Rotman

INTRO TO R PROGRAMMING

R Tutorial (RSM358) – Session 3

Any Questions about Lab 3.6 & A2 Coding?

- Loading the data (Auto, Carseats)?
- Carseats.csv (raw data) is in the zip file on the resource page
 - Alternatively, load Carseats data via the ISLR2 package: library(ISLR2)
- Good practise: Inspect the raw data file before calling read.csv()
 - This helps to determine the potential arguments of read.csv()
 - E.g., na.strings = "?" or stringsAsFactors = T
- factor column/variable (categorical variable)
 - as.factor()

Any Questions about Lab 3.6 & A2 Coding?

- Linear regression?
- Comment on the summary table result (section 3.4)
 - Is there a relationship, how strong, positive or negative
 - Confidence and prediction interval
- Interpretation of coefficients
 - Section 3.1 and 3.2 for quantitative/continuous predictors
 - Section 3.3.1 for qualitative/categorical predictors
- Outlier and high leverage observations
 - Use post-regression diagnostic plot; section 3.3.3

Linear Regression

```
my_lm <- lm(formula = ..., data = ...)</li>summary(my_lm)
```

- plot()
 - Two variable scatter plot: plot(x, y)
 - Regression line: abline(my lm)
 - Post-regression diagnostic plot: plot(my_lm)
- predict(object, new_data, interval, level=0.95)
 - Confidence interval
 - E.g., predict(my_lm, data.frame(x1 = (c(5, 10))), interval = "confidence")
 - Prediction interval
 - E.g., predict(my_lm, data.frame(x1 = (c(5, 10))), interval = "prediction")

Create Data Frame using data.frame()

```
# create a data frame
df1 <- data.frame(
    x = 1:3,
    y = letters[1:3],
    z = c(1.1, 2.2, 3.3)
)</pre>
```

X	у	Z
1	"a"	1.1
2	"b"	2.2
3	"c"	3.3

Im() R Regression Formula - 1

my_df

У	x1	x2	х3
18	8	307	130
16	8	304	150
		•••	•••

Im() Regression Formula	Regression Formula
$lm(formula = y \sim x1 + x2 + x3, data = my_df)$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
<pre>lm(formula = y ~ ., data = my_df)</pre>	
$lm(formula = y \sim x3, data = my_df)$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$
$lm(formula = y \sim x1 + x2, data = my_df)$	
$lm(formula = y \sim 0 + x1 + x2 + x3, data = my_df)$	$Y = \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
····	•••

Source: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html

Im() R Regression Formula - 2

my_df

у	x1	x2	х3
18	8	307	130
16	8	304	150
	•••	•••	•••

Im() Regression Formula	Regression Formula
<pre>lm(formula = y ~ x1 * x2, data = my_df)</pre>	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$
$lm(formula = y \sim x1 + x2 + x1:x2, data = my_df)$	
$lm(formula = y \sim x1 + x2 + I(x1 * x2), data = my_df)$	
$lm(formula = y \sim x1 + I(x1^2), data = my_df)$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$
$lm(formula = y \sim x1 + log(x2), data = my_df)$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 \ln(X_2) + \epsilon$

Source: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html

Lab 3.6 Logistic Regression

- my_model <- glm(formula = ..., data = ..., family=binomial)
- summary(my_model)
- predict(my_model, newdata = ..., type = "response")
 - Set the argument type = "response" to get predicted probabilities, i.e., P(Y = 1|X)
 - Otherwise, predict(my_model) gives log odds (logit)
 - If the newdata argument is not supplied, the prediction is applied on the training data set
 - Use contrast() to find out which y category is set to 1.
- Construct confusing matrix
 - Convert probability prediction to binary prediction (cutoff prob.)
 - table()

Lab 3.6 Training & Test Set

- Training and test set split
 - For time series data, need to respect the time when splitting the data
 - That is, train on early data, test on late data
 - Otherwise, randomly split data to train and test

```
# randomly split Auto dataset into training and test set
num_rows <- nrow(Auto)
train_fraction <- 0.7
train_idx = sample(1:num_rows, size = round(num_rows * train_fraction))
train_data <- Auto[train_idx, ]
test_data <- Auto[-train_idx, ]</pre>
```