ULTIPLE CHOICE QUESTIONS (MCQ'S

Inverse Trigonometric functions are also called inverse

(a) Linear

(b) Exponential

(c) Circular

(d) Trigonometric

 $f(x) = \sin^{-1}x$ what is the range of f = ?2.

(a) $0 \le x \le 2\pi$

(b) -1 < x < 1

(c) $0 \le x \le \pi$

 $(d) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

 $f(x) = \sin^{-1} x$ what is the domain of f?

(a) R

(b) $-1 \le x \le 1$

 $(c) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

(d) $0 \le x \le 1$

 $f(x) = \cos^{-1} x$ what is the range of f?

(a) R

(b) $0 \le x \le \pi$

 $(c) -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

(d) $-\frac{\pi}{2} < x < \frac{\pi}{2}$

 $f(x) = \cos^{-1} x$ then what is the domain of f?

(a) R

 $(b) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

 $(c)-1\leq x\leq 1$

(d) $0 \le x \le 1$

 $f(x) = \tan^{-1} x$ then what is the range of f?

 $(a) - \frac{\pi}{2} < x < \frac{\pi}{2}$

(b) $-1 \le x \le 1$

(c) R

 $(d) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

 $f(x) = \tan^{-1} x$ then what is the domain of f?

(a) R (or) $(-\infty, \infty)$

(b) $-0 \le x \le 1$

 $(c) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

(d) $-\frac{\pi}{2} < x < \frac{\pi}{2}$

8. $f(x) = \sec^{-1}x$ then what is the range of f?

(a) $0 < x < \pi$

 $(b) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$

(c) $[0, \pi]$; $y \neq \frac{\pi}{2}$

(d) R

104	8	Mathematics XI
9.	$f(x) = \sec^{-1}x$ then wha	at is the domain of f?
	(a) R	(b) $[0, \pi]; x \neq \frac{\pi}{2}$
	(c) $x \ge -1$ (or) $x \le 1$	(d) None of these
10.		what is the Range of f?
	$(a)\left[-\frac{\pi}{2},\frac{\pi}{2}\right]; x \neq 0$	(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; $y \neq 0$
	(c) $[0, \pi]$; $y \neq \frac{\pi}{2}$	(d) R
11.	$f(x) = \csc^{-1} x$ then v	what is the domain of $f = ?$
	(a) R	(b) $[0, \pi]; x \neq \frac{\pi}{2}$
	(c) $x \ge -1$ (or) $x \le 1$	(d) $x \le -1$ (or) $x \ge 1$
12.	$f(\dot{x}) = \cot^{-1}x$ then wha	at is the range of $f = ?$
	$(a) 0 < x < \pi$	$(b) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$
	$(c) -\frac{\pi}{2} < x < \frac{\pi}{2}$	(d) R
13.	$f(x) = \cot^{-1} x $ then wh	at is the domain of f ?
	(a) R (or) (-∞, ∞)	(b) $0 < x < \pi$
($(c) -\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$(d) -\frac{\pi}{2} < x < \frac{\pi}{2}$
14.	The function tan (Sin ⁻¹	1/2) =
($(a) \frac{1}{\sqrt{3}} \qquad (b) \frac{1}{2}$	(c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{3}$
15. I	n generally Sin ⁻¹ x	$(Sinx)^{-1}$
	(a) < (b) ≠	(c) = (d) >
16. I	nverse trigonometric fu	inctions take the value as input and
g	ive the as outp	ut.
•	a) angle	(b) Sign
	c) quadrant	(d) None of these
7. T	he values of the inver	rse function represented by Sin ⁻¹ y
	re called thev	values of Sin ⁻¹ y.
) Principal	(b) functional
(0	:) Trigonometric	(d) None of these

18	$Cos^{-1}(0) = $	Radi	ans		
10,		_	(c) $-\frac{\pi}{2}$	$(d) + \frac{\pi}{2}$	
10	$\cos^{-1}(1) = $ _	_	_	(d) ± 2	
19.		_	(c) $\frac{-\pi}{2}$	$(d) \pm \frac{\pi}{2}$	
20	$\cos^{-1}(-1) =$			(d) ± 2	
٠٠.	(a) "0"	(b) $\frac{\pi}{2}$	(c) $-\frac{\pi}{2}$	(d) π	
1	$Cos^{-1}\left(\frac{1}{2}\right) =$	_	_	(2)	
1.	` '	_	_	-	
		•	(c) $\frac{\pi}{4}$	$(d)\frac{\pi}{6}$	
2.	$Cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$	= I	Radians.		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$	
3.	$Cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$	=F	Radians.	v	
	(a) $\frac{\pi}{2}$			$(d)\frac{\pi}{6}$	
4.	$\sin^{-1}(0) = $ _			(-) 6	
	(a) "0"			$(d)\frac{\pi}{4}$	
	Sin ⁻¹ (1) =			4	
	(a) "0"			$(d)\frac{\pi}{6}$	
6.	$\operatorname{Sin}^{-1}\left(-1\right) =$	Ra	dians.	(4) 6	
	(a) $-\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{6}$	(d) π	
7.	$\operatorname{Sin}^{-1}\left(\frac{1}{2}\right) = \frac{1}{2}$	Rad	lians.		
			(c) $-\frac{\pi}{6}$	$(d)\frac{\pi}{4}$	
8.	$\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right)$	=R	adians.	4	
	π ` ´	_			
	(۳) ع	(D) - 7	(c) $\frac{\pi}{4}$	$\frac{\pi}{\delta}$ (b)	

29.
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) =$$

(a) $\pm \frac{\pi}{3}$ (b) $-\frac{\pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$ 30. $\tan^{-1}(0) =$ ______ Radians.

- (b) $\frac{\pi}{3}$

31. $tan^{-1}(1) =$ ______Radians.

- (a) "O"

(b) $\frac{\pi}{3}$

32. $\tan^{-1}(\sqrt{3}) =$ ______ Radians. (a) π (b) $\frac{\pi}{3}$

- (c) $\frac{\pi}{4}$

33. $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) =$ Radians.

- (b) $\frac{\pi}{3}$

34. tan⁻¹ (∞) = _____ Radians.

- (b) $\frac{\pi}{3}$

35. $\cot^{-1}(0) = \underline{\qquad}$ Radians. (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$

36. $\cot^{-1}(-1) = \underline{\qquad}$ Radians. (a) $-\frac{\pi}{2}$ (b) $\frac{\pi}{4}$

- (c) $-\frac{\pi}{4}$
- (d) π

37. $\cos^{-1}\left(-\frac{1}{2}\right) =$ Radians.

- (b) $\frac{2\pi}{3}$
- (c) $\frac{\pi}{3}$

38. An equation involving _____ functions is called a trigonometric equation.

- (a) Trigonometric
- (b) Algebraic
- (c) Exponential
- (d) None of these

Chapter 13 # Inverse Trigonometric Functions & Tri.eq

- $Cos (tan^{-1} 0) =$ (b) -1
- (c) 1
- 40. $\sin\theta = \frac{1}{\sqrt{2}}$, then $\theta = \frac{\pi}{4}$ is called ____
- (b) General Solution
- (a) Principal Solution (c) Common Solution
- (d) None of these
- 41. $\sin\theta = \frac{1}{\sqrt{2}}$, then $\theta = \frac{\pi}{4} + 2n\pi$. $\forall n \in \mathbb{Z}$ are called
- (b) General Solution
- (a) Principal Solution (c) Common Solution
- (d) None of these
- 42. Sin $\left(\cos^{-1}\frac{\sqrt{3}}{2}\right) =$ _____
- (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{2}}$
- (d) 1

44. $\sin\left(\operatorname{arc} \operatorname{Cos} \frac{\sqrt{3}}{2} + \operatorname{arc} \operatorname{Sin} \frac{1}{2}\right) = \underline{\hspace{1cm}}$

- (a) $\frac{1}{2}$
 - (b) 1

(c) $Cot^{-1}x$ (d) $-Cot^{-1}x$

45. $\tan^{-1}(-x) = \frac{1}{(a) \tan^{-1} x} = \frac{1}{(b) - \tan^{-1} x} = \frac{1}{(c) \cot^{-1} x} = \frac{1}{(d) - (d) - (d)} = \frac{1}{(d) - (d)} = \frac{1}{(d)} = \frac{1}{($

function. (a) quadratic (b) Differential (c) Integral (d) Inverse

- 47. The domain of function "f" is equal to _____ function.
 - (a) Domain of f^{-1}
- (b) Range of f^{-1}
 - (c) both (Domain & Range (d) None of these The range of function "f" becomes the _
 - (a) Domain of f^{-1} (b) Range (c) both (domain of f^{-1} and range of f^{-1}) (b) Range of f^{-1}
 - (d) None of these
- 49. If $2^{\cos \theta} = 1$ then $\theta = ____$
 - (a) $\frac{\pi}{4}$
- (b) π (c) $\frac{\pi}{2}$
- $(d)\frac{\pi}{3}$

```
1052
```

```
Find the principal value of tan (arc tan-1 (-1)) is
50.
                                   (c) -1
                                                 (d) ∞
                  (b) 0
```

Mathematics XI

- Other Solution besides principal solution are called 51. solution. (c) principal (d) General (a) Original (b) finite
- The first Solution "0" is called the _____ solution.
- (a) principal (b) General (c) Original (d) Finite equation has infinite number of Solutions. The
- (a) Simple (b) Radical (d) Trigonometric (c) Simultaneous
- is an exact reflection of the The graph of inverse _ graph of sine function across the graph of the identity function.
 - (a) Cos function (b) Sine Function (c) Tan function
- (d) Sec function The value of the inverse function represented by arc Siny are called __ of arc Siny.
- (a) General Values (b) Infinite Values (c) Principal Values (d) Finite Values 56. $\cos^{-1}A + \cos^{-1}B =$
- (a) $\cos^{-1} \{AB + \sqrt{1 A^2} \sqrt{1 B^2} \}$ (b) $\sin^{-1} \{A\sqrt{1 B^2} + B\sqrt{1 A^2} \}$ (c) $\cos^{-1} \{2A^2 1\}$
- (d) $Cos^{-1} \{AB \sqrt{(1-A^2)(1-B^2)}\}$ $Cos^{-1}A - Cos^{-1}B =$
- (a) $\cos^{-1} \{AB + \sqrt{(1-A^2)(1-B^2)} \}$ (b) $\sin^{-1} \{A\sqrt{1-B^2} + B\sqrt{1-A^2} \}$ (c) $\cos^{-1} \{2A^2 1\}$
- (d) $\sin^{-1} \{A \sqrt{1 B^2} B \sqrt{1 A^2} \}$ $\sin^{-1} A + \sin^{-1} B =$
- - (a) $\cos^{-1} \{AB + \sqrt{1 A^2}\sqrt{1 B^2}\}\$ (b) $\sin^{-1} \{A\sqrt{1 B^2} + B\sqrt{1 A^2}\}\$ (c) $\cos^{-1} \{2A^2 1\}$
- (d) $Sin^{-1} \{ A \sqrt{1 B^2} B \sqrt{1 A^2} \}$ 59. $Sin^{-1}A Sin^{-1}B =$ _____
- (a) $Cos^{-1} \{AB + \sqrt{(1-A^2)(1-B^2)}\}$ (b) $Sin^{-1} \{A\sqrt{1-B^2} + B\sqrt{1-A^2}\}$

(c)
$$Cos^{-1} \{2A^2 - 1\}$$

(d) $Sin^{-1} \{A\sqrt{1 - B^2} - B\sqrt{1 - A^2}\}$

60.
$$\tan^{-1} A + \tan^{-1} B =$$
(a) $\tan^{-1} \left(\frac{A - B}{1 + AB} \right)$
(b) $\tan^{-1} \left(\frac{1 + AB}{A - B} \right)$
(c) $\tan^{-1} \left(\frac{A + B}{1 - AB} \right)$
(d) $\tan^{-1} \left(\frac{1 - AB}{A + B} \right)$

(c)
$$\tan^{-1}\left(\frac{A+B}{1-AB}\right)$$
 (d) $\tan^{-1}\left(\frac{1-AB}{A+B}\right)$

61.
$$\tan^{-1} A - \tan^{-1} B =$$
(a) $\tan^{-1} \left(\frac{A - B}{1 + AB} \right)$
(b) $\tan^{-1} \left(\frac{A + B}{1 - AB} \right)$

(a)
$$\tan^{-1}\left(\frac{A-B}{1+AB}\right)$$
 (b) $\tan^{-1}\left(\frac{A+B}{1-AB}\right)$ (c) $\tan^{-1}\left(\frac{1+AB}{A-B}\right)$ (d) $\tan^{-1}\left(\frac{1-AB}{A+B}\right)$

62.
$$\tan^{-1}\left(\frac{2A}{1-A^2}\right) =$$
______.
(a) $\tan^{-1}\left(\frac{A}{B}\right)$ (b) $\tan^{-1}\left(\frac{2}{A}\right)$
(c) $\tan^{-1}A$ (d) $2\tan^{-1}A$

63.
$$\tan^{-1} A + \tan^{-1} B + \tan^{-1} C =$$
(a) $\tan^{-1} \left(\frac{A - B}{1 + AB} \right)$
(b) $\tan^{-1} \left(\frac{A + B}{1 - AB} \right)$

(a)
$$\tan^{-1}\left(\frac{A-B}{1+AB}\right)$$
 (b) $\tan^{-1}\left(\frac{A+B}{1-AB}\right)$
(c) $\tan^{-1}\left(\frac{A+B+C-ABC}{1-AB-BC-CA}\right)$

(c)
$$\tan^{-1}\left(\frac{A+B+C-ABC}{1-AB-BC-CA}\right)$$

(d) $\tan^{-1}\left(\frac{1-AB-BC-CA}{A+B+C-ABC}\right)$

64. If
$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2} - x$$
, then the value of x is _____

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$

(a)
$$Sin^{-1} \{2A^2 - 1\}$$

(b) $Sin^{-1} \{A^2 - 2\}$
(c) $Cos^{-1} \{2A^2 - 1\}$
(d) $Cos^{-1} \{A^2 - 2\}$

66.
$$\sin^{-1} \{2A\sqrt{1-A^2}\} =$$
(a) $\sin^{-1} \{2A^2-1\}$ (b) $\sin^{-1} \{A^2-2\}$

(a)
$$Sin^{-1} \{2A^2 - 1\}$$
 (b) $Sin^{-1} \{A^2 - 2\}$ (c) $Cos^{-1} \{2A^2 - 1\}$ (d) $2Sin^{-1}A$

- 67. $\operatorname{Sinx} \operatorname{Cosx} = 0$ then x = 1
- (c) $\frac{\pi}{4}$
- 68. The general solution of the equation $1 + \cos x = 0$ is

 (a) $\left\{\frac{\pi}{2} + 2n\pi\right\}$ (b) $\left\{-\frac{\pi}{2} + 2n\pi\right\}$ (c) $\left\{\pi + 2n\pi\right\}$ (d) $\left\{-\pi + 2n\pi\right\}$

- 69. If Sin x = $\frac{1}{2}$ then x = ____ (a) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (b) $\frac{-\pi}{6}$, $\frac{5\pi}{6}$ (c) $-\frac{\pi}{6}$, $\frac{5\pi}{6}$ (d) $\frac{\pi}{3}$, $\frac{2\pi}{3}$

- 70. $\cos x = \frac{1}{2}$ has a solution.

- 70. $\cos x = \frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$ 71. If $\sin x + \cos x = 0$, then $x = \frac{\pi}{4}$ (b) $-\frac{\pi}{4}$, $-\frac{\pi}{2}$
- (d) None of these
- (c) $-\frac{\pi}{4}$, $\frac{3\pi}{4}$ 72. Solution of $1 + \cos x = 0$ is
 - (a) $\frac{\pi}{2}$
- (b) π
- (c) 2π
- (d)0
- where $(0 < \theta < 90^{\circ})$ (d) 60° 73. If $\sin \theta = \sqrt{3} \cos \theta$, then $\theta = \frac{1}{3} \cos \theta$ (b) 30°
- 74. $\tan^{-1}\left(\frac{1}{x}\right) =$
 - (a) $tan^{-1}(x)$
- (b) $Cot^{-1}\left(\frac{1}{x}\right)$
- (c) $Cot^{-1}(x)$
- 75. If $\sin^2\theta + \sin\theta = 0$; then θ will be
 - (a) 0, π , $-\frac{\pi}{2}$
- $(c) -\pi, \frac{\pi}{2}$
- (d) None of these
- 76. $\sin^{-1}\theta = \frac{1}{\sqrt{1-\theta^2}}$ (a) $\sin^{-1}\sqrt{1-\theta^2}$ (c) $\tan^{-1}\sqrt{1-\theta^2}$
- (b) $\cos^{-1} \sqrt{1 \theta^2}$
- (d) None of these

Chapter 13 # Inverse Trigonometric Functions & Tri.eq" 1055

- $Cos^{-1} \theta =$ (a) $\sin^{-1} \sqrt{1 - \theta^2}$ (c) $\tan^{-1} \sqrt{1 - \theta^2}$
 - (b) $\cos^{-1} \sqrt{1 \theta^2}$ (d) None of these
- $tan^{-1}\theta + Cot^{-1}\theta =$
 - (a) $\frac{\pi}{2}$
- (b) π
- 79. $\sin^{-1}\theta + \cos^{-1}\theta = 1$
- (d) None of these
- (a) 2π
- (b) $\frac{\pi}{2}$
- 80. $Sec^{-1}\theta + Cosec^{-1}\theta =$
- (d) None of these
- - (a) 2π

- 81. $\sec^{-1}\theta =$
- (d) None of these
- (a) Cos⁻¹
- (b) $\sin^{-1} \frac{1}{9}$
- (c) tan-1
- (d) None of these
- 82. Cosec
 - (a) $\cos^{-1} \frac{1}{\theta}$
- (b) $\sin^{-1} \frac{1}{\alpha}$
- (c) $\tan^{-1}\frac{1}{\theta}$
- (d) None of these
- 83. $\cot^{-1}\theta =$
 - (a) $Cos^{-1}\frac{1}{\theta}$
- (b) $\sin^{-1} \frac{1}{9}$
- (d) None of these
- 84. If $\sin\theta + \cos\theta = 1$ then $\theta =$ _
 - (a) π

(b) $\frac{\pi}{2}$

- (d) None of these
- 85. If $\sqrt{1 + \cos\theta} \sqrt{1 \sin\theta} = 1$ then $\theta = 1$

. (c) π

(d) None of these

1056		Mathematics XI
86. Sin Cos ⁻¹ (1) =		
(a) π (b)) 1 (c) 0	(d) -1
87. $\sin \cos^{-1}(0) = $		
(a) 0 (b)	1 (c) π	(d) -1
88. $\cos \sin^{-1}(0) = $ _		
(a) 0 (b)	π (c) 1	(d) -1
89. $SinSin^{-1}(\theta) =$	·	235.4
(a) 1 (b)		(d) ф
90. $CosCos^{-1}(\theta) = $	· (a) A	(4) 0
(a) 1 (b)		(d) 0
91. $\tan \tan^{-1}\left(\frac{\pi}{2}\right) = $	·	
(a) 1 (b)	0 (c) θ	(d) $\frac{\pi}{2}$
92. Sin (Cos ⁻¹ θ + Sin ⁻¹	·¹θ) =	-
(a) θ	(b) 0	
(c) 1	(d) None	e of these
93. If $2 - \cos x = \frac{3}{2}$, x	=	
π	$a \cdot \frac{\pi}{}$	
(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	
(c) $\frac{\pi}{6}$	(d) None	e of these
94. If $2\cos x - \sqrt{3} = 0$,	x =	
(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	
(c) π	(d) None	of these
95. If $2\sin x - \sqrt{3} = 0$,		
(a) $\frac{\pi}{3}$	(b) π	
(c) $\frac{\pi}{3}$	(d) None	of these
96. If $\sqrt{3} \tan x - 1 = 0$,	x =	
•	(b) $\frac{\pi}{6}$	
(a) π	6	
(c) $\frac{\pi}{3}$	(d) None	of these

Chap	ter 13 # Inver	se Trigonome	tric Function	s & Tri.eq" 1057
97.	$\tan^{-1}\frac{5}{6} + \tan^{-1}$	1 11 =		
	(a) $\frac{\pi}{2}$	(b) π	(c) $\frac{\pi}{4}$	(d) None of these
98.	$\tan^{-1}\left(\frac{1+x}{1-x}\right)$	$-\tan^{-1}x = \underline{}$		
	(a) $\frac{\pi}{2}$		$_{\Theta}$ (b) $\frac{\pi}{4}$	
	(c) $\frac{\pi}{3}$		(d) Non	e of these
99.	$\tan (\pi + \tan^{-1} (a) \pi$ $\tan (\pi + \cot^{-1} (a) \pi$	(b) x (b) x	(c) 1	(d) 0
100.	(a) X	(b) $\frac{1}{x}$	(c) 1	(d) 0

1.ે	c	2.	d	3.	b	4.	b	5.	C
6.	a	7.	a	8.	C	9.	C	10.	b
11.	d	12.	a	13.	a	14.	а	15.	b
16.	a	17.	а	18.	b	19.	а	20.	d
21.	b .	22.	d	23.	С	24.	а	25.	b
26.	a	27.	b	28.	а	29.	С	30.	d
31.	d	32.	b	33.	d	34.	a	35.	b
36.	<u> </u>	37.	ь	38.	а	39.	C	40.	а
41.	$\frac{c}{b}$	42.	a	43.	с	44.	d	45.	b
46.	$\frac{\sigma}{d}$	47.	b	48.	а	49.	С	50.	С
51.	d	52.	a	53.	d	54.	b	55.	b
56.	d	57.	а	58.	ь	59.	d	60.	C
61.	a	62.	d	63.	c	64.	b	65.	С
66.	d	67.	C	68.	C	69.	a	70.	а
71.	C	72.	b	73.	d	74.	C	75.	0
76.	b	77.	a	78.	a	79.	Ь	80.	Ł
81.	a	82.	b	83.	C	84.	Ь	85.	-
86.	<i>c</i>	87.	C	88.	C	89.	C	90.	1
	$\frac{c}{d}$	92.	-	93.	b	94.	b	95.	
91. 96.	b	97.	C	98.	b	99.	b	100.	