CS 189/289

Today's lecture outline

Clustering (k-means, mixture of Gaussians)

Assigned Reading:

- 15.1 (K-means clustering, up to, not including 15.1.1)
- 15.2 (Mixture of Gaussians)

Recall, Unsupervised learning

- Seen supervised learning, $\{(x_i, y_i)\}$ for $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ or $y \in \mathbb{Z}$.
- Much ML is focused on modeling $\{x_i\}$, unsupervised learning, which includes:
- i. Dimensionality reduction, $z \in \mathbb{R}^m = f_{\theta}(x)$, $m \ll d$.
- ii. Clustering, $z \in \mathbb{Z} = f_{\theta}(x)$.
- iii. Representation learning, $z \in \mathbb{R}^m$, $z = f_{\theta}(x)$, or $z \sim p_{\theta}(x)$.
- iv. Density estimation, evaluate $p_{\theta}(x)$.
- v. "Generative" modeling, $x \sim p_{\theta}(x)$

The main idea of clustering $\{x_i\}$

Suppose we had only input features, and no class labels:

We may want to infer/assign discrete "class labels" from the data, based on the structure in the input space.

The main idea of clustering $\{x_i\}$

Suppose we had only input features, and no class labels:

We may want to infer/assign discrete "class labels" from the data, based on the structure in the input space.

Clustering for data exploration

e.g. find hidden subgroups:

- Types of customers in a database from customer activities.
- Subtypes of disease for therapeutics.
- Types of cells in a tissue from single cell data.
- Ancestry groups from genetic data.
- Finding topics in on-line documents.
- etc.

Cluster Interpretation and Labeling

	Cluster 2	Cluster 4	Cluster 1	Cluster 0	Cluster 5	Cluster 3
	Dormant 42.2K	Erratic 19.8K	Unstable 24.4K	Stable 25.9K	Heavy 27.4K	Heavy + 28.3K
# Days / Sessions	•		•		0	
Daily Usage Time	•	0	0	•	•	•
Fluctuation			•			•

Clustering for outlier detection

Three broad approaches to clustering

Hierarchical clustering

Build a tree (bottom-up or top-down),
 representing distances among data points

• Example: single-, average- linkage clustering

Partitional approaches

- Define and optimize a notion of "cost" defined over partitions
- Example: Spectral clustering, graph-cut based approaches

Model-based approaches

- Maintain cluster "models" and infer cluster membership (e.g., assign each point to closest center)
- Example: k-means, Gaussian mixture models, ...

Main desiderata of clustering

- 1. Want high intra-cluster similarity.
- 2. Want low inter-cluster similarity.

3. Similarity/distance is in the eye of the beholder!

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a distance function (metric):

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a distance function (metric):

- 1. j = k iff d(j, k) = 0.
- 2. $j \neq k$ iff d(j,k) > 0.
- 3. symmetry, d(j,k)=d(k,j) (why KL-divergence is not a distance)
- 4. triangle inequality, $d(i,j) + d(i,k) \ge d(j,k)$

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a <u>distance</u> function (metric):

- 1. j = k iff d(j, k) = 0.
- 2. $j \neq k$ iff d(j,k) > 0.
- 3. symmetry, d(j,k)=d(k,j) (why KL is not a distance)
- 4. triangle inequality, $d(i,j) + d(i,k) \ge d(j,k)$

dissimilarity: intuitively related, but may not satisfy metric properties. similarity: "complement" of dissimilarity, e.g.:

similarity(j,k) = 1 - dissimilarity(j,k)

Centroid-based clustering

• Each cluster is represented by a point in the input space—a centroid—though not necessarily in the training data), $c_k \in \mathbb{R}^d$ (for $X \in \mathbb{R}^d$).

"K-means" is the most common centroid-based approach.

K-means clustering

- Parameters are $\{c_k\}$.
- Chosen such that:
 - \succ the distance of each point, x_i , to its assigned centroid, is minimized.

Formally: K-means clustering

- Training data, $X = \{x_i\}_{i=1}^n$, $x_i \in \mathbb{R}^d$.
- Parameters are $\{c_k \in \mathbb{R}^d\}$.
- A cluster partition, $C_1 \cup C_2 \cup \cdots C_K$, wherein every x_i is assigned to one (and only one) of the K clusters.
- Optimization problem:

Parameter learning in K-means

- Suppose we knew $C_1 \cup C_2 \cup \cdots \subset C_K$ how could we find $\{c_k\}$?

$$\underset{S=C_{1}\cup...\cup C_{K}, \{c_{1},...,c_{K}\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_{k}} ||x - c_{k}||^{2}$$

Other way around (parameter learning)

- Suppose we knew $\{c_k\}$, how could we find $C_1 \cup C_2 \cup \cdots C_K$?
- Answer: choose the cluster which is closest to each point, $z_i \equiv \underset{k}{\operatorname{argmin}} \|x_i c_k\|^2$, and then $\hat{C}_k = \{x_i | z_i = k\}$.

$$\underset{S=C_1 \cup ... \cup C_K, \{c_1,...,c_K\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_k} ||x - c_k||^2$$

The K-Means algorithm ("Lloyd's Algorithm")

1. Initialize the cluster centers, $\{c_k\}$ (e.g., pick k points at random from your training data).

 $\underset{S=C_1 \cup ... \cup C_K, \{c_1,...,c_K\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_k} ||x - c_k||^2$

- 2. Repeat until convergence:
 - i. Compute partition $C_1 \cup C_2 \cup \cdots \subset C_K$, given the $\{c_k\}$.
 - ii. Compute centers $\{c_k\}$, given $C_1 \cup C_2 \cup \cdots C_K$.

Does this converge?

- Yes: at each step, we are reducing the objective function or have converged.
- If assignments do not change, we have a <u>local</u> min.

Can you think of a slight variation to this algorithm that's also valid?

[slide courtesy Yisong Yue]

[slide courtesy Yisong Yue]

[slide courtesy Yisong Yue]

 $z_i \equiv \underset{k}{\operatorname{argmin}} ||x_i - c_k||^2$ $\Rightarrow \hat{C}_k = \{x_i | z_i = k\}.$

 $\Rightarrow \hat{c}_k = \frac{1}{N} \sum_{k=0}^{\infty} x^k$

[slide courtesy Yisong Yue]

$$\hat{c}_k = \underset{c_k}{\operatorname{argmin}} \sum_{x \in C_k} ||x - c_k||^2$$

$$\Rightarrow \hat{c}_k = \frac{1}{N} \sum_{x \in C_k} x$$

[slide courtesy Yisong Yue]

 $\Rightarrow \hat{c}_k = \frac{1}{N} \sum_{x \in C_k} x$

 $\Rightarrow \hat{C}_k = \{x_i^k | z_i = k\}.$

 $\Rightarrow \hat{c}_k = \frac{1}{N} \sum_{k=1}^{\infty} x^k$

[slide courtesy Yisong Yue]

Could we instead use gradient descent?

$$loss = L(\{c_k, C_k\}) = \sum_{k} \sum_{x \in C_k} ||x - c_k||^2$$

$$\Rightarrow L(\{c_k\}) = \sum_{i} \min_{k} ||x_i - c_k||^2$$

Let z_i be the closest centroid to x_i , then:

$$L(\{c_k\}) = \sum_{i} \sum_{k} ||x_i - c_k||^2 [z_i = k]$$

$$\Rightarrow \nabla_{c_k} L(\{c_k\}) = -2 \sum_{i} (x_i - c_k) [z_i = k]$$

$$\Rightarrow c_{k(new)} = c_{k(old)} - \eta N_k c_{k(old)} + \eta \sum_{x_i | z_i = k} x$$

Are we still guaranteed to converge?

Why might this be slower?

How to find good # of clusters?

Application of K-Means Clustering

K-Means Clustering of Profiles

clustering yeast genes by their "gene expression" measurements over time Example of bad local minimum in K-means

More on clustering desiderata

So far we have mentioned:

- 1. Want high intra-cluster similarity.
- 2. Want low inter-cluster similarity.

Can you think of any others?

- May want invariances to rotation and or scaling of $\{x_i\}$.
- If clustering depends only on distance/similarity, then whatever invariances these have, the clustering will also have.

Fun fact: Kleinberg's Impossibility Theorem for Clustering

Three (more) clustering desiderata of which provably, one can achieve only two at a time for a given clustering algorithm:

- 1. Scale-Invariance (if stretch the data out $(\tilde{a}(j,k) = c \times d(j,k))$, then clustering should stay the same).
- 2. Consistency (if stretch data such that distance within cluster only gets smaller, and between clusters only gets bigger, then clustering should stay the same).
- 3. Richness (clustering function should be able to produce any arbitrary partition/clustering of data points).

Lets revisit K-means—any weaknesses?

$$\underset{S=C_1 \cup ... \cup C_K, \{c_1,...,c_K\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_k} \|x - c_k\|^2$$

- 1. No likelihood, so hard to understand assumptions. 0.9
- 2. e.g., implicitly corresponds to clusters with "spherical" shape because each feature is treated equally.
- 3. Each step in the optimization has a "hard" assignment which means that can't have any uncertainty as to which point belongs to which cluster, which feels "brittle"

Lets develop a "soft" K-means algorithm

- Previously: $z_i \equiv \underset{k}{\operatorname{argmin}} \|x_i c_k\|^2$, and then $\hat{C}_k = \{x_i | z_i = k\}$.
- Convert to max and exp it, $z_i = \underset{k}{\operatorname{argmax}} \exp(-\|x_i c_k\|^2)$.
- Let $v_{ik} \equiv \exp(-\|x_i c_k\|^2)$ so that $z_i = \underset{k}{\operatorname{argmax}} \{v_{ik}\}.$
- Now normalize the $\{v_{ik}\}$ so that $r_{ik}\equiv \frac{v_{ik}}{\sum_k v_{ik}}$
- Use r_{ik} as the soft/probabilistic cluster assignments.
- This is just the familiar softmax:
- $r_{ik} = \frac{\exp[v_{ik}]}{\sum_{j} \exp[v_{ij}]} = softmax(\{v_{ij}\})[k]$
- $r_{ik} \equiv \frac{\exp[\beta v_{ik}]}{\sum_{j} \exp[\beta v_{ij}]} = softmax(\{\beta v_{ij}\})[k]$

Consider a "soft" K-means algorithm

```
[n [52]: data=np.array([-5,-3,-7])
n [53]: softmax(data)
 rt[<mark>53]:</mark> array([ 0.11731043,  0.86681333,  0.01587624])
In [54]: softmax(0.00001*data)
 ut[<mark>54]:</mark> array([ 0.33333333,  0.33334    ,  0.33332667])
  [55]: softmax(100*data)
ut[55]: array([ 1.38389653e-087, 1.00000000e+000, 1.91516960e-174]) Use r_{ik} as the sort/probabilistic cluster assignments.
This is just the familiar softmax:
```

•
$$r_{ik} = \frac{\exp[v_{ik}]}{\sum_{j} \exp[v_{ij}]} = softmax(\{v_{ij}\})[k]$$

•
$$r_{ik} = \frac{\exp[\beta v_{ik}]}{\sum_{j} \exp[\beta v_{ij}]} = softmax(\{\beta v_{ij}\})[k]$$

Consider a "soft" K-means algorithm

```
n [52]: data=np.array([-
                                                   SOFTMAX WITHOUT TEMPERATURE (T=1)
                                                                                             SOFTMAX WITH TEMPERATURE
       [53]: softmax(data)
        [<mark>53]:</mark> array([ 0.1173104
       [54]: softmax(0.00001*c
                                                                                                       Temperature: 0.7
                array([ 0.3333333
                                                                                           0.14
                                                                                           0.12
        [<mark>55]: softmax(100*</mark>data)
                                                                                           0.10
                array([ 1.383896
                                                                                           0.08
     Use r_{ik} as the solupid
                                                                                           0.06
                                                                                           0.04
    This is just the familiar
                                                                                           0.02
• r_{ik} = \frac{\exp[v_{ik}]}{\sum_{i} \exp[v_{ij}]} = sof
                                                                                                     MORE ENTROPY
                                                        LESS ENTROP
                                                                                WITH INCREASE IN T
• r_{ik} = \frac{\exp[\beta v_{ik}]}{\sum_{i} \exp[\beta v_{ij}]} = softmax(\{\beta v_{ij}\})[k]
```

Generalize hard to soft k-means:

Repeat until convergence:

```
1. Replace r_i \equiv \operatorname{argmin} ||x_i - c_k||^2 with
     r_{ik} = softmax(\{-\beta || x_i - c_k ||^2\}) (yields a "soft partition")
2. Replace \hat{c}_k = \operatorname{argmin} \sum_{x \in C_k} ||x - c_k||^2 with
     \hat{c}_k = \operatorname{argmin} \sum_{i=1}^{N} r_{ik} ||x_i - c_k||^2
     Had, \hat{c}_k = \frac{1}{N} \sum_{x \in C_k} x, now have, \hat{c}_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}.
```

(Reduces to hard assignment if β is high, which causes $r_{ik} \in \{0,1\}$)

Un-answered issues with "soft" K-means

- 1. How should we set β ? (not clear)
- 2. We are still treating all the features in x_i equally. Does this make sense? It implies a spherical cluster. But what if cluster would be "better" elongated (non-spherical)? But how?

Going "soft" has gotten us some flexibility, but we can do better.

Lets go to a fully probabilistic model! (Mixture of Gaussians)

Mixture of Gaussians (MoG)

- Each cluster is now represented by a Gaussian $N(x_i|u_k,\Sigma_k)$, with two free parameters
- Now we can write down a likelihood and perform MLE!

Mixture of Gaussians (MoG) likelihood for one x_i

• Let $z_i \in \{1, ... K\}$ be the hidden/unobserved assigned cluster to x_i . We don't know it's value, so have to marginalize it (sum it out):

$$L_{i} = p(x_{i}) = \sum_{k=1}^{K} p(x_{i}, z_{i} = k)$$

Mixture of Gaussians (MoG) likelihood for one x_i

• Let $z_i \in \{1, ... K\}$ be the hidden/unobserved assigned cluster to x_i . We don't know it's value, so have to marginalize it (sum it out):

$$L_{i} = p(x_{i}) = \sum_{k=1}^{K} p(x_{i}, z_{i} = k)$$

$$= \sum_{k=1}^{K} p(x_{i}|z_{i} = k)p(z_{i} = k)$$

$$= \sum_{k=1}^{K} N(x_{i}|\mu_{k}, \Sigma_{k})p(z_{i} = k)$$

Mixture of Gaussians (MoG) likelihood for one x_i

• Let $z_i \in \{1, ... K\}$ be the hidden/unobserved assigned cluster to x_i . We don't know it's value, so have to marginalize it (sum it out):

$$\begin{aligned} \mathbf{L_i} &= p(x_i) = \sum_{k=1}^K p(x_i, z_i = k) \\ &= \sum_{k=1}^K p(x_i | z_i = k) p(z_i = k) \\ &= \sum_{k=1}^K N(x_i | \mu_k, \Sigma_k) p(z_i = k) \\ &= \sum_{k=1}^K N(x_i | \mu_k, \Sigma_k) \alpha_k \end{aligned}$$
 where $\alpha_k \equiv p(z_i = k)$ and $\sum_k \alpha_k = 1$

0.75 0.7 0.65 0.6 0.55 0.4 0.4 0.35 0.3 0.25 0 0.2 0.4 0.6 0.8 1

- The parameters we want to learn are $\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}$.
- α_k are called the "mixing weights".
- Now we can use MLE on $LL = log \prod_i L_i = \sum_i log L_i$.

Alternative uses of MoG beyond clustering

Once we have estimated the values of $\theta = \{\mu_k, \Sigma_k, \alpha_k\}$ from the training data, we can make calls to $p(x|\theta)$, for any data point in the training data or otherwise.

So we have also performed density estimation.

We can also use it to generate data, $x \sim p(x|\theta)$.

- So we have a generative model:
 - 1. For each point, j, sample cluster $c_j \sim multinomial(\{\alpha_k\})$.
 - 2. Then sample from the corresponding Gaussian.

K-means vs. Mixture of Gaussians

- If we take the zero noise limit in Mixture of Gaussians (zero variance in the Gaussians), we get K-means.
- MoG allows non-spherical clusters (via the covariance matrix).
- And different covariance per cluster, which is helpful here:

K-means vs. Mixture of Gaussians

- MoG: explicit assumptions in the form of statistical distributions.
- Thus easier to generalize, while understanding assumptions.
- Can derive principled objective in the form of a likelihood, which involves marginalizing over the hidden/latent variable (cluster assignment).
- There is a special form of MLE for these latent variables called Expectation-Maximization.

$$\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}.$$

Intuitive Description of EM (EM is exact maximum likelihood): Initialize with random cluster assignments

- use current parameter estimates to (probabilistically) estimate $\{p(z_i|x_i,\theta)\}$ (i.e. "fill in the missing data": E-step)
- ii. do MLE on "fully observed" data (where z^n are probabilistically filled in: M-step).
- This is a lot like the K-means algorithm, only now with a principled loss function and parameter estimation principle.
- This procedure yields the MLE solution for MoG (and generally for latent variable models).

$$\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}.$$

EM: 1-d example

$$\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}.$$

EM: 1-d example

$$\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}.$$

EM: 1-d example

