Terceiro Relatório de Medidas Eletromagneticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

1	Intr	Introdução			
	1.1	Anális	e preliminar		
2	Resultados esperados				
3 Medições no laboratório					
	3.1	Tabela	a de medições		
		3.1.1	Medicoes utilizando circuito		
			RC		
		3.1.2	Medicoes utilizando multi-		
			metro		
4	Circ	cuito F	m RL		

Conclusoes

Introdução 1

Neste relatório, vamos medir a capacitancia de um capacitor utilizando um filtro RC.

1.1 Análise preliminar

Construiremos um circuito RC e mediremos a tensao com um osciloscópio em paralelo com o capacitor.

E utilizaremos da seguinte relacao para medir a capacitancia:

$$\tau = RC
C = \frac{\tau}{R}$$
(1)

Logo utilizaremos uma fonte geradora de onda quadrada com periodo de aproximadamente 4 au para podermos observar claramente o padrao de carregamento e descarregamento do capacitor

Entao mediremos o tempo necessario para que a tensao atinja 63.2% do seu valor de pico para obtermos o τ .

2 Resultados esperados

Esperamos que os valores de capacitancia que obteremos seja coerente com o valor real e que a maior fonte de imprecisao vira da nossa medicao por cursores no osciloscopio.

3 Medições no laboratório

Vamos utilizar o osciloscópio para gerar uma onda quadrada que passara por um circuito RC. E mediremos a tensao no capacitor para fazermos a analise de tempo de subida e descida.

Faremos isto tres vezes para tres valores de R previamente conhecidos, respectivamente 14800Ω , 8200Ω e 15Ω .

Com estes em maos determinaremos a capacitancia do nosso capacitor.

Apos isso, mediremos a capacitancia diretamente com um multimetro para podermos fazer a analise das discrepancias entre as duas medidas.

3.1 Tabela de medições

3.1.1 Medicoes utilizando circuito RC

$R\Omega$	$\tau(s)$	CnF
15	0.0000045	300.0
8200	0.00054	65.8
14800	0.00076	51.3

3.1.2 Medicoes utilizando multimetro

C(nF)	
62.37	62.42
62.16	62.27
62.8	63.1
62.99	62.95
63.38	62.97
63.3	63.4
63.45	63.61
64.24	63.82
63.32	63.26
63.24	63.09

Media	63.107
Desvio padrão	0.5104

4 Circuito RL

Para um hipotetico circuito RL, teriamos:

$$\tau = \frac{L}{R} \tag{2}$$

$$L = \tau R$$

Que tambem nos permitiria determinar a indutancia, a diferenca seria que neste caso multiplicariamos o τ encontrado experimentalmente por R para obtermos a indutancia.

5 Conclusoes

Conseguimos determinar a capacitancia com mais precisao com um resistor intermediario.

Isto ocorre devido a maior facilidade de observação das curvas de subida e descida da tensão no capacitor vistos no osciloscopio.