題號: 45 國立臺灣大學113學年度碩士班招生考試試題

科目:線性代數(A)

題號:45

節次: 4 共 2 頁之第 1 頁

※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號。

Instructions.

- There are two problems in two pages.
- In a problem, if an exercise depends on the conclusions of other exercises that precede
 it, you may assume these conclusions without solving them.

Problem 1 (80 points). Let m and n be two positive integers. The C-vector space of matrices of size $m \times n$ with coefficients in C is denoted by $M_{m,n}(C)$. We also set $M_n(C) = M_{n,n}(C)$.

The aim of this problem is to prove the following statement.

Theorem. Let m, n and r be positive integers with $r \le m \le n$. Let $V \subset M_{m,n}(\mathbb{C})$ be a \mathbb{C} -linear subspace. Assume that every matrix A in V satisfies rank $A \le r$. Then

$$\dim V \leq nr$$
.

- (1) Show that it suffices to prove the theorem for m = n.
- (2) Assume that m = n. Show that we can assume that V contains the block matrix

$$R = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

where I_r is the identity matrix of rank r.

From now on, we assume that m = n, and that $R \in V$.

(3) Let

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \in V$$

be a block matrix in V with $M_{11} \in M_r(\mathbb{C})$. Show that

$$M_{22} = 0$$
 and $M_{21}M_{12} = 0$.

(Hint: you may consider the $(r+1) \times (r+1)$ minors of M+tR for $t \in C$.)

(4) Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{pmatrix} \in V, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & 0 \end{pmatrix} \in V$$

be two block matrices with A_{11} , $B_{11} \in M_r(\mathbb{C})$. Show that

$$A_{21}B_{12} + B_{21}A_{12} = 0.$$

(5) Let $\phi: V \to M_{r,n}(\mathbb{C})$ be the map sending a matrix $M \in V$ to its first r rows. Define the C-linear subspace

$$W = \left\{ \begin{pmatrix} 0 & 0 \\ A_{21} & 0 \end{pmatrix} \in V \middle| A_{21} \in M_{n-r,r}(\mathbb{C}) \right\} \subset V,$$

節次: 4

國立臺灣大學113學年度碩士班招生考試試題

科目:線性代數(A)

共 2 頁之第 2 頁

and let $s = \dim W$. Show that

 $\dim \phi(V) \leq nr - s$,

by considering the map

$$\psi:W\to M_{r,n}(\mathbb{C})^\vee$$

$$\begin{pmatrix} 0 & 0 \\ A_{21} & 0 \end{pmatrix} \mapsto T_{A_{21}}$$

to the dual of $M_{r,n}(\mathbb{C})$, where $T_{A_{21}}$ is the linear form defined by

$$T_{A_{21}}(B_{11},B_{12})=\mathrm{Tr}(A_{21}B_{12})$$

for every block matrix $(B_{11}, B_{12}) \in M_{r,n}(\mathbb{C})$ with $B_{11} \in M_r(\mathbb{C})$.

(6) Conclude that

 $\dim V \leq nr$.

(7) Show that the inequality in the theorem is optimal. More precisely, for all positive integers m,n and r with $r \le m \le n$, construct $V \subset M_{m,n}(\mathbb{C})$ as in the theorem such that

 $\dim V = nr$.

Problem 2 (20 points). Let V be a nonzero vector space over a field F. Let

$$B: V \times V \rightarrow F$$

be a non-degenerate symmetric bilinear form on V, and let

$$q:V \to F$$

$$v\mapsto B(v,v)$$

be the associated quadratic form. For every $x \in F$, we say that q represents x if q(v) = x for some nonzero $v \in V$.

- (1) Suppose that q represents 0. Show that q represents every element of F. (Hint: Consider q(cv + w) with $c \in F$ and some suitable $w \in V$.)
- (2) Show that B extends to a non-degenerate symmetric bilinear form on $V \oplus F$ whose associated quadratic form represents every element of \mathcal{F} .

題號: 52 國立臺灣大學 112 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 52

頁

共 / 頁之第 /

Notation: **R** is the set of real numbers, and **C** is the set of complex numbers. If $F = \mathbf{R}$ or **C**, denote by $M_n(F)$ the $n \times n$ matrices with entries in F. If $A \in M_{m \times n}(F)$, denote by $A^{\mathsf{t}} \in M_{n \times m}(F)$ the transpose of A. Denote by I_n the $n \times n$ identity matrix and 0_n the $n \times n$ zero matrix.

Problem 1 (10pts). Let $i = \sqrt{-1} \in \mathbb{C}$ be a root of $X^2 + 1$. Let

$$v_1 = (1, 0, -\mathbf{i}), \quad v_2 = (1 + \mathbf{i}, 1 - \mathbf{i}, 1), \quad v_3 = (\mathbf{i}, \mathbf{i}, \mathbf{i}).$$

Show that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{C}^3 and express the vector $v_4 = (1, 0, 1)$ as a linear combination of v_1, v_2 and v_3 , namely find $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$ such that $v_4 = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$.

Problem 2 (15 pts). Let

$$\mathbf{v}_1 = (0, 3, 3, 1), \ \mathbf{v}_2 = (2, 1, -3, 7), \ \mathbf{v}_3 = (1, 8, 6, 6), \ \mathbf{v}_4 = (1, 10, -4, 2)$$

be vectors in \mathbb{R}^4 . Let $W_1 = \operatorname{span}_{\mathbb{R}} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ and let $W_2 = \operatorname{span}_{\mathbb{R}} \{ \mathbf{v}_3, \mathbf{v}_4 \}$. Find the dimension and a basis of $W_1 \cap W_2$.

Problem 3 (25 pts). Let

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \in M_{2\times 3}(\mathbf{R}).$$

- (1) (15pts) Find an orthogonal matrix $P \in M_3(\mathbb{R})$ such that $P^{-1}A^tAP$ is a diagonal matrix.
- (2) (10pts) Find the singular value decomposition of A. In other words, factorize $A = U\Sigma V^{t}$, where $U \in M_{3}(\mathbf{R})$ and $V \in M_{3}(\mathbf{R})$ are orthogonal matrices and $\Sigma \in M_{2\times 3}(\mathbf{R})$ is of the form

$$\Sigma = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \end{pmatrix}, \quad \lambda_1 \ge \lambda_2 \ge 0$$

Problem 4 (15pts). Let $V = M_3(\mathbf{C})$ be a 9-dimension vector space over \mathbf{C} and let

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Define the linear transformation $T: V \to V$ by

$$T(B) = AB - BA$$
.

- (1) (5pts) Find the dimension of Ker T.
- (2) (10pts) Show that T is diagonalizable.

Problem 5 (15pts). Let $A, B \in M_n(\mathbf{R})$. Prove that rank $A + \operatorname{rank} B \leq n$ if and only if there exists an invertible matrix $X \in M_n(\mathbf{R})$ such that $AXB = 0_n$.

Problem 6 (20pts). Let A and B be elements in $M_n(\mathbb{C})$. Suppose that

$$AB - BA = c \cdot (A - B)$$

for some non-zero $c \in \mathbb{C}$. Prove that there exists an invertible matrix $P \in M_n(\mathbb{C})$ such that $P^{-1}AP$ and $P^{-1}BP$ are upper-triangular matrices with the same diagonal entries.

題號: 56 國立臺灣大學 111 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 56

共 | 頁之第 | 頁

Notation: We denote by \mathbb{C} the set of complex numbers. For any positive integer n, we denote by \mathbb{C}^n the n-dimensional column vector spaces over \mathbb{C} ; let I_n be the identity matrix in $M_n(\mathbb{C})$.

Problem 1 (15 pts). Let $T: \mathbb{C}^4 \to \mathbb{C}^3$ be the linear transformation defined by $T(v) = A \cdot v$, where

$$A = \begin{pmatrix} 5 & -3 & 1 & 2 \\ -1 & 3 & 3 & -2 \\ 1 & 0 & 1 & 0 \end{pmatrix} \in M_{3\times 4}(C).$$

- (1) (5 pts) Find the rank and the nullity of T.
- (2) (10pts) Find a base of Ker T (the kernel of T).

Problem 2 (15pts). For any complex number $a \in \mathbb{C}$, let V_a be the subspace spanned by the row vectors

$$(2,-5,a), (1,a,-4), (a,-1,-2).$$

Determine all possible values $a \in \mathbb{C}$ such that $\dim_{\mathbb{C}} V_a = 2$.

Problem 3 (25pts). Let

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -1 & 2 \\ 2 & -2 & 5 \end{pmatrix}.$$

- (1) (15pts) Find an invertible matrix $P \in M_3(\mathbb{C})$ such that $P^{-1}AP$ is a diagonal matrix.
- (2) (10pts) Find an invertible matrix $Q \in M_3(\mathbb{C})$ such that

$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & -4 \\ 1 & 0 & 1 \\ 0 & 1 & 4 \end{pmatrix}.$$

Problem 4 (15pts). Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix $\iff A = A^*$.

- (1) (5 pts) Show that $\operatorname{Ker} A \cap \operatorname{Im} A = \{0\}$.
- (2) (10pts) If $A^3 = 2A^2 + 2A$, show that A = 0.

Problem 5 (15pts). Let $A \in M_n(\mathbb{C})$ such that $A^n = 0$ but $A^{n-1} \neq 0$.

- (1) (7pts) Show that there exists $v \in \mathbb{C}^n$ such that $\{v, Av, A^2v, \dots, A^{n-1}v\}$ is a basis of \mathbb{C}^n .
- (2) (8pts) If $B \in M_n(\mathbb{C})$ such that AB = BA, prove that

$$B = a_0 + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1}$$

for some $a_0, \ldots, a_{n-1} \in \mathbb{C}$.

Problem 6 (15pts). Let $A, B \in M_n(\mathbb{C})$. Suppose that the eigenvalues of A, B are all non-negative real numbers and that $\text{null}(A) = \text{null}(A^2)$ and $\text{null}(B) = \text{null}(B^2)$. If $A^4 = B^4$, prove that A = B.

(Recall that null(A):=the nullity of A = the dimension of the kernel of A)

題號: 56 國立臺灣大學 110 學年度碩士班招生考試試題

科目:線性代數(A)

題號: 56

頁

共 頁之第

節次: 4

Linear Algebra

1. (20 points.) Let $A, B \in M_{n \times n}(F)$ be two $n \times n$ matrices over a field F.

(a) Prove that $rank(A + B) \le rank(A) + rank(B)$.

- (b) Prove that $rank(A) + rank(B) \le rank(AB) + n$.
- 2. (15 points.) Let A be an $n \times n$ matrix over $\mathbb C$ of the form

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & a_0 & \cdots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_0 \end{pmatrix}$$

Define $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ and $\omega = e^{2\pi i/n}$. Prove that

$$\det A = \prod_{j=0}^{n-1} f(\omega^j).$$

- 3. (15 points.) Let $T:V\to V$ be a linear operator on a finite-dimensional vector space V over $\mathbb C$ and $f(x)\in\mathbb C[x]$ be a polynomial. Prove that the linear transformation f(T) is invertible if and only if f(x) and the minimal polynomial T have no common roots.
- **4.** (15 points.) Let v_1, \ldots, v_k be eigenvectors corresponding to k distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ of a linear operator T on a vector space V. Prove that the T-cyclic subspace generated by $v = v_1 + \cdots + v_k$ has dimension k.
- 5. (15 points.) Let $T:V\to V$ be a linear operator on a finite-dimensional inner product space V over $\mathbb R$ and T^* be its adjoint. Suppose that $T^*=T^3$. Prove that T^2 is diagonalizable over $\mathbb R$.
- **6.** (20 points.) Let V be a vector space of dimension n over a field F. Determine the dimension over F of the vector space of multilinear alternating functions $f: V \times \cdots \times V \to F$ (k copies of V).

題號: 58 國立臺灣大學 109 學年度碩士班招生考試試題

科目:線性代數(A) 節次: 4

題號: 58 共 / 頁之第 / 頁

• Unless otherwise specified, everything is over \mathbb{R} .

- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- S_n is the space of $n \times n$ square matrices.
- ullet P is the vector space of polynomials of one variable x with real coefficients.
- Dual space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}.$
- (1) [16%] $V \subset \mathbb{R}^4$ is a subspace span by $\vec{\mathbf{u}} = \begin{bmatrix} 1 & -4 & 8 & 3 \end{bmatrix}^t$ and $\vec{\mathbf{v}} = \begin{bmatrix} 2 & -2 & 10 & 3 \end{bmatrix}^t$. Define a linear transformation $T: V \to V$ by

$$T(\vec{\mathbf{u}}) = 5\,\vec{\mathbf{u}} + 2\,\vec{\mathbf{v}}$$

$$T(\vec{\mathbf{v}}) = 7 \vec{\mathbf{u}} + \vec{\mathbf{v}}$$

The induced inner product of V from \mathbb{R}^4 is defined by $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = \vec{\mathbf{x}} \cdot \vec{\mathbf{y}}, \vec{\mathbf{x}}, \vec{\mathbf{y}} \in V$. Is T self-adjoint with respect to $\langle \cdot, \cdot \rangle$? Demonstrate your answer.

- (2) [16%] $\mathcal{P}_3 \equiv \{f(x) \in \mathcal{P} | \deg(f(x)) \leq 3\}$. Let \mathcal{P}_3^* be the dual space of \mathcal{P}_3 . For any $a \in \mathbb{R}$, define $\widehat{a} \in \mathcal{P}_3^*$ by $\widehat{a}(f(x)) = f(a)$ and $d\widehat{a} \in \mathcal{P}_3^*$ by $d\widehat{a}(f(x)) = f'(a)$.
 - a. Find the basis $\phi_{-1}(x)$, $\phi_0(x)$, $\phi_d(x)$, $\phi_1(x)$ of \mathcal{P}_3 such that $\widehat{-1}$, $\widehat{0}$, $\widehat{d0}$, $\widehat{1}$ are their corresponding dual basis.
 - b. Define $I \in \mathcal{P}_3^*$ by $I(f(x)) = \int_{-1}^1 f(x) dx$. Find $\alpha, \beta, \gamma, \epsilon \in \mathbb{R}$ such that $I = \alpha \widehat{-1} + \beta \widehat{0} + \gamma d\widehat{0} + \epsilon \widehat{1}$
 - c. If there is $f(x) \in \mathcal{P}_3$ such that f(-1) = -2, f(0) = 2, $f'(0) = \pi$, f(1) = -6, evaluate $\int_{-1}^{1} f(x) dx$.

(3)
$$[16\%]$$
 $\Gamma = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathcal{S}_n$. $\mathcal{C}_n = \{X \mid X\Gamma = \Gamma X\}$ is a subspace of \mathcal{S}_n .

Determine dim C_n and find a basis of C_n .

- (4) [16%] $A \in \mathcal{S}_n$. Define m_{ij} to be the determinant of the submatrix formed by deleting the *i*-th row and *j*-th column of A. Define the classical adjoint matrix $\operatorname{adj} A = [(-1)^{i+j}m_{ji}]$. Suppose A is not invertible, show that rank of $\operatorname{adj} A$ is ≤ 1 . When is the rank of $\operatorname{adj} A = 1$?
- (5) [16%] If $A = [a_{ij}] \in \mathcal{S}_n$ is positive definite, show that $\det A \leq a_{11}a_{22}\cdots a_{nn}$.
- (6) [20%] $A \in \mathcal{S}_n(\mathbb{C})$. Over \mathbb{C} , show the following two statements are equivalent.
 - a. The characteristic polynomial of A is equal to minimal polynomial of A.
 - b. For any $X \in \mathcal{S}_n(\mathbb{C})$ satisfies XA = AX, X is a polynomial of A.

國立臺灣大學 108 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 58 共 1 頁之第 1 頁

(1) (20 points) Let V_1 be the \mathbb{R} -linear span of functions: $\sin^i x \cdot \cos^j x$, i, j = 0, ..., n. Let V_2 be the \mathbb{R} -linear span of functions: $\sin kx$. $\cos kx$, k = 0, ..., n. Determine the dimensions of V_1 and V_2 and prove your assertion. Is it true that $V_1 = V_2$? Prove or disprove it.

(2) (15 points) Let $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let id be the identity map sending every $v \in \mathbb{R}^n$ to v. Prove that there exist C > 0 such that for all $t \in \mathbb{R}$, |t| > C, the map $id + t \cdot \varphi$ is surjective.

(2) (15 points) Let
$$A := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, $B := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$,

 $V = \{ v \in \mathbb{C}^4 \mid A \cdot v = \lambda_a \cdot v, B \cdot v = \lambda_b \cdot v, \text{ for some } \lambda_a, \lambda_v \in \mathbb{C} \}.$ Find a basis of V.

(4) (15 points) Let A be an $n \times n$ diagonal matrix with diagonal entries $A_{11}, ..., A_{nn}$. Show that the linear span W of A^k , k = 0, 1, ..., is of dimension n if and only if $A_{ii} \neq A_{jj}$ for different i and j.

(5) (15 points) Suppose φ and g are \mathbb{R} -linear transformations from \mathbb{R}^n to \mathbb{R}^n such that $g \circ \varphi = \varphi^2 \circ g$ and g is *injective*. Show that φ and φ^2 have the same kernel (null-space), image, eigenvalues and eigenspaces.

(6) Prove or disprove the following statements (10 points for each). Let $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a quadratic form.

- (a) Let $\mathbb{Z}^n \subset \mathbb{R}^n$ denote the subset consisting of vectors with integer coordinates. Then Q is positive definite if and only if Q(v) > 0 for all $v \in \mathbb{Z}^n$.
- (b) There is some $n \times n$ matrix A such that $Q(v) = v^t \cdot A^t \cdot A \cdot v$, for all $v \in \mathbb{R}^n$. Here, B^t denotes the transpose of B.

國立臺灣大學 107 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

共 / 頁之第 / 頁

題號:

58

※ 注意:全部題目均請作答於試卷內之「非選擇題作答區」, 請標明題號依序作答。

- Unless otherwise specified, everything is over R.
- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- $\mathcal{M}_{m \times n}$ is the space of $m \times n$ matrices; $f_M(t) = \det(tI_n M)$ is the characteristic polynomial of M; im A is the image of A; ker A is the kernel of A; V^{\perp} is the normal space of V. Parallelepiped = 平行六面體.
- Duel space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}.$
- A. [15%] 是非題. 若錯誤, 需説明原因或給出反例. 本題答案須寫在答案簿最前面.
- 1. There is a linear transformation $A: \mathbb{R}^3 \to \mathbb{R}^3$ such that im $A = \ker A$.
- 2. $A \in \mathcal{M}_{n \times n}$. Suppose $A^2 = A$ then $\ker A = (\operatorname{im} A)^{\perp}$.
- 3. For any $A, B, C \in \mathcal{M}_{n \times n}$, tr(ABC) = tr(CBA).
- 4. The matrix representation A of an adjoint transformation satisfies $A^{t} = A$.
- 5. Symmetric matrix A is positive definite if and only if all its diagonal elements are positive.
- B. [85%] 計算/證明題。(6A) 和 (6B) 只選擇一題作答,兩題皆答,以先寫者計算。
- (I) [15%] Find all Jordan canonical forms for square matrices in $\mathcal{M}_{n\times n}$, $n \leq 6$, with minimal polynomial $(t-1)^2(t+1)^2$.
- (2) [15%] For $A, B \in \mathcal{M}_{m \times n}$, show that $f_{BA^{\mathfrak{t}}}(t) = f_{B^{\mathfrak{t}}A}(t) \cdot t^{m-n}$.
- (3) [15%] Consider $V = \{A \mid AX = XA, \text{ for any } X \in \mathcal{M}_{n \times n}\} \subset \mathcal{M}_{n \times n}$. Show that V is an one dimensional subspace of $\mathcal{M}_{n \times n}$.
- (4) [15%] $A \in \mathcal{M}_{n \times n}$. Suppose $(t^2 + 1)|f_A(t)$, are there $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ such that $A\vec{\mathbf{u}} = \vec{\mathbf{v}}$ and $A\vec{\mathbf{v}} = -\vec{\mathbf{u}}$? Prove or disprove it.
- (5) [15%] U is a subspace of a finite dimensional vector space V. Consider $D_U \subset V^*$ defined by $\{\alpha \in V^* \mid U \text{ is a subspace of } \ker \alpha\}$. Show that D_U is a subspace of dimension $\dim V \dim U$.
- (6A) [10%] Show the volume V of the parallelepiped span by $\vec{\mathbf{u}},\,\vec{\mathbf{v}},\,\vec{\mathbf{w}}\in\mathbb{R}^n$ satisfies

$$V^{2} = ||\vec{\mathbf{u}}||^{2} ||\vec{\mathbf{v}}||^{2} ||\vec{\mathbf{w}}||^{2} + 2 (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}) (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})$$
$$- ||\vec{\mathbf{u}}||^{2} (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})^{2} - ||\vec{\mathbf{v}}||^{2} (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})^{2} - ||\vec{\mathbf{w}}||^{2} (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^{2}$$

- (6B) [10%] Following diagram of vector spaces and linear transformations satisfies
 - (a) $\ker f_{i+1} = \operatorname{im} f_i$, $\ker g_{i+1} = \operatorname{im} g_i$, i = 0, 1, 2, 3, 4.
 - (b) $\alpha_{i+1} \circ f_i = g_i \circ \alpha_i, i = 1, 2, 3, 4.$

Show that if α_1 , α_2 , α_4 , α_5 are isomorphisms, then α_3 is an isomorphism.

- Unless otherwise specified, everything is over \mathbb{R} .
- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- $\mathcal{M}_{m \times n}$ is the space of $m \times n$ matrices; $f_M(t) = \det(tI_n M)$ is the characteristic polynomial of M; im A is the image of A; ker A is the kernel of A; V^{\perp} is the normal space of V. Parallelepiped = \mathbb{P} $\widehat{\tau}$ $\widehat{\tau}$ \widehat{n} \widehat{m} .
- Duel space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}.$

A. [15%] 是非題. 若錯誤, 需説明原因或給出反例. 本題答案須寫在答案簿最前面.

- 1. There is a linear transformation $A: \mathbb{R}^3 \to \mathbb{R}^3$ such that im $A = \ker A$.
- 2. $A \in \mathcal{M}_{n \times n}$. Suppose $A^2 = A$ then $\ker A = (\operatorname{im} A)^{\perp}$.
- 3. For any $A, B, C \in \mathcal{M}_{n \times n}$, tr(ABC) = tr(CBA).
- 4. The matrix representation A of an self-adjoint transformation satisfies $A^{t} = A$.
- 5. Symmetric matrix A is positive definite if and only if all its diagonal elements are positive.
- B. [85%] 計算/證明題。(6A) 和 (6B) 只選擇一題作答,兩題皆答,以先寫者計算。
- (1) [15%] Find all Jordan canonical forms for square matrices in $\mathcal{M}_{n\times n}$, $n \leq 6$, with minimal polynomial $(t-1)^2(t+1)^2$.
- (2) [15%] For $A, B \in \mathcal{M}_{m \times n}$, show that $f_{BA^{t}}(t) = f_{B^{t}A}(t) \cdot t^{m-n}$.
- (3) [15%] Consider $V = \{A \mid AX = XA, \text{ for any } X \in \mathcal{M}_{n \times n}\} \subset \mathcal{M}_{n \times n}$. Show that V is an one dimensional subspace of $\mathcal{M}_{n \times n}$.
- (4) [15%] $A \in \mathcal{M}_{n \times n}$. Suppose $(t^2 + 1)|f_A(t)$, are there nonzero $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ such that $A\vec{\mathbf{u}} = \vec{\mathbf{v}}$ and $A\vec{\mathbf{v}} = -\vec{\mathbf{u}}$? Prove or disprove it.
- (5) [15%] U is a subspace of a finite dimensional vector space V. Consider $D_U \subset V^*$ defined by $\{\alpha \in V^* \mid U \text{ is a subspace of ker } \alpha\}$. Show that D_U is a subspace of dimension dim V dim U.
- (6A) [10%] Show the volume V of the parallelepiped span by $\vec{\mathbf{v}}, \vec{\mathbf{v}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ satisfies

$$V^{2} = ||\vec{\mathbf{u}}||^{2} ||\vec{\mathbf{v}}||^{2} ||\vec{\mathbf{w}}||^{2} + 2 (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}) (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})$$
$$- ||\vec{\mathbf{u}}||^{2} (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})^{2} - ||\vec{\mathbf{v}}||^{2} (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})^{2} - ||\vec{\mathbf{w}}||^{2} (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^{2}$$

- (6B) [10%] Following diagram of vector spaces and linear transformations satisfies
 - (a) $\ker f_{i+1} = \operatorname{im} f_i$, $\ker g_{i+1} = \operatorname{im} g_i$, i = 0, 1, 2, 3, 4.
 - (b) $\alpha_{i+1} \circ f_i = g_i \circ \alpha_i, i = 1, 2, 3, 4.$

$$\{0_{A_1}\} \ \stackrel{f_0}{\rightarrow} \ A_1 \ \stackrel{f_1}{\rightarrow} \ B_1 \ \stackrel{f_2}{\rightarrow} \ C_1 \ \stackrel{f_3}{\rightarrow} \ D_1 \ \stackrel{f_4}{\rightarrow} \ E_1 \ \stackrel{f_5}{\rightarrow} \ \{0_{E_1}\}$$

$$\alpha_1 \downarrow \cong \ \alpha_2 \downarrow \cong \ \alpha_3 \downarrow \ \alpha_4 \downarrow \cong \ \alpha_5 \downarrow \cong$$

$$\{0_{A_2}\} \ \stackrel{g_0}{\rightarrow} \ A_2 \ \stackrel{g_1}{\rightarrow} \ B_2 \ \stackrel{g_2}{\rightarrow} \ C_2 \ \stackrel{g_3}{\rightarrow} \ D_2 \ \stackrel{g_4}{\rightarrow} \ E_2 \ \stackrel{g_5}{\rightarrow} \ \{0_{E_1}\}$$

Show that if α_1 , α_2 , α_4 , α_5 are isomorphisms, then α_3 is an isomorphism.

國立臺灣大學 106 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 56 共 頁之第 (頁

Notice: You must show all your work in order to receive full credit.

- (1) (20 points) Show that if $\mathbb{R}^n = W_1 \cup W_2 \cup \cdots \cup W_k \cup \cdots$, where each W_k is a subspace, then $\mathbb{R}^n = W_i$ holds for some i.
- (2) (20 points) Let a,b,c,d,e,f be real numbers such that the quadratic form $Q(x,y,z):=ax^2+by^2+cz^2+2dxy+2eyz+2fxz$ is positive definite. Then the region bounded by the surface Q(x,y,z)=1 has volume equals

$$\frac{4\pi}{3\sqrt{abc+2def-ae^2-bf^2-cd^2}}.$$

- (3) (15 points) The are infinitely many t in \mathbb{R} such that the vectors $(t, 2t^2, 3t^3, 4t^4)$, $(t^2, 2t^3, 3t^4, 4)$, $(t^3, 2t^4, 3t, 4t^2)$, $(t^4, 2t, 3t^2, 4t^3)$ form a basis of \mathbb{R}^4 .
- (4) (15 points) Determine all values of $a,b,c,d,e,f\in\mathbb{R}$ such that the

$$\text{matrix } A := \left(\begin{array}{cccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{array} \right) \text{ is } not \text{ diagonalizable.}$$

- (5) (10 points) If a 5×5 matrix $A \in M_5(\mathbb{R})$ satisfies $A^7 = I_5$ (the identity matrix), then 1 is an eigenvalue of A.
- (6) Prove or disprove the following statements (10 points for each).
 - (a) If $\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a linear transformation with the null space (kernel) of dimension n-1, then there exists some $v \in \mathbb{R}^n$ and a non-zero $\lambda \in \mathbb{R}$ such that $\psi(v) = \lambda \cdot v$.
 - (b) If W_1 and W_2 are 8-dimensional subspaces of \mathbb{R}^{10} , then there exist $a_1, a_2, \dots, a_{10}, b_1, b_2, \dots, b_{10}, c_1, c_2, \dots, c_{10}, d_1, d_2, \dots, d_{10}$ in \mathbb{R} such that the intersection $W_1 \cap W_2$ is the set of all vectors (x_1, \dots, x_{10}) with x_1, \dots, x_{10} a solution to the system of equations

$$\begin{cases} a_1x_1 + a_2x_2 + \dots + a_ix_i + \dots + a_{10}x_{10} &= 0 \\ b_1x_1 + b_2x_2 + \dots + b_ix_i + \dots + b_{10}x_{10} &= 0 \\ c_1x_1 + c_2x_2 + \dots + c_ix_i + \dots + c_{10}x_{10} &= 0 \\ d_1x_1 + d_2x_2 + \dots + d_ix_i + \dots + d_{10}x_{10} &= 0. \end{cases}$$

題號: 57 國立臺灣大學 105 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 57

共 / 頁之第 / 頁

GRADUATE ENTRANCE EXAM 2016: LINEAR ALGEBRA

Notation: R is the set of real numbers, and C is the set of complex numbers. If $F = \mathbf{R}$ or C, denote by $M_n(F)$ the $n \times n$ matrices with entries in F.

Problem 1 (10pts). Find all possible $a \in \mathbf{R}$ such that the vectors

$$(1,3,a), (a,4,3), (0,a,1) \in \mathbb{R}^3$$

are linearly dependent.

Problem 2 (10pts). Find a set of polynomials $p_0(t) = a$, $p_1(t) = b + ct$ and $p_2(t) = d + et + ft^2$ with coefficients $a, b, c, d, e, f \in \mathbb{R}$ so that $\{p_0, p_1, p_2\}$ is an orthonormal set of polynomials with respect to the inner product $\langle f, g \rangle = \int_0^2 f(t)g(t)dt$.

Problem 3 (20pts). Let

$$A = \begin{pmatrix} 1 & -3 & 0 \\ 3 & 4 & -3 \\ 3 & 3 & -2 \end{pmatrix} \in M_3(\mathbf{R}).$$

Find an invertible $P \in M_3(\mathbf{R})$ such that

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & -3 & 1 \end{pmatrix}.$$

Problem 4 (15pts). Let $V=M_3({\bf C})$ be a 9-dimension vector space over ${\bf C}$ and let

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Define the linear transformation $T:V\to V$ by

$$T(B) = ABA^{-1}.$$

Show that T is also diagonalizable.

Problem 5 (20pts). Let $A, B \in M_n(\mathbb{C})$. Suppose that eigenvalues of A and B are all real numbers and that rank $A = \operatorname{rank} A^2$ and rank $B = \operatorname{rank} B^2$. If A^3 is similar to B^3 (namely there exists an invertible $P \in M_n(\mathbb{C})$ such that $P^{-1}A^3P = B^3$), prove that A is similar to B.

Problem 6 (25pts). Let A and B be elements in $M_n(C)$. If $A^2B + BA^2 = 2ABA$, show that $(AB - BA)^n = 0$.

國立臺灣大學 104 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 57 共 / 頁之第 | 頁

(1) (15%) Let $V = \mathbb{R}^6$. Let W_1 be the subspace of V spanned by

$$(1, 2, 3, 4, 5, 6), (3, 4, 6, 7, 9, 10), (0, 1, 0, 2, 0, 3), (1, -2, 3, -4, 5, -6),$$

and W_2 be the subspace of V spanned by

$$(1, 1, 1, 2, 2, 3), (-2, 0, -1, 0, 1, 2), (1, 0, 1, 0, 2, 0), (0, 0, 1, 0, -2, -2).$$

Find the dimension of the subspace $W_1 \cap W_2$ and find a basis for this subspace.

(2) (15%) Let

$$C = \begin{bmatrix} -x & 1 & 3 & 1 & 2 \\ -2 & 0 & x & 2 & 2 \\ x & 0 & -2 & -3 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & x & -2 \end{bmatrix}.$$

Find an integer x such that all entries of the inverse of C are integers. For such x, find C^{-1} .

- (3) (15%) Let V be the vector space of all $n \times n$ matrices over F. Let T be the linear operator on V defined by $T(A) = A^t$. Test T for diagonalizability, and if T is diagonalizable, find a basis for V such that the matrix representation of T is diagonal.
- (4) (15%) Let V and W be F-vector spaces, and V^* and W^* be the dual space of V and W, respectively. Let $T:V\to W$ be a linear transformation. Define $T^*:W^*\to V^*$ by $T^*(f)=f\circ T$ for all $f\in W^*$. Show that T is onto if and only if T^* is one to one.
- (5) (10%) Let A and B be $n \times n$ matrices over a field F. Show that if A is invertible, there are at most n scalars c in F such that cA + B is not invertible.

(6) (15%)

- (a) Let S and T be linear operators on a finite-dimensional vector space. If p(t) is a polynomial such that p(ST) = 0, and if q(t) = tp(t), show that q(TS) = 0.
 - (b) What is the relation between the minimal polynomials of ST and TS.
- (7) (15%) Let V be a vector space with a basis $\{u_1, u_2, \ldots, u_n\}$. Let \langle , \rangle be an inner product on V. If c_1, c_2, \ldots, c_n are any n scalars, show that there is exactly one vector v in V such that $\langle v, u_j \rangle = c_j, j = 1, 2, \ldots, n$.

題號: 60 國立臺灣大學 103 學年度碩士班招生考試試題

科目:線性代數(A)

題號: 60

科日·線性代 節次: 4

共 / 頁之第 / 頁

Notation: \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers.

Problem 1 (15 pts). Let <, > be the standard inner product on \mathbb{R}^3 given by < $v, w>= a_1a_2+b_1b_2+c_1c_2$ if $v=(a_1,b_1,c_1)$ and $w=(a_2,b_2,c_2)$. Let W be the subspace in \mathbb{R}^3 given by

$$W = \{(x, y, z) \in \mathbb{R} \mid 2x + 7y = 0, \ x - 2y + z = 0\}.$$

Find an orthonormal basis of W. Namely, find a basis $\{w_1, w_2\}$ of W such that $\langle w_1, w_1 \rangle = \langle w_2, w_2 \rangle = 1$ and $\langle w_1, w_2 \rangle = 0$.

Problem 2 (20 pts). Let

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix}.$$

- (1) Compute the characteristic polynomial of A.
- (2) Find an invertible $P \in M_3(\mathbb{R})$ such that $P^{-1}AP$ is diagonal.

Problem 3 (25pts). Let V be a finite dimensional vector space over \mathbb{R} and let A: $V \to V$ be a \mathbb{R} -linear transformation. Prove that

- (1) (10 pts) if $A^k = 0$ for some positive integer k, then I A is invertible, where I is the identity map.
- (2) (15 pts) V is generated by kernel of A^k and the image of A^k for some k. In other words, prove $V = \operatorname{Ker} A^k + \operatorname{Im} A^k$ for some k.

Problem 4 (20pts). Let $L: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ be the linear transformation defined by

$$L(X) = \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix} X - X \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix}$$

- (1) Find the dimension of the kernel of L.
- (2) Find a basis for the image of L.

Problem 5 (20 pts). If $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$ and $v \in \mathbb{C}^n$ is a column vector, prove that

- (1) $A^2v = 0$, then Av = 0.
- (2) If $A^k v = 0$ for some $k \ge 1$, then Av = 0.
- (3) Show that the minimal polynomial of A has distinct roots.