اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۲۸ مهر ۱۳۹۹ جلسه نهم

Line Detection Hough Transform

Any idea?

Candidate Pixels

Edge Detector: Canny, Threshold: 0.1

god of a solve of sol

RANSAC based methods

Considering all lines passing through two edge pixels

Hough Transform Voting!

All Pairs

RANSAC Based

Voting! Hough Transform

Image and Parameter Spaces

Equation of Line: y = mx + c

Find: (m,c)

Consider point: (x_i, y_i)

$$y_i = mx_i + c$$
 or $c = -x_i m + y_i$

Parameter space also called Hough Space

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m,c)
- Create Accumulator Array A(m,c)
- Set $A(m,c) = 0 \quad \forall m,c$
- \bullet For each image edge (x_i,y_i) increment:

$$A(m,c) = A(m,c) + 1$$

- Find local maxima in A(m,c)
- To reduce the computational load, use gradient information
- Drawbacks?

A(m,c)									
	1						1		
		1				1			
			1		1				
				2					
			1		1				
		1				1			
	1						1		

Better Parameterization

NOTE: $-\infty \le m$, $c \le \infty$

Large Accumulator

More memory and computations

Improvement: (Finite Accumulator Array Size)

Line equation: $\rho = x \cos(\theta) + y \sin(\theta)$

Here:

$$-\pi \le \theta \le \pi$$
$$-\sqrt{2} \le \rho \le \sqrt{2}$$

Given points (x_i, y_i) find (ρ, θ)

Image size normalized to 2 by 2

Example

Detection of Circles by Hough Transform

Original Image

Edge Points

Detection of Circles by Hough Transform

Hough Space

Detected Circles

Reference

• Szeliski Section 4.3.2, Hough Transform