Determinants

Overview and Learning Outcomes

- Properties of determinants
 - Interpret properties of determinants
- Determinants as area/volume
 - Interpret geometric properties of determinants
- Linear Transformations
 - Interpret geometry of linear transformations by determinants
 - Compute change of area/volume using determinants

3.1 Properties of determinants

1. The determinant of the $n \times n$ identity matrix is 1.

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \text{ and } \begin{vmatrix} 1 \\ & \ddots \\ & & 1 \end{vmatrix} = 1$$

2. The determinant changes sign when two rows are exchanged.

$$\begin{vmatrix} c & d \\ a & b \end{vmatrix} = - \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

If P is a permutation matrix with r row exchanges, then |P| = 1 for even r and |P| = -1 for odd r.

3. The determinant is a linear function of each row separately.

If 1 row of a matrix A is multiplied by t to get A', then |A'| = t|A|

$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

If one row of A is added to one row of A', then the determinants add.

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

Important: This rule applies only when the other rows do not change.

4. If two rows of A are equal, then |A| = 0.

$$\begin{vmatrix} a & b \\ a & b \end{vmatrix} = 0.$$

This follows from Rule 2 (Show!).

5. Subtracting a multiple of one row from another row leaves |A| unchanged.

$$\begin{vmatrix} a & b \\ c - la & d - lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

This follows from Rule 3 and Rule 4.

|A| = |U| without row exchanges and $|A| = \pm |U|$ with row exchanges.

6. A matrix with a row of zeros has |A| = 0.

$$\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = 0.$$

This follows from Rule 4 and Rule 5.

7. If A is triangular, then $|A| = a_{11}a_{22} \dots a_{nn} =$ product of diagonal matrices.

Consider the determinant of a diagonal matrix:

$$\begin{vmatrix} a_{11} & & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{vmatrix} = D$$

Factor a_{11} from the first row. By rule 3, $D = a_{11}D'$.

Factor a_{22} from the second row. By rule 3, $D = a_{11}a_{22}D''$.

Finally, factor a_{nn} from the last row. By rule 3, $D = a_{11}a_{22} \dots a_{nn}|I|$.

From rule 1, |I| = 1. So, $D = a_{11}a_{22} \dots a_{nn}$.

Now, consider the determinants for the following triangular matrices

$$\begin{vmatrix} a & b \\ 0 & d \end{vmatrix} = D_1 \text{ and } \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} = D_2.$$

Make the off diagonal elements 0 through elimination.

$$R_1 \leftarrow R_1 - \frac{b}{d}R_2 : D_1' = \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} = ad$$

$$R_2 \leftarrow R_2 - \frac{c}{a}R_2 : D_2' = \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} = ad$$

If an $a_{ii} = 0$, elimination produces a zero row.

By Rule 5, determinant is unchanged and by Rule 6, determinant = 0.

Such matrices are called **singular**.

8. If A is singular, then |A| = 0. If A is invertible, then $|A| \neq 0$.

Transform A to U through elimination. If A is singular:

- U has a zero row
- From previous rules, |A| = |U| = 0

If A is invertible:

- \bullet U has pivots along its diagonal
- From Rule 7, product of non-zero pivots \Rightarrow non zero determinant
- $|A| = \pm |U| = \pm (\text{product of pivots})$

[+ for even number of row exchanges and – for odd number of row exchanges] Pivots of a 2×2 matrix $(a \neq 0)$:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ 0 & d - (c/b)a \end{vmatrix} = ad - bc$$
 (Finally, a formula for the determinant!!)

9.
$$|AB| = |A||B|$$
.

Consider the ratio D(A) = |AB|/|B|. If D(A) satisfies rules 1, 2 and 3, then it is a determinant.

- Rule 1 (Determinant of I)
 - If A = I, then D(A) = |B|/|B| = 1
- Rule $2(Sign \ reversal)$
 - Two rows of A are exchanged \Rightarrow Same two rows of |AB| are exchanged $\Rightarrow |AB|$ changes sign $\Rightarrow D(A)$ changes sign
- Rule 3 (*Linearity*)
 - When 1 row of A is multiplied by $t \Rightarrow$ so is 1 row of $AB \Rightarrow |AB|$ is multiplied by $t \Rightarrow D(A)$ is multiplied by t
 - When 1 row of A is added to 1 row of $A' \Rightarrow 1$ row of AB is added to 1 row of $A'B \Rightarrow$ determinants add \Rightarrow dividing by B, the ratios add

The ratio |AB|/|B| has the same properties that define |A|.

Therefore,
$$|AB|/|B| = |A| \Rightarrow |AB| = |A||B|$$

If
$$|B| = 0$$
, B is singular $\Rightarrow AB$ is singular $\Rightarrow |AB| = 0$

$$|A||B| = 0$$

Therefore |AB| = |A||B|

10.
$$|A^T| = |A|$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$

All the above properties apply to *columns* also.

3.2 Determinants as Area or Volume

• Geometric interpretation of determinants

Theorem 3.1. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is |A|. If A is a 3×3 matrix, the volume of the parallelopiped determined by the columns of A is |A|.

Proof. True for a 2×2 diagonal matrix:

$$abs(\begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix}) = abs(ad) = area of rectangle$$

Can we transform any 2×2 matrix $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$ into a diagonal matrix without change in area of the associated parallelogram or in |A|?

A can be transformed into a diagonal matrix by:

- Interchanging two columns
 - Does not change the parallelogram
 - From property 2, |A| is unchanged
 - Remember: properties apply to *columns* also.
- Adding a multiple of one column to another

Prove the following geometric observation:

Let \mathbf{a}_1 and \mathbf{a}_2 be nonzero vectors. Then for any scalar c, the area of a parallelogram determined by \mathbf{a}_1 and \mathbf{a}_2 equals the area of the parallelogram determined by \mathbf{a}_1 and $\mathbf{a}_2 + c\mathbf{a}_1$.

Assume \mathbf{a}_2 is not a multiple of \mathbf{a}_1 .

- L is the line through $\mathbf{0}$ and $\mathbf{a}_1 \Rightarrow \mathbf{a}_2 + L$ is the line through \mathbf{a}_2 and parallel to L
- Points \mathbf{a}_2 and $\mathbf{a}_2 + c\mathbf{a}_1$ have the same perpendicular distance to L
- Hence, two parallelograms have the same area (base X height)

Proof for \mathbb{R}^3 (i.e., 3×3 matrix):

True for a
$$3 \times 3$$
 diagonal matrix $\begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix}$

Can we transform any 3×3 matrix $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ into a diagonal matrix without change in volume of the associated parallelepiped or in |A|?

A can be transformed into a diagonal matrix by:

- Interchanging two columns (same as row operations on A^T)
 - Does not change the parallelepiped

• Adding a multiple of one column to another

In the figure below:

- Volume of parallelepiped = area of base \times height
- Base is in $Span\{\mathbf{a}_1, \mathbf{a}_3\}$ Height = $\mathbf{a}_2 + Span\{\mathbf{a}_1, \mathbf{a}_3\}$
- $\mathbf{a}_2 + c\mathbf{a}_1$ lies in the plane $\mathbf{a}_2 + \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_3\}$, which is parallel to $\operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_3\}$
- Hence, any vector $\mathbf{a}_2 + c\mathbf{a}_1$ has the same height as \mathbf{a}_2
- Therefore, the volume of the parallelepiped is unchanged when $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ is changed to $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 + c\mathbf{a}_1 & \mathbf{a}_3 \end{bmatrix}$

Exercise 3.2.1

Calculate the area of the parallelogram determined by the points (-2, -2), (0, 3), (4, -1), (6, 4).

Solution

Translate the parallelogram to one having the origin as a vertex, e.g., subtract (-2, -2) from each of the four vertices.

Translating a parallelogram does not change its area

New vertices are at
$$(0,0), (2,5), (6,1), (8,6)$$
.

This parallelogram is determined by the columns of $A = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}$

$$abs(|A|) = |-28|$$

Therefore, area of the parallelogram is 28.

3.3 Linear Transformations

• How does the area (or volume) of a transformed set compare with the area (or volume) of the original

Theorem 3.2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then area of $T(S) = abs(|A|) \times area$ of S.

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then volume of $T(S) = abs(|A|) \times volume$ of S.

Proof.

Consider the 2×2 case, $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$

A parallelogram at the origin in \mathbb{R}^2 determined by the vectors \mathbf{b}_1 and \mathbf{b}_2 has the form

$$S = \{s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 : 0 \le s_1 \le 1, 0 \le s_2 \le 1\}$$

The image of S under T consists of the points of the form

$$T(s_1\mathbf{b}_1 + s_2\mathbf{b}_2) = s_1T(\mathbf{b}_1) + s_2T(\mathbf{b}_2) = s_1A\mathbf{b}_1 + s_2A\mathbf{b}_2,$$

where $0 \le s_1 \le 1, 0 \le s_2 \le 1$.

T(S) is the parallelogram determined by columns of $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix} = AB$ where $B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$.

area of
$$T(S) = abs(|AB|) = (abs|A|)(abs|B|) = (abs|A|)$$
 (area of S)

Now for the general case:

An arbitrary parallelogram has the form $\mathbf{p} + S$ where \mathbf{p} is a vector and S is a parallelogram at the origin.

$$T(\mathbf{p} + S) = T(\mathbf{p}) + T(S)$$

Translation does not affect the area of a set

area of
$$T(\mathbf{p} + S)$$
 = area of $(T(\mathbf{p}) + T(S))$
= area of $T(S)$
= $abs(|A|) \times area of S$
= $abs(|A|) \times area of \mathbf{p} + S$

Proof for 3×3 is analogous.

Thereom 3.2 is applicable for arbitrary shapes also.

area of ellipse = area of
$$T(D)$$

= $abs(|A|) \times$ area of D
= $ab \times \pi 1^2 = \pi ab$

If $\mathbf{x} = A\mathbf{u}$ with $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, equation of ellipse given by $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$, what is \mathbf{u} ?