Основы машинного обучения

Как перевести часы в минуты?

Как перевести часы в минуты?

- х часы
- f(x) = 60x преобразование в минуты, функция

Какая сила приложена к телу?

- ullet Известны масса тела m и его ускорение a
- \bullet Чему равна сила F?

Какая сила приложена к телу?

- ullet Известны масса тела m и его ускорение a
- \bullet Чему равна сила F?
- Второй закон Ньютона: F = ma

Как предсказать погоду?

Уравнения Навье-Стокса

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{\partial x}{\partial x} + Re\left(\frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} + \frac{\partial u}{\partial z^2}\right),$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y}$$
 Позволяют найти скорость воздуха и давление в любой точке

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} +$$
 Очень тяжело решать

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$

- Какой эмоциональный окрас имеет текст?
- Варианты: позитивный, нейтральный, негативный
- Применение: автоматический анализ отзывов от пользователей

«Школа Топ очень добрые учителя,сильные классы,очень современный подход к каждому ученику во всех классах есть электронные доски всем советую эту школу »

Какой окрас?

«Гимназические классы только на бумаге сильные, очень посредственные дети и слабые педагоги, старше своих учеников на 5-10 лет. Новаторов 22а разительно слабее Крупской 12 и в образовательном плане, и по дисциплине.»

Какой окрас?

- х текст на русском языке
- f(x) его окрас (принимает значения -1, 0, 1)
- Можно ли выписать формулу для f(x)?

- На входе вовсе не числа
- Точная зависимость может не существовать

Больше сложных задач!

- Какой будет спрос на товар в следующем месяце?
- Сколько денег заработает магазин за год?
- Вернет ли клиент кредит?
- Заболеет ли пациент раком?
- Сдаст ли студент следующую сессию?
- На фотографии гуманитарий или технарь?
- Кто выиграет битву в онлайн-игре?

Больше сложных задач!

- Везде очень сложные неявные зависимости
- Нельзя решить аналитически
- Но есть некоторое число примеров
 - Тексты с известным окрасом
- Будем приближать зависимости, используя примеры

Машинное обучение

 это про то, как восстановить сложные зависимости по конечному числу примеров

Основные термины

Пример задачи

- Сеть ресторанов
- Хотим открыть еще один
- Несколько вариантов размещения
- Какой из вариантов принесет максимальную прибыль?

* см. kaggle.com, TFI Restaurant Revenue Prediction

Обозначения

- х объект для чего хотим делать предсказания
 - Конкретное расположение ресторана
- 🛚 пространство всех возможных объектов
 - Все возможные расположения ресторанов
- y ответ, целевая переменная, target что предсказываем
 - Прибыль в течение первого года работы
- У пространство ответов все возможные значения ответа
 - Все вещественные числа

Обучающая выборка

- Мы ничего не понимаем в экономике
- Зато имеем много объектов с известными ответами
- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- ℓ размер выборки

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Объекты абстрактные сущности
- Компьютеры работают только с числами
- Признаки, факторы, features числовые характеристики объектов
- d количество признаков
- $x = (x_1, ..., x_d)$ признаковое описание

- Про демографию:
 - Средний возраст жителей ближайших кварталов
 - Динамика количества жителей
- Про недвижимость:
 - Средняя стоимость квадратного метра жилья поблизости
 - Количество школ, банков, магазинов, заправок
 - Расстояние до ближайшего конкурента
- Про образцы тканей:
 - Уровни экспрессии разных генов в этой ткани

Алгоритм

- a(x) алгоритм, модель функция, предсказывающая ответ для любого объекта
- Отображает 🛚 в 🖺
- Линейная модель: $a(x) = w_0 + w_1 x_1 + \dots + w_d x_d$
- Например:

$$a(x) = 1.000.000 + 100.000 * (расстояние до конкурента) $-100.000 * (расстояние до метро)$$$

Функция потерь

- Не все алгоритмы полезны
- a(x) = 0 не принесет никакой выгоды
- Функция потерь мера корректности ответа алгоритма
- Предсказали \$10000 прибыли, на самом деле \$5000 хорошо или плохо?
- Квадратичное отклонение: $(a(x) y)^2$

Функционал ошибки

- Функционал ошибки, метрика качества мера качества работы алгоритма на выборке
- Среднеквадратичная ошибка (Mean Squared Error, MSE):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

• Чем меньше, тем лучше

Функционал ошибки

- Должен соответствовать бизнес-требованиям
- Одна из самых важных составляющих анализа данных

Обучение алгоритма

- Есть обучающая выборка и функционал ошибки
- ullet Семейство алгоритмов ${\mathcal A}$
 - Из чего выбираем алгоритм
 - Пример: все линейные модели
 - $\mathcal{A} = \{ w_0 + w_1 x_1 + \dots + w_d x_d \mid w_0, w_1, \dots, w_d \in \mathbb{R} \}$
- Обучение: поиск оптимального алгоритма с точки зрения функционала ошибки

$$a(x) = \arg\min_{a \in \mathcal{A}} Q(a, X)$$

Машинное обучение

• Не все задачи имеют такую формулировку!

- Обучение без учителя
- Обучение с подкреплением
- И т.д.

Машинное обучение

Что нужно знать

- 1. Как сформулировать задачу?
- 2. Какие признаки использовать?
- 3. Откуда взять обучающую выборку?
- 4. Как подготовить обучающую выборке?
- 5. Как выбрать метрику качества?
- 6. Как обучить алгоритм?
- 7. Как оценить качество алгоритма?
- 8. Как потом внедрить алгоритм и поддерживать его?