Exercices d'algèbre

Martin Andrieux, Nathan Maillet

Groupes

Groupes et ordres

Soient G et H deux groupes finis; le produit $G \times H$ est muni de sa structure de groupe produit. Soient $x \in G$ et $y \in H$, d'ordres respectifs n et m. Montrer que (x,y) est d'ordre $n \vee m$. En déduire une condition nécessaire et suffisante pour que $G \times H$ soit cyclique.

Groupe abélien -

Soit G un groupe tel que pour tout q dans G, $g^2 = 1$. Montrer que G est abélien.

Utilisation du théorème de Lagrange -

On admettra le théorème de Lagrange : si H est un sous-groupe d'un groupe fini G, le cardinal de H est un diviseur de celui de G.

Soit G un groupe abélien fini. Pour tout x de G, nous noterons o(x) l'ordre de x dans G, i.e le plus petit entier $n \ge 1$ tel que $x^n = 1$. On appelle exposant de G le P.P.C.M. des ordres des éléments de G. C'est doc l'entier r défini par $r = \bigvee_{x \in G} o(x) = \min\{n \in \mathbb{N}^*, \forall x \in G, x^n = 1\}$.

- Montrer que si $\mathfrak a$ et $\mathfrak b$ sont deux éléments de $\mathfrak G$ tels que $\mathfrak o(\mathfrak a) \wedge \mathfrak o(\mathfrak b) = 1$, $\mathfrak a\mathfrak b$ est d'ordre $\mathfrak o(\mathfrak a)\mathfrak o(\mathfrak b)$.
- Soit $r = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ la décomposition de r en produit de facteurs premiers. Montrer que pour tout i compris entre 1 et k, il existe $a_i \in G$ tel que $o(a_i) = p_i^{\alpha_i}$. En déduire qu'il existe un élément de G dont l'ordre est l'exposant de G.
- Soit K un corps commutatif et G un sous-groupe $(K^*,.)$. Montrer que G est cyclique (et en particulier, K^* est cyclique si K est fini).

Anneaux

Système

Résoudre dans \mathbb{R} le système suivant :

$$\begin{cases} x + y + z = 1 \\ xy + yz + zx = -5 \\ x^3 + y^3 + z^3 = -2 \end{cases}$$

Polynômes

Soit $P \in \mathbb{R}[X]$ tel que $P(x) \geqslant 0$ pour tout $x \in \mathbb{R}$. On pose $Q = \sum_{k \geqslant 0} P^{(k)}$. Montrer que $\forall x \in \mathbb{R}, \ Q(x) \geqslant 0$.

Algèbre sur les entiers relatifs

Résoudre dans Z:

$$2^{2n} + 2^n + 1 \equiv 0 \pmod{21}$$

Égalité avec une congruence

Soit p un nombre premier. Montrer :

$$(p-1)! \equiv (-1)^p [p]$$
.

Espaces Vectoriels

Dimensions d'espaces vetoriels

Soit E un espace vectoriel de dimension finie n.

- Soit A un sous-espace de E. Montrer que $\alpha = \{u \in \mathcal{L}, A \subset \operatorname{Ker}(u)\}$ et $\beta = \{u \in \mathcal{L}, u(A) \subset A\}$ sont des sous-espaces de $\mathcal{L}(E)$ et donner leurs dimensions en fonction de celle de A.
- Soient F et G deux sous-espaces vectoriels de E. On note f, g, h les dimensions respectives de F, G et $F \cap G$. Déterminer la dimension de $\gamma = \{u \in \mathcal{L}(E), u(F) \subset F \text{ et } u(G) \subset G\}$.

Calcul matriciel

Inversibilité des matrices par blocs -

Soient A et B deux matrices inversibles de tailles n et m et soit C matrice de taille n, m. Montrer que la matrice :

$$P = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

est inversible et calculer son inverse.

Calculs de déterminants

Calculer le déterminant :

$$A = \begin{vmatrix} 1 & \cos(x) & \cos(2x) \\ 1 & \cos(y) & \cos(2y) \\ 1 & \cos(z) & \cos(2z) \end{vmatrix}$$

 et

$$B = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^3 & b^3 & c^3 & d^3 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$$

Une histoire de rang —

Soit $A \in M_n(\mathbb{K})$. Montrer que A^n et A^{n+1} ont le même rang.