

2007/2008 Cjelina 11. Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Signali i sustavi

Profesor Branko Jeren

21. travnja 2008.

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava

Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Impulsni odziv linearnih diskretnih sustava 1

 odziv vremenski diskretnog sustava s jednim ulazom i jednim izlazom, SISO sustav,

 $Stanja = Realni^N, Ulazi = Realni, Izlazi = Realni,$ $<math>\forall n \in Cjelobrojni$

$$x(n+1) = Ax(n) + Bu(n)$$

$$y(n) = Cx(n) + Du(n)$$

je

$$y(n) = \begin{cases} Cx(0) + Du(0), & n = 0 \\ CA^{n}x(0) + \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

odnosno, za miran sustav x(0) = 0,

$$y(n) = \begin{cases} Du(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava

Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Impulsni odziv linearnih diskretnih sustava 2

• pobudimo li, mirni, *SISO* sustav s jediničnim impulsom $u(n) = \delta(n)$ odziv je:

$$y(n) = \begin{cases} D\delta(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}B\delta(m) + D\delta(n), & n > 0 \end{cases}$$

odnosno, uz oznaku h(n) = y(n),

$$h(n) = \begin{cases} D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

odnosno

$$h(n) = CA^{n-1}B\mu(n-1) + D\delta(n), \quad n \ge 0$$

• odziv mirnog sustava, x(0) = 0, na pobudu jediničnim impulsom $u(n) = \delta(n)$ nazivamo impulsni odziv i označavamo kao h(n)

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava

Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

neka je vremenski diskretan sustav zadan s jednadžbom diferencija

$$y(n) - 0.75y(n-1) = u(n)$$

- ovaj sustav možemo prikazati s modelom s varijablama stanja
- sustav je prvog reda i potrebna je samo jedna varijabla stanja
- izaberemo x(n) = y(n-1) pa su jednadžba stanja i izlazna jednadžba

$$x(n+1) = \underbrace{0.75}_{A} x(n) + \underbrace{1}_{B} u(n)$$
$$y(n) = \underbrace{0.75}_{C} x(n) + \underbrace{1}_{D} u(n)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv

Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

• prije je pokazano da je impulsni odziv mirnog sustava, x(0) = 0, dakle odziv na $u(n) = \delta(n)$

$$h(n) = \begin{cases} 0, & n < 0 \\ D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

za
$$A = 0.75$$
, $B = 1$, $C = 0.75$, $D = 1$

$$h(n) = \begin{cases} 0, & n < 0 \\ 1, & n = 0 \\ 0.75 \cdot 0.75^{n-1} \cdot 1 = 0.75^n, & n > 0 \end{cases}$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijska

sumacija
Impulsni odziv
vemenski
kontinuiranih
linearnih sustav
Konvolucijski
integral

Primjer određivanja impulsnog odziva vremenski diskretnog sustava

- do istog rezultata smo mogli doći i izravnim rješavanjem polazne jednadžbe za y(-1)=h(-1)=0 i $u(n)=\delta(n)$, bilo kojom metodom
- ovdje ćemo to učiniti metodom izračunavanja korak po korak

$$y(n) = 0.75y(n-1) + \delta(n)$$

 $h(n) = 0.75h(n-1) + \delta(n)$

za n=0,1,2,...

$$h(0) = 0.75h(-1) + 1 = 1$$

$$h(1) = 0.75h(0) + 0 = 0.75 \cdot 1 = 0.75$$

$$h(2) = 0.75h(1) + 0 = 0.75 \cdot 0.75 = 0.75^{2}$$

$$h(3) = 0.75h(2) + 0 = 0.75 \cdot 0.75^{2} = 0.75^{3}$$

$$h(4) = 0.75h(3) + 0 = 0.75 \cdot 0.75^{3} = 0.75^{4}$$

$$\dots \qquad \dots$$

$$h(n) = 0.75h(n-1) + 0 = 0.75 \cdot 0.75^{n-1} = 0.75^{n}$$

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih susta

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Konvolucijska sumacija 1

za

$$h(n) = \begin{cases} D, & n = 0 \\ CA^{n-1}B, & n > 0 \end{cases}$$

odnosno

$$h(n) = CA^{n-1}B\mu(n-1) + D\delta(n), \quad n \ge 0$$

odziv mirnog SISO sustava transformira se u

$$y(n) = \begin{cases} Du(0), & n = 0\\ \sum_{m=0}^{n-1} CA^{n-1-m}Bu(m) + Du(n), & n > 0 \end{cases}$$

$$y(n) = \sum_{m=0}^{n} CA^{n-1-m}Bu(m)\mu(n-1) + Du(n), & n \ge 0$$

$$y(n) = \sum_{m=0}^{n} \underbrace{[CA^{n-1-m}B\mu(n-1) + \delta(n-m)D]}_{h(n-m)} u(m), & n \ge 0$$

・ロ > 4 回 > 4 目 > 4 目 > り へ ②

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Konvolucijska sumacija 2

• pa je, finalno,

$$y(n) = \sum_{m=0}^{n} h(n-m)u(m), \quad n \geq 0$$

- linearni mirni sustav, x(n) = 0, potpuno je opisan svojim impulsnim odzivom h(n)
- dakle, poznavanjem h(n), moguće je odrediti odziv mirnog linearnog sustava na bilo koju pobudu

Cjelina 11. Profesor Branko Jeren

Impulsni odz i konvolucija linearnih

sustava Impulsni odzi

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Konvolucijska sumacija 3

za miran SISO sustav definiran svojim impulsnim odzivom i

$$u(n) = 0, \quad \forall n < 0$$

 $h(n) = 0, \quad \forall n < 0$

konvolucijska sumacija je

$$y(n) = \sum_{m=-\infty}^{\infty} h(n-m)u(m), \quad n \in C$$
jelobrojni

• supstitucijom k = n - m slijedi alternativni prikaz

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)u(n-k), \quad n \in C$$
jelobrojni

• pa vrijedi

$$y = h * u = u * h$$
 odnosno $y(n) = (h * u)(n) = (u * h)(n)$

Profesor Branko Jeren

Konvoluciiska sumaciia

Konvolucijska sumacija 4

- ovdje se izvodi izraz za konvolucijsku sumaciju SISO linearnog sustava i na drugi način
- pokazuje se kako se odziv vremenski stalnog linearnog sustava može promatrati kao linearna kombinacija impulsnih odziva
- pobudni signal se može prikazati kao niz impulsa pa će onda odziv linearnog sustava biti linearna kombinacija impulsnih odziva na svaki od ovih impulsa

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

diskretnih linearnih sust

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Diskretni signal kao suma jediničnih impulsa

svaki niz može biti prikazan uz pomoć sume jediničnih impulsa

• uz definiciju za pomak jediničnog impulsa možemo pisati

$$u(n) = .5\delta(n) + .3\delta(n-1) + .1\delta(n-2) + .3\delta(n-3) + .5\delta(n-4)$$

 razmotrimo odziv linearnog, vremenski stalnog, diskretnog sustava na niz impulsa

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Odziv sustava na niz impulsa

Slika 1: Konvolucijska sumacija SISO sustava

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijska

Konvolucijsk sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Konvolucijska sumacija

diskretni signal možemo prikazati kao zbroj niza impulsa

$$u = \dots + u(-1)\delta(n+1) + u(0)\delta(n) + u(1)\delta(n-1) + u(2)\delta(n-2) + u(3)\delta(n-3) \dots \Rightarrow u = \sum_{m=-\infty}^{\infty} u(m)\delta(n-m)$$

• odziv sustava na jednični impuls $\delta(n)$ je h(n), pa za linearni sustav vrijedi svojstvo homogenosti

$$u(m)\delta(n-m) \rightarrow u(m)h(n-m)$$

odziv na pobudu nizom u je

$$y = \ldots + u(-1)h(n+1) + u(0)h(n) + u(1)h(n-1) + u(2)h(n-2) + u(3)h(n-3) \ldots \Rightarrow$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

linearnih susta Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski integral

Konvolucijska sumacija

• prije je pokazano da je konvolucijska sumacija definirana za $\forall n \in \textit{Cjelobrojni}$ kao

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$

• za kauzalne u(n) i h(n) konvolucijska sumacija se reducira u

$$y(n) = \sum_{m=0}^{n} u(m)h(n-m), \qquad n \geq 0$$

i predstavlja odziv mirnog linearnog vremenski stalnog sustava

Profesor Branko Jeren

Impulsni odzir i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustav Konvoluciiska

Konvolucijsk sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Primjer konvolucijske sumacije

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m),$$

$$za n = 2 \Rightarrow y(2) = \sum_{m=-\infty}^{\infty} u(m)h(2-m)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

sustava Impulsni odziv diskretnih

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Primjer konvolucijske sumacije

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

sustava Impulsni odziv diskretnih

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Primjer konvolucijske sumacije

17

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

sustava Impulsni odziv diskretnih

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih susta Konvolucijski integral

Primjer konvolucijske sumacije

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih

Impulsni odziv diskretnih linearnih susta

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih susta Konvolucijski

Svojstva konvolucijske sumacije – komutativnost i asocijativnost

već je pokazano da vrijedi komutativnost

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m) = \sum_{m=-\infty}^{\infty} h(m)u(n-m) \Leftrightarrow u*h = h*u$$

svojstvo asocijativnosti

$$y(n) = ((u * h_1) * h_2)(n) = (u * (\underbrace{h_1 * h_2}_{h}))(n) = (u * h)(n)$$

Slika 6: Konvolucijska sumacija – asocijativnost

Cjelina 11.

Profesor
Branko Jeren

2007/2008

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih susta

Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustar Konvolucijski integral

Svojstva konvolucijske sumacije – asocijativnost

 izvod svojstva asocijativnosti za linearni, vremenski stalni, diskretni sustav

$$y(n) = \sum_{j=-\infty}^{\infty} \left[\sum_{m=-\infty}^{\infty} u(m)h_1(j-m) \right] h_2(n-j) =$$

$$= \sum_{m=-\infty}^{\infty} u(m) \left[\sum_{j=-\infty}^{\infty} h_1(j-m)h_2(n-j) \right]$$

za
$$k = j - m$$
 ⇒

$$y(n) = \sum_{m=-\infty}^{\infty} u(m) \left[\underbrace{\sum_{k=-\infty}^{\infty} h_1(k) h_2(n-m-k)}_{h(n-m)} \right]$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h(n-m)$$

Cjelina 11. Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski

Svojstva konvolucijske sumacije – distributivnost

 svojstvo distributivnosti za linearni, vremenski stalni, diskretni sustav

$$y(n) = (u * (h_1 + h_2))(n) = (u * h_1)(n) + (u * h_2)(n)$$

Slika 7: Konvolucijska sumacija – distributivnost

$$y(n) = \sum_{m=-\infty}^{\infty} u(m) \left[h_1(n-m) + h_2(n-m) \right]$$

$$y(n) = \sum_{m=-\infty}^{\infty} u(m)h_1(n-m) + \sum_{m=-\infty}^{\infty} u(m)h_2(n-m)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

linearnih susta Konvolucijska sumacija Impulsni odziv

Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Konvolucija proizvoljnih signala

- dosadašnja razmatranja konvolucijske sumacije odnosila su se na jedan od mogućih opisa sustava
- konvolucijsku sumaciju možemo definirati i za proizvoljne signale, pa pišemo

$$y(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m) = (x_1 * x_2)(n)$$

- već prije izvedena svojstva konvolucijske sumacije vrijede i za proizvoljne signale:
 - komutativnost:

$$(x_1 * x_2)(n) = (x_2 * x_1)(n)$$

distributivnost:

$$(x_1*(x_2+x_3))(n)=(x_1*x_2)(n)+(x_1*x_3)(n)$$

asocijativnost:

$$(x_1 * (x_2 * x_3))(n) = ((x_1 * x_2) * x_3)(n)$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih susta Konvolucijska

sumacija Impulsni odzi

vremenski kontinuiranih linearnih sustav Konvolucijski integral

Svojstva konvolucijske sumacije – pomak

• za $y(n) = (x_1 * x_2)(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m)$, te uz oznake $(D_p(x_1))(n) = x_1(n-p)$ i $(D_q(x_2))(n) = x_2(n-q)$, vrijedi svojstvo pomaka

$$(D_p(x_1) * D_q(x_2))(n) = y(n-p-q)$$

izvod svojstva pomaka

$$\sum_{m=-\infty}^{\infty} [D_p(x_1)(m)][D_q(x_2)(n-m)] = \sum_{m=-\infty}^{\infty} x_1(m-p)x_2(n-m-q)$$

za j = m - p slijedi

$$\sum_{j=-\infty}^{\infty} x_1(j)x_2(n-p-q-j) = y(n-p-q)$$

Profesor Branko Jeren

Impulsni od i konvolucija linearnih

linearnih sustava Impulsni odzi

Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Svojstva konvolucijske sumacije – konvolucija s jediničnim impulsom, duljina konvolucijske sumacije

- konvolucija s jediničnim impulsom
 - za bilo koji signal x(n), $n \in C$ jelobrojni, i jedinični impuls $\delta(n)$, $n \in C$ jelobrojni,

$$(x * \delta)(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m) = x(n)$$

- duljina konvolucijske sumacije konačnih nizova
 - neka je L_1 duljina (broj elemenata) niza $x_1(n)$, a L_2 duljina niza $x_2(n)$
 - duljina $(x_1 * x_2)(n)$ je $L_1 + L_2 1$

dokaz slijedi iz:
$$y(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m)$$

 $0 \le m \le L_1 - 1$
 $0 \le n - m \le L_2 - 1 \qquad |+m$
 $m \le n \le L_2 - 1 + m \implies$
 $0 \le m \le n \le L_2 - 1 + m \le L_2 - 1 + L_1 - 1 \implies$
 $0 \le n \le L_1 + L_2 - 2$
pa je duljina konvolucije $L = L_1 + L_2 = 1$

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Impulsni odziv linearnih kontinuiranih sustava 1

• odziv mirnog, $x(0^-) = 0$, sustava s jednim ulazom i jednim izlazom, *SISO* sustav, izveden je kao:

 $Stanja = Realni^N, Ulazi = Realni, Izlazi = Realni,$ $<math>\forall t \in Realni_+$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$y(t) = \int_{0^{-}}^{t} Ce^{A(t-\tau)}Bu(\tau) d\tau + Du(t) \quad t \ge 0$$

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

Impulsni odziv linearnih kontinuiranih sustava 2

• pobudimo li mirni, $x(0^-)$, SISO sustav s jediničnim impulsom $u(t) = \delta(t)$ odziv je:

$$y(t) = \int_{0^{-}}^{t} Ce^{A(t-\tau)}B\delta(\tau) d\tau + D\delta(t) \quad t \ge 0$$

odnosno

$$y(t) = h(t) = Ce^{At}B + D\delta(t)$$
 $t \ge 0$

• odziv mirnog sustava, $x(0^-)=0$, na pobudu jediničnim impulsom $u(t)=\delta(t)$ nazivamo impulsni odziv i označavamo kao h(t)

$$h(t) = Ce^{At}B + D\delta(t)$$
 $t \ge 0$

Cielina 11. Profesor Branko Jeren

Konvoluciiski

integral

Konvolucijski integral

 odziv mirnog kontinuiranog sustava, na proizvoljnu pobudu.

$$y(t) = \int_{0^{-}}^{t} \underbrace{\left[Ce^{A(t-\tau)}B + D\delta(t-\tau)\right]}_{h(t-\tau)} u(\tau) \ d\tau \quad t \ge 0$$

možemo pisati i kao

$$y(t) = \int_{0^{-}}^{t} h(t - \tau)u(\tau) d\tau \quad t \ge 0$$

- ovo je konvolucijski integral i on u potpunosti opisuje mirni kontinuirani SISO sustav
- za miran SISO sustav i h(t) = 0 i u(t) = 0 za t < 0konvolucijski integral možemo pisati i kao

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) u(\tau) d\tau$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Konvolucijski integral – svojstva

 konvolucijski integral možemo definirati i za proizvoljne signale, pa možemo pisati

$$(x_1 * x_2)(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$$

komutativnost:

$$(x_1 * x_2)(t) = (x_2 * x_1)(t)$$

distributivnost:

$$(x_1*(x_2+x_3))(t)=(x_1*x_2)(t)+(x_1*x_3)(t)$$

asocijativnost:

$$(x_1*(x_2*x_3))(t) = ((x_1*x_2)*x_3)(t)$$

pomak:

za
$$(D_{T_1}(x_1))(t) = x_1(t - T_1)$$
 i $(D_{T_2}(x_2))(t) = x_2(t - T_2)$ $(D_{T_1}(x_1) * D_{T_2}(x_2))(t) = y(t - T_1 - T_2)$

konvolucija s impulsom

$$(x*\delta)(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau) \ d\tau = x(t)$$

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 1.

- neka je zadan linearni, vremenski stalni, vremenski kontinuiran sustav, svojim impulsnim odzivom $h(t)=e^{-3t}\mu(t)$
- određuje se odziv na pobudu $u(t) = \mu(t)$
- odziv izračunavamo pomoću konvolucijskog integrala

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) u(\tau) d\tau$$

• sa slike 8 je vidljivo kako se $u(\tau)$ i $h(t-\tau)$ ne poklapaju za $t \le 0$ pa slijedi da je y(t) = 0 za $t \le 0$

Profesor Branko Jeren

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustav. Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustav. Konvolucijski

integral

Grafička interpretacija izračunavanja konvolucijskog integrala – Primjer 1.

Slika 8: Konvolucijski integral – primjer

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih sustava

diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 1. nastavak

ullet za t>0, postoji preklapanje u(au) i h(t- au), pa je

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)u(\tau) d\tau = \int_{0}^{t} h(t-\tau)u(\tau) d\tau \quad \Rightarrow$$

$$y(t) = \int_0^t e^{-3(t-\tau)} d\tau = e^{-3t} \int_0^t e^{3\tau} d\tau = \frac{1}{3} [1 - e^{-3t}]$$

- grafička interpretacija postupka konvolucije dana je na slici 8, i treba uočiti kako trenutna vrijednost y(t) odgovara površini preklapanja $u(\tau)$ i $h(t-\tau)$ (žuto na slici)
- tako je za t=1

$$y(t) = \int_0^1 e^{-3(1-\tau)} d\tau = \frac{1}{3} [1 - e^{-3}] = 0.3167$$

Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Nekauzalni sustavi

- za nekauzalni sustav, odziv započinje prije nego je djelovala pobuda, dakle, sustav anticipira buduću pobudu (radi predikciju)
- nekauzalni vremenski sustavi su često rezultat postupaka sinteze na temelju idealiziranih zahtjeva
- nekauzalni vremenski sustavi ne mogu biti realizirani u stvarnom vremenu
- nekauzalne sustave možemo koristiti u slučajevima kada je dozvoljeno kašnjenje ili kada su konačni signali pohranjeni (poznati u cijelom području definicije)
- ovdje se demonstrira odziv nekauzalnog sustava konvolucijskim integralom

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava Konvolucijski

integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2.

- neka je zadan linearni, vremenski stalni, vremenski kontinuiran sustav, svojim impulsnim odzivom $h(t)=\mu(t+1)-\mu(t-2)$
- određuje se odziv na pobudu $u(t) = \mu(t+3) \mu(t-4)$
- odziv izračunavamo pomoću konvolucijskog integrala

$$y(t) = \int_{-\infty}^{\infty} h(t - \tau) u(\tau) \ d\tau$$

- grafička interpretacija dana je na slici 9
- sa slike 9 je vidljivo kako se $u(\tau)$ i $h(t-\tau)$ preklapaju u tri intervala
 - u intervalu $-4 \le t \le -1$, djelomično,
 - u intervalu $-1 \le t \le 3$, potpuno (cijeli $h(t-\tau)$ zahvaćen s $u(\tau) \ne 0$),
 - u intervalu 3 < t < 6, djelomično,

Cjelina 11.

Profesor
Branko Jeren

Impulsni odz i konvolucija linearnih

Impulsni odziv diskretnih linearnih sustav Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustav Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 1

Slika 9: Grafička interpretacija izračunavanja konvolucijskog integrala

- Primjer 2.

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

impulsin odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 2

- na slici 9 je ilustrirano kako vrijednosti y(-3)=1, y(2)=3 i y(5)=1, odgovaraju površini produkata $u(\tau)*h(-3-\tau)$, $u(\tau)*h(2-\tau)$, odnosno, $u(\tau)*h(5-\tau)$
- evidentno je kako, zbog nekauzalnosti impulsnog odziva, odziv starta prije pobude
- odziv započinje za $t \geq -4$, trenutak kada se počinju preklapati $u(\tau)$ i $h(t-\tau)$, i u intervalu $-4 \leq t \leq -1$ računa se iz

$$y(t) = \int_{-3}^{t+1} u(\tau)h(t-\tau) d\tau = \int_{-3}^{t+1} d\tau = t+4$$

• obrazložimo gornju i donju granicu

2007/2008 Cjelina 11. Profesor Branko Jeren

Impulsni odzi i konvolucija linearnih

Impulsini odziv diskretnih linearnih sustavi Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustavi

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 3

djelomično preklapanje počinje za t=-4, a završava za t=-1

granica integracija za interval $-4 \le t \le -1$ su: donja je -3; gornja je t+1

Cjelina 11.

Profesor
Branko Jeren

2007/2008

Impulsni od i konvolucij linearnih

sustav

diskretnih
linearnih sustav.
Konvolucijska
sumacija
Impulsni odziv
vremenski
kontinuiranih
linearnih sustav.

Konvolucijski integral Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 4

granica integracija za interval $-1 \le t \le 3$ su: donja je t-2; gornja je t+1

• u intervalu -1 < t < 3 odziv se računa iz

$$y(t) = \int_{t-2}^{t+1} u(\tau)h(t-\tau) d\tau = \int_{t-2}^{t+1} d\tau = 3,$$

Cielina 11. Profesor Branko Jeren

2007/2008

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 5

granica integracija za interval $3 \le t \le 6$ su: donja je t-2; gornja je 4

u intervalu 3 < t < 6,iz

$$y(t) = \int_{t-2}^{4} u(\tau)h(t-\tau) d\tau = \int_{t-2}^{4} d\tau = 6 - t$$

Profesor Branko Jeren

Impulsni odziv i konvolucija linearnih sustava

Impuisni odziv diskretnih linearnih sustava Konvolucijska sumacija Impulsni odziv vremenski kontinuiranih linearnih sustava

Konvolucijski integral

Izračunavanje odziva sustava pomoću konvolucijskog integrala – Primjer 2. nastavak 6

• finalno, odziv sustava $h(t)=\mu(t+1)-\mu(t-2)$, na pobudu $u(t)=\mu(t+3)-\mu(t-4)$, je

$$y(t) = \begin{cases} 0, & t \leq -4 \\ t+4, & -4 \leq t \leq -1 \\ 3, & -1 \leq t \leq 3 \\ 6-t, & 3 \leq t \leq 6 \\ 0, & t \geq 6 \end{cases}$$

Cjelina 11.

Profesor
Branko Jeren

2007/2008

Impulsni odz i konvolucija linearnih

diskretnih
linearnih sustava
Konvolucijska
sumacija
Impulsni odziv
vremenski
kontinuiranih
linearnih sustava
Konvolucijski

integral

Odziv sustava konvolucijom

 zaključno, odziv linearnih, mirnih, vremenski diskretnih, odnosno vremenski kontinuiranih, SISO sustava moguće je, uz poznati impulsni odziv, odrediti konvolucijom

$$y(n) = \sum_{m=0}^{n} h(n-m)u(m), \quad n \in Cjelobrojni_{+}$$
 $y(t) = \int_{0^{-}}^{t} h(t-\tau)u(\tau) d\tau, \quad t \in Realni_{+}$

za sustave prikazane s modelom s varijablama stanja,
 [A, B, C, D] prikaz, izvedeno je

$$h(n) = \left\{ egin{array}{ll} D, & n = 0 \ CA^{n-1}B, & n > 0 \end{array}
ight., \quad n \in Cjelobrojni_+ \ h(t) = Ce^{At}B + D\delta(t), \quad t \in Realni_+ \end{array}
ight.$$

• određivanje impulsnog odziva za model ulaz–izlaz pokazuje se kasnije