# **Cultural Evolution Models**

Alberto Acerbi / Fabian C. Moss 8/8/2022

# Table of contents

| Pı | reface                                                            | 3  |
|----|-------------------------------------------------------------------|----|
| 1  | Introduction                                                      | 4  |
| 2  | Summary                                                           | 5  |
| 3  | Unbiased transmission                                             | 6  |
| 6  | Create first generation                                           | 31 |
| 7  | Chapter 5 - Biased transmission: demonstrator-based indirect bias | 40 |
| R  | eferences                                                         | 45 |

# **Preface**

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

# 1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

# 2 Summary

In summary, this book has no content whatsoever.

#### 3 Unbiased transmission

Alberto Acerbi / Fabian C. Moss

Import some modules.

```
import numpy as np
rng = np.random.default_rng()

import pandas as pd

N = 100
t_max = 100

population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True)})
population.head()
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWars

In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S

```
"p": [np.nan] * t_max } ) output
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWars
In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `Son

|    | generation | p   |
|----|------------|-----|
| 0  | 0          | NaN |
| 1  | 1          | NaN |
| 2  | 2          | NaN |
| 3  | 3          | NaN |
| 4  | 4          | NaN |
| 5  | 5          | NaN |
| 6  | 6          | NaN |
| 7  | 7          | NaN |
| 8  | 8          | NaN |
| 9  | 9          | NaN |
| 10 | 10         | NaN |
| 11 | 11         | NaN |
| 12 | 12         | NaN |
| 13 | 13         | NaN |
| 14 | 14         | NaN |
| 15 | 15         | NaN |
| 16 | 16         | NaN |
| 17 | 17         | NaN |
| 18 | 18         | NaN |
| 19 | 19         | NaN |
| 20 | 20         | NaN |
| 21 | 21         | NaN |
| 22 | 22         | NaN |
| 23 | 23         | NaN |
| 24 | 24         | NaN |
| 25 | 25         | NaN |
| 26 | 26         | NaN |
| 27 | 27         | NaN |
| 28 | 28         | NaN |
| 29 | 29         | NaN |
| 30 | 30         | NaN |
| 31 | 31         | NaN |
| 32 | 32         | NaN |
| 33 | 33         | NaN |
| 34 | 34         | NaN |
| 35 | 35         | NaN |
| 36 | 36         | NaN |
| 37 | 37         | NaN |
| 38 | 38         | NaN |
| 39 | 39         | NaN |
| 40 | 40         | NaN |
| 41 | 41         | NaN |
| 42 | 42         | NaN |
| 43 | 43         | NaN |
| 44 | 44         | NaN |
| 45 | 45         | NaN |
| 46 | 46         | NaN |
| 47 | 47         | NaN |
| 48 | 48         | NaN |
| 49 | 49         | NaN |
| 50 | 50         | NaN |
| 51 | <b>5</b> 1 | NoN |

```
output.loc[0, "p"] = population[ population["trait"] == "A" ].shape[0] / N

for t in range(1, t_max):
    # Copy the population tibble to previous_population tibble
    previous_population = population.copy()

# Randomly copy from previous generation's individuals
    population = population["trait"].sample(N, replace=True).to_frame()

# Get p and put it into the output slot for this generation t
    output.loc[t, "p"] = population[ population["trait"] == "A"].shape[0] / N

output
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWars
In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S

|          | generation | p     |
|----------|------------|-------|
| 0        | 0          | 0.38  |
| 1        | 1          | 0.31  |
| 2        | 2          | 0.26  |
| 3        | 3          | 0.22  |
| 4        | 4          | 0.19  |
| 5        | 5          | 0.19  |
| 6        | 6          | 0.18  |
| 7        | 7          | 0.16  |
| 8        | 8          | 0.16  |
| 9        | 9          | 0.16  |
| 10       | 10         | 0.16  |
| 11       | 11         | 0.15  |
| 12       | 12         | 0.17  |
| 13       | 13         | 0.18  |
| 14       | 14         | 0.18  |
| 15       | 15         | 0.24  |
| 16       | 16         | 0.26  |
| 17       | 17         | 0.29  |
| 18       | 18         | 0.22  |
| 19       | 19         | 0.24  |
| 20       | 20         | 0.30  |
| 21       | 21         | 0.22  |
| 22       | 22         | 0.27  |
| 23       | 23         | 0.22  |
| 24       | 24         | 0.27  |
| 25       | 25         | 0.30  |
| 26       | 26         | 0.42  |
| 27       | 27         | 0.34  |
| 28       | 28         | 0.25  |
| 29       | 29         | 0.31  |
| 30       | 30         | 0.28  |
| 31       | 31         | 0.27  |
| 32       | 32         | 0.23  |
| 33       | 33         | 0.28  |
| 34       | 34         | 0.27  |
| 35       | 35         | 0.22  |
| 36       | 36         | 0.21  |
| 37       | 37         | 0.19  |
| 38       | 38         | 0.26  |
| 39       | 39         | 0.31  |
| 40       | 40         | 0.42  |
| 41       | 41         | 0.45  |
| 42       | 42         | 0.50  |
| 43       | 43         | 0.48  |
| 44       | 44         | 0.42  |
| 45       | 45         | 0.43  |
| 46       | 46         | 0.42  |
| 47       | 47         | 0.44  |
| 48       | 48         | 0.43  |
| 49<br>50 | 49         | 0.45  |
| 511      | F11        | 11/11 |

50 0.41

```
def unbiased_transmission_1(N, t_max):
   population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True)})
    output = pd.DataFrame({"generation": np.arange(t_max, dtype=int), "p": [np.nan] * t_ma
    output.loc[0, "p"] = population[ population["trait"] == "A" ].shape[0] / N
    for t in range(1, t_max):
        # Copy the population tibble to previous_population tibble
        previous_population = population.copy()
        # Randomly copy from previous generation's individuals
        population = population["trait"].sample(N, replace=True).to_frame()
        # Get p and put it into the output slot for this generation t
        output.loc[t, "p"] = population[ population["trait"] == "A"].shape[0] / N
    return output
data_model = unbiased_transmission_1(N=100, t_max=200)
def plot_single_run(data_model):
    data_model["p"].plot(ylim=(0,1))
plot_single_run(data_model)
```



Figure 3.1: Single run of the unbiased transmission model for a population of N=100 individuals and  $t_{max}=200$  generations.

```
data_model = unbiased_transmission_1(N=10_000, t_max=200)
plot_single_run(data_model)
```



Figure 3.2: Single run of the unbiased transmission model for a population of N=10,000 individuals and  $t_{max}=200$  generations.

```
def unbiased_transmission_2(N, t_max, r_max):
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
})

for r in range(r_max):
    # Create first generation
    population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True)})

# Add first generation's p for run r
    output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[0] /

# For each generation
    for t in range(1,t_max):
        # Copy individuals to previous_population DataFrame
        previous_population = population.copy()
```

```
# Randomly compy from previous generation
population = population["trait"].sample(N, replace=True).to_frame()

# Get p and put it into output slot for this generation t and run r
output.loc[r * t_max + t, "p"] = population[ population["trait"] == "A" ].shap
return output

unbiased_transmission_2(100, 100, 3)
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWar:
In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S

|                 | generation | р           | run |
|-----------------|------------|-------------|-----|
| 0               | 0          | 0.49        | 0   |
| 1               | 1          | 0.48        | 0   |
| 2               | 2          | 0.47        | 0   |
| 3               | 3          | 0.50        | 0   |
| 4               | 4          | 0.49        | 0   |
| 5               | 5          | 0.47        | 0   |
| 6               | 6          | 0.43        | 0   |
| 7               | 7          | 0.35        | 0   |
| 8               | 8          | 0.36        | 0   |
| 9               | 9          | 0.33        | 0   |
| 10              | 10         | 0.36        | 0   |
| 11              | 11         | 0.35        | 0   |
| 12              | 12         | 0.36        | 0   |
| 13              | 13         | 0.38        | 0   |
| 14              | 14         | 0.34        | 0   |
| 15              | 15         | 0.41        | 0   |
| 16              | 16         | 0.39        | 0   |
| 17              | 17         | 0.29        | 0   |
| 18              | 18         | 0.34        | 0   |
| 19              | 19         | 0.39        | 0   |
| 20              | 20         | 0.34        | 0   |
| 21              | 21         | 0.38        | 0   |
| 22              | 22         | 0.39        | 0   |
| 23              | 23         | 0.44        | 0   |
| $\frac{24}{24}$ | 24         | 0.42        | 0   |
| 25              | 25         | 0.45        | 0   |
| 26              | 26         | 0.45        | 0   |
| $\frac{27}{27}$ | 27         | 0.41        | 0   |
| 28              | 28         | 0.46        | 0   |
| 29              | 29         | 0.54        | 0   |
| 30              | 30         | 0.60        | 0   |
| 31              | 31         | 0.64        | 0   |
| 32              | 32         | 0.58        | 0   |
| 33              | 33         | 0.55        | 0   |
| 34              | 34         | 0.55        | 0   |
| 35              | 35         | 0.73        | 0   |
| 36              | 36         | 0.68        | 0   |
| 37              | 37         | 0.00        | 0   |
| 38              | 38         | 0.71        | 0   |
| 39              | 39         | 0.74 $0.82$ | 0   |
| 39<br>40        | 39<br>40   | 0.82 $0.76$ | 0   |
| 40              | 40         | 0.76 $0.75$ | 0   |
| 41              | 41 $42$    | 0.73        | 0   |
|                 |            |             |     |
| 43              | 43         | 0.75        | 0   |
| 44              | 44         | 0.73        | 0   |
| 45              | 45         | 0.77        | 0   |
| 46              | 46         | 0.75        | 0   |
| 47              | 47         | 0.73        | 0   |
| 48              | 48         | 0.71        | 0   |

 $49 \quad 0.70$ 

50 0.65

0.50

```
data_model = unbiased_transmission_2(N=100, t_max=200, r_max=5)

def plot_multiple_runs(data_model):
    groups = data_model.groupby("run")
    for _, g in groups:
        g.index = g["generation"]
        g["p"].plot(lw=.5, ylim=(0,1))

    data_model.groupby("generation")["p"].mean().plot(c="k", lw="1")

plot_multiple_runs(data_model)
```



Figure 3.3: Multiple runs of the unbiased transmission model for a population of N=100 individuals, with average (black line).

```
data_model = unbiased_transmission_2(N=10_000, t_max=200, r_max=5)
plot_multiple_runs(data_model)
```



Figure 3.4: Multiple runs of the unbiased transmission model for a population of N = 10,000 individuals, with average (black line).

```
def unbiased_transmission_3(N, p_0, t_max, r_max):
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
})

for r in range(r_max):
    # Create first generation
    population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p

# Add first generation's p for run r
    output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[0] /

# For each generation
    for t in range(1,t_max):
    # Copy individuals to previous_population DataFrame
    previous_population = population
```

```
# Randomly compy from previous generation
population = population["trait"].sample(N, replace=True).to_frame()

# Get p and put it into output slot for this generation t and run r
output.loc[r * t_max + t, "p"] = population[population["trait"] == "A"].shap
return output
```

data\_model = unbiased\_transmission\_3(10\_000, p\_0=.2, t\_max=200, r\_max=5)
plot\_multiple\_runs(data\_model)



```
import numpy as np
rng = np.random.default_rng()
import pandas as pd
def unbiased_mutation(N, mu, p_0, t_max, r_max):
    # Create an output DataFrame
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
   })
    for r in range(r_max):
        # Create first generation
        population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p
        # Add first generation's p for run r
        output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[0] /
        # For each generation
        for t in range(1,t_max):
            # Copy individuals to previous_population DataFrame
            previous_population = population.copy()
            # Determine "mutant" individuals
            mutate = rng.choice([True, False], size=N, p=[mu, 1-mu], replace=True)
            # TODO: Something is off here! Changing the order of the conditions affects
            # the result. Should be constant with random noise but converges to either A of
            # If there are "mutants" from A to B
            conditionA = mutate & (previous_population["trait"] == "A")
```

```
if conditionA.sum() > 0:
                population.loc[conditionA, "trait"] = "B"
            # If there are "mutants" from B to A
            conditionB = mutate & (previous_population["trait"] == "B")
            if conditionB.sum() > 0:
                population.loc[conditionB, "trait"] = "A"
            # Get p and put it into output slot for this generation t and run r
            output.loc[r * t_max + t, "p"] = population[ population["trait"] == "A" ].shap
    return output
def plot_multiple_runs(data_model):
   groups = data_model.groupby("run")
    for _, g in groups:
        g.index = g["generation"]
        g["p"].plot(lw=.5, ylim=(0,1))
    data_model.groupby("generation")["p"].mean().plot(c="k", lw="1")
data_model = unbiased_mutation(N=100, mu=.05, p_0=0.5, t_max=200, r_max=5)
plot_multiple_runs(data_model)
```





```
def biased_mutation(N, mu_b, p_0, t_max, r_max):
    # Create the output DataFrame
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
    })
    for r in range(r_max):
        # Create first generation
        population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p
        # Add first generation's p for run r
        output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[0] /
        # For each generation
        for t in range(1,t_max):
            # Copy individuals to previous_population DataFrame
            previous_population = population.copy()
            # Determine "mutant" individuals
```

```
mutate = rng.choice([True, False], size=N, p=[mu_b, 1-mu_b], replace=True)

# TODO: Something is off here! Changing the order of the conditions affects
# the result. Should be constant with random noise but converges to either A of

# If there are "mutants" from B to A
conditionB = mutate & (previous_population["trait"] == "B")
if conditionB.sum() > 0:
    population.loc[conditionB, "trait"] = "A"

# Get p and put it into output slot for this generation t and run r
output.loc[r * t_max + t, "p"] = population[population["trait"] == "A"].shap
```

return output

```
data_model = biased_mutation(N = 100, mu_b = 0.05, p_0 = 0, t_max = 200, r_max = 5) plot_multiple_runs(data_model)
```



```
\label{eq:data_model} $$ \text{data_model} = \text{biased_mutation}(\mathbb{N} = 10000, \ \text{mu_b} = 0.05, \ \text{p_0} = 0, \ \text{t_max} = 200, \ \text{r_max} = 5) $$ \text{plot_multiple_runs}(\text{data_model}) $$
```



data\_model <- biased\_mutation(N = 10000, mu\_b = 0.1, p\_0 = 0, t\_max = 200, r\_max = 5) plot\_multiple\_runs(data\_model)



```
import numpy as np
rng = np.random.default_rng()
import pandas as pd
def plot_multiple_runs(data_model):
    groups = data_model.groupby("run")
   for _, g in groups:
        g.index = g["generation"]
        g["p"].plot(lw=.5, ylim=(0,1))
    data_model.groupby("generation")["p"].mean().plot(c="k", lw="1")
def biased_transmission_direct(N, s_a, s_b, p_0, t_max, r_max):
    # Create the output DataFrame
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
    })
    for r in range(r_max):
        # Create first generation
        population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p
        # Add first generation's p for run r
        output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[0] /
        # For each generation
        for t in range(1,t_max):
            # Copy individuals to previous_population DataFrame
            previous_population = population.copy()
            # For each individual, pick a random individual from the previous generation
```

```
demonstrator_trait = previous_population["trait"].sample(N, replace=True).rese
            # Biased probabilities to copy
            copy_a = rng.choice([True, False], size=N, replace=True, p=[s_a, 1 - s_a])
            copy_b = rng.choice([True, False], size=N, replace=True, p=[s_b, 1 - s_b])
            # If the demonstrator has trait A and the individual wants to copy A, then cop
            condition = copy_a & (demonstrator_trait["trait"] == "A")
            if condition.sum() > 0:
                population.loc[condition, "trait"] = "A"
            \# If the demonstrator has trait B and the individual wants to copy B, then cop
            condition = copy_b & (demonstrator_trait["trait"] == "B")
            if condition.sum() > 0:
                population.loc[condition, "trait"] = "B"
            # Get p and put it into output slot for this generation t and run r
            output.loc[r * t_max + t, "p"] = population[ population["trait"] == "A" ].shap
    return output
data_model = biased_transmission_direct(N=10_000, s_a=.1, s_b=0,
                                         p_0=.01, t_max=200, r_max=5)
plot_multiple_runs(data_model)
```



```
\label{eq:data_model} \begin{array}{lll} \texttt{data\_model} = \texttt{biased\_transmission\_direct(N=10\_000, s\_a=.6, s\_b=.5,} \\ & \texttt{p\_0=.01, t\_max=150, r\_max=5)} \\ \texttt{plot\_multiple\_runs(data\_model)} \end{array}
```



```
\label{eq:data_model} \begin{array}{lll} \texttt{data\_model} = \texttt{biased\_transmission\_direct(N=10\_000, s\_a=.2, s\_b=0,} \\ & \texttt{p\_0=.01, t\_max=200, r\_max=5)} \\ \texttt{plot\_multiple\_runs(data\_model)} \end{array}
```



### 6 Create first generation

```
import numpy as np
rng = np.random.default_rng()
import pandas as pd
def plot_multiple_runs(data_model):
    groups = data_model.groupby("run")
    for _, g in groups:
        g.index = g["generation"]
        g["p"].plot(lw=.5, ylim=(0,1))
    data_model.groupby("generation")["p"].mean().plot(c="k", lw="1")
N = 100
p_0 = .5
D = 1.
population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p=[p_0, 1
# Create a DataFrame with a set of 3 randomly-picked demonstrators for each agent
demonstrators = pd.DataFrame({
    "dem1" : population["trait"].sample(N, replace=True).values,
    "dem2" : population["trait"].sample(N, replace=True).values,
    "dem3" : population["trait"].sample(N, replace=True).values
})
# Visualize the DataFrame
demonstrators
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWarz
In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `Son

|                 | dem1   | dem2   | dem3   |
|-----------------|--------|--------|--------|
| 0               | A      | A      | A      |
| 1               | A      | В      | В      |
| 2               | A      | В      | A      |
| 3               | A      | В      | A      |
| 4               | A      | В      | В      |
| 5               | A      | A      | A      |
| 6               | В      | A      | В      |
| 7               | В      | В      | В      |
| 8               | A      | В      | A      |
| 9               | B<br>A | B<br>A | B<br>B |
| 10<br>11        | A<br>A | В      | A      |
| 12              | A      | В      | В      |
| 13              | A      | A      | A      |
| 14              | В      | A      | A      |
| 15              | В      | A      | A      |
| 16              | A      | В      | В      |
| 17              | A      | A      | В      |
| 18              | В      | A      | В      |
| 19              | A      | A      | В      |
| 20              | В      | A      | A      |
| 21              | В      | A      | В      |
| 22              | A      | A      | В      |
| 23              | В      | В      | A      |
| 24              | A      | В      | В      |
| 25              | В      | A      | A      |
| 26              | A      | В      | A      |
| 27              | A      | A      | В      |
| 28              | В      | В      | A      |
| 29              | A      | В      | В      |
| 30              | В      | В      | A      |
| 31              | A      | A      | В      |
| 32              | A      | В      | A      |
| 33              | A      | A<br>A | A<br>A |
| $\frac{34}{35}$ | B<br>A | В      | В      |
| 36              | В      | A      | В      |
| 37              | В      | В      | В      |
| 38              | A      | A      | В      |
| 39              | A      | В      | A      |
| 40              | В      | В      | В      |
| 41              | В      | Ā      | Ā      |
| 42              | В      | A      | A      |
| 43              | A      | В      | A      |
| 44              | A      | A      | В      |
| 45              | В      | A      | В      |
| 46              | A      | В      | В      |
| 47              | A      | A      | В      |
| 48              | В      | В      | A      |
| 49              | В      | В      | A      |
| 50<br>51        | В      | В      | В      |

```
# Get the number of A's in each 3-demonstrator combination
num_As = (demonstrators == "A").apply(sum, axis=1)
num_As
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWars
In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S

|                 | 0                     |
|-----------------|-----------------------|
| 0               | 3                     |
| $\frac{1}{2}$   | 1                     |
| 2               | 2                     |
| 3               | 2<br>1<br>3           |
| 4               | 1                     |
| 5<br>6          |                       |
| 6<br>7          | $\frac{1}{0}$         |
| 8               | 2                     |
| 9               | 0                     |
| 10              | $\frac{\circ}{2}$     |
| 11              | 2                     |
| 12              | 2<br>1<br>3           |
| 13              | 3                     |
| 14              | 2                     |
| 15              | 2<br>2<br>1           |
| 16              | 1                     |
| 17              | 2                     |
| 18              | 2<br>1<br>2           |
| 19              | 2                     |
| 20              | 2<br>1<br>2<br>1<br>1 |
| 21              | 1                     |
| 22              | 2                     |
| 23              | 1                     |
| 24              | 1                     |
| 25<br>26        | 2<br>2<br>2           |
| $\frac{26}{27}$ | 2                     |
| 28              | 1                     |
| 29              | 1                     |
| 30              | 1                     |
| 31              | 2                     |
| 32              | $\overline{2}$        |
| 33              | 3                     |
| 34              | 2                     |
| 35              | 1                     |
| 36              | 1                     |
| 37              | 0                     |
| 38              | 2                     |
| 39              | 2                     |
| 40              | 0                     |
| 41              | 2                     |
| 42              | 2                     |
| 43              | 2                     |
| 44<br>45        | 2                     |
| 45<br>46        | 1<br>1                |
| $\frac{46}{47}$ | $\frac{1}{2}$         |
| 48              | 2<br>1                |
| 49              | 1                     |
| 50              | 0                     |
| 50<br>51        | 2                     |

```
# For 3-demonstrator combinations with all A's, set to A
population[ num_As == 3 ] = "A"
# For 3-demonstrator combinations with all B's, set to B
population[ num_As == 0 ] = "B"
prob_majority = rng.choice([True, False], p=[(2/3 + D/3), 1-(2/3 + D/3)], size=N, replace=
prob_minority = rng.choice([True, False], p=[(1/3 + D/3), 1-(1/3 + D/3)], size=N, replace=
# 3-demonstrator combinations with two As and one B
condition = prob_majority & (num_As == 2)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "A"
condition = ~prob_majority & (num_As == 2)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "B"
# 3-demonstrator combinations with two B's and one A
condition = ~prob_minority & (num_As == 1)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "A"
condition = prob_minority & (num_As == 1)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "B"
demonstrators["new_trait"] = population["trait"]
demonstrators
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWars

In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S'

|                 | dem1   | dem2   | dem3   | new_trait |
|-----------------|--------|--------|--------|-----------|
| 0               | A      | A      | A      | A         |
| 1               | A      | В      | В      | В         |
| 2               | A      | В      | A      | A         |
| 3               | A      | В      | A      | A         |
| 4               | A      | В      | В      | В         |
| 5               | A      | A      | A      | A         |
| 6               | В      | A      | В      | A         |
| 7               | В      | В      | В      | В         |
| 8               | A      | В      | A      | A         |
| 9               | В      | В      | В      | В         |
| 10              | A      | A      | В      | A         |
| 11              | A      | В      | A      | A         |
| 12              | A      | В      | В      | В         |
| 13              | A      | A      | A      | A         |
| 14              | В      | A      | A      | A         |
| 15              | В      | A      | A      | A         |
| 16              | A      | В      | В      | В         |
| 17              | A      | A      | В      | A         |
| 18              | В      | A      | В      | В         |
| 19              | A      | A      | B<br>A | A<br>A    |
| 20<br>21        | B<br>B | A<br>A | В      | В         |
| $\frac{21}{22}$ | A      | A      | В      | A         |
| 23              | В      | В      | A      | В         |
| $\frac{23}{24}$ | A      | В      | В      | A         |
| 25              | В      | A      | A      | A         |
| 26              | A      | В      | A      | A         |
| 27              | A      | A      | В      | A         |
| 28              | В      | В      | A      | В         |
| 29              | A      | В      | В      | В         |
| 30              | В      | В      | A      | A         |
| 31              | A      | A      | В      | A         |
| 32              | A      | В      | A      | A         |
| 33              | A      | A      | A      | A         |
| 34              | В      | A      | A      | A         |
| 35              | A      | В      | В      | В         |
| 36              | В      | A      | В      | A         |
| 37              | В      | В      | В      | В         |
| 38              | A      | A      | В      | A         |
| 39              | A      | В      | A      | A         |
| 40<br>41        | B<br>B | B<br>A | В<br>А | B<br>A    |
| $\frac{41}{42}$ | В      | A<br>A | A<br>A | A<br>A    |
| 43              | A      | В      | A      | A         |
| 44              | A      | A      | В      | A         |
| 45              | В      | A      | В      | В         |
| 46              | A      | В      | В      | В         |
| 47              | A      | A      | В      | A         |
| 48              | В      | В      | A      | В         |
| 49              | В      | В      | A      | В         |
| 50              | В      | В      | В      | В         |
| 51              | Λ      | Λ      | Λ      | Λ         |

```
def conformist_transmission(N, p_0, D, t_max, r_max):
   # Create the output DataFrame
   output = pd.DataFrame({
       "generation" : np.tile(np.arange(t_max), r_max),
       "p" : [ np.nan ] * t_max * r_max,
       "run" : np.repeat(np.arange(r_max), t_max)
   })
   for r in range(r_max):
       # Create first generation
       population = pd.DataFrame({"trait": rng.choice(["A", "B"], size=N, replace=True, p
       # Add first generation's p for run r
       # For each generation
       for t in range(1,t_max):
           demonstrators = pd.DataFrame({
               "dem1" : population["trait"].sample(N, replace=True).values,
               "dem2" : population["trait"].sample(N, replace=True).values,
               "dem3" : population["trait"].sample(N, replace=True).values
           })
           # Get the number of A's in each 3-demonstrator combination
           num_As = (demonstrators == "A").apply(sum, axis=1)
           # For 3-demonstrator combinations with all A's, set to A
           population[ num_As == 3 ] = "A"
           # For 3-demonstrator combinations with all A's, set to A
           population[ num_As == 3 ] = "A"
           # For 3-demonstrator combinations with all B's, set to B
           population[ num_As == 0 ] = "B"
           prob_majority = rng.choice([True, False], p=[(2/3 + D/3), 1-(2/3 + D/3)], size
           prob_minority = rng.choice([True, False], p=[(1/3 + D/3), 1-(1/3 + D/3)], size
           # 3-demonstrator combinations with two As and one B
           condition = prob_majority & (num_As == 2)
           if condition.sum() > 0:
               population.loc[condition, "trait"] = "A"
           condition = ~prob_majority & (num_As == 2)
```

```
if condition.sum() > 0:
    population.loc[condition, "trait"] = "B"

# 3-demonstrator combinations with two B's and one A
condition = prob_minority & (num_As == 1)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "A"
condition = ~prob_minority & (num_As == 1)
if condition.sum() > 0:
    population.loc[condition, "trait"] = "B"

# Get p and put it into output slot for this generation t and run r
output.loc[r * t_max + t, "p"] = population[population["trait"] == "A"].shap
return output
```



# 7 Chapter 5 - Biased transmission: demonstrator-based indirect bias

```
import numpy as np
rng = np.random.default_rng()
import pandas as pd
def plot_multiple_runs(data_model):
    groups = data_model.groupby("run")
    for _, g in groups:
        g.index = g["generation"]
        g["p"].plot(lw=.5, ylim=(0,1))
    data_model.groupby("generation")["p"].mean().plot(c="k", lw="1")
N = 100
p_0 = 0.5
p_s = 0.05
population = pd.DataFrame({
    "trait": rng.choice(["A", "B"], size=N, replace=True, p=[p_0, 1-p_0]),
    "status": rng.choice(["high", "low"], size=N, replace=True, p=[p_s, 1-p_s])
})
population
```

/home/fmoss/miniconda3/lib/python3.9/site-packages/IPython/core/formatters.py:343: FutureWar

In future versions `DataFrame.to\_latex` is expected to utilise the base implementation of `S

|                 | trait | status |
|-----------------|-------|--------|
| 0               | В     | low    |
| 1               | В     | low    |
| 2               | A     | low    |
| 3               | В     | low    |
| 4               | A     | low    |
| 5               | A     | low    |
| 6               | В     | low    |
| 7               | В     | low    |
| 8               | A     | high   |
| 9               | В     | low    |
| 10              | В     | low    |
| 11              | В     | low    |
| 12              | A     | low    |
| 13              | В     | low    |
| 14              | A     | low    |
| 15              | В     | low    |
| 16              | В     | low    |
| 17              | A     | low    |
| 18              | A     | low    |
| 19              | A     | low    |
| 20              | В     | low    |
| 21              | В     | low    |
| 22              | В     | low    |
| 23              | В     | low    |
| 24              | В     | low    |
| 25              | A     | low    |
| 26              | В     | low    |
| 27              | В     | low    |
| 28              | В     | low    |
| 29              | В     | low    |
| 30              | A     | low    |
| 31              | A     | low    |
| 32              | В     | low    |
| 33              | A     | low    |
| 34              | В     | low    |
| $\frac{35}{36}$ | В     | low    |
| 36              | В     | low    |
| 37              | A     | low    |
| 38              | В     | low    |
| 39              | В     | low    |
| 40              | В     | low    |
| 41              | A     | low    |
| 42              | В     | low    |
| 43              | В     | low    |
| 44              | A     | low    |
| 45              | A     | low    |
| 46              | В     | low    |
| 47              | В     | low    |
| 48              | В     | low    |
| 49              | В     | low    |
| 50<br>51        | В     | low    |

```
p_low = 0.01
p_demonstrator = np.ones(N)
p_demonstrator[ population["status"] == "low" ] = p_low
if sum(p_demonstrator) > 0:
          ps = p_demonstrator / p_demonstrator.sum()
          demonstrator_index = rng.choice(np.arange(N), size=N, p=ps, replace=True)
          population["trait"] = population.loc[demonstrator_index, "trait"].values
def biased_transmission_demonstrator(N, p_0, p_s, p_low, t_max, r_max):
          # Create the output DataFrame
          output = pd.DataFrame({
                    "generation" : np.tile(np.arange(t_max), r_max),
                    "p" : [ np.nan ] * t_max * r_max,
                    "run" : np.repeat(np.arange(r_max), t_max)
         })
          for r in range(r_max):
                             # Create first generation
                             population = pd.DataFrame({
                                       "trait": rng.choice(["A", "B"], size=N, replace=True, p=[p_0, 1-p_0]),
                                       "status": rng.choice(["high", "low"], size=N, replace=True, p=[p_s, 1-p_s]
                             })
                             # Assign copying probabilities based on individuals' status
                             p_demonstrator = np.ones(N)
                             p_demonstrator[population["status"] == "low"] = p_low
                             # Add first generation's p for run r
                             output.loc[ r * t_max, "p"] = population[ population["trait"] == "A" ].shape[Continue to the continue to 
                             for t in range(1, t_max):
                                       # Copy individuals to previous_population DataFrame
                                       previous_population = population.copy()
                                       # Copy traits based on status
                                       if sum(p_demonstrator) > 0:
                                                ps = p_demonstrator / p_demonstrator.sum()
                                                demonstrator_index = rng.choice(np.arange(N), size=N, p=ps, replace=Tr
                                                population["trait"] = population.loc[demonstrator_index, "trait"].valu
```



 $\label{eq:data_model} $$ $ \text{data_model} = \text{biased_transmission_demonstrator}(N=10\_000, \ p\_s=0.005, \ p\_low=0.0001, \ p\_0=0.5, \ p\_lot\_multiple\_runs(data\_model) $$$ 



```
def biased_transmission_demonstrator_2(N, p_0, p_s, p_low, t_max, r_max):
    # Create the output DataFrame
    output = pd.DataFrame({
        "generation" : np.tile(np.arange(t_max), r_max),
        "p" : [ np.nan ] * t_max * r_max,
        "run" : np.repeat(np.arange(r_max), t_max)
})
    ...
    return output
```

 $\texttt{data\_model = biased\_transmission\_demonstrator\_2(N=100, p\_s=0.1, p\_low=0.0001, p\_0=0.5, t\_max})$ 

## References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.