Review of Week 5 Biostatistics

For this handout, we consider a random sample of independent and identically distributed observations $(X_1, X_2, ..., X_n)$. The true mean of X_i in the population is μ and true variance is σ^2 . The sample mean is $\bar{x} = (1/n) \sum_{i=1}^n X_i$. The sample variance is $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{x})^2$; and the sample standard deviation is $s = \sqrt{s^2}$.

- Sampling Distributions. In statistics, when we sample from a population, the individual observations in our sample are considered random variables. The mean of the observed observations \bar{x} , called the sample mean, is also a random variable. To understand this concept, think about the fact that we have only observed *one sample* out of the many different random samples that we could have observed.
- Central Limit Theorem. The CLT tells us about the behavior of the sample mean \bar{x} in large sample sizes. If we take a random sample of size n, $(X_1, X_2, ..., X_n)$, from a population with true mean μ and standard deviation σ , the CLT says that, for large n,

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

- Using the Central Limit Theorem, we can assume that, in large samples, $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$.
- When the CLT applies, we can calculate the probability that \bar{x} lies between a and b very easily (when σ is known), now that we know the sampling distribution of \bar{x} .

Specifically, $P(a < \bar{x} < b) = P(\bar{x} < b) - P(\bar{x} < a) = P(Z < \frac{\bar{x} - b}{\sigma/\sqrt{n}}) - P(Z < \frac{\bar{x} - a}{\sigma/\sqrt{n}})$. To calculate these numbers, we can simply apply the normal function in Stata.

- **Predictive interval.** Predictive intervals are used to make predictions about random samples from a population, assuming the population parameters are known. Assume $X_i \sim N(\mu, \sigma^2)$.
 - A 95% predictive interval for X_i is $\mu \pm Z_{0.975}\sigma$.
 - A 90% predictive interval for X_i is $\mu \pm Z_{0.95}\sigma$.
 - A 95% predictive interval for \bar{x} is $\mu \pm Z_{0.975}\sigma/\sqrt{n}$.
 - A 95% predictive interval for \bar{x} is $\mu \pm Z_{0.95}\sigma/\sqrt{n}$.
 - For the 95% predictive interval, to calculate $Z_{0.975}$, use di invnormal (0.975).
 - For the 95% predictive interval, to calculate $Z_{0.95}$, use di invnormal(0.95).

- More generally, for a $1-\alpha$ confidence interval, to calculate $Z_{1-\alpha/2}$, use di invnormal $(1-\alpha/2)$. See the picture below, depicting a normal curve.

- Confidence interval. Confidence intervals are used to make inference about the population mean μ using a random sample from the population. Assume $X_i \sim N(\mu, \sigma^2)$, where μ is unknown.
 - When σ is known, a 95% confidence interval for μ is $\bar{x} \pm Z_{0.975} \sigma / \sqrt{n}$.
 - When σ is known, a 99% confidence interval for μ is $\bar{x} \pm Z_{0.995} \sigma / \sqrt{n}$.
 - When σ is unknown, a 95% confidence interval for μ is $\bar{x} \pm t_{0.975,(n-1)} s/\sqrt{n}$.
 - When σ is unknown, 99% confidence interval for μ is $\bar{x} \pm t_{0.995,(n-1)} s / \sqrt{n}$.
 - For the 95% confidence interval, to calculate $t_{0.975,(n-1)}$, use di invttail(n-1, 0.025) when σ is unknown.
 - For the 95% confidence interval, to calculate $t_{0.95,(n-1)}$, use di invttail(n-1, 0.05) when σ is unknown.
 - More generally, for a $1-\alpha$ confidence interval, to calculate $t_{1-\alpha/2,(n-1)}$, use di invttail(n-1, $\alpha/2$) when σ is unknown.

• Confidence versus Predicive Intervals.

- Predictive intervals: Use the population distribution (known) to make predictions about a sample from the population (unknown). (This is the basis of probability.)
- Confidence intervals: Use a random sample from the population (known) to make inference about the population distribution (unknown). (This is the basis of statistics!)
- Hypothesis Testing. Using the random sample, we want to test $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$.
 - One-sample Z-test. For large samples (CLT) OR when $X_i \sim N(\mu, \sigma^2)$ and σ is known, the test-statistic is:

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Under H_0 , $Z \sim N(0,1)$.

- * For the one-sided test with alternative hypothesis $H_a: \mu > \mu_0$, we can calculate a p-value using the formula $p = P(Z > Z^*)$.
- * For the one-sided test with alternative hypothesis $H_a: \mu < \mu_0$, we can calculate a p-value using the formula $p = P(Z \le Z^*)$.
- * For the two-sided test with alternative hypothesis $H_a: \mu \neq \mu_0$, we can calculate a p-value using the formula $p=2*P(Z<-|Z^*|)$.
- One-sample t-test. When $X_i \sim N(\mu, \sigma^2)$ and σ is unknown, the test-statistic is:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Under H_0 , $t \sim t_{n-1}$ (the test statistic follows a t-distribution with n-1 degrees of freedom.)