Capítulo 4: Capa de Red

4. 1 Introducción

4.2 Circuitos virtuales y redes de datagramas

4.3 ¿Qué hay dentro de un router?

4.4 IP: Internet Protocol

Formato de Datagrama Direccionamiento IPv4

ICMP

IPv6

4.5 Algoritmo de ruteo

Estado de enlace

Vector de Distancias

Ruteo Jerárquico

4.6 Ruteo en la Internet

RIP

OSPF

BGP

4.7 Ruteo Broadcast y multicast

IPv6

- Motivación Inicial
 - Espacio de direcciones de 32 bits agotándose
 - Dispositivos portables, redes de sensores, IOT
- Motivaciones adicionales
 - Formato de encabezado ayuda a acelerar el procesamiento y re-envío
 - Encabezado cambia para facilitar QoS
 - Formato de datagrama IPv6
 - Encabezado de largo fijo de 40 bytes
 - Fragmentación no permitida
- Sin embargo
 - Adopción lenta debido a soluciones anteriores como CIDR+NAT

Encabezado IPv6

- Flow Label
 - Identifica datagramas del mismo flujo
 - Concepto de flujo no está bien definido
- Prioridad
 - Identifica prioridad entre datagramas en el flujo
- Next header

Otros cambios de IPv4 a v6

- Checksum
 - Eliminado completamente para reducir tiempo de procesamiento en cada router
- Opciones
 - Permitidas pero fuera del encabezado
 - Indicadas por campo Next Header
- ICMPv6: nueva versión de ICMP
- Tipos de mensajes adicionales
 - "Paquete muy grande"
 - Usado en el descubrimiento de MTU
- Funciones para administrar grupos multicast

Direcciones IPv6

665.570.793.348.866.943.898.599 direcciones IP ...por m² de superficie terrestre

- Abreviaturas
 - Grupos de 0 contiguos como ::
 - Ceros a la izquierda se omiten

Tamaño de paquetes

■ IPv4: 65535

■ IPv6: 2³² - 1

Opción Jumbo Payload

Site Prefix: hasta 48 bits

Subnet ID: 16 bits Interface ID: 64 bits

Direcciones IPv6

	Formato preferido	Formato comprimido
Unicast	2001:0:0:0:DB8:800:200C:417A	2001::DB8:800:200C:417A
Multicast	FF01:0:0:0:0:0:101	FF01::101
Loopback	0:0:0:0:0:0:1	::1
No especificada	0:0:0:0:0:0:0	
Anycast	2001:0:0:0:DB8:0:0:0	2001:0:0:0:DB8::

- Unicast
 - Global
 - Link-local
- Anycast
 - Interface-ID = ::
- No existen direcciones de Broadcast

Prefijos reservados

- Documentación
 - 2001:db8::/32
- Encapsulamiento 6to4 ("s-t-f")
 - 2002:A:B:C:D::/16 donde A.B.C.D es IPv4
 - printf "2002:%02x%02x:%02x%02x::1\n" \$(echo \$IP|tr . ' ')
- Link-local
 - Fe80::/10
 - 10 b 11111111010, 54 b en 0, 64 b IID
- Site-local
 - Fec0::<16 b subnet><IID>/10
 - 10 b 1111111011, 38 b en 0, 16 b subnet, 64 b IID
- Multicast
 - Ff00::/8

Interface-ID IEEE EUI-64

- Configurada automática o manualmente
 - Stateless Address Autoconfiguration (SLAAC)
 - Stateful configuration

```
auto eth0
iface eth0 inet6 static
address 2001:db8:1234:5::1:1
netmask 64
gateway 2001:db8:1234:5::1
```

- MAC = (OUI, NIC)
 - IID = (OUI, FFFE, NIC) con el bit U/L (universal/local) complementado
 - Octeto de orden más alto XOR 2

- URLs
 - http://[2010:836B:4179::1]:80/index.html

Neighbor Discovery Protocol

- NDP, RFC 2461
 - Basado en multicast
 - Descubrimiento de routers
 - Conf. Automática de direcciones
 - Descubrimiento de prefijos a nivel de enlace local
 - Resolución de direcciones de enlace a partir de IP
 - Determinación de next hop
 - Determinación de MTU (IPv6 no fragmenta)
 - Detección de vecinos inalcanzables
 - Detección de direcciones duplicadas
 - Redirección de ruta

6labs.cisco.com/stats

6labs.cisco.com/stats

Argentina

Display IPv6 Prefixes Data 0

Transición de IPv4 a IPv6

- No todos los routers pueden ser actualizados simultáneamente
- No es posible definir un día fijo para el cambio
- ¿Cómo operará la red con routers IPv4 e IPv6 mezclados?
- Estrategia de transición de Tunneling
 - IPv6, llevado como carga en datagramas IPv4, entre routers IPv4

Tunneling

Ε В Α tunnel Vista lógica: IPv6 IPv6 IPv6 IPv6 Ε В Α Vista física: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 Src:B Src:B Flow: X Flow: X Src: A Src: A Dest: E Dest: E Dest: F Dest: F Flow: X Flow: X Src: A Src: A data data Dest: F Dest: F data data A-a-B: E-a-F: B-a-C: B-a-C: IPv6 IPv6 IPv6 dentro IPv6 dentro de IPv4 de IPv4

Capa de Red 2 - 13

Tunnel Brokers

- http://www.gogo6.com
- https://tunnelbroker.net
- http://test-ipv6.com

```
Teredo/Miredo
# ip -f inet6 addr
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536
   inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
3: wlano: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 glen 1000
   inet6 fe80::c685:8ff:fec4:34c/64 scope link
       valid lft forever preferred lft forever
23: teredo: <POINTOPOINT, MULTICAST, NOARP, UP, LOWER_UP> mtu 1280 qlen 500
   inet6 2001:0:53aa:64c:206f:2ab3:41ce:e23d/32 scope global
       valid_lft forever preferred_lft forever
   inet6 fe80::ffff:ffff:ffff/64 scope link
       valid_lft forever preferred_lft forever
```

Herramientas IPv6

ping6 www.nasa.gov

```
PING www.nasa.gov(https-2607-f4e8-310-a000--e.iad.ipv6.llnw.net) 56 data
  bytes
64 bytes from https-2607-f4e8-310-a000--e.iad.ipv6.llnw.net: icmp sea=3
  ttl=60 time=1700 ms
# traceroute6 www.nasa.gov
traceroute to www.nasa.gov (2607:f4e8:310:a000::e), 30 hops max, 80 byte
packets
 1 6to4.nyc4.he.net (2001:470:0:14c::2) 1499.893 ms 1499.904 ms
1499.910 ms
 2 ge3-7.core1.nyc4.he.net (2001:470:0:14c::1) 1499.912 ms 1499.900 ms
 1499.893 ms
    * * *
   tge2-4.fr3.iad.ipv6.llnw.net (2607:f4e8:1:18::1) 1499.840 ms
1499.830 ms 1499.787 ms
   https-2607-f4e8-310-a000--e.iad.ipv6.llnw.net (2607:f4e8:310:a000::e)
 1099.711 ms 1099.670 ms 1099.616 ms
```

Capa de Red 2 - 15