MPEG-2 TS 码流编辑的原理与应用

在当今数字媒体不断发展、新媒体业务不断涌现 的前提下,实践证明襁褓中的新媒体只有两种经营方略可供选择:或是购买并集成整套节目,或是低成本深加工新节目,再不可能去按照传统生产模式去自采自编。 低成本的节目生产制作与发布,不仅成为数字媒体经营的主要手段,也成为传统媒体"改革工作流程"的重要举措,进而促成了对新型工作母机和简捷快速流程的迫 切需求。

在辽宁新媒体多业务综合服务平台上,先于国际和国内应用了 MPEG-2 传输流快速剪辑编辑系统(以下简称码流快编)。这项由辽 宁电视台与深圳奥维迅公司在 2003 年 10 月联合开发的新技术,为数字媒体低成本节目的制作、推广和运营提供了高效生产工作母机。尽管担负此项目源代码开 发的奥维迅公司出现了经营问题,在技术推广的中间环节发生梗塞,但并不能说明此项技术走到了尽头。回顾 3 年的应用实践及研发成果,需要的不是扬弃,而是演 进的升级,否则就是对可调控资源的莫大浪费。特别是针对第二代信源编解码国标AVS-P2 的更新换代,很可能成为多业务内容整合的新一代产品的突破口。

一 工作原理

1. 功能目标

码流快编的应用目标是,通过对开放视频的采集,将 DVB-S 或 C 的传输流 (Transport Stream, TS) 节目作为信源,直接进行剪辑处理,再经过人工创意后,整合为新主题内容的新节目,以便直接进入频道集成或编辑频道节目播出,快速实现 数据层的内容整合,不仅简捷了采集制作的工作流程,而且为丰富媒体内容资产开辟了一条捷径。因为码流快编的工作流程无需先以解码后的视频记录于磁带,再以 磁带上载编辑机,经编辑后再下载成为磁带,再编码复用成为新内容的新节目。即便数字化完成以后,视频数据流仍不能用于经复用的数字传输,还需编码、转码、 打包等传输格式化以后,才能在数字信道上传输。而采用码流快编以后,不仅避免了解码后再采样编码所形成的视频损耗,还避免了在 1:1 时间的上下载中所造成 的效率损耗。更重要的是在视频内容整合中,一次性完成音/视频同步剪切、字幕处理和音/视频数据打包复用等连续作业。所以,它能够提高生产效率 60 %以 上。必要时还可进行节目包装的特技编辑,直接创建数据级和文件级的互联互通内容交换平台,在媒体资产管理下,顺利实现网络化与智能化的节目配送与发布。

由于码流快编是针对以 TS 为信源的再编辑系统,所以实行"高来高走,低来低走",或是 "高来低走"的应用策略,即高码率对应高 码率(包括兼容高清),低码率对应低码率,但码 率连续可调,以适应高码率对应低码率的应用。理论和应用都说明,对比源节目和成品节目, 经剪切和编辑处理的 图像保持了同等的视频质量,成为不劣化图像的创新工作流程和新型 工作母机。

2. 设计特征

码流快编的低成本与高效率来自它的主要特征。常规的非线性编辑机是在编码一侧做文章,通过采集编码卡实现视频图像多层多轨的非线 性编辑;而码流快编则是在解码一侧下功夫,通过对 TS 拆包还原为基本码流 (Elementary Stream, ES),而后经编辑再封包成为 TS,快速实现视频内容整合的业务应用。因而,码流快编除了运用非线性图像处理技术外,最大的特点是运用了 MPEG-2 和 DVB 的系统原理,在此基础上进行图像处理的应用开发。

通过图 1 的系统概念,可以看出码流快编运用了一个逆向思维的方法,利用 DVB 系统传输的发/收互逆关系,将收端的单节目传输流 (SPTS)作为信源,通过 ES 实现以视频非线性处理的目标功能。这时的解决方案有两个:一是在 TS 基础上直接进行图像处理的基础开发,实现与常规非编一 样的操作界面和编辑习惯,这样虽好,但是没有参照模型以及可利用的技术资源,必须从零开始的重写源代码;二是将 TS 转码为 ES,以 ES 帧结构和句法格式还 原成为符合 ITU-R.601 建议的原始视频帧,就可以很方便地利用或附加现有的常规非编技术,以无卡站形式实现编辑。码流快编同时采用了两种方案,一方 面独立开发新产品系列,以适应于快速发展的数字电视业务需求,另一方面提高系统的兼容性,向后兼容传统非编,有利于在媒体资产管理下实现互联互通和投资保 护。图 2 说明了方案二的ES 还原并显示原始视频的 GOP 帧结构。

通过图 2 可以认为,既然能够形成 IBBP 的句法帧,再转换成为全 I 帧格式并不难。这样一来,就可以利用原有的非线性编辑技术, 连续处理长与短 GOP、全 I 帧与 IBP 帧结构、可变与固定码流的节目素材,实现不同节目格式的快编与混编。由此可见,码流快编的开发技术难点,是结合 DVB 系统与 MPEG-2 标准,从译码过程中读出元数据,实现基于解码器的图像处理技术,并能兼容以编码卡为基础的非线性编辑技术。因而被业内称为"第一 个吃螃蟹者"。

图1 DVB和MPEG-2系统中数据流的区分

图3 解码流程

3. 数据变换

既然要把 TS 作为节目源进行编辑,就需要将 TS 包中的数据变换为非线性编辑所能使用的元数据和视频流。它们是以码流快编作为工作母机进行生产的真正原料。

数据变换的第一个过程是拆 DVB 复用包。如图 3 所示,DVB 的解码流程中分层译出了许多数据信息,如同步字节(Sync Byte)、节目特定信息(Program Specific Information,PSI)中 PAT、PMT、NIT 等列表、包识别(Packet Identification,PID)、节目时钟基准(Program Clock Reference,PCR)及 PTS/DTS(后详解)和业务信息(Service Information,SI)等部分。这些信息不仅与 DVB PSI/SI 直接相关,与 MPEG-2 的句法结构也直接相关,它规范地传递了再生码流中音/视频所需的 MPEG-2 列表数据,通过这些信息的引导,准确进入 MPEG-2 系统层的进一步译码。

第二个过程是拆 MPEG-2 系统复用包。MPEG-2 系统定义了一个的码流层次化结构句法规则,以便于误码处理、随机搜索以及 内容编辑。它自上而下依次分为图像序列层(Video Sequence Layer, VSL)、图像组层 (Group of Pictures Layer, GOPL)、图像层 (Picture Layer, PL)、像素条层 (Slice Layer, SL)、宏块层 (Macro block Layer, ML)、像块层 (Block Layer, BL) 等 6 个层次,分别赋予每个层次不同的功能。图 4 说明了 MPEG-2 体系的句法结构,通过这种分层排列的结构特征,MPEG-2 提高了系统的灵活性和管理效率,使得每一层都可以用来支持一个特定的功能。码流快编大部分应用 于 VSL、GOPL、PL 层,特别是在 GOPL,需要在还原时规范翻译 PID、PCR、PTS/DTS 等信息,将同步信息、闭合标记、断链标记等数据准确 插入 GOP 图像组,以形成每组 GOP 数据流的起点,才能保证图像帧的精确和连续帧的同步接续。

第三个过程是将拆包后所得数据信息,以规范的装填还原 MPEG-2 ES 以及元数据,因而装填数据是码流快编的重要技术环节。

(1) 装填复用的基本码流包

依据 MPEG-2 TS 规范结构(如图 5 所示),复用的基本码流包(Packetized Elementary Stream,PES)是由包头、自适应区的 ES 特有信息和包数据 3 部分所组成。由于包头和 ES 特有信息二者可合成 1 个数据头,因而可认为 1 个 PES 包是 由包头和包数据(有效载荷)2 个部分所组成。对有线、卫星、地面广播网接收的 TS,经过解调和解扰处理后选取包长为 188B 的 SPTS,并从包头中提取相 关信息,以 PID 区别不同 SPTS包,以连续计数器的顺序计对标注 PID 的 TS 包重建一个独立分组的 PES。根据自适应区中的填充数据,装填到不为 TS 包 整数倍的 PES 包中,以保证 PES 变长包的完整性。同时,依据包头及自适应区内的同步字节、原始程序参考时钟(Original Program Clock Reference,OPCR)、PCR 等同步和识别信息,提供 27MHz 的解码同步时钟,装填共同时间基准、独立时间基准、可变包长和有效载荷等数据。

装填成为 PES 对码流快编具有格外重要的意义,因为 PES 包内含音/视频的 ES 以及包括 PID 的 12 个包头识别标志,当对 PES 包的起点不能精确定位、对 PES 包头标志符不

能准确识别时,就不能保证拆包后再打包的图像无缝接续和声画同步。这是在初期研发过程中遇到并获得突破 的技术难点。

(2) 装填基本码流

根据 MPEG-2 规范的 PES 包结构 (如图 6),还需进一步装填为连续 ES 流。ES 是指只包含 1 个信源的数据流,即视频数据流或 音频数据流。每个 ES 由若干个缓存器的特定存取单元 (Access Unit, AU) 所组成,而每个视频 AU 或音频 AU 都是由头部和编码数据的 2 部分。1 个 AU 相当于编码的 1 帧视频图像或 1 个音频帧的取样。PES 的包头为 恢复 ES 提供了向导。

对于PES包头,具有ES特有信息的显示时间标记(Presentation Time Stamp, PTS)、解码时间标记(Decode Time Stamp, DTS)标志、基本流时钟基准(Elementary Stream Clock Reference, ESCR)信息标志、基本流速率信息标志、数字存储媒体(Digital Storage Media, DSM)的特技信息标志等等,其中,唯有PTS/DTS标志,是解决视音频同步显示,防止输入缓存器上溢或下溢的关键所在。

在装填过程中,数据定位指示符引导 PES 还原所包含的视频、音频及所属其它数据流(如同步、数据和数据通道等),包头识别标志 的 PTS/DTS 指示了可变长度包数据的帧同步时间,当区分音/视频和其它数据以后,依据 PTS/DTS 对视频帧分配给特定的 AU。其中尤以独立时间基准 是还原 ES 的同步基础。对于 PES 包数据,一方面通过扩展标志的数据包计数器,引导恢复数据流,另一方面利用循环冗余校验(Cyclic Redundancy Check,CRC)辅助检测并纠正可能存在的数据包丢失。

1B	1bit	1bit	1bit	13bit	2bit	1bit	1bit	4bit
Sync-byte	ei	pusi	tpr	PID	scr-flags	af	pf	cc
同步 字节	传输误码 指示符	有效荷载单元 起始指示符	优先 传输	包标 识符	传输控 制标识	自适应 区标识	有效载 荷标识	连续 计数器

图5 TS结构示意图

图6 PES包结构

图7 PES解包为ES示意图

4. 精确帧定位

帧定位是精确编辑的基础,而精确的帧定位来自于精确的帧同步。在 ES 上实现逐帧精确的编辑,首要问题是实现精确帧的同步。

如前所述,装填后的 ES 变成仅含有 1 种性质的 PES 包,或视频 ES,或音频 ES。以视频为例,图 7 表明了在 PTS/DTS 标示的 独立同步时间基准指示下,顺序装填再顺序读出,形成连续 ES 的 I1P4B2B3P7B5B6 (N=7) GOP 组帧顺序。由于 PES 的数据分组是可变长度的 数据包,但它的最大包数据容量为 65526Byte。因此,在码流快编中必须为每个 AU 准备必不可少的缓存空间。

如图 7 所示,PTS 表明图像帧出现在目标解码器(System Target Decoder,STD)的时间,DTS 表明将存取单元全部字节从 STD 的 ES 解码缓存器移出的时刻。当以PTS/DTS 为独立时间基准,定位和标志 PES 的 AU 起始点后,对 UA 依次组成图像帧序为 I1P4B2B3P7B5B6 I10B8B9 的 ES。对于 I、P 帧而言,PES 的图像帧序为 I1P4B2B3P7B5B6I10B8B9,应该 P4 比 B2、B3 在先,但显示时 P4 一定 要比 B2、B3 在后,这就必须重新排序。在 PTS/DTS 时间标志指引下,将 P4 提前插入数据流,经过缓存器重新排序,重建视频帧序 I1B2B3P4B5B6P7B8B9I10。显然,PTS/DTS 是表明确定事件或确定信息,并以专用时标形态确定事件或信息的开始时刻。

值得注意的是,虽然在 PES 中应该每个 I、P、B 帧的包头都具有一个 PTS 和 DTS,但由于 B 帧的解码时间和显示时间存在一致 性,因而对 B 帧而言,PTS 与 DTS 具有相同作用,无须 DTS,只须 PTS。音频数据包也很有特点,虽然它可以含有多个存取单元,但由于它必须按照时间顺 序传送,所以音频包头中也不含 DTS,只有 1 个 PTS。

由此可见,PTS/DTS 不仅直接关联帧定位,而且直接关系到码流快编的帧精确编辑。为此,码流快编的帧定位着重处理以下几个帧序特征:

- * 当处理某个含有 $1 \land I$ 帧的存取单元时,在其包头文件中应有 DTS 和 PTS,且 $2 \land I$ 记之间的时间间隔为 $1 \land I$ 个图像周期,那么在双向编码时的 I 帧应在 I 帧之 后,在包头文件中就应有 $1 \land I$ DTS 和 $1 \land I$ PTS,而这 $2 \land I$ 个标记之间应存在 $3 \land I$ 个图像周期的间隔,这样才能插入 $2 \land I$ 帧。
- * 当前处理 IPBB 时, I 帧应延迟 1 个图像周期, P 帧应延迟 3 个图像周期, 而 2 个 B 帧则无需延迟, 于是, 最后的显示顺序就成为了 IBBP 帧序。
- * 若需要改变 GOP 结构时,例如在 I 与 P 帧之间需要存在更多的 B 帧,则需调整 B 帧 DTS 与 PTS 之间的时间间隔。
- * 当处理 IPBB 序列后,必在第 1 个 B 帧之前先对 I 和 P 帧进行解码,但每次只能对一帧图像进行解码,因此需要先解 I 帧并暂存后,待 P 帧被解码时,随即读出 I 帧,而后再读 B 帧。

* 在处理包头时,对 PTS/DTS 指示的某图像帧,特殊关注是否只有 1 个 PTS 时间标记,是否含有 PTS 和 DTS 的 2 个时间标记,以便快速确认 I、P 与 B 帧,以及音频包。

当作为编辑节目源的 MPEG-2 TS 被拆包以后,以 PTS/DTS 实现视频帧的精确定位,就能以帧精确的剪切编辑实现码流快编功能,同时,也能以 I1P4B2B3P7B5B6I10B8B9帧序显示 I1B2B3P4B5B6P7B8B9I10 帧序。那么,在此基础上嫁接现成的 MPEG-2 IBP非线性编辑的成熟技术,既不需要高价的采集编码卡,也不需要上下载的转码,从采集、转码、拆包剪切,到特技处理、打包上传,一气呵成地构成了码流快 编系统。

图9 上载工作站与模拟磁带接口的操作界面

图10 目标文件的合成属性选项

图11 码流快编的非线性编辑时间轨

二 实际应用

考虑到码流快编的兼容性和通用性,以及互联互通网络平台内容交换的需要,系统是在Windows 平台上开发应用,系统流程详见图 8。

事实上就应用层而言,看不出码流快编与常规非编究竟有什么区别。只是对照图 8,才能看出常规应用时是以传统磁带记录的内容为节目 源,这就需要围绕采集编码卡,设立上下载工作站,通过将模拟节目采集编码为数据流以后,再进行剪切等编辑。因而,目前还需对广泛应用的模拟视频提供接口选 项,附加上下载工作站。它的应用界面及其采集参数选项参见图 9。图 9、10 表示数据输入的采集操作界面,显示目标文件格式初始化选项与合成属性,以维系连 续应用的工作流程。

经采集所合成的码流格式文件,可以同时转换成为可供交换的各种流格式和连续可调的速率,以适应各种内容编辑的整合策略需求,并可利用网络,对连续生产的其它工作站输送和交换素材,直至包括特技的特殊内容加工。这些交换文件的合成属性以及应用格式选项参见图 10。

虽然在码流快编上进行快速编辑并合成文件时,与常规操作不无不同,但是通过对 TS 文件的快速正、反向搜索,以每一帧的入点、出点 的精确定位,进行非线性编辑的剪切操作,制作成为新内容体裁的新文件,却被广电总局主管节目的领导所认可,被称之为"海量空中节目的过滤器"。同时,它还 可以根据内容的需要,通过内置的迭加台标、栏目、字幕等字幕软件,直接参与编辑节目内容信息编辑或局部遮盖,并可联立采集工作站,形成生产流水线,进行不 同任务种类的专项加工。如图 11 所示,在时间轨上的不同视频、音频、字幕等,均可按帧精确的快速合成为新节目或新素材。

如图 12 所示,当合成新节目或素材时,文件格式的也可以根据使用的需要加以选择。如果作为 DVB 播出节目的成品,则可选择 "MPEG-2TS 流 (DVB 格式)"选项;如果需要作为进一步深加工的素材,则可选择"MPEG-2ES 流 (M2V+MPA)"选项,以素材集的形式存 放于共享应用的集中存储。这样编辑后的节目素材或成品,理论上可以保证与节目源完全相同的视频质量。

还值得一提的是,只要在此基础上再增加一块廉价的 Matrox-RGX100 采集卡,就可以进一步集成无限轨、无限层的第二代非线性编辑技术,成为多格式混编、混排的超级深度特技编辑机,为动漫、游戏等新媒体节目的快速加工创造工具。

三 结语

无论码流快编对节目制作的现实意义存在何种褒贬,但在一次数字版权还没有进阶到二次版权法规的时候,它的存在具有特殊重要意义。 毕竟能够通过仅 12 名(前期 6 人)的人员投入,以低成本、高效率的节目加工,为辽宁电视台提供了 18 套全省的数字电视节目,而且维系了近 3 年的节目生产, 至今赢得了全省近百万数字电视用户的向往与肯定。试想一下,倘若按照常规作法,只播出 1 套节目用 12 个编辑就很可能要"累死人了"。

实践证明,当国外的政治体制和法规观念与国内存在现实差异的时候,国际上不屑一顾的产品并不是国内市场没有需求;当国际与国内市场趋于接轨的时候,对瞬息万变的市场不屑一顾也不是新技术的初衷;当码流快编因某种原因并没有得到推广的时候,不屑一顾地扬弃它的内核就不是实事求是。 最恰当的对策是继承技术原理的设计理念,与时俱进地升级新产品,才能获得广电和企业的整体效益。