JEE MAINS 13 April 2023 Shift-2

ee24btech11015 - Dhawal

1) The area of the region
$$\{(x,y): x^2 \le y \le |x^2 - 4|, y \ge 1\}$$
 is

a)
$$\frac{3}{4} \left(4\sqrt{2} + 1 \right)$$

b)
$$\frac{4}{3} \left(4\sqrt{2} - 1 \right)$$

c)
$$\frac{3}{4} \left(4\sqrt{2} - 1 \right)$$

a)
$$\frac{3}{4} \left(4\sqrt{2} + 1 \right)$$
 b) $\frac{4}{3} \left(4\sqrt{2} - 1 \right)$ c) $\frac{3}{4} \left(4\sqrt{2} - 1 \right)$ d) $\frac{4}{3} \left(4\sqrt{2} + 1 \right)$

2) If
$$\lim_{x\to 0} \frac{e^{ax} - \cos(bx) - \frac{cxe^{-cx}}{2}}{1 - \cos 2x} = 17$$
, then $5a^2 + b^2$ is equal to

3) The line, that is coplanar to the line
$$\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$$
, is

a)
$$\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$$
 b) $\frac{x+1}{1} = \frac{y-2}{2} = \frac{z-5}{5}$ c) $\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z-5}{4}$ d) $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{4}$

b)
$$\frac{x+1}{1} = \frac{y-2}{2} = \frac{z-5}{5}$$

c)
$$\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z-5}{4}$$

d)
$$\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{4}$$

4) The plane, passing through the points
$$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and parallel to the line passing $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$

through $\begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, also passes through the point:

a)
$$\begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}$$

b)
$$\begin{pmatrix} -2\\5\\0 \end{pmatrix}$$
 c) $\begin{pmatrix} 2\\0\\1 \end{pmatrix}$

c)
$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

5) Let for a triangle $\triangle ABC$,

$$AB = -2\hat{i} + \hat{j} + 3\hat{k}$$

$$CB = \alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$$

$$CA = 4\hat{i} + 3\hat{j} + \delta\hat{k}$$

If $\delta > 0$ and the area of the triangle $\triangle ABC$ is $5\sqrt{6}$, then $CB \cdot CA$ is equal to

a) 108

c) 54

d) 120

6) Let for
$$A = \begin{vmatrix} 1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$
, $|A| = 2$. If $|2 \text{ adj } (2 \text{ adj } (2A))| = 32^n$, then $3n + \alpha$ is equal to

d) 11

d) $[0, 2\pi]$

a) 2	b) 3	c) $3\sqrt{3}$	d) $2\sqrt{2}$
9) If the system of	equations		
		y + y - z = 5 $5y + \lambda z = \mu$	
	x + 2	2y - 5z = 7	
has infinitely many solutions, then $(\lambda + \mu)^2 + (\lambda - \mu)^2$ is equal to			
a) 904	b) 916	c) 912	d) 920
10) The statement $(p \land (\sim q)) \lor ((\sim p) \land q) \lor ((\sim p) \land (\sim q))$ is equivalent to .			
a) $(\sim p) \lor (\sim q)$	b) $(\sim p) \land (\sim q)$	c) $p \lor (\sim q)$	d) $p \vee q$
11) Let $S = \{z \in C : \overline{z} = \iota(z^2 + \operatorname{Re}(\overline{z}))\}$. Then $\sum_{z \in S} z ^2$ is equal to			
a) 4	b) $\frac{7}{2}$	c) 3	d) $\frac{5}{2}$
12) Let α, β be the roots of the equation $x^2 - \sqrt{2}x + 2 = 0$, Then $\alpha^{14} + \beta^{14}$ is equal to			
a) $-128\sqrt{2}$	b) $-64\sqrt{2}$	c) -128	d) -64
13) Let $ \mathbf{a} = 2$, $ \mathbf{b} = 3$ and the angle between the vectors \mathbf{a} and \mathbf{b} be $\frac{\pi}{4}$. Then $ (\mathbf{a} + 2\mathbf{b}) \times (2\mathbf{a} - 3\mathbf{b}) ^2$ is equal to			
a) 482	b) 841	c) 882	d) 441
14) The value of $\frac{e^{-\frac{\pi}{4}} + \int_0^{\frac{\pi}{4}} e^{-x} \tan^{50} x dx}{\int_0^{\frac{\pi}{4}} e^{-x} (\tan^{49} x + \tan^{51} x) dx}$ is			

c) 12

8) Let a_1, a_2, a_3, \ldots be a G. P. of increasing positive numbers. Let the sum of its 6^{th} and 8^{th} terms be 2 and the product of its 3^{rd} and 5^{th} terms be $\frac{1}{9}$. Then $6(a_2 + a_4)(a_4 + a_6)$

c) $[0, 2\pi)$

b) 9

b) $[0, \pi]$

7) The range of $f(x) = 4\sin^{-1}\left(\frac{x^2}{x^2+1}\right)$

a) 10

a) $[0, \pi)$

is equal to

- a) 25
- b) 51

c) 50

- d) 49
- 15) The coefficient of x^5 in the expansion of $\left(2x^3 \frac{1}{3x^2}\right)^5$ is
 - a) $\frac{80}{9}$

b) 8

c) 9

d) $\frac{26}{3}$