Kryptographie Vorlesungsnotizen

Jan Fässler & Fabio Oesch

4. Semester (FS 2013)

Inhaltsverzeichnis

T	Mathematische Grundlagen	1
	1.1 Modulare Division	1
	1.2 Modulares Potenzieren	1
2	Klassische Kryptographie	1
	2.0 Repetition	1
	2.1 Klassische Verschlüsselungsverfahren	
	2.2 Spezielles Bsp für Substitution Homophone Verschlüsselung	
	2.3 Kasiski-Text (monographisch & polyalphabetisch)	
	2.4 Playfair-Cipher	
	2.5 Koinzidenzindex (index of coincidence)	
	2.6 Vigenères Chipres	
	2.6.1 Berechnung der Schlüssellänge eines Vigenère-Cipher	
	2.6.2 Kryptoanalysis des Vigenère-Cipher	
	2.7 One-Time-Pad	
	2.8 Kryptosysteme	
	2.9 Kryptoanalysis	
	2.9.1 Ciphertext-only attack	
	2.9.2 known-plaintext attack	
	2.9.3 chosen-plaintext attack	
	2.9.4 chosen-ciphertext attack	
3	Block-Cipher	7
J	3.1 Data Encription Standard (DES)	•
	3.2 Modi von Block-Cipher	
	3.2.1 ECB-Modus (electronic code block)	
	3.2.2 CBC-Modus (cipher block chaining)	
	3.2.3 CFB-Modus (cipher feedback)	
	· ·	
4	RSA	10
	4.1 Schlüsselerzeugung	
	4.2 Verschlüsselung und Entschlüsselung	
	4.2.1 RSA ist ein Blockcipher	
	4.2.2 Reweis	10

1 Mathematische Grundlagen

1.1 Modulare Division

1.2 Modulares Potenzieren

Seien $a, b, n \in \mathbb{Z}$ und b, n > 1. Berechnen Sie $a^b \mod n$.

Da es für grosse b für den Taschenrechner nicht möglich ist dies zu berechnen verwenden wir ein spezielles Verfahren:

1.) binäre Darstellung von b:

$$b = \sum_{i=0}^{k} \alpha_i 2^i \text{ mit } \alpha \in \{0, 1\}.$$

2.) Anwendung auf a:

$$a^{b} = a^{\sum_{i=0}^{k} \alpha_{i} 2^{i}}$$

$$a^{b} = \prod_{i=0}^{k} a^{\alpha_{i} 2^{i}}$$

$$a^{b} = a^{\alpha_{k} 2^{k}} * a^{\alpha_{k-1} 2^{k-1}} * a^{\alpha_{k-2} 2^{k-2}} \dots a^{\alpha_{1} 2} * a^{\alpha_{0}}$$

$$a^{b} = (\dots ((a^{a_{k}})^{2} * a^{a_{k-1}})^{2} \dots * a^{\alpha_{1}})^{2} * a^{\alpha_{0}}$$

3.) Das Verfahren besteht nun darin, den letzten Ausdruck von innen nach aussen auszuwerten und nach jeder Multiplikation das Resultat modulo n zu rechnen.

Beispiel: 977²²²² mod 11

1.) $2222_{10} \rightarrow bin = 1000101011110_2$

2.)
$$(\dots (977)^2)^2)^2 * 977)^2)^2 * 977)^2)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2$$

3.) Anwendung des Verfahren:

```
977
         \mod 11
                 = 9
9^{2}
         \mod 11
                  =4
4^{2}
         \mod 11
                  =5
5^2
         \mod 11
                  =3
3^2
         \mod 11
                  = 9
9 * 977
         \mod 11
                  =4
4^2
         \mod 11
         \mod 11
                  =3
3*977
         mod 11
                  =5
         \mod 11
                  =3
3^{2}
         \mod 11
9 * 977
         mod 11
                  =4
         \mod 11
5 * 977
         \mod 11
                  =1
         \mod 11
1 * 977
         \mod 11
                  = 9
         mod 11
                 = 4
```

2 Klassische Kryptographie

2.0 Repetition

Alphabet endliche Mengen von Zeichen

Beispiel

$$\begin{split} \mathcal{A} &:= \{A, B, C, ..., Z\}, \ |\mathcal{A}| = 26 \\ \Sigma &:= \{0, 1\}, \ |\Sigma| = 2 \\ \mathcal{A}^* &:= \{\text{endliche W\"{o}rter \"{u}ber } \mathcal{A}\} \end{split}$$

Sprachen über $A: L \subset A^*$

2.1 Klassische Verschlüsselungsverfahren

Substitution Cipher	Transposition Cipher						
Einheiten werden ersetzt .	Einh	neiter	ı wer	den '	vert	auscht	
	3	1	5	6	2	4	
	K	О	Μ	Μ	Е	Η	
	E	U	Τ	\mathbf{E}	A	В	
	E	N	D	\mathbf{Z}	U	\mathbf{M}	
	Z	Ο	Ο	A	В	\mathbf{C}	
	$\Rightarrow C$	UN()EA	<u>UB</u>	В	em.	
			n wer Pad			uscht	

monoalphabetisch $E: A \rightarrow B, x \mapsto E(x)$	polyalphabetisch $E: \mathcal{A} \to P(B), x \mapsto E(x)$
monographisch	polygraphisch
Buchstaben	Gruppen von Buchstaben

2.2 Spezielles Bsp für Substitution Homophone Verschlüsselung

Gegeben: $\Sigma := \{0, 1\}, B := \{a, b, c\}$

Information über die Sprache des Klartextes: Häufigkeit von $0:\frac{1}{3}$ Häufigkeit von $1:\frac{2}{3}$

 $E: \Sigma \to P(B)$ $0 \mapsto \{b\}$ $1 \mapsto \{a, c\}$

 $\mathbf{Bsp:} \quad \begin{array}{ll} 10110110011 \\ \mathrm{abccbacbbaa} \end{array}$

2.3 Kasiski-Text (monographisch & polyalphabetisch)

Klartext TO BE OR NOT TO BE

Schlüssel NOW

$$\mathbf{p}_{} = |\mathrm{NOW}|$$

TOB	EOR	NOT	TOB	Е
NOW	NOW	NOW	NOW	N
GCX	RCN	ACP	GCX	R

GCX kommt 2x for so können wir eine Annahme zur Periode p machen. Die Periode ist dann $c \cdot p$. Dies kann aber auch zufällig passieren.

2.4 Playfair-Cipher

$\begin{array}{|c|c|c|} \hline HARYP \\ OTEBC \\ DFG\frac{I}{J}K \\ LMNQS \\ UVWXZ \\ \hline \end{array}$ Schlüssel: Harry Potter, HAR $\rlap{R}\!\!\!\!/ Y$ POT $\rlap{T}\!\!\!\!/ E\rlap{R}\!\!\!\!\!/ E$

- Falls 2 auf gleicher Zeile: Beide Buchstaben um eins nach rechts
- Falls 2 auf gleicher Spalte: Beide Buchstaben um eins nach unten
- Falls 2 nicht auf gleicher Zeile/Spalte: Man nimmt die Buchstaben die auf seiner Spalte und auf des anderen Zeile liegen.

2.5 Koinzidenzindex (index of coincidence)

1. Gegeben

Alphabet Alphabet
$$\mathcal{A} := \{A, B, C, \dots, Z\}$$

Sprache: Englisch
$$p_A \quad p_B \quad \dots \quad p_Z$$

$$\Rightarrow \text{Buchstabenhäufigkeit:} \quad || \quad || \quad || \quad ||$$

$$p_1 \quad p_2 \quad \dots \quad p_3$$

$$\text{mit } 0 \le p_i \le 1 \text{ und } \sum_{i=1}^{26} p_i = 1$$

IC: Grösse, die von der Sprache abhängt, aber invariant ist gegenüber Cäsar-Verschiebungen.

Frage: Was bedeutet: Was bedeutet $IC_L := \sum_{1=1}^{26} P_i^2$ index of coincidence L: Language

Bemerkung:

Jede Sprache hat ihren eigenen Konzidenzindex $IC_{German} = 0.0766$ $IC_{Arabic} = 0.0759$ $IC_{flat} = 0.0385 \text{ (Alle Buchstaben haben die gleiche häufigkeit: } p_1 = p_2 = \dots = p_{26} = \frac{1}{26}\text{)}$ Je unregelmässiger die buchstabenhäufigkeit, umso grösser der Index.

2. Gegegen:

Sei
$$F$$
 eine Buchstabenfolge der Länge n $\mathbf{Bsp:}\ F="AXCAABCXA"$ $n_1=\#A's$ in F $n_1=\#B's$ in F :

Frage: Wie gross ist die Wahrscheinlichkeit zwei gleiche Buchstaben aus F herauszugreifen?

3

Definition
$$IC_F = \frac{\sum_1^{26} \binom{n_i}{2}}{\binom{n}{2}}$$

Bsp:

Alphabet
$$\Sigma := \{0, 1\}$$

F = 00110111101

$$\begin{array}{c} n_0 = 4 \\ n_1 = 7 \\ \hline n = 11 \end{array} \} IC_F = \frac{4*3+7*6}{11*10} = 0.49$$

Annahme $IC_F \xrightarrow[F \to \infty]{} IC_L$ (ist im Allgemeinen falsch)

Bemerkung

Permutation der Buchstaben

 $F \mapsto Perm(F)$

$$F = \text{"AXCA..."} \mapsto \text{Perm}(F) = \text{"CBYC..."}$$

$$IC_F = IC_{Perm(F)}$$

$$IC_F = IC_{Perm(F)}$$

2.6 Vigenères Chipres

2.6.1Berechnung der Schlüssellänge eines Vigenère-Cipher

Gegeben

C Vigenère-Chiffrat der Länge n

Die Schlüssellänge sei p (unbekannt)

		p				
C_1	C_2	C_3	C_4		C_p	j I
C_{p+1}	C_{p+2}	C_{p+3}	C_{p+4}		C_{2p}	
C_{2p+1}	C_{2p+2}	C_{2p+3}	C_{2p+4}		C_{3p}]}
C_{n-2}	C_{n-1}	C_n	-	-	-]]
<u></u>	7	7				-

monoalphabetisch

alle Spalten = p, alle Zeilen = $\frac{n}{p}$, letzte Zeile = monoalphabetisch!

 $\alpha:=$ Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha=\frac{n(\frac{n}{p}-1)}{2}=\frac{n(n-p)}{2p}$ $\beta:=$ Anzahl Buchstabenpaare aus verschiedenen Spalten, $\beta=\frac{n(n-\frac{n}{p})}{2}=\frac{n^2(p-1)}{2p}$ $\gamma:=$ Anzahl gleicher Buchstabenpaare aus $C,\ IC_L=\frac{\gamma}{\binom{n}{2}}$

$$\gamma = \alpha \cdot IC_L + \beta \cdot IC_{\text{flat}}$$

$$p = \frac{n(IC_L - IC_{flat})}{IC_C \cdot (n-1) + IC_L - n \cdot IC_{\text{flat}}}$$

$$p = \frac{n(IC_L - IC_{flat})}{IC_C \cdot (n-1) + IC_L - n \cdot IC_{flat}}$$

4

Kryptoanalysis des Vigenère-Cipher

1) Schlüssellänge p

$$p=1,2,3,...$$

- Einleitung des Cipher-Tests in p Abschnitte
- Berechnung des IC des Abschnitts
- Wähle p mit $IC \sim IC_2$ (oder hoch)
- 2) Sei s,t zwei Strings über dem Alphabet A.

$$s = s_1, s_2, s_3,s_k$$

$$t = t_1, t_2, t_3, ..., t_l$$

Wieder zählen wir $n_1(s) := A$ in s, $n_3(t) = C$ in t

Def.
$$MIC(s,t) := \frac{\sum_{i=1}^{\infty} 26n_i(s) * n_i(t)}{k*l}$$

Bsp.

$$n_1(s) = 3, n_1(t) = 3$$

$$n_2(s) = 1, n_2(t) = 3$$

$$n_3(s) = 2, n_3(t) = 3$$

$$\rightarrow MIC(s,t) = \frac{1}{6*9}[3*3+1*3+2*3]$$

Idee: s,t zwei cipher-Text mit Cäsar Cerschlüsselung

Wenn beide mit dem gleichen Schlüssel verschlüsselt werden

$$\rightarrow MIC(s,t) \rightsquigarrow IC_L$$

Sonst:
$$MIC(s,t) \leadsto IC_{flat}$$

3.) Anwendung auf Cipher Text

Schlüssellänge p sei 5

 $c_1, c_2, ..., c_5$ Abschnitte des Cipher Text

$$MIC(c_i, c_j + k)$$

Tabelle.

rabene.				
(i,j);k	0	1	2	
(1,2)				
(1,3)				
(1,4)				
(1,5)				
(2,3)			x	$\rightarrow MIC(c_2, c_3 + k)$
(2,4)				
(2,5)				
(3,4)				
(3,5)				
(4,5)				

Bsp

$$c_1$$
: AXBM...

$$c_3$$
: ABXHE... CDZIG

4.) Wir suchen Einträge in der Tabelle, die hoch sind (> 0.06)

$$MIC(s,t) = \frac{1}{kl} \sum_{i=1}^{26} n_i(s) n_i(t), |s| = k, |t| = l$$

zb: $MIC(c_2, c_3 + 22 > 0.06 \iff c_2 \sim c_3 + 22 \Rightarrow \boxed{\beta_2 - \beta_3 = k}$

Notation $s \sim t \iff s$ und t sind mit dem gleichen Shift aus zwei Klartexten entstanden.

Bsp. $klar_1 \sim klar_2$

$$\begin{vmatrix} klar_1 & \stackrel{\beta_1}{\longrightarrow} c_1 \\ klar_2 & \stackrel{\beta_2}{\longrightarrow} c_2 \end{vmatrix} c_1 = klar_1 + \beta_1$$

$$klar_2 & \stackrel{\beta_2}{\longrightarrow} c_2 \end{vmatrix} c_2 = klar_2 + \beta_2$$

Wir suchen die grossen Werte von $MIC(c_i, c_j + k)$

$$MIC(c_i, c_j + k)$$
 gross \iff $c_i \sim c_j + k$

$$c_i = klar_i + \beta_i \sim klar_i + \beta_j + k = \frac{k}{l} = \frac{\beta_i}{l} + \frac{\beta_j}{l}$$

 \downarrow sind <u>bekannt</u>

$$\begin{cases}
k_{12} = \beta_2 - \beta_1 \\
k_{13} = \beta_3 - \beta_1 \\
k_{52} = \beta_2 - \beta_5
\end{cases}$$
 Auflösen nach β_1

$$k_{52} = \beta_2 - \beta_5$$

Schlüsselwort:
$$\beta_1$$
, β_2 ,..., β_p = β_1 , $\beta_1 + k_{12}$,..., Ausprobieren: $\beta_1 = 0, 1, \ldots, 25$

2.7 One-Time-Pad

$$\Sigma = \{0,1\} \begin{tabular}{lll} Klartext: & $p_1p_2p_3p_4p_5\cdots = \\ Schlüssel: & $k_1k_2k_3k_4k_5\cdots = \\ ciphertext: & $c_1 & c_2c_3c_4c_5\cdots = \\ p_1 \oplus k_1 \end{tabular} \begin{tabular}{ll} 0 & 101 \dots \\ 1 & 0110 \dots \\ 0011 \dots \end{tabular}$$

2.8 Kryptosysteme

Kryptosystem: (P, C, K, e, d)

P Menge der Klartexte

C Menge der Geheimtexte

 ${\bf K}\,$ Menge der Schlüssel

$$e: K \times P \to C \\ d: K \times C \to P$$

$$\forall k \varepsilon K \ \forall p \varepsilon P : d(k, e(k, p)) = p$$
$$\rightarrow \forall k \varepsilon K : e(k, -) \text{ ist injektiv}$$

$$\rightarrow \forall k \in K : d(k, -) \text{ ist surjektiv}$$

2.9 Kryptoanalysis

2.9.1 Ciphertext-only attack

Gegeben $c_i = e_k(p_i)$, i=1, ..., n

Gesucht p_i , i= 1, ...,n oder k

2.9.2 known-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$

Gesucht k

2.9.3 chosen-plaintext attack

Gegeben $(p_i, c_i = e_k(p_i)), i=1, ..., n$ p_i nach Wahl des Kryptoanalytikers

Gesucht k

Verwendung DIE Attacke gegen jedes Public-Key System

2.9.4 chosen-ciphertext attack

Gegeben $(p_i, p_i = d_k(c_i))$, i=1, ..., n c_i nach Wahl des Kryptoanalytikers

Gesucht k

3 Block-Cipher

Alphabet

$$\Sigma = \{0, 1\}$$

$$\Sigma^n := \Sigma \times \Sigma \times \dots \times \Sigma$$

Definition

Ein Block - Cipher ist eine **injektive** Abbildung $C: K \to Perm(\Sigma^n)$ wobei K der Schlüsselraum ist.

Bsp.

$$\begin{array}{l} n=3 \\ \Sigma^3=\Sigma\times\Sigma\times\Sigma \\ \left\{ \begin{array}{ccc} 000 & \nearrow & 000 \\ 001 & \rightarrow & 001 \\ \dots & & \dots \\ 111 & \searrow & 111 \\ & \uparrow \text{Schlüssel} \end{array} \right\} l \end{array}$$

Frage:

Wie gross ist der Schlüsselraum K maximal? $|K| \leq (2^n)!$

3.1 Data Encription Standard (DES)

$$\begin{array}{ccc} \text{Lucifer} & \text{Schlüssellänge} & 128 \\ \downarrow & & \\ \text{DES} & \text{Schlüssellänge} & 56 \\ & \text{Blocklänge} & 64 \\ \end{array}$$

Die f-Funktion:

3.2 Modi von Block-Cipher

Sei
$$\Sigma := \{0, 1\}$$

 $p = c = \Sigma^4 = \{\square\square\square\square\}$
 $k = \text{Permutation von } \Sigma^4$
 $k = \pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

Vor- und Entschlüsselung

Sei
$$m = 0101 \in p$$
 (Klartext)
 $e_k(m) = e_k(0101) = 1010 = c$

3.2.1 ECB-Modus (electronic code block)

$$m = \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2}| \underbrace{1100}_{m_3} |101^*$$

$$\xrightarrow[m_1]{e_k} \xrightarrow[c_1]{c_1}$$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen der Ciphertext-Blöcke wird nicht notwendigerweise erkannt

3.2.2 CBC-Modus (cipher block chaining)

$$m = \underset{\text{Länge n}}{m_1} | m_2 | \dots, n : \text{Blocklänge}$$

$$\mathbf{Bsp:} \ m = \underbrace{1100}_{m_1} | \underbrace{0110}_{m_2} | \underbrace{1100}_{m_3} | 101$$

$$IV = \text{Initialvektor (i.a. bekannt)}$$

$$C_0 := IV$$

$$C_1 := e_k(C_0 \oplus m_1)$$

$$C_2 := e_k(C_1 \oplus m_2)$$

$$c_1 = e_k(c_0 \oplus m_1) = e_k(0010) = 0001$$

$$c_2 = e_k(c_1 \oplus m_2) = e_k(0111) = 1011$$

$$c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$$

Entschlüsselung: $c_1 \oplus d_k(c_2) = c_1 \oplus d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2$


```
\begin{split} m &= \underset{\text{Länge n}}{m_1} | m_2, \ n : \text{Blocklänge} \\ IV &= \text{Initialvektor (i.a. bekannt)} \\ c_0 &:= IV, \ c_1 := e_k(c_0 \oplus m_1), \ c_2 := e_k(c_1 \oplus m_2) \\ c_1 \oplus d_k(c_2) &= d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2 \\ \mathbf{Bsp:} \ m &= \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2} |\underbrace{1100}_{m_3} | 101, \ IV = c_0 = 1110 \\ c_1 &= e_k(c_0 \oplus m_1) = e_k(0010) = 0001 \end{split}
```

$$c_2 = e_k(c_1 \oplus m_2) = e_k(0111) = 1011$$

 $c_3 = e_k(c_2 \oplus m_3) = e_k(0111) = 1011$

Bem:

- 1. $m_1 = m_3 \Rightarrow c_1 = c_3$
- 2. Vertauschen kann bemerkt werden
- 3. Übertragungsfaktor machen sich bemerkbar

3.2.3 CFB-Modus (cipher feedback)

 $m = \underbrace{\tilde{m_1}}_{\text{Länge} = r} |\tilde{m_2}|\tilde{m_3}|\dots,\, n$: Cipher Block-Länge (DES: 64) und $\boxed{0 < r \leq n}$

Bsp: m = 110|001|101|100|101, IV = 1110, r = 3, n = 4 $I_1 = 1110 I_2 = 1110 000$ e_k \downarrow 1101 ↓ **000**0 O_1 $\rightarrow c_2 = 001$ \oplus $\tilde{m_1} =$

4 RSA

4.1 Schlüsselerzeugung

```
PK = (n,e) SK = (n,d) Wir wählen zwei (grosse) Primzahlen p,q \in \mathbb{R}^*. \varphi \neq q n = p * Q \varphi(n) = (p-1)(q-1) // \varphi(n) = |\mathbb{Z}_n^*| Wir wählen e \in \mathbb{Z}_{\varphi(n)}^* // \operatorname{ggT}(e,\varphi(n)) = 1 d := e^{-1} in \mathbb{Z}_{\varphi(n)}^* // \operatorname{ed}=1 in \mathbb{Z}_{\varphi(n)}^* \Leftrightarrow \operatorname{ed} \equiv 1 \operatorname{mod} \varphi(n) \Longrightarrow \varphi(n)|(ed-1) \Longrightarrow \exists k \in \mathbb{Z} : e*d + k*\varphi(n) = 1 d := e^{-1} \in \mathbb{Z}_{120}^* : ed + k\varphi(n) = 1 Beispiel: p = 11, \ q = 13 n = p * q = 143 \varphi(n) = 120 = 2^3 * 3 * 5 e := 7 \Rightarrow \operatorname{PK}=(143,7) \mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}
```

i	q_i	r_i	s_i	t_i			
0	-	120	1	0	120 0.7.		
1	17	7	0	1	120 = q*7 +		
		1	1	-17	1		

$$\implies (*) \underbrace{e}_{7} *(-17) + 1 * \underbrace{\varphi(n)}_{120} = 1 // \bmod \varphi(n) \Rightarrow \boxed{d \equiv (-17) \bmod \varphi(n)}$$

4.2 Verschlüsselung und Entschlüsselung

4.2.1 RSA ist ein Blockcipher

4.2.2 Beweis

Fall 1:

ggT(m,n)=1
$$(m^e)^d = m \text{ in } \mathbb{Z}_n$$
Weil ggT(m,n)=1 existiert das Inverse von m:
$$\underbrace{m^{ed-1} = 1}_{\text{Das ist zu Zeigen!}} \text{ in } \mathbb{Z}_n$$

$$e*d+k*\varphi(n)=1$$
// Konstruktion des Schlüssel
$$\Rightarrow e*d-1=-k*\varphi(n): m^{ed-1}=m^{-k*\varphi(n)}=(m^{-k})=1$$
// Satz von Euler-Fermat

Fall 2:

$$ggT(m,n)\neq 1 \Rightarrow m = l * p \text{ oder } m = k * q$$