中国科学技术大学六系研究生课程《数字图像分析》

第十章:图像识别—目标检测

中国科学技术大学 电子工程与信息科学系

目标检测

- □ 简单形状的检测
 - 霍夫变换 (Hough Transform)
 - 倒角距离变换 (Chamfer Distance Transform)
- □ 人脸识别与检测
- □ 一般目标检测

霍夫变换 (Hough Transform)

□ 应用场景:直线拟合

如何从边缘检测的结果得到直线拟合的结果?

- □ 直线拟合的难点
 - 边缘检测点杂乱且多余
 - 不同的检测点属于不同的直线
 - 部分线段可能漏检
 - 边缘检测点上存在噪声

霍夫变换 (Hough Transform)

- □ 基本思想: 基于投票的机制
 - 待检测形状为一个模型(model)
 - 让每个样本(像素)对所有与其兼容的模型进行投票
 - 假设噪声样本不会偏好任何单个模型
 - 即使有部分样别缺失,当有足够的样本保留时,仍可将目标模型(形状)检测出来

霍夫变换基本原理:以直线检测为例》

- Hough Transform
 - 图像空间与参数空间之间的一种变换
- □ Hough参数空间
 - 在图像空间中的一条直线,对应于Hough参数空间中的一个点

霍夫变换:直线检测

图像空间

- □ 霍夫参数空间的一条直线对应图像空间的一个点
- □ 图像空间中同一条直线上的任意两个点,在参数空间中 对应于两条相交的直线
 - 即在图像空间共线的n个点,对应于参数空间n条共点(p_0, q_0) 的直线

Hough参数空间

 $y = p_{0}x + q_{0}$ $(x_{1}, y_{1}) \quad (x_{2}, y_{2})$ $q = -x_{1}p + y_{1}$ (p_{0}, q_{0}) $q = -x_{2}p + y_{2}$ p_{0}

霍夫变换:直线检测

□ 具体方法

■ 将参数空间离散成一个 2-D的累加数组*A*(*p*, *q*)

$$p \in [p_{\min}, p_{\max}]$$

 $q \in [q_{\min}, q_{\max}]$

A(p,q) = A(p,q) + 1A(p,q): 共线点数(p,q): 直线方程参数

□ 潜在的问题

■ p_{max} q_{max} 可能为无穷大,难以对其进行离散化

霍夫变换:直线检测的改进形式

□ 直线的极坐标方程

$$\lambda = x cos\theta + y sin\theta$$

- 参数λ和θ唯一确定一条直线
- □ X-Y平面的一个点对应参数空间的一条正弦曲线
 - $\lambda = x_0 cos\theta + y_0 sin\theta \leftrightarrow \lambda = A sin(\theta + \alpha)$

其中
$$\alpha = \tan^{-1}\left(\frac{x_0}{y_0}\right)$$
, $A = \sqrt{x_0^2 + y_0^2}$

霍夫变换: 其他形状的检测

□ 对于满足解析式 f(x, c) = 0形式的各类曲线, Hough Transform可以将其检测出来,并把曲线上的点完整地 连接起来

- □ 示例:以圆周检测为例
 - 圆周方程: $(x-a)^2 + (y-b)^2 = r^2$
 - 三个参数a,b,r, 所以需要在参数空间中建立3-D累加数组,其中的元素可以记为A(a,b,r)

霍夫变换:圆周检测

□ 示例

图(a)为256x256, 灰度256级, 叠加随机噪声;

图(b)为求梯度(Sobel算子)取阈值后的结果;

图(c)哈夫变换累计器图;

图(d)为检测出的圆周附加在原图上的效果

霍夫变换:圆周检测

- □ 利用梯度降维
 - 使累加数组的维度减少一维
 - 圆周——圆周对偶性

霍夫变换:圆周检测

□ 利用梯度降维

■ 圆周圆心在圆周边缘点的梯度方向上

$$a = x - r \sin \theta$$

$$b = y + r\cos\theta$$

1个3-D累加器数组

2个2-D累加器数组

利用梯度与否2种情况下的累加数组示意

霍夫变换: 利用梯度信息检测椭圆

□ 椭圆方程

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$

□ 对x求导

$$\frac{(x-p)}{a^2} + \frac{(y-q)}{b^2} \tan \theta = 0$$

□ 联立得到

$$p = x \pm \frac{a^2 \tan \theta}{\sqrt{a^2 \tan^2 \theta + b^2}} \qquad q = y \pm \frac{b^2}{\sqrt{a^2 \tan^2 \theta + b^2}}$$

建立2个3-D累加数组 $A_x(p,a,b)$ 和 $A_y(p,a,b)$

广义霍夫变换

- □ 广义Hough变换将一般的**模板匹配与Hough变换**相结合
- □ 先对模板与图象上的物点作<mark>坐标变换</mark>,然后求相关
- □ 并用类似Hough变换检测物体的表决方法来确定匹配点

- □ B为模板物体的一组点集
- □ P(x0,y0)为一参考点,常把P取为B的中心点。
- □ 广义Hough变换是一组矢量的集合: B
 - $B = \{(dx_i, dy_i), I = 1, 2, \dots, m\}$

H(B,P)

$$\{(dx_i, dy_i), i = 1, 2, \Lambda, n\}$$

$$dx_i = x_0 - x_i = -(x_i - x_0)$$

$$dy_i = y_0 - y_i = -(y_i - y_0)$$

- \square 检测时,将待测图象,记为点集E:
 - $E = \{(x_j, y_j), j = 1, 2, \dots, n\}$
- □ 将待检测点集与变换后的模板B做相关运算
 - $\forall i, j,$ 计算 $v(i,j) = (dx_i + x_j, dy_i + y_j),$
 - 如果有很多点v(i,j)都对应同一个坐标点,则该点为与B相匹配的形状的中心位置

□ 在所需检测的曲线或目标轮廓没有或不易用解析式表达时,可以利用表格来建立曲线或轮廓点与参考点间的关系,从而可继续利用哈夫变换进行检测

建立参考点与轮廓点的联系:

$$p = x + r(\theta) \cdot \cos(\phi(\theta))$$
$$q = y + r(\theta) \cdot \sin(\phi(\theta))$$

图 6.1.8 建立参考点和轮廓点的对应关系

- □ 已知轮廓形状、朝向和尺度而只需检测位置信息
- □ 根据 θ ,r和 ϕ 的函数关系作出参考表

梯度角θ		矢角 $\phi(\theta)$
θ_{1}	$r_1^1, r_1^2, \cdots, r_1^{N_1}$	$\phi_1^1, \ \phi_1^2, \ \cdots, \ \phi_1^{N_1}$
θ_2	$r_2^1, r_2^2, \dots, r_2^{N_2}$	$\phi_{1}^{1}, \ \phi_{1}^{2}, \ \cdots, \ \phi_{1}^{N_{1}}$ $\phi_{2}^{1}, \ \phi_{2}^{2}, \ \cdots, \ \phi_{2}^{N_{2}}$ \cdots $\phi_{M}^{1}, \ \phi_{M}^{2}, \ \cdots, \ \phi_{M}^{N_{M}}$
$ heta_M$	r_M^1 , r_M^2 ,, $r_M^{N_M}$	ϕ_M^1 , ϕ_M^2 ,, $\phi_M^{N_M}$

- □ 给定一个测试点(x', y') 及其梯度角 θ ',即可确定一组可能的参考点位置
 - lacksquare 根据梯度角heta',找到表中对应梯度角所在行的矢径和视角序列
 - 基于坐标(x', y')和序列中每一组 (r, ϕ) 值,反推出形状参考点坐标 $p' = x' + r(\theta) \cdot \cos(\phi(\theta)), q' = y' + r(\theta) \cdot \sin(\phi(\theta))$

轮廓点	а	a'	b	b'	С	c'	d	d'
矢径 $r(\theta)$	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2
矢角 ¢ (θ)								

梯度角 θ	矢径	$r(\theta)$	矢角	$\phi(\theta)$
$\theta_a = \pi/2$	$\sqrt{2}/2$	1/2	$\pi/4$	$2\pi/4$
$\theta_b = 2\pi/2$			$3\pi/4$	
$\theta_c = 3\pi/2$	$\sqrt{2}/2$	1/2	$5\pi/4$	$6\pi/4$
$\theta_d = 4\pi/2$	$\sqrt{2}/2$		$7\pi/4$	

- \square 利用正方形上的8个轮廓点判断可能参考点位置(p',q')
- □ 对每个 θ 有 2个 r 及2个 ϕ 与之对应

$$p' = x' + r(\theta) \cdot \cos(\phi(\theta))$$

$$q' = y' + r(\theta) \cdot \sin(\phi(\theta))$$

梯度角	轮廓点	可能	参考点	轮廓点	可能参	参考点
θ_a	а	0	d'	a'	b'	0
θ_{b}	b	0	a'	b'	c'	O
θ_{c}	С	0	b'	c'	d'	O
θ_d	d	0	c'	d'	a'	O

广义霍夫变换的性能

- □ 运算量较小
- □ 抗干扰性也较强
- □ 可以求出曲线的某些参数
- □ 可适用于不规则曲线
- □ 仍不具有不变性

完整广义霍夫变换

- □ 轮廓的平移 + 轮廓放缩、旋转
- □ 累加数组:
- \square $A(p_{\min}; p_{\max}, q_{\min}; q_{\max}, \beta_{\min}; \beta_{\max}, S_{\min}; S_{\max})$

$$p = x + S \times r(\theta) \times \cos[\phi(\theta) + \beta]$$

$$q = y + S \times r(\theta) \times \sin[\phi(\theta) + \beta]$$

□ 累加数组的累加: $A(p, q, \beta, S) = A(p, q, \beta, S) + 1$

完整广义霍夫变换

计算示例

原梯度角 $ heta$	新梯度角 θ'	矢径 r (θ))	新矢角	$\phi(\theta)$
$\theta_a = \pi/2$	$\theta'_a = 3\pi/4$	$\sqrt{2}/2 = 1/2$	2	$2\pi/4$	$3\pi/4$
$\theta_b = 2\pi/2$	$\theta'_a = 3\pi/4$ $\theta'_b = 5\pi/4$ $\theta'_c = 7\pi/4$	$\sqrt{2}/2 = 1/2$	2	$4\pi/4$	$5\pi/4$
$\theta_c = 3\pi/2$	$\theta'_c = 7\pi/4$	$\sqrt{2}/2 = 1/2$	2	$6\pi/4$	$7\pi/4$
$\theta_d = 4\pi/2$	$\theta'_d = \pi/4$	$\sqrt{2}/2 = 1/2$	2	$8\pi/4$	$1\pi/4$

梯度角	轮廓点	可能参	考点	轮廓点	可能参	考点
θ'_a	а	0	d'	a'	b'	0
θ'_b	b	0	a'	b'	C'	O
θ'_c	С	0	b'	c'	d'	O
θ'_d	d	0	c'	d'	a'	o

目标检测

- □ 简单形状的检测
 - 霍夫变换 (Hough Transform)
 - 倒角距离变换 (Chamfer Distance Transform)
- □ 人脸识别与检测
- □ 目标检测

- □ 从一个问题出发
 - 如何从下面左图中检测匹配右图所示的三角形形状?

- □ 基本思路:
 - 把右图作为模板,将其中心置于左图所有可能的像素位置
 - \blacksquare 对于每个放置位置x,计算模板形状与测试图像边缘的匹配距离

$$D_{chamfer}(\boldsymbol{x}) = \frac{1}{|T|} \sum_{\boldsymbol{t} \in T} d_I(\boldsymbol{t} + \boldsymbol{x})$$

- •T是模板形状(像素点的集合)
- I 是待匹配的边缘图像(像素点的集合)
- $\bullet d_I(t)$ 是模板中的点t到I中所有边缘点的最小距离
- 将最小匹配距离 所对应的位置x,视为匹配位置

- □ 计算复杂度分析
 - 假设测试图像中边缘点数量为M、像素点数量为P,模板中边缘点数量为N,上述距离计算的复杂度为O(MNP)
 - 上面距离测度存在大量计算冗余
- □ 如何降低冗余?
 - 事先计算测试图像中边缘点的距离变换
 - 图I中的边缘点集合E,像素点p的距离变换结果为:

 $DF_I(\mathbf{p}) = \min_{\mathbf{x} \in \mathbf{E}} dist(\mathbf{p}, \mathbf{x})$,其中 $dist(\cdot, \cdot)$ 表示距离函数,如棋盘距离

边缘图

距离变换结果

	-		y	. 1) (-	11/1		
1	0	1	2	3	4	3	2
1	0	1	2	3	3	2	1
1	0	1	2	3	2	1	0
1	0	0	1	2	1	0	1
<u>2</u> <u>3</u>	1	1	2	1	0	1	2
3	2	2	2	1	0	1	2
4	3	3	2	1	0	1	2
5	4	4	3	2	1	0	1

□ 倒角距离变换:

■ 基于 DF_I ,对模板形状进行倒角匹配(Chamfer matching)

$$D_{chamfer}(\mathbf{x}) = \frac{1}{|T|} \sum_{\mathbf{t} \in T} d_I(\mathbf{t} + \mathbf{x}) = \frac{1}{|T|} \sum_{\mathbf{t} \in T} DF_I(\mathbf{t} + \mathbf{x})$$

- T是模板形状(像素点的集合)
- I 是待匹配的边缘图像(像素点的集合)
- $d_I(t)$ 是模板中的点t到I中边缘点的最小的距离
- 计算复杂度: $O(MNP) \rightarrow O(NP)$

计	場	攵
KJ.	-3	\simeq

		·	

距离变换结果

	Щ	1-1-	<u> </u>	1/\>	<u> </u>	•	
1	0	1	2	3	4	3	2
1	0	1	2	3	3	2	1
1	0	1	2	3	2	1	0
1	0	0	1	2	1	0	1
2	1	1	2	1	0	1	2
3	2	2	2	1	0	1	2
4	3	3	2	1	0	1	2
5	4	4	3	2	1	0	1

模板

倒角变换距离

		124	カメ	MC 12	<u>য</u>	
1	1	3				
2	1	4				
3	1	5				
4	0	4				
6	2	5				
9	5	6				
13	9	8				
18	14	13				

(后面五列结果自行计算)

□ 距离变换实例

■ 在距离变换的结果中,每个位置的值表示这个位置到最近的边缘点(或者其他二值化的图片结构)的距离

$$DF_I(\mathbf{p}) = \min_{\mathbf{x} \in \mathbf{E}} dist(\mathbf{p}, \mathbf{x})$$

原图

边缘检测结果

距离变换结果

倒角距离变换:如何做距离变换?

- □ 1-D距离变换
 - 1-D L_1 范数的距离变换是一个计算复杂度为O(n)的算法
 - 算法步骤
 - 1. 对图中任意位置的值进行初始化,当j在特征P中时初始化为0,否则初始化为inf。将第 j 个位置的值记为D[j]
 - 2. 前向过程: for j from 1 up to n-1, 更新D[j] $D[j] = \min(D[j], D[j-1] + 1)$
 - 3. 后向过程: for j from n-2 down to 0,更新D[j] $D[j] = \min(D[j], D[j+1]+1)$

倒角距离变换:如何做距离变换?

- □ 2-D距离变换: 算法步骤与1-D情况类似
 - 初始化距离矩阵
 - 前向过程:从上方和左方找离特征点最近的距离 $D[i,j] = \min(D[i,j], D[i,j-1] + 1, D[i-1,j] + 1)$
 - 后向过程:从下方和右方找离特征点最近的距离 $D[i,j] = \min(D[i,j], D[i,j+1] + 1, D[i+1,j] + 1)$

-	1
1	0
0	1
1	-

8	8	8	œ
8	0	8	×
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	8
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

倒角距离变换: 倒角匹配实例

□ 手型匹配

边缘图的距离变换图

Chamfer Matching响应图

- □ 优点
 - 对混乱背景干扰较为鲁棒
 - 计算效率高
- □ 缺点
 - 对缩放和旋转变换敏感
 - 对形状的小的形变敏感
 - 需要大量的模板形状,应应对目标形状的形变
- □ 改进方法
 - 多尺度匹配
 - 层级模型组织(hierarchical model organization)

目标检测

- □ 简单形状的检测
- □ 人脸检测与识别
 - Viola & Jones Face Detector
- □ 一般目标检测

Viola & Jones Detector

- □ 人脸检测算法面临的挑战
 - 基本思想:将人脸检测问题形式化为滑窗分类问题
 - 人脸可能出现在图中的任意区域,对于一张仅仅100万像素的图片,就需要分类超过100万个滑动窗口(sliding windows)
 - 在每张图片中,相比较于所有可能的位置,仅仅有非常少数量 的人脸存在
 - 在实际应用中我们希望虚警的检测能尽可能的少
 - 为了检测速度尽可能的快,我们需要能快速的过滤掉大量不存在人脸的区域

Viola & Jones Detector

- □ Viola & Jones Detector: 第一个实时的人脸检测算法
 - **弱可学习性**等价于**强可学习性**:考虑一系列"基学习器",让 "后来者"重点关注"先行者"容易出错的部分,然后再将这 些基学习器结合起来
 - 速度提升
 - ✓ 利用积分图像提取图像特征值,效率高
 - ✓ 利用adaboost分类器的特征筛选特性,保留最有用特征,减少了 检测时的运算复杂度
 - 准确率提升
 - ✓ 将adaboost分类器进行改造,变成级联adaboost分类器,提高了 人脸检测的准确率(降低漏检率和误检率)
 - 检测精度评估
 - **√** 检测率:存在人脸并且被检测出的图像,在所有存在人脸图像中的比例。
 - ✓ 漏检率:存在人脸但是没有检测出的图像,在所有存在人脸图像中的比例。
 - ✓ 误检率:不存在人脸但是检测出存在人脸的图像,在所有不存在人脸图像中的比例。
- P.Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR 2001.

Viola & Jones Detector

- Haar-like features
 - 与Haar小波类似的矩形状的特征,共四种基本形式

- 特征的计算:
 - ✓ value = \sum (白色区域的像素值) \sum (黑色区域的像素值)

- □ 积分图 (Integral Images)
 - 积分图的计算: $I(x,y) = \sum_{i=0}^{x} \sum_{j=0}^{y} f(i,j)$

■ 以右图中D区域为例

$$\sum_{(i,j)\in D} f(i,j) = I_1 + I_4 - (I_2 + I_3)$$

■ 积分图的使用避免了重复的像素值求和计算,每个像素点只需 计算一次求得各点的积分图即可求得不同区域的Haar-like特征

□ 面临的问题

■ 当使用一个24 × 24大小的sliding window时,可能得到的特征 有大约160,000个。

- 在测试时,我们不可能直接考虑整个特征集合进行检测。
- □ 通过AdaBoost选择有区分性的特征,并将对应的分类器 级联组合起来
 - 让每一级的分类器,都具有非常高的检测率(99.9%,接近100%),同时误检率也保持相当高(大概50%,即FPR)
 - 例如,级联20个adaboost分类器,可实现检测率 $(0.999)^{20}$ = 0.98,同时误检率为 $(0.5)^{20}$ = 9.5 · 10^{-7}

- □ 基于AdaBoost的特征选择和分类器训练
 - 基于Haar-like特征,定义一系列弱分类器
 - 对于Adaboost算法的每一个循环:
 - 1. 初始化正负样本的权重
 - 2. 在每一个样本上评价每一个特征
 - 3. 为每个特征选取最好的阈值(分类器)
 - 4. 选取最好的特征和分类器进行组合
 - 5. 对样本的权重进行重新分配
 - 计算复杂度为O(TNK)
 - ✓ 其中T为循环次数,N为样本个数,K为特征个数

□ 详细步骤

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

- □ 特征选择的结果
 - 可视化结果:下图是第一个和第二个被选中的特征

■ 定量的结果:由200个特征构成的正面人脸检测器检出率为95%,而14084个样本中出现1次的虚警。

Attentional cascade

- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

- □ 效果
 - 在测试时,平均每个window使用了10个特征
 - 在一个700Mhz的奔腾3处理器上,这个算法检测一张384× 288的照片中的人脸需要大概0.067秒(15fps),比之前性能 相当的方法快了15倍
- □ 局限性: 适用于正脸的检测, 对侧脸检测性能不佳

- □ 简单形状的检测
- □ 人脸识别与检测
- □ 一般目标检测
 - 问题定义与评价标准
 - 滑窗+HOG特征
 - 可形变部件模型

- □ 问题定义
 - 在图像中检测和定位来自不同类别的一般常见物体,如车辆, 行人等
- □ 目标检测中存在的挑战
 - 光照变化
 - 视角变化
 - 物体的可变形性
 - 物体的类内差异
 - 复杂背景干扰

Folding chair

- □ 目标检测基准数据集
 - PASCAL VOC Challenge: 20个类别

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC): 检测目标包含200个类别
- Common Objects in Context (COCO): 80个类别

□ 单个目标框正确与否的评判

- predictions
 - ground truth

True positive:

- 分类正确,且与ground truth的IOU大于一定的阈值
- IOU: intersection over union

False Negative (漏检):

- 有ground truth存在,但是没 有对应的预测结果

False positive (虚警):

- 分类错误,或者预测结果与ground truth 的IOU小于一定的阈值

□ Precision与Recall的定义

	Predicted 1	Predicted 0
True 1	true positive	false negative
True 0	false positive	true negative

	Predicted 1	Predicted 0
True 1	TP	FN
True 0	FP	TN

	Predicted 1	Predicted 0
True 1	hits	misses
True 0	false alarms	correct rejections

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$

- □ 在实际检测中,我们会得到大量的预测结果,这些目标 框的置信度分数在0~1之间
 - 保留大量目标框会得到极高的recall,而precision非常低
 - 只保留预测分数很高的目标框会得到极高的precision,而 recall非常低

predictions ground truth

单独依靠precision或者 recall的不足以评判检测器的优劣

我们使用mean Average Precision(mAP)作为评价标准

- □ 平均精度(Average Precision)
 - Precision-recall 曲线

Precision-recall 曲线与坐标 轴围成的面积,即为 average precision (AP)

多个类别的average precision 的平均值,即为mean average precision(mAP)

□ 从precision-recall曲线以及average precision, 能够很直观的比较检测方法的性能

- □ 简单形状的检测
- □ 人脸识别与检测
- □ 目标检测
 - 问题定义与评价标准
 - 滑窗+HOG特征
 - 可形变部件模型

基于HOG 特征的模板表达

- □ HOG:梯度方向直方图
 - Histogram of Oriented Gradient
- □ 对待检测物体提取HOG template,并且将之作为filter

滑窗 + HOG特征

□ 用滑动窗口在整张图上搜索,判断图中是否有与HOG模板相匹配的位置

滑窗 + HOG特征

- □ 滑窗方法存在的问题
 - 如何检测图中与人的尺度存在明显差异的公交车?

目标检测成功与否,与滑窗的大小选择息息相关

滑窗 + HOG特征

□ 多尺度滑窗

Filter F

Score of F at position p is $F \cdot \phi(p, H)$

 $\phi(p, H)$ = concatenation of HOG features from subwindow specified by p

- □ 简单形状的检测
- □ 人脸识别与检测
- □ 目标检测
 - 问题定义与评价标准
 - 滑窗+HOG特征
 - 可形变部件模型

□ 弹簧形变模型

- 将物体表达为一系列可变形的部件的集合
- 每个部件表示物体的一个局部特征
- 部件与部件之间的呈弹簧状连接(可变形)

Fischler and Elschlager, Pictoral Structures, 1973

□ 物体的DPM可以表示成一个star model,由一个整体模板和一系列局部模板组成

人脸模板可以表示为整个人脸检测器与各个部件(头发,左边耳朵,右边耳朵等等)的star model。人脸检测器作为root,每个部件都与root建立联系

□ 示例: Two-component bicycle model

"side" component

"frontal" component

当part filer偏离 既定位置,给 出对应的惩罚

root filter part filter deformable cost

□ 示例

 \square 若把物体分为可变形的n个部位,则他的DPM是一个(n+2) 元组

- \square 每个局部模型可定义为 (F_i, v_i, d_i)
 - F_i 为第i个部位的filter
 - \mathbf{v}_i 为第i个部位相对于root filter的锚点位置
 - d_i为第i个部位偏移到各个位置的deformable cost

□ 当使用DPM时,检测分数定义为:检测器得到的分数 减去各个部位的deformable cost

$$S = \prod_{i=0}^{n} F_i \phi(p_i, H) - \sum_{i=1}^{n} d_i (dxi, dyi, dxi^2, dyi^2)$$

 $p_i = (x_i, y_i, l_i)$ specifies the level and position of the *i*-th filter

□ 基于sliding window的检测流程

首先使用sliding window和global feature大致 定位物体的位置

再使用part filters作用到物体上,与 global filter 的结果相结合,得到检测的分数

□ 算法步骤

- 1. 产生多个基于HOG特征的模板,包括整体模板与一系列局部模板。
- 2. 用这些模板去对输入图像的HOG特征做卷积,得到响应图。
- 将局部模板的卷积响应图 加上变形惩罚,并且和整 体模板的响应图相结合, 得到融合的响应图

DPM检测结果

Person

high scoring true positives

high scoring false positives (not enough overlap)

DPM检测结果

☐ Car

high scoring true positives

high scoring false positives

DPM检测结果

□ Horse

high scoring true positives

high scoring false positives

DPM的优缺点

- □ 关键思想
 - 手工选择部件集合:为每个部件(part)专门训练的检测子
 - 在部件响应上,训练空间模型
 - 评估部件响应的联合似然
- 口 优点
 - 可解释性: 部件具有直观的物理意义
 - 对每个部件,可以使用表征的检测方法
 - 适用于特定类别的物体检测
- □ 缺点
 - 手工选择部件的泛化性不好
 - 一些语义层面的部件可能无法用简单的表观分布 (appearance distribution) 表达
 - 无法保证重要的部件不被遗漏

DPM的拓展

□ 星状模型 (star model) 与星座模型 (constellation model)

"Star" shape model

- e.g. ISM (Implicit Shape Model)
- Parts mutually independent
- Recognition complexity: O(NP)
- Method: Generalized Hough Transform

Fully connected shape model

- e.g. Constellation Model
- Parts fully connected
- Recognition complexity: O(NP)
- Method: Exhaustive search