IEEE 754 (bits)				
Tamanho	Sinal	expoente	polarização	mantissa
32	1	8	127	32
64	1	11	1023	52
Formato	Single		Double	
E_{min}	-126		-1022	
E_{max}	127		1023	
menor $N_{\underline{0}}$	$\approx 1,2 \times 10^{-38}$		$\approx 2,2 \times 10^{-308}$	
$\mathrm{maior}\ {\mathfrak N}^{\underline{o}}$	$pprox 3,4 imes 10^{38}$		$\approx 1,8 \times 10^{308}$	
ϵ	$2^{-23} \approx 1,2 \times 10^{-7}$		$2^{-52} \approx 2, 2 \times 10^{-16}$	
Precisão	\approx 7 digitos decimais		≈ 16 digitos decimais	

MMQ

$$f(x) \approx g(x) \ r(x_i) = \sum_{i=1}^n [f(x_i) - g(x_i)]^2$$

$$r(x) = \int_c^d [f(x) - g(x)]^2 dx$$

$$\begin{bmatrix} \langle g_1, g_1 \rangle & \langle g_1, g_2 \rangle & \dots & \langle g_1, g_m \rangle \\ \langle g_2, g_1 \rangle & \langle g_2, g_2 \rangle & \dots & \langle g_2, g_m \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle g_m, g_1 \rangle & \langle g_m, g_2 \rangle & \dots & \langle g_m, g_m \rangle \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} \langle g_1, f \rangle \\ \langle g_2, f \rangle \\ \vdots \\ \langle g_m, f \rangle \end{bmatrix}$$

Linearizações

$$g(x) = ae^{bx} \implies \ln(g(x)) = \ln(a) + bx$$

$$g(x) = a10^{bx} \implies \log(g(x)) = \log(a) + bx$$

$$g(x) = ax^b \implies \ln(g(x)) = \ln(a) + b\ln(x)$$

$$g(x) = \frac{1}{a + bx} \implies \frac{1}{g(x)} = a + bx$$

$$g(x) = \frac{ax}{b + x} \implies \frac{1}{g(x)} = \frac{b}{a} \frac{1}{x} + \frac{1}{a}$$

Resíduos MMQ

$$r(x_i) = \sum_{i=1}^{n} [f(x_i) - g(x_i)]^2$$

$$R^2 = 1 - \frac{SQ_{res}}{SQ_{tot}}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \text{ (ponto médio)}$$

$$SQ_{tot} = \sum_{i=1}^{n} [g(x_i) - \bar{y}]^2 \text{ (erro total)}$$

$$SQ_{res} = \sum_{i=1}^{n} [f(x_i) - \bar{y}]^2 \text{ (erro residual)}$$

Forma interpoladora de Lagrange

$$f(x) \approx P_1(x) = a_0(x - x_1) + a_1(x - x_0)$$

$$a_0 = \frac{f(x_0)}{x_0 - x_1}; a_1 = \frac{f(x_1)}{x_1 - x_0}$$

$$f(x) \approx P_2(x) = (x - x_1)(x - x_2) \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)}$$

$$+ (x - x_0)(x - x_2) \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)}$$

$$+ (x - x_0)(x - x_1) \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$$

$$L_i(x) = \prod_{k=0, k \neq i}^{n} \frac{x - x_k}{x_i - x_k}, i = 0 \dots n$$

$$f(x) \approx P_n(x) = \sum_{k=0}^{n} f(x_k) L_k(x)$$

Forma interpoladora de Newton

$$f(x) \approx P_n(x) = a_1$$

$$+ a_2(x - x_0) + a_3(x - x_0)(x - x_1) + \dots$$

$$+ a_n(x - x_0)(x - x_1) \dots (x - x_{x-1})$$

$$a_1 = f(x_0)$$

$$a_2 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$a_3 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

Forma Interpoladora de Newton - Diferenças divididas

$$f[x_i] = f(x_i)$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

$$f[x_i, x_{i+1} \dots x_{i+k}] = \frac{f[x_{i+1}, \dots x_{i+k}] - f[x_i, x_{i+k-1}]}{x_{i+k} - x_i}$$

$$f(x) \approx P_n(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, x_1 \dots x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Erro na interpolação

$$R_n(x) = P_n(x) + R_n(x)$$

$$R_n(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_n)}{(n+1)!} f^{(n+1)}(\xi(x)), x_0 < \xi < x_n$$

$$M > 0 \text{ e } \max_{t \in [x_0, x_n]} |f^{(n+1)}(t)| < M$$

$$|R_n(x)| \le \frac{|x-x_0||x-x_1|\dots|x-x_n|}{(n+1)!} M$$

$$|R_n(x)| \le \frac{|x-x_0||x-x_1|\dots|x-x_n|}{(n+1)!} f[x_0, x_1 \dots x_n, x_{n+1}] \iff \exists x_{n+1}$$

Métodos de Integração Numérica

Ponto Central
$$\int_{a}^{b} f(x)dx \approx h \sum_{i+1} Nf\left(\frac{x_{i} + x_{i+1}}{2}\right)$$
 Trapézio
$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(x_{0}) + 2\left(f(x_{1}) + \dots + f(x_{N-1})\right) + f(x_{N})\right]$$
 Simpson 1/3
$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N})\right]$$
 Simpson 3/8
$$\int_{a}^{b} f(x)dx \approx \frac{3h}{8} \left[f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{3N-3}) + 3f(x_{3N-2}) + 3f(x_{3N-1}) + f(x_{3N})\right]$$

Quadratura de Gauss

Geral	$\int_a^b w(x)f(x)dx \approx \sum_{i=1} nC_i f(x_i) \ (C_i \text{ são os pesos e } x_i \text{ são os pontos tabelados}$
Gauss-Legendre	$w(x) = 1, a = -1, b = 1, n = 2 \implies C_1 = C_2 = 1, x_1 = -0,57735027ex_2 = -0,57735027$
	$n=2 \implies \int_{-1}^{1} f(x)dx \approx f(-0.57735027) + f(0.57735027)$
Gauss-Chebyshev	$w(x) = \frac{1}{\sqrt{1-x^2}}, a = -1, b = 1$ $w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Laguerre	$w(x) = e^{-x}, a = 0, b = \infty$
Gauss-Hermite	$w(x) = e^{-x^2}, a = -\infty, b = \infty$

Erro na Integração Numérica

Trapézio	$R_1(f) = -\frac{(b-a)}{12}h^2f''(\xi), \xi \in (x_0, x_1)$
Simpson 1/3	$R_2(f) = -\frac{(b-a)}{180}h^4f^{(4)}(\xi), \xi \in (x_0, x_{2N})$
Simpson 3/8	$R_3(f) = -\frac{(b-a)}{80}h^4f^{(4)}(\xi), \xi \in (x_0, x_{3N})$

Lista de Exercícios

$y_n = \int_0^1 \frac{x^n}{x+a} dx \Longrightarrow \int_0^1 \frac{x^1}{1+a} dx < y_n < \int_0^1 \frac{x^n}{a} dx$ $\frac{1}{(n+1)(1+a)} < y_n < \frac{1}{(n+1)a}$
$\frac{1}{(n+1)(1+a)} < y_n < \frac{1}{(n+1)a}$
$x^{n} = [(x+a) - a)]^{n} = \sum_{k=0}^{\infty} (-1)^{k} \binom{n}{k} (x+a)^{n-k} a^{k}$
$y_n = \int_0^1 \sum_{k=0}^n (-1)^k \binom{n}{k} (x+a)^{n-k-1} a^k dx$
$= \sum_{k=0}^{n} (-1)^{k} a^{k} \binom{n}{k} \int_{0}^{1} (x+a)^{n-k-1} dx$
$= \sum_{k=0-1}^{n} (-1)^k a^k \binom{n}{k} \int_0^1 (x+a)^{n-k-1} dx$
$+(-1)^n a^n \binom{n}{n} \int_0^1 (x+a)^{-1} dx$

Livro Neide

$$I_n = e^{-1} \int_0^1 x^n e^x dx \implies I_n < e^{-1} \max_{0 \le x \le 1} (e^x) \int_0^1 x^n dx < \frac{1}{n+1}$$
$$I_n = e^{-1} \left\{ [x^n e^x]_0^1 - \int_0^1 nx^{n-1} e^x dx \right\}$$

Formulas Gerais

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\sum_{k=0}^{n-1} ar^k = a\left(\frac{1-r^n}{1-r}\right)$$