Simulazione di Compito

31 maggio 2024

- 1. Sia A = $\mathbb{Z}[x]/(x^3-1)$.
 - i) Descrivi gli ideali primi e massimali di A.
 - ii) Trova gli elementi nilpotenti di A/(3).
 - iii) L'anello A è isomorfo a $\mathbb{Z}[x]/(x-1) \times \mathbb{Z}[x]/(x^2+x+1)$?
 - *Soluzione.* i) Gli ideali primi di A corrispondono agli ideali primi di $\mathbb{Z}[x]$ che contengono $I = (x^3 1)$. Ricordiamo che i primi di $\mathbb{Z}[x]$ sono della forma
 - a) (p), con p un primo di \mathbb{Z} : tali ideali certamente non contengono I, e pertanto non corrispondono mai a ideali di \mathbb{A} ;
 - b) $\mathfrak{p}=(\mathfrak{f}(x))$, con $\mathfrak{f}(x)$ irriducibile in $\mathbb{Z}[X]$: un tale ideale contiene I se e solo se $\mathfrak{f}(x)$ è un divisore di x^3-1 , e quindi un suo fattore irriducibile. Poiché la fattorizzazione in irriducibili di x^3-1 è $(x-1)(x^2+x+1)$ (quest'ultimo fattore chiaramente non ha radici in \mathbb{Z}), gli \mathfrak{f} accettabili sono esattamente x-1 e x^2+x+1 ;
 - c) $\mathfrak{m} = (\mathfrak{p}, \mathfrak{f}(x))$ con \mathfrak{p} un primo di \mathbb{Z} e \mathfrak{f} un polinomio in $\mathbb{Z}[x]$ irriducibile modulo \mathfrak{p} . Poiché \mathfrak{m} è primo (in realtà, massimale), si ha che $\mathfrak{m} \ni (x-1)(x^2+x+1)$ se e solo se (\star) $x-1 \in \mathfrak{m}$ oppure (\diamond) $x^2+x+1 \in \mathfrak{m}$.
 - (*) Nel primo caso, vale $(p, f(x)) = (p, f(x), x 1) \supset (p, x 1)$: siccome J = (p, x 1) è certamente massimale (il quoziente $\mathbb{Z}[x]/J$ è isomorfo a \mathbb{F}_p o, equivalentemente, x 1 è irriducibile (mod p) per ogni p), l'inclusione è un'uguaglianza, per cui m è della forma (p, x 1) con p un primo di \mathbb{Z} .
 - (\$\iffty\$) Nel secondo caso, si ha $x^2+x+1 \in (p,f(x))$ se e solo se $\overline{x^2+x+1} \in (\overline{f(x)}) \subset \mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{F}_p[x]$, dove la barra indica la classe (mod p), cioè se e solo se f(x) è un fattore irriducibile di x^2+x+1 modulo p. Ora, in $\mathbb{F}_p[x]$, il polinomio $x^2+x+1=\frac{x^3-1}{x-1}$ è irriducibile se e solo se non ha radici, cioè se e solo se \mathbb{F}_p non contiene radici terze dell'unità diverse da 1, e quindi primitive. Per definizione, le radici terze primitive dell'unità sono gli elementi di ordine 3 di \mathbb{F}_p^\times , che è ciclico: pertanto, \mathbb{F}_p contiene radici terze primitive dell'unità se e solo se 3 divide $|\mathbb{F}_p^\times| = p-1$, cioè se e solo se $p \equiv 1 \pmod{3}$. In tal caso, vale $x^2+x+1=(x-\overline{a})(x-\overline{b})\in \mathbb{F}_p[x]$ per certi $a,b\in\mathbb{Z}$, e si conclude che m è uno tra (p,x-a) e (p,x-b); viceversa, se x^2+x+1 è irriducibile modulo p, dev'essere $m=(p,x^2+x+1)$.

ii) In A, l'ideale generato da 3 è $(3, x^3 - 1)/(x^3 - 1)$: per il terzo teorema di omomorfismo vale allora

$$A/(3) \simeq \mathbb{Z}[x]/(3, x^3 - 1) \simeq \mathbb{F}_3[x]/((x - 1)^3).$$

Ora, i nilpotenti di un anello B sono gli elementi di $\sqrt{(0)}$ e, se B è un quoziente della forma A/I, tale ideale corrisponde in A a \sqrt{I} . Nel nostro caso si tratta quindi di trovare $J = \sqrt{((x-1)^3)} \subset \mathbb{F}_3[x]$: certamente $x-1 \in J$, e perciò $(x-1) \subset J$. Siccome (x-1) è massimale in $\mathbb{F}_3[x]$, si ottiene che vale l'uguaglianza. In conclusione, i nilpotenti di A/(3) corrispondono ai multipli di x-1 in $\mathbb{F}_3[x]$, cioè agli $f(x) \in \mathbb{Z}[x]$ tali che f(1) è multiplo di 3.

iii) La risposta è **no**. Un possibile motivo è questo: posto $B = \mathbb{Z}[x]/(x-1) \times \mathbb{Z}[x]/(x^2+x+1)$, un isomorfismo $\varphi: A \to B$ deve mandare 1 in (1,1), quindi 3 in (3,3), e di conseguenza $\varphi(3A)$ è l'ideale $(3) \times (3)$ generato da (3,3) in B; ne segue che, se A è isomorfo a B, anche A/(3) è isomorfo a B/((3,3)). D'altra parte, usando il terzo teorema di omomorfismo e notando che x^2+x+1 è irriducibile in $\mathbb{F}_3[x]$ per quanto detto al punto (i), si ottiene

$$B/(3) \times (3) \simeq \mathbb{Z}[x]/(3, x-1) \times \mathbb{Z}[x]/(3, x^2+x+1) \simeq \mathbb{F}_3 \times \mathbb{F}_9.$$

Quest'ultimo anello, però, non ha elementi nilpotenti non banali: preso $(a,b) \in \mathbb{F}_3 \times \mathbb{F}_9$, vale $(a,b)^k = 0$ se e solo se $a^k = 0$ e $b^k = 0$, cioè a = b = 0 poiché entrambi $\mathbb{F}_3, \mathbb{F}_9$ sono campi. In conclusione, un isomorfismo $A/(3) \simeq B/((3,3))$ contraddice il punto (ii), e pertanto A non può essere isomorfo a B.

Attenzione: Al punto (iii) avete tutti risposto che i due anelli proposti sono isomorfi per il Teorema Cinese del Resto. Tuttavia, in questo caso, il TCR non era applicabile: l'ipotesi perché, dati due ideali I, J in un anello A, valga

$$A/IJ \simeq A/I \times A/J$$

è che i due ideali I, J siano comassimali, cioè valga I + J = (1). Se A è un dominio, anche un UFD, e I = (f), J = (g) sono principali, questa condizione *non* è equivalente al fatto che f e g siano coprimi, cioè il loro massimo comun divisore sia 1. L'equivalenza è garantita solo se A è un PID, e ciò è falso per $\mathbb{Z}[x]$. L'esercizio sopra offre appunto un controesempio: i polinomi x - 1 e $x^2 + x + 1$ sono entrambi irriducibili, e in particolare coprimi, in $\mathbb{Z}[x]$, ma l'ideale da essi generato è

$$(x-1, x^2+x+1) = (x-1, x^2+x+1-x(x-1)) = (x-1, 2x+1) = (x-1, 3),$$

che è un ideale massimale di $\mathbb{Z}[x]$, e *non* l'intero $\mathbb{Z}[x]$.

- **2.** Sia $A = \mathbb{Q}[x,y]/(f)$, con $f(x,y) = x^2y y 1 \in \mathbb{Q}[x,y]$.
 - i) Mostra che A è isomorfo a un sottoanello di $\mathbb{Q}(t)$.
 - ii) Dimostra che A è un PID e descrivi gli ideali primi di A.
 - Soluzione. i) Notiamo che $f(x,y)=(x^2-1)y-1$: pertanto, in A, f=0 implica che y è invertibile di inverso x^2-1 . Quindi, è plausibile che A sia isomorfo all'anello $B=Q\left[t,\frac{1}{t^2-1}\right]\subset Q(t)$. Per mostrarlo, consideriamo l'omomorfismo $\phi:Q[x,y]\to Q(t)$ indotto dalle assegnazioni $x\mapsto t,y\mapsto \frac{1}{t^2-1}$. L'immagine di tale omomorfismo è chiaramente B, e vale evidentemente $f\left(t,\frac{1}{t^2-1}\right)=0$, cioè $\ker \phi\supset (f(x,y))$: resta quindi da mostrare che $\ker \phi\subset (f(x,y))$.

Sia allora $g \in \mathbb{Q}[x,y]$ tale che $\varphi(g)=0$, e supponiamo per assurdo che $g \notin (f)$, cioè g non è un multiplo di f in $\mathbb{Q}[x,y]$. Poiché f è primitivo in $\mathbb{Q}[x][y]=\mathbb{Q}[x,y]$, in quanto $c(f)=\gcd(x^2-1,1)=1$, per il lemma di Gauss ciò equivale a dire che g non è un multiplo di f in $\mathbb{Q}(x)[y]$. Ne segue che la divisione euclidea di g per f in $\mathbb{Q}(x)[y]$ ha la forma g=q(x,y)f+r(x,y), con $q,r\in\mathbb{Q}(x)[y]$ e r un polinomio non nullo e di grado <1 in y, cioè $r=\frac{r_1(x)}{r_2(x)}\in\mathbb{Q}(x)^\times$, per certi $r_i(x)\in\mathbb{Q}[x]\setminus\{0\}$.

D'altra parte, l'omomorfismo ϕ si estende a $\psi: \mathbb{Q}(x)[y] \to \mathbb{Q}(t)$ ponendo

$$\psi\left(\sum_{i=0}^{n}\frac{f_{i}(x)}{g_{i}(x)}y^{i}\right) = \frac{\varphi(f_{i}(x))}{\varphi(g_{i}(x))}\varphi(y)^{i},$$

e vale allora $\psi(g) = \varphi(g) = 0$, cioè

$$0=\psi(qf+r)=\psi(q)\phi(f)+\psi(r)=\psi(r)=\frac{\phi(r_1)}{\phi(r_2)},$$

da cui $\phi(r_1)=r_1(t)=0$, cioè $r_1(x)=0$. In conclusione, si ha r(x)=0, il che risulta assurdo, e ciò dimostra che dev'essere $g\in (f)$, cioè ker $\phi=(f)$. Per il primo teorema di omomorfismo, si ottiene perciò $A\simeq \mathbb{Q}\left[t,\frac{1}{t^2-1}\right]$.

ii) Visti i risultati del punto (i), studiamo l'anello B = $\mathbb{Q}\left[t,\frac{1}{t^2-1}\right]$. Intanto, notiamo che B coincide con la localizzazione di $\mathbb{Q}[t]$ all'elemento t^2-1 , cioè alla parte moltiplicativa $S=\{(t^2-1)^k\}_{k\geqslant 0}$: infatti, certamente B contiene gli elementi della forma $f(t)/(t^2-1)^k\in\mathbb{Q}(t)$ con $f(t)\in\mathbb{Q}[t]$; viceversa, poiché $\mathbb{Q}[t]_{t^2-1}\subset\mathbb{Q}(t)$ contiene \mathbb{Q},t e $\frac{1}{t^2-1}$, contiene certamente anche il sottoanello di $\mathbb{Q}(t)$ da essi generato, che è appunto B.

Si ottiene allora che

- B è un PID, in quanto localizzazione di Q[t], che è un PID;
- gli ideali primi di B sono in bigezione con i primi di $\mathbb{Q}[t]$ che non intersecano S; d'altra parte, i primi di $\mathbb{Q}[t]$ sono gli ideali della forma $\mathfrak{p}=(h(t))$ con

 $h \in Q[t]$ irriducibile, e un tale $\mathfrak p$ contiene $(t^2-1)^k$ per qualche k>0 se e solo se contiene t^2-1 (poiché $\mathfrak p$ è primo), cioè se e solo se h(t) è un fattore irriducibile di t^2-1 . In conclusione i primi di B corrispondono, a meno di localizzare, agli ideali $(h(t)) \subset \mathbb Q[t]$ con h(t) irriducibile e diverso da $t\pm 1$.

Perciò, A è un PID in quanto isomorfo a un PID e, leggendo φ al contrario, si ottiene che gli ideali primi di A sono della forma $(\overline{h(x)})$, dove $\overline{h(x)}$ è la classe in A di un polinomio $h(x) \in \mathbb{Q}[x] \subset \mathbb{Q}[x,y]$ irriducibile in $\mathbb{Q}[x]$ e distinto da $x \pm 1$. \square

- 3. Sia $f(x) \in \mathbb{Q}[x]$ il polinomio $x^{12} 4$, e sia L il suo campo di spezzamento su \mathbb{Q} .
 - i) Trova il gruppo di Galois di L su Q.
 - ii) Mostra che L ha un'unica sottoestensione K di grado 6 e di Galois su Q.
 - iii) Calcola $G(K \mid \mathbb{Q})$ e descrivi le sottoestensioni di K.
 - *Soluzione.* i) La fattorizzazione di f(x) in $\mathbb{Q}[x]$ è $x^{12}-4=(x^6+2)(x^6-2)$, poiché entrambi i fattori risultano irriducibili per Eistenstein. Le radici di f(x) sono quindi della forma $\sqrt[6]{2} \cdot \zeta^j$, $\sqrt[6]{2}i \cdot \zeta^j$, con $\zeta = (1+\sqrt{-3})/2$ una radice sesta primitiva di 1 in \mathbb{C} , e j = 0,...,5. Si ha allora

$$L = \mathbb{Q}(\sqrt[6]{2} \cdot \zeta^{j}, \sqrt[6]{2}i \cdot \zeta^{j} \mid j = 0, \dots, 5) = \mathbb{Q}(\sqrt[6]{2}, \zeta, i).$$

Posto quindi $M = \mathbb{Q}(\sqrt[6]{2}, \zeta)$ e $E = \mathbb{Q}(i)$, otteniamo i diagrammi

in cui M, E sono entrambe estensioni normali su \mathbb{Q} : la prima, in quanto campo di spezzamento di x^6-2 , la seconda in quanto di grado 2. Pertanto, se mostriamo che $M\cap E=\mathbb{Q}$, la teoria vista a lezione assicura che $G(L\mid \mathbb{Q})\simeq G(M\mid \mathbb{Q})\times G(E\mid \mathbb{Q})$.

Calcoliamo intanto $G(M \mid \mathbb{Q})$: è chiaro che $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q} = 6]$ e che $\zeta \notin \mathbb{Q}(\sqrt[6]{2})$, da cui si deduce immediatamente che $[M : \mathbb{Q}] = 12$ e che i coniugati di ζ su $\mathbb{Q}(\sqrt[6]{2})$ sono ζ e $\overline{\zeta} = \zeta^{-1}$. La teoria generale degli omomorfismi di estensioni finite di campi garantisce allora che gli elementi di $G(M \mid \mathbb{Q})$ sono le mappe $\sigma_{ij} : M \to M$ definite da $\sigma_{ij}(\sqrt[6]{2}) = \sqrt[6]{2} \cdot \zeta^i$, $\sigma_{ij}(\zeta) = \zeta^j$, con $i = 0, \dots, 5$ e $j = \pm 1$. Perciò, posto $r = \sigma_{11}, s = \sigma_0, -1$ si ottiene subito $G(M \mid \mathbb{Q}) = \langle r \rangle \langle s \rangle$, in quanto r ha ordine 6, s ha ordine 2 e $G(M \mid \mathbb{Q})$ ha ordine 12, e $srs = r^{-1}$, da cui si conclude $G(M \mid \mathbb{Q}) \simeq D_6$.

A questo punto, per vedere $M \cap E = \mathbb{Q}$ è sufficiente verificare che nessuna delle sottoestensioni quadratiche di M coincida con $E = \mathbb{Q}(i)$: tali sottoestensioni corrispondono ai sottogruppi di indice 2 di D_6 , e sono quindi 3 (come è noto, i sottogruppi di D_6 di indice 2 sono $\langle r \rangle, \langle r^2, s \rangle, \langle r^2, rs \rangle$). Certamente M contiene $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\zeta) = \mathbb{Q}(\sqrt{-3})$ e $\mathbb{Q}(\sqrt{-6})$: poiché tali estensioni sono tutte distinte tra loro, e tutte distinte da $\mathbb{Q}(i) = E$, si ottiene quanto voluto.

In conclusione, $G(L \mid \mathbb{Q}) \simeq G(M \mid \mathbb{Q}) \times G(E \mid \mathbb{Q}) \simeq D_6 \times \mathbb{Z}/2$.

- ii) Per la teoria di Galois, una sottoestensione di grado 6 e di Galois su $\mathbb Q$ corrisponde a un sottogruppo normale di indice 6, cioè di ordine 4, in $G = G(L \mid \mathbb Q) \simeq D_6 \times \mathbb Z/2$: pertanto, bisogna far vedere che un tale sottogruppo N esiste ed è unico. Notiamo che un tale N, in quanto 2-sottogruppo normale di G, è necessariamente contenuto nell'intersezione dei suoi 2-Sylow.
 - Ora, poiché $\mathbb{Q}(\sqrt[3]{2})$ è una sottoestensione di L di grado 3 su \mathbb{Q} e non normale, G possiede un sottogruppo non normale di indice 3; ne segue che G non ha un unico 2-Sylow, e che quindi $n_2(G)=3$. Allora, se $\{P_1,P_2,P_3\}=\mathrm{Syl}_2(G)$, certamente $P_1\cap P_2\cap P_3$ ha ordine al più 4; viceversa, $\langle (r^3,0),(1,1)\rangle$ è un sottogruppo normale di ordine 4 in G, e pertanto vale $P_1\cap P_2\cap P_3=\langle (r^3,0),(1,1)\rangle$, che è quindi l'unico sottogruppo normale di ordine 4 di G, ed è l'N cercato.
- iii) Ricordando che $\mathbb{Q}(\zeta) = \mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$, la sottoestensione $K = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ di L è normale su \mathbb{Q} , in quanto campo di spezzamento di $X^3 2$, e ha grado 6: pertanto, è l'estensione corrispondente al sottogruppo \mathbb{N} al punto (ii). Un ragionamento del tutto analogo a quello fatto su $M = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ conclude che $G(K \mid \mathbb{Q}) \simeq \mathbb{D}_3 \simeq \mathbb{S}_3$; in alternativa, si può osservare che $G(K \mid \mathbb{Q}) \simeq G/\mathbb{N}$, che ha ordine 6 e non è abeliano (ad esempio in quanto $(r^2,0) \in G' \setminus \mathbb{N}$, per cui $\mathbb{N} \not\supset G'$), e quindi ancora $G(K \mid \mathbb{Q}) \simeq \mathbb{S}_3$. Considerando che \mathbb{S}_3 ha tre sottogruppi di indice 3 e uno di indice 2, la corrispondenza di Galois fornisce allora il reticolo di sottoestensioni

