Card Shuffles

I put a pack of eight cards on the table. The top card has an A written on it. The next card has a B written on it, etc

I pick up the top half of the pack, A, B, C, D in my right hand.

I pick up the bottom half of the pack, E, F, G, H in my left hand.

Then I do a riffle shuffle:

I drop the D card from my right hand onto the table, then the H card from my left hand, then the C card from my right hand, then the G card from my left hand, then the B card from my right hand, then the F card from my left hand, then the A card from my right hand, then the E card from my left hand.

The cards are now in the order E, A, F, B, G, C, H, D with the E on the top of the pile. Try it.

Then I shuffle again and again until the cards are back in their original order.

So how have the cards moved?

Order at start	A	В	С	D	E	F	G	Н
Order after one shuffle	Е	A	F	В	G	С	Н	D
Order after two shuffles	G	Е	С	A	Н	F	D	В
Order after three shuffles	Н	G	F	Е	D	С	В	A
Order after four shuffles	D	Н	С	G	В	F	A	Е
Order after five shuffles	В	D	F	Н	A	С	E	G
Order after six shuffles	A	В	С	D	Е	F	G	Н

So the cards are back in their original order after six shuffles.

It will be helpful to look at the position of each card in the pack. Position 1 is the top card etc

Card	A	В	С	D	E	F	G	Н
Position at start	1	2	3	4	5	6	7	8
Position after one shuffle	2	4	6	8	1	3	5	7
Position after two shuffles	4	8	3	7	2	6	1	5
Position after three shuffles	8	7	6	5	4	3	2	1
Position after four shuffles	7	5	3	1	8	6	4	2
Position after five shuffles	5	1	6	2	7	3	8	4
Position after six shuffles	1	2	3	4	5	6	7	8

You can check that:

After 1 shuffle, the card starting in position m will end up in position 2m, mod 9After 2 shuffles, the card starting in position m will end up in position $(2 \times 2)m, mod 9$ After 3 shuffles, the card starting in position m will end up in position $(2 \times 2 \times 2)m, mod 9$

After k shuffles, the card starting in position m will end up in position $2^k m$, mod 9

If $2^k m = m, mod 9$ for m = 1, 2, ... 8 then after k shuffles, the card starting in position m will end up in position m So the cards are back in their original order.

Now $2^6 = 1$, mod 9 You can check this.

So $2^6 \times 1 = 1$, mod 9 and $2^6 \times 2 = 2$, mod 9 and $2^6 \times 3 = 3$, mod 9 and ... $2^6 \times 8 = 8$, mod 9 So the pack of 8 cards will be back in their original order after 6 shuffles.

In general:

Take a pack of N cards:

If $2^k = 1$, mod(N+1) then the cards will be back in their original order after k shuffles.

We know from Fermat's little theorem that:

$$2^{(p-1)} = 1$$
, $mod p$ provided $p \neq 2$

So:

Take a pack of p-1 cards: where p is a prime number

Now $2^{(p-1)} = 1$, mod p so the cards will be back in their original order after p shuffles.

A pack of 52 cards will be back in its original order after 52 shuffles, because 53 is prime.