K-NEAREST

NEIGHBORS

Kumar Sundram

k-nearest neighbors

- > KNN Intitution
- > Compare the two data points, distance metric
- How to choose a K
- > Implement KNN from scratch
- > Implement KNN on Iris data set with Scikit Learn
- Use KNN as Regression
- > Exercise : Apply KNN on MNIST Data

KNN INTITUTION

Problem

Visualize KNN

KNN Algorithm

- Choose K
- > Find Distance with all point from test point
- Sort Distance
- > Select K point with Minimum distance
- Classify in majority vote

Question Arise

How many K – nearest neighbor

How to Compare

How many K

Error vs K-value

How to Compare

Distance Measure

Euclidien Distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

"euclidean"	EuclideanDistance	sqrt(sum((x - y)^2))
"manhattan"	ManhattanDistance	sum(x - y)
"chebyshev"	ChebyshevDistance	max(x - y)
"minkowski"	MinkowskiDistance	sum(x - y ^p)^(1/p)
"wminkowski"	WMinkowskiDistance	$sum(w * (x - y) ^p)^(1/p)$
"seuclidean"	SEuclideanDistance	$sqrt(sum((x - y)^2 / V))$
"mahalanobis"	MahalanobisDistance	$sqrt((x - y)' V^-1 (x - y))$

Source: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html

Some Aspect of KNN

- Lazy learner
- Instance Based
- Just memorization of Data
- > Easy interpretation of result
- Performance on Read world data not very good
- Computational cost very high for big dataset
- Non-parametric in nature

IMPLEMENT KNN FROM SCRATCH

Steps

- Importing Library and Load Data
- Normalize Data scaling
- > Split data Train Test
- > Apply KNN on 1 Test Sample
- Accuracy