Clasificación y estimación de Redshift de espectros astrofísicos mediante algoritmos de Machine Learning

Jairo Andres Saavedra Alfonso Asesor: Jaime Ernesto Forero-Romero Física Avance de Monografía 30% Universidad de los Andes 2019

Introducción

Espectros como fuente de información del objeto

Figura 1: Espectro de estrella tipo A6 (BOSS)

- Composicion quimica
- Temperatura
- Masa
- Luminosidad
- Velocidad radial
 - Densidad

Ley de Hubble

$$v_r = HD \quad cz pprox DH(t_0) = v_r.$$

Introducción

 La exploración activa de espectros astrofísicos requiere de precisión para determinar clasificación espectral y estimación de Redshift del objeto observado. [1]

Figura 2: Porción del mapa 3D de estructura a gran escala de *SDSS*

Figura 3: Porción del mapa de Galaxias de *SDSS*

Introducción

 Métodos estándar automatizados REDMOSTER Software (eBOSS). [2]

Figura 4: REDMOSTER para espectros de LRG de eBOSS.

 Inspección visual del espectro por expertos en el área para clasificación clasificación y estimación del Redshift.

Motivación

 Automatizar los procesos de clasificación y estimación del Redshift de espectros para futuros Surveys (DESI)

Figura 5: Telescopio central DESI

• Medir el efecto de la materia oscura en la expansión del universo.

 ~30 millones de espectros de galaxias y QSO [4].

Objetivo General

Implementar y evaluar algoritmos de *Machine Learning* (Convolutional Neural Networks, Random Forest) para clasificación y estimación del *Redshift* de espectros astrofísicos de futuros *surveys*.

Objetivos Específicos

- Construir un conjunto de entrenamiento, test y validación de al menos 100.000 espectros a partir del DR 12 del Baryon Oscilation Spectroscopic Survey (BOSS).
- Implementar una arquitectura de RNC para predecir clase objeto observado, a partir de espectros astrofísicos.
- Implementar una arquitectura de RNC para estimar Redshift del objeto observado.
- Evaluar el rendimiento de la los algoritmos propuestos en el reconocimiento de Cuasares y Galaxias.

Metodologia

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

Metodologia

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

 Clasificación espectral (Estrellas, Galaxias QSO y QSO BAL).

Metodologia

Evaluar diferentes estructuras de Redes Neuronales Convolucionales (RNC) para:

- Clasificación espectral (Estrellas, Galaxias, QSO y QSO BAL).
- Estimar Redshift de los objetos observados (Regresión).

Prepocesamiento de los datos

SDSS-III/BOSS Data Release 12 [4]

546856 Objetos (Stars, Galaxies, QSO & QSO BAL) 639464 Espectros (Stars, Galaxies, QSO & QSO BAL)

- 537677 Objetos/Espectros correlacionados
- Remoción de espectros sin ID, sin etiqueta de clase y con Z CONF PERSON=0
- Estandarización de los espectros $z_i = \frac{x_i x}{\sigma}$

Espectros

Figura 6: Espetro de (A) Estrellas, (B) Galaxias, (C) QSO y (D) QSO BAL

Clasificación Espectral RNC 1.0

Figura 7: Primera estructura tentativa de RNC para clasificación espectral

Clasificación Espectral RNC 2.0

Figura 8: Segunda estructura tentativa de RNC para clasificación espectral

Entrenamiento

- 80.000 Espectros (240 espectros por batch)
- 50 épocas 10.000 Iteraciones.
- 60/20/20 Train/Validation/Test.
- Espectros con ID y CLASS_PERSON valida

Objeto	Cant. de espectros
Estrellas	207905
Galaxias	20699
QSO	270534
QSO BAL	29652

Tabla 1: Datos disponible para entrenamiento

Matriz de confusión test Clasificación Espectral

Figura 9: Matriz de confusión Test

Matriz de confusión test RNC 1.0 RNC 2.0

Figura 10: Matriz de confusión RNC 1.0

Figura 11: Matriz de confusión RNC 2.0

Metricas para Clasificación Espectral

true negative

TN

TP

FN

FP

Estimate

Figura 12: Matriz de confusión

true positive false negative false positive
$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

$$accuracy = \frac{TP + TN}{TP + FN + TN + FP}$$

Metricas de los modelos RNC 1.0 & RNC 2.0

Values/Obj	Stars	Galaxies	QSO	QSO BAL
Support	3906	4073	3996	4025
Precision	0.97	0.96	0.84	0.97
Recall	0.96	0.97	0.96	0.83
F1	0.97	0.96	0.90	0.89
Accuracy	96.44 %	97.03%	95.77 %	82.93%

Tabla 2: Valores de relevancia RNC 1.0

Values/Obj	Stars	Galaxies	QSO	QSO BAL
Support	3906	4073	3996	4025
Precision	0.97	0.96	0.92	0.93
Recall	0.96	0.96	0.92	0.93
F1	0.96	0.96	0.92	0.93
Accuracy	98.22%	98.06%	95.84%	96.36 %

Tabla 3: Valores de relevancia RNC 2.0

QuasarNET

QuasarNET: Human-level spectral classification and redshifting with Deep Neural Networks

Nicolas G. Busca, ¹★ and Christophe Balland, ¹

¹Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75252 Paris, France

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We introduce QuasarNET, a deep convolutional neural network that performs classification and redshift estimation of astrophysical spectra with human-expert accuracy. We pose these two tasks as a feature detection problem: presence or absence of spectral features determines the class, and their wavelength determines the redshift, very much like human-experts proceed. When ran on BOSS data to identify quasars through their emission lines, QuasarNET defines a sample 99.51 \pm 0.03% pure and 99.52 \pm 0.03% complete, well above the requirements of many analyses using these data. QuasarNET significantly reduces the problem of line-confusion that induces catastrophic redshift failures to below 0.2%. We also extend QuasarNET to classify spectra with broad absorption line (BAL) features, achieving an accuracy of 98.0 \pm 0.4% for recognizing BAL and 97.0 \pm 0.2% for rejecting non-BAL quasars. QuasarNET is trained on data of low signal-to-noise and medium resolution, typical of current and future astrophysical surveys, and could be easily applied to classify spectra from current and upcoming surveys such as eBOSS, DESI and 4MOST.

Key words: cosmology: observations – quasars: emission lines – quasar: absorption lines

QuasarNET vs RNC 2.0

	QuasarNET	RNC 2.0
Metrica/Obj	QSO	QSO
Precision	99.51	92.2
Recall	99.52	92.1
F1	99.51	92.1

Tabla 4: Metricas de QuasarNET vs RNC 2.0

Estimación del Redshift con RNC 2.0

Figura 13: RNC 2.0 para estimación del Redshift de QSO

Entrenamiento

- 80.000 Espectros (240 espectros por batch)
- 50 épocas 10.000 Iteraciones.
- 60/20/20 Train/Validation/Test.
- Espectros con Z_CONF_PERSON=3

Objeto	Cant. de espectros
Estrellas	207905
Galaxias	20699
QSO	270534
QSO BAL	29652

Evaluación de RNC 2.0 en regresión de Redshift

Figura 15: Z out vs Z in

Conclusiones Preliminares

- Se demotro que es posible usar RNC para clasificación espectral de Estrellas, Galaxias y Cuasares.
- Se observo como la elección de los hiperaparametros afecta los resultados de las RNC.
- Se pudo observar como las RNC tiene bajo rendimiento cuando la distribución de datos es baja.
- Es necesario explorar otros algoritmos de Machine Learning para la regresión del Redshift (*Random Forest*, *SVM...*).

Cronograma

- Tarea 1: Revisar bibliografía
- Tarea 2: Cargar datos de espectros lineales.
- Tarea 3: Explorar los datos disponibles.
- Tarea 4: Correlacionar los objetos astrofísicos con sus respectivos espectros lineales para crear una base de datos de entrenamiento.
- Tarea 5: Implementar y evaluar una Red Neuronal simple para observar el rendimiento con un conjunto reducido de datos.
- Tarea 6: Presentar avance correspondiente al 30 %

Tareas \ Semanas	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	X	Χ														
2		Χ	Χ													
3			Χ	Χ												
4				Χ	Χ	Χ										
5						Χ	X									
6								Χ								İ
7									Χ	Χ	Χ					İ
8												Χ	Χ	Χ		İ
9															X	Χ
10								Χ	Χ	X	X	X	Χ	Χ	X	Χ

Objetivos Cumplidos

- Construir un conjunto de entrenamiento, prueba y validación de al menos 100.000 espectros a partir del Data Release 12 de Baryon Oscilation Spectroscopic Survey (BOSS).
- Implementar una arquitectura de RNC para predecir clase objeto observado, a partir de espectros astrofísicos.
- Implementar algoritmos de *Machine Learning* para estimar *Redshift* del objeto observado.
- Evaluar el rendimiento de la los algoritmos propuestos en el reconocimiento de Cuasares y Galaxias.

Trabajo Futuro

- Explorar hiperparámetros (*epochs*, *batch size*, *learning rate*, *hidden layers*....) con el fin de mejorar el rendimiento de la RNC sobre los datos de test para clasificación espectral.
- Explorar otros algoritmos de ML (Random Forest, SVM...) para estimar Redshift a partir de los espectros.
- Extender la estimación de Redshift (Regresión) para QSO a Galaxias.

Referencias

- [1] Alam, S. et al. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Monthly Notices of the Royal Astronomical Society, 470(3), 2617-2652.
- [2] Hutchinson, T. et al. (2016). Redshift measurement and spectral classification for eboss galaxies with the redmonster software. The Astronomical Journal, 152(6), 205.
- [3] Dawson, K. et al. (2013). *The Baryon Oscillation Spectroscopic Survey of SDSS-III*. arXiv preprint arXiv:1208.0022, 145(10).
- [4] Aghamousa, A. et al. (2016). The DESI experiment Part I: science, targeting, and survey design. arXiv preprint arXiv:1611.00036.

