

Hands on Machine Learning for Fluid Dynamics

7 – 11 February 2022

Lecture 5 **A Review of Optimization Tools**

Pedro Afonso Marques *pedro.marques@vki.ac.be*

Introduction

Optimization

"The process of finding the best possible solution to a problem. In mathematics, this often consists of maximizing or minimizing the value of a certain function, perhaps subject to given constraints." - Oxford dictionary

Most Machine Learning algorithms can be framed as optimization problems...

Note: * denotes training data, ** denotes validation data

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

1. Formulating an optimization problem

- 1.1. Constrained optimization
- 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Formulating an optimization problem

Minimize:

• Objective function $f(\mathbf{x})$

Where: • Vector of variables $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$

Subject to:

• Inequality constraints: $c_i(\mathbf{x}) \leq 0$ for i = 1, ..., m

Equality constraints: $c_e(\mathbf{x}) = 0$ for e = 1, ..., n

• Variable range: $x_j \in [x_j^l, x_j^u]$ for j = 1, ..., p

Example: Rosenbrock function

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

Formulating an optimization problem

Example: Rosenbrock function

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$
Unconstrained
Minimum

1.5

0.5

0.0

-0.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Unconstrained minimum: f(1,1) = 0

 $c_1(x_1, x_2) = x_1 - x_2 + 1 \le 0$

 $c_2(x_1, x_2) = 0.2x_1^3 - x_2 + 1 \le 0$

Constrained minimum: $f(-0.9,0.8) \approx 3.68$

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Constrained single-objective optimization 1. Handle constraints directly 2. External penalty method 3. Internal penalty method

Constrained single-objective optimization

- 1. Handle constraints directly
 - Equality: Lagrange multiplier method
 - Inequality: Linear/nonlinear/quadratic programming
- External penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + R \cdot \sum_{i=1}^{m} \delta_i \cdot (c_i(\mathbf{x}))^2 \quad \text{where} \quad \delta_i = \begin{cases} 0 & , & c_i(\mathbf{x}) \le 0 \\ 1 & , & c_i(\mathbf{x}) > 0 \end{cases}$$

3. Internal penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) - R \cdot \sum_{i=1}^{m} \frac{1}{c_i(\mathbf{x})}$$

Constrained single-objective optimization

- 1. Handle constraints directly
 - Equality: Lagrange multiplier method
 - Inequality: Linear/nonlinear/quadratic programming
- 2. External penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + R \cdot \sum_{i=1}^{m} \delta_i \cdot (c_i(\mathbf{x}))^2 \quad \text{where} \quad \delta_i = \begin{cases} 0 &, c_i(\mathbf{x}) \le 0 \\ 1 &, c_i(\mathbf{x}) > 0 \end{cases}$$

Internal penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) - R \cdot \sum_{i=1}^{m} \frac{1}{c_i(\mathbf{x})}$$

Constrained single-objective optimization

- 1. Handle constraints directly
 - Equality: Lagrange multiplier method
 - Inequality: Linear/nonlinear/quadratic programming
- 2. External penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) + R \cdot \sum_{i=1}^{m} \delta_i \cdot (c_i(\mathbf{x}))^2 \quad \text{where} \quad \delta_i = \begin{cases} 0 & , & c_i(\mathbf{x}) \le 0 \\ 1 & , & c_i(\mathbf{x}) > 0 \end{cases}$$

3. Internal penalty method

$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) - R \cdot \sum_{i=1}^{m} \frac{1}{c_i(\mathbf{x})}$$

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Multi-objective optimization

Minimize:

• Multiple objective functions $f_k(\mathbf{x})$ for k = 1, ..., l

Subject to:

- Inequality constraints: $c_i(\mathbf{x}) \leq 0$ for i = 1, ..., m
- Equality constraints: $c_e(\mathbf{x}) = 0$ for e = 1, ..., n
- Variable range: $x_j \in [x_j^l, x_j^u]$ for j = 1, ..., p

Difference between objectives and constraints

Single-objective constrained optimization

E.g.: Optimize the volume V(x, y, z) of a component, but make sure that the maximum stress $\sigma(x, y, z)$ is lower than a certain amount.

$$\begin{aligned} & \min \, V(\mathbf{x}) \\ & \text{s.t.} \ \, \sigma(\mathbf{x}) \leq C \\ & \quad \mathbf{x} \in \mathbf{X} \end{aligned}$$

Multi-objective optimization

E.g.: Simultaneously optimize the volume V(x, y, z) of a component, and minimize maximum stress $\sigma(x, y, z)$ it is subjected to.

$$\min \ (V(\mathbf{x}), \sigma(\mathbf{x}))$$
 s.t. $\mathbf{x} \in \mathbf{X}$

1. Weighted sum of each individual objective

2. Min-max formulation

3. Constrained minimum

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2 Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2 Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming $f_2 = cte$
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

1. Weighted sum of each individual objective

$$F(\mathbf{x}) = \sum_{k=1}^{l} w_k f_k(\mathbf{x})$$

2. Min-max formulation

$$F(\mathbf{x}) = \max(\omega_1 f_1(\mathbf{x}), \omega_2 f_2(\mathbf{x}), ..., \omega_l f_l(\mathbf{x}))$$

- 3. Constrained minimum
 - Minimize f_1 assuming f_2 = cte
 - Minimize f_2 assuming $f_1 = cte$

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization

2. Overview of optimization methods

- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Gradient-based methods

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} d^{(k)}$$

First order steepest descent

- Search direction is the steepest descent
- Cheap computational evaluation, only requires the gradient

Conjugate gradient methods

- Search direction is **not** the steepest descent
- Perform line search for optimal learning rate

High order gradient descent

- Compute or estimate the Hessian matrix
- Converge in fewer iterations at cost of computational load

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Gradient descent methods

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta(k) \nabla_w J(\mathbf{w}; \mathbf{X}, \mathbf{y})$$

ANN Optimizers

'Classic' gradient descent methods

Modify the learning rate:

 $\eta^{(k)}$

Batch gradient descent

Mini-batch gradient descent

• ..

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Nonlinear Conjugate Gradient method

1. Define search direction

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} \frac{\mathbf{d}^{(k)}}{\mathbf{d}^{(k)}}$$

- In linear problems, we search in orthogonal directions.
- It can be shown that these models converge in n iterations, where n is the dimension of the search space!

$$d^{(k+1)} = -\nabla_w J\!\left(\mathbf{w}^{(k+1)}\right) + \beta^{(k+1)} d^{(k)}$$
Steepest descent direction

Fletcher-Reeves:

Polak-Ribière:

$$\beta^{(k+1)} = \frac{\nabla_w J(\mathbf{w}^{(k+1)})^T \nabla_w J(\mathbf{w}^{(k+1)})}{\nabla_w J(\mathbf{w}^{(k)})^T \nabla_w J(\mathbf{w}^{(k)})} \qquad \beta_{k+1} = \frac{\nabla_w J(\mathbf{w}^{(k+1)})^T \left(\nabla_w J(\mathbf{w}^{(k+1)}) - \nabla_w J(\mathbf{w}^{(k)})\right)}{\left\|\nabla_w J(\mathbf{w}^{(k)})\right\|^2}$$

Nonlinear Conjugate Gradient method

2. Find optimal step length

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{\eta}^{(k)} d^{(k)}$$

- Minimize along search direction $\min_{\eta} J\Big(\mathbf{w}^{(k)} + \eta d^{(k)}\Big)$
- Iterative algorithm for 1D minimizer (e.g. cubic interpolation)
- Satisfy "ideal" step length conditions (e.g. Wolfe, Goldstein)

Sufficient decrease

$$J\left(\mathbf{w}^{(k)} + \eta d^{(k)}\right) \le J\left(\mathbf{w}^{(k)}\right) + c_1 \eta \nabla_w J\left(\mathbf{w}^{(k)}\right)^T d^{(k)}$$

Curvature condition

$$\left| \nabla_w J \left(\mathbf{w}^{(k)} + \eta d^{(k)} \right)^T d_k \right| \le c_2 \left| \nabla_w J \left(\mathbf{w}^{(k)} \right)^T d_k \right|$$

The exact minimizer \mathbf{w}^* can be found in one iteration if f is a quadratic function

Rewrite the objective function as:

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T Q\mathbf{w} - b^T \mathbf{w}$$

Using the steepest descent algorithm:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} \nabla_w J(\mathbf{w}^{(k)})$$

The exact minimizer is found:

$$\nabla_{\eta} J(\mathbf{w}^{(k)} - \eta^* \nabla_{\mathbf{w}} J(\mathbf{w}^{(k)})) = 0$$

$$\eta^* = \frac{\nabla_w J(\mathbf{w}^{(k)})^T \nabla_w J(\mathbf{w}^{(k)})}{\nabla_w J(\mathbf{w}^{(k)})^T Q \nabla_w J(\mathbf{w}^{(k)})}$$

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1 Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Quasi-Newton methods
$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta^{(k)} \underbrace{\left(B^{(k)}\right)^{-1}}_{_{\approx \text{Hessian}}} \nabla_w J(\mathbf{w})$$

Quadratic approximation of objective function:

$$m^{(k)}(d) = J\!\left(\mathbf{w}^{(k)}\right) + \nabla_w J\!\left(\mathbf{w}^{(k)}\right)^T\!\!\frac{\mathrm{d}}{\mathrm{d}} + \frac{1}{2}\!\!\frac{\mathrm{d}^T}{\mathrm{d}}B^{(k)}\!\!\frac{\mathrm{d}}{\mathrm{d}}$$

Search direction
$$d = -B^{-1} \nabla_w J(\mathbf{w})$$

• Gradient of the quadratic model must match $\nabla_w J(w)$ for $w^{(k)}$ and $w^{(k+1)}$:

$$B^{(k+1)}\left(\mathbf{w}^{(k+1)} - \mathbf{w}^{(k)}\right) = \nabla J_w\left(\mathbf{w}^{(k+1)}\right) - \nabla J_w\left(\mathbf{w}^{(k)}\right)$$

• Can be solved if:

$$\left(\mathbf{w}^{(k+1)} - \mathbf{w}^{(k)}\right)^T \nabla J_w \left(\mathbf{w}^{(k+1)}\right) - \nabla J_w \left(\mathbf{w}^{(k)}\right) > 0 \quad \longrightarrow \quad \begin{array}{c} \text{Line search for } \eta^{(k)} \text{ with Strong Wolfe conditions} \\ \end{array}$$

Quasi-Newton methods

1. Compute search direction:
$$d^{(k)} = -H^{(k)} \nabla_w J(\mathbf{w})$$

$$s^{(k)} = x^{(k+1)} - x^{(k)}$$

2. Line search with Strong Wolfe conditions:
$$\eta^{(k)}$$

$$y^{(k)} = \nabla_w J(\mathbf{w}^{(k+1)}) - \nabla_w J(\mathbf{w}^{(k)})$$

3. Compute next solution:
$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} d^{(k)}$$

$$\rho^{(k)} = \left(y^{(k)} s^{(k)} \right)^{-1}$$

4. Compute $H^{(k+1)}$:

(DFP)
$$H^{(k+1)} = H^{(k)} - \frac{H^{(k)}y^{(k)} (y^{(k)})^T H^{(k)}}{(y^{(k)})^T H^{(k)}y^{(k)}} + \frac{s^{(k)} (s^{(k)})^T}{(y^{(k)})^T s^{(k)}}$$

(BFGS)
$$H^{(k+1)} = \left(I - \rho^{(k)} s^{(k)} \left(y^{(k)}\right)^T\right) H^{(k)} \left(I - \rho^{(k)} y^{(k)} \left(s^{(k)}\right)^T\right) + \rho^{(k)} s^{(k)} \left(s^{(k)}\right)^T$$

Initial estimate for the Hessian?

Finite difference estimate

Identity matrix

Table of Contents

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Gradient-based optimization: Minimize Rosenbrock function	า
Content here	
	40

Table of Contents

- 1. Formulating an optimization problem
 - 1.1. Constrained optimization
 - 1.2. Multi-objective optimization
- 2. Overview of optimization methods
- 3. Gradient-based methods
 - 3.1. Gradient descent
 - 3.2. Conjugate gradients
 - 3.3. Quasi-Newton methods
- 4. Exercise: Mass-spring-damper system identification

Exercise: Mass-spring-damper system identification

Steepest descent BFGS (compare with scipy) Newton Nelder Mead

- Compare:
 Total elapsed time
- Cost-function vs iterations
- Gradient = efficiency

2nd order system Step response

 $m\ddot{x} + b\dot{x} + kx = 0$

Title	
Content here	
	40
	43

Gradient-based methods

 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} d^{(k)}$ Machine learning Heuristic learning rate. Keep the learning rate, Add momentum, rescaling, (connection with Jan in lecture 11) See **DDFM Lecture 10 Slide 29**

ANN Optimizers

Modify the learning rate:

 $\eta^{(k)}$

Conjugate gradient methods

- Search direction is **not** the steepest descent
- Perform line search for optimal learning rate

High order gradient descent

- Compute the Hessian (or approximate)
 Converge in fewer iterations...

State that the gradient is available through a function (for these cases assume that it's possible)

To do

Func(cost_function,grad_cost_function,n_iter)

Exercise:

- Gradient descent
- Quasi-Newton (BFGS)
- Newton
- Compare convergence rate (plot residual vs iterations)
 Compare time called by our routine vs scipy
 What if we don't give the function for the gradient
- - Takes even longer, because it has to evaluate it

Plot convergence rate Compare evaluation time Our evaluation vs scipy

Give a template with some missing parts, which can then be filled together with the people

Nonlinear Conjugate Gradient method

1. Define search direction

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} \vec{d}^{(k)}$$

2. Find optimal step length

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \frac{\boldsymbol{\eta}^{(k)}}{\boldsymbol{\eta}^{(k)}} d^{(k)}$$

- Minimize in the search direction $\min_{\mathbf{w}} J\Big(\mathbf{w}^{(k)} + \eta^{(k)} \vec{d}^{(k)}\Big)$
- Iterative algorithm for 1D minimizer (e.g. cubic interpolation)
- Satisfy "ideal" step length conditions (e.g. Wolfe, Goldstein)

Sufficient decrease: Curvature condition: $f(x_k + \alpha \vec{p}_k) \leq f(x_k) + c_1 \alpha \nabla f_k^T p_k \qquad |\nabla f(x_k + \alpha \vec{p}_k)^T p_k| \leq c_2 |\nabla f_k^T p_k|$

The exact minimizer \mathbf{w}^* can be found in one iteration if f is a quadratic function

Rewrite the objective function as:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q\mathbf{x} - b^T \mathbf{x}$$

Using the steepest descent algorithm:

$$x_{k+1} = x_k - \alpha_k \nabla f_k$$

The exact minimizer is found:

$$\nabla_{\alpha} f(x_k - \alpha^* \nabla f_k) = 0$$

$$\alpha^* = \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k}$$

scipy.optimize.line_search

scipy.optimize.line_search(f, myfprime, xh, ph, gfh=None, old_fvol=None, old_old_fvol=None,
args=(), cl=0.0021, c2=0.9, amax=None, extra_condition=None, maxiter=10) [source]
Find alone that satisfies storou Wolfe conditions

Linear conjugate gradient method

Minimize quadratic function:
$$\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - b^T \mathbf{x}$$

Residual defined as the gradient:
$$\nabla \phi(\mathbf{x}) = A\mathbf{x} - b = r(\mathbf{x})$$

Search directions
$$p_k$$
: conjugate vector wrt $A \qquad p_i^T A p_j = 0 \quad \forall \quad i \neq j$

Initial conditions:
$$r_0=A{f x_0}-b$$
 $p_0=r_0$ Exact minimizer for quadratic functions

Minimization algorithm:

• Ideal step length through line search
$$\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}$$

• Move to the minimizer in direction
$$p_k$$
 $x_{k+1} = x_k + \alpha_k \nabla f_k$

• Calculate new residual
$$r_{k+1}$$
 $r_{k+1} = Ax_{k+1} - b$

• New direction
$$p_{k+1}$$
 conjugate wrt A $p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$

Linear combination of steepest descent $-r_{k+1}$ and previous search direction

$$\beta_{k+1} = \frac{r_{k+1}^T A p_k}{p_k^T A p_k} \qquad \text{Constant enforces that } p_{k-1}^T A p_k = 0, \text{so} \\ \text{that they are conjugate directions}$$

How to choose the conjugate direction set $\{p_0, p_1, ..., p_{n-1}\}$ for matrix $A [n \times n]$?

Eigenvectors $v_1, v_2, ..., v_n$ of A

Mutually orthogonal (linearly independent)

$$\langle v_i, v_j \rangle = v_j^T v_i = 0 \quad \forall \quad i \neq j$$

- Conjugate with respect to A $Av_i = \lambda v_i \Leftrightarrow v_j^T A v_i = \lambda v_j^T v_i \Rightarrow v_j^T A v_i = 0$
- · Too expensive for large-scale applications

More efficient approaches are used (see left)

Linear conjugate gradient method

If *A* is a diagonal matrix $[n \times n]$, we converge to the minimizer of $\phi(x)$ in *n* iterations.

We need a diagonal matrix to guarantee convergence!

$$\hat{x} = S^{-1}x$$
 where $S = [p_0 \ p_1 \ \dots \ p_{n-1}]$
$$\hat{\phi}(\hat{\mathbf{x}}) = \frac{1}{2}\hat{\mathbf{x}}^T(S^TAS)\hat{\mathbf{x}} - (S^Tb)^T\hat{\mathbf{x}}$$

Since $S^T A S$ is diagonal, we minimize $\hat{\phi}$ with n iterations in the \hat{x} space, and then compute the true minimum:

$$x = S\hat{x}$$

We can create a symmetric matrix during preconditioning.

Successive minimization for a general convex quadratic function using the linear conjugate gradient method

Optimization methods

Gradient-based (local)

- Line search methods
 - Deepest descent
 - Newton's method
 - Quasi-newton methods
- Trust region methods
 - Quasi-newton methods
 - Newton's method

Gradient-free (global)

- Random search (simplest approach of all)
- Random walk (kind of a line search but random)
- Nelder-Mead (polytopes)
- Evolutionary algorithms (discussed in Lecture 6/7) Particle Swarm Optimization (discussed in lecture 6)

- Bayesian optimization (following lecture)

This lecture: mainly gradient based. Apply them to some problems.

Mention this as reference: https://docs.scipy.org/doc/scipy/tutorial/optimize.html

Exercise: Fitting a turbulent boundary layer

Non-Linear Least Squares (only scipy) Steepest descent

BFGS (compare with scipy)

Newton

Nelder Mead

- Compare:
 Total elapsed time
- Cost-function vs iterations
- Gradient = efficiency

$$u^{+} = a_1 \log(1 + y^{+} \kappa) + a_2 \left(1 - e^{-\frac{y^{+}}{11}} - \frac{y^{+}}{11} e^{-\frac{y^{+}}{3}}\right)$$

