Gerência de Memória Introdução e Particionamento

Marcelo Johann

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 · Slide

Aulas anteriores...

· Ciclo de Compilação, ligação e carga

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Plano da aula

- Introdução
- · Hardware para Proteção de Memória
- Alocação contígua simples
 - Vantagens e limitações
- Alocação particionada estática e dinâmica
 - Fragmentação (!)
 - Gerenciamento de lacunas.
- Uma palavra sobre swap de processos

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slid

Novo capítulo

Gerência de Memória

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 1E i Clida

Memória lógica & física

- Do lado do processo, enxerga-se um espaço de endereçamento lógico.
 - Ele acessa endereços lógicos.
 - Seu segmento de código também é armazenado em endereços lógicos.
 - Cada processo tem seu espaço lógico independente, contíguo, indo do endereço 0 até o endereço N-1.
- O HW disponibiliza memória física
 - Implementada em circuitos.
 - Fisicamente limitada (e.g. 512 Mbytes).
 - Usa vários nívels de Cache (hierarquia).

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 5

Memory Management Unit - MMU

- O HW disponibiliza um componente específico para fazer a tradução lógico/físico: a MMU.
 - Unidade de Gerenciamento da Memória.
 - Em geral, integrada com o processador.
- O Sis. Op. também participa dessa tradução.
- Gerencia tabelas de tradução.
- Organiza os vários níveis de memória acessíveis.
- Juntos, definem uma função de mapeamento dos endereços lógicos para os endereços físicos.
 - A interação exata é complexa.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 6

Interação MMU / Sis. Op. em ambos casos

- Cada processo tem seus acessos à memória limitados pelos dois valores nos registradores.
- Os mesmos devem ser armazenados no contexto do processo.
 - O salvamento de contexto deve limpar os registradores e restaurá-los!
 - Esses registradores devem ser protegidos dos usuários!
 - · Acesso apenas em modo supervisor.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 9

O que se espera da memória?

- Cada processo deve enxergar um espaço de endereçamento lógico
 - Grande (2-4 GBytes)
 - Contíguo (indo de 0 até N-1).
- · A memória física é
 - Escassa
 - "compartilhada" entre os processos
 - Quer dizer que ela deve ser repartida entre os processos!

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 10

Alocação simples

- O esquema mais simples possível compartilha a memória entre o Sis. Op. e um processo usuário.
 - Executa apenas um processo usuário por vez (MONOprogramação).
- · Basicamente, existem 3 possibilidades:
 - MS-DOS usa a 3a (BIOS = ROM)

2

Alocação particionada fixa · Para possibilitar a multi-1 Gb programação, a memória é Part. 1 dividida em partições: - de tamanho iqual; Part. 2 257 M - Ou de tamanhos diferentes. · O tamanho das partições é Part. 3 256 M OBS.: Fixo ≠ idêntico 1 M Sis. Op. INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2 Aula 15 : Slide 13

Qual partição alocar a qual processo?

- · Sistema com múltiplas filas
 - Ordenação dos processos;
 - Problema quando uma fila para partições grandes é vazia, apesar de ter fila para partições menores!
- · Sistema com fila única
 - Deve varrer a fila para escolher o "melhor" processo para uma dada partição.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 1

Problema de Fragmentação (1)

- Problema: qual é o tamanho para as partições?
- O que fazer com processos cujo uso de memória varia durante sua execução?
- Quando é alocada uma partição maior do que o necessário a um processo, há desperdício.
 - Fragmentação interna

Problema minimizado com o esquema com partições de tamanhos diferenciados.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide

Alocação com particionamento dinâmico

- O tamanho da partição pode variar sob-demanda.
 - Inicialmente, toda a memória é considerada como sendo um bloco alocável;
 - A medida que blocos vão sendo alocados;
 - Quando um processo se encerra, ele libera o bloco que esteve usando.
 - Complica o gerenciamento!
- O Sis. Op. deve manter uma lista dos "buracos" (blocos disponíveis).
 - Os buracos são chamados "lacunas".
 - Conforme for a evolução dos processos, as lacunas vão se espalhando na memória.
 - O Sis. Op. deve, para alocar um bloco, percorrer a lista de lacunas até achar a lacuna mais bem adaptada.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

ula 15 : Slide 17

Gerenciar as lacunas (1) A fragmentação contra-ataca Dois problemas de gerenciamento: As lacunas criam fragmentação externa. Com a multiplicação de lacunas pequenas, aumenta a memória que não pode ser aproveitada pelos processos. Chama-se "fragmentação externa" esse desperdício. 20 K 40 K 30 K 10 K 35 K 8 K 8 K 8 K 8 K 30 K? Qual lacuna alocar a um processo que pede por um tamanho X?

Gerenciamento de lacunas (2)

- alocação de lacuna
- · O Sis. Op. gerencia uma lista de lacunas.
- Quando se aloca uma lacuna, o espaço não usado da mesma cria uma nova lacuna, menor.
- · Qual lacuna alocar a um processo que pede por um tamanho X?
 - FIRST-FIT: a primeira lacuna onde cabem X bytes;
 - Procura pode começar sempre no início da lista, ou a partir do último bloco alocado ("next-fit").
 - · BEST-FIT: a lacuna de tamanho mais parecido a X (sendo maior do
 - Pode se aproveitar da ordenação da lista de lacunas.
 - WORST-FIT: a major lacuna disponível.
 - Bom, pois a nova lacuna criada será grande.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 19

Fragmentação (3o episódio)

- · Uma boa estratégia de escolha de lacunas ajuda minimizar a fragmentação externa...
 - ... mas ainda existe!
 - Estudos estatísticos mostram "lei dos 50%": usando N blocos, se perdem N/2 blocos...
- Solução radical: compactação
 - Unir as lacunas de forma a agregá-las e formar uma lacuna
 - Deslocar todos os processos para os endereços baixos, e as lacunas para cima.
 - Extremamente lento!
 - 512 Mbytes, 1 Ghz/32 bits => 1/8 de segundo.
 - Necessita um mecanismo de amarramento dinâmico.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 21

Implementação de listas de lacunas

Bitmap

- Define-se um a unidade básica de memória (bloco): 1 palavra, 1 KB, ...
- Armazena-se 1 bit por unidade

 o: unidade disponível; 1: unidade alocada.
- Maior a unidade, menor o bitmap e maior a fragmentação interna!
- Tamanho do bitmap proporcional ao tamanho da memória.
- Procura seguencia

Lista encadeada

- Cada elemento armazena o endereço de início e o tamanho da lacuna;
- Também deve ser armazenado um ponteiro para o próximo elemento da
- Usa ás próprias lacunas para armazenar a lista!
- Necessidades de deletar/compactar impõem listas duplamente encadeadas. Possibilidade de ordenar os elementos para agilizar o gereciamento.
- Tamanho proporcional ao número de blocos disponíveis.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Compactação "on-line"

- · O Linux usa o algoritmo chamado "buddy" para agregar as lacunas a cada alocação/liberação de um bloco.
- · Vetor de listas de blocos disponíveis (lacunas)
 - A entrada i aponta para uma lista de blocos de tamánho 2ⁱ
- À alocação:
 - O que sobra da lacuna alocada é decomposto em potências de 2 e entra no vetor, nas devidas entradas.
 - Se podem ser fusionados com vizinhos, os blocos se agregam.
- · À liberação: mesma coisa.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 23

Swap de Processos

- Sobra ainda um problema: nem todos os processos cabem na memória!
- Há necessidade de descarregar da memória parte dos processos, num dado momento
 - Eles vão para o disco
- A operação de discarga se chama "swap-out"; a carga se chama "swap-in".
- É uma operação lenta... mas crítica.
- Nada obriga o Sis. Op. a alocar, no swap-in, a mesma partição a um processo que tinha já executado.
 - Necessidade de ligação dinâmica.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 21

Conclusão sobre particionamento

- Na verdade, boa parte de nossos problemas (fragmentação...) vêm da exigência de se alocar um espaço contíguo de memória.
- Idéia genial: alocar memória de forma não contígua!
- = Paginação & Tabela de Páginas...
- · Será o assunto da próxima semana!

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 15 : Slide 28