Tanabe Sugano (TS) Diagram Lecture - 2

M. Sc. (CC-6/PAT/CSIR NET) Inorganic Chemistry

Dr. Naresh Kumar

Prof. of Chemistry
Univ. Dept. of Chemistry
B. N. Mandal University, Madhepura

For d⁴ system

d⁴ is field dependent system i.e. its splitting depends upon W/F & S/F
Weak field Strong Field

$$\frac{1}{d^4 = d^3 + d^1}$$

$$Ms = 2x\frac{4}{2} + 1 = 5$$

$$\frac{1}{d^4 = d^3 + d^1}$$

$$2x\frac{2}{2} + 1 = 3$$

$$L = +2+1+0=5(0, 1, 2, 3, 4, 5 \Rightarrow S, P, D, F, G, H)$$
Since J=L+S for more than half filled orbital. So G.S.T.=3H

= 2 (0, 1, 2
$$\Rightarrow$$
 S, P, D) 3 H, (3 G, 3 F, 3 D, 3 P, 1 I, 1 G, 1 F, 1 D, 1 S)

So, G.S.T =
$${}^{5}D$$

 ${}^{5}D$ splitts into ${}^{5}Eg$ & ${}^{5}T_{2g}$

Since
$$E_g$$
 set is incomplete so ${}^{5}E_g$ T_{2g} term is incomplete so G.S. degeneracy is $A_{1g} \times T_{2g} = {}^{3}T_{1g}$

In weak field there is only one peak due to transition of electron from ${}^5E_{2g}$ to ${}^5T_{2g}$ followed by spin allowed transition ($\Delta S=0$). But in strong field there are 3 peaks are obtained due to spin allowed

transition of electron.

TS diagram of d⁵ system

d⁵ is field dependent system i.e. its splitting depends upon W/F & S/F Strong Field Weak field

L=0 (S)

 $Ms = 2x\frac{5}{2} + 1 = 6$

 $S_0, G.S.T = {}^6S \Rightarrow {}^6A_{1g}$

1 1 1 $d^3Xd^2 = A_{2g}XT_{1g} = T_{2g}$

 $2x\frac{1}{2} + 1 = 2$

 $L = +2+2+1+1+0 = 6 (0, 1, 2, 3, 4, 5 \Rightarrow S, P, D, F, G, H, I)$

So, terms will be ²I, ²H, ²G, ²F, ²D, ²P, ²S

Since T_{2g} set is incomplete. So ground degenerated term is T_{2g}

So, TS diagram may be sketched as in both W/F & S/F

In weak field no peak is obtained but in strong field we get for spin allowed peaks where $\Delta s = 0$

TS diagram of d⁶ system d⁶ is field dependent system i.e. its splitting depends upon W/F & S/F

 $Ms = 2x\frac{4}{2} + 1 = 5$

I = +2+2+1+0-1-2

⁵D splits into ⁵T_{2g}, 5_{Eg} but T_{2g} is incomplete

So, G.S.T. degeneracy is ⁵T_{2g}

$$= +2+2+1+0-1-2$$

= 2 (0, 1, 2) = S, P, D

$$= 2 (0, 1, 2) = S, P, D$$
So, G.S.T = ${}^{5}D < {}^{6}P < {}^{6}S$

Terms energy =
$${}^{1}I<{}^{1}H<{}^{1}G<{}^{1}F<{}^{1}D<{}^{1}P<{}^{1}S$$
 ${}^{1}I$ splits into $A_{1g}+A_{2g}+E_{g}+T_{1g}+{}^{2}T_{2g}$

$$2x\frac{0}{2} + 1 = 1$$

Strong Field

 $L = +2+2+1+1+0+0=6 (0, 1, 2, 3, 4, 5 \Rightarrow S, P, D, F, G, H, I)$

We get only one peak in weak field & four peaks in strong field as given in diagram.

TS diagram of d⁷ system

d⁷ is field dependent system i.e. its splitting depends upon W/F & S/F Weak field Strong Field

$$L = +2+2+1+1+0+0-1=5(0, 1, 2, 3, 4, 5 \Rightarrow S, P, D, F, G, H)$$

$$= 3(0, 1, 2, 3) = S, P, D, F$$
Terms energy = ${}^{2}H < {}^{2}G < {}^{2}F < {}^{2}D < {}^{2}P < {}^{2}S$

²H splits into
2
Eg+ 2 T_{1g}+ 2 T_{2g}+ 2 T_{2g}

Eg is incomplete So G.S.T generated is ²Eg

$$L=+2+2+2+1+0-1-2$$
= 3 (0, 1, 2, 3) = S, P, D, F

G.S.T.= ${}^{4}F$,

Energy of terms = ${}^{4}F$, ${}^{4}D<{}^{4}P<{}^{4}S$
 ${}^{4}F$ splits into ${}^{1}T_{1g}$, ${}^{4}T_{1g}$ & ${}^{4}A_{2g}$

but T_{2g} is incomplete

So G.S.T degeneracy is ${}^{4}T_{1g}$

So, TS diagram may be sketched as in both W/F & S/F

There are 3 peaks in weak field & 3 peaks in strong field are obtained due to electronic transfer in d⁷ system.

