

Katedra Elektrotechniki i Podstaw Informatyki

LABORATORIUM OBWODÓW I SYGNAŁÓW SPRAWOZDANIE

Ćw. nr	Temat		
2	Metoda Thevenina w obwodach prądu stałego.		
	Opracowali	Rok / gr. lab.	Data wyk. ćw.
		1ET-DI / L02	26.01.2019 r.

Spis treści

a)	Wyznaczanie wartości prądu płynącego w jednej gałęzi obwodu	3
	Wyniki analizy komputerowej:	3
b1) anal	Zastosowanie tw. Thevenina w wyznaczaniu wartości prądu płynącego w jednej z gałęzi lizowanego obwodu.	4
	Wyniki analizy komputerowej:	4
	Uzyskane wyniki	9
b2) The	Wyznaczanie wartości prądu płynącego w obwodzie składającym sie z zastępczego żródła venina (o parametrach Ut i Rt) oraz odłaczonej pierwotnie gałęzi z elementami E6 i R6	. 10
	Wyniki analizy komputerowej:	. 10
	Obliczenia analityczne:	. 14
c)	Wyznaczanie parametrów zastępczego źródła Thevenina:	. 15
	Wyniki analizy komputerowej:	. 15
c2) \	Wyznaczanie parametrów U_T i R_T zastępczego źródła Thevenina	. 16
	Wyniki analizy komputerowej:	. 16
•	Wyznaczanie wartości prądu płynącego w obwodzie składającym sie z zastępczego żródła venina (o parametrach U_T i R_T) oraz odłaczonej pierwotnie gałęzi z rezystorem R6	. 22
	Wyniki analizy komputerowej:	. 22
	Obliczenia analityczne:	. 28
d)	Wyznaczanie parametrów zastęczego żródła Thevenina	. 29
	Wyniki analizy komputerowej:	. 29
	Obliczenia analityczne:	. 30
	Uzyskane wyniki:	. 31
Wni	oski	. 31

a) Wyznaczanie wartości prądu płynącego w jednej gałęzi obwodu W obwodzie przedstawionym wyznaczyć wartość prądu I_6 płynącego przez rezystor R_6 . Dane J_1 = 0,5 A, E_3 = 5 V, E_5 = 5 V, E_6 = 3 V, R_2 = 4 Ω , R_3 = 2 Ω , R_4 = 3 Ω , R_6 = 3 Ω .

Wyniki analizy komputerowej:

Wynik pomiaru $I(R_6) = 0.6 [A]$

b1) Zastosowanie tw. Thevenina w wyznaczaniu wartości prądu płynącego w jednej z gałęzi analizowanego obwodu.

Wyznaczyć wartości prądu I6 płynącego przez rezystor R6. Dane: J_4 = 0,2 A, E_1 = 20 V, R_2 = 8 Ω , R_3 = 8 Ω , R_5 = 4 Ω , R_6 = 5 Ω .

Wyniki analizy komputerowej:

**** 01/26/19 10:51:48 ******* Evaluation PSpice (Nov 1999) **********
* C:\Users\Tomek\Desktop\lab_2_1b.sch
**** CIRCUIT DESCRIPTION

* Schematics Version 9.1 - Web Update 1
* Sat Jan 26 10:43:14 2019
** Analysis setup **
.tran 0.5 10
.OPTIONS NOPAGE
.OP
.TF V([\$N_0002],[0])I_IJ1
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
JNC "lab 2 1b net"

```
**** INCLUDING lab_2_1b.net ****
```

* Schematics Netlist *

I_IJ1 \$N_0001 \$N_0002 DC 0.5

V_VE3 \$N_0003 \$N_0001 1

R_R2 \$N_0004 \$N_0002 2

R_R4 0 \$N_0001 3

R_R3 \$N_0003 \$N_0004 2

V_VE5 \$N_0004 0 5

**** RESUMING lab_2_1b.cir ****

.INC "lab_2_1b.als"

**** INCLUDING lab_2_1b.als ****

* Schematics Aliases *

.ALIASES

V_VE3 VE3(+=\$N_0003 -=\$N_0001)

R_R2 R2(1=\$N_0004 2=\$N_0002)

R_R4 R4(1=0 2=\$N_0001)

R_R3 R3(1=\$N_0003 2=\$N_0004)

V_VE5 VE5(+=\$N_0004 -=0)

.ENDALIASES

**** RESUMING lab_2_1b.cir ****

.probe

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 1.8000 (\$N_0002) 6.0000

(\$N_0003) 2.8000 (\$N_0004) 5.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VE3 1.100E+00

V_VE5 -6.000E-01

TOTAL POWER DISSIPATION 1.90E+00 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** SMALL-SIGNAL CHARACTERISTICS

 $V($N_0002,0)/I_IJ1 = 2.000E+00$

INPUT RESISTANCE AT I_IJ1 = 3.200E+00

OUTPUT RESISTANCE AT V(\$N_0002,0) = 2.000E+00

**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 1.8000 (\$N_0002) 6.0000

(\$N_0003) 2.8000 (\$N_0004) 5.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VE3 1.100E+00

V_VE5 -6.000E-01

TOTAL POWER DISSIPATION 1.90E+00 WATTS

JOB CONCLUDED

TOTAL JOB TIME .02

Uzyskane wyniki

b2) Wyznaczanie wartości prądu płynącego w obwodzie składającym sie z zastępczego żródła Thevenina (o parametrach Ut i Rt) oraz odłaczonej pierwotnie gałęzi z elementami E6 i R6

Wyznaczyć wartości prądu I6 płynącego przez rezystor R6. Dane: J_4 = 0,2 A, E_1 = 20 V, R_2 = 8 Ω , R_3 = 8 Ω , R_5 = 4 Ω , R_6 = 5 Ω .

Wyniki analizy komputerowej:

**** 01/26/19 11:24:31 ********* Evaluation PSpice (Nov 1999) ************
* C:\Users\Tomek\Desktop\lab_2_1c.sch
**** CIRCUIT DESCRIPTION

* Schematics Version 9.1 - Web Update 1
* Sat Jan 26 11:24:28 2019
** Analysis setup **
tran 0.5 10
OPTIONS NOBIAS
OPTIONS NOPAGE
.OP

* From [PSPICE NETLIST] section of pspiceev.ini:

.lib "nom.lib"

.INC "lab_2_1c.net"

**** INCLUDING lab_2_1c.net ****

* Schematics Netlist *

V_VE6 \$N_0001 0 3

R_R6 \$N_0001 \$N_0002 3

R_RT \$N_0003 \$N_0002 2

V_VUT \$N_0003 0 6

**** RESUMING lab_2_1c.cir ****

.INC "lab_2_1c.als"

**** INCLUDING lab_2_1c.als ****

* Schematics Aliases *

.ALIASES

V_VE6 VE6(+=\$N_0001 -=0)

R_R6 R6(1=\$N_0001 2=\$N_0002)

R_RT RT(1=\$N_0003 2=\$N_0002)

.ENDAI	LIASES			
**** R	ESUMING lab_2_1c	.cir ****		
.probe				
.END				
****	OPERATING POINT	TINFORMATION	TEMPERATURE =	27.000 DEG C
J(OB CONCLUDED			
т.	OTAL IOR TIME	0.00		

Obliczenia analityczne:

Uzyskane wyniki:

Mierzona wartość	Wyniki obliczeń	Wyniki symulacji
I ₆ [A]	0.6	0.6
U _T [V]	6	6
R _T [Ohm]	2	2

c) Wyznaczanie parametrów zastępczego źródła Thevenina:

Wyznaczyć parametry R_T i E_T zastępczego źródła Thevenina. Dane: J=1,5A, E=4V, $R_1=10~\Omega$, $R_2=2~\Omega$, $R_3=30~\Omega$, $R_4=18~\Omega$.

Wyniki analizy komputerowej:

c2) Wyznaczanie parametrów U_T i R_T zastępczego źródła Thevenina

Wyniki analizy komputerowej:

**** 01/26/19 11:54:20 ******** Evaluation PSpice (Nov 1999) **********


```
**** INCLUDING lab_2_2b.net ****
```

* Schematics Netlist *

V_VE1 \$N_0001 \$N_0002 20

I_IJ4 0 \$N_0002 DC 0.1

R_R2 \$N_0002 \$N_0003 2

R_R3 \$N_0003 \$N_0001 8

R_R5 0 \$N_0003 4

**** RESUMING lab_2_2b.cir ****

.INC "lab_2_2b.als"

**** INCLUDING lab_2_2b.als ****

* Schematics Aliases *

.ALIASES

V_VE1 VE1(+=\$N_0001 -=\$N_0002)

R_R2 R2(1=\$N_0002 2=\$N_0003)

R_R3 R3(1=\$N_0003 2=\$N_0001)

R_R5 R5(1=0 2=\$N_0003)

.ENDALIASES

**** RESUMING lab_2_2b.cir ****
.probe

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 16.5600 (\$N_0002) -3.4400

(\$N_0003) .4000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VE1 -2.020E+00

TOTAL POWER DISSIPATION 4.04E+01 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** SMALL-SIGNAL CHARACTERISTICS

 $V($N_0003,0)/I_IJ4 = 4.000E+00$

INPUT RESISTANCE AT I_IJ4 = 5.600E+00

OUTPUT RESISTANCE AT V(\$N_0003,0) = 4.000E+00

**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 16.5600 (\$N_0002) -3.4400

(\$N_0003) .4000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VE1 -2.020E+00

TOTAL POWER DISSIPATION 4.04E+01 WATTS

JOB CONCLUDED

TOTAL JOB TIME 0.00

c3) Wyznaczanie wartości prądu płynącego w obwodzie składającym sie z zastępczego żródła Thevenina (o parametrach U_T i R_T) oraz odłaczonej pierwotnie gałęzi z rezystorem R6.

Wyniki analizy komputerowej:

**** 01/26/19 12:31:32 ******* Evaluation PSpice (Nov 1999) **********

* C:\Users\Tomek\Desktop\lab_2_2c.sch
**** CIRCUIT DESCRIPTION

* Schematics Version 9.1 - Web Update 1
* Sat Jan 26 12:31:29 2019
** Analysis setup **
.tran 0.5 10
.OPTIONS NOPAGE
.OP
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "lab_2_2c.net"

```
**** INCLUDING lab_2_2c.net ****
```

R_R6 0 \$N_0001 5

V_VUT \$N_0002 0 16.56

R_RT \$N_0002 \$N_0001 5.6

**** RESUMING lab_2_2c.cir ****

.INC "lab_2_2c.als"

**** INCLUDING lab_2_2c.als ****

* Schematics Aliases *

.ALIASES

R_R6 R6(1=0 2=\$N_0001)

R_RT RT(1=\$N_0002 2=\$N_0001)

.ENDALIASES

**** RESUMING lab_2_2c.cir ****

.probe

^{*} Schematics Netlist *

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 7.8113 (\$N_0002) 16.5600

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VUT -1.562E+00

TOTAL POWER DISSIPATION 2.59E+01 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 7.8113 (\$N_0002) 16.5600

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V_VUT -1.562E+00

TOTAL POWER DISSIPATION 2.59E+01 WATTS

JOB CONCLUDED

TOTAL JOB TIME .02

Obliczenia analityczne:

Mierzona wartość	Wyniki obliczeń	Wyniki symulacji
I ₆ [A]	1.562	1.5623
U _τ [V]	16.56	16
R _T [Ohm]	5.6	4

d) Wyznaczanie parametrów zastęczego żródła Thevenina

J = 0.5 A, E = 2 V, R_1 = 10 Ω , R_2 = 1 Ω R_3 = 3 Ω R $\,$ = 18 Ω

Wyniki analizy komputerowej:

Obliczenia analityczne:

Uzyskane wyniki:

Mierzona wartość	Wynik obliczeń	Wynik analizy komputerowej
U _τ [V]	1.517	1.516
R _T [Ohm]	10,967	10.950

Wnioski

Korzystając z możliwości szybkiej analizy komputerowej obwodu możemy bez problemu obliczyć żądane wartości takie jak m. In. Prądy oraz wartości zastępczego źródła Thevenina. Wykonując obliczenia analityczne można pokazać, że zarówno wyniki analizy oraz obliczeń nie różnią się od siebie.