ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta 09 giugno 2014

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_{10} = 5 \text{ k}\Omega$
$R_2 = 10 \text{ k}\Omega$	$R_{11}=100~\Omega$
$R_4 = 100 \Omega$	$R_{12} = 20 \text{ k}\Omega$
$R_5 = 3 k\Omega$	$C_1=1 \mu F$
$R_6 = 1 k\Omega$	$C_2 = 68 \text{ nF}$
$R_7 = 10 \text{ k}\Omega$	$C_3 = 33 \text{ nF}$
$R_8 = 40 \text{ k}\Omega$	$C_4 = 10 \text{ nF}$
$R_9 = 1.5 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore MOS a canale n resistivo con $V_{T1} = 1$ V; Q_2 è un transistore MOS a canale p resistivo con $V_{T2} = -1$ V. Per entrambi la corrente di drain in saturazione è data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione del source di Q_2 sia 15 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: $R_3 = 2420.42 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -23.42$)
- 3) (**Solo per 12 CFU**) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = f_{p1}$; $f_{z2} = 0$ Hz; $f_{p2} = 4835.75$ Hz; $f_{z3} = 3014.3$ Hz; $f_{p3} = 10153.4$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 636.6$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{A}B} \left(\overline{C} + \overline{D} \right) + \overline{DE} \left(B + A \overline{C} \right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_4 = 900 \Omega$
$R_2 = 100 \Omega$	$R_5 = 1 \text{ k } \Omega$
$R_3 = 1 \text{ k}\Omega$	C = 100 nF
$V_{CC} = 5 \text{ V}$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1$ V, Q_2 ha una $R_{on} = 0$ e $V_T = -1$ V. Determinare la frequenza del segnale di uscita del multivibratore. (R: f = 11772 Hz).