

لجنة سنافر البولينكنك - بسواعدنا نبنيها

اسم المادة

النفاضل والنكامل 101

تواصل معنا

- www.Muslimengineer.net
- snafer.muslimengineer.info
- f /groups/Smurfs.On.The.Way
- Muslimengineerpage

mathi, final

- 1. The series $\sum_{k=1}^{\infty} \left(\sqrt{k+2} \sqrt{k} \right)$
 - a. $has a sum = \sqrt{2}$ b. has a sum = -1 © diverges
- d. has a sum = $\sqrt{3}$
- The second none-zero term of the Maclaurin series expansion of $f(x) = x^2 \cos(x^2)$ is a. $\frac{1}{24}x^6$ b. $-\frac{1}{2}x^6$ c. $\frac{1}{2}x^6$

- d. $-\frac{1}{24}x^6$
- 3. One of the following series is absolutely convergent

 - a. $\sum_{k=1}^{\infty} \frac{(-1)^k}{k+5}$ b. $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[3]{k^5}}$ c. $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[5]{k^3}}$ d. $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[5]{k+1}}$

4. If n is an integer then $\int \cos(2nx)dx =$

- a. 2n
- b:

- 5. The sequence $\left\{ \left(-1\right)^n \frac{n}{n+1} \right\}^{\infty}$

- a. converges to 0 b. converges to -1 c. diverges _ A. The equation of the plane that passes through the origin and normal (perpendicular) to the line
 - $L: \frac{x-1}{2} = y = -z$
 - $a. \quad 2x y + z = 0$ b. 2x + y + z = 0

- $d. \quad 2x + y = 0$
- 7. Given that $\int x^2 f(x^3) dx = 5$ then $\int f(x) dx =$
- c. 20
- 8. If y=4 and x=8 are horizontal and vertical asymptotes of $f(x)=\frac{bx+1}{2x-a}$ then the ordered pair
 - (a,b) =
- h (2,4)
- c = (4.8)
- (d) (16.8)
- N. The equation of the plane that passes through the point (4,5,6) and parallel to the xz-plane is:
- b. z=6
- c. x + y + z = 15

_____ 10. If u_k and v_k are positive for any k = 1, 2, 3, ... such that $\lim_{k \to \infty} (k u_k) = 8$ and $\lim_{k \to \infty} (k^2 v_k) = 7$

$$A : \sum_{k=1}^{\infty} u_k$$

$$B: \sum_{k=1}^{\infty} v_k \quad \text{then}$$

c. B is convergent but A is divergent d. both A and B are convergent

a. A is convergent but B is divergentb. both A and B are divergent

$$11. \int_{0}^{a} \sqrt{a^2 - x^2} dx =$$

a.
$$\frac{1}{2}\pi a^2$$
 b. $\frac{1}{4}\pi a^2$

b.
$$\frac{1}{4}\pi\alpha^2$$

d.
$$\frac{1}{3}\pi a^3$$

_ 12. The sequence $\left\{ \left(\frac{n+3}{n+1} \right)^n \right\}^{\infty}$

b. converges to e^3 c. converges to e^2

d. converges to 3

13. If
$$\vec{a} = \langle 0, -1, 1 \rangle$$
 and $\vec{b} = \langle 1, 1, -1 \rangle$ then $\|\vec{a} \times \vec{b}\| =$

a.
$$\sqrt{2}$$
 b. 3

14. If $f(x) = x \ln x$ then $f'(e^{a-1}) =$
a. 0 b. 1

15. The interval of convergence of $\sum_{k=1}^{\infty} (-1)^k \frac{x^k}{\sqrt{k}}$ is

c. [-1,1]

d. [-1,1)

16. The vector equation of the line that passes through the points P(0,1,-1) and Q(3,7,-4) is

a. $\vec{r} = (0, 1, -1) + t(3, 7, -4)$ $t \in \mathbb{R}$ c. $\vec{r} = (1, 2, -1) + t(3, 7, -4)$ $t \in \mathbb{R}$

b. $\vec{r} = (1,2,-1) + t(0,1,-1)$ $t \in \mathbb{R}$ d. $\vec{r} = (0,1,-1) + t(1,2,-1)$ $t \in \mathbb{R}$

17. If $y = e^{ax}$ satisfies the equation y'' - 6y' + 9y = 0 then a = a.

18. Given that $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{k!}{k!}$, $\rho = \lim_{k \to \infty} \left(\frac{a_{k+1}}{a_k} \right)$ then $\rho =$

a. *e*

b. 0

19. The length of the curve $y = e^x - e^{-x}$, $0 \le x \le 1$ is given by

a.
$$\int \sqrt{e^{2x} + e^{-2x} + 1} \, dx$$

$$c. \int \sqrt{e^{2x} + e^{-2x}} \, dx$$

b.
$$\int_{1}^{1} \sqrt{e^{2x} + e^{-2x} - 1} \, dx$$

d.
$$\int \sqrt{e^{2x} + e^{-2x} + 3} \, dx$$

 $20. \int_{3\sqrt{x}+\sqrt[3]{5-x}}^{3\sqrt{x}} dx$

a.
$$\int_{0}^{5} \frac{dx}{\sqrt[3]{x} + \sqrt[3]{5 - x}}$$

c.
$$-\int_{0}^{5} \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{5-x}} dx$$

b.
$$\int_{0}^{5} \frac{\sqrt[3]{5-x}}{\sqrt[3]{x} + \sqrt[3]{5-x}} dx$$

$$d. -\int_{0}^{5} \frac{dx}{\sqrt[3]{x} + \sqrt[3]{5-x}}$$

21. $\int \cos^{-1}(x) dx$

a.
$$x \cos^{-1}(x) + \int \frac{x}{\sqrt{1-x^2}} dx$$
 c. $x \cos^{-1}(x) - \int \frac{x}{\sqrt{1-x^2}} dx$

c.
$$x \cos^{-1}(x) - \int \frac{x}{\sqrt{1-x^2}} dx$$

b.
$$-x\cos^{-1}(x) + \int \frac{x}{\sqrt{1-x^2}} dx$$
 d. $-x\cos^{-1}(x) - \int \frac{x}{\sqrt{1-x^2}} dx$

d.
$$-x\cos^{-1}(x) - \int \frac{x}{\sqrt{1-x^2}} dx$$

22. The function that is continuous but not differentiable at x = 1 is

$$a. \quad f(x) = \frac{1}{x - 1}$$

b.
$$f(x) = |x|$$

a.
$$f(x) = \frac{1}{x-1}$$
 b. $f(x) = |x|$ c. $f(x) = \sqrt[5]{(x-1)^4}$ d. $f(x) = x^2 - 1$

23. The radius of convergence of $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$ equals

24. One of the following series is conditionally convergent

- a. $\sum_{k=1}^{\infty} \frac{(-1)^k}{2 + \ln k}$ b. $\sum_{k=1}^{\infty} (-1)^k \left(\frac{1}{4}\right)^k$ c. $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{4}$ d. $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$

25. Given that $\vec{a} = \langle 3, 0, 4 \rangle$, \vec{b} is a vector in the direction of \vec{a} such that $||\vec{b}|| = 3$ and $\vec{c} = \langle 2, 7, 1 \rangle$ then

- b. 6
- d. -6