Analysis and Forecasting of Pharmacy Drug Sales Data

Introduction

The data set for this project contains sales data of 8 drugs for a pharmacy from 2014-2019. The data set has 4 CSV files which contain hourly, daily, weekly and monthly sales data respectively. An accurate description of the data as well as links to the dataset have been provided in the appendix. The aim of this project is to make forecasts for future drug sales and provide insights that can help predict future sales and understand sales patterns of different drugs. The analysis and forecasting for this project will be done in R and the Rmarkdown file will also be attached in the submission.

Exploratory Data Analysis

Most of the data had already been processed but when exploring the data, we noticed issues that needed fixing. The data ends on 10/08/2019 which is the first day of the second week of October 2019. This means that we only we had 8 days of data for the month of October and because this would have a negative impact on our forecasting, we decided to remove the month of October for the year 2019 from the datasets. Additionally, in the monthly sales dataset, the month of January for the year 2017 had 0 for all the drug sales. This wasn't right so we summed up the weekly sales data for that period and inputted it into the monthly sales data.

We then computed basic statistics for the datasets such as the mean, median and standard deviation to gain some initial insights on the data. From this analysis, we noticed that in the hourly sales data most of the drug sales are 0. This makes sense as we don't expect the pharmacy to be making sales every single hour of the day. Therefore, we can conclude that it will be unnecessary to use the hourly data for forecasting. However, we may still be able to use it to gain an understanding of what hour of the day people are buying drugs.

Timeseries Analysis

We created a timeseries plot for each drug category.

Figure 1: Monthly sales trends of each drug category

From figure 1 above, we can see that sales of NO2BA are much greater than all other drugs. Additionally, NO5C sales are very low when compared to other drugs. We will carry out seasonality analysis to gain more insights.

Seasonality Analysis

We investigated how the time of year affects sales of different drugs.

Figure 2: Box plots showing the sales of different drugs for different months

From figure 2, we get an idea of what drugs are popular in various months and this can aid the sales team when running adverts for drugs in different seasons. We notice that drug sales for most drugs are similar through the year. However, we see that N02BE, R03 and R06 have clear seasonal patterns. R06 for example is an antihistamine drug and it makes sense for it to be more popular in the spring months when more people are suffering from allergy reactions.

We also investigated the weekly seasonality but as we can see in figure 3 below, even though there is some seasonality for specific drugs, it is not very strong.

Figure 3: Box plots showing the sales of different drugs for different days of the week

Finally, we decided to look at what time of the day people are buying drugs. We originally looked at a boxplot but due to the number of outliers, we decided bar plots would represent the data better.

Figure 4: Bar plots showing the sales of drugs at different hours of the day

We can see strong seasonality in this data. A lot of drugs have 2 peak sales periods. The first between 9-11am and the second between 6-8pm so it is important that shelves are adequately restocked before these peak periods.

To get a better understanding of the seasonality and trend components, we carried out STL decomposition of the timeseries data.

Figure 5: STL decomposition of sales data for each drug

From figure 5 above, we can see that N02BE, R03 and R06 have very strong seasonal components, while N05C, M01AB and N02BA have strong trend components. R03 and R06 also have strong trends but they aren't as relevant as the seasonality components for those drugs. We will take all these into account when forecasting.

Drug Sales Forecasting

For the sales forecasts, we have used the ETS and ARIMA forecasting models and compared both models for each drug to get the best forecasts. We have evaluated the best models between ETS and ARIMA based on their Root Mean Squared Errors (RMSE). The data set we used for most of our forecasts was the monthly data as this enabled us to do long term forecasts and gave the most accurate forecasts. To be sure monthly sales was the best data set to use, we also carried out forecasts for M01AB and R06 with the weekly sales data and compared the results to those obtained from using monthly data. To compare the results, we used the Mean Absolute Percentage Error (MAPE) instead of RMSE because of the different scales of monthly and weekly sales. When we made these comparisons, we discovered that forecasts with monthly data were more accurate. We will now discuss the forecast results for each drug category and the performance of the models.

Methodology For Conducting Forecasts

Step 1: Split data into training and test set. An 80:20 split was used in all cases as we found this to be the most ideal split.

Step 2: Specify the appropriate parameters for error, trend and seasonality for the ETS model and train it on the training set.

- Step 3: Evaluate the performance of the ETS model based on the test set.
- Step 4: Carry out stationary tests such as adf and kpss on the training set to ensure the time series is stationary.
- Step 5: Use the auto.arima function to find the ARIMA model with the best parameters and train the training set with that model.
- Step 6: Carry out residual analysis to ensure the residuals have an average close to 0 and a constant variance. We will also check the ACF plot to ensure that the residuals are all within the 95% confidence interval. This indicates that there is no residual autocorrelation in the model. We will also check the histogram plot to ensure that the residuals are around a mean of 0 and follow a bell-shaped curve which signifies a white noise process.
- Step 7: Evaluate the performance of the ARIMA model based on the test set.
- Step 8: Compare the RMSE of both models to choose the superior model.
- Step 9: Recalibrate the entire sample with the superior model and produce the forecast results.

M01AB Results

We will go into detail when discussing the results for this drug to give a better understanding of the methodology used and for the other drugs, we will give more of a summary of our findings and results.

ETS model

For the ETS model, we specified Multiplicative, Additive and None (MAN) for the Error, Trend and Seasonality respectively. This was due to our analysis of the different components from the STL decomposition we carried out earlier. We then trained our model and evaluated its performance on the test. Plots of the model performance can be seen in figures 6 and 7 below.

Figure 6: Performance of the ETS model on the training set

Forecasts from ETS(M,A,N)

Figure 7: Forecasts made from the trained ETS model

ARIMA Model

We carried stationary tests and realized that the time series was not stationary and we would need to take first order differencing when specifying our model parameters. Using the auto.arima function, we got 1, 1, 0 for the parameters p, d, q respectively. We then trained the ARIMA model based on these parameters.

Next, we carried out residual analysis and saw that the model had no autocorrelation as it had constant variance and a mean around 0. The ACF plot also has lags within the 95% confidence interval. We can see the Plots from the residual analysis in figure 8 below.

Figure 8: Residual, histogram and ACF plots showing the analysis of the residuals

We can now check the performance of the trained ARIMA model and use it to make forecasts. In figure 9 and 10 below we can see the plots for evaluation.

Figure 9: Performance of the ARIMA model on the training set

Forecasts from ARIMA(0,1,1)

Figure 10: Forecasts made from the trained ARIMA model

We compare the accuracy and performance of both models in the table below.

		RMSE	MAPE
ARIMA	Training Set	19.04506	10.012625
Model	Test Set	17.56851	8.497004
ETS Model Training Set		19.04243	10.128920
	Test Set	13.59778	7.117033

Table 1: Performance of both models

Model performance is evaluated on the RMSE. Note that we are comparing the RMSE on the test set as we are more concerned with the performance of our model against future data. From table, the ETS model is superior. Now, we will re-calibrate the ETS model with the whole data set and make forecasts for the next 18 months.

Figure 11: Forecasts made from the chosen model

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Oct 6		170.2129	143.9197	196.5061	130.0009	210.4249
Nov 6		171.1583	143.4707	198.8458	128.8138	213.5027
Dec 6		172.1036	143.0726	201.1346	127.7046	216.5027
Jan 7		173.0490	142.7185	203.3794	126.6626	219.4354
Feb 7		173.9943	142.4029	205.5858	125.6794	222.3093
Mar 7		174.9397	142.1212	207.7582	124.7481	225.1312
Apr 7		175.8850	141.8697	209.9004	123.8630	227.9071
May 7		176.8304	141.6452	212.0156	123.0192	230.6416
Jun 7		177.7758	141.4450	214.1065	122.2126	233.3389
Jul 7		178.7211	141.2668	216.1754	121.4397	236.0025
Aug 7		179.6665	141.1086	218.2243	120.6974	238.6356
Sep 7		180.6118	140.9687	220.2549	119.9829	241.2407
Oct 7		181.5572	140.8455	222.2689	119.2941	243.8203
Nov 7		182.5026	140.7377	224.2674	118.6288	246.3764
Dec 7		183.4479	140.6441	226.2518	117.9851	248.9108
Jan 8		184.3933	140.5635	228.2231	117.3614	251.4252
Feb 8		185.3386	140.4950	230.1822	116.7563	253.9210
Mar 8		186.2840	140.4378	232.1302	116.1683	256.3997

Figure 12: Forecast results for the chosen model

In figure 11 and 12 above, we can see the forecasted results from our models for the next 18 months. We have included the point forecasts and the 80 and 95% error bands.

We also carried out forecasts using the weekly sales data to compare performance. However, 2 issues arose. Firstly, the frequency of our weekly data is 52 and R has issues computing the seasonality component when the data has a frequency above 24. Therefore, seasonality was ignored when building models. Secondly, when we compare the Mean Absolute Percentage Errors (MAPE) we can see that the monthly sales forecasts perform much better than the weekly sales forecasts. In table 2 below we can see a comparison of the ETS models of both.

		RMSE	MAPE
Weekly ETS	Training Set	7.810193	19.52706
Model	Test Set	6.925324	14.32051
Monthly ETS	Training Set	19.04243	10.128920
Model	Test Set	13.59778	7.117033

Table 2: Performance of weekly and monthly ETS models

From table 2 above, the RMSE of the weekly model is smaller but this is not a good indication of model performance because monthly sales are much higher than weekly sales so will have a higher RMSE due to scale. Therefore, MAPE is a better judge for the model performance. As we can see, the MAPE of the weekly model is double that of the monthly so the monthly forecasts are better.

M01AE Result

After performing analysis on this drug, we concluded that the superior model was the ETS model with parameters "ANN". In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	20.36952	12.24512
Model	Test Set	31.68497	16.50110
ETS Model Training Set		20.15961	11.75428
	Test Set	31.64920	13.96700

Table 3: Performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ETS(A,N,N) 200 We will see the second of the second o

Figure 13: Forecasts made from the chosen model

Time

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6		114.0009	83.62463	144.3771	67.54441	160.4573
Nov	6		114.0009	83.43268	144.5691	67.25085	160.7509
Dec	6		114.0009	83.24192	144.7598	66.95912	161.0426
Jan	7		114.0009	83.05235	144.9494	66.66919	161.3326
Feb	7		114.0009	82.86393	145.1378	66.38102	161.6207
Mar	7		114.0009	82.67664	145.3251	66.09459	161.9072
Apr	7		114.0009	82.49046	145.5113	65.80986	162.1919
May	7		114.0009	82.30538	145.6964	65.52680	162.4750
Jun	7		114.0009	82.12137	145.8804	65.24538	162.7564
Jul	7		114.0009	81.93842	146.0633	64.96558	163.0362
Aug	7		114.0009	81.75651	146.2452	64.68737	163.3144
Sep	7		114.0009	81.57561	146.4261	64.41072	163.5910
0ct	7		114.0009	81.39573	146.6060	64.13560	163.8662
Nov	7		114.0009	81.21682	146.7849	63.86199	164.1398
Dec	7		114.0009	81.03889	146.9629	63.58987	164.4119
Jan	8		114.0009	80.86192	147.1398	63.31921	164.6825
Feb	8		114.0009	80.68588	147.3159	63.04999	164.9518
Mar	8		114.0009	80.51077	147.4910	62.78218	165.2196

Figure 14: Forecast results for the chosen model

N02BA Result

After performing analysis on this drug, we concluded that the superior model was the ETS model with parameters "MNN". In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	22.144213	13.921165
Model	Test Set	9.921671	9.081432
ETS Model Training Set		22.986424	13.705283
	Test Set	9.530664	8.802342

Table 4: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ETS(M,N,N)

Figure 15: Forecasts made from the chosen model

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6		92.90884	73.22991	112.5878	62.81251	123.0052
Nov	6		92.90884	72.33806	113.4796	61.44855	124.3691
Dec	6		92.90884	71.48124	114.3364	60.13815	125.6795
Jan	7		92.90884	70.65540	115.1623	58.87513	126.9425
Feb	7		92.90884	69.85719	115.9605	57.65439	128.1633
Mar	7		92.90884	69.08385	116.7338	56.47166	129.3460
Apr	7		92.90884	68.33301	117.4847	55.32335	130.4943
May	7		92.90884	67.60267	118.2150	54.20640	131.6113
Jun	7		92.90884	66.89110	118.9266	53.11814	132.6995
Jul	7		92.90884	66.19680	119.6209	52.05630	133.7614
Aug	7		92.90884	65.51844	120.2992	51.01884	134.7988
Sep	7		92.90884	64.85487	120.9628	50.00400	135.8137
0ct	7		92.90884	64.20506	121.6126	49.01019	136.8075
Nov	7		92.90884	63.56809	122.2496	48.03603	137.7817
Dec	7		92.90884	62.94313	122.8746	47.08024	138.7374
Jan	8		92.90884	62.32945	123.4882	46.14170	139.6760
Feb	8		92.90884	61.72638	124.0913	45.21938	140.5983
Mar	8		92.90884	61.13331	124.6844	44.31235	141.5053

Figure 16: Forecast results for the chosen model

N02BE Result

After performing analysis on this drug, we concluded that the superior model was the ARIMA(1,0,0)(1,1,0)[12] model. In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	226.8824	15.77439
Model	Test Set	126.4114	11.06551
ETS Model Training Set		203.4455	14.25648
	Test Set	180.0802	15.05260

Table 5: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ARIMA(1,0,0)(1,1,0)[12]

Figure 17: Forecasts made from the chosen model

		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6	1174.3256	869.1453	1479.5060	707.59258	1641.059
Nov	6	932.2102	597.0133	1267.4071	419.57080	1444.850
Dec	6	1103.7641	762.7009	1444.8273	582.15295	1625.375
Jan	7	1373.7354	1031.4739	1715.9968	850.29169	1897.179
Feb	7	1141.0624	798.5542	1483.5707	617.24135	1664.884
Mar	7	973.1473	630.5882	1315.7064	449.24837	1497.046
Apr	7	750.9693	408.3996	1093.5389	227.05423	1274.884
May	7	671.3515	328.7797	1013.9233	147.43314	1195.270
Jun	7	595.9735	253.4012	938.5457	72.05444	1119.892
Jul	7	665.9982	323.4259	1008.5705	142.07903	1189.917
Aug	7	636.2754	293.7031	978.8478	112.35622	1160.195
Sep	7	1024.8964	682.3240	1367.4688	500.97720	1548.816
0ct	7	1149.6504	780.3112	1518.9897	584.79476	1714.506
Nov	7	966.6858	592.0602	1341.3114	393.74537	1539.626
Dec	7	1164.1183	788.4109	1539.8257	589.52347	1738.713
Jan	8	1530.8713	1154.9410	1906.8016	955.93556	2105.807
Feb	8	1064.4598	688.4836	1440.4361	489.45378	1639.466
Mar	8	955.5661	579.5804	1331.5519	380.54557	1530.587

Figure 18: Forecast results for the chosen model

N05B Result

After performing analysis on this drug, we concluded that the superior model was the ETS model with parameters "MNN". In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	72.05985	18.45279
Model	Test Set	37.41619	13.09619
ETS Model Training Set		71.77178	18.44728
	Test Set	36.93779	12.94604

Table 6: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ETS(M,N,N)

Figure 19: Forecasts made from the chosen model

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6		228.3472	166.644976	290.0494	133.981799	322.7126
Nov	6		228.3472	142.605533	314.0888	97.216643	359.4777
Dec	6		228.3472	123.292162	333.4022	67.679391	389.0150
Jan	7		228.3472	106.414788	350.2796	41.867675	414.8267
Feb	7		228.3472	91.050892	365.6435	18.370623	438.3238
Mar	7		228.3472	76.719806	379.9746	-3.546881	460.2413
Apr	7		228.3472	63.133586	393.5608	-24.325212	481.0196
May	7		228.3472	50.103565	406.5908	-44.252909	500.9473
Jun	7		228.3472	37.498066	419.1963	-63.531356	520.2257
Jul	7		228.3472	25.220733	431.4736	-82.307917	539.0023
Aug	7		228.3472	13.198395	443.4960	-100.694496	557.3889
Sep	7		228.3472	1.373792	455.3206	-118.778666	575.4730
0ct	7		228.3472	-10.299018	466.9934	-136.630688	593.3251
Nov	7		228.3472	-21.857688	478.5521	-154.308148	611.0025
Dec	7		228.3472	-33.333652	490.0280	-171.859121	628.5535
Jan	8		228.3472	-44.753585	501.4480	-189.324400	646.0188
Feb	8		228.3472	-56.140446	512.8348	-206.739102	663.4335
Mar	8		228.3472	-67.514263	524,2086	-224.133854	680.8282

Figure 20: Forecast results for the chosen model

N05C Result

After performing analysis on this drug, we concluded that the superior model was the ARIMA(1,0,0) with non-zero mean model. In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	8.606824	47.35359
Model	Test Set	5.626004	24.59408
ETS Model Training Set		7.713228	44.68575
	Test Set	6.768376	27.90100

Table 7: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ARIMA(1,0,0) with non-zero mean

Figure 21: Forecasts made from the chosen model

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6		17.92488	7.455287	28.39448	1.913017	33.93675
Nov	6		18.45286	7.596564	29.30915	1.849589	35.05613
Dec	6		18.59768	7.712845	29.48251	1.950763	35.24459
Jan	7		18.63740	7.750424	29.52438	1.987206	35.28759
Feb	7		18.64830	7.761158	29.53543	1.997855	35.29874
Mar	7		18.65128	7.764134	29.53843	2.000825	35.30174
Apr	7		18.65210	7.764953	29.53925	2.001643	35.30256
May	7		18.65233	7.765178	29.53948	2.001868	35.30279
Jun	7		18.65239	7.765239	29.53954	2.001930	35.30285
Jul	7		18.65241	7.765256	29.53956	2.001947	35.30287
Aug	7		18.65241	7.765261	29.53956	2.001951	35.30287
Sep	7		18.65241	7.765262	29.53956	2.001953	35.30287
0ct	7		18.65241	7.765263	29.53956	2.001953	35.30287
Nov	7		18.65241	7.765263	29.53956	2.001953	35.30287
Dec	7		18.65241	7.765263	29.53956	2.001953	35.30287
Jan	8		18.65241	7.765263	29.53956	2.001953	35.30287
Feb	8		18.65241	7.765263	29.53956	2.001953	35.30287
Mar	8		18.65241	7.765263	29.53956	2.001953	35.30287

Figure 22: Forecast results for the chosen model

R03 Result

After performing analysis on this drug, we concluded that the superior model was the ARIMA(2,0,0)(1,1,0)[12] with drift model. In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	39.30147	19.32243
Model	Test Set	71.97493	20.50164
ETS Model	Training Set	39.08761	22.17073
	Test Set	97.74442	28.91406

Table 8: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Forecasts from ARIMA(2,0,0)(1,1,0)[12] with drift

Figure 23: Forecasts made from the chosen model

		Point	Forecast	LO 80	H1 80	LO 95	H1 95
0ct	6		319.9058	252.81775	386.9939	217.30348	422.5081
Nov	6		288.2598	216.77097	359.7487	178.92706	397.5926
Dec	6		328.4659	256.87964	400.0522	218.98416	437.9477
Jan	7		337.5099	265.92115	409.0987	228.02435	446.9955
Feb	7		284.0763	212.48570	355.6670	174.58791	393.5648
Mar	7		306.7200	235.12922	378.3108	197.23135	416.2086
Apr	7		285.5754	213.98460	357.1662	176.08674	395.0640
May	7		293.5015	221.91076	365.0923	184.01289	402.9902
Jun	7		162.5221	90.93128	234.1128	53.03341	272.0107
Jul	7		144.3349	72.74411	215.9257	34.84624	253.8235
Aug	7		195.8149	124.22412	267.4057	86.32625	305.3036
Sep	7		228.3379	156.74716	299.9287	118.84929	337.8266
0ct	7		381.2372	303.56128	458.9130	262.44216	500.0321
Nov	7		343.8885	265.42440	422.3526	223.88803	463.8890
Dec	7		402.1564	323.67444	480.6385	282.12857	522.1843
Jan	8		407.3208	328.83836	485.8033	287.29225	527.3494
Feb	8		295.1938	216.71098	373.6766	175.16469	415.2229
Mar	8		322.4399	243.95703	400.9227	202.41072	442.4690

Figure 24: Forecast results for the chosen model

R06 Result

After performing analysis on this drug, we concluded that the superior model was the ETS model with parameters "MAM". In the table below we can see the comparison of their performances.

		RMSE	MAPE
ARIMA	Training Set	20.50096	16.51494
Model	Test Set	28.01761	20.54529
ETS Model	Training Set	16.66536	14.52099
	Test Set	27.90611	20.07944

Table 9: Table showing performance of both models

In the figures below we can see the forecast results for the chosen model.

Figure 25: Forecasts made from the chosen model

		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
0ct	6	83.86868	61.38624	106.35111	49.48476	118.25259
Nov	6	54.12498	39.61585	68.63410	31.93518	76.31477
Dec	6	52.17722	38.19022	66.16422	30.78595	73.56849
Jan	7	62.84219	45.99626	79.68812	37.07856	88.60582
Feb	7	57.97110	42.43095	73.51126	34.20448	81.73772
Mar	7	120.39403	88.12032	152.66774	71.03565	169.75241
Apr	7	175.79329	128.66883	222.91776	103.72264	247.86394
May	7	204.90629	149.97755	259.83504	120.90003	288.91256
Jun	7	166.60724	121.94520	211.26927	98.30255	234.91193
Jul	7	128.93125	94.36891	163.49359	76.07271	181.78979
Aug	7	103.37272	75.66178	131.08367	60.99249	145.75295
Sep	7	91.83311	67.21555	116.45068	54.18380	129.48243
0ct	7	88.75425	64.96200	112.54650	52.36714	125.14136
Nov	7	57.26267	41.91231	72.61303	33.78632	80.73902
Dec	7	55.18745	40.39337	69.98153	32.56186	77.81305
Jan	8	66.45037	48.63701	84.26372	39.20719	93.69354
Feb	8	61.28375	44.85538	77.71211	36.15873	86.40877
Mar	8	127.24111	93.13145	161.35077	75.07489	179.40734

Figure 26: Forecast results for the chosen model

Conclusion

From our analysis, we conclude that daily and annual seasonality are important to determine what time of the day shelves should be stocked (before 9-11am and 6-8pm) and what time of the year certain drugs are popular (Winter months for N02BE and Spring months for R06). We tried to conduct hierarchical clustering to understand if the sales of certain drugs followed similar patterns but our findings from this were inconclusive. Additionally, we plotted the correlation matrix of the drug sales but from our findings, none of the drug sales were strongly correlated with one another.

Our forecasting gave us a good estimate of what future sales would look like. We could further improve our forecasting by building a multivariate model and including more explanatory variables in the model such as price of drugs or weather information which would have an impact on antirheumatic and antihistamine drugs.

Appendix

About the Dataset:

The dataset is built from the initial dataset consisted of 600000 transactional data collected in 6 years (period 2014-2019), indicating date and time of sale, pharmaceutical drug brand name and sold quantity, exported from Point-of-Sale system in the individual pharmacy. Selected group of drugs from the dataset (57 drugs) is classified to the following Anatomical Therapeutic Chemical (ATC) Classification System categories:

- M01AB Anti-inflammatory and antirheumatic products, non-steroids, Acetic acid derivatives and related substances
- M01AE Anti-inflammatory and antirheumatic products, non-steroids, Propionic acid derivatives
- NO2BA Other analgesics and antipyretics, Salicylic acid and derivatives
- NO2BE/B Other analgesics and antipyretics, Pyrazolones and Anilides
- N05B Psycholeptics drugs, Anxiolytic drugs
- NO5C Psycholeptics drugs, Hypnotics and sedatives drugs
- R03 Drugs for obstructive airway diseases
- R06 Antihistamines for systemic use
 Sales data are resampled to the hourly, daily, weekly and monthly periods. Data is
 already pre-processed, where processing included outlier detection and treatment
 and missing data imputation.

Dataset and the about section were obtained from the following link on kaggle: https://www.kaggle.com/datasets/milanzdravkovic/pharma-sales-data

Monthly Hierarchical Clustering of Drug Categories

Figure 27: Hierarchical clustering of drug categories

Figure 28: Correlation matrix of Drug Categories