

Cycle Initial en Technologies de l'Information de Saint-Étienne

TP Reseau Distanciel

Lucas Lescure

Table des Contenus

Realisation de la Topologie Reseau	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.	•	1 /	/ 3
Mise en place du DHCP																													
Configuration du Routeur																												V	5
Mise en oeuvre d'un DNS																												•	5

Réalisation de la Topologie Réseau

En utilisant le logiciel Filius on réalise le montage suivant:

Montage du réseau sur Filius

Ensuite on configure l'adresse IP de deux ordinateur, l'un sur 192.168.0.1 et l'autre sur 192.168.0.2. En passant en mode simulation on ouvre le PC2 et après avoir installé la ligne de commande on rentre les commandes suivantes : ipconfig, arp -a et route.

- ipconfig : Permet de regarder la configuration et les propriétés de la connexion de l'ordinateur sur le réseau
- arp -a: Permet de lister la table ARP de l'ordinateur
- route: Permet d'afficher la table de routage de l'ordinateur.

Adresse IP : 192.168.0.2

Masque : 255.255.255.0

Adresse MAC : 24:CC:B6:3B:D6:C1

Passerelle : 192.168.0.254

Serveur DNS : 194.214.191.100

Adresse IP	Adresse Mac
255.255.255.255	FF:FF:FF:FF:FF

Destination	Masque	Passerelle
192.168.0.2	255.255.255.255	127.0.0.1
192.168.0.0	255.255.255.0	192.168.0.2
127.0.0.0	255.0.0.0	127.0.0.1
0.0.0.0	0.0.0.0	192.168.0.254

Configuration IP, Table ARP et Table Routage

Pour l'instant on voit que l'ordinateur est configuré avec l'IP correspondante. Sa table ARP ne contient que l'adresse IP et MAC du broadcast, autrement dit elle ne contient pas les adresses MAC d'autres ordinateurs sur le réseau. Finalement sa Table de routage nous indique que pour des trames dirigées à sa propre adresse utiliseras la passerelle locale, celles dirigées à un appareil sur le réseau seront envoyé à partir de la carte réseau et tout le reste sera redirigé ver l'adresse 192.168.0.254.

On effectue un ping entre l'ordinateur 2 et l'ordinateur 1, les échanges figurant ci-dessous:

No.	Date	Source	Destination	Protocole	Couche	Commentaire
1	21:26:38:286	192.168.0.2	192.168.0.1	ARP	Internet	Recherche MAC associée à 192.168.0.1
2	21:26:39:005	192.168.0.2	192.168.0.1	ARP	Internet	Recherche MAC associée à 192.168.0.1
3	21:26:39:007	192.168.0.2	192.168.0.1	ARP	Internet	Recherche MAC associée à 192.168.0.1

Échange de Trames sans requête ARP

No.	Date	Source	Destination	Protocole	Couche	Commentaire
1	21:26:39:007	192.168.0.2	192.168.0.1	ICMP	Internet	Echo Request (ping), TTL: 64, SeqNo.: 1
2	21:26:39:532	192.168.0.1	192.168.0.2	ICMP	Internet	Echo Reply (pong), TTL: 64, SeqNo.: 1
			:			
8	21:26:42:049	192.168.0.1	192.168.0.2	ICMP	Internet	Echo Reply (pong), TTL: 64, SeqNo.: 4

Échange de Trames sans requête ARP

On voit donc qu'une fois le premier ping et effectué entre les deux machine, l'ordinateur n'émet pas de requête ARP. Si nous regardons sa table ARP on retrouve :

Adresse IP	Adresse MAC
192.168.0.1	F5:46:A5:C9:61:1C
255.255.255.255	FF:FF:FF:FF:FF

Table ARP de l'ordinateur 2

On voit que l'adresse MAC de l'ordinateur 1 a été enregistrée dans la table ARP de l'ordinateur. Ceci explique pourquoi il n'a donc pas besoin de refaire une requête ARP; il connait déjà l'adresse MAC qui correspond à l'ordinateur 1.

Q5.

Mise en place du DHCP

On configure le PC1 en tant que serveur DHCP avec une plage de 192.168.0.100 à 192.168.0.150. Et on met le PC3 en mode adressage automatique par serveur DHCP. Après la simulation on obtient observe les trames échangés:

No.	Date	Source	Destination	Protocole	Couche	Commentaire
1	23:22:18.367	0.0.0.0:68	255.255.255.255:67	DHCP	Application	DHCPDISCOVER yiaddr=0.0.0.0 chaddr=DB:43:7A:8E:3C:05
2	23:22:18:710	192.168.0.1:67	255.255.255.255:68	DHCP	Application	DHCPOFFER yiaddr=192.168.0.100 chaddr=DB:43:7A:8E:3C:05
3	23:22:18.711	0.0.0.0	192.168.0.100	ARP	Internet	Recherche MAC associée à 192.168.0.100
4	23:22:19.962	0.0.0.0	192.168.0.100	ARP	Internet	Recherche MAC associée à 192.168.0.100
5	23:22:21.212	0.0.0.0:68	255.255.255.255:67	DHCP	Application	DHCPREQUEST yiaddr=0.0.0.0 chaddr=DB:43:7A:8E:3C:05
6	23:22:21.520	192.168.0.1:67	255.255.255.255:68	DHCP	Application	DHCPACK yiaddr=192.168.0.100 chaddr=DB:43:7A:8E:3C:05

Quand le PC3 se connecte au réseau, envoi à l'IP de broadcast une découverte de serveur DHCP. Quand cette trame parvient au serveur il retourne aussi en broadcast une offre d'adresse IP et de passerelle. Le PC3vérifie ensuite que cette adresse ne soit pas occupée pas quelqu'un en envoyant une requête ARP à l'adresse IP qui lui est offerte. Quand il n'y a pas de réponse alors elle envoi une demande au serveur DHCP pour s'assigner l'adresse IP qui lui est offerte. Et après confirmation du serveur DHCP il modifie alors les configurations de sa connexion sur le réseau.

D'après ce tableau on peut donc bien voir que l'adresse qui lui est automatiquement affectée est la première dans la plage d'adresse : 192.168.0.100.

Configuration du Routeur

IP de Destination Masque		Passerelle	Interface
194.214.131.254	255.255.255.255	127.0.0.1	127.0.0.1
192.168.0.254	255.255.255.255	127.0.0.1	127.0.0.1
194.214.131.0	255.255.255.0	194.214.131.254	194.214.131.254
192.168.0.0	255.255.255.0	192.168.0.254	192.168.0.254
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1

Table de routage du routeur

Si un trame est à destination du router, c'est à dire avec l'IP 192.214.131.254 ou 192.168.0.254 alors le routeur utilise son interface et passerelle locale, il lit les trames qui lui sont destinés. Si une trame s'adresse à un appareil sur un deux deux réseaux alors il route cette trame vers le réseau correspondant en utilisant l'interface adequate. Et dernièrement s'il se parle a lui même il utilise sa passerelle et interface locale.

On envoi maintenant un ping depuis le PC2 au portable. On relève les trames suivantes:

No.	MAC Destination	MAC Source	IP Source	IP Destination	Protocole	Couche	Commentaire	
1	FF:FF:FF:FF:FF	C2:FD:5A:E8:60:E5	192.168.0.2	192.168.0.254	ARP	Internet	Requête ARP	
2	C2:FD:5A:E8:60:E5	EF:36:DE:39:06:86	192.168.0.254	192.168.0.2	ARP	Internet	Réponse ARP	
3	E8:36:DE:39:06:86	C2:FD:5A:E8:60:E5	192.168.0.2	194.214.131.1	ICMP	Internet	Echo Request	
4	C2:FD:5A:E8:60:E5	EF:36:DE:39:06:86	194.214.131.1	192.168.0.2	ICMP	Internet	Echo Reply	
			:					
10	C2:FD:5A:E8:60:E5	EF:36:DE:39:06:86	194.214.131.1	192.168.0.2	ICMP	Internet	Echo Reply	

Échanges de trames entre PC2 et routeur

No.	MAC Destination	MAC Source	IP Source	IP Destination	Protocole	Couche	Commentaire
1	FF:FF:FF:FF:FF	C1:47:C8:46:37:06	194.214.131.254	194.214.131.1	ARP	Internet	Requête ARP
2	C1:47:C8:46:37:06	8B:61:E6:30:57:33	194.214.131.1	194.214.131.254	ARP	Internet	Réponse ARP
3	E8:36:DE:39:06:86	C1:47:C8:46:37:06	192.168.0.2	194.214.131.1	ICMP	Internet	Echo Request
4	C1:47:C8:46:37:06	8B:61:E6:30:57:33	194.214.131.1	192.168.0.2	ICMP	Internet	Echo Reply
			:				
10	C1:47:C8:46:37:06	8B:61:E6:30:57:33	194.214.131.1	192.168.0.2	ICMP	Internet	Echo Reply

Échanges de trames entre portable et routeur

Entre le PC2 et le routeur on voit qu'il y a d'abord un requête ARP pour obtenir l'adresse MAC du routeur. Après l'avoir reçue il envoi un ping au portable mais avec une adresse MAC de destination du routeur. Lorsque le ping revient, c'est toujours l'adresse MAC du routeur qui est l'adresse source.

Quand on regarde avec les échanges entre le routeur et le portable on observe que la même chose se passe. Après une requête et une réponse ARP, le ping est envoyé avec l'adresse MAC du routeur et la destination de pong l'est aussi.

Le routeur agit donc comme un pont en se faisant passer par la machine mais en utilisant sa propre adresse MAC.

Mise en oeuvre d'un DNS

Un serveur DNS permet d'associer un URL à une adresse IP, c'est à base de traduction.

L'option "activer la résolution recursive de domaine" permet d'accéder à d'autre sites web en contactant d'autre serveur DNS, de cette façon on ne doit pas se reposer sur un unique serveur DNS.

1	01:56:21.949 192.168.0.2:56617	194.214.131.100:53		Application	ID=63655 QR=0 RCODE=0 QDCOUNT=1 ANCOUNT=0 NSCOUNT=0 A
2	01:56:22.466 194.214.131.100:53	192.168.0.2:56617		Application	ID=63655 QR=1 RCODE=0 QDCOUNT=0 ANCOUNT=1 NSCOUNT=0 A
3	01:56:22.467 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SYN, SEQ: 2155888987
4	01:56:22.981 194.214.131.1:80	192.168.0.2:50040	TCP	Transport	SYN, SEQ: 3351833040, ACK:2155888988
5	01:56:22.982 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155888988, ACK:3351833041
6	01:56:23.033 192.168.0.2:50040	194.214.131.1:80		Application	GET / HTTP/1.1 Host: iutgeii.fr
7	01:56:23.550 194.214.131.1:80	192.168.0.2:50040	TCP	Transport	SEQ: 3351833041, ACK:2155889020
8	01:56:23.605 194.214.131.1:80	192.168.0.2:50040		Application	HTTP/1.1 200 OK Content-type: text/html <html> <he< td=""></he<></html>
9	01:56:23.605 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889020, ACK:3351833656
10	01:56:23.657 192.168.0.2:50040	194.214.131.1:80		Application	GET splashscreen-mini.png HTTP/1.1 Host: iutgeii.fr
11	01:56:24.171 194.214.131.1:80	192.168.0.2:50040	TCP	Transport	SEQ: 3351833656, ACK:2155889072
12	01:56:24.223 194.214.131.1:80	192.168.0.2:50040		Application	HTTP/1.1 200 OK Content-type: image/png iVBORwOKGgoA
13	01:56:24.224 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351835116
14	01:56:24.738 194.214.131.1:80	192.168.0.2:50040		Application	J285HmHOqGH4aXrASUOR1BnxDMAWb58uasHZSkOTKR8 8kGKILIJ8
15	01:56:24.739 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351836576
16	01:56:25.261 194.214.131.1:80	192.168.0.2:50040		Application	SsqATIZhcoDx90PpgCn0GF/t4Wem0x1DEbnZEcvi+EF6yD ZOaXLX
17	01:56:25.262 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351838036
18	01:56:25.776 194.214.131.1:80	192.168.0.2:50040		Application	Mb9u2rWM+kgCQcCEEewEKLbc85vM+kQAZAKG3Pvfcc248j94N gwn
19	01:56:25.776 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351839496
20	01:56:26.289 194.214.131.1:80	192.168.0.2:50040		Application	cK4FHWZZnSvmW50hH1rdMT9a/TvN9hy/3v4+eImV9Jtju3W+14Lm
21	01:56:26.289 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351840956
22	01:56:26.804 194.214.131.1:80	192.168.0.2:50040		Application	VOyHM6E6aAaAzJuguRbHmlialnjxo3t2GOPdSd8YTiSgQ01/ocvZS
23	01:56:26.805 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351842094
24	01:56:26.856 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	FIN, SEQ: 2155889072
25	01:56:27.371 194.214.131.1:80	192.168.0.2:50040	TCP	Transport	SEQ: 3351842094, ACK:2155889072
26	01:56:27.424 194.214.131.1:80	192.168.0.2:50040	TCP	Transport	FIN, SEQ: 3351842094
27	01:56:27.424 192.168.0.2:50040	194.214.131.1:80	TCP	Transport	SEQ: 2155889072, ACK:3351842094

Trames échangés

On constate qu'avant d'accéder au domaine il y a une demande au serveur DNS pour obtenir l'adresse IP du site, et ensuite le serveur répond avec l'IP du site.

Le protocole RIP consiste à ce que chaque routeur envoi sa table de routage au prochain, ceci permet d'optimiser le routage dans des réseaux complexes avec plusieurs routeur.

Q18. La trame est un broadcast dans lequel est contenu l'IP du routeur et l'IP des autres machine auquel il est connecté

Si R11 est coupé alors les trames devrons prendre un chemin plus long pour arriver à leur déstinataires.

Page 6 Mise en oeuvre d'un DNS