18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Slide 1

Overview

- Random Walk
 - 3-D heat equation
 - Random walk game
 - Randomized PDE solver

3-D Heat Equation

Laplace operator

$$\stackrel{\downarrow}{\rho} \cdot C_p \cdot \frac{\partial T(x, y, z, t)}{\partial t} = \kappa \cdot \stackrel{\downarrow}{\nabla}^2 T(x, y, z, t) + f(x, y, z, t)$$

Thermal capacity

Thermal conductivity

Heat source

Sourc

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Slide 3

Finite Difference

■ A control volume

■ Discretize PDE at each control volume

$$\begin{split} I_{i,j,k} &= C \cdot \frac{\partial T_{i,j,k}}{\partial t} + G_x \cdot \left[T_{i,j,k} - T_{i+1,j,k} \right] + G_x \cdot \left[T_{i,j,k} - T_{i-1,j,k} \right] \\ G_y \cdot \left[T_{i,j,k} - T_{i,j+1,k} \right] + G_y \cdot \left[T_{i,j,k} - T_{i,j-1,k} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k+1} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k-1} \right] \end{split}$$

$$G_x = \frac{\kappa \cdot \Delta y \cdot \Delta z}{\Delta x}$$
 $G_y = \frac{\kappa \cdot \Delta x \cdot \Delta z}{\Delta y}$ $G_z = \frac{\kappa \cdot \Delta x \cdot \Delta y}{\Delta z}$

$$C = \rho \cdot C_p \cdot \Delta x \cdot \Delta y \cdot \Delta z \quad I_{i,j,k} = f_{i,j,k} \cdot \Delta x \cdot \Delta y \cdot \Delta z$$

Steady-State Solution

■ Generally interested only in steady state – thermal capacitance is not considered

$$\begin{split} I_{i,j,k} &= C \cdot \frac{\partial T_{i,j,k}}{\partial t} + G_x \cdot \left[T_{i,j,k} - T_{i+1,j,k} \right] + G_x \cdot \left[T_{i,j,k} - T_{i-1,j,k} \right] \\ G_y \cdot \left[T_{i,j,k} - T_{i,j+1,k} \right] + G_y \cdot \left[T_{i,j,k} - T_{i,j-1,k} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k+1} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k-1} \right] \end{split}$$

$$C \cdot \frac{\partial T_{i,j,k}}{\partial t} = 0$$

$$\begin{split} I_{i,j,k} &= G_x \cdot \left[T_{i,j,k} - T_{i+1,j,k} \right] + G_x \cdot \left[T_{i,j,k} - T_{i-1,j,k} \right] \\ G_y \cdot \left[T_{i,j,k} - T_{i,j+1,k} \right] + G_y \cdot \left[T_{i,j,k} - T_{i,j-1,k} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k+1} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k-1} \right] \end{split}$$

Slide 5

Steady-State Solution

Result in a set of linear equations

$$\begin{split} I_{i,j,k} &= G_x \cdot \left[T_{i,j,k} - T_{i+1,j,k} \right] + G_x \cdot \left[T_{i,j,k} - T_{i-1,j,k} \right] \\ G_y \cdot \left[T_{i,j,k} - T_{i,j+1,k} \right] + G_y \cdot \left[T_{i,j,k} - T_{i,j-1,k} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k+1} \right] + G_z \cdot \left[T_{i,j,k} - T_{i,j,k-1} \right] \end{split}$$

$$\begin{split} I_{i,j,k} &= 2 \cdot \left(G_x + G_y + G_z \right) \cdot T_{i,j,k} - G_x \cdot \left(T_{i+1,j,k} + T_{i-1,j,k} \right) \\ &- G_y \cdot \left[T_{i,j+1,k} + T_{i,j-1,k} \right] - G_z \cdot \left[T_{i,j,k+1} + T_{i,j,k-1} \right] \end{split}$$

Steady-State Solution

$$\begin{split} I_{i,j,k} &= 2 \cdot \left(G_x + G_y + G_z \right) \cdot T_{i,j,k} - G_x \cdot \left(T_{i+1,j,k} + T_{i-1,j,k} \right) \\ &- G_y \cdot \left[T_{i,j+1,k} + T_{i,j-1,k} \right] - G_z \cdot \left[T_{i,j,k+1} + T_{i,j,k-1} \right] \end{split}$$

$$\begin{split} T_{i,j,k} &= \frac{G_x}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i+1,j,k} + \frac{G_x}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i-1,j,k} \\ &+ \frac{G_y}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i,j+1,k} + \frac{G_y}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i,j-1,k} \\ &+ \frac{G_z}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i,j,k+1} + \frac{G_z}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot T_{i,j,k-1} \\ &+ \frac{1}{2 \cdot \left(G_x + G_y + G_z\right)} \cdot I_{i,j,k} \end{split}$$

Slide 7

Steady-State Solution

$$T_{i,j,k} = \frac{G_x}{2 \cdot (G_x + G_y + G_z)} T_{i+1,j,k} + \frac{G_x}{2 \cdot (G_x + G_y + G_z)} \cdot T_{i-1,j,k}$$

$$g_x + \frac{G_y}{2 \cdot (G_x + G_y + G_z)} \cdot T_{i,j+1,k} + \frac{G_y}{2 \cdot (G_x + G_y + G_z)} \cdot T_{i,j-1,k}$$

$$g_y + \frac{G_z}{2 \cdot (G_x + G_y + G_z)} \cdot T_{i,j,k+1} + \frac{G_z}{2 \cdot (G_x + G_y + G_z)} \cdot T_{i,j,k-1}$$

$$g_z + \frac{1}{2 \cdot (G_x + G_y + G_z)} \cdot I_{i,j,k}$$

$$T_{i,j,k} = g_x T_{i+1,j,k} + g_x T_{i-1,j,k} + g_y T_{i,j+1,k} + g_y T_{i,j-1,k} + g_z T_{i,j,k+1} + g_z T_{i,j,k-1} + g_I I_{i,j,k}$$

Boundary Conditions

 $T_{i,j,k} = T_0$ for all {i,j,k} at boundary

Slide 9

Thermal Equation

$$\begin{split} T_{i,j,k} &= g_x T_{i+1,j,k} + g_x T_{i-1,j,k} + g_y T_{i,j+1,k} + g_y T_{i,j-1,k} \\ &+ g_z T_{i,j,k+1} + g_z T_{i,j,k-1} + g_I I_{i,j,k} \\ T_{i,j,k} &= T_0 \quad \text{@} \quad Boundary \end{split}$$

- Linear thermal equation can be solved by many techniques
 - Gaussian elimination
 - Conjugate gradient method
 - Etc.
- In this lecture, we will explore a new "random" technique to solve discretized PDE

Random Walk Game

- Random walk game
 - A network of roads
 - A motel at each intersection
 - A set of homes

Slide 11

Random Walk Game

- Start from node x
- Walk one (randomly chosen) road every day
 - Each direction is associated with probability p_{i,j}
- Stay the night at motel y
- Motel charges m_y
- Keep going until home
- Get reward m₀ at each home

Random Walk Game

Problem: find the average amount of earned money in the end as a function of the starting node x

f(x) = E[money earned in the end | from node x]

- f(x) can be estimated by Monte Carlo analysis
 - Estimate the expected value from a number of random sampling points

Slide 13

Monte Carlo Analysis

f(x) = E[money earned in the end | from node x]

- For i = 1,2,...,M
 - Start from node x
 - ▼ Perform random walk to reach home
 - ▼ Calculate the total money earned during this walk: f⁽ⁱ⁾
- End For
- f(x) is estimated by:

$$f(x) \approx \frac{1}{M} \cdot \sum_{i=1}^{M} f^{(i)}$$

Monte Carlo Analysis

$$f(x) = \frac{1}{9}(3+2+3+2)$$

$$= \frac{10}{4}$$

$$= 2.5$$

- Why is random walk game related to thermal analysis?
 - To understand the connection, we need to analytically model the game as a Markov chain

Slide 15

Markov Chain Model

- The random walk problem can be modeled as a Markov chain
 - The transition probability from x to y is uniquely determined by x and y only
 - ▼ It is independent of any previous locations

Slide 16

Markov Chain Model

■ Mathematically, it means:

Slide 17

Markov Chain Model

■ Linear equation for f(x) (> is not home)

Markov Chain Model

Linear equation for f(x)

(x is home)

f(x)= mo reward at home

Slide 19

Random Walk Game for 3-D Grid

■ If the road network is a 3-D grid

fish & Pofinsing + Pxfinsing + Pyfishen + Pyfisher + Pzfioski + Pzfiosk-1 - Miwi, K Ejoj KS is not home

Random Walk Game for 3-D Grid

■ If the road network is a 3-D grid

Slide 21

Thermal Analysis vs. Random Walk Game

■ Both thermal analysis and random walk game can be modeled by similar linear equations

$$\begin{split} T_{i,j,k} &= g_x T_{i+1,j,k} + g_x T_{i-1,j,k} + g_y T_{i,j+1,k} + g_y T_{i,j-1,k} & T_{i,j,k} = T_0 \\ &+ g_z T_{i,j,k+1} + g_z T_{i,j,k-1} + g_I I_{i,j,k} & \text{@ boundary} \end{split}$$

Thermal analysis

$$\begin{split} f_{i,j,k} &= p_x f_{i+1,j,k} + p_x f_{i-1,j,k} + p_y f_{i,j+1,k} + p_y f_{i,j-1,k} & f_{i,j,k} = m_0 \\ &+ p_z f_{i,j,k+1} + p_z f_{i,j,k-1} - m_{i,j,k} & \text{@ home} \end{split}$$

Random walk game

Thermal Analysis vs. Random Walk Game

- This observation has a two-fold meaning
- #1: We do not have to play random walk game by Monte Carlo

 It can be solved deterministically based on linear equation
- #2: We do not have to solve thermal analysis problem deterministically
 - Temperature solution can be found by Monte Carlo analysis (i.e., a randomized algorithm)

Slide 23

Random Walk for Thermal Analysis

■ Problem: find temperature at x by random walk

$$T_{i,j,k} = g_x T_{i+1,j,k} + g_x T_{i-1,j,k} + g_y T_{i,j+1,k} + g_y T_{i,j-1,k} + g_z T_{i,j,k+1} + g_z T_{i,j,k-1} + g_I I_{i,j,k}$$

Slide 24

Random Walk for Thermal Analysis

- Random walk
 - Start from node x with reward g_II_x
 - Walk across one (randomly chosen) edge where each walking direction is associated with a probability g_x, g_y or g_z
 - Reach node {i,j,k} and get reward g_il_{i,j,k}
 - ▼ Keep going until reaching boundary
 - Get reward T₀ at boundary
 - Calculate the total reward earned during this walk

$$\begin{split} T_{i,j,k} &= g_x T_{i+1,j,k} + g_x T_{i-1,j,k} + g_y T_{i,j+1,k} + g_y T_{i,j-1,k} \\ &+ g_z T_{i,j,k+1} + g_z T_{i,j,k-1} + g_I I_{i,j,k} \end{split}$$

Slide 25

Random Walk for Thermal Analysis

■ Monte Carlo analysis

 $T_x = E[$ reward earned in the end | from node x]

- For i = 1,2,...,M
 - Start from node x
 - ▼ Perform random walk to reach boundary
 - Calculate the total reward earned during this walk: f⁽ⁱ⁾
- End For
- T_x is estimated by:

$$T_x \approx \frac{1}{M} \cdot \sum_{i=1}^{M} f^{(i)}$$

Deterministic Solver vs. Random Walk

- The efficacy of both algorithms is problem-dependent
- In general, random walk is preferable if we are only interested in local temperature

 $T_x = E[$ reward earned in the end | from node x]

- We do not have to solve the complete linear equation
- Random walk quickly tells us the temperature at "a" location x
- Random walk can also be used to generate "good" preconditioner for conjugate gradient method

Slide 27

Summary

- Random walk
 - 3-D heat equation
 - Random walk game
 - Randomized PDE solver

18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213

Slide 1

Overview

- Stochastic Optimization
 - Simulated annealing

Local Optimization

- All optimization algorithms in early lectures assumes "local convexity" for cost function and constraint set
 - Gradient method
 - Newton method
 - Conjugate gradient method
 - Interior point method
- Global convergence cannot be guaranteed if the actual cost function or constraint set is non-convex

Slide 3

Filter Design Example

■ Design a band-stop filter to remove power supply noise

Filter Design Example

■ Design a band-stop filter to remove power supply noise

Filter Design Example

■ Design a band-stop filter to remove power supply noise

Stochastic Optimization

- Stochastic optimization is another useful technique for nonlinear programming
 - Randomized algorithm (not deterministic)
 - Better convergence than local optimization
 - More expensive in computational cost
- Several important algorithms for stochastic optimization
 - Simulated annealing (focus of this lecture)
 - Genetic programming

Slide 7

Simulated Annealing

■ Unconstrained optimization

$$\min_{X} f(X)$$

- Simulated annealing:
 - Start from an initial point
 - Repeatedly consider various new solution points
 - Accept or reject some of these solution candidates
 - ▼ Converge to the optimal solution

Unconstrained optimization

$$\min_{X} f(X)$$

- Simulated annealing was introduced by Metropolis in 1953
- It is based on "similarities" and "analogies" with the way that alloys manage to find a nearly global minimum energy level when they are cooled slowly

Slide 9

- Local optimization vs. simulated annealing
- Local optimization
 - Start from an initial point
 - Repeatedly consider various new solution points
 - Reduce cost function at each iteration
 - Converge to optimal solution
- Simulated annealing
 - Start from an initial point
 - Repeatedly consider various new solution points
 - Accept/reject new solution using probability at each iteration
 - Converge to optimal solution

■ Local optimization

Local optimization attempts to reduce cost function at each iteration

Slide 11

Simulated Annealing

■ Simulated annealing

Simulated annealing accept/reject new solution candidate based on probability

- Step 1: start from an initial point X = X₀ & K = 0
- Step 2: evaluate cost function F = f(X)
- Step 3: randomly move from X_K to a new solution X_{K+1}
- Step 4: if f(X_{K+1}) < F, then</p>
 - Accept new solution
 - $X = X_{K+1} & F = f(X_{K+1})$

Similar to local optimization

- End if
- Step 5: if $f(X_{K+1}) \ge F$, then
 - Accept new solution with certain probability
 - $X = X_{K+1} & F = f(X_{K+1}) \text{ iff rand}(1) < ε$

Help to get out of local minimum

- End if
- Step 6: K = K + 1 & go to Step 3

Slide 13

- Accept/reject new solution with the probability ε
 - - Accept new solution with certain probability
 - $X = X_{K+1} & F = f(X_{K+1}) \text{ iff rand}(1) < ε$
 - End if
- Option 1
 - Constant probability, i.e., ε = 0.1
- Option 2 (better than Option 1)
 - Dynamically varying probability, i.e., decreasing over time

- Accept/reject new solution with the probability ε
 - - Accept new solution with certain probability
 - $X = X_{K+1} & F = f(X_{K+1}) \text{ iff rand}(1) < ε$
 - **▼** End if
- Use Boltzmann distribution to determine the probability ε

$$\varepsilon = \exp\left[-\frac{f(X_{K+1}) - F}{T_{K+1}}\right]$$

- ▼ T_{K+1} is a "temperature" parameter that gradually decreases
- E.g., $T_{K+1} = α \cdot T_{K}$ where α < 1

Slide 15

- Accept/reject new solution with the probability ε
 - If f(X_{K+1}) ≥ F, then
 - Accept new solution with certain probability
 - $X = X_{K+1} & F = f(X_{K+1}) \text{ iff}$

$$\operatorname{rand}(1) \le \exp \left[-\frac{f(X_{K+1}) - F}{T_{K+1}} \right]$$

- End if
- High temperature
 - Attempt to accept all new solutions even if f(X_{K+1}) F is large
- Low temperature
 - Only accept the new solutions where f(X_{K+1}) F is small

- Simulated annealing is particularly developed for unconstrained optimization
- Constrained optimization can be converted to unconstrained optimization using barrier method

$$\min_{X} f(X)$$
S.T. $g(X) \le 0$

$$\min_{X} f(X) - \frac{1}{t} \cdot \log[-g(X)]$$

Slide 17

- Simulated annealing does not guarantee global optimum
 - However, it tries to avoid a large number of local minima
 - Therefore, it often yields a better solution than local optimization
- Simulated annealing is not deterministic
 - Whether accept or reject a new solution is random
 - ▼You can get different answers from multiple runs
- Simulated annealing is more expensive than local optimization
 - ▼ It is the price you must pay to achieve a better optimal solution

- Simulated annealing has been used to solve many practical engineering problems
- A large number of implementation issues must be considered for practical circuit optimization problems
 - How to define optimization variable X (continuous vs. discrete)?
 - How to randomly move to a new solution?
 - Etc.

Slide 19

Example: Travelling Salesman Problem (TSP)

- N cities are located on a 2-D map
- One must visit each city once and then return to start city
- Find the optimal route with minimum length
 - If all cities are visited in the order of R = $\{C_1, C_2, ..., C_N\}$, we have

$$f(R) = \frac{\|C_1 - C_2\|_2}{\downarrow} + \|C_2 - C_3\|_2 + \dots + \|C_N - C_1\|_2$$
Distance between
$$C_1 \text{ and } C_2$$
Distance between
$$C_N \text{ and } C_4$$

Example: Travelling Salesman Problem (TSP)

- Step 1: start from random route R, initial temperature T & K = 1
- Step 2: evaluate cost function F = f(R)
- Step 3: define new route R_K by randomly swapping two cities
- Step 4: if f(R_K) < F, then
 - Accept new route
 - $R = R_K \& F = f(R_K)$
- End if
- Step 5: if $f(R_K) \ge F$, then
 - Accept new solution with certain probability
 - $R = R_K \& F = f(R_K) \text{ iff rand}(1) < \exp\{[F f(R_K)]/T\}$
- End if
- Step 6: $T = \alpha T$ (α < 1), K = K + 1, and go to Step 3

Slide 21

Example: Travelling Salesman Problem (TSP)

■ TSP route optimized by simulated annealing

Initial route

Optimized route

Summary

- Stochastic optimization
 - ▼ Simulated annealing

Slide 23