Kapitel 2

Reelle Zahlen, Euklidische Räume und Komplexe Zahlen

2.1 Elementare Zahlen

Natürliche Zahlen $\mathbb{N}=\{0,1,2,\dots\}$ addieren und multiplizieren Ganze Zahlen $\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$ subtrahieren Rationale Zahlen $\mathbb{Q}=\left\{\frac{p}{q} \middle| p,q\in\mathbb{Z},q\neq 0\right\}$ dividieren

Viele Gleichungen haben keine Lösung in Q.

Before set Z, can't read, page 22

Satz 2.1

Sei $p \in \mathbb{N}$ eine Primzahl. Dann hat $x^2 = p$ keine Lösung in \mathbb{Q} .

Beweis

Zum Erinnerung zwei Natürlichen Zahlen a und b sind teilfremd (oder relativ prim) wenn es keine natürliche Zahl ausser der Eins gibt, die beiden Zahlen teilt.

$$((a,b)=1) \rightarrow \text{grösster gemeinsamer Teiler}$$

Indirekter Beweis

Wir nehmen an: es gibt $x=\frac{a}{b}\in\mathbb{Q}$ mit $x^2=p,$ wobei a,b teilfremd und ≥ 1 sind. Dann gilt

$$a^2 = pb^2$$

woraus folgt, dass p a teilt, also ist a = pk, $k \in \mathbb{N}$ und somit

$$a^2 = p^2 k^2 = pb^2 \Rightarrow pk^2 = b^2$$

woraus folgt, dass p b teilt.

2.2 Die Reellen Zahlen

Wir werden jetzt das System von Axiomen beschreiben, das die Menge der reellen Zahlen "eindeutig" charakterisiert.

Die Menge \mathbb{R} der reellen Zahlen ist mit zwei Verknüpfungen "+" (Addition) und "·" (Multiplikation) versehen, sowie mit einer Ordnungsrelation \leq . Die axiome werden wie folgt gruppiert:

1. $(\mathbb{R}, +, \cdot)$ ist ein Koerper

Es gibt zwei Operationen (zweistellige Verknüpfungen)

- $\bullet +: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \mapsto a+b$
- $\bullet \times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \mapsto a \cdot b$

und zwei ausgezeichnete Elemente 0 und 1 in \mathbb{R} , die folgenden Eigenschaften haben:

Kommutativität A1) x + y = y + x

Assoziativität A2) (x + y) + z = x + (y + z)

Neutrales Element A3) x + 0 = x = 0 + x

Inverses Element A4) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ mit } x + y = 0 = y + x$

Komutivität M1) $x \cdot y = y \cdot x$ Assoziativität M2) (xy)z = x(yz)

Neutrales Element M3) $x \cdot 1 = x = 1 \cdot x$

Inverse Element M4) $\forall x \in \mathbb{R}, x \neq 0 \ \exists y \in \mathbb{R} \ \text{mit} \ xy = 1 = yx$

und die Multiplikation ist verträglich mit der Addition im Sinne des Distributivitätsgesetz (D)

$$\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$$

- $(\mathbb{R}, +)$ mit A1 \rightarrow A4 ist eine Abelsche Gruppe bezüglich der Addition
- $(\mathbb{R}, +, \cdot)$ mit A1 \rightarrow A4, M1 \rightarrow M4 und D ist ein Zahlkörper.

Bemerkung 2.2

Eine Menge G, versetzt mit Verknüpfung + und dem neutralen Element 0, die den obigen Eigenschaften A2 \rightarrow A4 genügt, heisst Gruppe.

Eine Menge K versetzt mit Verknüpfung $+,\cdot$ und Elementen $0\neq 1$, die den obigen Eigenschaften A1 \to A4, M1 \to M4, D genügt heisst Körper.

Folgerung 2.3

Seien $a, b, c, d \in \mathbb{R}$

- i) $a+b=a+c \Rightarrow b=c$ und 0 ist eindeutig, d.h. falls $z \in \mathbb{R}$ der Eigenschaften $a+z=a \ \forall a \in \mathbb{R}$ genügt, so folgt z=0
- ii) $\forall a, b\mathbb{R}, \exists !$ (eindeutig bestimmtes) $x \in \mathbb{R} : a + x = b$. Wir schreiben x = b a und 0 a = -a ist das additive Inverse zu
- iii) b a = b + (-a)
- iv) -(-a) = a
- v) Falls ab = ac und $a \neq 0 \Rightarrow b = c$ und 1 ist eindeutig, d.h. falls $x \in \mathbb{R}$ der Eigenschaften $ax = a \ \forall a \in \mathbb{R}$ genügt, so folgt x = 1
- vi) $\forall a, b \in \mathbb{R}, a \neq 0, \exists ! x \in \mathbb{R} : ax = b$. Wir schreiben $x = \frac{b}{a}$ und $\frac{1}{a} = a^{-1}$ ist das multiplikativ Inverse zu a.
- vii) Falls $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- viii) $\forall a \in \mathbb{R}, a \cdot 0 = 0$
- ix) Falls ab = 0, dann folgt a = 0 oder b = 0

Beweis 2.3

(a) Sei a + b = a + c $A4 \Rightarrow \exists y \in \mathbb{R} : a + y = 0$ $a + b = a + c \Rightarrow y + (a + b) = y + (a + c)$

$$\stackrel{A2}{\Rightarrow} (y+a) + b = (y+a) + c$$

$$\Rightarrow 0 + b = 0 + c \stackrel{A3}{\Rightarrow} b = c$$

Nehmen wir an, dass es $0' \in \mathbb{R}$ gibt, so dass x + 0' = x, $\forall x \in \mathbb{R}$, d.h. es gibt ein zweites neutrale Element für +.

Dann 0 + 0' = 0 aber auch A3 $\Rightarrow 0 + 0 = 0 \Rightarrow 0 + 0' = 0 + 0 \Rightarrow 0 = 0'$

- (b) Seien $a, b \in \mathbb{R}$, und sei $y \in \mathbb{R}$ mit a + y = 0. Definieren wir $x := y + b \Rightarrow a + x = a + (y + b) = (a + y) + b = 0 + b = b$ \Rightarrow es gibt mindestens eine Lösung der Gleichung a + x = b. Von i) folgt, dass x eindeutig bestimmt ist $a + x = b = a + x' \Rightarrow x = x'$
- (c) Seien x = b a, y = b + (-a). Wir wollen beweisen, dass x = y.

Aus i) wissen wir, dass b-a eine Lösung von a+x=b

$$y + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = 0$$

ist $\Rightarrow y$ ist auch eine Lösung.

Weil die Lösung von a + x = b ist eindeutig bestimmt, ist y = x

- (d)
- (e)
- (f)
- (g)

ASK FOR BEWEISE; PAGE 27 TOP

(h)
$$\forall a \in \mathbb{R}, a \cdot 0 = 0$$

 $a \cdot 0 = a(0+0) = a \cdot 0 + a \cdot 0 \Rightarrow a \cdot 0 = 0$

?multipli? page 27 middle to top

- (i) $ab = 0 \Rightarrow a = 0$ oder b = 0Wir nehmen an: $a \neq 0$ mit Inversen a^{-1} , (a^{-1} existiert mittels M4). So folgt $b = 1 \cdot b = (a^{-1} \cdot a)$ $b = a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0$
- 2. Ordnungsaxiome \leq

Auf $\mathbb R$ gibt es eine Relation, $\leq,$ genante Ordnung, die folgenden Eigenschaften genügt

- (a) Reflexivität: $\forall x \in \mathbb{R}, x \leq x$
- (b) Transitivität: $\forall x,y,z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$
- (c) Identität: $\forall x, y \in \mathbb{R}, (x \leq y) \text{ und } (y \leq x) \Rightarrow x = y$
- (d) Die Ordnung ist total: $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

Die Ordnung ist konsistent mit +, und \cdot

(a)
$$x \le y \Rightarrow x + z \le y + z$$
 $\forall x, y, z \in \mathbb{R}$

(b)
$$x, y \ge 0 \Rightarrow xy \ge 0$$

Mit \leq hat man auch \geq , <, >. Wir verzichten auf eine Auflistung aller Folgerungen und beschränken uns auf einige wichtigen Folgerungen.

Folgerungen 2.4

i)
$$x \le 0$$
 und $y \le 0 \Rightarrow xy \ge 0$

ii)
$$x \le 0$$
 und $y \ge 0 \Rightarrow xy \le 0$

iii)
$$x \le y$$
 und $z \ge 0 \Rightarrow xz \le yz$

iv)
$$1 > 0$$

v)
$$\forall x \in \mathbb{R}$$
 $x^2 \ge 0$

vi)
$$0 < 1 < 2 < 3 < \dots$$

vii)
$$\forall x > 0 : x^{-1} > 0$$

{Annahme: $x^{-1} \leq 0$. Nach Multiplikation mit x>0 folgt (mittels ii) $1=x^{-1}\cdot x \leq 0\cdot x=0$ }

Bemerkung 2.5

What? page 28 bottom

Check for layout issues

with title

 \leq auf genügt den obigen Eigenschaften. Die entscheidende weitere Eigenschaft von $\mathbb R$ ist das.

3. Ordnungsvollständigkeit

Vollständigkeitsaxiom:

Seien $A,B\subset\mathbb{R}$ nicht leere Teilmengen von \mathbb{R} , so dass $a\leq b$ für alle $a\in A,b\in B$. Dann gibt es $c\in\mathbb{R}$ mit $a\leq c\leq b$ $\forall a\in A,b\in B$

Bemerkung 2.6

at? page 29 bottom

erfüllt dieses Eigenschaft nicht!

Seien

$$A = \{x \in \mathbb{Q} \mid x \ge 0, x^2 \le 2\}$$
$$B = \{y \in Q \mid y \ge 0, y^2 \ge 2\}$$

Dann gilt $a \leq b \ \forall a \in A \ b \in B$. Aber ein $c \in \mathbb{Q}$, mit $a \leq c \leq b$ würde dann $c^2 = 2$ erfüllen! In Satz 2.1 haben wir gesehen dass $x^2 = p$ keine Lösung in \mathbb{Q} hat.

Wir definieren jetzt für $x, y \in \mathbb{R}$

$$\max\{x,y\} = \left\{ \begin{array}{l} x \text{ falls } y \leq x \\ y \text{ falls } x \leq y \end{array} \right.$$

Insbesondere ist der Absolutbetrag einer Zahl $x \in \mathbb{R}, |x|$

$$|x| : \max\{x, -x\}$$

Für diesen gilt folgender wichtiger Satz

Satz 2.7

- i) $|x + y| \le |x| + |y|$ (Dreiecksungleichung)
- ii) |xy| = |x| |y|

Beweis 2.7

- $\begin{array}{l} \text{i)} \ \ x \leq |x| \ , -x \leq |x| \\ \ \ y \leq |y| \ , -y \leq |y| \\ \ \ \text{und} \ \ x + y \leq |x| + |y| \ , -(x + y) \leq |x| + |y| \\ \ \ \text{woraus} \ |x + y| \leq |x| + |y| \ \text{folgt} \end{array}$
- ii) ASK FOR BEWEIS

ASK FOR BEWEIS

Satz (Young)

Für alle $a, b \in \mathbb{R}, \ \delta > 0$ gilt $2|ab| \le \delta a^2 + \frac{b^2}{\delta}$

2.3 Infimum und Supremum

Im Zusammenhang mit der Ordnung führen wir einige wichtige Definitionen ein:

Definition 2.8

Sei $\mathbb{X} \subset \mathbb{R}$ eine Teilmenge

- a) X ist nach oben beschränkt, falls es $c \in \mathbb{R}$ gibt $x \leq c, \forall x \in X$. Jedes derartige c heisst eine obere Schranke für X.
- b) X ist nach unten beschränkt, falls es $c \in \mathbb{R}$ gibt, mit $x \geq c$, $\forall x \in X$. Jedes derartige c heisst untere Schranke für X.
- c) X ist beschränkt falls es nach oben und unten beschränkt ist.
- d) Ein Element $a \in X$ ist ein maximales Element (oder Maximum) von X falls $x \leq a$, $\forall x \in X$. Falls ein Maximum (bzw. Minimum) existiert, wird es mit max X (min X) bezeichnet. Falls X keine obere Schranke hat, ist X nach oben unbeschränkt (analog für obere Schranke).

Beispiel 2.9

WHAT? Page 32 top

- 1. $A = \{x \in \mathbb{R} \mid x > 0\}$ ist nach oben unbeschränkt. A ist nach unten beschränkt. Jedes ≤ 0 ist eine untere Schranke.
- 2. B = [0, 1] ist nach oben und nach unten beschränkt.
 - 0 ist ein Minimum von B
 - 1 ist ein Maximum von B
- 3. C = [0, 1) ist nach oben und nach unten beschränkt, $0 = \min(A)$. C hat kein Maximum.

Folgender Satz ist von zentraler Bedeutung und eine Folgerung des Ordnungsvollständigkeitsaxioms.

Satz 2.10

- i) Jede nicht leere, nach oben beschränkte Teilmenge $A \subset B$ besitzt eine kleinste obere Schranke c. Die kleinste obere Schranke c ist eindeutig bestimmt und heisst Supremum von A und wird mit sup A bezeichnet.
- ii) Jede nicht leere, nach unten beschränkt Teilmenge $A \subset \mathbb{R}$ besitzt eine grösste untere Schranke d und heisst Infimum von A und wird mit inf A bezeichnet.

Beweis

i) Sei $\emptyset \neq A \subset B$ nach oben beschränkt. Sei $B := \{b \in \mathbb{R} \mid b \text{ ist obere Schranke für } A\}$. Dann $B \neq \emptyset$ und $a \leq b, \forall a \in A \ b \in B$

Mit dem Ordnungsvollständigkeitsaxiom folgt die Existens einer Zahl $c \in \mathbb{R}$ mit $a \leq c \leq b \ \forall a \in A, \ b \in B$.

Es ist klar, dass c eine obere Schranke für A ist. Also $c \in B$. Da $c \le b$ $\forall b \in B$, ist c die kleinste obere Schranke für A. Hiermit c ist eindeutig

bestimmt.

(Seien c und c' zwei Suprema von A, c ist die kleinste obere Schranke und c' ist eine obere Schranke $\Rightarrow c \leq c'$. Das gleiche Argument mit c,c' vertauscht liefert $c' \leq c$)

ii) Sei A eine nach unten beschränkte, nicht leere Menge. Sei $-A := \{-x \mid x \in A\}$ die Menge der additive Inversen von A. Dann $-A \neq \emptyset$ und nach oben beschränkt. i) $\Rightarrow \exists s = \sup(-A) \Rightarrow -s$ ist das Infimum von A

limenet: Why enumerate for only one item??

Korollar 2.11

- 1. Falls $E \subset F$ und F nach oben beschränkt ist, gilt sup $E \leq \sup F$
- 2. Falls $E \subset F$ und F nach unten beschränkt ist, gilt inf $F \leq \inf E$
- 3. Falls $\forall x \in E, \, \forall y \in F$ gilt $x \leq y,$ dann folgt $\sup E \leq \inf F$
- 4. Seien $E, F \neq \emptyset, E, F, \subset \mathbb{R}, h \in \mathbb{R}, h > 0$

page is clipped, page 34 bottom

- (i) Falls E ein Supremum besitzt $\Rightarrow \exists x \in E \text{ mit } x > \sup E$
- (ii) Falls E ein Infimum besitzt $\Rightarrow \exists y \in : y < \inf E + h$. Das Supremum, $\sup \mathsf{X} = \sigma$ der Menge X ist folgendermassen charakterisiert: Es gibt in X keine Zahlen $> \sigma$; aber für jede Toleranz h > 0 gibt es in X Zahlen $> \sigma h$

can't read, is it E-h? page 34 bottom

Es gibt in X keine Zahlen $< \inf X = \underline{\text{aber für jede Toleranz } h > 0}$ gibt es in X Zahlen $< \inf X + h$

faded color, can't read, page 34.1 middle to bottom

(iii) Sei $E+F=\{e+f:e\in E,f\in F\}$. Falls E und F ein Supremum besitzen $\Rightarrow E+F$ besitzt ein Supremum und $\sup(E+F)=\sup(E)+\sup(F)$. (Analog mit Infimum)

Beweis

Ask for full Beweis!!

Beispiel

1. $E=(+\infty,2)\subset F(-\infty,4]$ $\sup E=2, \sup F=4=\max F$ $E \text{ hat kein Maximum: }\sup E\leq\sup F$

- 2. $G: [4,5) \subset H = (3,6)$ $\min E = \inf G = 4 \ge \inf H = 3$
- 3. $K = (3, \infty), E = (-\infty, 2)$ $\forall x \in E, y \in K \text{ gilt } x \leq y$ $2 = \sup E \leq 3 = \inf K$
- 4. $A\{\sin x \mid x \in \mathbb{R}\}\$ $\inf S = -1 = \min A$ $\sup A = 1 = \max A$
- 5. $A = \{(1 + \frac{1}{n})^n \mid n \in \mathbb{N}\}$. Wir werden sehen, dass A nach unten und nach oben beschränkt ist.

inf $A = \min A = 2$, $\sup A = e = 2.718...$ Vereinbarung

Für nach oben unbeschränkte Mengen $A \neq \emptyset$ setzen wir $\sup A = \infty$.

Analog für nach unten unbeschränkte Menge $\emptyset \neq A$ setzen wir $\inf A = -\infty$

Der folgende Satz zeigt, wie die Ordnungsvollständigkeit von \mathbb{R} die Lösbarkeit gewisser Gleichungen in \mathbb{R} garantiert.

Satz 2.12

Für jedes x > 0 gibt es genau ein y > 0 mit $y^2 = x$. Diese Lösung wird mit \sqrt{x} bezeichnet.

(Im Allgemeinen: Für jedes x>0 und $n\geq 1,\ n\in\mathbb{R}$ gibt es genau ein y>0 mit $y^2=0$. Diese Lösung wird mit $\sqrt[n]{x}$ bezeichnet)

Beweis

Sei x > 1, und $A := \{z \in \mathbb{R} \mid z > 0 \text{ mit } z^2 \leq x\}$. Dann ist A nach oben beschränkt und $A \neq \emptyset(1 \in A)$. $\Rightarrow A$ besitzt ein Supremum. Sei $y := \sup A$. Wir zeigen, dass $y^2 = x$

Not sure, page 35 bottom

Check for better layout

• Schnitt 1: Annahme $y^2 < x$. Sei $0 \le h \le 1$. Wir nehmen an:

$$(y+h)^{2} = y^{2} + 2hy + h^{2}$$

$$= y^{2} + h(2y+h)$$

$$\leq y^{2} + h(2y+1)$$

$$= y^{2} + h((y+1)^{2} - y^{2})$$

Weil $y^2 < x$ ist, $\frac{x-y^2}{(y+1)^2-y^2} > 0$ und daher gibt es $h \in \mathbb{R}, h > 0$, $h \le \frac{x-y^2}{(y+1)^2-y^2}$ (sei $h = \min\{1, \frac{x-y^2}{2x+1}\}$)

Für solche h gilt

$$(y+h)^2 \le y^2 + \left(\frac{x-y^2}{(y+1)^2 - y^2}\right) \left((y+1)^2 - y^2\right) =$$

chopped result, page 35.1

Also $y + h \in A$ und y + h > y. Ein Widerspruch: y ist eine obere Schranke für A, d.h., z < y $\Rightarrow y^2 \ge x$ Analog beweist man $y^2 \le x$

• Schnitt 2: Annahme $y^2 > x$ Sei $h = \frac{y^2 - x}{2y} \neq 0$

$$(y-h)^2 = y^2 - 2hy + h^2 > y^2 - 2hy = y^2 - (y^2 - 2hy)$$

 $\Rightarrow y-h$ ist eine obere Schranke für A

Chopped, page 35.2 top

$$(\forall z \in A, z^2 \le x. \text{ Da } (y-h)^2 > x \text{ ist, } (y-h)^2 > x \ge z^2. \text{ Damit } y-h > z, \forall z \in A)$$

Aber y - h < y, Widerspruch zur Minimalität von y.

Falls 0 < x < 1, dann $\frac{1}{x} > 1$ $\Rightarrow \exists u \in \mathbb{R}$, mit $u^2 = \frac{1}{x}$ Somit $\left(\frac{1}{u}\right)^2 = x$ und $y = \frac{1}{u}$ ist eine Lösung von $y^2 = x$.

Zum Abschluss dieses Themas erwähnen wir noch eine wichtige Eigenschaft der reellen Zahlen

Satz 2.13 (Archimedische Eigenschaft)

Zu jeder Zahl $0 < b \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit b < n.

Beweis (Indirekt)

Andernfalls gibt es $b \in \mathbb{R}$ mit $n \leq b, \forall n \in \mathbb{N}$

$$(\neg (\exists n \in \mathbb{N} : b < n) = (\forall n \in \mathbb{N} : b \ge n))$$

Dann ist b eine obere Schranke für \mathbb{N} und es existiert $c = \sup \mathbb{N} \in \mathbb{R}$. Mit $n \in \mathbb{R}$ ist jedoch auch $n + 1 \in \mathbb{N}$.

Also: $n+1 \leq c, \ \forall n \in \mathbb{N}$. Somit folgt $n \leq c-1, \ \forall n \in \mathbb{N}$ ein Widerspruch zur Minimalität von .

Chopped content, page 36 bottom

Korollar 2.14

- 1. Seien x > 0 und $y \in \mathbb{R}$ gegeben. Dann gibt es $n \in \mathbb{Z}$ mit y < nx
- 2. Falls $x,y,a\in\mathbb{R}$ die Ungleichheiten $a\leq x\leq a+\frac{y}{n},\, \forall n\in\mathbb{N}$ erfüllen, ist x=a.

Beweis

1. ASK FOR BEWEIS

Ask for beweis

2. $a < x \Rightarrow x - a > 0 \Rightarrow \exists n \in \mathbb{N}$ $\Rightarrow x > a + \frac{y}{n}$ Widerspruch

Wir wissen, dass gewisse Gleichungen in $\mathbb R$ lösbar sind: z.B. $y^2=a, \, \forall a>0$. Aber man kann nicht alle Gleichugen in $\mathbb R$ lösen, z.B. $x^2+1=0$. Da für alle $x\in\mathbb R,\,x^2>0$, ist $x^2=-1$ nicht lösbar. Um eine Lösung für diese Gleichung zu finden, müssen wir die komplexen Zahlen betrachten.

Zuerst, werden wir die Euklidischen Räume \mathbb{R}^n einführen

2.4 Euklidische Räume

Mit der Mengentheorie können wir das kartesische Produkt zweier Mengen bilden; es lässt sich ohne Schwierigkeiten zu endlichen Familien A_1, \ldots, A_n verallgemeinen; nämlich

$$A_1 \times \cdots \times A_n := \{(x_1, \dots, x_n) : x_i \in A_i\}$$

ist die Menge der geordneten n-Tupel von Elementen aus A_1, \ldots, A_n .

Für beliebige $n\geq 1$ betrachten wir $\mathbb{R}^n:=\underbrace{\mathbb{R}\times\ldots\times\mathbb{R}}_{n-\mathrm{mal}}$ und untersuchen dessen Struktur. Auf \mathbb{R}^n haben wir zwei Verknüpfungen

1. $+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ Addition.

$$\underbrace{\left(\underbrace{(x_1,\ldots,x_n)}_{x},\underbrace{(y_1,\ldots,y_n)}_{y}\right)}_{\text{Komponentenweise Addition}} - \underbrace{\left(x_1+y_1,\ldots,x_n+y_n\right)}_{\text{Komponentenweise Addition}}. \text{ Dann ist } (\mathbb{R}^n,+)$$

eine Abelsche Gruppe, mit 0 := (0, ..., 0) aln neutrales Element

- 2. $\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ Skalarmultiplikation. $(\lambda, x) \to \lambda \cdot x := (\lambda x_1, \dots, \lambda x_n)$. Dann gelten die folgende Eigenschaften: $\forall x, y \in \mathbb{R}^n, \forall \alpha, \beta \in \mathbb{R}$
 - (a) Distributivität: $(\alpha + \beta) x = \alpha x + \beta x$
 - (b) Distributivität: $\alpha(x+y) = \alpha x + \alpha y$
 - (c) Assoziativität: $(\alpha \beta) x = \alpha(\beta) x$
 - (d) Einzelelement: $1 \cdot x = x$

Definition 2.15

Eine Menge \mathbb{V} mit $+,\cdot$ und $0\in\mathbb{V}$, so dass $(\mathbb{V},+)$ eine Abelsche Gruppe mit neutralem Element 0 ist und zudem (a)-(d) gelten, nennt sich ein Vektorraum über den Körper \mathbb{R} und seine Elemente heissen Vektoren

Also ist \mathbb{R}^n ein Vektorraum. In der linearen Algebra führt man dann Begriffe wie Basis usw. ein. Die Standardbasis von \mathbb{R}^n ist die Menge $\{e_1, e_2, \dots, e_n\}$ wobei $e_i := \{0, \dots, 0, 1, \dots, 0\}$

Jeder Vektor $x=(x_1,\ldots,x_n)\in\mathbb{R}$ besitzt eine eindeutige Darstellung $x=\sum x_ie_i$ bezüglich der Standardbasis.

Definition 2.16

1. Das Skalarprodukt zweier Vektoren $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ ist die durch

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i$$

definierte reelle Zahl $<\cdot,\cdot>=\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ (orthogonal)

- 2. Falls < x,y> = 0 heissen x und y senkrecht aufeinander. $<\cdot,\cdot>$ besitzt folgende Eigenschaften
 - (a) Symmetrie: $\langle x, y \rangle = \langle y, x \rangle$
 - (b) Linearität: $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$
 - (c) Positivität: $\langle x, x \rangle \geq 0$ mit Gleicheit genau dann, wenn x = 0

Definition 2.17

Die Norm ||x|| eines Vektors ist:

$$||x|| := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i}$$

und wird oft als Länge interpretiert.

Beispiel 2.18

•
$$||(1,2)|| = \sqrt{1+4}$$

•
$$||(1,1,1)|| = \sqrt{3}$$

• $||e_i|| = 1, \langle e_i, e_j \rangle = 0$. $e_i \perp e_j$ $\{e_1, e_2, \dots, e_n\}$ ist eine orthonormale Basis. Die Vektoren einer einer orthogonalen Basis sind orthogonal zueinander und normiert (die Länge ist gleich 1).

Die erste wichtige Eigenschaft eines Skalaprodukts ist

Satz 2.19 (Cauchy-Schwarz)

 $\forall x, y \in \mathbb{R}^n \text{ gilt } |\langle x, y \rangle| \le ||x|| \, ||y|| \text{ und}$

$$|\langle x, y \rangle| = ||x|| \, ||y|| \Leftrightarrow \exists \lambda \in \mathbb{R} : x = \lambda y$$

Die Euklidische Norm hat die Eigenschaften

Satz 2.20

- $||\alpha x|| = |\alpha| ||x||$ (Homogenität)
- $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung)

Beweis

ASK FOR BEWEIS

42 middle

- ASK FOR BEWEIS
- •

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle$$

$$\leq ||x||^{2} + 2(\langle x, y \rangle) + ||y||^{2}$$

$$\leq ||x||^{2} + 2||y||||x|| + ||x||^{2}$$

2.5 Die Komplexen Zahlen

Da für alle $x \in \mathbb{R}$ $x^2 \ge 0$, gibt es $\sqrt{-1}$ nicht als reelle Zahl. Seit dem 18. Jahrhundert haben Mathematiker mit Ausdrücken wie $a+b\sqrt{-1}$, $a,b \in \mathbb{R}$ gerechnet und auf sie die in \mathbb{R} geltenden Rechnenregel angewendt, z.B.

$$(1+2\sqrt{-1})(1-2\sqrt{-1})=1^2+2^2(\sqrt{-1})^2$$

Allgemein:

$$(a+b\sqrt{-1})(c+d\sqrt{-1}) = ac + ad\sqrt{-1} + bc\sqrt{-1} + bd\sqrt{-1}$$
$$= (ac - bd) + (ad + bc)\sqrt{-1}$$

Das Problem ist hier, dass $\sqrt{-1}$ keinen präzisen mathematisches Sinn hat und dass deshalb auch nicht klar ist, was "+" in " $a + b\sqrt{-1}$ " heissen soll.

Das Problem ist wie folgt gelöst:

Als Modell von " $a+b\sqrt{-1}$ ", \mathbb{C} , nehmen wir \mathbb{R}^2 . Wir haben schon die Addition von Vektoren und das neutrale Element . Wir definieren dann die Multiplikation

$$\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}^2$$

$$(x,y) \to x \cdot y$$

wobei $x \cdot y = (ac - bd, ad + bc), x = (a, b), y = (c, d)$. Dann erfüllen "+" und "·" folgende Eigenschaften:

- Assoziativität: ((a,b)(c,d))(e,f) = (a,b)((c,d)(e,f))
- Neutrales Element: (1,0)(a,b) = (a,b)
- Kommutativ: (a,b)(c,d) = (c,d)(a,b)
- Inverses Element $\forall (a,b) \neq (0,0)$ in $\mathbb{R}^2 \exists (x,y) \in \mathbb{R}^2$ mit (a,b)(x,y) = (1,0)
- Distributivität: $((a,b) + (c,d)) \cdot (e,f) = (a,b)(e,f) + (c,d)(e,f)$

Definition 2.21

Der Körper der komplexen Zahlen $\mathbb C$ ist $\mathbb R^2$ versehen mit "+","·", 0=(0,0) und (1,0)=1

Bemerkung 2.22

 $z^2+1=0$ hat in $\mathbb C$ eine Lösung. Nämlich ist (0,1)(0,1)=(-1,0)=-(1,0)=1. Wir führen für (0,1) die Bezeichnung "i" ein, welches imaginäre Einheit heisst.

Also ist $i^2 = -1$. Jede komplexe Zahl z = (x, y) lässt sich dann wie folgt darstellen:

$$z = (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = x \cdot 1 + y \cdot i$$

In den Rechnungen lässt man oft das 1 in $x \cdot 1$ fallen und schreibt z = x + yi

Definition 2.22

- 1. Sei $z = x + iy \in \mathbb{C}$
 - \bullet Re z := x heisst der Realteil
 - $\bullet \ \mbox{Im} \ z := y$ heisst der Imaginärteil
- 2. Die zu: z = x + iy konjugierte Zahl ist $\overline{z} = x iy$
- 3. Wir definieren die Norm von z als $||z|| = \sqrt{x^2 + y^2}$

Satz 2.23

- (i) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (ii) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- (iii) $z \cdot \overline{z} = ||z||^2 \cdot 1$
- (iv) $||z_1 \cdot z_2|| = ||z_1|| \cdot ||z_2||$

Beweis

ASK FOR BEWEIS

ASK FOR BEWEIS

Abkürzung

$$|z| := ||z||$$

Bemerkung 2.24

Wir können \mathbb{R} in \mathbb{C} "einbetten" mittels $\mathbb{R} \ni x \to (x,0) \in \mathbb{C}$. Sei $\mathbb{C}_0 = \{(x,y) \in \mathbb{C} \mid y=0\} = \{(x,0) \mid x \in \mathbb{R}\}$. Die Abbildung $f: \mathbb{R} \to \mathbb{C}_0, x \to (x,0)$ ist eine Bijektion.

Diese Identifikation von $\mathbb R$ und $\mathbb C_0$ ist verträglich mit den Operationen in $\mathbb R$ und in $\mathbb C$, d.h.

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x)f(y)$$

Polarform

Not sure if this should be a title

Als Polarkoordinaten in der Ebene führen wir (r,ϕ) ein

$$x = r \cos \phi \qquad y = r \sin \phi$$
$$z = r (\cos \phi + i \sin \phi)$$
$$r = |z|$$

Definition

Wir definieren (nach Euler)

$$e^{i\phi} := \cos \phi + i \sin \phi$$

$$z = re^{i\phi} = |z| e^{i\phi}$$

Where does the definition end??

Aus die

??Additions?? page 45 bottom

- $\cos(\phi + \psi) = \cos\phi\cos\psi \sin\psi\sin\phi$
- $\sin(\phi + \psi) = \sin\phi\cos\psi + \cos\phi\sin\psi$

In der Ebene \mathbb{R}^2 stehen uns neben den kartesischen Koordinaten x,y noch die Polarkoordinaten r,ϕ zur Verfügung. Für beliebiges $z=x+iy\neq 0$

$$e^{i\phi} = 1 \Leftrightarrow \phi = 2k\pi$$

$$\cos \phi + i \sin \phi = 1 \Leftrightarrow \cos \phi = 1 \text{ und } \sin \phi = 0$$

$$\Leftrightarrow \phi = 2k\pi, k \in \mathbb{Z}$$

$$e^{i\theta} \cdot e^{i\phi} = (\cos \theta + i \sin \theta) (\cos \phi + i \sin \phi)$$

$$= \underbrace{\cos \theta \cos \phi - \sin \theta \sin \phi}_{\cos(\theta + \phi)} + i \underbrace{(\cos \theta \sin \phi + \sin \theta \cos \phi)}_{\sin(\theta + \phi)}$$

$$= e^{i(\theta + \phi)}$$

folgt $e^{i\phi}e^{i\psi} = e^{i(\phi+\psi)}$

Somit folgt für $z=re^{i\theta},\,\omega=se^{i\phi}\in\mathbb{C}$ die einfache Darstellung $z\omega=rse^{i(\theta+\phi)},$

$$\frac{z}{\omega} = \left(\frac{r}{s}\right)e^{i(\theta - \phi)}$$

Die polare Darstellung ist in Berechnungen sehr nützlich, insbesondere um das Produkt und den Quotienten zu berechnen

Beispiel

1.

$$z = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$\omega = \sqrt{3} - i = 2e^{-i\frac{\pi}{6}}$$

$$\frac{\left(\sqrt{3} - i\right)^3}{(1+i)^2} = \frac{\omega^3}{z^4} = \frac{8e^{-i\frac{\pi}{2}}}{4e^{i\pi}} = 2e^{-\frac{3\pi}{2}i} = 2e^{\frac{\pi}{2}i} = 2i$$

2. Die Polarform ist auch sehr nützlich um die Wurzel einer komplexen Zahl zu berechnen. Sei $\omega \in \mathbb{C}, n \in \mathbb{N}$. Wir möchten die Gleichung $z^n = \omega$ lösen.

$$\begin{split} \omega &= |\omega| \, e^{i\phi} \\ z^n &= \omega = |\omega| \, e^{i\theta} \Rightarrow z = |\omega|^{\frac{1}{n}} \, e^{i\frac{(\theta + 2k\pi)}{n}} \\ &= |\omega| \, e^{i(\theta + 2k\pi)} \end{split}$$

$KAPITEL~2.~REELLE~ZAHLEN,~EUKLIDISCHE~R\"{A}UME~UND\\KOMPLEXE~ZAHLEN$

Beispiel

is this inside the other Beispiel or out??

$$z^{3} = 1 \Rightarrow z^{3} = \left(e^{2\pi i k}\right)^{\frac{1}{3}} \in \left\{e^{i\pi \frac{2k}{3}} : k = 0, 1, 2\right\} = \left\{1, e^{2i\frac{\pi}{3}}, e^{4i\frac{\pi}{3}}\right\}$$

Allgemeine Formel der Einheitswurzel $z=\{e^{i\frac{2\pi k}{n}}: k=0,1,\ldots,n-1\}$

Bemerkung

- (a) Es gibt keine mit den Körperoperationen verträgliche Ordnung in $\mathbb C$
- (b) Hingegen ist $\mathbb C$ im Unterschied zu $\mathbb R$ algebraisch vollständig. Nicht nur die Gleichung $x^2+1=0$ hat in $\mathbb C$ eine Lösung, sondern es gilt der fundamentale Satz der Algebra. Es sagt, dass jedes Polynom $p(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0$ vom Grad $n\geq 1$ hat in $\mathbb C$ genau n Nullstellen.