狱

溪

第四届全国大学生数学竞赛预赛试卷 (非数学类,2012)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分.

题	号		<u> </u>	111	四	五	六	七	总分
满	分	30	10	10	12	12	12	14	100
得	分								

注意: 1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效.

2、密封线左边请勿答题,密封线外不得有姓名及相关标记.

3、如当题空白不够,可写在当页背面,并标明题号.

得 分	
评阅人	

一、(本题共 5 小题,每小题各 6 分,共 30 分)解答下列各题(要求写出重要步骤).

评阅人 (1) 求极限 $\lim_{n\to\infty} (n!)^{\frac{1}{n^2}}$;

- (2) 求通过直线 L: $\begin{cases} 2x+y-3z+2=0 \\ 5x+5y-4z+3=0 \end{cases}$ 的两个相互垂直的平面 π_1 和 π_2 ,使其中一个平面过点 (4,-3,1);
- (3) 已知函数 $z = u(x,y)e^{ax+by}$,且 $\frac{\partial^2 u}{\partial x \partial y} = 0$,确定常数 a 和 b,使函数 z = z(x,y) 满足

方程
$$\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$$
;

- (4) 设函数u=u(x)连续可微,u(2)=1,且 $\int_L (x+2y)udx+(x+u^3)udy$ 在右半平面上与路径无关,求u(x).
- (5) 求极限 $\lim_{x\to+\infty} \sqrt[3]{x} \int_x^{x+1} \frac{\sin t}{\sqrt{t+\cos t}} dt$.

考生编号:	线
	海
准考证号:	
· 公:	

得 分	二、(本题 $10 分)$ 计算 $\int_0^{+\infty} e^{-2x} \sin x dx$.
评阅人	

得 分	
评阅人	

三、(本题 10 分)

求方程 $x^2 \sin \frac{1}{x} = 2x - 501$ 的近似解,精确到 0.001.

得 分	
评阅人	

四、(本题 12 分)

设函数 y = f(x) 二阶可导,且 f''(x) > 0, f(0) = 0,

$$f'(0) = 0$$
,求 $\lim_{x \to 0} \frac{x^3 f(u)}{f(x) \sin^3 u}$,其中 u 是曲线 $y = f(x)$

上点P(x,f(x))处的切线在x轴上的截距.

.

鉄

瓡

例

得 分	
评阅人	

五、(本题 12 分)

求最小实数C,使得对满足 $\int\limits_0^1 |f(x)| dx = 1$ 的连续的函数f(x),

都有 $\int_{0}^{1} f(\sqrt{x}) dx \leq C$.

得 分	
评阅人	

六、(本题 12 分)

设 f(x) 为连续函数, t>0. 区域 Ω 是由抛物面 $z=x^2+y^2$ 和球面 $x^2+y^2+z^2=t^2$ 所围起来的上半

部分. 定义三重积分

$$F(t) = \iiint_{\Omega} f(x^2 + y^2 + z^2) dv.$$

求F(t)的导数F'(t).

鉄

華

猁

得 分 评阅人

七、(本题 14 分)

设 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 为正项级数,那么

- (1) 若 $\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}b_n} \frac{1}{b_{n+1}} \right) > 0$,则 $\sum_{n=1}^{\infty} a_n$ 收敛;
- (2) 若 $\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}b_n} \frac{1}{b_{n+1}} \right) < 0$ 且 $\sum_{n=1}^{\infty} b_n$ 发散,则 $\sum_{n=1}^{\infty} a_n$ 发散.