Sage Reference Manual Release 6.6

The Sage Development Team

CONTENTS

1	User Interface	3
2	Graphics	5
3	Mathematics	7
	3.1 Parents, Elements and Categories	
	3.2 Standard Algebraic Structures	
	3.3 Standard Rings and Fields	
	3.4 Linear Algebra	
	3.5 Discrete Mathematics	
	3.6 Calculus	8
	3.7 Geometry and Topology	8
	3.8 Number Theory, Algebraic Geometry	8
	3.9 Logic	9
	3.10 Probability and Statistics	
	3.11 Miscellaneous	
4	Programming	11
	4.1 Interfaces	11
5	General Information	13

Welcome to Sage's Reference Manual!

This manual is a thematic index of all of Sage's features. It also contains many examples that illustrate their use, all of them systematically tested with each release.

Enjoy Sage!

CONTENTS 1

2 CONTENTS

ONE

USER INTERFACE

- Command Line Interface (REPL)
- Web Notebook

TWO

GRAPHICS

- 2D Graphics
- 3D Graphics

THREE

MATHEMATICS

3.1 Parents, Elements and Categories

- Basic Infrastructure
- Coercion
- Categories

3.2 Standard Algebraic Structures

- Monoids
- Groups
- Semirings
- Rings
- Algebras

3.3 Standard Rings and Fields

- Integers, Rationals, etc.
- Real and Complex Numbers
- Finite Rings and Fields
- Polynomials
- Formal Power Series
- Algebraic Number Fields
- Function Fields
- p-Adic Numbers
- Quaternion Algebras

3.4 Linear Algebra

- Matrices and Spaces of Matrices
- Vectors and Modules
- Tensors on free modules of finite rank

3.5 Discrete Mathematics

- Combinatorics
- Graph Theory
- Quivers
- Matroid Theory
- Discrete Dynamics
- Coding Theory
- Game Theory

3.6 Calculus

- Symbolic Calculus
- Mathematical Constants
- Elementary and Special Functions

3.7 Geometry and Topology

- Combinatorial Geometry
- Cell Complexes and their Homology
- Differential Forms
- Parametrized Surfaces

3.8 Number Theory, Algebraic Geometry

- Diophantine approximation
- Quadratic Forms
- L-Functions
- Schemes
- Elliptic, Plane, and Hyperelliptic Curves
- Arithmetic Subgroups of SL_2(Z)
- General Hecke Algebras and Hecke Modules

- Modular Symbols
- Modular Forms
- Modular Forms for Hecke Triangle Groups
- Modular Abelian Varieties
- Miscellaneous Modular-Form-Related Modules

3.9 Logic

- Symbolic Logic
- SAT solvers

3.10 Probability and Statistics

- Probability
- Statistics
- Quantitative Finance

3.11 Miscellaneous

- Cryptography
- Optimization
- Databases
- Games

3.9. Logic 9

FOUR

PROGRAMMING

- Data Structures
- Utilities
- Test Framework
- Parallel Computing

4.1 Interfaces

- Interpreter Interfaces
- C/C++ Library Interfaces

FIVE

GENERAL INFORMATION

- History and License
- genindex
- modindex
- search

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.