Pseudo-3D residual networks

动作识别

动作识别的主要目标是判断一段视频中人的行为的 类别,动作识别任务涉及从视频剪辑(一串二维帧序列) 中识别不同的动作,其中的动作可能贯穿整个视频,也可 能不会。这有点儿像图像分类任务的一种自然扩展,即在 多帧视频中进行图像识别,然后从每一个帧中聚集预测结 果。

三维卷积核法

2D卷积网络输入图像会产生图像,输入视频输出的也是图像。

(a) 2D convolution

(b) 2D convolution on multiple frames

3D卷积网络输入视频,输出仍然为3D的特征图,保留输入的时间信息。

(c) 3D convolution

Learning Spatiotemporal Features with 3D Convolutional Networks

论文地址: http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf

网络有8个卷积层(filter:3×3×3, stride: 1×1×1), 5个池化层(filter:2×2×2, stride: 2×2×2, 除了第一个filter:1×2×2, stride: 1×2×2), 2个全链接层(4096), 和1个softmax分类层。

name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
nv1	112×112	7×7, 64, stride 2					
v2_x	56×56	3×3 max pool, stride 2					
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix}$	
v3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix}$	
v4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix}$	
v5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix}$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10^9	

研究背景:

P3D主要解决问题:

- 1、原始3D卷积计算量参数量过大,因此采用了分开的卷积;
- 2、是如何构建更深的网络,它这里仿照了resnet去解决这个问题

- (1)第一个问题是关于空间维度(S)上的2D滤波器和时域(T)上的1D滤波器的模块应该直接或间接地相互影响。
- (2)第二个问题是两种滤波器是否都应直接影响最终输出。

P3D 块 结 构

这是一种S与T直接影响的方式, 先对feature map做空间的2D卷积然 后再做时间1D卷积,最后时间卷积 的结果与shorcut一起构成残差块的 输出结果。

(a) P3D-A

P3D 块 结 构

两者是以并行的方式对feature map进行卷积操作,最终两个的结 果直接累加到shortcut中构成残差块 的输出结果。

(b) P3D-B

P3D 块 结 构

这种方式是前面两种方式的一种结合,除此还建立了S到最终结果的shortcut。

(c) P3D-C

Bottleneck 结构设计

Residual Unit

3D Residual Unit

Bottleneck 结构设计

(a) P3D-A

(b) P3D-B

(c) P3D-C

P3D ResNet

先用特定的一种块结构代替ResNet50中的残差单元,得到P3D-A ResNet, P3D-B ResNet, P3D-C ResNet。另外又从结构多样性的角度考虑将P3D-A,P3D-B,P3D-C三种结构块按序排列混合起来构成P3D ResNet。

Method	Model size	Speed	Accuracy
ResNet-50	92MB	15.0 frame/s	80.8%
P3D-A ResNet	98MB	9.0 clip/s	83.7%
P3D-B ResNet	98MB	8.8 clip/s	82.8%
P3D-C ResNet	98MB	8.6 clip/s	83.0%
P3D ResNet	98MB	8.8 clip/s	84.2%

数据处理源码:

https://www.jianshu.com/p/4ebf2a82017b

P3D 模型源码: https://github.com/qijiezhao/pseudo-

3d-pytorch

实验数据: UCF50

下载地址: https://www.crcv.ucf.edu/data/UCF50.php

(a) ResNet- 152

(a) P3D ResNet

- 1、时间域和空间域分开,并且将其灵活的进行组合,增加了网络的多样性
- 2、与C3D网络相比较,增加的网络的深度,提高了分类的准确性