Package 'tensorIA'

February 17, 2020

Type Package
Title tensorIA
Version 0.1.0
Author Xu Liu [aut,cre], Wei Zou [aut], Yiming Liu [aut], Mwngyun Wu [aut].
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description For a grouped multivariates gression model, with or without sparsity assumptions, treating the coefficients as a third-order tensor and borrowing Tucker decomposition to reduce the number of parameters.
License GPL (>= 2)
Imports Rcpp (>= 0.11.15), RcppEigen (>= 0.3.2.3.0)
LinkingTo Rcpp, RcppEigen
RoxygenNote 6.0.1
NeedsCompilation yes
Repository github
<pre>URL https://github.com/xliusufe/tensorIA</pre>
Encoding UTF-8
R topics documented:
tensorIA-package generateData integ integ_dr TransferModalUnfoldings
Index

2 generateData

tensorIA-package	Integrative analysis based on tensor modelling	

Description

For a grouped multivariates gression model, with or without sparsity assumptions, treating the coefficients as a third-order tensor and borrowing Tucker decomposition to reduce the number of parameters.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Xu Liu

Maintainer: Xu Liu liu.xu@sufe.edu.cn>

References

Integrative analysis based on tensor modelling.

generateData	Generate data from multivariate regression model.	
--------------	---	--

Description

Generate data for a multivariate regression model.

Usage

Arguments

n	Sample size.
q	The number of responses, $q \ge 1$.
р	The number of covariates, $p \ge 1$.
g	The number of groups.
D3	The mode of unfolding $D_{(3)}$.
sigma2	err variance. Default is 0.2.
SigmaX	A $pg \times pg$ positive-definition matrix, which is the covariance matrix of covariates X .
SigmaX	A $q \times q$ positive-definition matrix, which is the covariance matrix of error E .
seed_id	A positive integer, the seed for generating the random numbers.

integ 3

Details

This function gives coefficients of multivariate regression. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC, AIC, EBIC, CV, or GCV.

Value

```
Y Response, a n \times q-matrix.
X Design matrix, a n \times pg-matrix.
```

References

Integrative analysis based on tensor modelling.

See Also

mam_sparse

Examples

```
# Example 1
D3 <- matrix(runif(30, 0.7, 1), 2, 15)
mydata <- generateData(200, 3, 5, 5, D3)</pre>
Y <- mydata$Y
X <- mydata$X
# Example 2
n <- 500
p <- 10
q <- 10
g <- 10
r10 <- 2
r20 <- 2
S3 \leftarrow matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(g*r20), nrow = g)
U2 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 <- qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
mydata <- generateData(n,q,p,g,D3)</pre>
```

integ

Integrative analysis for GWAS data.

Description

Fit a grouped multivariates gression model by treating coefficients as a order 3 tensor, without aparsity assumptions, and given ranks r_1, r_2, r_3 .

4 integ

Usage

Arguments

Υ	A $n \times q$ numeric matrix of responses.
Χ	A $n \times p$ numeric design matrix for the model.
g	The number of groups. Default is 1.
r1	The first dimension of single value matrix of the tensor. Default is 2.
r2	The second dimension of single value matrix of the tensor. Default is 2.
r3	The third dimension of single value matrix of the tensor. Default is 2.
SABC	A user-specified list of initial coefficient matrix of S, A, B, C . By default, initial matrices are provided by random.
intercept	Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?
mu	A user-specified initial of intercept(s), a q -vector. Default is \emptyset .
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
max_step	Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
mu	Estimator of intercept μ .
rss	Residual sum of squares (RSS).
Υ	Response Y .
Χ	Design matrix X .

References

Integrative analysis based on tensor modelling.

See Also

 $integ_dr$

Examples

```
n <- 200
p <- 5
q <- 5
g <- 5
r10 <- 2
```

integ_dr 5

```
r20 <- 2
r30 <- 2
S3 <- matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(p*r10),nrow = p)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(g*r20), nrow = g)
U2 \leftarrow qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30),nrow = q)
U3 \leftarrow qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
X <- matrix(rnorm(n*p*g), nrow = n)</pre>
eps <- matrix(rnorm(n*q),n,q)</pre>
Y <- X%*%t(D3) + eps
fit <- integ(Y, X, g, r1=2, r2=2, r3=2)
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,p,g,q)
```

integ_dr

Integrative analysis for GWAS data without sparsity assumption, and with ranks selected by BIC, AIC, EBIC, CV, or GCV.

Description

Fit a grouped multivariates gression model by treating coefficients as a order 3 tensor, without aparsity assumptions, and with ranks r_1, r_2, r_3 selected by BIC, AIC, EBIC, CV, or GCV.

Usage

Arguments

Υ	A $n \times q$ numeric matrix of responses.
Χ	A $n \times p$ numeric design matrix for the model.
g	The number of groups. Default is 1.
method	The method to be applied to select parameters. Either BIC (the default), AIC, EBIC, ${\sf CV}$, or ${\sf GCV}$.
ncv	The number of cross-validation folds. Default is 10. If method is "BIC", ncv is useless.
r1_index	A user-specified sequence of r_1 values, where r_1 is the first dimension of single value matrix of the tensor. Default is r1_index= $1, \dots, \min(\log(n)\rceil, p)$.
r2_index	A user-specified sequence of r_2 values, where r_2 is the second dimension of single value matrix of the tensor. Default is $r2_index = 1, \cdots, \min(\log(n)\rceil, g)$.
r3_index	A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index = 1, \cdots, \min(\log(n)\rceil, q)$.
SABC	A user-specified list of initial coefficient matrix of S , A , B , C , which is a list with values S , A , B , C . By default, initial matrices are provided by random.

6 integ_dr

intercept Should intercept(s) be fitted (default=TRUE) or set to zero (FALSE)?

mu A user-specified initial of intercept(s), a q-vector. Default is 0.

eps Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.

max_step Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
mu	Estimator of intercept μ .
rss	Residual sum of squares (RSS).
rk_opt	The optimal parametres that slected by BIC (the default), AIC, EBIC, CV, or GCV. It is a vector with length 4, which are selected r_1, r_2, r_3 , and K .
selected	Which λ is selection.
Υ	Response Y .
Χ	Design matrix X .

References

Integrative analysis based on tensor modelling.

See Also

integ

Examples

```
n <- 200
p <- 5
q <- 5
g <- 5
r10 <- 2
r20 <- 2
S3 <- matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(p*r10),nrow = p)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(g*r20), nrow = g)
U2 \leftarrow qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 \leftarrow qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
X <- matrix(rnorm(n*p*g), nrow = n)</pre>
eps <- matrix(rnorm(n*q),n,q)</pre>
Y <- X%*%t(D3) + eps
fit <- integ_dr(Y, X, g)</pre>
```

```
D3hat <- fit$Dnew
D2hat <- TransferModalUnfoldings(D3hat,3,2,p,g,q)
opt <- fit$rk_opt
```

TransferModalUnfoldings

Transfer a tensor's modal unfoldings to another.

Description

Transfer a tensor's modal unfoldings to another.

Usage

```
TransferModalUnfoldings(S, d1, d2 , r1, r2, r3)
```

Arguments

S	A mode-d1-unfolding of a tensor with size $r_1 \times r_2 \times r_3$, input unfolding
d1	An integer, the mode of unfolding $S_{(d_1)}$
d2	An integer, the mode of output unfolding $S_{\left(d_2\right)}$
r1	The fist dimension of tensor
r2	The second dimension of tensor
r3	The third dimension of tensor

Details

This function transfers an input mode-d1-unfolding $S_{(d_1)}$ to mode-d2-unfolding $S_{(d_2)}$

Value

D the output mode-d2-unfolding, $S_{(d_2)}$

References

A tensor estimation approach to multivariate additive models.

Examples

```
D1 <- matrix(1:24,nrow = 4) # A tensor unfolding with size 4*6
D2 <- TransferModalUnfoldings(D1,1,2,4,3,2)
```

Index

```
*Topic GWAS; Integrative analysis;
        Tensor estimation; Tucker
        decomposition.
    generateData, 2
    integ, 3
    tensorIA-package, 2
*Topic High-dimensional, Sparse
        models; Tensor estimation;
        Tucker decomposition.
    Transfer Modal Unfoldings, 7
generateData, 2
integ, 3
\verb|integ-function| (\verb|integ|), 3
integ_dr, 5
integ_dr-function(integ_dr), 5
tensorIA (tensorIA-package), 2
tensorIA-package, 2
TransferModalUnfoldings, 7
{\it Transfer Modal Unfolding s-function}
        (TransferModalUnfoldings), 7
```