Tasks for 11/02/2019:

Polynomial interpolation 2: Given the data table:

X	1	1.1	1.2	1.3	1.4
f(x)	0.54030	0. 48360	0. 30236	0. 22150	0.18497

Calculate the value of

- a) f(1.03)
- b) f(1.38)

by applying Newton's forward difference approach and considering the full 4th order polynomial. Verify if the values are matching with the one obtained from Lagrange's method discussed in the previous class.

Polynomial interpolation 3: Given the data table:

X	1	2	3	4	5	6	7	8	9	10
f(x)	1	.4444	.2632	.1818	.1373	.1096	.0929	.0775	.0675	.0597

- a) Use Newton-Gregory forward difference formula to interpolate a polynomial through these points.
- b) Check if a 9th order polynomial is any better than a 5th order polynomial by plotting the polynomial alongside data points.
- c) Based on this plot write a discussion that if you need to estimate i) f(2.22) ii) f(5.7) and iii) f(8.11), will you be using the 5^{th} order polynomial?