```
In [89]: import pandas as pd
         from sklearn.datasets import load_iris
         iris= load_iris()
         dir(iris)
Out[89]: ['DESCR',
           'data',
           'data_module',
           'feature_names',
           'filename',
           'frame',
           'target',
           'target_names']
In [91]: iris.feature_names
Out[91]: ['sepal length (cm)',
           'sepal width (cm)',
           'petal length (cm)',
           'petal width (cm)']
In [92]: iris.data
```

```
Out[92]: array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                 [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
                 [4.8, 3.4, 1.6, 0.2],
                 [4.8, 3., 1.4, 0.1],
                 [4.3, 3., 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
                 [5.7, 4.4, 1.5, 0.4],
                 [5.4, 3.9, 1.3, 0.4],
                 [5.1, 3.5, 1.4, 0.3],
                 [5.7, 3.8, 1.7, 0.3],
                 [5.1, 3.8, 1.5, 0.3],
                 [5.4, 3.4, 1.7, 0.2],
                 [5.1, 3.7, 1.5, 0.4],
                 [4.6, 3.6, 1., 0.2],
                 [5.1, 3.3, 1.7, 0.5],
                 [4.8, 3.4, 1.9, 0.2],
                 [5., 3., 1.6, 0.2],
                 [5., 3.4, 1.6, 0.4],
                 [5.2, 3.5, 1.5, 0.2],
                 [5.2, 3.4, 1.4, 0.2],
                 [4.7, 3.2, 1.6, 0.2],
                 [4.8, 3.1, 1.6, 0.2],
                 [5.4, 3.4, 1.5, 0.4],
                 [5.2, 4.1, 1.5, 0.1],
                 [5.5, 4.2, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.2],
                 [5., 3.2, 1.2, 0.2],
                 [5.5, 3.5, 1.3, 0.2],
                 [4.9, 3.6, 1.4, 0.1],
                 [4.4, 3., 1.3, 0.2],
                 [5.1, 3.4, 1.5, 0.2],
                 [5., 3.5, 1.3, 0.3],
                 [4.5, 2.3, 1.3, 0.3],
                 [4.4, 3.2, 1.3, 0.2],
                 [5., 3.5, 1.6, 0.6],
                 [5.1, 3.8, 1.9, 0.4],
                 [4.8, 3., 1.4, 0.3],
                 [5.1, 3.8, 1.6, 0.2],
                 [4.6, 3.2, 1.4, 0.2],
                 [5.3, 3.7, 1.5, 0.2],
                 [5., 3.3, 1.4, 0.2],
                 [7., 3.2, 4.7, 1.4],
                 [6.4, 3.2, 4.5, 1.5],
                 [6.9, 3.1, 4.9, 1.5],
                 [5.5, 2.3, 4., 1.3],
                 [6.5, 2.8, 4.6, 1.5],
                 [5.7, 2.8, 4.5, 1.3],
                 [6.3, 3.3, 4.7, 1.6],
                 [4.9, 2.4, 3.3, 1.],
                 [6.6, 2.9, 4.6, 1.3],
                 [5.2, 2.7, 3.9, 1.4],
```

[5., 2., 3.5, 1.], [5.9, 3., 4.2, 1.5], [6., 2.2, 4., 1.],[6.1, 2.9, 4.7, 1.4],[5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4],[5.6, 3., 4.5, 1.5], [5.8, 2.7, 4.1, 1.], [6.2, 2.2, 4.5, 1.5], [5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8], [6.1, 2.8, 4., 1.3],[6.3, 2.5, 4.9, 1.5],[6.1, 2.8, 4.7, 1.2],[6.4, 2.9, 4.3, 1.3],[6.6, 3., 4.4, 1.4],[6.8, 2.8, 4.8, 1.4],[6.7, 3., 5., 1.7],[6., 2.9, 4.5, 1.5],[5.7, 2.6, 3.5, 1.], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1.], [5.8, 2.7, 3.9, 1.2], [6., 2.7, 5.1, 1.6],[5.4, 3., 4.5, 1.5], [6., 3.4, 4.5, 1.6],[6.7, 3.1, 4.7, 1.5],[6.3, 2.3, 4.4, 1.3], [5.6, 3., 4.1, 1.3], [5.5, 2.5, 4., 1.3],[5.5, 2.6, 4.4, 1.2], [6.1, 3., 4.6, 1.4],[5.8, 2.6, 4., 1.2], [5., 2.3, 3.3, 1.], [5.6, 2.7, 4.2, 1.3], [5.7, 3., 4.2, 1.2], [5.7, 2.9, 4.2, 1.3],[6.2, 2.9, 4.3, 1.3],[5.1, 2.5, 3., 1.1], [5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6., 2.5],[5.8, 2.7, 5.1, 1.9], [7.1, 3., 5.9, 2.1],[6.3, 2.9, 5.6, 1.8],[6.5, 3., 5.8, 2.2],[7.6, 3., 6.6, 2.1],[4.9, 2.5, 4.5, 1.7],[7.3, 2.9, 6.3, 1.8],[6.7, 2.5, 5.8, 1.8],[7.2, 3.6, 6.1, 2.5],[6.5, 3.2, 5.1, 2.],[6.4, 2.7, 5.3, 1.9],[6.8, 3., 5.5, 2.1],[5.7, 2.5, 5., 2.], [5.8, 2.8, 5.1, 2.4],[6.4, 3.2, 5.3, 2.3],[6.5, 3., 5.5, 1.8],[7.7, 3.8, 6.7, 2.2],[7.7, 2.6, 6.9, 2.3],[6., 2.2, 5., 1.5],

```
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3., 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2.],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3., 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6., 3., 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3., 5.2, 2.3],
[6.3, 2.5, 5., 1.9],
[6.5, 3., 5.2, 2.],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3., 5.1, 1.8]])
```

In [96]: df=pd.DataFrame(iris.data ,columns =iris.feature_names,)
df

Out[96]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	•••				
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [101... df['target']=iris.target

Out[101...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
•••					
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

In [106... df[df.target==0].head()

Out[106...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [109... df[df.target==1].head()

Out[109...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

In [108... df[df.target==2].head()

0	- 4-	4	0	0	
()	ΗТ	-	и	×	
\sim	$u \ \iota$	-	\sim	$^{\circ}$	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2

```
In [114... df['Flowers_names'] = df.target .apply(lambda x:iris.target_names[x])
df
```

Out[114...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	Flowers_names
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
•••						
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

```
In [115...
          iris.target_names
         array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
Out[115...
In [117...
          df0 =df[df.target==0]
          df1 =df[df.target==1]
          df2= df[df.target==2]
In [121...
          import matplotlib .pyplot as pp
          pp.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color= 'green',mark
          pp.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color = 'red',marke
          pp.title( 'Sepal length vs Sepal width')
          pp.xlabel('sepal length')
          pp.ylabel('sepal width')
          pp.show()
```


petal length vs petal width

In [125... test= df.drop(['target','Flowers_names'],axis= 'columns')
 test

\cap	-4	$\Gamma \sim$	1 1		
UI	UТ		LΖ	⊃.	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
•••				
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [126...

X= test
y= df.target

```
In [127... from sklearn .model_selection import train_test_split
    X_train,X_test,y_train,y_test =train_test_split(X,y,test_size=0.2)

In [128... len(X_train)

Out[128... 120

In [129... len(X_test)
Out[129... 30
```

create K-NEAREST NEIGHBOUR CLASSIFIER

```
In [170...
          from sklearn.neighbors import KNeighborsClassifier
          knn=KNeighborsClassifier(n_neighbors=15)
          knn.fit(X_train,y_train)
Out[170...
          KNeighborsClassifier(n_neighbors=15)
In [171...
          knn.score(X_test,y_test)
         0.9666666666666667
Out[171...
In [173...
          from sklearn.metrics import confusion_matrix
          y_pred = knn.predict(X_test)
          cm=confusion_matrix(y_test,y_pred)
Out[173...
           array([[13, 0, 0],
                  [0, 9, 0],
                  [ 0, 1, 7]], dtype=int64)
In [176...
          %matplotlib inline
          import matplotlib .pyplot as pp
          import seaborn as sn
          sn.heatmap(cm, annot =True)
          pp.xlabel('Predicted')
          pp.ylabel('Truth')
Out[176... Text(50.7222222222214, 0.5, 'Truth')
```


In [181... from sklearn . metrics import classification_report
 report =classification_report(y_test,y_pred)
 print(report)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	13
1	0.90	1.00	0.95	9
2	1.00	0.88	0.93	8
accuracy			0.97	30
macro avg	0.97	0.96	0.96	30
weighted avg	0.97	0.97	0.97	30