NAND and NOR Gates

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

NAND and NOR Gates

Χ	Υ	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

Χ	Υ	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

311_07

DeMorgan's Laws

$$\bullet (X \cdot Y)' = X' + Y'$$

$$\bullet (X + Y)' = X' \cdot Y'$$

$$X \longrightarrow Q \longrightarrow Z = (X + Y)'$$

$$X \longrightarrow Z = X' + Y'$$
 $X \longrightarrow Q$

$$X \longrightarrow Z = X' \cdot Y'$$

Functionally Complete Set

 Any function can be realized using only NAND gates

SOP to NAND-NAND

$$G = WXY + YZ$$

MOSFETs

PMOS
$$_{+}^{G}$$
 \rightarrow ON $_{S}^{G}$ \rightarrow S

311_07

CMOS Inverter

311_07

CMOS Inverter

Vin	Q1	Q2	Vout
0 (L)	ON	OFF	1 (H)
1 (H)	OFF	ON	0 (L)

311_07

311_07

311_07

311_07

311_07

311_07

CMOS NOR Gate

311_07

Noise Margin

311_07

Electrical Characteristics

Sym.	Parameter	Test Conditions ⁽¹⁾		Min.	Тур.(2)	Max.	Unit
V _{IH}	Input HIGH level	Guaranteed logic HIGH level		3.15	=	-	V
$V_{\rm IL}$	Input LOW level	Guaranteed logic LOW level		_	_	1.35	V
I_{IH}	Input HIGH current	$V_{\rm CC} = {\rm Max.}, \ V_{\rm I} = V_{\rm CC}$		_	===	1	μΑ
I_{IL}	Input LOW current	$V_{\rm CC} = \text{Max.}, \ V_{\rm I} = 0 \text{ V}$		_	_	-1	μΑ
$V_{\rm IK}$	Clamp diode voltage	$V_{\rm CC}$ = Min., $I_{\rm N}$ = -18 mA		_	-0.7	-1.2	V
I _{IOS}	Short-circuit current	$V_{\rm CC} = \text{Max.},^{(3)} V_{\rm O} = \text{GND}$		===		-35	mA
$V_{ m OH}$	Output HIGH voltage	$V_{\rm CC} = {\rm Min.},$	$I_{\rm OH} = -20 \ \mu A$	4.4	4.499		V
OH	OH Output man voltage	$V_{\rm IN} = V_{\rm IL}$	$I_{\rm OH} = -4 \text{ mA}$	3.84	4.3	_	V
$V_{ m OL}$	$V_{\rm OL}$ Output LOW voltage $V_{\rm CO}$	$V_{\text{CC}} = \text{Min.},$ $V_{\text{IN}} = V_{\text{IH}}$	$I_{\rm OL} = 20 \mu A$	_	.001	0.1	V
OL	ou.put 2011 totalige		$I_{\rm OL} = 4 \text{ mA}$		0.17	0.33	V

NMH = VOHmin - VIHmin = 4.4 V - 3.15 V = 1.25 V

$$NML = VILmax - VOLmax = 1.35 V - 0.1 V = 1.25 V$$

311_07

Propagation Delay

Propagation Delay

SWITCHING CHARACTERISTICS OVER OPERATING RANGE, $C_L = 50 \text{ pF}$								
Sym.	Parameter ⁽⁴⁾	Test Conditions		Min.	Тур.	Max.	Unit	
$t_{ m PD}$	Propagation delay	A or B to Y		_	9	19	ns	
C_{I}	Input capacitance	$V_{\rm IN} = 0 \text{ V}$			3	10	pF	
$C_{ m pd}$	Power dissipation cap	pacitance per gate	No load	_	22	-	pF	

Summary

- NAND and NOR Gates
- DeMorgan's Laws
- SOP to NAND-NAND
- MOSFETs
- CMOS Logic Gates
 - Inverter, NAND, NOR
- Electrical Characteristics
 - Noise Margin
 - Propagation Delay