#### Installing g\_permute plugin for/and GROMACS

g\_permute is a tool to relabel the solvent molecules in a molecular dynamics trajectory such that their distance to a reference position becomes minimal. The result is a new trajectory, where the solvent molecules are centred around their reference positions, rather than exploiting the full configuration space as in the original trajectory. This procedure is called permutation reduction.



**Unpermuted trajectory** 



Permuted trajectory

#### Installation procedure:

- g\_permute tar file can be obtained from the GITHUB link https://gitlab.gwdg.de/lheinz/g\_permute
- g\_permute, available in the latest version works only in GROMACS 2018 version and is compatible with ubuntu version 18.04.
- Higher version of Ubuntu and miscompatibility of GROMACS version may not allow g\_permute installation properly.
- 1. Install GROMACS with the following command lines.

tar -xvf gromacs-2018.8.tar.gz
cd gromacs-2018.8
mkdir build
cd build
cmake .. -DGMX\_BUILD\_OWN\_FFTW=ON -DCMAKE\_INSTALL\_PREFIX=/home/hamsa/linuxapps/GMX/2018.8 -DBUILD\_SHARED\_LIBS=ON
make
make check
sudo make install
source /usr/local/gromacs/bin/GMXRC

Make sure the shared library is on, else g\_permute will not work.

2. Before installation of g\_permute, make sure fftw libraries are generated and located properly. You can install fftw from tar file or copy the already created fftw folder in the /home/hamsa/linux-apps/ path (folder is available in the following path)

## My Drive > Lab repository > Source files software -People -Modified -Type \* Name Owner e me fftw e me g\_permute-master me me g permute-1.1 gromacs-2018.8.tar.gz 45 me fftw-3.1.2.tar.gz e me ₽ c37b2.tar.gz 25 g permute-master.tar.gz 2. me

If you want to create the fftw folder using tar file, follow the command.

tar -xvf fftw-3.1.2.tar.gz (You may also try fftw-3.3.1.tar.gz)

*cd fftw-3.1.2* 

./configure

make

make install

### 3. Now install g\_permute using the commands

tar -xvf g\_permute.tar.gz

cd g permute

cd src

More detailed debugging procedure is given in the following file.

/home/hamsa/linux-apps/g\_permute/INSTALL

Edit the MAKE file with the appropriate path for the following

### #Makefile for g\_permute; edit the variables according to your needs

# load the following modules when compiling on owl

#module load shared

#module load binutils/2.25

#module load gcc/6.4.0

SHELL=/bin/sh

# set LD\_LIBRARY\_PATH

#### #export LD\_LIBRARY\_PATH=\$LD\_LIBRARY\_PATH:

# this is where executable and libraries will go - we recommend to # leave PREFIX unchanged PREFIX = ../../g\_permute-1.1 EXEC\_PREFIX = \$(PREFIX) BINDIR = \$(EXEC\_PREFIX)/bin

# pointer to your Gromacs installation

GMXDIR = /home/hamsa/linux-apps/2018.8

GMXLIB = \$(GMXDIR)/lib

GMXINC = \$(GMXDIR)/include

# we have to link fftw, even if we don't use it FFTWLIB = /home/hamsa/linux-apps/fftw/lib

Now give the commands make make install

\*\*\*\*\*\*\*\*g\_permute is installed now\*\*\*\*\*\*\*\*\*\*

4. Copy the gmx executable to /usr/local/bin using the command cp gmx/usr/local/bin

### Points to remember during installation – Troubleshooting procedures:

- 1. *g\_permute* was obtained from the GITHUB link <a href="https://gitlab.gwdg.de/lheinz/g">https://gitlab.gwdg.de/lheinz/g</a> permute
- 2. This version is compatible only with *gmx 2018.8* and no other source files for g\_permute is available currently. Hence g\_permute will not work in lower version of GROMACS.
- 3. Higher version of GROMACS (beyond 2020) has compatibility issues with the ubuntu OS and may not work efficiently, hence GROMACS 2018 is recommended for g\_permute usage.
- 4. Even if GROMACS2018 is installed in your system, make sure you re-install it properly using the above given commands.
- 5. Also, make sure the shared libraries are enabled while installation of GROMACS, else g\_permute could not be properly installed.
- 6. The path to GMX libraries should be properly sourced.
- 7. The procedure is given in the link <a href="https://gitlab.gwdg.de/lheinz/g">https://gitlab.gwdg.de/lheinz/g</a> permute/-/blob/master/INSTALL

# g\_permute usage

Before referring the subsequent slides, please take a look at the README document.



# g\_permute usage

Once g\_permute is installed, perform the following steps to permute the trajectory.

Step1: Remove the PBC of the raw trajectory

gmx trjconv –f md.xtc –s md.tpr –o test\_input.xtc –pbc mol –ur compact

Step2: Create index file with two groups: water oxygen and all water molecules

gmx make\_ndx -f tip3\_water.gro -o index.ndx

```
Command line:
  gmx make ndx -f tip3 water.gro
Reading structure file
Going to read 0 old index file(s)
Analysing residue names:
There are:
             512
                      Water residues
 0 System
                           1536 atoms
  1 Water
                           1536 atoms
 2 SOL
                         : 1536 atoms
                       'name' nr name
                                         'splitch' nr
                                                         Enter: list groups
 nr : group
 'a': atom
                       'del' nr
                                         'splitres' nr
                                                         'l': list residues
 't': atom type
                       'keep' nr
                                         'splitat' nr
                                                         'h': help
 'r': residue
                       'res' nr
                                         'chain' char
 "name": group
                       'case': case sensitive
                                                         'q': save and quit
 'ri': residue index
 a OW
Found 512 atoms with name OW
  3 OW
                             512 atoms
 2
Copied index group 2 'SOL'
  4 SOL
                         : 1536 atoms
```

# g\_permute usage

Step3: Use g\_permute to permute the trajectory

./g\_permute -m 3 -f test\_input.xtc -s tip3\_water.gro -o permute\_output.xtc -n index.ndx

```
Choose a group for the distance calculation:

Group 0 ( Water) has 1536 elements

Group 1 ( OW) has 512 elements

Select a group: 1

Selected 1: 'OW'

Choose the solvent group:

Group 0 ( Water) has 1536 elements

Group 1 ( OW) has 512 elements

Select a group: 0
```

- This step will take from 5 20 minutes depending on the size of your trajectory and the number of atoms in your system.
- Once the step is complete, the output permute\_output.xtc is generated.
- In order to check if your trajectory is permuted, use VMD to visualize the permuted trajectory.
- The procedure is given in the subsequent slides.

# Visualization of unpermuted trajectory

- Load the raw unpermuted trajectory in VMD
- Represent the molecules as follows:
   Drawing Method -> Points
   Coloring method -> ResID

(For demo purpose, the points are displayed using size 6)





Now go to Trajectory tab in the Graphical Representations Window

 Change the value in the 'Draw Multiple Frames tab' \ 1:1000 or 1:10000

 This value will plot the points from 1 to 1000 frames altogether in single window as shown in the figure.



VMD Main

Visualization of permuted trajectory

- Load the permuted trajectory and represent the water molecules in Points and drawing method as 'ResID'.
- Now go to Trajectory tab in the Graphical Representations Window
- Change the value in the

   'Draw Multiple Frames tab'
   1:1000 or 1:10000
- This value will plot the points from 1 to 1000 frames altogether in single window as shown in the figure.
- Now each water molecule with a specific resID occupies specific volume instead of being dispersed all over the cuboid box.



