We review briefly the elements of probability, the concept of a random variable, and example distributions.

A.1 Elements of Probability

A RANDOM experiment is one whose outcome is not predictable with certainty in advance (Ross 1987; Casella and Berger 1990). The set of all possible outcomes is known as the *sample space* S. A sample space is *discrete* if it consists of a finite (or countably infinite) set of outcomes; otherwise it is *continuous*. Any subset E of S is an *event*. Events are sets, and we can talk about their complement, intersection, union, and so forth.

One interpretation of probability is as a *frequency*. When an experiment is continually repeated under the exact same conditions, for any event E, the proportion of time that the outcome is in E approaches some constant value. This constant limiting frequency is the probability of the event, and we denote it as P(E).

Probability sometimes is interpreted as a *degree of belief*. For example, when we speak of Turkey's probability of winning the World Soccer Cup in 2018, we do not mean a frequency of occurrence, since the championship will happen only once and it has not yet occurred (at the time of the writing of this book). What we mean in such a case is a subjective degree of belief in the occurrence of the event. Because it is subjective, different individuals may assign different probabilities to the same event.

A.1.1 Axioms of Probability

Axioms ensure that the probabilities assigned in a random experiment can be interpreted as relative frequencies and that the assignments are consistent with our intuitive understanding of relationships among relative frequencies:

- 1. $0 \le P(E) \le 1$. If E_1 is an event that cannot possibly occur, then $P(E_1) = 0$. If E_2 is sure to occur, $P(E_2) = 1$.
- 2. *S* is the sample space containing all possible outcomes, P(S) = 1.
- 3. If E_i , $i=1,\ldots,n$ are mutually exclusive (i.e., if they cannot occur at the same time, as in $E_i \cap E_j = \emptyset$, $j \neq i$, where \emptyset is the *null event* that does not contain any possible outcomes), we have

(A.1)
$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$$

For example, letting E^c denote the *complement* of E, consisting of all possible outcomes in S that are not in E, we have $E \cap E^C = \emptyset$ and

$$P(E \cup E^c) = P(E) + P(E^c) = 1$$

 $P(E^c) = 1 - P(E)$

If the intersection of *E* and *F* is not empty, we have

$$(A.2) P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

A.1.2 Conditional Probability

P(E|F) is the probability of the occurrence of event E given that F occurred and is given as

(A.3)
$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Knowing that F occurred reduces the sample space to F, and the part of it where E also occurred is $E \cap F$. Note that equation A.3 is well-defined only if P(F) > 0. Because \cap is commutative, we have

$$P(E \cap F) = P(E|F)P(F) = P(F|E)P(E)$$

which gives us Bayes' formula:

(A.4)
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

When F_i are mutually exclusive and exhaustive, namely, $\bigcup_{i=1}^n F_i = S$

$$E = \bigcup_{i=1}^{n} E \cap F_{i}$$
(A.5)
$$P(E) = \sum_{i=1}^{n} P(E \cap F_{i}) = \sum_{i=1}^{n} P(E|F_{i})P(F_{i})$$

Bayes' formula allows us to write

(A.6)
$$P(F_i|E) = \frac{P(E \cap F_i)}{P(E)} = \frac{P(E|F_i)P(F_i)}{\sum_j P(E|F_j)P(F_j)}$$

If *E* and *F* are *independent*, we have P(E|F) = P(E) and thus

(A.7)
$$P(E \cap F) = P(E)P(F)$$

That is, knowledge of whether *F* has occurred does not change the probability that *E* occurs.

A.2 Random Variables

A *random variable* is a function that assigns a number to each outcome in the sample space of a random experiment.

A.2.1 Probability Distribution and Density Functions

The *probability distribution function* $F(\cdot)$ of a random variable X for any real number a is

$$(A.8) F(a) = P\{X \le a\}$$

and we have

(A.9)
$$P\{a < X \le b\} = F(b) - F(a)$$

If *X* is a discrete random variable

(A.10)
$$F(a) = \sum_{\forall x \le a} P(x)$$

where $P(\cdot)$ is the *probability mass function* defined as $P(a) = P\{X = a\}$. If X is a *continuous* random variable, $p(\cdot)$ is the *probability density function* such that

(A.11)
$$F(a) = \int_{-\infty}^{a} p(x) dx$$

A.2.2 Joint Distribution and Density Functions

In certain experiments, we may be interested in the relationship between two or more random variables, and we use the *joint* probability distribution and density functions of *X* and *Y* satisfying

(A.12)
$$F(x, y) = P\{X \le x, Y \le y\}$$

Individual *marginal* distributions and densities can be computed by marginalizing, namely, summing over the free variable:

(A.13)
$$F_X(x) = P\{X \le x\} = P\{X \le x, Y \le \infty\} = F(x, \infty)$$

In the discrete case, we write

(A.14)
$$P(X = x) = \sum_{j} P(x, y_j)$$

and in the continuous case, we have

(A.15)
$$p_X(x) = \int_{-\infty}^{\infty} p(x, y) dy$$

If *X* and *Y* are *independent*, we have

(A.16)
$$p(x, y) = p_X(x)p_Y(y)$$

These can be generalized in a straightforward manner to more than two random variables.

A.2.3 Conditional Distributions

When *X* and *Y* are random variables

(A.17)
$$P_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{P\{X = x, Y = y\}}{P\{Y = y\}} = \frac{P(x,y)}{P_Y(y)}$$

A.2.4 Bayes' Rule

When two random variables are jointly distributed with the value of one known, the probability that the other takes a given value can be computed using *Bayes' rule*:

(A.18)
$$P(y|x) = \frac{P(x|y)P_Y(y)}{P_X(x)} = \frac{P(x|y)P_Y(y)}{\sum_{y} P(x|y)P_Y(y)}$$

Or, in words

(A.19) posterior =
$$\frac{likelihood \times prior}{evidence}$$

Note that the denominator is obtained by summing (or integrating if y is continuous) the numerator over all possible y values. The "shape" of p(y|x) depends on the numerator with denominator as a normalizing factor to guarantee that p(y|x) sum to 1. Bayes' rule allows us to modify a prior probability into a posterior probability by taking information provided by x into account.

Bayes' rule inverts dependencies, allowing us to compute p(y|x) if p(x|y) is known. Suppose that y is the "cause" of x, like y going on summer vacation and x having a suntan. Then p(x|y) is the probability that someone who is known to have gone on summer vacation has a suntan. This is the *causal* (or predictive) way. Bayes' rule allows us a *diagnostic* approach by allowing us to compute p(y|x): namely, the probability that someone who is known to have a suntan, has gone on summer vacation. Then p(y) is the general probability of anyone's going on summer vacation and p(x) is the probability that anyone has a suntan, including both those who have gone on summer vacation and those who have not.

A.2.5 Expectation

Expectation, expected value, or *mean* of a random variable X, denoted by E[X], is the average value of X in a large number of experiments:

(A.20)
$$E[X] = \begin{cases} \sum_{i} x_{i} P(x_{i}) & \text{if } X \text{ is discrete} \\ \int x p(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

It is a weighted average where each value is weighted by the probability that X takes that value. It has the following properties $(a, b \in \Re)$:

(A.21)
$$E[aX + b] = aE[X] + b$$
$$E[X + Y] = E[X] + E[Y]$$

For any real-valued function $g(\cdot)$, the expected value is

(A.22)
$$E[g(X)] = \begin{cases} \sum_{i} g(x_i) P(x_i) & \text{if } X \text{ is discrete} \\ \int g(x) p(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

A special $g(x) = x^n$, called the *n*th moment of *X*, is defined as

(A.23)
$$E[X^n] = \begin{cases} \sum_i x_i^n P(x_i) & \text{if } X \text{ is discrete} \\ \int x^n p(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Mean is the first moment and is denoted by μ .

A.2.6 Variance

Variance measures how much *X* varies around the expected value. If $\mu \equiv E[X]$, the variance is defined as

(A.24)
$$Var(X) = E[(X - \mu)^2] = E[X^2] - \mu^2$$

Variance is the second moment minus the square of the first moment. Variance, denoted by σ^2 , satisfies the following property $(a, b \in \mathfrak{R})$:

(A.25)
$$Var(aX + b) = a^2 Var(X)$$

 $\sqrt{\operatorname{Var}(X)}$ is called the *standard deviation* and is denoted by σ . Standard deviation has the same unit as X and is easier to interpret than variance.

Covariance indicates the relationship between two random variables. If the occurrence of *X* makes *Y* more likely to occur, then the covariance is positive; it is negative if *X*'s occurrence makes *Y* less likely to happen and is 0 if there is no dependence.

(A.26)
$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

where $\mu_X \equiv E[X]$ and $\mu_Y \equiv E[Y]$. Some other properties are

$$Cov(X, Y) = Cov(Y, X)$$

$$Cov(X, X) = Var(X)$$

$$Cov(X + Z, Y) = Cov(X, Y) + Cov(Z, Y)$$

(A.27)
$$\operatorname{Cov}\left(\sum_{i} X_{i}, Y\right) = \sum_{i} \operatorname{Cov}(X_{i}, Y)$$

(A.28)
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$

(A.29)
$$\operatorname{Var}\left(\sum_{i} X_{i}\right) = \sum_{i} \operatorname{Var}(X_{i}) + \sum_{i} \sum_{j \neq i} \operatorname{Cov}(X_{i}, X_{j})$$

If *X* and *Y* are independent, $E[XY] = E[X]E[Y] = \mu_X \mu_Y$ and Cov(X, Y) = 0. Thus if X_i are independent

(A.30)
$$\operatorname{Var}\left(\sum_{i} X_{i}\right) = \sum_{i} \operatorname{Var}(X_{i})$$

Correlation is a normalized, dimensionless quantity that is always between -1 and 1:

(A.31)
$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

A.2.7 Weak Law of Large Numbers

Let $\mathcal{X} = \{X^t\}_{t=1}^N$ be a set of independent and identically distributed (iid) random variables each having mean μ and a finite variance σ^2 . Then for any $\epsilon > 0$,

(A.32)
$$P\left\{\left|\frac{\sum_{t} X^{t}}{N} - \mu\right| > \epsilon\right\} \to 0 \text{ as } N \to \infty$$

That is, the average of N trials converges to the mean as N increases.

A.3 Special Random Variables

There are certain types of random variables that occur so frequently that names are given to them.

A.3.1 Bernoulli Distribution

A trial is performed whose outcome is either a "success" or a "failure." The random variable X is a 0/1 indicator variable and takes the value 1 for a success outcome and is 0 otherwise. p is the probability that the result of trial is a success. Then

(A.33)
$$P\{X=1\} = p \text{ and } P\{X=0\} = 1 - p$$

which can equivalently be written as

(A.34)
$$P\{X=i\} = p^i(1-p)^{1-i}, i=0,1$$

If *X* is Bernoulli, its expected value and variance are

(A.35)
$$E[X] = p$$
, $Var(X) = p(1 - p)$

A.3.2 Binomial Distribution

If N identical independent Bernoulli trials are made, the random variable X that represents the number of successes that occurs in N trials is binomial distributed. The probability that there are i successes is

(A.36)
$$P\{X=i\} = \binom{N}{i} p^i (1-p)^{N-i}, i=0...N$$

If *X* is binomial, its expected value and variance are

(A.37)
$$E[X] = Np, Var(X) = Np(1-p)$$

A.3.3 Multinomial Distribution

Consider a generalization of Bernoulli where instead of two states, the outcome of a random event is one of K mutually exclusive and exhaustive states, each of which has a probability of occurring p_i where $\sum_{i=1}^{K} p_i = 1$. Suppose that N such trials are made where outcome i occurred N_i times with $\sum_{i=1}^{k} N_i = N$. Then the joint distribution of N_1, N_2, \ldots, N_K is multinomial:

(A.38)
$$P(N_1, N_2, ..., N_K) = N! \prod_{i=1}^K \frac{p_i^{N_i}}{N_i!}$$

A special case is when N=1; only one trial is made. Then N_i are 0/1 indicator variables of which only one of them is 1 and all others are 0. Then equation A.38 reduces to

(A.39)
$$P(N_1, N_2, ..., N_K) = \prod_{i=1}^K p_i^{N_i}$$

A.3.4 Uniform Distribution

X is uniformly distributed over the interval [a,b] if its density function is given by

(A.40)
$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

If *X* is uniform, its expected value and variance are

(A.41)
$$E[X] = \frac{a+b}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$

Figure A.1 Probability density function of \mathcal{Z} , the unit normal distribution.

A.3.5 Normal (Gaussian) Distribution

X is normal or Gaussian distributed with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, if its density function is

(A.42)
$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty$$

Many random phenomena obey the bell-shaped normal distribution, at least approximately, and many observations from nature can be seen as a continuous, slightly different versions of a typical value—that is probably why it is called the *normal* distribution. In such a case, μ represents the typical value and σ defines how much instances vary around the prototypical value.

68.27 percent lie in $(\mu - \sigma, \mu + \sigma)$, 95.45 percent in $(\mu - 2\sigma, \mu + 2\sigma)$, and 99.73 percent in $(\mu - 3\sigma, \mu + 3\sigma)$. Thus $P\{|x - \mu| < 3\sigma\} \approx 0.99$. For practical purposes, $p(x) \approx 0$ if $x < \mu - 3\sigma$ or $x > \mu + 3\sigma$. \mathcal{Z} is unit normal, namely, $\mathcal{N}(0, 1)$ (see figure A.1), and its density is written as

(A.43)
$$p_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$. The sum of independent normal variables is also normal with $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. If X is $\mathcal{N}(\mu, \sigma^2)$, then

(A.44)
$$\frac{X-\mu}{\sigma} \sim \mathcal{Z}$$

This is called *z*-normalization.

CENTRAL LIMIT THEOREM Let $X_1, X_2, ..., X_N$ be a set of iid random variables all having mean μ and variance σ^2 . Then the *central limit theorem* states that for large N, the distribution of

$$(A.45)$$
 $X_1 + X_2 + ... + X_N$

is approximately $\mathcal{N}(N\mu, N\sigma^2)$. For example, if X is binomial with parameters (N, p), X can be written as the sum of N Bernoulli trials and $(X - Np)/\sqrt{Np(1-p)}$ is approximately unit normal.

Central limit theorem is also used to generate normally distributed random variables on computers. Programming languages have subroutines that return uniformly distributed (pseudo-)random numbers in the range [0,1]. When U_i are such random variables, $\sum_{i=1}^{12} U_i - 6$ is approximately \mathcal{Z} .

Let us say $X^t \sim \mathcal{N}(\mu, \sigma^2)$. The estimated sample mean

$$(A.46) \qquad m = \frac{\sum_{t=1}^{N} X^t}{N}$$

is also normal with mean μ and variance σ^2/N .

A.3.6 Chi-Square Distribution

If Z_i are independent unit normal random variables, then

(A.47)
$$X = Z_1^2 + Z_2^2 + \ldots + Z_n^2$$

is chi-square with n degrees of freedom, namely, $X \sim \mathcal{X}_n^2$, with

(A.48)
$$E[X] = n$$
, $Var(X) = 2n$

When $X^t \sim \mathcal{N}(\mu, \sigma^2)$, the estimated sample variance is

(A.49)
$$S^2 = \frac{\sum_t (X^t - m)^2}{N - 1}$$

and we have

(A.50)
$$(N-1)\frac{S^2}{\sigma^2} \sim \chi_{N-1}^2$$

It is also known that m and S^2 are independent.

A.4 References 603

A.3.7 t Distribution

If $Z \sim \mathcal{Z}$ and $X \sim \mathcal{X}_n^2$ are independent, then

$$(A.51) T_n = \frac{Z}{\sqrt{X/n}}$$

is *t*-distributed with *n* degrees of freedom with

(A.52)
$$E[T_n] = 0, n > 1, Var(T_n) = \frac{n}{n-2}, n > 2$$

Like the unit normal density, t is symmetric around 0. As n becomes larger, t density becomes more and more like the unit normal, the difference being that t has thicker tails, indicating greater variability than does normal.

A.3.8 F Distribution

If $X_1 \sim \mathcal{X}_n^2$ and $X_2 \sim \mathcal{X}_m^2$ are independent chi-square random variables with n and m degrees of freedom, respectively,

(A.53)
$$F_{n,m} = \frac{X_1/n}{X_2/m}$$

is *F*-distributed with *n* and *m* degrees of freedom with

(A.54)
$$E[F_{n,m}] = \frac{m}{m-2}, m > 2, \ Var(F_{n,m}) = \frac{m^2(2m+2n-4)}{n(m-2)^2(m-4)}, m > 4$$

A.4 References

Casella, G., and R. L. Berger. 1990. Statistical Inference. Belmont, CA: Duxbury.

Ross, S. M. 1987. *Introduction to Probability and Statistics for Engineers and Scientists*. New York: Wiley.