

Introdução a Eletronica básica (IoT)

Por: Marcos Augusto Campagnaro Mucelini

Nesta aula veremos os conceitos de:

O que é Arduino

- arquitetura
- usos do arduino
- microcontroladores

IDE

- Elementros gerais
- Instalação
- Dicas

Programação

- Blocos setup & loop
- Rraticas

O que é Arduino?

Uma **placa** para prototipagem de projetos eletônicos

Uma plataforma que consiste de um circuito contendo um microcontrolador configurado para facilitar a programação e controle de entradas e saídas.

Criado para **facilitar** o uso da eletrônica por artistas.

Open hardware - Circuito pode ser montado e vendido sem pagar royalties.

Àrquitetura do Arduino

Entradas

(sensores, chaves, geradores de sinais, etc)

Processamento

(Plataforma de processamento baseada em microcontroladores)

Saídas

(dispositivos, mecanismos, processadores de sinais)

Uso do Arduino

Depois que um programa é transferido para a memória do Arduino, ele executará automaticamente sempre que for conectado a uma fonte de energia.

Um programa geralmente é construido para executar continuamente, lendo os sinais recebidos de sensores e ou mecanismos de acionamento.

O botão **RESET** reinicia o Arduino (o programa é interrompido e reiniciado novamente).

Um microcontrolador é um pequeno computador contido num unico chip

O Arduino é um cricuito que existe para dar suporte ao microcontrolador (que faz todo o trabalho).

Arduinos utilizam o microncontrolador da arquitetura AVR fabricadas pela ATMel. Os mais utilizados são da série ATMega e ATTiny.

Exemplo de circuito Arduino utilizano um ATMega328

Microcontroladores

Pinagem Arduino

Para programar o Arduino é necessário usar um ambiente de desenvolvimento (IDE) para compilar o código (traduzir para linguagem de máquina do microcontrolador) e transferir via USB.

Alguns microcontroladores muitas vezes necessitam de drivers externos para que o computador possa reconhecelos via USB (Precisa ser baixado no site do fabricante normalmente).

A IDE do arduino pode ser encontrada no site https://www.arduino.cc/en/software

IDE

```
sketch_aug5a | Arduino IDE 2.3.6
File Edit Sketch Tools Help
                  Select Board
       sketch_aug5a.ino
               void setup() {
                 // put your setup code here, to run once:
               void loop() {
                 // put your main code here, to run repeatedly:
          8
 0
          9
         10
                                                                                         Ln 10, Col 1 × No board selected ♀
```


IDE - Exemplos

IDE - Exemplos

Compila o programa

(Checagem de erros)

Transfere o programa para o Arduino

Seleção de placas Arduinos

(É necessário informar para a IDE qual é o tipo de placa que iremos enviar o código)

Monitoramento e Plotagem serial

(Utilizado para visualizar as informações que estão sendo enviadas/recebidas pelo Arduino)


```
sketch_aug5a | Arduino IDE 2.3.6
                                                                               File Edit Sketch Tools Help
                                                                                V .O.
                 Select Board
      sketch_aug5a.ino
              void setup() {
                 // put your setup code here, to run once:
              void loop() {
                // put your main code here, to run repeatedly:
         10
      Output
        Missing FQBN (Fully Qualified Board Name)
        Compilation error: Missing FQBN (Fully Qualified Board Name)
```

Erros aparecerão aqui

(Junto do erro aparece uma mensagem de erro, indicando o que pode ser e onde aconteceu)

O arduino opera com duas funções principais, sendo elas: **setup** e **loop**. Elas são delimitadas pelas chaves {...}

Dentro de cada uma delas deverão conter as instruções que o arduino irá executar ad. nauseam

Programação setup()

- Executar uma unica vez quando a placa é ligada ou reiniciada.
- Objetivo: inicializar variáveis, configurar pinos (entrada/saída) e iniciar comunicação com periféricos.

```
void setup() {
   pinMode(13, OUTPUT); // Confirgura o pino 13 para o modo de saída.
}
```


Programação loop()

- Executada continuamente após a função setup().
- Objetivo: manter o funcionamento do programa, atualizando ações e leituras.

```
void loop() {
  digitalWrite(13, HIGH); // Liga LED
  delay(1000); // Aguarda 1 segundo
  digitalWrite(13, LOW); // Desliga LED
  delay(1000); // Aguarda 1 segundo
}
```


Pratica

Acessem o site do https://www.tinkercad.com e criem sua conta, ou peçam para que o professor adicione na sala de aula.

Após estar na sala de aula, crie um novo projeto de circuitos, e aguarde até que todos estejam neste passo,

Blink

Toda tecnologia tem seu "Hello World", o Arduino não seria diferente.

Objetivo: Fazer com que um LED acenda e apague a cada 0.5s.

Circuito

Precisamos montar o seguinte circuito. Para isto precisamos dos seguintes componentes:

1x - LED de qualquer cor

1x - Arduino

Obs.: Não saia conectando os pinos do LED com o arduino ligado, pode queimar o LED

Perna mais curta vai no GND

Diagrama & Programação

Obs.: Conectar o LED diretamente no pino 13 faz com que ele receba 5V diretamente, gerando um aviso no Tinkercad, porém, neste contexto podemos ignora-lo.

Placa de prototipação

- Dispositivo usado para a construção de circuitos temporários (sem soldagem)
- Usada para testar se o circuito projetado funciona corretamente
- Permite a depuração do circutiro

Para energizar a protoboard utilizamos **JUMPERS** (Fios de energia). Ao fazer isso a linha toda até o meio da protoboard funciona da mesma maneira que o pino do arduino está ligado ao JUMPER.

JUMPER: Fio de cobre envolto numa camada de plastico isolante. Podendo conter extremidades **macho** ("agulha" de metal) e(ou) **fêmea** (encaixe para o pino macho).

Nesta prática vamos fazer com que os LEDs sejam ligados em série, e vamos observar o que ocorre com eles.

Objetivo: Entender como funciona um circuito simples em série, e qual a implicação prática disso.

Diagrama & Programação

Circuito

Precisamos montar o seguinte circuito. Para isto precisamos dos seguintes componentes:

3x - LED de qualquer cor

1x - Arduino

1x - Proto board

2x - Jumper

Obs.: Não saia conectando os pinos do LED com o arduino ligado, pode queimar o LED

Perna mais curta vai no GND

Considerando a prática de LEDs em série, agora, seu objetivo é montar um semaforo que alterna entre os sinais de siga (Verde), atenção (Amarelo) e pare (Vermelho).

Materiais:

- Arduino UNO R3
- 3x LEDs simples

Obs.: Lembre-se que o tempo do amarelo não é igual aos demais!

Diagrama & Programação

Obrigado!