

高等数学 (I)

主讲教师: 李铮

高等数学(I)

上一次课程内容回顾

2.1.2 函数极限的定义

1. 当 $x \rightarrow \infty$ 时函数极限的定义

我们已经学习了数列极限 $\lim_{n\to\infty} x_n = a$ 的定义。

当 $x \to +\infty$ 时,函数的极限 $\lim_{x \to +\infty} f(x) = A$ 可类似定义为

问题: 当 $x \to \infty$ 时, 函数 f(x) 的极限如何定义呢?

• 当 $x \to \infty$ 时函数极限的定义

设函数 f(x) 对于绝对值无论怎样大的 x 值是有定义的,

A 是一个常数,如果对于任意给定的正数 ε ,总存在正数 X,

使得当|x|>X时,有 $|f(x)-A|<\varepsilon$,则称A为函数f(x)当 $x\to\infty$ 时

的极限,记作: $\lim_{x\to\infty} f(x) = A$ 或 $f(x) \to A$ $(x\to\infty)$ 。

此定义称为 " $\varepsilon-X$ " 定义

 $\lim_{x\to\infty} f(x) = A : \forall \varepsilon > 0, \exists X > 0, \forall x : |x| > X \Rightarrow |f(x) - A| < \varepsilon.$

• 当 $x \to \infty$ 时函数极限的几何意义

 $\lim_{x\to\infty} f(x) = A : \forall \varepsilon > 0, \exists X > 0, \forall x : |x| > X \Rightarrow |f(x) - A| < \varepsilon.$

【例题1】用极限定义证明: $\lim_{r\to\infty}\frac{2}{r}=0$ 。

证:基本思想:

 $\forall \varepsilon > 0$, 找 X, 使得当 |x| > X 时,有 $|\frac{2}{x} - 0| < \varepsilon$ 。

基本方法1:解不等式: $|\frac{2}{x}-0|<\varepsilon$,得 $|x|>\frac{2}{\varepsilon}$,

所以 $\forall \varepsilon > 0$,取 $X = \frac{2}{\varepsilon}$,当 |x| > X 时,有 $|\frac{2}{x} - 0| < \varepsilon$,

即 $\lim_{x\to\infty}\frac{2}{x}=0$,证毕。

【例题2】用极限定义证明: $\lim \frac{\sin x}{1} = 0$ 。

证: 基本思想:

$$\forall \varepsilon > 0$$
,找 X 使得当 $|x| > X$ 时,有 $|\frac{\sin x}{x} - 0| < \varepsilon$ 。

基本方法2: 放大不等式:
$$|\frac{\sin x}{x}| \le \frac{1}{|x|} < \varepsilon$$
, 解得 $|x| > \frac{1}{\varepsilon}$,

所以
$$\forall \varepsilon > 0$$
,取 $X = \frac{1}{\varepsilon}$,当 $|x| > X$ 时,有 $|\frac{\sin x}{x} - 0| < \varepsilon$,

$$\lim_{x\to\infty}\frac{\sin x}{x}=0, \text{ if } \frac{\text{to}}{x} = 0$$

【例题3】用极限定义证明: $\lim_{x\to\infty}\frac{x}{2x+1}=\frac{1}{2}$ 。

证:基本思想:

$$\forall \varepsilon > 0$$
,找 X ,使得当 $|x| > X$ 时,有 $|\frac{x}{2x+1} - \frac{1}{2}| < \varepsilon$ 。

$$\overline{||} |\frac{x}{2x+1} - \frac{1}{2}| = |\frac{1}{2(2x+1)}| < \varepsilon,$$

问题: 如何处理? $\left|\frac{1}{2(2x+1)}\right| < \frac{1}{4|x|}$?

基本方法3:增加限制条件,如何增加限制条件呢?

【例题3】证(续): 增加限制条件 $|x| > \frac{1}{2}$, 此时, $|2x+1| \ge 2|x|-1>0$,

放大不等式:
$$|\frac{x}{2x+1} - \frac{1}{2}| = |\frac{1}{2(2x+1)}| \le \frac{1}{2(2|x|-1)} < \varepsilon$$

解得
$$|x| > \frac{1}{2}(\frac{1}{2\varepsilon}+1)$$
,所以 $\forall \varepsilon > 0$,取 $X = \max\{\frac{1}{2}, \frac{1}{2}(\frac{1}{2\varepsilon}+1)\}$,

当
$$|x|>X$$
时,有 $|\frac{x}{2x+1}-\frac{1}{2}|<\varepsilon$ 。

即
$$\lim_{x\to\infty}\frac{x}{2x+1}=\frac{1}{2}$$
,证毕。

注意: 还可以限制
$$|x| > 1$$
 再放大 $\frac{1}{2(2|x|-1)} < \frac{1}{2|x|} < \varepsilon \cdots$

单侧极限

如果在函数极限的定义中把条件|x|>X改为 x>X,

则得到函数f(x)当 $x \rightarrow +\infty$ 时的极限,

$$\lim_{x\to+\infty} f(x) = A : \forall \varepsilon > 0, \exists X > 0, \forall x : x > X \Rightarrow |f(x) - A| < \varepsilon.$$

如果在函数极限的定义中把条件|x|>X 改为 x<-X,

则得到函数f(x) 当 $x \to \infty$ 时的极限,

$$\lim_{x\to\infty} f(x) = A : \forall \varepsilon > 0, \exists X > 0, \forall x : x < -X \Rightarrow |f(x) - A| < \varepsilon.$$

定理

$$\lim_{x\to\infty} f(x) = A \Leftrightarrow \lim_{x\to+\infty} f(x) = A \quad \coprod \lim_{x\to\infty} f(x) = A.$$

• 函数极限不存在的典型例题

$$f(x) = x$$
, 当 $x \to \infty$ 时, $f(x)$ 趋于无穷;

$$f(x) = \sin x$$
, 当 $x \to \infty$ 时, $f(x)$ 震荡;

由于
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
, $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$.

$$f(x) = \arctan x$$
, 当 $x \to \infty$ 时, 无极限。

2. 当 $x \rightarrow x_0$ 时函数极限的定义

• 定义:设函数 f(x) 在点 x_0 的某个去心邻域内有定义,

A 是一个常数,如果对于任意给定的正数 ε , 总存在

正数 δ , 使得当 $0<|x-x_0|<\delta$ 时,有 $|f(x)-A|<\varepsilon$, 则称 A

为函数 f(x) 当 $x \to x_0$ 时的极限,记作: $\lim_{x \to a} f(x) = A$,

或 $f(x) \rightarrow A(x \rightarrow x_0)$ 。 此定义称为 " $\varepsilon - \delta$ " 定义

 $\lim_{x \to 0} f(x) = A: \forall \varepsilon > 0, \exists \delta > 0, \forall x: 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$ $x \rightarrow x_0$

• 当 $x \rightarrow x_0$ 时函数极限的几何意义

$$\lim_{x\to x_0} f(x) = A: \forall \varepsilon > 0, \exists \delta > 0, \forall x: 0 < |x-x_0| < \delta \Rightarrow |f(x)-A| < \varepsilon.$$

【例题4】用极限定义证明: $\lim(2x+1)=3$ 。

证:基本思想:

 $\forall \varepsilon > 0$, 找 δ , 使得当 $0 < |x-1| < \delta$ 时,有 $|(2x+1)-3| < \varepsilon$ 。

基本方法1:解不等式: $|(2x+1)-3|<\varepsilon$,得 $|x-1|<\frac{\varepsilon}{2}$,

所以 $\forall \varepsilon > 0$, 取 $\delta = \frac{\varepsilon}{2}$, 当 $0 < |x-1| < \delta$ 时, 有 $|(2x+1)-3| < \varepsilon$,

 $\lim_{x\to 1} (2x+1) = 3, \quad \text{iff}.$

【例题5】用极限定义证明: $\lim \sin x = \sin x_0$ 。 $x \rightarrow x_0$

证: 基本思想:

 $\forall \varepsilon > 0$,找 δ 使得当 $0 < |x - x_0| < \delta$ 时,有 $|\sin x - \sin x_0| < \varepsilon$ 。

 $|\sin x - \sin x_0| = |2\sin \frac{x - x_0}{2}\cos \frac{x + x_0}{2}|,$

基本方法2: 放大不等式: $|\sin x - \sin x_0| \le |2\sin \frac{x - x_0}{2}| < \varepsilon$

所以 $\forall \varepsilon > 0$,取 $\delta = 2\arcsin\frac{\varepsilon}{2}$,当 $0 < |x - x_0| < \delta$ 时,有 $|\sin x - \sin x_0| < \varepsilon$,

即 $\lim \sin x = \sin x_0$,证毕。如果利用 $|\sin x| \le |x|$ 则可取 $\delta = \varepsilon$ 。 $x \rightarrow x_0$

【例题6】用极限定义证明: $\lim x^2 = 4$ 。

证:基本思想:

 $\forall \varepsilon > 0$, 找 δ , 使得当 $0 < |x-2| < \delta$ 时,有 $|x^2-4| < \varepsilon$ 。

而 $|x^2-4|=|x-2||x+2|$,怎么办? $\delta=\frac{\varepsilon}{|x+2|}$?

基本方法3: 增加限制条件 |x-2| < 1, 此时, 1 < x < 3,

 $|x^2-4|=|x-2||x+2|<5|x-2|<\varepsilon$, 解得 $|x-2|<\frac{\varepsilon}{5}$,

所以 $\forall \varepsilon > 0$,取 $\delta = \min\{1, \frac{\varepsilon}{5}\}$,当 $0 < |x-2| < \delta$ 时, $|x^2-4| < \varepsilon$,证毕。

左、右极限

如果在极限的定义中把条件 $0<|x-x_0|<\delta$ 改为 $0<|x-x_0|<\delta$,

则得到函数 f(x) 当 $x \to x_0^+$ 时的右极限, 记作: $\lim_{x \to x_0^+} f(x) = A = f(x_0^+)$,

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x : x_0 < x < x_0 + \delta \Rightarrow |f(x) - A| < \varepsilon$$

如果在极限的定义中把条件 $0<|x-x_0|<\delta$ 改为 $0< x_0-x<\delta$,

则得到函数 f(x) 当 $x \to x_0^-$ 时的左极限,记作: $\lim_{x \to x_0^-} f(x) = A = f(x_0^-)$,

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x : x_0 - \delta < x < x_0 \Rightarrow |f(x) - A| < \varepsilon.$$

• $\underset{x\to x_0}{\rightleftharpoons} \lim f(x) = A \Leftrightarrow \lim_{x\to x_0^+} f(x) = A \coprod_{x\to x_0^-} f(x) = A$.

【例题7】设函数
$$f(x) =$$

$$\begin{cases} 1+x, & x < 0 \\ 0, & x = 0, \text{ 问函数 } f(x) \stackrel{\cdot}{=} x \rightarrow 0 \text{ 时,} \\ \cos x, & x > 0 \end{cases}$$

是否有极限?

解: 类似例题5可证明 $\lim_{x\to x_0} \cos x = \cos x_0$,

所以, 当 $x \to 0$ 时, 极限存在且 $\lim_{x \to 0} f(x) = 1$ 。

函数极限不存在的典型例题

$$f(x) = \frac{1}{x}$$
, 当 $x \to 0$ 时, $f(x)$ 趋于无穷;

$$f(x) = \sin \frac{1}{x-1}$$
, 当 $x \to 1$ 时, $f(x)$ 震荡;

左右极限存在但不相等的典型例题

$$f(x) = \frac{|x|}{x}, f(x) = \arctan \frac{1}{x}, f(x) = \frac{1}{1+2^{\frac{1}{x}}},$$

当 $x \to 0$ 时, f(x) 的左、右极限均存在但不相等。

第二章 极限与连续

本次课程内容小结

下次课程内容预告

第二章 极限与连续

