School of Computing

FALL 2019

Islamabad Campus

SECTION A NUMBER SYSTEM

1. Attempt the following

(10)

Consider following Base 5 number system? 1.1.

(4)

a.
$$(300)_{10} = (?)_5$$

(300) = (fifeell)

5	300
5	60-0-0
5	32-0-U
5	2-0-6
	H-2-2
	-

S#	CAVEMEN			
0	μ			
1	&			
2	£			
3	\$			
4	*			

	± 50 2	E£	ll	ol	2
5x2	上 5 2 2	FE	\$ 6	+5	0×0
U 1				,	~ 5

 $= 125 \times 2 + 25 \times 2 = 250 \times 50 = (300)$ b. $(8.5 \times \mu)_5 = (?)_{10}$

b.
$$(\alpha + \mu)_5 = (?)_{10}$$

2 { x5 + \$x5+ x x5 + Ux50

= 1x125+3x25+4x5+0x1

5	055
5	44-0-4
5	8-0.8x5=4=x
-	1-3=\$
-	K

School of Computing

FALL 2019

Islamabad Campus

1.2.	Represent (+14) and (-14) in sign magnitude,	1's complement and 2's complement	
	forms (3) NOTE: Your computer bus width is 6-bit long	142(1010) 2	
00	1010 0010	2	

11000 1 13 comp 13 comp ? -52 " (10010 =>

Perform $(-32)_{10} + (1)_{10}$ using 2's complement addition 1.3. NOTE: Your computer has 8 -bit processor

+322 0010 0000 -32 11100000

+1 2 0000 0001

11100000 100000001 11100001 -128 6432

-64+322-32+12 -31 Page 3 of 11

School of Computing

FALL 2019

Islamabad Campus

2. Attempt the following all carry equal marks

(20)

2.1.
$$(AB100)_{16} - (A2FE)_{16} = (?)_{16} = (?)_8$$

2.2. $(1.0100)_2 \times (10.100)_2 = (?)_2 = (?)_{10}$

= 1x2 + 1x2 + 0x2 + 0x2 + 0x2 -3

School of Computing

FALL 2019

Islamabad Campus

2.3. Perform BCD Addition for following numbers

 $(195)_{BCD} + (576)_{BCD}$

1001 1000 0101 0110 0001 611 & Invalue 0110 0110 000 0111

(1010011) Gray code = (Produce Previous 2 GRAY CODE) 2.4.

Page 5 of 11

2.5. Perform binary division (10101101)₂ / (111)₂

01000

School of Computing

FALL 2019

Islamabad Campus

SECTION B

BOOLEAN ALGEBRA

3. Simplify the following using Boolean algebra

(4)

$$ABC[AB + \overline{C}(BC + AC)]$$

Z ABCLAB+ C.BG+ZAC C.C.CZD

1+A-1

:, A 1 2 1

School of Computing

FALL 2019

Islamabad Campus

4. Standardize the following equation using Boolean algebra and draw truth table? Extract standards *SOP* AND *POS* from given table (6)

School of Computing

FALL 2019

Islamabad Campus

6. Use K-map to simplify the following? Extract minimize SOP?

(6)

$$F_{a,b,c,d,e} = \sum (2,5,7,9,10,12,14,18,22,23,25,26)$$

Whereas Don't care Conditions are (6,8,13,30)

School of Computing

FALL 2019

Islamabad Campus

7. Perform BOOLEAN Analysis on following circuit? (10)

Ā	B	C =	X
Ā	B	C.C.	4.

Xo	(=	= 7
-	.0	200
1	V	

X	C	Y
0	0	0
0	1	0
1	0	9
1	1	1

X21 => A.B.C =1 => A+B+O=1

X+X+Y (X21=) A=105 B=1

