Topic 5E. Molality

- For a solute J, types of concentrations are
 - Molarity or molar concentration, c_1 or [J], in mol per L (solution)
 - Mole fraction, x_1
 - Molality, b_1 or m, in mol per kg (solvent)
 - ppm, ppmv (or ppm (v/v)), ppm (m/m)

Topic 5E. Molality

TABLE 5E.1 Relations Between Mole Fraction, Molarity, and Molality*

Conversion Expression

amount of solute present from molality

mass of solute present from molality

molality from mole fraction

mole fraction from molality

molality from molarity

molarity from molality

$$n_{
m solute} = bm_{
m solvent}$$
 $m_{
m solute} = bm_{
m solvent} M_{
m solute}$
 $b = rac{x_{
m solute}}{(1 - x_{
m solute}) M_{
m solvent}}$
 $x_{
m solute} = rac{bM_{
m solvent}}{1 + bM_{
m solvent}}$
 $b = rac{c}{d - cM_{
m solute}}$

*Symbols and units:

n: amount (mol); m: mass (kg).

b: molality (mol·kg $^{-1}$); *c*: molarity (molar concentration, mol·L $^{-1}$); *x*: mole fraction (unitless).

d: mass density of solution $(g \cdot mL^{-1} = g \cdot cm^{-3} = kg \cdot L^{-1})$; *M*: molar mass $(kg \cdot mol^{-1})$.

Topic 5F. Colligative Properties

- 5F.I Boiling Point Elevation and Freeze-Point Depression
- 5F.2 Osmosis

Colligative Properties

Colligative properties

The properties depend on the relative amounts of solute and solvent, but not on the chemical identity of the solute.

- Examples
 - I. Boiling point (T_b) elevation
 - 2. Freezing point (T_f) depression
 - 3. Osmosis

Boiling-Point Elevation

Boiling-point elevation

$$\Delta T_b = k_b \cdot b_{\text{solute}}$$

 k_b : boiling-point constant
 b_{solute} : molality of solute

- Can be explained by
 - Entropy increase $(G_m = H_m TS_m)$
 - Vapor pressure decrease

Freezing-Point Depression

Freezing-point depression

$$\Delta T_f = k_f \cdot b_{\text{solute}}$$

 k_f : freezing-point constant
 b_{solute} : molality of solute

Cryoscopy

Boiling-Point and Freezing-Point Constants

Solvent	Freezing point/°C	$k_{ m f}/ \ (ext{K} \cdot ext{kg} \cdot ext{mol}^{-1})$	Boiling point/°C	$k_{\rm b}$ / (K·kg·mol ⁻¹)
acetone	-95.35	2.40	56.2	1.71
benzene	5.5	5.12	80.1	2.53
camphor	179.8	39.7	204	5.61
carbon tetrachloride	-23	29.8	76.5	4.95
cyclohexane	6.5	20.1	80.7	2.79
naphthalene	80.5	6.94	217.7	5.80
phenol	43	7.27	182	3.04
water	0	1.86	100.0	0.51

van't Hoff Factor

- In electrolytes, $\Delta T_b = i k_b \cdot b_{\text{solute}}$; $\Delta T_f = i k_f \cdot b_{\text{solute}}$
- i: van't Hoff i factor, number of dissolved species
- Examples of i
 - For a dilute solution (< 10^{-3} M), NaCl: i = 2 (Na⁺, Cl⁻); CaCl₂: i = 2 (Ca²⁺, 2Cl⁻)
 - HCl in toluene: i = 1; HCl in water: i = 2
 - Weak acid HA dissociating 5%, $i = 0.95 + (0.05 \cdot 2) = 1.05$

Osmosis

- Osmosis: the flow of solvent through a membrane into a more concentrated solution (spontaneous process)
- Osmotic pressure: the pressure needed to stop the flow of solvent; isotonic

Osmosis

Example of red blood cell

Osmosis

- van't Hoff Equation $\Pi = iRT \cdot c_{\text{solute}}$ $\Pi: \text{ osmotic pressure}$ $c_{\text{solute}}: \text{ molarity of solute}$
- Osmometry
- Reverse osmosis

