Limits at Infinity; Horizontal Asymptotes

Topics: Limits at infinity, horizontal asymptotes

Definition: Let f be defined on (a, ∞) . Then

means that f(x) becomes arbitrarily close to L for sufficiently large x.

Definition: Let f be defined on $(-\infty, a)$. Then

means that f(x) becomes arbitrarily close to L for sufficiently large negative x.

Definition: The line y = L is a horizontal asymptote of the curve y = f(x) if

Example 1. Determine all vertical and horizontal asymptotes of the following function

Computing infinite limits

Some infinite limits can be reasoned through by thinking about the behavior of the function.

Example 2. Compute

$$\lim_{x \to 2^-} \tan^{-1} \left(\frac{1}{x - 2} \right).$$

Example 3. Compute

$$\lim_{x \to \infty} x^2 - x^3.$$

Theorem. (i). For all r > 0 we have

$$\lim_{x \to \infty} \frac{1}{x^r} =$$

and if $\frac{1}{x^r}$ is defined for negative x then similarly

$$\lim_{x\to -\infty}\frac{1}{x^r}=$$

(ii).

$$\lim_{x\to -\infty} e^x =$$

and

$$\lim_{x \to \infty} 1/e^x =$$

Example 4. Evaluate

$$\lim_{x \to \infty} \frac{2x^2 + x - 100}{4x^2 - 300x + 4}.$$

Rule of thumb:

Example 5. (Rational functions) Compute

$$\lim_{x \to \infty} \frac{x^2 + x}{3 - x}$$

and

$$\lim_{x \to -\infty} \frac{x^2 - 3x + 3}{x^3 + \pi x}.$$

Discuss a general pattern.

Example 6. (Conjugate). Compute $\lim_{x\to\infty} (\sqrt{x^2+1}-x)$.

Example 7. (Exponentials).

 $Determine\ the\ horizontal\ asymptotes\ of$

$$f(x) = \frac{8e^x}{e^x - 3}.$$

Example 8. (Squareroots). (Hint: $1/x = 1/\sqrt{x^2}$ since x > 0)

Compute

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}.$$