

代数结构

Algebra Structures

内容提要

- 1. 运算及其性质
- 2. 代数系统
- 3. 群与子群
- 4. 阿贝尔群和循环群
- 5. 环与域
- 6. 格与布尔代数

1、运算及其性质

概念:

运算, 封闭的, 可交换的, 可结合的, 可分配的, 吸收律, 幂等的, 幺元, 零元, 逆元, 消去律

运算 对于集合 A, f 是从Aⁿ到 A 的函数, 称 f 为集合A上的一个n元运算。

注:函数f: $A^n \rightarrow B$, 若B \subseteq A, 称函数f在集合A上是封闭的。

运算实例:

- (1) 加法和乘法是N上的二元运算,但减法和除法不是.
- 加法、减法和乘法都是Z上的二元运算,而除法不是.
- (3) 乘法和除法都是R*上的二元运算,而加法和减法不 是.
- (4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_n(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, \ i, j = 1, 2, \dots, n \right\}$$
即译形体和派法和派法数是M (P) 上的一元运算

则矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

(5) S为任意集合,则 \cup 、 \cap 、 \cup 、 \cup 为P(S)上二元运算.

运算的表示

1. 算符

可以用∘,*,·,⊕,⊗,∆等符号表示二元或一元运算,称为算符.

2. 运算表:表示有穷集上的一元和二元运算

О	a_1 a_2	a_n
a_1	$a_1 \circ a_1 \ a_1 \circ a_2 \ \dots$	$a_1 \circ a_n$
a_2	$a_2 \circ a_1 \ a_2 \circ a_2 \ \dots$	a_2 o a_n
•	•••	
•		
•		
a_n	$a_n \circ a_1 \ a_n \circ a_2 \ \dots$	$a_n \circ a_n$

二元运算的运算表

	$\circ a_i$
a_1	o <i>a</i> ₁
a_2	oa_2
•	-
•	•
•	-
a_n	oa_n

一元运算的运算表

运算表的实例

例 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下

⊕	Ø	<i>{a}</i>	{ <i>b</i> }	{a,b}
Ø	Ø	{ <i>a</i> }	{ <i>b</i> }	$\{a,b\}$
{ <i>a</i> }	{a}	$\{a\}$ \emptyset $\{a,b\}$	$\{a.b\}$	{ <i>b</i> }
{ b }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
{a,b}	a,b	} {b}	{ <i>a</i> }	Ø

x	~x
Ø	$\{a,b\}$
{a}	{a}
{ b }	{ b }
$\{a,b\}$	Ø

运算的性质

交換律 (Commutative)

已知 $\langle A, * \rangle$,若 $\forall x, y \in A$,有x*y=y*x,称*在A上是可交换的。

例:判断相应的运算是否满足交换律。

- (1) (Z, +), (Z, -) (Z, \times)
- (2) 设〈R,*〉,*定义如下: a*b=a+b-ab

结合律(Associative)

已知〈A,*〉,若 \forall x,y,z \in A,有 x*(y*z) = (x*y)*z, 称*在A上是可结合的。

例:判断相应的运算是否满足结合律。

- (1) (Z, +), (Z, -) (Z, \times)
- (2) <A, *>, 若∀a, b∈A, 有a*b=b

幂等律(Idempotent)

已知〈A,*〉,若 $\forall x \in A$,x*x=x 则称满足幂等律。

例:已知集合s, $\langle \wp(s), U, \cap \rangle$,则U, \cap 满足幂等律。

分配律(Distributive)

设〈A,*,△〉, 若∀x, y, z∈A有:

$$x*(y\triangle_Z) = (x*y) \triangle (x*z) ;$$

$$(y\triangle_Z)*_X = (y*_X) \triangle (z*_X)$$
;

称运算*对△是可分配的。

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

倒:设A={α, β}, 二元运 算*, △定义如左:

问分配律成立否?

① 运算△ 对*是可分配的。

即: $X\triangle(y^*z)=(X\triangle y)^*(X\triangle z)$ 成立

证: $3x=\alpha$: $x\triangle(y*z)=\alpha$

$$(x \triangle y)*(x \triangle z) = \alpha$$

$$(x\triangle y)^*(x\triangle z)=y^*z$$

②、运算*对运算△不可分配

证:
$$:: \beta^* (\alpha \triangle \beta) = \beta^* \alpha = \beta$$

$$(\beta^*\alpha) \triangle (\beta^*\alpha) = \beta \triangle \alpha = \alpha$$

*	α	β
α	α	β
β	β	α

\triangle	α	β
α	α	α
β	α	β

吸收律(Absorbtive)

设*, Δ 是定义在集合A上的两个可交换二元运算,若对 $\forall x, y \in A$,都有:

$$X*(X\Delta y) = X$$

$$x\Delta(x*y) = x$$

则称运算*和Δ满足吸收律.

例: 幂集P(S)上的运算∪和○满足吸收律。

单位元(幺元)(Identity)

设*是A上二元运算,e_l,e_r,e∈A

若 \forall x∈A,有e₁*x=x,称e₁为运算*的左幺元;

若 \forall x∈A,有x*e_r=x,称e_r为运算*的右幺元

若e既是左幺元又是右幺元,称e为运算*的幺元

▶∀x∈A,有e*x=x, x*e=x

定理:设*是A上的二元运算,具有左幺元e1,右幺元

$$e_r$$
, 则 $e_1 = e_r = e$
证明: $e_r = e_{l} * e_r = e_{l}$

推论: 二元运算的幺元若存在则唯一

证明: 反证法: 设有二个幺元e, e'; 则e=e*e'=e'

季元 (Zero)

设*是A上二元运算, θ_1 , θ_r , $\theta \in A$

若∀x∈A, 有 θ_1 *x= θ_1 , 称 θ_1 为运算*的左零元;

若∀x∈A, 有x*θ_r=θ_r, 称θ_r为运算*的右零元;

岩θ既是左零元又是右零元,称θ为运算*的零元。

 $\triangleright \forall x \in A, \ \eta \theta^* x = x^* \theta = \theta$

例:

- a)〈Z, x〉, Z为整数集则 公元为1, 零元为0
- b) $\langle \wp (A), U, \cap \rangle$

对运算U, ∅是幺元, A是零元 对运算∩, A是幺元, ∅是零元。

c) $\langle N, + \rangle$

有幺元0,无零元。

例:代数A=〈{a, b, c, d}, *〉用下表定义:

*	a	b	c	d
a	a	a	a	a
b	b	b	b	b
c	c	d	a	b
d	d	d	b	c

左幺元 右幺元 右条元 a,b

定理: 设*是A上的二元运算,具有左零元 θ_1 , 右零元 θ_r ,则 $\theta_1 = \theta_r = \theta$

推论: 二元运算的零元若存在则唯一。

逆元 (Inverse)

设*是A上的二元运算,e是运算*的幺元

若x*y=e那对于运算*, x是y的左逆元, y是x的 右逆元

若x*y=e, y*x=e, 则称x是y的逆元。记为y-1

》存在逆元(左逆无,右逆元)的元素称为可逆的(左可逆的,右可逆的)

例:

a)、代数 〈N,+〉 仅有幺元0,有逆元0,

b)、A= 〈{a, b, c}, *〉由下表定义:

*	a	b	c
a	a	a	b
b	a	b	c
C	a	C	c

b是幺元,

a的右逆元为C, 无左逆元,

b的逆元为b,

C无右逆元, 左逆元为a

$$i_{E}$$
: $I = I \circ e = I \circ (x \circ r)$
= $(I \circ x) \circ r = e \circ r = r$

二逆元存在为r

推论: 逆元若存在, 则唯一

证: 若存在X的另一个逆元r1; 则:

$$r^{1} = r^{1} o e = r^{1} o (x o r)$$

= $(r^{1} o x) o r = e o r = r$

消去律 (Cancellation Law)

已知〈A,*〉, 若∀x, y, z∈A, 有

- (1) 若 $x*y = x*z且 x \neq \theta$, 则y=z;
- (2) 若 y*x = z*x且 x ≠θ,则y=z; 那么称*满足消去律。

- 例: (1) 整数集上的加法和乘法都满足消去律;
 - (2) S ={1,2,3}, P(S)的交、并运算不满足消去律。

2、代数系统及同态

概念:

代数系统, 子代数, 积代数, 同态, 同构。

代数系统设A为非空集合, Ω 为A上运算的集合,称<A, Ω >为

- 一个代数系统.
- 当Ω ={ f_1 ,..., f_n }是有限时,代数系统常记为<A, f_1 ,..., f_n >;
- 当A有限时,称<A,Ω>是有限代数系统。

例:

- (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法。
- (2) < P(S), \cup , \cap ,~>是代数系统, \cup 和 \cap 为并和交,~为绝对补。

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素: 如单位元等)

例如:代数系统 $\langle Z,+,0\rangle$:集合Z,运算+,代数常数0代数系统 $\langle P(S),\cup,\cap\rangle$:集合P(S),运算 \cup 和 \cap ,无代数常数

如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.

例:

$$V_1$$
=< R , +, ·, 0, 1>
 V_2 =< $M_n(R)$, +, ·, θ , E >, θ 为 n 阶全 0 矩阵, E 为 n 阶单位矩阵
 V_3 =< $P(B)$, \cup , \cap , \varnothing , B >

 V_1, V_2, V_3 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.

设 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统, $B \neq S$ 的非空子集,如果B对 $f_1, f_2, ..., f_k$ 都是封闭的,且B和S含有相同的代数常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是V的子代数系统,简称子代数。

注:有时将子代数系统简记为B.

实例

 $N = \{Z, +\}$ 的子代数, $N = \{Z, +\}$ 0为的子代数 $N = \{0\}$ 是 $\{Z, +\}$ 的子代数,但不是 $\{Z, +\}$ 0为的子代数

几个术语

- (1) 最大的子代数: 就是V本身
- (2) 最小的子代数:如果令V中所有代数常数构成的集合是B,且B对V中所有的运算都是封闭的,则B就构成了V的最小的子代数
- (3) 最大和最小的子代数称为V的平凡的子代数
- (4) 若B是S的真子集,则B构成的子代数称为V的真子代数.
- 例 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n为自然数,则nZ是V的子代数

当n=1和0时,nZ是V的平凡的子代数,其他的都是V的非平凡的真子代数.

设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, \circ 和*为二元运算,在集合 $A \times B$ 上如下定义二元运算 \bullet , $\forall \langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \in A \times B$,有 $\langle a_1, b_1 \rangle \bullet \langle a_2, b_2 \rangle = \langle a_1, a_2, b_1 \rangle \bullet \langle a_2, b_3 \rangle = \langle a_1, a_2, a_3, a_4, a_4, a_5, a_5 \rangle$

称 $V=\langle A\times B, \blacksquare \rangle$ 为 V_1 与 V_2 的积代数,记作 $V_1\times V_2$. 这时也称 V_1 和 V_2 为V的因子代数.

定理 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $V_1 \times V_2 = \langle A \times B, \bullet \rangle$ 是它们的积代数.

- (1) 如果[。]和 *运算是可交换(可结合、幂等)的,那幺•运算也是可交换 (可结合、幂等)的
- (2) 如果 e_1 和 e_2 (θ_1 和 θ_2) 分别为[°] 和 *运算的单位元(零元),那幺 $<e_1,e_2>$ ($<\theta_1,\theta_2>$) 也是 •运算的单位元(零元)
- (3) 如果 x 和 y 分别为 \circ 和 *运算的可逆元素,那幺< x,y>也是 \bullet 运算的可逆元素,其逆元就是 $< x^{-1},y^{-1}>$

设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $f: A \rightarrow B$, 对 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$, 则称 $f \in V_1$ 到 V_2 的同态映射,简称同态 (Homomorphism) 。

特殊的同态

- (1) f 如果是单射,则称为单同态(Monomorphism)。
- (2) 如果是满射,则称为满同态 (Epimorphism),这时称 V_2 是 V_1 的同态像, 记作 $V_1 \sim V_2$ 。
- (3) 如果是双射,则称为同构 (Isomorphism),也称代数系 统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$ 。
- (4) 如果 $V_1 = V_2$,则称作自同态(Endomorphism)。

实例

(1) 设 V_1 =< Z_n +>, V_2 =< Z_n , Θ >. 其中Z为整数集,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. 令

 $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(x) = (x) \mod n$

那幺f是 V_1 到 V_2 的满同态.

(2) 设 V_1 =< \mathbf{R} ,+>, V_2 =< \mathbf{R} *,·>,其中 \mathbf{R} 和 \mathbf{R} *分别为实数集与非零实数集,+和·分别表示普通加法与乘法.令

$$f: \mathbf{R} \rightarrow \mathbf{R}^*$$
, $f(x) = \mathbf{e}^x$

则f是 V_1 到 V_2 的单同态.

(3) 设 $V=\langle Z,+\rangle$,其中Z为整数集,+为普通加法. $\forall a \in Z$,令 $f_a: Z \to Z$, $f_a(x)=ax$,

那幺 f_a 是V的自同态; 当 $a=\pm 1$ 时,称 f_a 为自同构; 除此之外其他的 f_a 都是单自同态.

32