Math 453

Selected Solutions to Assignment 3

Problem 5: Let S be a set with an associative law of composition and with an identity element. Let G be the subset of S consisting of invertible elements (i.e. those $s \in S$ for which there is an inverse under the given law of composition). Show that G is a group.

Solution: First, note that that G has a binary operation $\phi: G \times G \to S$ inherited from the law of composition on S (define $\phi(a,b) = a*b$, where * is the law of composition on S), but for G to be a group, we need to show that $\phi(G \times G) \subseteq G$. That is, we need to show that for each $x,y \in G$, $\phi(x,y) \in G$, so G is closed under ϕ . Let $x,y \in G$. Then by definition of G, there exist $x^{-1}, y^{-1} \in S$. By Problem 2, we have that $(x*y)^{-1} = y^{-1}*x^{-1}$; since $y^{-1}*x^{-1} \in S$, we have that x*y has an inverse in S. Thus, $\phi(x,y) = x*y \in G$.

Now, ϕ is associative since for each $a, b, c \in G$, we have

$$\phi(\phi(a,b),c) = \phi(a,b) * c = (a*b) * c = a*(b*c) = a*(\phi(b,c)) = \phi(a,\phi(b,c)),$$

with the middle equality by the fact that $a, b, c \in S$ and associativity of * on S, and all others by definition of ϕ . Hence, G has an associative binary operation.

Furthermore, let $e \in S$ denote the identity element; then e * e = e, so e has an inverse in S by definition of an inverse element. Hence, $e \in G$. Since for each $g \in G$, $\phi(e,g) = e * g = g = g * e = \phi(g,e)$, we have that g is the identity element on G with respect to the binary operation ϕ .

Finally, let $x \in G$, so there exists an inverse element $x^{-1} \in S$ with respect to *. By Problem 2, we have $(x^{-1})^{-1} = x$, so x^{-1} has an inverse element in S with respect to * (namely, x), so $x^{-1} \in G$. Since * acts on G the same way that ϕ does, for each $x \in G$, x has an inverse element with respect to ϕ . Therefore, G is a group under the binary operation ϕ .

Problem 6: Determine all integers n such that 2 has an inverse (under multiplication) modulo n.

Solution: We will show that if we extend our definition of modular arithmetic to be include any integer, 2 has a multiplicative inverse modulo n if and only if n is an odd integer. (Arguably, you could exclude the case where $n = \pm 1$, since the "spirit of the question," and our particular definition of

modular arithmetic, excluded this case.) Note that the multiplicative identity modulo n is 1 modulo n, which is also 0 modulo n if $n = \pm 1$.

Let n be odd. Then n=2k+1 for some $k \in \mathbb{Z}$, so n=2(k+1)-1, so $2(k+1) \equiv 1 \mod n$ by definition of modular arithmetic. Hence, there exists an inverse under multiplication modulo n.

On the other hand, suppose $n \in \mathbb{Z}$ such that 2 has an inverse under multiplication modulo n. Then by definition of modular arithmetic, there exist $k, l \in \mathbb{Z}$ such that 2k - 1 = nl, so 2k = nl + 1. Then by definition of even, nl + 1 is even, so nl is odd, so n and l must both be odd. Hence, n is odd.

Problem 7: Let a, b be elements of a group G. Suppose that a has order 5 and that $a^3b = ba^3$. Prove that ab = ba.

Solution: We have $a^3b = ba^3$, so by multiplying on the left by b^{-1} , we have $b^{-1}a^3b = (b^{-1})ba^3$, so $b^{-1}a^3b = ea^3 = a^3$. Hence,

$$b^{-1}a^{6}b = b^{-1}a^{3}(bb^{-1})a^{3}b$$

$$= (b^{-1}a^{3}b)(b^{-1}a^{3}b)$$

$$= (a^{3})(a^{3})$$

$$= a^{6}.$$

But $a^6 = (a^5)a = ea = a$ since a has order 5. Hence, $b^{-1}ab = a$, so multiplying on the left by b gives ab = ba, as desired.