MP-273: Aula 11

Reynaldo Lima

Maio de 2021

Se não mencionado, o tempo de amostragem utilizado foi $T = 10^{-4}$.

Relação (10)

Escolhendo $\epsilon = 10^{-3}$, de modo a garantir a condição de $\alpha < \epsilon$, obteve-se o resultado da figura 1. Nela, é possível observar que o κ chegou de fato a um valor constante em tempo finito, o que é esperado pela implementação. Tem-se $(s, \tilde{\kappa}) = (0, 0)$ GFTS.

Figure 1: Ganho κ incremental, implementado para controle em situações práticas.

Relações (11)-(12)

Com a implementação de (11)-(12) em tempo discreto e com ZOH, tem-se o resultado da figura 2. Como esperado, um valor finito de κ é alcançado e, ao transitar para a lei (12), torna-se possível diminuir κ e, por consequência, a magnitude de entrada.

Figure 2: Lei de controle prático mista entre as relações (11) e (12).

Relação (13)

Por fim, a relação (13) resulta na figura 3. Observa-se que com $\epsilon=10^{-3}$ não é notória a perda da condição do controle deslizante.

Figure 3: Relação (13).

Por esta razão, repetiu-se o teste com $\epsilon=10^{-1}$, de modo a reforçar a robustez do método (que, pela teoria, esperava-se não robusto). Para este valor, em 20s, foi possível notar que o valor de κ decrescia com o tempo, como pode ser visto na figura 4.

Figure 4: Observação do erro ocorrido com a lei (13), em que em tempo finito o valor máximo de κ decresce.

Como visto em aula, essa queda do valor de κ pode acarretar em casos problemáticos, assim que o valor de κ fica abaixo do distúrbio. Este caso extremo é representado com $\epsilon=1$, tempo de amostragem $T=10^{-2}$ na figura 5. Nota-se claramente a perda da estabilidade em tempo finito.

Figure 5: Extremo em que o modelo de (13) perde a condição de estabilidade.