秦帮助文档

gimbiseo 人机对话系统

截图

基本用法:

运行

1 import gimbiseo.main

人机交互

- 个体名词必须加上引号(英文)
- [v动词], [a形容词]
- [不],目前必须始终强制使用[]

一般只需使用一次(在第一次出现时使用),如果保证能够识别词性,可以不加。

例子:

- 1 "月球"[v围绕][a蓝色的][v围绕]"太阳"的天体 # 后面加注释
- 2 "月球"[不][v围绕]恒星
- 3 月球[不]围绕太阳 (第二次出现)
- 4 月球[只]围绕太阳 (第二次出现)

文法

词法

个体: 专有名词, 如地球、月球

类: 名词、形容词, 如天体、脸色的

关系:动词,如围绕、喜欢

量词:只

否定:不

句法

陈述句句法

- 1 句子 -> 名词+动词+复合名词 # 地球围绕太阳,地球是蓝色的行星,月球围绕蓝色的围绕太阳的天体
- 2 复合名词 -> 形容词 + 形容词 + ... + 名词 # 蓝色的行星,围绕太阳的行星,红色的围绕太阳的天体
- 3 形容词 -> ..的 | 动宾短语+的 # 蓝色的,围绕太阳的
- 4 动宾短语 -> 「不/只] 动词 + 名词
- 5 名词 -> 个体 | 类 # 太阳, 行星

下定义(陈述句子类):

- 个体 "是" 类, 类 "是一种" 类 # 地球是天体, 行星是一种天体
- 类 "定义为" ... # 行星定义为[v围绕]恒星的天体

疑问句句法

一般疑问句: 陈述句+?

特殊疑问句: 陈述句中的主语或宾语替换成疑问词

例子: 什么围绕太阳, 哪个天体围绕太阳, 地球是什么样的行星

常见错误

- 我爱我的祖国
 - 1. "我的"不能作为形容词, "我的"是物主所有格
 - 2. 不推荐使用具有相对性含义的词语,祖国是一个相对性词语,应该被理解成一个关系,而不是一个人类。 这句话只能是"『小王"[v生于]"中国" "并且"『小王"[v爱]"中国" "
- 蓝色的星球上居住着人类

不支持复合名词的主语,应该是"人类[v居住于][a蓝色的]星球"

注疑问句的问号是中文的。

语法错误与异常

- 1. 如果语句中有未出现的名词,系统会提示输入
- 2. 重复陈述句,系统会警告重复输入
- 3. 语句编译成失败,会提示重新输入

命令

命令必须以 2. 开头,接着写命令和命令参数(与shell命令类似) 事先要在commands.py文件中注册 命令本质上是一个函数,参数必须是字符串或者memory中可读取的变量,如知识库中的类和个体,或者 Python全局变量,如果在memory中找不到,将作为普通字符串。

例子

- 1 %print 地球 # 打印地球个体的信息
- 2 %print 地球 是一个星球 # 打印地球个体的信息, 再打印"是一个星球"
- 3 %help 帮助文档

描述逻辑DLs

系统完全依赖于描述逻辑/0wlReady

例子

人类[v居住于][a蓝色的]星球

等价于Dls中,人类⊆ ∃居住于.蓝色的 \cap 星球,即每个人都居住在某个(某些)蓝色的星球上。

DLs	中文句法	例子
$A \sqsubseteq B$	A 是一种 B	
i:B	i 是 A	
$i: \exists rB$	irB	地球围绕恒星
i: orall rB	i只rB	地球只围绕恒星
R(i,j)	i R j	地球围绕太阳
$A:\exists rB$	АгВ	男人喜欢女人
A: orall rB	АЯгВ	女人只喜欢玫瑰
$A:\exists ri$	Ari	植物依赖太阳
$A \sqcap B$	АВ	蓝色的星球

DLs	Protégé		Owlready	OWLAPI
				OWLOntologyManager m = OWLManager.createOWLOntologyManager(); OWLDataFactory df = OWLManager.getOWLDataFactory(); OWLOntology o = m.createOntology(MY_IRI);
$A\sqsubseteq B$	A subclass of B	(or)	class A(B): A.is_a.append(B)	$m.apply Change (new\ Add Axiom (o,\ df.get OWL SubClass Of Axiom (A,\ B)));$
$A\sqcap B$	A and B		A & B	df.getOWLObjectIntersectionOf(A,B)
$A \sqcup B$	A or B		A B	df.getOWLObjectUnionOf(A, B)
¬ A	not A		Not(A)	df.getOWLObjectComplementOf(A)
$\mathbf{A} \sqcap \mathbf{B} = \emptyset$	A disjoint with B		AllDisjoint([A, B])	$m.applyChange(new\ AddAxiom(o,\ df.getOWLDisjointClassesAxiom(A,\ B)));$
$\mathbf{A} \equiv \mathbf{B}$	A equivalent to B		$A.equivalent_to.append(B)$	$m.applyChange (new\ AddAxiom (o,\ df.getOWLEquivalentClassesAxiom (A,\ B)));$
{i, j,}	{i, j,}		OneOf([i,j,])	df.getOWLObjectOneOf(i,j,)
∃R.B	R some B		R.some(B)	df.getOWLObjectSomeValuesFrom(R,B)
∀R.B	R only B		R.only(B)	df.getOWLObjectOnlyValuesFrom(R,B)
=2R.B	R exactly 2 B		R.exactly(2, B)	df.getOWLObjectExactCardinality(2,R,B)
∃R.{i}	R value i		R.value(i)	df.getOWLObjectHasValue(R,i)
$\exists \ R. \top \sqsubseteq A$	R domain A		R.domain = [A]	$m.apply Change (new\ Add Axiom (o,\ df.get OWLObject Property Domain Axiom (R,\ A)));$
$\top \sqsubseteq \forall R.B$	R range B		R.range = [B]	$m.applyChange (new\ AddAxiom (o,\ df.getOWLObjectPropertyRangeAxiom (R,\ B)));$
$S \equiv R^-$	S inverse of R		S.inverse = R	$m.applyChange(new\ AddAxiom(o,\ df.getOWLInverseObjectPropertiesAxiom(R,\ S)));$
A(i)	i type A	(or)	$i = A() \\ i.is_instance_of.append(A)$	$m.apply Change (new\ Add Axiom (o,\ df.get OWL Class Assertion Axiom (A,\ i)));$
R(i, j)	i object property assertion j	(or)	i.R = j (R is functional) i.R.append(j) (otherwise)	$m.apply Change (new\ Add Axiom (o,\ df.get OWL Object Property Assertion Axiom (R,\ i,\ j))) \\$
R(i, n)	i data property assertion j	(or)	i.R = n (R is functional) i.R.append(n) (otherwise)	$m.apply Change (new\ Add Axiom (o, df.get OWLData Property Assertion Axiom (R, i, n))); \\$
$A \sqsubseteq \exists R.\{i\} \land (\exists R^{\scriptscriptstyle \top}.A)(i)$	-	(or)	A.R = i (R is functional) A.R.append(i) (otherwise)	-