学号	姓名
23214321	陈宁浩
23214322	陈宁浩 何昌烨
23214323	胡静静
23214324	黄项龙
23214326	刘润尧
23214329	宋珂
23214336	戴泳涛
23214338	杜冠男
23214339	段培明
23214345	黄瀚
23214346	黄樾
23214353	梁励
23214364	毛睿
23214364 23214369	钱甜奕
23214303	发
23214378 23214383	徐博研
23214383	赵海洋
23214410	陈东
23214417	陈宁宁
23214421	陈腾跃
23214426	陈煜彦
23214427	崔铮浩
23214446	何鸿荣
23214449	何芷莹
23214452	洪桂航
23214460	黄泽林
23214466	赖柔成
23214474	李宏立
23214478	李茂锦
23214491	梁恒中
23214503	刘星宇
23214509	罗经周
23214534	苏达威
23214542	王辉
23214564	熊泽华
23214565	徐浩耀
23214573	杨坤业
23214576	杨子逸杨沅旭
23214578	杨沅旭
23214590	易钰淇
23214594	曾家洋
23214600	张珊
23214601	张晓逊
23214615	钟龙广
23214624	庄梓轩
23214625	1年41
23220055	李品律
20220033	プロロー

page 12

Ex.2

Inequalities (3), Sec. 4, are

 $\operatorname{Re} z \le |\operatorname{Re} z| \le |z|$ and $\operatorname{Im} z \le |\operatorname{IIm} z| \le |z|$.

These are obvious if we write them as

$$x \le |x| \le \sqrt{x^2 + y^2}$$
 and $y \le |y| \le \sqrt{x^2 + y^2}$.

Ex.4

In order to verify the inequality $\sqrt{2}|z| \ge |\text{Re } z| + |\text{Im } z|$, we rewrite it in the following ways:

$$\sqrt{2}\sqrt{x^2 + y^2} \ge |x| + |y|,$$

$$2(x^2 + y^2) \ge |x|^2 + 2|x||y| + |y|^2,$$

$$|x|^2 - 2|x||y| + |y|^2 \ge 0,$$

$$(|x| - |y|)^2 \ge 0.$$

This last form of the inequality to be verified is obviously true since the left-hand side is a perfect square.

Ex.5

(a)

Rewrite |z-1+i|=1 as |z-(1-i)|=1. This is the circle centered at 1-i with radius 1. It is shown below.

(b) Rewrite $|z+i| \leq 3$ as $|z-(-i)| \leq 3$. This is a disk centered at -i with radius 3.

(c) $|z - 4i| \ge 4$ is outside the disk centered at 4i with radius 4.

page 14-16

Ex.1

(a)
$$\overline{z} + 3i = \overline{z} + \overline{3}i = z - 3i$$
;

(b)
$$i\overline{z} = i\overline{z} = -i\overline{z}$$
;

(c)
$$\overline{(2+i)^2} = (\overline{2+i})^2 = (2-i)^2 = 4-4i+i^2 = 4-4i-1 = 3-4i;$$

$$(d) \quad |(2\overline{z}+5)(\sqrt{2}-i)| = |2\overline{z}+5| |\sqrt{2}-i| = |\overline{2z+5}| \sqrt{2+1} = \sqrt{3} \ |2z+5|.$$

Ex.2

(a) Rewrite $Re(\bar{z}-i)=2$ as Re[x+i(-y-1)]=2, or x=2. This is the vertical line through the point z=2, shown below.

(b) Rewrite $|2\overline{z} + i| = 4$ as $2\left|\overline{z} + \frac{i}{2}\right| = 4$, or $\left|z - \frac{i}{2}\right| = 2$. This is the circle centered at $\frac{i}{2}$ with radius 2, shown below.

Ex.7

In this problem, we shall use the inequalities (see Sec. 4)

Specifically, when $|z| \le 1$,

$$\left| \operatorname{Re}(2 + \overline{z} + z^3) \right| \leq |2 + \overline{z} + z^3| \leq 2 + |\overline{z}| + |z^3| = 2 + |z| + |z|^3 \leq 2 + 1 + 1 = 4.$$

Ex.14

Since $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z - \overline{z}}{2i}$, the hyperbola $x^2 - y^2 = 1$ can be written in the following ways:

$$\left(\frac{z+\overline{z}}{2}\right)^{2} - \left(\frac{z-\overline{z}}{2i}\right)^{2} = 1,$$

$$\frac{z^{2} + 2z\overline{z} + \overline{z}^{2}}{4} + \frac{z^{2} - 2z\overline{z} + \overline{z}^{2}}{4} = 1,$$

$$\frac{2z^{2} + 2\overline{z}^{2}}{4} = 1,$$

$$z^{2} + \overline{z}^{2} = 2.$$