Problem Set – 2

CS 230, Spring 2023

Questions

1. Consider a full-binary subtractor that accepts three input bits a, b, and B_{in} , and outputs c and B_{out} . a and b are the operands for the subtraction operation and B_{in} is the borrow taken by the previous digit. c is the resulting bit for the operation (a - b) and B_{out} is the borrow taken from the next digit for the subtraction. Then the boolean expression for c and B_{out} is:

```
a. c = \bar{a} \oplus b \oplus B_{in}; B_{out} = \bar{a}B_{in} + a\bar{b} + bB_{in}

b. c = a \oplus \bar{b} \oplus B_{in}; B_{out} = \bar{a}B_{in} + \bar{a}b + bB_{in}

c. c = a \oplus b \oplus B_{in}; B_{out} = \bar{a}B_{in} + \bar{a}b + bB_{in}

d. c = a \oplus b \oplus B_{in}; B_{out} = \bar{a}B_{in} + \bar{a}b + b\overline{B_{in}}
```

2. Consider the following logic circuit. Suppose binary numbers are represented in 2's complement form.

- a. What is the output $C = c_3 c_2 c_1 c_0$ for input A = 0101?
- b. What does the above circuit do?
 - i. Outputs A + 1
 - ii. Outputs Ā
 - iii. Outputs −A
 - iv. Outputs -A + 1

3. You have to design a two bit greater than comparator logic circuit (A > B). Following incomplete circuit is provided to you. Name appropriate logic gate for each red box to complete the circuit.

4. A toggle flip-flop (T flip-flop) toggles its output when the input T = 1 during clock signal transition. For input T = 0, the output remains same. The state table of T flip-flop is as follows:

Т	Qn	Q _{n+1}	
0	0	0	Unchanged/hold
0	1	1	Unchanged/hold
1	0	1	Toggle
1	1	0	Toggle

Complete the state table of the following circuit.

Current State		Input	Next State		Output
Α	В	x	A	В	z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

5. You have to design a 2 bit mod 3 binary counter using D flip-flops. The counter should follow the following sequence:

You are given the following circuit.

Write the Boolean expression for D_A and D_B in terms of Q_A , $\overline{Q_A}$, Q_B and $\overline{Q_B}$ to complete the circuit.

6. What is the minimum number of D flip-flops to design a counter for the sequence 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 0, 0, 1, 1...?