STATS 300A: Theory of Statistics I

Autumn 2016/17

Lecture 12: November 8

Lecturer: Joseph Romano Scribes: Kenneth Tay

12.1 Hypothesis Testing

Let S be the sample space for X, and let $X \sim P_{\theta}$, $\theta \in \Omega$. Assume that Ω is the disjoint union of Ω_0 and Ω_1 . We can formulate null and alternative hypotheses:

$$H_0: \theta \in \Omega_0,$$

 $H_1: \theta \in \Omega_1$.

Definition 12.1 A hypothesis $H_i: \theta \in \Omega_i$ is **simple** if Ω_i contains a single value of θ , i.e. $\Omega_i = \{\theta_0\}$ for some θ_0 .

A hypothesis which is not simple is called a complex hypothesis.

Definition 12.2 A **test function** φ is a function $\varphi : \mathcal{S} \to [0,1]$ with the interpretation that for $x \in \mathcal{S}$, we reject H_0 with probability $\varphi(x)$.

- In this definition of test functions, we are allowing for randomized tests, i.e. $0 < \varphi(x) < 1$ for some values of x.
- If $\varphi(x) = 0$ or 1 for all x, φ is a non-randomized test. In this case, we define the **rejection region** as the set $\{x : \varphi(x) = 1\}$.

Recall that we have the following possible scenarios in hypothesis testing:

	H_0 is true	H_1 is true	
Reject H_0	Type 1 error	Good decision	
Don't reject H_0	Good decision	Type 2 error	

We want to construct a test that has "small probabilities" of Type 1 and Type 2 error. In general, we are more concerned with Type 1 error, so we only consider tests whose probability of Type 1 error does not exceed some pre-specified α , i.e.

$$\mathbb{E}_{\theta}\varphi(X) \leq \alpha \text{ for all } \theta \in \Omega_0.$$

 α is called the **level of significance**.

Definition 12.3 For a test φ , its size is $\sup_{\theta \in \Omega_0} \mathbb{E}_{\theta} \varphi(X)$.

12-2 Lecture 12: November 8

Definition 12.4 A test φ is uniformly most powerful (UMP) at level α if its size is $\leq \alpha$ and for any other test φ' with size $\leq \alpha$,

$$\mathbb{E}_{\theta}\varphi(X) \geq \mathbb{E}_{\theta}\varphi'(X) \text{ for all } \theta \in \Omega_1.$$

If the alternative hypothesis is simple, we say that φ is a most powerful (MP) test at level α .

12.1.1 Simple H_0 vs. Simple H_1

In this case, we can write $H_0: X \sim P_0$, $H_1: X \sim P_1$ for fixed distributions P_0 and P_1 . We may also assume that P_i has density $p_i = \frac{dP_i}{d\mu}$ w.r.t. some dominating measure μ .

The Neyman-Pearson Lemma gives us a way of constructing a most powerful test for this setting:

Lemma 12.5 (Neyman-Pearson Lemma)

- (i) For testing P_0 vs. P_1 , there exists a (possibly randomized) test φ and a constant k such that:
 - (a) $\mathbb{E}_0 \varphi(X) = \alpha$, and

(b)
$$\varphi(X) = 1$$
 if $\frac{f_1(X)}{f_0(X)} > k$, and $\varphi(X) = 0$ if $\frac{f_1(X)}{f_0(X)} < k$.

- (ii) (Sufficiency to get a MP level α test) A sufficient condition for a test φ to be MP level α is it satisfies (a) and (b) in (i).
- (iii) (Necessity) If φ is MP level α , then for some k, it satisfies (b), and it also satisfies (a) unless there exists a test φ' whose size is $< \alpha$ with power = 1.

Proof:

(i) For each $c \in \mathbb{R}$, define

$$\alpha(c) = P_0\{p_1(X) > cp_0(X)\}\$$

= 1 - F_0(c),

where F_0 is the cdf of $\frac{p_1(X)}{p_0(X)}$ under P_0 . Note that $\alpha(\cdot)$ is non-increasing and right-continuous. Also, for any c, if we define $\alpha(c^-) = \lim_{c' \uparrow c} \alpha(c')$, we have

$$P_0\left\{\frac{p_1(X)}{p_0(X)} = c\right\} = \alpha(c^-) - \alpha(c).$$

In general, there exists some c^* such that $\alpha(c^{*-}) \leq \alpha \leq \alpha(c^*)$. Define a test function

$$\varphi(X) = \begin{cases} 1 & \text{if } \frac{f_1(X)}{f_0(X)} > c^*, \\ \frac{\alpha - \alpha(c^*)}{\alpha(c^{*-}) - \alpha(c^*)} & \text{if } \frac{f_1(X)}{f_0(X)} = c^*, \\ 0 & \text{if } \frac{f_1(X)}{f_0(X)} < c^*. \end{cases}$$

Lecture 12: November 8 12-3

Then

$$\mathbb{E}_{0}\varphi(X) = P_{0}\left\{\frac{p_{1}(X)}{p_{0}(X)} > c^{*}\right\} + \frac{\alpha - \alpha(c^{*})}{\alpha(c^{*-}) - \alpha(c^{*})}P_{0}\left\{\frac{p_{1}(X)}{p_{0}(X)} = c^{*}\right\}$$

$$= \alpha(c^{*}) + \frac{\alpha - \alpha(c^{*})}{\alpha(c^{*-}) - \alpha(c^{*})}[\alpha(c^{*-}) - \alpha(c^{*})]$$

$$= \alpha$$

as required.

(ii) Suppose φ satisfies (a) and (b) from (i). Let φ' be any other level α test. Consider the value of the integral

$$\int [\varphi(x) - \varphi'(x)][p_1(x) - kp_0(x)]d\mu(x).$$

We break the integral up over 3 regions:

$$S^{+} = \{x : \varphi(x) > \varphi'(x)\},\$$

$$S^{-} = \{x : \varphi(x) < \varphi'(x)\}, \text{ and }$$

$$S^{0} = \{x : \varphi(x) = \varphi'(x)\}.$$

- Over S^0 , the integral is clearly equal to 0.
- For $x \in S^+$, $\varphi(x) > \varphi'(x) \ge 0$, which means (by φ 's definition) that $p_1(x) \ge kp_0(x)$. Hence, the integrand is non-negative, so the integral over S^+ is non-negative.
- $x \in S^-$, $\varphi(x) < \varphi'(x) \le 1$, which means that $p_1(x) \le kp_0(x)$. Hence, the integrand is again non-negative, so the integral over S^+ is non-negative.

Summarizing, we have

$$\int [\varphi(x) - \varphi'(x)][p_1(x) - kp_0(x)]d\mu(x) \ge 0,$$

$$\int [\varphi(x) - \varphi'(x)]p_1(x)d\mu(x) \ge k \int [\varphi(x) - \varphi'(x)]p_0(x)d\mu(x),$$

$$\mathbb{E}_1[\varphi - \varphi'] \ge k(\mathbb{E}_0\varphi - \mathbb{E}_0\varphi')$$

$$= k(\alpha - \mathbb{E}_0\varphi')$$

$$\ge 0,$$

$$\mathbb{E}_1\varphi \ge \mathbb{E}_1\varphi',$$

as required.

(iii) The proof is in the book. It is essentially the proof of (ii) backwards.

Corollary 12.6 For testing P_0 vs. P_1 , the power of a MP level α test is $> \alpha$ (unless $P_0 = P_1$).

Proof: Let $\varphi_0(X) = \alpha$, i.e. always reject with probability α . This test has power α , but it is not a likelihood ratio test. Hence, by Lemma 12.5(iii), it can't be a MP test. So any MP test will have larger power than φ_0 , i.e. power $> \alpha$.

Note: We can always restrict attention to tests based on a sufficient statistic T. This is because we can always define a test $\psi(T) = \mathbb{E}[\varphi(X) \mid T]$. For this test, $\mathbb{E}\psi(T) = \mathbb{E}\varphi(X)$.

12-4 Lecture 12: November 8

12.1.1.1 Example: Normal setting

Let X_1, \ldots, X_n be i.i.d., $X_i \sim \mathcal{N}(\theta, \sigma^2)$ with σ known. $H_0: \theta = 0, H_1: \theta = \theta_1$ for some specified θ_1 .

To use the Neyman-Perason Lemma (ii), we need to find a constant k such that (i)(a) and (i)(b) are satisfied. For a given x, the likelihood ratio at x is given by

$$LR(x) = \frac{\prod \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(x_i - \theta_1)^2\right]}{\prod \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(x_i - \theta_1)^2\right]}$$
$$= \exp\left\{-\frac{1}{2\sigma^2} \sum (x_i - \theta_1)^2 + \frac{1}{2\sigma^2} \sum x_i^2\right\}$$
$$= \exp\left\{\frac{\theta_1}{\sigma^2} \sum x_i - \frac{n\theta_1^2}{2\sigma^2}\right\}.$$

Now,

$$LR(X) > k \qquad \text{for some constant } k$$

$$\Leftrightarrow \qquad \frac{\theta_1}{\sigma^2} \sum X_i - \frac{n\theta_1^2}{2\sigma^2} > k_1 \qquad \text{for some constant } k_1$$

$$\Leftrightarrow \qquad \theta_1 \sum X_i > k_2 \qquad \text{for some constant } k_2$$

$$\Leftrightarrow \qquad \theta_1 \bar{X}_n > k_3 \qquad \text{for some constant } k_3$$

$$\Leftrightarrow \qquad \theta_1 \left(\frac{\bar{X}_n \sqrt{n}}{\sigma} \right) > \tilde{k} \qquad \text{for some constant } \tilde{k}.$$

Note that under the null, $\frac{\bar{X}_n\sqrt{n}}{\sigma} \sim N(0,1)$.

Case 1: $\theta_1 > 0$.

Our likelihood ratio test becomes $\frac{\bar{X}_n\sqrt{n}}{\sigma} > \tilde{k}$ for some constant \tilde{k} . In order for (i)(a) to hold, we need $\tilde{k} = Z_{1-\alpha} = \Phi^{-1}(1-\alpha)$.

Thus, the MP level α test is Reject if $\frac{\bar{X}_n\sqrt{n}}{\sigma} > Z_{1-\alpha} = \Phi^{-1}(1-\alpha)$.

Case 1: $\theta_1 < 0$.

Our likelihood ratio test becomes $\frac{\bar{X}_n\sqrt{n}}{\sigma}<\tilde{\tilde{k}}$ for some constant $\tilde{\tilde{k}}$. In order for (i)(a) to hold, we need $\tilde{\tilde{k}}=Z_\alpha=\Phi^{-1}(\alpha)$.

Thus, the MP level α test is Reject if $\frac{\bar{X}_n\sqrt{n}}{\sigma} < Z_{\alpha} = \Phi^{-1}(\alpha)$.

Some comments are in order:

- 1. Note that for $\theta_1 > 0$, the MP level α test does not depend on θ_1 ! Hence, in the normal model, for testing $H_0: \theta = 0$ vs. $H_1: \theta > 0$, the test we derived above is UMP level α . (The same is true for $H_0: \theta = 0$ vs. $H_1: \theta < 0$.)
- 2. However, for testing $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$, no UMP test exists!

Lecture 12: November 8

12.1.1.2 Example: Discrete setting

Let X take on only values in $\{1, 2, 3, 4, 5\}$, and define probability distributions P_0 and P_1 by the following table:

x	1	2	3	4	5
$p_0(x)$	$^{1}/_{4}$	$^{1}/_{100}$	$^{1}/_{100}$	$^{3}/_{100}$	$^{7}/_{10}$
$p_1(x)$	$^{1}/_{2}$	$^{1}/_{10}$	$^{2}/_{100}$	$^{5}/_{100}$	$^{33}/_{100}$

We are looking at $H_0: X \sim P_0$ vs. $H_1: X \sim P_1$, with $\alpha = 0.05$. As a first step, we compute the likelihood ratios:

x	1	2	3	4	5
$\frac{p_1(x)}{p_0(x)}$	2	10	2	$^{5}/_{3}$	$^{33}/_{70}$

We look at the likelihood ratios from biggest to smallest. If X=2 is in the rejection region, then $\mathbb{E}_0\varphi(X)=\frac{1}{100}$ is still within our "budget".

Next, we look at the likelihood ratio 2. We can't include both X = 1 and X = 3 in the rejection region as that would push $\mathbb{E}_0\varphi(X)$ far above α . We could have a randomized test to take care of this.

If we wanted a non-randomized test, the best test would be to reject if X = 2, 3, or 4, even though X = 1 has a higher likelihood ratio than X = 4. The Neyman-Pearson Lemma tells us that we can find a (randomized) test with better power than this.

12.1.2 p-values

Definition 12.7 For non-randomized tests in general, let S_{α} be the rejection region for a level α test. Assume that $S_{\alpha} \subseteq S_{\alpha'}$ if $\alpha' > \alpha$.

Then the p-value is given by

$$\hat{p} := \int_{\alpha} \{ X \in S_{\alpha} \}.$$

Intuitively, a p-value is the smallest value of α leading to a rejection of H_0 if X is observed.