****				•	•	
What	15	C	ลเm	ed.	15	•
VV IIuc	40	<u> </u>	LUILI	-	10	

1	
2	

1	1. In a disk drive control system comprising a micro-controller, a micro-		
2	controller cache system having a cache memory and a cache-control subsystem, and a		
3	buffer manager communicating with the micro-controller cache system and a remote		
4	memory, a method for improving fetch operations between the micro-controller and the		
· 5	remote memory via the buffer manager, the method comprising:		
6	receiving a data-request from the micro-controller in the cache control		
7	subsystem wherein the data-request comprises a request for at least one of an		
8	instruction code and non-instruction data;		
9	providing the requested data to the micro-controller if the requested data		
10	reside in the cache memory;		
11	determining if the received data-request is for a non-instruction data if the		
12	requested data does not reside in the cache memory;		
13	fetching the non-instruction data from the remote memory by the micro-		
14	controller cache system via the buffer manager; and		
15	bypassing the cache memory to preserve the contents of the cache memory		
16	and provide the fetched non-instruction data to the micro-controller.		
1	2. The method of claim 1, wherein the determining is based on a signal		
2	received from the micro-controller.		
1	3. The method of claim 2, wherein the fetching further comprises:		
2	transmitting a cache control subsystem data-request from the cache control		
3	subsystem to the buffer manager;		
4	accessing the remote memory by the buffer manager; and		
5	retrieving the cache control subsystem requested data from the remote		
6	memory.		
1	4. The method of claim 1, wherein the buffer manager is in communication		
2	with a plurality of control system clients and provides client-requested data to the clients		
3	from the remote memory.		

PATENT ATTY. DOCKET K35A1324

1	5.	The method of claim 4, wherein the plurality of control system clients
2	comprises at 1	least one of a disk subsystem, an error correction code subsystem, and a hos
3	interface subs	system.
1	6.	The method of claim 1, wherein the remote memory comprises a dynamic
2	random acces	s memory (DRAM).
1	7.	The method of claim 1, further comprising:
2		determining if the received data-request is for an instruction code if the
3	reques	sted data does not reside in the cache memory; and
4		filling the cache memory if the received data-request is for an
5	instruc	ction code.
1	8.	The method of claim 7, wherein the filling the cache memory comprises a
2	burst f	ill of the cache memory.

PATENT ATTY. DOCKET K35A1324

1	9. A dis	k drive control system comprising:
2	a mic	ro-controller; and
3	a mic	ro-controller cache system in communication with the micro-
4	controller and	d comprising a cache memory and a cache-control subsystem,
5	wherein the r	nicro-controller cache system is adapted to:
6	a)	receive a data-request from the micro-controller in the cache
7		control subsystem wherein the data request comprises a request for
8		at least one of an instruction code and non-instruction data,
9	b)	provide the requested data to the micro-controller if the requested
10		data reside in the cache memory,
11	c)	determine if the received data-request is for a non-instruction data
12		if the requested data does not reside in the cache memory,
13	d)	fetch the non-instruction data from the remote memory via a buffer
14		manager adapted to provide the micro-controller cache system with
15		micro-controller requested data stored in a remote memory, and
16	e)	bypass the cache memory to preserve the contents of the cache memory
17		and to provide the fetched non-instruction data to the micro-controller.
1	10. The d	isk drive control system of claim 9, wherein the cache control
2	subsystem it is further	er adapted to determine if the received data-request is for a non-
3	instruction data base	d on a signal received from the micro-controller.
1	11. The d	isk drive control system of claim 10, wherein the micro-controller
2	cache system	is further adapted to:
3	a) trai	nsmit a cache control subsystem data-request from the cache control
4	subsystem to	the buffer manager;
5	b) acc	ess the remote memory via the buffer manager; and
6	c) rec	eive the cache control subsystem requested data from the remote
7	memory.	
1	12. The d	isk drive control system of claim 9, wherein the buffer manager is in
2	communication with	a plurality of control system clients and provides client-requested
3	data to the clients fro	om the remote memory.

PATENT ATTY. DOCKET K35A1324

1	13.	The disk drive control system of claim 12, wherein the plurality of control
2	system clients	s comprises at least one of a disk subsystem, an error correction code
3	subsystem, ar	nd a host interface subsystem.
1	14.	The disk drive control system of claim 9, wherein the remote memory
2	comprises a d	ynamic random access memory (DRAM).
1	15.	The disk drive control system of claim 9, wherein the micro-controller
2	cache	system is further adapted to:
3		determine if the received data-request is for an instruction code if the
4	reques	sted data does not reside in the cache memory; and
5		fill the cache memory if the received data-request is for an instruction code.
1	16.	The disk drive control system of claim 15, wherein the cache memory is
2	filled	with a burst fill.