What is claimed is:

1	1.	•	A	load	port	trans	sfer	device	, for	deliv	rering	а
2	wafer	са	rr	ier	along	an	ove	rhead	convey	ving	system	n,
3	includi	ing	:									

a load port;

. 1

1 .

- a path, having vertical and horizontal components,
 the vertical component having a top portion
 connected to the horizontal component beside
 the overhead conveying system and a bottom
 portion extending from the load port; and
- a robot, movably disposed on the path to transfer the wafer carrier between the load port and the overhead conveying system.
- 2. The load port transfer device as claimed in claim 1, wherein the path is L-shaped.
 - 3. The load port transfer device as claimed in claim 1, wherein the horizontal component is located above the overhead conveying system.
- 4. The load port transfer device as claimed in claim 1, wherein the robot further includes a moving mechanism, disposed within the path and a holding mechanism, disposed on the moving mechanism to maintain the wafer carrier in a horizontal position.
 - 5. The load port transfer device as claimed in claim 4, wherein the holding mechanism having first and second ends, wherein the first end is removably connected

- to the wafer carrier and the second end is movably connected to the moving mechanism.
- 6. The load port transfer device as claimed in claim 5, wherein the first end is gripper-shaped to grasp the wafer carrier.
- 7. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a roller.
- 8. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a gear wheel.
- 9. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a chain.
- 1 10. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a timing belt.
- 1 11. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a curtain slat.
- 1 12. The load port transfer device as claimed in claim 4, wherein the moving mechanism is a wire.
- 1 13. A load port transfer device, for delivering a wafer carrier to a conveying system, comprising:
 - a load port;

- a path, having vertical and horizontal components,
 the vertical component having a top portion
 beside the conveying system and a bottom
 portion, extending from the load port; and
- a robot, including a moving mechanism movably
 disposed on the path to transfer the wafer

10 carrier between the load port and the conveying system, and a holding mechanism having a first 11 end holding the wafer carrier and a second end 12 13 the disposed on moving mechanism. The load port transfer device as claimed in 1 14. claim 13, wherein the horizontal and the vertical 2 components form an L-shape. 3 The load port transfer device as claimed in 15. 1 2 claim 13, wherein the first end is gripper-shaped to 3 grasp the wafer carrier. The load port transfer device as claimed in 16. 1 claim 13, wherein the moving mechanism is a roller. 2 The load port transfer device as claimed in 17. 1 claim 13, wherein the moving mechanism is a gear wheel. 2 The load port transfer device as claimed in 1 18. claim 13, wherein the moving mechanism is a chain. 2 The load port transfer device as claimed in 19. 1 claim 13, wherein the moving mechanism is a timing belt. 2 The load port transfer device as claimed in 20. 1

- claim 13, wherein the moving mechanism is a curtain slat.
- The load port transfer device as claimed in 21. 1. claim 13, wherein the moving mechanism is a wire. 2

2

1	22. An intra-bay delivery system comprising:
2	a wafer carrier;
3	a load port supporting the wafer carrier;
4	a conveyor, disposed above the load port;
5	a rail having vertical and horizontal components,
6	wherein the vertical component extends from the
7	load port and the horizontal component is
8	located above the conveyor; and
9	a robot including a roller movably disposed on the
10	rail to transfer the wafer carrier between the
11	load port and the conveyor and a holding
12	portion having a first end holding the wafer
13	carrier and a second end disposed on the
14	roller, wherein the first end holding the wafer
15	carrier is à flange.