ECE 4110/5110

Wednesday, 11/08/23

Lecture 20: Spectral Analysis of Weakly Stationary Processes

Dr. Kevin Tang

Handout 21

Related Reading

Grimmett and Stirzaker Section 9.3

Spectral Representation of Weakly Stationary Processes

Assume X(t) is weakly stationary, with E(X(t)) = 0 and $C_X(s) = Cov(X(t), X(t+s))$. Its spectral representation is

$$S_X(\omega) = \int_{-\infty}^{\infty} e^{-i\omega s} C_X(s) ds \tag{1}$$

where $S_X(\omega)$ is called the power spectrum density of X(t).

Weakly Stationary Processs pass through an LTI system

Let X(t) pass through an LTI system with impulse response function h(t). Let Y(t) represent the output process. We then have E(Y(t)) = 0 and

$$Cov(Y(t_1), Y(t_2)) = C_Y(t_1 - t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_X(t_2 - t_1 + s_1 - s_2)h(s_1)h(s_2)ds_1ds_2$$
 (2)

We can describe this relationship more compactly in the frequency domain where we have

$$S_Y(\omega) = |H(\omega)|^2 S_X(\omega) \tag{3}$$