Aufgabe: Komplexe Zahlenmengen zeichnen

Skizziere die folgenden Mengen in der komplexen Zahlenebene:

- (a) $\{z \in \mathbb{C} | -3 \le \Im(z+5-3i) \le 2\}$
- (b) $\{z \in \mathbb{C} | |z + 2 i| \ge 3\}$
- (c) $\{z \in \mathbb{C} | z\overline{z} (z + \overline{z})^2 \le 1\}$

Lösung

(a) $\{z \in \mathbb{C} | -3 \le \Im(z+5-3\mathrm{i}) \le 2\}$ Sei $z = x + \mathrm{i}y$ mit $x, y \in \mathbb{R}$. Dann gilt:

$$z + 5 - 3i = (x + iy) + 5 - 3i \tag{1}$$

$$= (x+5) + i(y-3)$$
 (2)

Der Imaginärteil von $z+5-3{\rm i}$ ist also $\Im(z+5-3{\rm i})=y-3.$

Die Bedingung $-3 \le \Im(z+5-3i) \le 2$ wird zu:

$$-3 \le y - 3 \le 2 \tag{3}$$

$$-3 + 3 \le y \le 2 + 3 \tag{4}$$

$$0 \le y \le 5 \tag{5}$$

Die gesuchte Menge ist also ein horizontaler Streifen in der komplexen Ebene:

$$M_a = \{ z = x + iy \in \mathbb{C} | x \in \mathbb{R}, 0 \le y \le 5 \}$$

Dies ist ein horizontaler Streifen zwischen den Geraden y=0 und y=5.

(b)
$$\{z \in \mathbb{C} | |z + 2 - i| \ge 3\}$$

Die Bedingung $|z+2-\mathrm{i}|\geq 3$ beschreibt alle komplexen Zahlen z, deren Abstand zum Punkt $-2+\mathrm{i}$ mindestens 3 beträgt. Dies ist das Äußere (einschließlich des Randes) eines Kreises mit Mittelpunkt $z_0=-2+\mathrm{i}$ und Radius r=3.

Die gesuchte Menge ist:

$$M_b = \{ z \in \mathbb{C} | |z - (-2 + i)| \ge 3 \}$$

Dies ist das Äußere (einschließlich Rand) eines Kreises mit Mittelpunkt $z_0 = -2 + \mathrm{i}$ und Radius r = 3.

(c)
$$\{z \in \mathbb{C} | z\overline{z} - (z + \overline{z})^2 \le 1\}$$

Sei wieder $z=x+\mathrm{i} y$ mit $x,y\in\mathbb{R}$. Dann ist $\overline{z}=x-\mathrm{i} y$, und wir berechnen:

$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$$
 (6)

$$z + \overline{z} = (x + iy) + (x - iy) = 2x \tag{7}$$

$$(z + \overline{z})^2 = (2x)^2 = 4x^2 \tag{8}$$

Die Bedingung $z\overline{z} - (z + \overline{z})^2 \le 1$ wird zu:

$$x^2 + y^2 - 4x^2 \le 1 \tag{9}$$

$$y^2 - 3x^2 \le 1\tag{10}$$

Dies ist die Ungleichung einer Hyperbel. Die Randkurve ist gegeben durch $y^2-3x^2=1,$ was umgeformt werden kann zu:

$$\frac{y^2}{1} - \frac{x^2}{1/3} = 1$$

Dies ist eine Hyperbel mit den Scheitelpunkten bei $(0,\pm 1)$. Die gesuchte Menge ist:

$$M_c = \{ z = x + iy \in \mathbb{C} | y^2 - 3x^2 \le 1 \}$$

Dies ist der Bereich zwischen den beiden Ästen der Hyperbel $y^2 - 3x^2 = 1$.

Skizzen

Die drei Mengen sind in der komplexen Zahlenebene wie folgt dargestellt:

- (a) Horizontaler Streifen $0 \le y \le 5$:
- Ein unendlich breiter horizontaler Streifen
- Untere Grenze: die reelle Achse (y=0)
- \bullet Obere Grenze: die Gerade y=5
- (b) Äußeres des Kreises um -2 + i mit Radius 3:
- Mittelpunkt: $z_0 = -2 + i$
- Radius: r = 3
- Die Menge umfasst alle Punkte außerhalb und auf dem Kreisrand
- (c) Bereich zwischen den Hyperbelästen:
- Hyperbel: $y^2 3x^2 = 1$
- Scheitelpunkte: $(0, \pm 1)$
- Die Menge ist der Bereich zwischen den beiden Ästen (einschließlich der Hyperbeläste selbst)