# 第1週レポート

10 班 山村優太

2024年10月17日

### 1 目的

ハイパスフィルタ(HPF)の周波数特性を測定し、フィルタの電圧利得と位相の特性を理解すること.

#### 2 原理

ハイパスフィルタ(HPF)は、コンデンサの持つ周波数特性を利用した回路であり、特定のカットオフ周波数より高い周波数の信号を通過させ、低い周波数の信号を遮断する機能を持つ。信号の角周波数を  $\omega$ 、コンデンサのキャパシタンスを C、抵抗の抵抗値を R、入力電圧と出力電圧のフェーザをそれぞれ  $\dot{E}_i$ 、 $\dot{E}_o$  とおくと、電圧利得  $|\dot{E}_o|/|\dot{E}_i|$  は

$$\frac{|\dot{E}_o|}{|\dot{E}_i|} = \frac{\omega CR}{\sqrt{1+(\omega CR)^2}}$$

入出力の位相差  $\theta_D$  は

$$\theta_D = \tan^{-1} \frac{1}{\omega CR} \tag{1}$$

と表される.

### 3 方法

実験手順は以下の通りである.

- 1. ファンクションジェネレータ (FG) から振幅約 2V の正弦波を回路に入力する. 入力信号をオシロスコープの CH1 に接続する.
- 2. 回路の出力をオシロスコープの CH2 に接続し, 自動測定 (Measurement) 機能を用いて CH2 で 出力信号の振幅を測定する. 入力信号の振幅も記録し、電圧利得を計算する.
- 3. オシロスコープで入力信号と出力信号の位相差を測定し、特徴的な位相差の周波数も記録する.

- 4. カットオフ周波数  $f_0$  を中心に、上下 2 桁程度の範囲で周波数を対数ステップで測定する.
- 5. 測定結果を記録しながら, 周波数(常用対数)を横軸, 電圧利得(dB)を縦軸にしたグラフを 作成する.

実験に用いた回路を図 1 に示す. 入力信号は Input の電圧, 出力信号は Output の電圧である. 回路素子の値は, コンデンサのキャパシタンスが  $0.01\mu$ F, 抵抗の抵抗値が 3.3k $\Omega$  である.



図1 HPFの回路図

# 4 使用器具

- ファンクションジェネレータ
- オシロスコープ
- 炭素皮膜抵抗 3.3kΩ
- マイラコンデンサ  $0.01\mu F$
- ブレッドボード
- ジャンパーワイヤー, コード, アダプター各種

# 5 実験結果

得られた結果は以下の表にまとめた通りである。また、電圧利得と位相差を対数グラフにプロットしたものを図 2 に示す。なお、電圧利得の計算には Google スプレッドシートを、データのプロットには MATLAB を用いた。

| 周波数 (Hz) | 入力電圧 (V) | 出力電圧 (V) | 出力電圧/入力電圧 | 電圧利得 (dB)  | 位相差 (°) |
|----------|----------|----------|-----------|------------|---------|
| 10       | 1.61     | 0.03     | 0.018634  | -34.594092 |         |
| 100      | 1.65     | 0.06     | 0.036364  | -28.786654 |         |
| 500      | 1.70     | 0.20     | 0.117647  | -18.588379 | 90      |
| 1000     | 1.71     | 0.36     | 0.210526  | -13.533872 | 80      |
| 2000     | 1.74     | 0.67     | 0.385057  | -8.289489  | 70      |
| 3000     | 1.77     | 0.93     | 0.525424  | -5.589806  | 60      |
| 4000     | 1.81     | 1.13     | 0.624309  | -4.092003  | 50      |
| 4500     | 1.83     | 1.22     | 0.666667  | -3.521825  | 45      |
| 4800     | 1.83     | 1.27     | 0.693989  | -3.172947  | 45.2    |
| 5000     | 1.84     | 1.29     | 0.701087  | -3.084562  |         |
| 6000     | 1.87     | 1.43     | 0.764706  | -2.330111  | 40      |
| 8000     | 1.91     | 1.62     | 0.848168  | -1.430367  | 32      |
| 10000    | 1.93     | 1.72     | 0.891192  | -1.000577  | 27      |
| 50000    | 2.01     | 1.99     | 0.990050  | -0.086860  | 7       |
| 100000   | 2.02     | 2.00     | 0.990099  | -0.086427  |         |



図2 電圧利得と位相差の周波数特性

周波数特性のグラフから、電圧利得は低周波領域で直線的に変化し、高周波領域ではおよそ 0dB に収束している。また、位相差は低周波領域で  $0^\circ$  に近く、高周波領域では  $90^\circ$  に近づくことが確認できる。電圧利得が -3dB となるカットオフ周波数  $f_0$  は、グラフからおおよそ 4kHz 付近と読み取ることができる。

## 6 考察

概ね理論通りのグラフが得られたが、周波数 10Hz における電圧利得の値が理論値と大きく異なっている。原因の一つとしては、微小な電圧の測定においてオシロスコープの測定誤差が大きくなることが考えられる。また、測定値のカットオフ周波数  $f_0=4\text{kHz}$  と、理論値のカットオフ周波数  $f_0=4\text{kHz}$  の誤差の要因としては、グラフの読み取り誤差が考えられる。

### 7 感想

今回の実験を通して、CR 回路の周波数特性と HPF の動作原理を深く理解することができた. また, 実際に回路を組み, 測定を行いながらグラフを作成することで, 実験手順や測定機器の扱いに慣れることができた.

### 8 問題

#### 問題 1.1

実験 1.1~1. においてテスターの交流電圧計 V の表示値が 1.0V となるとき, FG の表示電圧は 1.41V であり, 両者は一致しなかった. その理由は交流電圧の測定方法の違いである. FG の表示電圧は最大値であり, テスターの表示電圧は実効値である. 実際, 電圧の実効値  $V_{rms}$  と最大値  $V_{max}$  に 関する次の関係が成り立っている.

$$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}}$$

#### 問題 1.2

 $|\dot{E}_{o}/\dot{E}_{i}| = 1/\sqrt{2} \, \mathcal{O} \, \mathcal{E} \, \tilde{\mathcal{E}},$ 

$$\frac{\omega_0 CR}{\sqrt{1 + (\omega_0 CR)^2}} = \frac{1}{\sqrt{2}}$$

$$\omega_0 = \frac{1}{CR}$$

$$\therefore f_0 = \frac{1}{2\pi CR}$$

 $C = 0.01\mu$ F, R = 3.3k $\Omega$  を代入すると,

$$f_0 = \frac{1}{2 \cdot 3.14 \cdot 0.01 \cdot 10^{-6} \cdot 3.3 \cdot 10^3} = 4.8 \times 10^3 \text{Hz}$$

となり、実験値とおおよそ一致する。 カットオフ周波数を求める際に電圧利得が-3dBとなる周波数を読み取る理由は、以下に示す関係があるためである.

$$\frac{|\dot{E}_o|}{|\dot{E}_i|} = \frac{1}{\sqrt{2}} \longrightarrow 20 \log_{10} \frac{|\dot{E}_o|}{|\dot{E}_i|} = -0.3010$$