Universidade Federal de Minas Gerais

Pesquisa Operacional 2018/2

Felipe Machado Cordeiro

Trabalho Prático 2 – Programação Inteira

1. Descrição do Problema

O problema selecionado para ser resolvido foi o set partitioning problem (SPP). O SPP pode ser descritos usando processadores e tarefas. Há um conjunto T de m tarefas que precisam ser realizadas por um conjunto P de n processadores. Cada processador possui um custo C para ser utilizado e cada tarefa há de ser realizada e por somente um processador, sendo que nem todo processador consegue realizar cada tarefa. Nesta situação, qual seria a combinação de processadores tal que o custo é o menor possível.

2. Formulação do problema

Seja C um conjunto onde C_i com $i \in \{1,2,3...n\}$ indica o custo para se utilizar o processador i.

Seja A um conjunto que indica qual processador pode realizar qual tarefa, sendo $A_{i,j}=1$, com $j\in\{1,2,3\dots m\}$ e $i\in\{1,2,3\dots n\}$, quando a tarefa j poder ser executada no processador i e $A_{i,j}=0$ caso contrário.

Seja X um conjunto que indica cada processador usado, sendo $X_i=1$, com $i\in\{1,2,3\dots n\}$ quando o processado i for utilizado e $X_i=0$ caso contrário.

$$\begin{aligned} \min CX \\ Sujeito & a \\ AX &= 1 \\ X_i &\in \{0,1\}, \ A_{i,j} \in \{0,1\} \end{aligned}$$

3. Descrição dos Testes

Os testes foram os 60 testes presentes no OR-LIBRARY. Para cada teste era dado o número de linhas, tarefas, e o número de colunas, processadores. Depois para cada coluna são dados qual seu custo, quantas tarefas ele cobre e quais tarefas cobre.

Para realizar os testes utilizei Python para ler os arquivos e coloca-los no formato aceitado pelo CPLEX, que utilizei através da API para resolver cada problema.

O tempo limite para cada teste foi de 20 minutos.

4. Tabela de Resultados

Linhas	Colunas	Objetivo	Gap	Melhor Bound	Tempo (s)
145	1053137	9963.07	10.83	8884.06	1208.92
426	7195	26371.54	0.01	26368.90	12.08
823	8904	56137	0	56137	9.17
36	87482	16862	0	16862	8.45
585	2300	34	0	34	6.62
139	148633	1181590	0	1181590	6.26
61	118607	11115	0	11115	3.75
180	926	180	0	180	3.27
71	36699	219	0	219	2.55
59	43749	24492	0	24492	2.28
71	288507	132878	0	132878	1.98
77	85552	5338	0	5338	1.58
825	8627	49649	0	49649	1.42
801	8308	53839	0	53839	1.38
60	2464	60	0	60	1.33
135	51975	114852	0	114852	1.14
646	7292	27040	0	27040	1.01
163	28016	17854	0	17854	1
145	87879	105444	0	105444	0.97
126	1194	126	0	126	0.72
73	123409	61844	0	61844	0.7
124	10757	340160	0	340160	0.39
72	2440	12	0	12	0.36
55	7479	1086	0	1086	0.24
100	13635	5965	0	5965	0.24
531	5198	30494	0	30494	0.2
51	16043	50146	0	50146	0.16
39	8820	116254.5	0.01	116242.87	0.06
18	2540	4274	0	4274	0.06
20	1783	7314	0	7314	0.06
26	2653	3942	0	3942	0.05
26	2662	8038	0	8038	0.05

Linhas	Colunas	Objetivo	Gap	Melhor Bound	Tempo
23	3068	6678	0	6678	0.05
20	899	10488	0	10488	0.05
36	5172	5476	0	5476	0.03
40	3103	67760	0	67760	0.03
24	853	68271	0	68271	0.03
27	626	14118	0	14118	0.03
40	2879	10898	0	10898	0.03
22	685	16812	0	16812	0.03
25	577	7408	0	7408	0.03
19	711	12534	0	12534	0.03
19	1366	6314	0	6314	0.03
20	1217	5960	0	5960	0.03
22	1355	9933	0	9933	0.03
18	1210	8298	0	8298	0.03
19	294	14877	0	14877	0.03
23	1709	7216	0	7216	0.03
19	770	10068	0	10068	0.03
23	1220	5558	0	5558	0.03
25	677	10080	0	10080	0.03
23	1079	7656	0	7656	0.03
18	1072	8904	0	8904	0.03
24	434	35894	0	35894	0.02
31	467	67743	0	67743	0.02
23	619	6984	0	6984	0.02
23	771	6796	0	6796	0.02
19	404	10809	0	10809	0.02
17	197	11307	0	11307	0.02