

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3110</u> К	работе допущен Студент <u>Балтабаев Дамир Темиржанович</u>
Работа выполнен	ła
Преподаватель_	Коробков Максим Петрович
Отчет принят_	

Рабочий протокол и отчет по лабораторной работе №3.11v

Вынужденные электромагнитные колебания в последовательном колебательном контуре

Дата и время измерений: 26.03.2021, 16:58

1. Цель работы.

- Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
- Изучение закона Ома для цепи переменного тока.

2. Задачи, решаемые при выполнении работы.

Вычисление расчетных и экспериментальных значений резонансных частот.

Построение графиков амплитудно-частотных характеристик для напряжений на элементах цепи.

Расчет добротности контура.

3. Рабочие формулы и исходные данные.

$$\Omega_{qres} = \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}. \qquad U_{Cres} = \frac{q_0}{C} = \frac{I_0}{\Omega_0 C} = \frac{\mathcal{E}_0}{\Omega_0 RC}.$$

$$\begin{cases} \Omega_{Rres} = \Omega_0 = \frac{1}{\sqrt{LC}}; & \frac{U_{Cres}}{\mathcal{E}_0} = \frac{\sqrt{LC}}{RC} = \frac{1}{R}\sqrt{\frac{L}{C}} = Q. \\ \Omega_{Cres} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}; & Q(L, C, R) = \frac{1}{R}\sqrt{\frac{L}{C}}. \\ \Omega_{Lres} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; & \beta_{1,2} = \frac{R_{1,2}}{2L} \end{cases}$$

4. Измерительные приборы.

<u>No</u> n∕n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф	Электронный	-	0,00005 B

5. Схема установки

6. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1(R=1 Ом)

$\mathcal{N}_{\underline{0}}$	f, кГц	Ω, рад/с	U _C , B	U _L , B	U _R , B
1	10	62831,8531	5,024	0,0238	0,03157
2	16	100530,965	5,061	0,06139	0,05088
3	22	138230,077	5,117	0,11736	0,07074
4	28	175929,189	5,192	0,19294	0,09137
5	34	213628,3	5,289	0,28984	0,11302
6	40	251327,412	5,408	0,43751	0,13696
7	46	289026,524	5,555	0,5577	0,16066
8	52	326725,636	5,733	0,73628	0,18743
9	58	364424,748	5,946	0,94944	0,21687
10	64	402123,86	6,195	1,205	0,25005
11	70	439822,972	6,507	1,515	0,28663
12	76	477522,083	6,879	1,889	0,32907
13	82	515221,195	7,331	2,342	0,37853
14	88	552920,307	7,975	2,945	0,43901
15	94	590619,419	8,618	3,71	0,50986
16	100	628318,531	9,625	4,562	0,60793
17	106	666017,643	10,713	5,794	0,71809
18	112	703716,754	12,295	7,359	0,86888
19	118	741415,866	14,929	10,102	1,126
20	124	779114,978	18,246	13,49	1,439
21	130	816814,09	24,94	20,389	2,061
22	136	854513,202	30,977	29,021	3,101
23	142	892212,314	52,403	50,714	4,706
24	148	929911,425	53,085	54,177	4,894
25	154	967610,537	29,182	33,296	2,846
26	155,5	977035,315	26,263	30,474	2,579
27	157	986460,093	23,661	28,071	2,353
28	158,5	995884,871	21,512	26,021	2,16
29	160	1005309,65	19,687	24,262	1,995

Tаблица $2(R=3\ O_{M})$

№	f, кГц	Ω, рад/с	U _C , B	U _L , B	U _R , B
1	10	62831,8531	5,023	0,0238	0,09468
2	16	100530,965	5,058	0,06136	0,15257
3	22	138230,077	5,113	0,11727	0,21205
4	28	175929,189	5,185	0,19268	0,27373
5	34	213628,3	5,278	0,28925	0,33837
6	40	251327,412	5,392	0,40913	0,40676
7	46	289026,524	5,532	0,55532	0,48
8	52	326725,636	5,701	0,73144	0,55919
9	58	364424,748	5,9	0,94237	0,64578
10	64	402123,86	6,141	1,193	0,74152
11	70	439822,972	6,423	1,496	0,84885
12	76	477522,083	6,762	1,857	0,97052
13	82	515221,195	7,162	2,292	1,11
14	88	552920,307	7,686	2,839	1,274
15	94	590619,419	8,255	3,475	1,467
16	100	628318,531	8,987	4,285	1,699
17	106	666017,643	9,894	5,305	1,984
18	112	703716,754	11,024	6,604	2,337
19	118	741415,866	12,432	8,274	2,778
20	124	779114,978	14,139	10,402	3,321
21	130	816814,09	16,056	12,999	3,955
22	136	854513,202	17,752	15,741	4,578
23	142	892212,314	18,427	17,833	4,965
24	148	929911,425	18,899	18,522	4,999
25	154	967610,537	15,399	17,57	4,505
26	155,5	977035,315	14,808	17,229	4,374
27	157	986460,093	14,213	16,863	4,24
28	158,5	995884,871	13,625	16,481	4,104
29	160	1005309,65	12,977	16	3,946

 Ω , рад/с = $2\pi f*1000=2*\pi*10*1000=62831,8531$ рад/с

7. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

			Ω, рад/с		
R = 1 Ом	Ures, B	f, Гц	Экспериментальное	Теоретическое	
			значение	значение	
D D	4.004	1.40000	020011	912871	
Резистор R	4,894	148000	929911		
	72 00 7	1.40000	020011	910967	
Конденсатор С	53,085	148000	929911		
Катушка				914779	
индуктивности	54,177	148000	929911	, , , , ,	
L					
β	41666,7				
$Q_{ m экc.}$	10,617				
Q _{pac} .	10,9545				

Примеры расчетов:

$$\begin{split} \beta &= \frac{R_1}{2L} = \frac{1}{2*12*10^{-6}} = 41666,7 \\ \varOmega_{R_{res}} &= \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{12*10^{-6}*100*10^{-9}}} = 912871 \text{ рад/с} \\ \varOmega_{C_{res}} &= \varOmega_0 \sqrt{1 - 2\left(\frac{\beta}{\varOmega_0}\right)^2} = 912871 \sqrt{1 - 2\left(\frac{41666,7}{912871}\right)^2} = 910967 \text{ рад/с} \\ \varOmega_{L_{res}} &= \frac{\varOmega_0}{\sqrt{1 - 2\left(\frac{\beta}{\varOmega_0}\right)^2}} = \frac{912871}{\sqrt{1 - 2\left(\frac{41666,7}{912871}\right)^2}} = 914779 \text{ рад/с} \end{split}$$

$$Q_{3KC.} = \frac{C}{5} = \frac{53,085}{5} = 10,617$$

$$Q_{pac.} = \frac{1}{R_1} \sqrt{\frac{L}{C}} = \sqrt{\frac{L}{C}} = \sqrt{\frac{12*10^{-6}}{100*10^{-9}}} = 10,9545$$

			Ω, рад/с		
R = 3 Om	U _{res} , B	f, Гц	Экспериментальное	Теоретическое	
			значение	значение	
Резистор R	4,999	148000	929911	912871	
Конденсатор С	18,899	148000	929911	895591	
Катушка					
индуктивности					
L	18,522	148000	929911	930484	
β	125000				
Q _{экс.}	3,7798				
Q _{pac.}	3,65148				

Примеры расчетов:

$$\beta = \frac{R_2}{2L} = \frac{3}{2*12*10^{-6}} = 125000$$

$$\Omega_{R_{res}} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{12 * 10^{-6} * 100 * 10^{-9}}} = 912871 \text{ рад/с}$$

$$arOlimits_{C_{res}} = arOlimits_0 \sqrt{1 - 2 \left(rac{eta}{arOlimits_0}
ight)^2} = 912871 \sqrt{1 - 2 \left(rac{125000}{912871}
ight)^2} = 895591$$
 рад/с

$$arOlimins_{L_{res}} = rac{arOlimins_0}{\sqrt{1-2\left(rac{eta}{arOlimins_0}
ight)^2}} = rac{912871}{\sqrt{1-2\left(rac{125000}{912871}
ight)^2}} = 930484$$
 рад/с

$$Q_{\text{экс.}} = \frac{c}{5} = \frac{18,899}{5} = 3,7798$$

$$Q_{\text{pac.}} = \frac{1}{R_2} \sqrt{\frac{L}{C}} = \frac{1}{3} \sqrt{\frac{12*10^{-6}}{100*10^{-9}}} = 3,65148$$

8. Графики:

Рисунок 1. Амплитуда напряжения на модулях при R = 1 Ом.

Конденсатор

Катушка

Резистор

Значения резонансных частот

f	Ω, рад/с	U _C , B	U _L , B	U _R , B
154	967610,537	29,182	33,296	2,846
155,5	977035,315	26,263	30,474	2,579
157	986460,093	23,661	28,071	2,353
158,5	995884,871	21,512	26,021	2,16
160	1005309,65	19,687	24,262	1,995

Рисунок 2. Амплитуда напряжения на модулях при R = 3 Ом.

Конденсатор

Катушка

Резистор

Значения резонансных частот

f	Ω, рад/с	Uc, B	U _L , B	U _R , B
154	967610,537	15,399	17,57	4,505
155,5	977035,315	14,808	17,229	4,374
157	986460,093	14,213	16,863	4,24
158,5	995884,871	13,625	16,481	4,104
160	1005309,65	12,977	16	3,946

9. Результаты лабораторной работы:

- 1. Графики зависимостей $Ui=Ui(\Omega)$, где $i=C,L,R,\,\Omega=2\pi f$: Смотреть п.8
- 2. Теоретические расчеты резонансных частот и сравнение их с экспериментальными.

			Ω , рад/с		
R = 1 Ом	U _{res} , B	f, Гц	Экспериментальное	Теоретическое	
			значение	значение	
Резистор R	4,894	148000	929911	912871	
Конденсатор С	53,085	148000	929911	910967	
Катушка индуктивности L	54,177	148000	929911	914779	

			Ω, рад/с		
R = 3 Om	U _{res} , B	f, Гц	Экспериментальное	Теоретическое	
			значение	значение	
Резистор R	4,999	148000	929911	912871	
Конденсатор С	18,899	148000	929911	895591	
Катушка					
индуктивности					
L	18,522	148000	929911	930484	

Экспериментальные и теоретические значения сходятся.

3. Расчеты добротностей контуров Q. Сравнение полученных прямым вычислением и полученных экспериментально добротностей из графика $U_C = U_C(\Omega)$.

	R = 1 O _M
$Q_{ m экc.}$	10,617
Q _{pac.}	10,9545

$$\frac{Q_{\text{pac.}} - Q_{\text{экс.}}}{Q_{\text{pac.}}} * 100\% = \frac{10,9545 - 10,617}{10,9545} * 100\% = 3,1\%$$

	R = 3 Om
$Q_{ m экc.}$	3,7798
$Q_{ m pac.}$	3,65148

$$\frac{Q_{\text{pac.}} - Q_{\text{экс.}}}{Q_{\text{pac.}}} * 100\% = |\frac{3,65148 - 3,7798}{3,65148}| * 100\% = 3,5\%$$

Расчетные и экспериментальные показатели не совпадают, это связано с погрешностями при снятии измерений.

4. Расчеты коэффициента затухания β и оценка применимости формулы для $Q=\frac{\Omega_0}{\Delta\Omega}$ резонансной кривой $U(\Omega)$

	$R = 1 O_M$
$arOmega_0$	910967,1
$\Delta\Omega$	84823
Q	10,73962
β	41666,67

$$Q = \frac{\Omega_0}{\Delta\Omega} = \frac{910967,1}{84823} = 10,73962$$

	R = 3 OM
Ω_0	895591
$\Delta\Omega$	235619
Q	3,801
β	125000

$$Q = \frac{\Omega_0}{4\Omega} = \frac{895591}{235619} = 3,801$$

Значения добротности, полученные с помощью формулы $Q=\frac{\Omega_0}{\Delta\Omega}$ совпадают с теоретическими и экспериментальными результатами, что означает, что формула применима.

10. Вывод и результаты лабораторной работы:

В процессе выполнения данной лабораторной работы мной был изучен резонанс напряжений в последовательном колебательном контуре, было изучено понятие вынужденных колебаний, а также был изучен закон Ома для цепи переменного тока. С помощью виртуальной установки, мной были сняты измерения по определению зависимости амплитуды колебаний напряжения на конденсаторе, индуктивности и активном сопротивлении, от частоты генератора. С помощью полученных данных, мной были вычислены расчетные и экспериментальные значения резонансных частот, были построены графики амплитудно-частотных характеристик для напряжений на элементах цепи при двух различных значениях активного сопротивления, а также был произведен расчет добротности контура по формулам, в результате которого был установлен факт применимости формулы, указанной в методическом пособии.

Содержимое файла circuit-20210328-0135.circuitjs.txt:

\$ 4 3.125e-7 0.37936678946831776 50 5 50 5e-11

v 176 256 176 80 0 1 160000 5 0 0 0.5

c 176 80 336 80 0 1.00000000000000001e-7 -19.52424245682141 0.001

r 176 256 336 256 0 1

g 176 256 176 288 0 0

- o 3 1 0 4106 80 0.1 0 2 3 3
- o 1 1 0 4106 40 0.1 1 2 1 3
- o 2 1 0 4106 5 0.1 2 2 2 3
- $38\ 0\ 3\ 10000\ 160000\$ Свое\sназвание\sползунка