Práctico 8

- 1. Sea $\phi: S_1 \to S_2$ una isometría local entre dos superficies y sea $\gamma: (a,b) \to S_1$ una geodésica en S_1 . Entonces $\phi \circ \gamma$ es una geodésica de S_2 .
- 2. Considerar una geodésica en el hiperboloide de revolución $x^2 + y^2 z^2 = 1$ que empieza en un punto p con z > 0 y forma un ángulo θ con el paralelo que pasa por p, con $\cos \theta = 1/r$ donde r es la distancia de p al eje z. Probar que esta geodésica se aproxima asintóticamente al paralelo $x^2 + y^2 = 1$, z = 0. Comparar con la situación análoga en el paraboloide elíptico.
- 3. Sea S una superficie regular orientada, y $\alpha:I\to S$ una curva parametrizada por longitud de arco. En el punto $p=\alpha(s)$ se consideran tres vectores unitarios (el triedro de Darboux) $T(s)=\alpha'(s),\ N(s)$ el vector normal a S en p, y $V(s)=N(s)\times T(s)$. Probar que

$$\begin{split} \frac{\mathrm{d}T}{\mathrm{d}s} &= 0 + aV + bN, \\ \frac{\mathrm{d}V}{\mathrm{d}s} &= -aT + 0 + cN, \\ \frac{\mathrm{d}N}{\mathrm{d}s} &= -bT - cV + 0, \end{split}$$

donde $a = a(s), b = b(s), c = c(s), s \in I$. Probar además que:

- (a) $c = -\langle dN/ds, V \rangle$; concluir que $\alpha(I) \subseteq S$ es una línea de curvatura si y sólo si $c \equiv 0$ (c es llamada la torsión qeodésica de α).
- (b) b es la curvatura normal de la curva en p.
- (c) a es la curvatura geodésica de la curva en p.
- 4. Probar que las ecuaciones de las geodésicas en coordenadas polares geodésicas (E=1,F=0) están dadas por:

$$\rho'' - \frac{1}{2}G_{\rho}(\theta')^2 = 0,$$

$$\theta'' + \frac{G_{\rho}}{G}\rho'\theta' + \frac{1}{2}\frac{G_{\theta}}{G}(\theta')^2 = 0.$$

5. Sea C el cono $x^2 + y^2 = z^2, z > 0$. Usando que existe una isometría de dicho cono menos un meridiano con una porción de círculo contenida en un plano, probar que todo par de puntos $p, q \in C$ pueden ser unidos por una geodésica minimal en C. Probar que, sin embargo, C no es completa.

- 6. Sea $S \subset \mathbb{R}^3$ una superficie regular. Una sucesión $\{p_n\}$ de puntos en S es una sucesión de Cauchy con la distancia (intrínseca) d si dado $\varepsilon > 0$ existe n_0 tal que si $n, m \ge n_0$ entonces $d(p_n, p_m) < \varepsilon$. Probar que S es completa si y sólo si toda sucesión de Cauchy en S converge a un punto de S.
- 7. Sean S y \bar{S} superficies regulares, y $\phi: S \to \bar{S}$ un difeomorfismo. Supongamos que \bar{S} es completa y que existe una constante c>0 tal que

$$I_p(v) \ge c \, \bar{I}_{\phi(p)}(d\phi_p(v)),$$

para todo $p \in S$ y para todo $v \in T_p(S)$, donde I e \bar{I} denotan las primeras formas fundamentales de S y \bar{S} , respectivamente. Probar que S es completa.

8. Sean $S_1 \subset \mathbb{R}^3$ una superficie regular completa y conexa, y S_2 una superficie regular conexa tal que cualesquiera dos puntos de S_2 pueden ser unidos por una *única* geodésica. Sea $\phi: S_1 \to S_2$ una isometría local. Probar que ϕ es una isometría global.

EJERCICIOS EXTRAS

- 9. Probar que en una superficie de curvatura constante, los círculos geodésicos tienen curvatura geodésica constante.
- 10. Sea (ρ, θ) un sistema de coordenadas polares geodésicas (E = 1, F = 0) en una superficie S, y sea $\gamma(\rho(s), \theta(s))$ una geodésica que forma un ángulo $\varphi(s)$ con las curvas $\theta = cte$. Probar que

$$\frac{\mathrm{d}\varphi}{\mathrm{d}s} + \left(\sqrt{G}\right)_a \frac{\mathrm{d}\theta}{\mathrm{d}s} = 0.$$

11. Si p es un punto de una superficie regular S, probar que

$$K(p) = \lim_{r \to 0} \frac{12}{\pi} \frac{\pi r^2 - A}{r^4},$$

donde K(p) es la curvatura Gaussiana de S en p, r es el radio de un círculo geodésico $S_r(p)$ centrado en p, y A es el área de la región acotada por $S_r(p)$.