Exploration d'un labyrinthe

Pour explorer un labyrinthe, il suffit d'une pelote de ficelle et d'un morceau de craie :

- marquer les carrefours que vous avez déjà visitées avec la craie pour empêcher de boucler
- utiliser une ficelle pour pouvoir revenir au point de départ.

On peut utiliser le même principle pour explorer un graphe.

Parcours en profondeur (DFS) pour les graphes connexes

```
Entrées : graphe G = (V, E) et sommet r \in V
début
    créer pile(S)
    pour tous les u \in V faire
    | marqué[u] \leftarrow False
    empiler(S, r)
    tant que S \neq \emptyset faire
        u \leftarrow \text{dépiler}(S)
        marqué[r] \leftarrow Vrai
        pour tous les uv \in E faire
            si marqué[v] = Faux alors
                \mathsf{marqu\'e}[v] \leftarrow \mathsf{Vrai}
             empiler(S, v)
```


$$S = [a]$$

$$S = []$$
 $u = a$

$$S = [b, c]$$

$$S = [b]$$
$$u = c$$

$$S = [b, f]$$

$$S = [b]$$
$$u = f$$

$$S=[b,d,g]$$

$$S = \begin{bmatrix} b,d \end{bmatrix} \\ u = g$$

$$S = [b, d, e, h]$$

$$S = [b, d, e]$$
$$u = h$$

$$S=[b,d,e]$$

$$S = [b, d]$$
$$u = e$$

$$S = [b, d]$$

$$S = [b]$$
$$u = d$$

$$S = [b]$$

$$S = []$$
$$u = b$$

Version recursive de DFS pour les graphes connexes

```
Procédure explorer(G, u):

marqué[u] \leftarrow Vrai

pour tous les (u, v) \in E(G) faire

si marqué[v] = Faux alors

explorer(G, v)
```

Correction de la procédure explorer(u)

- Il faut montrer que la procédure explorer(u) visite tous les sommets atteignables à partir de u.
- Supposons par l'absurde que, à la fin d'exécution de explorer(u), il existe un sommet v non marqué.
- Soit P une chaîne de u à v.
- Soit w le dernier sommet sur P (le plus lointain de u) qui est marqué.
- Soit x le successeur de w dans P.
- Contradiction : la procédure explorer(w) aurait marqué le sommet x.

Classification des arêtes

- Voici le résultat de l'exécution d'explore sur un graphe, en commençant par le sommet *a* (et parcourant les arêtes par ordre alphabétique).
- Chaque fois qu'un nouveau sommet v est marqué, soit u le voisin de v
- Il y a une flèche rouge de u vers v si v a été marqué lors d'un appel de $\exp(v)$ a été appelé quand l'algorithme traitait le sommet u.
- Ces arêtes forment un arbre.
- Les autres arêtes sont appelés les arêtes retour.

Classification des arêtes

- Voici le résultat de l'exécution d'explore sur un graphe, en commençant par le sommet *a* (et parcourant les arêtes par ordre alphabétique).
- Chaque fois qu'un nouveau sommet v est marqué, soit u le voisin de v
- Il y a une flèche rouge de u vers v si v a été marqué lors d'un appel de $\exp(v)$ a été appelé quand l'algorithme traitait le sommet u.
- Ces arêtes forment un arbre.
- Les autres arêtes sont appelés les arêtes retour.

... et si le graphe n'est pas connexe?


```
Procédure explorer (G, u):
```

```
\begin{aligned} & \text{marqu\'e}[u] \leftarrow \text{Vrai} \\ & \textbf{pour tous les } (u,v) \in E(G) \text{ faire} \\ & & \textbf{si } \text{marqu\'e}[v] = \text{Faux alors} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{aligned}
```

Procédure DFS (G):

```
\begin{array}{l} \textbf{pour tous les } u \in V(G) \textbf{ faire} \\ \bot \  \, \text{marqu\'e}[u] \leftarrow \text{Faux} \\ \\ \textbf{pour tous les } u \in V(G) \textbf{ faire} \\ \bot \  \, \text{si marqu\'e}[u] = \text{Faux alors} \\ \bot \  \, \text{explorer} \, (G,u) \\ \end{array}
```

... et si le graphe n'est pas connexe?

Procédure explorer (G, u):

```
\begin{aligned} & \mathsf{marqu\'e}[u] \leftarrow \mathsf{Vrai} \\ & \mathbf{pour\ tous\ les}\ (u,v) \in E(G)\ \mathbf{faire} \\ & & \mathsf{si}\ \mathsf{marqu\'e}[v] = \mathsf{Faux\ alors} \\ & & & \; \bot\ \mathsf{explorer}\ (G,v) \end{aligned}
```

Procédure DFS (G):

```
\begin{array}{l} \textbf{pour tous les } u \in V(G) \textbf{ faire} \\ \quad \bot \  \, \text{marqu\'e}[u] \leftarrow \text{Faux} \\ \\ \textbf{pour tous les } u \in V(G) \textbf{ faire} \\ \quad \bot \  \, \text{explorer} (G,u) \\ \end{array}
```

Composantes connexes d'un graphe

• On peut utiliser le parcours en profondeur pour identifier les composantes connexes d'un graphe.

```
Procédure prévisite (u):
   \operatorname{ccnum}[u] = \operatorname{cc}
Procédure explorer (G, u):
   marqué[u] \leftarrow Vrai
   prévisite(u)
   pour tous les (u,v) \in E(G)
     faire
       si marqué[v] = Faux alors \\ explorer (G,v)
```

```
Procédure DFS (G):
    \mathbf{cc} \leftarrow 0
    pour tous les u \in V(G) faire
     | marqué[u] \leftarrow Faux
    pour tous les u \in V(G) faire
         \mathbf{si} \ \mathrm{marque}[u] = \mathrm{Faux} \ \mathbf{alors}
          cc \leftarrow cc + 1 explorer (G,u)
```

Graphes orientés

- Un graphe orienté est un couple G=(V,E) formé par un ensemble fini V et un sous-ensemble E de V^2 .
- Comme pour les graphes non orientés, V est l'ensemble des sommets de G.
- E est l'ensemble d'arcs (arêtes orientés).
- On représente les arcs par des flèches.
- Si $(u, v) \in E$, alors on met une flèche de u vers v; u est la tête et v la queue de l'arc (u, v).

Chemins (chaînes orientées)

Définition

Un *chemin* dans un graphe orienté G = (V, E) est une suite de la forme $(v_0, e_1, v_1, \dots, e_k, v_k)$ où

- $v_i \in V$
- $e_i \in E$
- $e_{i+1} = (v_i, v_{i+1})$ pour $i = 0, \dots, k-1$.
- L'entier k est la *longueur* du chemin.

Circuits (cycles orientées)

Définition

Un *circuit* dans un graphe orienté G=(V,E) est une suite de la forme $(v_0,e_1,v_1,\ldots,e_k,v_0)$ où

- $v_i \in V$
- $e_i \in E$
- $e_{i+1} = (v_i, v_{i+1})$ pour $i = 0, \dots, k-1$.
- L'entier k est la *longueur* du chemin.

Parcours en profondeur dans les graphes orientés

```
Entrées : graphe G = (V, E) et sommet r \in V
début
   créer pile(S)
   pour tous les u \in V faire
    | marqué[u] \leftarrow False
   empiler(S, r)
   tant que S \neq \emptyset faire
       u \leftarrow \text{dépiler}(S)
       marqué[r] \leftarrow Vrai
       pour tous les (u, v) \in E faire
           si marqué[v] = Faux alors
               \mathsf{marqu\'e}[v] \gets \mathsf{Vrai}
             empiler(S, v)
```

Parcours en profondeur dans les graphes orientés (version récursive)


```
Procédure explorer (G, u):

marqué[u] \leftarrow Vrai

pour tous les (u, v) \in E(G) faire

si marqué[v] = Faux alors

explorer (G, v)
```

```
Procédure DFS (G):

| pour tous les u \in V(G) faire
| marqué[u] \leftarrow Faux
| pour tous les u \in V(G) faire
| si marqué[u] = Faux alors
| explorer (G,u)
```

Parcours en profondeur dans les graphes orientés (version récursive)


```
Procédure explorer (G, u):

marqué[u] \leftarrow Vrai

pour tous les (u, v) \in E(G) faire

si marqué[v] = Faux alors

explorer (G, v)
```

```
Procédure DFS (G):

| pour tous les u \in V(G) faire
| marqué[u] \leftarrow Faux
| pour tous les u \in V(G) faire
| si marqué[u] = Faux alors
| explorer (G,u)
```

Parcours en profondeur : pré- et post-visites

```
Procédure prévisite (u):
Procédure DFS (G, u):
   marquer(u)
   prévisite(u)
   pour tous les (u,v) \in E(G) faire
      \mathbf{si}\ v non marqué \mathbf{alors}
       \lfloor DFS (G,v)
   postvisite(u)
```

```
Procédure postvisite (u):
\begin{array}{c|c} post(s) \leftarrow t \\ t \leftarrow t+1 \end{array}
```

Intervalles imbriqués

Observation (Théorème des parenthèses)

Pour tout sommet u et v, les deux intervalles $[\operatorname{pre}(u), \operatorname{post}(u)]$ et $[\operatorname{pre}(v), \operatorname{post}(v)]$ sont soit disjoints, soit l'un est contenu dans l'autre.

- [pre(u), post(u)] représente le temps pendant lequel le sommet u était sur la pile S.
- Si $[\operatorname{pre}(u), \operatorname{post}(u)] \cap [\operatorname{pre}(v), \operatorname{post}(v)] \neq \emptyset$, alors il existe un temps t auquel u et v étaient dans la pile S.
- Si u a été empilé avant v, alors u sera dépilé après v, et donc $\operatorname{pre}(u) < \operatorname{pre}(v) < \operatorname{post}(v) < \operatorname{post}(u)$.
- De même, si v a été empilé avant u, alors pre(v) < pre(u) < post(u) < post(v).

Terminologie pour l'analyse du BFS

- a est la racine de l'arbre.
- Les autres sommets son des descendants de a.
- De même, f a des descendants e, g et h.
- Inversement, f est un ancêtre de e, g et h.
- Les ancêtres immédiats sont les *parents*, et les descendants immédiats sont les *enfants* : c est le parent de f, et f est l'enfant de c.

Classification des arcs (1/3)

Un parcours en profondeur dans un graphe orienté G donne lieu a 4 types d'arcs de G.

On dit que l'arc (u, v) est :

- 1. un arc de l'arbre si u est un parent de v.
- 2. avant si u est un ancêtre (non parent) de v
- 3. retour si v est un ancêtre de u
- 4. transverse dans les autres cas

Classification des arcs (2/3)

- u est un ancêtre de v ssi u est marqué en premier et v est marqué pendant explore(u) ssi $[pre(u), post(u)] \supset [pre(v), post(v)]$.
- Puisque u est un descendant de v ssi v est un ancêtre de u, (u,v) est un arc retour ssi $[\operatorname{pre}(u),\operatorname{post}(u)]\subset[\operatorname{pre}(v),\operatorname{post}(v)]$.
- Finalement, (u, v) est transverse ssi $[\operatorname{pre}(u), \operatorname{post}(u)] \cap [\operatorname{pre}(v), \operatorname{post}(v)] = \emptyset$.

Classification des arcs (3/3)

- Notons par $[u \]_u$ l'intervalle [pre[u], post[u]].
- Voici un résumé des différentes possibilités pour un arc (u,v):

```
\begin{bmatrix} u & \begin{bmatrix} v & \end{bmatrix}_v & \end{bmatrix}_u arcs de l'arbre, avant \begin{bmatrix} v & \begin{bmatrix} u & \end{bmatrix}_v & \end{bmatrix}_v arcs retour \begin{bmatrix} v & \end{bmatrix}_v & \begin{bmatrix} u & \end{bmatrix}_u arcs trasverses
```

Remarque

Soit (u, v) un arc. Si post(u) < post(v), alors (u, v) est un arc retour.

Complexité du parcours en profondeur

- Chaque sommet n'est exploré qu'une seule fois, grâce au marquage.
- Pendant l'exploration d'un sommet, il y a les étapes suivantes :
 - 1. marquer le sommet (et éventuellement la pré- et la post-visite).
 - 2. parcourir les arêtes incidentes à u pour voir si elles mènent à un somment non marqué.
- Cette boucle prend un temps différent pour chaque sommet; considérons donc tous les sommets ensemble.
- Le temps total de l'étape 1 est alors O(n).
- Dans l'étape 2, chaque arête $uv \in E$ est examinée exactement deux fois une fois pendant explorer(u) et une fois pendant explorer(v).
- On conclut que la complexité du parcours en profondeur est de O(m+n) (égale à celle du parcours en largeur).

Graphes orientés acycliques

Définition

Un graphe orienté sans circuits est dit acyclique.

Observation

Un graphe orienté contient un circuit ssi le parcours en profondeur trouve une arête retour.

Démonstration (1/2)

- Soit G un graphe orienté et soit T l'arbre DFS, avec racine r.
- Supposons que (u, v) est un arc retour.
- v est donc un ancêtre de u; il existe un chemin P de v à u dans T.
- P et l'arc (u, v) forment un circuit.

Graphes orientés acycliques (DAG 1)

Démonstration (2/2)

- Inversement, si le graphe possède un cycle $C = (v_1, v_2, \dots, v_k, v_1)$, soit v_i le premier sommet visité de C.
- Tous les autres sommets v_j de C sont atteignables à partir de v_i et seront donc ses descendants dans T.
- En particulier, l'arc (v_{i-1}, v_i) (ou (v_k, v_1) au cas où i = 1) est un arc retour.

^{1.} Pour directed acyclic graph

À quoi ça sert...?

- Les DAG permettent de modéliser des relations telles que :
 - les causalités
 - les hiérarchies
 - les dépendances temporelles
- Par exemple, supposons que vous deviez effectuer de nombreuses tâches, mais que certaines d'entre elles ne puissent pas commencer avant que d'autres ne soient terminées.
- La question qui se pose alors est de savoir quel est l'ordre valide dans lequel les tâches doivent être accomplies.

Exemple

- Vous devez vous réveiller avant de se lever.
- Vous devez être levé, mais pas encore habillé, pour prendre une douche.

L'existence d'un bon ordre

- De telles contraintes sont commodément représentées par un graphe orienté dans lequel chaque tâche est un sommet, et il existe un arc de u à v si u est une *précondition* pour v.
- En d'autres termes, avant d'exécuter une tâche, toutes les tâches qui y sont liées doivent être achevées.
- Si ce graphe orienté comporte un circuit, il n'y a pas de solution.
- Si par contre le graphe est un DAG, on aimerait ordonner les sommets de sorte que chaque arête aille d'un sommet antérieur à un sommet postérieur, afin que toutes les contraintes de precédence soient satisfaites.

Dans cet exemple, il existe (heureusement!) un bon ordre

Tri topologique et les DAG (1/2)

Définition

Un *tri topologique* d'un graphe orienté G = (V, E) est un ordre total \prec sur V tel que, pour tout arc $(u, v) \in E$, on a $u \prec v$.

Théorème

Un graphe orienté ${\cal G}$ admet un tri topologique ssi ${\cal G}$ ne contient pas de circuits.

Démonstration (1/2)

- ullet Si G contient un circuit, G n'admet évidemment pas un tri topologique.
- Inversement, supposons que G est un DAG.
- On définit l'ordre total \prec sur les sommets de G comme suit :
- $u \prec v \text{ ssi post}(u) > \text{post}(v)$.

Tri topologique et les DAG (2/2)

Démonstration (2/2)

- Soit (u, v) un arc quelconque de G.
- Comme G est un DAG, v n'est pas un ancêtre de u.
- Donc, (u, v) n'est pas un arc retour.
- Par la remarque à la fin de la classification des arcs, post(u) > post(v) et donc $u \prec v$.

Remarque

Pour trouver un tri topologique d'un DAG G, il suffit de faire un parcours en profondeur, et trier les sommets de G par ordre décroissant de post (\cdot) .