Aufgabe 1: Skalare und Vektoren

Welche der folgenden Größen sind Skalaren, welche Vektoren?

- (a) Beschleunigung
- (b) Leistung
- (c) Zentrifugalkraft
- (d) Geschwindigkeit
- (e) Wärmemenge
- (f) Impuls
- (g) elektrischer Widerstand
- (h) magnetische Feldstärke
- (i) Atomgewicht

Aufgabe 2: Geometrische Addition und Subtraktion

Zeichnen Sie $\vec{a} + \vec{b} + \vec{c}$, $\vec{a} - \vec{b} + \vec{c}$ und $\vec{b} - \vec{a} - \vec{c}$.

(a)

(b)

Aufgabe 3: Operationen in Komponentendarstellung

Gegeben seien die Vektoren $\vec{a} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$. Berechnen Sie:

(a)
$$\vec{a} + \vec{b} - \vec{c}$$

(b)
$$2\vec{a} - \vec{b} + 3\vec{c}$$

Aufgabe 4: Einheitsvektoren

Berechnen Sie jeweils den Einheitsvektor $\vec{e_a}$ in Richtung von \vec{a} .

(a)
$$\vec{a} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$

(b)
$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(c)
$$\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

Aufgabe 5: Abstand zweier Punkte

Berechnen Sie den Abstand $|\vec{d}|$ der Punkte $\vec{P_1}$ und $\vec{P_2}$.

(a)
$$\vec{P_1} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
, $\vec{P_2} = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}$.

(b)
$$\vec{P_1} = \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$
, $\vec{P_2} = \begin{pmatrix} 4\\2\\1 \end{pmatrix}$.

Aufgabe 6: Skalarprodukt

Berechnen Sie das Skalarprodukt $\vec{a} \cdot \vec{b}$.

(a)
$$\vec{a} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$.

(b)
$$\vec{a} = \begin{pmatrix} -1\\2\\-5 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -8\\1\\2 \end{pmatrix}$.

Dr. Rainer Wanke

Übungsblatt 2

24.03.2020

Aufgabe 7: Winkel zwischen Vektoren

Berechnen Sie den von den Vektoren \vec{a} und \vec{b} eingeschlossenen Winkel.

(a)
$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$.

(b)
$$\vec{a} = \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0\\3\\0 \end{pmatrix}$.

Aufgabe 8: Dreiecksungleichung

Zeigen Sie, dass die Dreiecksungleichung $(\vec{a} \cdot \vec{b})^2 \le (\vec{a} \cdot \vec{a}) (\vec{b} \cdot \vec{b})$ für Vektoren gilt.

24.03.2020

Aufgabe 9: Vektorprodukt

Berechnen Sie jeweils das Vektorprodukt $\vec{c} = \vec{a} \times \vec{b}$.

(a)
$$\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$.

(b)
$$\vec{a} = \begin{pmatrix} -2\\1\\0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 1\\4\\3 \end{pmatrix}$.

(c)
$$\vec{a} = 2 \vec{e}_x$$
, $\vec{b} = -3 \vec{e}_z$.

(d)
$$\vec{a} = 4 \vec{e}_y$$
, $\vec{b} = \vec{e}_y$.

Aufgabe 10: Vektoren in einer Ebene

Wie kann man feststellen, ob drei gegebene Vektoren in einer Ebene liegen?