IIC2233

fblazco

August 14, 2024

1 Clase 1

1. Fecha Evaluaciones

2 Clase 3

2.1 Induccion Estructural

Clase anterior: Teorema

- 1. Principio del buen orden
- 2. Principio de induccion simple
- 3. Principio de induccion fuerte

Definiciones Inductivas: Para definir inductivamente un conjunto necesitamos

- 1. Un conjunto de elementos base no necesariamente finito
- 2. Un conjunto finito de reglas de construccion de nuevos elementos del conjunto a partir de elementos que ya estan en elementos
- 3. Establecer que el conjunto es el menor que cumple las reglas

Ejemplo: El conjunto de numeros pares es el menor conjunto tq

- 1. El 0 siempre es pares
- 2. Si n es un numero par, n+2 es numero par

Definicion (listas enlazadas) $\mathcal{L}n$: El conjunto $\mathcal{L}n$ es el menor conjunto que cumple con las sgts. reglas

- 1. $\phi \in \mathcal{L}n$
- 2. Si L ϵ $\mathcal{L} n$ y k ε N, entonces L \rightarrow k ϵ Ln

Cuando dos listas enlazadas son iguales?

- 1. Si alguna es ϕ , son iguales ssi la otra tmb es vacia
- 2. Si ninguna es vacia entonces estamos en un escenario

$$L_1 \rightarrow k_1 \text{ vs } L_2 \rightarrow k_2$$

en este caso, resulta natural considerar

$$L_1 \rightarrow k_1 = L_2 \rightarrow k_2$$
 si solo si $L_1 = L_2$ y $k_1 = k_2$

2.2 Principio de Induccion Estructural

Sea A un conjunto definido inductivamente y P una propiedad sobre los elementos de A. Si se cumple que:

- 1. Todos los elementos base de A cumplen la propiedad P
- 2. Para cada regla de construccion, si la regla se aplica sobre elementos en A que cumplen la propiedad ${\bf P}$

Ejemplo P(L): L tiene el mismo numero de flechas que de elementos

BI: El unico caso base de es la lista vacia

HI:

(terminar demostracion)

Para demostrar propiedades en Ln definiremos mas operadores (agregar operadores)

- 1. Largo, recibe lista y enetrega numero de elementos
- 2. Suma, recibe lista y entrega la suma de sus elementos
- 3. Maximo, recibe lista y entrega el maximo, o -1 si es vacia

max:
$$L_n \to \mathbb{N} \vee \{-1\}$$

4. Cabeza, recibe una lista no vacia y entrega su primer elemento

head:
$$L_n / \{\phi\} \to L_n$$

Si k ϵ N, entonces suf(\rightarrow k) = ϕ

Teorema (props, listas): Si L, L_1 , L_2 ϵ L_n , entonces:

- 1. sum(L) >= 0
- $2. \max(L) \le \sup(L)$

Teorema (prop. 4 de listas) Sean, $L_1, L_2 \in L_n$. Si $L_1, L_2 \neq \phi$ (terminar) Demostracion: Sea

$$L_1 = \to K_1$$

$$L_2 = \to K_2$$
tq: $\operatorname{suf}(L_1) = \operatorname{suf}(L_2)$

$$\operatorname{sum}(L_1) = \operatorname{sum}(L_2)$$

Por definicion de igualdad de listas

$$\begin{array}{c}
L_1 = L_2 \\
\phi \to \mathbf{k} = \phi \to \mathbf{y} \\
\phi = \phi \\
\mathbf{y} \mathbf{k} = \mathbf{j}
\end{array}$$

3 Clase 4

Cambios Evaluaciones:

T1: 02 de Septiembre 17:30 T2: Entrega 04 de Septiembre

3.1 Logica Proposicional

Sintaxis: Sea P un conjunto de variables Proposicionales

- 1. Si p ϵ P, entonces p ϵ $\mathcal{L}(P)$
- 2. Si $\phi \in \mathcal{L}(P)$, entonces $\neg \phi \in \mathcal{L}(P)$
- 3. Si $\phi, \psi \in \mathcal{L}(P)$ y $\epsilon (\land, \lor, \rightarrow, \leftrightarrow)$, entonces $(\psi x \phi) \in \mathcal{L}(P)$