Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

	ет		

по дисциплине «Аппаратное обеспечение информационно-измерительных систем»

Выполнил: студент гр. 5132703/20101	 <подпись>	Басалгин А. Д.
Руководитель: ассистент		Кравченко В. В.
		« »2024 г.

Санкт-Петербург 2024

Цели работы:

- освоить отдельные понятия и вопросы теории автоматического регулирования (корректирующие элементы, структурно-неустойчивые системы, жесткие и гибкие обратные связи в качестве корректирующих элементов, введение в закон регулирования производных и интегралов, применение астатических звеньев в качестве корректирующих элементов);
- закрепить навыки работы в среде SimIn Tech.

Задание (1 вариант)

Результаты моделирования:

$$T_{\rm \kappa p}=2.7$$

$$k_{\text{пкр}} = 18.75$$

Этап 1

Введение в закон регулирования производной (ПД-закон)

$$k_{_{\rm II}} = 0.6*18.75 = 11.25$$

$$T_{_{\rm IIB}} = 2.7*0.125 = 0.3375$$

$$k_{_{\rm A}} = k_{_{\rm II}}T_{_{\rm IIB}} = 11.25*0.3375 = 3.797$$

1) При стартовом рассчитанном значении $k_{\rm д}$:

Схема:

Результаты моделирования:

2) Изменяем $k_{\rm д}$, добиваемся наилучших показателей процесса регулирования

$$k_{\pi} = 0.6 * 18.75 = 11.25$$

 $k_{\mu} = 11$

 $y_{co} = 0.039$

3)
$$k_{\pi} = 1.1 * 18.75 = 20.625, \ k_{\pi} = 13.5$$

 $y_{co} = 0.0495$

 y_{co} увеличилась

Этап 2

1) Введение в закон регулирования интеграла (ПИ-закон)

$$k_{\scriptscriptstyle \Pi} = 0.45 * k_{\scriptscriptstyle \Pi KP} = 18.75 * 0.45 = 8.4365$$

$$T_{\scriptscriptstyle {\rm H}3} = 0.83 * T_{\scriptscriptstyle {\rm K}P} = 2.7 * 0.83 = 2.241$$

$$k_{\scriptscriptstyle {\rm H}} = \frac{k_{\scriptscriptstyle \Pi}}{T_{\scriptscriptstyle {\rm H}3}} = \frac{8.4365}{2.241} = 3.764$$

Схема:

Результаты моделирования:

2) Подбор $k_{\scriptscriptstyle \rm M}$:

$$k_{\text{\tiny M}} = 0.001$$

Схема:

Результаты моделирования:

$$y_{co} = 0.0515$$

$$y(+\infty) = 0.72$$

$$\sigma = \frac{A_{max} - y(+\infty)}{y(+\infty)} 100\% = \frac{1.03 - 0.72}{0.72} = 0.4305$$

$$t_{\text{III}} = 4.05 \text{ c.}$$

3) Разомкнутый ключ, подбор $k_{\rm u}$:

$$k_{\text{\tiny M}} = 0.575$$

Схема:

Результаты моделирования:

$$y(+\infty) = 1.003$$

$$\sigma = \frac{A_{max} - y(+\infty)}{y(+\infty)} 100\% = \frac{1.004 - 1.003}{1.003} = 0.001$$

$$t_{nn} = 11.16 c.$$

Время перерегулирования увеличилось.

Этап 3

Введение в закон регулирования производной и интеграла (ПИД-закон) Рассчитаем $k_{\rm u}$:

$$T_{\text{Kp}} = 2.7$$

$$k_{\text{ПKp}} = 18.75$$

$$k_{\text{П}} = 0.6 * 18.75 = 11.25$$

$$T_{\text{ПB}} = 2.7 * 0.125 = 0.3375$$

$$k_{\text{Д}} = k_{\text{П}} * T_{\text{ПB}} = 11.25 * 0.3375 = 3.796$$

$$T_{\text{ИЗ}} = 0.5 * T_{\text{Kp}} = 0.5 * 2.7 = 1.35$$

$$k_{\text{µ}} = \frac{k_{\text{П}}}{T_{\text{µ3}}} = \frac{11.25}{1.35} = 8.33$$

Схема:

Результаты моделирования:

Подбор $k_{\rm u}$ и $k_{\rm д}$:

$$y_{co} = 0.05$$
 $y(+\infty) = 1$

$$\sigma = \frac{A_{max} - y(+\infty)}{y(+\infty)} 100\% = \frac{1-1}{1} = 0$$
 $t_{max} = 3.96 \text{ c.}$

Этап 4

Использование жесткой отрицательной обратной связи

$$k_{\pi}$$
= $k_{\pi \kappa p}$ = 18.75

Схема:

Подбираем $k_{\text{oc}1}$

При $k_{oc1} = 0$:

При $k_{\text{oc1}} = 0.25$:

При $k_{\text{oc1}} = 0.5$:

При $k_{\text{oc1}} = 0.75$:

При $k_{\text{oc1}} = 1$:

При увеличении $k_{
m oc1}$ статистическая ошибка уменьшается при увеличении $k_{
m oc1}$

Этап 5Использование гибкой отрицательной обратной связи Схема:

1)
$$T_{oc2} = 0.2 \text{ c}, k_{oc2} = 50$$

2) $T_{oc2} = 0.2 \text{ c}, k_{oc2} = 1$

3)
$$T_{oc2} = 0.4 \text{ c}, k_{oc2} = 1$$

4) $T_{oc2} = 15 \text{ c}, k_{oc2} = 50$

5)
$$T_{oc2} = 75$$
c, $k_{oc2} = 50$

6) $T_{oc2} = 200 \text{ c}, k_{oc2} = 200$

Статистическая ошибка уменьшается при увеличении $k_{
m oc2}$ и $T_{\it oc2}$

Вывод

Освоил отдельные понятия и вопросы теории автоматического регулирования (корректирующие элементы, структурно-неустойчивые системы, жесткие и гибкие обратные связи в качестве корректирующих элементов, введение в закон регулирования производных и интегралов, применение астатических звеньев в качестве корректирующих элементов); закрепил навыки работы в среде SimIn Tech; исследовал влияние различных методов коррекции на процессы регулирования в САР.