EEOB563 – Assignment #4

3. Neighbor - Joining The algorithm in the notes & English Willipedia is super complicated and confusing but in the German Wikitedia they introduced an intermediary step: average distance of each town to all others, netto divergence m Vi = N-2 & din where din = distance from i to 1. C M P H I r I just noticed, this r = u from 0,1468 0,1468 0,1073 0.3235, 0.2435 the lecture notes. So it's just 1) complicated in the English WP. 0 0.2326 0.1073 0.3831 . 0.2899 0 0.4468 0.3831 . 0.3031 0 0.3831 1 0.2482 4 0 0.4329 Now the new matrix M: 10.095 10.285 D C M P H D 6 -0.3866 -0.3398 -0.3644 -0.4069 0.03399 0 -0.3604 -0.4308 -0.3397 0 -0.4045 -0.4129 -0.358 14 Motix M smallest distance: PC P PC M H Nr 0.3295 1 0,31155: D 0.1468 0.1468 D -0.784 -0.5658 0 0-2721 0.6589 ,0.5889 PC PC 0.3831 10/407 M M 0 : 6.68575 1+ I forgot to divide b 2 y

	1	01			~ s we	ew 1	1		
	1	PC	M H	10		•	0/	11	11
D	0	00274	0-1468 0-3295	0.2743		D	PC	М	14
		0.0134	0.0134 0.00	0.2190	D	0	-0.421	-0.46M	-0.4665
2		0	0.1361 0.3295	0.2695					
1.4					PC		0	-0.4664	-0.4611
M			0 0.3831	0.333	111			A	0/24
+			0	0.5211	M			0	-0.471
1				10.52.7	1+				0
	merge	M&	H						
	D	PC	MA	Nov	0	could	be joil	ned with	either
)	(0	A 02311	001.100						
	6	0.0739	0.04125	12	Or	M)	. ('()	join it	with PC.
2		0	0.04125						
1+1			0						

4.

The generated matrices and trees can be found here. I chose Platypus (20) as the outgroup, this is the generated tree:

```
(((((Elephant,Sloth,(Flying_fox,(Whale,Pig),(Human,Cat),Armadillo,
Hedgehog,(Rabbit,Aardvark),Dog,Tenrec,Tree_shrew),Mouse),(Opossum,
Bandicoot,Wallaby),Echidna),Platypus);))))
```


Figure 1: Strict consensus tree

5.

I used the Jukes-Cantor distance model, just because I used it for Part I so I knew most about it. This is the generated consensus tree from all the bootstrapped alignments:

Figure 2: Majority consensus tree

8.

Again, I used the Jukes-Cantor matrix. In my case, the two trees basically were the same, only the distances were slightly different:

Without NNI/SPR:

```
:0.006888199219):0.002261122559, (Rabbit:0.131889476562, Aardvark:0.120376523438)
:0.005459932129):0.002273915039):0.003076952637, (Dog:0.127646692383, Tree_shrew
:0.148635307617):0.001928684082):0.011074565918, Flying_fox:0.117479167614)
:0.013291332386, Pig:0.093116691667, Whale:0.119435308333);
```

With NNI/SPR:

Left: Without NNI/SPR, right: with NNI/SPR

I may have done something wrong, you can check my parameters and input here.