

HiPerFAST™ IGBT with HiPerFRED

Buck & boost configurations

IXGN 50N60BD2 IXGN 50N60BD3

 \mathbf{V}_{CES} 600 V 75 A 2.5 V **V**_{CE(sat)} 150 ns

	Symbol	Test Conditions	Maximum	Ratings
	V _{ces}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	600	V
	\mathbf{V}_{CGR}	$T_J = 25^{\circ}C$ to 150°C; $R_{GE} = 1 \text{ M}\Omega$	600	V
	V _{GES}	Continuous	±20	V
	\mathbf{V}_{GEM}	Transient	±30	V
IGBT	I _{C25}	T _C = 25°C	75	Α
<u>5</u>	I _{C90}	T _C = 90°C	50	Α
	I _{CM}	$T_{\rm C} = 25^{\circ}{\rm C}$, 1 ms	200	Α
	SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 10 Ω Clamped inductive load, L = 30 μ H	$I_{CM} = 100$ @ $0.8 V_{CES}$	Α
	P _c	T _C = 25°C	250	W
	V _{RRM}		600	V
Diode	I _{FAVM}	$T_{\rm C} = 70^{\circ}$ C; rectangular, d = 50%	60	Α
<u> </u>	I _{FRM}	$\rm t_p$ z<10 ms; pulse width limited by $\rm T_J$	600	Α
	$\mathbf{P}_{_{\mathrm{D}}}$	$T_{\rm C} = 25^{\circ} C$	150	W
	T _J		-40 + 150	°C
	T _{JM}		150	°C
	T _{stg}		-40 + 150	°C
Case	M _d	Mounting torque Terminal connection torque (M4)	1.5/13 1.5/13	Nm/lb.in. Nm/lb.in.
	Weight		30	g
		lead temperature for soldering 062 in.) from case for 10 s	300	°C

	Symbol	Test Conditions	Maximum	Ratings
	V _{ces}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	600	V
	\mathbf{V}_{CGR}	$T_J = 25^{\circ}C$ to 150°C; $R_{GE} = 1 \text{ M}\Omega$	600	V
	$V_{\sf GES}$	Continuous	±20	V
	\mathbf{V}_{GEM}	Transient	±30	V
IGBT	I _{C25}	$T_{\rm C} = 25^{\circ}{\rm C}$	75	Α
<u>ত</u>	I _{C90}	$T_{C} = 90^{\circ}C$	50	Α
	I _{CM}	$T_{\rm C} = 25^{\circ}$ C, 1 ms	200	A
	SSOA	$V_{GE} = 15 \text{ V}, T_{VJ} = 125^{\circ}\text{C}, R_{G} = 10 \Omega$	$I_{\rm CM} = 100$	Α
	(RBSOA)	Clamped inductive load, $L = 30 \mu H$	@ 0.8 V _{CES}	
	P _c	$T_{\rm C} = 25^{\circ}{\rm C}$	250	W
	\mathbf{V}_{RRM}		600	V
Diode	I _{FAVM}	$T_c = 70^{\circ}C$; rectangular, $d = 50\%$	60	Α
ă	I _{FRM}	$\rm t_p$ z<10 ms; pulse width limited by $\rm T_J$	600	A
	$\mathbf{P}_{_{\mathrm{D}}}$	$T_{C} = 25^{\circ}C$	150	W
	T,		-40 + 150	°C
	T_{JM}		150	°C
	T _{stg}		-40 +150	°C
Case	M _d	Mounting torque	1.5/13	Nm/lb.in.
ပ္ပ		Terminal connection torque (M4)	1.5/13	Nm/lb.in.
	Weight		30	g
		lead temperature for soldering 062 in.) from case for 10 s	300	°C
	1.0111111 (0.	1002 III., IIOIII Case IOI IO S		

FI E153432

IXGN50N60BD2

1 = Emitter; 2 = Gate

SOT-227B, miniBLOC

3 = Collector; 4 = Diode cathode

IXGN50N60BD3

1 = Emitter/Diode Cathode; 2 = Gate 3 = Collector; 4 = Diode anode

Features

- International standard package miniBLOC
- Aluminium nitride isolation
- high power dissipation
- Isolation voltage 3000 V~
- · Very high current, fast switching IGBT & FRED diode
- · MOS Gate turn-on
 - drive simplicity
- Low collector-to-case capacitance
- Low package inductance (< 10 nH)
 - easy to drive and to protect
- Molding epoxies meet UL94V-0 flammability classification

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless of } $ min.	otherwi	ristic Va se speci max.	
BV _{ces}	$I_{C} = 250 \mu\text{A}, V_{GE} = 0 \text{V}$	600			V
$V_{_{GE(th)}}$	$I_{\text{C}} = 250 \ \mu\text{A}, \ V_{\text{CE}} = V_{\text{GE}}$	2.5		5	V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		200 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nΑ
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$			2.5	V

Applications

- AC motor speed control
- DC servo and robot drives
- · DC choppers
- · Buck converters

Advantages

- · Easy to mount with 2 screws
- · Space savings
- · High power density

IXYS reserves the right to change limits, test conditions, and dimensions.

Symbol	Test Conditions Ch $(T_J = 25^{\circ}C, \text{ unless of min.})$		e specified)
g _{fs}	$I_{\text{C}} = I_{\text{C90}}; V_{\text{CE}} = 10 \text{ V},$ 35 Pulse test, $t \le 300 \mu\text{s}, \text{ duty cycle} \le 2 \%$	50	S
C _{ies}		4100	pF
\mathbf{C}_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	290	pF
C _{res}	J	50	pF
\mathbf{Q}_{g}		110	nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \rm V_{\rm CES}$	30	nC
Q _{gc}	J	35	nC
t _{d(on)}	\int Inductive load, $T_J = 25^{\circ}C$	50	ns
t _{ri}	$I_{c} = I_{cso}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H},$	50	ns
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 2.7 \Omega$ Remarks: Switching times may increase	110	250 ns
t _{fi}	for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or	150	220 ns
E _{off}	increased R _G	3.0	4.0 mJ
t _{d(on)}	Inductive load, T, = 125°C	50	ns
t _{ri}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}, L = 100 \mu\text{H}$	60	ns
E _{on}	$V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 2.7 \Omega$	3.0	mJ
$\mathbf{t}_{d(off)}$	Remarks: Switching times may increase	200	ns
t _{fi}	for V _{CE} (Clamp) > 0.8 • V _{CES} , higher T _J or	250	ns
E _{off}	increased R _G	4.2	mJ
R_{thJC}			0.50 K/W
R _{thCK}		0.05	K/W

Reverse Diode (FRED)

Characteristic Values $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions		typ.	max.	
I _R	$T_{VJ} = 25^{\circ}C V_{R} = V_{RRM}$			650	uA
	$T_{VJ} = 150$ °C			2.5	mΑ
V _F	$I_F = 60 \text{ A}, T_{VJ} = 150^{\circ}\text{C}$			1.75	V
	Pulse test, $t \le 300~\mu s$, duty cycle $d \le 2~\%$	Γ _{VJ} = 25°C		2.40	V
I _{RM}	$I_F = I_{C90}, V_{GE} = 0 \text{ V}, -di_F/dt = 100 \text{ A/}\mu\text{s}$ $V_R = 540 \text{ V}$			8.0	Α
t _{rr}	$I_F = 1 \text{ A, -di/dt} = 50 \text{ A/}\mu\text{s, V}_R = 30 \text{ V}$	$\Gamma_{\rm J} = 25^{\circ}{\rm C}$	35		ns
R_{thJC}				0.85	K/W

Fig. 1. Saturation Voltage Characteristics

Fig. 3. Saturation Voltage Characteristics

Fig. 5. Saturation Voltage Characteristics

Fig. 2. Extended Output Characteristics

Fig. 4. Temperature Dependence of $V_{\text{CE(sat)}}$

Fig. 6. Junction Capacitance Curves

Fig. 7. Dependence of $\rm E_{ON}$ and $\rm E_{OFF}$ on $\rm I_{C}$

Fig. 9. Gate Charge

Fig. 8. Dependence of tfi and $\rm E_{OFF}$ on $\rm R_{\rm g}$.

Fig. 10. Turn-off Safe Operating Area

Fig. 11. Transient Thermal Resistance

Fig. 12 Forward current I_F versus V_F

Fig. 13 Reverse recovery charge Q versus -di_r/dt

Fig. 14 Peak reverse current $I_{\rm RM}$ versus $-di_{\rm F}/dt$

Fig. 15 Dynamic parameters Q_r , I_{RM} versus T_{VJ}

Fig. 16 Recovery time t_{rr} versus $-di_{F}/dt$

Fig. 17 Peak forward voltage V_{FR} and t_{fr} versus $di_{_{F}}/dt$

Fig. 18 Transient thermal resistance junction to case

Constants for Z_{thJC} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.324	0.0052
2	0.125	0.0003
3	0.201	0.0385