There are four different types of slope.

positive slope

The function values are increasing over the entire domain.

negative slope

The function values are decreasing over the entire domain.

slope of 0

The function values are constant over the entire domain.

undefined slope

The relation is not a function.

We call the steepness of a line **slope**, it is represented by the variable *m*. The slope of a line is the <u>ratio</u> of the <u>vertical change</u> to the <u>horizontal change</u> of any two points on the line.

 $m = \frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}$

$$\frac{2}{4} = \frac{1}{2}$$

The slope is $\frac{1}{2}$.

Find the slope of each of the following graphs.

Find the slope of each of the following graphs. Be careful of the scale.

$$m = \frac{-1-7}{3-(-3)} = \frac{-8-2}{6-2}$$

$$m = -\frac{4}{3}$$

$$m = -2 - (-6) = 4 - 4$$

$$4 - (-4) = 8 - 4$$

$$m = 1$$

$$m = \frac{rise}{run} = \frac{2}{0}$$
 undefined

Sarah has a tricycle. The following graph shows the distance she pedals over time. What is her speed?

- A. 90 ft/min
- B. 180 ft/min
- C. 270 ft/min
- D. 60 ft/min

$$m = \frac{risc}{run} = \frac{450}{5} = 90 \frac{feet(y)}{\mu in(x)}$$

Dalton is monitoring the amount of calories lost throughout a day. Which of these best represents the rate of change of the calories with respect to hours?

- A. -100 calories per hour
- B. -200 calories per hour
- C. -12 calories per hour
- D. -300 calories per hour