

CONJUNCTIVE QUERIES (CQ) - THE BASIC DATABASE QUERIES

« find those who play in a movie »

 $q(x) = \exists y (movie(y) \land play(x, y))$

First Order Logic

A conjunctive query (CQ) q(x_1 ... x_k) has the form \exists x_{k+1},...,x_m A_1 \land ... \land Ap where $A_1,...,A_p$ are atoms over variables $x_1,...,x_m$ and $x_1...x_k$ are free variables (defining the answer part)

If k = 0, q is a Boolean conjunctive query (BCQ) (thus has the same form as our notion of a fact base)

 $answer(x) \leftarrow movie(y), play(x,y)$

Datalog notation

SELECT ... FROM ... WHERE < join conditions>

SQL

SELECT ... WHERE < graph pattern>

SPARQL

KEY NOTION: HOMOMORPHISM

 $q(x) = \exists y (movie(y) \land play(x, y))$

movie(y) play(x, y) movie(m1) movie(m2)

Homomorphism *h* from *q* to *F*: substitution of var(q) by terms(F) such that $h(q) \subseteq F$

actor(b) actor(c) play(a,m1) play(a,m2)

actor(a)

movie(x0)

h1:x → a $y \rightarrow m1$

 $h1(q) = movie(m1) \land play(a, m1)$

play(c,x0)

h2 : x → a $y \rightarrow m2$

 $h2(q) = movie(m2) \land play(a, m2)$

 $h3: x \rightarrow c$ $y \rightarrow x0$

 $h3(q) = movie(x0) \land play(c, x0)$

x = a

x = c

Answers: obtained by restricting the domains of homomorphisms to the variables of interest

(usually, only mappings of these variables to constants are kept)

Answers to a Conjunctive Query

- The answer to a BCQ Q in F is yes if $F \models Q$ yes = ()
- A tuple $(a_1, ..., a_k)$ of *constants* is an answer to $Q(x_1, ..., x_k)$ with respect to F if $F \models Q[a_1, ..., a_k]$, where $Q[a_1, ..., a_k]$ is obtained from $Q(x_1, ..., x_k)$ by replacing each x_i by a_i .
- o Let F and Q be seen as sets of atoms. A homomorphism h from Q to F is a mapping from variables(Q) to terms(F) such that $h(Q) \subseteq F$

 $F \models Q()$ iff Q can be mapped by homomorphism to F

 $(a_1, ..., a_k)$ is an answer to $Q(x_1, ..., x_k)$ on F iff there is a homomorphism from Q to F that maps each x_i to a_i

EXERCICE 1: CQ EN SQL ET EN LOGIQUE SUR UN EXEMPLE

On considère une base de données relationnelle qui gère des abonnés, qui peuvent avoir des cartes d'accès, en cours de validité ou pas. Le schéma de la base a deux relations :

Coords [id_abonné, nom, prénom, date_naissance, ville], où id_abonné est une clé Cartes [id_abonné, id_carte, validité]

Pour trouver les dates de naissance de tous les abonnés de Montpellier qui ont une carte d'accès en cours de validité, on fait la requête SQL suivante :

SELECT DISTINCT Coords.date_naissance

FROM Coords, Cartes

WHERE Coords.ville = MPL AND Cartes.validité = true

- Traduire les relations du schéma en prédicats et la requête en une requête conjonctive.
- 2. Soit l'instance de base données suivante :

Coords = [[1, N1,P1,D1,MPL],[2,N2,P2,D2,MPL],[3,N3,P3,D3,MPL],[4,N4,P4,D4,MARS]] Cartes = [[1,401,false],[1,502,true],[1,503,true],[2,404,false],[4,509,true]]

Définir la base de faits associée et déterminer les réponses à la requête

LABELLED HYPERGRAPH / GRAPH REPRESENTATION

• A fact base (or a BCQ) can be seen as a set of atoms

movie(m1), movie(m2), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), movie(x), play(c,x)

- → and a set of atoms is naturally seen as a bipartite (multi-)graph
 - one (labelled) node per term variable: no label constant: labelled by itself
 - one (labelled) node per atom label: the atom's predicate
 - · totally ordered edges

GRAPH HOMOMORPHISMS (1)

- Let $G_1=(V_1,E_1)$ to $G_2=(V_2,E_2)$ be classical graphs. Homomorphism h from G_1 to G_2 : mapping from V_1 to V_2 s. t. for every edge (u,v) in E_1 , (h(u),h(v)) is in E_2
- If there are labels: they have to be ``kept" as well

GRAPH HOMOMORPHISMS (2)

- Let $G_1=(V_1,E_1)$ to $G_2=(V_2,E_2)$ be classical graphs. Homomorphism h from G_1 to G_2 : mapping from V_1 to V_2 s. t. for every edge (u,v) in E_1 , (h(u),h(v)) is in E_2
- If there are labels: they have to be ``kept'' as well

ISOMORPHISM ON SETS OF ATOMS

- Let f and g in FOL(\exists , \land) seen as sets of atoms
- o Isomorphism h from f to g: bijective mapping from var(f) to var(g) such that h(f) = g

When f and g are isomorphic : we also say that f and g are ``equal up to a bijective variable renaming''

o Equivalent definition of isomorphism: homomorphism h from f to g such that $h^{\!-\!1}$ is a homomorphism from g to f

equivalent but not isomorphic

EQUIVALENCE / CORE

- If $f \ge g$ and $g \ge f$, they are called (homomorphically) equivalent
- A core is a set of atoms that is not equivalent to any of its strict subsets
- Given f seen as a set of atoms, the core of f is a minimal subset of f equivalent to f
- Consider the (infinite) set of all possible finite sets of atoms on a vocabulary, structured by ≤. Then each equivalence class has a unique minimal element (up to bijective variable renaming)

INTERPRETATIONS / MODELS (1)

- o Vocabulary \mathcal{V} = (\mathcal{P} , \mathcal{C}), where \mathcal{P} = finite set of predicates \mathcal{C} = set of constants
- Interpretation $I = (D_I, .I)$ of V, where

$$D_I \neq \emptyset$$
 (domain)
for all c in C , $c^I \in D_I$
for all p in P with arity k , $p^I \subseteq D_I^k$

• Simplifying assumption (which has no incidence in the following):

$$C \subseteq D_I$$
 and for all c in C , $c^I = c$

$$\mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\})$$
 $I: \quad D_I = \{a, b, d_1\} \quad p^I = \{(b, a), (b, d_1), (d_1, b)\}$
 $r^I = \{(d_1, d_1, a)\}$

ullet I is a model of f (built on $\mathcal V$) if f is true in I

By default, assume that formulas are closed

INTERPRETATIONS / MODELS (2)

o Let f in FOL(\exists , \land). I is a model of f iff there is a mapping v from var(f) to D^I such that for all $p(e_1, ..., e_k)$ in f, $(v(e_1), ..., v(e_k))$ in p^I --- where v(c) = c for each constant c ---

v is called a "good assignement"

$$I: \qquad \mathsf{D}_{I} = \{\mathsf{a},\,\mathsf{b},\,\mathsf{d}_{1}\} \qquad \mathsf{p}^{I} = \{(\mathsf{b},\,\mathsf{a}),\,(\mathsf{b},\,\mathsf{d}_{1}),\,(\mathsf{d}_{1},\,\mathsf{b})\}$$

$$r^{I} = \{(\mathsf{d}_{1},\,\mathsf{d}_{1},\,\mathsf{a})\}$$

$$f = \exists \, \mathsf{x} \, \exists \, \mathsf{y} \, \exists \, \mathsf{z} \, (\,\mathsf{p}(\mathsf{x},\,\mathsf{y}) \, \land \, \mathsf{p}(\mathsf{y},\,\mathsf{z}) \, \land \, \mathsf{r}(\mathsf{x},\,\mathsf{z},\,\mathsf{a})\,)$$

$$v: \qquad \mathsf{x} \mapsto \mathsf{d}_{1} \qquad \mathsf{y} \mapsto \mathsf{b} \qquad \mathsf{z} \mapsto \mathsf{d}_{1}$$

• Interpretations can be seen as sets of atoms (with elements from $D^I \setminus C$ seen as variables)

$$p(b,a), p(b,x_1), p(x_1,b), r(x_1,x_1,a)$$

 \circ I is a model of f iff there is a homomorphism from f to I (seen as a set of atoms)

HOMOMORPHISMS AGAIN AND AGAIN

o One can also define homomorphisms between interpretations

Homomorphism h from I_1 =(D₁, $.^{I_1}$) to I_2 = (D₂, $.^{I_2}$): mapping from D₁ to D₂ such that:

for all c in C, $h(c^{I1}) = c^{I2}$ with our assumption: h(c) = c for all p in $\mathcal P$ and $(t_1 \dots t_k)$ in p^{I1} , $(h(t_1) \dots h(t_k))$ in p^{I2}

• We have:

If $I_1 \ge I_2$ then, for any f in FOL(\exists , \land), I_1 model of $f \Rightarrow I_2$ model of f Indeed: $f \ge I_1$ and $I_1 \ge I_2$, hence $f \ge I_2$

MODEL "ISOMORPHIC" TO A FOL(\(\frac{1}{2}, \(\hrac{1}{2} \)) FORMULA

To a formula f in FOL(\exists , \land), we assign its isomorphic model (also called canonical model) M_f :

- the domain is in bijection with terms(f) U C
 (to simplify, we can consider that this bijection is the identity)
- for all c in C, $c^{Mf} = c$
- for all p in \mathcal{P} , if p occurs in f then $p^{Mf} = \{(t_1 \dots t_k) \mid p(t_1 \dots t_k) \text{ in } f\}$ otherwise $p^{Mf} = \emptyset$

Remark: the sets of atoms associated with M_f and f are isomorphic

We check that M_f is indeed a model of f

$$f = \exists x \exists y \exists z (p(x,y) \land p(y,z) \land r(x,z,a))$$

$$M_{f}: \qquad D = \{a, d_{x}, d_{y}, d_{z}\}$$

$$p^{Mf} = \{ (d_{x}, d_{y}), (d_{y}, d_{z}) \}$$

$$r^{Mf} = \{ (d_{x}, d_{z}, a) \}$$

NICE SEMANTIC PROPERTIES OF FOL(\exists , \land)

• M_f is universal, i.e., for all M' model of f, $M_f \ge M'$

Proof: Let M' model of f. Then, $f \ge M'$. Since M_f « isomorphic » to f, $M_f \ge M'$

g ⊨ f (i.e., every model of g is a model of f) iff
 f ≥ M_g (the canonical model of g is a model of f) iff
 f ≥ g (there is a homomorphism from f to g)

Proof:

 $(1 \Rightarrow 2)$: Assume $g \models f$. In particular M_q is a model of f, hence $f \ge M_q$

 $(2\Rightarrow 1)$: Assume $f \ge M_g$. Since M_g is universal: for any M' model of $g, f \ge M'$, i.e., M' is a model of f, hence $g \models f$

(3 \Rightarrow 2) and (2 \Rightarrow 3): since g and M_g are isomorphic, one has $M_g \ge g$ and $g \ge M_g$ We conclude by the transitivity of \ge

COMPLEXITY OF DECIDING LOGICAL ENTAILMENT IN FOL(\(\Bar{\epsilon} \), \(\A)

• FOL(∃, ∧) entailment is NP-complete:

Input: f and g in FOL(\exists , \land) Question: $g \models f$?

Membership to NP: polynomial certificate Hardness for NP: for instance by reduction from 3-coloring

• Hence BCQ answering is NP-complete:

Input: a BCQ Q and a fact base F

Naive algorithm exponential in |variables(Q)|

Question: $F \models Q$?

However, we can often assume Q is very very small with respect to F!

- Hence the distinction between two kinds of complexity:
 - Combined complexity: Q and F are both part of the input (= usual complexity)
 - Data complexity: only F is part of the input (Q is fixed)

BCQ answering is polynomial in data complexity (even in AC₀)

EXERCICE 3: INCLUSION DE REQUÊTES

Etant données deux requêtes conjonctives booléennes, Q1 et Q2, on dit que Q1 est incluse dans Q2 (notation Q1 \sqsubseteq Q2) si l'ensemble des bases de faits qui répondent oui à Q1 est inclus dans l'ensemble des bases de faits qui répondent oui à Q2.

Utiliser les notions vues dans ce cours pour prouver que :

Q1 ⊑ Q2

ssi

Q2 ≥ Q1

(il existe un homomorphisme de Q2 dans Q1)

Question subsidiaire : pour des requêtes quelconques, Q1 est incluse dans Q2 si pour toute base de faits, l'ensemble des réponses à Q1 est inclus dans l'ensemble des réponses à Q2. Comment étendre le résultat précédent ?