

5.2.2 原电池符号

天津大学 邱海霞

原电池符号

相界面

负极在左 离子靠盐桥 正极在右

(-) Zn $Zn^{2+}(c_1)$ $Cu^{2+}(c_2)$ Cu (+)

溶液、气体要注明 $c_{\rm B}$, $p_{\rm B}$ 。

原电池的装配

凡能自发进行的氧化还原反应都可以装配成原电池

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$

(-)Zn | Zn²⁺(
$$c_1$$
) | Cu²⁺(c_2) | Cu(+)

还原剂电对 氧化剂电对

负极 正极

电池符号的书写

$$Zn+2H^+ \longrightarrow Zn^{2+} + H_2$$

(-)Zn | Zn²⁺(c_1) | H⁺(c_2) | H₂(p) | Pt (+)

"惰性"电极

能导电而不参与电极反应的电极

若组成电极物质中无金属,应插入惰性电极

电池符号的书写

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

同一相不同的物种,用","隔开

, (-)Pt |Fe³⁺(
$$c_1$$
) Fe²⁺(c_2) ||Cr₂Q_F²⁻(c_3) Cr³⁺(c_4) | Pt (+)

$$Cr_2O_7^{2-} + 6e^- + 14H^+ \Longrightarrow 2Cr^{3+} + 7H_2O$$

参与电极反应的其它物质也应写入电池符号中

电池符号书写规则小结

- lacktriangle 负极在左,正极在右,离子靠盐桥溶液、气体要注明 c_{B} , p_{B}
- ◆ 盐桥 用 "□"表示半电池中两相界面 用 "□"分开同相不同物种 用 "□"分开
- ◆ 电极的组成物质中无金属,应插入惰性电极
- ◆ 参与电极反应的其它物质也应写入电池符号中

将以下氧化还原反应装配成原电池,并用电池符号表示

$$Ag + Cl^{-} + Fe^{3+} \rightarrow AgCl + Fe^{2+}$$

(-)Ag | AgCl(s) | Cl⁻(
$$c_1$$
) | Fe³⁺(c_2), Fe²⁺(c_3) | Pt(+)