CS 228 : Logic in Computer Science

Krishna, S

Handling Quantifiers : Done on Board

- $\exists x \forall y [x > y \lor \neg Q_a(x)] = \exists x [\neg \exists y [x \leqslant y \land Q_a(x)]]$
- ▶ Draw the automaton for $[x \le y \land Q_a(x)]$
- Project out the y-row
- Determinize it, and complement it
- ► Fix the *x*-row : Intersect with $\begin{pmatrix} \Sigma \\ 0 \end{pmatrix}^* \begin{pmatrix} \Sigma \\ 1 \end{pmatrix} \begin{pmatrix} \Sigma \\ 0 \end{pmatrix}^*$
- ▶ Project the *x*-row

Points to Remember

- ▶ Given $\varphi(x_1, ..., x_n)$, construct automaton for atomic FO formulae over the extended alphabet $\Sigma \times \{0, 1\}^n$
- ► Intersect with the regular language where every x_i is assigned 1 exactly at one position
- ▶ Given a sentence $Q_{x_1} \dots Q_{x_n} \varphi$, first construct the automaton for the formula $\varphi(x_1, \dots, x_n)$
- ► Replace ∀ in terms of ∃

Points to Remember

- ► Given the automaton for $\varphi(x_1, ..., x_n)$, the automaton for $\exists x_i \varphi(x_1, ..., x_n)$ is obtained by projecting out the row of x_i
- This may result in an NFA
- ▶ Determinize it and complement it to get a DFA for $\neg \exists x_i \varphi(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- ▶ Intersect with the regular language where each of $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ are assigned 1 exactly at one position

4/14

The Computational Effort

Given NFAs A_1 , A_2 each with atmost n states,

- ▶ The union has atmost 2*n* states
- Intersection has almost n² states
- ▶ The complement has atmost 2ⁿ states
- ► The projection has atmost *n* states

Cost of determinization : n + 1 to 2^n

- $\Sigma = \{0, 1\}$, languages where the n^{th} bit from the right is a 1.
- ▶ NFA has n + 1 states.
- Size of corresponding DFA?

The Computational Effort

- ▶ $\psi = Q_1 \dots Q_n \varphi$. If $Q_i = \exists$ for all i, then size of A_{ψ} is same the size of A_{φ} .
- ▶ When $Q_1 = \exists, Q_2 = \forall, \dots$: each \forall quantifier can create a 2^n blowup in automaton size
- Size of automaton is

where the tower height k is the quantifier alternation size.

▶ This number is indeed a lower bound!

The Automaton-Logic Connection

Given any FO sentence φ , one can construct a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$.

8/14

Summary

- ▶ Given FO formula φ , build an automaton A_{φ} preserving the language
- Satisfiability of FO reduces to non-emptiness of underlying automaton

9/14

Satisfiability to Model Checking

- Satisfiability of FO over words
- Model checking
 - System abstracted as a model DFA/NFA A
 - Specification written in FO as formula φ
 - ▶ Does system model $\models \varphi$
 - ▶ $L(A) \subseteq L(\varphi)$?
 - $L(A) \cap \overline{L(\varphi)} = \emptyset$?
- FO-definable ⊆ REG

Next directions

- Going back to general FO, and discuss the nontermination of the satisfiability checking procedure (Shawn Hedman)
- Inexpressiveness of FO : EF games (Straubing)
- MSO logic that can capture exactly regular languages (Wolfgang Thomas AAT)
- ► Temporal Logics (only LTL) (Baier-Katoen)
- ▶ Immediate next : MSO

Monadic Second Order Logic (MSO)

Symbols in MSO

Formulae of MSO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables where each variable has arity 1 (new!)
- ightharpoonup Constants and relations from au
- ► The connectives →, ∧, ∨, ¬
- ► The quantifiers ∀, ∃
- Paranthesis

Well formed Formulae

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- I is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i 's are terms for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If *t* is either a first order variable or a constant, *X* is a second order variable, then *X*(*t*) is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi, \varphi \land \psi, \varphi \lor \psi$ and $\neg \varphi$ are wff
- ▶ If φ is a wff and x is a first order variable, then $(\forall x)\varphi$ and $(\exists x)\varphi$ are wff
- ▶ If φ is a wff and X is a second order variable, then $(\forall X)\varphi$ and $(\exists X)\varphi$ are wff