

## MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya

Tel: +254(0) 799 529 958, +254(0) 799 529 959, + 254 (0) 712 524 293,

## Website: info@must.ac.ke Email: info@must.ac.ke

## University Examinations 2021/2022

# FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

#### **SMA 3413: FIELD THEORY**

DATE: OCTOBER 2022 TIME: 2 HOURS

**INSTRUCTIONS:** Answer question **one** and any other **two** questions

#### **QUESTION ONE (30 MARKS)**

a) Define what is meant by a field E is a field extension of a field F. (1 mark)

b) For each of the given numbers  $\alpha \in \emptyset$ , find  $deg(\alpha, Q)$ 

(i)  $\sqrt{2} + i$  (3 marks)

(ii)  $\sqrt{i + (2)^{\frac{1}{3}}}$  (3 marks)

c) Give a basis for each of the following vector spaces over the indicated fields

(i)  $Q(\sqrt[i]{2})$  over Q (2 marks)

(ii)  $\mathbb{R}(\sqrt{5})$  over  $\mathbb{R}$  (2 marks)

d) Find the degree of the extension  $Q(\sqrt{8}, \sqrt{24})$  over Q (4 marks)

e) Find all conjugates of each of the given number over the given fields.

(i)  $\sqrt{3} + i \text{ over } Q$  (2 marks)

(ii)  $\sqrt{1+\sqrt{3}}$  over  $Q(\sqrt{3})$  (4 marks)

- f) Show that  $\sqrt{2} + \sqrt{5}$  is algebraic over Q (5 marks)
- g) Given  $f(x) = x^4 1$ , find the degree over Q of the splitting field over Q of f(x) (4 marks)

#### **QUESTION TWO (20 MARKS)**

- a) (i) Define an integral domain (2 marks)
  - (ii)Show that every field is an integral domain (4 marks)
- b) Let  $Q(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in Q\}$ . Show that  $Q(\sqrt{2})$  is a subfield of  $\mathbb{R}$  (7 marks)
- c) Using a suitable example, show that a polynomial may be irreducible over a field A but reducible over a field B where  $A \subseteq B$  (3 marks)
- d) Show that  $i \in \mathcal{L}$  is algebraic over  $\mathbb{R}$  (4 marks)

#### **QUESTION THREE (20 MARKS)**

a) For each of the given numbers  $\alpha \in \mathcal{A}$ , find  $irr(\alpha, Q)$  and  $deg(\alpha, Q)$ 

(i) 
$$\sqrt{2} + \sqrt{6}$$
 (4 marks)

(ii) 
$$\sqrt{2+\sqrt{3}}$$
 (3 marks)

- b) Find the dimension and a basis of the vector space  $Q(\sqrt[2]{2})$  over Q (3 marks)
- c) Show that  $\not\subset$  is algebraic over  $\mathbb R$  (5 marks)
- d) Prove that a finite extension E of a field F is an algebraic extension of F (5 marks)

#### **QUESTION FOUR (20 MARKS)**

a) Find the degree of the following field extensions:

(i) 
$$Q\left(\sqrt{2+\sqrt{3}}\right)$$
 over  $Q\left(\sqrt{3}\right)$  (5 marks)

(ii) 
$$Q(\sqrt{2}, \sqrt[3]{5})$$
 over  $Q$  (5 marks)

- b) If E is an extension field of F and is algebraic over F with  $\beta \in F(\alpha)$ , then  $\deg(\beta, F)$  divides  $\deg(\alpha, F)$ . Prove (4 marks)
- c) Find the splitting field of the polynomial  $x^4 5x^2 + 6$  over Q (6 marks)

### **QUESTION FIVE (20 MARKS)**

a) Let E be a finite extension of degree n over a finite field F. If F has q elements then E has  $q^n$  elements. Prove (4 marks)

b) (i) Construct the finite field GF(8) (9 marks)

(ii)Construct the multiplication table of the non-zero elements in GF(8) (7 marks)