

Photogrammetric Computer Vision Assignment 5

Winter Semester 24/25 Submission Deadline: 12.01.25, 8 pm

VI. Projective and direct Euclidean reconstruction

With knowledge of the relative orientation, *spatial object coordinates* can be triangulated from corresponding image points. If the parameters of the interior orientation are unknown, then only a *projective reconstruction* is possible. Using at least five *control points*, this intermediate result can be transformed quite simply into a Euclidean reconstruction.

1. Projective reconstruction:

Since the manual matching of image points is quite laborious and boring, a text file bh.dat with many homologous image points is made available for the image pair showing the bust of BEETHOVEN.

a) Read the homologous image coordinates $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$ in the format (x_1, y_1, x_2, y_2) , e.g. with

```
fh = fopen('bh.dat', 'r');
A = fscanf(fh, '%f%f%f%f', [4 inf]);
fclose(fh);
x1 = A(1:2, :); x2 = A(3:4, :);
```

and use your function from exercise 4 in order to determine the relative orientation of the images with the *fundamental matrix* **F**.

- b) Implement a new function, which defines two corresponding *projection matrices* P_N and P' by means of F.
- c) Implement a function for the *linear triangulation* of projective object points \mathbf{X}_{PI} and then visualize the computed spatial object coordinates, e.g. using

```
figure; scatter3(X(1,:), X(2,:), X(3,:), 10, 'filled'); axis square; view(32, 75);
```

2. Direct Euclidean reconstruction:

- a) Read the *control point* information from the provided file pp.dat in the format $(x_1, y_1, x_2, y_2, X_E, Y_E, Z_E)$ and triangulate the projective object points \mathbf{X}_{P2} from the five homologous image points $\mathbf{x}_1 \leftrightarrow \mathbf{x}_2$ using the already computed projection matrices \mathbf{P}_N and \mathbf{P}' .
- b) Extend your algorithm from exercise 2 for the planar 2D homography to a *spatial* 3D homography \mathbf{H} . Determine the spatial transformation of the five projective object points \mathbf{X}_{P2} to the corresponding Euclidean object points \mathbf{X}_{E} .
- c) Apply this transformation \mathbf{H} to all object points of your projective reconstruction \mathbf{X}_{PI} and visualize the result of the *Euclidean reconstruction* spatially.

