

LINEAR INTEGRATED CIRCUITS

Dr Shashidhar TantryElectronics and Communication Engineering

Unit 3 Current feedback op amps

Current feedback amplifier

- Current feedback refers to any closed-loop configuration in which the error signal used for feedback is in the form of a current. A current feedback op amp responds to an error current at one of its input terminals, rather than an error voltage, and produces a corresponding output voltage
- The transfer function of a *transimpedance amplifier* is expressed as a voltage output with respect to a current input
- the open-loop "gain", v_O/i_{IN}, is expressed in ohms

Unit 3 Current feedback op amps

PES UNIVERSITY CELEBRATING 50 YEARS

Summary of points in current feedback op amps

- Non inverting and Inverting gain circuits use the same formula for the gain that is $-R_F/R_G$ and $1+R_F/R_G$
- Use R_F as recommended by the data sheet, R_G can be as per the gain
- Use noninverting circuit, otherwise it will load source
- Never put capacitance across feedback resistor
- If only DC gain required, preferably use voltage feedback
- Current feedback op amps are choice for high speed and high current requirements
- For filters, voltage feedback op amp is preferred
- Current feedback op amps are best for high speed and high current circuits

Unit 3 Current feedback amplifier model

High impedance here

Unit 3 Development of stability equations

Loop gain

- Stability measurement done by loop gain
- Feedback circuit is seen at negative input terminal Break the loop, apply test signal and measure output

Unit 3 Development of stability equations

- Break the loop, apply test signal and measure output
- Z is the transimpedance of the op amp which is nothing but gain in terms of impedance

$$V_{TO} = I_1Z$$

$$V_{TI} = I_2(Z_F + Z_G \parallel Z_B)$$

-(1)

Loop gain

Unit 3 Development of stability equations

Figure 9.3
Stability analysis circuit.

$$V_{Tl} = l_1(Z_F + Z_G \| Z_B) \bigg(1 + \frac{Z_B}{Z_G} \bigg)$$

$$V_{Tl} \simeq l_1 Z_F \left(1 + \frac{Z_B}{Z_F || Z_G}\right) \quad \boxed{2}$$

$$V_{TO} = I_1 Z$$

$$A\beta = \frac{V_{TO}}{V_{Tl}} = \frac{Z}{\left(Z_F \left(1 + \frac{Z_B}{Z_F \| Z_G}\right)\right)}$$

This is Loop gain

Unit 3 Noninverting current feedback amplifier

Circuit is nothing but non inverting amplifier

$$V_A = V_{IN} - IZ_B$$

$$V_{OUT} = IZ$$

$$| = |_1 - |_2$$

$$I_1 = V_A/Z_G$$

$$I_2 = (V_{OUT} - V_A)/Z_F$$

$$I = (V_A/Z_G) - (V_{OUT} - V_A)/Z_F$$

Unit 3 Noninverting current feedback amplifier

$$\frac{Z\left(1 + \frac{Z_{F}}{Z_{G}}\right)}{Z_{F}\left(1 + \frac{Z_{B}}{Z_{F}||Z_{G}}\right)} = \frac{Z\left(1 + \frac{Z_{F}}{Z_{G}}\right)}{1 + \frac{Z}{Z_{F}}\left(1 + \frac{Z_{B}}{Z_{F}||Z_{G}}\right)} = \frac{Z\left(1 + \frac{Z_{F}}{Z_{G}}\right)}{1 + \frac{Z}{Z_{F}}} = \frac{1 + \frac{Z_{F}}{Z_{G}}}{1 + \frac{Z_{F}}{Z_{F}}} = \frac{1 + \frac{Z_{F}}{Z_{F}}}{1 + \frac{Z_{F}}{Z_{F}}} = \frac{1 + \frac{Z_{F}$$

Unit 3 Noninverting current feedback amplifier

Identical to Voltage Feedback amplifier

Unit 3 Inverting current feedback amplifier

$$| + |_2 = |_1$$

Circuit is nothing but inverting amplifier

Unit 3 Inverting current feedback amplifier

$$\frac{\frac{Z}{Z_G\left(1+\frac{Z_B}{Z_F\parallel Z_G}\right)}}{1+\frac{Z}{Z_F\left(1+\frac{Z_B}{Z_F\parallel Z_G}\right)}} \quad \text{and} \quad \text{for} \quad \frac{\frac{V_{OUT}}{V_{IN}}=-\frac{\frac{1}{Z_G}}{\frac{1}{Z}+\frac{1}{Z_F}}}{\frac{1}{Z_F}}$$

.

Unit 3 Inverting current feedback amplifier

$$\frac{\frac{Z}{V_{OUT}}}{V_{IN}} = -\frac{\frac{Z}{Z_G\left(1+\frac{Z_B}{Z_F\parallel Z_G}\right)}}{1+\frac{Z}{Z_F\left(1+\frac{Z_B}{Z_F\parallel Z_G}\right)}} \qquad \text{for } \frac{V_{OUT}}{V_{IN}} = -\frac{Z_F}{Z_G}$$

Identical to Voltage Feedback amplifier

Unit 3 Stability analysis

$$A\beta = \frac{V_{TO}}{V_{TI}} = \frac{Z}{\left(Z_F \left(1 + \frac{Z_B}{Z_F \|Z_G}\right)\right)}$$

Stability equation (loop gain)

$$\begin{aligned} 20 \ LOG|A\beta| &= 20 \ LOG|Z| - 20 \ LOG \bigg| Z_F \bigg(1 + \frac{Z_B}{Z_F \|Z_B} \bigg) \bigg| \\ \phi &= TANGENT^{-1}(A\beta) \end{aligned}$$

Gain and Phase equations for loop gain

Typical values

$$Z = \frac{IM\Omega}{(1 + \tau_1 S)(1 + \tau_2 S)}$$

$$Z_B = 70\Omega$$

$$Z_G = Z_F + 1 \text{ k}\Omega$$

Unit 3 Stability analysis

- Open loop Gain is measured in terms of Z which trans-impedance
- Loop gain too measured in terms of impedance
- Assumed open loop gain to have two poles
- Loop gain reduces gain. As a result phase margin improves

Unit 3 Stability analysis

Summary of points

- R_F is usually recommended by the manufacturer
- R_F selection based on stability and bandwidth requirement

$$A\beta = \frac{V_{TO}}{V_{Tl}} = \frac{Z}{\left(Z_F \left(1 + \frac{Z_B}{Z_F \| Z_G}\right)\right)} \qquad \qquad A\beta = \frac{Z}{Z_F + Z_B \left(1 + \frac{R_F}{R_G}\right)}$$

Stability equation Different form

When $Z_B = 0$ and $Z_F = R_F$

 $A\beta = Z/R_F$

Unit 3 Selection of feedback resistor

PES UNIVERSITY CELEBRATING 50 YEARS

First method: Key points

- R_F defines stability of the amplifier
- It is important to select R_F properly
- R_F value range given by the manufacturer
- If different value to be used, results of loop gain are extrapolated assuming linear relation

Loop gain 1 value

Loop gain 2 value

$$\frac{Z}{Z_{F1} + Z_B \left(1 + \frac{Z_{F1}}{Z_{G1}}\right)} = \frac{Z}{Z_{FN} + Z_B \left(1 + \frac{Z_{FN}}{Z_{GN}}\right)}$$

$$Z_{FN} = Z_{F1} + Z_B \left(\left(1 + \frac{Z_{F1}}{Z_{G1}}\right) - \left(1 + \frac{Z_{FN}}{Z_{GN}}\right)\right)$$

New value of feedback resistor

Unit 3 Selection of feedback resistor

Second method

We can also use graphical method to select R_F value

For a given gain, calculate R_F and from R_F calculate Bandwidth of the amplifier

Table represents different gain R_F and Bandwidth values

Table 9.1: Data Set for Curves in Fig. 9.7

Gain (A _{CL})	$R_F(\Omega)$	Bandwidth (MHz)
+1	1000	125
+2	681	95
+10	383	65

Graph taken from the data sheet of CFA

Unit 3 Stability and feedback capacitance

Stray capacitance gets introduced across feedback resistor Hence Z_F becomes reactive

$$Z_F = \frac{R_F}{1 + R_F C_F s}$$

Loop gain is given by,

$$A\beta = \frac{V_{TO}}{V_{TI}} = \frac{Z}{\left(Z_F \left(1 + \frac{Z_B}{Z_F \|Z_G}\right)\right)}$$

$$Z_B = R_B \quad Z_G = R_G$$

From 1 and 2, loop gain is given by,

$$A\beta = \frac{Z(1 + R_F C_F s)}{R_F \bigg(1 + \frac{R_B}{R_F \|R_G}\bigg) (1 + R_B \|R_F \|R_G C_F s)}$$

Loop gain added with one pole and one zero,

Unit 3 Stability and feedback capacitance

Gain plot with and without addition of poles and zeros

Unit 3 Stability and input capacitance

Stray capacitance gets introduced across input resistor Hence Z_G becomes reactive

$$Z_G = \frac{R_G}{1 + R_G C_G s}$$

Loop gain is given by,

$$A\beta = \frac{Z}{Z_B + \frac{Z_F}{Z_G^2 + Z_B Z_G}}$$

$$Z_B = R_B \quad Z_G = R_G$$

From 1 and 2, loop gain is given by,

$$A\beta = \frac{Z}{R_F \left(1 + \frac{K_B}{R_F || R_G}\right) (1 + R_B || R_F || R_G C_G s)}$$

Loop gain added with one pole

Unit 3 Stability and feedback capacitance

Figure 9.8
Effects of stray capacitance on current-feedback amplifiers.

Unit 3 Stability with input capacitance and feedback capacitance

 Z_F becomes reactive and Z_G also becomes reactive

Loop gain equation becomes,

$$A\beta = \frac{Z(1 + R_F C_F s)}{R_F \bigg(1 + \frac{R_B}{R_F \|R_G}\bigg) (R_B \|R_F \|R_G (C_F + C_G) s + 1)}$$

$$R_FC_F=C_G(R_G\parallel R_B)$$

To make circuit to cancel pole and zero, we need to keep

$$R_FC_F = R_BC_G$$

Unit 3 Comparison between VFA and CFA - Precision

- Traditional op amps are voltage feedback type whereas current feedback amps are recent
- VFA input comes from differential pair

Differential pair are perfectly matched

- V_{BF} are matched
- Q₁ and Q₂ are matched
- Transistor current gains are matched
- Matched for layout equality

Unit 3 Comparison between VFA and CFA - Precision

CFA inputs are at different impedance levels

CFA

- Input impedance for inverting and non inverting are different
- Common mode rejection is not good
- Overall precision is bad compared to VFA

Unit 3 Comparison between VFA and CFA - Bandwidth

VFA bandwidth not good

$$A\beta = \frac{aR_G}{R_F + R_G}$$

$$\begin{split} A\beta &= \frac{\frac{a}{R_F + R_G}}{\frac{R_G}{R_G}} = \frac{a}{G_{CLNI}} \\ A\beta &= \frac{\frac{a}{R_F + R_G}}{\frac{R_G}{R_G}} = \frac{a}{G_{CLI} + 1} \end{split}$$

VFA

- Loop gain decreases for an increase in bandwidth
- Error is directly related to the bandwidth

Unit 3 Comparison between VFA and CFA - Bandwidth

CFA bandwidth good

$$A\beta = \frac{Z}{R_F \left(1 + \frac{R_B}{R_F \parallel R_G}\right)}$$

$$A\beta = \frac{Z}{R_F}$$

CFA

- No low frequency pole
- Loop gain does not depend on closed loop gain

Unit 3 Comparison between VFA and CFA - Stability

VFA stability

$$A\beta = \frac{aR_G}{R_F + R_G}$$

Stability depends on a, R_G and R_F
Stray capacitance does not change stability significantly

CFA stability

$$A\beta = \frac{Z}{R_F}$$

Stability depends on R_F Stary capacitance play role in stability significantly

Unit 3 Comparison between VFA and CFA - Impedance

VFA impedance

Input impedance is high and matched at both terminals Even in CMOS input impedance is high

CFA impedance

Not high compared to VFA
Two input impedances are not matched
Because of low input impedance at inverting terminal

Unit 3 Comparison Table on equations

Table 10.1: Tabulation of Pertinent Voltage-Feedback Amplifier and Current-Feedback Amplifier Equations

Circuit Configuration	Current-Feedback Amplifier	Voltage-Feedback Amplifier	
Noninverting			
Forward or direct gain	$\frac{Z\left(1 + \frac{Z_F}{Z_G}\right)}{Z_F\left(1 + \frac{Z_B}{Z_F \parallel Z_G}\right)}$	a	
Ideal loop gain	$\frac{Z}{Z_E}\left(1 + \frac{Z_B}{Z_E \parallel Z_G}\right)$	$\frac{aZ_F}{(Z_G + Z_F)}$	
Actual closed-loop gain	$\frac{Z_{F}\left(1+\frac{Z_{B}}{Z_{G}}\right)}{Z_{F}\left(1+\frac{Z_{B}}{Z_{F}\parallel Z_{G}}\right)}$	$\frac{a}{1 + \frac{aZ_G}{Z_F \parallel Z_G}}$	
Closed-loop gain	$Z_{F}\left(1 + \frac{Z_{B}}{1 + Z_{G}}\right)$ $1 + Z_{F}/Z_{G}$	$1 + Z_F/Z_G$	
Inverting			
Forward or direct gain	$\frac{Z}{Z_{G}\left(1 + \frac{Z_{B}}{Z_{F} \parallel Z_{G}}\right)}$	$\frac{aZ_F}{(Z_F + Z_G)}$	
Ideal loop gain	$\frac{Z}{Z_F}\left(1 + \frac{Z_B}{Z_F \parallel Z_G}\right)$	$\frac{aZ_G}{(Z_G + Z_F)}$	
Actual closed-loop gain	$\frac{-Z_{G}\left(1+\frac{Z_{B}}{Z_{F}\parallel Z_{G}}\right)}{1+\frac{Z}{Z_{F}\left(1+\frac{Z_{B}}{Z_{F}\parallel Z_{G}}\right)}}$	$\frac{\frac{-aZ_F}{Z_F + Z_G}}{1 + \frac{aZ_G}{Z_F \parallel Z_G}}$	
Closed-loop gain	-Z _F /Z _G	$-Z_F/Z_G$	

Figure 11.1
Single-ended op amp schematic symbol.

Figure 11.2 Fully differential op amp schematic symbol.

 Differential input (Two inputs), single output(One output) Differential input(Two inputs), differential output(One output)

Fully differential op amp schematic symbol.

 Differential input(Two inputs), differential output(One output)

 Typical circuit inside fully differential amplifier

Figure 11.2 Fully differential op amp schematic symbol.

- Two closed loop feedbacks are required for feedback circuit
- Both loops to be matched
- Here, each loop is a inverting type

Figure 11.4 Closing the loop on a fully differential op amp.

PES UNIVERSITY CELEBRATING 50 YEARS

- Single Ended to Differential Conversion
- In some applications, it is necessary to have two output, which can be derived from single input

Gain of single ended to differential is

$$\frac{V_O}{V_I} \!=\! \frac{R_F}{R_G}$$

In many cases, fully differential output is expressed as (V_{out+} - V_{out-})

PES UNIVERSITY CELEBRATING 50 YEARS

Single Ended to Differential Conversion

• Gain plot when R_F is equal to R_G that is when gain is one.

Figure 11.6
Relationship between V_{IN}, V_{OUT+}, and V_{OUT-}.

- Value of differential gain is always equal to one which is
- $V_{IN} = V_{OUT+} V_{OUT-}$

PES UNIVERSITY CELEBRATING BO YEARS

Concept of V_{OCM}

- A new pin is added called V_{OCM}
- V_{OCM} is called voltage output common mode
- This is specific to TI chips

Figure 11.8 Mechanical model of V_{ocm}.

Figure 11.10
Using a fully differential op amp to drive a analog-to-digital converter

Unit 3 Fully Differential op amp

Instrumentation amplifier

Figure 11.11
Instrumentation amplifier.

- Noise is a purely random signal
- Instantaneous value can not be predicted at any point of time
- Noise is created either internally or externally
- Instantaneous values are either positive voltage or negative voltage
- These can be plotted as Gaussian probability function
- Thermal noise and shot noise follow Gaussian function

99.7% Probability Signal Will Be <= 6 X rms Value

Noise floor is the level of noise when there is no input given

Signal to Noise Ratio

$$\frac{S_{(f)}}{N_{(f)}} = \frac{\text{rms signal voltage}}{\text{rms noise voltage}}$$

When there are multiple noise sources, total noise will be

$$E_{Total\ rms} = \sqrt{e_{1\ rms}^2 + e_{2\ rms}^2 + \cdots e_{n\ rms}^2}$$

- Example
- If two noise sources are 2V rms, total value will be

$$E_{Total\ rms} = \sqrt{2^2 + 2^2} = \sqrt{8} = 2.83\ V_{rms}$$

Noise Units

Normally expressed as rms volts(amps) per root hertz

$$V/\sqrt{Hz}$$
 or A/\sqrt{Hz} .

For example:

- An op amp with a noise specification of 2.5 nV/√Hz is used over an audio frequency range of 20 Hz−20 kHz, with a gain of 40 dB. The output voltage is 0 dB V (1 V).
- To begin with, calculate the root Hz part: $\sqrt{20000-20} = 141.35$.
- Multiplying this by the noise spec: 2.5 × 141.35 = 353.38 nV, which is the equivalent input noise (E_{IN}). The output noise equals the input noise multiplied by the gain, which is 100 (40 dB).

The signal-to-noise ratio can be now calculated:

$$353.38 \text{ nV} \times 100 = 35.3 \text{ }\mu\text{V}$$

$$Signal\text{-to-noise}(dB) = 20 \times log(1 \text{ V} \div 35.3 \text{ }\mu\text{V}) = 20 \times log(28329) = 89 \text{ }dB$$

There are five types of noise in op amps and associated circuitry:

- shot noise,
- thermal noise,
- flicker noise,
- burst noise, and
- avalanche noise.

PES UNIVERSITY CELEBRATING 50 YEARS

Shot Noise

- Also called as quantum noise
- Caused by random movement of charge carriers in a conductor
- Few random electrons get energy and move randomly
- These noise independent of temperature
- These are always associated with current flow
- This noise is flat when plotted for spectral density
- They represent imperfections in a metal

PES UNIVERSITY CELEBRATING 50 YEARS

Shot Noise

The rms shot noise current is equal to:

$$I_{sh} = \sqrt{(2qI_{dc} + 4qI_o)B}$$

where q = electron charge (1.6 \times 10⁻¹⁹ C), I_{dc} = average forward dc current in A, I_o = reverse saturation current in A, and B = Bandwidth in Hz.

The rms shot noise voltage is equal to:

$$E_{sh} = kT \sqrt{\frac{2B}{qI_{dc}}}$$

where k is Boltzmann's constant (1.38 \times 10⁻²³ J/K); q is electron charge (1.6 \times 10⁻¹⁹ C); T is temperature in K; I_{dc} is average dc current in A; and B is bandwidth in Hz.

Thermal Noise

- Also called as Johnson's noise
- It is due to thermal agitation of electrons
- It has uniform spectral density

At frequencies below 100 MHz, thermal noise can be calculated using Nyquist's relation:

$$E_{th} = \sqrt{4kTRB}$$

$$I_{th} = \sqrt{\frac{4kTB}{R}}$$

where E_{th} is thermal noise voltage in volts rms; I_{th} is thermal noise current in amps rms; k is Boltzmann's constant (1.38×10^{-23}) ; T is absolute temperature in Kelvin; R is resistance in ohms; and B is noise bandwidth in Hertz $(f_{max} - f_{min})$.

Thermal Noise

Lowering temperature reduces thermal noise

Flicker Noise

- Also called as 1/f noise
- It is present in all active and passive elements
- It is in crystal structure this can be reduced by better structure
- This noise Increases with decrease in frequency
- It is associated with DC currents

$$E_n = K_e \sqrt{\left(ln \frac{f_{max}}{f_{min}}\right)} \quad I_n = K_i \sqrt{\left(ln \frac{f_{max}}{f_{min}}\right)}$$

where K_e and K_i are proportionality constants (volts or amps) representing E_n and I_n at 1 Hz; and f_{max} and f_{min} are the maximum and minimum frequencies in Hz.

- Also called as popcorn noise
- It is characterised by high frequency pulses
- It's amplitude is several times the thermal noise
- Can be heard at frequency in around 100hertz in a speaker

Avalanche Noise

- Occurs at p n junction area
- Occurs when strong reverse field is applied to the junction
- Electrons will get kinetic energy and move, resulting in a current

Noise Colours

Colours describe type of noise and its frequency dependency

Table C.1: Noise Colors.

Color	Frequency Content
Purple	f^2
Blue	f
White	1
Pink	1 F
Red/brown	$\frac{1}{f^2}$

NOISE COLORS

Op amp Noise

- Op amp noise described in a graph
- At low frequency, it is 1/f noise
- At high frequency, it is white noise

Op amp Noise

 The point where 1/f noise is same as white noise is called noise corner frequency

Textbook:

Op Amp for Everyone : Bruce Carter and Ron Mancini Fifth Edition 2017

THANK YOU

Dr Shashidhar Tantry

Electronics & Communication Engineering

stantry@pes.edu