Тест

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность расходится.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \, \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

Базовые задачи

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

$$1)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

- 2. Доказать, что $\lim_{n\to\infty}\frac{n+b}{n}=1\;;\,\forall b\in\mathbb{R}.$
- 3. Доказать, что $\lim_{n\to\infty} \frac{1}{n} = 0$.
- 4. Доказать, что последовательности $x_n = (-1)^n n$ и $y_n = n$ расходятся.
- 5. Исследовать на сходимость последовательности:

1)
$$x_n = \frac{3n+4}{n+2}$$

2) $x_n = 2^n - 100n$

$$(2)x_n = 2^n - 100n$$

- 6. Доказать теорему о трех последовательностях.
- 7. Доказать, что $\lim_{n\to\infty} \frac{1}{n^p} = 0$.
- 8. Найти предел последовательности: $1)x_n = \frac{3n+5}{6n^2+3n+8}$; $2)x_n = \sqrt{n^2+1}$ $\sqrt{n^2-1}$.

Дополнительные задачи

- 1. Доказать, что при $0 \le q < 1 \hookrightarrow \lim_{n \to \infty} q^n = 0$.(Указание: использовать неравенство Бернулли)
- 2. Доказать, что если $x_n \to a$, то $|x_n| \to |a|$.
- 3. Доказать, что если $\lim_{n\to\infty}x_n=+\infty,$ то у x_n не существует конечного предела.

Тест

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность расходится.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \, \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

Базовые задачи

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

$$1)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

- 2. Доказать, что $\lim_{n\to\infty}\frac{n+b}{n}=1\;;\,\forall b\in\mathbb{R}.$
- 3. Доказать, что $\lim_{n\to\infty} \frac{1}{n} = 0$.
- 4. Доказать, что последовательности $x_n = (-1)^n n$ и $y_n = n$ расходятся.
- 5. Исследовать на сходимость последовательности:

1)
$$x_n = \frac{3n+4}{n+2}$$

2) $x_n = 2^n - 100n$

$$(2)x_n = 2^n - 100n$$

- 6. Доказать теорему о трех последовательностях.
- 7. Доказать, что $\lim_{n\to\infty} \frac{1}{n^p} = 0$.
- 8. Найти предел последовательности: $1)x_n = \frac{3n+5}{6n^2+3n+8}$; $2)x_n = \sqrt{n^2+1}$ $\sqrt{n^2-1}$.

Дополнительные задачи

- 1. Доказать, что при $0 \le q < 1 \hookrightarrow \lim_{n \to \infty} q^n = 0.$ (Указание: использовать неравенство Бернулли)
- 2. Доказать, что если $x_n \to a$, то $|x_n| \to |a|$.
- 3. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 4. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 5. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна.(Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)

Тест

- 1. Написать определение предела числовой последовательности.
- 2. Может ли последовательность иметь два различных конечных предела?
- 3. Написать в кванторах определение того, что последовательность расходится.
- 4. Сходится ли последовательность $x_n = 1$? Ответ обосновать.
- 5. Сформулировать теорему Вейерштрасса.
- 6. Определение числа е.
- 7. Сформулируйте теорему о трёх последовательностях.
- 8. Сформулируйте свойство предела частного двух числовых последовательностей.
- 9. Пусть x_n сходится к $a \in \mathbb{R}$ и $x_n > 0 \, \forall n \in \mathbb{N}$. Верно ли, что a > 0? Ответ обосновать.
- 10. Привести пример двух последовательностей x_n и y_n таких, что x_n и $x_n \cdot y_n$ сходятся, а y_n расходится.

Базовые задачи

1. Доказать, что x_n сходится к $a \in \mathbb{R} \Leftrightarrow$

$$1)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| < C\varepsilon; C > 0$$

$$2)\forall \varepsilon > 0 \exists N : \forall n \geqslant N \hookrightarrow |x_n - a| \le \varepsilon.$$

- 2. Доказать, что $\lim_{n\to\infty}\frac{n+b}{n}=1\;;\,\forall b\in\mathbb{R}.$
- 3. Доказать, что $\lim_{n\to\infty} \frac{1}{n} = 0$.
- 4. Доказать, что последовательности $x_n = (-1)^n n$ и $y_n = n$ расходятся.
- 5. Исследовать на сходимость последовательности:

1)
$$x_n = \frac{3n+4}{n+2}$$

2) $x_n = 2^n - 100n$

$$(2)x_n = 2^n - 100n$$

- 6. Доказать теорему о трех последовательностях.
- 7. Доказать, что $\lim_{n\to\infty} \frac{1}{n^p} = 0$.
- 8. Найти предел последовательности: $1)x_n = \frac{3n+5}{6n^2+3n+8}$; $2)x_n = \sqrt{n^2+1}$ $\sqrt{n^2-1}$.

Дополнительные задачи

- 1. Доказать, что при $0 \le q < 1 \hookrightarrow \lim_{n \to \infty} q^n = 0.$ (Указание: использовать неравенство Бернулли)
- 2. Доказать, что если $x_n \to a$, то $|x_n| \to |a|$.
- 3. Доказать, что если $\lim_{n\to\infty}x_n=+\infty$, то у x_n не существует конечного предела.
- 4. Доказать, что если x_n возрастает и неограничена, то у нее существует предел равный $+\infty$.
- 5. Доказать, что $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$ монотонна.(Замечание: в силу теоремы Вейер-штрасса это означает, что x_n сходится.)
- 6. Пусть $\exists N: \forall n \geq N \hookrightarrow a_n \leq b_n$. Доказать, что если $a_n \to +\infty$, то $b_n \to +\infty$