1 Abzählungen

Es gibt nur zwei Arten von Aufgaben:

- \bullet Anzahl Aufteilungen von einer Menge N von Kugeln in eine Menge R von Fächern
- ullet Aus einer Menge N mit n Elementen sollen alle oder k Elemente ausgewählt werden

1.1 Anzahl Aufteilungen von einer Menge N von Kugeln in eine Menge R von Fächern

N = n, R = r	beliebig	injektiv	surjektiv	bijektiv
N unterscheidbar		$r \ge n : r^{\underline{n}}$	$n \ge r : r! S_{n,r}$	r = n : n!
R unterscheidbar	r^n	r < n : 0	n < r : 0	$r \neq n:0$
N nicht unterscheidbar	$\binom{r+n-1}{n}$	$r \ge n : \binom{r}{n}$	$n \ge r : \binom{n-1}{r-1}$	r=n:1
R unterscheidbar	$=\frac{r^{\overline{n}}}{n!}$	r < n : 0	n < r : 0	$r \neq n:0$
N unterscheidbar		$r \ge n:1$	$n \ge r : S_{n,r}$	r=n:1
R nicht unterscheidbar	$\sum_{k=1}^{r} S_{n,k}$	r < n : 0	n < r : 0	$r \neq n:0$
N nicht unterscheidbar		$r \geq n:1$	$n \ge r : P_{n,r}$	r=n:1
R nicht unterscheidbar	$\sum_{k=1}^{r} P_{n,k}$	r < n : 0	n < r : 0	$r \neq n:0$

1.2 Aus einer Menge N mit n Elementen sollen alle oder k Elemente ausgewählt werden

2 Codierung

2.1 Allgemeines

- Linearer (n, m)-Code C
- $a \times b \text{ Matrix: } n = b \text{ und } m = a$

2.2 Wichtige Formeln

- Blocklänge: n
- ullet Linear unabhängige Wörter/Dimension des Unterrraums $C\colon m$
- Anzahl Codewörter: $|C| = q^m$, wobei q Anzahl Elemente in C
- Anzahl Wörter in Standardfeld: q^n
- Anzahl Wörter in Syndromtabelle: q^{n-m}
- Hamming Code: $n = \frac{q^{n-m} 1}{q 1}$
- Schätzen der Codedistanz (Singleton-Schranke): $d(C) \le n-m+1$
- Fehlererkennend: (n-m)
- Fehlerkorrigierend: $\left\lfloor \frac{(n-m)}{2} \right\rfloor$
- t-fehlererkennend: $d(C) \le t + 1$, das ausgewählte t ist, wie viel Fehler der Code erkennt
- t-fehlerkorrigierend: $d(C) \leq 2t+1$, das ausgewählte t ist, wie viele Fehler der Code korrigiert

2.3 Codewörter sind gegeben

n und m bestimmen

```
n= Länge der Codewörter \Rightarrow n=5
00000
01101
10111
11010
m= Dimension \Rightarrow m=2
00000
01101
10111
11010
```

Hamming-Distanz/Code-Distanz/d(c)

- Hemming-Distanz ist die minimale Änderung des Gewichts
- Wird mit d(C) bezeichnet

Beispiel:

- Anzahl Einsen in Codewörter Zählen
- 0...0 wird dabei nicht beachtet

```
\begin{array}{ccc} 01101 & \rightarrow & \text{Gewicht: 3} \\ 10111 & \rightarrow & \text{Gewicht: 4} \\ 11010 & \rightarrow & \text{Gewicht: 3} \end{array}
```

- Gewicht der Codewörter vergleichen und minimalstes auswählen
- $\Rightarrow d(C) = 3$, da es minimal ist

t-fehlererkennend

t-fehlerkorrigierend

t-ausfällekorrigierend

Kanonische Generatormatrix

• Definition: Aus der Generatormatrix kann man alle möglichen Codewörter der Sprache erzeugen.

- Falls die Generatormatrix gegeben ist, lässt sich die die kanonische Generatormatrix durch das Anwenden des Gaußschen Verfahrens auf die Generatormatrix erstellen.
- Größe: $(m \times n)$
- Aufbau: $G = \begin{pmatrix} E & G' \end{pmatrix}$
 - E: Einheitsmatrix
 - -G': Linear unabhängiger Rest aus Codewörtern

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Kanonische Kontrollmatrix

- Definition: Erfüllt ein Wort $wort \cdot kontrollmatrix = 0$ ist es ein richtiges Codewort.
- Größe: $n \times (n-m)$
- Aufbau: $H = \begin{pmatrix} -G \\ E \end{pmatrix}$
 - E: Einheitsmatrix
 - -G: Linear unabhängiger Rest aus Codewörtern

$$H = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Modulo mit negativen Zahlen:

	-10	- 9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9
\mathbb{Z}_2									0	1	[0	1]								
\mathbb{Z}_3								0	1	2	[0	1	2]							
\mathbb{Z}_4							0	1	2	3	[0	1	2	3]						
\mathbb{Z}_5						0	1	2	3	4	[0	1	2	3	4]					
\mathbb{Z}_6					0	1	2	3	4	5	[0	1	2	3	4	5]				
\mathbb{Z}_7				0	1	2	3	4	5	6	[0	1	2	3	4	5	6]			
\mathbb{Z}_8			0	1	2	3	4	5	6	7	[0	1	2	3	4	5	6	7]		
\mathbb{Z}_9		0	1	2	3	4	5	6	7	8	[0	1	2	3	4	5	6	7	8]	
\mathbb{Z}_{10}	0	1	2	3	4	5	6	7	8	9	[0	1	2	3	4	5	6	7	8	9]

2.4 Syndromtabelle

• Definition: Identifiziert und korrigiert Fehler in Codewörter durch Vergleich mit erwarteten Werten.

• Anzahl Zeilen: q^{n-m}

 \bullet Anzahl Spalten: n

Beispiel: (7×3) -Kontrollmatrix, n = 7, m = 4

- Anzahl Zeilen: $2^{7-4} = 8$
- Anzahl Spalten: 7
- Wenn über 0000001 hinaus geht egal ob 1000001, 1100000, . . .
- 1. Überprüfen ob es ein empfangenes Codewort fehlerfrei ist $(wort \cdot kontrollmatrix = 0)$
 - Empfangenes Wort: y = 1010010

$$1010010 \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 110 \neq 0 \Rightarrow \text{Fehler im empfangenen Codewort}$$

- 2. Codewort durch Syndromtabelle korrigieren
 - Klassenanführer von 110 aus Syndromtabelle ablesen: a = 0001000
 - \bullet empfangenes Codewort Klassenan fuehrer = korrigiertes <math>Codewort

$$\begin{array}{c|cccc} y & & 1010010 \\ \hline a & - & 0001000 \\ \hline & & 1011010 \\ \end{array}$$

- korrigiertes Codewort: 1011010
- 3. Nachricht extrahieren
 - Letzte Stellen des korrigierten Codewort entfernen, um die Nachricht zu erhalten (Anzahl entfernte Stellen entspricht Länge des Syndrom).
 - Nachricht: 1011010 = 1011

2.5 Standardfeld

2.6 Kontrollmatrix zu Generatormatrix umwandeln

$$H = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}^{T}$$

3 Graphentheorie

3.1 Grundbegriffe

G(V, E), V = Vertices = Knoten, E = Edges = Kanten

Gerichteter Graph

• Kante geht nur in eine Richtung

Zusammenhängender Graph

- Verbindung von einem Knotenpunkt zu allen anderen
- Verbindungen müssen nicht direkt sein
- Gibt keine isolierten Knoten

Gewichteter Graph

• Die Kanten bekommen Gewichte zugewiesen

Euler-Zyklus/Eulersch

- Anfangszustand = Endzustand
- Alle Knoten haben einen geraden Grad

Ungerichteter Graph

• Kante geht nur in beide Richtung

Nichtzusammenhängender Graph

• Wenn ein Knoten isoliert ist und keine Verbindung herrscht

Knotengrad

• Anzahl Kanten die von einem Knoten ausgehen

Euler-Pfad

- Jede Kante wird genau einmal durchlaufen
- Keine Kante wird mehrmals durchlaufen
- Startknoten muss nicht gleich Endknoten sein
- Genau zwei Knoten haben einen ungeraden Grad

Hamilton-Zyklus

- Anfangszustand = Endzustand
- Alle Knoten geraden Grads

Hamilton-Pfad

- Jede Kante wird genau einmal durchlaufen
- Keine Kante wird mehrmals durchlaufen
- Startknoten muss nicht gleich Endknoten sein

Bipartit

- Man kann alle Knoten in zwei (disjunkte) Teilmengen/Gruppen aufteilen
- Jede Verbindung geht dabei von einer Teilmenge/Gruppe in die andere
- Es darf allerdings keine Verbindung der Knoten innerhalb der eigenen Teilmenge/Gruppe geben

Beispiel: Zeigen ob ein Graph bipartit ist

- Beliebigen Knoten auswählen und färben (z.B blau).
- Alle benachbarte Knoten mit einer anderen Farbe färben (z.B grün)
- Widerholen: Alle Knoten die an einen blauen Knoten angrenzen, grün und alle Knoten, die an einen grünen Knoten angrenzen, blau färben.
- Prüfung: Wenn man auf einen Knoten stößt, der bereits gefärbt ist und dessen Farbe sich von der Farbe unterscheidet, die man ihm zuweisen möchten, dann ist der Graph *nicht bipartit*. Wenn man alle Knoten ohne solche Konflikte färben konnte, ist der Graph *bipartit*.
- Die blauen Knoten sind am Ende die eine Teilmenge/Gruppe und die grünen Knoten sind am Ende die andere Teilmenge/Gruppe

Planar

• Ein Graph ist planar, wenn man ihn so zeichnen kann, dass sich seine Kanten nirgendwo kreuzen.

(Nicht) Planarität prüfen:

1 Methode:

- n = |V| (Anzahl Knoten) und m = |E| (Anzahl Kanten) bestimmen
- Hat der Graph einen Zyklus der Länge 3?
 - → **Ja:** $m \le 3n 6$
 - \rightarrow Nein: $m \le 2n-4$
 - Gilt $m\not\leq 3n-6$ oder $m\not\leq 2n-4$ ist der Graph nicht planar
 - **Achtung:** Die Formel macht nur eine Aussage darüber, ob der Graph nicht planar ist, aber nicht, ob ein Graph planar ist. Gilt also $m \leq 3n 6$ oder $m \leq 2n 4$ heißt es nicht, dass der Graph planar ist. Man kann also nur die Nichtplanarität überprüfen.

3.2 Kürzester Weg

Dijkstra

A	В	\mathbf{C}	D	\mid E	F	G	Н	I	S
0(A)									A
0(A)	9(A)		5(D)						A, D
0(A)	7(D)		5(D)	18(E)		31(D)	23(D)		A, D, B
0(A)	7(D)	11(B)	5(D)	17(E)	13(B)	31(D)	23(D)		A, D, B, C
0(A)	7(D)	11(B)	5(D)	17(E)	13(B)	31(D)	23(D)		A, D, B, C, F
0(A)	7(D)	11(B)	5(D)	14(F)	13(B)	31(D)	18(F)	17(F)	A, D, B, C, F, E
0(A)	7(D)	11(B)	5(D)	14(F)	13(B)	31(D)	17(E)	17(F)	A, D, B, C, F, E, H
0(A)	7(D)	11(B)	5(D)	14(F)	13(B)	31(D)	17(E)	17(F)	A, D, B, C, F, E, H, I
0(A)	7(D)	11(B)	5(D)	14(F)	13(B)	31(D)	17(E)	17(F)	A, D, B, C, F, E, H, I, G

Floyd

	i	a	b	c	d	$\mid a \mid$	b	c	d
	a	0	6	2	12	a	\overline{a}	\overline{a}	\overline{a}
	b	6	0	3	4	b	b	b	b
	c	2	3	0	9	c	c	c	c
	d	12	4	9	0	d	d	d	d
1	\overline{a}	0	6	2	12	a	\overline{a}	\overline{a}	\overline{a}
1	b	6	0	3	4	b	b	b	b
1	c	2	3	0	9	c	c	c	c
1	d	12	4	9	0	d	d	d	d
2	\overline{a}	0	6	2	10	a	\overline{a}	\overline{a}	b
2	b	6	0	3	4	b	b	b	b
2	c	2	3	0	7	c	c	c	b
2	d	10	4	7	0	b	d	b	d
3	a	0	5	2	9	a	c	\overline{a}	b
3	b	5	0	3	4	c	b	b	b
3	c	2	3	0	7	c	c	c	b
3	d	9	4	7	0	c	d	b	d
4	a	0	5	2	9	a	c	a	b
4	b	5	0	3	4	c	b	b	b
4	c	2	3	0	7	c	c	c	b
4	d	9	4	7	0	c	d	b	d

FIFO

D(s,1)	D(s,2)	D(s,3)	D(s,4)	D(s,5)	R(1)	R(2)	R(3)	R(4)	R(5)	S
0										1
0	1	4				1	1			2 < 3
0	1	4	7	12		1	1	2	2	3 < 4 < 5
0	0	4	7	12		3	1	2	2	4 < 5 < 2
0	0	4	6	11		3	1	2	4	5 < 2
0	0	4	6	11		3	1	2	4	2
0	0	4	6	10		3	1	2	4	4
0	0	4	6	10		3	1	2	4	5
0	0	4	6	10		3	1	2	4	