Segunda Lista de Problemas Segunda Parte

Matemáticas para las Ciencias Aplicadas I Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 12 de octubre de 2023

1. Ejercicio 5

name

Utilice una aproximación cuadrática local apropiada para aproximar tan 61° y compare el resultado con el producido directamente por su utilidad de cálculo.

A fin de encontrar una fórmula para la aproximación cuadrática local de una función f acerca de $x=x_0$. Esta aproximación tiene la forma:

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Dado que $61^{\circ} = \frac{\pi}{3} + \frac{\pi}{180} rad$. Entonces, sea $f(x_0) = \tan x_0$ y $x_0 = \frac{\pi}{3}$; de este modo:

$$f(x_0) = \tan x_0 \quad f(\frac{\pi}{3}) = \tan \frac{\pi}{3} = \sqrt{3}rad$$

$$f'(x_0) = (\sec x_0)^2 \quad f'(\frac{\pi}{3}) = (\sec \frac{\pi}{3})^2 = 4rad$$

$$f''(x_0) = 2(\sec x_0)^2 \tan x_0 \quad f''(\frac{\pi}{3}) = 2(\sec \frac{\pi}{3})^2 \tan \frac{\pi}{3} = 8\sqrt{3}rad$$

Sustituyendo los valores, tenemos que:

$$p_2(x) = \sqrt{3} + 4\left(x - \frac{\pi}{3}\right) + \frac{8\sqrt{3}}{2 \cdot 1}\left(x - \frac{\pi}{3}\right)^2 = \sqrt{3} + 4\left(x - \frac{\pi}{3}\right) + 4\sqrt{3}\left(x - \frac{\pi}{3}\right)^2$$
Ya que $x = 61^\circ = \frac{\pi}{3} + \frac{\pi}{180}rad$

$$p_{2}(\frac{\pi}{3} + \frac{\pi}{180}rad) = \sqrt{3} + 4\left[\left(\frac{\pi}{3} + \frac{\pi}{180}rad\right) - \frac{\pi}{3}\right] + 4\sqrt{3}\left[\left(\frac{\pi}{3} + \frac{\pi}{180}rad\right) - \frac{\pi}{3}\right]^{2}$$

$$= \sqrt{3} + 4\left(\frac{\pi}{180}rad\right) + 4\sqrt{3}\left(\frac{\pi}{180}rad\right)^{2} = \sqrt{3} + \frac{\pi}{45}rad + 4\sqrt{3}\left(\frac{\pi}{180}rad\right)^{2}$$

$$\therefore p_{2}(61^{\circ}) \approx 1.803974$$

El valor de la aproximación cuadrática local fue de 1.803974, mientras que el producido directamente por la calculadora fue de 1.804047.

2. Ejercicio 10

name

Encuentre los polinomios de Maclaurin de orden n=0,1,2,3,4, y luego encuentre los polinomios de Maclaurin enésimos para la función en notación sigma.

$$\sin \pi x$$

Sea $f(x) = \sin \pi x$; de este modo:

$$f(x) = \sin(\pi x) \quad f(0) = 0$$

$$f'(x) = \pi \cos(\pi x) \quad f'(0) = \pi$$

$$f''(x) = -\pi^2 \sin(\pi x) \quad f''(0) = 0$$

$$f'''(x) = -\pi^3 \cos(\pi x) \quad f'''(0) = -\pi^3$$

$$f^{(4)}(x) = \pi^4 \sin(\pi x) \quad f^{(4)}(0) = 0$$

Dado que el patrón $0, \pi^k, 0, -\pi^k$ se repetirá a medida que evaluemos derivadas sucesivas en 0; ya que $f^{(k)}(x) = 0$ cuando k es par y, cuando k es impar el resultado de $f^{(k)}(x)$ alterna entre π^k y $-\pi^k$. Por lo tanto, los polinomios de Maclaurin de orden n = 0, 1, 2, 3, 4 para $\sin \pi x$ son:

$$\begin{aligned} p_0(x) &= 0 \\ p_1(x) &= 0 + \pi x = \pi x \\ p_2(x) &= 0 + \pi x + 0 = \pi x \\ p_3(x) &= 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 = \pi x - \frac{\pi^3}{3!} x^3 = \pi - \frac{\pi^3}{6} x^3 \\ p_4(x) &= 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 + 0 = \pi x - \frac{\pi^3}{3!} x^3 + 0 = \pi - \frac{\pi^3}{6} x^3 \end{aligned}$$

Se obtiene el enésimo polinomio de Maclaurin para la función $\sin \pi x$ en notación sigma.

$$p_n(x) = \sum_{k=0}^{n} \frac{(\pi)^k \cdot \sin(\frac{k\pi}{2})}{j!} (x)^k$$

3. Ejercicio 20

name

Encuentre los polinomios de Taylor de orden n=0,1,2,3,4 alrededor de $x=x_0$ y luego encuentre el enésimo polinomio de Taylor para la función en notación sigma.

$$\frac{1}{x+2}$$
; $x_0 = 3$

Sea $f(x_0) = \frac{1}{x_0 + 2}$ y $x_0 = 3$; de este modo:

$$f(x_0) = \frac{1}{x_0 + 2} \qquad f(3) = \frac{1}{3+2} = \frac{1}{5}$$

$$f'(x_0) = -\frac{1}{(x_0 + 2)^2} \qquad f'(3) = -\frac{1}{(3+2)^2} = -\frac{1}{5^2} = -\frac{1}{25}$$

$$f''(x_0) = \frac{2}{(x_0 + 2)^3} \qquad f''(3) = \frac{2}{(3+2)^3} = \frac{2}{5^3} = \frac{2}{125}$$

$$f'''(x_0) = -\frac{6}{(x_0 + 2)^4} \qquad f'''(3) = -\frac{6}{(3+2)^4} = -\frac{6}{5^4} = -\frac{6}{625}$$

$$f^{(4)}(x_0) = \frac{24}{(x_0 + 2)^5} \qquad f^{(4)}(3) = \frac{24}{(3+2)^5} = \frac{24}{5^5} = \frac{24}{3125}$$

$$\vdots \qquad \vdots$$

$$f^{(k)}(x_0) = \sum_{k=0}^{n} (-1)^k \frac{k!}{(x+2)^{k+1}} \qquad f^{(k)}(3) = \sum_{k=0}^{n} (-1)^k \frac{k!}{5^{k+1}}$$

Por lo tanto, los polinomios de Taylor de orden n = 0, 1, 2, 3, 4 para $f(x) = \frac{1}{x+2}$ alrededor de $x_0 = 3$ son:

$$p_{0}(x) = \frac{1}{5}$$

$$p_{1}(x) = \frac{1}{5} + (-\frac{1}{25})x = \frac{1}{5} - \frac{1}{25}x$$

$$p_{2}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{1}{25}}{2!}(x-3)^{2} = \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2}$$

$$p_{3}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{1}{25}}{2!}(x-3)^{2} + \frac{-\frac{6}{625}}{3!}(x-3)^{3}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3}$$

$$p_{4}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{2}{225}}{2!}(x-3)^{2} + \frac{-\frac{6}{625}}{3!}(x-3)^{3} + \frac{\frac{24}{3125}}{4!}(x-3)^{4}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3} + \frac{1}{3125}(x-3)^{4}$$

Por tanto, sustituyendo $f^{(k)}(x_0) = \sum_{k=0}^n (-1)^k \frac{k!}{5^{k+1}}$ en la fórmula

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Se obtiene el enésimo polinomio de Taylor para la función $\frac{1}{x+2}$; $x_0 = 3$ en notación sigma.

$$p_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{5^{k+1}} (x-3)^k$$

4. Ejercicio 36

name

Utilice el método del ejemplo 7 para aproximar la expresión dada a la precisión especificada. Verifique su respuesta con la producida directamente por su utilidad de cálculo.

$$\frac{1}{e}$$
; precisión de tres decimales

Sabiendo que $\frac{1}{e} = e^{-1}$, podemos usar el enésimo polinomio de Maclaurín de e^x para apróximar e^{-1} con una presición de tres décimales considerando que la función exponencial e^x tiene derivadas de cualquier orden para todos los números reales x.

El enésimo polimonio de Maclaurin para e^x es:

$$\sum_{k=0}^{n} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

Por la cual obtenemos para x = -1

$$e^{-1} \approx \sum_{k=0}^{n} \frac{(-1)^k}{k!} = 1 - 1 + \frac{1}{2!} + \dots + \frac{(-1)^n}{n!}$$

El problema consiste en determinar cuantos términos incluir en e polinomio de Maclaurin de e^{-1} para alcanzar una precisión de tres decimales. Esto requiera que encontremos una n para la cual el valor absoluto de el enésimo residuo en x=-1 cumpla

$$|R_n(-1)| \le 0.0005$$

Para determinar n usamos el el Teorema de Estimación del Residuo Remplazando la inecuación del teorema

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

Con con $f(x) = e^x$, x = -1, $x_0 = 0$ y el intervalo [-1, 0] obtenemos

$$|R_n(-1)| \le \frac{M}{(n+1)!} |-1-0|^{n+1}$$

Donde M es una cota superior en el intervalo $f^{n+1}(x) = e^x$ para x en el intervalo [-1,0], esto es $|f^{n+1}(x)| \leq M$ para toda x en el intervalo. e^x es una función creciente, así que su máximo valor en el intervalo [-1,0] ocurre en x=0, es decir, $e^x \leq e^0 = 1$ en este intervalo. Enonces podemos considerar M=1 para obtener:

$$|R_n(-1)| = |e^{-1} - p_n(-1)| \le \frac{1}{(n+1)!} |-1|^{n+1}$$

$$\le \frac{1}{(n+1)!} (1)^{n+1}$$

$$\le \frac{1}{(n+1)!}$$

Con esta inecuación podemos alcanzar tres decimales de precision encontrando una n para la cual

$$|R_n(-1)| \le \frac{1}{(n+1)!} \le 0.0005$$

O

$$(n+1)! \ge 2000$$

Para n = 5(5 + 1)! ≥ 2000 720 ≥ 2000 no se cumple

Para n = 6(6 + 1)! ≥ 2000 $5040 \geq 2000$ sí se cumple

Entonces, para tener tres decimales de precisión:

$$e^{-1} \approx 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \approx 0.368055556$$

Según la calculadora, $\frac{1}{e} = 0.3678794412$ así que se cumple que

$$|R_n(-1)| = |e^{-1} - p_6(-1)|$$

$$= |0.3678794412 - 0.3680555556|$$

$$= |-0.0001761144286|$$

$$= 0.0001761144286$$

 $y \ 0.0001761144286 < 0.0005$

Para n = 7 $(7+1)! \ge 40320$ $40320 \ge 2000$ sí se cumple

Entonces, para tener tres decimales de precisión:

$$e^{-1} \approx 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} \approx 0.3678571429$$

Según la calculadora, $\frac{1}{e}=0.3678794412$ así que se cumple que

$$|R_n(-1)| = |e^{-1} - p_7(-1)|$$

$$= |0.3678794412 - 0.3678571429|$$

$$= |0.0000229826986|$$

$$= 0.0000229826986$$

$$y \ 0.0000229826986 < 0.0005$$

Además, en 3 decimales $p_7(-1) = 0.367$ y $e^{-1} = 0.367$

n=6 es el valor más pequeño para el que se cumple que el residuo es menor a 0.0005, sin embargo n=7 tiene un menor residuo y al ser R7(-1) positivo se mantienen los primeros 3 decimales.

$$\therefore$$
 El polinomio $\sum_{k=0}^{7} \frac{(-1)^k}{k!}$

apróxima a $\frac{1}{e}$ con una presición de 3 décimales.

5. Ejercicio 40

name

⋖ Figure Ex-40

(a) La figura adjunta muestra un sector de radio r y ángulo central 2α . Suponiendo que el ángulo α es pequeño, utilice la aproximación cuadrática local de $\cos \alpha$ en $\alpha = 0$ para demostrar que $x \approx r\alpha^2/2$. La aproximación cuadrática local de $\cos \alpha$ en $\alpha = 0$ se obtiene con el polinomio de Maclaurin

$$p_2(\alpha) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} \alpha^k = f(0) + f'(0)\alpha + \frac{f''(0)}{2!} \alpha^2$$
(1)

$$f(\alpha) = \cos\alpha \quad f(0) = \cos(0) = 1$$

$$f'(\alpha) = \frac{d}{d\alpha}\cos x = -\sin\alpha \quad f'(0) = -\sin(0) = 0$$

$$f''(\alpha) = \frac{d^2}{d\alpha^2}\cos\alpha = \frac{d}{d\alpha} - \sin\alpha = -\cos x \quad f''(0) = -\cos(0) = -1$$

Sustituyendo en (1)

$$\cos\alpha \approx 1 + 0\alpha + \frac{-1}{2}\alpha^2 = 1 - \frac{\alpha^2}{2}$$
(2)

Observando la figura podemos concluir que x=r-z (3) donde z es el cateto adyacente al triángulo rectangulo donde encontramos α . Bajo estos términos, $\cos\alpha=\frac{z}{r}$ así que $z=\cos\alpha\cdot r$.

Sustituyendo z en (3) obtenemos $x = r - (\cos\alpha \cdot r)$ (4).

Remplazando $\cos\alpha$ en (4) por su aproximación antes obtenida en (2), obtenemos que

$$x = r - (\cos\alpha \cdot r)$$

$$\approx r - (r \cdot (1 - \frac{\alpha^2}{2}))$$

$$\approx r - (r - \frac{\alpha^2 \cdot r}{2})$$

$$\approx r - r + \frac{\alpha^2 \cdot r}{2}$$

$$\approx \frac{\alpha^2 \cdot r}{2}$$

$$\therefore x \approx \frac{r \cdot \alpha^2}{2}$$

(b) Suponiendo que la Tierra es una esfera de radio 4000mi, use el resultado del inciso (a) para aproximar la cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda.

Encontrar cantidad en la que un arco de la Tierra divergira del ecuador es equivalente a encontra x en el inciso anterior. Para usar $x \approx \frac{r \cdot \alpha^2}{2}$ conocemos que el radio es de 4000 mi pero necesitamos conocer el ángulo támbien.

Conocemos que el tamaño del arco es de 100 mi y este se puede calcular dar en términos del radio y el ángulo, siendo que:

$$c = r \cdot \theta$$

donde: c es el tamaño del arco, r es el radio, θ es el ángulo que genera el segmento. Despejando, podemos calcular el ángulo θ :

$$\theta = \frac{c}{r}$$

Remplazando por los datos conocidos:

$$\theta = \frac{100}{4000} = 0.025 rad$$

Sin embargo, la ecuación segun la figura esta dada para un ángulo α que es la mitad del ángulo θ que corresponde al del total del segmento. Así que

$$\alpha = \frac{\theta}{2} = \frac{0.025}{2} = 0.0125 rad$$

Una vez conocidos todos los valores necesarios, podemos aplicar la fórmula para x

$$x \approx \frac{r \cdot \alpha^2}{2}$$

$$\approx \frac{4000 \cdot 0.0125^2}{2}$$

$$\approx 0.3125 \ mi$$
(1)

 \therefore La cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda es 0.3125 mi.

6. Identidad de Euler

name

Aplicar las definiciones de las funciones exponencial natural, seno y coseno como series de Taylor para demostrar la identidad de Euler:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

y deducir, de aquí, que:

$$exp(i\pi) + 1 = 0$$

Para demostrar que $e^{i\theta}=\cos(\theta)+i\sin(\theta)$ hay que considerar las sigueintes definiciones:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$\cos \theta = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k!} \cdot \theta^{2k} = 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \frac{\theta^{6}}{6!} + \dots$$

$$\sin \theta = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} \cdot \theta^{2k+1} = \theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \frac{\theta^{7}}{7!} + \dots$$

Podemos desarrollar la función de exponencial natural como serie de Taylor

$$e^{i\theta} = \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!}$$

$$e^{i\theta} = \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!}$$

$$= 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \dots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{(i\theta)^3}{3!} + \frac{\theta^4}{4!} + \frac{(i\theta)^5}{5!} - \frac{\theta^6}{6!} - \frac{(i\theta)^7}{7!} + \dots$$

Al agrupar los terminos complejos y los reales.

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{(i\theta)^3}{3!} + \frac{\theta^4}{4!} + \frac{(i\theta)^5}{5!} - \frac{\theta^6}{6!} - \frac{(i\theta)^7}{7!} + \dots$$

$$= [1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots] + [i\theta - \frac{(i\theta)^3}{3!} + \frac{(i\theta)^5}{5!} - \frac{(i\theta)^7}{7!} + \dots]$$

$$= [1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots] + i[\theta - \frac{(\theta)^3}{3!} + \frac{(\theta)^5}{5!} - \frac{(\theta)^7}{7!} + \dots]$$

Estos grupos son las definiciones de $\cos \theta$ y $\sin \theta$

$$e^{i\theta} = \left[1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \ldots\right] + i\left[\theta - \frac{(\theta)^3}{3!} + \frac{(\theta)^5}{5!} - \frac{(\theta)^7}{7!} + \ldots\right]$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} \cdot \theta^{2k} + i\left[\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \cdot \theta^{2k+1}\right]$$

$$= \cos\theta + i\left[\sin\theta\right]$$

$$\therefore e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Con este resultado, sustituyendo θ por π :

$$e^{i\pi} = \cos(\pi) + i\sin(\pi)$$
$$= -1 + i(0)$$
$$= -1$$

Considerando $e^{i\pi}=-1$, se puede deducir que

$$e^{i\pi} + 1 = 0$$