XIII

С ж а т о — и з о г н у т ы е балки

На практике часто встречаются задачи, в которых стержни одновременно работают и на изгиб и на сжатие. В таких условиях работают, например, стрела подъёмного крана (*puc. XIII.1a.*), наклонный рельс (*puc. XIII.16.*) и т.д.

Особенностью таких задач является невозможность использования принципа независимости действия сил (puc.~XIII.2): общий результат (например, прогиб V^{\varSigma}) не является суммой результатов от действия продольной (V^{\varSigma}) и поперечной (V^{\varSigma}) нагрузок по отдельности:

Происходит это потому, что поперечная нагрузка создаёт начальные прогибы, на которых уже нагрузка продольная получает плечо для создания своего дополнительного изгибающего момента:

Решаются такие задачи либо интегрированием дифференциального уравнения изогнутой оси, либо (в некоторых случаях) по приближенным формулам Тимошенко.

Инженеры-расчётчики используют также метод последовательных приближений, но мы его рассматривать не будем.

Метод интегрирования ДУ упругой оси стержня (точный метод)

Практически идентичен точному методу расчёта задач устойчивости вплоть до получения системы уравнений из граничных условий (ГУ).

Далее два этих метода расходятся: при расчёте устойчивости полученную систему уравнений не решают, а приравнивают к нулю её определитель; при расчёте сжато-изогнутых балок систему решают, определяют значение констант и далее работают с функциями y(z), y'(z) и y''(z).

Пример XIII.1 :

<u>Дано:</u>

$$E = 2 \cdot 10^{11} \ \Pi a$$

$$l = 1M$$

$$F = 100 H$$

$$S = 500 H$$

$$A = 0,0003 \text{ m}^2$$

$$I_x = 25 \cdot 10^{-10} M^4$$

$$W_X = 5 \cdot 10^{-7} \,\mathrm{m}^3$$

$$\sigma_T = 765 \, M\Pi a$$

Найти:

$$V_B = ?$$

$$\theta_B = ?$$

$$\sigma_{max} = ?$$

$$n_{\scriptscriptstyle T}=?$$

$$\sum M_{A} = 0 = -(2 \cdot F \cdot l + S \cdot f) + F \cdot z + E \cdot I_{X} \cdot y'' + S \cdot y$$

$$y'' + \frac{S}{E \cdot I_{X}} \cdot y = \frac{S}{S} \cdot \frac{F}{E \cdot I_{X}} \cdot (2 \cdot l - z) + \frac{S}{E \cdot I_{X}} \cdot f$$

$$\alpha^{2} \triangleq \frac{S}{E \cdot I_{X}}$$

$$y'' + \alpha^{2} \cdot y = \alpha^{2} \cdot \left[\frac{F}{S} \cdot (2 \cdot l - z) + f \right]$$

Общий интеграл (решение уравнения):

$$y = C_1 \cdot \sin \alpha z + C_2 \cdot \cos \alpha z + \frac{F}{S} \cdot (2 \cdot l - z) + f$$

$$y' = \alpha \cdot C_1 \cdot \cos \alpha z - \alpha \cdot C_2 \cdot \sin \alpha z - \frac{F}{S}$$

$$y'' = -\alpha^2 \cdot C_1 \cdot \sin \alpha z - \alpha^2 \cdot C_2 \cdot \cos \alpha z$$

Постоянные C_1 , C_2 и f определяем из ГУ:

1.
$$z = 0$$
: $y = 0 \implies C_2 + \frac{2 \cdot F \cdot l}{S} + f = 0$ (1)

2.
$$z = 0$$
: $y' = 0 \implies \alpha \cdot C_1 - \frac{F}{S} = 0$ (2)

3.
$$z = l : y = f \implies C_1 \cdot \sin \alpha l + C_2 \cdot \cos \alpha l + \frac{F \cdot l}{S} + \mathcal{K} = \mathcal{K}$$

$$C_1 \cdot \sin \alpha l + C_2 \cdot \cos \alpha l + \frac{F \cdot l}{S} = 0 \tag{3}$$

 $\downarrow \downarrow$

$$C_{1} = \frac{F}{\alpha \cdot S}$$

$$C_{2} = -\frac{F}{S \cdot \cos \alpha l} \cdot \left[\frac{\sin \alpha l}{\alpha} + l \right]$$

$$f = \frac{F}{S} \cdot \left[\frac{tg \, \alpha l}{\alpha} + \frac{l}{\cos \alpha l} - 2 \cdot l \right]$$

Тогда:

$$\begin{split} y &= C_l \cdot \sin \alpha z + C_2 \cdot \cos \alpha z + \frac{F}{S} \cdot (2 \cdot l - z) + f = \\ &= \frac{F}{S \cdot \alpha \cdot \cos \alpha l} \cdot \left[\cos \alpha l \cdot (\sin \alpha z - \alpha \cdot z) + (\alpha \cdot l + \sin \alpha l) \cdot (1 - \cos \alpha z) \right]; \end{split}$$

$$y' = \alpha \cdot C_1 \cdot \cos \alpha z - \alpha \cdot C_2 \cdot \sin \alpha z - \frac{F}{S} =$$

$$= \frac{F}{S} \cdot \left[\cos \alpha z + tg \, \alpha l \cdot \sin \alpha z + \frac{\alpha \cdot l}{\cos \alpha l} \cdot \sin \alpha z - 1 \right];$$

$$y'' = -\alpha^{2} \cdot C_{1} \cdot \sin \alpha z - \alpha^{2} \cdot C_{2} \cdot \cos \alpha z$$

$$= \alpha \cdot \frac{F}{S} \cdot \left[\frac{\cos \alpha z}{\cos \alpha l} \cdot (\sin \alpha l + \alpha \cdot l) - \sin \alpha z \right].$$

Прогиб, угол поворота поперечных сечений и изгибающий момент по длине стержня:

$$v(z) = y(z) = \frac{F}{S \cdot \alpha \cdot \cos \alpha l} \cdot \left[\cos \alpha l \cdot (\sin \alpha z - \alpha \cdot z) + (\alpha \cdot l + \sin \alpha l) \cdot (1 - \cos \alpha z)\right];$$

$$\theta(z) \approx y'(z) = \frac{F}{S} \cdot \left[\cos \alpha z + tg \alpha l \cdot \sin \alpha z + \frac{\alpha \cdot l}{\cos \alpha l} \cdot \sin \alpha z - 1\right];$$

$$M_{X}(z) \approx E \cdot I_{X} \cdot y'' = \underbrace{\frac{\alpha \cdot F}{E \cdot I_{X}}}_{F} \cdot \underbrace{\left[\frac{\cos \alpha z}{\cos \alpha l} \cdot (\sin \alpha l + \alpha \cdot l) - \sin \alpha z\right]}_{F}.$$

Прогиб и угол поворота в т. B, максимальное напряжение:

$$\alpha = \sqrt{\frac{S}{E \cdot I_X}} = \sqrt{\frac{500}{2 \cdot 10^{11} \cdot 25 \cdot 10^{-10}}} = 1 \frac{1}{M}$$

$$\alpha \cdot l = 1 \cdot 1 = 1$$

$$\sin \alpha l = \sin 1 \ pa \partial = 0,8415$$

$$\cos \alpha l = \cos 1 \ pa \partial = 0,5403$$

$$tg \alpha l = tg 1 pa \partial = 1,5574$$

$$E \cdot I_X = 2 \cdot 10^{11} \cdot 25 \cdot 10^{-10} = 500 \ H \cdot M^2$$

$$\begin{split} v_{\scriptscriptstyle B} &= v(1) = \frac{F}{S \cdot \alpha \cdot \cos \alpha l} \cdot \big[\cos \alpha l \cdot (\sin \alpha l - \alpha \cdot l) + (\alpha \cdot l + \sin \alpha l) \cdot (1 - \cos \alpha l)\big] = \\ &= \frac{100}{500 \cdot 1 \cdot 0,5403} \cdot \big[0,5403 \cdot (0,8415 - 1) + (1 + 0,8415) \cdot (1 - 0,5403)\big] = \\ &= 0,282 \, \text{m} = 282 \, \text{mm} \end{split}$$

$$\theta_{B} = \theta(1) = \frac{F}{S} \cdot \left[\cos \alpha l + tg \, \alpha l \cdot \sin \alpha l + \frac{\alpha \cdot l}{\cos \alpha l} \cdot \sin \alpha l - 1 \right] =$$

$$= \frac{100}{500} \cdot \left[0.5403 + 1.5574 \cdot 0.8415 + 1.5574 - 1 \right] = 0.4817 \, \text{pad}$$

$$\sigma_{MAX} = \sigma_A = \frac{M_{XA}}{W_V} + \frac{S}{A} = \frac{340.8}{5 \cdot 10^{-7}} + \frac{500}{0.0003} = 683.3 \cdot 10^6 \ \Pi a = 684 \ M\Pi a = 68$$

- максимальное по модулю, а по знаку отрицательное (сжимающее)!

где

$$\begin{split} M_{x_A} &= M_{x}(0) = \frac{F}{\alpha} \cdot \left[\frac{1}{\cos \alpha l} \cdot (\sin \alpha l + \alpha \cdot l) - 0 \right] = \\ &= \frac{100}{1} \cdot \left[\frac{1}{0,5403} \cdot (0,8415 + 1) \right] = 340,8 \; H \cdot M \end{split}$$

Коэффициент запаса прочности:

$$n = \frac{\sigma_T}{\sigma_{max}} = \frac{765}{684} = 1{,}12$$

1)
$$z = 0$$
: $y_1 = 0 \implies C_1 \cdot 0 + C_2 \cdot 1 = 0 \implies C_2 = 0$

2)
$$z = l$$
: $y_1 = y_2 \implies C_1 \cdot \sin \alpha l + C_2 \cdot \cos \alpha l + \frac{F}{S} \cdot l = C_3 \cdot \sin \alpha l + C_4 \cdot \cos \alpha l + \frac{F}{S} \cdot l$

$$C_1 \cdot \sin \alpha l - C_3 \cdot \sin \alpha l - C_4 \cdot \cos \alpha l = 0 \tag{1}$$

3)
$$z = l$$
: $y'_1 = y'_2 = > \alpha \cdot C_1 \cdot \cos \alpha l - \alpha \cdot C_2 \cdot \sin \alpha l + \frac{F}{S} = \alpha \cdot C_3 \cdot \cos \alpha l - \alpha \cdot C_4 \cdot \sin \alpha l - \frac{F}{S}$

$$C_1 \cdot \cos \alpha l - C_3 \cdot \cos \alpha l + C_4 \cdot \sin \alpha l = -\frac{2 \cdot F}{\alpha \cdot S}$$
(2)

4)
$$z = 2 \cdot l : y_2 = 0 \implies -\alpha^2 \cdot C_3 \cdot \sin 2\alpha l - \alpha^2 \cdot C_4 \cdot \cos 2\alpha l = 0$$

$$C_3 \cdot \sin 2\alpha l + C_4 \cdot \cos 2\alpha l = 0 \tag{3}$$

Система уравнений (1)-(3) в матричной форме:

$$+\begin{bmatrix}
\sin \alpha l & -\sin \alpha l & -\cos \alpha l \\
\cos \alpha l & -\cos \alpha l & \sin \alpha l
\end{bmatrix} \cdot \begin{bmatrix}
C_1 \\
C_3 \\
C_4
\end{bmatrix} = \begin{bmatrix}
0 \\
-\frac{2 \cdot F}{\alpha \cdot S} \\
0
\end{bmatrix}$$

П

$$\begin{bmatrix} \sin \alpha l & -\sin \alpha l & -\cos \alpha l \\ 0 & \sin 2\alpha l & \cos 2\alpha l \\ 0 & 0 & \sin \alpha l + \frac{\cos^2 \alpha l}{\sin \alpha l} \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -\frac{2 \cdot F}{\alpha \cdot S} \end{bmatrix} \quad (6)$$

(e):
$$\frac{C_4}{\sin \alpha l} = -\frac{2 \cdot F}{\alpha \cdot S}$$

$$C_4 = -\frac{2 \cdot F}{\alpha \cdot S} \cdot \sin \alpha l$$

(6):
$$C_3 \cdot \sin 2\alpha l + C_4 \cdot \cos 2\alpha l = 0$$

$$C_3 \cdot \sin 2\alpha l - \frac{2 \cdot F}{\alpha \cdot S} \cdot \sin \alpha l \cdot \cos 2\alpha l = 0$$

$$C_3 \cdot 2 \cdot \sin \alpha l \cdot \cos \alpha l - \frac{2 \cdot F}{\alpha \cdot S} \cdot \sin \alpha l \cdot \cos 2\alpha l = 0$$

$$C_3 = \frac{F}{\alpha \cdot S} \cdot \frac{\cos 2\alpha l}{\cos \alpha l}$$

(a):
$$C_1 \cdot \sin \alpha l - C_3 \cdot \sin \alpha l - C_4 \cdot \cos \alpha l = 0$$

$$C_{I} \cdot \sin\alpha l - \frac{F}{\alpha \cdot S} \cdot \frac{\cos 2\alpha l}{\cos \alpha l} \cdot \sin\alpha l + \frac{2 \cdot F}{\alpha \cdot S} \cdot \sin\alpha l \cdot \cos\alpha l = 0$$

$$C_{I} = \frac{F}{\alpha \cdot S} \cdot \left[\frac{\cos^{2} \alpha l - \sin^{2} \alpha l}{\cos 2\alpha l} - 2 \cdot \cos \alpha l \right]$$

$$C_{I} = \frac{F}{\alpha \cdot S} \cdot \frac{\cos^{2} \alpha l - \sin^{2} \alpha l - 2 \cdot \cos^{2} \alpha l}{\cos \alpha l} = \frac{F}{\alpha \cdot S} \cdot \frac{-\sin^{2} \alpha l - \cos^{2} \alpha l}{\cos \alpha l}$$

$$C_{I} = -\frac{F}{\alpha \cdot S \cdot \cos \alpha l}$$

Тогда:

$$y_{I} = C_{I} \cdot \sin \alpha z + C_{2} \cdot \cos \alpha z + \frac{F}{S} \cdot z = \frac{F}{S} \cdot \left[z - \frac{\sin \alpha z}{\alpha \cdot \cos \alpha l} \right];$$

$$y'_{I} = \alpha \cdot C_{I} \cdot \cos \alpha z - \alpha \cdot C_{2} \cdot \sin \alpha z + \frac{F}{S} = \frac{F}{S} \cdot \left[1 - \frac{\cos \alpha z}{\cos \alpha l} \right];$$

$$y''_{I} = -\alpha^{2} \cdot C_{I} \cdot \sin \alpha z - \alpha^{2} \cdot C_{2} \cdot \cos \alpha z = \alpha \cdot \frac{F}{S} \cdot \frac{\sin \alpha z}{\cos \alpha l};$$

$$y_{2} = C_{3} \cdot \sin \alpha z + C_{4} \cdot \cos \alpha z + \frac{F}{S} \cdot (2 \cdot l - z) =$$

$$= \frac{F}{\alpha \cdot S \cdot \cos \alpha l} \cdot \left[\cos 2\alpha l \cdot \sin \alpha z - \sin 2\alpha l \cdot \cos \alpha z + (2 \cdot l - z) \cdot \alpha \cdot \cos \alpha l \right];$$

$$y'_{I} = \alpha \cdot C_{I} \cdot \cos \alpha z - \alpha \cdot C_{I} \cdot \sin \alpha z - \frac{F}{S} = \frac{F}{S} \cdot \frac{C}{S} \cdot \cos \alpha z + \frac{F}{S} \cdot \frac{C}{S} \cdot \frac{C}{S} \cdot \cos \alpha z + \frac{F}{S} \cdot \frac{C}{S} \cdot \cos \alpha z + \frac{F}{S} \cdot \frac{C}{S} \cdot \frac{C}{S} \cdot \cos \alpha z + \frac{F}{S} \cdot \frac{C}{S} \cdot \cos \alpha z + \frac{F}{S} \cdot \frac{C}{S} \cdot \frac$$

$$\begin{aligned} y_2' &= \alpha \cdot C_3 \cdot \cos \alpha z - \alpha \cdot C_4 \cdot \sin \alpha z - \frac{F}{S} = \\ &= \frac{F}{S \cdot \cos \alpha l} \cdot \left[\cos 2\alpha l \cdot \cos \alpha z + \sin 2\alpha l \cdot \sin \alpha z - \cos \alpha l \right]; \end{aligned}$$

$$y_2'' = -\alpha^2 \cdot C_3 \cdot \sin \alpha z - \alpha^2 \cdot C_4 \cdot \cos \alpha z = \frac{\alpha \cdot F}{S \cdot \cos \alpha l} \cdot \left[-\cos 2\alpha l \cdot \sin \alpha z - \cos 2\alpha l \cdot \cos \alpha z \right].$$

<u>Перемещения, углы поворота, внутренний изгибающий момент по</u> <u>длине стержня:</u>

$$v_{I}(z) = y_{I}(z) = \frac{F}{S} \cdot \left[z - \frac{\sin \alpha z}{\alpha \cdot \cos \alpha l} \right]$$

$$\theta_{I}(z) \approx y_{I}'(z) = \frac{F}{S} \cdot \left[1 - \frac{\cos \alpha z}{\cos \alpha l} \right]$$

$$M_{x_I}(z) \approx E \cdot I_X \cdot y_I''(z) = E \cdot I_X \cdot \alpha \cdot \frac{F}{S} \cdot \frac{\sin \alpha z}{\cos \alpha z} = \frac{F}{\alpha} \cdot \frac{\sin \alpha z}{\cos \alpha z}$$

$$v_2(z) = y_2(z) = \frac{F}{\alpha \cdot S \cdot \cos \alpha l} \cdot \left[\cos 2\alpha l \cdot \sin \alpha z - \sin 2\alpha l \cdot \cos \alpha z + (2 \cdot l - z) \cdot \alpha \cdot \cos \alpha l\right]$$

$$\theta_2(z) \approx y_2'(z) = \frac{F}{S \cdot \cos \alpha l} \cdot \left[\cos 2\alpha l \cdot \cos \alpha z + \sin 2\alpha l \cdot \sin \alpha z - \cos \alpha l\right]$$

$$M_{x_2}(z) \approx E \cdot I_X \cdot y_2''(z) = \frac{F}{\alpha \cdot \cos \alpha l} \cdot \left[-\cos \alpha l \cdot \sin \alpha z + \cos 2\alpha l \cdot \cos \alpha z \right]$$

Вертикальное перемещение точки С:

$$v_C = v_I(l) = \frac{F}{S} \cdot \left[l - \frac{\sin \alpha l}{\alpha \cdot \cos \alpha l} \right] = \frac{F}{S} \cdot \left[l - \frac{tg \ \alpha l}{\alpha} \right] = \frac{425}{85000} \cdot \left[3 - \frac{5,468}{0,4633} \right] = -0,044 \ \text{M} = -44 \ \text{MM}$$

$$\alpha = \sqrt{\frac{S}{E \cdot I_X}} = \sqrt{\frac{85000}{2 \cdot 10^{11} \cdot 198 \cdot 10^{-8}}} = 0,4633 \frac{1}{M}$$

$$\alpha \cdot l = 0,4633 \cdot 3 = 1,3899$$

$$tg \ \alpha l = tg(1,3899) = 5,468$$

Максимальное (по модулю!) напряжение реализуется, очевидно, в точке *С* стержня:

$$\sigma_{\text{MAX}} = \frac{M_{x_C}}{W_{x}} + \frac{S}{A} = \frac{5016}{39.7 \cdot 10^{-6}} + \frac{85000}{12 \cdot 10^{-4}} = 197.1 \cdot 10^{6} \ \Pi a \approx 197 \ M\Pi a$$

где

$$M_{x_C} = M_{x_I}(l) = \frac{F}{\alpha} \cdot tg \ \alpha l = \frac{425}{0,4633} \cdot 5,468 = 5016 \ H \cdot M$$

Коэффициент запаса прочности:

$$n_T = \frac{\sigma_T}{\sigma_{MAX}} = \frac{240}{197} = 1.2$$

Примечание:

В силу симметрии конструкции, рассчитать можно было только её половину:

$$\frac{s}{r}$$
 $\frac{s}{r}$ \frac{s}

$$I_{X} = \frac{\pi d^{2}}{4} = 78,5 \cdot 10^{-6} \text{ m}^{2}$$

$$I_{X} = \frac{\pi d^{d}}{64} = 491 \cdot 10^{-12} \text{ m}^{4}$$

$$W_{X} = \frac{\pi d^{d}}{32} = 98 \cdot 10^{-9} \text{ m}^{3}$$

$$E = 2 \cdot 10^{11} \text{ } \Pi a ; l = 0,5 \text{ m} ; q = 100 \text{ } H/_{M} ;$$

$$S = 300 \text{ } H ; \sigma_{T} = 200 \text{ } M\Pi a$$

$$Haimu: \quad v_{max} = ? \quad |\sigma|_{max} = ? \quad n_{T} = ?$$

$$\sum M_{B} = 0 = -q \cdot z \cdot \frac{z}{2} - (\frac{3}{4} \cdot q \cdot l - q \cdot z) \cdot z + E \cdot I_{X} \cdot y_{1}^{"} - S(-y_{1})$$

$$y_{1}^{"} + \frac{S}{E \cdot I_{X}} \cdot y_{1} = \frac{S}{S} \cdot \frac{q}{E \cdot I_{X}} \cdot \frac{1}{2} \cdot \frac{3 \cdot z \cdot l - 2 \cdot z^{2}}{1}$$

$$y_{1}^{"} + \alpha^{2} \cdot y_{1} = \alpha^{2} \cdot \frac{q}{4 \cdot S} \cdot \left[3 \cdot z \cdot l - 2 \cdot z^{2} \right]$$

$$y_{1}^{"} = \alpha \cdot C_{1} \cdot \cos \alpha z - \alpha \cdot C_{2} \cdot \sin \alpha z + \frac{q}{4 \cdot S} \cdot \left[\frac{4}{\alpha^{2}} + 3 \cdot z \cdot l - 2 \cdot z^{2} \right]$$

$$y_{1}^{"} = -\alpha^{2} \cdot C_{1} \cdot \sin \alpha z - \alpha^{2} \cdot C_{2} \cdot \cos \alpha z + \frac{q}{4 \cdot S} \cdot \left[3 \cdot l - 4 \cdot z \right]$$

$$y_{1}^{"} = -\alpha^{2} \cdot C_{1} \cdot \sin \alpha z - \alpha^{2} \cdot C_{2} \cdot \cos \alpha z - \frac{q}{S}$$

$$\sum M_{B} = 0 = -q \cdot l \cdot \frac{l}{2} + \frac{l}{4} \cdot q \cdot l \cdot z + E \cdot I_{X} \cdot y_{1}^{"} - S \cdot (-y_{2})$$

$$y_{2}^{"} + \frac{S}{E \cdot I_{X}} \cdot y_{2} = \frac{S}{S} \cdot \frac{q \cdot l}{E \cdot I_{X}} \cdot \left[2 \cdot l - z \right]$$

$$y_{2}^{"} + \alpha^{2} \cdot y_{2} = \alpha^{2} \cdot \frac{q \cdot l}{4 \cdot S} \cdot \left[2 \cdot l - z \right]$$

$$y_{2}^{"} = \alpha \cdot C_{3} \cdot \cos \alpha z - \alpha \cdot C_{4} \cdot \sin \alpha z - \frac{l}{4} \cdot \frac{q \cdot l}{4 \cdot S} \cdot \left[2 \cdot l - z \right]$$

$$y_{2}^{"} = \alpha \cdot C_{3} \cdot \cos \alpha z - \alpha \cdot C_{4} \cdot \sin \alpha z - \frac{l}{4} \cdot \frac{q \cdot l}{S} \cdot \left[2 \cdot l - z \right]$$

 $y_2'' = -\alpha^2 \cdot C_3 \cdot \sin \alpha z - \alpha^2 \cdot C_4 \cdot \cos \alpha z$

1)
$$z = 0$$
: $y_1 = 0 \implies C_1 \cdot 0 + C_2 \cdot 1 + \frac{q}{\alpha^2 \cdot S} = 0$ (1)

2)
$$z = l : y_1 = y_2 = C_1 \cdot \sin \alpha l + C_2 \cdot \cos \alpha l + \frac{q}{4 \cdot S} \cdot \left[\frac{4}{\alpha^2} + l^2 \right] = C_3 \cdot \sin \alpha l + C_4 \cdot \cos \alpha l + \frac{q \cdot l^2}{4 \cdot S}$$

$$C_1 \cdot \sin \alpha l + C_2 \cdot \cos \alpha l - C_3 \cdot \sin \alpha l - C_4 \cdot \cos \alpha l = -\frac{q}{\alpha^2 \cdot S}$$
 (2)

3)
$$z = l : y'_1 = y'_2 = \lambda \cdot C_1 \cdot \cos \alpha l - \lambda \cdot C_2 \cdot \sin \alpha l - \frac{q \cdot l}{4 \cdot S} = \lambda \cdot C_3 \cdot \cos \alpha l - \lambda \cdot C_4 \cdot \sin \alpha l - \frac{q \cdot l}{4 \cdot S}$$

$$C_1 \cdot \cos \alpha l - C_2 \cdot \sin \alpha l - C_3 \cdot \cos \alpha l + C_4 \cdot \sin \alpha l = 0$$
 (3)

4)
$$z = 2 \cdot l : y_2 = 0 \implies -\alpha^2 \cdot C_3 \cdot \sin 2\alpha l - \alpha^2 \cdot C_4 \cdot \cos 2\alpha l = 0$$

$$C_3 \cdot \sin 2\alpha l + C_4 \cdot \cos 2\alpha l = 0 \tag{4}$$

Система уравнений (1)-(4) в матричной форме:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ \sin \alpha l & \cos \alpha l & -\sin \alpha l & -\cos \alpha l \\ \cos \alpha l & -\sin \alpha l & -\cos \alpha l & \sin \alpha l \\ 0 & 0 & \sin 2\alpha l & \cos 2\alpha l \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \cdot \frac{q}{\alpha^2 \cdot S}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ \sin \alpha l & -\cos \alpha l & -\sin \alpha l & \cos \alpha l \\ \cos \alpha l & \sin \alpha l & -\cos \alpha l & -\sin \alpha l \\ 0 & \cos 2\alpha l & \sin 2\alpha l & 0 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_4 \\ C_3 \\ C_2 \end{bmatrix} = \begin{bmatrix} -I \\ -I \\ 0 \\ 0 \end{bmatrix} \cdot \frac{q}{\alpha^2 \cdot S}$$

$$\begin{bmatrix} \sin\alpha l & -\cos\alpha l & -\sin\alpha l & \cos\alpha l \\ 0 & \cos2\alpha l & \sin2\alpha l & 0 \\ 0 & \frac{1}{\sin\alpha l} & 0 & -\frac{1}{\sin\alpha l} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_4 \\ C_3 \\ C_2 \end{bmatrix} \leftarrow \begin{bmatrix} -1 \\ 0 \\ \cos\alpha l \\ \sin\alpha l \\ -1 \end{bmatrix} \cdot \frac{q}{\alpha^2 \cdot S}$$

$$\sin \alpha l - \sin \alpha l - \cos \alpha l \cos \alpha l \\ 0 \sin 2\alpha l \cos 2\alpha l & 0 \\ 0 & 0 \frac{1}{\sin \alpha l} - \frac{1}{\sin \alpha l} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_3 \\ C_4 \\ C_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ \cos \alpha l \\ \sin \alpha l \\ C_2 \end{bmatrix} \cdot \frac{q}{\alpha^2 \cdot S}$$

$$\begin{bmatrix} \sin \alpha l & -\sin \alpha l & -\cos \alpha l & \cos \alpha l \\ 0 & \sin 2\alpha l & \cos 2\alpha l & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_3 \\ C_4 \\ C_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ \cos \alpha l \\ -1 \end{bmatrix} \cdot \frac{q}{\alpha^2 \cdot S} \quad (8)$$

Решаем эту систему уравнений:

$$(2): \quad \boxed{C_2 = -\frac{q}{\alpha^2 \cdot S}}$$

(6):
$$C_4 - C_2 = \cos \alpha l \cdot \frac{q}{\alpha^2 \cdot S}$$

$$C_4 = C_2 + \cos\alpha l \cdot \frac{q}{\alpha^2 \cdot S} = \frac{q}{\alpha^2 \cdot S} \cdot (\cos\alpha l - 1)$$

(6):
$$C_3 \cdot \sin 2\alpha l + C_4 \cdot \cos 2\alpha l = 0$$

$$C_3 = -C_4 \cdot ctg \ 2\alpha l = \frac{q}{\alpha^2 \cdot S} \cdot (1 - \cos \alpha l) \cdot ctg \ 2\alpha l$$

$$(a): C_1 \cdot \sin \alpha l - C_3 \cdot \sin \alpha l - C_4 \cdot \cos \alpha l + C_2 \cdot \cos \alpha l = -\frac{q}{\alpha^2 \cdot S}$$

$$C_1 = C_3 + (C_4 - C_2) \cdot \frac{\cos \alpha l}{\sin \alpha l} - \frac{q}{\alpha^2 \cdot S} \cdot \frac{1}{\sin \alpha l} =$$

$$= -\frac{q}{\alpha^2 \cdot S} \cdot (\cos \alpha l - 1) \cdot \cot \alpha l + \frac{q}{\alpha^2 \cdot S} \cdot (\cos \alpha l - 1 + 1) \cdot \frac{\cos \alpha l}{\sin \alpha l} - \frac{q}{\alpha^2 \cdot S} \cdot \frac{1}{\sin \alpha l} = \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} = \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} = \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} \cdot \frac{1}{\sin \alpha l} = \frac{1}{\sin \alpha l} \cdot \frac{1$$

$$= \frac{q}{\alpha^2 \cdot S} \cdot \left[\frac{\cos^2 \alpha l}{\sin \alpha l} - \frac{1}{\sin \alpha l} + (1 - \cos \alpha l) \cdot \cot \beta 2\alpha l \right] =$$

$$= \frac{q}{\alpha^2 \cdot S} \cdot \left[(1 - \cos \alpha l) \cdot \cot \beta \, 2\alpha l - \sin \alpha l \right]$$

$$C_{l} = \frac{q}{\alpha^{2} \cdot S} \cdot \left[(1 - \cos \alpha l) \cdot \cot 2\alpha l - \sin \alpha l \right]$$

Итак, перемещения, углы поворота и внутренний изгибающий момент по длине стержня:

$$\begin{split} v_{l}(z) &= y_{l}(z) = C_{l} \cdot \sin \alpha z + C_{2} \cdot \cos \alpha z + \frac{q}{4 \cdot S} \cdot \left[\frac{4}{\alpha^{2}} + 3 \cdot z \cdot l - 2 \cdot z^{2} \right]; \\ v_{2}(z) &= y_{2}(z) = C_{3} \cdot \sin \alpha z + C_{4} \cdot \cos \alpha z + \frac{q \cdot l}{4 \cdot S} \cdot \left[2 \cdot l - z \right]; \\ \theta_{l}(z) &\approx y_{l}'(z) = \alpha \cdot \left(C_{l} \cdot \cos \alpha z - C_{2} \cdot \sin \alpha z \right) + \frac{q}{4 \cdot S} \cdot \left[3 \cdot l - 4 \cdot z \right]; \\ \theta_{2}(z) &\approx y_{2}'(z) = \alpha \cdot \left(C_{3} \cdot \cos \alpha z - C_{4} \cdot \sin \alpha z \right) - \frac{q \cdot l}{4 \cdot S}; \\ M_{x_{l}}(z) &\approx E \cdot I_{x} \cdot y_{l}'' = - \underbrace{E \cdot I_{x} \cdot \alpha^{2}}_{S} \left(C_{l} \cdot \sin \alpha z + C_{2} \cdot \cos \alpha z \right) - q \underbrace{E \cdot I_{x}}_{S}; \\ M_{x_{2}}(z) &\approx -S \cdot \left(C_{3} \cdot \sin \alpha z + C_{4} \cdot \cos \alpha z \right). \end{split}$$

где

$$\begin{split} C_{1} &= \frac{q}{\alpha^{2} \cdot S} \cdot \left[(1 - \cos \alpha l) \cdot \cot g \ 2\alpha l - \sin \alpha l \right]; \\ C_{2} &= -\frac{q}{\alpha^{2} \cdot S}; \\ C_{3} &= \frac{q}{\alpha^{2} \cdot S} \cdot (1 - \cos \alpha l) \cdot \cot g \ 2\alpha l; \\ C_{4} &= \frac{q}{\alpha^{2} \cdot S} \cdot (\cos \alpha l - 1). \end{split}$$

В нашем случае:

$$\alpha = \sqrt{\frac{S}{E \cdot I_X}} = \sqrt{\frac{300}{2 \cdot 10^{11} \cdot 491 \cdot 10^{-12}}} = 1,7479 \frac{1}{M}$$

$$\alpha^2 = 3,055 \frac{1}{M^2}$$

$$\frac{q}{\alpha^2} = \frac{100}{3,055} = 32,73 \quad H \cdot M$$

$$\alpha \cdot l = 1,7479 \cdot 0,5 = 0,8739$$

$$2 \cdot \alpha \cdot l = 1,7479$$

$$\sin \alpha l = 0,7669$$

$$\cos \alpha l = 0,6418$$

$$\cot g 2\alpha l = \frac{1}{tg 2\alpha l} = -0,1789$$

$$\frac{q}{\alpha^2 \cdot S} = \frac{100}{1,7479^2 \cdot 300} = 0,1091;$$

$$\frac{q}{4 \cdot S} = \frac{100}{4 \cdot 300} = 0,08333;$$

$$\frac{q \cdot l}{4 \cdot S} = 0.04167;$$

$$C_1 = \frac{q}{\alpha^2 \cdot S} \cdot \left[(1 - \cos \alpha l) \cdot \cot g 2\alpha l - \sin \alpha l \right] =$$

$$= 0,1091 \cdot \left[(1 - 0,6418) \cdot (-0,1789) - 0,7669 \right] = -0,09066;$$

$$C_2 = -\frac{q}{\alpha^2 \cdot S} \cdot (1 - \cos \alpha l) \cdot \cot g 2\alpha l = 0,1091 \cdot (1 - 0,6418) \cdot (-0,1789) = -0,006991;$$

$$C_3 = \frac{q}{\alpha^2 \cdot S} \cdot (1 - \cos \alpha l) \cdot \cot g 2\alpha l = 0,1091 \cdot (1 - 0,6418) \cdot (-0,1789) = -0,006991;$$

$$C_4 = \frac{q}{\alpha^2 \cdot S} \cdot (\cos \alpha l - l) = 0,1091 \cdot (0,6418 - l) = -0,03908;$$

$$\begin{bmatrix} v_{I}(z) = \left\{ -90,66 \cdot \sin(\alpha \cdot z) - 109, 1 \cdot \cos(\alpha \cdot z) + 83,33 \cdot \left[1,3093 + 1,5 \cdot z - 2 \cdot z^{2} \right] \right\} \cdot 10^{-3};$$

$$v_2(z) = \{-6,991 \cdot \sin(1,7479 \cdot z) - 39,08 \cdot \cos(1,7479 \cdot z) + 83,33 \cdot [1-z]\} \cdot 10^{-3};$$

$$\theta_{I}(z) = \{1,7479 \cdot [-90,66 \cdot \cos(1,7479 \cdot z) + 109, 1 \cdot \sin(1,7479 \cdot z)] + 83,33 \cdot [1,5-4 \cdot z] \} \cdot 10^{-3};$$
(*)

$$\theta_{2}(z) = \{1,7479 \cdot [-6,991 \cdot \cos(1,7479 \cdot z) + 39,08 \cdot \sin(1,7479 \cdot z)] - 41,67\} \cdot 10^{-3};$$

$$M_{x_1}(z) = \overbrace{300 \cdot 10^{-3}}^{0,3} \cdot \{90,66 \cdot \sin(1,7479 \cdot z) + 109, 1 \cdot \cos(1,7479 \cdot z)\} - 32,73;$$

$$M_{x_2}(z) = 0.3 \cdot \{6.991 \cdot \sin(1.7479 \cdot z) + 39.08 \cdot \cos(1.7479 \cdot z)\}.$$

Проверка ГУ:

1)
$$V_1(0) = \{-90,66 \cdot 0 - 109, 1 \cdot 1 + 83,33 \cdot 1,3093\} \cdot 10^{-3} = 3,969 \cdot 10^{-6} \approx 0$$
 M

2)
$$v_{l}(l) = v_{l}(0,5) = -0.0096078$$
 M
 $v_{2}(l) = v_{2}(0,5) = -0.0096110$ M

В вычислениях мы округляем результаты до 4-х значащих цифр. Значит, ошибка округления становится заметна, начиная с третьей значащей цифры. Именно с этой цифры и начинается расхождения в значениях $v_l(l)$ и $v_2(l)$, значит можно считать, что:

$$v_1(l) = v_2(l)$$

3)
$$\theta_{I}(l) = \theta_{I}(0,5) = 0.002872$$
 pad
 $\theta_{2}(l) = \theta_{2}(0,5) = 0.002873$ pad $\theta_{I}(l) = \theta_{2}(l)$

4)
$$v_2(2 \cdot l) = v_2(1) = 0.003439 \cdot 10^{-3} = 3.439 \cdot 10^{-6} \approx 0$$

Проверка стыковки изгибающих моментов в т. С:

$$\left. \begin{array}{l} M_{x_{I}}(l) = M_{x_{I}}(0,5) = 9,134 \\ M_{x_{2}}(l) = M_{x_{2}}(0,5) = 9,133 \end{array} \right\} \quad M_{x_{I}}(l) = M_{x_{2}}(l)$$

Проверки сошлись, значит уравнения (*) верны.

Наибольший прогиб (очевидно, на участке ①) будет там, где угол наклона поперечных сечений обращается в нуль:

Уравнение

$$\theta_{l}(\tilde{z}) = 0$$

$$\downarrow \downarrow$$

$$1,7479 \cdot \left[-90,66 \cdot \cos(1,7479 \cdot \tilde{z}) + 109,1 \cdot \sin(1,7479 \cdot \tilde{z}) \right] + 83,33 \cdot \left[1,5 - 4 \cdot \tilde{z} \right] = 0$$

можно решить численно:

$$\tilde{z} = 0,46974 \ M$$

$$\begin{split} v_{max} &= v_I(\ \tilde{z}\) = \{-90,66 \cdot sin(\ 1,7479 \cdot 0,46974\) - 109,1 \cdot cos(\ 1,7479 \cdot 0,46974\) + \\ &+ 83,33 \cdot \Big[1,3093 + 1,5 \cdot 0,46974 - 2 \cdot 0,46974^2\ \Big]\} \cdot 10^{-3} = \\ &= -0,009652\ \text{M} \approx 9,7\ \text{MM} \end{split}$$

Максимальное (экстремальное) значение внутреннего изгибающего момента M_{X_1} ищем там, где его первая производная обращается в нуль:

$$\begin{split} M_{x_I} &= -S \cdot \left(C_I \cdot \sin \alpha z + C_2 \cdot \cos \alpha z \right) - \frac{q}{\alpha^2} \\ &\frac{dM_{x_I}}{dz} = -\alpha \cdot S \cdot \left(C_I \cdot \cos \alpha z - C_2 \cdot \sin \alpha z \right) \\ z &= z^* : \frac{dM_{x_I}}{dz} = 0 \quad \Rightarrow \quad C_I \cdot \cos \alpha z^* - C_2 \cdot \sin \alpha z^* = 0 \\ &tg \, \alpha z^* = \frac{C_I}{C_2} \\ &z^* = \frac{\arctan g \, \frac{C_I}{C_2}}{\alpha} = \frac{\arctan g \, \frac{-0.09066}{-0.1091}}{1.7479} = 0.3966 \, \, \text{M} \\ M_{x_I}^{max} &= M_{x_I}(z^*) = \\ &= 0.3 \cdot \left\{ 90.66 \cdot \sin(1.7479 \cdot 0.3966) + 109.1 \cdot \cos(1.7479 \cdot 0.3966) \right\} - 32.73 = \\ &= 9.826 \, \, H \cdot M \end{split}$$

Максимальное <u>сжимающее</u> напряжение в стержне:

$$\sigma_{max} = \frac{M_{x_I}^{max}}{W_v} + \frac{S}{A} = \frac{9,826}{98 \cdot 10^{-9}} + \frac{300}{78,5 \cdot 10^{-6}} = 104,1 \cdot 10^6 \ \Pi a \approx 104 \, \text{M}\Pi a$$

Коэффициент запаса прочности:

$$\eta_T = \frac{\sigma_T}{\sigma_{\text{max}}} = \frac{200}{104} = 1,9$$

Приближённый метод (метод Тимошенко)

Точный метод расчёта, как видно, весьма сложен, а его высокая точность на практике инженеру не всегда нужна, всё равно она «тонет» в разбросе характеристик материала, приближённости самой расчётной схемы и т.д. и т.п.

Это привело к широкому распространению приближённых способов расчёта, основанных, например, на допущении о том, что изогнутая ось нагруженной балки имеет форму синусоиды:

Это предположение позволяет получать результаты с достаточной для инженера точностью при действии поперечных нагрузок, направленных в одну сторону.

Пусть максимальный прогиб балки при действии одной лишь поперечной нагрузки f_n при добавлении к ней продольной силы S увеличился до значения f:

Выясним, как соотносятся прогибы f и f_n :

$$\begin{cases} E \cdot I_x \cdot y_n'' = M_{x_n} \\ E \cdot I_x \cdot y'' = M_x = M_{x_n} - S \cdot y \end{cases}$$

$$E \cdot I_x \cdot (y'' - y_n'') = -S \cdot y$$

$$E \cdot I_x \cdot \left(-f \cdot \frac{\pi^2}{l^2} \cdot \sin \frac{\pi / 2}{l} + f_n \cdot \frac{\pi^2}{l^2} \cdot \sin \frac{\pi / 2}{l} \right) = -S \cdot f \cdot \sin \frac{\pi / 2}{l}$$

$$\frac{\pi^2 \cdot E \cdot I_x}{l^2} \cdot (f - f_n) = S \cdot f$$

эйлерова сила, численно равная

$$f = \frac{f_n}{1 - \frac{S}{P_9}}$$

где

$$k_{T}=rac{1}{1-rac{S}{P_{\Im}}}$$
 — коэффициент Тимошенко.
$$(XIII.2)$$

Применяя эту формулу, следует иметь ввиду тот факт, что эйлерова сила P_{\Im} введена в выражение (XIII.2) чисто формально. Поэтому в отличии от критической нагрузки P_{KP} сила P_{\Im} используется при любой гибкости балки λ , даже при $\lambda < \lambda_{nu}$.

Формулы (XIII.1) и (XIII.2) обычно применяют и при других типах опорных закреплений сжато-изогнутых балок. В этом случае эйлерова сила вычисляется по формуле (XII.4):

$$P_{\mathfrak{I}} = \frac{\pi^2 \cdot E \cdot I_x}{\left(\mu \cdot L\right)^2}$$

Формулы (XIII.1) и (XIII.2) дают удовлетворительные результаты, когда сжимающая сила S не превышает $\theta, 8 \cdot P_{\mathit{KP}}$.

Предполагая, что углы поворота поперечных сечений стержня и внутренний изгибающий момент по его длине пропорциональны прогибам, получаем простые формулы:

$$\theta = k_T \cdot \theta_n \tag{XIII.3}$$

$$M_x = k_T \cdot M_{x_n} \tag{XIII.4}$$

$$M_{x} = k_{T} \cdot M_{x_{n}} \tag{XIII.4}$$

Пример XIII.4 :

$$\underline{\underline{\mathcal{A}aho}}$$
: $E = 2 \cdot 10^{11} \ \Pi a \ ; \ l = I M ;$
 $F = 100 \ H \ ; \ S = 500 \ H \ ;$
 $A = 0,0003 \ \text{м}^2 \ ; \ I_X = 25 \cdot 10^{-10} \text{м}^4$
 $W_X = 5 \cdot 10^{-7} \ \text{M}^3 \ ; \ \sigma_T = 765 \ \text{M}\Pi a$

Найти:
$$V_B$$
, θ_B , σ_{max} , n_T

Решение

а) Находим соответствующие величины, порождаемые одной лишь поперечной нагрузкой:

б) Добавление продольной силы S увеличит прогибы v , углы поворота θ и внутренний изгибающий момент M_x в k_T раз:

$$P_{\kappa p} = \frac{\pi^{2} \cdot E \cdot I_{x}}{(\mu \cdot L)^{2}} = \frac{\pi^{2} \cdot 2 \cdot 10^{11} \cdot 2 \cdot 10^{-10}}{(2 \cdot 1)^{2}} = 1234 \text{ H}$$

$$k_{T} = \frac{1}{1 - \frac{S}{P_{2}}} = \frac{1}{1 - \frac{500}{1234}} = 1,681$$

 $V_B = V_{B_R} \cdot k_T = 0.1667 \cdot 1.681 = 0.2802 \text{ м} \approx 280 \text{ мм}$ - расхождение с примером XIII.1 составляет 0,7%;

 $\theta_{B} = \theta_{B_{n}} \cdot k_{T} = 0.3 \cdot 1.681 = 0.5044 \ pad$ - расхождение с примером XIII.1 составляет 5%;

 $M_{X_A} = M_{X_{A_B}} = 200 \cdot 1,681 = 336,2 \ H \cdot M$ - расхождение с примером XIII.1 составляет 1,3%;

$$\sigma_{\text{MAX}} = \sigma_{\text{A}} = \frac{M_{X_A}}{W_{\text{X}}} + \frac{S}{A} = \frac{336.2}{5 \cdot 10^{-7}} + \frac{500}{0,0003} = 674.1 \cdot 10^6 \; \Pi a = 674 \, \text{М}\Pi a$$
 - расхождение с примером составляет 1,5% ;

Коэффициент запаса прочности:

$$n = \frac{\sigma_T}{\sigma_{max}} = \frac{765}{674} = 1{,}14$$

в примере XIII.1 n = 1,12.

Пример XIII.5 :

Haŭmu:
$$v_c = ? \quad n_T = ?$$

Решение

а) Находим соответствующие величины, порождаемые одной лишь поперечной нагрузкой:

б) Добавление продольной силы S увеличит прогибы v, углы поворота θ и внутренний изгибающий момент M_x в k_T раз:

$$P_{\kappa p} = \frac{\pi^{2} \cdot E \cdot I_{x}}{(\mu \cdot L)^{2}} = \frac{\pi^{2} \cdot E \cdot I_{x}}{(\mu \cdot 2 \cdot l)^{2}} = \frac{\pi^{2} \cdot E \cdot I_{x}}{(\mu \cdot 2 \cdot l)^{2}} = \frac{\pi^{2} \cdot 2 \cdot 10^{11} \cdot 198 \cdot 10^{-8}}{(1 \cdot 2 \cdot 3)^{2}} = 108566 \text{ H}$$

$$R_{9} = R_{\kappa p}$$

$$k_{T} = \frac{1}{1 - \frac{S}{P_{2}}} = \frac{1}{1 - \frac{85000}{108566}} = 4,607$$

 $v_C = v_{C_n} \cdot k_T = -0.009659 \cdot 4.607 = -0.0445 \, \text{м} \approx -44.5 \, \text{мм}$ - расхождение с примером XIII.2 составляет 1%;

 $\theta_{C} = \theta_{C_{n}} \cdot k_{T} = 0 \cdot 4,607 = 0$ рад - с примером XIII.2 точное совпадение ;

 $M_{X_C} = M_{X_{C_n}} = 1275 \cdot 4,607 = 5874 \ H \cdot M$ - расхождение с примером XIII.2 составляет 17%;

$$\sigma_{\text{MAX}} = \sigma_{\text{C}} = \frac{M_{X_{\text{C}}}}{W_{\text{X}}} + \frac{S}{A} = \frac{5874}{39,7 \cdot 10^{-6}} + \frac{85000}{0,0012} = 218,8 \cdot 10^6 \; \Pi a \approx 219 \, \text{М}\Pi a$$
 - расхождение с примером составляет 11% ;

Коэффициент запаса прочности:

$$n = \frac{\sigma_T}{\sigma_{\text{.....}}} = \frac{240}{219} = 1.1$$

Заметное отличие силовых результатов M_x и σ_{MAX} от точного метода объясняется параболической формой изогнутой оси нагруженной балки.

Пример XIII.6 :

Решение

 а) Находим соответствующие величины, порождаемые одной лишь поперечной нагрузкой:

$$M_{X_{max_n}} = M_{X_{T_n}} = \frac{9}{32} \cdot q \cdot l^2 =$$

= $\frac{9}{32} \cdot 100 \cdot 0.5^2 = 7.031 \, H \cdot M$

Методом Мора или Коши-Крылова:

$$v_{T_n} = \frac{4968}{49152} \cdot \frac{q \cdot l^4}{E \cdot I_x} = \frac{4968}{49152} \cdot \frac{100 \cdot 0.5^4}{2 \cdot 10^{11} \cdot 491 \cdot 10^{-12}} = 0.1011 \cdot \frac{6.25}{98.2} = 0.006435 \text{ m}$$

б) Добавление продольной силы S увеличит прогибы v , углы поворота θ и внутренний изгибающий момент M_x в k_T раз:

 $M_{X_T} = M_{X_{T_n}} = 7,031 \cdot 1,448 = 10,18 \ H \cdot M$ - расхождение с примером **XIII.3** составляет 3,6% ;

 $z^* = 0.75 \cdot l = 0.75 \cdot 0.5 = 0.375$ м - расхождение с примером XIII.3 - 5,4%;

$$\sigma_{\text{MAX}} = \sigma_{\text{T}} = \frac{M_{X_T}}{W_{\text{X}}} + \frac{S}{A} = \frac{10.18}{98 \cdot 10^{-9}} + \frac{300}{0.00785} = 103.9 \cdot 10^6 \; \Pi a \approx 104 \; \text{МПа}$$
 - совпаденние с примером XIII.3 точное;

Коэффициент запаса прочности:

$$\eta_T = \frac{\sigma_T}{\sigma_{\text{max}}} = \frac{200}{104} = 1.9.$$