FCC PART 15.231

EMI MEASUREMENT AND TEST REPORT

For

Wuhan Sunny Science and Technology Co., Ltd

R 2118 BUILDING 2 HI-TECH INDUSTRY GARDEN ECONOMIC & TECHNOLOGICAL DEVELOPMENT ZONE WUHAN CHINA

FCC ID: TUASN0008

December 13, 2005

This Report Concerns: **Equipment Type:** Original Report Film U-turn Signal Device Hansen Hu

Test Engineer: Hansen Hu

Report No.: RSZ05112202

November 24, 2005-December 1, 2005 **Test Date:**

Reviewed By: Chris Zeng

Bay Area Compliance Lab Corp. (ShenZhen) **Prepared By:**

6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong

518038, P.R.China

Tel: +86-755-33320018 Fax: +86-755-33320008

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp. (ShenZhen). This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	4
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	0
§15.203 - ANTENNA REQUIREMENT	7
STANDARD APPLICABLE	7
§15.205, §15.209, §15.231 (B)- RADIATED EMISSION	8
Measurement Uncertainty	8
EUT SETUP	
TEST RECEIVER SETUP	8
TEST EQUIPMENT LIST AND DETAILS	
STANDARD APPLICABLE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	10
§15.231(C) 20DB BANDWIDTH TESTING	11
REQUIREMENT	11
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	11
§15.231(A)-DEACTIVATION TESTING	13
REQUIREMENT	13
EUT SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	14

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Wuhan Sunny Science and Technology Co., Ltd* 's product, model *SCSUL0001* or the "EUT" as referred to in this report is a Film U-turn Signal Device which measures approximately 5.2cm L x 3.3cm W x 1.1cm H, rated input voltage: DC 12 V battery.

* The test data gathered are from an engineering sample, serial number: 103788, provided by the manufacturer, we receive the EUT on 2005-11-22.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203,15.205,15.209 and 15.231 rules.

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect radiated and conducted emission measurement data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Lab Corp. (ShenZhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

EUT Exercise Software

N/A.

Special Accessories

N/A.

Equipment Modifications

Bay Area Compliance Lab Corp. (ShenZhen) has not done any modification on the EUT.

Configuration of Test Setup

EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.231 (b)	Radiated Emission	Compliant
§15.231 (c)	20dB Band Width Testing	Compliant
§15.231 (a)(1)	Deactivation Testing	Compliant
§15.205	Restricted Band	Compliant
§15.209	General Requirement	Compliant
§15.203	Antenna Requirement	Compliant

§15.203 - ANTENNA REQUIREMENT

Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a build on board antenna, fulfill the requirement of this section.

Test Result: Pass

§15.205, §15.209, §15.231 (b)- RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Lab Corp. (ShenZhen) is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber A test site, using the setup accordance with the ANSI C63.4 - 2003. The specification used was the FCC 15 § 15.209 and 15.231.

Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	VBW
30 – 1000 MHz	300 kHz	100 kHz
1000 MHz –5 GHz	1 MHz	1 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2005-11-10	2006-11-10
HP	Amplifier	8449B	3008A00277	2005-8-17	2006-8-17
Sunol Sciences	Horn Antenna	DRH-118	A052604	2005-7-20	2006-7-20
HP	Amplifier	HP8447E	1937A01046	2005-8-17	2006-8-17
Rohde & Schwarz	Test Receiver	ESCI	100035	2005-8-17	2006-8-17
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2005-4-28	2006-4-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Peak and Average detection mode.

Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,370	125 to375
174-260	3,750	375
260-470	3,750 to12, 500	375 to 1,250
Above 470	12,500	1,250

Linear interpolations for frequency ranges 130 - 174 MHz and 260 - 470 MHz.

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corr. Ampl. = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -5.8dB means the emission is 5.8dB below the maximum limit for Class C. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 and 15.231, with the worst margin reading of:

-6.7 dB at 945.00 MHz in the Horizontal polarization.

Test Data

Environmental Conditions

Temperature:	27 ° C
Relative Humidity:	56%
ATM Pressure:	1002mbar

The testing was performed by Hansen Hu on 2005-12-1.

Test Mode: Transmitting

Frequency	Meter	Detector	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifer Gain	Corr. Ampl.		Part 1 & 15.20	
requeries	rtcading	Detector	Direction	ricigiti	1 Olai	2033	1033	Gain	7 tilipi.		Margin	
MHz	dBuV/m	PK/QP/AV	Degree	Meter	H/V	dB	dB	dB	dBuV/m	dBuV/m	dB	
945.00	69.6	PK	90	1.2	Н	23.4	3.6	27.7	68.9	75.6	-6.7	Harmonic
630.00	54.7	AV	60	1.0	Н	19.6	2.8	28.6	48.5	55.6	-7.1	Harmonic
945.00	46.6	AV	90	1.2	Н	23.4	3.6	27.7	45.9	55.6	-9.7	Harmonic
630.00	69.7	PK	60	1.0	Н	19.6	2.8	28.6	63.5	75.6	-12.1	Harmonic
630.00	47.3	AV	60	1.0	V	19.6	2.8	28.6	41.1	55.6	-14.5	Harmonic
315.00	72.7	AV	120	1.0	Н	14.4	1.7	27.7	61.1	75.6	-14.5	Fundamental
945.00	60.4	PK	90	1.2	V	23.4	3.6	27.7	59.7	75.6	-15.9	Harmonic
945.00	38.7	AV	90	1.2	V	23.4	3.6	27.7	38.0	55.6	-17.6	Harmonic
630.00	62.4	PK	60	1.0	V	19.6	2.8	28.6	56.2	75.6	-19.4	Harmonic
1260.00	35.4	AV	90	1.2	Н	23.8	3.7	27.6	35.3	55.6	-20.3	Harmonic
315.00	86.8	PK	120	1.0	Н	14.4	1.7	27.7	75.2	95.6	-20.4	Fundamental
30.85	38.3	PK	45	1.0	Н	24.1	0.6	28.8	34.2	55.6	-21.4	Spurious
1575.00	31.1	AV	90	1.2	Н	23.8	3.7	27.6	31.0	54.0	-23.0	Harmonic
1260.00	32.6	AV	90	1.2	V	23.8	3.7	27.6	32.5	55.6	-23.1	Harmonic
31.07	34.7	PK	45	1.2	V	24.1	0.6	28.8	30.6	55.6	-25.0	Spurious
1575.00	28.7	AV	90	1.2	V	23.8	3.7	27.6	28.6	54.0	-25.4	Harmonic
1260.00	49.6	PK	120	1.0	Н	23.8	3.7	27.6	49.5	75.6	-26.1	Harmonic
31.51	31.8	PK	180	1.0	Н	24.1	0.6	28.8	27.7	55.6	-27.9	Spurious
1260.00	47.1	PK	120	1.0	٧	23.8	3.7	27.6	47.0	75.6	-28.6	Harmonic
1575.00	45.3	PK	60	1.0	Н	23.8	3.7	27.6	45.2	74.0	-28.8	Harmonic
33.79	29.6	PK	180	1.0	V	24.1	0.6	28.8	25.5	55.6	-30.1	Spurious
148.44	38.7	PK	270	1.2	Н	13.4	1.1	28.5	24.7	55.6	-30.9	Spurious
1575.00	42.6	PK	60	1.0	V	23.8	3.7	27.6	42.5	74.0	-31.5	Harmonic
315.00	51.4	AV	120	1.0	V	14.4	1.7	27.7	39.8	75.6	-35.8	Fundamental
130.83	29.9	PK	120	1.0	V	14.5	1.1	28.5	17.0	55.6	-38.6	Spurious
275.15	28.7	PK	270	1.0	Н	13.8	1.5	27.6	16.4	55.6	-39.2	Spurious
42.59	29.7	PK	60	1.0	V	14.3	0.6	28.8	15.7	55.6	-39.9	Spurious
315.00	65.6	PK	120	1.0	V	14.4	1.7	27.7	54.0	95.6	-41.6	Fundamental

• Note: The EUT was tested in all three orthogonal planes.

§15.231(c) 20dB BANDWIDTH TESTING

Requirement

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2005-8-17	2006-8-17
Rohde & Schwarz	Test Receiver	ESCI	100035	2005-8-17	2006-8-17
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2005-4-28	2006-4-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1009mbar

The testing was performed by Hansen Hu on 2005-11-24.

Test Mode: Transmitting

Frequency	Bandwidth Emission	Limit	Result
MHz	kHz	kHz	
315.0624	60.6	787.656	Pass

Limit=Frequency×0.25%=315.0624×0.25%=787.656 kHz

Test Result Pass

Refer to the attached plots.

sunny film U-turn signal device SCSUL0001-20dB bandwidth

Date: 24.NOV.2005 22:49:16

§15.231(a)-DEACTIVATION TESTING

Requirement

Per 15.231(a) (1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

EUT Setup

The deactivation test was performed in the 3 meters chamber A test site, using the setup accordance with the ANSI C63.4 - 2003. The specification used was the FCC 15.231(a) limits.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2005-8-17	2006-8-17
Rohde & Schwarz	Test Receiver	ESCI	100035	2005-8-17	2006-8-17
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2005-4-28	2006-4-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1032mbar

The testing was performed by Hansen Hu on 2005-11-24~2005-12-1.

Test Mode: Transmitting

Transmitting time	Limit	Result
(Second)	(Second)	
0.156	5	Pass

Refer to the attached plots.

sunny film U-turn signal device SCSUL0001-Deactivation test Date: 24.NOV.2005 22:35:35

sunny film U-turn signal device SCSUL0001- Deactivation2 te st $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

Date: 1.DEC.2005 15:17:02