Bayesian Neural Networks

? How **certa**i are you?

Motivation

Neural Nets are powerful

But we also want to know uncertainty in predictions

Perspective on the learnt parameter distributions

Use Neural Networks with Probabilistic modeling

Neural Nets as universal function approximators

Defined modeling for known interactions, with principled results

Bias, b Χ Weights, w Activation Linear, z = wx + bActivation, $a = \sigma(z)$ Backpropagation: $\partial \mathcal{L}/\partial w = (\partial \mathcal{L}/\partial z) (\partial z/\partial w)$

Neural Nets at lightspeed

Artificial Neuron

Neural Network at Light Speed (MLP)

Neural Networks - Characteristics

$$\arg\max_{\theta} Pr(D;\theta)$$

Probabilistic Modeling - Bayes Rule

 Use of Product rule, Sum rule and Conditional probability gives us:

- θ is model parameter
- y is the data

Probabilistic Modeling

- Directly define parameterized statistical models
- Specify prior distributions on model parameters
- Specify likelihood of observed data given the parameters
- Learning the posterior parameters (inference)
 involve sampling or approximation techniques
 - Sampling using MCMC techniques: Metropolis, HMC, NUTS
 - Variational inference: Stochastic VI, Mean-Field, ADVI
- Posterior predictive checks for prediction

What makes inference possible?

Approximation

- Sampling
 - MCMC family of samplers
- Variational Inference
 - Stochastic
 - Mean-Field
 - Automatic Differentiation

$$\alpha = \min \left(1, \frac{\pi(\theta_c)q(\theta_0|\theta_c)}{\pi(\theta_0)q(\theta_c|\theta_0)} \right)$$

$$KL(q||p) = \mathbb{E}_q[\log \frac{q(\theta; \nu)}{p(\theta|x)}]$$
:

Sampling

- Mixing time
- Burn in period
- Asymptotic convergence

$$\alpha = \min \left(1, \frac{\pi(\theta_c)q(\theta_0|\theta_c)}{\pi(\theta_0)q(\theta_c|\theta_0)} \right)$$

- Detailed balance
- Ergodicity
- Irreducible

- Gibbs Sampling
- Metropolis Hastings
- Hamiltonian Monte Carlo
- No-U-Turns Sampler

Source: D. Blei, Columbia University

Minimizing KL divergence (evidence lower bound maximization)

$$KL(q||p) = \mathbb{E}_q[\log \frac{q(\theta; \nu)}{p(\theta|x)}] :$$

$$= \mathbb{E}_q[\log \frac{q(\theta)p(x)}{p(\theta, x)}]$$

Rearranging terms, that simplifies to:

$$\underbrace{KL \text{ divergence}}_{KL(q||p)} = -(\underbrace{\mathbb{E}_q[\log p(\theta,x)]}_{\text{exp. log joint}} - \underbrace{\mathbb{E}_q[\log q]}_{\text{entropy}}) + \underbrace{\log p(x)}_{\text{entropy}}$$

ADVI: Objective and Gradient - 1

ELBO:
$$\mathscr{L}(\boldsymbol{\phi}) = \mathbb{E}_{q(\boldsymbol{\theta})} \big[\log p(\boldsymbol{x}, \boldsymbol{\theta}) \big] - \mathbb{E}_{q(\boldsymbol{\theta})} \big[\log q(\boldsymbol{\theta}; \boldsymbol{\phi}) \big].$$

Transforming to a real coordinate space: $\zeta = T(\theta)$.

Transformed joint density:
$$p(x, \zeta) = p(x, T^{-1}(\zeta)) |\det J_{T^{-1}}(\zeta)|$$
,

Use a Gaussian distribution for variational approximation:

$$q(\zeta; \phi) = \mathcal{N}(\zeta; \mu, \Sigma)$$

Non-unique Cholesky decomposition, $q(\zeta; \phi) = \mathscr{N}(\zeta; \mu, LL^{ op})$

$$\mathscr{L}(\boldsymbol{\phi}) = \mathbb{E}_{q(\boldsymbol{\zeta}; \boldsymbol{\phi})} \left[\log p \left(\boldsymbol{x}, T^{-1}(\boldsymbol{\zeta}) \right) + \log \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right| \right] + \mathbb{H} \left[q(\boldsymbol{\zeta}; \boldsymbol{\phi}) \right].$$

ADVI: Objective and Gradient - 2

Elliptical Standardization: (Gaussian to Standard Gaussian)

$$\eta = S_{\phi}(\zeta) = L^{-1}(\zeta - \mu).$$

Objective becomes:

$$\boldsymbol{\phi}^* = \arg\max_{\boldsymbol{\phi}} \mathbb{E}_{\mathcal{N}(\boldsymbol{\eta}; \mathbf{0}, \boldsymbol{I})} \left[\log p \left(\boldsymbol{x}, T^{-1}(S_{\boldsymbol{\phi}}^{-1}(\boldsymbol{\eta})) \right) + \log \left| \det J_{T^{-1}} \left(S_{\boldsymbol{\phi}}^{-1}(\boldsymbol{\eta}) \right) \right| \right] + \mathbb{H} \left[q(\boldsymbol{\zeta}; \boldsymbol{\phi}) \right].$$

Compute the gradients:

$$\nabla_{\boldsymbol{\mu}} \mathcal{L} = \mathbb{E}_{\mathcal{N}(\boldsymbol{\eta})} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{x}, \boldsymbol{\theta}) \nabla_{\boldsymbol{\zeta}} T^{-1}(\boldsymbol{\zeta}) + \nabla_{\boldsymbol{\zeta}} \log \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right| \right].$$

$$\nabla_{\boldsymbol{L}} \mathcal{L} = \mathbb{E}_{\mathcal{N}(\boldsymbol{\eta})} \left[\left(\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{x}, \boldsymbol{\theta}) \nabla_{\boldsymbol{\zeta}} T^{-1}(\boldsymbol{\zeta}) + \nabla_{\boldsymbol{\zeta}} \log \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right| \right) \boldsymbol{\eta}^{\top} \right] + (\boldsymbol{L}^{-1})^{\top}$$

Experiments

Dataset - powerball

Powerball / December 13, 2017

02 24 28 5

58

07

Powerball dataset

Pre-processed (creating bins)

Predict the bin and uncertainty

Model Building

```
ntrain = len(X train)
#Construct the NN
def construct nn(nn in, nn out):
   n \text{ hidden} = 5
   init 1 = np.random.randn(1, n hidden).astype(theano.config.floatX)
   init 2 = np.random.randn(n hidden, n hidden).astype(theano.config.floatX)
   init 3 = np.random.randn(n hidden, 1).astype(theano.config.floatX)
   with pm.Model() as bnn:
        weights 1 = pm.Normal('w 1', mu=0, sd=1, shape=(1, n hidden), testval=init 1)
        weights_2 = pm.Normal('w_2', mu=0, sd=1, shape=(n_hidden, n_hidden), testval=init 2)
        weights 3 = pm.Normal('w 3', mu=0, sd=1, shape=(n hidden, 1), testval=init 3)
        #Activations
        act 1 = pm.math.tanh(pm.math.dot(np.log(nn in), weights 1))
        act 2 = pm.math.tanh(pm.math.dot(act 1, weights 2))
        act 3 = pm.math.sigmoid(pm.math.dot(act 2, weights 3)) /
        out = pm.Bernoulli('Category', p=act 3, observed=nn out, total size=ntrain)
   return bnn
```

NN as a universal function approximator

Bernoulli Likelihood

Inference

```
with neural_network:
    inference = pm.ADVI()
    approx = pm.fit(n=30000, method=inference)
```


Predictions

```
nn_in.set_value(X_test)
nn_out.set_value(y_test)
with bnn:
    ppc = pm.sample_ppc(trace, 500)
    pred = ppc['Category'].mean(axis=0)
    proba = ppc['Category'].std(axis=0)
```


Comparison to other models

Random Forest Classifier Gaussian Process Classifier AdaBoost Decision Trees

Accuracy: 82.96

85.18

84.93

85.18

More Importantly, the uncertainty

<Container object of 3 artists>

Posterior parameter distribution

Active Areas of Work

- Alternate Divergences Variational Inference
- Non-convexity of ELBO
- Better optimization
- Better approximations
- Variational Inference is less explored

Input to Sigmoid

Sigmoid Prediction

Y. Gal:

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html#uncertainty-sense

Sigmoid Layer

Retrieving a measure of unpredictability using complete distributional as opposed to MAP estimate

What makes inference possible?

$$\alpha = \min \left(1, \frac{\pi(\theta_c)q(\theta_1|\theta_c)}{\pi(\theta_0)q(\theta_c|\theta_0)} \right)$$

$$\overbrace{KL(q||p)}^{\text{KL divergence}} = -\underbrace{\left(\mathbb{E}_q[\log p(\theta,x)] - \mathbb{E}_q[\log q]\right)}_{\text{cross-entropy}} + \underbrace{\log p(x)}_{\text{entropy}}$$

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t^*(\mathbf{x}^*)$$

$$\operatorname{Var}(\mathbf{y}^*) \approx \tau^{-1} \mathbf{I}_D$$

$$+ \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t^*(\mathbf{x}^*)^T \widehat{\mathbf{y}}_t^*(\mathbf{x}^*)$$

$$- \mathbb{E}(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*)$$

```
probs = []
for _ in xrange(T):
    probs += [model.output_probs(input_x)]
predictive_mean = numpy.mean(prob, axis=0)
predictive_variance = numpy.var(prob, axis=0)
tau = 1**2 * (1 - model.p) / (2 * N * model.weight_decay)
predictive_variance += tau**-1
```

Python code to obtain predictive mean and uncertainty from dropout networks

Source:

http://www.cs.ox.ac.uk/people/yarin.gal/website/publications.html