



# Outlines

- Correlated materials
- DFT+U
- Haemoglobin
- Hemocyanin
- Conclusions

# Density functional theory



Simple idea: Transform a problem of interacting electrons (N-body problem) to a problem of individual electron interacting with a medium

Walter Kohn: Nobel prize 1998

$$\Psi_0 pprox \Psi_{HF} = rac{1}{\sqrt{N!}}$$

$$\Psi_0 \approx \Psi_{HF} = \frac{1}{\sqrt{N!}} \left| \begin{array}{ccccc} \psi_1(\vec{x}_1) & \psi_2(\vec{x}_1) & ... & \psi_N(\vec{x}_1) \\ \psi_1(\vec{x}_2) & \psi_2(\vec{x}_2) & ... & \psi_N(\vec{x}_2) \\ \vdots & & \vdots & & \vdots \\ \psi_1(\vec{x}_N) & \psi_2(\vec{x}_N) & ... & \psi_N(\vec{x}_N) \end{array} \right|$$

$$\rho(\vec{r}) = N \int ... \int |\Psi(\vec{x}_1, \vec{x}_2, ..., \vec{x}_N)|^2 ds_1 d\vec{x}_2 ... d\vec{x}_N$$

#### W. Kohn (Nobel Lecture):

"In the intervening decades enormous progress has been made in finding approximate solutions of Shrodinger's wave equation for systems with several electrons [...]. DFT is an alternative approach to the theory of electronic structure, in which the electron density, rather than the many-body electron wave-function plays a central role."



Any limiting cases where DFT needs improvement?

Yes! for localised d- of f- atoms where Coulomb repulsion between electrons is large! Particularly 3d and 4f are close to the nucleus for orthogonality reasons.

# Why study d- or f- materials?

- 2) They raise fundamental questions
- 2) Applications
- 3) They require new formalisms, new ideas



# Big thing example: The intelligent window



## DFT extension required for transition metals

transition metal ions



ion+oxygen cage =transition metal oxide



#### V Cr Mn Fe Co Ni Cu

VO<sub>2</sub> Room temperature MIT La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> Colossal <u>Magnetoresistance</u>

Na<sub>x</sub>CoO<sub>2</sub> Thermoelectrics La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> High temperature superconductor

**Extensions of DFT are required** 



## Basic Hubbard model Hamiltonian

$$H_{\mathrm{Hub}} = t \sum_{\langle i,j \rangle, \sigma} (c_{i,\sigma}^{\dagger} c_{j,\sigma} + \mathrm{h.c.}) + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Conductor to insulator transition

$$E_{\text{DFT}+U} = E_{\text{DFT}} + E_{U} = E_{\text{DFT}} + E_{\text{Hub}} - E_{\text{dc}}$$

DFT conductors to DFT+U insulators



conductors ↔ insulators

### How good is DFT?

A "simple" case: the dissociation of H<sub>2</sub>

DFT:

$$\rho(\mathbf{r}) = \frac{1}{2}\rho_1(\mathbf{r}) + \frac{1}{2}\rho_2(\mathbf{r})$$

### How good is DFT?

A "simple" case: the dissociation of H<sub>2</sub>



$$\rho(\mathbf{r}) = \frac{1}{2}\rho_1(\mathbf{r}) + \frac{1}{2}\rho_2(\mathbf{r})$$

# DFT+U



oxygen(if oxides), Carbon, Hydrogen



- 1) we define 'hubbard' atoms (the d or f elements)
- 2) we extract the occupation of the hubbard atoms, by projecting the total density n(r) on the d atomic orbitals, we obtain (α is the d orbital index):

$$n_{\alpha}^{I}$$

3) we add a correction to the DFT energy:

$$E_U = \frac{U}{2} \sum_{I,\alpha\sigma} n_{\alpha\sigma}^I (1 - n_{\alpha\sigma}^I)$$

# DFT potentials

derivative of the total energy with respect to the  $\epsilon_i = \frac{\delta E^{\rm LDA+U}}{\delta n_i^{\sigma}}$  occupation of the orbital: We obtain the orbital eigenvalue by taking the

$$\epsilon_i = \frac{\delta E^{\text{LDA+U}}}{\delta n_i^{\sigma}}$$

$$\epsilon_{i} = \frac{\delta E^{\text{LDA}+\text{U}}}{\delta n_{i}^{\sigma}} = \epsilon_{i}^{\text{LDA}} + \frac{\delta}{\delta n_{i}^{\sigma}} \left( \frac{U}{2} \sum_{j\sigma'} n_{j}^{\sigma'} (1 - n_{j}^{\sigma'}) \right)$$

$$\epsilon_i = \frac{\delta E^{\text{LDA+U}}}{\delta n_i^{\sigma}} = \epsilon_i^{\text{LDA}} + \frac{U}{2} \left( -n_i^{\sigma} + (1 - n_i^{\sigma}) \right)$$

$$\epsilon_i = \frac{\delta E^{\mathrm{LDA} + \mathrm{U}}}{\delta n_i^{\sigma}} = \epsilon_i^{\mathrm{LDA}} + U\left(\frac{1}{2} - n_i^{\sigma}\right) \tag{occupied: } -\frac{U}{2}$$
 empty:  $+\frac{U}{2}$ 

#### The LDA+U potential would be:

$$V^{\text{LDA+U}}(r) = V_i^{\text{LDA}} + U\left(\frac{1}{2} - n_i^{\sigma}\right) P_i$$

# DFT potentials

We obtain the orbital eigenvalue by taking the We obtain the orbital eigenvalue by taking the derivative of the total energy with respect to the  $\epsilon_i = \frac{\delta E^{\mathrm{LDA} + \mathrm{U}}}{\delta n_i^{\sigma}}$ occupation of the orbital:

$$\epsilon_i = \frac{\delta E^{\text{LDA+U}}}{\delta n_i^{\sigma}}$$



#### The LDA+U potential would be:

$$V^{\text{LDA+U}}(r) = V_i^{\text{LDA}} + U\left(\frac{1}{2} - n_i^{\sigma}\right) P_i$$

# Projectors

# eigenstate occupation

# Kohn-Sham eigenstate

$$n_{mm'}^{I\sigma} = \sum_{\mathbf{k},v} f_{\mathbf{k}v}^{\sigma} \langle \psi_{\mathbf{k}v}^{\sigma} | P_{mm'}^{I} | \psi_{\mathbf{k}v}^{\sigma} \rangle$$

Hubbard atom density matrix



### projector:

$$P_{mm'}^{I} = |\varphi_{m}^{I}\rangle\langle\varphi_{m'}^{I}|$$

# What about "U"?

What is U? U is the Coulomb repulsion between electron, strong in d orbitals (these orbitals are localized, so the Coulomb repulsion is larger than in s or p orbitals).

Considering the atoms are embedded in a polarizable surrounding, U is the energy required to move an electron from one atom to another.

U is equal to the difference of ionization potential and electron affinity of the solid:



ionization energy

## **Energy linearity**





### Open system in contact with a reservoir

### The meaning of U in DFT+U

$$E_{exact} \approx E_{DFT} + \sum_{I} \frac{U^{I}}{2} \sum_{mm'\sigma} \left[ n_{mm'}^{I\sigma} (\delta_{mm'} - n_{mm'}^{I\sigma}) \right] = E_{DFT+U}$$



The (approximate) DFT energy has an unphysical curvature

The exact solution is piecewise linear

+U correction reproduces the exact solution

U and rotationally-invariant U: V.I. Anisimov and coworkers PRB (1991), PRB (1995); Dudarev, and coworkers PRB (1995) LRT U: M. Cococcioni PhD (2002), and M. Cococcioni and S. de

LRT U: M. Cococcioni PhD (2002), and M. Cococcioni and S. de Gironcoli. PRB (2005)

$$U = \frac{d^2 E_{DFT}}{dn^2}$$

### Linear response in practice

Apply a perturbation to the potential acting on the localized states of each Hubbard atom and compute the response of the occupations

$$V_{tot}|\psi_{kv}^{\sigma}\rangle = V_{KS}|\psi_{kv}^{\sigma}\rangle + \alpha^{I}\sum_{m}|\phi_{m}^{I}\rangle\langle\phi_{m}^{I}|\psi_{kv}^{\sigma}\rangle \implies \Delta n^{I}$$

Response matrices:

$$\chi^{IJ} = rac{dn^I}{dlpha^J} \qquad \chi^{IJ}_0 = rac{dn^I_0}{dlpha^J} \qquad \chi = egin{pmatrix} \chi^{11} & \ldots & \chi^{18} \ \ldots & \ldots \ \chi^{81} & \ldots & \chi^{88} \ \end{pmatrix}$$

Effective interactions:

$$U^{I} = \left(\chi_{0}^{-1} - \chi^{-1}\right)_{II}$$

M. Cococcioni and S. de Gironcoli, *PRB* 71, 035105 (2005)

### U is a system-dependent property

| Compounds          | U                 |
|--------------------|-------------------|
| CaCuO <sub>2</sub> | 7.5 eV (0.550 Ry) |
| NiO                | 8.0 eV (0.590 Ry) |
| CoO                | 7.8 eV (0.574 Ry) |
| FeO                | 6.8 eV (0.500 Ry) |
| MnO                | 6.9 eV (0.507 Ry) |
| VO                 | 6.7 eV (0.493 Ry) |
| TiO                | 6.6 eV (0.485 Ry) |

Electron configuration
Covalency/ionicity
Spin states/charge states
Element identity
Coordination numbers

#### LDA+U NiO



M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

### FeO: DFT and DFT+U



M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)