Periodic solutions of Euler-Lagrange equations in an anisotropic Orlicz-Sobolev space setting

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina,

fmazzone@exa.unrc.edu.ar

Abstract

1 Introduction

This paper deals with system of equations of the type:

$$\begin{cases} \frac{d}{dt} D_y \mathcal{L}(t, u(t), u'(t)) = D_x \mathcal{L}(t, u(t), u'(t)) & \text{a.e. } t \in (0, T), \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
 (1)

where $\mathcal{L}: [0,T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, $d \ge 1$, is called the *Lagrange function* or *lagrangian* and the unknown function $u: [0,T] \to \mathbb{R}^d$ is absolutely continuous.

We suppose that $(t, x, y) \mapsto \mathcal{L}(t, x, y)$ is measurable in t for each $(x, y) \in \mathbb{R}^d \times \mathbb{R}^d$ and continuously differentiable in (x, y) for almost every $t \in [0, T]$.

In this paper we will use anisotropic Orlicz space, more specifically we consider a convex function $\Phi: \mathbb{R}^d \to [0, +\infty)$, satisfying $\Phi(0) = 0$, $\Phi(-x) = \Phi(x)$ and $\Phi(x) > 0$ when $x \neq 0$. Therefore, from [Clarke, 2013, Cor. 2.35] Φ is a continuous function.

Keywords and phrases. .

 $^{^*\}mbox{SECyT-UNRC}$ and FCEyN-UNLPam

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

²⁰¹⁰ AMS Subject Classification. Primary: . Secondary: .

Additionally, we assume that

$$\lim_{|x| \to \infty} \frac{\Phi(x)}{|x|} = +\infty. \tag{N_{\infty}}$$

Hereafter, we assume that $|\cdot|$ denotes the euclidean norm on \mathbb{R}^d .

Associated to Φ we have the *complementary function* Ψ which is defined by

$$\Psi(\xi) = \sup_{x \in \mathbb{R}^d} x \cdot \xi - \Phi(x)$$
 (2)

then, from the continuity of Φ and (N_∞) , we have that $\Psi:\mathbb{R}^d\to[0,\infty)$. Moreover, it is easy to see that Ψ is a convex function such that $\Psi(0)=0, \Psi(-\xi)=\Psi(\xi)$ and $\Psi(\xi)\to\infty$ when $|\xi|\to\infty$, see [Clarke, 2013, Section 4.2], [Mawhin and Willem, 1989, Chapter 2]

The occurrence of Orlicz Spaces in this paper obeys to we will consider the following structure condition on the lagrangian:

$$|\mathcal{L}(t,x,y)| + |D_x \mathcal{L}(t,x,y)| + \Psi(D_y \mathcal{L}(t,x,y)) \leqslant a(x)(b(t) + \Phi\left(\frac{y}{\lambda}\right)), \quad (S)$$

for a.e. $t \in [0, T]$, where $a \in C(\mathbb{R}^d, [0, +\infty)), b \in L_1^1([0, T], \mathbb{R})$.

We point out that (S) when $\Phi(x) = |x|^p/p$ for $1 , (in this case <math>\Psi(\xi) = \xi^q/q$, q = p/(p-1)) is equivalent to the inequalities (a) of Theorem 1.4 of [Mawhin and Willem, 1989]. Let F(t,x) be differentiable with respect to x for a.e. $t \in [0,T]$. Suppose that F satisfies the following conditions:

- (C) F and its gradient $\nabla_x F$, with respect to $x \in \mathbb{R}^d$, are Carathéodory functions, i.e. they are measurable functions with respect to $t \in [0,T]$, for every $x \in \mathbb{R}^d$, and they are continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0,T]$.
- (A) For a.e. $t \in [0, T]$, it holds that

$$|F(t,x)| + |\nabla F(t,x)| \le a(x)b(t). \tag{3}$$

In this inequality we assume that the function $a : \mathbb{R}^d \to [0, +\infty)$ is continuous and non decreasing and $0 \le b \in L^1([0, T], \mathbb{R})$.

The following Lagrange function

$$\mathcal{L}(t, x, y) = \Phi(y) + F(t, x), \tag{4}$$

satisfies (S).

CUIDADO!!! PARA QUE SE VERIFIQUE LA ACOTACION DE LA DERIVADA con RESPECTO A Y, PARECE QUE ES NECESARIO AGREGAR UNA CONSTANTE EN LA CONDICION DE ESTRUCTURA!!!

 $\mathcal{L}:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R},\,d\geqslant 1$, is called the *Lagrange function* or *lagrangian* and the unknown function $u:[0,T]\to\mathbb{R}^d$ is absolutely continuous. In other words, we are interested in finding *periodic weak solutions* of *Euler-Lagrange systems of ordinary equations*.

This topic was deeply addressed for the several types of *Lagrange functions*. For example,

$$\mathcal{L}_{p,F}(t,x,y) \coloneqq \frac{|y|^p}{p} + F(t,x),\tag{5}$$

for $1 . For example, the classic book [Mawhin and Willem, 1989] deals mainly with problem (1), for the lagrangian <math>\mathcal{L}_{2,F}$, through various methods: direct, dual action, minimax, etc. The results in [Mawhin and Willem, 1989] were extended and improved in several articles, see [Tang, 1995, Tang, 1998, Wu and Tang, 1999, Tang and Wu, 2001, Zhao and Wu, 2004] to cite some examples. Lagrange functions (5) for arbitrary 1 were considered in [Tian and Ge, 2007, Tang and Zhang, 2010] and in this case (1) is reduced to the <math>p-laplacian system

$$\begin{cases} \frac{d}{dt} \left(u'(t) |u'|^{p-2} \right) = \nabla F(t, u(t)) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0. \end{cases}$$
 (P₂)

In this context, it is customary to call F a potential function, and it is assumed that F(t,x) is differentiable with respect to x for a.e. $t \in [0,T]$ and the following conditions are verified:

- (C) F and its gradient ∇F , with respect to $x \in \mathbb{R}^d$, are Carathéodory functions, i.e. they are measurable functions with respect to $t \in [0,T]$, for every $x \in \mathbb{R}^d$, and they are continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0,T]$.
- (A) For a.e. $t \in [0, T]$, it holds that

$$|F(t,x)| + |\nabla F(t,x)| \leqslant a(|x|)b(t). \tag{6}$$

In this inequality we assume that the function $a:[0,+\infty) \to [0,+\infty)$ is continuous and non decreasing and $0 \le b \in L^1([0,T],\mathbb{R})$.

In the framework of anisotropic Sobolev-Orlicz spaces, we can study system of p-laplacian equations as the following example shows.

Example 1. Let $1 < p_1, p_2 < \infty$. We define $\Phi_{p_1, p_2} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ by

$$\Phi_{p_1,p_2}(y_1,y_2) \coloneqq \frac{|y_1|^{p_1}}{p_1} + \frac{|y_2|^{p_2}}{p_2}.$$

where $|\cdot|$ is the Euclidean norm on \mathbb{R}^n . And, we consider the following Lagrange function

$$\mathcal{L}(t, x, y) = \Phi_{p_1, p_2}(y) + F(t, x).$$

where $y = (y_1, y_2), x = (x_1, x_2) \in \mathbb{R}^{2n}$...o algo así??????

Then the equations (1) become

$$\begin{cases} \frac{d}{dt} \left(|u_1'|^{p_1 - 2} u_1' \right) = F_{x_1}(t, u) & \text{a.e. } t \in (0, T) \\ \frac{d}{dt} \left(|u_2'|^{p_2 - 2} u_2' \right) = F_{x_2}(t, u) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
 (P₃)

In the literature, these equations are known as (p_1, p_2) -Laplacian system, see [Yang and Chen, 2013, Pasca and Wang, 2016, Yang and Chen, 2012, Pasca, 2010, Paşca and Tang, 2010, Pasca and Tang, 2011].

In [Acinas et al., 2015] it is treated the case of a lagrangian \mathcal{L} which is lower bounded by a Lagrange function like

$$\mathcal{L}_{\Phi,F}(t,x,y) \coloneqq \Phi(|y|) + F(t,x),\tag{7}$$

where Φ is an N-function (see section 2 for the definition of this concept).

2 Anisotropic Orlicz and Orlicz-Sobolev spaces

In this section, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions associated to anisotropic Young functions $\Phi: \mathbb{R}^n \to \mathbb{R}_+$, i.e. functions such that $\Phi(x)$ depends on the direction of x, unlike the radial case where $\Phi(x) = \Phi(|x|)$. References for these topics are [Schappacher, 2005, Skaff, 1969, Desch and Grimmer, 2001].

On the other hand, anisotropic Orlicz-Sobolev spaces allow us to simplify the writing, and they provide the natural frame for statements of the type [Tian and Ge, 2007, Lemma 3.1]. This type of question motivated us to use these spaces.

Hereafter we denote by \mathbb{R}^+ the set of all non negative real numbers. A function $\Phi: \mathbb{R}^d \to \mathbb{R}_+$ is called an *Young's function* if Φ is convex, $\Phi(0) = 0$, $\Phi(-x) = \Phi(x)$ and $\Phi(x) \to +\infty$, when $|x| \to +\infty$. Additionally, we assume that Young's functions which we deal with, satisfy that $\Phi(x) > 0$ when $x \neq 0$. Following [Schappacher, 2005] we say that Φ is an N_{∞} -function if

$$\lim_{|x|\to\infty}\frac{\Phi(x)}{|x|}=+\infty.$$

Given a Young's function Φ , we define function $A_{\Phi}: \mathbb{R}^+ \to \mathbb{R}^+$ by

$$A_{\Phi}(s) = \min\left\{\Phi(x) \,\middle|\, |x| = s\right\},\tag{8}$$

Let us establish some elementary properties of A_{Φ} that we will use in this article.

Proposition 2.1. The function A_{Φ} has the following properties:

- 1. A_{Φ} is continuous,
- 2. $A_{\Phi}(s)/s$ is increasing,
- 3. $A_{\Phi}(|x|)$ is the greatest radial minorant of $\Phi(x)$,
- 4. Φ is N_{∞} if and only if A_{Φ} is.

Proof. It is well known that finite and convex functions defined on finite dimensional vector spaces are locally Lipschitz functions (see [Clarke, 2013]). This fact implies item 1 immediately.

In order to prove item 2, suppose 0 < r < s and $x \in \mathbb{R}^d$ with $A_{\Phi}(s) = \Phi(x)$. Then, from the definition of A_{Φ} and the convexity of Φ ,

$$\frac{A_{\Phi}(r)}{r} \leqslant \frac{\Phi\left(\frac{r}{s}x\right)}{r} \leqslant \frac{\Phi\left(x\right)}{s} = \frac{A_{\Phi}(s)}{s}.$$

Property in items 3 and 4 are obtained easily.

Example 2. We compute A_{Φ} for the function $\Phi = \Phi_{p_1,p_2}$ given in Example (1).

We apply the method of Lagrange multipliers to solve the next minimization problem subject to a constraint

$$G(r) = \min \left\{ \Phi(x, y) : |(x, y)|_2^2 = r^2 \right\}$$

The first order conditions are

$$\begin{cases} |x|^{p_1-2}x + \lambda x &= 0\\ |y|^{p_2-2}y + \lambda y &= 0\\ |x|^2 + |y|^2 &= r^2 \end{cases}$$

These equations can be solved, among others, by the following two sets of citical points: a) |x| = r, y = 0 and $\lambda = -r^{p_1-2}$ and b) x = 0, |y| = r and $\lambda = -r^{p_2-2}$. These sets are infinite when d > 1. Associated with these critical points we have the following critical values: a) r^{p_1}/p_1 and b) r^{p_2}/p_2 .

We deal with $p_1 \le 2$ and $p_2 \le 2$ being one of them (suppose p_2) different from 2. The remaining cases can be treated with similar techniques.

If (x,y) is a critical point with $x \neq 0$ and $y \neq 0$ then $|y| = |x|^{\frac{p_1-2}{p_2-2}}$ and $\lambda = -|x|^{p_1-2}$. In order to employ second order conditions for constrained problems, we have to consider the tangent plane at the point $(x,y) \in \mathbb{R}^{2n}$, i.e. $M = \{(z,w) \in \mathbb{R}^{2n}: zx^T + wy^T = 0\}$. We also consider the Lagrangian associated to the constrained problem: $L(x,y,\lambda) = \Phi(x,y) + \lambda H(x,y)$ being H = 0 the constraint. And, we are interested in knowing how to behave the quadratic form associated to the matrix of second partial derivatives $\mathcal{H} = D^2\Phi + \lambda D^2H$ with respect to the vector $(x,y) \in \mathbb{R}^{2n}$ on the subspace M.

We compute

$$(z,w)\mathcal{H}(z,w)^T = |\lambda|(zx^T)^2[|x|^{-2}(p_1-2) + (p_2-2)|y|^{-2}],$$

on the subspace M. We note that $(-y,x) \in M$ and $(-y,x)\mathcal{H}(-y,x)^T < 0$.

Then, by second order necessary conditions [Luenberger and Ye, 2015, p.333], at (x, y) there cannot be a minimum. Therefore, the minima occur at x = 0 or y = 0, then $A_{\Phi}(x, y) = \min\{r^{p_1}/p_1, r^{p_2}/p_2\}$.

More generally, it holds that

$$K_1 \min\{r^{p_1}, r^{p_2}\} \leq A_{\Phi} \leq K_2 \max\{r^{p_1}, r^{p_2}\}$$

with $K_1, K_2 > 0$, for every $1 < p_1, p_2 < \infty$.

We also say that $\Phi: \mathbb{R}^d \to \mathbb{R}^+$ satisfies the Δ_2^{∞} -condition, denoted by $\Phi \in \Delta_2^{\infty}$, if there exist constants K > 0 and $M \geqslant 0$ such that

$$\Phi(2x) \leqslant K\Phi(x),\tag{9}$$

for every $|x| \ge M$.

If Φ is a Young's function we define its *Fenchel conjugate* $\Phi^* : \mathbb{R}^d \to \mathbb{R}^+$ by:

$$\Phi^*(y) = \sup_{x \in \mathbb{R}^d} x \cdot y - \Phi(x) \tag{10}$$

We denote by $\mathcal{M} := \mathcal{M}([0,T],\mathbb{R}^d)$, with $d \ge 1$, the set of all measurable functions (i.e. functions which are limits of simple functions) defined on [0,T] with values on \mathbb{R}^d and we write $u = (u_1, \dots, u_d)$ for $u \in \mathcal{M}$. For the set of functions \mathcal{M} , as for other similar sets, we will omit the reference to codomain \mathbb{R}^d when d = 1.

Given an N-function Φ we define the modular function $\rho_{\Phi}: \mathcal{M} \to \mathbb{R}^+ \cup \{+\infty\}$ by

$$\rho_{\Phi}(u) \coloneqq \int_0^T \Phi(u) \ dt.$$

Here $|\cdot|$ is the euclidean norm of \mathbb{R}^d . Now, we introduce the *Orlicz class* C^{Φ} = $C^{\Phi}([0,T],\mathbb{R}^d)$ by setting

$$C^{\Phi} := \{ u \in \mathcal{M} | \rho_{\Phi}(u) < \infty \}. \tag{11}$$

The Orlicz space $L^{\Phi} = L^{\Phi}([0,T],\mathbb{R}^d)$ is the linear hull of C^{Φ} ; equivalently,

$$L^{\Phi} := \{ u \in \mathcal{M} | \exists \lambda > 0 : \rho_{\Phi}(\lambda u) < \infty \}.$$
 (12)

The Orlicz space L^{Φ} equipped with the Luxemburg norm

$$\|u\|_{L^\Phi}\coloneqq\inf\left\{\lambda\left|\rho_\Phi\left(\frac{\upsilon}{\lambda}\right)dt\leqslant1\right\},$$

is a Banach space. By $u\cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v. The subspace $E^\Phi=E^\Phi([0,T],\mathbb{R}^d)$ is defined as the closure in L^Φ of the subspace $L^{\infty}([0,T],\mathbb{R}^d)$ of all \mathbb{R}^d -valued essentially bounded functions. It is shown that (see [Schappacher, 2005, Thm. 5.1]) $u \in E^{\Phi}$ if and only if $\rho_{\Phi}(\lambda u) < \infty$ for any $\lambda > 0$. The equality $L^{\Phi} = E^{\Phi}$ is true if and only if $\Phi \in \Delta_2^{\infty}$ (see [Schappacher, 2005, Thm. 5.2]). Another alternative characterization of E^{Φ} , which is particularly useful for us, is that $u \in E^{\Phi}$ if and only if u has absolutely continuous norm, i.e. if $E_n \subset [0,T]$, $n=1,2,\ldots$ then $\|\chi_{E_n}u\| \to 0$ when $|E_n| \to 0$.

A generalized version of *Hölder's inequality* holds in Orlicz spaces (see [Skaff, 1969, Thm. 4.1]). Namely, if $u \in L^{\Phi}$ and $v \in L^{\Psi}$ then $u \cdot v \in L^{1}$ and

$$\int_{0}^{T} v \cdot u \, dt \le 2 \|u\|_{L^{\Phi}} \|v\|_{L^{\Phi^{*}}}. \tag{13}$$

Like in [Krasnosel'skiĭ and Rutickiĭ, 1961] we will consider the subset $\Pi(E^{\Phi}, r)$ of L^{Φ} given by

$$\Pi(E^{\Phi}, r) \coloneqq \{u \in L^{\Phi} | d(u, E^{\Phi}) < r\}.$$

This set is related to the Orlicz class C^{Φ} by means of inclusions, namely,

$$\Pi(E^{\Phi}, r) \subset rC^{\Phi} \subset \overline{\Pi(E^{\Phi}, r)}$$
(14)

for any positive r (see [Schappacher, 2005, Thm. 5.6]). If $\Phi \in \Delta_2^{\infty}$, then the sets L^{Φ} , E^{Φ} , $\Pi(E^{\Phi}, r)$ and C^{Φ} are equal.

Following to [Desch and Grimmer, 2001] we introduce the next definition.

Definition 2.2. Let $u_n, u \in L^{\Phi}([0,T], \mathbb{R}^d)$. We say that u_n converges monotonically to u if there exists $\alpha_n \in L^{\infty}([0,T], \mathbb{R})$, n = 1, 2, ..., such that $0 \le \alpha_n(t) \le \alpha_{n+1}(t)$, $\alpha_n(t) \to 1$ a.e., when $n \to \infty$ and $u_n(t) = \alpha_n(t)u(t)$.

As usual, if $(X, \|\cdot\|_X)$ is a normed space and $(Y, \|\cdot\|_Y)$ is a linear subspace of X, we write $Y \hookrightarrow X$ and we say that Y is *embedded* in X when there exists C > 0 such that $\|y\|_X \leqslant C\|y\|_Y$ for any $y \in Y$. With this notation, Hölder's inequality states that $L^{\Psi} \hookrightarrow [L^{\Phi}]^*$, where a function $v \in L^{\Psi}$ is associated to $\xi_v \in [L^{\Phi}]^*$ being

$$\xi_v(u) = \langle \xi_v, u \rangle = \int_0^T v \cdot u \, dt, \tag{15}$$

In [Desch and Grimmer, 2001, Thm 2.9] it was characterized a subspace of $\left[L^{\Phi}\right]^*$ which can be identified with L^{Ψ} .

Proposition 2.3. Let $F \in [L^{\Phi}([0,T],\mathbb{R}^d)]^*$. Then the following statements are equivalent

- 1. $\xi \in L^{\Psi}([0,T], \mathbb{R}^d)$
- 2. ξ satisfies the monotone convergence property, which is if u_n converges monotonically to u then $\langle \xi, u_n \rangle \rightarrow \langle \xi, u \rangle$.

If $\Phi \in \Delta_2^{\infty}$ and Φ is N_{∞} then $L^{\Psi}([0,T],\mathbb{R}^d) = [L^{\Phi}([0,T],\mathbb{R}^d)]^*$ (see [Desch and Grimmer, 2001, Thm. 2.9 , Thm. 2.10]).

We define the Sobolev-Orlicz space W^1L^{Φ} by

 $W^1L^\Phi([0,T],\mathbb{R}^d)\coloneqq\{u|u\text{ is absolutely continuous on }[0,T]\text{ and }u'\in L^\Phi([0,T],\mathbb{R}^d)\}.$

 $W^1L^\Phi([0,T],\mathbb{R}^d)$ is a Banach space when equipped with the norm

$$||u||_{W^1L^{\Phi}} = ||u||_{L^{\Phi}} + ||u'||_{L^{\Phi}}. \tag{16}$$

And, we introduce the following subspaces of W^1L^Φ

$$W^{1}E^{\Phi} = \{u \in W^{1}L^{\Phi} | u' \in E^{\Phi}\},$$

$$W^{1}E^{\Phi}_{T} = \{u \in W^{1}E^{\Phi} | u(0) = u(T)\}.$$
(17)

We will use repeatedly the decomposition $u = \overline{u} + \widetilde{u}$ for a function $u \in L^1([0,T])$ where $\overline{u} = \frac{1}{T} \int_0^T u(t) \ dt$ and $\widetilde{u} = u - \overline{u}$.

The following lemma is an elementary generalization to anisotropic Sobolev-Orlicz spaces of known results of Sobolev spaces.

Lemma 2.4. Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a Young's function and let $u \in W^1L^{\Phi}([0, T], \mathbb{R}^d)$. Let $A_{\Phi} : \mathbb{R}^+ \to \mathbb{R}^+$ be the function defined by (8). Then

1. For every $s, t \in [0, T]$, $s \neq t$,

$$|u(t) - u(s)| \le ||u'||_{L^{\Phi}} |s - t| A_{\Phi}^{-1} \left(\frac{1}{|s - t|} \right)$$
 (Morrey's inequality)

$$||u||_{L^{\infty}} \leqslant A_{\Phi}^{-1}\left(\frac{1}{T}\right) \max\{1, T\} ||u||_{W^1L^{\Phi}}$$
 (Sobolev's inequality)

2. We have $\widetilde{u} \in L^{\infty}([0,T],\mathbb{R}^d)$ and

$$\|\widetilde{u}\|_{L^{\infty}} \le TA_{\Phi}^{-1}\left(\frac{1}{T}\right)\|u'\|_{L^{\Phi}}$$
 (Sobolev-Wirtinger's inequality)

3. If Φ is N_{∞} then the space $W^1L^{\Phi}([0,T],\mathbb{R}^d)$ is compactly embedded in the space of continuous functions $C([0,T],\mathbb{R}^d)$.

Proof. By the absolutely continuity of u, Jensen's inequality and the definition of the Luxemburg norm, we have

$$\Phi\left(\frac{u(t) - u(s)}{\|u'\|_{L^{\Phi}}|s - t|}\right) \leqslant \Phi\left(\frac{1}{|s - t|} \int_{s}^{t} \frac{u'(r)}{\|u'\|_{L^{\Phi}}} dr\right)
\leqslant \frac{1}{|s - t|} \int_{s}^{t} \Phi\left(\frac{u'(r)}{\|u'\|_{L^{\Phi}}}\right) dr \leqslant \frac{1}{|s - t|}.$$

By Proposition 2.1(3) we have $A_{\Phi}^{-1}\Phi(x) \ge |x|$, therefore we get

$$\frac{|u(t) - u(s)|}{\|u'\|_{L^{\Phi}}|s - t|} \le A_{\Phi}^{-1} \left(\frac{1}{|s - t|}\right),$$

then 1 holds.

Now, we use Morrey's inequality and Proposition 2.1 (2) and we have

$$|u(t) - \overline{u}| = \left| \frac{1}{T} \int_0^T u(t) - u(s) \, ds \right|$$

$$\leq \frac{1}{T} \int_0^T |u(t) - u(s)| \, ds$$

$$\leq \|u'\|_{L^{\Phi}} T A_{\Phi}^{-1} \left(\frac{1}{T} \right)$$

In order to prove the Sobolev's inequality, we note that, using Jensen's inequality and the definition of $\|u\|_{L^{\Phi}}$, we obtain

$$\Phi\left(\frac{\overline{u}}{\|u\|_{L^{\Phi}}}\right) \leqslant \frac{1}{T} \int_{0}^{T} \Phi\left(\frac{u(s)}{\|u\|_{L^{\Phi}}}\right) ds \leqslant \frac{1}{T}$$

Then by By Proposition 2.1(3)

$$|\overline{u}| \leqslant A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u\|_{L^{\Phi}}.$$

Therefore, from this and (Sobolev-Wirtinger's inequality) we get

$$\begin{split} \|u\|_{L^{\infty}} &\leqslant |\overline{u}| + \|\tilde{u}\|_{L^{\infty}} \\ &\leqslant A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u\|_{L^{\Phi}} + T A_{\Phi}^{-1} \left(\frac{1}{T}\right) \|u'\|_{L^{\Phi}} \\ &\leqslant A_{\Phi}^{-1} \left(\frac{1}{T}\right) \max\{1, T\} \|u\|_{W^{1} L^{\Phi}} \end{split}$$

In order to prove item 3, we take a bounded sequence u_n in $W^1L^{\Phi}([0,T],\mathbb{R}^d)$. Since Φ is N_{∞} , from Proposition 2.1(4) we obtain $sA_{\Phi}^{-1}(1/s) \to 0$ when $s \to 0$. Therefore (Morrey's inequality) implies that u_n are equicontinuous. Furthermore (??) implies that u_n is bounded in $C([0,T],\mathbb{R}^d)$. Therefore by the Arzela-Ascoli Theorem we obtain a subsequence n_k and $u \in C([0,T], \mathbb{R}^d)$ with $u_{n_k} \to u$ in $C([0,T], \mathbb{R}^d)$.

Lemma 2.5. Let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence of functions in $\Pi(E^{\Phi},1)$ converging to $u\in$ $\Pi(E^{\Phi},1)$ in the L^{Φ} -norm. Then, there exist a subsequence u_{n_k} and a real valued function $h \in L^1([0,T],\mathbb{R})$ such that $u_{n_k} \to u$ a.e. and $\Phi(u_{n_k}) \leqslant h$ a.e.

Proof. Since $d(u, E^{\Phi}) < 1$ and u_n converges to u, there exists $u_0 \in E^{\Phi}$, a subsequence of u_n (again denoted u_n) and 0 < r < 1 such that $d(u_n, u_0) < r$. Let $\lambda_0 \in (r, 1)$. By extracting more subsequences, if necessary, we can assume that $u_n \to u$ a.e. and

$$\lambda_n := \|u_{n+1} - u_n\|_{L^{\Phi}} < \frac{1 - \lambda_0}{2^n}, \quad \text{for } n \geqslant 1.$$

We can assume $\lambda_n > 0$ for every $n = 0, \ldots$ Let $\lambda := 1 - \sum_{n=0}^{\infty} \lambda_n$ and define $h : [0, T] \to \mathbb{R}$ by

$$h(x) = \lambda \Phi\left(\frac{u_0}{\lambda}\right) + \sum_{n=0}^{\infty} \lambda_n \Phi\left(\frac{u_{n+1} - u_n}{\lambda_n}\right). \tag{18}$$

Note that $\sum_{n=0}^{\infty} \lambda_n + \lambda = 1$, therefore for any $n = 1, \dots$

$$\begin{split} \Phi(u_n) &= \Phi\left(\lambda \frac{u_0}{\lambda} + \sum_{j=0}^{n-1} \lambda_j \frac{u_{j+1} - u_j}{\lambda_j}\right) \\ &\leq \lambda \Phi\left(\frac{u_0}{\lambda}\right) + \sum_{j=0}^{n-1} \lambda_j \Phi\left(\frac{u_{j+1} - u_j}{\lambda_j}\right) \leq h \end{split}$$

Since $u_0 \in E^{\Phi} \subset C^{\Phi}$ and E^{Φ} is a subspace we have that $\Phi(u_0/\lambda) \in L^1([0,T],\mathbb{R})$. On the other hand $||u_{n+1} - u_n||_{L^{\Phi}} \le \lambda_n$, therefore

$$\int_0^T \Phi\left(\frac{u_{j+1} - u_j}{\lambda_j}\right) dt \le 1.$$

Then $h \in L^1([0,T],\mathbb{R})$.

Differentiability Gateâux of action integrals in anisotropic Orlicz spaces

In this section we give a brief introduction to superposition operators between anistropic Orlicz Spaces. We apply these results to obtain Gateâux differentiability of action integrals associated to lagrangian functions defined on Sobolev-Orlicz spaces.

Henceforth we assume that $f:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ is a Carathéodory function, i.e.

(C) f is measurable with respect to $t \in [0, T]$ for every $x \in \mathbb{R}^d$, and f is a continuous function with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0, T]$.

Definition 3.1. For $f:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ we denote by \mathbf{f} the Nemytskii (o superposition) operator defined for functions $u:[0,T]\to\mathbb{R}^d$ by

$$fu(t) = f(t, u(t))$$

In the following Theorem we enumerate some known properties for superposition operators defined on anisotropic Orlicz spaces of vector functions. For the proofs see [Krasnosel'skii et al., 2011] for scalar functions and [Płuciennik, 1987, Płuciennik, 1985b, Płuciennik, 1985a] for the generalization to \mathbb{R}^d -valued (moreover Banach spaces valued) functions in a anisotropic Orlicz Spaces (moreover modular anisotropic spaces).

Theorem 3.2. We assume that f satisfies condition ((C)) and that $\Phi_1, \Phi_2 : \mathbb{R}^d \to [0, +\infty)$ are anisotropic Young functions. Then

- Measurability. The operator f maps measurable function into measurable functions
- 2. Extensibility. If the operator ${\bf f}$ acts from the ball $B_{L^{\Phi_1}}(r)\coloneqq\{u\in L^{\Phi_1}|\|u\|_{L^{\Phi_1}}< r\}$ into the space L^{Φ_2} or the space E^{Φ_2} then ${\bf f}$ can be extended from $\Pi(E^{\Phi_1},r)$ into space L^{Φ_2} or E^{Φ_2} , respectively.
- 3. Continuity. If the operator f acts from $\Pi(E^{\Phi_1}, r)$ into space E^{Φ_2} , then f is continuous.

Given a continuous function $a \in C(\mathbb{R}^n, \mathbb{R}^+)$, we define the composition operator $a : \mathcal{M}_d \to \mathcal{M}_d$ by $\mathbf{a}(u)(x) = a(u(x))$.

We will often use the following result whose proof can be performed as that of Corollary 2.3 in [Acinas et al., 2015].

Lemma 3.3. If $a \in C(\mathbb{R}^d, \mathbb{R}^+)$ then $\mathbf{a} : W^1 L^{\Phi} \to L^{\infty}([0,T])$ is bounded. More concretely, there exists a non decreasing function $A : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\|\mathbf{a}(u)\|_{L^{\infty}([0,T])} \le A(\|u\|_{W^1 L^{\Phi}})$.

Proof. Let $A \in C(\mathbb{R}^+, \mathbb{R}^+)$ be a non decreasing, continuous function defined by $\alpha(s) := \sup_{\|x\| \le s, x \in \mathbb{R}^d} |a(x)|$. If $u \in W^1L_d^{\Phi}$ then, by Sobolev's inequality, for a.e. $t \in [0, T]$

$$a(u(t)) \le \alpha(\|u\|_{L^{\infty}}) \le \alpha\left(A_{\Phi}^{-1}\left(\frac{1}{T}\right)\max\{1,T\}\|u\|_{W^{1}L^{\Phi}}\right) =: A(\|u\|_{W^{1}L^{\Phi}}).$$

HABRÍA QUE VER DÓNDE SE UBICA LA CONDICIÓN DE ESTRUCTURA...QUIZÁS EN LA INTRODUCCIÓN?....

Next, we deal with the differentiability of the action integral

$$I(u) = \int_0^T \mathcal{L}(t, u(t), \dot{u}(t)) dt.$$
 (19)

Theorem 3.4. Let \mathcal{L} be a differentiable Carathéodory function satisfying (S). Then the following statements hold:

- 1. The action integral given by (19) is finitely defined on $\mathcal{E}^{\Phi} := W^1 L^{\Phi} \cap \{u | \dot{u} \in \Pi(E^{\Phi}, 1)\}.$
- 2. The function I is Gâteaux differentiable on \mathcal{E}^{Φ} and its derivative I' is demicontinuous from \mathcal{E}^{Φ} into $\left[W^1L^{\Phi}\right]^*$. Moreover, I' is given by the following expression

$$\langle I'(u), v \rangle = \int_0^T \left\{ D_x \mathcal{L}(t, u, \dot{u}) \cdot v + D_y \mathcal{L}(t, u, \dot{u}) \cdot \dot{v} \right\} dt. \tag{20}$$

3. If $\Psi \in \Delta_2$ then I' is continuous from \mathcal{E}^{Φ} into $\left[W^1L^{\Phi}\right]^*$ when both spaces are equipped with the strong topology.

Proof. Let $u \in \mathcal{E}^{\Phi}$. As

$$\dot{u} \in \Pi(E^{\Phi}, 1) \subset C_1^{\Phi} \tag{21}$$

and (14), then $\Phi(u(t)) \in L^1$. Now,

$$|\mathcal{L}(\cdot, u, u)| + |D_x \mathcal{L}(\cdot, u, u)| + \Psi(D_y \mathcal{L}(\cdot, u, u)) \le A(\|u\|_{W^1 L^{\Phi}})(b + \Phi(u)) \in L^1, (22)$$

by (S) and Lemma 3.3. Thus item (1) is proved.

We split up the proof of item 2 into four steps.

Step 1. The non linear operator $u \mapsto D_x \mathcal{L}(t, u, \dot{u})$ is continuous from \mathcal{E}^{Φ} into $L^1([0, T])$ with the strong topology on both sets.

Let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence of functions in \mathcal{E}^{Φ} and let $u\in\mathcal{E}^{\Phi}$ such that $u_n\to u$ in W^1L^{Φ} . By (Sobolev's inequality), we have

$$|u_n(t) - u(t)| \le TA_{\Phi}^{-1} \left(\frac{1}{T}\right) ||u_n - u||_{L^{\Phi}}$$

then $u_n \to u$ uniformly. As $u_n \to u \in \mathcal{E}^{\Phi}$, by Lemma 2.5, there exist a subsequence of u_{n_k} (again denoted u_{n_k}) and a function $h \in L^1([0,T],\mathbb{R})$ such that $u_{n_k} \to u$ a.e. and $\Phi(u_{n_k}) \leqslant h$ a.e.

Since u_{n_k} , $k=1,2,\ldots$, is a strong convergent sequence in W^1L^{Φ} , it is a bounded sequence in W^1L^{Φ} . According to item (3) of Lemma 2.4, there exists M>0 such that $\|a(u_{n_k})\|_{L^{\infty}} \leq M$, $k=1,2,\ldots$ From the previous facts and (22), we get

$$|D_x \mathcal{L}(\cdot, u_{n_k}, u_{n_k})| \le a(|u_{n_k}|)(b + \Phi(u_{n_k})) \le M(b + h) \in L^1.$$

On the other hand, by the continuous differentiability of \mathcal{L} , we have

$$D_x \mathcal{L}(t, u_{n_k}(t), u_{n_k}(t)) \to D_x \mathcal{L}(t, u(t), u(t))$$
 for a.e. $t \in [0, T]$.

Applying the Dominated Convergence Theorem we conclude the proof of step 1. Step 2. The non linear operator $u \mapsto D_y \mathcal{L}(t,u,\dot{u})$ is continuous from \mathcal{E}^{Φ} with the strong topology into $\left[L^{\Phi}\right]^*$ with the weak* topology.

Let $u \in \mathcal{E}^{\Phi}$. From (22) it follows that

$$D_{\nu}\mathcal{L}(\cdot, u, \dot{u}) \in C^{\Psi}. \tag{23}$$

Así? o conviene poner la cota de $\Psi(D_y)$ explícitamente????

Note that (22), (23) and the imbeddings $W^1L^{\Phi} \hookrightarrow L^{\infty}$ and $L^{\Psi} \hookrightarrow \left[L^{\Phi}\right]^*$ imply that the second member of (20) defines an element of $\left[W^1L^{\Phi}\right]^*$.

Let $u_n, u \in \mathcal{E}^{\Phi}$ such that $u_n \to u$ in the norm of W^1L^{Φ} . We must prove that $D_y\mathcal{L}(\cdot, u_n, \dot{u}_n) \stackrel{w^*}{\rightharpoonup} D_y\mathcal{L}(\cdot, u, \dot{u})$. On the contrary, there exist $v \in L^{\Phi}$, $\epsilon > 0$ and a subsequence of $\{u_n\}$ (denoted $\{u_n\}$ for simplicity) such that

$$|\langle D_{\nu} \mathcal{L}(\cdot, u_n, \dot{u}_n), v \rangle - \langle D_{\nu} \mathcal{L}(\cdot, u, \dot{u}), v \rangle| \ge \epsilon. \tag{24}$$

We have $u_n \to u$ in L^Φ and $u_n \to u$ in L^Φ . By Lemma 2.5, there exist a subsequence of $\{u_n\}$ (again denoted $\{u_n\}$ for simplicity) and a function $h \in L^1([0,T],\mathbb{R})$ such that $u_n \to u$ uniformly, $u_n \to u$ a.e. and $\Phi(u_n) \leqslant h$ a.e. As in the previous step, since u_n is a convergent sequence, Lemma 3.3 implies that $a(|u_n(t)|)$ is uniformly bounded by a certain constant M > 0. Therefore, from inequality (22) with u_n instead of u, we have

$$\Psi(D_y \mathcal{L}(\cdot, u_n, \dot{u}_n)) \leqslant M(b+h) \in L^1.$$
(25)

As $v \in L^{\Phi}$ there exists $\lambda > 0$ such that $\Phi(\frac{v}{\lambda}) \in L^1$. Now, by Young inequality and (25), we have

$$\lambda D_{y} \mathcal{L}(\cdot, u_{n_{k}}, \dot{u}_{n_{k}}) \cdot \frac{v(t)}{\lambda}$$

$$\leq \lambda \left[\Psi(D_{y} \mathcal{L}(\cdot, u_{n_{k}}, \dot{u}_{n_{k}})) + \Phi\left(\frac{v}{\lambda}\right) \right]$$

$$\leq \lambda M(b+h) + \lambda \Phi\left(\frac{v}{\lambda}\right) \in L^{1}$$
(26)

Finally, from the Lebesgue Dominated Convergence Theorem, we deduce

$$\int_0^T D_y \mathcal{L}(t, u_{n_k}, \dot{u}_{n_k}) \cdot v \, dt \to \int_0^T D_y \mathcal{L}(t, u, \dot{u}) \cdot v \, dt \tag{27}$$

which contradicts the inequality (24). This completes the proof of step 2.

Step 3. We will prove (20). For $u \in \mathcal{E}^{\Phi}$ and $0 \neq v \in W^1 L^{\Phi}$, we define the function

$$H(s,t) \coloneqq \mathcal{L}(t,u(t) + sv(t),u(t) + sv(t)).$$

For $|s| \leq s_0 := \min\{\left(1 - d(u, E^{\Phi})\right) / \|v\|_{W^1L^{\Phi}}, 1 - d(u, E^{\Phi})\}$, using triangle inequality we get $d\left(u + sv, E^{\Phi}\right) < 1$ and thus $u + sv \in \Pi(E^{\Phi}, 1)$. These facts imply, in virtue of Theorem 3.4 item 1, that I(u + sv) is well defined and finite for $|s| \leq s_0$.

We also have $||u + sv||_{W^1L^{\Phi}} \le ||u||_{W^1L^{\Phi}} + s_0||v||_{W^1L^{\Phi}}$; then, by Lemma 3.3, there exists M > 0 such that $||a(u + sv)||_{L^{\infty}} \le M$.

Let $\lambda > 0$ such that $\Phi(\frac{\dot{v}}{\lambda}) \in L^1$. On the other hand, if $\dot{v} \in L^{\Phi}$ and $|s| \leq s_0 \lambda^{-1}$, from the convexity and the parity of Φ , we get

$$\Phi(\dot{u} + s\dot{v}) = \Phi\left((1 - s_0)\frac{\dot{u}}{1 - s_0} + s_0\frac{s}{s_0}\dot{v}\right) \leqslant (1 - s_0)\Phi\left(\frac{\dot{u}}{1 - s_0}\right) + s_0\Phi\left(\frac{s}{s_0}\dot{v}\right)
\leqslant (1 - s_0)\Phi\left(\frac{\dot{u}}{1 - s_0}\right) + s_0\Phi\left(\frac{\dot{v}}{\lambda}\right) \in L^1$$

As $u \in \Pi(E^{\Phi}, 1)$ then

$$d\left(\frac{\dot{u}}{1-s_0}, E^{\Phi}\right) = \frac{1}{1-s_0}d(\dot{u}, E^{\Phi}) < 1$$

and therefore $\frac{\dot{u}}{1-s_0} \in C^{\Phi}$.

Now, applying (22), (26), the fact that $v \in L^{\infty}$ and $v \in L^{\Phi}$, we get

$$|D_{s}H(s,t)| = \left| D_{x}\mathcal{L}(t, u + sv, \dot{u} + s\dot{v}) \cdot v + \lambda D_{y}\mathcal{L}(t, u + sv, \dot{u} + s\dot{v}) \cdot \frac{\dot{v}}{\lambda} \right|$$

$$\leq M \left[b(t) + \Phi(\dot{u} + s\dot{v}) \right] |v|$$

$$+ \lambda \left[\Psi(D_{y}\mathcal{L}(t, u + sv, \dot{u} + s\dot{v})) + \Phi\left(\frac{\dot{v}}{\lambda}\right) \right]$$

$$\leq M \left\{ \left[b(t) + \Phi(\dot{u} + s\dot{v}) \right] |v| \right\} + \lambda M \left[b(t) + \Phi(\dot{u} + s\dot{v}) \right] + \lambda \Phi\left(\frac{\dot{v}}{\lambda}\right)$$

$$= M \left[b(t) + \Phi(\dot{u} + s\dot{v}) \right] (|v| + \lambda) + \lambda \Phi\left(\frac{\dot{v}}{\lambda}\right) \in L^{1}.$$
(28)

Consequently, I has a directional derivative and

$$\langle I'(u), v \rangle = \frac{d}{ds} I(u + sv) \Big|_{s=0} = \int_0^T \{ D_x \mathcal{L}(t, u, \dot{u}) \cdot v + D_y \mathcal{L}(t, u, \dot{u}) \cdot \dot{v} \} dt.$$

Moreover, from the previous formula, (22), (23), and Lemma 2.4, we obtain

$$|\langle I'(u), v \rangle| \le ||D_x \mathcal{L}||_{L^1} ||v||_{L^{\infty}} + ||D_y \mathcal{L}||_{L^{\Psi}} ||v||_{L^{\Phi}} \le C ||v||_{W^1 L^{\Phi}}$$

with a appropriate constant C.

This completes the proof of the Gâteaux differentiability of I.

Step 4. The operator $I': \mathcal{E}^{\Phi} \to \left[W^1L_d^{\Phi}\right]^*$ is demicontinuous. This is a consequence of the continuity of the mappings $u \mapsto D_x \mathcal{L}(t,u,u)$ and $u \mapsto D_y \mathcal{L}(t,u,u)$. Indeed, if $u_n, u \in \mathcal{E}^{\Phi}$ with $u_n \to u$ in the norm of W^1L^{Φ} and $v \in W^1L^{\Phi}$, then

$$\langle I'(u_n), v \rangle = \int_0^T \{ D_x \mathcal{L}(t, u_n, \dot{u}_n) \cdot v + D_y \mathcal{L}(t, u_n, \dot{u}_n) \cdot \dot{v} \} dt$$

$$\to \int_0^T \{ D_x \mathcal{L}(t, u, \dot{u}) \cdot v + D_y \mathcal{L}(t, u, \dot{u}) \cdot \dot{v} \} dt$$

$$= \langle I'(u), v \rangle.$$

In order to prove item 3, it is necessary to see that the maps $u \mapsto D_x \mathcal{L}(t, u, u)$ and $u \mapsto D_y \mathcal{L}(t, u, u)$ are norm continuous from \mathcal{E}^{Φ} into L^1 and L^{Ψ} , respectively.

The continuity of the first map has already been proved in step 1.

Si eliminamos la demicontinuidad del segundo item, hay que copiar la continuidad de D_x aquí!!!

Let $u_n, u \in \mathcal{E}^{\Phi}$ with $||u_n - u||_{W^1L^{\Phi}} \to 0$.

Applying Lemma 2.5 to u_n , there exists a subsequence (denoted u_n for simplicity) such that $u_n \in L^{\Phi}$ and a function $h \in L^1$ such that $\Psi(u_n) \leq h$ and $u_n \to u$ a.e.

Then, by (26) we have $\Psi(v_n) \leq m(t) \in L^1$ being $v_n := D_y \mathcal{L}(\cdot, u_n, \dot{u}_n)$ and m(t) :=M(b+h). In addition, from the continuous differentiability of \mathcal{L} , we have that $v_n \to v$ a.e. where $D_{\nu}\mathcal{L}(\cdot, u, u)$.

As $\Psi \in \Delta_2$, there exists $c : \mathbb{R}^+ \to ???$ such that $\Psi(\lambda x) \leq c(|\lambda|)\Psi(x)$. Then, $\Psi(\frac{v_n-v}{\lambda}) \leqslant c(|\lambda|^{-1})\Psi(v_n-v) \text{ for every } \lambda \in \mathbb{R}.$ Therefore, $\Psi(\frac{v_n-v}{\lambda}) \to 0 \text{ a.e. as } n \to \infty \text{ and } \Psi(\frac{v_n-v}{\lambda}) \leqslant c(|\lambda|^{-1})K\Psi(v_n) + C(|\lambda|^{-1})K\Psi(v_n)$

 $\Psi(v)) \leqslant c(|\lambda|^{-1})K[m(t) + \Psi(v)]) \in L^1.$

Now, by Dominated Convergence Theorem, we get $\int \Psi(\frac{v_n-v}{\lambda}) dt \to 0$ for every $\lambda > 0$. Thus, $v_n \to v$ in L^{Ψ} .

The continuity of I' follows from the continuity of $D_x \mathcal{L}$ and $D_y \mathcal{L}$ using the formula (20).

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

References

- [Acinas et al., 2015] Acinas, S., Buri, L., Giubergia, G., Mazzone, F., and Schwindt, E. (2015). Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis, TMA.*, 125:681 – 698.
- [Clarke, 2013] Clarke, F. (2013). Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.
- [Desch and Grimmer, 2001] Desch, W. and Grimmer, R. (2001). posedness of constitutive laws involving dissipation potentials. Trans. Amer. Math. Soc, (353):5095-5120.
- [Krasnosel'skii et al., 2011] Krasnosel'skii, M., Zabreyko, P., Pustylnik, E., and Sobolevski, P. (2011). Integral operators in spaces of summable functions. Mechanics: Analysis. Springer Netherlands.
- [Krasnosel'skiĭ and Rutickiĭ, 1961] Krasnosel'skiĭ, M. A. and Rutickiĭ, J. B. (1961). Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen.
- [Luenberger and Ye, 2015] Luenberger, D. G. and Ye, Y. (2015). Linear and nonlinear programming, volume 228. Springer.

- [Mawhin and Willem, 1989] Mawhin, J. and Willem, M. (1989). *Critical point theory and Hamiltonian systems*. Springer-Verlag, New York.
- [Pasca, 2010] Pasca, D. (2010). Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-laplacian. *Bulletin of the Belgian Mathematical Society-Simon Stevin*, 17(5):841–851.
- [Paşca and Tang, 2010] Paşca, D. and Tang, C.-L. (2010). Some existence results on periodic solutions of nonautonomous second-order differential systems with (q, p)-laplacian. *Applied Mathematics Letters*, 23(3):246–251.
- [Pasca and Tang, 2011] Pasca, D. and Tang, C.-L. (2011). Some existence results on periodic solutions of ordinary (q, p)-laplacian systems. *Journal of applied mathematics & informatics*, 29(1_2):39–48.
- [Pasca and Wang, 2016] Pasca, D. and Wang, Z. (2016). On periodic solutions of nonautonomous second order hamiltonian systems with (q, p)-laplacian. *Electronic Journal of Qualitative Theory of Differential Equations*, 2016(106):1–9.
- [Płuciennik, 1985a] Płuciennik, R. (1985a). Boundedness of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Bull. Pol. Acad. Sci.*, *Math.*, 33:531â540.
- [Płuciennik, 1985b] Płuciennik, R. (1985b). On some properties of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Ann. Soc. Math. Pol., Ser. I, Commentat. Math.*, 25:321â337.
- [Płuciennik, 1987] Płuciennik, R. (1987). The superposition operator in Musielak-Orlicz spaces of vector-valfued functions. Abstract analysis, Proc. 14th Winter Sch., Srní/Czech. 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 14, 411-417 (1987).
- [Schappacher, 2005] Schappacher, G. (2005). A notion of Orlicz spaces for vector valued functions. *Appl. Math.*, 50(4):355–386.
- [Skaff, 1969] Skaff, M. S. (1969). Vector valued orlicz spaces. ii. *Pacific J. Math.*, 28(2):413–430.
- [Tang, 1995] Tang, C.-L. (1995). Periodic solutions of non-autonomous second-order systems with γ -quasisubadditive potential. *Journal of Mathematical Analysis and Applications*, 189(3):671–675.
- [Tang, 1998] Tang, C.-L. (1998). Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. *Proc. Amer. Math. Soc.*, 126(11):3263–3270.
- [Tang and Wu, 2001] Tang, C. L. and Wu, X.-P. (2001). Periodic solutions for second order systems with not uniformly coercive potential. *J. Math. Anal. Appl.*, 259(2):386–397.
- [Tang and Zhang, 2010] Tang, X. and Zhang, X. (2010). Periodic solutions for second-order Hamiltonian systems with a *p*-Laplacian. *Ann. Univ. Mariae Curie-Skłodowska Sect. A*, 64(1):93–113.

- [Tian and Ge, 2007] Tian, Y. and Ge, W. (2007). Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203.
- [Wu and Tang, 1999] Wu, X.-P. and Tang, C.-L. (1999). Periodic solutions of a class of non-autonomous second-order systems. *J. Math. Anal. Appl.*, 236(2):227–235.
- [Yang and Chen, 2012] Yang, X. and Chen, H. (2012). Periodic solutions for a non-linear (q, p)-laplacian dynamical system with impulsive effects. *Journal of Applied Mathematics and Computing*, 40(1-2):607–625.
- [Yang and Chen, 2013] Yang, X. and Chen, H. (2013). Existence of periodic solutions for sublinear second order dynamical system with (q, p)-laplacian. *Mathematica Slovaca*, 63(4):799–816.
- [Zhao and Wu, 2004] Zhao, F. and Wu, X. (2004). Periodic solutions for a class of non-autonomous second order systems. *J. Math. Anal. Appl.*, 296(2):422–434.