FY1001/TFY4109/TFY4145. Institutt for fysikk, NTNU. Høsten 2015. Løsningsforslag til Test 11.

Oppgave 1

Her kjenner vi $\Delta x_A = 0$, $\Delta t_A = 4$ s og $\Delta t_B = 6$ s, og Δx_B skal bestemmes. Vi bruker LT (Lorentztransformasjonene):

$$\Delta t_B = \gamma \left(\Delta t_A + \frac{v}{c^2} \Delta x_A \right) = \gamma \Delta t_A,$$

slik at $\gamma = 6/4 = 3/2$, dvs $v = \sqrt{5}c/3$, hastigheten til A relativt B. Dermed:

$$\Delta x_B = \gamma \left(\Delta x_A + v \Delta t_A \right) = \gamma v \Delta t_A = \frac{3}{2} \cdot \frac{\sqrt{5}c}{3} \cdot 4 \,\mathrm{s} = 1.34 \cdot 10^9 \,\mathrm{m} = 1.34 \,\mathrm{Gm}.$$

Riktig svar: E.

Oppgave 2

Tilsvarende strategi som i oppgave 1, her med Δx_B som den ukjente. Med $\Delta t_A = 0$ er $\Delta x_B = \gamma \Delta x_A$, dvs $\gamma = 2$ og $v = \sqrt{3}c/2$. Det gir

$$\Delta t_B = \gamma \left(\Delta t_A + \frac{v}{c^2} \Delta x_A \right) = 2 \cdot \frac{\sqrt{3}c}{2c^2} \cdot 1000 \,\mathrm{m} = 5.77 \cdot 10^{-6} \,\mathrm{s} = 5.77 \,\mu\mathrm{s}.$$

Riktig svar: C.

Oppgave 3

Du er i inertialsystemet S, astronauten er i \overline{S} med hastighet v relativt S. Romskipets lengde er $\overline{L}=30$ m målt av astronauten. For å tilbakelegge denne distansen bruker lyset tiden $\overline{t}_B=\overline{L}/c=30/3\cdot 10^8=10^{-7}=100$ ns. Riktig svar: C.

Oppgave 4

Pga lorentzkontraksjon er romskipets lengde i S bare $L=\overline{L}/\gamma$. Her er v=c/2, slik at $\gamma=2/\sqrt{3}$, som gir $L=30\cdot\sqrt{3}/2=26$ m. Dessuten må vi ta hensyn til at romskipets bakvegg har beveget seg en lengde vt_B mellom hendelsene A og B. Lyset skal dermed tilbakelegge distansen $L-vt_B$ på tiden t_B , og med hastighet c tilsvarer dette også lengden ct_B . Altså: $ct_B=L-vt_B$, dvs $t_B=L/(c+v)=L/(3c/2)=58$ ns. Riktig svar: A.

Oppgave 5

Romskipets bakvegg tilbakelegger de 30 metrene i løpet av tiden $\bar{t}_C = \bar{L}/v = 30/1.5 \cdot 10^8 = 200$ ns. Riktig svar: E.

Oppgave 6

På din klokke tilbakelegger romskipets bakvegg 26 m på tiden $t_C = L/v = 26/1.5 \cdot 10^8 = 173$ ns. Riktig svar: B.

Oppgave 7

Dette har vi allerede funnet ut av: Pga lorentzkontraksjon er romskipet 26 m langt på ditt målebånd. Riktig svar: D.

Oppgave 8

Her må svaret bli det samme som i oppgave 3: 100 ns. Riktig svar: A.

Oppgave 9

Framveggen er, slik du ser det, 26 m unna når radiosignalet sendes ut. I løpet av tiden t_D-t_C flytter

framveggen seg ytterligere en avstand $(t_D-t_C)v$. Tilsvarende oppgave 4 har vi da $(t_D-t_C)c=L+(t_D-t_C)v$, dvs $t_D-t_C=L/(c-v)=26/1.5\cdot 10^8=173$ ns. For deg skjer altså hendelse D en avstand $26+173\cdot 10^{-9}\cdot 1.5\cdot 10^8=52$ m fra deg. Riktig svar: D.

Oppgave 10

Som funnet i forrige punkt: 173 ns. Riktig svar: C.