EJERCICIO PUNTUABLE DEL TEMA II. GEOMETRÍA II. CURSO 2018 - 2019

PRIMER EJERCICIO (4 PUNTOS)

APARTADO (1) (2 PUNTOS)

En \mathbb{R}^{200} se considera una métrica g indefinida y degenerada. Supongamos que el rango de g es el doble del índice de g. Prueba que existe una base B de \mathbb{R}^{200} formada por vectores luminosos, es decir, $B \subset \left\{\overrightarrow{u} \in \mathbb{R}^{200} \middle/ g(\overrightarrow{u}, \overrightarrow{u}) = 0\right\}$.

APARTADO (2) (2 PUNTOS)

En \mathbb{R}^{200} se consideran una métrica g no nula y B_u la base usual. Supongamos que todos los menores principales de cualquier orden de la matriz de la métrica g en B_u son o bien números mayores que cero o bien cero o que el determinante de la matriz de la métrica o en o0 bien cero o0 bien ce

SEGUNDO EJERCICIO (6 PUNTOS)

En \mathbb{R}^5 se consideran tres métricas $g_1, g_2 y g_3$ que en la base usual tienen por matrices :

Se pide:

- (a) Clasifica las tres métricas g_1 , g_2 y g_3 dando el tipo de métrica que aparece en cada caso, su rango y su índice. ¿ Son isométricos los espacios (\mathbb{R}^5 , g_1) y (\mathbb{R}^5 , g_2) ? ¿ Son isométricos los espacios (\mathbb{R}^5 , g_1) y (\mathbb{R}^5 , g_3) ? Razona las respuestas. (3 PUNTOS)
 - (b) Elige tres vectores distintos de la base usual $\{\overrightarrow{e_i}, \overrightarrow{e_j}, \overrightarrow{e_k}\}$ y una de las tres métricas. Calcula para la métrica que has elegido inducida en el subespacio de dimensión tres generado por $\{\overrightarrow{e_i}, \overrightarrow{e_j}, \overrightarrow{e_k}\}$ una base ortonormal. (3 PUNTOS)

[Ayuda para el apartado (a):]

Los polinomios característicos de las tres matrices son:

$$\begin{array}{l} p \; (\lambda) \; = \; -212510168032 \; + \; 4434582412 \; \lambda \; - \; 16896124 \; \lambda^2 \; - \; 126907 \; \lambda^3 \; + \; 824 \; \lambda^4 \; - \; \lambda^5 \\ q \; (\lambda) \; = \; 20152 \; + \; 103160 \; \lambda \; - \; 22276 \; \lambda^2 \; + \; 1216 \; \lambda^3 \; + \; 4 \; \lambda^4 \; - \; \lambda^5 \\ r \; (\lambda) \; = \; 1272858 \; - \; 98289 \; \lambda \; - \; 17396 \; \lambda^2 \; + \; 1407 \; \lambda^3 \; + \; 6 \; \lambda^4 \; - \; \lambda^5 \; \cdot \; \mathcal{G}_{\mathcal{L}} \end{array}$$

Teniendo en cuenta el coeficiente de λ^4 determina para cada matriz su polinomio característico y utiliza la "Regla de los Signos de Descartes" para clasificar las métricas.