Quicksort: empirical analysis

Reply X

2010: Gigascale computing 10^9 Intel

Core i7 147,600 MIPS at 3.33 GHz. Insertion: 1M^2 / 10^8 / 3600 ~ 2.8

Quick: 1M * Ig(1M) / 10/8 ~ 0.2

Running time estimates:

- Home PC executes 108 compares/second.
- Supercomputer executes 10¹² compares/second.

		ΙГ
	\geq	
	Q .	
	4	
	00	
,	1	
b	9	
	8/30/17 8:42 AM	-

quicksort (N log N)	billion	12 min	instant
	million	0.6 sec	instant
	thousand	instant	instant
mergesort (N log N)	billion	18 min	instant
	million	1 second	instant
	thousand	instant	instant
insertion sort (N ²)	billion	2.8 hours 317 years	l week
	million	2.8 hours	l second
	computer thousand	instant	instant
	computer	home	super

Lesson 1. Good algorithms are better than supercomputers. Lesson 2. Great algorithms are better than good ones.