

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2014/2015 -3rd Year Examination - Semester 6

IT6404 - Database Systems II Structured Question Paper

19th July, 2015 (TWO HOURS)

To be completed by the car	<u>ndidate</u>
BIT Examination Index No	:

Important Instructions:

- The duration of the paper is 2 (two) hours.
- The medium of instruction and questions is English.
- This paper has 4 questions and 16 pages.
- Answer all questions (25 marks each).
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.

Questions Answered

Indicate by a cross (x), (e.g. | X |) the numbers of the questions answered.

	Ques	tion nun	nbers		
To be completed by the candidate by marking a cross (x).	1	2	3	4	
To be completed by the examiners:					

	Index No:
(a) Why do d	atabases use indexing techniques? (02 marks)
ANSV	VER IN THIS BOX
Indexi	ng is a data structure technique to efficiently retrieve records from the
databa	ase files based on some attributes on which the indexing has been done.
[2]	
(b) Briefly de	escribe the following three indexing types.
(i) Primary	Index
(ii) Second	ary Index
(iii) Cluste	- -
ANSV	VER IN THIS BOX
(i)	Primary index is defined on an ordered data file.
	The data file is ordered on a key field.
	The key field is generally the primary key of the relation. [2]
(ii)	Secondary index may be generated from a field which is a candidate key
(ii)	Secondary index may be generated from a field which is a candidate key and has a unique value in every record, or a non-key with duplicate
(ii)	
	and has a unique value in every record, or a non-key with duplicate
	(and has a unique value in every record, or a non-key with duplicate) (values. [2]
	(and has a unique value in every record, or a non-key with duplicate) (values. [2] Clustering index is defined on an ordered data file.

Index	No:											

(c)	Ordered in	ndexing i	is of two	types,	namely	Dense	index	and	Sparse	index.	Explain	Dense	and
	Sparse ind	lexes iden	ntifying th	e diffe	rences be	etween	the two	type	es.				

(04 marks)

ANSWER IN THIS BOX	
In dense index, there is an index record for every search key value in the	
database. This makes searching faster but requires more space to store inde	ex
records itself. Index records contain search key value and a pointer to the ac	ctual
record on the disk. [2]	
In sparse index, index records are not created for every search key.	
An index record here contains a search key and an actual pointer to the data	a on
the disk.	
To search a record, we first proceed by index record and reach at the actual	
location of the data.	
If the data we are looking for is not where we directly reach by following the	
index, then the system starts sequential search until the desired data is four	n d.
[2]	

(d) Multi-level Index helps in breaking down the index into several smaller indices in order to make the outermost level so small that it can be saved in a single disk block, which can easily be accommodated anywhere in the main memory. Briefly explain the B+ Tree and its structure. Give a simple example of a B+ Tree structure to illustrate how the leaf nodes and internal nodes are connected.

(05 marks)

ANSWER IN THIS BOX

B+ tree is a balanced binary search tree that follows a multi-level index format. [1]

The leaf nodes of a B+ tree denote actual data pointers. [1]

B+ tree ensures that all leaf nodes remain at the same height, thus balanced.

Additionally, the leaf nodes are linked using a link list; therefore,

a B+ tree can support random access as well as sequential access. [1]

Continued...

(e) Consider the following query issued on a supplier database consisting of several relations including the following three relations where primary keys are underlined and foreign keys are bold. Assume there are 200 suppliers located in 50 cities. Shipment table has 100,000 records with approximately 1,000 shipments per day involving all 200 suppliers equally.

```
supplier(sno, sname, city, status);
shipment(sno, pno, quantity, shipment_date);
part(pno, pname, description);

SELECT DISTINCT sname FROM supplier S, shipment sh
WHERE s.sno = sh.sno AND s.city = 'Colombo'
AND sh.shipment_date = '01/06/2015';
```

(i) Assume that no indices are used for non-key fields. What is the most expensive way of processing the above query? Identify amount of records processed at the join and final result.

(04 marks)

ANSWER IN THIS BOX Supplier and Shipment would be first joined (or Cartesian product) and thereafter the selection would be done. [1] Due to primary keys sno of Supplier and be joined with corresponding Shipments. Hence 100,000 records would be processed before the selection. [1] Of which only 1/50 will be from Colombo (i.e. 4) and 1/1000 would be for '01/06/2015' [1] As we want only unique supplier names, only 4 records would be the output. [1]

Index	No:											

(ii)	Suggest indexing	techniques	to	make	the	above	query	efficient	and	explain	how	the	query
	would be processe	ed with the s	ugg	gested	indi	ces.							

(04 marks)

ANSWER IN THIS BOX
Indexing shipment_date and city as clustered index will help to identify those
records. [1]
Selecting Suppliers from Colombo will give 200/50 = 4 records [1]
Selecting Shipments on '01/06/2015' will give 1000 = 1000 records [1]
Joining Supplier and Shipment for Colombo suppliers uniquely will give 4
= 4 records [1]

2) (a) (i) Consider the following schedule.

```
w_1(a); r_2(a); w_1(b); w_3(c); r_2(c); r_4(b); w_2(d); w_4(e); r_5(d); w_5(e).
```

Draw precedence graphs for the above schedule. Indicate if the graph has cycles or not. If the above schedule is a serializable schedule determine all the equivalent serial schedules and if not serializable, indicate why it is non-serializable and identify the type of conflict. Note that r_i and w_i denote respectively the read and write operations of transaction T_i for data item a, b, c, d & e.

(07 marks)

AN	NSWER IN THIS BOX
Se	erializable as it can swap all non-conflicting, e.g. r ₂ (a); w ₃ (b); & r ₄ (b); w ₂ (d); [1]
Th	ree possible Serial Schedules: [3]
1.	[T ₁ , T ₃ , T ₂ , T ₄ , T ₅]
	w1(a); w1(b); w3(c); r2(a); r2(c); w2(d); r4(b); w4(e); r5(d); w5(e)
	Continued

Iı	n	d	e	X	(ľ	V	C):																				
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	٦

2.	$[T_3, T_1, T_2, T_4, T_5]$
	w3(c); w1(a); w1(b); r2(a); r2(c); w2(d); r4(b); w4(e); r5(d); w5(e)
3.	[T ₃ , T ₁ , T ₄ , T ₂ , T ₅]
	w3(c); w1(a); w1(b); r4(b); w4(e); r2(a); r2(c); w2(d); r5(d); w5(e)
Gra	ph has no cycles. [1/2]
	T1 T4
	T3 T5
[2 1	/2]
[Ca	ndidate may give the diagram first and based on that decide if serializable.]

ndex	Ma.							
паех	INO:	 	 	 				

(ii)Assume that each transaction will commit at the earliest possible point of time soon after completing its last transactions in the schedule given in (i) above. If the schedule was executed under two phase locking protocol, write down the locks acquired, released or changed (i.e. 'Release S(a)' to indicate release of shared lock for a) including any waiting for locks, commits or deadlocks at each of the times starting at t1.

(08 marks)

							(08 mark
<u>ansv</u>	VER IN	THIS BO	<u>)X</u>				
Time	T1	T2	Т3	Т4	Т5	Acquire Locks/Wait for	Release or Change Locks
t1	w₁(a)					X(a)	
t2		r ₂ (a)				Wait for S(a)	
t3	w₁(b)					X(b)	
t4	C ₁						Release X(a) 8 X(b)
						T2 acquire S(a)	
t5			w ₃ (c)			X(c)	
t6			C ₃				Release X(c)
t7		r ₂ (c)				S(c)	
t8				r ₄ (b)		S(b)	
t9		w ₂ (d)				X(d)	
t10		C ₂					Release S(c) 8 X(d)
t11				w ₄ (e)		X(e)	
t12				C 4			Release S(b) 8 X(e)
t13					r ₅ (d)	S(d)	
t14					w ₅ (e)	X(e)	
t15					C 5		Release S(d) 8 X(e)

Index	No:											

(b) Consider the following transaction log from the start of the run of a database system that is using undo/redo logging with checkpointing (CKPT) for crash recovery. The log entries for database updates are in the format: <Transaction id, Variable, New value, Old value>

```
<START T1>
1)
     <T1, A, 30, 10>
2)
3)
     <T1, B, 20, 0>
     <START T2>
4)
5)
     <T1, A, 60, 30>
     <T2, C, 10, 20>
6)
7)
     <COMMIT T1>
8)
     <START T3>
9)
     <T3, D, 50, 40>
     <T2, E, 40, 50>
10)
     <CKPT (T2, T3) >
11)
12)
     <T2, C, 70, 10>
     <COMMIT T2>
13)
14)
     <START T4>
     <T4, F, 80, 70>
15)
16)
     <COMMIT T3>
17)
     <T4, F, 100, 80>
18)
     <COMMIT T4>
```

(i) Using the notations defined in (a) above, i.e. r_i and w_i produce the corresponding schedule for the above transaction log for all its entries.

(05 marks)

	(05 marks)
ANSWER IN THIS BOX	
W₁(A); [1/3]	
W ₁ (B); [1/3]	
W₁(A); [1/3]	
W₂(C); [1/3]	
C ₁ ; [1/2]	
W ₃ (D); [1/3]	
W₂(E); [1/3]	
W₂(C); [1/3]	
C ₂ ; [1/2]	
W ₄ (F); [1/3]	
C ₃ ; [1/2]	
W ₄ (F); [1/3]	
C ₄ ; [1/2]	

Index	No:		 							

(ii)	What are the values of the data items A, B, C, D and E on disk after recovery if the
	system crashes just before line 11 is written to disk?

(03 marks)

ANSWER IN 1	THIS BOX			
A=60, B=20,				
C=20, D=40,				
E=50				

(iii) What are the values of the data items A, B, C, D, E, and F on disk after recovery if the system crashes just before line 18 is written to disk?

(02 marks)

		(oz marno)
ANSWER IN THIS	S BOX	
A=60, B=20,		
C=70, D=50,		
E=40, F=70		

3) (a) Distribution transparency allows a physically dispersed database to be managed as though it were a centralized database. The level of transparency supported by the DDBMS varies from system to system. Three levels of distribution transparency are recognized, namely: Fragmentation transparency, Location transparency and Local mapping transparency. Briefly explain these three levels of distribution transparencies.

(06 marks)
ANSWER IN THIS BOX
Fragmentation transparency is the highest level of transparency.
The end user or programmer does not need to know that a database is
partitioned.
Therefore, neither fragment names nor fragment locations are specified prior to
data access. [2]
Location transparency exists when the end user or programmer must specify
Continued

	Index No:
the database f	ragment names but does not need to specify where those
fragments are	located. [2]
Local mapping	g transparency exists when the end user or programmer must
specify both the	he fragment names and their locations. [1]
anaidantha fallana	in a Fanalassa a salations
	<pre>ing Employee relation: , DOB, Address, Department, Location, Salary)</pre>
partment, namely: ployee data are	ata are distributed over three different locations based on the location of Colombo, Galle and Kandy. The table is divided by location where Colombo stored in fragment E1, Galle employee data are stored in fragment E2 are stored in fragment E3.
	e end user wants to list all employees with Salary greater than 50,000. We not to retrieve the above information under Fragmentation transparency. (02 mar)
ANSWER IN	· · · · · · · · · · · · · · · · · · ·
SELEC	T *
	Employee

	(0)
NSV	<u>VER IN THIS BOX</u>
	SELECT * FROM E1 WHERE Salary > 50000;
	UNION
	SELECT * FROM E2 WHERE Salary > 50000;
	UNION
	SELECT * FROM E3 WHERE Salary > 50000;
SQ1	suppose the end user wants to list all employees with Salary greater than 50,00 L statement to retrieve the above information under Local Mapping transparence (0) VER IN THIS BOX SELECT * FROM E1 NORE Colombo WHERE Salary > 50000.
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0) VER IN THIS BOX SELECT * FROM E1 NODE Colombo WHERE Salary > 50000;
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0) VER IN THIS BOX
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0) VER IN THIS BOX SELECT * FROM E1 NODE Colombo WHERE Salary > 50000;
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0): VER IN THIS BOX SELECT * FROM E1 NODE Colombo WHERE Salary > 50000; UNION
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0) VER IN THIS BOX SELECT * FROM E1 NODE Colombo WHERE Salary > 50000; UNION SELECT * FROM E2 NODE Galle WHERE Salary > 50000;
SQ1	L statement to retrieve the above information under Local Mapping transparenc (0) VER IN THIS BOX SELECT * FROM E1 NODE Colombo WHERE Salary > 50000; UNION SELECT * FROM E2 NODE Galle WHERE Salary > 50000; UNION
SQ1	SELECT * FROM E2 NODE Galle WHERE Salary > 50000; UNION SELECT * FROM E3 NODE Kandy WHERE Salary > 50000;
SQ1	SELECT * FROM E2 NODE Galle WHERE Salary > 50000; UNION SELECT * FROM E3 NODE Kandy WHERE Salary > 50000;
SQ1	SELECT * FROM E2 NODE Galle WHERE Salary > 50000; UNION SELECT * FROM E3 NODE Kandy WHERE Salary > 50000;
sQl Isv esig	SELECT * FROM E2 NODE Galle WHERE Salary > 50000; UNION SELECT * FROM E3 NODE Kandy WHERE Salary > 50000;

Continued...

Index	No:						
HILLEX	INU.	 	 	 	 		

How	to partition the database into fragments?
Whic	h fragments to replicate?
Wher	re to locate those fragments and replicas? [3]
Data fragme	entation allows to break an object into two or more fragments. [1]
The object n	night be a user's database, a system database, or a table.
Each fragme	ent can be stored at any site over a computer network. [1]
Information	about data fragmentation is stored in the distributed data catalogue,
from which	it is accessed by the Transaction Processors to process user
requests.	
Data replica	tion refers to the storage of data copies at multiple sites served by a
computer ne	etwork. [1] Fragment copies can be stored at several sites to serve
specific info	ormation requirements. Because the existence of fragment copies
can enhance	e data availability and response time, data copies can help to reduce
communica	tion and total query costs. [1]
Data allocat	ion describes the process of deciding where to locate data. [1]
Data allocat	ion will be based on some allocation strategies. Data distribution
over a comp	outer network is achieved through data partition, through data
replication,	or through a combination of both. [1]

SWER IN THIS BOX gmentation, Replication and Allocation transparencies. [1] gmentation transparency: Data fragmentation is transparent to the user, who sees only one logical database. The user does not need to know the name of the database fragments in order to retrieve them. [1] plication transparency: The user sees only one logical database. The DDBMS transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1] pocation (Location) transparency: The user does not need to know the location of data in order to retrieve those data. [1]
gmentation transparency: Data fragmentation is transparent to the user, who sees only one logical database. The user does not need to know the name of the database fragments in order to retrieve them. [1] Dilication transparency: The user sees only one logical database. The DDBMS transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1]
sees only one logical database. The user does not need to know the name of the database fragments in order to retrieve them. [1] olication transparency: The user sees only one logical database. The DDBMS transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1]
name of the database fragments in order to retrieve them. [1] Dilication transparency: The user sees only one logical database. The DDBMS transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1]
olication transparency: The user sees only one logical database. The DDBMS transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1]
transparently selects the database fragment to access. To the user, the DDBMS manages all fragments transparently. [1] cation (Location) transparency: The user does not need to know the location
DDBMS manages all fragments transparently. [1] ocation (Location) transparency: The user does not need to know the location
ocation (Location) transparency: The user does not need to know the location
of data in order to retrieve those data. [1]
r schema is a data modelling technique used to map multidimensional decision support dat relational database. The basic star schema has four components: facts, dimensions es, and attribute hierarchies. Briefly explain each of the four components. (08 marks)
SWER IN THIS BOX
ts are numeric measurements (values, e.g. Sales figures) that represent a
cific business aspect or activity. [1]
ts are normally stored in a fact table that is the center of the star schema.
e fact table contains facts that are linked through their dimensions. [1]
t

Continued...

Index No:

Indon	Ma.						
Index	INO:	 	 	 	 		

to a giv	ven fact. E.g. sales might be compared by product from region to region
and fro	om one time period to the next. [1]
Such d	limensions are normally stored in dimension tables and linked to fact
tables.	[1]
Attribu	tes are often used to search, filter, or classify facts.
Each d	limension table contains attributes. [1]
Dimen	sions provide descriptive characteristics about the facts through their
attribu	tes. [1]
Attribu	ites within dimensions can be ordered in a well-defined attribute
hierard	chy. [1]
The att	ribute hierarchy provides a top-down data organization that is used for
two ma	ain purposes: aggregation and drill-down/roll-up data analysis. [1]
	a multidimensional data model for students focussing on student attendance for classes d by lecturers. Assume there are three dimension table for this data model.
(i) What o	lata could be selected to form the Fact table and what would be its dimension tables. (02 marks)
ANSW	IER IN THIS BOX
Perfori	mance can be the Fact Table with data such as Attendance of relevant
	courses. [1]
Dimen	sions can be Student, Course, Lecturer, Location, Time [3 of them]

(b)

Index	No:										

(ii) Suggest possible attributes for Dimension Table proposed in (i) above.

(03 marks)

ANSWER IN THIS BOX Student: Student No, Gender, Location; Course: Name (code), Duration **Lecturer: Name, Gender Location: Room Time: Date, Time** Only 3 of them as identified in (ii) is required [3]

(iii) Draw a star schema for the above student data model.

(05 marks)

(iv) For the above Student model propose an attribute hierarchy for Location of students and state how it can be used to retrieve data.

ANSWER IN THIS BOX	(02 marks)
Attributes of Location namely Region, State, City, Store can form an	attribute
Hierarchy. [1]	
It can be used to provide a top-down data organization that is used for)r
aggregation and drill-down/roll-up data analysis. [1]	

Index	No.											

	(05 m
<u>ANS</u>	WER IN THIS BOX
Data	Preparation Phase [1/2]
	This phase identify data sets from external and operation databases
	It also clean the data and integrate them. [1]
	i.e. Gathering data, Describing, Exploring, Verifying quality,
	Selecting data, Cleaning data, Constructing, Integrating, Formatting
Data	analysis and classification phase [1/2] Various types of data analysis is performed, such as [1]
Data	
Data	Various types of data analysis is performed, such as [1]
Data	Various types of data analysis is performed, such as [1] Classification analysis, clustering and sequencing analysis, link analysis.
Data	Various types of data analysis is performed, such as [1] Classification analysis, clustering and sequencing analysis, link analysis.
Data	Various types of data analysis is performed, such as [1] Classification analysis, clustering and sequencing analysis, link analysis.
Data	Various types of data analysis is performed, such as [1] Classification analysis, clustering and sequencing analysis, link analysis.
