1 Grammar

$$\begin{array}{lll} e ::= x & expressions \\ & r & \\ & \operatorname{new}_{\sigma} x \Rightarrow \overline{\sigma = e} \\ & \operatorname{new}_{d} x \Rightarrow \overline{d = e} \\ & | e.m(e) & \\ & | e.\pi & \\ \\ \tau ::= \{ \overline{\sigma} \} & types \\ & | \{ \overline{t} \} & \\ & | \{ \overline{d} \} & \\ & | \{ \overline{d} \operatorname{captures} \varepsilon \} \\ \\ \sigma ::= d \operatorname{ with } \varepsilon & labeled \operatorname{ decls}. \\ \\ d ::= \operatorname{def} m(x : \tau) : \tau \operatorname{ unlabeled decls}. \end{array}$$

Notes:

- $-\sigma$ denotes a declaration with effect labels; d a declaration without effect labels.
- \mathtt{new}_{σ} is for creating annotated objects; \mathtt{new}_d for unannotated objects.
- $-\{\bar{\sigma}\}\$ is the type of an annotated object. $\{\bar{d}\}\$ is the type of an unannotated object.
- $\{\bar{d} \text{ captures } \varepsilon\}$ is a special kind of type that doesn't appear in source programs but may be assigned by the new rules in this section. Intuitively, ε is an upper-bound on the effects captured by $\{\bar{d}\}$.

2 Semantics

2.1 Static Semantics

$$\Gamma \vdash e : \tau$$

$$\frac{\Gamma \vdash e_1 : \{\bar{r}\} \vdash r : \{\bar{r}\} \vdash r : \{\bar{r}\}\}}{\Gamma \vdash e_1 . \pi : \mathtt{Unit}} \ (\mathtt{T-OperCall})$$

$$\frac{\Gamma \vdash e_1 : \{\bar{r}\}}{\Gamma \vdash e_1 . \pi : \mathtt{Unit}} \ (\mathtt{T-OperCall})$$

$$\frac{\Gamma \vdash e_1 : \{\bar{\sigma}\} \quad \det m(y : \tau_2) : \tau_3 \text{ with } \varepsilon_3 \in \{\bar{\sigma}\} \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 . m(e_2) : \tau_3} \ (\mathtt{T-MethCall}_{\sigma})$$

$$\frac{\Gamma \vdash e_1 : \{\bar{d}\} \quad \det m(y : \tau_2) : \tau_3 \in \{\bar{d}\} \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 . m(e_2) : \tau_3} \ (\mathtt{T-MethCall}_{d})$$

$$\frac{\Gamma \vdash \sigma_i = e_i \ \mathtt{OK}}{\Gamma \vdash \ \mathtt{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e} : \{\bar{\sigma}\}} \ (\mathtt{T-New}_{\sigma})$$

$$\frac{\Gamma \vdash d_i = e_i \ \mathtt{OK}}{\Gamma \vdash \ \mathtt{new}_{d} \ x \Rightarrow \overline{d = e} : \{\bar{d}\}} \ (\mathtt{T-New}_{d})$$

$$\frac{\varGamma \vdash d = e \text{ OK}}{} \\ \frac{d = \text{def } m(y:\tau_2):\tau_3 \quad \varGamma, y:\tau_2 \vdash e:\tau_3}{\varGamma \vdash d = e \text{ OK}} \ \left(\varepsilon\text{-ValidImpl}_d\right)$$

$$\varGamma \vdash \sigma = e \text{ OK}$$

$$\frac{\varGamma,\ y:\tau_2\vdash e:\tau_3\ \text{with}\ \varepsilon_3\quad \sigma=\text{def}\ m(y:\tau_2):\tau_3\ \text{with}\ \varepsilon_3}{\varGamma\vdash\sigma=e\ \text{OK}}\ \left(\varepsilon\text{-VALIDIMPL}_\sigma\right)$$

$\varGamma \vdash e : \tau \text{ with } \varepsilon$

Notes:

- This system includes all the rules from the fully-annotated system.
- The T rules do standard typing of objects, without any effect analysis. Their sole purpose is so ε-ValidImpl_d can be applied. We are assuming the T-rules on their own are sound.
- In C-NewObj, Γ' is intended to be some subcontext of the current Γ . The object is labelled as capturing the effects in Γ' (exact definition in the next section).
- In C-NewObj we must add effects(τ_2) to the static effects of the object, because the method body will have access to the resources captured by τ_2 (the type of the argument passed into the method).
- A good choice of Γ' would be Γ restricted to the free variables in the object definition.
- The purpose of C-Inference is to ascribe static effects to unannotated portions of code (for instance, the body of an unlabeled method).
- As a useful convention we'll often use ε_c to denote the output of the effects function.

2.2 effects Function

The effects function returns the set of effects captured in a particular context.

 $\begin{array}{l} -\text{ effects}(\varnothing)=\varnothing\\ -\text{ effects}(\varGamma,x:\tau)=\text{ effects}(\varGamma)\cup\text{ effects}(\tau)\\ -\text{ effects}(\{\bar{r}\})=\{(r,\pi)\mid r\in\bar{r},\pi\in\varPi\}\\ -\text{ effects}(\{\bar{\sigma}\})=\bigcup_{\sigma\in\bar{\sigma}}\text{ effects}(\sigma)\\ -\text{ effects}(\{\bar{d}\})=\bigcup_{d\in\bar{d}}\text{ effects}(d) \end{array}$

```
\begin{array}{ll} - \ \operatorname{effects}(d \ \operatorname{with} \ \varepsilon) = \varepsilon \cup \operatorname{effects}(d) \\ - \ \operatorname{effects}(\operatorname{def} \ \operatorname{m}(x : \tau_1) : \tau_2) = \operatorname{effects}(\tau_2) \\ - \ \operatorname{effects}(\{\bar{d} \ \operatorname{captures} \ \varepsilon_c\}) = \varepsilon_c \end{array}
```

Notes:

- Since a method can return a capability for a resource r we need to figure out what the return type of a method captures. This requires a recursive crawl through the definitions and types inside it.
- In the last case we don't want to recurse to sub-declarations because the effects have already been captured previously (this is ε_c) by a potentially different context.

2.3 Dynamic Semantics

$$e \longrightarrow e \mid \varepsilon$$

$$\frac{e_1 \longrightarrow e'_1 \mid \varepsilon}{e_1.m(e_2) \longrightarrow e'_1.m(e_2) \mid \varepsilon} \text{ (E-METHCALL1)}$$

$$\frac{v_1 = \mathsf{new}_\sigma \ x \Rightarrow \overline{\sigma = e} \quad e_2 \longrightarrow e_2' \mid \varepsilon}{v_1.m(e_2) \longrightarrow v_1.m(e_2') \mid \varepsilon} \ (\text{E-MethCall2}_\sigma) \qquad \frac{v_1 = \mathsf{new}_d \ x \Rightarrow \overline{d = e} \quad e_2 \longrightarrow e_2' \mid \varepsilon}{v_1.m(e_2) \longrightarrow v_1.m(e_2') \mid \varepsilon} \ (\text{E-MethCall2}_d)$$

$$\frac{v_1 = \mathsf{new}_\sigma \ x \Rightarrow \overline{\sigma = e} \quad \mathsf{def} \ \mathsf{m}(y : \tau_1) : \tau_2 \ \mathsf{with} \ \varepsilon = e \in \overline{\sigma = e}}{v_1.m(v_2) \longrightarrow [v_1/x, v_2/y]e \mid \varnothing} \ (\text{E-MethCall3}_\sigma)$$

$$\frac{v_1 = \mathsf{new}_d \ x \Rightarrow \overline{d = e} \quad \mathsf{def} \ \mathsf{m}(y : \tau_1) : \tau_2 = e \in \overline{d = e}}{v_1.m(v_2) \longrightarrow [v_1/x, v_2/y]e \mid \varnothing} \ (\text{E-MethCall3}_d)$$

$$\frac{e_1 \longrightarrow e_1' \mid \varepsilon}{e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon} \text{ (E-OPERCALL1)} \qquad \frac{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}}{r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}} \text{ (E-OPERCALL2)}$$

$$e \longrightarrow_* e \mid \varepsilon$$

$$\frac{e \longrightarrow e' \mid \varepsilon}{e \longrightarrow_* e \mid \varnothing} \text{ (E-MultiStep1)} \qquad \frac{e \longrightarrow e' \mid \varepsilon}{e \longrightarrow_* e' \mid \varepsilon} \text{ (E-MultiStep2)}$$

$$\frac{e \longrightarrow_* e' \mid \varepsilon_1 \quad e' \longrightarrow_* e'' \mid \varepsilon_2}{e \longrightarrow_* e'' \mid \varepsilon_1 \cup \varepsilon_2}$$
 (E-MULTISTEP3)

Notes:

- E-METHCALL2_d and E-METHCALL2_{σ} are really doing the same thing, but one applies to labeled objects (the σ version) and the other on unlabeled objects. Same goes for E-METHCALL3_{σ} and E-METHCALL3_d.
- E-MethCall can be used for both labeled and unlabeled objects.

2.4 Substitution Function

We extend our Substitution function from the previous system in a straightforward way by adding a new case for unlabeled objects.

```
- [e'/z]z = e'
- [e'/z]y = y, \text{ if } y \neq z
- [e'/z]r = r
- [e'/z](e_1.m(e_2)) = ([e'/z]e_1).m([e'/z]e_2)
- [e'/z](e_1.\pi) = ([e'/z]e_1).\pi
- [e'/z](\text{new}_d \ x \Rightarrow \overline{d = e}) = \text{new}_\sigma \ x \Rightarrow \overline{\sigma = [e'/z]e}, \text{ if } z \neq x \text{ and } z \notin \text{freevars}(e_i)
- [e'/z](\text{new}_\sigma \ x \Rightarrow \overline{\sigma = e}) = \text{new}_\sigma \ x \Rightarrow \overline{\sigma = [e'/z]e}, \text{ if } z \neq x \text{ and } z \notin \text{freevars}(e_i)
```

3 Proofs

Lemma 3.1. (Canonical Forms)

Statement. Suppose e is a value. The following are true:

- If $\Gamma \vdash e : \{\bar{r}\}$ with ε , then e = r for some resource r.
- If $\Gamma \vdash e : \{\overline{\sigma}\}$ with ε , then $e = \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e}$.
- If $\Gamma \vdash e : \{\overline{d} \text{ captures } \varepsilon_c\}$ with ε , then $e = \text{new}_d \ x \Rightarrow \overline{d = e}$.

Furthermore, $\varepsilon = \emptyset$ in each case.

Proof. These typing judgements each appear exactly once in the conclusion of different rules. The result follows by inversion of ε -RESOURCE, ε -NEWOBJ, and C-NEWOBJ respectively.

Lemma 3.2. (Substitution Lemma)

Statement. If $\Gamma, z : \tau' \vdash e : \tau$ with ε , and $\Gamma \vdash e' : \tau'$ with ε' , then $\Gamma \vdash [e'/z]e : \tau$ with ε .

Intuition If you substitute z for something of the same type, the type of the whole expression stays the same after substitution.

Proof. We've already proven the lemma by structural induction on the ε rules. The new case is defined on a form not in the grammar for the fully-annotated system. So all that remains is to induct on derivations of $\Gamma \vdash e : \tau$ with ε using the new C rules.

Case. C-METHCALL.

Then $e = e_1.m(e_2)$ and $[e'/z]e = ([e'/z]e_1).m([e'/z]e_2)$. By inductive assumption we know that e_1 and $[e'/z]e_1$ have the same types, and that e_2 and $[e'/z]e_2$ have the same types. Since e and [e'/z]e have the same syntactic struture, and their corresponding subexpressions have the same types, then Γ can use C-METHCALL to type [e'/z]e the same as e.

Case. C-Inference.

Then $\Gamma \vdash e : \tau$ with effects (Γ') , where $\Gamma' \subseteq \Gamma$. By inversion $\Gamma' \vdash e : \tau$. Applying the inductive hypothesis (and our assumption that the T rules are sound) $\Gamma' \vdash [e'/z]e : \tau$. Since $\Gamma' \subseteq \Gamma'$ we have $\Gamma' \vdash [e'/z]e : \tau$ with effects (Γ') under C-Inference. Because $\Gamma' \subseteq \Gamma$ then $\Gamma \vdash [e'/z]e : \tau$ with effects (Γ') .

Case. C-NEWOBJ.

Then $e = \text{new}_d \ x \Rightarrow \overline{d = e}$. z appears in some method body e_i . By inversion we know $\Gamma, x : \{\bar{\sigma}\} \vdash \overline{d = e}$ OK. The only rule with this conclusion is ε -VALIDIMPL_d; by inversion on that we know for each i that:

- $d_i = \operatorname{def} \, m_i(y: au_1): au_2 \, \operatorname{with} \, arepsilon$
- $\Gamma,y: au_1\vdash e_i: au_2$ with arepsilon

If z appears in the body of e_i then $\Gamma, z : \tau \vdash d_i = e_i$ OK by inductive assumption. Then we can use ε -ValidImpl $_d$ to conclude $\overline{d} = [e'/z]e$ OK. This tells us that the types and static effects of all the methods are unchanged under substitution. By choosing the same $\Gamma' \subseteq \Gamma$ used in the original application of C-NewObJ, we can apply C-NewObJ to the expression after substitution. The types and static effects the methods are the same, and the same Γ' has been chosen, so [e'/z]e will be ascribed the same type as e.

Lemma 3.3. (Monotonicity of effects)

Statement. If $\Gamma_1 \subseteq \Gamma_2$ then $effects(\Gamma_1) \subseteq effects(\Gamma_2)$

Proof. Because effects(Γ_1) is the union of effects(τ), for every $(x, \tau) \in \Gamma_1 \subseteq \Gamma_2$. Then effects(Γ_1) \subseteq effects(Γ_2).

Lemma 3.4. (Use Principle)

Statement. If $\Gamma \vdash e_A : \tau_A$ with ε_A , and $e_A \longrightarrow_* e'_A \mid \varepsilon$, then $\forall r.\pi \in \varepsilon \mid (r, \{r\}) \in \Gamma$. Furthermore, $\varepsilon \subseteq \mathsf{effects}(\Gamma)$.

Proof. The only reduction that can add effects to ε is $r.\pi$. So at some point, an expression of the form $r.\pi$ must have been evaluated. In the source program it must have had the form $e.\pi$. Since the entire program typechecked under Γ , e must have been typed to $\{r\}$ at some point. Since resources cannot be dynamically created, $(r, \{r\}) \in \Gamma$. Since every resource with an operation called upon it is Γ , $\varepsilon \subseteq \texttt{effects}(\Gamma)$ follows by the definition of effects for the case of a resource.

Intuition. If you typecheck e with Γ , if an effect can happen on r when executing e then r must be in Γ .

Lemma 3.5. (Tightening Lemma)

Statement. If $\Gamma \vdash e : \tau$ with ε then $\Gamma \cap \mathtt{freevars}(e) \vdash e : \tau$ with ε .

Proof. The typing judgements operate on the form of e, so don't consider any variables external to e.

Note. We'll use freevars $(e) \cap \Gamma$ to mean Γ , where the pair (x, τ) is thrown out if $x \notin \text{freevars}(e)$.

Intuition. If you can typecheck e in Γ , you can throw out the parts in Γ not relevant to e and still typecheck it.

Definition 3.6. (label)

Given a program containing unlabeled parts we can safely label those parts. This process is well-defined if $\Gamma \vdash e : \tau$; then we say the labeling of e is $\mathtt{label}(\Gamma, e) = \hat{e}$.

```
\begin{split} &-\operatorname{label}(\varGamma,r)=\operatorname{r}\\ &-\operatorname{label}(\varGamma,x)=x\\ &-\operatorname{label}(\varGamma,e_1.m(e_2))=\operatorname{label}(e_1).m(\varGamma,\operatorname{label}(e_2))\\ &-\operatorname{label}(\varGamma,e_1.\pi(e_2))=\operatorname{label}(e_1).\pi(\operatorname{label}(e_2))\\ &-\operatorname{label}(\varGamma,\operatorname{new}_\sigma x\Rightarrow \overline{\sigma=e})=\operatorname{new}_\sigma x\Rightarrow\operatorname{label-helper}(\varGamma,\overline{\sigma=e})\\ &-\operatorname{label}(\operatorname{new}_\mathrm{d} x\Rightarrow \overline{d=e})=\operatorname{new}_\sigma x\Rightarrow\operatorname{label-helper}(\varGamma,\overline{d=e})\\ &-\operatorname{label-helper}(\sigma=e)=\sigma=\operatorname{label}(\varGamma,e)\\ &-\operatorname{label-helper}(\operatorname{def} m(y:\tau_2):\tau_3=e)=\operatorname{def} m(y:\tau_2):\tau_3 \text{ with effects}(\varGamma\cap\operatorname{freevars}(e))=\operatorname{label}(\varGamma,e) \end{split}
```

Notes:

- Beware of confusing notation: there are two types of equality in the above definitions. One is the equality which defines label, and the other is the equality $\sigma = e$ of declarations in the programming language.
- The program after labeling will be fully-labeled and contain terms entirely from the grammar for fully-labeled programs. Hence we can appeal to the soundness of that system.
- label is defined on expressions; label-helper on declarations. This is just for clarity; everywhere other than this section we'll only use label.

- Initially it seems like label on a new_{σ} object should just be the identity function; but the body of the methods of such an object may instantiate unlabeled objects and/or call methods on unlabeled objects, so we must recursively label those.
- From here on out we will use \hat{e} to refer to a fully-labeled program. We may sometimes say labels $(e) = \hat{e}$, and from then on refer to the labeled version of e as \hat{e} . We'll use $\hat{\tau}$ and $\hat{\varepsilon}$ to refer to its type and static effects.

Lemma 3.7. (Linearity of label over substitution)

label([e'/z]e) = [label(e')/z](label(e))Statement.

Proof. Induction on expression e.

Lemma 3.8. (Runtime Invariance Under label)

Statement. If the following are true:

- $\Gamma \vdash e_A : \tau_A$ with ε_A
- $\begin{array}{c} -e_A \longrightarrow e_B \mid \varepsilon \\ -\hat{e}_A = \mathtt{label}(e_A, \Gamma) \end{array}$

Then $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$ and $\hat{e}_B = label(e_B, \Gamma)$.

Proof. Induct on the form of e_A and then on the reduction rule $e_A \longrightarrow e_B \mid \varepsilon$.

Case. $e = r, e = x, e = \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e}, e = \text{new}_{d} \ x \Rightarrow \overline{d = e}$.

 $\overline{\text{Then } e}$ is a value and the theorem statement holds automatically.

Case. $| e = e_1.\pi$.

The only typing rule which applies is ε -OperCall, which tells us:

- $\Gamma \vdash e_1 : \{r\}$ with ε_1
- $-\Gamma \vdash e_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi\}$

There are two possible reductions.

<u>Subcase.</u> E-OperCall. We also know $e_1 \longrightarrow e'_1 \mid \varepsilon$, and $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$. By inductive assumption, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$, and $\hat{e}'_1 = \mathtt{label}(e'_1, \Gamma)$. Applying definitions, $\hat{e}_A = \mathtt{label}(e_1, \pi, \Gamma) = (\mathtt{label}(e_1, \Gamma)) \cdot \pi = (\mathtt{label}(e_1, \pi, \Gamma)) \cdot \pi$ $\hat{e}_1.\pi$. Because $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$, we may apply the reduction E-OPERCALL1 to obtain $\hat{e}_1.\pi \longrightarrow \hat{e}'_1.\pi \mid \varepsilon$. Lastly, $\hat{e}_B = \mathtt{label}(e'_1, \pi, \Gamma) = (\mathtt{label}(e'_1, \Gamma)) \cdot \pi$, which we know to be $\hat{e}'_1 \cdot \pi$ by inductive assumption.

<u>Subcase.</u> E-OperCall. We also know $e_1 = r$ and $r.\pi \longrightarrow \text{Unit} \mid \{r.\pi\}$. Applying definitions, $\hat{e}_A = \mathtt{label}(r.\pi) = (\mathtt{label}(r)).\pi = r.\pi = e_A$. The theorem holds immediately.

Case. $| e = e_1.m_i(e_2)$.

There are five possible reductions.

<u>Subcase.</u> E-METHCALL1. We also know $e_1 \longrightarrow e_1' \mid \varepsilon$ and $e_1.m_i(e_2) \longrightarrow e_1'.m_i(e_2) \mid \varepsilon$. By inductive assumption, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$, and $label(e'_1, \Gamma) = \hat{e}'_1$. Applying definitions $\hat{e}_A = label(e_1.m_i(e_2), \Gamma) =$ $(label(e_1), \Gamma).m_i(label(e_2), \Gamma) = \hat{e}_1.m_i(\hat{e}_2).$ Because $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$, we may apply the reduction E-METHCALL1 to obtain $\hat{e}_1.m_i(\hat{e}_2) \longrightarrow \hat{e}'_1.m_i(\hat{e}_2) \mid \varepsilon$. Lastly, $\hat{e}_B = \mathtt{label}(e'_1.m_i(\hat{e}_2), \Gamma) =$ $(label(e'_1), \Gamma).m_i(label(e_2), \Gamma)$, which we know to be $\hat{e}'_1.m_i(\hat{e}_2) = \hat{e}_B$ by assumptions.

<u>Subcase.</u> E-MethCall_{σ}. We also know $e_1 = v_1 = \text{new}_{\sigma} \ x \Rightarrow \overline{\sigma = e}$, and $e_2 \longrightarrow e'_2 \mid \varepsilon$ and $v_1.m_i(e_2) \longrightarrow v_1.m_i(e_2') \mid \varepsilon$. By inductive assumption, $\hat{e}_2 \longrightarrow \hat{e}_2' \mid \varepsilon$, and $label(e_2', \Gamma) = \hat{e}_2'$. Applying definitions, $\hat{e}_A = \mathtt{label}(v_1.m_i(e_2), \Gamma) = (\mathtt{label}(v_1, \Gamma)).m_i(\mathtt{label}(e_2, \Gamma)) = \hat{v}_1.m_i(\hat{e}_2)$. Because $\hat{e}_2 \longrightarrow \hat{e}'_2 \mid \varepsilon$, we may apply the reduction E-METHCALL_{\sigma} to obtain $\hat{v}_1.m_i(\hat{e}_2) \longrightarrow \hat{v}_1.m_i(\hat{e}'_2)$. Lastly, $\hat{e}_B = \mathtt{label}(\mathtt{v_1.m_i}(\mathbf{e'_2}) = (\mathtt{label}(v_1)).m_i(\mathtt{label}(e'_2)), \text{ which we know to be } \hat{v}_1.m_i(\hat{e}'_2) \text{ by assumptions.}$

<u>Subcase.</u> E-METHCALL2_d. Identical to the above subcase, but $e_1 = v_1 = \text{new}_d \ x \Rightarrow \overline{d = e}$, and we apply the reduction rule E-METHCALL_d instead.

<u>Subcase.</u> E-METHCALL 3_{σ} . We also know the following:

```
\begin{array}{l} -\ e_1 = v_1 = \mathsf{new}_\sigma\ x \Rightarrow \overline{\sigma = e} \\ -\ e_2 = v_2 \\ -\ \mathsf{def}\ m_i(y:\tau_2):\tau_3 \ \mathsf{with}\ \varepsilon_3 = e_{body} \in \{\bar{\sigma}\} \\ -\ v_1.m_i(v_2) \longrightarrow [v_1/x,v_2/y]e_{body} \mid \varnothing. \end{array}
```

Case. ε -OperCall.

Then we know the following:

- $-e_A = e_1.\pi$
- $\Gamma \vdash e_1 : \{r\}$ with ε_1
- $-\Gamma \vdash e_1.\pi : \mathtt{Unit} \ \mathtt{with} \ \{r.\pi\} \cup \varepsilon_1$

There are two reductions which apply.

Subcase. E-OPERCALL1. Then you also know $e_1 \longrightarrow e'_1 \mid \varepsilon$ and $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$. Applying definitions, $\hat{e}_A = \mathtt{label}(e_1.\pi) = (\mathtt{label}(e_1)).\pi = \hat{e}_1.\pi$. Applying inductive assumption, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$, where $\hat{e}'_1 = \mathtt{label}(e'_1)$. Because of this we may apply E-OPERCALL1, giving $\hat{e}_1.\pi \longrightarrow \hat{e}'_1.\pi$. Lastly, $\mathtt{label}(e'_1.\pi) = (\mathtt{label}(e'_1)).\pi = \hat{e}'_1.\pi$.

<u>Subcase.</u> E-OPERCALL2. Then you also know $e_1 = r$ and $r.\pi \longrightarrow \text{Unit} \mid \{r.\pi\}$. Applying definitions, $\hat{e}_A = \text{label}(r.\pi) = (\text{label}(r)).\pi = r.\pi = e_A$. The result follows immediately.

Case. ε -MethCall.

Then we know the following:

- $-e_A = e_1.m_i(e_2)$
- $\Gamma \vdash e_1 : \{ar{\sigma}\}$ with $arepsilon_1$
- $\Gamma \vdash e_2 : \tau_2$ with ε_2
- $-\sigma_i = \text{def } m_i(y:\tau_2):\tau_3 \text{ with } \varepsilon_3$
- $\Gamma \vdash e_1.m_i(e_2) : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$

There are three reductions which apply.

<u>Subcase.</u> E-METHCALL1 Then we also know $e_1 \longrightarrow e_1' \mid \varepsilon$ and $e_1.m(e_2) \longrightarrow e_1'.m(e_2) \mid \varepsilon$.

Theorem 3.9. (Extension Theorem)

Statement. If $\Gamma \vdash e : \tau$ and $e \longrightarrow e' \mid \varepsilon$ and $\hat{e} = \mathtt{label}(\Gamma, e)$, then $\Gamma \vdash \hat{e} : \hat{\tau}$ with $\hat{\varepsilon}$, where $\tau = \hat{\tau}$ and $\varepsilon \subseteq \hat{\varepsilon}$.

Intuition. If Γ can type e without an effect, there is a way to label e with a static effect set $\hat{\varepsilon}$ which contains the possible runtime effects of e (so it is an upper-bound), and no more than what is contained in the environment Γ . (Also, effects(Γ) is an upper bound but we omit this from the proof to keep it as simple as possible.)

Proof. Proceed by induction on $\Gamma \vdash e : \tau$ and then on the reduction $e \longrightarrow e' \mid \varepsilon$.

Case. T-VAR, T-RESOURCE, T-NEW $_{\sigma}$, T-NEW $_{d}$.

Then e is a value and no reduction can be applied to it. Theorem statement holds immediately.

Case. T-OPERCALL.

Then the following are known:

- $-e = e_1.\pi$
- $-\Gamma \vdash e_1:\{\bar{r}\}$
- $-\Gamma \vdash e_1.\pi : \mathtt{Unit}$

There are two reduction rules which could be applied to $e_1.\pi$.

Subcase. E-OPERCALL1. Then we know $e_1.\pi \longrightarrow e'_1.\pi \mid \varepsilon$, and $e_1 \to e'_1 \mid \varepsilon$. Because $\Gamma \vdash e_1 : \{\bar{r}\}$ by assumption of the typing rule, we may apply the inductive assumption. Then $\Gamma \vdash \hat{e}_1 : \{\bar{r}\}$ with $\hat{\varepsilon}_1$, where $\varepsilon \subseteq \hat{\varepsilon}_1$ and $\hat{e}_1 = \mathtt{label}(\Gamma, e_1)$.

By definition $\hat{e} = \mathtt{label}(\Gamma, e) = \mathtt{label}(\Gamma, e_1.\pi) = (\mathtt{label}(\Gamma, e_1)).\pi = \hat{e}_1.\pi$. We just established $\Gamma \vdash \hat{e}_1 : \{\bar{r}\}$ with $\hat{\varepsilon}$, so fulfill the requirements of ε -OPERCALL and can type $\hat{e} = \hat{e}_1.\pi$ with the judgement $\Gamma \vdash \hat{e}_1.\pi$: Unit with $\{r.\pi\} \cup \hat{\varepsilon}_1$.

 $\varepsilon \subseteq \hat{\varepsilon}_1$ is an inductive assumption; so $\varepsilon \subseteq \hat{\varepsilon}_1 \cup \{r.\pi\} = \hat{\varepsilon}$. Also, $\hat{\tau} = \text{Unit} = \tau$.

Subcase. E-OPERCALL2. Then we know $e = r.\pi$ and $r.\pi \longrightarrow \text{Unit} \mid \{r.\pi\}$. By definition $\hat{e} = \text{label}(\Gamma, e) = (\text{label}(\Gamma, r)).\pi = r.\pi = e$, so $\hat{e} = e$. Then $\hat{\tau} = \tau$ automatically. We need only show $\varepsilon = r.\pi \in \hat{\varepsilon}$.

By ε -RESOURCE, $\Gamma \vdash r : \{r\}$ with \varnothing and by ε -OPERCALL, $\Gamma \vdash r.\pi :$ Unit with $\{r.\pi\}$. Since $\hat{e} = r.\pi$, then $\hat{e} = r.\pi = \varepsilon$.

Case. T-METHCALL $_{\sigma}$.

Then the following are known:

- $-e = e_1.m_i(e_2)$
- $-\Gamma \vdash e_1: \{\bar{\sigma}\}$
- $-\Gamma \vdash e_2 : \tau_2$
- $-\Gamma \vdash e_1.m_i(e_2): \tau_3$
- def $m_i(y:\tau_2): au_3$ with $arepsilon_3\in\{ar{\sigma}\}$

There are three reduction rules which could be applied to $e_1.m_i(e_2)$.

<u>Subcase.</u> E-OPERCALL1. Then we know $e_1 \longrightarrow e'_1 \mid \varepsilon$ and $e_1.m_i(e_2) \longrightarrow e'_1.m_i(e_2) \mid \varepsilon$. Because $\Gamma \vdash e_1 : \{\bar{\sigma}\}$ by assumption of the typing rule, we may apply the inductive assumption. Then $\Gamma \vdash \hat{e}_1 : \{\bar{\sigma}\}$ with \hat{e}_1 , where $\varepsilon \subseteq \hat{e}_1$ and $\hat{e}_1 = \mathtt{label}(\Gamma, e_1)$.

By definition, $\hat{e} = \mathtt{label}(e_1.m_i(e_2)) = (\mathtt{label}(e_1)).m_i(\mathtt{label}(e_2)) = \hat{e}_1.m_i(\hat{e}_2)$. We just established $\Gamma \vdash \hat{e}_1 : \{\bar{\sigma}\}$ with \hat{e}_1 .

If e_2 is a value then $\hat{e}_2 = \mathtt{label}(e_2) = e_2$.

Can we type \hat{e}_2 though?

Case. T-METHCALL_d. Hev

Theorem 3.10. (Refinement Theorem)

Statement. If $\Gamma \vdash e : \tau$ with ε and label $(e) = \hat{e}$, then $\Gamma \vdash \hat{e} : \hat{\tau}$ with $\hat{\varepsilon}$, where $\hat{\varepsilon} \subseteq \varepsilon$ and $\tau = \hat{\tau}$.

Intuition. Labels can only make the static effects more precise; never less precise.

Proof. By induction on the judgement $\Gamma \vdash e : \tau$ with ε .

Case. ε -RESOURCE, ε -VAR.

If e is a resource or a variable then $e = \hat{e}$ so the statement is automatically fulfilled.

```
Case. \varepsilon-OPERCALL.

Then e = e_1.\pi and we know:

-\Gamma \vdash e: Unit with \{r.\pi\} \cup \varepsilon_1

-\Gamma \vdash e_1 : \{\bar{r}\} with \varepsilon_1
```

Applying definitions, $\hat{e} = \mathtt{label}(e_1.\pi) = (\mathtt{label}(e_1)).\pi = \hat{e}_1.\pi$. By inductive assumption, $\Gamma \vdash \hat{e}_1 : \{\bar{r}\} \text{ with } \hat{e}_1$, where $\hat{e}_1 \subseteq e_1$. Then $\Gamma \vdash \hat{e} : \mathtt{Unit} \text{ with } \{r.\pi\} \cup \hat{e}_1 \text{ by } \varepsilon\text{-OperCall}$. Importantly, $\{r.\pi\} \cup \hat{e}_1 \subseteq \{r.\pi\} \cup e_1 \text{ as claimed}$.

```
Case. \varepsilon-METHCALL.

Then e = e_1.m_i(e_2) and we know:

-\Gamma \vdash e : \tau_3 with \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3

-\Gamma \vdash e_1 : \{\bar{\sigma}\} with \varepsilon_1

-\Gamma \vdash e_2 : \tau_2 with \varepsilon_2

-\sigma_i = \det m_i(y : \tau_2) : \tau_3 with \varepsilon_3
```

Applying definitions, $\hat{e} = \mathtt{label}(e_1.m_i(e_2)) = (\mathtt{label}(e_1)).m_i(\mathtt{label}(e_2)) = \hat{e}_1.m_i(\hat{e}_2)$. By inductive assumption, $\Gamma \vdash \hat{e}_1 : \{\bar{\sigma}\}$ with $\hat{\varepsilon}_1$ and $\Gamma \vdash \hat{e}_2 : \tau_2$ with $\hat{\varepsilon}_2$, where $\hat{\varepsilon}_1 \subseteq \varepsilon_1$ and $\hat{\varepsilon}_2 \subseteq \varepsilon_2$. Then $\Gamma \vdash \hat{e} : \tau_3$ with $\hat{\varepsilon}_1 \cup \hat{\varepsilon}_2 \cup \varepsilon_3$ under ε -METHCALL. Importantly, $\hat{\varepsilon}_1 \cup \hat{\varepsilon}_2 \cup \varepsilon_3 \subseteq \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ as claimed.

```
Case. C-METHCALL.

Then e = e_1.m_i(e_2) and we know:
- \Gamma \vdash e : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3
- \Gamma \vdash e_1 : \{\bar{d} \text{ captures } \varepsilon_c\} \text{ with } \varepsilon_1
- \Gamma \vdash e_2 : \tau_2 \text{ with } \varepsilon_2
- d_i = \text{def } m_i(y : \tau_2) : \tau_3
```

The reasoning is the same as the above case, but use C-METHCALL instead of ε -METHCALL.

```
Case. C-Inference.
```

We know:

- $-\Gamma'\subseteq\Gamma$
- $-\Gamma' \vdash e : \tau$
- $-\Gamma \vdash e : \tau \text{ with effects}(\Gamma')$

There aren't any judgements of the form $e:\tau$ with ε in the antecedent of this rule so we cannot use the induction hypothesis. We will instead do a case-by-case analysis of the form of e.

Subcase. e = r or e = x. Then $e = \hat{e}$ so the statement holds immediately.

Subcase. $e = e_1.\pi$. Then $\hat{e} = (\hat{e}_1).\pi = \hat{e}_1.\pi$. As e_1 is a subexpression of e, and since Γ can type e_1 , we may conclude $\Gamma \vdash e_1 : \{r\}$. By an application of C-Inference choosing the same Γ' , we know $\Gamma \vdash e_1 : \{r\}$ with effects(Γ'). By applying the inductive hypothesis to e_1 we know that $\Gamma \vdash \hat{e}_1 : \{r\}$ with \hat{e}_1 , where $\hat{e}_1 \subseteq \mathsf{effects}(\Gamma')$. Therefore $\Gamma \vdash \hat{e}_1 : \tau_1$. By an application of T-OPERCALL we know that

This one's kind of interesting. There aren't any judgements of the form $e:\tau$ with ε in the antecedent of this rule, so we can't use the induction hypothesis. We also don't know anything about e.

For each $i, \sigma_i = e_i$ OK only matches ε -Validimpl $_\sigma$. By inversion on that rule, $\Gamma, y : \tau_2 \vdash e : \tau_3$ with ε_3 and $\sigma_i = \text{def } m_i(y : \tau_2) : \tau_3$ with ε_3 . Applying definitions, $\hat{e} = \text{label}(\text{new}_\sigma \ x \Rightarrow \overline{\sigma = e}) = \text{new}_\sigma \ x \Rightarrow \text{label-helper}(\overline{\sigma = e})$. Then for each i, label-helper($\sigma_i = e_i$) = $\sigma_i = \text{label}(e_i)$. Let $\hat{e}_i = \text{label}(e_i)$. Applying the inductive assumption we get $\Gamma \vdash \hat{e}_i : \tau_3$ with $\hat{\varepsilon}_3$. Then $\Gamma \vdash \sigma_i = \text{label}(e_i)$ OK by ε -Validimpl $_\sigma$. This was for any i, so $\Gamma \vdash \overline{\sigma_i} = \text{label}(e_i)$ OK. Finally we can apply ε -NewObj to the labeled object $\overline{\sigma_i} = \text{label}(e_i)$, which gives the judgement $\Gamma \vdash \hat{e} : \{\bar{\sigma}\}$ with \varnothing .

```
Case. C-NewObj.

Then e = \text{new}_d \ x \Rightarrow \overline{d = e} and we know:
- \Gamma \vdash e_1.m_i(e_2) : \tau_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3
- \Gamma' \subseteq \Gamma
```

```
\begin{array}{l} -\ \varepsilon_c = \mathtt{effects}(\varGamma') \ \mathtt{with} \ \varnothing \\ -\ \varGamma', x : \{\bar{d} \ \mathtt{captures} \ \varepsilon_c\} \vdash \overline{d=e} \ \mathtt{OK} \end{array}
```

(Similar to above). For each $i, d_i = e_i$ OK only matches ε -ValidImpl $_d$. By inversion on that rule, $\Gamma, y: \tau_2 \vdash e: \tau_3$ and $d_i = \operatorname{def} \underline{m(y:\tau_2)}: \tau_3$ with ε_3 . Applying definitions, $\hat{e} = \operatorname{label}(\operatorname{new}_\sigma x \Rightarrow \overline{\sigma = e}) = \operatorname{new}_d x \Rightarrow \operatorname{label-helper}(\overline{d = e})$. Then for each i, label-helper(def $m(y:\tau_2):\tau_3 = e) = \operatorname{def} m(y:\tau_2):\tau_3$ with effects($\Gamma \cap \operatorname{freevars}(e_i)$) = label(e_i). Let $\hat{e}_i = \operatorname{label}(e_i)$. By inductive assumption, $\Gamma \vdash \hat{e}_i:\tau_3$ with $\hat{\varepsilon}_3$. This was for any i, so if σ_i is the labeled version of d_i then $\Gamma \vdash \overline{\sigma_i} = \operatorname{label}(e_i)$ OK. Finally we can apply ε -NewObj to the labeled object $\overline{d_i} = \operatorname{label}(e_i)$, which gives the judgement $\Gamma \vdash \hat{e}: \{\bar{d}\}$ with \varnothing .

Theorem 3.11. (Soundness Theorem)

Statement. If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow e_B \mid \varepsilon$ then $\Gamma \vdash e_B : \tau_B$ with ε_B , where $\tau_B = \tau_A$ and $\varepsilon \subseteq \varepsilon_A$.

Proof. Let $\hat{e}_A = \mathtt{label}(e_A)$. By Refinement Theorem, $\Gamma \vdash \hat{e}_A : \hat{\tau}_A$ with $\hat{\varepsilon}_A$, where $\tau_A = \hat{\tau}_A$ and $\hat{\varepsilon}_A \subseteq \varepsilon_A$. By Invariance Of Runtime Under label, we know $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$. Since \hat{e}_A is a fully-labeled program, by Soundness of ε rules, we know $\Gamma \vdash \hat{e}_B : \hat{\tau}_A$ with $\hat{\varepsilon}_B$ where $\varepsilon \subseteq \hat{\varepsilon}_A$. By Runtime Invariance Under label, label $(e_B) = \hat{e}_B$. By Refinement Theorem, $\Gamma \vdash \hat{e}_B : \tau_B$ with $\hat{\varepsilon}_B$.

Putting this all together we know $\tau_A = \hat{\tau}_A = \tau_B$ and $\varepsilon \subseteq \hat{\varepsilon}_A \subseteq \varepsilon_A$.