

اثباتهایی بر قضیهی اساسی جبر احمدرضا حاج سعیدی

چكىدە

این مقاله، جمع آوری نه چندان دقیق از اثبات هایی از قضیه اساسی جبر است که سعی شده است که از ایده ها و روش های مختلفی بهره گیرد. اولین اثبات از اطلاعات کمتری نسبت به بقیه اثبات ها استفاده می کند و تنها ایده کار استقراست! در روشهای بعدی از مفاهیم توابع مختلط، توپولوژی جبری، توپولوژی دیفرانسیل و نظریهی گالوا المهره می گیریم که سعی شده است که در حد آشنایی و یادآوری، آن ها را بیان کنیم.

قضیه کا اساسی جبر. هر چندجملهای غیرثابت باضرایب مختلط در $\mathbb C$ ریشه دارد. یا به عبارتی هر چندجملهای غیرثابت در $\mathbb C[x]$ ، به چندجملهای های درجه ۱ تجزیه می شود .

روش ۱

نکته جالب این اثبات این است که استقرای ریاضی، اصلی ترین ایده ی آن است:

لم ۱. اگر هر چندجملهای در $\mathbb{R}[x]$ در $\mathbb{R}[x]$ دارای ریشه باشد، قضیهی اساسی جبر صحیح است.

اثبات. فرض کنیم $p(x)=\sum_{i=\circ}^n a_i x^i$ و $p(x)=\sum_{i=\circ}^n a_i x^i$ در این صورت تعریف می کنیم $p(x)=\sum_{i=\circ}^n a_i x^i$ و مشخص اثبات. فرض کنیم $p(x).\overline{p}(x)=p(x).\overline{p}(x)$ و به سادگی میتوان دید که $p(x).\overline{p}(x)=p(x).\overline{p}(x)$ و به سادگی میتوان دید که $p(x).\overline{p}(x)=p(x).\overline{p}(x)$ و به سادگی میتوان دید که $p(x).\overline{p}(x)=p(x).\overline{p}(x)$ و دارد. لذا یکی از $p(x).\overline{p}(x)=p(x).\overline{p}(x)$ و دارای ریشه است و لذا هر دو دارای ریشه در $p(x).\overline{p}(x)=p(x).\overline{p}(x)$

لم ۲. چندجملهایهای درجه ۲ و درجه فرد در $\mathbb{R}[x]$ ، در \mathbb{C} دارای ریشهاند.

اثبات. اثبات این لم ساده است و به خواننده واگذار میشود.

لم ٣. اگر F یک میدان بوده و $p(x) \in F[x]$ ، آنگاه میدانی مانند E شامل F یافت می شود که p(x) در E به چندجمله ای های درجه E درجه E تجزیه می شود.

اثبات. کافی است نشان دهیم میدان E شامل E یافت می شود که E ریشه دارد؛ چرا که می توان با تکرار این روش، E را با نشان داد E تجزیه کرد. چون E یک .D. U.F.D است، می توان در آن E را به ضرب عوامل تحویل ناپذیر تجزیه کرد. کافی است نشان داد E که دست کم یکی از این عوامل در توسیعی از E ریشه دارد. پس بدون کاسته شدن از کلیت می توان فرض کرد که چند جمله ای E در E در E تحویل ناپذیر است. حال اگر قرار دهیم E قرار دهیم آنگاه E آنگاه E یک میدان خواهد بود و با در نظر گرفتن E داریم:

$$p(\alpha) = p(x + (p(x))) = p(x) + (p(x)) = (p(x))) = {}^{\circ}E$$

لذا p(x) در E ریشه دارد.

^{&#}x27;Galois Theory

حال به روش اول میپردازیم. اثبات را با استقرا انجام میدهیم. فرض کنید p(x) یک چندجملهای درجه d با ضرایب حقیقی باشد. با در نظر گرفتن d به صورت (7k+1)، استقرا را روی n در نظر می گیریم. بنا به لم ۲، این حکم برای n=n برقرار است. $x_1, \dots, x_N \in E$ حکم برقرار باشد. بنا به لم ۳ می توان میدان E شامل R یافت به طوری که $n < N \in \mathbb{N}$ حال فرض کنید برای موجود باشد که

$$p(x) = \prod_{i=0}^{N} (x - x_i)$$

فرض کنید $q_k(x) = \prod_{i < j} (x - x_i - x_j - k x_i x_j)$ میتوان به سادگی دید که . $k \in \mathbb{N}$ یک چندجملهای در $\mathbb{R}[x]$ است(چون ضرایب $y_k(x)$ به صورت چندجملهای هایی حقیقی متقارن از x_1,\ldots,x_d هستند و $x_k(x)$ لذا مى توان ضرايب $q_k(x)$ را به صورت حاصلضربى از ضرايب چندجملهاى p(x) بيان كرد).

اکنون $q_k(x)$ یک چندجملهای با درجه ی $d(d-1)/\mathsf{Y} = \mathsf{Y}^{N-1} \times (\mathsf{Y}k+1)(\mathsf{Y}^N(\mathsf{Y}k+1)-1)$ میباشد و لذا طبق فرض استقرا (x) در $\mathbb C$ ریشه دارد، یعنی به ازای i و j و زای $x_i + x_j + kx_i x_j$ عددی مختلط است.

اکنون چون k میتواند هر عدد طبیعی دلخواهی باشد، بنا به اصل لانه کبوتری، k و k' طبیعی و i,jی یافت میشوند که اند. $x_i + x_j + x_i$ اعدادی مختلطاند و لذا $x_i + x_j$ و $x_i + x_j + x_i$ اعدادی مختلطاند و لذا $x_i + x_j + x_i$ نیز مختلطاند و در نتیجه $x_i + x_j + x_i$ پس p(x) نیز ریشهی مختلط دارد و حکم اثبات می شود.

در ۳ اثبات بعدی، از روشهایی در توابع مختلط استفاده میشود.

روش ۲

در این روش با استفاده از قضیهی لیوویل، قضیهی اساسی جبر را اثبات می کنیم. قضیه (لیوویل 7): هر تابع تحلیلی و کراندار در \mathbb{C} ، ثابت است. اثبات این قضیه را میتوانید در [۱] ببینید.

له ۴. اگر p(z) یک چندجملهای غیرثابت در p(z) باشد، $\lim_{|z| \to \infty} |p(z)| = \infty$

$$:a_n
eq \infty$$
 و $p(z) = \sum_{i=\circ}^n a_i z^i$ اثبات. فرض کنید $p(z) = \lim_{|z| \to \infty} |p(z)| = \lim_{|z| \to \infty} z^n |a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_{\circ}}{z^n}| = \infty \times |a_n| = \infty$

حال به اثبات روش دوم میپردازیم. p(z) در \mathbb{C} ریشه نداشته باشد. لذا p(z) و p(z) هر دو روی p(z) تحلیلی اند. پس فرض کنید p(z) در p(z) ریشه نداشته باشد. الله p(z) اp(z) اp(z) اp(z) ا

$$\lim_{|z|\to\infty} \mid \frac{1}{p(z)} \mid =$$

پس به ازای > < R برای |z| > R باید ۱|z| > R باید ۱|z| > R و در نتیجه وی |z| > R روی باددار است. از طرفی ابید این این به ازای در ناحیه فشرده ی $z \mid z \mid z$ نیز کراندار است. پس بین بر کل $z \mid z$ کراندار است پس بنا بر قضیه لیوویل p(z) و در نتیجه $z \mid z \mid z$ است که تناقض است.

[†]Liouville

روش ۳

در این روش از قضیهی روشه استفاده می شود.

قضیه (e^{ma}) : فرض کنید f و g دو تابع تحلیلی درون یک مجموعهی باز که شامل دایره ی C و درون آن است، باشد. اثبات این قضیه را می توانید در [۱] ببینید.

حال به کمک این قضیه اثباتی برای قضیهی اساسی جبر ارائه میدهیم.

با فرض $g(z)=-\sum_{i=\cdot}^{n-1}a_iz^i$ و $R>\max(\mathsf{T}\frac{\sum_{i=\cdot}^{n-1}|a_i|}{|a_n|},\mathsf{N})$ و $f(z)=\sum_{i=\cdot}^{n}a_iz^i$ به سادگی دیده می شود که فرض قضیه ی روشه برای f و g روی دایره به مرکز f و شعاع g برقرار است لذا g و g درون این دایره به یک تعداد ریشه قضیه ی روشه برای gدارند یعنی n ، f ریشه دارد.

روش ۴

این روش نیز از مفاهیم توابع مختلط و توپولوژی جبری بهره میگیرد.

اگر D زیرمجموعه ای از $\mathbb C$ باشد، دو خم بسته ی γ_1 و γ_2 از بازه $[\cdot, \cdot]$ به D را هوموتوپ می گوییم اگر تابع پیوسته $h(x, 1) = \gamma_1(x)$ و $h(x, 0) = \gamma_1(x)$ موجود باشد که $h: [0, 1] \times [0, 1] \to D$

لم ۵. دو خم بسته ی هموتوپ † در $\mathbb{C}\setminus\{0\}$ دارای یک عدد چرخش حول صفر هستند.

لم ۶. اگر γ و γ دو خم بسته در $\mathbb{C}\setminus\{0\}$ باشند که روی $\mathbb{C}\setminus\{0\}$ تعریف شدهاند و $\gamma_1(t)$ $|\gamma_2(t)|$ برای هر $\mathbb{C}\setminus\{0\}$ با تعریف شده اند و ا عدد چرخش $\gamma_1 + \gamma_2 = \gamma_1 + \gamma_2$ حول صفر یکسان است.

برای دیدن اثبات این دو لم به [۲] مراجعه کنید.

 $g(z)=-\sum_{i=0}^{n-1}a_iz^i$ به کمک این دو لم میتوانیم اثبات دیگری برای قضیه ارائه دهیم. فرض کنید مانند اثبات روش سوم، میتوان > R>0ای یافت که برای $|z|\geq R$ ا، $|z|\geq R$ مانند اثبات روش سوم، میتوان $(\gamma_1+\gamma_1)(t)=a_nR^ne^{\imath\pi int}$ و $\gamma_1(t)$ و γ_2 در شرایط لم ۶ صدق می کنند و لذا $\gamma_1(t)=g(Re^{\imath\pi it})$ و γ_2 در شرایط لم ۶ صدق می کنند و لذا $\gamma_1(t)=g(Re^{\imath\pi it})$ عدد چرخش یکسان، n، دارند. اگر p(z) دارای ریشه در $\mathbb C$ نباشد،

$$h: [\circ, \mathsf{I}] \times [\circ, \mathsf{I}] \to \mathbb{C} \backslash \{\circ\}$$

$$(t,s) \to p(Rse^{7\pi it})$$

یک هموتوپی بین γ_1 و خم ثابت $p(\circ)$ است و لذا γ_1 باید عدد چرخش صفر داشته باشد که این تناقض است.

روش ۵

در این اثبات، از روشهایی در توپولوژی دیفرانسیل بهره می گیریم. منظور از یک خمینه، یک زیر مجموعه از فضای اقلیدسی است که به طور موضعی وابرسان^۵ با زیرمجموعههای باز از فضای اقليدسي است.

اگر M و N دو خمینهی هموار و همبعد در فضای اقلیدسی باشند و f:M o N هموار باشد:

نقطه بحرانی نامیده می شود اگر $\mathrm{df_x}$ یک به یک و پوشا باشد؛ در غیر این صورت این نقطه بحرانی نامیده $x\in M$ (۱) مي شود.

^{*}Rouché

^{*}homotopic

[∆]diffeomorphic

را مقدار عادی می نامیم اگر هیچ یک از اعضای $f^{-1}(y)$ نقطه ی بحرانی نباشد در غیر این صورت به آن مقدار بحرانی نامیده می گوییم.

لم ۷. اگر M خمینه ای هموار و فشرده در \mathbb{R}^n و N خمینه ای هموار در \mathbb{R}^n باشد و $M \to N$ تابعی هموار باشد، آن گاه \mathbb{R}^n باشد و $M \to M$ نشان دهنده و موضعا ثابت است. \mathbb{R}^n باشد و نشان دهنده و تعداد اعضای مجموعه که است) روی مجموعه و مقادیر عادی \mathbb{R}^n متناهی و موضعا ثابت است.

اثبات این لم را می توانید در [۳] ببینید. حال به کمک این لم اثباتی دیگر برای قضیهی اساسی بیان می کنیم.

به طور مشابه نگاشت کنجنگاری از قطب جنوب را تعریف می کنیم و با h_S نمایش می دهیم. تابع $f:S^{7} \to S^{7}$ را به صورت زیر تعریف می کنیم:

$$f(x) = \begin{cases} N & x = N \\ h_N^{-1} p h_N(x) & x \neq N \end{cases}$$

به راحتی میتوان دید که h_N یک وابرسانی است و لذا h_N و h_N^{-1} هموار است. پس تابع f در $S^{\mathsf{Y}}-N$ هموار است. اما f در N نیز هموار است. برای دیدن این موضوع تعریف کنید:

$$\phi: \mathbb{R}^{\mathsf{T}} \times \{ \circ \} \to \mathbb{R}^{\mathsf{T}} \times \{ \circ \}$$

$$z\mapsto h_Sfh_S^{-1}(z)$$

می توان دید که $\phi(z)=\frac{z^n}{\sum_{i=0}^n a_i z^i}$ می توان دید که $\phi(z)=\frac{z^n}{\sum_{i=0}^n a_{n-i} z^i}$ بود.) پس $\phi(z)=\frac{z^n}{\sum_{i=0}^n a_{n-i} z^i}$ می توان دید که $\phi(z)=\frac{z^n}{\sum_{i=0}^n a_{n-i} z^i}$ معوار است. پس $\phi(z)=\frac{z^n}{\sum_{i=0}^n a_{n-i} z^i}$ هموار است.

از آنجا که برد p(z) شامل صفر نیست پس برد f شامل S (که S قطب جنوب است.) نیست. لذا S مقدار عادی است.

 $\mathrm{df_x}=(\mathrm{dh_N^{-1}})_{\mathrm{p}(\mathrm{h_N(x)})}\mathrm{o}(\mathrm{dp})_{\mathrm{h_N(x)}}\mathrm{o}(\mathrm{dh_N})_{\mathrm{x}}$ موضعا وابرسانی است $\mathrm{df_x}=(\mathrm{dh_N^{-1}})_{\mathrm{p}(\mathrm{h_N(x)})}\mathrm{o}(\mathrm{dp})_{\mathrm{h_N(x)}}\mathrm{o}(\mathrm{dh_N})_{\mathrm{x}}$ تنها در نقاط متناظر با ریشههای p'(z)، یکبه یک و پوشا نیست. پس f متناهی نقطه ی بحرانی دارد. لذا نقاط عادی (نقاطی که بحرانی نیستند!) f از حذف متناهی نقطه ی S^{Y} به وجود می آیند و لذا باز و همبند هستند. پس $f^{-\mathsf{Y}}(y)$ روی مجموعه مقادیر عادی باید مقداری ثابت باشد اما $f^{-\mathsf{Y}}(z)$ بینی برد f شامل متناهی نقطه است و این یعنی برد f متناهی است که غلط است.

⁵Stereographic projection

روش ۶

این اثبات نیز از توپولوژی دیفرانسیل استفاده می کند. در این اثبات از درجه یک نگاشت هموار میان دو خمینه ی "جهت پذیر" و قضایا مربوط به آن استفاده می کنیم. برای هر نقطه ی x از خمینه ی n-بعدی هموار M ، می توان زیرفضایی خطی(مماس) و قضایا مربوط به آن استفاده می شود و با $T_x M$ نشان n-بعدی از فضای اقلیدسی شامل خمینه، تعریف کرد که فضای مماس بر M در نقطه ی x نامیده می شود و با $T_x M$ نشان داده می شود. اگر بتوان به طور هموار! پایه ای برای فضاهای مماس ($T_x M$) پیدا کرد این خمینه را جهت پذیر می نامیم. برای اطلاعات بیش تر مرجع [۶] توصیه می شود.

می توان نشان داد که این تعریف مستقل از مقدار عادی $y \in N$ است که در ابتدا انتخاب شد.

لم ۹. فرض کنید M و N دو خمینه با شرایط قید شده در تعریف بالا باشند و f,g:M o f,g:M دو نگاشت هموار بگیرید. در این صورت اگر g,g:M o f,g:M هوموتوپ باشند آنگاه deg(f)=deg(g) .

لم ۱۰. فرض کنیم N و M خمینه با شرایط فوق باشند و $M \to N$ نگاشتی هموار باشد. اگر M مرز خمینه ای مانند M باشد و گسترشی هموار مانند $M \to M$ باشد و گسترشی هموار باشد.

اکنون فرض کنیم $x = x^n + \cdots + a_0$ ریشه ندارد. اگر $p(x) = x^n + \cdots + a_0$ مختلط باشد که در $x = x^n + \cdots + a_0$ ریشه ندارد. اگر $x = x^n + \cdots + a_0$ کره و گوی بسته به شعاع $x = x^n + \cdots + a_0$ کنید که $x = x^n + \cdots + a_0$ است. فرض کنید که $x = x^n + \cdots + a_0$ است. فرض کنید

$$H: S_R \times [\circ, \land] \to S_{\land}$$

$$H(x,t) = \frac{p(x) - t \times (a_{n-1}x^{n-1} + \dots + a_1x + a_2)}{|p(x) - t \times (a_{n-1}x^{n-1} + \dots + a_1x + a_2)|}$$

یس دو نگاشت

$$f: S_R \to S_1, f(x) = p(x)$$

و

$$g: S_R \to S_1, g(x) = \frac{x^n}{R^n}$$

هوموتوپ هستند. لذا چون نگاشت $\deg_{\mathbf{x}}$ برای هر $x \in S_R$ جهت نگهدار است پس deg(f) = deg(g) = n. از طرفی نگاشت

$$F(x) = p(x) \cdot F : B_R \to S_1$$

گسترشی هموار از نگاشت f است. بنابراین eg(f)=0 که این یک تناقض است. پس p(x) در g(x) در دارد.

روش ٧

اکنون روشی جبری برای اثبات قضیه ی اساسی جبر به کار می گیریم. در این روش از مفاهیم نظریه ی گالوا بهره می گیریم. اگر E دو میدان باشند، به طوری که $F \subset E$ آنگاه E توسیع میدانی از E نامیده می شود . این توسیع میدانی را توسیع جبری می نامیم، اگر هر عضو E ریشه یک چندجمله ای در E باشد. اگر E باشد. اگر E توسیع میدانی E را میدان شکافنده E می نامیم

[∨]orientable

[^]Spliting field

اگر اعضای X روی E تجزیه شوند و این میدان یک میدان مینیمال نسبت به این ویژگی باشد. میدان N را بستار نرمال از توسیع min(F,a) باشد که منظور ما از M میدان شکافندهی مجموعهی $\{min(F,a):a\in E\}$ باشد که منظور ما از Mچندجملهای مینیمال a روی F است. بعد توسیع میدانی E به عنوان یک میدان برداری روی F را با E:F نمایش می دهیم و درجه ی این توسیع میدانی مینامیم. همچنین Gal(E/F) را گروه تمام اتومورفیسمهای E میB می گیریم که روی F همانی هستند. یک توسیع متناهی E/F را گالوا می نامیم هرگاه هر عنصری از E که توسط تمامی اتومورفیسمها متعلق به E/F ثابت نگاه داشته شود در F واقع باشد.

برای آشنایی با ابزارهای این اثبات مطالعه [۴] توصیه می شود.

لم ۱۱. میدان 🖫 توسیع غیربدیهی با درجهی فرد ندارد.

ایز فرد خواهد بود. پس $[\mathbb{R}(a):\mathbb{R}]$ ، $a\in E\setminus\mathbb{R}$ فرد باشد؛ با فرض $[E:\mathbb{R}]$ نیز فرد خواهد بود. پس $E\neq\mathbb{R}$ توسیع میدانی \mathbb{R} باشد و E باشد و E باشد؛ با فرض E باشد بود. اما طبق لم ۲ این ناممکن است. E

لم ۱۲. هیچ توسیع میدانی با درجهی ۲ از ی موجود نیست.

اثبات. اگر چنین توسیعی موجود باشد باید به فرم $\mathbb{C}(a)$ باشد و ۲ $\mathbb{C}(a):\mathbb{C}(a)$. اما در این صورت a باید ریشهی یک چندجملهای درجه ۲ با ضرایب در $\mathbb C$ باشد که در نتیجه a یک عدد مختلط است و $\mathbb C(a)=\mathbb C$. بنابراین چنین توسیعی وجود

حال می توانیم اثباتی جبری ارائه کنیم. حال می توانیم اثباتی جبری ارائه کنیم. فرض کنید N/\mathbb{R} باشد. می توان نشان داد که در این صورت به دلیل آن که مشخصه ی \mathbb{R} صفر است \mathbb{R}/N یک فرض کنید \mathbb{R} بستار نرمال \mathbb{R}/\mathbb{R} باشد. می توان نشان داد که در این صورت به دلیل آن که مشخصه ی \mathbb{R} صفر است \mathbb{R}/N یک فرض کنید \mathbb{R}/N باشد. می توان نشان داد که در این صورت به دلیل آن که مشخصه ی \mathbb{R}/N باشد. می توان نشان داد که در این صورت به دلیل آن که مشخصه ی \mathbb{R}/N توسیع گالواست و بنابراین میتوان از احکام مربوط به توسیعهای گالوایی که در مرجع [۴] آمدهاند استفاده کرد. اگر نشان دهیم در این صورت . $G=Gal(N/\mathbb{R})$ حکم ثابت شده است. فرض کنید $N=\mathbb{C}$

 $\mid G \mid = [N:\mathbb{R}] = [N:\mathbb{C}].[\mathbb{C}:\mathbb{R}] = {
m Y}[N:\mathbb{C}]$

پس $G \mid G \mid P$ باشد. بنابراین $G \mid G \mid P$ فرد است $G \mid G \mid G \mid G$ فرد است $G \mid G \mid G \mid G$ فرد است و از طرفی G=P و لذا G:P . اما مطابق لم ۱۱ باید $E=\mathbb{R}$. پس G=P و لذا G:P یک ۲-گروه است. چون باشد، $Gal(N/\mathbb{C})$ پس $Gal(N/\mathbb{C})$ نیز یک ۲-گروه است. اگر M زیرگروه سره ماکسیمالی از $Gal(N/\mathbb{C})$ باشد، داریم ۲ $[Gal(N/\mathbb{C}):M]=1$. اگر T میدان ثابت M باشد در این صورت ۲ $[T:\mathbb{C}]=1$. اما این با لم ۱۲ در تناقض است. $N=\mathbb{C}$ یس $|Gal(N/\mathbb{C})|=1$ یعنی

مراجع

- Elias M. Stein, Rami Shakarchi, Complex Analysis, 2009.
- Henri Cartan, Elementary Theory of Analytic Functions of One Or Several Complex Vari-[2] ables, 1995.
- John Willard Milnor, Topology from the Differentiable Viewpoint, 1997. [3]
- [4] Patrick Morandi, Field and Galois Theory, 1996.
- http://planetmath.org/encyclopedia/ProofOfFundamentalTheoremOfAlgebra2.html [5]
- [6] Ian Pollack, Victor Guillemin, Differential Topology, 2010.