课程编号:

北京理工大学

离散数学期末模拟试题答案及评分标准(A卷)

班级	学号	姓名	成绩

题号	1	2	3	4	5	6	7	8	总分
得分									

- 1. 选择题 (共10题, 每题1分)
 - 1). B 2).B 3). C 4).B 5). C 6). B 7). B 8). B 9). B 10). C
- 2. 判断题 (共 10 题, 每题 1 分, 真为"T", 假为"F")
 - 1).T 2).T 3).F 4).F 5).F
 - 6).T 7). T 8). T 9).F 10). F
- 3. 填空题 (共10题, 每题2分)
 - 1) $q \lor r \lor \neg s$
 - **2**) {<1,2>,<1,3>,<3,2>}
 - **3**) 9
 - **4**) 4,2
 - **5**) 3, 5, 6
 - **6**) 53
 - **7**) 192
 - **8**) 12
 - **9**) 2, 3
 - **10**) 102

答案:群G的置换结构为: 恒等置换:1个

绕中心转90、270度: (****)(****)(*)2个

绕中心转 180 度: (**)(**)(**)(**)(*)1个

翻转 180 度: (**)(**)(*)(*)(*)4 个

带入 Polya 定理: M=(2⁹+2*2³+2⁵+4*2⁶)/8=102

4. (10分)

- $\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land \neg r)$
- $\Leftrightarrow m_1 \lor m_3 \lor m_4 \lor m_6 (8分)$

 $(p \land q \land r) \lor (p \land q \land \gamma r)$

 $\Leftrightarrow (p \land q \land r) \lor (p \land q \land r)$

 $\vee (p \wedge_{\neg} q \wedge_{\neg} r) \vee (p \wedge_{\neg} q \wedge_{\neg} r)$

- $\Leftrightarrow (p \land r) \lor (p \land r)$
- $\Leftrightarrow_{\mathsf{T}} (\mathsf{T}(\mathsf{T}(\mathsf{p} \land \mathsf{r}) \land \mathsf{T}(\mathsf{p} \land \mathsf{T})) (2 \, \text{β})$

5. (10分)

符号化: 4分

 $\forall x(P(x) \rightarrow R(x)), \ \forall x(R(x) \land V(x) \rightarrow S(x)), \ \exists x(P(x) \land V(x) \land U(x))$

结论: $\exists x(P(x) \land S(x) \land U(x))$

证明: 6分

- 1) $\exists x (P(x) \land V(x) \land U(x))$
- 2) $P(a) \wedge V(a) \wedge U(a)$
- 3) P(a)
- 4) V(a)
- 5) U(a)
- 6) $\forall x(P(x) \rightarrow R(x))$
- 7) $P(a)\rightarrow R(a)$
- 8) R(a)
- 9) $R(a) \wedge V(a)$
- 10) $\forall x (R(x) \land V(x) \rightarrow S(x))$
- 11) $R(a) \wedge V(a) \rightarrow S(a)$
- 12) S(a)
- 13) $P(a) \land S(a) \land U(a)$
- 14) $\exists x (P(x) \land S(x) \land U(x))$

前提引入

- 1) ES
- 2) 化简
- 2) 化简
- 2) 化简

前提引入

- 6) US
- 7) 化简
- 8)4) 合取引入

前提引入

- 10) US
- 9)11) 假言推理
- 3)12)5) 合取引入
- 13) EG

6. (10分)

解、(1) $\forall x \in N, x+x$ 是偶数,有 xRx, R 自反. (2分)

 $若 < x,y > \in R$,即 x+y 是偶数,则 y+x 是偶数,有 $< y,x > \in R$,R 对称. (2分) 若 $< x,y > \in R$, $< y,z > \in R$,即 x+y 是偶数,y+z 是偶数,x+z=(x+y)+(y+z)-2y 是偶数,有 $< x,z > \in R$,R 满足传递性. (2分)

因此,R是一个等价关系.

(2) 关系 R 的等价类有: $[1]_{R=\{1,3,5,...\}}$, $[0]_{R=\{0,2,4,6...\}}$. (4 分)

7. (10分)

(1) 证明:

任取 $f \in B^A$,对于任意的 $x \in A$,有 $f(x) \in B$,由函数的定义知,f(x) = f(x),即 fRf,所以 R 具有自反性. (2分)

任取 f, $g \in B^A$,若 fRg 且 gRf,则对于任意的 $x \in A$,都有 $f(x) \in B$, $g(x) \in B$,且 $f(x) \leq g(x)$, $g(x) \leq f(x)$. 因为< B,<>是偏序集,所以<具有反对称性,因此有 f(x) = g(x). 根据函数的定义知 f = g. 所以 R 是反对称的. (2分)

任取 f, g, $h \in B^A$,若 fRg 且 gRh,则对于任意的 $x \in A$,都有 f(x), g(x), $h(x) \in B$,且有 $f(x) \le g(x)$, $g(x) \le h(x)$. 因为< B, $\le >$ 是偏序集,所以 \le 具有传递性,因此有 $f(x) \le h(x)$,即 fRh. 所以 R 是传递的. (2分)

因此 R 为 B^A 上的偏序关系.

(2) 偏序集< B^A , R>中的最大元为: f(x)=b. (4分)

8. (10分)

证明:由补图定义知:

$$E(G) + E(\bar{G}) = \frac{v(v-1)}{2}$$
 (1) (3 $\%$)

又因为G是平面图,有

$$E(G) \le 3v - 6 \tag{2} (3 \%)$$

由(1)(2)得:

$$E(\bar{G}) \ge \frac{(v^2 - 7v + 12)}{2}$$
 (2 分)

由二次函数性质,当 $v \ge 11$ 时, $E(\bar{G}) > 3v - 6$,从而 \bar{G} 不是平面图 (需要说明清楚) (2分)

9. (10分)

证 设G是6阶群,则G中元素只能是1阶、2阶、3阶或6阶.(4分)

若 G 中含有 6 阶元,设为 a,则 a^2 是 3 阶元. (3分)

若G中不含6阶元,下面证明G中必含有3阶元.

如若不然,G中只含 1 阶和 2 阶元,

即 $\forall a \in G$,有 $a^2=e$,由命题知 G 是 Abel 群.

取G中2阶元a和 $b, a \neq b$,

令 $H = \{e, a, b, ab\}$, 则 $H \in G$ 的子群,

但 |H| = 4, |G| = 6, 与拉格朗日定理矛盾. (3分)