Redes Neurais Artificiais Pedro H A Konzen 13 de novembro de 2023

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre redes neurais artificiais Como ferramenta computacional de apoio, vários exemplos de aplicação de códigos Python+PyTorch são apresentados.

Agradeço a todas e todos que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

Conteúdo

Capa
Licença
Prefácio
Sumário
1 Introdução
2 Perceptron 2.1 Unidade de Processamento . 2.1.1 Um problema de clas 2.1.2 Problema de regressã 2.1.3 Exercícios 2.2 Algoritmo de Treinamento . 2.2.1 Método do Gradiente 2.2.2 Método do Gradiente 2.2.3 Exercícios
3 Perceptron Multicamadas 3.1 Modelo MLP 3.1.1 Treinamento 3.1.2 Aplicação: Problema 3.1.3 Exercícios 3.2 Aplicação: Problema de Clas 3.2.1 Dados 3.2.2 Modelo

ii iii \mathbf{v} Descendente Estocástico de Classificação XOR ssificação Binária

i

iv

	3.2.3 Treinamento e Teste			31
	3.2.4 Verificação			33
	3.2.5 Exercícios			34
3.3	Aplicação: Aproximação de Funções			34
	3.3.1 Função unidimensional			34
	3.3.2 Função bidimensional			36
5.4	3.3.3 Exercícios			39
3.4	Diferenciação Automática			39
	3.4.1 Autograd Perceptron			42
	3.4.2 Autograd MLP			45
	3.4.3 Exercícios		 •	48
4 Rec	les Informadas pela Física			49
4.1	Problemas de Valores Iniciais			49
	4.1.1 Euler PINN			49
	4.1.2 AD-PINN			53
	4.1.3 Exercícios		 	56
4.2	Aplicação: Equação de Laplace		 •	56
	4.2.1 Preprocessamento			61
	4.2.2 Exercícios			66
4.3	Aplicação: Equação do Calor			66
	4.3.1 Diferenças Finitas			-66
	4.3.2 Diferenciação Automética			70
Respos	stas dos Exercícios			7 5
Bibliog	grafia			76

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt 100 150 200 250 300 350 400 450 500 550 600

Capítulo 1

Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como perceptron (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo perceptron para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o perceptron multicamada (MLP, em inglês multilayer percep-

tron), um modelo de progressão (em inglês, feedfoward) de rede profunda em que a informação é processada pela composição de camadas de perceptrons. Embora a ideia de fazer com que a informação seja processada através da conexão de múltiplos neurônios tenha inspiração biológica, usualmente a escolha da disposição dos neurônios em uma MLP é feita por questões algorítmicas e computacionais. I.e., baseada na eficiente utilização da arquitetura dos computadores atuais.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt 100 150 200 250 300 350 400 450 500 550 600

Capítulo 2

Perceptron

2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseada no perceptron (Fig. 2.1). Consiste na composição de uma função de ativação $f: \mathbb{R} \to \mathbb{R}$ com a pré-ativação

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde, $\boldsymbol{x} \in \mathbb{R}^n$ é o vetor de entrada, $\boldsymbol{w} \in \mathbb{R}^n$ é o vetor de pesos e $b \in \mathbb{R}$ é o **bias**. Escolhida uma função de ativação, a **saída do neurônio** é dada por

$$y = \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$:= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

Figura 2.1: Esquema de um perceptron: unidade de processamento.

O treinamento (calibração) consiste em determinar os parâmetros (\boldsymbol{w}, b) de forma que o neurônio forneça as saídas y esperadas com base em um critério predeterminado.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que emule a operação \wedge (e-lógico). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1 \wedge A_2$. Segue a tabela verdade do \wedge :

A_1	A_2	R
V	V	V
V	F	F
F	V	F
F	F	F

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

--2

-300 -

-350

-400

450

-500

-550 —

-600

Modelo

Nosso modelo de neurônio será um perceptron com duas entradas $x \in \{-1,1\}^2$ e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1 & , z > 0 \\ 0 & , z = 0 \\ -1 & , z < 0 \end{cases}$$
 (2.5)

como função de ativação, i.e.

$$y = \mathcal{N}(\mathbf{x}; (\mathbf{w}, b)),$$

$$= \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b),$$
(2.6)
$$(2.7)$$

onde $\boldsymbol{w} \in \mathbb{R}^2$ e $b \in \mathbb{R}$ são parâmetros a determinar.

Pré-processamento

Uma vez que nosso modelo recebe valores $\mathbf{x} \in \{-1,1\}^2$ e retorna $y \in \{-1,1\}$, precisamos (pre)processar os dados do problema de forma a utilizá-los. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na tabela abaixo.

Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada entrada \boldsymbol{x} . Isso consiste em um método para escolhermos os parâmetros (\boldsymbol{w},b) que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = (1,1), \tag{2.8}$$

$$b = -1. (2.9)$$

Com isso, nosso perceptron é

$$\mathcal{N}(\boldsymbol{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.10}$$

Verifique que ele satisfaz a tabela verdade acima!

Implementação

550

```
Código 2.1: perceptron.py
```

```
1
   import torch
2
3
   # modelo
   class Perceptron(torch.nn.Module):
5
       def __init__(self):
6
            super().__init__()
7
            self.linear = torch.nn.Linear(2,1)
8
       def forward(self, x):
9
10
           z = self.linear(x)
11
           y = torch.sign(z)
12
           return y
13
14 model = Perceptron()
15 W = torch.Tensor([[1., 1.]])
16 b = torch.Tensor([-1.])
17
   with torch.no_grad():
18
       model.linear.weight = torch.nn.Parameter(W)
19
       model.linear.bias = torch.nn.Parameter(b)
20
21 # dados de entrada
22 X = torch.tensor([[1., 1.],
23
                      [1., -1.],
24
                      [-1., 1.],
25
                      [-1., -1.]])
26
27
  print(f"\nDados de entrada\n{X}")
28
29
30 # forward (aplicação do modelo)
31 y = model(X)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

ot |

-00-

0

0

50

00

350 -

400

450

500

50

-600

32

33 print(f"Valores estimados\n{y}")

00

Interpretação geométrica

550

Empregamos o seguinte modelo de neurônio

500

$$\mathcal{N}\left(\boldsymbol{x};\left(\boldsymbol{w},b\right)\right) = \operatorname{sign}(w_1x_1 + w_2x_2 + b) \tag{2.11}$$

15/

Observamos que

1 400

$$w_1 x_1 + w_2 x_2 + b = 0 (2.12)$$

corresponde à equação geral de uma reta no plano $\tau: x_1 \times x_2$. Esta reta divide o plano em dois semiplanos

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.13)

300

$$\tau^{-} = \{ \boldsymbol{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$$
 (2.14)

O primeiro está na direção do vetor normal à reta $\mathbf{n} = (w_1, w_2)$ e o segundo no sentido oposto. Com isso, o problema de treinar nosso neurônio para o problema de classificação consiste em encontrar a reta

00

$$w_1 x_1 + w_2 x_2 + b = 0 (2.15)$$

.50

de forma que o ponto (1,1) esteja no semiplano positivo τ^+ e os demais pontos no semiplano negativo τ^- . Consultamos a Figura 2.2.

100

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

L00+

---200

-250 —

300 -

350-

400 —

450 —

500

550---

Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação relacionado à operação lógica \land (e-lógico).

Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, onde n_s é o número de amostras. O algoritmo consiste no seguinte:

1.
$$\boldsymbol{w} \leftarrow \boldsymbol{0}, \, b \leftarrow 0.$$

2. Para $e \leftarrow 1, \ldots, n_e$:

(a) Para
$$s \leftarrow 1, \ldots, n_s$$
:

i. Se
$$y^{(s)} \mathcal{N}\left(\boldsymbol{x}^{(s)}\right) \leq 0$$
:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

-150

00

300

50

400 -

450 —

500

550

600

```
A. \boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}
B. b \leftarrow b + y^{(s)}
```

onde, n_e é um dado número de épocas¹.

```
600
```

```
Código 2.2: perceptron_train.py
```

```
1 import torch
2
3
   # modelo
4
   class Perceptron(torch.nn.Module):
5
6
       def __init__(self):
            super().__init__()
7
8
            self.linear = torch.nn.Linear(2,1)
9
10
       def forward(self, x):
            z = self.linear(x)
12
            y = torch.sign(z)
13
            return y
14
15 model = Perceptron()
16 with torch.no grad():
       W = model.linear.weight
17
       b = model.linear.bias
18
19
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
                       [1., -1.],
22
23
                       [-1., 1.],
24
                       [-1., -1.]])
25 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
26
27 ## número de amostras
28 \text{ ns} = y_{train.size}(0)
29
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
```

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pt

TŲU

150

0

250 -

 $\frac{1}{350}$

-4

-450

- 500 -

-550 -

-600

¹Número de vezes que as amostrar serão percorridas para realizar a correção dos pesos.

```
print("y_train = ")
34
  print(y_train)
35
36 # treinamento
37
38
  ## num max épocas
39
  nepochs = 100
40
41
  for epoch in range(nepochs):
42
43
       # update
44
       not_updated = True
45
       for s in range(ns):
            y_est = model(X_train[s:s+1,:])
46
47
            if (y_est*y_train[s] <= 0.):</pre>
48
                with torch.no_grad():
49
                    W += y_train[s]*X_train[s,:]
50
                    b += y_train[s]
51
                    not_updated = False
52
53
       if (not_updated):
54
            print('Training ended.')
55
            break
56
57
58 # verificação
59 print(f'W =\n{W}')
60 print(f'b =\n{b}')
61 y = model(X_train)
62 print(f'y =\n{y}')
```

Problema de regressão 2.1.2

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

Modelo

Vamos determinar o perceptron²

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.16}$$

que melhor se ajusta a este conjunto de dados $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$

Treinamento

A ideia é que o perceptron seja tal que minimize o erro quadrático médio (MSE, do inglês, *Mean Squared Error*), i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

Vamos denotar a **função erro** (em inglês, loss function) por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.18}$$

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left(wx^{(s)} + b - y^{(s)} \right)^2$$
 (2.19)

Observamos que o problema (2.17) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal³

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.20}$$

onde $\boldsymbol{c}=(w,p)$ é o vetor dos parâmetros a determinar e M é a matriz $n_s\times 2$ dada por

$$M = \begin{bmatrix} \mathbf{z} & \mathbf{1} \end{bmatrix} \tag{2.21}$$

²Escolhendo f(z) = z como função de ativação.

³Consulte o Exercício 2.1.4.

Implementação

```
Código 2.3: perceptron_mq.py
1
   import torch
2
   # modelo
  class Perceptron(torch.nn.Module):
4
5
       def __init__(self):
6
            super().__init__()
7
            self.linear = torch.nn.Linear(1,1)
8
9
       def forward(self, x):
10
            z = self.linear(x)
11
           return z
12
13 model = Perceptron()
  with torch.no_grad():
15
       W = model.linear.weight
16
       b = model.linear.bias
17
18 # dados de treinamento
19 X_train = torch.tensor([0.5,
20
                             1.0,
21
                             1.5,
22
                             [2.0]).reshape(-1,1)
23 y_train = torch.tensor([1.2,
24
25
                             2.6,
26
                             3.6]).reshape(-1,1)
27
28 ## número de amostras
29 ns = y_{train.size}(0)
30
31 print("\nDados de treinamento")
32 print("X_train =")
33 print(X_train)
34 print("y_train = ")
35 print(y_train)
36
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

96

L00+

0

37 # treinamento

.

-350

400

-450 -

500

50

```
38
39
   ## matriz
40 M = torch.hstack((X_train,
41
                       torch.ones((ns,1))))
42 ## solucão M.Q.
   c = torch.linalg.lstsq(M, y_train)[0]
44 with torch.no_grad():
       W = c[0]
45
       b = c[1]
46
47
48 # verificação
49 print(f'W =\n{W}')
50 print(f'b =\n{b}')
51 y = model(X_train)
52 \text{ print}(f'y = n\{y\}')
```

Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.22}$$

com pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de $\left\{x^{(s)},y^{(s)}\right\}_{s=1}^4$ dado na tabela acima. Consultamos a Figura 2.3.

Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

2.1.3 Exercícios

Exercício 2.1.1. Crie um perceptron que emule a operação lógica do \lor (ou-lógico).

A_1	A_2	$A_1 \vee A_2$
V	V	V
V	F	V
F	V	V
F	F	F

Exercício 2.1.2. Busque criar um perceptron que emule a operação lógica do xor.

A_1	A_2	A_1 xor A_2
V	V	F
V	F	V
F	V	V
F	F	F

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

ot |

+ 150

200

-350

400

450 —

000

É possível? Justifique sua resposta.

Exercício 2.1.3. Assumindo o modelo de neurônio (2.16), mostre que (2.18) é função convexa.

Exercício 2.1.4. Mostre que a solução do problema (2.17) é dada por (2.20).

Exercício 2.1.5. Crie um perceptron com função de ativação $f(x) = \tanh(x)$ que melhor se ajuste ao seguinte conjunto de dados:

S	$x^{(s)}$	$y^{(s)}$
1	-1,0	-0,8
2	-0,7	-0,7
3	-0,3	-0,5
4	0,0	-0,4
5	0,2	-0,2
6	0,5	0,0
7	1,0	0,3

2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais⁴, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o **modelo** de neurônio

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = f\underbrace{(\boldsymbol{w} \cdot \boldsymbol{x} + b)}_{z},$$
(2.23)

com dada função de ativação $f: \mathbb{R} \to \mathbb{R}$, sendo os vetores de entrada \boldsymbol{x} e dos pesos \boldsymbol{w} de tamanho n_{in} . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.24}$$

 $^{^4\}mathrm{Aqui},$ vamos explorar apenas algoritmos de treinamento supervisionado.

Fornecido um conjunto de treinamento $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_1^{n_s}$, com n_s amostras, o objetivo é calcular os parâmetros (\boldsymbol{w}, b) que minimizam a função erro quadrático médio

$$\varepsilon(\boldsymbol{w},b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2$$
 (2.25)

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)}\tag{2.26}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$ é o valor estimado pelo modelo e $y^{(s)}$ é o valor esperado para a s-ésima amostra. A função erro para a s-ésima amostra é

$$\varepsilon^{(s)} := (\tilde{y}^{(s)} - y^{(s)})^2$$
 (2.27)

Ou seja, o treinamento consiste em resolver o seguinte **problema de oti- mização**

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.28}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente (GD, em inglês, Gradiente Descent Method) é um método de declive. Aplicado ao nosso modelo de Perceptron consiste no seguinte algoritmo:

- 1. (\boldsymbol{w}, b) aproximação inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** $(l_r, do inglês, learning rate)$ e o **gradiente** é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right) \tag{2.29}$$

O cálculo do gradiente para os pesos \boldsymbol{w} pode ser feito como segue⁵

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[\frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.30)

$$=\frac{1}{ns}\sum_{s=1}^{ns}\frac{\partial\varepsilon^{(s)}}{\partial\tilde{y}^{(s)}}\frac{\partial\tilde{y}^{(s)}}{\partial\boldsymbol{w}}$$
(2.31)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.32)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.33}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.34}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.35}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.36)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.37)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.38}$$

Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um perceptron para o problema de classificação do e-lógico. A função de ativação f(x) = sign(x) não é adequada para a aplicação do Método GD, pois $f'(x) \equiv 0$ para $x \neq 0$. Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.39}$$

 $^{^5\}mathrm{Aqui},$ há um abuso de linguagem ao não se observar as dimensões dos operandos matriciais.

Código 2.4: perceptron_gd.py

```
import torch
3 # modelo
4
5 class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
            super().__init__()
            self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
10
11
            z = self.linear(x)
12
            y = torch.tanh(z)
13
           return y
14
15 model = Perceptron()
16
17 # treinamento
18
19 ## optimizador
   optim = torch.optim.SGD(model.parameters(), lr=5e-1)
21
22
  ## função erro
23 loss_fun = torch.nn.MSELoss()
24
25 ## dados de treinamento
26 \text{ X\_train} = \text{torch.tensor}([[1., 1.],
27
                       [1., -1.],
28
                       [-1., 1.],
29
                       [-1., -1.]])
30 \ y_{train} = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 nepochs = 1000
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

60

```
tol = 1e-3
40
41
   for epoch in range(nepochs):
42
43
44
        # forward
45
        y_est = model(X_train)
46
47
        # erro
48
        loss = loss_fun(y_est, y_train)
49
        print(f'{epoch}: {loss.item():.4e}')
50
51
52
        # critério de parada
        if (loss.item() < tol):</pre>
53
54
            break
55
        # backward
56
        optim.zero_grad()
57
        loss.backward()
58
59
        optim.step()
60
61
62
   # verificação
63 y = model(X_train)
64 \text{ print}(f'y_est = \{y\}')
```

2.2.2 Método do Gradiente Estocástico

O Método do Gradiente Estocástico (SGD, do inglês, Stochastic Gradient Descent Method) é um variação do Método GD. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra (ou um subconjunto de amostras⁶). A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:

- 1. w, b aproximações inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

⁶Nest caso, é conhecido como Batch SGD.

1.1. Para $s \leftarrow \mathtt{random}(1, \ldots, n_s)$:

$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$$
 (2.40)

Aplicação: Problema de Classificação

Código 2.5: perceptron_sgd.py

```
1 import torch
2 import numpy as np
4
  # modelo
6
  class Perceptron(torch.nn.Module):
7
       def __init__(self):
8
           super().__init__()
9
           self.linear = torch.nn.Linear(2,1)
10
11
       def forward(self, x):
12
           z = self.linear(x)
13
           y = torch.tanh(z)
14
           return y
15
16
  model = Perceptron()
17
18
  # treinamento
19
20
  ## optimizador
  optim = torch.optim.SGD(model.parameters(), lr=5e-1)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
28
                      [1., -1.],
29
                      [-1., 1.],
30
                      [-1., -1.]])
31 y_train = torch.tensor([1., -1., -1.]).reshape(-1,1)
32
```

```
33 ## num de amostras
34 \text{ ns} = y_{train.size}(0)
35
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y_train)
41
42 ## num max épocas
43 nepochs = 5000
44 \text{ tol} = 1e-3
45
  for epoch in range(nepochs):
46
47
48
        # forward
        y_est = model(X_train)
49
50
51
        # erro
52
        loss = loss_fun(y_est, y_train)
53
        print(f'{epoch}: {loss.item():.4e}')
54
55
56
        # critério de parada
57
        if (loss.item() < tol):</pre>
58
            break
59
        # backward
60
        for s in torch.randperm(ns):
61
            loss_s = (y_est[s,:] - y_train[s,:])**2
62
63
            optim.zero_grad()
64
            loss_s.backward()
65
            optim.step()
66
            y_est = model(X_train)
67
68
69 # verificação
70 y = model(X_train)
71 print(f'y_est = \{y\}')
```

2.2.3 Exercícios

Exercício 2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.41}$$

Exercício 2.2.2. Crie um perceptron para emular a operação lógica \land (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.3. Crie um perceptron para emular a operação lógica \vee (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.4. Crie um perceptron que se ajuste ao seguinte conjunto de dados:

No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

00-

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

Pь

nШ

00 -

250 -

300 -

350 -

400

-450 -

---5

-600

Capítulo 3

Perceptron Multicamadas

[[tag:construcao]]

3.1 Modelo MLP

[[tag:construcao]]

Uma Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*) é um tipo de Rede Neural Artificial formada por composições de camadas de perceptrons. Consulte a Figura 3.1.

Figura 3.1: Estrutura de uma rede do tipo Perceptron Multicamadas (MLP).

Denotamos uma MLP de n camadas por

$$\mathbf{y} = \mathcal{N}\left(\mathbf{x}; \left(W^{(l)}, \mathbf{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.1}$$

onde $\left(W^{(l)}, \pmb{b}^{(l)}, f^{(l)}\right)$ é a tripa de **pesos**, **biases** e **função de ativação** da *l*-ésima camada da rede, $l=1,2,\ldots,n$.

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\mathbf{a}^{(l)} = f^{(l)} \underbrace{\left(W^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l-1)} \right)}_{\mathbf{z}^{(l)}}, \tag{3.2}$$

para $l = 1, 2, \dots, n$, denotando $\boldsymbol{a}^{(0)} := \boldsymbol{x} \in \boldsymbol{a}^{(n)} := \boldsymbol{y}$.

3.1.1 Treinamento

[[tag:construcao]]

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

ot |

---150

300

350-

400

450

500 —

550 -

600

Fornecido um **conjunto de treinamento** $\{x^{(s)}, y^{(s)}\}_{s=1}^{n_s}$, com n_s amostras, o treinamento da rede consiste em resolver o problema de minimização

$$\min_{(\boldsymbol{W},\boldsymbol{b})} \varepsilon \left(\tilde{\boldsymbol{y}}^{(s)}, \boldsymbol{y}^{(s)} \right) \tag{3.3}$$

onde ε é uma dada **função erro** (em inglês, loss function) e $\tilde{\boldsymbol{y}}^{(s)}$, $\boldsymbol{y}^{(s)}$ são as saídas estimada e esperada da l-ésima amostra, respectivamente.

O problema de minimização pode ser resolvido por um Método de Declive e, de forma geral, consiste em:

- 1. W, \boldsymbol{b} aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d} (\nabla_{W, \boldsymbol{b}} \varepsilon)$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** (em inglês, $learning\ rate$)) e o vetor direção $\mathbf{d} = \mathbf{d}\left(\nabla_{W,\mathbf{b}}\varepsilon\right)$, onde

$$\nabla_{W,\boldsymbol{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \boldsymbol{b}}\right). \tag{3.4}$$

O cálculo dos gradientes pode ser feito de trás para frente (em inglês, backward), i.e. para os pesos da última camada, temos

$$\frac{\partial \varepsilon}{\partial W^{(n)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z^{(n)}}} \frac{\partial \mathbf{z^{(n)}}}{\partial W^{(n)}},\tag{3.5}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f' \left(W^{(n)} \boldsymbol{a}^{(n-1)} + \boldsymbol{b}^{(n)} \right) \boldsymbol{a}^{(n-1)}. \tag{3.6}$$

Para os pesos da penúltima, temos

$$\frac{\partial \varepsilon}{\partial W^{(n-1)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z^{(n)}}} \frac{\partial \mathbf{z^{(n)}}}{\partial W^{(n-1)}},$$
(3.7)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) \frac{\partial \boldsymbol{z}^{(n)}}{\partial \boldsymbol{a}^{(n-1)}} \frac{\partial \boldsymbol{a}^{(n-1)}}{\partial \boldsymbol{z}^{(n-1)}} \frac{\partial \boldsymbol{z}^{(n-1)}}{\partial W^{(n-1)}}$$
(3.8)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) W^{(n)} f'\left(\boldsymbol{z}^{(n-1)}\right) \boldsymbol{a}^{(n-2)}$$
(3.9)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos *biases* podem ser analogamente calculados.

3.1.2 Aplicação: Problema de Classificação XOR

[[tag:construcao]]

Vamos desenvolver uma MLP que faça a operação xor (ou exclusivo). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1xorA_2$. Consultamos a seguinte tabela verdade:

$$\begin{array}{c|ccc} A_1 & A_2 & R \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \end{array}$$

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas $\mathbf{x} = (x_1, x_2)$ e saída y como na seguinte tabela:

Modelo

[[tag:construcao]]

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$ e $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$. Ou seja, nossa rede tem duas entradas, uma **camada escondida** com 2 unidades (função de ativação tangente hiperbólica) e uma camada de saída com uma unidade (função de ativação identidade).

Treinamento

[[tag:construcao]]

Para o treinamento, vamos usar a função **erro quadrático médio** (em inglês, *mean squared error*)

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.10}$$

onde os valores estimados $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right) \in \left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}, n_s = 4$, conforme na tabela acima.

Implementação

[[tag:construcao]]

O seguinte código implementa a MLP e usa o Método do Gradiente Descendente (DG) no algoritmo de treinamento.

Código 3.1: mlp_xor.py

```
import torch
3
  # modelo
5 model = torch.nn.Sequential(
       torch.nn.Linear(2,2),
6
7
       torch.nn.Tanh(),
       torch.nn.Linear(2,1)
9
10
11
  # treinamento
12
13 ## optimizador
14 optim = torch.optim.SGD(model.parameters(), lr=1e-2)
15
16 ## função erro
17 loss_fun = torch.nn.MSELoss()
18
19 ## dados de treinamento
20 X_train = torch.tensor([[1., 1.],
21
                      [1., -1.],
22
                      [-1., 1.],
23
                      [-1., -1.]])
24 y_train = torch.tensor([-1., 1., 1., -1.]).reshape(-1,1)
25
26 print("\nDados de treinamento")
27 print("X_train =")
28 print(X_train)
29 print("y_train = ")
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

```
30
  print(y_train)
31
32
   ## num max épocas
33 nepochs = 5000
34
   tol = 1e-3
35
36
   for epoch in range(nepochs):
37
38
        # forward
39
        y_est = model(X_train)
40
41
        # erro
        loss = loss_fun(y_est, y_train)
42
43
44
        print(f'{epoch}: {loss.item():.4e}')
45
        # critério de parada
46
        if (loss.item() < tol):</pre>
47
48
            break
49
        # backward
50
        optim.zero_grad()
51
        loss.backward()
52
53
        optim.step()
54
55
56 # verificação
57 y = model(X_train)
58 print(f'y_est = {y}')
```

3.1.3 Exercícios

[[tag::construcao]]

3.2 Aplicação: Problema de Classificação Binária

[[tag:construcao]]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Vamos estudar uma aplicação de redes neurais artificiais em um problema de classificação binária não linear.

3.2.1 Dados

[[tag:construcao]]

Vamos desenvolver uma rede do tipo Perceptron Multicamadas (MLP) para a classificação binária de pontos, com base nos seguintes dados.

```
1 from sklearn.datasets import make_circles
2 import matplotlib.pyplot as plt
3
4 plt.rcParams.update({
        "text.usetex": True,
        "font.family": "serif",
6
        "font.size": 14
8
10 # data
11 print('data')
12 n samples = 1000
13 print(f'n_samples = {n_samples}')
14 \# X = points, y = labels
15 X, y = make_circles(n_samples,
16
                        noise=0.03, # add noise
17
                        random_state=42) # random seed
18
19 fig = plt.figure()
20 ax = fig.add_subplot()
21 \text{ ax.scatter}(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
22 ax.grid()
23 ax.set_xlabel('$x_1$')
24 \text{ ax.set_ylabel('$x_2$')}
25 plt.show()
```


Figura 3.2: Dados para a o problema de classificação binária não linear.

3.2.2 Modelo

[[tag:construcao]]

Vamos usar uma MLP de estrutura 2-10-1, com função de ativação

$$elu(x) = \begin{cases} x & , x > 0 \\ \alpha (e^x - 1) & , x \le 0 \end{cases}$$

$$(3.11)$$

na camada escondida e

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^x} \tag{3.12}$$

na saída da rede.

Para o treinamento e teste, vamos randomicamente separar os dados em um conjunto de treinamento $\{\boldsymbol{x}_{\text{train}}^{(k)}, y_{\text{train}}^{(k)}\}_{k=1}^{n_{\text{train}}}$ e um conjunto de teste $\{\boldsymbol{x}_{\text{test}}^{(k)}, y_{\text{test}}^{(k)}\}_{k=1}^{n_{\text{test}}}$, com y=0 para os pontos azuis e y=1 para os pontos vermelhos.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Þг

3.2.3 Treinamento e Teste

[[tag:construcao]]

Código 3.2: mlp_classbin.py

```
1 import torch
2 from sklearn.datasets import make_circles
3 from sklearn.model_selection import train_test_split
4 import matplotlib.pyplot as plt
5
6 # data
7 print('data')
8 \text{ n\_samples} = 1000
9 print(f'n_samples = {n_samples}')
10 \# X = points, y = labels
11 X, y = make_circles(n_samples,
12
                       noise=0.03, # add noise
13
                        random_state=42) # random seed
14
15 ## numpy -> torch
16 X = torch.from_numpy(X).type(torch.float)
17 y = torch.from_numpy(y).type(torch.float).reshape(-1,1)
18
19 ## split into train and test datasets
20 print('Data: train and test sets')
21 X_train, X_test, y_train, y_test = train_test_split(X,
22
23
                                                         test_size=0.2,
24
                                                         random_state=42)
25 print(f'n_train = {len(X_train)}')
26 print(f'n_test = {len(X_test)}')
27 plt.close()
28 plt.scatter(X_train[:,0], X_train[:,1], c=y_train,
               marker='o', cmap=plt.cm.coolwarm, alpha=0.3)
30 plt.scatter(X_test[:,0], X_test[:,1], c=y_test,
               marker='*', cmap=plt.cm.coolwarm)
31
32 plt.show()
33
34 # model
35 model = torch.nn.Sequential(
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

```
36
       torch.nn.Linear(2, 10),
37
       torch.nn.ELU(),
       torch.nn.Linear(10, 1),
38
39
       torch.nn.Sigmoid()
40
41
42
   # loss fun
43
   loss_fun = torch.nn.BCELoss()
44
  # optimizer
45
46
  optimizer = torch.optim.SGD(model.parameters(),
47
                                  lr = 1e-1)
48
49
   # evaluation metric
  def accuracy_fun(y_pred, y_exp):
51
       correct = torch.eq(y_pred, y_exp).sum().item()
52
       acc = correct/len(y_exp) * 100
53
       return acc
54
55 # train
56 \text{ n\_epochs} = 10000
57 \text{ n_out} = 100
58
59
   for epoch in range(n_epochs):
60
       model.train()
61
62
       y_pred = model(X_train)
63
       loss = loss_fun(y_pred, y_train)
64
65
66
       acc = accuracy_fun(torch.round(y_pred),
67
                            y_train)
68
69
       optimizer.zero_grad()
70
       loss.backward()
71
       optimizer.step()
72
       model.eval()
73
74
75
       #testing
```

Pь

```
if ((epoch+1) % n_out == 0):
76
77
            with torch.inference_mode():
                y_pred_test = model(X_test)
78
79
                loss_test = loss_fun(y_pred_test,
80
                                       y_test)
                acc_test = accuracy_fun(torch.round(y_pred_test),
81
82
                                          y_test)
83
           print(f'\{epoch+1\}: loss = \{loss:.5e\}, accuracy = \{acc:.2f\}\%')
84
           print(f'\ttest: loss = {loss:.5e}, accuracy = {acc:.2f}%\n')
85
```

3.2.4 Verificação

[[tag:construcao]]

Para a verificação, testamos o modelo em uma malha uniforme de 100×100 pontos no domínio $[-1, 1]^2$. Consulte a Figure 3.3.

Figura 3.3: Verificação do modelo de classificação binária.

1 # malha de pontos

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

```
xx = torch.linspace(-1.1, 1.1, 100)
3 Xg, Yg = torch.meshgrid(xx, xx)
5 # valores estimados
6 Zg = torch.empty_like(Xg)
  for i,xg in enumerate(xx):
       for j,yg in enumerate(xx):
           z = model(torch.tensor([[xg, yg]])).detach()
9
10
           Zg[i, j] = torch.round(z)
11
12 # visualização
13 fig = plt.figure()
14 ax = fig.add_subplot()
15 ax.contourf(Xg, Yg, Zg, levels=2, cmap=plt.cm.coolwarm, alpha=0.5)
16 ax.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.coolwarm)
17 plt.show()
```

3.2.5 Exercícios

[[tag:construcao]]

3.3 Aplicação: Aproximação de Funções

[[tag:construcao]]

Redes Perceptron Multicamadas (MLP) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

3.3.1 Função unidimensional

[[tag:construcao]]

Vamos criar uma MLP para aproximar a função gaussiana

$$y = e^{-x^2}, (3.13)$$

para $x \in [-1,1]$.

1 import torch
2 import matplotlib.pyplot as plt

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

```
3
  # modelo
6 model = torch.nn.Sequential(
7
       torch.nn.Linear(1,25),
       torch.nn.Tanh(),
       torch.nn.Linear(25,1)
10
11
12 # treinamento
13
14 ## fun obj
15 fobj = lambda x: torch.exp(-x**2)
16 \ a = -1.
17 b = 1.
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(),
21
                             lr=1e-2, momentum=0.9)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
26 ## num de amostras por época
27 \text{ ns} = 100
28 ## num max épocas
29 nepochs = 5000
30 ## tolerância
31 \text{ tol} = 1e-5
32
33 for epoch in range (nepochs):
34
35
       # amostras
36
       X_{train} = (a - b) * torch.rand((ns,1)) + b
37
       y_train = fobj(X_train)
38
39
       # forward
40
       y_est = model(X_train)
41
42
       # erro
```

pt

TÀN

.50 -

00

250 -

50 -

00

450-

500

-550 -

- 600

```
43
        loss = loss_fun(y_est, y_train)
44
        print(f'{epoch}: {loss.item():.4e}')
45
46
47
        # critério de parada
        if (loss.item() < tol):</pre>
48
49
            break
50
        # backward
51
52
        optim.zero_grad()
53
        loss.backward()
54
        optim.step()
55
56
57
   # verificação
58 fig = plt.figure()
   ax = fig.add_subplot()
59
60
61
   x = torch.linspace(a, b,
62
                         steps=50).reshape(-1,1)
63
64 \text{ y_esp} = \text{fobj(x)}
65 ax.plot(x, y_esp, label='fobj')
66
67 \text{ y_est} = \text{model(x)}
68 ax.plot(x, y_est.detach(), label='model')
69
70 ax.legend()
71 ax.grid()
72 ax.set_xlabel('x')
73 ax.set_ylabel('y')
74 plt.show()
```

3.3.2 Função bidimensional

[[tag:construcao]]

Vamos criar uma MLP para aproximar a função gaussiana

$$y = e^{-(x_1^2 + x_2^2)}, (3.14)$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Þг

.00 -

50 -

00 -

50

____3

50

400

450

500

```
para \mathbf{x} = (x_1, x_2) \in [-1, 1]^2.
1 import torch
2 import matplotlib.pyplot as plt
4 # modelo
6 model = torch.nn.Sequential(
7
       torch.nn.Linear(2,50),
8
        torch.nn.Tanh(),
9
       torch.nn.Linear(50,25),
10
       torch.nn.Tanh(),
11
       torch.nn.Linear(25,5),
12
       torch.nn.Tanh(),
13
       torch.nn.Linear(5,1)
14
15
16 # treinamento
17
18 ## fun obj
19 \ a = -1.
20 \, b = 1.
21 def fobj(x):
       y = torch.exp(-x[:,0]**2 - x[:,1]**2)
22
23
       return y.reshape(-1,1)
24
25 ## optimizador
26 optim = torch.optim.SGD(model.parameters(),
                              lr=1e-1, momentum=0.9)
27
28
29 ## função erro
30 loss_fun = torch.nn.MSELoss()
31
32 ## num de amostras por eixo por época
33 \text{ ns} = 100
34 ## num max épocas
35 nepochs = 5000
36 ## tolerância
37 \text{ tol} = 1e-5
39 for epoch in range (nepochs):
```

pt

```
40
41
       # amostras
42
       x0 = (a - b) * torch.rand(ns) + b
       x1 = (a - b) * torch.rand(ns) + b
43
44
       X0, X1 = torch.meshgrid(x0, x1)
45
       X_train = torch.cat((X0.reshape(-1,1),
46
                              X1.reshape(-1,1)),
47
48
       y_train = fobj(X_train)
49
50
       # forward
51
       y_est = model(X_train)
52
53
       # erro
54
       loss = loss_fun(y_est, y_train)
55
56
       print(f'{epoch}: {loss.item():.4e}')
57
58
       # critério de parada
59
       if (loss.item() < tol):</pre>
60
            break
61
       # backward
62
63
       optim.zero_grad()
64
       loss.backward()
65
       optim.step()
66
67
  # verificação
68
  fig = plt.figure()
70
  ax = fig.add_subplot()
71
72 n = 50
73 x0 = torch.linspace(a, b, steps=n)
74 x1 = torch.linspace(a, b, steps=n)
   X0, X1 = torch.meshgrid(x0, x1)
76
  X = torch.cat((X0.reshape(-1,1),
77
                   X1.reshape(-1,1)),
78
                  dim=1)
79
```

ρι

```
80 y_esp = fobj(X)
81 Y = y_esp.reshape((n,n))
82 levels = torch.linspace(0., 1., 10)
83 c = ax.contour(X0, X1, Y, levels=levels, colors='white')
84 ax.clabel(c)
85
86 y_est = model(X)
87 Y = y_est.reshape((n,n))
88 ax.contourf(X0, X1, Y.detach(), levels=levels)
89
90 ax.grid()
91 ax.set_xlabel('x_1')
92 ax.set_ylabel('x_2')
93 plt.show()
```

3.3.3 Exercícios

[[tag::construcao]]

3.4 Diferenciação Automática

[[tag:construcao]]

Diferenciação automática é um conjunto de técnicas para a computação de derivadas numéricas em um programa de computador. Explorase o fato de que um programa computacional executa uma sequência de operações aritméticas e funções elementares, podendo-se computar a derivada por aplicações da regra da cadeia.

PyTorch computa o gradiente (derivada) de uma função a partir de seu grafo computacional. Os gradientes são computados por retropropagação. Por exemplo, para a computação do gradiente

$$\left. \frac{df}{dx} \right|_{x=x_0},\tag{3.15}$$

primeiramente, propaga-se a entrada x_0 pela função computacional f, obtendose $y = f(x_0)$. Então, o gradiente é computado por retropopagação.

Exemplo 3.4.1. Consideramos a função $f(x) = \text{sen}(\pi x)$ e vamos computar

$$\frac{df}{dx}\Big|_{x=0} \tag{3.16}$$

por diferenciação automática.

Pela regra da cadeia

$$\frac{df}{dx} = \operatorname{sen}'(\pi x) \cdot [\pi x]' \tag{3.17}$$

$$=\cos(\pi x)\cdot\pi\tag{3.18}$$

$$=\pi\cos(\pi x)\tag{3.19}$$

Primeiramente, observamos que a computação de f(x) pode ser representada pelo grafo de propagação mostrado na Figura 3.4. Para a computação do gradiente, adicionamos uma variável fictícia z=y. Na retropropagação, computamos

1.

$$\frac{dz}{dy} = 1\tag{3.20}$$

2.

$$\frac{dz}{du} = \frac{d}{du} \left[\operatorname{sen}(u) \right] \frac{dz}{dy} \tag{3.21}$$

$$=\cos(u) \tag{3.22}$$

$$=\cos(\pi x)\tag{3.23}$$

3.

$$\frac{dz}{dx} = \frac{d}{dx} \left[\pi x \right] \frac{dz}{du} \tag{3.24}$$

$$= \pi \cos(\pi x). \tag{3.25}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

рı

Figura 3.4: Grafo computacional para a diferenciação automática.

Uma RNA é uma composição de funções definidas por parâmetros (pesos e biases). O treinamento de uma RNA ocorre em duas etapas¹:

- 1. Propagação (forward): os dados de entrada são propagados para todas as funções da rede, produzindo a saída estimada.
- 2. Retropropagação (backward): a computação do gradiente do erro² em relação aos parâmetros da rede é realizado coletando as derivadas (gradientes) das funções da rede. Pela regra da cadeia, essa coleta é feita a partir da camada de saída em direção a camada de entrada da rede.

A Diferenciação Automática (Autograd, do inglês, Automatic Gradient)

¹Para mais detalhes, consulte a Subseção 3.1.1.

 $^{^2\}mathrm{Medida}$ da diferença entre o valor estimado e o valor esperado.

consiste na computação de derivadas a partir da regra da cadeia em uma estrutura computacional composta de funções elementares. Esse é o caso em RNAs, a computação do gradiente da saída da rede em relação a sua entrada pode ser feita de forma similar à computação do gradiente do erro em relação aos seus parâmetros.

3.4.1 Autograd Perceptron

[[tag:construcao]]

Para um Perceptron³

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}, (\boldsymbol{w}, b))$$

$$= f(\underline{\boldsymbol{w} \cdot \boldsymbol{x} + b})$$
(3.26a)
(3.26b)

temos que o gradiente da saída y em relação à entrada \boldsymbol{x} pode ser computada como segue

$$\frac{\partial \tilde{y}}{\partial \boldsymbol{x}} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \boldsymbol{x}}
= f'(z)\boldsymbol{w}$$
(3.27a)
(3.27b)

Exemplo 3.4.2. Vamos treinar um Perceptron com função de ativação f(z)=z

$$\tilde{y} = \mathcal{N}(x; (w,b))$$

$$= wx + b$$
(3.28a)
(3.28b)

que se ajusta ao conjunto de pontos⁴

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

թե

 $^{^3{\}rm Consulte}$ o Capítulo 2 para mais informações sobre o Perceptron.

⁴Consulte o Exercício 2.2.4.

Uma vez treinado com função erro MSE⁵, espera-se que o Perceptron corresponda a reta de mínimos quadrados⁶

$$y = 1.54x + 0.45 \tag{3.29}$$

Portanto, espera-se que

$$\frac{\partial \tilde{y}}{\partial x} = 1.54. \tag{3.30}$$

Código 3.3: autograd_percep.py

```
1
  import torch
2
3
  # modelo
   model = torch.nn.Linear(1,1)
5
6
   # treinamento
7
   ## optimizador
8
  optim = torch.optim.SGD(model.parameters(),
10
                             lr=1e-1)
11
12 ## função erro
13 loss_fun = torch.nn.MSELoss()
14
15 ## dados de treinamento
16 X_train = torch.tensor([[0.5],
17
                             [1.0],
18
                             [1.5],
19
                             [2.0]])
20
   y_train = torch.tensor([[1.2],
                             [2.1],
21
22
                             [2.6],
23
                             [3.6]])
24
   ## num max épocas
  nepochs = 5000
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

 pt

⁵MSE, Erro Quadrático Médio.

 $^{^6\}mathrm{Para}$ mais informações sobre essa aplicação, consulte a Subseção 2.1.2.

```
27
   nstop = 10
28
29
  cstop = 0
   loss_min = torch.finfo().max
31
   for epoch in range(nepochs):
32
33
       # forward
34
       y_est = model(X_train)
35
36
       # erro
37
       loss = loss_fun(y_est, y_train)
38
       # critério de parada
39
       if (loss.item() >= loss_min):
40
41
            cstop += 1
42
       else:
43
            loss_min = loss.item()
44
            cstop = 0
45
46
       print(f'{epoch}: {loss.item():.4e}, '\
              + f'cstop = {cstop}/{nstop}')
47
48
49
       if (cstop == nstop):
50
            break
51
52
       # backward
53
       optim.zero_grad()
       loss.backward()
54
55
       optim.step()
56
57
58 # verificação
   print(f'w = {model.weight}')
60
  print(f'b = {model.bias}')
61
62
   # autograd dy/dx
63
64 ## forward
65 x = torch.tensor([[1.]],
66
                      requires_grad=True)
```

Ьr

```
67 y = model(x)
60 68
69 ## backward
70 y.backward()
71 dydx = x.grad
72 print(f'dy/dx = {dydx}')
```

3.4.2 Autograd MLP

[[tag:construcao]]

Os conceitos de diferenciação automática (**autograd**) são diretamente estendidos para redes do tipo Perceptron Multicamadas (MLP, do inglês, *Multilayer Perceptron*). No seguinte exemplo, exploramos o fato de MLPs serem aproximadoras universais e avaliamos a derivada de uma MLP na aproximação de uma função.

Exemplo 3.4.3. Vamos criar uma MLP

$$\tilde{y} = \mathcal{N}\left(x; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.31}$$

que aproxima a função $y = \operatorname{sen}(\pi x)$ para $x \in [-1, 1]$

Código 3.4: autograd_fun1d.py

```
1 import torch
  import matplotlib.pyplot as plt
4
   # modelo
5
6
   model = torch.nn.Sequential(
7
       torch.nn.Linear(1,50),
8
       torch.nn.Tanh(),
       torch.nn.Linear(50,25),
9
       torch.nn.Tanh(),
10
       torch.nn.Linear(25,1)
11
12
13
14
   # treinamento
15
16 ## fun obj
```

```
17 fobj = lambda x: torch.sin(torch.pi*x)
18 \ a = -1.
19 b = 1.
20
21
  ## optimizador
22 optim = torch.optim.SGD(model.parameters(),
23
                              lr=1e-1, momentum=0.9)
24
25 ## função erro
26 loss_fun = torch.nn.MSELoss()
27
28 ## num de amostras por época
29 \text{ ns} = 100
30 ## num max épocas
31 \text{ nepochs} = 10000
32 ## tolerância
33 \text{ tol} = 1e-5
34
35 for epoch in range (nepochs):
36
37
        # amostras
38
        X_{train} = (a - b) * torch.rand((ns,1)) + b
39
        y_train = fobj(X_train)
40
41
        # forward
42
        y_est = model(X_train)
43
44
        # erro
45
        loss = loss_fun(y_est, y_train)
46
47
        lr = optim.param_groups[-1]['lr']
48
        print(f'{epoch}: loss = {loss.item():.4e}, lr = {lr:.4e}')
49
50
        # critério de parada
51
        if ((loss.item() < tol) or (lr <= 1e-7)):</pre>
52
            break
53
54
        # backward
55
        optim.zero_grad()
56
        loss.backward()
```

t 100 150 200 250 300 350 400 450 500 550 600

57 optim.step()

Figura 3.5: Comparação da autograd da MLP com a derivada exata $f'(x) = \pi \cos(\pi x)$ para o Exemplo 3.4.3.

Uma vez treinada, nossa MLP é uma aproximadora da função seno, i.e. $\tilde{y} \approx \text{sen}(\pi x)$. Usando de autograd podemos computar $\tilde{y}' \approx \pi \cos(\pi x)$. O código abaixo, computa $d\tilde{y}/dx$ a partir da rede e produz o gráfico da figura acima.

```
12 dy_est = torch.empty_like(xx)
13 for i,x in enumerate(xx):
       x.requires_grad = True
14
15
       y = model(x)
       y.backward()
16
17
       dy_est[i] = x.grad
  ax.plot(xx, dy_est, label='$d\\tilde{y}/dx$')
18
19
20 ax.legend()
21 \text{ ax.grid()}
22 ax.set_xlabel('$x$')
23 ax.set_ylabel('$y$')
24 plt.show()
```

3.4.3 Exercícios

[[tag:construcao]]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

-00+

50 -

200

250

- 300

-35

0

400

450

- 5

55

6

Capítulo 4

Redes Informadas pela Física

[[tag:construcao]]

Redes neurais informadas pela física (PINNs, do inglês, physics-informed neural networks) são métodos de deep learning para a solução de equações diferenciais.

4.1 Problemas de Valores Iniciais

[[tag:construcao]]

Consideramos um **problema de valor inicial** (IVP, do inglês, initial value problem)

$$y'(t) = g(t, y(t)), t_0 < t < t_f,$$
 (4.1a)

$$y(t_0) = y_0, \tag{4.1b}$$

com dada $g: \mathbb{R}^2 \to \mathbb{R}$ e dados valor inicial $y_0 \in \mathbb{R}$, tempos inicial $t_0 \in \mathbb{R}$ e final $t_f \in \mathbb{R}$.

4.1.1 Euler PINN

[[tag:construcao]]

A solução do IVP (4.2) pode ser obtida por uma rede neural informada pela física (PINN, do inglês, physics-informed neural network) assumindo

a seguinte aproximação de Euler explícita

$$y^{(s+1)} = y^{(s)} + h_t g\left(t^{(s)}, y^{(s)}\right), \ 0 \le s \le n_t - 1, \tag{4.2a}$$

$$y^{(0)} = y_0, (4.2b)$$

onde $y^{(s)} \approx y(t^{(s)})$, nos tempos discretos $t^{(s)} = t_0 + sh_t$, com passo $h_t = (t_t - t_0)/n_t$, $s = 0, 1, 2, \dots, n_t$.

Nosso modelo PINN é uma perceptron multicamada (MLP)

$$\tilde{y} = \mathcal{N}\left(t; \left\{W^{(l)}, \boldsymbol{b}^{(l)}, \boldsymbol{f}^{(l)}\right\}_{l=1}^{n_h+1}\right),\tag{4.3}$$

de dada arquitetura $1-n_n \times n_h-1$, i.e. uma entrada, n_h camadas escondidas, cada com n_n neurônios e uma saída. A entrada é o valor do tempo t e a saída é $\tilde{y} = \mathcal{N}(t) \approx y(t)$, a estimativa da solução do IVP (4.2). Escolhidas as funções de ativação $\mathbf{f}^{(l)}$, $l = 1, 2, \ldots, n_h + 1$, o treinamento da PINN consiste em resolver o seguinte problema de minimização

$$\min_{\left\{W^{(l)}, \boldsymbol{b}^{(l)}\right\}_{l=1}^{n_h+1}} \frac{1}{n_s} \sum_{s=0}^{n_s-1} \left| \mathcal{R}^{(s)} \right|^2 + p_p \left| \tilde{y}^{(0)} - y_0 \right|^2, \tag{4.4}$$

onde $p_p > 0$ é um dado parâmetro de penalização e $\mathcal{R}^{(s)}$ é o resíduo

$$\mathcal{R}^{(s)} := \frac{y^{(s+1)} - y^{(s)}}{h_t} - h_t g\left(t^{(s)}, y^{(s)}\right). \tag{4.5}$$

Exemplo 4.1.1. Consideramos o seguinte IVP

$$y'(t) = \sin(t) - y, \ 0 < t < 1, \tag{4.6a}$$

$$y(0) = \frac{1}{2}. (4.6b)$$

Código 4.1: pyEulerPINN.py

- 1 import torch
- 2 from scipy.integrate import quad

0

- 4 # model
- 5 ## num hidden layers

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pu

150 +

00

50

350

400

 $\frac{1}{450}$

500 -

550

```
6 \text{ nh} = 2
7 ## num neurons per hidden layer
8 \, \text{nn} = 50
9 ## activation fun in hidden layers
10 fh = torch.nn.Tanh()
11 ## model architecture
12 model = torch.nn.Sequential()
13 model.add_module('layer_1', torch.nn.Linear(1,nn))
14 model.add_module('fun_1', fh)
15 for 1 in range(2, nh):
16
        model.add_module(f'layer_{1}', torch.nn.Linear(nn,nn))
17
        model.add_module(f'fun_{1}', fh)
18 model.add_module(f'layer_{nh}', torch.nn.Linear(nn,1))
19
20 # IVP params
21
22 ## init time
23 \text{ t0} = 0.
24 ## init condition
25 \text{ y0} = 0.5
26 ## final time
27 \text{ tf} = 1.
28
29 ## num of time samples
30 \text{ ns} = 10
31 ## time step
32 ht = (tf - t0)/ns
33 ## time samples
34 	ext{ ts} = 	ext{torch.linspace(t0, tf, ns+1).reshape(-1,1)}
35
36 ## rhs
37 \text{ def } g(t, y):
38
        return y + torch.sin(t)
39
40 # training
41 ## num of epochs
42 \text{ nepochs} = 10000
43 ## output loss freq
44 \text{ eout} = 100
45 ## tolerance
```

ot

```
46 \text{ tol} = 1e-4
47 ## early-stop
48 n_iter_no_change = 100
49
50 ## optimizer
51 optim = torch.optim.Adam(model.parameters(), lr=1e-3)
52
53 # training loop
54 count_no_change = 0
55 best_loss = 1e38
  for epoch in range(nepochs):
56
57
58
       # forward
59
       yy = model(ts)
60
61
       # loss
62
       ## t>0
63
       lup = torch.mean(((yy[1:] - yy[:-1])/ht \
64
                           -g(ts[:-1], yy[:-1]))**2)
65
       ## t = 0
       lic = (yy[0] - y0)**2
66
67
68
       loss_train = lup + lic
69
70
       # backward
71
       optim.zero_grad()
72
       loss_train.backward()
73
       optim.step()
74
75
       # validation
       ys = model(ts).detach()
76
77
       yv = torch.empty_like(ys)
78
       yv[0] = y0
79
       for s in range(1,ns+1):
80
            yv[s] = yv[s-1] + quad(lambda t: g(torch.tensor([[t]]),
81
                                             model(torch.tensor([[t]])).detac
82
                                     ts[s-1], ts[s])[0]
83
       loss_valid = torch.mean((ys - yv)**2)
84
85
       if (loss_valid < best_loss):</pre>
            Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0
```

```
torch.save(model, 'model.pt')
86
87
             best_loss = loss_valid
             count_no_change = 0
88
89
        else:
             count_no_change += 1
90
91
92
        if ((epoch % eout == 0) or (count_no_change == 0)):
             msg = f'{epoch}: train = {loss_train.item():.4e}, valid = {loss_vali
93
94
             if (count_no_change == 0):
                 msg += ' (best)'
95
96
             print(msg)
97
        if ((best_loss < tol) or (count_no_change > n_iter_no_change)):
98
99
100
101
        if (loss_train < tol):</pre>
102
             break
```

4.1.2 AD-PINN

[[tag:construcao]]

Aqui nosso modelo PINN é novamnte uma perceptron multicamada (MLP)

$$\tilde{y} = \mathcal{N}\left(t; \left\{W^{(l)}, \boldsymbol{b}^{(l)}, \boldsymbol{f}^{(l)}\right\}_{l=1}^{n_h+1}\right),$$
(4.7)

de dada arquitetura $1-n_n \times n_h-1$, i.e. uma entrada, n_h camadas escondidas, cada com n_n neurônios e uma saída. A entrada é o valor do tempo t e a saída é $\tilde{y} = \mathcal{N}(t) \approx y(t)$, a estimativa da solução do IVP (4.2). Escolhidas as funções de ativação $\mathbf{f}^{(l)}$, $l = 1, 2, \ldots, n_h + 1$, o treinamento da PINN consiste em resolver o seguinte problema de minimização

$$\min_{\left\{W^{(l)}, \boldsymbol{b}^{(l)}\right\}_{l=1}^{n_h+1}} \frac{1}{n_s} \sum_{s=0}^{n_s-1} \left| \mathcal{R}^{(s)} \right|^2 + p_p \left| \tilde{y}^{(0)} - y_0 \right|^2, \tag{4.8}$$

onde $p_p > 0$ é um dado parâmetro de penalização e $\mathcal{R}^{(s)}$ é o resíduo

$$\mathcal{R}^{(s)} := y'^{(s)} - h_t g\left(t^{(s)}, y^{(s)}\right),\tag{4.9}$$

com $y'^{(s)} \approx y'\left(t^{(s)}\right)$ computada por diferenciação automática da MLP.

Exemplo 4.1.2. Consideramos o seguinte IVP

$$y'(t) = \sin(t) - y, \ 0 < t < 1, \tag{4.10a}$$

$$y(0) = \frac{1}{2}. (4.10b)$$

Código 4.2: pyEulerPINN.py

```
1
  import torch
2 from scipy.integrate import quad
3
4 # model
5 ## num hidden layers
6 \text{ nh} = 2
  ## num neurons per hidden layer
   nn = 50
  ## activation fun in hidden layers
10 fh = torch.nn.Tanh()
11 ## model architecture
12 model = torch.nn.Sequential()
13 model.add_module('layer_1', torch.nn.Linear(1,nn))
14 model.add_module('fun_1', fh)
15 for 1 in range(2, nh):
       model.add_module(f'layer_{1}', torch.nn.Linear(nn,nn))
16
17
       model.add_module(f'fun_{1}', fh)
  model.add_module(f'layer_{nh}', torch.nn.Linear(nn,1))
18
19
20 # IVP params
21
22
  ## init time
23 \text{ t0} = 0.
24 ## init condition
25 \text{ y0} = 0.5
26 ## final time
27 \text{ tf} = 1.
28
29 ## num of time samples
30 \text{ ns} = 10
31 ## time step
32 ht = (tf - t0)/ns
33 ## time samples
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

00 -

50 -

nn 📖

 $_{250}$ —

-300

-350

400

450

500

0

```
34 ts = torch.linspace(t0, tf, ns+1).reshape(-1,1)
36 ## rhs
37 \text{ def } g(t, y):
38
        return y + torch.sin(t)
39
40 # training
41 ## num of epochs
42 nepochs = 10000
43 ## output loss freq
44 \text{ eout} = 100
45 ## tolerance
46 \text{ tol} = 1e-4
47 ## early-stop
48 \text{ n\_iter\_no\_change} = 100
49
50 ## optimizer
51 optim = torch.optim.Adam(model.parameters(), lr=1e-3)
52
53 # training loop
54 \text{ count_no\_change} = 0
55 best_loss = 1e38
56 for epoch in range (nepochs):
57
58
        # forward
59
        yy = model(ts)
60
61
        # loss
        ## t>0
62
63
        lup = torch.mean(((yy[1:] - yy[:-1])/ht \setminus
64
                            -g(ts[:-1], yy[:-1]))**2)
65
        ## t = 0
66
        lic = (yy[0] - y0)**2
67
68
        loss_train = lup + lic
69
        # backward
70
71
        optim.zero_grad()
72
        loss_train.backward()
73
        optim.step()
```

 pt

```
74
75
        # validation
        ys = model(ts).detach()
76
77
        yv = torch.empty_like(ys)
78
        yv[0] = y0
        for s in range(1,ns+1):
79
80
            yv[s] = yv[s-1] + quad(lambda t: g(torch.tensor([[t]]),
                                             model(torch.tensor([[t]])).detac
81
                                      ts[s-1], ts[s])[0]
82
83
        loss_valid = torch.mean((ys - yv)**2)
84
85
        if (loss_valid < best_loss):</pre>
             torch.save(model, 'model.pt')
86
87
             best_loss = loss_valid
88
             count_no_change = 0
89
        else:
             count_no_change += 1
90
91
92
        if ((epoch % eout == 0) or (count_no_change == 0)):
93
            msg = f'{epoch}: train = {loss_train.item():.4e}, valid = {los
             if (count_no_change == 0):
94
95
                 msg += ' (best)'
96
            print(msg)
97
98
        if ((best_loss < tol) or (count_no_change > n_iter_no_change)):
99
             break
100
101
        if (loss_train < tol):</pre>
            break
102
```

4.1.3 Exercícios

[[tag:construcao]]

4.2 Aplicação: Equação de Laplace

[[tag:construcao]]

Vamos criar uma MLP para resolver

$$-\Delta u = 0, \ \mathbf{x} \in D = (0,1)^{2},$$

$$u = u_{\rm bc}, \ \mathbf{x} \in \partial D,$$
(4.11a)
(4.11b)

com dada condição de contorno $u_0 = u_0(\boldsymbol{x})$.

Como exemplo, vamos considerar um problema com solução manufaturada

$$u(\mathbf{x}) = x_1(1 - x_1) - x_2(1 - x_2). \tag{4.12}$$

Código 4.3: pyEqLaplace

```
1 import torch
 2 import matplotlib.pyplot as plt
3 import random
4 import numpy as np
6 # modelo
7 ## n camadas escondidas
8 \text{ nh} = 3
9 ## n neurônios por camada
10 \, \text{nn} = 50
11 ## fun de ativação
12 fh = torch.nn.Tanh()
13 ## arquitetura
14 model = torch.nn.Sequential()
15 model.add_module('layer_1', torch.nn.Linear(2,nn))
16 model.add_module('fun_1', fh)
17 for layer in range(2, nh):
       model.add_module(f'layer_{layer}', torch.nn.Linear(nn,nn))
18
19
       model.add_module(f'fun_{layer}', fh)
20 model.add_module(f'layer_{nh}', torch.nn.Linear(nn,1))
21
22 # SGD - (Stochastic) Gradient Descent
23 optim = torch.optim.SGD(model.parameters(),
24
                            lr = 1e-2,
25
                            momentum = 0.9)
26 optim = torch.optim.Adam(model.parameters(),
27
                            lr = 1e-2)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

```
28
29
30
  # params treinamento
31 ## n épocas
32 \text{ nepochs} = 10001
33 ## freq output loss
34 \text{ nout_loss} = 100
35 ## stop criterion
36 \text{ tol} = 1e-4
37
38 ## n amostras por eixo
39 \text{ ns} = 101
40
41
  lloss = []
   for epoch in range(nepochs):
43
44
        # forward
45
46
        ## internal pts samples
47
        Xin = torch.rand((ns, 2), requires_grad=True)
48
       Uin = model(Xin)
49
50
        ## loss internal pts
51
        D1Uin = torch.autograd.grad(
52
            Uin, Xin,
53
            grad_outputs=torch.ones_like(Uin),
54
            retain_graph=True,
55
            create_graph=True)[0]
        D2Uin = torch.autograd.grad(
56
57
            D1Uin, Xin,
58
            grad_outputs=torch.ones_like(D1Uin),
59
            retain_graph=True,
60
            create_graph=True)[0]
61
62
        lin = torch.mean((D2Uin[:,0] + D2Uin[:,1])**2)
63
64
        ## bc 1
65
        xx = torch.rand((ns, 1))
66
        yy = torch.zeros((ns,1))
        Xbc1 = torch.hstack((xx, yy))
67
```

թե

```
68
        Ubc1 = model(Xbc1)
 69
        ## loss bc 1
 70
 71
        Uexp = xx*(1. - xx)
        lbc1 = torch.mean((Ubc1 - Uexp)**2)
 72
 73
 74
        ## bc 3
        xx = torch.rand((ns, 1))
 75
 76
        yy = torch.ones((ns,1))
        Xbc3 = torch.hstack((xx, yy))
 77
        Ubc3 = model(Xbc3)
 78
 79
        ## loss bc 3
 80
        Uexp = xx*(1. - xx)
 81
 82
        1bc3 = torch.mean((Ubc3 - Uexp)**2)
 83
 84
        ## bc 2
        xx = torch.ones((ns, 1))
 85
 86
        yy = torch.rand((ns,1))
 87
        Xbc2 = torch.hstack((xx, yy))
        Ubc2 = model(Xbc2)
 88
 89
        ## loss bc 2
 90
91
        Uexp = yy*(yy - 1.)
 92
        1bc2 = torch.mean((Ubc2 - Uexp)**2)
 93
 94
        ## bc 4
 95
        xx = torch.zeros((ns, 1))
        yy = torch.rand((ns,1))
 96
 97
        Xbc4 = torch.hstack((xx, yy))
98
        Ubc4 = model(Xbc4)
 99
100
        ## loss bc 3
101
        Uexp = yy*(yy - 1.)
102
        1bc4 = torch.mean((Ubc4 - Uexp)**2)
103
104
        # loss function
105
        loss = lin + lbc1 + lbc2 + lbc3 + lbc4
106
107
        lloss.append(loss.item())
```

pt

100 -

50 -

00

6

3

-450

500

550

```
108
109
        if (((epoch % nout_loss) == 0) or (loss.item() < tol)):</pre>
             print(f'{epoch}: loss = {loss.item():.4e}')
110
111
112
             # gráfico
             fig = plt.figure()
113
114
             ax = fig.add_subplot()
115
116
             npts = 50
             xx = torch.linspace(0., 1., npts)
117
             yy = torch.linspace(0., 1., npts)
118
119
            X, Y = torch.meshgrid(xx, yy)
120
             # exact
             Uexp = X*(1. - X) - Y*(1. - Y)
121
             c = ax.contour(X, Y, Uexp, levels=10, colors='white')
122
123
             ax.clabel(c)
124
125
            M = torch.hstack((X.reshape(-1,1),
126
                                Y.reshape(-1,1)))
             Uest = model(M).detach()
127
128
             Uest = Uest.reshape((npts, npts))
129
             cf = ax.contourf(X, Y, Uest, levels=10, cmap='coolwarm')
            plt.colorbar(cf)
130
131
132
             ax.grid()
133
             ax.set_xlabel('$x$')
134
             ax.set_ylabel('$y$')
135
             plt.title(f"epoch = {epoch}, loss = {loss.item():.4e}")
             plt.savefig(f'results/sol_{epoch:0>6}.png', bbox_inches='tight
136
137
             plt.close()
138
        if (loss.item() < tol):</pre>
139
140
             break
141
142
        # backward
143
        optim.zero_grad()
144
        loss.backward()
145
        optim.step()
146
147
```

t 100 150 200 250 300 350 400 450 500 550 600

150 ax.plot(lloss)

151 ax.set_yscale('log')

152 plt.show()

4.2.1 Preprocessamento

[[tag:construcao]]

Vamos assumir as seguintes mudanças de variáveis

$$\bar{x} = 2x - 1$$
 (4.13a)
 $\bar{y} = 2y - 1$. (4.13b)

Também, assumimos a notação $\bar{u}(\bar{x}) = u(\bar{x}(x))$.

Então, segue que

$$\frac{\partial \bar{u}}{\partial \bar{x}} = \frac{\partial}{\partial \bar{x}} u \left(\bar{x}(x) \right)
= \frac{\partial u}{\partial x} \frac{\partial x}{\partial \bar{x}}
= \frac{1}{2} \frac{\partial u}{\partial x}.$$
(4.14)

Também, temos

$$\frac{\partial^2 \bar{u}}{\partial \bar{x}^2} = \frac{\partial}{\partial \bar{x}} \left(\frac{\partial \bar{u}}{\partial \bar{x}} \right)
= \frac{\partial}{\partial \bar{x}} \left(\frac{1}{2} \frac{\partial u}{\partial x} \right)
= \frac{\partial}{\partial x} \left(\frac{1}{2} \frac{\partial u}{\partial x} \right) \frac{\partial x}{\partial \bar{x}}
= \frac{1}{4} \frac{\partial^2 u}{\partial x^2}.$$
(4.15)

Analogamente, temos

$$\frac{\partial \bar{u}}{\partial \bar{y}} = \frac{1}{2} \frac{\partial u}{\partial y} \tag{4.16}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

100+

+-200

-250

300 —

350

00

450 -

500

--550 **---**

----600

е

$$\frac{\partial^2 \bar{u}}{\partial \bar{y}^2} = \frac{1}{4} \frac{\partial^2 u}{\partial y^2}. \tag{4.17}$$

600

Na nova variável \bar{x} o problema de Laplace (4.11) é equivalente a

$$\frac{\partial^2 \bar{u}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{u}}{\partial \bar{u}^2} = 0, \ \bar{\boldsymbol{x}} = (\bar{x}, \bar{y}) \in (-1, 1)^2, \tag{4.18a}$$

$$\bar{u} = \bar{u}_0, \ \bar{\boldsymbol{x}} \in \Gamma = \partial D.$$
 (4.18b)

Código 4.4: pyEqLaplacePP

```
Exemplo 4.2.1. import torch
```

```
2 import matplotlib.pyplot as plt
3 import random
4 import numpy as np
6 # modelo
7 ## n camadas escondidas
8 \text{ nh} = 3
9 ## n neurônios por camada
10 \, \text{nn} = 50
11 ## fun de ativação
12 fh = torch.nn.Tanh()
13 ## arquitetura
14 model = torch.nn.Sequential()
15 model.add_module('layer_1', torch.nn.Linear(2,nn))
16 model.add_module('fun_1', fh)
17 for layer in range(2, nh):
       model.add_module(f'layer_{layer}', torch.nn.Linear(nn,nn))
18
19
       model.add_module(f'fun_{layer}', fh)
  model.add_module(f'layer_{nh}', torch.nn.Linear(nn,1))
20
21
22
   # SGD - (Stochastic) Gradient Descent
   optim = torch.optim.SGD(model.parameters(),
24
                            lr = 1e-2,
25
                            momentum = 0.9)
26
  optim = torch.optim.Adam(model.parameters(),
27
                            lr = 1e-2)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

թե

```
28
29 # params treinamento
30 ## n épocas
31 \text{ nepochs} = 10001
32 ## freq output loss
33 \text{ nout_loss} = 100
34 ## stop criterion
35 \text{ tol} = 1e-4
36
37 ## n amostras por eixo
38 \text{ ns} = 101
39
40 \ 11oss = []
   for epoch in range(nepochs):
42
43
        # forward
44
        ## internal pts samples
45
46
        Xin = 2.*torch.rand((ns, 2)) -1.
47
        Xin.requires_grad=True
       Uin = model(Xin)
48
49
50
        ## loss internal pts
51
        D1Uin = torch.autograd.grad(
52
            Uin, Xin,
53
            grad_outputs=torch.ones_like(Uin),
            retain graph=True,
54
            create_graph=True)[0]
55
        D2Uin = torch.autograd.grad(
56
57
            D1Uin, Xin,
58
            grad_outputs=torch.ones_like(D1Uin),
59
            retain_graph=True,
60
            create_graph=True)[0]
61
62
        lin = torch.mean((D2Uin[:,0] + D2Uin[:,1])**2)
63
        ## bc 1
64
65
        xx = 2.*torch.rand((ns, 1)) - 1.
66
        yy = -1.*torch.ones((ns,1))
        Xbc1 = torch.hstack((xx, yy))
67
```

pt

```
Ubc1 = model(Xbc1)
68
69
70
        ## loss bc 1
71
        xx = (xx + 1.)/2.;
72
        Uexp = xx*(1. - xx)
        lbc1 = torch.mean((Ubc1 - Uexp)**2)
73
74
75
        ## bc 3
76
        xx = 2.*torch.rand((ns, 1)) -1.
77
        yy = torch.ones((ns,1))
78
        Xbc3 = torch.hstack((xx, yy))
79
        Ubc3 = model(Xbc3)
80
81
        ## loss bc 3
        xx = (xx + 1.)/2.;
82
83
        Uexp = xx*(1. - xx)
84
        1bc3 = torch.mean((Ubc3 - Uexp)**2)
85
        ## bc 2
86
87
        xx = torch.ones((ns, 1))
        yy = 2.*torch.rand((ns,1)) -1.
88
89
        Xbc2 = torch.hstack((xx, yy))
        Ubc2 = model(Xbc2)
90
91
92
        ## loss bc 2
        yy = (yy + 1.)/2.;
93
94
        Uexp = yy*(yy - 1.)
95
        1bc2 = torch.mean((Ubc2 - Uexp)**2)
96
97
        ## bc 4
        xx = -1.*torch.ones((ns, 1))
98
99
        yy = 2.*torch.rand((ns,1)) -1.
100
        Xbc4 = torch.hstack((xx, yy))
101
        Ubc4 = model(Xbc4)
102
103
        ## loss bc 3
        yy = (yy + 1.)/2.;
104
105
        Uexp = yy*(yy - 1.)
106
        1bc4 = torch.mean((Ubc4 - Uexp)**2)
107
```

Ьr

```
108
        # loss function
109
        loss = lin + lbc1 + lbc2 + lbc3 + lbc4
110
111
        lloss.append(loss.item())
112
113
        if (((epoch % nout_loss) == 0) or (loss.item() < tol)):</pre>
114
             print(f'{epoch}: loss = {loss.item():.4e}')
115
116
             # gráfico
             fig = plt.figure()
117
             ax = fig.add_subplot()
118
119
120
             npts = 50
121
             xx = torch.linspace(-1., 1., npts)
122
             yy = torch.linspace(-1., 1., npts)
123
             X, Y = torch.meshgrid(xx, yy)
124
             # exact
             Uexp = (X+1.)/2.*(1. - (X+1.)/2.)
125
126
                 -(Y+1.)/2.*(1. - (Y+1.)/2.)
127
             c = ax.contour(X, Y, Uexp, levels=10, colors='white')
             ax.clabel(c)
128
129
130
             M = torch.hstack((X.reshape(-1,1),
131
                                Y.reshape(-1,1)))
132
             Uest = model(M).detach()
133
             Uest = Uest.reshape((npts, npts))
             cf = ax.contourf(X, Y, Uest, levels=10, cmap='coolwarm')
134
135
             plt.colorbar(cf)
136
137
             ax.grid()
138
             ax.set_xlabel('$\\bar{x}$')
             ax.set_ylabel('$\\bar{y}$')
139
140
             plt.title(f"epoch = {epoch}, loss = {loss.item():.4e}")
             plt.savefig(f'results/sol_{epoch:0>6}.png', bbox_inches='tight')
141
142
             plt.close()
143
        if (loss.item() < tol):</pre>
144
145
             break
146
        # backward
147
```

pt

```
optim.zero_grad()
148
149
        loss.backward()
150
        optim.step()
151
    fig = plt.figure()
152
    ax = fig.add_subplot()
153
    ax.plot(lloss)
155
    ax.set_yscale('log')
156
    plt.show()
```

4.2.2 Exercícios

[[tag::construcao]]

4.3 Aplicação: Equação do Calor

[[tag:construcao]]

Consideramos o problema

$$u_t = u_{xx} + f, (t, x) \in (0, 1] \times (-1, 1),$$

$$(4.19a)$$

$$u(0,x) = \operatorname{sen}(\pi x), x \in [-1, 1],$$
 (4.19b)

$$u(t, -1) = u(t, 1) = 0, t \in (t_0, tf],$$
 (4.19c)

onde $f(t,x)=(\pi^2-1)e^{-t}\operatorname{sen}(\pi x)$ é a fonte. Este problema foi manufaturado a partir da solução

$$u(t,x) = e^{-t}\operatorname{sen}(\pi x). \tag{4.20}$$

4.3.1 Diferenças Finitas

[[tag:construcao]]

Assumimos a discretização no tempo $t^{(k)} = kh_t$, $k = 0, 1, 2, ..., n_t$, com passo $h_t = 1/n_t$. Para a discretização no espaço, assumimos $x_i = -1 + ih_x$, $i = 0, 1, 2, ..., n_x$, com passo $h_x = 2/n_x$. Ainda, denotando $u_i^{(k)} \approx u\left(t^{(k)}, x_i\right)$, usamos as seguintes fórmulas de diferenças finitas

$$u_t(t^{(k)}, x_i) \approx \frac{u_i^{(k)} - u_i^{(k-1)}}{h_t},$$
 (4.21)

para $0 < k < n_t, 0 \le i \le n_x$ e

$$u_{xx}\left(t^{(k)}, x_i\right) \approx \frac{u_{i-1}^{(k)} - 2u_i^{(k)} + u_{i+1}^{(k)}}{h_x^2},$$
 (4.22)

para $0 \le k \le n_t \ e \ 0 < i < n_x$.

Figura 4.1: Soluções RNA (linhas brancas) versus analítica (cores de face) para o Problema 4.19.

Código 4.5: mlp_calor.py

```
1 import torch
2 from torch import pi, sin, exp
3 import matplotlib.pyplot as plt
4
5 # modelo
6 model = torch.nn.Sequential(
7 torch.nn.Linear(2,500),
8 torch.nn.ELU(),
9 torch.nn.Linear(500,500),
10 torch.nn.ELU(),
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt

```
11
        torch.nn.Linear(500,500),
12
        torch.nn.ELU(),
        torch.nn.Linear(500,1)
13
14)
15
16 # otimizador
17 optim = torch.optim.SGD(model.parameters(),
18
                               lr = 1e-2, momentum = 0.9)
19 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim)
20
21 # amostras
22 nt = 10
23 \text{ ht} = 1./\text{nt}
24 tt = torch.linspace(0., 1., nt+1)
25 \text{ nx} = 20
26 \text{ hx} = 2./\text{nx}
27 \text{ xx} = \text{torch.linspace}(-1., 1., nx+1)
28 T, X = torch.meshgrid(tt, xx,
29
                             indexing='ij')
30 Uesp = torch.empty_like(T)
31 \text{ nsamples} = (nt+1)*(nx+1)
32 M = torch.empty((nsamples, 2))
33 s = 0
34 for i,t in enumerate(tt):
35
        for j,x in enumerate(xx):
            Uesp[i,j] = exp(-t)*sin(pi*x)
36
37
            M[s,0] = t
38
            M[s,1] = x
39
            s += 1
40
41 # treinamento
42 \text{ nepochs} = 10001
43 \text{ tol} = 1e-5
44 \text{ nout} = 100
45
46 for epoch in range (nepochs):
47
        # forward
48
49
        Uest = model(M)
50
```

ρι

```
51
        # loss
52
        ## c.i.
        lci = torch.tensor([0.])
53
54
        for j,x in enumerate(xx):
55
            s = j
56
            assert(M[s,1] == x)
57
            uesp = sin(pi*x)
            lci += (Uest[s] - uesp)**2
58
59
        ## pts internos
        lin = torch.tensor([0.])
60
61
        for i in range(1,nt+1):
62
            for j in range(1,nx):
63
                 s = j + i*(nx+1)
64
                 \# u t
                 l = (Uest[s] - Uest[s-nx-1])/ht
65
66
                 \# u_x x
                 1 -= (\text{Uest}[s-1] - 2*\text{Uest}[s] + \text{Uest}[s+1])/\text{hx}**2
67
68
69
                 1 = (pi**2 - 1.)*exp(-M[s,0])*sin(pi*M[s,1])
70
                 lin += 1**2
71
        ## c.c.
72
        lcc = torch.tensor([0.])
        for i,t in enumerate(tt[1:]):
73
74
            \# x = 0
75
            s = i*(nx+1)
76
            lcc += Uest[s]**2
77
            \# x = 1
78
            s = nx + i*(nx+1)
79
            1cc += Uest[s]**2
80
81
        loss = (lci + lin + lcc)/nsamples
82
83
        lr = optim.param_groups[-1]['lr']
84
        print(f'\{epoch\}: loss = \{loss.item():.4e\}, lr = \{lr:.4e\}')
85
86
        # output
        if ((epoch % nout == 0) or (loss.item() < tol)):</pre>
87
88
            plt.close()
89
            fig = plt.figure(dpi=300)
            ax = fig.add_subplot()
90
```

t 100 150 200 250 300 350 400 450 500 550 600

```
91
             cb = ax.contourf(T, X, Uesp,
92
                                levels=10)
93
             fig.colorbar(cb)
94
             cl = ax.contour(T, X, Uest.detach().reshape(nt+1,nx+1),
                               levels=10, colors='white')
95
             ax.clabel(cl, fmt='%.1f')
96
97
             ax.set_xlabel('$t$')
             ax.set_ylabel('$x$')
98
99
             plt.title(f'\{epoch\}: loss = \{loss.item():.4e\}, lr = \{lr:.4e\}'\}
             plt.savefig(f'./results/sol_{epoch:0>6}.png')
100
101
102
        if (loss.item() < tol):</pre>
103
             break
104
105
        # backward
106
        scheduler.step(loss)
        optim.zero_grad()
107
108
        loss.backward()
109
        optim.step()
```

4.3.2 Diferenciação Automética

[[tag:construcao]]

```
Código 4.6: mlp_calor_autograd.py
```

```
1 import torch
2 from torch import pi, sin, exp
3 from collections import OrderedDict
4 import matplotlib.pyplot as plt
5
6 # modelo
7 \text{ hidden} = [50] *8
  activation = torch.nn.Tanh()
  layerList = [('layer_0', torch.nn.Linear(2, hidden[0])),
                ('activation_0', activation)]
10
  for l in range(len(hidden)-1):
12
       layerList.append((f'layer_{1+1})',
13
                          torch.nn.Linear(hidden[1], hidden[1+1])))
       layerList.append((f'activation_{l+1}', activation))
14
  layerList.append((f'layer_{len(hidden)}', torch.nn.Linear(hidden[-1],
```

```
16 #layerList.append((f'activation_{len(hidden)}', torch.nn.Sigmoid()))
17 layerDict = OrderedDict(layerList)
18 model = torch.nn.Sequential(OrderedDict(layerDict))
19
20 # otimizador
21 # optim = torch.optim.SGD(model.parameters(),
22 #
                                 lr = 1e-3, momentum=0.85)
23 optim = torch.optim.Adam(model.parameters(),
                               lr = 1e-2)
25 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
26
                                                                factor=0.1,
27
                                                                patience=100)
28
29 # treinamento
30 \text{ nt} = 10
31 \text{ tt} = \text{torch.linspace}(0., 1., \text{nt+1})
32 \text{ nx} = 20
33 \text{ xx} = \text{torch.linspace}(-1., 1., nx+1)
34 T,X = torch.meshgrid(tt, xx, indexing='ij')
35 tt = tt.reshape(-1,1)
36 \text{ xx} = \text{xx.reshape}(-1,1)
37
38 Sic = torch.hstack((torch.zeros_like(xx), xx))
39 Uic = sin(pi*xx)
40
41 Sbc0 = torch.hstack((tt[1:,:], -1.*torch.ones_like(tt[1:,:])))
42 Ubc0 = torch.zeros_like(tt[1:,:])
43
44 Sbc1 = torch.hstack((tt[1:,:], 1.*torch.ones_like(tt[1:,:])))
45 Ubc1 = torch.zeros_like(tt[1:,:])
46
47 	 tin = tt[1:,:]
48 \text{ xin} = xx[1:-1,:]
49 Sin = torch.empty((nt*(nx-1), 2))
50 Fin = torch.empty((nt*(nx-1), 1))
51 s = 0
52 for i,t in enumerate(tin):
       for j,x in enumerate(xin):
53
            Sin[s,0] = t
54
55
            Sin[s,1] = x
```

100 150 200 250 300 350 400 450 500 550 600

```
56
            Fin[s,0] = (pi**2 - 1.)*exp(-t)*sin(pi*x)
57
58 tin = torch.tensor(Sin[:,0:1], requires_grad=True)
59 xin = torch.tensor(Sin[:,1:2], requires_grad=True)
60
   Sin = torch.hstack((tin,xin))
61
62 \text{ nepochs} = 50001
63 \text{ tol} = 1e-4
64 \text{ nout} = 100
65
66
   for epoch in range(nepochs):
67
68
       # loss
69
70
       ## c.i.
71
       Uest = model(Sic)
72
       lic = torch.mean((Uest - Uic)**2)
73
       ## residual
74
75
       U = model(Sin)
76
       U_t = torch.autograd.grad(
77
            U, tin,
78
            grad_outputs=torch.ones_like(U),
79
            retain_graph=True,
80
            create_graph=True)[0]
81
       U_x = torch.autograd.grad(
82
            U, xin,
83
            grad_outputs=torch.ones_like(U),
84
            retain_graph=True,
85
            create_graph=True)[0]
86
       U_xx = torch.autograd.grad(
87
            U_x, xin,
88
            grad_outputs=torch.ones_like(U_x),
89
            retain_graph=True,
90
            create_graph=True)[0]
91
       res = U_t - U_xx - Fin
       lin = torch.mean(res**2)
92
93
94
       ## c.c. x = -1
95
       Uest = model(Sbc0)
```

թե

```
96
        lbc0 = torch.mean(Uest**2)
 97
         ## c.c. x = 1
 98
 99
        Uest = model(Sbc1)
100
        lbc1 = torch.mean(Uest**2)
101
        loss = lin + lic + lbc0 + lbc1
102
103
104
        lr = optim.param_groups[-1]['lr']
        print(f'{epoch}: loss = {loss.item():.4e}, lr = {lr:.4e}')
105
106
107
         # backward
108
        scheduler.step(loss)
         optim.zero_grad()
109
110
        loss.backward()
111
        optim.step()
112
113
114
         # output
115
        if ((epoch % nout == 0) or (loss.item() < tol)):</pre>
             plt.close()
116
             fig = plt.figure(dpi=300)
117
118
             nt = 10
119
             tt = torch.linspace(0., 1., nt+1)
120
             nx = 20
121
             xx = torch.linspace(-1., 1., nx+1)
122
             T,X = torch.meshgrid(tt, xx, indexing='ij')
123
             Uesp = torch.empty_like(T)
124
             M = torch.empty(((nt+1)*(nx+1),2))
125
             s = 0
126
             for i,t in enumerate(tt):
127
                 for j,x in enumerate(xx):
128
                     Uesp[i,j] = exp(-t)*sin(pi*x)
129
                     M[s,0] = t
130
                     M[s,1] = x
                     s += 1
131
132
             Uest = model(M)
133
             Uest = Uest.detach().reshape(nt+1,nx+1)
134
             12rel = torch.norm(Uest - Uesp)/torch.norm(Uesp)
135
```

pt

```
4.3. APLICAÇÃO: EQUAÇÃO DO CALOR
136
            ax = fig.add_subplot()
137
            cb = ax.contourf(T, X, Uesp,
138
                               levels=10)
139
            fig.colorbar(cb)
            cl = ax.contour(T, X, Uest,
140
                              levels=10, colors='white')
141
142
            ax.clabel(cl, fmt='%.1f')
143
            ax.set_xlabel('$t$')
144
            ax.set_ylabel('$x$')
            plt.title(f'{epoch}: loss = {loss.item():.4e}, l2rel = {l2rel:
145
            plt.savefig(f'./results/sol_{(epoch//nout):0>6}.png')
146
147
        if ((loss.item() < tol) or (lr < 1e-6)):</pre>
148
            break
149
```

Resposta dos Exercícios

Exercício 2.1.3. Dica: verifique que sua matriz hessiana é positiva definida.

Exercício 2.1.4. Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.

Exercício 2.2.1. $(\tanh x)' = 1 - \tanh^2 x$

Bibliografia

- [1] Goodfellow, I., Bengio, Y., Courville, A.. Deep learning, MIT Press, Cambridge, MA, 2016.
- [2] Neural Networks: A Comprehensive Foundation, Haykin, S.. Pearson:Delhi, 2005. ISBN: 978-0020327615.
- [3] Raissi, M., Perdikaris, P., Karniadakis, G.E.. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378 (2019), pp. 686-707. DOI: 10.1016/j.jcp.2018.10.045.
- [4] Mata, F.F., Gijón, A., Molina-Solana, M., Gómez-Romero, J., Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities. Physica A: Statistical Mechanics and its Applications 610 (2023), pp. 128415. DOI: 10.1016/j.physa.2022.128415.