Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	-200				
R _{DS(on)} (Ω)	V _{GS} = -10 V	0.50			
Q _g max. (nC)	44				
Q _{gs} (nC)	7.1				
Q _{gd} (nC)	27				
Configuration	Single				

FEATURES

- Dynamic dV/dt rating
- Repetitive avalanche rated
- P-channel
- · Fast switching
- · Ease of paralleling
- · Simple drive requirements
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION			
Package	TO-220AB		
Lead (Pb)-free	IRF9640PbF		
	SiHF9640-E3		
SnPb	IRF9640		
	SiHF9640		

PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V_{DS}	-200	V
Gate-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current	V _{GS} at -10 V	T _C = 25 °C	1	-11	
Continuous Drain Current		T _C = 100 °C	ID	-6.8	А
Pulsed Drain Current ^a			I _{DM}	-44	
Linear Derating Factor				1.0	W/°C
Single Pulse Avalanche Energy b			E _{AS}	700	mJ
Repetitive Avalanche Current a			I _{AR}	-11	Α
Repetitive Avalanche Energy ^a			E _{AR}	13	mJ
Maximum Power Dissipation	Power Dissipation T _C = 25 °C		P_{D}	125	W
Peak Diode Recovery dV/dt ^c			dV/dt	-5.0	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Soldering Recommendations (Peak temperature) d for 10 s				300	
Mounting Toyour	6-32 or M3 screw			10	lbf ⋅ in
Mounting Torque				1.1	N⋅m

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD}=$ -50 V, starting $T_J=25$ °C, L=8.7 mH, $R_g=25$ Ω , $I_{AS}=$ -11 A (see fig. 12). c. $I_{SD}\leq$ -11 A, $dI/dt\leq$ 150 A/µs, $V_{DD}\leq$ V_{DS} , $T_J\leq$ 150 °C. d. 1.6 mm from case.

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient	R _{thJA}	-	62			
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.0			

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static				Į.	!	!	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = -1 mA	-	-0.2	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	· V _{GS} , I _D = -250 μA	-2.0	-	-4.0	V
Gate-Source Leakage	I _{GSS}	,	V _{GS} = ± 20 V	-	-	± 100	nA
Zawa Cata Valtana Dunin Comunat		$V_{DS} = -200 \text{ V}, V_{GS} = 0 \text{ V}$		-	-	-100	μА
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -160 \	V _{DS} = -160 V, V _{GS} = 0 V, T _J = 125 °C		-	-500	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = -10 V	I _D = -6.6 A ^b	-	-	0.50	Ω
Forward Transconductance	9 _{fs}	V _{DS} =	-50 V, I _D = -6.6 A ^b	4.1	-	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 V$	-	1200	-	pF
Output Capacitance	C _{oss}		$V_{DS} = -25 \text{ V},$	-	370	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.	.0 MHz, see fig. 5	-	81	-	
Total Gate Charge	Qg			-	=.	44	
Gate-Source Charge	Q _{gs}	V _{GS} = -10 V	$I_D = -11 \text{ A}, V_{DS} = -160 \text{ V},$ see fig. 6 and 13 b	-	-	7.1	nC
Gate-Drain Charge	Q_{gd}			-	=.	27	
Turn-On Delay Time	t _{d(on)}			-	14	-	
Rise Time	t _r	V_{DD} = -100 V, I_{D} = -11 A R_{g} = 9.1 Ω , R_{D} = 8.6 Ω , see fig. 10 b		-	43	-	ns
Turn-Off Delay Time	t _{d(off)}			-	39	-	
Fall Time	t _f			-	38	-	
Internal Drain Inductance	L _D	Between lead, 6 mm (0.25") from		-	4.5	-	
Internal Source Inductance	L _S	package and die contact	package and center of		7.5	-	- nH
Gate Input Resistance	R_g	f = 1 MHz, open drain		0.3	-	1.7	Ω
Drain-Source Body Diode Characteristic	s					•	
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	MOSFET symbol showing the		-	-11	^
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p -n junction diode		-	-	-44	A
Body Diode Voltage	V _{SD}	$T_J = 25$ °C, $I_S = -11$ A, $V_{GS} = 0$ V b		-	-	-5	V
Body Diode Reverse Recovery Time	t _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = -11 \text{A}, dI/dt = 100 \text{A/} \mu \text{s}^{ \text{b}}$		-	250	300	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	2.9	3.6	μC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_S and L_D)					L _D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width $\leq 300~\mu s;$ duty cycle $\leq 2~\%.$

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics, T_C = 25 °C

Fig. 2 - Typical Output Characteristics, $T_C = 150$ °C

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 8 - Maximum Safe Operating Area

Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

· Compliment N-Channel of D.U.T. for driver

Fig. 14 - For P-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91086.

TO-220-1

DIM.	MILLIM	IETERS	INCHES		
	MIN.	MAX.	MIN.	MAX.	
Α	4.24	4.65	0.167	0.183	
b	0.69	1.02	0.027	0.040	
b(1)	1.14	1.78	0.045	0.070	
С	0.36	0.61	0.014	0.024	
D	14.33	15.85	0.564	0.624	
E	9.96	10.52	0.392	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.10	6.71	0.240	0.264	
J(1)	2.41	2.92	0.095	0.115	
L	13.36	14.40	0.526	0.567	
L(1)	3.33	4.04	0.131	0.159	
ØΡ	3.53	3.94	0.139	0.155	
Q	2.54	3.00	0.100	0.118	
ECN: X15-0364-Rev. C, 14-Dec-15 DWG: 6031					

Note

 \bullet $M^{\star}=0.052$ inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 14-Dec-15 1 Document Number: 66542