Exercice 1.

1.a) Soit $n \in \mathbb{N}$ alors $x \mapsto \sin^n(x)$ est continue sur \mathbb{R} donc en particulier sur $[0; \frac{\pi}{2}]$ donc, <u>l'intégrale W_n est bien définie</u>.

1.b)
$$W_0 = \int_0^{\frac{\pi}{2}} 1 \, dx = [x]_0^{\frac{\pi}{2}} = \left[\frac{\pi}{2}\right], \quad W_1 = \int_0^{\frac{\pi}{2}} \sin(x) dx = \left[-\cos(x)\right]_0^{\frac{\pi}{2}} = -0 + 1 = \boxed{1}.$$

 $W_2 = \int_0^{\frac{\pi}{2}} \sin^2(x) dx$. Comme, pour $x \in \mathbb{R}, \sin^2(x) = \frac{1}{2}(1 - \cos(2x))$, alors

$$W_2 = \frac{1}{2} \cdot \int_0^{\frac{\pi}{2}} dx - \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2x) dx = \frac{\pi}{4} - \frac{1}{2} \left[\frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4} - 0 = \left[\frac{\pi}{4} \right].$$

1.c) Soit $n \in \mathbb{N}$ alors, pour tout $x \in [0; \frac{\pi}{2}], \sin(x) \ge 0$ donc, $\sin^n(x) \ge 0$ donc, par positivité de l'intégrale, $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx \ge 0$.

S'il existe $n \in \mathbb{N}$ tel que $W_n = 0$ alors, comme $x \mapsto \sin^n(x)$ est continue et à valeurs positives sur $[0; \frac{\pi}{2}]$, on en déduit que, pour tout $x \in [0; \frac{\pi}{2}]$, $\sin^n(x) = 0$. Impossible, donc pour tout $n \in \mathbb{N}$, $W_n > 0$.

1.d) Soit $n \in \mathbb{N}$ alors, pour tout $x \in [0; \frac{\pi}{2}], 0 \le \sin(x) \le 1$. Donc $0 \le \sin^n(x) \le 1$ et, par produit par un nombre compris entre 0 et 1, on a $sin^{n+1}(x) \le \sin^n(x)$. Par croissance (ou positivité) de l'intégrale on a $W_{n+1} \le W_n$. Donc la suite $(W_n)_{\mathbb{N}}$ est décroissante.

2.a) Soit $n \in \mathbb{N}$. $W_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+2}(x) dx = \int_0^{\frac{\pi}{2}} \sin^{n+1}(x) \sin(x) dx$. On effectue une intégration par partie avec $u(x) = \sin^{n+1}(x)$ et $v'(x) = \sin(x)$, donc $u'(x) = (n+1)\cos(x)\sin^n(x)$ et $v(x) = -\cos(x)$, d'où

$$W_{n+2} = \left[-\cos(x)\sin^{n+1}(x)\right]_0^{\frac{\pi}{2}} + (n+1)\int_0^{\frac{\pi}{2}}\sin^n(x)\cos^2(x)dx = 0 + (n+1)\int_0^{\frac{\pi}{2}}\sin^n(x)(1-\sin^2(x))dx$$
$$= (n+1)W_n - (n+1)W_{n+2}.$$

$$\text{Donc }(n+2)W_{n+2}=(n+1)W_n, \text{d'où, pour }n\in \mathbb{N}, \overline{W_{n+2}=\frac{n+1}{n+2}W_n.}$$

2.b) Soit $n \in \mathbb{N}$ alors, d'après la question précédente,

$$w_{n+1} = (n+2)W_{n+1}W_{n+2} = (n+2)W_{n+1} \cdot \frac{n+1}{n+2} \cdot W_n = (n+1)W_nW_{n+1} = w_n.$$

Donc <u>la suite</u> $(w_n)_{\mathbb{N}}$ est constante. En particulier, $\forall n \in \mathbb{N}, w_n = w_0 = W_0W_1 = \boxed{\frac{\pi}{2}}$ (d'après la question 1.b)).

3.a) La suite $(W_n)_{\mathbb{N}}$ est décroissante, donc, pour $n \geq 1$, $W_{n+1} \leq W_n \leq W_{n-1}$. Soit $n \geq 1$,

$$\begin{split} W_{n+1} &\leq W_n \leq W_{n-1} \Rightarrow W_{n+1} W_n \leq W_n^2 \leq W_n W_{n-1} \ \, \text{car, d'après la question 1.c)} \ \, W_n \geq 0 \\ &\Rightarrow \frac{w_n}{(n+1)} \leq W_n^2 \leq \frac{w_{n-1}}{n} \ \, \text{par d\'efinition de } w_n \\ &\Rightarrow \frac{\pi}{2(n+1)} \leq W_n^2 \leq \frac{\pi}{2n} \ \, \text{car } w_n \text{ est constante \'egale \`a} \ \, \frac{\pi}{2} \\ &\Rightarrow \sqrt{\frac{\pi}{2(n+1)}} \leq W_n \leq \sqrt{\frac{\pi}{2n}} \ \, \text{car } W_n \geq 0. \end{split}$$

D'où la relation demandée.

3.b) Soit
$$n \ge 1$$
 alors, d'après la question précédente, $\sqrt{\frac{n \pi}{2(n+1)}} \le \sqrt{n} W_n \le \sqrt{\frac{\pi}{2}}$.

Comme
$$\lim_{n \to +\infty} \sqrt{\frac{n \, \pi}{2(n+1)}} = \frac{\pi}{2}$$
, on déduit du théorème d'encadrement des limites que $\underbrace{(\sqrt{n}W_n)_{\mathbb{N}^*}}_{\text{converge}}$ et que $\lim_{n \to +\infty} \sqrt{n}W_n = \frac{\pi}{2}$.

4) D'après l'équivalent de Stirling, nous avons, $v_n = \frac{n!}{n^n} \sim \frac{n^n}{n^n} \frac{1}{e^n} \sqrt{2\pi n} \sim e^{-n} \sqrt{2\pi n}$. Or $\lim_{n \to +\infty} e^{-n} \sqrt{n} = 0$ donc $\lim_{n \to +\infty} v_n = 0$.

Exercice 2.

On considère la fonction $f: x \mapsto \ln(1+x)$ définie et de classe \mathcal{C}^{∞} sur $]-1; +\infty[$. Pour x>-1, on a $f'(x)=\frac{1}{1+x}$ puis, pour $n\in\mathbb{N}^*$, $f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$. En particulier, $\forall n\in\mathbb{N}^*$, $f^{(n)}(0)=(-1)^{n-1}(n-1)!$ et f(0)=0. Soit x>0, alors pour tout $n\in\mathbb{N}^*$, d'après la formule de Taylor appliquée à f sur l'intervalle [0;x], il existe $c\in]0;x[$ tel que $f(x)=\sum_{k=0}^n\frac{f^{(k)}(0)}{k!}x^k+\frac{x^n}{n!}f^{(n)}(c)=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}x^k+\frac{(-1)^{n-1}x^n}{n(1+c)^n}$. Donc, pour $n\in\mathbb{N}^*$, $f(1)=u_n+\frac{(-1)^{n-1}}{n(1+c)^n}$, d'où $|f(1)-u_n|=\frac{1}{n(1+c)^n}\leq \frac{1}{n}$ car $1+c\geq 1$. Comme $\lim_{n\to +\infty}\frac{1}{n}=0$, alors $\lim_{n\to +\infty}|f(1)-u_n|=0$, i.e. $\lim_{n\to +\infty}u_n=\ln(2)$.

Remarque : En fait, on peut montrer que, pour tout $x \in [0; 1[, \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^{k-1}}{k} x^k = \ln(1+x).$

Exercice 3.

1) On effectue le changement de variable $u(x) = \frac{\pi}{4} - x$ où $u : [0; \frac{\pi}{4}] \to [0; \frac{\pi}{4}]$ est une bijection décroissante de classe \mathcal{C}^1 , alors $\int_0^{\pi/4} \ln\left(\cos\left(\frac{\pi}{4} - x\right)\right) \, dx = -\int_{u(0)}^{u(\pi/4)} \ln(\cos(u)) \, du = -\int_{\pi/4}^0 \ln(\cos(u)) \, du$.

Donc
$$\int_0^{\pi/4} \ln\left(\cos\left(\frac{\pi}{4} - x\right)\right) dx = \int_0^{\pi/4} \ln(\cos(x)) dx.$$

2) Soit
$$x \in \mathbb{R}$$
, $\cos\left(\frac{\pi}{4} - x\right) = \cos\left(\frac{\pi}{4}\right)\cos(x) + \sin\left(\frac{\pi}{4}\right)\sin(x) = \frac{1}{\sqrt{2}}(\cos(x) + \sin(x))$. Comme $\tan(x) = \frac{\sin(x)}{\cos(x)}$ alors $1 + \tan(x) = \frac{\cos(x) + \sin(x)}{\cos(x)} = \sqrt{2} \cdot \frac{\cos\left(\frac{\pi}{4} - x\right)}{\cos(x)}$. Donc, pour $x \in [0; \frac{\pi}{4}]$, $\ln(1 + \tan(x)) = \ln\left(\sqrt{2} \cdot \frac{\cos\left(\frac{\pi}{4} - x\right)}{\cos(x)}\right) = \ln(\sqrt{2}) + \ln\left(\cos\left(\frac{\pi}{4} - x\right)\right) - \ln(\cos(x))$. Par intégration,

$$\int_{0}^{\pi/4} \ln(1+\tan(x)) dx = \int_{0}^{\pi/4} \ln(\sqrt{2}) dx + \int_{0}^{\pi/4} \ln\left(\cos\left(\frac{\pi}{4}-x\right)\right) dx - \int_{0}^{\pi/4} \ln(\cos(x)) dx = \ln(\sqrt{2}) \times \frac{\pi}{4}$$

(en utilisant le résultat de la question 1.). Donc $\int_0^{\pi/4} \ln(1+\tan(x)) \, dx = \frac{\pi \ln(2)}{8}.$

Exercice 4.

1) On effectue une intégration par partie avec u'(x)=1 et $v(x)=\arctan(x)$ donc u(x)=x et $v'(x)=\frac{1}{1+x^2}$, d'où

$$\int_0^1 \arctan x \, dx = \left[x \arctan(x) \right]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx = \arctan(1) - \frac{1}{2} \int_0^1 \frac{2x}{1+x^2} \, dx$$
$$= \frac{\pi}{4} - \frac{1}{2} \left[\ln\left(1+x^2\right) \right]_0^1 = \boxed{\frac{\pi}{4} - \frac{\ln(2)}{2}}.$$

2) On procède par intégration par partie successives (deux en l'occurence) en dérivant le polynôme et en intégrant la fonction $\cos(ax)$. Alors $u'(x) = \cos(x), v(x) = x^2 + 1$ et $u(x) = \sin(x), v'(x) = 2x$,

$$\int_0^1 (x^2 + 1) \cos x \, dx = \left[(x^2 + 1) \sin(x) \right]_0^1 - 2 \int_0^1 x \sin(x) \, dx = 2 \sin(1) - 2 \int_0^1 x \sin(x) \, dx.$$

À nouveau, $u'(x) = \sin(x), v(x) = x$ et $u(x) = -\cos(x), v'(x) = 1$, d'où

$$\int_0^1 x \sin(x) \, dx = \left[-x \cos(x) \right]_0^1 + \int_0^1 \cos(x) \, dx = -\cos(1) + \left[\sin(x) \right]_0^1 = -\cos(1) + \sin(1).$$

Donc
$$\int_0^1 (x^2 + 1) \cos x \, dx = 2 \cos(1).$$

3) On effectue le changement de variable $u(x) = \ln(x)$ qui est une bijection croissante de [e;3] dans $[1,\ln(3)]$ de classe \mathcal{C}^1 . Alors $du = \frac{dx}{x}$, d'où $\int_e^3 \frac{1}{x(\ln x)^3} \, dx = \int_{u(e)}^{u(3)} \frac{du}{u^3} = \left[-\frac{1}{2u^2}\right]_1^{\ln(3)} = \frac{1}{2} - \frac{1}{2\ln(3)^2}$.

Donc
$$\int_{e}^{3} \frac{1}{x(\ln x)^3} dx = \frac{1}{2} - \frac{1}{2\ln(3)^2}.$$

4) On linéarise
$$\sin^3(x)$$
: $\sin(x) = \frac{e^{\mathrm{i}x} - e^{-\mathrm{i}x}}{2\mathrm{i}}$ donc $\sin^3(x) = \left(\frac{e^{\mathrm{i}x} - e^{-\mathrm{i}x}}{2\mathrm{i}}\right)^3$, d'où

$$\sin^3(x) = \frac{1}{(2\mathrm{i})^2} \cdot \frac{e^{3\mathrm{i}x} - 3e^{\mathrm{i}x} + 3e^{-\mathrm{i}x} - e^{-3\mathrm{i}x}}{2\mathrm{i}} = -\frac{1}{4} \cdot \left(\frac{e^{3\mathrm{i}x} - e^{-3\mathrm{i}x}}{2\mathrm{i}} - 3 \cdot \frac{e^{\mathrm{i}x} - e^{-\mathrm{i}x}}{2\mathrm{i}}\right) = -\frac{1}{4} \left(\sin(3x) - 3\sin(x)\right).$$

Donc

$$\int_0^{\pi/2} \sin^3 x \, dx = -\frac{1}{4} \int_0^{\pi/2} \sin(3x) \, dx + \frac{3}{4} \int_0^{\pi/2} \sin(x) \, dx = -\frac{1}{4} \left[-\frac{1}{3} \cos(3x) \right]_0^{\pi/2} + \frac{3}{4} \left[-\cos(x) \right]_0^{\pi/2}$$

$$= \frac{1}{12} \cdot \left[\cos(\frac{3\pi}{2}) - 1 \right] - \frac{3}{4} \left[\cos(\frac{\pi}{2}) - 1 \right] = -\frac{1}{12} + \frac{3}{4}.$$

Donc
$$\int_0^{\pi/2} \sin^3 x \, dx = \frac{2}{3}$$
.

Remarque : il s'agit d'une intégrale de Wallis (cf. Exercice 1). D'après la relation de récurrence de la question 2.a), on a $\int_0^{\pi/2} \sin^3 x \, dx = W_3 = \frac{2}{3} W_1 = \frac{2}{3}$. Plutôt rapide, non? De fait, on aurait pu faire une intégration par partie avec $u'(x) = \sin(x)$ et $v(x) = \sin^2(x)$ et raisonner comme à la question 2.a) de l'exercice 1.

Exercice 5.

1) Le dénominateur vérifie $x^2+x^3=x^2+\circ(x^2)$, donc on cherche un développement limité à l'ordre 2 du numérateur. On sait que $e^x=1+x+\frac{x^2}{2}+\circ(x^2)$ et $\sin(x)=x+\circ(x^2)$ donc, par somme puis produit, on obtient,

$$(1 - e^x)\sin(x) = -\left(x + \frac{x^2}{2}\right) \times (x) + o(x^2) = -x^2 \circ (x^2).$$

$$\text{Par quotient, } \frac{(1-e^x)\sin(x)}{x^2+x^3} = \frac{-x^2+x^2\varepsilon(x)}{x^2+x^3} = \frac{-1+\varepsilon(x)}{1+x} \text{ avec } \lim_{x\to 0}\varepsilon(x) = 0, \text{d'où } \boxed{\lim_{x\to 0}\frac{(1-e^x)\sin(x)}{x^2+x^3} = -1.}$$

2) Déterminons un équivalent du dénominateur : on sait que, au voisinage de 0, $\sin(x) \sim x$ donc par composition $\sin(2x) \sim 2x$ puis par produit, $\sin^2(2x) \sim 4x^2$. On cherche le développement limité à l'ordre 2 du numérateur. On sait que $\cos(x) = 1 - \frac{x^2}{2} + o(x^2)$, donc par composition avec 3x (car $\lim_{x\to 0} 3x = 0$!),

$$\cos(3x) = 1 - \frac{9x^2}{2} + o(x^2)$$
 et $\ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$. Donc, par composition,

$$\ln(\cos(3x)) = \ln(1 - \frac{9x^2}{2}) + \circ(x^2) = -\frac{9x^2}{2} + \circ(x^2) \text{ c'est-\`a-dire } \ln(\cos(3x)) \sim -\frac{9x^2}{2}.$$

Par quotient, on en déduit que $\frac{\ln(\cos(3x))}{\sin^2(2x)} \sim -\frac{9x^2}{8x^2}$, quand x tend vers 0, i.e. $\lim_{x\to 0} \frac{\ln(\cos(3x))}{\sin^2(2x)} = -\frac{9}{8}$.

3) J'ai fait une jolie coquille pour cette limite. Il s'agit de \sinh et non \sin ..

Commençons par la limite demandée (avec \sin donc). Pour x assez grand,

$$\left|\sin\left(\sqrt{x^2+x}\right)-\sin\left(\sqrt{x^2-x}\right)\right| \leq 1+1=2, \operatorname{donc}\left[\lim_{x\to+\infty}e^{-x}\left(\sin\left(\sqrt{x^2+x}\right)-\sin\left(\sqrt{x^2-x}\right)\right)=0...\right]$$

Voici la limite plus intéressante (avec sinh). On rappelle que $\sinh(x) = \frac{e^x - e^{-x}}{2}$, donc, pour $x \ge 0$,

$$\sinh\left(\sqrt{x^2+x}\right) = \frac{\exp\left(\sqrt{x^2+x}\right) - \exp\left(-\sqrt{x^2+x}\right)}{2}. \text{ Comme } \lim_{x \to +\infty} \exp\left(-\sqrt{x^2+x}\right) = 0 \text{ alors, lorsque } x$$
 tend vers $+\infty$, $\sinh\left(\sqrt{x^2+x}\right) \sim \frac{\exp\left(\sqrt{x^2+x}\right)}{2}.$

De même, pour x grand, $\sinh\left(\sqrt{x^2-x}\right) = \frac{\exp\left(\sqrt{x^2-x}\right) - \exp\left(-\sqrt{x^2-x}\right)}{2}$, et on a l'équivalent suivant en $+\infty$, $\sinh\left(\sqrt{x^2-x}\right) \sim \frac{\exp\left(\sqrt{x^2-x}\right)}{2}$

Maintenant on cherche un développement limité de $\exp\left(\sqrt{x^2-x}\right)$ lorsque x tend vers $+\infty$. On se ramène aux développements limité en 0 en factorisant par x^2 . On obtient $\sqrt{x^2+x}=x\sqrt{1+\frac{1}{x}}$ et $\sqrt{x^2-x}=x\sqrt{1-\frac{1}{x}}$

Or on sait que $\sqrt{1+t}=1+\frac{t}{2}-\frac{t^2}{8}+\circ(t^2)$ lorsque t tend vers 0. Donc, par composition avec $t=\frac{1}{x}$ lorsque xtend vers $+\infty$, on trouve $\sqrt{1+\frac{1}{x}} = 1 + \frac{1}{2x} + o(\frac{1}{x})$, donc $\sqrt{x^2 + x} = x + \frac{1}{2} + o(1)$.

De même,
$$\sqrt{1-\frac{1}{x}} = 1 - \frac{1}{2x} + o(\frac{1}{x})$$
, donc $\sqrt{x^2 - x} = x - \frac{1}{2} + o(1)$.

On va en déduire un équivalent de $\exp(\sqrt{x^2+x})$ quand x tend vers $+\infty$. On utilise la propriété suivante : si $\lim f(x) - g(x) = 0$ alors $\exp(f(x)) \sim \exp(g(x))$.

Remarque : normalement, c'est du cours... Un bon exercice serait de démontrer cette propriété. Ici $f(x) = \sqrt{x^2 + x}$ et $g(x) = x + \frac{1}{2}$, et le développement limité obtenu ci-dessus nous dit que $\lim_{x \to +\infty} f(x) - g(x) = 0, \text{ donc } \underbrace{\exp\left(\sqrt{x^2 + x}\right) \sim \exp\left(x + \frac{1}{2}\right) = e^x \, e^{1/2}}_{x \to +\infty}.$ De même, avec $f(x) = \sqrt{x^2 - x}$ et $g(x) = x - \frac{1}{2}$, on obtient $\underbrace{\exp\left(\sqrt{x^2 - x}\right) \sim \exp\left(x - \frac{1}{2}\right) = e^x \, e^{-1/2}}_{x \to +\infty}.$

Donc, par somme, on obtient.

$$\sinh\left(\sqrt{x^2 + x}\right) - \sinh\left(\sqrt{x^2 - x}\right) \sim \frac{1}{2} \cdot \left(e^x e^{1/2} - e^x e^{-1/2}\right) = \sinh(2) e^x$$

Donc, par produit, lorsque x tend vers $+\infty$, $e^{-x}\left(\sin\left(\sqrt{x^2+x}\right)-\sin\left(\sqrt{x^2-x}\right)\right)\sim \sinh(2)$. On en déduit que $\lim_{x\to+\infty}e^{-x}\left(\sin\left(\sqrt{x^2+x}\right)-\sin\left(\sqrt{x^2-x}\right)\right)=\sinh(2)$.

Exercice 6.

1) Si f est une fonction Riemann-intégrable sur [a;b] alors $\left|\lim_{n\to+\infty}\left(\frac{b-a}{n}\right)\sum_{k=1}^{n-1}f(\zeta_k)\right|=\int_a^bf(t)\,dt$, où $\zeta_k \in [a + k \frac{b-a}{n}; a + (k+1) \frac{(b-a)}{n}]$

En particulier, lorsque $\zeta_k = a + k \frac{b-a}{n}$, on obtient, $\left| \lim_{n \to +\infty} \left(\frac{b-a}{n} \right) \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right| = \int_a^b f(t) dt$.

Enfin, si
$$a=0,b=1,$$
 on obtient $\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}f\left(\frac{k}{n}\right)=\int_a^bf(t)\,dt.$

2) Fait en TD.