악성코드 분석 결과보고

dropper.exe 분석 보고서

김 진 환

	목차
1. 개요	
1.1 분석 환경	
1.2 분석 샘플	
2. 기초 분석	
2.1 VirusTotal	

- 3.1 HashCalc
- 3.2 Exeinfo PE
- 3.3 PE view
- 3.4 Dependency Walker
- 3.5 Strings

4. 기초 동적 분석

4.1 SysAnalyzer

5. 고급 정적 분석

5.1 IDA pro

6. 고급 동적 분석

6.1 OllyDbg

7. 분석 결론 및 대응 방안

7.1 악성파일의 분석 결론

7.2 대응 방안

1. 개요

1.1 분석 환경

가상 환경	VMware Workstation Pro
윈도우 버전	Window XP(32bit)
	hashcalc, exeinfope, PEview, Dependency
분석 도구 Walker, strings, PeStudio, SysAnalyzer,	
	Pro, OllyDbg

<丑 1>

<그림 1> VMware Workstation Pro 가상환경

1.2 분석 샘플

파일 이름	dropper.exe
파일 형식	.exe 실행 파일
기초 분석 결과	AhnLab-V3 :
	Malware/Gen.Generic.C3355284
	Avast : Win32:Malware-gen
	Antiy-AVL: Trojan/Win32.Swisyn

<丑 2>

<그림 2> dropper.exe 이미지

2. 기초분석

2.1 VirusTotal

<그림 3> VirusTotal 기초분석 결과

74개의 백신 중 21개의 백신에서 downloader.exe 파일의 악성 여부를 발견 했습니다.

AhnLab-V3 를 포함한 여러 백신들에서 MalwareX 이 발견되어 파일이 악성코드를 가지고 있음을 알 수 있으며 Trojan 이 발견되는 점을 보아 트로이목마 기능이 있는 악성 파일임을 확인했습니다.

<그림 4> VirusTotal - Details

해당 악성 파일이 Windows 32bit 운영체제에서 실행되는 파일이며, Microsoft Visual C++ 을 사용하여 제작되고, 컴파일 된것을 확인 할 수 있습니다. 파일의 생성 날짜는 2019년 7월 19일 6시11분46초이며 최초 발견일은 2019년 7월 24일 19시7분4초 인것으로 확인 됩니다.

<그림 5> VirusTotal - RELATIONS

해당 파일은 Dropper 파일이며 notepad.exe 파일을 Drop 하는 것으로 보여집니다.

위와 같이 VirusTotal 에서 많은 정보를 얻을 수 있었습니다. 하지만 VirusTotal 의 정보가 항상 옳다고 볼 수 없기에 여러 프로그램을 추가적으로 사용하여 분석한 뒤 정보를 교차 검증하여 해당 파일에 대한 정보를 분석해낼 필요가 있습니다.

3. 기초 정적 분석

3.1 HashCalc

H HashCalc	والمناب المناب
Data Format:	Data:
File -	C:₩°48코드₩01_기초₩실습-4₩dropper,exe
□ HMAC	Key Key:
₩D5	[5d67/2d24326c550898a42959379aaaf
☐ MD4	
V SHA1	46b0d740034eb02c4ffe512e8db132050cf7610b
✓ SHA256	[3612ec72deb2147484c9a463d375cc43af413ca66b71cde421128ec7e98c96e2
☐ SHA <u>3</u> 84	
SHA512	ec4d2eca4a475904ea32818165c19cced2636cf9d68e76fcffd751a04edbc5e58aa3d1fc4936317db5f33ccb5fbddabfc17169a1be5d18c2b06f113d802dc104
▼ RIPEMD160	
A HIE THID LOG	[57c81e1720090904d2b2ffcda6554d9d27df93eb
□ PANAMA	[57c81e1720090904d2b2ffcda6554d9d27df93eb
New Sections	57c81e1720090904d2b2ffcda6554d9d27df93eb
☐ PA <u>N</u> AMA	[57c81e1720090904d2b2ffcda6554d9d27df93eb
☐ PANAMA ☐ IGER	[57c81e1720090904d2b2ffcda6554d9d27df93eb
☐ PANAMA ☐ IIGER ☐ MD2	[57c81e1720090904d2b2ffcda6554d9d27df93eb
☐ PANAMA ☐ JIGER ☐ MQ2 ☐ ADLER32 ☐ CBC32	
☐ PANAMA ☐ IIGER ☐ MD2 ☐ ADLER32	

<그림 6> HashCalc

HashCalc 프로그램을 이용하여 dropper.exe 의 MD5, SHA256 등 해시값을 확인 할 수 있습니다.

3.2 Exeinfo PE

<그림 7> Exeinfo PE - ver.0.0.4.3

Exeinfo PE 분석 결과 Microsoft Visual C++ 9.0 - Visual Studio 로 만들어진 파일 이며, 패킹은 되지 않음을 알 수 있었습니다. 추가적으로 OllyDbg, IDA v5 등 의 분석 도구를 제안 받음을 알 수 있습니다.

3.3 PE View

<그림 8> PE View - dropper.exe

<그림 9> PE View - BIN 0065 0412

PE View 분석을 통해 해당 파일의 MZ 칸의 4D 5A 데이터 구조를 보아 .exe 실행 파일인 점을 확인 가능하며 , This program cannot be run in DOS mode 문자열을 확인하여 DOS 모드에서는 실행 할 수 없는 것으로 보입니다. IMAGE_FILE_HEADER 탭을 통해 제작날짜는 2019년 7월 19일로 확인 할 수 있으며, Body section 을 통해 IAT 정보 확인 결과 KERNEL32.dll , USER32.dll , MSVCR90.dll 를 참조함 을 알 수 있습니다.

중요한 점으로 해당 파일 안에 BIN 탭을 확인하여 또다른 파일이 숨겨져 있음을 확인했고 숨겨져 있는 파일 또한 위와 같이 4D 5A 데이터 구조로 보아 .exe 실행 파일인것을 확인 했습니다.

3.4 Dependency Walker

<그림 10> dependency Walker

Dependency Walker 를 통해 파일/디렉토리 관련 DLL를 확인 및 분석한 결과 해당 파일에서 사용하고 있는 함수를 확인 할 수 있었습니다.

'PE View' 를 이용하여 리소스 영역에 PE 파일이 있음을 확인 했었고, Dropper 로 의심되는 API(하단 정리)들이 있고,

GetTempPathW 를 통해 Temp(임시파일) 의 경로를 찾으며, Create File, FindResource, SizeofResource, CreateProcess, LoadResource, WriteFile 등 함수를 통해 해당 파일 안에 숨겨놓은 PE 파일을 시스템 프로세스에 불러오며 새로운 파일을 생성하여 Temp 경로에 저장하고, 실행 함 을 알 수 있었습니다.

3.5 Strings

<그림 11> Strings - cmd

<그림 12> Strings - 메모장

Strings 명령어를 통해 해당 파일의 문자열을 메모장에 저장하여 확인하고 PE View 프로그램에서 확인했던 BIN 타입을 검색 하니 해당 파일에 숨겨져 있는 .exe 파일이 notepad.exe 파일 이라는 것을 알아 낼 수 있었습니다.

4. 기초 동적 분석

4.1 SysAnalyzer

<그림 13> SysAnalyzer 1

<그림 14> SysAnalyzer 2

<그림 15> SysAnalyzer 3

SysAnalyzer 분석 결과 네트워크 관련된 설정이 없으므로, WireShark 분석은 필요 없음을 알 수 있으며, 또한 <그림15> 를 참조하여 PID 확인 결과 부모의 PID가 0xFA4(10진수 4004) 로 보이고 해당 파일로 인해 자식파일인 notepad.exe 가 실행 됨을 다시 확인 할 수 있었습니다.

5. 고급 정적 분석

5.1 IDA Pro

<그림 16> IDA Pro - main function

IDA Pro 프로그램 분석을 통해 메인 함수의 주소값 401A70 을 알아 낼 수 있으며, 해당 메인 함수가 주소값 401860에 저장되어있는 함수를 실행 시킴을 알 수 있습니다. 따라서 주소값 401860에 저장되어있는 함수에 대한 분석이 필요합니다.

```
nNumberOfBytesToWrite= dword ptr -42Ch
CommandLine= word ptr -428h
var 4= dword ptr -4
push
        ebp
        ebp, esp
mov
sub
        esp, 680h
        eax, dword_403000
mov
xor
        eax, ebp
mov
        [ebp+var_4], eax
mov
        [ebp+hResInfo], 0
MOV
        [ebp+hResData], 0
MOV
        [ebp+lpBuffer], 0
mov
        [ebp+hObject], 0
        eax, [ebp+Buffer]
lea
                         ; lpBuffer
push
        eax
push
        105h
                         ; nBufferLength
        ds:GetTempPathW
call
        ecx, [ebp+Buffer]
lea
push
        offset aSNotepad_exe; "%s\\notepad.exe"
push
        edx, [ebp+CommandLine]
lea
                         ; LPWSTR
        edx
push
        ds:wsprintfW
call
add
        esp, OCh
```

<그림 17> IDA Pro - 401860 function 1

주소값 401860의 함수에 접근하여 가장 먼저 GetTempPathW 와 wsprintfw API 를 확인하였습니다. 그리고 각 API 들의 역할을 분석 합니다.

- 1. GetTempPathW 를 통해 Temp 디렉토리를 찾는다.
- 2. wsprintfw 를 사용하여 'C:\DOCUME~1\ZiVIZI정우\LOCALS~1\Temp\notepad.exe' 문자 열을 생성한다.
- 이후 함수를 계속해서 확인 해 나갑니다.

```
push
         eax
                           ; hModule
 call
         ds:FindResourceW
         [ebp+hResInfo], eax
 mov
         ecx, [ebp+hResInfo]
 mov
                           ; hResInfo
 push
         ecx
         edx, hModule
 mov
                           ; hModule
 push
         edx
 call
         ds:SizeofResource
 mov
         [ebp+nNumberOfBytesToWrite], eax
         eax, [ebp+hResInfo]
 mov
                           ; hResInfo
 push
 mov
         ecx, hModule
 push
         ecx
                           ; hModule
         ds:LoadResource
 call
         [ebp+hResData], eax
 mov
         [ebp+hResData], 0
 cmp
         1oc 401A42
 jz
II N UL
        [ebp+nNumberOfBytesToWrite],
emp
        1oc 401A42
jz
```

<그림 18> IDA Pro - 401860 function 2

FindResourceW, SizeofResource, LoadResource 세가지의 API를 확인 할 수 있으며 따라서 해당 파일은 Dropper 파일 이라는것을 인지 할 수 있습니다.

각 API 들의 역할은

- 3. FindResourceW 를 통해 해당 파일 내부에 숨겨놓은 'BIN 101' PE 파일 찾기
- 4. SizeofResource 를 통해 'BIN 101' PE 파일의 크기 계산
- 5. LoadResource 를 통해 'BIN 101' PE 파일을 메모리에 로딩
- 을 알 수 있습니다.

```
push
          400000000h
                           ; dwDesiredAccess
 lea
          eax, [ebp+CommandLine]
 push
                           ; lpFileName
          eax
          ds:CreateFileW
 call
          [ebp+hObject], eax
 mov
 cmp
          [ebp+hObject], 0
 jz
          1oc 401A2C
           <그림 19> IDA Pro - 401860 function 2
push
                           ; lpOverlapped
lea
         edx, [ebp+NumberOfBytesWritten]
push
         edx
                           ; 1pNumberOfBytesWritten
MOV
         eax, [ebp+nNumberOfBytesToWrite]
push
         eax
                           ; nNumberOfBytesToWrite
mov
         ecx, [ebp+lpBuffer]
push
         ecx
                           ; 1pBuffer
         edx, [ebp+h0bject]
mov
push
         edx
                           ; hFile
call
         ds:WriteFile
mov
         eax, [ebp+hObject]
                           ; hObject
push
         eax
call
         ds:CloseHandle
         [ebp+StartupInfo.cb], 0
mov
push
         40h
                           ; size_t
push
                           ; int
         ecx, [ebp+StartupInfo.lpReserved]
lea
push
                           ; void *
         ecx
           <그림 20> IDA Pro - 401860 function 3
push
         0
                          ; bInheritHandles
         0
                          ; lpThreadAttributes
push
push
         0
                          : lpProcessAttributes
        ecx, [ebp+CommandLine]
lea
push
                          ; lpCommandLine
                          ; lpApplicationName
push
call
        ds:CreateProcessW
jmp
        short loc_401A40
```

<그림 21> IDA Pro - 401860 function 4

이어서 중요 API 들을 확인하여 CreateFileW, WriteFile, CloseHandle, CreateProcessW 의역할을 분석합니다.

- 6. CreateFileW 를 통해 경로를 찾아 놓았던 Temp 디렉토리에 0바이트 파일을 생성합니다.
- 7. WriteFile 을 통해 메모리에 로딩된 'BIN 101' PE 파일의 바이너리를 위에 생성해 두었던 0바이트 파일에 씁니다.

- 8. CloseHandle 을 실행하면 notepad.exe 파일이 완성됩니다.
- 9. CreateProcessW 를 통해 완성된 notepad.exe 파일을 실행 합니다.

위 분석을 통해 해당 파일은 dropper 파일 이며, 내부에 숨겨둔 notepad.exe 파일을 temp(임시파일) 경로에 생성 및 실행 하는 파일인 것을 알 수 있습니다.

6. 고급 동적 분석

6.1 OllyDbg

<그림 22> OllyDbg - main function

OllyDbg를 통하여 고급 동적 분석을 실시합니다.

IDA Pro를 이용하여 알아 두었던 메인함수의 주소값 401A70으로 이동하고 중요 함수였던 401860으로 접근하여 주요 API들을 확인하고 어셈블리어로 되어있는 프로그램을 한 단계씩 실행시키며 동적 분석을 실시합니다.

<그림 23> OllyDbg - 401860 function 1

GetTempathW 함수를 호출하여 Temp디렉토리의 경로를 찾고, ECX에 저장합니다.

그 후 sprintfw 함수에서 인자로 사용하여 "%s₩notepad.exe" 문자열을 생성하고 추후에 드롭할 파일의 경로 및 이름으로 사용할 것으로 추측할 수 있습니다.

<그림 24> OllyDbg - 401860 function 2

Dropper 파일의 3가지 API (FindResourceW, SizeofResource, LoadResource) 를 호출하여 내부의 'BIN 101' PE 파일 찾기, 크기 계산, 메모리에 로딩 을 실시합니다.

<그림 25> OllyDbg - 401860 function 3

<그림 26> Temp 1

CreateFileW 를 호출하여 Temp 디렉토리에 notepad.exe 0바이트 파일을 생성 한 것을 확인합니다.

<그림 27> OllyDbg - 401860 function 4

<그림 28> Temp 2

WirteFile 함수 호출시 notepad.exe 0바이트 파일이 66KB로 쓰기 완료 됨을 확인 합니다. 아직 CloseHandle 함수를 호출하지 않았기 때문에 파일이 완성된 것은 아닙니다. 따라서 실행이 되지 않으며, 아이콘도 활성화되지 않음을 알 수 있습니다.

<그림 29> OllyDbg - 401860 function 5

CloseHandle 함수를 호출하면 notepad.exe 파일이 완성되며 아이콘이 활성화 되어 파일을 실행 할 준비를 마쳤음을 알 수 있습니다.

<그림 30> OllyDbg - 401860 function 6

CreateProcessW 함수를 호출하면 완성된 notepad.exe 파일이 실행됩니다.

<그림 31> OllyDbg - main function 2

그 후 메인함수로 복귀하며 메인함수도 RETN 하여 종료됩니다.

7. 분석 결론 및 대응 방안

7.1 악성 파일의 분석 결론

기초 분석

VirusTotal 을 통해 기초 분석을 수행하여 여러 백신에서 dropper.exe 파일이 Trogen 성질 및 Dropper 기능을 하는 악성 코드임을 확인 했습니다. 해당 파일은 Windows 32bit 운영 체제에서 작동되는 실행 파일이며, 패킹되지 않은 악성파일이기에 언패킹 할 필요 없이 분석 하였습니다. 추가 정보로 파일 생성 날짜, 최초 발견일, notepad.exe 파일을 drop하는 악성 코드 인 점을 파악하였습니다.

이후 정적 분석을 통해 교차 검증이 필요했기에 다양한 프로그램을 통해 분석을 실시하였습니다.

정적 분석

HashCalc 프로그램을 통해 파일의 해시값을 파악하고, Exeinfo PE 프로그램으로 해당 파일이 C++ 언어로 만들어지고, 패킹되지 않은 파일인것을 알 수 있었습니다. PE view 를 사용하여 해당 파일이 .exe 실행 파일인것, 참조하고 있는 IAT 정보와 추가적으로 BIN타입의 .exe 실행파일을 내장하고 있다는 것을 알 수 있었습니다. 이후 Dependency Walker 와 Strings 을 사용하여 파일의 API 들을 파악하여 droper파일인것을 교차 검증하고 마지막으로IDA Pro 를 사용하여 상세한 정적 분석을 통해 파일 내부의 함수들을하나씩 살펴보며 해당 파일이 notepad.exe 파일을 temp 디렉토리에 저장하고, 실행시키는 dropper 형식 악성 코드인것으로 결과를 얻어냈습니다.

동적 분석

기초, 정적 분석을 통해서 dropper.exe 파일이 내부에 숨겨놓은 notepad.exe 파일을 temp 디렉토리에 저장 및 실행 시키는 dropper 형식 악성 코드인 점을 확인 하였고, OllyDbg 분석도구를 이용해 파일 동작 순서를 상세하게 동적 분석 하여 기초, 정적 분석한 내용을 검증하였습니다.

7.2 대응 방안

종합적인 분석을 통하여 dropper.exe 파일은 트로이목마 성질을 지니고 있는 dropper 형식의 악성코드라는 점을 확인 했습니다. 파일 내부에 숨겨져 있던 파일이 notepad.exe 가 아닌 위험한 공격 프로그램이었다면 PC사용자가 알 수 없게 내부에 설치 및 실행되어 개인정보 유출, 해킹 등의 피해가 발생할 수 있습니다.

dropper 형식 악성코드에 대응하기 위해서는 다음과 같은 대응 방안을 숙지 할 필요성이 있습니다.

- 1. 소프트웨어를 주기적으로 업데이트하여 해커가 이전 버전의 소프트웨어 취약점을 활용할 수 없도록 합니다.
- 2. dropper 형식의 악성코드는 사용자도 인지하지 못한 채 당할 수 있는 Malware유형의 공격이기 때문에 특정 보안 솔루션으로 방어하는 계획 보다는 상식적인 방법으로 이를 예방하는 것이 더 효과적인 대응 방안입니다. 개인, 사내 등 어디에서나 메일, 사이트 등을 사용함에 있어서 의심이 가거나 안전하지 않은 잘 알지 못하는 파일과 프로그램을 다운 및 실행 시키는 행위는 의식적으로 조심하며 링크나 첨부파일을 함부로 클릭 및 실행시키는 행동을 해서는 안됩니다.
- 3. AhnLab-V3 등 위협 방지 백신 소프트웨어들을 설치하여 악성코드들의 접근을 방지합니다.