

P-ţa Victoriei nr. 2
RO 300006 - Timişo</mark>ara
Tel: +4 0256 403000
Fax: +4 0256 403021
rector@rectorat.upt.ro
www.upt.ro

Logică digitală

-Curs 2-

REPREZENTAREA DATELOR ÎN SISTEME DE CALCUL

Reprezentarea numerelor în sistemele de calcul

- Sisteme de numerație poziționale (binar, octal, hexazecimal);
- Reprezentarea numerelor în virgulă fixă (SM, C1, C2);
- Reprezentarea numerelor de virgulă flotantă;
- Coduri binare pentru numere zecimale;

Sisteme de numere poziționale

- Sistem pozițional un număr este reprezentat printr-un şir de cifre, unde fiecare poziție a unei cifre este asociată o anumită greutate.
- □ Valoarea numărului este o sumă a cifrelor înmulţită cu greutatea aferentă:

Ex1:
$$1734 = 1*10^3 + 7*10^2 + 3*10^1 + 4*10^0$$

Fiecare greutate e o putere a lui 10 corespunzătoare poziției numărului. Pentru numere cu virgulă folosim puteri negative a lui 10.

Ex2: $5186.67 = 5*10^3 + 1*10^2 + 8*10^1 + 6*10^0 + 6*10^{-1} + 7*10^{-2}$

Sisteme de numere poziționale

□ Sistem pozițional - un număr este reprezentat printrun şir de cifre, unde fiecare poziție a unei cifre este asociată o anumită greutate (pondere).

$$D = d_{m-1} d_{m-2}...d_1 d_0 \cdot d_{-1} d_{-2}...d_{-n}$$

$$\uparrow$$

$$MSD$$
Virgula fixă LSD
$$D = d_{m-1} \cdot 10^{m-1} + ... + d_0 \cdot 10^0 + d_{-1} \cdot 10^{-1} + ... + d_{-n} \cdot 10^{-n}$$

Sisteme de numere binare

☐ Formă generală a unui număr binar

Valoarea:

$$D = \sum_{i=-n}^{p-1} b_i * r^i \quad , \text{ unde } r = 2 \text{ radix(bază)}$$

Sisteme de numere binare

```
Ex.: N=11001.011_2

N=1^*2^4+1^*2^3+0^*2^2+0^*2^1+1^*2^0+0^*2^1+1^*2^{-2}+1^*2^{-3}=25.375_{10}
```

- Baza 8 corespunde sistemului octal. cifre {0,1,2,3,4,5,6,7}
- □ Baza 16 corespunde sistemului hexazecimal.

cifre {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Binar, octal, hexazecimal ...

Zecimal	Binar	Octal	Hexazecimal	
0	0000	0	0	
1	0001	1	1	
2	0010	2	2	
3	0011	3	3	
4	0100	4	4	
5	0101	5	5	
6	0110	6	6	
7	0111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

Conversia din binar în hexazecimal

Ex: 010011110111.101001010

Partiţionarea numărului binar în grupuri de 4 pornind de la virgulă şi inaintand spre dreapta sau stanga :

0100_1111_0111 . 1010_0101_0000

Fiecare grup corespunde unei singure cifre hexazecimale. Folosind Tabelul ant. obţinem:

4F7.D50

Aplicație: Convertiți numărul din binar în hexazecimal:

11111001010.01111111

Raspuns: FCA.7F

Conversia din binar în octal

- Partiţionarea numărului binar în grupuri de 3 pornind de la virgulă şi inaintand spre dreapta sau stanga.
- Fiecare grup corespunde unei singure cifre din octal.
- Aplicaţie: 111010.11

111_010.110

Raspuns: 72.6

- Conversia din zecimal în binar
 - Conversia unui număr întreg din zecimal în binar se face prin algoritmul împărţire succesive ale lui N (nr de convertit) la r (noua bază).
 - Procesul se repetă până se obţine câtul O.

Conversia din zecimal în binar

Ex: Conversia nr zecimal 119:

119:
$$2 = 59 \text{ rest } 1 \text{ (LSB)}$$

$$59: 2 = 29 \text{ rest } 1$$

$$14: 2= 7 \text{ rest } 0$$

$$7: 2= 3 \text{ rest } 1$$

$$3: 2= 1 \text{ rest } 1$$

1 :
$$2 = 0$$
 rest 1 (MSB)

$$119_{10} = 1110111_2$$

```
Conversia numărului 73 din baza 10 în baza 2
N9 = 73_{10} = 1001001_2
 73/2 = 36 rest 1
 36/2 = 18 rest 0
 18/2 = 9 rest
 9/2 = 4 rest 1
 4/2 = 2 rest
  2/2 = 1 rest
 1/2 = 0 rest 1
```

- Conversia din zecimal în binar
 - Pentru conversia numerelor fracţionale, se înmulţeşte numărul cu noua bază în care se converteşte numărul.
 - Partea întreagă a rezultatului devine bit al şirului care reprezintă rezultatul conversiei.
 - Înmulţirea se face până rezultatul devine 0.

Ex: Conversia lui 0.75 în baza 2.

```
0.75*2=1.5 parte întreagă 1 (MSB) si fracţionară 0.5 0.5*2=1.0 parte întreagă 1 si fracţionară 0.5*2=0.0 parte întreaga 0.5*2=0.0 parte întreaga 0.5*2=0.0
```

Conversia numărului 0.8125 din baza 10 în baza 2

$$N10 = 0.8125_{10} = 0.1101_2$$

 $0.8125*2 = 1.625$ parte întreagă 1 b_{-1}
 $0.625*2 = 1.25$ parte întreagă 1 b_{-2}
 $0.25*2 = 0.5$ parte întreagă 0 b_{-3}
 $0.5*2 = 1$ parte întreagă 1 b_{-4}

- Sistemele digitale sunt realizate din circuite ce procesează cifrele binare "0" şi "1"
- Numerele fără semn:
 - un şir de "0" şi "1".
 - Fiecare cifră binară poartă denumirea de bit (binary digit).
 - Val. şirului binar $N = b_{n-1}b_{n-2}...b_1b_0.b_{-1}b_{-2}...b_{m-1}$
 - este dată de formula: $N = \sum_{i=1}^{n-1} b_i * 2^i$

- Pentru reprezentarea numerelor cu semn, se alocă bitul cel mai semnificativ (cel mai din stânga – most significant bit - MSB) semnului:
 - "0" numere pozitive,
 - "1" numere negative.
- ☐ Uzual în sistemele de calcul se operează fie cu numere întregi, fie cu numere fracţionare;
- Din acest motiv, poziţia virgulei este considerată implicit după cum urmează:
 - numere întregi poziția virgulei este la dreapta bitului cel mai puțin semnificativ: $(b_{n-1})_{n-2}...b_1b_0$.
 - numere fracționare poziția virgulei este la dreapta bitului cel mai semnificativ, care este și bitul de semn:

- Pentru reprezentarea numerelor cu semn există trei formate de reprezentare:
 - semn-mărime SM,
 - complement de 1 C1,
 - complement de 2 C2.

- Reprezentarea în semn-mărime/sign-magnitude (SM)
 - 1 bit semn, n biţi mărime (valoare absolută)
 - Valoarea bitului de semn determină semnul
 - □ 0 numere pozitive
 - □ 1 numere negative
 - domeniul valoric a reprezentării în formatul semn-mărime acesta este între $-2^{n-1}+1$ și $2^{n-1}-1$
 - Exemplu:

```
+85 = 0 1010101
```

$$-85 = 1 1010101$$

- □ Semn-mărime/sign-magnitude (SM)
 - Avantaje
 - simplitate
 - negare simpla prin schimbarea bitului de semn
 - □ implementare facilă a operaţiei de înmulţire
 - Dezavantaje
 - Dublă reprezentare pentru 0 (+0 și -0)
 - Implementare dificilă pentru adunare
 - Exerciţiu: (-19) + (+12)

- Complement de 1/One's complement (C1)
 - 1 bit semn, n biţi pentru mărime
 - Numerele pozitive identic cu SM
 - Numerele negative complementarea/ negarea valorii pozitive
 - Exemplu:

```
+85 = 0 1010101
```

$$-85 = 10101010$$

- Dezavantaje:
 - C1 nu este un format ponderat în conformitate cu notația pozițională
 - există două reprezentări pentru numărul zero (pentru un numar reprezentat pe 6 biţi avem 0 00000, respectiv 1 11111), deci testarea pentru zero se va face de două ori
- Avantaje:
 - o implementare mai facilă a operaţiei de adunare comparativ cu SM
- domeniul valoric pentru numere întregi:

$$-2^{n-1}-1$$
 și $2^{n-1}-1$

- □ Complement de 2/ Two's complement (C2)
 - Numerele pozitive identic cu SM
 - Numerele negative negarea valorii pozitive la care se adaugă 1
 - Întregi: $1b_{n-2}...b_1b_0 + 0.0...01$
 - Fractionare: $1.\overline{b_{-1}}...\overline{b_{-n+1}}\overline{b_{-n}} + 0.0...01$
 - Exemplu:

$$-85 = 10101011$$

- Dezavantaje:
 - Mai dificil de obținut decât SM și C1;
 - nu este un format ponderat în conformitate cu notația pozițională
 - anomalia complementului de doi
- Avantaje:
 - O singura reprezentare pentru 0!
 - 0000000
 - Implementarea facilă a operației de adunare
 - Exerciţiu (-19) + (+12)

Număr zecimal	Format SM	Format C1	Format C2
+3	0 11	0 11	0 11
+2	0 10	0 10	0 10
+1	0 01	0 01	0 01
+0	0 00	0 00	0 00
-0	1 00	1 11	
-1	1 01	1 10	1 11
-2	1 10	1 01	1 10
-3	1 11	1 00	1 01
-4			1 00

□ Domeniul valoric pentru numere întregi:

$$-2^{n-1}$$
 și $2^{n-1}-1$

Aplicație:

- ☐ Se dau următoarele perechi de numere întregi: +23 şi +18, +23 şi -18, -23 şi +18, respectiv -23 şi -18. Se cere:
 - Să se convertească numerele în formatele semn-mărime, complement de 1, respectiv complement de 2.
 - Să se efectueze adunarea celor două numere.

Reprezentarea numerelor în virgulă flotantă (mobilă)

- □ reprezentate folosind notaţia ştiinţifică (care nu este poziţională) → un domeniu valoric foarte mare.
- Pentru a reprezenta un număr in virgulă flotantă folosim trei numere conform relaţiei:

$$N = M * B^E$$

M - mantisa. (M poate fi reprezentată în SM sau C2)

B - baza (de obicei e 2 sau o putere a lui 2)

E - exponent. (E este reprezentat în SM sau cod exces)

- M mantisa. (M poate fi reprezentată în SM sau C2)
- B baza (de obicei e 2 sau o putere a lui 2)
- E exponent. (E este reprezentat în SM sau cod exces)

- □ Reprezentarea mantisei:
 - Reprezentarea lui 18:

$$18*10^0 = 1.8*10^1 = 0.18*10^2 = \dots = 0.0\dots018*10^n$$

- Obs.: M, B şi E au o infinitate de valori posibile
- Pentru o tratare unitară şi eficientă prin prisma a procesării în sistemele de calcul → o reprezentare unică → normalizarea mantisei M

Reprezentarea numerelor în virgulă flotantă – Normalizarea mantisei

- M în SM primul bit din dreapta virgulei trebuie să fie 1.
- ☐ *M* în C2 şi M conține:
 - valoare negativă atunci primul bit din dreapta virgulei trebuie să fie 0.
 - valoare pozitivă, atunci folosim regula de la SM.

Reprezentarea numerelor în virgulă flotantă – Normalizarea mantisei

Operaţia de normalizare presupune:

- mutări succesive ale virgulei la dreapta, urmată de incrementarea exponentului;
- □ Primul bit (bitul de semn) este 1, asadar numărul este negativ → primul bit din dreapta virgulei trebuie să fie 0

$$1.11100011_{C2} \rightarrow 11.1100011_{C2} * 2^{1} \rightarrow 111.100011_{C2} * 2^{2}$$

 $\rightarrow 1111.00011_{C2} * 2^3$

Reprezentarea numerelor în virgulă flotantă – Normalizarea mantisei

Operaţia de normalizare presupune:

mutări succesive ale virgulei la stânga, urmată de decrementarea exponentului;

$$0.00011101_{SM} \rightarrow 00.0011101*2^{-1} \rightarrow 000.011101*2^{-2}$$

 $\rightarrow 0000.11101*2^{-3}$

- □ Reprezentarea exponentului:
 - Problema reprezentării lui 0 în virgulă mobilă.

$$0 = 0 * B^{E}$$

- ... mai multe variante de reprezentare
- zero trebuie să fie cât mai uşor de detectat şi testat → (?) şir de biţi de '0'
- Dar... în calcule recurgem la aproximări
 - □ este posibil ca în urma unor calcule (FP), datorită acestor aproximări successive, să obţinem în loc de 0 un număr foarte mic (M≠0).

- □ Pentru a minimiza eroarea→ exponentul aferent lui 0 să fie cel mai mic posibil.
- □ valoarea minimă a orcărui exponent să fie 0.
- Toate valorile negative reprezentabile pe N biţi sunt deplasate (devin pozitive) prin adunarea unui bias (unui surplus) = valoarea absolută a celui mai mic număr reprezentabil pe N numărul de biţi exponent.
- Pentru exponent reprezentat în:
 - SM pe 8 biţi → valoarea bias-ului este 127
 - C2 pe 8 biţi → valoarea bias-ului este 128

Reprezentarea numerelor în virgulă flotantă – reprezentarea exp.

		Valoare	cu semn			
Reprezentare	Valoare	(reală-cea a numărului				
binară	fără semn	reprezentat)				
		Bias = 127	Bias = 128			
11111111	255	+128	+127			
11111110	254	+127	+126			
-		-	-			
-	-	-	-			
-	-	-	(m)			
10000001	129	+2	+1			
10000000	128	+1	0			
01111111	127	0	-1			
01111110	126	-1	-2			
-		-	-			
-	-	-	-			
-	-	-				
00000001	1	-126	-127			
00000000	0	-127	-128			

Reprezentarea numerelor în virgulă flotantă

Cele mai reprezentative standarde pentru virgula mobilă sunt:

■IEEE 754

■IBM S360/370

Reprezentarea numerelor în virgulă flotantă

- □ Standardul IEEE 754/2008- formate:
 - Half precision
 - Simple precision
 - Double precision
 - Duble-extended

Reprezentarea numerelor în virgulă flotantă: IEEE 754

- □ Caracteristici:
 - E şi M format SM
 - Exponentul este reprezentat în exces de:
 - □ 127 pentru simplă precizie
 - □1023 pentru dublă precizie.
 - Hidden bit.
 - Mantisa are un bit de 1 ascuns.
 - □ bitul la dreapta virgulei care trebuie să fie 1 (din condiţia de normalizare).
 - □ (S.1M) (unde S este semnul iar M este mantisa)
 → virgula a fost mutată la dreapta bit-ului de 1
 cel mai semnificativ: S1.M

Reprezentarea numerelor în virgulă flotantă: IEEE 754 simplă precizie

- □ Simplă precizie: 32 biți
 - 1 bit de semn
 - 8 biţi de exponent; exponent reprezentat în exces de 127
 - 23 biţi de mantisă (significand)
- ☐ Formatul de număr este:

0 1	8 9	31
-----	-----	----

|--|

Ex.: Să se reprezinte în format IEEE 754 SP numărul 4.625

Pasul 1: Se converteşte numărul în baza 2.

$$4.625 = 100.101 * 2^{0}$$

Pasul 2: Normalizare → 1.M (mutarea virgulei cu ajustarea corespunzătoare a puterii lui 2)

100.101=1.00101*
$$2^{2}$$

 $E = 2 + 127(exces) = 129 = 128 + 1 = 2^{7} + 2^{0} = 10000001$

□ Pasul 3:

S	E (8 biti)	M (23 biţi)
	` 3/	0010 1000 0000 0000 0000 000

Reprezentarea numerelor în virgulă flotantă: IEEE 754 dublă precizie

- □ Reprezentare pe 64 de biţi:
 - 1 bit de semn
 - 11 biţi de exponent reprezentaţi în exces de 1023
 - 52 biţi de mantisă (significand)

0	1 12	2 13 6			
S	Exponent	Magnitudine			

Reprezentarea numerelor în virgulă flotantă: IEEE 754 valori speciale

Nr.	Exponent	Mantisa (M)	Valoare speciala
	(E)		
1.	0	0	±0
2.	0	≠ 0	Denormalized
			numbers
3.	255	0	$\pm \infty$
4.	255	≠ 0	NaN

- Nr. denormalizate: rezultat care este mai mic decât valoarea minimă reprezentabilă
- ☐ Infinit: situaţia în care rezultatul intermediar este infinit sau avem overflow
- □ 0/0 sau radical din nr. negativ

Reprezentarea numerelor în virgulă flotantă: IBM S360/370

- Mantisa SM
- □ Baza este baza 16 →
 - domeniul valoric creşte foarte mult.
 - incrementarea/decrementarea exponentului atrage dupa sine mutarea virgulei la stânga sau la dreapta cu patru poziţii.
 - numărul se consideră normalizat atunci când prima cifră hexazecimală (adică primul grup de patru biţi) din dreapta virgulei este diferită de zero,
- □ Deosebiri față de IEEE 754 :
 - IBM nu prevede: valori speciale si excepţii, cum sunt cele definite de standardul IEEE 754 (NaN, overflow, numere denormalizate).
 - Zero este reprezentat ca un sir continuu de zerouri.
 - Nu exista hidden bit!
 - Baza este 16, şi nu 2!

Reprezentarea numerelor în virgulă flotantă: IBM S360/370

Formatul de simplă precizie :

- Semn (S) 1 bit
- Exponent (Exp) 7 biţi (in exces de 64)
- Mantisa (M)- 24 biţi

S		хр		M	
	1	8	9		31

- □ Formatul de dubla precizie are următoarele câmpuri:
 - Semn (S)- 1 bit
 - Exponent (Exp) 7 biţi (in exces de 64)
 - Mantisa (M)- 56 biţi S Exp M

1	8	9	63

(!) Cod (code),	O colecție de șiruri diferite pe n biți, iar fiecare dintre aceste șiruri are o semnificatie (reprezintă un număr, caracter, etc.) poartă denumirea de cod (code). Numărul maxim de cuvinte ale unui cod pe n biți este 2^n . Nu întotdeauna însă, toate aceste combinații posibile pe n biți sunt folosite (fac parte din colecția de șiruri care alcătuiesc codul).
Cuvânt al unui cod (code word)	Un şir al colecției care reprezintă o combinație de n valori de θ sau I se numește cuvânt de cod (code word).

- există situaţii cand se doreşte afişarea rezultatelor de către interfeţele externe ale dispozitivului de calcul într-un format uşor de înţeles (decodificat) de către utilizator – şi anume mult întrebuinţatul format zecimal;
- cel mai la îndemână cod zecimal este BCD (binary-code decimal):
 - reprezentarea unei cifre BCD → înlocuirea cu reprezentarea în binar care îi corespunde→ cu un nr. pe 4 biţi

Cifră	Corespondent
zecimală	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

conversia unui număr zecimal în BCD prin înlocuirea succesivă a cifrelor zecimale cu tetradele corespunzătoare

 operaţia inversă de transformare a unui număr reprezentat în BCD în omologul zecimal

$$N_2 = 1000 \ 0111 \ 0000 \ 0010_{BCD} = 87 \ 02_{10}$$

- Avantaje:
 - simplitate
 - este un cod poziţional, ponderea fiecărei cifre fiind 10^j*2ⁱ, unde j reprezintă poziţia tetradei zecimale, iar i poziţia bitului în cadrul tetradei
- Dezavantaje:
 - utlizează un număr mai mare de biţi faţă de reprezentarea binară a numărului respectiv;
 - □ Fol. 3 cifre BCD 12 biţi (3 cifre zecimale * 4 biţi/cifră) se pot reprezenta 10³ = 1000 de numere;
 - ☐ folosind reprezentarea binară, pe 12 biţi se pot reprezenta 2¹² = 4096 de numere;
 - implementare anevoiasă a operaţiei de adunare

Coduri binare pentru numere zecimale – Exces de 3

- Exces de 3 se obţine din codul BCD astfel:
 - la fiecare cifră reprezentată în cod BCD se adună valoarea 3 (0011 în binar).
 - fiecare cifră zecimale se reprezintă cu ajutorul unei combinaţii de 4 biţi (o tetradă de biţi)

Coduri binare pentru numere zecimale – Exces de 3

Cifră	Corespondent
zecimală	exces de 3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

Coduri binare pentru numere zecimale – Exces de 3

- Dezavantaje:
 - obţinerea reprezentării în excess de 3 este mai complicată comparativ cu reprezentarea BCD
 - nu este un cod poziţional
- Avantaje:
 - permite o implemenare mai facilă a operaţiei de adunare faţă de codul BCD

				$b_s b$	₅ b ₄					NUL SOH	Null Start of heading	
										STX	Start of text	
$b_3b_2b_1b_0$	000	001	010	011	100	101	110	111		ETX	End of text	
0000	NUL	DLE	SP	0	- A	P				EOT	End of transmission	
0000	NUL	DLE	SF	U	a	r		P		ENQ	Enquiry	
0001	SOH	DC1		1	A	Q	a	q		ACK	Acknowledge	
0002	5011			•		Α.		ч		BEL	Bell	
0010	STX	DC2	66	2	В	R	b	r		BS	Backspace	
										HT	Horizontal tab	
0011	ETX	DC3	#	3	C	S	С	S		LF	Line feed	
		200			_	_				VT	Vertical tab	
0100	EOT	DC4	\$	4	D	T	d	t		FF	Form feed	
0101	ENO	NAK	9/6	5	E	U				CR	Carriage return	
0101	ENQ	NAK	70	2	L	U	e	u		so	Shift out	
0110	ACK	SYN	&	6	F	V	f	v		SI	Shift in	
0110	ACK	5111	· ·	•	-		-	•		SP	Space	
0111	BEL	ETB	,	7	G	W	g	w		DLE	Data link escape	
										DC1	Device control 1	
1000	BS	CAN	(8	H	X	h	x		DC2	Device control 2	
										DC3	Device control 3	
1001	HT	EM)	9	I	Y	i	y		DC4	Device control 4	
						_				NAK	Negative acknowledgement	
1010	LF	SUB	÷		J	Z	j	Z		SYN	Synchronize	
1011	VT	ESC	+		K		k			ETB CAN	End transmission block Cancel	
1011	V I	ESC		;	I.	L	K	í		EM	End of medium	
1100	FF	FS		<	L	1	1			SUB	Substitute	
1100		1.5	,		-	,	•	- 1		ESC	Escape	
1101	CR	GS	_	=	M	1	m	}		FS	File separator	
						- 1		1		GS	Group separator	
1110	SO	RS		>	N	٨	n	~		RS	Record separator	
										US	Unit separator	
1111	SI	US	- /	?	0	_	0	DEL		DEL	Delete or rubout	
Americ	can Star	ndard C	ode for	Inform	ation I	nterchar	nge (AS	SCID				
American Standard Code for Information Interchange (ASCII)												

litera A are primele 3 pozitii (765) secventa 100, iar pe urmatoarele 4 poz

	$b_6b_5b_4$									NUL SOH	Null Start of heading		
$b_3b_2b_1b_0$	000	001	010	011	100	101	110	111		STX ETX	Start of text End of text		
0000	NUL	DLE	SP	0	<u>@</u>	P	•	p		EOT ENQ	End of transmission Enquiry		
0001	SOH	DC1	1	1	A	Q	a	q		ACK BEL	Acknowledge		
0010	STX	DC2	66	2	В	R	b	r		BS	Bell Backspace		
0011	lito	ra A	aro r	orimo	10.3	nozit	ii (7 <i>6</i>	(5) sc	CVOD	HT to 1	Horizontal tab		
0100	litera A are primele 3 pozitii (765) secventa 100, iar pe urmatoarele 4 pozitii (4321) secventa 0001. Deci A=(1000001)!												
0101													
0110	ACK	SYN	<u>&</u>	6	F	V	f	v		31	Smittin		
0111	BEL	ETB	,	7	G	w	g	w		SP DLE	Space Data link escape		
										DC1 DC2	Device control 1 Device control 2		
1000	BS	CAN	(8	Н	X	h	x		DC3	Device control 3		
1001	HT	EM)	9	I	Y	i	y		DC4	Device control 4		
1010	LF	SUB	÷		J	Z	i	z		NAK SYN	Negative acknowledgement Synchronize		
1010	LI	зев		•		-	J	-		ETB	End transmission block		
1011	VT	ESC	+	;	K	[k	{		CAN	Cancel		
1100	FF	FS		<	L	1	- 1			EM SUB	End of medium Substitute		
1100	II	1.5	,		L	,	•	- 1		ESC	Escape		
1101	CR	GS	-	=	M]	m	}		FS	File separator		
1110	60	De			NT.					GS	Group separator		
1110	SO	RS	100	>	N		n	~		RS	Record separator		
1111	SI	US	1	?	0	_	0	DEL		US DEL	Unit separator Delete or rubout		
Americ	American Standard Code for Information Interchange (ASCII)												

Întrebări?

Enough Talking Let's Get To It !!Brace Yourselves!!

