From LMMs to GLMMs

Bayesian statistics 5 - mixed effects models and background for GLMMS

Frédéric Barraquand (CNRS, IMB)

29/11/2022

Some things that we learned the last time and today

Session 4

- Random effects are random because we estimate their variances
- Some people have proposed to call them variance component effects
- In a Bayesian setup, the difference between fixed and random effects manifests in priors: alpha[i] ~ dnorm(0,0.01) or alpha[i] ~ dnorm(0,tau.alpha)?
- A prior on a quantity that could be considered a prior is a hyperprior

Today

- Specifying mixed models with fixed and random effects (although the distinction is tenuous in a Bayesian setup)
- \bullet Some more shrinkage \to partial pooling of RE coefficients that get (slightly) pulled towards their mean
- Devise a model with a hierarchical structure
- Technical: Pairs of parameters can be correlated in the joint posterior, we should check whether they are so with pairwise posterior plots

What we will cover next today

Correlation structures = advanced mixed modelling

- Between different parameters (intercept, slope)
- Between the same parameters but between/within groups

Moving towards GLMs and GLMMs

- Dealing with counts: Poisson distribution and Poisson GLMs
- If time, Poisson GLMMs

Next time

Poisson GLMMs on the crested tit example

- Do our variance partitioning results on hold on the full dataset?
- Do our covariate results hold on the full dataset?

More GLMMs on counts

Correlation between random effects I

Back to Kéry (2010, chapter 12) where Y_i is mass and x_i is length, so that the regression gives body condition:

$$Y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$
 i.i.d. and $(\alpha_j, \beta_j) \sim \mathcal{N}([\mu_\alpha \mu_\beta], \Sigma)$.

with
$$\Sigma = \begin{pmatrix} \sigma_{lpha}^2 & \sigma_{lphaeta} \\ \sigma_{lphaeta} & \sigma_{eta}^2 \end{pmatrix}$$
 and $\sigma_{lphaeta} =
ho\sigma_{lpha}\sigma_{eta}$

Let's plot this with $\mu_{\alpha}=230, \mu_{\beta}=60, \sigma_{\alpha}=20, \sigma_{\beta}=30, \rho=33\%$.

library("lattice")
xyplot(mass ~ length | pop)

Correlation between random effects II

Code for random effects model I

```
### 12.5.3. REML analysis using R
library('lme4')
lme.fit3 <- lmer(mass ~ length + (length | pop))</pre>
### 12.5.4. Bayesian analysis using JAGS
# Bundle data
str(bdata <- list(mass = as.numeric(mass), pop = as.numeric(pop),</pre>
length = length, ngroups = max(as.numeric(pop)), n = n))
## List of 5
##
    $ mass : num [1:560] 330 370 101 244 109 ...
    $ pop : num [1:560] 1 1 1 1 1 1 1 1 1 1 ...
##
## $ length : num [1:560] 1.654 0.982 -1.263 0.546 -0.679 ...
## $ ngroups: num 56
##
    $ n : num 560
```

Code for random effects model II

```
# Specify model in BUGS language
cat(file = "lme.model3.txt", "
model {
# Priors
for (j in 1:ngroups){
    alpha[j] <- B[j,1]
   beta[i] <- B[i,2]
   B[j,1:2] ~ dmnorm(B.hat[j,], Tau.B[,])
   B.hat[j,1] <- mu.int</pre>
   B.hat[j,2] <- mu.slope
mu.int ~ dnorm(0, 0.001) # Hyperpriors for random intercepts
mu.slope ~ dnorm(0, 0.001)
                              # Hyperpriors for random slopes
Tau.B[1:2.1:2] \leftarrow inverse(Sigma.B[.])
Sigma.B[1,1] <- pow(sigma.int,2)
sigma.int ~ dunif(0, 100) # SD of intercepts
Sigma.B[2,2] <- pow(sigma.slope,2)
sigma.slope ~ dunif(0, 100) # SD of slopes
Sigma.B[1,2] <- rho*sigma.int*sigma.slope
Sigma.B[2.1] \leftarrow Sigma.B[1.2]
rho \sim dunif(-1.1)
covariance <- Sigma.B[1,2]
tau <- 1 / ( sigma * sigma)
                                    # Residual
sigma ~ dunif(0, 100) # Residual standard deviation
# Likelihood
for (i in 1:n) {
   mass[i] ~ dnorm(mu[i], tau) # The 'residual' random variable
   mu[i] <- alpha[pop[i]] + beta[pop[i]]* length[i] # Expectation</pre>
```

Results of RE model with correlation I

```
## Compiling model graph
     Resolving undeclared variables
##
     Allocating nodes
##
## Graph information:
     Observed stochastic nodes: 560
##
##
     Unobserved stochastic nodes: 62
##
     Total graph size: 3045
##
## Initializing model
## Inference for Bugs model at "lme.model3.txt", fit using jags,
##
   3 chains, each with 2000 iterations (first 1000 discarded), n.thin = 2
   n.sims = 1500 iterations saved
##
##
              mu.vect sd.vect
                                2.5%
                                          25%
                                                  50%
                                                          75%
                                                                 97.5% Rhat
               68.940 91.361 -102.574
                                        6.519
                                               63.580
                                                       125.059
                                                               260.387 1.000
## covariance
## mu.int
              222.699 3.263 216.394 220.512
                                              222,665 224,968 229,168 1,001
## mu.slope 56.603 3.777 49.313
                                       54.058 56.496 59.144 63.835 1.006
## rho
              0.121 0.153 -0.183 0.012
                                                0.120
                                                         0.229
                                                                 0.413 1.001
              30.157 0.987 28.319
                                       29.456
                                               30.119 30.810 32.136 1.002
## sigma
## sigma.int 21.263 2.567 16.496 19.427
                                               21.133
                                                       22.943
                                                                26.636 1.002
## sigma.slope
               26.136 2.979
                               20.767
                                       24.066
                                               25.958
                                                       28.091
                                                                32,280 1,000
## deviance
             5403.270 17.084 5372.081 5391.045 5402.773 5414.091 5437.352 1.001
##
             n.eff
```

Results of RE model with correlation II

```
## covariance
                1500
## mu.int
                1500
                 340
## mu.slope
## rho
                1500
## sigma
                1000
                 820
## sigma.int
## sigma.slope
                1500
## deviance
                1500
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 145.9 and DIC = 5549.2
## DIC is an estimate of expected predictive error (lower deviance is better).
```

Results of RE model with correlation III

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: mass ~ length + (length | pop)
## REML criterion at convergence: 5596.685
## Random effects:
   Groups Name
                       Std.Dev. Corr
        (Intercept) 20.56
##
   pop
##
            length
                       25,20
                                0.12
   Residual
                       30.08
## Number of obs: 560, groups: pop, 56
## Fixed Effects:
## (Intercept) length
       224.99
                   57.62
##
```

The mixed model – theory to understand correlations

In matrix notation, the mixed model writes

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{Z}\mathbf{a} + \boldsymbol{\epsilon}$$

Convention here: simple bold for vectors, capital bold for matrices. $Cov(\epsilon)$ and $Cov(\mathbf{a})$ are called covariance matrices, for the residuals and the random effects, respectively.

Possibility for correlations between random effects, as we've seen before, but random effects also generate correlations within groups.

Genetics example: who's your mommy?

Let's assume that Y_i is the phenotype of individual i. Like, size. In the population, we have cows that descend from their mommies m=1,3,...,M. Let's say M=10, we have $\mathbf{a}=(A_1,...,A_{10})$.

$$Y_i = \mu + bx_i + A_{m[i]} + \epsilon_i$$

- We assume that residuals are Gaussian iid. In math, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ with $Cov(\epsilon_i, \epsilon_j) = \mathbb{V}(\epsilon_i) = \sigma^2$ for j = i and $Cov(\epsilon_i, \epsilon_j) = 0$ for $j \neq i$.
- We assume that x_i is the fixed effect of how much food the cow receives on average.
- We assume that mother phenotypes have themselves negligible correlation, so that $Cov(a_i, a_j) = 0$ for $j \neq i$ (possible to add multiple levels with grandma effects etc.)

Some background on quantitative genetics

What is the covariance matrix for the overall random effect?

$$Y_i = \mu + bx_i + \eta_i$$

with $\eta_j = A_{m[i]} + \epsilon_i$.

From rules on covariances, we can compute that

$$Cov(\eta_i, \eta_j) = \sigma^2 \mathbf{1}_{i=j} + \sigma_A^2 \mathbf{1}_{m[i]=m[j]}$$

Let's write this on the board to get a better look.

Modelling residual covariance and adding random effects are usually two equivalent ways to add structure to your model. (but often we add random effects because variance-covariance matrices are tricky beasts).

Autocorrelated noise and distance-decay correlation structures

Let's imagine that we have a temporal effect $B_t = \varphi B_{t-1} + \zeta_t, \zeta_t \sim \mathcal{N}(0, \sigma^2)$. In this model, $\operatorname{Corr}(B_t, B_{t-k}) = \varphi^k$ due to the properties of the AR(1) process.

Decay of correlation with distance in time. Seal population dynamics example in *Mixed effects models and extensions in ecology with r* by Zuur et al. (2009)

You can have distance-decay of correlation in space too [advanced class].

Are my random effects nested or crossed?

This is more of a *question about data design than it is about modelling*. A good post on Cross-Validated on that issue.

More references:

Nested by design: model fitting and interpretation in a mixed model era by Schielzeth and Nakagawa

Data Analysis Using Regression and Multilevel/Hierarchical Models, by Gelman and Hill

A brief introduction to mixed effects modelling and multi-model inference in ecology, by Harrison et al.

Poisson GLMMs – beyond the Gaussian realm

We want to be able to model our counts (of birds, cells, mechanical failures,...) including the many zeroes, ones and twos in them. \setminus

Data for Poisson, Negative Binomial GLMMs and the likes:

- data=c(0,0,1,2,3,0,8,2,3,...)
- and not data=c(146,827,22,38,49,167,0,332,92,...)

Before having complex models with random effects

- Let's go back to simple GLMs
- And for that to the Poisson distribution

The Poisson(λ) distribution, $Y_i \sim \mathcal{P}(\lambda)$ I

Mean and variance are linked in the Poisson distribution.

- Expectation $\mathbb{E}(Y_i) = \lambda$
- Variance $\mathbb{V}(Y_i) = \lambda$

In general counts have usually $\mathbb{V}(Y_i) \propto \mathbb{E}(Y_i)$. That's why when we look at residuals of GLMs we use $\frac{y_i - \hat{y}_i}{\sqrt{\hat{y}_i}}$. Since $\mathsf{SD}(Y_i) \propto \sqrt{\mathbb{E}(Y_i)}$.

Reminder, distribution for positive quantities:

In the Gamma distribution,
$$\mathbb{V}(Y_i) = a\theta^2 = \frac{1}{a}(\mathbb{E}(Y_i))^2$$
.

Log-normal,
$$\mathbb{V}(Y_i) = \text{stuff}(\sigma) \times \mathbb{E}(Y_i)^2$$
.

The Poisson(λ) distribution, $Y_i \sim \mathcal{P}(\lambda)$ II

Poisson probability mass function

Poisson and other count distributions

Counts are special. Different mean-variance scaling for Poisson.

$$CV = SD/mean = \frac{1}{\sqrt{mean}}$$

When counts are *overdispersed*, we use distributions in-between the Poisson and those shown before like the Negative Binomial. There are other options.

$$Y_i \sim \mathcal{P}(\lambda_i)$$

with

$$\lambda_i = g^{-1}(a + bx_i)$$

or again

$$g(\lambda_i) = a + bx_i$$

$$Y_i \sim \mathcal{P}(\lambda_i)$$

with

$$\lambda_i = g^{-1}(a + bx_i)$$

or again

$$g(\lambda_i) = a + bx_i$$

Typically the *link function* g = log and

$$\lambda_i = \exp(a + bx_i)$$

or again

$$\log(\lambda_i) = a + bx_i$$

$$Y_i \sim \mathcal{P}(\lambda_i)$$

with

$$\lambda_i = g^{-1}(a + bx_i)$$

or again

$$g(\lambda_i) = a + bx_i$$

Typically the *link function* g = log and

$$\lambda_i = \exp(a + bx_i)$$

or again

$$\log(\lambda_i) = a + bx_i$$

Thus this is by design close to log-transforming the data, but you have the extra Poisson variation.

$$Y_i \sim \mathcal{P}(\lambda_i)$$

with

$$\lambda_i = g^{-1}(a + bx_i)$$

or again

$$g(\lambda_i) = a + bx_i$$

Typically the *link function* g = log and

$$\lambda_i = \exp(a + bx_i)$$

or again

$$\log(\lambda_i) = a + bx_i$$

Thus this is by design close to log-transforming the data, but you have the extra Poisson variation.

Extra question: should you add noise $log(\lambda_i) = a + bx_i + \epsilon_i$?

on whether one should log-transforming count data or use GLMs:

• First O'Hara and Kotze said in 2010 that we always should.

- First O'Hara and Kotze said in 2010 that we always should.
- Then Ives showed that if you just want to know which coefficients have an effect, you might do better with log-transformation.

- First O'Hara and Kotze said in 2010 that we always should.
- Then Ives showed that if you just want to know which coefficients have an effect, you might do better with log-transformation.
- Warton et al. further showed that it depends and provided advice on how to choose. (if you have very very small counts so E(y) < 1 you can't get away with it)

- First O'Hara and Kotze said in 2010 that we always should.
- Then Ives showed that if you just want to know which coefficients have an effect, you might do better with log-transformation.
- Warton et al. further showed that it depends and provided advice on how to choose. (if you have very very small counts so E(y) < 1 you can't get away with it)
- Finally in 2020 Morrissey and Ruxton showed a caveat in the paper that started the debate.

- First O'Hara and Kotze said in 2010 that we always should.
- Then Ives showed that if you just want to know which coefficients have an effect, you might do better with log-transformation.
- Warton et al. further showed that it depends and provided advice on how to choose. (if you have very very small counts so E(y) < 1 you can't get away with it)
- Finally in 2020 Morrissey and Ruxton showed a caveat in the paper that started the debate.
- Literature auto-correct time = 10 years. Beware!

So what should I pick?

- You have very small counts: GLMs
- You don't, depends on what you want to do
 - You want to estimate coefficients to find effects. You can log-transform.
 - 2 You want to simulate from the model \to log-transformed data won't give you counts with the right variance. You need the GLMs.

So what should I pick?

- You have very small counts: GLMs
- You don't, depends on what you want to do
 - 1 You want to estimate coefficients to find effects. You can log-transform.
 - ② You want to simulate from the model \to log-transformed data won't give you counts with the right variance. You need the GLMs.
- Bayesian models are extra practical to simulate data under the fitted model, because you can simulate at the same time as you fit
- This is even how you diagnose your model fit! Posterior predictive checks.

We will see this next time.