SDS 387, Fall 2024 Homework 3

Due October 17, by midnight on Canvas.

1. The **Delta Method** is a method to derive the asymptotic distribution of a function of a random vector converging in distribution to a Gaussian. It is a consequence of the CLT. Formally, let $\mathbb{R}^d \to \mathbb{R}$ be a function continuously differentiable at a point μ on its domain and let $\{X_n\}$ be a sequence of random vectors such that

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} N_d(0, \Sigma).$$

Show that

$$\sqrt{n}(f(\overline{X}_n) - f(\mu)) \stackrel{d}{\to} N(0, \nabla f(\mu)^{\top} \Sigma \nabla f(\mu)),$$

where $\nabla f(\mu)$) denotes the gradient of f evaluated at μ . This result is referred to as the delta method. *Hint: Do a first-order Taylor series expansion*.

Following the hint and performing a first-order Taylor series expansion of $f(\overline{X}_n)$ around $f(\mu)$ with the remainder in integral form, we have, using the linearity of the inner product,

$$\begin{split} \sqrt{n} \left(f(\overline{X}_n) - f(\mu) \right) &= \int_0^1 \langle \nabla f(\mu + u(\overline{X}_n - \mu)), \sqrt{n}(\overline{X}_n - \mu) \rangle du \\ &= \langle \int_0^1 \nabla f(\mu + u(\overline{X}_n - \mu)) du, \sqrt{n}(\overline{X}_n - \mu) \rangle. \end{split}$$

Then, $\int_0^1 \nabla f(\mu + u(\overline{X}_n - \mu)) du \xrightarrow{p} \nabla f(\mu)$ (it is ok to bring the limit inside the integral) and $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{p} X$, where $X \sim N_d(0, \Sigma)$ by assumption. By Slutsky's theorem, the term on the left-hand side of the above display equation converges to $\langle \nabla f(\mu), X \rangle \sim (0, \nabla f(\mu)^\top \Sigma \nabla f(\mu))$.

2. The delta method is not very useful when $\nabla f(\mu) = 0$. Here is a one-dimensional example. Suppose that $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$ and let $f(x) = x^2$. Show that $\sqrt{n}(\overline{X}_n^2 - \mu^2) \stackrel{d}{\to} N(0, 4\mu^2\sigma^2)$. If $\mu = 0$ the result implies that $\sqrt{n}(\overline{X}_n^2 - \mu^2) \stackrel{p}{\to} 0$. To obtain a limiting distribution, we need to consider a higher-order Taylor series expansion. Show that

$$n\overline{X}_n^2 \stackrel{d}{\to} \sigma^2 \chi_1^2$$

Hint: perform a second order Taylor series expansion and use the fact that if $X \sim N(\gamma, \sigma^2)$, then $X^2 \sim \sigma^2 \chi_1^2(\gamma^2)$.

If $g'(\mu) = 0$, we can take a second-order Taylor series expansion as follows. Suppose that $a_n(X_n - \mu) \stackrel{d}{\to} X$. Then for any g, continuously twice differentiable at μ , with $g''(\mu) \neq 0$,

$$g(X_n) - g(\mu) = \frac{1}{2}(X_n - \mu)^2 g''(\mu) + R(X_n - \mu),$$

where $R(x) = o(x^2)$. Multiply by a_n^2 on both sides. Then, by the continuous mapping theorem, $\frac{1}{2}a_n^2(X_n-\mu)^2g''(\mu) \stackrel{d}{\to} \frac{1}{2}X^2g''(\mu)$. As for the term $a_n^2R(X_n-\mu)$, Lemma 2.12 in Van der Vaart's books imply that $a_n^2R(X_n-\mu) = o_p(a_n^2(X_n-\mu)^2) = o_p(O_p(1)) = o_p(1)$ because $a_n^2(X_n-\mu)^2 = O_P(1)$ by the continuous mapping theorem. Thus, by Slutsky's theorem,

$$a_n^2(g(X_n) - g(\mu)) \stackrel{d}{\to} \frac{1}{2} X^2 g''(\mu).$$

When $a_n = \sqrt{n}$, $X_n = \overline{X}_n$ and $X \sim N(0, \sigma^2)$ (with $g'(\mu) = 0$)

$$\frac{g''(\mu)}{2}n(g(\overline{X}_n) - g(\mu)) \xrightarrow{d} \frac{g''(\mu)}{2}\sigma^2\chi_1(\mu^2).$$

The result follows for $g(x) = x^2$ with $\mu = 0$.

- 3. Let A be a symmetric matrix with eigendecomposition $A = U\Lambda U^{\top}$.
 - (a) Show that, for any positive integer k

$$A^k = U\Lambda^k U^{\top}$$

and, provided that A is non-singular,

$$A^{-k} = U\Lambda^{-k}U^{\top}.$$

(If A is singular, not all hopes are lost: we would use a pseudo-inverse. But that is a topic for another homework.) We have

$$A^{k} = \underbrace{U\Lambda U^{\top} \quad U\Lambda U^{\top} \quad \dots \quad U\Lambda U^{\top}}_{\text{k times}}$$

$$= \underbrace{U\Lambda\Lambda \dots \Lambda}_{\text{k times}} U^{\top}$$

$$= U\Lambda^{k}U^{\top}.$$

because $UU^{\top}=I$. The same argument works for the inverse A^{-1} , noting that $A^{-1}=U\Lambda^{-1}U^{\top}$.

(b) The matrix exponent of a symmetric matrix A is

$$e^A = \sum_{i=0}^{\infty} \frac{A^i}{i!}.$$

Let $A = U\Lambda U^{\top}$ be the eigendecomposition of A. Show that

$$e^A = U e^{\Lambda} U^{\top},$$

where e^{Λ} is the diagonal matrix with diagonal elements $e^{\lambda_1}, \ldots, e^{\lambda_n}$, where the λ_i 'a are the eigenvalues of A.

Using the result above, we can write

$$e^A = \lim_{n \to \infty} \sum_{i=0}^n \frac{A^i}{i!} = \lim_{n \to \infty} U \Lambda_n U^\top = U \left(\lim_{n \to \infty} \Lambda_n \right) U^\top = U e^\Lambda U^\top,$$

where Λ_n is the diagonal matrix whose (i,i) entry is $\sum_{i=0}^n \frac{\lambda^i}{i!}$.

4. Let Σ be the covariance matrix of a n-dimensional random vector X that has mean zero. If Σ has rank r < n, show that X takes values on a r-dimensional linear subspace (in fact, hyperplane) and finds that subspace (in fact, hyperplane).

Because Σ is positive semidefinite, it admits the eigendecomposition $\Sigma = U_r \Lambda_r U_r^{\top}$, where U_r is a $n \times r$ matrix with orthonormal columns and Λ_r is a $r \times r$ diagonal matrix containing the r positive eigenvalues of Σ . Then X is supported on the r-dimensional linear subspace \mathcal{S} of \mathbb{R}^n spanned by the columns of U_k . If not, then there must exist a point x_0 and a $\epsilon > 0$ such that the ball $B(x_0, \epsilon) = \{x : ||x - x_0|| < \epsilon \}$ does not intersect \mathcal{S} and $\mathbb{P}(X \in B(x_0, \epsilon)) > 0$. Then, for some unit vector v in \mathcal{S}^{\perp} , $\text{Var}(v^{\top}X) > 0$. But this is impossible, since $\text{Var}(v^{\top}X) = v^{\top}\Sigma v = 0$. Thus, X is supported on \mathcal{S} (technically, this means that there exists a closed - in the subspace topology - subset of \mathcal{S} , say S, such that $\mathbb{P}(X \in S) = 1$).

5. Let A be a $m \times n$ matrix with SVD $U\Sigma V^{\top}$. Suppose we want to approximate it using a rank $r < \min\{m, n\}$ matrix. We measure the quality of the approximation by the squared Frobenius norm, i.e., we want to find a rank-r $m \times n$ matrix B such that the least squares error

$$||A - B||_F^2$$

is minimal. Find a B such that

$$||A - B||_F^2 = \sum_{i>r} \sigma_i^2,$$

where the σ_i 's are the singular values of A (in decreasing order). In fact, that is the best we can do, a result known as the Eckart-Young-Mirsky theorem.

Let $A = U\Sigma V^{\top}$ be the SVD of A, and set $B = U_r\Sigma_rV_r^{\top}$, where U_r and V_r are the submatrices of U and V containing the first r columns and Σ_r is the principal $r \times r$ submatrix of Σ . Accordingly, let U_{-r} the submatrix of U obtained by removing the first r columns of U and Σ_{-r} the diagonal matrix containing the trailing rank(A) - r singular values of A, in decreasing order. Then, letting $C = A - B = U_{-r}\Sigma_{-r}U_{-r}^{\top}$,

$$\|A - B\|_F^2 = \operatorname{tr}(CC^\top) = \operatorname{tr}(U_{-r}\Sigma_{-r}^2 U_{-r}^\top) = \operatorname{tr}(U_{-r}^\top U_{-r}\Sigma_{-r}^2) = \operatorname{tr}(\Sigma_{-r}^2) = \sum_{i>r} \sigma^2.$$

6. **PCA.** Let A be a n-dimensional positive definite matrix. For i = 1, ..., n, denote with λ_i the i-th eigenvalue, with corresponding eigenvector u_i , and, without loss of generality, assume that the eigenvalues are ordered in decreasing order. Let $U\Lambda U^{\top}$ be the eigendecomposition of A. The Courant-Fischer-Weyl theorem implies that the eigenvalue/eigenvector pairs can be characterized in the following way. For any $x \in \mathbb{R}^d$, let $q(x) = x^{\top} A x$. Then

$$\lambda_1 = q(u_1) = \max_{\|x\|=1} q(x).$$

For $k \geq 2$, let \mathcal{U}_k be the k-dimensional subspace of \mathbb{R}^n spanned by the first k leading eigenvectors u_1, \ldots, u_k . Then

$$\lambda_k = q(u_k) = \max_{\|x\|=1, x \perp \mathcal{U}_{k-1}} q(x),$$

where $x \perp \mathcal{U}_{k-1}$ signifies that $x \in \mathcal{U}_{k-1}^{\perp}$.

PCA is a technique for dimensionality reduction. If X is a n-dimensional random vector with covariance matrix Σ , then the first k principal components of X are the eigenvectors u_1, \ldots, u_k and their scores are the eigenvalues $\lambda_1, \ldots, \lambda_k$, respectively.

(a) Show that $\operatorname{Var}(u_k^{\top}X) = \lambda_k$. That is, k-th PCA indicates a direction (a one-dimensional subspace) along which to orthogonal project X, and that projection has variance λ_k . Furthermore, the first PCAs are directions of maximal variance. This immediately follows from the fact that the eigenvectors are orthonormal:

$$u_k^{\top} u_i = \left\{ \begin{array}{ll} 0 & i \neq k \\ 1 & i = 1. \end{array} \right.$$

Thus

$$\operatorname{Var}(u_k^{\top} X) = u_k^{\top} U \Lambda U^{\top} u_k = \sum_{i=1}^n (u_k^{\top} u_i)^2 \lambda_i = \lambda_k.$$

(b) The *total variance* of a (possibly rank deficient) covariance matrix is the sum of its diagonal. Show that this is the same as the sum of its eigenvalue.

Easy-peasy:

$$\operatorname{tr}(\Sigma) = \operatorname{tr}(U\Lambda U^{\top}) = \operatorname{tr}(U^{\top}U\Lambda) = \operatorname{tr}(\Lambda),$$

where the second inequality is the cyclicity of the trace operator and the third uses the fact that U is orthogonal.

(c) Show that the total variance of the orthogonal projection of X onto the first k principal components is maximal, i.e. larger than the total variance of the orthogonal projection of X onto any other k-dimensional linear subspace. So, one way to think of PCA is as the best - in the sense of maximizing the total variance - linear approximation of X by an affine subspace of dimension k.

We can show this by induction. When k = 1 this follows from part (a), because

 λ_1 is the largest eigenvalue. Indeed, we pick a direction, say v, different than u_1 then the total variance is

$$\sum_{i=1}^{n} (v^{\top} u_i)^2 \lambda_i \le \max_i \lambda_i = \lambda_1$$

becuase $\sum_{i=1}^{n} (v^{\top}u_i)^2 = 1$. By part (b), the total variance of the first k-1 principal components is

$$\operatorname{tr}\left(\operatorname{Var}(U_{k-1}^{\top}X)\right) = \sum_{i=1}^{k-1} \lambda_i.$$

In choosing the next direction, since we want to maximize the total variance, we must pick a direction orthogonal to u_1, \ldots, u_{k-1} . Indeed, if we pick the next direction, say v, in the linear span of u_1, \ldots, u_{k-1} , then the total variance will not increase, i.e. it will still be $\sum_{i=1}^{k-1} \lambda_i$. If we choose the k-th direction to be u_k , then the total variance is $\sum_{i=1}^k \lambda_i$. If we choose another direction, say $v \neq u_k$, then the total variance is

$$\sum_{i=1}^{k-1} \lambda_i + \sum_{i>k} \lambda_i (v^\top u_i)^2 \le \sum_{i=1}^k \lambda_i$$

since $\sum_{i\geq k} (v^{\top}u_i)^2 = 1$ and $\lambda_k = \max_{i\geq k} \lambda_i$.

7. Distance between equidimensional linear subspaces. Let \mathcal{F} and \mathcal{E} be two r-dimensional subspaces of \mathbb{R}^d with orthogonal projection matrices $P_{\mathcal{F}}$ and $P_{\mathcal{E}}$, respectively. To measure the distance between them, a very commonly used metric is the $\sin \theta$ distance:

$$\frac{1}{\sqrt{2}} \|\mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}}\|_F.$$

(The fact that this is a distance is immediate and follow from the fact that the Frobenius norm is a norm. The division by $\sqrt{2}$ is made out of convenience and is immaterial. To learn more about this topic, see Chapter 5 of the book "Matrix Perturbation Theory" by Stewart and Sun). Show that the squared sin- θ distance is equal to

$$\|\mathbf{P}_{\mathcal{F}}(I_d - \mathbf{P}_{\mathcal{E}})\|_F^2 = \|\mathbf{P}_{\mathcal{E}}(I_d - \mathbf{P}_{\mathcal{F}})\|_F^2.$$

When r = 1 show that the above expression reduces to

$$1 - (e^{\top} f)^2$$
,

where e and f are unit vectors spanning \mathcal{E} and \mathcal{F} respectively. It is, of course, not a coincidence that in this case the squared sin- θ distance is 1 minus the squared cosine of the angle between the vectors f and e.

By linearity of trace, and using repeatedly the facts that orthogonal projection matrices are idempotent and symmetric,

$$\begin{aligned} \|\mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}}\|_{F}^{2} &= \operatorname{tr}\left((\mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}})(\mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}})\right) \\ &= \operatorname{tr}(\mathbf{P}_{\mathcal{F}} + \mathbf{P}_{\mathcal{E}} - \mathbf{P}_{\mathcal{F}}\mathbf{P}_{\mathcal{E}} - \mathbf{P}_{\mathcal{E}}\mathbf{P}_{\mathcal{F}}) \\ &= \operatorname{tr}\left(\mathbf{P}_{\mathcal{F}}(I - \mathbf{P}_{\mathcal{E}}) + \mathbf{P}_{\mathcal{E}}(I - \mathbf{P}_{\mathcal{F}})\right) \\ &= \|\mathbf{P}_{\mathcal{F}}(I - \mathbf{P}_{\mathcal{E}})\|_{F}^{2} + \|\mathbf{P}_{\mathcal{E}}(I - \mathbf{P}_{\mathcal{F}})\|_{F}^{2}. \end{aligned}$$

Next,

$$\|\mathbf{P}_{\mathcal{F}}(I - \mathbf{P}_{\mathcal{E}})\|_{F}^{2} = \operatorname{tr}\left(\mathbf{P}_{\mathcal{F}}(I - \mathbf{P}_{\mathcal{E}})\right)$$

$$= r + \operatorname{tr}\left(\mathbf{P}_{\mathcal{F}}\mathbf{P}_{\mathcal{E}}\right)$$

$$= r + \operatorname{tr}\left(\mathbf{P}_{\mathcal{E}}\mathbf{P}_{\mathcal{F}}\right)$$

$$= \operatorname{tr}\left(\mathbf{P}_{\mathcal{E}}(I - \mathbf{P}_{\mathcal{F}})\right)$$

$$= \|\mathbf{P}_{\mathcal{E}}(I - \mathbf{P}_{\mathcal{F}})\|_{F}^{2},$$

where in the second identity, we have used the fact that the trace of an orthogonal projection matrix onto a subspace of dimension r is r, and in the third identity we have used cyclicity of the trace. Thus,

$$\frac{1}{2} \| \mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}} \|_F^2 = \| \mathbf{P}_{\mathcal{F}} (I_d - \mathbf{P}_{\mathcal{E}}) \|_F^2 = \| \mathbf{P}_{\mathcal{E}} (I_d - \mathbf{P}_{\mathcal{F}}) \|_F^2.$$

When r = 1 and e and f are unit vectors spanning \mathcal{E} and \mathcal{F} , respectively, this quantity reduces to

$$1 + \operatorname{tr}(ee^{\top}ff^{\top}) = 1 + (e^{\top}f)\operatorname{tr}(ef^{\top}) = 1 - (e^{\top}f)^{2}.$$