

EMAT10100 Engineering Maths I Lecture 9: Application of Vectors to Geometry

John Hogan & Alan Champneys

EngMaths I lecture 9 Autumn Semester 2017

Vector equation of a line

Ke Straight line through points A and B:

$$\stackrel{\longrightarrow}{\text{AP}} \text{ is parallel to } \stackrel{\rightarrow}{\text{AB}}, \\ \text{so } \stackrel{\rightarrow}{\text{AP}} = t \stackrel{\rightarrow}{\text{AB}} \text{ (scalar } t) \\ \text{so } \mathbf{r} - \mathbf{a} = t(\mathbf{b} - \mathbf{a}).$$

Vector equation of line:

$$\mathbf{r} = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$$

- $\norm{\ensuremath{\not{k}}}$ As t varies, P moves along line
 - ▶ E.g., when t = 0, P=A
 - ▶ Or when t = 1, P=B
 - t varies from $-\infty$ to $+\infty$

EngMaths I lecture 9 Autumn Semester 2017

Looking back, looking forward

Last time:

- ▶ 3D vectors in component form
- scalar (dot) product
- vector (cross) product
- applications in mechanics (moments, rotation)
- K This time: geometry
 - vector equations of line, plane and sphere
 - scalar triple product
 - vector triple product

EngMaths I lecture 9 Autumn Semester 2017

Exercise

- $\mathbf{k} \mathbf{a} = (1, 4, 6)$ and $\mathbf{b} = (3, 5, 7)$ lie on the same straight line.
- ₩ Find:
 - ▶ the equation of the line in vector form
 - ▶ the equation of the line in Cartesian form
 - where this line intersects the (x, z) plane
- ✓ Note this is James Worked example 4.38
 - read this and similar examples there
 - ▶ do similar exercises

EngMaths I lecture 9 Autumn Semester 2017

Differentiation of vectors

- $\ensuremath{\mathbb{K}}$ Curvy line $\mathbf{r}(t)$: natural interpretation as position of particle at time t
- $ule{\mathbf{Q}}$: How to find velocity $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$?
- **A:** Just differentiate component by component.
- \mathbf{k} Example: Take $\mathbf{r} = (\log_{\mathrm{e}} t, \sin t, t^3 + 3t^2)$. Find $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$.
- More complicated vector differentiation next year

EngMaths I lecture 9 Autumn Semester 2017

Exercise

Find the point where the plane

$$\mathbf{r} \cdot (1, 2, 2) = 3$$

meets the line

$$\mathbf{r} = (2, 1, 1) + \lambda(0, 1, 2)$$

- - read this and similar examples there
 - ▶ do similar exercises

EngMaths I lecture 9
Autumn Semester 2017

Vector equation of a plane

- $\stackrel{\longleftarrow}{\mathsf{K}} \mathsf{AP} \mathsf{\ lies\ in\ plane\ and\ } \overset{\rightarrow}{\mathsf{AP}} = \mathbf{r} \mathbf{a}$
- \mathbf{k} So: $(\mathbf{r} \mathbf{a}) \cdot \mathbf{n} = 0$
- ✓ Vector equation of plane:

$$\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$$

or (alternative) $\mathbf{r} \cdot \mathbf{n} = \rho$ (ρ scalar constant)

EngMaths I lecture 9 Autumn Semester 2017

Vector equation of a sphere

- k P always same distance (radius ρ_s) from A
- $\stackrel{
 ightharpoonup}{\swarrow}$ NB: $\stackrel{
 ightharpoonup}{\mathrm{AP}}=\mathbf{r}-\mathbf{a}$, so $|\stackrel{
 ightharpoonup}{\mathrm{AP}}|=|\mathbf{r}-\mathbf{a}|$
- Vector equation of circle (or sphere in 3D):

$$|\mathbf{r} - \mathbf{a}| = \rho_{\rm s}$$

EngMaths I lecture 9 Autumn Semester 2017

Engineering HOT SPOT

- Positioning with ultrasound, radar pings etc.
- ▶ Detect landmines, breast cancer (Prof lan Craddock)

 \not Elapsed time between signals: $t = t_A - t_B$.

$$|\mathbf{a} - \mathbf{r}| - |\mathbf{b} - \mathbf{r}| = ct$$
 (wave speed c)

★ Vector equation of a hyperbola!

EngMaths I lecture 9 Autumn Semester 2017

Vector triple product

- K The other way to multiply three vectors together.
- vector × (vector × vector) = vector
- ₭ Two alternatives, short-cut formulae

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$

(no need to learn this)

- We NB: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ Not associative: not even parallel in general Why not?
- Applications beyond the scope of this course

EngMaths I lecture 9 Autumn Semester 2017

Scalar triple product

One of two ways to multiply three vectors together:

Scalar triple product $= \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

(we will cover matrix determinants later)

- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0 \Rightarrow$ vectors are linearly independent
- we will be with a continuous will be with a continuous will be will b

EngMaths I lecture 9
Autumn Semester 2017

Homework

- - Sections 4.3 & 4.2.12 (4.2.11 in 4th Edn)
- - ▶ 4.3.3 Q.52–55, 59-61, 63
 - ▶ 4.2.12 nos. 43–45, 49
- - ▶ 4.3.2 Q.66–69
 - ▶ 4.3.4 Q. 73, 77–79
 - ▶ 4.2.13 nos. 57-59, 63

EngMaths I lecture 9
Autumn Semester 2017

Warning

We have gone through topic v. quickly

- K If much of 3D vectors new to you, then
 - 1. Read the relevent sections of James
 - 2. Do the exercises set as Homework
 - 3. Get one-to-one tuition at the drop-in-classes
- There will be a in-class test on Monday 23rd Oct
 - topics covered = complex numbers & vectors
 - peer marked in class, marks do not count
 - but test paper collected and marks recorded

EngMaths I lecture 9
Autumn Semester 2017

Summary - continued

- Vectors help us do things in 3D that we know how to do in one and two dimensions
- e.g. calculate work done, components of forces, moments and angular velocites
- ✓ general equations for straight line in 3D

$$\mathbf{r} = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$$

- f k equations for a plane in 3D ${f r}\cdot{f n}={f a}\cdot{f n}$
- equations geometric objects (spheres, curves etc.)
- $\begin{tabular}{ll} & \textbf{Scalar triple product:} \ [\mathbf{a},\mathbf{b},\mathbf{c}] \ \text{gives volume of parallelpiped:} \ \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}) = \\ & \mathbf{b}\cdot(\mathbf{c}\times\mathbf{a}) = & \mathbf{c}\cdot(\mathbf{a}\times\mathbf{b}) \\ \end{tabular}$

EngMaths I lecture 9 Autumn Semester 2017

Summary - of vectors

- \mathbf{k} Component form $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$
- $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$, unit vector $\hat{\mathbf{a}} = \mathbf{a}/|\mathbf{a}|$
- k addition, subtraction differentiation etc. term-by term
- $m{k}$ Dot product $\mathbf{a} \cdot \mathbf{b}$ is a scalar

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta) = a_1 b_1 + a_2 b_2 + a_3 b_3$$

 $\text{ \mathbf{c} Cross product } \mathbf{a} \times \mathbf{b} \text{ produces a vector in direction } \hat{\mathbf{n}} \text{ perpendicular to } \mathbf{a}$ and \mathbf{b} :

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin(\theta) \,\hat{\mathbf{n}}$$
$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 \mathbf{k} Note $\mathbf{a} \times \mathbf{a} = 0$. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$