



# What is DeepSeek?

GPT 수준의 추론 능력을 어떻게 가지게 되었을까

### DeepSeek-R1이란?

- DeepSeek-R1은 AI가 스스로 생각하고 문제를 해결할 수 있도록 훈련된 모델
- 복잡한 문제(예: 수학 문제, 코딩 문제, 사실 기반 질문 등)에 대해 논리적이고 일관된 답변을 제공

#### 목표

• GPT와 같은 최신 AI 모델과 유사한 추론 능력을 목표



#### 스스로 생각하는 과정이란?



"여러 가지 퍼즐 조각을 모아 하나의 그림을 완성하는 사람"처럼, 문제의 여러 단서를 모아 최종 답을 도출

#### DeepSeek vs GPT-o1



American Invitational Mathematics Examination(AIME) 고난도 수학 문제들을 모은 벤치마크

#### Codeforces

전 세계 프로그래머가 참가하는 알고리즘 대회 플랫폼

#### MATH-500

초중고급 수준의 수학 문제 500개

Massive Multitask Language Understanding 47개 과목문제로 구성된 지식 능력 평가 벤치마크

#### SWE-bench

소프트웨어 엔지니어링 관련 벤치마크

### 강화학습(Reinforcement Learning)

강화 학습은 AI가 시행착오를 통해 스스로 배우는 방법

올바른 답을 내면 '보상'을, 틀리면 다시 시도하도록 하여 점차 실력 향상

#### 예시

- 자전거를 처음 배우는 아이가 넘어지고 다시 일어나며 타는 법을 익히는 것과 비슷
- 알파고:이기면 보상을 제공하여 더 나은 바둑을 두도록 함



### DeepSeek-R1-Zero 스스로 배우다

DeepSeek-R1-Zero는 기존의 지도 학습 없이 오로지 시행착오(강화 학습)만으로 스스로 문제를 해결하는 법을 학습

이 과정에서 AI는 스스로 "어떻게 생각할지"를 학습

→ 인간이 직접 방향을 제시하는 것보다 오히려 효과적으로 학습

예시

- 처음 보는 요리 레시피 없이 여러 번 시도하며 자신만의 요리법을 찾는 셰프와 동일
- 수험생에게 문제푸는 방법을 알려주지 않고 직접 해결하도록 함

#### DeepSeek-R1-Zero 보상 방법

평가 및 보상

- 한 문제에 대해 여러 가지 답을 만들어내고, 그 중 가장 좋은 답을 선택하도록 훈련
- 문제를 해결할 때 "정답인지"와 "어떻게 답변했는지"에 따라 보상을 받습니다.
- → 정확한 답변과 명확한 사고 과정을 모두 평가하여, 더 나은 답변을 하도록 유도

#### DeepSeek-R1-Zero 오답 노트

문제 해결 전 과정을 기록하도록 훈련

→ 단순히 답을 내는 것이 아니라 그 과정을 개선함

#### 'Aha Moment'의 중요성

Question: If a > 1, then the sum of the real solutions of  $\sqrt{a - \sqrt{a + x}} = x$  is equal to

Response: <think>

To solve the equation  $\sqrt{a-\sqrt{a+x}}=x$ , let's start by squaring both ...

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a-\sqrt{a+x} = x^2.$$

Rearrange to isolate the inner square root term:

$$(a-x^2)^2 = a+x \implies a^2-2ax^2+(x^2)^2 = a+x \implies x^4-2ax^2-x+(a^2-a)=0$$

. . .

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be  $\cdots$ 

We started with the equation:

$$\sqrt{a-\sqrt{a+x}}=x$$

First, let's square both sides:

$$a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$$

Next, I could square both sides again, treating the equation: ...

....

### DeepSeek-R1-Zero 문제점

논문에서는 R1-Zero가 순수 강화 학습만으로 학습되어 강력한 추론 능력을 보임

결과물이 읽기 어렵고 여러 언어가 혼합되는 문제 등 실용성 측면에서 한계 발생

### DeepSeek-R1

소량의 고품질 콜드 스타트 데이터를 활용하고 다단계 학습 전략을 적용한 R1 모델을 도입

- 콜드 스타트 데이터는 AI에게 '어떻게 생각해야 하는지'에 대한 기본 틀을 제공
- 이는 AI가 스스로 생각을 정리하고, 문제 해결 방법을 개선



\*콜드 데이터 (cold data): 모델이 본격적 강화 학습을 시작하기 전에 초기 기초 교육용으로 사용하는 소량이지만 고품질 데이터

### DeepSeek-R1 Rejection Sampling

#### **Rejection Sampling**

AI가 문제를 해결할 때 한 번에 여러 가지 답변에서 올바르지 않거나 품질이 낮은 답변은 과감히 제거하고, 좋은 답변만 선택하여 학습에 활용하는 과정

- AI는 한 문제에 대해 여러 답을 생성하는데, 이 과정은 여러 번의
  시도와 실수를 포함
- 이 과정에서 '잘못된 답변'이나 '이해하기 어려운 답변'은 걸러내고, 올바른 답변들만 선택합니다.
- 결국 AI가 "내가 왜 이 방법을 선택해야 하는지"에 대해 더 잘 배우게 하는 역할을 합니다.



### DeepSeek-R1 SFT

Supervised Fine-Tuning, SFT

Rejection Sampling을 통해 선별된 '좋은' 답변들을 사용하여 AI 모델을 다시 한 번 더 세밀하게 훈련

- 선별된 좋은 답변을 가지고 AI 모델을 추가로 훈련시키면, AI는 그 답변을 모범 사례로 삼아 앞으로 유사한 문제를 풀 때 더 정확하고 명확한 답을 내도록 발전
- 학생이 모범 답안을 반복 학습함으로써 시험에서 더 좋은 성적을 내게 되는 과정과 유사

## Experiments

|         | Benchmark (Metric)         | Claude-3.5-<br>Sonnet-1022 | GPT-40<br>0513 | DeepSeek<br>V3 |      | OpenAI<br>o1-1217 | DeepSeel<br>R1 |
|---------|----------------------------|----------------------------|----------------|----------------|------|-------------------|----------------|
|         | Architecture               | -                          | -              | MoE            | -    | -                 | MoE            |
|         | # Activated Params         | 20                         | 2              | 37B            | 2    | -                 | 37B            |
|         | # Total Params             | -                          | -              | 671B           | -    | -                 | 671B           |
|         | MMLU (Pass@1)              | 88.3                       | 87.2           | 88.5           | 85.2 | 91.8              | 90.8           |
|         | MMLU-Redux (EM)            | 88.9                       | 88.0           | 89.1           | 86.7 | _                 | 92.9           |
| English | MMLU-Pro (EM)              | 78.0                       | 72.6           | 75.9           | 80.3 | -                 | 84.0           |
|         | DROP (3-shot F1)           | 88.3                       | 83.7           | 91.6           | 83.9 | 90.2              | 92.2           |
|         | IF-Eval (Prompt Strict)    | 86.5                       | 84.3           | 86.1           | 84.8 | -                 | 83.3           |
|         | GPQA Diamond (Pass@1)      | 65.0                       | 49.9           | 59.1           | 60.0 | 75.7              | 71.5           |
|         | SimpleQA (Correct)         | 28.4                       | 38.2           | 24.9           | 7.0  | 47.0              | 30.1           |
|         | FRAMES (Acc.)              | 72.5                       | 80.5           | 73.3           | 76.9 | -                 | 82.5           |
|         | AlpacaEval2.0 (LC-winrate) | 52.0                       | 51.1           | 70.0           | 57.8 | -                 | 87.6           |
|         | ArenaHard (GPT-4-1106)     | 85.2                       | 80.4           | 85.5           | 92.0 | -5                | 92.3           |
| Code    | LiveCodeBench (Pass@1-COT) | 38.9                       | 32.9           | 36.2           | 53.8 | 63.4              | 65.9           |
|         | Codeforces (Percentile)    | 20.3                       | 23.6           | 58.7           | 93.4 | 96.6              | 96.3           |
|         | Codeforces (Rating)        | 717                        | 759            | 1134           | 1820 | 2061              | 2029           |
|         | SWE Verified (Resolved)    | 50.8                       | 38.8           | 42.0           | 41.6 | 48.9              | 49.2           |
|         | Aider-Polyglot (Acc.)      | 45.3                       | 16.0           | 49.6           | 32.9 | 61.7              | 53.3           |
| Math    | AIME 2024 (Pass@1)         | 16.0                       | 9.3            | 39.2           | 63.6 | 79.2              | 79.8           |
|         | MATH-500 (Pass@1)          | 78.3                       | 74.6           | 90.2           | 90.0 | 96.4              | 97.3           |
|         | CNMO 2024 (Pass@1)         | 13.1                       | 10.8           | 43.2           | 67.6 | -                 | 78.8           |
| Chinese | CLUEWSC (EM)               | 85.4                       | 87.9           | 90.9           | 89.9 | -                 | 92.8           |
|         | C-Eval (EM)                | 76.7                       | 76.0           | 86.5           | 68.9 | -                 | 91.8           |
|         | C-SimpleQA (Correct)       | 55.4                       | 58.7           | 68.0           | 40.3 | -                 | 63.7           |

Table 4 | Comparison between DeepSeek-R1 and other representative models.





#### Conclusion

DeepSeek-R1은 강화 학습과 콜드 스타트 및 여러 학습 전략을 결합하여 AI가 스스로 사고하고 문제를 해결할 수 있도록 만든 모델

DeepSeek-R1은 GPT와 유사한 수준의 추론 능력