Metode Numerice Tema 2

Bogdan-Andrei Buga, grupa 312CB

Avand la dispozitie o matrice A din \mathbf{R}^{m*n} , o descompunem dupa valorile singulare astfel: A = U * S * V^T, unde U este din \mathbf{R}^{m*m} , S este din \mathbf{R}^{m*n} , iar V este din \mathbf{R}^{n*n} . Dupa efectuarea descompunerii si citirea parametrului k, generam matricele \mathbf{U}_k , \mathbf{S}_k si \mathbf{V}_k (marcate cu rosu) astfel:

- $U_k(i, j) = U(i, j), (i, j)$ fiind din (1:m, 1:k);
- $S_k(i, j) = S(i, j), (i, j)$ fiind din (1:k, 1:k);
- $S_k(i, j) = S(i, j), (i, j)$ fiind din (1:n, 1:k);

Matricea returnata este $A_k = U_k * S_k * V_k^T$.

(OBSERVATIE: Imaginea testata in fisierul 'task2.m' este './in/images/image1.gif')

Dupa citirea matricei A corespunzatoare unei imagini citite in functie si DVS, alcatuim 4 grafice astfel incat pe axa Ox sa avem numere naturale de la 1 la min(m, n), iar pe axa Oy sa avem f(k) = :

- 1. A k-a valoare singulara a lui A (S(k, k));
- 2. Raportul dintre urma matricei formata din primele k linii si k coloane ale matricei S (S(1:k, 1:k)) si urma matricei S;
- 3. Eroarea aproximarii lui A_k (calculata pentru orice k din l:min(m, n)) la A, care este egala cu (suma patratelor diferentelor dintre A(i, j) si A_k(i, j)) / (m * n);
- 4. rata de compresie a datelor, care este determinata cu ajutorul formulei: $f(k) = \frac{(m+n+1)*k}{m*n}$.

Grafice task 2

Exemplul 1

A_k = task1(,./in/images/image4.gif', 10)

 Figure 1
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —

(133.69, 0.9734)

Exemplul 2

 $A_k = task1(,./in/images/image3.gif', 10)$

Avand la dispozitie o matrice A din \mathbb{R}^{m*n} , retinem intr-un vector coloana μ (notat in program cu "miu"), pe pozitia i a acestuia, media aritmetica a elementelor de pe linia i a lui A. Din fiecare linie a lui A scadem μ , iar matricea transpusa rezultata in urma scaderii mentionate o vom impatri la $\sqrt{n-1}$, rezultatul obtinut fiind memorat intr-o matrice Z.

Dupa DVS-ul matricei Z ($Z = U * S * V^T$), retinem primele k coloane ale matricei V intr-o matrice W, a carei transpusa va fi inmultita cu A la dreapta si retinuta intr-o alta matrice, notata Y.

Functia intoarce valorile singulare ale matricei Z si matricea A_k calculata astfel: $A_k = W * Y + \mu$.

Task 4

Construim vectorul μ pe care il scadem la A, la fel ca la "Task 3". Ce difera la acesta cerinta fata de cerinta anterioara este felul in care generam matricea Z; Z este, de data asta, $\frac{A*A'}{n-1}$.

Matricea V va fi matricea vectorilor proprii ai lui Z si retinem primele k coloane ale matricei V intr-o matrice W, iar de aici, metoda de prelucare a rezultatelor care trebuie returnate este aceeasi ca la "Task 3".

(OBSERVATIE: Imaginea testata in fisierul 'task5.m' este './in/images/image1.gif')

Dupa citirea matricei A corespunzatoare unei imagini citite in functie (notata cu img), alcatuim 4 grafice astfel incat pe axa Ox sa avem numere naturale de la l la min(m, n), iar pentru fiecare k din 1:min(m, n) sa generam matricele A_k si S_k returnate de functia task S_k is sa avem pe axa Oy S_k is sa avem pe axa Oy S_k

- 1. S(k, k);
- 2. Raportul dintre urma matricei formata din primele k linii si k coloane ale matricei S (S(1:k, 1:k)) si urma matricei S;
- 3. Eroarea aproximarii lui A_k (calculata pentru orice k din l:min(m, n)) la A, care este egala cu (suma patratelor diferentelor dintre A(i, j) si A_k(i, j)) / (m * n);
- 4. rata de compresie a datelor, care este determinata cu ajutorul formulei: $f(k) = \frac{2k+1}{n}$.

Grafice task 5

Exemplul 1

Exemplul 2

[A_k, S] = task3(,./in/images/image3.gif', 10)

• Pasul 1 (,../task6/eigenface core.m")

Memoram cele 10 matrice asociate celor 10 fete din directorul ./task6/dataset intr-un vector de matrice img (dimensiune: 200 * 200 * 10) si vectorii coloana asociati acestor matrice intr-o matrice T (dimensiune: 200² * 10). (OBSERVATIE: Imaginile sunt trecute din RGB in alb-negru inainte de atribuirea vectorului tridimensional img)

In vectorul coloana m (care va fi returnat), retinem pe pozitia i (i din 1:40000) media aritmetica a elementelor de pe linia i a matricei T, apoi matricea A, care va fi returnata de catre aceasta functie, va fi rezultatul scaderii fiecarei linii din T la vectorul m.

Avand matricea $C = A^T * A$, memoram in matricea V vectorii proprii ai lui C pentru care valorile proprii corespunzatoare sunt mai mari ca 1.

Celelalte matrice returnate sunt eigenfaces = A * V (fetele "proprii") si pr_img = eigenfaces^T * A (proiectiile fiecarei fete).

• Pasul 2 (,../task6/face_recognition.m")

Dupa transformarea imaginii citite ca parametru intr-o matrice img, generam vectorul coloana T asociat acestei matrice din care scadem vectorul medie calculat la pasul anterior si setat ca parametru la aceasta etapa a rezolvarii temei. Proiectia acestei fete este pr_test_img = eigenfaces' * A2.

In vectorul linie d vom retine norma vectorului pr_test_img - pr_img(:,i) (i din 1 : nr.coloane(A)). Functia va returna atat valoarea minima a acestui vector, cat si indicele acestui minim (fața față de care este cea mai apropiata fața data ca parametru acestei functii).