

Volume: 04 Issue: 02 | Mar-Apr 2023 ISSN: 2660-4159

http://cajmns.centralasianstudies.org

Расчет Теплопоступлений В Помещения Через Остеклённые Световые Проёмы

- 1. Комилов О. С.
- 2. Ахророва М. И.
- 3. Хамидов Я. Я.
- 4. Садыков И. Ш.

Received 2nd Jan 2023, Accepted 3rd Feb 2023, Online 7th Apr 2023

Аннотация: При эксплуатации общественных зданий с большой площадью светопрозрачных конструкций теплый период года можно столкнуться с перегревом помещений из-за неверно учтенной тепловом балансе значительной величины теплопоступлений солнечной радиации.

В данной работе приведены и проанализированы принципы расчета теплопоступлений от солнечной радиации через светопрозрачные проемы. Расчеты позволяет определить величины теплопоступлений в помещения в зависимости от конструктивных особенностей окон их теплотехнических качеств, с учетом изменения температуры наружного воздуха в течение суток.

Ключевые слова: тепловой поток, солнечная радиация, инсоляция, азимут солнца, температура.

В летнее время года температурный режим в помещениях формируется под влиянием внешних факторов, среди которых главную роль играют солнечная радиация и температура наружного воздух. Теплопоступления от солнечной радиации, проникающей в помещения через светопрозрачные конструкции, составляют около 50 % от суммарных теплопоступлений. Большие теплопоступления от солнечной радиации через световые проемы и высокая температура наружного воздуха вызывают перегрев помещений. Создание благоприятного микроклимата в помещениях в летний период года требует применения систем вентиляции, кондиционирования воздуха и солнцезащитных устройств. Выбор конструкций для заполнения световых проемов, позволяющих обеспечить комфортные условия в помещении и устранение нарушений теплового баланса организма человека является одной из важных задач проектирования зданий[1].

Для поддержания допустимых метеорологических условий в помещениях зданий важен точный расчет требуемого воздухообмена, для которого необходимо найти величины поступающих в помещения избыточной теплоты, влаги и вредных веществ. Для общественных зданий основным вредным выделением является избыточная теплота, а в тепловом балансе современных зданий с маломассивными ограждающими конструкциями и большими

^{1,2,3} Бухарский инженернотехнологический институт

⁴ Азиатский международный университет

площадями остекления существенную роль играют теплопоступления через наружные ограждения из-за воздействия солнечной радиации[2].

Солнечная радиация-это поток электромагнитных волн, движущийся со скоростью 300 000 км/с. Выделяют прямую и рассеянную солнечную радиацию. Прямая радиация поступает на поверхность в виде пучка параллельных лучей, исходящих от солнечного диска. Рассеянная солнечная радиация - это та часть солнечной радиации, которая была рассеяна в земной атмосфере молекулами и частичками, содержащимися в воздухе, облаками. Они поступают на поверхность от всего небосвода[3-6].

В данной работе приведены и проанализированы принципы расчета теплопоступлений от солнечной радиации через светопрозрачные проемы. Расчеты позволяют определить величины теплопоступлений в помещения в зависимости от конструктивных особенностей окон, их теплотехнических качеств, с учетом изменения температуры наружного воздуха в течение суток.

Рассчитаны теплопоступления через заполнения световых проемов (окна) как сумма радиационной составляющей, возникающей в результате непосредственного проникновения солнечных лучей через остекление, обусловленной теплопередачей составляющей.

Солнечная радиация, поступая в помещение, создает так называемый световой режим, который выражается в облучении прямой солнечной радиацией внутренних поверхностей помещения (инсоляции) и естественное освещение. Вычисление теплопоступления производится для расчетного часа в июле месяце при безоблачном небе. За расчет принимается час, когда суммарное теплопоступление через различно ориентированные заполнения световых проемов, максимальны[7-10].

Тепловой поток Q_{Π} , (Вт), поступающий в помещение в расчетный час суток через заполнение световых проемов, определяется по выражению

$$Q_{\Pi} = (q_R \mathsf{a}_{\Pi} + q_{\Pi\Pi}) F_{\Pi}, (1)$$

где q_R — количество удельного теплового потока (отнесенные к единице площади поверхности) поступающей в помещение через остекленные проёмов за счёт проникающей солнечной радиации, $\left(\frac{\text{Вт}}{\text{м}^2}\right)$;

 $q_{\rm T\Pi}$ — количество удельного теплового потока, поступающего в помещение через остекление за счет теплопередачи, $\left(\frac{{\sf B}_{\rm T}}{{\sf M}^2}\right)$;

 a_{Π} — коэффициент ассимиляции теплопоступлений от солнечной радиации ограждающими конструкциями и оборудованием;

 F_{Π} — площадь светопрозрачной конструкции м².

Для расчета теплопоступлений в помещения через остекление от солнечной радиации необходимо учитывать ее интенсивность, которая определяется по справочным данным, а также характеристики остекления. Согласно[5], удельного теплового потока поступающего через стеклопакета (светопрозрачного ограждения) можно определять по формуле (2), для вертикального заполнения световых проемов

$$q_R = \left(q_{\perp}^{\mathrm{B}} K_{\mathrm{инс.B}} + q_p^{\mathrm{B}}\right) \cdot T_{\mathrm{отн}} \cdot \tau_{2}, \tag{2}$$

для наклонного (близкого к вертикальному заполнению световых проемов)

$$q_R = \left(q_\perp^{\rm B} K_{\rm uhc.h} \cdot \frac{ctg\beta}{ctg(\beta + \beta')} + q_p^{\rm B}\right) \cdot T_{\rm oth} \cdot \tau_{2,} \tag{3}$$

для наклонного горизонтального остекления

$$q_R = \left(q_{\perp}^{\scriptscriptstyle H} K_{\scriptscriptstyle \text{ИНС.}\Gamma} + q_p^{\scriptscriptstyle H}\right) \cdot T_{\scriptscriptstyle \text{OTH}} \cdot \tau_2, \qquad (4)$$

где $q_{\perp}, q_{\rm p}$ — удельный тепловой поток, $\left(\frac{{\rm BT}}{{\rm M}^2}\right)$, соответственно прямой и рассеянной солнечной радиации, прошедшей через одинарное остекление с толщиной 2,5 ÷ 3,5 мм, поступающей в помещение в расчетный час суток (для вертикальных принято обозначение индексом "в", горизонтальных-"г", наклонных -"н"), зависящий от расчетного часа, ориентации и географической широты местности строительства (табл.1.).

Поступление теплоты, ${\rm Br/m}^2$, от прямой q_{\perp} и рассеянной $q_{\rm p}$ солннечной радиации в июле через вертикальное одинарное остекление. Таблица 1

Широта	Время		Тепловой поток(количество теплоты), Bт/м ²														
°С. Ш		C		C	СВ		В		ЮВ		Ю		ЮЗ		3		3
		q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$	q_{\perp}	$q_{ m p}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	7-8	-	77	357	110	509	130	333	109	-	71	-	55	-	55	1	55
	8-9	-	71	256	101	490	121	398	108	66	79	-	60	-	59	1	60
	9-10		64	84	80	371	100	387	101	162	81	-	63	-	60	1	62
	10-11	-	60	2	71	193	81	305	86	245	84	-	67	4	60	ď	64
	11-12	-	59	-	67	37	72	214	79	288	85	73	77	4.7	65	1	65
38	12-13	-	59	-	65	-	65	73	77	288	85	214	79	37	72	1	67
	13-14	-	60	-	64	-	60	-	67	245	84	305	86	193	80	2	71
	14-15	500	64	-	62	-	60	- 1	-63	162	84	387	101	371	100	84	80
	15-16	-	71	-	60	-	59	- 1	60	66	79	398	108	490	121	256	101
	16-17	-	77	-	55	Ž.	55	- 10	55	0	71	333	109	509	130	357	110
	17-18	42	70	-	44	-	44	-	44	0	85	209	86	452	112	369	98
29625	7-8	-	74	348	107	542	129	363	109	3	73	-	53	-	53	1	53
0.00	8-9	100	70	222	99	497	121	427	112	80	81	-	60	-	58	1	59
100	9-10		64	60	81	372	100	419	107	186	86	-	65	-	58	-	62
-	10-11	-	60	-	71	193	81	352	94	271	87	-	70	-	60	1	64
	11-12	-	59	-	67	37	72	251	84	317	88	106	78	-	65	-	65
44	12-13	-	59	-	65	-	65	106	78	317	88	251	84	37	72	-	67
	13-14	-	60	-	64	-	60	-	70	271	87	352	94	193	81	-	71
	14-15	-	64	-	62	-	60	-	65	186	86	419	107	372	100	60	81
	15-16	-	70	-	59	-	58	-	60	80	81	427	112	497	121	222	99
	16-17	-	74	-	53	-	55	-	53	3	73	363	109	542	129	349	107
	17-18	35	69	-	44	-	54	-	43	-	55	237	87	472	114	385	98

 $K_{\text{инс.в}}$, $K_{\text{инс.г}}$, $K_{\text{инс.н}}$ — коэффициенты инсоляции (для вертикального, индекс "в", горизонтального-"г", наклонного -"н") остекления показывающей долю площади заполнения светового проема, через которую поступает прямая солнечная радиация;

 β — угол (для горизонтальных затеняющих устройств), град, между вертикальной плоскостью остекления и проекцией солнечного луча на вертикальную плоскость, перпендикулярно рассматриваемой плоскости остекления Рис.1;

Рис.1. К определению коэффициента инсоляции

К определению коэффициента инсоляции 1- направление солнечного радиация; 2- горизонтальная проекция солнечного радиация; 3- нормаль к плоскости заполнения светового проема; 4- проекция солнечного радиация на вертикальную (к плоскости заполнения и горизонта) плоскость; 5-границы тени от солнцезашитных устройств на поверхности заполнения; H и B — высота и ширина светового проема; а и с-расстояние от горизонтального и вертикального элемента затенения до откоса светового проема; $L_{\scriptscriptstyle B}$ и $L_{\scriptscriptstyle T}$ — размеры вертикальных и горизонтальных выступающих элементов затенения

 β' — угол отклонения плоскости остекления от вертикального, град;

 $T_{\text{отн}}$ — коэффициент относительного пропускания солнечной радиации через заполнение световых проемов, отличающихся от одинарного остекления (таб.2.)

Теплотехнические характеристики	заполнения с	светових	проемов	[11].Табл.2
	The Contract of		. •	1 1 2

Вид заполнения светового проема	Приведенное сопротивление теплопередаче R_{II} , (м ² · °C/BT)	Коэффициент относительного проникания $k_{ m orh}$	Коэффициент затенения $k_{\text{отн}}$
Тройное остекление из обычного стекла в раздельно-спаренных деревянных переплетах	0,55	0,70	0,50
Однокамерный стеклопакет в одинарном деревянном или ПВХ переплете(оба стекла обычные)	0,35	0,76	0,80
Однокамерный стеклопакет в одинарном деревянном или ПВХ переплете(одно обычное стекло, второе-с мягким селективным покрытием)	0,56	0,54	0,80
Двухкамерный стеклопакет в одинарном деревянном или ПВХ переплете (все стекла обычные, межстекольное расстояние 12 мм)	0,54	0,74	0,80
Двухкамерный стеклопакет в одинарном деревянном или ПВХ переплете(с одним стеклом с мягким селективным покрытием)	0,68	0,48	0,80

Volume: 04 Issue: 02 | Mar-Apr 2023

Двухкамерный стеклопакет в одинарном			
5- камерном ПВХ переплете (среднее и	1,01	0,36	0,50
внутренне покрытием, межстекольное	1,01	0,50	0,50
расстояние 14мм- заполнено воздухом)			

Высота h, град. и азимут солница A_C , град, на различных широтах в июле Таблица 3

	Истинное солнечное Значения h и $A_{\mathbb{C}}$ на географической широте, град, с ш																		
B	ремя, ч																		
		3	36	4	40		44		48		52		56	(60		64	(68
до полудня	после полудня	h	A_{C}	h	A_{C}	h	A_{C}	h	A _C	h	A_{C}								
2-3	21-22	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	4	145
3-4	21-20	-	-	-	-	-	-	-	-	-	-	-	-	1	130	3	131	6	131
4-5	19-20	-	-	-	-	-	-	-	-	3	119	5	120	7	120	9	119	10	118
5-6	18-19	6	111	8	111	9	111	10	110	12	109	13	108	14	107	15	106	16	104
6-7	17-18	18	104	19	104	19	100	20	99	21	97	21	95	21	94	21	92	21	91
7-8	16-17	30	94	29	93	29	90	30	87	30	85	29	82	28	81	27	79	27	77
8-9	15-16	42	86	41	82	40	78	40	76	38	72	37	69	36	67	34	64	32	61
9-10	14-15	54	75	52	69	50	65	49	60	47	56	45	53	43	50	40	94	37	45
10- 11	13-14	65	56	62	49	59	45	56	40	54	36	51	33	18	31	44	29	40	28
11- 12	12-13	73	24	69	20	65	18	61	16	58	13	54	12	50	11	46	10	42	9
12	(полдень)	74	0	70	0	66	0	62	0	58	0	54	0	50	0	46	0	42	0

 τ_2 — коэффициент, учитывающий затенение светового проема переплетами [11].

Для определения значений, входящих в (2), (3) и (4) $K_{\rm H}$ — коэффициент инсоляции определяется в виде:

для вертикального заполнение световых проемов

$$K_{\rm H} = \left(1 - \frac{L_{\rm F}ctg\beta - a}{\rm H}\right) \left(1 - \frac{L_{\rm B}ctgA_{\rm C.O} - c}{\rm B}\right), \quad (5)$$

для горизонтального заполнения заполнение световых проемов

$$K_{\rm M} = \left(1 - \frac{L_{\rm r}ctgh\,sinA_{\rm c.o} - a}{\rm H}\right) \left(1 - \frac{L_{\rm B}ctgh\,cosA_{\rm c.o} - c}{\rm B}\right), \ \ (6)$$

где $L_{\rm r}, L_{\rm B}$ — размеры горизонтально и вертикально выступающих элементов затенения (откосов);

н, в — высота и ширина светового проема;

a, c — соответственно расстояния от горизонтального и вертикального элементов затенения до откоса светового проема;

A_c — азимут солнца, принимаемый в зависимости от географической широты по табл.4.

Сонечный азимут остекления A_{CO} в зависимости от ориентации светового проема Таблица 4

Ориентация заполнения	A _C	A_{CO}		
Ориентация заполнения	гр	ад		
С	_	$180 - A_{C}$		
CB C3	> 135	$A_{\rm C} - 135$		
CB, C3	< 135	$135 - A_{C}$		
В(до полудня)	> 90	$A_{\rm C} - 90$		
3 (после полудня)	< 90	$90 - A_{C}$		
ЮВ	> 45	$A_{C} - 45$		
- до полудня	< 45	$45 - A_{C}$		
- после полудня	_	$A_{\rm C} + 45$		
ЮЗ	_	$A_{C} + 45$		
- до полудня	> 45	$A_{C} - 45$		
- после полудня	< 45	$45 - A_{C}$		
Ю	_	A_{C}		

 β — угол между вертикальную плоскость, перпендикулярную рассматриваемой плоскости остекления.

 $Угол \beta$

$$\beta = arctg(ctgh \cdot cosA_{c,o}), (5)$$

где h — высота стояния солнца (см.рис.1) град. определяемая в соответствии с (табл. 3.)

Удельной тепловой поток, обусловленный теплопередачей, рассчитывается по выражению

$$q_{\rm T\Pi} = \frac{t_{\rm H.YC\Pi} - t_{\rm B}}{R_o} \tag{6}$$

где $t_{\rm B}$ — расчетная температура внутреннего воздуха, °С,

принимаемая согласно норм проектирования;

 $t_{\text{н.усл}}$ — условная температура наружного воздуха, °C, с учетом солнечной радиации рассчитываемая при вертикальном заполнении световых проемов;

$$t_{\text{H.усл}} = t_{\text{H.cp}} + 0.5 \cdot A_{t_{\text{H}}} \cdot \beta_{\Gamma} + \frac{(q_{\text{B}} \cdot K_{\text{ИНС.B}} + q_{\underline{\Lambda}})}{\alpha_{\text{H}}^{B}} \cdot \varepsilon \cdot \tau_{\Gamma}, \quad (7)$$

при горизонтальном заполнении световых проемов;

$$t_{\text{н.усл}} = t_{\text{н.cp}} + 0.5 \cdot A_{t_{\text{H}}} \cdot \beta_{\Gamma} + \frac{(q_{\Gamma} \cdot K_{\text{инс.}\Gamma} + q_{\Lambda})}{\alpha_{\Gamma}^{\Gamma}} \cdot \varepsilon \cdot \tau_{\Gamma}, \quad (8)$$

при наклонном заполнении световых проемов;

$$t_{\text{H.усл}} = t_{\text{H.cp}} + 0.5 \cdot A_{t_{\text{H}}} \cdot \beta_{\Gamma} + \frac{\left(q_{\text{B}} \cdot K_{\text{ИНС.B}} \cdot \frac{ctg\beta}{ctg(\beta \pm \beta')} + q_{\beta}\right)}{\alpha_{\text{H}}^{\text{B}}} \cdot \varepsilon \cdot \tau_{\Gamma}, \quad (9)$$

где $t_{\text{н.ср}}$ — среднемесячная температура норужного воздуха, °C, наиболее жаркого месяца (июля), принимается согласно [11].

 $A_{t_{\rm H}}$ — суточная амплитуда температуры наружного воздуха, °С, принимаемая по [11],

 ε — коэффициент поглощения солнечной радиации заполнением светового проема, принимаемый по справочным данным [11]; для тройного остекления и двухкамерных стеклопакетов ε = 0,7, для однокамерного стеклопакета, со стеклом толщиной 4 мм в деревянных и ПВХ переплетах можно ориентировочно принять ε = 0,4;

 $\alpha_{\rm H}$ — суммарный коэффициент теплоотдачи наружной поверхности остекления, $\frac{{\rm BT}}{{\rm M}^2{}^{\circ}{\rm C}'}$, зависящий от скорости ветра.

Исходя из вышеприведенных расчетов, определим количество теплоты, поступающей в помещение через двойное остекление в деревянных переплетах, ориентированное на восток. Здание возводдится в г.Бухаре. Стекла обычные с коэффициентами поглащения солнечной радиации $\varepsilon_1=\varepsilon_2=0,1$; пропускания $T_1=T_2=0,85$ и отражения $R_1=R=0,05$. Согласно СНиП 2.01.04-2018 для г.Бухара $t_{\rm H}=26,9$ °C; $q=749\frac{\rm BT}{\rm M^2}$, коэффициент теплоотдачи $\alpha_{\rm B}=8,5$ Вт/м²·°С и $\alpha_{\rm B}=17,4$ Вт/м²·°С[11]. Температура воздуха в помещении поддерживается на уравне $t_{\rm B}=25$ °С. Солнцезащитное устройство отсутствует, $\beta=1, R_0=0,34$ м²·°С/ Вт. Расчет ведем по формуле(1). По формуле (7) определяем условную температуру с учетем солнечной радиации при $k_{\rm H}=1$ и $\beta=1$.

$$t_{\text{H,VCJ}} = t_{\text{H}} + (\varepsilon q)/\alpha_{\text{H}} = 26.9 + (0.1 \cdot 749)/17.4 = 31.2^{\circ}\text{C},$$

по формуле(6)
$$q_{\text{ТП}} = (31.2 - 25)/0.34 = 18.8 \text{ BT/m}^2$$

по формуле(3)
$$q_R = T_{\text{ОТH}} \cdot q = T_1 T_1 \cdot q = 0.85 \cdot 0.85 \cdot 749 = 540 \text{ Bt/m}^2$$

по формуле(1)
$$Q_{\Pi} = (q_R \cdot \alpha_{\Pi} + q_{\Pi}) = 540 + 18.8 = 558.8 \,\mathrm{Bt/m^2}$$

из этого примера следует, что основную часть теплопоступлений через остекление составляет проникающая радиация. Количество теплоты, поступающей теплопроводностью, составляет только 3,3 % проникающей радиации.

Произведенные расчеты позволяют определить величины теплопоступлений в помещения в зависимости от конструктивных особенностей световых проемов (окон) и их теплотехнических качеств, с учетом изменения температуры наружного воздуха в течение суток. Расчеты позволяют также производить экономическую оценку эффективности применения средств по ограничению теплопоступлений в помещения зданий.

Список использованной литературы

- 1. Дусяров А.С. Определение тепловых потерь инсоляционных пассивных систем солнечного отопления. Инновацион технологиялар, махсус сон. 2022. 103-106 б.
- 2. Мухачев Г.А. Термодинамика и теплопередача. М.; Высшая школа,1991.480с.
- 3. Ковальногов Н.Н. Пограничный слой в потоках с интенсивными воздействиями. Ульяновск; УлГТУ,1996.246с.
- 4. Yang. R., Liu L. Termal environment in the cotton textile workshop// Energy and Buildings.-2015. vol.102. P.432-441.
- 5. Малявина Е.Г. Теплопотери здания. М.: АВОКПРЕСС, 2007. С.144.
- 6. Савин В.К. Строительная физика: энергоперенос, энергоэффективность, энергосбережение. М.: Лазурь, 2007. С.432.

- 7. Пчелинцева Л.В. Проблемы энергосбережения в России. Современные требования к системам оконного и фасадного остекления заданий. Строительная наука. №3. 2021. С. 445-449.
- 8. Коржнева Т.Г. Анализ теплопотерь помещение через системы естественного освещения известия ТПУ. 2013. №4.С.322.
- 9. Гликин С.М. Роль светопрозрачных конструкций в энергосбережении зданий. Строительная наука №5 2009. С. 381-384.
- 10. Борухова Л.В. Совершенствование конструкции и рекомендации по их уменьшению. Энергетика. Изв. Высш. Уч. Зов. СНГ. Т 59. №1. 2016. С.65-78.
- 11. КМК 2.01.04-2018 "Строительная теплотехника", Ташкент, 2018.

