Prof. Dr. Ernst-Rüdiger Olderog Christopher Bischopink, M.Sc.

Ausgabe: 10.01.2020

Abgabe: 17.01.2020 bis 14^{00} Uhr in den Fächern im ARBI-Flur

11. Übung zu Grundlagen der Theoretischen Informatik

	Aufgabe 46: Für jede richtige Antwort können 0 Punkte erreicht v	Quiz gibt es einen Punkt, für jede falsche wir verden.	(5 Punkte) rd einer abgezogen. Minimal
Wahr	Falsch		
	\square a) Weil K unentscheidbar ist, gibt es keine Turingmaschine, für die entschieden werden kann, ob sie angesetzt auf ihre eigene Binärkodierung anhält.		
	☐ b) Es existieren Funktio	n $f: \mathbb{N} \to \mathbb{N}$, die nicht algorithmisch bere	chenbar sind.
	\Box c) Es gilt $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$ un	nd $\mathbb{N}\times\mathbb{N} \prec \mathbb{N} \to \mathbb{N}.$ Für die Relationen \sim	und \prec siehe Skript Seite 98.
		d) Jede kontextfreie Sprache ist auch eine kontextsensitive Sprache und jede kontextfreie Grammatik ist auch eine kontextsensitive Grammatik.	
	 □ e) Noam Chomsky ist ein glühender Befürworter des aktuellen amerikanischen Präsiden und Verfechter von dessen Politik. 		
	Aufgabe 47: Zeigen oder widerlegen Sie	Cantor-Diagonalisierung folgende Aussagen:	$(2+2+2 \; \mathrm{Punkte})$
	a) Sei $I \neq \emptyset$ abzählbar und seien $X_i \neq \emptyset$ für $i \in I$ abzählbare Mengen, dann ist auch $\bigcup_{i \in I} X_i$ abzählbar. <i>Hinweis:</i> Denken Sie auch an möglicherweise endliche Mengen. Das unter angegebene Kriterium gilt insbesondere auch für endliche Mengen.		
	b) Sei A überabzählbar und $B \subset A$ abzählbar, dann ist $A \setminus B$ überabzählbar. Hinweis: Sie können als Kriterium für die Abzählbarkeit einer Menge auch folgendes Konutzen:		
Eine nicht leere Menge M ist abzählbar gdw. \exists Surjektion $\beta: \mathbb{N} \to \mathbb{N}$		$ion \ \beta: \mathbb{N} \to M$	
	c) Beweisen Sie das Kr Skriptes.	iterium aus dem Hinweis mit Hilfe der	Aussagen von Seite 100 des
	Aufgabe 48: Gegeben Sei die Sprache <i>L</i> Zeigen Sie:	$ \text{Chomsky-}0/1 \\ = \{a^n b^m c^{n \cdot m} n, m \in \mathbb{N}\}. $	$(2+2 \; \mathrm{Punkte})$

- a) L ist Chomsky-0.
- b) L ist kontextsensitiv.

Hinweis: Der direkte Weg über Angabe einer CH-0/kontextsensitiven Grammatik ist nicht der einfachste. Für Aufgabenteil (b) ist zudem eine Recherche außerhalb des Skriptes sinnvoll, z.B. im Wikipedia-Artikel zur Chomsky-Hierarchie.

Aufgabe 49:		Lückentext	(5 Punkte)			
Ergänzen Sie die untenstehenden Lücken, sodass richtige und $\underline{\operatorname{sinnvolle}}$ Aussagen entstehen. Sie						
erhalten einen Punkt pro korrektem Satz, bei fehlerhaften Antworten gibt es keinen lückenüber-						
greifenden Punktabzug.						
a)	ł	oeschreiben dieselbe Sprachl	klasse wie			
,	Grammatiken, nämlich die Klasse der CH-3 Sprachen.					
h)	Aug	und	folgt V . V			
D)	Aus	und	$_{}$ lorge $_{A}\sim _{I}$.			
c)	Das	beschreibt die Frage, ob	eine Turingmaschine angesetzt auf			
	die eigene Binärkodierung anhält.					
d)	Es ist	ob ein gegebenes Wort	$w \in \{0,1\}^*$ die Binärkodierung einer			
	Turingmaschine ist.					
(۵	Dog Wort	"han (0 1) ist	Din Salso di anun a			
е)	einer Turingmaschine.	uber {0,1} ist	Binärkodierung			
	emer ruringmascime.					
Aufo	gabe 50:	Reduktion	(Selbstkontrolle)			
_	•		,			
Sei $G = \{bw_{\tau} \in B^* \mid \text{ Die Turingmaschine } \tau \text{ hält bei Eingaben gerader Länge}\}$. Zeigen Sie die Unentscheidbarkeit von G durch eine geeignete Reduktion.						
Onemscheidbarken von G durch eine geeignete neduktion.						