Hick, Spatial Suppression und g

Stukturgleichungsmodelle 16 February, 2016

${\bf Contents}$

1 Traditionelle Analyse	2
1.1 Hick und Spatial Suppression	2
1.2 Hick und g	3
1.3 Spatial Suppression und g	4
1.4 Hick, Spatial Suppression und g	5
1.4.1 Einzelprädiktoren	5
1.4.2 Hick als Mediator	6
2 fixed-links Analyse	7
2.1 Hick und Spatial Suppression	7
2.2 Hick und g	8
2.3 Spatial Suppression und g	9
2.4 Hick, Spatial Suppression und g	10
2.4.1 Einzelprädiktoren	10
2.4.1 Hick als Mediator, expS als UV	11
2.4.2 Hick als Mediator, CS als UV	12
3 Schlussfolgerungen	12

1 Traditionelle Analyse

1.1 Hick und Spatial Suppression

- Das theoretische Modell bildet die Daten schlecht ab
- Covarianz zwischen g
Supp
2 \sim g Hick ist **nicht** signifikant (
 p=.163)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
137	19	< .001	.77	.1621	.08	.53

1.2 Hick und g

- Das theoretische Modell bildet die Daten schlecht ab
- Der Regressionskoeffizient g \sim g
Hick ist signifikant (p<.001)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
57.0	13	< .001	.91	.1117	.04	.46

1.3 Spatial Suppression und g

- Das theoretische Modell bildet die Daten schlecht ab
- Der Regressionskoeffizient g \sim g
Supp2 ist signifikant (p=.012)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
92.6	13	< .001	.77	.1621	.06	.46

1.4 Hick, Spatial Suppression und g

1.4.1 Einzelprädiktoren

- Das theoretische Modell bildet die Daten schlecht ab
- Covarianz zwischen g
Supp
2 \sim g Hick ist **nicht** signifikant
- Der Regressionskoeffizient g \sim g
Hick ist signifikant (p<.001)
- Der Regressionskoeffizient g ~ gSupp2 ist signifikant (p=.043)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
182	41	< .001	.82	.1316	.06	.62

1.4.2 Hick als Mediator

- Das theoretische Modell bildet die Daten schlecht ab
- Nicht signifikanter Regressionskoeffizient g
Hick ~ gSupp2 (p=.114)
- Nicht signifikanter indirekter Effekt (p = .093)
- Signifikanter direkter Effekt ($g \sim \text{gSupp2}, p = .043$)
- Signifikanter totaler Effekt (p = .011)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
182	41	< .001	.82	.1316	.06	.62

2 fixed-links Analyse

2.1 Hick und Spatial Suppression

- Das theoretische Modell bildet die Daten gut ab
- Einzig die Covarianz zwischen der konstanten Variable der Hick Aufgabe und der experimentellen Variable der Suppression Aufgabe ist signifikant (CH $\sim\sim$ expS = .196, p = .027)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
25.1	20	.197	.99	.0007	.06	.56

2.2 Hick und g

- Das theoretische Modell bildet die Daten gut ab
- Der Regressionskoeffizient g \sim C ist signifikant (p=.020)
- Der Regressionskoeffizient g \sim exp ist signifikant (p=.002)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
11.4	14	.650	1	.0005	.05	.39

2.3 Spatial Suppression und g

- Das theoretische Modell bildet die Daten gut ab
- Nicht signifikanter Regressionkoeffizient g \sim C(p=.054)
- Nicht signifikanter Regressionkoeffizient g \sim exp(p=.102)

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
14.3	14	.424	.99	.0006	.05	.39

2.4 Hick, Spatial Suppression und g

2.4.1 Einzelprädiktoren

Damit das Modell übersichtlich bleibt, habe ich nur das Strukturmodell geplotted.

- Das theoretische Modell bildet die Daten gut ab
- Nicht signifikanter Regressionskoeffizient g ~ CH (p = .071)
- Nicht signifikanter Regressionskoeffizient g \sim CS (p = .125)
- Nicht signifikanter Regressionskoeffizient g ~ expS (p = .191)
- Nicht signifikante Covarianz CH ~~ CS (p = .063)
- Nicht signifikante Covarianz CS \sim expH (p = .704)
- Nicht signifikante Covarianz $\exp S \sim \exp H \ (p = .400)$

Chi-Square	df	p	CFI	RMSEA	SRMR	parsimony ratio
43.5	40	.324	.99	.0005	.06	.61

2.4.1 Hick als Mediator, $\exp S$ als UV

Ich habe nur das Strukturmodell geplotted.

- Das theoretische Modell bildet die Daten gut ab
- Nicht signifikanter indirekter Effekt über CH (p=.161)
- Nicht signifikanter indirekter Effekt über exp
H (p=.768)
- Nicht signifikanter direkter Effekt (p = .160)
- Nicht signifikanter totaler Effekt (p = .063)

			CFI		SRMR	
Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
49.3	43	.235	.99	.0005	.07	.65

2.4.2 Hick als Mediator, CS als UV

Ich habe nur das Strukturmodell geplotted.

- Das theoretische Modell bildet die Daten gut ab
- Nicht signifikanter indirekter Effekt über CH (p = .181)
- Nicht signifikanter indirekter Effekt über expH (p = 556)
- Nicht signifikanter direkter Effekt (p = .114)
- Signifikanter totaler Effekt (p = .039)

			CFI		SRMR	
Chi-Square	$\mathrm{d}\mathrm{f}$	p		RMSEA		parsimony ratio
48.3	43	.267	.99	.0005	.06	.65

3 Schlussfolgerungen

- Mit den fixed-links Modellen lassen sich die Daten besser beschreiben als mit den klassischen CFAs
- Der Zusammenhang zwischen der konstanten Variable der Hickaufgabe (CH) und der experimentellen Variable derSuppression Aufgabe (expS) tritt bei Punkt 2.1 und bei Punkt 2.4 auf
- Einige Koeffizienten "verfehlen" das Signifkanzniveau knapp