8–9. gyakorlat – Geometriai algoritmusok

2019. április 16.

1. Döntsük el az A = [0, 4], B = [2, 2], valamint a C = [0, 2], D = [3, 4] végpontokkal adott szakaszokról, hogy metszik-e egymást?

I. \overline{CD} átfogja-e \overline{AB} -t?

I/a) FORGÁSIRÁNY $(A, B, C) = \det \begin{pmatrix} \begin{bmatrix} 2 - 0 & 0 - 0 \\ 2 - 4 & 2 - 4 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ -2 & -2 \end{bmatrix} \end{pmatrix} = -4 < 0$

 $\Rightarrow \overrightarrow{AB}$ szakaszhoz képest a Ccsúcs jobbra fordulva érhető el

I/b) FORGÁSIRÁNY $(A, B, D) = \det \begin{pmatrix} \begin{bmatrix} 2 - 0 & 3 - 0 \\ 2 - 4 & 4 - 4 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 2 & 3 \\ -2 & 0 \end{bmatrix} \end{pmatrix} = 6 > 0$

 $\Rightarrow \overrightarrow{AB}$ szakaszhoz képest a D csúcs balra fordulva érhető el

II. \overline{AB} átfogja-e \overline{CD} -t?

II/c) Forgásirány $(C, D, A) = \det \left(\begin{bmatrix} 3 - 0 & 0 - 0 \\ 4 - 2 & 4 - 2 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 & 0 \\ 2 & 2 \end{bmatrix} \right) = 6 > 0$

 $\Rightarrow \overrightarrow{CD}$ szakaszhoz képest a Acsúcs balra fordulva érhető el

II/d) FORGÁSIRÁNY $(C, D, B) = \det \begin{pmatrix} \begin{bmatrix} 3 - 0 & 2 - 0 \\ 4 - 2 & 2 - 2 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \end{pmatrix} = -4 < 0$

 $\Rightarrow \overrightarrow{CD}$ szakaszhoz képest a Bcsúcs jobbra fordulva érhető el

I. és II. alapján kijelenthető, hogy az \overline{AB} és \overline{CD} szakaszok metszik egymást

1

- 2. Döntsük el az A=[0,4], B=[2,2], valamint a C=[1,0], D=[3,3] végpontokkal adott szakaszokról, hogy metszik-e egymást?
- I. \overline{AB} átfogja-e \overline{CD} -t?

$$I/a) \text{ Forgásirány}(C,D,A) = \det \left(\begin{bmatrix} 3-1 & 0-1 \\ 3-0 & 4-0 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \right) = 8+3>0$$

 $\Rightarrow \overrightarrow{CD}$ szakaszhoz képest a Acsúcs balra fordulva érhető el

I/b) FORGÁSIRÁNY
$$(C, D, B) = \det \begin{pmatrix} \begin{bmatrix} 3-1 & 2-1 \\ 3-0 & 2-0 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \end{pmatrix} = 6-3 > 0$$

- $\Rightarrow \overrightarrow{CD}$ szakaszhoz képest a B csúcs balra fordulva érhető el
- $\Rightarrow \overline{AB}$ nem fogja át a \overline{CD} -re illeszkedő egyenest, így \overline{AB} nem is metszheti \overline{CD} -t.
- 3. Hatékony algoritmussal határozzuk meg, hogy az alábbi szakaszok között található-e egymást metsző szakaszpár!

$$\overline{AB} = [(1,5), (4,4)]$$
 $\overline{CD} = [(2,5), (5,6)]$ $\overline{EF} = [(4,3), (8,7)]$ $\overline{GH} = [(4,7), (7,5)]$ $\overline{IJ} = [(5,3), (7,3)]$

Két szakasz összehasonlítása adott x koordináta mentén

 s_1 szakasz fölötte van s_2 -nek x-nél $(s_1 \succ_x s_2)$, ha az s_1 szakasz y-koordinátája nagyobb az s_2 szakasz y-koordinátájánál az adott x koordináta mentén. Pl. $\overline{GH} \succ_4 \overline{EF}$.

Rendezzük a szakaszok végpontjait x-koordinátájuk szerint. A holtversenyeket a szakaszok kezdőpontjainak végpontjainak elé sorolásával döntsük el. Az esetleges további holtversenyeket a kisebb y-koordinátájú pontok nagyobbak elé sorolásával oldjuk föl. Eredmény: A, C, E, G, B, I, D, J, H, F

A szakaszokat tartalmazó kiegyensúlyozott (itt most AVL^1) keresőfa állapotai a seprőegyenes (s_i) haladása szerint.

¹Hf.:piros-fekete fával is végignézni

1. s_1 mentén

(a) Be(AB)

Metszi-e \overline{AB} a fabeli megelőzőjét vagy rákövetkezőjét?

2. s_2 mentén

(a) Be(CD)

Metszi-e \overline{CD} a fabeli megelőzőjét vagy rákövetkezőjét?

3. s_3 mentén

(a) Be(EF)

Metszi-e \overline{EF} a fabeli megelőzőjét vagy rákövetkezőjét?

(b) Be(GH)

Metszi-e \overline{GH} a fabeli megelőzőjét vagy rákövetkezőjét?

(c) Ki(AB)

Metszi-e egymást \overline{AB} fabeli megelőzője és rákövetkezője?

4. s_4 mentén

(a) Be(IJ)

Metszi-e \overline{IJ} a fabeli megelőzőjét vagy rákövetkezőjét?

(a) Ki(CD)

Metszi-e egymást \overline{CD} fabeli megelőzője és rákövetkezője?

4. Határozzuk meg a (1,2), (1,4), (3,3), (4,6), (5,0), (5,3), (5,5), (7,5) pontok konvex burkát Graham-féle pásztázással, illetve Jarvis meneteléssel!

Graham-féle pásztázás

- I. lépés: csúcsok polárszög szerinti rendezése: A,E,F,C,H,G,D,B.
- II. lépés: a konvex burok csúcsait nyilvántartó verem fenntartása.
 - 1. S₀=[A,E,F] (ekkor még nem kell forgásirányt számoljunk)
 - 2. Forgásirány(E,F,C) $S_1=[A,E,F,C]$
 - 3. FORGÁSIRÁNY(F,C,H), FORGÁSIRÁNY(E,F,H), FORGÁSIRÁNY(A,E,H) $S_2=[A,E,H]$
 - 4. FORGÁSIRÁNY(E,H,G) $S_3=[A,E,H,G]$
 - 5. FORGÁSIRÁNY(H,G,D), FORGÁSIRÁNY(E,H,D) $S_4=[A,E,H,D]$
 - 6. ForgásIrány(H,D,B) $S_5=[A,E,H,D,B]$

Jarvis menetelés

- I. lépés: legyen P a legbaloldalibb x-koordinátájú pont (a pontok $O(n \log n)$ -es rendezésére nincs szükség)
- II. lépés: amíg vissza nem érünk az elsőnek kiválasztott pontba válasszuk ki azt a Q pontot, amelyre FORGÁSIRÁNY(P,R,Q)>0 minden R-re Adjuk hozzá Q-t a konvex burokhoz P=Q

1. iteráció	2. iteráció	3. iteráció	4. iteráció	5. iteráció
FI(A,A,B)=0	FI(B,A,C)=4	FI(D,A,E)=22	FI(H,A,A)=0	$\overline{\mathrm{FI}(\mathrm{E,A,F})} = -12$
FI(A,B,B)=0	FI(B,B,C)=0	FI(D,B,E)=20	FI(H,B,A)=12	FI(E, B, A)=8
FI(A,C,B)=4	FI(B,C,C)=0	FI(D,C,E)=9	FI(H,C,A)=0	FI(E, C, A)=8
FI(A,D,B)=6	FI(B,D,C)=-7	FI(D,D,E)=0	FI(H,D,A)=15	FI(E, D, A)=22
FI(A,E,B)=8	FI(B,E,D)=20	FI(D,E,E)=0	FI(H,E,A)=-24	FI(E, E, A)=0
FI(A,F,B)=8	FI(B,F,D)=11	FI(D,F,E)=-3	FI(H,F,E)=6	FI(E, F, A)=12
FI(A,G,B)=8	FI(B,G,D)=5	FI(D,G,F)=-2	FI(H,G,E)=10	FI(E, G, A)=20
FI(A,H,B)=12	FI(B,H,D)=9	FI(D,H,G)=-2	FI(H,H,E)=0	FI(E, H, A)=24
$B \in CH$	$D \in CH$	$H \in CH$	$E \in CH$	$A \in CH$

1. táblázat. Jarvis menetelése során kiszámított forgásirányok

5. Döntsük el az előző feladat ponthalmazához tartozó zárt nemmetsző poligonjához képest az I=(6,4) pont belül vagy kívül helyezkedik-e el!

A zárt nem metsző poligon a csúcsok polárszög szerinti rendezésének sorrendjében való összekötésével megkaphatjuk. Válasszunk egy garantáltan poligonon kívüli K pontot, és vizsgáljuk \overline{IK} -nak a poligon oldalaival való metszéspontjainak az m számát.

