Неразрешимость системы F

Разрешимость типизации $\lambda_{ ightarrow}$

- Алгебраические термы: $T := V \mid f \mid T \mid ... \mid T$
- lacktriangle Уравнение в алгебраических термах $\sigma=\sigma'$
- lacktriangledown Подстановка переменной: функция $S_0:V o T$, тожественная почти везде.
- ▶ Подстановка: $S:T\to T$, что $S(v)=S_0(v)$ и $S(f\;\theta_1\;\ldots\;\theta_n)=f\;S(\theta_1)\;\ldots\;S(\theta_n)$
- Решение задачи унификации такая S, что $S(\sigma) = S(\sigma')$.
- Задача типизации: по лямбда-выражению строим уравнение, находим решение, по решению строим тип.

Система F

$$\overline{\Gamma, x : \sigma \vdash x : \sigma} \text{ (Акс.)}$$

$$\underline{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}$$

$$\Gamma \vdash (M N) : \tau$$

$$\overline{\Gamma, x : \sigma \vdash M : \tau}$$

$$\Gamma \vdash (\lambda x.M) : \sigma \to \tau$$

$$\overline{\Gamma \vdash M : \forall \alpha.\sigma}$$

$$\Gamma \vdash M : (\sigma[\alpha := \tau])$$

$$\Gamma \vdash M : \sigma$$

$$\Gamma$$

Определение

Вывод — записанное в виде списка дерево. То есть, конечная последовательность формул (секвентов) $\Delta_1, \ldots, \Delta_n$ (вида $\Gamma \vdash M : \sigma$), где каждый Δ_i — результат применения какого-то из правил к посылкам Δ_j (и возможно Δ_k), где j,k < i.

Специализация перед обобщением

Определение

Пусть для доказательства Δ_i определена функция c(i) («номер заключения для посылки i»), при этом все правила в выводе имеют вид

$$rac{\Delta_i}{\Delta_{c(i)}} \frac{\Delta_j}{\Delta_{c(i)}} \; ($$
также $c(i) = c(j))$ $rac{\Delta_i}{\Delta_{c(i)}}$

В доказательстве специализации идут перед обобщениями, **если для любой** подпоследовательности $\Delta_{m_1}, \ldots, \Delta_{m_i}$, такой, что:

- 1. $m_i = c(m_{i-1});$
- 2. Δ_{m_1} заключение аксиомы, правил применения и абстракции;
- 3. $\Delta_{m_2}, \dots, \Delta_{m_j}$ заключения правил обобщения и специализации;

выполнено: существует $1 \leqslant k \leqslant j$, что $\Delta_{m_2}, \ldots, \Delta_{m_k}$ — заключения правил специализации, а $\Delta_{m_{k+1}}, \ldots, \Delta_{m_i}$ — правил обобщения.

Полуунификация

Язык термов: $\mathcal{T} ::= V | \mathcal{T} \to \mathcal{T}$.

Определение

Решением задачи полуунификации для $\{\tau_1\leqslant \mu_1,\tau_2\leqslant \mu_2\}$ при $\tau_1,\tau_2,\mu_1,\mu_2\in\mathcal{T}$ будет $S:\mathcal{T}\to\mathcal{T}$, что для неё существуют S_1 и S_2 , что $S_1(S(\tau_1))=S(\mu_1)$ и $S_2(S(\tau_2))=S(\mu_2)$.

Теорема

Задача полуунификации для $\{ au_1 \leqslant \mu_1, au_2 \leqslant \mu_2\}$ неразрешима Без доказательства.

Сведение полуунификации к проверке типов

Теорема

Разрешимость задачи проверки типов для F эквивалентна разрешимости полуунификции для $\{ au_1\leqslant \mu_1, au_2\leqslant \mu_2\}$ при $au_1, au_2, \mu_1, \mu_2\in \mathcal{T}$.

Доказательство.

Пусть даны au_1, au_2, au_1, au_2 со свободными переменными $lpha_1, \dots, lpha_n$. Рассмотрим контекст:

$$\Gamma := \{b : \forall \beta \gamma. (\gamma \to \gamma) \to \beta, \ c : \forall \alpha_1 \dots \alpha_n \delta_1 \delta_2. (\mu_1 \to \delta_1) \to (\delta_2 \to \mu_2) \to (\tau_1 \to \tau_2)\}$$

И построим формулу:

$$\Gamma \vdash (b (\lambda x.c \times x)) : \beta$$

- ▶ Решение задачи полуунификации даёт доказуемость формулы в F.
- ightharpoonup Наличие доказательства формулы в F позволяет решить задачу полуунификации.

По решению строим доказательство

Предположим, есть S, S_1, S_2 , что $S_1(S(\tau_1)) = S(\mu_1)$ и $S_2(S(\tau_2)) = S(\mu_2)$. Рассмотрим $\Gamma' := \Gamma$. $X : \forall . S(\tau_1) \to S(\tau_2)$.

 $\Gamma := \{b : \forall \beta \gamma. (\gamma \to \gamma) \to \beta, \quad c : \forall \alpha_1 \dots \alpha_n \delta_1 \delta_2. (\mu_1 \to \delta_1) \to (\delta_2 \to \mu_2) \to (\tau_1 \to \tau_2)\}$

Тогда легко построить вывод следующих формул, применив правила подстановки:

(1)
$$\Gamma' \vdash c : (S(\mu_1) \to S_1(S(\tau_2))) \to (S_2(S(\tau_1)) \to S(\mu_2)) \to (S(\tau_1) \to S(\tau_2))$$

(2)
$$\Gamma' \vdash x : S_1(S(\tau_1)) \to S_1(S(\tau_2))$$

(3)
$$\Gamma' \vdash x : S_2(S(\tau_1)) \rightarrow S_2(S(\tau_2))$$

Воспользуемся полуунификацией: $S(\mu_1)=S_1(S(au_1))$ и $S(\mu_2)=S_2(S(au_2))$

$$(4) \quad \Gamma' \vdash cx : (S_2(S(\tau_1)) \to S(\mu_2)) \to (S(\tau_1) \to S(\tau_2))$$

(5)
$$\Gamma' \vdash cxx : S(\tau_1) \rightarrow S(\tau_2)$$

$$\beta$$
 — связанная, потому можем гарантировать $S(\beta) = \beta$, $S_1(\beta) = \beta$, $S_2(\beta) = \beta$. (6) $\Gamma' \vdash cxx : \forall . S(\tau_1) \rightarrow S(\tau_2)$

(7)
$$\Gamma \vdash \lambda x.cxx : (\forall .S(\tau_1) \rightarrow S(\tau_2)) \rightarrow (\forall .S(\tau_1) \rightarrow S(\tau_2))$$

$$(1) \quad \Gamma \vdash \lambda x.cxx : (v.S(\tau_1) \to S(\tau_2)) \to (v.S(\tau_1) \to S(\tau_2))$$

(8)
$$\Gamma \vdash b : ((\forall . S(\tau_1) \to S(\tau_2)) \to (\forall . S(\tau_1) \to S(\tau_2))) \to \beta$$

(9)
$$\Gamma \vdash b (\lambda x.cxx) : \beta$$

По доказательству строим решение

 $\Gamma := \{b : \forall \beta \gamma. (\gamma \to \gamma) \to \beta, \ c : \forall \alpha_1 \dots \alpha_n \delta_1 \delta_2. (\mu_1 \to \delta_1) \to (\delta_2 \to \mu_2) \to (\tau_1 \to \tau_2)\}$ Пусть доказуемо $\Gamma \vdash b \ (\lambda x. cxx) : \beta$. В формуле нет редексов, потому каждой конструкции должно соответствовать применение соответствующего правила.

Ветка, определяющая тип $\lambda x.cxx$:

$$\Gamma, x : \sigma \vdash c : (T(\mu_1) \to T(\delta_1)) \to (T(\delta_2) \to T(\mu_2)) \to (T(\tau_1) \to T(\tau_2))
\Gamma, x : \sigma \vdash x : T(\mu_1) \to T(\delta_1)
\Gamma, x : \sigma \vdash cx : (T(\delta_2) \to T(\mu_2)) \to (T(\tau_1) \to T(\tau_2))$$

$$\Gamma, x : \sigma \vdash x : T(\delta_2) \to T(\mu_2)$$

 $\Gamma, x : \sigma \vdash cxx : T(\tau_1) \to T(\tau_2)$

$$\Gamma, x : \sigma \vdash cxx : \forall T(\tau_1) \rightarrow T(\tau_2)$$

$$\Gamma \vdash \lambda x.cxx : \sigma \to \forall .T(\tau_1) \to T(\tau_2)$$

Также, вывод типа b должен оканчиваться на такую формулу:

$$\Gamma \vdash b : (\varphi \to \varphi) \to \beta$$

Типизация $b(\lambda x. cxx)$ возможна только при помощи правила для применения:

$$\Gamma \vdash b(\lambda x.cxx) : \beta$$

Анализ доказательства

Правило для вывода типа $b(\lambda x.cxx)$

$$\frac{\Gamma \vdash b : (\varphi \to \varphi) \to \beta \qquad \Gamma \vdash \lambda x. cxx : \sigma \to \forall . T(\tau_1) \to T(\tau_2)}{\Gamma \vdash b(\lambda x. cxx) : \beta}$$

A

даёт $\varphi = \sigma = \forall . T(\tau_1) \rightarrow T(\tau_2)$

Анализируя же правила типизации x:

$$\overline{\Gamma, x : \sigma \vdash x : T(\mu_1) \to T(\delta_1)} \quad \overline{\Gamma, x : \sigma \vdash x : T(\delta_2) \to T(\mu_2)}$$

получим четыре равенства:

получим четыре равенства:
$$T_1(T(au_1)) = T(\mu_1), T_2(T(au_1)) = T(\delta_2), T_1(T(au_2)) = T(\delta_1), T_2(T(au_2)) = T(\mu_2)$$

$$|\sigma| = \begin{cases} \alpha, & \sigma = \alpha \\ |\tau_1| \to |\tau_2|, & \sigma = \tau_1 \to \tau_2 \\ |\tau|, & \sigma = \forall \alpha, \tau \end{cases}$$

 $S_k(lpha_k)=|T_k(lpha_k)|$, и $S_k(arepsilon)=arepsilon$ для других переменных.

Дополнительные факты

- ▶ Задача проверки типов для F эквивалентна задаче нахождения типов.
- ▶ Другие методы доказательства: например, унификация второго порядка.