

Survey: Large-scale 3DGS

3D Gaussian Splatting: Background

- Traditional 3D Reconstruction
 - Local illumination
 - Lambert, Phong, Blinn-Phong, Cook-torrance
 - Simple, quick but unreal
 - Global illumination like ray-tracing
 - Realistic but compliate
- Neural Radiance Field
- 3D Gaussian Splatting

3D Gaussian Splatting: Background

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL*, Inria, Université Côte d'Azur, France GEORGIOS KOPANAS*, Inria, Université Côte d'Azur, France THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany GEORGE DRETTAKIS, Inria, Université Côte d'Azur, France

• SfM: Structure from Motion

- 3D Gaussian's feature:
 - 3D Position $\rightarrow \mu$
 - Anisotropic Covariance Matrix $\rightarrow \Sigma$
 - Rotation Matrix
 - Scaling Matrix
 - Opacity $\rightarrow \alpha \in [0, 1)$
 - Spherical Harmonic Coefficients 16 * 3

$$f(x)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

$$= \frac{1}{\sqrt{2\pi}\sigma^3 \Sigma} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

$$\Sigma = RSS^{\frac{1}{2}} R^{\frac{1}{2}} \sum_{x=1}^{2\pi} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

$$\Sigma = \left[\begin{matrix} \sigma_x^2 & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_y^2 & \sigma_{yz} \\ \sigma_{zx} & \sigma_{yz} & \sigma_z^2 \end{matrix}\right]$$
Annual states shows that shows the state of the state

- Projection
 - **View Transformation**
 - Projection Transformation (perspective or orthographic ?)

- Tile-based Rasterizer
 - 1. Pre-process
 - 2. Duplicate
 - 3. Radix sort
 - 4. α-blend
- Loss Function
 - $\mathcal{L} = (1 \lambda)\mathcal{L}_1 + \lambda\mathcal{L}_{\text{D-SSIM}}$

$$C = \sum_{i=1}^{N} T_i \alpha_i \mathbf{c}_i,$$

$$\alpha_i = (1 - \exp(-\sigma_i \delta_i)) \quad T_i = \prod_{j=1}^{i-1} (1 - \alpha_i).$$

- Adaptive Desity Control
 - Clone: Under-reconstruction
 - Split: Over-reconstruction
 - Remove Gaussians
 - · whose opacity are lower than threshold
 - which are very large in world space or have a big footprint in viewspace periodically

3D Gaussian Splatting: Evaluation Metrics & Results

- 1. PSNR (Peak Signal-to-Noise Ratio) ↑
- 2. SSIM (Structural Similarity Index Measure) ↑
- 3. LPIPS (Learned Perceptual Image Patch Similarity) ↓
- 4. FPS (Frame Per Seconds for inference rendering with A6000) ↑
- 5. Train (training time for A6000) ↓

Dataset	Mip-NeRF360						Tanks&Temples						Deep Blending					
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB	0.795	23.06	0.510	27m49s	11.2	2.7GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB	0.797	23.62	0.423	6m31s	3.26	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB	0.817	24.96	0.390	8m	2.79	48MB
M-NeRF360	0.792	27.69 [†]	0.237†	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB	0.901	29.40	0.245	48h	0.09	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB	0.875	27.78	0.317	4m35s	172	386MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB	0.903	29.41	0.243	36m2s	137	676MB

3D Gaussian Splatting: Research Directions

- Data efficient 3DGS
 - Sparse data leads to inaccuracies
- Memory efficient 3DGS
 - Reduce the number of 3D Gaussians
 - Compress the memory usage of 3D Gaussian properties
- Photorealistic 3DGS
- 3DGS with more properties
 - Scene understanding
- Large-scale 3DGS
 - Challenges Caused by Large-scale (over 1.5km²)
 - Prohibitive overhead in GPU memory during training.
 - Rendering speed bottleneck lies in sorting.
 - Optimization
 - Divide-and-conquer training approach.
 - Level of detail strategy for rendering.

Large-scale 3D Gaussian Splatting: CityGaussian

Rendering

Large-scale 3D Gaussian Splatting: Hierarchical 3DGS

Large-scale 3D Gaussian Splatting: Octree-GS

- Anchor Point
 - MLP Feature
 - \bullet F_{α} , F_{c} , F_{q} , F_{s}

Anchor-based Octree

1 construct the octree-structrue grids

2 Initialize anchors with varing LOD levels

References

- 1. Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." ACM Trans. Graph. 42.4 (2023): 139-1.
- 2. Liu, Yang, et al. "Citygaussian: Real-time high-quality large-scale scene rendering with gaussians." European Conference on Computer Vision. Springer, Cham, 2025.
- 3. Kerbl, Bernhard, et al. "A hierarchical 3d gaussian representation for real-time rendering of very large datasets." ACM Transactions on Graphics (TOG) 43.4 (2024): 1-15.
- 4. Lu, Tao, et al. "Scaffold-gs: Structured 3d gaussians for view-adaptive rendering." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
- 5. Ren, Kerui, et al. "Octree-gs: Towards consistent real-time rendering with lod-structured 3d gaussians." arXiv preprint arXiv:2403.17898 (2024).

