Math 416: Abstract Linear Algebra

Date: Oct. 17, 2025

Lecture: 20 We're haif way there!

Announcements

- □ HW6 is due Fri, Oct. 17 @ Spm
- □ practice exams available today @ 5pm
- A Midterm 2: Fri, Oct 24 @ 1pm

Last time

A Rigenvais/vecs, polynomials of operators

This time

- Existence of elgenvais & opper-triangular matrices

 Reading/watching
- # 95B/C of Axier & Down w/ determinants!
- # 3 blue 1 brown eigenvais

We are approximately half way through the coorse

The author's top ten

Listed below are the author's ten favorite results in the book, in order of their appearance in the book. Students who leave your course with a good understanding of these crucial results will have an excellent foundation in linear algebra.

- any two bases of a vector space have the same length (2.34) \checkmark
- fundamental theorem of linear maps (3.21) \checkmark
- existence of eigenvalues if F = C (5.19) $\frac{1}{2}$
- upper-triangular form always exists if F = C(5.47) today ξ monday
- Cauchy–Schwarz inequality (6.14)
- Gram–Schmidt procedure (6.32)
- spectral theorem (7.29 and 7.31)
- singular value decomposition (7.70)
- generalized eigenspace decomposition theorem when F = C (8.22)
- dimension of alternating *n*-linear forms on *V* is 1 if dim V = n (9.37)

Before proving eigenvalues exist, we need to recall two earlier results!

Thm 4.13 (fund turn of aigebra, Second version)

If $p \in P(\mathbb{C})$ is a non-constant polynomial, then p has a unique factorization of the form $p(z) = C(z-\lambda_1)\cdots(z-\lambda_m)$ where $C_1\lambda_1\ldots\lambda_n\in\mathbb{C}$

where $C_1 \lambda_1, ..., \lambda_m \in \mathbb{C}$ Zeros of P

Coeff. of Z^m in P

Prop 5.7 (Equiv. conditions to be an eigenvalue) Suppose $\dim V \wedge \infty$, $T \in L(V)$, $\in \lambda \in F$. Then the following are all equivalent:

- a) λ is an eigenvoire of T
- b) T- λI is not injective
 - c) T-XI is not surjective
 - d) $T-\lambda I$ is not invertible

Thm 5.19 (Existence of eigenvalues)

Every operator on a finite-dim nonzero complex vector space has an eigenvalue.

Proof. Suppose V is a complex vector space w/ dim V = n >0 & T & L(v). Choose v & V s.l. V +0.

Then $\{V, TV, T^2V, ..., T^nV\}$ cannot be LI b/c dim V = n & this has n+1 vecs.

⇒ J ao,..., an not an zero s.t.

Moreover, note $a_1,...,a_n$ cannot a_1 be z_{00} bic that would imply $0:a_0v \Rightarrow a_0=0$ due to the assumption that $v\neq 0$.

Now, consider the polynomial

 $\alpha_0 + \alpha_1 Z + \cdots + \alpha_n Z^n = C(Z - \lambda_1) \cdots (Z - \lambda_n)$ $C_1 \lambda_1 \in C \forall i \qquad m \leq n$

We may the write (*) as $0 = a_0 v + a_1 T v + \cdots + a_n T^n v$ $= (a_0 + a_1 T + \cdots + a_n T^n) v$ $= C (T - \lambda_1 I) \cdots (T - \lambda_m I) v$

What does this ten us? Wen, C \$0 otherwise the polynomial would be Zero (contradicting the assumption) and V\$0 also by assumption...

Thus, there must exist a j ∈ {1,...,m}.
S.L.

$$(T-\lambda_j I)V = 0$$

 \Rightarrow $T - \lambda_j I$ is not injective

=> 7; is an eigenvalue of T >> by Axier 5.7

Note: this proof is actually from version 3 of LADR by Axier. See also his article "down with determinants"

Opper-trianquier matrices

Operators correspond to square motrices

$$A := \mathcal{M}(T) = \begin{pmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & \ddots & \vdots \\ A_{N1} & \cdots & A_{NN} \end{pmatrix}$$

Y TELCUI wi dimV=n.

T (x,y,z) = (2x+y,5y+3z,8z).

What is the matrix of T wisit.

the Standard basis?

$$M(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$$

In general matrices will consist of n² Hs. A central goal of LA is to find bases s.t. M(T) was many zvos....

We know arready that we can find a basis s.t. M(T) looks like

$$\begin{pmatrix} \lambda & & \\ \circ & & \\ \vdots & & \end{pmatrix}$$

When TELCUI for complex V.

"proof! Let I be an elgenvalue of T

(aways exists!) and let V be

the corresponding eigenvector. Extend

V to a basis. M(T) w.r.t this

basis has the above form.

We can often de better!

A madrix $A \in M_n(F)$ is carred upper-triangular if $A_{ij} = 0$ whenever is j. That is,