frodyma_2020

March 31, 2020

1 RNA-seq analysis – Frodyma, et. al.; 2020

The following notebook details the analyses performed to analyze the RNA-seq data of the PGC1 or ERR knockdown in HCT116 cells.

Raw data was processed and differential expression analysis using XPRESSyourself.

1.0.1 Sequencing Methods

cDNA libraries of RNA libraries were prepared using ____. cDNA libraries were sequenced at ____ using ____. Raw sequence data has been deposited as GSE######.

1.0.2 Processing and Analysis Methods

Raw FASTQ files were processed using XPRESSpipe v 0.4.1.

Script executed as sbatch process.sh

```
#!/bin/bash
#SBATCH --time=72:00:00
#SBATCH --nodes=1
#SBATCH -o /scratch/general/lustre/$USER/slurmjob-%j
#SBATCH --partition=kingspeak

#set up the temporary directory
SCRDIR=/scratch/general/lustre/$USER/$SLURM_JOBID
mkdir -p $SCRDIR
```

FILES=/scratch/general/lustre/\$USER/danielle_files/input/files

```
# Source FASTA files obtained as:
# for X in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y; do wget ftp://ftp.en
# Source GTF file obtained as:
# wget ftp://ftp.ensembl.org/pub/release-99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.gtf.gz
REF=/scratch/general/lustre/$USER/references/human_reference_pe_v99
```

mkdir \$SCRDIR/input

```
mkdir $SCRDIR/output

cp $FILES/*.fastq $SCRDIR/input/

cd $SCRDIR/.

xpresspipe makeReference -o $REF -f $REF/genome_fastas -g $REF/transcripts.gtf --sjdbOverhang  
xpresspipe peRNAseq -i $SCRDIR/input -o $SCRDIR/output -r $REF --gtf $REF/transcripts.gtf -e f:

mkdir $SCRDIR/cufflinks

xpresspipe count -i $SCRDIR/output/alignments_genome -o $SCRDIR/cufflinks -g $REF/transcripts.gtf
```

1.0.3 Import dependencies

```
[1]: import pandas as pd
import numpy as np
import xpressplot as xp
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

1.1 Differential expression analysis

1.1.1 Compile counts

- 1. Samples were run on 4 lanes. Processed read data are compiled for analysis at biological replicate level.
- 2. Export as two separate tables for the different experimental groups and the control for differential expression analysis

```
[2]: counts = pd.read_csv(
    "./data/frodyma_count_table.tsv",
    sep='\t',
    index_col=0)
counts.columns = [x.split('_')[0] for x in counts.columns.tolist()]
counts = counts.groupby(counts.columns, axis=1).sum()
```

```
[3]: # Export ERRa counts
ERRa_counts = counts[[
    'HCT116siCONT1',
    'HCT116siERRa7',
    'HCT116siERRa8']]
```

```
ERRa_counts.to_csv(
    './data/counts_erra.txt',
    sep='\t')
# Export metadata
ERRa_meta = pd.DataFrame()
ERRa_meta['samples'] = [
    'HCT116siCONT1',
    'HCT116siCONT2',
    'HCT116siERRa7',
    'HCT116siERRa8']
ERRa_meta['conditions'] = [
    'control',
    'control',
    'experiment',
    'experiment']
ERRa_meta = ERRa_meta.set_index('samples')
del ERRa_meta.index.name
ERRa_meta.to_csv(
    './data/metadata_erra.txt',
    sep='\t')
```

```
[4]: # Export PGC1b counts
     PGC1B_counts = counts[[
         'HCT116siCONT1',
         'HCT116siCONT2',
         'HCT116sipgc1b2',
         'HCT116sipgc1b6']]
     PGC1B_counts.to_csv(
         './data/counts_pgc1b.txt',
         sep='\t')
     # Export metadata
     PGC1B_meta = pd.DataFrame()
     PGC1B_meta['samples'] = [
         'HCT116siCONT1',
         'HCT116siCONT2'.
         'HCT116sipgc1b2',
         'HCT116sipgc1b6']
     PGC1B_meta['conditions'] = [
         'control',
         'control',
         'experiment',
         'experiment']
     PGC1B_meta = PGC1B_meta.set_index('samples')
```

```
del PGC1B_meta.index.name

PGC1B_meta.to_csv(
    './data/metadata_pgc1b.txt',
    sep='\t')
```

1.1.2 Perform differential expression analysis

```
Uses DESeq2 v1.22.1 via the XPRESSpipe wrapper
```

```
# ERRa

$ xpresspipe diffxpress -i ./data/counts_erra.txt -s ./data/metadata_erra.txt --design condition
# PGC1b

$ xpresspipe diffxpress -i ./data/counts_pgc1b.txt -s ./data/metadata_pgc1b.txt --design condition
# Rename gene IDs as gene names
$ xpresspipe convertNames -i ./data/counts_erra_diffx.tsv -g ~/Desktop/Homo_sapiens.GRCh38.99.5
```

\$ xpresspipe convertNames -i ./data/counts_pgc1b_diffx.tsv -g ~/Desktop/Homo_sapiens.GRCh38.99

1.1.3 Import differential expression data

```
[5]: err_file = "./data/counts_erra_diffx_renamed.tsv"
    err_data = pd.read_csv(
        err_file,
        sep='\t',
        index_col=0)
    del err_data.index.name
```

1.1.4 RNA-seq Count Analysis

Genes of interest: - PCK2 (ENSG00000100889) - SLC1A4 (ENSG00000115902) - ESRRA (ENSG00000173153) - PPARGC1B (ENSG00000155846)

```
[7]: highlight_points = [
    'PCK2',
    'SLC1A4',
    'ESRRA',
```

'PPARGC1B']

ERRA (ESRRA)

```
[8]: xp.rna_volcano(
    err_file,
    highlight_points=highlight_points,
    highlight_color='red',
    label_points=highlight_points,
    y_threshold=2,
    x_threshold=[-1,1],
    size=10,
    highlight_size=60,
    alpha=0.4,
    figsize=(7,6),
    title="ESRRA KO")
```

<Figure size 432x288 with 0 Axes>

PGC1B (PPARGC1B)

```
[9]: xp.rna_volcano(
    pgc1_file,
    highlight_points=highlight_points,
    highlight_color='red',
    label_points=highlight_points,
    y_threshold=2,
    x_threshold=[-1,1],
    size=10,
    highlight_size=60,
    alpha=0.4,
    figsize=(7,6),
    title="PPARGC1B KO")
```

<Figure size 432x288 with 0 Axes>

