MWPZ 2011 B – Ciagi

B – Ciągi

"Ciągle te ciągi..."

Opis

Dany jest ciąg znaków S. Dowolny element S_i tego ciągu może (ale nie musi) zostać dopasowany do elementu S_j , o ile $i \neq j$ oraz $S_i = S_j$. Każdy element ciągu S może być dopasowany z co najwyżej jednym innym elementem naraz. Znajdź najlepsze dopasowanie elementów ciągu S, takie że jeżeli pewien element S_i jest dopasowany z elementem S_j , to każdy element ciągu S o indeksie pomiędzy i a j jest dopasowany do innego elementu o indeksie między i a j lub nie jest dopasowany z żadnym elementem ciągu S. Poprzez najlepsze dopasowanie rozumiemy takie, w którym jest najmniej samotnych elementów. Dla przykładu na Rysunku 1 zaprezentowano najlepsze dopasowanie ciągu AABBCBBACDCCDCABBCBBAA, natomiast na Rysunku 2 zaprezentowano najlepsze dopasowanie ciągu AABBCBBACCCCAAA.

Rysunek 1. Dopasowanie ciągu AABBCBBACDCCDCABBCBBAA.

Rysunek 2. Dopasowanie ciągu AABBCBBACCCCAAA.

 $MWPZ\ 2011 \hspace{3.1cm} \mathrm{B-Ciągi}$

Specyfikacja wejścia

W pierwszej linii wejścia znajduje się jedna liczba t, oznaczająca liczbę zestawów danych. Każdy test składa się z jednej linii zawierającej ciąg dużych znaków alfabetu angielskiego. Liczba znaków w ciągu jest z zakresu między 1, a 500.

Specyfikacja wyjścia

Dla każdego przypadku testowego wypisz liczbę osamotnionych elementów w najlepszym dopasowaniu.

Przykład

Wejście:	Wyjści	ie:
5	0	
AABBCBBACDCCDCABBCBBAA	1	
AABBCBBACCCCAAA	2	
AABBCBBACCCCAAA	2	
ABCA	0	
BBBCCCBBCB		