

CLAIMS

1. The use of a compound of the formula (I) or a salt thereof:

5

wherein:

A-W is N=N, N⁺(O⁻)=N or NR⁵-NR⁶, wherein A represents the atom or substituted atom shown on the left side of the groups representing A-W;

X is N or CR⁷;

10 Y is N or CR⁸;

Z is N or CR⁹;

R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

15 where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, halogen, OH, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, (C₁-C₆)alkyl-S(O)_n-, nitro, cyano, amino, (C₁-C₆)alkylamino, (C₁-C₆)dialkylamino, (C₁-C₆)alkoxycarbonyl and CO₂H,

20 or are (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₆)alkyl-, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy, (C₂-C₆)alkynyoxy, (C₁-C₆)alkyl-C(=O)O-, (C₁-C₆)alkyl-S(O)_n-, (C₁-C₆)alkylamino, (C₁-C₆)dialkylamino, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkylcarbonyl, (C₁-C₆)alkylcarbamoyl, (C₁-C₆)dialkylcarbamoyl, (C₁-C₆)alkylsulfamoyl or (C₁-C₆)dialkylsulfamoyl,

25 where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C₁-C₆)alkoxy, (C₁-C₆)alkyl-S(O)_n- and in the case of cyclic radicals also (C₁-C₆)alkyl and (C₁-C₆)haloalkyl;

- R^5 and R^6 are each independently H, (C_1 - C_6)alkyl, (C_1 - C_6)haloalkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, formyl, (C_1 - C_6)alkylcarbonyl, (C_2 - C_6)alkenylcarbonyl, COR¹⁰, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkyl-SO₂⁻, (C_1 - C_6)alkoxy-(C_1 - C_6)alkyl- or R¹⁰;
- R^7 , R^8 and R^9 are each independently H, halogen, nitro, cyano, S(O)_nR¹⁰,
- 5 S(O)_nCH₂CO₂R¹¹, S(O)_nCH₂CO₂N[(C_1 - C_6)alkyl]₂, S(O)_nCH₂CONR¹²R¹³,
- S(O)_nCH₂CONR¹⁴NR¹⁵, formyl, carbamoyl, OH, SH, R¹⁰, NR¹⁶R¹⁷, 1,3-dioxolan-2-yl, (C_1 - C_6)alkyl, (C_3 - C_6)cycloalkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, (C_1 - C_6)alkoxy, (C_1 - C_6)alkyl-S(O)_n-, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkylcarbonyl, (C_1 - C_6)alkylcarbamoyl or (C_1 - C_6)dialkylcarbamoyl, where each of the 10 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1 - C_6)alkoxy, (C_1 - C_6)alkyl-S(O)_n- and in the case of cyclic radicals also (C_1 - C_6)alkyl and (C_1 - C_6)haloalkyl;
- 10 R^{10} is (CH_2)_mphenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1 - C_6)alkyl, (C_1 - C_6)haloalkyl, (C_1 - C_6)alkoxy, (C_1 - C_6)haloalkoxy, nitro, cyano, (C_1 - C_6)alkyl-S(O)_n-, (C_1 - C_6)haloalkyl-S(O)_n-, amino, (C_1 - C_6)alkylamino, (C_1 - C_6)dialkylamino, (C_1 - C_6)alkylcarbonyl, carbamoyl, (C_1 - C_6)alkylcarbamoyl, (C_1 - C_6)dialkylcarbamoyl, sulfamoyl, (C_1 - C_6)alkylsulfamoyl and (C_1 - C_6)dialkylsulfamoyl;
- 15 R^{11} is H or (C_1 - C_6)alkyl;
- 20 R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, (C_1 - C_6)alkyl or R¹⁰; or R¹² and R^{13} , or R^{16} and R^{17} together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, (C_1 - C_6)alkyl and (C_1 - C_6)haloalkyl;
- 25 R^{14} and R^{15} are each independently H or (C_1 - C_6)alkyl;
- n is 0, 1 or 2 in each of the occurrences; and
- m is 0 or 1;
- as a herbicide or plant growth regulator.
- 30 2. The use as claimed in claim 1 wherein A-W is A-W is N=N, N⁺(O⁻)=N or NH-NH.

3. The use as claimed in claim 1 or 2 wherein R¹, R², R³ and R⁴ are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO₂H or sulfamoyl, or benzyl or phenoxy,

where each of the latter two radicals is unsubstituted or substituted by one or

5 more radicals selected from the group consisting of (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, halogen, OH, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, (C₁-C₄)alkyl-S(O)_n-, nitro, cyano, amino, (C₁-C₄)alkylamino, (C₁-C₄)dialkylamino, (C₁-C₄)alkoxycarbonyl and CO₂H,

10 or are (C₁-C₄)alkyl, (C₂-C₄)alkenyl, (C₂-C₄)alkynyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl-(C₁-C₄)alkyl-, (C₁-C₄)alkoxy, (C₂-C₄)alkenyloxy, (C₂-C₄)alkynyloxy, (C₁-C₄)alkyl-C(=O)O-, (C₁-C₄)alkyl-S(O)_n-, (C₁-C₄)alkylamino, (C₁-C₄)dialkylamino, (C₁-C₄)alkoxycarbonyl, (C₁-C₄)alkylcarbonyl, (C₁-C₄)alkylcarbamoyl, (C₁-C₄)dialkylcarbamoyl, (C₁-C₄)alkylsulfamoyl or (C₁-C₄)dialkylsulfamoyl,

15 where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C₁-C₄)alkoxy, (C₁-C₄)alkyl-S(O)_n- and in the case of cyclic radicals also (C₁-C₆)alkyl and (C₁-C₆)haloalkyl.

4. The use as claimed in claim 1, 2 or 3 wherein X is N or CR⁷ wherein R⁷ is H, 20 halogen, nitro, cyano, S(O)_nR¹⁰, S(O)_nCH₂CO₂R¹¹, S(O)_nCH₂CONR¹²R¹³, S(O)_nCH₂CONR¹⁴NR¹⁵, formyl, carbamoyl, OH, SH, R¹⁰, NR¹⁶R¹⁷, 1,3-dioxolan-2-yl, (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, (C₂-C₄)alkenyl, (C₂-C₄)alkynyl, (C₁-C₄)alkoxy, (C₁-C₄)alkyl-S(O)_n-, (C₁-C₄)alkoxycarbonyl, (C₁-C₄)alkylcarbonyl, (C₁-C₄)alkylcarbamoyl, (C₁-C₄)dialkylcarbamoyl, where each of the 10 last-mentioned radicals is 25 unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C₁-C₄)alkoxy and (C₁-C₄)alkyl-S(O)_n-, in which R¹⁰ is (CH₂)_mphenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)alkyl, (C₁-C₄)haloalkyl, (C₁-C₄)alkoxy, (C₁-C₄)haloalkoxy, nitro, cyano, (C₁-C₄)alkyl-S(O)_n-, (C₁-C₄)haloalkyl-S(O)_n-, amino, (C₁-C₄)alkylamino, (C₁-C₄)dialkylamino, (C₁-C₄)alkylcarbonyl, carbamoyl, (C₁-C₄)alkylcarbamoyl, (C₁-C₄)dialkylcarbamoyl, sulfamoyl, (C₁-C₄)alkylsulfamoyl and (C₁-C₄)dialkylsulfamoyl;

- R^{11} is H or $(C_1-C_4)alkyl$;
- R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, $(C_1-C_4)alkyl$ or R^{10} ; or R^{12} and R^{13} , or R^{16} and R^{17} together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the
- 5 ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from halogen, $(C_1-C_4)alkyl$ and $(C_1-C_4)haloalkyl$; and R^{14} and R^{15} are each independently H or $(C_1-C_4)alkyl$.

5. The use as claimed in any one of claims 1 to 4 wherein Y and Z are each N.

10

6. The use as claimed in claim 1 wherein:

A-W is $N=N$, $N^+(O^-)=N$ or $NH-NH$;

R^1 , R^2 , R^3 and R^4 are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO_2H or sulfamoyl, or benzyl or phenoxy,

15 where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of $(C_1-C_4)alkyl$, $(C_1-C_4)haloalkyl$, halogen, OH, $(C_1-C_4)alkoxy$, $(C_1-C_4)haloalkoxy$, $(C_1-C_4)alkyl-S(O)_n-$, nitro, cyano, amino, $(C_1-C_4)alkylamino$, $(C_1-C_4)dialkylamino$, $(C_1-C_4)alkoxycarbonyl$ and CO_2H ,

20 or are $(C_1-C_4)alkyl$, $(C_2-C_4)alkenyl$, $(C_2-C_4)alkynyl$, $(C_3-C_6)cycloalkyl$, $(C_3-C_6)cycloalkyl-(C_1-C_4)alkyl-$, $(C_1-C_4)alkoxy$, $(C_2-C_4)alkenyloxy$, $(C_2-C_4)alkynyoxy$, $(C_1-C_4)alkyl-C(=O)O-$, $(C_1-C_4)alkyl-S(O)_n-$, $(C_1-C_4)alkylamino$, $(C_1-C_4)dialkylamino$, $(C_1-C_4)alkoxycarbonyl$, $(C_1-C_4)alkylcarbonyl$, $(C_1-C_4)alkylcarbamoyl$, $(C_1-C_4)dialkylcarbamoyl$, $(C_1-C_4)alkylsulfamoyl$ or $(C_1-C_4)dialkylsulfamoyl$,

25 where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, $(C_1-C_4)alkoxy$, $(C_1-C_4)alkyl-S(O)_n-$ and in the case of cyclic radicals also $(C_1-C_6)alkyl$ and $(C_1-C_6)haloalkyl$;

X is N or CR^7 ;

30 R^7 is H, $(C_1-C_4)alkyl$, $(C_1-C_4)haloalkyl$, $(C_2-C_4)alkenyl$, $(C_2-C_4)alkynyl$, $(C_1-C_4)alkoxy$, $(C_1-C_4)haloalkoxy$, halogen, nitro, cyano, $(C_1-C_4)alkyl-S(O)_n-$, $(C_1-C_4)haloalkyl-S(O)_n-$, $S(O)_nR^{10}$, $S(O)_nCH_2CO_2R^{11}$, $S(O)_nCH_2CO_2N[(C_1-C_4)alkyl]_2$,

$S(O)_nCH_2CONR^{12}R^{13}$, $S(O)_nCH_2CONR^{14}NR^{15}$, (C_1-C_4)alkoxycarbonyl, formyl, (C_1-C_4)alkylcarbonyl, (C_1-C_4)haloalkylcarbonyl, carbamoyl, (C_1-C_4)alkylcarbamoyl, (C_1-C_4)dialkylcarbamoyl, OH, SH, R^{10} , $NR^{16}R^{17}$ or 1,3-dioxolan-2-yl; in which

R^{10} is $(CH_2)_m$ phenyl unsubstituted or substituted by one or more radicals selected

- 5 from the group consisting of halogen, (C_1-C_4)alkyl, (C_1-C_4)haloalkyl, (C_1-C_4)alkoxy, (C_1-C_4)haloalkoxy, nitro, cyano, (C_1-C_4)alkyl-S(O) n^- , (C_1-C_4)haloalkyl-S(O) n^- , amino, (C_1-C_4)alkylamino, (C_1-C_4)dialkylamino, (C_1-C_4)alkylcarbonyl, carbamoyl, (C_1-C_4)alkylcarbamoyl, (C_1-C_4)dialkylcarbamoyl, sulfamoyl, (C_1-C_4)alkylsulfamoyl and (C_1-C_4)dialkylsulfamoyl;

10 R^{11} is H or (C_1-C_4)alkyl;

R^{12} and R^{13} , or R^{16} and R^{17} are each independently H, (C_1-C_4)alkyl or R^{10} ; or R^{12} and R^{13} , or R^{16} and R^{17} together with the respective attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by

15 one or more radicals selected from halogen, (C_1-C_4)alkyl and (C_1-C_4)haloalkyl; and R^{14} and R^{15} are each independently H or (C_1-C_4)alkyl; and

Y and Z are each N.

7. A compound as claimed in claim 1, of formula (ii):

20

wherein:

$A-W$ is $N=N$, $N^+(O^-)=N$ or $NH-NH$, in which A represents the atom or substituted atom shown on the left side of the groups representing $A-W$;

X is N or CR^7 ;

25 R^1 , R^2 , R^3 and R^4 are each independently H, OH, halogen, nitro, cyano, formyl, amino, carbamoyl, CO_2H or sulfamoyl, or benzyl or phenoxy,

where each of the latter two radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6)alkyl, (C_1-

C_6)haloalkyl, halogen, OH, (C_1 - C_6)alkoxy, (C_1 - C_6)haloalkoxy, (C_1 - C_6)alkyl-S(O)_n-, nitro, cyano, amino, (C_1 - C_6)alkylamino, (C_1 - C_6)dialkylamino, (C_1 - C_6)alkoxycarbonyl and CO_2H ,

or are (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, (C_3 - C_6)cycloalkyl, (C_3 - C_6)cycloalkyl-(C_1 - C_6)alkyl-, (C_1 - C_6)alkoxy, (C_2 - C_6)alkenyloxy, (C_2 - C_6)alkynyloxy, (C_1 - C_6)alkyl-C(=O)O-, (C_1 - C_6)alkyl-S(O)_n-, (C_1 - C_6)alkylamino, (C_1 - C_6)dialkylamino, (C_1 - C_6)alkoxycarbonyl, (C_1 - C_6)alkylcarbonyl, (C_1 - C_6)alkylcarbamoyl, (C_1 - C_6)dialkylcarbamoyl, (C_1 - C_6)alkylsulfamoyl or (C_1 - C_6)dialkylsulfamoyl,

where each of the 18 last-mentioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, OH, (C_1 - C_6)alkoxy, (C_1 - C_6)alkyl-S(O)_n- and in the case of cyclic radicals also (C_1 - C_6)alkyl and (C_1 - C_6)haloalkyl;

R^7 is H, (C_1 - C_6)alkyl, (C_1 - C_6)haloalkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, (C_1 - C_6)alkoxy, (C_1 - C_6)haloalkoxy, halogen, nitro, cyano, (C_1 - C_6)alkyl-S(O)_n-, (C_1 - C_6)haloalkyl-S(O)_n-, (C_1 - C_6)alkoxycarbonyl, formyl, (C_1 - C_6)alkylcarbonyl, (C_1 - C_6)haloalkylcarbonyl, carbamoyl, (C_1 - C_6)alkylcarbamoyl, (C_1 - C_6)dialkylcarbamoyl, $NR^{16}R^{17}$ or 1,3-dioxolan-2-yl; and

R^{16} and R^{17} are each independently H, (C_1 - C_6)alkyl or R^{10} , wherein R^{10} is as defined above; with the exclusion of compounds wherein:

20

i) A-W is N=N; R^1 , R^2 , R^3 and R^4 are each H; and X is CBr, CSO_2Me , $CSMe$, CMe or CH;

ii) A-W is N=N; R^1 , R^3 and R^4 are each H; R^2 is Cl; and X is CH;

iii) A-W is N=N; R^2 , R^3 and R^4 are each H; R^1 is OH; and X is CH;

25

iv) A-W is $N^+(O^-)=N$; R^1 , R^2 , R^3 and R^4 are each H; and X is CH;

v) A-W is NH-NH; R^1 , R^2 , R^3 and R^4 are each H; and X is $CSMe$ or CH;

vi) A-W is NH-NH; R^1 , R^3 and R^4 are each H; R^2 is Me; and X is CH;

vii) A-W is N=N; R^1 , R^2 and R^4 are each H; R^3 is OMe; and X is N;

viii) A-W is N=N; R^1 , R^3 and R^4 are each H; R^2 is OMe, Me or H; and X is N;

30

ix) A-W is N=N; R^1 and R^3 are each H; R^2 and R^4 are each Me; and X is N;

x) A-W is $N^+(O^-)=N$; R^1 , R^3 and R^4 are each H; R^2 is Me or OMe; and X is N;

- xi) A-W is $\text{N}^+(\text{O}^-)=\text{N}$; R^1 and R^3 are each H; R^2 and R^4 are each Me; and X is N;
and
- xii) A-W is NH-NH; R^1 , R^2 , R^3 and R^4 are each H; and X is N.

- 5 8. A process for the preparation of a compound of formula (I), or a salt thereof,
as defined in claim 7 which comprises:
- a) where A-W is $\text{N}=\text{N}$ or $\text{N}^+(\text{O}^-)=\text{N}$, cyclodehydrating a compound of formula (II):

wherein A-W is $\text{N}=\text{N}$ or $\text{N}^+(\text{O}^-)=\text{N}$, and R^1 , R^2 , R^3 , R^4 , X, Y and Z are as defined in
10 formula (I); or

- b) where A-W is $\text{N}=\text{N}$, and the other values are as defined above, coupling a diazonium salt of formula (III):

15 wherein X, Y and Z are as defined in formula (I) and Q is a chloride, sulfate or
fluoroborate, with a compound of formula (IV):

wherein R^1 , R^2 , R^3 and R^4 are as defined in claim 1, to give an azo intermediate of
formula (II) wherein A-W is $\text{N}=\text{N}$, and the other values are as defined in formula (I),
20 followed by the above described cyclodehydration; or

c) where A-W is $\text{NR}^5\text{-NR}^6$; $\text{R}^1, \text{R}^2, \text{R}^3; \text{R}^4, \text{R}^6, \text{X}, \text{Y}$ and Z are as defined in formula (I), and R^5 is as defined in formula (I) with the exclusion of H, reacting the corresponding compound of formula (I) wherein R^5 is H, with a compound of formula (VI):

wherein R^5 is as defined in formula (I) with the exclusion of H, and L is a leaving group; or

d) where A-W is $\text{NR}^5\text{-NR}^6$; $\text{R}^1, \text{R}^2, \text{R}^3; \text{R}^4, \text{R}^5, \text{X}, \text{Y}$ and Z are as defined in formula (I), and R^6 is as defined in formula (I) with the exclusion of H, reacting the corresponding compound of formula (I) wherein R^6 is H, with a compound of formula (VII):

15 wherein R^6 is as defined in formula (I) with the exclusion of H, and L is a leaving group; or

e) where A-W is $\text{NR}^5\text{-NR}^6$, R^5 and R^6 are each H, and the other values are as defined in formula (I), reducing the corresponding compound of formula (I) wherein A-W is $\text{N}=\text{N}$ or $\text{N}^+(\text{O}^-)=\text{N}$; or

20 f) where A-W is $\text{N}=\text{N}$, and the other values are as defined in formula (I), reducing the corresponding compound of formula (I) wherein A-W is $\text{N}^+(\text{O}^-)=\text{N}$; or

25 g) where A-W is $\text{N}=\text{N}$ or $\text{N}^+(\text{O}^-)=\text{N}$, X is CR^7 , Y and Z are each N, and the other values are as defined in formula (I), reacting a compound of formula (VIII):

wherein A-W is N=N or N⁺(O⁻)=N, R⁷ is H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or R¹⁰, and R¹, R², R³ and R⁴ are as defined in formula (I), with a carboxylic acid or an equivalent thereof of formula (IX) or (X):

- 5 wherein R⁷ is H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or R¹⁰, and L¹ is H or a leaving group; or

h) where A-W is N=N or N⁺(O⁻)=N, X is CR⁷, Y and Z are each N, and the other values are as defined in formula (I), cyclising a compound of formula (XI):

- 10 wherein A-W is N=N or N⁺(O⁻)=N, R⁷ is H, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or R¹⁰, and R¹, R², R³ and R⁴ are as defined in formula (I), in the presence of a dehydrating agent or a halogenating agent; or

- 15 i) where A-W is N=N or N⁺(O⁻)=N, and R¹, R², R³ and R⁴ are as defined in formula (I), reacting a compound of formula (XII):

- 20 wherein A-W is N=N or N⁺(O⁻)=N, R¹, R², R³ and R⁴ are as defined in formula (I), and L² is a leaving group, with a metal azide of formula (XIII):

wherein M is an alkali metal; or

- j) where A-W is $N^+(O^-)=N$, and the other values are as defined in formula (I), oxidising the corresponding compound of formula (I) in which A-W is N=N.
9. A herbicidal or plant growth regulating composition characterised in that it
5 comprises one or more compounds of the formula (I) or salts thereof as defined in any one of claims 1 to 7 and formulation auxiliaries which are customary in crop protection.
10. A method of controlling harmful plants or regulating the growth of plants
10 characterised in that it comprises applying an effective amount of one or more compounds of the formula (I) or salts thereof as defined in any one of claims 1 to 7 to the plants to plant seeds or to the area under cultivation.