CS 553 Scientific Visualization

Project #7:

Hyperbolic Geometry

Yu Zhang
Zhangy6@onid.oregonstate.edu
Master Student in Computer Science
School of Electrical Engineering and Computer Science
Oregon State University

05/13/2015

1. Images and relative comments of my project

a) Interface of my project (zoom out)

b) Interface of my project (zoom in)

In this project, we are required to implement a U.S. national map. The data is given and we need to firstly import the data to our program. So in the function InitGraphics(), I used FILE *fp = fopen("proj07.dat", "r");

And there are three main parts in this project: Hyperbolic-Cartesian, Hyperbolic-Polar and High definition for these two kinds of hyperbolic geometry.

c) Polar with low definition

d) Polar with high definition

For implementing the polar part, I followed the instructions on the class website, the main algorithm is

$$x'' = r' * (x'/r) = x'/(r+K)$$

 $y'' = r' * (y'/r) = y'/(r+K)$

For high definition part, I followed the algorithm showed in our slides, and I also created the function DrawHyperbolicLine()

```
void
DrawHyperbolicLine(P<sub>0</sub>, P<sub>1</sub>)
                Compute point A = \frac{P_0 + P_1}{2}
                Convert point A to Hyperbolic Coordinates, calling it A'
                Convert P<sub>0</sub> and P<sub>1</sub> to Hyperbolic Coordinates P<sub>0</sub>', P<sub>1</sub>'
                Compute point B' = \frac{P_0' + P_1'}{2}
                Compare A' and B
                if( they are "close enough" )
                {
                                Draw the line P<sub>0</sub>'-P<sub>1</sub>'
                }
                else
                                DrawHyperbolicLine( P<sub>0</sub>, A);
                                DrawHyperbolicLine( A, P<sub>1</sub>);
                }
}
```

e) Cartesian with low definition

f) Cartesian with high definition

In this part, the main algorithm is

$$x'' = x' / sqrt(x'*x' + K*K)$$

$$y'' = y' / sqrt(y'*y' + K*K)$$

All in a word, this project is not very hard, I followed the algorithm showed in the class website and modified some codes, then it' done successfully.