Suponga que e_i representa la demanda externa ejercida sobre la *i*-ésima industria. Suponga que a_{ij} representa la demanda interna que la *j*-ésima industria ejerce sobre la *i*-ésima industria. De forma más concreta, a_{ij} representa el número de unidades de producción de la industria *i* que se necesitan para producir una unidad de la industria *j*. Sea x_1 la producción de la industria *i*. Ahora suponga que la producción de cada industria es igual a su demanda (es decir, no hay sobreproducción). La demanda total es igual a la suma de demandas internas y externas. Por ejemplo, para calcular la demanda interna de la industria 2 se observa que la industria 1 necesita a_{21} unidades de producción de la industria 2 para producir una unidad de su propia producción. Si la producción de la industria 1 es x_1 , entonces $a_{21}x_1$ se trata de la cantidad total que necesita la industria 1 de la industria 2. De esta forma, la demanda interna total sobre la industria 2 es $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n$.

Al igualar la demanda total a la producción de cada industria se llega al siguiente sistema de ecuaciones:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + e_1 = x_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + e_2 = x_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n + e_n = x_n$$
(1.2.11)

O bien, reescribiendo el sistema (1.2.11) en la forma del sistema (1.2.10) se obtiene

$$(1 - a_{11})x_1 - a_{12}x_2 - \dots - a_{1n}x_n = e_1$$

$$-a_{21}x_1 + (1 - a_{22})x_2 - \dots - a_{2n}x_n = e_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$-a_{m1}x_1 - a_{m2}x_2 - \dots + (1 - a_{mn})x_n = e_n$$
(1.2.12)

El sistema (1.2.12) de n ecuaciones con n incógnitas es de fundamental importancia en el análisis económico.

El modelo de Leontief aplicado a un sistema económico con tres industrias

Suponga que las demandas externas en un sistema económico con tres industrias son 10, 25 y 20, respectivamente. Considere que $a_{11} = 0.2$, $a_{12} = 0.5$, $a_{13} = 0.15$, $a_{21} = 0.4$, $a_{22} = 0.1$, $a_{23} = 0.3$, $a_{31} = 0.25$, $a_{32} = 0.5$ y $a_{33} = 0.15$. Encuentre la producción de cada industria de manera que la oferta sea exactamente igual a la demanda.

SOLUCIÓN ► En este caso n = 3, $1 - a_{11} = 0.8$, $1 - a_{22} = 0.9$ y $1 - a_{33} = 0.85$ y el sistema (1.2.12) es

$$0.8x_1 - 0.5x_2 - 0.15x_3 = 10$$
$$-0.4x_1 + 0.9x_2 - 0.3x_3 = 25$$
$$-0.25x_1 - 0.5x_2 + 0.85x_3 = 20$$

Si se resuelve el sistema por método de eliminación de Gauss-Jordan en una calculadora o computadora, trabajando con cinco decimales en todos los pasos, se obtiene

$$\begin{pmatrix}
1 & 0 & 0 & | & 110.30442 \\
0 & 1 & 0 & | & 118.74070 \\
0 & 0 & 1 & | & 125.81787
\end{pmatrix}$$

Se concluye que la producción necesaria para que la oferta sea (aproximadamente) igual a la demanda es $x_1 = 110$, $x_2 = 119$ y $x_3 = 126$.