# HW1 Fine-Grained Image Classification

### Outline

- Introduction
- Methodology
- Experiment
- Code and Reference

#### Introduction

- The purpose of this project is to classify 196 different categories of cars with different brands and types.
- Training dataset: 11185 images with ground truth
- Testing dataset: 5000 images without ground truth

## Methodology

- Data pre-process and augmentation:
  - a. Resize images to (512, 512)
  - b. Random crop images to (448, 448)
  - c. Random horizontal flip
  - d. Color jitter (brightness: 0.126, saturation: 0.5)

#### Model Architecture

Resnet50 provided by torchvision library with pretrained weights. The output dimension should be modified to 196 to fit the number of the categories of the dataset.

## Methodology (cont.)

#### Hyperparameters

Epoch: 120

Batch size: 64

NN weight initialize: kaiming normal

NN input image size: 448 \* 448

Loss function: cross entropy

Optimizer: stochastic gradient descent with momentum=0.9

• Learning rate: Start with 0.01, multiply by 0.99 every epoch

# Experiment

- Hardware information
  - o CPU: i9-10900X
  - o GPU: RTX 2080ti \* 3
  - o RAM: 62G
- Training time for 120 epochs: about 6hrs

# Experiment (cont.)

- I've tried different optimizer supported in pytorch and found that SGD with momentum performs better than Adam in both the decreasing speed of training loss and the testing accuracy.
- Testing accuracy after 120 epochs:

o SGD: 0.948

o Adam: 0.823



#### Code and Reference

- Github Link
- References are listed in README.md in github repository.