Lecture 20: Least Squares Problems MAT2040 Linear Algebra

Theorem 19.23 (Orthogonal Decomposition Theorem)

If $\mathbf{x} \in \mathbb{R}^n$ and S is a subspace of \mathbb{R}^n , then \mathbf{x} can be uniquely expressed as $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$, where $\hat{\mathbf{x}} \in S$ and $\mathbf{z} \in S^{\perp}$.

Theorem 19.23 (Orthogonal Decomposition Theorem)

If $\mathbf{x} \in \mathbb{R}^n$ and S is a subspace of \mathbb{R}^n , then \mathbf{x} can be uniquely expressed as $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$, where $\hat{\mathbf{x}} \in S$ and $\mathbf{z} \in S^{\perp}$.

The vector $\hat{\mathbf{x}}$ in the Orthogonal Decomposition Theorem is called the **orthogonal projection of x onto subspace** S.

Theorem 20.1 (Orthogonal Projection is Closest Point)

Let $\mathbf{b} \in \mathbb{R}^m$, S be a subspace of \mathbb{R}^m , and \mathbf{p} be the orthogonal projection of \mathbf{b} onto S. Then \mathbf{p} is the closest point in S to \mathbf{b} , i.e.,

$$\|\mathbf{b} - \mathbf{p}\| < \|\mathbf{b} - \mathbf{s}\|$$

for all $s \in S$, $s \neq p$.

Theorem 20.1 (Orthogonal Projection is Closest Point)

Let $\mathbf{b} \in \mathbb{R}^m$, S be a subspace of \mathbb{R}^m , and \mathbf{p} be the orthogonal projection of \mathbf{b} onto S. Then \mathbf{p} is the closest point in S to \mathbf{b} , i.e.,

$$\|\mathbf{b} - \mathbf{p}\| < \|\mathbf{b} - \mathbf{s}\|$$

for all $s \in S$, $s \neq p$.

Note that "closest" here is with respect to Euclidean distance.

We have not yet seen how to **find** the orthogonal projection however (except for 1-dimensional subspaces).

We will now study how to finding the orthogonal projection in the context of "Least Squares Problems".

Suppose we want to solve $A\mathbf{x} = \mathbf{b}$, but $\mathbf{b} \notin \text{Col } A$.

Suppose we want to solve $A\mathbf{x} = \mathbf{b}$, but $\mathbf{b} \notin \text{Col } A$.

System does not have a solution, but want to find $\hat{\mathbf{x}}$ so that $A\hat{\mathbf{x}}$ is "as close to \mathbf{b} as possible".

Suppose we want to solve $A\mathbf{x} = \mathbf{b}$, but $\mathbf{b} \notin \text{Col } A$.

System does not have a solution, but want to find $\hat{\mathbf{x}}$ so that $A\hat{\mathbf{x}}$ is "as close to \mathbf{b} as possible".

We want to find $\hat{\mathbf{x}}$ so that $||A\hat{\mathbf{x}} - \mathbf{b}||$ is as small as possible.

Note that choosing the Euclidean norm as our measure was a choice.

Suppose we want to solve $A\mathbf{x} = \mathbf{b}$, but $\mathbf{b} \notin \text{Col } A$.

System does not have a solution, but want to find $\hat{\mathbf{x}}$ so that $A\hat{\mathbf{x}}$ is "as close to \mathbf{b} as possible".

We want to find $\hat{\mathbf{x}}$ so that $||A\hat{\mathbf{x}} - \mathbf{b}||$ is as small as possible.

Note that choosing the Euclidean norm as our measure was a choice.

Also note that $\|A\hat{\mathbf{x}} - \mathbf{b}\| = \sqrt{(\vec{a}_1\mathbf{x} - b_1)^2 + (\vec{a}_2\mathbf{x} - b_2)^2 + \dots + (\vec{a}_m\mathbf{x} - b_m)^2},$ which explains the name "least squares".

Orthogonal projection on which subspace?

Orthogonal projection on which subspace?

 $A\mathbf{x} \in \operatorname{Col} A!$ We are projecting on the column space of A.

Orthogonal projection on which subspace?

 $A\mathbf{x} \in \text{Col } A!$ We are projecting on the column space of A.

To make sure $A\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{b} onto Col A, we want that $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to Col A.

We want $\hat{\mathbf{x}}$ so that $\mathbf{b} - A\hat{\mathbf{x}} \in (\operatorname{Col} A)^{\perp}$.

Because $\mathbf{y} \in \text{Null } A^T$ are exactly the vectors \mathbf{y} so that $A^T \mathbf{y} = \mathbf{0}$,

Because $\mathbf{y} \in \text{Null } A^T$ are exactly the vectors \mathbf{y} so that $A^T \mathbf{y} = \mathbf{0}$, we see that we want to find $\hat{\mathbf{x}}$ so that $A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}$.

Because $\mathbf{y} \in \text{Null } A^T$ are exactly the vectors \mathbf{y} so that $A^T \mathbf{y} = \mathbf{0}$, we see that we want to find $\hat{\mathbf{x}}$ so that $A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}$.

In other words, \hat{x} is a solution to

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

(And you know how to solve this!)

Because $\mathbf{y} \in \text{Null } A^T$ are exactly the vectors \mathbf{y} so that $A^T \mathbf{y} = \mathbf{0}$, we see that we want to find $\hat{\mathbf{x}}$ so that $A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}$.

In other words, \hat{x} is a solution to

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

(And you know how to solve this!)

This system of equations is known as the **normal equations**.

Theorem 20.2

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A\mathbf{x} = A^T \mathbf{b}$.

Example 20.3

Find the least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}.$$

Theorem 20.4

Let A be an $m \times n$ matrix. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for every $\mathbf{b} \in \mathbb{R}^m$ if and only if the columns of A are linearly independent.

Corollary 20.5

If the columns of A are linearly independent, then the orthogonal projection of **b** on the subspace Col A is the vector $\mathbf{p} = A(A^TA)^{-1}A^T\mathbf{b}$.

The matrix $A(A^TA)^{-1}A^T$ is sometimes called the **projection** matrix (corresponding the projection on the subspace Col A).