内容

1.	線	形代数学(行列)	2
1.	1	スカラーとベクトルの違い	2
1.	2	行列	2
1.	3	連立1次方程式	2
1.	4	連立1次方程式を行列で表す(a $x=b$)	2
1.	5	行列の積	2
1.	6	連立方程式の解き方	2
1.	7	手順自体も計算として表現する方法	3
1.	8	行列の逆数	5
1.	8	単位行列と逆数	5
1.	9	逆行列の求め方	5
1.	1 0	問題(逆行列)	6
1.	1 1	逆行列が存在しない条件	7
1.	1 2	行列式の特徴	7
1.	1 3	行列式の求め方	9
1.	1 4	問題	9
2.	線形	/代数学(固有値)	. 10
2.	1	固有値と固有ベクトル	. 10
2.	2	固有値と固有ベクトルの求め方	. 10
2.	3	固有値と固有ベクトルの求め方 (問題)	. 11
2.	4	固有值分解	. 12
2.	5	固有値分解・問題	. 12
2.	6	特異値分解	. 13
2.	7	特異値の求め方	.13
2.	8	特異値の求め方(具体例)	. 13

1. 線形代数学(行列)

- 1) 固有値・固有ベクトルの求め方を確認する。
- 2) 固有値分解について理解を深める。
- 3) 特異値・特異ベクトルの概要を知る。
- 4) 特異値分解の概要を知る。

1. 1 スカラーとベクトルの違い

1) スカラー

普通の数字

四則演算ができるもの

2) ベクトル

大きさ、向きを表すために用いられる。

数字の組み合わせ

1. 2 行列

スカラーを表のようにしてまとめたもの

1) ベクトルの変換

1. 3 連立1次方程式

x 1 + 2 x 2 = 3

x 1、x 2:未知のもの

関係性はわかる。下記直線の上の値だけを取りうる。

$$x 2 = -1/2 x 1 + 3/2$$

$$x 2 = -2 / 5 x 1 + 1$$

1. 4 連立 1 次方程式を行列で表す (ax=b)

$$x 1 + 2 x 2 = 3$$

$$A x = b$$

$$2 \times 1 + 5 \times 2 = 5$$

$$(\begin{array}{cccc} 1 & 2 \\ 2 & 5 \end{array}) \quad (\begin{array}{cccc} x & 1 \\ x & 2 \end{array}) = (\begin{array}{cccc} 3 \\ 5 \end{array})$$

1.5 行列の積

$$\begin{pmatrix} 6 & 4 \\ 3 & 5 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6*1+4*2 \\ 3*1+5*2 \end{pmatrix}$$

a11 a12 a13 b11 b12 b13 a11*b11+a12*b21+a13*b31

 $(a21\ a22\ a23)\ (b21\ b22\ b23) = a21*b11+a22*b21+a23*b31$

a31 a32 a33 b31 b32 b33 a31*b11+a32*b21+a33*b31

$$\begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 * 1 + 1 * 3 & 2 * 3 + 1 * 1 \\ 4 * 1 + 1 * 3 & 4 * 3 + 1 * 1 \end{pmatrix}$$

1. 6 連立方程式の解き方

下限法

x 1 + 4 x 2 = 7

 $2 \times 1 + 6 \times 2 = 1 \ 0$

1) 2行目を1/2する

- x 1 + 4 x 2 = 7
- x 1 + 3 x 2 = 5
- 2) 1行目に2行目の-1倍を加える

$$x 2 = 2$$

- x 1 + 3 x 2 = 5
- 3) 2行目に1行目の-3倍を加える

$$x 2 = 2$$

- x 1 = -1
- 4) 1行目と2行目を入れ替える
- x 1 = -1

$$x 2 = 2$$

- 注) 必要な技術(行基本変形)
- i 行目を c 倍する
- ②. s行目にt行目のc倍を加える
- ③. p行目と q 行目を入れ替える。

$$(\begin{array}{ccc} 1 & 4 \\ 2 & 6 \end{array}) \quad (\begin{array}{ccc} x & 1 \\ x & 2 \end{array}) = (\begin{array}{ccc} 7 \\ 1 & 0 \end{array})$$

$$\begin{pmatrix} 1 & 4 \\ 1 & 3 \end{pmatrix} \quad \begin{pmatrix} x & 1 \\ x & 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix} \quad \begin{pmatrix} x & 1 \\ x & 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$(\begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array}) \quad (\begin{array}{c} x \ 1 \\ x \ 2 \end{array}) = (\begin{array}{c} 2 \\ -1 \end{array})$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} x & 1 \\ x & 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

1. 7 手順自体も計算として表現する方法

$$(\begin{array}{cccc} 1 & 4 \\ 2 & 6 \end{array}) \quad (\begin{array}{cccc} x & 1 \\ x & 2 \end{array}) = (\begin{array}{cccc} 7 \\ 1 & 0 \end{array})$$

- 2行目を1/2倍する
 - 1 0
 - $0 \ 1/2$

- 1 0 1 4 x 1 1 0 7
- 0 1/2
- 2 6
- x 2
- 0 1/2 1 0

1 4

- x 1
- 7

1 3

- x 2
- 5

- 1行目に2行目の-1倍を加える
 - 1 1
 - 0 1

1	- 1	1	4	x 1	1 - 1	7
0	1		3	x 2	0 1	5
_	_	_	_		_	
0	1			x 1	2	
1	3			x 2	5	
		. Hn 3	÷ 7	X Z	0	
	↓行目の一3倍を ○	: //II /	(5			
1						
— 3	3 1					
1		O		x 1	1 0	2
- 3	3 1	1	3	x 2	-3 1	5
0	1			x 1	2	
1	0			x 2	- 1	
1行目に2	2行目を入れ替え	こる				
0	1					
1	0					
0	1	0	1	x 1	0 1	2
1	0	1	0	x 2	1 0	- 1
1	0			x 1	- 1	
0	1			x 2	2	
1) i 行目	目を c 倍する					
1	00000					
C	10000					
	00c000		i 行目			
	000100					
	00010					
		をか力	旧える			
	c 0 0 0 0	, = /3	= 9			
	10000					
	001000					
	001000					
	000100					
		, ** .	,			
	目と q 行目を入れ	し省ろ	たる			
1	00000					

 $0\ 1\ 0\ 0\ 0\ 0$ $0\ 0\ 0\ 1\ 0$

0 1 0 0 0 0

000010

1.8 行列の逆数

1 4 x 1 7 2 6 x 2 1 0

 1 0
 x 1 =
 -3 2
 7

 0 1
 x 2 1 -1/2 1 0

 単位行列
 逆行列

1.8 単位行列と逆数

1) 単位行列

 $I = \begin{array}{cccc} & 1 & 0 & 0 \\ & 0 & 1 & 0 \\ & 0 & 0 & 1 \end{array}$

2) 逆行列

A (A-1) = (A-1) A = I

1.9 逆行列の求め方

1 4 x 1 7 2 6 x 2 1 0

左右同じ形にする

 1
 4
 x 1
 1
 0
 7

 2
 6
 x 2
 0
 1
 1
 0

1 4 1 0 2 6 0 1

2行目を1/2倍する

 1行目に2行目の-1倍を加える

- $0 \quad 1 \quad 1 \quad -1/2$
- $1 \quad 3 \quad 0 \quad 1/2$

2行目に1行目の-3倍を加える

- $0 \quad 1 \quad 1 \quad -1/2$
- 1 0
- -3 2

1行目と2行目を入れ替える

- 1 0
- -3 2
- 0 1
- 1 1/2

逆行列

■ガウスの掃出し法

1. 10 問題(逆行列)

- 4 7 1 0
- 1 2 0 1

2行目の-4倍を1行目に加える

- $0 1 \qquad 1 4$
- 1 2 0 1

1行目の2倍を2行目に加える

- $0 1 \qquad 1 4$
- $1 \quad 0 \qquad 2 \quad -7$

1 行目を - 1 倍する

- $0 \quad 1 \quad -1 \quad 4$
- 1 0
- 2 7

2行目と1行目を入れ替える

- 1 0
- 2 7
- $0 \quad 1 \quad -1 \quad 4$

1. 11 逆行列が存在しない条件

解が無い連立方程式

a b

c d

 $a:b \neq c:d$

a:b=c:d

逆行列を持たない

a d - b c = 0

平行四辺形の面積が0となる

1. 12 行列式の特徴

a b =

v 1

c d

v 2

$$\begin{vmatrix} a & b \end{vmatrix} = \begin{vmatrix} c & d \end{vmatrix}$$

v 1 v 2

1) 同じものを含んでいる場合 0 となる

v 1 v 2

w

 $v \ 4 = 0$

w

.

v n

2) 1つのベクトルが λ 倍されると、行列式は λ 倍される

v 1 v 2 v 1 v 2

:

λνί

v i :

 $=\lambda$

: v n

v n

3)他の部分が全部同じで i 番目のベクトルだけが違った場合、行列式の足し合わせになる。

v 1		v 1		v 1
v 2		v 2		v 2
:		:		:
:	+	:	+	:
vi+w		v i		w
:		:		:
:		:		:
v n		v n		v n

4) 行を入れ替えると符号が変わる

v 1		v 1
v 2		v 2
:		:
v s	=-	v t
v t		v s
:		:
:		:
v n		v n

- ①. 同じものがあったら0になる。
- ②. 他が同じで、1つだけ足したものは行列の足し合わせになる。

v 1		v 1		v 1	
v 2		v 2		v 2	
:		:		:	
v s	+	v t	=	v s + v t	= 0
v t		v s		v t + v s	
:		:		:	
:		:		:	
v n		v n		v n	

5) 3つ以上のベクトルからできている行列式は、展開できる。

$$v 1 = (a, b, c)$$

$$v 2 = (d, e, f)$$

$$v 3 = (g, h, i)$$

$$\begin{vmatrix} v & 1 \\ v & 2 \\ v & 3 \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ 0 & e & f \\ 0 & h & i \end{vmatrix} + \begin{vmatrix} 0 & b & c \\ d & e & f \\ 0 & h & i \end{vmatrix} + \begin{vmatrix} 0 & b & c \\ 0 & e & f \\ g & h & i \end{vmatrix}$$

1. 13 行列式の求め方

ある一つの正方行列に、ある一つの数値が対応する。

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a d - b c$$

1. 14 問題

10-1

2. 線形代数学(固有値)

2. 1 固有値と固有ベクトル

 $A x = \lambda x$

行列とベクトルをかけると、同じベクトル×スカラになる。

1 4 1 5

 $2 \quad 3 \quad 1 = 5 = 5 * 1$

固有値 $\lambda = 5$

1

固有値ベクトル(うちの一つ)1 特定の比率になっている(定数倍)

2. 2 固有値と固有ベクトルの求め方

 $A x = \lambda x$

 $(A-\lambda I) x=0$ $(A と \lambda はベクトルとスカラは引き算できない)$

$$A-\lambda I=0$$
 行列が 0 (逆行列を持たない)

$$1-\lambda$$
 4

$$|2 3-\lambda| = ((1-\lambda) * (3-\lambda)) - 4 * 2 = 0$$

$$1 * 3 + (-\lambda) + (-3 \lambda) + \lambda * \lambda - 8 = 0$$

$$\lambda * \lambda - 4 \lambda - 5 = 0$$

二次方程式の解

$$-b \mp \sqrt{b * b - 4}$$
 a c

 $_{\mathrm{X}} = ----$

2 a

$$(4 \mp \sqrt{16} + 20) / 2 = 4 \mp 6 / 2 = 5, -1$$

- 1) 固有値5の時
- 1 4 x 1 x 1
- $2 \quad 3 \quad x \quad 2 = 5 \quad x \quad 2$

$$1 \times 1 + 4 \times 2 = 5 \times 1 \longrightarrow 4 \times 2 = 4 \times 1 \longrightarrow x \quad 1 = x \quad 2$$

$$2 \times 1 + 3 \times 2 = 5 \times 2 \longrightarrow 2 \times 1 = 2 \times 2$$

2) 固有値-1の時

$$2 \quad 3 \quad x \quad 2 = -1 \quad x \quad 2$$

$$1 \times 1 + 4 \times 2 = - \times 1 \longrightarrow 4 \times 2 = -2 \times 1 \longrightarrow \times 1 = -2 \times 2$$

$$2 \times 1 + 3 \times 2 = - \times 2 \longrightarrow 2 \times 1 = - 4 \times 2$$

1

1

2. 3 固有値と固有ベクトルの求め方(問題)

320

020の固有値、固有ベクトルの求め方

001

$$Ax = \lambda x$$
 $(Ax - \lambda x) = 0$

$$|3-\lambda \quad 2 \quad 0|$$
 $|2-\lambda \quad 0|$

0 0 1- λ

1) 固有值=3

$$320$$
 $x1$ $x1$

$$0\ 2\ 0$$
 $x2 = 3*x2$

$$3*x1+2*x2$$
 = $3*x1$ $2*x2=0$ • $x2=0$

$$2*x2$$
 = $3*x2$ $2*x2-3*x2=0$ • $x2=0$

X1 は全然わからない。->X1 は好きな数が入る 1

0

0

2) 固有值=2

$$3\ 2\ 0 \qquad x1 \qquad \qquad x1$$

$$0\ 2\ 0$$
 $x2 = 2*x2$

$$3*x1+2*x2$$
 = $2*x1$ $x1+2*x2=0$ $x1=-2x2$

2*x2 = 2*x2

X1 は全然わからない。->X1 は好きな数が入る

-1/2

0

1

3) 固有值=1

$$3\ 2\ 0 \qquad x1 \qquad \qquad x1$$

$$0\ 2\ 0$$
 $x2 = 1*x2$

$$3*x1+2*x2$$
 = $1*x1$ $2*x1+2*x2=0$ $x1=x2$

$$2*x2$$
 = $1*x2$ $x2=0$

$$X1$$
 は全然わからない。 $->X1$ は好きな数が入る 0

0

1

X3 はわからない (好きな数が入る) から1にする。

2. 4 固有值分解

固有値は n * n の場合 n 個存在する

AV = VA

A = V A V inver

14

23

固有値 5、-1 固有ベクトル 1 1 逆行列 1/3 2/3

1 -1/2 2/3 -2/3

1 4 1 1 5 0 1/3 2/3 2 3= 1 -1/2 0 -1 2/3 -2/3

2.5 固有値分解・問題

 $2\ 1$

06

1) 固有値・固有値ベクトル

 $A - \lambda I = 0$

2-λ 1

 $\begin{vmatrix} 0 & 6 - \lambda \end{vmatrix} = 0$

 $(2-\lambda)(6-\lambda)-1*0=(2-\lambda)(6-\lambda)=0$ 固有値2,6

2 1 x1 x1

0.6 x2= 2*x2

2*x1+x2=2*x1 x2=0 1

6*x2=2*x2

2 1 x1 x1

0.6 x2 = 6 x2

2*x1+x2=6*x1 x2=4x1 1

6*x2=6*x2

2) 逆行列

 $11 \qquad 10$

04 01

2行目を-1/4して1行目に加算する

1 0 1 -1/4

0 4 0 1

2行目を1/4する

1 0 1 -1/4

0 1 0 1/4

固有値分解

21 11 20 1-1/4

0 6= 0 4 0 6 0 1/4

2. 6 特異値分解

正方行列以外の固有値分解

 $M v = \sigma u$

 $M(T) u = \sigma v$

このような特殊な単位ベクトルがあるならば特異値分解できる。

M=USV(T) U,V は直行行列

2. 7 特異値の求め方

MV = US M(T)U = VS(T)

M = U S V(T) M(T) = V S(T)U(T)

積は

MM(T) = U S V(T)V S(T)U(T) = U S S(T)U(T)

2. 8 特異値の求め方(具体例)

1)

123 123 144+9 3+4+3 1410

3 1

14 10

10 14 の固有値分解

①. 固有値と固有値ベクトル

14-λ 10

 $10 \qquad 14 \text{--} \lambda = 0 \qquad \qquad (14 \text{--} \lambda) (14 \text{--} \lambda) \text{--} 10 \text{*-} 10 = 0 \qquad \lambda \text{*-} \lambda \text{--} 28 \, \lambda + 196 \text{--} 100 = 0 \qquad \lambda = 24,4$

14 10 x1 x1

10*x1+14*x2=24*x2 10*x1=10*x2

14 10 x1 x1

 $10\ 14 \quad x2 = 4*x2$

10*x1+14*x2=4*x2 10*x1=-10*x2 -1

②. 固有值分解

14 10 $1/\sqrt{2} - 1/\sqrt{2}$ 24 0 $1/\sqrt{2} - 1/\sqrt{2}$ (T)

10 14= $1/\sqrt{2} - 1/\sqrt{2}$ 0 4 $1/\sqrt{2} - 1/\sqrt{2}$

1にするため√2にしている

2)

1 2 3 1 3 1 2 3 1+9 2+6 3+3 10 8 6 M=3 2 1 M(T)M= 2 2 3 2 1= 2+6 4+4 6+2= 8 8 8 3 1 3+3 6+2 9+1 6 8 10

①. 固有値・固有値ベクトル

10 8 6 10-λ 8 6

8 8 10= 8 8 10- λ =(10- λ)* 8 10- λ -8*8 10- λ +8*8- λ 8

 $=(10-\lambda)((8-\lambda)(10-\lambda)-8*8)-8*(8*(10-\lambda)-6*8)+8*(8*8-6*(8-\lambda))$

 $=(10-\lambda)((80-18\lambda + \lambda * \lambda)-64)-8*(80-8*\lambda -48)+8*(64-48+6*\lambda)$

 $=(10-\lambda)(\lambda*\lambda-18*\lambda+16)-8*(8*\lambda+32)+8*(6*\lambda+16)$

 $=(10* \lambda * \lambda -180* \lambda +160- \lambda * \lambda * \lambda +18* \lambda * \lambda -16* \lambda)-64* \lambda -256+48* \lambda +128$

 $= -\lambda * \lambda * \lambda + 28* \lambda * \lambda - 212* \lambda + 32$

3)特異値分解

 $1 \ 2 \ 3 \ 1/\sqrt{2} \ -1/\sqrt{2} \ \sqrt{24} \ 0 \ 0 \qquad 1/\sqrt{3} \ 1/\sqrt{3} \ 1/\sqrt{3}$ $M = 3 \ 2 \ 1 = 1/\sqrt{2} \ 1/\sqrt{2} = 0 \ \sqrt{4} \ 0 = \qquad 1/\sqrt{2} \ 0 \ -1/\sqrt{2}$ $1/\sqrt{6} \ -2/\sqrt{6} \ 1/\sqrt{6}$