HỆ TR Ợ GIÚP QUYẾT ĐỊNH				
Tuần 4	(Bài 1)	Hai V. Pham		

Các mô hình ra quyết định với sự không chắc chắn

- Ra quyết định đa thuộc tính
- Môi trường ra quyết định
- ▶ Toán tử và các quan hệ

Ra quyết định đa thuộc tính • Bài toán đa mục tiêu, đa tiêu chí (thuộc tính) Các biến quyết định Mối quan hệ Các biến kết quả

(môi trường)

Ra quyết định đa thuộc tính...

- Lựa chọn phương án
- Dùng bảng biểu diễn

	Các thuộc tính	Các thuộc tính khác
Các phương án	Các giá trị	Các giá trị
Х	Các giá trị	Các giá trị
Υ	Các giá trị	Các giá trị

Hai V Pham

Các phương pháp

Loại bỏ dần:

Xét thuộc tính X_1 , chọn $A^1 = \{A_i \mid x_{i1} \text{ thoả } X_1\}$

Tiếp tục xét các thuộc tính tiếp theo để loại bỏ

MAXIMAX: $I_i^{max} = max_i \{x_{ii}\}$

Chọn A_k , nếu $I_k^{max} = max_i \{I_i^{max}\}$

MAXIMIN: $I_i^{min} = min_i \{x_{ii}\}$

Chọn A_k , nếu $I_k^{min} = max_i \{I_i^{min}\}$

lai V Pham

Môi trường không chắc chắn

- Môi trường biến động theo thời gian (môi trường không chắc chắn)
- Các quyết định phải được thay đổi theo môi trường, thích nghi với môi trường.

Hai V Pham

~ /	_ /	- >	
120	toán	10.09	
L.al.	112011	LL	

› Kết hợp thông tin và tính toán qua các nguồn khác nhau

Một cách hình thức, nếu $x_1, ..., x_n$ là nhóm các dữ liệu, thì $Agg(x_1,...,x_n)$ =a là hàm tích họp, cho giá trị đầu ra theo yêu cầu

Các phép toán

Toán tử t-norm (phép hội) $t: [0,1] \times [0,1] \rightarrow [0,1]$

t(x,y) = t(y,x)

$$t(x,y) \le t(z,u), \ \forall x \le y, z \le u$$

$$t(x, t(y,z)) = t(t(x,y), z)$$
 $t(x,1) = x$

Toán tử s-conorm (phép tuyển) s: $[0,1] \times [0,1] \rightarrow [0,1]$

s(x,y) = s(y,x)

$$s(x,y) \le s(z,u), \ \forall x \le y, z \le u$$

s(x, s(y,z)) = s(s(x,y), z) s(x,0) = x

$$S(X,Y) = S(Z,W), \quad \forall X = Y, Z = \emptyset$$

Toán tử phủ định $n: [0,1] \rightarrow [0,1]$ thỏa mãn

n(0) = 1, n(1) = 0

 $n(x) \le n(y), \forall x \ge y$

Toán tử tích hợp có các tính chất

- (1) Giới hạn tự nhiên: Khi chỉ có 1 phần tử vào thì kết quả chính là giá trị đó: Agg(a)=a
- (2) Tự đồng nhất: Nếu a=Agg($x_1,...,x_n$) thì $Agg(x_1,...,x_n,a)=Agg(x_1,...,x_n)=a$
- (3) Đơn điệu: Nếu $a_i \le b_i \ \forall i=1..n$ thì $Agg(a_1,...,a_n) \le$ $Agg(b_1,...,b_n)$
- (4) Kết hợp: Agg(x,y,z)=Agg(x,Agg(y,z))=Agg(Agg(x,y),z)
- (5) Giao hoán: $Agg(x_1,...,x_n) = Agg(X_1,...,X_n)$ với $(X_1,...,X_n)$ là một hoán vị bất kỳ của $(x_1,...,x_n)$

Bài tập về nhà	Bài	tâp	về	nh	ıà
----------------	-----	-----	----	----	----

- Hiểu thuật toán Decision Making tham khảo từ các bài báo / hội thảo với yêu cầu:
 1) Trình bày lại thuật toán tổng quát
 2) Biểu diễn bằng ví dụ dựa vào thuật toán
 3) Cài đặt thuật toán có minh họa ví dụ

- Qui trình nộp bài:
 a. Báo cáo viết ngắn gọn (Bắn in và bản mềm -soft copied)
 b. Chương trình Demo (Ghi rõ mã nguồn nếu sử dụng tham khảo; nếu không ghi rõ mã nguồn sử dụng lại thì đánh giá O điểm)
 Thời gian hoàn thành: Hết tuần 11 hoàn thành, nộp (chương trình -codes, báo cáo, video demo) cho lớp trưởng)

Hai V Pham hai@spice.ci.ritsumei.ac.jp