Линейни операции с вектори

Определение 1 Нека v е вектор и \overrightarrow{AB} е представител на v. Тогава векторът с представител \overrightarrow{BA} се нарича *противоположен на* v и се означава с -v. (Дефиницията е коректна, тоест не зависи от избора на представителя \overrightarrow{AB} на v.)

Пример 1 -0 = 0.

Определение 2 (събиране на вектори) Нека u и v са вектори, O е произволна точка, \overrightarrow{OP} е представител на u с начало O, \overrightarrow{PQ} е представител на v с начало P. Векторът с представител \overrightarrow{OQ} се нарича c6op или cyма на u u v и се означава с u+v. (Дефиницията е коректна, тоест не зависи от избора на точката O.)

Определение 3 (изваждане на вектори) Разлика на векторите и и v е векторът u-v:=u+(-v).

Определение 4 (умножение на вектор с число) Произведение на числото $\lambda \in \mathbb{R}$ с вектора u се нарича векторът v, определен по следния начин:

- а) ако $\lambda = 0$ или u = 0, то v = 0.
- б) ако $\lambda \neq 0$ и $u \neq 0$, то: Нека O е произволна точка и нека P е такава, че $\overrightarrow{OP} = u$. Считайки, че е фиксирана единична отсечка, избираме точката Q върху правата OP така, че $|OQ| = |\lambda| |OP|$ и

$$\overrightarrow{OQ}\uparrow\uparrow\overrightarrow{OP}, \text{ ako } \lambda>0$$

$$\overrightarrow{OQ}\uparrow\downarrow\overrightarrow{OP}, \text{ ako } \lambda<0$$

Тогава v е векторът с представител \overrightarrow{OQ} .

Векторът v се означава с $\lambda.u$ (или λu).

(Дефиницията е коректна, тоест не зависи от избора на единичната отсечка и от избора на точката O.)

Теорема 1 С така дефинираните операции събиране на вектори и умножение на вектор с число векторите в пространството (а и в равнината, а също и върху права) образуват реално линейно пространство (като нулевият вектор и противоположеният вектор са също дефинираните по-горе).