Exercice 1. On considère le nuage de points associé à la série statistique suivante.

	38							
y_i	69	64	60	59	55	67	68	70

- 1. Calculer le point moyen *G* de cette série.
- 2. Représenter ces données à la calculatrice Une droite modélise-t-elle bien ces points ?
- 3. Déterminer à la calculatrice l'équation de la droite de régression de y en x.
- 4. Prédire la valeur de y pour x = 50

Exercice 2. Dans un pays, on a relevé tous les dix ans le PIB par habitant, et la consommation d'électricité par habitant.

PIB / hab. (k€)	5	10	16	24	31
Consommation	1	2,3	4	7	8,9
(MWh)					

- 1. Calculer le point moyen *G* de cette série.
- 2. Représenter ces données à la calculatrice Une droite modélise-t-elle bien ces points ?
- 3. A la calculatrice, entrer les données x et y dans deux colonnes, puis donner l'équation de la droite de régression de y en x.

$$y = \dots x + \dots$$

4. Prédire la valeur de y pour x = 50

Exercice 3. Pour l'achat d'une grosse quantité x_i de ballons de football, un fabriquant propose un tarif dégressif selon la quantité d'articles commandés. Le tableau cicontre présente un relevé des prix y_i proposés.

x_i	100	500	1000	2000
y_i	19,9	19	17,9	15,50

- 1. Calculer le point moyen *G* de cette série.
- 2. Représenter ces données à la calculatrice Une droite modélise-t-elle bien ces points ?
- 3. Déterminer à la calculatrice l'équation de la droite de régression de y en x.
- 4. Déterminer le prix unitaire que devrait proposer le fabricant pour un achat de 1500 ballons.
- 5. Quelle quantité de ballons faudrait-il acheter pour obtenir un prix unitaire de 12 € ?

Exercice 4. On a relevé, pendant un an, sur différents parcours de même longueur, la vitesse moyenne x_i des véhicules et le nombre d'accidents mortels y_i au total sur l'année.

x_i (km/h)	30	50	80	90	100
y_i	1	6	41	66	102
z_i					

- 1. A la calculatrice, afficher les données $(x_i; y_i)$ dans un repère. Leur forme est-elle proche d'une droite ?
- 2. On pose $z = \log(y)$.

Calculer les z_i dans une troisième ligne.

- 3. A la main, tracer rapidement les $(x_i; \mathbf{z}_i)$ dans un repère, et vérifier que la forme des points, est proche d'une droite.
- 4. A la calculatrice, entrer les données x et z dans deux colonnes, puis donner l'équation de la droite de régression de z en x.

$$z = \dots x + \dots x$$
 (Attention la calculatrice indiquera y mais il s'agit bien de z ici).

- 5. Pour x = 130, déterminer z.
- 6. Sachant que $y = 10^z$, déterminer y.

Exercice 5. On mesure l'évolution au cours de temps x, en heures, du taux de saturation y de monoxyde de carbone d'un patient intoxiqué qui reçoit un traitement à base d'oxygène.

x_i (h)	0	0,5	1	1,5	2	2,5	3
<i>y_i</i> (%)	50	38	27	16	8	5	3

1. On pose $z = \log(y)$.

Calculer les z_i dans une troisième ligne.

- 2. A la main, tracer rapidement les $(x_i; \mathbf{z}_i)$ dans un repère, et vérifier que la forme des points, est proche d'une droite.
- 3. A la calculatrice, entrer les données x et z dans deux colonnes, puis donner l'équation de la droite de régression de z en x.

$$z = \dots x + \dots$$

- 4. Pour x = 4, déterminer z.
- 5. Sachant que $y = 10^z$, déterminer y.