Optimization

Lusine Poghosyan

AUA

February 1, 2019

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and $f \in \mathbb{C}^2(\Omega)$, then f is convex if and only if

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \Omega.$$

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and $f \in \mathbb{C}^2(\Omega)$ such that $\nabla^2 f(x) \succ 0$, $\forall x \in \Omega$, then f is strictly convex.

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and $f \in \mathbb{C}^2(\Omega)$, then f is concave if and only if

$$\nabla^2 f(x) \leq 0, \quad \forall x \in \Omega.$$

Theorem

If $\Omega \subset \mathbb{R}^n$ is an open convex set and $f \in \mathbb{C}^2(\Omega)$ such that $\nabla^2 f(x) \prec 0$, $\forall x \in \Omega$, then f is strictly concave.

Example

Check whether f is convex (strictly convex), concave (strictly concave) on Ω if

a.
$$f(x_1, x_2, x_3) = x_1^2 + 3x_1x_2 + 4x_2^2 + x_3^2 - x_1x_3, \Omega = \mathbb{R}^3$$
;

b.
$$f(x_1, x_2) = -x_1^4 + 2x_1x_2 - x_2^4 - x_1^2 - x_2^2$$
, $\Omega = \mathbb{R}^2$;

c.
$$f(x_1, x_2) = e^{x_1 x_2}, \Omega = \mathbb{R}^2$$
;

d.
$$f(x_1, x_2) = x_1^3 + x_2^3$$
, $\Omega = \mathbb{R}^2$.