Лабораторная работа № 3

Моделирование стохастических процессов

Мугари Абдеррахим

Содержание

1	Цел	ь работы	5	
2	Пре	дварительные сведения. СМО М М 1	6	
	2.1	Основные понятия	6	
	2.2	Математическая модель	6	
		2.2.1 Для M M 1 :	7	
3	Выполнение лабораторной работы			
	3.1	Реализация модели на NS-2	8	
	3.2	Анализ результатов	11	
	3.3	Построение графика в Gnuplot	11	
		3.3.1 Создание файла graph_plot	11	
4	Выв	воды	14	
Сг	Список литературы			

Список иллюстраций

3.1	Анализ результатов	11
3.2	Создание файла graph_plot	12
3.3	График средней длины очереди	13

Список таблиц

1 Цель работы

• Цель данной лабораторной работы — изучение моделирования стохастических процессов в системах массового обслуживания (СМО) с использованием математических моделей и компьютерного моделирования в NS-2.

2 Предварительные сведения. СМО М |М |1

2.1 Основные понятия

Система массового обслуживания (**СМО**) – это математическая модель, описывающая процесс поступления заявок, их обработку и возможные задержки. В данной работе рассматриваются два типа СМО:

- **M**|**M**|**1** одноканальная СМО с неограниченной очередью.
- **M**|**M**|**n**|**R** многоканальная СМО с конечной емкостью буфера.

Для обеих систем входной поток заявок распределен по **пуассоновскому зако- ну** с интенсивностью (λ),

а время обслуживания заявок распределено по **экспоненциальному закону** с параметром (μ).

2.2 Математическая модель

Для описания работы системы используются **уравнения Колмогорова**, которые описывают вероятности нахождения определенного количества заявок в системе в каждый момент времени.

2.2.1 Для М|М|1:

• Стационарное распределение вероятностей выражается формулой:

$$p_i = (1 -
ho)
ho^i$$
, где $ho = rac{\lambda}{\mu}$

Здесь (ρ) – коэффициент загрузки системы.

• Среднее число заявок в системе:

$$N = \frac{\rho}{1 - \rho}$$

• Среднее время пребывания заявки в системе:

$$v = \frac{1}{\mu(1-\rho)}$$

3 Выполнение лабораторной работы

3.1 Реализация модели на NS-2

- Для моделирования мы используем симулятор NS-2. В коде на Tcl задаются параметры системы:
 - Интенсивность поступления заявок (($\lambda = 30.0$))
 - Средняя скорость обслуживания (($\mu = 33.0$))
 - Размер очереди (100000 для неограниченной системы)
- В коде создаются два узла, соединенные каналом с пропускной способностью 100 Кб/с, и задается очередь DropTail. Для генерации трафика используется агент UDP, который передает пакеты случайного размера.
- Кроме того, реализована функция для мониторинга очереди и вычисления:
 - Теоретической вероятности потери пакетов
 - Средней длины очереди

```
# Создание объекта симулятора
set ns [new Simulator]

# Открытие файла трассировки
set tf [open out.tr w]
$ns trace-all $tf
```

```
# Определение параметров системы
set lambda 30.0
set mu 33.0
set qsize 100000
set duration 1000.0
# Создание узлов и соединения между ними
set n1 [$ns node]
set n2 [$ns node]
set link [$ns simplex-link $n1 $n2 100kb 0ms DropTail]
$ns queue-limit $n1 $n2 $qsize
# Настройка случайных переменных
set InterArrivalTime [new RandomVariable/Exponential]
$InterArrivalTime set avg_ [expr 1/$lambda]
set pktSize [new RandomVariable/Exponential]
$pktSize set avg_ [expr 100000.0/(8*$mu)]
# Создание агентов (источник и приемник)
set src [new Agent/UDP]
$src set packetSize_ 100000
$ns attach-agent $n1 $src
set sink [new Agent/Null]
$ns attach-agent $n2 $sink
$ns connect $src $sink
```

```
# Мониторинг очереди
set qmon [$ns monitor-queue $n1 $n2 [open qm.out w] 0.1]
$link queue-sample-timeout
# Функция завершения симуляции
proc finish {} {
    global ns tf
   $ns flush-trace
    close $tf
    exit 0
?
# Функция генерации пакетов
proc sendpacket {} {
    global ns src InterArrivalTime pktSize
    set time [$ns now]
    $ns at [expr $time + [$InterArrivalTime value]] "sendpacket"
    set bytes [expr round([$pktSize value])]
    $src send $bytes
}
# Запуск генерации пакетов и завершения симуляции
$ns at 0.0001 "sendpacket"
$ns at $duration "finish"
# Вычисление характеристик системы
set rho [expr $lambda/$mu]
```

```
set ploss [expr (1-$rho)*pow($rho,$qsize)/(1-pow($rho,($qsize+1)))]
puts "Теоретическая вероятность потери = $ploss"

set aveq [expr $rho**srho/(1-$rho)]
puts "Теоретическая средняя длина очереди = $aveq"

# Запуск симуляции
$ns run
```

3.2 Анализ результатов

- После выполнения кода мы получили (рис. 3.1).
 - Теоретическая вероятность потери = 0.0
 - Средняя длина очереди = 9.09

Рис. 3.1: Анализ результатов

- Очередь никогда не переполняется.
- В среднем в системе ≈ 9 заявок ожидают обработки.
- Система стабильна, но работает с высокой нагрузкой.

3.3 Построение графика в Gnuplot

3.3.1 Создание файла graph_plot

• мы создали отдельный файл в каталоге проекта с именем **graph_plot** (рис. 3.2).

Рис. 3.2: Создание файла graph_plot

• Открыли его для редактирования и добавили следующий код

```
#!/usr/bin/qnuplot -persist
# Устанавливаем кодировку и параметры вывода
set encoding utf8
set term pdfcairo font "Arial,9"
# Определяем выходной файл
set out 'qm.pdf'
# Название графика
set title "График средней длины очереди"
# Настройки линий
set style line 2
# Подписи осей
set xlabel "t"
set ylabel "Пакеты"
# Построение графика на основе данных из qm.out
plot "qm.out" using ($1):($5) with lines title "Размер очереди (в пакетах)", \
     "qm.out" using ($1):($5) smooth csplines title "Приближение сплайном", \
     "qm.out" using ($1):($5) smooth bezier title "Приближение Безье"
```

- Потом запустили его.
- После выполнения появится график qm.pdf, где можно увидеть, как изменяется длина очереди во времени (рис. 3.3).

Рис. 3.3: График средней длины очереди

4 Выводы

• В данной работе изучены основы моделирования стохастических процессов в системах массового обслуживания с акцентом на модели M|M|1 и M|M|n|R, а также исследованы уравнения Колмогорова для описания поведения заявок. Реализация моделирования в NS-2 и а результаты, визуализированные через Gnuplot

Подробнее см. в [1-3].

Список литературы

- 1. Gross D., Harris C.M. Fundamentals of Queueing Theory. 4th изд. Wiley, 2008.
- 2. Team T.N. NS-2 Network Simulator User Guide. ISI, 2006.
- 3. Williams T., Kelley C. Gnuplot 5.4 Reference Manual. 2020.