PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-206030

(43)Date of publication of application: 13.08.1993

(51)Int.CI.

H01L 21/205

(21)Application number : **04-012200**

(71)Applicant: NGK INSULATORS LTD

(22)Date of filing:

27.01.1992 (72)Inventor: USHIGOE RYUSUKE

NOBORI KAZUHIRO

ARAI YUSUKE

(54) **HEATING DEVICE**

(57)Abstract:

PURPOSE: To provide a heating device capable of stably measuring and controlling the temperature of a ceramic heater and at the same time being efficiently produced without requiring any special glass bonding technique and the like.

CONSTITUTION: A heating resistor element 3 is embeded in the inner part of a substrate 21 composed of compact ceramic and a terminal 4 is connected to the end part of the heating resistor element 3. The terminal 4 is exposed out of the rear surface 1a, for instance, of the substrate 21, and the top part 5a of a cylinder—like body 5 made of heat resistant metal is inserted into the recessed part 4b of the terminal 4 for fixation. An electric power is supplied to the cylinder—like body 5 through a lead wire 17. A temperature measuring device 8 is fixed in the inner spaces 7 and 5d of the cylinder—like body 5.

LEGAL STATUS

[Date of request for examination]

13.10.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

/3045860)

[Date of registration]

17.03.2000

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

_特許第3045860号 **/** (P3045860)

(45)発行日 平成12年5月29日(2000.5.29)

(24)登録日 平成12年3月17日(2000.3.17)

(51) Int.Cl.7		識別記号	FΙ		
H01L	21/205		H01L	21/205	
H05B	3/20	3 5 6	H05B	3/20	356

請求項の数1(全 5 頁)

(21)出願番号	特顏平4-12200	(73)特許権者	000004064
(22)出顧日	平成4年1月27日(1992.1.27)		日本碍子株式会社 愛知県名古屋市瑞穂区須田町2番56号
(22) Hayes	Mar 17121 (1002. 1.21)	(72)発明者	牛越 隆介
(65)公開番号	特開平5-206030		愛知県半田市新宮町1丁目106番地 日
(43)公開日	平成5年8月13日(1993.8.13)		本碍子新宮アパート206号
審查請求日	平成9年10月13日(1997.10.13)	(72)発明者	▲昇▼ 和宏
			愛知県菜栗郡木曽川町大字黒田字北宿二
			ノ切66番地の1
		(72)発明者	新居 裕介
			愛知県名古屋市瑞穂区市丘町2丁目38番
			2号 日本碍子市丘寮
		(74)代理人	100059258
			弁理士 杉村 暁秀 (外9名)
		審査官	長谷山 健
			最終買に続く

(54) 【発明の名称】 加熱装置

1

(57)【特許請求の範囲】

【請求項1】 緻密質セラミックスからなる基体; この基体の内部に埋設された抵抗発熱体; この抵抗発熱体の端部に接続され、前記基体の表面に露出し、凹部を有する端子; 耐熱金属からなり、先端が前記凹部に挿入及び固定された筒状体; この筒状体に電力を供給する電源及び; 前記筒状体の内側に固定された温度測定器を備えた加熱装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、プラズマCVD、減圧CVD、プラズマエッチング、光エッチング、スパッタ装置等に使用される加熱装置に関するものである。

[0002]

【従来の技術】スーパークリーン状態を必要とする半導

2

体製造用装置では、腐食性ガス、エッチング用ガス、クリーニング用ガスとして塩素系ガス、弗素系ガス等の腐食性ガスが使用されている。このため、ウエハーをこれらの腐食性ガスに接触させた状態で加熱するための加熱装置として、抵抗発熱体の表面をステンレススチール、インコネル等の金属により被覆した従来のヒーターを使用すると、これらのガスの曝露によって、塩化物、酸化物、弗化物等の粒径数μmの、好ましくないパーティクルが発生する。

10 【0003】そこで、デポジション用ガス等に曝露される容器の外側に赤外線ランプを設置し、容器外壁に赤外線透過窓を設け、グラファイト等の耐食性良好な材質からなる被加熱体に赤外線を放射し、被加熱体の上面に置かれたウエハーを加熱する、間接加熱方式のウエハー加熱装置が開発されている。ところがこの方式のものは、

[0010]

直接加熱式のものに比較して熱損失が大きいこと、温度 上昇に時間がかかること、赤外線透過窓へのCVD膜の 付着により赤外線の透過が次第に妨げられ、赤外線透過 窓で熱吸収が生じて窓が過熱すること等の問題があっ

【0004】上記の問題を解決するため、本発明者は、 例えば窒化珪素等によって円盤状基体を作製し、この際 円盤状基体の内部に抵抗発熱体を埋設してセラミックス ヒーターを製造した。

[0005]

【発明が解決しようとする課題】しかし、上記したよう な円盤状セラミックスヒーターを用いると、その温度測 定が難しくなることが判明した。即ち、熱CVD装置等 においては、容器内圧力が大きく変動する。また、セラ ミックスヒーターの表面に熱電対の一端を取り付け、そ の温度を検出しつつ、ヒーターの温度を制御する必要が ある。そして、このような加熱装置は、通常の一定圧力 で使用する場合には大きな問題はないが、容器の内部を 圧力変化させた場合には熱電対に誤動作を生ずることが あり、正確なヒーター温度の制御が行えないという問題 20 が生じた。

【0006】本発明者は、こうした熱電対の誤動作の原 因について種々検討し、次の知見を得た。即ち、セラミ ックスヒーターの孔に熱電対を挿入すると、ヒーターと 熱電対との間の熱移動は、圧力変化をするガスに依存す る。特に真空中の場合、熱電対の周囲のガス分子の挙動 は、大気圧~1 torrの真空状態においては粘性流域にあ るが、真空度が高まると分子流域に移行し、これに伴っ て熱電対の周囲における熱移動の態様が大幅に変化する ため、正確な温度測定ができなくなる。また粘性流域に おいても、圧力変動が大きいと、温度測定誤差が存在す ることが判った。

【0007】こうした問題を解決するため、本発明者 は、中空のさや(シース)の内部に熱電対を収容し、中 空シースの先端をセラミックスヒーター背面にガラス接 合する技術を開発した(特願平2-17322号明細 書)。これにより、熱電対は容器内雰囲気に曝されない ので、安定した温度測定、検出が可能になった。しか し、中空シースをモリブデン等で形成する加工が難し く、特に中空シースの先端を尖らせる加工が難しかっ た。また、中空シースの先端をセラミックスヒーターに 接合するには、ガラス粉末の製造、中空シースの固定、 1500℃程度での加熱によるガラスの溶融など、煩雑な工 程が数多くあり、製造が困難で、生産性が低かった。 【0008】また、本発明者は、窒化珪素焼結体等によ って円筒状体を作製し、この円筒状体をセラミックスヒ ーター背面にガラス接合し、円筒状体の内側空間に熱電 対を設置した(特願平3-84575 号明細書)。 しか し、こうした円筒状体は製造コストが高い。しかも、円 者をガラス接合する必要があるが、充分な強度をもって ガラス接合することは難しかった。また、ガラス接合の ために、前述したような多数の工程が必要であり、生産 性が低かった。

【0009】本発明の課題は、セラミックスヒーターの 温度を安定して測定し、制御することができ、しかも特 別なガラス接合技術等を必要とせず、効率良く生産でき るような、加熱装置を提供することである。

【課題を解決するための手段】本発明は、緻密質セラミ ックスからなる基体;この基体の内部に埋設された抵抗 発熱体; との抵抗発熱体の端部に接続され、前記基体の 表面に露出し、凹部を有する端子;耐熱金属からなり、 先端が前記凹部に挿入及び固定された筒状体: この筒状 体に電力を供給する電源及び;前記筒状体の内側に固定 された温度測定器を備えた加熱装置に係るものである。 [0011]

【実施例】図2は、本発明の実施例に係る加熱装置を半 導体製造装置の容器に取り付けた状態を示す概略断面 図、図1は本加熱装置の要部拡大断面図である。本例に おいては、容器本体20の上側にフランジ6が設置され、 フランジ6の下方に支持部19が延設されている。支持部 19によってセラミックスヒーター1が支持されている。 ヒーター1の背面1aはフランジ6と対向し、加熱面1bが 容器内に面している。容器本体20とフランジ6とが0リ ング13によって気密にシールされる。

【0012】例えば円盤状の基体21は緻密質セラミック スからなる。基体21の内部に抵抗発熱体3が埋設され る。抵抗発熱体3は、例えば、平面的にみて渦巻状に埋 設することができる。抵抗発熱体3の両末端に、それぞ れ端子4が連結される。端子4の形状は、円柱状、四角 柱状、六角柱状等であってよい。端子4の表面が背面1a 側に向って露出する。端子4の中央付近には例えば平面 円形の凹部4bが形成され、凹部4bに面するように雌ネジ 4aが形成されている。

【0013】円筒状体5は耐熱金属からなる。円筒状体 5の先端部5aは若干直径が小さくなっており、先端部5a に雄ネジ5bが形成され、かつ先端が袋管になっている。 円筒状体5を、背面1aに対してほぼ垂直に立て、雄ネジ 5bを雌ネジ4aに螺合させる。フランジ6には貫通孔6aが 設けられ、フランジ6の上に、例えば円環状の絶縁材12 が設置され、絶縁材12の上にシールキャップ14が設置さ れる。フランジ6と絶縁材12との間、絶縁材12とシール キャップ14との間は、〇リング13により気密にシールさ れ、貫通孔6aと12a とが位置合わせされる。シールキャ ップ14の上側に切り欠き14a が形成され、この中に〇リ ング13が収容される。円筒状体5は、貫通孔6a, 12a を 通り、更にシールキャップ14の内側を通って、その上方 に延びている。切り欠き14aの上側に押え片16が挿入さ 筒状体とヒーター材料とは共にセラミックスであり、両 50 れており、押え片16の上に押え具15が設置されている。

押え具15とシールキャップ14とは、互いに螺合されており、押え具15を回転させることにより、〇リング13にかかる圧力を調節する。

【0014】円筒状体5の上端内周に雌ネジ5cが形成されており、シール部材9の雄ネジが雌ネジ5cに螺合されている。円筒状体5の内側空間7の中央付近に、細長い温度測定器8が固定されている。温度測定器8の先端が、先端部5aの内側空間5dに挿入されている。本例においては、温度測定器8は、熱電対と、この熱電対を包囲するシースとからなる。シール部材9の上側にリード10が突設され、リード10の内部に一対のリード線11が収容されている。リード線11は、それぞれ熱電対の一方に接続されている。円筒状体5の上端部外周にリード線17が連結され、一対のリード線17が交流電源18に接続されている。

【0015】セラミックスヒーターを作動させるときに は、交流電源18をオン状態にし、リード線17、円筒状体 5、端子4を介して、抵抗発熱体3に通電する。また、 内側空間Sdにおいて、熱電対の先端に到達する熱量を検 出し、これによってセラミックスヒーターの温度を測定 20 する。この検出値は、加熱面1bにおける面温度とは少し 差があるが、この検出値を基準にして加熱面1bにおける 温度を制御するには、ヒーターの温度安定性等の点で差 しつかえない。本実施例においては、円筒状体5の内部 に温度測定器8が収容されているので、熱電対の周囲の 雰囲気が、容器内の圧力変化に影響されない。このた め、例えば、容器内が高真空度まで減圧されたり、また CVD用ガス等が急に供給されても、熱電対がその影響 を受けない。従って、常にセラミックスヒーターにおけ る実際の発熱量と対応して、安定した温度測定を行うと とができる。また、セラミックスヒーターにおける発熱 量を、容器内の圧力変動の影響を受けることなく、常に 正確に制御するととができる。

【0016】また、耐熱金属製の端子4、円筒状体5は、金属加工によって大量生産できる。そして、セラミックスのガラス接合の場合と異なり、両部材の結合強度を上げることは容易であるし、また煩雑なガラス接合工程を必要としない。

【0017】基体21の材質としては、窒化珪素、サイアロン、窒化アルミニウム等が特に好ましい。抵抗発熱体 40 3、端子4の材質としては、白金、モリブデン、タングステン、ニッケル等の高融点金属が好ましい。円筒状体5は、モリブデン、タングステン、ニッケル、インコネル等で形成できるが、加工が容易で大気に対して安定なインコネルが特に好ましい。円筒状体5の内部には大気が存在するので、シール部材9で円筒状体5の開口をシールすると、新しい酸素が入ってこず、円筒状体5や温度測定器8が腐食しにくい。また、円筒状体5と温度測定器8との間には、酸化マグネシウム等を充填して絶縁する。絶縁性は、ヒーターコントロール電源による熱電 50

対の混融や誘導を避けるため、IMQ以上が好ましい。 また、温度測定器8をシース熱電対としても、同様の効果が得られる。

【0018】 雌ネジ4aと雄ネジ5bとをネジ込み嵌合すると、雌ネジ4aと雄ネジ5bとの接触面積が広くなり、更に径方向寸法をほぼ一致させると、この間から容器内のガスが侵入しにくくなる。この結果、端子4と先端部5aとの間の熱伝達は、接触伝熱が支配的となるので、特に有利である。なお、ネジ嵌合での接触熱伝導が効果大であるが、例えば、セラミックス基材に雌ネジを明けることは、その寸法がM3等と小型である場合、不可能である。本発明では、電極端子が金属体からなるため、加工が可能であった。このように、電極体部で電力供給と温度測定とを同時に行なう形式とすることによって、充分な接触熱伝導を実現している。また、端子4の雌ネジ4aは、放電加工によって設けることが可能である。

【0019】先端部Saを凹部4bに圧入することもできる。この場合は、雌ネジ4a、雄ネジ5bを設けない。また、この場合には、先端部Saと凹部4bとの間に金属箔を挟んでもよい。また、上記したようなネジ止め又は圧入を行った後に、凹部4bの壁面と先端部Saとの間に、高融点金属の溶融物を流し込み、隙間を塞ぐこともできる。こうした、ろう材として用いる高融点金属としては、Mo、Pd、Ni、Fe、Co、Mn、Au、Pt、Y、Ag、Cu、Zr、Cr、Nb、Ti、V、Ta等を例示できる。先端部Saと凹部4bとを結合するには、かしめ法を用いたり、スプリングや弾性ボードを用いて機械的に圧接する方法がある。

【0020】円筒状体5の形状を、四角筒、六角筒等に 変更してよい。温度測定器8の形状や構造も変更でき る。図2の例では、2箇所で温度測定を行うが、これを 1箇所にしてもよく、3箇所以上にすることもできる。 【0021】図3は、本発明の他の実施例を示す要部断 面図である。図1、図2に示したものと同じ部材には同 じ符号を付け、その説明は省略することがある。本実施 例においては、円筒状のインシュレーター22を、円筒状 体5の外側を囲むように、円筒状体5とほぼ同心に設置 する。インシュレーター22の先端を背面1aに当接させ る。絶縁材12の上に蓋25が設置され、蓋25と絶縁材12と の間が〇リング13によってシールされている。蓋25の貫 通孔内周面に、円筒26が取り付けられ、円筒26の上端部 内周面に、シールキャップ14A が取り付けられる。シー ルキャップ14A の内側にOリング13が収容される。円筒 状体5は、シールキャップ14A の内側を通って、その上 方に延びている。シールキャップ14A の内側に押え片16 A が挿入されており、押え片16A の上に押え具15A が設 置されている。押え具15A とシールキャップ14A とは、 互いに螺合されており、押え具15A を回転させることに より、〇リング13にかかる圧力を調節する。

【0022】インシュレーター22は、貫通孔6a, 12a を

通り、更に蓋25の貫通孔を通り、円筒26の内側に挿入さ れている。インシュレーター22の上端とシールキャップ 14Aの下端との間に、若干の隙間がある。シールキャッ プ14A に、パージボート24が設置される。円筒状体5の 上端部外周に冷却フランジ23が取り付けられている。冷 却水を矢印Bのように冷却フランジ23へと供給する。パ ージボート24から矢印Aのように、アルゴンガス等の不 活性ガスを流すと、インシュレーター22と円筒状体5と の間を不活性ガスが下向きに流れ、背面1aとインシュレ ーター22の先端との隙間から矢印Cのように吹き出す。 【0023】本実施例によれば、前述の実施例と同様の 効果を奏しうる他、以下の効果を奏しうる。即ち、特に メタルCVD装置において、背面1a側にCVD用ガスが 回り込み、背面1aにもメタル膜がデポジションされる場 合がある。とうなると、二本以上の円筒状体5の間や、 円筒状体5とケースとの間の絶縁性が低下し、放電、地 絡が生じうる。この点、本例では、インシュレーター22 の設置によって絶縁を確保するのと共に、インシュレー ター22とヒーター背面1aとの当接部分から不活性ガスを 吹き出させ、インシュレーター22の内側にデポジション 20 用ガスが拡散するのを防止する。これにより、メタル膜 の生成による絶縁性低下や、円筒状体5のデボジション 用ガスによる腐蝕を防止する。端子4の周辺で温度測定 を行うことから、インシュレーター22は、熱伝導率の低 い材料、例えば石英ガラス、アルミナ等で形成すること が好ましい。また、パージポート24から導入するアルゴ ンガス等の不活性ガスの導入量は、CVD装置内の真空 度やガスの拡散性に応じて決定するのがよいが、インシ ュレーター22とヒーター背面1aとの当接部分からの不活 性ガスの吹き出し量が、ガス流速で1m/秒以上となる 30 18 交流電源 のが好ましい。

[0024]

【発明の効果】本発明によれば、端子に凹部を設け、耐 熱金属製の筒状体の先端を凹部に挿入及び固定し、この 筒状体に電力を供給する。そして、筒状体の内側に温度 測定器を固定する。従って、温度測定器の周囲の雰囲気 が、容器内の圧力変化に影響されない。このため、例え ば、容器内が高真空度まで減圧されたり、またガスが急 に供給されても、温度測定器がその影響を受けない。従 って、常にセラミックスヒーターにおける実際の発熱量 と対応して、安定した温度測定を行うことができる。ま

た、セラミックスヒーターにおける発熱量を、容器内の

圧力変動の影響を受けることなく、常に正確に制御する

ととができる。また、耐熱金属製の端子、円筒状体は、

金属加工によって大量生産できる。そして、セラミック 10 スのガラス接合の場合と異なり、両部材の結合強度を上 げることは容易であるし、また煩雑なガラス接合工程を 必要としない。

【図面の簡単な説明】

【図1】本発明の実施例に係る加熱装置の要部拡大断面 図である。

【図2】図1の加熱装置を容器に取り付けた状態を示す 概略断面図である。

【図3】本発明の他の実施例に係る加熱装置の要部拡大 断面図である。

【符号の説明】

- 1 セラミックスヒーター
- 抵抗発熱体
- 4 円柱状端子
- 4b 凹部
- 5 円筒状体
- 5a 先端部
- 5d, 7 内側空間
- 温度測定器
- - 21 円盤状基体
 - 22 インシュレーター
 - 24 パージポート
 - A, C 不活性ガスの流れ

フロントページの続き

(56)参考文献 特開 平2-68924 (JP, A)

特開 平4-63281 (JP, A)

特開 平4-296485 (JP, A)

(58)調査した分野(Int.Cl.', DB名)

H01L 21/205

H01L 21/31

H01L 21/365

H05B 3/20 356