LWE/(SIS)

and how they are related with lattice

Kurt Pan

ZKPunk.pro

November 12, 2024

LWE/(SIS)

What is LWE

What is Lattice

Mow are they related?

What is LWE

What is Lattice

How are they related?

What is Learning with Errors

Definition (LWE Distribution)

Let ϕ be a probability density function on \mathbb{T} , and $\mathbf{s} \in \mathbb{Z}_p^n$ denote the unknown secret vector. The LWE distribution $A_{\mathbf{s},\phi}$ is the distribution over $\mathbb{Z}_p^n \times \mathbb{T}$ obtained by choosing $\mathbf{a} \in \mathbb{Z}_p^n$ uniformly at random and $e \in \mathbb{T}$ according to ϕ , then outputting $(\mathbf{a}, \frac{1}{p}\langle \mathbf{a}, \mathbf{s}\rangle + e)$.

Definition (Decision-LWE)

Given a polynomial number of samples either from the distribution $A_{s,\phi}$ or independent and uniformly distributed samples from $\mathbb{Z}_p^n \times \mathbb{T}$, output

- YES if the samples are from the LWE distribution $A_{s,\phi}$, or
- NO if the samples are uniformly random over $\mathbb{Z}_p^n \times \mathbb{T}$.

What is LWE

What is Lattice

How are they related?

What is Lattice

Definition (Lattice)

A discrete additive subgroup of \mathbb{R}^n

A lattice is the set of all *integer* linear combinations of (linearly independent) *basis* vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^{n} \mathbf{b}_{i} \cdot \mathbb{Z} = \{ \mathbf{B} \mathbf{x} : \mathbf{x} \in \mathbb{Z}^{n} \}$$

The same lattice has many bases

Shortest Vector Problem

Definition (SVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \gamma \lambda_1$

Minimum distance

$$\begin{split} \lambda_1 &= \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ &= \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{split}$$

8 / 18

Shortest Independent Vectors Problem

Definition (SIVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \le \gamma \lambda_n$

Closest Vector Problem

Definition (CVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \gamma \mu$ from the target

Special Versions of CVP

Definition

Given $(\mathcal{L}, \mathbf{t}, \mathbf{d})$, with $\mu(\mathbf{t}, \mathcal{L}) \leq \mathbf{d}$, find a lattice point within distance \mathbf{d} from \mathbf{t} .

- If d is arbitrary, then one can find the closest lattice vector by binary search on d.
- Bounded Distance Decoding (BDD): If $d < \lambda_1(\mathcal{L})/2$, then there is at most one solution. Solution is the closest lattice vector.
- Absolute Distance Decoding (ADD): If $d \ge \mu(\mathcal{L})$, then there is always at least one solution. Solution may not be closest lattice vector.

Relations among lattice problems

- SIVP ≈ ADD [MG'01]
- SVP \leq CVP [GMSS'99]
- SIVP ≤ CVP [M'08]
- BDD ≤ SIVP
- CVP \lesssim SVP [L'87]
- GapSVP \approx GapSIVP [LLS'91,B'93]
- GapSVP \lesssim BDD [LM'09]

What is LWE

What is Lattice

Mow are they related?

Random lattices in Cryptography

- Cryptography typically uses (random) lattices \wedge such that $\wedge \subseteq \mathbb{Z}^d$ is an integer lattice and $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q.
- Cryptographic functions based on q-ary lattices involve only arithmetic modulo q.

Definition (q-ary lattice)

 Λ is a *q*-ary lattice if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$

Examples (for any $\mathbf{A} \in \mathbb{Z}_q^{n imes d}$)

- $\bullet \ \Lambda_q(\mathbf{A}) = \left\{\mathbf{x} \mid \mathbf{x} \bmod q \in \mathbf{A}^T \mathbb{Z}_q^n\right\} \subseteq \mathbb{Z}^d$
- ullet $\Lambda_q^\perp(\mathbf{A})=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{0} mod q\}\subseteq \mathbb{Z}^d$

$$\mathcal{L}_q^{\perp}\left(\left[\mathbf{A}\mid\mathbf{I}_n\right]\right) = \mathcal{L}\left(\left[\begin{array}{cc}-\mathbf{I}_m & \mathbf{0}\\ \mathbf{A} & q\mathbf{I}_n\end{array}\right]\right)$$

$$\mathbf{A} \in \mathbb{Z}_q^{m \times k}, \mathbf{s} \in \mathbb{Z}_q^k, \mathbf{e} \in \mathcal{E}^m.$$

 $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \bmod q$

Theorem (R'05)

The function $g_A(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case.

How are they related?

LWE and q-ary lattices

- If e = 0, then $As + e = As \in \Lambda(A^t)$
- Same as CVP in random q-ary lattice $\Lambda(\mathbf{A}^t)$ with random target $\mathbf{t} = \mathbf{A}\mathbf{s} + \mathbf{e}$
- Usually ${\bf e}$ is shorter than $\frac{1}{2}\lambda_1\left(\Lambda\left({\bf A}^T\right)\right)$, and ${\bf e}$ is uniquely determined
- TAKE AWAY:
- LWE \equiv Approximate BDD (Bounded Distance Decoding)

SIS for next time!

Thanks! Kob-khun kub!