1.	$(1)^{-2n}$	
Výraz $3\cdot 2^{2n+2} - 5\cdot 2^{2n-1} +$	$\left(\frac{1}{2}\right)$	je pro všechna $n \in N$ rove

- $\bigcirc \qquad \mathsf{A)} \qquad \qquad \frac{21}{2} \cdot 4^n$
- \bigcirc B) $\frac{19}{2} \cdot 4$
- $\bigcirc \quad \mathsf{c)} \qquad \frac{17}{2} \cdot 4^{\mathsf{r}}$
- \bigcirc D) $\frac{15}{2} \cdot 4^n$
- $\bigcirc \quad \ \, \mathsf{E)} \qquad \, \frac{13}{2} \cdot 4$

2. Úhlopříčka obdélníku, který v souřadnicové soustavě Oxy znázorňuje množinu všech bodů [x;y], pro něž platí $|x+2| \leq 2, 5 \land |y| \leq 1$ má velikost:

- \bigcirc A) $\sqrt{35}$
- \bigcirc B) $\sqrt{33}$
- \bigcirc c) $\sqrt{31}$
- \bigcirc D) $\sqrt{29}$
- \bigcirc E) $\sqrt{27}$

Počet způsobů, kterými lze z písmen slova ALGORITMUS vybrat tříprvkovou množinu souhlásek a dvouprvkovou množinu samohlásek, je:

- A) 112
- B) 114
- C) 116
- **D)** 118
- E) 120

4. Na grafu funkce g, která je inverzní k funkci f:y=3x+2 , ${\sf neleží}$ bod:

- A) [2; 0]
- B) [3; 2]
- O C) [5; 1]
- \bigcirc D) [-4;-2]
- \bigcirc E) [-1;-1]

5. Dvacet vojáků je zcela náhodně postaveno do řady. Pravděpodobnost, že předem určený voják nebude stát na třetím místě zleva, je:

- **A)** 0,80
- B) 0,85
- O 0,90
- O) 0,95
- Žádná z možností (A) až (D) není správná.

Krychle ABCDEFGH má hranu délky a. Průměr kulové plochy, která se dotýká roviny ABC v bodě A a prochází bodem H, je:

- \bigcirc A) $2a\sqrt{2}$
- \bigcirc B) $2a\sqrt{3}$
- (C) a
- \bigcirc D) 2a
- \supset E) 3a

7. Přímka p:4x+3y-12=0 protíná osy souřadnicové soustavy Oxy v bodech A,B. Kružnice opsaná trojúhelníku OAB má rovnici:

- $x^2 + y^2 3x 4y = 0$
- c) $x^2 + y^2 + 3x 4y = 0$
- O D) $x^2+y^2+2x-4y=0$
- $x^2 + y^2 2x 4y = 0$

8. Počet způsobů, jimiž lze v šesticiferném celém čísle 9 * 32 * 2 nahradit hvězdičky číslicemi (stejnými i různými) tak, aby vzniklé číslo bylo současně beze zbytku dělitelné čtyřmi a devíti je:

- A) 1
- B) 3
- O C) 5
- D) 7
- E) 9

9. Jestliže $\cos x = rac{\sqrt{3}}{2}$, potom $\cos 2x$ je:

- \bigcirc A) $\frac{1}{3}$
- \bigcirc B) $\frac{1}{2}$
- \bigcirc c) $\frac{\sqrt{2}}{2}$
- \bigcirc D) $\frac{\sqrt{3}}{2}$
- \bigcirc E) $\frac{\sqrt{3}}{3}$

- A) 0
- B)
- C) 2
- D) 3
- E) 4

Je dán pravidelný šestiúhelník ABCDEF. Je-li obsah trojúhelníku ABC roven ${\bf 4}$, pak obsah šestiúhelníku ABCDEF je roven:

- A) 8
- B) 12
- O C) 16
- D) 20
- E) 24

12.

A B Útvar na obrázku tvoří čtverec ABCD o straně délky 4 cm a rovnostranný trojúhelník CDV o straně délky 4 cm. Vzdálenost bodu V od přímky AB je:

- \bigcirc A) $4+2\sqrt{3}cm$
- OB) $2+4\sqrt{3}cm$
- \bigcirc c) $4+4\sqrt{3}cm$
- O D) 6cm
- E) 8cm

13.

Počet řešení rovnice $rac{1}{2}\cos 2x = -1$ v intervalu $\langle 0; 2\pi
angle$ je:

- A) 0
- B) 1
- O C) 2
- D) 3
- E) 4

14.

Jednou z kvadratických rovnic, jejímiž kořeny v množině reálných čísel jsou čísla -1 a 11, je rovnice:

- $x^2 10x 11 = 0$
- $x^2 10x + 11 = 0$
- \bigcirc D) $x^2+10x-11=0$
- $-x^2-10x-11=0$

15.

Řešením rovnice $\dfrac{1}{x-1}-\dfrac{1}{x+1}=\dfrac{2}{x^2-1}$ v množině reálných čísel je množina:

- (A)
- B) −1
- (c) 1
- \bigcirc D) $(-\infty; +\infty)$

Ø

 \bigcirc E) $(-\infty;-1)\cup(-1;1)\cup(1;+\infty)$

40

Číslo x, pro které nabývá funkce y=x-|1-2x| maximální hodnoty, leží v intervalu:

- \bigcirc A) $\left(-1;-\frac{1}{2}\right)$
- \bigcirc B) $\left(-\frac{1}{2};0\right)$
- \bigcirc c) $\left(0;\frac{1}{2}\right)$
- \bigcirc D) $\left(\frac{1}{2};1\right)$
- \bigcirc E) $\left(1; \frac{3}{2}\right)$

17.

Řešením rovnice $\left(\frac{\sqrt{2}}{3}\right)^{\frac{1}{x}}=\frac{9}{2}$ je číslo, které **neleží** v intervalu:

- \bigcirc A) (-1;0)
- B) (-1;1)
- (-1;2)
- O D) (-2;-1)
- E) (-2;0)

Součet prvních padesáti členů posloupnosti s n-tým členem $\log rac{1}{2^n}$ je:

- \bigcirc A) $-1270 \log 2$
- B) $-1275 \log 2$
- \bigcirc c) $-1280 \log 2$
- \bigcirc D) $-1285\log 2$

19.

$$2x+3+\frac{1}{|x-2|} \geq x^2+\frac{1}{|2-x|}$$

Počet všech celých čísel $oldsymbol{x}$, která splňují uvedenou nerovnici, je:

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Do pravoúhlého lichoběžníku ABCD na obrázku je vepsán pravoúhlý rovnoramenný trojúhelník DPC s pravým úhlem při vrcholu P. Má-li úsečka AB délku 20cm a úsečka AP délku 4cm, je délka úsečky AD rovna:

- \bigcirc A) $10\sqrt{2}cm$
- \bigcirc B) $12\sqrt{2}cm$
- o c) 14cm
- O D) 16cm

21.

Množina všech bodů o souřadnicích x,y, pro něž platí $x+|y-1|\leq 1$, je znázorněna šedou barvou na obrázku:

22.

Posloupnost (a_n) je určena rekurentním vzorcem $a_{n+1}=a_n+\sinrac{\pi}{4}$; $a_1=\sqrt{2}$. Její člen a_{100} je roven:

- \bigcirc A) $\frac{99}{2}\sqrt{2}$
- \bigcirc B) $50\sqrt{2}$
- \bigcirc c) $\frac{101}{2}\sqrt{2}$
- \bigcirc D) $51\sqrt{2}$
- \bigcirc E) $\frac{103}{2}\sqrt{2}$

23.

Vzdálenost středu elipsy $4x^2+y^2-16x+2y+13=0$ od přímky $p:x=1+t;y=1+t;t\in R$, je:

- \bigcirc A) $\frac{\sqrt{2}}{2}$
- \bigcirc B) $\frac{\sqrt{3}}{2}$
- \bigcirc c) $\frac{3\sqrt{2}}{2}$
- \bigcirc D) $\frac{2\sqrt{3}}{3}$
- $\qquad \text{E)} \qquad \frac{3\sqrt{3}}{2}$

Petr splní za 0,5 hodiny 15 % úkolu, Pavlovi ke splnění 15 % úkolu stačí 20 minut. Oba společně by tento úkol splnili za:

- A) 70 minut
- B) 75 minut
 - C) 80 minut
- D) 85 minut
- E) 90 minut

25.

Střední útočník fotbalového mužstva FC Kotěhůlky pravil: "Budu-li dnes ve formě, dám aspoň dvě branky." Považujemeli toto sdělení za výrok, je jeho negace výrok:

- A) Nebudu-li dnes ve formě, nedám aspoň dvě branky.
- B) Budu-li dnes ve formě, nedám aspoň dvě branky.
- C) Budu ve formě a dám nejvýš jednu branku.
- D) Budu ve formě a dám aspoň dvě branky.
 - E) Nebudu ve formě a nedám ani jednu branku.

26.

Objem pravidelného šestibokého jehlanu s podstavnou hranou velikosti a a odchylkou α boční hrany od roviny podstavy je:

- $a^3\sqrt{3}\tan\alpha$
- \bigcirc B) $\frac{a^3\sqrt{3}}{3}\tan\alpha$
- \bigcirc c) $\frac{a^3\sqrt{2}}{2}\tan\alpha$
- \bigcirc D) $\frac{a^3\sqrt{2}}{3}\tan\alpha$
- $\bigcirc \qquad {\rm E)} \qquad \frac{a^3\sqrt{3}}{2}\tan\alpha$

27. Poče	t celýc	ch kladných čísel $oldsymbol{x}$, která jsou řešením soustavy nerovnic		
x -	3 >	2		
	$ x^2 $			
je rov	en čís	slu:		
	A)	0		
	B)	1		
	C)	2		
	D)	3		
	E)	nekonečně mnoho		
28. Součin dvou přirozených čísel, jejichž nejmenší společný násobek je 420 a největší společný dělitel 14, je:				
	A)	420		
	B)	2 940		
	C)	5 880		
	D)	8 820		
	E)	11 760		
Definiční obor funkce $y=\sqrt{rac{6+x-x^2}{ x^2-x-6 }}$ je interval:				
	A)	(-1;3)		
	B)	(-2;3)		
	C)	(-1;2)		
	D)	(-2;2)		
0	E)	(-2;1)		
30. Skořápkář hraje se zákazníkem následující hru: K dispozici má tři neprůhledné kelímky, přičemž pod jedním z nich tajně ukryje kuličku. Poté co si zákazník náhodně jeden kelímek vybere, skořápkář odklopí jeden ze zbývajících dvou kelímků a ukáže zákazníkovi, že pod ním kulička není. Pravděpodobnost, že se kulička nachází v posledním kelímku, který zůstal (tedy v tom, který si zákazník nevybral), je rovna číslu:				
0	A)	$\frac{1}{3}$		
0	B)	$\frac{1}{2}$		
0	C)	$\frac{2}{3}$		

 $\frac{3}{4}$ 1

D)

E)

1) A	11) E	21) E
2)D	12) A	22) C
3) E	13) A	23) C
4) B	14) B	24) C
5) D	15) E	25) C
6) D	16) C	26) E
7) B	17) D	27) A
8) C	18) B	28) C
9) B	19) D	29) B
10) B	20) D	30) C