Let P be the set of propositions.

Definition 1. $E \cup \{ \{ \} \}$ is the set of atomic propositions hereby called events or actions. The internal action is ε . The action $\{ \}$ is program termination.

Definition 2. A programming language is a tuple $(\mathcal{P}, \vdash_{W}, \stackrel{e}{\hookrightarrow}, \blacktriangleright\blacktriangleleft)$ s.t.:

P: Set - is a set of admissible, partial programs.

 $\vdash_{\scriptscriptstyle W}:\mathcal{P}\to extbf{ extit{P}}$ - a judgement that holds iff a program is not partial.

 $\stackrel{e}{\hookrightarrow}: \mathcal{W} \to E \cup \{ \not \} \to \mathcal{W}$ - a step relation, where $\mathcal{W} = \{ w \in \mathcal{P} \mid \vdash_w w \}$. For $e \in E \cup \{ \not \}$ and $p, p' \in \mathcal{W}$ we say for $p \stackrel{e}{\hookrightarrow} p'$ that program p performs a step with action e to program p'. If $e = \varepsilon$, we write $p \hookrightarrow p'$. In case $e = \not \downarrow$, we write $p \downarrow$.

 $\mathbf{P} \to \mathcal{P} \to \mathcal{P}$ - links two partial programs together in some way, resulting in a new partial program.

Let S, I, and T be any programming language.

Definition 3. A trace $\overline{\tau}$ is an infinite sequence of events that results from the relation $\stackrel{e}{\hookrightarrow}$. That is, we obtain the trace $\overline{\tau}=e_0e_1\ldots$ for the execution sequence $p\stackrel{e_0}{\hookrightarrow} p'\stackrel{e_1}{\hookrightarrow}\ldots$ and write $p\leadsto \overline{\tau}$. The set of all traces is Traces.

We assume ξ to occur at most once in the trace and if it does occur, an infinite sequence of ε follows.

Definition 4. A finite sequence of events m is a finite trace prefix of $\overline{\tau}$ iff it satisfies the following judgement. We write the empty, finite trace prefix as \cdot .

$$\frac{m \leq \overline{\tau}}{\cdot \cdot \leq \overline{\tau}} \frac{m \leq \overline{\tau}}{e :: m \leq e :: \overline{\tau}}$$

Definition 5. The behavior of a whole program p is a set of all traces it produces, i.e. $Behav(p) = \{ \overline{\tau} \mid p \leadsto \overline{\tau} \}.$

Definition 6. A property π is a set of admissible traces. Thus, if p satisfies π (written $p \models \pi$), then $Behav(p) \subseteq \pi$.

Definition 7. A hyperproperty H is a set of sets of admissible traces. Thus, if p satisfies π (also written $p \models H$), then $Behav(p) \in H$.

Note th

Definition 8. For every property π , there is a unique hyperproperty that expresses the same property, namely $\mathscr{P}(\pi)$, where $\mathscr{P}(\bullet)$ is the powerset. We write [].

Definition 9. A program p robustly satisfies a property π , written $p \vDash_R \pi$, iff $\forall C \in \mathcal{P}, C \bowtie p \vDash \pi$. The same notation is used for robust hyperproperty satisfaction.

Definition 10. A (hyper-)property class C is a set of (hyper-)properties.

Definition 11. The class of safety properties contains all properties that can be refuted with a finite trace prefix:

$$Safety = \{ \pi \mid \forall \overline{\tau} \in \mathit{Traces}, t \notin \pi \ \mathit{iff} \ \exists m \geq \overline{\tau}, \forall \overline{\tau}' \in \mathit{Traces}, m \leq \overline{\tau}' \implies \overline{\tau}' \notin \pi \}$$

Definition 12. A compiler between languages S and T is a partial function $\llbracket \bullet \rrbracket^{\mathsf{S} \to \mathbf{T}} \text{ from } \mathcal{P} \text{ to } \mathcal{P}.$

Definition 13. For a given class \mathbb{C} , a compiler from language S to T robustly

$$\forall \pi \in \mathbb{C}, \forall p \in \mathcal{P}, p \vDash \pi \implies \llbracket p \rrbracket^{S \to \mathbf{T}} \vDash \pi$$

We write $\vdash \llbracket \bullet \rrbracket^{S \to \mathbf{T}} : \mathbb{C}$.

Definition 14. Given two compilers $\llbracket \bullet \rrbracket^{S \to I}$ and $\llbracket \bullet \rrbracket^{I \to \mathbf{T}}$, their sequential composition is $\llbracket \bullet \rrbracket^{S \to I \to \mathbf{T}} = \llbracket \llbracket \bullet \rrbracket^{S \to I} \rrbracket^{I \to \mathbf{T}}$.

Definition 15. The conjunctive composition of two properties π_1, π_2 is the set- $\begin{array}{c} \textit{intersection } \pi_1 \cap \pi_2 \\ \textit{Do the lifting} \end{array}$

Definition 16. The conjunctive composition of two classes of properties $\mathbb{C}_1, \mathbb{C}_2$ is the set-intersection $\mathbb{C}_1 \cap \mathbb{C}_2$.

Lemma 1. Given $\vdash \llbracket \bullet \rrbracket^{\mathsf{S} \to \mathit{I}} : \mathbb{C}_1 \text{ and } \vdash \llbracket \bullet \rrbracket^{\mathit{I} \to \mathbf{T}} : \mathbb{C}_2, \text{ then } \vdash \llbracket \bullet \rrbracket^{\mathsf{S} \to \mathit{I} \to \mathbf{T}} :$ $\mathbb{C}_1 \cap \mathbb{C}_2$.