Klausur zur Vorlesung Lineare Algebra für IB, AIB, BIB

Modul–Nr.: FMI-MA0022

Wintersemester 2021/22

25.02.2022

In dieser Klausur sei \mathbb{K} ein Körper und $d, k, n \in \mathbb{N}$.

Formelsammlung: Spezielle Werte der Winkelfunktionen

φ	0	$\frac{\pi}{12}$	$\frac{\pi}{8}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$	
$\sin \varphi$	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1	
$\cos \varphi$	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\begin{array}{ c c }\hline \sqrt{6} - \sqrt{2} \\ \hline 4 \end{array}$	0	

Aufgabe 1: Matrizen und Lineare Abbildungen

- a) (6 P.) Sei $A := \begin{pmatrix} 1 & 0 & 5 & -5 & 3 \\ -5 & 6 & -7 & 25 & -27 \\ 2 & -3 & 1 & -12 & 14 \\ -1 & 4 & 7 & 14 & -20 \end{pmatrix} \in \mathbb{Q}^{4 \times 5}$. Berechnen Sie eine Basis von Spaltenraum(A) und eine Basis von LR(A; $\vec{0}$).
- b) (3 P.) Sei $f: V \to W$ eine K-lineare Abbildung und $(\vec{v_i})_{i \in I} \subset V$ eine Familie von Vektoren. Beweisen Sie folgende Implikation und untersuchen Sie (mit Beweis bzw. Gegenbeispiel), ob auch die umgekehrte Richtung gilt:

 $(f(\vec{v_i}))_{i\in I}\subset W$ linear unabhängig $\Rightarrow (\vec{v_i})_{i\in I}\subset V$ linear unabhängig.

Aufgabe 2: Euklidische Räume

- a) (4 P.) Untersuchen Sie, ob $A := \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & 1 & 2 & 1 \\ 2 & -1 & 1 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix} \in M_4(\mathbb{R})$ positiv definit ist.
- b) Es sei $F := \begin{pmatrix} -\frac{1}{4}\sqrt{2} \frac{1}{2} & \frac{1}{2} & \frac{1}{4}\sqrt{2} \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2}\sqrt{2} & \frac{1}{2} \\ \frac{1}{4}\sqrt{2} \frac{1}{2} & -\frac{1}{4}\sqrt{2} \frac{1}{2} \end{pmatrix} \in M_3(\mathbb{R}).$ und $f : \mathbb{R}^3 \to \mathbb{R}^3$ mit $f(\vec{v}) := F \cdot \vec{v}$. Sie dürfen verwenden, dass $F \in O_3$.

(4 P.) Untersuchen Sie den Typ von f (Drehung? Drehspiegelung?) und berechnen Sie den Betrag des Drehwinkels von f.

Zusatzaufgabe, (1 Bonus-P.): Berechnen Sie auch die Drehachse von f.

c) (2 P.) Sei V ein euklidischer Raum und $\vec{v}, \vec{w} \in V$. Zeigen Sie: $\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2$.

Bitte wenden

Aufgabe 3: Diagonalisierbarkeit

- a) (3 P.) Welche der folgenden Aussagen sind allgemein wahr, welche nicht? Ihre Antwort ist jeweils mit einem kurzen Beweis oder Gegenbeispiel zu begründen.
 - i) Wenn die Spalten von $A \in M_n(\mathbb{K})$ linear unabhängig sind, dann ist A diagonalisierbar.
 - ii) Wenn $A \in M_n(\mathbb{K})$ diagonalisierbar ist, dann gibt es genau ein $S \in$ $GL_n(\mathbb{K})$, so dass $S^{-1}AS$ eine Diagonalmatrix ist.
 - iii) Wenn $A \in M_n(\mathbb{K})$ diagonalisierbar und invertierbar ist, dann ist auch A^{-1} diagonalisierbar.
- b) (7 P.) Untersuchen Sie jeweils, ob $A := \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & -1 & -1 \end{pmatrix}$ bzw. $B := \begin{pmatrix} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ in $M_3(\mathbb{Q})$ diagonalisierbar ist, und berechnen Sie ggf. eine diagonalisierende Matrix. Anmerkung: Es ist Teil des Arbeitsauftrags, die Eigenwerte zu berechnen. Zur Kontrolle: Sie sollten jeweils die Eigenwerte 2 und -2 finden.

Zusatzaufgabe, (2 Bonus-P.): Berechnen Sie jeweils auch das Minimalpolynom von A bzw. B.

Aufgabe 4: Symmetrische Matrizen

- a) (6 P.) Berechnen Sie eine Hauptachsentransformation für $A:=\left(\begin{smallmatrix}1&2\sqrt{5}\\2\sqrt{5}&0\end{smallmatrix}\right)\in$ $M_2(\mathbb{R})$. Anmerkung: Es ist Teil des Arbeitsauftrags, die Eigenwerte zu berechnen. Zur Kontrolle: Sie sollten die Eigenwerte 5 und -4 finden.
- b) (2 P.) Bestimmen Sie alle symmetrischen Matrizen $\binom{a\ b}{b\ d} \in M_2(\mathbb{K})$, für die $\binom{1}{1} \in \mathbb{K}^2$ ein Eigenvektor zum Eigenwert 1 ist.

Ich wünsche Ihnen viel Erfolg!