Instituto Tecnológico de Buenos Aires

22.01 Teoría de Circuitos

Trabajo práctico $N^{\circ}6$

Grupo 3

Mechoulam, Alan	58438
Lambertucci, Guido Enrique	58009
Rodriguez Turco, Martín Sebastian	56629
LONDERO BONAPARTE, Tomás Guillermo	58150
Galdeman, Agustín	59827

Profesores
Jacoby, Daniel Andrés
Belaustegui Goitia, Carlos
Iribarren, Rodrigo Iñaki

Presentado: */*/19

Índice

1.	Introducción	2
	Elaboración del filtro2.1. Celda universal Fleischer-Tow (FT)2.2. Análisis de sensibilidades	
3.	Selección de componentes	5

1. Introducción

En este informe se presenta y se explica como se confeccionó el filtro final propuesto por la cátedra. Para este, se valió del uso de las aproximaciones y celdas estudiadas a lo largo de la materia, para luego poder satisfacer la plantilla establecida

2. Elaboración del filtro

Dado que el filtro debe ser un rechaza banda, con aproximación de Chebycheff Inverso, se buscó que este cumpla con las siguientes restricciones:

Variable	Valor
f_p^-	$11.712~\mathrm{kHz}$
$\hat{f_a}^-$	$13.802 \mathrm{kHz}$
f_a^+	$16.301 \mathrm{kHz}$
f_p^+	$19.211\mathrm{kHz}$
A_a	45 dB
A_p	1dB
k	$\frac{1}{3}$

Tabla 1: Características del filtro realizado.

Para ello, se decidió emplear celdas del tipo universal, más específicamente del tipo Fleischer-Tow. Es por ello que se analiza y se explica la selección de dicha celda a continuación.

2.1. Celda universal Fleischer-Tow (FT)

En ocasiones es deseable poseer una señal de entrada que alimente varios nodos, obteniendo una única salida. A continuación se presenta la celda Fleischer-Tow, la cual se caracteriza por poder presentar una única transferencia que, dependiendo de los componentes seleccionados, puede ser un pasa bajos, pasa altos, pasa todo, de banda pasante y rechaza banda¹, lo cual es una fuerte ventaja frente a los otros tipos de celdas universales, las cuales requieren más de tres operacionales para conseguir dichas salidas.

Figura 1: Circuito de la celda Universal Fleischer-Tow.

Se analiza el circuito presentado para poder obtener la transferencia de este. Para calcular la función mencionada de esta celda, se observa primero la siguiente configuración:

¹R. Raut and M. N. S. Swamy, Modern Analog Filter Analysis and Design, 1st. ed. Weinheim: John Wiley and Sons, 2010.

Figura 2: Circuito genérico inversor.

Observando la Figura (2), aplicando el teorema de superposición, se presenta una configuración inversora, por lo que se obtiene

$$V_c = -\frac{V_a}{\frac{Z_1}{Z_3} + \frac{Z_1}{Z_3 A_o} + \frac{1}{A_o}} - \frac{V_b}{\frac{Z_2}{Z_3} + \frac{Z_2}{Z_3 A_o} + \frac{1}{A_o}}$$
(1)

Aplicando (1) y considerando los tres operacionales de la Figura (1) iguales, se obtiene el siguiente sistema de ecuaciones:

$$V' = -V_i A - V'' B$$

$$V_o = -V' C - V_i D$$

$$V'' = -V_o E - V_i F$$
(2)

siendo las constantes empleadas las siguientes:

$$A^{-1} = \frac{R_3}{R_2/\frac{1}{sC_1}} + \frac{R_3}{\left(R_2/\frac{1}{sC_1}\right)A_o} + \frac{1}{A_o}$$

$$B^{-1} = \frac{R_1}{R_2/\frac{1}{sC_1}} + \frac{R_1}{\left(R_2/\frac{1}{sC_1}\right)A_o} + \frac{1}{A_o}$$

$$C^{-1} = \frac{R_4}{R_5} + \frac{R_4}{R_5A_o} + \frac{1}{A_o}$$

$$D^{-1} = \frac{R_7}{R_5} + \frac{R_7}{R_5A_o} + \frac{1}{A_o}$$

$$E^{-1} = sC_2R_6 + \frac{sC_2R_6}{A_o} + \frac{1}{A_o}$$

$$F^{-1} = sC_2R_8 + \frac{sC_2R_8}{A_o} + \frac{1}{A_o}$$

Operando algebraicamente, se obtiene que la transferencia de esta configuración es

$$\frac{V_o}{V_i} = \frac{AC - BCF - D}{1 + BCE} \tag{4}$$

Si se consideran ideales los operacionales, es decir, se toma $A_o \to \infty$, se obtiene que la forma de la transferencia final es

$$\frac{V_o}{V_i} = -\frac{R_6}{R_8} \frac{s^2 \frac{C_1 C_2 R_1 R_8 R_4}{R_7} + s \frac{C_2 R_1 R_8 R_4}{R_2} \left(\frac{1}{R_7} - \frac{R_2}{R_3 R_4}\right) + 1}{s^2 \frac{C_1 C_2 R_6 R_1 R_4}{R_5} + s \frac{C_2 R_6 R_1 R_4}{R_2 R_5} + 1}$$
(5)

Es de interés obtener de esta los factores ω_o y Q de los polos, siendo estos los presentados a continuación.

$$\omega_o = \sqrt{\frac{R_5}{R_6 R_1 R_4 C_1 C_2}}$$

$$Q = R_2 \sqrt{\frac{C_1 R_5}{C_2 R_6 R_1 R_4}}$$
(6)

Es así que se destaca la dependencia de ω_o y Q de los capacitores, mientras que resultan ser independientes de R_8 . Además,resulta de interes que la frecuencia del polo es independiente de la resistencia R_2 , mientras que Q no, lo que permite modificar la primer variable sin afectar a la segunda.

2.2. Análisis de sensibilidades

En la siguiente sección, se procede a calcular las sensibilidades de H(s), Q y ω_o con respecto de cada componente, definiéndose la sensibilidad de una función y con respecto de x de la forma:

$$S_x^y = \frac{\delta y}{\delta x} \frac{x}{y}$$

Primero, se presentan las sensibilidades de H(s):

$$S_{R_{2}}^{H} = -\frac{s\left[sC_{2}\,R_{6}\,R_{1}\,R_{8}\,R_{7} + R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)\right]C_{2}\,R_{2}\,R_{1}\,R_{4}}{\left[R_{2}\,R_{5} + R_{1}\,\left(C_{1}\,R_{2}\,s + 1\right)R_{4}\,sC_{2}\,R_{6}\right]\left[sR_{1}\,R_{8}\,\left(C_{1}\,R_{2}\,R_{3}\,R_{4}\,s - R_{2}\,R_{7} + R_{3}\,R_{4}\right)C_{2} + R_{2}\,R_{3}\,R_{7}\right]} \tag{7}$$

$$S_{R_6}^H = \frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6} \left[\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6} + 1 \right]^{-1}$$
(8)

$$S_{R_{1}}^{H} = \frac{\left\{\left[sC_{1}\,R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)R_{4} - R_{5}\,R_{8}\,R_{7}\right]R_{2} + R_{4}\,R_{3}\,\left(-R_{6}\,R_{7} + R_{8}\,R_{5}\right)\right\}sC_{2}\,R_{2}\,R_{1}}{\left[\left(C_{1}\,C_{2}\,R_{6}\,R_{1}\,R_{4}\,s^{2} + R_{5}\right)R_{2} + R_{1}\,R_{4}\,sC_{2}\,R_{6}\right]\left\{\left[s^{2}R_{4}\,C_{1}\,C_{2}\,R_{1}\,R_{3}\,R_{8} - R_{7}\,\left(C_{2}\,R_{1}\,R_{8}\,s - R_{3}\right)\right]R_{2} + R_{1}\,R_{4}\,sC_{2}\,R_{8}\,R_{3}\right\}}$$

$$S_{R_3}^H = -\frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(10)

$$s_{R_8}^H = \frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(11)

$$S_{R_7}^H = \frac{R_5}{R_7} \left[-\frac{R_2 R_5}{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_8} + \frac{R_2 R_5}{R_3 (C_1 R_2 s + 1) R_4} - \frac{R_5}{R_7} \right]^{-1}$$
(12)

$$S_{R_4}^H = \frac{s \left(C_1 \, R_2 \, s + 1\right) \left[s C_2 \, R_6 \, R_1 \, R_8 \, R_7 + R_3 \, \left(-R_6 \, R_7 + R_8 \, R_5\right)\right] C_2 \, R_2 \, R_1 \, R_4}{\left(C_1 \, C_2 \, R_2 \, R_6 \, R_1 \, R_4 \, s^2 + R_1 \, R_4 \, s C_2 \, R_6 + R_2 \, R_5\right) \left[s^2 R_4 \, C_1 \, C_2 \, R_2 \, R_1 \, R_3 \, R_8 + C_2 \, R_1 \, R_8 \, \left(-R_2 \, R_7 + R_3 \, R_4\right) s + R_2 \, R_3 \, R_7\right]} \right) \left(13\right)}$$

$$S_{R_5}^H = \frac{R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6}{R_2 R_5 + R_1 (C_1 R_2 s + 1) R_4 s C_2 R_6}$$
(14)

$$S_{C_{1}}^{H} = \frac{C_{1} s^{2} \left[sC_{2} R_{6} R_{1} R_{8} R_{7} + R_{3} \left(-R_{6} R_{7} + R_{8} R_{5}\right)\right] C_{2} R_{2}^{2} R_{1} R_{4}}{\left[R_{2} R_{5} + R_{1} \left(C_{1} R_{2} s + 1\right) R_{4} sC_{2} R_{6}\right] \left[sR_{1} R_{8} \left(C_{1} R_{2} R_{3} R_{4} s - R_{2} R_{7} + R_{3} R_{4}\right) C_{2} + R_{2} R_{3} R_{7}\right]}$$
(15)

$$S_{C_2}^H = \frac{\left\{ \left[sC_1\,R_3\,\left(-R_6\,R_7 + R_8\,R_5 \right)R_4 - R_5\,R_8\,R_7 \right]R_2 + R_4\,R_3\,\left(-R_6\,R_7 + R_8\,R_5 \right) \right\} sC_2\,R_2\,R_1}{\left[\left(C_1\,C_2\,R_6\,R_1\,R_4\,s^2 + R_5 \right)R_2 + R_1\,R_4\,sC_2\,R_6 \right] \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right]R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right] R_2 + R_1\,R_4\,sC_2\,R_8\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_8 - R_7\,\left(C_2\,R_1\,R_8\,s - R_3 \right) \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3\,R_3 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1\,R_3 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[s^2R_4\,C_1\,C_2\,R_1 \right] R_3 + R_1\,R_3\,R_3 \right\} \left\{ \left[$$

Luego, dado que la sensibilidades de ω_o y Q resultan constantes, independientemente del componente del cual se las calcula, se presenta dichos valores de interés en la siguiente tabla.

	$\mathbf{R_2}$	R_6	$\mathbf{R_1}$	R_3	R_8	R_7	$\mathbf{R_4}$	R_5	$\mathbf{C_1}$	$\mathbf{C_2}$
ω_o	0	-0.5	-0.5	0	0	0	-0.5	0.5	-0.5	-0.5
Q	1	-0.5	-0.5	0	0	0	-0.5	0.5	0.5	-0.5

Tabla 2: Sensibilidades de ω_o y Q con respecto de cada componente

3. Selección de componentes

A continuación se presentan los componentes seleccionados para cada etapa.

Componente	Valor	Composición
R_1	$33.68 \ k\Omega$	$680 \ k\Omega + 33 \ k\Omega$
R_2	$334.28~k\Omega$	$3.9 \ k\Omega + 330 \ k\Omega$
R_3	$47~k\Omega$	$47 \ k\Omega$
R_4	$334.28~k\Omega$	$3.9 \ k\Omega + 330 \ k\Omega$
R_5	$47 \ k\Omega$	$47 \ k\Omega$
R_6	$49.7 \ k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$47~k\Omega$	$47 \ k\Omega$
R_8	$50 \ k\Omega$	$47 \ k\Omega + 3 \ k\Omega$
C_1	95 pf	$68 \ pf//27 \ pf$
C_2	95 pf	$68 \ pf \ //27 \ pf$

Componente	Valor	Composición
R_1	27.03	$27+27 \ k\Omega$
R_2	$371.57 \ k\Omega$	$680~k\Omega$ // $820~k\Omega$
R_3	$47 \ k\Omega$	$47 \ k\Omega$
R_4	$371.57 \ k\Omega$	$680~k\Omega$ // $820~k\Omega$
R_5	$52.5~k\Omega$	$56~k\Omega$ // $820~k\Omega$
R_6	$49.77~k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$47~k\Omega$	$47 \ k\Omega$
R_8	$47.5 \ k\Omega$	$47 \ k\Omega + 500 \ k\Omega$
C_1	$100 \ pf$	$100 \ pf$
C_2	XX pf	$\mathbf{XX} \ pf$

Tabla 3: Componentes seleccionados de la primer etapa.

Tabla 4: Componentes seleccionados de la segunda etapa.

Componente	Valor	Composición
R_1	27.13	$120+27 \ k\Omega$
R_2	$465.31~k\Omega$	$680~k\Omega~//~1.5~M\Omega$
R_3	$47 \ k\Omega$	$47 \ k\Omega$
R_4	$465.31~k\Omega$	$680 \ k\Omega \ // \ 1.5 \ M\Omega$
R_5	$42.08~k\Omega$	$15 \ k\Omega + 27 \ k\Omega$
R_6	$49.77~k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$47 \ k\Omega$	$47 \ k\Omega$
R_8	$48~k\Omega$	$47 \ k\Omega + 1 \ k\Omega$
C_1	$100 \ pf$	$100 \ pf$
C_2	$100 \ pf$	$100 \ pf$

Componente	Valor	Composición
R_1	$10.29 \ k\Omega$	$4.7 \ k\Omega + 5.6 \ k\Omega$
R_2	$1.32~M\Omega$	$120~k\Omega + 1.2~M\Omega$
R_3	$47~k\Omega$	$47 \ k\Omega$
R_4	$1.32~M\Omega$	$120~k\Omega + 1.2~M\Omega$
R_5	$39.44~k\Omega$	$470 \ k\Omega + 39 \ k\Omega$
R_6	$49.77~k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$47~k\Omega$	$47 \ k\Omega$
R_8	$48 \ k\Omega$	$47 \ k\Omega + 1 \ k\Omega$
C_1	92 pf	$10 \ pf \ // \ 82 \ pf$
C_2	92 pf	10~pf~//~82~pf

Tabla 5: Componentes seleccionados de la tercer etapa.

Tabla 6: Componentes seleccionados de la cuarta etapa.

Composición

Valor

Componente

Componente	Valor	Composición
R_1	$10.19 \ k\Omega$	$12 \ k\Omega \ // \ 68 \ k\Omega$
R_2	918.2 $k\Omega$	$100 \ k\Omega + 820 \ k\Omega$
R_3	$47~k\Omega$	$47 \ k\Omega$
R_4	918.2 $k\Omega$	$100 \ k\Omega + 820 \ k\Omega$
R_5	$56~k\Omega$	$56 \ k\Omega$
R_6	$49.77~k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$45 \ k\Omega$	$43 \ k\Omega + 2 \ k\Omega$
R_8	$55~k\Omega$	$12 \ k\Omega + 43 \ k\Omega$
C_1	88 pf	$82 \ pf \ // \ 5.6 \ pf$
C_2	88 pf	$82 \ pf \ // \ 5.6 \ pf$

R_1	$27.13 \ k\Omega$	$120 \ k\Omega + 27 \ k\Omega$
R_2	$465.31~k\Omega$	$680~k\Omega~//~1.5~M\Omega$
R_3	$47~k\Omega$	$47 \ k\Omega$
R_4	$465.31~k\Omega$	$680~k\Omega~//~1.5~M\Omega$
R_5	$42.08 \ k\Omega$	$15 k\Omega + 27 k\Omega$
R_6	$49.77~k\Omega$	$2.7 \ k\Omega + 47 \ k\Omega$
R_7	$46~k\Omega$	$43 \ k\Omega + 3 \ k\Omega$
R_8	$53 \ k\Omega$	$51 \ k\Omega + 2 \ k\Omega$
C_1	$70 \ pf$	68 pf
C_2	$70 \ pf$	68 pf

Tabla 7: Componentes seleccionados de la quinta etapa.

Tabla 8: Componentes seleccionados de la sexta etapa.