Report No.:CD111100006W02

FCC Part 15E TEST RE

Issued to

DFINE Technology Co., Ltd.

For

WHDI wireless transceiver module

Model Name

: DF-W208/JDWHI200AA

Trade Name

: Dfine

Brand Name

: Dfine : Y48DF-W208

FCC ID IC

9679A-DFW208

Standard

: 47 CFR Part 15 Subpart E

RSS 210

Test date

: 2012-05-22 to 2012-06-05

Issue date

: 2012-06-07

Shenzhen MORLAB Communication Technology Co., Ltd.

Hou Yiyang

Date

2012.6.8

Date

Wang wei

2012.6.8

CTIA Authorized Test Lab

IEEE 1725

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

DIRECTORY

1. (GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Test Standards and Results	5
1.3.	Facilities and Accreditations	6
2. 4	7 CFR PART 15E&IC RSS REQUIREMENTS	7
2.1.	FCC §15.207& IC RSS-Gen §7.2.2 - Conducted Emission	7
2.2.	FCC § 15.407(b) & IC RSS-210 § A9.2 Undesirable Emission & Restricted Bands	10
2.3.	FCC §15.407(a) & IC RSS-210 §A9.2 – 26dB Bandwidth and 99% Emission Bandwidth .	34
2.4.	FCC §407(a) & IC RSS – 210 §A9.2 - Peak Output Power	40
2.5.	FCC §15.407(a) & IC RSS-210 §A9.2 - Power Spectral Density	42
2.6.	FCC §15.407(a)(6) - Peak Excursion Ratio	48
2.7.	IC RSS-210 §2.6 & RSS-Gen§6 – Receiver Spurious Radiated Emission	53
2.8.	FCC §15.407 (g) - Frequency Stability	58
** E	ND OF REPORT **	60

	Change History				
Issue Date Reason for change					
1.0 June 7, 2012		First edition			

1. General Information

1.1. EUT Description

EUT Type.....: WHDI wireless transceiver module

Serial No.: N/A

Hardware Version...... JD7.820.1442V3.1

Software Version App: 2.1.42

Applicant...... DFINE Technology Co., Ltd.

Building A2, Tianfu Software Park, Hi-tech Zone, South Extension

of Tianfu Wide Road, Chengdu, China

Manufacturer....: DFINE Technology Co., Ltd.

Building A2, Tianfu Software Park, Hi-tech Zone, South Extension

of Tianfu Wide Road, Chengdu, China

Operating Frequency Range: 5.15GHz~5.25GHz & 5.725GHz~5.825GHz

Channel Information....... 4 channels of two bands

Channel frequencies :5190MHz,5230MHz,5755MHz,5795MHz

Channel bandwidth :40MHz

Channel Separation.....: 40MHz

Modulation Type: OFDM(16QAM)

Antenna Description Manufacturer: DFINE Technology Co., Ltd.

Operating Frequency: 4.9GHz~5.9GHz Gain: Max Gain 2dBi

Ant1: Transmit and Receive

Ant2: Transmit

Power Supply: Battery

Manufacturer: HCT ELECTRIC CO., LTD

10 Bldg, Fuhua Industrial Area

Model No.: 675776
Capacity: 3.7V/3000mAh
Rated Voltage: 3.7V
Charge Limit: 4.2V

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by

the applicant and/or manufacturer.

Note 2: The equipment model DF-W208(for trade use) and JDWHI200AA(for internal use), are the same WHDI wireless transceiver module.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Wi-Fi, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-09 Edition)	
2	IC RSS -210	Licence-exempt Radio Apparatus (All Frequency Bands):
		Category I Equipment

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	FCC§15.407(b)(6),§15.207(a)	Conducted Emissions	Pass
	IC RSS-Gen §7.2.2		
2	FCC§15.205,§15.209§15.407(b)(4),(6),(7)	Undesirable Emission &	Pass
	IC RSS-210§A9.2	Restricted Bands	
3	FCC§15.407(a)(3)	26 dB bandwidth	Pass
	IC RSS-210§A9.2		
4	FCC§15.407(a)(3)	Conducted Transmitter	Pass
	IC RSS-210§A9.2	Output Power	
5	FCC§15.407(a)(3),(5)	Power Spectral Density	Pass
	IC RSS-210§A9.2		
6	FCC§15.407(a)(6)	Peak Excursion Ratio	Pass
	IC RSS-210§A9.2		
7	IC RSS-210 §2.6,RSS-Gen§6	Receiver Spurious	Pass
		Radiated Emission	
8	FCC§15.407(g)	Frequency Stability	Pass

1.3. Facilities and Accreditations

1.3.1. Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

1.3.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15E&IC RSS Requirements

2.1. FCC §15.207& IC RSS-Gen §7.2.2 - Conducted Emission

2.1.1. Requirement

According to FCC section 15.207, 15.407(b) (6) and IC RSS – Gen §7.2.2 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Eraguanay ranga (MHz)	Conducted Limit (dBµV)		
Frequency range (MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.1.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2009

The EUT is powered by the Battery charged with the notebook computer which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the EUT is in operating mode, and the Ipad2 provided HDMI source.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Receiver	R&S	ESCS30	827413/001	2013.04
LISN	R&S	ESH3-Z5	827246/027	2012.11
Notebook Computer	Dell	PP09S	MM592A00	N/A
Ipad2	Apple	Ipad2	DMPGT2V3DFHW	N/A

2.1.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Test Record:

QP:

Frequency	Level	Limit	Margin	Line
MHz	dΒμV	dΒμV	dB	Line
3.5976	41.30	56	14.70	L1
3.7575	41.60	56	14.40	L1
3.7809	41.00	56	15.00	N

AV:

Frequency	Level	Limit	Margin	Lina
MHz	dΒμV	dΒμV	dB	Line
3.5547	28.80	46	17.2	L1
3.6873	29.70	46	16.3	L1
3.8043	29.50	46	16.5	L1

Verdict: Pass

2.2. FCC § 15.407(b) & IC RSS-210 § A9.2 Undesirable Emission & Restricted Bands

2.2.1. Requirement

According to FCC section 15.407(b) (1,4, 6, 7) and IC RSS-210; for transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz; for transmitters operating in the 5.725–5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of –27 dBm/MHz. Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in section 15.209.

Unwanted Emission Blow 1GHz:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	
0.009-0.490	2400/F(KHz)	300	
0.490-1.705	24000F(KHz)	30	
1.705-30	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

In addition, radiated emissions which fall in the Restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.2.2. Test Description

2.2.2.1. Radiated Undesirable Emissions

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	HP	E4407B	US39010211	2012.12
Spectrum Analyzer	Agilent	E4447A	US14721108	2013.03
Receiver	R&S	ESU	100204	2013.04
Semi-Anechoic Chamber	Albatross	9m*6m*6m	4771011001	2013.04

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Test Antenna-Loop	Schwarzbeck	FMZB	1519-022	2013.05
Test Antenna - Bi-Log	Schaffner	CBL6112B	2529	2013.05
Receiver	R&S	ESU	100204	2013.04
Semi-Anechoic Chamber	Albatross	9m*6m*6m	4771011001	2013.04

2.2.2.2. Conducted Undesirable Emissions at Antenna

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	HP	E4407B	US39010211	2012.12
Spectrum Analyzer	Agilent	E4447A	US14721108	2013.03

2.2.2.3. Band Edge

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	HP	E4407B	US39010211	2012.12
Spectrum Analyzer	Agilent	E4447A	US14721108	2013.03

2.2.3. Measurement Procedure

2.2.3.1. Radiated Undesirable Emissions

According to KDB 789033 D01 section G, unwanted emission measurements below 1000MHz will be using quasi – peak detector; unwanted emission measurements above 1000MHz will be using peak and average detector. If the unwanted emission is in the restricted bands, it must comply with FCC §15.209; else it must comply with §15.407(b).

Follow KDB 412172, ERP/EIRP= P_T+G_T-L_C

- ERP/EIRP = effective (or equivalent) radiated power (in same units as PT, typically dBW, dBm, or power spectral density (psd)), relative to either a dipole antenna (ERP) or an isotropic antenna (EIRP);
- P_T = transmitter output power, in dBW, dBm, or psd (power over a specified reference bandwidth);
- G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);
- L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB.2

In this report: EIRP= Receiving Reading + Correction Factor

2.2.3.2. Conducted Undesirable Emissions at Antenna

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) with a Attenuator; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is operating at the maximum output power.

2.2.3.3. Band Edge

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) with a Attenuator; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is operating at the maximum output power.

2.2.4. Test Result

2.2.4.1. Radiated Undesirable Emission

A. 0.009~30MHz:

Operating in 5190MHz - Horizontal

NOTE: The emissions are too small tobe measure and are at least 20dB below the limit, So all the data of marked are pass. The other frequency test results are at least 20dB below the limit. part 15.31(o) for the reporting of emissions that are more than 20dB below the limit. emissions more than 20dB below the limit need not be reported.

B. 30~1000MHz:

EUT Operating in 5190MHz - Horizontal

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
240.005	39.0	1	120	109.0	269.0	7.0	46.0
699.688	39.2	1	120	111.0	116.0	6.8	46.0
897.180	43.1	1	120	118.0	32.0	2.9	46.0
906.104	40.4	1	120	123.0	150.0	5.6	46.0

EUT Operating in 5190MHz – Vertical

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
120.016	34.2	1	120	112.0	269.0	9.3	43.5
375.902	39.7	1	120	136.0	201.0	6.3	46.0
379.588	36.8	1	120	128.0	214.0	9.2	46.0
954.119	40.8	1	120	136.0	230.0	5.2	46.0

EUT Operating in 5230MHz – Horizontal

FCC 15B_1GHz AUTO Horizontal

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
120.016	36.6	1	120	118.0	248.0	6.9	43.5
240.005	39.9	1	120	123.0	261.0	6.1	46.0
699.688	38.8	1	120	127.0	64.0	7.2	46.0
947.329	38.8	1	120	133.0	197.0	7.2	46.0

EUT Operating in 5230MHz - Vertical

FCC 15B_1GHz AUTO Vertical

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	(dB µ V/m)	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
31.067	28.1	1	120	153.0	55.0	11.9	40.0
33.880	26.9	1	120	153.0	56.0	13.1	40.0
55.317	20.4	1	120	112.0	57.0	19.6	40.0
56.093	19.6	1	120	175.0	58.0	20.4	40.0

EUT Operating in 5755MHz - Horizontal

FCC 15B_1GHz AUTO Horizontal

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
120.307	29.7	1	120	277.0	351.0	13.8	43.5
240.005	38.7	1	120	128.0	0.0	7.3	46.0
699.688	38.4	1	120	100.0	64.0	7.6	46.0
948.687	35.2	1	120	200.0	38.0	10.8	46.0

EUT Operating in 5755MHz - Vertical

FCC 15B_1GHz AUTO Vertical

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
49.594	27.4	1	120	100.0	110.0	12.6	40.0
120.016	35.0	1	120	100.0	257.0	8.5	43.5
766.424	33.5	1	120	194.0	326.0	12.5	46.0
899.508	33.8	1	120	136.0	314.0	12.2	46.0

EUT Operating in 5795MHz - Horizontal

FCC 15B_1GHz AUTO Horizontal

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
240.005	38.6	1	120	100.0	354.0	7.4	46.0
680.094	32.0	1	120	128.0	44.0	14.0	46.0
699.688	37.7	1	120	100.0	165.0	8.3	46.0
954.119	37.0	1	120	100.0	215.0	9.0	46.0

EUT Operating in 5795MHz - Vertical

FCC 15B_1GHz AUTO Vertical

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	(dB µ V/m)	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
30.970	28.5	1	120	144.0	212.0	11.5	40.0
120.016	35.1	1	120	100.0	231.0	8.4	43.5
891.554	33.8	1	120	178.0	312.0	12.2	46.0
954.119	35.6	1	120	186.0	264.0	10.4	46.0

C. 1~40GHz:

Unwanted Emission in restricted bands

Frequency	Conducted	Detector	Antenna	EIRP	Field Strength	Limit	Margin
	Emission	/	Gain		in 3m	4 /	4
MHz	dBm	AV/PK	dBi	dBm	dBuv/m	dBuv/m	dB
		O _l	perating in	5190MF	Iz		
15570	-52.22	PK		-50.22	44.98	74	29.02
20760	-55.87	PK	2	-53.87	41.33	74	32.67
15570	-58.30	AV	2	-56.3	38.90	54	15.10
20760	-60.92	AV		-58.92	36.28	54	17.72
		Oj	perating in	5230MH	I z		
15690	-52.33	PK		-50.33	44.87	74	29.13
20920	-55.83	PK		-53.83	41.37	74	32.63
31380	-50.09	PK	2	-48.09	47.11	74	26.89
15690	-58.91	AV	2	-56.91	38.29	54	15.71
20920	-61.42	AV		-59.42	35.78	54	18.22
31380	-56.37	AV		-54.37	40.83	54	13.17
		Oj	perating in	5755ME	Iz		
11510	-54.90	PK		-52.9	42.30	74	31.70
23020	-52.19	PK	2	-50.19	45.01	74	28.99
11510	-59.19	AV	2	-57.19	38.01	54	15.99
23020	-57.48	AV		-55.48	39.72	54	14.28
		Ol	perating in	5795MH	Iz		
11590	-53.78	PK	2	-51.78	43.42	74	30.58
11590	-57.02	AV	2	-55.02	40.18	54	13.82

Note: According to KDB 789033 D01 section G(1)(d), the field strength at 3m from EUT is:

E[dBuV/m] = EIRP[dBm] + 95.2

Unwanted Emission out of restricted bands

Frequency	Conducted Emission	Antenna Gain	EIRP	Limit	Margin					
MHz	dBm/MHz	dBi	dBm/MHz	dBm/MHz	dB					
	(Operating in	n 5190MHz							
10380	-54.82		-52.82	-27	25.82					
25950	-56.73	2	-54.73	-27	27.73					
31140	-50.87	2	-48.87	-27	21.87					
36330	-44.43		-42.43	-27	15.43					
Operating in 5230MHz										
10460	-53.75		-51.75	-27	24.75					
26150	-54.81	2	-52.81	-27	25.81					
36610	-43.99		-41.99	-27	14.99					
	(Operating in	n 5755MHz							
17265	-52.37		-50.37	-27	23.37					
28755	-54.80	2	-52.80	-27	25.80					
34530	-47.11		-45.11	-27	18.11					
		Operating in	n 5795MHz							
17385	-54.86		-52.86	-27	25.86					
23180	-51.73	2	-49.73	-27	22.73					
28975	-53.92	<i>L</i>	-51.92	-27	24.92					
34770	-46.93		-44.93	-27	17.93					

Note: According to KDB 789033 D01 section G(1)(d), the field strength at 3m from EUT is:

E[dBuV/m] = EIRP[dBm] + 95.2

Verdict: Pass

2.2.4.2. Conducted Undesirable Emission

Frequency	Max Peak	RBW Margin		Limit		
(GHz)	(dBm)	(MHz) (dB)		(dBm)		
Operating in 5190 – Ant 1						
39.13	-36.69	-36.69 1 9.69		-27		
	Operating in 5190 – Ant 2					
39.87	-37.33	1	10.33	-27		
Operating in 5230 – Ant 1						
39.67	-37.52	1	10.52	-27		
Operating in 5230 – Ant 2						
39.67	-36.11	1	9.11	-27		
Operating in 5755 – Ant 1						
39.13	-36.48	1	9.48	-27		
Operating in 5755 – Ant 2						
39.73	-36.39	1	9.39	-27		
Operating in 5795 – Ant 1						
39.73	-37.17	1	10.17	-27		
Operating in 5795 – Ant 2						
39.67	-36.81	1	9.81	-27		

Verdict: Pass

Center 20.02 GHz

Undefined header

#Res BW 1 MHz

VBW 3 MHz

Marker Count

Span 39.97 GHz

Sweep 199.9 ms (601 pts)

2.2.4.3. Band Edge

Frequency	Max Peak	RBW	Margin	Limit	
(GHz)	(dBm)	(MHz)	(dB)	(dBm)	
Operating in 5190 – Ant 1					
5.15	-43.19	1	16.19	-27	
Operating in 5190 – Ant 2					
5.15	-44.72	1	17.72	-27	
Operating in 5230 – Ant 1					
5.35	-44.27	1	17.27	-27	
Operating in 5230 – Ant 2					
5.35	-45.48	1	18.48	-27	
Operating in 5755 – Ant 1					
5.715	-40.95	1	23.95	-17	
5.725	-40.82	1	13.82	-27	
Operating in 5755 – Ant 2					
5.715	-42.66	1	25.66	-17	
5.725	-42.85	1	15.85	-27	
Operating in 5795 – Ant 1					
5.825	-36.54	1	19.54	-17	
5.835	-44.68	1	17.68	-27	
Operating in 5795 – Ant 2					
5.825	-35.95	1	18.95	-17	
5.835	-38.19	1	11.19	-27	

Verdict: Pass

2.3. FCC §15.407(a) & IC RSS-210 §A9.2 – 26dB Bandwidth and 99% Emission Bandwidth

2.3.1. Definition

According to FCC section 15.407(a) (1, 3), for the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the –26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to RSS -210 §A9.2, for the band 5.15–5.25 GHz, The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. For the band 5.725–5.825 GHz, The maximum conducted output power shall not exceed 1.0 W or 17 + 10 log10 B dBm, whichever power is less. The power spectral density shall not exceed 17 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

2.3.2. Test Description

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	HP	E4407B	US39010211	2012.12

2.3.3. Test Result

Frequency Band	Frequency	Ant	-26 dB Bandwidth	99% Emission
(MHz)	(MHz)		(MHz)	Bandwidth (MHz)
5150~5250	5190	1	39.23	37.43
		2	39.17	37.38
	5230	1	39.24	37.38
		2	39.34	37.43
5725~5825	5755	1	39.24	37.42
		2	39.19	37.44
	5795	1	39.32	37.47
		2	39.21	37.35

-26dB Bandwidth and 99% Emission Bandwidth in 5190MHz - Ant 1

-26dB Bandwidth and 99% Emission Bandwidth in 5190MHz - Ant 2

--26dB Bandwidth and 99% Emission Bandwidth in 5230MHz – Ant 2

-26dB Bandwidth and 99% Emission Bandwidth in 5755MHz – Ant 2

-26dB Bandwidth and 99% Emission Bandwidth in 5795MHz – Ant 1

-26dB Bandwidth and 99% Emission Bandwidth in 5795MHz – Ant 2

2.4. FCC §407(a) & IC RSS – 210 §A9.2 - Peak Output Power

2.4.1. Requirement

According to FCC section 15.407(a) (1, 3), for the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to IC RSS – 210 §A9.2, for the band 5.15-5.25GHz, The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. For the band, the maximum conducted output power shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 17 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

2.4.2. Test Description

According to KDB 789033 D01, maximum conducted output power will be measured by an RF power meter.

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Power meter	HP	EPM-441A	GB37482009	2013.02.

2.4.3. Test Result

Frequency Frequency		Nomov.		red Peak	Total Power		FCC	IC
Band (MHz)			Outpu	t Power	Total I	rowei	Limit	Limit
Daliu (MITIZ)	(MHz)		dBm	mW	mW	dBm	dBm	dBm
	5190	1	5.98	3.963	7.713	8.87		23
5150 5250	3190	2	5.74	3.750		0.07	17	
5150~5250	5230	1	6.36	4.325	8.371	9.23		
		2	6.07	4.046				
	5755	1	6.44	4.406	0.072	9.58		
5725~5825	3/33	2	6.69	4.667	9.073	9.38	30	30
	5705	1	5.80	3.802	8.300	0.10		
	5795	2	6.53	4.498		9.19		

Note: Duty cycle of the transmitter is 100%

2.5. FCC §15.407(a) & IC RSS-210 §A9.2 - Power Spectral Density

2.5.1. Requirement

According to FCC section 15.407(a) (1, 3, and 5), for the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to IC RSS-210 §A9.2, for the band 5.15–5.25 GHz, the e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. For the band 5.725–5.825 GHz, the power spectral density shall not exceed 17 dBm in any 1.0 MHz band.

2.5.2. Test Description

According to KDB 789033 D01 part E, the Method SA-1 was used.

- (i) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set $VBW \ge 3$ MHz.
- (iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	HP	E4407B	US39010211	2012.12

2.5.3. Test Result

Eraguanay Dand	Eraguanay	Measured Spectral		Total Power		FCC	IC	
Frequency Band	Frequency	Ant	power density		density		Limit	Limit
MHz	MHz		dBm/MHz	dBm/MHz mW/MHz mW/MHz dBm/MHz dB		mW/MHz dBm/MHz		MHz
	5190	1	-9.35	0.116	0.220	-6.57		10
5150~5250	3190	2	-9.82	0.104	0.220	-0.37	4	
3130~3230	5230	1	-8.95	0.127	0.243	-6.14		
		2	-9.34	0.116				
	E7EE	1	-8.88	0.129	0.270	E E A		
5725~5825	5755	2	-8.24	0.150	0.279	-5.54	17	10
	5705	1	-9.21	0.120	0.270	7.60	17	10
	5795	2	-8.23	0.150	0.270	-5.68		

Note: Duty cycle of the transmitter is 100%

2.6. FCC §15.407(a)(6) - Peak Excursion Ratio

2.6.1. Requirement

According to FCC section 15.407(a) (6), the ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

2.6.2. Test Description

See section 2.4.2 of this report.

2.6.3. Test Result

Frequency	Frequency	Ant	PPSD	Maximum of Peak-max-hold	Measured Peak Excursion Ratio	Limit
Band (MHz)	(MHz)		dBm/MHz	dBm/MHz	dB	dB
	5190 5150~5250	1	-9.35	1.70	11.05	
5150 5250		2	-9.82	1.81	11.63	
3130~3230	5230	1	-8.95	2.78	11.73	
		2	-9.34	1.21	10.55	13
	5755	1	-8.88	2.25	11.13	13
5725~5825	5755	2	-8.24	2.97	11.21	
	5705	1	-9.21	2.16	11.37	
	5795	2	-8.23	2.59	10.82	

2.7. IC RSS-210 §2.6 & RSS-Gen§6 – Receiver Spurious Radiated Emission

2.7.1. Requirements

whichever is the higher, without exceeding 40 GHz.

According to RSS-Gen §4.10, the receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate. Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site. For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency,

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements.

peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

		1			
Fraguanay	Field Strength				
Frequency (MHz)	Microvolts/m at 3 meters (watts, e.i.r.p.)				
(MITZ)	Transmitters	Receivers			
30~88	100(3nW)	100(3nW)			
88~216	150(6.8nW)	150(6.8nW)			
216~960	200(12nW)	200(12nW)			
Above 960	500(75nW)	500(75nW)			

General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

2.7.2. Test Descriptions

A. Test Setup:

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2009). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The EUT is powered by the Battery charged with the notebook computer which is powered by 120V, 60Hz AC mains supply. The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is in receiving mode.

For the Test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipment List:

Description	Manufacturer	Model	Serial No.	Cal. Due
				Date
Receiver	R&S	ESU	100204	2013.04
Semi-Anechoic Chamber	Albatross	9m*6m*6m	4771011001	2013.04
Test Antenna - Bi-Log	Schaffner	CBL6112B	2529	2013.05
Test Antenna - Horn	Dahua	DH610-2	0911120001	2013.05
Test Antenna - Horn	Amplifier Research	AT4540	107382	2013.01
Test Antenna - Horn	Amplifier Research	AT4550	308276	2013.01
Signal Generator	HP	E4433B	US38330375	2013.06
Power Amplifier	Prana	AP32MT215	1021	2013.01
Power Amplifier	Milmega	AS0860-75/45	4677	2013.01
HDMI Receiver	Dfine	W210	N/A	N/A
Notebook Computer	Dell	PP09S	MM592A00	N/A

2.7.3. Test Result

A. 30~1000MHz

Receiving mode - Horizontal

FCC 15B_1GHz AUTO Horizontal

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
240.005	39.5	1	120	128.0	264.0	6.5	46.0
699.688	37.9	1	120	100.0	64.0	8.1	46.0
800.083	32.9	1	120	100.0	199.0	13.1	46.0
958.678	35.5	1	120	170.0	233.0	10.5	46.0

Receiving mode - Vertical

FCC 15B_1GHz AUTO Vertical

Frequency	Quasi Peak	Meas. Time	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(s)	(kHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
31.067	27.2	1	120	200.0	178.0	12.8	40.0
120.016	34.9	1	120	100.0	229.0	8.6	43.5
387.348	26.7	1	120	180.0	190.0	19.3	46.0
946.553	35.1	1	120	100.0	137.0	10.9	46.0

B. 1~40GHz

Receiving mode – Horizontal

Frequency	Peak Detector	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(MHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
1330.5	39.0	1	100.0	64.0	35.0	74
1762.5	39.2	1	100.0	199.0	34.8	74
5296.5	48.1	1	170.0	233.0	25.9	74
10593.0	40.4	1	200.0	105.0	33.6	74

Frequency (MHz)	Average Detector (dB \(\mu \) V/m)	Meas. Time (s)	Bandwidth (MHz)	Height (cm)	Azimuth (deg)	Margin (dB)	Limit (dB \(\mu \) V/m)
1290.5	31.6	1	1	100.0	51.0	22.4	54
1983.0	28.5	1	1	128.0	50.0	25.5	54
5255.5	36.1	1	1	211.0	46.0	17.9	54
10511.0	29.4	1	1	189.0	218.0	24.6	54

Receiving mode –Vertical

Frequency	Peak Detector	Bandwidth	Height	Azimuth	Margin	Limit
(MHz)	$(dB \mu V/m)$	(MHz)	(cm)	(deg)	(dB)	$(dB \mu V/m)$
1453.5	34.1	1	100.0	0.0	39.9	74
2460.5	33.6	1	200.0	352.0	40.4	74
5553.0	38.9	1	178.0	81.0	35.1	74
10886.0	38.8	1	143.0	91.0	35.2	74

Frequency (MHz)	Average Detector (dB \(\mu \) V/m)	Meas. Time (s)	Bandwidth (MHz)	Height (cm)	Azimuth (deg)	Margin (dB)	Limit (dB \(\mu \) V/m)
1239.0	26.3	1	1	100.0	0.0	27.7	54
2613.5	25.8	1	1	100.0	352.0	28.2	54
5328.5	31.4	1	1	100.0	81.0	22.6	54
10656.0	31.4	1	1	100.0	81.0	22.6	54

2.8. FCC §15.407 (g) - Frequency Stability

2.8.1. Requirement

According to FCC section 15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

2.8.2. Test Description

A. Test Setup:

The EUT which is powered by the power supply and coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Due Date
Spectrum Analyzer	R&S	FSU-8	200034	2013.06
Power Supply	Agilent	66319D	MY43000556	2013.06
Climate Chamber	Votsch	VT4002	585661087750080	2013.01

2.8.3. Test Result

Frequency Band	Frequency (MHz)	Temperature	Power Supply	Ant	Measurement
(MHz)		'			Frequency
(141112)	(141112)	${\mathbb C}$	V		MHz
	5190	0	3.2	1	5189.9733
				2	5189.9974
			3.7	1	5189.9798
				2	5189.9923
			4.2	1	5189.9840
				2	5189.9917
			3.2	1	5189.9812
				2	5189.9923
		25	3.7	1	5189.9880
		25		2	5189.9914
			4.2	1	5189.9723
			4.2	2	5189.9987
			3.2	1	5189.9762
	5230	45	3.2	2	5189.9861
			2.7	1	5189.9733
			3.7	2	5189.9820
			4.2	1	5189.9799
5150 5250				2	5189.9834
5150~5250		0	3.2	1	5230.0256
				2	5230.0297
			3.7	1	5230.0193
				2	5230.0255
			4.2	1	5230.0206
				2	5230.0114
		25	3.2	1	5230.0175
				2	5230.0238
			3.7	1	5230.0193
				2	5230.0177
			4.2	1	5230.0221
				2	5230.0070
		45	3.2	1	5230.0211
				2	5230.0176
			3.7	1	5230.0259
				2	5230.0113
			4.2	1	5230.0208
				2	5230.0145

	Frequency Band (MHz)	Frequency (MHz)	Temperature	Power Supply	Ant	Measurement
			Temperature	rower suppry		Frequency
			$^{\circ}$	V		MHz
		5755	0	3.2	1	5755.0220
					2	5755.0179
				3.7	1	5755.0118
					2	5755.0233
				4.2	1	5755.0088
					2	5755.0134
			25	3.2	1	5755.0226
				3.2	2	5755.0280
				3.7	1	5755.0134
				3.7	2	5755.0187
				4.2	1	5755.0136
				4.2	2	5755.0149
				3.2	1	5755.0104
				3.2	2	5755.0218
			45	3.7	1	5755.0132
				3.7	2	5755.0217
				4.2	1	5755.0163
	5725~5825				2	5755.0210
	3723~3823	5795	0	3.2	1	5795.0160
					2	5795.0234
				3.7	1	5795.0142
					2	5795.0213
				4.2	1	5795.0149
					2	5795.0231
			25	3.2	1	5795.0124
					2	5795.0092
				3.7	1	5795.0256
					2	5795.0217
				4.2	1	5795.0142
					2	5795.0110
			45	3.2	1	5795.0137
					2	5795.0108
				3.7	1	5795.0214
					2	5795.0113
				4.2	1	5795.0219
					2	5795.0202

** END OF REPORT **