Licence Tronc commun Travaux dirigés de Mécanique du solide Feuille 1

Exercice 1

Considérons un repère orthonormé $R(O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ dans l'espace vectoriel ξ^3 , un axe $\Delta(O, \overrightarrow{u})$ passant par le point O, un vecteur unitaire $\overrightarrow{u}(u_1, u_2, u_3)$ et un vecteur quelconque $\overrightarrow{v}(v_1, v_2, v_3)$. Soit π un plan perpendiculaire à l'axe $\Delta(O, \overrightarrow{u})$.

- 1. Calculer \overrightarrow{u} . \overrightarrow{v} , \overrightarrow{v} . \overrightarrow{v} et \overrightarrow{u} . \overrightarrow{v} .
- 2. Déterminer, dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ les composantes du vecteur \overrightarrow{w} défini par $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$. En déduire dans cette base la matrice [u] de l'opérateur produit vectoriel.
- 3. Trouver l'expression du vecteur \overrightarrow{v}_u , projection orthogonale du vecteur \overrightarrow{v} sur l'axe $\Delta(O, \overrightarrow{u})$. En déduire la matrice $[u_p]$ de l'opérateur projection orthogonale sur l'axe $\Delta(O, \overrightarrow{u})$.
- 4. Trouver l'expression du vecteur \overrightarrow{v}_{π} , projection orthogonale de \overrightarrow{v} sur le plan π .

Exercice 2

Dans un système d'axe formant un trièdre trirectangle direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on donne le vecteur glissant:

$$\overrightarrow{v} = 2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$$

dont la direction passe par le point $A\left(1,0,0\right)$. Soit un autre point O' de coordonnées $\left(1,1,1\right)$.

- 1. Calculer le moment du vecteur \overrightarrow{v} au point O.
- 2. Calculer son moment au point O' en utilisant la définition.
- 3. Retrouver la moment du vecteur \overrightarrow{v} en utilisant la formule de VARIGNON.
- 4. Calculer son moment par rapport aux trois axes de coordonnées.
- 5. Calculer son moment par rapport à un axe (Δ) passant par O et O' et dont les cosinus directeurs sont $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$.

Exercice 3

Soit un repère orthonormé $R\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ et les trois vecteurs suivants:

$$\overrightarrow{v}_1 = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}, \ \overrightarrow{v}_2 = \overrightarrow{j} - 2\overrightarrow{k}, \ \overrightarrow{v}_3 = \overrightarrow{i} - 2\overrightarrow{j}$$

dont les points d'application respectives sont A_1 (0,3,2), A_2 (3,0,2), A_3 (3,2,0).

- 1. Construire le torseur $\{T\}_O$ associé aux systèmes des vecteurs \overrightarrow{v}_1 , \overrightarrow{v}_2 et \overrightarrow{v}_3 .
- 2. Calculer l'invariant scalaire.
- 3. Calculer le pas du torseur.
- 4. Déterminer l'axe central du torseur.

Exercice 4

On considère un repère orthonormé $R\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ et deux torseurs définis au mème point M par:

$$\left\{T_{1}\right\}_{M} = \left\{\begin{array}{c} \overrightarrow{R}_{1} = -3\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k} \\ \overrightarrow{\mathcal{M}}_{1}\left(M\right) = 4\overrightarrow{i} - \overrightarrow{j} - 7\overrightarrow{k} \end{array}\right\}_{M}$$

$$\left\{T_{2}\right\}_{M} = \left\{\begin{array}{c} \overrightarrow{R}_{2} = 3\overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k} \\ \overrightarrow{\mathcal{M}}_{2}(M) = 4\overrightarrow{i} + \overrightarrow{j} + 7\overrightarrow{k} \end{array}\right\}_{M}$$

- 1. Quels sont le pas et l'axe central du torseur $\{T_1\}_M$?
- 2. Montrer que l'automoment du torseur $\{T_1\}_M$ est indépendant du point M.
- 3. Donner les coordonnées du torseur $\{T\}_M = \alpha \{T_1\}_M + \beta \{T_2\}_M$ avec α et β des réels positifs.
- 4. Que doivent vérifier les paramètres α et β pour que le torseur $\{T\}_M$ forme un torseur couple? Montrer que le moment de ce torseur ne dépend que du bras de levier. Donner une représentation schématique de ce moment.