Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security
Sebastian Stich

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 2, April 23, 2024 (Gradient Descent)

Convexity, Smoothness and Gradient descent

Exercise 1. (μ -strong convexity)

A function $f: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if f is differentiable and

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d,$$

where $\mu > 0$ and the norm $||\mathbf{x}||$ is defined as $||\mathbf{x}||^2 := \mathbf{x}^T \mathbf{x}$.

• Prove that a μ -strongly convex function has a unique minimizer $\mathbf{x}^* \in \operatorname{argmin} f(\mathbf{x})$ and that it holds:

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le \frac{1}{2\mu} ||\nabla f(\mathbf{x})||^2, \quad \forall \mathbf{x} \in \mathbb{R}^d.$$

• Assume that f is μ -strongly convex and L-smooth. Let us run gradient descent on f starting from \mathbf{x}_0 . Recall that the sequence produced by GD satisfies:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) ,$$

where $\gamma \geq 0$ is a parameter. Prove that, for any $t \geq 0$, it holds:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le (1 - \alpha) (f(\mathbf{x}_t) - f(\mathbf{x}^*)),$$

for a parameter α . For which α ? What is the best γ ? (You can use the result from the previous question.) (Hint: recall that when running GD on smooth functions, it holds that, $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \beta ||\nabla f(\mathbf{x}_t)||^2$ for some $\beta > 0$ that depends on L and γ)

• Following the previous question, please state the iteration complexity of gradient descent in big- \mathcal{O} notation. Your expression can depend on the problem parameters $\gamma, \mu, L, F_0 := f(\mathbf{x}_0) - f(\mathbf{x}^*), \ f(\mathbf{x}_0), \ f(\mathbf{x}^*), \ R_0^2 := ||\mathbf{x}_0 - \mathbf{x}^*||^2$, and the target accuracy $\epsilon \geq 0$.

Exercise 2. (ℓ_2 -regularized least square)

Consider the objective function $f: \mathbb{R}^d \to \mathbb{R}$:

$$f(\mathbf{x}) = \frac{1}{2n} \sum_{i=1}^{n} (\mathbf{a}_i^{\mathsf{T}} \mathbf{x} - b_i)^2 + \frac{\lambda}{2} ||\mathbf{x}||_2^2,$$

where each \mathbf{a}_i is a data vector with dimension d, each b_i is a label which is a scalar and $\lambda > 0$ is the regularization parameter.

- Can you rewrite the objective function into a compact matrix form?
- What is the smoothness parameter L of f?
- Is $f(\mathbf{x})$ strongly convex? If yes, prove its strong convexity and write down the strongly convex parameter μ . Otherwise, give a reason why it is not necessarily strongly convex.
- What is the minimizer x^* of $f(\mathbf{x})$? Is it unique?

Practical Implementation of Gradient Descent

Follow the Python notebook provided here:

 $colab. research. google. com/github/epfml/OptML_course/blob/master/labs/ex02/template/Lab~2-Gradient~Descent. ipynb$

The notebook introduces the objective function $f(\mathbf{x})$ defined in Exercise 2 with $\lambda=0$.