Introduction to Online Learning Algorithms

Yoav Freund

January 6, 2020

Outline

Halving Algorithm

Hedge Algorithm

Perceptron

Laplace law of succession

expert1

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

```
expert1
```

expert2

expert3

expert4

expert5

expert6

expert7

expert8

alg.

outcome

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
```

alg. outcome Halving Algorithm

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

```
t = 1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

```
t = 1 t = 2
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	

	t = 1	<i>t</i> = 2
expert1	1	1
expert2	1	0
expert3	0	-
expert4	1	0
expert5	1	0
expert6	0	-
expert7	1	1
expert8	1	1
alg.	1	0
outcome	1	1

```
t = 1 t = 2 t = 3
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
alg.
outcome
```

	t = 1	<i>t</i> = 2	<i>t</i> = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	

	t = 1	t = 2	t = 3
expert1	1	1	1
expert2	1	0	-
expert3	0	-	-
expert4	1	0	-
expert5	1	0	-
expert6	0	-	-
expert7	1	1	1
expert8	1	1	1
alg.	1	0	1
outcome	1	1	1

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	
outcome	1	1	1	

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	

	t = 1	<i>t</i> = 2	t = 3	t = 4
expert1	1	1	1	1
expert2	1	0	-	-
expert3	0	-	-	-
expert4	1	0	-	-
expert5	1	0	-	-
expert6	0	-	-	-
expert7	1	1	1	1
expert8	1	1	1	0
alg.	1	0	1	1
outcome	1	1	1	0

	t = 1	t = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	
outcome	1	1	1	0	

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	0
outcome	1	1	1	0	

	<i>t</i> = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	0
outcome	1	1	1	0	0

Mistake bound for Halving algorithm

Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).

Mistake bound for Halving algorithm

- ► Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.

Mistake bound for Halving algorithm

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.

Characteristics of individual sequence analysis

No stochastic assumptions.

Characteristics of individual sequence analysis

- No stochastic assumptions.
- Proof is based on combining a lower and upper bounds on a Potential

Characteristics of individual sequence analysis

- No stochastic assumptions.
- Proof is based on combining a lower and upper bounds on a Potential
- ► Here, Potential = number of experts in pool.

Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.

- Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.
- The best strategy for the adversary: split a pool with m experts into

```
\lfloor m/2 \rfloor predicting 0 \lceil m/2 \rceil predicting 1 Make the actual output 0.
```

- Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.
- The best strategy for the adversary: split a pool with m experts into

```
\lfloor m/2 \rfloor predicting 0 \lceil m/2 \rceil predicting 1 Make the actual output 0.
```

The halving algorithm can

The halving algorithm can be forced to k* mistakes. k* ≤ log N.

- Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.
- The best strategy for the adversary: split a pool with m experts into

```
\lfloor m/2 \rfloor predicting 0 \lceil m/2 \rceil predicting 1 Make the actual output 0.
```

- ► The halving algorithm can be forced to k* mistakes. k* < log N.</p>
- $ightharpoonup k^{:} m_0 = N, m_{i+1} = \lfloor m_i \rfloor, m_{k^*} = 1.$

- Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.
- The best strategy for the adversary: split a pool with m experts into

```
\lfloor m/2 \rfloor predicting 0 \lceil m/2 \rceil predicting 1 Make the actual output 0.
```

- The halving algorithm can be forced to k* mistakes. k* ≤ log N.
- $ightharpoonup k^{:} m_{0} = N, m_{i+1} = |m_{i}|, m_{k^{*}} = 1.$
- ▶ If $N = 2^k$ then $k^* = k$, otherwise $k^* < \log N$

- Adversary chooses expert predictions and outcomes so as to maximize the number of mistakes.
- The best strategy for the adversary: split a pool with m experts into

```
\lfloor m/2 \rfloor predicting 0 \lceil m/2 \rceil predicting 1 Make the actual output 0.
```

- The halving algorithm can be forced to k* mistakes. k* ≤ log N.
- $ightharpoonup k^{:} m_{0} = N, m_{i+1} = \lfloor m_{i} \rfloor, m_{k^{*}} = 1.$
- ▶ If $N = 2^k$ then $k^* = k$, otherwise $k^* < \log N$
- k* is the Min-Max number of mistakes: algorithm never makes more than k* mistakes, adversary can force k* mistakes.

What should we do if none of the experts is perfect, and we have no a-priori knowledge how good the best expert is?

N possible actions

What should we do if none of the experts is perfect, and we have no a-priori knowledge how good the best expert is?

- N possible actions
- At each time step t:

What should we do if none of the experts is perfect, and we have no a-priori knowledge how good the best expert is?

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.

What should we do if none of the experts is perfect, and we have no a-priori knowledge how good the best expert is?

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss.

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss.
- ► Goal: minimize total expected loss

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss.
- Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss.
- Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome
- Fits nicely in game theory

Like halving - we want to zoom into best action (expert).

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.
- Modified Goal:
 minimize REGRET =
 expected total loss
 minus
 minimal total loss of repeating one action.

Consider action i at time t

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Consider action i at time t

▶ Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$W_i^t = e^{-\eta L_i^t}$$

Consider action i at time t

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$W_i^t = e^{-\eta L_i^t}$$

▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta = \infty$

Consider action i at time t

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$W_i^t = e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta = \infty$
- Probability:

$$P_i^t = \frac{W_i^t}{\sum_{i=1}^N W_i^t}$$

$$\eta = 1$$

```
\eta = 1
```

expert1 expert3 expert4 expert5 expert6 expert7 expert8

alg.

alg.

```
\eta = 1
                     \vec{W}^1
expert1
expert2
expert3
expert4
expert5
expert6
expert7
expert8
```

$\eta=1$		
•	$ec{W}^1$	L^1
expert1	1	.1
expert2	1	.8
expert3	1	.3
expert4	1	.1
expert5	1	.9
expert6	1	0
expert7	1	1
expert8	1	.8

alg.

$\eta = 1$			
,	$ec{W}^1$	<i>L</i> ¹	
expert1	1	.1	
expert2	1	.8	
expert3	1	.3	
expert4	1	.1	
expert5	1	.9	
expert6	1	0	
expert7	1	1	
expert8	1	.8	
ala.		.5	

$\eta = 1$			
·	$ec{W}^1$	<i>L</i> ¹	\vec{W}^2
expert1	1	.1	.90
expert2	1	.8	.45
expert3	1	.3	.74
expert4	1	.1	.90
expert5	1	.9	.41
expert6	1	0	1
expert7	1	1	.37
expert8	1	.8	.45
alg.		.5	

$\eta=1$				
,	\vec{W}^1	L^1	\vec{W}^2	L^2
expert1	1	.1	.90	.1
expert2	1	.8	.45	.5
expert3	1	.3	.74	.2
expert4	1	.1	.90	.7
expert5	1	.9	.41	1
expert6	1	0	1	.1
expert7	1	1	.37	.5
expert8	1	.8	.45	.2
alg.		.5		

,
2
6

$\eta=1$					
	$ec{W}^1$	L^1	\vec{W}^2	L^2	\vec{W}^3
expert1	1	.1	.90	.1	0.82
expert2	1	.8	.45	.5	0.27
expert3	1	.3	.74	.2	0.61
expert4	1	.1	.90	.7	0.45
expert5	1	.9	.41	1	0.15
expert6	1	0	1	.1	0.91
expert7	1	1	.37	.5	0.22
expert8	1	.8	.45	.2	0.37
alg.		.5		.36	

$\eta=1$						
	$ec{W}^1$	L^1	\vec{W}^2	L^2	\vec{W}^3	L^3
expert1	1	.1	.90	.1	0.82	0
expert2	1	.8	.45	.5	0.27	.2
expert3	1	.3	.74	.2	0.61	.2
expert4	1	.1	.90	.7	0.45	.8
expert5	1	.9	.41	1	0.15	.8
expert6	1	0	1	.1	0.91	.2
expert7	1	1	.37	.5	0.22	.4
expert8	1	.8	.45	.2	0.37	.6
alg.		.5		.36		

$\eta=1$						
•	$ec{W}^1$	<i>L</i> ¹	\vec{W}^2	L^2	\vec{W}^3	L^3
expert1	1	.1	.90	.1	0.82	0
expert2	1	.8	.45	.5	0.27	.2
expert3	1	.3	.74	.2	0.61	.2
expert4	1	.1	.90	.7	0.45	.8
expert5	1	.9	.41	1	0.15	.8
expert6	1	0	1	.1	0.91	.2
expert7	1	1	.37	.5	0.22	.4
expert8	1	.8	.45	.2	0.37	.6
alg.		.5		.36		.30

$\eta=1$							
·	$ec{W}^1$	<i>L</i> ¹	\vec{W}^2	L^2	\vec{W}^3	L^3	total
expert1	1	.1	.90	.1	0.82	0	.2
expert2	1	.8	.45	.5	0.27	.2	1.5
expert3	1	.3	.74	.2	0.61	.2	.7
expert4	1	.1	.90	.7	0.45	.8	1.6
expert5	1	.9	.41	1	0.15	.8	2.7
expert6	1	0	1	.1	0.91	.2	.3
expert7	1	1	.37	.5	0.22	.4	1.9
expert8	1	.8	.45	.2	0.37	.6	1.6
alg.		.5		.36		.30	

$\eta=$ 1							
,	\vec{W}^1	<i>L</i> ¹	\vec{W}^2	L^2	\vec{W}^3	L^3	total
expert1	1	.1	.90	.1	0.82	0	.2
expert2	1	.8	.45	.5	0.27	.2	1.5
expert3	1	.3	.74	.2	0.61	.2	.7
expert4	1	.1	.90	.7	0.45	.8	1.6
expert5	1	.9	.41	1	0.15	.8	2.7
expert6	1	0	1	.1	0.91	.2	.3
expert7	1	1	.37	.5	0.22	.4	1.9
expert8	1	.8	.45	.2	0.37	.6	1.6
ala.		.5		.36		.30	1.16

► L^t_{Hedge}: Expected total loss of Hedge algorithm for time 1, 2, . . . , t

▶ L_{Hedge}^t : Expected total loss of Hedge algorithm for time 1, 2, . . . , t

$$\forall t, i, \quad L_{\mathsf{Hedge}} \leq \frac{\mathsf{In}\, \mathsf{N} + \eta L_i^t}{1 - e^{-\eta}}$$

► L^t_{Hedge}: Expected total loss of Hedge algorithm for time 1.2....*t*

$$\forall t, i, \quad L_{\mathsf{Hedge}} \leq \frac{\mathsf{In}\, N + \eta L_i^t}{1 - e^{-\eta}}$$

Which implies

$$\forall t, \quad L_{\mathsf{Hedge}} \leq \min_{i} \left(\frac{\ln N + \eta L_{i}^{t}}{1 - e^{-\eta}} \right)$$

► L^t_{Hedge}: Expected total loss of Hedge algorithm for time 1,2,...,t

$$\forall t, i, \quad L_{\mathsf{Hedge}} \leq \frac{\ln N + \eta L_i^t}{1 - e^{-\eta}}$$

Which implies

$$\forall t, \quad L_{\mathsf{Hedge}} \leq \min_{i} \left(\frac{\ln N + \eta L_{i}^{t}}{1 - e^{-\eta}} \right)$$

▶ Proof and choice of η : next class.

$$||\vec{V}|| = 1$$

- ▶ $\|\vec{V}\| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}.$

- ▶ $\|\vec{V}\| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$

- ▶ $\|\vec{V}\| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}.$
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

► An online algorithm. Examples presented one by one.

- ► An online algorithm. Examples presented one by one.
- start with $\vec{W}_0 = \vec{0}$.

- An online algorithm. Examples presented one by one.
- start with $\vec{W}_0 = \vec{0}$.
- If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$

- An online algorithm. Examples presented one by one.
- start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$
 - Update $\vec{W}_{i+1} = \vec{W}_i + y_i X_i$.

Bound on number of mistakes

The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.

Bound on number of mistakes

- The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

Pythagorian Lemma

If
$$(\vec{W}_i \cdot X_i)y < 0$$
 then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Pythagorian Lemma

If
$$(\vec{W}_i \cdot X_i)y < 0$$
 then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

► Claim: $\|\vec{W}_i\|^2 \le iR^2$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

- ► Claim: $\|\vec{W}_i\|^2 \le iR^2$
- ▶ Base: i = 0, $\|\vec{W}_0\|^2 = 0$

Upper bound on $\|\hat{W}_i\|$

Proof by induction

- ► Claim: $\|\vec{W}_i\|^2 < iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- ▶ Induction step (assume for i and prove for i + 1):

$$\|\vec{W}_{i+1}\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + R^2 \le (i+1)R^2$$

$$\leq \|\vec{W}_i\|^2 + R^2 \leq (i+1)R^2$$

$$\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$$
 because $\|\vec{V}\| = 1$.

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ using induction over i

► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$

 $\|\vec{W}_i\| \geq \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

- ▶ Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for *i* and prove for i + 1):

$$\vec{W}_{i+1} \cdot \vec{V} = \left(\vec{W}_i + \vec{X}_i y_i \right) \vec{V}$$

 $\|\vec{W}_i\| \geq \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

- ▶ Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for *i* and prove for i + 1):

$$\vec{W}_{i+1} \cdot \vec{V} = \left(\vec{W}_i + \vec{X}_i y_i \right) \vec{V}$$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

- ▶ Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$

$$\geq ig + g = (i + 1)g$$

Combining the upper and lower bounds

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Combining the upper and lower bounds

$$(\textit{ig})^2 \leq \|\vec{W}_i\|^2 \leq \textit{iR}^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

Estimating the bias of a coin

► We observe *n* coin flips: H,T,T,H,H,T,T,T

Estimating the bias of a coin

- ► We observe *n* coin flips: H,T,T,H,H,T,T,T
- We want to estimate the probability that the next flip will be Head.

Estimating the bias of a coin

- We observe n coin flips: H,T,T,H,H,T,H,T,T
- We want to estimate the probability that the next flip will be Head.
- Natural Answer:

$$\frac{\#\mathbf{H}}{n} = \frac{4}{9}$$

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step:
p₀

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step:
p₀

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,

We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂,

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂....
- ▶ What would be a good value for p₀?

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂....
- ▶ What would be a good value for p₀?
- ▶ For p_1 ?

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂....
- ▶ What would be a good value for p₀?
- \triangleright For p_1 ?
- Laplace Law of succession

$$\frac{\# \mathbf{H} + 1}{n+2}$$

- We observe a bf sequence of coin flips, and have to predict the probability of **H**ead at each step: $p_0, \mathbf{H}, p_1, \mathbf{T}, p_2, \dots$
- ▶ What would be a good value for p_0 ?
- For p₁?
- Laplace Law of succession

$$\frac{\#\mathbf{H}+1}{n+2}$$

Turns out that a better rule is

$$\frac{\# \mathbf{H} + 1/2}{n+1}$$

Krichevsky and Trofimov, 1981

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂....
- ▶ What would be a good value for p₀?
- \triangleright For p_1 ?
- Laplace Law of succession

$$\frac{\#\mathbf{H}+1}{n+2}$$

Turns out that a better rule is

$$\frac{\#\mathbf{H}+1/2}{n+1}$$

Krichevsky and Trofimov, 1981

Why?

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂....
- ▶ What would be a good value for p₀?
- \triangleright For p_1 ?
- Laplace Law of succession

$$\frac{\#\mathbf{H}+1}{n+2}$$

Turns out that a better rule is

$$\frac{\#\mathbf{H} + 1/2}{n+1}$$

Krichevsky and Trofimov, 1981

- ► Why?
- What does "better" mean?

Next time

Analysis of the Hedge Algorithm.

▶ slides in talk1.handout.pdf on:

https://github.com/yoavfreund/2020-Online-Learni

Next time

Analysis of the Hedge Algorithm.

- ► slides in talk1.handout.pdf on:
 https://github.com/yoavfreund/2020-Online-Learni
- Grading: 4HW (40%), Midterm (20%) Final (40%)

Next time

Analysis of the Hedge Algorithm.

- slides in talk1.handout.pdf on: https://github.com/yoavfreund/2020-Online-Learni
- ► Grading: 4HW (40%), Midterm (20%) Final (40%)
- See you on Thursday!