Diplôme : Licence SPI 3^{ème} année 2021-2022

Atelier 2 : Fonctions et paramètres

- Fonctions renvoyant un résultat
- Fonctions paramétrées

Enseignants : Paul-Antoine BISGAMBIGLIA, Marie-Laure NIVET, Evelyne VITTORI

EXERCICE 1 - Fonction chaîne de caractère : Calcul d'IMC

1. Définissez une fonction message_imc qui admet en paramètre un nombre réel représentant l'indice de masse corporelle (IMC) d'une personne et renvoie une chaine de caractère correspondant à l'interprétation de cet imc selon le tableau cidessous.

IMC	Interprétation
< 16,5	dénutrition ou famine
16,5 à 18,5	maigreur
18,5 à 25	corpulence normale
25 à 30	surpoids
30 à 35	obésité modérée
35 à 40	obésité sévère
plus de 40	obésité morbide

- 2. Définissez une fonction de test réalisant plusieurs appels successifs de votre fonction message imc.
- 3. Lancez vos tests en invoquant votre fonction de test

EXERCICE 2 - Fonction booléenne : Année bissextile

Une année est bissextile si elle est divisible (par 4 et non par 100) ou par 400. Définissez une fonction est_bissextile qui prend en paramètre un nombre entier représentant une année et renvoie un booléen indiquant si l'année considérée est bissextile ou non.

<u>Indication</u>: Pour savoir si un nombre x est divisible par 4 (par ex), il suffit de tester que le reste de sa division par 4 est égal à 0. L'opérateur modulo (noté % en python) fait cette opération. Ainsi si x%4==0, cela signifiera que x est divisible par 4.

Comme pour l'exercice 1 définissez une fonction de test contenant des tests pertinents.

EXERCICE 3 - Résolution d'une équation du second degré ax²+bx+c

On souhaite écrire un programme qui permette la résolution d'une équation du second degré de la forme $ax^2+bx+c=0$ avec a,b,c réels et $a\neq 0$.

Les solutions de cette équation s'appellent des racines.

- 1. Définissez une fonction discriminant(a,b,c) qui admet en paramètre trois réels a,b et c et renvoie le discriminant calculé $\Delta = b^2 - 4ac$.
- 2. Définissez une fonction racine_unique(a,b) qui admet en paramètre deux réels a et b et renvoie la valeur $x = \frac{-b}{2a}$.
- 3. Définissez une fonction racine double(a,b,delta,num) qui admet en paramètre deux réels a et b, un réel delta représentant le discriminant de l'équation et un entier num représentant le numéro de la racine. Si num=1, la fonction renvoie la valeur de la racine (solution) numéro 1 $x1 = \frac{-b + \sqrt{\Delta}}{2a}$ et si num=2, la valeur de la racine numéro $2 x2 = \frac{-b - \sqrt{\Delta}}{2a}.$
- 4. Définissez une fonction str equation(a,b,c) qui admet en paramètre trois réels a,b et c et renvoie une chaine de caractères représentant la chaine "ax2 +bx+c=0" (format d'affichage)

Exemples

str(equation(2,3,4)) renvoie la chaine $2x^2 + 3x + 4 = 0$ str(equation(1,0,4)) renvoie la chaine $x^2+4=0$ str(equation(-1,1,-4)) renvoie la chaine -x2+x-4=0

- 5. Définissez une fonction solution equation(a,b,c) qui admet en paramètre trois réels a,b et c et renvoie une chaine de caractères représentant un message de la forme:
 - "Solution de l'équation ax2+bx+c=0 Pas de racine réelle" si l'équation n'a pas de solution réelle
 - "Solution de l'équation ax2+bx+c=0 Racine unique : x = ...
 - "Solution de l'équation ax2+bx+c=0 Deux racines: x1 = ...x2= ... "
- 6. Définissez une procédure equation(a,b,c) qui admet en paramètre trois entiers a,b et c et affiche la ou les solutions de l'équation ax^2+bx+c ou le message "aucune solution réelle".
- 7. Définissez une fonction de test réalisant plusieurs appels successifs de votre fonction équation correspondant à des jeux de test pertinents

Principe de résolution de l'équation ax²+bx+c=0

Calcul du discriminant. $\Delta = b^2 - 4ac$

Si Δ < 0 pas de racine réelle

Si Δ = 0, une racine unique $x = \frac{-b}{2a}$ Si Δ > 0, deux racines, $x1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x2 = \frac{-b - \sqrt{\Delta}}{2a}$

Attention : le discriminant ne devra être calculé qu'une seule fois.

EXERCICE 4 - Calculs de date

- 1. Définissez une fonction date_est_valide(jour,mois,annee) qui admet en paramètre trois entiers jour, mois et année et renvoie un booléen indiquant si la date est valide. *Nota-bene : utilisez la fonction est_bissextile de l'exercice 2*
- 2. Définissez une fonction **saisie_date_naissance**() qui. assure la saisie au clavier d'une date de naissance par la saisie de trois entiers annee, mois et jour et renvoie une valeur de type date.
- 3. Définissez une fonction **age(date_naissance)** qui prend en paramètre une date de naissance et renvoie un entier correspondant à l'âge de la personne à la date du jour.
- 4. Définissez une fonction **est_majeur(date_naissance)** qui renvoie True si l'individu est majeur à la date du jour et False dans le cas contraire.
- 5. Définissez une procédure **test_acces** () qui assure la saisie d'une date de naissance et affiche un message de la forme "Bonjour, vous avez .. ans, Accès autorisé " ou "Désolé, vous avez ..ans, Accès interdit" selon que l'individu est majeur ou non à la date du jour.
- 6. Testez vos différentes fonctions et procédures

Indications

 Les fonctions de manipulation de date sont incluses dans le module date du module datetime:

```
#à ajouter dans votre fichier de code
from datetime import date
```

- La date du jour est donnée par la fonction today :

aujourdhui=date.today()

- L'instruction date (2020, 9, 8) renvoie un objet de type date correspondant à la date du 08/09/2020
- Les attributs year, month et day permettent de récupérer respectivement l'année, le mois et le jour d'une variable de type date :

```
annee=madate.year...
```