Kittel

4.4. with
$$c_p = A \frac{\sin(pk_0 a)}{fa}$$
, $u^2 = \frac{2}{M} \sum_{p = 1}^{M} c_p (1 - \cos(pk_0))$,

we compare $u^2 = \exp(i\pi i k l y)$:

 $u^2 = \frac{2A}{M} \sum_{p > 0} \frac{\sin(pk_0 a)}{pa} = \frac{1}{2} \sin(pa(k_0 + k)) - \frac{1}{2} \sin[pa(k_0 + k)]$
 $du^2 = \frac{2A}{M} \sum_{p > 0} \frac{\sin(pk_0 a)}{pa} = \frac{1}{2} \sin[pa(k_0 + k)] - \frac{1}{2} \sin[pa(k_0 - k)]$
 $du^2 = \frac{2A}{M} \sum_{p > 0} \frac{\sin(pk_0 a)}{pa} = \frac{1}{2} \cos[pa(k_0 + k)] - \frac{1}{2} \cos[pa(k_0 - k)] - \frac{1}{2} \sin[pa(k_0 - k)] - \frac{1$