Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

 As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will complete some exercises involving the dot product.

1 / 1 punto

We have seen that the size of a vector with two components is calculated using Pythagoras' theorem, for example the following diagram shows how we calculate the size of the orange vector

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$
:

In fact, this definition can be extended to any number of dimensions; the size of a vector is the square root of the sum of the squares of its components. Using this information, what is the size of the vector

$$\begin{bmatrix} 1\\3\\4\\2 \end{bmatrix}$$

$$S = \begin{bmatrix} 1\\3\\4\\2 \end{bmatrix}$$
?

$$|s| = \sqrt{30}$$

✓ Correcto

The size of the vector is the square root of the sum of the squares of the components.

2. Remember the definition of the dot product from the videos. For two n **1/1 punto** component vectors, $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

What is the dot product of the vectors

$$\mathbf{r} = \begin{bmatrix} 3 \\ 2 \\ 8 \end{bmatrix} \text{ and } \mathbf{s} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}?$$

$$\bigcap \mathbf{r} \cdot \mathbf{s} = 1$$

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} -5 \\ 6 \\ -2 \\ 0 \end{bmatrix}$$

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} -5 \\ 6 \\ -2 \\ 0 \end{bmatrix}$$

$$\mathbf{o} \mathbf{r} \cdot \mathbf{s} = -1$$

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} -4 \\ 5 \\ 1 \\ 9 \end{bmatrix}$$

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} -4 \\ 5 \\ 1 \\ 9 \end{bmatrix}$$

✓ Correcto

The dot product of two vectors is the total of the component-wise products.

3. The lectures introduced the idea of projecting one vector onto another. The following diagram shows the projection of \mathbf{s} onto \mathbf{r} when the vectors are in two dimensions:

1 / 1 punto

Remember that the scalar projection is the *size* of the green vector. If the angle between $\bf s$ and $\bf r$ is greater than $\pi/2$, the projection will also have a minus sign.

We can do projection in any number of dimensions. Consider two vectors with three components,

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix} \text{ and } \mathbf{s} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}.$$

What is the scalar projection of s onto r?

 $-\frac{1}{2}$

- 2
- $O^{\frac{1}{2}}$

•

The scalar projection of of s onto r can be calculated with the formula $\frac{s\cdot r}{|r|}$

4. Remember that in the projection diagram, the vector projection *is* the green vector:

1 / 1 punto

Let

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix} \text{ and let } \mathbf{s} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}.$$

What is the vector projection of s onto r?

$$\begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix}
6/5 \\
-8/5 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
6/5 \\
-8/5 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} 6 \\ -8 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ -8 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 30 \\ -20 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 30 \\ -20 \\ 0 \end{bmatrix}$$

✓ Correcto

The vector projection of s onto r can be calculated with the formula $\frac{s\cdot r}{r\cdot r}r.$

$$\begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 12 \end{bmatrix}.$$

Which is larger, $|\mathbf{a} + \mathbf{b}|$ or $|\mathbf{a}| + |\mathbf{b}|$?

- |a+b| < |a| + |b|
- $\bigcirc |a+b| > |a| + |b|$
- $\bigcirc |a+b|=|a|+|b|$
 - ✓ Correcto

In fact, it has been shown that $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$ for every pair of vectors \mathbf{a} and \mathbf{b} . This is called the triangle inequality; try to think about it in the 2d case and see if you can understand why.

6. Which of the following statements about dot products are correct?

1/1 punto

- The size of a vector is equal to the square root of the dot product of the vector with itself.
 - **⊘** Correcto

We saw in the video lectures that $|\mathbf{r}| = \sqrt{\mathbf{r} \cdot \mathbf{r}}$.

- The vector projection of \mathbf{s} onto \mathbf{r} is equal to the scalar projection of \mathbf{s} onto \mathbf{r} multiplied by a vector of unit length that points in the same direction as \mathbf{r} .
 - **⊘** Correcto

The vector projection is equal to the scalar projection multiplied by $\frac{r}{|r|}$

- We can find the angle between two vectors using the dot product.

⊘ Correcto

We saw in the lectures that $\mathbf{r} \cdot \mathbf{s} = |\mathbf{r}| |\mathbf{s}| \cos \theta$, where θ is the angle between the vectors. This can then be used to find θ .