THE UNIVERSITY of York

CHEMISTRY DATA BOOK

INTRODUCTION

This Data Book contains a selection of information and data which is relevant to the Chemistry Courses at York.

As far as thermal data is concerned there are often variations in the values cited in the literature. In these instances, one particular set of values has been chosen for display in the tables and, under normal circumstances, no special problems should arise on account of this choice. For precise work, however, it is advisable to consult the extensive tabulations of source material that are available in the Morrell and Whinfield Libraries. The most valuable of these is:

CRC Handbook of Physics and Chemistry
Ed. R C West

A useful compilation and summary of SI conventions is found in Quantities, Units and Symbols in Physical Chemistry, Mills *et. al.*, Blackwell (1989).

D K Smith *October*, 2011

CONTENTS

		Page
	Introduction	_
	Periodic Table	Back Page
	Greek Alphabet	1
1	Atomic and Ionic Properties	
	Atomic First Ionisation Energies	2
	Electron-Gain Energies	3
	Enthalpies of Formation of Gaseous Monatomic Cations	11
	Ionic Radii (Shannon-Prewitt)	4
	Slater Atomic Radii & Allred-Rochow Electronegatives	6
	Standard Half-Cell Reduction Potentials	8
2	Thermal Properties of Matter	
	Heats of Combustion	21
	Properties of Selected Organic Compounds	24
	Standard Enthalpies of Fusion and Vaporisation	12
	Standard Enthalpies of Hydration	13
	Standard Enthalpies of Hydration of Ions	13
	Steam - Temperature, Pressure & Volume	26
	Thermal Properties of Liquid Water	27
	Thermodynamic Data for Inorganic Compounds	14
	Thermodynamic Data for Organic Compounds	22
3	Energy	
	Energy Equivalents	28
	Approximate Energy Conversion Factors	29
4	Terrestrial Data	
	Atmosphere	31
	Earth	30
	Geological Time Scales	32
	United Kingdom Land Statistics	31

5	Physical and Chemical Properties and Data	
	¹ H NMR Chemical Shifts	33
	¹³ C NMR Chemical Shifts	34
	Amino Acids	61
	Bravais Lattices	41
	Common Abbreviations	50
	Genetic Code	63
	Hammett Substituent Constants	65
	Infra-red Absorption Frequencies for Inorganic Species	39
	Infra-red Absorption Frequencies for Organic Functions	40
	Mohs' Hardness Scale	48
	NMR Properties of Single Isotopes	35
	Order of Precedence for Common Groups – Table A	52
	Order of Precedence for Common Groups – Table B	54
	Physical Properties of Gases	43
	Physical Properties of Liquids	44
	Physical Properties of Some Solid Materials	46
	pK _A approximate values of Selected Organic Compounds	64
	Selected Stability Constants	49
	Stokes' Law of Viscosity	48
	Structures of Selected Cyclic Organic Compounds	55
	Structures of Selected Organic Compounds	58
	Structures of Selected Organic Groups	60
	Summary of organic Nomenclature (IUPAC)	51
6	Mathematical Data	
	Arithmetical Progression	89
	Assigning a Molecule to its Point Group	66
	Bionomial Series	87
	Character Tables for Selected Groups	67
	Complex Numbers	86
	Critical Values for F for a One-tailed Test	95
	Definitions of Binomial Series	87
	Derivatives and Indefinite Integrals	88
	Direct Product Rules for Chemically Important Groups	82
	Factorial Definitions	87
	Geometrical Progression	89
	Group Theoretical Formulae	81

	Hyperbolic Functions	86
	Integration by Parts	85
	Maclaurin Series	89
	Normal Distribution (Single Sided)	96
	Probability Points of the χ^2 Distribution	98
	Quadratic Equations	86
	Scalar, Vector Products	89
	Simpson's Rule	85
	Students' t-Distribution	92
	Taylor Series	89
	Tolerance Intervals	94
	Trapezoidal Rule	85
	Trigonometrical Formulae and Results	90
7	Units and Constants	
	Atomic Units	101
	Fundamental Constants	99
	Multiples of Base 10	101
	SI Units	100

GREEK ALPHABET

Alpha	A	α	Nu	N	ν
Beta	В	β	Xi	Ξ	ξ
Gamma	Γ	γ	Omicron	O	o
Delta	Δ	δ	Pi	П	π
Epsilon	E	3	Rho	P	ρ
Zeta	Z	ζ	Sigma	Σ	σ
Eta	Н	η	Tau	T	τ
Theta	Θ	θ	Upsilon	Y	υ
Iota	I	ι	Phi	Φ	φ
Карра	K	κ	Chi	X	χ
Lambda	Λ	λ	Psi	Ψ	Ψ
Mu	M	μ	Omega	Ω	ω

ATOMIC FIRST IONIZATION ENERGIES (eV)

							H 13.6 He 24.6						
			Li 5.4	Be 9.3	B 8.3	C 11.3	N 14.5	O 13.6	F 17.4	Ne 21.6			
			Na 5.1	Mg 7.6	A1 6.0	S i 8.2	P 10.5	S 10.4	Cl 13.0	Ar 15.8			
			K 4.3	Ca 6.1	Ga 6.0	Ge 8.1	As 9.8	Se 9.8	Br 11.8	Kr 14.0			
			Rb 4.2	Sr 5.7	In 5.8	Sn 7.3	Sb 8.6	Te 9.0	I 10.5	Xe 12.1			
			Cs 3.9	Ba 5.2	Tl 6.1	Pb 7.4	Bi 7.3	Po 8.4	At 10.8	Rn 10.7			
		Sc 6.5	Ti 6.8	V 6.7	Cr 6.8	Mn 7.4	Fe 7.9	Co 7.9	Ni 7.6	Cu 7.7	Zn 9.4		
		Y 6.4	Zr 6.8	Nb 6.9	Mo 7.1	Tc 7.3	Ru 7.4	Rh 7.5	Pd 8.3	Ag 7.6	Cd 9.0		
		La 5.6	Hf 6.6	Ta 7.9	W 8.0	Re 7.9	Os 8.7	Ir 9.1	Pt 9.0	Au 9.2	Hg 10.4		
Ce 5.5	Pr 5.5	Nd 5.5	Pm 5.6	Sm 5.6	Eu 5.7	Gd 6.1	Tb 5.9	Dy 5.9	Ho 6.0	Er 6.1	Tm 6.2	Yb 6.3	Lu 5.4
Th 6.3	Pa 5.9	U 6.2	Np 6.3	Pu 6.0	Am 6.0	Cm 6.0	Bk 6.2	Cf 6.3	Es 6.4	Fm 6.5	Mv 6.6	No 6.7	Lw 4.9

ELECTRON-GAIN ENERGIES $\Delta U_o \; / \; kJ \; mol^{-1}$

	PERIODIC TABLE ARRANGEMENT											
Li		B	C	N	O	F						
-59.8		-17.3	-122.3	20.1	-141.1	-328.0						
Na		A1	Si	P	S	C1						
-52.2		-44	-133.6	-72	-200.4	-348.8						
K	Cu		Ge	As	Se	Br						
-45.4	-118		-115	-77	-195.0	-324.6						
Rb	Ag		Sn	Sb	Te	I						
-46.9	-125.7		-120	-100	-190.2	-295.4						
Cs -45.5	Au -222.8											

IONIC RADII (in pm - after Shannon and Prewitt)

The values given are applicable to oxides and fluorides (c.n. 6, based on the value 140 pm for 6-coordinated O²-). Radii for other c.n's are given in the Notes below, and the values for species enclosed in the "box" gives an appropriate idea of the sizes of these ions.

Oxidation State	(A) Non-transition Metals							
-3		N 155	P 185	As 220				
-2		O(c) 140	S 185	Se 195	Te 220			
-1		F(d) 133	Cl 180	Br 195	I 220	OH- 155	SH- 200	
+1	_{Li} (a) 74	Na 102	K 138	Rb 149	Cs 170	T1 150	NH4 ⁺ 150	
+2	Be(b) 35	Mg 72	Ca 100	Sr 116	Ba(e) 136	Zn 75	Cd 105	Pb 118
+3		Al 53	Sc 89	Y 109	La 115			
+4			Ti 61	Zr 80				

Oxidation State	(B) Transition Metals								
+2	Low spin	Ti	V	Cr 73	Mn 67	Fe 61	Co 65	Ni	Cu
	High spin	86	79	82	83	78	75	69	73
	Low spin				58	55	55	56	
+3	High spin	67	64	62	65	65	61	60	-

Notes: (a) c.n. 4, 59 pm

- (b) c.n. 4, 27 pm
- (c) c.n. 2, 135 pm; c.n. 8, 142 pm
- (d) M-F is at least 10 pm greater than M-O in ScOF and YOF (See Wells, p. 404, 4th edn).
- (e) c.n. 8, 142 pm; c.n. 12, 160 pm

SINGLE BOND COVALENT RADII (in pm)

H 30	С	77	N	75	О	73	F	71
	Si	118	P	110	S	103	Cl	99
	Ge	122	As	121	Se	117	Br	114
	Sn	140	Sb	143	Te	135	I	133

SLATER ATOMIC RADII AND ALLRED-ROCHOW ELECTRONEGATIVITIES

Data are given in the form:

Atom Radius/pm Electronegativity

					Ele	ectronegati	vity		
			H 53 2.20						
Li 145	Be 105		B 85	C 70	N 65	O 60	F 50		
0.97	1.47		2.01	2.50	3.07	3.50	4.10		
Na 180	Mg 150		Al 125	Si 110	P 100	S 100	Cl 100		
1.01	1.23		1.47	1.74	2.0	2.44	2.83		
K 220	Ca 180		Ga 130	Ge 125	As 115	Se 115	Br 115		
0.91	1.04		1.82	2.02	2.20	2.48	2.74		
Rb 235	Sr 200		In 155	Sn 145	Sb 145	Te 140	I 140		
0.90	0.99		1.49	1.72	1.82	2.01	2.21		
Cs 260	Ba 215		Tl 190		Bi 160	Po 190	At -		
0.86	0.97		1.44	1.55	1.67	1.76	1.90		
Fr -	Ra 215	Ac 195							
0.86	0.97	1.00							
Sc 160	Ti 140	V 135	Cr 140	Mn 140	Fe 140	Co 135	Ni 135	Cu 135	Zn 135
1.20	1.32	1.45	1.56	1.60	1.64	1.70	1.75	1.75	1.66
Y 180	Zr 155	Nb 145	Mo 145	Tc 135	Ru 130	Rh 135	Pd 140	Ag 160	Cd
1.11	1.22	1.23	1.30	1.36	1.42	1.43	1.35	1.42	155
									1.46

```
Au 135
La 195
         Hf 155
                  Ta 145
                            W 135
                                     Re 135
                                               Os 130
                                                         Ir 135
                                                                  Pt 135
                                                                                     Hg 150
   1.08
            1.23
                      1.33
                               1.40
                                         1.46
                                                  1.52
                                                            1.55
                                                                     1.44
                                                                              1.41
                                                                                        1.44
Ce 185
         Pr 185
                  Nd 185 Pm 183
                                      Sm 185
                                               Eu 185
                                                        Gd 180
   1.08
            1.07
                      1.07
                               1.07
                                         1.07
                                                  1.01
                                                            1.11
Tb 175
        Dy 175
                 Ho 175
                            Er 175
                                    Tm 175
                                               Yb 175
                                                        Lu 175
   1.10
            1.10
                      1.10
                               1.11
                                         1.11
                                                  1.06
                                                            1.14
Th 180
         Pa 180
                   U 175
                            Np 175
                                      Pu 175
                                              Am 175
   1.11
            1.14
                      1.22
                               1.22
                                         1.22
                                                   1.2
```

- Notes:
- (1) The Electronegativities are taken from Table 4.8 of Inorganic Chemistry, by J E Huheey see also A L Allred and E G Rochow, J. Inorg. Nucl. Chem., <u>5</u>, 264 (1958) and E J Little and M M Jones, J. Chem. Educ., 27, (1960) for original calculations.
- (2) The Atomic Radii are taken from Table 3-1 in Quantum Theory of Molecules and Solids by J C Slater (vol 2).

TABLE OF STANDARD HALF-CELL REDUCTION POTENTIALS

Half-cell reduction potentials in aqueous acid ($a_H = 1.0$) solutions at 298.15 K (25°C) (after W.M. Latimer).

Oxidised/Reduced Species	E ⁻⁰⁻ /V	Oxidised/Reduced Species	E ⁻⁰⁻ /V
Ag ⁺ /Ag	+ 0.7991	K+/K	-2.925
Ag^{2+}/Ag^{+}	+ 1.98		
AgCl/Ag, Cl-	+ 0.222	La ³⁺ /La	-2.37
Al ³⁺ / Al	-1.66	Li ⁺ /Li	-3.045
Au ⁺ /Au	+1.68		
Au ³⁺ / Au	+1.50	Mg^{2+}/Mg	-2.37
		Mn ²⁺ /Mn	-1.18
Ba ²⁺ /Ba	-2.90	Mn^{3+}/Mn^{2+}	+1.51
Be ²⁺ /Be	-1.85	MnO ₄ / MnO ₄ ²⁻	+0.564
$\mathrm{Br}_2(\ell)/2\mathrm{Br}^-$	+1.0652	MnO ₄ 8H ⁺ /Mn ²⁺ , 4H ₂ O	+1.51
		MnO ₄ ²⁻ , 4H ⁺ /MnO ₂ , 2H ₂ O	+1.695
Ca ²⁺ /Ca	-2.76		
Cd ²⁺ /Cd	-0.403	Na ⁺ /Na	-2.711
Cl ₂ /2Cl-	+1.3595	Ni ²⁺ /Ni	-0.250

continued ...

Oxidised/Reduced Species	E ⁻⁰⁻ /V	Oxidised/Reduced Species	E ⁻⁰⁻ /V
Co ²⁺ /Co	-0.277	O_2 , $2H^+/H_2O_2$	+0.682
Co ³⁺ / Co ²⁺	+1.82	O_2 , $4H^+/2H_2O$	+1.229
Cr ³⁺ /Cr	-0.74	O_3 , $2H^+/O_2$, H_2O	+2.07
Cr ³⁺ /Cr ²⁺	-0.41	OH, H ⁺ /H ₂ O	+2.8
$Cr_2O_7^{2-},14H^+/2Cr^{3+},7H_2O$	+1.33		
Cs ⁺ /Cs	-2.923	Pb ²⁺ /Pb	-0.126
Cu ⁺ /Cu	+0.521	PbO ₂ , 4H ⁺ /Pb ²⁺ , 2H ₂ O	+1.455
Cu ²⁺ /Cu	+0.337		
Cu^{2+}/Cu^{+}	+0.153	Ra ²⁺ /Ra	-2.92
		Rb ⁺ /Rb	-2.925
F ₂ /2F-	+2.87		
F ₂ , 2H ⁺ /2HF (aq)	+3.06	$S_2O_8^{2-}/S_2O_4^{2-}$	+2.01
Fe ²⁺ /Fe	-0.409	Sc ³⁺ /Sc	-2.08
Fe ³⁺ /Fe ²⁺	+0.771	Sn ²⁺ /Sn	-0.136
		Sn^{4+}/Sn^{2+}	+0.15
Ga ³⁺ /Ga	-0.53	Sr ²⁺ /Sr	-2.89

continued ...

TABLE OF STANDARD HALF-CELL REDUCTION POTENTIALS (continued)

Oxidised/Reduced Species	E ⁻⁰⁻ /V	Oxidised/Reduced Species	E ⁻⁰⁻ /V
2H ⁺ /H ₂	0.00	Ti ²⁺ /Ti	-1.63
$H^+/H(g)$	-2.10	Ti ³⁺ /Ti ²⁺	c -0.37
$\frac{1}{2}H_2/H^-$	-2.25	$(TiIV)^{2+}$, $2H^{+}/Ti^{3+}$, H_2O $TiO_2 + 4H^{+} \rightarrow Ti + 2H_2O$	+0.1 0.86
H ₃ BO ₃ , 3H ⁺ /B 3H ₂ O	-0.87	Tl+/Tl	-0.3363
H ₂ O ₂ , H ⁺ /OH [•] , H ₂ O	+0.72	Tl ³⁺ /Tl ⁺	+1.25
H ₂ O ₂ , 2H ⁺ /2H ₂ O	+1.77		
Hg ₂ ²⁺ /2Hg	+0.789	V^{2+}/V	c -1.18
$2Hg^{2+}/Hg_{2}^{2+}$	+0.905	V^{3+}/V^{2+}	-0.255
		VO^{2+} , $2H^+/V^{3+}$, H_2O	+0.337
I ₂ /2I-	+0.5355		
I ³⁻ /3I ⁻	+0.536	U ³⁺ /U	-1.8
In ³⁺ /In	-0.342		
		Zn^{2+}/Zn	-0.763

ENTHALPIES OF FORMATION OF GASEOUS MONATOMIC CATIONS, $\Delta H_f^{+}/(kJ \text{ mol}^{-1})$

		H ⁺ 1537												
Li ⁺ 687	Be ²⁺ 2994													
Na ⁺ 611	Mg ²⁺ 2349	A1 ³⁺ 5484												
K ⁺ 514	Ca ²⁺ 1926	Sc ³⁺ 4651	Ti ²⁺ 2451	V ²⁺ 2590	Cr ²⁺ 2654	Mn ²⁺ 2520	Fe ²⁺ 2751	Co ²⁺ 2842	Ni ²⁺ 2932	Cu ⁺ 1090	Zn ²⁺ 2783	Ga ⁺ 871		
			Ti ³⁺ 5110	V ³⁺ 5425	Cr ³⁺ 5647	Mn ³⁺ 5775	Fe ³⁺ 5715	Co ³⁺ 6080	Ni ³⁺ 6332	Cu ²⁺ 3054		Ga ³⁺ 5824		
Rb ⁺ 495	Sr ²⁺ 1790	Y ³⁺ 4218								Ag ⁺ 1019	Cd ²⁺ 2623	In ⁺ 808	Sn ²⁺ 2435	Sb ³⁺ 5149
										Ag ²⁺ 3100		In ³⁺ 5348	Sn ⁴⁺ 9321	
Cs ⁺ 461	Ba ²⁺ 1661	La ³⁺ 3896								Au ⁺ 1262	Hg ²⁺ 2890	T1 ⁺ 778	Pb ²⁺ 2373	Bi ³⁺ 5005
												T1 ³⁺ 5640	Pb ⁴⁺ 9550	
Fr ⁺ 463	Ra ²⁺ 1660													

STANDARD ENTHALPIES OF FUSION AND VAPORIZATION AT THE TRANSITION TEMPERATURE $\Delta_{trs}H^{\Theta}/\left(kJ\ mol^{-1}\right)$

AT	T _m /K	Fusion	Ть/К	Vaporization
Elements				
Ag	1234	11.30	2436	250.6
Ar	83.81	1.118	87.29	6.506
Br ₂	265.9	10.57	332.4	29.45
Cl ₂	172.1	6.41	239.1	20.41
F2	53.6	0.26	85.0	3.16
H2	13.96	0.117	20.38	0.916
He	3.5	0.021	4.22	0.084
Hg	234.3	2.292	629.7	59.30
I2	386.8	15.52	458.4	41.80
N ₂	63.15	0.719	77.35	5.586
Na	371.0	2.601	1156	98.01
O ₂	54.36	0.444	90.18	6.820
Xe	161	2.30	165	12.6
K	336.4	2.35	1031	80.23
Inorganic com	_	T		
CCl4	250.3	2.47	349.9	30.00
CO ₂	217.0	8.33	194.6	25.23 s
CS ₂	151.2	4.39	319.4	26.74
H ₂ O	273.15	6.008	373.15	40.636
				44.016 at 298K
H ₂ S	187.6	2.377	212.8	18.67
H ₂ SO ₄	283.5	2.56		
NH ₃	195.4	5.652	239.7	23.35
Organic comp	ounds			
CH4	90.68	0.941	111.7	8.18
CCl4	250.3	2.5	350	30.0
C ₂ H ₄	89.85	2.86	184.6	14.7
С6Н6	278.61	10.59	353.2	30.8
C6H14	178	13.08	342.1	28.85
C ₁₀ H ₈	354	18.80	490.9	51.51
СН3ОН	175.2	3.16	337.2	35.27
				37.99 at 298K
C ₂ H ₅ OH	158.7	4.60	352	43.5

STANDARD ENTHALPIES OF HYDRATION AT INFINITE

 $DILUTION \hspace{1cm} \Delta_{hyd}H^{\rm e}/(kJ\ mol^{\text -1})$

	Li ⁺	Na ⁺	K ⁺	Rb ⁺	Cs ⁺
F-	-1026	-911	-828	-806	-782
Cl-	-884	-783	-685	-664	-640
Br-	-856	-742	-658	-637	-613
1-	-815	<i>-</i> 701	-617	-596	-572

Entries refer to $X^+(g) + Y^-(g) \rightarrow X^+(aq) + Y^-(aq)$. Data: Principally J.O'M. Bockris and A K N Reddy, *Modern Electrochemistry*, Vol 1 Plenum Press, New York (1970)

STANDARD ION HYDRATION ENTHALPIES

 $\Delta_{\text{hyd}} H^{\text{o}}/(kJ \text{ mol}^{\text{-}1})$ at 298 K

Cations						
H ⁺		-1090	Ag ⁺	-464	Mg ²⁺	-1920
Li ⁺		-520	NH_4^+	-301	Ca ²⁺	-1650
Na ⁺		-405			Sr ²⁺	-1480
K ⁺		-321			Ba ²⁺	-1360
Rb ⁺		-300			Fe ²⁺	-1950
Cs ⁺		-277			Cu ²⁺	-2100
					Zn^{2+}	-2050
					A1 ³⁺	-4690
					Fe ³⁺	-4430
Anions						
OH-	-4 60					
F-	-506	Cl	364		Br337	I296

Entries refer to $X^{++}(g) \to X^{++}$ (aq) based on $H^+(g) \to H^+$ (aq) Data: Principally J.O'M. Bockris and A K N Reddy, *Modern Electrochemistry*, Vol 1 Plenum Press, New York (1970)

THERMODYNAMIC DATA FOR ELEMENTS AND INORGANIC COMPOUNDS (all values are for 298K).

	$M/(g \text{ mol}^{-1})$	$\Delta_{\rm f} {\rm H}^{\circ}/({\rm kJmol}^{-1})$	$\Delta_f G^{\bullet}/(JK mol^{\text{-}1})^{s}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{s}$	$C_{p,m}^{\bullet}/(JK^{-1}mol^{-1})$
Argon					
Ar(g)	39.95	0	0	+154.84	+20.786
Bromine					
Br ₂ (1)	159.82	0	0	+152.23	+75.689
Br ₂ (g)	159.82	+30.907	+3.110	+245.46	+36.02
Br(g)	79.91	+111.88	+82.396	+173.02	+20.786
Br ⁻ (g)	79.91	-219.07			
Br-(aq)	79.91	-121.55	-103.96	+82.4	-141.8
HBr(g)	90.92	-36.40	-53.45	+198.70	+29.142
Carbon (for organ	ic compounds, see Or	ganic Table)			
C(s) (graphite)	12.011	0	0	+5.740	+8.527
C(s) (diamond)	12.011	+1.895	+2.900	+2.377	+6.113
C(g)	12.011	+716.68	+671.26	+158.10	+20.838
CO(g)	28.011	-110.53	-137.17	+197.67	+29.14
$CO_2(g)$	44.010	-393.51	-394.36	+213.74	+37.11
CO ₂ (aq)	44.010	-413.80	-385.98	+117.6	
HCN(g)	27.03	+135.1	+124.7	+201.78	+35.86
HCN(l)	27.03	+108.87	+124.97	+112.84	+7063
CN ⁻ (aq)	26.02	+150.6	+172.4	+94.1	

	$M/(g \text{ mol}^{-1})$	$\Delta_f H^{\Phi}/(kJmol^{-1})$	$\Delta_f G^{\Theta}/(JK mol^{\text{-}1})^{\$}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{s}$	$C_{p.m}^{\Theta}/(JK^{-1}mol^{-1})$
Chlorine					
$Cl_2(g)$	70.91	0	0	+223.07	+33.91
Cl(g)	35.45	+121.68	+105.68	+165.20	+21.840
Cl ⁻ (g)	35.45	-233.13			
Cl ⁻ (aq)	35.45	-167.16	-131.23	+56.5	-136.4
HCl(g)	36.46	-92.31	-95.30	+186.91	+29.12
HCl(aq)	36.46	-167.16	-131.23	+56.5	-136.4
Copper					
Cu(s)	63.54	0	0	+33.150	+24.44
Cu(g)	63.54	+338.32	+298.58	+166.38	+20.79
Cu ⁺⁽ aq)	63.54	+71.67	+49.98	+40.6	
Cu ²⁺ (aq)	63.54	+64.77	+65.49	-99.6	
Cu ₂ O(s)	143.08	-168.6	-146.0	+93.14	+63.64
Cu(O(s)	79.54	-157.3	-129.7	+42.63	+42.30
Deuterium					
$D_2(g)$	4.028	0	0	+144.96	+29.20
HD(g)	3.022	+0.318	-1.464	+143.80	+29.196
$D_2O(g)$	20.028	-249.20	-234.54	+198.34	+34.27
D2O(1)	20.028	-294.60	-243.44	+75.94	+84.35
HDO(g)	19.022	-245.30	-233.11	+199.51	+33.81
HDO(l)	19.022	-289.89	-241.86	+79.29	

	$M/(g \text{ mol}^{-1})$	$\Delta_{\rm f} {\rm H}^{\circ}/({\rm kJmol}^{-1})$	$\Delta_f G^{\bullet}/(JK mol^{\text{-}1})^{\$}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{\delta}$	$C_{p.m}^{\bullet}/(JK^{-1}mol^{-1})$
Fluorine					
$F_2(g)$	38.00	0	0	+202.78	+31.30
F(g)	19.00	+78.99	+61.91	+158.75	+22.74
HF(aq)	19.00	-332.63	-278.79	-13.8	-106.7
HF(g)	20.01	-271.1	-273.2	+173.78	29.13
Helium					
He(g)	4.003	0	0	+126.15	+20.786
Hydrogen (see also	o deuterium)				
$H_2(g)$	2.016	0	0	+130.684	+28.824
H(g)	1.008	+217.97	+203.25	+114.71	+20.784
$H^+(aq)$	1.008	0	0	0	0
$H^+(g)$	1.008	+1536.20			
$H_2O(s)$	18.015			+37.99	
$H_2O(1)$	18.015	-285.83	-237.13	+69.91	+75.291
$H_2O(g)$	18.015	-241.82	-228.57	+188.83	+33.58
H ₂ O ₂ (l)	34.015	-187.78	-120.35	+109.6	+89.1
Iodine					
I ₂ (s)	253.81	0	0	+116.135	+54.44
I2(g)	253.81	+62.44	+19.33	+260.69	+36.90
I(g)	126.90	+106.84	+70.25	+180 .79	+20.786
I ⁻ (aq)	126.90	-55.19	-51.57	+111.3	-142.3
HI(g)	127.91	+26.48	+2.13	+206.59	+29.158

	$M/(g \text{ mol}^{-1})$	$\Delta_{\rm f} {\rm H}^{ \circ}/({\rm kJmol}^{-1})$	$\Delta_f G^{\Theta}/(JK mol^{\text{-}1})^{\S}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{\$}$	$C_{p.m}^{\Theta}/(JK^{-1}mol^{-1})$
Iron					
Fe(s)	55.85	0	0	+27.28	+25.10
Fe(g)	55.85	+416.3	+370.7	+180.49	+25.68
Fe ²⁺ (aq)	55.85	-89.1	-78.90	-137.7	
Fe ³⁺ (aq)	55.85	-48.5	-4.7	-315.9	
Fe ₃ O ₄ (s)	231.54	-1118.4	-1015.4	+146.4	+143.43
(magnetite)					
Fe ₂ O ₃ (s)	159.69	-824.2	-742.2	+87.40	+103.85
(haematite)					
Krypton					
Kr(g)	83.80	0	0	+164.08	+20.786
Lithium	<i>C</i> 0.4	0	0	. 20. 12	. 24 77
Li(s)	6.94	0	0	+29.12	+24.77
Li(g)	6.94	+159.37	+126.66	+138.77	+20.79
Li ⁺ (aq)	6.94	-278.49	-293.31	+13.4	+68.6
Neon					
Ne(g)	20.18	0	0	+146.33	+20.786

	$M/(g \text{ mol}^{-1})$	$\Delta_{\rm f} {\rm H}^{\bullet}/({\rm kJmol}^{-1})$	$\Delta_f G^{\bullet}/(JK mol^{\text{-}1})^{\$}$	$S_{m_f}^{\bullet} / (JK^{-1}mol^{-1})^{\$}$	$C_{p.m}^{\theta}/(JK^{\text{-}1}mol^{\text{-}1})$
Nitrogen					
$N_2(g)$	28.013	0	0	+191.61	+29.125
N(g)	14.007	+472.70	+455.56	+153.30	+20.786
NO(g)	30.01	+90.25	+86.55	+210.76	+29.844
$N_2O(g)$	44.01	+82.05	+104.20	+219.85	+38.45
$NO_2(g)$	4601	+33.18	+51.31	+240.06	+37.20
HNO ₃ (l)	63.01	<i>-</i> 174.10	-80.71	+155.60	+109.87
HNO3(aq)	63.01	-205.36	-111.25	+146.4	-86.6
$NO_3^-(aq)$	62.01	-205.0	-108.74	+146.4	-86.6
$NH_3(g)$	17.03	-46.11	-16.45	+192.45	+35.06
NH3(aq)	17.03	-80.29	-26.50	+111.3	
$NH_4^4(aq)$	18.04	-132.51	-79.31	+113.4	+79.9
NH4NO3(s)	80.04	-365.56	-183.87	+151.08	+84.1
NH4Cl(s)	53.49	-314.43	-202.87	+94.6	
Oxygen					
$O_2(g)$	31.999	0	0	+205.138	+29.355
O(g)	15.999	+242.17	+231.73	+161.06	+21.912
O3(g)	47.998	+142.7	+163.2	+238.93	+39.20
OH-(aq)	17.007	-229.99	-157.24	-10.75	-148.5

	$M/(g \text{ mol}^{-1})$	$\Delta_f H^{\Phi}/(kJmol^{-1})$	$\Delta_f G^{\Theta}/(JK mol^{\text{-}1})^{\$}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{s}$	$C_{p.m}^{\bullet}/(JK^{-l}mol^{-1})$
Phosphorus					
P(s, wh)	30.97	0	0	+41.09	+23.840
P(g)	30.97	+314.64	+278.25	+163.19	+23.840
$P_{2}(g)$	61.95	+144.3	+103.7	+218.13	+32.05
$P_4(g)$	123.90	+58.91	+24.44	+279.98	+67.15
PH3(g)	34.00	+5.4	+13.4	+210.23	+37.11
PCl ₃ (g)	137.33	-287.0	-267.8	+311.78	+71.84
PCl ₃ (l)	137.33	-319.7	-272.3	+217.1	
Potassium					
K(s)	39.10	0	0	+64.18	+29.58
K(g)	39.10	+89.24	+60.59	+160.336	+20.786
$K^+(g)$	39.10	+514.26			
K ⁺ (aq)	39.10	-252.38	-283.27	+102.5	+21.8
KOH(s)	56.11	-424.76	-379.08	+78.9	+64.9
KF(s)	58.10	-576.27	-537.75	+66.57	+49.04
KCl(s)	74.56	-436.75	-409.14	+82.59	+51.30
KBr(s)	119.01	-393.80	-380.66	+95.90	+52.30
Kl(s)	166.01	-327.90	-324.89	+106.32	+52.93

	$M/(g \text{ mol}^{-1})$	$\Delta_{\rm f} {\rm H}^{ \circ}/({\rm kJmol}^{-1})$	$\Delta_f G^{\bullet}/(JK mol^{\text{-}1})^{\S}$	$S_{m_f}^{\bullet}/(JK^{-1}mol^{-1})^{s}$	$C_{p.m}^{\Theta}/(JK^{-1}mol^{-1})$
Silicon					
Si(s)	28.09	0	0	+18.83	+20.00
Si(g)	28.09	+455.6	+411.3	+167.97	+22.25
$SiO_2(s,\alpha)$	60.09	-910.94	-856.64	+41.84	+44.43
Sodium					
Na(s)	22.99	0	0	+51.21	+28.24
Na(g)	22.99	+107.32	+76.76	+153.71	+20.79
Na ⁺ (aq)	22.99	-240.12	-261.91	+59.0	+46.4
NaOH(s)	40.00	-425.61	-379.49	+64.46	+59.54
NaCl(s)	58.44	-411.15	-384.14	+72.13	+50.50
NaBr(s)	102.90	-361.06	-38498	+86.82	+51.38
NaI(s)	149.89	-287.78	-286.06	+98.53	+52.09
Sulfur					
$S(s,\alpha)$ (rhombic)	32.06	0	0	+31.80	+22.64
$S(s,\beta)$ (monoclinic)	32.06	+0.33	+0.1	+32.6	+23.6
S ² -(ag)	32.06	+33.1	+85.8	-14.6	
SO ₂ (g)	64.06	-296.83	-300.19	+248.22	+39.87
SO ₃ (aq)	80.06	-395.72	-371.06	+256.76	+50.67

HEATS OF COMBUSTION

			Combustion at 29 25°C)/kJ mol ⁻¹	98 K
Compound	Formula	$H_2O(l) + CO_2$	$H_2O(g)$	+ CO ₂ (g)
Hydrogen	H ₂	286 (14	3.0) 242	(11.0)
Carbon	С	394 (32	2.8) 394	(32.8)
Carbon Monoxide	CO	283 (10	0.1) 283	(10.1)
Methane	CH ₄	890 (55	5.6) 802	(50.1)
Ethane	C ₂ H ₆	1560 (52	2.0) 1428	(47.6)
Ethene	C ₂ H ₄	1411 (50	0.4) 1323	(47.3)
Ethyne	C_2H_2	1300 (50	0.0) 1256	(48.3)
Propane	C ₃ H ₈	2221 (50	0.5) 2044	(46.5)
Propene	C ₃ H ₆	2059 (49	9.0) 1927	(45.9)
Butane	C ₄ H ₁₀	2879 (49	9.6) 2659	(45.8)
Hexane	C ₆ H ₁₄	4164 (48	3.4) 3856	(44.8)
Cyclohexane	C ₆ H ₁₂	3921 (46	5.7) 3657	(43.5)
Benzene	C ₆ H ₁₆	3268 (41	1.9) 3136	(40.2)
Octane	C_8H_{18}	5472 (48	3.0) 5076	(44.5)
2-Methyl-3-ethylpentane	C ₈ H ₁₈	5472 (48	3.0) 5076	(44.5)
1,4-Dimethylbenzene	C ₈ H ₁₀	4554 (43	3.0) 4334	(40.9)
Dodecane	$C_{12}H_{26}$	8088 (47	7.6) 7516	(44.2)
Eicosane	$C_{20}H_{42}$	13320 (47	7.2) 12395	(44.0)
Ethanol	C ₂ H ₆ O	1367 (29	9.7) –	-
Ethanal	C ₂ H ₄ O	1167 (26	5.5) –	-
Ethanoic Acid	$C_2H_4O_2$	875 (14	- 1.6)	-
Propanone	C ₃ H ₆ O	1791 (30).9) –	-
Phenol	C ₆ H ₆ O	3054 (32	2.5) –	-

The left- and right- columns of values represent gross and nett calorific values respectively; the values in brackets are the corresponding heats of combustion measured in MJ $\,\mathrm{kg^{-1}}$.

THERMODYNAMIC DATA FOR ORGANIC COMPOUNDS (ALL VALUES ARE FOR 298K).

	M/(g mol ⁻¹)	$\Delta_t H^{+}/(kJmol^{-1})$	$\Delta_{t}G^{+}/(JK \text{ mol}^{-1})^{s}$	$S_{mt}^{\bullet}/(JK^{-1}mol^{-1})^{\S}$	$C_{p.m}^{\bullet}/(JK^{-1}mol^{-1})$
C(s) graphite	12.011	0	0	5.740	8.527
C(s) diamond	12.011	+ 1.895	+2.900	2.377	6.113
$CO_2(g)$	44.041	-393.51	-394.36	213.74	37.11
Hydrocarbons					
CH ₄ (g) methane	16.04	-74.81	-50.72	186.26	35.31
CH ₃ (g) methyl	15.04	+145.69	+147.92	194.2	38.70
$C_2H_2(g)$ ethyne	26.04	+226.71	+209.20	200.94	43.93
C ₂ H ₄ (g) ethene	28.05	+52.26	+68.15	219.56	43.56
$C_2H_6(g)$ ethane	30.07	-84.68	-32.82	229.60	52.63
C ₃ H ₆ (g propene	42.08	+20.42	+62.78	267.05	63.89
C ₃ H ₆ (g) cyclopropane	42.08	+53.30	+104.45	237.55	55.94
C ₃ H ₈ (g) propane	44.10	-103.85	-23.49	269.91	73.5
C ₄ H ₈ (g) 1-butene	56.11	-0.13	+71.39	305.71	85.65
C_4H_8 (g) Z-2-butene	56.11	-6.99	+65.95	300.94	78.91
C_4H_8 (g) E-2-butene	56.11	-11.17	+63.06	296.59	87.82
$C_4H_{10}(g)$ butane	58.13	-126.15	-17.03	310.23	97.45
C ₅ H ₁₂ (g) pentane	72.15	-146.44	-8.20	348.40	120.2
C_5H_{12} (l)	72.15	-173.1			
C ₆ H ₆ (l) benzene	78.12	+49.0	+124.3	173.3	136.1
$C_6H_6(g)$	78.12	+82.93	+129.72	269.31	81.67
C_6H_{12} (l) cyclohexane	84.16	-156	+26.8	204.4	156.5
C ₆ H ₅ CH ₃ (g) toluene	92.14	-198.7		204.3	
$C_6H_5CH_3(1)$	92.14	+50.5	+122.0	320.7	103.6

	M/(g mol ⁻¹)	$\Delta_{\rm t} { m H}^{ \circ} / ({ m kJmol}^{-1})$	$\Delta_t G^{\bullet}/(JK \text{ mol}^{-1})^{\$}$	$S_{mt}^{\bullet}/(JK^{-1}mol^{-1})^{\S}$	$C_{p.m}^{\bullet}/(JK^{-1}mol^{-1})$
Alcohols and Phenols					
CH ₃ OH(l) methanol	32.04	-238.66	-166.27	126.8	81.6
C ₅ H ₅ OH(l) ethanol	46.07	-277.69	-174.78	160.7	111.46
C ₆ H ₅ OH(s) phenol	94.12	-165.0	-50.9	146.0	
Carboxylic acids					
HCOOH(l) formic	46.03	-424.72	-361.35	128.95	99.04
CH ₃ COOH(l)acetic	60.05	-484.5	-389.9	159.8	124.3
CH ₃ COOH(aq)	60.05	-485.76	-396.46	178.7	
(COOH) ₂ (s) oxalic	90.04	-872.2			117
C ₆ H ₅ COOH(s) benzoic	122.13	-385.1	-245.3	167.6	146.8
Nitrogen Compounds					
CO(NH ₂) ₂ (s) urea	60.06	-333.51	-197.33	104.60	93.14
CH ₂ NH ₂ (g) methylamine	31.06	-22.97	+32.16	243.41	53.1

PROPERTIES OF SELECTED ORGANIC COMPOUNDS

	Melting Point T _m /K	Boiling Point Tb/K	Density* ρ/kg m ⁻³ (at 293 K)	Enthalpy of formation *\$ \[\Delta H_{6}^{\circ} / kJ \text{ mol}^{-1} \]	State
Benzene	279	353	879	+49	1
Benzoic Acid	396	522	1266	-392	s
Bromomethane	180	277	1676	-36	g
Butane	135	273	579	-146	1
Butanoic acid	269	437	958	-539	1
Chloromethane	175	249	916	-82	g
Cyclohexane	280	354	779	-154	1
Cyclohexanol	297	434	962	-351	1
Dichloromethane	178	313	1327	-121	1
Dodecane	263	489	749	-291	1
Ethanal	152	294	783	-192	g
Ethane	90	185	545++	-85	g
Ethanoic acid	290	391	1049	-485	1
Ethanol	156	352	789	-278	1
Ethene	104	169	567§§	+52	g
Ethoxyethane	157	308	714	-280	1
Ethyne	192	189		+227	g
Heptane	183	372	638	-224	1
Hexane	178	342	660	-199	1
Iodomethane	207	316	2279	-8	1

	Melting Point	Boiling Point	Density* ρ/kg m ⁻³	Enthalpy of	
	T _m /K	T _b /K	(at 293 K)	formation *§	State
			,	$\Delta H_{\rm f}^{\rm o}$ / kJ mol $^{-1}$	
Methane	91	109	423+	- 75	g
Methanol	179	338	791	-239	1
Methoxymethane	135	250		-184	g
Methylbenzene	178	384	867	+12	1
2-methylpropane	114	261	557	- 135	g
Octane	216	399	702	-250	1
Pentane	143	309	626	- 173	1
Propane	83	231	493	- 105	g
Propane-1,2,3-triol	293	decomp.**	1261	-104	1
Propanoic acid	252	414	993	-509	1
Propanol	147	371	803	-302	1
Propanone	178	329	790	- 217	1
Propene	88	226	505	+20	g
Tetrachloromethane	250	350	1594	- 136	1
Trichloromethane	210	335	1483	-134	1
1,2-Dimethylbenzene	248	417	880	+79	1
1,3-Dimethylbenzene	225	412	864	+72	1
1,4-Dimethylbenzene	286	411	861	+75	1

^{*} At 298 K;

§ A negative sign means evolution of heat;

⁺⁺ At 184 K

§§ At 104 K

^{**}At 453 K

⁺ At 111.5 K

TEMPERATURE, PRESSURE AND VOLUME RELATIONSHIP OF SATURATED STEAM

Temp	perature	Pressure	Specific volume
T/K	(°C)	P/bar** abs	$V/m^3 kg^{-1}$
273	(0)	0.00611	206
283	(10)	0.0123	106
293	(20)	0.0234	57.8
298	(25)	0.0317	43.4
303	(30)	0.0424	32.9
323	(50)	0.123	12.0
343	(70)	0.312	5.05
363	(90)	0.701	2.36
368	(95)	0.845	1.98
373	(100)	1.01	1.67
383	(110)	1.43	1.21
393	(120)	1.98	0.892
403	(130)	2.70	0.669
413	(140)	3.61	0.509
423	(150)	4.76	0.393
433	(160)	6.18	0.307
443	(170)	7.92	0.243
453	(180)	10.0	0.194
463	(190)	12.6	0.156
473	(200)	15.6	0.127
498	(225)	25.5	0.0783
523	(250)	39.8	0.0500
548	(275)	59.5	0.0327
573	(300)	85.9	0.0216
598	(325)	121	0.0142
623	(350)	165	0.0088
647*	(374)	221	0.00316

Critical point ** 1 bar = 10^5 N m⁻²

THERMAL PROPERTIES OF LIQUID WATER (AT 1 ATMOSPHERE PRESSURE)

Tempe T/K	erature (°C)	Density ρ/kg m ⁻³	Specific Heat Capacity Cp/J kg ⁻¹ K ⁻¹	Specific Latent Heat of Vaporisation
			<i>сружу</i> п	ℓ /kJ kg ⁻¹
273	(0)	999.9	4217	2493
283	(10)	999.7	4192	2469
293	(20)	998.2	4182	2446
303	(30)	995.7	4178	
313	(40)	992.2	4178	2400
323	(50)	988.1	4180	
333	(60)	983.2	4184	2353
343	(70)	977.8	4189	
353	(80)	971.8	4196	2307
363	(90)	965.3	4205	
373	(100)	958.4	4216	2260
398	(125)	938.8*		
423	(150)	916.9*		
448	(175)	892.4*		
473	(200)	864.5*		

^{*} At appropriate pressure - see Table pertaining to steam.

TABLE OF ENERGY EQUIVALENTS

Energy associated								
with	J	eV	calories	kW h	Hz	cm ⁻¹	K	J mol ⁻¹
1 Joule (J)	1	6.242×10^{18}	0.2390	2.778 × 10 ⁻⁷	1.509×10^{33}	5.034×10^{22}	7.244×10^{22}	6.022×10^{23}
1 eV	1.602×10^{-19}	1	3.829×10^{-20}	4.450×10^{-26}	2.418×10^{14}	8.066×10^{3}	1.160×10^{4}	9.649×10^{4}
1 calorie	4.184	2.612×10^{17}	1	1.162×10^{-6}	6.317×10^{33}	2.107 ×10 ²³	3.030 ×10 ²³	2.520×10^{22}
1 kilowatt-hour (kW h)	3.600×10^{6}	2.2247 ×10 ²⁵	8.604×10^{5}	1	5.432×10^{39}	1.812×10^{29}	2.608×10^{29}	2.168 ×10 ²⁸
1 Hertz (Hz)	6.262×10^{-34}	4.136×10^{-15}	1.583×10^{36}	1.841×10^{-40}	1	3.336 × 10 ⁻¹¹	4.800 ×10 ⁻¹¹	3.990 × 10-10
1 reciprocal centimetre	1.986 × 10 ⁻²³	1.240×10^{-4}	4.747×10^{-24}	5.517 × 10 ⁻³⁰	2.997 × 10 ¹⁰	1	1.439	1.196×10^{1}
1 Kelvin (K)	1.381×10^{-23}	8.620×10^{-5}	3.301×10^{24}	3.836×10^{-30}	2.084×10^{10}	$6.952\times10^{\text{1}}$	1	8.316
1 Therm	1.055×10^{8}							1

APPROXIMATE VALUE OF AN EINSTEIN

λ/nm	200	300	400	500	600	700
Nhv/kJ mol-1	600	400	300	240	200	170

APPROXIMATE ENERGY CONVERSION FACTORS

To convert from one fuel/unit (down the left hand side) to another, (across the top of the Table) multiply by the factor shown: e.g. 1 toil eq = 397 therms = 11.63 MW h = 41.87 GJ

From ↓	To →	t oil eq	therms	MW h	GJ
t oil eq		1	397	11.63	41.87
103		2.52	1000	29.3	105.5
therms					
MW h		0.086	34.1	1	3.60
тј		23.9	9480	278	1000

1 t oil equivalent is a unit of energy, defined as the gross calorific value of a notional grade of crude petroleum.

Conversions between any of therms, MW h and GJ are precise (independent of assumptions about fossil fuels).

The calorific value of coal varies with its source/quality. The gross calorific value of coal burned in the UK is typically between $25 - 30 \, \text{GJ} \, t^{-1}$.

For electricity generated (MW h) from fossil fuels you need to take into account the calorific value of the fuel and the thermal efficiency of conversion.

For conversions between J and eV, see Table of Energy Equivalents.

For conversions between mass and energy, $E = mc^2$, 1 amu = 931.5 MeV

THE EARTH

Radius (mean) 6371 km 6357 km (polar) 6378 km (equatorial) $5.1 \times 10^{14} \text{ m}^2$ Surface area Greatest height (Mt Everest) 8848 m Greatest depth (Mariana Trench) 11020 m $150 \times 10^6 \text{ km}^2$ Land area $360\times10^6\ km^2$ Ocean area $1.08 \times 10^{21} \text{ m}^3$ Volume $5.98 \times 10^{24} \text{ kg}$ Mass 5520 kg m^{-3} Density (mean Gravitational acceleration, g 9.81 m s^{-2} at surface (mean) 9.85 m s^{-2} (polar) (equatorial) 9.75 m s^{-2} $g/m s^{-2} = 9.80616 - 0.025928 \cos 2\lambda + 0.000069 \cos^2 2\lambda - 0.000003h$ where λ is the latitude and h the height above sea-level $8\times 10^{37}\ kg\ m^2$ Moment of inertia about axis of rotation = 11 km s⁻¹ Velocity (escape, at surface) 0.4 km s^{-1} (rotational, at equator) 1.40 kW m⁻² Solar flux (mean)

UK LAND STATISTICS

Total area	$24.8 \times 10^{10} \text{ m}^2$
Urban	$3.5\times10^{10}~\text{m}^2$
Water or river	$0.3 \times 10^{10} \text{ m}^2$
Woodland	$2.0\times10^{10}~m^2$
Rough Grazing	$6.7 \times 10^{10} \text{ m}^2$
Arable	$4.9 \times 10^{10} \text{ m}^2$
Temporary grass	$2.4\times10^{10}~m^2$
Permanent grass	$5.0 \times 10^{10} \text{ m}^2$
1 ha = 10^4 m ² = 2.47 acres	

THE ATMOSPHERE

Composition of dry air (by volume):

N₂ (78%); O₂ (21%); Ar (0.93%); CO₂ (0.037%);

Ne, He, CH4, Kr, H2, N2O, Xe, Rn (all in very small

amounts - total 0.003%)

The moisture content of 100% humidity air:

0.60% at 0°C 1.20% at 10°C 1.68% at 15°C 2.32% at 20°C

THE GEOLOGICAL TIME SCALE

After W B Harland, R L Armstrong, L E Craig, A G Smith and D G Smith (1990). *A Geological Time Scale 1989*, Cambridge University Press

Eon	Era	Period	Sub-Period	Epoch*	Age/ Ma†
Phanerozoic	Cenozoic	Quaternary		Holocene	0.01
				Pleistocene	1.64
		Tertiary	Neogene	Pliocene	5.2
				Miocene	23.5
			Palaeogene	Oligocene	35.5
				Eocene	56.5
				Palaeocene	65.0
	Mesozoic	Cretaceous		Senonian	88.5
				Gallic	131.8
				Neocomian	145.6
		Jurassic		Malm	157.1
				Dogger	178.0
				Lias	208.0
		Triassic			245.0
	Palaeozoic	Permian		Zechstein	256.1
				Rotliegendes	290.0
		Carboniferous			362.5
		Devonian			408.5
		Silurian			439.0
		Ordovician			510.0
		Cambrian			570
Proterozoic					2500
Archaean					3800
Hadean					4560

Notes:

- * Epoch names are given only for the Permian, Jurassic, Cretaceous, Tertiary and Quaternary
- † Ma Mega annum
- 1 The Hadean, Archaean and Proterozoic together are commonly called Precambrian.
- 2 The Cambrian, Ordovician and Silurian are commonly classified as Lower Palaeozoic; and the Devonian, Carboniferous and Permain as Upper Palaeozoic.
- 3 Probable age of the Earth 4560 Ma; oldest dated rocks about 3800 Ma.

TYPICAL VALUES OF 1 H ATOM CHEMICAL SHIFTS/ δ^*

Group	Type of Compound	Chemical Shift δ*
CH ₃ -Si	methylsilane	0.0
СН3-С	alkane	0.9
C-CH ₂ -C	alkane	1.3
CH ₃ -C=C	alkene	1.6
CH ₃ -C O CH ₃ -C O	ester, acid	2.0
CH ₃ -C	ketone	2.2
CH ₃ -Ar	alkyl arene	2.3
CH ₃ –S–	methyl thioether	2.1
HC≡C-	alkyne	2.0‡
CH ₃ —N	amine	2.3
CH ₃ -O-	methyl ether	3.3
CH ₃ -O-C	methyl ester	3.7
CH ₂ =C	alkene	4.7‡
H—Ar	arene	7.3‡
H-C_O	alkanal	9.7‡
H–M	metal hydride complexes	-2 → - 30
СН3-М	metal alkyl complexes	$1 \rightarrow -2$
CH ₃ –I	iodoalkane	2.2
CH ₃ -Br	bromoalkane	2.6
CH ₃ -Cl	chloroalkane	3.0
CH ₃ –F	fluoroalkane	4.3

RANGES OF SOME ¹³C NMR CHEMICAL SHIFTS

NMR PROPERTIES AND RELATIVE ATOMIC MASSES OF STABLE SINGLE ISOTOPES

1n 0.000 1.009 1/2 205.607 1H 99.984 1.008 1/2 300.130 2H 0.016 2.014 1 46.073 3H 0.000 3.016 1/2 320.128 3He 1.3 x 10 ⁻⁴ 3.016 1/2 228.633 4He 100.000 4.003 0 6Li 7.420 6.015 1 44.167 7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15.91 0 172 30.424 16O 99.760 15.995 0 0 172 30.424 16O <th>Species</th> <th>% Natural Abundance</th> <th>Relative Isotopic Mass M/g mol⁻¹</th> <th>Nuclear Spin, I</th> <th>Frequency/MHz at 7.046 T</th>	Species	% Natural Abundance	Relative Isotopic Mass M/g mol ⁻¹	Nuclear Spin, I	Frequency/MHz at 7.046 T
2H 0.016 2.014 1 46.073 3H 0.000 3.016 1/2 320.128 3He 1.3 x 10 ⁻⁴ 3.016 1/2 228.633 4He 100.000 4.003 0 6Li 7.420 6.015 1 44.167 7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0	1 _n	0.000	1.009	1/2	205.607
3H 0.000 3.016 1/2 320.128 3He 1.3 x 10 ⁻⁴ 3.016 1/2 228.633 4He 100.000 4.003 0 6Li 7.420 6.015 1 44.167 7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21 _{Ne} 0.257 20.994 3/2 23.692 23 _{Na} 100.000 22.990 3/2 79.390 25 _{Mg} 10.130 24.986 5/2 18.374 27 _{Al} 100.000 26.982 5/2 78.205 28 _{Si} 92.230 27.977 0 29 _{Si} 4.670 28.976 1/2 59.627 30 _{Si} 3.100 29.974 2 31 _P 100.000 30.974 1/2 121.496 32 _S 95.000 31.972 0 33 _S 0.760 32.971 3/2 23.038 34 _S 4.220 33.968 0 35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479	$1_{ m H}$	99.984	1.008	1/2	300.130
3He	2 _H	0.016	2.014	1	46.073
4He 100.000 4.003 0 6Li 7.420 6.015 1 44.167 7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 0 19F 100.000 18.998 1/2 28.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390	3 _H	0.000	3.016	1/2	320.128
6Li 7.420 6.015 1 44.167 7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 <td>3_{He}</td> <td>1.3 x 10⁻⁴</td> <td>3.016</td> <td>1/2</td> <td>228.633</td>	3 _{He}	1.3 x 10 ⁻⁴	3.016	1/2	228.633
7Li 92.580 7.016 3/2 116.640 9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 <	⁴ He	100.000	4.003	0	
9Be 100.000 9.012 3/2 42.174 10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 <td< td=""><td>6_{Li}</td><td>7.420</td><td>6.015</td><td>1</td><td>44.167</td></td<>	6 _{Li}	7.420	6.015	1	44.167
10B 19.580 10.013 3 32.246 11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30	$7_{ m Li}$	92.580	7.016	3/2	116.640
11B 80.420 11.009 3/2 96.258 12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 2 31P 100.000 30.974 1/2 121.496 32S 95.0	⁹ Be	100.000	9.012	3/2	42.174
12C 98.890 12.000 0 13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27AI 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31p 100.000 30.974 1/2 121.496 32s 95.000 31.972 0 33s 0.760 32.971 3/	10 _B	19.580	10.013	3	32.246
13C 1.108 13.003 1/2 75.468 14N 99.630 14.003 1 21.687 15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27AI 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31p 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 3	11 _B	80.420	11.009	3/2	96.258
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 _C	98.890	12.000	0	
15N 0.370 15.000 1/2 30.424 16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31p 100.000 30.974 1/2 121.496 32s 95.000 31.972 0 33s 0.760 32.971 3/2 23.038 34s 4.220 33.968 0 35Cl 75.530 34.969 3/2 24.479	13 _C	1.108	13.003	1/2	75.468
16O 99.760 15.995 0 17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31p 100.000 30.974 1/2 121.496 32s 95.000 31.972 0 33s 0.760 32.971 3/2 23.038 34s 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	14 _N	99.630	14.003	1	21.687
17O 0.037 16.999 5/2 40.686 18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	15 _N	0.370	15.000	1/2	30.424
18O 0.204 17.999 0 19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	16 _O	99.760	15.995	0	
19F 100.000 18.998 1/2 282.404 21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	17 _O	0.037	16.999	5/2	40.686
21Ne 0.257 20.994 3/2 23.692 23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	18 _O	0.204	17.999	0	
23Na 100.000 22.990 3/2 79.390 25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	19 _F	100.000	18.998	1/2	282.404
25 _{Mg} 10.130 24.986 5/2 18.374 27 _{Al} 100.000 26.982 5/2 78.205 28 _{Si} 92.230 27.977 0 29 _{Si} 4.670 28.976 1/2 59.627 30 _{Si} 3.100 29.974 2 31 _P 100.000 30.974 1/2 121.496 32 _S 95.000 31.972 0 33 _S 0.760 32.971 3/2 23.038 34 _S 4.220 33.968 0 35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479	21 _{Ne}	0.257	20.994	3/2	23.692
25Mg 10.130 24.986 5/2 18.374 27Al 100.000 26.982 5/2 78.205 28Si 92.230 27.977 0 29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	23 _{Na}	100.000	22.990	3/2	79.390
27 _{Al} 100.000 26.982 5/2 78.205 28 _{Si} 92.230 27.977 0 29 _{Si} 4.670 28.976 1/2 59.627 30 _{Si} 3.100 29.974 2 31 _P 100.000 30.974 1/2 121.496 32 _S 95.000 31.972 0 33 _S 0.760 32.971 3/2 23.038 34 _S 4.220 33.968 0 35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479		10.130	24.986	5/2	18.374
29Si 4.670 28.976 1/2 59.627 30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479		100.000	26.982	5/2	78.205
30Si 3.100 29.974 2 31P 100.000 30.974 1/2 121.496 32S 95.000 31.972 0 33S 0.760 32.971 3/2 23.038 34S 4.220 33.968 0 35Cl 75.530 34.969 3/2 29.407 37Cl 24.470 36.966 3/2 24.479	28 _{Si}	92.230	27.977	0	
31p 100.000 30.974 1/2 121.496 32s 95.000 31.972 0 33s 0.760 32.971 3/2 23.038 34s 4.220 33.968 0 35cl 75.530 34.969 3/2 29.407 37cl 24.470 36.966 3/2 24.479	29 _{Si}	4.670	28.976	1/2	59.627
32s 95.000 31.972 0 33s 0.760 32.971 3/2 23.038 34s 4.220 33.968 0 35cl 75.530 34.969 3/2 29.407 37cl 24.470 36.966 3/2 24.479	30 _{Si}	3.100	29.974	2	
33 _S 0.760 32.971 3/2 23.038 34 _S 4.220 33.968 0 35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479	31 _P	100.000	30.974	1/2	121.496
34 _S 4.220 33.968 0 35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479	32 _S	95.000	31.972	0	
35 _{Cl} 75.530 34.969 3/2 29.407 37 _{Cl} 24.470 36.966 3/2 24.479	33 _S	0.760	32.971	3/2	23.038
37 _{Cl} 24.470 36.966 3/2 24.479	34 _S	4.220	33.968	0	
	35 _{Cl}	75.530	34.969	3/2	29.407
39 _K 93.080 38.964 3/2 14.004	37 _{Cl}	24.470	36.966	3/2	24.479
	39 _K	93.080	38.964	3/2	14.004

Species	% Natural Abundance	Relative Isotopic Mass M/g mol ⁻¹	Nuclear Spin, I	Frequency/MHz at 7.046 T
41 _K	6.880	40.962	3/2	7.686
43Ca	0.145	42.959	7/2	20.196
45 _{Sc}	100.000	44.956	7/2	72.908
47 _{Ti}	7.280	46.952	5/2	16.924
49 _{Ti}	5.510	48.948	7/2	16.920
50 _V	0.240	49.947	6	29.923
51 _V	99.760	50.944	7/2	78.943
53 _{Cr}	9.550	52.941	3/2	16.963
55 _{Mn}	100.000	54.938	5/2	74.267
57 _{Fe}	2.190	56.935	1/2	9.718
59 _{Co}	100.000	58.933	7/2	71.212
61 _{Ni}	1.190	60.931	3/2	26.820
⁶³ Cu	69.090	62.930	3/2	79.618
65 _{Cu}	30.910	64.928	3/2	85.288
67 _{Zn}	4.110	66.927	5/2	18.779
69 _{Ga}	60.400	68.926	3/2	72.034
71 _{Ga}	39.600	70.925	3/2	91.531
73 _{Ge}	7.760	72.923	9/2	10.469
75 _{As}	100.000	74.922	3/2	51.391
77 _{Se}	7.580	76.920	1/2	57.241
79 _{Br}	50.540	78.918	3/2	75.195
81 _{Br}	49.460	80.916	3/2	81.056
83 _{Kr}	11.550	82.914	9/2	11.542
85 _{Rb}	72.150	84.912	5/2	28.965
87 _{Rb}	27.850	86.909	3/2	98.206
87 _{Sr}	7.020	86.909	9/2	13.008
89 _Y	100.000	88.906	1/2	14.706
91 _{Zr}	11.230	90.905	5/2	27.900
⁹³ Nb	100.000	92.906	9/2	73.460
95 _{Mo}	15.720	94.906	5/2	19.559
97 _{Mo}	9.460	97.906	5/2	19.971
99 _{Tc}	100.000	98.906	9/2	67.553
⁹⁹ Ru	12.720	98.906	3/2	10.169
101 _{Ru}	17.070	100.906	5/2	14.824
103 _{Rh}	100.000	102.904	1/2	9.559
105 _{Pd}	22.300	104.904	5/2	13.734

Species	% Natural Abundance	Relative Isotopic Mass M/g mol ⁻¹	Nuclear Spin, I	Frequency/MHz at 7.046 T
107 _{Ag}	51.580	106.905	1/2	12.149
109 _{Ag}	48.180	108.904	1/2	13.968
111 _{Cd}	12.750	110.904	1/2	63.631
113 _{Cd}	12.260	112.904	1/2	66.563
113 _{In}	4.280	112.904	9/2	65.626
115 _{In}	95.720	114.904	9/2	65.767
117 _{Sn}	7.610	116.903	1/2	106.942
119 _{Sn}	8.580	118.903	1/2	111.921
121 _{Sb}	57.250	120.903	5/2	71.824
123 _{Sb}	42.750	122.904	7/2	38.894
123 _{Te}	0.870	122.904	1/2	78.544
125 _{Te}	6.990	124.904	1/2	94.691
127 _I	100.000	126.904	5/2	60.053
129 _{Xe}	26.440	128.904	1/2	83.010
131 _{Xe}	21.180	130.905	3/2	24.611
133 _{Cs}	100.000	132.905	7/2	39.865
135 _{Ba}	6.590	134.905	3/2	29.815
137 _{Ba}	11.320	136.905	3/2	33.353
138 _{La}	0.089	137.905	5	39.599
139 _{La}	99.911	138.908	7/2	42.396
141 _{Pr}	100.000	140.907	5/2	87.911
143 _{Nd}	12.170	142.909	7/2	16.318
145 _{Nd}	8.300	144.912	7/2	10.039
147 _{Sm}	14.950	146.915	7/2	12.389
149 _{Sm}	13.830	148.912	7/2	9.871
151 _{Eu}	47.820	150.920	5/2	74.435
153 _{Eu}	52.180	152.921	5/2	32.867
155 _{Gd}	14.730	154.922	3/2	11.462
157 _{Gd}	15.680	156.923	3/2	14.328
159 _{Tb}	100.000	158.925	3/2	68.063
161 _{Dy}	18.880	160.927	5/2	9.886
163 _{Dy}	24.970	162.929	5/2	13.755
165 _{Ho}	100.000	164.930	7/2	61.566
167 _{Er}	22.940	166.932	7/2	8.674
169 _{Tm}	100.000	168.934	1/2	24.824
171 _{Yb}	14.310	170.936	1/2	52.862

Species	% Natural Abundance	Relative Isotopic Mass M/g mol ⁻¹	Nuclear Spin, I	Frequency/MHz at 7.046 T
173 _{Yb}	16.130	172.938	5/2	14.562
175 _{Lu}	97.410	174.941	7/2	34.236
176 _{Lu}	2.590	175.943	7	23.794
177 _{Hf}	18.500	176.943	7/2	9.364
179 _{Hf}	13.750	178.946	9/2	5.609
181 _{Ta}	99.988	180.948	7/2	35.986
183 _W	14.400	182.950	1/2	12.503
185 _{Re}	37.070	184.953	5/2	67.604
187 _{Re}	62.930	186.956	5/2	68.286
187 _{Os}	1.640	186.956	1/2	6.849
189 _{Os}	16.100	188.958	3/2	23.305
191 _{Ir}	37.300	190.961	3/2	5.156
193 _{Ir}	62.700	192.963	3/2	5.615
195 _{Pt}	33.800	194.965	1/2	64.414
197 _{Au}	100.000	196.966	3/2	5.189
199 _{Hg}	16.840	198.968	1/2	53.756
201 _{Hg}	13.220	200.970	3/2	19.845
203 _{T1}	29.500	202.972	1/2	171.746
205 _{T1}	70.500	204.974	1/2	173.433
207 _{Pb}	22.600	206.976	1/2	62.601
209 _{Bi}	100.000	208.980	9/2	48.228
235 _U	0.720	235.044	7/2	5.372
electron		0.000	1/2	197000.000

INFRARED ABSORPTION FREQUENCIES FOR SOME INORGANIC SPECIES.

Species	v/cm ⁻¹
NO $\frac{1}{3}$	1305 - 1420
SO_4^{2-}	1070 - 1130 and 613
ClO ₄	1050 - 1170
PO 4 3-	1030 - 1100
CN-	2000 – 2270 (free 2080)
CrO 4 ²⁻	840 - 900
MnO 4	770 - 810
BF_4^-	1040 - 1100
PF - 6	800 - 880
NH ⁺ ₄	3100 - 3330 and 1360 - 1450
UO 2+	910 - 930
Terminal metal carbonyl, monoanion	2020 - 1750
Terminal metal carbonyl, neutral	2120 - 1820
μ-bridging metal carbonyl, neutral	1740 - 1880

INFRARED ABSORPTION FREQUENCIES

for some Organic Functions

Vibration type	Molecule	/Group		υ/cm ⁻¹
C-H stretch	Alkyl group	(CH ₃ , CH ₂ , CH	I)	2960 - 2850
	Alkanal	(CHO)		2900 - 2700
	Arene			3040 - 3010
	Alkene	(C=CH2)		3095 - 3075
	Alkyne	(C+CH)		3300 - 3270
C-H bend	Alkyl group	(CH ₃ , CH ₂ , CH	H)	1460 - 1370
	Alkene	(C=CH2)		990 - 890
	Arene (in-plane)			1300 - 1000
	(out-of-pla	ne)		900 - 650
C-O stretch	Alkanol	(OH)		1200 - 1050
	Alkanoate ester	(C-O)		1300 - 1050
	Alkoxy (ether)	(R_2O)		1150 - 1070
C=O stretch	Alkanal	(RCHO)		1740 - 1720
	Alkanoate ester	(C=O)		1750 - 1730
	Alkanoic acid	(RCO ₂ H)		1725 - 1700
	Alkanoamide	(RCONR ₂₎		1700 - 1630
	Alkanone	(R_2CO)		1740 - 1700
	Alkanoyl chloride	(RCOCl)		1815 - 1790
	Aromatic ketone	(Ar ₂ CO)		1700 - 1680
C≡N stretch	nitrile	(RCN)		2260 - 2200
N=O stretch	nitro	(NO_2)		1570 - 1510
		a	ind	1370 - 1300
S=O stretch	sulphonate ester	(-SO ₃ -)		1420 - 1330
		a	ınd	1200 - 1145
M-H stretch	metal-hydride com	plexes		2200 - 1600
N-H stretch	Amine, amide	(NH ₂)		3500 - 3300
O-H stretch	Alkanol	(OH)		3650 - 3590
S-H stretch	Thiol	(SH)		2600 - 2550

7

Note: Substituents and hydrogen-bonding effects may cause significant variation in the values quoted above; peaks may also show fine structure.

PHYSICAL PROPERTIES OF GASES*

	Boiling Point T _b /K	Density ρ/kg m ⁻³	Specific heat capacity at constant pressure	Ratio of specific heats, at 293K, γ = C _p /C _v	Viscosity at 293 K, 10 ⁶ η/N s m ⁻²	Critical temperature T _C /K	Critical Pressure, P _C /MPa (or MN m ⁻²)
			C _p /J kg ⁻¹ K ⁻¹				
Air	83	1.293	993	1.40	17	132	3.77
Ammonia	240	0.771	2190	1.31	9	405	11.3
Argon	87	1.784	524	1.67	21	151	4.86
Carbon dioxide	195	1.977	834	1.30	14	304	7.37
Carbon monoxide	81	1.250	1050	1.40	17	134	3.50
Chlorine	238	3.214	478	1.36	13	417	7.70
Dinitrogen oxide	183	1.978	892	1.30	13	310	7.24
Ethane	185	1.357	1615	1.22	9	305	4.90
Ethene	170	1.260	1500	1.26	10	283	5.12
Ethyne	189	1.173	1590	1.26	9	309	6.20
Helium	4.3	0.179	5240	1.66	19	5.3	0.23
Hydrogen	20.4	0.090	14200	1.41	8	33	1.29
Hydrogen chloride	189	1.640	796	1.40	14	325	8.26
Hydrogen sulfide	211	1.538	1020	1.32	12	374	9.00
Methane	109	0.717	2200	1.31	10	191	4.62
Nitrogen	77	1.250	1040	1.40	17	126	3.38
Nitrogen oxide	121	1.340	972	1.39	18	179	6.5
Nitrogen dioxide	294	1.867	680	1.31	13 (300 K)	431	10.1
Oxygen	90	1.429	013	1.40	19	154	5.1
Sulfur dioxide	263	2.927	645	1.29	9	430	7.9
Water vapour	373	0.600**	2020 **		12 **	647	22.12

PHYSICAL PROPERTIES OF LIQUIDS

	Melting Point T _m /K	Boiling Point T _b /K	Density** ρ/kg m ⁻³	Specific latent heat of vaporisation* 10-3 ℓ /J kg-1	Specific heat capacity C _p /J kg ⁻¹ K ⁻¹	Cubic Expansivity 10 ⁻⁵ γ/ K-1	Viscosity, ** η/ 10 ⁻³ N s m ⁻²
Benzene	279	353	879	394	1700	122	0.65
Bromine	266	352	3100	183	460	113	0.99
Carbon disulfide	162	319	1293	352	1000	119	0.38
Ethanoic acid	290	391	1049	394	1960	107	1.22
Ethanol	156	352	789	839	2500	108	1.20
Ethoxyethane	157	308	714	372	2300	163	0.24
Mercury	234	630	13546	290	140	18.2	1.55
Methanol	179	338	791	1103	2500	119	0.59
Methylbenzene	178	384	867	350	1670	107	0.58
Nitrobenzene	279	484	1175	330	1400	86	2.03
Phenylamine	267	457	1022				4.4
Propane-1, 2,3-triol	293	563+	1261	830	2400	47	1495
Propanone	178	329	790	522	2210	143	0.32
Tetrachloromethane	250	350	1594	195	840	122	0.97
Trichloromethane	210	335	1483	249	960	127	0.57
Water	273	373	998	2260	4190	21	1.00

^{*} At the boiling point, T_b ** At 293 K

⁺ decomposes at this temperature

SELECTED PHYSICAL PROPERTIES OF SOME SOLID MATERIALS

	Melting Point	Density	Specific latent heat of fusion	Specific heat capacity	Linear expansivity 10 ⁵	Thermal conductivity
	T _m /K	10 ⁻³ ρ/kg m ⁻³	10 ⁻⁴ ℓ /J kg ⁻¹	$10^{-2} \mathrm{C_{p}/J kg^{-1} K^{-1}}$	α/J K ⁻¹	λ/W m ⁻¹ K ⁻¹
Alumina	2300	3.8	40	8.0	9	30
Aluminium	930	2.7		9.0	23	220
Brass (70Cu/30Zn)	1300	8.5		3.7	18	110
Brick (building)		2.3			9	0.6
" (firebrick)		2.1			5	0.8
Bronze (90Cu/10Sn)	1300	8.8		3.6	17	180
Carbon (graphite)	3700	2.3		7.1	8	5.0
Concrete		2.4		3.4	12	0.1
Constantan (60Cu/40Ni)	1360	8.9		4.2	17	23
Copper	1356	8.9	20	3.9	17	390
Epoxy resin		1.2		14	40	
Fluon		2.2		10	50	0.3
Glass (pyrex-type)	1100*	2.2		~6	3	~1.0
Gold	1340	19.3	7	1.3	14	300
Ice	273	0.9	33	21	50	2.0
Invar (64 Fe/36Ni)	1800	8.0		5	1	
Iron	1810	7.9	27	1.1	12	80
" (cast)	~1450	~7.5	~12		11	75

Lead	600	11.3	3	1.3	30	35
Manganin		8.5	40	4	18	22
(83Cu/15Mn/3Ni)						
Monel (70Ni/30Cu)	1600	8.8			14	21
Nickel	1726	8.9	30	4.6	13	60
Nylon	470	1.2		17	100	0.3
Perspex	350	1.2		15	85	0.2
Platinum	2042	21.5	11	1.4	9	70
Polyethylene	410	0.9		23	250	
Polypropylene	450	0.9		21	65	
Polystyrene	510	1.1		13	70	0.1
PVC (hard)	485	1.7		10	60	
PVC (soft)	485	1.3		18	150	
Sulfur	386	2.1		7	64	0.3
Sodium	370	0.97	11	12	71	134
Stainless Steel	~1800	~8.0		~5	16	150
(18Cr/8Ni)						
Steel (mild)	~1700	~8.0		~4	15	60
Titanium	1950	4.5	32	5.2	9	23

^{*} Softening temperature

MOHS' HARDNESS SCALES

The original and modified scales have ten and fifteen points respectively. The points on the original scale are shown in parentheses in the table

Substance	Hardness	Substance	Hardness
Talc	1(1)	Topaz	9(8)
Gypsum	2(2)	(Corundum)	(9)
Calcite	3(3)	Garnet	10
Fluorite	4(4)	Fused zirconia	11
Apatite	5(5)	Fused alumina	12
Orthoclase	6(6)	Silicon carbide	13
Vitreous silica	7	Boron carbide	14
Quartz	8(7)	Diamond	15(10)

STOKES'S LAW OF VISCOSITY

	v =	$2gr^2 (\rho - \rho_0)/(9\eta)$
where	V	is the terminal velocity of fall of a spherical particle in a viscous medium
	r	is the radius of the particle
	ρ	is the density of the particle
	ρ_{0}	is the density of the medium
	η	is the coefficient of viscosity of the medium

SELECTED STABILITY CONSTANTS

Chemistry Data Book 2nd edition J G Stark, H G Wallace, John Murray Ltd, London, 1982.

Log10 (Stability Constants of Complex Ions at 298 K)

Ag ⁺	+	2NH3	$= [Ag(NH3)2]^{+}$	7.22
Co ³⁺	+	6NH3	$= [Co(NH_3)_6]^{3+}$	23.12
Cu ²⁺	+	4NH3	$= [Cu(NH_3)_4]^{2+}$	12.36
Zn ²⁺	+	4NH3	$= [Zn(NH_3)_4]^{2+}$	8.56
Ag ⁺	+	2CN-	$= [Ag(CN)_2]^-$	20.4
Fe ³⁺	+	6CN-	$= [Fe(CN)_6]^{3}$	52.61
Cu ⁺	+	4CN-	$= [Cu(CN)_4]^{3}$	33.02
Zn ²⁺	+	4CN-	$= [Zn(CN)_4]^{2-}$	16.76
Ag ⁺	+	EDTA ⁴ -	$= [Ag(EDTA)]^{3}$	7.3
Ca ²⁺	+	EDTA ⁴ -	$= [Ca(EDTA)]^{2}$	10.7
Co2+	+	EDTA ⁴ -	$= [Co(EDTA)]^{2}$	16.2
Co ³⁺	+	EDTA ⁴ -	= [Co(EDTA)] ⁻	36
~ 2⊥		LDIII	[CO(LD171)]	30
Cu ²⁺	+	EDTA ⁴ -	$= [Cu(EDTA)]^{2}$	18.8
Fe ³⁺				
	+	EDTA ⁴ -	= [Cu(EDTA)] ² -	18.8
Fe ³⁺	+	EDTA ⁴ -	= [Cu(EDTA)] ² - = [Fe(EDTA)] ⁻	18.8 25.7

COMMON ABBREVIATIONS

Ar	any aryl group
Bn	benzyl C ₆ H ₅ CH ₂ -
BOC	CO2 ^t Bu
Bz	benzoyl C ₆ H ₅ -CO-
CBZ (Z)	CO ₂ Bn
LDA	Lithium diisopropylamide
MCPBA	meta-chloroperbenzoic acid (3-ClC6H4CO3H)
PCC	pyridinium chlorochromate
	(C ₅ H ₅ NH ClCrO ₃)
R	any alkyl group
TBDMS	-SiMe2 ^t Bu
(TBS)	
Tf	triflate -OSO2CF3
TFA	trifluoroacetic acid,
	CF3CO2H
THF	Tetrahydrofuran
THP	tetrahydropyran
TMS	-trimethylsilyl -SiMe3
	or tetramethylilane Me4Si
	(in context of NMR)
Ts	tosyl
	H3C - SO2

BRIEF SUMMARY OF ORGANIC NOMENCLATURE ACCORDING TO THE IUPAC SYSTEM

The nomenclature of organic compounds can be very complex but most common compounds can be named using a few simple rules. The principal part of the structure will be a chain or a cyclic system. If there are several possible chains the longest one is chosen. If possible the most important functional group (that is whichever group appears highest in Table A) should be included in the principal part. Many functional groups can be named either as prefixes or as suffixes (see Table A). If any group at all is present which can be named as a suffix, then there must be a suffix in the name. If several such groups are present, then the most important group is the one to be named as suffix the other groups being named as prefixes

e.g CH₃CO(CH₂)₃CO₂H is 5-oxohexanoic acid, but CH₃CO(CH₂)₄OH is 6-hydroxyhexan-2-one.

However the suffixes -ene and -yne can be compounded with suffixes denoting another group as the principal group, e.g., cyclohex-2-enone (note the terminal \underline{e} in ene is omitted in such cases).

Numbers (locants) normally have to be used to denote the position of each group. The numbering is such as to give the major group the lowest possible number. Where there is no ambiguity a number is not used. For instance an -oic acid has to be at the end of the chain and hence (usually) at position 1.

The groups listed in Table B can be named only as prefixes. If there is more than one group prefixing the name of the principal part of the structure these are placed in alphabetical order, each one preceded by the appropriate locant. If several groups are the same they are not repeated as separate prefixes but the Greek numerical term is used instead to show how many there are

e.g 2,3,3-trimethylcyclopentanone

Finally many heterocyclic systems have individual names. The major ones are listed on the Structures of Selected Heterocyclic Organic Compounds' table.

For use when naming compounds

TABLE A

ORDER OF PRECEDENCE FOR COMMON GROUPS

(highest precedence at the top)

Group	Suffix	Prefix
> ⁺ _N	-ammonium	
OH OH	-oic acid* -carboxylic acid†	carboxy-
-c OR	alkyl -oate* alkyl carboxylate†	alkoxycarbonyl-
-SO ₃ H	-sulfonic acid	sulfo-
—c, O	-oyl chloride* -carbonyl chloride†	chlorocarbonyl-
-c'NH ₂	-amide* -carboamide†	carbamoyl-
-СНО	-al* -carbaldehyde†	oxo-* methanoyl-†

Group	Suffix	Prefix
$-c_{R}^{O}$	-one	oxo-* alkanoy1-†
$-\mathbf{C} \equiv \mathbf{N}$	-onitrile* -carbonitrile†	cyano-
-OH	-ol	hydroxy-
-SH	-thiol	mercapto-
-NH ₂	-amine	amino-
-NH(COR)	-amide	amido-
C = C	-ene	
-C ≡ C-	-yne	

Term used if part of a chain (note the carbon atom counts as part of the chain) Term used if substituent is on, e.g., a ring

[†]

TABLE B
SUBSTITUENTS NAMED ONLY AS PREFIXES

Group	Prefix
–OR	alkoxy-
–SR	alkylthio-
-SO-	sulfinyl-
-SO ₂ -	sulfonyl-
–H (added)	hydro -
–F, Cl, Br, I	halogeno-
-NO	nitroso-
-NO ₂	nitro-
-N=N-	azo-
-O-O-	peroxo

In addition, hydrocarbon and heterocyclic groups are named as prefixes (methyl, phenyl, cyclohexyl, indol-3-yl) unless they are chosen as the principal part of the structure.

STRUCTURES OF SELECTED CYCLIC ORGANIC COMPOUNDS

Acridine	(39)		
Anthracene	(38)	Oxazole	(12)
Azepine	(21)	Oxepine	(22)
Azetidine	(3)	Oxetane	(4)
Aziridine	(1)	Oxirane (an epoxide)	(2)
Azulene	(27)	Phenanthrene	(40)
Benzofuran	(28)	Phenanthridine	(41)
Benzothiophen	(30)	Piperidine	(14)
Carbazole	(36)	Purine	(26)
β-Carboline	(37)	2H-Pyran	(20)
Dioxan	(16)	Pyrazole	(8)
Furan	(6)	Pyridine	(17)
Imidazole	(11)	Pyrylium	(18)
Indole	(29)	Pyrimidine	(19)
Indolizine	(25)	Pyrrole	(5)
Isoindole	(24)	Quinazoline	(35)
Isoquinoline	(33)	Quinoline	(32)
Isothiazole	(10)	Quinoxaline	(34)
Isoxazole	(9)	Thiazole	(13)
Morpholine	(15)	Thiophene	(7)
Naphthalene	(31)	Tropylium	(23)

- (1) X = NH
- (2) X = O
- (3) X = NH
- $(3) \quad X = NI$ $(4) \quad X = O$
- (5) X = NH
- (6) X = O
- (7) X = S

- (8) X = NH
- (9) X = O
- (10) X = S
- (11) X = NH
- (12) X = O
- (13) X = S
- (14) $X = NH, Y = CH_2$
- (15) X = NH, Y = O
- (16) X = Y = O

- (17) X = N, Y = CH
- (18) $X = O^+, Y = CH$
- (19) X = Y = N

- (20)
- (21) X = NH
- (22) X = O
- (23) $X = CH^+$

(24)

(25)

(26)

(27)

- (28) X = O
- (29) X = NH
- (30) X = S

- (36) X = NH, Y = CH
- (37) X = NH, Y = N

- (31) X = Y = CH
- (32) X = N, Y = CH
- (33) X = CH, Y = N

- (38) X = CH
- (39) X = N

- (34) X = N, Y = CH
- (35) X = CH, Y = N

- (40) X = CH
- (41) X = N

STRUCTURES OF SELECTED ORGANIC COMPOUNDS FREQUENTLY REFERRED TO BY NON-SYSTEMATIC NAMES

(standard abbreviations shown in brackets)

Acetic Acid		MeCO ₂ H
Acetone		MeCOMe
Acetylene		CH=CH
Acrolein		CH ₂ =CHCHO
Acrylic Acid		CH ₂ =CHCO ₂ H
Acrylonitrile		CH ₂ =CHCN
Adipic Acid		HO ₂ C(CH ₂) ₄ CO ₂ H
Aniline		PhNH ₂
Bisphenol A		(4-HOC ₆ H ₄) ₂ CMe ₂
Chloroform		CHCl3
Chloroprene		CH ₂ =CClCH=CH ₂
Cresol		MeC ₆ H ₄ OH
Cumene		PhCHMe ₂
Dimethylformamide	(DMF)	Me ₂ NCHO
Dimethylsulfoxide	(DMSO)	Me ₂ SO
ε-Caprolactam		HN—C=O (CH ₂) ₅
Epichlorohydrin		O CH ₂ —CH-CH ₂ CI
Ethylene Glycol		HOCH ₂ CH ₂ OH
Ethylene Oxide		O CH ₂ —CH ₂
		continued

Formaldehyde		CH ₂ O
Formic Acid		HCO ₂ H
Glycerol		HOCH ₂ CH(OH)CH ₂ OH
Hexamethylenediamine		H ₂ N(CH ₂) ₆ NH ₂
Iso-octane		Me3CCH2CHMe2
Isobutylene		Me ₂ C=CH ₂
Ketene		CH ₂ =C=O
Methylene Dichloride		CH ₂ Cl ₂
Methyl Methacrylate		CH2=CMeCO2Me
Neoprene		[-CH2CCl=CHCH2 ⁻]n
Oxalic Acid		HO ₂ C.CO ₂ H
Phosgene		Cl ₂ CO
Phthalic Acid		1,2-C ₆ H ₄ (CO ₂ H) ₂
Propylene		MeCH=CH ₂
PVC		[- CH ₂ CHCl -] _n
Stilbene		PhCH=CHPh
Styrene		PhCH=CH ₂
Succinic Acid		HO ₂ CCH ₂ CH ₂ CO ₂ H
Terephthalic Acid		1,4-C ₆ H ₄ (CO ₂ H) ₂
Tetrahydrofuran	(THF)	
Toluene		PhMe
Urea		H ₂ NCONH ₂
Vinyl Chloride		CH ₂ =CHCl
Xylene		C ₆ H ₄ Me ₂

NON-SYSTEMATIC NAMES AND STRUCTURES OF SELECTED ORGANIC GROUPS

(standard abbreviations shown in parentheses)

Amyl		CH3(CH2)4-
i-Amyl (Isoamyl)		(CH ₃) ₂ CH(CH ₂) ₂ -
Butyl	(Bu)	CH3(CH2)3-
i-Butyl (Isobutyl)	(Bu ⁱ)	(CH ₃) ₂ CHCH ₂ -
s-Butyl	(Bu ^S)	CH ₂ CH ₂ CHCH ₃
	,	
t-Butyl	(Bu ^t)	(CH ₃) ₃ C-
Ethyl	(Et)	CH ₃ CH ₂ -
Methyl	(Me)	СН3-
Neopentyl		(CH ₃) ₃ CCH ₂ -
Propyl	(Pr)	CH3CH2CH2-
i-Propyl (Isopropyl)	(Pri)	(CH ₃) ₂ CH-
Allyl		CH ₂ =CHCH ₂ -
Benzyl	(Bn)	C ₆ H ₅ CH ₂ -
Benzylidene		C ₆ H ₅ CH=
Ethylidene		СН3СН=
Phenyl	(Ph)	C ₆ H ₅ -
Propargyl		HC≡CCH2−
Vinyl		CH ₂ =CH-
Acetate	(AcO)	CH ₃ CO ₂ -
Acetyl	(Ac)	CH ₃ CO-
Acrylate		CH ₂ =CHCO ₂ -
Benzoyl	(Bz)	C ₆ H ₅ CO-
Brosylate	(Bs)	4-BrC6H4SO3-
Mesylate	(Ms)	CH ₃ SO ₃ -
Methacrylate		CH ₂ =C(CH ₃)CO ₂ -
Phenacyl		C ₆ H ₅ COCH ₂ -
Tosylate	(Ts)	4-CH ₃ C ₆ H ₄ SO ₃ -
Triflate	(Tf)	CF ₃ SO ₃ -
Trityl		(C ₆ H ₅) ₃ C-

AMINO ACIDS

Name	Single Letter code		Common Structure
alanine (Ala)	A	Me	 NH ₂ CH CO ₂ H
arginine (Arg)	R	NH H ₂ NCNHCH ₂ CH ₂ CH ₂	
aspartic acid (Asp)	D	HO ₂ CCH ₂	
asparagine (Asn)	N	H ₂ NCOCH ₂	
cysteine (Cys)	С	HSCH ₂	
glutamic acid (Glu)	Е	HO ₂ CCH ₂ CH ₂	
glutamine (Gln)	Q	H ₂ NCOCH ₂ CH ₂	
glycine (Gly)	G	Н	
histidine (His)	Н	V N CH_2	
isoleucine (Ile)	I	EtCH Me	
leucine (Leu)	L	Me ₂ CHCH ₂	
lysine (Lys)	K	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂	
methionione (Met)	M	MeSCH ₂ CH ₂	
phenylalanine (Phe)	F	PhCH ₂	
serine (Ser)	S	HOCH ₂	

Name	Single Letter code		Common Structure
threonine (Thr)	Т	MeCH OH	 NH ₂ CH CO ₂ H
tryptophan (Trp)	W	CH ₂	
tyrosine (Tyr)	Y	4-HOC ₆ H ₄ CH ₂	
valine (Val)	V	Me ₂ CH	

proline (Pro)	Р	CO_2H
		full structure shown

THE GENETIC CODE (RELATING BASE SEQUENCE IN DNA TO AMINO-ACID SEQUENCE IN PROTEIN)

First Position (5'end)	Second Position				Third Position (3'end)
	U	С	A	G	
	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
U	Leu	Ser	Stop	Stop	A
	Leu	Ser	Stop	Trp	G
	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
C	Leu	Pro	Gln	Arg	\mathbf{A}
	Leu	Pro	Gln	Arg	G
	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	C
A	lle	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
G	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G

APPROXIMATE pK_A VALUES OF SELECTED ORGANIC COMPOUNDS

Acid	Base	рКа
PhSO ₃ H	PhSO ₃ ⁻	-7
RCO ₂ H	RCO_2^-	4 - 5
PhOH	PhO ⁻	10
RCOCH2CO2R	RCOCHCO ₂ R	11
RCH ₂ OH	RCH ₂ O [−]	16
RCH2COR	RCHCOR	19
RCH ₂ CO ₂ R	RŌHCO₂R	25
RC ≡CH	$RC \equiv C^-$	25
R ₂ C-CH ₂	$R_2C = CH$	44
RCH3	RCH ₂	50

SELECTED HAMMETT SUBSTITUTENT CONSTANTS

Substituent	$\sigma_{\rm m}$	σ_p	σ_p^+	σ_{p}	σ_p^{o}
-NO ₂	0.71	0.78	0.78	1.24	0.82
-C≡N	0.61	0.70	0.70	0.88	0.71
-C(O)Me	0.38	0.50	0.50	0.84	0.46
-CO ₂ R	0.32	0.45	0.45	0.64	0.44
-CF ₃	0.43	0.54	0.54	0.65	0.53
-I	0.35	0.28	0.14	0.28	0.27
-Br	0.39	0.23	0.15	0.23	0.26
-Cl ·	0.37	0.22	0.11	0.22	0.27
-F	0.34	0.06	-0.07	0.06	0.17
-OMe	0.11	-0.28	-0.78	-0.28	-0.12
-Ph	0.05	0.00	-0.21	0.08	0.05
-H	0.00	0.00	0.00	0.00	0.00
-Me	-0.07	-0.17	-0.31	-0.17	-0.07
-NH ₂	-0.16	-0.66	-1.30		
-NMe ₂	-0.15	-0.63	-1.70	-0.66 -0.63	-0.38 -0.32

HOW TO ASSIGN A MOLECULE TO ITS POINTS GROUP

SELECTED CHARACTER TABLES FOR CHEMICALLY IMPORTANT GROUPS

1 The Non-axial Groups

Cs	E	σh		
A'	1	1	x, y, R _Z	x^2 , y^2 , z^2 , xy
A"	1	- 1	z, R _x , R _y	yz, xz

Ci	E	i	
Ag	1	1	R_X , R_y , R_z $_{x^2}$, $_{y^2}$, $_{z^2}$, $_{xy}$, $_{yz}$, $_{xz}$
$A_{\mathbf{u}}$	1	- 1	x, y, z,

2 The C_n Groups

C ₂	E	C2		
A	1	1	z, R _Z	x^2 , y^2 , z^2 , xy
В	1	- 1	x, y, R _x , R _y	yz, xz

3 The D_n Groups

D ₂	E	C2(z)	C2(y)	C ₂ (x)		
A	1	1	1	1		x ² , y ² , z ²
B ₁	1	1	- 1	- 1	z, R _z	xy
B2	1	- 1	1	- 1	y, Ry	XZ
В3	1	- 1	- 1	1	x, R _X	yz

D ₃	E	2C3	3 C2		
A ₁	1	1	1		$x^2 + y^2$, z^2
A ₂	1	1	- 1	z, R _z	
E	2	- 1	0	$(x,y)(R_X, R_Y)$	$(x^2-y^2,xy)(xz,yz)$

4 The C_{nv} Groups

C _{2v}	E	C2	$\sigma_{\mathbf{V}}(\mathbf{x}\mathbf{z})$	$\sigma_{V}(yz)$			
A ₁	1	1	1	1	Z	x^2, y^2, z^2	z^3 , x^2z , y^2z
A2	1	1	-1	-1	R_{Z}	xy	xyz
B1	1	-1	1	-1	x, Ry	XZ	xz^2, x^3, xy^2
B2	1	-1	-1	1	y, R _X	yz	yz^2, y^3, x^2y

C ₃ v	E	2C3	3σ _V			
A1	1	1	1	Z	$x^2 + y^2, z^2$	z^3 ,x(x ² -3y ²), z (x ² + y ²)
A2	1	1	-1	R_{Z}		$y(3x^2-y^2)$
E	2	-1	0	$(x,y) (R_X,R_y)$	$(x^2-y^2,xy)(xz,yz)$	$(xz^2,yz^2)[xyz, z(x^2-y^2)][x(x^2+y^2), y(x^2+y^2)]$

C ₄ v	E	2 C 4	C ₂	$2\sigma_{\mathbf{V}}$	$2\sigma_{\mathbf{d}}$		
A 1	1	1	1	1	1	z	$x^2 + y^2, z^2$
A2	1	1	1	-1	-1	$R_{\mathbf{Z}}$	
B ₁	1	-1	1	1	-1		x^2-y^2
B2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x,y)(R_X,R_Y)$	(xz,yz)

C ₅ v	E	2 C5	$2C_5^2$	$5\sigma_{ m V}$		
A1	1	1	1	1	Z	$x^2 + y^2$, z^2
A2	1	1	1	-1	R_{Z}	
E ₁	2	$2\cos 72^{\circ}$	2 cos 144º	0	$(x,y)(R_X,R_Y)$	(xz,yz)
E2	2	2 cos 144º	$2\cos 72^{\circ}$	0		x ² - y ² , xy

C _{6v}	E	2C6	2C3	C ₂	$3\sigma_{V}$	3 _d		
A ₁	1	1	1	1	1	1	Z	$x^2 + y^2, z^2$
A2	1	1	1	1	-1	-1	R_{Z}	
B 1	1	-1	1	-1	1	-1		
B2	1	-1	1	-1	-1	1		
E 1	2	1	-1	-2	0	0	$(x,y)(R_X,R_y)$	(xy,yz)
E 2	2	-1	-1	2	0	0		x^2 - y^2 , xy

5 The C_{nh} Groups

C2h	E	C2	i	σh		
Ag	1	1	1	1	$R_{\mathbf{Z}}$	x^2, y^2, z^2, xy
Bg	1	-1	1	-1	R _X ,R _y	(xz,yz)
Au	1	1	-1	-1	Z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x,y	

6 The Dnh Groups

D ₂ h	E	C2(z)	C2(y)	C2(x)	i	σ(xy)	σ(xz)	σ(yz)		
Ag	1	1	1	1	1	1	1	1		x^{2},y^{2},z^{2}
B ₁ g	1	1	-1	-1	1	1	-1	-1	$R_{\mathbf{Z}}$	xy
B2g	1	-1	1	-1	1	-1	1	-1	Ry	XZ
B3g	1	-1	-1	1	1	-1	-1	1	R_{X}	yz
Au	1	1	1	1	-1	-1	-1	-1		
B _{1u}	1	1	-1	-1	-1	-1	1	1	Z	
B _{2u}	1	-1	1	-1	-1	1	-1	1	у	
B ₃ u	1	-1	-1	1	-1	1	1	-1	X	

\mathbf{D}_{3h}	E	2 C3	3 C2	σh	2 S 3	3σ _V		
A' ₁	1	1	1	1	1	1		$x^2 + y^2, z^2$
A'2	1	1	-1	1	1	-1	R_{Z}	
E'	2	-1	0	2	-1	0	(x,y)	$(x^2 - y^2, xy)$
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	Z	
E''	2	-1	0	-2	1	0	(R_X,R_Y)	(xz, yz)

D _{4h}	E	2 C 4	C ₂	2 C2'	2C2"	i	2S4	σh	2 σv	2 σd			
A1g	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$	
A2g	1	1	1	-1	-1	1	1	1	-1	-1	$R_{\mathbf{Z}}$		
B ₁ g	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$	
B2g	1	-1	1	-1	1	1	-1	1	-1	1		xy	
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0	(R_X, R_y)	(xz,yz)	
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1			
A ₂ u	1	1	1	-1	-1	-1	-1	-1	1	1	Z		z^3 , $z(x^2+y^2)$
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1			xyz
B ₂ u	1	-1	1	-1	1	-1	1	-1	1	-1			$z(x^2 - y^2)$
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0	(x, y)		$(xz^2,yz^2)(xy^2,x^2y)(x^3,y^3)$

D5h	E	2 C5	2C5 ²	5C2'	σh	2 S 5	2S5 ³	5 σ _V		
A_1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	-1	1	1	1	-1	$R_{\mathbf{Z}}$	
E1'	2	2cos 72º	2cos 144 ^o	0	2	2cos 72º	2cos 144º	0	(x, y)	
E2'	2	2cos144º	2cos 72º	0	2	2cos 144º	2cos 72º	0		$(x^2 - y^2, xy)$
A1"	1	1	1	1	-1	-1	-1	-1		
A2"	1	1	1	-1	-1	-1	-1	1	z	
E1"	2	2cos 72º	2cos 144º	0	-2	-2cos 72º	-2cos 144º	0	(R_X, R_y)	(xy, yz)
E2"	2	2cos 144º	2cos 72º	0	-2	-2cos 144º	-2cos 72º	0		

D _{6h}	E	2 C 6	2 C3	C ₂	3C2'	3 C2 "	i	2 S 3	2 S 6	σh	3 σd	3 σ _{V}		
A1g	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2g	1	1	1	1	-1	-1	1	1	1	1	-1	-1	$R_{\mathbf{Z}}$	
B ₁ g	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
B2g	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
E _{1g}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	(R_X,R_y)	(xz,yz)
E2g	2	-1	-1	2	0	0	2	-1	-1	2	0	0		(x^2-y^2, xy)
A _{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A2u	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	Z	
B _{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
B ₂ u	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E _{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
E _{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

7 The D_{nd} Groups

D ₂ d	E	2S4	C2	2C2'	$2\sigma_{\mathbf{d}}$			
A 1	1	1	1	1	1		$x^2 + y^2, z^2$	xyz
A2	1	1	1	-1	-1	R_{Z}		$z(x^2 - y^2)$
B 1	1	-1	1	1	-1		$x^2 - y^2$	
B 2	1	-1	1	-1	1	z	xy	z^3 , $z(x^2 + y^2)$
E	2	0	-2	0	0	$(x, y) (R_X, R_Y)$	(xz, yz)	$(xz^2,yz^2)(xy^2,x^2y)(x^3,y^3)$

D3d	E	2 C3	3 C2'	i	2 S 6	3 σd			
A ₁ g	1	1	1	1	1	1		$x^2 + y^2, z^2$	
A2g	1	1	-1	1	1	-1	R_{Z}		
Eg	2	-1	0	2	-1	0	(R_X, R_y)	$(x^2 - y^2, xy)(xz, yz)$	
A _{1u}	1	1	1	-1	-1	-1			$x(x^2 - 3y^2)$
A ₂ u	1	1	-1	-1	-1	1	Z		$y(3x^2 - y^2), z^3, z(x^2 + y^2)$
$\mathbf{E}_{\mathbf{u}}$	2	-1	0	-2	1	0	(x,y)		$(xz^2, yz^2)[xyz, z(x^2 - y^2)]$
									$[x(x^2+y^2), y(x^2+y^2)]$

D ₄ d	E	2 S8	2 C 4	2 S 8 ³	C 2	4C2'	$4\sigma_{\mathbf{d}}$		
A ₁	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A 2	1	1	1	1	1	-1	-1	R_{Z}	
B ₁	1	-1	1	-1	1	1	-1		
B 2	1	-1	1	-1	1	-1	1	Z	
E 1	2	$2^{\frac{1}{2}}$	0	$-2^{\frac{1}{2}}$	-2	0	0	(x, y)	
$\mathbf{E_2}$	2	0	-2	0	2	0	0		$(x^2 - y^2, xy)$
E 3	2	$-2^{\frac{1}{2}}$	0	2 ^{1/2}	-2	0	0	(R_X,R_y)	(xz, yz)

D5d	E	2 C 5	2C5 ²	5 C 2	i	2S ₁₀ ³	2S10	5 σd		
A1g	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2g	1	1	1	-1	1	1	1	-1	R_{Z}	
E _{1g}	2	2cos 72º	2cos 144º	0	2	2cos 72º	2cos 144º	0	(R_{X}, R_{y})	(xz, yz)
E2g	2	2cos 144º	2cos 72º	0	2	2cos 144º	2cos 72º	0		$(x^2 - y^2, xy)$
A _{1u}	1	1	1	1	-1	-1	-1	-1		
A ₂ u	1	1	1	-1	-1	-1	-1	1	Z	
E _{1u}	2	2cos 72º	2cos144 ^o	0	-2	$-2\cos 72^{o}$	-2cos 144º	0	(x, y)	
E _{2u}	2	2cos 144º	2cos72º	0	-2	-2cos 144º	-2cos 72º	0		

8 The Cubic Group

Td	E	8 C3	3 C 2	6 S 4	6 σd			
A ₁	1	1	1	1	1		$x^2 + y^2 + z^2$	xyz
A ₂	1	1	1	-1	-1			
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$	
T 1	3	0	-1	1	-1	(R_X, R_y, R_z)		$[x(z^2 - y^2), y(z^2 - x^2), z(x^2 - y^2)]$
T2	3	0	-1	-1	1	(x,y,z)	(xy, xz, yz)	$(x^3, y^3, z^3)[x(z^2 + y^2), y(z^2 + x^2), z(x^2 + y^2)]$

Oh	E	8 C 3	6C ₂	6 C 4	$3C_2(C_4^2)$	i	6 S 4	8 S 6	3 σ h	6σd			
A ₁ g	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$	
A ₂ g	1	1	- 1	- 1	1	1	- 1	1	1	- 1			
Eg	2	- 1	0	0	2	2	0	- 1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$	
T ₁ g	3	0	- 1	1	- 1	3	1	0	- 1	- 1	(R_x, R_y, R_z)	(x2 - y2)	
T ₂ g	3	0	1	- 1	- 1	3	- 1	0	- 1	1		(xz, yz, xy)	
A _{1u}	1	1	1	1	1	- 1	- 1	- 1	- 1	- 1			
A _{2u}	1	1	- 1	- 1	1	- 1	1	- 1	- 1	1			xyz
Eu	2	- 1	0	0	2	-2	0	1	-2	0			
T _{1u}	3	0	- 1	1	- 1	-3	-1	0	1	1	(x, y, z)		$(x^3, y^3, z^3),$ $[x(z^2 + y^2),$ $y(z^2 + x^2),$ $z(x^2 + y^2)]$
T _{2u}	3	0	1	-1	- 1	-3	1	0	1	-1			$[x(z^{2} - y^{2}), y(z^{2} - x^{2}), z(x^{2} - y^{2})]$

The Continuous Groups

C_{∞_V}	E	2 C _∞ ⁶	•••	∞ σ_v		
$A_1 \equiv \sum^+$	1	1	• • •	1	Z	$x^2 + y^2, z^2$
$\mathbf{A}_2 \equiv \sum_{i=1}^{n}$	1	1	•••	-1	R_{Z}	
$\mathbf{E_1} \equiv \prod$	2	2cos φ	•••	0	$(x, y)(R_X, R_y)$	(xz, yz)
$\mathbf{E_2} \equiv \Delta$	2	2cos 2φ	•••	0		$(x^2 - y^2, xy)$
$E_2 \equiv \Phi$	2	2cos 3φ	•••	0		
•••	•••	•••	•••	•••		

$\mathbf{D}_{\infty} \mathbf{h}$	E	$2\mathbf{C}_{\infty}^{\phi}$	• • •	∞ $\sigma_{\rm v}$	i	$2\mathbf{S}_{\infty}^{\phi}$	• • •	∞C′ ₂		
$\mathbf{A_{1g}} \equiv \sum_{g}^{+}$	1	1	• • •	1	1	1	• • •	1		$x^2 + y^2, z^2$
$\mathbf{A_{2g}} \equiv \sum_{\mathbf{g}}^{-}$	1	1	• • •	-1	1	1	•••	-1	R_{Z}	
$\mathbf{E}_{\mathbf{1g}} \equiv \prod \mathbf{g}$	2	2cos φ	• • •	0	2	-2cos φ	•••	0	(R_X, R_y)	(xz, yz)
$\mathbf{E}_{\mathbf{2g}} \equiv \Delta_{\mathbf{g}}$	2	2cos 2φ	• • •	0	2	2cos 2φ	•••	0		$(x^2 - y^2, xy)$
•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
$\mathbf{A1_u} \equiv \sum_{\mathbf{u}}^{+}$	1	1	• • •	1	-1	-1	• • •	-1	Z	
$\mathbf{A2_{u}} \equiv \sum_{\mathbf{u}}^{-}$	1	1	• • •	-1	-1	-1	• • •	1		
$\mathbf{E}_{1\mathbf{u}} \equiv \Pi \mathbf{u}$	2	2cos φ	• • •	0	-2	2cos φ	•••	0	(x, y)	
$\mathbf{E}\mathbf{2_{u}} \equiv \Delta \mathbf{u}$	2	2cos 2φ	•••	0	-2	-2cos 2φ	•••	0		
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		

GROUP THEORETICAL FORMULAE

Reduction Formula: In more complex cases, it is not always easy to pick out the correct linear combination, in which case we use the *reduction formula*:

$$n(\Gamma) = \frac{1}{h} \sum_{all\ classes} \chi_{R^{\square}} \chi_{I^{\square}} N$$

 $n(\Gamma)$ = number of times a given irreducible representation, Γ , occurs in the sum

 χ_R = character in the reducible representation

 χ_I = character in the irreducible representation

h =order of the group

N = number of symmetry operations in a given class

Operation	f(R)
E	3
σ	1
i	-3
C ₂	-1
С3	0
C4	1
C6	2

Operation	f(R)
S ₃	-2
S ₄	-1
S ₆	0
C_n^k	$1 + 2\cos(2\pi k/n)$
S _n ^k	$-1 + 2\cos(2\pi k/n)$

DIRECT PRODUCT RULES FOR CHEMICALLY IMPORTANT GROUPS

1 General Rules

x	1	"
1	1	11
"	"	1

X	g	u
g	g	u
u	u	g

Unless otherwise indicated (see e.g., table 3)

X	1	2
1	1	2
2	2	1

The antisymmetric component of a product of degenerate components is identified by square brackets [].

2 For C₂, D₃, C_{2v}, C_{3v}, C_{6v}, C_{2h}, D_{3h}, D_{6h}, D_{3d}

					· · · · · · · · · · · · · · · · · · ·	
x	A ₁	A ₂	B ₁	В2	E1	E2
A ₁	A ₁	A ₂	B ₁	В2	E1	E2
A ₂		A ₁	В2	B1	E1	E2
B ₁			A1	A ₂	E2	E1
B2				A1	E2	E1
E1					A ₁ + [A ₂] + E ₂	B1+ B2 + E1
E ₂						A ₁ + [A ₂] + E ₂

Note symmetry about diagonal

3 For D₂, D_{2h}

X	A	В1	В2	Вз
A	A	B1	B2	В3
B ₁		A	Вз	В2
В2			A	B1
Вз				A

4 For C_{4v}, C_{4h}, D_{2d}

x	A ₁	A ₂	B1	B2	Е
A ₁	A ₁	A ₂	B ₁	B2	E
A ₂		A ₁	B2	B1	E
B ₁			A ₁	A ₂	E
B2				A ₁	E
Е					A ₁ + [A ₂] + B ₁ + B ₂

5 For C_{5v}, D_{5h}, D_{5d}

x	A ₁	A ₂	E ₁	E2
A ₁	A ₁	A ₂	E1	E2
A ₂		A ₁	E ₁	E2
E1			A ₁ + [A ₂] + E ₂	E ₁ + E ₂
E2				A ₁ + [A ₂] + E ₁

6 For Oh, Td

x	A ₁	A ₂	Е	T ₁	T ₂
A ₁	A ₁	A ₂	Е	T ₁	T ₂
A ₂		A ₁	Е	T ₂	T ₁
Е			A ₁ + [A ₂] + E	T ₁ + T ₂	T ₁ + T ₂
T ₁				A ₁ + E + [T ₁] + T ₂	$A_2 + E + T_1 + T_2$
T ₂					A ₁ + E + [T ₁] + T ₂

7 For $C_{\infty \mathbf{V}}$, $D_{\infty \mathbf{h}}$

х	Σ^+	Σ^-	П	Δ
Σ^+	Σ+	Σ-	П	Δ
Σ-		Σ+	П	Δ
П			$\Sigma^+ + [\Sigma^-] + \Delta$	Π + Φ
Δ				$\Sigma^+ + [\Sigma^-] + \Gamma$
:				

INTEGRATION BY PARTS

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

TRAPEZOIDAL RULE

$$I = \int f(x) dx = \frac{h}{2} \{ f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f(a+(n-1)h) + f(b) \}$$
where h=(b-a)/n

SIMPSON'S RULE

$$I = \int_{a}^{b} f(x) dx = \frac{h}{3} \{ f(a) + f(b) + 4 [f(a+h) + f(a+3h) + \dots + f(a+(n-1)h)]$$

$$+ 2 [f(a+2h) + f(a+4h) + \dots + f(a+(n-2)h)] \}$$
where h=(b-a)/n and n is even

HYPERBOLIC FUNCTIONS

$ \cosh x = \frac{1}{2} (e^{x} + e^{-x}); $	$ sinh x = \frac{1}{2} (e^{x} - e^{-x}); $
$\tanh x = \frac{\sinh x}{\cosh x}$	$\cosh^2 x - \sinh^2 x = 1;$
$\cosh^2 x + \sinh^2 x = \cosh 2x.$	$2 \sinh x \cosh x = \sinh 2x$
$\cosh(-x) = \cosh x$	sinh(-x) = -sinh x

COMPLEX NUMBERS

$$\begin{split} z &= x + iy = re^{i\theta} & (r \ge 0, -\pi \le \theta < \pi) \\ e^{i\theta} &= \cos \theta + i \sin \theta; \text{ (Euler)}; \quad (\cos \theta + i \sin \theta)^n = \cos n\theta \ + i \sin n\theta \text{ (De Moivre)} \end{split}$$

QUADRATIC EQUATIONS

$$ax^{2} + bx + c = 0$$
 has roots. $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ for real a, b, c.

The roots are complex if $b^2 < 4ac$ and real if $b^2 \ge 4ac$

FACTORIAL DEFINITIONS

$$n! = n(n-1)(n-2)....1$$
 (0! = 1)
 ${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$

BIONOMIAL SERIES

$$(x+y)^n = x^n + {}^nC_1 x^{n-1}y + {}^nC_2 x^{n-2}y^2 + \dots {}^nC_r x^{n-r}y^r + \dots + y^n$$

The coefficients in the binomial series, ${}^{n}C_{r}$, may be arranged as follows, with each line of the (Pascal) triangle corresponding to a different value of n:

n = 1						1		1						
n = 2					1		2		1					
n = 3				1		3		3		1				
n = 4			1		4		6		4		1			
n = 5		1		5		10		10		5		1		
n = 6	1		6		15		20		15		6		1	

The coefficients in non-end positions in the n^{th} line ($n \ge 3$) may be derived by adding the two coefficients in the $(n-1)^{th}$ line which are arranged diagonally to the left and to the right of the selected position in the n^{th} line.

DERIVATIVES AND INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS

f(x)	$f'(x) = \frac{df(x)}{dx}$	$F(x) = \int f(x) dx$
x ⁿ	nx ⁿ⁻¹ (n≠0)	$x^{n+1}/(n+1)$, $(n\neq -1)$ $\ell n x$, $(n=-1)$
ℓ n x	1/x	x ℓ n x - x
e ^{ax}	ae ^{ax}	e ^{ax} /a
sin x	cos x	-cos x
cosh x	sinh x	sinh x
sinh x	cosh x	cosh x
ef(x)	$f'(x)e^{f(x)}$	no general rule
sec ² x	$2 \sec^2 x \tan x$	tan x
$\frac{1}{(a^2-x^2)^{1/2}}$	$x(a^2-x^2)^{-3/2}$	$\sin^{-1}(x/a)$, $ x \le a$
tan x	sec ² x	$-\ell$ n $ \cos x $

RULES FOR DIFFERENTIATION

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{f}\mathrm{g}\right) = \mathrm{f}'\mathrm{g} + \mathrm{f}\mathrm{g}'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{f}/\mathrm{g}) = (\mathrm{g}\mathrm{f}' - \mathrm{f}\mathrm{g}')/\mathrm{g}^2$$

SCALOR, VECTOR PRODUCTS

 $\mathbf{a}.\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos C;$ plane of

 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \mathbf{C}$ n is unit vector, perpendicular to the the page and pointing towards the viewer.

$$c^{2} = a^{2} + b^{2}-2 \text{ ab cos } C;$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$

$$A + B + C = 180^{\circ} = \pi$$

MACLAURIN SERIES

$$f(x) = f(0) + \frac{f^{(1)}(0)}{1!} \cdot x + \frac{f^{(2)}(0)}{2!} \cdot x^2 + \dots + \frac{f^{(r)}(0)}{r!} \cdot x^r + \dots$$

TAYLOR SERIES

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!} \cdot (x - a) + \frac{f^{(2)}(a)}{2!} \cdot (x - a)^2 + \frac{f^{(r)}(a)}{r!} \cdot (x - a)^r + - - -$$

ARITHMETICAL PROGRESSION

$$S_n = a + (a+x) + (a+2x) + ---+ (a+(n-1)x) = \frac{n}{2} [2a + (n-1)x]$$

GEOMETRICAL PROGRESSION

$$S_n = a + ax + ax^2 + - - + ax^{n-1} = \frac{a(1-x^n)}{1-x}$$
; $\lim_{n \to \infty} S_n = \frac{a}{1-x}$, for $|x| < 1$

TRIGOMETRICAL FORMULAE

Signs associated with values of the trigonometrical functions of angles in the various quadrants:

$$\sin + \quad \text{all} + \quad \text{all} = \sin, \tan, \cos$$
 $\tan + \quad \cos + \quad (\pi \text{ radians} = 180^{\circ})$

$$\sin \pi = 0$$
; $\cos \pi = -1$; $\sin 0 = 0$; $\cos 0 = 1$;

$$\sin \frac{\pi}{2} = 1;$$
 $\cos \frac{\pi}{2} = 0;$ $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}};$

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}; \quad \cos\frac{\pi}{3} = \frac{1}{2}; \quad \sin\frac{\pi}{6} = \frac{1}{2}; \quad \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2};$$

$$cos(-x) = cos x$$
; $sin(-x) = -sin x$.

$$\cos^{2}x + \sin^{2}x = 1;$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y;$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y;$$

$$\tan x = \frac{\sin x}{\cos x}; \cot x = \frac{\cos x}{\sin x}; \sec x = \frac{1}{\cos x}; \csc x = \frac{1}{\sin x}$$

$$\sin x \pm \sin y = 2 \sin \frac{1}{2} (x \pm y) \cos \frac{1}{2} (x \mp y);$$

$$\cos x + \cos y = 2 \cos \frac{1}{2} (x + y) \cos \frac{1}{2} (x - y);$$

$$\cos x - \cos y = 2 \sin \frac{1}{2} (x + y) \sin \frac{1}{2} (y - x);$$

$$\cos x - \cos x = 2 \sin x \cos x;$$

$$\sin 2x = 2 \sin x \cos x;$$

$$\cos 3x = 4 \cos^{3} x - 3 \cos x;$$

$$\sin 3x = 3 \sin x - 4 \sin^{3} x;$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

STUDENTS' t - DISTRIBUTION

Values exceeded in two-tailed test with probability P.

_									
	d.f	P = 0.1	0.05	0.02	0.01	0.002	0.001		
	1	6.314	12.706	31.821	63.657	318.31	636.62		
	2	2.920	4.303	6.965	9.925	22.327	31.598		
	3	2.353	3.182	4.541	5.841	10.214	12.924		
	4	2.132	2.776	3.747	4.604	7.173	8.610		
	5	2.015	2.571	3.365	4.032	5.893	6.869		
	6	1.943	2.447	3.143	3.707	5.208	5.959		
	7	1.895	2.365	2.998	3.499	4.785	5.408		
	8	1.860	2.306	2.896	3.355	4.501	5.041		
	9	1.833	2.262	2.821	3.250	4.297	4.781		
	10	1.812	2.228	2.764	3.169	4.144	4.587		
	11	1.796	2.201	2.718	3.106	4.025	4.437		
	12	1.782	2.179	2.681	3.055	3.930	4.318		
	13	1.771	2.160	2.650	3.012	3.852	4.221		
	14	1.761	2.145	2.624	2.977	3.787	4.140		
		1		l			1		

	1	 		İ	I	I I
15	1.753	2.131	2.602	2.947	3.733	4.073
16	1.746	2.120	2.583	2.921	3.686	4.015
17	1.740	2.110	2.567	2.898	3.646	3.965
18	1.734	2.101	2.552	2.878	3.610	3.922
19	1.729	2.093	2.539	2.861	3.579	3.883
20	1.725	2.086	2.528	2.845	3.552	3.850
21	1.721	2.080	2.518	2.831	3.527	3.819
22	1.717	2.074	2.508	2.819	3.505	3.792
23	1.714	2.069	2.500	2.807	3.485	3.767
24	1.711	2.064	2.492	2.797	3.467	3.745
25	1.708	2.060	2.485	2.787	3.450	3.725
26	1.706	2.056	2.479	2.779	3.435	3.707
27	1.703	2.052	2.473	2.771	3.421	3.690
28	1.701	2.048	2.467	2.763	3.408	3.674
29	1.699	2.045	2.462	2.756	3.396	3.659
30	1.697	2.042	2.457	2.750	3.385	3.646
40	1.684	2.021	2.423	2.704	3.307	3.551
60	1.671	2.000	2.390	2.660	3.232	3.460
120	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.645	1.960	2.326	2.576	3.090	3.291

The last row of the table (∞) gives values of d, the unit (standard) normal deviate.

TOLERANCE INTERVALS

Level of Co	onfidence	- 83	90%			95%	
Sample size	% of items within tolerance interval	90%	95%	99%	90%	95%	99%
	3	5.85	6.92	8.97	8.38	9.92	12.86
	4	4.17	4.94	6.44	5.37	6.37	8.30
	5	3.49	4.15	5.42	4.28	5.08	6.63
	6	3.13	3.72	4.87	3.71	4.41	5.78
	7	2.90	3.45	4.52	3.31	4.01	5.25
	8	2.74	3.26	4.28	3.14	3.73	4.89
	9	2.63	3.13	4.10	2.97	3.53	4.63
	10	2.54	3.02	3.96	2.84	3.38	4.43
	12	2.40	2.86	3.76	2.66	3.16	4.15
	14	2.31	2.76	3.62	2.53	3.01	3.96
	16	2.25	2.68	3.51	2.44	2.90	3.81
	18	2.19	2.61	3.43	2.37	2.82	3.70
	20	2.15	2.56	3.37	2.31	2.75	3.62
	30	2.03	2.41	3.17	2.14	2.55	3.35
	40	1.96	2.33	3.07	2.05	2.45	3.21
	50	1.92	2.28	3.00	2.00	2.38	3.13
In	finity	1.65	1.96	2.58	1.65	1.96	2.58

CRITICAL VALUES OF FFOR A ONE-TAILED TEST (P = 0.05) (Source J C Miller and J N Miller (1993) Statistics for Analytical Chemistry, 3rd ed). Ellis Harwood

				1	-	-	10	241.0	C	0 310	
19.1	22. /.ch2 19.16 1	19.25	19.30	19.33	19.35	19.37	4	19.40	N	19.43	-
							4.772		4.678		4.558
V	4.757	4.534	4.387	4.284	4.207	4.147	4.099		4.000	3.938	3.874
		4.120	3.972	3.866	3.787		3.677		3.575		3.445
		3.838	3.687	3.581	3.500		3.388		3.284		3.150
		3.633	3.482	3.374	3.293		3.179		3.073		2.936
4.103 3.7		3.478	3.326	3.217	3.135		3.020	2.978	2.913		2.774
1		3.357	3.204	3.095		2.948	2.896		2.788		2.646
		3.259	3.106	2.996		2.849	2.796		2.687		2.544
		3.179	3.025	2.915		2.767	2.714		2.604		2.459
		3.112	2.958	2.848		2.699	2.646		2.534		2.388
	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.475	2.403	2.328
		3.007	2.852	2.741	2.657	2.591	2.538		2.425	2.352	2.276
3.1		2.965	2.810	2.699	3.614	2.548	2.494		2.381	2.308	2.230
3.1		2.928	2.773	2.661	2.577	2.510	2.456		2.342	2.269	2.191
3.1	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.308	2.234	2.155
3.0		2.866	2.711	2.599	2.514	2.447	2.393		2.278	2.203	2.124

 v_1 = number of degrees of freedom of the numerator and v_2 = number of degrees of freedom of the denominator

NORMAL DISTRIBUTION (SINGLE-SIDED)

Proportion (P) of whole area lying to right of ordinate through $u = (\xi - \mu)/\sigma$

Deviate	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
u	1		The state of the s							
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681

Deviate u	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0291
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0181
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0141
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102		.00964		.00914		.00866	
2.4	.00820		.00776		.00734		.00695		.00657	
2.5	.00621		.00587		.00554		.00523		.00494	
2.6	.00466		.00440		.00415		.00391		.00368	
2.7	.00347		.00326		.00307		.00289		.00272	
2.8	.00256		.00240		.00226		.00212		.00199	
2.9	.00187		.00175		.00164		.00154		.00144	
3.0	0.00135									
3.5	0.000233									
Deviate u	0.00	0.01	0.02	0.03	0.01	0.05	0.06	0.07	0.08	0.09

PROBABILITY POINTS OF THE χ^2 DISTRIBUTION

0	Г	2	3	4	N	9	7	8	6		2	-	12	[3	14	וכ) (9	7	18	6
																					_
0.001	10.8	13.8	16.3	18.5	20.5	22.5	24.3	26.1	27.9		9.67	31.3	32.9	34.5	36.1	377	: (39.3	40.8	42.3	43.8
0.005	7.88	10.6	12.8	14.9	16.7	18.5	20.3	22.0	23.6	L	7.57	26.8	28.3	29.8	31.3	328	1 .	34.3	35.7	37.2	38.6
0.01	6.63	9.21	11.3	13.3	15.1	16.8	18.5	20.1	21.7		7.57	24.7	26.2	27.7	29.1	308	0.00	32.0	33.4	34.8	36.2
0.025	5.02	7.38	9.35	11.1	12.8	14.4	16.0	17.5	19.0	L	20.5	21.9	23.3	24.7	26.1	775	0.00	28.8	30.2	31.5	32.9
0.05	3.84	5.99	7.81	9.49	11.1	12.6	14.1	15.5	16.9	0	18.3	19.7	21.0	22.4	23.7	25.0	0.00	26.3	27.6	28.9	30.1
0.10	2.71	4.61	6.25	7.78	9.24	10.6	12.0	13.4	14.7	0	16.0	17.3	18.5	19.8	21.1	223	1 (23.5	24.8	26.0	27.2
1			4.11		6.63	7.84	9.04	10.2	11.4	L	17.5	13.7	14.8	16.0	17.1	18.2	1 .	19.4	20.5	21.6	22.7
0.50	.455	1.39	2.37	3.36	4.35	5.35	6.35	7.34	8.34	0	9.34	10.3	11.3	12.3	13.3	143	0:1	15.3	16.3	17.3	18.3
0.75	0.102	.575	1.21	1.92	2.67	3.45	4.25	5.07	5.90		6.74	7.58	8.44	9.30	10.2	110	0.11	11.9	12.8	13.7	14.6
0.90	0.16	.211	.584	1.06	1.61	2.20	2.83	3.49	4.17	1	4.87	5.58	6.30	7.04	7.79	α Γ		9.31	10.1	10.9	11.7
1					1.15																
0.975	}	.051	.216	.484	.831	1.24	1.69	2.18	2.70	1.0	3.25	3.82	4.40	5.01	5.63	969	0.50	6.91	7.56	8.23	8.91
66.0	!	.020	.115	.297	.554	.872	1.24	1.65	2.09	L	2.56	3.05	3.57	4.11	4.66	л 20	0.4.0	5.81	6.41	7.01	7.63
0.995	!	.010	.072	.207	.412	929.	686	1.34	1.73	,	2.16	2.60	3.07	3.57	4.07	160	7.00	5.14	5.70	6.26	6.84
Ø	1	7	3	4	2	9		∞	6	(10	11	12	13	14	r.	7	16	17	18	19

FUNDAMENTAL CONSTANTS

Avogadro constant	$L \text{ or } N_A$	$6.022 \times 10^{23} \text{ mol}^{-1}$
Bohr magneton	μ_{B}	$9.274 \times 10^{-24} \text{ J T}^{-1}$
Bohr radius	a_o	$5.292 \times 10^{-11} \mathrm{m}$
Boltzmann constant	K	$1.381 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
charge of proton	в	1.602×10^{-19} C
(charge of electron -e)		
Faraday constant	F = Le	$9.649 \times 10^4 \text{ C mol}^{-1}$
gas constant	R = Lk	8.314 J K ⁻¹ mol ⁻¹
nuclear magneton	μN	$5.051 \times 10^{-27} J T^{-1}$
permeability of a vacuum	$\mu_{ m o}$	$4\pi \times 10^{-7} \text{ H m}^{-1} \text{ or N A}^{-2}$
permittivity of a vacuum	$\varepsilon_0 = 1/\mu_0 c^2$	$8.854 \times 10^{-12} \mathrm{Fm^{1}}$
Planck constant	h	$6.626 \times 10^{-34} \text{ J s}$
(Planck constant)/ 2π	ħ	1.054×10^{-34} J s
rest mass of electron	m or m_e	$9.109 \times 10^{-31} \text{ kg}$
rest mass of proton	m _p	$1.673 \times 10^{-27} \text{ kg}$
Rydberg constant	$R_{\infty} = me^4 \mu_0^2 c^3 / 8h^3$	$1.097 373 \times 10^7 \mathrm{m}^{-1}$
Speed of light in a vacuum	C	$2.998 \times 10^8 \mathrm{m \ s^{-1}}$
Gravitational constant	G	$6.673 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$
Atomic Mass Unit		$1.66 \times 10^{-27} \text{ kg}$

ln 10 - 2.3026; ln x = 2.3026 log x; log e = 0.4343; π = 3.14159; R ln 10 = 19.144 J K⁻¹ mol⁻¹; e = 2.7183; (RT ln 10)/F = 59.16 mV at 298.2 K

SI UNITS

Quantity	Unit Name	Name Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

Physical Quantity	Old Unit	New Unit	Basic Units	Conversion
1				10
Length	Angstrom (Å)	m		$1 \text{ Å} = 10^{-10} \text{ m}$
Energy	erg	J (joule)	$kg m^2 s^{-2}$	$1 \text{ erg} = 10^{-7} \text{ J}$
Force	dyne	N (newton)	$kg m s^{-2}$	$1 \text{ dyne} = 10^{-5} \text{ N}$
Pressure	atmosphere	Nm ⁻² + Pa (Pascal)		1 atmos = $1.013 \times 10^5 \text{ Pa}$
	torr (mmHg)	Pa		1 torr = 133.3 Pa
		bar		1 bar = 10^5 Pa
Frequency	cycle/sec	Hz (hertz)	s-1	1 c/s = 1 Hz
Force constant	dyne/cm	N m-1	kg s-2	
Mag. flux density	Gauss (G)	T (tesla)	kg s-2 A-1	$1 G = 10^{-4} T$
Dipole moment	Debye (D)	C m		$1 D = 3.334 \times 10^{-30} C m$
Radioactive exp.	Röntgen	C kg ⁻¹		$1 R = 2.58 \times 10^{-4} C kg^{-1}$

SPECIALLY NAMED MULTIPLES OF BASE 10

Fraction:	1012	10 ⁹	106	10^{3}	10-2	10-3	10-6	10 ⁻⁹	10-12	10-15	10-18
SI prefix:	tera	giga	mega	kilo	centi	milli	micro	nano	pico	femto	atto
Symbol	T	G	M	k	С	m	μ	n	p	f	S

ATOMIC UNITS

Physical Quantity	Symbol	Value
Length	a _O	$5.2918 \times 10^{-11} \text{ m}$
Energy	E_{h}	$4.3597 \times 10^{-18} \text{ J}$
Dipole moment	ea _O	8.4784×10^{-30} C m