CSC 339 – Theory of Computation Fall 2023

8. Normal Forms of Context-Free Grammars

Outline

- Simplification of CFG
- Chomsky normal form
- Greinbach normal form

Substitution Rule

Equivalent

grammar

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

 $A \rightarrow abBc$

 $B \rightarrow aA$

 $B \rightarrow b$

Substitute

 $B \rightarrow b$

 $S \rightarrow aB \mid ab$

 $A \rightarrow aaA$

 $A \rightarrow abBc \mid abbc$

 $B \rightarrow aA$

$$S \rightarrow aB \mid ab$$
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc$
 $B \rightarrow aA$

Substitute
 $B \rightarrow aA$
 $S \rightarrow aA$
 $S \rightarrow aA$

Equivalent
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc \mid abaAc$

grammar

In general:
$$A \to xBz$$

$$B \to y_1$$
Substitute
$$B \to y_1$$

$$A \to xBz \mid xy_1z$$
equivalent
grammar

Nullable Variables

 ε – production : $X \to \varepsilon$

Nullable Variable: $Y \Rightarrow ... \Rightarrow \varepsilon$

Example: $S \rightarrow aMb$

 $M \rightarrow aMb$

 $M \to \varepsilon$

Nullable variable

 ε – production :

Removing ε – productions

$$S \to aMb$$

$$M \to aMb$$

$$M \to \varepsilon$$
Substitute
$$M \to \varepsilon$$

$$M \to aMb \mid ab$$

$$M \to aMb \mid ab$$

After we remove all the ε – productions all the nullable variables disappear (except for the start variable)

Unit-Productions

Unit Production: $X \rightarrow Y$

(a single variable in both sides)

Example: $S \rightarrow aA$

 $A \rightarrow a$

 $A \rightarrow B$

 $B \rightarrow A$

 $B \rightarrow bb$

8

Unit Productions

Removal of unit productions:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

Substitute
 $A \rightarrow B$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

Unit productions of form $X \rightarrow X$ can be removed immediately

$$S \rightarrow aA \mid aB$$
 $S \rightarrow aA \mid aB$
 $A \rightarrow a$ Remove $A \rightarrow a$
 $B \rightarrow A \mid B$ $B \rightarrow B$ $B \rightarrow A$
 $B \rightarrow bb$ $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow A$
 $B \rightarrow bb$

Substitute
 $B \rightarrow A$
 $B \rightarrow bb$

Substitute
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S \rightarrow aSb$$

$$S \rightarrow \varepsilon$$

$$S \rightarrow A$$

$$A \rightarrow aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another example:

$$S \to A$$
 $A \to aA$
 $A \to \varepsilon$
 $B \to bA$ Useless Production

Not reachable from S

In general:

If there is a derivation

$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w \in L(G)$$

consists of terminals

Then variable A is useful.

Otherwise, variable A is useless.

A production $A \rightarrow x$ is useless if any of its variables is useless.

$$S \rightarrow aSb$$

$$S \rightarrow \varepsilon \qquad \text{Productions}$$
Variables $S \rightarrow A \qquad \text{useless}$

$$useless \qquad A \rightarrow aA \qquad useless$$

$$useless \qquad B \rightarrow C \qquad useless$$

$$useless \qquad C \rightarrow D \qquad useless$$

Removing Useless Variables and Productions

Example of a grammar: $S \rightarrow aS \mid A \mid C$

 $A \rightarrow a$

 $B \rightarrow aa$

 $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals or \mathcal{E} (possible useful variables)

$$S \to aS |A| C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

Round 1: $\{A,B\}$

(the right hand side of productions that have only terminals)

Round 2: $\{A, B, S\}$

(the right hand side of a production has terminals and variables of previous round)

This process can be generalized

Remove productions that use variables other than $\{A, B, S\}$

$$S \to aS \mid A \mid \varnothing$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Second: Find all variables reachable from *S*

Use a Dependency Graph where nodes are variables

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$R \rightarrow aa$$

unreachable

Keep only the variables reachable from S

 $S \rightarrow aS \mid A$

 $A \rightarrow a$

Final Grammar

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

Contains only useful variables

Summary

This sequence guarantees that unwanted variables and productions are removed.

- Step 1: Remove Nullable Variables
- Step 2: Remove Unit-Productions
- Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each production has one of the following forms:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky

Normal Form

 $S \rightarrow AS$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky

Normal Form

Conversion to Chomsky Normal Form

Example:
$$S \to ABa$$
 Not Chomsky $A \to aab$ Normal Form $B \to Ac$

Convert it to Chomsky Normal Form

1) Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

$$S \to ABT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

2) Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

3) Introduce intermediate variable:
$$V_2$$

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a V_2$$

$$V_2 \to T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

	Final grammar in
	Chomsky Normal Form:
Initial grammar	$S \rightarrow AV_1$
$S \rightarrow ABa$	$V_1 \rightarrow BT_a$
$A \rightarrow aab$	$A \rightarrow T_a V_2$
$B \rightarrow Ac$	$V_2 \rightarrow T_a T_b$
	$B \rightarrow AT_c$
	$T_a \rightarrow a$
	$T_b \rightarrow b$
	$T_c \rightarrow c$ 30

In general:

From any context-free grammar (which doesn't produce ε) not in Chomsky Normal Form, we can obtain an equivalent grammar in Chomsky Normal Form.

The Procedure

First remove:

Nullable variables

Unit productions

Optionally, useless variables

Then, for every symbol: a

New variable: T_a

Add production: $T_a \rightarrow a$

In productions with length at least 2 replace a with T_a

Productions of form $A \rightarrow a$ do not need to change.

Replace any production

$$A \rightarrow C_1 C_2 \cdots C_n$$

with
$$A \rightarrow C_1 V_1$$

$$V_1 \rightarrow C_2 V_2$$

$$V_{n-2} \rightarrow C_{n-1}C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Observations

- Chomsky normal forms are good for parsing and proving theorems
- It is easy to find the Chomsky normal form for any context-free grammar

Greinbach Normal Form

All productions have the form:

Examples:

$$S \rightarrow cAB$$

$$A \rightarrow aA \mid bB \mid b$$

$$B \rightarrow b$$

 $S \rightarrow abSb$

$$S \rightarrow aa$$

Greinbach

Normal Form

Not Greinbach

Normal Form

Conversion to Greinbach Normal Form:

$$S \to abSb$$

$$S \to aa$$

$$S \rightarrow aT_bST_b$$

$$S \to aT_a$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

Greinbach

Normal Form

Observations

- Greinbach normal forms are very good for parsing strings (better than Chomsky normal forms).
- However, it is not always easy to find the Greinbach normal form of a grammar.