Machine Learning Project Report

House Price Prediction Model

INDEX

		4	4
•	On	TAY) TC
	VII	ter	

1. Executive Summary	3			
2. Introduction	3			
3. Reading and Sampling Data	3			
4. Data Analysis	3			
a. Data Information	3			
b. Data Skewness	5			
c. Data Normal Distribution	5			
d. Pair Plot	6			
e. Heatmap	7			
f. Outliers Detection	8			
g. Outliers Treatment	9			
h. Feature Drop	10			
5. Machine Learning Model	10			
a. Linear Regression	10			
b. Feature Scaling	10			
c. Feature Encoding	10			
d. Applying Linear Regression Model	10			
e. Model Evaluation	11			
f. Final Results	11			
6. Appendix:	11			
a. Libraries Used	11			
Figures				
Figure1: Data Sampling	3			
Figure 2: Data Information	4			
Figure3: Data Summary	4			
Figure4: Data Skewness				
Figure5: Data Distribution	6			
Figure6: Pair Plot - Relationship between different variables				
Figure7: Heatmap - Correlation between different variables				
Figure8: Box Plot of all features	9			
Figure9: Prediction v/s Actual Value & Best Fit Line	11			

I. Executive Summary

A house value is simply more than location and square footage. Like the features that make up a person, an educated party would want to know all aspects that give a house its value. For example, you want to sell a house and you don't know the price which you may expect — it can't be too low or too high. To find house price you usually try to find similar properties in your neighbourhood and based on gathered data you will try to assess your house price.

II. Introduction

The problem statement discussed above is classified as a *Regression* problem in the domain of machine learning. The various input features $(x_1, x_2, ...)$ can be used to determine a best fitting model $h_{\theta}(x)$ such that the output price is a real number. The equation is described as:

$$Y = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$

Hence, in this project report, we discuss about applying this model to the given dataset. We will explore the data and do some analysis to get insights on the provided data, detect important features — scale and encode them — and at last fit a Linear Regression model to predict the value of price.

III. Reading and Sampling Data

We read the given Excel to create a pandas data frame. Sample of Dataset:

Figure 1: Data Sampling

The dataset has 21,613 data points and 23 features for each data point.

IV. Data Analysis

A. Data Information

We can observe that there is no blank(null) value present in the dataset and no duplicate rows in the dataset. Columns cid, price, yr_renovated, zipcode are int64. Columns dayhours, ceil, coast, condition, yr_built, long, total_area are object type. Columns room_bed, room_bath, living_masure, lot_measure, sight, quality, ceil_measure, basement, lat, living_measure15, lot_measure15, furnished are object type.

```
kclass 'pandas.core.frame.DataFrame'>
Int64Index: 21472 entries, 0 to 21612
Data columns (total 23 columns):
     Column
                       Non-Null Count
                                        Dtype
0
     cid
                       21472 non-null
                                        int64
     dayhours
                       21472 non-null
                                        object
1
     price
                       21472 non-null
                                        int64
 2
     room bed
                       21406 non-null
                                        float64
 3
    room bath
                       21406 non-null
                                        float64
4
    living_measure
                       21455 non-null
                                       float64
5
6
    lot measure
                       21430 non-null
                                       float64
 7
    ceil
                       21430 non-null
                                       object
8
     coast
                       21471 non-null
                                       object
     sight
                       21415 non-null
                                        float64
9
10 condition
                       21415 non-null
                                        object
                                        float64
    quality
                       21471 non-null
11
    ceil measure
                       21471 non-null
                                       float64
12
13
    basement
                       21471 non-null
                                        float64
14
    yr built
                       21471 non-null
                                        object
    yr renovated
                       21472 non-null
                                       int64
15
16
    zipcode
                       21472 non-null
                                        int64
    lat
                       21472 non-null
                                       float64
17
 18
     long
                       21472 non-null
                                        object
                       21348 non-null float64
19
    living measure15
    lot measure15
                       21443 non-null
                                        float64
 20
 21
    furnished
                       21443 non-null
                                        float64
22
    total area
                       21443 non-null
                                        object
dtypes: float64(12), int64(4), object(7)
memory usage: 3.9+ MB
```

Figure 2: Data Information

Data Summary:

	cid	price	room_bed	room_bath	living_measure	lot_measure	sight	quality	ceil_measure	basement	yr_renovated	zipcode	lat	living_measure15	lot_measure15	furnished
count	2.161300e+04	2.161300e+04	21505.000000	21505.000000	21596.000000	2.157100e+04	21556.000000	21612.000000	21612.000000	21612.000000	21613.000000	21613.000000	21613.000000	21447.000000	21584.000000	21584.000000
mean	4.580302e+09	5.401822e+05	3.371355	2.115171	2079.860761	1.510458e+04	0.234366	7.656857	1788.366556	291.522534	84.402258	98077.939805	47.560053	1987.065557	12766.543180	0.196720
std	2.876566e+09	3.673622e+05	0.930289	0.770248	918.496121	4.142362e+04	0.766438	1.175484	828.102535	442.580840	401.679240	53.505026	0.138564	685.519629	27286.987107	0.397528
min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	0.000000	1.000000	290.000000	0.000000	0.000000	98001.000000	47.155900	399.000000	651.000000	0.000000
25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1429.250000	5.040000e+03	0.000000	7.000000	1190.000000	0.000000	0.000000	98033.000000	47.471000	1490.000000	5100.000000	0.000000
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	0.000000	7.000000	1560.000000	0.000000	0.000000	98065.000000	47.571800	1840.000000	7620.000000	0.000000
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068450e+04	0.000000	8.000000	2210.000000	560.000000	0.000000	98118.000000	47.678000	2360.000000	10087.000000	0.000000
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	4.000000	13.000000	9410.000000	4820.000000	2015.000000	98199.000000	47.777600	6210.000000	871200.000000	1.000000

Figure 3: Data Summary

We can observe that mean and median vary for all features. Hence for model to work affectively, we need to scale the features.

B. Data Skewness

cid	0.243219	
price	3.873235	
room_bed	1.985191	
room_bath	0.496752	
living_measure	1.454467	
lot_measure	13.084895	
ceil	0.616166	
coast	11.455112	
sight	3.398491	
condition	1.032563	
quality	0.767556	
ceil_measure	1.425115	
basement	1.578246	
yr_built	-0.470277	
yr_renovated	4.558198	
zipcode	0.406357	
lat	-0.484619	
long	0.886846	
living_measure15	1.107623	
lot_measure15	9.518962	
furnished	1.524216	
total_area	12.977128	
dtype: float64		

Figure 4: Data Skewness

We observe that the majority of skewness is greater than 0 that means more weight on the right tailed that is data is right/positive skewed. The features yr_built, and lat are slightly left skewed.

C. Data Normal Distribution

The histogram is used to check the distribution of the data. If the data is normally distributed then the histogram will be a bell curve. If the data is not normally distributed then the histogram will not be a bell curve.

Figure 5: Data Distribution

Here the data is not normally distributed as the histogram is not symmetric.

D. Pair Plot

Pair plots shows relationship between the variables and the diagonal shows the distribution of the variables. It is done by taking the variables one by one and plotting them against each other.

Here we can see that there is a linear relationship between the variables as the data is not normally distributed.

Figure 6: Pair Plot - Relationship between different variables

E. Heatmap

Heat map shows the correlation between the variables. The darker the color the more the correlation between the variables.

Here we can see that the variables are not correlated with each other. There is randomness in relationships between different variables. We see that our target variable price is somewhat equally related to all variables.

Figure 7: Heatmap - Correlation between different variables

F. Outlier Detection

We will plot bar graphs of all the features, except CID and Time Stamp to check if we have any outliers in data so we can adjust accordingly.

Figure 8: Box Plot of all features

G. Outlier Treatment

Once we have identified the outliers, we can set boundaries so to avoid the outliners.

Set:

•	room_bed	<	8
•	room_bath	<	5
•	living_measure	<	6000
•	lot_measure	<	100000
•	ceil	<	4
•	coast	<	2
•	sight	<	5
•	condition	<	5
•	quality	<	12
•	ceil_measure	<	6000
•	basement	<	4000
•	yr_built	>	1900
•	yr_renovated	<	2015
•	zipcode	<	98080
•	lat	>	47
•	long	<	-120

living_measure15 < 6000
 lot_measure15 < 100000
 total_area < 100000

We treat outliers to be the values which are more than 3 standard deviations away from the mean.

H. Feature Drop

We drop the first two columns – CID, Time stamp of house sale, basement, yr_renovated.

We drop features to avoid multicollinearity and these are not related much to predicting final price.

V. Machine Learning Model

A. Linear Regression

As discussed we use a simple linear regression model to solve the predicting model. To do this, we split the data set into 70:30 training to testing ratio. We will apply feature scaling and encoding.

B. Feature Scaling

As we saw that mean and median vary for all features, we will need to scale them. The higher value numerical features — living_measure, lot_measure, ceil_measure, living_measure15, lot_measure15, total_area will be scaled using StandardScaler API call of sklearn library.

C. Feature Encoding

The features which have a fixed number of outcome — room_bed, room_bath, ceil, coast, sight, condition, quality, zipcode will be encoded.

These will convert into dummy variables to train the model.

D. Applying Linear Regression Model

After setting the data pipeline, scaling, and encoding, we can final envoke the linear regression model from sklearn.linear_model python library and fit the model.

E. Model Evaluation

After training, the model has a Mean Squared Error:

15625649747.690655 = 1.5625*10^6

It has an R2 score of 0.8516218103729474.

It has a Coefficient of determination: 0.85.

F. Final Results

The model is **85% accurate** in predicting the price correctly. The plot of predicted values against the actual values and the line of best fit is:

Figure 9: Prediction v/s Actual Value & Best Fit Line

VI. Appendix

A. Libraries Used

The list of python libraries used for solving above problem statement.

- Pandas
- MatPlotLib
- Seaborn
- SkLearn PreProcessing
- SkLearn Model_Selection
- SkLearn Linear_Model
- SkLearn Metrics