

中弘线控器网关接口协议

(自定义 485)

2023.03.13

变更履历

版本	发布时间	变更人	备注
V1.0			
V1.1			
V1.2	2021.11.15	曲新队	
V1.3	2022.05.06	曲新队	增加 A2B2 端口通信参数说明
V1.4	2022.05.19	刘慧	增加故障码协议、品牌 ID 编号、指令间隔说明
V1.5	2022.09.20	刘慧	性能指令中增加空调是否在线、品牌 ID 编号
V1.6	2022.10.14	杨凯轶	增加新风和地暖协议
V1.7	2023.03.13	邹高宁	增加新风设定湿度、风阀的协议;补充品牌 ID 编号

目录

1	自定义 485 通信协议应用说明	1
2	通讯参数	1
	2.1 线控器网关与控制端通讯端口出厂默认通讯参数	1
	2.2 指令间隔要求	1
3	通讯协议框架	1
4	功能码与示例	2
	4.1 功能码列表	2
	4.2 示例	2
	4.2.1 功能码 0x01 (查询空调性能) 示例	2
	4.2.2 功能码 0x02 (查询空调状态) 示例	5
	4.2.3 功能码 0x03 (控制端控制空调状态) 示例	7
	4.2.4 功能码 0x04(控制端查询网关连接的空调原厂故障代码值)示例	9
	4.2.5 功能码 0x11 (查询新风性能) 示例	12
	4.2.6 功能码 0x12 (查询新风状态) 示例	14
	4.2.7 功能码 0x13 (控制新风状态) 示例	15
	4.2.8 功能码 0x14 (控制端查询网关连接的新风原厂故障代码值) 示例	17
	4.2.9 功能码 0x21 (查询地暖性能) 示例	18
	4.2.10 功能码 0x22(查询地暖状态示例)	19
	4.2.11 功能码 0x23(控制地暖状态)示例	20
	4.2.12 功能码 0x24(控制端查询网关连接的地暖原厂故障代码值)示例	22
	4.2.13 多台网关控制示例	23

附表 1:	品牌与 ID	25
附表 2:	模式与控制值关系	26
附表 3:	风速与控制值关系	26
附表 4:	风向与控制值关系	26
附表 5:	ASCII 码转化对照表	27
附表 6:	新风模式性能对应关系(模式对应位置1则支持该模式)	27
附表 7:	新风模式与控制值关系	27
附表 8:	新风风速挡位性能对应关系(功能对应位置1则存在该风速)	28
附表 9:	新风功能点性能对应关系(功能对应位置1则存在该功能)	28
附表 10	:新风风速与控制值关系	29
附表 11:	: 新风品牌	29
附表 12	: 地暖品牌	29
附表 13	· 地暖功能占数量对应关系(功能对应位置 1 则存在该功能)	29

1 自定义485通信协议应用说明

本协议中控制端为主。中弘线控器网关为从,后面中弘线控器网关简称为网关。通过功能码来区分每条协议的功能。地址的方式有两种,第一种:地址1、地址2代表暖通设备(空调/新风/地暖)外机地址和内机地址。第二种:当地址1为0xFF的时候,地址2的值代表网关地址,网关地址可以通过"网关蓝牙配置"微信小程序进行设定,这样即使不知道暖通设备内外机地址也可以对暖通设备进行控制。

2 通讯参数

2.1 线控器网关与控制端通讯端口出厂默认通讯参数

项目	参数
传输模式	半双工
波特率	9600bps
起始位	1位
数据位	8位
校验位	无校验
停止位	1 位

ZHONGHONG

2.2 指令间隔要求

正常情况下网关收到指令后将在 50~100 ms 回复。

控制端指令发送间隔建议大于 100 ms。

3 通讯协议框架

控制端发送:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	•••	Byte N
包头	数据长度	地址1	地址2	功能码	控制值1	控制值2	•••	校验值
0xDD	N							

网关回复:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	•••	Byte N
包头	数据长度	地址1	地址2	功能码	控制值1	控制值2		校验值
0xCC	N						•••	

Byte.1 --- 包头, 0xDD 代表控制端发送给网关, 0xCC 代表网关发送给控制端。

Byte.2 --- 表示整条数据的长度 (从包头到校验的所有字节数)。

Byte.3 --- 外机地址。当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 --- 内机地址。当 Byte3 (地址 1) 为 0xFF 时,本字节代表网关地址。

Byte.5 --- 功能码,例如: 0x01 代表查询空调性能。0x03 代表控制空调状态。

Byte.6 --- 控制值,例如: 开关、温度、模式等。

.

Byte.N --- 校验值(前面所有数据的和,包头+数据长度+地址 1+地址 2+功能码+控制值=校验值,溢出只取低8 位)

4 功能码与示例

4.1 功能码列表

功能码	功能描述
0x01	控制端查询网关连接的空调性能
0x02	控制端查询网关连接的空调状态
0x03	控制端控制网关连接的空调状态
0x04	控制端查询网关连接的空调原厂故障代码值
0x11	控制端查询网关连接的新风性能
0x12	控制端查询网关连接的新风状态
0x13	控制端控制网关连接的新风状态
0x14	控制端查询网关连接的新风原厂故障代码值
0x21	控制端查询网关连接的地暖性能
0x22	控制端查询网关连接的地暖状态
0x23	控制端控制网关连接的地暖状态
0x24	控制端查询网关连接的地暖原厂故障代码值

4.2 示例

4.2.1 功能码0x01 (查询空调性能) 示例

4.2.1.1 控制端查询空调性能(以外机地址0x01,内机地址0x05为例)

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0x01	0x05	0x01	0xEA

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x01 --- 功能码, 0x01 代表查询空调性能。

Byte.6 0xEA --- 和校验

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12
包头	数据长度	地址1	地址2	功能码	空调品牌	外机地址	内机地址	预留1	预留2	预留3	校验
0xCC	0x0C	0x01	0x05	0x01	0x06	0x01	0x05	0x00	0x00	0x00	0xEB

Byte.1 0xCC --- 包头,代表网关发送给控制端。

Byte.2 0x0C --- 表示整条数据的长度为 12 个字节 (从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x01 --- 功能码, 0x01 代表查询空调性能。

Byte.6 0x06 --- 空调品牌, 0x06 代表格力, 空调品牌对应值见附表 1。

Byte.7 0x01 --- 外机地址为 0x01。

Byte.8 0x05 --- 室内机地址为 0x05。

Byte.9 0x01 --- 空调是否在线, 1 在线, 2 离线,3 搜索空调中。

Byte.10 0x00 --- 预留 1。

Byte.11 0x00 --- 预留 2。

Byte.12 0xEC --- 和校验。

4.2.1.2 控制端查询网关(以网关地址0x01为例)连接的空调性能

当不知道空调内外机地址的时候,可以通过网关地址控制空调,网关地址可以通过"网关蓝牙配置"小微信程序进行配置,配置范围 1-32,默认为 1。

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0xFF	0x01	0x01	0xE4

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x01 --- 功能码, 0x01 代表查询空调性能。

Byte.6 0xE4 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12
包头	数据长度	地址1	地址2	功能码	空调品牌	外机地址	内机地址	预留1	预留2	预留3	校验
0xCC	0x0C	0xFF	0x01	0x01	0x06	0x01	0x05	0x00	0x00	0x00	0xE5

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0C --- 表示整条数据的长度为 12 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x01 --- 功能码, 0x01 代表查询空调性能。

Byte.6 0x06 --- 空调品牌, 0x06 代表格力, 空调品牌对应值见附表 1。

Byte.7 0x01 --- 外机地址或者冷媒系统的地址为 0x01。

Byte.8 0x05 --- 室内机地址为 0x05。

Byte.9 0x01 --- 空调是否在线, 1 在线, 2 离线,3 搜索空调中。

Byte.10 0x00 --- 预留 1。

Byte.11 0x00 --- 预留 2。

Byte.12 0xE6 --- 和校验。

4.2.2 功能码0x02 (查询空调状态) 示例

4.2.2.1 控制端查询空调(以外机地址0x01,内机地址0x05为例)的状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0x01	0x05	0x02	0xEB

Byte.1 0xDD --- 包头, 代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x02 --- 功能码, 0x02 代表查询空调状态。

Byte.6 0xEB --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13
包头	数据长度	地址1	地址2	功能码	开关	设定温度	模式	风速	风向	房间温度	故障代码	校验
0xCC	0x0D	0x01	0x05	0x02	0x01	0x18	0x02	0x03	0x05	0x16	0x00	0x1A

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0D --- 表示整条数据的长度为 13 个字节 (从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x02 --- 功能码, 0x02 代表查询空调状态。

Byte.6 0x01 --- 空调开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 代表设定的温度为 24° C, 温度设定范围: 设定温度 $16\sim30^{\circ}$ C。

Byte.8 0x02 --- 空调设定的工作模式, 0x02 代表制冷,模式的控制值参考附表 2。

Byte.9 0x03 --- 空调设定的风速, 0x03 代表高速。风速的控制值参考附表 3。

Byte.10 0x05 --- 空调风向值, 0x05 代表导风板位于位置 5, 风向控制值参考附表 4。

Byte.11 0x16 --- 房间温度值,代表室内温度为 22℃。

Byte.12 0x00 --- 空调故障代码,0x00 代表没有故障;0x01 代表有故障,需要控制端发送 0x04 功能码指令查

询空调原厂故障代码值。

Byte.13 0x1A --- 和校验。

4.2.2.2 控制端查询网关(以网关地址0x01为例)连接的空调状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0xFF	0x01	0x02	0xE5

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x01 --- 功能码, 0x02 代表查询空调状态。

Byte.6 0xE5 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13
包头	数据长度	地址1	地址2	功能码	开关	设定温度	模式	风速	风向	房间温度	故障代码	校验
0xCC	0x0D	0xFF	0x01	0x02	0x01	0x18	0x02	0x03	0x05	0x16	0x00	0x14

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0D --- 表示整条数据的长度为 13 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x02 --- 功能码, 0x02 代表查询空调状态。

Byte.6 0x01 --- 空调开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 代表设定的温度为 24℃, 温度设定范围: 16~30℃。

Byte.8 0x02 --- 空调设定的工作模式, 0x02 代表制冷,模式的控制值参考附表 2。

Byte.9 0x03 --- 空调设定的风速, 0x03 代表高速。风速的控制值参考附表 3。

Byte.10 0x05 --- 空调风向值, 0x05 代表导风板位于位置 5, 风向控制值参考附表 4。

Byte.11 0x16 --- 房间温度值,代表室内温度为 22℃。

Byte.12 0x00 --- 空调故障代码, 0x00 代表没有故障; 0x01 代表有故障, 需要控制端发送 0x04 功能码指令查询空调原厂故障代码值。

Byte.13 0x14 --- 和校验。

4.2.3 功能码0x03 (控制端控制空调状态) 示例

4.2.3.1 控制端控制空调(以外机地址0x01,内机地址0x05为例)的状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
包头	数据长度	地址1	地址2	功能码	开关	设定温度	模式	风速	风向	校验
0xDD	0x0B	0x01	0x05	0x03	0x01	0x18	0x02	0x03	0x05	0x14

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x0B --- 表示整条数据的长度 11 个字节 (从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x03 --- 功能码, 0x03 代表控制空调状态。

Byte.6 0x01 --- 空调开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 代表设定的温度为 24℃, 温度设定范围: 16~30℃。

Byte.8 0x02 --- 空调设定的工作模式, 0x02 代表制冷,模式的控制值参考附表 2。

Byte.9 0x03 --- 空调设定的风速, 0x03 代表高速。风速的控制值参考附表 3。

Byte.10 0x05 --- 空调风向值, 0x05 代表导风板位于位置 5, 风向控制值参考附表 4。

Byte.11 0x14 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
包头	数据长度	地址1	地址2	功能码	设定状态	校验
0xCC	0x07	0x01	0x05	0x03	0x01	0xDD

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x07 --- 表示整条数据的长度为7个字节(从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x03 --- 功能码 0x03 代表控制空调状态。

Byte.6 0x01 --- 设定的状态, 0x00 代表设定失败, 0x01 代表设定成功。

Byte.7 0xDD --- 和校验。

4.2.3.2 控制端控制网关(以网关地址0x01为例)连接的空调状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
包头	数据长度	地址1	地址2	功能码	开关	设定温度	模式	风速	风向	校验
0xDD	0x0B	0xFF	0x01	0x03	0x01	0x18	0x02	0x03	0x05	0x0E

Byte.1 0xDD --- 包头, 代表控制端发送给网关。

Byte.2 0x0B --- 表示整条数据的长度 11 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x03 --- 功能码, 0x03 代表控制空调状态。

Byte.6 0x01 --- 空调开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 代表设定的温度为 24°C, 温度设定范围: 设定温度 16~30°C。

Byte.8 0x02 --- 空调设定的工作模式, 0x02 代表制冷,模式的控制值参考附表 2。

Byte.9 0x03 --- 空调设定的风速, 0x03 代表高速。风速的控制值参考附表 3。

Byte.10 0x05 --- 空调风向值, 0x05 代表导风板位于位置 5, 风向控制值参考附表 4。

Byte.11 0x0E --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
包头	数据长度	地址1	地址2	功能码	设定状态	校验	
0xCC	0x07	0xFF	0x01	0x03	0x01	0xD7	

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x07 --- 表示整条数据的长度为 7 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x03 --- 功能码 0x03 代表控制空调状态。

Byte.6 0x01 --- 设定的状态, 0x00 代表设定失败, 0x01 代表设定成功。

Byte.7 0xD7 --- 和校验。

4.2.4 功能码0x04(控制端查询网关连接的空调原厂故障代码值)示例

4.2.4.1 控制端查询空调(以外机地址0x01,内机地址0x05为例)的原厂故障代码值

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0x01	0x05	0x04	0xED

Byte.1 0xDD --- 包头, 代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x04 --- 功能码, 0x04 代表查询空调原厂故障代码值。

Byte.6 0xED --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15
包头	数据长度	地址1	地址2	功能码	有效错误码 数据长度	ASCII码-1	ASCII码-2	ASCII码-3	ASCII码-4	ASCII码-5	ASCII码-6	ASCII码-7	ASCII码-8	校验
0xCC	0x0F	0x01				0x45	0x31	0x30	0x39	0x00	0x00			0xC8

Byte.1 0xCC --- 包头,代表网关发送给控制端。

Byte.2 0x0F --- 表示整条数据的长度为 15 个字节 (从包头到校验的所有字节数)。

Byte.3 0x01 --- 代表外机地址为 0x01。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x04 --- 功能码, 0x04 代表查询空调原厂故障代码值。

Byte.6 0x04 --- 有效故障码数据长度, 0x04 代表 Byte7~Byte14 中有效故障码 ASCII 值有 4 位。

Byte.7 0x45 --- ASCII 码-1, ASCII-0x45 代表字符'E', 代表故障码第 1 位为'E'。ASCII 码转化参考附表 5。

Byte.8 0x31 --- ASCII 码-2, ASCII-0x45 代表字符'1', 代表故障码第 2 位为'1'。ASCII 码转化参考附表 5。

Byte.9 0x30 --- ASCII 码-3, ASCII-0x30 代表字符'0', 代表故障码第 3 位为'0'。ASCII 码转化参考附表 5。

Byte.10 0x39 --- ASCII 码-4, ASCII-0x39 代表字符'9', 代表故障码第 4 位为'9'。 ASCII 码转化参考附表 5。

Byte.11 0x00 --- ASCII 码-5,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.12 0x00 --- ASCII 码-6,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.13 0x00 --- ASCII 码-7,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.14 0x00 --- ASCII 码-8,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.15 0xC8 --- 和校验。

综上,原厂故障代码值为'E109'。

4.2.4.2 控制端查询空调 (地址0x01) 的原厂故障代码值

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	数据长度	地址1	地址2	功能码	校验值
0xDD	0x06	0xFF	0x01	0x04	0xE7

Byte.1 0xDD --- 包头, 代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x04 --- 功能码, 0x04 代表查询空调原厂故障代码值。

Byte.6 0xE7 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15
包头	数据长度	地址1	地址2	功能码	有效错误码 数据长度	ASCII码-1	ASCII码-2	ASCII码-3	ASCII码-4	ASCII码-5	ASCII码-6	ASCII码-7	ASCII码-8	校验
0xCC	0x0F	0xFF	0x01	0x04	0x04	0x45	0x31	0x30	0x39	0x00	0x00	0x00	0x00	0xC2

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0F --- 表示整条数据的长度为 15 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF --- 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的网关地址, 当前网关地址为 0x01。

Byte.5 0x04 --- 功能码, 0x04 代表查询空调原厂故障代码值。

Byte.6 0x04 --- 有效故障码数据长度, 0x04 代表 Byte7~Byte14 中有效故障码 ASCII 值有 4 位。

Byte.7 0x45 --- ASCII 码-1, ASCII-0x45 代表字符'E', 代表故障码第 1 位为'E'。ASCII 码转化参考附表 5。

Byte.8 0x31 --- ASCII 码-2, ASCII-0x45 代表字符'1', 代表故障码第 2 位为'1'。ASCII 码转化参考附表 5。

Byte.9 0x30 --- ASCII 码-3, ASCII-0x30 代表字符'0', 代表故障码第 3 位为'0'。ASCII 码转化参考附表 5。

Byte.10 0x39 --- ASCII 码-4, ASCII-0x39 代表字符'9', 代表故障码第 4 位为'9'。ASCII 码转化参考附表 5。

Byte.11 0x00 --- ASCII 码-5, 由于 Byte.6 有效故障码数据长度为 4, 因此该位返回默认值 0。

Byte.12 0x00 --- ASCII 码-6,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.13 0x00 --- ASCII 码-7, 由于 Byte.6 有效故障码数据长度为 4, 因此该位返回默认值 0。

Byte.14 0x00 --- ASCII 码-8,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.15 0xC2 --- 和校验。

综上,原厂故障代码值为'E109'。

4.2.5 功能码0x11 (查询新风性能) 示例

4.2.5.1 控制端查询新风(以内机地址0x05为例)的性能

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x41	0x05	0x11	0x3A

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x41 --- 代表外机地址,新风无外机地址固定为 41 虚拟地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x11 --- 功能码, 0x11 代表查询新风性能。

Byte.6 0x3A --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
包头	长度	地址一	地址二	功能码	新风品牌高位	新风品牌低位	外机地址	内机地址	新风状态
0xCC	0x14	0x41	0x05	0x11	0x00	0xC8	0x41	0x05	0x01

Byte11	Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18	Byte19	Byte20
存在模式	存在模式	存在模式	存在模式	风速模式	新风功能	新风功能	预留	预留	校验
0x00	0x46								

Byte.1 0xCC --- 包头,代表网关发送给控制端。

Byte.2 0x14 --- 表示整条数据的长度为 20 个字节 (从包头到校验的所有字节数)。

Byte.3 0x41 --- 代表外机地址为虚拟 0x41。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x11 --- 功能码, 0x11 代表查询新风性能。

Byte.6 0x00 --- 新风品牌编号高位,参考附录表 11。

Byte.7 0xC8 --- 新风品牌编号低位,参考附录表 11。0xC8 代表新风品牌为大金新风。

Byte.8 0x41 --- 外机地址新风固定为 0x41。

Byte.9 0x05 --- 新风内机地址为 0x05。

Byte.10 0x01 --- 新风是否在线, 1 在线, 2 离线, 3 搜索新风中。

Byte.11 0x00 --- 新风存在模式,详情参考附录表 6。

Byte.12 0x00 --- 新风存在模式,详情参考附录表 6。

Byte.13 0x00 --- 新风存在模式,详情参考附录表 6。

Byte.14 0x00 --- 新风存在模式,详情参考附录表 6。

Byte.15 0x00 --- 风速存在档位,详情参考附录表 8。

Byte.16 0x00 --- 新风功能点 1, 详情参考附录表 9。

Byte.17 0x00 --- 新风功能点 2, 详情参考附录表 9。

Byte.18 0x00 --- 预留。

Byte.19 0x00 --- 预留。

Byte.20 0x46 --- 和校验。

4.2.6 功能码0x12 (查询新风状态) 示例

4.2.6.1 控制端查询网关连接的新风(以内机地址0x05为例)状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x41	0x05	0x12	0x3B

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x41 --- 0x41 代表新风的虚拟地址, 当字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x05 --- 需要查询的内机地址。

Byte.5 0x12 --- 功能码, 0x12 代表查询新风状态。

Byte.6 0x3B --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
包头	长度	地址一	地址二	功能码	开关	设置温度	模式	风速	室内温度	故障码
0xCC	0x16	0x41	0x05	0x12	0x01	0xFF	0x02	0x01	0x18	0x00

Byte12	Byte13	Byte14	Byte15	Byte16	Byte17	Byte18	Byte19	Byte20	Byte21	Byte22
PM2.5	VOC	C02浓度	C02浓度	湿度	滤网百分比	滤网更换	风阀状态	设定湿度	预留	校验
0x00	0x01	0x1E	0x00	0x74						

Byte.1 0xCC --- 包头,代表网关发送给控制端。

Byte.2 0x16 --- 表示整条数据的长度为 22 个字节 (从包头到校验的所有字节数)。

Byte.3 0x41 --- 表示新风虚拟外机地址。

Byte.4 0x05 --- 需要查询新风内机地址。

Byte.5 0x12 --- 功能码, 0x12 代表查询新风状态。

Byte.6 0x01 --- 新风开机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0xFF --- 温度设定, 0xFF 代表新风无设置温度的功能。

Byte.8 0x02 --- 新风设定的工作模式,详情参考附录表 7。

Byte.9 0x01 --- 新风设定的风速,参考附录表 10。

Byte.10 0x18 --- 新风室内温度, 0xFF 代表无此功能, 0x18 代表 24 度。

Byte.11 0x00 --- 新风故障码, 0xFF 代表新风无此功能; 0x00 代表无故障; 0x01 代表有故障, 需要控制端发

送 0x14 功能码指令查询新风原厂故障代码值。

Byte.12 0x00 --- PM2.5, 0xFF 代表无此功能。

Byte.13 0x00 --- VOC 值, 0xFF 代表无此功能。

Byte.14 0x00 --- 新风二氧化碳浓度高位, 0xFF 代表无此功能。

Byte.15 0x00 --- 新风二氧化碳浓度低位, 0xFF 代表无此功能。

Byte.16 0x00 --- 湿度, 0xFF 代表无此功能。

Byte.17 0x00 --- 滤网百分比, 0xFF 代表无此功能。

Byte.18 0x00 --- 滤网是否更换, 0x00 代表否, 0x01 代表是, 0xFF 代表无此功能。

Byte.19 0x01 --- 风阀状态, 0x00 代表关, 0x01 代表开, 0xFF 代表无此功能。

Byte.20 0x1E --- 设定湿度, 0x1E 代表 30%, 0xFF 代表无此功能。

Byte.21 0x00 --- 预留。

Byte.22 0x74 --- 和校验。

4.2.7 功能码0x13 (控制新风状态) 示例

4.2.7.1 控制端控制网关连接的新风(以内机地址0x01为例)状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12
包头	长度	地址一	地址二	功能码	开关	设置温度	模式	风速	风阀开关	设定湿度	校验
0xDD	0x0C	0x41	0x01	0x13	0x01	0x00	0x02	0x03	0x01	0x1E	0x63

Byte.1 0xDD --- 包头, 代表控制端发送给网关。

Byte.2 0x0C--- 表示整条数据的长度 12 个字节 (从包头到校验的所有字节数)。

Byte.3 0x41 --- 新风的虚拟外机地址。

Byte.4 0x01 --- 内机地址。

Byte.5 0x13 --- 功能码, 0x13 代表控制新风状态。

Byte.6 0x01 --- 新风开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x00 --- 代表设定温度, 0xFF 代表无此功能。

Byte.8 0x02 --- 新风设定的工作模式,参考附录表 7。

Byte.9 0x03 --- 新风设定的风速,参考附录表 10。

Byte.10 0x01 --- 风阀开关, 0x00 代表关, 0x01 代表开, 0xFF 代表无此功能。

Byte.11 0x1E --- 代表设定湿度, 0x1E 代表 30%, 0xFF 代表无此功能。

Byte.12 0x63 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
包头	长度	地址一	地址二	功能码	设定状态	校验
0xCC	0x07	0x41	0x01	0x13	0x01	0x29

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x07 --- 表示整条数据的长度为 7 个字节 (从包头到校验的所有字节数)。

Byte.3 0x41 --- 新风的虚拟外机地址, 当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 内机地址。

Byte.5 0x13 --- 功能码 0x13 代表控制新风状态。

Byte.6 0x01 --- 设定的状态, 0x00 代表设定失败, 0x01 代表设定成功。

Byte.7 0x29 --- 和校验。

4.2.8 功能码0x14 (控制端查询网关连接的新风原厂故障代码值) 示例

4.2.8.1 控制端查询新风(以内机地址0x05为例)原厂错误代码值

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x41	0x05	0x14	0x3D

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x41 --- 新风虚拟外机地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x14 --- 功能码, 0x14 代表查询新风原厂故障代码值。

Byte.6 0x3D --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15
包头	长度	地址一	地址二	功能码	有效错误码 数据长度	ASCII码-1	ASCII码-2	ASCII码-3	ASCII码-4	ASCII码-5	ASCII码-6	ASCII码-7	ASCII码-8	校验
0xCC	0x0F	0x41	0x05	0x14	0x04	0x45	0x31	0x30	0x39	0x00	0x00	0x00	0x00	0x18

ZHONGHONG

Byte.1 0xCC --- 包头,代表网关发送给控制端。

Byte.2 0x0F --- 表示整条数据的长度为 15 个字节 (从包头到校验的所有字节数)。

Byte.3 0x41 --- 新风虚拟外机地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x14 --- 功能码, 0x14 代表查询新风原厂故障代码值。

Byte.6 0x04 --- 有效故障码数据长度, 0x04 代表 Byte7~Byte14 中有效故障码 ASCII 值有 4 位。

Byte.7 0x45 --- ASCII 码-1, ASCII-0x45 代表字符'E', 代表故障码第 1 位为'E'。ASCII 码转化参考附表 5。

Byte.8 0x31 --- ASCII 码-2, ASCII-0x45 代表字符'1', 代表故障码第 2 位为'1'。ASCII 码转化参考附表 5。

Byte.9 0x30 --- ASCII 码-3, ASCII-0x30 代表字符'0', 代表故障码第 3 位为'0'。ASCII 码转化参考附表 5。

Byte.10 0x39 --- ASCII 码-4, ASCII-0x39 代表字符'9', 代表故障码第 4 位为'9'。 ASCII 码转化参考附表 5。

Byte.11 0x00 --- ASCII 码-5,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.12 0x00 --- ASCII 码-6,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.13 0x00 --- ASCII 码-7, 由于 Byte.6 有效故障码数据长度为 4, 因此该位返回默认值 0。

Byte.14 0x00 --- ASCII 码-8,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.15 0x18 --- 和校验。

综上,原厂故障代码值为'E109'。

4.2.9 功能码0x21 (查询地暖性能) 示例

4.2.9.1 控制端查询地暖(以内机地址0x05为例)的性能

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x42	0x05	0x21	0x4B

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x42--- 代表外机地址,地暖无外机地址固为 0x42 虚拟地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x21 --- 功能码, 0x21 代表查询地暖性能。

Byte.6 0x4B--- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14
包头	长度	地址一	地址二	功能码	地暖品牌 高位	地暖品牌 低位	外机地址	内机地址	地暖状态	地暖功能 点	预留	预留	校验
0xCC	0x0E	0x42	0x05	0x21	0x01	0x90	0x42	0x05	0x01	0x00	0x00	0x00	0x1B

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0E --- 表示整条数据的长度为 14 个字节 (从包头到校验的所有字节数)。

Byte.3 0x42 --- 代表地暖虚拟外机地址为 0x42。

Byte.4 0x05 --- 代表地暖内机地址为 0x05。

Byte.5 0x21 --- 功能码, 0x21 代表查询地暖性能。

Byte.6 0x01 --- 地暖品牌编号高位,参考附录表 12。0x0190 代表默认地暖品牌。

Byte.7 0x90 --- 地暖品牌编号低位,参考附录表 12。0x0190 代表默认地暖品牌。

Byte.8 0x42 --- 外机地址地暖固定为 0x42。

Byte.9 0x05 --- 地暖内机地址为 0x05。

Byte.10 0x01 --- 地暖是否在线, 1 在线, 2 离线, 3 搜索地暖中。

Byte.11 0x00 --- 地暖功能点,参考附录表 13。

Byte.12 0x00 --- 预留 1。

Byte.13 0x00 --- 预留 2。

ZHONGHONG

4.2.10 功能码0x22 (查询地暖状态示例)

4.2.10.1 控制端查询网关连接的地暖(以地址0x01为例)状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x42	0x01	0x22	0x48

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x42 --- 0x42 代表地暖的虚拟地址, 当字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x01 --- 需要查询的内机地址。

Byte.5 0x22 --- 功能码, 0x22 代表查询地暖状态。

Byte.6 0x48 --- 和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15
包头	长度	地址一	地址二	功能码	开关	设置温度	模式	防冻温度	室内温度	故障码	防冻开关	预留	预留	校验
0xCC	0x0F	0x42	0x01	0x22	0x01	0x18	0x00	0x00	0x12	0x00	0x00	0x00	0x00	0x6B

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0F --- 表示整条数据的长度为 15 个字节 (从包头到校验的所有字节数)。

Byte.3 0x42 --- 表示地暖虚拟外机地址。

Byte.4 0x01 --- 需要查询地暖内机地址。

Byte.5 0x22 --- 功能码, 0x22 代表查询地暖状态。

Byte.6 0x01 --- 地暖开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 地暖设置温度, 0xFF 代表无此功能, 0x18 代表 24 度。

Byte.8 0x00 --- 地暖设定的工作模式, 暂无默认 0x00。

Byte.9 0x00 --- 地暖防冻温度, 0xFF 代表无此功能。

Byte.10 0x12 --- 地暖室内温度, 0xFF 代表无该功能, 0x12 代表 18 度。

Byte.11 0x00 --- 地暖故障码, 0xFF 代表地暖无此功能; 0x00 代表无故障; 0x01 代表有故障, 需要控制端发

送 0x24 功能码指令查询地暖原厂故障代码值。

Byte.12 0x00 --- 地暖防冻开关, 0x00 代表关, 0x01 代表开, 0xFF 代表无此功能。

Byte.13 0x00 --- 预留。

Byte.14 0x00 --- 预留。

Byte.15 0x6B --- 和校验。

4.2.11 功能码0x23 (控制地暖状态) 示例

4.2.11.1 控制端控制网关连接的地暖(以内机地址0x01为例)状态

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
包头	长度	地址一	地址二	功能码	开关	设置温度	模式	预留	预留	校验
0xDD	0x0B	0x42	0x01	0x23	0x01	0x18	0x00	0x00	0x00	0x56

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x0B--- 表示整条数据的长度 11 个字节 (从包头到校验的所有字节数)。

Byte.3 0x42 --- 地暖的虚拟外机地址。

Byte.4 0x01 --- 地暖内机地址。

Byte.5 0x23 --- 功能码, 0x23 代表控制地暖状态。

Byte.6 0x01 --- 地暖开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18 --- 设定温度, 0x18 代表 24 摄氏度。

Byte.8 0x00 --- 地暖设定的工作模式, 暂无默认 0x00。

Byte.9 0x00 --- 预留。

Byte.10 0x00 --- 预留。

Byte.11 0x56 ---和校验。

ZHONGHONG

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
包头	长度	地址一	地址二	功能码	设定状态	校验
0xCC	0x07	0x42	0x01	0x23	0x01	0x3A

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x07 --- 表示整条数据的长度为 7 个字节 (从包头到校验的所有字节数)。

Byte.3 0x42 --- 地暖虚拟外机地址。

Byte.4 0x01 --- 地暖内机地址 0x01。

Byte.5 0x23 --- 功能码 0x23 代表控制地暖状态。

Byte.6 0x01 --- 设定的状态, 0x00 代表设定失败, 0x01 代表设定成功。

Byte.7 0x3A ---和校验。

4.2.12 功能码0x24(控制端查询网关连接的地暖原厂故障代码值)示例

4.2.12.1 控制端查询地暖(以内机地址0x05为例)原厂故障代码值

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
包头	长度	地址一	地址二	功能码	校验
0xDD	0x06	0x42	0x05	0x24	0x4E

Byte.1 0xDD --- 包头,代表控制端发送给网关。

Byte.2 0x06 --- 表示整条数据的长度(从包头到校验的所有字节数)。

Byte.3 0x42 ---地暖虚拟外机地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x24 --- 功能码, 0x24 代表查询地暖原厂错误代码值。

Byte.6 0x4E ---和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11	Byte12	Byte13	Byte14	Byte15
包头	长度	地址一	地址二	功能码	有效错误码 数据长度	ASCII码-1	ASCII码-2	ASCII码-3	ASCII码-4	ASCII码-5	ASCII码-6	ASCII码-7	ASCII码-8	校验
0xCC	0x0F	0x42	0x05	0x24	0x04	0x45	0x31	0x30	0x39	0x00	0x00	0x00	0x00	0x29

ZHONGHONG

Byte.1 0xCC --- 包头, 代表网关发送给控制端。

Byte.2 0x0F --- 表示整条数据的长度为 15 个字节 (从包头到校验的所有字节数)。

Byte.3 0x42 --- 地暖虚拟外机地址。

Byte.4 0x05 --- 代表内机地址为 0x05。

Byte.5 0x24 --- 功能码, 0x24 代表查询空调原厂故障代码值。

Byte.6 0x04 --- 有效故障码数据长度, 0x04 代表 Byte7~Byte14 中有效故障码 ASCII 值有 4 位。

Byte.7 0x45 --- ASCII 码-1, ASCII-0x45 代表字符'E', 代表故障码第 1 位为'E'。ASCII 码转化参考附表 5。

Byte.8 0x31 --- ASCII 码-2, ASCII-0x45 代表字符'1', 代表故障码第 2 位为'1'。ASCII 码转化参考附表 5。

Byte.9 0x30 --- ASCII 码-3, ASCII-0x30 代表字符'0', 代表故障码第 3 位为'0'。ASCII 码转化参考附表 5。

Byte.10 0x39 --- ASCII 码-4, ASCII-0x39 代表字符'9', 代表故障码第 4 位为'9'。 ASCII 码转化参考附表 5。

Byte.11 0x00 --- ASCII 码-5,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.12 0x00 --- ASCII 码-6,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.13 0x00 --- ASCII 码-7, 由于 Byte.6 有效故障码数据长度为 4, 因此该位返回默认值 0。

Byte.14 0x00 --- ASCII 码-8,由于 Byte.6 有效故障码数据长度为 4,因此该位返回默认值 0。

Byte.15 0x29 ---和校验。

综上,原厂故障代码值为'E109'。

4.2.13 多台网关控制示例

当有多台网关连接在同一个控制系统中的时候,需要通过"网关蓝牙配置"微信小程序更改网关的地址,

取值范围 1-32。控制端通过轮询的方式进行查询和控制。

2.3.2 的示例是控制地址为 0x01 的网关。下面这个示例是控制地址为 0x02 的网关。

控制端发送给网关:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10	Byte11
包头	数据长度	地址1	地址2	功能码	开关	设定温度	模式	风速	风向	校验
0xDD	0x0B	0xFF	0x02	0x03	0x01	0x18	0x02	0x03	0x05	0x0F

Byte.1 0xDD ---包头,代表控制端发送给网关。

Byte.2 0x0B---表示整条数据的长度 11 个字节 (从包头到校验的所有字节数)。

Byte.3 0xFF---当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x02---需要查询的网关地址, 当前网关地址为 0x02。

Byte.5 0x03---功能码, 0x03 代表控制空调状态。

Byte.6 0x01---空调开关机状态, 0x00 代表关机, 0x01 代表开机。

Byte.7 0x18---代表设定的温度为 24°C, 温度设定范围: 设定温度 16~30°C。

Byte.8 0x02---空调设定的工作模式,0x02 代表制冷,模式的控制值参考附表2。

Byte.9 0x03---空调设定的风速, 0x03 代表高速。风速的控制值参考附表 3。

Byte.10 0x05---空调风向值, 0x05 代表导风板位于位置 5, 风向控制值参考附表 4。

Byte.11 0x0F---和校验。

网关回复给控制端:

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
包头	数据长度	地址1	地址2	功能码	设定状态	校验
0xCC	0x07	0xFF	0x02	0x03	0x01	0xD8

Byte.1 0xCC--包头,代表网关发送给控制端。

Byte.2 0x07--表示整条数据的长度为7个字节(从包头到校验的所有字节数)。

Byte.3 0xFF---当该字节设为 0xFF 时, Byte4 代表网关地址。

Byte.4 0x02---需要查询的网关地址, 当前网关地址为 0x02。

Byte.5 0x03---功能码 0x03 代表控制空调状态。

Byte.6 0x01---设定的状态, 0x00 代表设定失败, 0x01 代表设定成功机。

Byte.7 0xD8---和校验。

附表1:品牌与ID

***	(\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
兼容品牌	ID(十进制)
日立多联机(2芯)	1
大金多联机(2 芯)	2
东芝多联机(2 芯)	3
三菱重工多联机(2芯)	4
三菱电机多联机(4芯)	5
格力多联机(2芯)	6
海信多联机(2芯)	7
海尔多联机(3芯)	9
松下多联机 (2芯)	15
约克多联机 (2芯)	16
东芝风管机(4芯)	18
松下风管机 (4 芯)	19
美的 W1W2 (2 芯)	20
日立风管机(4芯)	36
格力风管机(4芯)	38
格力风管机 (2芯)	39
美的 CN40 (4 芯)	40
大金 MX 风管机 (4 芯)	41
海尔风管机(3芯)	42
海信风管机(4芯)	44
三菱重工多联机(3芯)	45
海尔风管机 REMOTE (3 芯)	46
开利风管机(4芯)	47
美的 CN20 (5 芯)	48
美的 CN40 双向共存	49
美的 X1X2 (2 芯)	50
美的 COLMO (2 芯)	51
富士通风管 (3 芯)	53
欧科风管机 (4 芯)	54
广州约克多联机(4芯)	55
约克风管机 (4 芯)	56
松下壁挂香港 (4 芯)	59

模拟器	88
空调 TEST	99

附表2: 模式与控制值关系

模式	控制值
设定制热	0x01
设定制冷	0x02
设定送风	0x04
设定除湿	0x08

附表3: 风速与控制值关系

风速	控制值
自动	0x00
低速	0x01
中速	0x02
高速	0x03

附表4: 风向与控制值关系

风向	控制值
无风向	0x00
位置 1	0x01
位置 2	0x02
位置 3	0x03
位置 4	0x04
位置 5	0x05
位置 6	0x06
位置 7	0x07
自动摆动	0xFF

附表5: ASCII码转化对照表

十进制	十六进	ASCII	十进制	十六进	ASCII	十进制	十六进	ASCII	十进制	十六进	ASCII
数	制数		数	制数		数	制数		数	制数	
0	0	NUL	32	20	SP	64	40	@	96	60	,
1	1	SOH	33	21	!	65	41	A	97	61	a
2	2	STX	34	22	11	66	42	В	98	62	ь
3	3	ETX	35	23	#	67	43	C	99	63	c
4	4	EOT	36	24	\$	68	44	D	100	64	d
5	5	ENQ	37	25	%	69	45	E	101	65	e
6	6	ACK	38	26	&	70	46	F	102	66	f
7	7	BEL	39	27	,	71	47	G	103	67	g
8	8	BS	40	28	(72	48	H	104	68	h
9	9	SH	41	29)	73	49	I	105	69	i
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	_	77	4D	M	109	6D	m
14	0E	SO	46	2E		78	4E	N	110	6E	n
15	0F	SI	47	2F	/	79	4F	0	111	6F	0
16	10	DEL	48	30	0	80	50	P	112	70	p
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	S
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	X	120	78	X
25	19	EM	57	39	9	89	59	Y	121	79	y
26	1A	SUB	58	3A	:	90	5 A	Z	122	7 A	Z
27	1B	ESC	59	3B	- ;	91	5B	[123	7B	{
28	1C	FS	60	3C	<	92	5C	\	124	7C	
29	1D	GS	61	3D	=	93	5D]	125	7D	}
30	1E	RS	62	3E	>	94	5E	^	126	7E	~
31	1F	US	63	3F	?	95	5F		127	7 F	DEL

附表6: 新风模式性能对应关系(模式对应位置1则支持该模式)

144-15	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
模式 1	旁通	送风	省电睡眠	强劲	智能	排风	换气	自动

144-15-4	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
模式 2	制热	制冷	新风	静音	手动	凉风	舒适	速净

- Z-44-L	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
模式 3	定时	新风除湿	关闭	混风	外循环	内循环	热交换	除湿

# + 1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
模 式 4	预留	预留	预留	预留	预留	预留	除霜	除霾

附表7: 新风模式与控制值关系

模式	控制值
设定自动	0x00

ZHONGHONG	
设定换气	0x01
设定排风	0x02
设定智能	0x03
设定强劲	0x04
设定省电睡眠	0x05
设定送风	0x06
设定旁通	0x07
设定速净	0x08
设定舒适	0x09
设定凉风	0x0A
设定手动	0x0B
设定静音	0x0C
设定新风	0x0D
设置制冷	0x0E
设定制热	0x0F
设定除湿	0x10
设定热交换	0x11
设定内循环	0x12
设定外循环	0x13
设定混风	0x14
设定关闭	0x15
设定新风除湿	0x16
设定定时	0x17
设定除霾	0x18
设定除霜	0x19

附表8: 新风风速挡位性能对应关系(功能对应位置1则存在该风速)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
预留	预留	预留	关闭	低速	中速	高速	自动

附表9: 新风功能点性能对应关系(功能对应位置1则存在该功能)

-1 46 -	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
功能点1	室内温度	设置温度	滤网更换	滤网百分比	湿度	CO2	TVOC	PM2.5

-1 46 -	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
功能点 2	预留	预留	预留	预留	预留	设定湿度	风阀	故障代码

附表10: 新风风速与控制值关系

风速	控制值
自动	0x00
低速	0x01
中速	0x02
高速	0x03
关闭	0x04

附表11: 新风品牌

兼容品牌	ID(十进制)
大金新风	200
松下	201
布朗新风	202
布朗新风 VC-011	203
松下 Uart 新风	204
迈迪龙 G5 新风	205
百朗新风除湿机(DHF24-300)	206
百朗新风除湿机	207
(DH20/DH30HP)	207
百朗新风除湿机(KF-900)	209
百朗新风除湿机(JNMSD)	210

附表12: 地暖品牌

兼容品牌	ID(十进制)		
默认	400		

附表13: 地暖功能点数量对应关系(功能对应位置1则存在该功能)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
预留	预留	预留	故障代码	防冻开关	防冻温度	室内温度	设置温度

微信公众号

ZHONGHONG