MILITARY COLLEGE OF SIGNALS FINAL EXAM

BESE 15-A CPS 480 Database Systems

Instructor: A/P Dr. Imran Siddiqi
Time: 2.5 Hours
Max Marks: 50

Note: This question paper comprises **3** pages.

(3+6)

1. a. Consider the following relation.

X	Y	Z
x1	y1	<i>z1</i>
x1	y1	<i>z</i> 2
<i>x</i> 2	<i>y1</i>	<i>z1</i>
<i>x</i> 2	y1	<i>z</i> 3

List all the functional dependencies that this instance satisfies.

b. Consider a relation R with four attributes ABCD. For each of the following sets of functional dependencies, identify the candidate key(s) for R and state the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). (Note: All three parts below are independent of each other and you need to attempt them separately)

i.
$$C \rightarrow D, C \rightarrow A, B \rightarrow C$$

ii.
$$B \rightarrow C, D \rightarrow A$$

iii.
$$A \rightarrow B, BC \rightarrow D, A \rightarrow C$$

(4+4+2+6)

2. a. Consider the *Student* relation shown in the following.

SID	Name	Age
101	Amelia	25
102	Arnaud	30
103	Claudie	22
104	Florence	25
105	Guray	45
106	Nicolas	30
107	Vincent	30

- i. Show the sparse index on the field 'Name' where the index file contains entries 'Ameila' and 'Guray'
- ii. Show the secondary index on the field 'Age'.

b. Organize the *Student* relation shown above using hash indexing on the search key *SID*. The following parameters are given:

Hash Function = (Sum of Digits in SID) mod 3

Number of buckets = 3 Capacity of each bucket = 2

- ${f c.}$ How the hash indexing you performed in part b (above) is different from hash file organization.
- **d.** Consider the extendible hashing index shown in the following.

- i. Show the index after inserting an entry with hash value 68.
- ii. Show the index after inserting entries with hash values 17 and 69 to the original index.

(3+3)

a. Using precedence graph, find if the following two schedules are conflict serializable or not.

T1:	READ(A)	READ(B)			WRITE(B)	
T2:			READ(A)	READ(B)		WRITE(B)

T1:	READ(A)	WRITE(A)		READ(B)		WRITE(B)		
T2:			READ(A)		WRITE(A)		READ(B)	WRITE(B)

- **b.** Given two transactions T1 and T2 and two data objects A and B, give an example schedule which results in:
 - i. A write-write conflict
 - ii. A read-write conflict

(4+6)

4. a. Assume you are given a document database of six documents containing the text as indicated in the following.

Document	Text
0	pease porridge hot pease porridge cold
1	pease porridge in the pot
2	nine days old
3	some like it hot some like it cold

4	some like it in the pot
5	nine days old

Show the results of creating an inverted file index on the given documents.

b. Consider the four documents below:

Document	Words
0	Apple, Cell
1	Doll, Goat
2	Elephant, Ink
3	House, Fruit

Let the hashing function be the 5 bit binary representation of the first character of each word. For simplicity, assume A=1, B=2, C=3 and so on.

- i. Show the result of creating a signature file for the above documents.
- ii. What documents are retrieved if a user queries the term '*Elephant*'.

(4+3+2)

- **5. a.** Assume that MCS has a total of 500 students. It is known that:
 - i. 300 students play cricket
 - ii. 375 students live in hostels
 - iii. 200 students both play cricket and live in hostels

	Cricket	NO Cricket	Sum
Hostel Living			
Out Living			
Sum			500

Complete the above table and find the support and confidence of the following association rules.

- i. Cricket => Hostel Living
- ii. Cricket => Out Living
- **b.** Given the following transactions:
 - t1: Beef, Chicken, Milk
 - t2: Beef, Cheese
 - t3: Cheese, Boots
 - t4: Beef, Chicken, Cheese
 - t5: Beef, Chicken, Clothes, Cheese, Milk
 - t6: Chicken, Clothes, Milk
 - t7: Chicken, Milk, Clothes

State three association rules which satisfy minsup = 30% and minconf = 80%.

c. What is the difference between data mining and data warehousing?

++++++++++ Bon Courage +++++++++