Combinatorics of Sets

Po-Shen Loh

June 2011

1 Warm-Up

- 1. Let \mathcal{F} be a collection of subsets A_1, A_2, \ldots of $\{1, \ldots, n\}$, such that for each $i \neq j$, $A_i \cap A_j \neq \emptyset$. Prove that \mathcal{F} has size at most 2^{n-1} .
- 2. Suppose that \mathcal{F} above has size exactly 2^{n-1} . Must there be a common element $x \in \{1, \ldots, n\}$ which is contained by every A_i ?
- 3. Let \mathcal{F} be a family of sets, each of size exactly 3, such that:
 - (a) Every pair of sets intersects in a single element.
 - (b) Every pair of elements in the ground set $X = \bigcup_{L \in \mathcal{F}} S$ is contained in a unique set $L \in \mathcal{F}$.

Suppose that \mathcal{F} has more than one set. Prove that the ground set X has exactly 7 elements, and show that such a family \mathcal{F} exists.

2 Designs

- 1. (TST 2005/1.) Let n be an integer greater than 1. For a positive integer m, let $X_m = \{1, 2, ..., mn\}$. Suppose that there exists a family \mathcal{F} of 2n subsets of X_m such that:
 - (a) each member of \mathcal{F} is an *m*-element subset of X_m ;
 - (b) each pair of members of \mathcal{F} shares at most one common element;
 - (c) each element of X_m is contained in exactly 2 elements of \mathcal{F} .

Determine the maximum possible value of m in terms of n.

- 2. (USAMO 2011/6.) Let X be a set with |X| = 225. Suppose further that there are eleven subsets A_1, \ldots, A_{11} of X such that $|A_i| = 45$ for $1 \le i \le 11$ and $|A_i \cap A_j| = 9$ for $1 \le i < j \le 11$. Prove that $|A_1 \cup \cdots \cup A_{11}| \ge 165$, and give an example for which equality holds.
- 3. A collection of subsets L_1, \ldots, L_m in the universe $\{1, \ldots, n\}$ is called a *projective plane* if:
 - (a) Every pair of sets (called "lines") intersects in a single element.
 - (b) Every pair of elements in the ground set $X = \bigcup_{L \in \mathcal{F}} S$ is contained in a unique set $L \in \mathcal{F}$.

Actually, there are two families of degenerate planes which satisfy the two conditions above, but are not considered to be projective planes. They are:

- (a) $L_1 = \{1, \ldots, n\}, L_2 = \{1\}, L_3 = \{1\}, L_4 = \{1\}, \ldots$
- (b) $L_1 = \{2, 3, \dots, n\}, L_2 = \{1, 2\}, L_3 = \{1, 3\}, L_4 = \{1, 4\}, \dots, L_n = \{1, n\}.$

It is well-known that for every projective plane, there is an N (called the "order" of the plane) such that:

- (a) Every line contains exactly N+1 points, and every point is on exactly N+1 lines.
- (b) The total number of points is exactly $N^2 + N + 1$, which is the same as the total number of lines.
- 4. For every prime power p^n , there exists a projective plane of that order.
- 5. (Open.) What are the possible orders of projective planes? All known projective planes have prime power order, but it is unknown whether, for example, there is a projective plane of order 12.

3 Graphs and partitioning

- 1. Construct a bipartite graph in which all degrees are equal, and every pair of vertices on the same side has exactly 1 common neighbor. Show that this must achieve the maximum possible number of edges in any C_4 -free bipartite graph with the same number of vertices.
- 2. Construct a non-bipartite graph in which all degrees are equal, and every pair of vertices has exactly 1 common neighbor. Show that this must achieve the maximum possible number of edges in any C_4 -free graph with the same number of vertices.
- 3. Let n be odd. Partition the edge set of K_n into n matchings with $\frac{n-1}{2}$ edges each.
- 4. Let n be even. Partition the edge set of K_n into n-1 matchings with $\frac{n}{2}$ edges each.
- 5. Find (nontrivial) infinite families of t and n for which it is possible to partition the edges of K_n into disjoint copies of edges corresponding to K_t .

4 Extremal set theory

1. (Erdős-Ko-Rado.) Let $n \geq 2k$ be positive integers, and let \mathcal{C} be a collection of pairwise-intersecting k-element subsets of $\{1,\ldots,n\}$, i.e., every $A,B\in\mathcal{C}$ has $A\cap B\neq\emptyset$. Prove that $|\mathcal{C}|\leq {n-1\choose k-1}$.

Remark. This corresponds to the construction which takes all subsets that contain the element 1.

2. (Non-uniform Fisher's inequality.) Let $C = \{A_1, \ldots, A_r\}$ be a collection of distinct subsets of $\{1, \ldots, n\}$ such that every pairwise intersection $A_i \cap A_j$ $(i \neq j)$ has size t, where t is some fixed integer between 1 and n inclusive. Prove that $|C| \leq n$.

5 Combinatorics and geometry

- 1. (Happy ending problem.) Given any 5 distinct points in the plane, no 3 collinear, show that some 4 are in *convex position*, i.e., forming the vertices of a convex quadrilateral.
- 2. (Erdős-Szekeres.) For every integer n, there is some finite N such that the following holds. Given any N distinct points in the plane, no 3 collinear, some n are in convex position.

Remark. It is conjectured that $N = 1 + 2^{n-2}$ suffices for all $n \ge 3$, and known that $N \ge 1 + 2^{n-2}$ is required. The best known upper bound is of order $4^n/\sqrt{n}$.

3. (Caratheodory.) A convex combination of points x_i is defined as a linear combination of the form $\sum_i \alpha_i x_i$, where the α_i are non-negative coefficients which sum to 1.

Let X be a finite set of points in \mathbb{R}^d , and let cvx(X) denote the set of points in the convex hull of X, i.e., all points expressible as convex combinations of the $x_i \in X$. Show that each point $x \in \text{cvx}(X)$ can in fact be expressed as a convex combination of only d+1 points of X.

- 4. (Radon.) Let A be a set of at least d+2 points in \mathbb{R}^d . Show that A can be split into two disjoint sets $A_1 \cup A_2$ such that $\operatorname{cvx}(A_1)$ and $\operatorname{cvx}(A_2)$ intersect.
- 5. (Helly.) Let C_1, C_2, \ldots, C_n be sets of points in \mathbb{R}^d , with $n \geq d+1$. Suppose that every d+1 of the sets have a non-empty intersection. Show that all n of the sets have a non-empty intersection.

6 Bonus problems

- 1. (From Peter Winkler.) The 60 MOPpers were divided into 8 teams for Team Contest 1. They were then divided into 7 teams for Team Contest 2. Prove that there must be a MOPper for whom the size of her team in Contest 2 was strictly larger than the size of her team in Contest 1.
- 2. (MOP 2008.) Let \mathcal{F} be a collection of 2^{n-1} subsets A_1, A_2, \ldots of $\{1, \ldots, n\}$, such that for each $i \neq j \neq k$, $A_i \cap A_j \cap A_k \neq \emptyset$. Prove that there is a common element $x \in \{1, \ldots, n\}$ that is contained in every A_i .
- 3. (Sperner capacity of cyclic triangle, also Iran 2006.) Let A be a collection of vectors of length n from \mathbb{Z}_3 with the property that for any two distinct vectors $a, b \in A$ there is some coordinate i such that $b_i = a_i + 1$, where addition is defined modulo 3. Prove that $|A| \leq 2^n$.