Thomas Boyko - Math 271 Assignment 4 - 30191728

1. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let $\mathcal{P} = \mathcal{P}(A)$ be the power set of A

Let R be the relation on A defined by:

For all
$$X, Y \in \mathcal{P}, X R Y \iff |X \cup Y| \le |X \cup \{1, 2\}|$$
.

- (a) Is R:
 - (i) Reflexive? R is reflexive. We must prove that for all $X \in \mathcal{P}$, $X \in \mathcal{R}$.

Proof: Suppose $X \in \mathcal{P}$ and that X has x elements.

So $|X \cup X| = |X| = x$.

Note that $|X \cup \{1,2\}| = x + 2 - |X \cap \{1,2\}|$. We can see this through summing the size of both sets, and then subtracting their intersection since it will be counted twice.

For an element to be in $|X \cap \{1,2\}|$, it must be 1 or 2. So the set $X \cap \{1,2\}$ has between 0 and 2 elements

Since $0 \le |X \cap \{1, 2\}| \le 2$, we can say that $|X \cup \{1, 2\}| = x + n$ where $n \in \mathbb{Z}, 0 \le n \le 2$.

 $|X \cup X| = x \le x + n = |X \cup \{1, 2\}|$

Therefore, for all $X \in \mathcal{P}, X R X$

(ii) Symmetric?

R is not symmetric. Or, there exist $X, Y \in \mathcal{P}$ so that X R Y but $Y \not R X$.

Proof: Choose the following sets $X, Y \in \mathcal{P}$.

$$X=\{1,2,3\}$$

$$Y = \emptyset$$

Note the following:

$$X \cup Y = \{1, 2, 3\}$$

$$X \cup \{1, 2\} = \{1, 2, 3\}$$

$$Y \cup \{1, 2\} = \{1, 2\}$$

$$|X \cup Y| = 3 \le 3 = |X \cup \{1, 2\}|$$

So, X R Y. However,

$$|X \cup Y| = 3 > 2 = |Y \cup \{1, 2\}|$$

So, Y R X. Therefore, there exist $X, Y \in \mathcal{P}$ so that X R Y but Y R X, and R is not symmetric.

(iii) Antisymmetric?

R is not antisymmetric. We must prove that there exist $X,Y\in\mathcal{P}$ so that X R Y and Y R X but $Y\neq X$.

Proof: Choose the following sets $X, Y \in \mathcal{P}$:

$$X = \{1\}$$

$$Y = \varnothing$$

So,

$$X \cup Y = \{1\}$$

$$X \cup \{1, 2\} = \{1, 2\}$$

$$Y \cup \{1, 2\} = \{1, 2\}$$

$$|X \cup Y| = 1 \le 2 = X \cup \{1, 2\}$$

$$|X \cup Y| = 1 \le 2 = Y \cup \{1,2\}$$

So Y R X and X R Y.

But since $1 \in X$ and $1 \notin Y$, $Y \neq X$.

Therefore, there exist $X, Y \in \mathcal{P}$ so that X R Y and Y R X but $Y \neq X$, and R is not antisymmetric.

(iv) Transitive?

R is not transitive. So we must find some $X,Y,Z\in\mathcal{P}$ so that X R Y and Y R Z, but X R Z.

Proof: Choose the following sets $X, Y, Z \in \mathcal{P}$.

$$X = \varnothing$$
$$Y = \{3, 4\}$$
$$Z = \{3, 4, 5\}$$

Therefore we can see that:

$$X \cup Y = \{3, 4\}$$

$$Y \cup Z = \{3, 4, 5\}$$

$$X \cup Z = \{3, 4, 5\}$$

$$X \cup \{1, 2\} = \{1, 2\}$$

$$Y \cup \{1, 2\} = \{1, 2, 3, 4\}$$

$$|X \cup Y| = 2 \le 2 = |X \cup \{1, 2\}|$$

$$|Y \cup Z| = 3 \le 4 = |Y \cup \{1, 2\}|$$

So X R Y and Y R Z.

$$|X \cup Z| = 3 > 2 = |X \cup \{1, 2\}|$$

So we know that $X \mathbb{R} Z$.

Therefore there exist sets $X, Y, Z \in \mathcal{P}$ so that X R Y and Y R Z, but $X \not R Z$.

(b) How many $S \in \mathcal{P}$ are there so $\{3\}RS$?

Note that $|\{3\} \cup \{1,2\}| = 3$, so:

$$\{3\} R S \iff |\{3\} \cup S| \le 3$$

To create a set S so that $\{3\}$ R S, we first can select whether or not $3 \in S$. Whether this is the case or not will not change if $\{3\}$ R S There are 2 ways to do this.

Then, we choose 2 elements from A excluding 3, without replacement. There are $\binom{9}{2}$ ways to do this. (We cannot choose 3, but we can choose to not add anything to S).

So there are $2\binom{9}{2} = 72$ ways to choose a set $S \in \mathcal{P}$ so that $\{3\}$ R S.

(c) How many $S \in \mathcal{P}$ are there so $S R \{3\}$?

To count the number of sets S so that $S R \{3\}$, first we must separate into two cases.

Case 1: $3 \in S$.

If 3 is in S, then we can choose any elements from A to put in S and it will still be related to $\{3\}$.

So, if $3 \in S$, there are 2^8 ways to choose the rest of S so that $S R \{3\}$.

Case 2: $3 \notin S$.

If 3 is not in S, then at most one of $\{1,2\}$ can be in S.

So first we choose whether $1 \in S$, $2 \in S$, or neither. There are 3 ways to do this.

Then for each remaining element of A, we can choose if it is in or out. There are 2^6 ways to do this.

Therefore, there are $3(2^6)$ ways to choose a set S so that $S R \{3\}$ when $3 \notin S$.

So the total number of ways to choose a set $S \in \mathcal{P}$ so that $S R \{3\}$ is $2^8 + 3(2^6) = 448$.

2. Let $A = \{1, 2, 3, 4, 5\}$. Let \mathcal{F} be the set of all functions from A to A. Define a relation R on \mathcal{F} as follows:

$$\forall f, g \in \mathcal{F}, fRg \iff \forall i \in A, f(i) \leq g(i)$$

- (a) Is R:
 - (i) Reflexive?

R is reflexive.

Proof: Suppose $f \in \mathcal{F}$.

Notice that $\forall i \in A, f(i) = f(i)$ since f is a function.

So $f(i) \leq f(i)$.

So f R f and R is reflexive.

(ii) Symmetric?

R is not symmetric. So, there exist $f, g \in \mathcal{F}$ so that f R g but $g \not R f$.

Proof: Choose $f = \{(x, 1) : x \in A\}$ and $g = \{(x, 2) : x \in A\}$ So, $\forall i \in A, f(i) = 1$ and g(i) = 2.

 $f(i) = 1 \le 2 = g(i)$

So f R gBut, $\forall i \in A$,

g(i) = 2 > 1 = f(i)

So $f \not R g$.

Therefore, there exist $f, g \in \mathcal{F}$ so that f R g but $g \not R f$, and R is not symmetric.

(iii) Antisymmetric?

R is antisymmetric. So, $\forall f, g \in \mathcal{F}$ and $i \in A$, if f R g and g R f, then g = f.

Proof: Suppose that $g, f \in \mathcal{F}$ and that f R g and g R f.

So, for all $i \in A$, $f(i) \leq g(i)$, $g(i) \leq f(i)$

So we have:

 $f(i) \le g(i) \le f(i)$

So f(i) = g(i) and f = g.

Therefore, ${\cal R}$ is antisymmetric.

(iv) Transitive?

R is transitive. So, for all $f, g, h \in \mathcal{F}$, if f R g and g R h, then f R h.

Proof: Suppose that $f, g, h \in \mathcal{F}$.

Further suppose that f R g and g R h.

So for all $i \in A$, $f(i) \le g(i)$ and $g(i) \le h(i)$

 $f(i) \le g(i) \le h(i)$

 $f(i) \le h(i)$

So f R h.

Therefore, for all $f, g, h \in \mathcal{F}$, if f R g and g R h, f R h and R is transitive.

(b) Prove or disprove: For all $f \in \mathcal{F}$, there exists $g \in \mathcal{F}$ so that f R g

Proof: Suppose $f \in \mathcal{F}$.

Choose g = f.

So, for all $i \in A$, f(i) = g(i).

This satisfies the condition for the relation, so f R g.

(c) Prove or disprove: There exists $g \in \mathcal{F}$ so that for all $f \in \mathcal{F}$, f R g.

Proof: Choose $g = \{(a,5) : a \in A\}$ Suppose $f \in \mathcal{F}$. So, for all $i \in A$, g(i) = 5. Note that since all values in A are between 0 and 5, $0 \le f(i) \le 5$. Since g(i) = 5, $f(i) \le g(i)$. So, f R g.

Therefore, there exists $g \in \mathcal{F}$ so that for all $f \in \mathcal{F}$, f R g.

Let $F \in \mathcal{F}$ be the function $f = \{(1,3), (2,3), (3,3), (4,1), (5,5)\}.$

(d) How many functions $g \in \mathcal{F}$ are there so that fRg? Explain.

We can count the number of functions g so that f R g by counting the number of functions where g(i) is greater than or equal f(i) for each $i \in A$.

First, $f(1) = 3 \le g(1)$. So g must equal 3, 4, or 5. (3 ways to choose g(1)).

The same applies for 2, 3 since 3 = f(3) = f(2) so there are 3 ways each to choose g(2), g(3).

There are 5 ways to choose g(4) since $f(4) = 1 \le g(4)$ so g(4) can be any element of A.

Finally, there is only one way to choose g(5) since it must equal 5 in order for it to be greater than or equal to f(5) = 5.

So there are $3^3 \times 4 = 108$ ways to choose a function g so that f R g.

(e) How many functions $q \in \mathcal{F}$ are there so that qRf? Explain.

We can count the number of functions g so that g R f by counting the number of functions where $g(i) \leq f(i)$ for each $i \in A$.

First we choose values for g(1), g(2), and g(3). (Like in the last case, these all have the same number of options since f(1) = f(2) = f(3) = 3). There are 3 ways to choose all of these since each can equal 1, 2, or 3.

There is only one way to choose g(4) since it must equal 1 in order to be less than or equal to f(4) = 1.

Finally, there are 5 ways to choose g(5) since all 5 elements of A are less than or equal to 5 = f(5).

So there are $3^3 \times 4 = 108$ ways to choose a function g so that f R g.

- 3. Prove or disprove the following statements by using the definitions of "congruence modulo n" and "divides."
 - (a) For all positive integers a, x and y, if $(a + x) \equiv (a + y) \pmod{12}$, then $x \equiv y \pmod{12}$

Proof: Suppose $x, y, a \in \mathbb{Z}$, and that $a + x \equiv a + y \pmod{12}$.

Then 12k = (a+x) - (a+y) for some $k \in \mathbb{Z}$.

So 12k = a - y

Therefore, $x \equiv y \pmod{12}$.

(b) For all positive integers a, x and y, if $ax \equiv ay \pmod{12}$, then $x \equiv y \pmod{12}$. The statement is false. The negation is: "There exist positive integers a, x and y so that $ax \equiv ay \pmod{12}$, but $x \not\equiv y \pmod{12}$ "

Proof: Choose a = 12, x = 2, y = 1.

Note that $12(2) \equiv 12(1) \pmod{12}$ since 12|24 - 12 because 12 = (1)(12).

However, $1 \not\equiv 2 \pmod{12}$ since $12 \nmid 2 - 1$, because 12 > 1.

Therefore, there exist positive integers a, x and y so that $ax \equiv ay \pmod{12}$, but $x \not\equiv y \pmod{12}$

(c) There exists a positive integer a>1 so that for all $x,y\in\mathbb{Z}$, if $ax\equiv ay\pmod{12}$, then $x\equiv y\pmod{12}$

Proof: Choose a = 7, and suppose that $7x \equiv 7y \pmod{12}$.

So 12|7x - 7y.

It will prove helpful to check that gcd(12,7) = 1.

$$gcd(12,7) = gcd(7,5)$$

= $gcd(5,2)$
= $gcd(2,1)$
= $gcd(1,0)$
= 1

By Euclid's Lemma, since $\gcd(12,7)=1$ and 12|7(x-y), we know that 12|x-y and $x\equiv y\pmod{12}$. Therefore, there exists a positive integer a>1 so that for all $x,y\in\mathbb{Z}$, if $ax\equiv ay\pmod{12}$, then $x\equiv y\pmod{12}$.

(d) For all positive integers a and b, if $a^2 \equiv b^2 \pmod{12}$, then $a \equiv b \pmod{12}$.

The statement is false. The negation is: "There exist positive integers a and b so that $a^2 \equiv b^2 \pmod{12}$ but $a \not\equiv b \pmod{12}$."

Proof: Choose a = 12, b = 6.

Then $144 \equiv 36 \pmod{12}$ since 12|144 - 36, because 12(9) = 108.

However, 12 is not congruent to 6 modulo 12 because $12 \nmid 12 - 6$ since 12 > 6.

Therefore, there exist positive integers a and b so that

 $a^2 \equiv b^2 \pmod{12}$ but $a \not\equiv b \pmod{12}$.