Problem

In any $\triangle ABC, D, E$, and F are midpoints of the sides AC, AB, and BC, respectively. BG is an altitude of $\triangle ABC$. Prove that $\angle EGF = \angle EDF$.

Solution

Connect EF. Since both E and F are midpoints of the sides AB and BC, respectively, EF//AC//DG. Since D and E are midpoints of the sides AC and AB, DE is the midline of $\triangle ABC$. Thus DE=CF. Since FG is the median of right $\triangle BGC$, GF=CF. So DE=GF.

Quadrilateral DGFE is an isosceles trapezoid. Then $\angle DEF = \angle DFE$. Thus $\triangle GFE \cong \triangle DEF(SAS)$, and $\angle EGF = \angle EDF$.