Eikonal Solver Implementation

Advanced Methods for Scientific Computing (AMSC) Handson Project

Cesaroni Sabrina Tonarelli Melanie Trabacchin Tommaso

Description

Eikonal Equation

$$\begin{cases} H(x, \nabla u(x)) = 1 & x \in \Omega \subset \mathbb{R}^d \\ u(x) = g(x) & x \in \Gamma \subset \partial \Omega \end{cases}$$

where

- d is the dimension of the problem, either 2 or 3;
- ullet u is the eikonal function, representing the travel time of a wave;
- $\nabla u(x)$ is the gradient of u, a vector that points in the direction of the wavefront;
- H is the Hamiltonian, which is a function of the spatial coordinates x and the gradient ∇u ;
- Γ is a set smooth boundary conditions.

Mesh

Data Structures

Local Solver

For each vertex, it is essential to solve a local problem, specifically determining the updated value u, by considering the upwind neighbors.

Serial Implementation

Algorithm 2.1. MESHFIM(V, B, L)

```
comment: 1. Initialization (V : \text{all vertices}, L : \text{active list}, B : \text{seed vertices})
for each v \in V
           if v \in B
              else \Phi_v \leftarrow \infty
for each v \in V
          \begin{cases} \textbf{if any 1-ring vertex of } v \in B \\ \textbf{then add } v \textbf{ to } L \end{cases}
comment: 2. Update vertices in L
while L is not empty
            for each v \in V
                                      (for each adjacent neighbor v_{nb} of v
                                                    (if v_{nb} is not in L
  \mathbf{do}
                           \mathbf{then}
                                                                   then \begin{cases} \Phi_{v_{nb}} \leftarrow q \\ \text{add } v_{nb} \text{ to } L \end{cases}
                                      remove v from L
```

Data Structures

boundary_vertices

active_list

Parallel Implementation

Concurrent Read and Write

- Atomic operations are used to avoid data races when accessing the global solutions vector.
- To avoid too much of them, a map for each thread is used to cache the intermediate local solutions.

Results Speed Up Table

Some Examples

2D square model with two wave sources

Lucy model with one wave source

Some more examples

3D cube with two wave sources

Stanford Bunny model with one wave source

Thank you for your attention!