

# Natural Language Processing Lecture 09

Qun Liu, Valentin Malykh Huawei Noah's Ark Lab



Spring 2022 A course delivered at KFU, Kazan





- Subword level and character level NMT
- Transformer-based NMT
- Pre-trained language models (PLMs)



- Subword level and character level NMT
- Transformer-based NMT
- Pre-trained language models (PLMs)



- Subword level and character level NMT
  - Open-vocabulary problem
  - Subword-level NMT



## Open-vocabulary problem for NMT

- In NMT, due to the use of softmax in decoding, the output vocabulary is a closed set.
- Furthermore, a large size will make the decoding very slow because the softmax operation consumes huge computing resources.
- However, the vocabulary of a natural language is always an open set because new words emerge every day.
- Moreover, morphologically-rich languages such like finnish, Turkish, Arabic, etc. have very large vocabulary size compared with other languages.





## Vocabulary Size vs. MT Performance



Vocabulary size vs. BLEU score when translating into English (which has about 65,000 distinct word forms) for SMT Philipp Koehn, Europarl: A Parallel Corpus for Statistical Machine Translation, MT Summit 2005





## Replace OOV words with the UNK symbol

- Practically, the vocabulary size of a NMT system is around 500k.
- In early NMT systems, all the out-of-vocabulary (OOV) words are replaced with a UNK symble (means UNKNOWN):
  - UNKs in source sentences will make the system not differentiat the rare words;
  - UNKs in the target sentences will make the system unreadable.





- Subword level and character level NMT
  - Open-vocabulary problem
  - Subword-level NMT





# Solutions to open-vocabulary problem

- Subword-level models
  - Byte-Pair Encoding (BPE)
  - Word Piece or Sentence Piece
- Character-level models





# Bype-Pair Encoding (BPE)

- Originated from a compression algorithm
  - Replace a most frequent byte pair with a new byte
- BPE for NMT was proposed in 2016 and become very popular, not only in NMT but also in many other NN-based NLP tasks

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword Units. ACL 2016.



# Bype-Pair Encoding (BPE)

- Initialize vocabulary of subwords with all the basic characters
- Maintain a dictionary with all words and their frequencies calculated from the corpus
- Segment all the words in the dictionary into characters
- Repeat until the vocabulary size reaches a predefined limit:
  - Select the subword bigram with the highest frequency
  - Merge that bigram into a new subword and add it to the vocabulary
  - Update the segmented dictionary by replacing all the occurrence of that bigram with the newly added subword





• The dictionary:

| I o w              | 5 |
|--------------------|---|
| lo wer             | 2 |
| n e w e s t        | 6 |
| w i d e s t < /w > | 3 |

• The vocabulary:

I o w</w> w e r</w> n s t</w> i d



• The dictionary:

| lo w              | 5 |
|-------------------|---|
| lo wer            | 2 |
| n e w <b>es</b> t | 6 |
| w i d es t < /w > | 3 |

• The vocabulary:

I o w</w> w e r</w> n s t</w> i d es



• The dictionary:

| lo w             | 5 |
|------------------|---|
| lo wer           | 2 |
| n e w <b>est</b> | 6 |
| widest           | 3 |

The vocabulary:

I o w</w> w e r</w> n s t</w> i d es **est**</w>



• The dictionary:

| lo w      | 5 |
|-----------|---|
| lo w e r  | 2 |
| n e w est | 6 |
| widest    | 3 |

• The vocabulary:

I o w</w> w e r</w> n s t</w> i d es est</w> **lo** 



#### More about BPE

- Do deterministic longest piece segmentation of words
- Segmentation is only within words after tokenization
- Advantages:
  - Automatically build vocabulary from corpus
  - Language agnostic
  - Unsupervised
  - Trade off between text length and vocabulary size
- A trick:
  - treat 't' and 't</w>' as different characters to keep the word boundary information





#### WordPiece and SentencePiece

- An alternative solution for subword segmentation
- Proposed by Google in 2012:

Schuster, Mike, and Kaisuke Nakajima. Japanese and korean voice search. ICASSP 2012.

- Instead of merging the bigram with highest frequence in BPE,
   WordPiece merge the bigram to maximizing the language model log likelihood of the corpus.
- SentencePiece is similar with WordPiece but applied on raw texts without tokenization, while whitespace is treated as a special character ( ).





#### Subword-level NMT

- Subword-level NMT is almost the same as word-level NMT except for the preprocessing process for subword segmentation and the postprocessing process for subword combination.
- The subword combination is simple because the word boundary information is kept in the words.
- Subword-level NMT solves the open-vocabulary problem very well.
- Subword-level NMT outperforms word-level NMT significantly.
- Subword segmentation and combination has become a standard technique for NMT.





- Subword level and character level NMT
- Transformer-based NMT
- Pre-trained language models (PLMs)



## RNN-based NMT Recap

- RNN-based NMT obtained great success:
  - Sequence-to-sequence model
  - RNN encoder and RNN decoder
  - Attention between target and source
  - Subword or character level encoding





## Advantages of NMT

NMT provided a brand new paradigm for machine translation, which demonstrated huge advantages over previous approaches:

- NMT is a single model which is trained as a whole (end-to-end training), while an SMT system has many components each of which is trained against a separate object function.
- The translation quality of NMT are much better than that of SMT, especially in terms of fluency.
- NMT is good at learning from huge amount of data.
- Subword or character level NMT provides an elegant mechanism to deal with morphologically rich languages.



## Improvement and extension of NMT

Research of NMT is exploding in recent years and great progress has been made:

- Transformer-based NMT
- Convolution-based NMT
- Multilingual NMT
- Multimodal NMT
- Unsupervised NMT

Transformer-based NMT has replaced RNN-based NMT and become a new state-of-the-art approach.





#### Transformer-based NMT

Proposed by Google in 2017:

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NIPS 2017.

- Transformer is a new neural network architecture based soly on an attention mechanism, dispensing with recurrence and convolutions entirely.
- Transformer-based NMT is the state-of-the-art of MT technologies.



#### Transformer NMT architecture

- Transformer NMT adopts a sequence-to-sequenct architecture.
- In this section, we use figures from Jay Alammar's blog to illustrate the transformer NMT.

http://jalammar.github.io
/illustrated-transformer/





- Transformer-based NMT
  - A high-level look
  - Transformer encoder
  - Transformer decoder



## A High-Level Look





## A High-Level Look

The encoding component is a stack of encoders (6 in this paper).

The decoding component is also a stack of decoders of the same number.







## A High-Level Look

An encoder has two parts: FFNN and Self-Attention.

An decoder has one more part: Enc-Dec Attention.









- Transformer-based NMT
  - A high-level look
  - Transformer encoder
  - Transformer decoder



#### Self-Attention





#### Self-attention: Visualization

Example: The animal didn't cross the street because it was too tired

Associate it with animal

Look for clues when encoding





## Self-attention: step 1 (create K,Q,V vectors)



Multiplying  $x_1$  by the  $W^Q$  weight matrix produces  $q_1$ , the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.





## Self-attention: the calculation of K,Q,V vectors



Every row in the X matrix corresponds to a word in the input sentence. We can see the difference in size of the embedding vector (4 boxes in the figure), and the q/k/v vectors (3 boxes in the figure)





# Self-attention: step 2 (calculate self-attention scores)







# Self-attention: step 3 & 4 (normalize self-attention scores with softmax)







# Self-attention: step 2 - 6 (weighted-sum of values from attented words)



# Self-attention: The self-attention calculation in matrix form



HEAD #0



#### Multi-head attention



With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices.



we get 8 different Z matrices.

X

ATTENTION

HEAD #1

Calculating attention separately in

ATTENTION

HEAD #7

eight different attention heads

4 D > 4 A > 4 B > 4 B > B = 90 C



#### Multi-head attention

1) Concatenate all the attention heads



2) Multiply with a weight matrix W<sup>o</sup> that was trained jointly with the model

Χ



3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=





## Overall picture of multi-head self-attention

1) This is our input sentence\*

2) We embed each word\*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer



\* In all encoders other than #0 we don't need embedding. We start directly with the output of the encoder right below this one









# Self-attention: Visualization (Revisit with 2 heads)

As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" - in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".





# Self-attention: Visualization (Revisit with 8 heads)

If we add all the attention heads to the picture, however, things can be harder to interpret.





# Positional Encoding: Representing Sequence Order



To give the model a sense of the order of the words, we add positional encoding vectors – the values of which follow a specific pattern.





## Positional Encoding: Representing Sequence Order

If we assumed the embedding has a dimensionality of 4, the actual positional encodings would look like this:



The formula for positional encoding is:

$$PE_{(pos\ 2i)} = sin(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

where *pos* is the position of the word in the input sequence, and *i* is the index of the dimension of the positional encoding vector.





# Positional Encoding: Representing Sequence Order



A real example of positional encoding for 20 words (rows) with an embedding size of 512 (columns).





## The residuals and layer normalization



Each sub-layer (self-attention, ffnn) in each encoder has a residual connection around it, and is followed by a layer-normalization step.

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

Formula for the Feed Forward Network layer.





## The residuals and layer normalizations



There are residual connections and layer normalizations for the sub-layers of the decoder as well.





#### Content

- Transformer-based NMT
  - A high-level look
  - Transformer encoder
  - Transformer decoder



# Decoding

Decoding time step: 1 2 3 4 5 6

OUTPUT





# Decoding

Decoding time step: 1 2 3 4 5 6

OUTPUT

