Macroeconomia I Lista de Exercícios 6

1. (OLG com imposto). Considere o modelo OLG padrão onde o agente trabalha quando jovem e consome a poupança quando velho. Todas as suposições são usuais e seguem o modelo visto na aula. A utilidade é:

$$\ln(c_t^1) + \beta \ln(c_{t+1}^2).$$

A renda do agente está sujeita a dois tipos de imposto: sobre o trabalho τ_w e sobre o capital τ_k . Suponha que a receita tributária é jogada no oceano. As restrições oçamentárias do agente quando jovem e velho:

$$c_t^1 + s_t \le w_t (1 - \tau_w)$$

$$c_{t+1}^2 \le [1 + (r_{t+1} - \delta)(1 - \tau_k)] s_t.$$

A função de produção é: $Y_t = K_t^{\alpha} L_t^{1-\alpha}$, com $\alpha \in (0,1)$ e a população cresce $L_t = (1+n)^t L_0$ onde $L_0 = 1$. A geração de velhos iniciais tem $k_0 > 0$ dado.

- (a) Resolva o problema das famílias. Encontre c_t^1 , c_{t+1}^2 e s_t . Por que a poupança não depende de τ_k ?
- (b) Utilize a solução do problema da firma (padrão) e a condição de equilíbrio no mercado de ativos para encontrar a lei de movimento do capital.
- (c) Escreva a equação que determina o capital no estado estacionário. Como ela depende de τ_w ? Explique intuitivamente porque o imposto sobre o trabalho tem um efeito diferente comparado ao modelo de crescimento neoclássico padrão (sem lazer na utilidade e com tempo infinito).
- 2. (Altruísmo Intergeracional). Considere um modelo OLG onde uma massa indivíduos com medida unitária vivem dois períodos: infância e maioridade. Os indivíduos tem warm-glow preferences, isto é, eles valorizam a herança (bequests) deixada para seus filhos na sua utilidade. Na maioridade, o indivíduo recebe a herença de seus pais (e aluga como capital para as firmas), tem filhos, trabalha, escolhe a herança para seus filhos e morre. A utilidade na infância não é relevante (imagine que o consumo dos filhos já está incorporado ao consumo dos pais). A utilidade de um indivíduo i que atinge a maioridade em t é:

$$\ln(c_t^i) + \beta \ln(b_t^i),$$

onde b_t^i é o bequest deixado para os seus filhos e $\beta \in (0,1)$. A restrição orçamentária é

$$c_t^i + b_t^i = w_t + (1 + r_t - \delta)b_{t-1}^i,$$

e $b_0^i = b_0 > 0$ dado. O lado da produção é padrão: $Y_t = K_t^{\alpha} L_t^{1-\alpha}$ com $\alpha \in (0,1)$. Não há crescimento populacional e $L_0 = 1$.

- (a) Caracterize o equilíbrio da economia. Isto é, resolva o problema do consumidor, da firma, e escreva o conjunto de equações que caracterizam as alocações ótimas e os preços. Como o capital evolui nesta economia?
- (b) Encontre o estado estacionário de k_{ss}, c_{ss}, b_{ss} , e y_{ss} em função dos parâmetros.
- (c) Suponha agora que o indivíduo valoriza a utilidade TOTAL do seus filhos (e não apenas a herança deixada). A utilidade de um indivíduo que atinge a maioridade em t é:

$$U_t = \ln(c_t) + \beta U_{t+1}.$$

Todo o resto segue igual (adicione uma no-Ponzi/TVC). Caracterize o equilíbrio da economia.

- (d) Suponha depreciação total, $\delta=1$ (para simplificar). Compare o capital no estado estacionário nos dois casos. Em que condições eles são iguais? Explique intuitivamente como sua resposta mudaria caso utilizassemos uma função CRRA.
- 3. (OLG com Governo). Considere o modelo OLG padrão onde o agente trabalha quando jovem e consome a poupança quando velho. A utilidade de um agente nascido em t é:

$$\ln(c_t^1) + \beta \ln(c_{t+1}^2).$$

O governo tributa os jovens via taxação lump-sum, τ_t . Suponha $\delta=0$. As restrições orçamentárias do agente quando jovem e velho para todas as gerações $t \geq 1$ é:

$$c_t^1 + s_t \le w_t - \tau_t$$
$$c_{t+1}^2 \le (1 + r_{t+1})s_t$$

O governo utiliza a tributação para financiar a sua política fiscal. Suponha que o orçamento é balanceado todo os períodos, ou seja, a restrição orçamentária do governo para todo $t \ge 1$ é:

$$\tau_t L_t = G_t \equiv g_t L_t$$

onde $G_t > 0$ é o gasto agregado (e é exógeno), e g_t o gasto por unidade efetiva de trabalho. A função de produção é: $Y_t = K_t^{\alpha} L_t^{1-\alpha}$, com $\alpha \in (0,1)$ e a população cresce $L_t = (1+n)^t L_0$ onde $L_0 = 1$. A geração de velhos iniciais tem $K_0 > 0$ dado.

- (a) Resolva o problema das famílias. Encontre s_t em função dos parâmetros, dos preços, e do imposto τ_t .
- (b) Escreva as condições de equilíbrio no mercado de bens e no mercado de ativos.

 $^{^{1}}$ Note que b_{0} é igual para todos os indivíduos e você pode ignorar o índice i. Veja o livro do Acemoglu para o caso em que os indivíduos iniciam com herança heterogênea.

- (c) Suponha que os preços são dados por $r_t = \alpha k_t^{\alpha-1}$ e $w_t = (1-\alpha)k_t^{\alpha}$ para todo t, onde $k_t \equiv K_t/L_t$. Encontre uma equação que descreve a evolução do capital de equilíbrio no modelo $(k_{t+1}$ em função de k_t e parâmetros). Como um aumento dos gastos do governo por trabalhador altera a dinâmica de acumulação do capital?
- (d) Suponha n=0 (para simplificar). No modelo de crescimento neoclássico em tempo discreto com dinastias vivendo infinitos períodos e política fiscal financiada por taxação lump-sum, a equação de Euler é dada por:

$$c_{t+1} = c_t[\beta(1+r_{t+1})] \qquad \forall t.$$

Encontre o k_t no estado estacionário no modelo de crescimento neoclássico. Como o nível dos gastos do governo por unidade efetiva de trabalho, g, afeta o capital no estado estacionário no modelo de crescimento neoclássico? Compare com o modelo OLG.

4. (Famílias, Fertilidade Endógena e Capital Humano).² [Não precisa entregar]

(a) Barro-Becker Endogenous Fertility Model com capital humano. Uma família (uniparental) deriva utilidade, além do consumo, do números de filhos (n) e da renda futura do seus filhos (y'):

$$\ln(c) + \gamma_n \ln(n) + \gamma \ln(y'). \tag{1}$$

Denote o capital humano da família como H e o tempo dedicado à produção como ℓ . A produção do consumo é $c=y\ell$, onde y=AH é a renda total da família se ela trabalhasse em tempo integral.

O tempo da família é alocado na produção e na criação de filhos. Denote e como a educação dada aos filhos e ϕ um custo fixo (em tempo) na criação de filhos. A restrição temporal da família é:

$$\ell + n(\phi + e) \le 1. \tag{2}$$

O capital humano dos filhos evolui de acordo com o capital humano dos pais e da educação investida: $H' = (Be)^{\theta}H$. Suponha que: $\gamma_n > \gamma\theta$.

i. Mostre que a educação e a fertilidade de equilíbrio é:

$$e^* = \frac{\phi \gamma \theta}{\gamma_n - \gamma \theta}$$
 e $n^* = \frac{\gamma_n - \gamma \theta}{\phi(1 + \gamma_n)}$. (3)

ii. Qual a taxa de crescimento (per-capita) da economia (em função dos parâmetros)? Qual a previsão do modelo para o crescimento e para a fertilidade quando ocorre um aumento gradual do retorno sobre o capital humano (θ) ? Qual o impacto de uma política de restrição da fertilidade (como a do filho único na China) no crescimento econômico per-capita?

 $^{^2}$ Questão baseada no capítulo de Doepke and Tertilt (2016, Handbook of Macroeconomics): Families in Macroeconomics.

(b) Poder de barganha em famílias 2-parents. Considere agora uma família que consiste em um marido, uma esposa, um filho e uma filha (ignoraremos decisões de fertilidade). As famílias compartilham o consumo, mas homens e mulheres discordam sobre o quanto se preocupam com o bem-estar de seus filhos. A utilidade da família é igual a soma da utilidade dos pais:

$$\lambda_f[\ln(c) + \gamma_f \ln(y')] + (1 - \lambda_f)[\ln(c) + \gamma_m \ln(y')], \tag{4}$$

onde λ_f é o poder de barganha da mulher nas decisões da família, γ_f e γ_m são os parâmetro de altruísmo da mulher e do homem.

Para simplificar, considere que apenas as mulheres criam os filhos. A restrição temporal das mulheres:

$$\ell + e_f + e_m \le 1$$
,

onde e_f e e_m é a educação investida nas filhas e filhos. Mulheres e homens são substitutos imperfeitos na produção de bens e capital humano:

$$c = A(\ell H_f)^{\alpha} H_m^{(1-\alpha)}, \qquad H_f' = (Be_f)^{\theta} H_f^{\beta} H_m^{1-\beta}, \quad \text{e} \quad H_m' = (Be_m)^{\theta} H_f^{\beta} H_m^{1-\beta},$$

e a renda total se a mulher trabalha em tempo integral: $y = A(H_f)^{\alpha} H_m^{(1-\alpha)}$.

i. Mostre que o investimento em educação de equilíbrio é:

$$e_f^* = \frac{\theta \alpha \delta}{\alpha + \delta \theta}$$
 e $e_m^* = \frac{\theta (1 - \alpha) \delta}{\alpha + \delta \theta}$,

onde
$$\delta \equiv \lambda_f \gamma_f + (1 - \lambda_f) \gamma_m$$
.

Como um aumento da produtividade relativa das mulheres (α) muda o gender education gap (i.e. e_f/e_m) e o tempo dedicado aos filhos?

ii. Derive a taxa de crescimento per-capita desta economia (y'/y). Suponha que as mulheres são mais altruistas em relação aos filhos: $\gamma_f > \gamma_m$. Como um aumento no poder de barganha das mulheres λ_f altera a taxa de crescimento desta economia?