Tutorial on:

Digital Topology, Geometry and Applications

1st talk: Distance Transforms

Gunilla Borgefors

Centre for Image Analysis Uppsala University

Gunilla.Borgefors@it.uu.se

Distance into shape

Each pixel gets a value that is the distance to the nearest background pixel in the used metric.

A distance transform imposes a structure on an object / background that can be used for manipulating, recognizing, and analysing the image

Contents

(5)

- 1. The optimal weighted 3x3 DT
- 2. Other 2D DTs
- 3. DT properties
- 4. Computing DTs
- 3. 3D DTs
- 6. Extended DTs

ICPR tutorial 2014

6

The distance between two points in Z^n is defined as the length of the shortest path connecting them in an appropriate graph.

Depends on:

- 1. Neighbourhood relation
- 2. Definition of path length

(13)

Assume $x \le y$ and an M x M image. Minimize rotation dependence.

Difference from Euclidean for $\max x = M$ is

Diff(y) = y (b - a) + aM -
$$\sqrt{x^2 + y^2}$$
, $0 \le y \le M$

Max of Diff(y) occurs for

y=0 E1 = (a-1) M

y : Diff'(y) = 0 E2 = $(a-\sqrt{1-(b-a)^2})$ M

y = M E3 = $(b-\sqrt{2}) M$

min{E1, E2, E3} occurs for -E1 = E2 = -E3, so solve

1-a = a- $\sqrt{1-(b-a)^2}$ = $\sqrt{2}$ -b

ICPR tutorial 2014

Optimal weights

$$a_{opt} = \frac{1}{2} + \frac{1}{2} \sqrt{2\sqrt{2}-2}$$
 ≈ 0.955

$$b_{opt} = \sqrt{2} - \frac{1}{2} + \frac{1}{2} \sqrt{2\sqrt{2}-2} \approx 1.369$$

maxdiff =
$$\frac{1}{2} - \frac{1}{2} \sqrt{2\sqrt{2}-2} \approx 0.045 \text{ M}$$

Optimal weights

$$a_{opt} = \frac{1}{2} + \frac{1}{2} \sqrt{2\sqrt{2}-2}$$
 ≈ 0.955

$$b_{opt} = \sqrt{2} - \frac{1}{2} + \frac{1}{2} \sqrt{2\sqrt{2}-2} \approx 1.369$$

maxdiff =
$$\frac{1}{2} - \frac{1}{2} \sqrt{2\sqrt{2}-2} \approx 0.045 \text{ M}$$

Note that a = 1, $b = \sqrt{2}$ give maxdiff = 0.090 M

ICPR tutorial 2014

Integer approximations

а	b	maxdiff	
opt	opt	0.064	
2	3	0.134	
3	4	0.081	
8	11	0.073	

Multiply the optimal **a**, **b** by a number and then round to the nearest integer.

(21)

Optimal a, b, c are complex expressions, approximately

$$\mathbf{b}_{\text{opt}} \approx [1.400, 1.422]$$

maxdiff ≈ 0.014 M

ICPR tutorial 2014

а	b	С	maxdiff	
opt	opt	opt	0.0141	
5	7	11	0.0202	

25

Euclidean distance transform

+(1,1)	+(0,1)	+(1,1)
+(1,0)	+(0,0)	+(1,0)
+(1,1)	+(0,1)	+(1,1)

A vector in each pixel, counting x-steps and y-steps separately.

Distance value = $\sqrt{x^2 + y^2}$, but usually $(x^2 + y^2)$ is used

ICPR tutorial 2014

26)

Useful 2D distance transforms

	а	b	С	maxdiff
City block	1	-	-	58.6 %
3 - 4	3	4	-	8.1 %
5-7-11	5	7	11	2.0 %
Euclidean (1,0) (1,1) - * If computed correctly (which is not trivial!)				0* %

Reverse distance transform

Start from seed points with radius values.

Subtract local distance from neighbours in mask

Maximize the values

works for city block and weighted distances.

Computing the reverse Euclidean DT is quite complex.

ICPR tutorial 2014

(50

Reverse distance transform

Reverse <3,4> from seed points **17** and **10**.

Salience distance transform

Spread other information than grey-level together with the distance: Edge strength – Edge length – Curvature – etc.

Gradient map

DT map from thresholded edges

Salience DT map

Stolen from Paul Rosin and Geoff West

ICPR tutorial 2014

A few key references

Borgefors, G. (1986). Distance Transformations in Digital Images, *Computer Vision, Graphics and Image Processing* 34, pp. 344–371.

Borgefors, G. (1996). On Digital Distance Transforms in Three Dimensions, *Computer Vision and Image Understanding* 64, pp. 368–376.

Borgefors, G. (2003). Weighted Digital Distance Transforms in Four Dimensions, *Discrete Applied Mathematics* 125, pp. 161–176.

Coeurjolly, D. (2003). *d*-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time, *LNCS* 2886, Springer-Verlag, pp. 327–337

Das, P.P. and Chatterji, B.N. (1988). Knight's Distance in Digital Geometry, *Pattern Recognition Letters* 7, pp. 215–226.

Ikonen, L. and Toivanen, P. (2007). Distance and nearest neighbour transforms on grey-level surfaces, *Pattern Recognition Letters* 28, pp. 604–612.

A few more key references

Piper, J. and Granum, E. (1987). Computing Distance Transformations in Convex and Non-Convex Domains, *Pattern Recognition* 20, pp. 599–615.

Rosenfeld, A. and Pfaltz, J.L. (1968). Distance Functions on Digital Pictures, *Pattern Recognition* 1, pp. 33–61.

Ragnemalm, I. (1993). The Euclidean Distance Transform in Abritrary Dimensions, *Pattern Recognition Letters* 14, pp. 883–888.

Rosin, P.R. and West, G.A.W. (1995). Salience Distance Transforms, *Graphical Models and Image Processing* 57, pp. 483–521.

Sintorn, I.M. and Borgefors, G. (2004). Weighted Distance Transforms for Volume Images Digitized in Elongated Voxel Grids, *Pattern Recognition Letters* 25, pp. 571—580.

Ye, Q.Z. (1988). The Signed Euclidean Distance Transform and Its Applications, In: *Proc. 9th ICPR*, Rome, Italy, pp. 495–499.

ICPR tutorial 2014

THE CRA