

MÉTODOS ESTATÍSTICOS

Testes de Hipóteses Não Paramétricos - Parte 2 Teste de Independência

Licenciatura em Engenharia Informática

Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal 2021-2022

Testes de Hipóteses Não Paramétricos:

Teste de Independência do Qui-Quadrado

- Pretende-se verificar se existe ou não independência entre duas variáveis, ou seja, este teste é usado para descobrir se existe associação entre duas variáveis qualitativas que se apresentem agrupadas numa tabela de contingência.
- Apenas vamos considerar tabelas de contingência bidimensionais (mas é possível analisar a independência de variáveis em tabelas de dimensão superior a 2 não será abordado).

Dados Bivariados

- Por vezes a população que se pretende estudar, aparece sob a forma de pares de valores, isto é, cada indivíduo ou resultado experimental, contribui com um conjunto de dois valores.
- É o que acontece quando se pretende estudar dois atributos da mesma população visando investigar em que medida eles se relacionam, isto é, de que modo a variação de um deles exerce influencia na variação do outro.
- Quando os atributos são ambos quantitativos, como já vimos, podemos recorrer à Regressão Linear Simples.
- Quando os atributos são ambos qualitativos vamos recorrer ao Teste de Independência do Qui-Quadrado.

Observação:

Uma variável originalmente quantitativa pode ser recolhida ou transformada em qualitativa.

Por exemplo, a variável idade, medida em anos é quantitativa (contínua), mas, se for obtida ou transformada em níveis etários (0 a 5 anos, 6 a 10 anos,...), é qualitativa (ordinal).

Objetivo

Estudar a relação entre duas variáveis qualitativas.

Para atingir este objetivo vamos investigar a presença ou ausência de **associação** entre as duas variáveis. Essa investigação será feita em duas etapas:

- etapa $1 \rightarrow$ resumir os dados
 - tabelas de dupla entrada: tabelas de contingência também chamadas de tabelas de informação cruzada;
- etapa 2 → testar, estatisticamente, se existe associação entre as variáveis: teste de independência do Qui-Quadrado.

4/1

Engenharia Informática Métodos Estatísticos 2021-2022

Tabelas de Contingência

É uma tabela de dupla entrada:

- as r categorias de uma das variáveis definem as linhas,
- as c categorias da outra variável definem as colunas.
- a tabela tem $r \times c$ células.

	Variável B]
Variável A	B ₁	$_{\rm B_2}$		B_c	TOTAL
A ₁	o_{11}	o_{12}		O_{1c}	n_1 .
A_2	o_{21}	O_{22}		O_{2c}	n_2 .
:	:		· .	:	
		-			
A_r	o_{r1}	O_{r2}		O_{rc}	n_{T} .
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$		$n \cdot c$	n

 ${\color{red}O_{ij}},~i=1,\ldots,r$ e $j=1,\ldots,c$ ightarrow representa o número de elementos observados na amostra que foram classificados simultaneamente nas categorias A_i da variável A e B_j da variável B.

 $n_i = \sum_{j=1}^c O_{ij} \to \text{representa o número de elementos da amostra classificados na categoria } A_i$ da variável A, ou seja, representa o total marginal de linha.

 $n_{\cdot j} = \sum_{i=1}^{r} O_{ij} \rightarrow$ representa o número de elementos da amostra classificados na categoria B_j da variável B_j , ou seja, representa o total marginal de coluna.

 $n=\sum\limits_{i=1}^r\sum\limits_{j=1}^cO_{ij}=\sum\limits_{i=1}^rn_{i\cdot}=\sum\limits_{j=1}^cn_{\cdot j} o$ representa o total da tabela, o número total de elementos da amostra

Exemplo 1

Foi efetuado um estudo onde se procurou analisar a relação existente entre a prática desportiva dos filhos quando os pais praticam ou não desporto. A amostra do presente estudo é constituída por 82 alunos do sexo masculino que frequentavam o 10° ano de escolaridade de uma dada escola e pelos respetivos pais. Neste caso as variáveis em análise são:

- Pai com as categorias:
 - Não não pratica desporto regularmente.
 - Sim pratica desporto regularmente

- Filho com as categorias:
 - Não não pratica desporto regularmente.
 - Sim pratica desporto regularmente

Dados:

Pai	Filho
Sim	Não
Sim	Não
Não	Não
Não	Sim
Sim	Sim
•	:

2 variáveis qualitativas nominais.

Tabela de contingência:

- r=2 linhas, correspondem às 2 categorias da variável "Pai".
- ullet c=2 colunas, correspondem às 2 categorias da variável "Filho".
- $r \times c = 2 \times 2 = 4$ células.

	Fil	ho	
Pai	Não	Sim	TOTAL
Não	24	41	65
Sim	6	11	17
TOTAL	30	52	82

Objetivo

Avaliar a existência de associação entre atributos de uma população, estudando a independência entre as variáveis qualitativas que representam esses atributos.

Formulação das Hipóteses a Testar:

 H_0- Não há relação entre as variáveis

vs

 H_1- Há relação entre as variáveis

ou de forma equivalente

Engenharia Informática

 H_0 – As variáveis são independentes

vs

 H_1 – As variáveis não são independentes

Métodos Estatísticos

8/1

2021-2022

Estatística de Teste

A estatística de teste tem por base os desvios entre as frequências observadas (O_{ij}) e esperadas (E_{ij}) . Supondo verdadeira a hipótese H_0 , então

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2_{(r-1)\times(c-1)}$$

onde r é o número de linhas da tabela de contingência e c é o número de colunas da tabela de contingência.

Observação:

Recordar das probabilidades: os acontecimentos A e B dizem-se independentes sse

$$P(A \cap B) = P(A) \times P(B)$$

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese \mathcal{H}_0

O teste de independência do Qui-Quadrado compara as frequências observadas, O_{ij} :

		Variável B				
Variável A	B_1	B_2		$\mathbf{B_c}$	TOTAL	
$\mathbf{A_1}$	O_{11}	O_{12}		O_{1c}	n_1 .	
$\mathbf{A_2}$	O_{21}	O_{22}		O_{2c}	n_2 .	
:	:	:	4,	:	:	
			· ·			
A_r	O_{r1}	O_{r2}		O_{rc}	n_r .	
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$		$n_{\cdot c}$	n	

com as frequências esperadas, caso as variáveis fossem independentes, $E_{ij} = \frac{n_i \cdot \times n_{\cdot j}}{n}$:

		Variável B				
Variável A	B_1 B_2		ightharpoonup B _c		TOTAL	
$\mathbf{A_1}$	$E_{11} = \frac{n_{1.} \times n_{.1}}{n}$	$E_{12} = \frac{n_1 \times n_{2}}{n}$	• • •	$E_{1c} = \frac{n_1 \times n_{\cdot c}}{n}$	n_1 .	
$\mathbf{A_2}$	$E_{21} = \frac{n_{2.} \times n_{.1}}{n}$	$E_{22} = \frac{n_2 \times n_{2}}{n}$		$E_{2c} = \frac{n_2 \cdot \times n_{\cdot c}}{n}$	n_2 .	
	:			:	:	
$\mathbf{A_r}$	$E_{r1} = \frac{n_{r.} \times n_{.1}}{n}$	$E_{r2} = \frac{n_{r.} \times n_{.2}}{n}$		$E_{rc} = \frac{n_{r.} \times n_{.c}}{n}$	n_r .	
TOTAL	n1	$n_{\cdot 2}$		nc	n	

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese ${\cal H}_0$

$$Q_{obs} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- r corresponde ao número de linhas da tabela de contingência
- c corresponde ao número de colunas da tabela de contingência
- frequências observadas $= O_{ij} \rightarrow$ corresponde às frequências observadas (amostra) da tabelas de contingência;
- frequências esperadas = $E_{ij}=\frac{n_i.\times n_{\cdot j}}{n}$ \to frequência esperada se as variáveis são independentes
 - n é a dimensão da amostra
 - n_i totais das linhas
 - n.j totais das colunas

$$\underline{\text{Observação}} \text{: Tem-se } \sum_{i=1}^r \sum_{j=1}^c O_{ij} = \sum_{i=1}^r \sum_{j=1}^c E_{ij} = n$$

11/1

Definição da Região de Aceitação e de Região Crítica

Um valor da estatística de teste elevado indica discrepância entre os valores observados e os respetivos valores esperados indicando associação entre as variáveis, ou seja, as variáveis não podem ser consideradas independentes:

- a Região de Aceitação é $RA = \left\lceil 0, x_{(r-1) \times (c-1); 1-\alpha}^2 \right\rceil$
- a Região Crítica é $RC = \left[x_{(r-1) \times (c-1);1-lpha}^2, +\infty \right[$

- (ロ) (部) (注) (注) (注) の((

Regra de Decisão com base na Região Crítica

• Se o valor observado da estatística de teste não pertencer à Região Crítica,

$$Q_{obs} \notin RC$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que as variáveis são independentes.

Se o valor observado da estatística de teste pertencer à Região Crítica,

$$Q_{obs} \in RC$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra não há evidências estatísticas que as variáveis são independentes.

4□▶ 4 현 ▶ 4 현 ▶ 4 현 ▶ 3 현 → 90

Cálculo do valor-p

Considerando que ${\cal H}_0$ é verdadeira, o valor-p indica a probabilidade do valor observado da estatística de teste ocorrer:

$$\mathsf{valor-p} = P\left(Q \geq Q_{\mathsf{obs}}\right)$$

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Regra de Decisão com base no valor-p

Se

valor-p
$$> \alpha$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que as variáveis são independentes.

Se

$$valor-p < \alpha$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra não há evidências estatísticas que as variáveis são independentes.

Condições de aplicação do teste

- Não há mais de 20% das frequências esperadas inferiores a 5, isto é, $E_{ij} < 5$ no máximo em 20% das células dos E_{ij} .
- Todas as frequências esperadas devem ser maiores ou iguais a 1, isto é, $E_{ij} \ge 1$ para todo $i = 1, \ldots, r$ e $j = 1, \ldots, c$.

Engenharia Informática Métodos Estatísticos 2021-2022 16/1

Exemplo 1

Foi efetuado um estudo onde se procurou analisar a relação existente entre a prática desportiva dos filhos quando os pais praticam ou não desporto. A amostra do presente estudo é constituída por 82 alunos do sexo masculino que frequentavam o 10^o ano de escolaridade de uma dada escola e pelos respetivos pais. As variáveis em análise e a respetiva tabela de contingência são:

Pai - com as categorias:

- Não não pratica desporto regularmente,
- Sim pratica desporto regularmente.

Filho - com as categorias:

- Não não pratica desporto regularmente,
- Sim pratica desporto regularmente.

	Filho				
Pai	Não Sim				
Não	24	41			
Sim	6	11			

17 / 1

Será que o facto dos pais praticarem ou não desporto regularmente influencia o facto dos filhos praticarem ou não desporto regularmente? Ou seja, para um nível de significância de 5%, será que as variáveis são independentes?

Hipótese a ser testada

 H_0 : os pais praticarem ou não desporto regularmente **não influencia** o facto dos filhos praticarem ou não desporto regularmente vs

 H_1 : os pais praticarem ou não desporto regularmente **influencia** o facto dos filhos praticarem ou não desporto regularmente

Dados

- Variáveis: 2 variáveis qualitativas nominais
- Tabela de contingência: r=2 linhas e c=2 colunas
- nível de significância $= \alpha = 0.05$

Tabela de contingência das frequências Observadas:

	Fil		
Pai	Não	Sim	TOTAL
Não	24	41	65
Sim	6	11	17
TOTAL	30	52	82

Tabela de contingência das frequências Esperadas:

	Fil		
Pai	Não	Sim	TOTAL
Não	$23.7805 = \frac{30 \times 65}{82}$	$41.2195 = \frac{52 \times 65}{82}$	65
Sim	$6.2195 = \frac{30 \times 17}{82}$	$10.7805 = \frac{52 \times 17}{82}$	17
TOTAL	30	52	82

Estatística de teste:

$$\begin{split} Q_{obs} &= \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \\ &= \frac{(24 - 23.7805)^{2}}{23.7805} + \frac{(41 - 41.2195)^{2}}{41.2195} + \frac{(6 - 6.2195)^{2}}{6.2195} + \frac{(11 - 10.7805)^{2}}{10.7805} = 0.0154 \end{split}$$

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$(r-1)\times(c-1)=(2-1)\times(2-1)=1$$
 $~~$ graus de liberdade
$$\label{eq:Q} Q\sim\chi^2_{(1)}$$

Regra de Decisão através da Região Crítica

$$Q_{obs} = 0.0154 \qquad \text{e} \qquad RC = \left[x_{(r-1)\times(c-1);1-\alpha}^2, +\infty \right[= \left[x_{(1);0.95}^2, +\infty \right[= [3.84, +\infty[1.00]] + \infty \right] = 0.0154$$

Como $Q_{obs}=0.0154 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

$$\mathsf{valor} - p = P(Q \ge Q_{obs}) = P(Q \ge 0.0154) = 1 - P(Q < 0.0154) = 1 - F(0.0154)$$

R: valor-
$$p = 1 - F(0.0154) = 1 - 0.0988 = 0.9012$$

Tabela em papel: valor-
$$p = 1 - F(0.0154) \approx 1 - F(0.0158) = 1 - 0.10 = 0.90$$

Como valor- $p>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 5%, existem evidências estatísticas, que o facto dos pais praticarem ou não desporto habitualmente não influencia o facto dos filhos praticarem ou não desporto habitualmente (ou seja, são independentes).

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 0.015412$
- graus de liberdade = 1
- valor-p = 0.9012

Como valor- $p=0.9012>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 5%, existem evidências estatísticas, que o facto dos pais praticarem ou não desporto habitualmente não influencia o facto dos filhos praticarem ou não desporto habitualmente (ou seja, são independentes).

Exemplo 2

Com o objetivo de tentar "explicar as causas" do insucesso escolar foram inquiridos vários alunos do ensino básico. Aos alunos foram colocadas diversas questões, entre as quais uma sobre o número de reprovações e outra sobre o número de faltas. As variáveis em análise e a respetiva tabela de contingência são:

Número de reprovações - com as categorias:

Número de faltas - com as categorias:

22 / 1

Nenhuma

Nenhuma

Uma

Algumas

Duas ou mais

Muitas

	Número de faltas				
Número de reprovações	ero de reprovações Nenhuma Al				
Nenhuma	132	57	3		
Uma	18	4	4		
Duas ou mais	10	5	5		

Será que existe relação entre as variáveis "Número de faltas" e "Número de reprovações"? Ou seja, para um nível de significância de 1%, será que as variáveis são independentes?

Hipótese a ser testada

 H_0 : as variáveis "Número de faltas" e "Número de reprovações" **não estão** relacionadas

vs

 H_1 : as variáveis "Número de faltas" e "Número de reprovações" **estão** relacionadas

Dados

- Variáveis: 2 variáveis qualitativas ordinais
- Tabela de contingência: r=3 linhas e c=3 colunas
- nível de significância = $\alpha = 0.01$

Tabela de contingência das frequências Observadas:

	Nú	Número de faltas				
Número de reprovações	Nenhuma	Algumas	Muitas	TOTAL		
Nenhuma	132	57	3	192		
Uma	18	4	4	26		
Duas ou mais	10	5	5	20		
TOTAL	160	66	12	238		

• Tabela de contingência das frequências Esperadas:

		Número de faltas				
Número de reprovações	Nenhuma	Algumas	Muitas	TOTAL		
Nenhuma	$129.0756 = \frac{160 \times 192}{238}$	$53.2437 = \frac{66 \times 192}{238}$	$9.6807 = \frac{12 \times 192}{238}$	192		
Uma	$17.4790 = \frac{160 \times 26}{238}$	$7.2101 = \frac{66 \times 26}{238}$	$1.3109 = \frac{12 \times 26}{238}$	26		
Duas ou mais	$13.4454 = \frac{160 \times 20}{238}$	$5.5462 = \frac{66 \times 20}{238}$	$1.0084 = \frac{12 \times 20}{238}$	20		
TOTAL	160	66	12	238		

Estatística de teste:

$$\begin{split} Q_{obs} &= \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \\ &= \frac{(132 - 129.0756)^{2}}{129.0756} + \frac{(57 - 53.2437)^{2}}{53.2437} + \dots + \frac{(5 - 5.5462)^{2}}{5.5462} + \frac{(5 - 1.0084)^{2}}{1.0084} = 28.639 \end{split}$$

Engenharia Informática Métodos Estatísticos A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$(r-1)\times(c-1)=(3-1)\times(3-1)=4$$
 $\;$ graus de liberdade
$$\label{eq:Q} Q\sim\chi^2_{(4)}$$

Regra de Decisão através da Região Crítica

$$Q_{obs} = 28.639 \qquad \text{e} \qquad RC = \left[x_{(r-1)\times(c-1);1-\alpha}^2, +\infty\right[= \left[x_{(4);0.99}^2, +\infty\right[= [13.3, +\infty[1.3]] + \infty\right] + \infty$$

Como $Q_{obs}=28.639 \in RC$ então rejeita-se a hipótese H_0

Regra de Decisão através do valor-p

valor-
$$p = P(Q \ge Q_{obs}) = P(Q \ge 28.639) = 1 - P(Q < 28.639) = 1 - F(28.639) = 1 - 1 = 0$$

Como valor- $p=0 \leq 0.01=\alpha$ então rejeita-se a hipótese H_0

Conclusão:Com base na amostra e para um nível de significância de 1%, existem evidências estatísticas, que o número de reprovações e o número de faltas estão relacionados (ou seja, não são independentes).

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 28.639$
- graus de liberdade = 4
- valor-p = 9.254e 06 = 0.000009254

Como valor- $p=0.000009254 \leq 0.01=\alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base na amostra e para um nível de significância de 1%, existem evidências estatísticas, que o número de reprovações e o número de faltas estão relacionados (ou seja, não são independentes).