MS BGD MDI 720 : Statistiques

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Plan

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net Pénalités non-convexes / Adaptive Lasso Structure sur le support Stabilisation Extensions des moindres carrés / Lasso

Retour sur le modèle

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_p] = \begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times p}, \boldsymbol{\theta}^{\star} \in \mathbb{R}^p$$

 $\mathbf{v} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon} \in \mathbb{R}^n$

Motivation

Utilité des estimateurs $\hat{m{ heta}}$ avec beaucoup de coefficients nuls :

- pour l'interprétation
- ▶ pour l'efficacité computationnelle si p est énorme

L'idée sous-jacente : sélectionner des variables

Rem: aussi utile si θ^* a peu de coefficients non nuls

Méthodes de sélection de variables

- Méthodes de type écrémage (\mathbb{K} : screening): on supprime les \mathbf{x}_i dont la corrélation avec \mathbf{y} est faible
 - avantages : rapide (+++), coût : p produits scalaires de taille n, intuitive (+++)
 - défauts : néglige les interactions entre variables \mathbf{x}_j , résultats théoriques faibles (- -)
- Méthodes gloutonnes (≥ : greedy) ou pas à pas (≥ : stagewise/stepwise)
 - avantages : rapide (++), intuitive (++)
 - défauts : propagation mauvaises sélections de variables aux étapes suivantes ; résultats théoriques faibles (-)
- Méthodes pénalisées favorisant la parcimonie (e.g., Lasso)
 - avantages : résultats théoriques bons (++)
 - défauts : encore lent (on y travaille!) (-),

La pseudo-norme ℓ_0

Définitions

Le support du vecteur $\boldsymbol{\theta}$ est l'ensemble des indices des coordonnées non nulles :

$$\operatorname{supp}(\boldsymbol{\theta}) = \{ j \in [1, p], \theta_j \neq 0 \}$$

La **pseudo-norme** ℓ_0 d'un vecteur $\boldsymbol{\theta} \in \mathbb{R}^p$ est son nombre de coordonnées non-nulles :

$$\|\boldsymbol{\theta}\|_{0} = \operatorname{card}\{j \in [1, p], \theta_{j} \neq 0\}$$

Rem: $\|\cdot\|_0$ n'est pas une norme, $\forall t \in \mathbb{R}^*, \|t\boldsymbol{\theta}\|_0 = \|\boldsymbol{\theta}\|_0$

Rem: $\|\cdot\|_0$ n'est pas non plus convexe, $\boldsymbol{\theta}_1 = (1,0,1,\ldots,0)$

$$\theta_2 = (0, 1, 1, \dots, 0)$$
 et $3 = \|\frac{\theta_1 + \theta_2}{2}\|_0 \geqslant \frac{\|\theta_1\|_0 + \|\theta_2\|_0}{2} = 2$

Sommaire

Rappels

Sélection de variables et parcimonie La pénalisation ℓ_0 et ses limites

La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net Pénalités non-convexes / Adaptive Lasso Structure sur le support Stabilisation Extensions des moindres carrés / Lasso

La pénalisation ℓ_0

Première tentative de méthode pénalisée pour introduire de la parcimonie : utiliser ℓ_0 pour la pénalisation / régularisation

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{attache aux données}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_0}_{\text{régularisation}} \right)$$

Problème combinatoire!!!

La résolution exacte nécessite de considérer tous les sous-modèles, *i.e.*, calculer les estimateurs pour tous les supports possibles; il y en a 2^p , ce qui requiert le calcul de 2^p moindres carrés!

Exemple:

p=10 possible : $\approx 10^3$ moindres carrés

p=30 impossible : $\approx 10^{10}$ moindres carrés

Rem: problème "NP-dur"

Sommaire

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites

La pénalisation ℓ_1

Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net

Pénalités non-convexes / Adaptive Lasso

Structure sur le support

Stabilisation

Extensions des moindres carrés / Lasso

Le Lasso : la définition pénalisée

Lasso : Least Absolute Shrinkage and Selection Operator Tibshirani (1996)

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \quad \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \quad + \quad \lambda \|\boldsymbol{\theta}\|_1 \right)$$

où
$$\|oldsymbol{ heta}\|_1 = \sum_{j=1}^p | heta_j|$$
 (somme des valeurs absolues des coefficients)

On retrouve de nouveau les cas limites :
$$\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \hat{\boldsymbol{\theta}}^{\mathrm{MCO}}$$

$$\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = 0 \in \mathbb{R}^{p}$$

<u>Attention</u>: l'estimateur Lasso n'est pas toujours **unique** pour un λ fixé (prendre par exemple deux colonnes identiques)

Interprétation contrainte

Un problème de la forme :

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{attache aux donn\'ees}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{r\'egularisation}} \right)$$

admet la même solution qu'une version contrainte :

$$\begin{cases} \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{t.q. } \|\boldsymbol{\theta}\|_1 \leqslant T \end{cases}$$

pour un certain T > 0.

<u>Rem</u>: hélas le lien $T \leftrightarrow \lambda$ n'est pas explicite

- ▶ Si $T \to 0$ on retrouve le vecteur nul : $0 \in \mathbb{R}^p$
- ▶ Si $T o \infty$ on retrouve $\hat{\pmb{\theta}}^{\text{MCO}}$ (non contraint)

Mise à zéro de certains coefficients

Optimisation sous contrainte ℓ_2 : solution non parcimonieuse

Mise à zéro de certains coefficients

Optimisation sous contrainte ℓ_1 : solution parcimonieuse

Sommaire

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1

Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net Pénalités non-convexes / Adaptive Lasso Structure sur le support

Stabilisation

Extensions des moindres carrés / Lasse

Définitions

Pour $f:\mathbb{R}^n \to \mathbb{R}$ une fonction convexe, $u \in \mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x \in \mathbb{R}^n$ on a $f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$

La sous-différentielle est l'ensemble

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Définitions

Pour $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe, $u \in \mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x \in \mathbb{R}^n$ on a $f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$

La sous-différentielle est l'ensemble

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Définitions

Pour $f:\mathbb{R}^n \to \mathbb{R}$ une fonction convexe, $u \in \mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x \in \mathbb{R}^n$ on a $f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$

La sous-différentielle est l'ensemble

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Définitions

Pour $f:\mathbb{R}^n \to \mathbb{R}$ une fonction convexe, $u \in \mathbb{R}^n$ est un sous-gradient de f en x^* , si pour tout $x \in \mathbb{R}^n$ on a $f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$

La sous-différentielle est l'ensemble

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Règle de Fermat

Théorème

Un point x^* est un minimum d'une fonction convexe $f:\mathbb{R}^n\to\mathbb{R}$ si et seulement si $0\in\partial f(x^*)$

<u>Preuve</u>: utiliser la définition des sous-gradients:

▶ 0 est un sous-gradient de f en x^* si et seulement si $\forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle 0, x - x^* \rangle$

Règle de Fermat

Théorème

Un point x^* est un minimum d'une fonction convexe $f:\mathbb{R}^n\to\mathbb{R}$ si et seulement si $0\in\partial f(x^*)$

<u>Preuve</u>: utiliser la définition des sous-gradients:

▶ 0 est un sous-gradient de f en x^* si et seulement si $\forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle 0, x - x^* \rangle$

Rem: Visuellement cela correspond à une tangente horizontale

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Fonction (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{si } x^* \in]-\infty, 0[\\ \{1\} & \text{si } x^* \in]0, \infty[\\ [-1,1] & \text{si } x^* = 0 \end{cases}$$

Condition de Fermat pour le Lasso

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{attache aux données}} \quad + \quad \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{régularisation}} \right)$$

Conditions nécessaires et suffisantes d'optimalité (Fermat) :

$$\forall j \in [p], \ \mathbf{x}_j^\top \left(\frac{y - X \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}}{\lambda} \right) \in \begin{cases} \{ \mathrm{sign}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \} & \mathsf{si} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \neq 0, \\ [-1, 1] & \mathsf{si} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j = 0. \end{cases}$$

$$\underline{\mathrm{Rem}} \colon \mathsf{si} \ \lambda > \lambda_{\max} := \max_{j \in \llbracket 1, p \rrbracket} |\langle \mathbf{x}_j, \mathbf{y} \rangle|, \ \mathsf{alors} \ \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = 0$$

Le cas orthogonal : le seuillage doux

Retour sur un cas simple (design orthogonal) : $X^{\top}X = \mathrm{Id}_p$ $\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 = \|X^{\top}\mathbf{y} - X^{\top}X\boldsymbol{\theta}\|_2^2 = \|X^{\top}\mathbf{y} - \boldsymbol{\theta}\|_2^2$

car X est une isométrie dans ce cas, l'objectif du lasso devient :

$$\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1 = \sum_{j=1}^p \left(\frac{1}{2} (\mathbf{x}_j^\top \mathbf{y} - \theta_j)^2 + \lambda |\theta_j| \right)$$

Problème séparable : problème qui revient à minimiser terme à terme en séparant les termes la somme

II faut donc minimiser : $x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$ pour $z = \mathbf{x}_j^{\top}\mathbf{y}$

Rem: on parle d'**opérateur proximal** en z de la fonction $x \mapsto \lambda |x|$ (cf. Parikh et Boyd (2013), pour les méthodes proximales)

Régularisation en 1D : Ridge

Solution de :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \frac{\lambda}{2}x^2$$

$$\eta_{\lambda}(z) = \frac{z}{1+\lambda}$$

Contraction ℓ_2 : Ridge

Régularisation en 1D : Lasso

Solution de :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$$
$$\eta_{\lambda}(z) = \operatorname{sign}(z)(|z| - \lambda)_{+}(\mathsf{Exercice})$$

Contraction ℓ_1 : Seuillage doux (\Longrightarrow : soft thresholding)

Régularisation en 1D : ℓ_0

Solution de :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z-x)^2 + \lambda \mathbb{1}_{x \neq 0}$$
$$\eta_{\lambda}(z) = z \mathbb{1}_{|z| \geqslant \sqrt{2\lambda}}$$

Contraction ℓ_0 : Seuillage dur (\blacksquare : hard thresholding)

Régularisation en 1D : enet

Solution de :
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda(\gamma|x| + (1-\gamma)\frac{x^2}{2})$$
 $\eta_{\lambda}(z) = \operatorname{Exercice}$

Contraction ℓ_1/ℓ_2

Seuillage doux : forme explicite

$$\eta_{\mathrm{Lasso},\lambda}(z) = egin{cases} z + \lambda & \mathrm{si} \ z \leqslant -\lambda \ 0 & \mathrm{si} \ |z| \leqslant \lambda \ z - \lambda & \mathrm{si} \ z \geqslant \lambda \end{cases}$$

Exo: Prouver le résultat précédent en utilisant les sous-gradients

Exemple numérique : simulation

- $\boldsymbol{\theta}^{\star} = (1, 1, 1, 1, 1, 0, \dots, 0) \in \mathbb{R}^p$ (5 coefficients non-nuls)
- $X \in \mathbb{R}^{n \times p}$ a des colonnes tirées selon une loi gaussienne
- $y = X \theta^* + \varepsilon \in \mathbb{R}^n \text{ avec } \varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- On utilise une grille de 50 valeurs de λ

Pour cet exemple les tailles sont : $n = 60, p = 40, \sigma = 1$

Intérêt du Lasso

- ► Enjeu numérique : le Lasso est un problème convexe
- Sélection de variables/ solutions parcimonieuses (sparse) : $\hat{\theta}_{\lambda}^{\mathrm{Lasso}}$ a potentiellement de nombreux coefficients nuls. Le paramètre λ contrôle le niveau de parcimonie : si λ est grand, les solutions sont très creuses.

Exemple : on obtient 17 coefficients non nuls pour LassoCV dans la simulation précédente

Rem: RidgeCV n'a aucun coefficient nul

Analyse de l'estimateur dans le cas général

L'analyse théorique est nettement plus poussée que pour les moindres carrées ou que pour Ridge et peut être trouvée dans des références récentes (*cf.* Buhlmann et van de Geer (2011) pour des résultats théoriques)

<u>En résumé</u> : on biaise l'estimateur des moindres carrés pour réduire la variance

Sommaire

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net

Pénalités non-convexes / Adaptive Lasso Structure sur le support Stabilisation

Le biais du Lasso

Le lasso est biaisé : il contracte les grands coefficients vers 0

Le biais du Lasso

Le lasso est biaisé : il contracte les grands coefficients vers 0

Le biais du Lasso : un remède simple

Comme les grands coefficients sont parfois contractés vers zéro, il est possible d'utiliser une procédure en deux étapes

LSLasso (Least Square Lasso)

- 1. Lasso : obtenir $\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso}}$
- 2. Moindres-carrés sur les variables actives $\operatorname{supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso}})$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{LSLasso}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\arg\min} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$$
$$\sup_{\boldsymbol{\theta} \in \mathbb{R}^p} (\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}})$$

Rem: il faut faire la CV sur la procédure entière; choisir le λ du Lasso par CV puis faire les moindres carrés garde trop de variables

Rem: LSLasso pas forcément codé dans les packages usuels

Débiasage

Débiasage

Prédiction: Lasso vs. LSLasso

Bilan du LSLasso

Avantages

- les "vrais" grands coefficients sont moins atténués
- en faisant la CV on récupère moins de variables parasites (amélioration de l'interprétabilité)
 e.g., sur l'exemple précédent le LSLassoCV retrouve exactement les 5 "vraies" variables non nulles, plus un faux positif

LSLasso: utile pour <u>l'estimation</u>

Limites

- la différence en prédiction n'est pas toujours flagrante
- nécessite plus de calcul : re-calculer autant de moindres carrés que de paramètres λ , certes de dimension la taille des supports (on néglige les autres variables)

Elastic-net : régularisation ℓ_1/ℓ_2

L'Elastic-Net introduit par Zou et Hastie (2005) est solution de

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \left(\gamma \|\boldsymbol{\theta}\|_1 + (1 - \gamma) \frac{\|\boldsymbol{\theta}\|_2^2}{2} \right) \right]$$

Rem: deux paramètres ici, un pour la régularisation globale, un qui balance la régularisation Ridge vs. Lasso

Rem: la solution est unique et la taille du support de l'Elastic-Net est plus petite que $\min(n,p)$

$$\gamma = 1.00$$

$$\gamma = 0.99$$

$$\gamma = 0.95$$

$$\gamma = 0.90$$

$$\gamma = 0.75$$

$$\gamma = 0.50$$

$$\gamma = 0.25$$

$$\gamma = 0.1$$

$$\gamma = 0.05$$

$$\gamma = 0.01$$

$$\gamma = 0.00$$

Sommaire

Rappels

Sélection de variables et parcimonie La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net

Pénalités non-convexes / Adaptive Lasso

Structure sur le support

Extensions des moindres carrés / Lasso

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \mathrm{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\min} \quad \left(\qquad \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \qquad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{régularisation}} \right)$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \operatorname{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \quad \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \quad \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{régularisation}} \right)$$

Adaptive-Lasso Zou (2006) / ℓ_1 re-pondérés Candès et al. (2008) $\mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \text{ avec } 0 < q < 1$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \operatorname{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{attache aux donn\'ees}} \right. \\ \left. + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{r\'egularisation}} \right)$$

$$\ell_1$$
 re-pondérés Candès et al. (2008)
$$\operatorname{pen}_{\lambda,\gamma}(t) = \lambda \log(1+|t|/\gamma)$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \operatorname{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\min} \quad \left(\quad \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \quad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\theta_j|)}_{\text{régularisation}} \right)$$

▶ MCP (minimax concave penalty) Zhang (2010) pour $\lambda > 0$ et $\gamma > 1$

$$\mathrm{pen}_{\lambda,\gamma}(t) = \begin{cases} \lambda |t| - \frac{t^2}{2\gamma}, & \mathsf{si} \ |t| \leqslant \gamma \lambda \\ \frac{1}{2}\gamma \lambda^2, & \mathsf{si} \ |t| > \gamma \lambda \end{cases}$$

Utiliser une pénalité non-convexe approchant mieux $\|\cdot\|_0$, en choisissant $t \to \mathrm{pen}_{\lambda,\gamma}(t)$ non-convexe

$$\hat{\boldsymbol{\theta}}_{\lambda,\gamma}^{\mathrm{pen}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \quad \left(\qquad \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \qquad + \underbrace{\sum_{j=1}^p \mathrm{pen}_{\lambda,\gamma}(|\boldsymbol{\theta}_j|)}_{\text{régularisation}} \right)$$

SCAD (Smoothly Clipped Absolute Deviation) Fan et Li (2001) pour $\lambda > 0$ et $\gamma > 2$

$$\mathrm{pen}_{\lambda,\gamma}(t) = \begin{cases} \lambda|t|, & \mathrm{si}\ |t| \leqslant \lambda \\ \frac{\gamma\lambda|t|-(t^2+\lambda^2)/2}{\gamma-1}, & \mathrm{si}\ \lambda < |t| \leqslant \gamma\lambda \\ \frac{\lambda^2(\gamma^2-1)}{2(\gamma-1)}, & \mathrm{si}\ |t| > \gamma\lambda \end{cases}$$

Rem: difficultés algorithmiques (arrêt, minima locaux, etc.) et théoriques

Plusieurs noms pour une même idée :

- Adaptive-Lasso Zou (2006)
- ▶ ℓ₁ re-pondérés Candès et al. (2008)
- approche DC-programming (pour Difference of Convex Programming) Gasso et al. (2008)

 $\underline{\mathsf{Exemple}} : \mathsf{prendre} \ \mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \ \mathsf{avec} \ q = 1/2$

Algorithme : Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

 $\underline{\mathsf{Exemple}} : \mathsf{prendre} \ \mathrm{pen}_{\lambda,\gamma}(t) = \lambda |t|^q \ \mathsf{avec} \ q = 1/2$

Algorithme: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

pour $k = 1, \ldots, K$ faire

Exemple: prendre $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithme: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

pour $k = 1, \dots, K$ faire

$$\hat{\boldsymbol{\theta}} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\theta_j| \right)$$

Exemple: prendre $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithme: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

pour $k = 1, \dots, K$ faire

$$\hat{\boldsymbol{\theta}} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}}{2} + \lambda \sum_{j=1}^{p} \hat{w}_{j} |\theta_{j}| \right)$$

$$\hat{w}_{j} \leftarrow \frac{1}{|\hat{\theta}_{j}|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Exemple: prendre $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithme: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

pour $k = 1, \dots, K$ faire

$$\hat{\boldsymbol{\theta}} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}}{2} + \lambda \sum_{j=1}^{p} \hat{w}_{j} |\theta_{j}| \right)$$

$$\hat{w}_{j} \leftarrow \frac{1}{|\hat{\theta}_{j}|^{\frac{1}{2}}}, \ \forall j \in [1, p]$$

Rem: en pratique pas besoin d'itérer beaucoup (5 itérations)

Exemple: prendre $\operatorname{pen}_{\lambda,\gamma}(t) = \lambda |t|^q$ avec q = 1/2

Algorithme: Adaptive Lasso (cas q = 1/2)

Entrées : X, y, nombre d'itérations K, régularisation λ

Initialisation : $\hat{w} \leftarrow (1, \dots, 1)^{\top}$

pour $k = 1, \dots, K$ faire

$$\hat{\boldsymbol{\theta}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left(\frac{\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}{2} + \lambda \sum_{j=1}^p \hat{w}_j |\theta_j| \right)$$
$$\hat{w}_j \leftarrow \frac{1}{|\hat{\theta}_j|^{\frac{1}{2}}}, \ \forall j \in [\![1,p]\!]$$

Rem: en pratique pas besoin d'itérer beaucoup (5 itérations)

Rem: utiliser un solveur Lasso pour mettre à jour $\hat{m{ heta}}$

Sommaire

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net Pénalités non-convexes / Adaptive Lasso

Structure sur le support

Stabilisation

Extensions des moindres carrés / Lasso

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!] = \bigcup_{g \in \mathcal{G}} g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : quelconque

Pénalité envisagée : Lasso

$$\|\theta\|_1 = \sum_{j=1}^p |\theta_j|$$

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!] = \bigcup_{g \in \mathcal{G}} g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : groupes

Pénalité envisagée : Groupe-Lasso

$$\|\theta\|_{2,1} = \sum_{g \in G} \|\theta_g\|_2$$

Structure du support

On suppose ici que l'on connaît une structure de groupes sur les variables au préalable de l'étude : $[\![1,p]\!] = \bigcup_{g \in G} g$

Vecteur et ses coordonnées actives (en orange) :

Support creux : groupes + sous groupes

Pénalité envisagée : Sparse-Groupe-Lasso

$$\alpha \|\theta\|_1 + (1-\alpha) \|\theta\|_{2,1} = \alpha \sum_{j=1}^p |\theta_j| + (1-\alpha) \sum_{g \in G} \|\theta_g\|_2$$

Groupe-Lasso

La pénalisation par la norme ℓ_1 assure que peu de coefficients sont actifs, mais aucune autre structure sur le support n'est utilisée

On peut chercher à avoir :

- Parcimonie par groupe/bloc : Groupe-Lasso Yuan et Lin (2006)
- Parcimonie individuelle et par groupe : Sparse Groupe-Lasso Simon, Friedman, Hastie et Tibshirani (2012)
- Structures hiérarchiques (par exemple avec les interactions d'ordre supérieur) Bien, Taylor et Tibshirani (2013)
- Structures sur des graphes, des gradients, etc.

Sommaire

Rappels

Sélection de variables et parcimonie

La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

LSLasso / Elastic-Net Pénalités non-convexes / Adaptive Lasso Structure sur le support

Stabilisation

Extensions des moindres carrés / Lasso

Stabilisation du Lasso

Le Lasso peut être **instable** : quand il n'y a pas unicité de la solution (e.g., quand p > n) selon le solveur numérique et la précision demandée, il peut y avoir des erreurs sur les variables sélectionnées.

On peut limiter ce genre de défauts en utilisant des techniques de ré-échantillonnage :

- ▶ Bolasso Bach (2008)
- ► Stability Selection Meinshausen et Buhlmann (2010)

Algorithme: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

Algorithme: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

pour $k = 1, \dots, B$ faire

Algorithme : Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

pour $k = 1, \ldots, B$ faire

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Algorithme : Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

pour $k = 1, \ldots, B$ faire

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{m{ heta}}_{\lambda}^{\hat{ ext{Lasso}},(k)}$

Algorithme : Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ

pour $k = 1, \ldots, B$ faire

Générer un échantillon bootstrap : $X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Algorithme: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ

pour
$$k = 1, \dots, B$$
 faire

Générer un échantillon bootstrap : $X^{(k)}, y^{(k)}$

Calculer le Lasso sur cet échantillon : $\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Calculer :
$$S := \bigcap_{k=1}^{B} S_k$$

Algorithme: Bootstrap Lasso

Entrées : X, \mathbf{y} , nombre de réplications B, régularisation λ pour $k=1,\dots,B$ faire

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$ Calculer le Lasso sur cet échantillon: $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$ Calculer le support associé: $S_k = \mathrm{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}\right)$

$$\begin{aligned} & \mathsf{Calculer} : S := \bigcap_{k=1}^{B} S_k \\ & \mathsf{Calculer} : \hat{\boldsymbol{\theta}}_{\lambda}^{\mathsf{Bolasso}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\mathrm{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \end{aligned}$$

Algorithme: Bootstrap Lasso

Entrées : X, y, nombre de réplications B, régularisation λ pour $k = 1, \ldots, B$ faire

Générer un échantillon $bootstrap: X^{(k)}, y^{(k)}$ Calculer le Lasso sur cet échantillon : $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso},(k)}$

Calculer le support associé : $S_k = \operatorname{supp}\left(\hat{\boldsymbol{\theta}}_{\lambda}^{\operatorname{Lasso},(k)}\right)$

Calculer : $S := \bigcap_{k=1}^{B} S_k$

 $\mathsf{Calculer}: \hat{\boldsymbol{\theta}}_{\lambda}^{\mathsf{Bolasso}} \in \underset{\substack{\boldsymbol{\theta} \in \mathbb{R}^p \\ \mathrm{supp}(\boldsymbol{\theta}) = S}}{\mathrm{arg\,min}} \ \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$

Sommaire

Rappels

Sélection de variables et parcimonie La pénalisation ℓ_0 et ses limites La pénalisation ℓ_1 Sous-gradient / sous-différentielle

Améliorations et extensions du Lasso

```
LSLasso / Elastic-Net
Pénalités non-convexes / Adaptive Lasso
Structure sur le support
Stabilisation
```

Extensions des moindres carrés / Lasso

Régression multi-tâches

On veut résoudre m régressions linéaires conjointement : $Y \approx X\Theta$

avec

- $Y \in \mathbb{R}^{n \times m}$: matrice des observations
- $X \in \mathbb{R}^{n \times p}$: matrice de design (commune)
- $m{\Theta} \in \mathbb{R}^{p \times m}$: matrice des coefficients

 $\overline{\text{Exemple}}$: plusieurs signaux sont observés au cours du temps $\overline{\text{(e.g., divers capteurs d'un même phénomène)}}$

Rem: cf. MultiTaskLasso dans sklearn pour le numérique

Moindre carres pénalisées

Dans le contexte de la régression multi-tâches on peut résoudre les moindres carrés pénalisés :

$$\hat{\Theta}_{\lambda} = \underset{\Theta \in \mathbb{R}^{p \times m}}{\arg \min} \quad \left(\quad \underbrace{\frac{1}{2} \| Y - X \Theta \|_F^2}_{\text{attache aux données}} \quad + \underbrace{\lambda \Omega(\Theta)}_{\text{régularisation}} \right)$$

où Ω est une pénalité / régularisation à préciser

Rem: la norme de Frobenius $\|\cdot\|_F$ est définie pour toute matrice $A\in\mathbb{R}^{n_1\times n_2}$ par

$$||A||_F^2 = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} A_{j_1,j_2}^2$$

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : quelconque

Pénalité Lasso:

$$\|\Theta\|_1 = \sum_{j=1}^p \sum_{k=1}^m |\Theta_{j,k}|$$

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : groupes

Pénalité Groupe-Lasso :

$$\|\Theta\|_{2,1} = \sum_{j=1}^p \|\Theta_{j:}\|_2$$

Rem: on note $\Theta_{j,:}$ la j^e ligne de Θ

Pénalisation pour le cas multi-tâches

On doit adapter les pénalisations vectorielles rencontrées :

Paramètre $\Theta \in \mathbb{R}^{p \times m}$

Support creux : groupes + sous groupes

Pénalité Sparse-Groupe-Lasso :

$$\alpha \|\Theta\|_1 + (1 - \alpha) \|\Theta\|_{2,1}$$

Références I

▶ F. Bach.

Bolasso : model consistent Lasso estimation through the bootstrap. In $\mbox{\it ICML}, 2008$.

▶ P. Bühlmann and S. van de Geer.

Statistics for high-dimensional data.

Springer Series in Statistics. Springer, Heidelberg, 2011. Methods, theory and applications.

E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted l₁ minimization. J. Fourier Anal. Applicat., 14(5-6):877–905, 2008.

J. Fan and R. Li.

Variable selection via nonconcave penalized likelihood and its oracle properties.

J. Amer. Statist. Assoc., 96(456):1348-1360, 2001.

Références II

- G. Gasso, A. Rakotomamonjy, and S. Canu.
 Recovering sparse signals with non-convex penalties and DC programming.
 IEEE Trans. Sig. Process., 57(12):4686–4698, 2009.
- Bien J, J. Taylor, and R. Tibshirani.
 A lasso for hierarchical interactions.
 Ann. Statist., 41(3):1111-1141, 2013.
- N. Meinshausen and P. Bühlmann.
 Stability selection.

Journal of the Royal Statistical Society : Series B (Statistical Methodology), 72(4) :417–473, 2010.

N. Parikh, S. Boyd, E. Chu, B. Peleato, and J. Eckstein.
 Proximal algorithms.
 Foundations and Trends in Machine Learning, 1(3):1–108, 2013.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani.
 A sparse-group lasso.
 J. Comput. Graph. Statist., 22(2):231–245, 2013.

Références III

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.

M. Yuan and Y. Lin.

Model selection and estimation in regression with grouped variables.

J. Roy. Statist. Soc. Ser. B, 68(1):49-67, 2006.

H. Zou and T. Hastie.

Regularization and variable selection via the elastic net.

J. Roy. Statist. Soc. Ser. B, 67(2):301-320, 2005.

► C.-H Zhang.

Nearly unbiased variable selection under minimax concave penalty.

Ann. Statist., 38(2):894-942, 2010.

▶ H. Zou.

The adaptive lasso and its oracle properties.

J. Am. Statist. Assoc., 101(476):1418-1429, 2006.