QUÈ HEM FET FINS ARA?

El darrer que hem treballat és teoria de conjunts i múltiples exemples per entendre els conceptes.

CLASSE D'AVUI 26/10/2020

Seguim amb el tema de teoria de conjunts:

La tercera operació important és la diferència de conjunts:

DEF.: Donats dos conjunts A, B anomenem conjunt diferència de A i B al conjunt $A - B = \{x | x \in A \land x \notin B\}$ (molt sovint també s'escriu com a $A \backslash B$).

EX.: Siguin $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 5, 6\}$, $C = \{\{1\}, 2, 3\}$, $D = \{\{1\}, \{2, 3\}, 5, 6\}$. Calculeu A - B, B - A, A - C, $B - \emptyset$, $\emptyset - B$, A - D, D - B.

- \bullet $A B = \{3, 4\},$
- $B A = \{5, 6\},\$
- \bullet $A C = \{1,4\},$
- $B \emptyset = \{1, 2, 5, 6\},\$
- $\bullet \varnothing B = \varnothing$,
- \bullet $A-D=\{1,2,3,4\},$
- $D-B = \{\{1\}, \{2,3\}\}.$

Les principals propietats que satisfà aquesta operació són:

PROP.: Siguin A, B, C conjunts. Aleshores

- 1. $A-A=\emptyset$
- **2**. $A \emptyset = A$
- **3**. $\emptyset A = \emptyset$
- **4**. $A B \subseteq A$
- **5**. $(A-B)\cap B=\emptyset$
- **6**. $A \subseteq B \Leftrightarrow A B = \emptyset$
- **7**. $C \subseteq A B \Leftrightarrow C \subseteq A \text{ i } C \cap B = \emptyset$

DEM.: Demostrem 1: per demostrar $A - A = \emptyset$ s'ha de demostrar dues inclusions

- $A A \supseteq \emptyset$ OK (sempre!!)
- $A-A\subseteq\varnothing$ hem de veure que si tenim $x\in A-A$ aleshores tinedrem que $x\in\varnothing$; o sigui hem de demostrar que arribem a una contradicció (perquè el buit no té elements). Sigui un $x\in A-A\Rightarrow x\in A$ i $x\notin A$ cosa impossible.

Demostrem 3: com a l'anterior:

- $\varnothing A \supseteq \varnothing$ OK
- $\varnothing A \subseteq \varnothing$ hem de veure que si tenim $x \in \varnothing A$ hem de veure que $x \in \varnothing$; o sigui hem de demostrar que arribem a una contradicció (perquè el buit no té elements). Sigui un $x \in \varnothing A \Rightarrow x \in \varnothing$ i $x \notin A \Rightarrow x \neq x$ i $x \notin A \Rightarrow x \neq x$ cosa impossible.

Demostrem 7: cal demostrar una equivalència $C \subseteq A - B \Leftrightarrow C \subseteq A$ i $C \cap B = \emptyset$ per tant dues implicacions,

- \Rightarrow : suposem que $C \subseteq A B$ i volem demostrar que $C \subseteq P$? A i $C \cap B = P$?
 - $C \subseteq^{???} A$: sigui un $x \in C$ i vull demostrar que $x \in^{???} A$; i això és cert perquè si $x \in C \subseteq A B \Rightarrow x \in A$ i $x \notin B \Rightarrow x \in A$ com volia demostrar
 - $C \cap B = ???$ Ø: hi ha una inclusió que sempre és certa: $C \cap B \supseteq \emptyset$; per tant només queda demostrar l'altra inclusió $C \cap B \subseteq ???$ Ø per tant només caldrà suposar que tinc un $x \in C \cap B$ i arribar a una contradicció: $x \in C \cap B \Rightarrow x \in C$ i $x \in B$ i com que sé que $C \subseteq A B$ tindré que $x \in A$ i $x \notin B$ i $x \in B$ cosa impossible.
- \Leftarrow : suposem que $C \subseteq A$ i $C \cap B = \emptyset$ i vull demostrar que $C \subseteq ??? A B$, o sigui donat un $x \in C$ cal veure que serà $x \in ??? A B$; en efecte si $x \in C \subseteq A$ per tant $x \in A$; ara cal veure que també $x \notin B$; supossem per un moment que $x \in B$, com que $x \in A$ aleshores $x \in C \cap B = \emptyset$ cosa impossible, per tant ha de ser que $x \notin B$.

També tenim les següents propietats importants en les quals intervenen més d'una operació:

PROP.: Siguin *A*, *B*, *C* conjunts. Aleshores

- **1**. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- **2**. $A \cap (A \cup B) = A, A \cup (A \cap B) = A$
- **3**. $A (B \cup C) = (A B) \cap (A C)$
- **4**. $A \cup B = (A \cap B) \cup (A B) \cup (B A)$ i la unió és disjunta (els tres subconjunts són disjunts dos a dos)

DEM.: Demostrem 1: surt de la distributiva de la \land respecte de la \lor i de la \lor respecte de la \land

Sigui
$$x \in A \cap (B \cup C) \Leftrightarrow x \in A \mid x \in B \cup C \Leftrightarrow x \in A \mid (x \in B \circ x \in C) \Leftrightarrow (x \in A \mid x \in B) \circ (x \in A \mid x \in C) \Leftrightarrow (x \in A \cap B) \circ (x \in A \cap C) \Leftrightarrow x \in (A \cap B) \cup (A \cap C)$$

Com que hem fet una justificació utilitzant només ⇔ llavors tinc demostrades les dues inclusions (és el principi d'extensionalitat).

Demostrem 3: Utilitzarem les lleis de De Morgan. Sigui x:

•
$$x \in A - (B \cup C) \Leftrightarrow x \in A \mid x \notin B \cup C \Leftrightarrow x \in A \mid \text{no } x \in B \cup C \Leftrightarrow x \in A \mid \text{no} (x \in B \cup x \in C) \Leftrightarrow$$

$$\Leftrightarrow x \in A \mid (x \notin B \mid x \notin C)$$

• $x \in (A - B) \cap (A - C) \Leftrightarrow x \in (A - B) \mid x \in (A - C) \Leftrightarrow x \in A \mid x \notin B \mid x \in A \mid x \notin C$

Com que totes dues expressions són equivalents, tenim provada la igualtat.

EX.: Demostreu que $(A - B) \cup (B - A) = A \operatorname{sii} B = \emptyset$. Siguin A, B conjunts:

- \Leftarrow : suposem que $B=\varnothing$ llavors veure aquesta igualtat és molt fàcil perquè $(A-\varnothing)\cup(\varnothing-A)=A\cup\varnothing=A$
- \Rightarrow : suposem que $(A-B) \cup (B-A) = A$ i a partir d'aquí hauríem de demostrar que $B = ???? \varnothing$; fem el típic raonament per reducció a l'absurd: suposem per un moment que B tingués un element, o sigui tenim un $x \in B$ fent un dibuix de la situació indueix a pensar que podem distingir dos casos (i en tots dos arribarem a contradicció, per tant serà cert $B = \varnothing$):
 - $x \in A$ llavors per la hipòtesi tindrem que en ser $x \in B$ i $x \in A$ aleshores $x \notin A B$ i $x \notin B A$ i per tant $x \notin (A B) \cup (B A) = A \Rightarrow x \notin A$ en contradicció amb $x \in A$
 - $x \notin A$ llavors en ser $x \in B$ i $x \notin A \Rightarrow x \in B A \Rightarrow x \in (A B) \cup (B A) = A \Rightarrow x \in A$ en contradicció amb $x \notin A$

Recordeu que en tots aquests exemples i demostracions val la pena fer-se un dibuix

al costat.

La quarta operació que definirem és el complementari:

DEF.: Considerem un conjunt marc o univers U (de vegades es diu Ω) i un subconjunt A dintre seu. Definirem el conjunt complementari de A de la manera següent $A^C = U - A = \{x \in U | x \notin A\}$

EX.: En el univers $U = \{1,2,3,4,\{1,2\},\{4\},5\}$ considerem $A = \{1,2,3,4\}$, $B = \{5,\{4\}\}, C = \{\{1,2\},1,2\}$. Calculeu A^C , B^C , $(A^C)^C$, $C \cap C^C$, $B \cap B^C$, U^C , \varnothing^C .

- $\bullet \ A^C = \{\{1,2\}, \{4\}, 5\}$
- $B^C = \{1, 2, 3, 4, \{1, 2\}\}$
- $(A^C)^C = \{1, 2, 3, 4\} = A$
- $\bullet \quad C\cap C^C=\varnothing$
- $B \cap B^C = \emptyset$
- \bullet $U^C = \emptyset$

$$\bullet$$
 $\varnothing^C = U$

Tenim les propietats següents del complementari:

PROP.: Siguin $A, B, C \subseteq U$ subconjunts d'un univers U. Aleshores

1.
$$(A^C)^C = A$$

2.
$$\varnothing^C = U, U^C = \varnothing$$

3.
$$A \cap A^C = \emptyset$$
, $A \cup A^C = U$

4. (Lleis de De Morgan)
$$(A \cup B)^C = A^C \cap B^C$$
, $(A \cap B)^C = A^C \cup B^C$

5.
$$A - B = A \cap B^C$$

6.
$$A \subseteq B \Leftrightarrow B^C \subseteq A^C \Leftrightarrow A \cap B^C = \emptyset \Leftrightarrow A^C \cup B = U$$

7.
$$A \subseteq B^C \Leftrightarrow B \subseteq A^C \Leftrightarrow A \cap B = \emptyset \Leftrightarrow A^C \cup B^C = U$$

8.
$$A^C \subseteq B \Leftrightarrow B^C \subseteq A \Leftrightarrow A^C \cap B^C = \emptyset \Leftrightarrow A \cup B = U$$

9.
$$B = A^C \Leftrightarrow A \cap B = \emptyset . A \cup B = U$$

DEM.: Demostrem 2: per demostrar $U^C = ???? \varnothing$ mirem la doble inclusió; una es verifica sempre: $U^C \supseteq \varnothing$; l'altra ($U^C \subseteq \varnothing$) és fàcil de justificar perquè si $x \in U^C$ només caldrà arribar a una contradicció: $x \in U^C \Rightarrow x \in U$ i $x \notin U$ per tant és una contradicció, o sigui $x \in \varnothing$

Demostrem 4:
$$x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \mathsf{no}(x \in A \circ x \in B) \Leftrightarrow x \notin A \mathsf{i}$$

 $x \notin B \Leftrightarrow x \in A^C \mathsf{i} x \in B^C$

 $\Leftrightarrow x \in A^C \cap B^C$. Com que estan connectats amb una equivalència, pel principi d'extensionalitat surt que són iguals els dos conjunts. I l'altre igual.

La família dels subconjunts és un conjunt important. El nom d'aquesta família de subconjunts és: les parts d'un conjunt (o conjunt potència) de A:

DEF.: Per un conjunt *A* anomenem el conjunt de les parts d'aquest conjunt:

$$\mathcal{P}(A) = \{B | B \subseteq A\}$$

També podem dir equivalentment que $B \in \mathcal{P}(A) \Leftrightarrow B \subseteq A$.

EX.: Calculeu $\mathcal{P}(\emptyset)$, $\mathcal{P}(\{1,2\})$, $\mathcal{P}(\{1,2,3\})$, $\mathcal{P}(\{1,2,3,4\})$.

- $\bullet \quad \mathcal{P}(\varnothing) = \{\varnothing\}$
- $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$
- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- $\mathcal{P}(\{1,2,3,4\}) = \{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$

Un concepte definit pels conjunts és el seu cardinal:

DEF.: Per un conjunt finit (no hem definit què vol dir) A anomenem cardinal d'A, i l'escriurem |A|, al seu número d'elements.

EX.: Utilitzant l'exemple anterior digueu quant valen $|\emptyset|$, $|\mathcal{P}(\emptyset)|$, $|\{1\}|$, $|\mathcal{P}(\{1\})|$, $|\{1,2\}|$, $|\mathcal{P}(\{1,2,3\})|$, $|\{1,2,3\}|$, $|\mathcal{P}(\{1,2,3,4\})|$, $|\mathcal{P}(\{1,2,3,4\})|$. Si $|\mathcal{A}| = n$, llavors quin

és el $|\mathcal{P}(A)|$?

$$|\varnothing|=0, |\mathcal{P}(\varnothing)|=1, |\{1\}|=1, |\mathcal{P}(\{1\})|=2, |\{1,2\}|=2, |\mathcal{P}(\{1,2\})|=4, \\ |\{1,2,3\}|=3, |\mathcal{P}(\{1,2,3\})|=8, |\{1,2,3,4\}|=4, |\mathcal{P}(\{1,2,3,4\})|=16. \text{ S'observa que } |\mathcal{P}(A)|=2^n.$$

PROP.: Sigui *A* un conjunt. Aleshores:

- **1**. $\emptyset \in \mathcal{P}(A)$
- **2**. $A \in P(A)$
- **3**. $|\mathcal{P}(A)| = 2^{|A|}$

DEM.: (41) Demostrem 1: és directa perquè per definició això vol dir que $\emptyset \subseteq A$. Demostrem 2: també és directa perquè per definició això vol dir que $A \subseteq A$.

EX.: (42) Demostreu que $\{a\} \in \mathcal{P}(A) \Leftrightarrow a \in A$. Sigui un a, A:

- \Rightarrow : suposem que $\{a\} \in \mathcal{P}(A)$, o sigui $\{a\} \subseteq A$ per tant com que $a \in \{a\}$ llavors podem dir que $a \in A$.
- \Leftarrow : suposem $a \in A$ i haig de demostrar que $\{a\} \in ???$ $\mathcal{P}(A)$ que vol dir que $\{a\} \subseteq A$ i per demostrar això és molt fàcil: els elements de $\{a\}$ pertanyen a A ja que sabem que $a \in A$ (a és l'únic element que té $\{a\}$).

EX.: (43) Demostreu que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Demostrem les dues inclusions:

- \subseteq : $\operatorname{Si} X \in \mathcal{P}(A \cap B) \Rightarrow X \subseteq A \cap B \Rightarrow X \subseteq A \mid \exists X \subseteq B \Rightarrow X \in \mathcal{P}(A) \mid X \in \mathcal{P}(B) \Rightarrow X \in \mathcal{P}(A) \cap \mathcal{P}(B)$
- \supseteq : $\operatorname{si} X \in \mathcal{P}(A) \cap \mathcal{P}(B) \Rightarrow X \in \mathcal{P}(A) \ \mathrm{i} \ X \in \mathcal{P}(B) \Rightarrow X \subseteq A \ \mathrm{i} \ X \subseteq B \Rightarrow X \subseteq A \cap B \Rightarrow X \in \mathcal{P}(A \cap B)$

A posteriori veiem que enel fons les dues inclusions ess poden demostrar a la vegada perquè es poden canviar els \Rightarrow per \Leftrightarrow .

EX.: (44) Demostreu que $X \in \mathcal{P}(A), Y \in \mathcal{P}(B) \Rightarrow X \cap Y \subseteq \mathcal{P}(A \cap B)$.

Suosem que $X \in \mathcal{P}(A), Y \in \mathcal{P}(B)$ (o sigui $X \subseteq A, Y \subseteq B$) i ara hem de justificar que és cert $X \cap Y \subseteq^{???} \mathcal{P}(A \cap B)$. Com que hem de demostrar una inclusió apliquem la seva definició: sigui un $C \in X \cap Y$ i demostrem que $C \in \mathcal{P}(A \cap B)$ o sigui que $C \subseteq^{???} A \cap B$. Però això és trivial perquè sabem que $X \subseteq A, Y \subseteq B$ i llavors $C \in X \cap Y \subseteq A \cap B \Rightarrow C \in A \cap B$ com volíem demostrar.

El darrer concepte que tractarem de teoria de conjunts és el de parella ordenada i producte cartesià:

DEF.: Siguin dos conjunts *A* i *B* anomenem:

• la parella ordenada formada per $a \in A$ i $b \in B$ és el parell (a,b) caracteritzades (a,b) = (a',b') si i només si a = a' i b = b' (no és una definició

molt formal)

• el producte cartesià del conjunt A pel conjunt B és per definició $A \times B = \{(x,y)|x \in A, y \in B\}$

EX.: Calculeu
$$\{1,2,3,4\} \times \{a,b\}$$
. $\{1,2,3,4\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)\}$

Com a propietats importants a destacar del producte cartesià tenim:

PROP.: Sigui *A* un conjunt. Aleshores:

1.
$$A \times \emptyset = \emptyset, \emptyset \times A = \emptyset$$

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

3.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$\mathbf{4.} \ \ A \times \ (B-C) = (A \times B) - (A \times C)$$

5.
$$|A \times B| = |A| \cdot |B|$$

DEM.: (56) Demostrem 1: només cal tenir en compte la definició del buit. Demostrem 2:

•
$$(a,b) \in A \times (B \cap C) \Leftrightarrow a \in A \mid b \in B \cap C \Leftrightarrow a \in A \mid b \in B \mid b \in C$$

•
$$(a,b) \in (A \times B) \cap (A \times C) \Leftrightarrow (a,b) \in A \times B \mid (a,b) \in A \times C \Leftrightarrow a \in A \mid b \in B \mid a \in A \mid b \in C$$

les dues expressions són equivalents i per tant com que ho hem demostrat amb ⇔ queda justificada la igualtat de conjunts.