

MAT-1910 : Mathématiques de l'ingénieur II Examen 2 $\left(33\frac{1}{3}\%\right)$ Vendredi le 24 mars 2017 de 18h30 à 20h20

Section A : Robert Guénette Section B : Hugo Chapdelaine Section C : Alexandre Girouard

Identification

Prénom :	Nom :
N° de dossier	SECTION:

Résultats

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Note :						

Directives

- Veuillez désactiver la sonnerie de vos appareils électroniques et les ranger hors de portée.
- Vous avez droit à un aide-mémoire manuscrit d'une feuille $8^{"}\frac{1}{2}$ par $11^{"}$ recto-verso.
- Sauf avis contraire, vous devez rédiger des solutions complètes et justifiées.
- Sauf avis contraire, vous devez donner des réponses exactes, et par conséquent vous ne pouvez pas approximer les quantités qui interviennent dans vos calculs.
- Vérifiez que le questionnaire comporte 5 questions réparties sur 11 pages.
- Vous avez droit à une calculatrice autorisée par la faculté des sciences et génie.

Évaluation des qualités

Qualités
1.1.1 Compréhension des notions mathématiques : questions 1 et 2
1.1.2 Capacité à résoudre des problèmes mathématiques : questions 3 et 4
1.1.3 Capacité à interpréter et à utiliser la terminologie appropriée : question 5

Question 1 (20 points)

Un quadrilatère R a pour sommets les points A=(1,0), B=(2,0), C=(1,1) et $D=(\frac{1}{2},\frac{1}{2}).$

- (6) (a) Donner les équations des droites contenant les segments qui forment la frontière du trapèze.
- (4) (b) Si on fait le changement de variables u = x y et v = x + y, évaluer le jacobien de la transformation x = x(u, v), y = y(u, v).
- (10) (c) Utiliser obligatoirement ce changement de variables pour calculer l'intégrale

$$\iint_{R} (x+y)^2 e^{x^2 - y^2} dx dy.$$

Question 2 (20 points)

Considérons la courbe C définie dans l'espace \mathbb{R}^3 et obtenue par l'intersection du cylindre $x^2 + y^2 = 2$ et de la surface $z = x^2 - y^2$.

- (4) (a) Paramétriser la courbe C et préciser l'intervalle de paramétrisation.
- (6) (b) Donner l'équation paramétrique de la droite tangente à C au point (1, 1, 0).
- (4) (c) Déterminer tous les points (x_0, y_0, z_0) de la courbe C tels que la droite tangente à C en (x_0, y_0, z_0) soit perpendiculaire à l'axe des z.
- (6) (d) Si C représente un fil métallique dont la densité est donnée par $\rho(x,y) = \sqrt{2 + 16x^2 y^2}$, calculer la masse de C.

 On utilisera l'identité sin $2t = 2\sin t\,\cos t$.

Question 3 (20 points)

On considère un champ de force posé dans l'espace et défini par

$$\vec{F}(x, y, z) = (3x^2 - 3y^2 - cy, -6xy + cx, e^{\sin(z)}\cos(z))$$

où $c \ge 0$ est un paramètre.

- (4) (a) Prouvez que ce champ est conservatif (potentiel) lorsque c=0 mais pas lorsque c>0.
- (6) (b) Pour c = 0, trouvez une fonction potentielle $f : \mathbb{R}^3 \to \mathbb{R}$ telle que $\vec{F} = \vec{\nabla} f$.
- (4) (c) Supposez que c=0. Étant donnée une courbe C qui est paramétrisée par l'application $\vec{r}:[a,b]\to\mathbb{R}^3$, prouvez que le travail effectué par \vec{F} en parcourant C est

$$\int_{C} \vec{F} \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

(6) (d) Supposez que c=0. Pour la courbe $C\subset\mathbb{R}^3$ qui est obtenue par l'intersection du cylindre $x^2+y^2=2017$ et de la surface $z=x^2-y^2$, calculez le travail

$$\int_C \vec{F} \cdot d\vec{r}.$$

Question 4 (20 points)

Dans le plan, on considère le champ vectoriel

$$\vec{F} = \left(-y + \cos \pi x, \ 3x + 4y^3\right).$$

On définit les courbes suivantes :

- C_1 est l'arc du cercle unité qui relie le point (1,0) au point (0,1) dans le sens positif (anti-horaire),
- C_2 est le segment de droite qui va du point (0,1) au point (1,1),
- C_3 est le segment de droite qui va du point (1,1) au point (1,0),
- C est la courbe fermée qui est composée des courbes C_1 , C_2 et C_3 et parcourue dans le même sens.
- (6) (a) Calculer directement le travail du champ vectoriel \vec{F} le long de la courbe C_2 .
- (8) (b) En utilisant le théorème de Green, calculer le travail du champ \vec{F} le long de la courbe C.
- (6) (c) En déduire le travail du champ \vec{F} le long de la courbe C_1 .

Question 5 (20 points)

Pour les questions 1 à 3, encercler la bonne réponse.

1. (5 points) Lequel des champs vectoriels suivants est conservatif sur $\mathbb{R}^2 \setminus (0,0)$:

(a)
$$\vec{F} = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$
,

(b)
$$\vec{F} = \left(\frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}}\right)$$
,

(c)
$$\vec{F} = (y^2, x)$$
,

(d)
$$\vec{F} = \left(\frac{-x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$
.

- (e) aucune de ces réponses.
- 2. (5 points) Déterminer lequel des énoncés suivants est faux :
 - (a) Soit $C \subseteq \mathbb{R}^3$ une courbe orientée et \vec{F} un champ vectoriel dans \mathbb{R}^3 . On aura toujours que $\int_C \vec{F} \cdot d\vec{r} = -\int_{-C} \vec{F} \cdot d\vec{r}$.
 - (b) Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction. Alors $\vec{\nabla} f$ est un champ vectoriel conservatif.
 - (c) La somme de deux champs vectoriels conservatifs est toujours conservatif.
 - (d) Soit $\vec{F}(x,y) = (P(x,y), \ Q(x,y))$ un champ vectoriel défini sur $D = \mathbb{R}^2 \setminus \{(0,0)\}$ tel que $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. Alors \vec{F} est nécessairement conservatif sur D.
- 3. (5 points) On considère la courbe plane C donnée en coordonnées polaires par $r(\theta)=\sin(\theta)$ pour $\theta\in[0,\frac{\pi}{2}]$. L'intégrale suivante $\int_C ds$ est égale à
 - (a) π ,
 - (b) 2,
 - (c) $\frac{\pi}{2}$,
 - (d) 2π ,
 - (e) 3π .

4. (5 points) On considère les champs vectoriels suivants :

$$\vec{F}_1 = (-y, x), \quad \vec{F}_2 = (x, y), \quad \vec{F}_3 = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \quad \text{et} \quad \vec{F}_4 = (x - 1, x + 1).$$

Écrire le champ vectoriel approprié sous chacune des images ci-dessous :

