TEA757-CAMADAS-LIMITE NATURAIS E TRANSPORTE DE POLUENTES (45 h, 3 Créditos) (2º Trimestre de 2017)

Prof. Nelson Luís Dias

HORÁRIO: 2^{as} e 4^{as}, 09:30-11:10

LOCAL: PF-16

EMENTA: Ementa: Revisão das equações de Navier-Stokes e das equações de transporte para temperatura e para um escalar passivo ou ativo; simplificações e soluções analíticas de problemas laminares, incluindo escoamento sob pressão em tubos, e escoamento com superfície livre em canal unidimensional. As equações de camada-limite de Blasius: soluções numéricas para escoamentos laminares. Turbulência: o conceito estatístico de escala turbulenta; escala integral; micro-escalas de Kolmogorov; micro-escala de Taylor; as equações de Reynolds de ordem 1 e 2; modelos de fechamento. Camadas-limite turbulentas: transferência convectiva de momentum, calor e massa. Transferência de calor por radiação. Escoamentos turbulentos em tubos: obtenção semi-analítica das equações de perda de carga (Diagrama de Moody). Escoamentos em canais: obtenção semi-analítica da equações de perda de carga (Manning). A Camada-Limite Atmosférica e a Camada-Limite Oceânica: efeitos de flutuabilidade, número de Richardson e comprimento de estabilidade de Obukhov.

CRITÉRIO PARA NOTA: Conceito final baseado em 3 provas, aproximadamente mensais.

BIBLIOGRAFIA: N. L. Dias, "Mecânica da Turbulência", notas de aula (nldias.github.io), 2017; G. K. Batchelor, "Introduction to Fluid Dynamics", Cambridge University Press, Cambridge, 1967; H. Schlichting, K. Gersten, "Boundary Layer Theory", Springer, 2000; Kundu, "Fluid Mechanics", Academic Press, San Diego, 1990. H. Tenekees, J. L. Lumley "A First Course in Turbulence", MIT Press, Cambridge, 1975; A. A. Townsend, "The structure of turbulent shear flow", Cambridge University Press, Cambridge, 1976; P. A. Davidson, "Turbulence – An Introduction for Scientists and Engineers", Oxford University Press, Oxford, 2004. Bird, Lightfoot e Stewart. "Transport Phenomena", Wiley, 2007.

PROGRAMAÇÃO TENTATIVA

Aula	GRAMAÇAO TE _{Data}	Conteúdo	Progresso
1	05/06/2017	Introdução: variáveis aleatórias, valores esperados, processos estocásticos, decomposição de Reynolds.	
2	07/06/2017	2. Equações diferenciais de transporte: notação indicial, continuidade, misturas	
3	12/06/2017	2. Equações diferenciais de transporte: quantidade de movimento, vorticidade.	
4	14/06/2017	2. Equações diferenciais de transporte: vorticidade.	
5	19/06/2017	2. Equações diferenciais de transporte: energia e dissipação viscosa.	
6	21/06/2017	3. Macro e micro escalas da turbulência: definições formais	
7	26/06/2017	3. Macro e micro escalas da turbulência: A cascata de energia, gradientes microscópicos.	
7	28/06/2017	4. Equações para o escoamento médio e a aproximação de Boussinesq: o estado hidrostático de referência, estado de referência na atmosfera, flutuações de densidade	
8	03/07/2017	4. Equações para o escoamento médio e a aproximação de Boussinesq: conservação de massa e de quantidade de movimento.	
9	05/07/2017	4. Equações para o escoamento médio e a aproximação de Boussinesq: correlação pressãotemperatura, e ordens de grandeza para a equação da temperatura.	
10	10/07/2017	P1	
11	12/07/2017	5. As equações de ordem 2: a dedução das equações de ordem 2.	
12	31/07/2017	5. As equações de ordem 2: a equação para a energia cinética da turbulência.	
13	02/08/2017	5. As equações de ordem 2: As ordens de grandeza de todos os termos.	
14	07/08/2017	6. Soluções laminares das equações de Navier-Stokes: soluções clássicas	
15	09/08/2017	6. Soluções laminares das equações de Navier-Stokes: solução de Blasius.	
16	14/08/2017	6. Soluções laminares das equações de Navier-Stokes: solução de Blasius (numérica).	
17	16/08/2017	7. Camadas-limite turbulentas: escoamento em dutos.	
18	21/08/2017	7. Camadas-limite turbulentas: escoamento em dutos (parede rugosa)	
19	23/08/2017	7. Camadas-limite turbulentas: escoamento em dutos (regime de transição)	
20	28/08/2017	7. Camadas-limite turbulentas: a fórmula de Manning.	
21	30/08/2017	7. Camadas-limite turbulentas: a fórmula de Manning.	
22	04/09/2017	Revisão	
23	06/09/2017	P2	