Probabilités III

MINES ParisTech

12 décembre 2021 (#6caedf9)

Question 1 Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$. La densité $f_{Z Y=1}$ est égale à
$\Box \ A : \frac{\lambda}{2} \exp(-\lambda z) 1_{\mathbb{R}_{+}^{*}}$ $\Box \ B : \lambda \exp(-\lambda z) 1_{\mathbb{R}_{+}^{*}}$ $\Box \ C : Z \text{ n'admet pas de densit\'e}$ $\Box \ D : Z = \lambda \text{ p.s.}$
Question 2 (réponses multiples) Avec les hypothèses précédentes, on a
$\Box A : \mathbb{E}(Z Y=1) = \frac{1}{\lambda}$ $\Box B : \mathbb{E}(Z Y=0) = \lambda$ $\Box C : \mathbb{E}(Z Y) = \frac{Y}{2\lambda} + \frac{1}{2}(1-Y)\lambda$ $\Box D : \mathbb{E}(Z Y) = \frac{Y}{\lambda} + (1-Y)\lambda$
Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} 1_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0$. Quelle est la densité de $Y X=x$?
$ \Box A : \exp(-y) \Box B : 1_{[0,x]}(y) \Box C : \frac{1}{x}1_{[0,x]}(y) \Box D : \lambda \exp(-\lambda x) $
Question 4 En déduire la valeur de $\mathbb{E}(Y)$:
$ \Box A : 1/2 \Box B : x/2 \Box C : \frac{1}{2\lambda} \Box D : \lambda^2 $
Question 5 Soit (X, Y) un vecteur gaussien d'espérance (μ_X, μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de $X Y$ vaut :
$\Box A: \mu_{Y}$ $\Box B: \mu_{X}$ $\Box C: \mu_{Y} + \rho(Y - \mu_{X})$

 $\square \ \text{D:} \ \mu_X + \rho(Y - \mu_Y)$