ORGANIC REACTIONS

ORGANIC REACTIONS

5 Types of Reactions

- 1. Condensation Reactions
- 2. Addition Reactions
- 3. Substitution Reactions
- 4. Elimination Reactions
- 5. Oxidation Reactions

CONDENSATION REACTIONS

(ETHERS, ESTERS, & AMIDES)

CONDENSATION REACTIONS

Condensation Reactions

These reactions synthesize new functional group as a result of the release of a water molecule (condensation).

CONDENSATION REACTIONS

involve 3 molecules...

a) Ethers

- b) Esters
- c) Amides

a) Ethers

When two hydroxyl groups react, an ether group (C-O-C) bond is produced and water is released.

$$H_3C-OH + HO-CH_3 \rightarrow H_3C-O-CH_3 + H_2O$$

Structure of Ethers:

IUPAC naming system

- i. The root of the chemical is the <u>longer</u> C-chain
- ii.The shorter C-chain and oxygen comprise the ether side chain and is given the ending "oxy"
- iii.The location of the ether group is numbered when necessary

Example #1

What is the IUPAC name for the compound CH₃-O-C₂H₅?

methoxyethane

Common naming system

This system uses the name "ether" as the root and the alkyl names as prefixes.

ethylmethyl ether

$$C_2H_5-O-C_2H_5$$

diethyl ether

Example #2

Write a balanced equation to show the formation of an ether from propan-1-ol only. Name the ether formed.

```
H_2SO_4 1-propoxypropane

CH_3CH_2CH_2OH + CH_3CH_2CH_2OH \rightarrow CH_3CH_2CH_2CH_2CH_2CH_3

+ H_2O
```

Example #3

Name the following ethers:

(2E,5E)-4-ethoxyhepta-2,5-diene

2-ethoxypentane

Properties of Ethers

Ethers have boiling points than their hydrocarbon counterparts, but boiling points than their alcohol counterparts.

Ethers are usually effective solvents.

b) Esters

Esters (RCOOR') are formed through the condensation reaction between a hydroxyl group and a carboxylic acid group.

Conc.

$$H_2SO_4$$

 CH_3 -OH + HOOCH $_3 \rightarrow CH_3$ -OOCH $_3 + H_2O$

This condensation reaction is also known as an esterification reaction.

Structure of Esters:

IUPAC naming system

i. The alcohol becomes the alkyl group.

ii.The carboxylic acid is the root, but the "oic acid" is changed to "-oate".

Example #4

Name the reactants and identify and name the products of the reaction.

Conc.

$$H_2SO_4$$

 \rightarrow CH₃CH₂CH₂COOCH₂CH₃ + H₂O
ethyl butanoate

Example #5

Draw the structural diagram and write the IUPAC name for the ester formed in the reaction between propan-1-ol and benzoic acid.

Example #6

It there are side chains attached to the carboxylic acid part, then the side chain names are attached to the 'oate' part of the ester name

ethyl 2-methylpropanoate

Example #8

Name the following molecules:

2-methylpropyl ethanoate

Properties of Esters

Many aromatic fruits and flowers are due to the natural production of esters. They are also synthetically produced for foods (tastes) and perfumes (odours).

Esters have a _____ boiling point than their carboxylic acid counterpoints.

c) Amides

Amides (RCONHR') are produced due to the condensation between a carboxylic acid and an amine / ammonia.

Structure of Amides

IUPAC naming system

i. The amine becomes the alkyl group.

ii.The carboxylic acid is the root, but the "oic acid" is changed to "-amide".

Example #9

Name the reactants and identify and name the products of the reaction.

N-methylbutanamide

water

Example #10

Redraw and name (IUPAC) the following amides.

i. CH₃CH₂CH₂CON(CH₃)CH₂CH₃

N-ethyl-N-methylbutanamide

ii.CH₃CH₂CH₂CON(CH₂CH₃)₂

N,N-diethylbutanamide

Properties of Amides

Amides, just like amines, are generally weak bases.

Generally, amides have low boiling points and are not very soluble in water.

Properties of Amides

- Contain the peptide or amide linkage as their

functional group

- Structurally similar to esters

- Amide linkage is very significant in biological systems as the forming and breaking of these bonds give

specificity to proteins

Peptide bonds

Val

HYDROLYSIS

A hydrolysis reaction is the "reverse" of condensation.

A water molecule is used to separate a product formed from a condensation reaction.

$$H_3C-O-CH_3 + H_2O \xrightarrow{NaOH} H_3C-OH + HO-CH_3$$

