

Remarks

Claims 1-10, 12, 14 and 15 are pending. Claim 1 has been amended to eliminate the alkoxy, hydroxy, alkanoyloxy groups from the Markush group for R₁ and R₉. Claims 1 and 14 have been amended to delete the divalent group being Q-interrupted-Q-C₄-C_{1,2}alkylene-Q. Claim 1 has also been amended to delete two embedded preferred embodiments. Claims 3 and 5 have been amended to delete an embedded preferred embodiment. Claim 14 has been amended to restrict R₄ to groups that are bonded to the benzofuranone moiety by an oxygen atom. No new matter has been added.

The Examiner rejects claims 1-11 and 13-16 under 35 U.S.C. 112(2) as being indefinite for failing to particularly point out and distinctly claim the subject matter that Applicants regard as their invention. The Examiner objects to the phrase L is "Q interrupted...Q" in claims 1 and 14. The phrase has been deleted from both claims.

The objects/rejects claims 11, 13 and 16 as being "use claims". The claims have been cancelled without prejudice to the filing of divisional applications employing conventional process claim format.

The Examiner objects to embedded preferred embodiments in claims 1, 3, and 5. Each of the preferred embodiments has been deleted.

The Examiner rejects claims 1-5 and 7-11 (now claims 1-5 and 7-10) under 35 U.S.C. 102(b) as being anticipated by U.S. Pat. No. 5,981,160 ("Odenwalder et al."). Applicants respectfully traverse this rejection.

Odenwalder teaches the use of Benzofuranones of the formula:

as scavengers for the oxidized developer. The compounds shown in Odenwalder must contain an alkoxy group (OR₁) ortho to the point of attachment of the unfused phenyl moiety.

Claim 1 has been amended to exclude C₁-C₂alkoxy or C₂-C₂₀alkoxy (that can be interrupted) from the scope of R₁ and R₂. The R₁ and R₂ substituents are found on the substituted phenyl ring of formula II. In view of said amendment, Applicants request that the Examiner reconsider and withdraw her anticipation rejection of claims 1-5, 7-10 in view of Odenwalder.

The Examiner rejects claims 1-16 (now claims 1-10, 12, 14 and 15) under 35 U.S.C. 102 as being anticipated by U.S. Pat. No. 5,597,854 ("Birbaum et al."). Applicants respectfully traverse this rejection.

The present invention relates to a process for preventing migration of oxidized developer in a color photographic material by using the particularly defined benzofuranone compounds of claim 1 and its dependent claims. Birbaum describes the benzofuranone compounds as being possible co-additives with the latent light stabilizers taught therein. In fact, Birbaum listed these compounds as one of many optional types of UV absorbers and light stabilizers. The Examiner has not indicated any motivation for one skilled in the art to select the particularly defined compounds from the multiple of possible stabilizers for use in color photography films. The preferred applications don't even point to photography application. One skilled in the art would be expected to use the compositions taught in Birbaum for stabilizing plastics, rubbers, paints or adhesives. Applicants submit that the Examiner has selected portions of the prior art based upon an understanding of the claimed invention. The motivation and suggestion for use to prevent migration of oxidized developer in a color

photographic material is not found in Birbaum. In the absence of any such motivation, Birbaum certainly fails to disclose each and every element of the claimed process. Applicants request that the Examiner reconsider and withdraw her anticipation rejection of claims 1-10, 12, 14 and 15 in view of Birbaum.

The Examiner rejects claims 14-16 (now claims 14 and 15) under 35 U.S.C. 103 as being unpatentable over Birbaum in view of U.S. Pat. 4,325,863 ("Hinsken et al."). The Examiner applies Birbaum as described above. The Examiner cites Hinsken as teachings benzofuranone compounds wherein the R₂ and R₄ groups are pentyl radicals. The Examiner alleges that it would have been obvious to replace the butyl group taught in Birbaum with the pentyl groups of Hinsken. Applicants respectfully traverse this rejection.

Claim 14 has been amended to limit the R₄ group bonded to the benzofuranone moiety via an oxygen molecule. These compounds are described in examples 13-16 (compounds 29-32). All of the compounds in Hinsken are bonded to the benzofuranone moiety via a carbon atom. Hence, even assuming there is any motivation for the combination and modification urged by the Examiner, the resulting combination does not render the invention of claims 14 and 15 unpatentable.

Applicants submit that the present application is now in condition for allowance. Applicants request that the Examiner contact the undersigned representative if minor amendments will further prosecution.

Respectfully submitted,

David R. Crichton
Attorney for Applicants
Reg. No. 37,300

Ciba Specialty
Chemicals Corporation
540 White Plains Road
P.O. Box 2005
Tarrytown, New York 10591-9005
Tel: (914) 785-7124
Fax: (914) 785-7102

APPENDIX:

1. (amended) Process for preventing migration of the oxidised developer in a colour photographic material from one colour sensitive layer to another by incorporating a compound of the formula I into said material

wherein, if n = 1,

R₁ is a cyclic residue selected from naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoazinyl, each of which is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, hydroxy, halogen, amino, C₁-C₄alkylamino, phenylamino or di(C₁-C₄-alkyl)amino; or R₁ is a radical of formula II

and, if n = 2,

R₁ is unsubstituted or C₁-C₄alkyl- or hydroxy-substituted phenylene or naphthylene; or -R₁₂-X-R₁₃-;

R₂, R₃, R₄ and R₅ are each independently of one another hydrogen; chloro; hydroxy; C₁-C₂₅-alkyl; C₁-C₄phenylalkyl; unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-

substituted C₅-C₈cycloalkyl; C₁-C₁₈alkoxy; C₁-C₁₈alkylthio; C₁-C₄alkylamino; di(C₁-C₄-alkyl)amino; C₁-C₂₅alkanoyloxy; C₁-C₂₅alkanoylamino; C₃-C₂₅alkenoyloxy; C₃-C₂₅alkanoyloxy which is

interrupted by oxygen, sulphur or >N—R₁₄; C₆-C₉cycloalkylcarbonyloxy; benzoyloxy or C₁-

C₁₂alkyl-substituted benzoyloxy; or R₂ and R₃, or R₃ and R₄, or R₄ and R₅, together with the linking carbon atoms, form a benzene ring;

or R₄ is -C_mH_{2m}-COR₁₅, -O-(C_vH_{2v})-COR'₁₅, -O-(CH₂)_q-OR₃₂, -OCH₂-CH(OH)-CH₂-R'₁₅, -OCH₂-CH(OH)-CH₂-OR₃₂, or -(CH₂)_qOH;

or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of formula III

wherein R₁ is as defined above for n = 1;

R₆ is hydrogen or, when R₄ is hydroxy, R₆ can also be C₁-C₂₅alkyl or C₃-C₂₅alkenyl;

R₁ and R₉ are each independently of one another hydrogen; halogen; C₁-C₂₅alkyl; C₂-C₂₅alkyl

which is interrupted by oxygen, sulphur or >N—R₁₄; C₁-C₂₅alkylthio; C₃-C₂₅alkenyl; C₁-

C₂₅alkenyloxy; C₃-C₂₅alkynyl; C₃-C₂₅alkynyloxy; C₁-C₉phenylalkyl; C₁-C₉phenylalkoxy; unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl- substituted phenoxy; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkoxy; C₁-C₄alkylamino; di(C₁-C₄alkyl)amino; C₁-C₂₅alkanoyl; C₁-C₂₅alkanoyl which is interrupted by oxygen, sulphur or >N—R₁₄; C₁-C₂₅alkanoylamino; C₃-C₂₅alkenoyl; C₃-C₂₅alkenoyl which is interrupted by oxygen, sulphur or >N—R₁₄; C₃-C₂₅.

alkenoyloxy; $C_3\text{-}C_{25}$ alkenoyloxy which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_6\text{-}C_9$

cycloalkylcarbonyl; $C_6\text{-}C_9$ cycloalkylcarbonyloxy; benzoyl or $C_1\text{-}C_{12}$ alkyl-substituted benzoyl;

benzoyloxy or $C_1\text{-}C_{12}$ alkyl-substituted benzoyloxy; $\begin{array}{c} R_{18} \\ | \\ ---O-C-C=O \\ | \\ R_{19} \end{array}$ or

$R_7\text{-}R_8$, $R_9\text{-}R_{10}$ and R_{11} are each independently of one another hydrogen; halogen; hydroxy; $C_1\text{-}C_{25}$ alkyl; $C_2\text{-}C_{25}$ alkyl which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_1\text{-}C_{25}$ alkoxy; $C_2\text{-}C_{25}$ alkoxy which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_1\text{-}C_{25}$ alkylthio; $C_3\text{-}C_{25}$ -alkenyl; $C_3\text{-}C_{25}$ alkenyloxy; $C_3\text{-}C_{25}$ alkynyl; $C_3\text{-}C_{25}$ alkynyoxy; $C_1\text{-}C_9$ phenylalkyl; $C_1\text{-}C_9$ phenylalkoxy; unsubstituted or $C_1\text{-}C_4$ alkyl-substituted phenyl; unsubstituted or $C_1\text{-}C_4$ alkyl-substituted phenoxy; unsubstituted or $C_1\text{-}C_4$ alkyl-substituted $C_5\text{-}C_8$ cycloalkyl; unsubstituted or $C_1\text{-}C_4$ alkyl-substituted $C_5\text{-}C_8$ cycloalkoxy; $C_1\text{-}C_4$ alkylamino; di($C_1\text{-}C_4$ alkyl)amino; $C_1\text{-}C_{25}$ alkanoyl; $C_3\text{-}C_{25}$ alkanoyl which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_1\text{-}C_{25}$ alkanoyloxy; $C_3\text{-}C_{25}$ alkanoyloxy which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_1\text{-}C_{25}$ alkanoylamino; $C_3\text{-}C_{25}$ alkenoyl; $C_3\text{-}C_{25}$ alkenoyl which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ N-R_{14} \end{array} ; C_6\text{-}C_9$ alkenoyloxy; $C_3\text{-}C_{25}$ alkenoyloxy which is interrupted by oxygen, sulphur or

cycloalkylcarbonyl; $C_6\text{-}C_9$ cycloalkylcarbonyloxy; benzoyl or $C_1\text{-}C_{12}$ alkyl-substituted benzoyl;

carbon atoms, form a benzene ring;

R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene;

R_{14} is hydrogen or C_1 - C_8 alkyl;

R_{15} and R'_{15} independently are hydroxy; $\left[\text{---O}^{\cdot} \frac{1}{r} \text{M}^{r+} \right]$; C_1 - C_{20} alkoxy; C_3 - C_{20} alkoxy

interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_1 - C_{15} alkylphenoxy, C_1 - C_{15} alkoxyphenoxy; or are C_5 - C_{12} cycloalkoxy; C_7 - C_{17} phenylalkoxy; phenoxy;

R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl;
 R_{20} is hydrogen or C_1 - C_4 alkyl;
 R_{21} is hydrogen; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N \\ \diagdown \end{array} - R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N \\ \diagdown \end{array} - R_{14}$ and which is unsubstituted or substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; or R_{20} and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;
 R_{22} is hydrogen or C_1 - C_4 alkyl;
 R_{23} is hydrogen; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N \\ \diagdown \end{array} - R_{14}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate group; C_6 - C_9 cycloalkylcarbonyl; thenoyl; furoyl; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl;
 R_{26} is hydrogen or C_1 - C_8 alkyl;

R_{27} is a direct bond; C_1 - C_{18} alkylene; C_2 - C_{18} alkylene which is interrupted by oxygen, sulphur or

C_8 bicycloalkylene; unsubstituted or C_1 - C_4 alkyl-substituted phenylene;

or

R_{28} is hydroxy, $\left[—O\cdot \frac{1}{r} M^{r+}\right]$, C_1 - C_{18} alkoxy or $—N(R_{24})^{R_{25}}$;

R_{29} is oxygen or $-\text{NH}-$;

R_{30} is C_1 - C_{18} alkyl or phenyl;

R_{31} is hydrogen or C_1 - C_{18} alkyl;

R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency ($k+1$) and is as a divalent group

$—O—$;

$Q-C_2\text{-}C_{12}\text{alkylene-Q}$;

$—O\text{-CH}_2\text{-CH(OH)-CH}_2\text{-O-}$;

$—Q-C_2\text{-}C_{12}\text{alkylene-Q-CO-C}_v\text{H}_{2v}\text{-O-}$;

$—O\text{-C}_2\text{-}C_{12}\text{alkylene-O-CH}_2\text{-CH(OH)-CH}_2\text{-O-}$;

$Q\text{-interrupted } Q\text{-C}_4\text{-C}_{12}\text{alkylene-Q-}$

$Q\text{-phenylene-Q}$ or

$Q\text{-phenylene-D-phenylene-Q}$ with D being C_1 - C_4 alkylene, O, S, SO or SO_2 ;

L as a trivalent group is Q-capped C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol,

or a group $(—O\text{-CH}_2)_3\text{C-CH}_2\text{OH}$; $—Q\text{-C}_a\text{H}_{2a}\text{-N(C}_b\text{H}_{2b}\text{-Q-)-C}_c\text{H}_{2c}\text{-Q-}$;

$—Q\text{-C}_3\text{-C}_{12}\text{alkanetriyl(-Q-CO-C}_v\text{H}_{2v}\text{-O-)}_2$;

$—O\text{-C}_3\text{-C}_{12}\text{alkanetriyl(-O-CH}_2\text{-CH(OH)-CH}_2\text{-O-)}_2$; and

L as a tetravalent group is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂alkanetetryl(-Q-CO-C_vH_{2v}-O-);

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-); Q-capped C₄-C₁₂alkanetetryl; a group

or a group

M is an r-valent metal cation;

Q is oxygen or -NH-;

X is a direct bond, oxygen, sulphur or -NR₃₁-;

Z is a linking group of valency (k+1) and is as a divalent group C₂-C₁₂alkylene; Q-interrupted C₄-C₁₂alkylene; phenylene or phenylene-D-phenylene with D being C₁-C₄alkylene, O, S, SO or SO₂;

Z as a trivalent group is C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-CH₂)₃C-CH₂OH, or a group -C_aH_{2a}-N(C_bH_{2b})-C_cH_{2c}-; and

Z as a tetravalent group is a tetravalent, carbon-ended residue of a hexose or a hexitol, C₄-

C₁₂alkanetetryl, a group

or a group

a, b, c and k independently are 1, 2 or 3;

m is 0 or a number from the range 1-12, ~~preferably 1-6~~;

n is 1 or 2;

q is 1, 2, 3, 4, 5 or 6;

r is 1, 2 or 3; and

s is 0, 1 or 2;

v is 1, 2, 3, 4, 5, 6, 7 or 8, ~~preferably 1 or 2~~;

provided that, when R₁ is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R₁₄) and R₂ is hydrogen, R₁₀ is not identical with R₄; and when R₃ is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R₁₄) and R₇ is hydrogen, R₈ is not identical with R₄.

3. (amended) Process according to claim 1 wherein in the compound of formula I
 R_1 is naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino, or R_1 is a radical of formula II

and, if $n = 2$,

R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}-X-R_{13}-$,

R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen, chloro, hydroxy, C_1 - C_{25} -alkyl, C_1 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_{25} alkanoyloxy, C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyloxy; C_3 - C_{25} alkanoyloxy which is

interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \\ \diagdown \end{array}$; C_6 - C_9 cycloalkylcarbonyloxy, benzyloxy or C_1 -

C_{12} alkyl-substituted benzyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring; or R_4 is

$-C_mH_{2m}-COR_{15}$ or $-(CH_2)_qOH$ or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of formula III

wherein R₁ is as defined above for n = 1;

R₆ is hydrogen or, when R₄ is hydroxy, R₆ can also be C₁-C₂₅alkyl or C₃-C₂₅alkenyl;

R₇, R₈, R₉, R₁₀ and R₁₁ are each independently of one another hydrogen, halogen, hydroxy, C₁-C₂₅alkyl; C₂-C₂₅alkyl which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₁-C₂₅alkoxy; C₂-C₂₅alkoxy which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₁-C₂₅alkylthio, C₃-C₂₅-alkenyl, C₃-C₂₅alkenyloxy, C₃-C₂₅alkynyl, C₃-C₂₅alkynyoxy, C₁-C₉phenylalkyl, C₁-C₉phenylalkoxy, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl- substituted phenoxy; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; unsubstituted or C₁-C₄alkyl- substituted C₅-C₈cycloalkoxy; C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₂₅alkanoyl; C₃-C₂₅alkanoyl which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₁-C₂₅alkanoyloxy; C₃-C₂₅alkanoyloxy which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₁-C₂₅alkanoylamino,

C₃-C₂₅alkenoyl; C₃-C₂₅alkenoyl which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₃-C₂₅alkenoyloxy; C₃-C₂₅alkenoyloxy which is interrupted by oxygen, sulphur or

$\begin{array}{c} \diagup \\ \diagdown \end{array} \text{N}-\text{R}_{14}$; C₆-C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $\text{---O---C}(\text{R}_{19})\text{---C}(=\text{O})\text{---R}_{15}$ or

carbon atoms, form a benzene ring,

R_{12} and R_{13} are each independently of the other unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R_{14} is hydrogen or C_1 - C_8 alkyl,

R_{15} is hydroxy, $\left[\text{---O} \cdot \frac{1}{r} M^{r+} \right]$, C_1 - C_{20} alkoxy, $\text{---N}(\text{R}_{25})\text{---R}_{24}$, or a group of the formula IIIa

R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl,

R_{20} is hydrogen or C_1 - C_4 alkyl,

R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is

interrupted by oxygen, sulphur or ---N---R_{14} ; C_7 - C_9 phenylalkyl which is unsubstituted or

substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_7 - C_{25} phenylalkyl which is interrupted by

oxygen, sulphur or ---N---R_{14} and which is unsubstituted or substituted at the phenyl moiety

by 1 to 3 C₁-C₄alkyl, or R₂₀ and R₂₁, together with the linking carbon atoms, form a C₅-C₁₂cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C₁-C₄alkyl; R₂₂ is hydrogen or C₁-C₄alkyl, R₂₃ is hydrogen, C₁-C₂₅ alkanoyl, C₃-C₂₅ alkenoyl; C₃-C₂₅ alkanoyl which is interrupted by oxygen, sulphur or >N—R₁₄; C₂-C₂₅ alkanoyl which is substituted by a di(C₁-C₆alkyl)phosphonate group; C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

R₂₄ and R₂₅ are each independently of the other hydrogen or C₁-C₁₈alkyl, R₂₆ is hydrogen or C₁-C₈alkyl, R₂₇ is a direct bond, C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulphur or >N—R₁₄; C₂-C₁₈ alkenylene, C₂-C₂₀ alkylidene, C₇-C₂₀ phenylalkylidene, C₅-C₈ cycloalkylene, C₇-C₈bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted phenylene,

R_{28} is hydroxy, $\left[-O \cdot \frac{1}{r} M^{r+}\right]$, C_1 - C_{18} alkoxy or $\begin{array}{c} R_{24} \\ | \\ -N \\ | \\ R_{25} \end{array}$,

R_{29} is oxygen or $-NH-$,

R_{30} is C_1 - C_{18} alkyl or phenyl,

R_{31} is hydrogen or C_1 - C_{18} alkyl,

M is an r -valent metal cation,

Q is oxygen or $-NH-$,

X is a direct bond, oxygen, sulphur or $-NR_{31}-$,

Z is a linking group of valency ($k+1$) and is as a divalent group C_2 - C_{12} alkylene, Q -interrupted C_4 - C_{12} alkylene, phenylene or phenylene-D-phenylene with D being C_1 - C_4 alkylene, O, S, SO or SO_2 ;

Z as a trivalent group is C_3 - C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol, a group $(-CH_2)_3C-CH_2OH$, or a group $-C_aH_{2a}-N(C_bH_{2b})-C_cH_{2c}-$; and

Z as a tetravalent group is a tetravalent residue of a hexose or a hexitol, C_4 - C_{12} alkanetetrayl, a

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12, preferably 1-6,

n is 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2;

provided that, when R_9 is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R_{10}) and

R_9 is hydrogen, R_{10} is not identical with R_4 .

5. (amended) Process according to claim 1 wherein the compound of formula I corresponds to the formula IV

wherein

R₂ is H or C₁-C₂₀alkyl;

R₃ is H or C₁-C₁₈alkyl;

R₄ is C₁-C₈alkyl, H, C₁-C₆alkoxy or a group -C_mH_{2m}-COR₁₅; -O-(C_vH_{2v})-COR₁₅,

-O-(CH₂)_q-OR₃₂; -OCH₂-CH(OH)-CH₂-R₁₅; -OCH₂-CH(OH)-CH₂-OR₃₂;

or a group of the formula III

R₅ is H or C₁-C₁₈alkyl;

R₇ and R₉ are each independently of one another hydrogen; halogen; C₁-C₂₅alkyl; C₃-C₂₅-alkenyl; C₃-C₂₅alkynyl; C₁-C₆phenylalkyl; unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl;

R₈, R₁₀ and R₁₁ independently are H, OH, chloro, C₁-C₁₈alkyl, C₁-C₁₈alkoxy, di(C₁-C₄alkyl)amino, C₁-C₆phenylalkyl; unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; C₂-C₁₈alkanoyloxy, C₃-C₁₈-alkoxycarbonylalkoxy or

~~especially wherein at least 2 of the residues R₇, R₈, R₉, R₁₀, R₁₁ are H;~~

R_{15} is C_1 - C_{18} alkoxy; C_3 - C_{20} alkoxy interrupted by O; or are cyclohexyloxy; C_1 - C_{18} phenylalkoxy; phenoxy; or a group of formula IIIa or IIIb;

R_{16} and R_{17} independently are H, C_1 - C_{12} alkyl or phenyl; or R_{16} and R_{17} , together with the bonding carbon atom form a C_5 - C_8 cycloalkylidene ring;

R_{20} , R_{21} and R_{22} independently are H or C_1 - C_4 alkyl;

R_{23} is H, C_2 - C_{18} alkanoyl or a group

R_{26} is C_1 - C_4 alkyl;

R_{32} is C_1 - C_{18} alkanoyl; C_1 - C_8 alkanoyl substituted by phenyl or C_7 - C_{15} alkylphenyl; C_3 - C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a divalent group -O-; Q- C_2 - C_{12} alkylene-Q; -O-CH₂-CH(OH)-CH₂-O-;

-Q- C_2 - C_{12} alkylene-Q-CO-C_vH_{2v}-O-; -O-C₂- C_{12} alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q is oxygen;

Z is C_2 - C_{12} alkylene;

k is 1;

m is 1, 2, 3, 4, 5 or 6;

v is 1 or 2; and

s is 0, 1 or 2.

14. (amended) Compound of the formula V or VI

wherein

R_4 is $-(CH_2)_n-COR_{15}$ or $-CH(CH_3)-COR_{15}$ or $-C_1H_{2n}-COR_{15}$, wherein C_1H_{2n} is a straight chain or branched alkylene moiety; or R_4 is $-O-(C_1H_{2n})-COR_{15}$; $-O-(CH_2)_q-OR_{32}$; $-OCH_2-CH(OH)-CH_2-R_{15}$; or $-OCH_2-CH(OH)-CH_2-OR_{32}$;
 R'_7 is C_1-C_4 alkyl and R'_8 is hydrogen or C_1-C_4 alkyl;

R_{15} is hydroxy, $\left[-O^-\frac{1}{r}M^{r+}\right]$, C_1-C_{20} alkoxy; C_3-C_{20} alkoxy interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_1-C_{15} alkylphenoxy, C_7-C_{15} alkoxyphenoxy;

or R_{15} is C_5-C_{12} cycloalkoxy; C_1-C_7 phenylalkoxy; phenoxy; $-\overset{R_{24}}{N}(\overset{R_{25}}{R})-$; or a group of formula

IIIa or IIIb;

~~R¹ is C₃-C₂₀ alkoxy interrupted by O and/or substituted by a radical selected from OH, phenoxy, C₇-C₁₅ alkylphenoxy, C₇-C₁₅ alkoxyphenoxy, or R¹ is C₅-C₁₂ cycloalkoxy, C₅-C₁₂ phenylalkoxy, phenoxy, or a group of formula IIIa or IIIb;~~

~~R₃₂ is C₁-C₁₈ alkanoyl; C₁-C₈ alkanoyl substituted by phenyl or C₆-C₁₅ alkylphenyl; C₃-C₁₈ alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;~~

L is a linking group of valency (k+1) and is, as a divalent group,

-O-;

Q-C₂-C₁₂ alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂ alkylene-Q-CO-C_vH_{2v}-O-;

-O-C₂-C₁₂ alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q-interrupted Q-C₄-C₁₂ alkylene-Q-

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄ alkylene, O, S, SO or SO₂;

L, as a trivalent group, is Q-capped C₃-C₁₂ alkanetriyl, a trivalent residue of a hexose or a hexitol,

or a group (-O-CH₂)₃C-CH₂OH; -Q-C_aH_{2a}-N(C_bH_{2b}-Q)-C_cH_{2c}-Q-;

-Q-C₃-C₁₂ alkanetriyl(-Q-CO-C_vH_{2v}-O-);

-O-C₃-C₁₂ alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-); and

L, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂ alkanetetryl(-Q-CO-C_vH_{2v}-O-);

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-); Q-capped C₄-C₁₂alkanetetryl; a group

or a group

;

Q is oxygen or -NH-,

Z is a linking group of valency (k+1) and is as a divalent group C₂-C₁₂alkylene, Q-interrupted C₄-C₁₂alkylene, phenylene or phenylene-D-phenylene with D being C₁-C₄alkylene, O, S, SO or SO₂; Z, as a trivalent group, is C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-CH₂)₃C-CH₂OH, or a group -C_aH_{2a}-N(C_bH_{2b}-)-C_cH_{2c}-; and

Z, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a

or a group

;

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12,

s is 1 or 2,

and t is a number from the range 3-12;

v is 1, 2, 3, 4, 5, 6, 7 or 8;

and all other residues are as defined in claim 1 for formula I if n is 1.