School of Mathematics and Statistics

MT5836 Galois Theory

Handout V: Finite Fields

5 Finite Fields

Construction of finite fields

Proposition 5.1 A finite field F has order p^n where p is a prime number equal to the characteristic of F and where n is the degree of F over its prime subfield \mathbb{F}_p .

Lemma 5.2 Let F be a finite field of order $q = p^n$ and characteristic p. Then

- (i) $a^{q-1} = 1$ for all $a \in F \setminus \{0\}$;
- (ii) ("Freshman's Exponentiation")

$$(a+b)^{p^k} = a^{p^k} + b^{p^k}$$

for all $a, b \in F$ and non-negative integers k.

Theorem 5.3 Let p be a prime number and n be a positive integer. Then there is precisely one field of order p^n up to isomorphism.

Definition 5.4 The (unique) field of order p^n is denoted \mathbb{F}_{p^n} and is often called the *Galois field* of order p^n .

The multiplicative group of a finite field

Definition 5.6 The *exponent* of a finite group is the least common multiple of the orders of elements of G.

Lemma 5.7 Let G be a finite abelian group with exponent ν . Then there exists some $g \in G$ of order ν .

Theorem 5.8 The multiplicative group of a finite field is cyclic.

Corollary 5.9 Let $F \subseteq K$ be an extension of finite fields. Then $K = F(\alpha)$ for some $\alpha \in K$.