What is claimed is:

1	1. A method for robust single-pass variable bit rate video encoding, the method
2	comprising:
3	determining a buffer size for keeping track of over/underused bits generated
4	during the encoding of a video sequence, the buffer size being a function
5	of at least a target bit rate for the video sequence and a length of the video
6	sequence;
7	initializing the buffer to a default initial fullness; and
8	for each frame of the video sequence, performing the following steps:
9	allocating a number of bits to the frame;
10	determining a quant with which to encode the frame, the quant being a
11	function of at least the buffer's fullness;
12	encoding the frame according to the determined quant; and
13	updating the fullness of the buffer based on any over/underused bits for
14	the frame.
1	2. The method of claim 1 wherein frames in a GOP are encoded, the method further
2	comprising:
3	allocating a segment of the buffer for keeping track of over/underused bits for I
4	frames, a segment for keeping track of over/underused bits for P frames
5 .	and a segment for keeping track of over/underused bits for B frames;
6	initializing each segment of the buffer to a default initial fullness;

,	determining a number of 1 frames per GOP, a number of F frames per GOP and a
8	number of B frames per GOP, based on a nominal GOP pattern;
9	for each frame of the video sequence, determining the quant with which to encode
10	that frame as a function of at least the fullness of the segment of the buffer
11	for that frame type; and
12	for each GOP of the video sequence, performing the following steps:
13	before encoding any frame of that GOP, calculating a GOP bit target for
14	that GOP, the GOP bit target being a function of at least the
15	number of I frames, P frames and B frames per GOP, the target bit
16	rate for the video sequence and any bits carried over from a last
17	encoded GOP;
18	after encoding each frame of that GOP, calculating over/underused bits by
19	subtracting allocated bits from actual used bits, adding any
20	over/underused bits to an appropriate buffer segment to an extent
21	to which the appropriate buffer segment is not over/underflowed
22	and storing any over/underflow bits in a counter; and
23	after encoding all frames of that GOP, redistributing over/underused bits
24	between the segments of the buffer as a function of at least a total
25	number of over/underused bits in the buffer and the number of I
26	frames, P frames and B frames per GOP and storing an indication
27	of a number of over/underused bits with respect to the allocated
28	target bits for that GOP to carry over to the next GOP.

1	3. The method of claim 2 further comprising.
2	storing information concerning over/underused of at least some encoded frames
3	by frame type; and
4	using the stored information concerning over/underused bits of frames of a
5	specific frame type in determining quants with which to encode frames of
6	that type.
1	4. The method of claim 3 wherein storing information concerning over/underused of at
2	least some encoded frames by frame type further comprises:
3	storing information concerning over/underused of a specific number of most
4	recently encoded I frames, P frames and B frames.
1	5. The method of claim 1 or 2, wherein:
2	the buffer is a virtual buffer storing information concerning a number of
3.	over/underused bits, without storing the over/underused bits themselves.
1	6. The method of claim 2 further comprising:
2	before encoding any frame, initializing to a default initial value at least one
3	parameter from a group of parameters consisting of:
4	a base quant envelope for each frame type;
5	a base quant envelope control for each frame type;
6	ratio information concerning frame types; and
7	a frame complexity parameter for each frame type.

I	7. The method of claim 2 further comprising.
2	for each GOP of the video sequence, before encoding any frame of that GOP,
3	determining whether the fullness of each segment of the buffer is at least
4	at an associated minimal value; and
5	responsive to the fullness of a segment of the buffer not being at least at the
6	associated minimal value, adjusting the fullness of the segment
7	accordingly.
1 2	8. The method of claim 2 wherein allocating a number of bits to a frame further comprises:
3	allocating bits to the frame according to a modified TM5 reference model, the
_	anothing one to the name according to a mounted 11415 reference model, the
4	allocation utilizing at least one an additional parameter from a group of
5	parameters consisting of:
6	at least one frame complexity parameter for a last encoded frame of a frame type;
7	a GOP bit target for the GOP being processed;
8	ratio information concerning frame types within a GOP;
9	the number of I frames per GOP;
0	the number of P frames per GOP; and
1	the number of B frames per GOP.
1	9. The method of claim 1 wherein allocating a number of bits to a frame further
2	comprises:
3	allocating bits to the frame according to a TM5 reference model.

1	10. The method of claim 2 wherein determining a quant with which to encode the frame
2	further comprises:
3	prior to determining the quant, normalizing the fullness of the segment
4	corresponding to the type of frame to encode, based on at least the
5	segment size and the non-normalized segment fullness; and
6	determining the quant as a function of at least a base quant envelope and the
7	normalized segment fullness.
1	11. The method of claim 10 further comprising:
2	adjusting the determined quant based on the frame being a transition frame in the
3	video sequence.
1	12. The method of claim 1 further comprising:
2	after encoding each frame of the video sequence, determining whether the
3	encoding of that frame causes a VBV buffer underflow;
4	responsive to determining that the encoding of that frame causes a VBV buffer
5	underflow, adjusting the quant used to encode the frame; and
6	re-encoding the frame with the adjusted quant so as to eliminate the VBV buffer
7	underflow.
1	13. The method of claim 2 further comprising:
2	after encoding each frame of the video sequence, updating at least one parameter
3	from a group of parameters consisting of:
4	a base quant envelope for the encoded frame type;

5	ratio information concerning frame types; and
6	a frame complexity parameter for the encoded frame type.
1	14. The method of claim 13 further comprising:
2	updating the base quant envelope for the encoded frame type, as a function of at
3	least a base quant envelope control for the encoded frame type, an
4	indicator of the over/underflow bit status of the encoded frame, and the
5	non-updated base quant envelope for the encoded frame type.
1	15. The method of claim 10 further comprising:
2	adding the counter of unallocated over/underflow bits to the buffer segment
3	corresponding to the type of frame to encode, to an extent that the buffer
4	segment is not overflowed or underflowed; and
5	retaining any over/underflow bits that cannot be added to the segment in the
6	counter.
1	16. A computer system for robust single-pass variable bit rate video encoding, the
2	computer system comprising:
3	means for determining a buffer size for keeping track of over/underused bits
4	generated during the encoding of a video sequence, the buffer size being a
5	function of at least a target bit rate for the video sequence and a length of
6	the video sequence;
7	means for initializing the buffer to a default initial fullness; and
8	means for performing the following steps for each frame of the video sequence:
9	allocating a number of bits to the frame:

10	determining a quant with which to encode the frame, the quant being a
11	function of at least the buffer's fullness;
12	encoding the frame according to the determined quant; and
13	updating the fullness of the buffer based on any over/underused bits for
14	the frame.
	1 .
1	17. The computer system of claim 16 wherein frames in a GOP are encoded, the
2	computer system further comprising:
3	means for allocating a segment of the buffer for keeping track of over/underused
4	bits for I frames, a segment for keeping track of over/underused bits for P
5	frames and a segment for keeping track of over/underused bits for B
6	frames;
7	means for initializing each segment of the buffer to a default initial fullness;
8	means for determining a number of I frames per GOP, a number of P frames per
9	GOP and a number of B frames per GOP, based on a nominal GOP
10	pattern;
11	means for determining the quant with which to encode that frame as a function of
12	at least the fullness of the segment of the buffer for that frame type for
13	each frame of the video sequence; and
14	means for performing the following steps for each GOP of the video sequence:
15	before encoding any frame of that GOP, calculating a GOP bit target for
· 16	that GOP, the GOP bit target being a function of at least the
17	number of I frames, P frames and B frames per GOP, the target bit

18	rate for the video sequence and any bits carried over from a last
19	encoded GOP;
20	after encoding each frame of that GOP, calculating over/underused bits by
21	subtracting allocated bits from actual used bits, adding any
22	over/underused bits to an appropriate buffer segment to an extent
23	to which the appropriate buffer segment is not over/underflowed
24	and storing any over/underflow bits in a counter; and
25	after encoding all frames of that GOP, redistributing over/underused bits
26	between the segments of the buffer as a function of at least a total
27	number of over/underused bits in the buffer and the number of I
28	frames, P frames and B frames per GOP and storing an indication
9	of a number of over/underused bits with respect to the allocated
0	target bits for that GOP to carry over to the next GOP.
.1	18. The computer system of claim 17 further comprising:
2	means for storing information concerning over/underused of at least some
3	encoded frames by frame type; and
4	means for using the stored information concerning over/underused bits of frames
5	of a specific frame type in determining quants with which to encode
6	frames of that type.
1	19. The computer system of claim 18 wherein the means for storing information
2	concerning over/underused of at least some encoded frames by frame type further comprises:

3	means for storing information concerning over/underused of a specific number of
4	most recently encoded I frames, P frames and B frames.
1	20. The computer system of claim 16 or 17, wherein:
2	the buffer is a virtual buffer storing information concerning a number of
3	over/underused bits, without storing the over/underused bits themselves.
1	21. The computer system of claim 17 wherein the means for determining a quant with
2	which to encode the frame further comprises:
3	means for, prior to determining the quant, normalizing the fullness of the segment
4	corresponding to the type of frame to encode, based on at least the
5	segment size and the non-normalized segment fullness; and
6	means for determining the quant as a function of at least a base quant envelope
7	and the normalized segment fullness.
1	22. The computer system of claim 21 further comprising:
2	means for adding the counter of unallocated over/underflow bits to the buffer
3	segment corresponding to the type of frame to encode, to an extent that the
4	buffer segment is not overflowed or underflowed; and
5	means for retaining any over/underflow bits that cannot be added to the segment
6	in the counter.
1	23. The computer system of claim 16 further comprising:
2	means for, after encoding each frame of the video sequence, determining whether
3	the encoding of that frame causes a VBV buffer underflow;

4	means for, responsive to determining that the encoding of that frame causes a
5	VBV buffer underflow, adjusting the quant used to encode the frame; and
6	means for re-encoding the frame with the adjusted quant so as to eliminate the
7	VBV buffer underflow.
1	24. A computer system for robust single-pass variable bit rate video encoding, the
2	computer system comprising:
3	a portion configured to determine a buffer size for keeping track of
4	over/underused bits generated during the encoding of a video sequence,
5	the buffer size being a function of at least a target bit rate for the video
6	sequence and a length of the video sequence;
7	a portion configured to initialize the buffer to a default initial fullness; and
8	a portion configured to perform the following steps for each frame of the video
9	sequence:
10	allocate a number of bits to the frame;
11	determine a quant with which to encode the frame, the quant being a
12	function of at least the buffer's fullness;
13	encode the frame according to the determined quant; and
14	update the fullness of the buffer based on any over/underused bits for the
15	frame.
1	25. The commuter system of claim 24 whencin formed in a COD are an add the
1	25. The computer system of claim 24 wherein frames in a GOP are encoded, the
2	computer system further comprising:

3	a portion configured to allocate a segment of the buffer for keeping track of
4	over/underused bits for I frames, a segment for keeping track of
5	over/underused bits for P frames and a segment for keeping track of
6	over/underused bits for B frames;
7	a portion configured to initialize each segment of the buffer to a default initial
8	fullness;
9	a portion configured to determine a number of I frames per GOP, a number of P
10	frames per GOP and a number of B frames per GOP, based on a nominal
11	GOP pattern;
12	a portion configured to determine the quant with which to encode that frame as a
13	function of at least the fullness of the segment of the buffer for that frame
14	type for each frame of the video sequence; and
15	a portion configured to perform the following steps for each GOP of the video
16	sequence:
17	before encoding any frame of that GOP, calculate a GOP bit target for that
18	GOP, the GOP bit target being a function of at least the number of
19	I frames, P frames and B frames per GOP, the target bit rate for the
20	video sequence and any bits carried over from a last encoded GOP;
21	after encoding each frame of that GOP, calculate over/underused bits by
22	subtracting allocated bits from actual used bits, add any
23	over/underused bits to an appropriate buffer segment to an extent
24	to which the appropriate buffer segment is not over/underflowed
25	and store any over/underflow bits in a counter; and

26	after encoding all frames of that GOP, redistribute over/underused bits
27	between the segments of the buffer as a function of at least a total
28	number of over/underused bits in the buffer and the number of I
29	frames, P frames and B frames per GOP and store an indication of
30	a number of over/underused bits with respect to the allocated target
31	bits for that GOP to carry over to the next GOP.
1 2	26. The computer system of claim 25 further comprising: a portion configured to store information concerning over/underused of at least
3	some encoded frames by frame type; and
4	a portion configured to use the stored information concerning over/underused bits
5	of frames of a specific frame type in determining quants with which to
6	encode frames of that type.
1 2	27. The computer system of claim 26 wherein the portion configured to store information concerning over/underused of at least some encoded frames by frame type further
3	comprises:
4	a portion configured to store information concerning over/underused of a specific
5	number of most recently encoded I frames, P frames and B frames.
1	28. The computer system of claim 24 or 25 wherein:
2	the buffer is a virtual buffer storing information concerning a number of
3	over/underused bits, without storing the over/underused bits themselves.

1	29. The computer system of claim 25 wherein the portion configured to determine a
2	quant with which to encode the frame further comprises:
3	a portion configured to, prior to determining the quant, normalize the fullness of
4	the segment corresponding to the type of frame to encode, based on at
5	least the segment size and the non-normalized segment fullness; and
6	a portion configured to determine the quant as a function of at least a base quant
7	envelope and the normalized segment fullness.
1	30. The computer system of claim 29 further comprising:
2	a portion configured to add the counter of unallocated over/underflow bits to the
3	buffer segment corresponding to the type of frame to encode, to an extent
4	that the buffer segment is not overflowed or underflowed; and
5	a portion configured to retain any over/underflow bits that cannot be added to the
6	segment in the counter.
1	31. The computer system of claim 24 further comprising:
2	a portion configured to, after encoding each frame of the video sequence,
3	determine whether the encoding of that frame causes a VBV buffer
4	underflow;
5	a portion configured to, responsive to determining that the encoding of that frame
6	causes a VBV buffer underflow, adjust the quant used to encode the
7	frame; and
8	a portion configured to re-encode the frame with the adjusted quant so as to
0	aliminate the VDV huffer underflow

1	32. A computer readable medium containing a computer program product for robust
2	single-pass variable bit rate video encoding, the computer program product comprising:
3	program code for determining a buffer size for keeping track of over/underused
4	bits generated during the encoding of a video sequence, the buffer size
5	being a function of at least a target bit rate for the video sequence and a
6	length of the video sequence;
7	program code for initializing the buffer to a default initial fullness; and
8	program code for performing the following steps for each frame of the video
9	sequence:
10	allocating a number of bits to the frame;
11	determining a quant with which to encode the frame, the quant being a
12	function of at least the buffer's fullness;
13	encoding the frame according to the determined quant; and
14	updating the fullness of the buffer based on any over/underused bits for
15	the frame.
1	33. The computer program product of claim 32 wherein frames in a GOP are encoded,
. 2	the computer program product further comprising:
3	program code for allocating a segment of the buffer for keeping track of
4	over/underused bits for I frames, a segment for keeping track of
5	over/underused bits for P frames and a segment for keeping track of
6	over/underused bits for B frames;

′	program code for initializing each segment of the buffer to a default initial
8	fullness;
9	program code for determining a number of I frames per GOP, a number of P
10	frames per GOP and a number of B frames per GOP, based on a nominal
11	GOP pattern;
12	program code for determining the quant with which to encode that frame as a
13	function of at least the fullness of the segment of the buffer for that frame
14	type for each frame of the video sequence; and
15	program code for performing the following steps for each GOP of the video
16	sequence:
17	before encoding any frame of that GOP, calculating a GOP bit target for
18	that GOP, the GOP bit target being a function of at least the
19	number of I frames, P frames and B frames per GOP, the target bit
20	rate for the video sequence and any bits carried over from a last
21	encoded GOP;
22	after encoding each frame of that GOP, calculating over/underused bits by
23	subtracting allocated bits from actual used bits, adding any
24	over/underused bits to an appropriate buffer segment to an extent
25	to which the appropriate buffer segment is not over/underflowed
26	and storing any over/underflow bits in a counter; and
27	after encoding all frames of that GOP, redistributing over/underused bits
28	between the segments of the buffer as a function of at least a total
29	number of over/underused bits in the buffer and the number of I

30	frames, P frames and B frames per GOP and storing an indication
31	of a number of over/underused bits with respect to the allocated
32	target bits for that GOP to carry over to the next GOP.
1	34. The computer program product of claim 32 further comprising:
2	program code for storing information concerning over/underused of at least some
3	encoded frames by frame type; and
4	program code for using the stored information concerning over/underused bits of
5	frames of a specific frame type in determining quants with which to
6	encode frames of that type.
1	35. The computer program product of claim 34 wherein the program code for storing
2	information concerning over/underused of at least some encoded frames by frame type further
3	comprises:
4	program code for storing information concerning over/underused of a specific
5	number of most recently encoded I frames, P frames and B frames.
•	
1	36. The computer program product of claim 32 or 33 wherein:
2	the buffer is a virtual buffer storing information concerning a number of
3	over/underused bits, without storing the over/underused bits themselves.
1	37. The computer program product of claim 33 wherein the program code for
2	determining a quant with which to encode the frame further comprises:

3	program code for, prior to determining the quant, normalizing the fullness of the
4	segment corresponding to the type of frame to encode, based on at least
5	the segment size and the non-normalized segment fullness; and
6	program code for determining the quant as a function of at least a base quant
7	envelope and the normalized segment fullness.
1	38. The computer program product of claim 37 further comprising:
2	program code for adding the counter of unallocated over/underflow bits to the
3	buffer segment corresponding to the type of frame to encode, to an extent
4	that the buffer segment is not overflowed or underflowed; and
5	program code for retaining any over/underflow bits that cannot be added to the
6	segment in the counter.
1	39. The computer program product of claim 32 further comprising:
2	program code for, after encoding each frame of the video sequence, determining
3	whether the encoding of that frame causes a VBV buffer underflow;
4	program code for, responsive to determining that the encoding of that frame
5	causes a VBV buffer underflow, adjusting the quant used to encode the
6	frame; and
7	program code for re-encoding the frame with the adjusted quant so as to eliminate
8	the VBV buffer underflow.