LetsUpgrade - AWS Essentials-Batch 1-Day 3 Project Document

Name: Nantha Kumar Rajasekaren

Email Address: nanthacollege17@gmail.com

Phone Number: 8825862159

Project 1 : Deploy Web Server in Windows Instance

Project 2: Deploy Web Server in Linux Instance

Project 1: Deploy Web Server in Windows Instance

- * Login into the AWS Console https://console.aws.amazon.com/console/home
- * After Login into it you will the home dashboard of the AWS Console

* Then click "Services" to list the AWS Cloud services and then select "EC2" from that

* Select Instance option from the left side panel of the appeared windows

* Then select Launch Instance button from the appeared EC2 window

* Select Machine Image (AMI) from the list. I select the Windows Server 2012 R2 Base (HVM)

* Then select Instance Hardware Configuration from the appeared list. Hereby i select t2.micro, which is eligible for Free-Tier.

* After that configure the VPC and other system roles for the instance, here i configure this instance to launch under pre-exist configured VPC.

* Then configure the storage for the instance. Until 30 GB of storage is eligible for free-tier users. For Windows Instance it is necessary to configure 30 GB of EBS Storage.

* Then add the tag value for the instance for identification.

* Then configure the security group for the instance, which acts as a basic protection like firewall for the server (or) instance from the cyber attack. Here i configured my pre-exist secured group, which is associated with my VPC.

* Then select the option to review the instance configuration and launch it.

* Then select the launch option to launch the configured instance.

* Create a Key file (.pem), which holds up the encrypted password to access the created server in AWS.

* After all the process is done successfully, Wait for some times to access the server until the status check completely.

* Then select the connect button to decrypt the key file into the password to access the server.

* After uploaded the key in the appeared panel, select the Decrypt button to achieve the password.

* There are a lot of applications using RDP connection, even AWS will provide a Microsoft RDP file for the server access. But hereby i'm using "remmina" for RDP access

* Type decrypted password in the appeared panel to access the server

* After the remmina connects with the server, open the "powershell" in the task bar of the Windows and type the following command to install IIS-Internet Information Services.

Instance-WindowsFeature -name Web-Server -IncludeManagementTools

* After it installs the IIS successfully, open the server manager to ensure that the IIS is running properly.

* Achieve the public IP address of the server from the AWS-EC2 console and point the IP address in the browser.

Thus Project-1 Successfully completed.

Project 2 : Deploy Web Server in Linux Instance

- * Login into the AWS Console https://console.aws.amazon.com/console/home
- * After Login into it you will the home dashboard of the AWS Console

* Then click "Services" to list the AWS Cloud services and then select "EC2" from that

* Select Instance option from the left side panel of the appeared windows

* Then select Launch Instance button from the appeared EC2 window

* Select Machine Image (AMI) from the list. I select the Ubuntu Server 16.04 LTS (HVM).

* Then select Instance Hardware Configuration from the appeared list. Hereby I select t2.micro, which is eligible for Free-Tier.

* After that configure the VPC and other system roles for the instance, here i configure this instance to launch under pre-exist configured VPC.

* Along with the VPC, i associate the "SystemManager" IAM role for my instance to access the server through SSH connection instead of using Mobaxterm or some other

* Then configure the storage for the instance. Until 30 GB of storage is eligible for free-tier users. For Linux Instance it is necessary to configure 8 GB of EBS Storage.

* Then add the tag value for the instance for identification.

* Then configure the security group for the instance, which acts as a basic protection like firewall for the server (or) instance from the cyber attack. Here I configured my pre-exist secured group, which is associated with my VPC.

* Then select the option to review the instance configuration and launch it.

* Then select the launch option to launch the configured instance. Create a Key file (.pem), which holds up the encrypted password to access the created server in AWS.

* After all the process is done successfully, Wait for some time to access the server until the status check completely.

* Then select the connect button to access the server.

* Here I'm using "Session Manager" to connect with the server through SSH instead of other 3rd party applications for the security reason.

* After session manager opens, type the following command to install and configure web server (Nginx).

apt-get update (To update the system packages)
apt-get install nginx -y (To install the Nginx web server service)

```
| Mode | Mark |
```

After it installed successfully. Start the service to run always.

systemctl enable nginx

systemctl start nginx

After it runs successfully, then trap the public IP address of the server from the AWS-EC2 console and the point the browser to that IP address.

Thus Project-2 Successfully completed.