Photon Mapping

Today

- Motivation
- Idea: Starting light paths at the light
- Methods
 - Light tracing
 - Bi-directional path tracing
 - Photon Mapping
 - Instant Radiosity

Path space jargon

Example 1: Small lights

- Small light sources imply a small hit chance
- Solution: Next-event estimation
- Pre-condition: We know what is a light

What is hard for Path tracing

- Two examples:
 - Occlusion (key hole-like)
 - Specular (caustics)

Limits of next-event estimation

Small light: Fine!

Large light, small holes, now what?

Roulette in spherical domain

Black

Next-event cant help

- The projector send in very few directions only
- Connecting to it is useless most if the time

Reflective caustic

Example 2: Caustics

- A caustic is similar to a small light sources
- No obvious way to find it

Example 2: Caustics

- A caustic is similar to a small light sources
- No obvious solution

Refractive even harder: Two angles!

What is hard for path tracing?

- Paths of the form LSDE, LSSDE, etc.
- Light that undergoes one or more specular reflections and then a diffuse bounce
- Reflective or refractive caustics

Solution: Light tracing method

- Start path at the light
- Trace rays through the scene
- In the end project onto sensor

Light tracing

- Need next-event estimation at final vertex
- Sensor is even smaller than light
- Finding it by chance even less likely

Light tracing for a reflective caustic

Works quite well

Light tracing for a refractive caustic

Works quite well

Reflection of a caustic

Caustics in a mirror

- Very hard!
- How could we know at x how to go on?

Bi-directional path tracing

- Start a path both at the eye and the light
- Connect the ends

Bi-directional path tracing

- Start a path both at the eye and the light
- Connect the ends

Photon mapping

- When eye paths connect to light paths we don't care about their path, only about the vertex
- Idea:
 - Store end-vertices from the light
 - Re-use from the eye

Photon mapping

- Start many rays at the light, store last vertex
- Re-use form the eye

Density estimation

- Photon are just a list of 3D points
- How to convert into $L_i(\mathbf{x}, \omega)$?
- Find how many are nearby!

Many photons: bright

Fewer photons: bright

Two options: Option 1

- Find the nearest k
- See how large their radius r is
- ullet Large a is small density and low L

Two options: Option 2

- Fix a radius *r*
- Count how many k are in this radius
- Large k is high density and high L

How to find *k* nearest?

- Spatial bounding structures
- k d tree
- Can find k NN in log(n)+k time for n points

BRDF in PM

- The light also depends on the direction
- Photons also store from where they came
- Like this, can take direction into account

Instant radiosity

- Two passes
 - Instead of doing density estimation, just consider each photon a light sources
 - Proceed with your usual rendering pipeline with shadow maps to light from these
- Can even be OpenGL and shadow mapping
- Can work in real-time
- Closest to real-time GI we got for now

Real-time 5 ys ago

Recap

- Can also start from the light
- Sometimes better
- Bias / Variance / Consistence
- Three ways to to this
 - Light tracing
 - Path Tracing
 - Instant radiosity
 - Bi-Directional Ray TracingPhoton Mapping