Implementacija FIR filtra otpornog na greške

1 Uvod

U okviru ovog projektnog zadatka realizovan je parametrizovan FIR filtar otporan na otkaz, primenom Triplex Duplex tehnike redundantnosti na MAC module. Dok je na voter logiku primenjena Pair-and-a-Spare tehnika redundantnosti.

Triplex-duplex redundantnost predstavlja kombinaciju trostruke modularne redundantnosti i duplikacije sa poređenjem. Sistem se sastoji od šest identičnih modula raspoređenih u tri para koji istovremeno obavljaju iste proračune. U svakom paru, izlazi modula se upoređuju pomoću komparatora — ako su rezultati isti, izlaz tog para se uzima u obzir u voter logici. Ukoliko dođe do neslaganja, taj par se označava kao neispravan i isključuje iz sistema. Na taj način, samo parovi bez grešaka učestvuju u konačnom glasanju, čime se obezbeđuje visoka otpornost sistema na otkaz. Na slici 1 možemo videti ideju implementacije tehnike Triplexduplex.

Slika 1. Triplex-duplex tehnika.

Pair-and-a-spare sistem se zasniva na ideji da uz svaki aktivni par postoji rezervni (spare) modul, koji se uključuje u rad kada se otkrije greška. Ovaj sistem sa n modula može da toleriše do n – 1 otkaza. Svaka greška se detektuje i lokalizuje pomoću switch-a i komparatora, a neispravan modul se zamenjuje rezervnim. Kada su svi rezervni moduli potrošeni, sistem se svodi na simplex konfiguraciju (jedan aktivni modul), pa sledeći otkaz više ne može biti detektovan ni ispravljen. Pair-and-a-spare tehnika obezbeđuje visoku otpornost na više uzastopnih otkaza, sve dok postoji raspoloživ rezervni modul. Na slici 2 možemo videti ideju implementacije Pair and a spare tehnike.

Slika 2. Pair-and-a-spare tehnika.

2. Implementacija Sistema

Na slici 3 je prikazana ideja i blok šema dizajna takođe prikazan je samo jedan red FIR filtra na slici. MAC modul se replicira 3 puta u parovima i svaki od izlaza ide u komparator, ako su rezultati isti izlaz se smatra validnim i prosleđuje se voteru. Ukoliko dođe do neslaganja, taj par se označava kao neispravan i isključuje iz sistema. Izlaze svih MAC modula smeštamo u niz *mac_out*, dok se izlazi iz komparatora smeštaju u niz *pair out*.

Nakon toga signali svakog para se prosleđuje voter-ima koji imaju po tri ulaza, broj voter-a je parametrizovan. Svaki voter vrši "glasanje" i ukoliko su barem dva od tri ulazna signala ista voter prosledjuje validan ulaz na svoj izlaz. Izlaz voter pair-a se smešta u niz *data_o_pair* dok se izlaz spare voter-a smešta u niz *data_o_spare*.

Switch logika implementirana je pomoću dva parametrizovana multipleksera, prvi multiplekser prima izlaze svih modula osim od drugog modula, dok drugi multiplekser prima izlaze svih modula osim od prvog modula. Inicijalno je postavljeno da je selekcioni signal oba multipleksera na nuli i podaci oba modula se šalju kroz oba multipleksera ka izlaznom komparatoru.

Ukoliko se ispostavi da podaci nisu isti, izlazni komparator postavlja jedinicu na žicu *error_from_comparator*, čime signalizira *switch* logici da je jedan od modula neispravan nakon toga se proverava koji od modula je neispravan, taj se isključuje i vrednost unutrašnjeg brojača se uvećava za jedan i selekcioni signal tog multipleksera koji je prosleđivao podatke modula koji je neispravan dobija vrednost tog brojača.

Slika 3. blok šema sistema.

3. Rezulati simulacije i testiranje dizajna

Prilikom testiranja koriscen je jednostavan *testbench* kako bismo dokazali ispravnost sistema. Na slici 4 možemo videti signale za prvobitnu implementaciju FIR filtra 20og reda bez korišćenja redudandnosti.

Slika 4. Implementacija sistema bez redudandnosti.

Ulazni signal koji je iskorišćen za testiranje prvobitno je izgenerisan u matlab programskom jeziku i sačuvan u fajl kojim je testirana funkcionalnost sistema.

Dok na slici 5 vidimo iste te signale nakon implementacije hardverske redudantnosti u našem modelu. U testu je implementiran FIR filtar 20og reda sa 5 repliciranih voter-a

Slika 5. Implementacija sistema sa redudantnost.

Korišćenjem skripti *force_error_mac.tcl* dokazujemo ispravnost sistema tako što ćemo indukovati greške na MAC module na nekoliko različita reda filtra i dokazati da sistem ispravno radi. Takvo ponašanje možemo videtina slici 6.

Slika 6. Indukovanje grešaka na MAC modulima.

Nakon toga ćemo nastaviti sa izazivanjem grešaka prvo na MAC modulu 108, odnosno na jednom MAC modulu 190g red filtra. Posle toga izazivamo grešku na MAC modulu 109 odnosno paru od prethodnog MAC modula koji je idalje neispravan. Zatim izazivamo grešku na MAC modulu 110 u 1000ns i tada očekujemo da rezultati filtriranja budu netačni. Na slici 7 možemo videti grešku i da rezultati našeg sistema više nisu validni, jer voter ne može da prepozna koji od ulaznih signala je validan te prosleđuje 0 na izlaz.

Name	Value		940.000	ns	960.000	ns	980.000	ns	1,000.0	000 ns	1,020.0	00 ns	1,040.0	000 ns	1,060.0	00 ns	1,080.0	00 ns	1,100.0	00 ns	1,120.0	00 ns	1,140.0	00 ns	1,160.
ladk_i_s	0																								
> W data_i_s[23:0]	29440	121344	95	744	891	856	86	016	82	588	651	792	46	336	52	736	76:	288	119	552	132	096	116	224	94
> W data_o_s[23:0]	679	434	107	546	545	655	983	769	26	870	13	958	109	(61	0	43	0	48	9	7	08	11	09	12	26
> W tmp[23:0]	93016	328	889	434	108	546	645	655	83	769	26	870	13	958	09	102	845	107	662	110	166	110	527	109	284
> W mac_out[0:125][47:0]	0,0,0,0,0,0,229258112	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	(0,0,0	0,0,0	(0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	(0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0
> W mac_out[21][47:0]	0																			0					
> W mac_out[32][47:0]	0																			0					
> W mac_out[63][47:0]	0																			0					
> W mac_out[55][47:0]	0																			0					
> W mac_out[91][47:0]	0																			0					
> W mac_out[99][47:0]	0																			0					
> W mac_out[108][47:0]	0																			0					
> W mac_out[109][47:0]	291																			29	i				
> W mac_out[110][47:0]	1364	64250	63830	72420	72320	79790	79720	85810																1364	
> W mac_out[111][47:0]	699111202304	64250	6383 0	72420	72320	79790	79720	85810	85760	90230	89950	92320	92000	92010	92120	90350	90740	87880	88600	85640	8585E	83200	82930	80550	80190
> W mac_out[112][47:0]	699111202304	64250	6383 0	72420	72320	79790	79720	85810	85760	90230	89950	92320	92000	92010	92120	90350	90740	87880	88600	85640	8585 0	83200	82930	80550	80190
> W mac_out[113][47:0]	699111202304	64250	6383 0	72420	72320	79790	79720	85810	85760	90230	89950	92320	92000	92010	92120	90350	90740	87880	8860CI	85640	85850	83200	82930	80550	80190

Slika 7. Uspešno indukovanje greške na MAC modulima.

Nakon što smo testirali MAC module i njihovu otpornost na greške u sistemu, potrebno je bilo da testiramo i *voter-e* i njihovu otpornost na greške u sistemu. Na slici 9 možemo videti indukovanje greške na *data_o_pair* signalima od 90og do 94og elementa. Sistem se ponaša u skladu sa očekivanjima, nakon izazivanja greške na jednom od *data_o_pair* signala naš brojač se inkrementuje i *sel_data* signal se shodno tome povećava i naš *data_out* signal ostaje validan.

Name	Value	1,120.0	000 ns	1,140.0	00 ns	1,160.000	ns 1,	180.000 n	1,20	0.000 ns	1,220.	000 ns	1,240.	000 ns	1,260.	000 ns	1,280.0	000 ns	1,300.0	00 ns 1,320.	000 ns 1,340.	000 ns	1,360.000	ns	1,380.000	ns 1.	100.000	1,420.0
¼ dk_i_s	1																											
> W data_i_s[23:0]	46336	133	1096	116	224	94200		69376		75776	71	1216	51	200	ž	9440	40	196	220	16	44200		45561		43776	- X	72192	120
> W data_o_s[23:0]	102845	110527	109	284	1068	850	10342	0 X	99745	X	6238	930	016	90	240	87	772	85	564	83378	81041	X	411		X	423	X_	406
> W tmp[23:0]	95809	110166	110	527	109	204	10685	• X	103420	\propto	9745	96	200	X 93	016	90.	240	07	772	05564	03370	010	041	704	34	75357		71049
> W data_o_pair[90][47:0]	16929																		16929									
> W data_o_pair[91][47:0]	21555																		21555									
> W data_o_pair(92)[47:0]	17716																		17716									
> W data_o_pair[93][47:0]	920160742400	85850	832 6G	8295 0	\subset															29569								
> W data_o_pair[94][47:0]	920160742400	85850	832 00	82930	80550	80190 77	850 7	7430 750	20 751:	7327	73230	71910	71540	70270	69910	68230	67810	65150	$\overline{}$							30821		
> W data_from_mux_1[18][48:0]	1840321484800	17170	16640	16560	16110	1603D 18	570 1	5480 (150	00 150	1465	14640	14380	14300	14080	13980	13640	13560	13030								61643		
> W data_from_mux_2[18][48:0]	1840321484800	17170	16640	16580	\subset															59139								
> W sel_data_1[18][2:0]	3																		3									
> W sel_data_2[18][2:0]	2																		2									
> W counter[18][2:0]	4																		4									

Slika 8.Indukovanje grešaka na voter logici.

4. Analiza utrošenosti resursa

1.Analiza	utrošenosti	resursa	i frek	vencija

Broj voter-a	LUT	FF	BRAM	DSP	IO	BUFG	Potrošnja [W]	Frekvencija [MHz]
Bez tehnike	4	24	/	18	77	1	0,12	103
3	6723	171	/	63	79	1	0,202	65.34
4	8073	171	/	63	79	1	0.205	65.34
5	10981	234	/	63	79	1	0,26	65.34
6	11897	234	/	63	79	1	0.205	65.35

U tabeli 1. može se videti utrošenost resursa kao i najveća frekvencija. Takođe možemo uočiti da se frekvencija ne menja mnogo prilikom povećanja broja *voter-a*. Međutim možemo primetiti da utrošenost resursa (LUT i FF) raste drastično, dok broj DSP ostaje isti jer je uvek isti broj MAC modula.

Na slici 9. prikazana je kritična putanja našeg digitalnog sistema otpronog na greške.

Slika 9, Kritična putanja