Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5 «Интерполяция функции»

по дисциплине «Вычислительная математика»

Вариант: 1

Преподаватели:

Малышева Татьяна Алексеевна Машина Екатерина Алексеевна

Выполнил:

Бондарев Алексей Михайлович

Группа: Р3212

<u>Цель работы</u>: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

1. Вычислительная реализация задачи

1. Выбрать таблицу y = f(x):

	X	у	N варианта	X_1	X_2
	0.25	1.2557			
	0.30	2.1764			
	0.35	3.1218			
Таблица 1.1	0.40	4.0482	1	0.251	0.402
	0.45	5.9875			
	0.50	6.9195			
	0.55	7.8359			

2. Построить таблицу конечных разностей:

i	Xi	$y_i=f(x_i)$
0	0,25	1,2557
1	0,30	2,1764
2	0,35	3,1218
3	0,40	4,0482
4	0,45	5,9875
5	0,50	6,9195
6	0,55	7,8359

i	Δ°y	Δ¹y	Δ²y	Δ³y	Δ ⁴ y	Δ ⁵ y	Δ ⁶ y
0	1,2557	0,9207	0,0247	-0,0437	1,0756	-4,1277	10,1917
1	2,1764	0,9454	-0,0190	1,0319	-3,0521	6,0640	
2	3,1218	0,9264	1,0129	-2,0202	3,0119		
3	4,0482	1,9393	-1,0073	0,9917			

4	5,9875	0,9320	-0,0156		
5	6,9195	0,9164			
6	7,8359				

3. Вычислить значения функции для аргумента X_1 , используя первую или вторую интерполяционную формулу **Ньютона**:

Воспользуемся формулой Ньютона для интерполирования **впере**д, так как $X_1 = 0.251$ лежит в левой половине отрезка:

$$t = (X_1 - X_0)/h = (0.251 - 0.25)/0.05 = 0.02$$

$$egin{split} P(X_1) = y_0 + t \, \Delta y_0 + rac{t(t-1)}{2} \Delta^2 y_0 + rac{t(t-1)(t-2)}{6} \Delta^3 y_0 \ + rac{t(t-1)(t-2)(t-3)}{24} \Delta^4 y_0 + \ldots \end{split}$$

член	значение
у0	1,2557
τΔγ0	+0,0184
t(t-1)2Δ2y0	-0,0002
t(t−1)(t−2)6∆3y0	-0,0003
t(t-1)(t-2)(t-3)24Δ4y0	-0,0052

$$f(0,251) \approx 1,2201$$

4. Вычислить значения функции для аргумента X_2 , используя первую или вторую интерполяционную формулу Гаусса:

Центральная точка a = 0.65, $X_2 = 0.645 < 0.65$, то есть $x < a \rightarrow$ используем **первую** интерполяционную формулу Гаусса.

$$p = (X_2 - X_3)/h = (0,402 - 0,40)/0,05 = 0,04$$

$$egin{split} P(X_2) = y_3 + p \, \Delta y_{3-rac{1}{2}} + rac{p(p-1)}{2} \, \Delta^2 y_2 + rac{(p+1)p(p-1)}{6} \, \Delta^3 y_{rac{3}{2}} \ &+ rac{(p+1)p(p-1)(p-2)}{24} \, \Delta^4 y_1 + \ldots \end{split}$$

член	индекс	значение
у3	_	4,0482
p Δy3-12	y4-y3	+0,0776
p(p−1)2∆2y2	1,0129	-0,0194
(p+1)p(p−1)6Δ3y1.5	-2,0202	+0,0134
(p+1)p(p-1)(p-2)24Δ4y1	-3,0521	-0,0100

$$f(0,402) \approx 4,1098$$

2. Программная реализация задачи

https://github.com/666Daredevil666/calmath/tree/main/lab5

Результаты выполнения программы при различных исходных данных:


```
1 — клавиатура
2 — csv-файл
3 — встроенная функция
Выбор: 3
Функция ['sin', 'cos', 'exp', 'log']: exp
                                                        56.5545
    26.7281
                 57.0835
                              121.914
                                           260.374
                                                        556.084
                                                                     1187.64
    83.8116
                                                        1743.72
    262.809
                 561.286
                              1198.75
                                           2560.18
    824.095
                 1760.03
                              3758.93
    2584.13
                 5518.96
    8103.08
      lagrange: 6.218215314e+17
         exact: 7.277212332e+238
      abs error: 7.277e+238
```


Вывод

В ходе выполнения данной лабораторной работы мною были рассмотрены и реализованы методы интерполяции Ньютона и Гаусса для заданной таблицы данных. Интерполяция позволяет нам предсказывать значения функции в промежуточных точках на основе имеющихся данных.

С помощью разработанной программы были вычислены приближенные значения функции для заданных аргументов с использованием методов Ньютона и Гаусса. Было проведено сравнение результатов, полученных разными методами.

Результаты показали, что оба метода могут быть эффективно использованы для интерполяции, но их точность может зависеть от конкретной функции и распределения данных. Эта работа подчеркивает важность выбора подходящего метода интерполяции в соответствии с требованиями конкретной задачи.