

多模态融合的预训练模型

车万翔、郭江、崔一鸣

社会计算与信息检索研究中心 哈尔滨工业大学

- 多语言融合
- 2 多媒体融合
- 3 异构知识融合

- 多语言融合
- 2 多媒体融合
- 3 异构知识融合

□超过6,500种语言

HARBIN INSTITUTE OF TECHNOLOGY

□数据分布的长尾现象 (Long Tail Distribution)

Figure credit: Graham Neubig

● 多语言BERT

■Multilingual BERT

- https://github.com/google-research/bert/blob/master/multilingual.md
- □统一的多语言表示空间(104种语言)

```
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
>>> output = unmasker('我like[MASK]')
>>> pprint(output)
[{'sequence': '[CLS] 我 like 你 [SEP]',
    'score': 0.10890847444534302,
```

□为什么有效?

- □语言的混合使用 (Code-Switch现象)
- □共享子词

48 跨语言预训练语言模型

- □XLM (Lample and Conneau, NeurIPS, 2019)
 - □翻译语言模型 (Translation Language Modeling, TLM)

- □依赖双语平行句对
 - □大规模平行句对获取难度较高
 - □受限于句子级上下文 (篇章/文档级平行数据更为稀少)

- □零样本迁移 (Zero-shot Transfer)
 - □将**源语言**(资源丰富,如英语)上训练得到的模型直接应用于**目标语言** (通常为资源稀缺语言)
 - ■XTREME基准测试集 (Hu et al., ICML 2020)

表 9-1 XTREME 数据集的相关信息

任务类型	语料库	数据集规模(训练/开发/测试)	测试集来源	语言数	任务描述
分类	XNLI	392,702/2,490/5,010	翻译	15	文本蕴含
	PAWS-X	49,401/2,000/2,000	翻译	7	复述识别
结构预测	POS	21,253/3,974/47-20,436	独立标注	33	词性标注
	NER	20,000/10,000/1,000-10,000	独立标注	40	命名实体识别
问答	XQuAD	87,599/34,726/1,190	翻译	11	片段抽取
	MLQA	87,599/34,726/4,517-11,590	翻译	7	片段抽取
	TyDiQA-GoldP	3,696/634/323-2,719	独立标注	9	片段抽取
检索	BUCC	-/-/1,896-14,330	_	5	句子检索
	Tatoeba	-/-/1,000	-	33	句子检索

多语言融合

2 多媒体融合

身 异构知识融合

- □多媒体数据
 - □语言
 - □图像
 - □视频
- □跨媒体应用
 - ■图像描述生成 (Image Captioning)
 - □跨媒体检索(如:以文搜图/视频)
 - □辅助单模态任务
 -

图片来源: https://openai.com/blog/dall-e/

W VideoBERT

- □Videobert: A joint model for video and language representation learning. (Sun et al., ICCV 2019)
 - □ "文本+视频" 预训练模型
 - □数据:视频以及对应的文本字幕
 - □预训练任务: 掩码标记预测

□应用

□视频检索、视频字幕生成等

- □VI-bert: Pre-training of generic visual-linguistic representations. (Su et al., ICLR 2019)
 - □ "文本+图像" 预训练模型

B DALL • E

- □Zero-Shot Text-to-Image Generation (Ramesh et al, 2021)
 - □通过离散变分自编码器 (Discrete VAE) 将图像表示为离散标记序列
 - □由文本生成图像,采用自回归语言模型

输入:

a clock in the shape of a peacock. (一个孔形的时钟)

输出:

(IR) CLIP, ALIGN

- □CLIP: Learning Transferable Visual Models From Natural Language Supervision (Radford, et al., 2021)
- □ALIGN: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision (Jia et al., 2021)
- □通过对比学习学习图像与文本的联合表示

多语言融合

2 多媒体融合

3 异构知识融合

知识增强的预训练模型

- □ "站在巨人的肩膀上"
 - □知识库: (半) 结构化知识、外部世界知识、常识知识等
 - □如词典,实体库,知识图谱等
 - □已有任务的标注数据

https://zh.wikipedia.org/zh-cn/苹果公司

苹果公司 [編輯]

维基百科,自由的百科全书 (重定向自苹果公司)

> 此条目介绍的是美国科技公司。关于 "**苹果**(消歧义)"。

苹果公司(英语:Apple Inc.),原称苹果电脑公司(英语:Apple Computer, Inc.),是总部位于美国加州库比蒂诺的跨国科技公司,与亚马逊,谷歌、微软和Facebook一起被认为是五大技术公司之一,合称为FAAMG。现时的业务包括设计、开发、手机通信和销售消费电子、计算机软件、在线服务和个人计算机。[7][8][9]

HowNet

维基百科

48 命名实体

- □Ernie: Enhanced representation through knowledge integration (Sun et al., 2019)
 - □预训练任务: 掩码语言模型
 - □子词掩码
 - □实体掩码
 - □短语掩码

□示例:

原始句子	Harry Potter is a series of fantasy novels written by J. K. Rowling
子词级别掩码	[M] Potter is a series [M] fantasy novels [M] by J. [M] Rowling
实体级别掩码	Harry Potter is a series of fantasy novels written by [M] [M]
短语级别掩码	Harry Potter is [M] [M] [M] fantasy novels [M] by [M] [M] [M]

□有助于实体间关系的学习,如上例 (Harry Potter, J. K. Rowling)

48 命名实体

- ■KnowBERT: Knowledge enhanced contextual word representations (Peters et al., EMNLP 2019)
 - □利用实体消歧 (Entity Linking) 以及相应的文本描述
 - □在BERT相邻两层Transformer之间引入知识融合模块

48 知识图谱

- □ERNIE^{THU} (Zhang et al., 2019)
 - □知识编码器 (K-Encoder)
 - □融合文本与知识图谱中的实体表示
 - □利用TransE获取知识图谱中的实体表示

输入表示层

UK-BERT

- □推理阶段的知识融合
- □树状结构输入(根据知识图谱对实体进行扩展)
- □对自注意力分布进行约束

4 多任务知识

□充分利用已有任务的标注数据及资源

□文本分类: 如情感分类

□回归问题: 句子相似度预测

□句对分类: 文本蕴含

□与基于海量无标注数据的自监督预训练相媲美

□MT-DNN: Multi-task Deep Neural Network (Liu et al., ACL 2019)

□CoLA, SST-2

□RTE, MNLI, MRPC

QNLI

更丰富的预训练任务

- □ERNIE 2.0 (Sun et al., AAAI 2020)
 - □词法, 语法, 语义层面分别设计预训练任务
 - □连续多任务学习(Continual Multi-task Learning)

谢谢!

理解语言,认知社会 以中文技术,助民族复兴

长按二维码,关注哈工大SCIR 微信号: HIT_SCIR