FILING DATE: JANUARY 24, 2006

TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

1/9 5' UTR D L L GGTCTTTGGTTGCTGGAAGGAAGAACAGG ATG GAT CTG GTG CTG AGA AAA TAC CTT CTC R 10 30 SIL5 \mathbf{v} . н G R T т E 28 CAT GTG GCT CTG ATG GGT GTT CTT CTG GCT GTA AGG ACC ACA GAA GGA CCC AGA 84 G S R 0 R K R 46 GAC AGG GAC TGG CTT GGT GTC TCA AGG CAG CTC AGA ATT AAA GCA TGG AAC AGA 138 Т E S 0 G P D W 64 CAG CTG TAT CCA GAG TGG ACA GAA AGC CAG GGG CCT GAC TGC TGG AGA GGT GGC 192 N D G Р Т L I Α 82 CAC ATA TCC CTG AAG GTC AGC AAT GAT GGG CCT ACA CTG ATT GGG GCA AAT GCT 246 SIL2 Н F Α L P K S Q K v Ρ G 100 TCC TTC TCT ATT GCC TTG CAC TTT CCT AAA AGC CAA AAG GTG CTG CCA GAT GGG 300 N т т Т N ٠G S G G 118 CAG GTC ATC TGG GCC AAC AAC ACC ATC ATC AAT GGG AGC CAG GTG TGG GGA GGA 354 Q Ε P D D T С Т ·F Ρ D 136 CAG CTG GTA TAT CCC CAA GAA CCT GAT GAT ACC TGC ATC TTC CCC GAT GGG GAG 408 Ρ P G Ρ L s 0 K C R F V 154 CCC TGC CCT TCT GGC CCT CTA TCT CAG AAA AGA TGC TTT GTT TAT GTC TGG AAG 462 0 L G G P 172 ACC TGG GAC CAA TAC TGG CAA GTT CTG GGG GGC CCA GTG TCT GGA CTG AGC ATC 516 K G Т Y N M 190 GGG ACA GAC AAG GCA ATG CTG GGC ACA TAT AAC ATG GAA GTG ACT GTC TAC CAC 570 V L Α Н S S S 208 CGC CGG GGG TCC CAG AGC TAT GTG CCC CTC GCT CAC TCC AGT TCA GCC TTC ACC 624 Τ 226 0 . ATT ACT GAC CAG GTG CCC TTC TCT GTG AGT GTG TCT CAG CTG CAG GCC TTG GAT 678 L R K Q Ρ Т F A 244 GGA AGG AAC AAG CGC TTC CTG AGA AAG CAG CCT CTG ACC TTT GCC CTC CAG CTC 732 G Y L Α G D 262 CAT GAT CCC AGT GGC TAT TTG GCT GGG GCT GAC CTT TCC TAC ACC TGG GAC TTT 786 G т R Т Η 280 GGT GAC AGT ACA GGG ACC CTG ATC TCT CGG GCA CTC ACG GTC ACT CAC ACT TAC 840 P Τ. А 0 L 298 CTA GAG TCT GGC CCA GTC ACT GCA CAG GTG GTG CTG CAG GCT GCC ATT CCT CTC 894 P G т D R Н 316 ACC TCC TGT GGC TCC TCT CCA GTT CCA GGC ACT ACA GAT AGG CAT GTG ACA ACT 948 G T Т Α G 0 V т Ε 334 GCA GAG GCT CCT GGA ACC ACA-GCT GGC CAA GTG CCT ACT ACA GAA GTC ATG GGC 1002 Т G Q т А E Δ P G т Т 352 ACC ACA CCT GGC CAG GTG CCA ACT GCA GAG GCC CCT GGC ACC ACA GTT GGG TGG 1056 G т T P Ε Q 370 GTG CCA ACC ACA GAG GAT GTA GGT ACC ACA CCT GAG CAG GTG GCA ACC TCC AAA 1110 E Μ Ρ Т Α K G R 388 GTC TTA AGT ACA ACA CCA GTG GAG ATG CCA ACT GCA AAA GCT ACA GGT AGG ACA 1164

DOCKET NO.: 0508-1156
INVENTOR: AHMAD OULMOUDEN
FILING DATE: JANUARY 24, 2006
TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

_										/9								
CCI	_	V GTO		T ACI	T ACA	E GAG			G GGA	T ACC	T ACA	V GTI	T ACA	Q CAG	G GGA	T ACA	T ACT	406 1218
P	E	L	V	E	T	T	A	G	E	V	S	T	P	E	P	A	G	424
CCA	A GAG	CTC	GTG	GAG	ACC	ACA	GCT	' GGA	GAG	GTG	TCC	ACT	CCT	GAG	CCT	GCG	GGT	1272
S TCF	N TAA	T ACI	S AGC	S TCA	F TTC	М ATG	P CCT	T ACA	E GAA	G GGT		A GCA	G GGC	S TCC	L CTG	S AGT	P	442 1326
L	P	D	D	T	A	T	L	V	L	E	K	R	Q	A	P	L	D	460
CTG	CCG	GAT	GÁC		GCC	ACC	TTA	GTC	CTG	GAG	AAG	CGC	CAA	GCC	CCC	CTG	GAT	1380
C TGT	V GTT	L CTG	Y TAT	R CGC	Y TAT	GGC		F TTT	S TCC	L CTC	T ACC	L CTG	D GAC	I TTA	V GTC	Q CAG	G GGT	478 1434
I	E	S	A	E	I	L	Q	A	V	S	S	S	E.	G	D	A	F	· 496
TTA	GAG	AGT	GCT	GAG	ATC	CTA	CAG	GCT	GTG	TCA	TCC	AGT	GAA	GGA	GAT	GCA	TTT	1488
E	L CTG	T.	V	S	C	Q	G	G	L	P	K	E	A	C	·M	D	I	514
GAG		ACT	GTG	TCT	TGC	CAA	GGC	GGG	CTA	CCC	AAG	GAA	GCC	TGC	ATG	GAC	ATC	1542
S	S	P	G	C	Q	L	P	A	Q	R	L	C	Q	P	V	CCC	P	532
TCA	TCG	CCA	GGG	TGT	CAG	CTG	CCT	GCC	CAG	CGG	CTG	TGT	CAG	CCT	GTG		CCC	1596
S	P	A	C	Q	L	V	L	H	Q	V	L	K	G	G	S	G	T	550
AGC	CCA	GCC	TGC	CAG	CTG	GTT	TTG	CAC	CAG	GTA	CTG	AAG	GGT	GGC	TCA	GGG	ACC	1650
Y TAC SIL3	C TGC	L CTC	N AAŢ	V GTG	S TCT	L TTG	A GCT	D GAT	A GCC	N AAT	S AGC	L CTG	A GCG	M ATG	V GTC	S AGC	T ACC	568 1704
Q	L	V	M	P	G	Q	E	A	G	L	R	Q	A	P	L	F	V	586
CAG	CTT	GTC	ATG	CCT	GGG	CAA	GAA	GCA.	GGC	CTC	AGG	CAG	GCT	CCT	ÇTG	TTC	GTG	1758
G	I	L	L	V	L	T	A	L	L	L	A	S.	L	I	Y	R	R	604
GGC	ATC	TTG	CTG	GTG	CTA	ACA	GCT	TTG	TTG	CTT	GCA	TCT	CTG	ATA	TAC	AGG	CGA	1812
R	L	M	K	Q	G	S	A	V	P	L	P	Q	L	P	H	G	R	622
AGA	CTT	ATG	AAG	CAA	GGC	TCA	GCA	GTC	CCC	CTT	CCC	CAG	CTG	CCA	CAC	GGT	AGA	1866
T	Q	W	L	R	L	P	W	V	F	Ř	S	C	P	I	G	E	S	640
ACC	CAG	TGG	CTA	CGT	CTG		TGG	GTC	TTC	CGC	TCT	TGC	CCC	ATT	GGT	GAG	AGC	1920
K AAA SIL4	P CCC	L CTC	L CTC	S AGT	G GGA	Q CAG	Q CAG	V GTC	* TGA	∢ GTG	CTC	TTA	TGT	GAA	GTC	ATG	—SI	L7 649 1974
TAC	CCA										TGG	TCT	TCC	cţc	AGA	GAC	TAC	2028
CAT TGC CTG AAA TAA AGA CTC AGA ACT TG 3'UTR SIL9											2057							

Figure 1 (continued)

3/9

SILIU	
GTTGCTGGAAGGAAGAACAGGATGGATCTGGTGCTGAGAAAATACCTTCTCCATGTGGCTCTGATGGGTGTTCTTCTGGC	. 80
${\tt TGTAAGGACCACAGAAGGTGAGTGTGGGATGTTGGACATGAACAAGTGTGAATTTGGGGTTGCACACCTGCTCTGGTTTT}$	160
${\tt TCTCTCCCTAAAATGGAAGATATCAGTAGTGCTTCAGGTGTCTCCCACCCA$	240
GCTCCCTCCCCACATGAAGATTTGGGTGCATGTGTTCAGGCACTTGGGACTGAAACCACCCCATCTACCTG	320
GATGGGTGAGAGAACAGTATGTCTCCGTGGCCCTAATTTTGAGATGCTCTGAATAGTGAGCTGGAACATGGGTGCCAAGG	400
${\tt TAGTAAAATGAGTGGAAACTCATTTAGGCTTTGTCTCAGGCACTTGGGATAGGGTATTTAGGAGATAGAGAAAGATAGGA}$	480
${\tt GATAGGAGAAAGGAGAAAGAGGATGTGGTATTGGATAGAAGGGTAATGAGGCACCTCATCCCCTCTTTGGGATGGGCATG}.$	560
${\tt GGTGAACACGCCCAGGCTTTTGTTCTGGGGCTGGAAGAGACAGGCAGAAGGGTCTCAGCTGAGCATCACATGAAAGGGC}$	640
${\tt TCTGGGGGATTGGGGCCTCGTGACAGGAGCAAGGCGGGTGGGGTGGGGATGGTGAGAGGGTCTGGAATGTCCCGTGCTGC}$	720
${\tt TCTGAGGAGGAGGATTGGGAGAAAGAATGGGGCATCTTATGATTCTCTTGTTGTTGTGGTGAGGTATTCAGTGG}$	800
${\tt GATAATTCTAGATCCTCCCCCAAGAGAATCAACCAGGTTTCTGGTACATGTTAGAGATGGAGTGAGGATAGTCTGTGATG}$	880
${\tt TGCAGAAATATCTACATTGTACCCCAGTGCCCCCTTTCTCTAGATCCCTGGTCTCACAGACTTCTTGGAACTTCTCCTTG}$	960
${\tt ATCTGACTTCCCTCATTCATGGTGTCATTTCAAGTCTTATTCTTTTACTATGTTCGTTATTCTGGAAATATCCTG}$	1040
$\tt TTCATATGTGTCCACCCAAGGCTCTTAATATGTTGTGCTTACTTTTTGGATCCAGATTTTTAAAATCATAAGAAGACATT$	1120
${\tt TTTATATAGTTCATGAAATTTTGCATGGACTGAGTTTGATAATTTTGTTTAGTGTGAATTAACATTGTGTTTATTTA$	1200
${\tt AAAAAAAATATTTTTTTACAGAAACCTACTGAATTTGTAGGGTTTTAAAATAACATGATGTCTGGGATTTGCTTTTGAAT$	1280
${\tt GCTTCAGCCAAAAAACAAACGAACAAAAATAAAGGATAGATA$	1360
$\tt CTTGGGGAGACACATGCAGAGCCATCACATCACTTTTTTCAGACATCTTTCTT$	1440
$\tt CCCACTCCCAATTTCTACTTGCCTCTAGTCCATCCTCCTCACTGCTTGCCAAAGTGATCCTTCTAAAACACAAATCTGAT$	1520
${\tt CATATTCAAAAAGCTTTTGAAGGGTAAGTTTTATGGTATATGCCATATATCAGTACAAACAA$	1600
$\tt CGTTGCCTACAGGATAAAGTCCAAACTCCTTTGCCTGGCACTCCAAGCCCCCACTCTATCTTCTTGGCCTCATCTCTCAT$	1680
GATGTACATCAGCCACATTGCTAGTGTCTGCTCATGGCCTTCTGCCTAGAATGCTTTATGCCCCAGCCAACTATTTACTG	1760
${\tt TCTTCTTCAGTCGACCAGAGTGCAATTTACCTGTTTAAAATCTATCATTTTGTTATACATTGTGCATGTCTATTATGGCT}$	1840
${\tt CATATTAAGCAATGCCTTGGATTATAGTAATTTATGTATATGTCTATTTCATATACTTTAACCTGAACCCCTTCAGAACC}$	1920
${\tt ATTTCTTTTCATTTCATTTCATTTGCACCTAGCCCAGTGCCTGGTACGTCGTGGGTATTCAGTAGATTAAAATGCAC}$	2000
TTTAAGGAACTTCCCTTGTTGTCCATCAAGTGGCTAAGGCTCTGTGCTCCCAATGCAGGGGACCAGGGTTCAATCTCAGG	- 2080
TCAGGGAACTAGATCCCACAGGTCACAACTAAGAGTTTGCAAGCCACAACTACCTGACCTCACATGCCACAACTAATCGA	2160
${\tt AGATCCCTCGTGCTACTAAGTCCTAGTGCAGTTAAATATATTTTTTTAATGCACTTTGAATGTGAGAATGAAT$	2240
${\tt TGTCACAGACACTGTTGTCCCCTGAGAAGGGAGTGAGTAATGATTTGAGGGCCCTCATAGTATATCTTCCTTTTTAGGAC}$	2320
CCAGAGACAGGGACTGGCTTGGTGTCTCAAGGCAGCTCAGAATTAAAGCATGGAACAGACAG	2400
GAAAGCCAGGGGCCTGACTGCTGGAGAGGTAGGAACTTGGCAATTTCCAGGGAGGATATGGTGGAAATGGGTGGG	2480
GAACGGGGTTGAATGTACTTAGGAAGATAGGGAAGGAAAAGGCATACAGGGAGGAGGAGCCAAGGAGCTAATTAAT	2560
CTGCCCTTTTCA6GTGGCCACATATCCCTGAAGGTCAGCAATGATGGGCCCTACACTGATTGGGGCCAAATGCTTCCTC	2640
TATTGCCTTGCACTTTCCTAAAAGCCAAAAGGTGCTGCCAGATGGGCAGGTCATCTGGGCCAACACCACCATCATCAATG	2720
${\it GTG}$ AGTACCTCTCCGCCTCCTTCCCAAGGTCCAGAATCCCTGGTATCCCCAATGAGCTCAAGGAATCCTCCTCTTTT	2800
TTTTTTTTTTTTTTTACAAATTATATATGTAACACATATTCACTGCAGAAAAATTAGAAAACACAGATAAACCAAAAAAGA	2880

4/9

AAAAAATTATAGTTCCCCAAATGGGGCACAGAAGACCCAGTGGACATAGAAGTTGGATAGACTTGGATTTAAACTGGTT 2960 ACCAGTATGTGACCCTGGACAAGTCACTGAATTGTTTTTGTTCTTCCATTCCCTTATCTATAGAATGGGGATGATAACACT 3040 3120 CCTTAGTTTAGACGCTTTGCAACCCCATGGACTGTAGCCCACCAGGCTCCTCTGTCCATGTGGATTCTGCAGGCAAGAAT ACTGGAGTGGGTCACCATGCACTCCAGGGGATCTTCCCAACTCAGGGATCGAACCCAGGTCCTAGCCTACAGTATTA 3280 ATTGATGCTGTTATTTTACTTTTATCCCACTAGCTAGAGCACATCATCCTAGACATTTTGATACATGGCCTACCAATTT 3360 GTGTCCAGTGTAAGAATATACATGTGTGTGCTCAGTGGCTCAGTCGTGTCTGACTCTTTGCAACCCCATGGACTGTAGCC 3440 CGCGAAAGCTCCTCTGCCCATGGGATTGCCCAGCCAAGAATACTGGAGCAGGTTGCCATTTCTTCCTCCAGGGGATCTTT . 3520 CAACACAGGGATTGAATCCTTGTCTCCTGTGTTTCCTGCATTGGCAGGTGTATTCTTTACCACTGAGCCACCTGGGAAAC 3600 CCCTTAAGTATACACATAAATCTTTTATAGTTTCCATTCTCCCTTCTACCACTCCAAATAGGTTATACCAAGGAGAAT 3680 GTATTTTGGTAGCTAGGCAGTATTCCTGGAGCCCCTCTCTGGGAGTCATGTTAAAGGTTTTGGTGTACAGTGAGGAATGC 3760 Cagggattgagggagacttgctgtctttttc*ag*ggagccaggtgtgggaggacagctggtatatccccaagaacctg 3840 ATGATACCTGCATCTTCCCCGATGGGGAGCCCTGCCCTTCTGGCCCTCTATCTCAGAAAAGATGCTTTGTTTATGTCTGG 3920 AAGACCTGGGGTAAGAGTTTCCCTTCTCTGGCCTGTCATTCACACTTAAATTCACTTCTTCCTACCTGATCCCCTTTCTT 4000 4080 AACTCTATTATACTTCTTGGGAGCCCTGCTCCAATTATAGTCCCATCCCATGGACCCTCTCATAAGGACTTTTTTCC 4160 CTAACCCTGCCCAGTCTCCTTTGACCAGTAACCCCCTTCCCTACTCTTCTTTCCAAAAACCTCAGACCAATACTGGCAA 4320 4400 CTACCACCGCGGGGGTCCCAGAGCTATGTGCCCCTCGCTCACTCCAGTTCAGCCTTCACCATTACTGGTAAGGACTGAG 4480 GAGGGGACAAGGCCAGTTGCAGGGCAGGAGAAGGTGGGGAGGCTGGGCTGGACAGGAAAGGGGAAAGAGGAAATGGTGTG 4560 ${\tt TAACCTTACAGGGGCAGAACCAGGAAGATGTGGGCAGGGATGTGGGGCTTGGAGCCCGTGAAGGGCCAGGCAGCTTGG}$ 4640 4720 4800 GCCTCTGACCTTTGCCCTCCAGCTCCATGATCCCAGTGGCTATTTGGCTGGGGCTGACCTTTCCTACACCTGGGACTTTG 4880 GTGGTGCTGCAGGCTGCCATTCCTCTCACCTCCTGTGGCTCCTCTCCAGTTCCAGGCACTACAGATAGGCATGTGACAAC 5040 $\tt TGCAGAGGCTCCTGGAACCACAGCTGGCCAAGTGCCTACTACAGAAGTCATGGGCACCACACCTGGCCAGGTGCCAACTG$ 5120 $\tt CAGAGGCCCCTGGCACCACAGTTGGGTGGGTGCCAACCACAGAGGATGTAGGTACCACACCTGAGCAGGTGGCAACCTCC$ 5200 aaagtcttaagtacaacaccagtggagatgccaactgcaaaagctacaggtaggacacctgaagtgtcaactacagagcc 5280 CTCTGGAACCACAGTTACACAGGGAACAACTCCAGAGCTGGTGGAGACCACAGCTGGAGAGGGTGTCCACTCCTGAGCCTG 5360 5440 GGGCATTTGTCACAGCTCTGAAGACCTGAAAGAATTGCTCAGGACCCAGATGTTACTCAATCCTTAGCTTAGCAGTGGAG 5520 TCCCCTCAGAATCTTCACTGGTTTTAAAACCCCCTAAGTCCCTCTTAATGGCACAGAATAGATCCAGAGTTCAGGAAAACC 5680 GGTGGTGGTGCTCAGTCATGTCTGACTCTTTGTGACCTCATGGACTATGGCCCACCAGGCTCCTCTGTCCATAGAATTCT 5760

DOCKET NO.: 0508-1156
INVENTOR: AHMAD OULMOUDEN
FILING DATE: JANUARY 24, 2006
TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

5/9

CCAGGCAAGAACACTGGAGTGGGTGGCCATTTCCTTCTCCAGGGGATTTCCCTGCCCAGGGATTAAACCCGAATTGGCA 5840 GGTGGATTCTTTACCCGAGCCACCTAGAAAGTCCCATGTGATCATTAGATAATACTTATACCTCATTTTCTGATTAAGTG 5920 TAAACACAGAAATCTTTCTGACACCACTTCCCACCCCTGGATTCCCATCCCAAAGTAGGTTTACCTGGAATTGTGGTAGG AATACTAAAAAGGGAGAAGTGAGATAGTGACACTATGACTTAACACATGTCAAATGTCTGACCCAGGACCTGGCACAGTG 6080 TAGGGTGTGATAAACATTTGGGATGTCTAAAATTCTGACTCTAACCCTGTGACTCTGGGGCAGTCATTTCTCTTGGGCCT 6160 TTCTTTATCTTAAAAAATGAGAGTTTCCAGCTCTTGTCTGATTCTAAGCCTGGATCCAGTAGCTCTGACTCTACCTGGAA 6240 ${\tt AAATGCTTGTTGGGCCTGTTTTCAGGTTAGTCATTTGCTTTTTGACTTTGCCTCTTTAATCCTCTCCTCCAGGCTCCCTG}$ 6320 AGTCCCCTGCCGGATGACACTGCCACCTTAGTCCTGGAGAAGCGCCAAGCCCCCTGGATTGTGTTCTGTATCGCTATGG 6400 6480 TTAGGGTTGCCCAGTGGAAGCACCTTGGAAGGAATTACTCACCTGGACAAGGAGAATACCCAGATCCCAGGGGTTTCA 6560 TATGAAGGCAGAATGGGATTAGGGAGGCAGCCCGAGGACCTTCCTGGCCATGGGCCTTGGGGGAGGATAAGTAGAGGAGT 6640 CTCAGACTTAAAAAATCTTGCAACTTTGC*AG*AGGGTATTGAGAGTGCTGAGATCCTACAGGCTGTGTCATCCAGTGAAG 6720 ${\tt GAGATGCATTTGAGCTGACTGTCTTGCCAAGGCGGGTGAGTGTCCCACGGTTGCCCTGAGAACTCCTGGGGTGACTGC}$ 6800 TGTCCTGTTCTCTGGTGTCTAGTGTCCCTTCCCAGATTCCCTGACGTAAGCTGACATCTCTCCCAGGCTACCCAAGGAAG 6880 CCTGCATGGACATCTCATCGCCAGGGTGTCAGCTGCCCTGCCCAGCGCTGTGTCAGCCTGTGCCCCCAGCCCAGCCTGC 6960 CAGCTGGTTTTGCACCAGGTACTGAAGGGTGGCTCAGGGACCTACTGCCTCAATGTGTCTTTTGGCTGATGCCAATAGCCT 7040 7120 GGTTACCTACTAGAGGAAGCAGACACTGAATGCAGCCGTATCTGGGATTCCACCCATAGGGCAAGAAGCAGGCCTCAGGC 7200 7280 CATCCTGCTCCCACTCCTTTACCCCTTATTACCACCACCACTCTTCCTCATGGGAAGAAGAAACCACCACCCCTTTGGG 7360 AAAGTGTAGAGTCCAAGAAAGAGCCCAGACTTGGAAGTTCAACAGGTCTAGGCTGCAGTCTTGCTGGTGGGACCCTGGGG 7440 AAGTCCATTAACCCTTCTGAGCCACTGAAAAGTAGGAAACATAATACCTGTCCTGTGGGGCTGTTTTCAGGGCTCTAGAC 7520 AATGTGAGTAAAACACCTGGTTCTGAAACAAAAGTGGAATAAATGATGATCTCAATGACTGTTGTTATGAATAATATCAA 7600 CAGTGGAGAACTCAGTGAACTGAGTTCTCCACCTGCCAGAAAGGCAAATCCCTAGGCCTGGAGGGCTGAGGTCCTCA 7680 AAGCAGGGAAGCCTGTAGGGTGAGAGGGAAATGGTCAGAGCTTACCATAAACATAAGAGAGGATAAACCCTGTTGGTGAG 7760 7840 TGCCATTGACCACCACTAACCAGTATCCCTGCTTTTCTCCCAATATCAGCCGAAGACTTATGAAGCCAAGGCTCAGCAGTC 7920 CCCCTTCCCCACCTGCCACACGGTAGAACCCAGTGGCTACGTCTGCCCTGGGTCTTCCGCTCTTGCCCCATTGGTGAGAG 8000 CAAACCCCTCCTCAGTGGACAGCAGGTCTGAGTGCTCTTATGTGAAGTCATGATTTACCCAGGTGGACAGCAAGGCCTGT 8080 CTTTTCTCTGGTCTTCCCTCAGAGACTACCATTGCCTGAAATAAAGACTCAGAACTTG 8138

Figure 2 (continued 2)

PRODUCTS THEREOF

DOCKET No.: 0508-1156

6/9 cDNA CH GGTCTTTGGTTGCTGGAAGGAAGAACAGGATCGGTGCTGAGAAAATACCTTCTCC 60 cDNA RPE1 cDNA CH ATGTGGCTCTGATGGGTGTTCTTCTGGCTGTAAGGACCACAGAAGGACCCAGAGACAGGG 120 cDNA RPE1 -----cDNA CH cDNA RPE1 cDNA CH AGTGGACAGAAAGCCAGGGGCCTGACTGCTGGAGAGGTGGCCACATATCCCTGAAGGTCA 240 cDNA RPE1 cDNA CH cDNA RPE1 cDNA CH CTAAAAGCCAAAAGGTGCTGCCAGATGGGCAGGTCATCTGGGCCAACAACACCATCATCA 360 cDNA RPE1 ATGGGAGCCAGGTGTGGGGAGGACAGCTGGTATATCCCCAAGAACCTGATGATACCTGCA 420 cDNA CH cDNA RPE1 CDNA CH TCTTCCCCGATGGGGAGCCCTGCCCTTCTGGCCCTCTATCTCAGAAAAGATGCTTTGTTT 480 cDNA RPE1 cDNA CH ATGTCTGGAAGACCTGGGACCAATACTGGCAAGTTCTGGGGGGCCCAGTGTCTGGACTGA 540 cDNA RPE1 -----CCAATACTGGCAAGTTCTGGGGGGCCCAGTGTCTGGACTGA 41 ************ cDNA CH · GCATCGGGACAGACAAGGCAATGCTGGGCACATATAACATGGAAGTGACTGTCTACCACC 600 cDNA RPE1 GCATCGGGACAGACAAGGCAATGCTGGGCACATATAACATGGAAGTGACTGTCTACCACC 101 cDNA CH GCCGGGGGTCCCAGAGCTATGTGCCCCTCGCTCACTCCAGTTCAGCCTTCACCATTACTG 660 cDNA RPE1 GCCGGGGGTCCCAGAGCTATGTGCCCCTCGCTCACTCCAGTTCAGCCTTCACCATTACTG 161 cDNA CH . cDNA CH GCTTCCTGAGAAAGCAGCCTCTGACCTTTGCCCTCCAGCTCCATGATCCCAGTGGCTATT 780 cDNA RPE1 GCTTCCTGAGAAAGCAGCCTCTGACCTTTGCCCTCCAGCTCCATGATCCCAGTGGCTATT 281 ********** cDNA CH TGGCTGGGGCTGACCTTTCCTACACCTGGGACTTTGGTGACAGTACAGGGACCCTGATCT 840 cDNA · RPE1 TGGCTGGGGCTGACCTTTCCTACACCTGGGACTTTGGTGACAGTACAGGGACCCTGATCT 341 ************** cDNA CH CTCGGGCACTCACGGTCACTCACACTTACCTAGAGTCTGGCCCAGTCACTGCACAGGTGG 900 cDNA RPE1 CTCGGGCACTCACGGTCACTCACACTTACCTAGAGTCTGGCCCAGTCACTGCACAGGTGG 401 cDNA CH TGCTGCAGGCTGCCATTCCTCTCACCTCCTGTGGCTCCTCTCCAGTTCCAGGCACTACAG 960 cDNA RPE1 TGCTGCAGGCTGCCATTCCTCTCACCTCCTGTGGCTCCTCTCCAGTTCCAGGCACTACAG 461

FILING DATE: JANUARY 24, 2006

TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

7/9 cDNA CH ATAGGCATGTGACAACTGCAGAGGCTCCTGGAACCACAGCTGGCCAAGTGCCTACTACAG 1020 CDNA RPE1 ATAGGCATGTGACAACTGCAGAGGCTCCTGGAACCACAGCTGGCCAAGTGCCTACTACAG 521 *********** CDNA CH AAGTCATGGGCACCACACCTGGCCAGGTGCCAACTGCAGAGGCCCCTGGCACCACAGTTG 1080 cDNA RPE1 AAGTCATGGGCACCACCTGGCCAGGTGCCAACTGCAGAGGCCCCTGGCACCACAGTTG 581 CDNA CH GGTGGGTGCCAACCACAGAGGATGTAGGTACCACACCTGAGCAGGTGGCAACCTCCAAAG 1140 CDNA RPE1 GGTGGGTGCCAACCACAGAGGATGTAGGTACCACACCTGAGCAGGTGGCAACCTCCAAAG 641 CDNA CH TCTTAAGTACAACACCAGTGGAGATGCCAACTGCAAAAGCTACAGGTAGGACACCTGAAG 1200 TCTTAAGTACCACCAGTGGAGATGCCAACTGCAAAAGCTACAGGTAGGACACCTGAAG 701 cDNA RPE1 TGTCAACTACAGAGCCCTCTGGAACCACAGTTACACAGGGAACAACTCCAGAGCTGGTGG 1260 CDNA CH cDNA RPE1 TGTCAACTACAGAGCCCTCTGGAACCACAGTTACACAGGGAACAACTCCAGAGCTGGTGG 761 ******** cDNA CH AGACCACAGCTGGAGAGGTGTCCACTCCTGAGCCTGCGGGTTCAAATACTAGCTCATTCA 1320 cDNA RPE1 AGACCACAGCTGGAGAGGTGTCCACTCCTGAGCCTGCGGGTTCAAATACTAGCTCATTCA 821 cDNA CH . TGCCTACAGAAGGTACTGCAGGCTCCCTGAGTCCCCTGCCGGATGACACTGCCACCTTAG 1380 TGCCTACAGAAGGTACTGCAGGCTCCCTGAGTCCCCTGCCGGATGACACTGCCACCTTAG 881 cDNA RPE1 *************** cDNA CH TCCTGGAGAAGCGCCAAGCCCCCTGGATTGTGTTCTGTATCGCTATGGCTCCTTTTCCC 1440 cDNA RPE1 TCCTGGAGAAGCCCCAAGCCCCCTGGATTGTGTTCTGTATCGCTATGGCTCCTTTTCCC 941 ***************** CDNA CH TCACCCTGGACATTGTCCAGGGTATTGAGAGTGCTGAGATCCTACAGGCTGTGTCATCCA 1500 cDNA RPE1 TCACCCTGGACATTGTC---AGTATTGAGAGTGCTGAGATCCTACAGGCTGTGTCATCCA 998 CDNA CH GTGAAGGAGATGCATTTGAGCTGACTGTGTCTTGCCAAGGCGGGCTACCCAAGGAAGCCT 1560 cDNA RPE1 GTGAAGGAGATGCATTTGAGCTGACTGTGTCTTGCCAAGGCGGGCTACCCAAGGAAGCCT 1058 **************** CDNA CH GCATGGACATCTCATCGCCAGGGTGTCAGCTGCCTGCCCAGCGGCTGTGTCAGCCTGTGC 1620 GCATGGACATCTCATCGCCAGGGTGTCAGCTGCCTGCCCAGCGGCTGTGTCAGCCTGTGC 1118 cDNA RPE1 ********* CCCCCAGCCCAGCCTGCCAGCTGGTTTTGCACCAGGTACTGAAGGGTGGCTCAGGGACCT 1680 CDNA CH cDNA RPE1 CCCCCAGCCCAGCCTGCCAGCTTTTTGCACCAGGTACTGAAGGGTGGCTCAGGGACCT 1178 CDNA CH ACTGCCTCAATGTCTCTTTGGCTGATGCCAATAGCCTGGCGATGGTCAGCACCCAGCTTG 1740 cDNA RPE1 ACTGCCTCAATGTGTCTTTGGCTGATGCCAATAGCCTGGCGATGGTCAGCACCCAGCTTG 1238 CDNA CH TCATGCCTGGGCAAGAAGCAGGCCTCAGGCAGGCTCCTCTGTTCGTGGGCATCTTGCTGG 1800 cDNA RPE1 TCATGCCTGGGCAAGAAGCAGGCCTCAGGCAGGCTCCTCTGTTCGTGGGCATCTTGCTGG 1298 **************** TGCTAACAGCTTTGTTGCTTGCATCTCTGATATACAGGCGAAGACTTATGAAGCAAGGCT 1860 cDNA CH cDNA RPE1 TGCTAACAGCTTTGTTGCTTGCATCTCTGATATACAGGCGAAGACTTATGAAGCAAGGCT 1358 cDNA CH CAGCAGTCCCCCTTCCCCAGCTGCCACACGGTAGAACCCAGTGGCTACGTCTGCCCTGGG 1920 cDNA RPE1 CAGAAGTCCCCCTTCCCCAGCTGCCACACGGTAGAACCCAGTGGCTACGTCTGCCCTGGG 1418

Figure 3 (continued 1)

DOCKET NO.: 0508-1156
INVENTOR: AHMAD OULMOUDEN
FILING DATE: JANUARY 24, 2006
TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

		8/9	
cDNA		TCTTCCGCTCTTGCCCCATTGGTGAGAGCAAACCCCTCCTCAGTGGACAGCAGGTC <i>TGA</i> G	1980
cDNA	RPEI	TCTTCCGCTCTTGCCCCATTGGTGAGAGCAAACCCCTCCTCAGTGGACAGCAGGTCTGAG ***********************************	1478
cDNA	CH	TGCTCTTATGTGAAGTCATGATTTACCCAGGTGGACAGCAAGGCCTGTCTTTTCTCTGGT	2040
cDNA	RPE1		1538
cDNA		CTTCCCTCAGAGACTACCATTGCCTGAAATAAAGACTCAGAACTTG 2086	
cDNA	RPE1	CTTCCCTCAGAGACTACCATTGCCTGAAATAAAGACTCAGAACTTG 1584	

Figure 3 (continued 2)

DOCKET NO.: 0508-1156
INVENTOR: AHMAD OULMOUDEN
FILING DATE: JANUARY 24, 2006
TITLE: USE OF SILVER GENE FOR THE AUTHENTICATION OF THE RACIAL ORIGIN OF ANIMAL POPULATIONS, AND OF THE DERIVATIVE PRODUCTS THEREOF

	9/9	
Prot. CH	MDLVLRKYLLHVALMGVLLAVRTTEGPRDRDWLGVSRQLRIKAWNRQLYPEWTESQGPDC	60
Prot.RPE1	*	
	$\omega_{ij} = \omega_{ij} + \omega_{ij}$	
Prot.CH	WRGGHISLKVSNDGPTLIGANASFSIALHFPKSQKVLPDGQVIWANNTIINGSQVWGGQL	120
Prot.RPE1		
	·	
Prot.CH	VYPQEPDDTCIFPDGEPCPSGPLSQKRCFVYVWKTWDQYWQVLGGPVSGLSIGTDKAMLG	
Prot.RPE1	QYWQVLGGPVSGLSIGTDKAMLG	23
Prot.CH	TYNMEVTVYHRRGSQSYVPLAHSSSAFTITDQVPFSVSVSQLQALDGRNKRFLRKQPLTF	
Prot.RPE1	TYNMEVTVYHRRGSQSYVPLAHSSSAFTITDQVPFSVSVSQLQALDGRNKRFLRKQPLTF	83
Prot.CH Prot.RPE1	ALQLHDPSGYLAGADLSYTWDFGDSTGTLISRALTVTHTYLESGPVTAQVVLQAAIPLTS	
FIOC. REGI	ALQLHDPSGYLAGADLSYTWDFGDSTGTLISRALTVTHTYLESGPVTAQVVLQAAIPLTS ************************************	143
7	000000000000000000000000000000000000000	
Prot.CH Prot.RPE1	CGSSPVPGTTDRHVTTAEAPGTTAGQVPTTEVMGTTPGQVPTAEAPGTTVGWVPTTEDVG CGSSPVPGTTDRHVTTAEAPGTTAGQVPTTEVMGTTPGQVPTAEAPGTTVGWVPTTEDVG	360 203
	*************	200
Prot.CH	TTPEQVATSKVLSTTPVEMPTAKATGRTPEVSTTEPSGTTVTQGTTPELVETTAGEVSTP	420
Prot.RPE1	TTPEQVATSKVLSTTPVEMPTAKATGRTPEVSTTEPSGTTVTQGTTPELVETTAGEVSTP	

Prot.CH	EPAGSNTSSFMPTEGTAGSLSPLPDDTATLVLEKRQAPLDCVLYRYGSFSLTLDIVQGIE	480
- Prot.RPE1	EPAGSNTSSFMPTEGTAGSLSPLPDDTATLVLEKRQAPLDCVLYRYGSFSLTLDIV-SIE	322
	**	
Prot.CH	SAEILQAVSSSEGDAFELTVSCQGGLPKEACMDISSPGCQLPAQRLCQPVPPSPACQLVL	
Prot.RPE1	SAEILQAVSSSEGDAFELTVSCQGGLPKEACMDISSPGCQLPAQRLCQPVPPSPACQLVL	382
•		
Prot.CH	HQVLKGGSGTYCLNVSLADANSLAMVSTQLVMPGQEAGLRQAPLFVGILLVLTALLLASL	
Prot.RPE1	HQVLKGGSGTYCLNVSLADANSLAMVSTQLVMPGQEAGLRQAPLFVGILLVLTALLLASL ********************************	442
Prot.CH Prot.RPE1	IYRRRLMKQGSAVPLPQLPHGRTQWLRLPWVFRSCPIGESKPLLSGQQV 649 IYRRRLMKQGSEVPLPOLPHGRTOWLRLPWVFRSCPIGESKPLLSGOOV 491	
TIOC. RELI	********* ****************************	-

Figure 4