Class Notes

ESTIMATION IN HIGH DIMENSIONALITY SPACES - ECON231C

Mauricio Vargas-Estrada

Master in Quantitative Economics University of California - Los Angeles

1 Markov Inequality

Being X a random variable such that $X \geq 0$, then:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}, \quad \forall t > 0$$

Proof. Whe can rewrite the left-hand side of the inequality using the indicator function:

$$X \ge X \mathbf{1}_{\{X > t\}}$$

The left-hand side would be greater when X < t and equal when $X \ge t$. Given that:

$$X \ge X \mathbf{1}_{\{X \ge t\}} \ge t \mathbf{1}_{\{X \ge t\}}$$

In this case, $X\mathbf{1}_{\{X\geq t\}} > t\mathbf{1}_{\{X\geq t\}}$ when X>t, and $X\mathbf{1}_{\{X\geq t\}} = t\mathbf{1}_{\{X\geq t\}}$ when $X\leq t$ because X=t or the indicator function is zero.

Taking the expectation of the inequality:

$$\mathbb{E}\left[X\right] \ge \mathbb{E}\left[X\mathbf{1}_{\{X \ge t\}}\right] \ge \mathbb{E}\left[t\mathbf{1}_{\{X \ge t\}}\right]$$

$$\mathbb{E}\left[X\right] \ge \mathbb{E}\left[X\mathbf{1}_{\{X \ge t\}}\right] \ge t\mathbb{E}\left[\mathbf{1}_{\{X \ge t\}}\right]$$

$$\frac{\mathbb{E}\left[X\right]}{t} \ge \frac{\mathbb{E}\left[X\mathbf{1}_{\{X \ge t\}}\right]}{t} \ge \mathbb{E}\left[\mathbf{1}_{\{X \ge t\}}\right]$$

But $\mathbb{E}\left[\mathbf{1}_{\{X \geq t\}}\right] = \mathbb{P}\left(X \geq t\right)$, so:

$$\frac{\mathbb{E}\left[X\right]}{t} \ge \mathbb{P}\left(X \ge t\right)$$

2 Chevyshev Inequality

Given a random variable X with mean μ and variance σ^2 , then:

$$\mathbb{P}\left(|X - \mu| \ge t\right) \le \frac{\sigma^2}{t^2}, \quad \forall t > 0$$

Proof. We are going to use the fact that a strictly increasing function of a random variable does not change the probability of an event. Let $Y = (|X - \mu|)^2$. Then,

$$\mathbb{P}\left(|X - \mu|^2 \ge t^2\right) = \mathbb{P}\left(Y \ge t^2\right)$$

Using Markov's inequality, we have:

$$\mathbb{P}\left(Y \ge t^2\right) \le \frac{\mathbb{E}\left[Y\right]}{t^2}$$

Given a random variable Z, the variance of Z is $\operatorname{Var}(Z) = \mathbb{E}\left[(Z - \mathbb{E}[Z])^2\right]$. Therefore,

$$\mathbb{P}\left((X-\mu)^2 \ge t^2\right) \le \frac{\mathbb{E}\left[(X-\mu)^2\right]}{t^2}$$

$$\mathbb{P}\left((X-\mu)^2 \ge t^2\right) \le \frac{\operatorname{Var}(X)}{t^2}$$

$$\mathbb{P}\left((X-\mu)^2 \ge t^2\right) \le \frac{\sigma^2}{t^2}$$

3 Weak Law of Large Numbers

Given a collection of i.i.d. random variables $\{X_i\}_{i=1}^n$, with mean μ and variance σ^2 . Defining $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, the weak law of large numbers states that for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(|\bar{X}_n - \mu| \ge \epsilon\right) = 0$$

or equivalently,

$$\bar{X}_n \xrightarrow{\mathbb{P}} \mu$$

Proof. Calculating the variance of \bar{X}_n ,

$$\operatorname{Var}(\bar{X}_n) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(X_i)$$
$$= \frac{1}{n^2} \cdot n\sigma^2$$
$$= \frac{\sigma^2}{n}$$

Then, by Chebyshev's inequality,

$$\mathbb{P}\left(|\bar{X}_n - \mu| \ge \epsilon\right) \le \frac{\operatorname{Var}\left(\bar{X}_n\right)}{\epsilon^2}$$
$$= \frac{\sigma^2}{n\epsilon^2}$$

Taking the limit as $n \to \infty$,

$$\lim_{n \to \infty} \mathbb{P}\left(|\bar{X}_n - \mu| \ge \epsilon\right) \le \lim_{n \to \infty} \frac{\sigma^2}{n\epsilon^2}$$
$$\lim_{n \to \infty} \mathbb{P}\left(|\bar{X}_n - \mu| \ge \epsilon\right) \le 0$$