Aprendizaje Automático Evaluación de modelos

Viviana Cotik

Gran parte del material tomado de

Evaluación y Selección de Modelos: Materia Aprendizaje
automático, DC, FCEyN, UBA.

Profesor: Agustín Gravano

1er cuatrimestre 2019

Aproximación de funciones

Problema:

- Conjunto de instancias X. Cada instancia $x \in X$ tiene atributos.
- Función objetivo desconocida f: X → Y
- Espacio de hipótesis H = { h | h : X → Y }

Entrada del algoritmo de aprendizaje:

• Datos de entrenamiento $\{\langle x^{(i)}, y^{(i)} \rangle\}$.

Salida del algoritmo de aprendizaje:

• Hipótesis (o modelo) h ϵ H que aproxima a la función f.

Árboles de decisión

- h: <X1, ..., Xn> → Y
- Cada nodo interno evalúa un atributo discreto Xi
- Cada rama corresponde a un valor para Xi
- Cada hoja predice un valor de Y

Evaluación de modelos

- ¿Cómo sabemos cuán bueno es nuestro modelo?
- ¿Sobre qué conjunto de datos lo medimos?

Primera idea:

- Accuracy (eficacia) sobre cjto. entrenamiento: Porcentaje de datos de entrenamiento clasificados correctamente.:
- Mala idea:
 - El modelo puede memorizar los datos de entrenamiento y tener accuracy de 100%.
 - Medir performance sobre los datos de entrenamiento tiende a sobreestimar los resultados.

Conjunto Held-Out (Control, Test)

- Al comenzar hay que separar un conjunto de datos (Held-Out, Test) y
 NO TOCARLOS hasta el final
- Todas las pruebas y ajustes se realizan sobre el conjunto de **Desarrollo**
- Al terminar todas las pruebas, se evalúa el modelo obtenido con el conjunto Held-out

Estimación de performance

Se prueban distintas configuraciones.

Los datos de desarrollo se separan en:

- (100-q) % para entrenamiento
- q % para validación del modelo

Una vez definido cuál es el mejor modelo se entrena con cjto. de **desarrollo** (también llamado de **entrenamiento**)

Los datos se deben separar al **azar** (*), para evitar cualquier orden o estructura subyacente en los datos.

(*) Esto no siempre es así. Los datos de entrenamiento y validación deben ser **independientes** entre sí; los datos pueden estar desabalanceados, tener orden temporal, etc.

Validación cruzada (o cross-validation)

¿Y si tenemos mala suerte al separar los datos para entrenamiento/validación?

La estimación de performance del modelo podría no ser realista.

Para disminuir este riesgo: k-Fold Cross Validation

1. Desordenar los datos.

Separar en k folds disjuntos del mismo tamaño.

3. Para i = 1 .. k: entrenar sobre todos menos i; evaluar sobre i.

Ejemplo para k =5.

Valores usuales de D/T: 80-20, 70-30, 3-1/3

Validación cruzada

Selección de modelos

¿Por qué tendríamos distintos modelos para comparar?

- Distintos atributos (selección y transformación de atributos)
- Distintos **algoritmos** (árboles, LDA, NB, KNN, SVM, ...)
- Distintos hiperparámetros de cada algoritmo.

Ejemplo: hiperparámetros de los árboles de decisión

- Criterio de elección de atributos en cada nodo (Information Gain, Gini Gain...)
- Criterio de parada (ej: max_depth)
- Estrategia de poda

Selección de modelos

¿Cómo buscar la mejor combinación de atributos + algoritmos + hiperparámetros?

 Exploramos un espacio de búsqueda, usando k-fold CV para medir el desempeño de cada combinación.

Random search (best guess, 1 factor at a time) Explorar opciones y combinaciones al azar

Grid search

Plantear opciones y explorar todas

las combinaciones

Al terminar, nos quedamos con la combinación con **mejor desempeño**, y **entrenamos un único modelo usando todos los datos**

Matriz de confusión (clasificación binaria)

		valores reales		
		positivo	negativo	
ción	positivo	TP	FP	
predicción	negativo	FN	TN	

TP: true positives

FP: false positives

TN: true negatives

FN: false negatives

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

No dice nada sobre los tipos de aciertos y de errores que tiene el modelo. Ej: autenticación en aplicación por voz.

- FP: autentica a un impostor
- FN: no autentica a un usuario válido

Precisión =
$$\frac{TP}{TP + FP}$$
 de las instancias clasificadas

como positivas, cuántas lo son (cuán útiles son los resultados de búsqueda)

$$Recall = \frac{TP}{TP + FN}$$
 (cubrimiento)

de las instancias positivas, cuántas fueron clasificadas como positivas (cuán completos son los resultados)

$$Precisión = \frac{TP}{TP + FP}$$

(cuán útiles son los resultados de búsqueda)

$$Recall = \frac{TP}{TP + FN}$$

(cuán completos son los resultados)

Se clasifican 4 como gatos

TP: 3

FP: 1

P = 3/4, R = 3/3,

$$Recall = \frac{TP}{TP + FN} \qquad Precisión = \frac{TP}{TP + FP}$$

¿Cuál medida de performance debería priorizar cada uno de estos sistemas?

- enfermedad contagiosa
- test de embarazo

Media armónica:

$$F-measure = 2 \cdot \frac{Precisión \cdot Recall}{Precisión + Recall}$$

También llamada **F**₁ **score**.

Fórmula general:

$$F_{\beta} = (1 + \beta^2) \cdot \frac{Precisión \cdot Recall}{(\beta^2 \cdot Precisión) + Recall}$$

$$Recall = \frac{TP}{TP + FN} = Sensitivity o bienTrue Positive Rate$$

$$\frac{TN}{TN + FP} = Specificity o bienTrue Negative Rate$$

Sensitivity/TPR: Porcentaje de pacientes enfermos correctamente diagnosticados.

Proporción de usuarios válidos autenticados

Specificity: Porcentaje de pacientes sanos correctamente diagnosticados.

$$\mathsf{FPR} = \frac{\mathit{FP}}{\mathit{FP} + \mathit{TN}}$$

FPR: Proporción de impostores que aceptamos erróneamente.

CURVA ROC (Receiver operating characteristic)

Gráfico TPR (Recall) vs. FPR

$$\text{Recall} = \textit{TPR} = \frac{\textit{TP}}{\textit{TP} + \textit{FN}}$$

$$\text{FPR} = \frac{\textit{FP}}{\textit{FP} + \textit{TN}}$$

Construcción: Variar el umbral de detección entre 0 y 100%. Para cada valor, calcular TPR y FPR (un punto en la curva).

Área bajo la curva (AUC)

• Un valor numérico. entre 0 y 1. Azar=0.5

Fuente: Introduction to ML, Alpaydin

Matriz de confusión n-aria

	Manzana (<u>predicho</u>)	<u>Naranja</u> (<u>predicho</u>)	Oliva (predicho)	Pera (predicho)
Manzana (real)	MM	MN	МО	MP
Naranja (real)	NM	NN	NO	NP
Oliva (real)	ОМ	ON	00	OP
Pera (real)	PM	PN	РО	PP

Las medidas precisión, recall, etc. sólo pueden formularse en forma binaria: cada clase contra el resto.

$$Precisión(\textit{Manzana}) = \frac{\textit{MM}}{\textit{MM} + \textit{NM} + \textit{OM} + \textit{PM}} \qquad Recall(\textit{Manzana}) = \frac{\textit{MM}}{\textit{MM} + \textit{MN} + \textit{MO} + \textit{MP}}$$

Factores a considerar en la elección de modelos

- Tasa de error
- Velocidad de entrenamiento y velocidad de test
- Interpretabilidad (¿el conocimiento extraído del modelo puede ser validado por expertos?)
- Facilidad de desarrollo

Experimentos de aprendizaje automático

- 1. **Establecer objetivo de estudio** (error de un algoritmo, comparación de dos algoritmos, etc.)
- 2. Seleccionar la métrica para evaluar performance
- 3. Seleccionar **factores** (dependen de 1): hiperparámetros de un algoritmo, comparación de algoritmos: algoritmos a comparar)
- Elegir diseño experimental (división de conjunto en entrenamiento y test, cross validation, hiperparámetros: modificaciones aleatorias vs. grid search)
- Realización de experimento (uso de código testeado, reproducibilidad de resultados)
- 6. Realizar **análisis estadísticos** de los datos
- 7. **Conclusiones**: son sobre los datos utilizados. Realizar análisis de errores.

Resumen

Armado de conjunto de datos:

- Dejar **apartado un conjunto de test** o held-out
- Seleccionar modelos con conjunto de desarrollo (datos de entrenamiento y validación):
 - k-fold cross validation
 - o grid search y random search
- Medidas de performance:
 - Accuracy
 - Precision, Recall, F1
 - Sensibilidad, especificidad
 - TPR, FPR, curva ROC, AUC (área bajo la curva)

Bibliografía

Capítulos de libros:

.ISLR, Cap. 2 (2.2)

.Alpaydin, Cap. 19 (hasta 19.7 inclusive)