Number of nodes of given height in a complete k-ary tree

Jiman Hwang (pingdummy 1@gmail.com)

November 11, 2017

Disclaimer: This document is for self-study only. If you find an error, feel free to contact me.

1 Statement

Given a complete k-ary tree T consisting of n nodes, let x_i denote the number of nodes of height i in T. Then,

$$x_0 = \left\lfloor \frac{k-1}{k} n + \frac{1}{k} \right\rfloor$$

$$x_i = \left\lfloor \frac{k-1}{k} (n - x_0 - x_1 - \dots - x_{i-1}) + \frac{1}{k} \right\rfloor \quad \text{for } i = 1, 2, \dots, \text{(height of } T)$$

2 Derivation

2.1 Main idea

- 1. Get the number of leaves by means of counting the number of edges in two different ways.
- 2. Get the number of nodes of height *i* using the fact that it still remains a complete *k*-ary tree after extracting all leaves.

2.2 Number of leaves

Given a complete k-ary tree T consisting of n nodes, the number of edges, e, is

$$e = n - 1 \tag{1}$$

as each node is connected to its parent but the root.

On the other hand, e is expressed in an another way. Let x_i denote the number of nodes of height i in T. Among $(n-x_0)$ internal nodes, at most one has less than k children and the others have k children respectively. This is true because if more than one have less than k children respectively, then T is not a complete tree. Therefore,

$$k(n-x_0-1)+0 < e \le k(n-x_0-1)+k$$

From (1),

$$k(n-x_0-1) < n-1 \le k(n-x_0)$$

Solving for x_0 ,

$$\frac{k-1}{k}n + \frac{1}{k} - 1 < x_0 \le \frac{k-1}{k}n + \frac{1}{k}$$

$$x_0 = \left| \frac{k-1}{k}n + \frac{1}{k} \right| \tag{2}$$

or

2.3 Number of nodes of height *i*

We begin with a lemma.

Let
$$T'$$
 denote the graph T except the leaves and edges connected to them.
Then T' is a complete k -ary tree. (3)

Proof. Consider building a complete k-ary tree from empty one. We follow one of these rules at each insertion.

- (i) If the last level is full, put the new node into the leftmost position in the new level.
- (ii) Otherwise, put the new node on the right of the lastly added one.

At each step, the tree is complete. Now suppose we got T in this manner. Note that the leaves are inserted lastly. Since every tree is complete during the build process, withdrawing nodes in reverse order also gives a complete k-ary tree.

Taking T' and T in (3), we contend an another lemma.

If
$$L'$$
 is the set of leaves in T' and H_1 is the set of nodes in T of height 1, then $L' = H_1$. (4)

Proof. Let *L* denote the leaves in *T* as shown in Fig 1.

 $\forall u \in L'$ is not a leaf in T, so (height of u in T) ≥ 1 . Furthermore, if (height of u in T) > 1, then $\exists v \in L$ of height 1, contradiction. Hence (height of u in T) = 1, and

$$L' \subset H_1 \tag{5}$$

Meanwhile, in order to get T' from T, we extract all nodes of height 0 in T. As $\forall u \in H_1$ has a child or children of height 0, u becomes a leaf in T'. Therefore,

$$H_1 \subset L'$$
 (6)

From (5) and (6),
$$L' = H'_1$$

Based on (3) and (4), we get x_1 by counting the number of leaves in T'. In (2), replace x_0 with x_1 , n with $n-x_0$

$$x_1 = \left| \frac{k-1}{k} \left(n - x_0 \right) + \frac{1}{k} \right|$$

In the similar way, the general form is given as

$$x_i = \left| \frac{k-1}{k} (n - x_0 - x_1 - \dots - x_{i-1}) + \frac{1}{k} \right|$$
 for $i = 1, 2, \dots$, (height of T)

Figure 1: an example complete 3-ary tree