SIMPLE ONLINE AND REALTIME TRACKING

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, Ben Upcroft

2021.08.26

세종대학교 무인이동체공학과

신우정

Multiple Object Tracking (MOT)

객체 detection 결과와 결합 X

Detection-Free-Tracking

Multi-Object Tracking

객체 detection 결과와 결합 O

Tracking-by-Detection

Tracking

Detection-Free-Tracking

- 전체 프레임의 모든 객체 정보
- 좋은 tracking 성능
- 실시간에 적합하지 X

Tracking-by-Detection

- 과거와 현재 프레임
- 실시간에 적합

Faster RCNN

Performance Evaluation

Table 1. Comparison of tracking performance by switching the detector component. Evaluated on Validation sequences as listed in [12].

Tracker	Detector	Det	ection	Tracking		
		Recall	Precision	$\operatorname{ID}\operatorname{Sw}$	MOTA	
	ACF	36.6	75.8	222	24.0	
MDP [12]	FrRCNN(ZF)	46.2	67.2	245	22.6	
	FrRCNN(VGG16)	50.1	76.0	178	33.5	
	ACF	33.6	65.7	224	15.1	
Proposed	FrRCNN(ZF)	41.3	72.4	347	24.0	
	FrRCNN(VGG16)	49.5	77.5	274	34.0	

Estimation Model

- 예측 단계
- 보정 단계

<Kalman Filter>

Data Association

<Hungarian Algorithm>

Benchmark performance

Fig. 1. Benchmark performance of the proposed method (SORT) in relation to several baseline trackers [6]. Each marker indicates a trackers accuracy and speed measured in frames per second (FPS) [Hz], i.e. higher and more right is better.

Performance Evaluation

Table 2. Performance of the proposed approach on MOT benchmark sequences [6].										
Method	Type	MOTA †	MOTP [†]	FAF	MT†	ML	FP↓	FN↓	ID sw↓	Frag
TBD [20]	Batch	15.9	70.9	2.6%	6.4%	47.9%	14943	34777	1939	1963
ALEXTRAC [5]	Batch	17.0	71.2	1.6%	3.9%	52.4%	9233	39933	1859	1872
DP_NMS [23]	Batch	14.5	70.8	2.3%	6.0%	40.8%	13171	34814	4537	3090
SMOT[1]	Batch	18.2	71.2	1.5%	2.8%	54.8%	8780	40310	1148	2132
NOMT [11]	Batch	33.7	71.9	1.3%	12.2%	44.0%	7762	32547	442	823
RMOT [4]	Online	18.6	69.6	2.2%	5.3%	53.3%	12473	36835	684	1282
TC_ODAL [17]	Online	15.1	70.5	2.2%	3.2%	55.8%	12970	38538	637	1716
TDAM [18]	Online	33.0	72.8	1.7%	13.3%	39.1%	10064	30617	464	1506
MDP [12]	Online	30.3	71.3	1.7%	13.0%	38.4%	9717	32422	680	1500
SORT (Proposed)	Online	33.4	72.1	1.3%	11.7%	30.9%	7318	32615	1001	1764

- MOTA (个) : 다중 객체 트래킹 accuracy.
- MOTP (个): 다중 객체 추적 precision.
- FAF (↓) : 프레임 당 오경보 수.
- MT (个) : 주로 추적되는 궤적의 수. 즉, 타겟은 수명의 최소 80%에 대해 동일한 레이블을 가지고 있음.
- ML (↓): 대부분 손실된 궤적의 수. 즉, 타겟은 수명의 최소 20% 동안 추적되지 않음.
- FP (↓): false detections 수.
- FN (↓): missed detection 수.
- ID SW (↓) : ID가 이전에 추적된 다른 객체로 전환된 횟수.
- Frag (↓): miss detection으로 인해 추적이 중단된 fragmentations 수.

Conclusion

- Detection 성능이 Tracking에 많은 영향
- Kalman filter와 Hungarian algorithm 사용
- Prediction과 Association에 중점을 둔 SORT
- 속도와 정확성 측면에서 가장 좋은 성능
- 다른 detection 프레임워크도 사용 가능

감사합니다