Математическая логика и теория вычислимости Лекция 9. Теорема Гёделя о полноте исчисления предикатов

Денис Николаевич Москвин

Кафедра математических и информационных технологий Санкт-Петербургского академического университета

19.04.2018

План лекции

- Леммы о константах
- 2 Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- Понижение мощности
- 5 Невыразимые предикаты

План лекции

- 1 Леммы о константах
- Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- 4 Понижение мощности
- 5 Невыразимые предикаты

Лемма о свежих константах

- Лемма (о свежих константах). Пусть ϕ формула ИП, а c константа, не входящая в эту формулу. Тогда выводимость $\phi(x:=c)$ влечет выводимость ϕ .
- Доказательство. Возьмем свежую для ϕ переменную y. Вывод $\phi(x := c)$ при замене c на y останется выводом: $\vdash \phi(x := y)$.

$$\begin{array}{lll} 1 & \phi(x:=y) & \text{Assumption} \\ 2 & \forall y \phi(x:=y) & \text{Gen} \\ 3 & \forall y \phi(x:=y) \rightarrow \phi(x:=y) (y:=x) & \text{A12} \\ 4 & \phi(x:=y) (y:=x) & \text{MP(2)(3)} \\ 5 & \phi & \end{array}$$

• Лемма легко обобщается на случай нескольких констант.

Лемма о добавлении констант

- Лемма (о добавлении констант). Пусть ϕ формула ИП некоторой сигнатуры σ . Пусть она выводима в сигнатуре σ' , полученной из σ добавлением новых констант. Тогда ϕ выводима в ИП сигнатуры σ .
- Доказательство. Если в выводе формулы φ в σ' встречаются новые константы, заменяем их на свежие переменные. \blacksquare
- Лемма легко обобщается для произвольного расширения сигнатуры.
- Это означает, что можно говорить о выводимости формулы, не уточняя, в какой сигнатуре мы ищем вывод.

План лекции

- 1 Леммы о константах
- 2 Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- Понижение мощности
- Б Невыразимые предикаты

Противоречивые теории

- Фиксируем сигнатуру σ и рассмотрим теорию Γ в этой сигнатуре.
- Теория Г называется противоречивой, если в ней выводима некоторая формула и ее отрицание. В противном случае теория называется непротиворечивой.
- В противоречивой теориии выводима любая формула:

$$\begin{array}{cccc} 1 & \Gamma \vdash \phi & \text{Assumption} \\ 2 & \Gamma \vdash \neg \phi & \text{Assumption} \\ 3 & \Gamma \vdash \neg \phi \rightarrow \phi \rightarrow \psi & \text{A9} \\ 4 & \Gamma \vdash \phi \rightarrow \psi & \text{MP(2)(3)} \\ 5 & \psi & \text{MP(1)(4)} \end{array}$$

- Любое подмножество непротиворечивого множества непротиворечиво.
- У бесконечного противоречивого множества есть конечное противоречивое подмножество.

Совместность

- Интерпретация M сигнатуры σ называется моделью теории Γ , если все формулы из Γ истинны в M.
- **Теорема о корректности ИП (ver.2)**. Все теоремы теории Г истинны в любой модели М этой теории.
- Множество формул Г называют совместным, если оно имеет модель.
- Теорема о корректности ИП (ver.3). Любое совместное множество замкнутых формул непротиворечиво.
 Доказательство. (от противного) Пусть имеется замкнутая φ, такая что Γ ⊢ φ и Γ ⊢ ¬φ. Но из совместности следует наличие модели М, в которой φ и ¬φ должны быть истинны одновременно.

Полнота теории

• Теория Γ в сигнатуре σ называется *полной* в этой сигнатуре если для любой замкнутой формулы ϕ этой сигнатуры либо ϕ , либо ϕ является теоремой теории Γ :

$$\Gamma \vdash \varphi \quad \text{or} \quad \Gamma \vdash \neg \varphi$$

• Фиксация сигнатуры важна: если символ S не входит в сигнатуру σ , но используется в формуле ψ , то $\Gamma \not\vdash \neg \psi$, например

$$\Gamma \not\vdash \exists x S(x)$$
 $\Gamma \not\vdash \neg \exists x S(x)$

• Замкнутость формулы ϕ тоже важна: множество истинных формул сигнатуры $(0^0,S^1,=^2)$ полно, но ни x=y, ни $\neg(x=y)$ из него не выводимо.

Цель и план

- Цель доказать, что любая непротиворечивая теория совместна.
- Как это делалось в логике высказываний:
 - **1** расширяли Γ до полного множества $\Delta\supset\Gamma$;
 - 2 для всякой пропозициональной переменной р полагали

$$p = T$$
, if $\Delta \vdash p$, $p = F$, if $\Delta \vdash \neg p$;

- ullet показывали, что такое означивание приводит к истинности всех формул Δ (а значит и Γ).
- В логике предикатов будем действовать по той же схеме.
- Однако, у нас будут проблемы с шагом 2: нам нужно будет как-то смонтировать носитель интерпретации.

Лемма о пополнении

- Лемма (о пополнении). Всякое непротиворечивое множество Γ сигнатуры σ содержится в непротиворечивом полном множестве Δ той же сигнатуры.
- Доказательство. Пусть φ произвольная формула сигнатуры σ. Рассмотрим Γ, φ и Γ, ¬φ. Одно из них непротиворечиво. Действительно, если противоречивы оба, то Г ⊢ ¬φ и Г ⊢ ¬¬φ, что противоречит непротиворечивости Г. Будем теперь перебирать все допустимые формулы, добавляя к Г либо формулу, либо отрицание, сохраняя непротиворечивость.

Выбор носителя

- Для работы с семантическим понятием совместности нам нужно задать некоторую интерпретацию. Возьмем в качестве носителя D множество всех *замкнутых* термов нашей сигнатуры σ (термов без переменных).
- Функциональные символы при этом интерпретируются "естественным образом": функциональному символу f арности п ставится в соответствие такая функция [f]

$$[f]([t_1],\ldots,[t_n])=[f(t_1,\ldots,t_n)]$$

Здесь t_1, \ldots, t_n и $f(t_1, \ldots, t_n)$ — замкнутые термы нашей сигнатуры (то есть элементы носителя D).

• Предикатный символ P арности $\mathfrak n$ интерпретируем как предикат [P], который истинен на замкнутых термах t_1,\ldots,t_n , если

$$\Gamma \vdash P(t_1, \dots, t_n)$$

Экзистенциальная полнота теории

- Наша цель доказать (индуктивно по структуре формулы), что в построенной интерпретации истинны все формулы из Г.
- Но наша интерпретация может быть слишком бедной: может оказаться, что $\Gamma \vdash \exists x A(x)$, но ни для какого замкнутого терма t формула A(t) не выводима из Γ .
- Теория Γ называется *экзистенциально полной* в сигнатуре σ , если для всякой замкнутой формулы $\exists x \phi$, являющейся теоремой этой сигнатуры, найдется терм t этой сигнатуры, такой что $\Gamma \vdash \phi(x:=t)$.

Лемма об экзистенциальном пополнении

- Лемма (об экзистенциальном пополнении). Пусть Γ непротиворечивое множество замкнутых формул сигнатуры σ , причем из Γ выводима замкнутая формула $\exists x \phi$. Пусть c свежая для Γ и ϕ константа. Тогда множество Γ , $\phi(x:=c)$ непротиворечиво.
- Доказательство. Пусть $\Gamma, \phi(x:=c)$ противоречиво. Тогда имеется конечное $\Delta \subset \Gamma$, такое что

1
$$\Delta \vdash \neg \varphi(x := c)$$

2 $\Delta \vdash \neg \varphi$ FreshConstLemma
3 $\vdash \land_i \Delta \rightarrow \neg \varphi$ DeductLemma
4 $\vdash \varphi \rightarrow \neg (\land_i \Delta)$ Contraposition
5 $\vdash \exists x \varphi \rightarrow \neg (\land_i \Delta)$ B \exists

Но по условию $\Gamma \vdash \exists x \phi$, значит Δ противоречиво, а значит и Γ . Противоречие. \blacksquare

Лемма о расширении

- Лемма. Пусть Γ непротиворечивое множество замкнутых формул сигнатуры σ . Тогда существует расширение сигнатуры σ новыми константами и расширение множества Γ до множества Δ , такого что оно непротиворечиво, полно и экзистенциально полно в расширенной сигнатуре.
- Доказательство.
 - ① Последовательно применим лемму об экзистенциальном пополнении ко всем замкнутым формулам вида $\exists x \phi$, выводимым из Γ .
 - Оположение оположение оположение оположении.

Повторим эти два шага счетное число раз. Объединение полученных множеств будет непротиворечивым, полным и экзистенциально полным. ■

Лемма о существовании модели

Лемма. Пусть Γ — полное и экзистенциально полное множество замкнутых формул сигнатуры σ . Тогда существует интерпретация M сигнатуры σ , в которой истинны все формулы из Γ .

Доказательство. Возьмем в качестве носителя M все замкнутые термы сигнатуры σ . Интерпретация функциональных и предикатных символов описана ранее. Индукцией по числу связок и кванторов формулы ϕ докажем

$$\Gamma \vdash \phi \; \Leftrightarrow \; [\phi] = T$$

База. Атомарные формулы таковы по построению (см. интерпретацию предикатных символов).

Лемма о существовании модели (продолжение)

Индукционный переход. (пропозициональные связки) Аналогично доказательству для исчисления высказываний. Проверяем, что выводимость и истинность "устроены одинаково"

$$\begin{array}{cccc} \Gamma \vdash \neg \phi & \Leftrightarrow & \Gamma \not\vdash \phi \\ \Gamma \vdash \phi \lor \psi & \Leftrightarrow & \Gamma \vdash \phi \text{ или } \Gamma \vdash \psi \\ \Gamma \vdash \phi \land \psi & \Leftrightarrow & \Gamma \vdash \phi \text{ и } \Gamma \vdash \psi \\ \Gamma \vdash \phi \rightarrow \psi & \Leftrightarrow & \Gamma \not\vdash \phi \text{ или } \Gamma \vdash \psi \end{array}$$

Это легко показать, поскольку любые частные случаи пропозициональных тавтологий выводимы.

Лемма о существовании модели (продолжение 2)

- **Индукционный переход.** (квантор \exists) Пусть ϕ имеет вид $\exists x \psi$ (в ψ единственный параметр x).
- (\Rightarrow) Пусть $\Gamma \vdash \exists x \psi$. Из экзистенциальной полноты Γ следует существование константы c, такой что $\Gamma \vdash \psi(x:=c)$. В этой формуле меньше связок, то есть по (IH) в M она истинна: $[\psi(x:=c)] = \mathsf{T}$. Тогда ψ истинна на оценке $\pi(x) = c$, откуда $[\exists x \psi] = \mathsf{T}$.
- (\Leftarrow) Пусть $[\exists x\psi] = T$. Тогда найдется элемент носителя (у нас замкнутый терм t), для которого $[\psi]_{x:=t} = T$. Отсюда в нашей интерпретации $[\psi(x:=t)] = T$. По (IH) $\Gamma \vdash \psi(x:=t)$, откуда, используя аксиому $13 \ \psi(x:=t) \to \exists x\psi$, заключаем, что $\Gamma \vdash \exists x\psi$.

Лемма о существовании модели (продолжение 3)

Индукционный переход. (квантор \forall) Пусть ϕ имеет вид $\forall x \psi$ (в ψ единственный параметр — x). (\Rightarrow) Пусть $\Gamma \vdash \forall x \psi$. Отсюда (по аксиоме 12 $\forall x \psi \rightarrow \psi(x := t)$) для любого замкнутого терма t нашей сигнатуры $\Gamma \vdash \psi(x:=t)$. В этой формуле меньше связок, то есть по (ІН) в М она истинна: $[\psi(x := t)] = T$. Итак ψ истина на любой оценке $\pi(x) = t$, откуда $[\forall x \psi] = T$. (\Leftarrow) (контрапозиция). Пусть $\Gamma \not\vdash \forall x \psi$, тогда из полноты $\Gamma \vdash \neg \forall x \psi$, что доказуемо эквивалентно $\Gamma \vdash \exists x \neg \psi$. Из экзистенциальной полноты Г следует существование константы c, такой что $\Gamma \vdash \neg \psi(x := c)$. В этой формуле меньше связок, то есть по (IH) в M она истинна: $[\neg \psi(x := c)] = \mathsf{T}$. Тогда $\neg \psi$ истинна на оценке $\pi(x) = c$, откуда $[\forall x \psi] = F$.

Теорема Гёделя о полноте

- **Теорема** Непротиворечивое множество замкнутых формул имеет модель.
 - Доказательство. Расширяем множество до полного и экзистенциально полного и берем в качестве модели построенную выше интерпретацию ■.
- **Теорема о полноте ИП (сильная форма)** Любая непротиворечивая теория совместна.
- Теорема о полноте ИП (слабая форма) Любая общезначимая формула выводима в исчислении предикатов.
 - **Доказательство.** Пусть ϕ общезначима, замкнута и невыводима. Тогда $\{\neg \phi\}$ непротиворечиво, а значит имеет модель. В этой модели $[\neg \phi] = T$, откуда $[\phi] = F$, что противоречит общезначимости ϕ .

Теоремы о счетной модели и компактности

- **Теорема (о счетной модели)** Непротиворечивое множество замкнутых формул конечной или счетной сигнатуры имеет счетную модель.
- Доказательство. Наша модель, полученная пополнением и экзистенциальным пополнением, счетна. ■
- **Теорема** (о компактности) Пусть Γ бесконечное множество замкнутых формул сигнатуры σ. Пусть любое его конечное подмножество имеет модель. Тогда само Г тоже имеет модель.
- Доказательство. Наличие модели равносильно непротиворечивости. Но противоречие выводится из конечного числа формул Г.

План лекции

- 1 Леммы о константах
- 2 Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- 4 Понижение мощности
- Б Невыразимые предикаты

Предваренная нормальная форма

- Формула ϕ находится в *предваренной нормальной форме*, если она имеет вид $\Omega_1 x_1 \dots \Omega_n x_n \psi$, где Ω_i квантор, а ψ безкванторная формула.
- Предваренной нормальной формой формулы ϕ называется формула ϕ' , такая что ϕ' находится в ПНФ, и $\phi \leftrightarrow \phi'$.
- Предварённая формула называется Σ_n -формулой, если ее кванторная приставка содержит n групп кванторов, причём первыми стоят кванторы существования.
- Предварённая формула называется П_п-формулой, если ее кванторная приставка содержит п групп кванторов, причём первыми стоят кванторы всеобщности.

Утверждения о классах Σ_n и Π_n

- Всякая формула из класса Σ_n или Π_n доказуемо эквивалентна формуле из класса Σ_{n+1} , а также формуле из класса Π_{n+1} .
- Отрицание любой формулы из класса Σ_n доказуемо эквивалентно некоторой формуле из класса Π_n и наоборот.
- Конъюнкция и дизъюнкция любых двух формул из Π_n доказуемо эквивалентна некоторой формуле из Π_n .
- Конъюнкция и дизъюнкция любых двух формул из Σ_n доказуемо эквивалентна некоторой формуле из Σ_n .
- **Теорема**. Любая формула имеет предваренную нормальную форму. (мы ее уже доказывали)

Выводимость бескванторных формул

- Если в бескванторной формуле ф заменить атомарные подформулы на переменные (одинаковые — на одинаковые, разные — на разные), то получившаяся пропозициональная формула называется прототипом исходной.
- **Теорема.** Бескванторная формула выводима (общезначима) тогда и только тогда, когда её прототип является тавтологией.
- (⇐) Тривиально.
- (⇒) (контрапозиция). Пусть прототип φ не тавтология.
 Легко предъявить интерпретацию, где φ будет ложной.
 Носитель замкнутые термы, значения предикатов подбираются согласованно с обращением в ложь прототипа.

Выводимость формул класса Π_1

- Теорема. Формула класса П₁ выводима (общезначима) тогда и только тогда, когда общезначима ее бескванторная часть.
- Доказательство. Тривиально.

Выводимость формул класса Σ_1

• Теорема Эрбрана. Формула $\exists x_1 \dots \exists x_k \phi$ (где ϕ — бескванторная) общезначима тогда и только тогда, когда существует конечный список подстановок

$$\begin{split} & \phi(x_1 := t_{11}, \dots, x_k := t_{1k}) \\ & \phi(x_1 := t_{21}, \dots, x_k := t_{2k}) \\ & \dots \\ & \phi(x_1 := t_{n1}, \dots, x_k := t_{nk}) \end{split}$$

дизъюнкция которых общезначима.

- Эту дизъюнкцию называют эрбрановской.
- Пример. Пусть Р предикатный символ, а A и B предметные константы сигнатуры. Тогда формула $\exists x (P(A, x) \to P(x, B))$ общезначима.

Доказательство теоремы Эрбрана

- (⇐) Квантор ∃ это дизъюнкция по всем элементам носителя, если часть этой дизъюнкции общезначима, то и вся она тоже.
- (\Rightarrow) Пусть ϕ не содержит переменных, кроме x_1,\dots,x_k (остальные можно заменить константами). Рассмотрим для всех наборов замкнутых термов t_1,\dots,t_k бесконечное множество формул

$$\neg \phi(x_1 := t_1, \dots, x_k := t_k)$$

- Оно противоречиво. Тогда берем в качестве эрбрановской дизъюнкцию отрицаний конечного набора отрицаний, используемых при выводе противоречия.
- Оно непротиворечиво. Этого не может быть, поскольку тогда у него есть модель, в которой $\exists x_1 \dots \exists x_k \phi$ можно сделать ложной. \blacksquare

Прагматика теоремы Эрбрана

- Если сигнатура не содержит функциональных символов, то мы можем алгоритмически проверять выводимость формул класса Σ_1 (число подстановок конечно).
- Это верно и для класса Π_2 .
- Но не для более богатых классов.

Сколемовские функции

• Рассмотрим утверждение

$$\forall x \exists y P(x, y)$$

- Оно эквивалентно существованию функции, которая по любому x возвращает y, такой, что P(x,y).
- Но это невыразимо в логиках первого порядка:

$$\forall x \exists y P(x, y) \leftrightarrow \exists f \forall x P(x, f(x))$$

• Однако можно ввести новый унарный функциональный символ f, при этом выполнимость $\forall x \exists y \phi$ равносильно выполнимости

$$\forall x \varphi(y := f(x))$$

Сколемизация

• Пример. Формула

$$\forall x \forall y \exists z \forall u \exists v \varphi(x, y, z, u, v)$$

выполнима тогда и только тогда, когда выполнима

$$\forall x \forall y \forall u \phi(x, y, f(x, y), u, g(x, y, u))$$

где f и g — свежие функциональные символы подходящей арности.

• **Теорема.** Для всякой замкнутой формулы ϕ сигнатуры σ существует формула ϕ' класса Π_1 сигнатуры σ с добавленными функциональными символами, которая выполнима или невыполнима одновременно с ϕ .

Сколемизация: двойственность

- Формула невыполнима тогда и только тогда, когда ее отрицание общезначимо.
- То есть общезначимость $\neg \forall x \exists y P(x,y)$ равносильна общезначимости

$$\neg \forall x P(x, f(x)).$$

ullet Вводя Q=
eg P получаем, что одновременно общезначимы

$$\exists x \forall y Q(x,y)$$
 и $\exists x Q(x,f(x))$

- **Теорема.** Для всякой замкнутой формулы φ сигнатуры σ существует формула φ'' класса Σ_1 сигнатуры σ с добавленными функциональными символами, которая общезначима или необщезначима одновременно с φ .
- Дальше ϕ'' можно перевести на безкванторный язык по теореме Эрбрана.

Сколемизация: разрешимость

- Полнота исчисления предикатов позволяет заменять общезначимость на выводимость.
- Вопрос о выводимости произвольной формулы мы свели к выводимости формулы из Σ_1 (с функциональными символами).
- Вопрос о выводимости произвольной формулы логики предикатов первого порядка алгоритмически неразрешим, поэтому неразрешим вопрос о выводимости формулы из Σ_1 (с функциональными символами).

План лекции

- 1 Леммы о константах
- Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- Понижение мощности
- 5 Невыразимые предикаты

Элементарная эквивалентность

- Две интерпретации заданной сигнатуры σ называют элементарно эквивалентными, если в них истинны одни и те же замкнутые формулы данной сигнатуры.
- Взаимно-однозначное отображение $\alpha:D_1\to D_2$ называется изоморфизмом интерпретаций, если оно сохраняет все функции и предикаты этих интерпретаций. А именно для любого предикатного символа P^n и любого функционального символа f^n верно

$$\begin{array}{lcl} \left[P\right]_2\left(\alpha(x_1),\ldots,\alpha(x_n)\right) & \Leftrightarrow & \left[P\right]_1\left(x_1,\ldots,x_n\right) \\ \left[f\right]_2\left(\alpha(x_1),\ldots,\alpha(x_n)\right) & = & \alpha(\left[f\right]_1\left(x_1,\ldots,x_n\right)) \end{array}$$

на любых наборах $x_1,\ldots,x_n\in D_1$.

• **Теорема**. Изоморфные интерпретации элементарно эквивалентны.

Теорема об элементарной подмодели

- Пусть имеется интерпретация некоторой сигнатуры с ностиелем D. Рассмотрим подмножество $D' \subset D$. Если D' замкнуто относительно сигнатурных функций, то получится новая интерпретация, называемая подструктурой исходной.
- Теорема (Левенгейм-Сколем). Пусть дана конечная или счетная сигнатура σ и ее бесконечная интерпретация с носителем D. Тогда имеется подструктура со счетным носителем $D' \subset D$ элементарно эквивалентная исходной.
- Доказательство (скетч). Берем произвольное счетное подмножество, расширяем его до замкнутого относительно сигнатурных функций и экзистенциально замкнутого. Повторяем счетное число раз. ■ (см. Верещагин, Шень, ЯиИ, 3.11)

План лекции

- 1 Леммы о константах
- Теорема Гёделя о полноте
- 3 Теорема Эрбрана и сколемизация
- Понижение мощности
- 5 Невыразимые предикаты

Выразимость предикатов

- Выразимость предиката в некоторой интерпретации некоторой сигнатуры доказать обычно просто: прямым предъявлением.
- Например, сигнатура $(+^2, =^2)$; нормальная интерпретация с носителем \mathbb{N} и [+] = +.
- Порядок на натуральных числах (отношение ≤) мы можем выразить так:

$$x \leqslant y \equiv \exists z (y = x + z)$$

Выразимость предикатов

- Выразимость предиката в некоторой интерпретации некоторой сигнатуры доказать обычно просто: прямым предъявлением.
- Например, сигнатура $(+^2, =^2)$; нормальная интерпретация с носителем $\mathbb N$ и [+] = +.
- Порядок на натуральных числах (отношение ≤) мы можем выразить так:

$$x \leqslant y \equiv \exists z (y = x + z)$$

• Что будет если поменять носитель на \mathbb{Z} ?

Выразимость предикатов

- Выразимость предиката в некоторой интерпретации некоторой сигнатуры доказать обычно просто: прямым предъявлением.
- Например, сигнатура $(+^2, =^2)$; нормальная интерпретация с носителем $\mathbb N$ и [+] = +.
- Порядок на натуральных числах (отношение ≤) мы можем выразить так:

$$x \leqslant y \equiv \exists z (y = x + z)$$

- Что будет если поменять носитель на **Z**?
- Порядок станет невыразимым!

Автоморфизмы

- Пусть дана сигнатура σ и ее интерпретация с носителем D.
- Взаимно-однозначное отображение $\alpha: D \to D$ называется автоморфизмом интерпретации, если все функции и предикаты этой интерпретации устойчивы относительно α , а именно для любого предикатного символа P^n и любого функционального символа f^n верно

$$\begin{array}{lll} \left[P\right]\left(\alpha(x_1),\ldots,\alpha(x_n)\right) & \Leftrightarrow & \left[P\right]\left(x_1,\ldots,x_n\right) \\ \left[f\right]\left(\alpha(x_1),\ldots,\alpha(x_n)\right) & = & \alpha(\left[f\right]\left(x_1,\ldots,x_n\right)) \end{array}$$

на любых наборах $x_1, \ldots, x_n \in D$.

• Например, отображение $x\mapsto -x$ является автоморфизмом для нормальной интерпретация сигнатуры $(+^2,=^2)$ с носителем $\mathbb Z$ и [+]=+.

Теорема об устойчивости относительно автоморфизмов

- **Теорема**. Предикат, выразимый в данной интерпретации, устойчив относительно ее автоморфизмов.
- Доказательство.
 - Рассмотрим произвольную оценку π и обозначим $\alpha \circ \pi$ новую оценку, полученную применением автоморфизма к π .
 - Индукцией по структуре терма показываем

$$\left[t\right]_{\alpha\circ\pi}\ =\ \alpha\left(\left[t\right]_{\pi}\right)$$

• Индукцией по структуре формулы показываем

$$\left[\phi\right]_{\alpha\circ\pi}\;=\;\alpha\left(\left[\phi\right]_{\pi}\right)\quad\blacksquare$$

- Теперь невыразимость предиката легко доказать, предъявив автоморфизм, относительно которого предикат неустойчив.
- Например, сигнатура $(<^2,=^2)$, носитель \mathbb{Z} , естественная интерпретация. Невыразимый предикат x=0.

Автоморфизм —

Теорема об устойчивости относительно автоморфизмов

- Теорема. Предикат, выразимый в данной интерпретации, устойчив относительно ее автоморфизмов.
- Доказательство.
 - Рассмотрим произвольную оценку π и обозначим $\alpha \circ \pi$ новую оценку, полученную применением автоморфизма к π .
 - Индукцией по структуре терма показываем

$$[t]_{\alpha \circ \pi} = \alpha([t]_{\pi})$$

• Индукцией по структуре формулы показываем

$$[\phi]_{\alpha \circ \pi} = \alpha([\phi]_{\pi}) \blacksquare$$

- Теперь невыразимость предиката легко доказать, предъявив автоморфизм, относительно которого предикат неустойчив.
- Например, сигнатура $(<^2,=^2)$, носитель \mathbb{Z} , естественная интерпретация. Невыразимый предикат x = 0. Автоморфизм — $x \mapsto x + 42$.