



Max-Planck-Institut für Plasmaphysik

# LabVIEW Report 28/01/2021

P. Hacker









This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.





- reviewed the LabVIEW DAQ routine to minimize lag, calculation overhead and optimize comfort of use for simplicity
- right started from 'original' master branch that included all changes from frequency selection, power calculation, register settings and real time feedback
- build two new DAQ programs that include a number of changes:
  - removed all disable and if structures that were originally used for debugging
  - >only manual acquisition time input
  - >two trigger settings: start of VI time, CODAC last trigger
  - >timing inputs to [s], time display as needed in [s, ms, ns]
  - riangles to exclude from acquisition fix to 1000, included in start/time calculation of acquisition itself
  - >DAC range settings now only either global or individual via file input (10-80mV)





- reviewed the LabVIEW DAQ routine to minimize lag, calculation overhead and optimize comfort of use for simplicity
- >started from 'original' master branch that included all changes from frequency selection, power calculation, register settings and real time feedback
- > build two new DAQ programs that include a number of changes:
  - ➤ calibration values for integrity check can be calculated from current measurement or either input for lab tests via file (provided one with OP1.2b 95% quantile)
  - > calibration values now in [A^2, Ohm, s]
  - raw signal display (only, no adjusted or power per channel) in [mV]
  - offset measurement for integrity check, display in [mV]
  - reduced archive upload, only necessary data





- reviewed the LabVIEW DAQ routine to minimize lag, calculation overhead and optimize comfort of use for simplicity
- >started from 'original' master branch that included all changes from frequency selection, power calculation, register settings and real time feedback
- > build two new DAQ programs that include a number of changes:

➤ new timing settings: assuming that there is an intrinsic timing error from internal measurement, i.e. inside DAQ loop, of ~0.04ms

| HEX  | DECIMAL | FREQ [Hz] | T [ms] |      |
|------|---------|-----------|--------|------|
| x4F  | 79      | 1318      | 0.7584 | <br> |
| x63  | 99      | 1052      | 0.9504 |      |
| xA2  | 162     | 643.0     | 1.5552 |      |
| x148 | 328     | 317.6     | 3.1488 |      |
| x294 | 660     | 157.8     | 6.336  |      |
|      |         |           |        |      |





## Raw\_wRTF

- ▶ real time feedback plot with full P\_rad of both camera arrays and single channel/fast P\_rad
- >geometry input via file
- power calculation now only via FIFO, no Savitzky Golay

## Raw\_w/oRTF

removed voltage out, power calculation, P\_rad routine, geometry input entirely





master

set sample time

30

acquisition time [s]

10

2.0

time

sample

0.8

2 [SW] 1

50

Raw\_wRTF

0.8ms









master

#### Raw\_wRTF

## Raw\_w/oRTF

#### 1.0ms











<u>master</u> <u>Raw\_wRTF</u> <u>Raw\_w/oRTF</u>

#### 1.6ms







master

Raw\_wRTF

Raw\_w/oRTF

3.2ms











Raw\_w/oRTF Raw\_wRTF master







<u>raw\_woRTF</u> <u>unloaded</u> <u>loaded</u>









<u>raw\_woRTF</u> <u>unloaded</u> <u>loaded</u>









## samples per laser half period

#### master



#### Raw\_wRTF

#### 0.8ms









## samples per laser half period

#### master



## Raw\_wRTF

#### 1.0ms









## samples per laser half period

#### master



## Raw\_wRTF

#### 1.6ms









## samples per laser half period

#### Raw\_wRTF

#### 3.2ms



## Raw\_w/oRTF





10000 20000 30000 40000 50000 60000

sample number [#]

master





## samples per laser half period

#### master



### Raw\_wRTF

#### 6.4ms









unloaded

raw\_woRTF
0.8ms

**loaded** 









unloaded

# raw\_woRTF

1.0ms

## **loaded**





# Git-Lab and Changelog.md





https://git.ipp-hgw.mpg.de/pih/LabVIEW\_QSB holds all relevant changes and versions under branches, i.e. master, raw\_wRTF and raw\_w/oRTF

➤ Changelog.md includes all information about the VII was able to acquire and learn throughout the optimization process

>versions as of today (02/05/2020) also located in QSB\_Bolometry E5 backup server

04.02.2021