Assessment of Aquatic Macroinvertebrates on USFS / BLM Lands of the Crooked and Sage Creek Watersheds

Prepared for Darin Watschke, USFS Custer National Forest, Billings, Agreement 05-CS-11015600-036

by

David M. Stagliano Aquatic Ecologist August 2009

Crooked Creek upstream of Fish Exclusion Barrier

Acknowledgements

We would like to thank Darrin Watschke, USFS Custer Forest in the Billings Office, and Ann Carlson of the USFS Region 1 office in Missoula for implementing the agreement 05-CS-11015600-036 from which most of the macroinvertebrate work is taking place. Meghan Burns expertly provided the GIS map and Amandi Standley helped process the macroinvertebrate samples. Paul Hendricks, MTNHP identified the terrestrial snails collected during this site visits.

All photos in the report were taken by MTNHP personnel, unless otherwise noted

Crooked and Sage Creek Watershed Aquatic Assessment

Objectives.

Project goals of the 2008 MTNHP Aquatic Surveys of the Crooked and Sage Creek Watersheds were: 1) to sample and assess aquatic macroinvertebrate community integrity and diversity in relation to the Crooked Creek fish exclusion barrier completed in 2007; compare upstream and downstream macroinvertebrate communities.

2) to evaluate additional aquatic sites in the area of interest potentially containing unique, species of concern (SOC) or important indicator macroinvertebrate taxa in relation to future restoration projects (i.e., Sage Creek).

Habitat Evaluations.

On-site habitat assessments were conducted using the rapid assessment protocol (RBP Level 1, scores 0-200) developed for the EPA by Barbour et al. (1999) with modifications and additions by the National Aquatic Assessment of the Bureau of Land Management (BLM)(scores 0-24) (http://www1.usu.edu/buglab/forms/Bug%20Protocol%20form.pdf). Using the BLM assessment protocols, the reach was divided into 10 equally spaced transects. Parameters recorded at each were: wetted width, bankfull width, 3 channel depth measurements, large woody debris, riparian shading and benthic substrate (in % composition per transect) based on Wollman size-classes were measured at each transect perpendicular to the stream channel. Basic water chemistry parameters (temperature, pH, conductivity) were recorded prior to sampling using a Horiba H-10 water monitor. The goal of these evaluations is to characterize local reach geomorphology, riparian and in-stream habitat, and other characteristics that influence aquatic community integrity. The LUI (Livestock Use Index) was also incorporated into the riparian habitat assessment, this involved a 75m zig-zag walk from the bottom of the reach on the left and right banks of the stream channel visually counting the number of cow pies, and noting if these are new or old (see BLM Assessment Sheet: http://www1.usu.edu/buglab/forms/Bug%20Protocol.pdf). Sites ranking higher using these protocols are determined to have higher quality local-scale habitat. Habitat assessments were performed during the same visit as the biological sampling.

Macroinvertebrate Communities:

Macroinvertebrates were collected from riffle geomorphic habitat units from evenly spaced transects along and across the reach with a 500-micron D-frame net (8 discrete samples). This method follows the EMAP Targeted Riffle protocol outlined in Lazorchak (1998) and modified for the BLM National Monitoring Lab

(http://www1.usu.edu/buglab/forms/Bug%20Protocol.pdf)

All 8 samples (8 x 0.075m²) taken within the transects were composited into a 5 gallon bucket, and the organisms were washed onto a 500-micron sieve, transferred to a 1 liter Nalgene bottle, labeled and preserved in 95% ethanol and brought to the MTNHP lab in Helena for processing. Small, low volume (trickle) spring macroinvertebrate samples (Sage Creek Campground Spring, Commissary Creek Spring) were collected opportunistically with dipnets and aquarium nets

covering all habitats within the reach. Moss samples (1ft²) taken above the fish barrier were measured with a ruler and scraped off the cobbles by hand so as not to disturb the underlying cobbles.

Figure 1. EMAP Targeted Riffle Composite protocol used in macroinvertebrate collection.

Samples were processed (sorting, identification, and data analysis) by the author (D. Stagliano) at the Helena NHP lab following BLM National Aquatic Monitoring Methods (sensu stricto EMAP protocols Lazorchak et. al.1998). Macroinvertebrates (500 individuals per sample when available) were identified to the lowest taxonomic level, imported into EDAS (Jessup 2006), and biological integrity metrics were calculated from the data using the newest multimetric macroinvertebrate (MMI) protocols (Jessup et al. 2005, Feldman 2006). Metric results were then scored using the Montana DEQ bioassessment criteria and each sample categorized as non-impaired or impaired according to threshold values (Table 1). The impairment threshold set by MT DEQ is 48 for the Low Mountain/Valley Index and 63 for the Mountain Index thus any scores above this threshold are considered unimpaired.

Table 1. Impairment determinations from the MMI and O/E (RIVPACS) models (taken from Jessup 2005, Feldman 2006).

Ecoregion	RIVPACS	MMI	Impairment Determination	
Mountain	≥ 0.8 or ≤ 1.2	≥ 63	Not impaired	
	< 0.8 or > 1.2	< 63	Impaired	
Low Valley	≥ 0.8 or ≤ 1.2 < 0.8 or > 1.2	≥ 48 < 48	Not impaired Impaired	
Eastern Plains	≥ 0.8 or ≤ 1.2 < 0.8 or > 1.2	≥ 37 < 37	Not impaired Impaired	

The macroinvertebrate MMI score is based upon a series of metrics that measure attributes of benthic macroinvertebrate communities correlating with changes to a stream system (in the form of anthropogenic caused changes). There are no existing DEQ impairment criteria for Spring Macroinvertebrate Communities; therefore, we consider the comparison of observed taxa vs. expected "reference condition taxa" from similar springs in the ecoregion (see Stagliano 2008).

Study Sites

All sites chosen for this USFS Crooked/Sage Creek stream evaluation & watershed assessment lie within the USFS Custer National Forest (Pryor Mountains) or the BLM Billings Field Office Management Area in Carbon Co., MT (Figure 2). Habitat assessments, water quality measurements and macroinvertebrate samples were performed in 2008 at 13 lotic sites, 7 of these were pre-determined (per conversation with D. Watschke), and an additional 6 spring-influenced sites within the USFS lands were discovered while accessing other areas of the assessment region (Table 2), 3 sites included in this assessment were sampled in 2007. Three of the apriori chosen stream sites (Cave, Lost Water, and lower Commissary Creek) as well as 9 other randomly visited sites were dry (Table 2). Biological community integrity was calculated at all sites using the macroinvertebrate multi-metrics (MT DEQ MMI's). Site summary descriptions based on the overall community integrity and site observations are included.

Figure 2. Sites visited in the USFS Pryors and BLM lands of the Crooked & Sage Creek Watersheds. Ecological Biointegrity Values are based on habitat evaluations & macroinvertebrate communities (see Methods).

Table 2. USFS Custer Forest Pryor 2008 project sites visited Sept. 3rd-5th. Sites with an asterisk (*) were sampled by NHP in 2007 during another project visit.

Site Code	Sites Visited	HUC	Latitude	Longitude	Elev (ft)	Water Flow	Macro Sample
YL_Pr181	Piney Creek trib	10080014	45.1290	-108.5551	6601	dry	
YL_Pr182	Piney Creek trib	10080014	45.1332	-108.5567	6743	dry	
YL_Pr183	Piney Creek trib	10080014	45.1245	-108.5565	6506	dry	
YL_Pr184	Piney Creek (BLM)	10080014	45.1031	-108.5958	5022	flowing	X
YL_Pr184u	Piney Creek (USFS)*	10080014	45.1060	-108.5950	5031	flowing	X
	Rattlesnake (CRVI)						
YL_Pr185	Demijohn Flat	10080010	45.0805	-108.4002	5659	upland	
YL_Pr186	Crooked Creek blwb	10080010	45.0610	-108.3893	5620	flowing	X
YL_Pr187	Crooked Creek abvb	10080010	45.0617	-108.3890	5645	flowing	X
YL_Pr188	Crooked Creek upper	10080010	45.1213	-108.4176	5726	flowing	X
YL_Pr189	Crooked Creek trib	10080010	45.1220	-108.4180	5792	dry	
YL_Pr190	Wyoming Creek	10080010	45.1341	-108.4342	6177	flowing	X
YL_Pr191	Crooked Creek trib	10080010	45.1655	-108.4412	6631	flowing	X
YL_Pr192	Crooked Creek source	10080010	45.1818	-108.4361	7101	flowing	X
YL_Pr193	Crooked Creek Spring	10080010	45.1818	-108.4320	7240	flowing	X
YL_Pr194	Crooked Creek trib	10080010	45.1758	-108.4341	7172	flowing	X
YL_Pr195	Commissary Creek trib	10080010	45.1695	-108.4234	7329	dry	
YL_Pr196	Commissary Creek	10080010	45.1698	-108.4225	7279	trickle flow	X
YL_Pr197	Cave Creek trib	10080010	45.1712	-108.4111	7332	dry	
YL_Pr198	Cave Creek trib	10080010	45.1664	-108.4098	7403	dry	
YL_Pr199	Lost Water Creek	10080010	45.1494	-108.3637	7196	dry	
YL_Pr200	Cave Creek	10080010	45.1472	-108.3980	6700	dry	
YL_Pr201	Cave Creek trib	10080010	45.1663	-108.4228	7194	dry	
YL_Pr202	Rock Spring trib	10080010	45.1686	-108.4225	7316	trickle flow	X
YL_Pr203	Sage Creek trib	10080014	45.1897	-108.4752	6702	dry	
YL_Pr204	Sage Creek trib	10080014	45.1920	-108.4836	6677	dry	
YL_Pr205	Sage Creek trib	10080014	45.1985	-108.5023	6602	dry	
YL_Pr206	Sage Creek trib	10080014	45.2017	-108.5150	6654	dry	
YL_Pr207	Sage Creek trib	10080014	45.2039	-108.5269	6624	dry	
YL_Pr208	Sage Creek trib	10080014	45.2058	-108.5422	6612	dry	
YL_Pr210	Sage Creek trib	10080014	45.2049	-108.5574	6588	dry	
YL_Pr211	Sage Creek trib	10080014	45.2137	-108.5619	6576	dry	
YL_Pr212	Sage Creek	10080014	45.2141	-108.5565	5524	flowing	X
YL_Pr213	Sage Creek	10080014	45.2156	-108.5632	5520	flowing	\mathbf{X}
YL_PryS1	Sage Creek Spring *	10080014	45.2087	-108.5314	5724	trickle flow	\mathbf{X}
YL_PryS2	Sage Creek Spring * Sagebrush Lizard	10080014	45.2091	-108.5316	5753	trickle flow	X
YL_Pr214	(SCGR) incidental	10080014	45.2159	-108.5618	5571	upland	

Results Summary

The Crooked & Sage Creek watersheds of the Bighorn River and Shoshone Basins are typical of Bighorn/Pryor Mountain Upland Douglas Fir/ Ponderosa Pine forest transitioning to a sage-dominated Wyoming Basin landscape. We identified macroinvertebrate communities with moderate-excellent ecological integrity within 3 Aquatic Ecological System Types (AES) during this study: Small Transitional Foothills Streams (C001y), Small Headwater Forested Streams (D001y), and Northwestern Great Plains/Wyoming Basin Perennial Springs (S005). But significant anthropogenic factors exist in this region (ex. Non-native fish introductions, water diversions, improper grazing practices) to render some streams of these aquatic ecological system types in an impaired biological health condition (Sage, Crooked Creek headwaters and Commissary Creek).

Habitat Evaluations. Overall, 6 of the 16 flowing lotic sites had good habitat quality ranked by at least one of the habitat assessment methods (Table 3). Five of the 16 sites were ranked slightly impaired and five moderately to severely impaired. Dry sites visited (19) were not assessed, but generally had fewer riparian and in-stream channel problems because of minimal cattle use. Highest site habitat scores using BLM habitat assessment methods were measured at the 3 canyon Crooked Creek (CC) sites (inaccessible to cattle), Piney Creek, and a tributary to Crooked Creek. Highest deductions to the riparian assessment scores were in stream sediments, % bare ground and bank trampling by cattle intrusions into the riparian zone. These intrusions were specifically measured using the Livestock Use Index (LUI), which was very high for multiple streams including Commissary Creek, headwaters of Crooked Creek, and Wyoming Creek. High sediment loading was documented at Wyoming Creek and both Sage Creek sites despite no overly obvious riparian disruptions in the immediate riparian area of the latter sites.

Macroinvertebrate Communities: Overall, 112 macroinvertebrate taxa were reported from the USFS Custer 2008 assessment sites (Appendix A). Average macroinvertebrate taxa richness per site was 24.67, and the highest taxa richness reported was 48 taxa at the CC site above barrier. Unique or infrequently collected taxa include *Helichus striatus*, a Dryopid riffle beetle collected only below the fish barrier and *Meringodixa chalonensis*, a cold-water obligate dipteran taxa found only in the CC tributary sample. The upper canyon Crooked Creek site (YL_Pr188) had the only reported collection of the cold-water caddisfly, *Rhyacophila hyalinata gr.* in good numbers; while Wyoming Creek reported the only occurrence of *Rhyacophila oreta*, a spring influenced associate caddisfly. Two unique riffle beetles, *Lara avara and Narpus concolor* were only reported from the Sage Creek sites; these are typically associated with large woody debris (LWD). Using the Montana DEQ multimetric index (MMI), 8 (10 samples) of the 16 sites were ranked non-impaired (good to excellent biological integrity), 4 were slightly impaired and 4 were moderately-severely impaired (Figure 2, Table 3).

All sample sites within the Crooked Creek canyon showed good to excellent benthic integrity. The progression of decreasing biointegrity (as measured by the DEQ MMI) as one proceeds up and out of the Crooked Creek Canyon is significant, and seems causally linked to increasing riparian degradation as cattle have access to the tributaries and mainstem of Crooked Creek (Figure 3).

Within Crooked Creek sample comparisons: there was no significant difference in macroinvertebrate community quality ranked by MT DEQ MMI above and below the barrier

(Figure 2), but there was a slight difference in the furthest upstream Crooked Creek canyon site (MMI=85), which had more coldwater community taxa (Table 3).

Figure 3. Macroinvertebrate MMI scores from Crooked Creek (CC) below the fish barrier (FB) to the Source Spring. Dotted line is the impairment threshold score(63).

Figure 4. MMI scores from Crooked Creek (CC) above and below the fish barrier (FB). Error bars=SE (n=2). Dotted line is the impairment threshold score (63).

Despite no difference in the MMI scores above and below barrier, the species richness above the barrier is noticeably higher (42.5 vs. 29.5), but not significant (TTEST = 0.12, unequal variances) (Table 3) and the coldwater taxa above far outnumber those below the barrier (15 vs. 8 spp.) The Hilsenhoff Biotic Index Scores (HBI: lower scores are better) indicate that the macroinvertebrate community downstream of the barrier is significantly more tolerant to organic enrichments (Figure 5).

Figure 5. HBI scores for Crooked Creek above and below the fish barrier (FB). Error bars=SE (n=2).

The moss grab samples resulted in a slightly different macroinvertebrate community than the whole composite. Moss grabs (1ft²) did not contain large stoneflies which prefer large cobble substrate, but had abundant mayfly, chironomid and caddisfly taxa with total numbers averaging 250 individuals per ft² of moss or about 2,675 individuals per m². Submerged moss growing on cobbles represented a significant portion of the benthic channel in the reaches above and below the barrier, averaging 2.0 m per 4.8m wetted width or about 42% of benthic coverage (see red box in site photos).

Table 3. Macroinvertebrate taxa richness, DEQ MMI= Multimetric Macroinvertebrate Index and Observed/Expected (O/E) scores for the spring sites. BLM Site Habitat Evaluation (>20=PFC), and WQ parameters LUI=Livestock Use Index, Cond =Conductivity. Bold-underlined scores are good-excellent index scores, shaded grey represent fair-good integrity conditions.

Site Code	Sites Sampled	BLM Site Eval	Taxa Richness	MMI	O/E	LUI	pН	Cond.	Temp.
YL_Pr184	Piney Creek (BLM land)	19 (79%)	29	62.97	na	12	7.4	291	7.9
YL_Pr184u	Piney Creek Spring (USFS)	21 (88%)	9	na	0.55	0	7.3	277	7.2
YL_Pr186	Crooked Creek blw barrier	22 (92%)	<u>29</u>	<u>71.00</u>	na	0	7.3	326	10.1
YL_Pr186_#2	Crooked Creek blw barrier	22 (92%)	<u>30</u>	<u>70.79</u>	na	0	7.3	326	10.1
YL_Pr187	Crooked Creek abv barrier	24 (100%)	<u>37</u>	<u>70.44</u>	na	0	7.3	351	9.0
YL_Pr187_#2	Crooked Creek abv barrier	24 (100%)	<u>48</u>	<u>80.15</u>	na	0	7.3	351	9.0
YL_Pr188	Crooked Creek upper	22 (92%)	<u>30</u>	<u>85.82</u>	na	0	7.6	365	5.8
YL_Pr190	Wyoming Creek	18 (75%)	<u>37</u>	55.87	na	15	7.6	499	5.2
YL_Pr191	Crooked Creek trib	17 (70%)	30	54.20	na	28	7.6	403	5.4
YL_Pr192	Crooked Creek source	15 (62%)	16	40.04	na	18	7.6	410	7.3
YL_Pr193	Crooked Creek Spring	19 (79%)	<u>17</u>	43.74	<u>0.75</u>	11	7.6	407	6.9
YL_Pr194	Crooked Creek trib	17 (70%)	15	41.18	0.6	16	7.6	411	7.8
YL_Pr196	Commissary Creek	17 (70%)	7	53.93	na	11	7.6	493	6.2
YL_Pr202	Rock Spring trib	18 (75%)	12	50.34	<u>0.75</u>	4	7.5	485	9.6
YL_Pr212	Sage Creek (campground)	19 (79%)	<u>39</u>	46.19	na	0	7.6	512	9.8
YL_Pr213	Sage Creek (below)	19 (79%)	<u>40</u>	38.95	na	0	7.6	508	11.5
YL_PryS1	Sage Creek Spring (low)	18 (75%)	12	27.76	0.48	0	7.6	323	9.7
YL_PryS2	Sage Creek Spring (up)	18 (75%)	8	32.66	0.54	0	7.6	344	19.0

Community results from the habitat and macroinvertebrate surveys combined to rank the following sites from highest biological integrity to lowest.

Overall Aquatic Ecological System Site Condition (in order of highest integrity to worst by AES):

Small Transitional Foothills Stream (AES C001y)-1) Crooked Creek (above barrier), 2) Crooked Creek (below barrier), 3) Piney Creek, 4) Sage Creek

Small Forested Headwater Stream (AES D001y)-1) Upper Crooked Creek, 2) Wyoming Creek, 3) Commissary Creek

Wyoming Basin Perennial Spring (AES code S005) - 1) Crooked Creek source spring, 2) Rock Spring (my name), 3) Commissary Creek Spring

Other Invertebrates

Most of the dry stream washes from Piney Creek and Crooked Creek drainages, including Lost Water, Cave Creek and Commissary Creek contained abundant terrestrial snail populations, the most common species appear to be the Subalpine Mountainsnail, *Oreohelix subrudis* (see photo). But there is also a smaller form as well (from sites #181, 182: dry washes upstream in Piney Creek) that is perhaps *Oreohelix strigosa berryi*, which is a MT Species of Concern (S1S2) (P. Hendricks, MTNHP, pers. comm.).

Site Descriptions

Management/Threats to these ecological systems include:

Grazing and livestock use around the riparian areas occurs and can have strong local effects resulting in sedimentation and stream widening at cattle crossings. Introductions of game or forage fish in downstream reaches or anywhere in the watershed can make their way upstream to these foothills rivers and become permanent residents.

Crooked Creek (Mainstem Site #1 below Fish Barrier)

Location: Accessed from 4-wheel drive trail from Demijohn Flat dropped into barrier site and walked downstream ~200m to the first riffle/pool set designated the top of the lower reach then went 150 m down to start sampling in the upstream direction.

Nearest Town: Lovell, WY
Ecoregion: Wyoming Basin (Typical)
Aquatic Ecological System Type: C001y.
Key Environmental Factors: Upstream
Riparian Grazing in the tributariessubstantial impacts, introduced fish
populations. Riparian Modificationsmoderate, recovering.

Rare or Unique Species: No rare species, but a diverse foothills macroinvertebrate assemblage including *Helichus striatus*, a Dryopid riffle beetle found only at this site.

Rare Features: An aesthetic canyon with oasis-type qualities and a native Yellowstone cutthroat throat population.

Introduced/Exotic Aquatic Species: Introduced fish---Rainbow Trout reported in this reach below barrier (FWP MFISH, USFS pers. com.)

Overall Ecological Site Condition: Good Reach Summary: The 150m reach consisted of 3 riffle/run/pool complexes with riffle/run geomorphology dominating the reach (125m) averaging 0.20m in depth. The mid and lower complex contain 8-10m long pools

averaging 0.4m in depth, and contained good fish holding habitat. This stream reach lacked a diversity of microhabitats, cobbles dominated the substrate (70% of transects) and lacked undercut banks or large woody debris. The substrate of the pool was gravel/pebble dominated with some silt and cobbles. Vegetation coverage along the riparian stream channel was dominated by trees & shrubs and largely intact. Livestock use index (LUI) was absent with 0 cow pies counted on a 75m walk of both left and right banks.

Reach Riparian Ranking: BLM= 92% (22 of 24)

Macroinvertebrate Community Quality: MTMMI=70.8

Crooked Creek (Mainstem Site #2 above Fish Barrier, cover photo)

Location: Accessed from 4-wheel drive trail from Demijohn Flat dropped into barrier site and walked upstream ~200m to the first riffle/pool set designated the bottom of the upper barrier reach then went 150 m upstream from that point to sample in the upstream direction.

Nearest Town: Lovell, WY
Ecoregion: Wyoming Basin (Typical)
Aquatic Ecological System Type: C001y.
Key Environmental Factors: Upstream
Riparian Grazing in the tributaries: modsubstantial impacts, introduced fish
populations: low-mitigated by the barrier.
Riparian Modifications & grazing in the
canyon are minimal. Fire-killed trees on the
steep canyon slopes ~2km upstream of reach.

Rare or Unique Species: No rare species, but a diverse foothills macroinvertebrate assemblage with 15 coldwater obligate taxa. Rare Features: An aesthetic canyon with oasis-type qualities and a native Yellowstone cutthroat throat population.

Introduced/Exotic Aquatic Species:
Introduced fish---Rainbow Trout reported in this reach below barrier (FWP MFISH, USFS)

Overall Ecological Site Condition: Good to Excellent

Reach Summary: The 150m reach consisted of 3 riffle/run/pool complexes with riffle/run

geomorphology dominating the reach (125m) averaging 0.20m in depth. The mid and lower complex contains 8-10m pools averaging 0.4m in depth, and contained the most fish holding habitat. This stream reach lacked a large diversity of fish holding macrohabitats, cobbles dominated the substrate (70% of transects) and lacked undercut banks and few large woody debris. The substrate of the pool was gravel/pebble dominated with some silt and cobbles. Vegetation coverage along the riparian stream channel was dominated by trees & shrubs and largely intact. Livestock use index (LUI) was none with 0 cow pies counted on a 75m walk of both left and right banks.

pers. com.)

Reach Riparian Ranking: BLM= 100% (24 of 24) Macroinvertebrate Community Quality: MTMMI = 75.3

Crooked Creek (Mainstem Site YL S188 above Fish Barrier upper canyon)

Ecoregion: Pryor/Bighorn Mountain Foothills

Aquatic Ecological System Type: D001y-Forested Headwater River

Key Environmental Factors: Riparian Grazing—slight to moderate impacts upstream, but none in the immediate reach. Fire-killed trees on the steep canyon slopes within the reach may contribute to LWD additions to the stream for increased habitat complexity.

Rare or Unique Species: No rare SOC species, but abundant cold-water caddisfly, *Rhyacophila hyalinata gr* present in the samples

Rare Features: No rare features documented Introduced/Exotic Aquatic Species: None Overall Ecological Site Condition: Good to Excellent

Reach Summary:

This stream reach has moderate quality instream aquatic habitat with some boulder drop pools and LWD overhangs. Livestock use index (LUI) was zero, with no livestock able to access this site in the canyon.

Riparian Ranking: BLM= 92% (22 of 24) Proper Functioning Condition (PFC) Reach Riparian Geomorphology: The geomorphology of this stream reach is a Rosgen B-3 with a medium gradient (2 %), moderate sinuosity, a riffle dominated configuration with substrate dominated by cobble/boulders and pebble runs. Pools are small-largely absent averaged >30 cm in depth, average wetted width of the reach was 2.8m.

Macroinvertebrate Community: This excellent quality community is dominated by the Traditional Trout Stream Assemblage (#90, Stagliano 2005) and members of the Small Foothills Transitional Assemblage (#105, Stagliano 2005), overall a diverse macroinvertebrate assemblage with 11 coldwater obligate taxa.

Macroinvertebrate Community Quality: DEQ MMI=85.8

Wyoming Creek (YL Pr190)

Ecoregion: Pryor/Bighorn Mountain Foothills

Aquatic Ecological System Type: D001y-Forested Headwater Stream

Key Environmental Factors: Riparian Grazing & Cattle Use—moderate impacts, near stream pocking.

Some sediment loading from riparian trampling or upstream beaver activity.

Rare or Unique Species: No SOC species, but a unique species to this assessment, the caddisfly, *Rhyacophila oreta*.

Rare Features: No rare features documented Introduced/Exotic Aquatic Species: None collected.

Overall Ecological Site Condition: Fair trending to Good with proper grazing management.

Reach Riparian Ranking: BLM= 18 (75%)

Reach

Functional At Risk Riparian Condition (FAR) Geomorphology: Rosgen B4. Surrounding bank materials are finer than the channel bed materials, gravel to pebble dominated substrate, with embedded cobbles and some LWD derived from a beaver upstream? (beaver chewed sticks). Cobbles have a dense moss growing on them increasing the microhabitat diversity.

Macroinvertebrate Community: A fairly diverse community of 37 taxa, including 8 cold-water obligate taxa, despite some obvious sediment loading issues and embedded cobbles. Also contains taxa indicative of a Wyoming Basin Spring indicating obvious spring discharge influence in the drainage.

Macroinvertebrate Community Quality: MMI= 55.87

Crooked Creek Trib/Mainstem (YL Pr191)

Ecoregion: Bighorn-Pryor Mountains/Wyoming Basin (Typical) **Aquatic Ecological System Type: D001y-Forested Headwater Stream**

Key Environmental Factors: Riparian Grazing & Cattle Use—moderate impacts, near stream pocking. Some sediment loading from riparian trampling and instream cattle use.

Rare or Unique Species: No SOC species, but a unique species to this assessment, *Meringodixa chalonensis*, a cold-water obligate dipteran taxa. Introduced/Exotic Species: None documented

Overall Ecological Site Condition: Degraded/Fair trending to Good with improved cattle management.

Riparian Ranking: BLM= 17 (70%) Functional At Risk Riparian Condition (FAR)

Fish Community: No fish species collected or expected.

Macroinvertebrate Community Quality: A fairly diverse community of 30 taxa, including 8 coldwater obligate taxa, despite some obvious impairments from sediment loading issues, riparian degradation and embedded cobbles. Also contains 6 taxa indicative of a Wyoming Basin Spring indicating obvious spring discharge influences in the drainage.

Macroinvertebrate Community Quality: DEQ MMI= 43.7

Crooked Creek Spring Source (YL Pr193)

Ecoregion: Bighorn-Pryor Mountains/Wyoming Basin (Typical)

Aquatic Ecological System Type: S005-Wyoming Basin Perennial Spring

Key Environmental Factors: Grazing—slight-moderate impacts, some fenced areas-but some riparian intrusions and degradation of riparian shrub, grasses and willows.

Rare or Unique Species: An oasis of a fairly healthy spring community of aquatic insects within a high forest-sagebrush transition landscape.

Introduced/Exotic Species: None documented **Overall Ecological Site Condition:** Fair trending to Good with improved cattle management.

Reach Riparian Ranking: BLM= 79% (19 of 24) Functional At Risk Riparian Condition (FAR) Fish Community: No fish species collected or expected.

Macroinvertebrate Community Quality O/E: The community sampled is consistent with a Wyoming Basin Perennial Spring Creek Assemblage sharing 15 of 20 reference condition invertebrates

Macroinvertebrate Community Quality: DEQ MMI= 43.7

Commissary Creek (YL Pr196)

Ecoregion: Bighorn-Pryor Mountains/Wyoming Basin (Typical) **Aquatic Ecological System Type: D001y-Forested Headwater Stream**

Key Environmental Factors: Grazing—slight-moderate impacts, some fenced areas-but channel intrusions and degradation have increased the width of the stream far more than it needs to be. Pocked and hummocked along the stream margins.

Rare or Unique Species: Surprisingly 2 coldwater invertebrate taxa are persisting in this degraded stream channel.

Introduced/Exotic Species: None documented **Overall Ecological Site Condition:** Degraded trending to Fair with improved cattle management.

Reach Riparian Ranking: BLM= 17 (70%) FAR Macroinvertebrate Community Quality O/E: The community sampled is consistent with a moderately degraded forested headwater stream sharing only 2 coldwater taxa common to reference condition invertebrates. The MMI does not accurately reflect how degraded the community largely due to the small sample size collected.

Macroinvertebrate Community Quality: DEQ MMI= 53 9

Sage Creek Mainstem (YL Pr212)

Ecoregion: Bighorn-Pryor Foothills/Wyoming Basin (Typical)

Aquatic Ecological System Type: Small Transitional Foothills Stream (AES C001y)

Key Environmental Factors: Riparian Grazing & Cattle Use—moderate impacts upstream, none in the immediate area. Heavy sediment loading from upstream riparian cattle use.

Rare or Unique Species: No SOC species, but a two unique riffle beetles, *Lara avara* and *Narpus concolor* (coldwater obligate coleopteran taxa). Introduced/Exotic Species: None

documented

Geomorphology: Rosgen F4
Overall Ecological Site Condition:

Degraded trending to Fair with improved instream habitat conditions and upstream cattle management.

Riparian Ranking: BLM= 19 (79%) Functional At Risk Riparian Condition (FAR)

Macroinvertebrate Community

Quality: A fairly diverse community of 39 taxa, including 4 cold-water obligate taxa, despite some obvious impairments from sediment loading issues, riparian degradation and heavy patches of aquatic vegetation. Community species are indicative of warmer water temps and dominance of finer benthic substrates.

Macroinvertebrate Community Quality: DEQ MMI= 46.19

Piney Creek (BLM Section YL Pr184)

Ecoregion: Bighorn-Pryor Foothills/Wyoming Basin (Typical)

Aquatic Ecological System Type: Small Transitional Foothills Stream (AES C001y)

Key Environmental Factors: Riparian Grazing & Cattle Use—slight impacts in the BLM section, some pocking and hummocking, none in the USFS spring outflow area. High discharge spring about 500m upstream.

Rare or Unique Species: Reported

Yellowstone cutthroat trout in reach (USFS pers. comm.). No SOC rare invertebrate species, but a good quality cold-water assemblage dominating the macroinverts.

Rare Features: No rare features documented, except a high discharge spring about 500m upstream pumping out pure snowmelt @ 5 degrees C.

Riparian Ranking: BLM= 19 (79%)
Functional At Risk Riparian Condition
(FAR)

Geomorphology: Rosgen B3 Substrate looks very similar to Crooked Creek canyon sites including moss covered cobbles.

Introduced/Exotic Aquatic Species: None documented

Overall Ecological Site Condition: Good (2007 & 2008)

Macroinvertebrate Community: A good quality & fairly diverse community of 29 taxa, including 9 cold-water obligate taxa, despite some obvious sediment and grazing issues within the reach.

Macroinvertebrate Community Quality: MT **MMI= 62.97**

Literature Cited

- Barbour, M., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. United States Environmental Protection Agency; Office of Water: Washington, D.C..
- Feldman, D. 2006. Interpretation of New Macroinvertebrate Models by WQPB. Draft Report. Montana Department of Environmental Quality, Planning Prevention and Assistance Division, Water Quality Planning Bureau, Water Quality Standards Section.1520 E. 6th Avenue, Helena, MT 59620. 14 pp.
- Jessup, B., J. Stribling; and C. Hawkins. 2005. Biological Indicators of Stream Condition in Montana Using Macroinvertebrates. Tetra Tech, Inc. November 2005 (draft).
- Jessup, B. 2006. Ecological Data Application System (EDAS) Version MT 3.3.2k A User's Guide. Tetra Tech, Inc.
- Lazorchak, J.M., Klemm, D.J., and D.V. Peck (editors). 1998. Environmental Monitoring and Assessment Program Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C.
- Montana Department of Environmental Quality (DEQ). 2005. Sample Collection, Sorting, and Taxonomic Identification of Benthic Macroinvertebrates. Water Quality Planning Bureau. Standard Operation Procedure (WQPBWQM-009).
- Stagliano, David, M. 2008. Aquatic Macroinvertebrate Inventory & Assessment of Springs and Seeps within Bighorn Canyon National Recreation Area (BICA), Report to the Western National Parks Association and the Greater Yellowstone Network Inventory & Monitoring Program, National Park Service. http://mtnhp.org/reports/BICASprings.pdf
- Stagliano, David, M. 2005. Aquatic Community Classification and Ecosystem Diversity in Montana's Missouri River Watershed. Report to the Bureau of Land Management. Montana Natural Heritage Program, Helena, Montana. 65 pp. plus appendices. http://www.mtnhp.org/reports.asp#Ecology

Appendix A. Macroinvertebrate Taxa / Species by site for the 2008 USFS/BLM Pryors Assessment. O.T.U is the taxonomic unit that the MMI uses in the calculations. Rep= Replicate sample. Bolded taxa are cold-water stenotherms (obligate indicator taxa)

Crooked Creek	O.T.U	Final Taxa ID	Rep 1	Rep 2	
Below barrier	0.1.0	i illai Taxa ib	itep i	Kep z	
YL_Pr186	Dryopidae	Helichus striatus	3	2	
YL_Pr186	Microcylloepus	Microcylloepus pusillus	13	8	
YL_Pr186	Optioservus	Optioservus	32	21	
_	1	quadrimaculatus			
YL_Pr186	Chelifera_Metachela	Chelifera	6	4	
YL_Pr186	Chironominae	Micropsectra	36	21	
YL Pr186	Chironominae	Rheotanytarsus	31	20	
YL_Pr186	Diamesinae	Pagastia	55	33	
YL_Pr186	Diamesinae	Pseudodiamesa	9	6	
YL_Pr186	Orthocladiinae	Eukiefferiella devonica	23	12	
YL_Pr186	Orthocladiinae	Eukiefferiella Gracei Gr.	9	4	
YL_Pr186	Orthocladiinae	Parametriocnemus	12	8	
YL_Pr186	Orthocladiinae	Tvetenia bavarica	58	22	
YL_Pr186	Simuliidae	Prosimulium	16	8	
YL_Pr186	Tipula	Tipula	2	1	
YL_Pr186	Baetis	Baetis bicaudatus	160	122	
YL_Pr186	Cinygmula	Cinygmula	79	42	
YL_Pr186	Drunella doddsi	Drunella doddsi	14	5	
YL Pr186	Serratella	Serratella tibialis	13	8	
YL_Pr186	Amphinemura	Amphinemura banksi	29	18	
YL_Pr186	Doroneuria	Doroneuria theodora	11	3	
YL_Pr186	Hesperoperla	Hesperoperla pacifica	26	11	
YL_Pr186	Kogotus	Kogotus modestus	3	2	
YL_Pr186	Malenka	Malenka	5	3	
YL_Pr186	Zapada	Zapada cinctipes	60	27	
YL_Pr186	Brachycentrus	Brachycentrus americanus	6	2	
YL_Pr186	Neothremma	Neothremma alicia	304	176	
YL_Pr186	Parapsyche	Parapsyche elsis	10	7	
YL_Pr186	Psychoglypha	Psychoglypha	3	1	
YL Pr186	Rhyacophila brunnea Gr.	Rhyacophila Brunnea Gr.	20	8	
YL_Pr186	Rhyacophila sibirica gr.	Rhyacophila narvae	1	0	
12_11100	rany acopinia sionica gi.	Total Taxa	30	29	29.5
Crooked		Total Taxa			
Creek Above					
barrier					
YL_Pr187	Ameletus	Ameletus similior	30	22	
YL_Pr187	Turbellaria	Polycelis coronata	24	13	
YL Pr187	Heterlimnius	Heterlimnius corpulentus	11	11	
YL_Pr187	Microcylloepus	Microcylloepus pusillus	5	0	
YL_Pr187	Optioservus	Optioservus	5	0	
1L_11107	Optioseivus	quadrimaculatus	Ü	Ŭ	
YL_Pr187	Chelifera_Metachela	Chelifera	6	4	
YL_Pr187	Chironominae	Micropsectra	95	45	
YL_Pr187	Chironominae	Rheotanytarsus	11	0	
YL_Pr187	Diamesinae	Pagastia	28	7	
YL_Pr187	Diamesinae	Pagasna Pseudodiamesa	1	0	
1L_F110/	Diallicsiliac	1 seudodiamesa	'	<u> </u>	

YL_Pr187	Dicranota	Dicranota	1	0	
YL_Pr187	Hexatoma	Hexatoma	1	2	
YL_Pr187	Muscidae	Limnophora	3	9	
YL_Pr187	Orthocladiinae	Brillia	8	5	
YL_Pr187	Orthocladiinae	Cricotopus	6	0	
YL_Pr187	Orthocladiinae	Eukiefferiella Brehmi Gr.	8	8	
YL_Pr187	Orthocladiinae	Eukiefferiella devonica	12	3	
YL_Pr187	Orthocladiinae	Eukiefferiella Gracei Gr.	5	0	
YL_Pr187	Orthocladiinae	Hydrobaenus	1	1	
YL_Pr187	Orthocladiinae	Parametriocnemus	6	3	
YL_Pr187	Orthocladiinae	Rheocricotopus	7	3	
YL_Pr187	Orthocladiinae	Tvetenia bavarica	55	11	
YL_Pr187	Pericoma/Telmatoscopus	Pericoma	6	2	
YL_Pr187	Simuliidae	Prosimulium	2	0	
YL_Pr187	Tipula	Tipula	2	2	
YL_Pr187	Baetis	Baetis bicaudatus	169	133	
YL Pr187	Cinygmula	Cinygmula	157	97	
YL_Pr187	Drunella coloradensis	Drunella coloradensis	64	27	
YL_Pr187	Drunella doddsi	Drunella doddsi	13	9	
YL_Pr187	Epeorus	Epeorus longimanus	4	5	
YL_Pr187	Serratella	Serratella tibialis	39	23	
YL_Pr187	Amphinemura	Amphinemura banksi	5	2	
YL_Pr187	Chloroperlidae	Sweltsa	34	13	
YL_Pr187	Hesperoperla	Hesperoperla pacifica	28	20	
YL_Pr187	Isoperla	Isoperla	4	2	
YL_Pr187	Kogotus	Kogotus modestus	3	0	
YL_Pr187	Leuctridae	Despaxia augusta	1	1	
YL_Pr187	Malenka	Malenka	6	1	
YL_Pr187	Zapada	Zapada cinctipes	47	32	
YL_Pr187	Zapada	Zapada oregonensis gr.	7	1	
YL_Pr187	Brachycentrus	Brachycentrus americanus	2	2	
YL_Pr187	Dolophilodes	Dolophilodes	3	0	
YL_Pr187	Ecclisomyia	Ecclisomyia	1	2	
YL_Pr187	Lepidostoma	Lepidostoma cascadense	1	1	
YL_Pr187	Neothremma	Neothremma alicia	216	161	
YL_Pr187	Rhyacophila brunnea Gr	Rhyacophila Brunnea Gr.	41	21	
YL_Pr187	Rhyacophila sibirica gr.	Rhyacophila narvae	6	2	
YL_Pr187	Rhyacophila vagrita gr.	Rhyacophila vagrita	9	0	
		Total Taxa	48	37	42

Appendix A.	Appendix A. Continued.						
Crooked Creek upper canyon	Final Taxa ID	# of Indiv.	Piney Creek (BLM)	Final Taxa ID	# of Indiv.		
YL_Pr188	Amphinemura banksi	3	YL_Pr184	Amphinemura banksi	35		
YL_Pr188	Baetis bicaudatus	24	YL_Pr184	Atractides	2		
YL_Pr188	Brillia	3	YL_Pr184	Baetis tricaudatus	110		
YL_Pr188	Chelifera	2	YL_Pr184	Brillia	25		
YL_Pr188	Cinygmula	60	YL_Pr184	Cinygmula	75		
YL_Pr188	Dicranota	1	YL_Pr184	Cricotopus	5		
YL_Pr188	Dolophilodes	3	YL_Pr184	Diamesa	2		
YL_Pr188	Drunella coloradensis	64	YL_Pr184	Dicranota	18		
YL_Pr188	Epeorus longimanus	4	YL_Pr184	Drunella coloradensis	35		
YL_Pr188	Isoperla	2	YL_Pr184	Eukiefferiella devonica	12		
YL_Pr188	Kogotus modestus	3	YL_Pr184	Eukiefferiella gracei	2		
YL_Pr188	Lepidostoma cascadense	1	YL_Pr184	Helophorus	2		
YL_Pr188	Limnophora	3	YL_Pr184	Heterlimnius corpulentus	30		
YL_Pr188	Malenka	6	YL_Pr184	Heterotrissocladius	5		
				marcidus			
YL_Pr188	Micropsectra	5	YL_Pr184	Kogotus modestus	5		
YL_Pr188	Neothremma alicia	2	YL_Pr184	Limnophora	1		
YL_Pr188	Optioservus	5	YL_Pr184	Neothremma alicia	220		
	quadrimaculatus						
YL_Pr188	Pagastia	4	YL_Pr184	Paraleptophlebia	5		
YL_Pr188	Parametriocnemus	5	YL_Pr184	Polycelis coronata	98		
YL_Pr188	Pericoma	4	YL_Pr184	Protzia	2		
YL_Pr188	Polycelis coronata	11	YL_Pr184	Pseudodiamesa	5		
YL_Pr188	Rheocricotopus	4	YL_Pr184	Rheocricotopus	65		
YL_Pr188	Rhyacophila brunnea gr.	3	YL_Pr184	Rheotanytarsus	12		
YL_Pr188	Rhyacophila hyalinata gr.	31	YL_Pr184	Rhyacophila brunnea gr.	11		
YL_Pr188	Rhyacophila vagrita	9	YL_Pr184	Sweltsa	15		
YL_Pr188	Serratella tibialis	11	YL_Pr184	Testudacarus	1		
YL_Pr188	Sweltsa	31	YL_Pr184	Tipula	4		
YL_Pr188	Zapada cinctipes	3	YL_Pr184	Zapada cinctipes	3		
YL_Pr188	Zapada Oregonensis gr.	6					
	Total Taxa	29		Total Taxa	28		

Appendix A. Continued.

Wyoming Creek	Final Taxa ID	# of Indiv.
UYL_WY5	Amphinemura banksi	54
UYL_WY5	Baetis bicaudatus	4
UYL_WY5	Baetis tricaudatus	17
UYL_WY5	Brillia	100
UYL_WY5	Cardiocladius	7
UYL_WY5	Clinocera	1
UYL_WY5	Cricotopus	18
UYL_WY5	Dicranota	3
UYL_WY5	Dixa	3
UYL_WY5	Drunella coloradensis	1
UYL_WY5	Drunella doddsi	2
UYL_WY5	Ephemerella excrucians	1
UYL_WY5	Eukiefferiella brehmi gr.	22
UYL_WY5	Eukiefferiella devonica	2
UYL_WY5	Eukiefferiella gracei gr.	10
UYL_WY5	Euparyphus	2
UYL_WY5	Isoperla	1
UYL_WY5	Lepidostoma cascadense	2
UYL_WY5	Limnephilus	1
UYL_WY5	Limnophora	2
UYL_WY5	Micropsectra	25
UYL_WY5	Neothremma alicia	2
UYL_WY5	Orthocladius	6
UYL_WY5	Ostracoda	10
UYL_WY5	Pagastia	20
UYL_WY5	Parakiefferiella	10
UYL_WY5	Parametriocnemus	5
UYL_WY5	Polycelis coronata	51
UYL_WY5	Pseudodiamesa	15
UYL_WY5	Rheocricotopus	14
UYL_WY5	Rhyacophila brunnea gr.	12
UYL_WY5	Rhyacophila oreta	1
UYL_WY5	Sweltsa	26
UYL_WY5	Tipula	5
UYL_WY5	Tubificidae	2
UYL_WY5	Tvetenia bavarica	6
UYL_WY5	Zapada Oregonensis gr.	27
	Total Taxa	37

Appendix	A. Continued.				
Crooked Creek trib/upper canyon	Final Taxa ID	# of Indiv.	Crooked Creek source	Final Taxa ID	# of Indiv.
YL_Pr191	Amphinemura banksi	66	YL_Pr192	Ablabesmyia	1
YL_Pr191	Baetis bicaudatus	5	YL_Pr192	Amphinemura banksi	11
YL_Pr191	Brachycentrus americanus	40	YL_Pr192	Atractides	2
YL_Pr191	Diamesa	12	YL_Pr192	Caloparyphus	1
YL_Pr191	Dicranota	25	YL_Pr192	Cinygmula	1
YL_Pr191	Diphetor hageni	4	YL_Pr192	Euparyphus	2
YL_Pr191	Eukiefferiella Gracei Gr.	3	YL_Pr192	Fossaria humilis	5
YL_Pr191	Euparyphus	4	YL_Pr192	Hesperophylax designatus	3
YL_Pr191	Heterlimnius corpulentus	86	YL_Pr192	Hydrobius	1
YL_Pr191	Hydrobaenus	48	YL_Pr192	Limnephilus	15
YL_Pr191	Kogotus modestus	8	YL_Pr192	Micropsectra	2
YL_Pr191	Meringodixa chalonensis	5	YL_Pr192	Ochthebius	1
YL_Pr191	Micrasema bactro	2	YL_Pr192	Parametriocnemus	3
YL_Pr191	Monodiamesa	6	YL_Pr192	Simulium	25
YL_Pr191	Neothremma alicia	5	YL_Pr192	Sphaerium	4
YL_Pr191	Ochthebius	1		Total Taxa	15
YL_Pr191	Optioservus quadrimaculatus	7			
YL_Pr191	Ostracoda	22			
YL_Pr191	Pagastia	17			
YL_Pr191	Pericoma	2			
YL_Pr191	Polycelis coronata	45			
YL_Pr191	Pseudodiamesa	11			
YL_Pr191	Psychoglypha	4			
YL_Pr191	Radotanypus	2			
YL_Pr191	Rhyacophila Brunnea Gr.	25			
YL_Pr191	Serratella tibialis	7			
YL_Pr191	Simulium	5			
YL_Pr191	Sphaerium fabale	5			
YL_Pr191	Tanytarsus	2			
YL_Pr191	Zapada cinctipes	2			
	Total Taxa	30			

Appendix A. Continued.

Sage Creek	Final Taxa ID	# of Indiv.	Commissary Creek	Final Taxa ID	# of Indiv.
Springs					
YL_PryS1	Argia	4	YL_Pr196	Cinygmula	88
YL_PryS1	Caloparyphus	2	YL_Pr196	Hydrobaenus	25
YL_PryS1	Sphaerium	5	YL_Pr196	Polycelis coronata	23
YL_PryS1	Baetis tricaudatus	4	YL_Pr196	Tvetenia bavarica	12
YL_PryS1	Tubificidae	2	YL_Pr196	Pseudodiamesa	6
YL_PryS1	Fossaria humilis	7	YL_Pr196	Hesperophylax designatus	12
YL_PryS1	Hesperophylax designatus	9	YL_Pr196	Amphinemura banksi	22
YL_PryS1	Valvata lewisi	1		Total Taxa	7
YL_PryS1	Radotanypus	1	Rock Creek Spring		
YL_PryS1	Pseudosuccinea columella	1	YL_Pr202	Limnophora	4
YL_PryS1	Cymbiodyta	2	YL_Pr202	Pseudodiamesa	11
YL_PryS1	Hydroporus	2	YL_Pr202	Zapada Oregonensis gr.	1
•	Total Taxa	12	YL_Pr202	Baetis tricaudatus	45
			YL_Pr202	Tanytarsus	5
YL_PryS2	Caloparyphus	12	YL_Pr202	Amphinemura banksi	77
YL_PryS2	Sphaerium	5	YL_Pr202	Diamesa	5
YL_PryS2	Baetis tricaudatus	13	YL_Pr202	Hydrobaenus	25
YL_PryS2	Hesperophylax designatus	9	YL_Pr202	Diphetor hageni	3
YL_PryS2	Valvata lewisi	4	YL_Pr202	Dicranota	2
YL_PryS2	Radotanypus	4	YL_Pr202	Parametriocnemus	4
YL_PryS2	Cymbiodyta	1	YL_Pr202	Polycelis coronata	32
YL_PryS2	Amphiagrion abbreviatum	3		Total Taxa	12
-	Total Taxa	8			

Appendix A. Continued.

Sage Creek (campground)	Final Taxa ID	# of Indiv.	Sage Creek (down)	Final Taxa ID	# of Indiv.
YL_Pr212	Ameletus oregonensis	6	YL_Pr213	Ameletus oregonensis	1
YL_Pr212	Amphinemura banksi	30	YL_Pr213	Amphinemura banksi	22
YL_Pr212	Baetis tricaudatus	14	YL_Pr213	Baetis tricaudatus	53
YL_Pr212	Brachycentrus americanus	1	YL_Pr213	Brachycentrus americanus	23
YL_Pr212	Cleptelmis addenda	2	YL_Pr213	Cleptelmis addenda	6
YL_Pr212	Diphetor hageni	4	YL_Pr213	Diphetor hageni	5
YL_Pr212	Ecclisomyia	1	YL_Pr213	Ecclisomyia	1
YL_Pr212	Ephemerella excrucians	15	YL_Pr213	Ephemerella excrucians	23
YL_Pr212	Hydroptila	1	YL_Pr213	Hydroptila	7
YL_Pr212	Lara avara	1	YL_Pr213	Lara avara	5
YL_Pr212	Larsia	3	YL_Pr213	Larsia	1
YL_Pr212	Lepidostoma unicolor	3	YL_Pr213	Lepidostoma unicolor	1
YL_Pr212	Limnophila	1	YL_Pr213	Limnophila	2
YL_Pr212	Lumbricina	5	YL_Pr213	Lumbricina	11
YL_Pr212	Micrasema bactro	3	YL_Pr213	Micrasema bactro	6
YL_Pr212	Musculium	10	YL_Pr213	Musculium	10
YL_Pr212	Narpus concolor	2	YL_Pr213	Narpus concolor	4
YL_Pr212	Odontomesa	1	YL_Pr213	Odontomesa	1
YL_Pr212	Optioservus	1	YL_Pr213	Optioservus	7
YL_Pr212	Oreodytes	1	YL_Pr213	Oreodytes	1
YL_Pr212	Pagastia	7	YL_Pr213	Pagastia	2
YL_Pr212	Paraleptophlebia	90	YL_Pr213	Paraleptophlebia	36
YL_Pr212	Parametriocnemus	2	YL_Pr213	Parametriocnemus	12
YL_Pr212	Pentaneura	1	YL_Pr213	Pentaneura	7
YL_Pr212	Physella	3	YL_Pr213	Physella	31
YL_Pr212	Pisidium	40	YL_Pr213	Pisidium	40
YL_Pr212	Polycentropus	4	YL_Pr213	Pseudodiamesa	2
YL_Pr212	Prodiamesa	2	YL_Pr213	Ptychoptera	44
YL_Pr212	Pseudodiamesa	1	YL_Pr213	Radotanypus	1
YL_Pr212	Ptychoptera	34	YL_Pr213	Rheocricotopus	6
YL_Pr212	Radotanypus	7	YL_Pr213	Rhyacophila brunnea gr.	2
YL_Pr212	Rheocricotopus	6	YL_Pr213	Serratella tibialis	5
YL_Pr212	Rhyacophila brunnea gr.	5	YL_Pr213	Sialis velata	2
YL_Pr212	Serratella tibialis	4	YL_Pr213	Simulium	33
YL_Pr212	Sialis velata	2	YL_Pr213	Thienemannimyia gr.	12
YL_Pr212	Simulium	13	YL_Pr213	Tipula	4
YL_Pr212	Thienemannimyia gr.	2	YL_Pr213	Zapada cinctipes	17
YL_Pr212	Tipula	3	YL_Pr213	Tubificidae	11
YL_Pr212	Zapada oregonensis gr.	2			
	Total Taxa	39		Total Taxa	38