A. I. Novozhilov, N. I. Leonyuk,

V. M. Terekhova, and M. I. Samoilovich

UDC 548.0:535.34

ESR has been used to study crystals of yttrium aluminum borate YAl₃[BO₃]₄, grown from solution in a PbF₂-B₂O₃ melt. YAl₃[BO₃]₄ is isostructural with NdAl₃[BO₃]₄ [1] and belongs to the symmetry group D₃⁷-R32. The rhombohedral unit cell has the parameters α = 9.288, b = 7.226 Å [2]. The coordination polyhedra of Y³⁺, Al³⁺, and B³⁺ are respectively trigonal prisms, octahedra, and triangles, formed by oxygen ions; the Al octahedra form spirals along the [001] axis, joined to isolated B triangles and Y prisms [1].

The ESR spectra were recorded on a Varian IES-3B radiospectrometer at a frequency of 9.1 GHz with high-frequency modulation of the magnetic field, 100 kG. At 295 and 77°K the observed spectrum consisted of three lines, assigned to the axially symmetric center with an axis of symmetry parallel to the [001] axis, with width from the points of inflection 8-10 G and relative integral intensities 100:9:6. The orientation H \parallel [001] corresponds to the resonance values H₁ = 3.246, H₂ = 5465.5 and H₃ = 9276 G (T=77°K, ν = 9122 MHz). Change in the orientation from H \parallel [001] to H \perp [001] corresponds to a change in the resonance values of the lines by -2.5, +7.5, and 40 G respectively.

The resonance values of the magnetic field given here for the three lines are characteristic of the ESR spectrum of PB^{3+} ions observed in calcite [3], ThO [4], CaF_2 [5], NaCl [6], and $CaWO_4$ [7]. The ratio of the integral intensities of lines 2 and 3 and line 1 corresponds to the abundance of the odd isotope ^{207}Pb (22.6%) and the even isotope (77.4%).

The Pb³⁺ ion with electronic configurations $6S^1$ is characterized by an electron spin S=1/2 (state $^2S_{1/2}$) and the nuclear spin of the 207 Pb isotope is I=1/2. Assuming that line 1 is due to the even isotopes of Pb³⁺ and is described by a spin Hamiltonian of the form

$$\widehat{\mathcal{H}} = g_{\parallel} \beta H_z S_z + g_{\perp} \beta (H_x S_x + H_y S_y),$$

it is possible to determine the principal values of the g tensor, which were found to be $g_{\parallel}=2.0079\pm0.0005;\,g_{\perp}=2.0095\pm0.0005\;(T=77{\rm K}).$

Since for ²⁰⁷Pb the hyperfine splitting has a value of the order of 10,000 G, the description of the HFS from the odd isotope requires the use of the Breit-Rabi equation for the weak field case [8]. The calculation of the resonance values of the magnetic field for the case of an axially symmetric spectrum was carried out in [7]:

$$H_{1} = \frac{2h\nu}{g_{\parallel}\beta} \left[\frac{1 + (A_{\parallel}/h\nu)}{2 + (A_{\parallel}/h\nu)} \right] + \frac{h\nu}{2g_{\parallel}\beta} \left[\frac{(A_{\parallel}/h\nu)^{2} - (A_{\perp}/h\nu)^{2}}{2 + (A_{\parallel}/h\nu)} \right], \quad H \parallel C;$$
 (1)

$$H_{1} = \frac{2h\nu}{g_{d}\beta} \left[\frac{1 + (A_{d}/h\nu)}{2 + (A_{d}/h\nu)} \right] - \frac{h\nu}{2g_{d}\beta} \left[\frac{(A_{\parallel}/h\nu)^{2} - (A_{d}/h\nu)^{2}}{2 + (A_{d}/h\nu)} \right], \quad H \perp C.$$
 (2)

Equations (1) and (2), and the above values of g_{\parallel} and g_{\perp} , found for the even isotopes, were used to carry out the computer calculation, with an accuracy of $1\cdot 10^{-4}$ cm⁻¹. The following were obtained for the principal values of the HFS tensor:

$$A_{\parallel} = 1.3219; A_{\perp} = 1.3224 \text{ cm}^{-1}.$$

Using these values, it is possible to find the isotropic and anisotropic parts of the hyperfine interaction using the equations: $A_{\parallel} = \alpha - 2b$, $A_{\perp} = \alpha + b$. By substituting the values found for A_{\parallel} and A_{\perp} , we obtain: $\alpha = 1.3222$; $b = 0.2 \cdot 10^{-3}$ cm⁻¹.

Table 1 gives the characteristics of the structural positions for the symmetry group R32-D $_3^7$ [9]. The symbol α denotes the type of structural position, G_{α} its symmetry point

All-Union Scientific-Research Institute for the Synthesis of Mineral Products. Translated from Zhurnal Strukturnoi Khimii, Vol. 20, No. 5, pp. 929-931, September-October, 1979. Original article submitted July 4, 1978.

TABLE 1. Types of Structural Positions in the Structure $R32-D_3^7$

a	2(a,b)	1(c)	2(d,e)	1(f)
G_{α}	$D_3(32)$	C ₃ (3)	$C_2(2)$	C ₁ (1)
$K_{\alpha}/K_{\alpha}^{\mathbf{M}}$	1/1	2/2	3/3	6/6
Orientation of the axes	+++	+	+	
Ion	Y^{3+}	B^{3+}	Al ³⁺	O2-

group, and K_{α}^{M} the number of structurally equivalent and magnetically equivalent differently oriented positions. The signs + and — correspond to the presence or absence of magnetic axes coinciding with the crystallographic axes of type [100].

The observed center corresponds to only one Pb^{3+} center in the unit cell, and the magnetic axis z coincides with the crystallographic axis [001]. Thus the Pb^{3+} ions in the $YAl_3[BO_3]_4$ structure occupy the Y^{3+} positions.

YAl₃[BO₃]₄ crystals containing a small quantity of Pb³⁺ have an orange color, the density of which increases in the same sense as the intensity of the ESR spectrum of Pb³⁺.

The authors thank V. F. Karyagin and B. N. Grechushnikov for assistance with the experimental work.

LITERATURE CITED

- 1. H. Y.-P. Hong and K. Dwight, Mat. Res. Bull., Pergamon Press, 9, 1661 (1974).
- 2. S. F. Akhmetov, G. L. Akhmetova, V. S. Kovalenko, N. I. Leonyuk, and A. V. Pashkova, Kristallografiya, 23, 198 (1978).
- 3. V. F. Karyagin and B. N. Grechushnikov, Kristallografiya, 15, 985 (1970).
- 4. J. L. Kolopus, C. B. Finch, and M. M. Abracham, Phys. Rev., <u>2B</u>, 2040 (1970).
- 5. V. F. Krutikov, N. I. Silkin, and V. G. Stepanov, Fiz. Tverd. Tela, <u>17</u>, 3263 (1975).
- 6. N. I. Mel'nikov, R. A. Zhitnikov, and V. A. Khramtsov, Fiz. Tverd. Tela, 17, 3234 (1975).
- 7. G. Born, A. Hofstaetter, A. Scharmann, and B. Vitt, Phys. Stat. Sol. (b), 66, 305 (1974).
- 8. W. Low, Paramagnetic Resonance in Solids: Solid-State Physics, Academic Press (1960).
- 9. M. M. Meil'man and M. I. Samoilovich, Introduction to the ESR Spectroscopy of Activated Single Crystals [in Russian], Atomizdat, Moscow (1977).