Práctica N°5: Conservación de la energía

Todos los resultados se obtuvieron usando $g = 10 \,\mathrm{m/s^2}$.

1)
$$15N$$

 $W = 30 J$

2) a)
$$F_{hombre} = T = 190,62 \, N$$

b)
$$W_{hombre} = -333,73 J$$

c)
$$W_P = 400, 5 J$$

d)
$$W_{F_{roz}} = -66,77 J.$$

El trabajo de la normal es nulo $(W_N = 0 J)$ porque $\vec{N} \perp \vec{v}$

e)
$$W_{total} = \sum_{i} W_i = 0 J$$

$$f) \Delta E_c = 0 J$$

3)
$$a) v_f \approx 31,62 \frac{m}{s}$$

b)
$$v_i \approx 102,47 \frac{m}{s}$$

c)
$$d \approx 5,68 \, m$$

d)
$$v_f \approx 3,5\frac{m}{s}$$

$$e)$$
 $h \approx 7,2 m$

4)
$$a) W_{F_{roz}} = -400 J$$

b)
$$\mu_d = 0, 1$$

5) $a) v_c \approx 16,29 \frac{m}{s}$. Vuelve a pasar por C con una velocidad de $v_c' \approx 12,06 \frac{m}{s}$

b)
$$\Delta E_c = -200 J$$

c)
$$W_{total} = -47.2 J$$

d)
$$\Delta x \approx 0.32 \, m$$

6)
$$a) h \approx 0.24 m$$

b)
$$W_{F_{roz}} = -0.06 J$$

7) a) $v_{inicial} > \sqrt{50} \frac{m}{s} \approx 7,07 \frac{m}{s}$. El cuerpo **no** podría realizar un MCU porque la fuerza de vínculo que puede realizar la soga **si o sí** tiene que estar en la dirección radial y el peso genera una aceleración en la dirección angular.

b)
$$W_{total} = W_P \approx -20 J$$

La tensión no realiza trabajo.

c)
$$W_{F_{vinculo}} = -W_P \approx 20\,J$$

Trabajo para ir del mínimo al máximo: 20 J . Trabajo para ir del máximo al mínimo: $-20J$.

8)
$$W_F = C\left(\frac{1}{z_2} - \frac{1}{z_1}\right)$$
$$U(z) = -\frac{C}{z}$$

9)
$$h = \frac{5}{2}R$$

- 10) a) $E_c^A = 8 \, erg, \, E_c^B = 12 \, erg, \, y \, E_c^C = 6 \, erg$
 - b) Tenemos un movimiento armónico simple desde $x=1\,cm$ hasta $x=5\,cm$ con $x=3\,cm$ como punto de equilibrio.

11) a)
$$W_i = 4J$$

 $W_{ii} = 0J$
 $W_{iii} = -1J$
 $W_{iv} = 3J$

$$b) \ v_i = 2\frac{m}{s}$$

$$v_{ii} = 2\frac{m}{s}$$

$$v_{iii} = \sqrt{3}\frac{m}{s} \approx 1,73\frac{m}{s}$$