

09/529962

416 Rec'd PCT/PTO 20 APR 2000

SEQUENCE LISTING

SAC

<110> Helix Research Institute, Inc.

<120> Method for screening full-length cDNA clones

<130> H1-806PCT

<150> JP 09-289982

<151> 1997-10-22

<160> 18

<170> PatentIn version 2.0

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo-capping linker sequence

<400> 1

AGCAUCGAGU CGGCCUUUGUU GGCCUACUGG

30

<210> 2

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligo(dT) adapter primer sequence

<400> 2

GCGGCTGAAG ACGGCCTATG TGGCCTTTTT TTTTTTTTT TT

42

<210> 3
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Random adapter primer sequence

<400> 3
 GCGGCTGAAG ACGGCCTATG TGGCCNNNN NC

32

<210> 4
 <211> 880
 <212> DNA
 <213> Homo sapiens

<400> 4
 ATGCGCCCGC GCAGCCCTAT AGGCGCCTCC TCCGCCGCC GCCCGGGAGC CGCAGCCGCC 60
 GCCGCCACTG CCACTCCCAGC TCTCTCAGCG CCGCCGTCGC CACCGCCACC GCCACTGCCA 120
 CTACCACCGT CTGAGTCTGC AGTCCCAGA TCCCAGCCAT CATGTCCATA GAGAAGATCT 180
 GGGCCCGGGA GATCCTGGAC TCCCGCGGGA ACCCCACAGT GGAGGTGGAT CTCTATACTG 240
 CCAAAGGTCC TTTCCGGGCT GCAGTGCCCA GTGGAGCCTC TACGGGCATC TATGAGGCC 300
 TGGAGCTGAG GGATGGAGAC AAACAGCGTT ACTTAGGCAA AGGTGTCCCTG AAGGCAGTGG 360
 ACCACATCAA CTCCACCACAT GCGCCAGCCC TCATCAGCTC AGGTCTCTCT GTGGTGGAGC 420
 AAGAGAAACT GGACAACCTG ATGCTGGAGT TGGATGGAC TGAGAACAAA TCCAAGTTG 480
 GGGCAATCC ATCCTGGGTG TGTCTCTGGC CGTGTGTAAG GCANGGGCAA CTGAACNGGA 540
 ACTGCCCTG TATGCCACA TTGCTCAGCT TGGNCGGAA CTCANACCTC ATCCTGCCCTG 600
 TTGCCGGCCT TCAACGTGAT CAATGGTTGG CTTCTCATGC CTGGCAACAA ANCTGGCCAT 660
 TGCNGGAATT TTCATGATCC TCCCCNTTGG GAAACTGAAA AACTTTCCGG AATGCCCNTC 720
 CAACTAAGTT GCAAAAGGTC TACCNATACC CCCCAAGGGG AATTCTCCA AGGGAACAAA 780
 TNCCCGGGAA AGGAATGCC CCCAATTNTT NGGGGGATA AAAGGTGGGC TTTGCCCTC 840
 CATTTCCTG GAAAAAACNA TNAAAACCTT TGGGAAACTT 880

<210> 5

DRAFT Sequence Database

<211> 645

<212> DNA

<213> Homo sapiens

<400> 5

TGTGCGTTAC TTACCTCNAC TCTTAGCTTG	TCGGGGACGG TAACCGGGAC	CCGGTGTCTG	60
CTCCTGTCGC CTTCGCCTCC TAATCCCTAG	CCACTATGCG TGAGTGCATC	TCCATCCACG	120
TTGGCCAGGC TGGTGTCCAN ATTGCCAATG	CCTGCTGGGA GCTCTACTGC	CTGGAACACG	180
GCATCCAGCC CGATGGCCAG ATGCCAAGTG	ACAAGACCAT TGGGGGAGGA	GATGACTCCT	240
TCAACACCTT CTTCAGTGAG ACGGGCGCTG	GCAANCACGT GCCCCGGGCT	GTGTTGTAG	300
ACTTGGAACCC CACAGTCATT GATGAAGTTC	GCACTGGCAC CTACCGCCAG	CTCTTCCACC	360
CTGAGCAGCT CATNCAGGC AAGGAAGATG	CTGCCAATAA CTATGCCGA	GGGCACTACA	420
CCATTGGCAA GGAGATCATT GACCTTGTGT	TGGACCGAAT TCGCAAGCTG	GCTGACCANT	480
GCACCGGTCT TCANGGCTTC TTGGTTTCC	ACAGCTTGG	TGGGGGAAC	540
TCACCTCCCT GCTCATGGAA CGTCTCTCAG	TTGATTATGG CAAGAAATCC	AAGCTGGAGT	600
TCTCCATTAA CCCAGCACCC CNNGTTCCN	CNGCTGTANT TNAA		645

<210> 6

<211> 820

<212> DNA

<213> Homo sapiens

<400> 6

CTTTTTTCGC AACGGGTTTG CCGCCAGAAC	ACAGGTGTCG TGAAAACTAC	CCCTAAAAGC	60
CAAATGGGA AAGGAAAAGA CTCATATCAA	CATTGTCGTC ATTGGACACG	TAGATTGGG	120
CAAGTCCACC ACTACTGGCC ATCTGATCTA	TAATGCGGT GGCATCGACA	AAAGAACCAT	180
TGAAAAATTG GAGAAGGAGG CTGCTGAGAT	GGGAAAGGGC TCCTTCAAGT	ATGCCTGGGT	240
CTTGGATAAA CTGAAAGCTG AGCGTGAACG	TGGTATCACC ATTGATATCT	CCTTGTGGAA	300
ATTGAGACC AGCAAGTACT ATGTGACTAT	CATTGATGCC CCAGGACACA	GAGACTTTAT	360
CAAAACATG ATTACAGGGA CATCTCAGGC	TGACTGTGCT GTCTGATTG	TTGCTGCTGG	420
TGTTGGTGA TTTGAAGCTG GTATCTCCAA	GAATGGCAG ACCCGAGAGC	ATGCCCTTCT	480
GGCTTACACA CTGGGTGTGA AACAACTAAT	TGTCGGTGT	AACAAAATGG ATTCACTGAN	540
CCACCCCTACA GCCAGAAGAA ATATGANGAA	ATTGTTAAGG AAGTCAGCAC	TTACATTAAG	600
AAAATTGGCT ACAACCCCGA CACAGTANCA	TTTGTGCCAA TTTCTGGTTG	GAATGGTGAC	660

AACATGCTGG AACCAANTGC TAACATGCCT TGGTCCAGG GATGGAAAAT CCCCCNTAA 720
 GGATGGCNAT GCCATTGGAA CCCCCCTGCT TGAAGGCTCT GGANTGCATC CTANCACCAA 780
 CTCCTTCAAA TTGAAAAACC CCTTGCNCCC GCCTCCNCCA 840

<210> 7

<211> 788

<212> DNA

<213> Homo sapiens

<400> 7

GAGGCTGAGG CAGTGGCTCC TTGCACAGCA GCTGCACGCG CCGTGGCTCC GGATCTCTTC 60
 GTCTTGCAG CGTAGCCCGA GTCGGTCAGC GCCGGAGGAC CTCAGCAGCC ATGTCGAAGC 120
 CCCATAGTGA AGCCGGACT GCCTTCATTG AGACCCAGCA GCTGCACGCA GCCATGGCTG 180
 ACACATTCCCT GGAGCACATG TGCCGCCTGG ACATTGATTG ACCACCCATC ACAGCCCGA 240
 ACACTGGCAT CATCTGTACC ATTGGCCAG CTTCCCGATC AGTGGAGACG TTGAAGGAGA 300
 TGATTAAGTC TGGAAATGAAT GTGGCTCGTC TGAACCTCTC TCATGGAACT CATGAGTACC 360
 ATGCGGAGAC CATCAAGAACAT GTGCGCACAG CCACGGAAAG CTTTGCTTCT GACCCCATCC 420
 TCTACCGGCC CGTTGCTGTG GCTCTAGACA CTAAAGGACC TGAGATCCGA ACTGGGCTCA 480
 TCAAGGGCAG CGGCAGTGCA GAGGTGGAGC TGAAGAACATGG AGCCACTCTC AAAATCACGC 540
 TGGATAATGC CTACATGGAA AAGTGTGACG AGAACATCCT GTGGCTGGAC TACAAGAAC 600
 TCTGCAAGGT GGTGGAAGTG GGCAACAAGA TCTACGTGGA TGATGGGCTN ATTTCTCTCC 660
 AGGTGAACAC AAAGGTGCCG ACTTCCTGGG TGACNGANGT GGAAAATGCT GGCTCCTTGG 720
 GCNCAAGAAA GGTGTGAACT TCCTGGGGCT GCTGTGGANT TGCCCTGCTGT GTCNGAAAAA 780
 GACATCCA 788

<210> 8

<211> 608

<212> DNA

<213> Homo sapiens

<400> 8

ACAGCCTGGC TCCTTGAGT ATGAATATGC CATGCGCTGG AAGGCACCTCA TTGAGATGGA 60
 GAAGCAGCAG CAGGACCAAG TGGACCGCAA CATCNAGGAG GCTCGTGAGA AGCTGGAGAT 120
 GGAGATGGAA GCTGCACGCC ATGAGCACCA GGTCA↑GCTA ATGAGACAGG ATTTGATGAG 180

GCGCCAAGAA GAACTTCGGA GGATGGAAGA GCTGCACAAC CAAGANGTC AAAAACGAAA 240
 GCAACTGGAG CTCAGGCAGG AGGAANAGCG CAGGCCCGT GAAGAANAGA TGCGGCGGCA 300
 GCAAGAAGAA ATGATGCGGC GACNGCAGGA AGGATTCAAG GGAACCTTCC CTGATGCGAG 360
 AGAGCAGGAG ATTCCGGATGG GTCNGATGGC TATGGGAGGT GCTATGGGCA TAAACNACAG 420
 ATGTGCCATG CCCCCCTGCTC CTGTGCCAGC TGGTACCCCAG GCTCCTCCAG GACCTGCCAC 480
 TATTATGCCG GATGGAACCTT TGGGATTGAC CCCACCNACA ACTGAACGCT TTGGTCNGGC 540
 TGCTACNATG GAANGAATTG GGGCAATTGG TGGAACCTCCT CCTGCATTGN ACCGTGCAGC 600
 TCCTGGGA 608

<210> 9

<211> 869

<212> DNA

<213> Homo sapiens

<400> 9

ATATTAAACT AGTGAAGCAA CTAAGAGAAA ATGTTAAGTC TGCTATTGAT CTTGAAGAGA 60
 TGGCATCTGG TCTTAACAAA AGAAAAATGA TTCAGCATGC TGTATTAAA GAACTTGTGA 120
 AGCTTGTAGA CCCTGGAGTT AAGGCATGGA CACCCACTAA AGGAAAACAA AATGTGATTA 180
 TGTTTGTGG ATTGCAAGGG AGTGGTAAAA CAACAACATG TTCAAAGCTA GCATATTATT 240
 ACCAGAGGAA AGGTTGGAAG ACCTGTTAA TATGTGCAGA CACATTAGA GCAGGGGCTT 300
 TTGACCAACT AAAACAGAAT GCTACCAAAG CAAGAATTCC ATTTTATGGA AGCTATAACAG 360
 AAATGGATCC TGTCACTCATT GCTTCTGAAG GAGTAGAGAA ATTAAAAAT GAAAATTTG 420
 AAATTATTAT TGTTGATACA AGTGGCCGCC ACAAAACAAGA AGACTCTTG TTTGAAGAAA 480
 TGCTTCAAGT TGCTAATGCT ATACAACCTG ATAACATTGT TTATGTGATG GATGCCTCCA 540
 TTGGGCAGGC TTGTGAAGCC CAGGCTAAGG CTTTAAAGA TAAAGTAGAT GTACCTCAGT 600
 AATAGTGACA AAACTTGATG GCCATGCAAA ANGAAGTGGT GCACTCAGTG CAGTCGCTGC 660
 CACAAAAAAAT CCGATTATTT TCATTGGTAC AGGGGGAAACA TATANATGAC TTTGAACCTT 720
 TCAAAAACAC AGCCTTTAT TAACAAACTT CTTGGTATNG GCGACATTGA AAGGACTGAT 780
 AAATAAAAGTC CACNAATTGA AATTGGATG ACNATGNAAA CCCTTATTGA AAAAATTGAA 840
 ACATNGTCCA GTTTTACTTT GCGAAACNT 869

<210> 10

<211> 813

<212> DNA

<213> Homo sapiens

<400> 10

GTTGTGGTAT CTGTATTAAG AAATGCCCT TTGGCGCCTT ATCAATTGTC AATCTACCAA	60
GCAACTTGGAA AAAAGAAACC ACACATCGAT ATTGTGCCAA TGCCTCAAA CTTCACAGGT	120
TGCCTATCCC TCGTCCAGGT GAAGTTTGG GATTAGTTGG AACTAATGGT ATTGGAAAGT	180
CAACTGCTTT AAAAATTAA GCAGGAAAAC AAAAGCCAA CCTTGGAAAG TACGATGATC	240
CTCCTGACTG GCAGGAGATT TTGACTTATT TCCGTGGATC TGAATTACAA AATTACTTA	300
CAAAGATTCT AGAACATGAC CTAAAAGCCA TCATCAAACC TCAATATGTA GACCAGATC	360
CTAAGGCTGC AAAGGGGACA GTGGGATCTA TTTTGGACCG AAAAGATGAA ACAAAAGACAC	420
AGGCAATTGT ATGTCAGCAG CTTGATTTAA CCCACCTAAA AGAACGAAAT GTTGAAGATC	480
TTTCAGGAGG AGAGTTGCAG AGATTTGCTT GTGCTGTCGT TTGCATACAG AAAGCTGATA	540
TTTTCATGTT TGATGAGCCT TCTAGTTACC TAGATGTCAA GCAGCGTTA AAGGCTGCTA	600
TTACTATACG ATCTCTAATA AATCCAGATA GATATATCAT TGTGGTGGAA CATGATCTAA	660
GTGTATTAGA CTATCTCTCC GACTTCATCT GCTGTTATA TGGTGTACCA AGCGCCTATG	720
GAATTGTCAC TATGCCCTTT AGTGTAGAA AAGGCATAAA CNTTTTTGG ATGGGTATGT	780
TCCAACAGAA AACTTGANAA TCNNAAATGC NTC	813

<210> 11

<211> 655

<212> DNA

<213> Homo sapiens

<400> 11

AGACTCTCAC CGCAGCGGCC AGGAACGCCA GCCGTTCACG CGTTGGTCC TCCTTGGCTG	60
ACTCACCGCC CTCGCCGCCG CACCATGGAC GCCCCCAGGC AGGTGGTCAA CTTTGGGCCT	120
GGTCCCCCCA AGCTGCCGCA CTCAGTGTG TTAGAGATAC AAAAGGAATT ATTAGACTAC	180
AAAGGAGTTG GCATTAGTGT TCTTGAAATG AGTCACAGGT CATCAGATT TGCCAAGATT	240
ATTAACAATA CAGAGAACATCT TGTGGGGAA TTGCTAGCTG TTCCAGACAA CTATAAGGTG	300
ATTTTCTGC AAGGAGGTGG GTGCCGCCAG TTCAGTGTG TCCCCTTAAA CCTCATTGGC	360
TTGAAAGCAG GAAGGTGTGC GGACTATGTG GTGACAGGAG CTTGGTCAGC TAAGGCCGCA	420
GAAGAACCCA AGAAGTTGG GACTATAAT ATCGTTCACC CAAACTTGG GAGTTATACA	480
AAAATTCCAG ATCCAAGCAC CTGGAACCTC AACCCANATG CCTCCTACGT GTTTTATTGC	540
NCAAATGAAA CGGTGCATGG TGTTGANTTT GACTTTATAC CCNATGTCAA GGGAACANTAA	600
CTGGTTGTG ACATTTCCCT CCAACTTCCT GTCCAANCCA ATTGNATGTT TCCAA	655

<210> 12

<211> 599

<212> DNA

<213> Homo sapiens

<400> 12

AAAGATGCCG	AGGCAGCCGTG	TGGCACTCGG	CGGTCGAAAG	GGGAGTTCAA	GGAGACGGGG	60
GCGACGCGC	TGAGGGCTTC	TCGTCGGGGT	CGGGGCTGCA	GCCGTCATGC	CGGGGATAGT	120
GGAGCTGCC	ACTCTAGAGG	AGCTGAAAGT	AGATGAGGTG	AAAATTAGTT	CTGCTGTGCT	180
TAAAGCTGCG	GCCCACATCACT	ATGGAGCTCA	ATGTGATAAG	CCCAACAAGG	AATTTATGCT	240
CTGCCGCTGG	GAANAGAAAG	ATCCGAGGGCG	GTGCTTAGAG	GAAGGCAAAC	TGGTCAACAA	300
GTGTGCTTTG	GACTTCTTTA	GGCAGATAAA	ACGTCACTGT	GCAGAGCCTT	TTACAGAATA	360
TTGGACTTGC	ATTGATTATA	CTGGCCAGCA	GTTATTCGT	CACTGTCGCA	AACAGCAGGC	420
AAAGTTGAC	NAGTGTGTGC	TGGACAAACT	GGGCTGGGTG	CGGCCTGACC	TGGGAAAAC	480
GTCAAAGGTC	ACCAAAGTGA	AAACAGATCN	ACCTTACCG	GANAATCCCT	ATCACTCAAG	540
AACAAGAACG	GATCCCAGCC	CTGANATCNA	AGGAAATCTG	CANCCTGCCA	CACATGGCA	599

<210> 13

<211> 597

<212> DNA

<213> Homo sapiens

<400> 13

ATATCCGGAG	TAGACGGAGC	CGCAGTAGAC	GGATCCGGG	CTGCACCAAA	CACTGCCCT	60
CGGAGCCTGG	TAGTGGGCCA	CAAGCCCCCA	GTCCCAGAGG	CGTGATTTC	TGGCATCCTT	120
AAATCTTGTG	TCAAGGATTG	GTTATAATAT	AACCAGAAAC	CATGACGGCG	GCTGAGAACG	180
TATGCTACAC	GTTAATTAAC	GTGCCAATGG	ATTCAAGAAC	ACCATCTGAA	ATTAGCTAA	240
AAAATGATCT	AGAAAAAGGA	GATGTAAAGT	CAAAGACTGA	AGCTTGAAG	AAAGTAATCA	300
TTATGATTCT	GAATGGTGA	AAACTTCCTG	GACTTCTGAT	GACCATCATT	CGTTTGTC	360
TACCTCTTCA	GGATCACACT	ATCAAGAAAT	TACTTCTGGT	ATTTTGGGAG	ATTGTTCTTA	420
AAACAACCTCC	AGATGGGAGA	CTTTTACATG	AGATGATCCT	TGTATGTGAT	GCATACAGAA	480
AGGATCTTCA	ACATCCTAAT	GAATTTATTC	NAAGGATCTA	CTCTTCGTTT	TCTTTGCAA	540
TTGAAANAAA	CANAATTGCT	AAAACCTTTA	ATGCCANCTA	TNCCTGCATT	TTGGGGA	597

<210> 14

<211> 634

<212> DNA

<213> Homo sapiens

<400> 14

AGACTCTCAC CGCAGCGGCC AGGAACGCCA GCCGTTCACG CGTCGGTCC TCCTTGGCTG	60
ACTCACCGCC CTCGCCGCCG CACCATGGAC GCCCCCAGGC AGGTGGTCAA CTTTGGGCCT	120
GGTCCCGCCA AGCTGCCGCA CTCAGTGTG TTAGAGATAC AAAAGGAATT ATTAGACTAC	180
AAAGGANTTG GCATTAGTGT TCTTGAAATG AGTCACAGGT CATCAGATT TGCCAAGATT	240
ATTAACAATA CAGAGAACATCT TGTGCGGGAA TTGCTAGCTG TTCCAGACAA CTATAAGGTG	300
ATTTTCTGC AAGGAGGTGG GTGCGGCCAG TTCAGTGTG TCCCCTTAAA CCTCATTGGC	360
TTGAAAGCAG GAANGTGTGC GGACTATGTG GTGACAGGAG CTTGGTCAGC TAAGGCCGCA	420
NAANAAGCCA AGAANTTTGG GACTATAAT ATCGTTCACCT AAACACTTGG GAGTTATACA	480
AAAATTCCAG ATCCAAGCAC CTGGAACCTC AACCCAGATG CCTCCTACGT GTATTATTGC	540
GCNAATGAAA CNGTGCATGG TGTGGANTCT GACTTTATAC CCGATGTCNA GGGAACATAC	600
TGGTTTGTGA CATGTCCTCA AACTTCCCGT CCNA	634

<210> 15

<211> 757

<212> DNA

<213> Homo sapiens

<400> 15

AGTCTGCGGT GGGCTANCAGG ACGGTCCGGC TTCCGGCGGC CGTTTCTGTC TCTTGCTGGC	60
TGTCTCGCTG AATCGCGGCC GCCTTCTCAT CGCTCCTGGA AGGTCCCGAG CGCGACACCA	120
TGTCGGAACC CGGGGGCGGC GGCGGCGAAG ACNGCTGGC CGGATTGGAA GTGTCGGCCG	180
TGCANAATGT GGCGGACGTG TCGGTGCTGC ANAAGCACCT GCGCAAGCTG GTGCCGCTGC	240
TGCTGGAGGA CGGCGGCAGA GCGCCGGCCG CGCTGGAGGC GGCCTGGAG GAGAAGAGCG	300
CCCTGGAGCA GATGCGCAAG TTCCCTTCGG ACCCGCACGT CCACACGGTG CTGGTGGAGC	360
GCTCCACGCT CAAAGTGGAC GTCGGTGATG AAGGAGAAGA AGAAAAAGAA TTCATTTCCCT	420
ATAACATCAA CNTAGACATT CACTATGGGG TTAAATCCAA TAGCTTGGCA TTCATTAAC	480
GTACTCCCGT GATTGATGCA GATAAACCCG TGTCTTCTCA NCTCCGGTC CTTACACTCA	540

GTGAANACTC NCCCTACNAA AACTTTGCAT TCTTCATTA ACAATGCAGT GGCTCCTTT 600
 TTTAANTCCT ACATTAACAAA ATCTGGCAAG GCAAACAGGG ATGGTATAA AATGGCTCCT 660
 TCCNTTGAAA AAAAATTGC CGAACTCNAA ATNGGACTCC TTCCCTTGCA NCAAAATT 720
 TGAAATTCCG GAAAATCANC CTGCCAATT CCTCCCC 757

<210> 16

<211> 300

<212> DNA

<213> Homo sapiens

<400> 16

ATCATTTCCT TATTATATT TCATGTTGGA ATGCTTAAAT CGATAACCTT TGTATTTGA 60
 AGTGCACGAC ATGGAAGGTG ATCTGCAAGA GCTGCATCAG TCAAACACCG GGGGATAAAT 120
 CTGGATTGGG GTTCCGGCGT CAAGGTGAAG ATAATACCTA AAGAGGAACA CTGTAAAATG 180
 CCAGAACGAG GTGAANAGCA ACCACAAGTT TAAATGAAGA CAAGCTGAAA CAACGCAAGC 240
 TGGTTTATA TTAGATATT GACTTAAACT ATCTCAATAA AGTTTGCAAG CTTTCACCAC 300

<210> 17

<211> 313

<212> DNA

<213> Homo sapiens

<400> 17

AAAGATGGCG GCGGGGGAGG TAGGCAGAGC AGGACGCCGC TGCTGCCGCC GCCACCGCCG 60
 CCTCCGCTCC AGTCGCCTCC GGTCCCTCAA ACTCACACCT CCCGGGAGGA GCTGCTCTGG 120
 CGCCGGGTCC CGCGGGGAAA ATGGTGGAGC CAGGGCAAGA TTTACTGCTT GCTGCTTTGA 180
 GTGAGAGTGG ATTAGTCCG AATGACTCTT TGATATTGAT GGTGGAGATG CANGGCTTGC 240
 AACTCCAATG CCTACCCCGT CAGTCAGCA NTCAGTGCCA CTTANTGCAT TANAACCTANG 300
 TTTGGAGACC GAA 313

<210> 18

<211> 667

<212> DNA

<213> Homo sapiens

<400> 18

ACTGCCGGGC	TCGGCGTGAG	TCGCTGCGGG	GCTGACGGGG	TGGCAGTCCG	GCGGGTTACG	60
GCCTGGTCAG	ACCATAATGA	CTTCAGCAAA	TAAAGCAATC	GAATTACAAC	TACAAGTCAA	120
ACAAAATGCA	GAAGAATTAC	AAGACTTTAT	CGGGGATTAA	GAAAACGTGG	AAAAAGACAT	180
TAAACAAAAG	GATATGGAAC	TAAGAAGACA	GAATGGTGTT	CCTGAAGAGA	ATTTACCTCC	240
TATTGAAAT	GGGAATTAA	GGAAAAAGAA	GAAAGGCCAA	GCTAAAGAGT	CTTCCCCAAA	300
ACCANAGAGG	AAAACACNAA	AAACAGGATA	AAATCTTATG	ATTATGANGC	ATGGCAAAAA	360
CTTGATGTGG	ACCGTATCCT	TGATGAGCTT	GACAAAGACG	ATAGTACCCA	TGAGTCTCTG	420
TCTCAAGAAC	CAGAGTCGGA	AGAAGATGGG	ATTCATGTTG	ATTNCNAAA	GGCTCTTGT	480
TTAAAAGAAA	AGGGCNATAA	ATACTTCCAC	AAGGAAAATA	TGATGAAGCA	ATTGACTGCT	540
ACACNAAAGG	CNTGGATGCC	GATCCATATN	ATCCCGTGT	GCCAACGAAC	ANAAACNTCCG	600
CATATTTAG	ACTGAAAAAA	TTTGTGTTG	CTGAATCTGA	TTGTTATTTAN	CANTTGCC	660
TGAAATA						667