School of Computing and Information Systems COMP30026 Models of Computation Tutorial Week 2

12–14 August 2020

Plan

This is the week when you need to get through Grok modules 2 and 3, if you have not already done that. Don't fall behind! We will often provide more exercises than can possibly be covered in a tutorial. That is so that those who want more practice can have that. Exercises that say "drill" will tend to cover old ground, rather than introduce new ideas.

The exercises

6. If any good questions or thoug is a good time to share them. We have a quest it well-typed? Did some DS://eduassistpro.githeliow? Is function's behaviour in English.

f [] = Assignment Project Exam Help f Assignment Project Exam Help

7. For each of the follow

- $(a) \neg P \Rightarrow Q$ https://eduassistpro.githy/ $(b) \neg P \Rightarrow Q$

 $(d) (P \Rightarrow Q) A^{P} dd^{P} WeChat edu_assist^{R} pro^{R}$

8. Find a formula that is equivalent to $(P \land \neg Q)$

- 9. Recall that \oplus is the "exclusive or" connective. Show that $(P \oplus Q) \oplus Q$ is equivalent to P.
- 10. Show that $P \Leftrightarrow (Q \Leftrightarrow R) \equiv (P \Leftrightarrow Q) \Leftrightarrow R$. This tells us that we could instead write

$$P \Leftrightarrow Q \Leftrightarrow R \tag{1}$$

without introducing any ambiguity. Mind you, that may not be such a good idea, because many people (incorrectly) tend to read " $P \Leftrightarrow Q \Leftrightarrow R$ " as

$$P, Q, \text{ and } R \text{ all have the same truth value}$$
 (2)

Show that (1) and (2) are incomparable, that is, neither is a logical consequence of the other.

The red card has a true sentence written on its back and the black card has a false sentence. Which card is red, which is bl

- 12. Consider the formula https://eduassistpro.github.io/ negation?
- 13. Let F and G be propositional formulas. What is the difference between 'F = G' and ' $F \Leftrightarrow G$ ' do we really **Scholar Bulk Hall** F = G
- 14. By paraging a camplant opposition, or extended the taxtoog the proposition? A contradiction? Illustrate your affirmative answers.
- 15. (Drill.) Recall that 16. (Drill.) Is this claim os://eduassistpro.github. $P \Leftrightarrow Q = (\neg P \Leftrightarrow \neg Q)$. That is, do we have

echat edu_assist_

- 18. (Drill.) For each of the following propositional formulas, determine whether it is satisfiable, and if it is, whether it is a tautology:

(a)
$$P \Leftrightarrow ((P \Rightarrow Q) \Rightarrow P)$$

(b)
$$(P \Rightarrow \neg Q) \land ((P \lor Q) \Rightarrow P)$$

(c)
$$((P \Rightarrow Q) \Rightarrow Q) \land (Q \oplus (P \Rightarrow Q))$$