

c-M2DP: A FAST POINT CLOUD DESCRIPTOR WITH COLOR INFORMATION TO PERFORM LOOP CLOSURE DETECTION

Leonardo Perdomo, Diego Pittol Mathias Mantelli, Renan Maffei Mariana Kolberg and Edson Prestes August, 2019

- 3D spatial data can provide more descriptive scenes than only 2D images;
- Color can increase 3D descriptiveness¹, but is insufficiently investigated for loop closure detection;
- Availability in recent benchmark platforms².

Colored point cloud generated using LIDAR and camera.

¹Tombari, Salti & Stefano (2011), Feng, Liu & Liao (2015), Logoglu, Kalkan & Temizel (2016)

²Pandey, McBride & Eustice (2011), Geiger, Lenz & Urtasun (2012)

- Color M2DP (c-M2DP), a global descriptor comprising of color and shape data computed from the point cloud:
 - Takes advantage of M2DP's structure, extending it to compute color signatures from multiple 2D projections;
- An improved loop closure detection, using the c-M2DP descriptor on point cloud sequences generated through camera-LIDAR fusion, or stereo depth estimation.

- Rotation and shift invariance in 3D space;
- Point cloud P centroid is computed and used as the reference frame origin;
- PCA is performed on P, with both the 1st and 2nd principal components defined as the x-axis and y-axis, respectively.

- A 2D plane X is defined with normal vector \boldsymbol{m} and $[\theta, \phi]$ parameters, which are used to generate distinct 2D planes;
- P is projected onto each 2D plane, in order to compute shape and color signatures from each 2D projection.

Projecting a point cloud \boldsymbol{P} on multiple 2D planes.

- Each plane is split into l concentric circles with varying radii $[r, 2^2r, \dots, l^2r]$;
- Each concentric circle is divided in t shape bins, indexed by the x-axis;
- Shape signature s_X is computed by counting the points within each bin.

Computing the shape signature s_X .

- For every concentric circle, histograms of the color channels, which are divided in j bins, are computed;
- These histograms are concatenated them into a single color signature vector c_X;

Computing the color signature c_X .

- Both s_X and c_X are normalized and concatenated into a single signature vector;
- The signature matrix A is augmented by a row with the concatenated vector.

Concatenated shape and color signatures.

- For every 2D projection, both shape and color signatures are generated, concatenated and included into *A*;
- SVD of A is computed, with the resulting 1st left and right singular vectors being concatenated and used as the final descriptor.

- M2DP parameters (shared with c-M2DP) were the same from original work;
- Color bins for each color channel were set t = j;
- Color channels were fixed h=3, i.e. RGB, HSV and CIELab;

M2DP and c-M2DP Parameters

Parameter	M2DP	c-M2DP
Azim. angles (b)	4	4
Elev. angles (q)	16	16
Conc. circles (l)	8	8
Shape bins (t)	16	16
Color bins (j)	-	16
Vector length	192	576

 c-M2DP color space was chosen after evaluating it using RGB, HSV and CIELab.

Descriptor	Recall at Precision	100%
RGB	82.5%	
HSV	71.4%	
CIELab	49.8%	

KITTI 06 LIDAR-camera.

- In camera-LIDAR sequences:
 - c-M2DP computing time is only 23.2% higher than M2DP;
 - c-M2DP is 22.6% faster to compute than CSHOT.

Average times computing and matching a descriptor.

Descriptor	Computing (s)	Matching (s)
M2DP	0.0674 ± 0.0041	0.0043 ± 0.0004
c-M2DP	0.0830 ± 0.0052	0.0051 ± 0.0006
CSHOT	0.1072 ± 0.0168	0.0059 ± 0.0005

- In stereo sequences:
 - Overall increase in the average times computing the descriptors;
 - c-M2DP computing time is only 18.8% higher than M2DP;
 - CSHOT computational burden, with an average time 315.9% higher than c-M2DP.

Descriptor	Computing (s)	Matching (s)
M2DP	0.3584 ± 0.0816	0.0044 ± 0.0008
c-M2DP (Ours)	0.4259 ± 0.0956	0.0054 ± 0.0006
CSHOT	1.7711 ± 1.0159	0.0061 ± 0.0005

Recall at Precision 100% on KITTI Camera-LIDAR Point Clouds

Sequence	M2DP	c-M2DP (Ours)	CSHOT
KITTI00	0.574303	0.673295	0.791549
KITTI05	0.408935	0.708861	0.708108
KITTI06	0.668122	0.824701	0.818898
KITTI07	0	0.101695	0.169492

PRECISION-RECALL CAMERA-LIDAR

Recall at Precision 100% on KITTI Stereo Point Clouds

Sequence	M2DP	c-M2DP (Ours)	CSHOT
KITTI00	0.269663	0.697466	0.709402
KITTI05	0.353425	0.692308	0.778539
KITTI06	0.227488	0.502075	0.822835
KITTI07	0.158537	0.372340	0.442105

PRECISION-RECALL STEREO

- Overall accuracy improvement of the c-M2DP descriptor over the original M2DP;
- In camera-LIDAR sequences, c-M2DP is faster to compute and shows competitive results against CSHOT;
- As expected in stereo sequences, CSHOT shows higher accuracy at the cost of being several times slower than c-M2DP.

Leonardo Perdomo, Diego Pittol Mathias Mantelli, Renan Maffei Mariana Kolberg and Edson Prestes Instituto de Informática — UFRGS

