Bap. 1 (83832020)

Плотность двумерного нормального распределения имеет вид:

 $p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(2x^2 + 4xy + 5y^2 + 8x + 2y + 11)\right);$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(\xi+3\eta,-4\xi+\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 3 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp \left(-\frac{1}{2} (3x^2 - 6xy + 11y^2 - 6x - 10y + 11) \right);$$

- 1. Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-2\xi+4\eta,-3\xi-4\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 5 (83832020)

Плотность двумерного нормального распределения имеет вил:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 4xy + 6y^2 + 8x - 4y + 10)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-5\xi-3\eta,-5\xi-2\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 2 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 3xy + 7y^2 - 3x + 11y + 7)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-4\xi+\eta,-5\xi+4\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 4 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(6x^2 + 4xy + 9y^2 - 8x + 14y + 11)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(4\xi-4\eta,-4\xi-2\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 6 (83832020)

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 - 6xy + 11y^2 + 12x + 4y + 20)\right);$$

- 1. Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(\xi 4\eta, -2\xi + 3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 7 (83832020)

Плотность двумерного нормального распределения имеет вид:

 $p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(7x^2 + 8xy + 13y^2 - 6x + 18y + 12)\right);$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(2\xi+4\eta,\xi+3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 9 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 3xy + 7y^2 - 9x + 8y + 13)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-4\xi+\eta,-4\xi+\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 11 (83832020)

Плотность двумерного нормального распределения имеет вил:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 4xy + 6y^2 - 14x + 21)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(4\xi-3\eta,-2\xi-3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 8 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(4x^2 - 4xy + 7y^2 - 16x - 16y + 40)\right);$$

- 1. Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-5\xi-4\eta,4\xi-4\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 10 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(2x^2 - 4xy + 5y^2 - 4x + 16y + 14)\right);$$

- 1. Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-2\xi-\eta,-2\xi-\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 12 (83832020)

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(2x^2 + 4xy + 5y^2 - 12y + 12)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-2\xi-5\eta,-5\xi-5\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 13 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(2x^2 + 4xy + 5y^2 - 12y + 12)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(\xi 3\eta, -\xi + 3\eta)$ и записать его плотность.
- 5. Найти условное распределение ξ при условии $\eta.$

Bap. 15 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 - 6xy + 11y^2 - 12x - 4y + 20)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(2\xi+2\eta,-2\xi-2\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 17 (83832020)

Плотность двумерного нормального распределения имеет вил:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(6x^2 - 4xy + 9y^2 + 8x + 14y + 11)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-3\xi+2\eta,2\xi+2\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 14 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(2x^2 - 4xy + 5y^2 + 6y + 3)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- 4. Вычислить характеристики совместного распределения случайного вектора $(-4\xi-\eta,3\xi-5\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 16 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(6x^2 + 4xy + 9y^2 - 8x + 14y + 11)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-\xi-4\eta,-\xi-3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 18 (83832020)

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 - 4xy + 6y^2 - 2x - 8y + 5)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(3\xi-2\eta,-2\xi-2\eta)$ и записать его плотность.
- 5. Найти условное распределение ξ при условии η .

Bap. 19 (83832020)

Плотность двумерного нормального распределения имеет вид:

 $p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 3xy + 7y^2 + 9x + 17y + 13)\right);$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(-4\xi-2\eta,-5\xi-4\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 21 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 3xy + 7y^2 - 3x + 11y + 7)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(\xi 4\eta, -3\xi 3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 23 (83832020)

Плотность двумерного нормального распределения имеет вил:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(3x^2 + 3xy + 7y^2 + 3x - 11y + 7)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(3\xi-5\eta,\,-4\xi+\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 20 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(6x^2 - 4xy + 9y^2 + 8x + 14y + 11)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(4\xi 5\eta, -2\xi \eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 22 (83832020)

Плотность двумерного нормального распределения имеет вид:

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(6x^2 + 4xy + 9y^2 + 8x - 14y + 11)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- 2. Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(\xi 4\eta, -5\xi 3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .

Bap. 24 (83832020)

$$p_{\xi,\eta}(x,y) = C \cdot \exp\left(-\frac{1}{2}(4x^2 + 4xy + 7y^2 - 16x + 16y + 40)\right);$$

- **1.** Вычислить вектор мат. ожиданий и ковариационные характеристики данного случайного вектора.
- **2.** Найти аффинное преобразование, переводящее исходный случайный вектор в стандартный нормальный.
- **3.** Найти ортогональное преобразование, переводящее соответствующий центрированный случайный вектор в вектор с независимыми компонентами.
- **4.** Вычислить характеристики совместного распределения случайного вектора $(3\xi 5\eta, -3\xi 3\eta)$ и записать его плотность.
- **5.** Найти условное распределение ξ при условии η .