Oppgave- og svarark til underveiseksamen i MAT1100

Dato: Tid: Tirsdag 14/10, 2003. Kl. 9.00-11.00.

	FORMELSAMLING. INGEN.
poengsummen er altså 50. Det er ba	15 første teller 2 poeng hver, de 5 siste teller 4 poeng hver. Den total are ett riktig alternativ på hvert spørsmål. Dersom du svarer feil elle du 0 poeng. Du blir altså ikke "straffet" for å svare feil. Krysser du a d, får du 0 poeng.
1) (2 poeng) Den deriverte til $f(x)$	$=\arcsin(\sqrt{x})$ er
\square $\arccos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$ \square $\frac{1}{\sqrt{1-x}}$	\square $\arccos(\sqrt{x})$ \square $\frac{1}{1+x}\frac{1}{2\sqrt{x}}$ \square $\frac{1}{2\sqrt{x}\sqrt{1-x}}$
2) (2 poeng) Den deriverte til $f(x)$	$= x^2 \arctan x \text{ er}$ $\frac{1}{+x^2} \qquad \boxed{2x \arctan x + \frac{x^2}{\sqrt{1-x^2}}} \qquad \boxed{\frac{x^3}{3} \cdot \frac{1}{1+x^2}} \qquad \boxed{2x \frac{1}{\cos^2 x}}$
3) (2 poeng) Det komplekse tallet \Box -1 \Box $\frac{-1+3i}{2}$ \Box i	
4) (2 poeng) Polarkoordinatene til	det komplekse tallet $\sqrt{3}-i$ er: $-\frac{\pi}{3} \qquad \square r=2, \ \vartheta=\frac{7\pi}{6} \qquad \square r=2, \ \vartheta=\frac{4\pi}{6} \qquad \square r=2, \ \vartheta=-\frac{7\pi}{6}$
	polarkoordinater $r=8,\ \vartheta=\frac{5\pi}{4}$. Tallet er
6) (2 poeng) Det komplekse tallet	$e^{7\pi i/3}$ er lik $\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \qquad \square \frac{\sqrt{3}}{2} + \frac{i}{2} \qquad \square -\frac{1}{2} - i\frac{\sqrt{3}}{2}$
7) (2 poeng) Det <i>reelle</i> polynomet	
8) (2 poeng) $\lim_{x\to 0} \frac{\ln(x+1)}{2x}$ er lik \square 1 \square ∞ \square 1/2 \square	$0 \Box 2$
9) (2 poeng) $\lim_{x\to\infty} x(\arctan x - \frac{\pi}{2})$	er lik
	\square ∞

10) (2 poeng) $\lim_{x \to \frac{\pi}{4}} \left(\cot x \right)^{\frac{1}{x - \frac{\pi}{4}}}$ er lik
\square 1 \square $e^{\pi/4}$ \square 0 \square ∞ \square e^{-2}
11) (2 poeng) Når $x \to \infty$ har $f(x) = \sqrt{x^2 + 3x}$ asymptoten:
\square Det finnes ingen asymptote \square $y = x - 1$
12) (2 poeng) Funksjonen $f(x) = \begin{cases} x^3 + 2x + 1 & \text{når} & x \leq 0 \\ ax + 1 & \text{når} & x > 0 \end{cases}$ er deriverbar i 0 når a er lik:
\square 0 \square 1 \square 1/2 \square 2 \square Det finnes ingen slik a
13) (2 poeng) Funksjonen $f(x) = x^3 + 5x + 3$ har en omvendt funksjon f^{-1} . Den deriverte $(f^{-1})'(3)$ er lik
14) (2 poeng) $\int_{0}^{1} \frac{1}{1+x^2} dx$ er lik:
15) (2 poeng) $\int \frac{2t}{\sin^2(t^2)} dt$ er lik:
16) (4 poeng) Det komplekse tallet $(1 + i\sqrt{3})^{11}$ er lik:
17) (4 poeng) Funksjonen $f(x) = 2x^3 + 3x^2 - 36x + 12$ er injektiv på intervallet:
18) (4 poeng) Du skal bruke definisjonen av kontinuitet til å vise at funksjonen $f(x) = 5x+3$ er kontinuerlig i punktet $a = 2$. Gitt $\epsilon > 0$, hvor liten må du velge $\delta > 0$ for at $ f(x) - f(2) < \epsilon$ når $ x - 2 < \delta$?
19) (4 poeng) Hvilken ulikhet gjelder for alle $x > 0$?
20) (4 poeng) I en likebeint trekant er de to like sidene 5 cm hver. Det største arealet trekanten kan ha er s
SLUTT