allenamento • IT

Allenamento su ChinaForces (allenamento)

Come sanno tutti, per ottenere buoni risultati alle gare di informatica Filippo si allena sul sito segreto ChinaForces. Filippo ha già partecipato a N contest, e nell'i-esimo di questi ha ottenuto una performance A_i . Le performance sono tutte distinte.

Figura 1: Il logo di ChinaForces

Filippo vuole analizzare le sue performance nei contest, in particolare il suo miglioramento nel tempo. Filippo decide allora di definire un intervallo di contest $A_l, A_{l+1}, \ldots, A_r$ migliorante se e solo se verifica la seguente condizione:

• Esistono due indicix,y $(l \leq x < y \leq r)$ tali che $A_x = \min(A_l,A_{l+1},\ldots,A_r)$ e $A_y = \max(A_l,A_{l+1},\ldots,A_r).$

Aiuta Filippo a determinare quanti sono gli intervalli miglioranti.

Implementazione

Dovrai sottoporre un unico file, con estensione .cpp.

Tra gli allegati a questo task troverai un template allenamento.cpp con un esempio di implementazione.

Dovrai implementare la seguente funzione:

C++ long long conta(int N, vector<int> A);

La funzione viene chiamata durante l'esecuzione del programma con i seguenti parametri:

- L'intero N rappresenta il numero di contest a cui Filippo ha partecipato.
- L'array A, indicizzato da 0 a N-1, descrive le performance nei vari contest. In particolare, per ogni $0 \le i < N$, A_i indica la performance nell'*i*-esimo contest.

La funzione conta deve restituire il numero di intervalli miglioranti di A.

Grader di prova

Nella directory relativa a questo problema è presente una versione semplificata del grader usato durante la correzione, che puoi usare per testare le tue soluzioni in locale. Il grader di esempio legge i dati da stdin, chiama la funzione che devi implementare e scrive su stdout, secondo il seguente formato.

allenamento Pagina 1 di 2

L'input è composto da 2 righe, contenenti:

- Riga 1: l'intero N.
- Riga 2: N interi $A_0, A_1, ..., A_{N-1}$.

L'output è composto da un'unica riga:

• Riga 1: il valore restituito dalla funzione conta.

Assunzioni

- $1 < N < 10^7$.
- $1 \le A_i \le 10^9$.
- Gli A_i sono distinti.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

- Subtask 1 [0 punti]: Casi d'esempio.
- Subtask 2 [12 punti]: $N \le 20$
- Subtask 3 [17 punti]: $N \le 400$
- Subtask 4 [12 punti]: $N \le 1500$
- Subtask 5 [17 punti]: $N \le 5000$
- Subtask 6 [40 punti]: $N \le 2 \cdot 10^5$.
- Subtask 7 [2 punti]: Nessuna limitazione specifica.

Esempi di input/output

stdin	stdout
6 5 2 1 4 7 3	9
8 3 27 86 95 419 852 1473 6461	28

Spiegazioni

Nel **primo caso d'esempio** gli intervalli miglioranti sono [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5]. Ad esempio:

- [4,5] è migliorante perché $\min(A_4,A_5)=A_4$, $\max(A_4,A_5)=A_5$, quindi $x=4,\,y=5$: dunque vale x< y.
- [2,5] è migliorante perché $min(A_2, A_3, A_4, A_5) = A_3$, $max(A_2, A_3, A_4, A_5) = A_5$, quindi x = 3, y = 5: dunque vale x < y.

Nel secondo caso d'esempio tutti gli intervalli di lunghezza almeno 2 sono miglioranti.

allenamento Pagina 2 di 2