

Federal Aviation

Offici Of En ironment And Energy Washington D.C. 20591

Helicopter Noise Exposure Level Data:

Yariations With Test Target

- Indicated Airspeed
- Distance
- Main Rotor RPM And
- Takeoff Power,

1

FAA-AEE-80-34

JULY 10, 1980 10 J. Steven Newman

411957

document has been appreced for public release and sale; its distribution is unlimited.

816 25 008

Technical Report Documentation Pag

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog No.
FAA-AEE-80-34	AD-A1	00 691	1
4. Title and Subtitie	vol Data:		5. Report Date July 1980
Variations with Test Target Distance - Main Rotor RPM an	_ Indicated Aid = Takeoff Po	rspeed - wer	6. Performing Organization Code
7. Author's)			8. Performing Organization Report No
J. Steven Newman			}
9. Performing Organization Name and Address U.S. Department of Transport	ation	. _ ,	10. Wark Unit No. (TRAIS)
Federal Aviation Administrat Office of Environment and En			11. Contract or Grant No.
Washington, D.C. 20591	Ħ		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Department of Transportation			
Federal Aviation Administrat 800 Independence Avenue, S.W			14. Sponspring Agency Code
Washington , D.C. 20591	•		AEM-120
15 Supplementary Notes			
17. Key Hords		18. Distribution State	
		through the	available to the public National Technical Service, Springfield . VA.
19 Security Classification in scenario	M. Security Case	t Citrisiane	11 September 12 State
Unclassified	Unclassi	fied	36 n.

Form DOT F 1700.7 (8-72)

Reproduction of completed The authorized

FOREWORD AND ACKNOWLEDGMENT

This report provides uncorrected noise exposure level data measured using an integrating sound level meter at a single measurement location during the recently completed, week long, FAA helicopter noise test.

These data have been acquired as a result of the combined efforts of many individuals, including the following persons who played key roles in conducting the program.

Larry Bedore - NEL measurements

Dave Ford - Cockpit coordination

Ed Sellman - Range control coordination

Dave Smith - Tower coordination

In addition to the measurements herein reported, primary acoustical measurements have been conducted by the Transportation Systems Center Noise Measurement and Assessment Laboratory under the direction of E. J. Rickley. This acoustical data (acquired for nine microphones) will be combined with flight path track data processed at the FAA, Dulles Noise Laboratory by D. W. Ford. Meteorological data acquired from surface readings and radiosondes will be processed by U.S. Weather Service personnel.

The coalation and reporting of these data will require a considerable period of time. Thus, this report has been prepared to provide limited but nevertheless useful information to interested parties.

TABLE OF CONTENTS

																											Page
	1	LIST (OF	FIG	URE	S		•	•						•					•					•		i
	1	LIST (0F	TAB	LES										•						•	•					ii
	ı	LIST (OF	SYM	BOL	.S	AND	Al	BBF	RE	/IA	ΙT	ON	IS	•	•	•	•	•	•	•	•	•	•	•	•	iii
1.0		INTRO	DUC	TIO	N			•				•			•	•		•		•	•			•	•	•	1
		1.1 1.2 1.3.0 1.3.1 1.3.2 1.4 1.5 1.6	A F T A S D N C	ois -We ligh ake pprotat ata EL omp	igh ht off oac ist Pl ari	Pa h ic ot B(d S ths Prof al s A)	out ile fi Ana Dat	nd Sp le le la ly ta Ave	Le per ys:	eve eds :	e1 ; -	Da M	ta lai	in •	Ro	to ·		RP	M			• • • • • • • • • • • • • • • • • • •	• • • • • • •	•	•	1 1 3 3 3 3 4 4
		1.8	Α	Le nal	vel ysi	F S	lyo Ben	ver ef	r [it)at	tā •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
2.0	UH-60/	A: DE	ESC	RIP	TIO	N		•	•					•	•					•	•	•	•	•		•	6
	Noise and	Expos Appro			eve •		for	Ta	ake •	eo1 •	ff •		•	•	•			Ta	ь 1	e	2.	1	•	•	•		7
	Noise Air	Expos speed	sur fo	e Le r 50	eve 00'	l L	Ver eve	sus 1 F	s 1 =13	(no /0\	dic ver	at	ed •	•	•	•	•	Ta	ь1	e	2.	2	•	•	•	•	8
	Noise Ind	Expos icated											•					Fi	gu	re	2	.2					9
	Noise	Expos	sur	e Le	eve	1	Ver	sus	s C)is	sta	nc	е			•		Ta	ь1	e	2.	3	•				10
	Noise	Expos	sur	e Le	eve	1	Ver	sus	s C)is	ta	nc	е			•	•	Fi	gu	re	2	.3		•			11
	Noise Spe	Expos ed Var	sur ia	e Le tion	eve 1	1	Ver	sus •	•	•	•		•	•	•	•	•	Ta	ь1	e	2.	4	•	•	•	•	12
	Noise	Expos						sus	5									T a	ЬÌ	^	2	5					12

																				<u>Page</u>
3.0	S-76:	DESC	CRIPTI	ON .			•	•		•	•	•	 		•		•	•	•	14
	NEL f Usi	or Tal ng 107	keoffs 7% Mai	and n Rot	Appi or F	roaci RPM	nes •	•	•	•	•			Tab 1e	3.	1.1	•	•	•	15
	NEL F Usi	or Tal ng 10(ceoffs 0% Mai	and n Rot	Appr or F	roaci RPM	ies •	•	•	•	•	•	 . 7	Table	3.	1.2	•	•	•	16
	NEL V for	ersus 107%	Indic Main	ated Rotor	Airs RPN	speed	i •				•		 . 7	Table	3.	2.1			•	17
			Indic Main 1					•			•	•	 ٦	[ab]e	3.	2.2			•	18
			Indic + 100					М	•	•	•	•	 F	Figur	e 3	.2	•		•	19
			Dista or RPM							•	•		 7	ſable	3.	3.1	•			20
			Dista or RPM				•	•	•	•	•		 1	[able	3.	3.2	•			21
			Dista or RPM								•	•	 F	igur	e 3	.3	•	•	•	22
4.0	A109:	DESC	RIPTIO	ON.					•	•	• (•			23
	NEL F	or Tak	eoffs	and	Appr	oach	ies			•	•	•	 7	[able	4.	1.			•	24
	NEL V	ersus	Dista	nce									 ٦	[ab]e	4.	2.				25
	NEL V	ersus	Distar	nce					•	•		•	 F	igur	e 4	.2			•	25
			Indica AGL Le						•	•	• •	•	 7	「able	4.	3.			•	27
			Indica AGL Le					•	•	•		•	 F	igur	e 4	.3	•	•		28
5.0	BELL 2	206-L:	DESC	CRIPT	ION		•					, ,								29
			Distar										 7	able	5.	1.				30
	NEL Ve													iaur					_	31

LIST OF FIGURES

Figure :	1.1	NEL Measure	ement Station Location
Figure 2	2.2	NEL Versus	Indicated Airspeed Graph
Figure 2	2.3	NEL Versus	Distance Graph
Figure 3	3.2		Indicated Airspeed + 107% Main Rotor RPM
Figure 3	3.3		Distance for 07% Main Rotor RPM
Figure 4	4.2	NEL Versus	Distance Graph
Figure 4	4.3	NEL Versus for 500'	Indicated Airspeed Flyover
Figure S	5.1	NEL Versus	Distance Graph

LIST OF TABLES

Table 1.7	Comparison of Takeoff Approach and Level Flyover
Table 2.1	NEL for Takeoff and Approach
Table 2.2	NEL for Indicated Airspeed for 500' Level Flyover
Table 2.3	NEL Versus Distance
Table 2.4	NEL Versus Speed Variation
Table 2.5	NEL Versus Power Variation
Table 3.1	NEL for Takeoffs and Approaches Using 107% Main Rotor RPM
Table 3.1.2	NEL for Takeoffs and Approaches Using 100% Main Rotor RPM
Table 3.2.1	NEL Versus Indicated Airspeed for 107% Main Rotor RPM
Table 3.2.2	NEL Versus Indicated Airspeed for 100% Main Rotor RPM
Table 3.3.1	NEL Versus Distance for 107% Main Rotor RPM
Table 3.3.2	NEL Versus Distance for 100% Main Rotor RPM
Table 4.1	NEL for Takeoffs and Approaches
Table 4.2	NEL Versus Distance
Table 4.3	NEL Versus Indicated Airspeed for 500' AGL Level Flyovers
Table 5.1	NEL Versus Distance

ADET OF SYMBOLS AND ABBREVIATIONS

Avg. = Arithmetro Average of Sample Values

B & K = Bruel and Klaes (2218) Precision Sound Level Meter

dB(A) = Maximum. Slow Response A-Weighted Sound Level Expressed

in Deribels

GR = General Adulo (1880) Precision Sound Level Meter

H = Hover Power

NEL = Noise Exposure Lensi

RPM = Revolution Per Minute

Std.Dev. = Standard Deviation

VH = Maximum Speed to Level Tright with Maximum Continuous

Power (unous

VNE = Nevar Carsen Speed (Knobs)

Vy +10 = Best Fire or dismo Speed dies 10 Knots

V_V ~10 = 3est Rais w file by lead Manus 10 Knots

V_V = Bost Rate of Climb Space

Kt. = Knots

AGL = Above Ground 1 % el

Note: It she challest of this report the Sound Exposure Level (St.) is considered synonomous with NEL.

1.0 INTRODUCTION

This report has been prepared in a short time frame in order to provide a "first look" at data acquired in the FAA helicopter noise measurement program conducted at the FAA Technical Center during the week of June 21, 1980. Subsequent reports will provide extensive meteorological data, tracking data, normalized acoustical data, and analysis.

1.1 Noise Exposure Level Data

The Noise Exposure Level (NEL) data reported in this document were measured primarily with the GenRad 1988 precision integrating sound level meter. The Bruel and Kjaer 2218 was used for the 206-L measurements.

NEL readings were measured over approximately the 20 dB down, time history for each event. Readings were measured 4 feet above ground level at a distance of approximately 100 feet to the side of the centerline - center microphone location (see Figure 1.1).

1.2 A-Weighted Sound Level Data

The maximum, slow response A-weighted sound level is presented along with the NEL for each event.

The state of the s

'4

200 FT. DIAMETER "MOWED DISC"

1.3.0 Flight Paths - Speeds - Main Rotor RPM

The NEL data have been presented for <u>TARGET</u> testing parameters. The tracking data, meteorological data, and cockpit photographs have not yet been reduced. However, examination of the NEL data variability within any given test series does provide an ideal of how consistent conditions were.

1.3.1 Takeoff Profile

The takeoff rotation point for the UH-60A on 6-22 was 1,632 feet from the centerline-center microphone location (takeoffs east to west). During the remainder of the test, the takeoff rotation point was 1,561 feet from the centerline-center microphone location (takeoffs west to east).

1.3.2 Approach Profile

Approaches were conducted along a 6 degree glide slope, intercepting the ground surface 3,750 feet to the west of the centerline-center microphone location.

1.4 Statistical Analysis

The irithmetic average and the standard deviation have been provided for each data sample. Subsequent analysis will include consideration of small sample statistics.

1.5 Data Plots

The speed versus noise and distance versus noise plots provided in this report include trend lines which are eye-ball/French curve approximations of the ordinate-abscissa relationship. After subsequent data correction and analysis, a thorough correlation and regression analysis will be conducted.

1.6 NEL-dB(A) Data

The difference between the average NEL and average maximum dB(A) has been provided for each data set. The use of this data in assessing the duration correction relationship is not recommended until data corrections are applied.

1.7 Comparison of Average Takeoff, Approach, and Level Flyover Data

Table 1.7 provides a comparison of noise exposure levels for the various test helicopters in a variety of operational modes.

1.8 Analysis Benefit

The absolute values of uncorrected measured data may be different from rigorously normalized data, however, the <u>trends</u>, <u>slopes and mathematical functions</u> relating NEL with speed, distance and other parameters should be similar to those derived from corrected data.

TABLE 1.7

AVERAGE NOISE EXPOSURE LEVEL (dB):

COMPARISON OF TAKEOFF APPROACH

AND LEVEL FLYOVER DATA

Helicopter	Takeoff	Approach	Level Flyover	Test <u>Weight</u>
S-76 (100%)	85.6	93.3	86.3	10,000 lbs
S-76 (107%)	87.5	95.5	88.5	10,000 lbs
A109	91.6	98.2	89.8	5,730 lbs
UH-60A (V _y +10)	-	94.0	-	20,250 lbs
UH-60A (7y -10)	-	93.4	-	20,250 lbs
UH-60A (V _{y)}	-	93.1	-	20,250 lbs
UH-60A (6-22) (Max. Pwr.) (V _y)	84.6	94.1	93.5	20,250 lbs
UH-60A (6-26) (H + 10%)	87.0	-	-	20,250 lbs
UH-60A (6-26) (Max. Pwr.)	86.6	-	-	20,250 lbs

2.0 SIKORSKY UH-60A "BLACKHAWK"

The UH-60A was provided through the courtesy of the U.S. Army Transportation School located at Ft. Eustis, Virginia.

The UH-60A was utilized to investigate the following influences on noise levels:

- Distance (level flyovers)
- 2) Speed (level flyovers and approach)
- 3) Engine power (takeoff)

NEL and maximum dB(A) data are also provided for takeoffs, approaches and level flyovers utilizing proposed helicopter noise certification procedures.

TABLE 2.1

UH-60A: TEST DATE 6/22/80 (SUNDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL FOR TAKEOFF

AND APPROACH

	Takeoff	May		Approach	Max.
Run No.	NEL	Max. <u>dB(A</u>)	Run No.	NEL	dB(A)
7	85.1	74.4	16	93.8	85.9
8	85.4	76.3	17	94.6	86.8
9	85.1	75.0	18	94.0	85.8
10	84.4	74.3	19	93.6	85.1
11	84.2	73.2	20	94.3	86.4
12	84.5	74.4	21	94.2	85.8
13	84.7	74.5	22	94.3	86.3
14	84.1	73.5	23	94.2	86.4
15	84.1	74.3	24	94.3	86.7
Avg. Std. Dev.	84.6 0.48	74.4 0.88	Avg. Std. Dev.	94.1 0.30	86.1 0.53
NEL - dB(A)	= 10.2		NEC - dB(A) = 8.0	

TABLE 2.2

UH60A: TEST DATE 6/22/80 (SUNDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL VERSUS INDICATED AIRSPEED FOR 500' LEVEL FLYOVERS

<u>165 Kts</u>		May	-	152 Kts	Max.	-	Max.	
Run No	. NEL	$\frac{\text{Max.}}{\text{dB}(A)}$	Run No.	NEL	dB(A)	Run No	NEL	dB(A)
49 50 51	93.6 94.7 92.7	78.5 78.2 76.5	25 28 31 34	92.4 92.6 93.5 95.6	84.4 84.4 85.8 87.9	26 29 32 35	91.1 92.0 91.5 91.4	84.0 84.3 87.9
S. Dev.	93.6	77.7 1.07	S.Dev.		85.6 1.65	S.Dev.		85.4 2.17
NE	$L - \overline{dB}(A)$	= 15.9	NEL -	$-\overline{dBA} = 7$.9	NET .	$- \overline{dBA} = 6.$	1

	115 Kts			100 Kts	<u> </u>
Run No.	NEL	Max. dB(A)	Run No.	NEL	$\frac{\text{Max.}}{\text{dB}(A)}$
27 30 33 36	90.2 89.2 91.4 90.2	81.7 80.7 82.6 83.2	52	88.0	71.6
Avg. S.Dev.	90.2	82.0 1.09			
NEL -	dB(A) = 8	.2	NEL	- dB(A)	= 16.4

TABLE 2.3

UH-60A: TEST DATE 6/25/80 (WEDNESDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL VERSUS DISTANCE FOR 152 KNOT LEVEL FLYOVERS

			2001 10 1		700	••
300	<u>' AGL</u> Max	_	500' AGL	Max.	7001	AGL Max.
Run No. N			NEL		un No. NEL	
56 95.	6 90.	3 25	92.4	84.4	60 -	_
57 97.	6 91.	7 28	92.6	84 4	61 93.5	
58 96.			93.5	85.8	62 91.3	
59 99.	6 93.	1 34	95.6	87.9	63 93.6	84.9
Avg. 97.		4 Avg.		85.6	,	
Std.Dev.	1.2	4 Std.Dev.	1.46	1.43 Std	.Dev. 1.1	1.1
NEL - dBA	= 5.7	NEL	$- \overline{dBA} = 7.$	9	NEL - dBA	= 9.0
	1000' A	GL			1500' AG	L
		Max.				Max.
Run No	<u>o.</u> <u>NE</u>	dB(A)	<u>.) Ri</u>	un No.	NEL	dB(A)
64	90.	2 81.5		68	86.2	75.4
65	90.			69	88.5	77.6
66 67	89.			70 71	86.4	75.7
67	90.	3 81.0		/ 1	88.5	77.7
Avg				Avg.	87.4	76.6
Std.	Dev02	9 .777	St	td. Dev.	1.27	1.2
Ñ	EL - dBA =	9.1		NEL - di	$\overline{A} = 10.8$	
	2000'	4GL		250	OO' AGL	
_		Max.				Max.
Run No	o. <u>NE</u>	dB(A	<u>)</u> <u>R</u> (un No.	NEL	dB(A)
72	84.	7 74.5		76	-	-
73	85.			77	84.7	72.1
74 75	84.1 86.1					
, 3						
Avg				Avg.	84.7	
Std. (Dev75	2 0.82	51	td. Dev.		
NE	EC - dBA =	11.7		NET	- dBA =	12.6

TABLE 2.4

UH-60A: TEST DATE 6/26/80 (THURSDAY) CENTERLINE CENTER LOCATION (GR)

	Approach at Vy + 10 Kt.				ach at 10 Kt.	Approach at Vy			
Run	No. NEL	Max. dB(A)	Run No	. NEL	Max. dB(A)	Run No	. NEL	Max. dB(A)	
22	94.1	86.6	30	94.3	86.6	40	93.1	85.4	
24	94. 0	87.0	32	93.8	85.2	42	93.2	85.0	
26	94.5	86.7	34	92.8	85.2				
28	93.6	86.4	36 38	93.0 93.4	84.9 84.6				
	94.0 736	86.6 0.25	Avg. Std.Dev.		85.3 0.76	Avg. Std.Dev.		85.2 0.28	
NEL	$-\overline{dB(A)} =$	7.4	NE	_ <u>dB</u>	$\overline{(A)} = 8.1$	NE	- dB(A) =	7.9	

....

UH-60A: TEST DATE 6/26/80 (THURSDAY)

CENTERLINE CENTER LOCATION

	akeoff at Power + 10	%	Takeoff at Max. Takeoff Power							
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)					
21	-		33	86.8	77.8					
23	86.9	77.9	35	86.6	77.3					
25	87.0	78.2	37	87.1	78.2					
27	87.4	78.5	39	86.4	76.5					
29	86.6	77.8	41	86.2	76.1					
31	87.1	77.9								
Avg. Std. Dev.	87.0 .29	78.0 0.28	Avg. Std. Dev.	86.6 0.34	77.1 0.87					
NEL - dB(A) = 9.0		NEL - dB($\overline{A}) = 9.5$						

TABLE 2.5

3.0 SIKORSKY S-76 "SPIRIT"

The S-76 was provided through the courtesy of the Sikorsky Helicopter Division of United Technologies.

The S-76 was utilized to investigate the following influences on noise levels:

- Distance (level flyovers)
- 2) Speed (level flyovers)
- 3) Main rotor RPM (all flight modes)

NEL and maximum dB(A) data are also provided for takeoffs, approaches and level flyovers utilizing proposed helicopter noise certification procedures.

TABLE 3.1.1

S-76: TEST DATE 6/25/80 (WEDNESDAY)

CENTERLINE CENTER LOCATION

NOISE EXPOSURE LEVEL FOR TAKEOFFS AND APPROACHES USING 107% MAIN ROTOR RPM

<u>Take</u>	<u>off</u>	Mari		<u>Approach</u>			
Run No.	NEL	$\frac{Max}{dB(A)}$	Run No	NEL	Max. dB(A)		
41	88.3	80.4	40	-	-		
43	87.5	80.1	42	96.3	88.1		
45	87.1	79.8	44	95.1	85.1		
47	87.0	79.6	46	95.2	85.6		
49	87.4	79.5	48	95.0	85.6		
51	-		50	96.0	87.9		
Avg. Std. Dev.	87.5 .46	79.8 0.3	Avg. Std. Dev.	95.5 .53	86.5 1.2		
NEC - dB	$\overline{(A)} = 7.7$		NEC - dB	$\overline{A}) = 9.0$			

TABLE 3.1.2

S-76: TEST DATE 6/23/80 (MONDAY CENTERLINE CENTER LOCATION

NOISE EXPOSURE LEVEL FOR TAKEOFFS AND APPROACHES USING 100% MAIN ROTOR RPM

	Takeoffs		<u>A</u>	pproaches	
Run No.	<u>NEL</u>	Max. dB(A)	Run No.	NEL	Max. dB(A)
33	86.0	76.8	34	91.5	81.8
35	86.5	78.1	36	93.5	86.3
37	86.2	77.5	38	94.6	87.6
39	85.3	77.5	40	94.2	86.2
41	85.1	77.3	42	94.0	85.6
43	85.4	77.8	44	92.5	83.7
55	84.5	76.3	56	93.1	85.5
Avg. Std. Dev.	85.6 64	77.4 .56	Avg. Std. Dev.	93.3 1.0	85.3 1.7
NEL - d	$\overline{IB(A)} = 8.2$		NEL - dB	(A) = 8.0	

TABLE 3.2.1

S-76: TEST DATES 6/23/80 (MONDAY) AND 6/25/80 (WEDNESDAY)

NOISE EXPOSURE LEVEL VERSUS INDICATED AIRSPEED FOR 107% MAIN ROTOR RPM,

500' AGL LEVEL FLYOVERS

155 Kts (M)			140	140 Kts (M)			124 Kts (W)		
Run No.	NEL	$\frac{\text{Max.}}{\text{dB}(A)}$	Run No.	NEL		Max. dB(A)	Run No.	NEL	Max. dB(A)
65 66 67 68	92.1 95.3 98.0 95.3	85.8 89.0 92.3 89.2	57 58 59 60	87.7 89.7 88.4 88.4		81.8 82.5 81.9 81.0	24 25 26 27 28 29	86.7 89.0 89.0 89.4 86.4	80.5 80.4 80.8 80.0 81.4 79.2
Avg. Std. Dev. NEL - dl		89.1 2.6	Avg. Std. Dev.		6.7	81.8 .53	Avg. Std. Dev		80.3 0.6

<u>1</u>	09 Kts (W)	Mau	<u>9:</u>	93 Kts (M)		
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)	
19 19 20 21 22 23	88.7 86.2 88.9 87.4 89.0 86.1	79.7 78.6 80.0 80.4 80.6 78.4	61 62 63 64	85.6 - 85.1 87.3	76.5 - 75.8 79.0	
A v g. Std. Dev.	87.7 1.34	79.7 .84	Avg. Std. Dev.	86.0 1.15	77.1 1.3	
NEL - di	3(A) = 8.0		NEL - dB	$\overline{(A)} = 8.9$		

TABLE 3.2.2

S-76: TEST DATE 6/23/80 (MONDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL VERSUS INDICATED AIR SPEED FOR 100% MAIN ROTOR RPM,

500' AGL LEVEL FLYOVERS

	155 Kts	Maria	_	140 Kts	Maria		124 Kts	Mari
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)
25	88.6	81.5	17	86.9	78.5	49	84.8	78.0
26	87.9	81.6	18	86.3	80.3	50	86.2	78.2
27	90.0	83.4	19	87.1	79.8	51	83.8	76.2
?8	89.2	83.0	20	85.7	79.9	52	85.0	76.8
Avg.	88.9	82.4		86.3	79.6	Avg.	84.9	77.3
Std. Dev.	.892	.84	Std. Dev.	.632	.67	Std. Dev.	.984	.83
₩1 - 4	$\overline{R(\Delta)} = 6$	5	NET - A	3747 = 6	7	NFI - A	$\overline{R}/\overline{\Delta Y} = 7$	6

	<u>109 Kts</u>	Max.		Max.	
Run No.	NEL	dB(A)	Run No.	NEL	dB(A)
29 30 31 32	83.0 84.8 82.5	75.5 75.9 74.3	21 22 23 24	86.0 88.9 85.9 88.4	75.9 93.2 76.5 81.8
Avg. Std. Dev.	83.4 1.20	75.2 .67	Avg. Std. Dev.	87.3 1.57	79.3 3.6
NEL - de	$\overline{B(A)} = 8.2$		NEL - dB	$\overline{(A)} = 8.0$	

TABLE 3.3.1

S-76: TEST DATE 6/25/80 (WEDNESDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL VERSUS DISTANCE FOR 107% MAIN ROTOR RPM

	300' AGL	Max	<u>5</u> (00' AGL (6/23) Max.		700' AGL	Max.
Run No.	NEL	Max. dB(A)	Run No.	NEL		Run No	NEL	dB(A)
10 11 16 17	90.5 93.1	85.5 85.1 86.5 85.1	57 53 59 60	87.7 89.7 88.4 88.4		8 9 14 15	88.9 86.2 87.7 86.3	80.1 78.9 79.0 79.0
Avg. Std. Dev.	91.4 1.37	85.6 .57	Avg. Std. Dev.	88.5 .834	81.8	Avg. Std. Dev.	87.2 1.28	79.3 .49
NEL - C	$\overline{IB(A)} = 5.$	8	NEL - d	$\overline{B(A)} = 6.$	7	NEL - d	$\overline{B(A)} = 7.$	9
10	000' AGL*	14-	100	00' AGL*	Man	1	500' AGL	May
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)	Run No	NEL	Max. dB(A)
1 2 3 4	82.7 85.6 84.4 85.9	74.0 76.1 76.3 76.6	53 54	85.7 84.5 86.1 85.5	76.3 74.8 77.1 76.7	5 6 7 12 13	80.3 83.1 81.2 83.5 81.1	70.6 72.2 71.7 73.1 71.6
			Avg. Std. Dev.			Avg. Std.Dev.	81.8 1.38	71.9 .81
NEL -	$\overline{dB(A)} = 8$.9	NEL - d	$\overline{B(A)} = 9.$	0	NEL - d	$\overline{B(A)} = 9.$	9
	200	O' AGL	May		2500' <i>F</i>	NGL Max.		
Rur	No.	NEL	Max. dB(A)	Run No.	NEL			
	35 7 36 8	9.4 9.5 9.4	70.8 68.4 68.9 68.7	31 32	78.6 77.6 79.6 77.8	66.3 67.7	,	
	Avg. 8 . Dev. 1	.09	69.2 .94	Avg. Std. Dev.	78.4 .909	66.8 .56		

 $\overline{NEL} - \overline{dB(A)} = 11.0$

 $\overline{NEL} - \overline{dB(A)} = 11.6$

Note: The 1000' AGL level flyovers were conducted at the beginning and the end of the test session to examine changes in propogation path characteristics.

TABLE 3.3.2

S-76: TEST DATE 6/23/80 (MONDAY) CENTERLINE CENTER LOCATION

NOISE EXPOSURE LEVEL VERSUS DISTANCE FOR 100% MAIN ROTOR RPM

	300' AGL		_	500' AGL			700' AGL	-
Run No.	NEL	Max. dB(A)	Run No.	<u>NEL</u>	Max. dB(A)	Run No.	NEL	Max. dB(A)
9	90.7	84.5	17	86.9	78.5	7	85.1	75.5
10	89.1	83.7	18	86.3	80.3	8	84.7	77.2
15	90.0	84.2	19	87.1	79.8	13	85.5	76.5
16	89.3	84.2	20	85.7	79.9	14	85.4	78.2
Avg.	89.7	84.2	Avg.	86.3	79.4 .69	Avg. Std.Dev.	85.1 .359	76.9 .98
Std. Dev.	./2/	.33	Std.Dev.	.032	•09	stu.bev.	• 333	. 90
NEL - d	$\overline{B(A)} = 5.$	5	NEL -	$\overline{dB(A)} = 6$.9	NEL - d	$\overline{IB(A)} = 8$	3.2

<u>1</u> 6	000' AGL		-	1500' AGL	Max.
Run No.	NEL	Max. dB(A)	Run No.	NEL	dB(A)
45 46 47 48	82.3 82.6 82.4 83.4	74.0 72.6 74.3 74.2	5 6 11 12	80.9 79.9 80.8 80.2	69.9 69.4 70.3 70.6
Avg. Std.Dev.	82.6 .43	73.8 .69	Avg. Std.Dev.	80.4 .479	69.9 .36
NEL - d	$\overline{B(A)} = 8.8$		NEL - di	$\overline{B(A)} = 10.$	5

4.0 AGUSTA A-109

The A-109 was provided through the courtesy of Costruzioni Aeronautiche, Giovanni Agusta.

The A-109 was utilized to investigate the following influences on noise levels:

- Distance (level flyovers)
- 2) Speed (level flyovers)

NEL and maximum dB(A) data are also provided for takeoffs, approaches and level flyovers utilizing proposed helicopter noise certification procedures.

TABLE 4.1

A109: TEST DATE 6/24/80 (TUESDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL FOR TAKEOFFS AND APPROACHES

	Takeoffs	Man		Approaches	M a
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)
23	91.2	83.7	24	98.3	90.1
25	92.3	88.1	26	97.6	88.1
27	92.3	85.1	28	99.3	91.0
29	91.2	84.2	30	98.6	89.7
31	91.3	84.2	32	98.7	90.5
33	91.1	83.8	34	98.9	89.9
35	91.7	85.1	36	96.2	87.6
37	91.4	84.1	38	97.8	89.7
39	91.5	84.2	40 `	97.6	89.1
41	91.1	83.6			
Avg. Std. Dev	91.5 45	84.7 1.3	Avg. Std. Dev.	98.1 .93	89.5 1.09

TABLE 4.2

A109: TEST DATE 6/24/80 (TUESDAY)

CENTERLINE CENTER LOCATION (GR)

NOISE EXPOSURE LEVEL

VERSUS DISTANCE

Max.					00' AGL	**
dB(A)	Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. <u>dB(A)</u>
84.0 85.0 84.7 85.5	17 18 19 20 62 63	88.5 90.7 89.4 90.9 90.8 88.8	80.1 80.9 81.3 82.0 87.7 80.5	7 8 13 14	87.2 88.6 87.6 88.4	78.0 78.7 78.3 78.1
84.8	Avg. Std.Dev.	89.8 1.08	82.1 2.6	Avg. Std.Dev.	87.9 .66	78.3 .27
	85.0 84.7 85.5	84.0 17 85.0 18 84.7 19 85.5 20 62 63 84.8 Avg. .54 Std.Dev.	84.0 17 88.5 85.0 18 90.7 84.7 19 89.4 85.5 20 90.9 62 90.8 63 88.8 84.8 Avg. 89.8 .54 Std.Dev. 1.08	84.0 17 88.5 80.1 85.0 18 90.7 80.9 84.7 19 89.4 81.3 85.5 20 90.9 82.0 62 90.8 87.7 63 88.8 80.5 84.8 Avg. 89.8 82.1 .54 Std.Dev. 1.08 2.6	84.0 17 88.5 80.1 7 85.0 18 90.7 80.9 8 84.7 19 89.4 81.3 13 85.5 20 90.9 82.0 14 62 90.8 87.7 63 88.8 80.5 84.8 Avg. 89.8 82.1 Avg54 Std.Dev. 1.08 2.6 Std.Dev.	84.0 17 88.5 80.1 7 87.2 85.0 18 90.7 80.9 8 88.6 84.7 19 89.4 81.3 13 87.6 85.5 20 90.9 82.0 14 88.4 62 90.8 87.7 63 88.8 80.5 84.8 Avg. 89.8 82.1 Avg. 87.9 .54 Std.Dev. 1.08 2.6 Std.Dev66

10	000' AGL			1500' AGL	
Run No.	NEL	Max. dB(A)	Run No.	NEL	$\frac{\text{Max.}}{\text{dB}(A)}$
2 3 4	87.3 85.3 86.8	76.4 74.6 76.1	5 6 11 12	81.6 84.9 81.6 84.9	70.4 74.3 70.1 72.4
Avg. Std.Dev.	86.4 1.04	75.7 .78	Avg. Std.Dev.	83.2 1.30	71.8 1.7
NEL - de	$\overline{B(A)} = 10.$	7	NEC -	$\frac{dB(A)}{dB(A)} = 11.$.4

TABLE 4.3

A109: TEST DATE 6/24/80 (TUESDAY)

CENTERLINE CENTR LOCATION (GR)

NOISE EXPOSURE LEVEL VERSUS

INDICATED AIRSPEED FOR 500' AGL

LEVEL FLYOVERS

145 Knots			130 Knots			116 Knots		
Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)
48 49 50 59 60	92.6 91.6 - 91.9 92.6 91.0	84.8 83.7 84.4 84.0 83.5	17 18 19 20 62 63	88.5 90.7 89.4 90.9 90.8 88.8	80.1 80.9 81.3 82.0 87.7 80.5	54 55 57 58	89.4 87.6 87.4 88.2	(8J.8)ex 78.7 78.0 79.4
Avg. Std.Dev. NEL - d	91.9 .684	84.1 .47	Avg. Std.Dev. NEL - d	89.3 1.08 IB(A) = 1	82.1 .26	Avg. Std.Dev.	88.1 0.9 dB(A)	78.7 .57 - 9.4

	102 Knots	••			
Run No.	NEL	Max. <u>dB(A)</u>	Run No.	NEL	$\frac{Max.}{dB(A)}$
51 52 53 56	- 88.4 86.7 87.9	79.6 77.7 79.2	21 22 46 47	86.5 87.6 87.9 86.9	78.3 77.9 80.1 76.9
Avg. Std.Dev.	87.6 .873	78.8 .81	Avg. Std.Dev.	87.2 .639	78.3 1.2
NEC - 6	$\frac{18(A)}{8.8} = 8.8$		NEL - d	$\overline{B(A)} = 8.9$	

The state of the s

5.0 FAA, BELL 206-L

The Bell 206-L was one of the principal test helicopter participating in the June 1978, FAA measurement program (see FAA-EE-79-03).

In the recently completed test, the 206-L has been used to acquire noise versus distance information.

TABLE 5.1

BELL 206-L: TEST DATE 6/26/80 (THURSDAY) CENTERLINE CENTER LOCATION (BK)

NOISE EXPOSURE LEVEL

VERSUS DISTANCE

300' AGL			700' AGL			1000' AGL		
Run No	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)	Run No.	NEL	Max. dB(A)
1	88.1	-	5	84.4	73	9	81.2	70
2	87.7	81.0	6	82.5	73	10	81.2	70
2 3	88.1	80.5	7	83.8	74	11	81.0	68
4	88.8	81.5	8	83.3	-	12	79.4	69
Avg. Std.Dev.	88.1 .457		Avg. Std.Dev.	83.5 .804	73.3 0.57	Avg. Std.Dev.	80.7 .871	6 9. 2 0.95
NEL -	$\overline{dB(A)} = 7$.1	NEL - d	B(A) = 10	0.2	NEL - d	$\overline{B(A)} = 11$.5

1500' AGL			<u>.2</u>	Max.	
Run No.	NEL	Max. dB(A)	Run No.	NEL	$\frac{dB(A)}{dB(A)}$
13 14 15 16	78.2 76.4 77.5 76.5	66 65 64 64	17 18 19	75.3 74.2 74.7	62 62 61
Avg. Std.Dev.	77.1 .858	64.7 0.95	Avg. Std.Dev.	74.7 .550	61.6 0.57
NEL - d	$\overline{B}(\overline{A}) = 12.$	4	NEL - dB	$\overline{B(A)} = 13.1$	i

