1.1 亮点

- (1) 作者设计出一个网络,使得让每一个层都接受它前面所有层的输出,这样的话,对于普通的神经网络, L 层一共有 L 个 connection.但是对于 densely convolutional network, L 层一共有 L(L-1) / 2 个 connection。
- (2) 有效缓解梯度消失问题
- (3) 重复利用特征,提高特征质量。

1.2 原理

对于每一个 block 内部的卷积层采用 densely connected 的方式,即每一个 unit 的输入都是前面所有 unit 的输出的 concate。上图中每一个 unit 表征的操作为 BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3),引入 Conv(1x1)的目的是为了减少计算量。同一个 block 内部每一个 unit 输出 feature map 的 channel 都固定为 4k,k 表示 growth rate,显然 k 越大,网络的参数越多,capacity 越大,学习能力越强。

在 Dense Block 内,作者引入一个参数 k(growth rate),它表示"Dense Block"内每一层输出 feature map 的个数。如果"Dense Block"的层数较多、k 值较大,那么"Dense Block"最后一层的输入个数是很大的,因此 k 取值不应该太大。

为什么 Dense Block 是分开的呢? 我认为 pooling layer 是一个很重要的因素,作者想用 pooling layer。在 Dense Block 内,第 L 层来自它前面所有层的输入是以"concatenate" 的形式组成一个 single tensor 的,这样就要求它前面所有层具有相同的 feature map sizes。 这和 pooling layer 改变 feature map sizes 的特点相矛盾。作者做了一个折中,以 pooling layer 为界分割 Dense Block,即论文中的 transition layer。

1.3 实验

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-