Application No.: Unassigned Docket No.: NL02 1408 US Preliminary Amendment

Amendments to the Claims

- (CURRENTLY AMENDED) An integrated tuner circuit, comprising: a tuned LC band-pass filter (10) having a variable capacitance (C₁) and fixed inductance (L);
- an external load capacitor having a variable capacitance (C_l); and a fixed-frequency control loop (30)-for producing a voltage (V_{TUN}) for adjusting the variable capacitances of the band-pass filter and external load capacitor to achieve tracking of the band-pass filter with an arbitrary oscillator frequency ω_{LO} .
- 2. (CURRENTLY AMENDED) The integrated tuner circuit according to claim 2, wherein the fixed-frequency control loop (30)-further comprises a fixed-frequency oscillator (32) and a circuit (34) for receiving a programmable value N for setting the value of ω_{LO} , wherein the fixed-frequency control loop adjusts the variable capacitances C_1 such that $C_1 :: (\omega_{LO} \pm \omega_{IF})^2 :: N^2$, wherein ω_{IF} is an intermediate frequency.
- 3. (CURRENTLY AMENDED) The integrated tuner circuit according to claim 2, wherein the band-pass filter (10) is tuned to each of a plurality of different IF distances from ω_{LO} by adjusting the programmable value N.
- 4. (CURRENTLY AMENDED) The integrated tuner circuit according to claim 2, wherein the fixed-frequency oscillator (32)-outputs a signal having a frequency ω_{Mal} , and wherein the tuned LC band-pass filter (10) is tuned to a virtual oscillator frequency ω_{LO} given by $N\omega_{\text{Mal}}$.
- 5. (CURRENTLY AMENDED) The integrated tuner circuit according to claim 1, wherein the fixed-frequency control loop (30) provides compensation for parasitic capacitance (C_p) .
- 6. (ORIGINAL) The integrated tuner circuit according to claim 5, further comprising a capacitor corresponding to the parasitic capacitance C_p in parallel with the external load capacitor.

Application No.: Unassigned Docket No.: NL02 1408 US Preliminary Amendment

- 7. (CURRENTLY AMENDED) The integrated tuner circuit according to claim 1, wherein the fixed-frequency control loop (30)-operates to produce a signal:
 - $1 (\alpha \omega_{xtal}^2 R^2 C) N^2 C_t \rightarrow 0$

where α is a variable gain, ω_{Mal} is a frequency of a fixed-frequency oscillator, R is a resistance, C is a capacitance, and N is a programmable value for setting the value of ω_{LO} .

- $8. \mbox{ (ORIGINAL)} \qquad \mbox{The integrated tuner circuit according to claim 7,} \\ \mbox{wherein N and C_t are the only oscillator frequency dependent variables.}$
- 9. (CURRENTLY AMENDED) A method for tracking a LC tuned bandpass filter (10) with an arbitrary oscillator ω_{LO} , wherein the band-pass filter includes a variable capacitance C_1 and a fixed inductance (L), comprising:

providing a fixed-frequency control loop (30)-for producing a voltage (V_{TUN}) for adjusting the variable capacitance C_t of the tuned band-pass filter (10)-and for adjusting a variable capacitance C_t of a load capacitor; and

inputting a programmable value N into the fixed-frequency control loop (30) for setting the value of ω_{LO} , wherein the fixed-frequency control loop adjusts the variable capacitances C_t such that $C_t :: (\omega_{LO} \pm \omega_{IF})^2 :: N^{-2}$, wherein ω_{IF} is an intermediate frequency.

10. (CURRENTLY AMENDED) The method according to claim 9, further comprising:

tuning the band-pass filter (10)-to each of a plurality of different IF distances from ω_{LO} by adjusting the programmable value N.

11. (CURRENTLY AMENDED) The method according to claim 9, wherein the fixed-frequency control loop (30)-includes a fixed-frequency oscillator (32)-that outputs a signal having a frequency ω_{xtab} , further comprising:

tuning the band-pass filter (10) to a virtual oscillator frequency ω_{LO} given by $N\omega_{xtal}.$

12. (CURRENTLY AMENDED) The method according to claim 9, wherein the fixed-frequency control loop (30)-provides compensation for parasitic capacitance (C_p) .

Application No.: Unassigned Docket No.: NL02 1408 US Preliminary Amendment

- 13. (ORIGINAL) The method according to claim 12, further comprising: providing a capacitor corresponding to the parasitic capacitance C_p in parallel with the load capacitor.
- 14. (CURRENTLY AMENDED) The method according to claim 9, wherein the fixed-frequency control loop (30)-operates to produce a signal:

$$1 - (\alpha \omega_{\text{xtal}}^2 R^2 C) N^2 C_t \rightarrow 0$$

where α is a variable gain, ω_{stal} is a frequency of a fixed-frequency oscillator, R is a resistance, and C is a capacitance.

 $15. \ (ORIGINAL) \qquad \ \ \, The \ method \ according \ to \ claim \ 14, \ wherein \ N \ and \ C_t$ are the only oscillator frequency dependent variables.