```
Cosets
         Let (G1 7) be the group and (H, F) be the subgroup of G1, for any a EG. the set.
    Determined by a. Left coset of H
              H * a = 3 ch * a | he H 3 [Right coset of H determined by
    * If operation is addition then a + H = 2a + h \mid h \in H = 2 = (keft coset)
                 H+a= 2 h+al heH3 = (Right coset)
    * If operation is multiplication then

a.t. = { a.h | h ∈ H } - (heft coset)
              H.a = 2 h.a/heH3 = (Right 10set)
         G= (Z_4, +_4) and H= \frac{9}{20}, \frac{2}{3} is soub group of (Z_4, +_4)
then find Left cosets & Right cosets. of H in G.
Example.
        G = (Z_{4}, t_{4}) Z_{4} = \frac{2}{2}0, 1, 2, 3\frac{3}{3} H = \frac{2}{2}0, 2\frac{7}{3}

for a \in G_{3} (Left loset)

a(t_{4})H = \frac{2}{3}a + \frac{4}{4}h'/h \in H^{\frac{3}{3}}
Polantion
           for a=0

a + H = 3 a + 4 h / h 6 H 3
                        = 90+0, 0+29= 90,29
```



```
G= \( \frac{2}{1}, -1, \frac{1}{2}, -\frac{1}{3} \) is Gyroup under multiplication and H= \( \frac{5}{1}, -1 \) is subgroup of G1 under multiplication then find right coset and left coset.
             Example
                                                   G= \ 1, -1, -1, -1 \ H= \ 1, -1 \ 9
          Solution
                                                  Left weset.
                                                                                                                                                                                                                         ¿ 2 distinct coset
                                                     axH= 3 axhlach3
                                                            1. H = 2 (1×1), (1×-1)3 = 21,-137
                                             for a = -1

-1 \cdot H = \frac{5}{2}(-1 \times 1), (-1 \times -1) = \frac{5}{2} - 1 \times 1 = \frac{3}{2}
                                                         a = 1

1 \cdot H = \frac{5}{2}(1 \times 1), (1 \times -1)^{\frac{3}{2}} = \frac{5}{2}1, -1^{\frac{3}{2}}

| same.
                                         for a = -i

-i. H = \{(-ixi), (-ix-1)\} = \{(-ix-1)\} = \{(-ix-1)
                                         io for left coset Unipun = G
                                                                                                                                              Intersection = Empty
   Fora=1 HXI= \( \frac{2}{1\times 1}, \frac{1}{1\times 1} \]
                                                    = 31,-14
     fora=-1 Hx-1 = {(1x-1)}
                                                                    = 3-1, 14
fora=1 Hxi= { (1xi) 9 (-1xi)}
                                         = §1,-19
for a=1 Hxi = 2-1, 13
```

	-	Normal Subgroup
		A subgroup H of G is said to be nounal subgroup if for
		A subgroup H of G is said to be noumal subgroup if for every $a \in G$, $a * H = H * a [lest uset = Right coset]$
0		
Cxam	ple	$G_1 = (Z_4, +_4)$ $H = {0,24}$
		for every a E G atty) H = H (ty) a
		$G_1 = (Z_4, +_4)$ $H = \S_0, 2\S$ for every $a \in G$ $a(H_4)H = H(+_4)a$ = left coset = Right rosed.
		". It is normal subgroup of GI
*		
-		Normal Subgroup denoted by "N"
2)		
		G= \(\frac{1}{2}\), -1, i, -i\) and H=\(\frac{1}{2}\), -1\) is subgroup of G under mutiplication. 18 it N? Yes
-		You under multiplication. 18 it N?
8)		$G = (z, +) \downarrow 0$
		Le 4 subgroup and H= (2z, +) Subgroup of G.
		G=(z,+) be Group and H=(zz,+) Subgroup of G. Js H is normal Subgroup of G 9 Yes.
	for	$a=1$ $(1+11)$ \Rightarrow C_{a}
		if will 1 of on (1+4), (1+8) 2
		it will be infinite (1+4), (1+4), (1+8)
*	EVE	ry subgroup of abelian group is Normal Subgroup
		Jugroup of abelian group is Normal Mul
		o mu subgroup
	-	

Jactor / Quotient Eproup (GIN -> Notation) Let N be normal subgroup of G, then GIN is a set of all cosets of N in G.

GIN is called as Questient Genoup. Quotient Group. $G_1=(Z,+)$ H=(2Z,+) is Normal Subgroup of G_1 then Z/2Z is Quotient Group. Example G= (Z4, +4) H= 30,2} Example $G/H = 8et \text{ of all coset} = \begin{cases} 0(t_4)H, 1(t_4)H, 2(t_4)H \end{cases}$ coset for element 0 = 30,23 { (0,28, (1,3), (0,2) 4 coset for element 1 = {1134 coset for elem 2 = 30,23 coset for elem 3 = {1,3} we cannot repeat element in set so remove them. GI/H= {(0,2); (1,3) } no. of element in 61/H is 2.

Service Charles		
Show	P	Laguenge's Theorem [only applicable for]
		Laquence's Thorsem finite group
		augrenges monent
		2 1° 0 1 2 1 0 - 01 h - 0 a
		a divides b i.e $a/b = b = e$ a Linteger.
		e e estado
		$ioe b = c \rightarrow integra$
		Then we say a divides b.
-	1	or any finite group of G and H is subgroup of G,
	-	For any finite group & G and H is subgroup of G. then order of H divides the order of G. G. order = no. of elements in G or Group.
341		Order = no. of elements in G or Granue.
		of the state of th
	f	or example find the order
	15	$G_1 = (Z_4 + 4) = \text{order} = 4 G_1 = \{0, 1, 2, 3\}$
	1	· · · · · · · · · · · · · · · · · · ·
304		G = (Z, +) = order = infinite.
	1	
		order of H divides order of G = 1H1/1G1
	0	/ [6]
	Du	if 141 / 181) theorem need not be true
		if 141 / 1811
		then H need mil al
	Bu	then H need not be subgroup of G. i.e 1H1 + 1G1 the H is not subgroup of G.
		1.e. 1H1 1 1G1 11
		The His not Subgroup of G
		July of 61.

Exemple G= \(\frac{3}{2}\), -1, \(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}{2} Solution

i.e Order of H does not divide order of G1, there fore

by using contrapositive. H is not a subgroup. 2) If H= \(\frac{7}{1}, \text{is & Subgroup of Go Using Ragnengers Theorem ablution |H|=2 |G|=4 2/4= Integre.

3. IHI | HGI | but H is not subgroup of G

because identity dement is not present e=1, e = H3) If H= \(\frac{1}{2} \) is a Golubaroup of G. ? No.

Soh This not subgroup of G1 because inverse is not properly for i & H. 4) If H= \(1, -19 is Obubgroup of G ? It is a Sub Group. on dition of the subgroup for H.