Recall: $f: U \in \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x if $\exists Df(x) \in H_{om}(\mathbb{R}^n, \mathbb{R}^m)$ st. f(x+v) = f(x) + Df(x)v + o(|v|).

- · fe (1(U, Rm) if everywhere differentiable and Df: U-> Hom(Rn, Rm) is continuous.
- · as a matrix, entries in Df(x) are partial dervatures $\partial f_i/\partial x_j$.
- operator norm: $\| Df(x) \| = \sup_{v \neq 0} \frac{| Df(x)v|}{|v|}$
- . Usual rules of differentiation hold; in particular

Then (chain rule): If g is differentiable at $x \in \mathbb{R}^n$ and f is differentiable at $g(x) \in \mathbb{R}^m$. Then fog is differentiable at x and $D(f \circ g)(x) = Df(g(x)) \circ Dg(x)$

 $\frac{Pf}{r} = g(x+v) = g(x) + Dg(x)v + r(v) \quad \text{where} \quad r(v) = o(|v|) \quad \text{(i.e. lim } \frac{|r(v)|}{|v|} = o).$

• Mean value then desirt hold, eg. $f: \mathbb{R} \to \mathbb{R}^2$ $f(2\pi) = f(0) \neq f(0) + 2\pi f'(t)$ $f(2\pi) = f(0) \neq f(0) + 2\pi f'(t)$ However we have the mean value inequality:

 $\frac{Thm:}{[a,b]=\{tb+(1-t)a/t\in [0,1]\}} \rightarrow |f(b)-f(a)| \leq |b-a| \cdot \sup ||f(k)|| \cdot \sup_{x\in [a,b]} ||f(b)-f(a)| \leq |b-a| \cdot \sup_{x\in [a,b]} ||f(b)-f(a)| \leq$

 $\frac{Pf:}{V = \frac{1}{2}} = \frac{1}{2} = \frac{$

then $g'(t) = \langle u, Df(a+tv) v \rangle$ so $|g'(t)| \leq ||Df(a+tv)||$. The result then follows from the single-variable mean value ineq. for g on [0, |b-a|].

• Higher order derivatives: f is C^2 if Df: $U o Hom(R^n, R^m) \simeq IR^{n \times m}$ is C^2 , etc. The main important fact about higher partial derivatives is:

 $\frac{\text{Prop}}{\text{prop}}$ if $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ exist and are emfinement then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$

 $\frac{Pf}{hk}$: enough to consider the cons of f(x,y). For h and k small $\neq 0$, consider $\frac{1}{hk}\left(f(x+h,y+k)-f(x+h,y)-f(x,y+k)+f(x,y)\right)$

unling this in terms of $g(x,y) = \frac{f(x,y+k) - f(x,y)}{k}$, this is $\frac{1}{h}(g(x+h,y) - g(x,y))$ so by mean value than for $\frac{\partial g}{\partial x}$, $\exists h_1 \in (0,h)$ st. this equals

 $\frac{\partial g}{\partial x}(x+h_1,y) = \frac{1}{k}\left(\frac{\partial f}{\partial x}(x+h_1,y+k) - \frac{\partial f}{\partial x}(x+h_1,y)\right).$

In turn, by mean value than for $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$, $\exists k_1 \in (0,k)$ str. this equals $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)\left(x+h_1,y+k_1\right)$. Doing the same calculation in opposite order shows $=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)\left(x+h_2,y+k_2\right)$ for some Since these 2nd derivatives are continuous by $h_2 \in (0,h)$, $k_2 \in (0,k)$. assumption, taking limits as $h,k \to 0$ gives the result.

* Hence: the <u>Hensian</u> matrix $H = \left(\frac{3^2 f}{\partial x_i \partial x_j}\right)$ is symmetric, and should be interpreted as a symmetric bilinear form on tangent vectors. If $f \in C^2$ then $f(x+v) = f(x) + Df(x) \cdot v + \frac{1}{2}H(x)(v,v) + o(|v|^2)$ (be on, Taylor!).

Because of the local approximation f(x+v) = f(x) + Df(x)v + r(v), the behavior of Df(x) governs that of f near x. In particular:

- if Df(x) is injective then f is injective on a (suff. small) neighborhood of x.

- if Df(x) is sujective then f maps a neighborhood of x sujectively onto a neighborho

Defi | a map f: U-IV between open subsets of IR" is a diffeomorphism if it is a homeomorphism and both f and f" are C".

Thm: Let $p \in E \subset \mathbb{R}^n$ open, $f : E - \mathbb{R}^n \subset 1$, suppose $Df(p) : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism lie. det $Df(p) \neq 0$). Then f is a boul diffeomorphism at p, ie. $\exists U \ni p$ neighborhood sh. f is a diffeomorphism between $U \subset E$ and $f(U) \subset \mathbb{R}^n$.

The proof was two man ingredients:

1. mean value inquality: sup 11 Df 11 < M > | f(b)-f(a) | < M 16-a |.

2. contraction mapping principle. X complete metric space, $\varphi: X \to X$ contraction $(d(\varphi(x), \varphi(y)) \le x d(x,y))$ for some $x < 1) \Rightarrow \varphi$ has a unique fixed point.

Pf of invese function theorem:

• After a linear change of variable, we can assume p=0, f(0)=0, Df(0)=Id.

· Since f∈ C1, Df is continuous, so ∃ balk B_r(0) st. || Df(x)-I|≤ 1/2 for |x|≤r.

• Now, given $y \in \mathbb{R}^n$, let $\psi(x) = x + (y - f(x))$. "next guess using Newton's nethod to find to st. f(x0)=y0, given f(x), using Df~I." <u>key obs</u>?: y(x) = x iff $f(x) = y_0$, and for $|x| \le r$ we have $|| Dy(x)|| = || I - Df(x)|| \le \frac{1}{2}$. . Assume $|y_0| < \frac{r}{2}$. Since $\psi(0) = y_0$ and $\| \mathcal{D} \psi \| \leq \frac{1}{2} \| 6r \| |x| \leq r$, the mean value inequality gives for $|x_1| \le r$, $|\varphi(x_1) - \varphi(x_2)| \le \frac{1}{2} |x_1 - x_2|$. and also $|\varphi(x)| \leq |y_0| + \frac{|x|}{2} < \Gamma$. (4) (b) $|x_0| = |\varphi(x_0)| < \Gamma$. So φ is a contracting map from $\overline{B_r(0)}$ to itself, heree \exists ! fixed point $x_0 \in B_r(0)$ Thus $\forall y_0 \in B_{\underline{r}}(0)$, $\exists ! x_0 \in B_{\underline{r}}(0)$ sho $f(x_0) = y_0$. (4) · Now let $V = B_r(0)$, $U = f'(V) \cap B_r(0)$, then U, V are open (f continuous) and $f_{|U}: U \rightarrow V$ is a bijection by (**). Let $g: V \rightarrow U$ the invese map. · Claim: g is differentiable and $Dg(y) = Df(x)^{-1}$ where x = g(y) (y = f(x))#F: fix $y \in V$, $x = g(y_0) \in U$, let $\varphi(x) = x + (y_0 - f(x))$ as alone, with $\varphi(x_0) = x_0$. For $w \in \mathbb{R}^n$ small $(s) | y_0 + w | (\frac{r}{2})$, write $g(y_0 + w) = x_0 + v$, so $f(x_0 + v) = y_0 + w$. Then $\varphi(x_0+v)=(x_0+v)+(y_0-(y_0+v))=x_0+v-w$, vs. $\varphi(x_0)=x_0$. But we've shown φ is contracting, $|\varphi(x_0+v)-\varphi(x_0)|=|v-w|\leq \frac{1}{2}|v|$. Hence |w| > 1/2 |v| by hiarde inequality, ie. |v| < 2 |w|. Given $\varepsilon > 0$ $\exists S \text{ st}$ $|v| < S \Rightarrow |f(x_0 + v) - f(x_0) - |f(x_0)v| < \frac{\varepsilon}{2}|v|$. > for (w) < \frac{2}{2}, | (y, + ω) - y₀ - Df(x₀) ω | < ξ|ω| € ε|ω|. Applying Df(20)": for |w/< \frac{5}{2}, |Df(x0)" w - v | \le |IDf(x0)" | | w-Df(x0)v| Recalling $V = g(y_0 + w) - g(y_0)$, his yields

 $g(y_0+\omega r)=g(y_0)+Df(x_0)'\omega +o(|\omega|).$ • the continuity of $Dg=Df'\circ g$ then follows from the continuity of Df and of g itself. \Box

+ Implicit function theorem:

 $\mathbb{R}^n \times \mathbb{R}^m \supset \mathcal{E}$ open, $f: \mathcal{E} \to \mathbb{R}^m$ differentiable. Write $\mathrm{D}f(x,y): \mathbb{R}^n \oplus \mathbb{R}^m \to \mathbb{R}^m$ as $\mathrm{D}f_x \oplus \mathrm{D}f_y$, $\mathrm{D}f_y: \mathbb{R}^n \to \mathbb{R}^m$ first n variables Assume $f(x_0,y_0)=0$ and $\mathrm{D}f_y$ is invertible (det $\mathrm{D}f_y \neq 0$) at $(x_0,y_0)\in \mathcal{E}$ Then $\exists \ U \ni x_0$, $V \ni y_0$ open st. $\forall x \in U \ \exists ! \ y = g(x) \in V$ st. f(x,y) = 0. Moreover, $g: U \to V$ defined by $f(x,g(x))=0 \ V \times \in U$ is differentiable, and $\mathrm{D}g = -(\mathrm{D}f_y)^{-1} \mathrm{D}f_x$ This follows from he invesse function theorem by considering

$$F: \mathbb{R}^{n+m} > E \longrightarrow \mathbb{R}^{n+m}$$
$$F(x,y) = (x, f(x,y))$$

$$F: \mathbb{R}^{n+m} \supset E \longrightarrow \mathbb{R}^{n+m}$$

$$F(x,y) = (x, f(x,y)).$$

$$DF(x_0, y_0) = \left(\frac{I \mid 0}{Df_x \mid Df_y}\right)$$

This has an inverse G over a mode of $F(x_0,y_0)=(x_0,0)$.

Near (x_0, y_0) , $f(x,y) = 0 \Leftrightarrow F(x,y) = (x,0) \Leftrightarrow (x,y) = G(x,0)$.

So we let g(x) = second compared of <math>G(x,0).

* Giren a differentiable f: RMM -> RM, and a point of which Df is sujective, we can always find a subset of coordinates (X;); (IC {I m+n}, II = m) st. The companding part of Df is invertible =1 can gray implicit for theorem to decibe the zero set of f by $eq^{2s}(x_i)_{i\in I} = g(x_j, j\notin I)$.

In particular, a hypersurface $S \subset \mathbb{R}^n = cloud$ subjet which is locally the zer set of a differentiable real-valued function of with Df \$0. Using implicit for theorem, \sharp can be locally desuited as the graph $x_j = g(x_i, i \neq j)$ of some difficulty $g: \mathbb{R}^{n-1} \to \mathbb{R}$. Eg. a diffable curve in \mathbb{R}^2 is locally a graph x = f(y) or y = f(x).

Iterated and Riemann integrals in several variables

* f continuous function on an n-cell $I = [a_1, b_1] \times ... \times [a_n, b_n] \subset \mathbb{R}^n$

f continuous success f = $\int_{\mathbb{T}} f dx_1...dx_n = \int_{\mathbb{T}} f |dx|$ Tuly? clearer after diff. Forms

eiher 1) as iterated integral:
$$\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \dots \left(\int_{a_n}^{b_n} f(x_1 \dots x_n) dx_n \right) \dots dx_2 \right) dx_1 \qquad \text{or any order}$$

2) as Riemann integral: split I into small cubes Qi, and bound f between precounse constant functions $\Delta = \Delta_i = \min_{i \in \mathcal{S}} f(Q_i)$ on $\inf_{i \in \mathcal{S}} Q_i$ \$ = \$; = max f(Q; | - = -

 \rightarrow estimate $\sum si \, vl(Qi) \leq \int f \, |dx| \leq \sum Si \, vl(Qi)$

If f is continuous, here in: formly continuous, then sup |S-s| -10 as diam(Qi) - 0, so this defines the integral uniquely.

Fabini's thin says: for continuous of the iterated integrals for different orders of integration are all equal.

* if f is only piecewise continuous, integrability still holds if the regions of I where f is continuous are sufficiently righter - eg. delimited by smooth hypersurfaces.