PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-030473

(43) Date of publication of application: 09.02.1987

(51)Int.CI.

HO4N 1/40 HO4N 5/76

(21)Application number: 60-170146

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

31.07.1985

(72)Inventor: OKA KENICHIRO

ONISHI MASARU

(54) IMAGE PRINTING DEVICE

(57)Abstract:

PURPOSE: To allot the gradation of proper density according to the luminance distribution of an image data by determining the luminance distribution of the image data and controlling the allotment of the gradation of density for the luminance of the picture image data according to the luminance distribution. CONSTITUTION: When recording is started, input data 1 are read. and the data are stored in an image memory 3 through an interface section 2. Then, a part of data stored in the image memory 3 is sampled by the processing of a CPU 7, a control program memory 8, a RAM etc., and the luminance distribution is calculated. Gradation correction data are prepared according to this calculation, and stored in a TABLE RAM 11. Then data are read out from the image memory 3, and the data are corrected by the operation of the TABLE RAM 11 and a random number generator 10. Then, various data conversion is made by a data converting section 4 and the recording is made by a recording section 5.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

99日本国特件庁(JP)

10 特許出願公開

⑫公開特許公報(A)

昭62-30473

@Int_Cl_4

/40

識別記号

庁内整理番号

❷公開 昭和62年(1987)2月9日

H 04 N 1/40 5/76

101

E-7136-5C E-7423-5C

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称

イメージプリンタ装置

②特 関 昭60-170146

❷出 顋 昭60(1985)7月31日

②発明者 岡

賢 一 郎

鎌倉市上町屋325番地 三菱電機株式会社情報電子研究所

内

砂発明者 大西

聯

鎌倉市上町屋325番地 三菱電機株式会社情報電子研究所

内

卯出 顧 人 三菱電機株式会社

東京都千代田区丸の内2丁目2番3号

四代 理 人 弁理士 早瀬 憲一 外1名

明 福 書

1. 発明の名称

イメージプリンタ装置

- 2. 特許請求の範囲
- (i) 中間調を持つ画像のハードコピーを記録するイメージプリンク装置において、

入力される画像データのうちの一部のデータを サンプリングして入力画像の輝度分布を得る輝度 分布出力手段と、

該出力に応じて分布の多い輝度部分には出力階 調数を多く、分布の少ない輝度部分には出力階調 数を少なく割当てて蓄像データのある入力階間レベルに対応する出力階調レベルをI以上の階調数 とし、補正された関像データを出力する階調割当 て制御手段とを鍛えたことを特徴とするイメージ プリンタ装置。

② 上記階調割当て制御手段は、ディジタル画像データに対しディジタル処理により階調の割当 て制御を行なうものであることを特徴とする特許 請求の範囲第1項記載のイメージアリンタ装置。

3. 発明の詳細な説明

(連集上の利用分野)

この発明は、中間調を持つ画像のハードコピー を記録するイメージプリンク装置に関するもので ある。

〔従来の技術〕

イメージプリンタ等で爆液のある画像を入力してハードコピー化する場合、画質を向上させるために中間調を適正に再現することが重要である。 一般に画像のハードコピーを記録する場合、プリンタ側の制約により原画像の階調数よりも少ない 跨調数で記録することが要求される。

従来この種のイメージプリンタ装置として、第8図に示すものがあった。図において、1は入力データ、2はインターフェース部、3は画像メモリ、4はデータ変換部、5は配録部である。

次に動作を説明する。入力データ1はインターフェース部2で受ける。上記入力データ1がアナログ信号の場合、インターフェース部2でディジタル化される。また入力データ1がカラーの復合

信号の場合、このインターフェース部2でR・G・Bの3原色データに分解される。インターフェース部2を通ったデータは関像メモリ3に一時的に記憶され、この画像メモリ3から読出された画像データはデータ変換部4においてガンマ補正、R・G・B/Y・M・C変換、インクの色補正、記録方式に応じたデータ変換などが行なわれる。そして記録用データは記録部5に送られハードコピー化される。

(発明が解決しようとする問題点)

従来のイメージプリンタ装置では、データ変換部4が画像メモリ3から送られてくる画像データに上述の変換を施す際、その変換法が固定されていた。しかし、画像データには、輝度分布が正規分布となるもの、輝度分布が本サして中間部に分布が集中したハイキー、輝度の暗部に分布が集中したハイキー、輝度の暗部に分布が集中したハイキー、輝度の暗部に分布が集中したローキーなどと多種多様である。従って固定化されたデータ要換法では画質の良い記録を行

なうことは困難であるという問題点があった。

つまり、送信原画に表現される色の階調数と比較してイメージプリンタ装置が表現できる色の階調数は少ないので、画像データに対する記録用の 遠度階調剤当てが適正でないと濃度変化が急激になって度似輪郭が発生し、画質劣化の一因となる。 従っ西質を良くするためには、原画の濃淡に応じて表現可能な少数の階調を有効に割当てて、記録 遠度の変化を滑らかにする必要があった。

この発明は上記のような問題点を解消するため になされたもので、画像データの輝度分布に応じ て適正な機度の階調を割付けることのできるイメ ージプリンタ装置を得ることを目的とする。

(問題点を解決するための手段)

この発明に係るイメージプリンタ設置は、面像 データの輝度分布を求め、その輝度分布に応じて 画像データの輝度に対する違度の階級割当てを制 御するようにしたものである。

(作用)

この発明においては、西佐データの一部分をサ

ンプリングして実時間で輝度分布を算出し、輝度 分布に応じて記録時に強度変化が滑らかになるように画像デーダに対する速度の階級割当てを自動 的に制御する。

(実施例)

く割当て、しかもその限、ある1つの入力階調レベルに対応する出力階調レベルの階調数が1以上となるようにし、補正された面像データをデータ変換部4に出力するものである。なお、この第1 図において、12はアドレスパス、13はデータパスである。

次に第2図のフローチャートを用いて動作に知 では、で説明する。イメージで明婚になるを行なった後、記録開始になると人力でなると人力でなると人力でなると人力でなると人力であると、これで、制御と、これに従ってリコークを特別では、これに従って明明を対し、これに従って関いてが、これをTABLE RAM11へはのでデータを作成し、これをTABLE RAM11へはのでデータを作成し、これをTABLE RAM11へはのでデータを表し、TABLE RAM11及び乱数発生器10 の動作でデータを補正する (ステップ 1 8)。 その後データ変換部 4 で各種データ変換を行ない (ステップ 1 9) 、記録部 5 で記録を行なう (ステップ 2 0)。

輝度分布から階調曲線を対応させる一例を第3 図及び第4回で示す。図中、建度と輝度の関係は 次のように扱う。

(機度) = (輝度のフルスケール) - (輝度) 第3図(4)は輝度が暗部中心の頭像で、跨調曲線 21 a は高濃度部で記録障調レベルが急激に上昇 するようにしている。同図(4)は輝度が明部中心の 画像で、跨調曲線 21 b は低濃度部で記録時期レ ベルが急激に上昇するようになっている。

また、輝度が正規分布の画像及び輝度がフラットな画像に対する階調曲線はそれぞれ第4回(a)。(b)に示すようになる。つまり、従来装置は、第4図(a)に示す階調曲線21dのように、画像データの輝度分布に関係なく線形であったのに対し、この実施例では、画像データの輝度分布を調べ、画像データの輝度が集中する部分に細かい濃度の階

A. . A. の2 ピットで入出力の対応を確率的に制御させる。まず、入力 0 に対しては出力 0 が 1 0 0 %の確率で対応付けられるので A. . A. の値にかかわらず 0 とする。入力 1 に対しては出力が 0 と 1 それぞれ 5 0 %の確率であるので、 A. . A. - 0 0 . 0 1 のときは 0 . A. . A. - 1 0 . 1 1 のときは 1 とする。以下間様に確率に従って出力階調数を決める。

画像データを版次TABLE RAM11に通して階調補正する場合には、アドレスのA。. A. に乱数発生器10のデータを入力する(第7図)。乱数発生器10はA。. A. ともに0. 1が50%の確率で発生するものとすると、A. A. は00.01.10.11が各25%の確率で発生する。従って各入力階調レベルに対して4種類の出力階調レベルが等確率に選択される。例えば入力が1のとき、0,0.1.1の4種類が等確率に選択され、結果的に0と決まるのが50%。1と決まるのが50%である。

このような本実施例装置では、以下の効果が期

調剤当てを行なうべく、その階調曲級21を輝度 分布に対応して非線形となるよう制御することに 特徴がある。

次に輝度分布から階調補正テーブル値を作成し、 階調補正を実行する具体例を第5箇~第7図により説明する。この例は、入力路調数及び出力階級 数がともに8階額(0~7の値をとる)の場合で ある。サンプリングデータから得られた輝度とに 対する度数D(Y)を示すヒストグラムが第5図 (a)であったとする。この時、暴積度数 に定数Kを乗じた値を記録間レベルの部当 5図 (b)のように入力Yと出力 K_{Δ}^{Σ} D(1) を対応付ける ことができる。入力 0 に対力 E_{Δ}^{Σ} E_{Δ}^{Σ}

この対応付けに従って第6図に示すTABLE RAM11の格納値を作成する。ここでアドレスのAz.Az.Az.の3ビットで入力階級数に対応させ、

待できる。

(1) 西像データの輝度分布に対応した漆度の階調割当てを自動的に行なうように構成したので、記録時に違変変化が滑らかで擬似輪郭のない画像を記録で含る。

② 階類割当てのための補正曲線を得るのに少量のサンプリングデータを利用したことで処理時間を短縮できる。

(3) 原面の跨網数が少なくても補正制御回路に 乱数発生器を持っているので記録時には跨調数を 増やすことができる。

なお、上記実施例では入力階調数と出力階調数が等しい場合について示したが、この発明は入力階調数の方が多い場合でも適用できる。また、上記実施例では入力レベルを出力レベルに割付ける際、累積輝度度数 (2000)に定数 K を乗じた値を用いているが、本発明はこれに限られるものではなく、種々の構成が考えられる。さらに、上記実施例ではイメージプリンク内部に西像メモリを持つ構成になっているが、この画像

特開昭62-30473 (4)

メモリはプリンタにとって必須の構成要素ではない。加えて配録方式に貫及すれば、本発明は溶融型あるいは昇華型熱転写記録。発色型感熱記録。 インクジェット方式など階級再現能力のある記録 方式に広く適用できる。

〔発明の効果〕

以上のように、この発明によれば、面像データの輝度分布に対応した濃度の路調割当てを自動的に行なうようにしたので、記録時に濃度変化が滑らかで挺似輪郭のない画像を記録でき、しかも階調当で制御に際し、出力階調数を入力のそれに等しいかそれ以上の階調数としたので、原画の階調数が少ない場合にも端度変化の滑らかな記録が行なえる効果がある。

4. 図面の簡単な説明

第1図はこの発明の一実施例によるイメージプリンタ装置のプロック図、第2図は設プリンタ装置の動作を示すフローチャート図、第3図(4)(b)及び第4図(4)(d)はともに面像データの輝度分布及びそれに対する機度の跨調レベルを示す階頭曲線図、

第5図(a)(b)(c)は輝度分布から階調補正データを作成する手順を説明するための図、第6図は第5図(a)の輝度分布を持つ画像に対する階調補正テープルの内容を示す図、第7図は補正制御団路内の一部を示す図、第8図は従来のイメージプリンク設置を示すブロック図である。

1 …入力データ、6 … 補正制御回路、7 … C P U、8 … 制御プログラムメモリ、9 … R A M、1 0 … 乱数発生器、1 I … TABLE R A M。

なお図中同一符号は同一又は相当部分を示す。

代理人 早期意一

第 1 図

第 2 図

特開昭62-30473 (5)

- 44

湯度

(c)

特開昭62-30473 (6)

第 8 图

