

Diana Avella Alaminos

Álgebra Lineal I Semana 11

Revisa los videos

Video 1

Video 2

1. Encuentra las matrices de cambio de base $\left[id_{V}\right]_{B}^{\Gamma}$ y $\left[id_{V}\right]_{\Gamma}^{B}$ para:

a)
$$K = \mathbb{R}$$
, $V = \mathbb{R}^3$,
 $B = ((3,2,1), (0, -2,5), (1,1,2))$,
 $\Gamma = ((1,1,0), (-1,2,4), (2, -1,1))$.

b)
$$K = \mathbb{R}$$
, $V = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$, $B = (1 + x, -1 + x + x^2, x + 2x^2)$, $\Gamma = (2 + x + x^2, x^2, -1 + x + x^2)$.

Revisa el video

Video 3

2. Sea $K = \mathbb{R}$, $V = \mathbb{R}^2$, $T : \mathbb{R}^2 \to \mathbb{R}^2$ lineal tal que T(5,1) = (3, -2), T(-1,3) = (2,2). Usando matrices de cambio de base encuentra la regla de correspondencia de T

3. Sea $K = \mathbb{R}$, $V = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$, $T: V \to V$ lineal tal que $T(1+x+x^2) = 2+3x-x^2$, $T(-1+x^2) = -3+x-2x^2$, $T(2+4x) = 3x^2$. Usando matrices de cambio de base encuentra la regla de correspondencia de T.

Revisa el video

Video 4

- 4. Encuentra la fórmula para:
- a) La proyección en \mathbb{R}^2 sobre la recta por el origen de pendiente $\frac{1}{2}$.
- b) La rotación en \mathbb{R}^2 de 30° en sentido contrario a las manecillas del reloj, seguida de una reflexión por la recta f(x) = -4x.

Video 5

5. Considera las matrices $C = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$, $P = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$, $A = P^{-1}CP$. Encuentra $T : \mathbb{R}^2 \to \mathbb{R}^2$ lineal, $B \ y \ B'$ bases ordenadas de \mathbb{R}^2 , tales que $A = [T]_{R'}^B$, $C = [T]_{R'}^{B'}$.

Revisa el video

Video 6

6. Sea $K = \mathbb{R}$, $V = \{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}$,

 $T: V \rightarrow V$ lineal tal que

$$T(a + bx + cx^2) = (a + b + c) + (2a + 2b + 2c)x + (a - b - c)x^2$$

Encuentra B y Γ bases ordenadas de V tales que $[T]^B_\Gamma$ sea una matriz diagonal.

Opcional:

Revisa el video de 3Brown1Blue, puedes poner subtítulos en español

Cambio de base - 3Brown1Blue