Statistics Scribe Notes:

4/2/14

Bayes Rule:

There are 2 events: A & B

$$P(A|B) = P(A) \times P(B|A)/P(B)$$

P(A|B) is the posterior probability

P(A) is the prior probability

P(B|A) is the likelihood

P(B) is the marginal

Example:

A: "You like Shrek"

B: "You like Finding Nemo"

P(A) = 0.6 Loosely: how many people as a fraction like Shrek?

$$P(B|A) = 0.9$$

$$P(B|^{\sim}A) = 0.3$$

$$P(A|B) = P(A) \times P(B|A)/P(B)$$

= (0.6 x0.9)/P(B)

We know that:

$$P(B) = P(A) \times P(B|A) + P(^A) \times P(B|^A)$$

= 0.6 x 0.9 + 0.4 x 0.3
= 0.66

That means $P(A|B) = (0.6 \times 0.9)/0.66$ approximately equals 0.82.

This means that around 82% of people who like Shrek, also like Finding Nemo.

Another example:

G: guilty

D: DNA evidence matched DNA @ scene

Hypothetical trial in New York City:

P(G) = 1/10,000,000 (Probability that any random person committed a crime in NYC. The population is in the denominator.

Expert: "Probability of a False Match is 1 in 1,000,000."

 $P(D \cap G) = 1/1,000,000$ (If you are innocent, there is a 1 in 1,000,000 chance the test says you are guilty)

P(D|G) = 1 (If you are guilty, the test is always right)

$$P(G|D) = (P(G) \times P(D|G))/P(D)$$

P(D) = weighted average

$$= P(G) \times P(D|G) + P(^G) \times P(D|^G)$$

$$= 1/10,000 \times 1 + 9,999,999/1,000,000 \times 1/1,000,000$$

P(D) = 11/10,000,000 (11 people would test guilty who were given the test. 1 would be guilty. 10 would be innocent.)

 $P(G|D) = (1/10,000,000 \times 1)/(1/10,000,000) = 1/11$ (1 in 11 people would be guilty and test positive in the DNA test)

Confusing P(G|D) with P(D|G) is known as the base rate fallacy or the prosecutor's fallacy.

Odds: Just a different way of expressing probabilities.

A: event that "Robert Apprentice" wins Kentucky Derby

$$P(A) = 0.2$$

Odds(A) = P(A)/(1-P(A)) = Probability of A/Probability of Not A

$$= 0.2/(1-0.2) = 0.2/0.8 = \frac{1}{4}$$

Odds Against (A) = 1/Odds(A)

$$= (1 - P(A))/P(A) = 4/1$$

Random Variables:

X is a random variable

A probability distribution is a description of the possible outcomes for X, together with their probabilities.

X : coin flip

Outcomes	Probabilities
Heads	0.5
Tails	0.5

Distribution as: $P(X = x_k) = w_k$

Probability (Mass) Table

Value (x _k)	Probability (w _k)
1	1/9
2	2/9
3	1/9
4	2/9
5	1/9
6	2/9

All probabilities must add up to 1.

There are "discrete" distributions.

Expected value: the average outcome of a R.V.

X = price of AAPL

Value	Probability
400	0.2
500	0.6
600	0.2

 $E(X) = 400 \times 0.2 + 500 \times 0.6 + 600 \times 0.2$

This is not the simple average, but the weighted average.

E(f(X)) = /= f(E(X)) in general \rightarrow known as Jensen's inequality

X = AAPL stock price

Y = f(X) = 0.75x

Event x _k	Probability w _k	Function (Event) f(x _k)
400	0.2	0.75 x 400 = 300
500	0.6	0.75 x 500 = 375
600	0.2	0.75 x 600 = 450

$$E(t(x)) = \sum_{k=1}^{K=1} m^k t(x^k)$$

$$E(f(x)) = 0.2 \times 300 + 0.6 \times 375 + 0.2 \times 450 = 435$$

Fact: f(X) = aX + B

Then E(f(X) = a(E(X) + b = f(E(X)))

Example:

Probability	Price of Copper (x)	Copper Demanded (y)
0.25	2	1000 x 2 ⁻²
0.50	3	1000 x 3 ⁻²
0.25	4	1000 x 4 ⁻²

$$Y = K x^{\beta} = 1000x^{-2}$$

Y = Copper demanded

X = Price of copper

What is E(Y)?

$$E(Y) = E(f(x) \text{ where } f(x) = 1000x^{-2}$$

Using the sigma function above: $E(Y) = 0.25 \times 1000 \times 2^{-2} + 0.50 \times 1000 \times 3^{-2} + 0.25 \times 1000 \times 4^{-2}$

Variance:

X = Random variable with distribution P

$$var(X) = E([X - E(X)]^2)$$

$$\mu = E(X)$$

$$var(X) = E((x - u)^2) = E(f(X))$$
 where $f(X) = (x - u)^2$

$$var(X) = E(x^2) - [E(x)]^2$$

$$= E(x^2) - \mu^2$$

$$Sd(X) = sqrt[var(x)]$$