```
title: "Mobile Data Analytics"
output: pdf document
date: "2024-03-01"
```{r}
Ouestion 1
mobile data <- read.csv(file = "/Users/mihuynh/Downloads/Train Data Set/train.csv")</pre>
str(mobile data)
Turn the variable price range into a factor variable with levels:
"0" for low, "1" for medium, "2" for high, and "3" for very high.
price_range <- factor(x = mobile_data$price_range, levels = c("0", "1", "2", "3"), labels</pre>
= c("Low", "Medium", "High", "Very high"), ordered = is.ordered(c))
str(price_range)
Make a scatter plot between the variables battery power vs ram.
Add colors based on price range.
library(ggplot2)
ggplot(data = mobile data) +
 geom_point(aes(x = ram, y = battery_power, color = price_range)) +
 scale_color_distiller(palette = "Reds", labels = c("Low", "Medium", "High", "Very
high"))
Find the Pearson correlation between the variables
ram and battery power.
pearson <- cor(mobile_data$ram, mobile_data$battery_power, method = c("pearson"))</pre>
print(pearson)
Create four separate data sets by sub-setting the "mobile data"
using the variable price range as
"priceLow", "priceMedium", "priceHigh" and "priceVeryhigh".
priceLow <- subset(mobile_data, price_range == 0)</pre>
priceMedium <- subset(mobile data, price range == 1)</pre>
priceHigh <- subset(mobile data, price range == 2)</pre>
priceVeryhigh <- subset(mobile data, price range == 3)</pre>
Calculate the Pearson correlation coefficient
between the variable pair (ram , battery power) separately
for each price range. Explain any correlations
you might find in terms of how a cellphone operates.
LowCor <- cor(priceLow$ram, priceLow$battery_power, method = c("pearson"))</pre>
MedCor <- cor(priceMedium$ram, priceMedium$battery power, method = c("pearson"))</pre>
HighCor <- cor(priceHigh$ram, priceHigh$battery power, method = c("pearson"))</pre>
VeryhighCor <- cor(priceVeryhigh$ram, priceVeryhigh$battery power, method = c("pearson"))</pre>
print(LowCor)
print(MedCor)
print(HighCor)
print(VeryhighCor)
Recreate the plot from Part (b), and add the trend lines
for each price range separately.
ggplot(mobile data, aes(x = ram, y = battery power, color = price range)) +
 geom point() +
 geom_smooth(method = "lm", se = FALSE, aes(group = price_range), color = "black") +
 scale_color_distiller(palette = "Blues", direction = 1, labels = c("Low", "Medium",
"High", "Very high"))
Find the average and the medium clock speed of the
mobile phones which has 4, 6 and 8 cores in their
processors. Round your answer to two decimal places.
```

```
filtered data <- subset(mobile data, n_cores %in% c(4, 6, 8))</pre>
avg clock speed <- mean(filtered data$clock speed)</pre>
median clock speed <- median(filtered data$clock speed)</pre>
round(avg clock speed, digits = 2)
round(median clock speed, digits = 2)
Make density curves of the ram where the 4 price ranges
are in one plot and describe their shapes respectively.
ggplot(mobile_data, aes(x = ram, group = price_range, fill = price_range)) +
 geom_density(alpha = 0.5) +
 labs(title = "Density Plot", x = "Ram", fill = "Price Range") +
 scale_fill_distiller(palette = "Blues", direction = 1, labels = c("Low", "Medium",
"High", "Very high"))
Make box plots of the ram where the 4 price ranges
are in one plot and describe their shapes respectively
ggplot(mobile_data, aes(x = ram, group = price_range, fill = price_range)) +
 geom_boxplot() +
 labs(title = "Box Plot", x = "Ram", fill = "Price Range") +
 scale_fill_distiller(palette = "Blues", labels = c("Low", "Medium", "High", "Very
high"))
Make a violin plot of the ram where the 4 price ranges
are in one plot and describe their shapes respectively.
ggplot(mobile_data, aes(x = ram, y = price_range, group = price_range, fill =
price range)) +
 geom violin() +
 labs(title = "Violin Plot", x = "Ram", y = "Price Range", fill = "Price Range") +
 scale fill distiller(palette = "Blues", direction = 1, labels = c("Low", "Medium",
"High", "Very high"))
Make a factor variable out of ram by taking the log2 (ram)
and rounding that value to the nearest whole number.
log_ram <- log2(mobile_data$ram)</pre>
round(log ram)
log ram factor <- as.factor(mobile data$log ram)</pre>
Make a stacked bar plot to show the relationship between
price range and log2(ram)
ggplot(mobile_data, aes(x = log_ram, fill = price_range, group = price_range)) +
 geom bar() +
 labs(title = "Stacked Bar Plot", x = "Log Ram") +
 scale fill distiller(palette = "Blues", direction = 1, labels = c("Low", "Medium",
"High", "Very high"))
MPG DATASET
Problem 2a
Turn the variable cyl to an ordered factor variable with levels
"4", "5", "6", and "8"
library(ggplot2)
cyl \leftarrow factor(x = mpg$cyl, levels = c("4", "5", "6", "8"), ordered = is.ordered(c))
levels(cyl)
Problem 2b
Turn the variable trans to a factor variable,
of which unique values are "auto" and "manu"
trans <- factor(substr(mpg$trans, 1, 4), levels = c("auto", "manu"))</pre>
levels(trans)
Problem 2c
Turn the variable drv to an ordered factor variable
```

```
with levels "f", "r", and "4"
drv <- factor(mpg$drv, ordered = TRUE, levels = c("f", "r", "4"))</pre>
levels(drv)
Problem 2d
Turn the variable fl to a factor variable, of
\# which unique values are "gasoline", "diesel", and "other" fl <- factor(ifelse(mpg$fl %in% c("d", "x"), "diesel",
 ifelse(mpg$fl %in% c("e", "c"), "other", "gasoline")))
levels(fl)
Problem 2e
Turn the variable class to an ordered factor variable
with levels "2seater", "subcompact", "compact",
"midsize", "suv", "minivan", and "pickup"
class <- factor(mpg$class, ordered = TRUE, levels = c("2seater", "subcompact", "compact",</pre>
"midsize", "suv", "minivan", "pickup"))
levels(class)
Problem 2f
Create a new variable of country to indicate the
manufacturer base location
country_lookup <- data.frame(manufacturer = c("audi", "chevrolet", "dodge", "ford",
"honda", "hyundai", "jeep", "land rover", "lincoln", "mercury", "nissan", "pontiac",
"subaru", "toyota", "volkswagen"), country = c("Germany", "USA", "USA", "USA", "Japan",
"South Korea", "USA", "UK", "USA", "USA", "Japan", "USA", "Japan", "Japan", "Germany"))

"mongo("mongo gountry lookup by y = "monufacturer" by y = "monufacturer"
mpg <- merge(mpg, country_lookup, by.x = "manufacturer", by.y = "manufacturer", all.x =</pre>
TRUE)
head(mpg)
Problem 2g
Draw a bar plot of the variable country and
arrange the country in decreasing order in terms of the
number of samples.
library(magrittr)
library(dplyr)
manufacturer counts <- mpg %>%
 count(manufacturer) %>%
 arrange(desc(n))
mpg$manufacturer <- reorder(mpg$manufacturer, mpg$manufacturer, function(x) sum(x ==</pre>
manufacturer counts$manufacturer))
ggplot(mpg, aes(x = manufacturer)) +
 geom bar(fill = "skyblue") +
 labs(title = "Number of Samples by Manufacturer", x = "Manufacturer", y = "Number of
Samples") +
 theme minimal()
Problem 2h
Summarize what a typical U.S. car looks like,
in terms of engine displacement (i.e. displ), number of
cylinders (i.e. cyl), type of transmission (i.e. trans),
drive type (i.e. drv), fuel type (i.e. fl), and type
of car (i.e. class)?
us cars <- subset(mpg, manufacturer == "ford" | manufacturer == "chevrolet" | manufacturer
== "dodge" | manufacturer == "mercury" | manufacturer == "pontiac" | manufacturer ==
"lincoln")
summary_us_cars <- summary(us_cars[, c("displ", "cyl", "trans", "drv", "fl", "class")])</pre>
print(summary us cars)
Problem 2i
Make a boxplot of the combined miles per gallon
(i.e. (cty + hwy)/2) of U.S. cars and Japan cars,
respectively, and report their means, medians,
standard deviations, and IQRs.
mpg$combined mpg <- (mpg$cty + mpg$hwy) / 2</pre>
```

```
us cars <- subset(mpg, manufacturer %in% c("ford", "chevrolet", "dodge", "mercury",
"pontiac", "lincoln"))
japan cars <- subset(mpg, manufacturer %in% c("honda", "toyota", "nissan", "subaru",</pre>
"mazda", "mitsubishi"))
qqplot(mappinq = aes(x = "U.S. Cars", y = combined mpq)) +
 geom_boxplot(data = us_cars) +
 labs(title = "Combined Miles Per Gallon of U.S. Cars",
 y = "Combined MPG") +
 theme minimal()
ggplot(mapping = aes(x = "Japan Cars", y = combined_mpg)) +
 geom_boxplot(data = japan_cars) +
 labs(title = "Combined Miles Per Gallon of Japan Cars",
 y = "Combined MPG") +
 theme_minimal()
us_mean <- mean(us_cars$combined_mpg)</pre>
us median <- median(us cars$combined mpg)</pre>
us_sd <- sd(us_cars$combined_mpg)</pre>
us_iqr <- IQR(us_cars$combined_mpg)</pre>
japan_mean <- mean(japan_cars$combined_mpg)</pre>
japan median <- median(japan cars$combined mpg)</pre>
japan_sd <- sd(japan_cars$combined_mpg)</pre>
japan iqr <- IQR(japan_cars$combined_mpg)</pre>
cat("Summary statistics for U.S. cars: \"")
cat("Mean: ", us_mean, "")
cat("Median: ", us_median, "")
cat("Standard Deviation: ", us_sd, "\n")
cat("Interquartile Range (IQR): ", us_iqr, "\n")
cat("Summary statistics for Japan cars: \"")
cat("Mean:", japan_iqr, "\n")
Problem 2j
Make a histogram of the engine displacement
(i.e. displ) of U.S. cars and Japan cars, respectively,
and describe their shape
us_cars <- subset(mpg, manufacturer %in% c("ford", "chevrolet", "dodge", "mercury",
"pontiac", "lincoln"))
japan cars <- subset(mpg, manufacturer %in% c("honda", "toyota", "nissan", "subaru",</pre>
"mazda", "mitsubishi"))
ggplot(us cars, aes(x = displ)) +
 geom_histogram(binwidth = 0.5, fill = "skyblue", color = "black") +
 labs(title = "Engine Displacement of U.S. Cars",
 x = "Engine Displacement",
 y = "Frequency")
ggplot(japan cars, aes(x = displ)) +
 geom histogram(binwidth = 0.5, fill = "lightgreen", color = "black") +
 labs(title = "Engine Displacement of Japan Cars",
 x = "Engine Displacement",
 y = "Frequency")
```

. . .