

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 2º semestre de 2017 – GABARITO

(a) A rede da empresa é dada pelo endereço de rede 3.0.0.0/9, a ser dividida nas subredes R_1 (com 1700000 estações), R_2 (com 1800000 estações), R_3 (com 1100000 estações), R_4 (com 1700000 estações) e R_5 (com 300000 estações). Mostre que é impossível realizar esta divisão.

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara /14 (e, por isso conter pelo menos 2097152 endereços), R_2 , no máximo máscara /14 (ao menos 2097152 endereços), R_3 , no máximo máscara /14 (ao menos 2097152 endereços), R_4 , no máximo máscara /14 (ao menos 2097152 endereços) e R_5 , no máximo máscara /14 (ao menos 524288 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 8912896 endereços. No entanto, a rede principal (3.0.0.0/9) possui apenas 8388608 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 138.132.68.0/23, a ser dividida nas subredes R_1 (com 60 estações), R_2 (com 70 estações), R_3 (com 20 estações), R_4 (com 40 estações) e R_5 (com 20 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	138.132.68.128/26	138.132.68.0/27
R_2	138.132.68.0/25	138.132.68.128/25
R_3	138.132.69.0/27	138.132.68.32/27
R_4	138.132.68.192/26	138.132.68.64/26
R_5	138.132.69.32/27	138.132.69.0/27

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 1 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 138.132.68.0/23 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 2 não satisfaz à última destas restrições, pois associa o endereço de rede 138.132.68.0/27 para a rede R_1 , não cumprindo os requisitos de alocação apresentados para esta rede.

Na rede ilustrada a seguir, 7 sistemas autônomos, identificados por letras e cores distintas, encontram-se dispostos segundo um *backbone* circular, evidenciado pelos enlaces contínuos entre ASs. No entanto, devido à presença de tráfego intenso em rotas específicas, alguns ASs negociaram ligações diretas adicionais uns com os outros, representadas por linhas tracejadas, com uma condição de uso: cada enlace direto somente pode ser usado para tráfego direto entre os ASs em questão, sendo proibido o seu uso para trafegar dados de outros ASs. Não há restrições negociadas sobre o uso do *backbone*. Algumas das subredes presentes nestes ASs são ilustradas por letras minúsculas.

(a) Os roteadores E1 e E2 irão estabelecer alguma comunicação BGP um com o outro? Se sim, do tipo iBGP ou eBGP?

Resposta:

Haverá comunicação iBGP entre estes roteadores.

(b) O AS G conhece uma rota até a subrede a, que está em outro AS. Ele irá anunciar esta rota para o AS F? Por quê?

Resposta:

Sim, pois esta rota passa através do backbone da rede, que é de uso comum de todos os ASs.

(c) Considere um pacote enviado da subrede c para a subrede f. Determine o caminho que este pacote irá percorrer nesta rede, tanto em nível de sistemas autônomos quanto em nível de roteadores.

Resposta:

O pacote irá transitar através dos ASs D e F, sendo encaminhado pelos roteadores D3, D4, D5, F1 e F2.

Na coluna à direita, são apresentadas características de protocolos de roteamento. Associe cada característica a um dos protocolos da coluna da esquerda. (**LS**) Cálculo de rotas baseado em algoritmos como Prim ou Dijkstra (**LS**) Mapa topológico da rede é utilizado pelo cálculo de rotas (**LS**) Exige um algoritmo de broadcast para difusão de informações topológicas (**LS**) Troca de informações topológicas da rede e cálculo de rotas são etapas distintas e sucessi-(LS) Estado de enlace (DV) Vetor de distâncias (\mathbf{DV}) Implementado no protocolo RIP (\mathbf{DV}) Atinge melhor desempenho com a ajuda de técnicas como envenenamento reverso (**LS**) Implementado nos protocolos OSPF e IS-IS Tabela de distâncias é utilizada pelo cálculo de (\mathbf{DV}) rotas (**LS**) Cálculo centralizado de rotas (\mathbf{DV}) Roteadores calculam as rotas de maneira coordenada

(a) Suponha que ocorre a transmissão de um fluxo de quadros de s3 para h10. Por quais equipamentos (estações, servidores, hubs e switches) esse fluxo irá transitar?

Resposta:

A transmissão será vista por h
10, h 11, h 12, h 14, h 15, h 16, h 17, H 5, H 6, H 7, H 8, s 3, S 1, S 3 e S 5.

(b) Considere que todos os servidores e estações possuem dados a transmitir para a Internet. Qual o número máximo destes equipamentos que podem realizar essa transmissão simultaneamente, sem que ocorram colisões? Descreva um cenário em que este máximo é atingido.

Resposta:

Pode haver no máximo 7 transmissões simultâneas para a Internet, sem que haja colisão. Este máximo é atingido, por exemplo, com transmissões de h1, h2, h7, h8, h9, h10 e h13.

Na tabela abaixo, são apresentados, nas colunas, diversos protocolos de acesso a um meio de transmissão compartilhado, e nas linhas, diversas características destes protocolos. Preencha cada célula da tabela indicando se o protocolo possui ou não a característica apresentada. Considere que, exceto em afirmação contrária, a quantidade de estações que possuem acesso ao meio em questão é constante (isto é, estações não entram e saem da rede), mas que nem todas as estações desejam transmitir a todo instante.

	CSMA	FDMA	CSMA/CD	TDMA
permite acesso simultâneo sem co-	×	✓	×	×
lisão ao meio				
requer sincronização dos relógios	×	×	×	✓
das estações				
a adição de uma estação adicional	×	×	×	✓
exige a reconfiguração das estações				
presentes				
permite colisões	✓	×	✓	×
protocolo de acesso aleatório	✓	×	✓	×