MSO202A COMPLEX VARIABLES Solutions-1

Problems for Discussion:

1. For any $z, w \in \mathbb{C}$, show that (a) $\overline{z+w} = \overline{z} + \overline{w}$, (b) $\overline{zw} = \overline{zw}$, (c) $\overline{\overline{z}} = z$, (d) $|\overline{z}| = |z|$ and (e) |zw| = |z||w|.

Solution: Easy.

2. Show that $(a)|z+w|^2 = |z|^2 + |w|^2 + 2\text{Re}(zw)$

Solution: $|z + w|^2 = (z + w)\overline{(z + w)} = |z|^2 + |w|^2 + (z\overline{w} + \overline{z}w) = |z|^2 + |w|^2 + 2\text{Re}(zw)$

$$(b)|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

Solution: Follows from (b). (c)|z+w|=|z|+|w| if and only if either zw=0 or z=cw for some positive real number c. Solution:(c) If |z+w|=|z|+|w| and $zw\neq 0$, then we see that $\mathrm{Re}(zw)=|zw|$. Hence, $z\overline{w}$ must be a positive real,say c. Thus $z=c\frac{w}{|w|^2}$. Conversely, if zw=0, then either z=0 or w=0. If z=cw, then |z+w|=(1+c)|w|=|z|+|w|.

3. Let z be a non zero complex number and n a positive integer. If $z = r(\cos \theta + i \sin \theta)$, show that $z^{-n} = r^{-n}(\cos n\theta - \sin n\theta)$.

Solution:
$$z = r(\cos \theta + i \sin \theta)$$
. For $n > 0, z^n = r^n(\cos n\theta + i \sin n\theta)$. $z^{-n} = \frac{1}{z^n} = \frac{1}{r^n(\cos n\theta + i \sin \theta)} = r^{-n}(\cos n\theta - \sin n\theta)$.

4. Let α be any of the n th roots of unity except 1. Show that $1+\alpha+\alpha^2+\ldots+\alpha^{n-1}=0$.

Solution: For any $z \neq 1$, we know that $1 + z + z^2 + \ldots + z^k = \frac{z^{k+1}-1}{z-1}$. Let α be any root different from 1. The result follows from the above observation.

5. Find the roots of each of the following in the form x + iy. Indicate the principal root (a) $\sqrt{2i}$, (b) $(-1)^{1/3}$ and (c) $(-16)^{1/4}$.

Solution: (a) $2i = 2e^{i(\frac{\pi}{2} + 2k\pi)} \Rightarrow \sqrt{2i} = \sqrt{2}e^{i(\frac{\pi}{4} + k\pi)} = 1 + i$, when k = 0 and is -1 - i when k = 1. k = 0 corresponds to the principal root. (b) $-1 = e^{i(\pi + 2k\pi)} \Rightarrow (-1)^{\frac{1}{3}} = e^{i(\frac{\pi}{3} + 2k\frac{\pi}{3})}$. When k = 0 this is $\frac{1+i\sqrt{3}}{2}$, which corresponds to the principal root and when k = 1 this is -1, when k = 2 this is $\frac{1-i\sqrt{3}}{2}$.

(c) $(-16) = 16e^{i(\pi+2k\pi)} \Rightarrow (-16)^{\frac{1}{4}} = 2e^{i(\pi/4+k\pi/2)}$. For k = 0 this is $\sqrt{2}(1+i)$, when k = 1 this is $\sqrt{2}(-1+i)$, when k = 2 this is $\sqrt{2}(-1-i)$, when k = 3 this is $\sqrt{2}(1-i)$. k = 0 corresponds to the principal root.

6. Determine the values of the following:

(a)
$$(1+i)^{20} - (1-i)^{20}$$
.
Solution: $1+i = \sqrt{2}e^{i\pi/4}$, so $(1+i)^{20} = \sqrt{2}^{20}e^{i5\pi} = \sqrt{2}^{20}$, thus $(1+i)^{20} - (1-i)^{20} = 0$.

(b)
$$\cos \pi 4 + i \cos \frac{3}{4}\pi + \dots + i^n \cos \frac{2n+1}{4}\pi + \dots + i^{40} \cos \frac{81}{4}\pi$$
.

Solution: Let
$$a_n = i^n \cos \frac{2n+1}{4}\pi$$
 Then $a_{n+2} = -i^n \cos \left(\frac{2n+1}{4}\pi + \pi\right) = a_n$. Thus, $a_0 = a_2 = \ldots = a_{40}$ and $a_1 = a_3 = \ldots = a_{39}$. So, $a_0 + \ldots + a_{40} = 21a_0 + 20a_1 = \frac{\sqrt{2}}{2}(21 - 20i)$.

7. Find the roots of $z^4 + 4 = 0$. Use these roots to factor $z^4 + 4$ as a product of two quadratics with real coefficients.

Solution:
$$z = \sqrt{2}e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}, k = 0, 1, 2, 3$$
. So the roots are $z_0 = 1 + i, z_1 = -1 + i, z_2 = -1 - i, z_3 = 1 - i$. Thus $z^4 + 4 = (z - z_0)(z - z_1)(z - z_2)(z - z_3) = (z^2 - 2z + 2)(z^2 + 2z + 2)$.

8. Determine whether the following sets describe domains (open and connected sets) in \mathbb{C} : (a) Re z>1 (b) $0\leq Argz\leq \frac{\pi}{4}$ (c) Im (z)=1, (d) |z-2+i|<1 (e) |2z+3|>4.

Solution:

- (a) Re z > 1. This implies x > 1, the half plane, which is open and connected.
- (b) (b) $0 \le Argz \le \frac{\pi}{4}$. This is connected but not open and hence not a domain.
- (c) Im (z) = 1. This is the line y = 1 which is not open and hence not a domain.
- (d) |z-2+i| < 1. Interior of the circle with center (2,-1) and has radius 1. Hence, it is a domain.
- (e) |2z + 3| > 4. The exterior of the circle of radius 2 and center (-3/2, 0). This is a domain.

Problem for Tutorial:

- 1. Give a geometric description of the following sets:
 - (a) $\{z \in \mathbb{C} : |z+i| \ge |z-i|\}$

Solution: This is the upper half plane.

(b) $\{z \in \mathbb{C} : |z - i| + |z + i| = 2\}.$

Solution: Note that the distance between i and -i is 2. Thus the points on the line joining i and -i have the sum of distances from i and -i equal to 2 and these are all as otherwise triangle inequality is violated for the triangle with vertices on $\pm i$, z for z outside this line.

2. Discuss the convergence of the following sequences: (a) (z^n) , (b) $(\frac{z^n}{n!})$, (c) $(i^n \sin \frac{n\pi}{4})$ and (d) $(\frac{1}{n} + i^n)$.

Solution: (a) If (z^n) converges, then so does $|(z^n)|$ and hence $|z| \leq 1$. If $|z| < 1, z^n \to 0$ and if z = 1, then $z^n \to 1$. If $|z| = 1, z \neq 1$, then $\lim_{n \to \infty} z^n = l \Rightarrow |l| = 1$. Now $z^{n+1} - z^n \to 0 \Rightarrow l(1-z) = 0 \Rightarrow l = 0$, a contradiction. Alt: $z^n = r^n e^{in\theta}$ which has a limit if r < 1, for other r, consider the behaviour of $\cos n\theta$ and $\sin n\theta$. (b) converges to 0, using tests for real sequences applied to $|\frac{z^n}{n!}|$. (c) and (d) do not converge.

3. Discuss the behaviour of $e^{1/z}$ as z approaches 0.

Solution: The limit does not exist as the limit along the positive x axis is ∞ and 0 along the negative x axis.

- 4. Find all the values in $[0, 2\pi)$ where $\lim_{r\to\infty} e^{re^{i\theta}}$ exists. Solution: Since $e^{re^{i\theta}} = e^{r\cos\theta}e^{ir\sin\theta}$, if this limit exists, then so must $\lim_{r\to\infty}e^{re^{i\theta}} = \lim_{r\to\infty}e^{r\cos\theta}$. Hence, $\cos\theta \leq 0$. If $\cos\theta = 0$, then $\theta = \pi/2, 3\pi/2$ in which case $\lim_{r\to\infty}e^{re^{i\theta}} = \lim_{r\to\infty}e^{\pm ir}$ which does not exist. For $\pi/2 < \theta < 3\pi/2, \lim_{r\to\infty}|e^{re^{i\theta}}| = 0$. Thus, $\pi/2 < \theta < 3\pi/2$.
- 5. Verify if the following functions can be given a value at z=0, so that they become continuous: $f(z)=\frac{|z|^2}{z}, \ f(z)=\frac{z+1}{|z|-1}, \ f(z)=\frac{\bar{z}}{z}, \ \frac{\operatorname{Im}\ (z^2)}{|z|}, \ \frac{\operatorname{Im}\ z}{1-|z|}.$ Solution: $(a)\lim_{z\to 0}f(z)=0, \ (b)-1$ and for part (c) the limit does not exist In (d)),

$$f(z) = \frac{2xy}{\sqrt{x^2 + y^2}} + i0 \to 0 + i0 = \frac{r^2 \sin 2\theta}{r} + i0 \quad r \to 0,$$

hence assigning f(0) = 0 makes f continuous at z = 0.

In case of (e), we have

$$f(z) = \frac{y}{1 - \sqrt{x^2 + y^2}} + i0 = \frac{r \sin \theta}{1 - r} + i0 \to 0 + i0, \quad r \to 0,$$

hence assigning f(0) = 0 makes f continuous at z = 0.