The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

¹University of Warsaw

²University of Warwick

³LaBRI

LSV, ENS Cachan 2018

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

 1 University of Warsaw 2 University of Warwick 3 LaBRI

LSV, ENS Cachan 2018

[2018/10/08 18:43:46 (19)]

Introduction

Petri Nets, VASS, programs with no zero tests

(d,Q,T), where $T\subseteq Q\times \mathbb{Z}^d\times Q$

(d,Q,T), where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

$$(d,Q,T)$$
, where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

$$(d,Q,T)$$
, where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1) \to p(0,1,0) \to q(0,1,0) \to q(0,0,2) \to p(1,0,2)$$

$$(d,Q,T)$$
, where $T\subseteq Q\times \mathbb{Z}^d\times Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1) \to p(0,1,0) \to q(0,1,0) \to q(0,0,2) \to p(1,0,2)$$

Notation: $p(0,0,1) \to^* p(1,0,2)$

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

Decide: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

Decide: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

Coverability can be reduced to reachability

Reachability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether $p(\mathbf{u}) \to^* q(\mathbf{v})$?

Coverability problem:

GIVEN: VASS (d,Q,T) and configurations $p(\mathbf{u}),q(\mathbf{v})$

DECIDE: whether exists \mathbf{v}' s.t. $p(\mathbf{u}) \to^* q(\mathbf{v}')$ and $\mathbf{v}' \geq \mathbf{v}$?

- Coverability can be reduced to reachability
- ullet We can assume $\mathbf{u}=\mathbf{v}=\mathbf{0}$

```
\begin{array}{lll} {\sf x} \mathrel{+}= {\sf m} & ({\sf add} \ m \ {\sf to} \ {\sf variable} \ {\sf x}) \\ {\sf x} \mathrel{-}= {\sf m} & ({\sf subtract} \ m \ {\sf from} \ {\sf variable} \ {\sf x}) \\ {\sf goto} \ L \ {\sf or} \ L' & ({\sf jump} \ {\sf to} \ {\sf either} \ {\sf line} \ L \ {\sf or} \ {\sf line} \ L') \\ {\sf test} \ {\sf x} \mathrel{=} 0 & ({\sf continue} \ {\sf if} \ {\sf variable} \ {\sf x} \ {\sf is} \ {\sf zero}) \\ {\sf halt} \ {\sf if} \ {\sf x}_1, \ldots, {\sf x}_l \mathrel{=} 0 & ({\sf terminate} \ {\sf if} \ {\sf listed} \ {\sf variables} \ {\sf are} \ {\sf zero}). \end{array}
```

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

All variables are initialized to 0, and are never negative

```
\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}
```

All variables are initialized to 0, and are never negative

Example

- 1: x' += B
- 2: **goto** 6 **or** 3
- 3: x += 1 x' -= 1
- 4: y += 2
- 5: **goto** 2
- 6: **halt if** x' = 0.

$$\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}$$

All variables are initialized to 0, and are never negative

Example

1:
$$x' += B$$

2: **goto** 6 **or** 3
3: $x += 1$ $x' -= 1$
4: $y += 2$
5: **goto** 2
6: **halt if** $x' = 0$.

$$\begin{array}{lll} \mathbf{x} += \mathbf{m} & \text{(add } m \text{ to variable x)} \\ \mathbf{x} -= \mathbf{m} & \text{(subtract } m \text{ from variable x)} \\ \mathbf{goto } L \text{ or } L' & \text{(jump to either line } L \text{ or line } L') \\ \hline \mathbf{test } \mathbf{x} = 0 & \text{(continue if variable x is zero)} \\ \mathbf{halt if } \mathbf{x}_1, \dots, \mathbf{x}_l = 0 & \text{(terminate if listed variables are zero)}. \end{array}$$

All variables are initialized to 0, and are never negative

Example

1:
$$x' += B$$

2: **goto** 6 **or** 3
3: $x += 1$ $x' -= 1$
4: $y += 2$
5: **goto** 2
6: **halt if** $x' = 0$

A complete run ends with x = B, y = 2B

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

GIVEN: A counter program with no zero tests.

$$p(0,0,1) \to^* p(1,0,2)$$
?

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.


```
\begin{array}{c} {\bf z} \mathrel{+}{=} \; 1 \\ {\bf loop} \\ {\bf loop} \\ {\bf y} \mathrel{+}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 1 \\ {\bf loop} \\ {\bf y} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{+}{=} \; 2 \\ {\bf x} \mathrel{+}{=} \; 1 \\ {\bf x} \mathrel{-}{=} \; 1 \quad {\bf z} \mathrel{-}{=} \; 2 \\ {\bf halt if } \; {\bf x}, {\bf y}, {\bf z} \mathrel{=} 0. \end{array}
```

Reachability problem (for programs):

 $\operatorname{GIVEN}\colon A$ counter program with no zero tests.

DECIDE: Does it have a complete run (executing halt)?

Coverability if halt is empty

$$\begin{array}{c} {\bf z} \; += \; 1 \\ {\bf loop} \\ {\bf loop} \\ {\bf y} \; += \; 1 \quad {\bf z} \; -= \; 1 \\ {\bf loop} \\ {\bf y} \; -= \; 1 \quad {\bf z} \; += \; 2 \\ {\bf x} \; += \; 1 \\ {\bf x} \; -= \; 1 \quad {\bf z} \; -= \; 2 \\ {\bf halt \; if \; x,y,z} \; = \; 0. \end{array}$$

Reachability state of art

Reachability state of art

Outline

- High level idea of the proof
- Key combinatorial lemma
- The construction

Additional command: test x = 0

Additional command: test x = 0

Reachability becomes undecidable

Additional command: $\mathbf{test} \times = 0$

Reachability becomes undecidable

Let k – size of input

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

If
$$f$$
 is n -EXP, i.e., $f(k) = 2$ n times. Then reachability is $(n-1)$ -EXPSPACE-co

Then reachability is (n-1)-EXPSPACE-complete

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $B=f(\boldsymbol{k})$

If
$$f$$
 is $n\text{-EXP},$ i.e., $f(k)=2$

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f=2-EXP

Additional command: **test** x = 0

Reachability becomes undecidable

Let k – size of input

Suppose counters are bounded by $\boldsymbol{B}=\boldsymbol{f}(\boldsymbol{k})$

If
$$f$$
 is n -EXP, i.e., $f(k) = 2$ n times.

Then reachability is (n-1)-EXPSPACE-complete

Lipton encoded programs for f=2-EXP We can do it for any f=n-EXP

B – bound on the counters

B – bound on the counters

We encode this into programs with no zero tests

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$\mathbf{x}_1' += 1 \quad \cdots \quad \mathbf{x}_l' += 1$$
 $\mathbf{b} -= 1$

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$\mathbf{x}_1' += 1 \quad \cdots \quad \mathbf{x}_l' += 1$$
 $\mathbf{b} -= 1$

Replace
$$x_i += m$$
 with $x_i += m$ $x'_i -= m$

B – bound on the counters

We encode this into programs with no zero tests Suppose we get (magically) three counters b, c, d initialized to b = B, c ≥ 0 , d = c \cdot b

Encoding: for every x_i add x'_i Intuitively $x_i + x'_i = B$, so start with:

loop

$$x'_1 += 1 \quad \cdots \quad x'_l += 1$$
 $b_l -= 1$

Replace $x_i += m$ with $x_i += m$ $x'_i -= m$

Replace $x_i = m$ with $x_i = m$ $x'_i + m$

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

$$x_i' = B - x_i$$

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b} \longleftarrow \mathsf{c} \text{ is "number of zero tests"} \cdot 2$$

$$x_i' = B - x_i$$

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$
 c is "number of zero tests" $\cdot 2$ $\mathsf{x}_i' = B - \mathsf{x}_i$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1 x'_i -= 1$$

 $d -= 1$

$$c = 1$$

loop

$$x_i = 1$$
 $x'_i += 1$
 $d = 1$

$$c -= 1$$

B – bound on the counters

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$
 c is "number of zero tests" $\cdot 2$ $\mathsf{x}_i' = B - \mathsf{x}_i$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
d $-= 1$

$$c = 1$$

loop

$$x_i = 1$$
 $x'_i += 1$
 $d = 1$
 $c = 1$

B – bound on the counters

$$\mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b}$$
 c is "number of zero tests" $\cdot 2$ $\mathbf{x}_i' = B - \mathbf{x}_i$ holds because $\mathbf{b} = 0$

Replace **test** $x_i = 0$ with

$$x_i += 1$$
 $x'_i -= 1$
d $-= 1$

$$c = 1$$

loop

$$x_i = 1$$
 $x'_i += 1$ $d = 1$

c -= 1

B – bound on the counters

$$\begin{array}{ll} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} & \longleftarrow & \mathbf{c} \text{ is "number of zero tests"} \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i & \longleftarrow & \mathbf{holds because b} = 0 \end{array}$$

Replace **test** $x_i = 0$ with

$$\begin{vmatrix} \mathbf{loop} \\ \mathbf{x}_i & += 1 \\ \mathbf{d} & -= 1 \end{vmatrix}$$

$$\mathbf{c} -= 1$$

$$\begin{vmatrix} \mathbf{loop} \\ \mathbf{x}_i & -= 1 \\ \mathbf{d} & -= 1 \end{vmatrix}$$

$$\mathbf{c} -= 1$$

$$c -= 1$$

$$c -= 1$$

B – bound on the counters

$$\begin{array}{ll} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} & \longleftarrow & \mathbf{c} \text{ is "number of zero tests"} \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i & \longleftarrow & \mathbf{holds because b} = 0 \end{array}$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
 $d -= 1$
 $c -= 1$
loop
 $x_i -= 1$ $x'_i += 1$
 $d -= 1$
 $c -= 1$

c decreased by 2 and d by at most 2B

so a false zero test implies $\mathsf{d} \neq 0$

B – bound on the counters

$$\begin{array}{c} \mathbf{b} = B, \ \mathbf{c} \geq 0, \ \mathbf{d} = \mathbf{c} \cdot \mathbf{b} \end{array} \longleftarrow \begin{array}{c} \mathbf{c} \ \text{is "number of zero tests"} \cdot 2 \\ \mathbf{x}_i' = B - \mathbf{x}_i \end{array} \longleftarrow \begin{array}{c} \mathbf{b} = \mathbf{d} \\ \mathbf{b} = \mathbf{d} \end{array}$$

Replace **test** $x_i = 0$ with

loop

$$x_i += 1$$
 $x'_i -= 1$
 $d -= 1$
 $c -= 1$
loop
 $x_i -= 1$ $x'_i += 1$
 $d -= 1$

c decreased by $2\ \mathrm{and}\ \mathrm{d}$ by at most 2B

so a false zero test implies $\mathsf{d} \neq 0$

Extend **halt** with b, d = 0

This is the challenge

Key combinatorial lemma

(forget about VASS and programs for now)

k – input number

k – input number

Lemma (Trivial)

There exist
$$r_{k,0},\ldots,r_{k,k},\ r_k,\ s_{k,0},\ldots,s_{k,k},\ s_k>0$$
 s.t. $r_{k,i},\ r_k,\ s_{k,i},\ s_k=\mathcal{O}(k),\ s_{k,i}>r_{k,i},\ s_k>r_k,$ and
$$\prod_{i=0}^k\frac{s_{k,i}}{r_{k,i}}=\frac{s_k}{r_k}$$

k – input number

Lemma (Trivial)

There exist
$$r_{k,0}, \ldots, r_{k,k}, r_k, s_{k,0}, \ldots, s_{k,k}, s_k > 0$$

s.t.
$$r_{k,i}, r_k, s_{k,i}, s_k = \mathcal{O}(k), s_{k,i} > r_{k,i}, s_k > r_k$$
, and

$$\prod_{i=0}^k \frac{s_{k,i}}{r_{k,i}} = \frac{s_k}{r_k}$$

Solution:

$$\prod_{i=0}^{k} \frac{i+2}{i+1} = \frac{k+2}{1}$$

k – input number

Lemma (Trivial)

There exist $r_{k,0}, \ldots, r_{k,k}, r_k, s_{k,0}, \ldots, s_{k,k}, s_k > 0$

s.t. $r_{k,i}, r_k, s_{k,i}, s_k = \mathcal{O}(k), s_{k,i} > r_{k,i}, s_k > r_k$, and

$$\prod_{i=0}^k \frac{s_{k,i}}{r_{k,i}} \ = \ \frac{s_k}{r_k}$$

Solution:

$$\prod_{i=0}^{k} \frac{i+2}{i+1} = \frac{k+2}{1}$$

We need something more complicated

Serious identity on numbers

k – input number

Serious identity on numbers

k – input number

Lemma (Key)

There exist
$$r_{k,0}, \ldots, r_{k,k}, \ r_k, \ s_{k,0}, \ldots, s_{k,k}, \ s_k > 0$$
 s.t. $r_{k,i}, \ r_k, \ s_{k,i}, \ s_k = \mathcal{O}(2^{poly(k)}), \quad s_{k,i} > r_{k,i}, \quad s_k > r_k, \quad \text{and}$
$$\prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$$

Serious identity on numbers

k – input number

Lemma (Key)

There exist $r_{k,0}, \ldots, r_{k,k}, \ r_k, \ s_{k,0}, \ldots, s_{k,k}, \ s_k > 0$ s.t. $r_{k,i}, \ r_k, \ s_{k,i}, \ s_k = \mathcal{O}(2^{poly(k)}), \quad s_{k,i} > r_{k,i}, \quad s_k > r_k, \quad \text{and} \quad \prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$

Wrong solution:

$$\prod_{i=0}^{k} \left(\frac{2^{k+1}+1}{2^{k+1}} \right)^{2^{i}} = \left(\frac{2^{k+1}+1}{2^{k+1}} \right)^{2^{k+1}-1} < e$$

Serious identity on numbers

k – input number

Lemma (Key)

There exist $r_{k,0},\dots,r_{k,k},\ r_k,\ s_{k,0},\dots,s_{k,k},\ s_k>0$ s.t. $r_{k,i},\ r_k,\ s_{k,i},\ s_k=\mathcal{O}(2^{poly(k)}),\ s_{k,i}>r_{k,i},\ s_k>r_k,$ and $\prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$

Wrong solution:

$$\prod_{i=0}^{k} \left(\frac{2^{k+1}+1}{2^{k+1}} \right)^{2^{i}} = \left(\frac{2^{k+1}+1}{2^{k+1}} \right)^{2^{k+1}-1} < e$$

e is small

Serious identity on numbers

k – input number

Lemma (Key)

There exist
$$r_{k,0},\dots,r_{k,k},\ r_k,\ s_{k,0},\dots,s_{k,k},\ s_k>0$$
 s.t. $r_{k,i},\ r_k,\ s_{k,i},\ s_k=\mathcal{O}(2^{poly(k)}),\ s_{k,i}>r_{k,i},\ s_k>r_k,$ and
$$\prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$$

Wrong solution:

$$\prod_{i=0}^k \left(\frac{2^{k+1}+1}{2^{k+1}}\right)^{2^i} = \left(\frac{2^{k+1}+1}{2^{k+1}}\right)^{2^{k+1}-1} < e$$
 but this is big

e is small

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^{i}} = \frac{s_{k}}{r_{k}}$$

$$\prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i \quad s_{k,k-i} = (a_k)^i a_{k,i} \quad r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$$

$$a_k = 2^{2k}$$
 $s_k = \prod_{j=0}^k a_{k,j}$ $r_k = (a_k)^{k+1}$

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i$$
 $s_{k,k-i} = (a_k)^i a_{k,i}$ $r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$
 $a_k = 2^{2k}$ $s_k = \prod_{j=0}^k a_{k,j}$ $r_k = (a_k)^{k+1}$

The point is these numbers are computable

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i \quad s_{k,k-i} = (a_k)^i a_{k,i} \quad r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$$

$$a_k = 2^{2k} \quad s_k = \prod_{j=0}^k a_{k,j} \quad r_k = (a_k)^{k+1}$$

The point is these numbers are computable

Fix
$$y > 0$$
, you want $x > y$ s.t. $x = y \cdot \frac{s_k}{r_k}$

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i \quad s_{k,k-i} = (a_k)^i a_{k,i} \quad r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$$

$$a_k = 2^{2k} \quad s_k = \prod_{j=0}^k a_{k,j} \quad r_k = (a_k)^{k+1}$$

The point is these numbers are computable

Fix
$$y > 0$$
, you want $x > y$ s.t. $x = y \cdot \frac{s_k}{r_k}$

You start with x=y and you multiply by $\frac{s_{k,i}}{r_{k.i}}$ (in order $i=k,\ldots,0$)

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i \quad s_{k,k-i} = (a_k)^i a_{k,i} \quad r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$$

$$a_k = 2^{2k}$$
 $s_k = \prod_{j=0}^k a_{k,j}$ $r_k = (a_k)^{k+1}$

The point is these numbers are computable

Fix
$$y > 0$$
, you want $x > y$ s.t. $x = y \cdot \frac{s_k}{r_k}$

You start with x=y and you multiply by $\frac{s_{k,i}}{r_{k,i}}$ (in order $i=k,\ldots,0$)

$$x = y \cdot \prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^{i}}$$

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

A solution: $(a_k, a_{k,i} \text{ are auxiliary})$

$$a_{k,k-i} = a_k + 2^i \quad s_{k,k-i} = (a_k)^i a_{k,i} \quad r_{k,k-i} = a_k \prod_{j=0}^{i-1} a_{k,j}$$

 $a_k = 2^{2k}$ $s_k = \prod_{i=0}^k a_{k,i}$ $r_k = (a_k)^{k+1}$

The point is these numbers are computable

Fix
$$y > 0$$
, you want $x > y$ s.t. $x = y \cdot \frac{s_k}{r_k}$

You start with x=y and you multiply by $\frac{s_{k,i}}{r_{k.i}}$ (in order $i=k,\ldots,0$)

Then
$$x,y=\Omega\left(2^{2^k}\right)$$

$$x = y \cdot \prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i}$$

Input –
$$2^{poly(k)}$$
, r_k , $r_{k,i}$, s_k , $s_{k,i} \in \mathcal{O}(2^{poly(k)})$

Input
$$-2^{poly(k)}$$
, r_k , $r_{k,i}$, s_k , $s_{k,i} \in \mathcal{O}(2^{poly(k)})$
1: $\mathsf{x} += 1$ y $+= 1$
2: **loop**
3: $\mathsf{x} += 1$ y $+= 1$
4: **for** $i=k,\ldots,0$ **do**
5: **loop exactly** 2^i **times**
6: **loop**
7: $\mathsf{x} -= r_{k,i}$ $\mathsf{x}' += s_{k,i}$
8: **loop**
9: $\mathsf{x}' -= 1$ $\mathsf{x} += 1$
10: **loop**
11: $\mathsf{x} -= s_k$ y $-= r_k$
12: **halt if** $\mathsf{y} = 0$

```
Input -2^{poly(k)}, r_k, r_{k,i}, s_k, s_{k,i} \in \mathcal{O}(2^{poly(k)})
1: x += 1 y += 1
 2: loop
3: x += 1 y += 1 Initialize x, y
4: for i = k, ..., 0 do
 5: loop exactly 2^i times
 6: loop
               \mathbf{x} -= r_{k,i} \quad \mathbf{x}' += s_{k,i} \quad \mathbf{Multiply weakly } \mathbf{x} \text{ by } \frac{s_{k,i}}{r_{k,i}}
8: loop
9: x' -= 1 \quad x += 1
10: loop
11: x -= s_k y -= r_k
12: halt if y = 0
```

Input
$$-2^{poly(k)}$$
, r_k , $r_{k,i}$, s_k , $s_{k,i} \in \mathcal{O}(2^{poly(k)})$

1: $\mathbf{x} += 1$ $\mathbf{y} += 1$

2: \mathbf{loop}

3: $\mathbf{x} += 1$ $\mathbf{y} += 1$ Initialize \mathbf{x}, \mathbf{y}

4: $\mathbf{for} \ i = k, \dots, 0 \ \mathbf{do}$

5: $\mathbf{loop} \ \mathbf{exactly} \ 2^i \ \mathbf{times}$

6: \mathbf{loop}

7: $\mathbf{x} -= r_{k,i} \ \mathbf{x}' += s_{k,i} \leftarrow \mathbf{Multiply} \ \mathbf{weakly} \ \mathbf{x} \ \mathbf{by} \ \frac{s_{k,i}}{r_{k,i}}$

8: \mathbf{loop}

9: $\mathbf{x}' -= 1 \ \mathbf{x} += 1 \leftarrow \mathbf{Put} \ \mathbf{the} \ \mathbf{value} \ \mathbf{back} \ \mathbf{to} \ \mathbf{x}$

10: \mathbf{loop}

11: $\mathbf{x} -= s_k \ \mathbf{y} -= r_k$

12: $\mathbf{halt} \ \mathbf{if} \ \mathbf{y} = 0$

Input
$$-2^{poly(k)}$$
, r_k , $r_{k,i}$, s_k , $s_{k,i} \in \mathcal{O}(2^{poly(k)})$

1: $\mathsf{x} += 1$ $\mathsf{y} += 1$

2: loop

3: $\mathsf{x} += 1$ $\mathsf{y} += 1$ Initialize x, y

4: $\mathsf{for}\ i = k, \ldots, 0\ \mathsf{do}$

5: $\mathsf{loop}\ \mathsf{exactly}\ 2^i\ \mathsf{times}$

6: loop

7: $\mathsf{x} -= r_{k,i}$ $\mathsf{x}' += s_{k,i}$ Multiply weakly $\mathsf{x}\ \mathsf{by}\ \frac{s_{k,i}}{r_{k,i}}$

8: loop

9: $\mathsf{x}' -= 1$ $\mathsf{x} += 1$ Put the value back to x

10: loop

11: $\mathsf{x} -= s_k$ $\mathsf{y} -= r_k$

Actually $\mathsf{x} = \mathsf{y} \cdot \frac{s_k}{r_k}$

So x, y are initialized to multiples of $a \in \Omega(2^{2^k})$

The construction

(Now remember VASS, programs, the key lemma...)

B – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

$$B$$
 – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

$$b += B$$

loop

$$c += 1 d += B$$

$$B$$
 – bound on the counters

$$b = B$$
, $c \ge 0$, $d = c \cdot b$

If B is fixed, just start the program with:

b
$$+= B \leftarrow$$
 "gadget for ratio B " loop c $+= 1$ d $+= B$

 ${\cal B}$ – bound on the counters

$$b = B, c \ge 0, d = c \cdot b$$

If B is fixed, just start the program with:

b
$$+= B$$

"gadget for ratio B "

loop

c $+= 1$ d $+= B$

But in general we want
$$B=2$$
 $n \times 2^k$

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki

$$B$$
 – bound on the counters $b = B$, $c > 0$, $d = c \cdot b$

If B is fixed, just start the program with:

But in general we want
$$B=2$$
 $n \text{ times.}$

For this we need the combinatorial lemma

b = B, $c \ge 0$, $d = c \cdot b$ gives us B-bounded 0-tests

 $\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$ gives us B-bounded 0-tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$
 gives us B -bounded 0 -tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \ge 0, d = c \cdot b$$

$$\mathsf{b} = B, \ \mathsf{c} \geq 0, \ \mathsf{d} = \mathsf{c} \cdot \mathsf{b}$$
 gives us B -bounded 0 -tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \geq 0, d = c \cdot b$$

How to use the lemma:

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ gives us B -bounded 0 -tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $pprox 2^B$

A program with B-bounded 0-tests that ends with

$$b \approx 2^B$$
, $c \ge 0$, $d = c \cdot b$

How to use the lemma:

ullet By the previous slide we can start with B linear in the input

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ gives us B -bounded 0 -tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$ A program with B-bounded 0-tests that ends with

$$b \approx 2^B, c \geq 0, d = c \cdot b$$

How to use the lemma:

- ullet By the previous slide we can start with B linear in the input
- ullet Afterwards lift the gadget n times

$$b = B$$
, $c \ge 0$, $d = c \cdot b$ gives us B -bounded 0 -tests

Lemma (lifting the gadget)

Using a gadget for ratio B we can get a gadget for ratio $\approx 2^B$ A program with B-bounded 0-tests that ends with $b\approx 2^B,\ c\geq 0,\ d=c\cdot b$

How to use the lemma:

- ullet By the previous slide we can start with B linear in the input
- ullet Afterwards lift the gadget n times

A program proving the lemma is what's left

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

• We want e.g.: x += a

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

- We want e.g.: x += a
 - 1: $\langle \mathcal{P}_a \text{ with halt removed} \rangle \longrightarrow a \text{ computed in a}$
 - 2: **loop**
 - 3: x += 1
 - 4: a = 1
 - 5: **test** a = 0

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

- We want e.g.: x += a
 - 1: $\langle \mathcal{P}_a \text{ with halt removed} \rangle \longrightarrow a \text{ computed in a}$
 - 2: **loop**
 - 3: x += 1
 - 4: a = 1
 - 5: **test** a = 0

How to use *B***-bounded** 0**-tests?**

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

- We want e.g.: x += a
 - 1: $\langle \mathcal{P}_a \text{ with halt removed} \rangle \rightarrow a \text{ computed in a}$
 - 2: **loop**
 - 3: x += 1
 - 4: a = 1
 - 5: **test** a = 0
- Also: **loop exactly** a **times** < body>

How to use *B***-bounded** 0**-tests?**

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

- We want e.g.: x += a
 - 1: $\langle \mathcal{P}_a \text{ with halt removed} \rangle \rightarrow a \text{ computed in a}$
 - 2: **loop**
 - 3: x += 1
 - 4: a = 1
 - 5: **test** a = 0
- Also: **loop exactly** a **times** < body>
- Or: **loop at most** b **times** < body>
 (b has no constraints)

How to use *B***-bounded** 0**-tests?**

Let $a \leq B$ computable by program \mathcal{P}_a with B-bounded 0-tests (afterwards a stored in a)

- We want e.g.: x += a
 - 1: $\langle \mathcal{P}_a \text{ with halt removed} \rangle \longrightarrow a \text{ computed in a}$
 - 2: **loop**
 - 3: x += 1
 - 4: a = 1
- 5: **test** a = 0
- Also: **loop exactly** a **times** < body>
- Or: **loop at most** b **times** < body>

$$b = 1 \quad b' += 1$$

with B-bounded zero tests

with B-bounded zero tests

Recall

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

with B-bounded zero tests

Recall

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

We need k s.t. $s_{k,i},\ s_k,\ r_{k,i},\ r_k \leq B$ $(B \approx 2^k)$

with B-bounded zero tests

Recall

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

We need k s.t. $s_{k,i}, s_k, r_{k,i}, r_k \leq B$ so all r and s computable $(B \approx 2^k)$

with B-bounded zero tests

Recall

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

We need k s.t. $s_{k,i}$, s_k , $r_{k,i}$, $r_k \leq B$ so all r and s computable

 $(B\approx 2^k)$

Let

$$B_k = \prod_{i=0}^k (s_{k,i})^{2^i}$$
 $A_k = \prod_{i=0}^k (r_{k,i})^{2^i}$

with B-bounded zero tests

Recall

$$\prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} = \frac{s_k}{r_k}$$

We need k s.t. $s_{k,i}$, s_k , $r_{k,i}$, $r_k \leq B$ so all r and s computable $(B\approx 2^k)$

Let

$$B_k = \prod_{i=0}^{k} (s_{k,i})^{2^i}$$
 $A_k = \prod_{i=0}^{k} (r_{k,i})^{2^i}$

We also need k s.t. $B_k, A_k \approx 2^B$ (B_k will be the new ratio)

with B-bounded zero tests

Recall

$$\prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} = \frac{s_k}{r_k}$$

We need k s.t. $s_{k,i},\ s_k,\ r_{k,i},\ r_k \leq B$ so all r and s computable $(B \approx 2^k)$

Let

$$B_k = \prod_{i=0}^k (s_{k,i})^{2^i}$$
 $A_k = \prod_{i=0}^k (r_{k,i})^{2^i}$

We also need k s.t. $B_k, A_k \approx 2^B$ (B_k will be the new ratio)

What is k? Computable, assume some variable k = k

Output: $b = B_k$, $c \ge 0$, $d = c \cdot b$

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Two auxiliary variables x, y (to check correctness)

At some point they satisfy

$$\mathbf{x} = \mathbf{y} \cdot \prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^{i}} = \mathbf{y} \cdot \frac{s_{k}}{r_{k}}$$

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Two auxiliary variables x, y (to check correctness)

At some point they satisfy

$$\mathbf{x} = \mathbf{y} \cdot \prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^{i}} = \mathbf{y} \cdot \frac{s_{k}}{r_{k}}$$

$$b += 1$$

loop

$$c += 1$$
 $d += 1$ $x += 1$ $y += 1$

<main loop>

loop

$$x = s_k y = r_k$$

halt if y = 0

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Two auxiliary variables x, y (to check correctness)

At some point they satisfy

$$\mathbf{x} = \mathbf{y} \cdot \prod_{i=0}^{k} \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^{i}} = \mathbf{y} \cdot \frac{s_{k}}{r_{k}}$$

$$b += 1$$

loop

$$c += 1$$
 $d += 1$ $x += 1$ $y += 1$ \leftarrow $c, d, x, y := c \cdot A_k$

<main loop>

loop

$$x = s_k y = r_k$$

halt if y = 0

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Two auxiliary variables x, y (to check correctness)

At some point they satisfy

$$\mathbf{x} \ = \ \mathbf{y} \cdot \prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}}\right)^{2^i} \ = \ \mathbf{y} \cdot \frac{s_k}{r_k}$$

$$b += 1$$

loop

$$c += 1$$
 $d += 1$ $x += 1$ $y += 1$ \leftarrow $c, d, x, y := c \cdot A_k$ $<$ main $loop> \leftarrow$ $c := c/A_k$, $d, x := d \cdot B_k/A_k$, $b := B_k$

loop

$$x = s_k y = r_k$$

halt if y = 0

Output:
$$b = B_k$$
, $c \ge 0$, $d = c \cdot b$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

Two auxiliary variables x, y (to check correctness)

At some point they satisfy

$$\mathbf{x} \ = \ \mathbf{y} \cdot \prod_{i=0}^k \left(\frac{s_{k,i}}{r_{k,i}} \right)^{2^i} \ = \ \mathbf{y} \cdot \frac{s_k}{r_k}$$

$$b += 1$$

loop

$$c += 1$$
 $d += 1$ $x += 1$ $y += 1$ \leftarrow $c, d, x, y := c \cdot A_k$ $<$ main $loop> \leftarrow$ $c := c/A_k$, $d, x := d \cdot B_k/A_k$, $b := B_k$

loop

$$x = s_k$$
 $y = r_k$

halt if
$$y = 0$$

 $\begin{array}{c} \text{nvariant} \\ \text{b} \cdot \text{c} = \text{d} \end{array}$

 $\begin{array}{l} \text{Invariant} \\ \textbf{b} \cdot \textbf{c} = \textbf{d} \end{array}$

$$\begin{cases} B_k = \prod_{i=0}^k (s_{k,i})^{2^i} \\ A_k = \prod_{i=0}^k (r_{k,i})^{2^i} \end{cases}$$

Invariant $b \cdot c = d$

$$B_k = \prod_{i=0}^k (s_{k,i})^{2^i}$$
$$A_k = \prod_{i=0}^k (r_{k,i})^{2^i}$$

- 1: **for** i = k, ..., 0 **do**
 - 2: **loop exactly** 2^{i} **times**
- 3: **loop**
- 4: $c = r_{k,i} c' += 1$
- 5: **loop at most** b **times**
- 7: **loop**
- 8: $b -= 1 \quad b' += s_{k,i}$
- 9: **loop**
- 10: b' -= 1 b += 1
- 11: loop
- 12: $c' -= 1 \quad c += 1$
- 13: **loop at most** b **times**
- 14: d' -= 1 d += 1 x' -= 1 x += 1

Invariant $b \cdot c = d$

$$B_k = \prod_{i=0}^k (s_{k,i})^{2^i}$$
$$A_k = \prod_{i=0}^k (r_{k,i})^{2^i}$$

- 1: **for** i = k, ..., 0 **do**
- 2: **loop exactly** 2ⁱ times
- 3: **loop**
- 4: C
 - $\mathsf{c} -= [r_{\mathsf{k},\mathsf{i}}] \quad \mathsf{c}' += 1 \quad \mathsf{c}' := \mathsf{c}/r_{\mathsf{k},\mathsf{i}}, \ \mathsf{d}' := \mathsf{d} \cdot rac{s_{\mathsf{k},\mathsf{i}}}{r_{\mathsf{k},\mathsf{i}}}$
- 5: loop at most b times
- 7: **loop**
- 8: $b -= 1 \quad b' += s_{k,i}$
- 9: **loop**
- 10: b' -= 1 b += 1
- 11: loop
- 12: $c' -= 1 \quad c += 1$
- 13: **loop at most** b **times**
- 14: d' -= 1 d += 1 x' -= 1 x += 1

Invariant $b \cdot c = d$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

- 1: **for** i = k, ..., 0 **do**
- loop exactly 2i times 2:
- 3: loop
- 4:
 - $\mathsf{c} := \lceil r_{\mathsf{k},\mathsf{i}} \rceil \quad \mathsf{c}' := \mathsf{1} \quad \mathsf{c}' := \mathsf{c}/r_{\mathsf{k},\mathsf{i}}, \ \mathsf{d}' := \mathsf{d} \cdot \frac{s_{\mathsf{k},\mathsf{i}}}{r_{\mathsf{k},\mathsf{i}}}$
- loop at most b times 5:

6:
$$d = \frac{r_1 \cdot d'}{r_2 \cdot d'} + \frac{r_3 \cdot d'}{r_3 \cdot d'}$$

- 7: loop
- $b = 1 \quad b' += s_{k,i}$ 8.

 $b' := b \cdot s_{k,i}$

- 9. loop
- b' -= 1 b += 110:
- loop 11:
- c' -= 1 c += 112:
- loop at most b times 13:
- d' -= 1 d += 1 x' -= 1 x += 114:

Invariant $b \cdot c = d$

$$B_{k} = \prod_{i=0}^{k} (s_{k,i})^{2^{i}}$$
$$A_{k} = \prod_{i=0}^{k} (r_{k,i})^{2^{i}}$$

- 1: **for** i = k, ..., 0 **do**
- loop exactly 2i times 2:
- 3: loop
- 4:
- loop at most b times 5:
- $d = [r_{k,i}] d' + [s_{k,i}] x [r_{k,i}] x' + [s_{k,i}]$ 6:
- 7: loop
- 8.
 - $b = 1 \quad b' + = s_{k,i}$
- 9. loop
- b' -= 1 b += 110:
- loop 11:
- c' -= 1 c += 112:
- loop at most b times 13:
- 14:
 - d' -= 1 d += 1 x' -= 1 x += 1

- - $b' := b \cdot s_{k,i}$
 - if any loop not maximal then $x < y \cdot \frac{s_k}{r}$

• Several applications and corollaries

e.g. satisfiability of FO2 on data words

Several applications and corollaries
 e.g. satisfiability of FO2 on data words

ullet We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed)

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?
- This originated from studying 1-Pushdown-VASS

- Several applications and corollaries
 e.g. satisfiability of FO2 on data words
- We can do k-EXPSPACE-hardness in dimension $\mathcal{O}(k)$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is almost tight Unless you believe in things between Tower $({\bf F}_3)$ and Ackermann $({\bf F}_\omega)$
- Can we improve lower bounds of Pushdown-VASS, BVASS...?
- This originated from studying 1-Pushdown-VASS
 So maybe it's good to study restrictions of generalizations of etc...