ВХОДЫ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Когда входной ток смещения ОУ представляет интерес? В какой конфигурации минимальное напряжение смещения?

Входы операционных усилителей (ОУ) широко различаются по структуре и характеристикам. Эта статья, как введение в описание входов ОУ, может оказать помощь при определении типа входной структуры при использовании таблицы параметров.

В таблице приведены основные характеристики различных типов входных каскадов современных ОУ, и для каждого типа структуры описываются ее преимущества и недостатки.

каждого типа структуры описываются ее преимущества и недостатки.					
Тип входного каскада ОУ	Напряжение смещения V _{OS}	Ток смещения I _в	Ток сдвига I _{os}	Темп. коэф. тока смещения ТС _{IB}	Комментарии
PNP	100мкВ2мВ	100нА1мА	10% l _B	<20%	общие характеристики; отрицательное напряжение питания
NPN	10мкВ1мВ	100нА1мкА	10% I _B	<20%	обычно используется в прецизионных усилителях с двухполярным питанием
Rail-to-Rail	500мкВ5мВ	±100нА1мкА	50% I _B	<40%	используются PNP и NPN транзисторы; I_B изменяет полярность при различных V_{CM}
CMOS-P	1мВ20мВ	±10пА1нА	=I _B	10 раз на 30°	минимальный I _B ; общие характеристики; отрицательное напряжение питания
CMOS-N	1мВ20мВ	±10пА1нА	=I _B	10 раз на 30°	похожие характеристики с CMOS-P; двухполярное питание
CMOS Rail-to-Rail	1мВ20мВ	±10пА1нА	=I _B	10 раз на 30°	используются p- и n-канальные транзисторы; меньший I _B , но большее V _{OS} по сравнению с биполярным Rail-to-Rail
Другие разновидности входных каскадов					
NPN с компенсацией I _B	10мкВ200мкВ	±10нА100нА	50% I _B	<40%	внутреннее токовое зеркало используется для компенсации I _B
ОУ с токовой обратной связью	500мкВ5мВ	±100нА10мкА	-	<40%	высокоскоростные; ограниченый диапазон использования сопротивлений обратной связи
JFET OY	500мкВ2мВ	±10пА1нА	=I _B	10 раз на 50°	редко встречающийся; близок к идеальному
JFET буфер	500мкВ10мВ	±10пА1нА	-	10 раз на 50°	очень большое входное сопротивление

Пояснения к таблице:

- 1) Напряжение смещения V_{OS} параметр свойственный любому неидеальному ОУ; показывает, какое напряжение необходимо подать на вход ОУ, чтобы выходное напряжение оказалось равным нулю:
- 2) Ток смещения IB среднеарифметическое от входных токов инвертирующего и неинвертирующего входов;
- 3) Ток сдвига IOS разность входных токов инвертирующего и неинвертирующего входов;
- 4) Температурный коэффициент тока смещения TCIB— параметр, показывающий во сколько раз увеличится ток смещения ОУ при увеличении температуры. CMOS и JFETимеют очень высокий коэффициент— ток смещения увеличивается в 10 раз при увеличении температуры на 30-50.

Входные каскады с PNP-транзисторами наиболее часто применяются из-за малых напряжения и тока смещения, а также возможности работы с однополярным питанием. Все большее место отвоевывают себе так называемые Rail-to-Rail ОУ, т.е. ОУ с диапазоном выходного сигнала практически совпадающим с диапазоном питания.

В общем случае, если разработчику необходимо малое напряжение смещения, то ему необходимо использовать ОУ с входными каскадами на биполярных транзисторах, если необходим высокий входной импеданс, то требуется ОУ с входными каскадами на CMOS -транзисторах. Входные каскады на CMOS транзисторах с успехом могут заменить входные каскады на JFET-транзисторах; ОУ на последних очень дороги.