HN62408 Series - Preliminary

524288-Word × 16-Bit/1048576-Word × 8-Bit CMOS Mask Programmable ROM

HN62408 Series is a 8-Mbit CMOS mask-programable ROM organized either as 524288-word x 16-Bit or as 1048576-Wod x 8-Bit. It can be operated with a battery because of low power consumption. The large capacity of 8M bits is optimum for a kanji character generator.

Features

- Single 5 V
- · Wired OR is permitted for the output in three states
- TTL compatible
- · Address access time: 200 ns (max)
- Low power: Active 100 mW (typ)
 Standby 5 μW (typ)
- Byte-Wide or Word-Wide Data Organization (switched by BHE terminal)

Ordering Information

-	Type No.	Address Access Time	Package
	HN62408P	200 ns	600 mil 42-pin plastic DIP
	HN62408FP	200 ns	44-pin plastic QFP

Pin Arrangement

Note: The specifications of this device are subject to change without notice.

Please contact your nearest Hitachi's Sale Dept. regarding specifications.

Block Diagram

BHE = VIH: 16 bits (D15-D0) BHE = VIL: 8 bits (D7-D0)

*1: A-1 is least significant address input, and D14-D8 are of high impedance.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit		
Power supply voltage*1	Vcc	-0.3 to +7.0	V		
Terminal voltage*1	VT	-0.3 to Vcc + 0.3	V		
Operating temperature	Торт	0 to +70	°C		
Storage temperature	Tstg	-55 to +125	°C		
Bias temperature	Tbias	-20 to +85	°C		

Note: *1. With respect to Vss.

Rrecommended Operating Conditions (Vss = 0 V, Ta = $0 \text{ to } +70 ^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	V
T . 1.	Vн	2.2		Vcc + 0.3	γ
Input voltage	VIL	-0.3	_	0.8	V

DC Characteristics (VCC = $5 \text{ V} \pm 10\%$, Vss = 0 V, Ta = $0 \text{ to} + 70^{\circ}\text{C}$)

Item		Symbol	Min	Max	Unit	Test Conditions
Activ		Icc		50	mA	$V_{CC} = 5.5 \text{ V}$, $I_{DOUT} = 0 \text{ mA}$, $I_{RC} = Min$
Power supply current	Standby	Isв		30	μA	$Vcc = 5.5 \text{ V}, \overline{CE} \ge Vcc - 0.2 \text{V}$
Input leak current		ILI	_	10	μА	$V_{IN} = 0$ to V_{CC}
Output leak current		Ito		10	μΑ	$\overline{\text{CE}}$ = 2.2 V, Vout = 0 to Vcc
0		Vон	2.4	_	V	Iон = −205 μA
Output voltage		Vol	_	0.4	V	IoL = 1.6 mA

Capacitance (Vcc = $5 \text{ V} \pm 10\%$, Vss = 0 V, Ta = 25°C , Vin = 0 V, f = 1 MHz)

Item	Symbol	Min	Max	Unit
Input capacitance 1	Cin	_	15	pF
Output capacitance*1	Cout	_	15	pF

Note: *1. This parameter is sampled and not 100% tested.

AC Operating Characteristics (VCC = 5 V \pm 10%, Vss = 0 V, Ta = 0 to +70°C) Test Conditions

est Conditions
Input pulse level: 0.8 to 2.4 V Output load: 1 T

I/O timing reference level: 1.5 V Input rise/fall time: 10 ns 1 TTL gate + C_L = 100 pF (including jig capacitance)

Item	Symbol	Min	Max	Unit
Cycle time	trc	200		ns
Address access time	taa	_	200	ns
CE access time	tace		200	ns
OE access time	toe		100	ns
BHE access time	ТВНЕ		200	ns
Output Hold Time from Address Change	t DHA	0	<u> </u>	ns
Output Hold Time from CE	t DHC	0		ns
Output Hold Time from OE	tdно	0	_	ns
Output Hold Time from BHE	tонв	0		ns
CE to Output in High Z	tcHz*1	_	70	ns
OE to Output in High Z	tonz*1		70	ns
BHE to Output in High Z	tBHZ*1		70	ns
CE to Output in Low Z	tclz	10		ns
OE to Output in Low Z	tolz	10		ns
BHE to Output in Low Z	tBLZ	10		ns

Note: *1 tCHZ, toHZ, and tBHZ define the time at which the output goes to the high impedance state and is not referenced to output voltage level.

Timing Waveform Word Mode (BHE = "VIH") or Byte Mode (BHE = "VIL")

Notes: 1. tDHA, tDHC, tDHO;

Determined by whichever is faster.

2. taa, lace, loe;

Determined by whichever is slower.

3. tCLZ, tOLZ;

Determined by whichever is slower.

Switching between Word Mode and Byte Mode

Notes: 1. \overline{CE} , \overline{OE} are of selected status. A18-A0 are fixed.

D15/A-1 terminal is of output state when BHE = VIH, CE and OE are of selected state.
 At this time, an input signal that is of the inverse phase to the output should not be impressed.