

DIGITAL DESIGN

ASSIGNMENT REPORT

ASSIGNMENT ID: 1

Student Name: 杨钰城

Student ID: 12112323

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

- (20 points) A PN flipflop has four operations: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01, 10, and 11, respectively.
 - 1 Tabulate the characteristic table.
 - 2 Derive the characteristic equation.
 - 3 Tabulate the excitation table.
 - 4 Show how the PN flipflop can be converted to a D flipflop.

- (20 points) A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations: $J_A = x'$, $K_A = B$, $J_B = x$, $K_B = A'$.
 - **1** Derive the state equations A(t+1) and B(t+1) by substituting the input equations for the J and K variables. raw the state diagram of the circuit.

QACTO = IB' + B'A
QBCTO = IB' + AB

(20 points) A sequential circuit has two JK flipflops A and B, two inputs x and y, and one output z. The flipflop input equations and circuit output equation are $J_A = Bx' + B'y$, $K_A = Bx' + y'$, $J_B = Ax'$, $K_B = A + xy'$, z = Axy + Bx'y'.

- Draw the logic diagram of the circuit.
- 2 Tabulate the state table.
- \odot Derive the state equations for A and B.

(20 points) For the following state table

	Next State		Output	
Present State	$\overline{x} = 0$	x = 1	x = 0	x = 1
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
q	q	h	0	1
h	g	a	1	0

- Draw the corresponding state diagram.
- 2 Tabulate the reduced state table.
- 3 Draw the state diagram corresponding to the reduced state table.
- f 4 Determine the output sequence for input sequence 0101010111 (from left to right) with the original state table and the reduced state table, starting from a.

• (20 points) Obtain the simplified input equations for a sequential circuit that uses T flip-flops and is specified by the state diagram below.

Prese			Infut	next TFF			
A	В		X	A B TA TB			
O	D		0	0 1 0 1			
0	0			Q Q G			
0			0	1 1 0			
0			1				
<i>l</i> ,	0		0				
	0		0				
1	i		Ĭ	0 0 1 1			
TA K-map			•	Atri K-map			
AB OO	١٥	111	10	x 00 01 11 10			
0 0	1		٥	00101			
1 0	1	0	0	10111			
TA = x'B + A'B TB K-map				Atti=A'B + AB'+ XB Beti K-map			
XAB OO	ااه	11	10	AB 00 01 11 10 Btt1= x'A'+ x'B'			
10	0			0 1 1 0 1 +xAB			
I O	- X A	o x	O A'B	10010			

