

Machine Learning for Signal Processing Supervised Representations (Slides partially by Najim Dehak)

MLSP

Application of Machine Learning techniques to the analysis of signals

- Feature Extraction:
 - Supervised (Guided) representation

Bases to represent data

- Basic: The bases we considered first were data agnostic
 - Fourier / Wavelet type bases, which did not consider the characteristics of the data
- Improvement I: The bases we saw next were data specific
 - PCA, NMF, ICA, ...
 - Different techniques emphasize different aspects of the data
 - The bases changed depending on the data characteristics
 - But do not consider what the data are used for
 - I.e. they are data dependent, but independent of the task
- Improvement II: What if bases are both data specific and task specific?
 - Basis depends on both the data and the task being performed

Bases to represent data

- Basic: The bases we considered first were data agnostic
 - Fourier / Wavelet type bases, which did not consider the characteristics of the data
- Improvement I: The bases we saw next were data specific
 - PCA, NMF, ICA, …
 - Different techniques emphasize different aspects of the data
 - The bases changed depending on the data characteristics
 - But do not consider what the data are used for
 - I.e. they are data dependent, but independent of the task
- Improvement II: What if bases are both data specific and task specific?
 - Basis depends on both the data and the task being performed

Recall: Data-dependent bases

- What is a good basis?
 - Energy Compaction → Karkhonen-Loève
 - Retain maximum variance → PCA
 - Also uncorrelatedness of representation
 - Sparsity → Overcomplete bases
 - Constructive composability → NMF
 - Statistical Independence → ICA
- We create a narrative about how the data are created

Task-dependent bases?

- Task: Regression
 - We attempt to predict some variable Y using a variable X
 - Via linear regression
- Standard data-driven bases:
 - Find a representation of X that best captures the characteristics of X
 - Without considering Y
 - Find a representation of Y that best captures the characteristics of Y
 - Without considering X
 - The two representations are independently learned
 - Try to predict (learned representation of) Y from the (learned representation of) X
- Can we do better if the bases used to represent X and Y are jointly learned?
 - Such that the learned representation of X is now better able to predict the learned representation of Y

Task-dependent bases?

- Task: Classification
 - We attempt to assign a class Y to input data X
- Standard data-driven bases:
 - Find a representation of X that best captures the characteristics of X
 - Without considering Y
 - Try to predict Y from the (learned representation of) X
- Can we do better if the bases used to represent X consider the classes Y?
 - Such that the learned representation of X are more useful for classification of X into Y

Supervised learning of bases

- Problems are instances of supervised learning of bases
 - Supervision provided by variable Y
- What is a good basis?
 - Basis that gives best classification performance
 - Basis that results in best regression performance
 - Here bases can be jointly learned for both independent variable X and dependent variable Y
 - In general: Basis that maximizes shared information with another 'view'
 - The second "view" is the task

Multiple Regression

- Robot Archer Example
 - A robot fires defective arrows at a target
 - We don't know how wind might affect their movement, but we'd like to correct for it if possible.
 - Predict the distance from the center of a target of a fired arrow
- Measure wind speed in 3 directions

$$X_i = \begin{bmatrix} 1 \\ w_x \\ w_y \\ w_z \end{bmatrix}$$

Multiple Regression

Wind speed

$$X_i = \begin{vmatrix} 1 \\ w_x \\ w_y \\ w_z \end{vmatrix}$$

- Offset from center in 2 directions $Y_i = \begin{bmatrix} o_x \\ o_y \end{bmatrix}$
- Model

$$Y_i = \beta^T X_i$$

Multiple Regression

Answer

$$\beta = (XX^T)^{-1}XY^T$$

- Here Y contains measurements of the distance of the arrow from the center
- $-Y_i = \beta^T X_i \rightarrow$ We are fitting a plane
- Correlation is basically just the gradient of the plane

Focusing on what's important

- Do all wind factors affect the position
 - Or just some low-dimensional combinations $\hat{X} = U^T X$
- Do they affect both coordinates individually
 - Or just some of combination $\hat{y} = V^T Y$

- Find a projection of wind vector X, and a projection of arrow location vector Y such that the projection of X best predicts the projection of Y
 - The projection of the vectors for Y and X respectively that are most correlated

- What do these vectors represent?
 - Direction of max correlation ignores parts of wind and location data that do not affect each other
 - Only information about the defective arrow remains!

Why not just jointly analyze

- Why not just concatenate both variables?
 - E.g. create $Z = [X^T Y^T]^T$ and just perform PCA on Z
- It does not exploit the extra structure of the signal (more on this shortly)
 - PCA on joint data will decorrelate all variables
 - Also mixes X and Y, whereas we want to predict Y from X
 - We want to decorrelate X and Y, but maximize cross-correlation between X and Y

A Quick Review

Matrix representation

$$\mathbf{X} = [X_1, X_2, \dots, X_N] \qquad \mathbf{Y} = [Y_1, Y_2, \dots, Y_N]$$

$$C_{XX} = \frac{1}{N} \sum_{i} X_i X_i^T = \frac{1}{N} \mathbf{X} \mathbf{X}^T$$

$$C_{YY} = \frac{1}{N} \sum_{i} Y_i Y_i^T = \frac{1}{N} \mathbf{Y} \mathbf{Y}^T$$

$$C_{XY} = \frac{1}{N} \sum_{i} X_i Y_i^T = \frac{1}{N} \mathbf{X} \mathbf{Y}^T$$

Cross Correlation

Cross correlation between X and Y :

$$C_{XY} = E[XY^T]$$
$$= \frac{1}{N} \mathbf{X} \mathbf{Y}^T$$

• If we project *X* and *Y* down to *k* dimensions:

$$\hat{X} = U^T X$$

$$\hat{Y} = V^T Y$$

- U is $N \times k$, V is $M \times k$, where N and M are the dimension of X and Y
- Cross correlation between \widehat{X} and \widehat{Y} is

$$C_{\widehat{X}\widehat{Y}} = E[\widehat{X}\widehat{Y}^T] = U^T C_{XY} V$$
$$= \frac{1}{N} U^T \mathbf{X} \mathbf{Y}^T V$$

Maximizing Cross Correlation

• Maximize $C_{\widehat{X}\widehat{Y}}$

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} C_{\widehat{X}\widehat{Y}}$$

Which becomes:

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} U^T C_{XY} V$$

Where

$$C_{XY} = \frac{1}{N} \mathbf{X} \mathbf{Y}^T$$

Is this enough?

Maximizing Cross Correlation

• Maximize $C_{\widehat{X}\widehat{Y}}$

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} U^T C_{XY} V$$

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} \frac{1}{N} U^T \mathbf{X} \mathbf{Y}^T V$$

- This can be arbitrarily maximized by simply scaling up U, or V ...
 - Or X or Y
- So how do we constrain this?

Constraints

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} \frac{1}{N} U^T \mathbf{X} \mathbf{Y}^T V$$

- Options
 - Whiten X
 - Whiten Y
 - Constrain U to be an orthonormal matrix
 - All Eigen values are 1
 - Constrain V to be an orthonormal matrix
- Can we compact these further?

A Quick Review

 The effect of a transform on the covariance of an RV

$$\hat{X} = U^T X$$

$$C_{XX} = E[XX^T]$$

$$C_{\widehat{X}\widehat{X}} = E[\widehat{X}\widehat{X}^T] = U^T C_{XX} U$$

• Constrain \widehat{X} and to \widehat{Y} be white

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} U^T C_{XY} V$$

$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

• Constrain \widehat{X} and to \widehat{Y} be white

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} U^T C_{XY} V$$

How do you maximize a matrix??

$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

• Constrain \hat{X} and to \hat{Y} be white

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} \operatorname{trace}(U^T C_{XY} V)$$

$$U^T C_{XX} U = I_k, \quad V^T C_{YY} V = I_k$$

- Maximize the sum of the diagonals of the cross correlation matrix
 - I.e. maximize the sum of the Eigen values of the cross correlation matrix

Poll 1

• Constrain \hat{X} and to \hat{Y} be white

$$\widehat{U}, \widehat{V} = \underset{U,V}{\operatorname{argmax}} \operatorname{trace}(U^T C_{XY} V)$$

$$U^T C_{XX} U = I_k, V^T C_{YY} V = I_k$$

- Maximize the sum of the diagonals of the cross correlation matrix
 - I.e. maximize the sum of the Eigen values of the cross correlation matrix
 - Why the sum?

Multiview Assumption

- CCA models both variables as different views of a common reality
 - X and Y are obtained from different views of the same common space
 - The two views are correlated
 - But each of the views also loses some information
 - E.g the total dimensions of the views of X and Y may be fewer than the total dimensions of the space
 - Each view locally perturbed by noise
- Challenge: Extract the correlated subspaces of X and Y from their noise

Multiview Examples

Multiview Assumption

 We can sort of think of a model for how our data might be generated

- We want View 1 independent of View 2 conditioned on knowledge of the source
 - All correlation is due to source

Multiview Examples

- Look at many stocks from different sectors of the economy
 - Conditioned on the fact that they are part of the same economy they might be independent of one another
- Multiple Speakers saying the same sentence
 - The sentence generates signals from many speakers.
 Each speaker might be independent of each other conditioned on the sentence

11-755/18-797 30

View 2

Source

Recall: Least squares formulae

$$E = \sum_{i} (X_i - Y_i)^2$$

$$\mathbf{X} = [X_1, X_2, ..., X_N]$$
 $\mathbf{Y} = [Y_1, Y_2, ..., Y_N]$

$$E = \|\mathbf{X} - \mathbf{Y}\|_F^2$$

Expressing total error as a matrix operation

CCA objective

- CCA attempts to "reconstruct" a shared reality from both views
 - And tries to make them both look the same

$$\underset{U \in \mathbb{R}^{N \times k}, \ V \in \mathbb{R}^{M \times k}}{\operatorname{argmin}} \| U^T \mathbf{X} - V^T \mathbf{Y} \|_F^2 \longleftarrow \underline{\text{minimize}}$$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

$$\underset{U \in \mathbb{R}^{N \times k}, \ V \in \mathbb{R}^{M \times k}}{\operatorname{argmin}} \| U^T \mathbf{X} - V^T \mathbf{Y} \|_F^2$$

s.t.
$$U^T \mathbf{X} \mathbf{X}^T U = N I_k$$
, $V^T \mathbf{Y} \mathbf{Y}^T V = N I_k$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

$$||U^{T}\mathbf{X} - V^{T}\mathbf{Y}||_{F}^{2} = trace(U^{T}\mathbf{X} - V^{T}\mathbf{Y})(U^{T}\mathbf{X} - V^{T}\mathbf{Y})^{T}$$

$$= trace(U^{T}\mathbf{X}\mathbf{X}^{T}U + V^{T}\mathbf{Y}\mathbf{Y}^{T}V - U^{T}\mathbf{X}\mathbf{Y}^{T}V - V^{T}\mathbf{Y}\mathbf{X}^{T}U)$$

$$= 2Nk - 2trace(U^{T}\mathbf{X}\mathbf{Y}^{T}V)$$

• So we can solve the equivalent problem below $\max_{U,V} trace(U^T C_{XY} V)$

s.t.
$$U^T C_{XX} U = I_k$$
, $V^T C_{YY} V = I_k$

Incorporating Lagrangian, maximize

$$\mathcal{L}(\Lambda_X, \Lambda_Y) = tr(U^T C_{XY} V)$$

$$-tr\left(\left((U^T C_{XX} U) - I_k\right) \Lambda_X\right) - tr\left(\left((V^T C_{YY} V) - I_k\right) \Lambda_Y\right)$$

- Remember that the constraints matrices are symmetric
- Also for any A, B,

$$\nabla_A tr(AB) = B^T$$

$$\nabla_A tr(ABA^T) = A(B + B^T)$$

Taking derivatives and after a few manipulations

$$\Lambda_X = \Lambda_Y = \Lambda$$

We arrive at the following system of equation

$$C_{YX}\tilde{U} = C_{YY}\tilde{V}D$$
$$C_{XY}\tilde{V} = C_{XX}\tilde{U}D$$

CCA Derivation

• We isolate $ilde{V}$

$$\tilde{V} = C_{YY}^{-1} C_{YX} \tilde{U} D^{-1}$$

We arrive at the following system of equation

$$C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}\tilde{U} = \tilde{U}D^2$$

$$C_{YY}^{-1}C_{YX}C_{XX}^{-1}C_{XY}\tilde{V} = \tilde{V}D^2$$

CCA Derivation

• For \widetilde{U} we just have to find eigenvectors for

$$C_{XX}^{-1}C_{XY}C_{YY}^{-1}C_{YX}$$

- Basically, the Eigen vectors for the correlation of the vector obtained by transforming X to Y and back to X
- After normalizing out the local variance
- We then solve for the other view using the expression for \tilde{V} on the previous slide.
- In PCA the eigenvalues were the variances in the PCA bases directions
- In CCA the eigenvalues are the squared correlations in the canonical correlation directions

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue Problem

Combine the system of eigenvalue eigenvector equations

$$\begin{bmatrix} 0 & C_{XY} \\ C_{YX} & 0 \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} = \begin{bmatrix} C_{XX} & 0 \\ 0 & C_{YY} \end{bmatrix} \begin{bmatrix} \tilde{U} \\ \tilde{V} \end{bmatrix} D$$

Generalized eigenvalue problem

$$AU = BU\Lambda$$

- We assumed invertible $C_{XX}, C_{YY} \rightarrow \exists B^{-1}$
- Solve a single eigenvalue/vector equation

$$B^{-1}A\tilde{U} = \tilde{U}D$$

CCA Fixes

- We assumed invertibility of covariance matrices.
 - Sometimes they are close to singular and we would like stable matrix inverses
 - If we added a small positive diagonal element to the covariances then we could guarantee invertibility.
- It turns out this is equivalent to regularization

CCA Fixes

- The following problems are equivalent
 - They have the same gradients

$$\min_{U,V} \| U^T \mathbf{X} - V^T \mathbf{Y} \|_F^2 + \lambda_{\mathcal{X}} \| U \|_F^2 + \lambda_{\mathcal{Y}} \| V \|_F^2$$

$$\max_{U,V} trace(U^T \mathbf{X} \mathbf{Y}^T V)$$

s.t.
$$U^T(C_{XX}+\lambda_x I)U=I_k$$
, $V^T(C_{YY}+\lambda_y I)V=I_k$

- The previous solution still applies but with slightly different autocovariance matrices
 - "Diagonal load" the autocovariances

CCA Fixes

 Since we now have strictly positive autocovariance matrices, we know they have Cholesky decompositions.

$$(C_{XX} + \lambda_x I) = L_{XX} L_{XX}^T$$

This results in the following problem

$$L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY} + \lambda_y I)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T \tilde{U} = \tilde{U}D$$

- We note that the matrix is symmetric and
- So the problem is solved by SVD on the matrix M

$$L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY}+\lambda_yI)^{-1}C_{YX}(L_{XX}^{-\frac{1}{2}})^T=MM^T \text{ with } M=L_{XX}^{-\frac{1}{2}}C_{XY}(C_{YY}+\lambda_yI)^{-\frac{1}{2}}$$

Poll 2

CCA Motivation and History

- Proposed by Hotelling (1936)
- Many real world problems involve 2 'views' of data

Economics

- Consumption of wheat is related to the price of potatoes, rice and barley ... and wheat
- Random vector of prices X
- Random vector of consumption Y

11-755/18-797

CCA Motivation and History

- Magnus Borga, David Hardoon popularized CCA as a technique in signal processing and machine learning
- Better for dimensionality reduction in many cases

CCA Dimensionality Reduction

- We keep only the correlated subspace
- Is this always good?
 - If we have measured things we care about then we have removed useless information

CCA Dimensionality Reduction

- In this case:
 - CCA found a basis component that preserved class distinctions while reducing dimensionality
 - Able to preserve class in both views

Comparison to PCA

PCA fails to preserve class distinctions as well

Failure of PCA

- PCA is unsupervised
 - Captures the direction of greatest variance (Energy)
 - No notion of task or hence what is good or bad information
 - The direction of greatest variance can sometimes be noise
 - Ok for reconstruction of signal
 - Catastrophic for preserving class information in some cases

Benefits of CCA

- Why did CCA work?
 - Supervision
 - External Knowledge
 - The 2 views track each other in a direction that does not correspond to noise
 - Noise suppression (sometimes)
- Preview
 - If one of the sets of signals are true labels, CCA is equivalent to Linear Discriminant Analysis
 - Hard Supervision

Multiview Assumption

- When does CCA work?
 - The correlated subspace must actually have interesting signal
 - If two views have correlated noise then we will learn a bad representation
- Sometimes the correlated subspace can be noise
 - Correlated noise in both sets of views

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue Problem

Rayleigh Quotient

$$\lambda_{max}(B^{-1}A) = \max_{x} \frac{x^{T}Ax}{x^{T}Bx}$$

$$\frac{\delta}{\delta x} \frac{x^{T}Ax}{x^{T}Bx} = \frac{\delta}{\delta x} x^{T}Ax(x^{T}Bx)^{-1} = 0$$

$$= 2Ax(x^{T}Bx)^{-1} - x^{T}Ax(x^{T}Bx)^{-2}2Bx = 0$$

$$\implies \frac{1}{x^{T}Bx}(Ax - \frac{x^{T}Ax}{x^{T}Bx}Bx) = 0$$

$$\implies Ax = \frac{x^{T}Ax}{x^{T}Bx}Bx$$

JOHNS HOPKINS WHITING SCHOOL CCA as Generalized Eigenvalue Problem

- So the solutions to CCA are the same as those to the Rayleigh quotient
- PCA is actually also this problem with

$$A = C_{XX}, B = I$$

 We will see that Linear Discriminant Analysis also takes this form, but first we need to fix a few CCA things

What to do with the CCA Bases?

- The CCA Bases are important in their own right.
 - Allow us a generalized measure of correlation
 - Compressing data into a compact correlative basis
- For machine learning we generally ...
 - Learn a CCA basis for a class of data
 - Project new instances of data from that class onto the learned basis
 - This is called multi-view learning

Multiview Setup

11-755/18-797 55

Multiview Setup

- Often one view consists of measurements that are very hard to collect
 - Speakers all saying the same sentence
 - Articulatory measurements along with speech
 - Odd camera angles
 - Etc.

11-755/18-797 56

Multiview Setup

- We learn the correlated direction from data during training
- Constrain the common view to lie in the correlated subspace at test time
 - Removes uselessinformation (Noise)

11-755/18-797 http://ema.umcs.pl/pl/laboratorium/

Poll 3

11-755/18-797

Linear Discriminant Analysis

- Given data from two classes
- Find the projection U
- Such that the separation between the classes is maximum along U
 - $Y = U^TX$ is the projection bases in U
 - No other basis separates the classes as much as U

11-755/18-797 59

Linear Discriminant Analysis

- We have 2 views as in CCA
- One of the views is the class labels of the data
 - Learn the direction that is maximally correlated with the class labels!
- It turns out that LDA and CCA are equivalent when the situation above is true

- LDA setup
 - Assume classes are roughly Gaussian
 - Still works if they are not, but not as well
 - We know the class membership of our training data
 - Classes are distinguishable by ...
 - Big gaps between classes with no data points
 - Relatively compact clusters

LDA setup

- We define a few Quantities
 - Within-class scatter

$$\mathbf{S}_{\mathrm{W}} = \sum_{k=1}^{K} \mathbf{S}_{k}$$
 $\mathbf{S}_{k} = \sum_{n \in \mathcal{C}_{k}} (\mathbf{x}_{n} - \mathbf{m}_{k}) (\mathbf{x}_{n} - \mathbf{m}_{k})^{\mathrm{T}}$

- Minimize how far points can stray from the mean
- Compact classes
- Between-class scatter
 - Maximize the variance of the class means (distance between means)

$$\mathbf{S}_{\mathrm{B}} = \sum_{k=1}^{K} N_k (\mathbf{m}_k - \mathbf{m}) (\mathbf{m}_k - \mathbf{m})^{\mathrm{T}}.$$

11-755/18-797

- We want a small within-class variance
- We want a high between-class variance
- Let's maximize the ratio of the two!!

- Remember we are looking for the basis W onto which projections maximize this ratio
 - Key concept: what is the covariance of $Y = W^T X$ given C_{XX} ?

Recall: Effect of projection on scatter

- Let $Y = W^T X$
- Let S_B and S_W be the between and within class scatter of X
- Within class scatter of Y: $S_W^Y = W^T S_W W$
- Between class scatter of Y: $S_B^Y = W^T S_B W$
- Must maximize S_B^Y while minimizing S_W^Y .

11-755/18-797

- We actually have too much freedom
 - Without any constraints on W
 - Let's fix the within-class variance to be 1. $\operatorname*{argmax} tr(W^TS_BW) \ s.t. \ W^TS_WW = I$ $W \in \mathbb{R}^{d \times k}$
- The Lagrangian is ...

$$L(\Lambda) = \underset{W \in \mathbb{R}^{d \times k}}{\operatorname{argmax}} tr(W^{T}S_{B}W) - tr((W^{T}S_{W}W - I)\Lambda)$$

- So we see that we have a generalized eigenvalue solution $S_B w = \lambda S_W w$
 - w is any column of W and λ is a diagonal entry of Λ

- When does LDA fail?
 - When classes do not fit into our model of a blob
 - We assumed classes are separated by means
 - They might be separated by variance
 - We can fix this using heteroscedastic LDA
 - Fixes the assumption of shared covariance across class.

nttps://www.isv.uni-saarland.de/fileadmin/teaching/dsp/ss15/DSP2016/matdid437773.pdf

Poll 4

11-755/18-797

LDA for classification

- For each class assume a Gaussian Distribution
 - Estimate parameters of the Gaussian
 - We want argmax P(Y = K | X)
 - We use Bayes rule

$$P(Y = K | X) = P(X | Y = K)P(Y = K)$$

We end up with linear decision surfaces between classes

$$\log\left(\frac{P(y=k|X)}{P(y=l|X)}\right) = 0 \Leftrightarrow (\mu_k - \mu_l)\Sigma^{-1}X = \frac{1}{2}(\mu_k^t \Sigma^{-1} \mu_k - \mu_l^t \Sigma^{-1} \mu_l)$$

For the best classification, perform Bayes classification on the LDA projections

Bakeoff - PCA, CCA, LDA on Vowel Classification

- Speech is produced by an excitation in the glottis (vocal folds)
- Sound is then shaped with the tongue, teeth, soft palate ...
- This shaping is what generates the different vowels

JzOU#t=00m36s

soft palate (velum) upper lip tongue https://www.youtube.com/watch?v=58AJva7 pharynx lower teeth larynx

Bakeoff – PCA, CCA, LDA on Vowel Classification

 To represent where in the mouth the vowels are being shaped linguists have something called a vowel diagram

It classifies vowels as front-back, open-closed depending

on tongue position

Where symbols appear in pairs, the one to the right represents a rounded vowel $% \left\{ 1,2,\ldots,n\right\}$

Bakeoff – PCA, CCA, LDA on Vowel Classification

- Task:
 - Discover the vowel chart from data
- CCA on Acoustic and Articulatory View
 - Project Acoustic data onto top 3 dimensions

VOWELS Front Central Back Close i y i u u u Close-mid e Ø 9 0 0 0 Open-mid & AE" "AE" "AO" "IY" Open Open

Where symbols appear in pairs, the one to the right represents a rounded vowel $\,$

Bakeoff – PCA, CCA, LDA on Vowel Classification

Using a one hot encoding of labels as a view gives LDA

CCA

Where symbols appear in pairs, the one to the right represents a rounded vowel

LDA

Where symbols appear in pairs, the one to the right represents a rounded vowel

11-755/18-797

73

Multilingual CCA

- Another Example of CCA
 - Word is mapped into some vector space
 - A notion of distance between words is defined and the mapping is such that words that are semantically similar are mapped to near to each

other (hopefully)

http://www.tnivial.jo/word2vec-on-databricks/

11-755/18-797

Multilingual CCA

- What if parallel text in another language exists?
- What if we could generate words in another language?
- Use different languages as different views

http://www.trivial.io/word2vec-on-databricks/

11-755/18-797

Multilingual CCA

Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual correlation." Association for Computational Linguistics, 2014.

Fisher Faces

- We can apply LDA to the same faces we all know and love.
 - The details, especially stranger ones such as eye

depth emerge as discriminating

features

Conclusions

- LDA learns discriminative representations by using supervision
 - Knowledge of Labels
- CCA is equivalent to LDA when one view is labels
 - CCA provides soft supervision by exploiting redundant view of data