Chapter 1

Commutative Rings

Definitions

1. prime, coprime, relatively prime, irreducible

Exercise 1.1. Let $\varphi: A \longrightarrow B$ be a ring homomorphism, $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3$ ideals in A, and $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}_3$ ideals of B. Prove the following statements.

1. $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = (\mathfrak{a}_1)^e + (\mathfrak{a}_2)^e$.

Proof. We show $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subseteq (\mathfrak{a}_1)^e + (\mathfrak{a}_2)^e$. Let $x \in (\mathfrak{a}_1 + \mathfrak{b}_2)^e$, then we have for some index set I

$$x = \sum_{i \in I} \lambda_i x_i, \tag{1.1}$$

(1.7)

where $\lambda_i \in B$ and $x_i \in \varphi(\mathfrak{a}_1 + \mathfrak{a}_2)$ for all $i \in I$. For each $i \in I$ it is $x_i = \varphi(\mu_{i,1}a_{i,1} + \mu_{i,2}a_{i,2})$, hence

$$x = \sum_{i \in I} \lambda_i \varphi(\mu_{i,1} a_{i,1} + \mu_{i,2} a_{i,2})$$
(1.2)

$$= \sum_{i \in I} \lambda_i \left(\varphi(\mu_{i,1} a_{i,1}) + \varphi(\mu_{i,2} a_{i,2}) \right)$$
 (by linearity) (1.3)

$$= \sum_{i \in I} \lambda_i \left(\mu_{i,1} \varphi(a_{i,1}) + \mu_{i,2} \varphi(a_{i,2}) \right)$$
 (by linearity) (1.4)

$$= \sum_{i \in I} \lambda_i \mu_{i,1} \varphi(a_{i,1}) + \lambda_i \mu_{i,2} \varphi(a_{i,2})$$
 (by distributivity) (1.5)

$$= \sum_{i \in I} \lambda_i \mu_{i,1} \varphi(a_{i,1}) + \sum_{i \in I} \lambda_i \mu_{i,2} \varphi(a_{i,2})$$
 (reordering the sum). (1.6)

The last term is exactly the elements expressed by $\mathfrak{a}_1^e + \mathfrak{a}_2^e$, therefore, $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subseteq (\mathfrak{a}_1)^e + (\mathfrak{a}_2)^e$. I think the above proof should work into both directions.

2. $(\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$

Proof. We have

$$(\mathfrak{b}_1 + \mathfrak{b}_2)^c = \left\{ x \in A \mid \exists b_1 \in \mathfrak{b}_1 \exists b_2 \in \mathfrak{b}_2 : \varphi(x) = b_1 + b_2 \right\}. \tag{1.8}$$

Now let $x \in \mathfrak{b}_1^c + \mathfrak{b}_2^c$, then $x = a_1 + a_2$ where $\varphi(a_1) \in \mathfrak{b}_1$ and $\varphi(a_2) \in \mathfrak{b}_2$. It is

$$\varphi(x) = \varphi(a_1 + a_2) \tag{1.9}$$

$$=\varphi(a_1) + \varphi(a_2)$$
 (by additivity) (1.10)

Since $\varphi(a_1) \in \mathfrak{b}_1$ and $\varphi(a_2) \in \mathfrak{b}_2$ we have that $x \in (\mathfrak{b}_1 + \mathfrak{b}_2)^c$.

Exercise 1.2. Let $\varphi: A \longrightarrow B$ be a ring homomorphism, \mathfrak{a} an ideal of A, and \mathfrak{b} an ideal of B. Prove the following statements:

1. Then $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$.

Proof. It is

$$\mathfrak{a}^{ec} = \left\{ x \in A \mid \varphi(x) \in \mathfrak{a}^e \right\} \tag{1.11}$$

$$= \left\{ x \in A \mid \varphi(x) \in \langle \varphi(\mathfrak{a}) \rangle \right\} \tag{1.12}$$

$$= \left\{ x \in A \mid \forall i \in I \,\exists a_i \in \mathfrak{a}_1 : \varphi(x) = \sum_{i \in I} \lambda_i \varphi(a_i) \right\}. \tag{1.13}$$

Let $a \in \mathfrak{a}$ and choose $I = \{1\}, \lambda_1, \text{ and } a_i = a, \text{ then } a \in \mathfrak{a}^{ec}.$

- 2. $\mathfrak{b}^{ce} \subseteq \mathfrak{b}$.
- 3. $\mathfrak{a}^{ece} = \mathfrak{a}^e$.
- 4. $\mathfrak{b}^{cec} = \mathfrak{b}^c$.
- 5. If \mathfrak{b} is an extension, then \mathfrak{b}^c is the largest ideal of A with extension \mathfrak{b} .
- 6. If two extensions have the same contraction, then they are equal.

$$Proof.$$
 a

Exercise 1.3. Let A be a ring, $A[\mathcal{X}, \mathcal{Y}]$ the polynomial ring in two sets of variables \mathcal{X} and \mathcal{Y} . Show that $\langle \mathcal{X} \rangle$ is prime if and only if A is a domain.

Proof. It should be noted here, that $A[\mathcal{X}]$ does not contain X_1X_2 for example. It does contain X_1+X_2 however. The rest is easy.

Exercise 1.4. Show that, in a PID, nonzero elements x and y are relatively prime (share no prime factor) if and only if they're coprime.

Exercise 1.5. Let \mathfrak{a} and \mathfrak{b} be ideals, and \mathfrak{p} a prime ideal. Prove that these conditions are equivalent:

- 1. $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$
- 2. $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$
- 3. $\mathfrak{ab} \subseteq \mathfrak{p}$

Proof. (1) to (2) is easy. Same for (2) to (3). For (3) to (1) show it with contradiction. \Box

Exercise 1.6. Let A be a ring, \mathfrak{p} a prime ideal, and $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ maximal ideals with $\mathfrak{m}_1, \ldots, \mathfrak{m}_n = 0$. Show $\mathfrak{p} = \mathfrak{m}_i$ for some i.

Proof. By induction. Proof first for m_1m_2 , the rest is clear.

Exercise 1.7. Let A be a ring, \mathfrak{p} a prime, and $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ ideals.

1. If $\bigcap_{i=1}^n \mathfrak{a}_i \subseteq \mathfrak{p}$, then $\mathfrak{a}_j \subseteq \mathfrak{p}$ for some j.

Proof. If $\mathfrak{a}_1 \cap \mathfrak{a}_2 \subseteq \mathfrak{p}$, then by the exercise above we have the desired result. The rest is induction. \square

2. If $\bigcap_{i=1}^n \mathfrak{a}_i = \mathfrak{p}$, then $\mathfrak{a}_j \subseteq \mathfrak{p}$ for some j.

Proof. Clear.
$$\Box$$

Exercise 1.8. Let A be a ring, S the set of all ideals that consist entirely of zerodivisors. Show that S has maximal elements and they're prime. Conclude that ZD(A) is a union of primes.

Exercise 1.9. Exercise 2.27, proof is silly

Exercise 1.10. Let $A_1 \times A_2$ be a product of two rings. Show that $A_1 \times A_2$ is a domain if and only if either A_1 or A_2 is a domain and the other is 0.

Proof. The back implication is clear.

For the other implication, assume neither is integral domain, this leads to an obvious contradiction.

Now assume neither is 0. Choose (a,0) and (0,b), contradiction.