

Pruning-similar Optimizations

马恺声

清华大学

Optimizations

- Optimizations Directions:
 - Compact Model Design
 - Pruning: Special Topic
 - Low-rank Matrix/Dictionary
 - Distillation: Special Topic

Efficient DNN Models

Accuracy vs. Weight & OPs

[Alfredo et al., arXiv, 2017]

Bottleneck in Popular DNN Models

GoogleNet

Example: SqueezeNet

Stacking Small Filters

Build network with a **series of small filters** (reduces degrees of freedom)

VGG-16

Apply sequentially

GoogleNet/Inception v3

Apply sequentially

Example: Inception V3

Go deeper (v1: 22 layers à v3: 40+ layers) by reducing the number of weights per filter using filter decomposition ~3.5% higher accuracy than v1

5x5 filter à 3x3 filters

3x3 filter à 3x1 and 1x3 filters

Separable filters

[Szegedy et al., arXiv 2015]

Depth-wise Separable

Decouple the cross-channels correlations and spatial correlations in the feature maps of the DNN

Example: Xception

- An Inception module based on depth-wise separable convolutions
- Claims to learn richer features with similar number of weights as Inception V3 (i.e. more efficient use of weights)
 - Similar performance on ImageNet; 4.3% better on larger dataset (JFT)
 - However, 1.5x more operations required than Inception V3

Example: MobileNets

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
Conv MobileNet	71.7%	4866	29.3	
MobileNet	70.6%	569	4.2	

MobileNets: Comparison

Comparison with other DNN Models

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameter
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameter	
0.50 MobileNet-160	60.2%	76	1.32	
Squeezenet	57.5%	1700	1.25	
AlexNet	57.2%	720	60	

[Image source: Github]

MobileNetsV2: Comparison

(a) Residual block

Residual Block

- Conv 1x1 (Squeeze Channel)
- Conv 3x3
- Conv1x1 (Expand Channel)

(b) Inverted residual block

Inverted Residual Block

- Conv 1x1 (Expand Channel)
- Depthwise Conv 3x3
- Conv1x1 (Squeeze Channel)

Grouped Convolutions

Grouped convolutions reduce the number of weights and multiplications at the cost of not sharing information between groups

Example: ShuffleNet

Shuffle order such that channels are not isolated across groups (up to 4% increase in accuracy)

No interaction between channels from different groups

Shuffling allow interaction between channels from different groups

Learn DNN Models

- Rather than handcrafting the model, learn the model
- More recent result uses Neural Architecture Search
- Build model from popular layers
 - Identity
 - 1x3 then 3x1 convolution
 - 1x7 then 7x1 convolution
 - 3x3 dilated convolution
 - 1x1 convolution
 - 3x3 convolution
 - 3x3 separable convolution
 - 5x5 separable convolution

- 3x3 average pooling
- 3x3 max pooling
- 5x5 max pooling
- 7x7 max pooling

Learned Convolutional Cells

Comparison with Existing Networks

Learned models have improved accuracy vs. 'complexity' tradeoff compared to handcrafted models

Comparison with Existing Networks

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [27]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (N = 5)	299 × 299	10.9 M	2.35 B	78.6	94.2
Inception V3 [51] Xception [9] Inception ResNet V2 [50] NASNet-A (N = 7)	299×299	23.8 M	5.72 B	78.0	93.9
	299×299	22.8 M	8.38 B	79.0	94.5
	299×299	55.8 M	13.2 B	80.4	95.3
	299 × 299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [58] PolyNet [60] DPN-131 [8] NASNet-A (N = 7)	320×320	83.6 M	31.5 B	80.9	95.6
	331×331	92 M	34.7 B	81.3	95.8
	320×320	79.5 M	32.0 B	81.5	95.8
	331 × 331	84.9 M	23.2 B	82.3	96.0

Model	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V1 [49]	6.6M	1,448 M	69.8	89.9
MobileNet-224 [22]	4.2 M	569 M	70.6	89.5
ShuffleNet (2x) [59]	$\sim 5M$	524 M	70.9	89.8
NASNet-A (N=4)	5.3 M	564 M	74.0 72.8 72.5	91.6
NASNet-B (N=4)	5.3 M	488 M		91.3
NASNet-C (N=3)	4.9 M	558 M		91.0

Summary

- Approaches used to improve accuracy by popular DNN models in the ImageNet Challenge
 - Go deeper (i.e. more layers)
 - Stack smaller filters and apply 1x1 bottlenecks to reduce number of weights such that the deeper models can fit into a GPU (faster training)
 - Use multiple connections across layers (e.g. parallel and short cut)
- Efficient models aim to reduce number of weights and number of operations
 - Most use some form of filter decomposition (spatial, depth and channel)
 - Note: Number of weights and operations does not directly map to storage, speed and power/energy. Depends on hardware!
- Filter shapes vary across layers and models
 - Need flexible hardware!