Supplementary Material for "A Probabilistic Approach for Predicting Vessel Motion"

Qi Hu, Jingyi Liu, and Zongyu Zuo

A. Units and range of measurements

TABLE I: Measurements

Measurement	Range	Unit
φ	$[-90^{\circ}, 90^{\circ}]$	decimal/DMS
λ	$[-180^{\circ}, 180^{\circ}]$	decimal/DMS
ψ	$[0^{\circ}, 359.9^{\circ}]$	degree
U		knot
χ	$[0^{\circ}, 359.9^{\circ}]$	degree

B. Parameters in Equations (8)—(11)

TABLE II: Parameters

Parameter	Value	Parameter	Value	
a	6378137	d_1	$10^{-1}/\sqrt{60}$	
e	0.08181919	d_2	$10^{-3}/\sqrt{60}$	
h	0	K_p	1	
T	107.3	K_d	20	
K	0.185	Δ	500	

C. Prediction metrics for each measurement

TABLE III: Comparative Experiment Results

Measurement	Proposed method		EKF			
	GE	GER	EAPI	GE	GER	EAPI
2	322.65	24.97	130.26	370.54	28.68	162.16
3	101.26	4.53	40.79	144.70	6.47	95.68
4	665.07	18.60	41.65	2278.62	63.73	183.51
Average	362.99	16.03	70.90	931.28	32.96	147.11

Algorithm 1 Gaussian Assumed Density Approximation for Sequential Bayesian Inference

Input: The prior distribution $p(\mathbf{x}_N|\mathbf{y}_{1:(N-1)}) = \mathcal{N}(\mathbf{m}_N^-, \mathbf{P}_N^-)$. Procedure:

1) Calculate the mean and covariance of the posterior distribution $p(\mathbf{z}_N|\mathbf{y}_{1:N}) = \mathcal{N}(\mathbf{m}_N^*, \mathbf{P}_N^*)$:

$$\mathbf{Q}_{N} = \mathbf{H}_{\mathbf{x}}(\mathbf{m}_{N}^{-})\mathbf{P}_{N}^{-}\mathbf{H}_{\mathbf{x}}^{T}(\mathbf{m}_{N}^{-}) + \mathbf{R}_{N},$$

$$\mathbf{K}_{N} = \mathbf{P}_{N}^{-}\mathbf{H}_{\mathbf{x}}^{T}(\mathbf{m}_{N}^{-})\mathbf{Q}_{N}^{-1},$$

$$\mathbf{m}_{N} = \mathbf{m}_{N}^{-} + \mathbf{K}_{N}(\mathbf{y}_{N} - \mathbf{h}(\mathbf{m}_{N}^{-})),$$

$$\mathbf{P}_{N} = \mathbf{P}_{N}^{-} - \mathbf{K}_{N}\mathbf{Q}_{N}\mathbf{K}_{N}^{T},$$

$$\mathbf{m}_{N}^{*} = \begin{bmatrix} \mathbf{m}_{N} \\ \mathbf{m}_{s} \end{bmatrix}, \mathbf{P}_{N}^{*} = \begin{bmatrix} \mathbf{P}_{N} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{s} \end{bmatrix}.$$
(1)

2) Integrate the following equations up to time t_f :

$$\begin{split} \frac{d\mathbf{m}}{dt} &= \mathbf{g}(\mathbf{m}), \\ \frac{d\mathbf{P}}{dt} &= \mathbf{P}\mathbf{G}_{\mathbf{z}}^{T}(\mathbf{m}) + \mathbf{G}_{\mathbf{z}}(\mathbf{m})\mathbf{P} + \mathbf{L}(\mathbf{m})\mathbf{L}^{T}(\mathbf{m}). \end{split} \tag{2}$$

where $G_z(z)$ and $H_x(x)$ represent the Jacobian matrices of g(z) and h(x) with respect to z and x, respectively. The initial conditions for (2) are m_N^* and P_N^* , respectively. The corresponding solutions are given by:

$$\mathbf{m}_{f}^{*} = \begin{bmatrix} \mathbf{m}_{f}^{-} \\ \mathbf{m}_{s} \end{bmatrix}, \mathbf{P}_{f}^{*} = \begin{bmatrix} \mathbf{P}_{f}^{-} & * \\ * & \mathbf{P}_{s} \end{bmatrix}. \tag{3}$$

Output: The prior distribution $p(\mathbf{x}_f|\mathbf{y}_{1:N}) = \mathcal{N}(\mathbf{m}_f^-, \mathbf{P}_f^-)$.