Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

Лабораторная работа №3.3

Исследование ударных волн в газах

Руководитель: Ассистент Художитков В. Э. Старший преподаватель Кравцова А. Ю. Работу выполнил: Высоцкий М. Ю. гр. 24301

1 Теоретическое введение

Цель работы: знакомство с методами получения и регистра- ции ударных волн и ударноволновой методикой тарировки пьезодатчиков.

Оборудование: лабораторная ударная труба, пьезодатчики, усилители, цифровой осциллограф.

Ниже приведена схема установки.

Рис. 1: Схема установки. 1 - секция низкого давления, 2 - редуктор давления, 3 - компрессор, 4 - секция высокого давления, 5 - манометр, 6 - осциллограф, 7, 8 - датчики давления, 9 - источник питания датчиков.

Скорость звука в идеальном газе:

$$c = \sqrt{\gamma \frac{RT}{\mu}}$$

Связь давления в фронте p_2 и начального давления p_1 перед фронтом:

$$\frac{p_2}{p_1} = \frac{2\gamma M^2 - (\gamma - 1)}{(\gamma + 1)} \tag{1}$$

Число Маха:

$$M = \frac{D}{c} \tag{2}$$

Связь давления во фронте ударной волны p_2 и давлением в камере высокого давления:

$$\frac{p_2}{p_4} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{M^2 - 1}{M}\right) \frac{c_1}{c_4}\right]^{\frac{2\gamma}{\gamma - 1}} \tag{3}$$

Зависимость р4/р1:

$$\frac{p_4}{p_1} = \frac{\left(\frac{2\gamma M^2}{\gamma + 1}\right) - \left(\frac{\gamma - 1}{\gamma + 1}\right)}{\left[1 - \frac{\gamma - 1}{\gamma + 1}\left(\frac{M^2 - 1}{M}\right)\frac{c_1}{c_4}\right]^{\frac{2\gamma}{\gamma - 1}}} \tag{4}$$

1.1 Ход работы

Далее приведены данные эксперимента. p_4 - давление, подаваемое в камеру высокого давления, p_1 - давление в камере низкого давления (1 атм.), p_2 - давление фронта ударной волны, p_T - давление вблизи торца ударной трубы после отражения от него падающей ударной волны. В данной работе мы принимаем газ за идеальный а также принебрегаем изменением температуры (она равна во всех участках волны). В общем случае, процесс политропный, а в нашем случае - адаиабатический. Для воздуха показатель адиабаты $\gamma = 1.4$.

p, кгс	Δt , MKC	<i>v</i> , м/с	M
18	628	398,09	1,17
35	580	431,03	1,27
51	552	452,90	1,33
66	524	477,10	1,40
83	508	492,13	1,45

Таблица 1: Определение числа Маха для 1-5 атмосфер p_4

p_4/p_1	p_2/p_1	p_2/p_4	Δp_2 , atm	Δp_t , atm
2,09	1,43	1,37	0,43	1,02
3,06	1,71	1,68	0,71	1,81
3,88	1,90	1,96	0,90	2,43
5,01	2,13	2,12	1,13	3,20
5,85	2,28	2,34	1,28	3,74

Таблица 2: Расчет давлений p_2, p_4, p_t

При первом проведении опыта не были сняты показания напряжений с пьезодатчиков. При повторном проведении опыта были сняты следующие показания:

А1, мВ	А2, мВ
220	200
600	500
700	620
980	760
1120	880

Имея эти данные, получаем чувствительность первого и второго датчика:

$$A1 = \frac{1120 - 220}{2,28 - 1,43} \approx 1065 \frac{\text{MB}}{\text{atm}}$$

$$A1 = \frac{880 - 200}{2,28 - 1,43} \approx 805 \frac{\text{MB}}{\text{atm}}$$

Далее приведены зависимости $p_4/p_1(M)$, $p_2/p_1(M)$.

Зависимость р4/р1(М)

Рис. 2: Зависимость p4/p1(M)

Зависимость p2/p1(M) теор и p2/p4(M) эксп

Рис. 3: Зависимость p2/p1(M)

Также ниже представлены тарировочные кривые для p_2-p1 и $p_{\rm T}-p_2$.

Рис. 4: Тарировочная кривая для А1

Рис. 5: Тарировочная кривая для А2

2 Вывод

Главным выводом в данной работе является то, что зависимость давления p_4 от числа Маха растет экспоненциально, что показано на графике (2).