

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΜΠ

Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι (4°° Εξαμήνου) **1**^η Σειρά Ασκήσεων

Ονοματεπώνυμο: Δημήτριος Ζάρρας

<u>A.M.</u>: 031 15 092

<u>Εξάμηνο</u>: 4<u>0</u>

Ακαδημαϊκή Περίοδος: 2016 - 2017

<u>Διδάσκων</u>: Αν. Καθηγητής Παύλος-Πέτρος Σωτηριάδης

Μελέτη: Επανάληψη των προαπαιτούμενων γνώσεων που βασίζονται στο μάθημα της Ανάλυσης Γραμμικών Κυκλωμάτων και πρώτη επαφή με τον προσομοιωτή LTspice.

7. 8
AM.: 031 15 092
674myo: 4º
Exal: HMMY EMTI
Abrush 1 L_2 L_2 L_2 L_3 L_4 L_4 L_4 L_4 L_5 L_4 L_5
FR VI
Iz () ZXYMA I
Ь
1. Exame pas autopayers nyris pringers un risks. Apa, no zu examply to O. Thérenn promipage éter us nyris, assuranulinares zu nyri pringers un spaximalhares
Zyv nyzy zásys Najprepre to Zxijna 2a:
R_{1} R_{1} R_{1} R_{1} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{4} R_{5} R_{4} R_{5} R_{6} R_{7} $R_{14} = R_{1} + R_{2}$ R_{14}
PR SR
[Exima 1a)
Tia ty wiper tys takes anomemunimator, Van da mingre xpjes to 0. Englishias:
· Ar uparisagne par zyr I2: In the
Iz () Value (Ixipa 18)
6
O whosos tys RI that yhurpus assigness, apply RI de Sapieta, and yhurpus prima, low
Le auguroundingeros a-b. Orôte, naiprope: IRz=Iz. Apa, Vary =-Rz.Ir =-Rz.Iz
Apa, $Vak_1 = -R_2 \cdot I_{R_1} = -R_2 \cdot I_2$ (2)
· Av upotajonja pour an VI: {Rr VI tous (Exigna 18)
Vauz
6

Nail, opus, or Re un Re vivar y Surpris adiapper, ago de Suppiona, and yourpris pring. (46, pominery Vare = V1(3) Apa, VTH = Van = Van + Van - Izkz + V1 = VTH = V1-Izkz 4 O, D was a Sinor you reading arising was 1785 tales, aristorya, water Therevin pa to Survinga apidipa tur a vai b. Enring: Otal Dipe of or angetiens was adiapper youtpure, and Se Siappeorter and gluxpino prima, ograine ou y anestas, R do exerprima I-O, un apa ario to voje to Ohm I= X = R= I . gms, pe I=0 pa va was rengaspery y typy this arristably Rco, la piner un V=0. 2. Xpg61ponojajne to 160strapo Tréveris no Exame to 160strapo minimos: Ona, RTH= RI+Rz (Exina 18) WI VTH = VL-IZRZ Appeninery, oy IL = VTH (Exjng 2) 1. And rygis exame now the antipopyty may takes Vb. knopiums, you the examples to

2. Γ_{14} $\Gamma_{14} = \Gamma_{13} = \Gamma_{14} = \Gamma_{14}$ Apa, to puing booxumhiparos, [I&=IN=0].
Orill, to 1605 rapo Norton no painta, ari los aupodintes al tes Re cira: SRL (Exigna 25) 3. And to 160 Siverpo Thérain, to Exjeques 28 Brishape um Sodierum aprin: $R_{7H} = \frac{R_1 \cdot R_1}{R_1 + R_2} + \frac{R_3 \cdot R_4}{R_3 + R_4} = \left(\frac{1 \cdot 2}{3} + \frac{3 \cdot 4}{7}\right) \circ = R_{7H} = \left(\frac{2}{3} + \frac{12}{7}\right) \circ = R_{7H} = \frac{14 + 36}{21} \circ = R_{7H} = \frac{50}{21} \circ$ $V_{TH} = V_b \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4} \right) = 20 \left(\frac{2}{3} - \frac{4}{7} \right) V = V_{TH} = \frac{40}{21} V$ And to Exigna 28 Me Scaipedy raises naiprospe: Vab = VTH RL = 40 10+50 $= \frac{40.210}{24.260} \vee = \frac{400}{260} \vee = \sqrt{46} = 1,5385 \vee$ It topi arty resimple a delegina are by dialog to unshipates. Ety enoming 62-2,60 (62 662.5) napanajezar y Eiprey tys idias trys pa tyr taky Valo, piece tys DC Apolopionery 66 Apolpanna LTSpice

(Συνέχεια ερωτήματος 3, Άσκησης 2)

Μέσω DC προσομοίωσης στο LTSpice (DC operating point), προκύπτουν για το κύκλωμα, με ενσωματωμένες τις τιμές του ερωτήματος 3 της Άσκησης 2, οι εξής τιμές:

Επομένως, η διαφορά δυναμικού στα άκρα a και b της αντίστασης R_L προκύπτει ως $V_{ab} = V_a - V_b = (13,2308-11,6923) \ V \Leftrightarrow V_{ab} = 1,5385 \ V. \ \underline{\Delta \eta \lambda \alpha \delta \dot{\eta}}, \ \eta \ \text{τιμ\dot{\eta}} \ \text{της τάσης} \\ \underline{V_{ab}} \ \underline{\mu \acute{e} \sigma \omega} \ \text{της DC} \ \pi \rho o \sigma o \mu o \acute{u} \omega \sigma \eta \varsigma \ \pi \rho o κ \acute{u} \pi \tau \epsilon i \acute{b} \iota \alpha \ \underline{\mu \epsilon} \ \text{την τιμ\dot{\eta}} \ \pi o \upsilon \ \upsilon \pi o \lambda o \gamma \acute{l} \sigma \tau \eta \kappa \epsilon \\ \underline{\alpha \lambda \gamma \epsilon \beta \rho \iota \kappa \dot{\alpha}}.$

N.T. N. 620 II : -30V + Sii + Vgh = 0 3 = -30V + Sii - 10ii = 0 @

Vgh = Vhl = -10ii N.P.U. 60 9: $i_1' + 0,25 \cdot V_{ab}'' = i_2'$ $V_{ab}'' = V_{ab}'' + 0,25 \cdot V_{ab} = i_2'$ $V_{ab}'' = V_{ab}'' + 0,25 \cdot V_{ab} = i_2'$ $V_{ab}'' = V_{ab}'' + 0,25 \cdot V_{ab} = i_2'$ $V_{ab}'' = V_{ab}'' + 0,25 \cdot V_{ab} = i_2'$ 9 = -30v + 5i + 10i = 0 0 Exape jour ou Van = - Dis Que Van = 10iz = iz = Van 8 (7) 9 -30 V + Si' + 10 Van =0 = -30 V + Si' + Van = 0

(8) = i' + 0,25. Van = 0,1. Van] = 4-30v +5ii=-van = van= 30v-sii 9 ii+ 0,25. (30-sii)=0 = ii+ 4,5-0,75.ii=0 = ii=-18A 3 =1 Valu = 30V +30V =1 Valu = 120V = VTH RTH = Vau = 120 = 1 RTH = 20 = Apa, Exape to 160 simpo Thévenin pa to Suringes aprotes un 67 prim a us, 6: Vab { RL=100 (Existra 38) 2. And 6 napanam 160 Sivapo windupa & Exignator 38 naiproupe of : $i_L = \frac{120 \, \text{V}}{202 + R_L} = \frac{120}{30} \, \text{A} \implies [i_L = 4 \, \text{A}]$

3. (Ερώτημα 3, Άσκησης 3)

Μέσω DC προσομοίωσης στο LTSpice, για την περίπτωση που η εξαρτημένη πηγή ρεύματος έχει τιμή 0.25·V_{ab}, προκύπτει για το ρεύμα i_L, που διαρρέει την αντίσταση R_L, ότι ισούται με: i_L = 4A, όπως φαίνεται και στο παρακάτω σχήμα με τα αποτελέσματα στο δεξί μέρος (συγκεκριμένα, I(Rl) : 4). Πράγματι, μέσω της ανάλυσης του κυκλώματος είδαμε, επίσης, ότι προκύπτει η ίδια τιμή ρεύματος (βλ. σελ. 7).

 $\begin{tabular}{l} \hline \begin{tabular}{l} \hline \end{tabular} \\ \hline \begin{tabular}{l} \hline \end{tabular} \\ \hline \begin{tabular}{l} \hline \end{tabular} \\ \hline$

(Συνέχεια Άσκησης 5, για την εύρεση των i και V_{ab})

ightharpoonup Περίπτωση k=0

Από το ισοδύναμο Thevenin του Σχήματος 5γ (σελ. 12), αν προσθέσουμε και την R_L μεταξύ των α και b, προκύπτει για την V_{ab} , ότι $V_{ab}=-200\cdot\frac{RL}{100+RL}=\frac{100}{100+100}\,V\Leftrightarrow V_{ab}=-100V.$

Πράγματι, μέσω της DC προσομοίωσης από το LTSpice βρίσκουμε το ίδιο αποτέλεσμα, όπως φαίνεται στις τιμές των αποτελεσμάτων με V_a = -100 V, με το b γειωμένο στα 0V.

Για την Γραμμικά Εξαρτημένη από Ρεύμα Πηγή Ρεύματος (Linear Current Dependent Current Source), F1 = 100·i, χρησιμοποιήθηκε η V2 ως μια πηγή τάσης με τιμή 0V (πρόκειται ουσιαστικά για ένα βραχυκύκλωμα), όπως εικονίζεται παρακάτω, οπότε η εξάρτηση γίνεται από το ρεύμα που τη διαρρέει, με gain ίσο με 100.

Αρα, για τα ζητούμενα προκύπτουν (και επαληθεύονται) οι τιμές: $\mathbf{i} = \mathbf{0.02}$ A και $\mathbf{V_{ab}} = -\mathbf{100}$ V.

ightharpoonup Περίπτωση k = 0.1

Παρατηρούμε, δηλαδή, ότι ο παρανομαστής της V_{ab} στην περίπτωση που k=0,1 ισούται με 0, άρα η τιμή της απειρίζεται!

Πράγματι, μέσω της DC προσομοίωσης από το LTSpice βρίσκουμε πρακτικά το ίδιο αποτέλεσμα, όπως φαίνεται στις τιμές των αποτελεσμάτων με V_a = 5,76462e+017 V, δηλαδή V_a = 5,76462·10¹⁷ V που πρόκειται για μια πάρα πολύ μεγάλη τιμή τάσης (ουσιαστικά τείνει στο $+\infty$ στην πράξη), με το b γειωμένο στα b 0V. Από τη σχέση -1-της σελ. 13 που προκύπτει από το Νόμο Τάσεων Kirchhoff φαίνεται ότι και το b (εδώ b I(V2)) παίρνει τιμή που τείνει στο b 0.

Για την Γραμμικά Εξαρτημένη από Ρεύμα Πηγή Ρεύματος (Linear Current Dependent Current Source) εργαζόμαστε ομοίως με πριν (τώρα, F2 = 100·i).

Αρα, για τα ζητούμενα προκύπτουν ουσιαστικά(και επαληθεύονται) οι τιμές: $\mathbf{i} = -\infty$ **A** και $\mathbf{V}_{ab} = +\infty$ **V**.

(Συνέχεια Άσκησης 6)

Για την DC προσομοίωση με τη χρήση του LTSpice, θεωρήσαμε τιμές για την άσκηση: $V_S = 10$ V και $\alpha = 0.5$. Ως κόμβος αναφοράς (για τον ακόλουθο υπολογισμό τάσεων στους κόμβους και ρευμάτων στους κλάδους) θεωρήθηκε ο b, δηλαδή με $V_b = 0$ V. Επομένως η γείωση τοποθετήθηκε στο σημείο b, όπως εικονίζεται στο παρακάτω σχηματικό. Χρησιμοποιήθηκε πάλι μια Linear Current Dependent Current Source, $F1 = 0.5 \cdot i$.

Για τις ανωτέρω τιμές των V_S και α, από το ισοδύναμο Thevenin του Σχήματος 6γ (σελ. 13), αν προσθέσουμε και την R_L μεταξύ των α και b προκύπτει, ότι το ρεύμα που τη διαρρέει ισούται με $i(R_L) = \frac{Vth}{Rth+RL} = \frac{\frac{15}{2}}{\frac{5}{4}+10}$ A = 0,667 A, όσο, δηλαδή, φαίνεται και στα αποτελέσματα που προκύπτουν από την ανάλυση της προσομοίωσης.

Για την ανάλυση των τάσεων και των ρευμάτων σε όλους τους κόμβους και κλάδους, όπως ζητείται, προστέθηκαν επιπλέον labels στο κύκλωμα, πέραν αυτών που δίνονται στην εκφώνηση, ώστε η προσομοίωση μέσω DC operating point να δίνει την τάση και στα σημεία αυτά. Επαληθεύεται και η τιμή του $i(R_L)$.

andaiscrep poppy to Suthipatos to Exprates 7, us Egys. 3R4=240 (De1=501 (-) V2=12V (1) 1/2 = 700mg 44(+ I Ri=1he (Exina 7) N.T.K. 66 20: -4 + 1. 2/2. 2000 + 0,7 + iz. 2000 =0 = 2000 1 + 2000 i3 = 3,3 D N.P.K. 66 J: I+50I=i3 = i3 = 511 @ (I = 0,0000572 A Apa, to perper no Sappier ty R4, i(R4), 160201 per i(R4) = 61=50.1 = = 50.0,0000572A = i(R4)=0,00286A V(R4) = i(R4). R4 = 0,00286 . 2000 V ET V(R4) = 5,72 V H tipy tys V(R4) Englyseizer was and the DC resespoints, pieu LTSpice, or sedisa 22. MERCUPYIA CON KUKTHOMATOS To windupa eys abuyoys (Exipa 7) aroudy 160 diago windupa enois windipator ENIEXITY ME SINDING EPAN JISTOP (BJT), TO ONOIS BPIGNETAL GETY DC WORTAGED (MONEYTAL, ENOPHE us, pa repires, rapópora pe ary no Sisáxegue 66 apposis epo). Exame páse ou ou o BIT xpysiponoritar us enservers sirver not pripa. Ity symmetry repirans, granapassyps naparypoint ou to phina vision, I exu up; I = 57,2 MA

1=0,000572 A, Eni pa to pringto i(R4) variz naipropre tipis: · i(R4) = 0,00286A (2 ziju nyila, nyaziza, zys zynjs za I) · 2 = iz = 51.0,000572 A = iz = 0,0023172 A (rings 2 zayen, neprilor negativey) OI 6xi6ms no supportor miskey min or i(R4) = B. I may iz = (B+4). I. Orbidound, Exame as 160 Surapies: ilky = Ic, (I wheeter/ordina), iz = It (I emitter/ordina) Was I = IB (I base / Bai 675). To windups to Exjustes 7 requirites and to 160 divages winduped enex-23 pe BJT (and Tado Ixing 78) as to BIT arguateradri pe to resist po DC minhing to (Ixing 72) 3 R4= 240 SR1= 2040 +) Vz=12v ERZ=1049 3 R3= 140 (Exina 76) B(Baise) I G (Collector) (D)81 (Exing 76) E (Emitter) H Siosos Dempjopur pre neuty zábys 700mv 2) a wy 1= 700mV 66 winhyna To Exyparos 7.

(Συνέχεια Άσκησης 7, για επαλήθευση της V_{R4})

Απεικονίζεται η DC προσομοίωση (DC operating point) από το LTSpice για το κύκλωμα της Άσκησης 7. Με όμοιο τρόπο με τις προηγούμενες περιπτώσεις χρησιμοποιήθηκε η Γραμμικά Εξαρτημένη από Ρεύμα Πηγή Ρεύματος, F1 = 50·i. Οι τιμές που προκύπτουν για τα κυκλωματικά στοιχεία φαίνονται δεξιά:

Όπως υπολογίστηκε στη σελίδα 20, μετά τη χρήση του Θ. Thevenin και την ανάλυση του δικτυώματος που προέκυψε στη συνέχεια, το ρεύμα που διαρρέει την R_4 προέκυψε ίσο με $i(R_4) = 0.00286$ Α και άρα, η ζητούμενη τάση στα άκρα της R_4 ίση με $\mathbf{V}(\mathbf{R_4}) = \mathbf{5.72}\ \mathbf{V}$.

Πράγματι, παρατηρούμε, ότι και από το ανωτέρω stimulation, οι τιμές προκύπτουν ίδιες (επαληθεύονται) με αυτές που υπολογίστηκαν. Έχουμε, δηλαδή, $I(R_4) = 0.00286127$ Α και για την τάση της R_4 χρησιμοποιούμε τη σχέση:

$$V(R_4) = V_{n1n2} = V_{n1} - V_{n2} = 12V - 6,27746V \Leftrightarrow V(R_4) = 5,72254 V.$$

(Συνέχεια Άσκησης 8, για απεικόνιση της $i_2(t)$)

Για τις τιμές που δίνονται: $R_1=R_2=R_3=1\Omega$, $V_S=10 sin(2\pi ft)$, f=1 Hz, $V_b=10 V$, a=0.5, τρέχουμε την transient προσομοίωση για το χρονικό διάστημα $t\in[0s,10s]$. Επιλέγουμε να εμφανίζεται η κυματομορφή του i_2 (δηλαδή του $I(R_2)$ που διαρρέει την R_2).

Πράγματι, διαπιστώνουμε ότι η κυματομορφή της $i_2(t)$ που απεικονίζεται είναι η: $i_2(t) = \frac{30}{7} + \frac{10}{7}\sin(2\pi t) \text{ (φαίνεται ότι έχει μια DC offset} = 4,3 \text{ περίπου, δηλαδή } \frac{30}{7}\text{ A},$ πλάτος = 1,4 Α περίπου, δηλαδή $\frac{10}{7}\text{ A}$ και περίοδο = 1s) η οποία βρέθηκε και αριθμητικά, με αντικατάσταση των δοθέντων τιμών στην αλγεβρική έκφραση του ρεύματος i_2 .

$O_{\mu\nu\nu s}$, $V_{A} = V_{A} - V_{ENO}^{O} = i(s) \cdot (\frac{1}{5} + h_{s}) \stackrel{\text{(4)}}{=} (\frac{1}{5} + h_{s}) \cdot \frac{U_{1}(s)}{6s} + \frac{2}{5} U_{2}(s) \longrightarrow U_{1} + \frac{1}{5} + h_{s}$
$VA = \frac{U_{1}}{\frac{1}{6s} + \frac{5}{2}U_{2}(s)}{\frac{1}{\frac{1}{5} + 4s} + \frac{1}{6s} + \frac{5}{2}}.$
Equ enoque 62) (62) , (62)
(Σε όζι αρορά εχν Άδωχος 10, επείδη περίληνοστα γου προκοροιώνων 66 L75p,ce, αποεπιαθμέ 643 6ελίδες 23 μα, 30).

(Συνέχεια Άσκησης 9, για απεικόνιση των $V_A(t)$, $i_1(t)$ και $i_2(t)$)

Στο κάτωθι σχήμα απεικονίζονται μέσω transient προσομοίωσης στο χρονικό διάστημα $t \in [0s,10s]$ η τάση του κόμβου A (όπως αυτός σημειώνεται με label στο κύκλωμα) και των ρευμάτων i_1 και i_2 της άσκησης. Η τάση του κόμβου A, $V_A(t)$, αποτυπώνεται με πράσινο χρώμα, το ρεύμα $i_1(t)$ που διαρρέει το πηνίο L1=6H αποτυπώνεται με μπλε χρώμα και το ρεύμα $i_2(t)$ που διαρρέει τον αντιστάτη C2=1F με κόκκινο χρώμα.

Για τη δημιουργία των συνημιτονικών κυματομορφών $u1=6\cos(2\pi ft)$ και $u2=1\cos(2\pi ft+\frac{\pi}{3})$ αξιοποιήθηκε η ιδιότητα: $\cos\theta=\sin(\theta+\frac{\pi}{2})$, οπότε η φάση της κυματομορφής της u1 ρυθμίστηκε στις 90° και της u2 στις $60^\circ+90^\circ=150^\circ$:

Άσκηση 10

Στο κύκλωμα του Σχήματος 10:

Σχήμα 10

εκτελέστηκε transient προσομοίωση στο LTSpice στο χρονικό διάστημα $t \in [0s, 10s]$, οπότε και αποτυπώθηκαν οι κυματομορφές $i_0(t)$ και $v_0(t)$ όπως παρακάτω. Το ρεύμα $i_0(t)$ αποτυπώνεται με πράσινο χρώμα και η τάση $v_0(t)$ με μπλε χρώμα. Για τη συνημιτονική μορφή της V1 προστέθηκε πάλι στο ημίτονο φάση ίση με 90° .

Εν συνεχεία, εκτελείται AC προσομοίωση για συχνότητες 1Hz-1kHz και αποτυπώνεται η απόκριση του κυκλώματος. Συγκεκριμένα, η κυματομορφή της τάσης $v_0(f)$ αποτυπώνεται πάλι με μπλε χρώμα, ενώ με πράσινο χρώμα αποτυπώνεται το ρεύμα i(f).

Οι δύο κυματομορφές απεικονίζονται στο πεδίο της συχνότητας, με τον κατακόρυφο άξονα να λαμβάνει τιμές σε dB. Το σχήμα είναι γνωστό ως Bode plot.