Funções reais de várias variáveis reais

A área A de um retângulo de comprimento c e largura / é dada por A = / c. Dizemos que A é uma função de duas variáveis / e c e usamos a notação

$$A = f(I, c)$$
 com $f(I, c) = I c$.

Como os lados do retângulo têm medida positiva é natural considerar $(I,c) \in D$ sendo $D = \mathbb{R}^+ \times \mathbb{R}^+$. Dizemos que D é o domínio da função f. Neste caso D está determinado por razões físicas.

• A média aritmética de n números reais $(n \text{ fixo}) x_1, x_2, \ldots, x_n$ é dada através da fórmula $m = \frac{x_1 + x_2 + \cdots + x_n}{n}$. Dizemos que m é uma função de n variáveis x_1, x_2, \ldots, x_n e escrevemos

$$m = f(x_1, x_2, \dots, x_n) \text{ com } f(x_1, x_2, \dots, x_n) = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Neste caso podemos considerar $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ e dizemos que \mathbb{R}^n é o domínio da função f.

Função - Domínio

Em geral dizemos que uma variável u é função de n variáveis x_1, x_2, \ldots, x_n e escrevemos

$$u=f(x_1,x_2,\ldots,x_n)$$

se existe uma regra que atribui um único valor real u a cada (x_1, x_2, \ldots, x_n) pertencente a um subconjunto D de \mathbb{R}^n . As variáveis x_1, x_2, \ldots, x_n dizem-se variáveis independentes e u diz-se variável dependente. O subconjunto D diz-se domínio da função f.

Domínio

Dada uma função através de uma expressão analítica podemos ter duas situações: ou o domínio é dado explicitamente ou é considerado o domínio natural que consiste no conjunto dos pontos para os quais a expressão analítica tem sentido.

Exemplo

Determine e esboce o domínio da função

$$f(x,y) = \log(1 - x^2 - y^2)$$

Resolução:

Gráfico de uma função real de uma variável real

Seja $D \subset \mathbb{R}$ e $f: D \to \mathbb{R}$. Chama-se gráfico de f ao conjunto $\{(x,y) \in \mathbb{R}^2 : x \in D \land y = f(x)\}.$

Gráfico de uma função real de várias variáveis reais

Seja
$$D \subset \mathbb{R}^n$$
 e $f: D \to \mathbb{R}$. Chama-se gráfico de f ao conjunto $\{(x_1, \dots, x_n, y) \in \mathbb{R}^{n+1} : (x_1, \dots, x_n) \in D \land y = f(x_1, \dots, x_n)\}.$

Se n = 2, o gráfico é um subconjunto de \mathbb{R}^3 :

Gráfico - Exemplos

Exemplos

Esboce os gráficos das funções:

(a)
$$f(x,y) = 3x$$
;

(b)
$$f(x,y) = 1 - x^2 - y^2$$
.

Resolução:

Curvas de nível de uma função de duas variáveis

Seja $D \subset \mathbb{R}^2$. A curva de nível $k \in \mathbb{R}$ de uma função $f: D \to \mathbb{R}$ é definida por

$$C_k = \{(x, y) \in D : f(x, y) = k\}.$$

Exemplo: a função $f(x,y) = -xye^{-x^2-y^2}$

Observação

Curvas de nível de valores diferentes não se intersetam.

Exemplo

Exemplo

Esboce algumas curvas de nível da função $f(x, y) = 4x^2 + y^2 + 1$.

Superfícies de nível de uma função de 3 variáveis

Seja $D \subset \mathbb{R}^3$. A superfície de nível $k \in \mathbb{R}$ de uma função

$$f:D\to\mathbb{R}$$

é definida por

$$S_k = \{(x, y, z) \in D : f(x, y, z) = k\}.$$

Exemplo

Determine e esboce as superfícies de nível de valores 1,4 e 9 da função $f(x, y, z) = x^2 + y^2 + z^2$.

Resolução:

$$\begin{split} \mathcal{S}_1 &= \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} : \\ \mathcal{S}_4 &= \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\}; \\ \mathcal{S}_9 &= \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 9\}. \end{split}$$

Superfícies de nível da função $f(x, y, z) = x^2 + y^2 + z^2$

