Mielage Prediction Project

```
In [2]:
         #import library
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]:
         #import data
          df=pd.read csv('https://github.com/YBI-Foundation/Dataset/raw/main/MPG.csv')
In [4]:
         df.head()
Out[4]:
           mpg cylinders displacement horsepower weight acceleration model year origin
                                                                                                    name
         0 18.0
                       8
                                307.0
                                            130.0
                                                   3504
                                                               12.0
                                                                            70
                                                                                 usa chevrolet chevelle malibu
         1 15.0
                       8
                                350.0
                                            165.0
                                                   3693
                                                               11.5
                                                                                            buick skylark 320
                                                                            70
                                                                                 usa
         2 18.0
                       8
                                318.0
                                           150.0
                                                   3436
                                                               11.0
                                                                           70
                                                                                 usa
                                                                                           plymouth satellite
                       8
                                304.0
                                            150.0
                                                   3433
                                                               12.0
                                                                                               amc rebel sst
           16.0
                                                                            70
                                                                                 usa
         4 17.0
                       8
                                302.0
                                            140.0
                                                   3449
                                                               10.5
                                                                            70
                                                                                 usa
                                                                                                 ford torino
In [5]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 398 entries, 0 to 397
         Data columns (total 9 columns):
                           Non-Null Count Dtype
         # Column
                            -----
                            398 non-null
                                            float64
             mpg
         1 cylinders
                            398 non-null
                                            int64
             displacement 398 non-null
                                            float64
             horsepower
                            392 non-null
                                            float64
             weight
                            398 non-null
                                            int64
             acceleration 398 non-null
         5
                                            float64
             model_year
                            398 non-null
                                            int64
             origin
                            398 non-null
                                            object
                            398 non-null
                                            object
         dtypes: float64(4), int64(3), object(2)
         memory usage: 28.1+ KB
In [6]:
         df.nunique()
                         129
Out[6]:
         cylinders
                           5
```

displacement 82
horsepower 93
weight 351
acceleration 95
model_year 13
origin 3
name 305
dtype: int64

In [7]:

df.describe()

Out[7]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

In [8]:

df.corr()

Out[8]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	0.579267
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-0.348746
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-0.370164
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-0.306564
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	0.288137
model_year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	1.000000

In [12]:

#remove missing value
df=df.dropna()
df.columns

```
In [10]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 392 entries, 0 to 397
         Data columns (total 9 columns):
             Column
                           Non-Null Count Dtype
                           392 non-null
                                           float64
          0
              mpg
              cylinders
                           392 non-null
                                           int64
             displacement 392 non-null
                                           float64
             horsepower
                           392 non-null
                                           float64
             weight
                           392 non-null
                                           int64
          5 acceleration 392 non-null
                                           float64
          6 model year
                           392 non-null
                                           int64
          7 origin
                           392 non-null
                                           object
          8 name
                           392 non-null
                                           object
         dtypes: float64(4), int64(3), object(2)
         memory usage: 30.6+ KB
In [14]:
          #Data visualization
          sns.pairplot(df,x vars=['mpg','displacement','horsepower','weight',
                 'acceleration'],y_vars=['mpg']);
           40
         Бдш
30
           20
           10
                                       100
                                            200
                                                 300
                                                             50
                                                                                      2000
                                                                                           3000
                                                                                                4000
                                                                                                                                25
                    20
                        30
                              40
                                                                  100
                                                                       150
                                                                                                      5000
                                                                                                              10
                                                                                                                    15
                                                                                                                          20
                                            displacement
                                                                    horsepower
                                                                                                                  acceleration
                       mpg
```

sns.regplot(x='displacement',y='mpg',data=df);


```
In [16]:
          #define x and y
          df.columns
Out[16]: Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
                 'acceleration', 'model_year', 'origin', 'name'],
               dtype='object')
In [17]:
          y=df['mpg']
          x=df[['displacement','horsepower','weight',
                  'acceleration']]
In [18]:
          #split
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=2529)
In [19]:
          #modeL
          from sklearn.linear_model import LinearRegression
          model=LinearRegression()
In [20]:
          model.fit(x_train,y_train)
Out[20]: LinearRegression()
In [21]:
          model.intercept_
         45.84620249789292
In [22]:
          model.coef_
```

```
Out[22]: array([-0.007859 , -0.05202824, -0.0048651 , -0.05998945])
In [23]:
          #prediction
          y pred=model.predict(x test)
          y_pred
Out[23]: array([18.45029029, 15.11872575, 14.25951901, 23.63777162, 29.77227939,
                23.78289678, 26.46274613, 24.63477759, 15.10361067, 11.92089347,
                24.03667612, 28.03774179, 31.7791986, 31.04942136, 18.34939414,
                19.34562679, 28.14901371, 32.26833498, 31.23336778, 27.1706607,
                18.90264044, 22.69158865, 26.30616149, 32.53334114, 20.7455229,
                 8.43604922, 21.96939005, 18.16644283, 24.9187207, 14.95041612,
                23.27573018, 17.10008397, 9.28416594, 30.02859334, 20.49341373,
                29.16402497, 24.1851619, 21.82468561, 10.45764414, 12.99758931,
                21.55287965, 19.9763373 , 5.81701795, 17.83479167, 22.69872144,
                29.39987303, 13.2638446 , 25.84303202, 29.29886179, 22.44116443,
                22.30857618, 16.57432268, 24.06827363, 30.19019859, 10.04817173,
                 9.3533171 , 28.14495274, 23.67665202, 20.07936568, 30.77322956,
                20.95405256, 26.72684739, 23.16157669, 14.10789682, 24.37223149,
                26.84731155, 15.26437637, 24.21355 , 30.81705563, 14.86794633,
                27.5428809 , 24.35148953 , 10.75013125 , 30.29658039 , 30.95694009 ,
                27.35893598, 31.26808388, 10.29239165, 27.64504505, 16.41746006,
                25.5910977 , 29.48584659, 14.83958315, 32.76319208, 30.34965318,
                30.95305498, 14.61576534, 27.04413659, 26.74989971, 29.0983602,
                32.55952574, 29.50578249, 31.70671628, 31.69454341, 21.58369883,
                31.71427871, 26.19466037, 28.94617784])
In [25]:
          #accuracy
          from sklearn.metrics import mean_absolute_percentage_error
          mean_absolute_percentage_error(y_test,y_pred)
Out[25]: 0.14486145216628077
 In [ ]:
```