DAY #7

30 DAYS OF VERILOG

AIM - TO IMPLEMENT 4X1 MUX USING 2X1 MUX

To design a **4:1 multiplexer (mux)** using a minimum number of **2:1 mux**, we can follow a partitioning approach.

Partition the 4:1 mux table into three sections based on the select lines (S1 and S0).

Truth Table -

INP	INPUTS	
S ₁	S ₀	Y
0	0	A ₀
0	1	A ₁
1	0	A ₂
1	1	A ₃

Schematic -

Verilog Code-

```
design.sv
 2 // www.vlsiverify.com
 3 //-----
4 module mux_2_1(
   input sel,
    input i0, i1,
 6
    output y);
7
8
    assign y = sel ? i1 : i0;
 9
10 endmodule
11
12 module mux_4_1(
   input sel0, sel1,
13
    input i0,i1,i2,i3,
14
15
    output reg y);
16
    wire y0, y1;
17
18
    mux_2_1 m1(sel1, i2, i3, y1);
19
    mux_2_1 m2(sel1, i0, i1, y0);
20
    mux_2_1 m3(sel0, y0, y1, y);
21
22 endmodule
```

Waveform -

