PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-340835

(43)Date of publication of application: 13.12.1994

(51)Int.Cl.

CO9D 11/00 CO9D 11/10

(21)Application number: 05-131826

(71)Applicant: TOYOBO CO LTD

(22)Date of filing:

02.06.1993

(72)Inventor: SHIMOMURA TETSUO

MAEDA SATOSHI YAMADA YOZO

(54) INK FOR USE IN INK-JET PRINTER

(57)Abstract:

PURPOSE: To provide an ink-jet printing ink which can secure a very good image density without causing feathering of the ink on recording paper.

CONSTITUTION: The ink is an aq. dispersion comprising as a dispersoid polyester particles contg. 20-

1,000eq/ton ionic groups and colored with a dye or a pigment.

LEGAL STATUS

[Date of request for examination]

30.05.2000

[Date of sending the examiner's decision of rejection]

21.02.2002

[Kind of final disposal of application other than the

examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3345959

[Date of registration]

06.09.2002

20.03.2002

[Number of appeal against examiner's decision of

rejection]

2002-004741

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-340835

(43)公開日 平成6年(1994)12月13日

(51) Int.Cl.⁵

(22)出願日

識別記号

庁内整理番号

 \mathbf{F} I

技術表示箇所

CO9D 11/00 11/10 PSZ

PTV

審査請求 未請求 請求項の数1 OL (全 14 頁)

(21)出願番号 特願平5-131826

平成5年(1993)6月2日

(71)出顧人 000003160

東洋紡績株式会社

大阪府大阪市北区堂島浜2丁目2番8号

(72)発明者 下村 哲生

磁質県大津市堅田二丁目1番1号 東洋紡

被株式会社総合研究所内

(72)発明者 前田 郷司

滋賀県大津市堅田二丁目1番1号 東洋紡

續株式会社総合研究所内

(72)発明者 山田 陽三

滋賀県大津市堅田二丁目1番1号 東洋紡

續株式会社総合研究所内

(54) 【発明の名称】 インクジェットプリンタ用インク

(57)【要約】

【目的】 本発明は、記録紙上でのインクの滲みを無く し、かつ、極めて良好な画像濃度を得ることの可能なイ ンクジェット用プリンタのインクを提供するものであ る。

【構成】 染料または顔料によって着色された、20~ 1000eq/tonの範囲でイオン性基を含有するポ リエステル粒子を分散質とする水分散体であることを特 徴とするインクジェットプリンタ用インクである。

【効果】 本発明により、インクジェットプリンタにお いて、記録紙上のインクの滲みが全く無くかつ、極めて 良好な画像濃度が得られるようになった。

20

1

【特許請求の範囲】

【請求項1】 染料または顔料によって着色された、2 $0\sim1000$ eq/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水系分散体であることを特徴とするインクジェットプリンタ用インク。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、出力装置に関するものであ、特に、インクジェットプリンタ用のインクに関するものである。

[0002]

【従来の技術】コンピュータ等の情報機器の出力装置としてはドットマトリックスプリンタ、熱転写プリンタ、レーザープリンタ等様々な方式があり、その中で最近、ランニングコストが安く、高精細でかつカラー化が容易な方式としてインクジェット方式が注目されている。インクジェットプリンタ用のインクとしては、従来染料水溶液が使用されてきたが、ノズルから飛ばされたインクが記録紙に付着したとき、インクが記録紙で滲み、飛ばされたときに形成したインク粒よりも大きなドットとなってしまったり、記録された画像の耐水性に問題があった。

【0003】従来、この様なインクジェット用インクでは、それら問題を解決するために多くのアイディアが提案されてきた。(a) 水溶性染料を水と有機溶媒の混合溶剤に溶解し、染料の濃度を5wt%以下とし、有機溶剤の添加料を3~30%の範囲としたもの(特開昭62-124166)(b) インク中に特定のジエーテル化合物を添加したもの(特開昭62-32159)(c) 界面活性物質を吸着樹脂によって除去した水溶性直接染料、または酸性染料を使用するもの(特開昭60-49070)(d) インク中に染料及び造膜させるためのエマルジョンを添加したもの(特開平4-18462)(e) 染料によって染色された乳化重合または分散重合粒子を用いるもの(特開平3-250069)等が提案されている。

[0004]

【発明が解決しようとする課題】前述のインク(a)~(d)は、記録紙上でインクの滲みをある程度は低減させるが、記録紙繊維への毛細管現象によるインクの滲みを完全に防ぐことは不可能であった。一方、前述の(e)の方式は、染色された重合粒子を用いている為に、滲みは発生しないが、該方式で得られた粒子は、粒子の安定性が悪く長時間放置すると染料が析出沈降したり、粒子表面に浮き出してしまう。さらに、高濃度に染色することが難しい為、十分な画像濃度が得られない。

[0005]

【課題を解決するための手段】本発明は、記録紙上でのインクの滲みを無くし、かつ、極めて良好な画像濃度を得ることの可能なインクジェット用プリンタのインクを提供するものである。即ち本発明は、染料または顔料に 50

よって着色された、 $20\sim1000$ e q/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水系分散体であることを特徴とするインクジェットプリンタ用インクである。

2

【0006】本発明は、髙い画像濃度を得るという課題 に対して、染色が容易であるポリエステルを着色粒子と して用いることによって解決をした。また、該ポリエス テルは、粒子分散体であるために、記録紙に付着した場 合、滲みも少なくする効果もある。本発明に用いられ る、ポリエステル着色粒子は、粒子分散状態であること が好ましいが、より好ましくは、粒径が1ミクロン以下 が良い。さらに本発明ポリエステル着色粒子に用いられ るポリエステル樹脂は、多価カルボン酸類と多価アルコ ール類からなる。ポリエステル樹脂に用いられる多価カ ルボン酸類としては、例えば、テレフタル酸、イソフタ ル酸、オルソフタル酸、1,5-ナフタルレンジカルボ ン酸、2.6-ナフタレンジカルボン酸、ジフェン酸、 スルホテレフタル酸、5-スルホイソフタル酸、4-ス ルホフタル酸、4-スルホナフタレン-2、7ジカルボ ン酸、5 [4-スルホフェノキシ] イソフタル酸、スル ホテレフタル酸、およびまたはそれらの金属塩、アンモ ニウム塩などの芳香族ジカルボン酸、pーオキシ安息香 酸、 p - (ヒドロキシエトキシ) 安息香酸などの芳香族 オキシカルボン酸、コハク酸、アジピン酸、アゼライン 酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ジカ ルボン酸、フマール酸、マレイン酸、イタコン酸、ヘキ サヒドロフタル酸、テトラヒドロフタル酸、等の不飽和 脂肪族、および、脂環族ジカルボン酸等を、また多価カ ルボン酸としては他にトリメリット酸、トリメシン酸、 ピロメリット酸等の三価以上の多価カルボン酸等を例示 できる。

【0007】ポリエステル樹脂に用いられる多価アルコール類としては脂肪族多価アルコール類、脂環族多価アルコール類、芳香族多価アルコール類等を例示できる。脂肪族多価アルコール類としては、エチレングリコール、プロピレングリコール、1,3ープロパンジオール、2,3ーブタンジオール、1,4ーブタンジオール、1,5ーペンタンジオール、1,6ーペキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の脂肪族ジオール類、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエルスリトール等のトリオールおよびテトラオール類等を例示できる。

【0008】脂環族多価アルコール類としては1,4ーシクロヘキサンジオール、1,4ーシクロヘキサンジメタノール、スピログリコール、水素化ビスフェノールA、水素化ビスフェノールAのエチレンオキサイド付加

物およびプロピレンオキサイド付加物、トリシクロデカンジオール、トリシクロデカンジメタノール等を例示できる。芳香族多価アルコール類としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1, 4-フェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等を例示できる。

【0009】さらにポリエステルポリオールとして、 ε ーカプロラクトン等のラクトン類を開環重合して得られ る、ラクトン系ポリエステルポリオール類等を例示する ことができる。これらの他、ポリエステル高分子末端の 極性基を封鎖する目的にて単官能単量体がポリエステル に導入される場合がある。単官能単量体としては、安息 香酸、クロロ安息香酸、ブロモ安息香酸、パラヒドロキ シ安息香酸、スルホ安息香酸モノアンモニウム塩、スル ホ安息香酸モノナトリウム塩、シクロヘキシルアミノカ ルボニル安息香酸、n-ドデシルアミノカルボニル安息香 酸、ターシャルブチル安息香酸、ナフタレンカルボン 酸、4-メチル安息香酸、3メチル安息香酸、サリチル 酸、チオサリチル酸、フェニル酢酸、酢酸、プロピオン 酸、酪酸、イソ酪酸、オクタンカルボン酸、ラウリル 酸、ステアリル酸、およびこれらの低級アルキルエステ ル、等のモノカルボン酸類、あるいは脂肪族アルコー ル、芳香族アルコール、脂環族アルコール等のモノアル コールを用いることができる。

【0010】本発明においてはこれらのうち不飽和単量体をその他成分として用いてもよく、他の成分はポリエステル樹脂のガラス転移温度、モノマーとの相溶性、等により適宜選択される。

【0011】ポリエステルに導入されるイオン性基とし

ては、スルホン酸アルカリ金属塩基あるいはスルホン酸

アンモニウム塩基を有するモノあるいはジカルボン酸等 を好ましく用いることができるほか、例えばカルボン酸 アルカリ金属塩基あるいはカルボン酸アンモニウム塩基 を有する単量体、硫酸基、リン酸基、ホスホン酸基、ホ スフィン酸基もしくはそれらのアンモニウム塩、金属塩 等のアニオン性基、または第1級ないし第3級アミン基 等のカチオン性基単量体などをもちいることができる。 【0012】カルボン酸アルカリ金属塩基あるいはカル ボン酸アンモニウム塩基を導入する場合には、ポリエス テルの重合末期にトリメリット酸等の多価カルボン酸を 系内に導入することにより高分子末端にカルボキシル基 を付加し、さらにこれをアンモニア、水酸化ナトリウム 等にて中和することによりカルボン酸塩の基に交換する 方法を用いることができる。また、スルホン酸アルカリ 金属塩基あるいはスルホン酸アンモニウム塩基を有する モノあるいはジカルボン酸を含有することによりこれら

のイオン性基をポリエステル樹脂に導入することができ

る。塩としてはアンモニウム系イオン、Li、Na、 K、Mg、Ca、Cu、Fe等の塩があげられ、特に好ましいものはK塩またはNa塩である。本発明では5-ナトリウムスルホイソフタル酸、あるいはメタナトリウムスルホ安息香酸を用いることが好ましい。

【0013】本発明におけるポリエステル樹脂のより具体的な例として、以下に示される。

- a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
- 0 b)エチレングリコール0~90mol%、プロピレングリコール100~10mol%とから得られるポリエステル樹脂、または
 - a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
 - b) 2, 3 ブタンジオール 5 ~ 8 0 mol%、エチレングリコール 2 0 ~ 9 5 mol%とから得られるポリエステル樹脂、または
 - a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
- 20 b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)トリシクロデカン骨格を有するモノand/or多価アルコール類5~30 mol%とから得られるポリエステル樹脂、または
 - a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
 - b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)ヒドロキシメチルトリシクロデカン5~30 mol%とから得られるポリエステル樹脂、または

【0014】a)芳香族系単量体を80mol%以上含有する 多価カルボン酸類、と、

- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mo1\%$ c) トリシクロデカンジメタノール $5 \sim 30 mo1\%$ とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80 mol%以上含有する多価カルボン 酸類、と、
- b) C2 \sim C4 の脂肪族系グリコール類70 \sim 95 mol%、c)シクロヘキサン骨格を有するモノand/or多価アルコール類5 \sim 30 mol%とから得られるポリエステル樹脂、または
- 40 a) 芳香族系単量体を80 mol%以上含有する多価カルボン 酸類、と、
 - b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)シクロヘキサンジオール5~30 mol%とから得られるポリエステル樹脂、または
 - a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
 - b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)水添ビフェノール5~30 mol%とから得られるポリエステル樹脂、または
- 50 【0015】a)芳香族系単量体を80mol%以上含有する

20

5

多価カルボン酸類、と、

b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、

c)水添ビスフェノール $A5\sim30$ mol%とから得られるポリエステル樹脂、または

a)ナフタレン骨格を有するモノand/or二価以上のカルボン酸1~20mol%を含む芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、

b) C2 ~ C4 の脂肪族系グリコール類 7 O ~ 1 O O mol %、

c) 脂環族系単量体 0 ~ 3 0 mol%を含有する多価アルコール類、とから得られるポリエステル樹脂等を例示することができる。

さらに、ここに示される、「a) 芳香族系単量体」はテレフタル酸あるいはイソフタル酸であることが好ましい。 テレフタル酸とイソフタル酸の比率は、テレフタル酸含 有率/イソフタル酸含有率=90~40/10~60

[mol %] が好ましく、さらに、テレフタル酸含有率/イソフタル酸含有率= $80\sim50/20\sim50$ [mol %]、またさらにテレフタル酸含有率/イソフタル酸含有率= $85\sim60/15\sim40$ [mol %] が好ましい。

【0016】イオン性基含有単量体をポリエステル樹脂 に導入し、ポリエステル樹脂にイオン性基を与えた場 合、ポリエステル樹脂が水分散性を発現する。イオン性 基含有単量体としては前述したスルホン酸アルカリ金属 塩基あるいはスルホン酸アンモニウム塩基を有するモノ あるいはジカルボン酸等を好ましく用いることができる ほか、例えばカルボン酸アルカリ金属塩基あるいはカル ボン酸アンモニウム塩基を有する単量体、硫酸基、リン 酸基、ホスホン酸基、ホスフィン酸基もしくはそれらの アンモニウム塩、金属塩等のアニオン性基、または第1 級ないし第3級アミン基等のカチオン性基単量体などを もちいることができる。カルボン酸アルカリ金属塩基あ るいはカルボン酸アンモニウム塩基を導入する場合に は、ポリエステルの重合末期にトリメリット酸等の多価 カルボン酸を系内に導入することにより高分子末端にカ ルボキシル基を付加し、さらにこれをアンモニア、水酸 化ナトリウム等にて中和することによりカルボン酸塩の 基に交換する方法を用いることができる。

【0017】なおこれらカルボン酸アルカリ金属塩基あるいはカルボン酸アンモニウム塩基は前述の「酸価」には含めない(酸価とはカルボキシル基価であり、カルボン酸塩は含めない)これらイオン性基の含有量は、スルホン酸基およびまたはその塩の基をふくめ、該ポリエステル樹脂に対し、10~1000m当量/1000g、好ましくは20~500m当量/1000g、なお好ましくは50~200m当量/1000g、である。イオン性基の含有量が所定の量より少ない場合には十分なる水分散性が得られない。

【0018】染料としては「常温にて水に不溶の染料」 を用いることが好ましい。これらは一般に分散染料、あ 50 るいは油溶性染料に分類されるものである。より具体的 には、

6

·C. I. Disperse Yellow 198

·C. I. Disperse Yellow 42

·C. I. Disperse Red 92

·C. I. Disperse Violet 26

·C. I. Disperse Violet 35

·C. I. Disperse Blue 60

·C. I. Disperse Blue 87

から選択される少なくとも1種の染料が好ましく用いられる。これらは特に耐光堅牢度、昇華堅牢度、色相、彩度に優れるものであり、プロセスカラー用三原色として好ましいものである。他に色相の微調整のために公知の染顔料を併用してもよい。

【0019】染料をポリエステル樹脂に含有させる方法 としては高温分散染色法を用いることができる。染料原 体を樹脂に直接練り込む方法は、加熱による染料のダメ ジを考慮したばあいに好ましい方法ではない。本発明 のポリエステル樹脂はイオン性基の作用により水中にて 良好なる安定分散性を示すため、粒子状を保持したまま 高濃度な染色が可能である。本発明のインクジェットプ リンタ用インクは、水中に分散された着色ポリエステル 粒子を、1~50wt%で含まれる。また、本発明インク ジェットプリンタ用インクは、着色ポリエステル粒子の 他に、必要に応じて、分散剤、分散安定助剤である、界 面活性剤や高分子分散安定剤を添加しても良い。また、 粒子の湿潤性を高めるために、エチレングリコール、グ リセリン、各種多価アルコール類を添加しても良い。更 に、インク中に混入する金属イオンを封鎖するために、 各種キレート化剤等を添加しても良い。さらに、インク の保存安定性を向上するために、各種殺菌剤や防カビ 剤、紫外線吸収剤、酸化防止剤等も添加しても良い。

[0020]

【実施例1】

(ポリエステル樹脂の合成)

温度計、撹拌機を備えたオートクレーブ中に、

ジメチルテレフタレート 130重<u></u>の ジメチルイソフタレート 56重<u></u>の 56重<u>の</u>部、

無水トリメリット酸 8重量部、

エチレングリコール
159重量部、

トリシクロデカンジメタノール30重量部、テトラブトキシチタネート0.1重量部、

を仕込み180~230℃で120分間加熱してエステル交換反応を行った。ついで反応系を240℃まで昇温し、系の圧力1~10mmHgとして60分間反応を続けた結果、共重合ポリエステル樹脂を得た。次に、得られたポリエステル樹脂340重量部、メチルエチルケト

れたボリエステル樹脂340重量部、メチルエチルケトン150重量部、テトラヒドロフラン140重量部、染料 C. I. Disperse Blue 87 のコ

ンクケーキ 30重量部を80℃にて溶解した後80℃

7

の水680部を添加し、粒子径約0.15 μ mの共重合ポリエステル樹脂の水系ミクロ分散体を得た。さらに得られた水系ミクロ分散体を蒸留用フラスコに入れ、留分温度が100%に達するまで蒸留し、冷却後に水を加え固形分濃度を30%とした。以下、染料を、

·C. I. Disperse Yellow 198

·C. I. Disperse Red 92

に代えて同様に染色し、水系ミクロ分散体を得た。

【0021】この様にして得た水系ミクロ分散体をインクジェットプリンター(EPSONHGー4000)の 10インクとして使用した。使用した紙は、インクジェット用としての加工のされていないものを使用した。その結果、本発明によるインクを用いた場合インクの滲みは全*

*く無かった。また得られた画像の濃度は極めて高く、鮮明な画像であった。また製作した水系ミクロ分散体は、室温で3カ月以上放置しても沈澱物の発生や、染料の析出等は発生せず極めて良好な安定性を示した。これに対してスチレン重合体を乳化重合して製作した後染色した分散体は、その着色濃度も低く、さらに分散体の安定性が悪く室温で3カ月以上放置した場合、染料の析出が見られた。

[0022]

【発明の効果】本発明により、インクジェットプリンタ を用いたプリントにおいて、記録紙上のインクの滲みが 全く無くかつ、極めて良好な画像濃度が得られるように なった。

【手続補正書】

【提出日】平成5年9月2日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 インクジェットプリンタ用インク 【特許請求の範囲】

【請求項1】 染料または顔料によって着色された、20~1000eq/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水系分散体であることを特徴とするインクジェットプリンタ用インク。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、出力装置に関するものであ、特に、インクジェットプリンタ用のインクに関するものである。

[0002]

【従来の技術】コンピュータ等の情報機器の出力装置としてはドットマトリックスプリンタ、熱転写プリンタ、レーザープリンタ等様々な方式があり、その中で最近、ランニングコストが安く、高精細でかつカラー化が容易な方式としてインクジェット方式が注目されている。インクジェットプリンタ用のインクとしては、従来染料水溶液が使用されてきたが、ノズルから飛ばされたインクが記録紙に付着したとき、インクが記録紙で滲み、飛ばされたときに形成したインク粒よりも大きなドットとなってしまったり、記録された画像の耐水性に問題があった。

【0003】従来、この様なインクジェット用インクでは、それら問題を解決するために多くのアイディアが提案されてきた。(a) 水溶性染料を水と有機溶媒の混合溶剤に溶解し、染料の濃度を5wt%以下とし、有機溶剤の

添加料を3~30%の範囲としたもの(特開昭62-124166)(b)インク中に特定のジエーテル化合物を添加したもの(特開昭62-32159)(c)界面活性物質を吸着樹脂によって除去した水溶性直接染料、または酸性染料を使用するもの(特開昭60-49070)(d)インク中に染料及び造膜させるためのエマルジョンを添加したもの(特開平4-18462)(e)染料によって染色された乳化重合または分散重合粒子を用いるもの(特開平3-250069)等が提案されている。

[0004]

【発明が解決しようとする課題】前述のインク(a)~(d)は、記録紙上でインクの滲みをある程度は低減させるが、記録紙繊維への毛細管現象によるインクの滲みを完全に防ぐことは不可能であった。一方、前述の(e)の方式は、染色された重合粒子を用いている為に、滲みは発生しないが、該方式で得られた粒子は、粒子の安定性が悪く長時間放置すると染料が析出沈降したり、粒子表面に浮き出してしまう。さらに、高濃度に染色することが難しい為、十分な画像濃度が得られない。

[0005]

【課題を解決するための手段】本発明は、記録紙上でのインクの滲みを無くし、かつ、極めて良好な画像濃度を得ることの可能なインクジェット用プリンタのインクを提供するものである。即ち本発明は、染料または顔料によって着色された、20~1000eq/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水系分散体であることを特徴とするインクジェットプリンタ用インクである。

【0006】本発明は、高い画像濃度を得るという課題に対して、染色が容易であるポリエステルを着色粒子として用いることによって解決をした。また、該ポリエステルは、粒子分散体であるために、記録紙に付着した場合、滲みも少なくする効果もある。本発明に用いられる、ポリエステル着色粒子は、粒子分散状態であること

8

が好ましいが、より好ましくは、粒径が1ミクロン以下 が良い。さらに本発明ポリエステル着色粒子に用いられ るポリエステル樹脂は、多価カルボン酸類と多価アルコ 一ル類からなる。ポリエステル樹脂に用いられる多価カ ルボン酸類としては、例えば、テレフタル酸、イソフタ ル酸、オルソフタル酸、1.5-ナフタルレンジカルボ ン酸、2.6-ナフタレンジカルボン酸、ジフェン酸、 スルホテレフタル酸、5-スルホイソフタル酸、4-ス ルホフタル酸、4-スルホナフタレン-2, 7ジカルボ ン酸、5 [4-スルホフェノキシ] イソフタル酸、スル ホテレフタル酸、およびまたはそれらの金属塩、アンモ ニウム塩などの芳香族ジカルボン酸、pーオキシ安息香 酸、p-(ヒドロキシエトキシ) 安息香酸などの芳香族 オキシカルボン酸、コハク酸、アジピン酸、アゼライン 酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ジカ ルボン酸、フマール酸、マレイン酸、イタコン酸、ヘキ サヒドロフタル酸、テトラヒドロフタル酸、等の不飽和 脂肪族、および、脂環族ジカルボン酸等を、また多価カ ルボン酸としては他にトリメリット酸、トリメシン酸、 ピロメリット酸等の三価以上の多価カルボン酸等を例示 できる。

【0007】ポリエステル樹脂に用いられる多価アルコール類としては脂肪族多価アルコール類、脂環族多価アルコール類、芳香族多価アルコール類等を例示できる。脂肪族多価アルコール類としては、エチレングリコール、プロピレングリコール、1,3ープロパンジオール、2,3ープタンジオール、1,4ーブタンジオール、1,5ーペンタンジオール、1,6ーペキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の脂肪族ジオール類、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエルスリトール等のトリオールおよびテトラオール類等を例示できる。

【0008】脂環族多価アルコール類としては1,4-シクロへキサンジオール、1,4-シクロへキサンジメタノール、スピログリコール、水素化ビスフェノールA、水素化ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、トリシクロデカンジオール、トリシクロデカンジメタノール等を例示できる。芳香族多価アルコール類としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等を例示できる。

【0009】 さらにポリエステルポリオールとして、 ε

カプロラクトン等のラクトン類を開環重合して得られ る、ラクトン系ポリエステルポリオール類等を例示する ことができる。これらの他、ポリエステル髙分子末端の 極性基を封鎖する目的にて単官能単量体がポリエステル に導入される場合がある。単官能単量体としては、安息 香酸、クロロ安息香酸、ブロモ安息香酸、パラヒドロキ シ安息香酸、スルホ安息香酸モノアンモニウム塩、スル ホ安息香酸モノナトリウム塩、シクロヘキシルアミノカ ルボニル安息香酸、n-ドデシルアミノカルボニル安息香 酸、ターシャルブチル安息香酸、ナフタレンカルボン 酸、4-メチル安息香酸、3メチル安息香酸、サリチル 酸、チオサリチル酸、フェニル酢酸、酢酸、プロピオン 酸、酪酸、イソ酪酸、オクタンカルボン酸、ラウリル 酸、ステアリル酸、およびこれらの低級アルキルエステ ル、等のモノカルボン酸類、あるいは脂肪族アルコー ル、芳香族アルコール、脂環族アルコール等のモノアル コールを用いることができる。

【0010】本発明においてはこれらのうち不飽和単畳体をその他成分として用いてもよく、他の成分はポリエステル樹脂のガラス転移温度、モノマーとの相溶性、等により適宜選択される。

【0011】ポリエステルに導入されるイオン性基としては、スルホン酸アルカリ金属塩基あるいはスルホン酸アンモニウム塩基を有するモノあるいはジカルボン酸等を好ましく用いることができるほか、例えばカルボン酸アルカリ金属塩基あるいはカルボン酸アンモニウム塩基を有する単量体、硫酸基、リン酸基、ホスホン酸基、ホスフィン酸基もしくはそれらのアンモニウム塩、金属塩等のアニオン性基、または第1級ないし第3級アミン基等のカチオン性基単量体などをもちいることができる。

【0012】カルボン酸アルカリ金属塩基あるいはカルボン酸アンモニウム塩基を導入する場合には、ポリエステルの重合末期にトリメリット酸等の多価カルボン酸を系内に導入することにより高分子末端にカルボキシル基を付加し、さらにこれをアンモニア、水酸化ナトリウム等にて中和することによりカルボン酸塩の基に交換する方法を用いることができる。また、スルホン酸アルカリ金属塩基あるいはスルホン酸アンモニウム塩基を有するモノあるいはジカルボン酸を含有することによりこれらのイオン性基をポリエステル樹脂に導入することができる。塩としてはアンモニウム系イオン、Li、Na、

K、Mg、Ca、Cu、Fe等の塩があげられ、特に好ましいものはK塩またはNa塩である。本発明では5ーナトリウムスルホイソフタル酸、あるいはメタナトリウムスルホ安息香酸を用いることが好ましい。また、カルボン酸塩の基とスルホン塩の基とを併用してもよい。

【0013】本発明におけるポリエステル樹脂のより具体的な例として、以下に示される。

a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、

- b)エチレングリコール 0 ~ 9 0 mol%、プロピレングリコール 1 0 0 ~ 1 0 mol%とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) 2, 3-ブタンジオール $5\sim80$ mol%、エチレングリコール $20\sim95$ mol%とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mol\%$ 、c) トリシクロデカン骨格を有するモノand/or多価アルコール類 $5 \sim 30 mol\%$ とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)ヒドロキシメチルトリシクロデカン5~30 mol%とから得られるポリエステル樹脂、または
- 【0014】a)芳香族系単量体を80mol%以上含有する 多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、
- c)トリシクロデカンジメタノール5~3 0 mo1%とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mol\%$ 、c)シクロヘキサン骨格を有するモノand/or多価アルコール類 $5 \sim 30 mol\%$ とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、
- c)シクロヘキサンジオール5~30mol%とから得られる ポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c) 水添ビフェノール5~30 mol%とから得られるポリエステル樹脂、または
- 【0015】a)芳香族系単量体を80mol%以上含有する 多価カルボン酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 \text{ mol}\%$ 、c)水添ビスフェノール $A5 \sim 30 \text{ mol}\%$ とから得られるポリエステル樹脂、または
- a)ナフタレン骨格を有するモノand/or二価以上のカルボン酸 $1 \sim 2~0~mol\%$ を含む芳香族系単量体を8~0~mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~100mol %、

c)脂環族系単量体0~30mol%を含有する多価アルコール類、とから得られるポリエステル樹脂等を例示することができる。

さらに、ここに示される、「a) 芳香族系単量体」はテレフタル酸あるいはイソフタル酸であることが好ましい。テレフタル酸とイソフタル酸の比率は、テレフタル酸含有率/イソフタル酸含有率= $90\sim40/10\sim60$ [mol%] が好ましく、さらに、テレフタル酸含有率/イソフタル酸含有率= $80\sim50/20\sim50$ [mol%]、またさらにテレフタル酸含有率/イソフタル酸含有率= $85\sim60/15\sim40$ [mol%] が好ましい。

【0016】イオン性基含有単量体をポリエステル樹脂 に導入し、ポリエステル樹脂にイオン性基を与えた場 合、ポリエステル樹脂が水分散性を発現する。イオン性 基含有単量体としては前述したスルホン酸アルカリ金属 塩基あるいはスルホン酸アンモニウム塩基を有するモノ あるいはジカルボン酸等を好ましく用いることができる ほか、例えばカルボン酸アルカリ金属塩基あるいはカル ボン酸アンモニウム塩基を有する単量体、硫酸基、リン 酸基、ホスホン酸基、ホスフィン酸基もしくはそれらの アンモニウム塩、金属塩等のアニオン性基、または第1 級ないし第3級アミン基等のカチオン性基単量体などを もちいることができる。カルボン酸アルカリ金属塩基あ るいはカルボン酸アンモニウム塩基を導入する場合に は、ポリエステルの重合末期にトリメリット酸等の多価 カルボン酸を系内に導入することにより高分子末端にカ ルボキシル基を付加し、さらにこれをアンモニア、水酸 化ナトリウム等にて中和することによりカルボン酸塩の 基に交換する方法を用いることができる。

【0017】これらイオン性基の含有量は、スルホン酸基およびまたはその塩の基をふくめ、該ポリエステル樹脂に対し、 $10\sim1000$ m当量/1000 g、好ましくは $20\sim500$ m当量/1000 g、なお好ましくは $50\sim200$ m当量/1000 g、である。イオン性基の含有量が所定の量より少ない場合には十分なる水分散性が得られない。

【0018】染料としては「常温にて水に不溶の染料」を用いることが好ましい。これらは一般に分散染料、あるいは油溶性染料に分類されるものである。より具体的には、

- ·C. I. Disperse Yellow 198
- ·C. I. Disperse Yellow 42
- ·C. I. Disperse Yellow 162
- ·C. I. Disperse Red 92
- ·C. I. Disperse Red 60
- ·C. I. Disperse Violet 26
- ·C. I. Disperse Violet 35
- ·C. I. Disperse Blue 60
- ·C. I. Disperse Blue 87
- ·C. I. Solvent Blue 25

C. I. Solvent Blue 35
C. I. Solvent Blue 38
C. I. Solvent Blue 64
C. I. Solvent Blue 70
C. I. Solvent Black 3

から選択される少なくとも1種の染料が好ましく用いられる。これらは特に耐光堅牢度、昇華堅牢度、色相、彩度に優れるものであり、プロセスカラー用三原色として好ましいものである。他に色相の微調整のために公知の染顔料を併用してもよい。

【0019】本発明における微粒子分散体の平均粒子径 は1. 0μm以下であることが必須であり、好ましくは $0.5 \mu m$ 以下、さらに好ましくは $0.2 \mu m$ 以下、ま たさらに好ましくは 0. 1 μ m以下である。微粒子分散 体の粒子系がこの範囲を越える場合には分散安定性が悪 化する場合がある。かかるポリエステル樹脂に微粒子分 散体は以下に述べる方法にて得ることができる。すなわ ち、イオン性基を含有した場合、本発明におけるポリエ ステル樹脂は水分散性を発現する。水分散性とは一般に エマルジョンあるいはコロイダルディスパージョンと称 される状態を意味するものである。イオン性基は水系媒 体中において解離し、ポリエステル樹脂と水との界面に 電気二重層を形成する。ポリエステル樹脂が微細なミク 口粒子として水系内に存在する場合に電気二重層の働き によりミクロ粒子間には静電的な反発力が生じ、ミクロ 粒子が水系内にて安定的に分散する。イオン性基含有ポ リエステル樹脂の水分散体は、イオン性基含有ポリエス テル樹脂と水溶性有機化合物とをあらかじめ混合後に水 を加える方法、イオン性基含有ポリエステル樹脂と水溶 性有機化合物と水とを一括して混合加熱する方法等によ り得ることができる。またその際に界面活性剤等を併用 することもできる。水溶性有機化合物としてはエタノー ル、イソプロパノール、ブタノール、エチレングリコー*

> ジメチルテレフタレート ジメチルイソフタレート 5ナトリウムスルホイソフタル酸ジメチルエステル エチレングリコール トリシクロデカンジメタノール テトラブトキシチタネート

を仕込み 180~230 で 120 分間加熱してエステル交換反応を行った。ついで反応系を 240 でまで昇温し、系の圧力 1~10 mm H g として 60 分間反応を続けた結果、共重合ポリエステル樹脂を得た。次に、得られたポリエステル樹脂 340 重量部、メチルエチルケトン 150 重量部、テトラヒドロフラン 140 重量部、染料 C. I. Disperse Blue 87 のコンクケーキ 30 重量部を 80 でにて溶解した後 80 での水 680 部を添加し、粒子径約 0.15 μ mの共重合ポリエステル樹脂の水系ミクロ分散体を得た。さらに得られた水系ミクロ分散体を蒸留用フラスコに入れ、留分

*ル、プロピレングリコール、メチルセロソルブ、エチル セロソルブ、ブチルセロソルブ、アセトン、メチルエチ ルケトン、テトラヒドロフラン、ジオキサン等を用いる ことができる。水溶性有機化合物はイオン性基含有ポリ エステル樹脂を水分散化した後に共沸等により除去する ことができるものが好ましい。本発明のポリエステル樹 脂は染料、油溶性染料、建浴染料、ヴァット染料、スレ ン染料、塩基性等を用いることができる染料をポリエス テル樹脂に含有させる方法としては髙温分散染色法を用 いることができる。染料原体を樹脂に直接練り込む方法 は、加熱による染料のダメージを考慮したばあいに好ま しい方法ではない。本発明のポリエステル樹脂はイオン 性基の作用により水中にて良好なる安定分散性を示すた め、粒子状を保持したまま髙濃度な染色が可能である。 また、エマルジョン化時にポリエステル樹脂を溶剤で溶 解したときに染料を添加してもよい。本発明のインクジ ェットプリンタ用インクは、水中に分散された着色ポリ エステル粒子を、1~50wt%で含まれる。また、本発 明インクジェットプリンタ用インクは、着色ポリエステ ル粒子の他に、必要に応じて、分散剤、分散安定助剤で ある、界面活性剤や高分子分散安定剤を添加しても良 い。また、粒子の湿潤性を高めるために、エチレングリ コール、グリセリン、各種多価アルコール類を添加して も良い。更に、インク中に混入する金属イオンを封鎖す るために、各種キレート化剤等を添加しても良い。さら に、インクの保存安定性を向上するために、各種殺菌剤 や防カビ剤、紫外線吸収剤、酸化防止剤等も添加しても 良い。

【0020】 【実施例1】

(ポリエステル樹脂の合成)

温度計、撹拌機を備えたオートクレーブ中に、

130重量部、

56重量部、

8重量部、

159重量部、

30重量部、

0. 1重量部、

温度が100℃に達するまで蒸留し、冷却後に水を加え 固形分濃度を30%とした。以下、染料を、

·C. I. Disperse Yellow 198

・C. I. Disperse Red 92

に代えて同様に染色し、水系ミクロ分散体を得た。

【0021】この様にして得た水系ミクロ分散体をインクジェットプリンター(EPSONHG-4000)のインクとして使用した。使用した紙は、インクジェット用としての加工のされていないものを使用した。その結果、本発明によるインクを用いた場合インクの滲みは全く無かった。また得られた画像の濃度は極めて高く、鮮

明な画像であった。また製作した水系ミクロ分散体は、室温で3カ月以上放置しても沈澱物の発生や、染料の析出等は発生せず極めて良好な安定性を示した。これに対してスチレン重合体を乳化重合して製作した後染色した分散体は、その着色濃度も低く、さらに分散体の安定性が悪く室温で3カ月以上放置した場合、染料の析出が見られた。更に比較例として通常インクジェットインクに使用されている水溶性染料を用いてインクの滲みを見た、使用した水溶性染料は

- C. I. Acid Yellow 7,
- C. I. Acid Red 94,
- C. I. Acid Blue 1,

を水に溶解しインクとした。その結果、専用紙を用いた*

*場合は、良好であるが、普通紙を用いた場合は、本発明とはことなり、大きく滲んでしまった。また耐光性の比較も行った。プリントアウトしたそれぞれのインクは紫外線フェードメーター(カーボンアーク)63℃で20時間照射した前後の色差を測定した。その結果発明にによるインクはΔEが3~5出会ったのに対して、水溶性染料によるインクはΔEが8~40と大きく退色した。【0022】

【発明の効果】本発明により、インクジェットプリンタを用いたプリントにおいて、記録紙上のインクの滲みが全く無くかつ、極めて良好な画像濃度が得られるようになった。

【手続補正書】

【提出日】平成6年6月6日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】

明細書

【発明の名称】インクジェットプリンタ用インク

【特許請求の範囲】

【請求項1】染料または顔料によって着色された、20~1000eq/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水分散体であることを特徴とするインクジェットプリンタ用インク。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、出力装置に関するものであり、特に、インクジェットプリンタ用のインクに関するものである。

[0002]

【従来の技術】コンピュータ等の情報機器の出力装置としてはドットマトリックスプリンタ、熱転写プリンタ、 レーザープリンタ等様々な方式があり、その中で最近、 ランニングコストが安く、高精細でかつカラー化が高易な方式としてインクジェット方式が注目されている。インクジェット方式が注目されている。インクジェット方式は、微細なインク滴をノズルから吐出し、直接被記録材に印字記録する方法である。インクジェット方式に使用されるインクはインク吐出を行う上での物理的な要求から、低粘度、かつ、ある程度の表面でいるの物理的な要求される。従来よりインクジェットプリンタ用のインクとしては、染料の溶液が主として用いられている。個人ユース、オフィスユースを前提とでり、水系媒体と水溶性染料の組み合わせが主として用いられる。一般的な水溶性染料型インクは、

- ・酸性染料、直接染料等のアニオン型水溶性染料、・水
- ・インク乾燥によるノズル詰まり防止のための保湿材として、グリコール、グリセリン、アルキルアミン、アルカノールアミン類、
- ・その他添加剤(pH調整、防腐、表面張力調整等な ど)からなる。インク粘度は数 c p s 程度、表面張力は 40~50 dyn/cm程度である。水溶性染料型インクは、 媒体として水を使い、さらに保湿剤成分を含有するがゆ えに、記録後の乾燥速度が遅いという問題がある。現実 には、記録紙繊維へ毛細管現象によりインクが素早くし みこむため見掛けの乾燥速度はあがっている。がしが し、その結果、インクは記録紙上で滲み(記録ドットの 太り、フェザリング(ヒゲ状のにじみ))を生じ印字品 位低下、記録画質の劣化を生じる。また、記録剤として 水溶性染料を用いるがゆえの問題点として記録画像の耐 水性が劣り、こぼした水等により画像が損傷したり、汗 等によりニジミ、手指の汚染等を生じる場合がある。さ らに、染料が単に記録紙の繊維表面にて乾燥固着したの みの状態におかれるため高堅牢度、高耐光性は望み難 い。

【0003】従来より、この様な水溶性染料型インクの問題を解決するために多くのアイディアが提案されてきた。例えば特開昭62-124166には「水溶性染料を水と有機溶媒の混合溶剤に溶解し、染料の濃度を5wt%以下とし、有機溶剤の添加料を3~30%の範囲とするインク」、特開昭62-32159には「特定のジエーテル化合物を添加したインク」、特開昭60-49070には「界面活性物質を吸着樹脂によって除去した水溶性直接染料、または酸性染料を使用した」インクに関する提案がある。これらの提案は水溶性染料型インクの表面張力、粘度、乾燥速度等により、記録紙上でのインクの浸透形態を制御し、印字精度を改良しようというものであるが、現実には多種多様な表面状態を有する記録紙全てに対応することは

困難であり印字品位を著しく改良するには至っていな い。また記録画像の耐水性、耐光性に関してはなんらの 効果も期待できない。「ラテックス、エマルジョン等の ポリマー微粒子を添加したインク」に関する提案がなさ れている。例えば特開昭55-18412においてはラテックス として、スチレンーブタジエン共重合体ラテックス、ア クリロニトリループタジエン共重合体樹脂ラテックス、 ポリクロロプレンラテックス、ブチルゴムラテックス等 の合成ゴムラテックス、あるいはポリアクリル酸エステ ル樹脂ラテックス、酢酸ビニル系ラテックス、塩化ビニ ル系ラテックス、塩化ビニリデン系ラテックス等の合成 樹脂系ラテックス(すべてビニル重合系樹脂のラテック ス)を添加したインクが提案されている。該発明におけ る記録剤は請求項に明示されていないが、本文中に一般 公知の染顔料が油性、水性を問わず広く例示されてい る。しかしながら該提案の主旨および実施例から見て水 溶性染料の使用を念頭においたものであることは明らか である。本文中に該ラテックス粒子そのものの着色に関 する記載は一切ない。 この提案の主旨は、記録紙にイ ンクが付着し、水溶性染料を含む液媒体が記録紙に染込 むことにより記録がなされ、さらに、乾燥する過程に於 いてラテックスが記録紙表面にて造膜し、記録部分表面 を保護することにより記録画像・文字の耐水性、耐光 性、耐摩擦性を改良しようという考え方にある。このよ うな考え方によれば文字の耐水性、耐摩擦性に関し一応 の改良効果は認められると思われる。また、ラテックス が造膜することにより形成されたフィルムに紫外線遮蔽 機能があれば、ある程度の耐光性改良効果も期待でき る。しかしながらこれらの提案においては記録紙上にお けるインクのニジミ防止に関してはなんらの効果もな く、印字品位、記録画質を向上は望めない。「着色され たポリマー微粒子を記録剤として用いたインク」に関す る提案が多数なされている。例えば特開昭54-58504にお いては、疎水性染料溶液とビニル重合体微粒子の混合物 を水中油型分散させたインクが提案されている。ビニル 重合体微粒子は疎水性染料溶液と混合されることにより 染料溶液の溶媒にて膨潤し、さらに染料により着色され ることが本文にて開示されている。疎水性染料を記録剤 とするため、得られる画像は耐水性を有するものとな る。

【0004】疎水性染料をインクジェット記録用インクに使用する場合には一般に媒体として溶剤が用いられる。インクジェット記録用インクに使用できる程度の低粘度溶剤は揮発性が高く環境の汚染、引火等の危険を伴い、またノズル先端での乾燥に起因するノズル詰まりが生じやすい。そのため、ノズル洗浄機能、換気機能等が必要となり高い機器価格、またオフィス内での使用制限などの問題が生ずる。該提案では、連続相として水を用い、分散相として溶剤にて膨潤した着色ビニル重合体粒子を用いることにより、インク粘度の支配を水に持た

せ、溶剤としてある程度高粘度(低揮発性)のものを用いることを許容させている。しかしながらこの提案によれば最終的に記録紙に印字された画像が定着するためには溶剤が蒸発することが必要となるため、いかに低揮発性の溶剤を用いようとも環境汚染は免れない。また本文中に、分散系の安定性を保つために分散粒子径は0.1 μ m以下であることが必要であると記載されており、かかる粒子径では粒子は記録紙繊維の間隙に容易に染込み、ニジミ低減効果は期待できない。さらにビニル重合体は一般に染料の溶解性がさほど高くなく、高濃度に着色することは困難である。特に染料を高濃度に配合した場合、長時間保存により染料が重合体粒子から分離析出し、インク内にて結晶成長し、粗大な粒子として沈降する恐れがある。

【0005】特開平3-250069には染料によって染色され た乳化重合または分散重合粒子を用いたインクが提案さ れている。提案の主旨は特開昭54-58504と同様、着色し た粒子を分散質、水(透明)を媒体とすることによるニ ジミ防止であるが、この提案の場合には溶剤を含まない ため、粒子が造膜することにより記録紙に定着されるこ とが必要となる。造膜の必要、分散安定性の確保の観点 より、望ましい粒子径はサブミクロン領域であることが 示唆されている。この発明においても重合体粒子がビニ ル系ポリマーに限られるため高濃度着色が困難でありか つ、安定的に着色状態を維持することが難しいことは同 様である。色材として顔料、カーボンブラック等を用 い、分散剤を使用して水系媒体に微分散した分散インク の使用も多数提案されているが、分散安定性を高めるた めには 0. 1 μ m以下程度の領域にまで微分散すること が必要とされ、ニジミ改善効果は低い。また分散剤の使 用により粘度、表面張力の調整範囲が制限されインクジ ェット方式に適正なるインク特性を整えることはなかな かに困難である。さらに一般の油性印刷インクに用いら れている顔料のいくつかは酸性染料と多価金属イオンか らなる不溶性アゾレーキ顔料であり、耐水性に劣り安定 な水分散体を得ることはできない。

[0006]

【発明が解決しようとする課題】以上述べてきたよう に、従来のインクジェット記録用インクにおいては

- 1. 水溶性染料型インクにおいては、
- ・記録紙面でのニジミを抑えることが困難であり高画質 印字ができない。
- ・記録画像の耐水性が劣る。
- ・記録画像の耐光性が劣る。
- 2. 微粒子分散型インクにおいてはニジミの少ない高画 質な印字が可能となり、記録画像の耐水性、耐光性も改 善されることが期待されるが、現実には、
- 1) 着色高分子微粒子を用いたインクの場合
- ・高濃度に着色された微粒子を得ることが困難である。
- ・着色粒子の安定性が低く、染料の析出・再結晶により

インク内に粗大粒子を生成しやすい。

- 2)顔料粒子を用いたインクの場合、
- ・微細分散が必要でありニジミ改善効果が低い。
- ・分散剤により、インク物性制御範囲が狭くなる。 等などの問題点を有するものである。

[0007]

【課題を解決するための手段】本発明者等はかかる状況に鑑み、記録紙上でのインクの滲みを無くし、かつ、極めて高いな画像濃度を得ることが可能で、さらに貯蔵安定性、印字信頼性にすぐれ、かつ高い耐水性、耐光性を有する記録画像を得ることが可能なインクジェット用プリンタのインクを開発すべく鋭意研究を重ねた結果つぎなる発明に到達した。 即ち本発明は、染料または顔料によって着色された、20~1000eq/tonの範囲でイオン性基を含有するポリエステル粒子を分散質とする水分散体であることを特徴とするインクジェットプリンタ用インクである。

【0008】本発明は、高い画像濃度を得るという課題 に対して、染色が容易であるポリエステルを着色粒子と して用いることによって解決をした。また、該ポリエス テルは、エマルジョンであるために、記録紙に付着した 場合、滲みも少なくする効果もある。本発明に用いられ る、ポリエステル着色粒子は、エマルジョン状態である ことが好ましいが、より好ましくは、粒径が1ミクロン 以下が良い。さらに本発明ポリエステル着色粒子に用い られるポリエステル樹脂は、多価カルボン酸類と多価ア ルコール類からなる。ポリエステル樹脂に用いられる多 価カルボン酸類としては、例えば、テレフタル酸、イソ フタル酸、オルソフタル酸、1,5-ナフタルレンジカ ルボン酸、2,6-ナフタレンジカルボン酸、ジフェン 酸、スルホテレフタル酸、5-スルホイソフタル酸、4 -スルホフタル酸、4-スルホナフタレン-2, 7ジカ ルボン酸、5 [4-スルホフェノキシ] イソフタル酸、 スルホテレフタル酸、およびまたはそれらの金属塩、ア ンモニウム塩などの芳香族ジカルボン酸、p-オキシ安 息香酸、p-(ヒドロキシエトキシ)安息香酸などの芳 香族オキシカルボン酸、コハク酸、アジピン酸、アゼラ イン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族 ジカルボン酸、フマール酸、マレイン酸、イタコン酸、 ヘキサヒドロフタル酸、テトラヒドロフタル酸、等の不 飽和脂肪族、および、脂環族ジカルボン酸等を、また多 価カルボン酸としては他にトリメリット酸、トリメシン 酸、ピロメリット酸等の三価以上の多価カルボン酸等を

【0009】ポリエステル樹脂に用いられる多価アルコール類としては脂肪族多価アルコール類、脂環族多価アルコール類、芳香族多価アルコール類等を例示できる。脂肪族多価アルコール類としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2,3-ブタンジオール、1,4-ブタンジオー

ル、1、5ーペンタンジオール、1、6ーヘキサンジオ -ル、ネオペンチルグリコール、ジエチレングリコー ル、ジプロピレングリコール、2,2,4ートリメチル -1.3-ペンタンジオール、ポリエチレングリコー ル、ポリプロピレングリコール、ポリテトラメチレング リコール等の脂肪族ジオール類、トリメチロールエタ ン、トリメチロールプロパン、グリセリン、ペンタエル スリトール等のトリオールおよびテトラオール類等を例 示できる。脂環族多価アルコール類としては1, 4-シ クロヘキサンジオール、1、4-シクロヘキサンジメタ ノール、スピログリコール、水素化ビスフェノールA、 水素化ビスフェノールAのエチレンオキサイド付加物お よびプロピレンオキサイド付加物、トリシクロデカンジ オール、トリシクロデカンジメタノール等を例示でき る。芳香族多価アルコール類としてはパラキシレングリ コール、メタキシレングリコール、オルトキシレングリ コール、1,4ーフェニレングリコール、1,4ーフェ ニレングリコールのエチレンオキサイド付加物、ビスフ ェノールA、ビスフェノールAのエチレンオキサイド付 加物およびプロピレンオキサイド付加物等を例示でき る。

【0010】さらにポリエステルポリオールとして、 ϵ ーカプロラクトン等のラクトン類を開環重合して得られ る、ラクトン系ポリエステルポリオール類等を例示する ことができる。これらの他、ポリエステル高分子末端の 極性基を封鎖する目的にて単官能単量体がポリエステル に導入される場合がある。単官能単量体としては、安息 香酸、クロロ安息香酸、ブロモ安息香酸、パラヒドロキ シ安息香酸、スルホ安息香酸モノアンモニウム塩、スル ホ安息香酸モノナトリウム塩、シクロヘキシルアミノカ ルボニル安息香酸、n-ドデシルアミノカルボニル安息香 酸、ターシャルブチル安息香酸、ナフタレンカルボン 酸、4-メチル安息香酸、3メチル安息香酸、サリチル 酸、チオサリチル酸、フェニル酢酸、酢酸、プロピオン 酸、酪酸、イソ酪酸、オクタンカルボン酸、ラウリル 酸、ステアリル酸、およびこれらの低級アルキルエステ ル、等のモノカルボン酸類、あるいは脂肪族アルコー ル、芳香族アルコール、脂環族アルコール等のモノアル コールを用いることができる。

【0011】本発明におけるポリエステル樹脂のより具体的な例として、以下に示される。

- a)芳香族系単量体を80mol%以上含有する多価カルボン 酸類、と、
- b)エチレングリコール0~9 0 mol%、プロピレングリコール100~1 0 mol%とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン 酸類、と、
- b) 2, 3 ーブタンジオール 5 ~ 8 0 mol%、エチレングリコール 2 0 ~ 9 5 mol%とから得られるポリエステル樹

脂、または

- a) 芳香族系単量体を80 mol%以上含有する多価カルボン酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mol\%$ 、c)トリシクロデカン骨格を有するモノあるいは多価アルコール類 $5 \sim 30 mol\%$ とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン 酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c)ヒドロキシメチルトリシクロデカン5~30 mol%とから得られるポリエステル樹脂、または
- a)芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、
- c)トリシクロデカンジメタノール5~30mol%とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80mol%以上含有する多価カルボン酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mol\%$ 、c)シクロヘキサン骨格を有するモノあるいは多価アルコール類 $5 \sim 30 mol\%$ とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を 8 0 mol %以上含有する多価カルボン 酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 95 mol\%$ 、c)シクロヘキサンジオール $5 \sim 30 mol\%$ とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80 mol%以上含有する多価カルボン 酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、c) 水添ビフェノール5~30 mol% とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80mol%以上含有する多価カルボン 酸類、と、
- b) $C2 \sim C4$ の脂肪族系グリコール類 $70 \sim 9.5 \text{ mol}$ %、c) 水添ビスフェノール $A5 \sim 3.0 \text{ mol}$ %とから得られるポリエステル樹脂、または
- a)ナフタレン骨格を有するモノあるいは二価以上のカルボン酸 $1 \sim 2$ O mol%を含む芳香族系単量体を 8 O mol%以上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~100 mol %、
- c) 脂環族系単量体0~30mol%を含有する多価アルコール類、とから得られるポリエステル樹脂等を例示することができる。
- さらに、ここに示される、「a)芳香族系単量体」はテレフタル酸あるいはイソフタル酸であることが好ましい。 テレフタル酸とイソフタル酸の比率は、テレフタル酸含 有率/イソフタル酸含有率=90~40/10~60

[mol %] が好ましく、さらに、テレフタル酸含有率/イソフタル酸含有率= $80\sim50/20\sim50$ [mol %]、またさらにテレフタル酸含有率/イソフタル酸含有率= $85\sim60/15\sim40$ [mol %] が好ましい。

【0012】本発明のポリエステル樹脂には、20~1 000eq/tonの範囲でイオン性基を含有すること が必須である。ポリエステルに導入されるイオン性基と しては、スルホン酸アルカリ金属塩基あるいはスルホン 酸アンモニウム塩基を有するモノあるいはジカルボン酸 等を好ましく用いることができるほか、例えばカルボン 酸アルカリ金属塩基あるいはカルボン酸アンモニウム塩 基を有する単量体、硫酸基、リン酸基、ホスホン酸基、 ホスフィン酸基もしくはそれらのアンモニウム塩、金属 塩等のアニオン性基、または第1級ないし第3級アミン 基等のカチオン性基単量体などをもちいることができ る。カルボン酸アルカリ金属塩基あるいはカルボン酸ア ンモニウム塩基を導入する場合には、ポリエステルの重 合末期にトリメリット酸等の多価カルボン酸を系内に導 入することにより髙分子末端にカルボキシル基を付加 し、さらにこれをアンモニア、水酸化ナトリウム等にて 中和することによりカルボン酸塩の基に交換する方法を 用いることができる。また、スルホン酸アルカリ金属塩 基あるいはスルホン酸アンモニウム塩基を有するモノあ るいはジカルボン酸を含有することによりこれらのイオ ン性基をポリエステル樹脂に導入することができる。塩 としてはアンモニウム系イオン、Li、Na、K、M g、Ca、Cu、Fe等の塩があげられ、特に好ましい ものはK塩またはNa塩である。本発明では5ーナトリ ウムスルホイソフタル酸、あるいはメタナトリウムスル ホ安息香酸を用いることが好ましい。またカルボン酸塩 の基とスルホン酸塩の基を使用しても良い。

【0013】イオン性基含有単量体をポリエステル樹脂 に導入し、ポリエステル樹脂にイオン性基を与えた場 合、ポリエステル樹脂が水分散性を発現する。これらイ オン性基の含有量は、スルホン酸基およびまたはその塩 の基をふくめ、該ポリエステル樹脂に対し、10~10 00m当量/1000g、好ましくは20~500m当 量/1000g、なお好ましくは50~200m当量/ 1000g、である。イオン性基の含有量が所定の量よ り少ない場合には十分なる水分散性が得られない。着色 剤としては公知の染料、顔料を広く用いることができ る。本発明のポリエステル粒子を着色可能な染料として は酸性染料、直接染料、食品用染料等のアニオン性染 料、塩基性染料等のカチオン染料、分散染料、油性染 料、ヴァット染料等の水不溶ないし難溶性染料を例示で きる。ポリエステル樹脂にイオン性基としてカチオン性 基を導入した場合、アニオン性染料によりイオン的に髙 堅牢に染色可能である。またポリエステル樹脂にアニオ ン性基を導入した場合にはカチオン染料により高彩度に 着色が可能である。

【0014】本発明では、染料としては「常温にて水に不溶の染料」を用いることが好ましい。これらは一般に分散染料、あるいは油溶性染料に分類されるものである。より具体的には、

·C. I. Disperse Yellow 198 ·C. I. Disperse Yellow 42 ·C. I. Disperse Yellow 162 ·C. I. Disperse Red ·C. I. Disperse Red 60 ·C. I. Disperse Violet 26 ·C. I. Disperse Violet 3 5 ·C. I. Disperse Blue 60 ·C. I. Disperse Blue 87 ·C. I. Solvent Blue 25 ·C. I. Solvent Blue · C. I. Solvent Blue 38 · C. I. Solvent Blue · C. I. Solvent Blue 70

から選択される少なくとも1種の染料が好ましく用いられる。これらは特に耐光堅牢度、昇華堅牢度、色相、彩度に優れるものであり、プロセスカラー用三原色として好ましいものである。他に色相の微調整のために公知の染顔料を併用してもよい。

Black 3

· C. I. Solvent

【0015】本発明における分散質であるポリエステル粒子の平均粒子径は特に限定されないが、 $0.01\sim1.0~\mu$ mが好ましく、 $0.05\sim0.8~\mu$ mの範囲がより好ましく、 $0.1\sim0.5~\mu$ mの範囲がさらに好ましい。かかるポリエステル樹脂に微粒子分散体は以下に述べる方法にて得ることができる。すなわち、イオン性基を含有した場合、本発明におけるポリエステル樹脂は水分散性を発現する。水分散性とは一般にエマルジョンと称される状態を意味するものである。イオン性基は水系媒体中において解離し、ポリエステル樹脂が微細なミクロ粒子として水系内に存在する場合には電気二重層の働きによりミクロ粒子間には静電的な反発力が生じ、ミクロ粒子が水系内にて安定的に分散する。

【0016】イオン性基含有ポリエステル樹脂の水分散体は、イオン性基含有ポリエステル樹脂と水溶性有機化合物とをあらかじめ混合後に水を加える方法、イオン性基含有ポリエステル樹脂と水溶性有機化合物と水とを一括して混合加熱する方法等により得ることができる。またその際に界面活性剤等を併用することもできる。水溶性有機化合物としてはエタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン等を用いることができる。水溶性有

機化合物はイオン性基含有ポリエステル樹脂を水分散化 した後に共沸等により除去することができるものが好ま しい。

【0017】本発明のポリエステル樹脂は染料にて着色 された場合においても耐光堅牢度が良好である。染料と しては分散染料、油溶性染料、建浴染料、ヴァット染 料、スレン染料、塩基性等を用いることができる。染料 をポリエステル樹脂に含有させる方法としては高温分散 染色法を用いることができる。染料原体を樹脂に直接練 り込む方法は、加熱による染料のダメージを考慮したば あいに好ましい方法ではない。本発明のポリエステル樹 脂はイオン性基の作用により水中にて良好なる安定分散 性を示すため、粒子状を保持したまま髙濃度な染色が可 能である。また、エマルジョン化時に、ポリエステル樹 脂を溶剤で溶解した時に染料を添加しても良い。本発明 のインクジェットプリンタ用インクは、水中に分散され た着色ポリエステル粒子を、1~50wt%で含まれる。 また、本発明インクジェットプリンタ用インクは、着色 ポリエステル粒子の他に、必要に応じて、分散剤、分散 安定助剤である、界面活性剤や高分子分散安定剤を添加 しても良い。また、粒子の湿潤性を高めるために、エチ レングリコール、グリセリン、各種多価アルコール類を 添加しても良い。更に、インク中に混入する金属イオン を封鎖するために、各種キレート化剤等を添加しても良 い。さらに、インクの保存安定性を向上するために、各 種殺菌剤や防カビ剤、紫外線吸収剤、酸化防止剤等も添 加しても良い。

[0018]

【実施例1】

(ポリエステル樹脂の合成)

温度計、撹拌機を備えたオートクレーブ中に、

ジメチルテレフタレート 130重量部、 ジメチルイソフタレート 56重量部、 5ナトリウムスルホイソフタル酸ジメチルエステル 6

5ナトリウムスルホイソフタル酸ジメチルエステル 6 重量部、

エチレングリコール 159重量部、 トリシクロデカンジメタノール 30重量部、 テトラブトキシチタネート 0.1重量部、 を仕込み180~230℃で120分間加熱してエステ ル交換反応を行った。ついで反応系を240℃まで昇温 し、系の圧力1~10mmHgとして60分間反応を続 けた結果、共重合ポリエステル樹脂を得た。次に、得ら れたポリエステル樹脂340重量部、メチルエチルケト ン150重量部、テトラヒドロフラン140重量部、染 料 C. I. Disperse Blue 87 のコ ンクケーキ 30重量部を80℃にて溶解した後80℃ の水680部を添加し、粒子径約0.15 μmの共重合 ポリエステル樹脂の水系ミクロ分散体を得た。さらに得 られた水系ミクロ分散体を蒸留用フラスコに入れ、留分

温度が100℃に達するまで蒸留し、冷却後に水を加え

固形分濃度を30%とした。以下、染料を、

• C. I. Disperse Yellow 198 • C. I. Disperse Red 92

に代えて同様に染色し、水系ミクロ分散体を得た。

【0019】この様にして得た水系ミクロ分散体をインクジェットプリンター(EPSONHG-4000)のインクとして使用した。使用した紙は、インクジェット用としての加工のされていないものを使用した。その結果、本発明によるインクを用いた場合インクの滲みは全く無かった。また得られた画像の濃度は極めて高く、鮮明な画像であった。また製作した水系ミクロ分散体は、室温で3カ月以上放置しても沈澱物の発生や、染料の析出等は発生せず極めて良好な安定性を示した。

[0020]

【比較例1】1リットルのセパラブルフラスコに水500重量部、スチレン200重量部、スチレンスルホン酸ナトリウム10重量部、分散染料C. I. DisperseBlue87のコンクケーキ10重量部、過硫酸カリウム10重量部を仕込み70℃にて18時間反応させ着色スチレン乳化重合粒子分散体を得た。得られた着色スチレン乳化重合粒子分散体をビーカーに入れ、約30分間静置したところ、ビーカーの底に染料の結晶粒子が沈降した。回収された染料の総量は仕込み量の約70%

に相当した。着色濃度は低いものであった。沈降した染料結晶を除去し、さらに室温で3カ月以上放置したところ、再度容器の底に染料結晶の析出が見られた。

[0021]

【比較例2】通常インクジェットインクに使用されている水溶性染料を用いてインクの滲みを見た。使用した水溶性染料は

- C. I. Acid Yellow 7,
- C. I. Acid Red 94
- C. I. Acid Blue 1,

を水に溶解しインクとした。その結果、専用紙を用いた場合は、良好であるが、普通紙を用いた場合は、本発明とは異なり、大きく滲んでしまった。また耐光性の比較も行った。プリントアウトしたそれぞれのインクは紫外線フェードメーター(カーボンアーク) 63 \mathbb{C} \mathbb{C}

[0022]

【発明の効果】本発明により、インクジェットプリンタを用いたプリントにおいて、記録紙上のインクの滲みが全く無くかつ、極めて良好な画像濃度が得られるようになった。