Anwendungen

Das Thema «Computer Grafiken» lässt sich in vielen Gebieten antreffen, wie z.B.:

- Videospiele
- Cartoons & Filme
- Datenvisualisierungen
- Berechnungen

Standards

Im Bereich «Computer Grafiken»:

- Treiber APIs: OpenGL, DirectX, Vulkan
- Bare API Wrappers: OpenTK, JOGL, WebGL
- Mid-Level APIs: Three.js, SharpGfx
- Rendering Engines: Renderman, Mental Ray
- Modelling Software: Blender Maya
- Game Engines: Unity, Unreal

Vektorgeometrie

Punkte vs. Vektoren

Grundsätzlich sind alle Punkte Ortsvektoren durch den Ursprung. Es gilt daher:

$$P = \vec{0} + \vec{p} = \vec{p}$$

Operationen

Addition / Subtraktion

Skalarmultiplikation $a_2 + b_2$ $r \cdot a_2$

Kreuzprodukt

Transponieren

 $(a_2b_3-a_3b_2)$ $ec{a} imesec{b}=ert a_3b_1-a_1b_3$ a_2 $=(a_1,a_2,...)$

Euklidische Norm (Länge)

 $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + ...}$

Normalisierung

 $ec{a} \circ ec{b} = \sum (a_i \cdot b_i) = \left| ec{a} \right| \cdot \left| ec{b} \right| \cdot \cos lpha$

Ist $\vec{a} \circ \vec{b} = 0$ sind die Vektoren orthogonal

⇒ Orthogonal: Vektoren stehen senkrecht aufeinander

Multiplikation

Allgemein nicht kommutativ:

$$ec{a}\cdotec{b}
eqec{b}\cdotec{a}$$

$$A \cdot B \neq B \cdot$$

 $AB = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$

Gleichungssysteme

Allgemeine Definition:

$$Ax + b \Leftrightarrow rac{a_{11}x_1 + a_{12}x_2 = b_1}{a_{21}x_1 + a_{22}x_2 = b_2}$$

Gauss-Verfahren

$$[A \mid b]: \qquad \begin{bmatrix} 1 & 4 & 2 \\ 2 & 9 & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

Orthogonale Projektion

$$ec{u}_p = \left(rac{ec{u} \circ ec{v}}{|ec{u}|^2}
ight) \cdot ec{u}$$
 $= |ec{v}| \cdot \cos lpha \cdot \widehat{u}$

3D Geometrien

Bestandteile von 3D-Objekten

3D-Objekte («Meshes») bestehen im Allgemeinen immer aus diesen Elementen:

- Eckpunkte (Vertices): $V \in \mathbb{R}^3$
- Linien (Edges): $E \in (V_1, V_2)$
- Oberflächen (Faces): $F \in (V_1, V_2, V_3)$
- Meist werden Dreiecke für die Faces verwendet. Vorteile: Garantiert flach, eindeutige Definition, einfache Transformation Ecknunkte können definiert oder berechnet werden.

Die Punkte V der Fläche F lassen sich auf verschiedene Arten referenzieren:

- Ohne Indexing:
 - 1 Punkte-Array $(l = 9 \cdot n_F)$
 - 3 Koordinaten pro Punkt
 - 3 Punkte pro Fläche
- Mit Indexing:
- 1 Punkte-Array $(l = 3 \cdot n_V)$
- 1 Index-Array $(l = 3 \cdot n_E)$
- 3 Koordinaten pro einzigartigen Punkt
- 3 Indexe pro Fläche
- Mit Indexing ist meistens effizienter als ohne Indexing.

Koordinatensysteme

Ein Punkt einer Geometrie kann ie nach Ansichtsweise von verschiedenen Koordinatensystemen referenziert werden:

- 1. Modell (3D / Rechtshändig)
- 2. Welt (3D / Rechtshändig)
- 3. Kamera (3D / Linkshändig)
- 4. Sichtbarkeitsbereich (2D)
- 5. Bildschirm (2D)
- ⇒ Bei der Darstellung werden diese Punkte umtransformiert.

Transformation

Transformationen können sukzessiv oder gemeinsam angewandt werden.

⇒ Die nachfolgenden Beispiele sind alle in 2D. ⇒ Weitere Transformationen sind Spiegelung und Scherung.

Translation

Verschiebe alle Punkte einer Geometrie um einen Vektor (Vektoraddition).

$$Tig(ec{x}ig) = ig(egin{matrix} x+d_1 \ y+d_2 \end{matrix}ig) = ec{x}+ec{d}$$

Skalierung

Verschiebe alle Punkte einer Geometrie um einen Faktor (Skalarmultiplikation).

$$Sig(ec{x}ig) = ig(egin{array}{c} s \cdot x \ s \cdot y \ \end{pmatrix} = s \cdot ec{x}$$

⇒ Die Faktoren s können auch unterschiedlich sein (s. Matrix).

Rotation

Rotiere alle Punkte einer Geometrie um einen Winkel θ.

$$R_{ heta}ig(ec{x}ig) = egin{pmatrix} x \cdot \cos heta - y \cdot \sin heta \ x \cdot \sin heta + y \cdot \cos heta \end{pmatrix}$$

⇒ Die 3D-Berechnung ist in diesem Modul nicht relevant

Gesamt-Transformation

Aus Effizienzgründen würden wir gerne die Transformationen zuerst zusammenrechnen und dann auf alle Punkte anwenden.

Problem: Die Translation ist keine lineare Abbildung. Das bedeutet:

$$s\cdot\left(ec{d}+ec{x}
ight)
eq\left(s\cdotec{d}
ight)+ec{x}$$

⇒ D.h.: Sukzessive Anwendung ist nicht gleich gemeinsame

Homogene Koordinaten

Um das Problem der Translation zu lösen. werden alle kartesischen Koordinaten P(x,y) auf homogene Koordinaten $P_H(x,y,1)$ abgebildet.

 \Rightarrow Oder Allgemeiner. P(x, y, w) repräsentiert P(x/w, y/w).

Translation Matrix

$$\begin{pmatrix} 1 & d_1 \\ 1 & d_2 \\ & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+d_1 \\ y+d_2 \\ 1 \end{pmatrix}$$

Skalierung Matrix

$$\begin{pmatrix} s_1 & & \\ & s_2 & \\ & & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} s_1 \cdot x \\ s_2 \cdot y \\ 1 \end{pmatrix}$$

Rotation Matrix

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \\ 1 \end{pmatrix}$$

Gesamt-Transformation Matrix

Wir können nun die einzelnen Transformationen miteinander multiplizieren und erhalten so die Gesamt-Transformation:

$$M_{
m R} \cdot ig(M_{
m S} \cdot ec{x} ig) = (M_{
m R} \cdot M_{
m S}) \cdot ec{x}$$

 $^{
ightharpoonup}$ Die Reihenfolge spielt weiterhin eine Rolle: $M_{
m R}M_{
m S}
eq M_{
m S}M_{
m R}$

Projektionen

Definition

Um ein 3D-Objekt auf einem 2D-Bildschirm darzustellen, müssen wir es zuerst in diese 2D-Dimension projizieren. Wir unterscheiden dabei:

- Perspektivische Projektion
- Orthogonale Projektion

Berechnung

Projiziere den Punkt P(x, y, z) auf die XY-Ebene (z=0) basierend auf der Kameraposition $E(e_x, e_y, e_z)$.

Gesucht ist die Projektion $C(c_x, c_y)$.

 \Rightarrow Die Dimension wird also um eins reduziert (\mathbb{R}^3 zu \mathbb{R}^2). ⇒ Bei 2D einfach eine Komponente (z.B. x) weglassen

Perspektivisch

$$c_x = rac{e_x z - e_z x}{z - e_z} \qquad c_y = rac{e_y z - e_z y}{z - e_z}$$

Orthogonal

$$c_x = x$$
 $c_y = y$

View Frustum

Bezeichnet die Sichtbarkeit (Clip-Space) bei der perspektivischen Projektion. Es wird definiert durch:

Öffnungswinkel (Field of View)

 \Rightarrow Herleitung aus der Formel $y = \Delta y/\Delta z \cdot z + c$

- Seitenverhältnis (Aspect Ratio)
- Near und Far-Plane (Clipping Distance)
- Der Öffnungswinkel bestimmt die Grösse von Objekten. ⇒ Die Brennweite (Kamera) bestimmt die Tiefenschärfe

GPU-Berechnung

Grafik-Pipeline

Double Frame Buffering

Beschreibt die abwechselnde Verwendung von zwei Framebuffer für die Berechnung und Darstellung eines Frames.

- Frame: Bild auf dem Display
- Framebuffer: Speicherort des Frames
- ⇒ Berechnungen werden nicht auf dem Anzeigebild durchgeführt. ⇒ So können Berechnungsartefakte vermieden werden.

Shader-Programme

Sind auf der GPU laufende Programme für die Berechnung des Bildes. Es gibt:

- Vertex-Shader: Projektion der Modell-Eckpunkte in den Clip-Space.
- Fragment-Shader: Berechnung der Farbe eines Pixels.
- Arbeiten immer mit einzelnen Primitiven (z.B. ein Eckpunkt)

GLSL Programmiermodell

Kommunikation in den Pipeline-Stages:

- in: Aus vorherigem Stage
- out: An nächsten Stage
- uniform: Für alle Primitiven gleich

```
in vec3 positionIn;
in vec3 normalIn;
out vec3 normal:
// Transformations to Clip-Space
uniform mat4 model;
uniform mat4 view:
uniform mat4 projection;
void main() {
 // Homogene Transformation
 gl Position = vec4(positionIn, 1.0)
                * model
                * view
                * projection:
 normal = vec4(normalIn, 1.0)
             model:
```

vertex-shader.glsl ⇒ in und out verwenden dabei «matching by name».

Beleuchtung & Texturen

Allgemeines

Die Farbe eines Obiekts (bzw. Pixels) setzt sich zusammen aus:

- Den Objekt-Farben / Texturen
- Der Beleuchtung
- Oftmals verwenden wir dabei RGB-Farben: C = (R, G, B). ⇒ Remission: Beschreibt das Abprallen von Licht auf Objekten.

Farbdarstellung

Subtraktive Farbberechnung

Nur die Farbanteile, welche in Lichtquelle und Obiekt vorkommen, sind sichtbar:

$$C_{ ext{Total}} = egin{pmatrix} R_{ ext{Light}} \cdot R_{ ext{Object}} \ G_{ ext{Light}} \cdot G_{ ext{Object}} \ B_{ ext{Light}} \cdot B_{ ext{Object}} \end{pmatrix}$$

Alternative mit gemittelten Werten:

$$C_{ ext{Total}} = rac{1}{2} \cdot ig(C_{ ext{Light}} + C_{ ext{Object}} ig)$$

Subtraktiv, da die fehlenden Farben nicht remittiert werder

Additive Farbberechnung

Die Farbanteile der Lichtquellen werden zusammengerechnet:

$$C_{ ext{Total}} = ec{1} - egin{pmatrix} (1 - R_{ ext{L1}}) \cdot (1 - R_{ ext{L2}}) \ (1 - G_{ ext{L1}}) \cdot (1 - G_{ ext{L2}}) \ (1 - B_{ ext{L1}}) \cdot (1 - B_{ ext{L2}}) \end{pmatrix}$$

Die nicht enthaltenen Lichtanteile werden reduziert.

Oberflächennormale

Nicht-triviale Belichtungsmodelle berücksichtigen die Ausrichtung der Oberfläche:

$${
m N}_{V_1} = (V_2 - V_1) imes (V_3 - V_1)$$

- Normale eines Vertex V_1 von einer Fläche $F \in \left(V_1, V_2, V_3\right)$
- ⇒ Dieser Wert wird nun auf die Fläche F interpoliert. ⇒ Kann im voraus oder «on-the-flv» berechnet werden

Beleuchtungsmodelle

Ambient Lighting

Belichtung von einem globalen Licht mit Remission in alle Richtungen.

uniform float ambientStrength: uniform vec3 lightColor; uniform vec3 objectColor: out vec4 fragColor; void main() { vec3 ambient = ambientStrength * lightColor; // Component-wise multiplication vec3 color = ambient * objectColor; fragColor = vec4(color, 1.0); ambient-fragment-shader.glsl

Diffuse Lighting

Belichtung von einer Punktguelle mit Remission in alle Richtungen.

Initializations... void main() {
 vec3 normDir = normalize(normal); vec3 lightDir = normalize(lightPos - fragPos); float cosTheta = max(dot(normDir, lightDir), 0.0); vec3 diffuse = cosTheta * lightColor * objectColor; fragColor = vec4(diffuse, 1.0); diffuse-fragment-shader.glsl

⇒ Wird für matte Oberflächen verwendet.

Specular Lighting

Belichtung von einer Punktquelle mit Remission in eine Richtung.

Initializations

```
void main() {
 vec3 normDir = normalize(normal);
 vec3 cameraDir = normalize(cameraPos
 vec3 lightDir = normalize(lightPos
 vec3 reflectDir = reflect(-lightDir
  float cosTheta = max(dot(cameraDir,
 float intensity = pow(cosTheta, shim
 vec3 specular = intensity * lightCol
 fragColor = vec4(specular, 1.0);
                 specular-fragment-shader.glsl
```

⇒ Wird für spiegelnde Oberflächen verwendet.

Kombinationsmodelle

Phong-Shading

Die Belichtung wird aus Ambient-, Diffuseund Specular-Anteilen zusammengesetzt.

$$C_{ ext{Total}} = rac{1}{3} \cdot \left(C_{ ext{Ambient}} + C_{ ext{Diffuse}} + C_{ ext{Specular}}
ight)$$

⇒ Problem: Ab 90° gibt es keine Spiegelung mehr.

Blinn-Phong-Shading

Löst das Problem von Phong-Shading durch die Verwendung eines sogenannten «Halfway-Vectors».

void main() { vec3 halfwayDir = normalize(lightDir float cosTheta = max(dot(normDir, h blinn-phong-fragment-shader.glsl

Texturen

Texturen sind Bilddateien, welche Eigenschaften (wie z.B. die Farbe) einer Oberfläche definieren.

Texture-Mapping

Beschreibt die Abbildung von 3D-Vertex-Koordinaten auf 2D-Textur-Koordinaten.


```
uniform sampler2D texUnit;
in vec2 texCoord;
out vec4 fragColor;
void main(void) {
 fragColor = texture(texUnit,
                        texCoord);
                    texture-fragment-shader.glsl
```

Komplexe Oberflächen

Grundformen

3D-Objekte lassen sich wie bisher durch Punkte, aber auch durch Funktionen beschreiben:

- Funktionen: Kontinuierlicher Wertebereich
- Explizit: z = -ax + by + ...
- Implizit: $0 = x^2 + 2y^2 + ...$
- Parametrisch: $P = \vec{0} + s\vec{u} + ...$
- Punkte: Festgelegter Wertebereich
- ⇒ Explizite Funktionen sind nach einer Variablen aufgelöst. ⇒ Implizite sind nicht aufgelöst (algebraische Oberflächen) ⇒ Algebraische Oberflächen: Sphäre, Torus, Würfel, etc.

Kombinationen

Punkte und Funktionen sind die Grundbausteine für alle komplexen Formen:

- Aus Primitiven: Punktwolke, Meshes
- Approximierend: Iso-Surface, Splines
- Konstruiert: Subdivision Surfaces. Fraktale

Vor- und Nachteile

Es gibt keine beste Repräsentationsform für Obiekte. Vor- und Nachteile sind:

- Funktionen:
- Vorteile: Wenig Speicherplatz, Schnittpunkte mathematisch berechenbar, beliebig genaue Auflösung
- Nachteile: Beschränkte Formen, komplexe Herleitung, grafische Transformationen sind schwierig
- Punkte:

- Vorteile: Beliebige Geometrie, vielseitig einsetzbar, direkter GPU-Support, einfache Berechnung
- Nachteile: Fixe Genauigkeit, hoher Speicherbedarf, Rechenzeit abhängig von der Anzahl Primitiven

Triangulation

Beschreibt die Umwandlung einer Punktwolke in ein Polygon-Mesh.

⇒ Die Oberflächen werden rekonstruiert / approximiert. ⇒ Wird z.B. bei Rohdaten von 3D-Scans angewandt.

Sweep-Strategie

- 1. Laufe von links nach rechts.
- 2. Für ieden Punkt:
 - a. Zeichne eine Linie zu den 2 vorherigen Punkten, für die gilt:
 - Keine Dellen entstehen
 - Keine Überschneidungen entstehen
 - b. Verbinde nun alle weiteren Punkte innerhalb dieser Form.
- 3. Wiederhole, bis zum Ende.
- ⇒ Die entstehende Form nennt sich «Konvexe Hülle».

Insert-Strategie

- 1. Zeichne 2 Anfangsdreiecke um alle Punkte.
- 2. Für alle Punkte (zufällige Wahl):
 - a. Bestimme das umfassende Dreieck.
 - b. Unterteile dieses Dreieck in 3 weitere Dreiecke. D.h. Verbinde alle Eckpunkte mit dem gewählten Punkt.
- 3. Wiederhole, bis zum Ende.
- 4. Entferne nun alle künstlichen Anfangspunkte und die damit verbundenen Dreiecke.

Probleme

Beide Strategien können «unschöne», d.h. spitze Dreiecke erzeugen.

⇒ Wir können dies mit «Delaunay» nachträglich verbessem. ⇒ Teilweise lassen sich spitze Winkel jedoch nicht vermeiden

Delaunay Triangulation

- 1. Rekursiv für alle Dreiecke:
 - a. Wähle ein anliegendes Dreieck
 - b. Ersetze die längere der inneren Kanten durch die Kürzere. (Edge-Flip)

Approximationen

Marching Squares Algorithmus

Mit diesem Algorithmus lassen sich Isolinien von Heat Maps diskret bestimmen.

- 1. Gitter über die Daten legen.
- 2. Betrachtungshöhe (Potenzial) festlegen.
- 3. Für alle Quadrate im Gitter:
 - a. Eckpunkte beachten.

Nach Schema unten Linien einzeichnen.

4. Wiederhole, bis zum Ende.

пнпн

⇔ «Heat Map»: 2D-Visualisierung von 3D-Landschaften. ⇔ «Isolinien»: Die Höhenlinien einer Heat Map.

Weitere Algorithmen

- Marching Cubes (3D-Heat-Maps)
- Interpolation: Punkte «vervollständigen»
- Polynomial: $f = a_0 x^0 + ... + a_n x^n$
- Splines: Stückweise Interpolation der Punkte mit linearen, quadratischen oder kubischen Funktionen.
- NURBS: Approximation von 3D-Flächen

Lindenmayer Systeme

L-Systeme beschreiben beliebig feine, selbstähnliche geometrische Strukturen.

⇒ Sie können rekursiv definiert und aufgebaut werden

Formale Definition

- Anfangsform (z.B. Strich): f
- Ersetzungsregeln: $f \rightarrow f + f -f + f$
- Ersetzungsmöglichkeit: f
- Positive Rotation: +
- Negative Rotation: —
- Abzweigung (Kind): [f]
- Kontext: Rotation 60°

⇒ Beispiele: Koch Kurve, Hilbert Kurve, Fraktale, etc. ⇒ So lassen sich u.a. Bäume generieren (z.B. mit Zufallszahlen).

Subdivision Surfaces

Beschreibt ein rekursives Verfahren für das Verfeinern von Oberflächen.

⇒ Subdivision Curves ist das Äquivalent für Kurven.

Curves: Chaikin's Algorithmus

- 1. Beginne mit einer Kurve
- 2. Markiere die Anfangspunkte (Blau)
- 3. Setze in der Mitte von allen Strecken einen neuen Punkt (Schwarz ohne Füllung)
- 4. Setze nun in der Mitte von allen **neuen** Strecken einen Punkt (Rot)
- 5. Streiche nun alle schwarzen Punkte und verbinde die Roten und Blauen.

Die neuen Punkte stehen an 1/4 und 3/4 der Originalstrecke. ⇒ Diese Gewichtung kann auch variiert werden

Surfaces: Algorithmen

Loop

Dreiecksbasiert

Rechtecksbasiert

Catmull-Clark

Vorteile

Vorteile von Subdivision-Surface, insbesondere im Vergleich zu NURBS:

- Beliebige Oberflächentopologie
- Kompakte Repräsentation
- Level-of-Detail Rendering
- Intuitiv mit einfachen Algorithmen
- ⇒ NURBS-Flächen können nur Scheiben. Zylinder oder Tori sein.

Korrektur & Optimierung

TODO

Oualitätsmerkmale

Mesh Smoothing

Mesh Reduktion / Remeshing

Diese Verfahren haben das Ziel, die Anzahl der Oberflächen zu reduzieren.

Vertex Clustering

- 1. Wähle ein Grösse epsilon (Toleranz)
- 2. Teile den Raum in Quadrate dieser Grösse
- 3. Berechne pro Quadrat einen repräsentativen Eckpunkt (z.B. Mittelpunkt aller Punkte)
- 4. Lösche die originalen Punkte und ersetzte sie durch den neuen Eckpunkt.

Je nach Berechnungsverfahren des repräsentativen Eckpunkts kann sich die Topologie des Meshes stark unterscheiden.

⇒ Das Verfahren spielt also eine starke Rolle für die Oualität

Inkrementelle Reduktion

Resampling / Remeshing

Rasterisierung & Sichtbarkeit

Rasterisierung

Da ein 2D-Bildschirm aus Pixeln besteht. müssen wir nach der Projektion die Linien noch in ein Raster abbilden. Es gibt verschiedene Methoden dazu:

- Vollständig Zusammenhängend
- Minimal Zusammenhängend
- Aliased (Binär)

Anti-Aliased (Prozentual)

Aliasing

Zeichne ausschliesslich die Pixel eines Dreiecks, für die gilt:

- Das Pixel-Zentrum liegt in dem Dreieck.
- Das Pixel-Zentrum liegt auf der oberen oder linken Seite des Dreiecks.
- Achtung: Die obere Seite muss dazu exakt horizontal sein. ⇒ Technisch wird das Dreieck zeilenweise gezeichnet. ⇒ Dazu wird u.a. der Bresenham Linien-Algorithmus verwendet

Bresenham Linien-Algorithmus

Basierend auf zwei Punkten P_{Start} und $P_{
m Ende}$, zeichne die Linie nach dem Bresenham Linien-Algorithmus:

- 1. Berechne $\Delta x = x_{
 m Ende} x_{
 m Start}$
- **2**. Berechne $\Delta y = y_{
 m Ende} y_{
 m Start}$
- **3**. Berechne $m = \Delta y/\Delta x$
- **4.** Wenn $\Delta x \geq \Delta y$ dann mit i=0:

a. $x_i = x_{\mathrm{Start}} + i$

- b. $y_i = y_{\mathrm{Start}} + \lfloor m \cdot i + 0.5
 floor$
- **c.** Zeichne den Pixel $P(x_i, y_i)$
- $\mathbf{d}.~i \leftarrow i+1$

Bei $\Delta x < \Delta y$ wird die Berechnung von x_i und y_i vertauscht.

Anti-Aliasing

Zeichne alle Pixel eines Dreiecks unter Beachtung der prozentualen Abdeckung. Das bedeutet:

- Erhöhe das Pixelraster (z.B. 4x)
- Berechne die Abdeckung nach Aliasing
- Reduziere das Pixelraster und zeichne alle Pixel anhand der berechneten Abdeckung.

Varianten davon sind:

- Super-Sampling: Die komplette GPU-Pipeline läuft mit einem erhöhten Pixelraster.
- Multisampling: Nur der Z-Buffer läuft mit einem erhöhten Pixelraster.

Die Objektränder erhalten also eine «weiche» Transparenz

Probleme (Aliasing Effekte)

Wenn die Auflösung eines Texturmusters grösser ist als die Auflösung der Anzeigefläche, kann der Moiré-Effekt auftreten.

⇒ Dies ist bei beiden Aliasing-Verfahren der Fall. ⇒ Problem: Ein Pixel alleine kann kein Muster darsteller

Beschreibt eine «Pyramide» von Texturen, bei der die Auflösung anhand der Distanz zur Kamera gewählt wird.

⇒ Je näher das Objekt, desto hochauflösender die Textur. ⇒ Damit kann der Moiré-Effekt verhindert werden

Sichtbarkeit

Z-Buffer (Depth-Buffer)

Erlaubt das korrekte Zeichnen von überlappenden Objekten.

- Initialisiere den Buffer mit $Z_{
 m B}=\infty$
- Für alle Objekt-Pixel:
- Ermittle die Distanz zur Kamera Z_{Ω}
- Wenn $Z_{\rm B} > Z_{\rm O}$:
 - Zeichne das Pixel und setze $Z_{\rm B} \leftarrow Z_{\rm O}$.
- Wenn $Z_{\rm B} \leq Z_{\rm O}$:
 - Zeichne das Pixel nicht
- ⇒ «Z-Fighting»: Berechnungsartefakt bei identischen Z-Werten.

 $^{\diamond}$ Oftmals wird $Z_{\mathrm{O}} = 1 - 1/z$ als Wert verwendet.

Spiegelungen & Schatten

Spiegelungen

Flächen

Berechne die Szene aus Sicht einer virtuellen Spiegelkamera und projiziere das Bild in Form einer Textur auf die Fläche.

⇒ Winkel und Distanz sind dabei äquivalent.

Kugeln

Berechne die Szene für alle Seiten einer umliegenden Bounding-Box und projiziere das Bild dann auf die Kugel.

- ⇒ Die Spiegelkamera steht dabei in der Kugelmitte.
- ⇒ Je grösser die Bounding-Box, desto kleiner der Fehler.

Environment Mapping

Beschreiben 360°-Bilder, welche für Spiegelungen und Hintergründe verwendet werden können.

⇒ z.B. Cube-Maps, Sphere-Maps, Cylinder-Maps, etc.

Schatten

Shadow Mapping

Projiziere die Szene aus Sicht der Lichtquelle auf die zu belichtende Oberfläche.

Depth-Map

Visualisierung des Z-Buffers.

- Schwarz: $Z_O = 0$ (Nahe)
- Weiss: $Z_O = \infty$ (Weit weg)

