別紙. 最小二乗法による実験式の求め方例題付

観測方程式が一次の方程式

$$y_i = ax_i + b$$
 $i = 1, 2, \dots, s$

であらわされるとき、そのa,bおよび確率誤差 E_a,E_b を求める.

正規方程式は

$$\sum x_i y_i = \sum (ax_i^2 + bx_i), \qquad \sum y_i = \sum (ax_i + b),$$

ゆえに

$$\sum x_i y_i = a \sum x_i^2 + \sum x_i, \qquad \sum y_i = a \sum x_i + sb,$$

この2式から

$$a = \frac{s \sum x_i y_i - \sum x_i \sum y_i}{s \sum x^2 - (\sum x_i)^2}, \qquad b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s \sum x^2 - (\sum x_i)^2}$$

で求められる.

また, a,b の重みは

$$w_{a} = \frac{s \sum x_{i}^{2} - (\sum x_{i})^{2}}{s}, \qquad w_{b} = \frac{s \sum x_{i}^{2} - (\sum x_{i})^{2}}{\sum x_{i}^{2}}$$

であるので、重みのある場合の確率誤差は

$$E = \pm 0.6745 \sqrt{\frac{\sum v_i^2}{(s - q)w}}$$

求め a,b た を次式に代入

$$y_i' = ax_i + b$$
$$v_i = y_i - y_i'$$

したがって、a, b の確率誤差はそれぞれ

$$E_a = \pm 0.6745 \sqrt{\frac{s}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}}, \qquad E_b = \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}}$$

となる.

例題.「棒のたわみによる Young 率の測定」

金属角棒の Young 率 E が(1)式で与えられる.

$$E = \frac{1}{4} \frac{l^3}{ab^3} \frac{Mg}{s} \tag{1}$$

ここで金属角棒の幅 a と厚さ b ,試料載台の二支点間の距離 l ,金属角棒の二支点間の中央へかけた分銅の質量 M とその時の金属角棒の微小なたわみ量 s , a は重力加速度である.

この実験では金属の微小なたわみ量 s を測定するために光の梃子を使用している。実験書 pp. 41-42 の「 \S 6. 光の梃子」を参照し、金属の微小なたわみ量 s は(2)式で与えられる。

※実験書とは記号・名称・表現が違う所が有るので注意すること.

$$S = \frac{L(c-d)}{2D} = \frac{LY}{2D} \tag{2}$$

ここで光の梃子の三脚が作る二等辺三角形の高さ L=I (実験書 p. 41 の図 II-12 光の梃子による測定を参照),光の梃子の鏡とスケール間の距離 D , c-d はスケールの読み取り値の変化量であり,Y は質量 M をかけたことによるスケールの読み取り値の変化量である. (1)式に(2) 式を代入すると

$$Y = \frac{1}{2} \frac{l^3 Dg}{ab^3 LE} M \tag{3}$$

(1) 式に(2) 式を代入した(3) 式によると、スケールの読み取りデータから得られる変化量 S はかけた分銅の質量 M に比例することが(3) 式より分かる. したがって、x=M,y=Y とすれば y=Ax+B のように一次式で表され、その直線の傾き A は

$$A = \frac{1}{2} \frac{l^3 Dg}{ah^3 LE} \tag{4}$$

となるので、この式から Young 率 E を求めることが出来る。分銅の質量 M となかかの読み取り値 Y について最小二乗法に基づく回帰計算を行ない、A 、B の最確値と確率誤差 r_A 、 r_B を算出し、グラフに回帰直線を図示する。分銅増加時のデータと分銅減少時のデータに有意な差があると判断した場合は別々に取り扱う。 (4) 式から Young 率 E は

$$E = \frac{1}{2} \frac{l^3 Dg}{ab^3 LA} \tag{5}$$

と表される. (5)式を用いて金属角棒毎に Young 率の最確値 E 及び確率誤差 r_E を算出する.

解.

表 1. に分銅の質量 x とそのスケールの読み取り値 y の測定データを示す. 測定データから傾き A と切片 Bを最小二乗法で求めるために x^2 及び xy を計算する.

x, v, x^2 , xv のそれぞれの合計を A 及び B の式に代入して, A, B を求める.

衣1. 分列ツ貝重とペーツン部の取り値											
番号	$\chi(g)$	y(mm)	$x^2(mm^2)$	xy(gmm)	y(mm)	v(mm)	$v^2(mm^2)$				
1	0	0.0	0	0.0	0.07	-0.07	0.0043				
2	200	8.0	40000	1600.0	8.23	-0.23	0.0526				
3	400	16.5	160000	6600.0	16.39	0.11	0.0115				
4	600	25.0	360000	15000.0	24.56	0.44	0.1968				
5	800	32.5	640000	26000.0	32.72	-0.22	0.0484				
6	1000	41.0	1000000	41000.0	40.88	0.12	0.0136				
7	1200	49.0	1440000	58800.0	49.05	-0.05	0.0022				
8	1400	57.0	1960000	79800.0	57.21	-0.21	0.0443				
9	1200	49.0	1440000	58800.0	49.05	-0.05	0.0022				
10	1000	41.0	1000000	41000.0	40.88	0.12	0.0136				
11	800	32.5	640000	26000.0	32.72	-0.22	0.0484				
12	600	25.0	360000	15000.0	24.56	0.44	0.1968				
13	400	16.5	160000	6600.0	16.39	0.11	0.0115				
14	200	8.0	40000	1600.0	8.23	-0.23	0.0526				
15	0	0.0	0	0	0.07	-0.07	0.0043				
合計	9800	401.0	9240000	377800		0.00	0.7030				

表1.分銅の質量とスクールの読み取り値

$$A = \frac{s\sum x_i y_i - \sum x_i \sum y_i}{s\sum x^2 - (\sum x_i)^2} = \frac{15 \times 37780.0 - 9800 \times 401.0}{15 \times 9240000 - 9800^2} = \frac{1737200}{42560000} = 0.040818 [\text{mm/g}]$$

$$B = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{9240000 \times 401.0 - 9800 \times 377800}{15 \times 9240000 - 9800^2} = \frac{2800000}{42560000} = 0.0000658 \text{ [mm]}$$

求めたA, Bを式 v' = Ax + B に代入し、表1のv'を求める.

残差v は、測定値y と計算値y' の差v = y - y'である。この残差の二乗を計算し、合計 $\sum v_i^2$ を求める。

$$\begin{split} E_A &= \pm 0.6745 \sqrt{\frac{s}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{15}{15 \times 9240000 - 9800^2} \times \frac{0.7030}{15 - 2}} \\ &= \pm 0.6745 \times \sqrt{\frac{15}{4250000} \times \frac{0.7030}{13}} = \pm 0.6745 \times \sqrt{0.0000003524 \times 0.05408} = \pm 0.00009312 \text{[mm/g]} \end{split}$$

$$E_B = \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{9240000}{15 \times 9240000} - 9800^2} \times \frac{0.7030}{15 - 2}$$

$$= \pm 0.6745 \times \sqrt{\frac{9240000}{4250000} \times \frac{0.7030}{13}} = \pm 0.6745 \times \sqrt{0.217105 \times 0.05408} = \pm 0.07308 \text{[mm]}$$

 $A = 0.040817 \pm 0.000931 \text{[mm/g]} = 0.040817 \pm 0.000931 \text{[m/kg]}$

$$B = 0.0000658 \pm 0.0731 \text{[mm]} = 0.0000658 \pm 0.0731 \text{[mm]} = (0.00658 \pm 7.31) \times 10^{-5} \text{[m]}$$

金属角棒の幅 a と厚さ b , 試料載台の二支点間の距離 l , 光の梃子の鏡とスケール間の距離 D , 光の梃子の三脚が作る二等辺三角形の高さ L を測定し、(5)式と $l \cdot D \cdot a \cdot b \cdot L \cdot A$ のそれぞれの確率誤差を求めて誤差伝播の法則を用いて、Young 率 E の最確値及び確率誤差を求める.

$$E = \frac{1}{2} \frac{l^3 Dg}{ab^3 LA} \tag{5}$$

図1. 分銅の質量と読み取り値

※配布資料の「グラフの書き方に関する注意点」を参照する.

例題. 「ねじり振子による針金の剛性率の測定(静的方法)」

剛性率 n は

$$n = \frac{360mglc}{\pi^2 \theta' r^4}$$

ただし、mは分銅の質量、g は重力加速度、l は針金の長さ、c は円盤の半径、 θ'' は回転角度、r は針金の半径である。ここで質量 m に対して回転角'の変化は直線的と考えられるので x=m 及び $y=\theta'$ とすると

$$y = ax + b$$

の一次式で表される. この直線の傾き a を求めれば, 剛性率 n は

$$n = \frac{360glc}{\pi^2 ar^4}$$

から剛性率nの最確値及び確率誤差を求めることが出来る。その場合,確率誤差は誤差伝播の法則を用いること。

※分銅増加時のデータと分銅減少時のデータに有意な差があると判断した場合は別々に取り扱う.

解. データと計算

表1. 質量 [g] と回転角 [°]

番号	質量(g), x	回転角増θ(°),y	回転角減θ(°),y	平均回転角 <i>θ</i> (°), <i>y</i>	χ^2	xy	<i>y</i> ′	v = y - y'	v^2
1	10	23.5	23.2	23.35	100	233.5	23.0864	0.2636	0.069504
2	20	30.4	30.1	30.25	400	605.0	29.9327	0.3173	0.100662
3	30	36.6	36.8	36.70	900	1101.0	36.7791	-0.0791	0.006255
4	40	43.6	43.3	43.45	1600	1738.0	43.6255	-0.1755	0.030784
5	50	50.7	50.2	50.45	2500	2522.5	50.4718	-0.0218	0.000476
6	60	57.0	57.1	57.05	3600	3423.0	57.3182	-0.2682	0.071921
7	70	63.9	63.4	63.65	4900	4455.5	64.1645	-0.5145	0.264757
8	80	70.7	70.6	70.65	6400	5652.0	71.0109	-0.3609	0.130255
9	90	78.1	77.9	78.00	8100	7020.0	77.8573	0.1427	0.020371
10	100	85.4	85.4	85.40	10000	8540.0	84.7036	0.6964	0.484922
合計	550			538.95	38500	35290.5		0.0000	1.179909

$$a = \frac{s \sum x_i y_i - \sum x_i \sum y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{10 \times 35290.5 - 550 \times 538.95}{10 \times 38500 - 550^2} = \frac{56482.5}{82500} = 0.684636$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{38500 \times 538.95 - 550 \times 35290.5}{10 \times 2680 - 550^2} = \frac{1339800}{82500} = 16.24$$

$$E_a = \pm 0.6745 \sqrt{\frac{s}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{10}{10 \times 38500 - 550^2} \times \frac{1.1799}{10 - 2}}$$

$$= \pm 0.6745 \times \sqrt{\frac{10}{82500} \times \frac{1.1799}{8}} = \pm 0.6745 \times \sqrt{0.000121212 \times 0.147489} = \pm 0.0042282 [^\circ/g]$$

$$E_b = \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{38500}{10 \times 38500 - 550^2} \times \frac{1.1799}{10 - 2}}$$

$$= \pm 0.6745 \times \sqrt{\frac{38500}{82500} \times \frac{1.1799}{8}} = \pm 0.6745 \times \sqrt{0.46666 \times 0.147489} = \pm 0.26235 [^\circ]$$

したがって

$$a = 0.6846 \pm 0.004228^{\circ}/g$$

$$b = 16.24 \pm 0.2624^{\circ}$$

これより、針金の長さ l 、針金の半径 r 、円盤の半径 c を測定すると

$$n = \frac{360glc}{\pi^2 ar^4}$$

の式より、剛性率を求めることが出来る.

図1. ねじり振子模式図

図 2. 質量 m [g] と回転角 θ [°]

例題. 「顕微鏡による板および液体の屈折率の測定」

ガラス板の屈折率は、顕微鏡により h_0 , h_1 , h_2 を測定することにより、次の式より求めることが出来る.

$$\mu = \frac{h_2 - h_0}{h_2 - h_1}$$

この式から

$$h_2 = \mu(h_2 - h_1) + h_0$$

 $h_2 e y$, $h_2 - h_1 e x$ とすると y = ax + bの一次式と考えることができる.

解.

表 1. h_0 , h_1 , h_2 の測定

亚 口	h_0	h_1	x	у	x * x	x * y	<i>y</i> ′	v	v^2
番号	[mm]	[mm]	$h_2 - h_1[mm]$	$h_2[mm]$	$[mm^2]$	$[mm^2]$	[mm]	y - y'[mm]	$\times10^8[mm^2]$
1	2.30	2.35	0.05	2.40	0.0025	0.1200	2.3909	-0.0091	8321
2	2.30	2.37	0.13	2.50	0.0169	0.3250	2.5088	0.0088	7730
3	2.30	2.40	0.17	2.57	0.0289	0.4369	2.5677	-0.0023	507
4	2.30	2.43	0.24	2.67	0.0576	0.6408	2.6709	0.0009	85
5	2.30	2.45	0.31	2.76	0.0961	0.8556	2.7741	0.0141	19880
6	2.30	2.50	0.36	2.86	0.1296	1.0296	2.8478	-0.0122	14894
7	2.30	2.52	0.42	2.94	0.1764	1.2348	2.9362	-0.0038	1420
8	2.30	2.54	0.50	3.04	0.2500	1.5200	3.0541	0.0141	20012
9	2.30	2.58	0.54	3.12	0.2916	1.6848	3.1131	-0.0069	4756
10	2.30	2.61	0.61	3.22	0.3721	1.9642	3.2163	-0.0037	1385
合計			3.33	28.08	1.4217	9.8117		0.0000	78990

$$a = \frac{s\sum x_i y_i - \sum x_i \sum y_i}{s\sum x^2 - (\sum x_i)^2} = \frac{10 \times 9.8117 - 3.33 \times 28.08}{10 \times 1.4217 - 3.33^2} = 1.47393$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s\sum x^2 - (\sum x_i)^2} = \frac{1.4217 \times 28.08 - 3.33 \times 9.8117}{10 \times 1.4217 - 3.33^2} = 2.317181$$

$$E_a = \pm 0.6745 \sqrt{\frac{s}{s\sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{10}{10 \times 1.4217 - 3.33^2} \times \frac{0.00078990}{10 - 2}}$$

$$= 0.011983$$

$$E_b = \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{1.4217}{10 \times 1.4217 - 3.33^2} \times \frac{0.00078990}{10 - 2}}$$
$$= 0.004518$$

$$a = 1.47393 \pm 0.011983 = 1.474 \pm 0.012$$

$$b = 2.317181 \pm 0.004518 = 2.317 \pm 0.005$$

スライドガラスの屈折率は

$$\mu = a = 1.474 \pm 0.012$$

また,

$$h_0 = b = 2.317 \pm 0.005$$

である.

図1. $x: h_2 - h_1 \ge y: h_2$ の関係

例題. 「ニュートン環によるレンズの曲率半径の測定」

ニュートン環の直径を測定し、レンズの曲率半径を求める.

 ν 汉、の曲率半径をR, 光源の光の波長を λ とし、第 k 番目のニュートン環の直径をDとすると

$$D^2 = 4\lambda Rk$$

から、ニュートン環の直径の二乗 D^2 は番号kに比例するので、kをx、 D^2 をyとすると、

$$y = Ax + B$$

の一次式における. この一次式の傾き A 及び切片 B を確率誤差を含めて最小二乗法を使って求め、

$$A = 4\lambda R$$

から曲率半径Rを求める.

解.

表 1. に測定した右側及び左側の暗環の読みを示し、その測定値の差から直径 D を求め、それを二乗する.

表 1. 右側及び左側の暗環の読みから直径の二乗を求める

	x=k	右(mm)	左(mm)	D(mm)	$y=D^2(mm^2)$
1	11	17.791	11.621	6.170	38.068900
2	12	17.931	11.441	6.490	42.120100
3	13	18.062	11.322	6.740	45.427600
4	14	18.184	11.185	6.999	48.986001
5	15	18.248	11.070	7.178	51.523684
6	16	18.349	10.928	7.421	55.071241
7	17	18.405	10.821	7.584	57.517056
8	18	18.528	10.704	7.824	61.214976
9	19	18.642	10.623	8.019	64.304361
10	20	18.745	10.525	8.220	67.568400
合計	155	182.885	110.240	72.645	531.802319

表 2. に x, y 及び x^2 , xy を計算する.

	x=k	$y=D^2(mm^2)$	x ²	xy(mm²)	y'(mm²)	v(mm²)	v ² (mm ⁴)
1	11	38.068900	121	418.757900	38.75670	-0.687797	0.473065
2	12	42.120100	144	505.441200	41.96193	0.158173	0.025019
3	13	45.427600	169	590.558800	45.16716	0.260443	0.067830
4	14	48.986001	196	685.804014	48.37239	0.613614	0.376522
5	15	51.523684	225	772.855260	51.57762	-0.053933	0.002909
6	16	55.071241	256	881.139856	54.78285	0.288394	0.083171
7	17	57.517056	289	977.789952	57.98808	-0.471021	0.221861
8	18	61.214976	324	1101.869568	61.19331	0.021669	0.000470
9	19	64.304361	361	1221.782859	64.39854	-0.094175	0.008869
10	20	67.568400	400	1351.368000	67.60377	-0.035366	0.001251
合計	155	531.802319	2485	8507.367409		0.000000	1.260966

表 2. x, y, x^2 , xy の値, y' の計算値, 残差 v, v^2

最小二乗法により、表2の合計の値を次式に代入して傾きA及び切片Bを求める.

$$A = \frac{s \sum x_i y_i - \sum x_i \sum y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{10 \times 8507.367 - 155 \times 531.802319}{10 \times 2485 - 155^2} = 3.20523[mm^2]$$

$$B = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{2485 \times 531.802319 - 155 \times 8507.367}{10 \times 2485 - 155^2} = 3.499169[mm^2]$$

求めた A, B を y' = Ax + B に代入して y' の計算値を求める. 残差 v を v = y - y' から求め、 残差の二乗を計算する.

$$E_A = \pm 0.6745 \sqrt{\frac{s}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{10}{10 \times 2485 - 155^2}} \times \frac{1.260966}{10 - 2} = 0.029482 \text{ [mm}^2]$$

$$E_B = \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2} \cdot \frac{\sum v_i^2}{s - 2}} = \pm 0.6745 \times \sqrt{\frac{2485}{10 \times 2485 - 155^2}} \times \frac{1.260966}{10 - 2} = 0.464756 \text{ [mm}^2]$$

$$A = 3.20523 \pm 0.029482 = 3.205 \pm 0.0295 \text{ [mm}^2]$$

$$B = 3.499169 \pm 0.464756 = 3.499 \pm 0.464 \text{ [mm}^2]$$

が求まったので

$$A = 4\lambda R$$

から, 曲率半径 Rは

$$R = \frac{A}{4\lambda}$$

に代入して、最確値及び確率誤差を求めることが出来る. ただし、確率誤差については、誤差伝播の法則を 考える必要がある場合があるので気を付けること.

図 1. ニュートン環の番号 k と環の直径の二乗 D^2 の関係

※配布資料の「グラフの書き方に関する注意点」を参照する.

例題. 「半導体の抵抗の温度変化の測定」

絶対温度 T における半導体の抵抗値は、ある特定の温度 T_1 のときの抵抗値 R_1 とすると

$$R = R_1 \exp\left[B\left(\frac{1}{T} - \frac{1}{T_1}\right)\right]$$

で示される.

この式の対数を取ると

$$\ln R = \ln R_1 + B \left(\frac{1}{T} - \frac{1}{T_1}\right)$$

$$\log R = \log R_1 + B\left(\frac{1}{T} - \frac{1}{T_1}\right)\log e$$

$$\log R = B \log e \cdot \frac{1}{T} + \left(\log R_1 - B \log e \cdot \frac{1}{T_1}\right)$$

ここで $y = \log R$, $x = \frac{1}{T}$ とすると, この式はy = ax + b の一次式と考えることができる.

解.

表 2. 半導体の抵抗と温度の測定

			1		1					
				x	у	xx	xy	<i>y'</i>	v	v^2
	t[°C]	$R[\Omega]$	T[K]	$\frac{1}{T} \left[\frac{1}{K} \right]$	logR	$\frac{1}{T^2} \left[\frac{1}{K^2} \right]$	$\frac{1}{T} \cdot log R \left[\frac{1}{K} \right]$	ax + b	y - y'	$(y - y')^2$
1	27.4	1767	300.55	0.003327	3.2472	0.0000110705	0.01080431	3.2534	-0.0061	0.00003775
2	30.0	1605	303.15	0.003299	3.2055	0.0000108814	0.01057389	3.2119	-0.0065	0.00004172
3	40.0	1100	313.15	0.003193	3.0414	0.0000101975	0.00971226	3.0589	-0.0175	0.00030785
4	50.0	808	323.15	0.003095	2.9074	0.0000095762	0.00899710	2.9154	-0.0080	0.00006401
5	60.0	606	333.15	0.003002	2.7825	0.0000090099	0.00835201	2.7805	0.0020	0.0000388
6	70.0	443	343.15	0.002914	2.6464	0.0000084924	0.00771209	2.6535	-0.0071	0.00004972
7	80.0	339	353.15	0.002832	2.5302	0.0000080183	0.00716466	2.5336	-0.0034	0.00001158
8	90.0	265	363.15	0.002754	2.4232	0.0000075828	0.00667285	2.4204	0.0029	0.00000838
9	100.0	209	373.15	0.002680	2.3201	0.0000071818	0.00621773	2.3132	0.0070	0.00004866
10	100.0	193	373.15	0.002680	2.2856	0.0000071818	0.00612504	2.3132	-0.0276	0.00076249
11	90.0	266	363.15	0.002754	2.4249	0.0000075828	0.00667736	2.4204	0.0045	0.00002052
12	80.0	350	353.15	0.002832	2.5441	0.0000080183	0.00720393	2.5336	0.0105	0.00010952
13	70.0	454	343.15	0.002914	2.6571	0.0000084924	0.00774313	2.6535	0.0036	0.00001297
14	60.0	621	333.15	0.003002	2.7931	0.0000090099	0.00838389	2.7805	0.0126	0.00015850
15	50.0	875	323.15	0.003095	2.9420	0.0000095762	0.00910416	2.9154	0.0266	0.00070735
16	40.0	1153	313.15	0.003193	3.0618	0.0000101975	0.00977752	3.0589	0.0029	0.00000836
17	30.0	1643	303.15	0.003299	3.2156	0.0000108814	0.01060741	3.2119	0.0037	0.00001372
合計				0.050863	47.0281	0.0001529511	0.14182933		0.0000	0.00236696

$$a = \frac{s \sum x_i y_i - \sum x_i \sum y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{17 \times 0.14182933 - 0.050863 \times 47.0281}{17 \times 0.0001529511 - 0.050863^2} = 1452.4069 \,\mathrm{K}$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{s \sum x^2 - (\sum x_i)^2} = \frac{0.0001529511 \times 47.0281 - 0.050863 \times 0.14182933}{17 \times 0.0001529511 - 0.0508633^2} = -1.57911$$

$$\begin{split} E_a &= \pm 0.6745 \sqrt{\frac{s}{s \sum x_i^2 - (\sum x_i)^2}} \cdot \frac{\sum v_i^2}{s - 2} \\ &= \pm 0.6745 \times \sqrt{\frac{17}{17 \times 0.0001529511 - 0.0508633^2}} \times \frac{0.00236696}{17 - 2} = 5.07497 \text{K} \\ E_b &= \pm 0.6745 \sqrt{\frac{\sum x_i^2}{s \sum x_i^2 - (\sum x_i)^2}} \cdot \frac{\sum v_i^2}{s - 2} \\ &= \pm 0.6745 \times \sqrt{\frac{0.0001529511}{18 \times 0.0001529511 - 0.00508633^2}} \times \frac{0.00236696}{17 - 2} = 0.058975 \end{split}$$

$$a = 1452.42 \pm 5.07 = 1452 \pm 5 \text{ K}$$

$$b = -1.579 \pm 0.0590 = -1.58 \pm 0.06$$

半導体の活性化エネルギーは

$$B = \frac{a}{\log e} = \frac{1452.42}{0.43429} = 3344.278 \text{ K}$$

また,

$$E_B = \frac{E_a}{\log e} = \frac{5.07}{0.43429} = 11.6 \text{ K}$$

$$B = (3.344 \pm 0.0116) \times 10^3 = (3.344 \pm 0.011) \times 10^3 \text{ K}$$

結果

半導体の活性化エネルギーは

$$B = (3.344 \pm 0.011) \times 10^3$$
 K

である.

図1. 半導体の抵抗と温度の関係