Assignment Lab 2: Credit card fraud detection using Decision Tree Classifier

Karthikeyan G Roll No: CB.SC.P2.CYS24008

January 2, 2025

1 Detection using Decision Tree

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,
   classification_report
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import VarianceThreshold
# Load the dataset
data = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv')
# Check for missing values
print("Missing values in each column:")
print(data.isnull().sum())
# Separate features and target
X = data.drop(columns=['Class'])
y = data['Class']
#using VarianceThreshold to remove low-variance features
selector = VarianceThreshold(threshold=0.1)
X_selected = selector.fit_transform(X)
#To Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split the data into Training and Test sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,
   random_state=42)
# Training the Decision Tree Classifier
credit = DecisionTreeClassifier(random_state=42)
credit.fit(X_train, y_train)
# evaluating the model
y_pred = credit.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)
disp.plot(cmap=plt.cm.Reds)
plt.title("Confusion Matrix")
plt.show()
# Classification Report
print("Classification Report:")
print(classification_report(y_test, y_pred))
# Feature & Importance
importances = credit.feature_importances_
feature_names = data.drop(columns=['Class']).columns
plt.figure(figsize=(10, 6))
plt.barh(feature_names, importances, color='Orange')
plt.xlabel("Importance")
plt.ylabel("Feature")
plt.title("Feature Importance")
plt.show()
# visualizing based on the the Decision Tree
plt.figure(figsize=(15, 10))
```

Missing	values	in	each	column
Time	0			
V1	0			
V2	0			
V3	0			
V4	0			
V5	0			
V6	0			
V7	0			
V8	0			
V9	0			
V10	0			
V11	0			
V12	0			
V13	0			
V14	0			
V15	0			
V16	0			
V17	0			
V18	0			
V19	0			
V20	0			
V21	0			
V22	0			
V23	0			
V24	0			
V25	0			
V26	0			
V27	0			
V28	0			
Amount	0			
Class	0			
dtype:	int64			

Figure 1: Missing values in each column

Figure 2: evaluating the model

Classifica	tio	n Report:			
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	56864
	1	0.70	0.80	0.74	98
accura	су			1.00	56962
macro a	vg	0.85	0.90	0.87	56962
weighted a	vg	1.00	1.00	1.00	56962

Figure 3: Classification Report

Figure 4: Featureimportance

Figure 5: visualizing based on the Decision Tree