[2019–2020] группа: Геом-10 21 апреля 2020 г.

Серия 23. Полуописанная окружность

Окружность, проходящую через две вершины треугольника и касающуюся его вписанной окружности, будем называть *полуописанной*. Задача (1) даёт удобный способ построения такой окружности и используется в остальных задачах в качестве леммы.

- 1. В треугольнике ABC вписанная окружность ω касается стороны BC в точке A_1 . Окружность Ω_A проходит через вершины B и C и касается окружности ω в точке T. Точка S середина дуги BC окружности Ω_A , не содержащей точку T. Точка I_A центр A-вневписанной окружности треугольника ABC.
 - (a) Докажите, что точки S, A_1, T коллинеарны.
 - **(b)** Докажите, что точки I_A, S, A_1 коллинеарны. 1
- **2.** Вписанная окружность ω касается сторон CA, AB треугольника ABC в точках B_1, C_1 соответственно. Окружность Ω_A проходит через вершины B и C и касается окружности ω в точке T.
 - (a) Докажите, что окружность (TC_1B) проходит через A-эксцентр I_A треугольника ABC.
 - (b) (в сторону) Окружность (TC_1B) пересекает прямую BC в точках B и R. Докажите, что $CR = CB_1$.
- **3.** Вписанная окружность ω касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 соответственно. Окружность Ω_A проходит через вершины B и C и касается окружности ω в точке T. Докажите, что окружность (TCA_1) проходит через середину отрезка A_1C_1 .
- **4.** Вписанная окружность ω касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 соответственно. Окружность Ω_A проходит через вершины B и C и касается окружности ω в точке T. Касательная к окружности ω в точке T пересекает прямую BC в точке X. Докажите, что точка X и середины отрезков A_1B_1 и A_1C_1 лежат на одной прямой.
- **5.** Вписанная окружность ω касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 соответственно. Окружность Ω_A проходит через вершины B и C и касается окружности ω в точке T. Обозначим через M и N середины отрезков A_1B_1 и A_1C_1 соответственно. Докажите, что прямые BM, CN, и A_1T пересекаются в одной точке.
- **6.** Окружность Ω_A проходит через вершины B и C треугольника ABC и касается его вписанной окружности в точке T_A . Анаголично определены окружности Ω_B , Ω_C и точки T_B , T_C . Докажите, что прямые AT_A , BT_B , CT_C имеют общую точку.
- 7. Вписанная окружность ω касается сторон BC, CA, AB треугольника ABC в точках A_1 , B_1 , C_1 соответственно. Окружность Ω_A проходит через вершины B и C, касается окружности ω в точке T и пересекает отрезки AB, AC вторично в точках P и Q соответственно. Обозначим через M и N середины отрезков A_1B_1 и A_1C_1 соответственно. Прямые TM и TN второй раз пересекают окружность Ω_A в точках X и Y соответственно. Докажите, что прямые PX, QY, MN и AI пересекаются в одной точке.

Подсказка: точка S — радикальный центр точек B, C и окружности $\omega_{\cdot 1}$