RAJASTHAN TECHNICAL UNIVERSITY, KOTA IV Year-VII&VIII

Semester: B.Tech. Computer Science & Engineering (Data Science) 7CDS4-22: Social Media Analytics Lab

Credit:2 Max.Marks:100(IA:60,ETE:40)
0L+0T+4P End Term Exam: 2 Hours

- 1) Preprocessing Text Documents using NLTK covering:
- a. Stopword Elimination
- b. Stemming
- c. Lemmatization
- d. POS Tagging

Step-by-step Implementation Using NLTK

Step 1: Install and Import NLTK

```
import nltk
nltk.download('punkt_tab')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('onw-1.4')

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
from nltk import pos_tag
```

Input Text

text = "The striped bats are hanging on their feet for best."

a. Stopword Elimination

```
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_words = [word for word in words if word.lower() not in stop_words]
print("After Stopword Removal:", filtered_words)
```

b. Stemming

```
stemmer = PorterStemmer()
stemmed_words = [stemmer.stem(word) for word in filtered_words]
print("After Stemming:", stemmed_words)
```

c. Lemmatization

```
lemmatizer = WordNetLemmatizer()
lemmatized_words = [lemmatizer.lemmatize(word) for word in filtered_words]
print("After Lemmatization:", lemmatized_words)
```

d. POS Tagging

```
pos_tags = pos_tag(filtered_words)
print("POS Tagging:", pos_tags)
```

Output Sample (may vary based on input):

For the input "The striped bats are hanging on their feet for best.", the output would be something like:

```
After Stopword Removal: ['striped', 'bats', 'hanging', 'feet', 'best', '.']

After Stemming: ['stripe', 'bat', 'hang', 'feet', 'best', '.']

After Lemmatization: ['striped', 'bat', 'hanging', 'foot', 'best', '.']

POS Tagging: [('striped', 'JJ'), ('bats', 'NNS'), ('hanging', 'VBG'), ('feet', 'NNS'), ('best', 'JJS'), ('.', '.')]
```

Let me know if you want this wrapped into a function or want to apply it to a full document (e.g., .txt or .csv file).

2) Sentiment Analysis on Customer Reviews using NLTK in Python.

Objective

Analyze whether a customer review is **positive**, **negative**, or **neutral**.

Steps Using NLTK

1. Install and Import Libraries

```
import nltk
nltk.download('vader_lexicon')
from nltk.sentiment import SentimentIntensityAnalyzer
```

2. Initialize the Sentiment Analyzer

```
sia = SentimentIntensityAnalyzer()
```

3. Example: Analyze a Customer Review

```
review = "The product quality is excellent and delivery was super fast!"
# Analyze sentiment
score = sia.polarity_scores(review)
print("Sentiment Scores:", score)
```

4. Interpret the Sentiment

```
compound_score = score['compound']

if compound_score >= 0.05:
    sentiment = "Positive"

elif compound_score <= -0.05:
    sentiment = "Negative"

else:
    sentiment = "Neutral"

print("Overall Sentiment:", sentiment)</pre>
```

Test with Multiple Reviews

```
reviews = [
   "Absolutely love this product! Works perfectly.",
   "It's okay, not the best but not the worst either.",
   "Terrible experience. The item broke after one use."
```

```
for r in reviews:
    score = sia.polarity_scores(r)
    compound = score['compound']
    sentiment = "Positive" if compound >= 0.05 else "Negative" if compound <=
-0.05 else "Neutral"
    print(f"Review: {r}\nSentiment: {sentiment}\n")</pre>
```

About VADER (Used by NLTK)

- VADER (Valence Aware Dictionary and sEntiment Reasoner) is specifically attuned to sentiments expressed in social media and reviews.
- It outputs 4 scores:

neg: Negativeneu: Neutralpos: Positive

compound: Overall score between -1 (most negative) and +1 (most positive)

Optional: Analyze Reviews from a File

3) Web Analytics focusing on:

Web analytics involves collecting, measuring, analyzing, and reporting web data to understand and optimize web usage.

a. Web Usage Data

1. Web Server Log Data

- Logs generated by web servers that record **requests** made to the website.
- Typical Information Captured:
- IP address
- Timestamp
- Requested URL
- HTTP method (GET, POST)
- Status code (200, 404, etc.)
- User-agent (browser/device)

Use Cases:

- Track user behavior
- Analyze peak access times
- Identify errors (e.g., 404 pages)

```
■ Sample Log Entry:

192.168.1.1 - - [20/May/2025:14:15:32] "GET /product/123 HTTP/1.1" 200

"Mozilla/5.0"
```

2. Clickstream Analysis

- Sequence of clicks (pages visited) by a user during a session.
- Often visualized as a **path** or **funnel**.

Use Cases:

- Understand user navigation patterns
- Detect drop-off points (e.g., cart abandonment)
- Improve UX design

```
{f Q} Example:
Homepage 
ightarrow Category Page 
ightarrow Product Page 
ightarrow Cart 
ightarrow Checkout
```

b. Hyperlink Data

This includes the **structure of links** between web pages, both **internal** and **external**.

Types of Hyperlink Data:

- Inbound Links (Backlinks): Links from other websites to yours.
- Outbound Links: Links from your site to other websites.
- Internal Links: Links within the same website (used for SEO and navigation).

Use Cases:

- Web structure mining
- PageRank and authority scoring
- Site architecture optimization
 - ← Applications:
- **Search engines** use hyperlink data for ranking (e.g., Google's PageRank).
- Crawlers use it to discover new pages.

Tools Used for Web Analytics

Category	Tools
ver Log Analysis	Stats, Webalizer
kstream Tracking	ogle Analytics, Hotjar, Matomo
erlink Analysis	eaming Frog, Ahrefs, SEMrush

- 4) **Spamdexing** (a portmanteau of "spam" and "indexing") refers to unethical or manipulative practices used to improve a website's search engine rankings. These practices are against the guidelines of major search engines like Google and **should not be implemented** in real-world websites because:
- They violate search engine policies.
- They can get your site penalized or **blacklisted**.
- They create a poor experience for users.

Why You Should Not Implement Spamdexing

Spamdexing is **black-hat SEO**, and includes:

- **Keyword stuffing**: Repeating keywords excessively
- Cloaking: Showing different content to users vs. search engines
- Hidden text/links: Making text invisible but still present in the HTML
- **Doorway pages**: Low-quality pages stuffed with keywords that redirect to real pages
- Link farms: Creating large groups of interlinked pages for fake authority

Instead: Implement Ethical SEO (White-Hat SEO)

Here's how to do **ethical SEO** using Python for educational purposes:

Example: Keyword Optimization Using Python

```
from collections import Counter
import re

text = """
SEO is the practice of improving the ranking of a website on search engines.
Search engine optimization involves keyword research, technical optimization,
and content creation.
"""

# Tokenize and clean
words = re.findall(r'\b\w+\b', text.lower())
keyword_counts = Counter(words)

# Display top keywords
top_keywords = keyword_counts.most_common(5)
print("Top keywords:", top_keywords)
```

Instead of Spamdexing, You Should Focus On:

- Writing high-quality, relevant content
- Using proper title tags and meta descriptions
- Earning **backlinks** naturally
- Improving page speed and mobile usability
- Using semantic HTML and structured data

5) Using Google Analytics (GA4) to implement:

a. Conversion Statistics

What It Means:

Conversion statistics track how many users complete desired actions (like purchases, signups, downloads).

How to Implement in Google Analytics (GA4)

1. Set Up a Conversion Event

- 1. Go to **Admin** \rightarrow **Events**.
- 2. Click "Create event" to define an action like purchase, form_submit, signup, etc.
- 3. After creating the event, mark it as a **Conversion**.

2. View Conversion Stats

- Navigate to Reports \rightarrow Engagement \rightarrow Conversions
- You'll see:
- o Total conversions
- Conversion rate
- Events per session

Example Events:

- purchase
- generate_lead
- add_to_cart
- form_submission

Tip:

Use Google Tag Manager (GTM) to send custom event data (e.g., signup_complete) from your website to GA4.

b. Visitor Profiles

What It Means:

Get demographic and behavioral insights about your visitors.

How to View in Google Analytics (GA4)

1. Enable Google Signals

- 1. Go to Admin \rightarrow Data Settings \rightarrow Data Collection
- 2. Turn on Google Signals for demographics and interest reporting

2. View Visitor Data

- Navigate to **Reports** → **User** → **Demographics**
- o View by country, city, language, gender, age
- Navigate to **Reports** → **Tech**
- View by device, OS, browser

Additional Visitor Insights:

- New vs Returning users
- Engagement time
- **Source/medium** (e.g., traffic from Google vs Facebook)
- User journeys and funnels

Example Dashboard Sections:

Metric	What It Shows
sions	al visits
!rs	que visitors
; engagement time	e spent on site
ınce rate	f users who leave quickly
rice category	ktop / Mobile / Tablet

Tools Used: 1)Google Analytics 2) Google Tag Manager

6) To implement and analyze Traffic Sources using Google Analytics (GA4), follow the steps below:

What It Means:

Traffic sources show where your website visitors are coming from (e.g., Google search, direct visits, social media, referrals).

✓ How to Implement Traffic Sources in GA4

Step 1: Set Up Google Analytics on Your Website

Make sure your website has GA4 tracking installed:

- Via the **GA4 tracking code** (gtag.js)
- Or through Google Tag Manager

Step 2: View Traffic Source Reports

Go to your GA4 property:

1. Reports \rightarrow Acquisition \rightarrow Traffic acquisition

You'll see:

Source	Medi	Examples
gle	anic	rch engine
ect	ıe	. typed directly or bookmark
ebook.com	erral	ks from another site
ail_campaign	ail	m email marketing tools
ner)	ner)	:ategorized sources

Sample Metrics in Traffic Source Report:

• **Sessions**: Number of site visits

- Users: Unique visitors
- Engagement Rate
- Conversions
- Average Engagement Time

Example Use Case:

If you're running a Facebook ad and an email campaign, GA4 helps you:

- See how many visitors came from **Facebook**
- See how many came from the **email newsletter**
- Track which source led to conversions

Optional: Add UTM Tags for Custom Source Tracking

To get precise tracking, use UTM parameters in your URLs.

Example URL:

https://yourwebsite.com?utm_source=facebook&utm_medium=social&utm_campaign=spring_sale

Tools:

Use Google's Campaign URL Builder

Summary

Action	Tool	Result	
ck all visitor sources	$1 \to Reports \to Acquisition$	rce/Medium breakdown	
tomize traffic labeling	И parameters	re detailed reporting	
tralize tag management	ogle Tag Manager	y setup and updates	