

Dynamic Configuration and Scaling of VPN Concentrator and Envoy SASE Proxy in Multi-Tenant Edge

Srinivasa Addepalli & Ritu Sood, Aryaka Mrittika Ganguli, Jeff Shaw, Intel Corporation

November 12, 2024 Salt Lake City

Demo, benchmarks: Abhirupa Layek, Network Engineer, Intel

Srinivasa Addepalli CTO Aryaka

Mrittika Ganguli Principal Engineer Intel Corporation

Ritu Sood
Distinguished Engineer

Aryaka

Jeff Shaw Software Architect Intel Corporation

Introduction

- What is SASE/SSE?
 - The need for a proxy in SASE/SSE.
 - Why Envoy is the right choice for a proxy.
 - Enhancements made to optimize Envoy for SASE/SSE.
 - The role of VPN concentrators in SASE/SSE.
 - Why single-tunnel throughput performance is crucial.
 - The need for VPP-based IPsec.
 - Essential VPN concentrator functionalities beyond IKEv2/IPsec.
 - Performance metrics and a demo.

Q&A

Introduction – SASE/SSE for Modern Enterprises &

SASE/SSE Security requires Proxy technology

Security Functions

- Context based Access Controls
- URL filtering
- Content filtering
- DLP
- Anti-Malware
- LLM firewall
- API Firewall

Requirements

 SSL/TLS Decryption to get the deeper protocol data.

- Termination of TCP
- Termination of SSL
- Upstream Connection Origination
- Mimick Certs

Proxy
technology
supporting
Forward
Reverse and
transparent
proxy
methods

Envoy Proxy for SASE/SSE – Why?

What did we do to make Envoy SASE/SSE ready

Multi-tenancy
Configuration Isolation
VRF Support
Multi Criteria tenant identification

Forward Proxy Authentication (Kerberos, UN/PWD)

Forward Proxy Authentication (Kerberos, UN/PWD, Recycling)

MITM TLS Inspection (Mimic Cert generation)

Rewritten OAUTH filter (Multiple OIDC clients)

Common Policy Framework (for multiple functions, Objects support)

Configuration Reuse across multiple listeners

Beyond foundational changes, many security functions as filters

SASE/SSE – Opensource Beyond Envoy

Automation

- HorizontalPod scaling
- VPN Tunnels one per tenant location
- Geneve tunnelsone per tenant
- Internal IP
 address allocation
 and routes per
 tenant per service
- VerticalScaling

VPP VPNC

Performance of VPP IPsec Workload Running with Different Number of Worker Cores

Source: Intel® AVX-512 - High Performance IPsec with Intel® Xeon® Scalable Processor https://networkbuilders.intel.com/docs/networkbuilders/intel-avx-512-high-performance-ipsec-with-intel-xeon-scalable-processor-technology-guide-1683018859.pdf

P-core and E-core IPsec scaling

Performance of VPP IPsec Workload Running on different types of CPU

VPP VPNC Architecture

VPP VPNC High Level Architecture

Multi Tenancy

- Need to isolate traffic between tenants
- Tenants have overlapping IP addresses

Multi-Tenant VPNC

Envoy Acceleration summary

Envoy **Performance** acceleration

Demo VPNC+Envoy

root@fcp-spr12:~/Demo# root@fcp-spr12:~/Demo# export PF_server=ens785f0 root@fcp-spr12:~/Demo# ./scripts/start_server.sh 2. client 3. Site 1 VPNC root@fcp-spr12:~/Demo#

root@fcp-spr12:~/Demo# export PF_client=ens785f1
root@fcp-spr12:~/Demo# 7. SASE proxy

4. Site 2 VPNC

Next Steps

Links:

- VPP VPNC Whitepaper https://digitallibrary.intel.com/content/digital-library/us/en/assetdetail.html/content/dam/intel-digital-library/audience/business/edge-networking-services-product-brief
- TLS and load balancing acceleration <u>-</u>
 https://networkbuilders.intel.com/solutionslibrary/service-mesh-istio-envoy-optimizations-intel-xeon-sp-solution-brief
- Connect with us for Collaboration

Backup

Dynamic Configuration and Scaling of VPN Concentrator and Envoy SASE Proxy in Multi-Tenant Edge

Srinivasa Addepalli & Ritu Sood, Aryaka Mrittika Ganguli & Jeff Shaw, Intel Corporation

This discussion shows a framework that integrates a VPN Concentrator with Envoy-based Secure Access Service Edge (SASE) proxy, leveraging APIs for configuration and management of network functions within containers. This is designed to dynamically scale.

The VPN Concentrator (VPNC) establishes secure IPSec tunnels that encapsulate data traffic, providing privacy and protection against threats. As number of tenants or volume of traffic increases, the need for additional VPNCs, IPSec tunnels and proxies arise.

The SASE proxy is a network filter at the edge, enforcing security policies, optimizing traffic flow, providing a zero-trust network access to cloud-based services. Number of proxies is changed as a ratio-based scaling approach to IPSec tunnels or tenants based on metrics like:

- Throughput, Latency, Error rates
- Active, denied connections
- Security breaches
- Number of active user sessions
- Number of route changes for load-balancing
- Envoy utilization with/without optimization

Speaker Name

Content

November 12, 2024 Salt Lake City

Speaker Name
Job Title
Company

Speaker Name
Job Title
Company

November 12, 2024 Salt Lake City

Speaker Name
Job Title
Company

November 12, 2024 Salt Lake City

Speaker Name
Job Title
Company

Speaker Name
Job Title
Company

Job Title

Company

Speaker Name
Job Title
Company

Speaker Name
Job Title
Company