CS-482/CS-682 Machine Learning Regression and Classification Metrics

In this assignment you will demonstrate your knowledge of metrics for regression and classification. You must turn in a report providing answers for the sections below and also a python file containing code. As always place all your files into a folder with your lastnames# and zip that folder.

REGRESSION TASK: Use one the following datasets for regression from the UCI database

https://archive.ics.uci.edu/ml/datasets/Computer+Hardware

https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set

or another dataset of your choice.. With no missing values and not containing categorical variables.

- a) **Load the Data:** Either write your own load function or use one the scikit-learn functions or pandas function to load the data and receive a class containing the numpy array of shape (n,p+1)
- b) **Meet the Data Section:** Provide the following information about the data.
 - a) Number of features (comes from the load function above)
 - b) Names of the features (comes from load function above)
 - c) Name of target (comes from load function above)
 - d) Number of samples (comes from the load function above)
 - e) Description of data (comes from load function above)
 - f) First five rows of the data
 - g) *Correlation Studies:* Present the correlation between each pair of data columns including target as follows:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
CRIM	1.000000	-0.199458	0.404471	-0.055295	0.417521	-0.219940	0.350784	-0.377904	0.622029	0.579564	0.288250	-0.377365	0.452220	-0.385832
ZN	-0.199458	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995	0.360445
INDUS	0.404471	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800	-0.483725
CHAS	-0.055295	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929	0.175260
NOX	0.417521	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879	-0.427321
RM	-0.219940	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808	0.695360
AGE	0.350784	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339	-0.376955
DIS	-0.377904	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996	0.249929
RAD	0.622029	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676	-0.381626
TAX	0.579564	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993	-0.468536
TRATIO	0.288250	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044	-0.507787
В	-0.377365	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087	0.333461
LSTAT	0.452220	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000	-0.737663
PRICE	-0.385832	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663	1.000000

output of bostan.corr()

- c) **Model Fitting and Parameter tuning:** Find the best parameter alpha: 0, 0.1, 1.0, 10.0, 20.0 50.0, 100.0 for both Ridge Regression and Lasso Regression with cross validation (5 fold). Use GridSearchCV from scikit-learn for this purpose. Provide the best parameter found for Ridge and Lasso Regression.
- d) **Metrics:** Print the metrics R², RMSE (square root MSE). Use the best parameter found in the section above for Ridge and Lass regression

R² RMSE

Lasso Regression

Ridge Regression

Linear Regression

e) **Comparison of Different Models:** Provide the parameter values for Lasso, Ridge and Linear Regression as shown below, (except the diagram should include best alpha found for Lasso and Ridge unlike what is shown)

Figure 2-12. Comparing coefficient magnitudes for ridge regression with different values of alpha and linear regression

CLASSIFICATION TASK: Use one of the following datasets meant for binary classification.

https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival

https://archive.ics.uci.edu/ml/datasets/banknote+authentication or your own dataset which must be binary classification data with no missing values and no categorical data.

- a) Either write your own load function or use one the scikit-learn functions to load the data and receive a class containing the numpy array of shape (n,p+1)
- b) Meet the Data Section: Provide the following information about the data.
 - a) Number of features (comes from the load function above)
 - b) Names of the features (comes from load function above)
 - c) Name of target (comes from load function above)

- d) Number of samples (comes from the load function above)
- e) Description of data (comes from load function above)
- f) First five rows of the data
- g) *Correlation Studies:* Present the correlation between each pair of data columns including target as follows:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
CRIM	1.000000	-0.199458	0.404471	-0.055295	0.417521	-0.219940	0.350784	-0.377904	0.622029	0.579564	0.288250	-0.377365	0.452220	-0.385832
ZN	-0.199458	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995	0.360445
INDUS	0.404471	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800	-0.483725
CHAS	-0.055295	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929	0.175260
NOX	0.417521	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879	-0.427321
RM	-0.219940	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808	0.695360
AGE	0.350784	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339	-0.376955
DIS	-0.377904	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996	0.249929
RAD	0.622029	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676	-0.381626
TAX	0.579564	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993	-0.468536
TRATIO	0.288250	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044	-0.507787
В	-0.377365	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087	0.333461
LSTAT	0.452220	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000	-0.737663
PRICE	-0.385832	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663	1.000000

output of bostan.corr()

- c) **Model Fitting** Perform Logistic regression without cross validation. Split the data into 80% training and 20% test. Note that Logistic Regression on scikit-learn by default uses L2 penalty of 1. Each time use the same test set for comparison. State the accuracy.
- d) **Metrics:** Logistic Regression can predict class labels or class probabilities (Continuous valued prediction) Using class label predictions, compute
 - a) Precision,
 - b) Recall,
 - c) Sensitivity
 - d) Accuracy
- e) Metrics: Create an ROC curve and find the best threshold as shown below

