смежных классов. Зададим на этом множестве операцию умножения следующим образом:

$$(gH)(g'H) = (gg')H = gg'H.$$

C такой операцией множество G/H называется факторгруппой.

Теорема (О гомоморфизме). Пусть задан гомоморфизм $\varphi: G_1 \to G_2$. Тогда

$$\operatorname{Im}(\varphi) \cong G_1 / \operatorname{Ker}(\varphi)$$
.

 \mathcal{A} оказательство. Определим $\psi \colon G_1 \Big/_{\mathrm{Ker}\,(\varphi)} o \mathrm{Im}\,(\psi)$ следующим образом:

$$\psi(g\operatorname{Ker}(\varphi)) = \varphi(g).$$

Для док-ва необходимо проверить, что ψ является гомоморфизмом:

- корректность: если $g^{-1}g' \in \text{Ker}(\varphi)$, то $\varphi(g^{-1}g') = e_2$, а значит $\varphi(g) = \varphi(g')$;
- инъективность: $\varphi(g) = \varphi(g')$, значит $g\mathrm{Ker}(\varphi) = g'\mathrm{Ker}(\varphi)$;
- сюръективность: из формулировки Теоремы;
- гомоморфность: $\psi((g\text{Ker}(\varphi))(g'\text{Ker}(\varphi))) = \varphi(gg') = \varphi(g)\varphi(g') = \psi(g\text{Ker}(\varphi))\psi(g'\text{Ker}(\varphi)).$

То есть, отображение ψ — биективный гомоморфизм, он же изоморфизм.

БИЛЕТ 17.

Аффинная и метрическая классификация кривых и поверхностей второго порядка. Проективная классификация кривых.

Определение. Кривой второго порядка называется поверхность в \mathbb{R}^n , неявно задаваемая в некотором репере уравнением вида

$$Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i + c,$$

где $a_{ij}, b_i, c \in \mathbb{R}$.

Замечание. Эта кривая задается таким уравнением в любом другом репере.

Определение. Аффинным преобразованием называется преобразование, представимое в виде композиции линейного преобразования и параллельного переноса.

Определение. Две поверхности называются аффинно эквивалентными, если существует такое аффинное преобразование (замена координат), что уравнение первой кривой в одной системе совпадает с уравнением второй кривой в другой системе.

Теорема (Об аффинной классификации). Любая поверхность в \mathbb{R}^n аффинно эквивалентна поверхности, задаваемой одним из следующих уравнений:

- 1. $x_1^2 + \dots + x_k^2 x_{k+1}^2 \dots x_{k+l}^2 = 0$, где $k \ge l$. Поверхности такого вида называются
- $x_1 + \cdots + x_k x_{k+1} \cdots x_{k+l} = 1$, где $k > 0, l \ge 0$. K этому виду относятся эллипсоиды и гиперболоиды, а также эллиптические и гиперболические конусы. 3. $x_1^2 + \cdots + x_k^2 x_{k+1}^2 \cdots x_{k+l}^2 = x_{k+l+1}$, где $k \ge l \ge 0$, k > 0. Поверхности этого
- типа называются параболоидами или параболическими цилиндрами.

Доказательство. Сначала, по теореме о приведении к нормальной форме, можно привести к нормальной форме квадратичную часть Q(x). Получим выражение вида:

$$\sum_{i=1}^{k} (x_i^2 + b_i x_i) - \sum_{i=k+1}^{k+l} (x_i^2 + b_i x_i) + \sum_{i=k+l+1}^{n} b_i x_i + c = 0.$$

Затем, верно равенство $x^2+bx=y^2-\frac{b^2}{4}$, где $y=x+\frac{b}{2}$. Согласно ему, положим

$$y_i = x_i + \frac{b_i}{2}$$
. Далее, если $\sum_{i=k+l+1}^n b_i x_i + c$ – не константа, положим $y_{k+l+1} = \sum_{i=k+l+1}^n b_i x_i + c$.

Еще не определенные координаты доопределим так, чтобы получилась корректная замена координат (на самом деле, здесь построена система линейно независимых векторов, которую надо дополнить до базиса, и часть координат точки отсчета, остальные задаются произвольно), получим один из трех случаев:

1.
$$\sum_{i=1}^{k} y_i^2 - \sum_{i=k+1}^{k+l} y_i^2 = 0.$$

2.
$$\sum_{i=1}^{k} y_i^2 - \sum_{i=k+1}^{k+l} y_i^2 = c, c \neq 0.$$

3.
$$\sum_{i=1}^{k} y_i^2 - \sum_{i=k+1}^{k+l} y_i^2 = by_{k+l+1}, \ b \neq 0.$$

Если b < 0 или c < 0, умножим уравнение на -1, и переставим координаты. Теперь, во втором случае поделим уравнение на a=c, во третьем – на a=b, и положим $y_i'=\frac{y_i}{\sqrt{a}}$ (a > 0). В результате, получим уравнения с b = 1 или c = 1, соответственно.

Теперь, если в первом или в третьем случае k < l, умножим уравнение на -1 и переставим координаты. В третьем случае положим $y'_{k+l+1} = -y_{k+l+1}$.

Наконец, в третьем случае при k=0 получается уравнение $x_1=0$. Оно равносильно уравнению $x_1^2 = 0$ первого типа.

Приведем список поверхностей в \mathbb{R}^2 и \mathbb{R}^3 .

 \mathbb{R}^2 , тип 1.

- 1. k = 2, l = 0 Одна точка.
- 2. k = 1, l = 1 Две пересекающиеся прямые.
- 3. k = 1, l = 0 Прямая.
- 4. k = 0, l = 0 Вся плоскость.

 \mathbb{R}^2 , тип 2.

- 1. k = 2, l = 0 Эллипс.
- 2. k = 1, l = 1 Гипербола.
- 3. k = 1, l = 0 Две параллельные прямые.

 \mathbb{R}^2 , тип 3.

1. k = 1, l = 0 Парабола.

 \mathbb{R}^3 , тип 1.

- 1. k = 3, l = 0 Одна точка.
- 2. k = 2, l = 1 Kohyc.
- 3. k = 2, l = 0 Прямая.
- 4. k = 1, l = 1 Две пересекающиеся плоскости.
- 5. k = 1, l = 0 Плоскость.
- 6. k = 0, l = 0 Все пространство.

 \mathbb{R}^3 , тип 2.

- 1. k = 3, l = 0 Эллипсоид.
- 2. k = 2, l = 1 Однополостный гиперболоид.
- 3. k = 2, l = 0 Эллиптический цилиндр.
- 4. k = 1, l = 2 Двуполостный гиперболоид.
- 5. k = 1, l = 1 Гиперболический цилиндр.
- 6. k = 1, l = 0 Две параллельные плоскости.

 \mathbb{R}^3 , тип 3.

- 1. k=2, l=0 Эллиптический параболоид.
- 2. k = 1, l = 1 Гиперболический параболоид.
- 3. k = 1, l = 0 Параболический цилиндр.

Определение. Изометрией называется аффинное преобразование, сохраняющее расстояния между точками.

Определение. Две поверхности называются изометричными, если существует такая изометрическая замена координат, что уравнение первой кривой в одной системе совпадает с уравнением второй кривой в другой системе.

Теорема (О метрической классификации). Любая поверхность в \mathbb{R}^n изометрична поверхности, задаваемой одним из следующих уравнений:

1.
$$\sum_{i=1}^{k} \lambda_i x_i^2 = 0$$

2. $\sum_{i=1}^{k} \lambda_i x_i^2 = 1$

$$2. \sum_{i=1}^{k} \lambda_i x_i^2 = 1$$

3.
$$\sum_{i=1}^{k} \lambda_i x_i^2 = x_{k+1}$$

 $\lambda_i \neq 0, i = 1, \dots, k.$

Доказательство. Ортогональным преобразованием можно привести форму к главным осям:

$$\sum_{i=1}^{k} \lambda_i (x_i^2 + b_i x_i) + \sum_{i=k+1}^{n} b_i x_i + c = 0.$$

Далее, как и в прошлой теореме, параллельным переносом можно сделать $b_i=0$ при $\lambda_i\neq 0$. Затем, если присутствует линейная часть, поворотом в координатах x_{k+1},\ldots,x_n можно привести линейную часть, если она есть, к виду bx_{k+1} . При $b\neq 0$, можно параллельным переносом убрать c. Наконец, если $b\neq 0$ или $c\neq 0$, можно сделать их равными единице делением уравнения на них.

Замечание. После этого сжатием или растяжением базиса по разным осям можно привести форму к виду из теоремы об аффинной классификации. Соответственно, получатся те же самые типы, но теперь внутри одного типа не все поверхности будут эквивалентны друг другу.

Определение. Рассмотрим пространство \mathbb{R}^3 без нуля, и назовем вектора эквивалентными, если они пропорциональны. Множество классов эквивалентности называется проективной плоскостью \mathbb{RP}^2 .

Определение. Проективным преобразованием называется преобразование проективной плоскости, индуцируемое линейным преобразованием \mathbb{R}^3 .

Это определение корректно, поскольку линейные преобразования переводят пропорциональные вектора в пропорциональные. Далее, пространство \mathbb{R}^2 может быть вложено в \mathbb{RP}^2 следующим отображением: $(x,y) \to (x,y,1)$.

При таком вложении уравнение любой кривой примет вид

$$\sum_{i=1}^{3} a_{ij} x_i x_j = 0.$$

Определение. Две кривые называются проективно эквивалентными, если существует такое проективное преобразование (замена координат), что уравнение первой кривой при вложении в проективное пространство в одной системе совпадает с уравнением второй кривой в другой системе.

Теорема (О проектной классификации). Любая поверхность в \mathbb{R}^n аффинно эквивалентна одной из следующих поверхностей:

- 1. овал (эллипс, гипербола или парабола);
- 2. пара прямых;
- 3. прямая;
- 4. точка.

 \mathcal{A} оказательство. Рассмотрим в \mathbb{R}^3 соответствующую квадратичную форму

$$\sum_{i=1}^{3} a_{ij} x_i x_j$$

и приведем ее к нормальному виду. Упорядочим координаты так, чтобы сначала шли 1, затем -1 и в конце 0. При этом, уравнение поверхности в проективных координатах примет один из следующих видов:

```
1. x_1^2 + x_2^2 + x_3^2 = 0;

2. x_1^2 + x_2^2 - x_3^2 = 0;

3. x_1^2 - x_2^2 - x_3^2 = 0;

4. -x_1^2 - x_2^2 - x_3^2 = 0;

5. x_1^2 + x_2^2 = 0;

6. x_1^2 - x_2^2 = 0;

7. -x_1^2 - x_2^2 = 0;

8. x_1^2 = 0;

9. -x_1^2 = 0;
```

Далее, попарно эквивалентны с помощью умножения уравнения на -1 следующие уравнения: 1 и 4, 2 и 3, 5 и 7, 8 и 9. Уравнение 1 не имеет решений на проективной плоскости, поскольку ему удовлетворяет только (0,0,0), который в \mathbb{RP}^2 не лежит. Остаются:

1.
$$x_1^2 + x_2^2 - x_3^2 = 0$$
;
2. $x_1^2 + x_2^2 = 0$;
3. $x_1^2 - x_2^2 = 0$;
4. $x_1^2 = 0$.

Первое уравнение задает кривые, называемые овалами. В аффинных координатах ему соответствуют параболы, эллипсы и гиперболы. Второе уравнение задает одну точку, третье – пару прямых, и четвертое – прямую.

БИЛЕТ 18.

Дифференциальное уравнение первого порядка. Теорема о существовании и единственности решения.

Определение. Дифференциальным уравнением первого порядка называется уравнение вида

$$\dot{x} = v(x, t),$$

где $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, $v : \mathbb{R}^{n+1} \to \mathbb{R}^n$.

Определение. Решением дифференциального уравнения называется функция $\varphi(t)$: $(a,b) \to \mathbb{R}^n$, $(a,b) \subset \mathbb{R}$, такая, что $\forall t \in (a,b)$

$$\frac{d\varphi}{dt}\big|_t = v(\varphi(t), t).$$

Определение. Решение называется удовлетворяющим начальному условию $x(t_0) = x_0$, $t_0 \in (a, b), x_0 \in \mathbb{R}^n$, если

$$\varphi(t_0) = x_0.$$

Определение. Отображение $A \colon M \to M$ метрического пространства M в себя называется сжимающим, если $\forall x,y \in M$ справедливо

$$\rho(Ax, Ay) \le q\rho(x, y),$$

где q < 1 — некоторая константа.

Теорема (О сжимающих отображениях). Сжимающее отображение A полного метрического пространства M в себя имеет единственную неподвижную точку (то есть такую, что Ax = x).

Доказательство. Фиксируем произвольное x_0 и построим последовательность x_n по правилу $x_n = Ax_{n-1}$. Тогда

$$\rho(x_n, x_{n+1}) \le q\rho(x_{n-1}, x_n) \le \dots \le q^n \rho(x_0, x_1)$$

в силу чего при m > n

$$\rho(x_n, x_m) = \sum_{k=n}^{m-1} \rho(x_k, x_{k+1}) \le \sum_{k=n}^{m-1} q^k \cdot \rho(x_0, x_1) \le q^n \frac{\rho(x_0, x_1)}{1 - q}.$$

Правая часть неравенства стремится к нулю при $n \to \infty$, что означает фундаментальность последовательности x_n . Но тогда она имеет предел x:

$$Ax = A \lim_{n \to \infty} A^n x_0 = \lim_{n \to \infty} A^{n+1} x_0 = x.$$

Таким образом, x — искомая точка.

Если x и y — две неподвижные точки, то

$$\rho(x, y) = \rho(Ax, Ay) < q\rho(x, y),$$

откуда $\rho(x, y) = 0$, и x = y.

Теорема (О существовании и единственности решения). Пусть функция v(x,t) непрерывно дифференцируема в некоторой окрестности U точки (x_0,t_0) . Тогда на некотором $(a,b) \ni t_0$ существует единственное решение уравнения

$$\dot{x} = v(x, t),$$

которое удовлетворяет начальному условию $\varphi(t_0) = x_0$.

Доказательство. Шаг 1: построение пространства. Обозначим $U' = \{(x,t) \mid |t-t_0| \le \alpha, |x-x_0| \le \beta\}$, α и β выбираются так, чтобы $U' \subset U$. Тогда на U' функции v и v_x (v_x здесь интерпретируется как линейный оператор: $v(x+\Delta x,t)=v(x)+v_x\Delta x+\overline{o}(\Delta x)$) непрерывны. Поскольку U' компактно, определены $C=\max_{t,t'}|v|$, $L=\max_{t,t'}|v_x|$.

Пусть теперь $K = \{(x,t) \mid |t-t_0| \leq \alpha', |x-x_0| \leq C|t-t_0|\}$ — конус с вершиной (x_0,t_0) , α' выбирается так, чтобы было выполнено $\alpha' \leq \alpha$, $C\alpha' < \beta$, $L\alpha' < 1$. Тогда, в частности, $K \subset U'$.

Обозначим $\Delta = [t_0 - \alpha', t_0 + \alpha']$ и рассмотрим пространство непрерывных функций $C(\Delta)$ со стандартной "равномерной" метрикой. Оно полно. Пусть $M \subset C(\Delta)$ — множество функций, удовлетворяющих условию $h(t) \leq C|t-t_0|$. Равномерный (и даже поточечный) предел функций, удовлетворяющих этому условию, снова будет удовлетворять этому условию. Значит, M замкнуто в $C(\Delta)$, а потому полно. Отметим, что M характеризуется условием $(x_0 + h(t), t) \in K \ \forall t \in \Delta, \ h \in M$.

Шаг 2. Построение отображения. Построим отображение $A:C(\Delta)\to C(\Delta)$ по правилу

$$(Ah)(t) = \int_{t_0}^{t} v(x_0 + h(t), t)dt$$

Отметим, что условие h = Ah равносильно системе условий $h(t_0) = 0$ и $\dot{h} = v(x_0 + h(t), t)$ (в частности, \dot{h} определено как производная по вернему пределу интеграла от непрерывной функции). Отсюда легко видеть, что $\varphi(t)$ является решением уравнения (1) с начальным условием $\varphi(t_0) = x_0$ тогда и только тогда, когда $h(t) = \varphi(t) - x_0$ удовлетворяет уравнению Ah = h.

Итак, задача сводится к поиску решений уравнения Ah = h в M.

Шаг 3. Завершение доказательства. Покажем, что отображение A переводит M в M. В самом деле, если $h \in M$, то при $t \in \Delta$ выполнено $h(t) \leq C|t-t_0|$, в силу чего $(x_0+h(t),t) \in K \subset U'$. Но тогда подынтегральная функция не превосходит C, и $|(Ah)(t)| \leq C|t-t_0|$, то есть, $Ah \in M$.

Пусть $(x,t),(y,t)\in K$ (t одинаково!), тогда, положив r(s)=x+s(y-x), получим

$$||v(y,t)-v(x,t)|| = ||v(r(1),t)-v(r(0),t)|| = \left|\int_{0}^{1} \frac{d}{ds}v(r(s),t)ds\right| \le$$

$$\leq \left| \left| \frac{d}{ds} v(r(s), t) \right| \right| = \left| \left| v_x \cdot r_s \right| \right| \leq L \cdot \left| \left| y - x \right| \right|.$$

Итак, $||v(y,t)-v(x,t)|| \leq L||y-x||$. Отсюда следует, что для любых $h_1,h_2 \in M$, $||v(x_0+h_2(t),t)-v(x_0+h_1(t),t)|| \leq L||h_2(t)-h_1(t)||$. Пользуясь этим, получаем

$$|(Ah_2 - Ah_1)(t)| \le |t - t_0| \cdot ||v(x_0 + h_2(t), t) - v(x_0 + h_1(t), t)|| \le$$

$$\le |t - t_0| \cdot L||h_2 - h_1|| \le \alpha' L||h_2 - h_1||$$

Поскольку $L\alpha' < 1$ (по выбору α'), отображение A сжимающее на M.

По Теореме о сжимающих отображениях (используем полноту M), оно имеет в M единственную неподвижную точку, которая и даёт единственное (с заданным начальным условием) решение.

БИЛЕТ 19.

Линейное дифференциальное уравнение второго порядка. Линейное однородное уравнение. Линейная зависимость функций. Фундаментальная система решений. Определитель Вронского. Линейное неоднородное уравнение.

Определение. Линейным дифференциальным уравнением n-го порядка называется уравнение вида

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = f(x)$$
(1)

где y(x) — неизвестная функция, $a_i(x)$ — коэффициенты уравнения.

Определение. Уравнение (1) называется однородным, если f(x) = 0.

Любому неоднородному уравнению естественным образом сопоставляется однородное с той же левой частью и нулевой правой.

Лемма. Если $y_1(x)$ и $y_2(x)$ — решения неоднородного уравнения (1), то $y_1(x) - y_2(x)$ — решение соответствующего однородного. Если $y_1(x)$ — решение неоднородного уравнения, а $y_2(x)$ — соответствующего однородного, то $y_1(x) + y_2(x)$ — решение неоднородного. Наконец, если $y_1(x)$ и $y_2(x)$ — решения однородного уравнения, то $\forall \alpha, \beta, \alpha y_1(x) + \beta y_2(x)$ — снова решение однородного уравнения.

Доказательство. Все три утверждения тривиально проверяются подстановкой в (1), с учетом линейности (1) по y(x).

Из первых двух утверждений леммы следует, что все решения неоднородного уравнения получаются прибавлением всех решений соответствующего однородного к любому частному решению неоднородного уравнения. Поэтому задача решения уравнения (1) разбивается в две: построение всех решений однородного уравнения и одного решения неоднородного.

Обозначим $z^i(x) = y^{(i)}(x)$. Тогда уравнение (1) равносильно системе первого порядка

$$\begin{cases} z^{0'}(x) &= z^{1}(x) \\ \vdots &= \vdots \\ z^{n-2'}(x) &= z^{n-1}(x) \\ z^{n-1'}(x) &= a_{n-1}(x)z^{n-1}(x) + \dots + a_{0}(x)z^{0}(x) \end{cases}$$

Тогда, по общей теореме, в окрестности любой точки x_0 существует единственное решение для заданных начальных условий $y^{(i)}(x_0) = z^i(x_0)$.

Лемма. Пусть на промежутке < a,b> все функции $a_i(x)$ ограничены. Тогда для некоторого A имеет место оценка

$$||z(x)|| \le ||z(x_0)||e^{A|x-x_0|}|$$

справедливая для любых x u x_0 u3 < a, b >.

Рассмотрим пространство R^{n+1} с координатами x,z^1,\ldots,z^n , в нем точку $x_0,\bar{z_0}$, и множество $\{(x,\bar{z})|x\in[c,d],||z||\leq||z_0||(1+e^{A(x-x_0)})\}$. Это множество компактно в R^{n+1} , поэтому, решение с начальным условием $x_0,\bar{z_0}$ продолжается до его границы.

В то же время, оно не может выйти на границу $||z|| = ||z_0||(1 + e^{A(x-x_0)})$ по лемме. Значит, оно продолжается по x на весь отрезок [c,d], и это верно для любого $[c,d] \subset <a,b>$. Поэтому, решение определено на всем <a,b>.

Итак, доказана теорема

Теорема. Для любой точки $x_0 \in \langle a,b \rangle$, любых начальных условий $y(x_0) = y_0^0, \ldots, y^{(n-1)}(x_0) = y_0^{n-1}$, существует единственное решение уравнения (1) с этими начальными условиями, определенное на всем $\langle a,b \rangle$.

Определение. Функции $y_1(x), \ldots, y_p(x)$ называются линейно независимыми, если из $c_1y_1(x) + \cdots + c_py_p(x) = 0$ следует $c_1 = 0, \ldots, c_p = 0$.

Определение. Определителем Вронского системы функций $y_1(x), \ldots, y_p(x)$ называется функция, вычисляемая в каждой точке x как определитель

$$W(x) = \begin{vmatrix} y_1(x) & \dots & y_p(x) \\ y'_1(x) & \dots & y'_p(x) \\ \vdots & \ddots & \vdots \\ y_1^{(p-1)} & \dots & y_p^{(p-1)} \end{vmatrix}.$$

Предложение. Если функции $y_1(x), \ldots, y_p(x)$ линейно зависимы в некоторой окрестности точки x_0 , то их определитель Вронского в точке x_0 равен θ .

Доказательство. Запишем $c_1y_1(x) + \cdots + c_py_p(x) = 0$, продифференцируем k раз по x, и подставим x_0 . Тогда $\forall k$, $c_1y_1^{(k)}(x_0) + \cdots + c_py_p^{(k)}(x_0) = 0$, то есть столбцы определителя Вронского линейно зависимы, в силу чего он равен 0.

Теорема. Пусть $y_1(x), \ldots, y_n(x)$ — линейно независимые решения однородного уравнения (1), существующие по первой теореме. Тогда они образуют базис в пространстве решений однородного уравнения.

Доказательство. Достаточно доказать, что любое другое решение представляется в виде их линейной комбинации. Пусть y(x) — произвольное решение (1), фиксируем произвольную точку x_0 .

Рассмотрим линейную систему $c_1y_1^{(k)}(x_0)+\cdots+c_ny_n^{(k)}(x_0)=y^{(k)}(x_0)$. Определителем этой системы является определитель Вронского, который отличен от 0. Значит, она имеет решение c_1,\ldots,c_n . Обозначим $z(x)=c_1y_1(x)+\cdots+c_ny_n(x)$, тогда $z^{(k)}(x_0)=y^{(k)}(x_0)$ для всех $k=0,\ldots,n-1$. По теореме о единственности решения, y(x)=z(x).

Определение. Такая система векторов называется фундаментальной системой решений однородного уравнения (1).

Замечание. Ясно, что пространство решений линейного однородного уравнения п-мерно.

Определение. Любое решение однородного уравнения имеет вид

$$c_1y_1(x) + \cdots + c_ny_n(x)$$
.

Это n-параметрическое семейство решений называется общим решением однородного уравнения (1).

Общее решение неоднородного уравнения получается прибавлением любого решения неоднородного уравнения к общему решению соответствующего однородного уравнения.

БИЛЕТ 20.

Линейное уравнение с постоянными коэффициентами: однородное и неоднородное

Определение. Линейным уравнением с постоянными коэффициентами называется уравнение вида

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(x), \tag{1}$$

где $a_i \in \mathbb{R}$, y = y(x) – неизвестная функция, f(x) – заданная правая часть. Если она равна 0, уравнение называется однородным.

Лемма. Общее решение неоднородного уравнения (1) есть сумма любого частного решения неоднородного уравнения и общего решения однородного уравнения; все решения однородного уравнения образуют линейное пространство размерности n.

Обозначим D – оператор дифференцирования, Dy = y', I – тождественный оператор. Рассмотрим дифференциальный оператор L:

$$L = D^n + a_{n-1}D^{n-1} + \dots + a_1D + a_0I.$$

Тогда уравнение (1) принимает вид Ly = f(x).

Рассмотрим также многочлен P(t):

$$P(t) = t^{n} + a_{n-1}t^{n-1} + \dots + a_{1}t + a_{0}.$$

Тогда L = P(D).

 ${\bf C}$ другой стороны, многочлен P может быть разложен над ${\bf C}$ на множители

$$P(t) = (t - \lambda_1)^{k_1} \cdots (t - \lambda_p)^{k_p}$$

Числа $\lambda_1, \ldots, \lambda_p$ определяются как корни (алгебраического) уравнения P(t) = 0, которое называется характеристическим. k_1, \ldots, k_p находятся как кратности корней. Отметим, что решение характеристического уравнения есть первый шаг решения уравнения (1).

В силу изложенного,

$$L = P(D) = (D - \lambda_1 I)^{k_1} \cdots (D - \lambda_p I)^{k_p}.$$

Рассмотрим функцию $y=f_{s,\mu}(x)=x^se^{\mu x},\ s$ – натуральное или $0,\ \mu\in C.$ Рассмотрим действие на неё оператора $D_\lambda=(D-\lambda I)$:

$$(D - \lambda I)(x^s e^{\mu x}) = sx^{s-1}e^{\mu x} + x^s \mu e^{\mu x} - \lambda x^s e^{\mu x} = sx^{s-1}e^{\mu x} + x^s e^{\mu x}(\mu - \lambda).$$

Эта формула позволяет сделать важный вывод: если $\mu = \lambda$, то при s > 0 $f_{s,\mu}$ переходит в $f_{(s-1),\mu}$ с ненулевым коээфициентом, а $f_{0,\mu}$ переходит в 0. Если же $\mu \neq \lambda$, $f_{s,\mu}$ переходит в себя (с ненулевым коэффициентом), плюс некоторая линейная комбинация $f_{r,\mu}$, r < s.

Обозначим $P_{r,\mu}$ – линейная оболочка $f_{s,\mu}$ при $s \leq r$. Иначе говоря, элементы $P_{r,\mu}$ имеют вид $q(x)e^{\mu x},\ q(x)$ – многочлен степени не выше r. Тогда

$$D_{\lambda}P_{r,\mu} = \left\{ \begin{array}{ll} P_{r,\mu} & \text{при } \mu \neq \lambda \\ P_{r-1,\mu} & \text{при } \mu = \lambda, \, r > 0 \\ 0 & \text{при } \mu = \lambda, \, r = 0 \end{array} \right.$$

Отсюда по индукции доказывается, что

$$D_{\lambda}^{k} P_{r,\mu} = \begin{cases} P_{r,\mu} & \text{при } \mu \neq \lambda \\ P_{r-k,\mu} & \text{при } \mu = \lambda, \ r \geq k \\ 0 & \text{при } \mu = \lambda, \ r < k \end{cases}$$

Отсюда получается следующая формула для действия оператора $L=D_{\lambda_1}^{k_1}\cdots D_{\lambda_p}^{k_p}$:

Лемма.

$$LP_{r,\mu} = \begin{cases} P_{r,\mu} & ecnu \ \mu \notin \{\lambda_1, \dots, \lambda_p\} \\ P_{r-k_i,\mu} & npu \ \mu = \lambda_i, \ r \ge k_i \\ 0 & npu \ \mu = \lambda_i, \ r < k_i \end{cases}$$

Предложение. Функции $f_{j,\mu}$ при различных j,μ линейно независимы.

Далее, из леммы 2 следует, что пространства P_{k_i-1,λ_i} для всех $i=1,\ldots,p$ переводятся в 0 оператором L. Поэтому, все элементы пространства

$$P_L = P_{k_1 - 1, \lambda_1} \oplus \cdots \oplus P_{k_p - 1, \lambda_p}$$

будут переводится оператором L в 0. Итак, P_L – подпространство в пространстве решений однородного уравнения (1), $P_L \subset V$.

С другой стороны, $\dim P_L = k_1 + \dots + k_p = n$, поскольку это есть сумма кратностей корней характеристического уравнения, которое имеет степень n. Однако, $\dim V = n$ (Лемма 1). Итак, $\dim P_L = \dim V$, поэтому $P_L = V$.

Вспоминая построение P_L , любой элемент P_L есть линейная комбинация элементов P_{k_i-1,λ_i} , а последние есть линейные комбинации f_{s,λ_i} при $s < k_i$.

Итак, справедлива следующая теорема

Теорема. Решения однородного уравнения (1) имеют вид

$$\sum_{i=1}^{p} \sum_{j=0}^{k_i-1} c_{i,j} f_{j,\lambda_i} = \sum_{i=1}^{p} \sum_{j=0}^{k_i-1} c_{i,j} x^j e^{\lambda_i x}.$$

Определение. Получаем n — параметрическое семейство решений уравнения (1) (параметрами являются c_{ij}). Это семейство решений называется общим решением однородного уравнения (1).

По предыдущей теореме, общее решение выписывается явно для любого уравнения после решения соответствующего характеристического уравнения.

Отметим, что функции f_{s,λ_i} при $s < k_i$ образуют фундаментальную систему решений уравнения (1).

Перейдем к решению неоднородного уравнения. Согласно лемме 1, достаточно найти одно частное решение неоднородного уравнения. Если правая часть f(x) произвольна, можно использовать метод вариации постоянных, применимый к любому линейному уравнению (см. билет 19). Однако, в случае правой части конкретного вида, решение можно упростить.

Предложение. Если правая часть уравнения f(x) представима как $f(x) = c_1 f_1(x) + \cdots + c_r f_r(x)$, и для $f_i(x)$ найдены частные решения $y_i(x)$, $Ly_i(x) = f_i(x)$, то для $y(x) = c_1 y_1(x) + \cdots + c_r y_r(x)$ справедливо Ly(x) = f(x) в силу линейности L (Лемма 1). То есть, y(x) – частное решение уравнения (1).

Теорема. Рассмотрим уравнение (1), $f(x) = q(x)e^{\mu x}$. Обозначим $s = \deg q$. Положим k = s, если μ не совпадает ни с одним из λ_i , иначе $k = s + k_i$ если $\mu = \lambda_i$. Тогда уравнение (1) имеет решение в пространстве $P_{k,\mu}$.

Доказательство. Согласно лемме 2, при таком выборе k окажется $LP_{k,\mu}=P_{s,\mu}$. Поэтому, существует $y\in P_{k,\mu},\,Ly=q(x)e^{\mu x}\in P_{s,\mu}$.

Итак, доказано существование решения в пространстве $P_{k,\mu}$. Иначе говоря, уравнение (1) имеет решение вида

$$\sum_{i=0}^{k} c_i x^i e^{\mu x},$$

где коэффициенты c_i можно находить методом неопределенных коэффициентов. После нахождения частного решения, общее решение неоднородного уравнения получается, согласно лемме 1, как сумма данного частного решения и общего решения неоднородного уравнения.

БИЛЕТ 21.

Функции комплексного переменного. Условия Коши-Римана. Геометрический смысл аргумента и модуля производной.

Пусть $z=(x,y)=x+iy\in\mathbb{C}$ — комплексное число. Тогда $x=\mathrm{Re}\,(z)$ — действительная часть, $y=\mathrm{Im}\,(z)$ — мнимая часть.

Определение. Полярной формой комплексного числа z называется

$$z = r(\cos(\varphi) + i\sin(\varphi)).$$

Определение. Полярный радиус комплексного числа называется его модулем:

$$|z| := r = \sqrt{x^2 + y^2}.$$

Определение. Полярный угол φ комплексного числа называется его *аргументом*:

$$Arg(z) := \varphi.$$

Определение. Пусть есть множество $M \in \bar{\mathbb{C}}$. Если существует закон, по которому каждой точке $z \in M$ соответствует конечное или бесконечное число $w \in \bar{\mathbb{C}}$, то задана функция f:

$$w = f(z)$$
.

Рассмотрим функцию $f(z) = \alpha + i\beta$ определена и конечна в окрестности точки $z_0 = x_0 + iy_0 \in \mathbb{C}$.

Определение. Если функции α и β дифференцируемы как функции (x,y) в точке (x_0,y_0) , то функция f называется дифференцируемой в точке z_0 в смысле \mathbb{R}^2 . При этом $df = d\alpha + id\beta$ — дифференциал f в z_0 .

Замечание. Представим $d\alpha$ и $d\beta$ в виде частных производных:

$$df = \left(\frac{\partial \alpha}{\partial x} + i\frac{\partial \beta}{\partial x}\right) + \left(\frac{\partial \alpha}{\partial y} + i\frac{\partial \beta}{\partial y}\right) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

 $\Pi y cm$ ь $z=x+iy,\ ar{z}=x-iy,\ mor\partial a\ dz=dx+idy,\ dar{z}=dx-idy.$ Следовательно, $dx=rac{dz+dar{z}}{2}\ u\ dy=rac{dz-dar{z}}{2i}.$ А это значит, что уравнение выше можно привести κ виду

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d\bar{z},$$

$$z\partial e \ \frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \right), \ \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \right).$$

Определение. Если функция f является дифференцируемой в точке z_0 в смысле \mathbb{R}^2 , и её дифференциал пропорционален dz, то f называется дифференцируемой в точке z_0 в смысле \mathbb{C} .

Замечание. Условие пропорциональности дифференциала эквивалентно тому, что в точке z_0 справедливо $\frac{df}{d\bar{z}}=0$, где $d\bar{z}=dx-idy$. Это условие обычно называют условием комплексной дифференцируемости.

Определение. Учитывая Замечание выше, мы можем представить условие комплексной дифференцируемости в виде следующих уравнений:

$$\frac{\partial \alpha}{\partial x} = \frac{\partial \beta}{\partial y}, \qquad \frac{\partial \alpha}{\partial y} = -\frac{\partial \beta}{\partial x}.$$

Эти условия называют условиями Коши-Римана.

Определение. Если существует предел

$$f'(z_0) := \lim_{\Delta z} \frac{\Delta f}{\Delta z} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

то он называется производной функции f в точке z_0 .

Лемма. Пусть функция f определена в некоторой окрестности точки z_0 . Тогда для существования y f производной в z_0 необходимо и достаточно, чтобы f была дифференцируема в этой точке в смысле \mathbb{C} .

Определение. Функция f называется голоморфной (аналитической) в точке $z_0 \in \mathbb{C}$, если она дифференцируема в некоторой окрестности z_0 в смысле \mathbb{C} .

Замечание. Функция f голоморфна на открытом множестве, если она голоморфна в каждой его точке. Если функция определена на некотором произвольном множестве M, и её можно продолжить на открытое множество Ω , $M \subset \Omega$ до голоморфной на Ω , то f является голоморфной на M.

Замечание (Геометрический смысл аргумента и модуля производной). Модуль производной означает, что коэффициент масштабирования одинаков в любом направлении от точки z, то есть не зависит от направления. Вообще говоря, коэффициент масштабирования меняется от точки κ точке.

Если коэффициент масштабирования |z| > 1, то в окрестности точки z расстояния между точками увеличиваются, и коэффициент масштабирования называют коэффициентом растяжения. Если коэффициент масштабирования |z| < 1, то в окрестности точки z расстояния между точками уменьшаются, и коэффициент масштабирования называют коэффициентом сжатия. Например, для функции $f(z) = z^2 + 2z - 1$ в точке z = 1 производная равна 4, поэтому все длины увеличиваются в четыре раза.

Что касается аргумента производной, то он определяет угол поворота гладкой кривой, проходящей через данную точку z. Все гладкие кривые при таком отображении поворачиваются на один и тот же угол.

БИЛЕТ 22.

Элементарные функции комплексного переменного и даваемые ими конформные отображения. Простейшие многозначные функции. Дробно–линейные преобразования.

Определение. Отображение $f: \mathbb{C} \to \mathbb{C}$, которое дифференцируемо в точке z_0 в смысле \mathbb{R}^2 (т.е., $df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}$), называется конформным в точке z_0 , если её дифференциал $df(z_0)$ задаёт невырожденное линейное отображение $\mathbb{C} \to \mathbb{C}$, сводящееся к повороту с растяжением.

Замечание. Отображение f является конформным в точке z_0 тогда и только тогда, когда f дифференцируемо в точке z_0 в смысле \mathbb{R}^2 , и $f'(z_0) \neq 0$.

Замечание. Конформность f в точке ∞ равносильно конформности $g(z)=f\left(\frac{1}{z}\right)$ в z=0.

Замечание. Пусть $f(z_0) = \infty$.

- Если $z_0 \neq \infty$, то конформность в точке z_0 означает конформность $F(z) = \frac{1}{f(z)}$ в z_0 .
- Если $z_0 = \infty$, то конформность в точке ∞ означает конформность $F(z) = f\left(\frac{1}{z}\right)$ в точке 0.

Определение. Отображение вида

$$w(z) = \frac{az+b}{cz+d},$$

где $a, b, c, d \in \mathbb{C}$ и $ad - bc \neq 0$, называется дробно-линейным отображением (ДЛО).

Замечание. • Условие $ad - bc \neq 0$ гарантирует непостоянство w(z).

- При c=0 отображение превращается в линейную функцию w(z)=Az+B и сводится к растяжению с поворотом и сдвигу.
- Доопределим отображение w(z) по непрерывности в точках $z=-\frac{d}{c}$ и $z=\infty$: $w\left(-\frac{d}{c}\right)=\infty,\ w(\infty)=\frac{a}{c}.$

Теорема. Любое дробно-линейное отображение задаёт конформное, взаимно-однозначное и непрерывное отображение \bar{C} на \bar{C} .

 $\emph{Доказательство}.$ • Взаимная однозначность. При c=0 — очевидно. Пусть $c\neq 0$. Если $z\neq -\frac{d}{c}$ и $z\neq \infty$, то существует ДЛО $z(w)=\frac{dw-b}{-cw+a}$, которое не принимает значений $z(w)=\frac{a}{c}$ и $z(w)=\infty$. Положим тогда $z\left(\frac{a}{c}\right)=\infty$ и $z(\infty)=-\frac{d}{c}$.

• Непрерывность. При $z \neq -\frac{d}{c}$ и $z \neq \infty$ непрерывность следует из формулы z(w), а в точках $z = -\frac{d}{c}$, $z = \infty$ ДЛО непрерывно.

Замечание. Дробно-линейные отображения образуют группу относительно операции композиции, и эта группа изоморфна группе $SL(2, \mathbb{C})$.

Определение. Обобщённой окружностью на \mathbb{C} (окружностью на \mathbb{C}) называется образ окружности на сфере Римана при стереографической проекции. То есть, обобщённая окружность — либо окружность, либо прямая.

Лемма. Всякое ДЛО переводит обобщённые окружности в обобщённые окружности.

Доказательство.

Определение. Точки z и z' называются cимметричными относительно окружности Γ на \mathbb{C} , если они лежат на луче, выходящим из центра Γ , и произведение их расстояний до центра равно квадрату радиуса Γ .

Определение. Дробно–линейное отображение области D на D^* называется $\partial poбно-$ линейным изоморфизмом.

Лемма. Всякое ДЛО w(z) переводит симметричные относительно обобщённой окружености Γ точки z и z' в точки w и w', которые симметричны относительно $w(\Gamma)$.

Доказательство. Любая окружность, проходящая через точки z и z' и ортогональная Γ , переводится w(z) в окружность, проходящую через w и w' и ортогональную $w(\Gamma)$.

Лемма (Свойство трёх точек). Пусть

$$\Lambda \colon w(z) = \frac{az+b}{cz+d},$$

где $ad-bc \neq 0$. Для любых трёх различных пар точек $z_1, w_1, z_2, w_2, z_3, w_3$ существует единственное ДЛО Λ такое, что $\Lambda(z_i) = w_i$, $i \in \{1, 2, 3\}$.

Следствие. Любые два обобщённых круга на $\bar{\mathbb{C}}$ являются дробно-линейно изоморфными.

Рассмотрим теперь примеры некоторых других элементарных функций.

• Степенная функция.

$$w=z^n, n\in\mathbb{N}.$$

Эта функция является голоморфной во всей $\mathbb C$. Производная $\frac{dw}{dz}=nz^{n-1},\ n>1.$ Следовательно, $\frac{dw}{dz}=0$ только при z=0, значит w конформно везде в $\mathbb C\setminus\{0\}$. Переходим к полярным координатам:

$$z = re^{i\varphi}, \qquad w = (r^n) e^{i(n\varphi)}.$$

Следовательно, w(z) увеличивает углы с вершиной в точке z=0 в n раз. Точки $z_1=re^{i\varphi}$ и $z_2=re^{i\varphi+\frac{2\pi}{n}}$ при отображении w(z) переходят в одну.

• Показательная функция.

$$e^z = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n.$$

Докажем существование этого предела. Пусть z = x + iy. Тогда

$$\left| \left(1 + \frac{z}{n} \right)^n \right| = \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}},$$

$$\arg\left(1 + \frac{z}{n} \right)^n = n \operatorname{arctg}\left(\frac{\frac{y}{n}}{1 + \frac{x}{n}} \right).$$

Из данных соотношений получаем,

$$\lim_{n \to \infty} \left| \left(1 + \frac{z}{n} \right)^n \right| = e^x, \qquad \lim_{n \to \infty} \arg \left(1 + \frac{z}{n} \right)^n = y.$$

Таким образом, предел существует, и $|e^z| = e^{\text{Re}(z)}$, arg $e^z = \text{Im}(z)$. Перечислим основные свойства показательной функции:

- (i) e^z является голоморфной на всей \mathbb{C} ;
- (ii) для e^z сохраняется формула дифференцирования;
- (iii) для e^z сохраняется теорема сложения.
- Функция Жуковского:

$$w(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

Она является голоморфной в $\mathbb{C}\setminus\{0\}$. Производная $\frac{dw}{dz}=\frac{1}{2}\left(1-\frac{1}{z^2}\right)$ отлично от нуля при $z\neq\pm 1$, значит, что w конформно в точках $z\neq\pm 1$ (в z=0 конформность сохраняется).

БИЛЕТ 23.

Теорема Коши об интеграле по замкнутому контуру. Интеграл Коши. Ряд Тейлора.

Сперва введём основные термины. Рассмотрим функцию $f(z) = \alpha + i\beta$ определена и конечна в окрестности точки $z_0 = x_0 + iy_0 \in \mathbb{C}$.

Определение. Если функции α и β дифференцируемы как функции (x,y) в точке (x_0,y_0) , то функция f называется дифференцируемой в точке z_0 в смысле \mathbb{R}^2 . При этом $df = d\alpha + id\beta$ — дифференциал f в z_0 .

Определение. Если функция f является дифференцируемой в точке z_0 в смысле \mathbb{R}^2 , и её дифференциал пропорционален dz, то f называется дифференцируемой в точке z_0 в смысле \mathbb{C} .

Замечание. Условие пропорциональности дифференциала эквивалентно тому, что в точке z_0 справедливо $\frac{df}{d\bar{z}}=0$, где $d\bar{z}=dx-idy$. Это условие обычно называют условием комплексной дифференцируемости.

Определение. Функция f называется голоморфной (аналитической) в точке $z_0 \in \mathbb{C}$, если она дифференцируема в некоторой окрестности z_0 в смысле \mathbb{C} .

Замечание. Функция f голоморфна на открытом множестве, если она голоморфна в каждой его точке. Если функция определена на некотором произвольном множестве M, и её можно продолжить на открытое множество Ω , $M \subset \Omega$ до голоморфной на Ω , то f является голоморфной на M.

Теорема Коши об интеграле по замкнутому контуру утверждает, что интеграл голоморфной функции по любому замкнутому пути, который непрерывной деформацией можно стянуть в точку, равен нулю.

Замечание. Компоненты границы имеют согласованную ориентацию: при обходе вдоль границы область остается слева.

Теорема (Стокса). Пусть D — ограниченная область c кусочно-гладкой границей (подмногообразие ориентируемого многообразия), ω — дифференциальная форма. Тогда

$$\int_{D} d\omega = \int_{\partial D} \omega.$$

Теорема (Коши об интеграле по замкнутому контуру). Пусть D — ограниченная область c кусочно-гладкой границей, функция f(z) голоморфна e D u $f \in C^1(\bar{D})$. Тогда

$$\int_{\partial D} f(z)dz = 0.$$

Доказательство. По Теореме Стокса имеем

$$\int_{\partial D} f(z)dz = \int_{D} d(f(z)dz),$$

откуда $df=\frac{\partial f}{\partial z}dz+\frac{\partial f}{\partial \bar{z}}d\bar{z}$. Из голоморфности f второе слагаемое обращается в ноль, поэтому d(f(z)dz)=0.

Замечание. Если функция f(z) голоморфна в \bar{D} , то условия Теоремы Коши заведомо выполняются.

Теорема (Интегральная формула Коши). Пусть D — ограниченная область c кусочно-гладкой границей, функция f(z) голоморфна в D, $G \subseteq D$ — компактно принадлежащая область, ограниченная конечным числом непрерывных кривых. Тогда в любой $z \in G$:

$$f(z) = \frac{1}{2\pi i} \int_{\partial G} \frac{f(t)}{t - z} dt.$$

Доказательство. Обозначим $g(t)=\frac{f(t)}{t-z},\ U_{\rho}=\{z'\colon \left|z'-z\right|< p\}$ — круг в $G,\ G_{\rho}=G\setminus U_r ho$. Функция g(t) голоморфна в \bar{G}_{ρ} , поэтому

$$\frac{1}{2\pi i} \int_{\partial G_{\rho}} g(t)dt = \frac{1}{2\pi i} \left(\int_{\partial G} g(t)dt - \int_{\partial U_{\rho}} g(t)dt \right) = 0.$$

Следовательно,

$$\int_{\partial G} g(t)dt = \int_{\partial U_0} g(t)dt,$$

где $\rho > 0$ — сколь угодно малое. Так как f — непрерывная в точке z функция, то

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \rho < \delta \colon |f(t) - f(z)| < \varepsilon.$$

Поэтому разность

$$f(z) - \frac{1}{2\pi i} \int_{\partial U_{\rho}} g(t)dt = f(z) - \frac{1}{2\pi i} \int_{\partial U_{\rho}} \frac{f(t)}{t - z} dt \le \varepsilon,$$

а значит

$$f(z) = \frac{1}{2\pi i} \int_{\partial G} \frac{f(t)}{t - z} dt.$$

Теорема. Пусть D — ограниченная область c кусочно-гладкой границей, функция f(z) голоморфна в D, $z_0 \in D$ — произвольная точка, $r < \mathrm{dist}\,(z_0,\,\partial D)$. Тогда в любом круге $U = \{|z-z_0| < r\} \subset D$ f можно представить в виде суммы сходящегося степенного ряда

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{|t-z_0|=r} \frac{f(t)}{(t-z_0)^{n+1}} dt.$$

 $\ensuremath{\mathcal{A}\!o\kappa asame \ensuremath{\mathit{nbcmbo}}}$. Дробь $\frac{1}{t-z}$ представима в виде цепной дроби:

$$\frac{1}{t-z} = \frac{1}{(t-z_0)\left(1 - \frac{z-z_0}{t-z_0}\right)} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(t-z_0)^{n+1}}.$$

Пусть $|t-z_0|=r$. Таким образом, если $|z-z_0|< r,$ то $\frac{|z-z_0|}{|t-z_0|}<1.$

Значит в открытом круге радиуса r ряд сходится равномерно и его можно почленно интегрировать. Значит можно воспользоваться интегральной формулой Коши:

$$f(z) = \frac{1}{2\pi i} \int_{U} \frac{f(t)}{t - z} dt = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\partial U} \frac{f(t)}{(t - z_0)^{n+1}} dt \right) (z - z_0)^n.$$

Следствие (Неравенства Коши). Пусть функция f голоморфна в замкнутом круге $\bar{U} = \{|z-z_0| \leq r\}$, а на окружности $C = \partial U$ её модуль не превосходит M. Тогда для любого $n \in \mathbb{N}$ коэффициенты c_n удовлетворяют следующим неравенствам:

$$|c_n| \le \frac{M}{r^n}.$$

Определение. Степенной ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ с коэффициентами $c_n = \frac{1}{2\pi i} \int_{|t-z_0|=r} \frac{f(t)}{(t-z_0)^{n+1}} dt$ называется *рядом Тейлора* функции f с центром в точке z_0 .

БИЛЕТ 24.

Ряд Лорана. Полюс и существенно особая точка. Вычеты.

Определение. Пусть $R>r>0,\,z_0\in\mathbb{C},$ и пусть задано кольцо $V(z_0;r,R)=\{r<|z-z_0|< R\}$ с центром в точке $z_0.$ Ряд

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$

с коэффициентами

$$c_n = \frac{1}{2\pi i} \int_{|t-z_0|=\rho} \frac{f(t)}{(t-z_0)^{n+1}} dt,$$

где $r < \rho < R$, называется рядом Лорана функции f в V.

Определение. Сумма

$$\sum_{n=0}^{\infty} c_n(z-z_0)$$

называется правильной (регулярной) частью. Сумма

$$\sum_{n=-1}^{-\infty} c_n(z-z_0)$$

называется главной частью.

Теорема (Лорана). Пусть $V = V(z_0; r, R)$ — непустое кольцо, функция f голоморфна в нём. Пусть $U_{\rho} = \{|z - z_0| = \rho\}$ — окруженость с центром в z_0 радиуса ρ , $r < \rho < R$. Тогда f представима сходящимся в V рядом Лорана.

Доказательство. Возьмем кольцо поменьше $V' = V'(z_0; r', R)$, где r < r' < R' < R. Для $z \in V'$ справедлива интегральная формула Коши (для многосвязной области):

$$f(z) = \frac{1}{2\pi i} \int_{\partial V'} \frac{f(t)}{t - z} dt = \frac{1}{2\pi i} \int_{U_{DI}} \frac{f(t)}{t - z} dt - \int_{U_{I}} \frac{f(t)}{t - z} dt =: I_1 - I_2.$$

В I_1 t дальше от центра, чем z, поэтому

$$\frac{1}{t-z} = \frac{1}{(t-z_0)\left(1 - \frac{z-z_0}{t-z_0}\right)} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(t-z_0)^{n+1}},$$

а следовательно,

$$I_1 = \frac{1}{2\pi i} \int_{U_{R'}} \frac{f(t)}{t - z} dt = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{U_{R'}} \frac{f(t)}{(t - z_0)^{n+1}} dt \right) (z - z_0)^n.$$

В I_2 z дальше от центра, чем t, поэтому

$$\frac{1}{t-z} = \frac{1}{(z-z_0)\left(1 - \frac{t-z_0}{z-z_0}\right)} = \sum_{n=0}^{\infty} \frac{(t-z_0)^n}{(z-z_0)^{n+1}}.$$

Значит,

$$I_2 = \frac{1}{2\pi i} \int_{U_{r'}} \frac{f(t)}{t - z} dt = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{U_{r'}} f(t) (t - z_0)^n dt \right) \frac{1}{(z - z_0)^{n+1}}.$$

Пусть m=-(n+1), тогда $I_2=\sum_{m=-1}^{-\infty}c_m\,(z-z_0)^m$. Поскольку функция f голоморфна в кольце V, то радиусы r',R' можно брать любыми в пределах от r до R.

Следствие (Неравенства Коппи). Пусть функция f голоморфна в кольце $V = \{r < |z - z_0| < R\}$, а на окружености $C_{\rho} = \{|z - z_0| = \rho\}$, $r < \rho < R$ её модуль не превосходит M. Тогда для любого $n \in \mathbb{Z}$ коэффициенты c_n удовлетворяют следующим неравенствам:

$$|c_n| \le \frac{M}{\rho^n}.$$

Теорема (Единственность разложения функции в ряд Лорана). Пусть у функция f(z) в кольце $V(z_0; r, R)$ два представления в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=-\infty}^{\infty} d_n (z - z_0)^n.$$

 $Tor \partial a \ \forall n \in \mathbb{Z} \colon c_n = d_n.$

Рассмотрим простейшие типы точек, в которых у функции f нарушается голоморфность.

Определение. Точка a называется uзолированной особой точкой функции f, если у неё существует проколотая окрестность, в которой f является голоморфной.

Определение. Изолированная особая точка a функции f называется

- устранимой, если у f существует конечный предел: $\lim_{z \to a} f(z) = A;$
- *полюсом*, если у f существует бесконечный предел: $\lim_{z \to a} f(z) = \infty$;
- cyщественно особой, если у f не имеет ни конечного, ни бесконечного предела при $z \to a$.

Теорема. Изолированная особая точка $a \in \mathbb{C}$ функции f является полюсом тогда и только тогда, когда у главной части ряда Лорана f в окрестности а конечное и положительное число ненулевых членов.

Следствие. Изолированная особая точка $a \in \mathbb{C}$ функции f является полюсом тогда и только тогда, когда функция $g = \frac{1}{f} \not\equiv 0$ голоморфна в окрестности точки a, a g(a) = 0.

Теорема. Изолированная особая точка $a \in \mathbb{C}$ функции f является существенно особой тогда и только тогда, когда у главной части ряда Лорана f в окрестности а бесконечное число ненулевых членов.

Определение. Пусть $a \in C$ — изолированная особая точка, $c_r = \{|z - a| < r\}$ — окружность малого радиуса с центром a. Тогда

$$\operatorname{res}_{a}\left(f\right) := \frac{1}{2\pi i} \int_{c_{r}} f dz$$

называется вычетов функции f в точке a.

Теорема. Пусть $a \in C$ — изолированная особая точка. Тогда

$$res_a(f) = c_{-1},$$

 $cde\ c_{-1}\ -\ coombemcmeyющий\ коэффициент\ ряда\ Лорана\ функции\ в\ окрестности\ a.$

Доказательство. Можем разложить f в ряд Лорана в проколотой окрестности a:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n.$$

Если мы почленно проинтегрируем его вдоль окружности $s_r = \{|z-a| = r\}$ (r мало́), то получим

$$\int_{s_r} f(z)dz = 2\pi i c_{-1}.$$

Следствие. Если точка a-yстранимая, то $\operatorname{res}_a(f)=0$.

Теорема (Коши о вычетах). Пусть D — ограниченная область c кусочной—гладкой границей, u функция f(z) голоморфна в окрестности D за исключением особых точек $a_1, a_2, \ldots, a_n \in D$. Тогда

$$\int_{\partial D} f(z)dz = 2\pi i \sum_{i=1}^{n} \operatorname{res}_{a_i}(f).$$

БИЛЕТ 25.

Криволинейные координаты на поверхности. Первая квадратичная форма поверхности.

Определение. Фигура $\gamma \in \mathbb{R}^n$ называется *гладкой кривой*, если для любой точки точки на кривой найдется такая окрестность этой точки, в которой γ можно задать гладкой функцией

$$r = r(t) \colon (-\varepsilon, \varepsilon) \to \mathbb{R}^n$$

и $v = \dot{r} \neq 0$ при $t \in (-\varepsilon, \varepsilon)$.

Определение. Фигура, которая локально в каждой точке s_0 допускает описание гладкой функцией $r = r(u^1, u^2)$, где $r(0, 0) = s_0$ называется гладкой поверхностью. При этом $m_1 = \frac{\partial r}{\partial u^1}(0)$, $m_2 = \frac{\partial r}{\partial u^2}(0)$ — пара неколлинеарных векторов.

Замечание. Эти Определения не зависят от выбора системы координат.

Теорема. Поверхность можно задать следующими эквивалентными способами:

- (1) через гладкую функцию в каждой точке s_0 такую, что $r = r(u^1, u^2)$, где $r(0, 0) = s_0$;
- (2) через гладкую функцию z = f(x, y);
- (3) через гладкую неявную функций F, grad $F \neq 0$.

Теорема. Существует биекция между точками поверхностями и парами (u^1, u^2) , которые являются криволинейными координатами.

Доказательство. Очевидно, что каждой паре (u^1,u^2) соответствует точка поверхности. Это соответствие также будет биективно:

$$(x, y, z) \leftrightarrow (x, y, z(x, y)) \leftrightarrow (x, y) \leftrightarrow (u^1, u^2)$$
.

Определение. Пусть $r=r\left(u^{1},u^{2}\right)$. Зафиксировав координату $u^{2}=u_{0}^{2}$, мы получим на поверхности u^{1} -линию, зафиксировав $u^{1}=u_{0}^{1}-u^{2}$ -линию. Совокупность всех таких линий называется $\kappa oop \partial u ham hым u$ линиям и.

Рассмотрим произвольную поверхность $r=r(u_1,u_2)$, где u_1,u_2 — координаты на поверхности, а $m_i=\frac{\partial r}{\partial u^i},\ i=1,2$ — неколлинеарные векторы. Рассмотрим для них матрицу Грама:

$$G(u^1, u^2) = \begin{pmatrix} (m_1, m_1) & (m_1, m_2) \\ (m_2, m_1) & (m_2, m_2) \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix},$$

Заметим, что в нашем случае $g_{12}=g_{21}$, и коэффициенты являются функциями от координат u^1,u^2 . Матрицей перехода от (u^1,u^2) к (v^1,v^2) является матрица Якоби

$$J = \begin{pmatrix} \frac{\partial u^1}{\partial v^1} & \frac{\partial u^1}{\partial v^2} \\ \frac{\partial u^2}{\partial v^1} & \frac{\partial u^2}{\partial v^2} \end{pmatrix}.$$

Таким образом матрица Грама изменится как $G'=J^TGJ$, а её элементы $g'_{\alpha\beta}$ примут вид

$$g'_{\alpha\beta} = g_{ij} \frac{\partial u^i}{\partial v^\alpha} \frac{\partial u^j}{\partial v^\beta}.$$

Угол между двумя пересекающимися кривыми $r(t)=(u^1(t),u^2(t))$ и $r(s)=(\tilde{u}^1(s),\tilde{u}^2(s))$ равен углу φ между касательными векторами

$$v = \frac{du^1}{dt}m_1 + \frac{du^2}{dt}m_2$$

$$\tilde{v} = \frac{d\tilde{u}^1}{d\tau} m_1 + \frac{d\tilde{u}^2}{d\tau} m_2$$

Тогда будут справедливы следующие соотношения:

И

$$(v,v) = g_{11} \left(\frac{du^{1}}{dt}\right)^{2} + 2g_{12} \frac{du^{1}}{dt} \frac{du^{2}}{dt} + g_{22} \left(\frac{du^{2}}{dt}\right)^{2},$$

$$(\tilde{v},\tilde{v}) = g_{11} \left(\frac{d\tilde{u}^{1}}{d\tau}\right)^{2} + 2g_{12} \frac{d\tilde{u}^{1}}{d\tau} \frac{d\tilde{u}^{2}}{d\tau} + g_{22} \left(\frac{d\tilde{u}^{2}}{d\tau}\right)^{2},$$

$$(v,\tilde{v}) = g_{11} \frac{du^{1}}{dt} \frac{d\tilde{u}^{1}}{d\tau} + g_{12} \left(\frac{du^{1}}{dt} \frac{d\tilde{u}^{2}}{d\tau} + \frac{du^{2}}{dt} \frac{d\tilde{u}^{1}}{d\tau}\right) + g_{22} \frac{du^{2}}{dt} \frac{d\tilde{u}^{2}}{d\tau}.$$

Следовательно, $\cos(\varphi) = \frac{(v, \tilde{v})}{|v| \, |\tilde{v}|}$. Из соотношений выше получаем

$$(dr, dr) = g_{11} (du^{1})^{2} + 2g_{12}du^{1}du^{2} + g_{22} (du^{2})^{2},$$

$$(d\tilde{r}, d\tilde{r}) = g_{11} (d\tilde{u}^{1})^{2} + 2g_{12}d\tilde{u}^{1}d\tilde{u}^{2} + g_{22} (d\tilde{u}^{2})^{2},$$

$$(dr, d\tilde{r}) = g_{11}du^{1}d\tilde{u}^{1} + g_{12} (du^{1}d\tilde{u}^{2} + du^{2}d\tilde{u}^{1}) + g_{22}du^{2}d\tilde{u}^{2}.$$

Определение. Квадратичная функция $ds^2 = (dr, dr) = g_{ij}du^idu^j$, определённая на касательных векторах в точках поверхности, называется *первой квадратичной формой (метрикой)* поверхности.

Следовательно, искомый угол выражается следующим образом:

$$\varphi = \frac{(dr, d\tilde{r})}{|dr| |d\tilde{r}|} = \frac{g_{ij} du^i d\tilde{u}^j}{\sqrt{g_{ij} du^i du^j} \sqrt{g_{ij} d\tilde{u}^i d\tilde{u}^j}}.$$

БИЛЕТ 26.

Вторая квадратичная форма поверхности. Нормальная кривизна линии на поверхности. Теорема Менье.

Определение. Фигура $\gamma \in \mathbb{R}^n$ называется *гладкой кривой*, если для любой точки точки на кривой найдется такая окрестность этой точки, в которой γ можно задать гладкой функцией

$$r = r(t) \colon (-\varepsilon, \varepsilon) \to \mathbb{R}^n$$

и $v = \dot{r} \neq 0$ при $t \in (-\varepsilon, \varepsilon)$.

Определение. Длина гладкой кривой r=r(t) от точки $r(t_0)$ до точки r(t) вычисляется как

$$s = \int_{t_0}^t |\dot{r}| \, dt.$$

Определение. Возьмём в качестве параметра кривой величину

$$s = \int_{t_0}^t |\dot{r}| \, dt.$$

Тогда такой параметр называется натуральным параметром кривой.

Теорема. (1) Параметр t является натуральным параметром тогда u только тогда, когда e этой параметризации $|\dot{r}| = |v| = 1$.

(2) Параметр $t = \lambda s$ т.и.т., когда |x| = const.

Доказательство. Заметим, что из (2) сразу следует (1). Докажем (2):

Пусть $t=\lambda s$, тогда $|v|=\left|\frac{dx}{dt}\right|=\frac{ds}{dt}=\frac{1}{\lambda}=const.$ Теперь с другой стороны: если |v|=const, то $ds=|v|\,dt$, а значит $t=\frac{s}{|v|}$.

Пусть кривая задана натуральным параметром t=s. Введём $\varepsilon_1=\frac{dr}{ds}=v, \ |\varepsilon_1|=1.$

Определение. Величина

$$k(s) := \left| \frac{d\varepsilon_1}{ds} \right| = \left| \frac{d^2r}{ds^2} \right|$$

называется кривизной гладкой кривой.

Определение. Если $k(s) \neq 0$, то вектор

$$\varepsilon_2 := \frac{1}{k} \varepsilon_1', \, \varepsilon_1' \perp \varepsilon$$

называется вектором главной нормали к кривой в точке r(s).

Определение. Если $k(s) \neq 0$. то плоскость, натянутая на векторы $\varepsilon_1, \varepsilon_2$ и проходящая через точку r(s), называется соприкасающейся плоскостью.

Определение. Фигура, которая локально в каждой точке s_0 допускает описание гладкой функцией $r = r(u^1, u^2)$, где $r(0, 0) = s_0$ называется гладкой поверхностью. При этом $m_1 = \frac{\partial r}{\partial u^1}(0)$, $m_2 = \frac{\partial r}{\partial u^2}(0)$ — пара неколлинеарных векторов.

Определение. Пусть в окрестности фиксированной на гладкой поверхности точки P построен нормальный вектор $n:=\frac{[m_1,m_2]}{|[m_1,m_2]|}$. Сечения поверхности, которые содержат точку P и вектор n называют *пормальными сечениями*.

Определение. Кривизна при нормальном сечении называется *нормальной* и обозначается через k_n .

Рассмотрим теперь те кривые, у которых плоскость $(P, \varepsilon_1, \varepsilon_2)$ является соприкасающейся.

Теорема (Менье). У всех кривых на поверхности, которые проходят через точку P, касаются вектора ε_1 и имеют одну и ту же соприкасающуюся плоскость, имеют одинаковую кривизну в P.

Доказательство. Пусть поверхность задана уравнением r = r(u, v). Возьмём кривую r = r(u(t), v(t)) с заданной соприкасающейся плоскостью, t — натуральный параметр. Тогда

$$\varepsilon_1 = \dot{r} = \dot{u}m_1 + \dot{v}m_2,$$

$$k\varepsilon_2 = \dot{\varepsilon_1} = \ddot{u}m_1 + \ddot{v}m_2 + \frac{\partial^2 r}{\partial u^2}\dot{u}^2 + 2\frac{\partial^2 r}{\partial u\partial v}\dot{u}\dot{v} + \frac{\partial^2 r}{\partial v^2}\dot{v}^2.$$

Тогда

$$(k\varepsilon_2, n) = k\cos(\theta),$$

где θ — угол поворота плоскости вокруг вектора ε_1 .

Так как коэффициенты при производных не зависят от кривой, а косинус угла поворота плоскости вокруг ε_1 будет одинаковым для всех кривых с данной соприкасающейся плоскостью, то \dot{u} , \dot{v} — координаты ε_1 . Следовательно, все кривые с данной соприкасающейся плоскостью будут иметь одинаковую кривизну.

Замечание. Вектор ε_1 — единичный касательный вектор, а ε_2 — единичный вектор главной нормали из репера Френе.

Замечание. Теорема Менье связывает кривизны произвольного сечения и нормального сечения:

$$k_{\theta} = \frac{k_n}{\cos(\theta)}.$$

Следствие. Таким образом,

$$k_n = l_{11} \left(\frac{du^1}{ds}\right)^2 + 2l_{12} \left(\frac{du^1}{ds}\frac{du^2}{ds}\right) + l_{22} \left(\frac{du^2}{ds}\right)^2,$$

где $l_{ij} = \left(\frac{\partial^2 r}{\partial u^i \partial u^j}, n\right)$. Следовательно, k_n является квадратичной функцией от $\frac{du^i}{ds}$, i = 1, 2. Тогда кривизна нормального сечения по направлению $v = (\dot{u}^1, \dot{u}^2)$ записывается следующим образом:

$$k_n = \frac{l_{ij}\dot{u}^i\dot{u}^j}{q_{i,j}\dot{u}^i\dot{u}^j} = \frac{l_{ij}du^idu^j}{q_{i,j}du^idu^j},$$

 $r \partial e \ g_{i,j} = (m_i, m_j) -$ элементы матрицы Γ рама.

Определение. Квадратичная функция $l_{ij}du_idu_j$, которая задана на касательных векторах в точках поверхности, называется *второй квадратичной формой поверхности*.

БИЛЕТ 27.

Главные направления и главные кривизны. Формула Эйлера.

Рассмотрим на плоскости пару квадратичных форм, одна из которых положительно определена. Пусть их матрицы имеют следующий вид:

$$G = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}, \quad Q = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix},$$

причём $g_{12} = g_{21}$ и $b_{12} = b_{21}$.

Тогда

$$\det(Q - \lambda G) = (b_{11} - \lambda g_{11})(b_{22} - \lambda g_{22}) - (b_{12} - \lambda g_{12})^2 = 0.$$

Корни λ_1, λ_2 — собственные значения пары квадратичных форм. Тогда мы можем составить и решить следующую СЛУ с неизвестными $\xi_1^1, \xi_2^1, \xi_1^2, \xi_2^2$:

$$\begin{cases} (b_{11} - \lambda_i g_{11}) \xi_i^1 + (b_{12} - \lambda_i g_{12}) \xi_i^2 = 0, \\ (b_{12} - \lambda_i g_{12}) \xi_i^1 + (b_{22} - \lambda_i g_{22}) \xi_i^2 = 0. \end{cases}$$

Если λ_1, λ_2 — собственные значения пары квадратичных форм, то система имеют пару нетривиальных решений $f_1=\left(\xi_1^1,\xi_1^2\right),\,f_2=\left(\xi_2^1,\xi_2^2\right).$

Определение. Направления векторов f_1, f_2 называются *главными направлениями* пары квадратичных форм.

Пусть

$$g_{ij}dx^idx^j = dl^2$$

есть первая квадратичная форма поверхности в трёхмерном евклидовом пространстве, а

$$b_{ij}dx^idx^j$$
, $x^1=u$, $x^2=v$

есть вторая квадратичная форма поверхности в трёхмерном евклидовом пространстве.

Тогда отношение этих форм — это кривизна нормального сечения.

Определение. Собственные значения этой пары квадратичной форм называются *главными кривизнами* поверхности в точке.

Можно теперь дать и альтернативные определения:

Рассмотрим поверхность M, точку $P \in M$ и касательное пространство T_PM к M в точке P. В этом пространстве определены две симметричные билинейные формы — G и Q, при этом форма G положительно определена, и задаёт скалярное произведение.

Базисы, в которых матрица G единична, существуют, и называются ортонормированными. Поскольку Q симметрична, существует ортонормированный базис, в котором матрица Q диагональна, $Q=\mathrm{diag}\,(\lambda_1,\ldots,\lambda_n)$. Пусть $\{e_1,\ldots,e_n\}$ — соответствующий базис. Произвольный вектор v раскладывается по нему $v=v^1e_1+\cdots+v^ne_n$, тогда нормальная кривизна k(v) в направлении v, вычисляется как

$$k(v) = \frac{q(v,v)}{g(v,v)} = \frac{\sum_{i=1}^{n} \lambda_i (v^i)^2}{\sum_{i=1}^{n} (v^i)^2} = \sum_{i=1}^{n} \lambda_i \cos^2 \varphi_i$$

где $\cos{(\varphi_i)}=\frac{v^i}{\sqrt{\sum_{i=1}^n(v^i)^2}}$ — косинус угла между v и e_i (направляющий косинус). Тогда

Определение. Числа λ_1, λ_2 называются *главными кривизнами* поверхности в точке.

Замечание. Главные кривизны — максимальное и минимальное значения нормальной кривизны k_n . Они являются инвариантами второй квадратичной формы.

Определение. Вектора e_i (направления главных кривизн) называются *главными направ*лениями.

Определение. Произведение главных кривизн $\lambda_1\lambda_2$ называется *гауссовой кривизной* поверхности, а их сумма $\lambda_1 + \lambda_2 - cped$ ней кривизной поверхности.

Теорема. (i) В любой точке поверхности существует ровно две главных кривизны и ровно два главных направления.

(іі) Главные направления ортогональны.

Доказательство. Зафиксируем на поверхности точку $P,\ m_1,m_2$ — базисные вектора на поверхности. Любому преобразованию координат в плоскости Pm_1m_2 (переходу к новому базису) отвечает такое же преобразование криволинейных координат вблизи точки P на поверхности:

$$\begin{pmatrix} u^1 - u_0^1 \\ u^2 - u_0^2 \end{pmatrix} = C \begin{pmatrix} v^1 \\ v^2 \end{pmatrix},$$

где C — матрица перехода от m_1, m_2 к m_1', m_2' . Значит мы можем перейти к координатам v_1, v_2 , для которых $m_i' = \frac{\partial r}{\partial v_i}$ ортонормированы в точке P.

В этих координатах первая квадратичная форма принимает вид

$$\left(dv^{1}\right)^{2} + \left(dv^{2}\right)^{2},$$

а следовательно, кривизна будет равна

$$k_n = \frac{l_{ij}dv^i dv^j}{(dv^1)^2 + (dv^2)^2}.$$

Так как первая квадратичная форма положительно определена, то существуют такие координаты (w^1,w^2) , что векторы $\frac{\partial r}{\partial w_1}$ и $\frac{\partial r}{\partial w_2}$ будут ортонормированными в точке P и

$$k_n = \frac{\lambda_1 (dw^1)^2 + \lambda_2 (dw^2)^2}{(dw^1)^2 + (dw^2)^2} = \lambda_1 \cos^2(\varphi) + \lambda_2 \sin^2(\varphi) = \lambda_1 + (\lambda_2 - \lambda_1) \sin^2(\varphi).$$

Угол φ — угол наклона вектора (dw^1, dw^2) к вектору $\frac{\partial r}{\partial w_1}$. Следовательно, (i) справедливо: k_n заключено между главными кривизнами λ_1, λ_2 , и они единственны.

Направления векторов базиса $\left(\frac{\partial r}{\partial w_1}, \frac{\partial r}{\partial w_2}\right)$ являются главными направлениями, и следовательно (ii) также выполнен.

Замечание. Полученная в предыдущем доказательстве формула для нормальной кривизны k_n называется формулой Эйлера.

Следствие. Главные направления и главные кривизны не зависят от системы координат.