Lecture 8: Instrumental Variables (Part III)

Jaakko Meriläinen

5304 Econometrics @ Stockholm School of Economics

Introduction: What We Learned in the Previous Lecture

- IV is a powerful method to deal with bias in OLS
- IV relies on two conditions:
 - Relevance (which can be directly tested)
 - Validity (which is not directly testable)
 - Under maintained assumptions, IV is consistent
- The IV estimator is easily extended to multiple endogenous variables, multiple instruments
- When IVs are weak, even small violations of validity can cause large inconsistency
- This should be tested for and first-stage should always be presented

Plan for Today

- We will extend the discussion in two directions:
 - The interpretation of IV results when potential outcomes are heterogeneous
 - The use of IV methods in randomized trials.
- The aim is to get a deeper understanding of what IV methods identify and the specific relationship to different causal quantities ("treatment effects") and external validity

Plan for Today

- Introduction
- 2 Heterogenous potential outcomes
 - Compliance groups
 - The LATE (= local average treatment) theorem
 - LATE with multiple instruments
 - LATE with multivalued treatments
- 3 Examples of LATE and ACR (= average causal response)
 - Oreopoulos (2006)
 - Muralidharan, Singh, and Ganimian (2019)
- Making sense of LATE
- Summary

Heterogenous Potential Outcomes

- So far, we have worked under the assumption of constant causal effects
- Any treatment had the same value for all individuals; our parameter (β) did not vary across individuals
- But in practice, this may not be reasonable to assume
- In fact, in general, we expect that treatment effects will vary across individuals!
- E.g., the effect of giving a specialized textbook to a high-performing student could be very different from giving one to a low-performing student!
- Interpreting IV results becomes trickier then

Heterogeneity by Known Characteristics

- The most straightforward way to think of heterogeneity is where treatment effects differ across known (and exogenously determined) sub-groups
- For instance, the returns to education could different for men and women
- At that point, think of running the IV estimates in separate regressions for women and men
- You need first stage variation and validity for both groups
- This could also be estimated with an interaction term.
 - Two endogenous variables: you can generate two IVs
 - Particularly important when considering heterogeneity by continuous covariates
- Our major concern, however, relates to heterogeneity of a different kind...

Compliance Groups

- Let us stay with the case of a binary instrument (Z_i) and a binary endogenous variable (X_i)
- Imagine X is finishing college, Z is getting a (randomized) scholarship
- We can think of four types of compliance units:
 - Always-takers: D = 1, whether Z = 1 or Z = 0
 - I always go to college, whether or not I get a scholarship
 - Never-takers: D=0, whether Z=1 or Z=0
 - I never go to college, whether or not I get a scholarship
 - Compliers: D = 1 when Z = 1; D = 0 when Z = 0
 - Getting a scholarship makes me go to college
 - **Defiers:** D=0 when Z=1; D=1 when Z=0
 - I would have gone to college otherwise; but now that I have a scholarship, I will not go!

Compliance Groups

Compliance Type by Treatment and Instrument

		Instrument: Z_i			
		0 1			
Treatment: D_i	0	complier/never-taker	never-taker/defier		
	1	always-taker/defier	complier/always-taker		

• Compliance groups cannot be inferred from data (without adding more assumptions)!

The LATE Assumptions

- **1 Independence:** $\{Y_i(D_{1i},1), Y_i(D_{0i},0), D_{1i}, D_{0i}\} \perp Z_i$
 - This means that Z_i is as good as randomly assigned
- **2 Exclusion:** $Y_i(d, 0) = Y_i(d, 1) \equiv Y_{di}$ for d = 0, 1
 - The instrument Z_i only affects Y_i through D_i
- **3** First stage: $E[D_{1i} D_{0i}] \neq 0$
 - This is the equivalent of what we have called the relevance condition
 - The instrument has some explanatory power for D_i
- **4 Monotonicity:** $D_{1i} D_{0i} \ge 0$ for all i or vice versa
 - ullet This means that the instrument affects the probability of $D_i=1$ in the same direction for all individuals
 - This is also called the "no-defiers" assumption

The LATE Theorem

Under the four assumptions on the previous slide, it can be shown that the IV estimator

$$\beta = \frac{E(Y_i|Z_i = 1) - E(Y_i|Z_i = 0)}{E(D_i|Z_i = 1) - E(D_i|Z_i = 0)}$$

identifies the effect of treatment on those individuals whose treatment status has been changed by the instrument (i.e. the compliers)

• This parameter is called the Local Average Treatment Effect

The LATE Theorem

Formally, it can be shown that

$$\beta_{LATE} = \frac{E(Y_i|Z_i=1) - E(Y_i|Z_i=0)}{E(D_i|Z_i=1) - E(D_i|Z_i=0)}$$
$$= E(Y_{1i} - Y_{0i}|D_{1i} > D_{0i})$$

- $D_{1i} > D_{0i}$ is the group of individuals for whom the instrument changes the schooling decision
- For the proof of the LATE theorem, see Angrist and Pischke (2009, p. 155)
- Note that, since different instruments will move different individuals into treatment, the LATE is specific to the instrument chosen!

What Does the LATE Tell You?

- Given heterogeneous potential outcomes, the LATE is the best we get without additional assumptions
- It is a well-defined causal estimate but what does it tell us and is it useful?
- This depends entirely on what you want to use the causal estimate for!
- Understanding what LATE does/does not tell you is the key aspect to learn about treatment effects
 when potential outcomes vary across individuals

What the LATE Is Not: LATE≠ATT

- In the first lecture, we had defined the average treatment effect on the treated (abbreviated as ATET or ATT or ToT)—LATE ≠ ATT!
- To see why, just note that:

$$ATT = \underbrace{E[Y_{1i} - Y_{0i}|D_i = 1]}_{effect \ on \ treated}$$

$$= \underbrace{E[Y_{1i} - Y_{0i}|D_{0i} = 1]P[D_{0i} = 1|D_i = 1]}_{effect \ on \ always-takers}$$

$$+\underbrace{E[Y_{1i} - Y_{0i}|D_i > D_{0i}]P[D_i > D_{0i}, \ Z_i = 1|D_i = 1]}_{effect \ on \ compliers}$$

• The effect on the treated is a weighted average of the effect on always-takers (which the LATE does not tell us anything about) and the effect on compliers (which is what the LATE is)

What the LATE Is Not: The Effect on the Un-Treated

 By a similar logic, the effect on the untreated is a weighted average of the treatment effect on never-takers and the treatment effect on compliers

$$ATU = \underbrace{E[Y_{1i} - Y_{0i}|D_i = 0]}_{\textit{effect on nontreated}}$$

$$= \underbrace{E[Y_{1i} - Y_{0i}|D_{1i} = 0]}_{\textit{effect on never-takers}} P[D_{1i} = 0|D_i = 0]$$

$$+ \underbrace{E[Y_{1i} - Y_{0i}|D_i > D_{0i}]}_{\textit{effect on compliers}} P[D_i > D_{0i}, Z_i = 0|D_i = 0]$$

What the LATE Is Not: The Average Treatment Effect

This follows naturally from the previous two slides

$$ATE = \underbrace{E[Y_{1i} - Y_{0i}]}_{\text{average treatment effect}}$$

$$= \underbrace{E[Y_{1i} - Y_{0i}|D_i = 1]}_{ATT} P[D_i = 1]$$

$$+ \underbrace{E[Y_{1i} - Y_{0i}|D_i = 0]}_{ATU} P[D_i = 0]$$

- The ATE is the weighted average of the ATT and the ATU
- LATE does not pin this down

Generalizing LATE

- We stated the LATE theorem in terms of a binary treatment with a single, binary instrument with no covariates
 - This is the standard illustration of LATE (and communicates most relevant ideas)
 - · Note: all of this is about interpreting the results from IV estimates, not how they are estimated
- But, as we saw, the 2SLS estimator is more general: it allows for multiple instruments, multiple endogenous variables, covariates etc.
- We will now discuss how 2SLS can be interpreted in these general cases with heterogeneous potential outcomes

LATE with Multiple Instruments

- Imagine if we had two instruments Z_1 and Z_2 which satisfied the LATE assumptions
- We could use either of them as an IV and recover a LATE
- These LATEs are instrument-specific: they are defined over the subpopulation moved into treatment by Z₁ or Z₂
- Using only one instrument leaves potentially useful information on the table
- But how should the resulting 2SLS estimate be interpreted?

LATE with Multiple Instruments: Two Binary Instruments

- It can be shown that the 2SLS estimate obtained using both instruments is a weighted-average of the two instrument-specific LATEs
- This is simplest to see in the case of two binary instruments $(Z_1 \text{ and } Z_2)$ which are uncorrelated with each other
- Define the instrument-specific LATEs as:

$$\rho_j = \frac{Cov(Y_i, Z_{ji})}{Cov(D_i, Z_{ji})}; j = 1, 2$$

LATE with Multiple Instruments: Two Binary Instruments

• The population first-stage fitted values are:

$$\widehat{D_i} = \pi_{11} z_{1i} + \pi_{12} z_{2i}$$

• Then it can be shown that $\rho_{2SLS} = \psi \rho_1 + (1 - \psi)\rho_2$ where

$$\psi = \frac{\pi_{11} Cov(D_i, Z_{1i})}{\pi_{11} Cov(D_i, Z_{1i}) + \pi_{12} Cov(D_i, Z_{2i})}$$

2SLS Estimates with Multi-Valued Treatments

- A final generalization is to the case of an endogenous variable that takes on many values
- One example of such a variable is years of schooling
 - Clearly the returns to schooling could be heterogeneous across individuals
 - Also, there is no guarantee, except by assumption, that these returns are linear
 - How should we then interpret the 2SLS estimate of the returns to an additional year of schooling?

2SLS Estimates with Multi-Valued Treatments: Average Causal Response

 Angrist and Imbens (1995) discuss this case in depth and show that the 2SLS estimate can be interpreted as an average causal response (ACR)

This parameter captures a <u>weighted average</u> of <u>causal responses to a unit change in treatment</u>, for those whose treatment status is affected by the instrument.

• The interpretation is thus similar to that of a LATE in the binary treatment case

ATE and LATE of the Returns to Schooling (Oreopoulos 2006)

- Oreopoulos focuses on the distinction between LATE and ATE and how much this might matter in practice
- The paper builds on a large literature (such as Angrist and Krueger, 1991) which use IV methods to recover the returns to schooling in wage regressions
- What is the concern?
 - ullet Treatment effects affect $<\!10\%$ of the population exposed to the IV
 - IV models are frequently greater than OLS (which is perhaps counter-intuitive)
- One possibility is that OLS, in the absence of bias, approximates the effect on everyone but LATE is
 on a "small and peculiar group" ⇒ The difference between IV and OLS is not about bias but about
 different populations!

ATE and LATE of the Returns to Schooling (Oreopoulos 2006)

- Oreopoulos (2006) studies this explicitly by looking at returns from schooling using changes in compulsory schooling laws in UK, US and Canada
 - The compulsory schooling age changed, e.g., in Britain from 14 to 15 years in 1947
 - This forces some people to stay in school longer
- Oreopoulos points out that degree of compliance varies a great deal across the three contexts!
 - Because dropout rates in US and Canada were lower, a much greater proportion of the sample can be known as "always-takers"
 - Dropout rates in the UK were much higher, so ~40% of the sample was in the compliers!
- Oreopoulos's argument is that comparing LATEs across samples with very different compliance rates is informative of how much ATEs vary
- This implicitly assumes effects for always-takers/compliers are stable across settings

The Effect of Compulsory Schooling Laws

FIGURE 1. FRACTION LEFT FULL-TIME EDUCATION BY YEAR AGED 14 AND 15 (Great Britain)

LATE Results Similar(-ish) Across Countries and Subgroups, IV > OLS Everywhere

	(1) OLS full sample	(2) IV with regional controls	(3) IV with regional trends	(4) IV with regional trends and regional controls
Dependent variable	United States	[1901-1961 birth coho	rts aged 25-64 in the	2 1950-2000 censuses]
Log weekly earnings (all workers)	0.078	0.142	0.175	0.405
	[0.0005]***	[0.0119]***	[0.0426]***	[0.7380]
Log weekly earnings (males)	0.070	0.127	0.074	0.235
	[0.0004]***	[0.0145]***	[0.0384]*	[0.1730]
Log weekly earnings (black males)	0.074	0.172	0.119	0.264
	[0.0004]***	[0.0137]***	[0.0306]***	[0.1295]**
	Canada [19	11-1961 birth cohorts		
Log annual earnings (all workers)	0.099	0.096	0.095	0.142
	[0.0007]***	[0.0254]***	[0.1201]	[0.0652]**
Log annual earnings (males)	0.087	0.124	-0.383	0.115
	[0.0008]***	[0.0284]***	[1.1679]	[0.0602]*
	Unite	ed Kingdom [1921–195 -1983	51 birth cohorts aged 1998 GHHS1	32-64 in the
Log annual earnings (all workers)	0.079	0.158	0.195	NA
	[0.0024]***	[0.0491]***	[0.0446]***	
Log annual earnings (males)	0.055	0.094	0.066	NA
	[0.0017]***	[0.0568]	[0.0561]	
	Britain [1	921-1951 birth cohorts	aged 32-64 in the 1	983-1998 GHHS1
	OLS	RD		
Log annual earnings (all workers)	0.078	0.147	NA	NA
	[0.002]***	[0.061]**		
Log annual earnings (males)	0.055	0.150	NA	NA
	[0.0017]***	[0.130]		

Summarizing Oreopoulos (2006)

- The pattern, that IV estimates of returns to schooling exceed OLS, is perhaps unintuitive
 - We typically worry about OLS schooling coefficient being biased upwards
 - · If omitted ability is positively correlated with schooling and with independent returns on the labor market
- Oreopoulos (2006) does not tell us why IV > OLS
- But it does suggest that the reason is not that the LATE is being estimated on some peculiar sample
 - This pattern is similar even when the degree of compliance is a lot more!

IV in RCTs with a Multivalued treatment

- Muralidharan, Singh and Ganiman (2019) report results from a randomized trial of a personalized learning program in Delhi
 - This is motivated by very low learning levels, very high within-grade heterogeneity
 - The program targets middle school students in Grades 6-9, outside of school hours and premises
 - Participation is individually randomized
- Lottery-winners were offered free access to the program for 1/2 a school year
 - High take-up (among lottery participants) if defined as showing up ever
 - Variable take-up when looking at number of days actually attended
- The intent-to-treat effect is the reduced form effect of the lottery on the outcome

Intent-to-Treat Effects

Number of Days Attended (Max. Possible 86 Days)

What Do We want to Get at?

- For most purposes, the ITT itself is very informative here (and very big)
- Treating take-up as a binary decision could lead us to think of "scaling up" ITT
 - That is a minor adjustment since attending >1 day is almost 90%!
 - Note there are no "always-takers", so LATE = ATT
- 58% attendance among lottery-winners over a total program duration of ~86 days
 - Merely a function of how things panned out
 - Could have started earlier, or had higher/lower attendance
- What we want, if extrapolating to different intensities, is a dose-response function:
 - How does attending x days affect achievement?
 - E.g. imagine if we wanted to think how such program would work if delivered as summer vacation remedial instruction?

IV Estimates of Dose-Response: Specification

• Muralidharan et al. (2019) estimate:

$$Y_{is2} = \alpha + \gamma Y_{is1} + \mu_1 Attendance_i + \eta_{is2}$$

where Y_{ist} is student test score in subject s at time t and Attendance is the number of days a student logged in to the Mindspark system (which is zero for all lottery-losers)

• Since program attendance may be endogenous to expected gains from the program, they instrument for *Attendance* with the randomized offer of a voucher

Estimates of Dose-Response

|--|

Dep var: Standardized IRT scores (endline)

	IV estimates		OLS VA (full sample)		OLS VA (Treatment group)	
VARIABLES	Math	Hindi	Math	Hindi	Math	Hindi
Attendance (days)	0.0065*** (0.0011)	0.0040*** (0.0011)	0.0068*** (0.00087)	0.0037***	0.0075*** (0.0018)	0.0033* (0.0020)
Baseline score	0.53***	0.67***	0.54***	0.69***	0.57***	0.68***
	(0.036)	(0.037)	(0.039)	(0.039)	(0.062)	(0.056)
Constant			0.35***	0.16***	0.31***	0.18
			(0.040)	(0.042)	(0.12)	(0.13)
Observations	529	533	529	533	261	263
R-squared	0.422	0.460	0.413	0.468	0.413	0.429
Angrist-Pischke F-statistic for weak instrument	1238	1256				
Diff-in-Sargan statistic for exogeneity (p-value)	0.26	0.65				
Extrapolated estimates of 90 days' treatment (SD)	0.585	0.36	0.612	0.333	0.675	0.297

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Estimates of Dose-Response: Interpretation

- IV estimates identify an "Average Causal Response" (Angrist and Imbens, 1995)
- "Captures a weighted average of causal responses to a unit change in treatment (in this case, an extra
 day of attendance), for those whose treatment status is affected by the instrument"
- Using IV estimates to predict the effect of varying treatment intensity requires further assumptions about
 - Heterogeneity in treatment effects—ACR is identified off compliers
 - Functional form of relationship between attendance and the treatment effect—ACR averages effects over different intensities of treatment
- Muralidharan et al. (2019) show evidence in our data in support of constant treatment effects across compliance groups and a linear dose-response relationship

Evidence in Favor of Constant Treatment Effects

- ITT effects were constant over the full range of the baseline distribution of test scores
 - Typically a good summary measure of individual-specific heterogeneity
 - No significant evidence of heterogeneity on wealth and gender either
- Muralidharan et al. cannot reject equality of estimates between OLS and IV; suggests ATE and LATE
 are similar in this setting
- Constant term in OLS specifications (corresponding to zero attendance) is identical when estimated using full sample and when only using lottery-winners
 - This suggests equality of potential outcomes between "never-takers" and "compliers"
 - No "always-takers" in this setting

Dose-Response Relationship in Value-Added: Math and Hindi

Is LATE a Useful Parameter?

I find it hard to make any sense of the LATE. We are unlikely to learn much about the processes at work if we refuse to say anything about what determines j; heterogeneity is not a technical problem calling for an econometric solution, but is a reflection of the fact that we have not started on our proper business, which is trying to understand what is going on.

Angus Deaton (2011)

Is Heterogeneity of Outcomes First-Order or Not?

- The merit of LATE is that it makes explicit what is the most you can hope to identify in general without making any further restrictions on heterogeneity
- This is very important since these distinctions were not made in much of the traditional IV literature
- With constant causal effects, these concerns of interpretation are assumed away
- But in the general case, you should worry about how first-order the issues of heterogeneity are
- Are the compliers a particularly non-representative subsample that we should be worried about generalizing from them?

Is Heterogeneity of Outcomes First-Order or Not?

- There is no general formulation that allows you to see this
- One alternative is to take a more explicit theory-driven approach
 - E.g., the marginal treatment effects work done by Heckman and co-authors
 - This is more advanced than the level of this course and we will not be studying these
- But sometimes you can evaluate this indirectly even in reduced-form approaches
 - How heterogeneous are treatment effects in settings with different levels of compliance?
 - How heterogeneous are first-stage effects and treatment effects for different (identifiable) subgroups?
 - How heterogeneous are treatment effects by observables?

Summary: What We Covered Today

- IV estimators offer solutions for tackling noncompliance in randomized trials
 - The assigned treatment \neq the delivered treatment
 - The effect of assigning the treatment is the intention-to-treat effect
 - The (randomly) assigned treatment may be used as an IV for actually delivered treatment
- Interpreting IV estimates with heterogeneous potential outcomes is tricky
 - Assuming independence, exclusion, relevance and monotonicity, the IV estimates can be interpreted as
 estimating a Local Average Treatment Effect
 - This parameter is estimated only over the compliers
 - It is not (necessarily) the ATT, the ATE, or the ATU!

Readings

- Angrist and Pischke (2009) Chapter 4, from Section 4.4 up till Section 4.5.1 (p. 150-175)
- Angrist, J. D. (2006). Instrumental variables methods in experimental criminological research: what, why and how. Journal of Experimental Criminology, 2(1), 23-44.
- Cunningham (2009) Chapter on IV, section on Heterogeneous Potential Outcomes, p. 232-243
- Watch this 4 minute video!

Readings: Is LATE a Useful Parameter?

Recommended readings:

- Deaton, A. (2010). Instruments, randomization, and learning about development. Journal of Economic Literature, 48(2), 424-455.
- Imbens, G. W. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). Journal of Economic Literature, 48(2), 399-423.

Additional readings:

- Oreopoulos, P. (2006). Estimating average and local average treatment effects of education when compulsory schooling laws really matter. The American Economic Review, 96(1), 152-175.
- Muralidharan, K., Singh, A., & Ganimian, A. J. (2019). Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India, American Economic Review.