STATISTICAL METHODS IN FINANCE, PROBLEM SHEET 6 MSC IN MATHEMATICS AND FINANCE, 2023-2024

CRIS SALVI, WILL TURNER

Exercise 1 (Confidence interval). Let X_1, \ldots, X_n denote a random sample from a Gaussian random distribution with unknown mean μ and variance σ^2 . Assume that observations yield $\sum_{i=1}^n x_i = b$.

- (i) For any $\alpha \in (0,1)$ determine the confidence interval for μ with $(1-\alpha)\%$ confidence level.
- (ii) Taking $\alpha = 5\%$, n = 20 and b = 200, plot the confidence interval as a function of σ . What are the values for $\sigma = 25\%$?

Exercise 2 (p-value, Lindley (1993)). Imagine an experiment consisting of a sequence of iid Bernoulli trials (X_n) with success probability p. However, you are only told the experiment resulted in the sequence 111110, where 0 denotes "failure" and 1 denotes "success". Say the null hypothesis is $p = \frac{1}{2}$.

- (i) Let us assume n=6 was fixed in advance. Calculate the p-value associated with the sequence.
- (ii) Now instead we assume trials are repeated until failure under the same null hypothesis. What is the p-value in this case?
- (iii) What can you conclude for tests in (i) and (ii) at significance levels $\alpha = 0.15$ and $\alpha = 0.05$?

Hint: Think of what the model for the entire sequence should be, given the assumptions.

Exercise 3 (Neyman-Pearson). Consider $\mathcal{F} = \{\mathcal{N}(\mu, \theta^2), \theta > 0\}$, with $\mu \in \mathbb{R}$ known, and the hypotheses $\Theta_0 = (0, \sigma_0]$ and $\Theta_1 = (\sigma_0, +\infty)$, for some $\sigma_0 > 0$. Analyse the test defined by

$$\mathcal{R} := \left\{ \frac{\mathcal{L}_{\theta}(\mathcal{X}_n)}{\mathcal{L}_{\sigma_0}(\mathcal{X}_n)} > c \right\},\,$$

for some constant c>0 to be determined, where \mathcal{L} denote as usual the likelihood function.

Date: May 9, 2024.

Exercise 4 (Hypothesis testing). Consider an iid sample X_1, \ldots, X_n distributed as an Exponential random variable with parameter $\lambda > 0$, and consider the test

$$\mathcal{H}_0: \lambda = \lambda_0 \quad \text{vs} \quad \mathcal{H}_1: \lambda = \lambda_1,$$

for some $\lambda_0, \lambda_1 > 0$ and some level $\alpha \in (0, 1)$.

- (1) Determine the distribution of $\sum_{i=1}^{n} X_i$.
- (2) Determine the joint distribution of (X_1, \ldots, X_n) .
- (3) Using Neyman-Pearson's lemma, determine the optimal level c^* .

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON

Email address: wft17@ic.ac.uk