Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра информатики, вычислительной техники и информационной безопасности

« »		2024 г.
Преподаватель	<i>C.B.</i>	Умбетов
Отчёт защищен с оценкой	· ·	

Отчет по лабораторной работе №2 По дисциплине «Программирование» «Линейный вычислительный процесс»

ЛР 09.03.03.32.001

Студент группы	В. А. Воронков	
	ассистент. к. т. н.	С. В. Умбетов

Лабораторная работа №2

π υ υ	U	
Линеиныи	вычислительный	пронесс
·		

Цели и задачи работы: изучение функций ввода-вывода данных, программирование вычисления значения выражения.

Задание к работе: реализовать линейный вычислительный процесс.

Самостоятельно решить задачу в соответствии с индивидуальным вариантом.

Задание принял:

Ход работы

Задание 1: Напишем блок схему для решения задачи 1, которая представлена в варианте 5.

Рисунок 1 - Блок-схема для вычисления площади S и объёма куба V при заданной длине ребра куба cube edge

Напишем код программы с среде Microsoft Visual Studio Code.

```
D: > Вадик > JS > voronkov_pie32_a > JS 1_задание.js > ...

1  /*Дана длина ребра куба а. Найти объем куба V = а3 и площадь его поверхности S = 6·a2.*/

2  let a = prompt("Введите длину pe6pa куба в см: "); //а - длина ребра, prompt - функция для ввода данных с клавы

3  a = parseFloat(a) //parseFloat - функция для перевода данных из типа string в тип number

4  let S = (a ** 2) * 6; //S - площадь

5  let V = a ** 3; //V - объём

6  alert('Площадь куба = ' + S + ' см^2, ' + 'Объём куба = ' + V + ' см^3');
```

Рисунок 2 – Код для нахождения площади куба S и объёма куба V

Проведём тестирование написанной программы и проверим работу Visual Studio Code с помощью Excel. Ниже представлено сравнение работы консоли и результатов в Excel.

Таблица 1 – Сравнение результатов задания 1

Номер опыта	Входные данные	Выходные данные	Выходные данные
			проверки

1	4	96, 64	96, 64
2	5	150, 125	150, 125
3	6	216, 216	216, 216
4	7	294, 343	294, 343
5	8	384, 512	384, 512

Рисунок 3 – Тестирование кода 1

Рисунок 4 – Проверка 1 в Excel

Рисунок 5 — Тестирование кода 2

D3	· ·	$\times \checkmark fx$ =\$	B3^3		
	А	В	С		D
1	Номер Теста:	Длина ребра куба	Площадь куба		Объём куба
3	2	5		150	125

Рисунок 6 – Проверка 2 в Excel

Рисунок 7 – Тестирование кода 3

C4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	А	В	С		D
1	Номер Теста:	Длина ребра куба	Площадь куба		Объём куба
4	3	6		216	216

Рисунок 8 – Проверка 3 в Excel

Рисунок 9 – Тестирование кода 4

Рисунок 10 – Проверка 4 в Excel

Рисунок 11 – Тестирование кода 5

Рисунок 12 – Проверка 5 в Excel

Рисунок 13 – Проверка html файла валидатором

Задание 2: Напишем блок схему для решения задачи 2, которая представлена в варианте 5.

Рисунок 14 — Блок-схема для вычисления остатка от деления Напишем код программы с среде Microsoft Visual Studio Code.

```
D: > Вадик > J5 > voronkov_pie32_a > J5 2_задание.js > ...

1 /*Даны целые положительные числа А и В (А > В). На отрезке длины А размещено максимально возможное количество отрезков длины В (без наложений).

2 | Используя операцию взятия остатка от деления нацело, найти длину незанятой части отрезка А. */

3 | let A = prompt("Введите длину отрезка А в см: ");

4 | let B = prompt("Введите длину отрезка В в см: ");

5 | A = parseFloat(A);

6 | B = parseFloat(B);

7 | let Remainder = A % B;

8 | alert[("Остаток от деления отрезка В на отрезок В: ' + Remainder + ' см')]
```

Рисунок 15 – Код для нахождения остатка при делении

Так же, как в задании 1, проведем проверку кода.

Таблица 2 – Сравнение результатов задания 2

Номер опыта	Переменные	Решение в Excel	Решение кода
1	7, 5	2	2
2	65, 25	15	15
3	7, 2	1	1
4	88, 22	0	0

Рисунок 16 – Тестирование кода 1

Рисунок 17 – Проверка 1 в Excel

Рисунок 18 – Тестирование кода 2

Рисунок 19 – Проверка 2 в Excel

Рисунок 20 – Тестирование кода 3

D4	D4 \checkmark : $\times \checkmark f_x$ =OCTAT(\$B4;\$C4)			
	А	В	С	D
1	Номер теста:	Α	В	Остаток длины А:
4	3	7	2	1

Рисунок 21 – Проверка 3 в Excel

Рисунок 22 – Тестирование кода 4

Рисунок 23 – Тестирование 4 в Excel

Рисунок 24 – Тестирование кода 5

D6	5 ~	$= \times \sqrt{f_x}$ =OCTAT(\$B6;\$C6)			
	А	В	С	D	
1	Номер теста:	Α	В	Остаток длины А:	
6	5	5	1	0	

Рисунок 25 – Проверка 5 в Excel

Q Поиск
□ Image: Open control of the co

Рисунок 26 – Проверка html файла валидатором

Вывод

В ходе лабораторной работы я изучил типы данных в JS, команды prompt, alert, parseFloat, комментарии, переменные (let, const, var), ввод данных с клавиатуры, математические операции, операторы сравнения, логические операции. Возникли трудности с отчётом, так как я его делал 6 часов, а задание выполнил за 5 минут.

Ссылка на GitHub: https://github.com/Red0F/voronkov_pie32_a