In the following two questions, show all your work and put your answer in the designated boxes.

n-MOSFET	$ V_{Tn} = 1V$	$K_n = 1 \text{mA/V}^2$				
p-MOSFET	$ V_{T_p} = 2V$	$K_p = 0.5 \text{mA/V}^2$				
npn-BJT	$\beta_F = 149$	$\beta_R = 10$	n = 1	$V_{\scriptscriptstyle A} \to \infty$	$V_{BE(ON)} = 0.7V$	$V_{CE(SAT)} = 0.2V$
pnp-BJT	$\beta_F = 99$	$\beta_R = 4$	n = 1	$V_A \to \infty$	$V_{EB(ON)} = 1V$	$V_{EC(SAT)} = 0.2V$
Diode	$V_{\gamma} = 0.6V$	n = 1				
Zener diode	$V_{\gamma} = 0.5V$	$V_Z = 5V$	n = 1			

Q1. (20 points)

a. (5 points) Determine the states of the diode and the transistor, and find I_C and V_{EC} . Justify your answers.

Diode state	OFF
Transistor state	OFF
I_C	O mA
V_{EC}	-10 V

Ich - VEC Base current is positive always

+ Diode opposes the current => OFF

> 2 k S2

Transistor also OFF

(5 points) Determine the states of the diode and the transistor, and find I_C and V_{EC} . Justify your answers.

Diode state	BREAKDOWN		
Transistor state	FORWARD ACTIVE		
I_C	0.99 mA		
V_{EC}	3.03 V		

assume pnp is in F. ACT and

$$\begin{array}{c} + \\ 5^{\vee} \\ \hline \end{array}$$

The second section of the second section in BRKDWN

$$I_{E} = \frac{10 - 6}{4k\Omega} = 1 \text{ mA}$$

$$I_{B} = \frac{1 \text{ mA}}{\beta + 1} = 10 \text{ mA}$$

$$I_{C} = 990 \text{ mA}$$

$$I_{X} = \frac{5^{\circ}}{50 \text{ k}\Omega} = 100 \text{ mA}$$

$$I_{X} = \frac{5^{\circ}}{50 \text{ k}\Omega} = 100 \text{ mA}$$

$$V_{EC} = 3.03^{\circ} > V_{ECSAT}$$

$$V_{EC} = 3.03^{\circ} > V_{ECSAT}$$

$$V_{EC} = 3.03^{\circ} > V_{ECSAT}$$

12.01.2011

c. (5 points) Determine the state of the transistor, and find I_C and V_{CE} . Justify your answers.

d. (5 points) Determine the state of the transistor, and find I_E and I_B . Justify your answers.

b. (10 points) Determine the following currents and voltages, justify your answer.

V_{DS}	4,55 [°]	
V_{CE}	5.25°	
I_{E}	13.5mA	

assume n MOS SAT

n BJT F. ACT

