Stirring Subsystem

Construction

The DC Motor Actuator

MOTOR DATA. (RE-140)

Stirring DC Motor Datasheet

PWM in Bioreactor Oscilloscope

MOSFET – (1) Oscar Liang

Even with no load, the motor can draw over 300mA → High-Current Load

Turning the Gate ON makes the Drain conduct to the Source – switch behaviour.

Options:

- digitalWrite → HIGH or LOW write
 - Manual write
 - Cannot control RPM

PWM

- Duty Cycle easily varied
- Transistor ON for PWM HIGH (Vcc), OFF for LOW (GND)

Stirring Code

- Implementing Closed-Loop PID Control
- Error = Setpoint TrueRPM
- ElapsedTime = time since last loop used in D and I paths
- Very small tuning constants due to large P, I and D error terms
- Interrupts attached to Pin2, ISR used to collect number of changes of Pin2 over ElapsedTime

Final Stirring Subsystem in Multisim

Oscilloscope Reading over Photointerrupter - Green

Final Stirring Subsystem in Tinkercad

Discussion

Zener Voltage Regulator

Results

Testing Edge Cases

RPM Over Time for Bioreactor System for Various Setpoints

Calibration Curve

Testing Edge Cases

RPM Over Time for Bioreactor System with 500RPM Setpoint

Testing Edge Cases

RPM Over Time for Bioreactor System at Setpoint 1500RPM then 500RPM

