University of Toronto Faculty of Applied Science and Engineering

ECE 360F - Introductory Electronics

Final Examination

December 2001

Examiner: Professor S. Zukotynski

Name:	 	 	
Ctudant no.			

Q	Max	Mark	
1	25		
2	25		
3	25		
4	25		
Bonus	5		
Total	105		

Aid sheet allowed

Non-programmable calculator allowed

ALL WORK TO BE MARKED IS TO BE DONE ON THESE SHEETS

There are two spare pages at the back

QUESTION 1 - OP-AMPS

Part A: The op-amp is ideal. Find R and the current in the feedback resistor. Show the current polarity on the figure.

R= I=

Part B: The op-amp is ideal, except the open loop gain is 80dB and the output resistance is 75Ω . Find the output resistance of the amplifier circuit.

 R_{out} =

Part C: The op-amp is ideal . Find $R_{\scriptscriptstyle in}$ and $V_{\scriptscriptstyle o}$

$$R_{in} = V_o =$$

Bonus: The op-amp is ideal. V_i is a square wave 2V peak-to-peak with a period of 2ms. Sketch one period of V_o . Clearly indicate the critical points, give their coordinates and give analytical expressions for the curves. Assume that negative feedback dominates positive feedback.

QUESTION 2 - DIODES

Part A: All three diodes are ideal and $V_z=5V$ for D3. Sketch V_o for $-10V \le V_i \le 10V$. Indicate characteristic points and give their coordinates. Give the slope of the linear segments.

Part B: The zener diodes has $V_{zt}=10V$ at $I_{zt}=100\text{mA}$ and $r_z=4\Omega$. Find V_o and the load and line regulation in the circuit.

 $V_{i}=[20+0.1\sin(500\text{ rad/s t})]V$ 200Ω V_{o} 1 k

 V_o =

Load regulation=

Line regulation=

Part C:The diode is ideal. The square input voltage is 20V peak-to-peak with a period of 20ms. Sketch one period of V_o . Label the graph and give expressions for the curves (on the graph) and all of the critical values of V_o .

QUESTION 3 - BJTs

Part A: For the three BJTs below, β =99. Find the emitter current and the voltages at the collector, base and emitter. Verify the mode of operation. Assume $V_{CE}(sat)=0.2V$.

i)

Mode of operation=saturation

$$\tilde{V}_{C} =$$

$$V_B =$$

Confirm mode of operation

ii)

Mode of operation=cut off

$$V_{C}=$$

$$V_B = V_E = V_E$$

Confirm mode of operation

iii)

Mode of operation=active

$$V_c =$$

$$V_{\rm E}$$
=

Confirm mode of operation

Part B: Both BJTs have β =99 and V_A = ∞ . The dc emitter current of both transistors is 1mA. Replace Q1 with the T model and Q2 with the hybrid- π model and sketch the equivalent amplifier circuit. Find the small signal R_{in} , R_{out} and open circuit voltage gain A_{vo} . Assume V_T =25mV.

Equivalent small signal circuit

 $R_{in} = R_{out} = A_{v} =$

QUESTION 4 - FETs

Part A: The two JFET are identical with I_{DSS} =5mA and V_p =-2V. Assume λ =0. Find I_D .

$I_D =$		

Part B: For the FET you have $k=1\text{mA/V}^2$, $V_t=2\text{V}$ and $\lambda=1/100\text{V}$. Assume V_i is small.

i) Show that the FET is in saturation.

ii) Calculate g_m , replace the transistor with its small signal model, sketch the amplifier circuit and give the value of all components.

The FET is in saturation because:

b) Find R_{in} , R_{out} and the small signal voltage gain V_o/V_i .

$$R_{in} = R_{out} = V_o / V_i =$$

‡

=

=

=

_

•

•

•

•

÷

=

‡

-

•

•

•