INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

6 - RELAÇÕES DE ORDENAMENTO

- 6.1) Conjuntos parcialmente ordenados (posets)
- 6.2) Extremos de posets
- 6.3) Reticulados
- 6.4) Álgebras Booleanas Finitas

- ▶ Vamos restringir nossa atenção aos reticulados do tipo $(P(S), \subseteq)$, onde S é um conjunto finito.
 - Muitas propriedades que não valem para reticulados em geral.
 - Por isto, são mais fáceis de trabalhar
 - Têm papel importante em muitas aplicações na Ciência da Computação:
 - construção de representações lógicas para os circuitos do computador
 - estudo de cifradores simétricos, na Criptografia

- **▶ Teorema**: Sejam $S_1 = \{x_1, x_2..., x_n\}$ e $S_2 = \{y_1, y_2..., y_n\}$ dois conjuntos finitos quaisquer com n elementos.
 - Então os reticulados $(P(S_1),\subseteq)$ e $(P(S_2),\subseteq)$ são isomórficos
 - ou seja, seus diagramas de Hasse são idênticos
- **Prova**: arranjar os conjuntos e definir a seguinte f:

Prova (cont.):

- f(A): elementos de S_2 que correspondem aos elementos de A
 - f: bijeção de subconjuntos de S_1 para subconjuntos de S_2
 - ullet além disto, se A e B são subconjuntos quaisquer de S_1 :

$$A \subseteq B \Leftrightarrow f(A) \subseteq f(B)$$

• Logo, os reticulados $(P(S_1),\subseteq)$ e $(P(S_2),\subseteq)$ são isomórficos.

- ▶ Logo: a condição de poset do reticulado $(P(S), \subseteq)$ é determinada pelo número |S| e não depende da natureza dos elementos de S.
- Exemplo: Sejam os posets:

$$(P(S),\subseteq)$$
 , $S = \{a,b,c\}$:

$$(P(T),\subseteq)$$
 , $T=\{2,3,5\}$:

▶ Note que os 2 reticulados são isomórficos, sendo um possível isomorfismo $f: P(S) \rightarrow P(T)$ dado por:

$$f(\{a\}) = \{2\}$$

$$f(\{b\}) = \{3\}$$

$$f(\{c\}) = \{5\}$$

$$f(\{a,b\}) = \{2,3\}$$

$$f(\{b,c\}) = \{3,5\}$$

$$f(\{a,c\}) = \{2,5\}$$

$$f(\{a,b,c\}) = \{2,3,5\}$$

- Conclusão: para cada $n=0,1,2,\ldots$, há apenas um tipo de reticulado com a forma $(P(S),\subseteq)$
 - o qual depende apenas de n (e não de S)
 - e tem 2^n elementos (= nro de possíveis subconjuntos de S).
- Pode-se, portanto, tomar um diagrama de Hasse genérico para $(P(S), \subseteq)$ e rotulá-lo assim:

- Rotulando desta forma, este diagrama serve para descrever os 2 reticulados anteriores.
 - Melhor: para descrever um reticulado $(P(S), \subseteq)$ originado de qualquer conjunto S com 3 elementos.
- Se o diagrama de Hasse do reticulado correspondente a um conjunto com n elementos é rotulado desta forma (seqüências de 0s e 1s de comprimento n), o reticulado resultante é chamado de B_n .

Propriedades do ordenamento parcial em B_n

Sejam 2 elementos de B_n : $x = a_1 a_2 \dots a_n$ e $y = b_1 b_2 \dots b_n$.

Então:

- $x \le y$ se e somente se $a_k \le b_k$ para $k = 1, 2, \dots, n$
- $x \wedge y = c_1 c_2 \dots c_n$, onde $c_k = min\{a_k, b_k\}$
- $x \vee y = d_1 d_2 \dots d_n$, onde $d_k = max\{a_k, b_k\}$
- o complemento de x é dado por $x'=z_1z_2\ldots z_n$, onde:

$$\begin{cases} z_k = 1 & \text{se } x_k = 0 \\ z_k = 0 & \text{se } x_k = 1 \end{cases}$$

Propriedades do ordenamento parcial em B_n

- Estas afirmações podem ser confirmadas pela observação de que (B_n, \leq) é isomórfico a $(P(S), \subseteq)$:
 - $x,y \in B_n$ correspondem a subconjuntos $A \in B$ de S
 - então:
 - $x \leq y$ corresponde a $A \subseteq B$
 - $x \wedge y$ corresponde a $A \cap B$
 - $x \lor y$ corresponde a $A \cup B$
 - x' corresponde a \overline{A}

Reticulados B_n

■ Diagramas de Hasse dos reticulados B_0 , B_1 , B_2 e B_3 :

n=0: •

_

n=1:

1

•

n=2:

n=3:

Reticulados B_n

- **■** Todo reticulado $(P(S), \subseteq)$ é isomórfico com B_n , onde n = |S|.
- ullet Outros reticulados também podem ser isomórficos com algum B_n .
 - Possuindo todas as propriedades especiais que o B_n possui.
- **Exemplo**: D_6 (divisores de 6, ordem parcial de divisibilidade).
 - Isomorfismo $f: D_6 \to B_2$ dado por:

$$f(1) = 00$$
 $f(2) = 10$ $f(3) = 01$ $f(6) = 11$

■ Em geral: um reticulado finito é chamado de **Álgebra Booleana** se ele for isomórfico com algum B_n .

Portanto:

- todo B_n é uma Álgebra Booleana
- assim como todo reticulado $(P(S),\subseteq)$.

Exemplo: reticulados D_{20} e D_{30} (divisores de 20 e 30, ordem parcial de divisibilidade):

Exemplo (cont.):

- D_{20} tem 6 elementos:
 - $6 \neq 2^n$
 - D₂₀ não é uma Álgebra Booleana
- Já o poset D_{30} tem 8 elementos:
 - $8 = 2^3 \Rightarrow$ chance de ser Álgebra Booleana
 - note que D_{30} é isómórfico com B_3
 - · com isomorfismo $f: D_{30} \rightarrow B_3$ dado por:

$$f(1) = 000$$
 $f(2) = 100$ $f(3) = 010$ $f(5) = 001$

$$f(6) = 110$$
 $f(10) = 101$ $f(15) = 011$ $f(30) = 111$

ightharpoonup portanto, D_{30} é uma Álgebra Booleana.

Conclusão:

- Se um reticulado L não contém 2^n elementos, sabemos que L não pode ser uma Álgebra Booleana.
- Se $\mid L \mid = 2^n$, então L pode ou não ser uma Álgebra Booleana.
- Se L for pequeno, pode-se tentar comparar o seu diagrama de Hasse com o de B_n
 - ullet no entanto, esta técnica pode não ser prática se L for grande
 - · aí tenta-se construir diretamente um isomorfismo com B_n ou com $(P(S),\subseteq)$

ÁLGEBRAS BOOLEANAS GRANDES

- Para ver se um dado reticulado D_n (n grande) é Álgebra Booleana:
- **▶ Teorema**: Seja $n = p_1 p_2 \dots p_k$ onde os p_i são primos distintos. Então D_n é uma Álgebra booleana.

Prova:

- Seja $S = \{p_1, p_2, \dots, p_k\}.$
- **Solution** Todo divisor de n deve ser da forma a_T , onde:
 - a_T é o produto dos primos em algum subconjunto T de S (nota: $a_\emptyset = 1$)
- Aí, se V e T são subconjuntos de S:
 - $ightharpoonup V \subseteq T$ se e somente se $a_V \mid a_T$
 - \bullet $a_{V \cap T} = a_V \wedge a_T \ (= MDC(a_V, a_T))$
- ullet Logo, $f:P(S)\to D_n$, dada por $f(T)=a_T$, é um isomorfismo de P(S) para D_n
- ullet Então, como $(P(S),\subseteq)$ é uma Álgebra Booleana, $\,D_n$ também o é.

ÁLGEBRAS BOOLEANAS GRANDES

Exemplo:

```
210=2.3.5.7 \Rightarrow D_{210} é Álgebra Booleana 66=2.3.11 \Rightarrow D_{66} é Álgebra Booleana
```

 $646 = 2.17.19 \quad \Rightarrow \quad D_{646} \quad \text{\'e Algebra Booleana}$

ÁLGEBRAS BOOLEANAS GRANDES

- ullet Outros casos de reticulados L grandes:
 - tentar mostrar que L não é uma Álgebra Booleana
 - mostrando que o ordenamento parcial de L não apresenta as propriedades necessárias.
- Exemplo: uma Álg. Booleana é sempre isomórfica com algum B_n e, portanto, com algum reticulado $(P(S), \subseteq)$.
 - Logo, se o reticulado L for uma Álgebra Booleana:
 - ele deverá ser limitado (deverá possuir LUB e GLB)
 - cada um dos seus elementos deverá possuir um complemento
 - Ou seja, para que L seja reticulado:
 - **▶** L deverá ter um maior elemento **I** (\Leftrightarrow S) e um menor elemento **O** (\Leftrightarrow \emptyset)
 - m arphi todo elemento x de L deverá ter um complemento x'

O Princípio da Correspondência entre posets ajuda a estabelecer propriedades das Álgebras Booleanas.

Teorema (REGRA DA SUBSTITUIÇÃO):

Toda fórmula que envolve \cup e \cap , ou que vale para subconjuntos arbitrários de um conjunto S, continuará a valer para elementos arbitrários de uma Álgebra Booleana L se:

- U for substituído por ∨

Exemplo: Se x, y e z são elementos de uma Álgebra Booleana qualquer L, valem:

(a)
$$(x')' = x \longrightarrow \text{involução}$$

(b)
$$(x \wedge y)' = x' \vee y' \longrightarrow 1a$$
. lei de De Morgan

(c)
$$(x \lor y)' = x' \land y' \longrightarrow 2a$$
. lei de De Morgan

Isto vale para Álgebras booleanas, pois sabemos que as fórmulas:

(a')
$$\overline{\overline{(A)}} = A$$

(b')
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

(c')
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

ullet valem para subconjuntos arbitrários A e B de um conjunto S.

De maneira similar, podemos listar outras propriedades que devem valer em qualquer Álgebra Booleana em conseqüência da regra de substituição.

Na tabela a seguir:

- ullet x, y e z são elementos arbitrários em L
- A, B e C são subconjuntos arbitrários de S
- I e O denotam o maior e o menor elemento de L, respectivamente.

Algumas propriedades básicas	Propriedade correspondente para
de uma Álgebra Booleana (L, \leq)	subconjuntos de um conjunto S
1) $x \le y$ se e somente se $x \lor y = y$	1') $A \subseteq B$ se e somente se $A \cup B = B$
2) $x \le y$ se e somente se $x \wedge y = x$	2') $A \subseteq B$ se e somente se $A \cap B = A$
3) (a) $x \lor x = x$	3') (a) $A \cup A = A$
(b) $x \wedge x = x$	(b) $A \cap A = A$
$4) (a) x \lor y = y \lor x$	4') (a) $A \cup B = B \cup A$
(b) $x \wedge y = y \wedge x$	(b) $A \cap B = B \cap A$
	5') (a) $A \cup (B \cup C) = (A \cup B) \cup C$
(b) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$	(b) $A \cap (B \cap C) = (A \cap B) \cap C$
6) (a) $x \lor (x \land y) = x$	6') (a) $A \cup (A \cap B) = A$
$(b) x \wedge (x \vee y) = x$	$\textbf{(b)}\ A\cap (A\cup B)=A$
7) $\mathbf{O} \le x \le \mathbf{I}, \ \forall x \in L$	7') $\emptyset \subseteq A \subseteq S, \ \forall A \in P(S)$
8) (a) $x \vee 0 = x$	8') (a) $A \cup \emptyset = A$
(b) $x \wedge \mathbf{O} = \mathbf{O}$	(b) $A \cap \emptyset = \emptyset$

Algumas propriedades básicas	Propriedade correspondente para
de uma Álgebra Booleana (L, \leq)	subconjuntos de um conjunto S
9) (a) $x \vee \mathbf{I} = \mathbf{I}$	9') (a) $A \cup S = S$
(b) $x \wedge \mathbf{I} = x$	(b) $A \cap S = A$
10) (a) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$	10') (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
(b) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$	(b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
11) Todo elemento x tem um único	11') Todo elemento A tem um único
(a) $x \vee x' = \mathbf{I}$	(a) $A \cup \overline{A} = S$
(b) $x \wedge x' = \mathbf{O}$	(b) $A \cap \overline{A} = \emptyset$
12) (a) $O' = I$	12') (a) $\overline{\emptyset}=S$
(b) $\mathbf{I}' = \mathbf{O}$	(b) $\overline{S}=\emptyset$
13) $(x')' = x$	13') $\overline{\overline{A}} = A$
14) (a) $(x \wedge y)' = x' \vee y'$	14') (a) $\overline{A \cap B} = \overline{A} \cup \overline{B}$
$(b) (x \vee y)' = x' \wedge y'$	(b) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- ullet Talvez seja possível mostrar que um reticulado L não é Álgebra Booleana mostrando que ele não possui alguma propriedade básica.
- Exemplo: Mostre que o reticulado abaixo não é Álgebra Booleana:

Exemplo (cont.):

- Os elementos a e g são ambos complementos de c
 - ou seja, ambos satisfazem as propriedades 11(a) e 11(b) com respeito ao elemento c.
- Mas a propriedade estabelece que tal elemento deve ser único em qualquer Álgebra booleana.
- Logo, o reticulado dado não é uma Álgebra booleana.

- **Exemplo**: Mostre que se $p^2 \mid n$, onde p é um primo, então D_n não é uma Álgebra Booleana.
 - ullet suponha que $p^2 \mid n$
 - ightharpoonup então $n=p^2.q$
 - ullet mas p também é divisor de n, de modo que $p \in D_n$
 - ullet se D_n é uma Álg. Booleana, p deve ter um complemento p'
 - de modo que MDC(p, p') = 1 e MMC(p, p') = n
 - daí temos que p.p' = n
 - de modo que p' = n/p = p.q
 - mas isto significa que MDC(p, p.q) teria que ser 1 (!!)
 - ullet Logo, D_n não pode ser uma Álg. Booleana.

- Na verdade, de acordo com um teorema já visto,
 - "Seja $n = p_1 p_2 \dots p_k$ onde os p_i são primos distintos. Então D_n é uma Álgebra booleana".
- concluímos que:
 - D_n é uma Álgebra Booleana se e somente se nenhum primo divide n mais do que uma vez.
- **Exemplo**: $40 = 2^3.5$ e $125 = 3.5^2$
 - Então: nem D_{40} nem D_{125} podem ser Álgebras Booleanas.

- Final deste item.
- Dica: fazer exercícios sobre Álgebras Booleanas...