Notes on "Optimal Bayesian Design for Model Discrimination via Classification"

- Setup
 - K candidate statistical models, one of them is true
 - Models indexed by M, a random variable in $\{1,\ldots,K\}$
 - For M = m, model is $p(y|\theta_m, m, d)$
 - * $y \in \mathcal{Y}$ is data vector
 - * $\theta_m \in \Theta_m$ is parameter vector
 - * $d \in \mathcal{D}$ is design vector, the variables governing the experiment
 - Prior on θ_m is $p(\theta_m|m)$, given for each possible model
 - Prior on m is p(m)
- Picking d. Can use loss function that might depend on m, θ_m , and y, write it as

$$l(d) = E_{\theta_m, y, M|d}[l(d, \theta_m, y, M)].$$

Optimal d is $d^* = \arg\min_{d \in \mathcal{D}} l(d)$. We want to use an l that captures entropy around the distribution of M (which we then minimize). So we want to pick a d, which produces data y, that leads to the most information about the distribution of M. This will help us pick the correct model.

- Choice of loss function.
 - Shannon entropy (MD stands for multinomial deviance).

$$l_{MD}: \begin{cases} \mathcal{D} \times \mathcal{Y} \to [0, \infty) \\ (d, y) \mapsto -\sum_{m=1}^{K} p(m|y, d) \log p(m|y, d) \end{cases}.$$

y is observed after the experiment, so we don't actually know l_{MD} . So we'll integrate it out: they rewrite l_{MD} as

$$l_{MD}(d) = -\int_{y} p(y|d) \sum_{m=1}^{K} p(m|y,d) \log p(m|y,d) dy$$

$$\stackrel{\text{Bayes' Rule}}{=} -\sum_{m=1}^{K} p(m) \int_{y} p(y|m,d) \log p(m|y,d) dy. \tag{1}$$

 Misclassification error rate. Use a loss matrix for all combinations of true and selected models:

$$l_{01}(d) = \int_{y} p(y|d) \sum_{m=1}^{K} p(m|y,d) \{1 - I[\widehat{m}(y|d) = m]\} dy$$
$$= \int_{y} p(y|d) \{1 - p[\widehat{m}(y|d)|y,d]\} dy, \tag{2}$$

where $\widehat{m}: \mathcal{Y} \to \{1, \dots, K\}$ is a classifier.

The loss functions above can be hard to compute analytically, so we can use Monte Carlo integration, by sampling from p(m|y, d). Some common issues:

- Need to draw a lot of samples from p(m|y,d)
- -p(m|y,d) is not always available and needs to be estimated
- The likelihood $p(y|\theta_m, m, d)$ is intractable
- Need a lot of data/Monte Carlo samples for reasonable accuracy

Some remedies:

- using conjugate priors so integrals can be computed analytically
- quadrature
- sequential Monte Carlo (only applicable to sequential experimental designs, where design space is small)
- Gaussian-based posterior approximation
- ABC

Some shortcomings of ABC are addressed by classification method.

• Classification approach. Consider the Monte Carlo integral of (2):

$$\widehat{l}_{01}(d) = 1 - \sum_{m=1}^{K} p(m) \frac{1}{J} \sum_{j=1}^{J} I[\widehat{m}(y^{m,j}|d) = m],$$
(3)

where $y^{m,j} \sim p(y|m,d)$ for $j \in \{1,\ldots,J\}$, $m \in \{1,\ldots,K\}$, and \widehat{m} is the Bayes classifier, which depends on p(m|y,d). As before, this has a few issues:

- Optimizing this loss function, we may need a high number of replicates J to estimate l with low variance.
- -p(y|m,d) may need to be estimated before sampling $y^{m,j}$.
- p(m|y,d) is hard to estimate when the likelihood $p(y|\theta_m,m,d)$ is difficult to compute.

Consider the following scheme: consider a sample $\mathcal{T} = \{m^j, y^j\}_{n=1}^J$ from

$$p(y, m|d) = \int_{\theta_m} p(y|\theta_m, m, d) p(\theta_m|m) p(m) d\theta_m,$$

then using \mathcal{T} to train a classifier $\widehat{m}_C: \mathcal{Y} \to \{1, \dots, K\}$ using \mathcal{T} . Using this classifier, and new data $\mathcal{T}_* = \{m_*^j, y_*^j\}_{j=1}^{J_*}$, the analogue of (3) would be

$$\widehat{l}_{01}(d) = 1 - \frac{1}{J_*} \sum_{j=1}^{J_*} I[\widehat{m}_C(y_*^j | d, \mathcal{T}) = m_*^j].$$

For intractable likelihoods, the number of samples J and J^* to approximate l_{01} are smaller than required by ABC. This scheme just requires being able to efficiently simulate from the K models. The misclassification error rate may not be well estimated, but we just require that the designs are ranked correctly according to \hat{l}_{01} . Classification methods can also be adapted to l_{MD} in (1), but estimates of the posterior over models can be poor. But we'll just focus on constructing a classifier that is order-correct, that is it assigns $\arg\max_{m} p(m|y,d)$ for each $y \in \mathcal{Y}$. That way, the misclassification rate for a classifier that is order correct except on a small subset of \mathcal{Y} will be still be close to the Bayes error rate.

- We use CART and not random forests since their posterior estimates \hat{p} may be 0 and thus the multinomial deviance would be ∞ .
- Since the loss function is evaluated many times, may need to trees just trained on training set, which may lead to over-fitting
 - * Again we just need the ranking of the designs to be correct

• Examples