EXAMEN, ALGEBRĂ I, 25 IANUARIE 2023

Puteți folosi orice rezultat teoretic din curs. SUCCES!

Exercițiul 1: Fie funcția $f: \mathbb{R} \to \mathbb{R}$ definită princ

$$f(x) = \begin{cases} 2x + 7, & x \le -1, \\ -x^2 + 4, & -1 < x < 2, \\ 3x - 2, & x \ge 2. \end{cases}$$

- (a) Aflați f([-3,2]) și $f^{-1}([0,2])$. (1 punct)
- (b) Este f o funcție injectivă? Dar surjectivă? Argumentați. (1 punct)
- (c) Aflați acei $y \in \mathbb{R}$ astfel încât $f^{-1}(y)$ are cel mai mare număr de elemente. (0,5 puncte)

Exercițiul 2: Fie $D = \mathbb{R} \setminus \{0,1\}$ și G grupul funcțiilor bijective de la D în D (operația considerată este compunerea uzuală a funcțiilor).

- (a) Arătați că $f_1(x) = \frac{1}{x}$ și $f_2(x) = \frac{1}{1-x}$ sunt elemente ale grupului G și calculați-le ordinele. (1,25 puncte)
- (b) Arătați că subgrupul lui G generat de f_1 și f_2 are 6 elemente. (1,25 puncte)

Exercitiul 3: Se consideră permutarea:

- (a) Descompuneți permutarea σ în cicli disjuncți. (0,75 puncte)
- (b) Calculați σ^{2023} și ordinul permutării σ . (0,75 puncte)
- (c) Rezolvați ecuația $\tau^3 = \sigma$ în S_{15} . (1 punct)

Exercițiul 4: Considerăm mulțimea $\mathbb{Z}[i\sqrt{2}] = \{a + bi\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

- (a) Arătați că $\mathbb{Z}[i\sqrt{2}]$ este un subinel în corpul uzual $(\mathbb{C}, +, \cdot)$. (0,5 puncte)
- (b) Determinați mulțimea elementelor inversabile din inelul $\mathbb{Z}[i\sqrt{2}]$. (1 punct)
- (c) Fie $I=(1+i\sqrt{2})$ idealul generat de elementul $1+i\sqrt{2}$ în inelul $\mathbb{Z}[i\sqrt{2}]$. Dacă $a,b\in\mathbb{Z}$, arătați că $a+bi\sqrt{2}\in I\iff 3\mid a-b$ și demonstrați că are loc următorul izomorfism de inele:

$$\mathbb{Z}[i\sqrt{2}]/I \simeq \mathbb{Z}_3$$
 (1 punct)