1

GATE 2022 -AE 63

EE23BTECH11057 - Shakunayeti Sai Sri Ram Varun

Question: A uniform rigid prismatic bar of total mass m is suspended from a ceiling by two identical springs as shown in figure. Let ω_1 and ω_2 be the natural frequencies of mode I and mode II respectively ($\omega_1 < \omega_2$). The value of $\frac{\omega_2}{\omega_1}$ is _____ (rounded off to one decimal place). (GATE AE 2022 QUESTION 63)

Fig. 1. Figure given in question

Solution:

Parameter	Description	Value
X(s)	position in laplace domain	X(s)
$\Theta(s)$	angle rotated in laplace domain	$\Theta(s)$
x(t)	position of mass w.r.t time	x(t)
$\theta(t)$	angle rotated by mass w.r.t time	$188.5 \ \theta(t)$
$\alpha(t)$	angular acceleration of mass w.r.t time	$\alpha(t)$
k	spring constant	k
m	mass of buoy	m
ω_o	initial angular velocity of mass	ω_o
v (0)	initial velocity of mass	v (0)
I	moment of inertia of rod	$\frac{mL^2}{12}$
L	length of rod	Ĺ
TABLE I		

INPUT VALUES

i: For vertical oscillations: from Fig. 2,

$$m\frac{d^2x(t)}{dt^2} + 2kx(t) = 0$$
 (1)

Assuming the bar is at mean position and has non-zero intitial velocity, we can write it's laplace transform as:

$$s^{2}mX(s) - v(0) + 2kX(s) = 0$$
 (2)

$$\implies X(s) = \frac{\frac{v(0)}{m}}{s^2 + \frac{2k}{m}}$$
 (3)

On taking inverse laplace transform we get,

$$x(t) = v(0) \sqrt{\frac{1}{2mk}} \sin \sqrt{\frac{2k}{m}} t$$
 (4)

$$\therefore \omega_1 = \sqrt{\frac{2k}{m}} \tag{5}$$

Fig. 2. Figure for Vertical strain

ii: For torsional strain from Fig. 3,:

$$I\alpha(t)(t) = k\left(x - \frac{L\theta(t)}{2}\right)\frac{L}{2} - k\left(x + \frac{L\theta(t)}{2}\right)\frac{L}{2}$$
(6)

$$I\alpha(t) = -\frac{kL^2\theta(t)}{2} \tag{7}$$

Fig. 3. Figure for Torsional strain

Assuming it is at mean position and having no zero angular velocity we can write it's laplace transform as:

$$s^{2}I\Theta(s) - \omega_{o} + \frac{kL^{2}\theta(t)(s)}{2} = 0$$
 (8)

substituting values from Table I:

$$\Theta(s) = \frac{\frac{12\omega_o}{m}}{s^2 + \frac{6k}{m}} \tag{9}$$

On taking inverse laplace transform we get,

$$\theta(t) = \omega_o \sqrt{\frac{24}{mk}} \cos \sqrt{\frac{6k}{m}} t \qquad (10)$$

$$\therefore \omega_2 = \sqrt{\frac{6k}{m}} \tag{11}$$

From (5) and (11) we see that

$$\frac{\omega_2}{\omega_1} = \sqrt{3} \tag{12}$$