11.5 Minimal Cost Spanning Trees problem

Input: An undirected, connected graph G = (V,E)Output: A undirected, connected Acyclic subgraph (Tree) $G_s = (V,E_s)$

- 1) has minimum total cost as measured by summing the values of all the edges in E_s , and
- 2) keeps the vertices connected.

MST的特点

- 1) $|\mathbf{E}_{s}| = |\mathbf{V}|$ -1, connected
- 2) G_s is not necessarily unique

52

Finding Minimum Spanning Trees

- Prim's algorithm(普里姆算法)
- Kruskal's algorithm(克鲁斯卡尔算法)

54

Application example

A minimum spanning tree will provide the optimal solution for road building

53

- 53

55

Prim's algorithm(普里姆算法)

- start with an arbitrary vertex to be the root of a trivial tree
- expand by adding vertices not already in the tree which can be added most cheaply

在生成树的构造过程中, |V| 个顶点 分属两个集合: 已落在生成树上的顶 点集 U 和尚未落在生成树上的顶点集 V-U, 每次从所有连接U中顶点和V-U中顶点的边中选取权值最小的边。

56

```
Prim's MST Algorithm
void Prim( GraphL * G, int* D, int s, Graph* Gmst) {
  int V[G->n()]; //V 存放U中与各顶点连接边权值最小的顶点, D存放那个最小权值
  int i, w;
  for (i=0; i<G->n(); i++) { // inital
    V[i]=s; D[i]=G->weight(s,i);
     G->setMark(i, UNVISITED); }
                                              Cost: O(|V|^2+|E|)
  V[s]=-1; G->setMark(s, VISITED);
  for (i=0; i<G->n(); i++) {
                            // Do vertices
    int v=minVertex(G, D); //获取代价最小顶点, 即连接U中顶点和V-U中顶
  点的所有边中权值最小边对应的V-U中顶点
    G->setMark(v, VISITED);
    if (v != s) Gmst->setEdge(V[v], v, D[v]);
    if (D[v] == INFINITY) return;
    for (w=G->first(v); w<G->n(); w=G->next(v,w)) //update V and D
        if (D[w] > G->weight(v,w)) {
          D[w] = G-> weight(v,w); // Update D
          V[w] = v; // Update who it came from
```


57

59

```
Prim's MST Algorithm(continue)
```

For minVertex, you can use a heap to acquire an efficient implementation.

Kruskal算法

基本思路:为使生成树上边的权值之和达到最小,则应使生成树中每一条边的权值尽可能地小。

a min-heap

Total cost: O(|V| + |E| log |E|)

60

60

61

11.5 Shortest Paths Problems

11.5.1 Shortest Paths Problems

11.5.2 Single-Source Shortest Paths

11.5.3 All-Pairs Shortest Paths

33

Shortest Paths Problems(2)

Input: a weighted graph. (Adjacency Matrix or List)

Output: the shortest path (the list of edges) between two vertices and the weighted length of the shortest path(distance of two vertices).

Typical shortest paths problems in a graph:

- 1. Find shortest path between two named vertices
- 2. Find shortest path from vertex s to all other vertices **Single-Source Shortest Paths**
- 3. Find shortest path between all pairs of vertices

65

67

11.5.2 Single-Source Shortest Paths

Given start vertex s, find the shortest paths from s to all other vertices.

Application example:

Dijkstra's algorithm

message broadcast in Computer networks

Two notations:

 $d(v_1,v_2)$: the distance from vertex v_1 to v_2 if no path from v_1 to v_2 , $d(v_1,v_2) = \infty$;

 $\mathbf{w}(\mathbf{v}_1,\mathbf{v}_2)$: the weight of edge $(\mathbf{v}_1,\mathbf{v}_2)$, if no edge between v_1 and v_2 (v1 \neq v2), $w(v_1,v_2) = \infty$

单源最短路泾—Dijkstra算法思路(1)

按路径长度的递增次序,逐步产生最短路径。

- 1. 求出长度最短的一条最短路径.
- 2. 参照(1)已求得的长度最短的最短路径求出长度次短 的一条最短路径,
- 3. 依次类推, 直到从顶点v到其它各顶点的最短路径全 部求出为止。

源点s

68

Dijkstra's Algorithm Example(1)

		Disk	k[]	Sta	rt v	ert	ex is 0	P	ath []
i k	0	1	2	3	4	lĺ	i k	0	1	
Initial	0	10	3	20	œ		Initial	0	0	(
1	0	5	3	20	18		1	0	2	(
2	0	5	3	10	18		2	0	2	(
3	0	5	3	10	18		3	0	2	(
4 final	0	-	2	10	10	1 i	4-final	0	/2	

i k	0	1	2	3	4
Initial	0	0	0	0	-1
1	0	2	0	0	2
2	0	2	0	1	2
3	0	2	0	1	2
4-final	0	2	0	1	2

	Mark[]						
)	i k	0	1	2	3	4	
	Initial	1	0	0	0	0	
	i = 1	1	0	1	0	0	
	2	1	1	1	0	0	
	3	1	1	1	1	0	
	4	1	1	1	1	1	

单源最短路泾— Dijkstra算法(2)

设置数组 Dist和Path, Dist[k] 用来存放从源点s到各顶点 k 的距离 d(s,k), Path[k]用来追踪s到 k的最短路径上的顶点。

- 1. 初始时,设置 Dist[k] = w(s,k), Path[k] = s (s,k邻接)或-1(不邻 接), mark[]=0, mark[s]=1, i=1; 若不同顶点s与k不邻接, 令Dist[k]=∞
- 2. for (i=1; i < |V|; i++)
 - 1) 从未标记顶点对应的Dist[k]中选择距离最小的那个顶点,记 为v,则v为第i条最短路径的顶点,更新 mark[v]=1;
 - 2) 修改与v邻接且未标记的各顶点对应的Dist[k]和 Path[k]; 若 Dist[v]+w[v][k] < Dist[k], 则 Dist[k] = Dist[v] + w[v,k], Path[k] = v;

最終Dist|k|中存放的就是从源s到顶点k的距离

Dijkstra's Algorithm Example (2)

Start vertex is 2 Disk[] Path []

i k	0	1	2	3	4
Initial	œ	2	0	œ	15
1	œ	2	0	7	15
2	œ	2	0	7	15)
3	8	2	0	7	15
4-final	œ	2	0	7	15

i k	0	1	2	3	4
Initial	-1	2	2	-1	2
1	-1	2	2	1	2
2	-1	2	2	1	2
3	-1	2	2	1	2
4-final	-1	2	2	1	2

Mark[]								
i k	0	1	2	3	4			
Initial	0	0	1	0	0			
1	0	1	1	0	0			
2	0	1	1	1	0			
3	0	1	1	1	1			
4	1	1	1	1	1			

```
Dijkstra's Implementation
// shortest path distances from s, return them in D and P
void Dijkstra(Graph* G, int* D, int * P, int s) {
 int i, k,v, w;
  for (k=0; k<G->n(); k++) { //初始化 D[], P[], Mark[]
    D[k] = G-> weight(s, k);
    if (D[k]==0) && (k!=s)) \{P[k]=-1; D[k]=INFINITY; \}
    else P[k] = s;
    G->setMark(k, UNVISITED);
                                            Cost: O(|V|^2 + |E|) = O(|V|^2)
  G->setMark(s, VISITED); // D[s]=0;
  for (i=1; i < G->n(); i++) { // Do vertices
    v = minVertex(G, D); if (D[v] == INFINITY) return;
    G->setMark(v, VISITED);
    for (w=G->first(v); w<G->n(); w = G->next(v,w)) //更新 D[], P[]
       if (D[w] > (D[v] + G->weight(v, w)))
         \{D[w] = D[v] + G > weight(v, w); P[w] = v; \}
```

72


```
Dijkstra's Implementation(con.)
int minVertex(Graph* G, int* D) { // Find min cost vertex
  int i. v:
  for (i=0; i<G->n(); i++) // Set v to an unvisited vertex
    if (G->getMark(i) == UNVISITED) { v = i; break; }
  for (i++; i<G->n(); i++) // Now find smallest D value
    if ((G->getMark(i) == UNVISITED) && (D[i] < D[v])) v = i;
  return v:
void printSPath(Graph* G, int* D, int * P, int s) {
int i.next:
for ( i=0; i<G->n(); i++) {
 if (D[i] == INFINITY && i!=s)
      cout << "v"<< i<<"

v"<<s<": no path"<<endl;
  else if (i!=s) {
      cout << "v" << i << "\lefta"; next = P[i];
      while(next!=s) { cout << "v" << next << "←"; next= P[next]; }
      cout << "v" << s << ":" << D[i] << endl; }
```


Dijkstra's Algorithm

也可用小堆(优先队列)来实现最短路径的逐步寻找 (minVertex), 具体程序见课本p380 Figure11.17

Cost: O((|V| + |E|)log(E))

Graph is sparse, heap-based is better

Cost: $O(|V|^2 + |E|) = O(|V|^2)$.

Graph is dense, using MinVertex is better

76

76

11.5.3 All-Pairs Shortest Paths

For every vertex $u, v \in V$, calculate d(u, v).

Method2: Floyd's Algorithm.

- > **Defination:** a *k*-path from *u* to *v*: any path whose intermediate vertices have indices less than *k*.
- ➤ For example
 - 1, 3 is a 0-path
 - 2, 0, 3 is a 1-path
 - 1, 0, 2, 3 is a 3-path
 - all path are 4-path

78

11.5.3 All-Pairs Shortest Paths

For every vertex $u, v \in V$, calculate d(u, v).

Method1: Run Dijkstra's Algorithm |V| times.

```
for(i=0; i<G->n(); i++)
{ Dijkstra(G, D, P, i); printSPath(G,D,P, i); }
```

 $O(|V|^3)$

//

. 77

Floyd's Algorithm

Floyd(弗洛伊德)算法: 从 v到 w 的所有可能存在的 路径中,选出一条长度最短的路径。

- *define Dk(v,w) to be the length of the shortest k-path from v to w.
- * assume that we already know all shortest k-path from any vertex v to any w
- *** the shortest (k+1)-path from v to w either goes through vertex k or not**
 - $\begin{tabular}{ll} \star if $D^k(v,w) > D^k(v,k) + D^k(k,w)$, then it go through k, it is the shortest k-path from v to k followed by the shortest k-path from k to w: \\ $D^{k+1}(v,w) = D^k(v,k) + D^k(k,w)$ \end{tabular}$
 - * Otherwise, it is not go through k, it equal to shortest k-path from v to w: $D^{k+1}(v,w)=D^k(v,w)$
- ❖ The final shortest |V|-path from v to w must be the shortest path from v to w_o

80

```
Floyd's Algorithm implementation(con.)

void printASPath (Graph * G, int **D, int **P) {
    for (int i=0; i<G->n(); i++) {
        for (int j=0; j<G->n(); j++) {
            if(i=j) continue;
            int next = P[i][j];
            if (next == -1) {
                 cout<< "v"<<i<" -> v"<<j<": no path"<<endl;
            continue;
            }
            cout<<"v"<<i;
            while (next!=j) { cout < "-->v"<<next; next=P[next][j]; }
            cout<<"-->v"<<j<": "<< D[i][j];
            }
        }
    }
}
```

```
Floyd's Algorithm implementation
void Floyd(Graph * G, int **D, int **P) { all-pairs shortest paths algorithm
  // D[G\rightarrow n()][G\rightarrow n()], P[G\rightarrow n()][G\rightarrow n()] to store distances and path
  int i, j, k;
  for (i=0; i<G->n(); i++) // Initialize
                                                     初始化D,P(D<sup>0</sup>, P<sup>0</sup>)
     for (j=0; j<G->n(); j++) {
        D[i][j] = G->weight(i, j);
        if (D[i][j]==0) && (j!=i) ) { P[i][j]=-1; D[i][j]=INFINITY; }
        else P[i][j] = j;
  for (k=0; k<G->n(); k++) // Compute all k paths
   for (i=0; i<G->n(); i++)
                                       更新D,P (D<sup>k+1</sup>, P<sup>k+1)</sup>),k=0,..|V|-1
       for (j=0; j<G->n(); j++)
          if(D[i][j] > (D[i][k] + D[k][j])) {
             D[i][j] = D[i][k] + D[k][j]; P[i][j] = P[i][k];
```


本章我们学到了

- 图的概念、术语及描述
- 图的遍历
 - > DFS and BFS
- 拓扑排序,DAG
 - based on DFS
 - based on BFS
- 最小生成树:连通无向加权图 → 最小权值树
 - > Prim's algorithm
 - **Kruskal's algorithm**
- 最短路径问题
 - ▶ 单源问题,Dijkstra's Algorithm
 - ▶ 任意两顶点之间的最短路径, Floyd's Algorithm

84

84

课后练习

1. Show the shortest paths from Vertex 4 to all other vertices by using Dijkstra's shortest-paths algorithm on the following left graph. Show the values of Dist[] as each vertex is processed.

0 2 4

2. Give out the topologic sort result of the above right graph using BFS based method. Be sure to display the Queue after each Enqueque and Enqueue.

All End

00

85

课后练习

1) List the order in which the edger of the given graph are added when running Kruskal's MST algorithm.

2) Show the final MST and compute its cost

87