

# **TSPA4C500x Bootram**

# 应用指南

- 版本号: A\_Draft
- 版本日期: 2019-12-03
- 文件编号: N/A

# 修订记录

| 版本      | 版本日期       | 修订描述          |
|---------|------------|---------------|
| A_Draft | 2019-12-03 | SDK 版本 0.5.0; |





# 目录

| 1 | 启动流程               | 3 |  |  |  |
|---|--------------------|---|--|--|--|
|   | 配置 Bootram         |   |  |  |  |
| _ | 2.1 打开 Bootram 工程  |   |  |  |  |
|   | 2.2 配置启动项          |   |  |  |  |
|   | 2.2.1 启动方式         |   |  |  |  |
|   | 2.2.1.1 等待超时       |   |  |  |  |
|   | 2.2.1.2 判断 GPIO 电平 | 4 |  |  |  |
|   | 2.2.2 空中升级(OTA)    |   |  |  |  |
|   | 2.3 编译 Bootram 工程  |   |  |  |  |
|   |                    | 6 |  |  |  |



## 1 启动流程

TSPA4C500x Boot 简易流程如图 1.1 所示。



图 1.1: 启动流程示意图

TSPA4C500x 启动后,会根据不同的条件选择进入(C)Boot 或者(D)运行 APP。

TSPA4C500x 启动后, 首先判断 Boot 启动选项。Boot 启动选项有以下 3 种:

- 不进入 Boot, 直接启动 APP (A1-B1-D);
- 等待指定的时间。若在等待的时间内通过 UART/SPI 收到 Boot 指令,则进入 Boot (A1-A2-C);若超时,则启动 APP (A1-A2-D)。等待的时间可配置。
- 判断某 GPIO 的高低电平状态。若符合设置的电平,则进入 Boot (B1-B2-C); 若不符合,则启动 APP (B1-B2-D)。GPIO 号及电平状态可配置。



## 2 配置 Bootram

## 2.1 打开 Bootram 工程

打开 "\firmware\bootloader\ram" 内的工程。

## 2.2 配置启动项

启动项配置的选项都在文件"in\_config.h"中。

## 2.2.1 启动方式

启动选项: #define CFG\_BRAM\_BOOT\_OPT

值范围: 0、1和2。

- **0**: 直接运行 APP (不建议使用该项,可能导致无法再次烧录程序)。
- 1: 等待超时。
- 2: 判断 GPIO 电平。

### 2.2.1.1 等待超时

超时时间: #define CFG BRAM BOOT WAIT TIME

值范围: 0~2147483647 (不建议设为 0,可能导致无法再次烧录程序)。

值单位: 100 毫秒。

#### 2.2.1.2 判断 GPIO 电平

GPIO Port: #define CFG BRAM BOOT GPIO PORT

值范围: 0~4。



GPIO Pin: #define CFG BRAM BOOT GPIO PIN

值范围: 0~8。

GPIO 电平: #define CFG BRAM BOOT GPIO LEVEL

值范围: 0和1。

注意:不同的芯片型号拥有的 GPIO 数量不同,请不要使用对应芯片没有的 GPIO,否则可能导致无法再次烧录程序。

## 2.2.2 空中升级(OTA)

若用户工程包含 OTA 功能,则 Bootram 需要占用更大的空间,且需要额外配置。

| 参数           | 不使用 OTA           | 使用 OTA            |
|--------------|-------------------|-------------------|
| Bootram 占用空间 | 4KB               | 8KB               |
| Bootram 存储地址 | 0x300000~0x300FFF | 0x300000~0x301FFF |
| APP 起始地址     | 0x301000          | 0x302000          |

#### 表 2.1: Bootram 及 APP 地址

| 宏定义                     | 不使用 OTA  | 使用 OTA   |
|-------------------------|----------|----------|
| CFG_FW_UPD_EN           | 0        | 1        |
| CFG_RAM_BASE_ADDR       | 0x201000 | 0x202000 |
| CFG_RAM_SIZE            | 0xF000   | 0xE000   |
| CFG_FLASH_BASE_ADDR     | 0x301000 | 0x302000 |
| CFG_FLASH_SIZE          | 0x7F000  | 0x7E000  |
| CFG_BRAM_COLD_BOOT_ADDR | 0x301000 | 0x302000 |

#### 表 2.2: OTA 相关 Bootram 配置

## 2.3 编译 Bootram 工程

修改完启动项配置后,编译该工程。编译成功后,会在工程目录下生成二进制文件 "bootram.bin"。



# 2.4 烧录 Bootram

把编译生成的二进制文件"bootram.bin"烧录至芯片内。烧录方法请参考文档《TSPA4C500x Programmer 工具\_用户手册》。

