21/08/2024, 14:56 SALES CODSOFT

```
import pandas as pd
In [4]:
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import train test split
        from sklearn.linear model import LinearRegression
        from sklearn.metrics import mean absolute error, mean squared error, r2 score
        print("\033[94mCreated by Lettie Ngobeni\033[0m")
        data = pd.read csv('advertising.csv')
        print("Dataset Preview:")
        print(data.head())
        print("\nSummary Statistics:")
        print(data.describe())
        #DATA CLEANING
        print("\nMissing Values Check:")
        print(data.isnull().sum())
        print("\nData Visualizations:")
        # Pairplot visualization
        sns.pairplot(data)
        plt.show()
        # heatmap visualization
        sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
        plt.show()
        scaler = StandardScaler()
        scaled data = scaler.fit transform(data.drop('Sales', axis=1))
        scaled_data = pd.DataFrame(scaled_data, columns=data.columns[:-1])
        scaled_data['Sales'] = data['Sales']
        X = scaled_data.drop('Sales', axis=1)
        y = scaled data['Sales']
        X train, X test, y train, y test = train test split(X, y, test size=0.2, random sta
        # Model training
        model = LinearRegression()
        model.fit(X train, y train)
        y_pred = model.predict(X_test)
        mae = mean absolute error(y test, y pred)
        mse = mean squared error(y test, y pred)
        r2 = r2 score(y test, y pred)
        print("\nModel Performance Metrics:")
        print(f'Mean Absolute Error (MAE): {mae}')
        print(f'Mean Squared Error (MSE): {mse}')
        print(f'R-squared Score: {r2}')
        new data = [[230.1, 37.8, 69.2]] # Sample new data
        scaled_new_data = scaler.transform(new_data)
        sales_prediction = model.predict(scaled_new_data)
        print(f'\nPredicted Sales for the provided data: {sales_prediction[0]}')
```

21/08/2024, 14:56 SALES CODSOFT

Created by Lettie Ngobeni

Dataset Preview:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

Summary Statistics:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

Missing Values Check:

TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64

Data Visualizations:

C:\Users\nhlav\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: T
he figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

21/08/2024, 14:56 SALES CODSOFT

Model Performance Metrics:

Mean Absolute Error (MAE): 1.2748262109549349 Mean Squared Error (MSE): 2.9077569102710927

R-squared Score: 0.9059011844150825

Predicted Sales for the provided data: 21.372540280396883

C:\Users\nhlav\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning: X doe
s not have valid feature names, but StandardScaler was fitted with feature names
warnings.warn(

C:\Users\nhlav\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning: X doe
s not have valid feature names, but LinearRegression was fitted with feature names
warnings.warn(

In []: