

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Operators	
=	Assigns a value to an object
<-	
x > y	x greater than y
x < y	x is less than y
x >= y	x greater than or equal to y
x <= y	x is less than or equal to y
!= x	not equal to x
!x	not x
x y	x OR y
x & y	x AND y

Basic R Functions

Access a function's help file

help(function name)

Load a csv file

read.csv("snails.csv", header = TRUE, row.names = NULL)

Install a library

install.packages("library name")

Load an installed library

library(library name)

Resize images in Jupyter and Google Collab

options(repr.plot.width = x, repr.plot.height = y)

Return the amount of values in x

length(x)

Return the number of rows in a dataframe

nrow(df)

Return the absolute value(s) in x

abs(x)

By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet.

Last updated 6th December, 2020.

Page 1 of 7.

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Basic R Functions (cont)

Return the sum of all the values in x

sum(x)

Return the square-root of the value(s) in x

sqrt(x)

Return the mean of the values in x with optional arguments for trimming and removing NAs

```
mean(x, tr = 0, na.rm = FALSE)
```

Return the median of the values in x with optional arguments removing NAs

```
median(x, na.rm = FALSE)
```

Return the sample standard deviation of values in x with optional argument for removing NAs

```
sd(x, na.rm = FALSE)
```

Return the sample variance of values in x with optional argument for removing NAs

```
var(x, na.rm = FALSE)
```

Return the quartiles for x with optional argument for removing NAs

```
quantile(x, na.rm = FALSE)
```

Sort the values of x into ascending order

sort(x)

Compute the median absolute deviation of x with optional argument to remove NAs

```
mad(x, na.rm = FALSE)
```

Find NA values in x (returns TRUE/FALSE)

is.na(x)

Paste things together into a single string

```
paste(x, y, z, sep = "")
```

Create a table of counts

Examples:

table(x)

table(x, y)

By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet. Last updated 6th December, 2020. Page 2 of 7.

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Data Frames

```
Create a new data frame
```

```
Column_1 = c("A", "B", "C")

Column_2 = c(21, 22, NA)

new_df = data.frame(Column_1, Column_2)
```

Add a column

```
new_df$Column_3 = c(51, 52, 53)
```

Select a specific value (e.g., 52 = row 2, column 3)

```
new_df[2, 3]
```

Select a series of values (e.g., all of row 2)

```
new_df[2, c(1,2,3)]
or
new_df[2, ]
```

Select an entire column (e.g., column 2)

```
new_df$Column_2
or
new_df[ , 2]
```

Isolate column values that are not NAs

```
new_df$Column_2[!is.na(new_df$Column_2)]
```

Subset Function

Used to select specific observations from a dataframe according to a rule you specify.

```
subset(dataframe, subset rule, select = ("columns to keep"))
```

Example:

```
outliers = subset(heightData, Father < 60.1 | Father > 75.3, select = c("Father"))
```

Library Functions

library(car)

Levene's Test

```
leveneTest(data_frame$Response, data_frame$Predictor, center = median)
```

Bootstrapping a Regression Model

```
x = Boot(model, R = 2000)
hist(x)
confint(x)
summary(x)
```

Type III Sum of Squares ANOVA

```
Anova(model, type = "III")
```


By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet. Last updated 6th December, 2020. Page 3 of 7.

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Library Functions (cont)

library(effsize)

Cohen's d and Hedges g

```
cohen.d(y~x, data, hedges.correction = FALSE)
```

library(plyr)

Aggregate data frames

```
new_df = ddply(dataframe, c("Predictor1, Predictor2"), summarise,
    n = length(Score_Column),
    Means = mean(Score_Column) )
```

library(polycor)

Biserial Correlation

```
polyserial(y, x)
```

library(pwr)

Sample Size for a Two-Sample T-test

```
pwr.t.test(d, sig.level, power, type = c("two.sample, "paired"))
```

Sample Size for a One-Way ANOVA

```
pwr.anova.test(k, f, sig.level, power)
```

library(rcompanion)

Calculates lambda for Tukey's ladder of powers

```
transformTukey(x, plotit = FALSE, returnLambda = TRUE)
```

library(WRS2)

Winsorized variance of x

```
winvar(x, tr = .2)
```

Yuen's two sample t-test for trimmed independent means

```
yuen(y \sim x, tr = .2)
```

One-Way Robust Independent ANOVA with bootstrapping: F-tests

```
t1waybt(Response ~ Predictor, data = data, tr = 0.2, nboot = 2000)
```

One-Way Robust Independent ANOVA with bootstrapping: Post Hocs

```
mcppb20(Response~ Predictor, data = data, tr = 0.2, nboot = 2000)
```


By Jeffrey M. Pisklak

(non_human_entity)
cheatography.com/nonhuman-entity/

Not published yet.

Last updated 6th December, 2020.

Page 4 of 7.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

Edam to convo orypino orodoword

http://crosswordcheats.com

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Library Functions (cont)

Two-Way Robust Independent ANOVA: F-tests

t2way(Response ~ Predictor A+ Predictor B + Predictor A: Predictor B, data = depress, tr = 0.2)

Two-Way Robust Independent ANOVA: Post-Hocs

 $x = mcp2atm(Response \sim Predictor A + Predictor B + Predictor A : Predictor B, data = depress, tr = 0.2)$ x\$contrasts

Х

Distribution Functions

Return the the corresponding quantile for a given probability

Normal Distribution

qnorm(probability, mean, sd)

T Distribution

qt(probability, df, lower.tail)

F Distribution

qf(probability, df1, df2, lower.tail)

Chi-Square Distribution

qchisq(probability, df, lower.tail)

Return the the corresponding probability for a given quantile.

Normal Distribution

pnorm(quantile, mean, sd)

T Distribution

pt(quantile, df, lower.tail)

F Distribution

pf(quantile, df1, df2, lower.tail)

Chi-Square Distribution

pchisq(quantile, df, lower.tail)

By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet. Last updated 6th December, 2020. Page 5 of 7.

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Regression and ANOVA Functions		
Factoring a Predictor	data_frame\$Predictor = factor(data_frame\$Predictor)	
Viewing levels of a factor	levels(data_frame\$Predictor)	
Linear Model	<pre>model = lm(Response ~ Predictor1 + Predictor2, data = data)</pre>	
Summary output of a linear model	summary(model)	
Linear Model Confidence Intervals	confint(model)	
F-test Model Comparisons	anova(model1, model2, model3, etc)	
Anova main effects	<pre>summary(aov(model))</pre>	
Dummy Coding with 1s and 0s	<pre>ifelse(data_frame\$Predictor == "X", 1, 0)</pre>	
Contrasts	cont1 = c(1, 1, -2)	
	cont2 = c(1, -1, 0)	
	<pre>contrasts(data_frame\$Predictor) = cbind(cont1, cont2)</pre>	
Polynomial Contrasts	<pre>contrasts(data_frame\$Predictor) = contr.poly(levels(data_frame\$Predictor))</pre>	
Post Hoc Tests ("bonferroni", "holm", "BH")	<pre>pairwise.t.test(data_frame\$Response, data_frame\$Predictor, p.adjust.method = c("holm"))</pre>	

Note: the $\mbox{lm}\left(\right)$ function stores many useful things as attributes:

model\$residuals

Tukey HSD

model\$coefficients

Common Statistical Tests and Calculations

T-test

t.test(y~x, alternative = c("two.sided"), mu = 0, var.equal = FALSE, conf.level = 0.95)

TukeyHSD(aov(model), "Predictor")

Correlation

cor(x, y)

Goodness-Of Fit (One Variable)

chisq.test(x = observed, p = expected probabilities)

By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet.

Last updated 6th December, 2020.

Page 6 of 7.

by Jeffrey M. Pisklak (non_human_entity) via cheatography.com/127433/cs/25553/

Common Statistical Tests and Calculations (cont)

```
Pearson's Chi-squared test (Two Variables)
```

```
chisq.test(table , correct = FALSE)
```

Fisher's Exact Test

fisher.test(table)

Plotting: library(ggplot2)

Histogram

```
ggplot(dataFrame, aes(x = Dep_Var)) +
    geom_histogram(colour = "black",
    fill = "white")
```

Density Plot

```
ggplot(dataFrame, aes(x = Dep_Var)) +
   geom_density(colour = "black",fill = "pink", adjust = 1)
```

Boxplots

```
ggplot(dataFrame, aes(x = Indep_Var, y = Dep_Var)) +
    geom_boxplot()
```

Barplot with errorbars

```
ggplot(plotData, aes(x = Indep_Var, y = Dep_Var, fill = Indep_Var)) +
    geom_bar(stat = "identity", colour = "black") +
    geom_errorbar(aes(ymin = bottom_value, ymax = top_value), width = .25)
```

Q-Q Plot For two independent samples

```
Remove + facet_wrap() for a single sample

ggplot(dataFrame, aes(sample = Dep_Var)) +
    stat_qq() +
    stat_qq_line() +
```

Line Plot of Means with Two Predictors

facet_wrap(~ Indep_Var)

```
ggplot(plotData, aes(x = PredictorA, y = Means, group = PredictorB, colour = PredictorB)) +
    geom_line(position = position_dodge(width = 0.4)) +
    geom_point(position = position_dodge(width = 0.4))
```

Scatterplot with Regression Line

```
ggplot(dataframe, aes(x = predictor, y = response)) +
   geom_point() +
   geom_abline(intercept = b0, slope = b1)
```


By **Jeffrey M. Pisklak** (non_human_entity) cheatography.com/non-human-entity/

Not published yet. Last updated 6th December, 2020. Page 7 of 7.